Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Computer vision

Computer Vision Problems

Image Classification

Object detection

Deep Learning on large images

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x7 +8x-1+2x-1=-5

3	0	1	2 -10	7-0	4-1	Convolution				
1	5	8	9	3-0	1-1		-5	-4	0	8
2		2	5	1	3	*	-10	-2	2	3
01	1	3	1	7	8-1		0	-2	-4	-7
4	2	1	6	2	8	3×3	-3	-2	-3(-16
2	4	5	2	3	9	-> filtor		4x	4	
		6×6	•			kenel				

Vertical edge detection

1					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		6 2			

	<u>U</u>	
	0	<u>-1</u>
1	0	-1
1	0	-1
	3×3	

<u> </u>					
0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14x4					

*

More edge detection

Vertical edge detection examples

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

→	

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

1 1 1 0 0 0 -1 -1 -1

Horizontal

1	1	1
0	0	0
-1	-1	-1

Learning to detect edges

\int	3	0	1	2	7	4
	1	5	8	9	3	1
	2	7	2	5	1	3
	0	1	3	1	7	8
	4	2	1	6	2	8
	2	4	5	2	3	9

C	en ituleuna
	$\widehat{w_1}\widehat{w_2}\widehat{w_3}$
\times	$\overline{w_4}\overline{w_5}\overline{w_6}$
	$w_7 w_8 w_9$
	7.17

M	0	
0	0	0
7	C C	-3

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

nt2p-ft1 ×n+2p-ft1

$$p=\frac{f-1}{2}$$
 $p=\frac{f-1}{2}$

Andrew Ng

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	6°	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer <u>l</u> is a convolution layer:

```
f^{[l]} = filter size
                               p^{[l]} = padding
                                                                                                                                                                                                                                                                                                                                                                                      Output:
                                 s^{[l]} = \text{stride}
                           n_c^{[l]} = number of filters
→ Each filter is: fth x ha
                                 Activations: Q > NH × NG × NG
                                                                                                                                                                                                                                                                                                                                                                                                         ATEN > M × NH × NW × NC
                               Weights: f^{(1)} \times f^{(2)} \times \Lambda_c^{(1-1)} \times \Lambda_c^{(1)}
bias: \Lambda_c^{(1)} - (1,1,1,\Lambda_c^{(1)}) f^{(1)} = f^{(1)} + f^
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nc x n H x Nw
```


A simple convolution network example

Example ConvNet

Types of layer in a convolutional network:

```
Convolution (CONV) ←
Pooling (POOL) ←
Fully connected (FC) ←
```


Pooling layers

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

1 3 2 1
2 9 1 1
1 4 2 3
5 6 1 2

Summary of pooling

Hyperparameters:

f: filter size s: stride

Max or average pooling

$$\begin{array}{c}
N_{H} \times N_{W} \times N_{C} \\
N_{H} - f + 1 \\
\times N_{C}
\end{array}$$

Convolutional neural network example

Neural network example

Andrew Ng

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	608 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 🥌
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J