### Лабораторная работа No4

#### Цель лабораторной работы

Изучить уравнение гармонического осциллятора

#### Задание к лабораторной работе

- 1. Построить решение уравнения гармонического осциллятора без затухания
- 2. Записать уравнение свободных колебаний гармонического осциллятора с затуханием, построить его решение. Построить фазовый портрет гармонических колебаний с затуханием
- 3. Записать уравнение колебаний гармонического осциллятора, если на систему действует внешняя сила, построить его решение. Построить фазовый портрет колебаний с действием внешней силы

# Процесс выполнения лабораторной работы

#### Теоретический материал

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором. Уравнение свободных колебаний гармонического осциллятора имеет следующий вид:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

#### Теоретический материал

При отсутствии потерь в системе ( $\gamma = 0$ ) получаем уравнение консервативного осциллятора энергия колебания которого сохраняется во времени

$$\ddot{x} + \omega_0^2 x = 0$$

Для однозначной разрешимости уравнения второго порядка необходимо задать два начальных условия вида

$$\begin{cases} x(t_0) = x_0 \\ \dot{x}(t_0) = y_0 \end{cases}$$

#### Теоретический материал

Уравнение второго порядка можно представить в виде системы двух уравнений первого порядка:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\omega_0^2 x \end{cases}$$

Начальные условия для системы примут вид:

$$\begin{cases} x(t_0) = x_0 \\ y(t_0) = y_0 \end{cases}$$

#### Условие задачи

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев:

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы  $\ddot{x} + 0.6x = 0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы  $\ddot{x} + 0.4\dot{x} + 0.4x = 0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы  $\ddot{x} + 0.2\dot{x} + 10x = 0.5\cos(2t)$

На интервале  $t \in [0; 51]$  (шаг 0.05) с начальными условиями  $x_0 = 0.4$ ,  $y_0 = 2.1$ 

### Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

$$\ddot{x} + 0.6x = 0$$



Рисунок 1: График решения для случая 1

### Случай 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы

$$\ddot{x} + 0.6x = 0$$



Рисунок 2: Фазовый портрет для случая 1

### Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 0.4\dot{x} + 0.4x = 0$$



Рисунок 3: График решения для случая 2

### Случай 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + 0.4\dot{x} + 0.4x = 0$$



Рисунок 4: Фазовый портрет для случая 2

## Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

$$\ddot{x} + 0.2\dot{x} + 10x = 0.5\cos(2t)$$



Рисунок 5: График решения для случая 3

## Случай 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы

$$\ddot{x} + 0.2\dot{x} + 10x = 0.5\cos(2t)$$



Рисунок 6: Фазовый портрет для случая 3

### Выводы по проделанной работе

#### Вывод

В ходе выполнения лабораторной работы были построены решения уравнения гармонического осциллятора и фазовые портреты гармонических колебаний без затухания, с затуханием и при действии внешней силы