

ADA 057757

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(P)</i> TECHNICAL REPORT ARBRL-TR-02072	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) <i>(6)</i> THE TERMINAL BALLISTICS OF CERTAIN 65 GRAM LONG ROD PENETRATORS IMPACTING STEEL ARMOR PLATE	5. TYPE OF REPORT & PERIOD COVERED <i>(9)</i> Final <i>rept.</i>	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) <i>(10)</i> John P. Lambert	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory ATTN: DRDAR-BLT Aberdeen Proving Ground, MD 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS <i>(10)</i> RDT&E 11662618AH80	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	12. REPORT DATE <i>(11)</i> MAY 1978	13. NUMBER OF PAGES 101
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>(18) SBIE</i>	15. SECURITY CLASS. (of this report) <i>(12) 94 P.</i>	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. <i>(19) AD-E430 F073</i>	D D C <i>(12) 94 P.</i> REF ID: A651114 B	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Automatic Cannon Technology (ACT) behind-armor data penetrator performance V _s , V _r curve		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (1rs) → This report presents a comprehensive documentation of experimental data generated for the ACT (Automatic Cannon Technology) Program (behind-armor data for long rod penetrators in the 20-40mm size). An adequate kinetic energy penetrator performance data base for long rod penetrators of various designs has been established. In addition, for some of the rounds, behind-target debris has been analyzed to supply a partial basis for debris characterization. <i>R</i>		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 OBSOLETE

UNCLASSIFIED

3124717

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
I. INTRODUCTION	9
II. RESULTS AND COMMENTS	11
III. FUTURE PLANS	14
APPENDIX A. BASIC RAW DATA	15
APPENDIX B. DERIVED V_s , V_r CURVES	33
APPENDIX C. FRAGMENT DATA	57
APPENDIX D. PENETRATION SKETCHES FOR ACT 19	79
APPENDIX E. PREDICTED CURVES	91
DISTRIBUTION LIST	97

REF ID: A6420	
RECEIVED FEB 26 1968 JULIE GREGORY	
DISTRIBUTION/AVAILABILITY CODES	
ONE AVAIL and/or SPECIAL	
A	

LIST OF ILLUSTRATIONS

Figure	Page
1. Nominal Penetrator Characteristics	10
2. Steel with High Inclusion Rate	13
B-1. V_s , V_r Curve and Data for ACT 1	35
B-2. V_s , V_r Curve and Data for ACT 2	36
B-3. V_s , V_r Curve and Data for ACT 3	37
B-4. V_s , V_r Curve and Data for ACT 4	38
B-5. V_s , V_r Curve and Data for ACT 5	39
B-6. V_s , V_r Curve and Data for ACT 6	40
B-7. V_s , V_r Curve and Data for ACT 7	41
B-8. V_s , V_r Curve and Data for ACT 8	42
B-9. V_s , V_r Curve and Data for ACT 9	43
B-10. V_s , V_r Curve and Data for ACT 10	44
B-11. V_s , V_r Curve and Data for ACT 11	45
B-12. V_s , V_r Curve and Data for ACT 12	46
B-13. V_s , V_r Curve and Data for ACT 13	47
B-14. V_s , V_r Curve and Data for ACT 14	48
B-15. V_s , V_r Curve and Data for ACT 15	49
B-16. V_s , V_r Curve and Data for ACT 16	50
B-17. V_s , V_r Curve and Data for ACT 17	51
B-18. V_s , V_r Curve and Data for ACT 18	52
B-19. V_s , V_r Curve and Data for ACT 19	53
B-20. V_s , V_r Curve and Data for ACT 1.1	54
B-21. V_s , V_r Curve and Data for ACT 3.1	55

LIST OF ILLUSTRATIONS (Cont)

Figure	Page
B-22. V_s , V_r Curve and Data for ACT 3.2	56
C-1. Coordinate System Depicting Angles λ and ϕ	59
D-1. Sketch for Round 264	81
D-2. Sketch for Round 263	82
D-3. Sketch for Round 262	83
D-4. Sketch for Round 261	84
D-5. Sketch for Round 265	85
D-6. Sketch for Round 260	86
D-7. Sketch for Round 259	87
D-8. Sketch for Round 258	88
D-9. Photograph of Sectioned Targets and Residual Penetrators for ACT 19	89
E-1. Predicted V_s , V_r Curve for ACT 16	93
E-2. Predicted V_s , V_r Curve for ACT 17	94
E-3. Predicted V_s , V_r Curve for ACT 18	95
E-4. Predicted V_s , V_r Curve for ACT 19	96

LIST OF TABLES

Table	Page
V. Ballistic Limit Velocities and Series Characteristics . .	12

I. INTRODUCTION

The purpose of this report is to present a comprehensive documentation of experimental data generated in a small scale firing program within the ACT Project*. Chief objectives were:

- to assure an adequate kinetic energy penetrator performance data base for various long rod penetrator designs and
- to describe behind-target debris - mass, trajectory, speed and type of individual fragments - associated with some rounds and to thereby supply a partial basis for debris characterization.

Targets used in the firing program were single plate rolled homogeneous armor (RHA) measuring 15.24 x 30.48cm for normal impact shots and 15.24 x 45.72cm for oblique incidence with thicknesses ranging from 1.91 to 5.08cm. Penetrators were rods (right circular cylinders with hemispherical noses) having length to diameter (L/D) ratios of 5, 10 and 20. The predominant penetrator composition was of monolithic AISI-S7 tool steel of finished hardness R_c 55 but other designs and other materials were used to some extent; c.f. Figure 1 for penetrator characteristics. Impact obliquities were 0° , 45° and 60° .

In large part, the essence of this report is confined to the five appendices; indeed, our most compelling purpose is to disseminate, for the first time in anywhere near complete form, data that this program has been sporadically yielding over several years.

Basic raw data from the shots is provided in Appendix A and is partitioned, according to penetrator/target situation, into 23 series labelled ACT 1 through ACT 20 and ACT 1.1, ACT 3.1 and ACT 3.2. Twenty-two of these series (all but ACT 3.2, in which there is only one round with an acceptable level of yaw) were considered suitable for determination of V_s , V_r curves and limit velocities. Derived V_s , V_r curves for these 22 cases are given in Appendix B. A summary of processed behind-target fragmentation data for selected rounds is supplied in Appendix C. In Appendix D we attempt, in a sequence of rough sketches, to illustrate the pre-impact and residual penetrators in perspective with an appropriate target plate section for each round of ACT 19. Appendix E provides (for the later set of shots) for a comparison between derived V_s , V_r curves and a predictive model that has been formulated for dealing with long rod penetrators.

*The wide-ranging "Automatic Cannon Technology" project of which the effort of concern here was but a small part.

* This was ZINVAR-processed and would have been AISI S7 Tool Steel but for the lack of molybdenum as an alloying element.

** 90% W, 7% Ni, 3% Fe, swaged 24Z

FIGURE 1. NOMINAL PENETRATOR CHARACTERISTICS

This program has unfolded in three phases involving distinctly different time periods, different range personnel and practices, and different project managers; such diversity has regrettably and inescapably been adverse to an orderly, coherent, productive effort. It is, for example, exceedingly difficult now to adjudge the quality of data generated early in the program, to interpret cryptic notes on old data sheets, or retrieve misplaced information. The case for standardization in data organization and in testing is clear.

II. RESULTS AND COMMENTS

The experimental setup and multiple flash x-ray system used to record ballistic performance data are described in BRL Technical Note 1634¹. A summary of ballistic limits and geometries for the various test series is given in Table I. Minutiae are to be found in Appendices A-E. In perusing the data, the following remarks should be kept in mind:

- a. The parameters a , p , and V_g of Table I are derived from the "good" data of the series. By a "good" round is meant a shot for which total initial penetrator yaw does not exceed 2.5° .
- b. The penetrators in ACT 1 through ACT 15 (including ACT 1.1, ACT 3.1 and ACT 3.2) were of monolithic AISI-S7 tool steel having finished hardness of R_c 55. The steel for ACT 16 through ACT 20 was also of finished hardness R_c 55 and would have been AISI-S7 but for the inadvertent lack of molybdenum as an alloying agent.
- c. ACT 16 and ACT 19 employed monolithic steel penetrators; ACT 17 penetrators were of two-piece steel (steel cap on steel stem); and, in ACT 18 and ACT 20, the penetrators were steel (R_c 55) with tungsten alloy caps (R_c 42).
1. The steel used in rounds 231 through 268 (ACT 16 through ACT 20) was VIMVAR* processed. The difference made by this change in processing is especially noticeable when comparing data for the steel used in some of the penetrators of ACT 11 had a very high inclusion rate (Figure 2), contributing no doubt to the large scatter in the data for this series. ACT 19 is a recreation of ACT 11 (with the slight difference in penetrator material noted previously and the different processing).

¹Grabarek, C. and Herr, L., "X-Ray Multi-Flash System for Measurement of Projectile Performance at the Target", BRL TN 1634, September 1966 (AD 377657).

*Vacuum Induction Melt, Vacuum Arc Remelt.

Table I. Ballistic Limit Velocities and Series Characteristics

Series	M	D	L/D	θ	T	H	V_x	a	p
ACT 1	64.8	1.30	5	0	1.91	364	720	0.94	2.9
ACT 2	64.9	1.30	5	0	2.54	340	906	0.70	3.3
ACT 3	64.8	1.30	5	0	3.18	321	1130	1.00	2.0
ACT 4	64.8	1.30	5	0	3.81	321	1304	1.00	2.9
ACT 5	64.8	1.30	5	0	5.08	286	1568	1.00	1.8
ACT 6	64.8	1.30	5	60	2.54	340	1451	0.80	2.0
ACT 7	63.7	1.02	10	0	1.91	364	798	1.00	2.7
ACT 8	63.8	1.02	10	0	2.54	341	916	0.83	3.2
ACT 9	63.7	1.02	10	0	3.81	321	1234	0.93	3.8
ACT 10	63.7	1.02	10	0	5.10	288	1411	1.00	2.2
ACT 11	64.0	1.02	10	60	2.54	340	1296	1.00	1.9
ACT 12	64.7	0.81	20	0	2.54	340	997	1.00	3.3
ACT 13	64.7	0.81	20	0	3.81	321	1157	1.00	3.7
ACT 14	64.6	0.81	20	0	5.08	291	1296	1.00	2.8
ACT 15	64.5	0.81	20	60	2.54	340	1234	1.00	3.1
ACT 16	64.2	1.02	10	45	2.55	364	1095	0.94	3.4
ACT 17	64.1	1.02	10	0	3.83	331	1216	1.00	3.0
ACT 18	64.4	0.97	10	0	3.82	331	1097	1.00	3.4
ACT 19	64.3	1.02	10	60	2.54	358	1225	0.80	3.3
ACT 20	64.4	0.97	10	60	2.53	372	1229	0.82	5.4
ACT 1.1	64.7	0.81	20	0	1.91	364	879	1.00	5.8
ACT 3.1	64.7	0.81	20	0	3.18	321	1045	0.90	3.7

M - penetrator mass (g)
 D - penetrator diameter (cm)
 L - penetrator length (cm)
 θ - obliquity
 T - target thickness (cm)
 H - target hardness (BHN)
 V_x , a, p - parameters derived from V_s , V_r data and defined in Appendix B

C. Bearcat Trans. (Edge) 400X (P.L.)

C. Bearcat Long. 400X (P.L.)

Figure 2. Steel with High Inclusion Rate

e. Finally, we note that the V_s , V_r tests from ACT 16 on are significantly more economical of shots .. there were no shots lost (in the sense of being unsuitable for deriving a V_s , V_r curve) due to excessive yaw. Indeed, in rounds 231 through 268, only one round (234) proved unsuitable.

III. FUTURE PLANS

Further exploitation of the data generated in the ACT program continues. A report on penetrator residual mass variation with impact energy and target geometry may be anticipated.

ACKNOWLEDGMENT

The author acknowledges the contributions of Messrs. Antonio J. Ricchiazzi and Peter G. Morfogenis, the previous principal investigators for the terminal ballistics portion of the ACT Program. Thanks are also due to Messrs. John Koval and Dale Smith under whose supervision the experimental data was generated in the Terminal Ballistics Division Small Caliber Ranges. Messrs. Frank Dubois, John Cullum and Robert Schnick, among others, assisted in the reduction of the data.

APPENDIX A
BASIC RAW DATA

APPENDIX A: BASIC RAW DATA

Notation:

#	Round number
M	Penetrator mass, grams
L	Penetrator length, centimeters
D	Penetrator diameter, centimeters
T	Target thickness, centimeters
H	Target hardness, BHN
α	Vertical penetrator yaw at impact, degrees
β	Horizontal penetrator yaw at impact, degrees
δ	Total penetrator yaw at impact, degrees
V_s	Striking penetrator velocity (speed), meters/second
V_r	Residual penetrator velocity (speed), meters/second
M'_r	Recovered residual penetrator mass, grams
M''_r	Estimated (from radiographs) residual penetrator mass, grams
Δ	Mass loss of target plate, grams
λ	Cone angle of residual penetrator path, degrees
ϕ	Phase angle of residual penetrator path, degrees

- Indicates that item is not applicable; e.g., cone angle, etc.
if $V_r = 0$

^ Indicates that item is applicable but unknown

Key to Remarks:

- 1 - Total yaw exceeds $2\frac{1}{2}^\circ$, round not used in V_λ determination
- 2 - Perforation but V_r not obtainable, round not used in V_λ determination
- 3 - Non-perforation, small bulge in rear target surface
- 4 - Non-perforation, large bulge in rear target surface
- 5 - Non-perforation, rear target surface fractured
- 6 - Rod slightly bent at launch
- 7 - Perforation, penetrator severely shattered
- 8 - Penetrator made from "dirty material"

ACT 1 $\theta = 0$ L/D = 5

#	M	L	D	T	H	α	β	6	V_S	V_R	M_T'	M_T''	Δ	λ	ϕ	Remarks
81	64.82	6.49	1.30	1.91	364	0.3	1.5	1.5	682	0	-	-	-	-	-	3
85	64.74	6.48	1.30	1.91	364	0.8	1.0	1.3	690	0	-	-	-	15	-	-
82	64.76	6.49	1.30	1.91	364	0.4	-1.2	1.3	721	81	^	^	50	^	^	-
80	64.59	6.48	1.30	1.91	364	0.7	0.4	0.8	748	384	^	43.0	40	12.1	315	-
79	65.01	6.48	1.30	1.91	364	-0.1	1.2	1.2	763	429	^	42.3	^	3.7	332	-
84	64.87	6.48	1.30	1.91	364	0.2	-1.3	1.3	809	609	^	46.7	55	3.4	304	-
83	65.03	6.48	1.30	1.91	364	0.7	2.6	2.6	917	548	^	42.2	^	2.6	306	1
85	64.77	6.47	1.30	1.81	364	-1.9	-1.9	2.7	1053	730	^	40.2	^	3.5	337	1

ACT 2 $\theta = 0$ L/D = 5

#	M	L	D	T	H	α	β	6	V_S	V_R	M_T'	M_T''	Δ	λ	ϕ	Remarks
20	65.03	6.47	1.30	2.54	340	-0.5	-1.5	1.6	853	0	-	-	-	29	-	3
19	64.98	6.49	1.30	2.54	340	-0.7	-2.7	2.8	879	249	22.3	30.0	45	7.9	4	1
18	64.68	6.48	1.30	2.54	340	1.9	-0.2	1.9	913	213	19.7	28.0	60	6.3	45	-
17	64.81	6.48	1.30	2.54	340	0.3	-0.7	0.8	942	363	17.8	26.1	45	7.0	16	-
16	65.07	6.48	1.30	2.54	340	0.6	0.9	1.0	986	367	28.1	33.0	103	6.8	42	-
15	64.81	6.47	1.30	2.54	340	0.1	0.4	0.4	987	474	25.4	33.6	62	1.7	276	-
14	65.06	6.48	1.30	2.54	340	-0.9	1.0	1.3	1022	525	^	36.6	69	6.0	182	-
13	64.98	6.48	1.30	2.54	340	-1.0	0.6	1.2	1124	624	^	^	55	^	^	-
12	65.02	6.48	1.30	2.54	340	0.6	1.0	1.2	1272	737	^	34.1	124	1.2	173	-

ACT 3 $\theta = 0$ L/D = 5

#	M	L	D	T	H	α	β	δ	V_S	$\frac{V_x}{V_T}$	$\frac{M'_T \cdot M''_T}{V_T}$	Δ	λ	ϕ	Remarks
48	64.90	6.48	1.30	3.18	321	0.0	-0.3	0.3	1111	0	-	-	-	-	-
47	64.71	6.48	1.30	3.18	321	-0.4	-0.7	0.8	1130	36	22.0	34.3	^	4.1	298
46	65.05	6.48	1.30	3.18	321	-2.0	-0.2	2.0	1137	65	^	34.4	^	11.2	210
45	64.52	6.47	1.30	3.18	321	-2.1	0.1	2.1	1164	223	22.9	18.4	^	3.8	46
44	64.78	6.47	1.30	3.18	321	-2.3	1.2	2.6	1185	314	18.8	26.8	65	5.1	104
43	65.00	6.48	1.30	3.18	321	-1.2	0.4	1.3	1241	465	^	31.4	65	7.9	168
42	64.73	6.47	1.30	3.18	321	0.6	-0.3	0.6	1304	661	^	34.2	46	3.5	276
41	64.38	6.47	1.30	3.18	321	0.6	0.4	0.7	1362	849	^	36.8	52	3.5	136
ACT 4 $\theta = C$ L/D = 5															
#	M	L	D	T	H	α	β	δ	V_S	$\frac{V_x}{V_T}$	$\frac{M'_T \cdot M''_T}{V_T}$	Δ	λ	ϕ	Remarks
26	64.71	6.48	1.30	3.81	321	-1.8	0.0	1.8	1259	0	-	-	-	-	-
29	64.79	6.48	1.30	3.81	321	-1.8	0.5	1.8	1283	0	-	-	-	-	4
28	64.84	6.48	1.30	3.81	321	-0.2	0.4	0.4	1306	198	^	25.3	^	10.9	80
27	64.78	6.48	1.30	3.81	321	-0.6	-0.1	0.6	1330	514	21.3	25.3	22	5.2	222

#	M	θ = 0			L/D = 5			β	δ	V _S	V _R	M ⁹ _R	M ¹⁰ _R	Δ	λ	φ	Remarks	
		L	D	T	H	α	-3.5	8.3	1455	C	-	-	-40	-	-	-	-	-
105	64.91	6.47	1.31	5.08	203	7.5	-3.5	-2.8	3.1	1470	C	-	-	-	-	-	-	1.3
106	64.92	6.47	1.31	5.08	286	-1.5	-2.8	1.8	1.8	1503	O	-	-	-	-	-	-	1.3
107	64.75	6.48	1.29	5.08	286	0.0	1.8	2.6	2.6	1512	O	-	-	-	-	-	-	4.5
108	64.92	6.46	1.31	5.08	203	-0.5	2.5	2.6	1.6	1526	O	-	-	-	-	-	-	1.4
109	64.96	6.48	1.30	5.08	203	1.5	-0.5	1.1	1.1	1553	O	-	-	-	-	-	-	4
136	64.71	6.48	1.30	5.08	286	0.8	-0.8	3.2	3.2	1555	O	-	-	-	-	-	-	1
134	64.70	6.48	1.30	5.08	286	2.3	2.0	0.0	0.3	1566	O	-	-	-	-	-	-	1,4,5
132	65.03	6.47	1.30	5.08	302	-0.3	0.0	0.3	0.3	1567	O	-	-	-	-	-	-	1
111	64.65	6.48	1.30	5.08	286	-1.5	5.0	5.2	1.7	1567	162	<	<	<	<	<	<	1,5
135	64.92	6.48	1.30	5.08	286	-0.8	-1.5	6.2	6.2	1585	O	-	-	-	-	-	-	1.2
120	64.45	6.48	1.30	5.08	293	-5.5	-2.8	5.8	5.8	1591	<	<	<	<	<	<	1,4	
110	64.95	6.48	1.30	5.08	286	-4.7	1.5	0.5	1.6	1595	143	<	<	<	<	<	<	1
125	64.92	6.47	1.30	5.08	302	-0.4	-16.3	16.8	16.8	1595	O	-	-	-	-	-	-	1.5
131	64.68	6.47	1.30	5.08	286	1.5	0.5	1.6	1.6	1620	O	-	-	-	-	-	-	1.2
114	64.22	6.42	1.30	5.08	286	6.0	11.0	12.5	12.5	1620	O	-	-	-	-	-	-	1
121	64.85	6.47	1.30	5.08	293	8.0	1.9	8.2	8.2	1611	298	<	<	<	<	<	<	1,3
126	64.63	6.48	1.30	5.08	302	3.8	7.8	8.7	8.7	1618	O	-	-	-	-	-	-	2
130	64.61	6.47	1.30	5.08	286	1.3	1.3	1.8	1.8	1620	O	-	-	-	-	-	-	1.2
128	64.84	6.47	1.30	5.08	302	0.7	0.7	0.7	0.7	1620	<	<	<	<	<	<	1	
123	64.85	6.48	1.30	5.08	293	-4.4	-0.4	4.5	4.5	1629	<	<	<	<	<	<	1	
122	64.73	6.48	1.30	5.08	293	-4.4	-0.4	4.5	4.5	1630	44	<	<	<	<	<	<	1

ACT 5 (Continued)

#	M	L	D	T	H	α	β	δ	V_s	V_T	M'_T	M''_T	Δ	λ	ϕ	Remarks
118	64.97	6.38	1.30	5.08	302	1.0	-4.6	4.7	1630	474	84	7.7	56	1		
129	64.68	6.47	1.30	5.08	302	1.0	-4.8	4.9	1632	478	45	^	45	^	1	
112	64.87	6.48	1.30	5.08	286	-4.0	-0.5	4.0	1634	0	-	-	40	-	1.5	
119	65.22	6.48	1.30	5.08	302	1.2	-3.7	3.9	1638	^	^	-	45	^	1.2	
132	64.70	6.48	1.30	5.08	302	-2.5	-2.3	3.4	1639	262	^	^	59	^	1	
124	64.76	6.48	1.30	5.08	302	-2.5	-3.8	4.5	1642	0	-	-	4	-	1.4,5	
117	64.76	6.47	1.30	5.08	302	-1.7	-1.0	2.0	1644	308	^	9.9	58	^		
115	64.81	6.47	1.30	5.08	286	-0.9	-8.0	8.0	1646	128	^	10.5	40	3.7	277	
171	64.59	6.47	1.30	5.08	293	-2.0	-1.8	2.7	1650	373	^	^	38	^	1	
127	64.80	6.48	1.30	5.08	302	-2.3	1.3	2.6	1652	517	^	10.7	^	7.8	282	
116	64.84	6.48	1.30	5.08	302	-0.3	0.5	0.5	1667	391	^	15.7	106	15.0	0	
113	64.45	6.48	1.30	5.08	286	0.3	-0.8	0.8	1679	532	^	^	40	^	7	
172	64.62	6.48	1.30	5.08	302	0.0	-0.3	0.3	1832	973	^	^	65	^		
137	64.85	6.48	1.30	5.08	286	0.5	-0.5	0.7	1941	1283	^	^	40	^		

ACT 6		$\theta = 60$		$L/D = 5$		α	β	δ	V_S	V_r	M_x'	M_T'	Δ	λ	ϕ	Remarks
#	M	L	D	T	H											-
189	64.98	6.48	1.30	2.54	340	3.3	2.8	4.3	1349	0	-	-	40	-	-	1
205	65.11	6.48	1.30	2.54	340	10.0	-1.3	10.1	1448	0	-	-	44	-	-	1
192	64.73	6.48	1.30	2.54	340	-2.0	0.3	2.0	1451	0	-	-	70	-	-	
191	63.84	6.38	1.30	2.54	340	0.5	3.5	3.5	1461	277	11.6	^	115	^	^	1
193	64.90	6.48	1.30	2.54	340	0.9	1.2	1.5	1462	197	^	16.2	119	44.0	0	
206	64.91	6.46	1.30	2.54	340	0.5	0.8	0.9	1505	348	14.1	^	148	^	^	
190	64.65	6.48	1.30	2.54	340	0.2	-0.1	0.2	1520	398	12.5	20.9	150	40.1	356	
199	64.54	6.48	1.30	2.54	340	2.6	-2.1	3.3	1546	568	^	16.9	165	34.7	13	1
198	64.71	6.47	1.30	2.54	340	-0.7	0.2	0.7	1558	351	^	17.5	195	41.7	0	
194	64.97	6.48	1.30	2.54	340	-5.0	-5.3	7.3	1565	0	-	-	88	-	-	1
200	64.86	6.48	1.30	2.54	340	-0.4	2.0	2.1	1575	453	^	15.1	180	39.1	0	
197	64.85	6.48	1.30	2.54	340	0.7	1.6	1.7	1576	470	^	17.4	140	39.5	0	
195	64.66	6.48	1.30	2.54	340	3.0	4.7	5.6	1581	^	^	^	112	^	^	1,2
203	64.75	6.47	1.30	2.54	340	-2.8	-1.3	3.1	1712	704	^	12.1	175	26.8	17	1,7
201	64.39	6.48	1.30	2.54	340	2.0	7.6	7.8	1753	901	^	15.0	215	21.3	346	1
204	64.60	6.44	1.30	2.54	340	0.5	-1.2	1.3	1841	948	^	15.1	235	29.8	2	

#	M	L	D	T	H	α	β	δ	V_S	V_T	$M'_T \cdot M''_S$	Δ	λ	ϕ	Remarks	
															L/U = 10	L/U = 10
66	63.90	10.24	1.02	1.91	364	-1.5	0.8	1.7	625	0	-	-	7	-	-	-
67	63.88	10.15	1.02	1.91	364	-0.5	-0.5	0.7	671	0	-	-	11	-	-	
68	63.95	10.15	1.02	1.91	364	-1.8	-0.8	1.9	738	0	-	-	17	-	-	
72	63.55	10.13	1.02	1.91	364	-0.3	0.5	0.6	751	0	-	-	21	-	3	
87	63.53	10.15	1.02	1.91	364	0.5	-1.3	1.3	783	0	-	-	5	-	-	
73	63.89	10.13	1.02	1.91	364	0.8	0.3	0.8	785	0	-	-	5	-	3	
75	63.80	10.16	1.02	1.91	364	0.0	1.0	0.0	789	0	-	-	10	-	-	
78	63.75	10.17	1.02	1.91	364	0.0	-0.5	0.5	792	0	-	-	10	-	-	
74	63.74	10.15	1.02	1.91	364	.8	-0.5	0.9	800	0	-	-	5	-	3	
71	63.42	10.15	1.02	1.91	364	-0.2	0.0	0.2	801	379	30.8	31.3	~	6.3	240	
69	63.80	10.19	1.02	1.91	364	-0.3	-0.3	0.4	811	0	-	-	17	-	-	
88	63.67	10.16	1.02	1.91	364	2.1	-1.2	2.5	828	493	~	28.9	46	11.4	312	
70	63.82	10.19	1.02	1.91	364	0.0	1.2	1.2	852	467	~	39.2	42	2.4	358	
77	63.60	10.16	1.02	1.91	364	-0.1	1.1	1.1	1002	712	~	42.4	40	0.6	164	
76	63.69	10.16	1.02	1.91	364	0.5	0.7	0.9	1361	1229	~	22.5	65	0.8	111	

ACT 8		$\theta = 0$		L/D = 10												Remarks		
#	M	L	D	T	H	α	β	δ	V_S	V_R	M_T'	M_T''	Δ	λ	ϕ	-	-	-
10	63.62	10.16	1.02	2.54	340	-2.0	0.0	2.0	915	0	-	-	41	-	-	-	3	
8	63.57	10.16	1.02	2.54	340	2.0	5.3	5.6	930	0	-	-	33	-	-	-	1,3	
11	63.60	10.16	1.02	2.54	340	-	-	-	937	0	-	-	14	-	-	-	1,3	
9	63.63	10.16	1.02	2.54	340	-1.2	-0.8	1.4	955	432	23.2	25.3	50	9.1	179			
7	63.67	10.16	1.02	2.54	340	0.8	-	-	956	246	19.3	21.6	60	3.1	29	1		
6	63.52	10.15	1.02	2.54	340	-0.4	-0.5	4.5	984	317	24.7	26.7	48	3.4	155	1		
5	64.48	10.16	1.02	2.54	340	-1.2	-1.6	2.0	1053	594	25.8	30.8	50	9.5	262			
4	63.57	10.16	1.02	2.54	340	-0.7	1.4	1.6	1103	690	32.7	36.1	65	1.6	133			
3	63.55	10.16	1.02	2.54	340	-2.1	2.8	4.2	1137	753	31.6	35.6	67	6.3	141	1		
1	63.63	10.16	1.02	2.54	340	-1.7	-0.6	1.8	1219	910	-	39.1	82	2.9	191			
ACT 9		$\theta = 0$		L/D = 10												Remarks		
#	M	I	D	T	H	α	β	δ	V_S	V_R	M_T'	M_T''	Δ	λ	ϕ	-	-	-
35	63.58	10.16	1.02	2.81	321	-1.0	0.5	1.1	1195	0	-	-	15	-	-	-	4,5	
34	63.56	10.16	1.02	3.81	321	-1.3	-2.3	2.6	1211	128	19.0	21.0	31	12.4	290	1		
33	63.63	10.16	1.02	3.81	321	-1.0	1.0	1.4	1237	313	12.1	15.0	30	6.0	78			
32	63.56	10.16	1.02	3.81	321	-0.5	0.7	0.8	1243	501	18.5	23.0	20	7.4	112			
31	63.58	10.17	1.02	3.81	321	-0.1	0.9	0.9	1366	907	20.5	21.8	26	11.3	179			
30	63.61	10.15	1.02	3.81	321	5.6	2.6	6.1	1384	868	24.4	27.2	47	12.4	18	1		

ACT 10 $\theta = 0$

L/D = 10

#	M	L	D	T	H	α	β	δ	V_{S_r}	V_{T_r}	M''_r	M''_I	Δ	λ	ϕ	Remarks
94	62.94	10.26	1.02	5.16	302	-7.6	-3.1	8.2	1294	0	-	-	4	-	-	1
100	63.57	10.17	1.03	5.21	286	9.1	2.2	9.3	1312	0	-	-	17	-	-	1
95	64.33	10.17	1.03	5.44	293	-3.7	-7.5	6.4	1318	0	-	-	-	-	-	1
98	63.65	10.06	1.04	5.38	286	4.5	-1.7	4.8	1374	0	-	-	-	-	-	2
142	64.30	10.16	1.02	5.08	286	0.5	0.3	0.6	1383	0	-	-	-	-	-	3
147	60.85	10.15	0.97	5.08	286	-0.3	1.5	1.5	1402	0	-	-	-	-	-	1
99	63.73	10.16	1.02	5.38	286	-2.7	7.6	8.0	1405	0	-	-	-	-	-	2
145	64.24	10.16	1.02	5.08	286	-0.8	0.3	0.8	1410	^	-	-	-	-	-	4
142	64.00	10.17	1.02	5.08	286	0.3	1.0	1.0	1414	290	-	-	-	-	-	4.5
141	64.03	10.14	1.02	5.08	286	-2.0	0.8	2.1	1416	0	-	-	-	-	-	4.5
146	64.28	10.17	1.02	5.08	286	-2.3	-0.3	2.3	1418	0	-	-	-	-	-	1
144	63.71	10.15	1.01	5.08	286	0.5	0.5	0.7	1422	255	-	-	-	-	-	2
140	64.31	10.15	1.02	5.08	286	0.0	-0.5	0.5	1422	375	-	-	-	-	-	2
102	63.56	10.17	1.03	5.21	302	-1.0	1.0	1.4	1439	^	-	-	-	-	-	2
139	64.18	10.16	1.02	5.08	286	0.0	-0.3	0.3	1450	251	-	-	-	-	-	1
138	64.10	10.17	1.02	5.08	286	-0.8	0.0	0.8	1454	628	-	-	-	-	-	1
103	63.73	10.06	1.02	5.21	302	0.5	0.5	0.6	1464	0	-	-	-	-	-	2
97	63.40	10.13	1.01	5.44	283	8.4	-7.6	11.3	1528	0	-	-	-	-	-	1
148	63.91	10.15	1.02	5.08	286	0.0	-0.3	0.3	1531	772	-	-	-	-	-	1
153	64.25	10.16	1.02	5.08	286	0.0	0.5	0.5	1765	1286	-	-	-	-	-	2

ACT 11 $\theta = 60$

L/D = 10

#	M	L	D	T	H	α	β	δ	V_{S_x}	V_{T_x}	M'_x	M''_x	V_x	Δ	λ	ϕ	Remarks
225	63.93	10.03	1.02	2.54	340	-1.0	-0.5	1.1	1268	0	-	-	-34	-	-	-	4,8
223	64.25	10.21	1.02	2.54	340	-	-	-	1294	0	-	-	-	23	-	-	1
216	63.91	10.06	1.03	2.54	340	0.5	-0.5	0.7	1304	367	16.3	-	-	78	<	<	4,8
218	64.00	10.19	1.02	2.54	340	-0.5	-1.3	1.4	1307	0	-	-	-	41	-	-	4,8
222	64.07	10.36	1.02	2.54	340	-1.3	0.5	1.4	1309	0	-	-	-	50	-	-	3,8
221	64.37	10.30	1.02	2.54	340	-1.8	-2.0	2.7	1310	0	-	-	-	55	-	-	1
220	63.86	10.11	1.03	2.54	340	0.0	0.8	0.8	1323	581	18.7	-	-	98	<	<	8
217	64.28	10.32	1.02	2.54	340	1.0	-0.5	1.1	1329	-	<	<	-	73	<	<	2,8
183	63.90	10.15	1.02	2.54	340	-0.8	-0.8	1.1	1333	0	-	-	-	40	-	-	4
177	64.01	10.16	1.02	2.54	340	-0.5	0.0	0.5	1339	0	-	-	-	42	-	-	4
185	64.30	10.15	1.02	2.54	340	1.5	0.3	1.5	1339	427	<	18.8	-	80	<	<	7,8
224	64.00	10.18	1.03	2.54	340	0.8	-0.8	1.1	1352	586	<	<	-	98	<	<	8
184	64.20	10.16	1.02	2.54	340	-0.3	0.0	0.3	1358	-	<	<	-	58	<	<	1
132	63.82	10.16	1.02	2.54	340	1.3	2.3	2.6	1361	151	<	15.6	-	76	<	<	1
180	63.68	10.16	1.02	2.54	340	-1.3	0.3	1.3	1361	212	<	7.8	-	65	<	<	1
186	64.10	10.15	1.02	2.54	340	-2.8	-0.8	2.9	1365	0	-	-	-	85	<	<	1
178	63.82	10.26	1.01	2.54	340	-1.0	-0.5	1.1	1366	-	<	<	-	85	<	<	1
181	64.16	10.16	1.02	2.54	340	-1.0	1.3	1.6	1370	171	<	12.0	-	155	<	<	8
179	63.72	10.17	1.02	2.54	340	0.0	-1.8	1.8	1398	678	<	16.4	-	70	<	<	1
226	63.99	10.15	1.02	2.54	340	0.3	-0.3	0.4	1504	907	<	12.8	-	111	<	<	8
234	63.47	10.17	1.02	2.54	364	-	-	-	1538	-	<	<	-	118	<	<	1

ACT 12 $\theta = 0$ L/D = 20

#	M	L	D	T	H	α	β	δ	V_s	V_r	M_x'	M_x''	Δ	λ	ϕ	Remarks
24	64.85	16.06	0.81	2.54	340	-0.8	0.5	0.9	990	0	-	-	28	-	-	-
25	64.63	16.07	0.81	2.54	340	0.0	0.6	0.6	998	125	19.8	19.8	32	3.9	224	
23	64.84	16.06	0.81	2.54	340	0.0	1.0	1.0	1011	428	26.7	25.2	28	19.3	311	
22	64.67	16.06	0.81	2.54	340	-0.7	0.6	0.8	1090	776	^	37.2	40	2.6	49	
21	64.70	16.06	0.81	2.54	340	-2.0	-0.5	2.0	1154	886	^	40.4	58	8.6	206	6

ACT 13 $\theta = 0$ L/D = 20

#	M	L	D	T	H	α	β	δ	V_s	V_1	M_x'	M_x''	Δ	λ	ϕ	Remarks
38	64.81	16.20	0.81	3.81	321	-0.3	1.0	1.6	1130	0	-	-	38	-	-	3
40	64.64	16.20	0.81	3.81	321	-1.3	0.8	1.5	1148	0	-	-	^	-	-	4
39	64.67	16.19	0.81	3.81	321	-1.1	0.5	1.2	1160	338	16.3	16.5	20	8.5	226	
37	64.73	16.19	0.81	3.81	321	-0.8	0.5	0.9	1234	834	29.5	29.7	17	4.5	153	
36	64.82	16.19	0.81	3.81	321	1.0	0.9	1.3	1327	1025	34.2	34.6	42	4.9	9	

AC1	14	$\theta = 0$	L/D = 20															Remarks
			M	L	D	T	H	α	β	δ	V_S	V_T	M_T'	M_T''	Δ	λ	ϕ	
173	63.99	15.99	0.87	5.08	302	0.0	0.3	0.3	1270	0	-	-	-	-	-	-	-	3
164	64.69	16.19	0.81	5.08	286	1.3	0.3	1.3	1296	0	-	-	-	-	-	-	-	4.5
162	64.76	16.19	0.81	5.08	286	0.3	0.8	0.8	1296	0	-	-	-	-	-	-	-	20
161	64.74	16.20	0.81	5.08	293	0.5	0.0	0.5	1297	469	-	13.4	40	-	-	-	-	2
158	64.75	16.20	0.81	5.08	286	-0.3	0.0	0.3	1315	215	-	11.1	26	-	-	-	-	2
174	64.86	16.06	0.82	5.08	293	0.0	0.3	0.3	1316	-	-	-	60	-	-	-	-	-
163	64.70	16.19	0.81	5.08	286	0.0	0.5	0.5	1318	383	-	13.3	13	-	-	-	-	-
165	64.89	16.19	0.81	5.08	286	0.0	1.0	1.0	1322	-	-	-	23	-	-	-	-	-
176	64.56	16.06	0.82	5.08	302	-0.5	0.0	0.5	1326	234	-	12.0	40	-	-	-	-	-
156	64.67	16.20	0.81	5.08	293	0.5	1.0	1.1	1327	502	-	16.7	5	-	-	-	-	-
175	64.63	16.06	0.81	5.08	293	-0.3	-1.0	1.0	1328	378	-	12.7	10	-	-	-	-	-
160	64.50	16.19	0.81	5.08	293	0.3	0.3	0.4	1329	-	-	-	0	-	-	-	-	-
166	64.86	16.19	0.81	5.08	286	0.0	0.3	0.3	1331	-	-	-	21	-	-	-	-	-
167	64.69	16.19	0.81	5.08	286	0.0	0.8	0.8	1347	796	-	19.0	10	-	-	-	-	-
159	64.75	16.20	0.81	5.08	286	0.0	0.3	0.3	1361	-	-	-	0	-	-	-	-	-
157	64.80	16.19	0.81	5.08	293	0.0	-0.3	0.3	1364	842	-	21.0	~	-	-	-	-	50
155	64.88	16.20	0.82	5.08	286	0.0	0.5	0.5	1400	948	-	23.7	43	-	-	-	-	-
168	64.77	16.19	0.81	5.08	293	-0.5	-0.5	0.7	1500	-	-	-	30	-	-	-	-	-
170	64.57	16.20	0.81	5.08	283	1.8	-0.5	1.8	1566	1183	-	23.5	~	-	-	-	-	-

ACT 15 $\theta = 60$ $L/D = 20$

#	M	L	D	T	H	α	β	δ	V_s	V_r	M_T'	M_T''	Δ	λ	ϕ	Remarks
208	64.20	15.75	0.81	2.54	340	0.5	0.3	0.6	1227	0	-	-	38	-	-	-
211	64.63	16.05	0.81	2.54	340	-0.3	0.0	0.3	1234	0	-	-	26	-	-	-
215	64.33	16.05	0.81	2.54	340	0.5	-0.3	0.6	1242	707	22.3	^	46	^	^	-
213	64.40	16.04	0.81	2.54	340	0.8	-0.3	0.8	1260	735	21.3	^	48	^	^	-
214	64.56	16.04	0.81	2.54	340	0.0	0.8	0.8	1261	0	-	-	32	-	-	-
210	64.75	16.06	0.81	2.54	340	0.3	0.3	0.4	1263	564	^	^	69	^	^	-
212	64.62	16.05	0.81	2.54	340	1.0	1.0	1.4	1271	725	18.8	^	61	^	^	-

ACT 16 $\theta = 45$ $L/D = 10$

#	M	L	D	T	H	α	β	δ	V_s	V_r	M_T'	M_T''	Δ	λ	ϕ	Remarks
240	64.37	10.25	1.02	2.55	364	-0.8	-0.1	0.3	1051	0	-	-	29	-	-	-
239	64.00	10.25	1.02	2.55	364	-0.9	-0.4	1.0	1096	199	8.1	10.7	51	35.0	0	-
238	64.11	10.25	1.02	2.55	364	-0.4	0.2	0.4	1138	536	11.8	14.2	0	21.6	356	-
232	64.31	10.24	1.02	2.56	364	1.1	1.0	1.5	1187	744	16.7	19.1	94	32.1	353	-
233	64.42	10.24	1.02	2.56	364	-0.9	0.0	0.9	1205	815	19.1	21.1	99	20.2	0	-
231	64.33	10.24	1.02	2.54	364	-0.9	-0.5	1.0	1213	857	17.7	19.1	69	15.0	356	-
235	64.31	10.24	1.02	2.56	364	0.5	0.5	0.7	1431	1166	30.3	30.2	120	6.0	354	-
234	64.29	10.24	1.02	2.56	364	1.0	0.6	1.2	1433	1161	29.5	31.0	113	8.9	354	-
237	64.40	10.25	1.02	2.55	364	-0.5	-2.1	2.1	1542	1280	30.0	32.4	129	5.7	43	-
236	63.88	10.25	1.02	2.56	364	0.8	-0.2	0.8	1828	1575	32.2	32.7	206	1.0	262	-

ACT 17		$\epsilon = 0$		$L/D = 10$												Remarks	
#	M	L	D	T	H	a	b	V_S	V_R	M'_T	M''_T	Δ	λ	ϕ			
246	63.82	10.22	1.02	3.84	321	-0.2	0.0	0.2	1196	0	-	53	-	-	-		
245	64.02	10.22	1.02	3.83	321	-0.2	0.0	0.2	1217	139	9.9	13.8	26	10.0	348		
241	64.22	10.24	1.02	3.85	340	-0.6	-0.3	0.6	1244	507	12.5	17.1	55	7.7	214		
242	64.15	10.23	1.02	3.83	321	0.2	0.8	0.8	1246	530	12.1	14.0	-	2.8	83		
243	64.30	10.23	1.02	3.81	340	-0.2	0.0	0.2	1462	1200	22.0	25.1	86	0.2	213		
244	64.09	10.24	1.02	3.83	340	-1.0	0.0	2.0	1809	1548	31.0	32.7	125	0.7	61		
ACT 18		$\epsilon = 0$		$L/D = 10$												Remarks	
#	M	L	D	T	H	a	b	V_S	V_R	M'_T	M''_T	Δ	λ	ϕ			
254	64.36	9.62	0.97	3.83	340	0.1	0.0	0.1	1095	0	-	-	-	-	-		
253	64.37	9.69	0.97	3.82	321	0.1	-0.1	0.2	1097	54	8.6	10.3	1	7.4	0		
252	64.73	9.69	0.97	3.81	340	0.2	-0.2	0.3	1097	-	8.1	-	9	-	-		
251	64.58	9.69	0.97	3.82	321	0.4	0.2	0.4	1125	478	11.6	10.7	17	4.3	299		
250	64.42	9.67	0.97	3.82	321	-0.4	0.2	0.5	1185	868	19.8	16.5	37	1.4	173		
249	64.44	9.69	0.97	3.83	332	0.5	-0.1	0.6	1257	1033	25.3	26.4	45	0.5	104		
247	64.00	9.68	0.97	3.84	321	-0.1	0.0	2.1	1258	1045	23.1	22.5	34	1.2	341		
248	64.40	9.67	0.97	3.83	321	-0.1	-0.3	0.4	1269	1047	26.6	30.5	54	0.7	28		
255	64.80	9.69	0.97	3.82	340	-0.5	0.3	0.6	1377	1194	28.2	29.0	70	0.7	249		
256	64.54	9.68	0.97	3.82	340	0.3	0.0	0.3	1627	1485	31.7	31.9	107	0.4	174		
257	64.28	9.68	0.97	3.83	340	-1.8	0.5	1.8	1789	1586	32.4	34.0	113	1.4	80		

ACT 19 e = 60 L/D = 10

#	M	L	D	T	H	α	β	δ	V_S	V_T	M_T'	M_T''	Δ	λ	ϕ	Remarks
264	64.30	10.25	1.02	2.54	364	-0.4	-0.5	1201	0	-	-	-	14	-	-	-
263	64.43	10.26	1.02	2.53	364	0.0	0.1	1227	204	8.6	8.5	68	39.3	0		
262	64.29	10.26	1.02	2.56	351	0.0	0.6	1282	509	13.6	15.0	97	37.3	0		
261	64.06	10.25	1.02	2.53	364	0.4	0.7	1360	768	20.7	22.4	96	23.0	1		
265	64.04	10.22	1.02	2.54	364	0.1	-0.2	1471	997	18.5	20.2	98	16.1	2		
260	64.34	10.25	1.02	2.55	340	-0.5	0.4	1489	903	19.6	20.1	118	11.7	2		
259	64.20	10.26	1.02	2.54	351	-0.8	0.1	1647	1145	16.8	18.3	156	5.2	6		
258	64.35	10.25	1.02	2.53	364	-	-	1800	1285	13.6	-	171	-	-		

ACT 20 $\theta = 60$ L/D = 10

#	M	L	D	T	H	α	β	δ	V_S	V_T	M_T'	M_T''	Δ	λ	ϕ	Remarks
268	64.35	9.69	0.97	2.54	387	-0.8	0.5	1201	2	-	-	59	-	-	-	-
266	64.46	9.70	0.97	2.53	364	-0.1	0.1	1331	898	21.4	22.6	91	16.1	1		
267	64.42	9.69	0.97	2.53	364	-1.1	0.5	1758	1399	22.9	24.0	176	2.6	350		

ACT 1.1 $\theta = 0$ L/D = 20

#	M	L	D	T	H	α	β	δ	V_S	V_T	M_T'	M_T''	Δ	λ	ϕ	Remarks
89	64.84	16.19	0.81	1.91	364	0.0	0.5	856	0	-	-	-	-	-	-	4
92	64.57	16.19	0.81	1.91	364	0.5	0.8	865	0	-	-	128	-	-	-	-
91	64.68	16.19	0.81	1.91	364	-1.9	1.1	882	445	24.4	34	5.2	93	6		
93	64.65	16.19	0.81	1.91	364	-0.8	0.6	886	555	33.7	^	4.1	177			

ACT 5.1 $\theta = 0$ L/D = 20

#	M	L	D	T	H	α	β	δ	V_S	V_T	M'_T	M''_T	Δ	λ	ϕ	Remarks
56	64.67	16.19	0.81	3.18	321	-0.5	0.5	1022	0	-	-	-	-	-	-	4
59	64.73	16.19	0.81	3.18	321	-0.8	0.8	1.1	1025	0	-	-	-	-	-	6
57	64.76	16.19	0.81	3.18	321	-0.3	0.5	0.6	1038	0	-	-	-	-	-	4
60	64.63	16.19	0.81	3.18	321	0.5	0.8	3.9	1045	0	-	-	-	-	-	-
55	64.75	16.19	0.81	3.18	321	0.0	0.3	0.3	1061	503	25.0	^	^	^	^	-
50	64.72	16.19	0.81	3.18	321	^	^	1081	^	24.0	^	35	^	^	^	1.2
53	64.77	16.19	0.81	3.18	321	-0.2	0.8	0.8	1087	597	^	28.7	^	3.2	^	14

ACT 5.2 $\theta = 0$ L/D = 10

#	M	L	D	T	H	α	β	δ	V_S	V_T	M'_T	M''_T	Δ	λ	ϕ	Remarks
65	63.77	10.15	1.02	3.18	321	-0.6	0.8	1.0	1146	566	26.9	25.5	^	2.8	148	-
63	63.90	10.16	1.02	3.18	321	1.2	3.6	3.8	1185	684	^	32.6	25	11.1	70	1
61	63.60	10.19	1.02	3.18	321	-1.0	5.6	5.7	1198	623	20.8	21.0	^	19.4	101	1
64	63.57	10.15	1.02	3.18	321	-0.7	3.7	3.8	1201	638	^	29.1	35	8.0	70	1
62	63.69	10.19	1.02	3.18	321	-0.6	4.2	4.3	1214	662	^	22.4	^	11.3	84	1

PRECEDING PAGE BLANK - NOT FILMED

APPENDIX B

DERIVED V_s , V_r CURVES

APPENDIX B: DERIVED V_s , V_r CURVES

This section is comprised of the V_s , V_r curves derived from the experimental data of Appendix A. The standard form used to represent dependence of residual velocity on striking velocity is

$$V_r = \begin{cases} 0, & \text{if } 0 \leq V_s \leq V_\ell \\ a(V_s^p - V_\ell^p)^{1/p}, & \text{if } V_s > V_\ell \end{cases}$$

with the constraints, $p > 1$ and $0 \leq a \leq 1$.

Values for the limit velocity, V_ℓ , and the other parameters, a and p , are derived via a non-linear least squares algorithm which extracts an optimal adaptation of the form to the data. For an elaboration on the above form and related methodology, see BRL Report 1852². There is available at the Terminal Ballistics Division of the BRL a program in BASIC, called "Impact", which contains the algorithm and provides graphic capability; we have used this program to derive parameters for our various data sets and to generate the following figures. V_s , V_r data corresponding to rounds for which the total yaw of the penetrator at impact exceeded $2\frac{1}{2}^\circ$ was excluded from this analysis. In each figure "S" denotes the root mean square error associated with the fit of form to data.

²Lambert, J. P. and Jonas, G. H., "Towards Standardization in Terminal Ballistic Testing: Velocity Representation", BRL Report 1852, January 1976 (AD A021389).

FIGURE B-1. V_S/V_R CURVE AND DATA FOR RCT I

FIGURE B-2. V_S, V_R CURVE AND DATA FOR ACT 2

FIGURE B-3. V_S, V_R CURVE AND DATA FOR RCT 3

FIGURE B-4. V_s/V_p CURVE AND DATA FOR TEST 4

FIGURE B-5. V_S/V_R CURVE AND DATA FOR ACT 5

FIGURE B-7. V_S, V_R CURVE AND DATA FOR ACT 7

FIGURE B-8. V_S , V_R CURVE AND DATA FOR RCT B

FIGURE B-9. V_S/V_R CURVE AND DATA FOR ACT 9

FIGURE B-10. V_S, V_R CURVE AND DATA FOR RCT 12

FIGURE B-11. V_S/V_R CURVE AND DATA FOR ACT II

FIGURE B-12. V_S, V_R CURVE AND DATA FOR RCT 12

FIGURE B-13. V_S, V_R CURVE AND DATA FOR ACT 13

FIGURE B-14. V_S' , V_R CURVE AND DATA FOR RCT 14

FIGURE B-15. V_S/V_R CURVE AND DATA FOR ACT 15

FIGURE B-16. V_s , V_r CURVE AND DATA FOR RCT 15

FIGURE 8-17. V_S , V_R CURVE AND DATA FOR RCT 17

FIGURE B-18. V_S, V_R CURVE AND DATA FOR RCT 18

FIGURE B-19. V_S/V_R CURVE AND DATA FOR RCT 19

FIGURE B-20. V_S/V_R CURVE AND DATA FOR RCT 2B

FIGURE B-21. V_S/V_R CURVE AND DATA FOR RCT 1.1

FIGURE B-22. V_S, V_R CURVE AND DATA FOR RCT 3.1

APPENDIX C
FRAGMENT DATA

APPENDIX C: FRAGMENT DATA

Summary of processed³ behind-target fragmentation data for 29 selected rounds.

Notation

Type - P: penetrator fragment
 - T: target fragment (spall particle)

Cone - Cone angle of fragment trajectory: the acute angle between the fragment path and the initial penetrator path. c.f., Figure C-1.

Phase - Phase angle of fragment trajectory: the angle, between 0 and 360 degrees and measured clockwise as perceived from the target hole, between the vertical upward direction and the projection of the fragment path on a plane behind the target orthogonal to the initial penetrator path. c.f., Figure C-1.

³Arbuckle, A. L., Herr, E. L. and Ricchiazzi, A. J., "A Computerized Method of Obtaining Behind-the-Target Data from Orthogonal Flash Radiographs" BRL Memorandum Report 2264, January 1973 (AD 308362L).

FIGURE C-1. COORDINATE SYSTEM DEPICTING ANGLES λ AND ϕ

ROUND 116 (ACT 5)			
TYPE	SPEED (N/S)	MASS (GR)	CONE (DEG)
P	189	11.4	20
T	379	0.8	71
T	371	0.3	62
T	511	0.3	71
T	492	0.4	76
T	402	0.5	51
T	465	0.6	70
T	443	1.0	69
R	408	1.5	65
T	259	3.2	24

ROUND 130 (ACT 5)			
TYPE	SPEED (N/S)	MASS (GR)	CONE (DEG)
P	369	19.8	1
T	460	0.1	11
T	311	0.1	7
T	361	0.1	7
T	368	0.1	11
T	363	0.1	14
T	365	0.1	10
T	407	0.8	8
T	418	0.8	10
T	372	0.2	15
T	368	0.2	6
T	336	0.2	5
T	437	0.2	10
T	407	0.4	12
T	310	0.4	5
T	360	0.4	9
T	241	0.5	7
T	348	0.5	8
T	322	0.5	4
T	301	0.5	7
R	301	0.6	8

ROUND 118 (ACT 5)			
TYPE	SPEED (N/S)	MASS (GR)	CONE (DEG)
P	430	7.7	9
T	492	0.3	14
T	539	0.4	3
T	503	1.6	12
T	491	1.9	7
T	504	2.2	16
T	502	7.6	8
R	518	9.5	6

ROUND 130 (CONT'D)		
TYPE	SPEED (K/S)	PHASE (DEG)
T	350	0.6
T	355	0.9
T	366	0.9
T	350	1.0
T	348	1.4
T	312	1.7
T	357	2.0
T	384	8.1
T	385	11.7
		10

ROUND 132 (CONT'D)		
TYPE	SPEED (K/S)	PHASE (DEG)
T	171	0.1
T	172	0.1
T	287	0.1
T	242	0.2
T	286	0.2
T	207	0.2
T	283	0.2
T	211	0.2
T	207	0.2
T	250	0.2
T	171	0.2
T	286	0.2
T	237	0.2
T	211	0.3
T	241	0.3
T	165	0.3
T	282	0.4
T	211	0.4
T	250	0.4
T	194	0.4

ROUND 132 (ACT 5)		
TYPE	SPEED (K/S)	PHASE (DEG)
T	170.6	11
T	200	0.1
T	242	0.1
T	259	0.1
T	227	0.1
T	211	0.1
T	26	0.1
T	35	0.1
T	55	0.1
T	32	0.1

ROUTE 132 (cont'd)		
TYPE	SPD (KTS)	CONE (DEG)
		PHASE (DEG)
T	1.65	0.4
T	1.57	0.4
T	2.13	0.4
T	1.95	0.4
T	2.15	0.4
T	2.20	0.5
T	1.98	0.5
T	1.91	0.6
T	2.22	0.6
T	1.56	0.8
T	2.27	0.9
T	1.62	1.0
T	2.00	1.1
T	2.05	1.2
T	1.75	1.4
T	2.05	1.6
T	2.22	1.6
T	2.05	3.1
T	2.45	8.6
T	2.64	9.4
T	2.21	18.7
		13
		30
		32
		33
		34
		35
		36
		37
		38
		39
		40
		41
		42
		43
		44
		45
		46
		47
		48
		49
		50
		51
		52
		53
		54
		55
		56
		57
		58
		59
		60
		61
		62
		63
		64
		65
		66
		67
		68
		69
		70
		71
		72
		73
		74
		75
		76
		77
		78
		79
		80
		81
		82

ROUTE 133 (act 6)		
TYPE	SPD (KTS)	CONE (DEG)
P	114	23.6
T	135	0.1
T	159	0.8
T	113	0.3
T	112	0.3
T	137	0.4
T	133	0.4
T	115	0.5
T	144	0.8
T	142	1.6
T	56	4.6
T	58	5.8
T	13	176

TYPE	NAME 137 (CHTB)			NAME 138 (ACT 16)		
	SPEED (KTS)	WEIGHT (LB)	CONE (DEG)	PHASE (DEG)	SPEED (KTS)	CONE (DEG)
R	788	0.4	28	28	774	0.1
T	813	0.4	17	355	477	0.2
T	795	0.4	16	234	465	0.3
T	834	0.5	18	350	453	0.3
T	1405	0.3	5	77	368	0.4
T	860	0.3	15	307	340	0.4
T	863	0.3	13	315	310	0.4
T	1392	0.3	7	193	311	0.4
T	837	0.3	11	369	436	0.4
T	1314	0.3	14	241	374	0.5
T	827	0.3	27	0	358	0.7
T	854	1.1	19	0	475	0.2
T	1144	1.2	18	230	448	0.3
T	856	1.3	14	0	438	1.0
T	1054	1.7	16	235	507	1.3
T	1128	1.7	25	108	451	1.4
R	1388	2.1	8	68	508	1.7
R	1387	2.9	6	112	509	1.7
R	1403	4.1	5	151	521	2.2
R	1083	4.5	19	83	530	2.6
R	1389	4.5	7	78	530	2.6

ROUND 136 (CMTS)			ROUND 148 (CMTS)			ROUND 149 (CMTS)		
TYPE	SPFED (N/3)	CPCE (N/3)	TYPE	SPFED (N/3)	CPCE (N/3)	TYPE	SPFED (N/3)	CPCE (N/3)
T	550	2.8	T	20	54	T	200	0.8
T	440	3.7	T	10	71	T	201	0.3
T	463	6.7	T	9	269	T	242	0.9
T	367	7.2	T	8	346	T	294	1.0
ROUND 148 (ACT 10)			ROUND 149 (ACT 10)			ROUND 144 (ACT 10)		
TYPE	SPFED (N/3)	CPCE (N/3)	TYPE	SPFED (N/3)	CPCE (N/3)	TYPE	SPFED (N/3)	CPCE (N/3)
T	261	5.2	T	5	138	T	227	0.6
T	214	0.1	T	17	10	T	240	0.9
T	813	0.2	T	17	362	T	371	1.1
T	265	0.3	T	18	81	T	162	4.7
T	208	0.3	T	13	244	T	265	6.6
T	160	0.4	T	20	337	T	260	6.6
T	153	0.4	T	19	342	T	164	1.7
T	142	0.5	T	19	268	T	11	14
T	265	0.5	T	10	246	T	168	9
T	143	0.5	T	19	364	T	272	0.5
T	270	0.6	T	3	168	T	260	0.7
T	161	0.8	T	7	344	T	161	13

NAME	TYPE	PHASE (ACT 1)		PHASE (ACT 2)		PHASE (CONT.)	
		POS (deg)	CONE (deg)	POS (deg)	CONE (deg)	POS (deg)	CONE (deg)
ROCK 153	T	0.3	18	310	5	157	5
	T	0.3	23	337	5	72	5
	T	0.3	17	46	5	550	5
	T	0.4	18	16	5	813	5
	T	0.4	18	17	5	170	5
	T	0.4	10	265	5	63	5
	T	0.5	11	173	5	213	5
	T	0.5	6	138	5	360	5
	T	0.5	13	160	5	175	5
	T	0.6	13	223	5	32	5
	T	0.6	12	137	5	0	5
	T	0.7	15	127	5	17	5
	T	0.7	20	119	5	225	5
	T	0.8	18	260	5	41	5
	T	0.8	13	51	5	21	5
	T	0.8	26	34	5	204	5
	T	0.8	5	54	5	2	5
	T	0.8	23	41	5	27	5
	T	0.9	24	34	5		
	T	0.9	14	313	5		
	T	1.0	14	313	5		
	T	1.0	5	313	5		
	T	1.0	5	313	5		
	R	5.1	5.1	5.1	5		
	R	5.1	5.1	5.1	5		
	R	5.1	5.1	5.1	5		

ROUTE 155 (ACT 14)			ROUTE 156 (ACT 14)			ROUTE 157 (ACT 14)			ROUTE 158 (ACT 14)		
TYPE	SPEED (MPH)	TIME (SEC)									
T	468	0.2	T	461	0.2	T	466	0.2	T	466	0
T	500	0.5	T	466	0.2	T	466	0.2	T	466	15
F	466	0.8	T	502	2.7	T	466	2.8	T	466	337
T	567	1.3	T	466	2.8	T	302	3.4	T	466	141
T	504	1.5	T	463	3.6	T	463	3.6	T	463	0
T	648	1.6	T	412	3.7	T	412	3.7	T	412	38
T	764	2.0	T	412	3.7	T	412	3.7	T	412	16
T	365	2.2	T	412	3.7	T	412	3.7	T	412	16
T	360	2.6	T	412	3.7	T	412	3.7	T	412	16
T	464	2.6	T	733	0.2	T	461	0.3	T	461	11
T	763	4.2	T	467	0.5	T	467	0.5	T	467	3
R	513	4.4	T	467	0.5	T	467	0.5	T	467	3
T	521	6.1	T	577	0.5	T	577	0.5	T	577	3
T	272	6.7	T	589	0.7	T	589	0.7	T	589	3
T	272	11.3	T	581	1.1	T	581	1.1	T	581	3
T	585	0.1	T	585	1.1	T	585	1.1	T	585	3
T	569	0.3	T	585	1.1	T	585	1.1	T	585	3
T	462	0.3	T	585	1.1	T	585	1.1	T	585	3
T	567	0.3	T	585	1.1	T	585	1.1	T	585	3

ROUND 152 (ACT 14)			ROUND 153 (ACT 15)		
TYPE	SPEED (ft/s)	CORE (deg)	TYPE	SPEED (ft/s)	CORE (deg)
P	314	8.3	T	240	0.1
T	240	11	T	255	0.1
T	292	0.1	T	188	0.1
T	295	0.1	T	186	0.1
T	215	0.1	T	142	0.1
T	264	0.1	T	207	0.1
T	245	0.1	T	10	308
T	245	0.1	T	15	151
T	245	0.1	T	6	843
T	245	0.1	T	5	0
T	231	0.1	T	4	52
T	249	0.2	T	7	190
T	231	0.3	T	13	168
T	188	0.3	T	270	0
T	275	0.3	T	28	53
T	258	0.3	T	13	161
T	204	0.3	T	13	131
T	190	0.4	T	30	0
T	231	0.4	T	37	0
T	210	0.4	T	55	4
T	205	0.4	T	33	0
ROUND 154 (ACT 16)			ROUND 155 (ACT 17)		
TYPE	SPEED (ft/s)	CORE (deg)	TYPE	SPEED (ft/s)	CORE (deg)
T	414	0.1	T	474	0.2
T	338	0.2	T	507	0.3
T	488	0.4	T	335	0.4
T					

ROUND 181 (ACT 14)			
TYPE	PHASE (DEG) (CR)	CONE (DEG) (CR)	PHASE (DEG)
T	538	0.4	7
T	538	0.4	5
T	348	0.4	7
T	346	0.6	7
T	373	0.7	14
T	491	1.9	17
T	302	1.9	10
T	405	3.3	16
T	448	3.4	17
R	524	5.4	2
T	492	5.5	12

ROUND 187 (ACT 14)			
TYPE	PHASE (DEG) (CR)	CONE (DEG) (CR)	PHASE (DEG)
T	572	0.1	21
T	575	0.1	21
T	728	1.0	6
T	517	0.3	12
T	680	0.4	10
T	471	0.5	17
T	536	0.6	9
T	687	0.8	11
T	628	0.9	24
T	618	1.2	7
T	500	1.3	1
T	437	1.5	1
T	506	1.6	35
T	609	2.1	15
T	571	2.3	15
T	683	2.4	9
T	726	2.5	10
T	782	2.5	11
T	784	4.2	8
T	620	4.6	11
T	582	5.6	11

ROUND 183 (ACT 14)			
TYPE	PHASE (DEG) (CR)	CONE (DEG) (CR)	PHASE (DEG)
T	378	0.1	6
T	350	0.2	10
T	344	0.4	10
T	341	0.4	9
T	420	1.0	8

TYPE	ROUND 170 (ACT 14)		
	SPEED (IN/S)	PHASE (deg)	CONE (deg)
T	1159	0.1	7
T	1182	0.1	8
T	878	0.1	11
R	1804	0.2	8
T	888	0.3	10
T	811	0.4	9
T	872	0.4	11
T	887	0.5	7
R	1121	0.5	11
T	853	0.5	9
T	1063	0.5	15
T	918	0.5	19
R	1138	5.0	9
T	1881	0.6	2
T	912	0.6	0
T	830	0.7	10
T	885	0.7	6
T	1072	0.7	8
T	1113	0.8	14
T	1003	0.8	15
T	702	1.0	0
T	881	1.1	16

TYPE	ROUND 170 (ACT 14)		
	SPEED (IN/S)	PHASE (deg)	CONE (deg)
T	853	1.1	9
T	772	1.3	10
T	882	1.2	4
T	813	1.2	12
T	1203	1.3	6
T	1006	1.4	6
T	815	1.9	11
T	863	1.9	5
T	803	1.9	11
T	781	2.0	5
T	859	2.1	7
T	860	2.1	2
T	860	2.1	2
T	860	2.1	2
T	860	2.1	2
TYPE	ROUND 175 (ACT 14)		
TYPE	SPEED (IN/S)	PHASE (deg)	CONE (deg)
T	886	0.2	15
T	480	0.2	7
T	481	0.2	7
T	491	0.7	8
T	100	1.1	6

TYPE	ROUTE 176 (ACT 11)			ROUTE 176 (ACT 11)		
	SPEDD (K/H)	MEAS (SEC)	TIME (SEC)	SPEDD (K/H)	MEAS (SEC)	TIME (SEC)
T	415	8.2	17	300	0.1	16
S	305	3.1	14	331	0.1	40
T	168	4.7	31	0	0.1	247
T	773	4.9	16	140	0.1	328
				304	0.1	346
				308	0.1	0
				303	0.1	303
				302	0.1	302
				301	0.1	301
				300	0.1	300
				299	0.1	299
				298	0.1	298
				297	0.1	297
				296	0.1	296
				295	0.1	295
				294	0.1	294
				293	0.1	293
				292	0.1	292
				291	0.1	291
				290	0.1	290
				289	0.1	289
				288	0.1	288
				287	0.1	287
				286	0.1	286
				285	0.1	285
				284	0.1	284
				283	0.1	283
				282	0.1	282
				281	0.1	281
				280	0.1	280
				279	0.1	279
				278	0.1	278
				277	0.1	277
				276	0.1	276
				275	0.1	275
				274	0.1	274
				273	0.1	273
				272	0.1	272
				271	0.1	271
				270	0.1	270
				269	0.1	269
				268	0.1	268
				267	0.1	267
				266	0.1	266
				265	0.1	265
				264	0.1	264
				263	0.1	263
				262	0.1	262
				261	0.1	261
				260	0.1	260
				259	0.1	259
				258	0.1	258
				257	0.1	257
				256	0.1	256
				255	0.1	255
				254	0.1	254
				253	0.1	253
				252	0.1	252
				251	0.1	251
				250	0.1	250
				249	0.1	249
				248	0.1	248
				247	0.1	247
				246	0.1	246
				245	0.1	245
				244	0.1	244
				243	0.1	243
				242	0.1	242
				241	0.1	241
				240	0.1	240
				239	0.1	239
				238	0.1	238
				237	0.1	237
				236	0.1	236
				235	0.1	235
				234	0.1	234
				233	0.1	233
				232	0.1	232
				231	0.1	231
				230	0.1	230
				229	0.1	229
				228	0.1	228
				227	0.1	227
				226	0.1	226
				225	0.1	225
				224	0.1	224
				223	0.1	223
				222	0.1	222
				221	0.1	221
				220	0.1	220
				219	0.1	219
				218	0.1	218
				217	0.1	217
				216	0.1	216
				215	0.1	215
				214	0.1	214
				213	0.1	213
				212	0.1	212
				211	0.1	211
				210	0.1	210
				209	0.1	209
				208	0.1	208
				207	0.1	207
				206	0.1	206
				205	0.1	205
				204	0.1	204
				203	0.1	203
				202	0.1	202
				201	0.1	201
				200	0.1	200
				199	0.1	199
				198	0.1	198
				197	0.1	197
				196	0.1	196
				195	0.1	195
				194	0.1	194
				193	0.1	193
				192	0.1	192
				191	0.1	191
				190	0.1	190
				189	0.1	189
				188	0.1	188
				187	0.1	187
				186	0.1	186
				185	0.1	185
				184	0.1	184
				183	0.1	183
				182	0.1	182
				181	0.1	181
				180	0.1	180
				179	0.1	179
				178	0.1	178
				177	0.1	177
				176	0.1	176
				175	0.1	175
				174	0.1	174
				173	0.1	173
				172	0.1	172
				171	0.1	171
				170	0.1	170
				169	0.1	169
				168	0.1	168
				167	0.1	167
				166	0.1	166
				165	0.1	165
				164	0.1	164
				163	0.1	163
				162	0.1	162
				161	0.1	161
				160	0.1	160
				159	0.1	159
				158	0.1	158
				157	0.1	157
				156	0.1	156
				155	0.1	155
				154	0.1	154
				153	0.1	153
				152	0.1	152
				151	0.1	151
				150	0.1	150
				149	0.1	149
				148	0.1	148
				147	0.1	147
				146	0.1	146
				145	0.1	145
				144	0.1	144
				143	0.1	143
				142	0.1	142
				141	0.1	141
				140	0.1	140
				139	0.1	139
				138	0.1	138
				137	0.1	137
				136	0.1	136
				135	0.1	135
				134	0.1	134
				133	0.1	133
				132	0.1	132
				131	0.1	131
				130	0.1	130
				129	0.1	129
				128	0.1	128
				127	0.1	127
				126	0.1	126
				125	0.1	125
				124	0.1	124
				123	0.1	123
				122	0.1	122
				121	0.1	121
				120	0.1	120
				119	0.1	119
				118	0.1	118
				117	0.1	117
				116	0.1	116
				115	0.1	115
				114	0.1	114
				113	0.1	113
				112	0.1	112
				111	0.1	111
				110	0.1	110
				109	0.1	109
				108	0.1	108
				107	0.1	107
				106	0.1	106
				105	0.1	105
				104	0.1	104
				103	0.1	103
				102	0.1	102
				101	0.1	101
				100	0.1	100
				99	0.1	99
				98	0.1	98
				97	0.1	97
				96	0.1	96
				95	0.1	95
				94	0.1	94
				93	0.1	93
				92	0.1	92
				91	0.1	91
				90	0.1	90
				89	0.1	89
				88	0.1	88
				87	0.1	87
				86	0.1	86
				85	0.1	85
				84	0.1	84
				83	0.1	83
				82	0.1	82
				81	0.1	81
				80	0.1	80
				79	0.1	79
				78	0.1	78
				77	0.1	77
				76	0.1	76
				75	0.1	75
				74	0.1	74
				73	0.1	73
				72	0.1	72
				71	0.1	71
				70	0.1	70
				69	0.1	69
				68	0.1	68
				67	0.1	67
				66	0.1	66
				65	0.1	65
				64	0.1	64
				63	0.1	63
				62	0.1	62
				61	0.1	61
				60	0.1	60
				59	0.1	59
				58	0.1	58
				57	0.1	57
				56	0.1	56
				55	0.1	55
				54	0.1	54
				53	0.1	53
				52	0.1	52
				51	0.1	51
				50	0.1	50
				49	0.1	49
				48	0.1	48
				47	0.1	47
				46	0.1	46
				45	0.1	45
				44	0.1	44
				43	0.1	43
				42	0.1	42
				41	0.1	41
				40	0.1	40
				39	0.1	39
			</			

GROUP 173 (CONT)		PHASE (DEG)	14	326	344	360	365	6	365	6	365	365	15	314	3	359	0	364	365	365	0	1	1		
		CONE (DEG)	30	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		
		MAG (DEG)	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	1.1		
		SPEED (KTS)	531	531	505	577	609	600	395	403	377	365	401	405	377	367	365	420	363	364	405	674			
		TYPE	T	T	T	T	R	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T			
GROUP 173 (CONT)		PHASE (DEG)	345	345	360	347	348	36	365	5	0	4	346	346	351	365	0	364	0	7	12	333	345	0	
		CONE (DEG)	30	30	30	51	57	57	4	41	49	49	43	48	52	49	51	55	55	55	50	51	50		
		MAG (DEG)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4		
		SPEED (KTS)	408	403	436	471	0.2	476	0.2	390	0.2	391	0.2	402	0.3	429	0.3	433	0.3	444	0.3	395	0.3	444	0.4
		TYPE	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	R	T		

ROUND 181 (ACT 11)		ROUND 182 (ACT 12)	
TYPE	SPEED (m/s)	PHASE (DEG)	CONE (DEG)
T	709	1.2	40
T	663	1.6	364
T	465	1.6	364
T	342	1.8	57
T	343	1.8	57
T	363	1.8	1
T	416	1.9	6
T	364	1.9	15
T	497	2.0	33
T	511	2.1	34
T	653	2.3	37
T	486	3.7	87
T	637	3.8	33
T	632	4.0	34
T	522	4.3	56
T	367	4.6	278
T	638	5.8	49
T	637	6.2	42
T	636	6.8	17
T	320	8.5	38
T	381	9.3	0
TYPE	SPEED (m/s)	PHASE (DEG)	CONE (DEG)
T	7	1	14
T	37	17	314
T	59	0	0
T	51	0	0
T	44	28	28
T	30	42	365
T	42	38	362
T	38	38	342
T	48	42	347
T	42	42	0
T	43	43	18
T	43	43	32
T	44	44	23
T	42	44	344
T	34	42	8
T	42	42	346
T	34	42	0
T	44	44	338
T	44	44	0
TYPE	SPEED (m/s)	PHASE (DEG)	CONE (DEG)
T	7	1	26
T	37	17	314
T	59	0	0
T	51	0	0
T	44	28	28
T	30	42	365
T	42	38	362
T	38	38	342
T	48	42	347
T	42	42	0
T	43	43	18
T	43	43	32
T	44	44	23
T	42	44	344
T	34	42	8
T	42	42	346
T	34	42	0
T	44	44	338
T	44	44	0

ROUND 181 (CHTB)				ROUND 182 (CHTB)			
TYPE	SPEED (KTS)	MASS (KG)	PHASE (DEG)	TYPE	SPEED (KTS)	MASS (KG)	PHASE (DEG)
T	167	1.7	51	358	T	367	1.0
T	281	5.1	39	338	T	400	1.0
R	363	2.8	35	335	T	513	1.3
T	262	4.3	39	342	T	388	3.1
T	289	10.7	49	0	T	428	6.2
T	264	11.4	45	0	T	388	23
T	215	12.2	61	0	ROUND 180 (ACT 6)		
ROUND 185 (ACT 11)				TYPE	SPEED (KTS)	MASS (KG)	PHASE (DEG)
TYPE	SPEED (KTS)	MASS (KG)	PHASE (DEG)	T	365	0.1	364
T	364	0.1	34	T	368	0.2	36
T	437	0.1	40	T	365	0.2	34
T	320	0.2	38	T	363	0.2	36
T	547	0.3	41	T	364	0.2	36
T	378	0.2	50	T	368	0.2	36
T	311	0.4	71	T	365	0.2	36
T	440	0.4	53	T	422	0.5	364
T	365	0.5	44	T	369	0.5	44
T	469	0.8	57	T	278	0.5	36
T	368	0.9	34	T	368	0.6	367
T	324	1.0	35	T	368	0.6	36

ROUND 190 (CONT)				ROUND 191 (CONT)				
TYPE	SPEED (M/S)	MASS (KG)	CONE (DEG)	TYPE	SPEED (M/S)	MASS (KG)	CONE (DEG)	
T	351	0.6	23	0	T	364	0.3	364
P	358	0.7	24	10	T	442	0.4	16
T	361	0.7	24	13	T	364	0.4	6
P	359	0.7	23	0	T	333	0.4	361
T	378	0.7	54	0	T	327	0.5	362
P	368	0.8	26	0	T	371	0.7	364
T	341	0.8	50	0	T	348	0.7	1
P	362	1.0	51	0	T	371	0.7	3
T	275	1.0	29	23	T	400	0.8	10
P	345	1.8	43	358	T	347	0.8	364
T	345	1.8	44	0	T	361	0.8	7
P	345	5.0	35	0	T	331	0.9	364
T	258	6.7	46	0	T	378	0.9	4
P	364	7.5	75	0	T	349	1.0	5
T	167	16.5	69	0	T	342	1.2	361
P					T	367	1.3	368
					T	452	1.9	368
ROUND 191 (ACT 6)				TYPE	SPEED (M/S)	MASS (KG)	CONE (DEG)	
				P	273	8.8	77	
				T	323	0.1	95	
				T	430	0.3	9	
				T			9	

ROUND 199 (ACT 6)			ROUND 200 (ACT 6)			ROUND 201 (ACT 6)					
TYPE	SPEED (ft/s)	MAGS (ft)	CONF (DEG)	TYPE	SPEED (ft/s)	MAGS (ft)	CONF (DEG)	TYPE	SPEED (ft/s)	MAGS (ft)	CONF (DEG)
T	610	0.1	37	349	T	331	4.4	42	341		
T	584	0.2	29	352	T	285	5.3	38	333		
T	581	0.2	28	344	T	247	5.6	36	351		
T	556	0.2	33	354	T	136	8.3	18	0		
T	485	0.3	83	15	T	281	13.7	58	1		
T	519	0.3	26	12	T	107	24.0	51	0		
R	625	0.4	37	354							
T	346	0.5	26	17							
R	559	0.5	35	1							
T	416	0.6	68	0							
T	487	0.7	23	358	T	573	0.1	10	14		
T	472	0.8	18	21							
T	576	0.9	23	359	T	574	0.1	10	17		
T	550	1.3	26	327	T	594	0.1	13	28		
T	576	1.8	34	346	T	603	0.1	46	5		
R	685	1.9	43	6	T	615	0.2	38	342		
R	686	1.9	44	9	R	697	0.2	32	341		
T	623	1.9	27	358	R	705	0.2	32	3		
R	614	2.1	26	0	T	649	0.3	36	337		
T	526	2.9	27	361	T	645	0.3	30	336		
					T	608	0.3		328		

ROUND 213 (CHTD)			ROUND 213 (CHTD)		
TYPE	SPEED (K/S)	MASS (GR)	TYPE	SPEED (K/S)	MASS (GR)
T	708	0.3	T	690	0.3
R	630	0.3	R	641	0.3
T	641	0.3	T	680	1.4
R	737	0.3	T	657	1.5
T	734	0.4	R	636	1.8
R	728	0.4	R	636	1.8
R	735	0.4	T	643	1.9
T	668	0.4	R	689	2.2
R	722	0.4	R	539	2.3
T	634	0.6	T	577	2.6
T	498	0.7	T	615	2.7
T	623	0.7	R	685	2.7
SUS	505	0.7	R	731	2.8
T	727	0.7	R	565	2.9
T	475	0.7	R	693	3.1
T	722	0.7	T	592	3.1
R	691	0.7	R	680	5.0
T	708	0.7	R	538	5.4

PRECEDING PAGE BLANK - NOT FILMED

APPENDIX D
PENETRATION SKETCHES FOR ACT 19

APPENDIX D: PENETRATION SKETCHES FOR ACT 19

We attempt, in a sequence of rough sketches, to illustrate the pre-impact and residual penetrator (and/or "plug") and target plate section for rounds 258 through 265 (which constitute ACT 19). Figures are (roughly) 3/4 of actual size and the attempt is to convey approximate positioning and shape. In each sketch the initial penetrator position (with respect to the target plate) is representative of the situation 50 μ sec before impact and (except for Round 264) the residual penetrator suggests the situation 50 μ sec after perforation is complete (i.e., after the tail of the penetrator clears the rear target surface).

We recall that ACT 19 involves L/D of 10 monolithic steel penetrators impacting 1" RHA at 60° obliquity. M_r is used to denote recovered residual penetrator mass. Ordering of the sketches reflects an increasing sequence of striking velocities.

Following the sketches is a photograph of the sectioned target plates for these shots together with a representative original penetrator and recovered residual penetrators. In the photograph Δ is used to denote mass loss of the target plate. In a few cases there is a small discrepancy between the velocities given in the sketches and those on the photograph - those in the sketches are derived from a later, presumably more careful "reading" of the radiographs and are regarded as the official values. The sequence of rounds in the photograph is as follows:

top row, left to right - Rounds 264, 263, 262, 261

bottom row, left to right - Rounds 265, 260, 259, 258

Remarks: Each plate shows an indentation on the upper front surface - these "lips" were formed by pusher plates impacting the targets and are not consequent to penetrator/target interaction.

Figure D-1. Sketch for Round 264

Figure D-2. Sketch for Round 263

Figure D-3. Sketch for Round 262

Figure D-4. Sketch for Round 261

Figure D-5. Sketch for Round 265

Figure D-6. Sketch for Round 260

Figure D-7. Sketch for Round 259

Figure D-8. Sketch for Round 258

Figure D-9. Photograph of Sectioned Targets and Residual Penetrators for ACT 19

PRECEDING PAGE BLANK - NOT FILMED

APPENDIX E
PREDICTED CURVES

APPENDIX E: PREDICTED CURVES

A predictive scheme has been formulated for obtaining limit velocity and V_s , V_r curve estimates for situations involving long rod penetrators and single plate RHA targets⁴; pertinent equations are given below. For the final phase of this firing program, these equations were used to generate initial estimates of limit velocity (and of the full V_s , V_r relationship). Figures on the following pages provide for graphic comparison between the V_s , V_r curve predicted for the nominal situation and that derived from the experimental data for each of ACTS 16, 17, 18 and 19. In each case the data and predicted curve are graphed, and the derived curve, which also appears in Appendix B, is plotted as a dashed curve.

The predictive scheme is specified by:

$$V_r = \begin{cases} 0, & \text{if } 0 \leq V_s \leq V_x \\ a(V_s^p - V_x^p)^{1/p}, & \text{if } V_s > V_x \end{cases}$$

where

$$a = \frac{M}{M+M'/3}, \quad p = 2 + z/3,$$

$$\text{and } V_x = 4000 \left(\frac{L}{D} \right)^{1.5} \sqrt{f(z) \cdot \frac{D^3}{M}},$$

$$z = \frac{T}{D} \sec^{75} \theta, \quad f(z) = z + e^{-z} - 1.$$

$$M' = \frac{\rho \pi}{4} D^3 \cdot z, \quad \rho = 7.8,$$

and where L, D, T are in centimeters, M in grams, V_x in m/s.

⁴Lambert, J. P., "A Residual Velocity Predictive Model for Long Rod Penetrators", to appear.

Figure E-1. Predicted v_s , v_r Curve for ACT 16

Figure E-2. Predicted V_s , V_r Curve for ACT 17

Figure E-3. Predicted V_s , V_r Curve for ACT 18

Figure E-4. Predicted V_s , V_r Curve for ACT 19

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	2	Commander US Army Missile Research and Development Command ATTN: DRDMI-R DRDMI-RBL Redstone Arsenal, AL 35809
1	Director Defense Nuclear Agency ATTN: MAJ Spangler Arlington, VA 22209	1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-RWL Warren, MI 48090
1	Director Defense Advanced Research Projects Agency ATTN: Tech Info 1400 Wilson Boulevard Arlington, VA 22209	1	Commander US Army Mobility Equipment Research & Development Cmd ATTN: DRDME-WC Fort Belvoir, VA 22060
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166	2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	4	Commander US Army Armament Research and Development Command ATTN: Mr. V. Guadagno Mr. R. Davitt B. Knutelsky G. Demitrak Dover, NJ 07801
2	Commander US Army Electronics Command ATTN: DRSEL-HL-CT, S.Crossman DRSEL-RD Fort Monmouth, NJ 07703	1	Commander US Army Watervliet Arsenal ATTN: SARWV-RDD-SE, P.Vottis Watervliet, NY 12189

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783	3	Commander Naval Air Systems Command ATTN: AIR-604 Washington, DC 20360
5	Commander US Army Materials and Mechanics Research Center ATTN: DRXMR-T, Mr. J. Bluhm DRXMR-T, Dr. D. Roylance DRXMR-T, Dr. A.F. Wilde DRXMR-T, Dr. J. Mescall DRXMR-ATL Watertown, MA 02172	3	Commander Naval Ordnance Systems Command ATTN: ORD-9132 Washington, DC 20360
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	2	Commander Naval Air Development Center, Johnsville Warminster, PA 18974
1	Deputy Assistant Secretary of the Army (R&D) Department of the Army Washington, DC 20310	1	Commander Naval Missile Center Point Mugu, CA 93041
1	HQDA (DAMA-ARP) Washington, DC 20310	1	Commander & Director David W. Taylor Naval Ship Research & Development Ctr Bethesda, MD 20084
1	HQDA (DAMA-MS) Washington, DC 20310	1	Commander Naval Surface Weapons Center ATTN: Code TX, Dr. W.G. Soper Dahlgren, VA 22448
1	Commander US Army Research Office ATTN: Dr. E. Saibel P. O. Box 12211 Research Triangle Park NC 27709	2	Commander Naval Surface Weapons Center Silver Spring, MD 20910
1	Chief of Naval Research ATTN: Code ONR 439 N. Perrone Washington, DC 20360	3	Commander Naval Weapons Center ATTN: Code 4057 Code 4011, Dr. E. Lundstrom Code 3813, Mr. M. Backman China Lake, CA 93555
		4	Commander Naval Research Laboratory ATTN: Mr. W. J. Ferguson Mr. J. Baker Dr. H. Pusey Dr. F. Rosenthal Washington, DC 20375

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Superintendent Naval Postgraduate School ATTN: Dir of Lib Monterey, CA 93940	1	Director Lawrence Livermore Laboratory ATTN: Dr.R.H. Toland, L-424 P. O. Box 808 Livermore, CA 94550
2	ADTC/DLJW (MAJ D. Matuska, LTC J. Osborn) Eglin AFB, FL 32542	1	Aeronautical Research Assoc. of Princeton, Inc. 50 Washington Road Princeton, NJ 08540
1	AFFDL (FDT) Wright-Patterson AFB, OH 45433	2	Aerospace Corporation ATTN: Mr. L. Rubin Mr. L. G. King 2350 E. El Segundo Blvd El Segundo, CA 90009
1	AFML (Dr. T. Nicholas) Wright-Patterson AFB, OH 45433	1	Boeing Aerospace Company ATTN: Mr. R. G. Blaisdell (M.S. 40-25) Seattle, WA 98124
3	ASD (YH/EX, John Rievley; XROT, Gerald Bennett; ENPTV, Matt Kolleck) Wright-Patterson AFB, OH 45433	1	Dupont Experimental Labs ATTN: Mr. J. Lupton Wilmington, DE 19801
1	Headquarters National Aeronautics and Space Administration Washington, DC 20546	1	Effects Technology Inc. 5383 Hollister Avenue P. O. Box 30400 Santa Barbara, CA 93105
4	Director National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, VA 23365	1	Falcon R&D ATTN: Mr. R. Miller 1225 S. Huron Street Denver, CO 80223
1	Director National Aeronautics and Space Administration Manned Spacecraft Center ATTN: Lib Houston, TX 77058	2	Falcon R&D Thor Facility ATTN: Mr. D. Malick Mr. J. Wilson 696 Fairmount Avenue Baltimore, MD 21204
1	Director Jet Propulsion Laboratory ATTN: Lib (TD) 4800 Oak Grove Drive Pasadena, CA 91103		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	FMC Corporation Ordnance Engineering Div San Jose, CA 95114	1	Pacific Technical Corp. ATTN: Dr. F. K. Feldmann 460 Ward Drive Santa Barbara, CA 93105
1	General Electric Company Armament Systems Dept Burlington, VT 05401	1	Philco-Ford Corporation Capistrano Test Facility San Juan Capistrano, CA 92675
1	President General Research Corporation ATTN: Lib McLean, VA 22101	3	Physics International Company ATTN: Dr. D. Orphal Dr. E. T. Moore Dr. M. Chawla 2700 Merced Street San Leandro, CA 94577
1	Goodyear Aerospace Corp 1210 Massillon Road Akron, OH 44315	3	Sandia Laboratories ATTN: Dr. W. Herrmann Dr. L. Bertholf Dr. J. W. Nunziato Albuquerque, NM 87115
1	H. P. White Laboratory Bel Air, MD 21014	1	Science Applications, Inc. 101 Continental Blvd, Suite 310 El Segundo, CA 90245
3	Honeywell, Inc. Government & Aerospace Products Division ATTN: Mr. J. Blackburn Dr. G. Johnson Mr. R. Simpson 600 Second Street, NE Hopkins, MN 55343	1	Science Applications, Inc. ATTN: G. Burghart 201 W. Dyer Rd (Unit B) Santa Ana, CA 92707
1	Lockheed Corporation ATTN: Dr. C. E. Vivian Department 8114 Sunnyvale, CA 94087	2	Systems, Science & Software, Inc. ATTN: Dr. R. Seugwick Ms. L. Hageman P. O. Box 1620 La Jolla, CA 92038
1	Materials Research Lab., Inc. 1 Science Road Glenwood, IL 60427	1	US Steel Corporation Research Center 125 Jamison Lane Monroeville, PA 15146
1	McDonnell-Douglas Astronautics Company ATTN: Mail Station 21-2 Dr. J. Wall 5301 Bolsa Avenue Huntington Beach, CA 92647		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Drexel University Dept of Mechanical Engineering ATTN: Dr. P. C. Chou 32nd and Chestnut Streets Philadelphia, PA 19104	1	University of Dayton Univ. of Dayton Research Inst ATTN: Mr. H. F. Swift Dayton, OH 45405
1	New Mexico Institute of Mining and Technology Terra Group Socorro, NM 87801	2	University of Delaware Dept of Mechanical Engineering ATTN: Prof. J. Vinson Dean I. Greenfield Newark, DE 19711
1	Forrestal Research Center Aeronautical Engineering Lab Princeton University ATTN: Dr. A. Eringen Princeton, NJ 08540	2	University of Denver Denver Research Institute ATTN: Mr. R. F. Recht Mr. T. W. Ipson 2390 S. University Boulevard Denver, CO 80210
3	Southwest Research Institute Dept of Mechanical Sciences ATTN: Dr. U. Lindholm Dr. W. Baker Dr. P. H. Francis 8500 Culebra Road San Antonio, TX 78228	2	University of Florida Dept of Engineering Science and Mechanics ATTN: Dr. C. A. Sciammarella Dr. L. Malvern Gainesville, FL 32601
1	Stanford Research Institute Poulter Laboratory 333 Ravenswood Avenue Menlo Park, CA 94025	<u>Aberdeen Proving Ground</u>	
3	University of Arizona Civil Engineering Department ATTN: Dr. D. A. DaDeppo Dr. R. Richard Dr. R. C. Neff Tucson, AZ 85721	Marine Corps Ln Ofc Dir, USAMSAA Cdr, USATECOM ATTN: Mr. W. Pless Mr. S. Keithley	
4	University of California Los Alamos Scientific Lab ATTN: Dr. R. Karpp Dr. J. Dienes Dr. L. Germain Dr. B. Germain P. O. Box 808 Livermore, CA 94550		