Influence of Contextual Information on Bengali-English Forward and Backward Transliteration Using Binary Coding

Paper ID: 75

Date: December 08, 2023

Md. Fahad *

• Department of CSE, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh

Amrita Das Tipu *

• Department of CSE, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh

Ashis Kumar Mandal

- Department of CSE, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada

Basabi Chakraborty

- Research and Regional Cooperation Division, Iwate Prefectural University, Takizawa, Japan
- School of Computing, Madanapalle Institute of Technology and Science, Madanapalle, India

Authors Information

Outline

Introduction

Transliteration

- Converts the written form of a language
- From one language to another
- Retains phonetic meaning

Table 1: Bengali to English transliteration

Original	Transliterated
শিক্ষাবিদ	shikkhabid
বাংলা	bangla
ভাষা	bhasha
আমার	amar

Table 2: Literature review

AUTHOR	CONTRIBUTION	LIMITATION	DIFFERENCE
Ekbal et al. [1]	6 n-gram based probabilistic models	Only used 6000 NEs, private dataset	Evaluated on common words, provides algorithm for TU identification
Sarkar and Chatterjee [2]	One-hot coding for representing TU, used traditional ML model SVM and KNN	Evaluated on only 1000 NEs, private dataset	Our study uses binary coding in place of one hot coding for the TUs, uses 6 contextual models
Dasgupta et al. [3]	Joint source channel model, SMT model	Backward transliteration approach	Both forward and backward transliteration, TU identification algorithm
Tipu et al. [4]	Binary coding for TU representation, evalua ted with process time	Only one feature representation, and no backward transliteration	This study uses 6 contextual models and evaluates both forward and backward transliteration

Related Work

Problem Statement

- Limited publicly available datasets
- Lack of standardization for Bengali language
- Insufficient research using grapheme-level context

Research Questions

How do contextual feature selection techniques affect transliteration outcomes?

How to increase transliteration accuracy?

Objectives

Automate TU decomposition step

Explore the impact of contextual feature selection

Investigate transliteration using a grapheme-based approach

Outcomes and Impacts

Expected outcome:

Correct transliteration

Possible impacts:

- Automatic and reliable system
- Unhindered cross-lingual communication

Figure 1: Proposed Methodology

- Types of words in dataset
 - Dakshina [5]: Dictionary, NE, Technical
 - NEWS 2018 [6]: NE
- **Invalid words**: Words containing null/empty, punctuations, numbers, out-of-script characters
- Sort and take unique Bengali words

Table 3: Dataset Statistics

Criteria	Dakshina	NEWS 2018
Total Words	130378	13623
Valid Words	113873	13614
Unique Words (Bengali, English)	(<mark>25395</mark> , 25395)	(13312, 13312)

- Transliteration Unit (TU) decompose:
 - আমার → [আ | মা | র]
 - $amar \rightarrow [a \mid ma \mid r]$

Table 4: TU Statistics

Criteria	Dakshina	NEWS 2018
TU aligned Words	15431	7535
Average number of TU per word	3.473	3.249
Maximum number of TU per word	9	8
Minimum number of TU per word	1	1
Number of unique TUs (Bengali, English)	(1401, 1616)	(927, 1163)

• Encode: converts string to numerical form

Figure 2: Encoding

- Context
 - n-gram based
 - Preceding and/or succeeding STU
 - Preceding target TU (TTU)
- Feature selection
 - Model A (monogram, context-free)
 - Model B (Preceding STU)
 - Model C (succeeding STU)
 - Model D (preceding STU, TTU)
 - Model E (neighboring STU))
 - Model F (neighboring STU, TTU)

Word : বাংলাদেশ (bangladesh)

Figure 3: Context-based Feature Selection

Machine learning model

Random Forest Classifier

• n_estimators = 200

• Performance Metrics

Results

- Baseline: Model A or context-free model
- For Dakshina and NEWS 2018 Datasets

Table 3: Performance on Forward Transliteration

Model		Dakshina	Dakshina		NEWS 2018	
Iviouei	TUAR	WAR	F1 Score	TUAR	WAR	F1 Score
Model A	77.63	45.73	74.57	76.76	44.96	73.04
Model B	78.53	47.03	77.05	78.32	48.23	75.97
Model C	80.76	50.70	79.20	81.04	53.62	78.56
Model D	77.80	46.19	75.80	78.07	47.70	74.91
Model E	80.68	50.44	79.22	80.78	53.09	78.27
Model F	80.64	50.70	78.93	80.48	52.14	77.42

Results

- Baseline: Model A or context-free model
- For Dakshina and NEWS 2018 Datasets

Table 4: Performance on Backward Transliteration

D Model		Dakshina	Dakshina		NEWS 2018	
Model	TUAR	WAR	F1 Score	TUAR	WAR	F1 Score
Model A	73.57	37.25	68.37	68.90	33.56	63.87
Model B	75.71	40.52	73.68	70.03	32.78	67.44
Model C	76.46	40.17	74.47	72.44	36.10	70.59
Model D	73.91	37.71	71.04	68.09	30.03	65.23
Model E	78.41	44.28	76.91	73.12	37.84	71.09
Model F	77.73	43.17	75.79	72.55	36.88	70.36

Contributions

- Contextual feature selection with binary coding for the Bengali language
- Provides algorithm for context-based feature selection
- Explores performance on forward and backward transliteration

Grapheme-based approach

Conclusion

Binary encoding technique

Influence of contextual information within words

Future Research Direction

Acknowledgement

• This research was funded by Japan Society of Promotion of Science (JSPS) KAKENHI Grant Number JP 20K11939.

References

- 1. Sarkar, K., Chatterjee, S.: Bengali-to-english forward and backward machine transliteration using support vector machines. In: J.K. Mandal, P. Dutta, S. Mukhopadhyay (eds.) Computational Intelligence, Communications, and Business Analytics, pp. 552–566. Springer Singapore, Singapore (2017).
- 2. Ekbal, A., Naskar, S.K., Bandyopadhyay, S.: A modified joint source-channel model for transliteration. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 191–198. Association for Computational Linguistics, Sydney, Australia (2006).
- 3. Dasgupta, T., Sinha, M., Anupam, B.: Resource creation and development of an english-bangla back transliteration system. International Journal of Knowledge-based and Intelligent Engineering Systems 19, 35–46 (2015).
- 4. A. D. Tipu, M. Fahad, and A. K. Mandal, "A romanisation method for the bengali language with effcient encoding scheme," in Lecture Notes in Networks and Systems, Springer Nature. in press.
- 5. Roark, B., Wolf-Sonkin, L., Kirov, C., Mielke, S.J., Johny, C., Demirsahin, I., Hall, K.: Processing South Asian languages written in the Latin script: the Dakshina dataset. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 2413–2423. European Language Resources Association, Marseille, France (2020).
- 6. Chen, N., Banchs, R.E., Zhang, M., Duan, X., Li, H.: Report of NEWS 2018 named entity transliteration shared task. In: Proceedings of the Seventh Named Entities Workshop, pp. 55–73. Association for Computational Linguistics, Melbourne, Australia (2018).

Thank You

Variations in words

Original	Transliterated	
ফুল	Phool, phul, fool, ful	