

Laser physics SS 2023

Seminar 1

Singularities of the timetable

KW15		 KW18		 KW22	
Mon 10.04*	Wed 12.04	Mon 01.05*	<i>Wed</i> 03.05	Mon 29.05*	Wed 31.05
	1st Seminar 14:00-15:30		Seminar during tutorial time 16:00-17:30		Seminar during tutorial time 16:00-17:30

*Public holidays

Hints for online students

- Lecture streaming
 - https://www.uni-jena.de/livestreams

Veranstaltungsort	Links
Albert-Einstein-Straße 6	
Hörsaal ACP	Livestream Chat
ACP Raum e001	Livestream Chat

- Recorded videos in Moodle
- Seminar
 - Zoom

All seminar dates for the students

KW	Date	Day	Seminar
15	12.04	Wednesday	Introduction
16	17.04	Monday	Discussion of problem sheet
17	24.04	Monday	Discussion of problem sheet
18	03.05	Wednesday	Discussion of problem sheet
19	08.05	Monday	Discussion of problem sheet
20	15.05	Monday	Discussion of problem sheet
21	22.05	Monday	Discussion of problem sheet
22	31.05	Wednesday	Discussion of problem sheet
23	05.06	Monday	Discussion of problem sheet
24	12.06	Monday	Discussion of problem sheet
25	19.06	Monday	Discussion of problem sheet
26	28.06	Wednesday	Exam

Group	Tutor	Location
1	Benjamin Yildiz (<u>benjamin.yildiz@uni-jena.de</u>)	Computer pool ACP
2	Yiming Tu (yiming.tu@uni-jena.de)	ACP Auditorium
3	Mehran Bahri (<u>mehran.bahri@uni-jena.de</u>)	SR1 ACP
4	Maximilian Benner (maximilian.benner@uni-jena.de)	SR2 ACP

 On <u>17.04</u> and <u>22.05</u>, <u>students in group 3</u> (Mehran) please come to <u>ACP auditorium</u> for your seminar

How does a homework look like:

Problem set X

Your Name Name of tutor Problem 1:

A neat and tidy solution with text/ figures

. . .

Please name your submitted pdf files including your seminar number and full name

Rule for the late submission

Please submit your homework in time

Problem Sheet 1

Opened: Monday, 3 April 2023, 12:00 PM Due: Tuesday, 11 April 2023, 8:00 AM

上人

Laser Physics SS23 Sheet 1.pdf

28 March 2023, 4:18 PM

- points will be given for exercises, which will count as additional points in the written exam according to the following table:
- >90% correctly solved -> +5 points
- >80% correctly solved -> +4 points
- >70% correctly solved -> +3 points
- >60% correctly solved -> +2 points
- >50% correctly solved -> +1 point

(typical overall points of the written exam are in the range of 35-40)

- In case of late submission
 - You can submit it to your seminar tutor via email and we will correct it
 - For the <u>first</u> time, you will get <u>half</u> of your deserved points
 - From the second time on, <u>no point</u> will be given

Teamwork: presentation

- ➤ 15 topics, 4-6 persons / topic
- Presentations:
 - 8 min + 4 min discussion
 - The begin of June (Wednesday tutorial time)
 - Mandatory
- Topic released on through Moodle
- > Sign in a topic after the release

Example:

Topic: Lasers in medicine

Possible content:

What kinds of lasers are used for (and why)?

- Surgery
- Ophtalmology
- Laser hair/tattoo removal
- Dentistry
- Medical imaging (e.g. OCT)
- ..

	Topics of last year				
(1)	Laser applications in material processing				
(2)	Applications of lasers in art				
(3)	The role of lasers in gravitational wave detection				
(4)	Optical data storage/holography				
(5)	Free-electron lasers and their applications				
(6)	Laser-induced fusion				
(7)	Lasers in space applications				
(8)	Lasers in metrology				
(9)	LIDAR				
(10)	Lasers in medical applications				
(11)	Lasers in manufacturing				
(12)	Manipulation of matter with light (e.g. optical tweezers)				
(13)	Lasers in communications				
(14)	Lasers in quantum techniques				
(15)	Laser applications in imaging				

Lasers

Laser physics SS23 seminar 1

Mehran Bahri

www.iap.uni-jena.de

Everything from this slide on is not relevant for the exam

Why laser?

- Poly-chromatic
- Divergent
- Incoherent
- Spontaneous emission

- Mono-chromatic
- Directional
- Coherent
- Stimulated emission

Light Amplification by Stimulated Emission of Radiation

How does the output look like?

- Spatially
- Temporally
- Spectrally

CW versus Pulse regime

Important parameters

Continuous wave (cw) operation

Important parameters

Pulsed operation

Why do we need to go to pulse regime?

Pulse duration

Peak power

Future applications

Problems with light sabers...

Futural applications

Space debris removal

Close Future Application

Laser induced fusion (National Ignition Facility NIF)

When the temperature and density of that small spot are raised high enough, fusion reactions will occur and release energy.

Specification:

- 15 ns, 192 beams, several MJ energy
- Target: hydrogen: Deuterium and Tritium
- Frequency tripled: 351 nm
- Pulsenergie per beam: 18,75 kJ
- Efficiency (pump -- UV): 0.7%

Applications

Laser physics SS23 seminar 1

LIDAR

Light detection and ranging

Working principle

Then

Now

https://en.wikipedia.org/wiki/Lidar; https://www.theneweconomy.com/technology/googles-driverless-cars-hit-roads-tomorrow-despite-flaws; https://spectrum.ieee.org/mit-lidar-on-a-chip, MIT and DARPA Pack Lidar Sensor Onto Single Chip

LIDARLight detection and ranging

Automation & 3D Mapping

https://www.gim-international.com/content/article/multibeam-lidar-for-mobile-mapping-systems; https://www.sick.com/gb/en/industries/automotive-and-parts-suppliers/powertrain/palletizing-station/robot-guidance-with-2d-lidar-sensor/c/p333676; https://xcytemedia.co.uk/3d-mapping/

Gas sensing

M. J. Thorpe et al.,
"Gas mapping
LiDAR for largearea leak
detection and
emissions
monitoring
applications,"
2017 Conference
on Lasers and
Electro-Optics
(CLEO), San Jose,
CA, USA, 2017, pp.
1-2.

Adding functionality to everyday items

Communication

Fiber based

Schintler, Laura & Gorman, Sean & Reggiani, Aura & Patuelli, Roberto & Gillespie, Andy & Nijkamp, Peter & Rutherford, Jonathan. (2005). Complex Network Phenomena in Telecommunication Systems. Networks and Spatial Economics. 5. 351–70. 10.1007/s11067-005-6208-z.

https://spie.org/Documents/Membership/SPECTARIS_Photonics.pdf

Communication

Fiber based – speeding up the internet (increasing bandwidth)

Puttnam, B. J., Rademacher, G. and Luís, R. S., "Space-division multiplexing for optical fiber communications," Optica 8(9), 1186 (2021).

Fig. 10. Cladding diameters of fibers used in >1 Pb/s transmission experiments [12–15,141,179,229–231,247].

Communication

Free space

Why are lasers also used for non terrestrial communication?

- Long distance:
 - Needs power (to counteract loses)
 - Needs good beam quality
- Lightweight and robust (fiber lasers as prime example)
- Energy efficient:
 - Is good in itself
 - Less waste heat (= less cooling → less total system weight)
- All so far discussed advantages:
 - Low latency (speed of light)
 - Great bandwidth (WDM & SDM)

https://spie.org/Documents/Membership/SPECTARIS Photonics.pdf

Special applications

Laser lightning rod (left) & laser guide star (right)

Houard, A., Walch, P., Produit, T. et al. Laser-guided lightning. Nat. Photon. 17, 231–235 (2023). https://doi.org/10.1038/s41566-022-01139-z

Laser for ionizing path in air

→ creating favorable path for lightning strike

Laser (at 589nm*!) for sodium excitation in atmosphere

→ creating artificial lightsource used as reference in astronomy
(* Utilization of non-linear effects for creating I589nm laser light)

Where else are lasers used?

cutting a 5-millimeter-thick steel plate

CUTTING WIDTH

DURATION

PER METER

Industry

E.g. drilling, cutting, welding, ...

Medicine

E.g. eye surgery, tattoo removal, ...

Laser applications by segment

Strategies Unlimited

http://www.laserfocusworld.com/content/dam/lfw/printarticles/2015/01/1501LFW01f_2.jpg

E.g. atto science, particle acceleration, ...

Metrology

E.g. interferometry, spectroscopy, ...

Everyday life

E.g. Internet, optical drives, laser pointer, ...

Military

E.g. aim assistance, weapons, ...

http://www.lasershowservice.de/images/lasersymbol-bunt_animiert2.gif

AG Fiber Laser

Laser physics SS23 seminar 1

AG Fiber Laser

Fiber Laser

Performance of single fiber

Performance of fiber laser system

Secondary source and application

Fiber design

Transverse mode instability

2-μm fiber laser

In/coherent beam combination

Pulse compression

Soft X-ray to THz

XUV microscopy

AG Fiber laser: Fiber design

AG Fiber laser: Transverse mode instability

= nonlinear effect that occurs at a specific average output power with a threshold-like behavior

below threshold

- fundamental mode
- ⇒ good beam quality
- stable

above threshold

- dynamic energy transfer between different modes
- ⇒ decreased beam quality
- unstable (time & space)

- Beam is not usable for applications anymore
- TMI = main limitation for further power scaling of fiber lasers with good beam quality

AG Fiber laser: Coherent beam combining

AG Fiber laser: Pulse compression

AG Fiber laser: Frequency conversion & applications

End

Laser physics SS23 seminar 1