U.S. Application No.: 10/557,533 Docket No.: RICE-1003US

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of identifying oscillation in a signal due to feedback, the

method comprising:

converting the signal at each of a series of successive time windows into the frequency

domain;

calculating for each of a plurality of frequency bands the change in signal phase from a

time window to a subsequent time window, and comparing the change in signal phase with a

previous phase change to provide a measure of the change in phase change; and

comparing, for some or all of said frequency bands, the results of the calculation to one or

more defined criteria to provide a measure of whether oscillation due to feedback is present in

the signal.

2. (Previously Presented) The method of claim 1, further comprising calculating, for some or all

of said frequency bands, the change in signal amplitude from a time window to a subsequent

time window, and comparing the result of the further calculation to one or more further defined

criteria, to provide a further measure as to whether oscillation due to feedback is present in the

signal.

3. (Previously Presented) The method of claim 1, in which the signal conversion into the

frequency domain is carried out by way of a Fast Fourier Transform technique.

4. (Previously Presented) The method of claim 1, in which the number of frequency bands is

around 64.

5. (Previously Presented) The method of claim 1, in which said successive time windows are in

the range of 1 to 100 ms.

6. (Canceled)

U.S. Application No.: 10/557,533

Docket No.: RICE-1003US

7. (Currently Amended) The method of claim 61, in which the signal phase change is calculated

from each time window to the next successive time window, to provide a continuous monitoring

of the change in phase change in that frequency band.

8. (Currently Amended) The method of claim 61, in which a counter is employed, the counter

being incremented if the value of the change in phase change is within a prescribed limit, the

counter being reset if it is not, the measure of whether oscillation due to feedback is present in

the signal being provided by the counter reaching a value M_p.

9. (Original) The method of claim 2, in which for each frequency band, for each time window the

amplitude from at least one previous window is compared with that of the current window to

calculate a change in amplitude.

10. (Original) The method of claim 9, in which a counter is employed, the counter being

incremented if the value of the amplitude change is greater than zero, the counter being reset if it

is not, the further measure of whether oscillation due to feedback is present in the signal being

provided by the counter reaching a value M_a.

11. (Previously Presented) The method of claim 8 together with the method of claim 10, wherein

 $M_p = M_a$.

12. (Previously Presented) The method of claim 1, in which, on determination that oscillation

due to feedback is present in the signal, a selected method for suppressing oscillation is applied

to the signal in that frequency band.

13. (Original) The method of claim 12 in which the suppression technique includes the step of

adding a random phase to the signal in at least one of said frequency bands for a prescribed

period of time.

14. (Original) The method of claim 12 in which the suppression technique is selected from the

group of: applying a phase shift; applying a notch filter; subtracting a signal from the input

signal; and applying a gain attenuation.

U.S. Application No.: 10/557,533 Docket No.: RICE-1003US

feedback for use in a system involving deriving gain values for said frequency bands in accordance with a specified signal processing algorithm, including the method comprising: converting the signal at each of a series of successive time windows into the frequency domain: calculating for each of a plurality of frequency bands the change in signal phase from a time window to a subsequent time window; comparing, for some or all of said frequency bands, the results of the calculation to one or more defined criteria to provide a measure of whether oscillation due to feedback is present in the signal; and comparing, only for frequency bands and in time windows in which said one or more defined criteria is/are met for some or all of said frequency bands, the derived gain with a prescribed gain limit, in order to provide a further measure as to whether oscillation due to feedback is present in the signal. 16. (Canceled) 17. (Previously Presented) The method of claim 1, applied to a feedback management system for a signal processing apparatus incorporating selectively adjustable or settable signal gain

15. (Currently Amended) The A method of claim 1, for identifying oscillation in a signal due to

18. (Currently Amended) Apparatus for identifying oscillation in a signal in a system having an input transducer and an output transducer, comprising:

values, whereby the comparing, calculating and comparing are carried out as part of a setup

means for converting the signal into the frequency domain;

phase, in order to set or adjust said gain values.

means for analysing the converted signal at each of a succession of time windows over a number of frequency bands, to determine the amplitude and phase of the signal in each frequency band;

U.S. Application No.: 10/557,533

Docket No.: RICE-1003US

means for calculating the change in signal phase for each frequency band from a time

window to a subsequent time window; and

means for comparing the change in phase with one or more defined criteria to provide a

measure of whether oscillation is present in the signal; and

means for comparing, for each frequency band and for each time window, the signal

phase from one or more previous time windows with that from the current window to calculate a

change of phase, and means for comparing this change of phase with a previous phase change to

provide a measure of the change in phase change.

19. (Original) The apparatus of claim 18, including means for further calculating, for some or all

of said frequency bands, the change in signal amplitude from one time window to a subsequent

time window, and means for comparing the result of the further calculation step to one or more

further defined criteria, to provide a further measure as to whether oscillation is present in the

signal.

20. (Previously Presented) The apparatus of claim 18, wherein the converting means comprises

a Fast Fourier Transform (FFT) unit.

21. (Canceled)

22. (Currently Amended) The apparatus of claim 2418, wherein said means for comparing is

arranged to calculate the signal phase change from each time window to the next successive time

window, to provide continuous monitoring of the change in phase change in that frequency band.

23. (Currently Amended) The apparatus of claim 2118, including a counter arranged to be

incremented if the value of the change in phase change is within a prescribed limit, and to be

reset if it is not, the measure of whether oscillation is present in the signal being provided by the

counter reaching a value M_p.

24. (Original) The apparatus of claim 19, in which the means for further calculating comprise

means for comparing, for each frequency band and for each time window, the amplitude from at

least one previous window with that of the current window, to calculate a change in amplitude.

U.S. Application No.: 10/557,533

Docket No.: RICE-1003US

25. (Original) The apparatus of claim 24, including a counter arranged to be incremented if the

value of the amplitude change is greater than zero, and to be reset if it is not, the further measure

of whether oscillation is present in the signal being provided by the counter reaching a value M_a.

26. (Previously Presented) The apparatus of claim 18, in combination with a means for

suppressing oscillation, the suppressing means arranged to be triggered in accordance with the

measure of whether oscillation is present in the signal.

27. (Currently Amended) The apparatus of claim 18, including Apparatus for identifying

oscillation in a signal in a system having an input transducer and an output transducer,

comprising:

means for converting the signal into the frequency domain;

means for analysing the converted signal at each of a succession of time windows over a

number of frequency bands, to determine the amplitude and phase of the signal in each frequency

band;

means for calculating the change in signal phase for each frequency band from a time

window to a subsequent time window;

means for comparing the change in phase with one or more defined criteria to provide a

measure of whether oscillation is present in the signal; and

means for reconverting the signal to a waveform signal to be fed to the output transducer.

28. (Currently Amended) The apparatus of claim 18, Apparatus for identifying oscillation in a

signal in a system having an input transducer and an output transducer, in combination with a

system for deriving gain values for said frequency bands in accordance with a specified signal

processing algorithm, including the apparatus comprising:

means for converting the signal into the frequency domain;

U.S. Application No.: 10/557,533 Docket No.: RICE-1003US

means for analysing the converted signal at each of a succession of time windows over a number of frequency bands, to determine the amplitude and phase of the signal in each frequency band;

means for calculating the change in signal phase for each frequency band from a time window to a subsequent time window;

means for comparing the change in phase with one or more defined criteria to provide a measure of whether oscillation is present in the signal; and

means for comparing, only for frequency bands and in time windows in which said one or more defined criteria is/are met for some or all of said frequency bands, the derived gain with a prescribed gain limit, to provide a further measure as to whether oscillation due to feedback is present in the signal.

29. (Canceled)

30. (Previously Presented) A feedback management system for a signal processing apparatus incorporating selectively adjustable or settable signal gain values, including the apparatus of claim 18, the system including means for setting or adjusting said gain values in accordance with a measure of whether oscillation is present in the signal.