2022-1 Digital Twin & Automation

17 박정우 | 17 유진수 | 17 홍세현

What is the Injection Molding

 A method of manufacturing in which synthetic resins such as plastics are melted, injected into molds, and cooled to produce the desired form of products.

Injection Molding Process

- 1. Supply of material.
- 2. Melting plastic raw materials.
- 3. Injection of melt into mold at high pressure and constant rate.
- 4. Melt cooling
- 5. Product Completion.

Ref. https://creatable.com/molding/guide/design/0

Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry

What is the problem in manufacturing site

- Injection molding can be produced defective due to pressure, temperature, injection time, etc.
- Increased quality costs due to higher wages.
- Efforts of manufacturing companies to improve production efficiency due to the Industry 4.0

What is the goal of paper

- Comparison of performance of quality prediction using algorithms of machine learning and deep learning.

Data Information

- Data Set: Injection Molding Production and Quality Dataset(Good: 8024, Defect: 125)
- Data Source: Korea Mold (Automotive Parts Manufacturer)
- Data Configuration: Injection Time(s), Maximum injection rate(mm/s), Maximum injection pressure(MPA), Mold temperature(μC) 50 and more..

Pre-processing

- they are selected variables that are considered more important in the manufacturing sites
- The Defect ratio is relatively low.
- They did over-sampling using SMOTE(synthetic minority oversampling technique method)
 *Defect N: 125 -> 5655

Variable Name					
Injection Time(s)	Max Screw RPM(RPM)				
Filling Time(s)	Average Screw RPM(RPM)				
Plasticizing Time(s)	Max Injection Pressure(MPa)				
Cycle Time(s)	Max Switch Over Pressure(MPa)				
Clamp Close Time(s)	Max Back Pressure(MPa)				
Switch Over Position(mm)	Average Back Pressure(MPa)				
Plasticizing Position(mm)	Barrel Temperature(°C)				
Clamp Open Position(mm)	Mold Temperature(°C)				
Max Injection Speed(mm/s)					

Feature Extraction

- They got Statistical Features

All Observations		Go	ood	De	fect	Difference in Means
Mean	Std	Mean	Std	Mean	Std	T-Test

Model selection

- Regression based, Tree based, Autoencoder
- Accuracy, precision, Recall and F1 score comparison of each model.

Catboost

Auto encoder

Model Evaluate

	Panel A. Regression-based models					
	Accuracy	Precision	Recall	F1-Score		
Logistic Regression	0.8449	0.0833	0.8947	0.1521		
Support Vector Machine	0.8642	0.0961	0.9210	0.1741		
	Panel B.	Tree-based models				
	Accuracy	Precision	Recall	F1-Score		
Random Forest	0.9918	0.7647	0.6841	0.7222		
Gradient Bootsing	0.9862	0.5576	0.7638	0.6444		
XGBoost	0.989366	0.6761	0.6052	0.6388		
CatBoost	0.9905	0.6923	0.7105	0.7012		
LightGBM	0.9914	0.7575	0.6578	0.7042		
	Panel C. Autoencoder model					
	Accuracy Precision Recall F1-Score					
Autoencoder	0.9959	0.9469	1.0000	0.9727		

Abnormal product diagnosis about Wind Shield Side Molding

What is Wind Shield Side Molding?

- [1] External molding that finishes both ends of the front glass prevents noise and contamination during driving.
- [2] detachable part during front glass repair or replacement
- [3] Using a gas injection molding method in manufacturing

Problem Definition

- [1] Difficult to check the defect of the molded product with naked eye
 - L Destruction inspection must be accompanied to determine defective products.
 - L Destruction inspections are performed at regular intervals, and if a defect is determined, a certain number of molded products before and after are recycled

- [2] After the molded product cools and contracts, defects occur and can be confirmed only then.
 - L Difficult to immediately control the process in the event of a defect

Economic and Time Loss is Huge!

Problem Definition

How to diagnose defective products in real time without destruction inspection?

IDEA:: the temperature of the cross-section is distributed differently during the process of cooling the product.

IDEA	Expected Effect
Diagnose abnormal product with thermal image	No destruction test required
Full inspection of all products immediately after injection molding through thermal image	Enables real-time process control and avoids unnecessary disposal

Data Overview

Source	KAMP Al Manufacturing Al dataset
Source	[Machine Vision Al Dataset]
Data Collection equipment	IR camera

Data Type	Data Information	Data Segmentation	Number of data
Daw Train Data	Thermal Image	Left Train Data	414 * 256 * 320 pixels
Raw Train Data		Right Train Data	423 * 256 * 320 pixels
Raw Label Data	Uandywittan thisknass information	Left Label Data	414 labels
	Handwritten thickness information	Right Label Data	423 labels

W/No	LH		RH		WIND	LH	RH
9001	1			I	0037	090	1,20
0002		\neg			0038	0.99	111
0003					0039	0.84	1,10
0004					0040	D fo	1.00
0005		,	J		0041	09	1.18
0006	0	96	, .	1	0042	0,80	10
0007	0.1	21	1. (0,0	0043	0 Ps	1018
0008	0.1	4	1.1	02	0044	080	1.0/
0009	01	23	, ,	50	0045	0.84	1.15

Each Thermal Image = 256*320 resolution → 81,920 pixels per image

Data Overview

Thermal image plotting and data pre-processing were handled by Python OpenCV in the Jupiter

Flow Chart

Algorithm[1] Pre-Processing (Guide Based)

Algorithm[1] Pre-Processing (Lecture Based)

Raw Right Data

Threshold(THRESH_BINARY)

Output :: 171st image, 50st row

```
1 # Verifying that the preprocessing was performed successfully
2 # Gets all the values in the 10th row (out of 256X320) of the first image.
3 | cont_image[170][50]
      0., 0., 0., 0., 0., 0., 0.,
                              0., 0., 0.,
                         0., 0., 0., 0.,
    255., 255., 255., 255., 255., 255., 255., 255., 255., 255.,
    255., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
      0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
```

Verified that **Contour** was successfully applied to 'BINARY' image

Masking Contour results to raw images

Output :: 171st image, 50st row

```
1 flir_left = np.zeros((423, 255, 160));
             flir_right = np.zeros((423, 255, 160));
           4 for i in range(0,423):
                 flir_left[i] = Mask_image[i][0:255, 0:160]
                 flir_right[i] = Mask_image[i][0:255,160:320]
           8 plt.figure(figsize = (10,10))
           9 plt.subplot(1,2,1)
          10 plt.imshow(flir left[170])
          11 plt.subplot(1,2,2)
          12 plt.imshow(flir_right[170])
Out[20]: <matplotlib.image.AxesImage at 0x1c9ba77be80>
```

Extracted only the intensity value of the region of interest through Contour

Photo Segmentation, Dividing masked images to left images and right images

20 40 60 80 100 120 140

20 40 60 80 100 120 140

Algorithm[2] Feature Extraction

Features	The Meaning of Each Features		
Skewness Value	For Defective Product, data distribution might be biased to the right or to the left		
Kurtosis Value	For Defective Product, an Outlier is generated and the data distribution is spread		
Peak to Peak	For Defective Product, an Outlier is generated and P2P value might be increase		
Marginal Factor	For Defective Product, an Outlier is generated and MF value might gradually decrease		
Min	For Defection Developed and October in accounted and Min (Many Value animbs by a learner annual).		
Max	For Defective Product, an Outlier is generated and Min/Max Value might be change greatly		
Mean	For Defection Developed the control of the control		
Square Root Average	For Defective Product, the overall temperature will be high or low		
Impulse Factor	Impulse Factor is to find the most prominent value		

RMS Value

Calculating for frequency data such as vibration signals.

The data we have is Image Intensity data, so RMS value was not used.

Other statistical features derived from RMS,

such as Crest Factor, Shape Factor and Impulse Factor, were not used too.

Algorithm[3] Machine Learning

Classification Machine Learning about RIGHT dataset

KNN - SVM - TREE

[Knn_Test_Loss_R, SVM_Test_Loss_R, Tree_Test_Loss_R] = KNN_SVM_TREE(Right_Train_Data, Right_Train_Label, Right_Test_Data, Right_Test_Label, 5);

k = 3
Knn_CrossValication_Error = 0.0629
Knn_Train_Loss = 0.0377
Knn_Test_Loss = 0.0282
SVM_CrossValication_Error = 0.0660
SVM_Train_Loss = 0.0314
SVM_Test_Loss = 0.0173
Tree_CrossValication_Error = 0.0566
Tree_Train_Loss = 0.0220
Tree_Test_Loss = 0.0380

Confusion Matrix about

Right Train/Test Data without Selection

KNN K = 3

SVM Gaussian Kernel SVM was Selected

Decision Tree Default Value was Used

Compare Accuracy

LEFT DATA

Accuracy_L = [Accuracy_Table_Guide_L, Accuracy_Table_Without_Selection_L, Accuracy_Table_With_Feature_Selection_L, Accuracy_Table_With_PCA_L]

Accuracy $L = 3 \times 4$ table

		GuideBook_Accuracy_L Without_Selection_Accuracy_L		With_Sequential_Selection_Accuracy_L	With_PCA_Accuracy_L
1	KNN	93.1216	88.7521	85.6805	86.8376
2	SVM	83.1829	89.5896	88.6722	88.6722
3	Tree	83.9989	82.7686	82.9285	85.4408

RIGHT DATA

Accuracy_R = [Accuracy_Table_Guide_R, Accuracy_Table_Without_Selection_R Accuracy_Table_With_Feature_Selection_R Accuracy_Table_With_PCA_R]

 $Accuracy_R = 3x4 table$

		GuideBook_Accuracy_R Without_Selection_Accuracy_R		With_Sequential_Selection_Accuracy_R	With_PCA_Accuracy_R
1	KNN	95.3032	97.1785	98.1569	98.1569
2	SVM	87.3770	98.2704	97.4057	95.4490
3	Tree	93.0979	96.2002	96.2002	96.2002

No significant difference in accuracy from the pre-processed data provided in the guidebook!

→ Used fewer features, achieved good accuracy

Comparison with Previous Studies

		KAMP Cuida Baak	DTA Project		
		KAMP Guide Book	KAMP Guide Book	Project Dataset	
		SVM Linear	KNN		
М	odel	SVM Polynomial	SVM Gaussian		
		SVM RBF	Decision Tree		
Image Pre	e-Processing	Skeletonize		Contour	
F4	Туре	Intensity Value		Statistical Features	
Feature	Number	80		9	
Max Accuracy for Left		-	93.12% at KNN	89.59% at SVM Gaussian	
Max Accuracy for Right		95.44% at <i>SVM RBF</i>	95.30% at KNN	98.27% at SVM Gaussian	

Thank you ©

Q & A

Reference

- Jung, H., Jeon, J., Choi, D., & Park, J. Y. (2021). Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry. *Sustainability*, *13*(8), 4120.
- [2] KAMP, 제조 AI 데이터셋, 머신비전 AI 데이터셋, 열화상 이미지를 이용한 양/불량 판정을 위한 머신비전 데이터, KAIST, 2020.12.14,

