Examen de Cálculo

Instrucciones

Resuelva cada pregunta con claridad. Justifique todas sus respuestas analítica o gráficamente cuando sea necesario. No se permite el uso de calculadora.

- 1. Sea $f(x) = \frac{x^2-4}{x-2}$ definida en $x \in \mathbb{R} \setminus \{2\}$.
 - a) Determine los intervalos de crecimiento y decrecimiento de la función.
 - b) Analice si hay máximos o mínimos locales.
 - c) ¿Existe algún punto donde la función no sea derivable? Justifique.
- 2. Sea $f(x) = x^5 5x^4 + 10x^3$.
 - a) Determine los puntos críticos de la función.
 - b) Use el criterio de la segunda derivada para clasificarlos.
 - c) Identifique los intervalos de concavidad y puntos de inflexión.
- 3. Un recipiente cilíndrico sin tapa debe construirse con un volumen de $1000\,\mathrm{cm}^3$. Determine las dimensiones del cilindro (radio y altura) que minimizan el área de material usado. (Recuerde: el área superficial es $A=\pi r^2+2\pi rh$)
- 4. Sea la sucesión $a_n = \frac{(-1)^n n}{n+1}$.
 - a) Demuestre que la sucesión no converge.
 - b) Determine si es acotada superior o inferiormente. Justifique.
- 5. Analice la convergencia de la serie:

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

- a) Determine si la serie converge o diverge.
- b) Justifique su respuesta usando un criterio apropiado (comparación directa, integral o comparación límite).

1