Solution - HW 1 - Logic Review

CS 536: Science of Programming, Fall 2019

9/30 p.2

- 1. (Full parenthesization)
- 1a. Yes; $((((p \land (\neg r)) \land s) \rightarrow (((\neg q) \lor r) \rightarrow (\neg p))) \leftrightarrow ((\neg s) \rightarrow t))$
- 1b. No, the two are $\not\equiv$. It's easier to see this from the full parenthesization, $(\exists \, m \, . \, ((0 \le m < n) \land (\forall \, j \, . \, ((0 \le j < m) \rightarrow (b[0] \le b[j] \le b[m]))))). \text{ The parens in } (\exists \, m \, . \, 0 \le m < n) \land \dots \text{ aren't compatible.}$
- 2. (Minimal parenthesization) All that was required was the final proposition or predicate, but I'm going to show the reasoning in detail, hoping it might help some people. Notation: Below I'm writing "op₁ over op₂" to mean that op₁ has higher precedence (= binds more strongly than) op₂. E.g., ¬ over ∧.
- 2a. Subscripting the parentheses of $((\neg (p \lor q) \land r) \rightarrow (((\neg q) \lor r) \rightarrow ((p \lor (\neg r)) \lor (q \land s))))$ gives us $((\neg (q) \lor q) \land r) \rightarrow (((\neg q) \lor r)) \rightarrow (((\neg q) \lor r))) \land (((\neg q) \lor r)))) \land (((\neg q) \lor r))) \land (((\neg q) \lor r)))))$

I'll work from the inside out, in phases. Of the most deeply embedded parentheses, pairs $6 (\neg \text{ over } \land)$, $9 (\neg \text{ over } \lor)$, and $10 (\land \text{ over } \lor)$ are redundant but pair 3 is necessary $(\neg \text{ over } \lor)$. Removing pairs 6, 9 and 10 gives us

$$(1 (2 \neg (3p \lor q)_3 \land r)_2 \rightarrow (4(5 \neg q \lor r)_5 \rightarrow (7(8p \lor \neg r)_8 \lor q \land s)_7)_4)_1$$

Now, we can remove the redundant pairs $2 (\lor over \rightarrow)$, $5 (\lor over \rightarrow)$, and $8 (\lor is associative)$:

$$(_1 \neg (_3 p \lor q)_3 \land r \rightarrow (_4 \neg q \lor r \rightarrow (_7 p \lor \neg r \lor q \land s)_7)_4)_1$$

The remaining pairs are redundant: $7 (\lor \text{ over } \rightarrow)$, $4 (\rightarrow \text{ is right-associative})$, and 1 (the outermost pair). We can drop the subscript 3 and get the final answer,

$$\neg (p \lor q) \land r \rightarrow \neg q \lor r \rightarrow p \lor \neg r \lor q \land s.$$

2b. $(\exists i . (((0 \le i) \land (i < m)) \land (\forall j . (((m \le j) \land (j < n)) \rightarrow (b[i] = b[j]))))$. Let me try not subscripting this time. The tests \le , <, and = are stronger than \land , \lor , and \rightarrow (also \neg and \leftrightarrow for that matter), so we can delete the parentheses around them and get

$$(\exists \, \texttt{i.}((\texttt{0} \leq \texttt{i} \land \texttt{i} < \texttt{m}) \land (\forall \, \texttt{j.}((\texttt{m} \leq \texttt{j} \land \texttt{j} < \texttt{n}) \rightarrow \texttt{b[i]} = \texttt{b[j]}))))$$

The body of $(\forall j \text{ ends at its matching })$, so we can drop the parentheses around the body: $\forall j.(...)$. In that body, \land is stronger than \rightarrow , so altogether we can simplify $(\forall j...)$:

$$(\exists i.((0 \le i \land i < m) \land (\forall j.m \le j \land j < n \rightarrow b[i] = b[j])))$$

Similarly, the body of $(\exists i \text{ ends at the matching})$.

$$(\exists i.(0 \le i \land i < m) \land (\forall j.m \le j \land j < n \rightarrow b[i] = b[j]))$$

Finally, since \wedge is associative, we can remove the parentheses in $(... \wedge ... (...))$ and also delete the outermost parentheses to get the final answer

$$\exists i.0 \le i \land i < m \land \forall j.m \le j \land j < n \rightarrow b[i] = b[j]$$

(Note: In real life, we'd abbreviate $0 \le i \land i < m$ to $0 \le i < m$ and similarly for j to get $\exists i.0 \le i < m \land \forall j.m \le j < n \rightarrow b[i] = b[j]$

We could even use bounded quantifiers and get $\exists \ 0 \le i < m \cdot \forall \ m \le j < n \cdot b[i] = b[j]$. We'd have to rely on the context to know that the quantifiers are over i and j, not m or n.)

2c. $(\forall \mathbf{x} \cdot ((\exists \mathbf{y} \cdot (p \to q)) \to (\forall \mathbf{z} \cdot (q \lor (r \land s)))))$ minimizes to $\forall \mathbf{x} \cdot (\exists \mathbf{y} \cdot p \to q) \to \forall \mathbf{z} \cdot q \lor r \land s$. Here's a brief explanation of the highlights: The parentheses of $(\exists \mathbf{y} ...)$ are necessary to keep the body $p \to q$ from becoming $p \to q \to (\forall \mathbf{z} ...)$. The parentheses of $(\forall \mathbf{z} ...)$ are redundant because the right parentheses is at the end of the predicate.

Note $\forall \mathbf{x} \cdot (\exists \mathbf{y} \cdot p \to q) \to (\forall \mathbf{z} \cdot q \lor r \land s)$ is not minimal but has a pleasant symmetry. It's what you might write in real life.

- 3. (Syntactic equality)
- 3a. They are $\not\equiv$: We have $p \land q \lor \neg r \to \neg p \to q \equiv ((p \land q) \lor \neg r) \to (\neg p \to q)$, but $((p \land q) \lor ((\neg r \to ((\neg p) \to q)))) \equiv p \land q \lor (\neg r \to (\neg p \to q))$
- 3b. They are $\not\equiv$. $\forall \mathbf{x} . p \to \exists \mathbf{y} . q \to r \equiv \forall \mathbf{x} . (p \to \exists \mathbf{y} . (q \to r))$, but $(\forall \mathbf{x} . p) \to (\exists \mathbf{y} . q) \to r \equiv ((\forall \mathbf{x} . p) \to ((\exists \mathbf{y} . q) \to r))$
- 4. (Tautology, contradiction, or contingency)
- 4a. $(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$ is a contingency. When p is T and q and r are F, this becomes T \leftrightarrow T which is T, but when q is T and p and r are F, this becomes T \leftrightarrow F, which is F.
- 4b. $(\forall x \in \mathbb{Z} \cdot \forall y \in \mathbb{Z} \cdot f(x, y) > 0) \rightarrow (\exists x \in \mathbb{Z} \cdot \exists y \in \mathbb{Z} \cdot f(x, y) > 0)$ is a tautology. If f(x, y) > 0 for all integers x and y, then any two integers prove the existentials: Since (for example) f(0, 0) > 0, there exist x and y with f(x, y) > 0.
- 5. $(\rightarrow \text{versus} \leftarrow)$
- 5a. "p is sufficient for $q'' \Leftrightarrow p \to q$.
- 5b. "p only if q" $\Leftrightarrow p \to q$ [9/30] (Also, another way to think about this is that "p only if q" is like " $\neg q \to \neg p$ ", which is the contrapositive of (and logically equivalent to) $p \to q$)
- 6. $(\equiv vs =)$
- 6a. For $e_1 \neq e_2$ implying $e_1 \not\equiv e_2$ (which it does), it might be easier to see the contrapositive, $(e_1 \equiv e_2)$ implies $e_1 = e_2$): If $e_1 \equiv e_2$ then syntactically, they differ only in redundant parentheses, so they must have equal values.
- 6b. $e_1 = e_2$ does not imply $e_1 \equiv e_2$. Easy examples: (1) 2 + 2 = 4 but $2 + 2 \not\equiv 4$; (2) $p \land q =$ (actually, \Leftrightarrow) $q \land p$, but we're taking $p \land q \not\equiv q \land p$.

7. (Prove a tautology) [It's okay to omit the "\sim associative and commutative" step]

$$p \land \neg (q \land r) \rightarrow q \land r \rightarrow \neg p$$

$$\Leftrightarrow p \land \neg (q \land r) \rightarrow (\neg (q \land r) \lor \neg p) \qquad \text{Defn} \rightarrow$$

$$\Leftrightarrow \neg (p \land \neg (q \land r)) \lor (\neg (q \land r) \lor \neg p) \qquad \text{Defn} \rightarrow$$

$$\Leftrightarrow (\neg p \lor (q \land r)) \lor (\neg (q \land r) \lor \neg p) \qquad \text{DeMorgan's law (on } \neg (\dots \land \dots)) \text{ and } \neg \neg$$

$$\Leftrightarrow (q \land r) \lor \neg (q \land r) \lor \neg p \lor \neg p \qquad \forall \text{ associative and commutative })$$

$$\Leftrightarrow T \lor \neg p \lor \neg p \qquad \text{Excluded middle}$$

$$\Leftrightarrow T \qquad \text{Domination}$$

8. (Remove \neg)

- 9. $GT(b, x, m, k) \equiv \forall i \cdot m \le i < m+k \rightarrow x > b[i]$ is one solution. $\forall j \cdot 0 \le i < k \rightarrow x > b[m+j]$ is another.
- 10. (State well-formed, proper, and satisfies a predicate?)
- a. $\{x = ten, y = eight \ plus \ one\} \models x+y > 0$. The state is well-formed (it = $\{x = 10, y = 9\}$), and $\models x+y > 0$.
- b. $\{c = \alpha, d = 2\alpha, e = 3\alpha\}$ and $d/c+(0*z) \le w$: The state is well-formed but improper it doesn't have a binding for z. (Even though the value of z wouldn't matter.) Note the binding for e isn't relevant, since it doesn't appear in the expression.