MSE 210 – Engineering Measurement and Data Analysis Midterm (Spring 2018)

Name: Solutions	Instructor: Flavio Firmani
	Date: March 12, 2018
Student Number:	Duration: 1:50min

There are 4 questions and 6 pages on this examination (the last 2 pages are appendices). The midterm is worth 40 pts. Please ensure that you have all pages before starting this examination.

- Q1) A specimen is subjected to stress cycling at a maximum stress amplitude. Let the random variable be the number of cycles to failure, which follows a Weibull distribution with parameters $\beta = 0.25$ and $\delta = 1,000$ cycles.
 - a) What is the probability that the specimen does not exceed 15,000 cycles? (2 pts)

$$P(X < 15,000) = F(15,000) = 1 - e^{-\left(\frac{X}{5}\right)^{\beta}}$$

$$= 1 - e^{-\left(\frac{15,000}{1900}\right)^{0.25}} = 1 - e^{-1.968} = 0.8603$$
86% of the specimens will not exceed 15,000 cycles

b) Determine the probability that the specimen exceeds twice as many cycles as its mean. (4 pts)

7.2% of the specimens will exceed 48,000 cycles

Q2) Shown below is a partially complete probability density function.

$$\int Ln(x) = xLn(x) - x + C$$

a) Determine the slope of the line. (7 pts)

Area under
$$f(x) = Ln(x)$$

area =
$$\int_{1}^{Z} L_{1}(x) dx = \chi L_{1}(x) - \chi \Big|_{1}^{Z}$$

= $2 L_{1}(2) - 2 - (L_{1}(1) - 1) = 0.3862$

area =
$$1 - 0.3862 = \frac{b \times h}{2}$$
 $\Rightarrow b = \frac{2(0.6188)}{0.6931} = 1.7708$

$$k = 2 + 1.7708 = 3.7708$$

$$m = \frac{y - y_0}{x - x_0} = \frac{0 - 0.6931}{3.7708 - 2} = -0.391436$$

$$m = -0.391436$$

b) Define the probability density function and draw the cumulative density function (5 pts)

$$f(x) = \begin{cases} Ln(x) & \text{for } 1 < x < 2 \\ -0.3914x + 1.476 & \text{for } 2 < x < 3.7708 \\ 0 & \text{otherwise} \end{cases}$$

$$Y = m(x-x_0) + Y_0 = -0.391436(x-2) + 0.6931$$

= -0.391436x + 1.4760Z

P(1<x<1.5) = 1.5 Ln(1.5)-1.5

$$P(1 < x < 3) = 0.3862 + \int_{2}^{3} -0.3914x + 1.4764x$$

$$= 0.3862 + \left(-0.8914\right)x^{2} + 1.476x \Big|_{2}^{3}$$

$$= 0.8836$$

- Q3) A company produces shafts of different lengths. Their quality control states that a 75cm long shaft must be rejected if it has two or more imperfections. The company has determined that the number of imperfections on the shaft follows a Poisson distribution with 0.6 imperfections in every meter of shaft extrusion.
 - a) What is the probability that there are two or more imperfections in a 75cm shaft? (4 pts)

$$E(x) = \lambda = 0.6 \text{ imperf/m} \times 0.75 \text{ m} = 0.45 \text{ imperfections}$$

$$P(X \geqslant 2) = 1 - P(x = 0) - P(x = 1) \qquad P(x = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= 1 - \frac{e^{-0.45}}{6!} - \frac{e^{-0.45}}{1!} = 1 - 0.6376 - 0.2869 = 0.07544$$
The probability that a shaft gets rejected (two or more imperfections)

b) What is the probability that three shafts are rejected in a batch of 20? If unable to find the probability of rejection, use p = 0.1 but one point will be deducted. (3 pts)

This is a binomial distribution (failure vs. success), with p = 0.07544, n = 20 and x = 3.

$$\binom{n}{x} = \frac{n!}{x!(n-x)!} = \frac{20!}{3!(17!)} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{3!(17!)} = 1,140$$

$$P(x=3) = {n \choose x} p^x (1-p)^{n-x} = 1,140 (0.07544)^3 (1-0.07544)^{20-3} = 0.129$$

The probability that 3 shafts are rejected in a batch of 20 is 12.9%

c) What is the probability that more than 10 shafts are rejected in a batch of 100? Use the normal approximation approach. One point will be deducted if you use p = 0.1. (3 pts)

$$P(x > 10) = 1 - P(z < \frac{x + 0.5 - np}{\sqrt{np(1-p)}}) = 1 - P(z < \frac{10.5 - 7.544}{\sqrt{7.544(1-0.07544)}})$$

$$= 1 - P(z < 1.1193) = 1 - 0.8686 = 0.1314$$

The probability that more than 10 shaft are rejected in a batch of 100 is 13.14%

$$q_z = 21.3$$
 $r_3 = 0.75(10) = 7.5$ Whishers $r_1 = 0.25(n-1) = 0.25(10) = 2.5$ $q_3 = 23.2 + (25.2 - 23.2)(0.5) = 24.2$ Lower = 20.6 - 6 = 14.6 $q_1 = 19.5 + (20.9 - 19.5)(0.5) = 20.2$ $100 \times 1.5 = (24.2 - 20.2) \times 1.5 = 6$ Upper = 24.246 = 30.2

Q4) A company is testing the combined city/hwy fuel efficiency of a new SUV. Eleven random samples at different driving conditions, from heavy city traffic to highway, were recorded:

a) Determine the boxplot using the inclusive method. Use a scale of 1 cm = 1 mpg. (5 pts)

b) Assume the data follows a normal distribution. Test the hypothesis that the new SUV has a better fuel efficiency than the previous model at 19.9 mpg. The sample mean and sample standard deviation are 22.2 and 4.237 mpg, respectively. Let $\alpha = 0.05$. (5 pts)

1. Parameter of interest: mean of the population

2. Establish Hypothesis: Ho: 4 < 19.9 and H1: 4 > 19.9 (Claim) Upper tail test

Test Statistic: to = x-4
 Type I error: x = 0.05

5. Decision Rule: Reject Ho if to > tw, n-1, where to.05, 10 = 1.812

6. Calculate Test Statistic

$$t_0 = \frac{22.2 - 19.9}{4.237/\sqrt{11}} = 1.800$$

7. Draw Conclusions:

Since to < to.05,10, there is no strong evidence that Ho cam be rejected.

a) Find the 95% confidence interval on the population mean. (2 pts)

$$\overline{\chi}$$
 - to.05, 10 f n $\leq M$
Also the CI at 95% shows that Ho cannot be rejected.

Appendix A. Table I: Cumulative Standard Normal Distribution

ž.	-6.04	- 0. Oá	-0.99	HLG-1	-005	-0.04	-0.03	-0.12	-601	-0.00	4		0.09	641	40.62	061	200	0.05	0.00	(0,0	ያ ርጉ	n ne	E
3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0,000042	0.000044	0.000046	0.000048	-3.9	0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.523922	0.527503	0.531881	0.535856	0.0
-3.8	0.000050	0.000052	6.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072	-3.8	0.1	0.539828	0.543795	0.547758	0.551717	0.5557(0)	0.559618	0.563559	0.567495	0.571424	0.575345	0.1
-3.7	0.000075	0.000078	0.000082	0.000085	Rs0000.0	0.000092	0.000096	0.000100	0.000104	0.000103	-3.7	0.2	0.579260	0.583166	0.587064	0.590954	0.594735	0.598706	0.602568	0.606420	0.610761	0.614092	0.2
3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159	-3.6	0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732	0.3
-3.5	0.000165	0.000172	0.000179	0.900185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233	-3.5	0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933	0.4
-3.4	0.000242	0.000251	0.000260	0.000270	0.D00280	0.000291	0.000302	0.000313	0.000325	0.000337	-3.4					0.701944							
~-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.006450	0.000467	0.000413	-3.3	0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903	0.6
							0.000619					0.7	0.750336	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236	0.7
-3.1	0,000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968	-3.1					0.796731							
			411444			*****	0.001223									0.823815							
							0.001695									0.848495							
							0.002327									0.870762							
							0.003167									0.890651							
							0.004269									0.908241							
							0.005703									0.923641							
							0.007549									0.936992							
							0.009903									0.948449							
							0.012874									0.958185							
							0.016586									0.966375							
							0.021178									0.973197							
							0.026803									0.978822							
							0.033625									0.983414							
							0.041815									0.987126							
							0.051551									0.990097							
							0.063008									0.992451							
							0.076359									0.994297							-
							0.091759						***********			0.995731			***			A 40- P III TIME	
							0.109349									0.996533							
							0.129238									0.997673							
							0.151505									0.998305							
							0.176185									0.998777							
							0.203269									0.999126							
							0.264347									0.999566							
							0.264347									0.999698							
							0.298036									0.999792							
							0.333598						0.999767 0.999841			0.999792						The Control of the Control	
		********	**********				0.409046						411.121.11			0.999904						000000000000000000000000000000000000000	
							0.448283									0.999904							
							0.488033									0.999958							
0.0	V.404144	0.406117	0.472097	U.4/00/8	0.400001	0.4940-17	0.408033	0.492022	0.440011	O''' AND UAC	111,33	3.9	0.999932	0.77934	0.779930	0.279738	U.7777739	0.274301	0.777703	U.77770+	11.779900	0.99907	3.9

Table II. Normal Error Integral

Pro	b(within co	$=\int_{X^{-}}^{X^{+}}$	GX. C	r) dx,	_	_	0 *			-
1 8 11	function c	14				X-m		ж	X+to	
1	0.00	10.0	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0,0	9.00	0.80	1.60	2.39	3.19	3.99	4.78	5.58	6.38	7.17
0.1	7.97	8.76	9.55	10.34	11.13	11.92	1271	13.50	14.23	15.07
0.2	15.83	10.63	17.41	18.19	18.97	19,74	20.51	21.28	22.05	22,82
0.3	23.18	24,34	25.10	25.86	26.61	27.37	28.12	28.56	29.61	30.35
0.4	31.08	31.82	32.55	33.28	34.01	34.73	35.45	36.16	36,98	37,59
),5	38.29	38.99	39,69	40.39	41.08	41.77	42.45	43.13	43.81	44.48
0.6	45.15	45.81	46.47	47.13	47.78	48.43	49,07	49.71	50.35	50.98
0.7	51.61	32.22	52.65	53.46	54.07	54.67	55.27	.55.87	56.46	57.05
8.0	57.63	58.21	58.78	59.35	59.91	60.4.	6L02	61.57	62 11	67.65
9,0	67.19	63.72	64,24	64.76	65.28	65,79	66.29	66.80	67.29	67.79
0.1	68.27	48.75	69.23	69.70	70.17	70.63	71.09	71.54	71.99	72.43
1.1	71.87	73.30	73.73	74.15	74.57	74.99	25.40	75.60	76.70	76.60
1.2	76.99	77.37	77.75	78.13	38,50	78.87	79.23	79.50	79.95	80.27
1.3	(1).64	80.90	81.32	21.65	81.98	82.30	82.62	82.93	67.24	83.55
1.4	83.93	84.15	84,44	84.73	81.01	85.29	85.57	85.84	8a.11	86.38
1.5	86.64	86.90	87.15	87.40	27.64	87.89	89.12	88.36	85,59	88.52
l.fi	89.04	89.26	89,48	89.69	89.90	90.11	90.31	90.51	90.70	90 90
1.7	91.09	91.27	91.46	91.63	91.81	91.99	92.16	92.33	92.49	92.65
LE:	92.51	92,97	93.12	93.20	90.42	93.57	93,71	93.85	93,99	96.12
1.9	94.25	94.39	94.51	94.64	94.76	94.58	95.00	95.12	95.23	9: 33
2,0	95.45	95.50	95.66	95.76	95.86	95.96	96.05	96,15	96,25	96.34
2.1	95.43	96.51	96.60	96.68	95.76	96.84	96.02	97.00	97.07	97.15
2.2	97.22	97:13	97.36	97.47	97.49	97.56	97,62	97,58	97.74	97,30
1.3	97.86	97.91	97.97	98.02	98,07	98.12	98.17	98.22	98.27	98.32
2.4	98.36	98.40	98,45	98,49	98.53	98.57	98.61	98.65	98,69	92.72
2.5	98.76	98.79	16.83	98.86	\$ 89	98.92	98.95	98.98	99.01	99,04
3	99.07	99.09	99.12	99.15	99.17	99,20	99.22	99.24	99.26	19.29
1.7	97.31	99.33	09.35	99.37	99.39	99,40	99.42	99,44	99.46	99.47
3.5	99,40	99.50	99.52	99.53	99,55	99.56	99.78	99,59	99,60	99,61
1.9	99.63	99.54	99.65	99,06	99,67	97,48	99.69	99.70	99,71	99.72
0.0	99.73									
1.5	99.95									
10	92.994									
1.0	99,9993									
6,0	99,99994									

Table III. t Distribution $(t_{\alpha,\nu})$

u	fi.,(t)	0.75	6.16	0.03	6.025	0.01	0.005	0.0025	b (st)	Distric
1	0.325	[,019)	3.078	6.314	12,706	31.821	63,657	127.32	318.31	616,62
2	0.249	0.116	1,625	2.920	4,303	6,965	9.025	14,069	23,326	31,500
3	0.277	0.765	1,638	2.353	3.182	4.541	5.841	7,453	10.213	12,002
4	0.271	0.741	1.533	2.132	2.776	3.747	4.664	5,591	7.173	8.640
5	0.267	0.727	1.476	2.015	7.571	3.365	4,032	4,773	5.1493	6,500
6	0.245	0.718	1.440	1.943	2,447	3.143	3,707	4.317	5,203	5,484
7	0.263	0.711	1.415	1,1,95	2,365	2.998	3,409	4.029	4,785	5.409
1	0.262	0.705	1.397	1.350	2.304	3,80%	3.355	3.823	4.501	5.04
4	0.261	0.703	1.383	1,813	2.262	2.821	3.250	3.690	4.297	3,781
100	0.200	6.700	1.372	1.812	2.228	2.764	3.109	3.581	4,144	4.597
11	0.260	0.6.7	1,363	1.75%	2,201	2.718	3.106	1,197	4,025	4.431
12	0.259	0.595	1.356	1.782	2.17	2.081	3.055	3,428	3.930	4.319
13	1.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.452	4.22
14	0.258	0.622	1.345	1.761	2.145	634	2:977	3.325	3,787	4.144
15	0.25%	0.691	1.541	1.75.7	2.131	2.602	2.947	3.220	3.733	4.07.
li.	0.258	0.6	1.337	1.7.46	2.120	2.583	2.921	3.252	3.686	4.01
17	0.257	0.6399	1.333	1.740	2.110	2.567	2,3/18	3.2.22	.64	3,965
15	0.257	0.633	1 330	1.734	2.101	5.442	2.87%	3.197	3.610	3,921
19	0.257	0.650	1.32%	1.729	2,593	2.534	2.801	A.174	3,579	3.8%
29	0.257	0.657	1.375	1.729	2,695	2.528	2 845	3.153	3.557	3 8 3
21	0.237	0.686	1.323	1.721	2.050	2.518	2.531	3.135	1.527	3.54
22	0.056	0 6 6	1.321	1.717	2.074	2.50%	2.519	3,119	3,505	3.795
23	0.256	0.4	1.319	1.714	2.060	2.500	2,807	3.104	3,485	3,740
24	0.250	0.655	1.318	1.711	2.464	2.492	2.797	3.091	3.467	3.745
25	0.255	0.684	1.316	1.70%	2,040	2,485	2.787	3.078	3,450	3,725
26	0,250	0.5%	1.315	1.706	2.1156	2,479	2.779	3.fm-7	3.435	3.70%
27	0,256	0.684	1.31-	1.703	2.052	2.473	2,771	3.057	3.421	3.690
28	0.25	0.483	1.313	1.701	2,148	2,467	2.763	3.047	3.408	3,674
29	0.256	0.6%3	1.311	1.699	2.945	2.462	1.756	7,038	3.196	3.059
36	0.256	0.653	1.310	1.697	2,1142	2.457	2.750	3.030	3.3 15	3.6-40
40	0.255	0.684	1.303	1.08	2.021	2.423	2.7.14	2.971	3,307	3.551
6,6	0.254	0.67	1.196	1.471	2,000	2.590	2.660	2.915	3.232	3.400
120	0.254	0.677	1.289	1.653	1.90)	2.35%	2.617	2,550	3.160	3.37
196	0,253	11.674	1.293	1.645	1,960	2.326	2,576	2.1/17	1.090	3.291

 $r = 4c_1 \cos \alpha f f \cos \beta \gamma n$.

Appendix B. Summary of Single-Sample Hypothesis Testing

Null Hypothesis	Test Statistic	Alternative Hypothesis	P-Value	Criteria for Rejection, Fixed- Level Test
H_0 : $\mu = \mu_0$	$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	H_1 : $\mu \neq \mu_0$	$2[1-\Phi(z_6)$	$ z_0 > z_{\alpha/2}$
σ ² known	σ/\sqrt{n}	H_1 : $\mu > \mu_0$	$1 - \Phi(z_0)$	$z_0 > z_{\alpha}$
		H_1 : $\mu < \mu_0$	$\Phi(z_0)$	$z_0 < -z_{\alpha}$
H_0 : $\mu = \mu_0$ σ^2 unknown	$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	H_1 : $\mu \neq \mu_0$	Probability above t_0 plus probability below $-t_0$	$ t_0 > t_{\alpha/2, n-1}$
		$H_{\mathfrak{l}}: \mu > \mu_{0}$	Probability above t_0	$t_0 > t_{\alpha,n-1}$
		H_1 : $\mu < \mu_0$	Probability below to	$t_0 < -t_{\alpha,n-1}$
$H_0: \sigma^2 = \sigma_0^2$	$\chi_0^2 = \frac{(n-1)s^2}{\sigma_s^2}$	$H_1: \sigma^2 \neq \sigma_0^2$	2 (Probability beyond χ_0^2)	$\chi_0^2 > \chi_{\alpha/2,n-1}^2$
	00			$\chi_0^2 < \chi_{1-\alpha/2,n-1}^2$
		H_1 : $\sigma^2 > \sigma_0^2$	Probability above X ₀ ²	$\chi_0^2 > \chi_{\alpha,n-1}^2$
		H_1 : $\sigma^2 < \sigma_0^2$	Probability below χ_0^2	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$
T 2	NA \$4.12		-	
$H_0: p = p_0$	$\frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$	$H_1: p \neq p_0$	$2[1-\Phi(z_0)$	$ z_0 > z_{\alpha/2}$
	$\forall n p_0 (1 - p_0)$	121.F - F0	$1 - \Phi(z_0)$	$z_0 > z_{\alpha}$
		$H_1: p < p_0$	$\Phi(z_0)$	$z_0 < -z_{\alpha}$
Problem Type	Point Estimate	Type of Interval	100(1 - Confidence	
Confidence interval on the		Two-sided	$\bar{x} - z_{n/2} \sigma / \sqrt{n} \le \mu$	
mean μ , variance σ^2 know	n	One-sided lower	$\bar{x} - z_{\alpha} \sigma / \sqrt{n} \leq \mu$	
		One-sided upper	<u> </u>	$\leq \overline{x} + z_{\alpha} \sigma / \sqrt{n}$
Confidence interval on the µ of a normal distribution.		Two-sided One-sided lower	$\overline{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu$ $\overline{x} - t_{\alpha, n-1} s / \sqrt{n} \le \mu$	$\leq x + t_{\alpha/2, n-1} s / \sqrt{n}$
variance σ^2 unknown		One-sided upper	****	$\leq \overline{x} + t_{\alpha,n-1} s / \sqrt{n}$
Confidence interval on the variance σ^2 of a normal	s ²	Two-sided	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2$	$\leq \frac{(n-1)s^2}{\sqrt{s^2}}$
distribution		One-sided lower	$\frac{(n-1)s^2}{\chi^2_{\alpha,n-1}} \le \sigma^2$	
		One-sided upper	o ²	$t \le \frac{(n-1)s^2}{\chi_{1-\alpha,n-1}^2}$
Confidence interval on a proportion or parameter of a binomial distribution p	,	Two-sided	$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p$ $\hat{p} - z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p$	$\leq \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Juliania aminemon p		One-sided lower	$\hat{p} - z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p$	(57) es
		One-sided upper	p	$\leq \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$