Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

United States
Department of
Agriculture

Forest Service

Deposition of Bacillus thuringiensis into Gambel oak canopies

Forest Pest Management

Davis, CA

TRADE NAMES STATEMENT

The use of trade names in this document does not constitute an official endorsement or approval of the use of such commercial hardware or software. This document may not be cited for purposes of advertisement.

DISCLAIMER STATEMENT

The Joint CB Contact Point and Test (Project DO49) program is an operationally oriented analysis/evaluation and test program, and is operated under the general oversight and guidance of the Office of the Secretary of Defense (OSD) and coordinated by the Office of the Joint Staff (J-5). It should be understood that the findings, conclusions, and recommendations presented in this DO49 document are not to be construed as an official position of the U.S. Army Dugway Proving Ground, the Test and Evaluation Command, or the Department of the Army.

Pesticides used improperly can be injurious to human beings, animals, and plants. Follow the directions and heed all precautions on labels. Store pesticides in original containers under lock and key—out of the reach of children and animals—and away from food and feed.

Apply pesticides so that they do not endanger humans, livestock, crops, beneficial insects, fish, and wildlife. Do not apply pesticides where there is danger of drift when honey bees or other pollinating insects are visiting plants, or in ways that may contaminate water or leave illegal residues.

Avoid prolonged inhalation of pesticide sprays or dusts; wear protective clothing and equipment, if specified on the label.

If your hands become contaminated with a pesticide, do not eat or drink until you have washed. In case a pesticide is swallowed or gets in the eyes, follow the first aid treatment given on the label, and get prompt medical attention. If a pesticide is spilled on your skin or clothing, remove clothing immediately and wash skin thoroughly.

NOTE: Some States have restrictions on the use of certain pesticides. Check your State and local regulations. Also, because registrations of pesticides are under constant review by the U.S Environmental Protection Agency, consult your local forest pathologist, county agriculture agent, or State extension specialist to be sure the intended use is still registered.

FPM 92-9 July 1992

Deposition of <u>Bacillus</u> thuringgiensis into Gambel oak canopies

OCT 1 2 2011

Prepared by

Bruce Grim James Rafferty Gary Sutton Tom Clarke

U.S. Army Dugway Proving Ground Utah 84022

In cooperation with

USDA Forest Service Forest Pest Management 2121C Second Street Davis, CA 95616

(916) 758-4600

FOREWORD

This project was accomplished under RDTE Project 1M4657104049, Joint Chemical/Biological (CB) Contact Point and Test (Project DO49), which is managed and executed by the Joint Operational Test and Information Directorate (JOD), U.S. Army Dugway Proving Ground, Dugway, Utah.

This field test was a cooperative effort between the USDA Forest Service and the U.S. Army under a supplemental agreement to the master memorandum of understanding between the agencies for cooperation with respect to food, agriculture and other research of mutual interest.

The canopy penetration test was designed by Mr. Grim (JOD-A-DPG) and Mr. Rafferty (MT-M-DPG) and was conducted by Lockheed Corporation under contract to the Materiel Test Directorate, Dugway Proving Ground. Life Sciences Division (MT-L-DPG) machine counted the card samples which were analyzed by Mr. Rafferty. Mr. Sutton of the Test Management Division (MT-TM-DPG) was the project officer in charge of the test and provided much of the data reduction. Mr. John Barry of the USDA Forest Service, Forest Pest Management provided many valuable suggestions for the test design and coordinated much of the effort with the other Forest Service participants including having the the deposition cards hand counted. The USFS Missoula Technical Development Center provided valuable meteorological support as did the Atmospheric Sciences Division (ASD) Dugway Meteorological Team. Mr. John Anhold of the USDA Forest Service, Intermountain Region Offices was in charge of the overall aerial spray effort and fully supported this piggyback spray penetration study. Mr. Mark Quilter, Utah Department of Agriculture provided valuable services in coordinating amoung various organizations.

Intentionally Blank

TABLE OF CONTENTS

FORE			PAGE
FOREV	VORD		
LIST O	F FIGUR	RES	iv
LIST O	F TABLE	ES .	٧
EXECU	TIVE SU	IMMARY	vii
SECTIO	ON 1. IN	NTRODUCTION	1
	1.1 Bac	ekground	1
	1.2 Obj	ectives	1
	1.3 Cod	operators	1
	1.4 Des	scription of Field Trials	1
SECTIO	ON 2. R	ESULTS AND CONCLUSIONS	4
	2.1 Tria	Il Results for 1990	4
	2.2 Tria	Il Results for 1991	4
	2.3 Tria	Il Results for collection efficiency of different sized sample cards	4
	2.4 Cor	nclusions	5
SECTIO	ON 3. A	PPENDICES	
	Α	SUMMARY OF METEOROLOGICAL DATA FOR AERIAL SPRAY TRIALS IN GAMBEL OAK	A-1
	В	SUMMARY OF DEPOSITION CARD DATA (HAND COUNT) FOR AERIAL SPRAY TRIALS CONDUCTED IN GAMBEL OAK IN 1990	B-1
	С	SUMMARY OF DEPOSITION CARD DATA (MACHINE/HAND COUNT) FOR AERIAL SPRAY TRIALS CONDUCTED IN GAMBEL OAK IN 1991	C-1
	D	TECHNIQUE FOR OBTAINING LAI-2000 MEASUREMENTS FOR USE AS INPUT TO THE FSCBG AERIAL SPRAY MODEL	D-1
	E	STATISTICAL COMPARISON OF THREE SIZES OF KROMEKOTE CARDS AS DROPLET COLLECTORS	E-1
	F.S. 9	STATISTICAL COMPARISONS OF 1991 CANOPY PENETRATION HAND AND MACHINE COUNTED CARD SAMPLES	F-1
	G	REFERENCES	G-1

LIST OF FIGURES

FIGURE	E	PAG
1	Sampling grid diagram for 1990 canopy penetration trials.	6
2	Worker installing collection cards on a sampling pole.	7
3	Leaf emergence and typical tree profile for Parley's canyon trials in 1990.	8
4	Forest descriptors for canopy penetration subroutine of FSCBG aerial spray model for 1990 field trials.	9
5	2-meter meteorological sampling tower.	10
6	Parley's canyon site of the 1991 canopy penetration study.	11
7	Sampling grid diagram for 1991 canopy penetration trials	12
8	5-meter meteorological sampling tower.	13
	HAND COUNTED CARD SAMPLES	
9	Deposition density vs sampler position for 1990 Parley's application #1.	15
10	Deposition density vs sampler position for 1990 Parley's application #2.	16
11	Deposition density vs sampler position for 1990 Parley's application #3.	17
12	Deposition density vs sampler position for 1990 Olympus application #1.	18
13	Deposition density vs sampler position for 1990 Olympus application #2.	19
14	Deposition density vs sampler position for 1990 Olympus application #3.	20
15	Deposition density vs sampler position for 1990 Provo application #1.	21
16	Deposition density vs sampler position for 1990 Provo application #2.	22
17	Deposition density vs sampler position for 1990 Provo application #3.	23
18	Deposition density vs sampler position for 1991 Parley's application #1 line #	1. 26
19	Deposition density vs sampler position for 1991 Parley's application #1 line #	2. 27
20	Deposition density vs sampler position for 1991 Parley's application #2 line #	1. 28
21	Deposition density vs sampler position for 1991 Parley's application #2 line #	2. 29
22	Deposition density vs sampler position for 1991 Parley's application #3 line #	1. 30
23	Deposition density vs sampler position for 1991 Parley's application #3 line #	2. 31

FIGUR	E	PAGE
	MACHINE COUNTED CARD SAMPLES	
24	Deposition density vs sampler position for 1991 Parley's application #1 line #1.	32
25	Deposition density vs sampler position for 1991 Parley's application #1 line #2.	33
26	Deposition density vs sampler position for 1991 Parley's application #2 line #1.	34
27	Deposition density vs sampler position for 1991 Parley's application #2 line #2.	35
28	Deposition density vs sampler position for 1991 Parley's application #3 line #1.	36
29	Deposition density vs sampler position for 1991 Parley's application #3 line #1.	37
	•	

LIST OF TABLES

TABLE		PAGE
1	Helicopter nozzle positions and usage chart for 1990-1991 aerial spraying.	14
2	Mean card deposition and canopy penetration ratios for 1990 spray trials.	24
3	LAI-2000 plant canopy analyzer measurements for the 1990 sites taken at full leaf emergence in the spring of 1991.	25
4	Mean card deposition and canopy penetration ratios for 1990-1991 aerial spray trials.	32
5	LAI-2000 plant canopy analyzer measurements for the 1991 trials in Parley's canyon.	33

Intentionally Blank

EXECUTIVE SUMMARY

A series of canopy penetration field trials were conducted in Gambel Oak canopies located in the Wasatch Mountains east of Salt Lake City, Utah in conjunction with aerial spraying to control a Gypsy Moth infestation during May-June of 1990 and 1991. These trials were a cooperative effort between the USDA Forest Service and U.S. Army Dugway Proving Ground for the purpose of evaluating a new method of determining input parameters for the canopy penetration module of the FSCBG aerial spray model which was developed jointly by the two organizations. A photoelectric measuring instrument was used to quantitatively measure the canopy foliage density, a parameter which was formerly estimated by subjective means. Spray droplet deposition was measured at above, mid, and below canopy sampling positions using Kromecote sampling cards. An average of one third (1/3) of the deposition measured above the canopy penetrated to the below canopy sampling positions. A follow-on report will examine data/model comparisons of the canopy penetration module of FSCBG using the photoelectric canopy density measurements.

Intentionally Blank

SECTION 1. INTRODUCTION

1.1 BACKGROUND

The USDA Forest Service (FS) and U.S. Army Dugway Proving Ground (DPG) over the past 15 years have maintained a cooperative program to develop an aerial spray dispersion model which includes a canopy penetration module. The canopy penetration module requires that the canopy density be defined by a probability of penetration, average tree profile, and number of trees per acre. Estimates of these parameters are somewhat subjective, especially the probability of penetration. A photoelectric measuring instrument has recently (1990) been marketed by the LI-COR Corp. (4421 Superior ST., P.O. Box 4425, Lincoln, Neb. 68504) which has the capability to measure Leaf Area Index (LAI) in a plant canopy. The LI-COR plant canopy analyzer (LAI-2000) has the potential to eliminate the subjectivity in estimating the parameters which are used in the canopy penetration portion of the FSCBG (Ref. 1) aerial spray model. FSCBG has been modified by Continuum Dynamics, Inc. (Ref. 2) to take LAI-2000 measurements directly as a measure of canopy density.

The FS, Intermountain Region (R-4) and the Utah Department of Agriculture have been conducting a spray program to eradicate the gypsy moth which have infested Gambel oak stands and urban forests along the Wasatch Front of Utah. In the spring of 1990 and 1991 the FS and DPG cooperated in a series of field experiments to measure the penetration of *Bacillus thuringiensis* (Bt) insecticide spray into the Gambel oak stands. In the 1991 trial series the LAI-2000 plant canopy analyzer was used to collect canopy density information for input to FSCBG. A comparison of model predictions with the actual canopy penetration sampling data will be made in a follow-on report.

1.2 OBJECTIVES

The objective of the field trial series was to obtain a measure of the amount of aerial spray material released above the canopy which penetrates through the canopy to the ground. This provides the FS with a measure of the effectiveness of the spray mix to coat the leaf surface which the gypsy moth larvae consume.

1.3 COOPERATORS

USDA Forest Service, Intermountain Region, Ogden, UT

USDA Forest Service, Forest Pest Management, Washington Office, Davis, CA

USDA Forest Service, Missoula Technical Development Center (MTDC), Missoula, MT

U.S. Army Dugway Proving Ground, Dugway, UT

1.4 DESCRIPTION OF FIELD TRIALS

1.4.1 1990 Field Trials

The 1990 spray deposition study was conducted at three of ten spray blocks located along the Wasatch Front. The three blocks were located: (a) on the south side of Parley's Canyon about a mile west of Lamb's Canyon, (b) on the north west ridge of Mt Olympus just above the highest homes, and (c) at the mouth of Rock Canyon on the south side of Provo Canyon. At each of these sites, sampling was done during each of three spray applications.

A straight sampling line 100 m in length was constructed at each of the three test sites. The line was oriented along the fall line (i.e., perpendicular to the elevation contours) so that it would be perpendicular to the flight path of the application aircraft. Along this line, 41 numbered sampling positions at 2.5-m intervals were established (Figure 1). The sampling positions were numbered in ascending order with position #1 at the lowest elevation. At each position, a kromekote card (11.0 cm x 16.8 cm) was placed at ground level. Also, vertical sampling poles were erected at 5-m intervals (odd position numbers) to provide mid-canopy and above-canopy sampling platforms at 21 locations.

The vertical sampling platform consisted of two 10-ft (3.05-m) metal electrical conduits with diameters of 1 in (2.54 cm). The poles were lashed together using two screw-type hose clamps on a section that overlaps 1 ft (0.305 m) as shown in Figure 2. The resulting 19 ft (5.76 m) pole was supported by guy wires attached to available trees or stakes. At mid-canopy one-half of a standard deposition card was mounted on a platform that extended 1 ft at right angles from the top of the lower pole. The platform was oriented upslope of the pole (upwind for the assumed drainage winds). At the top of the upper pole, one-quarter of a standard deposition card was mounted on a platform. This arrangement provided sampling at the ground, near mid-canopy, (10 ft or 3.05 m), and above the canopy (19 ft or 5.79 m). Most of the trees in the sampling locations did not exceed 19 ft in height; however, if the trees in the vicinity of a sampling pole exceeded 19 ft, an extra 5 ft extension of conduit was lashed to the upper pole with a 6 in overlap to put the deposition card above canopy sampling height at 23.5 ft (7.16 m).

Leaf emergence was at different stages during each application time as illustrated in Figure 3. At each sampling area and at the time of each application, photographs of the canopy were taken at sampling locations #10, #20, and #30. The photographs were taken looking upline (uphill) at elevation angles of 15, 30, 45, 60, 75, and 90 degrees from the horizontal. The photographs were taken at a time of day that would provide maximum contrast between the foliage in the foreground and the sky in the background.

The forest at each test site was characterized by surveying plots at each sampling location where the photographs were taken to estimate stems per acre, trunk diameter, crown width and height, and tree height. This information is summarized in Figure 4.

The Test and Evaluation Command (TECOM), Meteorological Team at DPG provided the following services at each block for each of the 9 days when sampling occured:

- 1. Recorded surface observations for a period starting one hour before the block was sprayed to one hour after spraying; observations included air temperature, relative humidity, barometric pressure, cloud cover and height, visibility, present weather, and ground conditions.
- 2. Recorded wind observations from a 2-m mast for the same period and location as the surface observations. The 2-m mast is shown in Figure 5.
- 3. Recorded Pibal wind measurements to 2000 m above ground level immediately after the spray aircraft left the area.
- 4. Provided two helium filled balloons to be tethered at a height 2 m above the canopy at either end of the sampling line for pilot identification of the sampling area.

1.42 1991 Field Trials

The 1991 spray deposition study was located in Parley's canyon south of I-80 freeway and east of the Mountain Dell exit in a fairly uniform stand of Gambel oak (Figure 6). Sampling was done on the three spray application days, as described for the 1990 field trials.

Two 102.5 m long sampling lines were constructed along a line roughly perpendicular to the contour lines and thus perpendicular to the helicopter spray paths. There were 42 numbered sampling positions along each of the two sampling lines. The sampling lines were numbered in acending order with positions #1 and #43 at the lowest elevation. At each position, a deposition card was placed at ground level. Also, vertical sampling poles were erected at 5-m intervals (odd numbered positions) to provide mid-canopy and above-canopy sampling platforms at 42 locations. See Figure 7.

The vertical sampling platform consisted of two 10-ft (3.05-m) metal electrical conduits with diameters of 1 in (2.54 cm) in the same configuration as previously described for the 1990 trials (Figure 2). In 1991 a full size deposition card (11.0 cm X 16.8 cm) was used at all sampling positions.

Leaf emergence was at different stages at each application time. The LAI-2000 Plant Canopy Analyzer was utilized to monitor the relative amount of light penetrating the canopy at each application. Ten (10) readings were taken at preselected locations between the two sampling lines. In order to minimize problems with direct sunlight these readings were taken at dawn before the sun emerged over the apparent horizon.

Meteorological measurements were taken by the TECOM Met Team from DPG and a single 5-m telescoping meteorological mast was erected in a nearby clearing by the Forest Service, Missoula, Montana and is shown in Figure 8.

The following meteorological data were taken during the trials:

- 1. Surface observations for a period of one hour before the block was sprayed to one hour after spraying; the observations included air temperature, relative humidity, barometric pressure, cloud cover and height, visibility, present weather, and ground conditions.
- 2. Recorded wind observations from a 2-m mast for the same period and location as the surface observations.
 - 3. Wind speed and direction, temperature, and relative humidity from 5-m mast.

1.4.3 Aerial Spray Application

Aerial application of undiluted Bt (Foray 48B undiluted) in all trials at the rate of 0.5 gal/acre was sprayed by helicopter flying at a nominal 50 ft above the canopy with an approximate airspeed of 70 knots and a lane spacing (swath width) of approximately 100 ft. Each helicopter was equipped with four Beecomist 360A atomizers. Atomizer positions on the boom were estimated by AGDISP3 model simulations and final positioning was adjusted by observing the spray pattern produced on sample cards at ground level at Salt Lake Airport No. 2 prior to the actual spray application. Final atomizer positions along the spray boom are given in Table 1.

SECTION 2. RESULTS AND CONCLUSIONS

2.1 TRIAL RESULTS FOR 1990

Leaf emergence for a typical Gambel Oak tree at the Parley's Canyon site at the time of each spray application is illustrated in Figure 3 and the typical tree envelopes for each site are shown in Figure 4. These profiles are subjective in nature, though they are based on photographs and visual estimates made on site. Stems per acre estimates were based on average measurements of tree spacing at each vertical sampling position. Due to the time consuming nature of obtaining these measurements, use of a measuring device such as the LI-COR LAI-2000 plant canopy analyzer appears to be imperative for obtaining input parameter values for FSCBG. LAI-2000 measurements were taken at each of these sites in 1991 with full leaf emergence and are presented in Table 3. Analysis of the numerous photographs taken for the purpose of obtaining FSCBG inputs was initiated after the trials; however, when the analysts became aware of the LAI-2000 plant canopy analyzer, further analysis of the photographs was halted.

The major objective of the test to measure the amount of spray penetrating the foliage was satisfied. Data as shown in Figures 9 through 17 illustrate the deposition obtained at the three levels (above, mid, and below canopy) as a function of line position for the 1990 trials. The peaks and valleys are a result of helicopter position and spray drift due to wind, while variations in canopy density show up as scatter. On the average the above canopy depositions are greater than mid and below canopy depositions as one would anticipate, and approximately one third (1/3) of the spray material reached the ground.

2.2 TRIAL RESULTS FOR 1991

Figures 18-23 (hand counts) and Figures 24-29 (machine counts) depict the deposition measured at above, mid, and below canopy levels for each sampling position for the Parley's canyon site. As was the case in 1990, approximately one third (1/3) of the spray measured above the canopy was recovered at ground level below the canopy. The Canopy penetration ratios for both the 1990 and 1991 trials are shown in Table 4. Statistical comparisons of the deposition data are presented in Appendix F and the following results were noted:

- No significant differences were noted between trials at above, mid, or below canopy levels.
 (Note: There was a significant difference between vertical levels, not trials.)
 This indicates that the effect of leaf emergence as a function of spray date was indistinguishable in this series of trials.
- 2. No significant differences were noted between the two parallel sampling lines with either the hand counted or machine counted card samples.
- 3. It is recommended that trial #3 HAND COUNTS not be used for field data to FSCBG model comparisons due to difficulties experienced by the card reader (mid-canopy cards were not read) in seeing the droplets.

2.3 TRIAL RESULTS FOR COLLECTION EFFICIENCY OF DIFFERENT SIZED SAMPLE CARDS

The use of 3 different card sizes at the different sampling levels during the 1990 trials raised some concern on the part of analysts as to whether card size would affect collection efficiency. A small experiment was set up during each trial in 1991 in an open area which was within the Parley's Canyon spray block. An array of 24 cards of each size was arranged in an area of approximately 3 meters square. Statistical test results are given in appendix E. A two-way factorial analysis on the response variable mg/m² with the main effects tested being application number and size of card was performed. Not unexpectedly, card density was significantly different from application to application. Card size unexpectedly showed a significant difference; however, inspection of the interaction term (size) suggests that a fluctuation in application #2 may be responsible. To further test these results a new experiment will be conducted during the spring of 1992 Gypsy Moth spray applications.

2.4 CONCLUSIONS

The average canopy penetration values obtained from these trials (approx. 1/3 penetration to the ground) reflect the lowest penetration one might expect in Gambel oak. Gambel oak in the western United States does not generally grow in uniform stands covering many acres, rather it is clumpy by nature and rarely exceeds 20 ft in height. The plots chosen in these studies were as uniform as could be found over the short distance of 100 meters which constituted the sampling lines.

2.5 RECOMMENDATIONS

- 1. The use of a second parallel sampling line as was done in the 1991 trials proved to be superfluous and is not recommended for future tests.
- 2. It is recommended that collection cards all be of the same size to avoid confusion of the data by possible differences in collection efficiency. Data from the 1991 card sizing test were statistically inconclusive on this point.
 - 3. Use hand counted density data to compare with FSCBG predictions.

28 Free o yes the special of the spe

```
41 0
           x 40
        39 0
           × 38
        37 o
           x 36
        35 o
           x 34
        33 o
           \times 32
        31 o
           x 30
        29 o
           x 28
        27 o
           x 26
        25 o
           x 24
        23 o
           x 22
        21 o
           x 20
        19 o
           x 18
        17 o
           x 16
         15 o
           x 14
U
        13 o
P
           x 12
H
        11 0
I
           x 10
L
         9 0
L
           x 8
         7 0
           x 6
         5 0
           x 4
         3 o
           x 2
         1 0
```

Ground Sample Interval = 2.5 meters Pole Sample Interval = 5.0 meters

```
o = pole sample + ground sample
x = ground sample only
```

Figure 1. Sampling grid diagram for 1990 canopy penetration trials.

Figure 2. Workers installing sampling poles in Gambel Oak forest.

Figure 5. 2-meter meteorological sampling tower.

Figure 10. Parley's Canyon site of the 1991 canopy penetration study.


```
x 42
                            x 84
        41 0
                         83 0
            x 40
                              82
                            X
        39 o
                         81 o
           x 38
                            x 80
                         79 o
        37 o
           x 36
                            x 78
                         77 o
        35 o
           x 34
                            x 76
        33 o
                         75 o
           x 32
                            x 74
        31 o
                         73 o
           x 30
                            x 72
        29 o
                         71 o
           x 28
                            x 70
        27 o
                         69 o
           x 26
                            x 68
        25 o
                         67 o
           x 24
                           'x 66
        23 o
                         65 o
           x 22
                            x 64
        21 o
                         63 o
           x 20
                            x 62
        19 o
                         61 o
           x 18
                            x 60
        17 o
                        59 o
           x 16
                            x 58
                         57 o
         15 o
                            x 56
           x 14
U
        13 o
                         55 o
P
           x 12
                            x 54
H
        11 0
                        53 o
I
           x 10
                            x 52
L
         9 0
                        51 o
L
           x 8
                            x 50
         7
           0
                        49 o
           X
             6
                            x 48
         5 o
                        47 0
           \times 4
                            x 46
         3 0
                        45 o
           x 2
                           x 44
         1 0
                        43 o
```

Ground Sample Interval = 2.5 meters Pole Sample Interval = 5.0 meters

o = pole sample + ground sample
x = ground sample only

Figure 7. Sampling grid diagram for 1991 canopy penetration trials

Figure 8. 5-meter meteorological sampling tower.

1990 HELICOPTER NOZZLE POSITIONS

Aircraft	Rotor to Boom Distance (m)	Distance to Nozzles (m)			
Type		Left Outboard	Left Inboard	Right Inboard	Right Outboard
Hiller 12E		3.84	1.68	1.68	3.84
Bell 212 (2 ships)		3.84	1.73	1.75	3.84

1991 HELICOPTER NOZZLE POSITIONS

Aircraft Type	Rotor to Boom Distance - (m)	Boom (m)			.es	
		Left Outboard	Left Inboard	Right Inboard	Right Outboard	
Hughes 500	1.9	3.01	1.65	1.75	3.09	
Bell 206 #N16726	3.2	4.02	1.99	1.80	3.98	
Bell 206 #N59553	3.2	4.00	1.86	1.77	3.92	

HELICOPTER USAGE CHART

SITE	HELICOPTER	
PARLEY'S 1990	HILLER	
OLYMPUS 1990	HILLER	
PROVO 1990	BELL 212 (2 SHIPS)	
PARLEY'S 1991	HUGHES 500	

Table 1. Helicopter nozzle positions and usage chart for 1990-1991 aerial spraying.

UTAH GYPSY MOTH 1990

Lamb's Canyon Application #1

Figure 9. Deposition density vs sampler position for 1990 Parley's application #1.

UTAH GYPSY MOTH 1990

Lamb's Canyon Application #2

Figure 10. Deposition density vs sampler position for 1990 Parley's application #2.

UTAH GYPSY MOTH 1990

Lamb's Canyon Application #3

Figure 11. Deposition density vs sampler position for 1990 Parley's application #3.

Olympus Cove Application #1

Figure 12. Deposition density vs sampler position for 1990 Olympus application #1.

Olympus Cove Application #2

Figure 13. Deposition density vs sampler position for 1990 Olympus application #2.

Olympus Cove Application #3

Figure 14. Deposition density vs sampler position for 1990 Olympus application #3.

Provo Canyon Application #1

Figure 15. Deposition density vs sampler position for 1990 Provo application #1.

Provo Canyon Application #2

Figure 16. Deposition density vs sampler position for 1990 Provo application #2.

Provo Canyon Application #3

Figure 17. Deposition density vs sampler position for 1990 Provo application #3.

Table 2. Mean card deposition and canopy penetration ratios for 1990 spray trials.

		SITION (mg/m**2) [L	PENET	RATION	RATIO
1990 TRIALS	TOP	MID	GROUND	TOP	MID	GROUND
OLYMPUS #1	466.3	373.0	105.3	1.00	0.80	0.23
OLYMPUS #2	329.4	218.7	172.8	1.00	0.66	0.53
OLYMPUS #3	235.9	253.1	98.4	1.00	1.07	0.42
MEAN	343.9	281.6	125.5	1.00	0.82	0.37
PARLEY'S #1	191.4	174.5	143.4	1.00	0.91	0.75
PARLEY'S #2	457.6	301.5	134.4	1.00	0.66	0.29
PARLEY'S #3	565.1	283.7	206.9	1.00	0.50	0.37
MEAN	404.7	253.2	161.6	1.00	0.63	0.40
PROVO #1	271.0	353.6	204.7	1.00	1.31	0.76
PROVO #2	425.5	111.0	66.3	1.00	0.26	0.16
PROVO #3	1009.5	791.4	269.6	1.00	0.78	0.27
MEAN	568.7	418.7	180.2	1.00	0.74	0.32

LAI-2000 PLANT CANOPY ANALYZER MEASUREMENTS

Below/Above Canopy Radiation Ratios

8 9	imuth	0.150		0.277	imuth	0.257
	a 2	00		00	B	
(deg) 53	degrees	0.196		0.416	degrees	0.333
Angle from Zenith (deg) 23 .38 53	0.064	56		189	to 010	0.392
rom Zeniu .38	226 t	0.243		0.489	190	00
11c f. 23	from	0.305		0.549	from	0.442
Vuč	sky	00		00	sky	00
7	Using 1/2 sky from 226 to 064 degrees azimuth	0.255		0.586	Using 1/2 sky from 190 to 010 degrees azimuth	0.497
1990 Sites	Olympus Cove	18 Jun Hean Std. Dev.	Lamb's Canyon	22 Jun Mean Std. Dev.	Provo Canyon	23 Jun Hean Std. Dev.

Table 3. LAI-2000 plant canopy analyzer measurements for the 1990 sites taken at full leaf emergence in the spring of 1991.

HAND COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #1 - Sampling Line #1

Figure 18. Deposition density vs sampler position for 1991 Parley's application #1 line #1.

HAND COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #1 - Sampling Line #2

Figure 19. Deposition density vs sampler position for 1991 Parley's application #1 line #2.

HAND COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #2 - Sampling Line #1

Figure 20. Deposition density vs sampler position for 1991 Parley's application #2 line #1.

HAND COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #2 - Sampling Line #2

Figure 21. Deposition density vs sampler position for 1991 Parley's application #2 line #2.

HAND COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #3 - Sampling Line #1

Figure 22. Deposition density vs sampler position for 1991 Parley's application #3 line #1.

Figure 23. Deposition density vs sampler position for 1991 Parley's application #3 line #2.

MACHINE COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #1 - Sampling Line #1

Figure 24. Deposition density vs sampler position for 1991 Parley's application #1 line #1.

MACHINE COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #1 - Sampling Line #2

Figure 25. Deposition density vs sampler position for 1991 Parley's application #1 line #2.

MACHINE COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #2 - Sampling Line #1

Figure 26. Deposition density vs sampler position for 1991 Parley's application #2 line #1.

Figure 27. Deposition density vs sampler position for 1991 Parley's application #2 line #2.

MACHINE COUNTED CARD SAMPLES Gypsy Moth - Mountain Dell Block Application #3 - Sampling Line #1

Figure 28. Deposition density vs sampler position for 1991 Parley's application #3 line #1.

Figure 29. Deposition density vs sampler position for 1991 Parley's application #3 line #1.

TABLE 4. Mean card deposition and canopy penetration ratios.

		SITION (PY LEVE	mg/m**2) :L	PENET	RATION	RATIO
	TOP	MID	GROUND	TOP	MID	GROUND
1990 TRIALS	HAND	COUNT	ED CARD SAME	LES		
OLYMPUS #1 OLYMPUS #2 OLYMPUS #3 MEAN	466.3 329.4 235.9 343.9	218.7 253.1	98.4	1.00 1.00 1.00 1.00	1.07	0.23 0.53 0.42 0.37
PARLEY'S #1 PARLEY'S #2 PARLEY'S #3 MEAN	191.4 457.6 565.1 404.7	283.7	143.4 134.4 206.9 161.6	1.00 1.00 1.00 1.00	0.91 0.66 0.50 0.63	0.75 0.29 0.37 0.40
	271.0 425.5 1009.5 568.7	111.0 791.4	66.3	1.00 1.00 1.00 1.00	0.26 0.78	0.76 0.16 0.27 0.32
1991 TRIALS	HAND	COUNT	ED CARD SAMF	LES		
PARLEY'S #1 `PARLEY'S #2 PARLEY'S #3 MEAN		779.5 ND	158.2	1.00 1.00 1.00 1.00		0.26 0.18 0.54 0.33
1991 TRIALS	MACHI	NE COL	JNTED CARD SA	AMPLES		
PARLEY'S #1 PARLEY'S #2 PARLEY'S #3 MEAN		97.6 61.1	57.1	1.00 1.00 1.00 1.00	0.60 0.59 0.37 0.52	0.33 0.28 0.34 0.32
MEAN PENETRATION RATIOS	FOR AL	L DATA	SETS COMBIN	ED: 1.00	0.71	0.35

ND = NO DATA AVAILABLE

LAI-2000 PLANT CANOPY ANALYZER MEASUREMENTS

Delow/Above Canopy Radiation Ratios

	1991	1991 Site	7	Angle 23	Angle from Zenith (deg) 23 38 53	(deg) 53	ස ග
04	od Jun	Mean Std. Dev.	0.64B 0.156	0.622	0.516	0.434	0.270
60	unf 60	Mean Std. Dev.	0.577	0.554	0.470	0.368	0.214
14	14 Jun	Hean Std. Dev.	0.444	0.123	0.331 0.135	0.228	0.120
10	18 Jun	Hean Std. Dev.	0.382	0.378	0.287	0.209	0.118

Table 5. LAI-2000 plant canopy analyzer measurements for the 1991 trials in Parley's canyon.

APPENDIX A

SUMMARY OF METEOROLOGICAL DATA FOR AERIAL SPRAY TRIALS IN GAMBEL OAK

18 March 1992

METEOROLOGICAL MEASUREMENTS HADE DURING THE 1990 AND 1991 GYPSY MOTH CANOPY PENETRATION EXPERIMENTS

During both years of the gypsy moth canopy penetration experiments, meteorological observations were made by the TECOM meteorological team of Dugway Proving Ground. Wind speed and direction was measured using an anemometer and wind vane on a 2-m mast in an open area near the deposition grid at each site. We were able to select a site with an open area of at least 10 m in radius at each site except the Olympus Cove site of the 1990 experiment. At Olympus Cove a bend in a dirt road was selected which afforded an opening in the forest of approximately 4 m in radius. Wind speeds and directions were recorded on strip charts and averaged for ten minutes starting at the beginning of spray dissemination at each canopy penetration site. Surface observations including dry and wet bulb temperatures and were made at half hour intervals during the spray period. The following tables list the observations made closest to the beginning of spray dissemination at the canopy penetration grids.

1990 METEOROLOGICAL DATA

Site	0	Olympus Co	Cove	Lam	Lamb's Canyon	on	Pr	Provo Canyon	no
Application	1	2	က	1	2	6	1	2	ю
Spray Time (MDT)	0910	0948	0759	0925	0730	1024	0140	0620	0652
Wind Speed (m s ⁻¹)	9.4	0.5	6.0	ND	2.7	3.6	6.0	6.0	1.1
Wind Direction (deg)	270	330	180	ND	140	305	150	45	VAR
Temperature (C)	თ	17	12	ON	12	14	9	٢	9
Relative Humidity (%)	59	43	58	ON	5 8	56	80	71	6.5
Cloud Cover (tenths)	٢	0	0	ON	М	ω	0	0	7
Cloud Height (m)	3050	t t	1	NON	3050	6100	;	1	2130
Pressure' (mb)	810	810	810	805	805	805	800	800	800

The pressures given in the a No atmospheric pressures were measured during the 1990 trials. table are estimates based on the site elevation.

b No Data (observer was not available)

1991 METEOROLOGICAL DATA

Application	1	2	3 .
Date	10 June	15 June	19 June
Time (MDT)	0626	0600	0618
Wind Speed (m s ⁻¹)	ND.	1.3	1.6
Wind Direction (deg)	ND	180	230
Relative Humidity (%)	ND	44	14
Temperature (C)	ND	5.3	19.4
Cloud Cover (tenths)	ND	0	10
Ceiling (m)	ND		7620
Pressure (mb)	ND	820.1	814.2

a No Data (observer was not available)

	COS CONTRACT CONTRACTOR	Torrestens
		5361
E X		bengs bol
	e5 ô∮	
	14.4	VS through the species
	Øß.	
		ແລະຕ່ວ ນິດຄາວ ວຸ
4.013	6236	An organia

APPENDIX B

SUMMARY OF DEPOSITION CARD DATA (HAND COUNT) FOR AERIAL SPRAY TRIALS CONDUCTED IN GAMBEL OAK IN 1990

HAND COUNTED CARD SAMPLES Gypsy Moth, Olympus Block, Canopy Penetration, Application #1, June 2, 1990

		Deposition Density	(mg/m²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
1	1.7		11.1	14.5
2	00.5	348.4	5540	C20 C
3 4	93.5	76.7	554.2	639.6
5	12.4		145.3	1216.4
	000.7	46.6	707.4	CCC 4
7 8	228.7	680.5	707.4	666.4
9	471.5		577.9	1176.9
10	70.0	81.5	400.0	074.0
11 12	79.2	69.2	460.6	274.8
13	9.6		312.4	115.3
14	04.0	30.9	704.4	070.0
15 16	81.9	99.3	781.1	370.0
17	67.7		803.0	620.3
18	20.6	143.3	150.0	250.4
19 20	38.6	37.0	152.9	359.1
21	19.2		43.3	399.7
22	10.0	179.8	004.4	C 47 C
23 24	12.6	144.6	234.4	547.5
25	44.4		345.4	374.6
26	40.5	30.1	007.0	440.0
27 28	18.5	16.8	207.6	443.8
29	221.5		366.7	193.6
30	04.4	25.4	544.0	400.4
31 32	84.4	24.8	541.8	432.4
33	50.1		77.3	396.3
34	00.4	13.5		00.0
35 36	29.4	31.4	273.4	89.8
37	71.3		641.3	228.3
38	07.5	7.8	240.0	404.0
39 40	27.5	532.7	310.8	421.9
41	33.8	oc.,	285.6	810.1
Mean	1	05.3	373.0	466.3
Ratio to Top		0.23	0.80	1.00

HAND COUNTED CARD SAMPLES Gypsy Moth, Olympus Block, Canopy Penetration, Application #2, June 7, 1990

		Deposition Density (mg/m²)		
Position	Ground	Ground (Between Poles)	Mid	Тор	
1 -	65.9		91.1	229.1	
2	62.9	62.9	182.9	137.5	
4		40.0			
5	97.1	201.7	14.5	113.8	
7	118.8	201.7	168.7	184.5	
8	00.0	320.7	24.5	100.1	
9	96.9	194.0	31.5	129.1	
11	117.5		324.6	575.8	
12 13	83.5	547.7	362.2	281.5	
14		293.4			
15 16	145.3	145.3	284.1	270.2	
17	112.5		114.4	212.9	
18	220.0	300.6	148.4	521.5	
19 20	320.0	165.9	140.4	521.5	
21	146.4		163.9	352.3	
22 23	113.4	217.5	1.5	95.6	
24		180.6			
25 26	483.4	227.9	82.7	174.5	
27	62.9		183.2	311.6	
28 29	263.2	139.2	29.6	338.5	
30	200.2	133.1	25.0	000.5	
31	139.4	76.0	267.2	418.2	
32 33	111.3	76.3	282.2	952.6	
34		154.8		000.0	
35 36	77.4	127.1	467.2	628.2	
37	278.4		429.6	434.7	
38 39	133.4	221.6	608.2	300.8	
40		131.4		000.0	
41	173.3		355.2	253.6	
Mean		72.8	218.7	329.4	
Ratio to Top		0.52	0.66	1.00	

HAND COUNTED CARD SAMPLES Gypsy Moth, Olympus Block, Canopy Penetration, Application #1, June 2, 1990

		Deposition Density (mg/m²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
1	108.8		204.9	525.8
2	89.9	111.9	395.0	205.4
4		111.3		
5	201.0	214.3	634.4	361.1
6 7	498.5		715.6	379.0
8 9	425.6	620.6	251.5	267.2
10		83.6		
11 12	433.0	69.6	527.0	199.7
13	84.4		189.1	317.8
14 15	98.6	0.7	652.4	797.7
16		164.4	W2.4	
17 18	95.1	175.8	277.7	488.5
19	20.8	175.0	158.4	203.4
20 21	0.2	16.6	1400	120.0
22	0.2	7.4	142.3	130.8
23	2.5	105.0	65.6	138.8
24 25	63.3	105.0	281.9	616.6
26		9.2		
27 28	37.0	0.0	101.4	25.7
29	7.4		23.8	26.7
30 31	17.9	16.4	57.4	7.8
32		0.0		
33 34	0.0	12.6	49.6	62.3
35	16.2		226.5	29.4
36 37	16.2	0.0	197.5	78.5
38		29.6		
39 40	0.0	49.2	10.1	35.5
41	20.6		152.5	56.2
Mean		98.4	253.1	235.9
Ratio to Top	(0.42	1.07	1.00

HAND COUNTED CARD SAMPLES Gypsy Moth, Lamb's Canyon Block, Canopy Penetration, Application #1, May 31, 1990

		Deposition Density	(mg/m²)		
Position	Ground	Ground (Between Poles)	Mid	Тор	
1	218.0		363.9	141.1	
2 3 4	17.9	277.6 221.8	204.3	180.4	,
5	130.0		265.7	50.3	
6 7	61.7	105.9	95.0	2.1	
8 9	75.6	50.8	133.4	22.3	
10 11	47.1	43.8 .	41.1	42.5	
12 13	12.4	7.2	552.5	. 304.7	
14 15	30.9	39.3	105.0	271.3	
16 17	7.2	49.2	63.0	244.0	
18 19	99.6	73.6	175.7	226.6	
20 21		180.6			
22	147.2	144.7	46.6	122.0	
23 24	121.6	173.4	59.3	147.2	
25 26	322.5	455.3	552.5	304.7	
27 28	272.9	146.1	447.5	735.5	
29 30	152.2	95.9	114.2	284.7	
31 32	71.0		38.3	158.5	
33 34	166.0	101.3	52.1	127.4	
35	121.5	71.9	54.7	129.9	
36 37	171.9	267.4	170.3	128.9	
38 39	288.1	211.2	149.9	335.4	
40 41	273.7	355.4	349.4	209.7	
Mean Ratio to Top		43.4 0.75	174.5 0.91	191.4	

HAND COUNTED CARD SAMPLES Gypsy Moth, Lamb's Canyon Block, Canopy Penetration, Application #2, June 7, 1990

		Deposition Density ((mg/m²)		
Position	Ground	Ground (Between Poles)	Mid	Тор	_
1	198.3		535.3	1465.7	
2	125.4	280.0	528.3	398.0	
4		233.4			
5	220.1	151.9	389.0	386.6	
7	79.0		410.8	519.9	
8	219.7	255.9	608.7	246.7	
10		201.9			
11 12	72.6	154.4	108.4	755.6	
13	51.7		248.4	241.8	
14 15	7.7	69.0	114.5	199.5	
16		29.2			
17 18	90.0	112.1	77.0	314.4	
19	108.0		117.4	229.7	
20 21	71.8	180.2	35.6	428.1	
22		41.1			
23 24	53.5	57.9	120.9	214.5	
25	34.5		98.8	216.9	
26 27	37.2	86.8	40.9	101.4	
28	57.2	32.6	,1 0.9	101.4	
29 30	31.5	71.7	108.7	181.3	
31	123.3	71.7	531.5	313.8	
32 33	191.9	35.4	394.9	315 4	
34		262.0		315.4	
35 36	45.1	522.5	960.9	630.7	
37	52.0	3ZZ.3	119.3	985.8	
38 39	77.4	46.8	225 1	320.0	
40	11.4	297.0	335.1	329.8	
41	495.9		446.7	1135.4	
Mean		34.4	301.5	457.6	
Ratio to Top		0.29	0.66	1.00	

HAND COUNTED CARD SAMPLES Gypsy Moth, Lamb's Canyon Block, Canopy Penetration, Application #3, June 13, 1990

	Deposition Density (mg/m²)				
Position	Ground	Ground (Between Poles)	Mid	Тор	
1	360.9		594.4	971.5	
2 3 4	120.4	154.5	248.9	520.0	
5	145.2	169.4	282.2	293.6	
6 7	36.8	244.0	346.9	508.1	
8	233.6	62.0	359.9	438.9	
10 11	0.0	7.2	0.0	165.6	
12 13	7.2	16.2	7.2	104.9	
14 15	194.1	29.6	106.0	252.9	
16 17	63.5	89.1	35.1	1210.9	
18 19	43.3	96 9	129.5	994.6	
20 21	103.2	36.1	95.0	397.9	
22 23	83.7	90.1	93.3	248.0	
24 25	90.6	15.9	79.3	682.5	
26 27	106.6	30.6	266.6	442.6	
28 29	10.7	0.5	57.6	332.8	
30 31	216.1	16.2	32.1	538.6	
32 33	487.0	434.6	472.4	421.6	
34 35	482.0	458.9	950.9	1378.0	
36 37	744.2	689.5	487.5	437.2	
38 39	145.8	367.7	665.2	623.7	
40 41	605.8	1192.6	646.8	902.6	
				302.0	
Mean Ratio to Top	206.9 0.37		283.7 0.50	565.1 1.00	

HAND COUNTED CARD SAMPLES Gypsy Moth, Provo Block, Canopy Penetration, Application #1, June 3, 1990

		Deposition Density (mg/m²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
1	421.2	074.4	514.8	312.6
2	497.5	271.1	243.8	332.2
4		79.9		
5 6	226.4	204.0	302.7	395.5
7	201.5		273.6	179.1
8 9	74.0	108.9	351.1	152.8
10		30.4	551.1	
11 12	96.6	103.5	190.4	90.0
13	147.8	103.5	236.5	120.8
14	210.0	51.8		
15 16	312.6	109.9	342.5	157.8
17	127.7		523.5	486.9
18 19	279.1	212.6	537.3	567.5
20		163.5		
21 22	147.7	186.0	349.5	292.8
23	240.0	180.0	365.7	187.1
24		408.4	105.0	0740
25 26	497.6	165.7	165.6	274.2
27	533.4		541.7	145.9
28 29	378.4	367.3	407.7	312.5
30		187.4		
31 32	155.0	126.1	467.8	249.7
33	214.6	120.1	675.3	166.8
34		84.8		
35 36	55.3	92.2	142.6	293.8
37	41.2		358.8	187.8
38 39	197.7	211.4	301.1	319.0
40		264.8		
41	117.3		335.1	263.4
Mean		04.7	353.6	271.0
Ratio to Top	(0.76	1.30	1.00

HAND COUNTED CARD SAMPLES Gypsy Moth, Provo Block, Canopy Penetration, Application #2, June 7, 1990

		Deposition Density	(mg/m²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
1 %	9.0		329.4	526.7
2 3	145.8	130.8	229.1	1136.2
3 4 5	101.8	9.5	71.9	1055.0
6		23.2		
7 8	24.0	13.3	50.6	626.4
9	40.8		56.9	833.2
10 11	6.1	66.9	113.3	527.7
12 13	66.2	86.5		314.2
14		2.1	142.7	314.2
15 16	101.0	27.3	141.4	454.0
17	93.6		101.2	289.7
18 19	0.0	89.4	53.4	768.7
20 21		106.5		
22	218.2	88.5	97.6	271.7
23 24	33.5	119.4	123.8	88.4
25	106.7		45.2	194.0
26 27	105.7	27.7	58.2	200.5
28		79.7		
29 30	37.5	77.4	226.3	0.08
31 32	17.0	26.1	180.0	296.1
33	55.8		18.9	244.8
34 35	20.4	191.4	16.7	98.6
36		26.3		
37 38	41.5	102.8	52.8	79.1
39 40	ND	ND ND	ND	ND
41	ND	NO	ND	ND
Mean Ratio to Top		66.3 0.16	111.0 0.26	425.5 1.00

HAND COUNTED CARD SAMPLES Gypsy Moth, Provo Block, Canopy Penetration, Application #3, June 13, 1990

		Deposition Density	(mg/m²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
1 2	240.7	50.4	361.1	727.0
3	76.5	59.1	193.1	697.0
4 5	103.4	116.4	316.2	373.4
6 7	51.0	119.4	158.9	291.3
8 9	36.7	171.6	565.7	554.4
10		44.5		
11 12	484.3	604.4	2672.4	1239.3
13 14	286.6	80.5	3179.7	3342.2
15 16	233.2	216.2	808.5	2039.5
17 18	222.2	393.9	331.1	1451.5
19	620.3		1229.0	2290.5
20 21	234.9	983.5	1077.0	1863.6
22 23	329.1	427.8	1141.0	978.3
24 25	258.3	301.3	497.8	478.8
26 27	111.7	281.3	427.6	678.5
28		121.9		
29 30	188.8	550.2	762.8	380.9
31 32	364.8	480.6	371.6	1011.7
33 34	604.3	569.4	695.9	982.4
35 36	344.3		828.7	653.6
37	105.4	139.8	311.9	536.1
38 39	43.5	154.6	385.9	287.3
40 41	131.1	165.1	303.3	342.6
Mean Ratio to Top		69.6 0.27	791.4 0.78	1009.5 1.00

APPENDIX C

SUMMARY OF DEPOSITON CARD DATA (MACHINE/HAND COUNT) FOR AERIAL SPRAY TRIALS CONDUCTED IN GAMBEL OAK IN 1991

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Droplet Mass Median Diameter (MMD) (µm).

	App	Application Number		
	1	2	3	
op Canopy	316	296	295	
d Canopy	311	355	298	
round	295	284	294	
ver All	310	286	295	

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #1, Sampling Line #1, June 10, 1991

	Dep	osition Dens	ity (mg/m²)	
Position	Ground	Ground (Between Po	Mid les)	Тор
1	90.24		195.00	63.58
2	106 50	68.94	107.00	267.00
3 4	106.58	42 OF	187.88	267.80
5	125.90	42.85	234.93	260.41
6	113.70	235.93	254.75	200.41
7	83.17		149.40	149.00
8		134.33		
9	109.92		355.67	370.30
10		125.16		
11	83.93		62.54	299.11
12	110.00	93.64	60.60	000
13 14	118.80	0 22	63.69	296.30
14 15	15.72	8.22		54.83
16	13.12	14.58		54.63
17	5.74	24.50	10.82	46.47
18		15.69	20.02	40.47
19	15.25		16.19	88.93
20		11.29		
21	13.86		44.45	71.11
22		10.32		
23	222.53		133.15	202.94
24	60.00	21.77		
25 26	60.88	7.04	149.39	215.12
26 27	228.41	7.04	32 04	74.07
28	220.41	28.48	32.84	74.07
29	5.66	20.40	47.78	47.58
30		11.88	47.70	47.30
31	8.25		28.25	25.37
32		8.19		
33	35.03		36.66	58.59
34		10.03		
35	274.71		231.17	397.26
36		42.47		
37	5.90		138.32	448.64
38	207 (1	81.45	0.0	
39 10	207.61	01 65	218.43	210.63
11	4.36	91.65	21 52	
2	4.50	24.44	21.52	
lean	86.78	51.83	117.90	182.40
Std. Dev.	84.68	58.38	96.23	132.91
Ratio to To	n (.38	0.65	1.00

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #1, Sampling Line #2, June 10, 1991

	Deposition Density (mg/m ²)			
Position	Ground	Ground Mid To (Between Poles)		
43	103.49		114.34	134.32
44	700 40	63.48		501 03
45	128.42	77 04	59.69	521.23
46 47	110.85	77.24	198.00	197.96
48	110.85	16.55	198.00	197.90
49	166.63	10.33	119.82	157.01
50	100.05	28.66	117.02	137.01
51	83.17	20.00	131.27	421.26
52		29.41		
53	32.31		119.92	253.12
54		29.98		
55	11.04		45.58	119.40
56		10.22		
57	9.23		17.61	35.03
58		1.36		
59	15.07		3.15	71.68
60		4.27		
61	55.38		129.96	148.67
62		103.48		
63	38.28		135.94	144.15
64		7.05		
65	66.35		303.57	399.56
66		77.93		
67	5.96		25.66	39.10
68		5.43		
69	10.44		55.98	51.99
70	15.06	7.15	40.00	40.00
71	15.26	E2 22	40.33	40.32
72 73	63 80	52.37	71 67	26.00
73 74	63.80	53.60	71.67	26.90
	135.97	33.60	68.02	218.04
75 76	133.77	138.40	00.02	210.04
70 77	19.81	130.40	129.75	294.23
78	17.01	111.06	127.13	274.23
79	124.43	222.00	206.28	322.12
80		29.54	230120	
81 [.]	105.59	2,101	121.93	218.75
82		21.37		
83	6.44		24.38	50.12
84		11.25		
Mean	62.28	41.90	101.09	184.05
Std. Dev.	51.54	39.74	73.20	141.73
Ratio to 1		0.28	0.55	1.00
				2.00

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #2, Sampling Line #1, June 15, 1991

	Depo	sition Densi	cy (mg/m)	
osition	Ground	Ground (Between Pole	Mid es)	Тор
	62.19		29.79	361.27
		25.75	26.04	127.98
	105.15	17 70	26.04	127.70
	1 22 46	17.79	143.72	693.93
	72.46	47.18	145	
	8.70	47.20	9.22	88.53
1	0.70	47.79		
3	128.57		126.02	176.92
10		75.94		
11	34.16		61.96	230.19
L2		90.48		
13	5.27		7.55	228.33
14		4.68		
15	23.65		1.93	2.32
16		12.23		25.92
17	9.28			25.92
18		16.27	4.03	12.22
19	16.09	. 20 60	4.03	14.44
20	27 (7	30.69	55.30	86.60
21	37.67	63.19	33.30	00000
22	41.17	03.13	229.54	125.23
23	41.17	12.88		
24 25	145.29		86.20	136.02
26	210120	99.35		
27	82.00		112.79	197.27
28		18.54		
29	46.04		328.31	278.17
30		30.65		
31	24.85		31.36	100.01
32		22.67		
33	47.64		40.66	53.01
34		76.58	20.07	(7.05
35	57.25	10.00	39.07	67.25
36	26.05	18.03	454.59	129.37
37	36.81	2.27	434.37	123.57
38	66 53	2.21	105.37	43.98
39	66.52	0.69	103.37	45.50
40	8.79	0.03	84.61	
41	0.73	31.23		
Mean	50.45	35.47	98.90	158.23
Std. Dev		29.49	116.81	156.74
Ratio to		0.27	0.63	1.00

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #2, Sampling Line #2, June 15, 1991

Position	Ground	Ground	Mid	Top
rosicion	(Between Poles)			10p
43	43.67			277.72
44		66.59		
45	26.98		101.78	247.02
46		192.57		
47	36.07		61.14	149.43
48		23.74		
49	94.42		150.82	122.14
50		13.74		
51	171.34		211.23	222.65
52		31.48		
53	23.79		183.23	231.58
54		3.04		
55	0.76		4.58	51.47
56		6.23		
57	5.64		32.36	75.15
58		4.89		
59	4.77		71.54	79.68
60		5.99		
61	85.60	45.04	35.94	72.11
62	40.40	47.81	00.00	
63	40.43	0.07	99.90	199.88
64 65	45 10	9.97	102 76	520.26
66	45.18	111 10	102.76	528.26
67	64.74	111.18	202 42	100 01
68	04.74	125.39	203.42	199.81
69	5.36	123.33	157.50	272.81
70	3.30	147.77	157.50	272.01
71	5.33	241.11	124.38	298.24
72	5.55	31.92	224.30	270.24
73	61.54	52.72	158.47	173.66
74	02.01	22.61	200.47	2.10.00
75	117.29		78.35	150.52
76		97.95		200.02
77	80.02		89.41	115.29
78		67.46		
79	74.28		43.64	92.16
80		11.12		
81	32.22		8.54	80.97
32		34.26		
83	28.56		7.78	29.12
84		40.15		
Mean	49.90	52.18	96.34	174.75
Std. Dev.	43.07	53.42	65.04	114.34
Ratio to 1	Cop 0	.29	0.55	1.00

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #3, Sampling Line #1, June 19, 1991

-				
Position	Ground	Ground (Between Po	Mid les)	Тор
1	13.78		21.95	6.70
2		17.00		45.00
3	52.03	10.00	27.92	45.89
4	. 20. 02	10.92	166 71	188.37
5	39.02	122.31	155.71	100.37
6 7	230.83	122.31	26.74	514.68
, B	230.83	194.56	20174	314100
9	52.79	174.50	65.02	271.80
10	32	37.18		
11	20.61		10.60	54.01
12		221.16		
13	60.23		105.51	165.46
14		63.64		
15	40.45		22.83	325.23
16		127.21		
17	171.32		9.72	481.53
18		33.89		
19	22.74		5.54	24.67
20		16.95	00.45	60.20
21	22.10	2 (2	29.45	60.30
22	50.12	3.67	06 50	146.60
23 24	59.12	19.05	86.59	146.60
2 4 25	30.23	19.03	30.50	147.66
26	30.23	214.95	30.30	147.00
27	14.34		119.28	166.31
28		34.14		
29	6.72		29.57	76.46
30		4.57		
31	6.73		92.13	33.07
32		209.37		
33	34.02		11.57	51.90
34		33.39		
35	19.57		22.91	191.87
36	00 11	15.54	22	
37	22.41		33.88	318.23
38		10.66	20.00	140.50
39 40		71.00	28.29	142.52
40 41	76.80	71.90	8.77	266.40
42	70.00	36.18	3.77	200.40
Mean	49.79	71.34	44.98	175.22
Std. Dev.		76.76	42.09	143.84
Ratio to 1	Top	0.35	0.26	1.00

MACHINE COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #3, Sampling Line #2, June 19, 1991

-				
Position	Ground	Ground (Between Pol	Mid .es)	Тор
43	0.74		9.55	12.12
44		4.61		
45	37.28		108.23	109.42
46				
47	2.48		66.56	279.77
48		90.32		
49	157.64		204.36	480.55
50		83.95		
51	179.91		105.08	416.88
52		97.55		
53	102.39		96.53	161.76
54		48.80		
55	69.87		213.56	180.54
56		13.62		
57	117.31		140.52	112.18
58		99.33		
59	40.06		58.74	484.41
60		3.02		
51	22.38		81.88	119.55
52		33.31		
63	19.21		44.75	77.23
64		21.52		
65	100.15		125.12	183.22
66		55.54		
67	26.22		83.78	138.20
68		40.42		
69	58.21		67.47	129.33
70		98.51		
71	15.74		20.78	23.01
72		20.62		
73			4.82	16.52
74		22.44		
75	0.76		18.29	55.01
76		7.65		
77	11.52		20.82	32.49
78		11.22		
79	14.61		21.74	60.90
30		14.54	-	
31	208.00		116.02	251.69
32		185.01		
33	7.51		11.55	25.77
34		5.27		
lean	59.60	47.86	77.15	159.55
Std. Dev.	63.74	47.54	60.58	146.42
Ratio to I	0 00	.34	0.48	1.00

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #1, Sampling Line #1, June 10, 1991

Position 1 2 3 4 5 6 7 8 9 10 11	Ground 173.23 195.90	Ground (Between Po	Mid les) 799.03	. Top
2 3 4 5 6 7 8 9 10		147.14	799.03	265 06
3 4 5 6 7 8 9 10	195.90	147.14		203.00
4 5 6 7 8 9 10	195.90		506 46	700 70
5 6 7 8 9 10			316.46	780.29
5 7 8 9 10		202.47	504 60	910.54
7 8 9 10 11	237.18	204 27	584.60	910.54
8 9 10 11		384.27	560.77	769.81
9 10 11	159.44	226.42	360.77	703.01
10 11	272 72	220.42	1012.57	1098.78
11	372.72	312.32	1012.57	10,000.0
	248.93	312.32	293.47	650.17
	240.73	279.33	2,5511	
13	196.14	2.7.55	406.15	799.74
14	1,00.14	57.37		
15	80.88	• • • • • • • • • • • • • • • • • • • •	311.24	555.95
16	30.00	94.94		
17	48.77		187.81	418.06
18		162.48		
19	115.02		155.74	397.98
20		129.09		
21	132.79		389.14	715.76
22		83.47		
23	228.53		405.83	518.66
24		60.80		
25	139.36		311.44	546.55
26		68.85		
27	83.47		274.47	395.51
28		51.91		
29	103.27		314.91	455.47
30		149.17		
31	224.22		512.29	495.63
32		173.51		410 55
33	194.03		501.56	410.77
34		133.51	000 00	1226 00
35	312.28	330 33	900.82	1236.80
36	0.00	118.73	667.85	1210 25
37	0.00	101.06	007.85	1219.35
38	55 70	101.96	359.13	441.05
39	55.78	175.23	339.13	441.05
40	37.57	113.23	140.56	476.11
41	37.37	92.07	140.30	470.11
	159.02	152.62	447.90	645.66
Std. Dev.		88.12	236.92	278.81
Ratio to T		0.24	0.69	1.00

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #1, Sampling Line #2, June 10, 1991

-					
Position	Ground	Ground Mid Top (Between Poles)			
43	312.92		484.47	534.31	
44		352.56	000 60		
45	135.94	271 00	293.63		
46 47	242 62	271.88	444 74	400 17	
48	242.63	137.97	444.74	490.17	
49	318.50	137.97	482.04	707.71	
50	318.30	147.14	402.04	707.71	
51	280.37	147.14	404.07	843.65	
52	200.57	320.53	404.07	043.03	
53	246.98	220.33	420.85	965.32	
54	2.0.70	100.96	120.05	703.32	
55	26.10	200.70	481.40	457.02	
56		54.78			
57	72.27		493.24	391.25	
58		77.45			
59	134.83		394.94	641.38	
60		71.99			
51	344.24		918.31	598.07	
62		273.63			
63	147.14		502.12	418.73	
54		71.99			
65	57.65		527.34	933.08	
66		153.99			
67	159.44		320.37	424.63	
88		129.09			
59	68.85		893.57	357.10	
70		106.14			
71	152.04		256.42	527.10	
72		212.56			
73	152.04		519.05	431.69	
74		203.95			
75	236.34		383.48	754.19	
76		306.74			
77	69.40		1566.65	1019.82	
78		133.63			
79	213.75		1099.60	980.18	
30		80.60			
31	258.66		391.45	863.49	
32		161.76			
33	54.50		339.41	204.51	
34		68.85			
lean	175.46	163.72	553.20	627.17	
td. Dev.	97.47	92.45	315.01	241.64	
Ratio to T	'op 0	.27	0.88	1.00	

HAND COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #2, Sampling Line #1, June 15, 1991

				Тор		
Position	Ground	Ground Ground Mid (Between Poles)				
1	110.40	0.40	489.88	1021.17		
2 3	223.39	248.17	1055.02	1128.99		
4	223.37	106.70	1033.02	1120.99		
5	161.44	100.70	931.54	1858.34		
6		140.08				
7	83.75		1247.09	595.27		
8		149.69				
9	253.74		1107.23	1013.12		
10		183.78				
11	110.68		388.17	1031.68		
12	20.00	184.79	400 00			
13 14	20.08	14 24	490.26	608.03		
14	102.51	14.34	409.68			
16	102.51	31.83	409.00			
17	28.69	31.03	326.57	123.91		
18		20.08				
19	104.38		1062.04	189.33		
20		116.30				
21	111.40		590.10	406.59		
22		122.59				
23	109.29		734.96	1513.13		
24		75.14				
25 26	127.89	243 20	413.63	1603.56		
20 27	166.30	241.28	600 07	1242 22		
28	100.30	22.95	698.97	1342.23		
29	183.78	22.33	1283.60	1300.70		
30		129.61	2203.00	1300.70		
31	83.15		529:24	633.45		
32		76.70				
33	277.54		324.98	1092.28		
34		193.23				
35	128.17		797.37	795.55		
36	25.34	131.04				
37 30	75.14	12.01	664.24	572.71		
38 39	124.15	17.21	577 04	404.00		
40	124.13	5.74	577.94	404.99		
41	81.43	3.74	772.13	302.95		
42		49.32	,,,,,,,	302.73		
	127.01	107.65	709.27	876.90		
Std. Dev.	65.52	75.53	301.64	491.43		
Ratio to T	cop co).13	0.81	1.00		

HAND COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #2, Sampling Line #2, June 15, 1991

Position	Ground	Ground (Between Po	Тор	
43	362.44		1590.02	2037.66
44		351.52		
45	60.52		1990.44	1695.03
46	,	537.27		
47	202.44		788.61	565.55
48	252.66	123.59	10	
49	357.66	150 60	555.42	1323.44
50 51	457 46	158.69	1014 61	1562.06
52	457.46	116 06	1014.51	1562.86
53	82.15	116.86	714.66	637.35
54	02.13	40.72	714.00	037.33
55	8.61	40.72	815.19	361.00
56 .	0.01	67.09	013.17	301.00
57	70.24	0,.05	841.01	477.69
58		32.11	012102	477.00
59	23.23		1630.31	492.95
50		31.83		
51	498.13		1569.39	434.10
52		348.21		
53	195.26		478.57	1402.12
54		75.42		
65	95.94		868.50	2832.03
66		195.54		
67	92.63	•	518.42	925.30
58		354.66		
69	66.54		731.81	1014.63
70		316.83		
71	25.82		499.77	709.10
72		188.13		
73	235.14		381.72	606.94
74	541 22	248.37	1100 10	
75	541.32	105 20	1100.62	593.55
76	242 10	195.70	453.00	540 66
77	243.10	124.46	453.99	548.66
78 70	231 40	124.46	212 24	200 77
79 30	331.49	135 66	312.24	298.77
30	164.35	135.66	245.50	259.48
32	104.33	112.71	243.50	237.40
33	245.59	112.11	740.30	369.32
34	£43.37	244.63	740.50	307.32
(0.00	207 62	100 40	940 53	011 70
Std. Dev.	207.62 163.40	190.48 131.49	849.57 479.70	911.79 669.56
		.21	0.93	1.00
Ratio to 1	top 0.	. 21	0.93	1.00

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #3, Sampling Line #1, June 19, 1991

- Position	Ground	Ground Mid	Top
rosicion	Ground	(Between Poles)	
1	328.33		1253.91
2		430.12	607.11
3	585.39	502.00	603.11
4		583.88	562 60
5	736.62	000 50	562.60
6	666.78	888.58	1258.13
7	666.76	430.17	1230.13
8 9	398.01	430.17	972.52
10	370.01	318.89	3,2.52
11	443.63	320.03	357.66
12	,,,,,,,	567.47	
13	313.87		677.66
14		601.88	
15	235442		1235.58
16		426.67	
17	437.49		812.75
18		247.06	
19	570.84		545.46
20		488.33	
21	462.23		507.65
22		327.22	
23	449.72		478.85
24		344.62	
25	475.06		1587.53
26		507.18	
27	382.19		701.01
28		336.73	
29	442.62	454.40	4784.38
30	245 50	474.18	
31	245.70	200 72	513.47
32	472 70	280.72	206 24
33	473.79	272.04	296.34
34 35	511.16	212.04	591.20
35 36	511.16	255.78	231.50
36 37	172.75	233.70	871.60
38	112.13	142.12	8/1.60
39	589.13	A 76 • A 6	275.82
40	507.13	332.87	273.02
41	438.97		414.60
42		381.43	.21.50
Mean	445.70	411.33	919.14
Std. Dev.		162.95	954.19
Ratio to 1		0.47	1.00

HAND COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #3, Sampling Line #2, June 19, 1991

Position	Ground	Ground Mid	Top
		(Between Poles)	
43	374.04		97.53
44		1043.75	
45	533.39		905.39
46		1132.84	
47	1026.45		1172.65
48		923.11	
49	1028.13	360 41	792.17
50	702 71	769.41	740.06
51 52	782.71	570 57	748.06
52 53	494.54	579.57	736 67
5 <i>3</i>	474.54	479.80	736.67
55	253.07		805.71
56	255.07	365.53	603.71
57	572.82	303.33	501.92
58	372.02	543.03	301.72
59	401.63		336.10
60		239.21	000120
61	583.46		3448.04
62		324.63	
63	389.32		1510.35
64		521.00	
65	661.67		678.04
66		408.37	
67	372.47		354.47
68		488.29	
69	391.35		1257.22
70		603.95	
71	247.17		1384.04
72		439.28	
73	642.51		112.43
74		573.94	
75	366.54		682.19
76		240.04	
77	147.14		228.09
78		155.74	
79	182.95		595.71
80		175.06	
81	614.62		468.61
32		189.09	
B3	310.61		130.92
34		462.20	
lean	494.12	507.52	806.97
Std. Dev.	242.67	273.01	729.60
Ratio to 1	Top (0.62	1.00

HAND COUNTED CARD SAMPLES

Gypsy Moth, Mountain Dell Block, Canopy Penetration,

Application #1, Sampling Line #1, June 10, 1991

		Deposition Density	(drops/m²)	
osition	Ground	Ground (Between Poles)	Mid	Тор
	30000		88750	44375
		26250	46250	110000
	36875	32500	40230	
	38125		82500	137500
		51875	26250	104375
	23125	34375	76250	104373
	66250	24272	135625	162500
.0	00230	50625		
.1	38750		28750	108750
2	22500	40625	35000	93125
.3 .4	22500	12500		
15	13750		28750	88750
16		18750	10750	80000
17	10625	26250	18750	00000
18 19	23125	20230	28125	75625
20		28125		
21	23125	1.050	46250	129379
22	23750	16250	66250	80625
23 24	23730	9375		
25	18750		43750	63129
26		15000	46250	68750
27	16250	9375	46250	00750
28 29	22500	<i>3313</i>	53125	83750
30		32500		
31	25625	20125	58125	9250
32	33125	28125	72500	8562
33 34	22123	21875		
35	38125		101250	19750
36		18125	20375	16625
37 38	0	15000	89375	10025
39	6875		38125	5562
40		23750		
41	6250	10105	30625	8437
42		18125		
Mean	24643	25208	57827	10059
Std. Dev	. 14566	12065	29577	3871
Ratio to	Top	0.25	0.57	1.0

HAND COUNTED CARD SAMPLES
Gypsy Moth, Mountain Dell Block, Canopy Penetration,
Application #1, Sampling Line #2, June 10, 1991

Doniti-	Cround Vid To				
Position	Ground	Ground (Between Poles)	Mid	Top	
43	53750		58750	91250	
44		36875			
45	21875		36875		
46	41250	43750	56250	0027	
47 48	41250	20125	56250	89375	
49	52500	28125	64375	122250	
50	32300	26250	04375	123750	
51	50000	20230	58125	103750	
52	30000	58750	30123	103730	
53	51875	30730	61250	147500	
54	510.5	18125	01230	147500	
55	3750		43125	76875	
56		10000			
57	11875		63125	77500	
58		16875			
59	29375		36250	128125	
60		13750			
61	75000		145000	120625	
62		51875			
63	26250		68750	71875	
64		13750			
65	10625		65625	112500	
66		20000			
67	23125		56250	75625	
68		28125			
69	15000		65000	68125	
70		23125			
71	33125		48125	80000	
72		44375			
73	33125	40000	74375	84375	
74	42250	42500	2000		
75 76	43750	51055	70000	106250	
76	11250	51875	12000		
77	11250	17500	130000	159375	
78 70	20000	17500	04275	124255	
79	20000	15625	84375	134375	
80 81	27500	15625	50625	122500	
81 82	27500	27500	50625	122500	
8 <i>2</i> 83	11875	27300	51250	38750	
84	11012	15000	31230	30730	
Kean	30804	28750	66071	100625	
Std. Dev.	18476	14755	26587	- 30331	
Ratio to T	'OD	0.30	0.66	1.00	

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #2, Sampling Line #1, June 15, 1991

		Deposition Density	(drops/m /	
- osition	Ground	Ground (Between Poles)	Mid	Тор
	14375		55000	101250
		27500	26250	149375
	31250	10775	76250	14,5,0
		19375	71875	174375
	16875	17500		
	14375		63125	66875
	243.5	16250		
	26250		78125	95625
0		18750		77500
1	12500		25625	77500
2		10000	25000	20625
.3	4375	2125	25000	20023
.4		3125	33125	
.5	11250	5000		
.6	6250	3000	34375	2312
.7 .8	0250	4375		
.9	15000		72500	4125
20		18125		
21	11250		50625	7750
22		15625	00005	16937
23	21875		90625	10957
24		12500	50000	18062
25	16250	21250	30000	
26	11250	21230	53750	12562
2 7 28	11250	5000		
29	18750		106875	9875
30		11875		
31	5625		- 45625	7062
32		5625		0750
33	20000		28750	9750
34		15000	52500	6875
35	14375	15000	52500	0073
36	12500	15000	71875	5562
37	12500	3750		
38 39	8750		67500	3562
40	0.20	1250		
41	10000		54375	3750
42		6875		
Mean	14435	12083	57500	8837
Std. Dev		7184	21690	4968
Ratio to		0.15	0.65	1.0

HAND COUNTED CARD SAMPLES Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #2, Sampling Line #2, June 15, 1991

		Deposition Density	(drops/m ²)	
Position	Ground	Ground (Between Poles)	Mid	Тор
43	39375		163125	228750
44	11250	33125	122126	153750
46	11250	27500	133125	153750
47	20000	2,7300	55625	45625
48		12500		
49	64375		68750	152500
50		11875		
51	41250	14225	86250	164375
52 53	8750	14375	41875	44375
54	8730	5000	410/5	44373
55	1875	· ·	40000	41875
56		6875		
57	5625		40000	53750
58		3125		
59	3125		98125	70625
60 61	33750	5000	124375	48125
62	33750	31875	124375	46125
63	21250	310,0	55000	157500
64		10625		
65	15625		88750	283750
66		19375		
67	14375		53125	110625
68	10625	31875	50000	
69 70	10625	21875	50000	118125
71	5625	21073	51875	72500
72		29375	320.3	.2500
73	31875		45625	84375
74		42500		
75	51250		90000	71250
76 77	10106	21875	21055	26260
77 78	18125	19375	31875	36250
79	35625	19373	25625	29375
80		23750	23023	2,3,3
81	30000		41875	27500
82		18750		
83	19375		56250	45625
84		35000		•
Mean	23006	20268	68631	97173
Std. Dev.		11181	36342	69973
Ratio to 1	qoʻ	0.22	0.71	1.00

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #3, Sampling Line #1, June 19, 1991

		Deposition Density (drops/	
Position	Ground,	Ground Mid (Between Poles)	Top
1	42500		67500
2		55000	57500
3	64375	02750	57500
4	05000	83750	67500
5	85000	93125	
6 7	67500	73120	130000
8	0,200	61875	
9	51875		106250
10		46250	
11	63750		64375
12		56250	(105)
13	43750		61250
14		75000	96875
15	30000	40000	30075
16	22500	40000	52500
17	32500	35000	
18 19	51875	33000	46875
20	31073	61875	
21	41875		55000
22		50000	
23	46250		53125
24		32500	
25	38750	•	116250
26		36250	F 4 3 7 5
27	22500		54375
28	20605	29375	287500
29	30625	37500	207500
30 31	20625	37300	39375
32	20023	31250	
33	31250		29375
34	=	13750	
35	38750		54379
36		32500	
37	16875		75000
38		23750	
39	35625	21022	2437
40	26252	31875	2025
41	26250	27500	28750
42		27300	
Mean	42024	45446	7467:
Std. Dev.		20550	56189
Ratio to		0.59	1.0

Gypsy Moth, Mountain Dell Block, Canopy Penetration, Application #3, Sampling Line #2, June 19, 1991

Position	Ground	Ground Mid	Тор
1031010	Ground	(Between Poles)	10p
43	73750		21250
44	77500	114375	10212
45 46	77500	110625	10312
47	91250	110023	12187
48	7200	96250	2220
49	90625		100629
50		74375	
51	73750		111250
52		43750	
53	40000		128129
54		43125	
55	34375		121879
56	<u>#</u> _	31250	
57	51250		48129
58	0.7500	52500	
59	27500	44225	50000
60	50275	44375	22000
61 62	59375	47500	220000
63	30625	47300	139375
64	30023	61250	139375
65	51250	01230	60625
66		61875	00023
67	44375		53125
68		49375	
69	36875		152500
70		51875	
71	30625		92500
72		53125	
73	44375		20625
74		43750	
75	64375		56250
76		38750	
77	26250		23125
78		28125	
79	24375	01050	67500
80	26250	21250	22100
81	36250	13750	33125
82 83	16875	13750	10275
84	100/5	16875	19375
		10075	
Kean	48839	52292	83065
Std. Dev.	22192	27466	52877
Ratio to T	°op	0.61	1.00

APPENDIX D

TECHNIQUE FOR OBTAINING LAI-2000 MEASUREMENTS FOR USE AS INPUT TO THE FSCBG AERIAL SPRAY MODEL

Compress

POR ON THE PROPERTY WORLD AND A STATE OF THE STATE OF THE

TECHNIQUE FOR OBTAINING LAI-2000 MEASUREMENTS FOR USE AS INPUT TO THE FSCBG AERIAL SPRAY MODEL

The LAI-2000 plant canopy analyzer is a photometric instrument for making non-destructive measurements of Leaf Area Index (LAI) within vegetative canopies made by LI-COR, 4421 Superior St., P.O. Box 4425, Lincoln, Nebraska 68504. The canopy penetration module of FSCBG Version 4.0 aerial spray model has recently been revised by Continuum Dynamics, Incorporated to accept output from the LAI-2000 plant canopy analyzer, thus avoiding the subjective estimates of forest parameters such as tree stand density, typical tree size envelope and probability of penetration previously required as inputs.

The instrument consists of five silicon light detectors configured as a series of concentric rings which view through a fisheye lens. This results in a light response over a range of five different zenith angles when the instrument is in a leveled position. The light is filtered to make vegetation appear 'black' to the detector, resulting in a measurement of light that is proportional to the fraction of the ring illuminated by sky. If simultaneous measurements are taken with two instruments, one under the canopy and one above the canopy or in an adjacent clearing, the radiation intercepted by the canopy is computed by dividing above-canopy by below-canopy values. These ratios for each concentric ring are used by FSCBG to determine the number of droplets from an aerial spray which penetrate the canopy. FSCBG does not use Leaf Area Index which is computed by the on-board data reduction software of the LAI-2070 control unit. Details of use for the LAI-2000 under various field conditions are covered extensively in LI-COR literature, as is use of the LAI-2070 control unit and will not be repeated here.

The general procedure is to use two instruments simultaneously with one located in a clearing on a tripod for taking above-canopy measurements, while the other instrument is used to take measurements along a transect under the canopy. If only one instrument is available, above-canopy readings must be taken in the clearing before and after the transect in the canopy to obtain average sky readings.

1.5

the transmission of the tr

TO COLUMN TO THE COLUMN TO THE

tenero o a illa compressioni I di manuteni nalio adi com

APPENDIX E
TATISTICAL COMPARISON OF THREE SIZES OF DEPOSITION CARDS AS DROPLET COLLECTORS

E-1

ACUTE OF THE STOR DEPICE PROPERTIES SE L'ELITTÈRA.

ANOVA ON CARD SIZE

A two-way factorial analysis of variance was performed. The response variable was deposition density (mg/ sq m), and the main effects were application (trial #) and size of card. The two-way interaction was also tested. The two main effects and the interaction term were all found to be significant, indicating that the means of deposition density were significantly different. In regard to soze of card, the small cards collected a significantly higher deposition density than the medium and large cards. The interaction term reproduced the pattern of differences between sizes only for the second trial application.

Although these results indicate that small cards may collect significantly higher deposition density than medium or large cards, several points indicate a need for caution. First, no reasonable explanation for the higher collection of mass for smaller cards presents itself. Second, the interaction term indicates no stable pattern for collection by card size across applications. Third, the different sizes of cards were laid out in a systematic way over the test collection surface, rather than being randomized. It might be useful to repeat the test with the layout of card size randomized to confirm the different collection behavior of the small cards.

Analysis of Variance for mg/m^2

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
MAIN EFFECTS applicatio size	15901658 15436283 565808	4 2 2	3975414.5 7718141.6 282904.0	172.866 335.615 12.302	.0000
2-FACTOR INTERACTIONS applicatiosize	683606.67 683606.67	4	170901.67 170901.67	7.431 7.431	.0000
RESIDUAL	4714391.2	205	22997.030		
TOTAL (CORR.)	21299656	213	~~~~~		~~~~~

² missing values have been excluded.

Table of means for mg/m²

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent for	Confidence mean		
applicatio								
1	72	261.60528	12.252406	17.871855	226.36125	296.84931		
2	70	732.77729	31.670434	18.125369	697.03331	768.52126		
3	72	98.81750	8.295875	17.871855	63.57347	134.06153		
size		•						
1	70	425.44386	47.239358	18.125369	389.69988	461.18783		
2	72	314.52347	32.021369	17.871855	279.27944	349.76750		
3	72	344.69569	30.687797	17.871855	309.45166	379.93973		
applicatio by size								
1 1	24	311.79125	24.328153	30.954961	250.74680	372.83570		
1 2	24	198.05083	9.992531	30.954961	137.00638	259.09529		
1 3	24	274.97375	20.140843	30.954961	213.92930	336.01820		
2 1	22	916.26636	66.786638	32.331402	852.50751	980.02522		
2 2	24	650.95625	39.283281	30.954961	589.91180	712.00070		
Total	214	360.95724	10.366425	10.366425	340.51423	381.40026		

Table of means for mg/m^2

Level		Count	Average	Stnd. Error Stnd. Error (internal) (pooled s)	95 Percent Confidence for mean		
2 3 3 3	3 1 2 3	24 24 24 24 24	646.40000 89.17583 94.56333 112.71333	39.277145 11.033627 15.433497 16.253908	30.954961 30.954961 30.954961 30.954961	585.35555 28.13138 33.51888 51.66888	707.44445 150.22029 155.60779 173.75779
Tota	al	214	360.95724	10.366425	10.366425	340.51423	381.40026

level of applicatio by size

APPLICATION 2

10

APPLICATION 3

APPLICATION 1

One-Way Analysis of Variance

Data: ALL APPLICATIONS POOLED

Level codes: size

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	465375 20834281	2 211	232687.51 98740.67	2.357	.0972
Total (corrected)	21299656	213			

0 missing value(s) have been excluded.

Table of means for mgm2 by size

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1 2 3	70 72 72	425.44386 314.52347 344.69569	47.239358 32.021369 30.687797	37.557702 37.032394 37.032394	351.39103 241.50640 271.67863	499.49668 387.54054 417.71276
Total	214	360.95724	21.480340	21.480340	318.60428	403.31020

level of size

One-Way Analysis of Variance

Data: mgm2 SELECT applicatio = 1

Level codes: size

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	161676.37 605744.52	2 69	80838.183 8778.906	9.208	.0003
Total (corrected)	767420.89	71			

142 missing value(s) have been excluded.

Table of means for mgm2 SELECT applicatio = 1 by size

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2 3	24 24 24	311.79125 198.05083 274.97375	24.328153 9.992531 20.140843	19.125579 19.125579 19.125579	273.62814 159.88772 236.81064	349.95436 236.21394 313.13686
Total	72	261.60528	11.042158	11.042158	239.57180	283.63876

level of size

One-Way Analysis of Variance

Data: mgm2 SELECT applicatio = 2

Level codes: size

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	1080438.5 3764130.6	2 67	540219.27 56181.05	9.616	.0002
Total (corrected)	4844569.2	69			

144 missing value(s) have been excluded.

Table of means for mgm2 SELECT applicatio = 2 by size

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1. 2. 3.	22 24 24	916.26636 650.95625 646.40000	66.786638 39.283281 39.277145	50.533991 48.382613 48.382613	815.37727 554.36230 549.80605	1017.1555 747.5502 742.9940
Total	70	732.77729	28.329957	28.329957	676.21766	789.3369

level of mize

One-Way Analysis of Variance

Data: mgm2 SELECT applicatio = 3

Level codes: size

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	7299.69 344516.05	2 69	3649.8463 4992.9862	.731	.4851
Total (corrected)	351815.74	71			

142 missing value(s) have been excluded.

Table of means for mgm2 SELECT applicatio = 3 by size

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1. 2. 3.	24 24 24	89.17583 94.56333 112.71333	11.033627 15.433497 16.253908	14.423630 14.423630 14.423630	60.394974 65.782474 83.932474	117.95669 123.34419 141.49419
Total	72	98.81750	8.327486	8.327486	82.200863	115.43414

level of mize

Trial	ID	ммр	mg/m ²
1	AL1	271.27	226.14
1	AL2	238.63	162.20
1	AL3	276.16	416.79
1	AH1	256.90	218.41
1	AM2	228.96	115.35
1	AM3	249.21	316.29
1	AS1	249.26	468.15
1	AS2	317.69	545.17
1	AS3	268.00	160.60
1	BL1	234.37	282.08
1	BL2	200.82	217.98
1	BL3	262.25	279.71
1	BM1	214.81	95.49
1	BM2	220.84	229.62
1	виз	215.47	243.10
1	BS1	263.56	321.27
1	BS2	247.53	492.87
1	BS3	244.58	268.03
1	CL1	218.62	237.49
1	CL2	205.51 272.14	287.20 277.03
1	CL3		151.42
1	CH1	239.04 221.75	187.53
1	CM2	212.82	217.56
1	CM3 CS1	262.57	353.14
1	CS2	251.29	451.10
1	CS3	255.87	219.84
ī	DL1	346.77	399.07
ī	DL2	211.95	158.70
ī	DL3	245.97	440.48
1	DH1	209.02	168.83
1	DM2	204.80	208.51
1	DM3	205.02	172.77
1	DS1	312.15	318.27
1	DS2	298.99	274.37
1	DS3	253.28	256.36
1	EL1	215.66	242.48
1	EL2	274.73	165.84
1	EL3	208.43	487.69
1	EM1	225.93	155.51
1	EM2	208.26	182.15
1	EM3	273.77	175.08
1	ES1	241.08	229.92
1	ES2	246.15	238.25
1	ES3	249.05	308.52
1	FL1	208.41	276.59
1	FL2	221.45	133.48
1	FL3	202.40	428.66
1	FM1	225.41 217.64	171.33 172.78
1	FM2	217.64	182.85
1	FM3	213.04	102.05

Trial	ID	ммр	mg/m ²
1	FS1	307.60	388.06
1	FS2	295.66	240.85
1	FS3	316.52	134.35
1	GL1	212.47	245.78
1	GL2	212.30	172.24
1	GL3	257.36	307.60
1	GM1	205.83	201.87
1	GM2	305.71	213.09
1	GM3	229.85	231.81
1	GS1	313.25	529.61
1	GS2	311.23	245.76
1	GS3	245.20	316.80
1	HL1	276.41	325.64
1	HL2	211.79	254.53
1	HL3	219.64	173.97
1	HM1	275.53	280.51
1	HM2	232.25	258.85
1	HM3	274.23	202.51
1	HS1	313.43	268.05
1	HS2	241.81	356.08
1	HS3	201.30	97.57
2	AL1	309.43	573.97
2	AL2 AL3	299.58 346.23	470.70 427.49
2	AL3	215.73	278.26
2	AM1	303.05	532.00
2	AM2	298.15	486.47
2	AM3	277.25	322.23
2	AM4	288.55	402.37
2	AS1	347.75	1225.95
2	AS2	392.51	831.67
2	AS3	293.39	907.70
2	AS4	294.76	437.05
2	BL1	306.61	561.41
2	BL2	317.19	479.26
2	BL3	256.22	365.51
2	BL4	278.58	438.04
2 .	BM1	305.76	559.33
2	BM2	255.74	432.64
2	виз	282.75	585.08
2	BM4	302.60	346.02
2	BS1	386.70	1119.41
2	BS2	302.56	1017.63
2	BS3	243.10	1001.62
2	BS4	268.29	367.04
2	CL1	338.63	761.22
2	CL2	348.59	592.89
2	CL3	317.26	553.11
2	CL4	284.18	767.58

Trial	ID	мнр	mg/m ²
2	CH1	316.79	487.46
2	CM2	307.44	615.58
2	CM3	332.89	771.02
2	CM4	359.71	848.06
2	CS1	299.65	865.94
2	CS2	353.91	968.61
2	CS3	345.63	454.79
2	CS4	356.20	690.22
2	DL1	246.93	633.27
2	DL2	315.89	631.87
2	DL3	303.25	805.03
2	DL4	355.44	1061.83
2	DH1	297.92	652.91
2	DM2	293.32	685.57
2	DM3	257.31	585.44
2	DM4	305.59	976.23
2	DS1 DS2	285.01	1560.86
2	DS3	299.81	668.25
2	DS4	309.07	884.95
2	EL1	244.03	578.45
2	EL2	311.92	656.18
2	EL3	354.43	925.46
2	EL4	304.53	853.06
2	EM1	356.64	955.99
2	EM2	259.20	656.44
2	EM3	317.41	658.51
2	EM4	285.87	1005.30
2	ES1	308.87	1075.13
2	ES2	***	
2	ES3	281.80	882.12
2	ES4 FL1	305.62	665.46
2	FL2	310.91	842.91
2	FL3	308.10	910.57
2	FL4	311.89	642.12
2	FM1	240.87 244.96	703.41
2	FM2	251.61	715.83
2	FM3	256.42	876.33
2	FM4	315.02	671.17
2	FS1	357.47	794.97
2	FS2	340.79	1333.94 1459.04
2	FS3	307.93	700.61
2	FS4	335.44	1039.87
3	AL1	198.90	5.55
3	AL2	165.93	33.72
3	AL3	257.94	205.18
3	AL4	225.23	82.79
3	AM1	272.81	40.37
3	AM2	194.17	9.75
3	AM3	545.97	99.45

Trial	ID	MMD	mg/m ²
3	AM4	203.95	69.71
3	AS1	271.63	39.86
3	AS2	516.38	110.62
3	AS3	298.47	88.70
3	AS4	634.23	198.40
3	BL1	179.02	87.25
3	BL2	549.62	113.46
3	BL3	162.45	10.75
3	BL4	185.84	14.74
3	BM1	509.11	177.02
3	BM2	169.98	13.24
3	вмз	161.38	37.49
3	BM4	434.25	61.75
3	BS1	582.29	105.79
3	BS2	192.92	4.70
3	BS3	447.86	140.23
3	BS4	223.82	6.19
3	CL1	558.46	147.32
3	CL2	239.98	10.39
3	CL3	466.13	123.75
3	CL4	464.15	114.37
3	CM1	273.29	14.26
3	CM2	225.80	43.96
3	CM3	495.73	237.62
3	CM4	260.00	8.57
3	CS1	218.05	31.21
3	CS2	233.89	34.76
3	CS3 CS4	470.92 502.95	73.21
3	DL1	510.13	139.57 183.24
3	DL1	545.18	96.42
3	DL3	675.23	246.29
3	DL4	455.72	227.66
3	DM1	184.72	7.05
3	DM2	468.15	66.67
3	DM3	505.26	76.82
3	DM4	434.09	122.90
3	DS1	421.14	114.36
3	DS2	470.77	72.87
3	DS3	554.45	131.94
3	DS4	438.28	69.00
3	EL1	468.77	68.14
3	EL2	162.99	32.89
3	EL3	508.28	85.98
3	EL4	504.58	224.25
3	EM1	438.73	69.82
3	EM2	485.19	168.97
3	EM3	378.85	119.90
3	EM4	369.25	214.16

Trial	ID	ММД	mg/m ²
3	ES1	437.59	67.77
3	ES2	542.28	170.66
3	ES3	441.91	126.14
3	ES4	460.21	47.86
3	FL1	437.34	67.31
3	FL2	471.40	195.98
3	FL3	209.44	248.09
3	FL4	506.18	79.60
3	FM1	476.80	87.13
3	FM2	517.65	228.93
3	FM3	469.87	223.93
3	FM4	503.04	70.05
3	FS1	168.24	12.75
3	FS2	550.70	117.56
3	FS3	395.41	166.71
3	FS4	385.97	69.36

Figure E-1. Sampling array for testing collection efficiency of different size cards.

APPENDIX F

STATISTICAL COMPARISONS OF 1991 CANOPY PENETRATION HAND AND MACHINE COUNTED CARD SAMPLES

9 MITE FIRE

AFI A STICHE (UPLANICONS OF 1291 DESIGN FEMIRE LASTENIA JOHN SON MOREME OF THE CARD SAMPLES

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT ABOVE-CANOPY LEVEL

One-Way Analysis of Variance

Data: high

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	25021 46827236	1 122	25020.69 383829.80	.065	.8016
Total (corrected)	46852257	123			

² missing value(s) have been excluded.

Table of means for high by line

Level	Count	Average		Stnd. Error (pooled s)	95 Percent intervals	
1 2	62 62	812.88145 784.47161	81.723985 75.516865	78.681658 78.681658	657.08846 628.67862	968.67444 940.26460
Total	124	798.67653	55.636334	55.636334	688.51425	908.83881

96 Percent Confidence

level of line

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT MID-CANOPY LEVEL

One-Way Analysis of Variance

Data: mid

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	316685 11168912	1 82	316685,24 136206.25	2.325	.1312
Total (corrected)	11485598	83			

42 missing value(s) have been excluded.

Table of means for mid by line

Level	Count	Average		Stnd. Error (pooled s)	95 Percent intervals	
1 2	42 42	578.58286 701.38452	46.100235 66.036203	56.947396 56.947396	465.27085 588.07251	691.89487 814.69653
Total	84	639.98369	40.267890	40.267890	559.86000	720.10738

96 Percent Confidence

level of line

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT GROUND LEVEL

One-Way Analysis of Variance

Data: ground

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	74058.5 5142832.1	1 124	74058.535 41474.453	1.786	.1839
Total (corrected)	5216890.6	125			

O missing value(s) have been excluded.

Table of means for ground by line

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent Confidence intervals for mean
1 2	63 63	243.91286 292.40063	22.334309 28.597691	25.657838 25.657838	193.11747 294.70825 241.60525 343.19602
Total	126	268.15675	18.142831	18.142831	232.23898 304.07451

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT GROUND LEVEL

96 Percent Confidence

level of line

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT ABOVE-CANOPY LEVEL

One-Way Analysis of Variance

Data: high

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups	1629121	2	814560.36	2.179	.1175
Within groups	45223136	121	373744.93		
Total (corrected)	46852257	123			

2 missing value(s) have been excluded.

Table of means for high by trial

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2 3	41 41 42	636.64000 894.76854 863.05095	40.33073 90.95448 129.74626	95.476332 95.476332 94.332861	447.57719 705.70573 676.25245	825.7028 1083.8313 1049.8495
Total	124	798.67653	54.90056	54.900565	689.96210	907.3910

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT ABOVE-CANOPY LEVEL

95 Percent Confidence

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT MID-CANOPY LEVEL

One-Way Analysis of Variance

Data: mid

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	1633168.7 9852428.9	1 82	1633168.7 120151.6	13.593	.0004
Total (corrected)	11485598	83			

42 missing value(s) have been excluded.

Table of means for mid by trial

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2	42 42	500.54738 779.42000	43.267458 62.043778	53.485995 53.485995	394.12275 672.99537	606.97201 885.84463
Total	84	639.98369	37.820310	37.820310	564.73011	715.23727

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT MID-CANOPY LEVEL

95 Percent Confidence

level of trial

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT GROUND LEVEL

One-Way Analysis of Variance

Data: ground

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	2564418.2 2652472.5	2 123	1282209.1 21564.8	59.458	.0000
Total (corrected)	5216890.6	125			

0 missing value(s) have been excluded.

Table of means for ground by trial

7 3			Stnd. Error	Stnd. Error	95 Percent	
Level	Count	Average	(internal)	(pooled s)	intervals	for mean
1	42	167.24048	14.662999	22.659392	122.37758	212.10337
2	42	167.31810	19.989660	22.659392	122.45520	212.18099
3	42	469.91167	30.426206	22.659392	425.04877	514.77456
Total	126	268.15675	13.082406	13.082406	242.25514	294.05835

HAND COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT GROUND LEVEL

96 Percent Confidence

level of trial

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT ABOVE-CANOPY LEVEL

One-Way Analysis of Variance

Data: high

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

	Sum of Squares		•		Sig. level
Between groups Within groups		1 122		.001	.9754
Total (corrected)	2320828.8	123			

2 missing value(s) have been excluded.

Table of means for high by line

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2	61 63	172.00361 172.78063	18.275213 16.769504	17.659360 17.376792	137.03733 138.37386	206.96988
Total	124	172.39839	12.385942	12.385942	147.87370	196.92307

96 Percent Confidence

level of line

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT MID-CANOPY LEVEL

One-Way Analysis of Variance

Data: mid

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	732.35 797252.83	1 121	732.3531 6588.8664	.111	.7430
Total (corrected)	797985.19	122			

³ missing value(s) have been excluded.

Table of means for mid by line

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2	61 62	86.567541 91.447903	12.029135 8.412464	10.392988 10.308833	65.987283 71.034290	107.14780 111.86152
Total	123	89.027561	7.319018	7.319018	74.534398	103.52072

96 Percent Confidence

level of line

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT GROUND LEVEL

One-Way Analysis of Variance

Data: ground

Level codes: line

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	877.91 421364.14	1 122	877.9065 3453.8044	.254	.6204
Total (corrected)	422242.05	123			

² missing value(s) have been excluded.

Table of means for ground by line

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2	62 62	62.545806 57.224194	8.1654954 6.6886270	7.4636803 7.4636803	47.767406 42.445793	77.324207 72.002594
Total	124	59.885000	5.2776189	5.2776189	49.435093	70.334907

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN SAMPLING LINES AT GROUND LEVEL

96 Percent Confidence

level of line

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT ABOVE-CANOPY LEVEL

One-Way Analysis of Variance

Data: high

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	7215.0 2313613.8	2 121	3607.509 19120.775	.189	.8283
Total (corrected)	2320828.8	123			

² missing value(s) have been excluded.

Table of means for high by trial

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	
1 2 3	41 41 42	183.24390 166.68756 167.38595	21.204362 21.113546 22.153864	21.595378 21.595378 21.336742	140.48060 123.92426 125.13481	226.00720 209.45086 209.63710
Total	124	172.39839	12.417721	12.417721	147.80874	196.98803

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT ABOVE-CANOPY LEVEL

96 Percent Confidence

level of trial

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT MID-CANOPY LEVEL

One-Way Analysis of Variance

Data: mid

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	52634.16 745351.03	2 120	26317.078 6211.259	4.237	.0167
Total (corrected)	797985.19	122	-		

³ missing value(s) have been excluded.

Table of means for mid by trial

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1 2	41 40	109.29098	13.205524	12.308294	84.915965 72.942932	133.66599
3	42	61.06262	8.337117	12.160884	36.979535	85.14570
Total	123	89.02756	7.106197	7.106197	74.954642	103.10048

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT MID-CANOPY LEVEL

96 Percent Confidence

level of trial

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT GROUND LEVEL

One-Way Analysis of Variance

Data: ground

Level codes: trial

Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	14044.59 408197.45	2 121	7022.2956 3373.5327	2.082	.1292
Total (corrected)	422242.05	123			

² missing value(s) have been excluded.

Table of means for ground by trial

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1 2 3	42 42 40	74.532619 50.179524 54.695750	10.853078 6.266104 9.396930	8.9622657 8.9622657 9.1835896	56.785487 32.432391 36.510351	92.279752 67.926656 72.881149
Total	124	59.885000	5.215928	5.2159284	49.556387	70.213613

MACHINE COUNTED CARD SAMPLES TEST FOR DIFFERENCE BETWEEN TRIALS AT GROUND LEVEL

96 Percent Confidence

level of trial

APPENDIX G

REFERENCES

REFERENCES

- 1. Bjorklund, J. R., Bowman, C. R., and Dodd, G. C., 1988: User Manual for the FSCBG Aircraft Spray and Dispersion Model, Version 2.0. DPG Document No. DPG/TA-88/015, U.S. Army Dugway Proving Ground, Dugway, UT 84022.
- 2. Teske, M. E. and Curbishley, T. B., 1990: Forest Service Aerial Spray Computer Model FSCBG, Version 4.0. Forest Pest Management report No. 90-06, USDA Forest Service, Forest Pest Management, 2121C Second Street, Suite 102, Davis, CA 95616.

2324201

E. 1948, Usin Mar on the POCHE A. 1937 for the English A. 1937 for the English Colonial Colon

