Interactive Speaker Recognition

Применение обучения с подкреплением для решения задачи распознавания диктора

Вячеслав Головин Евгений Шуранов (руководитель)

Huawei CBG AI и ФКН ВШЭ СП6

16.05.2023

Задача распознавания диктора (Speaker Recognition)

Два типа задач:

- Идентификация по услышанной речи выбираем одного диктора из списка.
- **Верификация** по услышанной речи решаем, произнёс ли её конкретный диктор.

Фактически обе задачи сводятся к определению меры похожести между двумя наборами данных:

 Векторы признаков, вычисленные из полученных ранее аудиозаписей речи (эмбеддинги дикторов или голосовые подписи).

Обозначение: $G = [g^k]_{k=1}^K$, $K \in \mathbb{N}$.

 Векторы признаков аудиозаписей речи, полученных сейчас (эмбеддинги произнесенных слов).

Обозначение: $X = [x^t]_{t=1}^T, \ T \in \mathbb{N}.$

Область исследования

Зачем нам Interactive Speaker Recognition

Некоторые системы распознавания запрашивают у диктора произносимые фразы. Логично выбирать эти слова и фразы таким образом, чтобы

- точность распознавания была выше,
- количество запросов было меньше,
- они были разнообразными (боремся со спуфингом).

Исследуемый подход: использование нейросетевого RL-агента для выбора запрашиваемых слов.

Подход предложен в статье A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Цель и задачи

Цель: повышение точности систем распознавания диктора при помощи выбора запрашиваемых у диктора слов.

Задачи:

- Воспроизведение результатов, достигнутых в исходной статье.
- Улучшение и модификация изначальной системы:
 - Переход от идентификации к верификации.
 - ▶ Использование произвольного набора запрашиваемых слов.
 - Проверка работы при добавлении шума.
 - ▶ Использование других эмбеддингов.

Interactive Speaker Recognition

Здесь и далее изображения из A Machine of Few Words — Interactive Speaker Recognition with Reinforcement Learning, Mathieu Seurin et al., INTERSPEECH 2020, arXiv:2008.03127v1.

Использовался датасет TIMIT.

Важные особенности статьи:

- только идентификация
- фиксированный набор слов
- эразные нейронные сети для запроса слов (Enquirer) и идентификации (Guesser)

Архитектура Guesser

Пытаемся угадать диктора

Входные данные:

- эмбеддинги дикторов $G = [g_1; g_2; \dots g_K]$
- эмбеддинги слов $X = [x_1; x_2; ... x_T]$

Выходные данные:

• вероятности $\{P(g_i = g^*) \mid i = 1..K\}$

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов

Архитектура Enquirer

Выбираем, какое слово мы спрашиваем у диктора

Входные данные:

- среднее эмб. дикторов $\hat{g} = \frac{1}{K} \sum_{i=1}^{K} g_k$
- эмбеддинги слов $X = [x_1; x_2; ...; x_t]$

Выходные данные:

 вероятность выбрать каждое из слов

Обозначения

- К количество гостей / дикторов
- Т количество запрашиваемых слов
 - количество запрошенных слов, $0 \le t \le T$

Обучение и тестирование Guesser

K = 5 дикторов и T = 3 слова при обучении

Вероятно, главная причина расхождения результатов — увеличение размерности эмбеддингов (512 вместо 128 в статье). Неизвестно, как и зачем в статье производилось понижение размерности.

Обучение и тестирование Enquirer

K = 5 дикторов и T = 3 слова при обучении

Для обучения использовалась **PPO**. Выбор слова при обучении и тестировании проводился по-разному:

- train сэмплирование из распределения,
- test arg max по не использованным ранее словам.

Обучение и тестирование Enquirer

K = 5 дикторов и T = 3 слова при обучении

Для обучения использовалась **PPO**. Выбор слова при обучении и тестировании проводился по-разному:

- train сэмплирование из распределения,
- test arg max по не использованным ранее словам.

Эвристический агент не обращает внимание на контекст и (практически) всегда запрашивает одни и те же слова.

От идентификации к верификации

T = 3 слова

• Enquirer: не меняем ничего (даже веса)

От идентификации к верификации

T = 3 слова

• Enquirer: не меняем ничего (даже веса)

• Guesser: меняем softmax на sigmoid

От идентификации к верификации

T=3 слова

- Enquirer: не меняем ничего (даже веса)
- Guesser: меняем softmax на sigmoid

Выбор слов	Точность
случайный	0.895
Enquirer	0.933
эвристика	0.917

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный Enquirer эвристика	<i>T</i> = 3	0.895 0.933 0.917
случайный Enquirer эвристика	T=2	0.913 0.947 0.945

 $\mathsf{Taблицa}$: $\mathsf{Toчнoстb}$ верификации, T=3 запрашиваемых слова

Обучение в более тяжелом режиме

Выбор слов	Режим обучения	Точность
случайный Enquirer эвристика	K = 5 T = 3	0.937 0.982 0.984
случайный Enquirer эвристика	K = 20 T = 2	0.951 0.989 0.988

Таблица: Точность идентификации, K=5 дикторов, T=3 запрашиваемых слова

Другие эксперименты

- CodebookEnquirer гибкая система выбора слов.
 - ► Меняем последний слой Enquirer: теперь он выдает не вероятности выбрать то или иное слово из словаря, а эмбеддинг.
 - Создаем Codebook набор эмбеддингов слов (усредняем по обучающей выборке).
 - Для получения вероятностей считаем softmax с отрицательной температурой от расстояний между выходным эмбеддингом и эмбеддингами слов в Codebook.
 - Работает (небольшое падение точности), даже если мы обучаем и тестируем модель на разных наборах слов.
- Добавление шума
 - ▶ Добавляем к аудиозаписям слов 6 видов шума из MUSAN.
 - ▶ Не меняем тип шума в течение игры.
 - ▶ He помогает Enquirer опережать эвристику.

Выводы

- Исследованный подход работает точность идентификации существенно повышается при добавлении выбирающего слова агента.
- Модель можно сделать практически полезной: легко перейти от идентификации к верификации и от фиксированного набора слов к произвольному.
- В большинстве режимов (очень) простая эвристика оказывается не хуже нейросетевого агента для выбора слов (Enquirer).