컴퓨터비전 실습

실습6 | Moravec

실습과제 이루리 내 제출

CVMIPLAB @ KNU

문제

주어진 코드를 활용하여 "bucks.jpg" 파일을 **흑백으로** 읽은 뒤, Moravec Algorithm을 구현하세요.

요구 결과

Moravec::FindConfidenceMap 함수 안의 confidence_map에

마지막 페이지의 이미지와 같이 Moravec Algorithm를 적용하여 Edge를 검출하고 저장합니다.

결과 이미지는 "bucks_moravec.bmp" 파일로 저장합니다.

저장된 영상과 구현한 ".cpp" 총 2개의 파일을 압축하여 이루리 시스템에 제출합니다.

Moravec Algorithm

$$S(v,u) = \sum_{x} \sum_{x} w(y,x) (f(y+v,x+u) - f(y,x))^{2}$$
 (4.1)

			u					u					u	
		-1	0	1			-1	0	1			-1	0	1
v	0	3	4	4	v		3	1	6	v	-1	0	0	0
		2	0	2			3	0	4		0	0	0	0
		4	3	2			3	0	3		1	0	0	0
		a				b					c			

(b) 세 지점에서 S(v, u) 맵

그림 4-3 S(v, u) 맵

$$C = \min(S(0,1), S(0,-1), S(1,0), S(-1,0))$$

모라벡 알고리즘 Confidence

1

Moravec Algorithm

B에 Confidence를 계산하여 할당합니다.

$$S(v,u) = \sum_{y} \sum_{x} w(y,x) (f(y+v,x+u) - f(y,x))^{2}$$
 (4.1)

Moravec Algorithm

$$C = \min(S(0,1), S(0,-1), S(1,0), S(-1,0))$$

결과화면

