EXPLORE ROBOTICS – CISC 1003

DEGREES OF FREEDOM - REVIEW

- Number of directions in which robot motion can be controlled
- Free body in space has 6 degrees of freedom:
 - Three for position (x,y,z)
 - Three for orientation (roll, pitch, yaw)

- How can we see this?
- Let's say we have a square object

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B
 - What is the constraint on B?
 - B can be located on a sphere
 - The sphere radios is the length between A and B

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B
- Once A and B are fixed, only one angle is possible for point C
 - One additional degree of freedom
 - We have two constraints on the location of C

- How many possibilities for point D?
 - Zero D.O.F. only one possible location

• # of D.O.F.= \sum (Freedom of Points) - # of independent constraints

- Since robot is made of rigid bodies:
- # of D.O.F.= \sum (Freedom of bodies) # of independent constraints

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	?	?	
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	?
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	?	?	
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	?
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	?	?	
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	?
D	?	?	

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0
Total Degrees of Freedom			?

Point	Coordinates	Indep. constraints	# Actual freedoms
Α	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0
Total Degrees of Freedom			6

- How many degrees of freedom will be in 4dimensional space?
 - 10 degrees of freedom

• # of D.O.F.= \sum (Freedom of Points) - # of independent constraints

- Since robot is made of rigid bodies:
- # of D.O.F.= \sum (Freedom of bodies) # of independent constraints

- How many degrees of freedom are for an object on a linear space?
 - I.e., a car
- 3 degrees of freedom
 - 2 on the linear space
 - One is the angle

- Roll, pitch, yaw:
 - Degrees of freedom used for orientation
 - Yaw refers to the direction in which the body is facing
 - i.e., its orientation within the xy plane
 - Roll refers to whether the body is upside-down or not
 - i.e., its orientation within the yz plane
 - Pitch refers to whether the body is tilted
 - i.e., its orientation within the xz plane

D.O.F. OF A ROBOT

• # of D.O.F.= \sum (Freedom of Points) - # of independent constraints

- Since robot is made of rigid bodies:
- # of D.O.F.= \sum (Freedom of bodies) # of independent constraints

- Where do the constraints come from?
 - For a robot?
 - Typically from joints

Robot Joints

- Revolute Joint:
 - 5 constraints
 - 1 Degree of freedom
 - Angle of rotation
 - Revolute Joint

Revolute joint – Degrees of Freedom

Robot Joints

- Prismatic joint:
 - A.K.A. linear joint
 - 5 constraints
 - 1 Degree of freedom
 - Prismatic Joint

https://www.mathworks.com/help/physmod/sm/mech/ref/cylindrical.html

Prismatic Joint

https://fastenerengineering.com/what-is-a-prismatic-joint/

Robot Joints

- Universal Joint:
 - 4 constraints
 - 2 degrees of freedom
 - Universal joint, Universal joint 2

Universal Joint

Universal Joint

A universal laint may also known as a universal solunting a

Robot Joints

- Spherical joint:
 - 3 constraints
 - 3 degrees of freedom
 - Spherical Joint

Spherical Joint

 https://www.researchgate.net/publication/311414943_Research_on_Oscillation-Free_Robust_Control_for_Active_Joint_Dental_Automation/figures?lo=1

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	?	?
Prismatic	?	?
Universal	?	?
Spherical	?	?

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	?	5
Prismatic	?	5
Universal	?	4
Spherical	?	3

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	1	5
Prismatic	1	5
Universal	2	4
Spherical	3	3

Robot's D.O.F.

- Total D.O.F. = Σ (freedom of body parts) # of independt constraints
- N = # of bodies, including ground
- J = # of joints
- m = 6 for spatial bodies, 3 for planar
- D.O.F. = $m * (N-1) \sum_{i=1}^{J} c_i$

Robot's D.O.F.

- Total D.O.F. = Σ (freedom of body parts) # of independt constraints
- N = # of bodies, including ground
- J = # of joints
- m = 6 for spatial bodies, 3 for planar
- $D.O.F. = m * (N-1) \sum_{i=1}^{J} c_i$

Grubler's formula

Assuming all constraints are independent:

• D.O.F. =
$$m * (N-1) - \sum_{i=1}^{J} c_i =$$

$$m * (N-1) - \sum_{i=1}^{J} (m - f_i) =$$

$$m * (N-1-J) + \sum_{i=1}^{J} f_i$$

- $N = \# of \ bodies \ (links), including \ ground \ (frame)$
- J = # of joints
- m = 6 for spatial bodies, 3 for planar
- $f_i = degrees \ of \ freedom \ of \ joint_i$

3R serial "open-chain" robot

Planar robot with 3 Revolute joints

https://www.researchgate.net/publication/267489856_Visual_Synthesis_of_RRR-_and_RPR-Legged_Planar_Parallel_Manipulators_Using_Constraint_Manifold_Geometry

3R serial "open-chain" robot

- This is a planar robot:
 - m = 3,
 - N = 4, J = 3,

•
$$D.O.F. = m * (N - 1 - J) + \sum_{i=1}^{J} f_i =$$

$$(3 * (4 - 1 - 3) + 3 = 3)$$

Degrees of Freedom

Degrees of freedom

