STAT 5700 formulas

$$\binom{n}{r} =_n C_r = \frac{nP_r}{r!} = \frac{n!}{(n-r)!r!}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B^{\prime}|A)=1-P(B|A)$$

Bayes Rule:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$\mu = E(Y) = \sum_{y \in \mathbb{S}} y p(y)$$

$$\sigma^2 = V(Y) = \sum_{y \in \mathbb{S}} (y - \mu)^2 p(y)$$

Distribution	Probability Function	Mean	Variance
Bernoulli	$p^y(1-p)^{1-y}$	p	p(1-p)
Binomial	$\binom{n}{y}p^y(1-p)^{n-y}$	np	np(1-p)
Geometric	$\binom{n}{y} p^y (1-p)^{n-y}$ $p(1-p)^{y-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Hypergeometric	$\frac{\binom{r}{y}\binom{N-r}{n-y}}{\binom{N}{n}}{\lambda^y e^{-\lambda}}$	$rac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{r}{N}\right)$
Poisson	$\frac{\lambda^y e^{-\lambda}}{y!}$	λ	λ
Negative Binomial	$\binom{y-1}{r-1}p^r(1-p)^{y-r}$	$rac{r}{p}$	$\frac{r(1-p)}{p^2}$

Geometric series: $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$

For geometric random variable, $P(Y > k) = (1 - p)^k$

Maclaurin series expansion: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Binomial expansion: $(a+b)^n = \sum_{y=0}^n \binom{n}{y} a^y b^{n-y}$

Moment-generating function: $m(t) = E(e^{ty})$