Construction of \mathbb{Z}

April 1, 2024

Assumptions

- There exists a set $\mathbb{N} = \{0, 1, 2, ...\}$.
- There exists $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $(\mathbb{N}, +)$ forms a commutative monoid with identity 0. ¹
- The function $succ : \mathbb{N} \to \mathbb{N}^+, n \mapsto n+1$ is injective.
- There exists $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that (\mathbb{N}, \cdot) is a commutative monoid with identity 1
- The functions $\varphi_k : \mathbb{N} \to \mathbb{N}, x \mapsto kx$ are injective for $k \in \mathbb{N}^+$
- ullet There exists the usual total order \leq on ${\mathbb N}$

¹We will use infix notation for +

Goals

- Constructing the set \mathbb{Z} .
- Defining $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and $\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}^2$
- Showing $(\mathbb{Z},+,\cdot)$ is a commutative ring with multiplicative identity 1.
- \bullet Showing \leq is a total order on $\mathbb Z$
- ullet Constructing the set ${\mathbb Q}$

 $^{^2}$ We will use infix notation for + and \cdot

Defining the set \mathbb{Z}

Idea

We want
$$z \equiv (a, b) \Leftrightarrow z = a - b$$
.

Issue: This representation is not unique. E.g. $0 = 1 - 1 = 2 - 2 = \dots$

Definition: \sim

$$(a,b) \sim (c,d) :\Leftrightarrow a+d=b+c$$

Lemma

 \sim is an equivalence relation

Defining the set \mathbb{Z}

Proof.

Reflexivity:

$$\forall (a, b) \in \mathbb{N} \times \mathbb{N} : a + b = b + a.$$

Symmetry:

$$(a,b) \sim (c,d) \Rightarrow c+b=b+c \underset{(a,b) \sim (c,d)}{=} a+d=d+a \Rightarrow (c,d) \sim (a,b).$$

Transitivity:

Let
$$(a, b) \sim (c, d), (c, d) \sim (e, f)$$
. Then $succ^{c+d}(a+f) = \underbrace{a+d}_{=b+c} + \underbrace{c+f}_{=d+e} = b+c+d+e = succ^{c+d}(b+e)$
 $\Rightarrow a+f = b+e \Rightarrow (a, b) \sim (e, f)$

Construction of $\ensuremath{\mathbb{Z}}$

Defining the set \mathbb{Z}

Definition: \mathbb{Z}

$$\mathbb{Z} := \mathbb{N} \times \mathbb{N} / \sim = \{ [(a, b)] \mid a, b \in \mathbb{N} \}$$

Defining +

Remark

 $(\mathbb{N} \times \mathbb{N}, +_2)$ as direct product of $(\mathbb{N}, +)$ with itself is a semigroup.

Lemma

 \sim is comptabile with $+_2$.

Proof.

Let
$$(a, b) \sim (a', b'), (c, d) \sim (c', d')$$
. Then
$$(a + c) + (b' + d') = \underbrace{(a + b')}_{=b+a'} + \underbrace{(c + d')}_{=d+c'} = (b + d) + (a' + c')$$

$$\Rightarrow (a, b) +_2 (c, d) = (a + c, b + d) \sim (a' + c', b' + d') = (a', b') +_2 (c', d')$$

Defining +

Corollary: Definition of +

 $[(a,b)] +_3 [(c,d)] := [(a,b) +_2 (c,d)] = [(a+c,b+d)]$ is well-defined and makes $(\mathbb{Z},+_3)$ a semigroup.

Remark

This gives us the usual Addition on \mathbb{Z} :

$$y = a - b, z = c - d \Rightarrow y + z = a + c - (b + d)^{a}$$

^aFrom now on we will not distinguish between $+, +_2$ and $+_3$

Lemma

 $(\mathbb{Z},+)$ is an abelian group.

Defining +

Proof.

Commutativity: $\forall [(a,b)], [(c,d)] \in \mathbb{Z}$:

$$[(a,b)] + [(c,d)] = [(a+c,b+d)] = [(c+a,d+b)] = [(c,d)] + [(a,b)]$$

Neutral Element: $\forall [(a, b)] \in \mathbb{Z} : [(a, b)] + [(0, 0)] = [(a, b)]$

Inverses:
$$\forall [(a,b)] \in \mathbb{Z} : [(a,b)] + [(b,a)] = [(a+b,b+a)] = [(0,0)]$$

Construction of $\mathbb Z$

Difference representation

Definition: -

For $\alpha, \beta \in \mathbb{Z}$ we define: $\alpha - \beta := \alpha + (-\beta)$

Identification of $\mathbb N$

The Map $\iota : \mathbb{N} \to \mathbb{Z}$, $n \mapsto [(n,0)]$ is injective and compatible with +.

Proof.

Injective:

$$[(a,0)] = [(b,0)] \Rightarrow a+0 = b+0 \Rightarrow a = b$$

Compatible: $\forall a, b \in \mathbb{N}$:

$$\iota(a+b) = [(a+b,0)] = [(a,0)] + [(b,0)] = \iota(a) + \iota(b)$$

Difference representation

Identification of $\mathbb N$

We identify \mathbb{N} with the isomorphic set $\iota(\mathbb{N}) \subseteq \mathbb{Z}$.

Difference representation

We can now represent integers as

$$[(a,b)] = [(a,0)] + [(0,b)] = [(a,0)] - [(b,0)] = a - b$$

Definition of ·

Idea

We want
$$(a-b)(c-d) = ac - ad - bc + bd = ac + bd - (ad + bc)$$

Definition: .

$$[(a,b)] \cdot [(c,d)] := [(ac+bd,ad+bc)] = [(ca+db,da+cb)] = [(c,d)] \cdot [(a,b)]$$

· is well-defined

Let
$$[(a,b)] = [(a',b')]$$
. We have $[(a',b')] \cdot [(c,d)] = [(a'c+b'd,a'd+b'c)] = [(a'c,b'c)] + [(b'd,a'd)] = {(ac+bd,ad+bc)}$

By symmetry \cdot is also invariant under changes of representative in the 2nd argument.

Definition of ·

Lemma

 (\mathbb{Z},\cdot) is a commutative monoid.

Proof.

```
Associativity: \forall [(a,b)], [(c,d)], [(e,f)] \in \mathbb{Z}:

[(a,b)] \cdot ([(c,d)] \cdot [(e,f)]) = [(a,b)] \cdot [(ce+df,cf+de)]

= [(e(ac+bd)+f(ad+bc), f(ac+bd)+e(ad+bc))]

= [(ac+bd,ad+bc)] \cdot [(e,f)]

= ([(a,b)] \cdot [(c,d)]) \cdot [(e,f)]
```

Neutral Element:
$$\forall [(a,b)] \in \mathbb{Z}$$
: $[(a,b)] \cdot [(1,0)] = [(a \cdot 1 + b \cdot 0, a \cdot 0 + b \cdot 1)] = [(a,b)]$

\mathbb{Z} is an integral domain

Corollary

 \mathbb{Z} is a commutative ring with identity.

Proof.

 $(\mathbb{Z},+)$ is an abelian group and (\mathbb{Z},\cdot) is a commutative monoid. We also have:

Distributivity:
$$\forall [(a,b)], [(c,d)], [(e,f)]$$
: $[(a,b)] \cdot ([(c,d)] + [(e,f)]) = [(a(c+e) + b(d+f), a(d+f) + b(c+e))] = [(a,b)] \cdot [(c,d)] + [(a,b)] \cdot [(e,f)]$

\mathbb{Z} is an integral doman

Corollay

 \mathbb{Z} is an integral domain

Proof.

Let
$$[(a,b)][(c,d)] = [(0,0)], [(a,b)] \neq [(0,0)]$$

 $\Rightarrow ac + bd = ad + bc$
 $\Rightarrow (a-b)c = (a-b)d$
Assume $a > b$, so $a - b = k$ for some $k \ge 1$
 $\Rightarrow kc = kd \Rightarrow c = d \Rightarrow [(c,d)] = [(0,0)]$
 $\varphi_k: \mathbb{N} \to \mathbb{N}, x \mapsto kx$
injective for $k \in \mathbb{N}^+$

If a < b, then for k := a - b the map $\varphi_{-k} : \mathbb{N} \to \mathbb{N}, x \mapsto (-k)x$ is injective.

Ordering on \mathbb{Z}

Definition

For $a, b \in \mathbb{Z}$ we define $a \leq b :\Leftrightarrow b - a \in \mathbb{N}$

Lemma

< is an order relation

Ordering on $\ensuremath{\mathbb{Z}}$

Proof.

Reflexivity: $\forall a \in \mathbb{Z} : a - a = 0 \in \mathbb{N}$

Antisymmetry: Let $a \le b, b \le a$.

$$\Rightarrow \exists n_1, n_2 \in \mathbb{N} : b - a = n_1, \ a - b = n_2.$$

$$\Rightarrow n_1 = b - a = -(a - b) = -n_2$$

$$\Rightarrow n_1 = b_2 = 0 \Rightarrow a = b$$

Transitivity: Let $a \le b, b \le c$.

$$\Rightarrow \exists k_1, k_2 \in \mathbb{N} : a + k_1 = b, b + k_2 = c$$

$$\Rightarrow \exists k_3 \in \mathbb{N} : a + k_3 = c$$

$$\Rightarrow c - a \in \mathbb{N} \Rightarrow a \leq c$$

Ordering on $\ensuremath{\mathbb{Z}}$

Lemma

 \leq is a total order.

Proof.

Let
$$a, b, c, d \in \mathbb{N}$$
, $[(a, b)] \not\leq [(c, d)]$.
⇒ $[(c, d)] - [(a, b)] = [(b + c, a + d)] \not\in \mathbb{N}$
⇒ $\forall n \in \mathbb{N} : [(n, 0)] \neq [(b + c, a + d)]$
⇒ $\forall n \in \mathbb{N} : a + d + n \neq b + c$
⇒ $b + c \leq a + d$
⇒ $a + d - (b + c) \in \mathbb{N}$
⇒ $[(a, b)] - [(c, d)] = [(a + d, b + c)] = [(a + d - (b + c), 0)] \in \mathbb{N}$
⇒ $[(c, d)] \leq [(a, b)]$

Definition of $\mathbb Q$

Definition

For
$$(a,b),(c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$$
 we define $(a,b) \sim (c,d) :\Leftrightarrow ad = bc$

\sim is an equivalence relation

```
Transitivity: \forall (a,b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) : ab = ba

Symmetry: Let (a,b) \sim (c,d)

\Rightarrow cb = bc = ad = da \Rightarrow (c,d) \sim (a,b)

Transitivity: Let (a,b) \sim (c,d), (c,d) \sim (e,f)

If c=0 then a=e=0 \Rightarrow af=0=be \Rightarrow (a,b) \sim (e,f)

Else cd \neq 0, therefore: cdaf = cdbe \Rightarrow af = be \Rightarrow (a,b) \sim (e,f)
```

Definition of $\mathbb Q$

Definition: Q

$$\mathbb{Q}:=\{[(a,b)]\mid (a,b)\in \mathbb{Z}\times (\mathbb{Z}\setminus \{0\})\}.$$
 We define $\frac{a}{b}:=[(a,b)].$

Definition of $+(\mathbb{Q},+)$ is an abelian group

Definition

For
$$\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$$
 we define $\frac{a}{b} + \frac{c}{d} := \frac{ad+bc}{bd} = \frac{cb+ad}{db} = \frac{c}{d} + \frac{a}{b}$.

+ is well-defined

Let
$$\frac{a}{b} = \frac{a'}{b'}$$
. Then for $\frac{c}{d} \in \mathbb{Q}$: $bd(a'd + b'c) = ddba' + bb'cd = ddab' + bb'cd = b'd(ad + bc)$ $\Rightarrow \frac{a'}{b'} + \frac{c}{d} = \frac{a'd+b'c}{b'd} = \frac{ad+bc}{bd} = \frac{a}{b} + \frac{c}{d}$

By Symmetry invariance under changes of the right represenative follows.

$\overline{(\mathbb{Q},+)}$ is an abelian group

Proposition

 $(\mathbb{Q},+)$ is an abelian group

Proof.

Associativity: $\forall \frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{Q}$:

$$\frac{a}{b} + \underbrace{\left(\frac{c}{d} + \frac{e}{f}\right)}_{=\frac{cf + de}{df}} = \underbrace{\frac{adf + bcf + bde}{bdf}}_{=\frac{ad + bc}{bd}} = \underbrace{\left(\frac{a}{b} + \frac{c}{d}\right)}_{=\frac{ad + bc}{bd}} + \underbrace{\frac{e}{f}}_{=\frac{ad + bc}{bd}}$$

Neutral Element: $\forall \frac{a}{b} \in \mathbb{Q}$:

$$\frac{0}{1} + \frac{a}{b} = \frac{a}{b}$$

Inverses: $\forall \frac{a}{b} \in \mathbb{Q}$:

$$\frac{a}{b} + \frac{-a}{b} = \frac{ab - ab}{ab} = \frac{0}{1}$$

 $(\mathbb{Q}\setminus\{0\},\cdot)$ is an abelian group

Definition

For $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$ we define: $\frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd} = \frac{c}{d} \frac{a}{b} h$

· is well-defined

Let
$$\frac{a}{b} = \frac{a'}{b'}$$
. Then for $\frac{c}{d}$:
 $ab' = ba' \Rightarrow ab'cd = ba'cd$
 $\Rightarrow \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{a'c}{b'd} = \frac{a'}{b'} \cdot \frac{c}{d}$

$\overline{(\mathbb{Q}\setminus\{0\},\cdot)}$ is an abelian group

Proposition

 $(\mathbb{Q}\setminus\{0\},\cdot)$ is an abelian group

Proof.

Associativity: $\forall \frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{Q} \setminus \{0\}$:

$$\frac{a}{b} \cdot \left(\frac{c}{d} \cdot \frac{e}{f}\right) = \frac{ace}{bdf} = \left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f}$$

Neutral Element: $\forall \frac{a}{b} \in \mathbb{Q}$:

$$\frac{a}{b} \cdot \frac{1}{1} = \frac{a}{b}$$

Inverses: $\forall \frac{a}{b} \in \mathbb{Q} \setminus \{0\}$:

$$\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ab} = \frac{1}{1}$$

O is a field

Lemma

O is a field

Proof.

Since $(\mathbb{Q}, +)$ and $(\mathbb{Q} \setminus \{0\}, \cdot)$ are abelian groups, we only need to show Distributivity. Distributivity: Let $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} \in \mathbb{Q}$. Then:

$$\frac{a}{b} \left(\frac{c}{d} + \frac{e}{f} \right) = \frac{acf + ade}{bdf} = \frac{b(acf + dae)}{bdbf} = \frac{ac}{bd} + \frac{ae}{bf} = \frac{a}{b} \frac{c}{d} + \frac{a}{b} \frac{e}{f}$$

Construction of Z

Embedding of $\mathbb Z$ into $\mathbb Q$

Definition

The Map $\iota: \mathbb{Z} \to \mathbb{Q}, z \mapsto \frac{z}{1}$ is injective and compatible with $+, \cdot$.

Proof.

Injective: Let $\frac{z}{1} = \frac{z'}{1}$. By Definition of \sim we get z = z'.

Addition: $\forall z, z' \in \mathbb{Z} : \iota(z+z') = \frac{z+z'}{1} = \frac{z}{1} + \frac{z'}{1} = \iota(z) + \iota(z')$

Multiplication: $\forall z, z' \in \mathbb{Z} : \iota(zz') = \frac{zz'}{1} = \frac{z}{1}\frac{z'}{1} = \iota(z)\iota(z')$

Embedding of \mathbb{Z}

We identify \mathbb{Z} with the isomorphic set $\iota(\mathbb{Z}) \subset \mathbb{Q}$