**S.O.** 

Sistemas Operacionais



## IHC - O que vamos aprender?

- Apresentação da disciplina e Conceitos e Histórico do SO.
- Gerenciamento de Processos
- Gerenciamento de Threads
- Gerenciamento de Deadlocks
- Gerenciamento de Memória
- Gerenciamento de E/S
- Gerenciamento de Sistemas de Arquivo







## S.O - Avaliações

- Teste Google Forms
- Avaliações Escritas
- Apresentação de Projetos\*\*
- Pesquisas



# **S.O.**

# Sistemas Operacionais

Aula 1: Conceitos e História dos S.O's



- Importância do SO
  - Aplicações COM o SO
    - Maior racionalidade
    - Maior dedicação aos problemas de alto nível;
    - Maior portabilidade;

#### Máquina Multinível





#### Definição

- Programa, ou conjunto de programas, interrelacionados e tendo como sua finalidade principal, agir como:
  - Intermediário (interface) entre o usuário e o hardware, podendo considerar também, entre os aplicativos e o hardware;
  - Gerenciador de Recursos;

#### Máquina Multinível





#### Vantagens do SO:

- Apresentar uma máquina mais flexível;
- Permitir o uso eficiente e controlado dos componentes de hardware;
- Permitir o uso compartilhado e protegido dos diversos componentes de hardware e software;

#### Máquina Multinível

Sistema Operacional Linguagem de Máquina Microarquitetura

Dispositivos físicos (Hardware)



- Execução de Programas: capacidade de carregar executar e encerrar um programa.
- Operações de I/O: deve fornecer meios para controlar arquivos ou dispositivos de I/O.
- Manipulação do sistema de arquivos: ler, gravar, criar e excluir arquivos.
- Comunicação: comunicação de processos.
- Detecção de erros: notar falhas de CPU, memória ou dispositivos de I/O e tomar medidas adequadas.

- Alocação de recursos: gerenciar recursos de memória, CPU ou dispositivos I/O.
- Contabilização: manter um registro dos usuários que utilizam os recursos do computador referente a quantidade e que tipo de recursos.
- Proteção: garantia que todo o acesso aos recursos do sistema seja controlado, evitando conflitos, falhas e a integridade dos dados.





#### Formas de Processamentos do SO

Serial (Monoprogramação / Monotarefa)

Recursos alocados a um único programa.

Exe.: CP/M, MS-DOS

Concorrente (Multiprogramação / Multitarefa)

Recursos dinamicamente reassociados entre uma coleção de programas em diferentes estágios.

Exe.: Unix, Linux, Windows.

| Cooperativa | O S.O. define uma fatia de tempo (time-slice) para cada programa.                    |
|-------------|--------------------------------------------------------------------------------------|
| Preemptiva  | O S.O. define <b>prioridades</b> conforme a necessidade momentânea de cada programa. |

#### Interação com o SO

 A interação é o diálogo, um ato de comunicação e essa ação pode ser realizada através de uma linguagem de comunicação especial, chamada "linguagem de comando".

JCL (Job Control Language)

| Linux/Unix | Windows |
|------------|---------|
| ls         | dir     |
| ср         | сору    |
| rm         | del     |





#### Interação com o SO

• JCL (Job Control Language) - Chamadas de Sistema

 (System Calls) Permitem um controle mais eficiente sobre as operações do sistema

| Linux/Unix  | Windows      |
|-------------|--------------|
| fork        | CreatProcess |
| exit/Ctrl+C | ExitProcess  |
| kill        | (none)       |
| open        | CreatFile    |



#### Interação com o SO

Gráfica











#### 1ª Geração (1945/1955)

- Computadores a Válvula;
- Ausência de um S.O.
- Programação em linguagem de máquina.
- Hardware: PC dedicados, tubos a vácuo, plug boards.
- User Operation: Pelo programador (um de cada vez) em linguagem de máquina.







Colossus Mark 1

#### 2ª Geração (1955/65-70)

- Invenção e uso de transistores
- Uso da linguagem Assembly e FORTRAN (metrologia e engenharia)
- S.O's do tipo lote(batch)
- Hardware: duas linhas de mainframes, comerciais e científicos, fitas e cartões perfurados.
- User Operation: Operador de computadores, montagem das fitas, processamento usando JCL





#### 3° Geração (1965/1980)

- Circuitos integrados
- Multiprogramação
- Time-Sharing (compartilhado)
- Sistema OS/360(IBM):
  - 1º no uso do circuito SSI
- Hardware: Familia de mainframes, n computadores como o PDP-11
- User Operation: Uso comercial e cientifico, acesso via terminal(pré-rede local),
  Submissão de jobs, Multiprogramação





#### 4ª Geração (1980/1990)

- Circuitos integrados com alta escala de integração (LSI - Largel Scale Integration)
- SO para Micros(MS-DOS e Windows, Unix(74), Linux)
- Início da Intranet e Internet





#### 5ª Geração (1990/Hoje)

- Difusão da Internet
- SO com suporte para TCP/IP
- Cliente/Servidor/Nuvem
- Sistemas em Tempo-Real
  - Abs, Radioativo;
- Computação Ubíqua (anyhere)
- Internet das Coisas
- Comunicação e Informação
- CPS(Cyber Phisycal System), etc



https://img.ibxk.com.br//2013/7/infograficos/2 031/infografico-tecmundo-603041-20310.jpg?v=457



### Multiprogramáveis/Multitarefa



-i.

### Multiprogramáveis/Multitarefa Sistemas Operacionais Batch (lote)



FMS (Fortran Monitor System)

### Multiprogramáveis/Multitarefa Sistema de Tempo Compartilhado



### Multiprogramáveis/Multitarefa Sistema de Tempo Real







### Sistemas com múltiplos processadores



### Sistemas fortemente acoplados



### Sistemas fortemente acoplados Multiprocessamento Simétrico



### Sistemas fortemente acoplados Multiprocessamento Assimétrico



### Sistemas fracamente acoplados



### Sistemas fracamente acoplados Sistemas Operacionais de Rede (SOR)







### Interrupções



30

### Interrupções - Exemplo

- Programa em execução;
- Um pen-drive é conectado à porta USB;
- Placa de dispositivo E/S envia uma interrupção para o processador;
- Processador para a execução do programa e desvia para um tratamento de interrupção;
- Rotina de tratamento é executada, atualizando as estruturas do sistema operacional e exibindo uma mensagem ao usuário informando da conexão do pen-drive;
- Finalizando a rotina de tratamento da interrupção o processador retorna à execução do programa interrompido anteriormente.

### Estrutura do Sistema Operacional Kernel

- Formado por um conjunto de serviços
  - (Rotinas Procedimentos).
- Objetivo:
  - Permitir acesso ao sistema operacional pelos usuários e aplicações.

### Kernel – Principais Funções

- tratamento de interrupções e exceções;
- criação e eliminação de processos e threads;
- sincronização e comunicação entre processos e threads;
- escalonamento e controle dos processos e threads;
- gerência de memória;
- gerência de sistema de arquivos;
- gerência de dispositivos de E/S;

### System Calls

 O System Calls é um intermediário entre as aplicações do usuário e o sistema operacional.

### System Calls



MACHADO, F. B.; MAIA, L. P. **Arquitetura de sistemas operacionais.** 4ª ed. Rio de Janeiro: LTC - Livros Técnicos Editora S.A., 2007.

#### **Fechamento**

- Multiprogramáveis/Multitarefa Tipos.
- Sistemas com múltiplos processadores.
- Interrupções.
- Estrutura do Sistema Operacional Kernel

#### Vídeos no YouTube

- https://youtu.be/h1CEtMk1CYo?si=FM2QbdB3umlHMZMZ
- https://youtu.be/9TLDCr5pKrc?si=S4Qj8J7ZU5hJLPb1
- https://youtu.be/e-YI-fjl8Nc?si=4h31820oiOXkcmKj
- Evolução dos SO
  - https://youtu.be/o14-gCNRwR8?si=WCY\_LnuMd0QXcIrE

