ST IGNATIUS COLLEGE RIVERVIEW

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2000

MATHEMATICS

3/4 UNIT COMMON

Time allowed: Two hours (plus 5 minutes reading time)

Instructions to Candidates

- Attempt all questions
- All questions are of equal value.
- Show all necessary working. Marks may be deducted for missing or poorly arranged work.
- Standard integrals are provided
- Board approved calculators may be used.
- Each question attempted must be returned in a separate writing booklet clearly marked Question 1, Question 2 etc, on the cover
- Each booklet must have your student number and the name of your Class Teacher.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2000 3/4 unit Mathematics Higher School Certificate Examination

Question 1 (12 marks) Start a new booklet

(a) Solve |x-3| > 5 2 marks

(b) Find the exact value of $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ 1 mark

(c) Differentiate with respect to x: $e^{-\ln x}$ 2 marks

(d) Show that $\int_{2}^{2\sqrt{3}} \frac{dx}{\sqrt{16 - x^2}} = \frac{\pi}{2}$

(e) Find the coefficient of x^5 in the expansion of $\left(x + \frac{1}{x}\right)^{13}$ 2 marks

(f) (i) Sketch $y = \frac{1}{x}$. 1 mark

(ii) Hence or otherwise find the values of x for which $\frac{1}{x} > x$ 2 marks

Question 2 (12 marks) Start a new booklet

(a) Find $\int_{a}^{a^{2}} \frac{\ln x}{x} dx$ using the substitution $u = \ln x$ 3 marks

(b) (i) Prove that $\frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$ 2 marks

(ii) Hence sketch $y = \frac{1 - \cos x}{\sin x}$ for $-\pi < x < \pi$ 2 mark

(c) The graphs of $y=x^3-x$ and $y=x^2+1$ intersect at P(x,y) as shown in the diagram.

(i) Show that 1 < x < 2.

2marks

(ii) Taking x = 1.8 as a first approximation to the x-value of P, use one application of Newton's method to find a closer value for x.

3marks

Question 3 (12 marks) Start a new booklet

(a)

Diagram not to scale

RS is a diameter. PQ is perpendicular to PR. Prove that Q, T and S are collinear.

3marks

(b)

(i) State the domain and range of

$$y=2\sin^{-1}3x.$$

2marks

(ii) Sketch $y = 2\sin^{-1} 3x$.

1 mark

(iii) The graph of $y = 2 \sin^{-1} 3x$ is rotated about the y-axis. Show that the volume generated is $\frac{\pi^2}{9}$ units³.

Julian has 10 different pairs of socks where the left sock and right sock of each pair are indistinguishable.

Find the number of odd pairs of socks (ie a pair which do not match) that Julian can wear. Explain your reasoning.

2marks

Question 4 (12 marks) Start a new booklet

(a) Find all solutions to $\cos x = \frac{\sqrt{3}}{2}$.

2marks

(b) Show that $\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$

1*mark*

(ii) Hence evaluate $\int_0^1 \frac{dx}{(x+1)(x+2)}$

2marks

- (c) Tangents from the point $T(x_0, y_0)$ touch the parabola $x^2 = 4y$ at $P(x_1, y_1)$ and $Q(x_2, y_2)$.
 - (i) State the equation of the chord of contact.

1 mark

(ii) Show that the x-values of P and Q are given by the roots of the equation $x^2 - 2x_0x + 4y_0 = 0$ 2marks

- (iii) Hence or otherwise prove that the midpoint M of QP is $\left(x_0, \frac{1}{2}x_0^2 y_0\right). \qquad 2marks$
- (iv) If T moves on the line y=x-1 find the equation of the locus of M.
 2mark:

Question 5 (12 marks) Start a new booklet

(a) Prove by Mathematical Induction that the expression 5ⁿ-1 is divisible by 4 for all positive integers n.

4marks

Metal Fatigue is a phenomenon where a piece of steel will fail when repeatedly subjected to a force F. The endurance limit is the force below which the steel will not break even if subjected to an infinite number of applications of that force. Let the number of applications be n.

The force and the number of applications are related by the differential equation

$$\frac{dF}{dn} = -k(F - F_0) \quad \text{where } k \text{ and } F_0 \text{ are constants.}$$

- (i) Show that $F = 275e^{-k(n-1)} + F_0$ is a solution to $\frac{dF}{dn} = -k(F F_0)$ I mark
- (ii) If F=350 when n=1, find the value of F_0

1 mark

(iii) Find the endurance limit.

1 mark

(iv) Find the value of k if F=80 when n=200.

2marks

- (c)
 In today's society, statistics show that 28% of Australian women will never have children. Three women are selected at random. Find the probability that
 - (i) they will all have children

1 marks

(ii) at least one of them will have children

2marks

Question 6 (12 marks) Start a new booklet

- (a) Consider the function $f(x) = e^{-x^2}$
 - (i) Show that the function is even.

1mark

(ii) Find the stationary point of y=f(x).

1 mark

(iii) Show that $\frac{d^2y}{dx^2} = -2e^{-x^2}(1-2x^2)$ and hence find any points of inflexion.

2marks

(iv) Sketch the curve of y=f(x), $x \ge 0$.

1 mark

(v) Sketch the inverse function $f^{-1}(x)$ of $f(x) = e^{-x^2}$ $x \ge 0$.

1 mark

(vi) Find the equation of $f^{-1}(x)$ and state its domain.

3marks

- (b) Malaysia has invented a miniral system which is completely automated, running to precision timing (ignoring passenger boarding and alightment). The journey between two stations A and B, where A is to the west of B, can be modelled by the equation $v^2 = 2(8x x^2 7)$ where v is velocity in km/h and x is displacement in km from the central automated control office.
 - (i) Show that the motion is simple harmonic.

1 mark

(ii) Find the distance between the two stations.

lmark

(iii) Where is the control office in relation to A and B?

Imark

Question 7 (12 marks) Start a new booklet

Diagram not to scale

The cross-section of a light fabric structure for a stadium roof is described by the equation $y = \frac{100}{r^2 + 100}$.

Dimensions are in metres.

(i) If Q is the point $\left(0, \frac{1}{4}\right)$ find the value of k.

1 mark

- (ii) Show that the shaded area is $\frac{5(4\pi 3\sqrt{3})}{3}$ square metres. 2marks
- (iii) By considering the integral $\int_{-k}^{k} \frac{100}{x^2 + 100} dx$ or otherwise show that the area of the cross-section will never exceed 10π square metres. 2marks

(b)
By considering the coefficient of
$$x^{n+1}$$
 on both sides of the identity
$$(x+1)^n (x+1)^n = (x+1)^{2n} \text{ prove that}$$

$${}^nC_0{}^nC_1 + {}^nC_1{}^nC_2 + {}^nC_2{}^nC_3 + \dots + {}^nC_{n-1}{}^nC_n = \frac{(2n)!}{(n-1)!(n+1)!}$$
3marks

30m/s

Diagram
not to
scale

for

target

4m

100m

One of the great historic problems which prompted the development of calculus was whether a cannonball would reach a target. Using the origin as shown and assuming $\ddot{x}=0$ and $\ddot{y}=-10$, if a cannonball is fired at an angle of 45 degrees at a velocity of 30m/s,

(i) show that

(0,0)

(c)

$$x = 15t\sqrt{2}$$
$$y = -5t^2 + 15t\sqrt{2} + 6$$

2marks

(100,0)

(ii) Hence determine whether or not the ball will reach its target.

2marks

Saint Ignatius' College	
3/H 1/5/+ C	e) / + 1)
the first of the management of the control of the c	$\left(\frac{1}{x} \right)$
Question 1	$-T_{r+1} = \frac{13}{5}C_{r}\left(\frac{x^{r}}{x^{-1}}\right)^{13-r}$
a) _ [-x - 3] > 5	
a) $- -x-3 \ge 5$ x-3 > 5 or $x-3 < -5$	$= \frac{13}{13} \left(\frac{x}{x} \left(\frac{x}{x} \right) \left(\frac{x}{x} \right)^{-13} \right)$
	= 13C = 2r - 13
	Since we are finding the coefficient of x5, let
b) $\cos^{-1}\left(-\frac{1}{\sqrt{\epsilon}}\right) = \pi - \cos^{-1}\left(\frac{1}{\sqrt{\epsilon}}\right)$ $= \pi - \frac{\pi}{1+\epsilon}$	2r-13 = 5
$= \frac{\pi}{3\pi}$	<u> </u>
+	$\frac{\Gamma = 9}{150}$
c) $\frac{d}{dx} = \frac{1}{x} e^{-i\eta x}$	coefficient is 13 C = 715.
= - <u> </u>	-(1,1)
= - = =	
Most students didn't get past this step to simplify answer second mark was not awarded to them.	(-1,-1)
not awarded to them	2
2/3	
$\frac{d}{dt} = \left[\sin^{-1} \frac{x}{4} \right]$	
the state of the s	,
$= \left(\sin^{-1}\frac{\sqrt{3}}{2}\right) - \left(\sin^{-1}-\frac{1}{2}\right)$	$\frac{1}{x} > \infty$ for $0 < x < 1$ and $x < -$
T T	The state of the s
= 3 + 6	
The state of the s	

and the second of the second o	
estion 2	Sketch $y = \frac{1 - \cos x}{\sin x}$ for $-\pi < \infty < \pi$
$\int_{e}^{e^{z}} \frac{\log e^{-z}}{z} dz \text{using the substitution}$ $e^{-z} = \log_{e^{-z}} z$	
e	and the second of the second o
	Using the result in (i), sketch y = ton = (x = 0
$\frac{U}{2}$ \neq $\frac{dU}{dx} = \frac{1}{x}$	Α ΤΑ
$= \left[\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right] \qquad dx = x du$ when $x = e^2$ $y = e^2$	Period = IT
when = ez, U= z.	
	$=\frac{\pi}{\sqrt{2}}$
$\frac{3et}{limits} = \frac{2}{2} - \frac{1}{2}$ $\frac{3}{100} = \frac{3}{2}$	= em = = = = = = = = = = = = = = = = = =
100 of 0,3.	/ c t o
3· · · · · · · · · · · · · · · · · ·	
ويساور المالية المراجع المستقد المتابع والمتابع المتابع المتابع المتابع المتابع المتابع المتابع المتابع المتابع	<u> </u>
i) Prove that 1- cos = tan =	V
sin.æ	c)i) Salve y= x2+1 and y= x3-x simultaneously to
\ = t	time the point of intersection.
$\frac{2}{2} = t$ $-LHS = 1 - \frac{1 - t^2}{1 + t^2}$	find the point of intersection.
$x = 1 - f_{g}$ $1 + f_{g}$	$x^2 + 1 = x^3 - x$
$x = 1 - t^2$ $1 + t^2$ $2t$ $1 + t^2$	$x^2 + 1 = x^3 - x$ $x^3 - x^2 - x - 1 = 0, \text{ Let } f(x) = x^3 - x^2 - x - 1$
$x = 1 - t^2$ $1 + t^2$ $2t$ $1 + t^2$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(x)=-2$ $f(x)=1$
$x = 1 - t^2$ $1 + t^2$ $2t$ $1 + t^2$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=$ $f(1)=-2$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the
$x = 1 - t^{2}$ $1 + t^{2}$ $x = 2t$ $1 + t^{2}$ $2t$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $1 + t^{2}$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=$ $x^{3}-x^{2}-x-1$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $= \frac{1 + t^2 - 1 + t^2}{1 + t^2} \times \frac{1 + t^2}{2t}$ $= \frac{2t^2}{1 + t^2}$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(x)=-2$ $f(x)=1$ Since $f(x)$ and $f(x)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$.
$x = \frac{1 - t^{2}}{1 + t^{2}}$ $x = \frac{2t}{1 + t^{2}}$ $1 + t^{2}$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $2t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$. $1< x < 2$ $1 < x < 2$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $1 + t^2$ $= \frac{1 + t^2 - 1 + t^2}{1 + t^2}$ $= \frac{2t^2}{2t}$ $= t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2 \qquad x^{3}-x^{2}-x-1$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=i$ $1< x<2$ $ii) f(x)=x^{3}-x^{2}-x-1$ $f'(x)=3x^{2}-2x$ $= 1:80.208$
$x = \frac{1 - t^{2}}{1 + t^{2}}$ $x = \frac{2t}{1 + t^{2}}$ $1 + t^{2}$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$. $1< x<2$ $1< x<2$ $1< x<2$ $1< x<2$ $1< x<3$ $1< x<4$
$x = \frac{1 - t^{2}}{1 + t^{2}}$ $x = \frac{2t}{1 + t^{2}}$ $1 + t^{2}$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $1 + t^{2}$ $1 + t^{2}$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(x)=-2$ $x^{3}-x^{2}-x-1$ $f(x)=1$ Since $f(x)$ and $f(x)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$. $1< x<2$ $1< x<3$ $1< x<4$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $1 + t^2$ $1 + t^2$ $1 + t^2$ $2t$ $1 + t^2$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2$ $x^{3}-x^{2}-x-1$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$ $1< x < 2$ $1< x < 2$ $1< x < 2$ $1< x < 3$ $1< 3$ $1< 3$ $1< 3$ $1< 4$ $1< 5$ $1< 6$ $1< 6$ $1< 6$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $1 + t^2$ $1 + t^2$ $1 + t^2$ $2t$ $1 + t^2$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2 \qquad x^{3}-x^{2}-x-1$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=i$ $1< x<2$ $ii) f(x)=x^{3}-x^{2}-x-1$ $f'(x)=3x^{2}-2x$ $=1.80.208$ $5\cdot 12$ $x_{2}=x_{1}-f(x_{1})$ $=1.8+0625$ let $x_{1}=1.8$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $1 + t^2$ $1 + t^2$ $1 + t^2$ $2t$ $1 + t^2$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2$ $x^{3}-x^{2}-x-1$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=1$ $1< x < 2$ $1< x < 2$ $1< x < 2$ $1< x < 3$ $1< 3$ $1< 3$ $1< 3$ $1< 4$ $1< 5$ $1< 6$ $1< 6$ $1< 6$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$ $1< 7$
$x = \frac{1 - t^2}{1 + t^2}$ $x = \frac{2t}{1 + t^2}$ $1 + t^2$ $1 + t^2$ $1 + t^2$ $2t$ $1 + t^2$ $2t$ $2t$ $2t$ $2t$ $2t$ $2t$	$x^{2}+1=x^{3}-x$ $x^{3}-x^{2}-x-1=0, \text{ Let } f(x)=x^{3}-x^{2}-x-1$ $f(1)=-2 \qquad x^{3}-x^{2}-x-1$ $f(2)=1$ Since $f(1)$ and $f(2)$ are opposite in sign, then the root of $x^{3}-x^{2}-x-1=0$ lies between $x=1$ and $x=i$ $1< x<2$ $ii) f(x)=x^{3}-x^{2}-x-1$ $f'(x)=3x^{2}-2x$ $=1.80.208$ $5\cdot 12$ $x_{2}=x_{1}-f(x_{1})$ $=1.8+0625$ let $x_{1}=1.8$

Question 4 (12 marks)

Comments

$\cos x = \frac{\sqrt{3}}{2}$ $x = \frac{\pi}{L} \text{ (acute)} \qquad (2)$

$$\frac{1}{160} x = 20\pi \pm \frac{\pi}{6}$$

$$\frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}$$

$$\frac{1}{1+x} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{x+1} = \frac{1}{x+2}$$

$$= \frac{1}{(\chi+1)(\chi+2)}$$

$$= \frac{dx}{(x+1)(x+2)}$$

$$= \frac{1}{(x+1)} \left(\frac{1}{x+1} - \frac{1}{x+2}\right) dx \qquad (2)$$

$$= \left[\ln (x+i) - \ln (x+2) \right]_{0}^{1}$$

$$- \left[\ln \left(\frac{x+i}{x+2} \right) \right]_{0}^{1}$$

$$\left| \frac{2}{3} - \left| \frac{1}{2} \right| \right|$$

 $l_n = \frac{4}{3}$

Most students did not know the general solution formula for cos 1x.

part (i) was generally done well

most students were able to find TCe indefinite integral as a log function BUT

mony made errors in evaluating Te definite integral.

- (c) (chord of : >(xo = 2 (y + yo) (1
- (ii) $2x_0 = 2(y + y_0) = 0$ $x^2 = 4y$ $y = x^2$

Solve simultaneously for x $xx_0 = 2\left(\frac{x^2}{4} + y_0\right)$ $xx_0 = \frac{x^2}{2} + 2y_0$ (2)

 $2xx_0 = x^2 + 4y_0$ $x^2 - 2x_0x + 4y_0 = 0$ (A)

- (iii) Use The quadratic formula

 to solve (A) $x = \frac{2x_6 \pm \sqrt{4x_6^2 4(4y_6)^2}}{2}$
 - $= \frac{2x_0 \pm 2\sqrt{x_0^2 4y_0}}{2}$ $= x_0 \pm \sqrt{x_0^2 4y_0}$

Midpoint of pa = average of roots

 $x = \frac{x_0 + \sqrt{x_0^2 - 4y_0} + x_0 - \sqrt{x_0^2 - 4y_0}}{2}$

Sub into 0 to find y.

- could remember this formula
- (ii) Not knowing The famula made par virtually impossible

(iii) Some students use.
The sum of roots
method

sum of __b

trom

Average = sum of roots of roots = >x0

et to find ym.

· 34 Trial SIC 2000	-		•
QUESTION 5	COMMENTS	(ii) F = 275 e + Fo :/F=350 when n=1	
by 4. i. statement true when n=1		350 = 275 e + Fo Fo = 75	not division not For
Assume of the whin n=k ie Assume 5 ^R -1 = 4M, mEI Now prove that the result holds when n=k+1 ie Prove that 5 ^{R+1} -1 = 4N, NEI V	you do not assume n=k you do not prince that n=k+1	(iii) F = 275 e +75 lim (275 e +75) = 0+75 = 75 1. the endurance limit is 75	م
Now $5^{k}-1$ = $5\cdot 5^{k}-1$ = $(4+1)5^{k}-1$	$5.5^{k}-1 \neq 5(5^{k}-1)$	(iv) if F=80 when n=200 80 = 275 e ^{-k(200-1)} +75 5 = 275 e	this question we mostly well do
= $4.5^k + 4M$ = $4(5^k + 1)$ but $5^k + 1$ is an integer	= 5(4M+1)-1	$e^{-199R} = \frac{5}{275}$ $-199R = ln(\frac{5}{275})$ $k = -ln(\frac{5}{275}) \div 199 = 0.02013735$	[2]
is also true for n=2 and lenge for n=3 and so on for all n \in I		(c) P(no children) = .28 P(children) = .72	be careful of the
1) $dF = -k(F - F_0)$ if $F = 275e^{-k(n-1)} + F_0$ (i) $LHS = dF = d(275e^{-k(n-1)} + F_0)$	similar to showing that a point is on a line.	(i) P(ccc) = .723 = 0.373248 /	[1] 37%
$\frac{dh}{dh} = -k \cdot 275 e^{-k(n-1)}$ $RHS = -k (F-F_0) = -k (275e^{-k(n-1)} + F_0 - F_0)$ $= -k \cdot 275e^{-k(n-1)}$	It is best setupes an identity Porrly done. You get	(ii) P (at least one children) = 1 - P (none has children) = 128 ³ = .978048	if you add there up separately don't for 3c,
	away with very poor shutterns because it was worth only I mark.		2] 98 %

(iv) T (xo, yo) moves	٥٥
(iv) $T(x_0, y_0)$ moves The line $y = x - 1$ $y_0 = x_0 - 1$	(A)
$M(x_0, \frac{1}{2}x_0^2 - y_0)$	(z)
: x = x ₀ _ 0	
1 . 2	

$$y = \frac{1}{2}x_{0}^{2} - y_{0} - E$$

$$A : y = \frac{1}{2}x_{0}^{2} - (x_{0} - 1)$$

$$= \frac{1}{2}x_{0}^{2} - x_{0} + 1$$

$$= \frac{1}{2}x^{2} - x + 1$$

Question 6 (12 marks)
$$f(x) = e^{-x^2}$$

$$f(a) = e^{-a^{2}}$$
 $f(-a) = e^{-(-a)^{2}}$
 $= e^{-a^{2}}$
 $= f(a)$

.
$$f(x)$$
 is even since $f(a) = f(-a)$

It is important under examination conditions to realise that parts (iii) and (iv) of this question could have been attempted independently of parts (i) and (ii)

- it is not good enough to show that f(1) = f(-1) .--etc
- ie for only one value of x
- -> you must show $f(x) = f(-x) \quad \text{for}$ any value of x $e.g \quad x = a$

(a) (ii)
$$f(x) = e^{-x^2}$$

 $f'(x) = -2x e^{-x^2}$
t.p. when $f'(x) = 0$
 $-2xe^{-x^2} = 0$

$$\frac{x}{f(1)} + \frac{1}{0} = \frac{x}{1}$$
 Max of (0,1)

(iii)
$$\int_{0}^{11} (z) = -2z \cdot -2z e^{-z^{2}} + -2 \cdot e^{-z^{2}}$$

= $-2e^{-z^{2}} (1-2z^{2})$

infl. pt may occur when f''(z) = 0ie $-2e^{-x^2}(1-2x^2) = 0$ (2)

infl pts
$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{e}}\right)$$
 and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{e}}\right)$

$$\frac{x}{f''(x)} + 0 - 0 + 1$$

in change of concavity through I.P.'s

- (i) Many students could not differentiate e-
 - -> should always classif,
 The t.p's
 - -> marks were not deducted since this world I mark
 - (iii) When asked to fine
 either 1-p's or I

 you should always
 find The y-co-ord

 -> many students just
 found x = 0 port (i)

 x = 1/2 port (i)
 - test The concavity.

 f"(x) = 0 DOES NOT

 PROVE change in

 concavity !!
 - (iv) students were not

 penalised for sketchi

 The full bell shaper

 nor for omitting The

 inflection point -

$$y = e^{-x^{2}}$$

$$x = e^{-y^{2}}$$

$$\ln x = -y^{2}$$

$$y^{2} = -\ln y$$

$$= \ln \frac{1}{x}$$
(3)

take +5

Df.: O < x & 1

(i)
$$v^2 = 2(8x-x^2-7)$$

 $\frac{1}{2}v^2 = 8x-x^2-7$
 $\frac{d}{dx}(\frac{1}{2}v^2) = 8-2x$
 $\frac{d}{dx} = -2(x-4)$

AM Since it is in the form $x = -n^2 \times \text{where } n = \sqrt{2}$ ind centre of oscillation is x = 4 km from Control office

- (V) This was poorly done -> most students had difficulty in finding The inverse shape -> reflection in y=x -> interchange >co> y
- (V) students picked up marks here , even Though they were unable to sketch Re inverse they were able to perform The inverse algebraic operations.
- (i) Many students forgot about the formula 하 (신간) = x
- s". They struggled to prove the motion Was S.H.M .
- -> ie that acceleration 15 proportional to displacement.

b) (11) $V^2 = 2(8x - x^2 - 7)$	(ii) generally well d
max displacement when V=0	by those who
$(2(8x-x^2-7)=0)$	attempted this
$x^2 - 8x + 7 = 0$	part
(x-7)(x-1) = 0 (1)	The second of th
)L =	
West A 1c = 7 & Ext	
V=0 V=0 FK	· · · · · · · · · · · · · · · · · · ·
7 ×	
(Control stations are	

(ii) S	Control office is 1 km
	West of Station (A)
	e de la companya del companya de la companya del companya de la co

6 km apart

(iii) Students Thought 1 Re control office would be at The centre of the moti -> question stated the distance was measur FROM THE CONTROL OF re (2-0) -

$$y = \frac{100}{\lambda^2 + 100}$$

) when $y = \frac{1}{4}$, $\frac{1}{4} = \frac{100}{27 + 100}$ $\chi^2 + 100 = 400$

From diagram, k >0 : k = 1013 /

 $1 A = 2 \int_{100}^{1003} \frac{100}{x^2 + 100} dx - \frac{1}{4} \times 2013$

=2×100×1 fen 70 05 - 513 / = 20 [tan 13 - tan 0] - 513

= 20. = 5(= 5(= 5) $=\frac{5(4x-313)}{3}$

Aver = $2 \int_{0.00 + 10^2}^{R} dx - 2k \times \frac{100}{k^2 + 100}$ or $2 \int_{0.00 + k^2}^{k} - \frac{1}{4} dx$

= $20 \left[\frac{1}{10} \right]^{k} - \frac{200 k}{h^{2} + 100}$

= 20 tan (k) - 200k

 $\tan^{-1}\left(\frac{k}{10}\right) \Rightarrow \frac{\pi}{2}$ and $\frac{200k}{k^2+100} \Rightarrow 0$:. limit of Area is $20 \times T = 10 \text{ T}$:. area never exceeds 10 T m².

LHS = $(x+1)^{h}(x+1)^{n}$ = $\begin{bmatrix} \binom{n}{0}x^{h} + \binom{n}{1}x^{h-1} + \binom{n}{1}x^{h-1} + \binom{n}{1}x^{h-1} + \binom{n}{1}x^{h} + \cdots + \binom{n}{n-2}x^{h} + \binom{n}{1}x^{h} \end{bmatrix}$ $\times \left[\binom{h}{2} \times \binom{h}{1} \times \binom{h}{1} \times \binom{h}{2} \times \binom{h}{2} \times \binom{h}{h-2} \times \binom{h}{h-2} \times \binom{h}{h-1} \times \binom{h}{h} \right]$

In this product the coefficient of x^{n+1} will be $\binom{n}{0}\binom{n}{n-1}+\binom{n}{1}\binom{n}{n-2}+\binom{n}{2}\binom{n}{n-3}+\cdots+\binom{n}{n-2}\binom{n}{1}+\binom{n}{n-1}\binom{n}{0}$

But $\binom{n}{n-k} = \binom{n}{k}$ $\binom{n}{n-1} = \binom{n}{i}$, $\binom{n}{n-2} = \binom{n}{2}$, $\binom{n}{2} = \binom{n}{2}$

 $LHS = (\chi+1)^{2n}$ $= {\binom{2n}{0}} \chi^{2n} + {\binom{2n}{1}} \chi^{2n-1} + \dots + {\binom{2n}{n-1}} \chi^{n+1} + \dots + {\binom{2n}{2n}}$

Here the coefficient of x n-1 is (2n) but $\binom{2n}{n-1} = \frac{(2n)!}{(n-1)!(2n-(n-1))!}$ $=\frac{(2n)!}{(n-1)!(n+1)!}$

 $\left(\binom{n}{0} \binom{n}{1} + \binom{n}{1} \binom{n}{2} + \dots + \binom{n}{n-1} \binom{n}{n} \right) = \frac{(2n)!}{(n-1)! (n+1)!}$

1/4 x 2013 is area of rectangle below shall area from (-k,0) to (k,0)

or $2\int_{0}^{105} \left(\frac{100}{x^{2}+100} - \frac{1}{4}\right) dx$

[1]

[2]

[3]

COMMENTS

set initial z' i y up before you start

i) = 0 i=c, but i=15/2 initially : X= 1512 x = 15/2 t+c2 but x=owhent=0: c2=0 :. X= 15/2 t

Integrating wet t

y = -10t+c3 but y = 15/2 clent=0:c3=15/4 : y= -10t +1512 y=-5t2+1512t+C4 budy=6 whent=0::C4=6 :. y=-St2+1512+6

must set up & [1] find conduits · all the way through.

Target is at (100,4) : for the ball to reach target y ≥ 4 when x = 100

"hit is not the same as (would hit only if y =4 when x = 100)

when x=100 100 = 1512t

OR sety=0, findt, fort'x (=95.65)

 $y = -5\left(\frac{10/2}{5}\right)^2 + 15/2\left(\frac{100}{15/2}\right) + 6$ $=\frac{-5\times200}{9}+100+6$

· T(100,4) (0,0) [2]

:. the ball will not reach the target.