Problem Set 7

Due: Mon. Mar 23rd, 2020.

1 Consider the Markov chain transition matrix:

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

- (a) Identify the communicating classes.
- (b) Which states are recurrent, and which are transient?
- (c) Find all the invariant (stationary) distributions.

PROVE:

(a)

$${3}, {2,4}, {1,5},$$

- (b) State 1: recurrent
 - State 2: transient
 - State 3: recurrent
 - State 4: transient
 - State 5: recurrent

(c) First, find the eigenvector with eigenvalue = 1, then normalizing sum of entry to 1. We end up with (0.5, 0, 0, 0, 0.5), (0, 0, 1, 0, 0). This shows that

$$\pi_a = \begin{pmatrix} \frac{a}{2} \\ 0 \\ 1 - a \\ 0 \\ \frac{a}{2} \end{pmatrix} \quad \forall a \in [0, 1]$$

is a limiting distribution.

2 Suppose X_0, X_1, X_2, \ldots forms a Markov chain with initial distribution π_0 and transition matrix P. Show that $Y_t = X_{kt}$ forms a Markov chain with initial distribution π_0 and transition matrix P^k

Prove:

$$Y_0 = X_0 \sim \pi_0$$

 $Y_{t+1} = X_{k(t+1)} = P^k X_{kt} = P^k Y_t$

3

- (a) Show a finite state Markov chain is aperiodic if $\exists i$ such that $P_{ii} > 0$
- (b) Show that for two communicating states i, j of a Markov chain, i is recurrent iff j is recurrent.
- (c) Show that a finite state aperiodic irreducible Markov chain is regular.

Prove:

- (a) By definition of aperiocity, we know that as $\exists i$ such that $P_{ii} > 0$. Then the gcd of all states must be 1, leaving the chain to be aperiodic.
- (b) Suppose $j \sim i$, define $\tau_{ij} = \inf\{t | X_t = j, X_0 = i\}$, and we know that $P(\tau_{ii} < \infty) = 1$; By Borel Cantelli, $P(\tau_{ij} < \infty) = 1$, and $P(\tau_{ji} < \infty) = 1$. Therefore, we have:

$$\tau_{jj} = \inf\{t | X_t = j, X_0 = j\} \le \tau_{ji} + \tau_{ii} + \tau_{ij} \le \infty$$

Therefore, $\tau_{ij} < \infty$ almost surely. And j is recurrent.

- (c) Denote $t_{ij} := \inf\{t | P_{ij}^t > 0\}$. Because we have finite i and j, therefore, we have finite t_{ij} . Due to irreduciblility, $\forall i, j \in \mathcal{X}, t_{ij} < \infty$. Now take $T = \prod_{i,j \in \mathcal{X}}$, we find that $P_{ij}^T > 0 \forall i, j \in \mathcal{X}$.
- 4 Each morning a student takes one of the three books he owns from his shelf. The books are chosen with probabilities $\alpha_i, i=1,2,3$, with choices independent across days. In the evening, he replaces the book at the left end of the shelf. Let p_n be the probability that on day n the student finds the books in order 1,2,3 from left to right. Show that, regardless of the initial arrangement of the books, p_n converges as $n \to \infty$ and determine the limit.

PROVE:

Solve $\pi = \pi P$. Note that we only need π_1 : from the first equation:

$$\pi_1 = \frac{(\pi_3 + \pi_4) \,\alpha_1}{\alpha_2 + \alpha_3}$$

	1,2,3	1,3,2	2,1,3	2,3,1	3,1,2	$3,\!2,\!1$
1,2,3	α_1	0	α_2	0	α_3	0
1,3,2	0	α_1	α_2	0	α_3	0
2,1,3	α_1	0	α_2	0	0	α_3
2,3,1	α_1	0	0	α_2	0	α_3
3,1,2	0	α_1	0	α_2	α_3	0
3,2,1	0	α_1	0	α_2	0	α_3

Add the third and the fourth equation:

$$\pi_3 + \pi_4 = \alpha_2$$

We get
$$\lim_{n\to\infty} p_n = \pi_1 = \frac{\alpha_1\alpha_2}{\alpha_1+\alpha_3}$$

[Last revised: March 24, 2020]