Упражнение 1. Существуют ли некоммутативные группы порядка 4? Порядка 5?

Решение.

1. Порядка 4.

Пусть $G = \{e, a, b, c\}$ — некоммутативная группа порядка 4, где a и b не коммутируют.

Лемма 1. Пусть a и b не коммутируют. Тогда $a \neq b^{-1}$ (и наоборот).

Доказательство. Пусть $a = b^{-1}$. Тогда

$$a = b^{-1}$$

$$ab = e$$

$$bab = be$$

$$(ba)b = b$$

$$ba = e = ab, !!!$$

По лемме $ab \neq e$ и $ba \neq e$. Кроме того, $ab \neq a$ и $ba \neq a$, т.к. иначе b=e. Аналогично $ab \neq b$ и $ba \neq b$. Итого, $ab, ba \notin {}^2\{e, a, b\}$ и при этом $ab \neq ba$. Тогда ab и ba различные элементы и $|G| \geq 5$, противоречие.

2. Порядка 5.

Пусть $G = \{e, a, b, c, d\}$ — некоммутативная группа порядка 5, где a и b не коммутируют.

Аналогично предыдущему случаю, $ab, ba \notin \{e, a, b\}$. Пусть ab = c и ba = d (без потери общности).

$$ca = (ab)a = a(ba) = ad$$

 $bc = b(ab) = (ba)b = db$

Т.к. $c \neq e, a \neq e, ca \notin \{c, a\}$. Аналогично, $ad \notin \{a, d\}$ и по их равенству $ca \notin \{a, c, d\}$. Кроме того, $ca \neq e$, т.к. иначе $c = a^{-1}$ и $d = a^{-1}$, но доказано, что $c \neq d$ — противоречие. Итого, $ca \notin \{a, c, d, e\}$, следовательно ca = b. Аналогично bc = a.

$$b^2 = b(ca) = (bc)a = a^2$$

Рассмотрим a^2 .

• $a^2 \neq a$, т.к. иначе a=e.

 $^{^{1}}$ e всегда коммутирует, а разницы между a,b,c нет, поэтому общность не теряется.

 $^{^2}$ Здесь (и далее) подразумевается, что и ab, и $ba \notin \dots$

- Аналогично $a^2 = b^2 \neq b$.
- $a^2 \neq c = ab$, т.к. иначе a = b.
- $a^2 = b^2 \neq d = ba$, т.к. иначе b = a.

Единственный оставшийся вариант — $a^2 = e$, но тогда:

$$cb = ab^2 = a = db \Rightarrow c = d$$
.!!!

Упражнение 2. Рассмотрим группу $(\mathbb{Z}, +)$ по сложению. Выделим два подмножества:

$$A = \{1337n \mid n \in \mathbb{Z}\} \quad B = \{n \in \mathbb{Z} \mid n : 1528\}$$

Показать, что A,B есть подгруппы, а также H=A+B — тоже подгруппа. Найти индекс H относительно левых смежных классов.

Решение. A — подгруппа:

- 1. $0 \in A$
- 2. $\forall 1337n, 1337m \in A \ 1337n + 1337m = 1337(n+m) \in A$
- 3. $\forall 1337n \in A \ \exists 1337(-n) \in A : 1337n + 1337(-n) = 1337 \cdot 0 = 0$

Аналогичными выкладками B — подгруппа.

H — подгруппа:

- 1. $\underbrace{0}_{\in A} + \underbrace{0}_{\in B} \in H$
- 2. $\forall (1337n+1528m), (1337k+1528l) \in H$ $1337n+1528m+1337k+1528l=1337(n+k)+1528(m+l) \in H$
- 3. $\forall 1337n + 1528m \in H \ \exists 1337(-n) + 1528(-m) \in H : 1337n + 1528m + 1337(-n) + 1528(-m) = 0$

Несложно посчитать, что HOД(1337, 1528) = 191 и тогда $H = 191\mathbb{Z}$, т.к.

$$1337n + 1528m = 191(7n + 8m)$$

и 7n+8m пробегает всё \mathbb{Z} . Кроме того, очевидно, что $[\mathbb{Z}:191\mathbb{Z}]=191$, т.к. левые смежные классы будут иметь вид $191\mathbb{Z}+n$, два класса для n_1 и n_2 совпадают $\Leftrightarrow n_1\equiv n_2\mod 191$.

Упражнение 3. Рассмотрим группу G (не обязательно конечную) и некоторую её подгруппу H. Показать, что условия [G:H]=2 достаточно для нормальности H. Найти G/H в таком случае.

M3*37y2019 23.10.2021

Решение. Т.к. [G:H]=2, все левые смежные классы равны либо H, либо aH для некоторого фиксированного $a\in G$. Кроме того, $aH\neq H\Rightarrow a\notin H$. Т.к. левые смежные классы делят группу на непересекающиеся множества, $ah=G\setminus H$.

Докажем, что $\forall g \in G \ gH = Hg$. Если $g \in H$, то искомое очевидно. Иначе $gH = G \setminus H$, т.к. $H \not\ni g = ge \in gH$. Аналогично $Hg = G \setminus H$.

Упражнение 4. Определить все подгруппы групп: $\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_6$

Замечание: операция " $\hat{\oplus}$ " в $\mathbb{Z}_2 \times \mathbb{Z}_2$ определяется покомпонентно:

$$z, w \in \mathbb{Z}_2 \times \mathbb{Z}_2$$

$$z = (a, b), \quad w = (u, v)$$

$$z \hat{\oplus} w = (a, b) \hat{\oplus} (u, v) = (a \oplus u, b \oplus w)$$

где " \oplus " есть операция в \mathbb{Z}_2

Решение.

1. \mathbb{Z}_4

 $\mathbb{Z}_4, \{0\}$ — тривиальные подгруппы.

Здесь и далее H — подгруппа рассматриваемой группы.

Пусть $1 \in H$. По замкнутости $2 = 1 + 1 \in H, 3 = 2 + 1 \in H$, т.е. если $1 \in H$, то $H = \mathbb{Z}_4$.

Пусть $2 \in H$. Тогда все искомые свойства выполнены без добавления каких-либо элементов³, т.к. $2+2=0 \in H, 2^{-1}=2, \{0,2\}$ — подгруппа \mathbb{Z}_4 .

Пусть
$$3 \in H$$
. $3^{-1} = 1 \Rightarrow 1 \in H \Rightarrow H = \mathbb{Z}_4$

Ответ: $\{0\}, \mathbb{Z}_4, \{0, 2\}$

2. $\mathbb{Z}_2 \times \mathbb{Z}_2$

 $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\{(0,0)\}$ — тривиальные подгруппы.

Пусть $(1,1)\in H$. Тогда все искомые свойства выполнены без добавления элементов, т.к. $(1,1)+(1,1)=(0,0)\in H, (1,1)^{-1}=(1,1), \{(0,0),(1,1)\}$ — подгруппа $\mathbb{Z}_2\times\mathbb{Z}_2$.

Пусть $(1,0) \in H$. $(1,0) + (1,0) = (0,0) \in H$, $(1,0)^{-1} = (1,0) \Rightarrow \{(0,0),(1,0)\}$ — подгруппа $\mathbb{Z}_2 \times \mathbb{Z}_2$. Аналогичное верно для (0,1).

Пусть и (1,0), и $(0,1) \in H$. Тогда $(1,1) \in H$ по замкнутости и следовательно $H = \mathbb{Z}_2 \times \mathbb{Z}_2$.

M3*37y2019 23.10.2021

³ Кроме нейтрального.

Пусть и (1,1), и $(0,1) \in H$. Тогда $(1,1) + (0,1) = (1,0) \in H$ по замкнутости и $H = \mathbb{Z}_2 \times \mathbb{Z}_2$. Аналогично для (1,1) и (0,1).

Otbet: $\{(0,0)\}, \mathbb{Z}_2 \times \mathbb{Z}_2, \{(0,0),(1,1)\}, \{(0,0),(1,0)\}, \{(0,0),(0,1)\}$

3. \mathbb{Z}_6

 $\mathbb{Z}_6, \{0\}$ — тривиальные подгруппы.

Пусть $1 \in H$. Тогда $H = \mathbb{Z}_6$, аналогично первому случаю.

Пусть $2 \in H$. Тогда $2+2=4 \in H$. $2^{-1}=4, 4^{-1}=2, 2+4=0, 4+4=2, H-$ подгруппа.

Пусть $3 \in H$. Тогда $3 + 3 = 0, 3^{-1} = 3, H - подгруппа.$

Пусть $4 \in H$. Тогда $4^{-1} = 2 \in H$, см. тот случай.

Пусть $5 \in H$. Тогда $5+5=4 \in H \Rightarrow 2 \in H \Rightarrow 2+5=1 \in H \Rightarrow H=\mathbb{Z}_6$.

Если $2, 3 \in H$, то $2 + 3 + 2 = 1 \in H \Rightarrow H = \mathbb{Z}_6$.

Если $2, 5 \in H$, то $2 + 5 = 1 \in H \Rightarrow H = \mathbb{Z}_6$.

Все случаи для $2 \in H$ разобраны, остался случай $3 \in H(2 \notin H)$. Если $5 \in H$, то $3+5=2 \in H, !!!$.

Ответ: $\{0\}, \{0, 2, 4\}, \{0, 3\}, \mathbb{Z}_6$.

Упражнение 5. Рассмотрим циклическую группу порядка 129. Найти все её подгруппы.

Решение. Рассмотрим H — подгруппу C_{129} . Пусть $C_{129} = \langle a \rangle$. Тогда $a^k \in H$. По замкнутости $\forall i \in \mathbb{Z} \ a^{ik} \in H$. Если $\gcd(129,k) = 1$, то ik пробегает все элементы \mathbb{Z}_{129} и тогда $H = C_{129}$. Если же $\gcd(129,k) \neq 1$, то H не обязательно $= C_{129}$. Нетривиальных делителей 129 всего два: 3 и 43. Им соответствуют подгруппы $\{1, g^{43}, g^{126}\}$ и $\{1, g^3, g^6 \dots g^{126}\}$.

Ответ:
$$\{1, g^{43}, g^{126}\}, \{1, g^3, g^6 \dots g^{126}\}, \{e\}, C_{129}.$$

M3*37y2019 23.10.2021