

Teoria dos Jogos

Prof. Dr. Tiago Araújo

Jogos versus. Problemas de Busca

Oponente "Imprevisível" => a solução é um plano de contingência Limites de tempo => dificilmente alcançará o objetivo, deve se aproximar.

Plano de Ataque:

- Algoritmo para jogo perfeito (Von Neumann, 1944)
- Horizonte finito, avaliação aproximada (Zuse, 1945; Shannon, 1950; Samuel, 1952-57)
- Poda para reduzir custos (McCarthy, 1956)

Tipos de jogos

Informação perfeitaXadrez, Damas, Go, OtelloGamão, banco imobiliárioInformação imperfeitaBridge, Poker, Palavras-cruzadas, War

Jogos determinísticos na prática

Damas: Chinook terminou os 40 anos de reinado da campeã mundial humana Marion Tisley em 1994. Utilizou um banco de dados de finais de jogo definindo o jogo perfeito para todas as posições envolvendo 8 ou menos peças no tabuleiro, um total de 443.748.401.247 posições.

Xadrez: Gary Kasparov, campeão do mundo de Deep Blue, derrotado em uma partida de seis jogos em 1997. O Deep Blue busca 200 milhões de posições por segundo, usa uma avaliação muito sofisticada e métodos não revelados para estender algumas linhas de busca até 40 posições.

Otello: campeões humanos se recusam a competir contra computadores, que são bons demais.

Go: um jogo tido como impossível para agentes inteligentes, hoje os computadores disputam a nível competitivo.

Conceito de Jogo

- Jogos atividades lúdicas de infância, jogos de palitos, jogos de cartas, jogos de tabuleiro, entre outros.
- Jogo de maneira formal agentes ou jogadores agem e tomam decisões racionais baseados em um conjunto de regras.

Conceito de Teoria de Jogos

- Envolvem decisões estratégicas entre agentes econômicos
- Os jogadores tomam decisões estratégicas em busca de determinados benefícios
- Ajuda a tomada de decisão no ambiente corporativo
- Identificar e reconhecer a estratégia ótima

Elementos de Teoria dos Jogos

Modelo Formal

 Descrição do jogo, identificando seus jogadores, objetivos, formas de interação: regras e formas de análise.

Estratégias

Possibilidades de ações dos agentes do jogo, que afetam os outros jogadores.

Jogadores

 Agentes econômicos (jogadores) que assumem estratégias e realizam ações (jogadas) que interferem em seus resultados e nos resultados dos demais jogadores.

Racionalidade

Jogadores trabalham com a racionalidade para atingirem suas estratégias.

Pressupostos de Teoria dos Jogos

- Os jogadores são racionais.
- As regras do jogo são conhecidas pelos jogadores.
- Os jogadores são capazes de avaliar suas possibilidades de ganhos para cada ação.
- O jogo pode ser expresso de maneira formal.

Pressupostos de Teoria dos Jogos

- Possibilidade de aplicação da racionalidade pelos jogadores.
- Os jogadores não podem agir racionalmente se não conhecem as regras do jogo.
- Regra dos jogos significa possibilidades de ações a serem realizadas pelos jogadores.

Pressupostos de Teoria dos Jogos

- Capacidade dos jogadores de avaliarem seus possíveis benefícios.
- Capacidade de avaliar qual seu ganho com a estratégia levando em consideração a reação dos outros jogadores.
- O fato de o jogo ser formalizado diz respeito à possibilidade de termos como analisá-lo de forma consistente:
 - É possível representá-lo utilizando o mínimo de simbologia matemática e podemos, assim, reconhecer suas regras e possibilidades.

Representações mais comuns dos jogos

Forma Normal ou Matricial:	Forma Sequencial ou em Árvore:
O jogo é mostrado por uma matriz de possibilidade de ganhos.	As decisões são representadas por uma árvore.
Combina as diferentes estratégias nas linhas e colunas.	Cada nó representa uma escolha.
Nos encontros entre elas ficam evidentes as possibilidades de ganhos resultantes.	Depois das decisões pertinentes ao jogo terem sido tomadas apresentam-se as possibilidades de ganhos.

Jogos em Economia e Administração

- Existem inúmeras situações em Economia e Administração que podem ser representadas e analisadas sob a ótica da Teoria dos Jogos:
- Estudo de Cenários (prospecção de cenários) nos quais os agentes econômicos (empresas, consumidores, governo e gestores) precisam tomar decisões de forma estratégica.
- Estudo do comportamento de empresas concorrentes.

Modelagem de um jogo

- Maneira formal de apresentação dos jogos necessária para que a análise de situações sejam possíveis descrições das regras dos jogos:
- Estratégias
- Jogadores
- Objetivos
- Possibilidades de ganhos
- Limitações

Jogos cooperativos

- Aqueles jogos com interesses idênticos.
- Exemplo:
 - Ocorre quando duas empresas precisam decidir como transportar suas cargas conjuntamente, ou se compartilhando suas frotas de veículos ou se terceirizando a frota para o transporte comum.
 - Seus participantes podem planejar estratégias conjuntas, formalizadas através de contratos.

Jogos Não-Cooperativos

- Aqueles jogos com interesses opostos.
- Quando n\u00e3o \u00e9 poss\u00edvel o estabelecimento de contratos entre os participantes.
- No caso de duas empresas que disputam mercado e precisam decidir se entram uma na região geográfica de domínio da outra.

Jogos com Interesses Mistos

- Jogos que podem ser cooperativos ou não, dependendo das ações dos jogadores
- Exemplo:
- Duas empresas que deverão decidir entre:
- investir cada uma isoladamente no desenvolvimento de nova tecnologia ou
- cooperar dividindo gastos com desenvolvimento.

Jogos Simultâneos

- Quando não há cronologia de conhecimento.
- Os jogadores tomam as decisões ao mesmo tempo.
- A principal implicação da simultaneidade para o jogo é o fato de que nenhum dos jogadores conhece previamente o que os outros irão de fato fazer.
- A simultaneidade na prática é muito difícil de ocorrer.
- Dificilmente tomam decisões exatamente no mesmo momento.
- A ideia que prevalece nos jogos simultâneos é a do não conhecimento prévio das estratégias (importância de estruturas de conhecimento).

Jogos Sequenciais

- Jogos que consideram conhecimento anterior (gestão do conhecimento memória organizacional).
- No caso dos jogos sequenciais, a representação é feita através de árvores de decisões.

- Empresas de aviação decidem ou não praticar preços abaixo de seus custos.
- Empresa A decide primeiro se irá reduzir ou não seus preços e,
- dependendo de sua decisão, Empresa B decide se reduz ou não seus preços.
- Nesse jogo sequencial, o mais importante não é a ordem da decisão.
- Na prática, dificilmente as decisões entre jogadores são tomadas exatamente ao mesmo tempo.

Estratégia Dominante

- É a melhor estratégia independentemente da ação tomada pela outra parte
- Vai além das regras do jogo
- Resultados obtidos ao se utilizá-la
 - o são sempre melhores em relação aos resultados obtidos com outra estratégia.
- Jogadores racionais somente utilizam estratégias dominantes
 - o se eles tiverem certeza da estratégia adotada pelo outro jogador.
- Tem terminologias diferentes em vários ambientes
 - Metagame, Metajogo, estratégia ótima, Meta,

- Futebol => jogadas individuais foram substituídas por passes de bola e controle do espaço no meio campo
- Xadrez => Controle do centro e jogadas de sacrifício no fim do jogo estão sendo substituído por ataques laterais e alta mobilidade
- Jogos eletrônicos => Equilíbrio é uma preocupação frequente para o meta não estagnar, principalmente em jogos competitivos
 - o League of Legends, Clash Royale, Call of Duty, Street Fighter

Equilíbrio de Nash

- É um resultado no qual ambos os jogadores corretamente acreditam estar fazendo o melhor que podem, dadas as ações do outro participante.
- Todas as estratégias adotadas por todos os jogadores são as melhores respostas às estratégias dos demais.
- Um jogo está em equilíbrio quando nenhum jogador possui incentivo para mudar suas escolhas, a menos que haja uma mudança por parte do outro jogador.

- É uma forma extremamente simples de explicar o uso da Teoria dos Jogos para estratégias cooperativas.
- O dilema dos prisioneiros não é um jogo de soma zero:
 - o existe a possibilidade de ganhos múltiplos.
- Dois indivíduos suspeitos de um crime (e de fato o cometeram juntos)
- A polícia não possui a prova necessária para condená-los
- Libertará os dois prisioneiros
 - o caso nenhum deles providencie tal prova contra o outro.
- Eles são colocados em celas separadas

- Cada um pode escolher: Confessar ou Negar o Crime.
- Se ambos confessarem = cada um terá uma pena de cinco anos.
- Se um confessar e o outro negar:
 - será libertado quem confessou e
 - receberá a pena máxima de dez anos quem negou o crime.
- Se ambos negarem:
 - o irão presos e receberão a pena mínima, de um ano.

Matriz de pay-offs (custos)

		Prisioneiro 2	
		Confessar	Negar
Prisioneiro 1	Confessar	-5,-5	0,-10
	Negar	-10,0	-1,-1

- O prisioneiro 1 pode ter a seguinte linha de raciocínio:
- Duas situações podem ocorrer:
 - O prisioneiro 2 pode confessar ou negar.
 - Se 2 confessar é melhor 1 confessar também.
 - Se 2 negar e 1 confessar, 1 estará livre.
- Então a melhor opção é confessar.
- Como essa é a melhor opção para os dois prisioneiros o equilíbrio de Nash, portanto, é {confessar, confessar}.

- Alguns fatores são importantes nesse contexto:
- O fato de eles n\u00e3o se comunicarem
- Se eles pudessem se comunicar, provavelmente ambos negariam o crime e pegariam apenas um ano de prisão
- Percebe-se assim, que a possibilidade de visualização do melhor para ambas as partes é fundamental.

- Dinâmica do mundo empresarial:
 - o é possível imaginar duas empresas lutando pelos mesmos ganhos.
- Exemplo:
- Objetivo da empresa:
 - o decidir estrategicamente sua forma de entrar em um mercado através da cooperação sobre as informações de mercado.

- Caso exista cooperação entre as empresas 1 e 2 = {cooperar, cooperar}:
 - O Ambas ganham com a troca de informações e faturam quatro milhões cada.
- Caso exista cooperação apenas pela empresa 1 = {cooperar, não-cooperar}:
- Empresa 1:
 - O Cooperou (cedeu sozinha as informações) fatura menos (um milhão).
- Empresa 2:
 - Apenas se aproveitou das informações da Empresa 1 fatura mais (seis milhões).

		Empresa 2	
		Cooperar	Não-Cooperar
Empresa 1	Cooperar	4,4	1,6
	Não-Cooperar	6,1	3,3

- Caso exista cooperação apenas pela empresa 2 = {não-cooperar, cooperar}:
- Empresa 2:
 - Cooperou (cedeu sozinha as informações) fatura menos (um milhão).
- Empresa 1:
 - Apenas se aproveitou das informações da Empresa 2 sem ceder as suas fatura mais (seis milhões).
- Caso não exista cooperação de ambas as Empresas =
 - o {não-cooperar, não-cooperar}:
- As Empresas 1 e 2 faturam de forma igual (três milhões).

- Cooperar, cooperar As empresas ganham com a troca de informações e faturam quatro milhões cada.
- Cooperar, não-cooperar A Empresa 1 que cooperou fatura menos (um milhão) e a Empresa 2 que apenas se aproveitou das informações da Empresa 1 fatura mais (seis milhões).
- Não-cooperar, cooperar A Empresa 2 que cedeu sozinha as informações tem faturamento menor (um milhão) e a Empresa 1 que se aproveitou dessas informações sem ceder as suas faturou mais (seis milhões);
- Não-cooperar, não-cooperar As empresas faturam de forma igual (três milhões), mas em um nível menor do que na situação de compartilhamento mútuo das informações.

- A empresa tem duas alternativas:
- Cooperar mercadologicamente com seu adversário potencial ou
- Não cooperar e entender de forma menos completa o mercado
 - o significa competir no mercado com suas próprias informações que são parciais
- Melhor alternativa para as duas empresas (equilíbrio de Nash):
 - o cooperar cooperar.

		Empresa 2	
		Cooperar	Não-Cooperar
Empresa 1	Cooperar	4,4	1,6
	Não-Cooperar	6,1	3,3

A batalha dos sexos

- Um casal está tentando decidir onde irá se divertir à noite
- Homem (Emílio) jogo de futebol
- Mulher (Lílian) teatro
- Matriz do nível de satisfação:

		Lilian	
		Futebol	Teatro
Emílio	Teatro	0,0	2,1
	Futebol	2,1	0,0

Aplicação

- Decisão de cooperar com outras empresas em investimentos para Pesquisa
- Decisão de elevar ou reduzir o preço em um mercado com poucos concorrentes
- Estabelecimento de políticas sociais e de saúde

A batalha dos sexos

- Quando o casal decide fazer programas diferentes
 - o fato de estarem sozinhos, mesmo estando em seus programas favoritos, não os satisfaz.
- 2: Quando vão juntos
 - apresentam certo de nível de satisfação só por estarem juntos o que é acrescido pela satisfação de eventualmente estarem em seus programas preferidos.

A batalha dos sexos

- Verificamos que ambos,
 - {Teatro, Teatro}, {Futebol, Futebol},
- equilíbrios de Nash, são a solução do jogo.
- Assim, embora ambos tenham preferências por lugares diferentes, eles preferem sair juntos ao invés de saírem separados.
- Conclusão:
 - Como o dilema dos prisioneiros, os jogadores ganham quando coordenam suas decisões.

Síntese

Os jogos são divertidos de se trabalhar (e perigosos) Eles ilustram vários pontos importantes sobre a IA

- A perfeição é inalcançável => deve aproximar-se
- Boa ideia para pensar sobre o que pensar
- A incerteza restringe a atribuição de valores aos estados

Os jogos são para a IA como o Grand Prix Racing é para o design de automóveis