Работа 3.3.4 Эффект Холла в полупроводниках

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
	2.1 Эффект Холла	2
	2.2 Экспериментальная установка	3
3	Ход работы	4
4	Результаты измерений и обработка данных	4

1 Аннотация

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник (1, 5 В), образцы легированного германия.

2 Теоретические сведения

2.1 Эффект Холла

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями А и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\pi} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e — абсолютный заряд электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани В, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E=eE_z$. В установившемся режиме $F_E=F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l$$
.

В этом и состоит эффект Холла.

Замечая, что сила тока равна

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p — концентрации электронов и дырок, b_e b_p - их подвижности.

2.2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется милли-амперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

3 Ход работы

- 1. Построим калибровочный график зависимости $B(I_M)$.
- 2. Рассчитаем ЭДС Холла и построим семейство характеристик $U_{\perp}(B)$ при разных значениях тока I через образец. Убедимся в линейности зависимостей и определим угловые коэффициенты $k=dU_{\perp}/dB$ полученных прямых.
- 3. Построим график k(I). Рассчитаем угловой коэффициент прямой и определим величину постоянной Холла.
- 4. Рассчитаем концентрацию n носителей тока в образце, удельное сопротивление ρ_0 и удельную проводимость σ_0 материала.
- 5. Используя найденные значения концентрации и удельной проводимости, вычислим подвижность μ носителей тока.

4 Результаты измерений и обработка данных

Исследуем зависимость потока Φ магнитного поля в зазоре электромагнита от тока через обмотки магнита. Данные занесём в таблицу 1.

По этим данным построим график зависимости $B = B(I_M)$.

Рис. 3: График зависимости $B(I_M)$

Рассчитаем ЭДС Холла (таблица 3) и построим семейство характеристик U(B) при разных значениях тока I (рисунок 4).

Рис. 4: График зависимости U(B)

Теперь по таблице 2 построим график зависимости k(I).

Рис. 5: График зависимости U(B)

Таблица 1

I_M , A	Ф, мВБ	B, T
0,17	1	0,13
0,35	2	0,27
0,59	3,2	0,43
0,80	4,4	0,59
1,01	5,1	0,68
1,20	5,8	0,77
1,40	6,2	0,83
1,61	6,6	0,88

Таблица 2

I_M , мА	K, м B/T
0,12	0,0769
0,3	0,1542
0,4	0,2040
0,5	0,2574
0,6	0,2917
0,7	0,3676
-1,34	-0,6548