FINANCIAL CONDITIONS AND THE

BUSINESS CYCLE

Tobias Adrian¹, Matthew DeHaven², Fernando Duarte²

November 1, 2023

The views expressed here are the authors' and are not necessarily representative of the views of the International Monetary Fund, its Management, or its Executive Directors.

¹International Monetary Fund. ²Brown University.

MOTIVATION

PREVIEW OF RESULTS

- 1. Targeting the VFCI matches the Business Cycle
- 2. ...

OUTLINE

- 1. Max Variance VAR Identification
- 2. VFCI construction
- 3. Targeting VFCI matches the business cycle
- 4. Changing the horizon of the VAR...

EXPLAIN VAR

VFCI ESTIMATION

Usual model assumptions give an Euler equation which relate

- asset prices, X_t
- future consumption growth, $\ln c_{t+1}$ $\ln c_t$

through the SDF.

$$\ln c_{t+1} - \ln c_t = \beta X_t + \varepsilon_t \tag{1}$$

$$Var[\varepsilon_t] = \lambda X_t + Var[\varepsilon_t]$$
 (2)

VFCI is the log of the unpredictable portion of the variance of eq. (1).

$$VFCI_t \equiv \ln Var[\epsilon_t]$$

VFCI ESTIMATION

Usual model assumptions give an Euler equation which relate

- asset prices, X_t
- future consumption growth, $\ln c_{t+2}$ $\ln c_{t+1}$

through the SDF.

$$\ln c_{t+2} - \ln c_{t+1} = \beta X_t + \varepsilon_t \tag{1}$$

$$Var[\varepsilon_t] = \lambda X_t + Var[\varepsilon_t]$$
 (2)

VFCI is the log of the unpredictable portion of the variance of eq. (1).

$$VFCI_t \equiv ln Var[\epsilon_t]$$

Consumption forwarded one more period to align with theory.

VFCI ESTIMATION

Usual model assumptions give an Euler equation which relate

- asset prices, X_t
- future consumption growth, $\ln c_{t+h}$ $\ln c_{t+1}$

through the SDF.

$$\ln c_{t+h} - \ln c_{t+1} = \beta X_t + \varepsilon_t \tag{1}$$

$$Var[\varepsilon_t] = \lambda X_t + Var[\varepsilon_t]$$
 (2)

VFCI is the log of the unpredictable portion of the variance of eq. (1).

$$VFCI_{t,h} \equiv ln Var[\epsilon_t]$$

Can also consider longer forward growth horizons, $h \in [1, \infty)$.

CHOOSING A FORWARD GROWTH HORIZON

Will use: $VFCI_{t,10}$

Why?

- 10 is in between 0 and 26 quarters (length of the business cycle)
 - Creates a good match between targeting either VFCI or unemployment for the...
 - IRF
 - Forecast error variance decompositions
 - Historical shock contributions

Results are robust to choosing similar horizons [8, 12].

CONCLUSION

So what?

APPENDIX

COMPARING VAR TARGETS

COMPARING VAR TARGETS

