SYDNEY GRAMMAR SCHOOL

2006 FORM VI TRIAL HSC EXAMINATION

Chemistry Marking scheme and CRIB

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and class at the top of each page in Part B and on the answer booklet

CHECKLIST	
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	
18 - Page Booklet	

Chemistry Classes.

l JAG	2 JME	3 AKBB
4 MMB	5 AKBB	6 JAG

Section I Pages 2 - 24

Total marks (100)

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

Part B

Total marks (69)

- Attempt Questions 16-29
- Allow about 2 hours for this Section

Section II Pages 25-28 Total marks (16)

- Attempt Question 30 in this section.
- Allow about 35 minutes for this Section

Part A Total marks (15) Attempt Questions 1-15 Allow about 25 minutes for this Part

- 1. A
- 2. A
- 3. D
- 4. D
- 5. A
- 6. C
- 7. B
- 8. B
- 9. A
- 10. C
- 11. B
- 12. C
- 13. C
- 14. C
- 15. C

Part B

Total marks (69)
Attempt ALL Questions
Allow about 2 hours for this Part

Class Candidate Number

Answer the questions in the spaces provided Show **all** relevant working in questions involving calculations

Marks

Question 16 (6 marks)

At the start of the HSC course you performed an experiment that allowed you to distinguish between alkanes and alkenes.

(a) Identify an alkane and an alkene which you used in this experiment plus any other reagents used.

2

Name a specific alkane and alkene (1 mark)

which could have been used by them and bromine water (1 mark)

(b) Identify the hazards involved in this experiment.

2

Organics – flammable and toxic

 Br_2 – corrosive and toxic

(c) Write an equation for any reaction which occurred.

2

Any completely correct equation (2 marks)

minus 1 mark for every mistake

e.g.

If alkane substitution reaction is used U.V. must be included in equation

Question 17 (3 marks)

Distinguish between stable and radioactive isotopes and identify the conditions under which a nucleus is unstable.

3

Definition of radioisotope (not using terms unstable or emit radiation) (1 mark)

Must be correct i.e. non-linear progression. Large nuclei (if specific size given, must be correct) (1 mark)

e.g. For elements with a small atomic mass there is a stable ratio of protons:neutrons known as the zone of stability. Isotopes whose proton:neutron ratio lies outside this zone are unstable and will decay/disintegrate/break-up. In addition if nuclei are very large (atomic no.>83) they are unstable and will decay.

Question 18 (2 marks)

Complete the following table, which refers to a number of titrations carried out in a school laboratory using solutions in the range 0.1-0.5M.

2

Titrant	Other reactant	Appropriate indicator
HCl	NaOH	Bromothymol blue Methyl orange Phenolphthalein
CH ₃ COOH	LiOH	Phenolphthalein
NH ₃	HNO ₃	Methyl orange

all correct (2 marks) one mistake (1 mark)

Class

Candidate Number

Marks

Question 19 (4 marks)

(a) Draw a labelled diagram of an operating galvanic cell that is made up of two half cells, each containing a metal in contact with its ions. Label the cathode, the anode, and the salt bridge.

3

Diagram (1 mark)

Metal + metal ions, salt bridge (lmark)

Identified cathode and anode, named electrolyte in salt bridge (1 mark)

(b) Calculate the voltage of this cell under standard conditions.

1

Values are given to 2 decimal places :. so should answers be. Calculate means show working.

$$Mg/Mg2+//Zn2+/Zn = 1.60V$$

$$Mg/Mg2+///Cu^{2+}/Cu = 2.70V$$

$$Mg/Mg^{2+}//Ag^{+}/Ag = 3.16V$$

etc

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Question 20 (3 marks)

Explain why the Haber process is based on a delicate balancing act involving reaction energy, reaction rate and equilibrium.

3

State Haber process exothermic. If $T \uparrow rate \uparrow but yield \downarrow (1 mark)$

Explain rate needs to be reasonably high so process economically viable (1 mark)

'Compromise' temperature chosen and explanation (both rate and yield considered) (1 mark)

Question 21 (3 marks)

Compare one physical and one chemical property of the oxygen allotropes O_2 and O_3 and account for the differences on the basis of structure and bonding.

3

Describe structure (shape) and bonding (polar) in both O_2 and O_3 (1 mark)

Compare 1 physical and 1 chemical property of O_2 and O_3 (2 marks)

Class	Candidate Number

Question 22 (4 marks)

Consider the data on the greenhouse gases presented in the graph below.

The greenhouse gas and deuterium (δD) records for the past 650,000 years from ice cores. δD , the deviation of the deuterium/hydrogen ratio from an isotope standard, is a proxy for air temperature; more positive values indicate warmer conditions.

(a) Which gas was most abundant in the atmosphere 500 000 years ago?

1

 CO_2

(b) Write chemical formulas for the three gases.

1

 N_2O , CO_2 , CH_4

(c) Assess the validity of the claim that these three gases are greenhouse gases.

2

Validity - supported by data presented

Identify graph feature (1 mark)

Identify feature (correlation between peaks) and identify if this feature supports the claim (2 marks)

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number Marks
Question 23 (4 marks)		
Discuss the use of neutralisation in dealing	ng with an acid spill in	a laboratory. 4
Identify a problem caused by spilt acid e.	g. corrosion.	
Identify the need for safe clean up		
Identify the need for safe disposal (enviro	nment)	
Discuss one method that meets these crite	eria	
Identify one method and explain why it is	chosen	
And an appropriate neutralising agent		

		ſ
	1	- 1
 		i
Class		

Candidate Number

Marks

Question 24 (4 marks)

One acidic oxide found in the atmosphere is $SO_{2(g)}$.

(a) Name one natural and one industrial source of $SO_{2(g)}$.

1

Must have both e.g. natural - volcano

Industrial – fossil fuel combustion

(b) Write an equation to demonstrate the acidic nature of $SO_{2(g)}$.

At 25°C and 100kPa, what volume of $\text{SO}_{2(g)}$ would be needed to produce

1

$$SO_{2(g)} + H_2O_{(l)} \rightarrow H_2SO_{3(aq)}$$

2

$$n(SO_2) = n(H_2SO_3) = 0.500 \times 1.05 (1 \text{ mark})$$

500mL of 1.05M sulfurous acid?

V(SO₂) at 25°C and 100kPa

$$= 0.500 \times 1.05 \times 24.19L$$

$$= 13.0L (1 mark)$$

(c)

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

5

Question 25 (5 marks)

In an experiment to determine the ammonia concentration in a bottle of cloudy ammonia, a student transferred a 25.00mL aliquot of cloudy ammonia to a 250.0mL volumetric flask and made it up to 250.0 mL with deionised water. The contents of this volumetric flask were thoroughly mixed. The student then titrated 25.00mL aliquots of this solution against 0.2530M HCl and obtained an average titre volume of 22.50mL. Assume the density of the ammonia solution is 0.950 g/mL.

Calculate the concentration of NH₃ in the cloudy ammonia as %w/w (grams per 100g of solution).

$$NH_{3(aa)} + H^{+}_{(aa)} \rightarrow NH_{4}^{+}_{(aa)} (1 \text{ mark})$$

$$n(NH_3)_{dil} = n(HCl) = 0.02250 \times 0.2530 mol (2 marks)$$

$$[NH_3]_{undil} = \frac{0.02250x0.2530}{0.02500} \ x \ 10 = 2.277M \ (3 \ marks)$$

$$conc(NH_3) = 2.277 \times 17.034 = 38.79 g/L (4 marks)$$

$$\frac{38.79}{950}$$
 x $100 = 4.08\%$ w/w (5 marks)

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Form VI Chemistry			2006 Trial Examination		
		Class	Candidate Number		
Ques	stion 26 (7 marks)		Marks		
Chen impo	nical monitoring of the concent ortant to manage the quality of v	rations of ions such as Mg ²⁺ vater resources.	, Ca ²⁺ , NO ₃ ⁻ , PO ₄ ³⁻ is		
For <u>o</u>	one cation and one anion from t	he list above:			
(a)	Identify a possible source a of human activity.	nd state whether the source	is natural or a result 2		
	Correctly identifies one cation, source; natural (1 mark)				
	Correctly id one cation and marks)	l one anion AND specific soi	urces; natural/not (2		
(b)	Explain why monitoring an ions you have chosen is imp	d management of the concer portant.	intrations of the $\underline{\text{two}}$ 2		
	ID 'water hardness' AND '	eutrophication'			
	OR ID one of the above and	$d explain$ $\left. \right\}$ (1 me	ark)		
	ID AND explains problems marks)	caused by hardness and eut	rophication (2		
(c)	Discuss the range and chem have chosen.	nistry of tests used to monito	r <u>one</u> of the ions you 3		
	ID one specific test OR expl different tests (1 mark)	lain that different conditions	/concs require		
	ID one test AND its range C	OR chemistry (2 marks)			
	ID two tests (one specific) A	IND range AND chemistry (3 marks)		

F	orm VI Chemistry		2006 Trial Examination							
		Class	Candidate Number							
Quest	ion 27 (8 marks)		Marks							
Humai atmosį	n activity has caused changes in the ohere.	e composition and struct	ture of the							
(a)	Identify the origins of CFCs and	halons in the atmospher	re. 1							
	ID CFCs and halons as anthropo	ogenic (1 mark)								
(b)	Explain the impacts of CFCs and	i halons on the atmospho	ere. 4							
	ID gases as GHG (greenhouse g	as) OR ozone depleting	(1 mark)							
	ID gases as GHG AND O3 deple]								
	$OR\ ID\ gases\ such\ as\ O_3\ depleting\ AND\ explains\ problems\ caused$									
	AND									
	Relates GHG OR O3 destruction	to properties of CFCs/l	nalons (3-4 marks)							

Question 27 continued on next page.

ļ	Form VI Chemistry		2006 Trial Examin	ation					
(Question 27 continued	Class	Candidate Numb	er					
				Marks					
(c)	Assess the measures being tak CFCs.	en to alleviate the problem	as associated with	3					
	ID search for replacements (H mark)	ICFC or HFC) and interno	ational protocols (1						
	Assesses one measure (1-2 marks)								
	Assesses two measures (2-3 marks)								
	Distinguish clearly between O_3 depletion and Global Warming								
	NB: Kyoto protocol : GHG								
	Montreal (Vienna, Copenhage	n) : CFC							

Labels must include "condenser", " H_2O in", " H_2O out" and safe heating method

NB: water bath boils at 100°C. will not allow heating under reflux for this esterification.

Question 28 continued on next page.

Form VI Chemistry		2006 Trial Examination
Ouestion 28 continued	Class	Candidate Number

(d) Explain why the apparatus you drew in (c) would be more appropriate than the apparatus below.

ID two features or explains one feature (1 mark)

ID volatility and flammability AND explains problems (2 marks)

NB: "explosion" etc very popular when 'ignite', 'catch fire' etc would be better

BP: hexanol 158°C

Propanoic acid 140°C

Ester 190°C

Water 100°C

 $H_2SO_4 337^{\circ}C$

2

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Form VI Chemistry		2006 Trial Exami	nation
	Class	Candidate Num	ber
Question 29 (8 marks)			Marks
It has been said that in the 21 st century versources such as oil and water, and son Discuss the need for alternative sources petrochemicals and evaluate the effect the on environmental concerns such as glob	ne people feel that this of the compounds pres hat using these alternat	has already begun. sently obtained from	8
Problems associated with current use:	S		
• identifies one problem (1 mark)			
 named derivative and one problem - 			
• identifies two problems	(2 marks)		
• explains one problem			
• discusses two or more problems (3 m	arks)		
Alternative Sources:			
• identifies an alternative source (1 ma	urk)		
• identifies two alternative sources			(2 marks
 gives details about production proces 	ss (i.e equation/bacterio	a name of alternative)	(=
Critical evaluation of effects of alternati	ive use:	_	
• identifies an effect on an environment	tal concern (1 mark)		
• identifies two effects or discusses one	(2 marks)		
 critically evaluates 2 or more effects of concerns (3 marks) 	of alternative sources u	use on environmental	

Boss Follethink are of Astronomical accessors of the complete control of the complete control of the control of

the providing in supplied the experience the system was the same

Form VI Chemistry		2006 Trial Examination
	Class	Candidate Number

Form VI Chemistry		2006 Trial Examination
Section II		
	Class	Candidate Number
16 marks		
Attempt question 30 in this s	ection.	
Allow about 35 minutes for th		
Answer the question in a writir Show all relevant working in q		
in a second working in a	accurate my ory mg carculation.	J.

	Pages
Question 30	Industrial Chemistry27
Question 31	Elective 2
Question 32	Elective 3
Question 33	Elective 4
Question 34	Elective 5

Form VI Chemistry	2006 Trial Examination	
Γ		,
	Class Candidate Number	

<u></u>	
Clace	Candidate Number

1

1

Question 30 (16 marks)

- (a) Most sulfuric acid is manufactured on the industrial scale using the Contact process which involves the conversion of sulfur dioxide gas into sulfur trioxide gas.
 - (i) Write a chemical equation for this reaction and an expression for the equilibrium constant, K.

$$2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$$

$$K = [SO_3]^2/[SO_2]^2[O_2]$$
 both for 1 mark

(ii) How does an increase in pressure affect the value of the equilibrium constant?

Pressure does not affect K

(b) Nitrogen dioxide is a poisonous brown gas which may be involved in the production of photochemical smog.

In an experiment 5.0 mol of dinitrogen tetraoxide were added to a 20L vessel and the system reached equilibrium. At equilibrium 3.8 mol of dinitrogen tetraoxide remained. Calculate the equilibrium constant, K, for this reaction:

$$N_2O_{4(g)}$$
 \longrightarrow $2NO_{2(g)}$

Initial n 5.0 0 (1 mark)

At equilibrium n 3.8 (5.0-3.8)2 = 2.4

At equilibrium [] mol/L $\frac{3.8}{20}$ $\frac{2.4}{20}$

(0.19) (0.12) (1 mark)

 $K = [NO_2]^2/[N_2O_4]$ (1 mark)
 $= (0.12)^2/0.19 = 7.6 \times 10^{-2}$ (1 mark)

(c) Describe one reaction in which concentrated sulfuric acid is acting as an oxidant. Include a relevant chemical equation.

2

A correct equation (1 mark)

Description of reaction explaining redox (1 mark)

'Bare' equation and little or no desription (1 mark)

'Best' examples

oxidation -1 +6 0 +4 state
$$2KI_{(s)} + 2H_2SO_{4(l)} \xrightarrow{} I_{2(s)} + K_2SO_{4(aq)} + SO_{2(g)} + 2H_2O_{(l)}$$
 purple vapour/dark solid

(ii) Describe one reaction in which concentrated sulfuric acid is acting as a dehydrating agent. Include a relevant chemical equation.

2

Easiest example dehydration of sucrose or glucose and black cone of carbon, like pumice (1 mark)

$$C_{12}H_{22}O_{11(s)} \xrightarrow{conc} 12C_{(s)} + 11H_2O_{(l)} (1 \text{ mark})$$

- During your practical work you have performed a first-hand investigationate Number analyse the effect of disturbing an equilibrium reaction.
 - (i) Outline the procedure you used in this investigation.

3

Equation for equilibrium system (1 mark)

Identify 3 disturbances in system and how these changes were detected (2 marks)

Best systems:

$$Co^{2+}_{(aq)} + 4Cl^{-}_{(aq)} = CoCl_4^{2-}_{(aq)}$$

 $pink$ $blue$

$$Fe^{3+}_{(aq)} + CNS^{-}_{(aq)}$$
 FeCNS²⁺_(aq) $blood\ red$

(ii) Explain how you analysed the equilibrium reaction in a qualitative way.

3

Control must be mentioned (1 mark)

Change in system identified – 3 disturbances (1 mark)

Changes explained in terms of Le Chatelier's principle

Candidate Number

Data Sheet Avogadro's constant, N_A $6.022 \times 10^{23} \text{ mol}^{-1}$ Volume of 1 mole ideal gas: at 100 kPa and at 0 °C (273 K) 22.71L at 25 °C (298K) 24.79 L Ionisation constant for water at 25 °C (298.15 K), K_W 1.0×10^{-14} Specific heat capacity of water $4.18 \times 10^3 \text{ Jkg}^{-1} \text{K}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+]$$

$\Delta H = -mC\Delta T$

Standard Potentials

$K^+ + e^-$	~~	$K_{(s)}$	-2.94 V
$Ba^{2+} + 2e^{-}$		$\mathrm{Ba}_{(s)}$	-2.91 V
$Ca^{2+} + 2e^{-}$		$Ca_{(s)}$	−2.87 V
$Na^+ + e^-$		$Na_{(s)}$	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	$Mg_{(s)}$	-2.36 V
$Al^{3+} + 3e^{-}$		$Al_{(s)}$	-1.68 V
$Mn^{2+} \pm 2e^-$		$Mn_{(s)}$	-1.18 V
$H_2O + e^-$		$\frac{1}{2} H_{2(g)} + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^-$		$Zn_{(s)}$	-0.76 V
$Fe^{2+} + 2e^{-}$	~~~	$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$	===	$Ni_{(s)}$	-0.24 V
$\mathrm{Sn}^{2^+} + 2\mathrm{e}^-$	~~	$Sn_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$	~	$Pb_{(s)}$	-0.13 V
$H^+ + e^-$		½ H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~~~	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~~~	$Cu_{(s)}$	0.34 V
$\frac{1}{2} O_{2(g)} + H_2 O + 2e^{-1}$	~~	2OH⁻	0.40 V
$Cu^+ + e^-$		$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$		I_	0.54 V
$V_2 I_{2(aq)} + e^-$		I_	0.62 V
$Fe^{3+} + e^-$	===	Fe ²⁺	0.77 V
$Ag^4 + e^-$	\rightleftharpoons	$Ag_{(s)}$	0.80 V
$\frac{1}{2} Br_{2(1)} + e^{-}$		Br^-	1.08 V
$\frac{1}{2} Br_{2(aq)} + e^{-}$		Br	1.10 V
$\frac{1}{2}$ O ₂ + 2H ⁺ + 2e	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2} \operatorname{Cr_2O_7}^{2-} + 7H^+ + 3e^-$		$Cr^{3+} + \frac{7}{2} H_2O$	1.36 V
$^{1}/_{2} \text{Cl}_{2(g)} + e^{-}$	==	Cl	1.36 V
$\frac{1}{2} \operatorname{Cl}_{2(aq)} + e^{-}$		CI ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	$\overline{\longleftarrow}$	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$	\rightleftharpoons	F	2.89 V

	ſ			T				····	********		·			nn-c.			•••••					Players share a		_
	ะเรี	4.003	Helium	9;	2 0	27.72	81	7 8	59.95	Argan	36	Z	83 80	Kryston	25	¥ ;	5.101	86	5 2	(0.277)				
				6 i	7 67	Flight		ָּ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞֞֞֓֞֓֓֞	04.00	Piterine	335	Ť	79.90	Pharence	53	1070	1.20.7	85	7 0	(4.10.0)				-
				∞C	16.00	Original	9.	U 6	70.25	Sum	m a	8	78.96	Selenium	52 T	121	7.1.1	84	2 20 22	Prior 1		e militiracen na a	••••••	
				r~;2	14.01	Nitrata	, 7.7 u	7 0	76.00	raceptons	£5.	Y.	74.92	Angre	ાંપ્ર	3 5	Arrimon.	183	<u> </u>	Ti ti				
				Ĵφ	12.01	_arbon	7.0	3 6	20.03	Silicon	Sic	3	72.64	Germanium	550	1100 1	Ė	224	207.0	1 Pro 1		***************************************		-
				ωŒ	10.81	Borro	*****	30 90	20.70	Semina	<u></u>	3	69.72	Gallium	49	- ×		IooF	2044	The Him				-
(6)			L								8,	Ē	65.41	Zinc	87.7 87.7		Cachritan	85	2005 A	No.		F-5		-
EMENTS				ij		72					තුද	3 ;	63.55	िक्सून	47	1079	Silver	6.4	197.0		1111	27.2	Roentgenium	-
出出				Symbol of clement		Name of element				0.0	212		58.69	Nicki	94 d	1064	Palladium	8,4	195.1	Flattourn	0 = 2	12711	E	
L O		× 7 ×		£3	197.0	Gold				-	 \iC	3 6	58.93	Cobalt	수	102.9	Rhodium	12	192.2	The state	109	[268]	£	
IC TABLE				Alone Number	Atomse Weight		I),0	Sir.	14	55.65	PER	Ru Ru	101	Rutherium	25	190.2	Osmiten	80.4 1.08	1277		
PERIODIC				g A	AR					3.5	Ω\ ∑	20	74.74	Mengance	£5			 	186.2	Rhentum	107 Rh	264 11	Bohnium	
										2.4	 ₹Ċ	200	32.00	╌┼				4 %			}			
										-								7.3 Ta			ı			
										-				+				72 HF						
										-				-	£>						89⊡03	E0000000000000000000000000000000000000	Actinides Rutherfordium	
			,	4 Kg	9.012	Beryllium	건물	24.31	Magnesium	20	 3J	40.08	30.00	E C	S. Z.	87.62	Strentium	25g				[226.0]		
	-,II	1.008	, , , , , , , , , , , , , , , , , , ,	<u>~</u> □	6.941	Litkium	=2	22.99	Sockum	0.	, , ,	30 10	27.10	romann	~g2	85.47	Rubidium	55.2	132.9	Caesium	7.87 Tr	[223.0]	Francium	

Lanthanides	83													
57 La 138.9 Lauthanan	Ce. 140.1	59 Pr 140.9 Precodynáum	-60 Nd 144.2 Noodymium	91 Pm [144.9] Promothium	62 Sm 150.4 Samatica	63 Eu 152.0 Eartpien	94 Qd 157.3 Gubilinium	65 Tb 158.9	66 Dy 162.5 Dysproxium	67 Fo 164.9	68 1673 四社四	69 Tm 168.9 Thaliam	70 75 173.0	77 Lu 175.0 Lumbian
Actinides					!									
88 24.	84	91 Pa	25 D	23	22	95 Am	85	で異	85	8:3	8.5	10I Md	25	82.7
[22/.0] Actinism	232.0 Thenium	23 j. 0 Protectinium	238.0 Umrium	[237.0] Neptensium	[244.1] Plutonium	[243.1]	[247.1]	[247.1]	[251.1]	[252.1]	[1257.1]	[258.1]	[259.1]	[262.1]

Where the atomic weight is not known. The relative atomic mass of the most common radioactive usotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes. 29 Mp and 99 Tc.