Исторические шифры

До появления компьютеров криптография состояла из алгоритмов на символьной основе. Различные криптографические алгоритмы либо заменяли одни символы другими, либо переставляли символы. Лучшие алгоритмы делали и то и другое много раз. В настоящее время алгоритмы стали работать с битами, а не с символами, поэтому размер алфавита сократился до двух элементов. При этом, многие криптографические алгоритмы до сих пор комбинирует подстановки и перестановки:

- 1) шифры замены (подстановки) заменяют один символ открытого текста на другой символ в зашифрованном тексте.
- 2) шифры перестановки меняют местами позиции символов открытого текста.

Будем использовать следующие обозначения.

- K множество ключей. Каждый ключ $k \in K$ определяет некоторую преобразование E (encryption) на множестве открытых текстов PT (plaintext) и обратное преобразование D (deciphering) на множестве зашифрованных сообщений CT (ciphertext).
- E(k, p) шифртекст открытого текста p, полученный в результате использования функции шифрования E с заданным ключом k;
- D(k,c) открытый текст, соответствующий шифртексту c, полученный в результате использования функции расшифрования D с заданным ключом k.

Рассмотрим применение замены и перестановки символов в криптографических алгоритмах на примере некоторых исторических шифров.

Шифр Цезаря (шифр сдвига, шифр простой замены). В I веке н. э. Юлий Цезарь во время войны с галлами, в переписке с Римом, заменял в сообщении первую букву латинского алфавита A на четвертую D, вторую В – на пятую Е, и т.д. последнюю – на третью в соответствии со следующей таблицей

		_ 1																							
A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
D	Е	F	G	Н	Ι	J	K	L	M	Ν	О	P	0	R	S	Т	U	V	W	X	Y	Z	Α	В	С

т.е. каждая буква латинского алфавита сдвигается циклически вправо на k=3 позиций.

Например, донесение Ю. Цезаря Сенату об одержанной им победе над Понтийским царем выглядело так:

YHQL YLGL YLFL

("Veni, vidi, vici" – лат. "Пришел, увидел, победил").

Понятно, что выбор ключа k = 3 не является единственно возможным. При других ключах k имеем E(25, IBM) = HAL, E(6, IBM) = OHS.

Нетрудно показать, что функция расшифрования D(k, c) = E(26 - k, c). Исключая слабый ключ k = 0, множество ключей имеет мощность |K| = 25.

Тарабарская грамота. Первое известное применение тайнописи в России относится к XIII в. Эту систему называли «тарабарской грамотой». В этой системе согласные буквы заменяются по схеме:

Б	В	Γ	Д	Ж	3	К	Л	M	Н
Щ	Ш	Ч	Ц	X	Φ	T	С	P	П

Например, ШЧУ – шифр слова ВГУ.

Еще один пример шифра простой замены — *модулярный (аффинный) шифр*. Выберем число a, взаимно простое с модулем m = 26. Пусть p — буква английского алфавита, отождествленная со своим порядковым номером (0, 1, ..., 25). Тогда $E((a,k), p) = ap + k \pmod{m}$, где k — фиксировано. В этом случае ключом является пара чисел (a, k). Условие взаимной простоты необходимо для обратимости шифра.

Криптосхема, принадлежащая **Л. Хиллу**, основана на линейной алгебре. При шифровании заменяются пары букв (биграммная криптосхема). Осуществим цифровую кодировку букв английского алфавита: A = 0, B = 1, C = 2, ..., Z = 25. Выберем какую-нибудь обратимую по модулю 26 квадратную матрицу M порядка 2. Это — ключ. Пусть, например,

$$M = \begin{pmatrix} 2 & 5 \\ 3 & 3 \end{pmatrix}, M^{-1} = \begin{pmatrix} 17 & 15 \\ 9 & 20 \end{pmatrix}.$$

Биграммы будем записывать в виде матриц-столбцов. Например,

$$p_1 = {H \choose E} = {7 \choose 4}, p_2 = {L \choose P} = {11 \choose 15}$$

Шифрование биграмм определим формулой c = Mp. Зашифруем, для примера, слово $p = \text{HELP} = p_1p_2$, тогда c = IHTA.

Шифр Виженера. Ключ образуется последовательностью букв $k_1k_2 \dots k_d$ (слово-лозунг), при этом для i-ой буквы сообщения a функция шифрования $f_i(a) = (a + k_i) \pmod{m}$. Для реализации этой формулы можно воспользоваться следующей таблицей, которая устроена следующим образом: в первой строке выписывается весь алфавит, в каждой следующей осуществляется циклический сдвиг на одну букву. Так получается квадратная таблица, число строк которой равно числу столбцов и равно числу букв в алфавите.

a	б	В	Г	Д	e	ë	ж	3	И	й	к	Л	M	Н	0	П	p	c	T	y	ф	X	Ц	Ч	Ш	щ	ъ	Ы	Ь	Э	Ю	Я
б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	р	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a
В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	р	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б
Г	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	ю	Я	a	б	В
Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ
e	ë	ж	3	И	й	К	Л	M	Н	o	П	р	c	Т	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д
ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	T	y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e
ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	y	ф	X	Ц	Ч	Ш	Щ	ъ	ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë
3	И	й	К	Л	M	Н	o	П	p	С	Т	y	ф	X	Ц	ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж
И	й	К	Л	M	Н	o	П	p	c	T	y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	ю	Я	a	б	В	Γ	Д	e	ë	ж	3
й	К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И
К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й
Л	M	Н	o	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К
M	Н	o	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л
Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M
0	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н
П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o
p	c	Т	y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П
c	Т	y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p
T	y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c
y	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	T
ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	T	y
X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	у	ф
Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	T	у	ф	X
Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	y	ф	X	Ц
	Щ		Ы			Ю		a	б	В	Γ	Д	e	ë	Ж	3	И	й	К		M	Н	o	П	p	c	T	y	ф	X	Ц	Ч
Щ	ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш
ъ	Ы	Ь	Э	Ю	Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	o	П	p	c	T	у	ф	X	Ц	Ч	Ш	Щ
Ы	Ь	Э	ю	Я	a	б	В	Γ	Д																							
Ь	Э	Ю	Я	a	б	В	Γ	Д																		X						
3	Ю	Я	a	б	В	Γ	Д														c	Т	у	ф	X	Ц	Ч	Ш	Щ	ъ	Ы	Ь
Ю	Я	a	б	В	Γ	Д	e	ë	ж	3	И	й	К	Л	M	Н	o	П	p	c	Т	у	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э
Я	a	б	В	Γ	Д	e	ë	Ж	3	И	й	К	Л	M	Н	0	Π	p	c	T	y	ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю

Чтобы зашифровать сообщение, слово-лозунг подписывается с повторением над буквами сообщения. Чтобы получить шифрованный текст, находят очередной знак лозунга, начиная с первого, в вертикальном алфавите, а соответствующий ему знак сообщения в горизонтальном. На пересечении выделенных столбца и строки находим зашифрованную букву.

Например, зашифруем фразу «криптографические методы» с помощью слова-лозунга «вгу»:

В	Γ	у	В	Γ	у	В	Γ	y	В	Γ	у	В	Γ	y	В	Γ	y	В	Γ	у	В	Γ
К	p	И	П	Т	o	Γ	p	a	ф	И	Ч	e	c	К	И	e	M	e	Т	o	Д	Ы
M	У	Ь	c	X	В	e	У	у	Ц	Л	К	ж	ф	Ю	К	3	a	ж	X	В	ë	Ю

Наряду с подстановочными шифрами известны так называемые перестановочные (транспозиционные) шифры. При этом буквы сообщения остаются прежними, но меняют свое расположение в тексте.

Постолбцовая транспозиция (XIX век). К классу «перестановка» относится шифр «постолбцовая транспозиция». В данный прямоугольник $[m \times n]$ вписывается сообщение по строкам. Шифрованный текст найдем, если будем выписывать буквы в порядке следования столбцов.

Например, зашифруем фразу «Без труда не выловишь рыбку из пруда». Решение. Фраза содержит 30 символов с учетом тире. Ее можно записать в прямоугольники размером 2×15 , 3×10 , 5×6 и т. д. Выберем прямоугольник 5×6 .

б	e	3	Т	р	у
Д	a	Н	e	В	Ы
Л	O	В	И	Ш	Ь
p	Ы	б	К	y	И
3	П	р	У	Д	a

Выписываем шифрованное сообщение по столбцам: бдлрз еаоып знвбр теику рвшуд уыьиа.

Лабораторная работа 1

Цель работы: изучить алгоритмы, используемые в классических криптосистемах.

- **Задания. 1.** Расшифровать криптограмму Цезаря (неалфавитные символы (пробелы, знаки препинания, цифры) не преобразуются.).
- **2.** Расшифровать криптограмму Виженера, если для шифрования было использовано слово-лозунг «шифр».
- **3.** Реализовать схему шифрования посредством постолбцового варианта маршрутной транспозиции.

Входные параметры: сообщение, ключ (количество строк и столбцов в прямоугольнике, используемом для шифрования).

Выходные параметры: шифртекст.

4. Реализовать схему расшифрования посредством постолбцового варианта маршрутной транспозиции.

Входные параметры: шифртекст, ключ (количество строк и столбцов в прямоугольнике, используемом для шифрования).

Выходные параметры: открытый текст.

Вариант 1

- 1. Нгн ргцнг нултхсёугчлв ескрлног тсфоз чцржгпзрхгоярюш угдсх глзулнгрфнсёс пгхзпгхлнг л аознхусхзшрлнг Носжг Ызррсрг (1916–2001).
 - 2. Ачаякч шящдцрцы эш анбьб, и ьюшцэп бр яюблэ.

Вариант 2

- 1. Е угдсхгш Носжг Ызррсрг «Пгхзпгхлъзфнгв хзсулв февкл» л «Хзсулв февкл е фзнузхрюш флфхзпгш» (1949) фсжзуйлхфв сдсдьзрлз дсояысёс стюхг фскжгрлв ылчусе, ргнстозррсёс жс рзёс, л угкугдгхюегзхфв тсорсщзррюм пгхзпгхлъзфнлм гттгугх жов нултхсёугчлъзфнлш кгжгъ.
 - 2. Есе яйкщйшнжвч ъгъёящэ, ш ащьжкщы ацфюбнб.

Вариант 3

- 1. Грголклуцв угрзз фцьзфхесегеылз ылчую, Носж Ызррср тулыио н еюесжц, ъхс дсояылрфхес лк рлш (жгйз фгпюз фосйрюз ылчую) фнсрфхуцлусегрю лк тусфхюш хлтлърюш нсптсрзрх, сфцьзфхеовбьлш кгпзрц л тзузфхгрсенц.
 - 2. Ъъуыжн дядььюшцрх ньых ъъуыжлг юэрврёеу.

Вариант 4

- 1. Дсозз ёоцденсз терлпгрлз хсёс, нгн жеойрю фхуслхяфв ргжийрюз ылчую, тулезос Ызррсрг н еюжзозрлб жецш сдьлш тулрщлтсе тефхусзрлв нултхсёугчльзфнлш тузсдугксегрлм: тзузпзылегрлз л угффзлегрлз.
 - 2. Еьшбух вщгыг юэ щгфбфёп, ш цфдпсавч.

Вариант 5

- 1. Тзузпзылегряз скргъгзх цфосйрзряз ефзескпсйрюш февкзм пзйжц длхгпя схнуюхсёс я ылчусегррсёс хзнфхсе. Угффзяегряз тежугкцпзегзх угфтусфхугрзряз еолвряв сжрсёс длхг схнуюхсёс хзнфхг рг дсояысз ълфос длхсе ылчусегррсёс хзнфхг.
 - 2. Ымщ вбфф юэ хгчэы, жре ьб ажхгчэы.

Вариант 6

- 1. Носж Ызррср етзуеюз пгхзпгхлъзфил фхусёс фчсупцолусего естусфю с хзсузхлъзфисм фхсмисфхл ылчусе. Г лпзррс, ргфисоянс цфхсмълесм веовзхфв ылчуфлфхзпг жов косцпюыозррлиг, сдогжгбьзёс рзсёугрльзррюпл узфцуфгпл (еузпзрзп, тгпвхяб л х. ж.)?
 - 2. Лхщюфн э гиьш тйн дхинжблы.

Вариант 7

- 1. Г фцьзфхецбх ол ылчуфлфхзпю, е нехеуюш косцпюыозррлн рз теоцълх рлнгнем лрчсупгщлл, фнеояне дю ср рл тзузшегхюего ылчухзнфх? Схезх снгкгофв теосйлхзоярюп. Ылчуфлфхзпю, сдогжгбълз хгнлп фесмфхесп, ргкюегбхфв фсезуызррс фзнузхрюпл.
 - 2. Ён чяъчещ, пыг фэффь, ш лгтжщэ, зкч ёфэффь.

Вариант 8

- 1. Флипзхулъргв ылчуфлфхзпг флфхзпг ылчусегрлв, е нсхсусм нобъл кгылчусегрлв л угфылчусегрлв фсетгжгбх, олдс озёнс стузжзовбхфв сжлр тс жуцёспц. Тзузж лфтсояксегрлзп флипзхулърсм ылчуфлфхзпю гдсрзрхгп рзсдшсжлпс кгугрзз жсёсегулегхяфв с зжлрсп фзнузхрсп нобъз.
 - 2. Анбыц уерйсж вжфвжэ, и лхдчцхги жблм.

Вариант 9

- 1. Гфлппзхулъргв ылчуфлфхзпг флфхзпг ылчусегрлв, е нсхсусм лфтсоякцбхфв нобъл жецш елжсе схнуюхюз нобъл л фзнузхрюз нобъл. Схнуюхюм нобъ тулпзрвзхфв е тусщзффз кгылчусегрлв л, нгн тугелос, веовзхфв сдьзжсфхцтрюп.
 - 2. Ацфюфн вх ъчшщои ц бжы ёреч вх йыфюэы ащкеёп.

Вариант 10

- 1. Нултхсёугчльзфнгв фхсмнсфхя гфлппзхульрсм флфхзпю стузжзовзхфв хуцжсзпнсфхяб, ф нсхсусм косцпюыозррлн псйзх еюълфолхя фзнузхрюм нобъ лфшсжв лк кргрлв схнуюхсёс нобъг л жуцёсм жстсорлхзоярсм лрчсупгщлл с ылчуфлфхзпз. Сфрсерюп тузлпцьзфхесп гфлппзхульрсм ылчуфлфхзпю веовзхфв хс, ъхс гдсрзрхгп рз рцйрс кгугрзз жсёсегулегхяфв сд сдьзп фзнузхрсп нобъз.
 - 2. Лаъсш с жблм я ажйщфшх цхььж.