AL&ML Project Documentation format

1. Introduction

Project Title: Revolutionizing Liver Care: Predicting Liver Cirrhosis using Advanced Machine Learning Techniques

Team Members:

- 1. Kovvuri Vijaya Durga-Flask Backend Integration
- 2. Tarladi Somunaidu Frontend Development & UI Design
- 3. Venna Ganesh Siva Satya Model Training & Evaluation
- 4. Yenumula Mohan Sai Praveen Dataset Handling & Preprocessing

2. Project Overview

Purpose: This project provides a prediction tool to detect the risk of liver cirrhosis using machine learning techniques, enabling early diagnosis and reducing patient mortality

Features:

- 34-feature-based prediction
- User-friendly web interface
- Clean UI with dropdowns and validation
- Flask backend with integrated ML model

3. Architecture

- Frontend: HTML + CSS + JavaScript (Bootstrap for styling). It collects patient input values and submits to Flask backend.
- **Backend:** Flask (Python). Loads the trained RandomForest model and Normalizer, processes user input, returns prediction.
- **Database:** Not used. Prediction is done in-memory using trained .pkl files.

4. Setup Instructions

Prerequisites: Python 3.10 or higher

Installation:

• pip install -r requirements.txt python app.py

• Run on browser: http://127.0.0.1:5000

5.Folder Structure

6. Running the Application

- Provide commands to start the frontend and backend servers locally.
 - o **Frontend:** Navigate to http://127.0.0.1:5000 and enter the values in the form.
 - o **Backend:** python app.py

7. API Documentation

Endpoint: /predictMethod: POST

• Method: POST

• Request Body: 34 patient features

• Response: Risk or no risk

8. Authentication

Not required in this version. Open access for demo purposes

9. User Interface

- Colorful, responsive UI built with HTML, Bootstrap
- Clear feature labels
- Dropdowns for categorical input
- Prediction message displayed on next page

10. Testing

• Accuracy: 100%

• Used 80-20 train-test split

• Model: RandomForest

• Classification Report included

11. Screenshots or Demo

• https://github.com/KovvuriVijayaDurgakvd/Revolutionizing-Liver-Care-Predicting-Liver-Cirrhosis-using-Advanced-Machine-Learning-Techniques

12. Known Issues

- Accuracy might reduce on new hospital datasets due to overfitting on balanced data.
- Currently no error handling for extreme invalid inputs.

13. Future Enhancements

- Deploy on cloud (PythonAnywhere/Heroku)
- Add authentication for medical staff
- Export predictions to PDF
- Add visual graphs for liver function levels