

Universidade De Brasília Departamento De Engenharia Elétrica Controle Digital

Simulação 3

Aluno: Arthur de Matos Beggs — 12/0111098

1 Questão 1

$$G_C(z) = \frac{K}{1 - z^{-1}} = K \frac{z}{z - 1}.$$

Figura 1: Diagrama e funções de transferência do sistema.

a) Para esboçar o LGR para os períodos de amostragem $T=0.5s,\,T=1s$ e $T=2s,\,o$ seguinte script foi utilizado:

```
= tf('s');
Gp
     = 1/(s+1);
T1
     = 0.5;
     = tf('z',T1);
z1
{\tt Gc1}
     = z1/(z1-1);
     = c2d(Gp, T1, 'zoh') * Gc1;
rl1
     = 1.0;
T2
z2
     = tf('z',T2);
Gc2
     = z2/(z2-1);
     = c2d(Gp, T2, 'zoh') * Gc2;
r12
Т3
     = 2.0;
     = tf('z',T3);
     = z3/(z3-1);
Gc3
     = c2d(Gp, T3, 'zoh') * Gc3;
rlocus(rl1, rl2, rl3);
```

A execução do script gerou o plot apresentado na Figura 2.

Figura 2: LGR no plano z para T=0.5s, 1s e 2s.

b) O valor de K crítico para cada período de amostragem é encontrado graficamente com o auxílio do cursor do Matlab no ponto em que o LGR deixa o círculo de raio unitário. A medida com o cursor apresenta uma imprecisão considerável, e por isso os valores de K crítico obtidos por esse método devem ser interpretados como aproximações.

Figura 3: Para T=0.5s, Kcrit ≈ 8.205 (obtido por interpolação).

Figura 4: Para T = 1s, Kcrit \approx 4,26.

Figura 5: Para T = 2s, Kcrit \approx 2,69.

c) Os pólos dominantes de malha fechada no plano z quando K=2 para cada valor de T foram obtidos posicionando o cursor sobre o ganho =2. A medida com o cursor apresenta uma imprecisão considerável, e por isso os valores dos pólos dominantes obtidos por esse método devem ser interpretados como aproximações.

Figura 6: Para T = 0,5s, os pólos dominantes $\approx 0,405 \pm 0,665$ j.

Figura 7: Para T = 1s, os pólos dominantes $\approx 0.0445 \pm 0.605$ j.

Figura 8: Para T = 2s, os pólos dominantes \approx -0,298 \pm 0,216j.

Para as letras \mathbf{d} e
e, o diagrama do Simulink presente na Fig
 9 foi utilizado.

Figura 9: Diagrama do sistema representado no Simulink.

d) As respostas ao degrau do sistema para diferentes tempos de amostragem e K=2 são apresentadas nas figuras a seguir.

Figura 10: Resposta ao degrau unitário para T=0.5s.

Para T = 0,5s, o sobressinal $\approx 48{,}3\%$ e o tempo de acomodação ≈ 8 segundos.

Figura 11: Resposta ao degrau unitário para T=1s.

Para T = 1s, o sobressinal $\approx 39.5\%$ e o tempo de acomodação ≈ 6.8 segundos.

Figura 12: Resposta ao degrau unitário para T=2s.

Para T = 2s, o sobressinal $\approx 68,5\%$ e o tempo de acomodação $\approx 7,2$ segundos.

e) As respostas à rampa do sistema para diferentes tempos de amostragem e K=2 são apresentadas nas figuras a seguir.

Figura 13: Resposta à rampa para T = 0.5s.

Para T = 0,5s, o erro em regime permanente Kv para uma entrada rampa $\approx 0,\!242.$

Figura 14: Resposta à rampa para T=1s.

Para T = 1s, o erro em regime permanente Kv para uma entrada rampa $\approx 0.38.$

Figura 15: Resposta à rampa para T=2s.

Para T = 2s, o erro em regime permanente Kv para uma entrada rampa $\approx 1.$