Logika dla informatyków

Egzamin połówkowy

3 grudnia 2005

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Za brak rozwiązania otrzymuje się 0 punktów, za rozpoczęcie rozwiązywania -2 punkty, a za poprawne rozwiązanie 12 punktów (co razem z punktami za rozpoczęcie daje 10 punktów).

Zadanie 1 Które z poniższych zdań są prawdziwe dla dowolnych formuł zdaniowych φ i ψ ?

- (a) Jeśli $\varphi \Rightarrow \psi$ oraz $\neg \varphi \Rightarrow \psi$ są tautologiami, to ψ jest tautologią.
- (b) Jeśli $\varphi \Rightarrow \psi$ oraz $\neg \varphi \Rightarrow \psi$ są spełnialne, to ψ jest spełnialna.
- (c) Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \varphi \Rightarrow \psi$ jest spełnialna, to φ jest spełnialna.
- (d) Jeśli $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \varphi \Rightarrow \psi$ jest spełnialna, to φ jest tautologią.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 2 Rozważmy dowolną rodzinę zbiorów A.

- (a) Udowodnij, że $\mathcal{A} \subseteq \mathcal{P}(\bigcup \mathcal{A})$.
- (b) Udowodnij, że $\mathcal{P}(\bigcup \mathcal{A}) \subseteq \mathcal{A}$ wtedy i tylko wtedy, gdy istnieje taki zbiór B, że $\mathcal{A} = \mathcal{P}(B)$.

Zadanie 3 Rozważmy funkcję $f: A \to B$ i zdefiniujmy funkcję $g: \mathcal{P}(B) \to \mathcal{P}(A)$ wzorem

$$g(Y) = f^{-1}(Y).$$

Udowodnij, że q jest różnowartościowa wtedy i tylko wtedy, gdy f jest "na".

Zadanie 4 Rozważmy funkcje $\pi_1: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ oraz $\pi_2: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ określone wzorami

$$\pi_1(m, n) = m, \quad \pi_2(m, n) = n,$$

i zdefiniujmy relację \equiv w zbiorze $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ w następujący sposób: dla zbiorów $A, B \subseteq \mathbb{N} \times \mathbb{N}$ powiemy, że $A \equiv B$ jeśli

$$\pi_1(A) = \pi_1(B)$$
 oraz $\pi_2(A) = \pi_2(B)$.

- (a) Udowodnij, że ≡ jest relacją równoważności.
- (b) Opisz klasę abstrakcji zbioru $\mathbb{N} \times \{0\}$ i podaj jej moc.
- (c) Opisz klasę abstrakcji zbioru $\mathbb{N} \times \{0,1\}$ i podaj jej moc.
- (d) Podaj moc zbioru klas abstrakcji relacji ≡.
- (e) Udowodnij, że każda nieskończona klasa abstrakcji relacji ≡ ma moc continuum (czyli jest równoliczna ze zbiorem liczb rzeczywistych).

Odpowiedzi w punktach (b)-(d) należy uzasadnić.