

Techniki równoważenia drzew BST

Ile maksymalnie węzłów może mieć drzewo binarne w zależności od wysokości h?

dla np. n=10 000

 $h = \lceil \log_2(n+1) \rceil =$ $= \lceil \log_2(10001) \rceil = \lceil 13.3 \rceil = 14$

h	2h-1	n=2h-1
14	213=8192	16383= 214-1
11	210=1024	2047= 211-1
4	23=8	15= 24-1
3	22=4	7= 2 ³ -1
2	21=2	3= 22-1
1	20=1	1= 2¹-1

Węzłów na poziomie h Węzłów w drzewie

Algorytmy i struktury danych

Techniki równoważenia drzew BST

Sposoby równoważenia drzew BST:

- 1. Okresowe równoważenie drzewa BST
- Stałe poprawianie drzewa w miarę wstawiania węzłów (np. z wykorzystaniem rotacji; przykład: drzewa AVL, drzewa czerwono-czarne)

Algorytmy i struktury danyc

Okresowe równoważenie drzewa BST

Linearyzacja (przejście) drzewa i uporządkowanie danych przed ponownym utworzeniem drzewa:

- □ zdegenerowane drzewo jest poddawane linearyzacji
- □ przed ponownym utworzeniem drzewa dane porządkowane są w tablicy;
- □ na korzeń drzewa wybierany jest element bliski wartości środkowej; element ten wyznacza podział tablicy na lewą i prawą podtablicę;
- ☐ lewy następnik korzenia: środek lewej podtablicy; prawy następnik korzenia: środek prawej podtablicy;
- □ otrzymane drzewo jest dobrze zrównoważone (liczba elementów na drodze od korzenia do dowolnego liścia jest rzędu *lg n*);

Algorytmy i struktury danyci

Techniki równoważenia drzew BST

Tworzenie drzewa po uprzednim posortowaniu jego elementów (idea algorytmu):

```
void balance(T data[], int first, int last) {
    if (first<=last) {
        int mid=(first+last)/2;
        insert(data[mid]);
        balance(data, first, mid-1);
        balance(data, mid+1, last);
    }
}</pre>
```

Algorytaw i struktury dany

Przekształcenie drzewa w winorośl:

UtwórzWinorośl (root, n) {
 tmp=root;
 while (tmp != 0)
 if (tmp ma lewy następnik) {
 obróć lewy następnik w prawo wokół tmp;
 ustaw tmp na następnik, który stał się poprzednikiem;
 }
 else
 ustaw tmp na jego prawy następnik;
}

Techniki równoważenia drzew BST

Złożoność tworzenia winorośli

Przypadek optymistyczny (drzewo jest już winoroślą):
pętla while wykonuje się n razy, nie są wykonywane żadne rotacje (tylko n instrukcji podstawienia); zatem T(n)=O(n)

Przypadek pesymistyczny (korzeń nie ma prawego następnika):
pętla while wykonuje się 2n – 1 razy, w tym wykonywanych jest n – 1 rotacji; zatem: T(n)=O(n)

```
Tworzenie drzewa zrównoważonego

m = 2^{\lfloor \lg(m+1) \rfloor} - I;

UtwórzDrzewoZrównoważone(n) {

wykonaj n-m rotacji w lewo, zaczynając od prawego następnika korzenia winorośli;

while (m>1) {

m = \lfloor m/2 \rfloor;

wykonaj m rotacji w lewo, zaczynając od prawego następnika korzenia winorośli;

}

}
```


Złożoność równoważenia drzewa 1. Przekształcenie drzewa niezrównoważonego w winorośl: *O(n)*2. Przekształcenie winorośli w drzewo zrównoważone: *O(n)*

Techniki równoważenia drzew BST

 $T(n) = max \{ O(n), O(n) \} = O(n)$

Samoorganizujące się drzewa BST

Zmiana organizacji drzewa po dostępie do węzła

Cel: skrócenie czasu realizacji podstawowych operacji na drzewie Idea: elementy (dane), które wykorzystywane są najczęściej przesuwane są w górę drzewa (bliżej korzenia)

Algorytmy i struktury danye

Samoorganizujące się drzewa BST

Idea:

Przy sięganiu do elementu (węzła) następuje korekta struktury drzewa poprzez:

- a) pojedynczą rotację (wokół poprzednika)
- b) przesunięcie elementu do korzenia (seria rotacji), tzw. drzewa splay

Algorytmy i struktury danych

Samoorganizujące się drzewa BST

Ilustracja idei: sięgnięcie do węzła D

P

P

A

E

H

a) rotacja w prawo węzła D

tmy i struktury danych

Samoorganizujące się drzewa BST Ilustracja idei: sięgnięcie do węzła D P P P A E H b) przesunięcie węzła D do korzenia (metodą podwójnej rotacji w prawo)

Samoorganizujące się drzewa BST

Drzewa splay (1985)

- Mechanizm równoważenia drzew AVL jest dość skomplikowany w implementacji i wymaga przechowywania w węzłach dodatkowych informacji.
- □ Drzewa spłay (Sleator i Tarjan 1985) to drzewa BST, w których wykorzystuje się rotacje do zmiany ich struktury, jednak nie trzeba przechowywać żadnych dodatkowych atrybutów w węzłach.
- Chociaż możliwe jest utworzenie niezrównoważonego drzewa spłay i pojedyncza operacja może mieć nawet koszt liniowy względem aktualnego rozmiaru drzewa, to koszt zamortyzowany operacji w tej strukturze danych jest logarytmiczny.
- Jest to modyfikacja strategii zmiany struktury drzewa poprzez przenoszenie do korzenia elementu, do którego nastąpił dostęp.

Algorytmy i struktury danyen

20

Drzewa splay

- Korekta struktury drzewa następuje poprzez stosowanie pojedynczych rotacji parami, w kolejności zależnej od powiązania elementu, jego poprzednika (ojca) i poprzednika poprzednika (dziadka).
- □ Wszystkie operacje w drzewie spłay są wykonywane z wykorzystaniem pomocniczej procedury spłay(T, x), która przekształca drzewo T w taki sposób, że jego korzeniem staje się węzeł z kluczem x albo jeśli klucza x nie ma w drzewie węzeł z kluczem y takim, że w T nie ma żadnego klucza między min(x, y) a max(x, y).

lgorytmy i struktury danych

Drzewa splay

- Korekta struktury drzewa po dostępie do określonego węzia następuje poprzez stosowanie rotacji parami, w kolejności zależnej od powiązania elementu, jego poprzednika (ojca) i poprzednika poprzednika (dziadka).
- Procedura splay(T, x) jest zdefiniowana następująco:
 - najpierw szukamy węzła z kluczem x tak jak w zwykłym drzewie BST; jeśli klucza nie ma w drzewie, to bierzemy ostatni węzeł z kluczem x' na ścieżce (przed NULL);
 - następnie, dopóki x lub x' nie stanie się korzeniem, wykonujemy sekwencję rotacji, w zależności od następujących przypadków:
 - Poprzednik węzła x jest korzeniem.
 - Układ jednorodny (zig-zig): węzeł x jest lewym następnikiem swojego poprzednika, który z kolei jest lewym następnikiem swojego poprzednika (lub kiedy w obu relacjach chodzi o prawy następnik).
 - Układ niejednorodny (zig-zag): węzeł x jest lewym następnikiem swojego poprzednika, który z kolei jest prawym następnikiem swojego poprzednika (lub odwrotnie).

Algorytmy i struktury danych 24

Wykonanie pojedynczej pary rotacji (zig-zig lub zig-zag) nazywa się krokiem rozchylającym. Jeśli odległość węzła, do którego następuje dostęp od korzenia jest nieparzysta, to po serii par rotacji wykonywana jest rotacja pojedyncza.

Samoorganizujące się drzewa BST Idea algorytmu funkcji splay(T, x) (przenoszenia węzta x do korzenia) splay(T, x) { while (x nie jest korzeniem) if (poprzednik x jest korzeniem) wykonaj pojedynczą rotację x wokół jego poprzednika; else if (x jest ze swoimi poprzednikami w układzie jednorodnym) wykonaj krok rozchylający jednorodny; else if x jest ze swoimi poprzednikami w układzie niejednorodnym wykonaj krok rozchylający niejednorodny; }

□ Operację delete(T, x) zaczynamy od wywołania splay(T, x), sprowadzając usuwany klucz x do korzenia.
 □ Niech L i R będą, odpowiednio, lewym i prawym poddrzewem uzyskanego drzewa.
 □ Odcinamy korzeń i - jeśli L jest niepuste - wywołujemy splay(L, x), a następnie przyłączamy R jako prawe poddrzewo korzenia.

5

Mnemotechniczna metoda przechodzenia drzewa:

wyruszamy z korzenia, okrążając drzewo w kierunku przeciwnym do ruchu wskazówek zegara;

staramy się być jak najbliżej mijanych węzlów (niektóre węzły odwiedzamy wielokrotnie);

chcą otrzymać listę węzlów odpowiadającą kolejności:

preorder, należy wypisywać każdy węzel przy pierwszym jego odwiedzeniu;

postorder, należy wypisywać każdy węzel przy ostatnim jego odwiedzeniu;

inorder, należy wypisywać każdy węzel przy pierwszym jego odwiedzeniu jeżeli jest liściem, natomiast przy drugim odwiedzeniu, jeżeli jest węzłem wewnętrznym.

Z uwagi na sposób przechodzenia drzewa wyróżniamy notacje :

przedrostkową (prefiksową), np. + - 2 * 3 4 5

wzrostkową (infiksową), np. 2 - 3 * 4 + 5

przyrostkową (postfiksową), znanej jako notacja polska odwrotna, np. 2 3 4 * - 5 +

7

Przykład – ewidencja ocen studentów w centrum kursowym

Wykorzystanie pamięci w przykładowej tablicy rzadkiej:

Liczba studentów: 8000

Liczba kursów: 300

Maksymalna liczba kursów, w których może uczestniczyć student: 4

Liczba wymaganych komórek tablicy: 8000 x 300=2 400 000 np. bajtów

Maksymalna liczba komórek tablicy: 2000 / 2 400 000 = 0,013 = 1 %

Tablice rzadkie

- ☐ Tablice rzadkie mogą być wykorzystywane do implementacji macierzy koincydencji wierzchołków w grafach
- Innym zastosowaniem tablic rzadkich jest przechowywanie obrazów rastrowych (szczególnie wtedy, gdy na obrazie jest mało "zapalonych" punktów)

Temat: Tablice rozproszone

Definicja tablicy rozproszonej (z haszowaniem)

☐ Tablicą rozproszoną nazywamy trójkę uporządkowaną

$$T = \langle K, D, h \rangle$$

gdzie $K = \{k_1, k_2, k_3, ..., k_n\} - zbiór kluczy,$

 $D = \{d_1, d_2, d_3, \dots, d_n\} - \text{zbi\'or adres\'ow}, \quad |K| > |D|$

h - tzw. funkcja mieszająca (haszująca):

$$h\!:\!K\!\to\!D$$

☐ Tradycyjnym obszarem zastosowań tablic rozproszonych są zagadnienia związane z przetwarzaniem danych.

Tablice rozproszone, funkcja haszująca

- □ Zadaniem funkcji haszującej h jest w miarę równomierne obciążanie
- □ Zagadnienie definiowania funkcji mieszającej jest istotne dla efektywności przetwarzania danych, realizowanego na bazie tablic rozproszonych.
- Na ogół nie można wykluczyć powstawania tzw. konfliktów w tablicach rozproszonych.

Konflikty w tablicach rozproszonych

 Kolizją (konfliktem) w tablicy rozproszonej nazywamy sytuację powstałą wtedy, gdy:

$$\exists k_i, k_j \in K, k_i \neq k_j h(k_i) = h(k_j)$$

 $\hfill \square$ Klucze $k_{i\cdot}$ $k_{j\cdot}$ biorące udział w kolizji nazywamy synonimami

Metody haszowania w tablicach rozproszonych, cd.

Przyklady zastosowania metody dzielenia (tablica ma 1000 pozycji):

1) f(KOWALSKI)= 913
913 mod 1000 = 913

2) f(KOWALSKI) = 834741
834741 mod 1000 = 741

2) f(123456789) = 1566
1566 mod 1000 = 566

Problemy kolizji mogą być rozwiązywane dwiema metodami:

Tablice rozproszone bez obszaru nadmiarowego - dane znajdują się wyłącznie w obszarze bazowym tablicy

Tablice rozproszone z obszarami nadmiarowymi:

z listami synonimów

rozproszone tablice indeksowe

Usuwanie konfliktów w tablicach rozproszonych Bez obszarów nadmiarowych – adresowanie otwarte ☐ Jeśli wyznaczony klucz koliduje z innym kluczem, znajdowana jest w tablica inna, dostępna komórka ☐ Stosuje się tutaj technikę próbkowania (aż do znalezienia wolnej komórki): h₁(K)=[h(K)+p(1)] mod R h₂(K)=[h(K)+p(2)] mod R ... h₁(K)=[h(K)+p(i)] mod R gdzie p(i) jest tzw. funkcją próbkującą a R jest rozmiarem tablicy (liczba komórek)

Usuwanie konfliktów w tablicach rozproszonych

Z wykorzystaniem obszarów nadmiarowych

lista synomimów: pierwsze wstawienie następuje do wolnego miejsca w obszarze bazowym; kiedy wyliczona funkcją haszującą pozycja z obszaru bazowego jest zajęta, to wstawiamy nowy element do listy synonimów przypisanych do tej pozycji w obszarze bazowym; listy synonimów tworzą obszary nadmiarowe;

rozproszona tablica indeksowa - wszystkie dane są wstawiane do obszaru nadmiarowego

11