CS1110 28/10/2015

There will be another assignment soon.

Equations from Truth Tables

Example 1:

Suppose we have 3 inputs (A, B, C) and 1 output $\mathfrak T$ that corresponds to each of the input combinations according to the following truth table:

A	В	С	Ŧ	Minterms
0	0	0	0	m_0
0	0	1	0	m_1
0	1	0	1	m ₂
0	1	1	1	111 ₃
1	0	0	0	<i>m</i> ₄
1	0	1	0	m ₅
1	1	0	1	m ₆
1	1	1	1	m ₇

Note T is chosen to reflect our requirements—the values for T come from what we're trying to do/solve.

We can get an equation by ORing m2, m3, m6, and m7 together:

$$T = (A'.B.C') + (A'.B.C) + (A.B.C') + (A.B.C)$$

We can optimise this to use fewer gates:

$$\mathbf{T} = \mathbf{A}'.\mathbf{B}.(\mathbf{C}' + \mathbf{C}) + \mathbf{A}.\mathbf{B}.(\mathbf{C}' + \mathbf{C})$$

$$\mathbf{T} = \mathbf{A'.B} + \mathbf{A.B}$$

$$T = B(A' + A)$$

$$\mathbf{T} = \mathbf{B}$$

CS1110 28/10/2015

You can see this is clear if you look at the table. We have now gone from 12 gates to 0 gates required.

Example 2:

Derive the equation from the following truth table, simplify if possible, and draw the corresponding circuit.

This is how he may write a question in an exam.

A	В	С	Ŧ	Minterms
0	0	0	0	то
0	0	1	1	<i>m</i> 1
0	1	0	0	m2
0	1	1	1	<i>m</i> 3
1	0	0	1	m4
1	0	1	0	<i>m</i> 5
1	1	0	1	<i>m</i> 6
1	1	1	0	m7

$$T = m1 + m3 + m4 + m6$$

 $T = A'.B'.C + A'.B.C + A.B'.C' + A.B.C'$
 $T = A'.C.(B' + B) + A.C'.(B' + B)$
 $T = A'.C + A.C' = A \oplus C$

Example 3: Nightclub Bouncer Circuit

Inputs:

- 1. >= 18? (call this A for age)
- 2. Drunk? (call this D for drunk)
- 3. Male/female? (call this G for gender)
- 4. Well-dressed? (call this C for clothes)

CS1110 28/10/2015

C = 1, you're well-dressed.

A	D	G	С	Door
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$\mathbf{Door} = m_3 + m_9 + m_{10} + m_{11} + m_{13} + m_{15}$$

$$\mathbf{D}oor = \mathbf{A'.D'.G.C} + \mathbf{A.D'.G'.C'} + \mathbf{A.D'.G.C'} + \mathbf{A.D'.G.C} + \mathbf{A.D.G'.C} +$$

A.D.G.C

Optimise:

$$Door = D'.G.C.(A' + A) + A.D.C.(G + G') + A.D'.(G'.C + G.C')$$

$$Door = D'.G.C + A.D.C + A.D'.(G \oplus C)$$