Chapitre 2

Fonctions de plusieurs variables : Limites et continuité

2.1 Fonctions de plusieurs variables

2.1.1 Definition et Notation

Définition 23 Soit $(E, ||.||_E)$ et $(F, ||.||_F)$ deux espaces vectoriels normés de dimensions n et m respectivement.

On appelle fonction de plusieurs variables une application f d'une partie $D \subseteq E$ dans un ensemble F ($f:D\subseteq E\to F$) L'ensemble D s'appelle le domaine de définition de f, qui à chaque vecteur $x=(x_1,x_2,...,x_n)$ de son domaine de définition D de E, associe un unique vecteur $y=(f_1(x),f_2(x),...,f_m(x))$

Et on note

$$f: D \subseteq E \rightarrow F$$

 $x = (x_1, x_2, ..., x_n) \mapsto f(x) = y = (f_1(x), f_2(x), ..., f_m(x))$

Remarque 1

- -Lorsque E est une partie de \mathbb{R}^2 ou \mathbb{R}^3 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de plusieurs variables.
- Lorsque E est une partie de \mathbb{R}^2 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de deux variables.

Notation:

- $\{f(x)/x \in D\}$ est appelée l'image de f.
- $\{(x, f(x))/x \in D\} \subseteq E \times F$ est appelé graphe de f.

Exemple 1:

Considérons un rectangle ABCD. On appelle x la longueur AB et, y la longueur BC. On suppose x > 0 et y > 0.

On appelle p(x, y), le périmètre de ABCD, et S(x, y) l'aire de ce rectangle. On a alors : P et S sont définier sur $(\mathbb{R}_+^*)^2$ dans \mathbb{R}_+^* par :

$$p(x, y) = 2 \times (x + y)$$
 et $S(x, y) = x \times y$

donc les fonctions P et S sont des fonctions numiréque de deux variables.

Exemple 2:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $: f(x,y) = (r\cos\theta, r\sin\theta)$ (r > 0) est une fonction vectorielle de deux variables.(avec les coordonnées polaires).

Définition 24 Soient D_1 et D_2 deux parties de E telles que $D_1 \subset D_2$ et f et g deux fonctions définies respectivement sur D_1 et D_2 On dit que g est un prolongement de f à D_2 si pour tout $x \in D_1$ on a f(x) = g(x).

Dans cette situation, on dit aussi que f est la restriction de $g \grave{a} D_1$.

Exemple 3:

 $f(x,y) = \frac{x^3}{x^2 + y^2}$ qu'on prolonge en une fonction g définie sur \mathbb{R}^2 en posant g(0,0) = a où $a \in \mathbb{R}$

2.1.2 Fonctions Partielles

Définition 25 (fonction partielle)

Soit f une fonction de deux variables. La fonction partielle f_x est définie par :

$$f_x: x \mapsto f(x,y)$$

(la variable y est alors considérée comme un paramètre). De même la fonction partielle f_{γ} est définie par :

$$f_y: y \mapsto f(x,y)$$

(la variable x est alors considérée comme un paramètre).

2.2 Limite en un point

Définition 26 (limite)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$, une partie $A \subseteq E$ et une application $f : A \to F$. Soit un point $x_0 \in \overline{A}$ adhérent à A et $\ell \in F$.

On dit que la fonction f admet ℓ comme limite au point x_0 ssi:

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in A, \quad \|x - x_0\|_E \le \eta \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

On écrit alors $f(x) \xrightarrow[x \to x_0]{} \ell$.

Remarque

La définition précédente s'écrit avec des boules fermées :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(\overline{B}(x_0, \eta) \cap A) \subset \overline{B}(\ell, \varepsilon)$$

et avec des boules ouvertes :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(B(x_0, \eta) \cap A) \subset B(\ell, \varepsilon)$$

Théorème 14 (Unicité de la limite)

Si f a une limite en x_0 , alors celle ci est unique.

Démonstration:

Supposons que f tend vers ℓ et ℓ' quand $xtendx_0$. Alors :

Soit
$$\varepsilon > 0$$
 il existe $\eta_1 > 0$ (resp. $\eta_1 > 0$) on a $||f(x) - \ell||_F \le \frac{\varepsilon}{2}$ (resp. $||f(x) - \ell'||_F \le \frac{\varepsilon}{2}$)

Donc, soit $x \in A$ et $\eta = \min(\eta_1, \eta_2)$ tel que $\|x - x_0\|_E \le \eta$

on a
$$\|\ell - \ell'\|_F \le \|f(x) - \ell\|_F + \|f(x) - \ell'\|_F \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Comme ε est quelconque, on a nécessairement $\ell = \ell'$

Remarque 2

 $\overline{\text{Pour} f}: \mathbb{R} \to \mathbb{R}$ une fonction d'une seule variable réelle à valeurs réelles on retrouve la définition de la limites de f au point x_0 :

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathbb{R}, \quad |x - x_0| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

Exemple 4

1. On considère la fonction

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x, y) \mapsto f(x, y) = 3x + y$

On montre que

$$\lim_{(x,y)\to(1,1)} f(x,y) = 4$$

d'aprés la difénition de la limite, on montre que :

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad |(x, y) - (1, 1)| < \eta \Rightarrow |f(x, y) - 4| \le \varepsilon$$

alors

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x,y) \in \mathbb{R}^2, \quad (|x-1| < \eta \quad \text{et} \quad |y-1| < \eta) \Rightarrow |3x + y - 4| \leq \varepsilon$$

donc on a

$$|x-1| < \eta \Rightarrow 3 - 3\eta < 3x < 3 + 3\eta$$

et
$$|y-1| < \eta \Rightarrow 1-\eta < y < 1+\eta$$

Donc
$$|f(x, y) - 4| < 4\eta \le \varepsilon$$

Alors $\eta \leq \frac{\varepsilon}{4}$

Donc on pose $\eta = \frac{\varepsilon}{4}$

finallement

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{4} > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad |(x, y) - (1, 1)| < \eta \Rightarrow |f(x, y) - 4| \le \varepsilon$$

donc

$$\lim_{(x,y)\to(1,1)} f(x,y) = 4$$

2. Considérons la fonction de 2 variables $f:(\mathbb{R}^2,\|.\|_2)\to(\mathbb{R},|.|)$ définie par

$$f(x,y) = \frac{6x^2y}{x^2 + y^2}$$

Montrons par la difénition de la limite, que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

i.e

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

C'est à dire

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \sqrt{x^2 + y^2} < \eta \Rightarrow |\frac{6x^2y}{x^2 + y^2}| \le \varepsilon$$

on a
$$\forall (x,y) \neq (0,0)$$
 $x^2 \leq x^2 + y^2 \Rightarrow \frac{x^2}{x^2 + y^2} \leq 1$ or $|\frac{6x^2y}{x^2 + y^2}| = 6 \times \frac{x^2}{x^2 + y^2} |y| \leq 6|y|$ et on a $y^2 \leq x^2 + y^2 \Rightarrow 6|y| \leq 6\sqrt{x^2 + y^2}$ Par conséquent $6\sqrt{x^2 + y^2} \leq \varepsilon \Rightarrow \sqrt{x^2 + y^2} \leq \frac{\varepsilon}{6} = \eta$ finallement on donne $\eta = \frac{\varepsilon}{6}$

donc

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{6} > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

alors

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Remarque 2

la limite d'une fonction en un point ne dépend pas du choix des normes sur \mathbb{R}^n et, \mathbb{R}^p qui sont des espaces de dimensions finies.car toutes les normes de \mathbb{R}^n sont équivalentes ($\|.\|_{\infty} \le \|.\|_2 \le \|.\|_1 \le n\|.\|_{\infty}$)

Théorème 15 (Caractérisation séquentielle de la limite)

Soient deux e.v.n. de dimension finie $(E, \|.\|_E)$ et $(F, \|.\|_F)$, une partie $A \subset E$ et une application $f: A \to F$, Soit un point $x_0 \in \overline{A}$ adhérent à A et $\ell \in F$ On a l'équivalence entre :

1.
$$f(x) \xrightarrow[x \to x_0]{} \ell$$
.

2.
$$\forall (x_n)_n \in A$$
, $x_n \xrightarrow[n \to +\infty]{} x_0 \Rightarrow f(x_n) \xrightarrow[n \to +\infty]{} \ell$.

Démonstration

 $\Rightarrow \text{Supposons que } f(x) \xrightarrow[x \to x_0]{} \ell.$

soit $\varepsilon > 0$, soit $\eta > 0$, tel que pour tout x de A, si $\|x - x_0\|_E \le \eta$, alors $\|f(x) - \ell\|_F \le \varepsilon$.

puisque x_0 est adhérent à A, il existe au moins une suite d'éléments de A convergeant vers x_0 . Soit $(x_n)_n$ une suite d'éléments de A convergeant vers x_0 . Alors il existe $n_0 \in \mathbb{N}$ tel que , pour $n \geq n_0$, $\|x_n - x_0\|_E \leq \eta$. alors pour $n \geq n_0$, $\|f(x_n) - \ell\|_F \leq \varepsilon$.

On a monré que $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}/\forall n \geq n_0$, $\|f(x_n) - \ell\|_F \leq \varepsilon$ et donc la suite $(f(x_n))_n$ converge vers ℓ . Ainsi, si $f(x) \xrightarrow[x \to x_0]{} \ell$ alors , pour toute suite $(x_n)_n$ d'éléments de A, convergente , de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

 \Leftarrow Supposons que pour tooute suite $(x_n)_n$ d'éléments de A convergente, de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

Supposons par l'absurde que f(x) ne tende pas vers ℓ quand x tend vers x_0 . Alors

$$\exists \varepsilon > 0$$
, $\forall \eta > 0$, $\exists x \in A / (\|x - x_0\|_E \le \eta)$ et $\|f(x) - \ell\|_F > \varepsilon$

 ε est ainsi fixé.

Pour chaque $n \in \mathbb{N}$, il exixte $u_n \in A$ tel que $||u_n - x_0||_E \le \frac{1}{n+1}$ et $||f(u_n) - \ell||_F > \varepsilon$.

Puisque $\frac{1}{n+1}$ tend vers 0 quand n tend vers $+\infty$, la suite $(u_n)_n$ est une suite d'éléments de A, convergente, de limite x_0 . D'aprés ce qui précéde, on doit avoir $\lim_{n\to +\infty} f(u_n) = \ell$ ce qui contredit le fait que $\forall n \in \mathbb{N}$, $||f(u_n) - \ell||_F > \varepsilon$.

Donc, f(x) tend vers ℓ quand x tend vers x_0 .

Théorème 16 (Théorème de majoration)

On considère une norme $\|.\|_E$ sur E.

On suppose qu'il existe une fonction $g: \mathbb{R} \to \mathbb{R}$, un voisinage $V \in \partial_{x_0}$ tels que :

1.
$$\forall x \in V$$
, $||f(x) - \ell||_F \le g(||x - x_0||_E)$

2.
$$g(\theta) \xrightarrow[\theta \to 0]{0} 0$$

 $Alors f(x) \xrightarrow[x \to x_0]{} \ell$

Démonstration

Soit $\varepsilon > 0$, comme $\lim_{\theta \to 0} g = 0$, il existe $\eta > 0$ tel que $|\theta| < \eta$ alors $0 \le g(\theta) < \varepsilon$

Mais alors si $x \in V \cap B(x_0, \eta)$.

alors
$$\theta = \|x - x_0\|_E \le \eta$$
 et $\|f(x) - \ell\|_F \le g(\|x - x_0\|_E \le \varepsilon$

Donc
$$f(x) \xrightarrow[x \to x_0]{} \ell$$

Remarque: On se sert souvent de ce théorème pour montrer qu'une application n'admet pas de limite en un point.

Posons par exemple pour $\forall (x, y) \in \mathbb{R}^2$ (0,0).

$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$

On a
$$f(0, \frac{1}{n}) \xrightarrow[x \to +\infty]{} 0$$
 et $f(\frac{1}{n}, \frac{1}{n}) \xrightarrow[x \to +\infty]{} \frac{\sqrt{2}}{2}$.
Pourtant $(0, \frac{1}{n}) \xrightarrow[x \to +\infty]{} (0, 0) (\frac{1}{n}, \frac{1}{n}) \xrightarrow[x \to +\infty]{} (0, 0)$.

Pourtant
$$(0,\frac{1}{n}) \xrightarrow{r \to +\infty} (0,0) (\frac{1}{n},\frac{1}{n}) \xrightarrow{r \to +\infty} (0,0)$$

Donc par le théorème de caractérisation séquentielle de la limite, f ne peut avoir de limite en (0,0).

PROPOSITION 20 (On définit également des limites « infinies ») :

1. Si
$$f: X \subset E \to \mathbb{R}$$
, on dit que $f(x) \xrightarrow[x \to x_0]{} +\infty$ lorsque

$$\forall A > 0$$
, $\exists \eta > 0$, $\forall x \in X$ $\|x - x_0\|_E \le \eta \Rightarrow f(x) \ge A$

2. Si
$$f : \mathbb{R} \to (F, \|.\|_F)$$
, on dit que $f(x) \xrightarrow[x \to +\infty]{} \ell$ lorsque

$$\forall \varepsilon > 0$$
, $\exists A > 0$, $\forall x \ge A$, $||f(x) - \ell||_F \le \varepsilon$

3. Si
$$f: X \subset E \to F$$
, on dit que $f(x) \xrightarrow[x \to \infty]{} \ell$ lorsque

$$\forall \varepsilon > 0, \quad \exists R > 0, \quad \forall x \in X \quad \|x\|_E \ge R \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

Théorème 17 (THEOREME DES GENDARMES)

Soient f; g et h trois fonctions de $E \rightarrow F$ vérifiant les deux propriétés suivantes :

1.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell$$

2. il existe
$$\alpha \in \mathbb{R}^+_*$$
 tel que pour tout $x \in \{x \in E/0 < \|x - x_0\| < \alpha\}$ tel que $f(x) \le h(x) \le g(x)$

Alors
$$\lim_{x \to x_0} h(x) = \ell$$

PROPOSITION 21 (PERMUTATION DES LIMITES)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$ Supposons de plus que pour tout $x \in \mathbb{R}$, $\lim_{y\to y_0} f(x,y)$ existe et que pour tout $y \in \mathbb{R}$, $\lim_{x\to x_0} f(x,y)$ existe. Alors

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \ell$$