1 Introduction

Définition 1

Deux figures F et F' sont symétriques par rapport à un point O lorsqu'elles se superposent en effectuant un demi-tour autour de ce point.

On dit que O est le centre de la symétrie.

Définition 2

Soit O un point. Par la symétrie de centre O :

- Le symétrique d'un point C distinct de O est le point C' tel que O est le milieu du segment [CC']
- Le symétrique du point 0 est lui-même.

2 Propriétés de la symétrie centrale

Propriété 1

- Le symétrique d'une droite par rapport à un point est une droite : on dit que la symétrie centrale conserve les alignements.
- Si deux droites sont symétriques par rapport à un point, alors elles sont parallèles.

Exemple 1

- Les points A, B et C sont alignés, donc leurs symétriques A', B' et C' sont aussi alignés.
- La droite (AB) est parallèle à la droite (A'B').

Propriété 2

Le symétrique d'un segment par rapport à un point est un segment de même longueur : on dit que la symétrie centrale conserve les longueurs.

Exemple 2

[MN] et [M'N'] sont symétrique par rapport à O_2 . Donc MN = M'N'.

Propriété 3

Deux figures symétriques par rapport à un point ont la même forme. On dit que la symétrie centrale conserve les angles, les périmètres et les aires.

Exemple 3

Les figures F_1 et F_2 sont symétriques par rapport au point O. Donc F_1 et F_2 ont le même périmètre, la même aire et leurs angles ont même mesure.

