VITMO

Machine learning technology for correcting electronic medical texts in Russian

Student: Dmitry Pogrebnoy, J42332c

Supervisor: Sergey Kovalchuk, PhD

- Many medical models based on patients' medical records
- Quality of models depends mainly on the quality of source texts
- Patient data is a plain text with many spelling errors
- Spelling errors greatly reduce the quality of the final models
- Fixing such errors will improve the quality of the medical models

Goal and tasks

<u>Goal:</u> Design a method and implement an automatic spelling correction tool for medical texts in Russian.

Tasks:

- Perform an overview of the Russian medical texts correction.
- Analyze existing solutions for correcting Russian texts.
- · Design a new method for correcting spelling errors.
- Design the architecture and implement a new spelling correction tool.
- Conduct approbation of the developed tool.
- Compare results of the developed tool and existing ones.

Type of mistake	Incorrect text	Correct text
Wrong characters	туб <mark>и</mark> ркулез	туб <u>е</u> ркулез
Missing characters	туб□ркулез	туб <u>е</u> ркулез
Extra characters	туберк <mark>п</mark> улез	туберкулез
Shuffled characters	туб <u>ре</u> кулез	туб <u>ер</u> кулез
Missing word separator	острый <mark>туберкулез</mark>	острый_туберкулез
Extra word separator	туб_еркулез	туберкулез

Existing tools

- There are several Russian open source tools
 - Aspell
 - Hunspell
 - Enchant
 - LanguageTool
 - Symspell
 - Jumspell
- Not one is intended for medical texts
- Not one uses advanced language models

VİTMO

Spelling correction process

Tool architecture

Anamneses dataset

- Public datasets
 - RuMedNLI 14716 records
 - RuMedPrimeData 15249 records
- Private datasets
 - Almazov National Medical Research Center 2355 records
 - Research Institute of the Russian Academy of Sciences 161 records
- All datasets were pre-processed and assembled into final one
 - Tokenization and lemmatization
 - Stop words filtering

Fine-tune BERT models

- sberbank-ai/ruRoberta-large → MedRuRobertaLarge
 - Size 1.4 Gb
- distilbert-base-multilang-cased → MedDistilBertBaseRuCased
 - Converted from multilang to Russian model
 - Size 217 Mb
- cointegrated/rubert-tiny2 → MedRuBertTiny2
 - Size 117 Mb
- All models are published on the Hugging Face repository
- RuBioBERT and RuBioBERTa were adapted for the tool

Method of tool use

- · Only for correction of medical texts in Russian
- Preferably use for medical anamneses
- Use in the preprocessing pipelines
- Use before any other preprocessing steps
- Make sure everything is okay afterwards

Example of correction

SymspellPy

Jumspell

Tool (MedDistilBERT)

Tool	Corrected Result
Original	тревожное расстройство (золофт) и <u>атопичекий</u> дерматит
Aspell-python	тревожное расстройство золота и тапочкой дерматит
PyHunspell	тревожное расстройство золото аи топический дерматит
PyEnchant	тревожное расстройство золото аи атипический дерматит
LanguageTool-python	тревожное расстройство (золото) и утопический дерматит
PvSpellChecker	тревожно расстройство (золофт) и атопичекий лерматит

I/İTMO

Word tests internals

- Single test error and lexical precision
 - 2700 test samples
- Context test error and lexical precision
 - 2700 test samples
 - 10 words in each sample
 - One of ten words is incorrect, other words are correct
 - Same incorrect words as in single test
- Test on real anamnesis
 - 100 real anamnesis from Almazov dataset
 - Count the correct and unnecessary corrections

Tool	Error precision	Lexical precision	Average precision	Average words per second
Aspell-python	0.86	0.859	0.859	283.7
PyHunspell	0.812	0.539	0.675	9.4
PyEnchant	0.829	0.541	0.685	20
LanguageTool-python	0.762	0.904	0.833	25.1
PySpellChecker	0.354	0.86	0.607	3.4
SymspellPy	0.399	0.813	0.606	9702.8
Jumspell	0.267	0.947	0.607	2552.1
Tool (CPU, MedDistilBERT)	0.701	0.991	0.846	12.7
Tool (GPU, MedDistilBERT)	0.701	0.991	0.046	39.7

Tool	Error precision	Lexical precision	Average precision	Average words per second
Aspell-python	0.739	0.93	0.835	357.3
PyHunspell	0.706	0.719	0.713	11.8
PyEnchant	0.721	0.719	0.72	24.3
LanguageTool-python	0.727	0.942	0.835	43.6
PySpellChecker	0.304	0.868	0.586	6.7
SymspellPy	0.37	0.913	0.642	26060.2
Jumspell	0.307	0.969	0.638	4322.3
Tool (CPU, MedDistilBERT)	0.765	0.99 0.878	0.878	45.5
Tool (GPU, MedDistilBERT)	0.765	0.99	0.676	153.8

Tool	Correct fixes	Unnecessary fixes	Fixes ratio
Aspell-python	20	171	0.105
PyHunspell	_	_	_
PyEnchant	_	_	_
LanguageTool-python	21	135	0.135
PySpellChecker	_	_	_
SymspellPy	_	_	_
Jumspell	_	_	_
Tool (MedRoBERTa)	19	6	0.76
Tool (MedDistilBERT)	18	9	0.667
Tool (MedBertTiny2)	17	11	0.607

Python package

- Assembled the pip python package
- Package contains
 - Source code
 - Dictionary with correct words
 - No models included
- Models are loaded dynamically as needed
- Published package name <u>medspellchecker</u>

Conclusion

- Overview of the Russian medical texts correction is performed.
- Existing solutions for correction of Russian texts are analyzed.
- The new method of correcting spelling errors is designed.
- The new spelling correction tool is designed and implemented.
- The approbation of the developed tool is conducted.
- Results of the developed tool and existing ones are compared.

The paper was accepted for the ICCS 2023 conference.

Links

GitHub project github.com/DmitryPogrebnoy/MedSpellChecker

Fine-tuned models huggingface.co/DmitryPogrebnoy

Pip package pypi.org/project/medspellchecker

Thank you for your attention!

ITSMOre than a UNIVERSITY

Metrics

- **Error precision** the ratio of the number of correctly corrected words to the total number of incorrect words
- **Lexical precision** the ratio of the number of unchanged modified words to the total number of correct words
- Average precision the average of error precision and lexical precision
- Performance the number of words processed by the tool per second

- Correct fixes the number of correctly fixed errors
- Unnecessary fixes the number of correct words corrected
- Fixes ratio the ratio of the correct fixes metric to the unnecessary fixes