stargazer CHEAT SHEET

create LATEX code, HTML code and ASCII text for well-formatted regression tables

Important attributes

stargazer

generate an output table

<u>...</u>

one or more model objects (for regression analysis tables) or data frames/vectors/matrices (for summary statistics, or direct output of content)

type = 'latex'

a character vector that specifies what type of output the command should produce The possible values are 'latex' (default) for LaTeX code, 'html' forHTML/CSS code, 'text' for ASCII text output

<u>title = ' '</u>

a character vector with titles for the tables

style = 'default'

a character string that specifies what style should be used in producing the tables

summary = NULL

a logical value indicating whether the package should output a summary statistics table when given a data frame

out = NULL

a character vector that contains the path(s) of output files. Depending on the file extension (.tex, .txt, .htm or .html) it will produce different output files

Important attributes

column.labels = NULL

a character vector of labels for columns in regression tables

column.separate = NULL

a numeric vector that specifies how column.labels should be laid out across regression table columns

covariate.labels = NULL

a character vector of labels for covariates in regression tables

dep.var.caption = NULL

a character vector that specifies the caption to appear above dependent variable labels

dep.var.labels = NULL

a character vector of labels for the dependent variables in regression tables

dep.var.labels.include = TRUE

a logical value that toggles whether dependent variable labels will be included in the regression table

<u>keep = NULL</u>

a vector of regular expressions that specifies which of the explanatory variables should be kept in the table

keep.stat = TRUE

a character vector that specifies which model statistics should be kept in the regression table output

Example

Example for stargazer with 3 regression models stargazer(linear.1, linear.2, probit.model, title='Regression Results', align=TRUE, dep.var.labels=c('Overall Rating','High Rating'), covariate.labels=c('Handling of Complaints','No Special Privileges', 'Opportunity to Learn','Performance-Based Raises','Too Critical','Advancement'), omit.stat=c('LL','ser','f'), no.space=TRUE)

Table 4: Regression Results

	Dependent variable:		
	Overall Rating OLS		High Rating probit
	(1)	(2)	(3)
Handling of Complaints	0.692***	0.682***	
	(0.149)	(0.129)	
No Special Privileges	-0.104	-0.103	
	(0.135)	(0.129)	
Opportunity to Learn	0.249	0.238*	0.164***
	(0.160)	(0.139)	(0.053)
Performance-Based Raises	-0.033		425000
	(0.202)		
Too Critical	0.015		-0.001
	(0.147)		(0.044)
Advancement			-0.062
			(0.042)
Constant	11.011	11.258	-7.476**
	(11.704)	(7.318)	(3.570)
Observations	30	30	30
\mathbb{R}^2	0.715	0.715	
Adjusted R ²	0.656	0.682	
Akaike Inf. Crit.	210.375	206.412	26.175
Bayesian Inf. Crit.	220.183	213.418	31.780