1. Carothers 8.55 Give an example of a bounded continuous map $f : \mathbb{R}to\mathbb{R}$ that is not uniformly continuous. Can an unbounded continuous function $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous? Explain,

October 11, 2023

Proof. Consider the function $f(x) = \sin(e^x)$, this function is clearly bounded, and continuous as it is the composition of $\sin(x)$ and e^x , continuous functions. Consider the sequences $x_n = \ln(n\pi)$ and $y_n = \ln(n\pi + \pi/2)$. Now consider that

$$|y_n - x_n| = |\ln(n\pi + \pi/2) - \ln(n\pi)| = \left|\ln\left(\frac{n\pi + \pi/2}{n\pi}\right)\right| = \left|\ln\left(1 + \frac{2}{n}\right)\right|$$

Note that $|y_n - x_n|$ can be made arbitrarily small, since $\left| \ln \left(1 + \frac{2}{n} \right) \right| \to 0$. Let $\epsilon_0 = 1/2$ and $\delta > 0$, pick $h < \delta$ and choose N such that $|y_N - x_N| < h$, so finally it follows that

$$|\sin(e^{x_N}) - \sin(e^{y_N})| = |\sin(n\pi) - \sin(n\pi + \pi/2)| = 1 > 1/2 = \epsilon_0$$

Proof. For an example of an unbounded uniformly continuous function consider the identity map. This function is clearly unbounded, and is Lipschitz continuous with constant K = 1.

2. Carothers 8.57 A function $f : \mathbb{R} \to \mathbb{R}$ is said to satisfy *Lipschitz condition of order* α , where $\alpha > 0$, if there is a constant $K < \infty$ such that $|f(x) - f(y)| \le K|x - y|^{\alpha}$, for all x, y. Prove that such a function is uniformly continuous,

Proof. Suppose function $f: \mathbb{R} \to \mathbb{R}$ is *Lipschitz condition of order* α . Let $\epsilon > 0$ and choose $\delta = (\epsilon/K^{\alpha})^{1/\alpha}$ and note that if $0 < |x - y| < \delta$ it follows that,

$$|f(x)-f(y)|\leq K|x-y|^{\alpha}<\delta=\epsilon.$$

3. Carothers 8.58 Show that any function $f: \mathbb{R} \to \mathbb{R}$ having a bounded derivative is Lipschitz of order 1

Proof. Suppose a function $f : \mathbb{R} \to \mathbb{R}$ with a bounded derivative, therefore for all $x \in \mathbb{R}$ there exists a K such that $|f'(x)| \le K$. By implication f is differentiable, and therefore continuous. Let $x, y \in \mathbb{R}$ with y < x and note $f : [y, x] \to \mathbb{R}$ is continuous and differentiable over (y, x). Thus by the Mean Value Theorem there exists a $c \in (y, x)$ such that,

$$f'(c) = \frac{f(x) - f(y)}{x - y}$$

By substitution it follows that,

$$|f'(c)| \le K$$

$$|\frac{f(x) - f(y)}{x - y}| \le K$$

$$\frac{|f(x) - f(y)|}{|x - y|} \le K$$

$$|f(x) - f(y)| \le K|x - y|^{1}$$

Hence f(x) is Lipschitz of order 1.

4. Carothers 8.66 If $f:(0,1)\to\mathbb{R}$ is uniformly continuous, show that $\lim_{x\to 0^+} f(x)$ exists. Conclude that f is bounded on (0,1).

Proof. Suppose $f:(0,1)\to\mathbb{R}$ is uniformly continuous. Recall that by Theorem 8.16 (and in class) since f is uniformly continuous, $\overline{(0,1)}=[0,1]$ and \mathbb{R} is complete, there exists a unique, uniformly continuous function $\overline{f}:[0,1]\to Y$ such that $\overline{f}|_{(0,1)}=f$. Note that $\lim_{x\to 0^+}\overline{f}(x)=\overline{f}(0)$ since \overline{f} continuous over [0,1] and since $\overline{f}|_{(0,1)}=f$ it follows that $\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}\overline{f}(x)=\overline{f}(0)$.

Now note that since \overline{f} is continuous and it's domain is compact, \overline{f} is bounded. Since $\overline{f}|_{(0,1)} = f$ it follows that f is bounded.

5. Carothers 8.76 Fix $y \in \mathbb{R}^n$ and define a linear map $L : \mathbb{R}^n \to \mathbb{R}$ by $L(x) = \langle x, y \rangle$. Show that L is continuous and compute $||L|| = \sup_{x \neq 0} ||L(x)|| / ||x||_2$.[Hint: Cauchy-Schwarz!]

Proof. Fix $y \in \mathbb{R}^n$ and define a linear map $L : \mathbb{R}^n \to \mathbb{R}$ by $L(x) = \langle x, y \rangle$. Suppose $x \in \mathbb{R}^n$ and note that by Cauchy-Schwarz it follows that,

$$|L(x)| = \left| \sum_{i=1}^{n} x_i y_i \right| \le \sum_{i=1}^{n} |x_i y_i| \le ||y||_2 ||x||_2.$$

Therefore L(x) is bounded, and since it is a linear map we conclude that L(x) is continuous. Now considering the operator norm we find that,

$$||L|| = \sup_{x \neq 0} \frac{|L(x)|}{||x||_2} \le \sup_{x \neq 0} \frac{||y||_2 ||x||_2}{||x||_2} = ||y||_2.$$

So $||L|| \le ||y||_2$,

Now consider $x \in \mathbb{R}^n$ such that x = y,

$$\frac{|L(y)|}{||y||_2} = \frac{|\langle y, y \rangle|}{||y||_2} = \frac{||y||_2 ||y||_2}{||y||_2} = ||y||_2.$$

So $||L|| = ||y||_2$.

6. Carothers 8.77 Fix $k \ge 1$ and define $f : \ell_{\infty} \to \mathbb{R}$ by f(x) = x(k). Show that f is linear and has ||f|| = 1.

Proof. Fix $k \ge 1$ and define $f: \ell_{\infty} \to \mathbb{R}$ by f(x) = x(k). Let $x_1, x_2 \in \ell_{\infty}$, and $a, b \in \mathbb{R}$. Clearly $ax_1 + bx_2$ is still a bounded sequence and therefore in ℓ_{∞} , applying f we get the following,

$$f(ax_1 + bx_2) = ax_1(k) + bx_2(k) = af(x_1) + bf(x_2).$$

Thus f is linear. Now consider ||f|| and note that since $|x(k)| < ||x||_{\infty}$, we get the following

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||_{\infty}} = \sup_{x \neq 0} \frac{|x(k)|}{||x||_{\infty}} \le \sup_{x \neq 0} \frac{||x||_{\infty}}{||x||_{\infty}} = 1$$

Now consider an $x \in \ell_{\infty}$ such that $|x(k)| = ||x||_{\infty}$,

$$\frac{|f(x)|}{||x||_{\infty}} = \frac{|x(k)|}{||x||_{\infty}} = \frac{||x||_{\infty}}{||x||_{\infty}} = 1.$$

So therefore ||f|| = 1.

7. Carothers 8.78 Define a linear map $f: \ell_2 \to \ell_1$ by $f(x) = (x(n)/n)_{n=1}^{\infty}$. Is f bounded? If so, what is ||f||.

Proof. Let $x \in \ell_2$, and note that by Cauchy-Schwarz inequality,

$$||f(x)||_1 = \sum_{i=1}^{\infty} \left| \frac{x(i)}{i} \right| = \sum_{i=1}^{\infty} |x(i)| \left| \frac{1}{i} \right| \le ||x||_2 \left| \left| \frac{1}{n} \right| \right|_2 = \frac{\pi}{\sqrt{6}} ||x||_2$$

Hence f is a bounded linear map and we can also conclude that $||f|| \le \frac{\pi}{\sqrt{6}}$. Finally note that note that for $x = (1/n)_{n=1}^{\infty}$ we get the following,

$$\frac{\|f(x)\|_1}{\|x\|_2} = \frac{\sum_{i=1}^{\infty} \left| \frac{1}{i^2} \right|}{\|x\|_2} = \frac{\sum_{i=1}^{\infty} \left(\frac{1}{i} \right)^2}{\|x\|_2} = \frac{\|x\|_2^2}{\|x\|_2} = \frac{\pi}{\sqrt{6}}.$$

Hence $||f|| = \frac{\pi}{\sqrt{6}}$.

8. Carothers 8.80 Show that the definite integral $I(f) = \int_a^b f(t)dt$ is continuous from C[a,b] into \mathbb{R} . What is ||I||

Proof. Let $f, g \in C[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Note that the definite integral is a linear operator,

$$I(\alpha f + \beta g) = \int_a^b \alpha f(t) + \beta g(t) dt = \alpha \int_a^b f(t) dt + \beta \int_a^b g(t) dt = \alpha I(f) + \beta I(g).$$

Now we will show that the definite integral is a bounded linear functional on C[a, b], and is therefore continuous. Let $f \in C[a, b]$ and recall that since f is a continuous function over a compact interval it must achieve it's minimum and maximum, and hence there exists a $t \in [a, b]$ such that $|f(t)| = ||f||_{\infty}$. So it follows,

$$|I(f)| = \left| \int_{a}^{b} f(t)dt \right| \le \int_{a}^{b} |f(t)|dt \le \int_{a}^{b} ||f||_{\infty} dt = (b - a) ||f||_{\infty}$$

Thus *I* is a bounded linear operator, and is therefore continuous. We also conclude that $||I|| \le (b-a)$. Now let $f \in C[a,b]$ such that f(x) = C and $C \ne 0$, we find that

$$\frac{|I(f)|}{\|f\|_{\infty}} = \frac{\left|\int_{a}^{b} f(t)dt\right|}{\|f\|_{\infty}} = \frac{|(b-a)C|}{|C|} = \frac{(b-a)|C|}{|C|} = (b-a).$$

Therefore ||f|| = (b - a).

9. Carothers 8.81 Prove that the indefinite integral, defined by $T(f)(x) = \int_a^x f(t)dt$, is continuous as a map from C[a, b] into C[a, b]. Estimate ||T||.

Proof. First we will show that T is a linear operator. Let $f, g \in C(a, b)$ and $\alpha, \beta \in \mathbb{R}$. Note that,

$$T(\alpha f + \beta g)(x) = \int_a^x (\alpha f(t) + \beta g(t)) dt = \alpha \int_a^x f(t) dt + \beta \int_a^x g(t) dt = \alpha T(f)(x) + \beta T(g)(x).$$

We proceed to show that T is bounded, let $f \in C[a,b]$ and again note that since f is a continuous function over a compact interval there exists $t \in [a,b]$ such that $|f(t)| = ||f||_{\infty}$. Now consider the following,

$$||T(f)(x)||_{\infty} = \max_{a \le x \le b} \left| \int_{a}^{x} f(t)dt \right| \le \max_{a \le x \le b} \int_{a}^{x} |f(t)|dt$$

$$\le \max_{a \le x \le b} \int_{a}^{x} ||f||_{\infty} dt = \max_{a \le x \le b} (x - a) ||f||_{\infty} = (b - a) ||f||_{\infty}$$

Thus T is a bounded linear operator and is therefore continuous. We can also conclude that $||T|| \le (b-a)$. Again consider $f \in C[a,b]$ such that f(x) = C and $C \ne 0$, we find that,

$$\frac{\|T(f)(x)\|_{\infty}}{\|f\|_{\infty}} = \max_{a \le x \le b} \frac{\left| \int_{a}^{x} f(t)dt \right|}{\|f\|_{\infty}} = \max_{a \le x \le b} \frac{|(x-a)C|}{|C|} = \max_{a \le x \le b} (x-a) = (b-a).$$

Hence ||T|| = (b-a)

10. Carothers **8.84** Prove that B(V, W) is complete whenever W is complete.

Proof. Let V and W be normed vector spaces, and suppose W is complete. Consider B(V, W) and recall that B(V, W) is complete if $\sum_{n=1}^{\infty} T_n$ converges in B(V, W) whenever $\sum_{n=1}^{\infty} ||T_n||| < \infty$. Consider the following candidate limit, $T(x) = \sum_{n=1}^{\infty} T_n(x)$. Recall that $T_n(x)$ is a sequence in W, a complete space, and therefore $\sum_{n=1}^{\infty} T_n(x)$ converges whenever $\sum_{n=1}^{\infty} ||T_n(x)|||_W$ converges. Recall that by the definition of the operator norm,

$$||T_n|| \ge \frac{||T_n(x)||_W}{||x||_V}$$

$$||T_n|| \, ||x||_V \ge ||T_n(x)||_W.$$

Therefore it follows that,

$$\sum_{n=1}^{\infty} ||T_n(x)||_W \le \sum_{n=1}^{\infty} ||T_n|| \, ||x||_V = ||x||_V \sum_{n=1}^{\infty} ||T_n|| < \infty.$$
 (1)

Therefore since W is complete $\sum_{n=1}^{\infty} T_n(x)$ converges and thus T is well-defined. Now we must demonstrate that T is a bounded linear operator. Evidently T is linear, to show T is bounded let $C = \sum_{n=1}^{\infty} ||T_n||$ and we get the following,

$$\|T(x)\|_{W} \leq \sum_{n=1}^{\infty} \|T_{n}(x)\|_{W} \leq \|x\|_{V} \sum_{n=1}^{\infty} \|T_{n}\| = C \|x\|_{V}$$

Therefore $T \in B(V, W)$. What is left to show is that $\sum_{n=1}^{\infty} T_n = T$. Consider the sequence of partial sums (S_n) defined by $\sum_{i=1}^n T_i$. Let $\epsilon > 0$ and choose N such that the residual of $\sum_{i=N+1}^{\infty} ||T_n|| < \epsilon$, then it follows that for all $n \ge N$ we get the following,

$$||S_n - T|| = \left\| \sum_{i=1}^n T_i - \sum_{i=1}^\infty T_i \right\| = \left\| \sum_{i=n+1}^\infty T_i \right\| \le \sum_{i=n+1}^\infty ||T_i|| < \epsilon.$$

Therefore $\sum_{n=1}^{\infty} T_n = T$ and thus B(V, W) is complete.