

# Predicting Adverse Drug Events during Methylphenidate Treatment in ADHD : International Collaborative Network Study

Version: 1.0

Date: July 07, 2022

#### Created by:

Dong Yun Lee, MD, Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea

Chungsoo Kim, PharmD, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea

Yunmi Shin, MD, Department of Psychiatry, Ajou University School of Medicine, Suwon, South Korea

Minkook Son, MD, PhD, Department of Physiology, Dong-A University College of Medicine

Rae Woong Park, MD, PhD, Department of Biomedical Informatics, Ajou University Graduate School of Medicine, Suwon, South Korea

Contact person: Dong Yun Lee - dongyun90@ajou.ac.kr

#### **Principal investigator:**

Rae Woong Park, MD, PhD, Professor

Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea veritas@ajou.ac.kr



**Financial supports:** This work is supported by the Health Insurance Review & Assessment Service (HIRA). The views expressed are those of the author(s) and not necessarily those of the HIRA. This research is also funded by the Bio Industrial Strategic Technology Development Program (20003883, 20005021) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea), a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (grant number: HR16C0001).

The authors declare the following disclosures: N/A



# Contents

| 1   | List of abbreviations5 |          |                                          |    |  |
|-----|------------------------|----------|------------------------------------------|----|--|
| 2   | Ame                    | ndmen    | ts and Updates                           | 5  |  |
| 3   | Exec                   | utive Su | ımmary                                   | 5  |  |
| 4   | Ratio                  | onale ar | nd Background                            | 6  |  |
| 5   | Stud                   | y Objec  | tives                                    | 6  |  |
|     | 5.1                    | Objec    | tives                                    | 6  |  |
| 6   | Rese                   | arch m   | ethods                                   | 8  |  |
|     | 6.1                    | Study    | Design                                   | 8  |  |
|     |                        | 6.1.1    | Overview                                 | 8  |  |
| 6.2 | Data                   | Source   | (s)                                      | 9  |  |
|     | 6.3                    | Study    | population                               | 9  |  |
|     |                        | 6.3.1    | Target Cohort(s) [T]                     | 9  |  |
|     |                        | 6.3.2    | Outcome Cohort(s) [O]                    | 9  |  |
|     |                        | 6.3.3    | Study population for additional analyses | 10 |  |
|     |                        | 6.3.4    | Time at Risk                             | 11 |  |
|     | 6.4                    | Statis   | tical Analysis Method(s)                 | 11 |  |
|     |                        | 6.4.1    | Algorithms                               | 11 |  |
|     |                        | 6.4.2    | Model Evaluation                         | 12 |  |
|     | 6.5                    | Quali    | ty Control                               | 14 |  |
|     | 6.6                    | Tools    |                                          | 14 |  |
| 7   | Data                   | Analys   | is Plan                                  | 14 |  |
|     | 7.1                    | Algori   | ithm Settings                            | 14 |  |
|     | 7.2                    |          | iate Settings                            |    |  |
|     | 7.3                    |          | el Development & Evaluation              |    |  |
|     |                        |          |                                          |    |  |



|    | 7.4   | Analysis Execution Settings                       | 18   |
|----|-------|---------------------------------------------------|------|
|    | 7.5   | Strengths and Limitations                         | . 18 |
| 8  | Prote | ection of Human Subjects                          | 18   |
| 9  | Plans | for Disseminating and Communicating Study Results | 18   |
| 10 | Refer | rences                                            | 18   |
| 11 | Appe  | ndix: Code Set for Definitions                    | 20   |



#### 1 List of abbreviations

AUROC Area Under the Receiver Operating Characteristic Curve

AAP American Academy of Pediatrics

ADHD Attention-Deficit/Hyperactivity Disorder

CDM Common Data Model MPH Methylphenidate O Outcome cohort

OHDSI Observational Health Data Sciences and Informatics

OMOP Observational Medical Outcome Partnership SSRI Selective Serotonin Reuptake Inhibitor

T Target cohort
TAR Time at risk

# 2 Amendments and Updates

| 0.1 | 06 May 2022  | C Kim                    | Initial draft                              |
|-----|--------------|--------------------------|--------------------------------------------|
| 0.2 | 20 May 2022  | D.Y Lee, C Kim           | Finalize draft                             |
| 0.3 | 21 June 2022 | D.Y Lee, C Kim           | Added estimation analysis                  |
| 0.4 | 07 July 2022 | D.Y Lee, C Kim,<br>M Son | Revise the definition of outcome variables |
| 1.0 | 07 July 2022 | D.Y Lee, C Kim           | Protocol release                           |

# 3 Executive Summary

The primary objective of this study is to develop and validate patient-level prediction models for patients with Attention-deficit/hyperactivity disorder (ADHD) who were first prescribed methylphenidate (MPH). Thirteen different outcomes will be predicted, including 1) psychosis, 2) mania, 3) tic disorder, 4) sleep disorder, 5) substance abuse disorder, 6) movement disorder, 7) drug induced parkinsonism, 8) tremor, 9) cardiovascular events, 10) hypertension, 11) arrhythmia, 12) traumatic injury, 13) ADHD hospitalization. The time-at-risk period will be defined as from the cohort start date + 7 days to the last date of continuous MPH exposure or the cohort start date + 365 days (maximum). These thirteen prediction models will be developed using three different algorithms: Lasso Logistic Regression, Random Forest, and Extreme Gradient boosting. The secondary objective of this study is to assess clinical outcomes in patients stratified with prediction results.



### 4 Rationale and Background

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioral disorders<sup>1</sup>. The most used drug for the treatment of ADHD is psychostimulant, which includes MPH, dextroamphetamine, and lisdexamfetamine, for about 90% of the total anti-ADHD prescription<sup>2, 3</sup>. Although MPH effectively ameliorate the symptoms of ADHD and has the best safety/coverage ratio than other anti-ADHD drugs, adverse events including neuropsychiatric and other medical problems have been reported<sup>4, 5</sup>. Especially, dopaminergic excess or interacting with the dopamine system from MPH treatment can trigger psychotic and tic symptoms.<sup>6, 7</sup> Moreover, the use of MPH has caused concern for increased seizures.<sup>8</sup> These side effects can also affect the medication non-adherence which impact on treatment efficacy.<sup>9</sup> Therefore, early detection and intervention in adverse events associated with MPH is crucial for effective treatments. However, even if associations between MPH and adverse events have been reported, studies predicting individual's probability for adverse events of MPH are still limited.

We aim to develop and validate statistical models for predicting comprehensive adverse events of MPH in patients with ADHD. We will also differentiate models by patient demographics (age groups and sex) to compare the model performance and predictors. We will also assess clinical outcomes in patients stratified with prediction results.

### 5 Study Objectives

### 5.1 Objectives

The overall goal of this study is to develop and validate predictive models for various adverse events in MPH to inform the triage and early management of patients with attention deficit/hyperactivity disorder. Also, another goal is assessing clinical outcomes in patients stratified with prediction results.

- 1) To predict the risk of adverse events due to MPH (psychosis, mania, tic disorder, sleep disorder, substance use disorder, movement disorder, drug induced parkinsonism, tremor, cardiovascular events, hypertension, arrhythmia, traumatic injury, and ADHD hospitalization; all outcomes limited only to a new-onset case) amongst patients with ADHD after prescribing MPH for the first time.
- 2) To predict the risk of adverse events due to MPH (psychosis, mania, tic disorder, sleep disorder, substance use disorder, movement disorder, drug induced parkinsonism, tremor, cardiovascular events, hypertension, arrhythmia, traumatic injury, and ADHD hospitalization; all outcomes limited only to a new-onset case) amongst subgroup patients (male, female, child & adolescent, and adult groups) with ADHD after prescribing MPH for the first time.
- 3) To assess the 365-day risk of clinical outcomes (psychiatric hospitalization and suicide) amongst patients stratified with prediction results (psychosis, mania, tic disorder, sleep



disorder, substance use disorder, movement disorder, drug induced parkinsonism, tremor, cardiovascular events, hypertension, arrhythmia, traumatic injury, and ADHD hospitalization) with ADHD after prescribing MPH for the first time.

### **5.1.1 Prediction models**

| Target Cohorts                                                 | Outcome Cohorts          |
|----------------------------------------------------------------|--------------------------|
| - New MPH users with diagnosis of ADHD AND no                  | - Psychotic disorders    |
| exposures to other ADHD medication before the index            | - Mania                  |
| date (index date: the first prescription date of MPH)          | - Tic disorder           |
| - New MPH users in the <b>male population</b> with diagnosis   | - Sleep disorder         |
| of ADHD AND no exposure to other ADHD medication               | - Substance use disorder |
| before the index date (index date: the first prescription      | - Movement disorder      |
| date of MPH)                                                   | - Drug-induced           |
| - New MPH users in the <b>female population</b> with           | parkinsonism             |
| diagnosis of ADHD AND no exposure to other ADHD                | - Tremor                 |
| medication before the index date (index date: the first        | - Cardiovascular events  |
| prescription date of MPH)                                      | - Hypertension           |
| - New MPH users in the <b>child and adolescent (≤18)</b>       | - Arrhythmia             |
| population with diagnosis of ADHD AND no exposure to           | - Traumatic injury       |
| other ADHD medication before the index date (index             | - Hospitalization with   |
| date: the first prescription date of MPH)                      | ADHD                     |
| - New MPH users in the <b>adult (&gt;18)</b> population with a |                          |
| diagnosis of ADHD AND no exposure to other ADHD                |                          |
| medication before the index date (index date: the first        |                          |
| prescription date of MPH)                                      |                          |

# 5.1.2 Analysis of clinical outcomes

| Study Cohorts                                                                                                                       | Outcome Cohorts |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| - New MPH users with diagnosis of ADHD AND no                                                                                       | - Psychiatric   |
| exposures to other ADHD medication before the index                                                                                 | hospitalization |
| date (index date: the first prescription date of MPH)                                                                               | - Suicide       |
| <b>Target cohort</b> : patients predicted to have the outcome <b>Comparator cohort</b> : patients predicted not to have the outcome |                 |
| - New MPH users in the <b>male population</b> with diagnosis                                                                        |                 |
| of ADHD AND no exposure to other ADHD medication                                                                                    |                 |
| before the index date (index date: the first prescription date of MPH)                                                              |                 |
| <b>Target cohort</b> : patients predicted to have the outcome                                                                       |                 |
| <b>Comparator cohort</b> : patients predicted not to have the                                                                       |                 |
| outcome                                                                                                                             |                 |
| - New MPH users in the <b>female population</b> with                                                                                |                 |
| diagnosis of ADHD AND no exposure to other ADHD                                                                                     |                 |
| medication before the index date (index date: the first                                                                             |                 |
| prescription date of MPH)                                                                                                           |                 |
|                                                                                                                                     |                 |



**Target cohort**: patients predicted to have the outcome **Comparator cohort**: patients predicted not to have the outcome

- New MPH users in the **child and adolescent (≤18)** population with diagnosis of ADHD AND no exposure to other ADHD medication before the index date (index date: the first prescription date of MPH)

**Target cohort**: patients predicted to have the outcome **Comparator cohort**: patients predicted not to have the outcome

- New MPH users in the **adult (>18)** population with a diagnosis of ADHD AND no exposure to other ADHD medication before the index date (index date: the first prescription date of MPH)

**Target cohort**: patients predicted to have the outcome **Comparator cohort**: patients predicted not to have the outcome

#### 6 Research methods

### 6.1 Study Design

#### 6.1.1 Overview

This study will be a retrospective, observational, patient-level prediction design. By 'retrospective' we mean the study will use data already collected at the start of the study. By 'observational' we mean no intervention will take place in the course of this study. By 'patient-level' we mean a modelling process wherein an outcome is predicted within a time at risk relative to the target cohort start and/or end date. Prediction is performed using a set of covariates derived using data prior to the start of the target cohort.

Figure 1 illustrates the prediction problem we will address. Among a population at risk, we aim to predict which patients at a defined moment in time (t = 0) will experience some outcome during a time-at-risk (TAR). Prediction is done using only information about the patients in an observation window prior to that moment in time.

We follow the PROGRESS best practice recommendations for model development and the TRIPOD guidance for transparent reporting of the model results.<sup>10, 11</sup>

After developing prediction models, survival analysis will be performed to assess clinical outcomes of patients who have the prediction outcome, as determined by the prediction model.





Figure 1: The prediction problem

### 6.2 Data Source(s)

This study will be conducted using a distributed data network; therefore, data sources may change depending on participating data partners.

| Source Full Name                                                                                                          | Short<br>Name | Country<br>Code | Data<br>Provenance | Patient<br>Count | History            | Patient Type                      | Data collection                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------------|------------------|--------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| Health Insurance<br>Review and<br>Assessment service<br>database – attention-<br>deficit/hyperactivity<br>disorder subset |               | KR              | Claims             | 0.33M            | 2016.1 –<br>2021.3 | Nationwide<br>health<br>insurance | Anonymized personal identifier, demographics, diagnoses, information on medical procedures and products |

# 6.3 Study population

#### 6.3.1 Target Cohort(s) [T]

The target cohort is the new MPH user group. All subjects in the database will be included who meet the following criteria described below.

| Target Cohort (s) | Description                                                        |
|-------------------|--------------------------------------------------------------------|
| New MPH users     | - First MPH prescription in patient's history (index date)         |
|                   | - At least 365 days of continuous observation time prior to the    |
|                   | index date                                                         |
|                   | - ADHD diagnosis for the first time in the patient's history on or |
|                   | before the index date                                              |
|                   | - No other ADHD drugs such as atomoxetine, clonidine, and          |
|                   | bupropion before the index date                                    |

#### 6.3.2 Outcome Cohort(s) [0]

The outcome cohorts are 13 adverse events of MPH which were already known through the previous research. The description of each outcome is presented in the table below.



| Outcome Cohort (s)            | Description                                                |
|-------------------------------|------------------------------------------------------------|
| Psychotic disorder            | Diagnosis of psychotic disorder for the first time         |
| Mania                         | Diagnosis of mania for the first time                      |
| Tic disorder                  | Diagnosis of tic disorder for the first time               |
| Sleep disorder                | Diagnosis of sleep disorder for the first time             |
| Substance use disorder        | Diagnosis of substance use disorder for the first time     |
| Movement disorder             | Diagnosis of movement disorder for the first time          |
| Drug induced parkinsonism     | Diagnosis of drug-induced parkinsonism for the first time  |
| Tremor                        | Diagnosis of tremor for the first time                     |
| Cardiovascular events for the | Diagnosis of cardiovascular events including hypertension, |
| first time                    | arrhythmia, myo-cardiac infarction, cardiomyopathy, or     |
|                               | cardiac arrest for the first time                          |
| Hypertension                  | Diagnosis of hypertension for the first time               |
| Arrhythmia                    | Diagnosis of arrhythmia for the first time                 |
| Traumatic injury              | Diagnosis of traumatic injury for the first time           |
| Hospitalization with ADHD     | Hospitalization with ADHD for the first time               |

#### **Full descriptions:**

The JSON files describing for all the outcome cohorts are available at:

https://github.com/ABMI/MPH\_Safety\_Prediction/tree/main/inst/cohort

In order to convert these to a human readable form, import the JSON into a new cohort definition in any instance of ATLAS and reload.

#### 6.3.3 Study population for additional analyses

Since ADHD is with differences according to patient demographics, subgroup analyses will be performed on male, female, child & adolescent, and adult patients. Cohort criteria are the same except additional criteria including sex and age limited to male, female, under 18, or over 18.

A sensitivity analysis using a subset of the target cohort will be conducted.

| Target Cohorts       | Description                                                        |
|----------------------|--------------------------------------------------------------------|
| New MPH users in the | - First MPH prescription in patient's history (index date)         |
| male                 | - Male                                                             |
|                      | - At least 365 days of continuous observation time prior to the    |
|                      | index date                                                         |
|                      | - ADHD diagnosis for the first time in the patient's history on or |
|                      | before the index date                                              |
|                      | - No other ADHD drugs such as atomoxetine, clonidine, and          |
|                      | bupropion before the index date                                    |
| New MPH users in the | - First MPH prescription in patient's history (index date)         |
| female               | - Female                                                           |
|                      | - At least 365 days of continuous observation time prior to the    |
|                      | index date                                                         |



|                      | Ţ                                                                  |
|----------------------|--------------------------------------------------------------------|
|                      | - ADHD diagnosis for the first time in the patient's history on or |
|                      | before the index date                                              |
|                      | - No other ADHD drugs such as atomoxetine, clonidine, and          |
|                      | bupropion before the index date                                    |
| New MPH users in the | - First MPH prescription in patient's history (index date)         |
| adolescent           | - Age at index date under 18 (≤ 18 years old)                      |
|                      | - At least 365 days of continuous observation time prior to the    |
|                      | index date                                                         |
|                      | - ADHD diagnosis for the first time in the patient's history on or |
|                      | before the index date                                              |
|                      | - No other ADHD drugs such as atomoxetine, clonidine, and          |
|                      | bupropion before the index date                                    |
| New MPH users in the | - First MPH prescription in patient's history (index date)         |
| adult                | - Age at index date over 18 (> 18 years old)                       |
|                      | - At least 365 days of continuous observation time prior to the    |
|                      | index date                                                         |
|                      | - ADHD diagnosis for the first time in the patient's history on or |
|                      | before the index date                                              |
|                      | - No other ADHD drugs such as atomoxetine, clonidine, and          |
|                      | bupropion before the index date                                    |

After the prediction, the target cohort for each predicted outcome will be divided into patients who are predicted to have outcome and patients who are predicted to have none. Survival analysis will be performed using two patient groups.

#### 6.3.4 Time at Risk

The table below describes the Time at Risk (TAR) window start and end for each of the analyses that are executed. The definition of cohort end date will be earlier date among 1) end date of continuous MPH exposure 2) cohort start date + 365 days 3) censoring date.

| Time At Risk window                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Start Date                                                                                                                                                                               | End Date                                                                                                                                                                                                                                                                                              |  |  |  |
| <ol> <li>The TAR window starts at +1 days from the index date (first MPH prescription)</li> <li>The TAR window starts at +7 days from the index date (first MPH prescription)</li> </ol> | The TAR window ends at the cohort end date. The cohort end date is defined as the earliest date among dates below: 1) the last date of continuous MPH exposure 2) + 365 days from the index date 3) the date of censoring (other ADHD medication exposure) 4) the last date of continuous observation |  |  |  |

# 6.4 Statistical Analysis Method(s)

#### 6.4.1 Algorithms

In this study we will apply the Lasso Logistic Regression, Random Forest, and Extreme Gradient Boosting.



Lasso logistic regression belongs to the family of generalized linear models, where a linear combination of the variables is learned and finally a logistic function maps the linear combination to a value between 0 and 1. The lasso regularization adds a cost based on model complexity to the objective function when training the model. This cost is the sum of the absolute values of the linear combination of the coefficients. The model automatically performs feature selection by minimizing this cost. We use the Cyclic coordinate descent for logistic, Poisson and survival analysis (Cyclops) package to perform large-scale regularized logistic regression: <a href="https://github.com/OHDSI/Cyclops">https://github.com/OHDSI/Cyclops</a>.

The random forest model uses classification tress as building blocks to construct prediction models. A random forest model is developed by only considering a small subset of the predictors each time it splits. This process results in a reduction of the correlation among the trees, thus making the average of the resulting tress less variable and more reliable

The eXtreme Gradient Boosting (XGBoost) algorithm is a decision tree-based model on the training dataset. XGBoost starts with a simple initial model and its residuals/misclassifications are iteratively improved in subsequent models searching from among all available predictors to try to minimize misclassification. XGBoost was commonly chosen for its interpretability of results and robustness to overfitting

#### 6.4.2 Model Evaluation

The following evaluations will be performed on the model

| Evaluation       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Box Plots        | The prediction distribution boxplots are box plots for the predicted risks of the people in the test set with the outcome (class 1: blue) and without the outcome (class 0: red).                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calibration Plot | The calibration plot shows how close the predicted risk is to the observed risk. The diagonal dashed line thus indicates a perfectly calibrated model. The ten (or fewer) dots represent the mean predicted values for each quantile plotted against the observed fraction of people in that quantile who had the outcome (observed fraction). The straight black line is the linear regression using these 10 plotted quantiles mean predicted vs observed fraction points. The two blue straight lines represented the 95% lower and upper confidence intervals of the slope of the fitted line. |
| Demographic      | This plot shows for females and males the expected and observed risk in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Summary Plot     | different age groups together with a confidence area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Precision Recall | The precision-recall curve is valuable for dataset with a high imbalance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Plot             | between the size of the positive and negative class. It shows the trade-off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | between precision and recall for different threshold. High precision relates to a low false positive rate, and high recall relates to a low false negative rate.                                                                                                                                                                                                                                                                                                                                                                                                                                   |



|                               | High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). A high area under the curve represents both high recall and high precision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prediction                    | The preference distribution plots are the preference score distributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Distribution<br>Plots         | corresponding to i) people in the test set with the outcome (red) and ii) people in the test set without the outcome (blue).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ROC Plot                      | The ROC plot plots the sensitivity against 1-specificity on the test set. The plot shows how well the model is able to discriminate between the people with the outcome and those without. The dashed diagonal line is the performance of a model that randomly assigns predictions. The higher the area under the ROC plot the better the discrimination of the model.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Smooth<br>Calibration Plot    | Similar to the traditional calibration shown above the Smooth Calibration plot shows the relationship between predicted and observed risk. the major difference is that the smooth fit allows for a more fine-grained examination of this. Whereas the traditional plot will be heavily influenced by the areas with the highest density of data the smooth plot will provide the same information for this region as well as a more accurate interpretation of areas with lower density. the plot also contains information on the distribution of the outcomes relative to predicted risk. However, the increased information game comes at a computational cost. It is recommended to use the traditional plot for examination and then to produce the smooth plot for final versions. |
| Test-Train<br>Similarity Plot | The test-train similarity is presented by plotting the mean covariate values in the train set against those in the test set for people with and without the outcome.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Variable Scatter<br>Plot      | The variable scatter plot shows the mean covariate value for the people with the outcome against the mean covariate value for the people without the outcome. The size and colour of the dots correspond to the importance of the covariates in the trained model (size of beta) and its direction (sign of beta with green meaning positive and red meaning negative), respectively.                                                                                                                                                                                                                                                                                                                                                                                                     |

#### 6.4.3 Clinical outcome assessment

Kaplan–Meier and Cox survival analyses of long-term outcomes will be performed. The Kaplan-Meier method and log-rank test will be used to calculate and compare the survival curves stratified by prediction model. Univariate Cox regression models will be used to obtain hazard ratios (HRs) between groups.



#### 6.5 Quality Control

The PatientLevelPrediction package itself, as well as other OHDSI packages on which PatientLevelPrediction depends, use unit tests for validation. More information can be found in the Book of OHDSI at: <a href="https://ohdsi.github.io/TheBookOfOhdsi/SoftwareValidity.html">https://ohdsi.github.io/TheBookOfOhdsi/SoftwareValidity.html</a>

#### 6.6 Tools

To create the study package, ATLAS will be used to specify the cohorts, time-at-risk, covariate and population settings as well as which models will be analysed. Information on this is available in the Book of OHDSI at: https://ohdsi.github.io/TheBookOfOhdsi/OhdsiAnalyticsTools.html#atlas

The package developed in ATLAS will utilise the Patient-Level Prediction R package to run the analysis. More information on this is available at: https://ohdsi.github.io/TheBookOfOhdsi/PatientLevelPrediction.html

This study will be designed using OHDSI tools and run with R. More information about the tools can be found in the Appendix 'Study Generation Version Information'.

### 7 Data Analysis Plan

### 7.1 Algorithm Settings

• Model settings #1 LassoLogisticRegressionSettings

| Covariates | Settings |
|------------|----------|
| seed       |          |
| variance   | 0.01     |

#### • Model settings #2 RandomForestSettings

| Covariates               | Settings |
|--------------------------|----------|
| seed                     |          |
| Max depth                | 4,10,17  |
| Number of tree features  | -1       |
| Number of trees to build | 500      |

#### Model settings #3 ExtremeGradientBoostingSettings

| Covariates | Settings |
|------------|----------|
| seed       |          |



| Boosting learning rate         | 0.01, 0.1 |
|--------------------------------|-----------|
| Maximum number of interactions | 4,6,17    |
| Maximum number of rows         | 20        |
| Number of trees to build       | 10,100    |

# **7.2 Covariate Settings**

The covariates (constructed using records on or prior to the target cohort start date) are used within this prediction mode include the following. Each covariate needs to contain at least 0.001 subjects to be considered for the model.

| Covariates                                  | Settings |
|---------------------------------------------|----------|
| VisitCountMediumTerm                        | FALSE    |
| ObservationShortTerm                        | TRUE     |
| shortTermStartDays                          | -30      |
| MeasurementRangeGroupShortTerm              | FALSE    |
| ConditionOccurrenceLongTerm                 | TRUE     |
| DrugEraStartLongTerm                        | FALSE    |
| VisitCountShortTerm                         | FALSE    |
| Chads2Vasc                                  | FALSE    |
| ConditionGroupEraStartLongTerm              | FALSE    |
| ConditionEraShortTerm                       | FALSE    |
| Dcsi                                        | FALSE    |
| DrugGroupEraLongTerm                        | TRUE     |
| DrugGroupEraShortTerm                       | TRUE     |
| ConditionEraStartLongTerm                   | FALSE    |
| temporal                                    | FALSE    |
| DemographicsIndexMonth                      | FALSE    |
| ConditionOccurrencePrimaryInpatientLongTerm | FALSE    |
| ConditionEraAnyTimePrior                    | FALSE    |
| addDescendantsToInclude                     | FALSE    |
| ConditionGroupEraStartMediumTerm            | FALSE    |
| ProcedureOccurrenceLongTerm                 | TRUE     |
| DrugExposureLongTerm                        | TRUE     |
| DrugEraStartShortTerm                       | FALSE    |
| DistinctIngredientCountMediumTerm           | FALSE    |
| DistinctMeasurementCountShortTerm           | FALSE    |
| MeasurementRangeGroupLongTerm               | FALSE    |
| ConditionGroupEraOverlapping                | FALSE    |
| MeasurementRangeGroupMediumTerm             | FALSE    |
| DrugGroupEraStartMediumTerm                 | FALSE    |
| MeasurementAnyTimePrior                     | FALSE    |
| MeasurementMediumTerm                       | FALSE    |
| includedCovariateIds                        |          |



| ConditionOccurrenceAnyTimePrior                                        | FALSE |
|------------------------------------------------------------------------|-------|
| DistinctConditionCountLongTerm                                         | FALSE |
| MeasurementValueLongTerm                                               | FALSE |
| DrugEraShortTerm                                                       | FALSE |
| DrugGroupEraAnyTimePrior                                               | FALSE |
| • • •                                                                  |       |
| DrugEraOverlapping                                                     | TRUE  |
| ConditionOccurrencePrimaryInpatientAnyTimePrior ConditionEraMediumTerm | FALSE |
|                                                                        | FALSE |
| ConditionEraOverlapping                                                | FALSE |
| ConditionEraStartShortTerm                                             | FALSE |
| ObservationAnyTimePrior                                                | FALSE |
| VisitConceptCountShortTerm                                             | FALSE |
| DemographicsEthnicity                                                  | FALSE |
| DistinctIngredientCountLongTerm                                        | FALSE |
| ConditionOccurrencePrimaryInpatientShortTerm                           | FALSE |
| DemographicsAgeGroup                                                   | TRUE  |
| DistinctProcedureCountShortTerm                                        | FALSE |
| DistinctObservationCountMediumTerm                                     | FALSE |
| includedCovariateConceptIds                                            |       |
| DrugGroupEraStartShortTerm                                             | FALSE |
| addDescendantsToExclude                                                | FALSE |
| DrugEraLongTerm                                                        | FALSE |
| DistinctConditionCountShortTerm                                        | FALSE |
| ConditionGroupEraShortTerm                                             | TRUE  |
| ConditionEraStartMediumTerm                                            | FALSE |
| VisitCountLongTerm                                                     | FALSE |
| DemographicsRace                                                       | FALSE |
| ProcedureOccurrenceAnyTimePrior                                        | FALSE |
| DistinctObservationCountLongTerm                                       | FALSE |
| ProcedureOccurrenceMediumTerm                                          | FALSE |
| CharlsonIndex                                                          | TRUE  |
| DemographicsPriorObservationTime                                       | FALSE |
| MeasurementShortTerm                                                   | FALSE |
| DistinctProcedureCountMediumTerm                                       | FALSE |
| ConditionEraLongTerm                                                   | FALSE |
| DrugGroupEraStartLongTerm                                              | FALSE |
| DemographicsGender                                                     | TRUE  |
| DeviceExposureAnyTimePrior                                             | FALSE |
| ObservationLongTerm                                                    | TRUE  |
| DemographicsIndexYearMonth                                             | FALSE |
| ConditionOccurrenceMediumTerm                                          | FALSE |
| longTermStartDays                                                      | -365  |
| DemographicsAge                                                        | FALSE |
| DrugGroupEraOverlapping                                                | FALSE |
| DistinctMeasurementCountLongTerm                                       | FALSE |
| MeasurementRangeGroupAnyTimePrior                                      | FALSE |
| DistinctConditionCountMediumTerm                                       | FALSE |
| DISTILICATION CONTINUE AND THE LINE                                    | LATOE |



|                                               | T     |
|-----------------------------------------------|-------|
| DrugGroupEraMediumTerm                        | FALSE |
| ProcedureOccurrenceShortTerm                  | TRUE  |
| ObservationMediumTerm                         | FALSE |
| ConditionGroupEraAnyTimePrior                 | FALSE |
| Chads2                                        | FALSE |
| DrugExposureAnyTimePrior                      | FALSE |
| DeviceExposureLongTerm                        | FALSE |
| DemographicsTimeInCohort                      | FALSE |
| DistinctMeasurementCountMediumTerm            | FALSE |
| MeasurementValueShortTerm                     | FALSE |
| DeviceExposureMediumTerm                      | FALSE |
| ConditionGroupEraStartShortTerm               | FALSE |
| ConditionOccurrencePrimaryInpatientMediumTerm | FALSE |
| MeasurementLongTerm                           | FALSE |
| DemographicsIndexYear                         | FALSE |
| MeasurementValueMediumTerm                    | FALSE |
| DrugEraStartMediumTerm                        | FALSE |
| MeasurementValueAnyTimePrior                  | FALSE |
| DistinctObservationCountShortTerm             | FALSE |
| DrugEraMediumTerm                             | FALSE |
| ConditionGroupEraLongTerm                     | TRUE  |
| DrugExposureShortTerm                         | TRUE  |
| DistinctIngredientCountShortTerm              | FALSE |
| DeviceExposureShortTerm                       | FALSE |
| mediumTermStartDays                           | -180  |
| DemographicsPostObservationTime               | FALSE |
| VisitConceptCountLongTerm                     | FALSE |
| VisitConceptCountMediumTerm                   | FALSE |
| excludedCovariateConceptIds                   |       |
| ConditionGroupEraMediumTerm                   | FALSE |
| DrugExposureMediumTerm                        | FALSE |
| DistinctProcedureCountLongTerm                | FALSE |
| DrugEraAnyTimePrior                           | FALSE |
| endDays                                       | -1    |
| ConditionOccurrenceShortTerm                  | TRUE  |

# 7.3 Model Development & Evaluation

To build and internally validate the models, we will partition the labelled data into a train set (75%) and a test set (25%).

The hyper-parameters for the models will be assessed using 3-fold cross validation on the train set and a final model will be trained using the full train set and optimal hyper-parameters.

The internal validity of the models will be assessed on the test set. The external validity of the models will be assessed on other databases. We will use the area under the receiver operating characteristic curve (AUROC) to evaluate the discriminative performance of the models and plot the



predicted risk against the observed fraction to visualize the calibration. See 'Model Evaluation' section for more detailed information about additional model evaluation metrics

### 7.4 Analysis Execution Settings

Covariate balance will be summarized in tabular form by showing the mean value (percentage for categorical) for all baseline covariates in the target and comparator cohort, with the associated standardized mean difference computed for each covariate.

For the prediction model there is 5 target cohort evaluated for 13 outcomes over 3 model over 1 covariate setting and over 1 population setting. In total there are 195 analyses performed.

For clinical outcome assessment, there is 5 target-comparator pairs evaluated for 2 outcomes. In total there are 10 analyses performed.

### 7.5 Strengths and Limitations

Strength

• The analysis can help gain insight into the clinical usefulness of each developed model by identifying whether it is transportable.

#### Limitations

 Although the CDM standardizes the vocabularies of the datasets, the concept recording distributions are likely to differ between databases and it is unknown how much this will limit model transportability

# 8 Protection of Human Subjects

The study is using only de-identified data. Confidentiality of patient records will be maintained at all times. All study reports will contain aggregate data only and will not identify individual patients or physicians.

# 9 Plans for Disseminating and Communicating Study Results

The study protocol will be submitted for publication to an online repository before initiation of the study. Analytic codes will be posted on the online repository after completion of the study. At least one paper describing the study and its results will be written and submitted for publication to a peer-reviewed scientific journal.

#### 10 References

- 1. Sayal K, Prasad V, Daley D, Ford T, Coghill D. ADHD in children and young people: prevalence, care pathways, and service provision. *The Lancet Psychiatry*. 2018/02/01/2018;5(2):175-186. doi:https://doi.org/10.1016/S2215-0366(17)30167-0
- 2. Raman SR, Man KKC, Bahmanyar S, et al. Trends in attention-deficit hyperactivity disorder medication use: a retrospective observational study using population-based databases. *The Lancet*



*Psychiatry*. 2018/10/01/ 2018;5(10):824-835. doi:<a href="https://doi.org/10.1016/S2215-0366(18)30293-1">https://doi.org/10.1016/S2215-0366(18)30293-1</a>

- 3. Bachmann CJ, Wijlaars LP, Kalverdijk LJ, et al. Trends in ADHD medication use in children and adolescents in five western countries, 2005–2012. *European Neuropsychopharmacology*. 2017/05/01/ 2017;27(5):484-493. doi:https://doi.org/10.1016/j.euroneuro.2017.03.002
- 4. Solmi M, Fornaro M, Ostinelli EG, et al. Safety of 80 antidepressants, antipsychotics, antiattention-deficit/hyperactivity medications and mood stabilizers in children and adolescents with psychiatric disorders: a large scale systematic meta-review of 78 adverse effects. *World Psychiatry*. 2020;19(2):214-232. doi:https://doi.org/10.1002/wps.20765
- 5. Schachar RJ, Tannock R, Cunningham C, Corkum PV. Behavioral, Situational, and Temporal Effects of Treatment of ADHD With Methylphenidate. *Journal of the American Academy of Child & Adolescent Psychiatry*. 1997/06/01/ 1997;36(6):754-763. doi:https://doi.org/10.1097/00004583-199706000-00011
- 6. Kraemer M, Uekermann J, Wiltfang J, Kis B. Methylphenidate-induced psychosis in adult attention-deficit/hyperactivity disorder: report of 3 new cases and review of the literature. *Clinical neuropharmacology*. 2010:33(4):204-206.
- 7. Park SY, Kim EJ, Cheon K-A. Association between 5-HTTLPR polymorphism and tics after treatment with methylphenidate in Korean children with attention-deficit/hyperactivity disorder. *Journal of child and adolescent psychopharmacology*. 2015;25(8):633-640.
- 8. Verrotti A, Moavero R, Panzarino G, Di Paolantonio C, Rizzo R, Curatolo P. The challenge of pharmacotherapy in children and adolescents with epilepsy-ADHD comorbidity. *Clinical Drug Investigation*. 2018;38(1):1-8.
- 9. Kooij J, Rösler M, Philipsen A, et al. Predictors and impact of non-adherence in adults with attention-deficit/hyperactivity disorder receiving OROS methylphenidate: results from a randomized, placebo-controlled trial. *BMC psychiatry*. 2013;13(1):1-10.
- 10. Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. *PLoS medicine*. 2013;10(2):e1001381.
- 11. Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. *Annals of internal medicine*. 2015;162(1):W1-W73.



# 11 Appendix: Code Set for Definitions

All codes are available in ATHENA (athena.ohdsi.org)

### 1. Attention-Deficit/Hyperactivity Disorder

| Concept<br>Id | Concept Name                             | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|---------------|------------------------------------------|-----------|------------|----------|-------------|--------|
| 438409        | Attention deficit hyperactivity disorder | Condition | SNOMED     | NO       | YES         | NO     |
| 4047120       | Disorders of attention and motor control | Condition | SNOMED     | NO       | YES         | NO     |

#### 2. Methylphenidate

| Concept Id | Concept Name          | Domain | Vocabulary | Excluded | Descendants | Mapped |
|------------|-----------------------|--------|------------|----------|-------------|--------|
| 705944     | methylphenidate       | Drug   | RxNorm     | NO       | YES         | NO     |
| 21604757   | methylphenidate; oral | Drug   | ATC        | NO       | YES         | NO     |

#### 3. Other Anti-ADHD drugs for ADHD

| Concept Id | Concept Name        | Domain | Vocabulary | Excluded | Descendants | Mapped |
|------------|---------------------|--------|------------|----------|-------------|--------|
| 742185     | Atomoxetine         | Drug   | RxNorm     | NO       | YES         | NO     |
| 221604762  | Atomoxetine; oral   | Drug   | ATC        | NO       | YES         | NO     |
| 750982     | Bupropion           | Drug   | RxNorm     | NO       | YES         | NO     |
| 21604741   | Bupropion; oral     | Drug   | ATC        | NO       | YES         | NO     |
| 21600398   | Clonidine; systemic | Drug   | ATC        | NO       | YES         | NO     |

#### 4. Mania

| Concept Id | Concept Name | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------|-----------|------------|----------|-------------|--------|
| 4333677    | Mania        | Condition | SNOMED     | NO       | YES         | NO     |

#### 5. Psychosis

| Concept Id | Concept Name       | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------------|-----------|------------|----------|-------------|--------|
| 436073     | Psychotic disorder | Condition | SNOMED     | NO       | YES         | NO     |

#### 6. Sleep disorder

| Concept Id | Concept Name   | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|----------------|-----------|------------|----------|-------------|--------|
| 435524     | Sleep disorder | Condition | SNOMED     | NO       | YES         | NO     |

#### 7. Tic disorder

| Concept Id | Concept Name | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------|-----------|------------|----------|-------------|--------|
| 381839     | Tic disorder | Condition | SNOMED     | NO       | YES         | NO     |

#### 8. Substance abuse disorder



| Concept Id | Concept Name    | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|-----------------|-----------|------------|----------|-------------|--------|
| 4279309    | Substance abuse | Condition | SNOMED     | NO       | YES         | NO     |

#### 9. Movement disorder

| Concept Id | Concept Name             | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------------------|-----------|------------|----------|-------------|--------|
| 443782     | Tremor                   | Condition | SNOMED     | NO       | YES         | NO     |
| 374013     | Secondary parkinsonism   | Condition | SNOMED     | NO       | YES         | NO     |
| 4171569    | Parkinsonism due to drug | Condition | SNOMED     | NO       | YES         | NO     |
| 375800     | Dystonia                 | Condition | SNOMED     | NO       | YES         | NO     |

### 10. Drug-induced parkinsonism

| Concept Id | Concept Name             | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------------------|-----------|------------|----------|-------------|--------|
| 374013     | Secondary parkinsonism   | Condition | SNOMED     | NO       | YES         | NO     |
| 4171569    | Parkinsonism due to drug | Condition | SNOMED     | NO       | YES         | NO     |

# 11. Tremor

| C | Concept Id | Concept Name | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|---|------------|--------------|-----------|------------|----------|-------------|--------|
|   | 443782     | Tremor       | Condition | SNOMED     | NO       | YES         | NO     |

### 12. Cardiovascular events

| Concept Id | Concept Name                    | Domain    | Vocabulary | Excluded | Descendant<br>s | Mapped |
|------------|---------------------------------|-----------|------------|----------|-----------------|--------|
| 316866     | Hypertensive disorder           | Condition | SNOMED     | NO       | YES             | NO     |
| 4185572    | Ventricular arrhythmia          | Condition | SNOMED     | NO       | YES             | NO     |
| 444070     | Tachycardia                     | Condition | SNOMED     | NO       | YES             | NO     |
| 315643     | Tacharrhythmia                  | Condition | SNOMED     | NO       | YES             | NO     |
| 4248028    | Supraventricular arrhythmia     | Condition | SNOMED     | NO       | YES             | NO     |
| 4111552    | Re-entry ventricular arrhythmia | Condition | SNOMED     | NO       | YES             | NO     |
| 44784217   | Cardiac arrhythmia              | Condition | SNOMED     | NO       | YES             | NO     |
| 4068155    | Atrial arrhythmia               | Condition | SNOMED     | NO       | YES             | NO     |
| 4329847    | Myocardial infarction           | Condition | SNOMED     | NO       | YES             | NO     |
| 321319     | Cardiomyopathy                  | Condition | SNOMED     | NO       | YES             | NO     |
| 4317150    | Sudden cardiac death            | Condition | SNOMED     | NO       | YES             | NO     |
| 321042     | Cardiac arrest                  | Condition | SNOMED     | NO       | YES             | NO     |
| 316139     | Heart failure                   | Condition | SNOMED     | No       | YES             | No     |
| 4215689    | Heart failure confirmed         | Condition | SNOMED     | No       | YES             | No     |

# 13. Arrhythmia

| Concept Id | Concept Name                    | Domain    | Vocabulary | Excluded | Descendant<br>s | Mapped |
|------------|---------------------------------|-----------|------------|----------|-----------------|--------|
| 4185572    | Ventricular arrhythmia          | Condition | SNOMED     | NO       | YES             | NO     |
| 444070     | Tachycardia                     | Condition | SNOMED     | NO       | YES             | NO     |
| 315643     | Tacharrhythmia                  | Condition | SNOMED     | NO       | YES             | NO     |
| 4248028    | Supraventricular arrhythmia     | Condition | SNOMED     | NO       | YES             | NO     |
| 4111552    | Re-entry ventricular arrhythmia | Condition | SNOMED     | NO       | YES             | NO     |
| 44784217   | Cardiac arrhythmia              | Condition | SNOMED     | NO       | YES             | NO     |
| 4068155    | Atrial arrhythmia               | Condition | SNOMED     | NO       | YES             | NO     |



### 14. Hypertension

| Concept Id | Concept Name          | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|-----------------------|-----------|------------|----------|-------------|--------|
| 316866     | Hypertensive disorder | Condition | SNOMED     | NO       | YES         | NO     |

# 15. Traumatic injury

| Concept Id | Concept Name     | Domain    | Vocabulary | Excluded | Descendants | Mapped |
|------------|------------------|-----------|------------|----------|-------------|--------|
| 440921     | Traumatic injury | Condition | SNOMED     | NO       | YES         | NO     |

# 16. Hospitalization

| Concept Id | Concept Name                          | Domain | Vocabulary | Excluded | Descendants | Mapped |
|------------|---------------------------------------|--------|------------|----------|-------------|--------|
| 9201       | Inpatient Visit                       | Visit  | Visit      | NO       | NO          | NO     |
| 262        | Emergency Room and<br>Inpatient Visit | Visit  | Visit      | NO       | NO          | NO     |

### 17. Suicide

| Concept Id | Concept Name                         | Domain      | Vocabulary | Excluded | Descendants | Mapped |
|------------|--------------------------------------|-------------|------------|----------|-------------|--------|
| 4219484    | Suicide attempt                      | Observation | SNOMED     | NO       | YES         | NO     |
| 4303690    | Intentionally harming self           | Observation | SNOMED     | NO       | YES         | NO     |
| 4152408    | Deliberate self harm                 | Observation | SNOMED     | NO       | YES         | NO     |
| 439235     | Self inflicted injury                | Condition   | SNOMED     | NO       | YES         | NO     |
| 435446     | Late effect of self inflicted injury | Condition   | SNOMED     | NO       | YES         | NO     |
| 4152376    | Intentional self poisoning           | Condition   | SNOMED     | NO       | YES         | NO     |
| 4075235    | Drowning self                        | Condition   | SNOMED     | NO       | YES         | NO     |