System zasilania

System zasilania CanSata

- "Zasilone urządzenia elektryczne działają lepiej."
- Bez dobrego, odpowiednio przetestowanego systemu zasilania nie zadziała nawet najlepiej przygotowana misja!

włącznik główny

Wymagania konkursowe

1. Czas pracy CanSata na bateriach

- minimalny czas pracy¹: 4 godziny
- rekomendowany¹: 6 godzin

¹ czas działania dotyczy misji podstawowej

2. Łatwa dostępność baterii i sposób wymiany

nawet przy zastosowaniu akumulatorów

3. Włącznik główny

- wskazane, aby odcinał całkowicie zasilanie CanSata
- musi wyłączać wszelkie transmisje radiowe
- łatwo dostępny, obsługiwany przez organizatorów

Wymagania konkursowe

- 4. Niedozwolone jest użycie akumulatorów litowopolimerowych (Li-pol, Li-Po)
- ze względu na zagrożenie pożarowe
- akumulatory litowo-jonowe (li-ion) są dobrą alternatywą

System zasilania płytek CanSat Kit

dystrybucja na płytce i zasilanie:

- mikrokontrolera,
- modułu radiowego,
- karty microSD

¹ Vbat dostępne tylko wtedy, gdy podłączona jest bateria lub akumulator

Źródła zasilania

1. Port mini USB

- niepolecane dla CanSata, ale polecane dla stacji naziemnej
- zasilanie z komputera, smartphone'a, power-banka

2. Wejście na baterie / akumulatory – złącze BAT (J4)

najlepsze rozwiązanie do zasilenia CanSata

Napięcie zasilania CanSat Kit (złącze BAT)

- dopuszczalny zakres: 2.5 4.5 V
- optymalizowane dla akumulatorów litowo-jonowych 3.7 4.3 V

Czym kierować się przy wyborze baterii/akumulatorów?

- napięcie (można też łączyć szeregowo)
- wydajność prądowa
- pojemność (wyrażana w mAh/Ah/Wh)
- baterie jednorazowego użytku lub ładowalne akumulatory
- wymiary, masa, kształt
- sposób montażu

Baterie typu AAA/AA/R14

- popularne "paluszki"
- cynkowo-węglowe i alkaiczne
- 1.5 V każde ogniwo 3 x 1.5V = 4.5 V

Akumulatory typu AAA/AA/R14

- popularne "akumulatorki"
- Ni-Cd lub Ni-MH
- 1.2 V każde ogniwo 3 x 1.2V = 3.6 V

Uwaga na sprężyny w koszyczkach na ogniwa! Możliwe rozłączenie podczas startu rakiety!

Akumulatory litowo-jonowe (li-ion)

- popularne (telefony, tablety, laptopy)
- wielokrotnego użytku
- bardzo dobry stosunek pojemność/wymiary/masa
- 3.7 V każde ogniwo kit zoptymalizowany pod li-ion

Akumulatory litowo-polimerowe (li-pol, li-po)

- niedozwolone do użytku w konkursie
- niebezpieczne w przypadku uszkodzenia lub zwarcia

Baterie litowe

napięcie 3 V

 oferują dużą pojemność ale przy bardzo niewielkich prądach rozładowania – CanSat pobiera znacznie więcej!

Budżet energii

Jaką moc urządzenia pobierają z baterii – przykład:

- z linii 5 V urządzenie pobiera prąd $I_{5V}=0.1$ A, $P_{5V}=I\cdot U=0.1\cdot 5=0.5$ W
- z baterii pobiera zatem $P_{bat}=P_{5V}/\eta_{5V}=0.5/0.8=0.625~W$
- z linii 3.3 V urządzenie pobiera $I_{3.3V} = 0.1~A,\, P_{3.3V} = 0.1 \cdot 3.3 = 0.33~W$
- z baterii pobiera zatem $P_{bat} = P_{3.3V}/(\eta_{3.3V} \cdot \eta_{5V}) = 0.33/(0.8 \cdot 0.66) = 0.625 W$
- sumarycznie oba urządzenia pobierają z baterii 1.25 W

Budżet energii CanSata Demo

1. Sprawdzamy średnie zużycie energii przez każde z urządzeń – albo w dokumentacji producenta, albo poprzez pomiar amperomierzem

Budżet energii CanSata Demo

#	urządzenie	średni pobór prądu [mA]	Napięcie zasilania [V]	η	Moc pobierana z baterii [mW]
1	komputer pokładowy	20	3.3	0.5	132
2	moduł radiowy SX1278	90 ¹	3.3	0.5	594
3	GPS	35	3.3	0.5	231
4	czujnik ciśnienia BMP280	1	3.3	0.5	7
5	czujnik temperatury LM35	1	5	0.8	6
6	kamera	150	5	0.8	938
		Sumaryczny pobór mocy z baterii:			1908

¹ moduł radiowy SX1278 pobiera 120 mA podczas nadawania, średnio nadaje tylko przez 75% czasu, dlatego średni pobór prądu to 90 mA

Budżet energii CanSata Demo

Sumaryczny pobór mocy z baterii: $\sim 1900~mW$

Pojemność akumulatora wymagana dla 6 godzin pracy:

$$E_{bat} = P \cdot t = 1900 \ [mW] \cdot 6 \ [h] = 11400 \ mWh$$

Jak przeliczać pojemność akumulatorów?

$$E_{bat} = 900 \text{ [mAh]} \cdot 3.7 \text{ [V]} = 3330 \text{ mWh}$$

Budżet energii CanSata Demo

- potrzebna energia: 11400 mWh
- 4 akumulatory li-ion 18350 połączone równolegle

każdy o pojemności 900 mAh @ 3.7 V co daje 3330 mWh

 połączone razem w baterię czeterech akumulatorów pojemność wynosi: 4 x 3330 mWh = 13320 mWh

Studium przypadku – budżet energii - testy

Budżet mocy jest ważny, ale nie zastąpi testów!

Włącznik główny

- Odporność na przypadkowe przełączenie się podczas lotu w rakiecie, opadania lub lądowania!
- Łatwa dostępność po lądowaniu CanSata organizatorzy wyłączą go za pomocą głównego przełącznika
 - CanSat musi przynajmniej zaprzestać nadawać sygnał radiowy

Włącznik główny - podłączenie

Studium przypadku – przełącznik RBL

Studium przypadku – przełącznik RBL

Testy i przewidywanie problemów

- 1. Jak długo CanSat jest w stanie realizować swoją misję?
- 2. Jak długo CanSat będzie nadawał sygnał radiowy?
- 3. Jak prawdopodobne jest samoczynne przełączenie włącznika głównego? W jakich warunkach?

4. Do zastanowienia się:
Jakie jeszcze testy systemu zasilania można wykonać?