position of the peak and deserve further scrutiny. A detailed comparison of this model to our data will be presented in a subsequent paper. In any case, we believe that for a proper prediction of $\chi_3(\omega, T)$ close to T_g , a theory of supercooled liquids able to account for dynamical correlations is required.

To conclude, we have provided the first direct experimental evidence that a supercooled liquid responds in an increasingly non-linear way approaching the glass transition. By measuring the frequency dependent third harmonics response $\chi_3(\omega, T)$ to a periodic electric field, which is tightly related to the dynamical correlation length, we showed that the number of correlated molecules increases as T decreases towards T_g , confirmed the validity of previous estimates, and found that χ_3 scales as a function of $\omega \tau$. This opens a new path for probing the spatial correlations in both fragile and strong supercooled liquids and in the aging regime of glasses and spin-glasses, by systematic studies of non-linear responses. Future investigations along these lines might help to unveil the possible critical nature of the glass transition.

Acknowledgements

We thank R. Tourbot for realizing the experimental cell, P. Pari for cryogenics, S. Nakamae for her careful reading of the manuscript. We acknowledge interesting discussions with C. Alba-Simionesco, A. Lefèvre, R. Richert, M. Tarzia, and support by ANR grant DynHet.

- [7] G. Biroli, et al., J. Chem. Phys. **126**, 184503 (2007).
- [8] C. Dalle-Ferrier *et al.*, Phys. Rev. E **76**, 041510 (2007).
- [9] See the discussion on this prefactor (called χ_0) following Eq. (18) in Ref. [7].
- [10] K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986).
- [11] L.P. Lévy, Phys. Rev. B **38**, 4963 (1988).

^{*} Electronic address: francois.ladieu@cea.fr, denis.lhote@cea.fr

^[1] J.C. Dyre, Rev. Mod. Phys. **78**, 953 (2006).

^[2] P.G. Debenedetti, F.H. Stilinger, Nature 410, 259-267 (2001).

^[3] M.D. Ediger, Annu. Rev. Phys. Chem. **51**, 99 (2000).

^[4] R. Richert, J. Phys.: Condens. Matter 14 R703 (2002).

^[5] U. Tracht et al., Phys. Rev. Lett. 81, 2727 (1998).

^[6] L. Berthier *et al.*, Science **310**, 1797 (2005).