Lab 03 - Vivado

GitHub repository

Table with connections

Our used connection

Port	Connected to	FPGA pin
a_i[0]	SW[0]	J15
a_i[1]	SW[1]	L16
b_i[0]	SW[2]	M13
b_i[1]	SW[3]	R15
c_i[0]	SW[4]	R17
c_i[1]	SW[5]	T18
d_i[0]	SW[6]	U18
d_i[1]	SW[7]	R13
sel_i[0]	SW[14]	U11
sel_i[1]	SW[15]	V10
f_o[0]	LED[0]	H17
f_o[1]	LED[1]	K15

Development board connection

Name	FPGA pin	FPGA package pin name
SW[0]	IO_L24N_T3_RS0_15	J15
SW[1]	IO_L3N_T0_DQS_EMCCLK_14	L16
SW[2]	IO_L6N_T0_D08_VREF_14	M13
SW[3]	IO_L13N_T2_MRCC_14	R15
SW[4]	IO_L12N_T1_MRCC_14	R17
SW[5]	IO_L7N_T1_D10_14	T18
SW[6]	IO_L17N_T2_A13_D29_14	U18
SW[7]	IO_L5N_T0_D07_14	R13
SW[8]	IO_L24N_T3_34	Т8
	·	

Name	FPGA pin	FPGA package pin name
SW[9]	IO_25_34	U8
SW[10]	IO_L15P_T2_DQS_RDWR_B_14	R16
SW[11]	IO_L23P_T3_A03_D19_14	T13
SW[12]	IO_L24P_T3_35	H6
SW[13]	IO_L20P_T3_A08_D24_14	U12
SW[14]	IO_L19N_T3_A09_D25_VREF_14	U11
SW[15]	IO_L21P_T3_DQS_14	V10
Name	FPGA pin	FPGA package pin name
LED[0]	IO_L18P_T2_A24_15	H17
LED[1]	IO_L24P_T3_RS1_15	K15
LED[2]	IO_L17N_T2_A25_15	J13
LED[3]	IO_L8P_T1_D11_14	N14
LED[4]	IO_L7P_T1_D09_14	R18
LED[5]	IO_L18N_T2_A11_D27_14	V17
LED[6]	IO_L17P_T2_A14_D30_14	U17
LED[7]	IO_L18P_T2_A12_D28_14	U16
LED[8]	IO_L16N_T2_A15_D31_14	V16
LED[9]	IO_L14N_T2_SRCC_14	T15
LED[10]	IO_L22P_T3_A05_D21_14	U14
LED[11]	IO_L15N_T2_DQS_DOUT_CSO_B_1	4 T16
LED[12]	IO_L16P_T2_CSI_B_14	V15
LED[13]	IO_L22N_T3_A04_D20_14	V14
LED[14]	IO_L20N_T3_A07_D23_14	V12
LED[15]	IO_L21N_T3_DQS_A06_D22_14	V11

2-bit wide 4-to-1 multiplexer

VHDL architecture

```
c_i when (sel_i = "10") else
    d_i;
end architecture Behavioral;
```

Testbench file

```
library ieee;
use ieee.std_logic_1164.all;
______
-- Entity declaration for testbench
______
entity tb mux 2bit 4to1 is
   -- Entity of testbench is always empty
end entity tb_mux_2bit_4to1;
-- Architecture body for testbench
architecture testbench of tb_mux_2bit_4to1 is
   -- Local signals
   signal s_a : std_logic_vector(2 - 1 downto 0);
   signal s_b : std_logic_vector(2 - 1 downto 0);
   signal s_c
                : std_logic_vector(2 - 1 downto 0);
   signal s_d
                : std_logic_vector(2 - 1 downto 0);
   signal s_sel
                : std_logic_vector(2 - 1 downto 0);
   signal s_f : std_logic_vector(2 - 1 downto 0);
begin
   -- Connecting testbench signals with mux_2bit_4to1 entity (Unit Under Test)
   uut_mux_2bit_4to1 : entity work.mux_2bit_4to1
      port map(
          a_i \Rightarrow s_a
          b i \Rightarrow s b,
          c_i \Rightarrow s_c,
          d_i => s_d,
          sel_i => s_sel,
          f o \Rightarrow s f
      );
   -- Data generation process
   ______
   p_stimulus : process
   begin
      report "Stimulus process started" severity note;
       s_d <= "00";s_c <= "00";s_b <= "00";s_a <= "00";s_sel <= "00";wait for 100
```

Waveform from testbench simulation

Vivado tutorial

Project creation

- 1. Open "Vivado 2020.2" (or your installed version)
- 2. "File" -> "Project" -> "New..."

3. It will open you wizard for creating new project

4. Select your project name and project location

5. Select project type (we are using "RTL Project")

6. Now select "Target language" and "Simulator language" as "VHDL"

7. Skip this windows with "Next" button

8. In this window get into board selection

9. Choose "Nexys A7-50T"

10. Now you will see project summary. Finish with clicking at "Finish" button

- 1. Open your project
- 2. "File" -> "Add Sources..."
- 3. It will open you new wizard. Select "Add or create design sources"

4. Now add source file with "Create File" button

5. Select "VHDL" file type and type in filename

6. Now you can overview all created files

7. Here you can define real connection with FPGA pins

Adding testbench file

- 1. Open your project
- 2. "File" -> "Add Sources..."

3. It will open you new wizard. Select "Add or create simulation sources"

4. Now add source file with "Create file" button

5. Select "VHDL" file type and type in filename

6. Now you can overview all created files

7. Here you can define real connection with FPGA pins

Adding constraints (XDC) file

- 1. Open your project
- 2. "File" -> "Add Sources..."

3. It will open you new wizard. Select "Add or create constraints"

4. Now add source file with "Create file" button

5. Select file type as "XDC" and type in file name (in this case same as board name)

6. Now you can overview all created files

7. Now in main window open this created file and type pin definition in editor window. You can also copy .xdc file from board manafacturer

Running simulation

1. Open your project

 $2. \ \mbox{If you have setup design sources}$ and testbench files, you can run simulation

