Topics in Macroeconomics

Lecture 6: Local Linear Methods for Solving Macroeconomic Models

Diego de Sousa Rodrigues de_sousa_rodrigues.diego@uqam.ca

ESG-UQAM

Fall 2025

Road Map

- 1. Local approximation methods.
- 2. Log-linearisation and linearisation.
- 3. Solving systems of (stochastic) difference equations:
 - Blanchard and Kahn (1980) method.
 - Uhlig (1999) method.
 - Christiano (2002) method.

A Generic DSGE Model

Model setup:

$$U = \max_{\{x_t, y_t\}} E_0 \sum_{t=0}^{\infty} \beta^t u(x_t, y_t),$$

subject to

$$x_t = g(x_{t-1}, y_t, z_t)$$
 (or $x_{t+1} = g(x_t, y_t, z_t)$).
 $z_t = f(z_{t-1}, \varepsilon_t), \quad \varepsilon_t \sim i.i.d.$ (0, Σ).

with x_{-1} (or x_0) and z_0 given.

Notation:

- $ightharpoonup x_t$: vector of endogenous state variables $(m \times 1)$.
- \triangleright z_t : vector of exogenous state variables (e.g. shocks).
- \triangleright y_t : vector of other endogenous (control) variables $(n \times 1)$.

Deriving Equilibrium and Solving the Model

- 1. Write the **Lagrangian**.
- 2. Take the first-order conditions (FOCs).
- 3. Collect all other equations (market-clearing, policy rules, etc.).
- 4. Obtain a system of ν stochastic difference equations in ν variables.

Characteristics:

- Highly non-linear and stochastic in general.
- DSGE models typically involve many endogenous and state variables.
- ▶ Hence, global solution methods become computationally costly.
- We therefore rely on local linear approximation methods.

First-Order Approximation: Log-linearisation

Goal: Obtain a linear (stochastic) system around a deterministic steady state.

Steps:

- 1. Identify all equilibrium conditions (FOCs, budget/resource, market clearing, policy rules).
- 2. Compute steady states for all variables (deterministic; may be non-trivial).
- 3. For any variable x_t , define the log-deviation:

$$\hat{x}_t \equiv \log\left(\frac{x_t}{\bar{x}}\right) \approx \frac{x_t - \bar{x}}{\bar{x}} \quad \Rightarrow \quad x_t = \bar{x} e^{\hat{x}_t}.$$

4. Replace each x_t in every equation by $\bar{x} e^{\hat{x}_t}$.

Remark: Log-deviations are unit-free and convenient when steady states are strictly positive.

First-Order Approximation: Log-linearisation (cont.)

Linearise the nonlinear terms:

$$e^{\hat{x}_t} pprox 1 + \hat{x}_t$$
 (first-order Taylor).

Collect terms:

- Use steady-state relationships to cancel constants.
- ► Keep only first-order terms in \hat{x}_t 's.

Outcome: Each equilibrium condition becomes linear and homogeneous in the log-deviations.

Stack into a linear system of (stochastic) difference equations. Typical representation after log-linearisation:

$$\hat{x}_t = P \, \hat{x}_{t-1} + Q \, \hat{z}_t, \qquad \hat{y}_t = R \, \hat{x}_{t-1} + S \, \hat{z}_t, \qquad \hat{z}_t = N \, \hat{z}_{t-1} + \varepsilon_t.$$

Here \hat{x}_t (states), \hat{y}_t (controls), \hat{z}_t (exogenous shocks).

First-Order Approximation: Linearisation (levels)

Alternative: Linearise in levels (not logs) using

$$\tilde{x}_t \equiv x_t - \bar{x}, \qquad f(x_t) \approx f(\bar{x}) + f'(\bar{x}) \, \tilde{x}_t,$$

or for multi-variate g:

$$g(x_t^1, x_t^2) \approx g(\bar{x}^1, \bar{x}^2) + g_1(\bar{x}^1, \bar{x}^2) \, \tilde{x}_t^1 + g_2(\bar{x}^1, \bar{x}^2) \, \tilde{x}_t^2.$$

When prefer levels?

- Variables with zero (or possibly negative) steady states (e.g., inflation deviations).
- Situations where log-linearisation is ill-defined.

Key point: Dynamic properties from linearisation vs. log-linearisation are typically similar; choice is driven by convenience and feasibility (positivity of steady states).

Example: Stochastic Growth Model

Model:

$$\max_{\{k_t,c_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \ln c_t,$$

subject to

$$k_t = z_t k_{t-1}^{\alpha} - c_t, \qquad k_t, c_t \ge 0, \quad k_0 \text{ given},$$

and the stochastic process for technology:

$$\log z_{t+1} = (1-
ho)\log \bar{z} +
ho\log z_t + \eta_t, \qquad \eta_t \sim \mathcal{N}(0,\sigma^2), \ i.i.d.$$

State variables: endogenous k_{t-1} and exogenous z_t .

Equilibrium conditions:

$$\lambda_t = \frac{1}{c_t}, \qquad \lambda_t = \alpha \beta E_t [\lambda_{t+1} z_{t+1} k_t^{\alpha - 1}],$$
$$k_t = y_t - c_t, \qquad y_t = z_t k_{t-1}^{\alpha}.$$

Steady State of the Stochastic Growth Model

Start from the model:

$$\max_{\{c_t, k_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \ln c_t \quad \text{s.t.} \quad k_t = z_t k_{t-1}^{\alpha} - c_t, \quad \log z_{t+1} = (1 - \rho) \log \bar{z} + \rho \log z_t + \eta_t.$$

At the deterministic steady state $(z_t = \bar{z} = 1 \text{ and } k_t = k_{t-1} = \bar{k})$:

$$\bar{k} = \bar{k}^{\alpha} - \bar{c}, \qquad 1 = \alpha \beta \bar{k}^{\alpha - 1}.$$

From these.

$$rac{ar{c}}{ar{k}} = ar{k}^{lpha-1} - 1 \quad \Rightarrow \quad rac{ar{y}}{ar{k}} = ar{k}^{lpha-1} = rac{1}{lphaeta}.$$

Normalization: take $\bar{z} = 1$ to simplify log-deviations.

Preliminaries: Log-Deviations and First-Order Rules

For any variable x_t with steady state $\bar{x} > 0$, define the log-deviation:

$$\hat{x}_t \equiv \log\left(\frac{x_t}{\bar{x}}\right).$$

First-order (FO) approximations around steady state:

- Products: $\widehat{ab} \approx \hat{a} + \hat{b}$.
- Powers: $\widehat{a^{\gamma}} \approx \gamma \, \hat{a}$.
- ► Ratios: $\widehat{a/b} \approx \hat{a} \hat{b}$.
- ► Sums (level linearisation with shares):

$$x_t = \sum_i \xi_t^{(i)} \quad \Rightarrow \quad \hat{x}_t \approx \sum_i \frac{\bar{\xi}^{(i)}}{\bar{x}} \hat{\xi}^{(i)}.$$

Cross-products of hats are second order and are dropped.

Derivation 1: $\lambda_t = \frac{1}{c_t} \implies \hat{\lambda}_t = -\hat{c}_t$

Start from
$$\lambda_t = \frac{1}{c_t}$$
 with steady states $\bar{\lambda} = \frac{1}{\bar{c}}$.

$$\frac{\lambda_t}{\bar{\lambda}} = \frac{1/c_t}{1/\bar{c}} = \frac{\bar{c}}{c_t} \quad \Rightarrow \quad \hat{\lambda}_t = \log\left(\frac{\lambda_t}{\bar{\lambda}}\right) = \log\left(\frac{\bar{c}}{c_t}\right) = -\log\left(\frac{c_t}{\bar{c}}\right) = -\hat{c}_t.$$

Derivation 2: Euler Equation (Step by Step)

Euler: $\lambda_t = \alpha \beta \, E_t [\lambda_{t+1} z_{t+1} k_t^{\alpha-1}]$. At steady state: $\bar{\lambda} = \alpha \beta \, \bar{\lambda} \, \bar{z} \, \bar{k}^{\alpha-1}$ (holds by SS conditions).

Divide by steady-state and use FO rules:

$$\frac{\lambda_t}{\bar{\lambda}} = E_t \left[\frac{\lambda_{t+1}}{\bar{\lambda}} \cdot \frac{z_{t+1}}{\bar{z}} \cdot \left(\frac{k_t}{\bar{k}} \right)^{\alpha - 1} \right] \approx E_t \left[\exp \left(\hat{\lambda}_{t+1} + \hat{z}_{t+1} + (\alpha - 1)\hat{k}_t \right) \right].$$

Taking a first-order (log) approximation around the SS and using that expectations of products reduce to sums at first order:

$$\hat{\lambda}_t \approx E_t \hat{\lambda}_{t+1} + E_t \hat{z}_{t+1} + (\alpha - 1) \hat{k}_t.$$

Using the AR(1): $E_t \hat{z}_{t+1} = \rho \hat{z}_t$ and $(\alpha - 1) = -(1 - \alpha)$:

$$\hat{\lambda}_t \approx E_t \hat{\lambda}_{t+1} + \rho \hat{z}_t - (1-\alpha)\hat{k}_t.$$

Derivation 3: Resource Constraint $k_t = y_t - c_t$

Level perturbation around $(\bar{k}, \bar{y}, \bar{c})$ with $\bar{k} = \bar{y} - \bar{c}$:

$$k_t = y_t - c_t \ \Rightarrow \ ar{k}(1+\hat{k}_t) \ pprox \ ar{y}(1+\hat{y}_t) - ar{c}(1+\hat{c}_t).$$

Cancel steady-state levels and ignore second-order terms:

$$\bar{k} \; \hat{k}_t \; pprox \; \bar{y} \; \hat{y}_t \; - \; \bar{c} \; \hat{c}_t \quad \Rightarrow \quad \left[\; \hat{k}_t \; = \; rac{\bar{y}}{\bar{k}} \; \hat{y}_t \; - \; rac{\bar{c}}{\bar{k}} \; \hat{c}_t. \;
ight]$$

Interpretation: The elasticities (coefficients) are steady-state shares.

Derivation 4: Production $y_t = z_t k_{t-1}^{\alpha}$

Apply the product and power rules:

$$\widehat{y}_t = \widehat{z}_t + \widehat{k_{t-1}^{\alpha}} \approx \widehat{z}_t + \alpha \widehat{k}_{t-1}.$$

$$\hat{y}_t \approx \alpha \, \hat{k}_{t-1} + \hat{z}_t.$$

Derivation 5: Technology Shock

Given
$$\log z_{t+1} = (1-\rho)\log \bar{z} + \rho\log z_t + \eta_t$$
 with $\bar{z}=1$:
$$\hat{z}_{t+1} = \rho\,\hat{z}_t + \eta_t.$$

This immediately implies $E_t \hat{z}_{t+1} = \rho \hat{z}_t$ used in the Euler derivation.

Collected First-Order Relationships (to be stacked next)

$$\begin{split} \hat{\lambda}_t &= -\hat{c}_t, \qquad \hat{\lambda}_t = E_t \hat{\lambda}_{t+1} + \rho \, \hat{z}_t - (1 - \alpha) \hat{k}_t, \\ \hat{k}_t &= \frac{\overline{y}}{\overline{k}} \, \hat{y}_t - \frac{\overline{c}}{\overline{k}} \, \hat{c}_t, \qquad \hat{y}_t \approx \alpha \, \hat{k}_{t-1} + \hat{z}_t, \\ \hat{z}_{t+1} &= \rho \, \hat{z}_t + \eta_t. \end{split}$$

Log-linearising the Stochastic Growth Model

Step 1: Take logs around the deterministic steady state ($\bar{z} = 1$).

Step 2: Express deviations from steady state:

$$\hat{x}_t = \log\left(\frac{x_t}{\bar{x}}\right)$$
.

Approximate each equation:

$$\lambda_{t} = \frac{1}{c_{t}} \Rightarrow \hat{\lambda}_{t} \approx -\hat{c}_{t},$$

$$\lambda_{t} = \alpha \beta E_{t}[\lambda_{t+1} z_{t+1} k_{t}^{\alpha-1}] \Rightarrow \hat{\lambda}_{t} \approx E_{t} \hat{\lambda}_{t+1} + \rho \hat{z}_{t} - (1 - \alpha) \hat{k}_{t},$$

$$k_{t} = y_{t} - c_{t} \Rightarrow \hat{k}_{t} \approx \frac{\bar{y}}{\bar{k}} \hat{y}_{t} - \frac{\bar{c}}{\bar{k}} \hat{c}_{t},$$

$$y_{t} = z_{t} k_{t-1}^{\alpha} \Rightarrow \hat{y}_{t} \approx \alpha \hat{k}_{t-1} + \hat{z}_{t},$$

$$\hat{z}_{t+1} = \rho \hat{z}_{t} + \eta_{t}.$$

Result: A system of linear stochastic difference equations describing log-deviations from steady state.

Step 1 — Linearised System and Steady-State Shares

Linearised equilibrium conditions:

$$(i) \hat{\lambda}_{t} = -\hat{c}_{t},$$

$$(ii) \hat{\lambda}_{t} = E_{t} \hat{\lambda}_{t+1} + \rho \hat{z}_{t} - (1 - \alpha) \hat{k}_{t},$$

$$(iii) \hat{k}_{t} = \frac{\bar{y}}{\bar{k}} \hat{y}_{t} - \frac{\bar{c}}{\bar{k}} \hat{c}_{t},$$

$$(iv) \hat{y}_{t} = \alpha \hat{k}_{t-1} + \hat{z}_{t},$$

$$(v) \hat{z}_{t+1} = \rho \hat{z}_{t} + \eta_{t} \Rightarrow E_{t} \hat{z}_{t+1} = \rho \hat{z}_{t}.$$

Steady-state relationships:

$$rac{ar{y}}{ar{k}} = rac{1}{lphaeta}, \qquad rac{ar{c}}{ar{k}} = rac{1}{lphaeta} - 1.$$

Define shares $s_y = \frac{\bar{y}}{k} = \frac{1}{\alpha\beta}$, $s_c = s_y - 1$.

Step 2 — Eliminate $\hat{\lambda}_t$

From (i) and (ii):

$$-\hat{c}_t = -E_t \hat{c}_{t+1} + \rho \hat{z}_t - (1-\alpha)\hat{k}_t.$$

Rearranging gives:

$$\hat{c}_t = E_t \hat{c}_{t+1} - \rho \hat{z}_t + (1 - \alpha) \hat{k}_t.$$
 (E1)

This Euler equation now links current and expected future consumption to the capital stock and technology.

Step 3 — Express \hat{c}_t in terms of \hat{k}_{t-1} , \hat{k}_t , and \hat{z}_t

Use (iii) and (iv):

$$\hat{k}_t = s_y(\alpha \hat{k}_{t-1} + \hat{z}_t) - s_c \hat{c}_t.$$

Solve for \hat{c}_t :

$$\hat{c}_t = \frac{s_y}{s_c} (\alpha \hat{k}_{t-1} + \hat{z}_t) - \frac{1}{s_c} \hat{k}_t.$$
 (C_t)

This expresses current consumption as a weighted combination of past capital, current technology, and the current capital stock.

Step 4 — Compute $E_t \hat{c}_{t+1}$

The same relationship one period ahead:

$$\hat{k}_{t+1} = s_y(\alpha \hat{k}_t + \hat{z}_{t+1}) - s_c \hat{c}_{t+1}.$$

Taking expectations and using $E_t \hat{z}_{t+1} = \rho \hat{z}_t$:

$$E_t \hat{c}_{t+1} = \frac{s_y}{s_c} (\alpha \hat{k}_t + \rho \hat{z}_t) - \frac{1}{s_c} E_t \hat{k}_{t+1}.$$
 (C_{t+1})

We now have both \hat{c}_t and $E_t\hat{c}_{t+1}$ in terms of \hat{k}_{t-1} , \hat{k}_t , $E_t\hat{k}_{t+1}$, and \hat{z}_t .

Step 5 — Substitute (C_t) and (C_{t+1}) into (E1)

Substitute into $\hat{c}_t = E_t \hat{c}_{t+1} - \rho \hat{z}_t + (1 - \alpha) \hat{k}_t$:

$$\frac{s_y}{s_c}(\alpha \hat{k}_{t-1} + \hat{z}_t) - \frac{1}{s_c} \hat{k}_t = \frac{s_y}{s_c}(\alpha \hat{k}_t + \rho \hat{z}_t) - \frac{1}{s_c} E_t \hat{k}_{t+1} - \rho \hat{z}_t + (1 - \alpha) \hat{k}_t.$$

Multiply by s_c :

$$s_y(\alpha \hat{k}_{t-1} + \hat{z}_t) - \hat{k}_t = s_y(\alpha \hat{k}_t + \rho \hat{z}_t) - E_t \hat{k}_{t+1} - s_c \rho \hat{z}_t + s_c (1 - \alpha) \hat{k}_t.$$

Step 6 — Collect Terms and Obtain the Final Equation

Rearranging terms gives:

$$E_t \hat{k}_{t+1} + \left[-1 - s_y \alpha - s_c (1 - \alpha) \right] \hat{k}_t + s_y \alpha \hat{k}_{t-1} + \left[s_y + \rho (s_c - s_y) \right] \hat{z}_t = 0.$$

Using $s_y = \frac{1}{\alpha\beta}$ and $s_c = s_y - 1$, simplify:

$$(1 + \alpha^2 \beta) \hat{k}_t = \alpha \beta E_t \hat{k}_{t+1} + \alpha \hat{k}_{t-1} + (1 - \rho \alpha \beta) \hat{z}_t.$$

This is the single expectational difference equation governing the law of motion for capital after linearisation.

Example: Stochastic Growth Model — Solving by Hand

From the linearised system (using $\hat{\lambda}_t = -\hat{c}_t$, $\hat{y}_t = \alpha \hat{k}_{t-1} + \hat{z}_t$, and shares in the resource constraint), one can eliminate \hat{c}_t , \hat{y}_t , $\hat{\lambda}_t$ to get a single expectational difference equation in \hat{k}_t :

$$(1+\alpha^2\beta)\,\hat{k}_t = \alpha\beta\,E_t\hat{k}_{t+1} + \alpha\,\hat{k}_{t-1} + (1-\rho\,\alpha\beta)\,\hat{z}_t.$$

Sketch of steps:

- 1. Euler: $\hat{\lambda}_t = E_t \hat{\lambda}_{t+1} + \rho \hat{z}_t (1-\alpha)\hat{k}_t$ and $\hat{\lambda}_t = -\hat{c}_t$.
- 2. Production: $\hat{y}_t = \alpha \hat{k}_{t-1} + \hat{z}_t$.
- 3. Resource: $\hat{k}_t = \frac{\bar{y}}{k} \hat{y}_t \frac{\bar{c}}{k} \hat{c}_t$ (use steady-state shares).
- 4. Substitute to eliminate \hat{c}_t, \hat{y}_t and collect terms in $\hat{k}_{t-1}, \hat{k}_t, E_t \hat{k}_{t+1}, \hat{z}_t$.

This yields a second-order (in time) linear stochastic difference equation in the state \hat{k}_t .

Undetermined Coefficients: Guess and Solve

Postulate a linear law of motion for capital:

$$\hat{k}_t = \phi_1 \, \hat{k}_{t-1} + \phi_2 \, \hat{z}_t \quad \Rightarrow \quad E_t \hat{k}_{t+1} = \phi_1 \, \hat{k}_t + \phi_2 \, \rho \, \hat{z}_t.$$

Substitute the guess into $(1 + \alpha^2 \beta)\hat{k}_t = \alpha \beta E_t \hat{k}_{t+1} + \alpha \hat{k}_{t-1} + (1 - \rho \alpha \beta)\hat{z}_t$ and equate coefficients on \hat{k}_{t-1} and \hat{z}_t . After algebra:

$$\hat{k}_t = rac{lpha}{1+lpha^2eta-lphaeta\phi_1}\,\hat{k}_{t-1} \ + \ rac{lphaeta
ho\phi_2+(1-lphaeta
ho)}{1+lpha^2eta-lphaeta\phi_1}\,\hat{z}_t.$$

Matching coefficients gives the solutions

$$\phi_1 \in \left\{ \alpha, \ \frac{1}{\alpha \beta} \right\}, \qquad \phi_2 = \begin{cases} 1, & \text{if } \phi_1 = \alpha, \\ \frac{1 - \alpha \beta \rho}{\alpha^2 \beta - \alpha \beta \rho}, & \text{if } \phi_1 = \frac{1}{\alpha \beta}. \end{cases}$$

Example: Stochastic Growth Model — Solving for ϕ_1 and ϕ_2

We have the general law of motion postulated as:

$$\hat{k}_t = \phi_1 \, \hat{k}_{t-1} + \phi_2 \, \hat{z}_t, \qquad E_t \hat{k}_{t+1} = \phi_1 \, \hat{k}_t + \phi_2 \, \rho \, \hat{z}_t.$$

Substitute into the expectational difference equation:

$$(1 + \alpha^2 \beta)\hat{k}_t = \alpha \beta E_t \hat{k}_{t+1} + \alpha \hat{k}_{t-1} + (1 - \rho \alpha \beta)\hat{z}_t.$$

After substituting and collecting coefficients, we obtain:

$$\hat{k}_t = \frac{\alpha}{1 + \alpha^2 \beta - \alpha \beta \phi_1} \hat{k}_{t-1} + \frac{\alpha \beta \rho \phi_2 + (1 - \alpha \beta \rho)}{1 + \alpha^2 \beta - \alpha \beta \phi_1} \hat{z}_t.$$

Matching coefficients with $\hat{k}_t = \phi_1 \hat{k}_{t-1} + \phi_2 \hat{z}_t$, we find:

$$\phi_1 = \frac{\alpha}{1 + \alpha^2 \beta - \alpha \beta \phi_1},$$

$$\phi_2 = \frac{\alpha \beta \rho \phi_2 + (1 - \alpha \beta \rho)}{1 + \alpha^2 \beta - \alpha \beta \phi_1}.$$

Selecting the Stable Solution and Implications

Solving for ϕ_1 and ϕ_2 from the previous system gives two possible roots:

$$\phi_1 \in \{\alpha, 1/(\alpha\beta)\}, \qquad \phi_2 = \begin{cases} 1, & \text{if } \phi_1 = \alpha, \\ \frac{1 - \alpha\beta\rho}{\alpha^2\beta - \alpha\beta\rho}, & \text{if } \phi_1 = \frac{1}{\alpha\beta}. \end{cases}$$

Stability condition: since $0 < \alpha, \beta < 1$, the stable (non-explosive) root is

$$\phi_1 = \alpha, \quad \phi_2 = 1.$$

Hence:

$$\hat{k}_t = \alpha \, \hat{k}_{t-1} + \hat{z}_t.$$

Other variables:

$$\hat{y}_t = \alpha \hat{k}_{t-1} + \hat{z}_t, \qquad \hat{c}_t = \alpha \hat{k}_{t-1} + \hat{z}_t.$$

Interpretation: A positive productivity shock \hat{z}_t increases output, consumption, and capital next period — the response is persistent due to α , but the system is stable.

Comments and Transition

Summary of the example:

- The stochastic growth model was log-linearised and solved using the method of undetermined coefficients.
- ▶ We obtained a stable solution for capital:

$$\hat{k}_t = \alpha \, \hat{k}_{t-1} + \hat{z}_t,$$

implying persistence but stationarity of the system.

The same structure applies to output and consumption:

$$\hat{y}_t = \alpha \, \hat{k}_{t-1} + \hat{z}_t, \qquad \hat{c}_t = \alpha \, \hat{k}_{t-1} + \hat{z}_t.$$

Remarks:

- Local (first-order) methods provide simple linear laws of motion.
- ▶ However, many DSGE models are *larger systems* of linear difference equations involving expectations.
- We now study general solution methods for such systems: Blanchard and Kahn (1980), Uhlig (1999), Christiano (2002).

Blanchard-Kahn Method

General setup: Write the system of linear difference equations as:

$$A\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = B\begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + C \hat{z}_t.$$

Assuming A is invertible, pre-multiply by A^{-1} :

$$\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = F \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + G \hat{z}_t, \qquad F = A^{-1}B, \ G = A^{-1}C.$$

Eigenvalue decomposition:

$$F=HJH^{-1}=egin{bmatrix} v_1 & \cdots & v_{n+m} \end{bmatrix} egin{bmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_{n+m} \end{bmatrix} egin{bmatrix} v_1 & \cdots & v_{n+m} \end{bmatrix}^{-1}.$$

Eigenvalues ordered so that $|\lambda_1| < |\lambda_2| < \cdots < |\lambda_{n+m}|$, and v_i are the corresponding eigenvectors.

Blanchard-Kahn Method: Existence and Uniqueness

Let h be the number of eigenvalues in J that lie *outside* the unit circle $(|\lambda_i| > 1)$.

Proposition — Blanchard and Kahn (1980):

- 1. If h = n, the system of stochastic difference equations has a **unique solution**.
- 2. If h > n, the system has **no solution**.
- 3. If h < n, the system has **infinitely many solutions**.

Interpretation:

- n is the number of non-predetermined (jump) variables e.g., prices, consumption, or inflation.
- ▶ We require one unstable root (eigenvalue >1) for each jump variable.
- When this holds, the model satisfies saddle-path stability.

Intuition Behind the Blanchard-Kahn Conditions

1. Predetermined vs. Jump variables

- Predetermined (state) variables: known at time t (e.g., capital stock).
- ▶ Jump (control) variables: chosen optimally at t to ensure convergence (e.g., consumption, prices).

2. Dynamics and stability

- \triangleright Each eigenvalue λ_i describes how a linear combination of variables evolves.
- ▶ If $|\lambda_i| < 1$: stable root : variable converges automatically.
- If $|\lambda_i| > 1$: unstable root : diverges unless the initial value of a jump variable is chosen to offset it.

3. Saddle-path logic

- ▶ The model is *well-behaved* when there are exactly as many unstable roots as jump variables.
- Jump variables adjust immediately so the economy remains on the unique stable path.
- ▶ Too few unstable roots : indeterminacy (many paths). Too many : no feasible path.

From (A, B, C) to (F, G) and the Eigen-Basis

Starting point:

$$A\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = B\begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + C \hat{z}_t, \qquad A \text{ invertible.}$$

Step 1 — Pre-multiply by A^{-1} :

$$\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = F \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + G \hat{z}_t, \qquad F := A^{-1}B, \ G := A^{-1}C.$$

Step 2 — Spectral decomposition of F:

$$F = HJH^{-1}$$

where H collects (generalised) eigenvectors of F and J is (block-)diagonal with eigenvalues ordered so that those with $|\lambda| < 1$ come first (stable), and those with $|\lambda| > 1$ last (unstable).

Goal: Change coordinates to the eigen-basis so the dynamics decouple along eigen-directions.

Change of Variables and Decoupling

Step 3 — Define transformed variables:

$$\begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix} := H^{-1} \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix}, \qquad \begin{bmatrix} \tilde{x}_t \\ E_t \tilde{y}_{t+1} \end{bmatrix} := H^{-1} \begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix}.$$

Step 4 — Substitute the definitions into $\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = F \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + G\hat{z}_t$:

$$H\begin{bmatrix} \tilde{x}_t \\ E_t \tilde{y}_{t+1} \end{bmatrix} = F H\begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix} + G \hat{z}_t.$$

Left-multiply by H^{-1} and use $F = HJH^{-1}$:

$$\begin{bmatrix} \tilde{x}_t \\ E_t \tilde{y}_{t+1} \end{bmatrix} = J \begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix} + V \hat{z}_t, \qquad V := H^{-1}G.$$

Blanchard-Kahn Method: Change of Variables

When a unique solution exists (h = n), we can solve the system:

$$\begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix} = F \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} + G \hat{z}_t.$$

Step 1 — Change of variables:

$$\begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix} = H^{-1} \begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix}, \qquad \begin{bmatrix} \tilde{x}_t \\ E_t \tilde{y}_{t+1} \end{bmatrix} = H^{-1} \begin{bmatrix} \hat{x}_t \\ E_t \hat{y}_{t+1} \end{bmatrix}.$$

Step 2 — Substitute into the system:

$$egin{bmatrix} ilde{x}_t \ ilde{E}_t ilde{y}_{t+1} \end{bmatrix} = J egin{bmatrix} ilde{x}_{t-1} \ ilde{y}_t \end{bmatrix} + V \hat{z}_t, \qquad ext{where } V = H^{-1}G.$$

Matrix J is diagonal, with eigenvalues ordered so that those inside the unit circle correspond to the stable subsystem.

Blanchard-Kahn Method: Partitioning the System

Partition the diagonal matrix J and vectors as:

$$\begin{bmatrix} \tilde{x}_t \\ E_t \tilde{y}_{t+1} \end{bmatrix} = \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix} \begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix} + \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \hat{z}_t.$$

Interpretation:

- ▶ J_1 : eigenvalues $|\lambda_i| < 1$ stable subsystem (predetermined variables).
- ▶ J_2 : eigenvalues $|\lambda_i| > 1$ unstable subsystem (forward-looking variables).

Stable subsystem:

$$\tilde{x}_t = J_1 \tilde{x}_{t-1} + V_1 \hat{z}_t.$$

Unstable subsystem:

$$E_t \tilde{y}_{t+1} = J_2 \tilde{y}_t + V_2 \hat{z}_t.$$

These two blocks decouple the dynamics of predetermined and jump variables — only one unique trajectory keeps the unstable subsystem bounded.

Blanchard-Kahn Method: Forward Iteration

Starting from the partitioned system:

$$\tilde{x}_t = J_1 \tilde{x}_{t-1} + V_1 \hat{z}_t,$$

$$E_t \tilde{y}_{t+1} = J_2 \tilde{y}_t + V_2 \hat{z}_t.$$

Step 1 — Forward iteration on the second block:

$$E_t \tilde{y}_{t+1} = J_2 \tilde{y}_t + V_2 \hat{z}_t \Rightarrow \tilde{y}_t = J_2^{-1} E_t \tilde{y}_{t+1} - J_2^{-1} V_2 \hat{z}_t.$$

Step 2 — Iterate forward repeatedly:

$$\tilde{y}_{t+1} = J_2^{-1} E_{t+1} \tilde{y}_{t+2} - J_2^{-1} V_2 \hat{z}_{t+1},$$

and taking expectations gives

$$E_t \tilde{y}_{t+1} = J_2^{-1} E_t \tilde{y}_{t+2} - J_2^{-1} V_2 E_t \hat{z}_{t+1}.$$

Step 3 — Continuing forward iterations: since $|\lambda_i(J_2)| > 1$, the only bounded (non-explosive) solution is

$$\tilde{y}_t = -J_2^{-1}V_2\hat{z}_t.$$

Blanchard-Kahn Method: Recovering the Original Variables

From the transformed system:

$$\tilde{x}_t = J_1 \tilde{x}_{t-1} + V_1 \hat{z}_t, \qquad \tilde{y}_t = -J_2^{-1} V_2 \hat{z}_t.$$

Return to the original variables:

$$\begin{bmatrix} \hat{x}_{t-1} \\ \hat{y}_t \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} \tilde{x}_{t-1} \\ \tilde{y}_t \end{bmatrix}.$$

Interpretation:

- ► The transformation *H* maps the decoupled (stable/unstable) coordinates back to the model's original variables.
- ▶ The system can now be solved using standard methods for uncoupled difference equations.
- ▶ Once \tilde{x}_t and \tilde{y}_t are known, we recover \hat{x}_t , \hat{y}_t via this inverse mapping.

Conclusion: The Blanchard–Kahn procedure delivers a unique, stable trajectory for the economy if and only if the number of unstable eigenvalues equals the number of jump variables.

Interest Rule in a New Keynesian Model

Log-linearised NK model:

$$\pi_t = \kappa x_t + \beta E_t \pi_{t+1}$$
 (New Keynesian Phillips Curve)
$$x_t = E_t x_{t+1} - \frac{1}{\gamma} (i_t - E_t \pi_{t+1}) + \varepsilon_t^{\mathsf{x}} \qquad \text{(IS curve)}$$
 $i_t = \rho_r \, i_{t-1} + \varepsilon_t \qquad \text{(Policy rule)}$

Matrix form:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{\gamma} & 1 & \frac{1}{\gamma} \\ 0 & 0 & \beta \end{bmatrix}}_{A} \begin{bmatrix} i_t \\ E_t x_{t+1} \\ E_t \pi_{t+1} \end{bmatrix} = \underbrace{\begin{bmatrix} \rho_r & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\kappa & 1 \end{bmatrix}}_{B} \begin{bmatrix} i_{t-1} \\ x_t \\ \pi_t \end{bmatrix} + \underbrace{\begin{bmatrix} \varepsilon_t \\ -\varepsilon_t^{\mathsf{x}} \\ 0 \end{bmatrix}}_{C\varepsilon_t \text{ (stacked shocks)}}$$

(Here we've stacked shocks as ε_t and ε_t^x for compactness.)

Pre-multiplying and (In)determinacy

Pre-multiply by A^{-1} :

$$\begin{bmatrix} i_t \\ E_t x_{t+1} \\ E_t \pi_{t+1} \end{bmatrix} = W \begin{bmatrix} i_{t-1} \\ x_t \\ \pi_t \end{bmatrix} + A^{-1} \begin{bmatrix} \varepsilon_t \\ -\varepsilon_t^{\mathsf{x}} \\ 0 \end{bmatrix}, \qquad W := A^{-1}B.$$

Closed-form W:

$$W = egin{bmatrix}
ho_r & 0 & 0 \ rac{
ho_r}{\gamma} & 1 + rac{\kappa}{eta\gamma} & -rac{1}{eta\gamma} \ 0 & -rac{\kappa}{eta} & rac{1}{eta} \end{bmatrix}.$$

BK check (from the PDF): This system is *indeterminate*: there is only **one** eigenvalue outside the unit circle but **two** forward-looking (non-predetermined) variables $(x_t \text{ and } \pi_t)$.

$$\#\{|\lambda|>1\}=1$$
 < $n=2$ \Rightarrow infinitely many solutions.

Computing Eigenvalues of the System Matrix W

We obtained:

$$W = egin{bmatrix}
ho_r & 0 & 0 \ rac{
ho_r}{\gamma} & 1 + rac{\kappa}{eta\gamma} & -rac{1}{eta\gamma} \ 0 & -rac{\kappa}{eta} & rac{1}{eta} \end{bmatrix}.$$

Goal: Find eigenvalues λ_i solving

$$\det(W-\lambda I_3)=0.$$

Computing Eigenvalues of the System Matrix W (Cont.)

Steps:

1. Construct the characteristic polynomial:

$$egin{array}{c|c}
ho_r-\lambda & 0 & 0 \ rac{
ho_r}{\gamma} & 1+rac{\kappa}{eta\gamma}-\lambda & -rac{1}{eta\gamma} \ 0 & -rac{\kappa}{eta} & rac{1}{eta}-\lambda \ \end{array} = 0.$$

2. Expand the determinant (here, the first row simplifies):

$$(
ho_r - \lambda) \Big[\Big(1 + rac{\kappa}{eta \gamma} - \lambda \Big) \Big(rac{1}{eta} - \lambda \Big) - rac{\kappa}{eta^2 \gamma} \Big] = 0.$$

3. Hence, one eigenvalue is $|\lambda_1=
ho_r|$, and the other two satisfy the quadratic:

$$\left(1 + \frac{\kappa}{\beta \gamma} - \lambda\right) \left(\frac{1}{\beta} - \lambda\right) - \frac{\kappa}{\beta^2 \gamma} = 0.$$

Interpreting the Eigenvalues

Step 1 — Solve the quadratic:

$$\lambda_{2,3} = \frac{1}{2} \left[\left(1 + \frac{\kappa}{\beta \gamma} + \frac{1}{\beta} \right) \pm \sqrt{\left(1 + \frac{\kappa}{\beta \gamma} + \frac{1}{\beta} \right)^2 - 4 \left(\frac{1 + \frac{\kappa}{\beta \gamma}}{\beta} - \frac{\kappa}{\beta^2 \gamma} \right)} \right].$$

Step 2 — Numerical example: For typical NK parameters ($\beta=0.99,\ \kappa=0.1,\ \gamma=1,\ \rho_r=0.7$):

$$\lambda_1 \approx 0.7$$
, $\lambda_2 \approx 0.98$, $\lambda_3 \approx 1.03$.

Interpretation:

- One root ($\lambda_1 = 0.7$) corresponds to the policy rule (interest-rate smoothing).
- ► Two roots relate to the forward-looking IS and Phillips-curve block.
- Only one eigenvalue > 1 (explosive) \Rightarrow one jump variable can stabilize it, but we have *two* jump variables (x_t, π_t) .
- Therefore, the system is indeterminate: multiple equilibrium paths satisfy expectations consistency.

Economic intuition: Monetary policy is too passive — the Taylor principle is not satisfied strongly enough to pin down a unique equilibrium.

Baseline RBC Model (Intro)

Environment and objects:

- Endogenous: y_t (output), c_t (consumption), k_t (capital), i_t (investment), h_t (hours), r_t (interest/MPK), z_t (TFP).
- Parameters: β (discount), δ (depreciation), θ (capital share), ψ (leisure weight), ρ (TFP persistence), σ (TFP shock s.d.).

Technology and resource constraints:

$$y_t = k_{t-1}^{\theta} (e^{z_t} h_t)^{1-\theta}, \qquad c_t + i_t = y_t, \qquad i_t = k_t - (1-\delta) k_{t-1}.$$

Baseline RBC Model (Cont.)

Optimality conditions:

$$\underbrace{\frac{1}{c_t} \ = \ \beta \ E_t \bigg[\frac{1}{c_{t+1}} \Big(1 + r_{t+1} - \delta \Big) \bigg]}_{\text{Euler (intertemporal)}}, \qquad \underbrace{\psi \frac{c_t}{1 - h_t} \ = \ (1 - \theta) \ k_{t-1}^{\theta} \ e^{(1 - \theta)z_t} \ h_t^{-\theta}}_{\text{Labor-leisure (intratemporal)}}.$$

$$r_t \ = \ \theta \frac{y_t}{k_{t-1}} \ = \ \theta \ k_{t-1}^{\theta - 1} \left(e^{z_t} h_t \right)^{1 - \theta}.$$

Exogenous shock:

$$z_t = \rho z_{t-1} + e_t, \qquad e_t \sim \mathcal{N}(0, \sigma^2).$$

Interpretation: Households choose $\{c_t, h_t, k_t\}$ to trade off consumption smoothing (Euler) and leisure vs. labor (intratemporal), taking prices from the Cobb–Douglas technology. z_t drives stochastic productivity.

RBC (Chapter 2): Complete Nonlinear Model

Preferences and technology:

$$\max_{\{C_t, L_t, K_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{L_t^{1+\phi}}{1+\phi} \right], \qquad Y_t = K_{t-1}^{\alpha} (A_t L_t)^{1-\alpha}.$$

Resource constraint and capital accumulation:

$$C_t + I_t = Y_t, \qquad K_t = (1 - \delta) K_{t-1} + I_t.$$

Prices (real): factor pricing from Cobb-Douglas:

$$R_t = \alpha \frac{Y_t}{K_{t-1}}, \qquad W_t = (1 - \alpha) \frac{Y_t}{L_t}.$$

Optimality conditions:

$$\underbrace{C_t^{-\sigma} = \beta \, E_t \big[C_{t+1}^{-\sigma} \big(1 + R_{t+1} - \delta \big) \big]}_{\text{Euler (intertemporal)}}, \qquad \underbrace{\frac{L_t^{\phi}}{C_t^{-\sigma}} = W_t}_{\text{Intratemporal labor supply}}.$$

Productivity shock:

$$\log A_t = \rho_A \log A_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2).$$

RBC (Chapter 2): Setup and Steady State

Endogenous variables:

$$Y_t$$
, I_t , C_t , R_t , K_t , W_t , L_t , A_t .

Exogenous shock: e_t

TFP:
$$A_t = \rho_A A_{t-1} + e_t$$
.

Parameters: σ (risk aversion), ϕ (Frisch inverse), α (capital share), β (discount), δ (depreciation), ρ_A (TFP persistence).

Steady-state objects (from calibration):

$$\begin{split} P^{ss} &= 1, \qquad R^{ss} = P^{ss} \left(\frac{1}{\beta} - (1 - \delta)\right), \\ W^{ss} &= (1 - \alpha) \left(P^{ss}\right)^{\frac{1}{1 - \alpha}} \left(\frac{\alpha}{R^{ss}}\right)^{\frac{\alpha}{1 - \alpha}}, \\ Y^{ss} &= \left(\frac{R^{ss}}{R^{ss} - \delta \alpha}\right)^{\frac{\sigma}{\sigma + \phi}} \left((1 - \alpha)^{-\phi} \left(W^{ss}/P^{ss}\right)^{1 + \phi}\right)^{\frac{1}{\sigma + \phi}}, \\ I^{ss} &= \frac{\delta \alpha}{P^{ss}} Y^{ss}, \quad K^{ss} &= \alpha \frac{Y^{ss}}{P^{ss}/P^{ss}}, \quad L^{ss} &= (1 - \alpha) \frac{Y^{ss}}{W^{ss}/P^{ss}}, \quad C^{ss} &= Y^{ss} - I^{ss}. \end{split}$$

Convention: The model below is *linearized* around the steady state. Variables like Y_t, C_t, \ldots denote deviations; where levels enter, steady-state scalars (e.g., Y^{ss}) appear as weights.

RBC (Chapter 2): Linearized Equations

Preferences and intratemporal optimality (labor supply):

$$\sigma C_t + \phi L_t = W_t.$$

Euler equation (intertemporal):

$$\frac{\sigma}{\beta}(C_{t+1}-C_t) = R^{ss} R_{t+1}.$$

Capital accumulation:

$$K_t = (1 - \delta) K_{t-1} + \delta I_t.$$

Production (Cobb–Douglas, log-linearized):

$$Y_t = A_t + \alpha K_{t-1} + (1-\alpha) L_t.$$

Factor demands (linearized marginal products):

$$R_t = Y_t - K_{t-1}, \qquad W_t = Y_t - L_t.$$

Resource constraint (linearized with steady-state shares):

$$Y^{ss} Y_t = C^{ss} C_t + I^{ss} I_t.$$

TFP process:

$$A_t = \rho_A A_{t-1} + e_t.$$

What a Positive Productivity Shock Does (Qualitatively)

- ▶ On impact: $A_t \uparrow$ raises marginal products \Rightarrow factor demands rise, so $W_t \uparrow$, $R_t \uparrow$.
- **Household response:** Higher income pushes up C_t and I_t ; labor L_t rises initially.
- **Over time:** As wages normalize and consumption smoothing bites, L_t gradually falls (more leisure), while K_t keeps rising due to $I_t \uparrow$; effects persist via capital accumulation.
- **Bottom line:** Positive TFP shocks raise $\{C, I, Y, K, L, W, R\}$ on impact; K shows a hump-shaped build-up (often peaking around medium horizons).

RBC Lab: Three Quick Modifications

Goal: See how small code changes shift IRFs and moments.

- 1. **Shock persistence** make A_t more/less persistent: change ρ_A .
- 2. **Labor elasticity** make labor more/less elastic: change ϕ .
- 3. Add fiscal shock introduce government spending G_t with AR(1), and include it in the resource constraint.

What to look for:

- ▶ Higher ρ_A : longer-lived responses; capital builds up more.
- **Lower** ϕ : larger labor response on impact; wage adjusts less.
- ▶ *G* shock: output rises; consumption typically crowds out (falls) when *G* uses resources.

Two One-Line Tweaks

1) Shock persistence (TFP): change ρ_A in the parameter block.

$$\rho_A \in \{0.50, 0.95 \text{ (baseline)}, 0.99\}$$

Higher $\rho_A \Rightarrow$ longer IRFs; capital hump increases.

2) Labor supply elasticity: change ϕ (Frisch inverse).

$$\phi \in \{0.5, 1.5 \text{ (baseline)}, 5\}$$

Smaller $\phi \Rightarrow$ labor responds more; wage adjusts less.

Add a Simple Fiscal Shock

New variables: G_t (gov. spending), shock e_t^G . New equation (AR(1)):

$$G_t = \rho_G G_{t-1} + e_t^G.$$

Resource constraint (linearized with shares):

$$\bar{Y} Y_t = \bar{C} C_t + \bar{I} I_t + \bar{G} G_t,$$

with $\bar{G} \equiv G^{ss}$ (e.g., 20% of output). Predictions after G shock:

- Y rises on impact.
- C often falls (crowding out); I may fall or move modestly depending on parameters.
- \blacktriangleright K adjusts sluggishly; effects depend on ρ_G .

How to Run and What to Read

Run:

- 1. Change one parameter $(\rho_A \text{ or } \phi)$ or toggle the G shock size.
- 2. dynare RBC_G.mod
- 3. Inspect IRFs for $\{Y, C, I, K, L, W, R\}$.

Quick checks:

- ▶ Does higher ρ_A lengthen the half-life of IRFs?
- ▶ Does smaller ϕ amplify L's impact response?
- ▶ After a G shock, does C fall and Y rise?

Tip: Keep two MATLAB figures open (baseline vs. change) to compare curves visually.

New Keynesian Model (Linearized) — Setup

Endogenous: Y_t , I_t , C_t , K_t , L_t , W_t , R_t , MC_t , P_t , Π_t , A_t . Exogenous shock: e_t (TFP innovation), $A_t = \rho_A A_{t-1} + e_t$. Parameters: σ (risk aversion), ϕ (Frisch inverse), α (capital share), β (discount), δ (depreciation), ρ_A (TFP persistence), ψ (desired markup: $\mu = \psi/(\psi - 1)$), θ (Calvo stickiness).

Steady-state auxiliaries (used as constants in the linearization):

$$\begin{split} P^{ss} &= 1, \quad R^{ss} = \frac{1}{\beta} - (1 - \delta), \quad MC^{ss} = \frac{\psi - 1}{\psi} (1 - \beta \theta), \\ W^{ss} &= (1 - \alpha) \left(MC^{ss}\right)^{\frac{1}{1 - \alpha}} \left(\frac{\alpha}{R^{ss}}\right)^{\frac{\alpha}{1 - \alpha}}, \quad Y^{ss}, I^{ss}, C^{ss}, L^{ss}, K^{ss} \text{ as in the Dynare code.} \end{split}$$

Households, Technology, and Factor Pricing (Linearized)

```
Intratemporal (labor supply): \sigma C_t + \phi L_t = W_t - P_t.

Euler (intertemporal): \frac{\sigma}{\beta}(C_{t+1} - C_t) = R^{ss}(R_{t+1} - P_{t+1}).

Capital accumulation: K_t = (1 - \delta) K_{t-1} + \delta I_t.

Production (Cobb-Douglas): Y_t = A_t + \alpha K_{t-1} + (1 - \alpha) L_t.

Factor demands (linearized MPN/MPK): K_{t-1} = Y_t - R_t, L_t = Y_t - W_t.

Marginal cost: MC_t = (1 - \alpha) W_t + \alpha R_t - A_t.
```

Price Setting and Inflation Dynamics

New Keynesian Phillips Curve (Calvo):

$$\Pi_t = \beta \Pi_{t+1} + \underbrace{\frac{(1-\theta)(1-\beta\theta)}{\theta}}_{\kappa(\theta,\beta)} (MC_t - P_t).$$

Inflation definition: $\Pi_t = P_t - P_{t-1}$. Resource constraint (linearized with shares):

$$Y^{ss} Y_t = C^{ss} C_t + I^{ss} I_t.$$

TFP process: $A_t = \rho_A A_{t-1} + e_t$.

Notes:

- ▶ $\theta \uparrow$ (more stickiness) $\Rightarrow \kappa \downarrow \Rightarrow$ inflation responds more sluggishly to MC_t .
- $\psi \uparrow$ (higher desired markup) raises MC^{ss} and affects steady-state factor prices used in the linearization.

TFP Shock: NK vs RBC - What to Expect

Impact mechanism (both models): $A_t \uparrow$ raises marginal products $\Rightarrow W_t \uparrow$, $R_t \uparrow$, and firms demand more inputs.

Key NK differences (sticky prices):

- ▶ **Aggregate demand channel:** With sticky prices (θ high), consumption C_t typically rises more than in RBC.
- ▶ Inflation dynamics: Π_t responds via the NKPC; higher stickiness (κ small) \Rightarrow muted Π_t , real wages can be elevated for longer.
- ▶ Wage and labor: Income effect can dominate, so L_t may fall sooner/stronger than in RBC despite $Y_t \uparrow$.

Medium-run: As K_t builds, R_t declines toward steady state; W_t normalizes slowly when θ is large.

Bottom line: In NK, TFP shocks transmit strongly via *demand* (consumption) and sticky prices; in RBC, transmission is mainly via *supply*.

Uhlig's Method: Overview

Idea: Solve a system of linear stochastic difference equations using the *method of undetermined coefficients* in matrix form.

Step 1 — (Log-)Linearise all relevant equations. Let:

- \triangleright x_t : $m \times 1$ vector of **endogenous state variables** (predetermined)
- \triangleright y_t : $n \times 1$ vector of **control (jump) variables**
- $ightharpoonup z_t$: $k \times 1$ vector of exogenous state variables (shocks)

Step 2 — Write the system in compact matrix form:

$$\begin{split} 0 &= E_t \big[F x_{t+1} + G x_t + H x_{t-1} + J y_{t+1} + K y_t + L z_{t+1} + M z_t \big], \\ z_{t+1} &= N z_t + \varepsilon_{t+1}, \\ 0 &= A x_t + B x_{t-1} + C y_t + D z_t. \end{split}$$

with N containing only stable eigenvalues ($|\lambda_i(N)| < 1$).

Uhlig's Method: Dimensions and Solution Form

Matrix dimensions:

- ightharpoonup C is $l \times n$ with rank(C) = n (and $l \ge n$)
- ightharpoonup F is $(m+n-l) \times m$ at most as many expectational equations as state variables
- Other matrices conform in dimensions so that the total number of equations equals the total number of unknowns

Looking for a solution of the form:

$$x_t = Px_{t-1} + Qz_t,$$

$$y_t = Rx_{t-1} + Sz_t.$$

Intuition:

- P: transition matrix for endogenous states.
- Q: response of states to exogenous shocks.
- R, S: control (jump) responses to states and shocks.

Goal: Determine (P, Q, R, S) such that the system above is satisfied for all (x_{t-1}, z_t) .

Uhlig's Method: Deriving the System of Equations

Substitute the conjectured solutions

$$x_t = Px_{t-1} + Qz_t, \qquad y_t = Rx_{t-1} + Sz_t$$

into the system:

$$0 = E_t[Fx_{t+1} + Gx_t + Hx_{t-1} + Jy_{t+1} + Ky_t + Lz_{t+1} + Mz_t],$$

$$0 = Ax_t + Bx_{t-1} + Cy_t + Dz_t,$$

$$z_{t+1} = Nz_t + \varepsilon_{t+1}.$$

Using $E_t(\varepsilon_{t+1}) = 0$ and substituting forward expectations:

$$0 = (AP + B + CR) x_{t-1} + (AQ + CS + D) z_t,$$

$$0 = (FP^2 + GP + H + JRP + KR) x_{t-1} + (FPQ + FQN + GQ + JRQ + JSN + KS + LN + M) z_t.$$

Uhlig's Method: System of Matrix Equations

To hold for all (x_{t-1}, z_t) , the following must hold:

$$AP + B + CR = 0, (1)$$

$$AQ + CS + D = 0, (2)$$

$$FP^2 + GP + H + JRP + KR = 0, (3)$$

$$FPQ + FQN + GQ + JRQ + JSN + KS + LN + M = 0.$$
(4)

Uhlig's Method: Solving the Quadratic Matrix Equation

Special case: n = I, i.e. C is square and invertible.

From (1) and (3), eliminate R:

$$AP + B + CR = 0$$
 \Rightarrow $R = -C^{-1}(AP + B)$.

Substitute into (3):

$$FP^2 + GP + H + JRP + KR = 0.$$

After simplification:

$$\Psi P^2 = \Gamma P + \Theta,$$

where

$$\Psi = F - JC^{-1}A$$
, $\Gamma = JC^{-1}B - G + KC^{-1}A$, $\Theta = KC^{-1}B - H$.

This is a quadratic matrix equation in P. It can be solved via the **generalised eigenvalue problem** (QZ or generalized Schur decomposition).

Uhlig's Method: The Generalised Eigenvalue Problem

The quadratic matrix equation

$$\Psi P^2 = \Gamma P + \Theta$$

is non-trivial to solve directly, but can be rewritten as a generalised eigenvalue problem.

Step 1 — Rewrite as a second-order system:

$$\Psi x_{t+1} = \Gamma x_t + \Theta x_{t-1}.$$

Step 2 — Stack variables:

$$w_t = \begin{bmatrix} x_t \\ x_{t-1} \end{bmatrix}, \quad \Delta = \begin{bmatrix} \Psi & 0 \\ 0 & I_m \end{bmatrix}, \quad \Xi = \begin{bmatrix} \Gamma & \Theta \\ I_m & 0 \end{bmatrix}.$$

Then:

$$\Delta w_{t+1} = \Xi w_t$$

The goal is to find (λ_i, v_i) such that

$$\Xi v_i = \lambda_i \Delta v_i$$

which delivers eigenvalues λ_i and eigenvectors v_i (via the QZ decomposition).

Uhlig's Method: Stability and Selection of Eigenvalues Generalised eigenvalue problem:

$$\exists v_i = \lambda_i \Delta v_i \quad \Rightarrow \quad \Psi V \Lambda^2 = \Gamma V \Lambda + \Theta V.$$

Matrix solution:

$$P = V \Lambda V^{-1}$$

where V contains the eigenvectors and Λ is diagonal with eigenvalues λ_i .

Which eigenvalues to select?

- ▶ Choose the m eigenvalues that have m linearly independent eigenvectors (so V^{-1} exists).
- ▶ Among these, retain those **inside the unit circle** ($|\lambda_i| < 1$) to ensure stability.

Proposition (Uhlig): If all eigenvalues of P satisfy $|\lambda_i| < 1$, then the solution

$$x_t = Px_{t-1} + Qz_t$$

is **stable**, and the associated (R, S) matrices can be recovered easily from (6)–(9).

Implementation: MATLAB's qz or eig functions (or Uhlig's toolkit) can compute this directly.

Uhlig's Method: Case with Non-Square C (n < l)

When C is not square (n < I), equation (6)

$$AP + B + CR = 0$$

cannot be inverted directly. We then use the **Moore–Penrose pseudo-inverse** of C, denoted C^+ .

Idea:

- ▶ Replace C^{-1} with C^+ in all algebraic expressions.
- $ightharpoonup C^+$ generalises the matrix inverse to rectangular or rank-deficient matrices:

$$C^+ = (C'C)^{-1}C'$$
 when C has full column rank.

► In MATLAB, compute with: pinv(C).

Everything else unchanged:

$$\Psi = F - JC^+A$$
, $\Gamma = JC^+B - G + KC^+A$, $\Theta = KC^+B - H$.

Then solve again:

$$\Psi P^2 = \Gamma P + \Theta$$

by QZ decomposition as before.

Uhlig's Toolkit and Practical Implementation

Practical implementation:

- Uhlig's MATLAB toolkit automates all steps:
 - 1. Linearises the model equations.
 - 2. Builds matrices *A*, *B*, *C*, *D*, *F*, *G*, *H*, *J*, *K*, *L*, *M*, *N*.
 - 3. Solves for P, Q, R, S using the generalised eigenvalue problem.
- ► Uses built-in functions: [AA,BB,Q,Z] = qz(Xi,Delta) or eig(Xi,Delta).
- ▶ Once P is found, the remaining matrices follow from eqs. (6)–(9).

Stability check: All eigenvalues of *P* must satisfy $|\lambda_i| < 1$.

Toolkit download:

Uhlig MATLAB Toolkit (version 41)

Reference:

Uhlig (1999). A Toolkit for Analysing Non-Linear Economic Models Easily, in Marimon and Scott.

Example: Stochastic Growth Model with Uhlig's Method

Ordering of variables:

- ightharpoonup Endogenous state: k_t
- Non-state (jump) variables: λ_t, c_t, y_t
- \triangleright Exogenous state: z_t

Linearised equilibrium equations:

$$\begin{split} 0 &= E_t \big[\, 0 \hat{k}_{t+1} - (1 - \alpha) \hat{k}_t + 0 \hat{k}_{t-1} + \hat{\lambda}_{t+1} + 0 \hat{c}_{t+1} + 0 \hat{y}_{t+1} - \hat{\lambda}_t + 0 \hat{c}_t + 0 \hat{y}_t + \hat{z}_{t+1} \, \big], \\ 0 &= 0 \hat{k}_t + 0 \hat{k}_{t-1} + \hat{\lambda}_t + \hat{c}_t + 0 \hat{y}_t + 0 \hat{z}_t, \\ 0 &= \hat{k}_t + 0 \hat{k}_{t-1} + 0 \hat{\lambda}_t + \frac{1 - \alpha \beta}{\alpha \beta} \hat{c}_t - \frac{1}{\alpha \beta} \hat{y}_t + 0 \hat{z}_t, \\ 0 &= 0 \hat{k}_t - \alpha \hat{k}_{t-1} + 0 \hat{\lambda}_t + 0 \hat{c}_t + \hat{y}_t - \hat{z}_t. \end{split}$$

Technology process: $\hat{z}_{t+1} = \rho \hat{z}_t + \eta_t$.

Example: Stochastic Growth Model with Uhlig's Method (continued)

From the system, matrices are identified as:

$$F = [0], \quad G = [-(1-\alpha)], \quad H = [0],$$

$$J = [1\ 0\ 0], \quad K = [-1\ 0\ 0],$$

$$L = [1], \quad M = [0].$$

$$A = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad B = \begin{bmatrix} 0\\0\\-\alpha \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 0\\0 & \frac{1-\alpha\beta}{\alpha\beta} & -\frac{1}{\alpha\beta}\\0 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}.$$

Next: Use these matrices within Uhlig's algorithm to recover P, Q, R, S via the generalised eigenvalue problem.

Christiano's Method: Overview

Idea: A generalisation of the undetermined-coefficients approach — allows for:

- multiple leads and lags,
- ▶ heterogeneous information sets $(E_t, E_{t-1},...)$.

General system:

$$E_{t}\left[\sum_{i=0}^{r}\alpha_{i}z_{t+r-1-i}+\sum_{i=0}^{r-1}\beta_{i}s_{t+r-1-i}\right]=0,$$

where:

- $ightharpoonup z_t$: all endogenous variables (states + controls),
- s_t: exogenous shocks.

Shock process: Any ARMA(p, q) shock can be rewritten as a VAR(1):

$$\theta_t = \rho \theta_{t-1} + \eta_t, \qquad \eta_t \sim (0, \Sigma_{\eta}).$$

If all information sets coincide: $s_t = \theta_t, \ P = \rho, \ \varepsilon_t = \eta_t.$

Christiano's Method: Structure of Variables

Notation and dimensions:

- $ightharpoonup z_{1t}$: $n_1 \times 1$ vector of endogenous variables determined within period t.
- $ightharpoonup z_{2t}$: $qn_1 \times 1$ vector of lagged elements of z_{1t} (if q > 0).
- $ightharpoonup z_t = [z'_{1t}, z'_{2t}]'$ of dimension $n_1(1+q) \times 1$.
- ▶ s_t : $m \times 1$ vector of exogenous shocks, $s_t = Ps_{t-1} + \varepsilon_t$.

Coefficient matrices:

- $ightharpoonup \alpha_i$: $n_1 \times n_1(1+q)$ coefficients on endogenous variables.
- \triangleright β_i : $n_1 \times m$ coefficients on shocks.
- ightharpoonup au: indicator for information sets ($\tau_{ij} = 1$ if shock i known in eq. j, 0 otherwise).

Leads/lags:

$$r > q$$
, $r = k + 1$ if $t + k$ is the largest lead.

This notation nests most linearised DSGE systems.

Christiano's Method: Compact Solution Representation

We seek a linear solution of the form

$$\begin{bmatrix} z_{1t} \\ z_{2t} \end{bmatrix} = \underbrace{\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}}_{A} \begin{bmatrix} z_{1,t-1} \\ z_{2,t-1} \end{bmatrix} + \underbrace{\begin{bmatrix} B_1 \\ B_2 \end{bmatrix}}_{B} \begin{bmatrix} \theta_t \\ \theta_{t-1} \end{bmatrix},$$

with initial condition z_{-1} .

Steps in Christiano's algorithm:

- 1. Drop expectations to obtain a deterministic first-order system $aw_{t+1} + bw_t = 0$, where w_t stacks all relevant z's
- 2. Use QZ decomposition (Sims, 2000) to solve for eigenvalues and identify stable blocks : yields A.
- 3. Given A, recover B easily (similar to the undetermined-coefficients step in Uhlig's method).

Functions: solvea.m and solveb.m implement the algorithm.

Available at:

http://faculty.wcas.northwestern.edu/~lchrist/research/Solve/main.htm

Example: Growth Model with Christiano's Method Model equations (linearised):

$$0 = E_t \left[-(1 - \alpha)\hat{k}_t + \hat{\lambda}_{t+1} - \hat{\lambda}_t + \hat{\omega}_{t+1} \right],$$

$$0 = \hat{\lambda}_t + \hat{c}_t,$$

$$0 = \hat{k}_t + \frac{1 - \alpha\beta}{\alpha\beta}\hat{c}_t - \frac{1}{\alpha\beta}\hat{y}_t,$$

$$0 = -\alpha\hat{k}_{t-1} + \hat{y}_t - \hat{\omega}_t.$$

Variable ordering:

$$z_{1t} = egin{bmatrix} k_t \ \hat{\lambda}_t \ \hat{c}_t \ \hat{y}_t \end{bmatrix}, \qquad q = 0, \qquad s_t = \hat{\omega}_t = \psi \, \hat{\omega}_{t-1} + arepsilon_t.$$

Expectations: $E_t[\cdot]$ over next-period values. Largest lead is one (r=2), and all shocks are contemporaneously observable.

Example: Growth Model with Christiano's Method (continued)

System representation:

$$E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0.$$

Matrices:

$$eta_0 = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}, \qquad eta_1 = egin{bmatrix} 0 \ 0 \ 0 \ -1 \end{bmatrix}.$$

These matrices are used as inputs to solva.m and solvb.m to compute the policy matrices A and B.

Example 2: New Keynesian model with lagged inflation

New Keynesian model with lagged inflation:

$$y_{t} = E_{t}(y_{t+1}) - \frac{1}{\sigma}(i_{t} - E_{t}(p_{t+1} - p_{t}))$$

$$m_{t} = \sigma y_{t} - \beta i_{t} + p_{t}$$

$$p_{t} - p_{t-1} = \beta E_{t}(p_{t+1} - p_{t}) - \beta \gamma (p_{t} - p_{t-1}) + \gamma (p_{t-1} - p_{t-2}) + \kappa y_{t}$$

Variables:

$$z_{1t} = \begin{bmatrix} y_t \\ i_t \\ p_t \end{bmatrix}, \qquad z_{2t} = \begin{bmatrix} y_{t-1} \\ i_{t-1} \\ p_{t-1} \end{bmatrix} \Rightarrow z_t = \begin{bmatrix} y_t \\ i_t \\ p_t \\ y_{t-1} \\ i_{t-1} \\ p_{t-1} \end{bmatrix}.$$

and

$$0 = E_{t} \left[y_{t} - y_{t+1} + \frac{1}{\sigma} i_{t} - \frac{1}{\sigma} p_{t+1} + \frac{1}{\sigma} p_{t} \right],$$

$$0 = E_{t} \left[m_{t} - \sigma y_{t} + \beta i_{t} - p_{t} \right],$$

$$0 = E_{t} \left[-\beta p_{t+1} + (1 + \beta \gamma + \beta) p_{t} - (1 + \gamma + \beta \gamma) p_{t-1} - \kappa y_{t} + \gamma p_{t-2} \right].$$

Shock: $s_t = m_t = \psi m_{t-1} + \eta_t$

Parameters: $r = 2, q = 1, \tau = [1 \ 1 \ 1]$

Representation:

$$E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0.$$

Matrices:

Parameterisation for simulation:

$$\beta = 0.99, \qquad \sigma = 1, \qquad \kappa = 0.1, \qquad \gamma = 0.5, \qquad \psi = 0.7.$$

Information structure:

$$r = 2,$$
 $q = 1,$ $\tau = [1 1 1].$

Shock process:

$$s_t = m_t = \psi m_{t-1} + \eta_t, \qquad \eta_t \sim (0, \sigma_\eta^2).$$

Representation:

$$E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0.$$

Next: Feed $(\alpha_0, \alpha_1, \alpha_2, \beta_0, \beta_1)$ and parameter values into solva.m / solvb.m to obtain the reduced-form policy matrices (A, B).

Try these numbers to practice:

$$\sigma=1, \qquad \beta=0.99, \qquad \omega=\frac{3}{4}, \qquad \kappa=\frac{(1-\omega)(1-\omega\beta)}{\omega}, \qquad \psi=0.7, \qquad \gamma=0.66.$$

We have that:

$$z_t = Az_{t-1} + B\theta_t, \qquad z_t = egin{bmatrix} y_t \ i_t \ p_t \ y_{t-1} \ i_{t-1} \ p_{t-1} \end{bmatrix}.$$

Hence:

$$y_t = -1.1443 \, p_{t-1} + 0.3923 \, p_{t-2} + 0.6372 \, m_t,$$

 $i_t = -0.2313 \, m_t,$
 $p_t = 1.1443 \, p_{t-1} - 0.3923 \, p_{t-2} + 0.1338 \, m_t.$

Generating Impulse Response Functions

Procedure:

• Generate a sequence of exogenous θ_t shocks by setting

$$\eta_t = egin{cases} \sigma_\eta, & t = q+2, \ 0, & ext{otherwise}. \end{cases}$$

- lacktriangle Alternatively, set $\eta_{q+2}=1$ if absolute magnitudes are unimportant.
- ightharpoonup Construct s_t as

$$s_t = \begin{cases} \theta_t, & \text{if all information sets coincide,} \\ (\theta_t, \theta_{t-1})', & \text{otherwise.} \end{cases}$$

- ▶ Set $z_1 = 0$.
- ightharpoonup For $t=1,\ldots,T$, iterate:

$$z_t = Az_{t-1} + Bs_t.$$

Extract z_{1t} (the endogenous variables) and plot the series.

Impulse Response Functions

Impulse responses to a positive money shock in the New Keynesian model with lagged inflation:

- \triangleright y_t (output) decreases on impact due to tighter monetary policy.
- $ightharpoonup i_t$ (nominal rate) rises following the money shock.
- \triangleright p_t (inflation) gradually declines inflation inertia smooths the response.

Simulation output:

Comparisons and Comments

Uhlig's approach:

- ▶ Very user-friendly and practical (especially via the MATLAB toolkit).
- ▶ Requires identification of state / predetermined variables.
- Handles only one lead and one lag.

Christiano's method:

- ► More general allows:
 - Unlimited leads and lags.
 - Different information sets (expectations dated at various times).
- Slightly more complex to implement but highly flexible.

Other toolboxes:

- ▶ DYNARE: pre-processor and MATLAB/GAUSS routines for solving non-linear DSGE models with forward-looking variables.
- Convenient, widely used, but largely a "black-box" solver.

Readings and References

Key References:

- ▶ Blanchard and Kahn (1980): *The Solution of Linear Difference Models under Rational Expectations*. Econometrica.
- Christiano (2002): Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients. Computational Economics. Website: http://faculty.wcas.northwestern.edu/~lchrist/research/Solve/main.htm
- ► Heer and Maussner (2005): Section 2.3.
- Miao (2014): Chapter 2.
- ➤ Sims (2000): Solving Linear Rational Expectations Models. Working Paper.
- Uhlig (1999): A Toolkit for Analysing Non-Linear Economic Models Easily. In Marimon and Scott. Website:
 - http://www2.wiwi.hu-berlin.de/institute/wpol/html/toolkit.htm