תורת הסיבוכיות (236313)

'מועד א

20.02.18

מרצה: פרופ' איל קושילביץ מתרגלת: מיכל כהן

הנחיות

- המבחן הוא עם חומר סגור.
- חל איסור מפורש על החזקת אמצעי תקשורת נייד, דוגמת טלפון סלולרי ברשות הנבחן בעת בחינה.
 - נמקו את כל תשובותיכם.
 - . בכל סעיף ניתן לקבל 20% מהניקוד אם במקום תשובה כותבים "לא יודע/ת".
 - מותר להשתמש בכל טענה שהוכחה בהרצאה או בתרגול, בתנאי שמצטטים אותה באופן מדויק.
- השתדלו לא להתעכב יתר על המידה בסעיף מסויים, כדי לצבור מקסימום נקודות בזמן העומד לרשותכם.

בהצלחה!

שאלה 1 (שאלת ש"ב, 15 נקודות)

x כך שלכל $p\left(n
ight)$ כך פולינום מיימת M פולינומית אם קיימת $L_1 \leq_R^{BPP} L_2$ כאשר אם $\mathrm{BP} \cdot \mathrm{NP} = \left\{L | L \leq_R^{BPP} \mathrm{3SAT}
ight\}$ מתקיים

.Pr
$$[x \in L_1 \iff M(x) \in L_2] \ge \frac{1}{2} + \frac{1}{p(|x|)}$$

המקיימת: (V,P) היא מינטראקטיבית מערכת היימת עבורה קיימת עבורה השפות היא מחלקת כל השפות הגדרה:

- הוא מוודא פולינומי הסתברותי V
- הוא מוכיח בעל משאבים לא מוגבלים P
- 2/3 מקבים של לכל הפחות עם V אם עם עם שבאינטראקציה של מקרים מקביל בהסתברות אל מקיים שבאינטראקציה עם $x \in L$
- .1/3 היותר לכל של בהסתברות עם V , P^* עם שבאינטראקציה של מתקיים ולכל $x\notin L$ לכל •
- בהינתן הקלט x, המוכיח שולח רק הודעה אחת למוודא, שלאחר מכן מחליט האם לקבל או לדחות. המוודא לא שולח הודעות למוכיח.
 - $AM[2] = BP \cdot NP$ נקודות) הוכיחו (8 נקודות).1
 - $\mathrm{MA}\subseteq\Sigma_2^p$ כי הוכיחו (ז נקודות).2

שאלה 2 (15 נקודות)

CNF נגדיר את הפונקציה הבאה: $\#2SAT(\varphi)$ מחזירה את כמות ההשמות המספקות עבור פסוק מהצורה $\#2SAT(\varphi)$ (כלומר, פסוק שכל פסוקית שלו מכילה בדיוק שני ליטרלים).

- $.\#2SAT \in \#P$ ביחו הוכיחו (3) .1
- . קשה. #P היא #2SAT ביחו (2). 2

. ניתן להניח כי הפונקציה M(G) המקבלת גרף ומחזירה את מספר השידוכים בG היא #P שלמה.

שאלה 3 (15 נקודות)

 $BPG \in NL$ -נגדיר את השפה BPG להיות שפת כל הגרפים הדו צדדיים. הוכיחו ש

שאלה 4 (30 נקודות)

xעל אחד ל-Mעל מקבל מסלול מקבל בדיוק מיים אם"ם עבורן מ"ט א"ד פולי' אוד פולי' על אם"ם קיים בדיוק מסלול מקבל אחד ל-M

- $.UniqSAT\in US$ כי הוכיחו הוכיחו וווק $SAT=\{arphi|\exists !x: arphi(x)=T\}$ את השפה בתרגול את הוכיחו מיכורת: ראינו בתרגול את השפה
 - . פולינומית. UniqSAT היא UniqSAT היא העתקה פולינומית.
- נבנה M^A מכונת M^A מכונת M^A מכונת M^A מכונת (בנה הוכיחו הוכיחו הוכיחו או הפריכו: תהא M^A מכונת M^A מכונת M^A מחלצת את M^A פועלת כמו M^A , ובכל פעם שבה M^A פונה לאוב M^A מסמלצת את M^A מתקיים כי M^A פועלת כמו M^A פועלת כמו M^A ובכל פעם שבה M^A פונה לאוב M^A מסמלצת את M^A מתקיים כי M^A מרכונת M^A באופן הבא: M^A פועלת כמו M^A פועלת כמו M
 - $.coNP\subseteq US$ בקודות) הוכיחו (8 נקודות).
 - $P^{\Sigma_1^p} \subset P^{US} \subset P^{\Sigma_2^p}$ כ. (5 נקודות) הוכיחו כי
 - $P^{US} = P^{NP}$ 6. (5 נקודות) הוכיחו כי

שאלה 5 (25 נקודות)

. אינו בהכרח עא מוגדרת (BDD) מוגדרת כמו עץ החלטה, למעט שגרף התשתית שלה הוא DAG שאינו בהכרח עץ.

2. באופן פורמלי, BDD הוא מודל חישוב הדומה לתכניות מתפצלות שבו D הוא DAG מושרש בr בו לכל צומת דרגת יציאה 2 ($\{0,1\}$ הצמתים הפנימיים מסומנים ע"י משתנים ואילו העלים מסומנים ע"י קבועים $\{0,1\}$. כמו כן, הקשתות מסומנות ע"י קבועים $\{0,1\}$ כך שמכל צומת פנימי יוצאת קשת אחת עם הערך 1 וקשת אחת עם הערך 0. נאמר ש bdd מקבל קלט x אם"ם כשמתחילים מהשורש ממתקדמים בכל פעם לפי הערך של המשתנה x שמופיע בצומת (אם ערכו 1 נתקדם על הקשת שערכה 1 ולהפך) מגיעים לעלה שערכו x ניתן להניח שקיים עלה אחד שמסומן ב-1 ועלה אחד שמסומן ב-0 (ראו דוגמה).

מתקיים $x\in\{0,1\}^n$ ולכל $n\in\mathbb{N}$ אם לכל $\{bdd_n\}_{n\in\mathbb{N}}:BDD$ מתקיים אם מחושבת על ידי סדרת $f:\{0,1\}^*\to\{0,1\}$ אם לכל כי f(x)=1 אם מקבלת את מקבלת את

נאמר ששפה $x\in\{0,1\}^n$ מוכרעת על ידי סדרת BDD אם לכל BDD אם לכל $m\in\mathbb{N}$ ולכל a מתקיים כי a שייך געמר ששפה a מוכרעת על ידי סדרת a אוסף השפות שמוכרעות על ידי סדרה של a בגודל פולינומי. באם a את אוסף השפות שמוכרעות על ידי סדרה של a באודל פולינומי. באם a אם שקולה למחלקת הפונקציות להן קיים a שקולה למחלקת הפונקציות להן קיים a

דוגמה ל-BDD

 $(x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_1 \wedge x_3)$ מקבל את כל המחרוזות $x \in \{0,1\}^3$ עבורם הפסוק את כל המחרוזות

 $\{a_n\}_{n\in\mathbb{N}}$ מכילה את כל השפות, M, שקיימת עבורן מ"ט בעלת סיבוכיות אמן פולינומית, M מכילה את כל השפות, $M(x\#a_{|x|})=acc$ בגודל פולינומי כך ש $x\in L$ אם $x\in L$

המחלקה DL/poly מוגדרת להיות מחלקת כל השפות שקיימת להן מכונה בעלת סיבוכיות זיכרון לוגריתמי הנעזרת בעצה באורך $x\#a_{|x|}:x$ מוגדרת לקריאה בלבד את x משורשר לעצה המתאימה לאורך של x

- 1. (5 נקודות) הראו פונקציה בוליאנית, $f:\{0,1\}^* \to \{0,1\}$ שסדרת עצי החלטה בינאריים שמחשבת אותה חייבת להיות בגודל אקספוננציאלי, אך קיימת לה סדרת BDD בגודל BDD המחשבת אותה. נמקו.
 - .DL/poly = PBDD כי הוכיחו (נקודות) 2.
 - $P/poly^{P/poly} = P/poly$ כי הוכיחו (ז נקודות) 3.