1.2 Generalidades sobre funções reais de variável real

Definição de função real de variável real

Operações algébricas

Composição de funções

Restrição e prolongamento de uma função

Características geométricas

Função inversa

Definição

- Função real de variável real] Chama-se função real de variável real a um terno D, E e f onde D e E são dois subconjuntos não vazios de \mathbb{R} , e f é de uma lei de formação (regra de correspondência) que a cada elemento x de D associa um único elemento f(x) de E.
 - denota-se a função por $f:D\longrightarrow E$;
 - usar-se-á as notações $x\mapsto f(x)$ ou $x\leadsto f(x)$ para indicar que o elemento x de D é transformado por f no elemento f(x) de E;
 - o conjunto D designa-se domínio da função;
 - ullet o conjunto E designa-se conjunto de chegada da função

- ightharpoonup Seja $f:D\longrightarrow E$ e $D,E\subset\mathbb{R}$ não vazios. Nestas condições
 - a imagem ou contradomínio de f é o subconjunto de $\mathbb R$ definido por

$$\{f(x) \mid x \in D\}.$$

Para o contradomínio, usa-se as notações

$$CD_f$$
 ou $f(D)$.

Se
$$A \subset D$$
 tem-se $f(A) = \{f(x) \mid x \in A\}.$

• o gráfico de f é o conjunto G_f dos pares ordenados (x,f(x)) com $x\in D$, isto é,

$$G_f = \{(x, f(x)) | x \in D\}.$$

Observação

- ▶ $D \subset \mathbb{R}$ significa que D é um subconjunto de \mathbb{R} .
- ▶ $f: D \longrightarrow E$, $D, E \subset \mathbb{R}$ significa que a função f a cada elemento de D faz corresponder um número real em E.
- ▶ Quando não houver dúvidas denotar-se-á a função $f:D\longrightarrow E$ simplesmente por f.
- Uma função pode ser representada de diferentes formas
 - tabelas
 - gráficos

- leis de formação
- . . .

Casos particulares

 $ightharpoonup f: \mathbb{R} \longrightarrow \mathbb{R} \ \mathsf{com}$

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$

onde $n \in \mathbb{N}$ e a_0, \ldots, a_n são números reais tais que $a_n \neq 0$, denomina-se função polinomial de grau n.

• [Polinómio de grau zero] Define-se polinómio de grau zero como sendo uma função constante, ou seja

$$f(x) = a, \qquad a \in \mathbb{R}.$$

O contradomínio de f é o conjunto $\mathrm{CD}_f=\{a\}$ e o gráfico de f representa-se como os pontos da reta definida por y=a.

5 / 23

lackbox Uma função racional f é uma função real de variável real definida por

$$f(x) = \frac{p(x)}{q(x)}$$

onde p e q são funções polinomiais e cujo domínio é o conjunto $D_f = \{x \in \mathbb{R} \mid q(x) \neq 0\}.$

ightharpoonup O valor absoluto é a função $|\cdot|:\mathbb{R}\longrightarrow\mathbb{R}^+_0$ definida por

$$|x|:=\max\{-x,x\}=\left\{ \begin{array}{ll} -x, & \text{se } x<0\\ x, & \text{se } x\geq0. \end{array} \right.$$

A função identidade é a função $id_{\mathbb{R}}: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $id_{\mathbb{R}}(x) = x$.

Igualdade de funções

ightharpoonup Sejam $A,B,E,F\subset\mathbb{R}$ e

$$f: A \longrightarrow E, \quad q: B \longrightarrow F$$

duas funções.

As funções f e g dizem-se iguais quando

$$A = B = D$$
, $E = F$ e $f(x) = g(x)$, $\forall x \in D$.

Operações algébricas

Sejam $A,B\subset\mathbb{R},\,A\cap B\neq\emptyset$ e $f:A\longrightarrow\mathbb{R},\,g:B\longrightarrow\mathbb{R}$ duas funções.

A soma/ diferença de f e g é a função $f\pm g:A\cap B\longrightarrow \mathbb{R}$ definida por

$$(f \pm g)(x) = f(x) \pm g(x), \quad \forall x \in A \cap B.$$

 $lackbox{ O produto de } f$ e g é a função $f\cdot g:A\cap B\longrightarrow \mathbb{R}$ definida por

$$(f\cdot g)(x)=f(x)\cdot g(x),\quad \forall x\in A\cap B.$$

 $lackbox{ O quociente de }f$ e g é a função $\dfrac{f}{g}:D\longrightarrow \mathbb{R}$ definida por

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad \forall x \in D = A \cap \{x \in B : g(x) \neq 0\}.$$

M.Isabel Caiado [MIEInf] Cálculo-2019-20 8 / 23

Composição de funções

▶ Sejam $D_f, D_g, B, E \subset \mathbb{R}$, não vazios, e

$$f: D_f \longrightarrow B$$
 e $g: D_q \longrightarrow E$

duas funções tais que $CD_f \cap D_g \neq \emptyset$.

A função composta de g e f, denotada $g \circ f$, é a função definida por

$$g \circ f : D \longrightarrow E$$

 $x \mapsto (g \circ f)(x) = g(f(x))$

onde

$$D = \{ x \in D_f : f(x) \in D_g \}.$$

1. Sejam

$$\begin{split} f:]0, +\infty[&\longrightarrow \mathbb{R}, & f(x) = \sqrt{x} \\ g: \mathbb{R} &\longrightarrow \mathbb{R} & g(x) = x^2. \end{split}$$

Então

$$\begin{array}{cccc} g\circ f : &]0,+\infty[& \longrightarrow &]0,+\infty[\\ & x & \longmapsto & x \end{array}$$

е

$$\begin{array}{ccc} f\circ g : & \mathbb{R}\setminus\{0\} & \longrightarrow &]0,+\infty[\\ & x & \longmapsto & |x| \end{array}$$

Restrição e prolongamento¹

Sejam $A, E \subset \mathbb{R}$.

▶ [Restrição de uma função] A restrição de uma função $f:A\longrightarrow E$ a um subconjunto $X\subset A$ é a função $f|_X:X\longrightarrow E$, definida por

$$f\Big|_X(x) = f(x), \qquad \forall x \in X$$

[Nota] Este será um conceito fundamental no Cap. 1.3.

▶ [Prolongamento de uma função] Um prolongamento de uma função $g: X \longrightarrow E$ a um conjunto $A \supset X$ é uma função $f: A \longrightarrow E$ que coincida com g em X, isto é tal que

$$f\Big|_{X}(x) = g(x), \quad \forall x \in X$$

[Nota] A restrição é única mas o prolongamento não!

¹Prolongamento ou extensão

- 1. Seja $f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2.$
 - Restrição de f a X=[1,2] é a função, seja $h=f\big|_{[1,2]}$,

$$h: [1,2] \longrightarrow \mathbb{R}, \qquad h(x) = x^2$$

- Prolongamento de f a A = [-5, 5]
 - $ightharpoonup g: [-5,5] \longrightarrow \mathbb{R}, \qquad g(x) = x^2;$
 - $\ell : [-5, 5] \longrightarrow \mathbb{R}, \qquad \ell(x) = \begin{cases} x^2, & x \in [0, 5]; \\ 0, & x \in [-5, 0[] \end{cases}$
 - ▶ e muitas outras funções . . .

Características geométricas

Seja $D \subset \mathbb{R}$ e $f:D \longrightarrow \mathbb{R}$ uma função. Diz-se que:

- ▶ f é uma função par quando $\forall x \in D$, $-x \in D$ e $\forall x \in D$ f(-x) = f(x);
- ▶ f é uma função ímpar quando $\forall x \in D$, $-x \in D$ e $\forall x \in D$ f(-x) = -f(x);
- ▶ $f: \mathbb{R} \longrightarrow \mathbb{R}$ é uma função periódica quando $\exists \, p > 0 \, : \, \forall x \in \mathbb{R}, \, f(x+p) = f(x).$

1.
$$f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2$$
 não é par;

2.
$$h:[1,2]\longrightarrow \mathbb{R}, \qquad h(x)=x^2$$
 não é par;

3.
$$g:[-5,5] \longrightarrow \mathbb{R}, \qquad g(x)=x^2 \text{ \'e par;}$$

4.
$$\ell: [-5,5] \longrightarrow \mathbb{R}, \qquad \ell(x) = \left\{ \begin{array}{ll} x^2, & x \in [0,5]; \\ 0, & x \in [-5,0[\end{array} \right.$$
 não é par.

Sugestão: Represente graficamente as funções acima indicadas.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 14 / 23

Seja $D\subset\mathbb{R}$. Diz-se que a função $f:D\longrightarrow\mathbb{R}$ é

▶ majorada quando $\exists M \in \mathbb{R} : \forall x \in D, f(x) \leq M$

▶ minorada quando $\exists m \in \mathbb{R} : \forall x \in D, f(x) \geq m$

ightharpoonup limitada quando f é majorada e minorada, isto é,

$$\exists A \in \mathbb{R}^+ : \forall x \in D, \quad |f(x)| \le A.$$

Seja $D \subset \mathbb{R}$. Diz-se que a função $f:D \longrightarrow \mathbb{R}$ é

crescente quando

$$\forall x, y \in D \qquad x < y \Rightarrow f(x) \le f(y)$$

estritamente crescente quando

$$\forall x, y \in D$$
 $x < y \Rightarrow f(x) < f(y)$

decrescente quando

$$\forall x, y \in D \qquad x < y \Rightarrow f(x) \ge f(y)$$

estritamente decrescente quando

$$\forall x, y \in D \qquad x < y \Rightarrow f(x) > f(y)$$

- monótona quando f é crescente ou decrescente
- ightharpoonup estritamente monótona quando f é estritamente crescente ou estritamente decrescente

Sejam $D, E \subset \mathbb{R}$. Uma função $f: D \longrightarrow E$ diz-se

► injetiva quando

$$\forall x, y \in D \quad x \neq y \Rightarrow f(x) \neq f(y)$$

sobrejetiva quando

$$\forall y \in E \quad \exists x \in D: \quad f(x) = y$$

ightharpoonup bijetiva quando f for simultaneamente injetiva e sobrejetiva.

1. Não é injetiva nem sobrejetiva a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2$$

2. Não é injetiva mas é sobrejetiva a função

$$g: \mathbb{R} \longrightarrow [0, +\infty[$$

 $x \longmapsto x^2$

3. É injetiva e sobrejetiva, logo bijetiva, a função

$$h:]-\infty, 0] \longrightarrow [0, +\infty[$$

 $x \longmapsto x^2$

Extremos locais²

Seja $f:D\longrightarrow \mathbb{R}$ uma função. Um ponto $a\in D$ diz-se

ightharpoonup um ponto de máximo local ou maximizante local de f quando

$$\exists \varepsilon > 0 : \forall x \in (]a - \varepsilon, a + \varepsilon[\cap D), f(x) \le f(a)$$

e f(a) diz-se máximo local de f;

ightharpoonup um ponto de mínimo local ou minimizante local de f quando

$$\exists \varepsilon > 0 : \forall x \in (a - \varepsilon, a + \varepsilon \cap D), f(x) \ge f(a)$$

e f(a) diz-se mínimo local de f.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 19 / 23

²Ou extremos relativos

Extremos globais³

Seja $f:D\longrightarrow \mathbb{R}$ uma função. Um ponto $a\in D$ diz-se

um ponto de máximo global ou maximizante global de f quando

$$\forall x \in D \ f(x) \le f(a),$$

- e f(a) diz-se máximo global de f;
- um ponto de mínimo global ou minimizante global de f quando

$$\forall x \in D \ f(x) \ge f(a),$$

- e f(a) diz-se mínimo global de f;
- um ponto de extremo (local ou global) quando for ponto de máximo ou de mínimo (local ou global) de f.

M.Isabel Caiado [MIEInf] Cálculo-2019-20 20 / 23

³Ou extremos absolutos

Função inversa

Função inversa] Seja $f:D\longrightarrow E$ uma função bijetiva. A função

$$g: E \longrightarrow D$$

que faz corresponder a $y\in E$ o único $x\in D$ tal que f(x)=y é chamada função inversa de f. Denotar-se-á g por f^{-1} .

Nota

Não confundir f^{-1} com $\frac{1}{f}$.

[Propriedades da função inversa] Seja $f:D\longrightarrow E$ uma função bijetiva.

- 1. Se $q: E \longrightarrow D$ é uma função bijetiva, então q é a função inversa de f se e só se
 - g(f(x)) = x, $\forall x \in D$;
 - f(g(y)) = y, $\forall y \in E$.

2. Se q é a função inversa de f, então

•
$$D_f = CD_a$$

•
$$D_f = \mathrm{CD}_a$$
; • $\mathrm{CD}_f = D_a$;

•
$$g^{-1} = f$$
.

1. A função $g:\mathbb{R}\longrightarrow [0,+\infty[$ definida por $g(x)=x^2$ não tem inversa pois embora seja sobrejetiva não é injetiva.

2. A função $h:]-\infty, 0[\longrightarrow [0, +\infty[$ definida por $h(x)=x^2$ tem inversa pois é bijetiva.

A sua inversa é a função

$$h^{-1}: [0, +\infty[\longrightarrow] -\infty, 0]$$

 $x \longmapsto -\sqrt{x}$