Set Notation

Abyan Majid

June 14, 2023

A set is a collection of objects that are called "elements" of the set.

A set is denoted as $A = \{a_1, a_2, a_3, a_4\}$, where a is an element of the set A. There can be infintely many elements in a set. You can write "..." to denote that a set goes on forever, like so: $B = \{b_1, b_2, b_3, ...\}$.

1 Number sets

- \mathbb{N} is the set of "natural numbers": $\mathbb{N} = \{0, 1, 2, 3, ...\}$ (All positive integers and zero)
- \mathbb{Z} is the set of "integers": $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ (All integers and zero)
- \mathbb{Q} is the set of "rational numbers" (eg. $\frac{1}{2}, -\frac{5}{3}, 0.3$) (All numbers of the form $\frac{n}{m}$ where n and m are integers and $m \neq 0$. In other words, all fraction of two integers where the denominator is not 0.)
- \mathbb{R} is the set of "real numbers": (eg. $\pi, e, -\sqrt{5}$)
 (All rational numbers and all irrational numbers)
 To review: Irrational numbers, such as $\sqrt{2}$ and π , are numbers that can't be expressed as $\frac{n}{m}$ where n and m are integers.
- C is the set of "complex numbers": (eg. 1 + 2i, 5i, 3 + 4i)
 (Every number set mentioned above combined, plus all imaginary numbers)
 To review: Imaginary numbers, such as 3i and −2i, are numbers of the form bi, where b is a real number and i is the imaginary unit defined as √-1.

2 Two-sets notation

- "€" should be read as "is an element of"
- "⊆" should be read as "is a subset of"
- "C" should be read as "is strictly as subset of"
- "⊇" should be read as "contains"

- "∉" should be read as "is not an element of"
- "\(\mathcal{Z}\)" should be read as "is not a subset of"
- " \cup " denote the **union** of two sets, and it is the set of elements of either one or both of the sets. Example: $\{1,2,3\} \cup \{3,4,5\} = \{1,2,3,4,5\}$
- " \cap " denote the **intersection** of two sets, and it is the set of elements present in both sets. Example: $\{1,2,3\} \cap \{2,3,4\} = \{2,3\}$
- "\" denote the **subtraction** of one set from another, and it should be read as "**minus**" or "without"

Example: $\{1, 2, 3\} \setminus \{3, 4, 5\} = \{1, 2\}$

3 Interval notation

An interval is a set of real numbers that lie between two given values.

There's two way in which you can denote an interval:

- 1. First, we can write $\{x \in \mathbb{R} \mid a \le x \le b\}$. Here, we're saying x is an element of the set of real numbers R which ranges from and including a and b. And, when we do not want to include a and b, we write < instead of \le , like so: $\{x \in \mathbb{R} \mid a < x < b\}$
- 2. A shorter way to express the interval is by writting [a,b] instead, when a and b are included. When a and b are not included, we can write (a,b).

So, in summary:

- "[" and "]" replaces "\le ", denoting that the interval INCLUDES the endpoints.
- "(" and ")" replaces "<", denoting that the interval does NOT INCLUDE the endpoints.

Of course, you can also write (a, b] and [a, b), just as you can write $a < x \le b$ and $a \le x < b$

