Part1

1.

Doctor drug pairs, for further use

Doc-Drug(RxID, DIN, DocID) := ΠRxID, drug, doctor (Prescription)

Doctor who has issued at least 2 drugs

 $\mathsf{Doc2}(\mathsf{DocID}) := \Pi_{\mathsf{DD1.DocID}} \ \sigma_{\mathsf{DD1.DocID}} = \mathsf{DD2.DocID} \land \mathsf{DD1.RxID} \lessdot \mathsf{DD2.RxID} \land \mathsf{DD1.DIN} = \mathsf{DD2.DIN}$

 $(\rho_{DD1}(Doc-Drug) \times \rho_{DD1}(Doc-Drug))$

Doctor who has issued at least 2 drugs and drug pairs Doctor drug pairs, for further use

Doc2-Drug(DocID, DIN) := $\Pi_{\text{DocID, drug}} \sigma_{\text{DcoID = doctor}} (\text{Doc2} \times \text{Prescription})$

Doctor who chose brand drug rather than generic drug

 $Brand-Doc(DocID) := \Pi_{\texttt{DocID}} \ \sigma_{\texttt{Doc2-Drug.DIN} \ = \ \texttt{Generic.brand}} \ (\texttt{Doc2-Drug} \times \texttt{Generic})$

Doctor more than 2 drugs and durg price

Doc2-Generic-Price(DocID, DIN, brand, price) :=

 $\Pi_{\text{DocID, Generic.DIN, brand, price}} \sigma_{\text{Doc2-Drug.DIN} = \text{Generic.DIN}} = \text{Price.DIN}(\text{Doc2-Drug} \times \text{Generic} \times \text{Price})$

All-Generic-Price(DIN, brand, price) :=

 $\Pi_{\text{Generic.DIN, brand, price}} \ \sigma_{\text{Generic.DIN} = \text{Price.DIN}} \ (\text{Generic} \times \text{Price})$

```
Doctor who gives expensive generic price
```

Exp-Doc(DocID) :=
$$\Pi_{DocID} \sigma_{D.brand=A.brand \land D.DIN!=A.DIN \land D.price > A.price}$$

(pD(Doc2-Generic-Price) × pA(All-Generic-Price))

Frugal-Doc(DocID) := Doc2 - (Brand-Doc
$$\cup$$
 Exp-Doc)

2.

$$(\Pi_{pharmacist} \ Filled) - (\Pi_{pharmacist} \ \sigma_{Filled.RxID} = Prescription.RxID \land drug = DIN$$
 (Filled × Prescription×Generic))

3.

Patient who received 2 different drug

PatientDrugs(OHIP, D1, D2):=

$$\Pi$$
 P1.patient, P1.drug, P2.drug σ P1.RxID > P2.RxID \wedge P1.patient = P2.patient \wedge P1.doctor != P2.doctor

$$(\rho_{P1}(Prescrition) \times \rho_{P2}(Prescriton))$$

2 same drug

P1(OHIP):=
$$\Pi$$
 OHIP σ D1 = D2 (PatientDrugs)

Brand drug and equal generic drug

P2(OHIP):=
$$\Pi$$
 OHIP σ (D1=DIN \wedge D2=brand) \vee (D2=DIN \wedge D1=brand) (ρ P (PatientDrugs) $\times \rho$ G (Generic))

Generic drug with same brand drug

P3(OHIP):=
$$\Pi$$
 OHIP σ D1 = G1.DIN \wedge D2 = G2.DIN \wedge G1.DIN != G2.DIN \wedge G1.brand = G2.brand (ρ_P (PatientDrugs) $\times \rho_{G1}$ (Generic) $\times \rho_{G2}$ (Generic))

P(OHIP, name, phone):=
$$\Pi_{OHIP, name, phone}$$
 ((P1 \cup P2 \cup P3) \bowtie Patient)

4.

Impossible

5.

All unfilled prescrition

Unfilled(RxID, patient, DIN):=

 $\Pi_{\text{RxID, patient, drug}}$ (Prescrition \bowtie (Π_{RxID} (Prescrition) - Π_{RxID} (Filled))

Cross 3 times, find at least 3 times and 2 different patients

TripleUnfilled(DIN):=

 \prod U1.DIN

 $O = U1.RxID != U2.RxID \land U1.RxID != U3.RxID \land U2.RxID != U3.RxID \land (U1.patient != U2.patient \lor U1.patient != U3.patient \lor U2.patient != U3.patient \lor U3.patient != U3.patient \lor U3.patient != U3.pa$

U3.patient) ∧ U1.DIN = U2.DIN = U3.DIN

 $(\rho_{U1} \text{ (Unfilled)} \times \rho_{U2} \text{ (Unfilled)} \times \rho_{U3} \text{ (Unfilled)})$

Report(DIN, manufacture):= (($\Pi_{\text{DIN, manufature}}$ Product) \bowtie ($\Pi_{\text{DIN, manufature}}$ Generic)) \bowtie TripleUnfilled

6.

If all drugs have exact same ingredient

ShouldBe(DIN1, ingredient1, ingredient2, DIN2):=

 Π C1.DIN, C1.ingredient, C1.ingredient, C2.DIN σ C1.DIN != C2.DIN

 $(\rho_{\text{C1}} \text{ (Contains)} \ \times \ \rho_{\text{C2}} \text{ (Contains))}$

What 2 drugs have comman ingredient

Real(DIN1, ingredient1, ingredient2, DIN2):=

 Π C1.DIN, C1.ingredient, C2.ingredient, C2.DIN σ C1.DIN != C2.DIN \wedge C1.ingredient = C2.ingredient

 $(\rho_{C1} (Contains) \times \rho_{C2} (Contains))$

What Real not achieved in ShouldBe

 $\label{eq:diff_distance} \mbox{Diff(DIN1, DIN2):=} \ \Pi_{\mbox{\tiny DIN1, DIN2}}(\mbox{ShouldBe} - \mbox{Real})$

Diff-Verse(DIN1, DIN2):= $\Pi_{DIN2, DIN1}$ (Diff)

Diff-Dup(DIN1, DIN2):= Diff ∪ Diif-Verse

Drugs with exact same ingredients

Match-Pairs(DIN1, DIN2):= $\sigma_{DIN1 < DIN2}$ ($\Pi_{DIN1,DIN2}$ (ShouldBe) - Diff-Dup)

Report(DIN1, name1, DIN2, name2):=

 Π D1, P1.name, D2, P2.name σ DIN1 = P1.DIN \wedge DIN2 = P2.DIN

(Match-Pairs \times ρ_{P1} (Product) \times ρ_{P2} (Product))

```
7.
```

Generic Narcotic drug

Generic-Narcotic(DIN, name):=

 Π Generic.DIN, Generic.name σ brand = Product.DIN \land schedule = 'narcotic' (Generic \times Product)

All-Narcotic(DIN, name):=

Generic-Narcotic \cup (Π DIN, name σ schedule='narcotic' (Product))

Who has filled narcotic prescription

Narcotic-Filled(OCP, drug, date):=

 Π Pharmacist, All-Narcotic.name, Filled.date σ Prescription.RxID = Filled.RxID \land drug = DIN

(All-Narcotic × Prescription × Filled)

Find earlier filled time

M(OCP1, drug1, date1, OCP2, drug2, date2):=

Π N1.OCP, N1.date, N2.OCP, N2.date

 σ N1.OCP = N2.OCP \wedge N1.date > N2.date

 $(\rho_{N1}(Narcotic-Filled) \times \rho_{N2}(Narcotic-Filled))$

Pharmacist who only filled 1 narcotic perscription

Once(OCP, drug, date):=

Narcotic-Filled – (Narcotic-Filled \bowtie OCP=OCP1 Π OCP1M)

Pharmacist who have filled muilti narcotic prescription, earliest time

Multi (OCP, drug, date):= $\Pi_{OCP1, drug1, date1}$ (M) - $\Pi_{OCP2, drug2, date2}$ (M)

Report(OCP, drug, date, name)(ONCE \cup Multi) \bowtie Π OCP, name (Pharmacist)

8.

Generic drugs and their ingredient

GenericContain(DIN, ingredient)s:=

 Π Contains.DIN, ingredient σ brand = Contains.DIN (Generic×Contains)

All drugs and their ingredients

Drug-Ingredient(DIN, ingredient):=

 $(\Pi_{\text{DIN, ingredient}}(Product \bowtie Contains)) \cup GenericContain$

All prescription and their ingredients

PI(RxID, doctor, patient, ingredient, date):=

 Π RxID, doctor, patient, ingredient, date σ Prescrition.drug = Drug-Ingredient.DIN

(Prescription × Drug-Ingredient)

Report(doctor, date):=

∏ PI1.doctor, PI1.date

T PI1.RxID > PI2.RxID \land PI1.doctor = PI2.doctor \land PI1.patient = PI2.patient \land PI1.date = PI2.date \land ((PI1.ingredient = Int.ingredient1 \land

PI2.ingredient = Int.ingredient2)∨(PI1.ingredient = Int.ingredient2 ∧ PI2.ingredient = Int.ingredient1))

$$(\rho_{Pl1}(Pl) \times \rho_{Pl2}(Pl) \times \rho_{Int}(Interaction))$$

9.

Impossible

10.

Parmacist cross Pharmacist, to find earliest and nearest register time

PhPh(OCP1, registered1, OCP2, registered2):=

 Π P1.OCP, P1.registered, P2.OCP, P2.registered σ P1.OCP != P2.OCP \wedge P1.registered > P2.registered

 $(\rho_{P1} (Pharmacist) \times \rho_{P2} (Pharmacist))$

Most Junior and Most Senior pharmacist

Junior(OCP):= Π_{OCP1} (PhPh) - Π_{OCP2} (PhPh)

Senior(OCP):= Π_{OCP2} (PhPh) - Π_{OCP1} (PhPh)

All filled prescription and cores patient

F(RxID, date, OCP, OHIP, name):=

 Π Filled.RxID, Filled.date, Filled.pharmacist, Patient.OHIP, Patient.name

O Filled.RxID = Prescription.RxID ∧ Prescription.patient = Patient.OHIP

(Filled × Prescrition × Patient)

Patient who was filled by most junior pharmacist

J-date(OHIP, name, date):= $\Pi_{OHIP, name, date}$ (Junior \bowtie F)

Self cross, for time compare use

J-Twice(OHIP1, name1, date1, OHIP2, name2, date2):=

 Π J1.OHIP, J1.name, J1.date, J2.OHIP, J2.name, J2.date σ J1.OHIP=J2.OHIP \land J1.name=J2.name \land J1.date<J2.date

 $(\rho_{J1} (J-date) \times \rho_{J2} (J-date))$

Earliest date for whose script filled muilitple times by junior pharmacist

J-Muilt(OHIP, name, date):=

 $\Pi_{\text{OHIP1, name1, date1}}$ J-Twice - $\Pi_{\text{OHIP2, name2, date2}}$ J-Twice

date for whose script filled only one times by junior pharmacist

J-Once(OHIP, name, date)=: J-date \bowtie (Π_{OHIP} J-date \neg Π_{OHIP1} J-Twice)

J(OHIP, name, date)=: J-Once ∪ J-Muilt

Patient who was filled by most senior pharmacist

S-date(OHIP, name, date):= $\Pi_{OHIP, name, date}$ Senior \bowtie F

Self cross, for time compare use

S-Twice(OHIP1, name1, date1, OHIP2, name2, date2):=

 Π S1.OHIP, S1.name, S1.date, S2.OHIP, S2.name, S2.date σ S1.OHIP=S2.OHIP \land S1.name=S2.name \land S1.date<S2.date

 $(\rho_{S1} (S-date) \times \rho_{S2} (S-date))$

Earliest date for whose script filled muilitple times by senior pharmacist

S-Muilt(OHIP, name, date):=

 $\Pi_{\text{OHIP1, name1, date1}}$ S-Twice — $\Pi_{\text{OHIP2, name2, date2}}$ S-Twice

date for whose script filled only one times by senior pharmacist

S-Once(OHIP, name, date)=: S-date \bowtie (Π_{OHIP} S-date \neg Π_{OHIP1} S-Twice)

S(OHIP, name, date)=: S-Once \cup S-Muilt

Report(OHIP, name, earliest-J, earliest-S):=

 Π J.OHIP, J.name, J.date, S.date σ J.OHIP = S.OHIP

 $(J \times S)$

11.

DIN for who does not satisfy (1) and (2)

Not-12(DIN) :=

 $\Pi_{\text{P.DIN}} \ \sigma_{\text{P.DIN}} = \text{G.brand} \land \text{P.manufacture} = \text{G.manufature}$

 $(\rho_P(Product) \times \rho_G(Generic))$

Product satisfies (1) and (2)

 $B := Product - (Product \bowtie Not-12)$

M12 := $\Pi_{\text{manufacture}}$ (Product) - $\Pi_{\text{manufacture}}$ (B)

DIN for who does not satisfy (1) and (2)

Not-3(DIN) :=

 $\Pi_{\text{P.DIN}} \sigma_{\text{P.DIN}} = \text{G.brand} \wedge \text{P.manufacture} = \text{G.manufature}$

 $(\rho_P(Product) \times \rho_G(Generic))$

Product satisfies (3)

 $D := Product - (Product \bowtie Not-3(DIN))$

M3:= $\Pi_{\text{manufacture}}$ (Product) – $\Pi_{\text{manufacture}}$ (D)

 $M123 := M12 \cap M3$

Part2

1.

 $(\Pi_{\text{ingredient1}} \text{ (Interaction)} - \Pi_{\text{ingredient2}} \text{ (Interaction)} = \emptyset)$

Λ

 $(\Pi_{\text{ingredient2}} \text{ (Interaction)} - \Pi_{\text{ingredient1}} \text{ (Interaction)} = \emptyset)$

2.

Impossible

3. Set of generic prescriptions which doc never issued brand before is empty $PG(RxID, DIN, brand, doctor, date) := \Pi_{RxID, DIN, brand, doctor, date} \sigma_{drug = DIN}$ (Prescription \times Generic)

PB(RxID, DIN, doctor, date) := $\Pi_{\text{RxID, DIN, doctor, date}} \sigma_{\text{drug = DIN}}$ (Prescription \times Product)

 $GoodG(RxID, DIN, brand, doctor, date) := \Pi_{PG.RxID, PG.DIN, PG.brand, PG.doctor, PG.date} \ \sigma$ $PG.brand = PB.DIN \land PG.date > PB.date \land PG.doctor = PB.doctor} \ (PG \times PB)$

 $PG - GoodG = \emptyset$

O = Pre1. O = Pre2. O =

 $_{Pro.DIN}$ \wedge $_{Pro.schedule}$ = $_{narcotic'}$ (ρ_{Pre1} (Prescription) \times ρ_{Pre2} (Prescription) \times ρ_{Pro} (Product)) = \emptyset