Software Architecture 2022 Lecture 1, part 3/3 Introduction to the application case

Dimitri Van Landuyt Wouter Joosen

Causes of death — standardised death rate, EU, 2016 (per 100 000 inhabitants)

Note: the figure is ranked on the average of male and female. Note the difference in the scales employed in the two parts of the figure. Source: Eurostat (online data code: hlth_cd_asdr2)

Causes of death — standardised death rate, EU, 2016 (per 100 000 inhabitants)

Note: the figure is ranked on the average of male and female. Note the difference in the scales employed in the two parts of the figure. Source: Eurostat (online data code: hlth_cd_asdr2)

Application case

PMS: a Patient Monitoring Service for cardiovascular disease (CVD)

⊃ĭ̇̀strıN≡t

Cardiovascular diseases (CVD)

- a broad group of medical problems that affect the circulatory system (the heart and blood vessels),
 - often resulting from atherosclerosis, the abnormal build-up of plaque in the patient's arteries

 Leads to ischaemic heart disease (heart attacks) and cerebrovascular diseases (strokes)

Context

- Persistent effect
 of high blood
 pressure in
 arteries may lead
 to chronic
 failure of vital
 organs
- Chronicdisease, slowlyevolving
- Lifestyle, genetics, ...

Note: the figure is ranked on the share of the total population reporting that they had high blood pressure. Source: Eurostat (online data code: htth ehis cd1e)

Context

Hospital discharge rates for in-patients with diseases of the circulatory system, 2019 (per 100 000 inhabitants) 5 000

 $(^{1})$ 2018.

 $(^{2})$ 2016.

Source: Eurostat (online data code: hlth. co. disch2).

eurostat

Positioning

- Potential in longer-term management and follow-up of the evolution of CVD, outside of hospital context ("extra-muros")
- Telemedicine, data centric, and IoT-based service:
 - >> Remote and continuous monitoring / data collection
 - >> Prediction of malignant events at the basis of collected data
 - » Timely decision making
 - » Limited impact on patient's day to day life
- We are a <u>small startup company</u>, with strong ties to <u>one specific hospital</u>, building a <u>pilot system</u>

Overview and positioning

Wearable unit

- a medical device, fitted with a collection of sensors capable of acquiring relevant parameters
 - » Heart rate
 - >> Electrocardiograph (ECG)
 - » Respiratory rate
 - » Blood oxygen level
 - » Blood pressure
 - » Activity level (accelerometer)
 - » Body temperature
- Battery-operated, bluetooth connectivity

Patient gateway

- > = a smartphone with a dedicated app
- Relays data to the back-end at fixed intervals
 - » Interval depends on patient status/configuration
 - » On-demand consultation, upon request
- > Performs emergency assessment
- Ul for patient

Overview and positioning

Automated risk estimation at the heart

Clinical risk models

- Inputs: new data, historical data, patient pathologies, current risk level,
 (persisted artifacts such as config, trained classifier)
- Output: suggest a risk level (low, medium, high)
 - » Notifications can be sent in consequence to treating physician (or emergency services)

No single model suits all pathologies/patients

- Configured on a per-patient basis (combination, thresholds, etc)
- A single risk estimation=weighted combination of the outcome of individual models

Automated risk estimation at the heart

Different levels of complexity

Risk level	Normal	Worrisome	Dangerous
Low	105 – 120	90-105, 120-150	80-90, 150-190
Medium	95 - 135	$90-95,\ 135-160$	80-90, 160-190
High	90-150	85-90, 150-170	80-85, 170-190

Table 2: Default thresholds for systolic blood pressure (mmHg).

Notice the wider ranges for patients with higher risk-levels. Because of their cardiovascular conditions, their normal values will be, for example, more elevated, than the normal values of low-risk patients.

Automated risk estimation at the heart

Different levels of complexity

- Machine learning approach that involves pre-trained classifiers
 - » External party = CVD research institute that optimizes different ML models for different pathologies
 - >> We will download these and use them
 - » All risk estimation at the basis of actual patient data is performed by us
- Lightweight risk estimation for quick and reliable detection of emergencies on the patient gateway

Stakeholders

- Patients
- Physicians (GP, cardiologist)
- Nurse (trained nurse for registration)
- Emergency call center/services
- > Telemedicine operators

- Hospital
- Electronic Health Record(EHR) services
- Legal/financial department
- > Telecom operator
- ML model provider

Constraints and considerations

- Hospital information system, and applicable HL7 FHIR (Fast Healthcare Interoperability Resources) standard
 - Physician workstation: request on-demand consultation, follow-up on evolution, change monitoring configuration
 - Patient enrollment, by a trained nurse
 - » associating a Wearable unit to a patient, linking to the patient record, initializing the risk estimation, correct association to the treating physician
- > Security/privacy/legal
- Financial

PMS Functional requirements

... in Appendix A

It's all about the NFRs

Next week

> Lab session:

- y familiarize yourself with application case
- >> do the self-test on Toledo
- » register team/meet team members
- start a brainstorm about NFRs

- > **Lecture**: The formal part 1 assignment
 - » Quality attributes different types, defining them
 - >>> Low detail, long list: ASRs
 - >>> Detailed: quality attribute scenarios

