Машинное обучение

Лекция 15

На прошлых лекциях

- Дано: матрица «объекты-признаки» X и ответы y
- Модель должна выдавать прогнозы, близкие к истинным ответам

На прошлых лекциях

- Методы обучения с учителем: линейные модели, решающие деревья, случайные леса, ...
- Дано: матрица «объекты-признаки» X и ответы y
- Найти: модель a(x)
- Модель должна выдавать прогнозы, близкие к истинным ответам

машинное обучение

Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

w Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Что такое машинное обучение и почему оно может...

lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=... b9zqEQiiBtC ▼

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

Р Машинист электропоезда - обучение | Про профессии.ру

proprof.ru > Машинист электропоезда v

Машинист электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

машинное обучение

Найти

ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

□ Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=... b9zqEQiiBtC ▼

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

Р Машинист электропоезда - обучение | Про профессии.ру

proprof.ru > Машинист электропоезда ▼

Машинист электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

- Дан набор запросов $\{q_1, \dots, q_m\}$
- Дан набор документов $\{d_1, \dots, d_n\}$
- Нужно для каждого запроса правильно упорядочить документы
- Что такое «правильно»?

- Дан набор запросов $\{q_1, \dots, q_m\}$
- Дан набор документов $\{d_1, ..., d_n\}$
- Рассматриваем пары «запрос-документ» (q,d)
- Для некоторых троек (q,d_1,d_2) известно, что для запроса q документ d_1 должен стоять раньше, чем d_2
- Обозначение: R множество троек (q,d_1,d_2) , для которых известен такой порядок

- Раньше: строим модель a(x), которая приближает ответы
- Сейчас: строим модель a(q,d), которая правильно упорядочивает документы для запросов

$$(q, d_1, d_2) \in R \Rightarrow a(q, d_1) > a(q, d_2)$$

Пример

- Для запроса q известны пары (d_3,d_1) , (d_3,d_2) , (d_1,d_4)
- Какие наборы прогнозов модели лучше?
- (3, 2, 4, 1)
- (2, 3, 4, 1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)

Пример

- Для запроса q известны пары (d_3,d_1) , (d_3,d_2) , (d_1,d_4)
- Какие наборы прогнозов модели лучше?
- (3, 2, 4, 1)
- (2, 3, 4, 1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)
- Важен порядок, а не абсолютные значения!

Метрики качества ранжирования

Целевая переменная

- Определение задачи через пары правильно, но сложно
- Упростим постановку:
 - Объекты пары «запрос-документ» $x_i = (q, d)$
 - Ответы числа y_i
 - Требование если есть объекты (q,d_1) и (q,d_2) , такие что $y_1>y_2$, то должно быть $a(q,d_1)>a(q,d_2)$

Целевая переменная, пример

- $(q_1, d_1), 1$
- $(q_1, d_2), 0.7$
- $(q_1, d_3), 0$
- $(q_2, d_1), 0$
- $(q_2, d_2), 1$
- Для q_1 должны получить ранжирование (d_1, d_2, d_3)
- Для q_2 должны получить ранжирование (d_2, d_1)

Качество ранжирования

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

Обучение машиниста бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

• Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

ccrp.ru > rabochie/mashinist_burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

- Какое ранжирование лучше?
- Какое хуже всех?

DCG (Discounted cumulative gain)

$$DCG@k(q) = \sum_{i=1}^{k} \frac{2^{y_i} - 1}{\log(i+1)}$$

- ullet Вычисляется по первым k документам из выдачи для запроса q
- y_i истинный ответ для документа на i-й позиции
- Чтобы получить итоговую оценку, DCG усредняется по всем запросам

DCG (Discounted cumulative gain)

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Обучение машиниста бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist_burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

Обучение машиниста бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

Обучение машиниста бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

W Машинное обучение — Википедия

ru.wikipedia.org > Машинное обучение •

Машинное обучение (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

• Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

$$DCG = \frac{2^{1} - 1}{\log(2)} + \frac{2^{0} - 1}{\log(3)} + \frac{2^{0} - 1}{\log(4)} \approx 1.44$$

$$DCG = \frac{2^0 - 1}{\log(2)} + \frac{2^1 - 1}{\log(3)} + \frac{2^0 - 1}{\log(4)} \approx 0.91$$

Доля дефектных пар

DP@
$$k(q) = \frac{2}{k(k-1)} \sum_{i < j}^{k} [y_i < y_j]$$

• Число инверсий порядка среди первых k документов

pFound

- Вероятностная модель поведения пользователя
- При неуспехе с очередным документом выдачи пользователь разочаруется и уйдет с вероятностью P_{out}
- P_i вероятность дойти до i-ого документа, y_i вероятность того, что пользователь удовлетворится i-ым документом

$$P_1 = 1$$
, $P_{i+1} = P_i(1 - y_i)(1 - P_{out})$

pFound@
$$k(q) = \sum_{i=1}^{k} P_i y_i$$

pFound

https://habr.com/ru/company/yandex/blog/197838/

Разнообразие поисковой выдачи

- Неоднозначные запросы
- Пример: «ягуар»
 - Животное?
 - Марка автомобиля?
 - Танк? (немецкий или китайский?)
 - Напиток?

Разнообразие поисковой выдачи

- Неоднозначные запросы
- С точки зрения обычных метрик, весь топ выдачи нужно замостить одинаковыми релевантными документами
- Разнообразие позволяет собрать разнородную выдачу, чтобы удовлетворить в среднем всех

Wide pFound

- Предполагается, что пользователь, делая запрос, мог иметь в виду один из интентов $I = \{I_1, \dots, I_m\}$
- Примеры интентов: автомобили, картинки, новости, животные, ...
- Каждый интент имеет некоторую вероятность $p(I_i)$ и порождает собственное распределение релевантностей на документах

wide pFound =
$$\sum_{i=1}^{m} p(I_i)$$
pFound (I_i)

Wide pFound

• Как вычислить вероятности интентов?

Wide pFound

- Как вычислить вероятности интентов?
- Интент пользователя определяется по продолжениям введенного запроса
- Продолжения классифицируются по различным тематикам
- Тематики являются интентами
- Вероятности определяются по частоте соответствующих продолжений запросов

Качество ранжирования

• Также можно сформулировать задачу классификации ($Y = \{0, 1\}$):

$$precision = \frac{|\{relevant\} \cap \{retrieved\}|}{|\{retrieved\}|}$$

$$recall = \frac{|\{relevant\} \cap \{retrieved\}|}{|\{relevant\}|}$$

Методы ранжирования

Поточечный (pointwise) подход

- Обучим модель a(q,d), чтобы она как можно точнее приближала ответы y_i
- Например, линейная регрессия:

$$\sum_{(q,d,y)\in R} (\langle w, x(q,d)\rangle - y_i)^2 \to \min_{w}$$

• x(q,d) — признаки для пары «запрос-документ»

Поточечный (pointwise) подход

- Простой в реализации
- Можно использовать любую из известных моделей (линейные, деревья, случайные леса, нейронные сети...)
- Восстанавливает точные значения y_i , хотя нас интересует порядок

Попарный (pairwise) подход

• В ранжировании требуется правильно располагать пары документов — формализуем это

$$\sum_{(q,d_i,d_j)\in R} \left[a(q,d_i) - a(q,d_j) < 0 \right]$$

• Штрафуем, если второй документ из пары оказался раньше

Попарный (pairwise) подход

- Получили разрывный функционал сложно оптимизировать
- Перейдём к гладкой верхней оценке (как в линейных классификаторах):

$$\sum_{\left(q,d_i,d_j\right)\in R}\left[a(q,x_i)-a\left(q,x_j\right)<0\right]\leq \sum_{\left(q,d_i,d_j\right)\in R}L\left(a(q,x_i)-a\left(q,x_j\right)\right)$$

• Пример: $L(z) = \log(1 + e^{-z})$

Попарный (pairwise) подход

- Сложнее поточечного (больше слагаемых в функционале)
- Обычно даёт качество выше, чем поточечный
- Реализации: SVM^{light}, xgboost (rank:pairwise)

Признаки в задачах ранжирования

Типы признаков

- Запросные
 - Популярность запроса
 - Тип запроса (навигационный, товарный и т.д.)
- Статические зависят только от документа
 - Популярность документа
 - Тематика
 - Распределение слов
- Динамические зависят от документа и от запроса
 - Расстояния между запросом и документом

Признаки ранжирования Google

• https://backlinko.com/google-ranking-factors

Мешок слов

- v(большое) = (1, 0, 0, 0, ..., 0)
- v(спасибо) = (0, 1, 0, 0, ..., 0)
- v(минус) = (0, 0, 1, 0, ..., 0)
- v(зарубежный) = (0, 0, 0, 1, ..., 0)
- ...
- v(инквизиция) = (0, 0, 0, 0, ..., 1)

Мешок слов

• Текст — это вектор x, содержащий счётчики слов

Косинусное расстояние

- Пусть \vec{q} вектор запроса, \vec{d} вектор документа
- Мера сходства:

$$s(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\|\vec{q}\| \|\vec{d}\|}$$

• Чем больше, тем сильнее тексты похожи по долям слов

Продвинутое расстояние: ВМ25

BM25
$$(q, d) = \sum_{i=1}^{n} IDF(q_i) \frac{tf(q_i, d)(k_1 + 1)}{tf(q_i, d) + k_1 \left(1 - b + b \frac{|D|}{\bar{n}_d}\right)}$$

- Документы в сети ссылаются друг на друга
- Если документ А ссылается на документ В, то он «голосует» за В
- Чем меньше голосов отдаёт A, тем сильнее его голос
- Документ В важен, если за него отдано много сильных голосов

- Пусть пользователь бродит по сети
- Стартует из случайного документа
- С вероятностью $(1-\delta)$ переходит по одной из ссылок с равными вероятностями
- ullet С вероятностью δ переходит на случайный документ из всей сети
- PageRank вероятность при таком случайном блуждании попасть в данный документ

• PageRank страницы u зависит от PageRank страниц v из множества B_u (страниц, которые ссылаются на u), поделенного на число исходящих ссылок L(v) из страницы v:

$$PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)}$$

- Учтем, что пользователь может остановиться в какой-то момент
- Установим damping factor (фактор затухания) обычно $d \approx 0.85$
- N число рассматриваемых страниц

$$PR(u) = \frac{1-d}{N} + d \sum_{v \in B_u} \frac{PR(v)}{L(v)}$$

Резюме

- Ранжирование задача сортировки документов по релевантности
- Метрика должна учитывать позиции, а не абсолютные значения прогнозов — например, DCG
- Поточечный и попарный подходы
- Отдельная задача разработка признаков