ЛАБОРАТОРНА РОБОТА № 5 ДОСЛІДЖЕННЯ МЕТОДІВ АНСАМБЛЕВОГО НАВЧАННЯ

Гітхаб: https://github.com/PanchukPetro/SShILabsPanchuk/tree/main/Lab5

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити методи ансамблів у машинному навчанні

Завдання 2.1. Створення класифікаторів на основі випадкових та гранично випадкових лісів

Використовувати файл вхідних даних: data_random_forests.txt, побудувати класифікатори на основі випадкових та гранично випадкових лісів.

Графік вхідних даних

Тренувльний Графік rf

Змн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехніка».24.121.02.000 –			2.000 – I∏3		
Розр	<u>,</u> Об.	Панчук П.С		, ,	Г	Літ.	Арк.	Аркушів		
Пере	евір.	Голенко М.Ю			СШ Пабараториа работа		1 14	14		
Керіс	зник				СШІ Лабораторна робота					
Н. контр.					Nº5	ФІКТ Гр. ІПЗ-21-3				
Зав.	каф.									

Тестовий Граіфк erf

Тестові точки даних rf

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Консольний аутпут rf

Тестовий Графік rf

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Тренувальний графік erf

Тестові точки даних erf

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Консольний аутпут erf

Програмний код:

```
import argparse
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import classification_report
from visualize classifier import visualize classifier

def build_arg_parser():
    parser = argparse.ArgumentParser(description='Classify data using Ensemble Learning
techniques')
    parser.add_argument('--classifier-type', dest='classifier_type',required=True,
choices=['rf','erf'])
    return parser

if __name__ == '__main__':
    # Вилучення вхідних аргументів
    args = build arg parser().parse args()
    classifier type = args.classifier type

# У файлі data_random_forests.txt кожен рядок містить значення розділені комою.
# Перші два значення відповідають вхідним даним, останне — цільовій мітці.
# У цьому наборі даних містяться три різні класи. Завантажимо дані із цього файлу.

# Завантаження вхідних даних
    input file = 'data_random_forests.txt'
    data = np.loadtxt(input file, delimiter=',')
    X, y = data[:, -1], data[:, -1]

# Розіб'ємо вхідні дані на три класи.
```

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

```
class names = ['Class-0', 'Class-1', 'Class-2']
print("\n" + "#" * 40)
for datapoint in test_datapoints:
    probabilities = classifier.predict_proba([datapoint])[0]
     predicted class = 'Class - ' + str(np.argmax(probabilities))
print('\n Datapoint: ', datapoint)
print('Predicted class: ', predicted class)
```

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Арк.

Завдання 2.2. Обробка дисбалансу класів

Використовуючи для аналізу дані, які містяться у файлі data_imbalance.txt проведіть обробку з урахуванням дисбалансу класів.

Програмний код:

```
data = np.loadtxt(input_file,delimiter=",")
X,y = data[:,:-1], data[:,-1]
class 1 = np.array(X[y==1])
plt.scatter(class 0[:, 0], class 0[:, 1], s=75, facecolors='black', edgecolors='black',
plt.scatter(class_1[:, 0], class_1[:, 1], s=75, facecolors='white', edgecolors='black',
# Класифікатор на основі гранично випадкових лісів params = {'n estimators':100, 'max depth':4, 'random state': 0}
if len(sys.argv) > 1:
    if sys.argv[1] == 'balance':
        params = {'n_estimators':100, 'max_depth':4, 'random_state': 0, 'class_weight':
#Обчислення показників ефективності класифікатора class_names = ['Class-0','Class-1']
print("\n Classifier performance on training dataset \n")
print(classification report(y train,classifier.predict(X train), target names = class names))
 olt.show()
```

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Графік вхідних даних

Графік для тестового набору

		Панчук П.С				Арк.	
		.Голенко М.Ю			ДУ «Житомирська політехніка».24.121.02.000 – ІПЗ	۰	
Змн.	Арк.	№ докум.	Підпис	Дата	1 ''		

###########	###########	*##########	######	
Classifier	performance	on trainin	g dataset	
	precision	recall	f1-score	support
Class-0	1.00	0.01	0.01	181
Class-1	0.84	1.00	0.91	944
accuracy			0.84	1125
macro avg	0.92	0.50	0.46	1125
weighted avg	0.87	0.84	0.77	1125
###########	##########	###########	######	
Classifier	performance	on test da	taset	
	precision	recall	f1-score	support
Class-0	0.00	0.00	0.00	69
Class-1	0.82	1.00	0.90	306
			0.00	705
accuracy		0.50	0.82	375
macro avg				
weighted avg	0.67	0.82	0.73	375
###########	#########	*##########	#####	

Оцінка перформанса класифікатора

Виконуємо python LR_5_Task_2.py balance

Графік тренувальних даних, збалансований

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Графік тестових даних, збалансований

***************************************	###########	######	
Classifier performanc	e on trainin	ng dataset	
precisio	n recall	f1-score	support
Class-0 0.4	4 0.93	0.60	181
Class-1 0.9	8 0.77	0.86	944
accuracy		0.80	1125
macro avg 0.7	1 0.85	0.73	1125
weighted avg 0.8	9 0.80	0.82	1125
#######################################	###########	######	
Classifier performanc	e on test da	itaset	
precisio	n recall	f1-score	support
Class-0 0.4	5 0.94	0.61	69
Class-1 0.9	8 0.74	0.84	306
accuracy		0.78	375
macro avg 0.7	2 0.84	0.73	375
weighted avg 0.8	8 0.78	0.80	375
#######################################	###########	######	

Оцінка перформанса збалансованого класифікатора

		Панчук П.С		
		.Голенко М.Ю		
Змн.	$Ap\kappa$.	№ докум.	Підпис	Дата

Завдання 2.3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку

Використовуючи дані, що містяться у файлі data_random_forests.txt. знайти оптимальних навчальних параметрів за допомогою сіткового пошуку.

Програмний код:

```
X, y = data[:, :-1], data[:, -1]
class 1 = np.array(X[y == 1])
class 2 = np.array(X[y == 2])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=5)
# Визначимо метрики, які використовуватимемо для оцінки. metrics = ['precision weighted', 'recall weighted']
results = classifier.cv_results_
for mean_score, params in zip(results['mean_test_score'], results['params']):
```

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

```
##### Searching optimal parameters for recall_weighted
Grid scores for the parameter grid
{'max_depth': 2, 'n_estimators': 100} --> 0.842962962963
{'max_depth': 4, 'n_estimators': 100} --> 0.837037037037037
{'max_depth': 7, 'n_estimators': 100} --> 0.8414814814814815
{'max_depth': 12, 'n_estimators': 100} --> 0.8296296296296297
{'max_depth': 16, 'n_estimators': 100} --> 0.8148148148149
{'max_depth': 4, 'n_estimators': 25} --> 0.842962962962963
{'max_depth': 4, 'n_estimators': 50} --> 0.83555555555555555
{'max_depth': 4, 'n_estimators': 100} --> 0.837037037037037
{'max_depth': 4, 'n_estimators': 250} --> 0.8414814814814815
Best parameters: {'max_depth': 2, 'n_estimators': 100}
Performance report:
             precision recall f1-score
                                           support
                0.94
                         0.81
        0.0
                                    0.87
                                                79
        1.0
                0.81
                          0.86
                                    0.83
                0.83 0.91
        2.0
                                    0.87
                                    0.86
   accuracy
                                               225
  macro avg
                0.86
                         0.86
                                    0.86
weighted avg
                 0.86
                           0.86
                                     0.86
                                               225
```

Інформація після виконання коду

Завдання 2.4. Обчислення відносної важливості ознак

Програмний код:

.Голенко М.Ю

№ докум.

Підпис

Лата

Змн.

 $Ap\kappa$.

```
feature_names = housing_data.feature_names

# Нормалізуемо значення відносної ваги ознак
feature_importances = 100.0 * (feature_importances / max(feature_importances))
index_sorted = np.flipud(np.argsort(feature_importances))
pos = np.arange(index_sorted.shape[0]) + 0.5

plt.figure()
plt.bar(pos, feature_importances[index_sorted], align="center")
plt.xticks(pos, [feature_names[i] for i in index_sorted], rotation=45)
plt.ylabel("Relative Importance")
plt.xlabel("Features")
plt.title("Feature Importances")
plt.show()
```

Я використав California_housing, бо boston_housing було видалено з sklearn

Графік важливостей ознак

```
ADABOOST REGRESSOR
Mean squared error = 1.18
Explained variance score = 0.47
```

Виведення в консоль

		Панчук П.С		
		.Голенко М.Ю		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів

Програмний код:

```
mport numpy as np
input_file = 'traffic data.txt'
# Розіб'ємо дані на навчальний та тестовий набори.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=5)
test datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test datapoint encoded = [-1] * len(test datapoint)
 for i, item in enumerate(test_datapoint):
    if item.isdigit():
```

Mean absolute error: 7.42 Predicted traffic: 26

Виведення в консоль

		Панчук П.С			
		.Голенко М.Ю			ДУ «Жі
Змн.	Арк.	№ докум.	Підпис	Дата	, ,

Арк.