Cell Counting REPORT

Member1: Pulkit Agrawal(180050081) Member2: Vipul Agarwal(180050119)

Repository Link: https://github.com/Pulkit-Marlin/Cell-Counting

VGG Cells

<u>Using Square Kernel:</u>

The model gave the best result for 300 epochs with a learning rate of 0.001 and a batch size of 2. There were 40 images for training, 40 images for validation, and 120 images for testing.

We got Mean Difference in Counts = 2.83.

Few of the target Images \T' along with the predicted images $\F(I)'$ is shown below:

Corresponding Predicted Count Map(F(I)):

(Mean Difference in Counts is taken over the whole test dataset in all)

Adipocyte Cells

• Using Square Kernel:

The model gave the best result for 1000 epochs with a learning rate of 0.005 and a batch size of 2. There were 38 images for training, 38 images for validation, and 116 images for testing. (We have removed a few images for whom we felt that the marked annotations did not match with the original image)

We got Mean Difference in Counts = 13.85.

(Adipocytes can vary in size dramatically (20-200µ) and given they are densely packed adjoining cells with few gaps, they represent a difficult test-case for automated cell counting procedures.)

Few of the target Images \T' along with the predicted images $\F(I)'$ is shown below:

Corresponding Predicted Count Map(F(I)):

MBM Cells

• Using Square Kernel:

The model gave the best result for 300 epochs with a learning rate of 0.001 and a batch size of 2. There were 21 images for training, 5 images for validation, and 18 images for testing.

We got Mean Difference in Counts = 9.55.
(This prediction can be further improved with the availability of more data)

Few of the target Images \T' along with the predicted images $\F(I)'$ is shown below:

Corresponding Predicted Count Map(F(I)):