Machine learning workshop: introduction

Alex Richardson

February 23, 2024

Structure

- What is machine learning anyway?
- Neural networks
- How to actually train models
- Python implementation
- First jupyter-notebook

- Machine learning is just a set of techniques for finding approximations to a function that we don't know.
- Suppose we have some sets X and Y, we can assume there is some (unknown) function F such that:
 - $y_i = F(x_i)$ for all $x_i \in X$ and $y_i \in Y$

• In machine learning we typically have pairs of (x_i, y_i) (data), but F is unknown

- If we **parameterise** F as F_{θ} (with parameters θ), we can tweak θ such that $F_{\theta}(x_i)$ approaches y_i
- We often refer to F_{θ} as the **model**

• Tweaking θ to fit $F_{\theta}(x_i)$ to y_i is called **training** the model F_{θ}

Making things less abstract...

- What can X look like?
 - Colour images (3 matrices $\mathbb{R}^{m \times m \times 3}$)
 - Sentences (how is this represented...?)
 - Time-series (of numbers, images...)
- What can Y look like?
 - Images
 - Text description
 - Categorical label
 - A number
- What does F look like?
 - Depends on what X and Y are...

- Given pairs (x, y)
 - Suppose each x is a colour image of a cat or dog
 - And each y is a text label of 'cat' or 'dog'

- We need to represent our sets X and Y in **vector spaces**:
 - Each 512 \times 512 colour (3 channel) image is already a vector: $x_i \in \mathbb{R}^{786432}$
 - For categorical variables, use one hot encoding: represent each category as a different unit basis vector

- A really simple (linear) model is a matrix multiplication
 - $F_{\theta}(x) = A_{\theta}x$
 - Where $A_{\theta} \in \mathbb{R}^{2 \times 786432}$
- We can find the entries of A_{θ} to get outputs of F(x) as close to y as possible

- A simple linear model would work if the data (x, y) are linearly related
- ullet However images of animals o text labels is highly nonlinear
- Depending on how **complex** we expect the relationship between data to be, we must parameterise F_{θ} appropriately.
- 2 important questions:
 - How do we choose a structure for F_{θ} ?
 - How do we find good parameters for F_{θ} ?

Neural networks

- Neural networks are a good choice of F_θ
- They are a very broad class of functions
- Importantly they are nonlinear
- Historically they are based on simplified models of neurons, but they have diverged quite far

Neural networks

• (Feed-forward) Neural networks are typically of the form:

$$F(x) = \sigma_n \circ L_n \circ \sigma_{n-1} \circ L_{n-1} \circ \cdots \circ \sigma_0 \circ L_0(x)$$

- Where L_i are parameterised linear transformations
 - Matrix multiplications
 - Convolutions
- σ_i are element-wise nonlinear functions, referred to as activation functions
 - $\sigma(x) = \max(x,0)$
 - $\sigma(x) = \frac{1}{1+e^{-x}}$
 - $\sigma(x) = \tanh x$

Neural Networks

- The L_i and σ_i are referred to as **layers**
- Feed-forward neural networks are ones where layers are connected simply in series

- Each node takes a weighted sum of it's left inputs, applies an activation function and feeds that value forward
- This network is fully connected, as every node in one layer connects to every node of the next

Neural Networks

• For the above diagram, the corresponding F_{θ} is:

$$F_{\theta}(x) = \sigma_1(A_1\sigma_0(A_0x))$$

• Where $A_0 \in \mathbb{R}^{3 \times 2}$ and $A_1 \in \mathbb{R}^{1 \times 3}$ are matrices of parameters

Neural networks

• In python code, neural networks typically look like:

 Where layers is a list containing the various linear and nonlinear functions

Universal Approximation Theorem

- Neural networks can approximate any continuous function
- If we have a set of neural networks \mathcal{F} of the form $F(x) = A\sigma(Bx + c)$, and the input space X is a compact/closed subset of \mathbb{R}^N , then:
- For **every** continuous function $g: X \to Y$, and any $\varepsilon > 0$, there exists a neural network F that is arbitrarily close to $g: |F(x) g(x)| < \varepsilon$
 - Also required: sufficiently big hidden layer (B), and correct type of activation function
- The proof requires some functional analysis, so we'll skip it

Neural networks

- In theory fully connected feed forward neural networks can approximate any function
- In practice they don't work that well
- Why?
 - Getting good performance on interesting data requires a lot of parameters
 - By exploiting symmetries or structures of the data we already know, we can build models with less parameters that perform just as well
 - Crucially: models with less parameters are easier to train
- We will look at fancier model structures later, but first how do we train models?

How to train models

- The basic idea of training models is easy
 - Begin by randomly choosing parameters (θ_0)
 - Repeatedly tweak the parameters in such a way that $F_{\theta}(x_i)$ gets closer to y_i
- There are 2 clear issues:
 - How do we measure 'closeness' (or distance) between $F_{\theta}(x_i)$ and y_i ?
 - How do we tweak θ in a way that reduces the distance between $F_{\theta}(x_i)$ and y_i ?

How to train models

• It is worth thinking of the space of all parameters a model can have: $\theta \in \Theta$

Loss functions

- Loss functions are functions that measure some meaningful sense of distance between $F_{\theta}(x_i)$ and y_i
- If $F_{\theta}(x_i), y_i \in \mathbb{R}^N$

$$L: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

 A good choice of loss function is a vector space norm, e.g. the euclidean norm:

$$L_i(F_{\theta}(x_i), y_i) = \sqrt{(F_{\theta}(x_i) - y_i) \cdot (F_{\theta}(x_i) - y_i)}$$

• L_i will be zero iff $F_{\theta}(x_i) = y_i$

Loss functions

Loss functions

- With a loss function defined, the training process is now tweaking θ to minimise $L_i(F_{\theta}(x_i), y_i)$
 - We actually want to minimise $\mathcal{L} = \sum_i L_i(F_{\theta}(x_i), y_i)$
- To efficiently minimise \mathcal{L} , we would like \mathcal{L} to be **differentiable** with respect to θ
 - This means F_{θ} depends continuously on θ
 - We must also choose ${\cal L}$ carefully

F must be continuous in θ

Gradient descent

• By moving in the direction of steepest gradient of \mathcal{L} with respect to θ , we get a new θ with a smaller loss:

Optimisers

- A simple training loop would look like:
 - Randomly pick some initial values of θ
 - ullet Compute the gradient of ${\cal L}$
 - Update θ based on this gradient
- A simple gradient descent method is:

$$\theta_{i+1} = \theta_i - \varepsilon \nabla_{\theta} \mathcal{L}$$

- Where ε is a small number referred to as the **learning rate**
- There are many more sophisticated ways of doing this...

But how does this actually work...

- Using Automatic Differentiation, gradients of the code which defines your loss function and model can be computed
 - This is where the widely used backpropagation algorithm comes in
- Typically computing these gradients is as quick as computing the function itself!

Summary

- Machine learning is a set of techniques that allow us to:
 - Construct general parameterised functions called models
 - Train (or learn) these models to a dataset of inputs and outputs
- Important details to remember:
 - The model must be **differentiable** with respect to its parameters
 - We must represent the dataset in some vector space
 - We need a meaningful loss function to measure how good our model is

What python libraries?

- There are several popular python libraries for machine learning.
 Some examples are:
 - Pytorch
 - Jax
 - Tensorflow
 - Scikit learn
 - Keras
- We will explore using Jax, because it is my current favourite

Jax

- Jax is **not** a machine learning library
- It is instead just a re-implementation of Numpy, with some very nice extra features:
 - Everything is differentiable
 - Everything automatically parallelises to your hardware (i.e. GPUs) using the XLA compiler
 - There's a decent Just In Time (JIT) compiler, that removes the issue of python being slow
 - There are good methods for explicitly vectorising code, even vectorising across specific hardware

Jax

- There are several smaller libraries building on Jax, and (mostly) they are all mutually compatible:
 - Equinox: neural network library
 - Flax: another neural network library
 - Optax: gradient based optimisers for training anything
 - RLax: reinforcement learning
 - jax-md: molecular dynamics
 - BRAX: differentiable physics simulator for robotics
 - Diffrax: differentiable numerical differential equation solvers

Jax fundamentals

- If you replace import numpy as np with import jax.numpy as np, your code will probably still work¹
- There are three important functions in Jax:
 - grad
 - jit
 - vmap

grad

```
def f(x,y):
    return (x-y)**2

df = jax.grad(f) # defines a new function
print(df(5.0,2.0)) # returns 6.0
```

- Here df is a new function that returns the gradient of f with respect to it's first argument x
- Important: f must be a pure function (i.e. no changing of global variables)
 - Because of this, random numbers are implemented a bit differently in Jax...

jit

```
def f(x,y):
    return (x-y)**2

f_jit = jax.jit(f) # defines a new function

for i in range(1000):
    a += f_jit(i,2.0)
```

- Here f_jit will be slightly slower the first time it's called, but much faster on subsequent calls
- This is especially noticeable if f is complicated or contains a lot of loops

vmap

```
def f(x,A):
    return A@x
vf = jax.vmap(f,in_axes=(0,None),out_axes=0)
```

 Here we have explicitly vectorised the x input, and output of f, but have kept A the same

```
• f: \mathbb{R}^n \times \mathbb{R}^{m \times n} \to \mathbb{R}^m
• vf: \mathbb{R}^{b \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{b \times m}
```

- This is a lot more flexible and precise than the numpy vectorize method
- vmapped code will parallelise automatically, and generally run faster than iterating through a loop

Combined together...

```
def f(x,A):
    return np.sum(A@x)

df = jax.grad(jax.grad(f))

vdf= jax.vmap(df,in_axes=(0,None),out_axes=0)

vdf= jax.jit(vdf)
```

 Now vdf is a JIT compiled function that returns an array of second derivatives of f with respect to rows of a matrix x

Notebook 1

- Work through the first jupyter-notebook
 - It contains a very minimal implementation of a fully connected feed forward neural network, a loss function and a gradient optimiser, in pure Jax
 - We train it to classify images from the MNIST hand-written digit dataset
 - Run the code and try to understand it:
 - · Modify it and see what breaks it
 - The network doesn't perform that well can you try to improve the code?

Notebook 2

- This notebook is the same as the previous one, except we make use of the Equinox and Optax libraries for defining our network and optimiser
- Go through this notebook
 - Notice how much cleaner the code is
 - The trained network appears to perform better why?