计算机组成原理与系统结构

第2章 计算机硬件基础

- 2.1 半导体器件的开关特 性
- 2. 2 基本逻辑运算和基本门电 路
- 2.3 组合逻辑电路实例
- 2.4 时序逻辑电路
- 2. 5 计算机芯片的制造过程
 - 本章小结

2.4 时序逻辑电路实例

触发器和锁存器

寄存器

移位寄存器

计数器

1. 电平触发方式触发器

(a)逻辑电路

功能表

C D	$Q_{n+1}\overline{Q}_{n+1}$
1 0	0 1
1 1	1 0
0 x	$Q_n \overline{Q}_n$

(b)功能表

(d) 时序波形图

图2-30 D锁存器

- C: 时钟信号
- ■D: 数据输入信号
- ■Q:输出信号,代表触发器的状态,即储存了0/1
- Q #: 反相输出信号

2. 电平触发方式触发器特点:

- 触发器只在时钟信号C为触发约定电平高电平(或低电平)时,才接收输入数据D(至Q端),否则,触发器状态保持不变。
- 在时钟信号C为触发约定电平时,输出Q端的状态随着输入端D的变化而变化;
- 电平触发方式触发器又称为D锁存器,主要用作存储器的地址锁存器,以使CPU发出的地址在整个存储器读或写周期保持稳定不变。

1. 边沿触发方式触发器

图2-31 带异步清零置位端的D触发器

- CP: 时钟信号 D: 数据输入
- R_D #: 异步清零端,任何时间该信号为 0,则 Q 端必清零
- S_D #: 异步置位端,任何时间该信号为 0 ,则 Q 端必置 1
- O: 输出信号、代表触发器的状态; O#: 反相输出

2. 边沿触发方式触发器特点:

- 触发器只在时钟脉冲 CP 的约定边沿(上升沿或下降沿)来到时,才接收输入数据 D (至 Q端),否则,触发器状态保持不变。
- 在时钟信号C为高电平或者低电平时,输出Q 端的状态不会随着输入端D的变化而变化;
- 常用的正边沿触发器之一就是 D 触发器,由于它在 CP 上升沿以外时间出现在 D 端的数据变化和干扰信号不会被接收,因此具有很强的抗干扰能力而得到广泛应用。它一般可用来组成寄存器、计数器和移位寄存器等。

二、寄存器

- 1. 功能:存储二进制信息。
- 2. 组成:由一组触发器组成,所有触发器采用同一个时钟信号或其他控制信号,以便进行统一的打入或其他控制操作。
- 3. 由 n 位触发器构成的寄存器称为 n 位寄存器, 它可以存储 n 位二进制信息。

二、寄存器

图2-32 4位寄存器

4. 工作原理:

当时钟脉冲 CP 到来时,寄存器的输入数据($D_3 \sim D_0$)同时打入寄存器,即输入→存放→输出到寄存器的输出端($Q_3 \sim Q_0$)。

5. CLR #: 寄存器清零信号,为低电平时,寄存器的 输出端清为零。

二、寄存器

- 6. 带清零端的 8D 触发器 74LS273 芯片
 - MR #: 清零信号,当为低电平时,无论输入 D 是什么,输出 Q 均为 0。
 - CP: 寄存器打入脉冲信号, 当 CP 来一上升沿, 则将输入端 D 数据打到输出端 Q, 并在下一上升沿来到之前, Q端保持不变。

VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CP 20 19 18 17 16 15 14 13 12 11 Q D D Q Q D D Q

Q D D Q Q D D Q

1 2 3 4 5 6 7 8 9 10

MR 1Q 1D 2D 2Q 3Q 3D 4D 4Q GND

MF	R CP	D	Q_{n+1}
0	×	×	0
1	†	1	1
1	†	0	0
1	0	×	$Q_{n} \\$

三、移位寄存器

- 1. 功能: 对数据进行移位。
- 2. 组成: 由多个触发器组成,一个触发器的输出接到 另一个触发器的输入,当公共时钟信号 CP 上升沿时 ,所有触发器的输出均写入相邻的下一个触发器中 .从而实现移位。
- 3. 移位寄存器同时具备置数、左移、右移等功能。

图2-34 简单移位寄存器

三、移位寄存器

4. 74LS299 信号: 5. 74LS299 信号:

■ S1S0: 功能选择

■ Q7: 右移时, 最低位从 Q7 移

■ 0E10E2: 输出使能

出。

■ 1/00 ~ 1/07: 数据线 ■ DS7: 左移时, 将其移入最低

■ MR #: 清零

位 Q7。

■ DS0: 右移时,将其移

表最高信念2008位寄存器功能表 QO: 左移时,最高位从QO移

	输入信号						
MR	OE ₁	OE ₂	S_1	S_0	CP	相应操作	
0	0	0	×	×	×	清零, Q ₀ ~ Q ₇ →I/O ₀ ~ I/O ₇ 输出低电平	
1	×	×	1	1	†	并行置数, I/O _n →Q _n	
1	0	0	0	1	†	右移, DS_0 → Q_0 , Q_0 → Q_1 , Q_7 右移出, $Q_0 \sim Q_7$ → $I/O_0 \sim I/O_7$	
1	0	0	1	0	†	左移, $DS_7 \longrightarrow Q_7$, $Q_7 \longrightarrow Q_6$, $Q_0 左移出, Q_0 \sim Q_7 \longrightarrow I/O_0 \sim I/O_7$	
1	0	0	0	0	×	保持, Q ₀ ~Q ₇ 输出保持不变, Q ₀ ~Q ₇ → I/O ₀ ~ I/O ₇	

三、移位寄存器

图 2-35 74LS299 内部逻辑电路

1. 按功能分:

- ■加法计数器: +1计数
- ■减法计数器: 一1计数
- ■可逆计数器:即可+1计数又可-1计数

2. 按进位制分:

- ■二进制计数器:低位触发器逢2进1。
- ■十进制计数器:采用 BCD 码计数。
- 3. 在计算机中使用的大多是同步二进制计数器,用 来作为程序计数器 PC。

4. 74LS161 4 位二进制计数器

- ■特性: 4位二进制、同步、带进位输出的加 法计数器
- ■功能: 置数、清零、加1计数、保持
- 信号:
 - ①CLR: 异步清零信号
 - ②LOAD: 置数控制信号,为低电平时,在时钟脉冲 CLK 上跳沿,将输入信号 D \sim A 打入计数器 $Q_D \sim Q_A$
 - ③ENP、ENT: 计数使能信号,都为高电平时,+1 计数
 - ④RCO: 进位输出信号,当计数器加1计数到1111 (即15)时,下一个时钟上升沿则使计数器输出Q。~Q_A变为0000,此时RCO输出一个时钟周期的高电平,用于芯片串联时提供进位;

表2 - 8 74 LS 161 计数器功能表

	输	ì入信号	<u>1</u>		114 P→ 118 //~
CLR	LOAD	ENP	ENT	СР	响应操作
0	×	×	×	×	异步清零,Q _D ~Q _A 输出低电平
0	×	×	×	†	同步清零,Q _D ~ Q _A 输出低电平
1	0	×	×	†	预置数,D, C, B, A, 装λQ _D ~ Q _A
1	1	1	1	†	加一计数, 并将计数值输出 Q D~ QA
1	1	1	0	×	保持,Q _D ~ Q _A 输出保持不变
1	1	0	1	×	保持, Q _D ~ Q _A 输出保持不变

图 2-38 同步二进制计数器的扩展

The Engl