Ceruloplasmin and Oxidative Stress in HIV: A Review

*Emmanuel Ifeanyi Obeagu

Department of Medical Laboratory Science, Kampala International University, Uganda

*Corresponding authour: Emmanuel Ifeanyi Obeagu, <u>Department of Medical Laboratory Science</u>, <u>Kampala International University, Uganda, emmanuelobeagu@yahoo.com, ORCID:</u> 0000-0002-4538-0161

Abstract

HIV infection is associated with chronic inflammation and immune activation, leading to increased oxidative stress in affected individuals. Ceruloplasmin, a copper-binding glycoprotein with potent antioxidant properties, plays a crucial role in modulating oxidative stress levels. This review explores the intricate relationship between ceruloplasmin and oxidative stress in the context of HIV infection. The paper reviews the mechanisms underlying ceruloplasmin's antioxidant activity and its impact on redox homeostasis during HIV pathogenesis. Furthermore, it discusses the implications of ceruloplasmin in HIV-associated complications such as neurocognitive impairment, cardiovascular diseases, and accelerated aging. Understanding the role of ceruloplasmin in mitigating oxidative stress may offer novel therapeutic strategies for managing HIV-related comorbidities.

Keywords: Ceruloplasmin, oxidative stress, HIV, inflammation, antioxidant, redox homeostasis, neurocognitive impairment, cardiovascular diseases, aging, therapeutic strategies.

Introduction

HIV infection remains a formidable global health challenge, affecting millions of individuals worldwide. Despite significant advancements in treatment and prevention strategies, HIV continues to exert profound impacts on affected individuals' health and well-being. A hallmark feature of HIV infection is the persistent immune activation and dysregulation, which lead to chronic inflammation and oxidative stress. This aberrant immune response not only facilitates viral replication and disease progression but also contributes to the development of various comorbidities, including cardiovascular diseases, neurocognitive impairment, and accelerated aging. Oxidative stress, characterized by an imbalance between the production of reactive oxygen Citation: Obeagu EI. Ceruloplasmin and Oxidative Stress in HIV: A Review. Elite Journal of HIV, 2023; 1(1): 29-42

species (ROS) and the antioxidant defense mechanisms, plays a central role in the pathogenesis of HIV infection and its associated complications. HIV proteins, inflammatory cytokines, and immune activation contribute to the generation of ROS, leading to cellular damage, mitochondrial dysfunction, and activation of pro-inflammatory pathways. Consequently, oxidative stress has emerged as a key player in driving HIV-related pathologies and influencing disease progression.¹⁻

Ceruloplasmin, a multifunctional glycoprotein with potent antioxidant properties, has garnered significant attention for its role in modulating oxidative stress and redox homeostasis. As the major copper-carrying protein in the bloodstream, ceruloplasmin plays a critical role in catalyzing the oxidation of ferrous iron to ferric iron, thereby preventing the generation of highly reactive hydroxyl radicals via the Fenton reaction. Additionally, ceruloplasmin acts as a scavenger of free radicals and inhibits lipid peroxidation, protecting cells and tissues from oxidative damage. In the context of HIV infection, the intricate interplay between ceruloplasmin and oxidative stress holds profound implications for disease pathogenesis and progression. Dysregulation of ceruloplasmin levels and activity may disrupt redox balance, exacerbate oxidative damage, and contribute to the development of HIV-associated complications. Understanding the mechanisms underlying ceruloplasmin-mediated antioxidant effects is crucial for unraveling the complex dynamics of oxidative stress in HIV infection and identifying novel therapeutic targets for mitigating disease-related morbidity and mortality.²¹⁻⁴⁰

This review aims to provide a comprehensive overview of the role of ceruloplasmin in modulating oxidative stress during HIV infection.

Ceruloplasmin

Ceruloplasmin, a multifunctional glycoprotein, stands as a cornerstone in the orchestration of various physiological processes. Primarily synthesized in the liver, ceruloplasmin emerges as the principal copper-binding protein circulating in the bloodstream. Its multifaceted role encompasses pivotal functions in iron metabolism, antioxidant defense, and immune regulation. At the heart of its functionality lies its capacity as a ferroxidase enzyme, facilitating the conversion of ferrous iron (Fe²+) to ferric iron (Fe³+). This enzymatic activity is pivotal in preventing the generation of highly reactive hydroxyl radicals via the Fenton reaction, thus safeguarding cells from oxidative damage. Moreover, ceruloplasmin extends its protective arm against oxidative stress through its role as an antioxidant. By scavenging free radicals and inhibiting lipid peroxidation, ceruloplasmin shields cellular components from the detrimental effects of oxidative damage. Beyond its antioxidant properties, ceruloplasmin's involvement in immune regulation and inflammation modulation underscores its significance in maintaining physiological homeostasis. Through its interaction with cytokines and chemokines, ceruloplasmin exerts regulatory effects on immune responses, thus shaping the inflammatory milieu. In the intricate landscape of HIV infection, ceruloplasmin emerges as a pivotal player in modulating oxidative stress and redox balance. Dysregulation of ceruloplasmin levels and activity may disrupt the delicate equilibrium between pro-oxidants and antioxidants, exacerbating oxidative damage and contributing to the pathogenesis Citation: Obeagu EI. Ceruloplasmin and Oxidative Stress in HIV: A Review. Elite Journal of HIV. 2023; 1(1): 29-42

of HIV-associated complications. Understanding the nuances of ceruloplasmin's functionality in the context of HIV infection holds immense promise for unraveling the underlying mechanisms driving disease progression and identifying novel therapeutic targets. 41-60

Oxidative Stress in HIV Infection

Oxidative stress represents a critical aspect of HIV infection, intricately woven into the complex web of immune dysregulation and disease pathogenesis. Characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, oxidative stress plays a central role in driving HIV-related pathologies and influencing disease progression. The interplay between HIV proteins, chronic inflammation, and immune activation fuels the generation of ROS, setting the stage for cellular damage, mitochondrial dysfunction, and activation of pro-inflammatory pathways. HIV proteins, including Tat and gp120, contribute to oxidative stress by directly inducing the production of ROS through various mechanisms. Tat, a transactivator protein, can stimulate the generation of ROS by activating NADPH oxidase and disrupting mitochondrial function. Similarly, gp120, the viral envelope glycoprotein, has been implicated in ROS production via interactions with cellular receptors and downstream signaling pathways. Furthermore, chronic inflammation and immune activation, hallmarks of HIV infection, further exacerbate oxidative stress by promoting the release of pro-inflammatory cytokines and activating immune cells such as macrophages and T lymphocytes. 61-70

The consequences of oxidative stress in HIV infection are far-reaching and multifaceted. Oxidative damage to cellular components, including lipids, proteins, and DNA, can disrupt cellular function and contribute to tissue injury and dysfunction. Mitochondrial dysfunction, resulting from oxidative damage to mitochondrial DNA and proteins, compromises energy production and contributes to cellular apoptosis and immune dysregulation. Moreover, oxidative stress can fuel a vicious cycle of inflammation and immune activation, perpetuating the underlying pathogenic processes driving HIV disease progression. Beyond its role in HIV pathogenesis, oxidative stress is intricately linked to the development of HIV-associated complications. Cardiovascular diseases, neurocognitive impairment, and accelerated aging are all characterized by increased oxidative stress and contribute to the burden of morbidity and mortality in HIV-infected individuals. Oxidative stress-mediated endothelial dysfunction, dyslipidemia, and insulin resistance further exacerbate the risk of cardiovascular events in this population. Similarly, oxidative damage to neuronal cells and synaptic dysfunction contribute to the development of HIV-associated neurocognitive disorders. 71-80

Role of Ceruloplasmin in Modulating Oxidative Stress in HIV

Ceruloplasmin emerges as a pivotal regulator in the intricate dance of oxidative stress modulation during HIV infection. Its multifunctional nature, encompassing antioxidant properties and immune modulation, positions ceruloplasmin as a key player in maintaining redox homeostasis amidst the tumultuous landscape of HIV-induced oxidative stress. The dysregulation of ceruloplasmin levels and activity observed in HIV-infected individuals underscores its significance in the pathogenesis **Citation**: Obeagu EI. Ceruloplasmin and Oxidative Stress in HIV: A Review. Elite Journal of HIV, 2023; 1(1): 29-42

of HIV-related complications and opens avenues for therapeutic intervention. At the heart of ceruloplasmin's role lies its capacity as a ferroxidase enzyme, catalyzing the conversion of ferrous iron (Fe^2+) to ferric iron (Fe^3+). This enzymatic activity is pivotal in preventing the generation of highly reactive hydroxyl radicals via the Fenton reaction, thereby mitigating oxidative damage and preserving cellular integrity. By maintaining iron homeostasis and preventing iron-mediated oxidative stress, ceruloplasmin serves as a frontline defender against the deleterious effects of ROS in HIV-infected individuals. Moreover, ceruloplasmin extends its protective arm against oxidative stress through its antioxidant properties. As a potent scavenger of free radicals and inhibitor of lipid peroxidation, ceruloplasmin shields cellular components from oxidative damage, preserving their structural and functional integrity. In the context of HIV infection, where oxidative stress is heightened due to chronic inflammation and immune activation, ceruloplasmin's antioxidant activity assumes paramount importance in mitigating the detrimental effects of ROS on cellular function and viability. 81-90

Furthermore, ceruloplasmin's immunomodulatory role adds another layer of complexity to its functionality in HIV pathogenesis. By modulating the activity of cytokines and chemokines, ceruloplasmin exerts regulatory effects on immune responses, shaping the inflammatory milieu and influencing disease progression. Its ability to dampen excessive inflammation and immune activation may help alleviate oxidative stress burden and mitigate tissue injury in HIV-infected individuals. The implications of ceruloplasmin in HIV-associated complications further underscore its significance in disease pathogenesis and management. Dysregulation of ceruloplasmin levels has been associated with increased oxidative stress and neurocognitive impairment in HIV-infected individuals. Conversely, elevated ceruloplasmin levels have been linked to cardiovascular diseases and metabolic abnormalities in this population. Understanding the nuanced interplay between ceruloplasmin and oxidative stress holds immense promise for identifying novel therapeutic targets and improving the health outcomes of individuals living with HIV.

Implications of Ceruloplasmin in HIV-Associated Complications

The implications of ceruloplasmin in HIV-associated complications are multifaceted, reflecting its intricate role in modulating oxidative stress and immune function. Dysregulation of ceruloplasmin levels and activity has been implicated in the pathogenesis of various HIV-related complications, including neurocognitive impairment, cardiovascular diseases, and metabolic abnormalities. Understanding the implications of ceruloplasmin in these complications is crucial for elucidating disease mechanisms and identifying potential therapeutic targets. Neurocognitive impairment represents a significant complication of HIV infection, affecting a substantial proportion of individuals despite effective antiretroviral therapy. Ceruloplasmin has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND) due to its role in oxidative stress modulation and iron metabolism. Dysregulation of ceruloplasmin levels may contribute to neuronal damage and cognitive decline through oxidative damage and disruption of iron homeostasis in the brain. Furthermore, ceruloplasmin's immunomodulatory effects may influence neuroinflammatory processes underlying HAND.

Cardiovascular diseases represent another major comorbidity in HIV-infected individuals, contributing to increased morbidity and mortality in this population. Ceruloplasmin has been associated with cardiovascular risk factors such as dyslipidemia, endothelial dysfunction, and atherosclerosis. Dysregulation of ceruloplasmin levels may exacerbate oxidative stress and inflammation, promoting vascular dysfunction and cardiovascular complications. Furthermore, ceruloplasmin's role in iron metabolism may contribute to oxidative damage and plaque formation in the arterial wall, further exacerbating cardiovascular risk. Metabolic abnormalities, including insulin resistance, dyslipidemia, and lipodystrophy, are common in HIV-infected individuals and contribute to the development of metabolic syndrome and diabetes mellitus. Ceruloplasmin has been implicated in the regulation of glucose and lipid metabolism, with dysregulation of ceruloplasmin levels associated with insulin resistance and dyslipidemia. Additionally, ceruloplasmin's antioxidant properties may play a role in mitigating oxidative stress-induced metabolic dysfunction. However, further research is needed to elucidate the mechanisms underlying ceruloplasmin's involvement in metabolic complications of HIV infection. 101-109

Conclusion

Ceruloplasmin plays a multifaceted role in the context of HIV infection, exerting significant implications across various aspects of disease pathogenesis and progression. As a pivotal regulator of oxidative stress, ceruloplasmin serves as a frontline defender against the deleterious effects of reactive oxygen species, safeguarding cellular integrity and function amidst the inflammatory milieu characteristic of HIV infection. Its antioxidant properties, coupled with its capacity to modulate immune responses and metabolic regulation, position ceruloplasmin as a key player in maintaining redox balance and mitigating HIV-associated complications. Through its role in iron metabolism and ferroxidase activity, ceruloplasmin prevents iron-mediated oxidative damage and protects cells from the ravages of oxidative stress. Furthermore, ceruloplasmin's immunomodulatory effects may help temper excessive inflammation and immune activation, thereby alleviating tissue injury and preserving organ function in HIV-infected individuals. However, dysregulation of ceruloplasmin levels and activity may contribute to the pathogenesis of HIV-related complications, including neurocognitive impairment, cardiovascular diseases, and metabolic abnormalities.

References

- 1. World Health Organization. Global health sector response to HIV, 2000-2015: focus on innovations in Africa: progress report. World Health Organization; 2015.
- 2. Dieffenbach CW, Fauci AS. Thirty years of HIV and AIDS: future challenges and opportunities. Annals of internal medicine. 2011;154(11):766-771.
- 3. Waldman AJ, Balskus EP. The human microbiota, infectious disease, and global health: challenges and opportunities. ACS infectious diseases. 2018;4(1):14-26.
- 4. Chan M. Ten years in public health 2007-2017: report by dr margaret chan director-general world health organization. World Health Organization; 2018.

- 5. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. The Journal of clinical investigation. 2008;118(4):1244-1254.
- 6. Piot P, Kazatchkine M, Dybul M, Lob-Levyt J. AIDS: lessons learnt and myths dispelled. The Lancet. 2009;374(9685):260-263.
- 7. Obeagu EI. Comparative Study of Serum Iron and Hemoglobin Levels of Cord Blood of Normal Neonates and that of Maternal Blood in Federal Medical Centre Owerri. Journal of Clinical and Laboratory Research. 2021;4(1):2768-0487.
- 8. Obeagu EI, Aneke J, Okafor CN, Essein UC, Ochei KC, Obeagu GU. Assessment of Serum Iron Status of Malnourished Infants in Umuahia, Abia State, Nigeria. Sch J App Med Sci. 2016; 4:4384-7.
- 9. Obeagu EI, Eze VU, Alaeboh EA, Ochei KC. Determination of haematocrit level and iron profile study among persons living with HIV in Umuahia, Abia State, Nigeria. J BioInnovation. 2016; 5:464-471.
- 10. Obeagu EI, Opoku D, Obeagu GU. Burden of nutritional anaemia in Africa: A Review. Int. J. Adv. Res. Biol. Sci. 2023;10(2):160-163.
- 11. Obeagu EI, Okeke EI, Anonde Andrew C. Evaluation of haemoglobin and iron profile study among persons living with HIV in Umuahia, Abia state, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(2):1-5.
- 12. Obeagu EI, Okwuanaso CB, Edoho SH, Obeagu GU. Under-nutrition among HIV-exposed Uninfected Children: A Review of African Perspective. Madonna University journal of Medicine and Health Sciences. 2022;2(3):120-127.
- 13. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023;3(1):7-12. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/91.
- 14. Obeagu EI, Obeagu GU. An update on premalignant cervical lesions and cervical cancer screening services among HIV positive women. J Pub Health Nutri. 2023; 6 (2). 2023; 141:1-2. links/63e538ed64252375639dd0df/An-update-on-premalignant-cervical-lesions-and-cervical-cancer-screening-services-among-HIV-positive-women.pdf.
- 15. Ezeoru VC, Enweani IB, Ochiabuto O, Nwachukwu AC, Ogbonna US, Obeagu EI. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 16. Omo-Emmanuel UK, Chinedum OK, Obeagu EI. Evaluation of laboratory logistics management information system in HIV/AIDS comprehensive health facilities in Bayelsa State, Nigeria. Int J Curr Res Med Sci. 2017;3(1): 21-38.DOI: 10.22192/ijcrms.2017.03.01.004
- 17. Obeagu EI, Obeagu GU. An update on survival of people living with HIV in Nigeria. J Pub Health Nutri. 2022; 5 (6). 2022;129. links/645b4bfcf3512f1cc5885784/An-update-on-survival-of-people-living-with-HIV-in-Nigeria.pdf.
- 18. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community

- Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19.
- 19. Obeagu EI, Mohamod AH. An update on Iron deficiency anaemia among children with congenital heart disease. Int. J. Curr. Res. Chem. Pharm. Sci. 2023;10(4):45-48.
- 20. Obeagu EI, Oshim IO, Ochei KC, Obeagu GU. Iron and blood donation: A Review. Int. J. Curr. Res. Med. Sci. 2016;2(10):16-48.
- 21. Obeagu EI, Obeagu GU, Emeonye OP, Jakheng SP. An Upadte on Interleukin 6 And Iron Status of Volleyball Players. Madonna University journal of Medicine and Health Sciences. 2022;2(2):41-74.
- 22. Okamgba OC, Nwosu DC, Nwobodo EI, Agu GC, Ozims SJ, Obeagu EI, Ibanga IE, Obioma-Elemba IE, Ihekaire DE, Obasi CC, Amah HC. Iron Status of Pregnant and Post-Partum Women with Malaria Parasitaemia in Aba Abia State, Nigeria. Annals of Clinical and Laboratory Research. 2017;5(4):206.
- 23. Obeagu EI, Anierobi CC, Eze GC, Chukwueze CM, Makonyonga RD, Amadi NM, Hassan R. Evaluation of Plasma Levels of Interleukin 6 and Iron Status of Volleyball Players in a Nigerian University. Journal of Advances in Medical and Pharmaceutical Sciences. 2022;24(6):18-23.
- 24. Obeagu EI, Obeagu GU, Guevara ME, Okafor CJ, Bot YS, Eze GC, Amadi NM, Jakheng EW, Uwakwe OS. Evaluation of Plasma Levels of Interleukin 6 and Iron of Volleyball Players Based on Heights and Weight of a Nigerian University Students. Asian Journal of Medicine and Health. 2022;20(10):147-152.
- 25. Obeagu EI, Ogbonna US, Nwachukwu AC, Ochiabuto O, Enweani IB, Ezeoru VC. Prevalence of Malaria with Anaemia and HIV status in women of reproductive age in Onitsha, Nigeria. Journal of Pharmaceutical Research International. 2021;33(4):10-19.
- 26. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng UE, Ikpeme M, Bassey JO, Paul AO. TB Infection Control in TB/HIV Settings in Cross River State, Nigeria: Policy Vs Practice. Journal of Pharmaceutical Research International. 2020;32(22):101-119.
- 27. Obeagu EI, Eze VU, Alaeboh EA, Ochei KC. Determination of haematocrit level and iron profile study among persons living with HIV in Umuahia, Abia State, Nigeria. J BioInnovation. 2016; 5:464-471. https://links/592bb4990f7e9b9979a975cf/DETERMINATION-OF-HAEMATOCRIT-LEVEL-AND-IRON-PROFILE-STUDY-AMONG-PERSONS-LIVING-WITH-HIV-IN-UMUAHIA-ABIA-STATE-NIGERIA.pdf.
- 28. Ifeanyi OE, Obeagu GU. The values of prothrombin time among HIV positive patients in FMC owerri. International Journal of Current Microbiology and Applied Sciences. 2015;4(4):911-916.
 - $\frac{https://www.academia.edu/download/38320140/Obeagu_Emmanuel_Ifeanyi_and_Obeagu_Getrude_Uzoma2.EMMA1.pdf.$
- 29. Izuchukwu IF, Ozims SJ, Agu GC, Obeagu EI, Onu I, Amah H, Nwosu DC, Nwanjo HU, Edward A, Arunsi MO. Knowledge of preventive measures and management of HIV/AIDS victims among parents in Umuna Orlu community of Imo state Nigeria. Int. J. Adv. Res. Biol. Sci. 2016;3(10): 55-65.DOI; 10.22192/ijarbs.2016.03.10.009
- 30. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course

- centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75. https://links/5988ab6d0f7e9b6c8539f73d/HIV-and-TB-co-infection-among-patients-who-used-Directly-Observed-Treatment-Short-course-centres-in-Yenagoa-Nigeria.pdf
- 31. Oloro OH, Oke TO, Obeagu EI. Evaluation of Coagulation Profile Patients with Pulmonary Tuberculosis and Human Immunodeficiency Virus in Owo, Ondo State, Nigeria. Madonna University journal of Medicine and Health Sciences. 2022;2(3):110-119.
- 32. Nwosu DC, Obeagu EI, Nkwocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Elendu HN, Ofoedeme CN, Ozims SJ, Nwankpa P. Change in Lipid Peroxidation Marker (MDA) and Non enzymatic Antioxidants (VIT C & E) in HIV Seropositive Children in an Urban Community of Abia State. Nigeria. J. Bio. Innov. 2016;5(1):24-30. links/5ae735e9a6fdcc5b33eb8d6a/CHANGE-IN-LIPID-PEROXIDATION-MARKER-MDAAND-NON-ENZYMATIC-ANTIOXIDANTS-VIT-C-E-IN-HIV-SEROPOSITIVE-CHILDREN-IN-AN-URBAN-COMMUNITY-OF-ABIA-STATE-NIGERIA.pdf.
- 33. Ifeanyi OE, Obeagu GU, Ijeoma FO, Chioma UI. The values of activated partial thromboplastin time (APTT) among HIV positive patients in FMC Owerri. Int J Curr Res Aca Rev. 2015; 3:139-144. https://www.academia.edu/download/38320159/Obeagu_Emmanuel_Ifeanyi3_et_al.IJC RAR.pdf.
- 34. Obiomah CF, Obeagu EI, Ochei KC, Swem CA, Amachukwu BO. Hematological indices o HIV seropositive subjects in Nnamdi Azikiwe University teaching hospital (NAUTH), Nnewi. Ann Clin Lab Res. 2018;6(1):1-4. links/5aa2bb17a6fdccd544b7526e/Haematological-Indices-of-HIV-Seropositive-Subjects-at-Nnamdi-Azikiwe.pdf
- 35. Omo-Emmanuel UK, Ochei KC, Osuala EO, Obeagu EI, Onwuasoanya UF. Impact of prevention of mother to child transmission (PMTCT) of HIV on positivity rate in Kafanchan, Nigeria. Int. J. Curr. Res. Med. Sci. 2017;3(2): 28-34.DOI: 10.22192/ijcrms.2017.03.02.005
- 36. Aizaz M, Abbas FA, Abbas A, Tabassum S, Obeagu EI. Alarming rise in HIV cases in Pakistan: Challenges and future recommendations at hand. Health Science Reports. 2023;6(8):e1450.
- 37. Obeagu EI, Amekpor F, Scott GY. An update of human immunodeficiency virus infection: Bleeding disorders. J Pub Health Nutri. 2023; 6 (1). 2023;139. links/645b4a6c2edb8e5f094d9bd9/An-update-of-human-immunodeficiency-virus-infection-Bleeding.pdf.
- 38. Obeagu EI, Scott GY, Amekpor F, Ofodile AC, Edoho SH, Ahamefula C. Prevention of New Cases of Human Immunodeficiency Virus: Pragmatic Approaches of Saving Life in Developing Countries. Madonna University journal of Medicine and Health Sciences. 2022;2(3):128-134. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/86.
- 39. Obeagu E, Felix CE, MTB O, Chikodili UM, Nchekwubedi C1S, Chinedum OK. Studies on some cytokines, CD4, iron status, hepcidin and some haematological parameters in

- pulmonary tuberculosis patients based on duration of treatment in Southeast, Nigeria. African Journal of Biological Sciences. 2021;3(1):146-156.
- 40. Okoroiwu IL, Chinedu-Madu JU, Obeagu EI, Vincent CC, Ochiabuto OM, Ibekwe AM, Amaechi CO, Agu CC, Anoh NV, Amadi NM. Evaluation of Iron Status, Haemoglobin and Protein Levels of Pregnant Women in Owerri Metropolis. Journal of Pharmaceutical Research International. 2021;33(27A):36-43.
- 41. Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of proteomics to inflammatory bowel disease research: current status and future perspectives. Gastroenterology Research and Practice. 2019.
- 42. Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochemical and Biophysical Research Communications. 2023.
- 43. Obeagu EI. Erythropoeitin in Sickle Cell Anaemia: A Review. International Journal of Research Studies in Medical and Health Sciences. 2020;5(2):22-28.
- 44. Obeagu EI, Ezimah AC, Obeagu GU. Erythropoietin in the anaemias of pregnancy: a review. Int J Curr Res Chem Pharm Sci. 2016;3(3):10-18.
- 45. Obeagu EI, Agreen FC. Anaemia among pregnant women: A review of African pregnant teenagers. J Pub Health Nutri. 2023; 6 (1). 2023;138.
- 46. Walter O, Anaebo QB, Obeagu EI, Okoroiwu IL. Evaluation of Activated Partial Thromboplastin Time and Prothrombin Time in HIV and TB Patients in Owerri Metropolis. Journal of Pharmaceutical Research International. 2022:29-34.
- 47. Odo M, Ochei KC, Obeagu EI, Barinaadaa A, Eteng EU, Ikpeme M, Bassey JO, Paul AO. Cascade variabilities in TB case finding among people living with HIV and the use of IPT: assessment in three levels of care in cross River State, Nigeria. Journal of Pharmaceutical Research International. 2020;32(24):9-18.
- 48. Jakheng SP, Obeagu EI. Seroprevalence of human immunodeficiency virus based on demographic and risk factors among pregnant women attending clinics in Zaria Metropolis, Nigeria. J Pub Health Nutri. 2022; 5 (8). 2022;137. links/6317a6b1acd814437f0ad268/Seroprevalence-of-human-immunodeficiency-virus-based-on-demographic-and-risk-factors-among-pregnant-women-attending-clinics-in-Zaria-Metropolis-Nigeria.pdf.
- 49. Obeagu EI, Obeagu GU. A Review of knowledge, attitudes and socio-demographic factors associated with non-adherence to antiretroviral therapy among people living with HIV/AIDS. Int. J. Adv. Res. Biol. Sci. 2023;10(9):135-142.DOI: 10.22192/ijarbs.2023.10.09.015 links/6516faa61e2386049de5e828/A-Review-of-knowledge-attitudes-and-socio-demographic-factors-associated-with-non-adherence-to-antiretroviral-therapy-among-people-living-with-HIV-AIDS.pdf
- 50. Obeagu EI, Onuoha EC. Tuberculosis among HIV Patients: A review of Prevalence and Associated Factors. Int. J. Adv. Res. Biol. Sci. 2023;10(9):128-134.DOI: 10.22192/ijarbs.2023.10.09.014 links/6516f938b0df2f20a2f8b0e0/Tuberculosis-among-HIV-Patients-A-review-of-Prevalence-and-Associated-Factors.pdf.
- 51. Obeagu EI, Ibeh NC, Nwobodo HA, Ochei KC, Iwegbulam CP. Haematological indices of malaria patients coinfected with HIV in Umuahia. Int. J. Curr. Res. Med. Sci.

- 2017;3(5):100-104.DOI: 10.22192/ijcrms.2017.03.05.014 https://www.academia.edu/download/54317126/Haematological_indices_of_malaria_patients_coinfected_with_HIV.pdf
- 52. Jakheng SP, Obeagu EI, Abdullahi IO, Jakheng EW, Chukwueze CM, Eze GC, Essien UC, Madekwe CC, Madekwe CC, Vidya S, Kumar S. Distribution Rate of Chlamydial Infection According to Demographic Factors among Pregnant Women Attending Clinics in Zaria Metropolis, Kaduna State, Nigeria. South Asian Journal of Research in Microbiology. 2022;13(2):26-31.
- 53. Okorie HM, Obeagu Emmanuel I, Okpoli Henry CH, Chukwu Stella N. Comparative study of enzyme linked immunosorbent assay (Elisa) and rapid test screening methods on HIV, Hbsag, Hcv and Syphilis among voluntary donors in. Owerri, Nigeria. J Clin Commun Med. 2020;2(3):180-183.DOI: DOI: 10.32474/JCCM.2020.02.000137 links/5f344530458515b7291bd95f/Comparative-Study-of-Enzyme-Linked-Immunosorbent-Assay-ElISA-and-Rapid-Test-Screening-Methods-on-HIV-HBsAg-HCV-and-Syphilis-among-Voluntary-Donors-in-Owerri-Nigeria.pdf.
- 54. Ezugwu UM, Onyenekwe CC, Ukibe NR, Ahaneku JE, Onah CE, Obeagu EI, Emeje PI, Awalu JC, Igbokwe GE. Use of ATP, GTP, ADP and AMP as an Index of Energy Utilization and Storage in HIV Infected Individuals at NAUTH, Nigeria: A Longitudinal, Prospective, Case-Controlled Study. Journal of Pharmaceutical Research International. 2021;33(47A):78-84.
- 55. Emannuel G, Martin O, Peter OS, Obeagu EI, Daniel K. Factors Influencing Early Neonatal Adverse Outcomes among Women with HIV with Post Dated Pregnancies Delivering at Kampala International University Teaching Hospital, Uganda. Asian Journal of Pregnancy and Childbirth. 2023 Jul 29;6(1):203-211. http://research.sdpublishers.net/id/eprint/2819/.
- 56. Vincent CC, Obeagu EI, Agu IS, Ukeagu NC, Onyekachi-Chigbu AC. Adherence to Antiretroviral Therapy among HIV/AIDS in Federal Medical Centre, Owerri. Journal of Pharmaceutical Research International. 2021;33(57A):360-368.
- 57. Madekwe CC, Madekwe CC, Obeagu EI. Inequality of monitoring in Human Immunodeficiency Virus, Tuberculosis and Malaria: A Review. Madonna University journal of Medicine and Health Sciences. 2022;2(3):6-15. https://madonnauniversity.edu.ng/journals/index.php/medicine/article/view/69
- 58. Echendu GE, Vincent CC, Ibebuike J, Asodike M, Naze N, Chinedu EP, Ohale B, Obeagu EI. WEIGHTS OF INFANTS BORN TO HIV INFECTED MOTHERS: A PROSPECTIVE COHORT STUDY IN FEDERAL MEDICAL CENTRE, OWERRI, IMO STATE. European Journal of Pharmaceutical and Medical Research, 2023; 10(8): 564-568
- 59. Nwosu DC, Nwanjo HU, Okolie NJ, Ikeh K, Ajero CM, Dike J, Ojiegbe GC, Oze GO, Obeagu EI, Nnatunanya I, Azuonwu O. BIOCHEMICAL ALTERATIONS IN ADULT HIV PATIENTS ON ANTIRETRQVIRAL THERAPY. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(3): 153-160. links/5a4fd0500f7e9bbc10526b38/BIOCHEMICAL-ALTERATIONS-IN-ADULT-HIV-PATIENTS-ON-ANTIRETRQVIRAL-THERAPY.pdf.

- 60. Obeagu EI, Obeagu GU. Effect of CD4 Counts on Coagulation Parameters among HIV Positive Patients in Federal Medical Centre, Owerri, Nigeria. Int. J. Curr. Res. Biosci. Plant Biol. 2015;2(4):45-49.
- 61. Obeagu EI, Nwazu ME, Obeagu GU. Evaluation of plasma levels of interleukin 6 and iron status based on sleeping patterns of students in a Nigerian University. Int. J. Curr. Res. Med. Sci. 2022;8(9):1-6.
- 62. Edward U, Osuorji VC, Nnodim J, Obeagu EI. Evaluation Trace Elements in Sickle Cell Anaemia Patients Attending Imo State Specialist Hospital, Owerri. Madonna University journal of Medicine and Health Sciences. 2022;2(1):218-234.
- 63. Obeagu EI, Dahir FS, Francisca U, Vandu C, Obeagu GU. Hyperthyroidism in sickle cell anaemia. Int. J. Adv. Res. Biol. Sci. 2023;10(3):81-89.
- 64. Obeagu EI, Babar Q. Recent advances in understanding of Haemochromatosis: A burning issue of life. Int. J. Curr. Res. Med. Sci. 2021;7(7):23-28.
- 65. Obeagu EI, Okoroiwu IL, Azuonwu O. An update on hypoxic regulation of iron homeostasis and bone marrow environment. Int. J. Curr. Res. Med. Sci. 2018;4(10):42-48.
- 66. Edward Henry SI, Obeagu EI. Assessment of the Serum Iron Status of Preeclampsia Subjects in Aba, Abia State. Elite Journal of Haematology. 2024;2(1):10-18.
- 67. Obeagu EI, Nwosu DC. Adverse drug reactions in HIV/AIDS patients on highly active antiretro viral therapy: a review of prevalence. Int. J. Curr. Res. Chem. Pharm. Sci. 2019;6(12):45-8.DOI: 10.22192/ijcrcps.2019.06.12.004 links/650aba1582f01628f0335795/Adverse-drug-reactions-in-HIV-AIDS-patients-on-highly-active-antiretro-viral-therapy-a-review-of-prevalence.pdf.
- 68. Obeagu EI, Scott GY, Amekpor F, Obeagu GU. Implications of CD4/CD8 ratios in Human Immunodeficiency Virus infections. Int. J. Curr. Res. Med. Sci. 2023;9(2):6-13.DOI: 10.22192/ijcrms.2023.09.02.002 links/645a4a462edb8e5f094ad37c/Implications-of-CD4-CD8-ratios-in-Human-Immunodeficiency-Virus-infections.pdf.
- 69. Obeagu EI, Ochei KC, Okeke EI, Anode AC. Assessment of the level of haemoglobin and erythropoietin in persons living with HIV in Umuahia. Int. J. Curr. Res. Med. Sci. 2016;2(4):29-33. links/5711c47508aeebe07c02496b/Assessment-of-the-level-of-haemoglobin-and-erythropoietin-in-persons-living-with-HIV-in-Umuahia.pdf.
- 70. Ifeanyi OE, Obeagu GU. The Values of CD4 Count, among HIV Positive Patients in FMC Owerri. Int. J. Curr. Microbiol. App. Sci. 2015;4(4):906-910. https://www.academia.edu/download/38320134/Obeagu Emmanuel Ifeanyi and Obeagu Getrude Uzoma.EMMA2.pdf.
- 71. Obeagu EI, Okeke EI, Anonde Andrew C. Evaluation of haemoglobin and iron profile study among persons living with HIV in Umuahia, Abia state, Nigeria. Int. J. Curr. Res. Biol. Med. 2016;1(2):1-5.
- 72. Ibebuike JE, Nwokike GI, Nwosu DC, Obeagu EI. A Retrospective Study on Human Immune Deficiency Virus among Pregnant Women Attending Antenatal Clinic in Imo State University Teaching Hospital. *International Journal of Medical Science and Dental Research*, 2018; 1 (2):08-14. https://www.ijmsdr.org/published%20paper/li1i2/A%20Retrospective%20Study%20on%20Human%20Immune%20Deficiency%20Virus%20among%20Pregnant%20Women%2

- <u>0Attending%20Antenatal%20Clinic%20in%20Imo%20State%20University%20Teaching</u>%20Hospital.pdf.
- 73. Obeagu EI, Obarezi TN, Omeh YN, Okoro NK, Eze OB. Assessment of some haematological and biochemical parametrs in HIV patients before receiving treatment in Aba, Abia State, Nigeria. Res J Pharma Biol Chem Sci. 2014; 5:825-830.
- 74. Obeagu EI, Obarezi TN, Ogbuabor BN, Anaebo QB, Eze GC. Pattern of total white blood cell and differential count values in HIV positive patients receiving treatment in Federal Teaching Hospital Abakaliki, Ebonyi State, Nigeria. International Journal of Life Science, Biotechnology and Pharama Research. 2014; 391:186-189.
- 75. Obeagu EI. A Review of Challenges and Coping Strategies Faced by HIV/AIDS Discordant Couples. Madonna University journal of Medicine and Health Sciences. 2023; 3 (1): 7-12.
- 76. Oloro OH, Obeagu EI. A Systematic Review on Some Coagulation Profile in HIV Infection. International Journal of Innovative and Applied Research. 2022;10(5):1-11.
- 77. Nwosu DC, Obeagu EI, Nkwuocha BC, Nwanna CA, Nwanjo HU, Amadike JN, Ezemma MC, Okpomeshine EA, Ozims SJ, Agu GC. Alterations in superoxide dismutiase, vitamins C and E in HIV infected children in Umuahia, Abia state. International Journal of Advanced Research in Biological Sciences. 2015;2(11):268-271.
- 78. Ifeanyi OE, Uzoma OG, Stella EI, Chinedum OK, Abum SC. Vitamin D and insulin resistance in HIV sero positive individuals in Umudike. Int. J. Curr. Res. Med. Sci. 2018;4(2):104-108.
- 79. Ifeanyi OE, Leticia OI, Nwosu D, Chinedum OK. A Review on blood borne viral infections: universal precautions. Int. J. Adv. Res. Biol. Sci. 2018;5(6):60-66.
- 80. Nwovu AI, Ifeanyi OE, Uzoma OG, Nwebonyi NS. Occurrence of Some Blood Borne Viral Infection and Adherence to Universal Precautions among Laboratory Staff in Federal Teaching Hospital Abakaliki Ebonyi State. Arch Blood Transfus Disord. 2018;1(2).
- 81. Chinedu K, Takim AE, Obeagu EI, Chinazor UD, Eloghosa O, Ojong OE, Odunze U. HIV and TB co-infection among patients who used Directly Observed Treatment Short-course centres in Yenagoa, Nigeria. IOSR J Pharm Biol Sci. 2017;12(4):70-75.
- 82. Offie DC, Obeagu EI, Akueshi C, Njab JE, Ekanem EE, Dike PN, Oguh DN. Facilitators and barriers to retention in HIV care among HIV infected MSM attending Community Health Center Yaba, Lagos Nigeria. Journal of Pharmaceutical Research International. 2021;33(52B):10-19.
- 83. Obeagu EI, Obeagu GU, Ede MO, Odo EO, Buhari HA. Translation of HIV/AIDS knowledge into behavior change among secondary school adolescents in Uganda: A review. Medicine (Baltimore). 2023;102(49): e36599. doi: 10.1097/MD.000000000036599. PMID: 38065920; PMCID: PMC10713174.
- 84. Anyiam AF, Arinze-Anyiam OC, Irondi EA, Obeagu EI. Distribution of ABO and rhesus blood grouping with HIV infection among blood donors in Ekiti State Nigeria. Medicine (Baltimore). 2023;102(47): e36342. doi: 10.1097/MD.0000000000036342. PMID: 38013335; PMCID: PMC10681551.
- 85. Echefu SN, Udosen JE, Akwiwu EC, Akpotuzor JO, Obeagu EI. Effect of Dolutegravir regimen against other regimens on some hematological parameters, CD4 count and viral

- load of people living with HIV infection in South Eastern Nigeria. Medicine (Baltimore). 2023;102(47): e35910. doi: 10.1097/MD.000000000035910. PMID: 38013350; PMCID: PMC10681510.
- 86. Opeyemi AA, Obeagu EI. Regulations of malaria in children with human immunodeficiency virus infection: A review. Medicine (Baltimore). 2023;102(46): e36166. doi: 10.1097/MD.0000000000036166. PMID: 37986340; PMCID: PMC10659731.
- 87. Obeagu EI, Obeagu GU, Obiezu J, Ezeonwumelu C, Ogunnaya FU, Ngwoke AO, Emeka-Obi OR,
- 88. Obeagu EI, Ubosi NI, Uzoma G. Storms and Struggles: Managing HIV Amid Natural Disasters. Int. J. Curr. Res. Chem. Pharm. Sci. 2023;10(11):14-25.
- 89. Obeagu EI, Obeagu GU. Human Immunodeficiency Virus and tuberculosis infection: A review of prevalence of associated factors. Int. J. Adv. Multidiscip. Res. 2023;10(10):56-62.
- 90. Obeagu EI, Obeagu GU. Early Infant Diagnosis: A Crucial Step in Halting HIV Transmission. Elite Journal of Health Science, 2023; 1(1):1-11
- 91. Obeagu EI, Obeagu GU. Early Infant Diagnosis: Shielding Infants from HIV Transmission. Elite Journal of Health Science, 2023; 1(1):12-22
- 92. Obeagu EI, Obeagu GU. Protecting Generations: Early Infant Diagnosis's Role in Preventing HIV Spread. Elite Journal of Public Health, 2023; 1 (1): 1-11
- 93. Obeagu EI, Obeagu GU. Securing Health: The Role of Early Infant Diagnosis in Preventing HIV in Newborns. Elite Journal of Public Health, 2023; 1 (1): 12-22
- 94. Obeagu EI, Obeagu GU. Empowering Health Systems: Early Infant Diagnosis's Impact on Preventing HIV in Newborns. Elite Journal of Public Health, 2023; 1 (1): 23-33
- 95. Obeagu EI, Obeagu GU. From Classroom to Home: Strengthening the Continuum of Sickle Cell Disease Knowledge. Elite Journal of Health Science, 2023; 1(1):23-29
- 96. Obeagu EI, Obeagu GU. Incorporating Sickle Cell Disease Curriculum in Schools: An Effective Approach. Elite Journal of Health Science, 2023; 1(1):30-36
- 97. Obeagu EI, Obeagu GU. Community Leaders as Educators: Mobilizing for Sickle Cell Disease Reduction. Elite Journal of Health Science, 2023; 1(1):37-43
- 98. Obeagu EI, Obeagu GU. Peer-to-Peer Learning Networks: Sickle Cell Disease Education Among Adolescents. Elite Journal of Public Health, 2023; 1 (1): 34-41
- 99. Obeagu EI, Obeagu GU. From Awareness to Action: Encouraging Adolescent Engagement in Sickle Cell Disease Prevention. Elite Journal of Public Health, 2023; 1 (1): 42-50
- 100. Obeagu EI, Obeagu GU. The Vital Role of Antioxidants in Enhancing Fertility and Pregnancy Success: A Review. Elite Journal of Nursing and Health Science, 2023; 1(1):1-12
- 101. Obeagu EI, Obeagu GU. Harnessing the Power of Antioxidant-Rich Diet for Preconception Health: A Review. Elite Journal of Health Science, 2023; 1(1):1-13
- 102. Obeagu EI. Unraveling Diagnostic Challenges of Aplastic Anemia in the Context of HIV: A Review. Elite Journal of Nursing and Health Science, 2023; 1(1):13-23
- 103. Obeagu EI. Immunological Insights into Aplastic Anemia within the Context of HIV: Unraveling the Complex Interplay. Elite Journal of Health Science, 2023; 1(1):14-24

- 104. Obeagu EI. Treatment Strategies for Aplastic Anemia in HIV: Current Approaches and Future Directions. Elite Journal of Laboratory Medicine, 2023; 1(1): 1-12
- 105. Hackl L, Itzkowitz L, Koso-Thomas M, Moorthy D, Owino V, Pachón H, Stoffel N, Zimmerman M, Raiten D, Loechl C, Datta-Mitra A. Approaches to Address the Anemia Challenge. The Journal of Nutrition. 2023;153(Suppl 1).
- 106. Obeagu EI. Iron Overload in HIV: Implications for Disease Management. Elite Journal of HIV, 2023; 1(1): 15-28
- 107. Obeagu EI. Hemochromatosis and HIV: Two Conditions, One Challenge. Elite Journal of Laboratory Medicine, 2023; 1(1): 13-27
- 108. Obeagu EI. Iron Overload in HIV: Implications for Antiretroviral Therapy. Elite Journal of Health Science, 2023; 1(1):25-37
- 109. Obeagu EI. Hemochromatosis and HIV: Implications for Immune Reconstitution. Elite Journal of Health Science, 2023; 1(1):17-30