Homework 6

Answer all the required problems for each assignment and round your final solutions to two decimal places, if needed.

Assignment 1

(Around your solutions to two decimal places if necessary)

1. Determine the inverse Laplace transform of each of the following functions. (9 pts/each = 81 pts)

a.
$$F(s) = \frac{1}{s} + \frac{2}{s+1}$$

b.
$$F(s) = \frac{e^{-4s}}{s+2}$$

c.
$$F(s) = \frac{3s+1}{s+4}$$

a.
$$F(s) = \frac{1}{s} + \frac{2}{s+1}$$

b. $F(s) = \frac{e^{-4s}}{s+2}$
c. $F(s) = \frac{3s+1}{s+4}$
d. $F(s) = \frac{4}{(s+1)(s+3)}$

e.
$$F(s) = \frac{6s}{(s+1)(s+2)}$$

f.
$$F(s) = \frac{s^2 + 2}{s^3 + 2s^2 + 2s}$$

f.
$$F(s) = \frac{s^2 + 2}{s^3 + 2s^2 + 2s}$$

g. $F(s) = \frac{10}{(s+1)(s^2 + 4s + 8)}$
h. $F(s) = \frac{2}{s(s+1)^2}$

h.
$$F(s) = \frac{2}{s(s+1)^2}$$

i.
$$F(s) = \frac{8}{s(s+1)^3}$$

2. Given that $v(0^-) = 5$, $v'(0^-) = 10$, solve the following equation for the v(t). (19 pts)

$$\frac{d^2v(t)}{dt^2} + 5\frac{dv(t)}{dt} + 6v(t) = 25e^{-t}u(t)$$

Assignment 2

(Around your solutions to two decimal places if necessary)

1. The initial energy stored in the following circuit is zero. The switch is closed at t=0. Assume $V(s)=\mathcal{L}\{v(t)\}$ and $I(s)=\mathcal{L}\{i(t)\}$. (50 pts)

If $v_{s}(t) = 10 V$,

- a. Write the differential equations in terms of v(t) and i(t).
- b. Find V(s) and I(s).
- c. Find v(t) and i(t).
- d. Find zeros and poles of V(s) and I(s).
- e. Use the initial value theorem to find $v(0^+)$ and $i(0^+)$ from V(s) and I(s).
- f. Use the final value theorem to find $v(\infty)$ and $i(\infty)$ from V(s) and I(s).
- g. Do your answers in (e) and (f) make sense in the terms of the above circuit behavior? Please explain.
- 2. The initial energy stored in the following circuit is zero. The switch is closed at t=0. Assume $V(s)=\mathcal{L}\{v(t)\}$ and $I(s)=\mathcal{L}\{i(t)\}$.(50 pts)

- a. Write the differential equations in terms of v(t) and i(t).
- b. Find V(s) and I(s).
- c. Find v(t) and i(t).
- d. Find zeros and poles of V(s) and I(s).
- e. Use the initial value theorem to find $v(0^+)$ and $i(0^+)$ from V(s) and I(s).
- f. Use the final value theorem to find $v(\infty)$ and $i(\infty)$ from V(s) and I(s).

g. Do your answers in (e) and (f) make sense in the terms of the above circuit behavior? Please explain.

Assignment 3

1. Find i(t) and $v_x(t)$ in the circuit below. Assume $I_0 = i(0^-) = 12$ A. (20 pts)

Answer: $i(t) = 12e^{-2t} A$, $v_x(t) = -12e^{-2t} V$ for t > 0.

2. The switch in the following circuit has been in position **b** for a long time. It is moved to position **a** at t=0. Determine v(t) for t>0. **(25 pts)**

Answer: $v(t) = (V_0 - I_0 R)e^{-\frac{t}{\tau}} + I_0 R, t > 0$, where $\tau = RC$.

3. Assume there is no initial energy stored in the circuit below at t=0 and that $i_{\rm S}=10~u(t)~A.$ (30 pts)

a. Use Thevenin's theorem to find $V_o(s)$.

(Hints: Remove 5 Ω resistor and find $V_{Th}=V_{oc}$. Short 5 Ω resistor to find I_{sc} by using the node-voltage method, then $Z_{Th}=\frac{V_{Th}}{I_{sc}}$.

- b. Find the transfer function of $H(s) = \frac{V_o(s)}{I_s(s)}$
- c. Applying the initial- and final- value theorems to find $v_0(0^+)$ and $v_o(\infty)$.
- d. Determine $v_o(t)$.

e. If $i_{\rm S}=20\cos(4t+30^{0})\,u(t)$ A, determine the steady-state response $v_{oss}(t)$.

Answer:
$$v_o(t) = 31.25(1-e^{-4t})u(t)$$
 V; $v_{oss}(t) = 31.25\sqrt{2}\cos(4t-15^0)$ V

- 4. In the op-amp circuit below, $v_s(t)=10u(t)$. Assume that $R_1=R_2=10~k\Omega$, $C_1=20~\mu F$, and $C_2=100~\mu F$. The op-amp in the circuit is ideal. The initial anergy stored in the circuit is zero. **(25 pts)**
 - a. Find the transfer function $H(s) = \frac{V_o(s)}{V_S(s)}$.
 - b. Determine the type of the circuit response based on the transfer function.
 - c. Determine $v_o(t)$ for t > 0.

Answer: $v_o(t) = \left(10 - 12.5e^{-t} + 2.5e^{-5t}\right)\!u(t)\,V$