TERMODINÁMICA

Nombre	Grupo
	<u> </u>

Problema – 1 (50 %)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un ciclo combinado consta de un ciclo Brayton simple (compresor-cámara de combustión-turbina) y uno de Rankine regenerativo sin recalentamiento.

El compresor del ciclo de Brayton tiene un rendimiento isentrópico del 82% y aspira 410 kg/s de aire (gas ideal, R = 287 J/kg-K) del ambiente (estado muerto) a 15 °C y 1 bar. La cámara de combustión se modela como un aporte de calor desde un foco externo a presión constante, de modo que por la turbina y la caldera de recuperación se asume que circula aire, con el mismo flujo másico que por el compresor. A la entrada de la turbina del ciclo Brayton, que opera con un rendimiento isentrópico del 87%, hay 1250 °C y a la salida 575 °C. A la salida de la caldera de recuperación el aire se encuentra a 200 °C y 1 bar.

El vapor entra a la turbina del ciclo Rankine a 100 bar y 550 °C, saliendo de la misma a 5 kPa. En un punto intermedio, a 50 kPa, se realiza una extracción para alimentar el único precalentador del ciclo, de tipo abierto. El rendimiento isentrópico de la turbina es del 87%, definido entre su entrada y su salida. La línea de expansión en el diagrama de Mollier se supone una recta. El agua sale del condensador y del precalentador abierto como líquido saturado y las bombas se consideran adiabáticas y con rendimiento 100%.

Se desprecian las pérdidas de presión en intercambiadores y conductos.

Se pide:

- a) Esquema de la planta
- b) Rendimiento del ciclo de vapor
- c) Eficiencia exergética del ciclo de vapor, para las condiciones dadas de la caldera de recuperación. Se considera el ambiente como foco frío.
- d) Potencia neta (MW) producida por el ciclo de vapor
- e) Presión de impulsión del compresor
- f) Potencia neta del ciclo combinado
- g) Rendimiento del ciclo combinado

Tablas del agua saturada (líquido – vapor)

р	Т	Vf	Vg	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,05	32,87	0,00100533	28,19	137,75	2560,7	0,476202	8,39379
0,1	45,81	0,00101028	14,67	191,80	2583,9	0,649191	8,14881
0,5	81,32	0,00102993	3,240	340,54	2645,2	1,09120	7,59304
2,5	127,41	0,00106722	0,7187	535,35	2716,5	1,60723	7,05250
5	151,83	0,00109255	0,3748	640,09	2748,1	1,86038	6,82069
7	164,95	0,00110796	0,2728	697,00	2762,8	1,99177	6,70708
10	179,88	0,00112723	0,1944	762,51	2777,1	2,13806	6,58502
12	187,96	0,00113850	0,1633	798,32	2783,7	2,21591	6,52169
15	198,29	0,00115385	0,1317	844,54	2791,0	2,31431	6,44299
17	204,31	0,00116333	0,1167	871,72	2794,5	2,37110	6,39815
20	212,38	0,00117672	0,09959	908,47	2798,3	2,44670	6,33902
40	250,35	0,00125241	0,04978	1087,39	2800,8	2,79657	6,06961
150	342,16	0,00165722	0,01034	1610,31	2610,8	3,68474	5,31080

Tabla del aire (gas ideal)

				ibla del aire	(gas ra	carj			
T	u	h	s^0	Pr	T	u	h	s ⁰ [kJ/kg·K]	Pr
[°C]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[-]	[°C]	[kJ/kg]	[kJ/kg]	5 [KJ/Kg·K]	[-]
10	7,168	88,44	0,036094	1,1340	550	416,4	652,7	1,1412	53,292
15	10,75	93,46	0,053671	1,2056	555	420,5	658,2	1,1479	54,549
20	14,34	98,48	0,070949	1,2804	560	424,6	663,7	1,1545	55,828
25	17,93	103,5	0,087938	1,3585	565	428,7	669,3	1,1611	57,131
30	21,52	108,5	0,10467	1,4400	570	432,8	674,8	1,1677	58,458
185	133,9	265,4	0,52200	6,1632	575	436,9	680,4	1,1743	59,809
190	137,5	270,5	0,53307	6,4057	580	441	685,9	1,1808	61,184
195	141,2	275,6	0,54404	6,6552	585	445,1	691,5	1,1873	62,584
200	144,9	280,7	0,55490	6,9118	590	449,3	697	1,1938	64,008
205	148,6	285,8	0,56565	7,1757	595	453,4	702,6	1,2002	65,459
350	257,8	436,6	0,84073	18,710	600	457,5	708,2	1,2066	66,934
355	261,6	441,9	0,84918	19,269	605	461,7	713,7	1,2130	68,436
360	265,5	447,2	0,85757	19,840	610	465,8	719,3	1,2193	69,964
365	269,4	452,5	0,86590	20,425	615	470	724,9	1,2256	71,519
370	273,2	457,8	0,87418	21,022	620	474,1	730,5	1,2319	73,101
375	277,1	463,1	0,88240	21,633	625	478,3	736,1	1,2381	74,711
380	281	468,4	0,89057	22,258	630	482,5	741,7	1,2444	76,348
385	284,9	473,8	0,89869	22,896	635	486,7	747,3	1,2506	78,013
390	288,7	479,1	0,90675	23,548	640	490,8	752,9	1,2567	79,707
395	292,6	484,4	0,91476	24,215	645	495	758,6	1,2629	81,429
400	296,5	489,8	0,92272	24,896	650	499,2	764,2	1,2690	83,181
405	300,5	495,1	0,93064	25,592	655	503,4	769,8	1,2751	84,962
410	304,4	500,5	0,93850	26,303	660	507,6	775,4	1,2811	86,773
415	308,3	505,8	0,94631	27,029	665	511,8	781,1	1,2871	88,614
420	312,2	511,2	0,95408	27,770	670	516	786,7	1,2931	90,486
425	316,2	516,5	0,96180	28,527	675	520,2	792,4	1,2991	92,389
430	320,1	521,9	0,96947	29,300	680	524,5	798	1,3051	94,323
435	324	527,3	0,97710	30,089	685	528,7	803,7	1,3110	96,290
440	328	532,7	0,98468	30,894	690	532,9	809,4	1,3169	98,288
445	331,9	538,1	0,99222	31,716	695	537,2	815	1,3227	100,32
450	335,9	543,5	0,99971	32,555	700	541,4	820,7	1,3286	102,38
455	339,9	548,9	1,0072	33,411	705	545,6	826,4	1,3344	104,48
460	343,9 347,8	554,3	1,0146 1,0219	34,285	710	549,9	832,1	1,3402	106,61
465 470	351,8	559,7 565,1	1,0219	35,176 36,085	720	554,1 558,4	837,8 843,5	1,3460 1,3517	108,78 110,98
475	355,8	570,6	1,0293	37,012	725	562,7	849,2	1,3574	113,21
480	359,8	576	1,0303	37,958	730	566,9	854,9	1,3631	115,48
485	363,8	581,4	1,0436	38,922	735	571,2	860,6	1,3688	117,79
490	367,8	586,9	1,0510	39,906	740	575,5	866,3	1,3745	120,13
495	371,8	592,3	1,0551	40,909	745	579,8	872	1,3801	120,13
500	375,9	597,8	1,0033	41,931	1220	1004	1433	1,8310	589,33
505	379,9	603,3	1,0724	42,973	1225	1009	1439	1,8350	597,69
510	383,9	608,7	1,0864	44,035	1230	1013	1445	1,8390	606,15
515	388	614,2	1,0934	45,118	1235	1018	1451	1,8431	614,70
520	392	619,7	1,1003	46,221	1240	1023	1457	1,8471	623,34
525	396,1	625,2	1,1072	47,345	1245	1027	1463	1,8511	632,08
530	400,1	630,7	1,1141	48,491	1250	1032	1469	1,8551	640,92
535	404,2	636,2	1,1209	49,658	1255	1037	1475	1,8590	649,86
540	408,3	641,7	1,1277	50,847	1260	1041	1481	1,8630	658,89
545	412,3	647,2	1,1345	52,058	1265	1046	1487	1,8669	668,02

ha = 137,75 KJ 1/4 / hio = 137,75 + 0,00 100533 (0,5-va = 0,00100533 m2/ky J - 0,05/100 = 137,80 KJ/ky

hii = 340,54 k] 1ky 6 h2 = 340,54 + 0,00102 993x

011 = 0,00102993 m2/ky 8 x (100-0.5)100 = 350,79k]

«h7 + (1-a) h10 = h1 L> x = hu - hio = 0,08583

$$\omega_{T} = 3TN - 0.08T83 \times 2TN - (1 - 0.08T83)2238.T =$$

$$= 1239,06 \text{ kJ/ky}$$

$$T_{90,cR} = \frac{h_9 - h_7}{3n - 4r} = \frac{680.4 - 280.7}{1.1743 - 0.1549} = 645.8 K$$

$$T_0 = 288 \text{ K}$$

$$I_{cV} = 1 - \frac{288}{647.3} = 55.37\%$$

Bolence en la CR: 410 (680, 4-280, 7) = = mv : 3149, 27 - miv = 52,04 kg

Anolitando le turbine del cido de que:

$$0.87 = \frac{h_3 - h_n}{u_3 - h_{ns}} = \frac{1469 - 680.4}{1469 - h_{ns}} \rightarrow h_{ns} = \frac{162.56 \text{ Kg}}{\text{Ky}}$$

$$\text{Prus} = 35.65.74$$

Wara = 410 (1469-680,4) = 323326 KW

$$0.82 = \frac{h_2 - h_1}{h_2 - h_1}$$

$$0,82 = \frac{h_{25} - h_{1}}{h_{2} - h_{1}} \qquad \frac{17.97}{1} = \frac{P_{125}}{1.2056} - P_{175} = 21.6646$$

Pri = 1,2056

$$0.82 = \frac{463,37 - 93,46}{h_2 - 93,46} - h_2 = 544,57 \times J/ky$$

$$\dot{W}_{C} = 410 (544,57 - 93,46) = 184953,98 \text{ KW}$$

$$\dot{W}_{CG} = \dot{W}_{TG} - \dot{W}_{C} = 138372,02 \text{ KW}$$

$$\dot{W}_{CG} = W_{TG} - W_{C} = 158$$
 $\dot{W}_{CG} = 138377.02 + 63940.6 = 202317.6 \text{ KW}$

A

,
TERMODINÁMIC
'I'L'IDN/IANINIAN/IANIN'

Nombre	Grupo	

Problema – 2 (50%)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta representa una parte de la instalación de una hidrogenera para dar servicio a vehículos pesados. El electrolizador produce 4,5 kg/h de hidrógeno (M = 2 kg/kmol; γ = 1,4) a 20 °C y 30 bar (e), que son aspirados por el compresor y enviados (s) a 400 bar al post-enfriador. En él, sin perder presión, ceden calor (Qp) al ambiente, siendo dirigidos (d) al depósito a 20 °C.

El compresor dispone de un cilindro de simple efecto y está refrigerado por una corriente de aire que retira del mismo el calor Qc que cede al ambiente (foco térmico a 20 °C y 95 kPa). El proceso en el interior del cilindro se supone internamente reversible y caracterizado por una politrópica de índice 1,15. El espacio perjudicial es del 3% y la carrera de 30 mm. Las pérdidas de carga en las válvulas de aspiración e impulsión son 5 kPa y 40 kPa, respectivamente. El compresor gira a 900 rpm y tiene un rendimiento mecánico del 80%.

Se pide:

- Diámetro del pistón
- Potencia de accionamiento
- Calor disipado por el compresor
- Diagrama de Sankey cualitativo del volumen de control contenido en la línea discontinua, con el detalle de todos los componentes

Se sustituye el electrolizador por otro más moderno, que produce el mismo flujo másico de hidrógeno, pero a 20 bar (e). Se mantienen constantes el rendimiento mecánico y el índice de la politrópica, así como las pérdidas de presión en las válvulas del compresor, las temperaturas de (e) y (d) y las presiones de (s) y (d).

Se pide, para la instalación con este nuevo electrolizador:

- Régimen al que ha de girar el compresor para que sea capaz de aspirar el mismo flujo másico de hidrógeno que antes
- Potencia de accionamiento del compresor
- Exergía destruida en el volumen de control contenido en la línea discontinua

$$\eta_{vi} \!=\! 1 - \alpha \cdot \! \left[\! \left(\frac{p_2}{p_1} \right)^{\! 1/n} - 1 \right] \qquad ; \qquad w_i = \! R \cdot T_1 \cdot \! \left(\frac{n}{n-1} \right) \cdot \! \left[\left(\frac{p_2}{p_1} \right)^{\! \frac{n-1}{n}} - 1 \right]$$

d { 20°C e 20°C in = 4,5 ky/h \[
 \left\{ \mathref{M} = 2 \ \mathref{K} \ \mathref{K} \ \mathref{K} \]
 \[
 \left\{ \mathref{K} = 1, \ \mathref{K} \]
 \[
 \left\{ \mathref{K} = 4, \ \mathref{K} \mathref{K} \ \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref{K} \mathref{K} \mathref{K} \\mathref{K} \mathref amble | 95 KPe s | 400 bor 1 alivdo, simple et edo (i=1) N = 900 rpm APe = 0.05 bear $n = \lambda, \lambda \tau$ Pm = 0.8 AP1 = 0,4 her x = 0,03 L = 30 mm Pe-APe = P1 = 30 - 0.05 = 29,95 bur P2 - APA = P1 - P2 = 400, 4 bor $\frac{4.513600}{\left(\frac{2995}{4.157\times293}\right) V_{D} \frac{900}{60}} = 1 - 0.03 \left(\frac{400.4}{29.95}\right) - 1$ 0.744 LDVD = 45,54967 x10-6 m3 45549,67 mm3 = $\frac{710^2}{4} \times 30 \rightarrow D = 43,968 mm$ $w_i = 4_{i157} \times 293 \left(\frac{J_{i15}}{0_{i15}}\right) \left(\frac{400.4}{29.95}\right)^{\frac{0.15}{J_{i15}}} - 1$ = 3757,9763 KJ/ky

0.8 = 3757,9763 __ Wa = 4697, 408 KJ/ky

$$P_{V_{i}}$$
 que para a re 0,62 283. Para matrix $N = 1614.03 \text{ rpm}$ d vi d régimen debe aumentor $N = 1614.03 \text{ rpm}$ $N = 1614.$

$$\vec{w} \Delta e + \vec{S} q e = \frac{dc + dP}{To} + \vec{w} \Delta d$$

$$\dot{Q}_{C} = \dot{u} \left(he^{-hA} \right) + Wat = 160,28C$$
 $T_{A} = 293 \left(\frac{hoo.4}{19.95} \right)^{0.15/h.15} = 433,28K = 160,28C$

$$d_{p} = \sin(h_{A} - hd) = 2.55175 \text{ kW}$$

$$= \frac{4.4338 + 2.55175}{293} + \sin[q_{p} L (\frac{Pd}{Pe})] = 0.00827 \text{ kW/K}; [1 = 2.424 \text{ kW}]$$