

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

IMT2230-1 2023-2

Profesor: CRISTOBAL ROJAS

Ayudante: PABLO RADEMACHER

Ayudantía 14

Un grafo es una tupla G=(V,E), con V es un conjunto finito de nodos, y $E\subseteq \{\{i,j\}: i,j\in V, i\neq j\}$ es el conjunto de aristas (en este caso no dirigidas). Decimos que es bipartito si existen conjuntos disjuntos $S,T\subseteq V$ tales que $V=S\cup T$, y si $(i,j)\in E$ y $i\in S$, entonces necesariamente $j\in T$. Definimos además la matriz de adyacencia de G como la matriz $A\in \mathbb{R}^{|V|\times |V|}$ tal que

$$A_{i,j} = \begin{cases} 1 & \text{si } (i.j) \in E \\ 0 & \text{eoc} \end{cases}$$

Decimos que un grafo es conectivo si existe eal menos un camino entre cada par de aristas.

- 1. Demuestre que si G es bipartito, A es su matriz de adyacencia, y λ es valor propio de A, entonces $-\lambda$ también es valor propio de A.
- 2. Demuestre que si la matriz de adyacencia de un grafo G cumple que, si λ es valor propio entonces $-\lambda$ también lo es, entonces G debe ser bipartito.
- 3. Muestre que si A es la matriz de adyacencia de un grafo G, entonces la matriz A^k en la posición (i, j) contiene la cantidad de caminos para ir del nodo i al nodo j.
- 4. Sean λ_1 y λ_n el valor propio mayor y menor de A, respectivamente. Muestre que si un grafo G es conectivo, G es bipartito si y solo si $\lambda_n = -\lambda_1$.