1 Basic construction

Proposition 1. For all types A, the type $\mathbb{S}^2 \to A$ is equal to

$$\sum_{x:A} \operatorname{refl}_x = \operatorname{refl}_x.$$

Proposition 2. Suppose that A is a type, B a family of types over A and P a family of mere propositions over A, such that we have a family of functions $B(x) \to P(x)$ for all x : A. We then have an equality of types

$$\sum_{x:A} B(x) = \sum \left(t : \sum_{x:A} P(x)\right) B(\operatorname{pr}_1 t).$$

A function f is said to be *invertible* if it admits a two-sided inverse. We define the type of invertibility proofs of f to be the type

$$\mathrm{inverse}(f) \coloneqq \sum_{g:B \to A} (f \circ g = \mathrm{id}) \times (g \circ f = \mathrm{id})$$

and denote the type of all invertible maps between two types A and B by $\text{Inv}(A,B) := \sum_{f:A \to B} \text{inverse}(f)$.

A function f is said to be an *equivalence* if it admits both a left and a right sided inverse. We define the type of equivalence proofs of f to be the type

$$\operatorname{equiv}(f) \coloneqq \sum_{g:B \to A} (f \circ g = \operatorname{id}) \times \sum_{h:B \to A} (h \circ f = \operatorname{id})$$

and similarly denote the type of all equivalences between two types A and B by $A \simeq B$.

We recall the following two important facts:

Proposition 3. For all functions f, the type of equivalence proofs of f is a mere proposition.

Proposition 4. For all functions f, the types of invertibility and equivalence proofs of f are logically equivalent. In other words, a function is invertible if and only if it is an equivalence.

Lemma 5. Suppose A is a type. The type of invertibility proofs of id_A is equal to $id_A = id_A$.

Proof. By reassociating the dependent sum type, we see that the type of invertibility proofs of id_A is equal to

$$\sum \left(G: \sum_{g: A \to A} (g = \mathrm{id}_A)\right) \left(\mathrm{pr}_1 G = \mathrm{id}_A\right).$$

Since the type $\sum_{g:A\to A} (g=\mathrm{id}_A)$ is contractible onto $(\mathrm{id}_A,\mathrm{refl})$, we see the whole type is equal to $\mathrm{pr}_1(\mathrm{id}_A,\mathrm{refl})=\mathrm{id}_A$, which is itself equal to $\mathrm{id}_A=\mathrm{id}_A$.

Proposition 6. The type Inv(A, B) is equal to the type $\sum_{e:A=B} e = e$ for all types A and B.

Proof. We view inverse and equiv as two families of types over $A \to B$. Proposition 3 then tells us that equiv is a family of mere propositions over $A \to B$, whereas proposition 4 in particular tells us that we have a family of functions inverse $(f) \to \text{equiv}(f)$ for all functions $f: A \to B$. By proposition 2, it then follows that the type Inv(A, B) is equal to the type $\sum_{e: A \to B} \text{inverse}(\text{pr}_1 e)$.

follows that the type $\operatorname{Inv}(A,B)$ is equal to the type $\sum_{e:A\simeq B}\operatorname{inverse}(\operatorname{pr}_1e)$. On the other hand, we first observe that the type $\sum_{e:A=B}e=e$ is equal to the type $\sum_{e:A\simeq B}e=e$ by univalence. Now, since equiv is a family of mere propositions, $A\simeq B$ is a subtype of $A\to B$. By the subtype identity principle, it follows that the type e=e is equal to the type $\operatorname{pr}_1e=\operatorname{pr}_1e$ for all equivalences $e:A\simeq B$.

To construct the desired equality, it thus suffices to construct an equality between the types $\sum_{e:A\simeq B}$ inverse(pr_1e) and $\sum_{e:A\simeq B}\operatorname{pr}_1e=\operatorname{pr}_1e$. By the fiberwise equivalence construction, it further suffices to construct an equality between inverse(pr_1e) and $\operatorname{pr}_1e=\operatorname{pr}_1e$ for all equivalences $e:A\simeq B$. The result then follows by equivalence induction and Lemma 5.

Theorem 7. The type $\sum_{A,B:\mathcal{U}} \text{Inv}(A,B)$ is equal to the type $\mathbb{S}^2 \to \mathcal{U}$.

Proof. We first quantify the equality in Proposition 6 over $B:\mathcal{U}$, obtaining an equality between $\sum_{B:\mathcal{U}} \operatorname{Inv}(A,B)$ and $\sum_{B:\mathcal{U}} \sum_{e:A=B} e = e$. Since the type $\sum_{B:\mathcal{U}} A = B$ is contractible onto $(A,\operatorname{refl}_A)$, the second type is equal to $\operatorname{refl}_A = \operatorname{refl}_A$. Now quantifying over $A:\mathcal{U}$, we obtain an equality between $\sum_{A,B:\mathcal{U}} \operatorname{Inv}(A,B)$ and $\sum_{A:\mathcal{U}} \operatorname{refl}_A = \operatorname{refl}_A$, which is equal to $\mathbb{S}^2 \to \mathcal{U}$ by the universal property of the sphere.

2 *n*-invertible maps

Definition 8. We define a notion of *n*-invertibility on $A \to B$ by induction on n. Let $f: A \to B$ be a function. We say that f is 0-invertible if there exists a function $g: B \to A$. We say that f is (n+1)-invertible if there exist functions $g: B \to A$ and

$$r: \prod_{x:A} \prod_{y:B} (f(x) = y) \to (x = g(y)),$$

such that r(x, y) is n-invertible for all x and y.

We thus define the type of (n+1)-inverses to be

$$\mathrm{inverse}_{n+1}(f) = \sum_{g: B \to A} \sum_{r: \mathrm{Adj}(f,g)} \prod_{x: A} \prod_{y: B} \mathrm{inverse}_n(r(x,y)),$$

where
$$\operatorname{Adj}(f,g) = \prod_{x:A} \prod_{y:B} (f(x) = y) \to (x = g(y)).$$

Remark 9. We note that 1-invertibility coincides with the ordinary notion of invertibility. By path induction, the data of a 1-invertible function $f:A\to B$ consists exactly of a function $g:B\to A$, together with homotopies of type $\prod_{x:A}x=g(f(x))$ and $\prod_{y:B}f(g(y))=y$, witnessing that f is invertible.

Lemma 10. The type inverse_{n+1}(id_A) is equal to

$$\prod_{x,y:A} inverse_n(id_{x=y})$$

for all $n : \mathbb{N}$.

Proposition 11. The type inverse_{n+1}(id_A) is equal to $\prod_{x:A} \Omega^{n+1}(A,x)$ for all $n:\mathbb{N}$.

Proof. We prove the result by induction on n. We make use of the previous lemma in both cases. For the base case, we have

inverse₁(id_A) =
$$\prod_{x,y:A}$$
 inverse₀(id_{x=y}) = $\prod_{x,y:A}$ (x = y) \rightarrow (x = y) =
$$= \prod_{x:A} (x = x) = \prod_{x:A} \Omega^{1}(A, x).$$

For the inductive step, we have

$$\operatorname{inverse}_{n+2}(\operatorname{id}_A) = \prod_{x,y:A} \operatorname{inverse}_{n+1}(\operatorname{id}_{x=y}) = \prod_{x,y:A} \prod_{p:x=y} \Omega^{n+1}(x=y,p)$$
$$= \prod_{x:A} \Omega^{n+1}(x=x,\operatorname{refl}_x) = \prod_{x:A} \Omega^{n+2}(A,x).$$

Proposition 12. Let $n : \mathbb{N}$ and suppose $f : A \to B$ is (n+1)-invertible. Then f is n-invertible.

Proof. We again prove the result by induction on n. For the base case, suppose $f:A\to B$ is 1-invertible. We then have a function $g:B\to A$ together with some data, but g itself is enough to show that f is 0-invertible.

For the inductive step, suppose $f:A\to B$ is (n+2)-invertible. We then have a function $g:B\to A$ and a certain dependent function r, such that r(x,y) is (n+1)-invertible for all x,y:A. By the inductive hypothesis, r(x,y) is n-invertible for all x,y:A, showing that f is (n+1)-invertible. \square

Corollary 13. Let $n : \mathbb{N}$ and suppose $f : A \to B$ is (n+1)-invertible. Then f is an equivalence.

Proof. Using the previous proposition, we can show that every (n+1)-invertible function is 1-invertible. Since 1-invertibility coincides with invertibility, this shows that it is also an equivalence.

Theorem 14. Let \mathcal{U} be a universe and $A:\mathcal{U}$ a type. The type

$$\sum_{B:\mathcal{U}} \sum_{f:A\to B} \text{inverse}_{n+1}(f)$$

of all (n+1)-invertible maps with domain A is equal to $\Omega^{n+2}(\mathcal{U},A)$.

Proof. Let $B:\mathcal{U}$ first be a type. Since (n+1)-invertibility implies equivalence and equivalence is a mere proposition, we have

$$\sum_{f:A\to B} \mathrm{inverse}_{n+1}(f) = \sum_{f:A\simeq B} \mathrm{inverse}_{n+1}(\mathrm{pr}_1 f).$$

Then, since the type $\sum_{B:\mathcal{U}} A \simeq B$ is contractible, it follows that

$$\sum_{B:\mathcal{U}}\sum_{f:A\simeq B}\mathrm{inverse}_{n+1}(\mathrm{pr}_1f)=\mathrm{inverse}_{n+1}\left(\mathrm{id}_A\right).$$

By proposition 11, the second type is equal to $\prod_{x:A} \Omega^{n+1}(A,x)$. Finally, since dependent products commute with loop spaces, we have

$$\prod_{x:A} \Omega^{n+1}(A,x) = \Omega^{n+2}(\mathcal{U},A).$$

TODO: why exactly is the final claim true?

Corollary 15. Let \mathcal{U} be a universe. The type $\sum_{A,B:\mathcal{U}} \sum_{f:A\to B} \text{inverse}_{n+1}(f)$ is equal to $\mathbb{S}^{n+2} \to \mathcal{U}$.

Proof. Obtained by quantifying the equality in Theorem 14 over A and noting that $\sum_{A:\mathcal{U}} \Omega^{n+2}(\mathcal{U}, A) = \mathbb{S}^{n+2} \to \mathcal{U}$ by the universal property of the sphere. \square

3 ∞ -invertible maps

Consider the diagram ϕ_n : inverse_{n+1} $(f) \to \text{inverse}_n(f)$ defined in Proposition 12. We may explicitly define the ϕ_n to be

$$\phi_0(g, r, H) = g$$

$$\phi_{n+1}(g, r, H) = (g, r, \lambda x. \lambda y. \phi_n(H(x, y))).$$

Taking the diagram's limit, we obtain a type inverse $\infty(f)$, together with data

$$\psi_n : \text{inverse}_{\infty}(f) \to \text{inverse}_n(f)$$

 $\alpha_n : \phi_{n+1} \circ \psi_{n+1} = \psi_n.$

Proposition 16. The type of ∞ -invertibility proofs satisfies the recursive equation

$$\mathrm{inverse}_{\infty}(f) = \sum_{g: B \to A} \sum_{r: \mathrm{Adj}(f,g)} \prod_{x: A} \prod_{y: B} \mathrm{inverse}_{\infty}(r(x,y))$$

for all $f: A \to B$.

Proof. We obtain the desired equality by showing the second type satisfies the universal property of the limit. Suppose then that P is a type, equipped with a cocone

$$\rho_n: P \to \text{inverse}_n(f)$$

$$\beta_n: \phi_{n+1} \circ \rho_{n+1} = \rho_n.$$

TODO: not sure if this is a right approach. I don't have that much experience with homotopy limits. $\hfill\Box$