Luis Alberto Álvarez Zavaleta David Arnal García

<u>Ejercicio obligatorio gaussiano</u>

Gráfica de gaussian-exp.m:

Epsilon	1e-9	1e-8	1e-7	1e-6	1e-5	1e-4	1e-3	1e-2	1e-1	9e-1
Error (%)	19.65	19.55	18.93	14.08	6.32	4.27	6.38	10.00	11.97	18.68

Como datos de entrenamiento, utilizamos el 90% de datos para entrenamiento y el otro 10% restante para test.

Luis Alberto Álvarez Zavaleta David Arnal García

Como se puede observar, el valor ε mínimo es el que tiene 1e-4. por tanto, este sería el valor óptimo a utilizar. Por otra parte, el peor valor obtenido, es el 1e-9, por lo que sería el menos recomendable para su uso práctico.

Resultados de *gaussian-eva.m* para el valor con error más bajo en *gaussian-exp.m* (17.85%):

Epsilon	1e-4			
Error (%)	4.18			

En este caso, al comparar nuestro clasificador *gaussiano* con el de *MNIST*, se observa fácilmente que no es un clasificador óptimo, al ser peor que el de *MNIST*, siendo razonable debido a que en *MNIST* también se aplica *PCA*, como se ve en la imagen siguiente:

40 PCA + quadratic classifier	none	3.3	LeCun et al. 1998
-------------------------------	------	-----	-------------------

No obstante, aunque nuestro clasificador no sea óptimo, concluimos con una diferencia no muy sustancial, por lo que se podría decir que sería un clasificador aceptable.