Сравнение средних. Сравнение центров распределений.

- *Центр распределения* то одно единственное число, которое описывало, характеризовало бы выборку.
- В качестве центра чаще всего используют
 - о среднее арифметическое,
 - о медиану
 - о усеченное среднее.
 - Среднее усечённое представляет собой статистическую меру центральной тенденции, рассчитанную как среднее значение для имеющегося набора данных, из которого исключены k % наибольших и k % наименьших значений. Как правило, процент удаляемых значений устанавливается в диапазоне от 5 % до 25 %.

Статистические гипотезы.

- 1. Гипотезы согласия.
- 2. Гипотезы независимости (гипотезы различия).

Алгоритм выбора статистического критерия для анализа количественных данных. Параметрические непараметрические

Источник. ВЫБОР СТАТИСТИЧЕСКОГО КРИТЕРИЯ ДЛЯ ПРОВЕРКИ ГИПОТЕЗ. А. М. Гржибовский, Экология человека 2008.11.

Количество выборок $($ градаций X $)$		Две выб	борки	Больше двух выборок			
Зависимость выборок		Независимые Зависимые		Независимые	Зависимые		
	метрический	Параметрические методы сравнения					
Признак У		t-Стьюдента, для независи- мых выборок	t-Стьюдента, для зависи- мых выборок	ANOVA	ANOVA, с повторны- ми измере- ниями		
	ранговый	Непараметрические методы сравнения					
		<i>U</i> -Манна-Уит- ни, критерий серий	<i>T</i> -Вилкоксо- на, критерий знаков	<i>H</i> -Краскала- Уоллеса	χ ² -Фрид- мана		

Проверка статистической гипотезы

- 1. Подготовить данные
- 2. Выбрать статистический критерий
- **3.** Выдвинуть гипотезу H_0
 - а. О законе распределения
 - b. Об отсутствии различий между средними значениями признаков выборок или групп.
- **4.** Выбрать уровень статистической значимости α , например для $\alpha = 0.05$.
- **5.** Определить экспериментальное значение статистического критерия (статистика) по формуле.
- **6.** По таблице критических значений критерия для избранного уровня статистической значимости, например для $\alpha = 0.05$, определить критическое значение критерия.
 - а. С помощью критического значения
 - b. С помощью p-value (p-значение, наблюдаемый уровню значимости).
 - і. Если p-value $\geq \alpha$, H0 не отклоняется
 - іі. Если p-value $< \alpha$, H0 отклоняется.

1. Гипотезы согласия.

Подчиняются ли данные закону нормального распределения?

Если подчиняются – используем параметрические критерии, Если не подчиняются – используем непараметрические критерии.

Проверка гипотезы:

- Эмпирически
- Графически
- С помощью статистических критериев

А) Описательные статистики (эмпирический подход)

При нормальном распределении, которое симметрично, значения медианы и среднего арифметического будут одинаковы, а значения асимметрии и эксцесса равны нулю. Если средняя арифметическая больше медианы, а коэффициент **асимметрии** > 0, то распределение имеет правостороннюю асимметрию (скошено вправо). При левосторонней асимметрии средняя арифметическая меньше медианы, а коэффициент асимметрии < 0. По величине коэффициента эксцесса говорят об островершинном (Kurtosis > 0) или плосковершинном (Kurtosis < 0) распределении.

Б) Графики (графический подход)

Рис. Гистограмма переменной

В) Статистические критерии

Проверка распределения с помощью статистических критериев.

- Критерий Шапиро-Уилка (Shapiro-Wilk)
- Критерий Колмогорова-Смирнова (Kolmogorov-Smirnov)
- Критерий согласия Пирсона хи-квадрат

Если число наблюдений меньше 60, рекомендуется использовать критерий Шапиро-Уилка, если больше 60, то критерий Колмогорова-Смирнова

Замечание. Колмогоров—Смирнов — весьма требовательный к объёму данных критерий, который начинает адекватно работать на выборке в районе 80. Чем меньше выборка — тем труднее ему углядеть что-нибудь. На выборках в 20-40 человек, которые часто бывают в студенческих работах, критерий Колмогорова-Смирнова практически всегда будет заявлять «Я не смог увидеть никаких различий», каким бы перекошенным не являлось Ваше распределение.

Если же выборка составляет около 20 — здесь просто нет и не может быть нормальности. Никогда. Сразу обращайтесь к непараметрической статистике.

Шапиро—Уилк - эффективный метод проверки «нормальности» распределения. Рекомендуют его использовать для небольших, средних выборок, <100.

Статистические гипотезы в WM

2. Гипотезы независимости (гипотезы различия). Гипотезы сравнения

- 1) Ввод данных, проверка шкалы!
- 2) Выбрать критерий, для этого нужно ответить на **три вопроса**. Выбор критерия ОБОСНОВАТЬ!
 - а. Распределение «нормальное», близкое к нормальному/не является нормальным
 - b. Зависимые/Независимые (выборки), парные/непарные
 В случае парных выборок имеются пары наблюдений (измерений) одного и того же объекта. Например, до и после «воздействия».
 В случае независимых выборок каждое наблюдение соответствует отдельному объекту, т.е. измеряются признаки для разных групп.
 - с. Число выборок
- 3) Проверить гипотезу о «нормальности» распределения.

Если подчиняются – используем параметрические критерии, Если не подчиняются – используем непараметрические критерии.

4) Сформулировать гипотезу Н0

Например, сравнение средних:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

- 5) Проверить выдвинутую гипотезу
- 6) Сформулировать ВЫВОД.

Статистические гипотезы в WM

```
----- Hypothesis Tests (гипотезы сравнения)
 Location Tests
 LocationTest — test means or mean differences of one or two datasets
 LocationEquivalenceTest — compare means or medians of two or more datasets
 MannWhitneyTest + PairedTTest + PairedZTest + SignTest + SignedRankTest + TTest + ZTest
Location Tests
PairedZTest[{data1, data2}]
ZTest[{data1, data2}
PairedTTest[{data1, data2}]
TTest[{data1, data2}]
MannWhitneyTest 2 выборки, не зависимые, отличается от нормального (Манна - Уитни)
SignTest
                   2 выборки, зависимые, отличается от нормального (Тест знаков)
----- Hypothesis Tests (гипотезы сравнения)
 Location Tests
 LocationTest — test means or mean differences of one or two datasets
 LocationEquivalenceTest - compare means or medians of two or more datasets
 MannWhitneyTest · PairedTTest · PairedZTest · SignTest · SignedRankTest · TTest · ZTest
Location Tests
PairedZTest[{data1, data2}]
ZTest[{data1, data2}
PairedTTest[{data1, data2}]
TTest[{data1, data2}]
MannWhitneyTest 2 выборки, не зависимые, отличается от нормального (Манна - Уитни)
SignTest
                   2 выборки, зависимые, отличается от нормального (Тест знаков)
LocationEquivalenceTest[{r1, r2, r3, r4}, {"TestDataTable", All}]
             Statistic P- Value
Complete Block F | 3,44186 | 0,0388801
Friedman Rank
             3.38144 0.0410124
Kruskal-Wallis
             6.12694 0.0978583
K-Sample T
            3.19601 0.0415405
```

Пример

Таблица 1. Описание переменных (файл ex01.sav)

Nº	Имя	Название	Тип	Диапазон
1	Nº		ном	1–100
2	пол		ном	1 – жен, 2 – муж
3	класс		ном	1- А, 2 - Б, 3 - В
4	вуз	Предполагаемый для поступления ВУЗ	ном	1 — гуманитарный; 2 — экономический; 3 — технический; 4 — естественнонаучный
5	хобби	Внешкольные увлечения	ном	1 — спорт; 2 — компьютер; 3 — искусство
6	тест1	Счет в уме	кол	1 – 20
7	тест2	Числовые ряды	кол	1 – 20
8	тест3	Словарный запас	кол	1 – 20
9	тест4	Осведомленность	кол	1 – 20
10	тест5	Кратковременная вербальная память	кол	1 – 20
11	отметка1	Средний балл отметок за 10-й класс	кол	3–5
12	отметка2	Средний балл отметок за 11-й класс	кол	3–5

Параметрические методы сравнения (критерии).

Уровень значимости!

Критерий t-Стьюдента

- для 2-х независимых выборок;
- 1. Сравнить успеваемость девушек и юношей (переменная «отметка1»).
- для 2-х зависимых выборок.
- 2. Сравнить отметки учащихся в 10-х и 11-х классах (отметка 1 и отметка2).

Непараметрические методы сравнения критерии.

Анализ -> Непараметрические методы

• Две независимые выборки. U-критерий Манна-Уитни.

Сравнение двух независимых выборок (критерий Манна — Уитни) позволяет установить различия между двумя независимыми выборками по уровню выраженности порядковой переменной.

- 3. Сравнить успеваемость девушек и юношей (переменная «отметка1»).
- Несколько независимых выборок. Критерий Н-Краскела-Уоллеса.
- 4. Сравнить успеваемость в различных классах (переменная «отметка1»).
- 5. Сравнить три группы учащихся, различающихся внешкольными увлечениями (переменная хобби) и успеваемостью в выпускном классе (переменная отметка2).
- Две зависимые (связные) выборки. Т-критерий Вилкоксона, критерий знаков

Сравнение двух связанных (зависимых) выборок может проводиться по двум критериям. Критерий знаков основан на подсчете числа отрицательных и положительных разностей между повторными измерениями; критерий Уилкоксона в дополнение к знакам разностей учитывает их величину.

- 6. Сравните результаты учащихся по результатам теста 2 и теста 4. Примените критерий знаков и критерий Вилкоксона.
- Несколько зависимых выборок. Хи-квадрат Фридмана.

Позволяет проверять гипотезы о различии более двух зависимых выборок (повторных измерений) по уровню выраженности изучаемой переменной.

2. Варианты статистического анализа и соответствующие функции R

			одна группа	две группы: различия	две группы: связи	три и более групп: связи	три и более групп: общая картина
количественные	параметрические	независимые	summary	t.test	cor.test	oneway.test, paiwise.t.test, anova, aov, lm, glm	lda, manova
		зависимые		t.test(, paired=TRUE)		Anova с повторениями	
	непараметрические	независимые		wilcox.test	cor.test	kruskal.test	pca, tree, cor, dist, hclust, isoMDS, cmdscale
		зависимые		wilcox.test (, paired=TRUE)		fridman.test	
категориальные или порядковые	непараметрические	независимые		chisq.test, prop.test	cor.test	chisq.test	cor, dist, hclust, isoMDS
		зависимые		mcnemar.test		NA	