Unstructured Data Analysis (Text Analytics)

2020 Spring

School of Industrial Management Engineering

1. Overview

- ✓ This module aims to provide students with the theoretical and practical knowledge and skills to collect, modify, and analyze a large amount of unstructured data, especially texts, from various sources.
- ✓ Topics covered in this module include data collection methods from various sources, preprocessing methods including natural language processing, document representation & summarization, feature selection and extraction, document clustering, document classification, and topic models.
- ✓ The students are assessed by one final exam at the end of the semester, three presentations (proposal, interim, and final) and the final manuscript for their term projects.

2. Lecturer & Course homepage

- ✓ Pilsung Kang, Associate professor at School of Industrial Management Engineering, Korea University
 - · E-mail: pilsung_kang@korea.ac.kr
 - · Course homepage: https://github.com/pilsung-kang/text-mining

3. Textbook and additional resources (not mandatory)

- ✓ Weiss, S.M., Indurkhya, N., and Zhang, T. (2010). Fundamentals of Predictive Text Mining. Springer.
- ✓ Feldman, R. and Sanger, J. (2007). The Text Mining Handbook. Cambridge University Press.
- ✓ Kao, A. and Poteet, S.R. (2007). Natural Language Processing and Text Mining. Springer.
- ✓ Manning, C.D., Raghavan, P., and Schutze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
- ✓ Jurafsky, D. and Martin, J.H. (2008). Speech and Language Processing, 2nd Ed. Prentice Hall. (Free online course available: https://www.youtube.com/playlist?list=PL6397E4B26D00A269)
- ✓ Manning, C. (2020). CS224n: Natural language processing with deep learning
 - · Course homepage: http://web.stanford.edu/class/cs224n/
- ✓ Socher, R. (2017). CS224d @Stanford: Deep learning for natural language processing
 - · Course homepage: http://cs224d.stanford.edu/, video lectures are available at Youtube
- ✓ Blunsom, P. et al. (2017). Deep natural language processing @Oxford
 - · Course homepage: https://github.com/oxford-cs-deepnlp-2017/lectures

4. Assessments

- ✓ Final exam (40%): Closed book
- \checkmark Term project (40%): three presentations
 - 1. Group project: maximum 4 students in a group
 - 2. Proposal (10%): purpose of the project (task), data description, expected effects, etc.
 - 3. Interim presentation (10%): data collection/preprocessing, feature extraction, issues to be discussed
 - 4. Final presentation (20%): employed/developed models, experimental results including interesting patterns discovered, limitations and future research directions
- ✓ 5-minutes Youtube video (20%)
 - 1. Students must upload a short video (max 5 minutes) that reviews the lecture within 24 hours after the class.
 - 2. A student explains what he/she learns in the class to his/partner.

5. Introduce yourself

 \checkmark Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail by the end of the 2^{nd} week

6. Schedule

Week	Date	Contents
1	3/3	Orientation
	3/5	Introduction to Text Analytics
		✓ The usefulness of large amount of text data and the challenges
2	3/10	Text Preprocessing
	2/12	✓ Tokenization (Stemming, Lemmatization), POS Tagging
	3/12	Text Preprocessing
3	2/17	✓ Parsing, etc.
3	3/17	Text Representation 1 ✓ Bag-of-Words, N-Grams
	3/19	Text Representation 2
	0/17	✓ Word Embedding: NNLM, Word2Vec
4	3/24	Text Representation 3
	-	✓ GloVe, FastText
	3/26	Text Representation 4
		✓ Skip-thought, Doc2Vec
5	3/31	Topic Modeling (can be used as a document representation) 1
		✓ Latent Semantic Analysis (LSA), probabilistic LSA (pLSA)
	4/2	Topic Modeling (can be used as a document representation) 2
	4 /57	✓ Topic Modeling: Latent Dirichelet Allocation (LDA) 1
6	4/7	Topic Modeling (can be used as a document representation) 3 ✓ Topic Modeling: Latent Dirichelet Allocation (LDA) 2
	4/9	✓ Topic Modeling: Latent Dirichelet Allocation (LDA) 2 Topic Modeling (can be used as a document representation) 4
	4/7	✓ Topic Modeling: Latent Dirichelet Allocation (LDA) 3
	4/14	Language Modeling and Pretrained Models 1
	1/11	✓ Language Models Overview, Transformer 1
7	4/16	Language Modeling and Pretrained Models 2
	-	✓ Transformer 2
8	4/21	Language Modeling and Pretrained Models 3
		✓ ELMo, GPT
	4/23	Language Modeling and Pretrained Models 4
	1.100	✓ BERT
9	4/28	Text Classification & Sentiment Analysis 1
	4/30	✓ Text Classification Overview, Naïve Bayesian Classifier No Class
10	5/5	No Class
10	5/7	Text Classification & Sentiment Analysis 2
	0,1	✓ CNN-based Model, RNN-based Model
11	5/12	Text Classification & Sentiment Analysis 3
	•	✓ Sentiment Classification
	5/14	Sequence to sequence (Seq2seq) Model 1
		✓ Question Answering 1
	5/19	Sequence to sequence (Seq2seq) Model 2
12		✓ Question Answering 2
	5/21	Sequence to sequence (Seq2seq) Model 3
10.11		✓ Open Information Extraction
13-14		Term project
15		Final Exam Term Project Final Presentation
16		Term rioject rinal Presentation