UE MIC0602T – Théorie des Langages Travaux Dirigés n° 2 Automates

Traiter les exercices suivants.

- 1- Trouver, pour chacune des expressions régulières suivantes, un automate à états finis déterministe, qui accepte le langage qu'elles dénotent :
- (a) $(a + b)^*ab(a + b)^*$
- (b) $aab(a + b)^*(bb + aa)^+$
- (c) ba*
- (d) Minimiser ces 3 automates si nécessaire
- 2- Déterminiser et minimiser l'AEFND des pages 95 et 96 du support de cours

Exemple 5:

$$\begin{array}{lll} M2 & = (\ Q,\ V,\ q_0,\ F,\ \Delta) \\ Q & = \{\ 0,\ 1,\ 2,\ 3\ ,\ 4\ \} \\ V & = \{\ a,\ b,\ c\ \} \\ q_0 & = 0 \end{array}$$

F	$= \{ \underline{4} \}$
Δ	=

V	а	b	С
Q			
0	0, 1	0, 2	0, 3
1	1, <u>4</u>	1	1
2	2	2, <u>4</u>	2
3	3	3	3, <u>4</u>
4	-		-

Langage = ensemble des mots dont la dernière lettre se trouve déjà dans le mot

3- On considère un automate à états finis déterministe dont le graphe de transitions est le suivant :

Construire la matrice de transitions de cet automate. Donner une expression régulière correspondant au langage qu'il reconnaît. Justifier votre réponse.

4-

(a) Construire un automate déterministe équivalent à l'automate suivant :

- (b) Minimiser si nécessaire.
- (c) Trouver l'expression régulière associée.
- 5- Déterminer une expression régulière pour les automates des pages 91, 92 et 93 du support de cours.

$$\begin{split} &M1 = (~Q,~V,~q_0,~F,~T~)\\ &Q = \{~q_0,~q_1,~q_2~\}\\ &V = \{~0,~\dots,~9~\}\\ &F = \{~\underline{q_0}~\} \end{split}$$

V 0, 3, 6, 9 1, 4, 7 2, 5, 8 Q T = $\underline{q}_{\underline{0}}$ \underline{q}_0 q_1 q_2 q_1 q_1 q_2 $\underline{q}_{\underline{0}}$ q_2 q_2 q_1 \underline{q}_0

Exemple

v1 = 150 est reconnu par M1,

v2 = 149 n'est pas reconnu par M1

Exercices: trouver un AEFD pour les langages L1 et L2

1- L1 =
$$\{0^p 1^n, p \ge 0, n \ge 1\}$$

2- L2 = { $a^p b^k c^m$, $p \ge 0$, $k \ge 0$, $m \ge 0$]

93

92