UNIVERSIDAD AUTÓNOMA DE CHIRIQUÍ FACULTAD DE CIENCIAS NATURALES Y EXACTAS ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA LICENCIATURA EN QUÍMICA

PROGRAMA DE QUÍMICA COMPUTACIONAL

1. ELEMENTOS DESCRIPTORES DE LA ASIGNATURA

NOMBRE DE LA ASIGNATURA	ABREVIATURA			NÚM	IERO	CÓDIGO DE ASIGNATURA		AÑO (SEGÚN PLAN DE ESTUDIO)		SEN	MESTRE	
Química Informática	QM		20	206		II AÑO			I			
PRE-REQUISITO	Qm 110, Qm 125	H.T	2		H.P		2	H.L	0	CRÉD	ITOS	3
NOMBRE DE LA UNIDAD ACADÉMICA	ESCUELA/DEPARTAMENTO		DENOMINACIÓN MODA DE LA CARRERA				DE HORAS EN SEMESTRE					
Ciencias Naturales y Exactas	Química/Química			enciatur Químic			encia	I		64		
EQUIPO DISEÑADOR DEL PROGRAMA			FECHA DEL DISEÑO DEL PROGRAMA			FECHA DE APROBACIÓN POR EL DEPARTAMENTO						
Dr. Pedro González Beermann			Octubre, 2021									
APROBACIÓN DE LA DIRECCIÓN DE CURRÍCULO			NU	ÚMERO	RESOL	.UCIÓN DE	APF	ROBAC	IÓN			

2. CONTEXTUALIZACIÓN DE LA ASIGNATURA

La asignatura **Química Computacional** (**QM 206**) corresponde al plan de estudios de la Licenciatura en Química se ubica en el primer semestre, del segundo (II) año de la carrera. Se desarrolla en 2 horas teóricas y 2 horas de laboratorio semanales, para un total de 3 créditos.

Esta asignatura es de gran valor académico porque introduce al estudiante en la programación y el empleo de ordenadores y paquetes de software en Química para el diseño, modelaje, simulación, análisis e interpretación de datos experimentales que permitan mejorar y entender los diversos procesos químicos.

Se estructura en los siguientes ejes temáticos:

Eje Temático I: Diseño de estructuras moleculares.

Eje Temático II: Aplicaciones del lenguaje Python en química.

Eje Temático III: Lenguaje R y su aplicación en cálculos quimiométricos.

Eje Temático IV: Aplicación del lenguaje Javascript en la simulación de procesos químicos mediante métodos estocásticos.

Su desarrollo se realizará a través de diversas estrategias de aprendizajes mediatizadas por la didáctica docente que facilitará el proceso de adquisición de nuevas competencias formativas.

3. COMPETENCIAS

3.1 COMPETENCIAS GENÉRICAS

- Capacidad de abstracción, análisis y síntesis.
- Capacidad de aplicar los conocimientos en la práctica.
- Conocimientos sobre el área de estudio y la profesión.
- Habilidades en el uso de las tecnologías de la información y de la comunicación

- Capacidad de investigación.
- Habilidades para buscar, procesar y analizar información procedente de fuentes diversas.
- Capacidad para identificar, plantear y resolver problemas.

3.2 COMPETENCIAS ESPECÍFICAS DE LA ASIGNATURA

- Aplica el conocimiento de ciencias de la computación y de tecnologías de la información para desarrollar soluciones informáticas aplicadas a la química y de diseño de estructuras moleculares.
- Desarrolla, maneja y opera algoritmos informáticos basándose en principios de la química utilizando lenguaje
 Python
- Aplica estándares de calidad en el desarrollo y evaluación de soluciones informáticas a problemas químicos y utiliza Lenguaje R y cálculos quimiométricos.
- Aplica fundamentos matemáticos, principios algorítmicos y teorías de Ciencias de la Computación en la modelación y diseño de moléculas y simulaciones químicas
- Aplica y valora el lenguaje Javascript en la simulación de procesos químicos mediante métodos estocásticos utilizado en metodologías de investigación en la búsqueda y elaboración de soluciones informáticas para los procesos químicos acordes a los cambios tecnológicos y científicos emergentes.

4. AMBIENTES DE APRENDIZAJES

El ambiente de aprendizaje destinado para el desarrollo de esta asignatura, principalmente será el aula de clases y el laboratorio de informática.

5. ESTRUCTURA TEMÁTICA

CONTENIDOS TEÓRICOS - PRÁCTICOS

Eje Temático I: Diseño de estructuras moleculares

- 1. Diseño de moléculas utilizando el programa Avogadro
- 2. Optimización de estructuras moleculares utilizando algoritmos de MM
- 3. Cálculo de los parámetros geométricos de una estructura molecular optimizada
- 4. Diseño de estructuras moleculares utilizando el WebMO
- 5. Cálculo de orbitales moleculares utilizando WebMO
- 6. Determinación de los HOMO y LUMO y sus correspondientes energías relativas
- 7. Formatos de archivos utilizados para grabar estructuras moleculares.

CONTENIDOS PRÁCTICOS /LABORATORIO

- 1.Diseño de moléculas con el programa Avogadro
- 2. Optimización de estructuras moleculares con mecánica clásica
- 3. Orbitales moleculares.

Eje Temático II: Aplicaciones del lenguaje Python en química

- 1. Fundamentos del lenguaje Python
- 2. Comandos del lenguaje Python
- 3. Algoritmos
- 4. Cálculos numéricos utilizando el lenguaje Python
- 5. Planteamiento del cálculo de una cinética de reacción a partir de un mecanismo propuesto
- 6. Graficación de los resultados utilizando las librerías apropiadas en Python
- 7. Cálculos de propiedades termodinámicas utilizando la ecuación de Shoomate
- 8. Manejo y graficación de datos obtenidos de fuentes externas
- 9. Optimización

CONTENIDOS PRÁCTICOS /LABORATORIO

- 1.Fundamentos de Python
- 2. Cálculos numéricos utilizando Python
- 3.Desarrollo de gráficos con Python
- 4. Técnicas de optimización de procesos.

Eje Temático III: Lenguaje R y su aplicación en cálculos quimiométricos

- 1. Fundamentos del lenguaje R
- 2. Utilización de R en la resolución de problemas en química
- 3. Estadística básica con R
- 4. Manejo de bases de datos con el lenguaje R
- 5. Graficación en R

CONTENIDOS PRÁCTICOS /LABORATORIO

- 1.Fundamentos de lenguaje R
- 2. Estadística básica con R
- 3.Gráficas en R

Eje Temático IV: Aplicación del lenguaje Javascript en la simulación de procesos químicos mediante métodos estocásticos

- 1. Fundamentos del lenguaje Javascript
- 2. Aplicación de javascript en la simulación de procesos químicos
- 3. Optimización utilizando javascript
- 4. Graficación en Javascript

CONTENIDOS PRÁCTICOS /LABORATORIO

- 1.Desarrollo de programas en la Web con javascript
- 2. Simulaciones químicas con javascript

6. ESTRATEGIAS

ESTRATEGIAS DE ENSEÑANZA	DESCRIPCIÓN DE LA ESTRATEGIA	RECURSOS
Exposición dialogada	Estrategia donde el docente concentra sus esfuerzos en tres momentos: preparar la presentación de la clase; conducirla y evaluar el impacto en los estudiantes. Explicando y demostrando con ejemplos visuales o grabados el tema	Textos, cuadernos, lápices, laptop, páginas, tablero, marcadores
Lluvias de ideas	El docente presenta el tema mediante preguntas, estimulando la participación, anotará aportes y sintetizará las ideas de los estudiantes.	Cuadernos, lápices, laptop, páginas, tablero, marcadores, material de referencia.
Tópico generativo	Es una metodología donde el docente representa un desafío cognitivo para los estudiantes que tendrán que resolver a través de la reflexión. Esto incluye temas, conceptos, teorías o ideas, los cuales son el punto de partida para la enseñanza de comprensiones profundas.	Textos, tablero, marcadores, páginas, lápices.
Conversatorio Académico	Es una estrategia que permite que el docente dirija su participación al grupo de forma que genere discusión a partir de un tema investigado previamente, creando espacios de participación activa en los estudiantes, a través de sus aportes. Se reforzarán habilidades de argumentación, análisis, discusión y reflexión.	Textos, cuadernos, lápices, laptop, páginas, tablero, marcadores
ESTRATEGIAS DE APRENDIZAJE	DESCRIPCION DE LA ESTRATEGIA	RECURSOS
Talleres prácticos	Acciones desarrolladas por los estudiantes, aplicadas a partir de la demostración del docente y ejecutadas con su guía y ayuda. Pueden	Cuadernos, lápices, laptop, páginas, tablero, marcadores, material de

	evidenciarse con videos o informes de experiencias.	referencia.
Talleres grupales	Organización de estudiantes en grupos pequeños, para discutir y analizar un tema, interactuando entre sí y monitoreados por el docente a fin de construir nuevos conocimientos.	Bolígrafo, marcadores, material impreso, lápices, páginas, cuadernos.
ABP	El aprendizaje basado en problemas es una metodología en la que se investiga, interpreta, argumenta y propone la solución a uno o varios problemas, creando un escenario simulado de posible solución y analizando las probables consecuencias.	Textos, páginas, cuadernos, lápices marcadores
Estudios de caso	Los estudios de caso constituyen una metodología que describe un suceso real o simulado complejo que permite al profesionista aplicar sus conocimientos y habilidades para resolver un problema.	Caso de estudio, Textos, páginas, cuadernos, lápices, marcadores
Proyectos	Estrategias que permite aplicar de manera práctica una propuesta que permite solucionar un problema real desde diversas áreas de conocimiento, centrada en actividades y productos de utilidad social. Surge del interés de los alumnos.	Textos de referencia, internet, cuaderno de apuntes, bolígrafos, lápices, marcadores.
Prueba o ejercicio escrito	Es una técnica e instrumento de aprendizaje y evaluación, que permite al estudiante demostrar la adquisición de un aprendizaje cognoscitivo, o el desarrollo progresivo de una destreza o habilidad.	Página, bolígrafo, computadora, softwares especializados, internet.
Aprendizaje colaborativo	Estrategia que se desarrolla a través de actividades en pequeños equipos donde se intercambia información, se siguen instrucciones del docente y,	Material de estudio, páginas, lápices.

	se aprende a través de la colaboración de todos.	
Prácticas de laboratorio	Actividades desarrolladas por los estudiantes y ejecutadas con la guía del docente en el laboratorio de informática. Pueden evidenciarse con reportes escritos de las experiencias o ejecuciones procedimentales.	• • • • • • • • • • • • • • • • • • • •

7. COMPROMISOS DEL DOCENTE CON LA ASIGNATURA

- Asistir puntualmente al desarrollo de sus clases presenciales.
- Cumplir con las asignaciones y responsabilidades establecidas para la clase.
- Planificar y organizar conforme a lo requerido institucionalmente sus clases.
- Desarrollar con dominio teórico y técnico los contenidos del curso.
- Desarrollar metodologías centradas en el aprendizaje de los participantes.
- Entregar y discutir los resultados de las evaluaciones realizadas.
- Respetar la diversidad de ideas y planteamientos presentados.

8. SISTEMA DE EVALUACIÓN

En el contexto de la Universidad Autónoma de Chiriquí, se considera lo establecido en el Estatuto Universitario, Capítulo VI, Régimen Académico, Sección E del Sistema de Evaluación de los Estudiantes, Artículo 166 que expresa:

"Al término de cada periodo académico el estudiante recibirá, por asignatura, una calificación final basada en los siguientes criterios:

Examen parcial (dos como mínimo)

Examen Final (obligatorio)

Laboratorio o práctica (si hubiere); y otros, por ejemplo: investigaciones, ejercicios 35% cortos, trabajos individuales o de grupos, estudios de casos."

Bibliografía

- Implementación de Avogadro como visualizador y constructor de moléculas (2017). Educación Química. Volumen 28,
 Issue 1, Pages 22-29
- Rincón, L. (2011). Introducción a los procesos estocásticos. UNAM.
- Sitio web https://chemcompute.net
- Sitio Web: http://w3schools.com