

Scalable Data Science

Lecture 7: Bloom Filters

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Querying

10.0.21.102

Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size *m*:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$

Solutions

- Universe U, but need to store a set of n items, $n \ll |U|$
- Hash table of size *m*:
 - Space $O(n \log |U|)$
 - Query time $O\left(\frac{n}{m}\right)$
- Bit array of size |U|
 - Space = |U|
 - Query time O(1)

Querying, Monte Carlo style

- In hash table construction, we used random hash functions
 - we never return incorrect answer
 - query time is a random variable
 - These are Las Vegas algorithms

• In Monte-Carlo randomized algorithms, we are allowed to return incorrect answers with (small) probability, say, δ

Bloom filter

[Bloom, 1970]

- A bit-array B, |B| = m
- k hash functions, $h_1, h_2, ..., h_k$, each $h_i \in U \rightarrow [m]$

Bloom filter

- A bit-array B, |B| = m
- k hash functions, $h_1, h_2, ..., h_k$, each $h_i \in U \rightarrow [m]$

Operations

- *Initialize(B)*
 - for $i \in \{1, ... m\}$, B[i] = 0

- Insert(B, x)
 - for $i \in \{1, ... k\}$, $B[h_i(x)] = 1$
- Lookup (B, x)
 - If $\Lambda_{i \in \{1,...k\}} B[h_i(x)]$, return PRESENT, else ABSENT

Bloom Filter

• If the element x has been added to the Bloom filter, then Lookup(B,x) always return PRESENT

Bloom Filter

• If the element x has been added to the Bloom filter, then Lookup(B,x) always return PRESENT

- If x has not been added to the filter before?
 - Lookup sometimes still return PRESENT

Designing Bloom Filter

- Want to minimize the probability that we return a false positive
- Parameters m = |B| and k = number of hash functions
- $k = 1 \Rightarrow$ normal bit-array

What is effect of changing k?

Effect of number of hash functions

- Increasing k
 - Possibly makes it harder for false positives to happen in Lookup because of $\bigwedge_{i \in \{1,...k\}} B[h_i(x)]$

- But also increases the number of filled up positions
- We can analyse to find out an "optimal k"

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B, x) returns PRESENT?

False positive analysis

- m = |B|, n elements inserted
- If x has not been inserted, what is the probability that Lookup(B, x) returns PRESENT?
- Assume $\{h_1,h_2,...h_k\}$ are independent and $\Pr[h_i(\cdot)=j]=\frac{1}{m}$ for all positions j
- $\Pr[h_i(x) = 0] = \left(1 \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$

False positive analysis

• The expected number of zero bits $\approx me^{-kn/m}$ w.h.p.

•
$$Pr[Lookup(B, x) = PRESENT) = (1 - e^{-kn/m})^k$$

Can we choose k to minimize this probability

Choosing number of hash functions

- $p = e^{-kn/m}$
- Log (False Positive) =

$$\log(1 - p)^k = k \log(1 - p) = -\frac{m}{n} \log(p) \log(1 - p)$$

Minimized at
$$p = \frac{1}{2}$$
, i.e. $k = m \log(2)/n$

Bloom filter design

• This "optimal" choice gives false positive = $2^{-m \log(2)/n}$

• If we want a false positive rate of
$$\delta$$
 , set $m = \left\lceil \frac{\log\left(\frac{1}{\delta}\right)n}{\log^2(2)} \right\rceil$

Example: If we want 1% FPR, we need 7 hash functions and total 10n bits

Applications

- Widespread applications whenever small false positives are tolerable
- Used by browsers
 - to decide whether an URL is potentially malicious: a BF is used in browser, and positives are actually checked with the server.
- Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF to avoid disk lookups for non-existent rows/columns
- Bitcoin for wallet synchronization....

Handling deletions

- Chief drawback is that BF does not allow deletions
- Counting Bloom Filter

[Fan et al 00]

- Every entry in BF is a small counter rather than a single bit
- Insert(x) increments all counters for $\{h_i(x)\}$ by 1
- Delete(x) decrements all $\{h_i(x)\}$ by 1
- maintains 4 bits per counter
- False negatives can happen, but only with low probability

Other Extensions

- Many recent work on Bloom filters
 - Can we do with less hashing?
 - Can BFs be compressed (needed for distributed systems)
 - Are there better structures that use less space, less randomness and less memory lookups?

References:

- Primary reference for this lecture
 - Survey on Bloom Filter, Broder and Mitzenmacher 2005, https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
 - http://www.firatatagun.com/blog/2016/09/25/bloom-filters-explanation-usecases-and-examples/
- Others
 - Randomized Algorithms by Mitzenmacher and Upfal.

Thank You!!

