Fale materii

Andrzej Kapanowski http://users.uj.edu.pl/~ufkapano/

WFAIS, Uniwersytet Jagielloński w Krakowie

2020

- Nie wszystkie zjawiska optyczne można wytłumaczyć na gruncie falowej teorii światła. Ważną rolę w rozwoju poglądów na naturę światła odegrało zjawisko fotoelektryczne zewnętrzne.
- Zjawisko polega na tym, że wiązka światła monochromatycznego o wystarczająco krótkiej fali padająca na płytkę metalową (fotokatodę) wyrywa z niej elektrony (fotoelektrony).
- Energia najszybszych elektronów wynosi $E_{k,max}=eV_0$, gdzie V_0 jest potencjałem hamującym.

- Główne obserwacje doświadczalne:
 - (a) energia kinetyczna fotoelektronów nie zależy od natężenia światła [powinna wzrastać z natężeniem światła];
 - (b) zjawisko występuje, jeżeli częstotliwość światła jest wyższa od pewnej częstotliwości progowej ν_0 , czyli jeżeli długość fali jest krótsza niż progowa długość fali $\lambda_0 = c/\nu_0$ [powinno występować dla dowolnej częstotliwości przy odpowiednio dużym natężeniu]; (c) gdy światło jest dostatecznie słabe, fotoelektrony powinny wykazywać opóźnienie w czasie w stosunku do początku naświetlania, niezbędne do magazynowania energii przez elektron, aby mógł wykonać pracę wyjścia z materiału katody.
- Tych obserwacji nie daje się wytłumaczyć w ramach fizyki klasycznej i teorii falowej.

2020

Równanie Einsteina

- Albert Einstein (1905) wyjaśnił efekt fotoelektryczny dzięki założeniu, że wiązka światła rozchodzi się w przestrzeni w postaci fotonów, z których każdy unosi porcję (kwant) energii hv.
- Równanie Einsteina wyraża zasadę zachowania energii w przypadku pochłonięcia pojedyńczego fotonu przez pojedyńczy elektron.

$$h\nu = E_0 + E_{k,max},\tag{1}$$

gdzie E_0 jest pracą wyjścia, czyli minimalną energią potrzebną do uwolnienia elektronu z katody.

• Z doświadczenia możemy wyznaczyć stałą Plancka $h = 6.62 \cdot 10^{-34} J \cdot s = 4.14 \cdot 10^{-15} eV \cdot s$.

4□ > 4個 > 4 = > 4 = > ■ 900

Doświadczenie Comptona

Doświadczenie Comptona

Doświadczenie Comptona

- W doświadczeniu Comptona (1923) wiązka promieniowania rentgenowskiego była kierowana na grafitową tarczę. Mierzono długość i natężenie promieniowania rozproszonego w różnych kierunkach względem kierunku wiązki padającej.
- Wiązka padająca: długość $\lambda = 71.1 pm$, energia $hc/\lambda = 17.5 keV$.
- Wiązka rozproszona: maksima dla λ i $\lambda' > \lambda$.
- Wyjaśnienie: fotony niosą pęd (Einstein 1916)

$$p = \frac{h\nu}{c} = \frac{h}{\lambda}. (2)$$

• Przesunięcie comptonowskie

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi), \tag{3}$$

gdzie ϕ jest kątem rozproszenia, m masa cząstki.

Doświadczenie Younga

- W jaki sposób światło może być falą (rozciągłą w przestrzeni) i fotonami (powstającymi i znikającymi w pewnym obszarze)?
- Różne wersje doświadczenia Younga:
 - (a) wersja standardowa (Young 1801),
 - (b) wersja jednofotonowa (Taylor 1909),
 - (c) szerokokątna wersja jednofotonowa (Lai, Diels 1992).
- Wnioski:
 - (a) światło jest generowane w źródle w postaci fotonów,
 - (b) światło jest pochłaniane w detektorze w postaci fotonów,
 - (c) światło porusza się pomiędzy źródłem i detektorem jako fala prawdopodobieństwa.

Fale materii de Broglie'a

- Postulat de Broglie'a (1924): elektron i inne cząstki można opisać jako fale materii.
- Długość fali de Broglie'a $\lambda = h/p$, p to pęd cząstki.
- Weryfikacja doświadczalna dla elektronu: Davisson, Germer, Thomson (1927).
- 1994 interferencja dla cząsteczek jodu I_2 .
- 1999 interferencja dla fulerenów C_{60} i C_{70} .
- Dyfrakcja elektronów i neutronów wykorzystywana jest do badania struktury atomowej ciał stałych i cieczy.

Funkcja falowa

- Jaka wielkość opisuje fale materii?
- Zespolona funkcja falowa $\Psi(x, y, z, t)$.
- W wielu przypadkach można zapisać $\Psi(x,y,z,t) = \psi(x,y,z) \cdot \exp(-i\omega t)$.
- Gęstość prawdopodobieństwa $|\Psi|^2 = \Psi \Psi^*$,

$$\int |\Psi|^2 dx dy dz = 1 \quad \text{(unormowanie)}. \tag{4}$$

• Prawdopodobieństwo (przypadające na jednostkę czasu) wykrycia cząstki w małej objętości wokół danego punktu w fali materii jest proporcjonalne do wartości $|\Psi|^2$ w tym punkcie.

Równanie Schrödingera

- Jak znajdujemy funkcję falową?
- Fale materii spełniają równanie Schrödingera (1926).
- Rozważmy cząstkę poruszającą się w kierunku x w obszarze, w którym działające siły powodują, że ma ona energię potencjalną U(x). W tym szczególnym przypadku r. S. możemy zapisać

$$-\frac{h^2}{8\pi^2 m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi, \tag{5}$$

gdzie E jest całkowitą energią mechaniczną cząstki.

 Równania Schrödingera nie wyprowadza się, jest to postulat mechaniki kwantowej. Jest to równanie nierelatywistyczne jednocząstkowe.

Równanie Schrödingera dla cząstki swobodnej

- Dla cząstki swobodnej U(x) = 0, $E = mv^2/2$, p = mv.
- Fala de Broglie'a $\lambda = h/p$, liczba falowa $k = 2\pi/\lambda$.
- Równanie Schrödingera sprowadza się do postaci

$$\frac{d^2\psi}{dx^2} + k^2\psi = 0, \quad k = \sqrt{\frac{8\pi^2 mE}{h^2}}.$$
 (6)

Ogólne rozwiązanie (fala biegnąca)

$$\psi(x) = C_1 e^{ikx} + C_2 e^{-ikx}. \tag{7}$$

$$\Psi(x,t) = \psi(x)e^{-i\omega t} = C_1e^{i(kx-\omega t)} + C_2e^{-i(kx+\omega t)}.$$
 (8)

• Fala biegnąca w prawo: $C_2=0$. Gęstość prawdopodobieństwa $|\Psi|^2=|C_1|^2$ ma stałą wartość wzdłuż całej osi x.

Nieskończony próg potencjału

- Niech U(x) = 0 dla x < 0, $U(x) = +\infty$ dla x > 0.
- Warunek na brzegu $\psi_2(x) = 0$ dla x > 0.
- Rozwiązanie dla x < 0 (interferencja fal)

$$\psi_1(x) = C_1 e^{ikx} - C_1 e^{-ikx} = 2iC_1 \sin(kx). \tag{9}$$

Gęstość prawdopodobieństwa

$$|\psi_1|^2 \sim \sin^2(kx), \quad k = \sqrt{\frac{8\pi^2 mE}{h^2}}.$$
 (10)

• Minima dla $kx = -n\pi$, n = 0, 1, 2, ...

Nieskończony próg potencjału

Zasada nieoznaczoności Heisenberga

 Zasada nieoznaczoności Heisenberga (1927) dla składowych położenia i pędu

$$\Delta x \cdot \Delta p_x \ge h/(2\pi),$$
 (11)

$$\Delta y \cdot \Delta p_y \ge h/(2\pi),$$
 (12)

$$\Delta z \cdot \Delta p_z \ge h/(2\pi).$$
 (13)

 Istnieje fundamentalne ograniczenie na wielkości niepewności pomiarowych, które nie wynika z niedoskonałości przyrządów pomiarowych.

Skończona bariera potencjału

Skończona bariera potencjału

- Niech U(x) = 0 dla x < 0 i x > L, $U(x) = U_0$ dla 0 < x < L.
- Warunek na energię cząstki $0 < E < U_0$.
- Rozwiązanie równania Schrödingera

$$\psi_1(x) = C_1 e^{ikx} + C_2 e^{-ikx}, \quad k = \sqrt{\frac{8\pi^2 mE}{h^2}},$$
 (14)

$$\psi_2(x) = C_3 e^{qx} + C_4 e^{-qx}, \quad q = \sqrt{\frac{8\pi^2 m(U_0 - E)}{h^2}},$$
 (15)

$$\psi_3(x) = C_5 e^{ikx}. \tag{16}$$

Zjawisko tunelowe

- Wpółczynnik odbicia $R = |C_2/C_1|^2$, T + R = 1.
- Współczynnik transmisji $T = |C_5/C_1|^2 \approx e^{-2qL}$.
- Zjawisko tunelowe (tunelowanie przez barierę) to kwantowe zjawisko przejścia cząstki przez barierę potencjału o wysokości większej niż energia cząstki.
- Zastosowanie: dioda tunelowa (szybkie wyłączanie przepływu elektronów).
- Nobel 1973: L. Esaki (tunelowanie w półprzewodnikach), I. Giaever (tunelowanie w nadprzewodnikach), B. Josephson (złącze Josephsona).
- Nobel 1986: G. Binning, H. Rohrer (STM).

Skaningowy mikroskop tunelowy (STM)

Nieskończona studnia potencjału

- Niech U(x) = 0 dla 0 < x < L, oraz $U(x) = +\infty$ dla x < 0 i x > L.
- Warunek na brzegu $\psi(x) = 0$ dla x < 0 i x > L.
- Rozwiązanie równania Schrödingera

$$\psi(x) = C_1 \sin kx, \quad k = \sqrt{\frac{8\pi^2 mE}{h^2}},$$
 (17)

$$\sin kL = 0$$
 (kwantowanie energii), (18)

$$k_n L = n\pi, \quad n = 1, 2, \dots \tag{19}$$

$$E_n = \frac{k_n^2 h^2}{8\pi^2 m} = \frac{n^2 h^2}{8mL^2}, \quad n \text{ to liczba kwantowa.}$$
 (20)

Nieskończona studnia potencjału

Nieskończona studnia potencjału

Reguła lokalizacji przestrzennej

- Lokalizacja fali w przestrzeni prowadzi do kwantyzacji, a więc do powstania stanów o dyskretnych energiach. Zlokalizowana fala może przyjmować jedynie takie energie.
- Pęd cząstki w studni $p_n = \sqrt{2mE_n} = nh/(2L)$.
- Długość fali de Broglie'a $\lambda = h/p_n = 2L/n$. Mamy analogię do fal stojących w linie sztywno zamocowanej na końcach.
- Stan podstawowy: n = 1, energia E_1 .
- Pierwszy stan wzbudzony: n = 2, energia $E_2 = 4E_1$.
- Drugi stan wzbudzony: n = 3, energia $E_3 = 9E_1$.

Zmiany energii

- Elektron w pułapce dąży do zajęcia stanu o najniższej dozwolonej energii, czyli do zajęcia stanu podstawowego.
- Elektron może zmienić stan, może nastąpić przeskok kwantowy ze stanu E_{n1} do stanu E_{n2} . Energia niezbędna do przejścia wynosi $\Delta E = E_{n2} E_{n1}$.
- Zlokalizowany elektron może zostać wzbudzony przez pochłonięcie fotonu, ale energia fotonu $h\nu$ musi być dokładnie równa różnicy energii ΔE pomiędzy poziomami.

$$h\nu = \Delta E = E_{n2} - E_{n1}$$
 (absorpcja fotonu). (21)

 Kiedy elektron osiąga stan wzbudzony, to szybko ulega deekscytacji, zmniejszając swoją energię. Elektron może zmniejszyć swoją energię przez emisję fotonu, a wtedy energia fotonu musi być równa różnicy energii między poziomami początkowym i końcowym elektronu.

Zasada korespondencji

- Ze wzrostem liczby kwantowej n prawdopodobieństwo detekcji elektronu w studni staje się coraz bardziej jednorodne. Wynik ten jest przykładem ogólnej zasady zwanej zasadą odpowiedniości (korespondencji): dla dostatecznie dużych liczb kwantowych przewidywania fizyki kwantowej przechodzą w sposób ciągły w przewidywania fizyki klasycznej (N. Bohr).
- Drugi ważny wniosek z problemu studni to niezerowa energia stanu podstawowego (energia drgań zerowych). Dla n=0 otrzymujemy co prawda E=0, ale wtedy $\psi(x)=0$, co interpretujemy jako brak cząstki w studni.

Pudło prostokątne

- Rozważmy elektron uwięziony w trójwymiarowej nieskończonej studni potencjału (pudle) o rozmiarach L_x , L_y , L_z .
- Z równania Schrödingera otrzymujemy energię

$$E_{nx,ny,nz} = \frac{h^2}{8m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right), \tag{22}$$

gdzie n_x , n_y , n_z są trzema liczbami kwantowymi opisującymi stan elektronu.

Funkcja falowa ma postać

$$\psi(x, y, z) = \psi_x(x) \cdot \psi_y(y) \cdot \psi_z(z). \tag{23}$$

• Stan podstawowy $n_x = n_y = n_z = 1$.

Atom wodoru

 Rozważmy atom wodoru, czyli parę elektron i proton, oddziałującą siłą elektrostatyczną.

$$U(r) = -\frac{e^2}{4\pi\epsilon_0 r}. (24)$$

Z równania Schrödingera otrzymujemy energię

$$E_n = -\frac{me^4}{8\epsilon_0^2 h^2 n^2}, \quad n = 1, 2, \dots$$
 (25)

- Energia stanu podstawowego $E_1 = -13.6 eV$.
- Promień Bohra $a_0 = h^2 \epsilon_0/(\pi m e^2) = 52.9 pm$.

Poziomy energetyczne atomu wodoru

Liczby kwantowe w atomie wodoru

Liczby kwantowe w atomie wodoru

Symbol	Nazwa	Dozwolone wartości
n	główna I. k.	1, 2, 3,
1	orbitalna l. k.	$\left 0,1,2,\ldots,n-1 \right $
m_l	magnetyczna I. k.	$\mid -l, -l+1, \ldots, l-1, l \mid$

Główna liczba kwantowa odpowiada odległości od jądra. Orbitalna liczba kwantowa jest miarą wielkości momentu pędu związanego ze stanem kwantowym. Magnetyczna liczba kwantowa jest związana z przestrzenną orientacją wektora orbitalnego momentu pędu.

Stan podstawowy atomu wodoru

- Liczby kwantowe n=1, l=0, $m_l=0$ (zerowy moment pędu).
- Funkcja falowa stanu podstawowego

$$\psi(r) = \frac{1}{\sqrt{\pi} a_0^{3/2}} \exp(-r/a_0). \tag{26}$$

• Radialna gęstość prawdopodobieństwa P(r),

$$P(r)dr = |\psi(r)|^2 dV = |\psi(r)|^2 4\pi r^2 dr,$$
 (27)

$$P(r) = \frac{4r^2}{a_0^3} \exp(-2r/a_0), \tag{28}$$

$$\int_{0}^{+\infty} P(r)dr = 1 \quad \text{(unormowanie)}. \tag{29}$$

Radialna gęstość prawdopodobieństwa dla stanu podstawowego atomu wodoru P(r)

