

Spec Eletri

Projeto Integrador 2

Alunos: Beatriz Paz Faria, Igor Budag de Oliveira e Júlia Espíndola Steinbach

Professor: Adilson Jair Cardoso

Sumário

1.	Logomarca	3
2.	Canvas	4
	UML	
4.	Componentes importantes	5
	4.1. Node-RED	5
	4.2. Broker Mosquitto	5
	4.3. Banco de dados	
	4.4. ESP32	5
	4.5. AWS EC2	
5.	Node-RED	. 6
	5.1. Sensores	6
	5.2. Status e Acionamento	7
	5.3. Bancos de Dados	
	5.4. Dashboard	
6.	Código ESP	8
	Custos e Lucros esperados	

1. Logomarca

2. Canvas

3. UML

4. Componentes importantes

4.1. Node-RED

Interface utilizada para verificação do estado dos fatores afetando o ESP32, tais como temperatura, luminosidade, umidade, além disso é capaz de pedir para o ESP ligar ou desligar o relé remotamente.

4.2. Broker Mosquitto

Middleware que permite a comunicação entre o Node-RED e o ESP, utilizando o modelo de comunicação MQTT publish/subscribe, comumente presente em dispositivos IoT.

4.3. Banco de dados

Utilizando do mongodb é possível automatizar o gerenciamento energético que o produto oferece, possibilitando definir um horário onde o relé liga, e um que ele desliga.

4.4. ESP32

É o dispositivo principal do produto, responsável pela coleta de informações, as quais são entregues ao Node-RED para permitir o monitoramento. Além disso, como mencionado anteriormente, é o que energiza o relé.

4.5. AWS EC2

Essa plataforma foi usada para hospedar tanto o Node-RED, quanto o Mosquitto e o banco de dados, permitindo assim a comunicação à distância com o ESP, desde que ambas as partes possuam acesso à internet.

5. Node-RED

5.1. Sensores

5.2. Status e Acionamento

5.3. Bancos de Dados

5.4. Dashboard

6. Código ESP

```
#include <WiFi.h>
#include <PubSubClient.h>
#include <DHT.h>
#include <Wire.h>
#include <Adafruit ADS1X15.h>
// Configurações do DHT22
#define DHTPIN 4 // GPIO do sensor
#define DHTTYPE DHT22 // Tipo de sensor
DHT dht(DHTPIN, DHTTYPE);
// Criar um objeto para o ADS1115
Adafruit_ADS1115 ads;
// Pinos para controle
#define RELAY_PIN 13 // Pino do relé (lâmpada)
#define LED_AC_1 12 // LED indicando AC1
#define LED_AC_2 14 // LED indicando AC2
// Configurações de WiFi
```

```
const char* ssid = "Fabio";
const char* password = "F0023339";
// Configurações do MQTT (Mosquitto)
const char* mqttServer = "18.231.157.84";
const int mqttPort = 1883;
const char* mqttUser = "";
const char* mqttPassword = "";
const char* mqttTempTopic = "sensor_temp";
const char* mqttHumTopic = "sensor_umid";
const char* mqttLdrTopic = "sensor_luz";
const char* mqttRelayTopic = "lampada/comando";
const char* mqttAc1StatusTopic = "arcondicionado 1/status";
const char* mqttAc2StatusTopic = "arcondicionado_2/status";
// Variáveis globais
WiFiClient espClient;
PubSubClient mqttClient(espClient);
float temperature = 0.0;
float humidity = 0.0;
int16 t ldrValue = 0;
// Controle de tempo
unsigned long lastPublishTime = 0;
const unsigned long publishInterval = 2000;
void connectToWiFi() {
  Serial.print("Conectando ao WiFi: ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    Serial.print(".");
    delay(500);
  Serial.println("\nConectado ao WiFi!");
}
void connectToMQTT() {
  mqttClient.setServer(mqttServer, mqttPort);
  while (!mqttClient.connected()) {
    Serial.print("Conectando ao broker MQTT...");
    if (mgttClient.connect("ESP32Client", mgttUser, mgttPassword)) {
      Serial.println("Conectado!");
      mqttClient.subscribe(mqttRelayTopic);
      mgttClient.subscribe(mgttAc1StatusTopic);
      mqttClient.subscribe(mqttAc2StatusTopic);
    } else {
      Serial.print("Falha na conexão, rc=");
      Serial.print(mqttClient.state());
      Serial.println(" Tentando novamente em 5 segundos...");
      delay(5000);
    }
```

```
}
}
void mqttCallback(char* topic, byte* payload, unsigned int length) {
  String message = "";
  for (unsigned int i = 0; i < length; i++) {</pre>
    message += (char)payload[i];
  }
  Serial.print("Mensagem recebida no tópico ");
  Serial.print(topic);
  Serial.print(": ");
  Serial.println(message);
   // Controle da lâmpada
  if (String(topic) == mqttRelayTopic) {
    if (message == "ON") {
      digitalWrite(RELAY PIN, HIGH);
      Serial.println("Lâmpada ligada");
    } else if (message == "OFF") {
      digitalWrite(RELAY PIN, LOW);
      Serial.println("Lâmpada desligada");
   }
  }
  // Controle do status do ar-condicionado 1
  else if (String(topic) == mqttAc1StatusTopic) {
    if (message == "ON") {
      digitalWrite(LED AC 1, HIGH);
      Serial.println("Ar-condicionado 1 LIGADO");
    } else if (message == "OFF") {
      digitalWrite(LED_AC_1, LOW);
      Serial.println("Ar-condicionado 1 DESLIGADO");
    }
  }
  // Controle do status do ar-condicionado 2
  else if (String(topic) == mqttAc2StatusTopic) {
    if (message == "ON") {
      digitalWrite(LED AC 2, HIGH);
      Serial.println("Ar-condicionado 2 LIGADO");
    } else if (message == "OFF") {
      digitalWrite(LED AC 2, LOW);
      Serial.println("Ar-condicionado 2 DESLIGADO");
    }
 }
}
void publishToMQTT() {
  char message[50];
  snprintf(message, sizeof(message), "%.2f", temperature);
  mqttClient.publish(mqttTempTopic, message);
```

```
snprintf(message, sizeof(message), "%.2f", humidity);
 mqttClient.publish(mqttHumTopic, message);
  snprintf(message, sizeof(message), "{\"ldrStatus\":\"%s\"}", (ldrValue >
5000) ? "Lâmpada APAGADA" : "Lâmpada ACESA");
  mgttClient.publish(mgttLdrTopic, message);
  snprintf(message, sizeof(message), "{\"arcondicionadol\":\"%s\"}",
digitalRead(LED_AC_1) == HIGH ? "Ligado" : "Desligado");
  mqttClient.publish(mqttAc1StatusTopic, message);
  snprintf(message, sizeof(message), "{\"arcondicionado2\":\"%s\"}",
digitalRead(LED AC 2) == HIGH ? "Ligado" : "Desligado");
 mqttClient.publish(mqttAc2StatusTopic, message);
}
void setup() {
  Serial.begin(115200);
 dht.begin();
 Wire.begin(21, 22);
  if (!ads.begin(0x49)) {
    Serial.println("Falha ao inicializar o ADS1115!");
   while (1);
  }
  pinMode(RELAY_PIN, OUTPUT);
  pinMode(LED AC 1, OUTPUT);
  pinMode(LED AC 2, OUTPUT);
  connectToWiFi();
 mqttClient.setCallback(mqttCallback);
 connectToMQTT();
}
void loop() {
  if (!mgttClient.connected()) {
    connectToMQTT();
  }
  mqttClient.loop();
  unsigned long currentTime = millis();
  if (currentTime - lastPublishTime >= publishInterval) {
    temperature = dht.readTemperature();
    humidity = dht.readHumidity();
    ldrValue = ads.readADC SingleEnded(3);
    if (!isnan(temperature) && !isnan(humidity)) {
      publishToMQTT();
    lastPublishTime = currentTime;
```

```
}
delay(100);
```

7. Custos e Lucros esperados

Custos previstos					
Nome	Descrição	Valor em R\$	/Peça		
Caixa		40000	40		
Montagem PCB		0	0		
Confecção PCB		20000	20		
Montagem		20000	20		
Integradores	Construção das peças	100000	100		
ESP32		40000	40		
Fonte		20000	20		
Outros		20000	20		
Marketing		4000	4		
Patente		8000	8		
Aluguel		100	0,1		
Água		100	0,1		
Energia		100	0,1		
Internet		100	0,1		
Telefone		100	0,1		
Salário		1000			
Imposto sócio	Prolabori (11%)	110			
Sálario total	3 sócios	3330	3,33		
Advogado		800	0,8		
Contador		500	0,5		

