MA 511: Linear Algebra and its Applications

HW1: Summer 2023 Due: June 19, 2023

Question 1 Sketch these three lines and decide if the equations are solvable:

$$x + 2y = 2$$
$$x - y = 2$$
$$y = 1$$

What happens if all right-hand sides are zero? Is there any nonzero choice of right-hand sides that allows the three lines to intersect at the same point?

Question 2 Use Gauss Elimination (show all elimination steps!) to solve

$$x + y + z = 6$$

 $x + 2y + 2z = 11$
 $2x + 3y - 4z = 3$.

Question 3 Consider the system of linear equations

$$x + 2y + 3z = 1$$
$$3x + 5y + 4z = a$$
$$2x + 3y + a^2z = 0.$$

- (a). For which values of a does the system have no solution?
- **(b).** For which values of a does the system have infinitely many solutions?
- (c). For which values of a does the system have exactly one solution?

Question 4

(a). Let
$$A = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$. Compute AB and BA .

(b). Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 9 \\ -3 & k \end{bmatrix}$. For what value of k , if any, will make $AB = BA$?

Question 5 Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Suppose all a, b, c and d are nonzero numbers.

- (a). Find two conditions on a, b, c and d that guarantee $A^2 = I$.
- **(b).** Using part (a), find 2 examples of A such that $A^2 = I$.

Question 6 Use the Gauss-Jordan method to invert the following matrices.

(a).
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

(b).
$$B = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
.

Question 7 Suppose $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 3 & 2 \\ 1 & -3 & 1 \end{bmatrix} = S + K$, where S is a symmetric matrix (i.e., $S^T = S$) and K

is a skew symmetric matrix (i.e., $\bar{K}^T = -K$). Find *S* and *K*.

Question 8 Factor *A* into *LU*, and write down the upper triangular system Ux = c which appears after elimination, for

$$Ax = \begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}.$$

Question 9 Find the PA = LDU factorization for

(a).
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$

(b).
$$B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Question 10 Find the *L* and *U* in the *LU* factorization for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}.$$

Find four conditions on a, b, c, d to get A = LU with four pivots.