MTH385: History of Mathematics - Homework #5

Cason Konzer

February 20, 2022

Exercise 1 (3.3.2). *Show that, for any integers a and b, there are integers m and n such that*

$$\gcd(a,b) = ma + nb$$

Solution.

Let $G = \gcd(a, b)$. We know that G|a and G|b.

Thus we have some x = a/G and y = b/G, where $x, y \in \mathbb{Z}$.

This system provides that y|b, as Gy = b and y|bx, as Gx = bx/y.

We now consider gcd(x, y) = 1.

As x and y are relatively prime, mx + ny = 1, $m, n \in \mathbb{Z}$.

For proof: mbx + nyb = b, where y|bx; y|y; y|b.

Now . . .

- ma/G + nb/G = 1.
- ma + nb = G.

And gcd(a, b) = ma + nb.

This in turn gives a general way to find integer solutions of linear equations.

Exercise 2 (3.3.3). Deduce from Exercise 3.3.2 that the equation ax + by = c with integer coefficients a, b, and c has an integer solution x, y if gcd(a, b) divides c.

Solution.

Let $G = \gcd(a, b)$, Thus G = ma + nb, from **Ex. 1**.

Assuming G|c, Gi = c for some $i \in \mathbb{Z}$.

Now Gi = mai + nbi = c

Letting mi = x and bi = y, ax + by = c.

As $m, n, i \in \mathbb{Z}$, x, y are an integer solution.

Exercise 3 (3.3.5). (Solution of linear Diophantine equations) Give a test to decide, for any given integers a, b, c, whether there are integers x, y such that

$$ax + by = c$$
.

Solution.

From Ex. 1 & Ex. 2, if gcd(a, b) divides c, there are integers x, y that satisfy ax + by = c.

- G = ma + nb; For any integers a and b.
- Gi = mai + nbi
- c = ax + by; Where $c, a, x, b, y \in \mathbb{Z}$.
- Thus if G|c; we can finx $x, y \in \mathbb{Z}$.
- Else; we contradict that $a, b \in \mathbb{Z}$.

Exercise 4 (3.4.3). Show that

$$\sqrt{2} = 1 + \frac{1}{2 +$$

Solution.

The continued fraction of a real number $\alpha_0 > 0$ is written

$$\alpha_0 = n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{n_4 + \frac{1}{\dots}}}}$$

Where, $n_1 = \lfloor \alpha_0 \rfloor$; $\alpha_1 = 1/(\alpha_0 - n_1) > 1$; $n_k = \lfloor \alpha_{k-1} \rfloor$; $\alpha_k = 1/(\alpha_{k-1} - n_k) > 1, \forall k \geq 1$

We have, $\alpha_0 = \sqrt{2}$; $n_1 = \lfloor \sqrt{2} \rfloor = 1$; $\alpha_1 = 1/(\sqrt{2} - 1)$.

It follows that, $\alpha_1 = 1 + \sqrt{2}$ as $(1 + \sqrt{2})(\sqrt{2} - 1) = 1$.

Thus we have, $n_2 = \lfloor 1 + \sqrt{2} \rfloor = 2$ and $\alpha_2 = 1/(1 + \sqrt{2} - 2) = 1/(\sqrt{2} - 1) = \alpha_1$.

Similarly, $n_3 = \lfloor 1 + \sqrt{2} \rfloor = 2 = n_2$.

We can now see, $\forall i \geq 1$; $\alpha_i = 1/(\sqrt{2} - 1)$, and $\forall j \geq 2$; $n_j = 2$.

By substitution we arrive at the requested . . .

$$\sqrt{2} = 1 + \frac{1}{2 +$$

Exercise 5 (3.4.4). Show that $\sqrt{3}+1$ also has a periodic continued fraction, and hence derive the continued fraction for $\sqrt{3}$.

Solution.

Consider,
$$\alpha_0 = \sqrt{3} + 1$$
; $n_1 = \lfloor \sqrt{3} + 1 \rfloor = 2$; $\alpha_1 = 1/(\sqrt{3} + 1 - 2) = 1/(\sqrt{3} - 1)$.

It follows that, $\alpha_1 = (\sqrt{3} + 1)/2$ as $(\sqrt{3} + 1)(\sqrt{3} - 1)/2 = 1$.

Thus we have,
$$[2 < (\sqrt{3} + 1) < 3]$$
; $[1 < (\sqrt{3} + 1)/2 < 2]$; $n_2 = \lfloor (\sqrt{3} + 1)/2 \rfloor = 1$.

Now,
$$(\sqrt{3} + 1)/2 - 1 = (\sqrt{3} + 1 - 2)/2 = (\sqrt{3} - 1)/2$$
 and $\alpha_2 = 2/(\sqrt{3} - 1)$.

Following again,
$$\alpha_2 = \sqrt{3} + 1$$
 as $(\sqrt{3} + 1)(\sqrt{3} - 1) = 2$.

We can now see the following recurrence relations for even and odd values of $i \dots$

- \forall even i; $\alpha_i = \sqrt{3} + 1$, and \forall odd i; $\alpha_i = (\sqrt{3} + 1)/2$.
- \forall even i; $n_i = 2$, and \forall odd i; $n_i = 1$.

Now . . .

$$\sqrt{3} + 1 = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\ddots}}}}$$

And ...

$$\sqrt{3} = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\ddots}}}}$$