Summary: Part 2

Tianpei Xie

Jan. 26th., 2023

Contents

T	Log	garithmic Sobolev Inequality	
	1.1	Functional Form of Logarithmic Sobolev Inequality	
	1.2	Bernoulli Logarithmic Sobolev Inequality	
	1.3	Gaussian Logarithmic Sobolev Inequality	
	1.4	Modified Logarithmic Sobolev Inequalities	
2	Isoperimetric Inequalities and Concentration of Measure		
	2.1	Brunn-Minkowski Inequality	
	2.2	Classical Isoperimetric Problem on Euclidean Space \mathbb{R}^n	
	2.3	Isoperimetric Problem on Unit Sphere	
	2.4	Concentration via Isoperimetric Inequalities	
	2.5	Convex Distance Inequality	
	2.6	Concentration of Convex Lipschitz Functions	
3	Concentration of Gaussian Measure		
	3.1	Gaussian Isoperimetric Theorem and Gaussian Concentration Theorem	
	3.2	Lipschitz Functions of Gaussian Variables	
	3.3	Gaussian Logarithmic Sobolev Inequality	
	3.4	Gaussian Transportation Inequality	
	3.5	Gaussian Hypercontractivity	
	3.6	Suprema of Gaussian Process	
4	Concentration of Bernoulli Measure on the Binary Hypercube		
	4.1	Edge Isoperimetric Inequality on the Binary Hypercube	
	4.2	Bobkov's Inequality	
	4.3	Vertex Isoperimetric Inequality on the Binary Hypercube	
	4.4	Hypercontractivity: The Bonami-Beckner Inequality	
	4.5	Influence Function	
	4.6	Monotone Sets	
	4.7	Thresholding Phenonemon	

1 Logarithmic Sobolev Inequality

1.1 Functional Form of Logarithmic Sobolev Inequality

• From functional analysis, we have the Sobolev inequality,

Remark (The Sobolev Inequality) [Evans, 2010] The Sobolev inequality states for smooth function $f: \mathbb{R}^n \to \mathbb{R}$ in Sobolev space where $n \geq 3$ and $p = \frac{2n}{n-2} > 2$

$$||f||_p^2 \le C_n \int_{\mathbb{R}^n} |\nabla f|^2 \, dx.$$

The inequality is sharp when the constant

$$C_n := \frac{1}{\pi n(n-2)} \left(\frac{\Gamma(n)}{\Gamma(n/2)}\right)^{2/n}$$

• Proposition 1.1 (Euclidean Logarithmic Sobolev Inequality). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function and m be Lebesque measure on \mathbb{R}^n , then

$$Ent_{m}(f^{2}) \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \mathbb{E}_{m} \left[\|\nabla f\|_{2}^{2} \right] \right)$$

$$\Leftrightarrow \int f^{2} \log \left(\frac{f^{2}}{\int f^{2} dx} \right) dx \leq \frac{n}{2} \log \left(\frac{2}{n\pi e} \int |\nabla f|^{2} dx \right)$$

$$(1)$$

• Definition (Logarithmic Sobolev Inequality for General Probability Measure). A probability measure μ on \mathbb{R}^n is said to satisfy the <u>logarithmic Sobolev inequality</u> for some constant C > 0 if for any smooth function f

$$\operatorname{Ent}_{\mu}(f^{2}) \leq C \operatorname{\mathbb{E}}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] \tag{2}$$

holds for any *continuous differentiable* function $f: \mathbb{R}^n \to \mathbb{R}$. The left-hand side is called *the entropy functional*, which is defined as

$$\operatorname{Ent}(f^2) := \mathbb{E}_{\mu} \left[f^2 \log f^2 \right] - \mathbb{E}_{\mu} \left[f^2 \right] \log \mathbb{E}_{\mu} \left[f^2 \right]$$
$$= \int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu.$$

The right-hand side is defined as

$$\mathbb{E}_{\mu} \left[\|\nabla f\|_{2}^{2} \right] = \int \|\nabla f\|_{2}^{2} d\mu.$$

Thus we can rewrite the logarithmic Sobolev inequality in functional form

$$\int f^2 \log \left(\frac{f^2}{\int f^2 d\mu} \right) d\mu \le C \int \|\nabla f\|_2^2 d\mu \tag{3}$$

• Remark (Logarithmic Sobolev Inequality)
For non-negative function f, we can replace $f \to \sqrt{f}$, so that the logarithmic Sobolev inequality becomes

$$\operatorname{Ent}_{\mu}(f) \le C \int \frac{\|\nabla f\|_{2}^{2}}{f} d\mu \tag{4}$$

• Remark (Modified Logarithmic Sobolev Inequality via Convex Cost and Duality) For some convex non-negative cost $c: \mathbb{R}^n \to \mathbb{R}_+$, the convex conjugate of c (Legendre transform of c) is defined as

$$c^*(x) := \sup_{y} \left\{ \langle x, y \rangle - c(y) \right\}$$

Then we can obtain the modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\mu}(f) \le \int f^2 \, c^* \left(\frac{\nabla f}{f}\right) d\mu \tag{5}$$

1.2 Bernoulli Logarithmic Sobolev Inequality

• Remark (Setting)

Consider a uniformly distributed binary vector $Z = (Z_1, ..., Z_n)$ on the hypercube $\{-1, +1\}^n$. In other words, the components of X are independent, identically distributed random sign (Rademacher) variables with $\mathbb{P}\{Z_i = -1\} = \mathbb{P}\{Z_i = +1\} = 1/2$ (i.e. symmetric Bernoulli random variables).

Let $f: \{-1, +1\}^n \to \mathbb{R}$ be a real-valued function on **binary hypercube**. X:=f(Z) is an induced real-valued random variable. Define $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},Z_i',Z_{i+1},\ldots,Z_n)$ be the sample Z with i-th component replaced by an independent copy Z_i' . Since $Z,\widetilde{Z}^{(i)} \in \{-1,+1\}^n$, $\widetilde{Z}^{(i)}=(Z_1,\ldots,Z_{i-1},-Z_i,Z_{i+1},\ldots,Z_n)$, i.e. the i-th sign is **flipped**. Also denote the i-th Jackknife sample as $Z_{(i)}=(Z_1,\ldots,Z_{i-1},Z_{i+1},\ldots,Z_n)$ by leaving out the i-th component. $\mathbb{E}_{(-i)}[X]:=\mathbb{E}[X|Z_{(i)}].$

Denote the i-th component of $discrete \ gradient$ of f as

$$\nabla_i f(z) := \frac{1}{2} \left(f(z) - f(\widetilde{z}^{(i)}) \right)$$

and $\nabla f(z) = (\nabla_1 f(z), \dots, \nabla_n f(z))$

• Proposition 1.2 (Logarithmic Sobolev Inequality for Rademacher Random Variables). [Boucheron et al., 2013]

If $f: \{-1,+1\}^n \to \mathbb{R}$ be an arbitrary real-valued function defined on the n-dimensional binary hypercube and assume that Z is uniformly distributed over $\{-1,+1\}^n$. Then

$$Ent(f^2) \le \mathcal{E}(f) \tag{6}$$

$$\Leftrightarrow \operatorname{Ent}(f^2(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_2^2\right] \tag{7}$$

• Remark (*Logarithmic Sobolev Inequality* \Rightarrow *Efron-Stein Inequality*). [Boucheron et al., 2013]

Note that for f non-negative,

$$Var(f(Z)) \le Ent(f^2(Z)).$$

Thus logarithmic Sobolev inequality (6) implies

$$Var(f(Z)) \le \mathcal{E}(f)$$

which is the Efron-Stein inequality.

• Corollary 1.3 (Logarithmic Sobolev Inequality for Asymmetric Bernoulli Random Variables). [Boucheron et al., 2013]

If $f: \{-1, +1\}^n \to \mathbb{R}$ be an arbitrary real-valued function and $Z = (Z_1, \dots, Z_n) \in \{-1, +1\}^n$ with $p = \mathbb{P}\{Z_i = +1\}$. Then

$$Ent(f^2) \le c(p) \mathbb{E}\left[\|\nabla f(Z)\|_2^2 \right]$$
 (8)

where

$$c(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

Note that $\lim_{p\to 1/2} c(p) = 2$.

1.3 Gaussian Logarithmic Sobolev Inequality

• Proposition 1.4 (Gaussian Logarithmic Sobolev Inequality). [Boucheron et al., 2013] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous differentiable function and let $Z = (Z_1, \ldots, Z_n)$ be a vector of n independent standard Gaussian random variables. Then

$$Ent(f^{2}(Z)) \le 2\mathbb{E}\left[\|\nabla f(Z)\|_{2}^{2}\right]. \tag{9}$$

1.4 Modified Logarithmic Sobolev Inequalities

• Proposition 1.5 (A Modified Logarithmic Sobolev Inequalities for Moment Generating Function) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $Z_{(-i)} = (Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_n)$ and $X_{(-i)} = f_i(Z_{(-i)})$ where $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ is an arbitrary function. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$Ent(e^{\lambda X}) := \mathbb{E}\left[\lambda X e^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X - X_{(-i)}))\right]$$
(10)

• Proposition 1.6 (Symmetrized Modified Logarithmic Sobolev Inequalities) [Boucheron et al., 2013]

Consider independent random variables Z_1, \ldots, Z_n taking values in \mathcal{X} , a real-valued function $f: \mathcal{X}^n \to \mathbb{R}$ and the random variable $X = f(Z_1, \ldots, Z_n)$. Also denote $\widetilde{X}^{(i)} = f(Z_1, \ldots, Z_{i-1}, Z'_i, Z_{i+1}, \ldots, Z_n)$. Let $\phi(x) = e^x - x - 1$. Then for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \le \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\phi(-\lambda(X-\widetilde{X}^{(i)}))\right]$$
(11)

Moreover, denoting $\tau(x) = x(e^x - 1)$, for all $\lambda \in \mathbb{R}$,

$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(-\lambda(X-\widetilde{X}^{(i)})_{+})\right],$$
$$\lambda \mathbb{E}\left[Xe^{\lambda X}\right] - \mathbb{E}\left[e^{\lambda X}\right] \log \mathbb{E}\left[e^{\lambda X}\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[e^{\lambda X}\tau(\lambda(\widetilde{X}^{(i)}-X)_{-})\right].$$

2 Isoperimetric Inequalities and Concentration of Measure

2.1 Brunn-Minkowski Inequality

• Definition (Minkowski Sum of Sets)

Consider sets $A, B \subseteq \mathbb{R}^n$ and define <u>the Minkowski sum</u> of A and B as the set of all vectors in \mathbb{R}^n formed by sums of elements of A and B:

$$A + B := \{x + y : x \in A, y \in B\}$$

Similarly, for $c \in \mathbb{R}$, let $cA = \{cx : x \in A\}$. Denote by Vol(A) the **Lebesgue measure** of a (measurable) set $A \subset \mathbb{R}^n$.

• Theorem 2.1 (The Prékopa-Leindler Inequality). [Boucheron et al., 2013, Wainwright, 2019]

Let $\lambda \in (0,1)$, and let $f,g,h:\mathbb{R}^n \to [0,\infty)$ be non-negative measurable functions such that for all $x,y\in\mathbb{R}^n$,

$$h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} g(y)^{1-\lambda}.$$

Then

$$\int_{\mathbb{R}^n} h(x)dx \ge \left(\int_{\mathbb{R}^n} f(x)dx\right)^{\lambda} \left(\int_{\mathbb{R}^n} g(x)dx\right)^{1-\lambda}.$$
 (12)

• Corollary 2.2 (Weaker Brunn-Minkowski Inequality) [Boucheron et al., 2013, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}.$$
 (13)

• Theorem 2.3 (Brunn-Minkowski Inequality) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A, B \subset \mathbb{R}^n$ be non-empty compact sets. Then for all $\lambda \in [0, 1]$,

$$Vol(\lambda A + (1 - \lambda)B)^{\frac{1}{n}} \ge \lambda Vol(A)^{\frac{1}{n}} + (1 - \lambda) Vol(B)^{\frac{1}{n}}.$$
 (14)

2.2 Classical Isoperimetric Problem on Euclidean Space \mathbb{R}^n

• Definition (Blowup of Sets)

For any t > 0, and any (measurable) sets $A \subset \mathbb{R}^n$, the t-blowup (or, t-enlargement) of A is defined by

$$A_t := \{ x \in \mathbb{R}^n : d(x, A) < t \} = A + t B$$

where $B = \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is an open unit ball and $d(x,A) = \inf_{y \in A} d(x,y)$.

• Definition (Surface Area of Sets)

let $A \subset \mathbb{R}^n$ be a measurable set and denote by $\operatorname{Vol}(A)$ its Lebesgue measure. The <u>surface area</u> of A is defined by

$$\operatorname{Vol}(\partial A) = \lim_{t \to 0} \frac{\operatorname{Vol}(A_t) - \operatorname{Vol}(A)}{t}.$$

provided that the limit exists. Here A_t denotes the t-blowup of A.

• Remark (*Isoperimetry Theorem*)

The classical isoperimetric theorem in \mathbb{R}^n states that, among all sets with a given volume, the Euclidean unit ball minimizes the surface area. This theorem can be formally stated as below:

• Theorem 2.4 (Isoperimetry Theorem) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]

Let $A \subset \mathbb{R}^n$ be such that Vol(A) = Vol(B) where $B := \{x \in \mathbb{R}^n : d(0,x) < 1\}$ is an unit ball. Then for any t > 0,

$$Vol(A_t) > Vol(B_t)$$
 (15)

Moreover, if $Vol(\partial A)$ exists, then

$$Vol(\partial A) > Vol(\partial B).$$
 (16)

• Example (Concentration of Lebesgue Measure in \mathbb{R}^n and Isoperimetric Inequality)

Note that the volume of a t-ball in \mathbb{R}^n is

$$Vol(tB) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} t^n \equiv c_n t^n$$

Thus the radius of ball B with the same volume of A is

$$r := \left(\frac{\operatorname{Vol}(A)}{c_n}\right)^{\frac{1}{n}}.$$

The classical isoperimetric inequality states that

$$\operatorname{Vol}(A_t)) \ge \left((r+t)\operatorname{Vol}(B)^{1/n} \right)^n$$

$$\Leftrightarrow \operatorname{Vol}(A_t) \ge c_n \left(\left(\frac{\operatorname{Vol}(A)}{c_n} \right)^{\frac{1}{n}} + t \right)^n$$

$$\Leftrightarrow \left(\frac{\operatorname{Vol}(A_t)}{c_n} \right)^{\frac{1}{n}} \ge \left(\frac{\operatorname{Vol}(A)}{c_n} \right)^{\frac{1}{n}} + t$$
(17)

• Definition (Isoperimetric Function of Probability Measure)

Define the isoperimetric function of the Lebesque measure space (\mathbb{R}^n, μ) as

$$\lambda(u) := \left(\frac{u}{c_n}\right)^{\frac{1}{n}}$$

so the classical isoperimetric inequality is equivalent to the concentration of Lebesgue measure

$$\lambda \left(\mu(A_t) \right) \ge \lambda \left(\mu(A) \right) + t.$$

2.3 Isoperimetric Problem on Unit Sphere

• Definition (Spherical Cap and its t-Blowup) Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the (n-1)-dimensional unit sphere. The intersection of a half-space and \mathbb{S}^{n-1} is called a spherical cap. In particular, for some $y \in \mathbb{R}^n$, denote the associated spherical cap as

$$H_y := \left\{ x \in \mathbb{S}^{n-1} : \langle x, y \rangle \le 0 \right\}$$

With some simple geometry, it can be shown that its t-blowup corresponds to the set

$$H_y^t := \left\{ x \in \mathbb{S}^{n-1} : \langle x, y \rangle < \sin(t) \right\}$$

Theorem 2.5 (Isoperimetry Theorem on Unit Sphere) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019]
Let A be a subset of the sphere Sⁿ⁻¹, and let σ denote the normalized area on that sphere.
Let t > 0. Then, among all sets A ⊂ Sⁿ⁻¹ with given area σ(A), the spherical caps minimize the area of the neighborhood σ(A_t), where

$$A_t := \left\{ x \in \mathbb{S}^{n-1} : \exists y \in A \text{ such that } ||x - y|| < t \right\}$$

• Remark Define a metric ρ on sphere \mathbb{S}^{n-1} as

$$\rho(x,y) := \arccos(\langle x, y \rangle)$$

Thus (\mathbb{S}^{n-1}, ρ) is a **metric space**. Let \mathbb{P} be uniform distribution on \mathbb{S}^{n-1} so that $((\mathbb{S}^{n-1}, \rho), \mathbb{P})$ is a probability space.

• Proposition 2.6 (Isoperimetric Inequalities for Uniform Distribution over Sphere) [Boucheron et al., 2013, Vershynin, 2018, Wainwright, 2019] Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the (n-1)-dimensional unit sphere. For any $t \in [0,1]$,

$$\alpha_{\mathbb{S}^{n-1}}(t) \le c \exp\left(-\frac{nt^2}{2}\right)$$
 (18)

for some constant c.

2.4 Concentration via Isoperimetric Inequalities

• **Definition** (*Isoperimetry Problem*) [Boucheron et al., 2013] Given a *metric space* \mathcal{X} with corresponding *distance* d, consider *the measure space* formed by \mathcal{X} , the σ -algebra of all *Borel sets* of \mathcal{X} , and a probability measure \mathbb{P} . Let X be a random variable taking values in \mathcal{X} , distributed according to \mathbb{P} .

The isoperimetric problem in this case is the following: given $p \in (0,1)$ and t > 0, determine the sets A with $\mathbb{P}[X \in A] \geq p$ for which the measure

$$\mathbb{P}\left[d(X,A) \ge t\right]$$

is maximal.

- Remark (Isoperimetric Inequalities)
 Even though the exact solution is only known in a few special cases, useful bounds for $\mathbb{P}[d(X,A) \geq t]$ can be derived under remarkably general circumstances. Such bounds are usually referred to as isoperimetric inequalities.
- Definition (Concentration Function) [Boucheron et al., 2013, Wainwright, 2019] <u>The concentration function</u> $\alpha:[0,\infty)\to\mathbb{R}_+$ associated with metric measure space $\overline{((\mathcal{X},d),\mathbb{P})}$ is given by

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) := \sup_{A \subset \mathcal{X}: \, \mathbb{P}(A) \ge \frac{1}{2}} \mathbb{P}\left[d(X,A) \ge t\right] = \sup_{A \subset \mathcal{X}: \, \mathbb{P}(A) \ge \frac{1}{2}} \mathbb{P}\left(A_t^c\right)$$

where $A_t := A + tB = \{x \in \mathcal{X} : d(x, A) < t\}$ is the t-blowup of $A \subset \mathcal{X}$. We simply denote it as $\alpha(t)$.

Thus the optimal A^* for isoperimetry problem is the one that attains the $\alpha(t) = \mathbb{P}(A_t^c)$.

• Theorem 2.7 (Levy's Inequalities)[Boucheron et al., 2013, Wainwright, 2019] For any Lipschitz function $f: \mathcal{X} \to \mathbb{R}$,

$$\mathbb{P}\left\{f(X) \ge Med(f(X)) + t\right\} \le \alpha_{\mathbb{P}}(t)$$

$$\mathbb{P}\left\{f(X) \le Med(f(X)) - t\right\} \le \alpha_{\mathbb{P}}(t).$$
(19)

where Med(f(X)) is the median of f(X), i.e.

$$\mathbb{P}\left\{f(X) \leq Med(f(X))\right\} \geq \frac{1}{2}, \quad and \quad \mathbb{P}\left\{f(X) \geq Med(f(X))\right\} \geq \frac{1}{2}.$$

- 2.5 Convex Distance Inequality
- 2.6 Concentration of Convex Lipschitz Functions
- 3 Concentration of Gaussian Measure
- 3.1 Gaussian Isoperimetric Theorem and Gaussian Concentration Theorem
- 3.2 Lipschitz Functions of Gaussian Variables
- 3.3 Gaussian Logarithmic Sobolev Inequality
- 3.4 Gaussian Transportation Inequality
- 3.5 Gaussian Hypercontractivity
- 3.6 Suprema of Gaussian Process
- 4 Concentration of Bernoulli Measure on the Binary Hypercube
- 4.1 Edge Isoperimetric Inequality on the Binary Hypercube
- 4.2 Bobkov's Inequality
- 4.3 Vertex Isoperimetric Inequality on the Binary Hypercube
- 4.4 Hypercontractivity: The Bonami-Beckner Inequality
- 4.5 Influence Function
- 4.6 Monotone Sets
- 4.7 Thresholding Phenonemon

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.