FUNZIONI IN PIU' VARIABILI

FUNZIONI $f: \mathbb{R}^2 \to \mathbb{R}$

ESERCIZIO 1 Determinare il dominio delle seguenti funzioni in due variabili, specificando le sue proprietà topologiche (aperto, chiuso, limitato, compatto, connesso per archi e semplicemente connesso).

$$f(x,y) = \sqrt{(2y+x)(2y-x)} \quad f(x,y) = \frac{\sqrt{16-x^2-y^2}}{\sqrt{x^2+y^2-9}} \quad f(x,y) = \frac{1}{x^2+3y^2-1}$$
$$f(x,y) = \ln(x^2-3y^2-1) \quad f(x,y) = \sqrt[4]{y-3x^2} \quad f(x,y) = \ln(2-|x|)$$

ESERCIZIO 2 Calcolare i seguenti limiti:

1)
$$\lim_{(x,y)\to(0,0)} \log(\sqrt{x^2+y^2})$$
 2) $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$
3) $\lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2}$ 4) $\lim_{(x,y)\to(0,0)} \frac{\log(1+x^3y^2)}{x^3y^2}$

Suggerimento. Per 1) e 3) provare con le coordinate polari; per 2) con le rette e per 4) con sviluppi di Taylor.

ESERCIZIO 3

- 1. Calcolare, mediante la definizione, le derivate direzionali nell'origine della funzione $f(x,y) = e^{y+x^2}$ (versore $v = (\cos \alpha, \sin \alpha)$).
- 2. Specificare i valori ottenuti per $\alpha = 0, \pi/4, \pi/3, \pi/2$.
- 3. Mostrare che $\frac{\partial f}{\partial v}(0,0) = \nabla f \cdot {}^t v$. (Osservare che le funzioni f_x e f_y sono continue).

ESERCIZIO 4 Sia data la funzione

$$f(x,y) = \begin{cases} \frac{y(x^2+y^2)}{x^2} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

- 1. Studiarne la continuità in tutti i punti del dominio. Attenzione: per la continuità vanno analizzati tutti i punti dell'asse y.
- 2. Calcolare le derivate parziali nell'origine (utilizzando la definizione).

3. Verificare che la funzione $\frac{\partial f}{\partial x}$ non è continua nell'origine.

Osservazione. Dedurne allora che: l'esistenza delle derivate parziali in un punto non comporta la continuità della funzione in quel punto. Osservare che le derivate parziali non sono buone (non sono continue).

ESERCIZIO 5 Con osservazioni relative al segno e al dominio, dire se le seguenti funzioni hanno un punto di massimo o minimo (relativo o assoluto) nell'origine.

$$f(x,y) = x^2 e^y$$
 $f(x,y) = y e^{x^2}$
 $f(x,y) = \ln(1 - x^2 - y^2)$ $f(x,y) = \ln(1 - xy)$

Per le prime due funzione dire se ammettono massimo assoluto sul dominio; per le seconde due dire se ammettono minimo assoluto su dominio.

ESERCIZIO 6 Data la funzione $f(x,y) = y^2 \cos x + \ln(x^2 + y^2)$, dopo aver determinato il dominio, calcolare le sue derivate parziali prime e seconde. La funzione è differenziabile sul suo dominio?

ESERCIZIO 7 Sia data la funzione in 3 variabili $f(x, y, z) = x^2 z + \ln z + e^y z$. Calcolarne il dominio e il gradiente.

ESERCIZIO 8 Trovare una funzione f(x,y) tale che $f_x = e^x \ln y + x^3$ e $f_y = \frac{e^x}{y}$.

ESERCIZIO 9 Scrivere lo sviluppo di Maclaurin al secondo ordine delle seguenti funzioni in due variabili:

- 1. $f(x,y) = \sin(xy) + ye^x.$
- 2. $f(x,y) = \cos x e^{y^2}$.
- 3. $f(x,y) = \ln(1+x^2+3y^2) + 4x^2$.

Stabilire se l'origine è massimo o minimo relativo per esse.

Suggerimento. Utilizzare gli sviluppi di Maclaurin già noti per le funzioni in una variabile.

ESERCIZIO 10 Calcolare i punti di massimo, minimo e sella relativi delle seguenti funzioni, sui loro domini:

- 1. $f(x,y) = 4x^2 2xy + y^2 y^3$.
- 2. $f(x,y) = (x-y)^2 + x^4$.

3. $f(x,y) = (x-y)^2 + x^3$.

ESERCIZIO 11 Sia data la funzione in due variabili f(x,y) = x(x+1)y.

- 1. Determinare il suo dominio, il segno e gli estremanti locali sul dominio.
- 2. Calcolare i massimi e minimi assoluti sull'insieme $T=\{(x,y)|\ 0\leq x\leq 1,\ 0\leq y\leq x^2\}.$

Suggerimento. Per risolvere il secondo punto vanno analizzati i bordi del dominio. Tenere in considerazione le equazioni dei bordi e il segno della funzione su T.

ESERCIZIO 12 T.E.

Sia data la funzione $f(x,y) = x^2y - xy - 3x + 2$.

- 1. Tra i punti stazionari di f determinare quelli di sella.
 - 2. Dato il punto $P_0 = (-1, 0)$, determinare il valore delle derivate direzionali in P_0 .
 - 3. Determinare il piano tangente al grafico di f nel punto di coordinate (1, -2, -1).
 - 4. Verificare che la retta r: x = 0, z = 2 è contenuta nel grafico di f.

ESERCIZIO 13 QUIZ

- Q1. La funzione $f(x,y) = x^4 y^4$
 - 1. ammette un massimo
 - 2. ammette due minimi
 - 3. ha derivate parziali nulle in infiniti punti
 - 4. la matrice Hessiana è diagonalizzabile in ogni punto.

Q2. Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}$ definita da $f(x,y) = e^{x^2+y^2-1}$. Lo sviluppo di Taylor al primo ordine di f in (0,0) è:

3

- 1. $e^{-1} + x + y$.
- $2. \ 2x + 2y.$

- 3. e^{-1} .
- 4. $e^{x^2} + e^{y^2}$.

Q3. Sia data la funzione $f(x,y) = y^2 + 3x^2 - x^3$. Quale delle seguenti affermazioni è vera?

- 1. $\nabla_P f \neq (0,0)$, per ogni $P \in \mathbb{R}^2$.
- 2. (0,0) è un punto di massimo per f.
- 3. $\frac{\partial f}{\partial x}$ si annulla in infiniti punti.
- 4. (2,1) è un punto stazionario per f.

FUNZIONI $F: \mathbb{R}^n \to \mathbb{R}^m$

ESERCIZIO 1 Sia data la funzione $F:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ definita come

$$F(x,y) = (\sqrt{y-x}, \ln x, y^2 e^x).$$

- 1. Determinare il dominio di F, specificando le sue proprietà topologiche (aperto, chiuso, limitato, compatto, connesso per archi).
- 2. Calcolare la Jacobiana di F.

ESERCIZIO 2 Sia data la funzione in due variabili $f: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$f(x,y) = x^2 - e^{x+y}.$$

- 1. Calcolare la matrice Jacobiana di f (osservando che coincide con il gradiente).
- 2. Detta $F:\mathbb{R}^2 \to \mathbb{R}^3$ la superficie grafico di f, calcolare la Jacobiana di F.
- 3. Calcolare l'equazione del piano tangente a F nel punto (0,0,-1).

ESERCIZIO 3 QUIZ

1) Sia data la superficie \mathcal{S} immagine della superficie parametrica : $f(u,v)=(v\cos u,v\sin u,-uv)$ e sia A(1,0,0) un suo punto.

- 1. La jacobiana di f in A ha rango 1.
- 2. Il piano tangente a f in A è ortogonale all'asse delle x.
- 3. Le colonne della matrice jacobiana calcoalta in (0,1) sono linearmente indipendenti.
- 4. Non esistono curve piane contenute in S.
- 2) É data la funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita da

$$f(x,y) = (x^2 + 2y, x + e^y).$$

Quale delle seguenti affermazioni è vera?

- 1. La matrice jacobiana di f è invertibile in (1,0).
- 2. f è un'applicazione lineare.
- 3. f non è differenziabile (1,0).
- 4. La matrice jacobiana di f ha determinante nullo in (1,0).

ESERCIZIO 4 In \mathbb{R}^3 sia dato il cilindro di equazione $y = x^2$.

- 1. Scrivere una parametrizzazione regolare del cilindro.
- 2. Calcolare la jacobiana della parametrizzazione.
- 3. Scrivere l'equazione del piano tangente al cilindro nel punto (1,1,0). Mostrare che tale piano è tangente a tutti i punti del tipo (1,1,h), con $h \in \mathbb{R}$.

ESERCIZIO 5 Scrivere la superficie che si ottiene ruotando la retta (1 + t, 1 + t, t) attorno all'asse z. Calcolare poi il piano tangente nel punto che si ottiene per t = 4.

ESERCIZIO 6 Scrivere la superficie che si ottiene ruotando la curva $z = e^y, x = 0$ attorno all'asse z.