Chương 2 Điều khiển đồng thời Nội dung chi tiết Các vấn đề trong truy xuất đồng thời Mất dữ liệu đã cập nhật (lost updated) Không thể đọc lại (unrepeatable read) • "Bóng ma" (phantom) • Đọc dữ liệu chưa chính xác (dirty read) Kỹ thuật khóa (locking) Giới thiệu Khóa 2 giai đoạn (two-phase) Khóa đọc viết • Khóa đa hạt (multiple granularity) Nghi thức cây (tree protocol) Nội dung chi tiết (tt) • Kỹ thuật nhãn thời gian (timestamps) Giới thiệu Nhãn thời gian toàn phần Nhãn thời gian riêng phần • Nhãn thời gian nhiều phiên bản (multiversion) • Kỹ thuật xác nhận hợp lệ (validation)

Vđề mất dữ liệu đã cập nhật

• Xét 2 giao tác

T ₁	T ₂
Read(A)	Read(A)
A:=A+10	A:=A+20
Write(A)	Write(A)

• Dữ liệu đã cập nhật tại t_4 của T_1 bị mất vì đã bị ghi chồng lên ở thời điểm t_6

A=50	T ₁	T ₂
t,	Read(A)	
t ₂		Read(A)
t ₃	A:=A+10	
t ₄	Write(A)	
t ₅		A:=A+20
t ₆		Write(A)
	A=60	A=70

Điều khiển đồng thời

Vđề không thể đọc lại

• Xét 2 giao tác

T ₁	T ₂
Read(A)	Read(A)
A:=A+10	Print(A)
Write(A)	Read(A)
	Print(A)

- - T₂ tiến hành đọc A hai lần thì cho hai kết quả khác nhau

J		
T,	T ₂	
Read(A)		
	Read(A)	A=50
A:=A+10		
	Print(A)	A=50
Write(A)		
	Read(A)	A=60
	Print(A)	A=60
	A:=A+10	Read(A) A:=A+10

Điều khiển đồng thời

Vđề "bóng ma"

- Xét 2 giao tác T_1 và T_2 được xử lý đồng thời
 - A và B là 2 tài khoản

 - $T_2^{'}$ kiểm tra đã nhận đủ tiền hay chưa?

A=70, B=50	T ₁	T ₂		
t,	Read(A)		A=70	1
t ₂	A:=A-50			
t ₃	Write(A)		A=20	1
t,		Read(A)	A=20	1
t,		Read(B)	B=50	1
t _e		Print(A+B)	A+B=70]
t,	Read(B)			
t ₈	B:=B+50			1
t.	Write(R)			1

mất 50 ???

Vđề đọc dữ liệu chưa chính xác

- 000 0000 0000 0000 0000 0000
- Xét 2 giao tác T₁ và T₂ được xử lý đồng thời
 - T₂ đã đọc dữ liệu được ghi bởi T₁ nhưng sau đó T₁ yêu cầu hủy việc ghi

	T ₁	T ₂
t,	Read(A)	
t ₂	A:=A+10	
t ₃	Write(A)	
t,		Read(A)
t,		Print(A)
t ₆	Abort	

Điều khiển đồng thờ

Nội dung chi tiết

- 0000
- Các vấn đề truy xuất đồng thời
- Kỹ thuật khóa (lock)
 - Giới thiệu
 - Khóa 2 giai đoạn (two-phase)
 - Khóa đọc viết
 - Khóa đa hạt (multiple granularity)
 - Nghi thức cây (tree protocol)
- Kỹ thuật nhãn thời gian (timestamp)
- Kỹ thuật xác nhận tính hợp lệ (validation)

Điều khiển đồng thời

Giới thiệu

- Làm thế nào để bộ lập lịch ép buộc 1 lịch phải khả tuần tự?
- Bộ lập lịch với cơ chế khóa (locking scheduler)
 - Có thêm 2 hành động
 - Lock
 - Unlock

Nêu khiển đồng thời

Kỹ thuật khóa

- Các giao tác trước khi muốn đọc/viết lên 1 đơn vị dữ liệu phải phát ra 1 yêu cầu xin khóa (lock) đơn vị dữ liệu đó
 Lock(A) hay I(A)
- Yêu cầu này được bộ phận <u>quản lý khóa</u> xử lý
 - Nếu yêu cầu được chấp thuận thì giao tác mới được phép đọc/ghi lên đơn vị dữ liệu

- Sau khi thao tác xong thì giao tác phải phát ra lệnh giải phóng đơn vị dữ liệu (unlock)
 - Unlock(A) hay u(A)

Diàu striån dånn tro

10

Kỹ thuật khóa (tt)

- Qui tắc
 - (1) Giao tác đúng đắn

 T_i : ... I(A) ... r(A) / w(A) ... u(A) ...

• (2) Lịch thao tác hợp lệ

 $S: \qquad \dots \ I_i(A) \ \dots \dots \ u_i(A) \ \dots$

không có l_i(A)

Điều khiển đồng th

Bài tập (tt) • Cho biết lịch nào h	ợp lệ? G	iao tác nào là đúng?	000 0000 0000 0000 0000 0000 0000
S ₃ T ₁ Lock(A) Read(A) Unlock(A) Lock(B) Write(B)	T ₂	Т3	
Unlock(B)	Lock(B) Read(B) Write(B) Unlock(B)	Lock(B) Read(B) Unlock(B)	
Diku kirkin döng trox			14

Kỹ thuật khóa (tt)			0000 0000 0000 0000 0000 0000	
Nếu lịch S hợp lệ	thì S có khả tư	uần tụ	khôr	ng?
(s) T,	T ₂	A	В	
Lock(A); Read(A,t) t:=t+100		25	25	
Write(A,t); Unlock(A)		125		
	Lock(A); Read(A,s) s:=s*2			
	Write(A,s); Unlock(A)	250		
	Lock(B); Read(B,s) s:=s*2			
	Write(B,s); Unlock(B)		50	
Lock(B); Read(B,t)				
t:=t+100				
Write(B,t); Unlock(B)			150	
Điều khiển đồng thời				15

Kỹ thuật khóa 2 giai đoạn (tt)

- - S thỏa qui tắc (1), (2), (3) \Rightarrow S conflict serializable
- Chứng minh
 - Giả sử G(S) có chu trình
 - $\bullet \quad T_1 \to T_2 \to ... \ T_n \to T_1$
 - $\bullet \ \ \, T_1$ thực hiện lock những đơn vị dữ liệu được unlock bởi T_n
 - T₁ có dạng ... lock ... unlock ... lock
 - Điều này vô lý vì T₁ là giao tác thỏa 2PL
 - G(S) không thể có chu trình
 - S conflict-serializable

Kỹ thuật khóa 2 giai đoạn (tt)

• Chú ý

Kỹ thuật khóa đọc viết

Vấn đề

- Bộ lập lịch có các hành động
 - Khóa đọc (Read lock, Shared lock)
 - RLock(A) hay rl(A)
 - Khóa ghi (Write lock, Exclusive lock)
 WLock(A) hay wl(A)
 - Giải phóng khóa
 - Unlock(A) hay u(A)

Kỹ thuật khóa đọc viết (tt)

- Cho 1 đơn vị dữ liệu A bất kỳ
 - WLock(A)
 - Hoặc có 1 khóa ghi duy nhất lên A
 - Hoặc không có khóa ghi nào lên A
 - RLock(A)
 - Có thể có nhiều khóa đọc được thiết lập lên A

Didu stride diam to

22

Kỹ thuật khóa đọc viết (tt)

- Giao tác muốn Write(A)
- Yêu cầu WLock(A)
- WLock(A) sẽ được chấp thuận nếu A tự do
 - Sẽ không có giao tác nào nhận được WLock(A) hay RLock(A)
- Giao tác muốn Read(A)
 - Yêu cầu RLock(A) hoặc WLock(A)
 - RLock(A) sẽ được chấp thuận nếu A không đang giữ một WLock nào
 - Không ngăn chặn các thao tác khác cùng xin Rlock(A)
 - Các giao tác không cần phải chờ nhau khi đọc A
- Sau khi thao tác xong thì giao tác phải giải phóng khóa trên đơn vi dữ liệu A
 - ULock(A)

Điều khiển đồng thi

23

Kỹ thuật khóa đọc viết (tt)

- Qui tắc
 - (1) Giao tác đúng đắn

 T_i : ... rI(A) ... r(A) ... u(A) ...

 T_i : ... w(A) ... u(A) ...

Điều khiển đồng thó

Kỹ thuật khóa đọc viết (tt)

- Vấn đề
 - Các giao tác đọc và ghi trên cùng 1 đơn vị dữ liệu

Т,
Read(B)
W-it-(D)2

- Giải quyết
 - Cách 1 yêu cầu khóa độc quyền

$$T_i: \quad \dots \, wl(A) \, \dots \, r(A) \, \dots \, w(A) \, \dots \, u(A) \, \dots$$

• Cách 2 - nâng cấp khóa

$$T_i: \quad ... \; rl(A) \; ... \; r(A) \; ... \; wl(A) \; ... \; w(A) \; ... \; u(A) \; ...$$

Điều khiển đồng th

25

Bài tập

- Hãy suy nghĩ và cho biết cách nào là hợp lý
- Xin khóa thứ 2 cho đơn vị dữ liệu muốn ghi?
- Xin khóa độc quyền ngay từ đầu?
- Cho ví dụ và giải thích

Điều khiến đồng th

26

Kỹ thuật khóa đọc viết (tt)

- Qui tắc
 - (2) Lịch thao tác hợp lệ

Điều khiến đồng thó

Kỹ thuật khóa đọc viết (tt)

• Ma trận tương thích (compatibility matrices)

		Yêu cầu lock	
		Share	eXclusive
Trạng thái hiện hành	Share	yes	no
niện nann	eXclusive	no	no
	·		

Kỹ thuật khóa đọc viết (tt)

- Qui tắc
 - (3) Giao tác 2PL
 - Ngoại trừ trường hợp nâng cấp khóa, các trường hợp còn lại đều giống với nghi thức khóa
 - Nâng cấp xin nhiều khóa hơn

s:	rl _i (A) wl _i (A)	u _i (A)
	←——	─
	không có unlock	không có lock

Nâng cấp giải phóng khóa đọc

$$S: \quad \dots rl_i(A) \dots ul_i(A) \dots wl_i(A) \dots u_i(A) \dots \\ \\ \text{vẫn chấp nhận trong pha lock}$$

Điều khiển đồng thời

29

Kỹ thuật khóa đọc viết (tt)

- Định lý
 - S thỏa qui tắc (1), (2), (3) ⇒ S conflic-serializable của khóa đọc viết
- Chứng minh
 - Bài tập về nhà

Điều khiển đồng th

Khóa ở mức độ nào? (tt)

- Xét ví dụ hệ thống ngân hàng
 - Quan hệ TàiKhoản(mãTK, sốDư)
 - Giao tác gửi tiền và rút tiền
 - Khóa relation?
 - Các giao tác thay đổi giá trị của sốDư nên yêu cầu khóa độc quyền
 Tại 1 thời điểm chỉ có hoặc là rút hoặc là gửi

 - Xử lý đồng thời chậm
 - Khóa tuple hay disk block?
 - 2 tài khoản ở 2 blocks khác nhau có thể được cập nhật cùng thời điểm
 - Xử lý đồng thời nhanh
 - Giao tác tính tổng số tiền của các tài khoản
 - Khóa relation?
 - Khóa tuple hay disk block?

Khóa ở mức độ nào? (tt)

- Phải quản lý khóa ở nhiều mức độ
 - Tính chất hạt (granularity)
 - Tính đồng thời (concurrency)

Có thể có cả 2 tính không?

Phân cấp dữ liệu

- Relations là đơn vị dữ liệu khóa lớn nhất
- Một relation gồm 1 hoặc nhiều blocks (pages)
- Một block gồm 1 hoặc nhiều typles

Kỹ thuật khóa đa hạt

- Gồm các khóa
 - Khóa thông thường
 - Shared lock: S
 - Exclusive lock: X
 - Khóa cảnh báo (warning lock)
 - Warning (intention to) shared lock: IS
 - Warning (intention to) exclusive lock: IX

Diàu solan dans to

dång thời

Kỹ thuật khóa đa hạt (tt)

Kỹ thuật khóa đa hạt (tt)

Nút cha đã khóa bằng phương thức	Nút con có thể khóa bằng các phương thức
IS	IS, S
IX	IS, S, IX, X
s	[S, IS] không cần thiết
x	Không có

Điều khiển đồng th

40

Kỹ thuật khóa đa hạt (tt)

- (1) Thỏa ma trận tương thích
- (2) Khóa nút gốc của cây trước
- (3) Nút Q có thể được khóa bởi T_i bằng S hay IS khi cha(Q) đã bị khóa bởi T_i bằng IX hay IS
- (4) Nút Q có thể được khóa bởi T_i bằng X hay IX khi cha(Q) đã bị khóa bởi T_i bằng IX
- (5) T_i thỏa 2PL
- (6) T_i có thể giải phóng nút Q khi không có nút con nào của Q bị khóa bởi T_i

Điều khiển đồng thó

41

Bài tập

- T₂ sẽ có những khóa gì?

Điều khiển đồng thó

Kỹ thuật khóa đa hạt (tt)

- Giải pháp
 - Trước khi thêm vào 1 nút Q ta phải khóa cha(Q) bằng khóa X

Điều khiển đồng thứ

Nghi thức cây

Nghi thức cây (tt)

• Muốn truy xuất nút D thì phải duyệt qua nút $\operatorname{cha}(D)$ theo chiều của con trỏ

Nghi thức cây (tt)

- Giả sử
 - Dùng 1 khóa độc quyền: $Lock_i(X)$ hay $l_i(X)$
 - Các giao tác đúng đắn
 - Lịch thao tác hợp lệ
- Qui tắc
 - (1) Giao tác T_i có thể phát ra khóa đầu tiên ở bất kỳ nút nào
 - (2) Nút Q sẽ được khóa bởi T_i khi cha(Q) cũng được khóa bởi T_i
 - (3) Các nút có thể được giải phóng khóa bất cứ lúc nào
 - (4) Sau khi Ti giải phóng khóa trên Q, Ti không được khóa trên Q nữa

Điều khiển đồng thời

50

Ví dụ

 $T_{1}\colon l(A); \ r(A); \ l(B); \ r(B); \ l(C); \ r(C); \ w(A); \ u(A); \ l(D); \ r(D); \ w(B); \ u(B); \ w(D); \ u(D); \ w(C); \ u(C)$ $T_{2}\colon l(B); \ r(B); \ l(E); \ r(E); \ w(B); \ u(B); \ w(E); \ u(E)$

T₃: I(E); r(E); I(F); r(F); w(F); u(F); I(G); r(G); w(E); u(E); w(G); u(G)

Điều khiển đồng thời

.

Nội dung chi tiết

- Các vấn đề truy xuất đồng thời
- Kỹ thuật khóa (locking)
- Kỹ thuật nhãn thời gian (timestamps)
 - Giới thiệu
 - Nhãn thời gian toàn phần
 - Nhãn thời gian riêng phần
 - Nhãn thời gian nhiều phiên bản (multiversion)
- Kỹ thuật xác nhận hợp lệ (validation)

Điều khiển đồng th

55

Giới thiệu

- Ý tưởng
 - Giả sử không có hành động nào vi phạm tính khả tuần tự
 - Nhưng nếu có, hủy giao tác có hành động đó và thực hiện lại giao tác
- Chọn một thứ tự thực hiện nào đó cho các giao tác bằng cách gán nhãn thời gian (timestamping)
 - Mỗi giao tác T sẽ có 1 nhãn, ký hiệu TS(T)
 - Tại thời điểm giao tác bắt đầu
 - Thứ tự của các nhãn tăng dần
 - Giao tác bắt đầu trễ thì sẽ có nhãn thời gian lớn hơn các giao tác bắt đầu sớm

Điều khiển đồng thờ

56

Giới thiệu (tt)

- Để gán nhãn
 - Đồng hồ của máy tính
 - Bộ đếm (do bộ lập lịch quản lý)
- Chiến lược cơ bản
 - Nếu ST(T_i) < ST(T_j) thì lịch thao tác được phát sinh phải tương đương với lịch biểu tuần tự {T_i, T_j}

Điều khiển đồng thơ

Nhãn thời gian toàn phần

- Mỗi giao tác T khi phát sinh sẽ được gán 1 nhãn TS(T) ghi nhận lại thời điểm phát sinh của T
- Mỗi đơn vị dữ liệu X cũng có 1 nhãn thời TS(X), nhãn này ghi lại TS(T) của giao tác T đã thao tác read/write thành công sau cùng lên X
- Khi đến lượt giao tác T thao tác trên dữ liệu X, so sánh TS(T) và TS(X)

Điều khiển đồng th

58

Nhãn thời gian toàn phần (tt)

Read(T, X)

If Ts(X) <= Ts(T)
Read(X);
//cho phép dọc X
Ts(X):= Ts(T);
Else
Abort {T};
//hủy bỏ T
//khởi tạo lại ST

Write(T, X)

Điều khiển đồng thời

59

Ví dụ

	T ₁	T ₂	А	В
	TS(T ₁)=300	TS(T ₂)=200	TS(A)=0	TS(B)=0
1	Read(A)		TS(A)=100	
2		Read(B)		TS(B)=200
	A=A*2			
3	Write(A)		TS(A)=100	
		B=B+20		
4		Write(B)		TS(B)=200
5	Read(B)			

 $TS(A) \leftarrow TS(T_1) : T_1 \text{ doc được } A$ $TS(B) \leftarrow TS(T_2) : T_2 \text{ dọc được } B$

 $TS(A) \Leftarrow TS(T_1) : T_1$ ghi lên A được $TS(B) \Leftarrow TS(T_2) : T_2$ ghi lên B được

 $TS(B) > TS(T_1) : T_1$ không đọc được B

Khởi tạo lại $TS(T_1) \to TS(T_2) < TS(T_1)$ Lịch khả tuần tự theo thứ tự $\{T_2, T_1\}$

Điều khiển đồng thời

Abort

...

Nhãn thời gian toàn phần (tt) • Nhận xét TS(T₁)=100 TS(T₂)=120 TS(T₁)=100 TS(T₂)=120 Read(A) TS(A)=100 Read(A) TS(A)=100 TS(A)=120 Read(A) TS(A)=120 TS(A)=120 TS(A)=120 Write(A) T₁ bị hủy và bắt đầu thực hiện lại với timestamp mới Không phân biệt tính chất của thao tác là đọc hay viết o T_1 vẫn bị hủy và làm lại từ đầu với 1 timestamp mới Nhãn thời gian riêng phần • Nhãn của đơn vị dữ liệu X được tách ra thành 2 • RT(X) - read Ghi nhận TS(T) gần nhất đọc X thành công • WT(X) - write • Ghi nhận TS(T) gần nhất ghi X thành công Nhãn thời gian riêng phần (tt) • Công việc của bộ lập lịch • Gán nhãn RT(X), WT(X) và C(X) Kiểm tra thao tác đọc/ghi xuất hiện vào lúc nào • Có xãy ra tình huống

Đọc quá trễGhi quá trễ

Đọc dữ liệu rác (dirty read)Qui tắc ghi Thomas

Nhãn thời gian riêng phần (tt)

• Qui tắc ghi Thomas

- ST(T) < ST(U)
- U ghi X trước, T ghi X sau
- ST(T) < WT(X)
- T ghi X xong thì không làm được gì
 - Không có giao tác nào đọc được giá trị X của T (nếu có cũng bị hủy do đọc quá trễ)
 - Các giao tác đọc sau T và U thì mong muốn đọc giá trị X của U

ightarrowBỏ qua thao tác ghi của T

Nhãn thời gian riêng phần (tt)

• Qui tắc ghi Thomas

- Nhưng U hủy
 - Giá trị của X được ghi bởi U bị mất
 - Cần khôi phục lại giá trị X trước đó
- Và T đã kết thúc
 - X có thể khôi phục từ thao tác ghi của T
- Do qui tắc ghi Thomas
 - Thao tác ghi đã được bỏ qua
 - Quá trễ để khôi phục X

Điều khiển đồng thời

68

Nhãn thời gian riêng phần (tt)

Qui tắc ghi Thomas

- Khi T muốn ghi
 - Cho T thử ghi và sẽ gỡ bỏ nếu T hủy
 - Sao lưu giá trị cũ của X và nhãn WT(X) trước đó

Điều khiến đồng thời

Nhãn thời gian riêng phần (tt)

- Tóm lại
 - Khi có yêu cầu đọc và ghi từ giao tác T
 - Bộ lập lịch sẽ
 - Đáp ứng yêu cầu
 - Hủy T và khởi tạo lại T với 1 timestamp mới
 - T rollback
 - Tṛì hoãn T, sau đó mới quyết định phải hủy T hoặc đáp ứng yêu

Nhãn thời gian riêng phần (tt)

Read(T, X)

If WS(X) <= TS(T) Read(X);//cho phép đọc X RT(X):= max(RT(X),TS(T)); Else Rollback{T}; //hủy T và khởi tạo lại TS mới

Write(T, X)

If RT(X) <= TS(T) If WT(X) <= TS(T)</pre> Write(X);//cho phép ghi X WT(X):= TS(T); //Else không làm gì cả Else

Read(C)

Ví dụ RT(A)=0 WT(A)=0 RT(C)=0 WT(C)=0 TS(T₁)=100 TS(T₂)=200 $WT(A) < TS(T_1)$ T_1 đọc được A Read(A) RT(B)=200 WT(B)=0 $WT(B) < TS(T_2)$ T_2 đọc được B Read(B) $RT(A) < TS(T_1)$ $WT(A) = TS(T_1)$ T₁ ghi lên A được RT(A)=100 WT(A)=100 Write(A) RT(B)=200 WT(B)=200 $RT(B) < TS(T_2)$ $WT(B) = TS(T_2)$ T₂ ghi lên B được Read(C)

RT(C)=200 WT(C)=0 $WT(B) < TS(T_1)$ T_1 đọc được C $RT(B) < TS(T_1)$ T_1 không ghi lên C được Write(C) Abort hiển đồng thá

Ví dụ (tt)						1 000
	T ₁	T ₂	T ₃	A RT=0	B RT=0	C RT=0	888
	TS=200	TS=150	TS=175	WT=0	WT=0	WT=0	
	Read(B)				RT=200 WT=0		
		Read(A)		RT=150 WT=0			
			Read(C)			RT=175 WT=0	
	Write(B)				RT=200 WT=200		
	Write(A)			RT=200 WT=200			
		Write(C)					
			Write(A)				
Điều khiển đồng thời		Rollback		a A đã sao l ông bị rollba		ı cần ahi A	73

Ví dụ (t	t)						000 0000 0000 0000 0000 0000
	T ₁ TS=150	T ₂ TS=200	TS=	175	T ₄ TS=255	A RT=0 WT=0	100
	Read(A)					RT=150 WT=0	
	Write(A)					RT=150 WT=150	
		Read(A)				RT=200 WT=0	
		Write(A)				RT=200 WT=200	
			Rea	d(A)			
					Read(A)	RT=255 WT=200	
			Rolli	ack			
Điều khiển đồng thời							74

Nhãn thời gian riêng phần (tt) Nhận xét Thao tác read₃(A) làm cho giao tác T₃ bị hủy T₃ đọc giá trị của A sẽ được ghi đè trong tương lai bởi T₂ Giả sử nếu T₃ đọc được giá trị của A do T₁ ghi thì sẽ không bị hủy

Nhãn thời gian nhiều phiên bản

- Ý tưởng
 - Cho phép thao tác read₃(A) thực hiện
- Bên cạnh việc lưu trữ giá trị hiện hành của A, ta giữ lại các giá trị được sao lưu trước kia của A (phiên bản của A)
- Giao tác T sẽ đọc được giá trị của A ở 1 phiên bản thích hợp nào đó

Diàu shiàn dàng th

76

Nhãn thời gian nhiều phiên bản (tt)

- Mỗi phiên bản của 1 đơn vị dữ liệu X có
 - RT(X)
 - Ghi nhận lại giao tác sau cùng đọc X thành công
 - WT(X)
 - Ghi nhận lại giao tác sau cùng ghi X thành công
- Khi giao tác T phát ra yêu cầu thao tác lên X
 - Tìm 1 phiên bản thích hợp của X
 - Đảm bảo tính khả tuần tự
- Một phiên bản mới của X sẽ được tạo khi hành động ghi X thành công

Điều khiển đồng thờ

77

Nhãn thời gian nhiều phiên bản (tt)

Read(T, X)

Write(T, X)

i="số thứ tự phiên bản sau cũng nhất của A" While WT(X_1) > TS(T) i:=i-1;//lūi lại If RT(X_1) > TS(T) Rollback T//Hủy và khởi tạo TS mới Else $\text{Tạo phiên bản A_{i+1}}, \text{Write}(X_{i+1}); \\ \text{RT}(X_{i+1}) = 0;//chua cố ai đọc WT(<math>X_{i+1}$) = TS(T);

Điều khiển đồng thơ

Ví d	ļų							000 0000 0000 0000 0000 0000
	T ₁	T ₂	T ₃	T ₄	A ₀ RT=0	A ₁	A ₂	
	TS=150	TS=200	TS=175	TS=255	WT=0			
	Read(A)				RT=150 WT=0			
	Write(A)					RT=0 WT=150		
		Read(A)				RT=200 WT=150		
		Write(A)					RT=0 WT=200	
			Read(A)			RT=200 WT=150		
				Read(A)			RT=255 WT=200	
Điều khiển đồ	ng thời							79

í dụ	(11)					000
T ₁	T ₂ TS=200	A ₀ RT=0 WT=0	RT=0 WT=0	A ₂	В,	
Read(A)		RT=100 WT=0				
	Write(A)		RT=0 WT=200	RT=0 WT=200		
	Write(B)				RT=0 WT=200	
Read(B)				RT=100 WT=0		
Write(A)			RT=0 WT=100			

Nhãn thời gian nhiều phiên bản (tt)

- Nhận xét
 - Thao tác đọc
 - Giao tác T chỉ đọc giá trị của phiên bản do T hay những giao tác trước T cập nhật
 - T không đọc giá trị của các phiên bản do các giao tác sau T cập nhật
 - \rightarrow Thao tác đọc không bị rollback
 - Thao tác ghi
 - Thực hiện được bằng cách chèn thêm phiên bản mới
 Không thực hiện được thì rollback

 - Tốn nhiều chi phí tìm kiếm, tốn bộ nhớ
 - Nên giải phóng các phiên bản quá cũ không còn được các giao tác sử dụng

Nội dung chi tiết

- 000
- Các vấn đề truy xuất đồng thời
- Kỹ thuật khóa (locking)
- Kỹ thuật nhãn thời gian (timestamps)
- Kỹ thuật xác nhận hợp lệ (validation)

Điều khiển đồng th

82

Giới thiệu

- Ý tưởng
 - Cho phép các giao tác truy xuất dữ liệu 1 cách tự do
 - Kiểm tra tính khả tuần tự của các giao tác
 - Trước khi ghi, tập hợp các đơn vị dữ liệu của 1 giao tác sẽ được so sánh với tập đơn vị dữ liệu của những giao tác khác
 - Nếu không hợp lệ, giao tác phải rollback
- Trong khi nhãn thời gian
 - Lưu giữ lại các phiên bản của đơn vị dữ liệu
- Thì xác nhận tính hợp lệ
 - Quan tâm đến các giao tác đang làm gì

Điều khiến đồng th

83

Xác nhận hợp lệ

- Một giao tác có 3 giai đoạn
 - (1) Đọc Read set RS(T)
 - Đọc tất cả các đơn vị dữ liệu có trong giao tác
 - Tính toán rồi lưu trữ vào bộ nhớ phụ
 - Không sử dụng cơ chế khóa
 - (2) Kiểm tra hợp lệ Validate
 - Kiểm tra tính khả tuần tự
 - (3) Ghi Write set WS(T)
 - Nếu (2) hợp lệ thì ghi xuống CSDL
- Chiến lược cơ bản
 - Nếu T₁, T₂, ..., T_n là thứ tự hợp lệ thì kết quả sẽ conflictserializable với lịch tuần tự {T₁, T₂, ..., T_n}

Điều khiển đồng thi

Xác nhận hợp lệ (tt)

- 000 0000 0000 0000 0000 0000
- Bộ lập lịch xem xét 3 tập hợp
 - START
 - Tập các giao tác đã bắt đầu nhưng chưa kiểm tra hợp lệ xong
 - START(T) ghi nhận thời điểm bắt đầu của T
 - \//\
 - Tập các giao tác được kiểm tra hợp lệ nhưng chưa hoàn tất ghi
 - Các giao tác đã hoàn tất giai đoạn 2
 - VAL(T) ghi nhận thời điểm T kiểm tra xong
 - FIN
 - Tập các giao tác đã hoàn tất việc ghi
 - Các giao tác đã hoàn tất giai đoạn 3
 - FIN(T) ghi nhận thời điểm T hoàn tất

Diàu shiàn dàng th

85

Xác nhận hợp lệ (tt)

Vấn đề 1

- T đã kiểm tra hợp lệ xong
- T chưa hoàn tất ghi thì U bắt đầu đọc
- $RS(U) \cap WS(T) = \{X\}$
- U có thể không đọc được giá trị X ghi bởi T
- \rightarrow Rollback U

Điều khiển đồng thời

Xác nhận hợp lệ (tt)

Vấn đề 1

Sau khi T hoàn tất thì U mới bắt đầu

Điều khiển đồng thời

Xác nhận hợp lệ (tt) Vấn đề 2 T đã kiểm tra hợp lệ xong T chưa hoàn tất ghi thì U kiểm tra hợp lệ WS(U) ∩ WS(T) = {X} U có thể ghi X trước T → Rollback U

Xác nhận hợp lệ (tt) Qui tắc (1) - Nếu có T chưa hoàn tất mà U bắt đầu Kiểm tra RS(U) ∩ WS(T) = Ø (2) - Nếu có T chưa hoàn tất mà U kiểm tra hợp lệ Kiểm tra WS(U) ∩ WS(T) = Ø

Nhận xét

- 000 0000 0000 0000 0000
- Kỹ thuật nào hiệu quả hơn???
 - Khóa (locking)
 - Nhãn thời gian (timestamps)
 - Xác nhận hợp lệ (validation)
- Dựa vào
 - Lưu trữ
 - Tỷ lệ với số lượng đơn vị dữ liệu
 - Khả năng thực hiện
 - Các giao tác ảnh hưởng với nhau như thế nào? Nhiều hay ít?

Điều khiển đồng thời

92

Nhận xét (tt)

	Khóa	Nhãn thời gian	Xác nhận hợp lệ	
Delay	Trì hoãn các giao tác, ít rollback	Không trì hoãn các giao tác, nhưng gây ra rollback		
Rollback		Xử lý rollback nhanh	Xử lý rollback chậm	
Storage	Phụ thuộc vào số lượng đơn vị dữ liệu bị khóa	Phụ thuộc vào nhãn đọc và ghi của từng đơn vị dữ liệu	Phụ thuộc vào nhãn WS và RS của các giao tác hiện hành và 1 vài giao tác đã hoàn tất sau 1 giao tác bắt đầu nào đó	
		Sử dụng nhiều bộ nhớ hơn		

ảnh hưởng nhiều ảnh hưởng ít

Nhận xét (tt)

- Khóa & nhãn thời gian
 - Nếu các giao tác <u>chỉ thực hiện đọc</u> không thôi thì kỹ thuật nhãn thời gian tốt hơn
 - Ît có tình huống các giao tác cố gắng đọc và ghi cùng 1 đơn vị dữ liệu
 - Nhưng kỹ thuật khóa sẽ tốt hơn trong những tình huống xãy ra tranh chấp
 - Kỹ thuật khóa thường hay trì hoãn các giao tác để chờ xin được khóa
 - Dẫn đến deadlock
 - Nếu có các giao tác đọc và ghi cùng 1 đơn vị dữ liệu thì việc rollback là thường xuyên hơn

Điều khiển đồng th

94

Nhận xét (tt) Giao tác đọc và ghi Kỹ thuật khóa Kỹ thuật khóa Số tặp lịch

Kết luận Mỗi kỹ thuật đềi

Mỗi kỹ thuật đều có ưu việt riêng

Điều khiển đồng thời

