IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: JONATHAN ZONANA, BETSY M. FERGUSON, DENIS HEADON, and PAUL OVERBEEK Application No	Art Unit:
Filed: Herewith	
For: HYPOHIDROTIC ECTODERMAL DYSPLASIA GENES AND PROTEINS	
Examiner:	
Date: December 4, 2000	

STATEMENT IN COMPLIANCE WITH 37 C.F.R. § 1.821(f)

TO THE COMMISSIONER FOR PATENTS Washington, DC 20231

Sir:

In compliance with 37 C.F.R. § 1.821(f), the undersigned declares that the nucleotide and/or amino acid sequences presented in the paper copy of the "Sequence Listing" submitted herewith are the same as the sequences contained in the computer-readable form of said "Sequence Listing." No new matter has been added.

Respectfully submitted,

KLARQUIST SPARKMAN CAMPBELL LEIGH & WHINSTON, LLP

By William D. Voonan

William D. Noonan, M.D. Registration No. 30,878

One World Trade Center, Suite 1600 121 S.W. Salmon Street Portland, Oregon 97204

Telephone: (503) 226-7391 Facsimile: (503) 228-9446

SEQUENCE LISTING

```
<110> Zonana et al.
<120> Hypohydrotic ectodermal dysplasia genes and proteins
<130> 55924
<140>
<141>
<150> 09/342,681
<151> 1999-06-29
<150> 60/092,279
<151> 1998-07-09
<150> 60/112,366
<151> 1998-12-15
<160> 122
<170> PatentIn Ver. 2.1
<210> 1
<211> 1574
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (242)..(1417)
<400> 1
attecetegg egggeeagee teceetetet ecegeecete etectecett teceaeceet 60
cggagtagag ctgcacatgc ggctgctccc tgctccgtcc cgcccagcca ctgtcgcgca 120
ggaacgggtc cctgcagccc ccagccgatg gcaggacagt agccgcctgt cagaggtcgt 180
gaacggctga ggcagacgca gcggctcccg ggcctcaaga gagtgggtgt ctccggaggc 240
c atg ggc tac ccg gag gtg gag cgc agg gaa ctc ctg cct gca gca gcg 289
  Met Gly Tyr Pro Glu Val Glu Arg Arg Glu Leu Leu Pro Ala Ala Ala
                                        10
ccg cgg gag cga ggg agc cag ggc tgc ggg tgt ggc ggg gcc cct gcc
                                                                   337
Pro Arg Glu Arg Gly Ser Gln Gly Cys Gly Cys Gly Gly Ala Pro Ala
cgg gcg ggc gaa ggg aac agc tgc ctg ctc ttc ctg ggt ttc ttt ggc
                                                                   385
Arg Ala Gly Glu Gly Asn Ser Cys Leu Leu Phe Leu Gly Phe Phe Gly
ctc tcg ctg gcc ctc cac ctg ctg acg ttg tgc tgc tac cta gag ttg
                                                                   433
Leu Ser Leu Ala Leu His Leu Leu Thr Leu Cys Cys Tyr Leu Glu Leu
                                                                   481
cgc tcg gag ttg cgg cgg gaa cgt gga gcc gag tcc cgc ctt ggc ggc
Arg Ser Glu Leu Arg Arg Glu Arg Gly Ala Glu Ser Arg Leu Gly Gly
                                          75
```

tcg Ser	ggc Gly	acc Thr	cct Pro	ggc Gly 85	acc Thr	tct Ser	ggc Gly	acc Thr	cta Leu 90	agc Ser	agc Ser	ctc Leu	ggt Gly	ggc Gly 95	ctc Leu	529
gac Asp	cct Pro	gac Asp	agc Ser 100	ccc Pro	atc Ile	acc Thr	agt Ser	cac His 105	ctt Leu	gly ggg	cag Gln	ccg Pro	tca Ser 110	cct Pro	aag Lys	577
cag Gln	cag Gln	cca Pro 115	ttg Leu	gaa Glu	ccg Pro	gga Gly	gaa Glu 120	gcc Ala	gca Ala	ctc Leu	cac His	tct Ser 125	gac Asp	tcc Ser	cag Gln	625
gac Asp	ggg Gly 130	cac His	cag Gln	atg Met	gcc Ala	cta Leu 135	ttg Leu	aat Asn	ttc Phe	ttc Phe	ttc Phe 140	cct Pro	gat Asp	gaa Glu	aag Lys	673
cca Pro 145	tac Tyr	tct Ser	gaa Glu	gaa Glu	gaa Glu 150	agt Ser	agg Arg	cgt Arg	gtt Val	cgc Arg 155	cgc Arg	aat Asn	aaa Lys	aga Arg	agc Ser 160	721
aaa Lys	agc Ser	aat Asn	gaa Glu	gga Gly 165	gca Ala	gat Asp	ggc Gly	cca Pro	gtt Val 170	aaa Lys	aac Asn	aag Lys	aaa Lys	aag Lys 175	gga Gly	769
aag Lys	aaa Lys	gca Ala	gga Gly 180	cct Pro	cct Pro	gga Gly	ccc Pro	aat Asn 185	ggc Gly	cct Pro	cca Pro	gga Gly	ccc Pro 190	cca Pro	gga Gly	817
cct Pro	cca Pro	gga Gly 195	ccc Pro	cag Gln	gga Gly	ccc Pro	cca Pro 200	gga Gly	att Ile	cca Pro	gly ggg	att Ile 205	cct Pro	gga Gly	att Ile	865
cca Pro	gga Gly 210	aca Thr	act Thr	gtt Val	atg Met	gga Gly 215	cca Pro	cct Pro	ggt Gly	cct Pro	cca Pro 220	ggt Gly	cct Pro	cct Pro	ggt Gly	913
cct Pro 225	caa Gln	gga Gly	ccc Pro	cct Pro	ggc Gly 230	ctc Leu	cag Gln	gga Gly	cct Pro	tct Ser 235	ggt Gly	gct Ala	gct Ala	gat Asp	aaa Lys 240	961
gct Ala	gga Gly	act Thr	cga Arg	gaa Glu 245	aac Asn	cag Gln	cca Pro	gct Ala	gtg Val 250	gtg Val	cat His	cta Leu	cag Gln	ggc Gly 255	caa Gln	1009
gly aaa	tca Ser	gca Ala	att Ile 260	caa Gln	gtc Val	aag Lys	aat Asn	gat Asp 265	ctt Leu	tca Ser	ggt Gly	gga Gly	gtg Val 270	ctc Leu	aat Asn	1057
gac Asp	tgg Trp	tct Ser 275	Arg	atc Ile	act Thr	atg Met	aac Asn 280	ccc Pro	aag Lys	gtg Val	ttt Phe	aag Lys 285	cta Leu	cat His	ccc Pro	1105
cgc Arg	agc Ser 290	Gly	gag Glu	ctg Leu	gag Glu	gta Val 295	ctg Leu	gtg Val	gac Asp	ggc	acc Thr 300	tac Tyr	ttc Phe	atc Ile	tat Tyr	1153
agt Ser 305	Gln	gta Val	gaa Glu	gta Val	tac Tyr 310	Tyr	atc Ile	aac Asn	ttc Phe	act Thr 315	Asp	ttt Phe	gcc Ala	agc Ser	tat Tyr 320	1201

	gtg Val	gtg Val	gtg Val	gat Asp 325	gag Glu	aag Lys	ccc Pro	ttc Phe	ctg Leu 330	cag Gln	tgc Cys	aca Thr	cgc Arg	agc Ser 335	atc Ile	1249
gag a Glu '	acg Thr	ggc Gly	aag Lys 340	acc Thr	aac Asn	tac Tyr	aac Asn	act Thr 345	tgc Cys	tat Tyr	acc Thr	gca Ala	ggc Gly 350	gtc Val	tgc Cys	1297
ctc (Leu]	ctc Leu	aag Lys 355	gcc Ala	cgg Arg	cag Gln	aag Lys	atc Ile 360	gcc Ala	gtc Val	aag Lys	atg Met	gtg Val 365	cac His	gct Ala	gac Asp	1345
atc i	tcc Ser 370	atc Ile	aac Asn	atg Met	agc Ser	aag Lys 375	cac His	acc Thr	acg Thr	ttc Phe	ttt Phe 380	ggg Gly	gcc Ala	atc Ile	agg Arg	1393
ctg Leu 385							tag	atto	ccc	cat t	ttgo	ctct	g to	ccgtg	geece	1447
ttcc	ctgg	ıgt t	tggg	gagco	a gg	gacto	cccaa	a aad	ctct	aag	tgct	gate	gtg g	gagto	gaggtg	1507
tatt	ggtg	gtt <u>s</u>	gcago	ccgca	ag ag	gaaat	gcc	c cat	tgtt	att	tatt	ccc	cag t	gact	ccagg	1567
gtga	caa															1574
<210 <211 <212 <213	> 39 > PF	TS	sapie	ens												
-100	· 2															
<400 Met	> 2 Gly	Tyr	Pro	Glu	Val	Glu	Arg	Arg		Leu	Leu	Pro	Ala		Ala	
<400 Met 1 Pro	Gly	_	Arg	5				Cys	10				Ala	15		
Met 1	Gly Arg	Glu Gly	Arg 20	5 Gly	Ser	Gln	Gly Cys	Cys 25	10 Gly	Cys	Gly	Gly Gly	Ala 30	15 Pro	Ala	
Met 1 Pro	Gly Arg Ala Ser	Glu Gly 35	Arg 20 Glu	5 Gly Gly	Ser Asn	Gln Ser Leu	Gly Cys 40	Cys 25 Leu	10 Gly Leu	Cys Phe	Gly Leu Cys	Gly Gly 45	Ala 30 Phe	15 Pro Phe	Ala Gly	
Met 1 Pro Arg Leu Arg	Gly Arg Ala Ser 50	Glu Gly 35 Leu	Arg 20 Glu Ala	5 Gly Gly Leu	Ser Asn His	Gln Ser Leu 55	Gly Cys 40 Leu	Cys 25 Leu Thr	10 Gly Leu Leu	Cys Phe Cys Glu	Gly Leu Cys 60	Gly Gly 45 Tyr	Ala 30 Phe Leu	15 Pro Phe	Ala Gly Leu	
Met 1 Pro Arg Leu Arg 65	Gly Arg Ala Ser 50 Ser	Glu Gly 35 Leu Glu	Arg 20 Glu Ala Leu	5 Gly Gly Leu Arg	Ser Asn His Arg 70	Gln Ser Leu 55 Glu	Gly Cys 40 Leu Arg	Cys 25 Leu Thr	10 Gly Leu Leu Ala Leu	Cys Phe Cys Glu 75	Gly Leu Cys 60 Ser	Gly Gly 45 Tyr Arg	Ala 30 Phe Leu	15 Pro Phe Glu	Ala Gly Leu Gly 80	
Met 1 Pro Arg Leu Arg 65 Ser	Gly Arg Ala Ser 50 Ser Gly	Glu Gly 35 Leu Glu Thr	Arg 20 Glu Ala Leu Pro	5 Gly Gly Leu Arg Gly 85	Ser Asn His Arg 70 Thr	Gln Ser Leu 55 Glu Ser	Gly Cys 40 Leu Arg	Cys 25 Leu Thr Gly Thr	10 Gly Leu Leu Ala Leu 90	Cys Phe Cys Glu 75 ser	Gly Leu Cys 60 Ser	Gly Gly 45 Tyr Arg Leu	Ala 30 Phe Leu Leu Gly Ser	Pro Phe Glu Gly Gly	Ala Gly Leu Gly 80 Leu	
Met 1 Pro Arg Leu Arg 65 Ser	Gly Arg Ala Ser 50 Ser Gly Pro	Glu Gly 35 Leu Glu Thr Asp	Arg 20 Glu Ala Leu Pro	5 Gly Gly Leu Arg Gly 85 Pro	Ser Asn His Arg 70 Thr	Gln Ser Leu 55 Glu Ser Thr	Gly Cys 40 Leu Arg Gly Ser	Cys 25 Leu Thr Gly Thr His 105	10 Gly Leu Leu Ala Leu 90 Leu	Cys Phe Cys Glu 75 Ser Gly	Gly Leu Cys 60 Ser Ser	Gly Gly 45 Tyr Arg Leu Pro	Ala 30 Phe Leu Leu Gly Ser 110	Pro Phe Glu Gly Gly 95	Ala Gly Leu Gly 80 Leu Lys	
Met 1 Pro Arg Leu Arg 65 Ser Asp	Gly Arg Ala Ser 50 Ser Gly Pro Gln Gly	Glu Gly 35 Leu Glu Thr Asp Pro 115	Arg 20 Glu Ala Leu Pro Ser 100 Leu	Gly Gly Leu Arg Gly 85 Pro	Ser Asn His Arg 70 Thr Ile	Gln Ser Leu 55 Glu Ser Thr Gly Leu	Gly Cys 40 Leu Arg Gly Ser Glu 120	Cys 25 Leu Thr Gly Thr His 105 Ala	10 Gly Leu Ala Leu 90 Leu Ala	Cys Phe Cys Glu 75 ser Gly Leu	Gly Leu Cys 60 Ser Ser Gln His	Gly 45 Tyr Arg Leu Pro Ser 125	Ala 30 Phe Leu Leu Gly Ser 110 Asp	Phe Glu Gly Gly 95 Pro	Ala Gly Leu Gly 80 Leu Lys Gln	
Met 1 Pro Arg Leu Arg 65 Ser Asp Gln Asp	Gly Arg Ala Ser 50 Ser Gly Pro Gln Gly 130	Glu Gly 35 Leu Glu Thr Asp Pro 115 His	Arg 20 Glu Ala Leu Pro Ser 100 Leu Gln	Gly Gly Leu Arg Gly 85 Pro Glu Met	Ser Asn His Arg 70 Thr Ile Pro Ala Glu	Gln Ser Leu 55 Glu Ser Thr Gly Leu 135	Gly Cys 40 Leu Arg Gly Ser Glu 120 Leu	Cys 25 Leu Thr Gly Thr His 105 Ala	10 Gly Leu Ala Leu 90 Leu Ala Phe	Cys Phe Cys Glu 75 Ser Gly Leu Phe Arg	Gly Leu Cys 60 Ser Ser Gln His Phe 140	Gly 45 Tyr Arg Leu Pro Ser 125 Pro	Ala 30 Phe Leu Leu Gly Ser 110 Asp	Phe Glu Gly 95 Pro Ser	Ala Gly Leu Gly 80 Leu Lys Gln Lys Ser	
Met 1 Pro Arg Leu Arg 65 Ser Asp Gln Asp Pro 145	Gly Arg Ala Ser 50 Ser Gly Pro Gln Gly 130 Tyr	Glu Gly 35 Leu Glu Thr Asp Pro 115 His	Arg 20 Glu Ala Leu Pro Ser 100 Leu Gln	Gly Gly Leu Arg Gly 85 Pro Glu Met Glu Gly	Ser Asn His Arg 70 Thr Ile Pro Ala Glu 150	Gln Ser Leu 55 Glu Ser Thr Gly Leu 135 Ser	Gly Cys 40 Leu Arg Gly Ser Glu 120 Leu Arg	Cys 25 Leu Thr Gly Thr His 105 Ala Asn	10 Gly Leu Leu Ala Leu 90 Leu Ala Phe Val	Cys Phe Cys Glu 75 Ser Gly Leu Phe Arg 155	Gly Leu Cys 60 Ser Ser Gln His Phe 140 Arg	Gly 45 Tyr Arg Leu Pro Ser 125 Pro	Ala 30 Phe Leu Leu Gly Ser 110 Asp Asp	Phe Glu Gly 95 Pro Ser Glu Arg	Ala Gly Leu Gly 80 Leu Lys Gln Lys Ser 160	
Met 1 Pro Arg Leu Arg 65 Ser Asp Gln Asp Pro 145 Lys	Gly Arg Ala Ser 50 Ser Gly Pro Gln Gly 130 Tyr Ser	Glu Gly 35 Leu Glu Thr Asp Pro 115 His Ser Asn	Arg 20 Glu Ala Leu Pro Ser 100 Leu Gln Glu Glu Gly	Gly Gly Leu Arg Gly 85 Pro Glu Met Glu Gly 165 Pro	Ser Asn His Arg 70 Thr Ile Pro Ala Glu 150 Ala	Gln Ser Leu 55 Glu Ser Thr Gly Leu 135 Ser Asp	Gly Cys 40 Leu Arg Gly Ser Glu 120 Leu Arg Gly	Cys 25 Leu Thr Gly Thr His 105 Ala Asn Arg	10 Gly Leu Leu Ala Leu 90 Leu Ala Phe Val Val	Cys Phe Cys Glu 75 Ser Gly Leu Phe Arg 155 Lys	Gly Leu Cys 60 Ser Ser Gln His Phe 140 Arg	Gly 45 Tyr Arg Leu Pro Ser 125 Pro Asn Lys	Ala 30 Phe Leu Leu Gly Ser 110 Asp Asp Lys Lys	Phe Glu Gly 95 Pro Ser Glu Arg	Ala Gly Leu Gly 80 Leu Lys Gln Lys Ser 160 Gly	
Met 1 Pro Arg Leu Arg 65 Ser Asp Gln Asp Pro 145 Lys	Gly Arg Ala Ser 50 Ser Gly Pro Gln Gly 130 Tyr Ser Lys	Glu Gly 35 Leu Glu Thr Asp Pro 115 His Ser Asn	Arg 20 Glu Ala Leu Pro Ser 100 Leu Gln Glu Gly 180	Gly Gly Leu Arg Gly 85 Pro Glu Met Glu Gly 165 Pro	Ser Asn His Arg 70 Thr Ile Pro Ala Glu 150 Ala Pro	Gln Ser Leu 55 Glu Ser Thr Gly Leu 135 Ser Asp	Gly Cys 40 Leu Arg Gly Ser Glu 120 Leu Arg Gly Pro	Cys 25 Leu Thr Gly Thr His 105 Ala Asn Arg Pro	10 Gly Leu Leu Ala Leu 90 Leu Ala Phe Val 170 Gly	Cys Phe Cys Glu 75 Ser Gly Leu Phe Arg 155 Lys	Gly Leu Cys 60 Ser Ser Gln His Phe 140 Arg Asn	Gly 45 Tyr Arg Leu Pro Ser 125 Pro Asn Lys Gly	Ala 30 Phe Leu Leu Gly Ser 110 Asp Asp Lys Lys Pro 190 Pro	Phe Glu Gly 95 Pro Ser Glu Arg Lys 175	Ala Gly Leu Gly 80 Leu Lys Gln Lys Ser 160 Gly Gly	

```
Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro Ser Gly Ala Ala Asp Lys
                    230
Ala Gly Thr Arg Glu Asn Gln Pro Ala Val Val His Leu Gln Gly Gln
                                    250
                245
Gly Ser Ala Ile Gln Val Lys Asn Asp Leu Ser Gly Gly Val Leu Asn
                                265
            260
Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro
                            280
Arg Ser Gly Glu Leu Glu Val Leu Val Asp Gly Thr Tyr Phe Ile Tyr
                                            300
                        295
Ser Gln Val Glu Val Tyr Tyr Ile Asn Phe Thr Asp Phe Ala Ser Tyr
                                        315
                    310
Glu Val Val Val Asp Glu Lys Pro Phe Leu Gln Cys Thr Arg Ser Ile
                                                         335
                                    330
                325
Glu Thr Gly Lys Thr Asn Tyr Asn Thr Cys Tyr Thr Ala Gly Val Cys
                                345
                                                     350
            340
Leu Leu Lys Ala Arg Gln Lys Ile Ala Val Lys Met Val His Ala Asp
                                                 365
                            360
Ile Ser Ile Asn Met Ser Lys His Thr Thr Phe Phe Gly Ala Ile Arg
                        375
Leu Gly Glu Ala Pro Ala Ser
385
                    390
```

<210> 3 <211> 1661 <212> DNA <213> Mus musculus <220> <221> CDS

<222> (142)..(1275)

<400> 3
tcaggaacgg gtccctgcag ccccagccg atggcaggac agtagtcgcc tgtcaggggt 60

cgtgaaggac tgaggcagag gcagaggctc ccggagaggc agaggctccc gggcctcaga 120
tagtggttgt ctctggaggc c atg ggc tac cca gag gta gag cgc agg gaa 171
Met Gly Tyr Pro Glu Val Glu Arg Arg Glu
1 5 10

ccc ctg cct gcg gca gcg cca agg gag cgg ggc agc cag ggc tgc ggc 219
Pro Leu Pro Ala Ala Ala Pro Arg Glu Arg Gly Ser Gln Gly Cys Gly
15 20 25

tgt cgc ggg gcc cct gct cgg gcg ggc gaa ggg aac agc tgc cgg ctc 267 Cys Arg Gly Ala Pro Ala Arg Ala Gly Glu Gly Asn Ser Cys Arg Leu 30 35 40

ttc ctg ggt ttc ttt ggc ctc tcg ctg gcc ctc cac ctg ctg acg ctg 315
Phe Leu Gly Phe Phe Gly Leu Ser Leu Ala Leu His Leu Leu Thr Leu
45 50 55

tgc tgc tac cta gag ttg cgg tcc gaa ttg cgg cgg gaa cgg gga acc 363 Cys Cys Tyr Leu Glu Leu Arg Ser Glu Leu Arg Arg Glu Arg Gly Thr

gag too ogo oto ggt ggo oog ggt got oot ggo aco tot ggo aco ota 411 Glu Ser Arg Leu Gly Gly Pro Gly Ala Pro Gly Thr Ser Gly Thr Leu

90 85 80 75 age age cet ggg age etc gae eeg gtg ggt eec ate ace ege eac etg Ser Ser Pro Gly Ser Leu Asp Pro Val Gly Pro Ile Thr Arg His Leu ggg cag ccg tcc ttt caa cag cag cct ttg gaa ccg gga gaa gat cca 507 Gly Gln Pro Ser Phe Gln Gln Gln Pro Leu Glu Pro Gly Glu Asp Pro ctc ccc cct gag tcc cag gac cgg cac cag atg gcc ctc ctg aat ttc 555 Leu Pro Pro Glu Ser Gln Asp Arg His Gln Met Ala Leu Leu Asn Phe 130 ttc ttt cct gat gaa aag gca tat tct gaa gag gaa agt agg cgt gtt Phe Phe Pro Asp Glu Lys Ala Tyr Ser Glu Glu Glu Ser Arg Arg Val cgc cgc aat aag aga agc aaa agt ggt gaa gga gca gat ggt cct gtt 651 Arg Arg Asn Lys Arg Ser Lys Ser Gly Glu Gly Ala Asp Gly Pro Val 160 699 aaa aac aag aaa aag gga aag aag gca ggg cca cct ggg ccc aac ggc Lys Asn Lys Lys Lys Gly Lys Lys Ala Gly Pro Pro Gly Pro Asn Gly 175 ccc cca gga cct cca gga cct ccg gga ccc cag gga cct cca ggg att 747 Pro Pro Gly Pro Pro Gly Pro Gly Pro Gln Gly Pro Pro Gly Ile 195 cca gga att cct ggg att cca gga aca act gtt atg gga cca cct ggc 795 Pro Gly Ile Pro Gly Ile Pro Gly Thr Thr Val Met Gly Pro Pro Gly 210 cca cct ggc cct cct ggt cct caa gga ccc cct ggc ctc caa gga cct 843 Pro Pro Gly Pro Gly Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro 225 tct ggt gct gct gat aaa act gga act cgg gaa aat cag cca gct gtg 891 Ser Gly Ala Ala Asp Lys Thr Gly Thr Arg Glu Asn Gln Pro Ala Val 245 240 gtg cat ctg cag ggc caa ggg tca gca att caa gtc aaa aat gat ctt 939 Val His Leu Gln Gly Gln Gly Ser Ala Ile Gln Val Lys Asn Asp Leu 260 tca ggt gga gtg ctc aat gac tgg tct cgc atc act atg aac cct aag 987 Ser Gly Gly Val Leu Asn Asp Trp Ser Arg Ile Thr Met Asn Pro Lys 275 gtg ttt aaa cta cat ccc cgc agc ggg gag ctg gag gtc tac tac atc 1035 Val Phe Lys Leu His Pro Arg Ser Gly Glu Leu Glu Val Tyr Tyr Ile 290 1083 aac ttc act gac ttt gcc agc tac gag gtg gtg gtg gat gag aag ccc Asn Phe Thr Asp Phe Ala Ser Tyr Glu Val Val Asp Glu Lys Pro 310 305 ttc ctg cag tgc acc cgc agc att gag aca ggg aag acc aac tac aac 1131 Phe Leu Gln Cys Thr Arg Ser Ile Glu Thr Gly Lys Thr Asn Tyr Asn 320 325

act tgc tat act gca ggc gtg tgc ctc ctc aag gcc agg cag aaa atc 1179 Thr Cys Tyr Thr Ala Gly Val Cys Leu Leu Lys Ala Arg Gln Lys Ile 335 gcc gtg aag atg gtg cac gct gac atc tct atc aat atg agc aag cac 1227 Ala Val Lys Met Val His Ala Asp Ile Ser Ile Asn Met Ser Lys His 355 acc acc ttc ttc ggg gcc atc agg ctg ggc gaa gcc cct gca tcc tag 1275 Thr Thr Phe Phe Gly Ala Ile Arg Leu Gly Glu Ala Pro Ala Ser 370 365 atteteceat tecateetgg eccatgeece tgeeceaggt ttgggageea ggaeteceag 1335 aacctctaag tgctgctgtg tgtggaatga ggtatactgg cgttgcagcc acaaagagaa 1395 atgccccatg ctatttattc cccagtgact ccaggatgac aaggcctatg tgacttccca 1455 gaaagacctt gagttgccag gacagttgac ggagccccag ggttgtcaag aagcagaacc 1515 ttcttaggct ccctgctgac tggcttatgg tgactcctca acccttaggt ccctcatcag 1575 atgtatcatt tgttgcacta aaatgaggat ccaagacagt aggccacaaa aagaaaaggt 1635 1661 qcactccaga ttctaggggt gatccg

<210> 4 <211> 377 <212> PRT <213> Mus musculus

<400> 4 Met Gly Tyr Pro Glu Val Glu Arg Arg Glu Pro Leu Pro Ala Ala Ala 10 Pro Arg Glu Arg Gly Ser Gln Gly Cys Gly Cys Arg Gly Ala Pro Ala 25 Arg Ala Gly Glu Gly Asn Ser Cys Arg Leu Phe Leu Gly Phe Phe Gly 40 Leu Ser Leu Ala Leu His Leu Leu Thr Leu Cys Cys Tyr Leu Glu Leu Arg Ser Glu Leu Arg Arg Glu Arg Gly Thr Glu Ser Arg Leu Gly Gly 75 Pro Gly Ala Pro Gly Thr Ser Gly Thr Leu Ser Ser Pro Gly Ser Leu 90 Asp Pro Val Gly Pro Ile Thr Arg His Leu Gly Gln Pro Ser Phe Gln 105 100 Gln Gln Pro Leu Glu Pro Gly Glu Asp Pro Leu Pro Pro Glu Ser Gln 120 125 Asp Arg His Gln Met Ala Leu Leu Asn Phe Phe Phe Pro Asp Glu Lys 140 135 Ala Tyr Ser Glu Glu Glu Ser Arg Arg Val Arg Arg Asn Lys Arg Ser 155 150 Lys Ser Gly Glu Gly Ala Asp Gly Pro Val Lys Asn Lys Lys Lys Gly 175 170 165 Lys Lys Ala Gly Pro Pro Gly Pro Asn Gly Pro Pro Gly Pro Pro Gly 190 185 Pro Pro Gly Pro Gln Gly Pro Pro Gly Ile Pro Gly Ile Pro Gly Ile 200 Pro Gly Thr Thr Val Met Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly

```
210
                       215
Pro Gln Gly Pro Pro Gly Leu Gln Gly Pro Ser Gly Ala Ala Asp Lys
                                                           240
                                       235
                   230
Thr Gly Thr Arg Glu Asn Gln Pro Ala Val Val His Leu Gln Gly Gln
                                   250
               245
Gly Ser Ala Ile Gln Val Lys Asn Asp Leu Ser Gly Gly Val Leu Asn
                               265
Asp Trp Ser Arg Ile Thr Met Asn Pro Lys Val Phe Lys Leu His Pro
                                               285
                           280
Arg Ser Gly Glu Leu Glu Val Tyr Tyr Ile Asn Phe Thr Asp Phe Ala
                                           300
                       295
Ser Tyr Glu Val Val Val Asp Glu Lys Pro Phe Leu Gln Cys Thr Arg
                                       315
                   310
Ser Ile Glu Thr Gly Lys Thr Asn Tyr Asn Thr Cys Tyr Thr Ala Gly
                                   330
                                                       335
               325
Val Cys Leu Leu Lys Ala Arg Gln Lys Ile Ala Val Lys Met Val His
                               345
                                                   350
            340
Ala Asp Ile Ser Ile Asn Met Ser Lys His Thr Thr Phe Phe Gly Ala
                           360
Ile Arg Leu Gly Glu Ala Pro Ala Ser
                        375
<210> 5
<211> 630
<212> DNA
<213> Homo sapiens
<400> 5
acagtggggg ggaagatggg ctcagggttt agacacatca aacttaaggt acaggtagac 60
tgtgntatgg aaagatggtt ttttatgttg gctatgactg agtggggtca acctttgact 120
gatgtacttg taatttttac agatggccct attgaatttc ttcttccctg atgaaaagcc 180
atactctgaa gaagaaagta ggcgtgttcg ccgcaataaa agaagcaaaa gcaatgaagg 240
agcagatggt aagtctactc agttgatcct ttatcacttc tgaattattt gttagtaaaa 300
gtatcctttt aagaactacc ttcttggtag ggcatggtgg ctcacgcctg taatcctagc 360
aacatggtga aaccctgtct ctactaaaaa tacaaaaaaa attagccggg cctagtccca 480
gctgcttggg agactaaggc aggagaatcg cttgaaactg ggaggtagag gttgcagtga 540
gctgagactg tgccactgca ctccagcctg ggtgacagtg cgagactcca tctcaaaaaa 600
                                                                 630
caaaaacaaa caaaaaaaaa cactaccttt
 <210> 6
 <211> 549
 <212> DNA
 <213> Homo sapiens
 <400> 6
 acccattccc tcaccccaaa gactgaagta gagagatttt tctccctagg gaagaatctt 60
ccttgaaact tttgtggcct caggagtcag aagacagaat ggggaggttt gatagttgga 120
 tecttgecaa aageetgace ettggetgtg agaeteeete aaatttgeag tgtettgggg 180
 atccctccta gtgactatct tagaaaataa acattttctg ttcatttcca atgacttaat 240
 tatctatttt atttttctta taggcccagt taaaaacaag aaaaagggta agttcctgac 300
 tttataaaat tgctgtcttg tcatatattt tctaaagtta gaagaaaaaa acaagagtgc 360
 gatttttgta ttatattctt tcagcattgt ctgtctgtta ttttattcaa tcatatgtta 420
 tettettgag tattgtagtt tetgaagaac aagaaateat tetteagtga tgatteacet 480
 ctttcattct tccttgttct tctccctgcc cttcttttta ttctttttt tttttttt 540
                                                                  549
 ttttttt
```

```
<210> 7
<211> 821
<212> DNA
<213> Homo sapiens
<400> 7
aatcccagca ttttgggagg ctgaggcagg cagatcaccc gaagtcagga gtttgagacc 60
aacctggccg acatggtgaa accccgtttt tactaaaaat acaaaaatta gcaggttgcg 120
gtggcaagcg cctgtaatcc cagttaatcc agaggctgag gcaggagaat tgcttgaacc 180
cgggaggtgg aggttgcagt gagccgagat tgtgccactg aactccagcc tgggcaacag 240
agcaggacte egteteaaaa aaaaaagtaa eactgateet attttteagg aaagaaagea 300
ggacctectg gacccaatgg ccctccagga cccccaggac ctccaggacc ccagggaccc 360
ccaggaattc cagggattcc tggaattcca ggaacaactg ttatgggacc acctggtcct 420
ccaggtcctc ctggtcctca aggaccccct ggcctccagg gaccttctgg tgagttcccc 480
tgtctctcca ccccaccagg tgcctttaaa gtactttagg agagcaggag tgggtgatcc 540
tgagagcagt ttcaaacggt ggagatgggg ttggtgca ataagggatg cagatctcct 600
agcccagtgt aaaactagga attggacaag ccagtagggc ctggcctgct ctagcttctt 660
atatctacca aactgtcaag gacaggccac ctgttcttgc cccatctcaa cccttctgtt 720
acaagccctc cctgactctt ggcctccctg tagtggacca gtaaaactca tatgagccag 780
                                                                   821
agacagaggc cctggtggtt cacagggagt tccagtgggg a
<210> 8
<211> 977
<212> DNA
<213> Homo sapiens
<400> 8
ttcacacagg gctcagcagt gttaccatgg ccacaagaga tggagttaga gattttttt 60
caaccaatca ttccttaaat attgagcact ttctgtatac aaagagatat attgatacat 120
ggtccctttt cttatagagt ttatctccta gaggaagaga gaacaaagaa acaagatatt 180
tacaaatagc agtgggctct atgaagaaaa ttaatagaaa gggagcaaaa cactagagaa 240
gccaatgcca ttgcctcagg gtcacacagt gatgggaatg ctctctcatt gttctccatg 300
ggtgcccggt ggggcttgcc ttgggctaat attggccaga ggcaatactc agaagtttcc 360
ctgctgggtg ctgggcccac tgaagatgaa ggtcagggca ggaaacagaa ggggtgcact 420
ctgactette etecagetet gagecetgga gaataaaget cagacaggge tggetgeagg 480
gagcatggct caccaccact agctgctcag gtgaggggaa aaggaagtca aaagattatg 540
ccctctgatt gtcctatcct attttgcagg tgctgctgat aaagctggaa ctcgagaaaa 600
ccaggttggc tggggattgc tctcttcctg ggtaggaggg aaagccacag gctagagcca 660
cctttaaatt agcttcttat tagatttcct gagctttatt tcatgagaac accccggaga 720
ttctgacggt tttcactcac agcccctcc catctctatg aatagaaaag ctttgcccca 780
gggcatgttt ttagctaagg aaagggtgtc ttgccaggat catttttcct cattccacag 840
gagaccccag gttcaccata gccaggccca gtagtcagct gaaataagct gccagtcaga 900
cctattcacc tgagcctcca actccccaac caccccagac accttgccgg ctctcagacc 960
                                                                   977
 acctgggatc cggagct
 <210> 9
 <211> 1048
 <212> DNA
 <213> Homo sapiens
 <400> 9
 cggttctcag accacctggg atccggagct gaagagttga agagtatgtc cttgaaaaac 60
 agccaaccag ctccaggccc agcctagcct gggcgtctgc cttaatggcc tgaagagctc 120
 ctcccagtct ttgagcttcc taatctgtct ctattggcag gttctactgc cttgccttgt 180
 ctcatctcag cctcccttgc tacagctgtg tggccacagt gataaatcta cacagctgca 240
 cagtgcttga cggcttgcag ggcaatttta tatccatcac ctcatttgat cttcagacat 300
 ccctgtgaga gaggccagac attcttataa tccccatttt acagttaggg aaatgaggct 360
 cagaggcatt acatttggtt gaggtcacat agctaggaag cggtagagct acaaaatcat 420
 attaccetet agtagaaatg tagteagtaa cateecaaga caggggagag ggateagaat 480
```

```
tggattacaa tagaagacta gaaaccagga tggaaacatg ggactggtgg ctgagcaagc 540
agccattact catagtgact atctctatcc ttctcatcct gccagccagc tgtggtgcat 600
ctacagggcc aagggtcagc aattcaagtc aagaatggta agaatcaaaa taggctctct 660
cccaaagagg agcttctccc ctgcctcctc cccagcctcc aaataatcac ccagcctagt 720
tecteccagg cegetgaggt accepttggea tacnaagtea ttetttgete cateatgece 780
tctactggct gtcctgagca attgctggca tcaagaccag ttgctacacc caaattgctt 840
tagaatcact gatgacggag ctgaaaggga cttgagacat catctagccc aggcattctc 900
aggggatgga ggttatatca gagccaccat ggagatatgt gtagttagat taatattttc 960
acaatacaaa ttatagaaag taaaactatg taaaattaaa tttttcttgt ctgatctaca 1020
                                                                   1048
caggtgggca gacaggctgc atctctca
<210> 10
<211> 831
<212> DNA
<213> Homo sapiens
<400> 10
attttgcctg tgcaggcccc ataacaacaa agaaaatagg gcagcatgcc cactctcatc 60
ctccaccggc aaattccagc taggaggtat tggttaaaga cccttccaga tgcaagggtc 120
aagaaaggaa ggataaagac agacaggcag agcccaggag ccctgaagca ggcctggcag 180
ctgctttaca aacagaacag cttctctgct ttcaaatgct cttcttaaag tttggccttc 240
taggctaccc tggttgcact gggatagggg tgggggttgt gaactccttg gtatttattt 300
tctgttgcct cgattattct gacatgtact gagtgactgc cttctctcat actgagatct 360
ttcaggtgga gtgctcaatg actggtctcg catcactatg aaccccaagg tgtttaagct 420
acatccccgc agcggggagc tggaggtact ggtggacggc acctacttca tctatagtca 480
ggtagaagtg agtacggtct taggcctaac tcttcttata tccagaatgc agatccggtg 540
caggccacat aggggcactg tggagccagc caagaccatc caatggctaa cttcctgctt 600
tgggtgaggg ggtgggggga ccgcactggg agggagttga aaggaggaaa gagagggg 660
gccagcttct tttgttttgt tttgttttgt ttttccctac ccaaatatta ttgaaaaact 720
gtgaaaaaga ccctcccaca ccctgccatc tgattccctc ctgcagggcc tcaggcccct 780
gtttaccctc tgagctgttt ggctgcactg ccaaacttga acttggtctc a
                                                                   831
<210> 11
<211> 743
<212> DNA
<213> Homo sapiens
<400> 11
gcttcatgtc agggctgggg caggggtggg cgggggaaca ggggcacggt gaagctgcaa 60
atagggcatg gttcttagcc ttacagagtt tgcgacaagt gtgctgttgt aagaaaagtt 120
tgctcagcca gctgagcccc atggactagg ggaagaacaa tgcctgtcac ctgtcctttc 180
ctgttggcca gctagcacgc cttcacatgg cactgcccca tccatggggt atactaacag 240
ctcatctgag aagattctgt caattcacca cagggagggc cccccaccct ctctttcctc 300
tnttccccaa tcccttcttg ttgcctctca tcaggtatac tacatcaact tcactgactt 360
tgccagctat gaggtggtgg tggatgagaa gcccttcctg cagtgcacac gcagcatcga 420
gacgggcaag accaactaca acacttgcta taccgcaggc gtctgcctcc tcaaggcccg 480
gcagaagatc gccgtcaaga tggtgcacgc tgacatctcc atcaacatga gcaagcacac 540
cacgttettt ggggeeatea ggetgggtga ageceetgea teetagatte eeceattttg 600
 cctctgtccg tgccccttcc ctgggtttgg gagccaggac tcccaaaacc tctaagtgct 660
gctgtggagt gaggtgtatt ggtgttgcag ccgcagagaa atgccccatt gttatttatt 720
 ccccagtgac tccagggtga caa
 <210> 12
 <211> 3720
 <212> DNA
 <213> Mus musculus
 <220>
```

<221> CDS <222> (260)..(1606)

<400> 12 cagtccagac cgggaacagt caagagcgag ttcccgggag cccttcaaaa tagaaagtta 60 gttgcgctgg cagcagaggt gtgcctggcc gctgtcaccc ggctggcccc aggattgtgg 120 agetetgett ttgagaggae accgaeggae geetgtgaag eetgeeeee atecettaee 180 tgctcgcctt ctccgtagac ccatcttctg ctgggaaaag ctaacctcat tcgggtacca 240 ggtgtacttc caagagatc atg gcc cac gtc ggg gac tgc aaa tgg atg tcc Met Ala His Val Gly Asp Cys Lys Trp Met Ser tgg ctc cca gtg ctg gtg tct ctg atg tgc tca gcc aag gcg gag Trp Leu Pro Val Leu Val Val Ser Leu Met Cys Ser Ala Lys Ala Glu gac tcc aac tgt ggt gag aac gaa tac cac aac cag act acc ggg ctg Asp Ser Asn Cys Gly Glu Asn Glu Tyr His Asn Gln Thr Thr Gly Leu 436 tgc cag cag tgt cct cca tgc aga cca ggg gag gag ccc tac atg tcc Cys Gln Gln Cys Pro Pro Cys Arg Pro Gly Glu Glu Pro Tyr Met Ser 50 tgt gga tac ggc act aaa gac gac gac tat ggc tgt gtg ccc tgc cct 484 Cys Gly Tyr Gly Thr Lys Asp Asp Asp Tyr Gly Cys Val Pro Cys Pro 65 gca gag aag ttc tcc aaa gga ggt tat cag ata tgc agg cgc cac aaa 532 Ala Glu Lys Phe Ser Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys 80 580 gac tgt gag ggc ttc ttc cgg gcc act gtg ctg aca cca gga gac atg Asp Cys Glu Gly Phe Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met 100 gaa aac gac gct gag tgt ggc cca tgt ctc cct ggc tac tac atg ctg 628 Glu Asn Asp Ala Glu Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu 115 gaa aac aga ccc agg aac atc tat ggc atg gtc tgc tac tcc tgt ctc 676 Glu Asn Arg Pro Arg Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu 130 ttg gca cct ccc aac acc aag gaa tgt gtg gga gcc act tct ggg gtt 724 Leu Ala Pro Pro Asn Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Val tca gca cac tca tcc agc act tcc ggt ggc agc acc ttg tct ccc ttc Ser Ala His Ser Ser Ser Thr Ser Gly Gly Ser Thr Leu Ser Pro Phe 165 cag cat gct cac aaa gag ctc tca ggc caa gga cac ctg gcc acc gcc 820 Gln His Ala His Lys Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala ctg att att gcc atg tct acg atc ttc atc atg gcc att gcc atc gtc 868

Leu	Ile	Ile 190	Ala	Met	Ser	Thr	Ile 195	Phe	Ile	Met	Ala	Ile 200	Ala	Ile	Val	
ctc Leu	atc Ile 205	atc Ile	atg Met	ttc Phe	tac Tyr	atc Ile 210	atg Met	aag Lys	act Thr	aag Lys	ccg Pro 215	tca Ser	gct Ala	cca Pro	gcc Ala	916
tgc Cys 220	tgt Cys	agc Ser	agt Ser	ccc Pro	cca Pro 225	gga Gly	aag Lys	agc Ser	gca Ala	gaa Glu 230	gcc Ala	cca Pro	gct Ala	aac Asn	aca Thr 235	964
cac His	gag Glu	gag Glu	aaa Lys	aaa Lys 240	gag Glu	gcc Ala	cca Pro	gac Asp	agt Ser 245	gtg Val	gtg Val	acg Thr	ttc Phe	cct Pro 250	gag Glu	1012
aat Asn	ggt Gly	gag Glu	ttc Phe 255	cag Gln	aag Lys	ctg Leu	aca Thr	gca Ala 260	aca Thr	ccc Pro	aca Thr	aag Lys	acc Thr 265	ccc Pro	aaa Lys	1060
agt Ser	gag Glu	aat Asn 270	gat Asp	gcc Ala	tcc Ser	tct Ser	gag Glu 275	aac Asn	gag Glu	cag Gln	ttg Leu	cta Leu 280	agt Ser	cgc Arg	agt Ser	1108
gtg Val	gac Asp 285	agt Ser	gat Asp	gaa Glu	gag Glu	cca Pro 290	gcc Ala	ccg Pro	gac Asp	aag Lys	cag Gln 295	Gly 999	tcc Ser	cca Pro	gag Glu	1156
cta Leu 300	tgt Cys	ctg Leu	ctg Leu	tcg Ser	cta Leu 305	gtt Val	cac His	ctg Leu	gcc Ala	agg Arg 310	gag Glu	aag Lys	tct Ser	gtg Val	acc Thr 315	1204
agt Ser	aac Asn	aag Lys	tct Ser	gct Ala 320	gly ggg	atc Ile	cag Gln	agc Ser	cgg Arg 325	agg Arg	aaa Lys	aag Lys	ata Ile	ctg Leu 330	gat Asp	1252
gtg Val	tat Tyr	gcc Ala	aac Asn 335	gtg Val	tgt Cys	ggt Gly	gtt Val	gtt Val 340	gaa Glu	ggt Gly	ctc Leu	agc Ser	ccc Pro 345	acc Thr	gag Glu	1300
ttg Leu	ccg Pro	ttt Phe 350	gac Asp	tgc Cys	ctt Leu	gag Glu	aag Lys 355	aca Thr	agc Ser	cga Arg	Met	ctc Leu 360	Ser	tct Ser	aca Thr	1348
tac Tyr	aac Asn 365	Ser	gag Glu	aag Lys	gcg Ala	gtc Val 370	gtg Val	aaa Lys	aca Thr	tgg Trp	cgc Arg 375	His	ctt Leu	gcc Ala	gag Glu	1396
ago Ser 380	Phe	gga Gly	ctg Leu	aag Lys	agg Arg 385	gat Asp	gag Glu	att Ile	gly ggg	ggc Gly 390	Met	act Thr	gat Asp	ggc	atg Met 395	1444
cag Glr	g cto Leu	ttt Phe	gac Asp	cgc Arg 400	Ile	ago Ser	acc Thr	gcg Ala	ggo Gly 405	y Tyr	ago Ser	ato Ile	cca Pro	gag Glu 410	g ctg Leu)	1492
cto	c aca ı Thr	aag Lys	ttg Leu 415	. Val	cag Gln	atc Ile	gag Glu	cgg Arg 420	J Let	gat 1 Asp	gct Ala	gtg Val	g gag Glu 425	Ser	ttg Leu	1540
tgt Cys	gca s Ala	a gac a Asp	ata	ttg Lev	gag Glu	tgg Trp	gct Ala	. gly	g gtt v Val	gta L Val	a cca L Pro	a cct o Pro	gco Ala	tco Sei	c cca c Pro	1588

430 435 440

1636

ccc cca gct gcg tcc tga agagttgtct tggactgtct tccctgggac Pro Pro Ala Ala Ser

445

cagctgggga tccaatgaag tcacgaccga cagctgtgag tgatgctatc agactgccaa 1696 aactcaaggc atttcctggt gggtcactgt attccttagg ctgccctaag tagttcattg 1756 agcactcaaa tgaaccaaac catgtgggaa ggacacaggt gaagaatctg atcctgtctt 1816 ttaaggaggc acttagtgag agatgggagc atggtataga ccgtgttacc aaaacatcac 1876 ctaggcaaat gaagggatgc ttttttaaaa agtagcaaaa gttataaggg tgatagagtc 1936 tcaaggggtt gaaagtggga acatcctaat gaagaaaata acttcaaggt tttagtaaaa 1996 cggttacaaa gtacaggcat cccacatcct tcatggcctc agacagagca tggtttgctg 2056 gcatgcccta tggtttcaga ggtaactcga cctgtgtttg cagtcacaca ccatggtata 2116 agcettgeag teactagtgg aagaacteae catgtgteae tgacatacaa ggegtgtgte 2176 tgtccagtca caagtgtggg cagatctggc ctccagcacc actcgcagcc acagcagtta 2236 caatgtcagg cttgtcttgc ttcaaaggga cgtgcgtcct atctagagaa ggaaatggtg 2296 acttgctcag agtttgacca tgcctgattc ctgggtgagg ctcgagtgag ttcaggcaca 2356 acateetgag eeagtgaggg gtggtgeage eegagaegea gtaeagaget ggggtetgag 2416 gtcctgggca ctgggagagt cattcaaagt gtctgtctcc tccagactta gcttctctta 2476 ggtgagagag gttggtattc acatctgtag tcaggaatgt tgaggctcca gtgagcgaaa 2536 gggtgagtga aagaacacgg aggcagaaga gaagaggcca gaggagcctc catggggtaa 2596 atacagtgtg ggtggccaca aaaaatgaga gtcaagggaa acgcagccgc cattctcata 2656 taagggcaac tgtaggactg agcgtttaca gggcttataa acagccattg ctcttggcat 2716 attetettae tgeacetgta aetgeeagga aatgggagee aaggaaaett eeceggeagg 2776 gggttaatge caagetgget getgggetee etceeagage getgaetgea gagaatgett 2836 cctttcagta aagctctggt ttagaaggcg gttgggtttt tttgttttac aaggcctatg 2896 actgaacaaa ggctttggag agcaatcagt ggtgtgttta aaaccatcaa gccatttccc 2956 accantgaat atagaccata ctgtgagagg accataatta ggtcctgaat ttttaatatg 3016 ctccattttg caagttaaat gtctgcttaa ttgtcctttt aattcctgag accctgcagt 3136 gtcccttacc cctggtcttc cataatgacg ctgcgattcc ccttaattag acttgtaaat 3196 gtcatgcgtg atgagtgagc aggtcgagga cagcaggctc ttctccaact gtcattgtgc 3256 tgaagaatgg gcagctgcag ccagcggtgt gggctgccct ccattcacac taataggttt 3316

<210> 13
<211> 1347
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(1347)
<400> 13
atg gcc cac gtc ggg
Met Ala His Val Gly
1 5

atg gcc cac gtc ggg gac tgc aaa tgg atg tcc tgg ctc cca gtg ctg 48
Met Ala His Val Gly Asp Cys Lys Trp Met Ser Trp Leu Pro Val Leu
1 5 10 15

gtg gtg tct ctg atg tgc tca gcc aag gcg gag gac tcc aac tgt ggt 96 Val Val Ser Leu Met Cys Ser Ala Lys Ala Glu Asp Ser Asn Cys Gly 20 25 30

gag aac gaa tac cac aac cag act acc ggg ctg tgc cag cag tgt cct $\,$ 144 Glu Asn Glu Tyr His Asn Gln Thr Thr Gly Leu Cys Gln Gln Cys Pro $\,$ 45

cca tgc aga cca ggg gag gag ccc tac atg tcc tgt gga tac ggc act 192 Pro Cys Arg Pro Gly Glu Glu Pro Tyr Met Ser Cys Gly Tyr Gly Thr 50 55

aaa gac gac gac tat ggc tgt gtg ccc tgc cct gca gag aag ttc tcc 240 Lys Asp Asp Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser 65 70 75 80

aaa gga ggt tat cag ata tgc agg cgc cac aaa gac tgt gag ggc ttc 288 Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe

ttc cgg gcc act gtg ctg aca cca gga gac atg gaa aac gac gct gag 336 Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu 105 110

tgt ggc cca tgt ctc cct ggc tac tac atg ctg gaa aac aga ccc agg 384 Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg 115 120 125

aac atc tat ggc atg gtc tgc tac tcc tgt ctc ttg gca cct ccc aac 432 Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn 130 135 140

	_	_	-		gga Gly 150	_										480
_					agc Ser											528
					gga Gly		_	_		_	_			_	_	576
					atg Met											624
					aag Lys											672
					gaa Glu 230											720
					gtg Val											768
_	_		-	_	ccc Pro	_	_	_			-			_		816
					cag Gln	_		_		_		_	-	_		864
		_	_	_	aag Lys							-		_	_	912
	_		_	Āla	agg Arg 310	Glu	-				Ser		_		_	960
		_	-		agg Arg		_		_				_			1008
-		_			ggt Gly		_				-	_		_	-	1056
	_	_		_	cga Arg	_		_							_	1104
		_			tgg Trp	_			_		-			_	_	1152

agg gat gag att gg Arg Asp Glu Ile G 385	gg ggc atg a ly Gly Met T 390	act gat ggc Thr Asp Gly	atg cag ctc Met Gln Leu 395	Phe Asp	cgc 1200 Arg 400
atc agc acc gcg gg Ile Ser Thr Ala G	gc tac agc a ly Tyr Ser I 05	atc cca gag Ile Pro Glu 410	ctg ctc aca Leu Leu Thr	aag ttg Lys Leu 415	gtg 1248 Val
cag atc gag cgg c Gln Ile Glu Arg Lo 420	tg gat gct g eu Asp Ala V	gtg gag tcc Val Glu Ser 425	ttg tgt gca Leu Cys Ala	gac ata Asp Ile 430	ttg 1296 Leu
gag tgg gct ggg g Glu Trp Ala Gly V 435	al Val Pro E	cct gcc tcc Pro Ala Ser 440	cca ccc cca Pro Pro Pro 445	gct gcg Ala Ala	tcc 1344 Ser
tga					1347
<210> 14 <211> 1176 <212> DNA <213> Homo sapien	s				
<220> <221> CDS <222> (1)(1176)					
<400> 14 atg ggc tac ccg g Met Gly Tyr Pro G 1	ag gtg gag lu Val Glu i 5	cgc agg gaa Arg Arg Glu 10	ctc ctg cct Leu Leu Pro	gca gca Ala Ala 15	gcg 48 Ala
ccg cgg gag cga g Pro Arg Glu Arg G 20	gg agc cag ly Ser Gln	ggc tgc ggg Gly Cys Gly 25	tgt ggc ggg Cys Gly Gly	gcc cct Ala Pro 30	gcc 96 Ala
cgg gcg ggc gaa g Arg Ala Gly Glu G 35	gg aac agc lly Asn Ser	tgc ctg ctc Cys Leu Leu 40	ttc ctg ggt Phe Leu Gly 45	ttc ttt Phe Phe	ggc 144 Gly
ctc tcg ctg gcc c Leu Ser Leu Ala I 50	tc cac ctg Leu His Leu 55	ctg acg ttg Leu Thr Leu	tgc tgc tac Cys Cys Tyr 60	cta gag Leu Glu	ttg 192 Leu
cgc tcg gag ttg c Arg Ser Glu Leu <i>A</i> 65	egg egg gaa Arg Arg Glu 70	cgt gga gcc Arg Gly Ala	gag tcc cgc Glu Ser Arg 75	ctt ggc Leu Gly	ggc 240 Gly 80
tcg ggc acc cct g Ser Gly Thr Pro (ggc acc tct Gly Thr Ser 85	ggc acc cta Gly Thr Leu 90	Ser Ser Leu	ggt ggc Gly Gly 95	ctc 288 Leu
gac cct gac agc o Asp Pro Asp Ser I 100	ccc atc acc Pro Ile Thr	agt cac ctt Ser His Leu 105	ggg cag ccg Gly Gln Pro	tca cct Ser Pro 110	aag 336 Lys
cag cag cca ttg o Gln Gln Pro Leu o 115	gaa ccg gga Glu Pro Gly	gaa gcc gca Glu Ala Ala 120	ctc cac tct Leu His Ser 125	gac tcc Asp Ser	cag 384 Gln

	cag atg gcc Gln Met Ala	•		Pro Asp Glu	_
	gaa gaa gaa Glu Glu Glu 150				
_	gaa gga gca Glu Gly Ala 165		-	-	
	gga cct cct Gly Pro Pro 180		Gly Pro Pro		
	ccc cag gga Pro Gln Gly				
	act gtt atg Thr Val Met			Gly Pro Pro	
	ccc cct ggc Pro Pro Gly 230	0 00			
0 00	cga gaa aac Arg Glu Asn 245	-			_
	att caa gtc Ile Gln Val 260		Leu Ser Gly		
	cgc atc act Arg Ile Thr	_		_	
	gag ctg gag Glu Leu Glu				
	gaa gta tac Glu Val Tyr 310		_		
	gtg gat gag Val Asp Glu 325	•			
	aag acc aac Lys Thr Asn 340		Cys Tyr Thr		_
_	gcc cgg cag Ala Arg Gln	_			_

atc tcc a Ile Ser I 370	tc aac le Asn	atg a Met S	Ser I	aag (Lys 1 375	cac His	acc Thr	acg Thr	Phe	ttt Phe 380	Gly 999	gcc Ala	atc Ile	agg Arg	1152
ctg ggt g Leu Gly G 385	aa gcc lu Ala	Pro A	gca t Ala S 390	ccc Ser	tag									1176
<210> 15 <211> 113 <212> DNA <213> Mus		us												
<220> <221> CDS <222> (1)		4)												
<400> 15 atg ggc t Met Gly T	ac cca Yr Pro	gag g Glu V 5	gta Val	gag Glu	cgc Arg	agg Arg	gaa Glu 10	ccc Pro	ctg Leu	cct Pro	gcg Ala	gca Ala 15	gcg Ala	48
cca agg g Pro Arg G	gag cgg Blu Arg 20	ggc a	agc Ser	cag Gln	ggc Gly	tgc Cys 25	ggc Gly	tgt Cys	cgc Arg	gly ggg	gcc Ala 30	cct Pro	gct Ala	96
cgg gcg g Arg Ala (ggc gaa 31y Glu 35	ggg (aac Asn	agc Ser	tgc Cys 40	cgg Arg	ctc Leu	ttc Phe	ctg Leu	ggt Gly 45	ttc Phe	ttt Phe	ggc Gly	144
ctc tcg (Leu Ser I 50	ctg gcc Leu Ala	ctc Leu	cac His	ctg Leu 55	ctg Leu	acg Thr	ctg Leu	tgc Cys	tgc Cys 60	tac Tyr	cta Leu	gag Glu	ttg Leu	192
cgg tcc (Arg Ser (65	gaa ttg Glu Leu	cgg Arg	cgg Arg 70	gaa Glu	cgg Arg	gga Gly	acc Thr	gag Glu 75	tcc Ser	cgc Arg	ctc Leu	ggt Gly	ggc Gly 80	240
ccg ggt g Pro Gly	gct cct Ala Pro	ggc Gly 85	acc Thr	tct Ser	ggc Gly	acc Thr	cta Leu 90	agc Ser	agc Ser	cct Pro	Gly 999	agc Ser 95	ctc Leu	288
gac ccg (Asp Pro	gtg ggt Val Gly 100	ccc Pro	atc Ile	acc Thr	cgc Arg	cac His 105	ctg Leu	Gly 999	cag Gln	ccg Pro	tcc Ser 110	ttt Phe	caa Gln	336
cag cag Gln Gln	cct ttg Pro Leu 115	gaa Glu	ccg Pro	gga Gly	gaa Glu 120	gat Asp	cca Pro	ctc Leu	ccc Pro	cct Pro 125	gag Glu	tcc Ser	cag Gln	384
gac cgg Asp Arg 130	cac cag His Gln	atg Met	gcc Ala	ctc Leu 135	ctg Leu	aat Asn	ttc Phe	ttc Phe	ttt Phe 140	cct Pro	gat Asp	gaa Glu	aag Lys	432
gca tat Ala Tyr 145	tct gaa Ser Glu	gag Glu	gaa Glu 150	agt Ser	agg Arg	cgt Arg	gtt Val	cgc Arg 155	Arg	aat Asn	aag Lys	aga Arg	agc Ser 160	480
aaa agt Lys Ser	ggt gaa Gly Glu	ı gga ı Gly	gca Ala	gat Asp	ggt Gly	cct Pro	gtt Val	aaa Lys	aac Asn	aag Lys	aaa Lys	aag Lys	gga Gly	528

165 170 175

				cct Pro										576
				gga Gly										624
	~~		_	atg Met										672
				ggc Gly 230						 _	_	_		720
			_	aat Asn	_		_				_			768
				gtc Val										816
_		_		act Thr	_			_						864
_	_	 	_	gag Glu	_								-	912
				gtg Val 310										960
				aag Lys										1008
	_		_	gcc Ala		-			_	 	_			1056
				aat Asn										1104
				gcc Ala				tag						1134

<210> 16 <211> 1347

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (1)..(1347)

<400> 16 atg gcc cat gtg ggg gac tgc acg cag acg ccc tgg ctc ccc gtc ctg Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu Pro Val Leu gtg gtg tct ctg atg tgc tca gcc cga gcg gaa tac tca aac tgc ggt 96 Val Val Ser Leu Met Cys Ser Ala Arg Ala Glu Tyr Ser Asn Cys Gly gag aac gag tac tac aac cag act acg ggg ctg tgc cag gag tgc ccc 144 Glu Asn Glu Tyr Tyr Asn Gln Thr Thr Gly Leu Cys Gln Glu Cys Pro ccg tgt ggg ccg gga gag gag ccc tac ctg tcc tgt ggc tac ggc acc 192 Pro Cys Gly Pro Gly Glu Glu Pro Tyr Leu Ser Cys Gly Tyr Gly Thr 50 55 aaa gac gag gac tac ggc tgc gtc ccc tgc ccg gcg gag aag ttt tcc Lys Asp Glu Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser aaa gga ggc tac cag ata tgc agg cgt cac aaa gac tgt gag ggc ttc 288 Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe ttc cgg gcc acc gtg ctg aca cca ggg gac atg gag aat gac gct gag 336 Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu 105 tgt ggc cct tgc ctc cct ggc tac tac atg ctg gag aac aga ccg agg 384 Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg 120 aac atc tat ggc atg gtc tgc tac tcc tgc ctc ctg gca ccc ccc aac 432 Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn acc aag gaa tgt gtg gga gcc act tca gga gct tct gcc aac ttc cct Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Ala Ser Ala Asn Phe Pro qqc acc tcq qqc aqc acc ctg tct ccc ttc cag cac gcc cac aaa 528 Gly Thr Ser Gly Ser Ser Thr Leu Ser Pro Phe Gln His Ala His Lys gaa ctc tca ggc caa gga cac ctg gcc act gcc ctg atc att gca atg 576 Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala Leu Ile Ile Ala Met tcc acc atc ttc atc atg gcc atc gcc atc gtc ctc atc atc atg ttc 624 Ser Thr Ile Phe Ile Met Ala Ile Ala Ile Val Leu Ile Ile Met Phe 195 200 tac atc ctg aag aca aag ccc tct gcc cca gcc tgt tgc acc agc cac 672 Tyr Ile Leu Lys Thr Lys Pro Ser Ala Pro Ala Cys Cys Thr Ser His ccg ggg aag agc gtg gag gcc caa gtg agc aag gac gag gag aag aaa 720

Pro 225	Gly	Lys	Ser	Val	Glu 230	Ala	Gln	Val	Ser	Lys 235	Asp	Glu	Glu	Lys	Lys 240	
gag Glu	gcc Ala	cca Pro	gac Asp	aac Asn 245	gtg Val	gtg Val	atg Met	ttc Phe	tcc Ser 250	gag Glu	aag Lys	gat Asp	gaa Glu	ttt Phe 255	gag Glu	768
aag Lys	ctg Leu	aca Thr	gca Ala 260	act Thr	cca Pro	gca Ala	aag Lys	ccc Pro 265	acc Thr	aag Lys	agc Ser	gag Glu	aac Asn 270	gat Asp	gcc Ala	816
tca Ser	tcc Ser	gag Glu 275	aat Asn	gag Glu	cag Gln	ctg Leu	ctg Leu 280	agc Ser	cgg Arg	agc Ser	gtc Val	gac Asp 285	agt Ser	gat Asp	gag Glu	864
gag Glu	ccc Pro 290	gcc Ala	cct Pro	gac Asp	aag Lys	cag Gln 295	ggc Gly	tcc Ser	ccg Pro	gag Glu	ctg Leu 300	tgc Cys	ctg Leu	ctg Leu	tcg Ser	912
ctg Leu 305	gtt Val	cac His	ctg Leu	gcc Ala	agg Arg 310	gag Glu	aag Lys	tct Ser	gcc Ala	acc Thr 315	agc Ser	aac Asn	aag Lys	tca Ser	gcc Ala 320	960
gly ggg	att Ile	caa Gln	agc Ser	cgg Arg 325	agg Arg	aaa Lys	aag Lys	atc Ile	ctc Leu 330	gat Asp	gtg Val	tat Tyr	gcc Ala	aac Asn 335	gtg Val	1008
tgt Cys	gga Gly	gtc Val	gtg Val 340	gaa Glu	ggt Gly	ctt Leu	agc Ser	ccc Pro 345	acg Thr	gag Glu	ctg Leu	cca Pro	ttt Phe 350	gat Asp	tgc Cys	1056
ctc Leu	gag Glu	aag Lys 355	act Thr	agc Ser	cga Arg	atg Met	ctc Leu 360	agc Ser	tcc Ser	acg Thr	tac Tyr	aac Asn 365	tct Ser	gag Glu	aag Lys	1104
gct Ala	gtt Val 370	gtg Val	aaa Lys	acg Thr	tgg Trp	cgc Arg 375	cac His	ctc Leu	gcc Ala	gag Glu	agc Ser 380	ttc Phe	ggc Gly	ctg Leu	aag Lys	1152
agg Arg 385	Asp	gag Glu	att Ile	Gly	ggc Gly 390	Met	Thr	gac Asp	Gly	atg Met 395	Gln	ctc Leu	ttt Phe	gac Asp	cgc Arg 400	1200
ato Ile	agc Ser	acg Thr	gca Ala	ggc Gly 405	Tyr	ago Ser	atc Ile	cct Pro	gag Glu 410	Leu	ctc Leu	aca Thr	aaa Lys	ctg Leu 415	gtg Val	1248
cag Glr	att Ile	gag Glu	cgg Arg 420	Leu	gat Asp	gct Ala	gtg Val	gag Glu 425	Ser	ttg Leu	tgt Cys	gca Ala	gac Asp 430	Ile	ctg Leu	1296
gaç Glu	ı tg <u>o</u> ı Trp	gcg Ala 435	. Gly	gtt Val	gtg Val	cca Pro	cct Pro 440	Ala	tcc Ser	cag Gln	cca Pro	cat His 445	Ala	gca Ala	tcc Ser	1344
tga	ì															1347

<210> 17 <211> 448 <212> PRT <213> Homo sapiens

<400> 17 Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu Pro Val Leu 10 Val Val Ser Leu Met Cys Ser Ala Arg Ala Glu Tyr Ser Asn Cys Gly Glu Asn Glu Tyr Tyr Asn Gln Thr Thr Gly Leu Cys Gln Glu Cys Pro 40 Pro Cys Gly Pro Gly Glu Glu Pro Tyr Leu Ser Cys Gly Tyr Gly Thr 55 Lys Asp Glu Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser 70 Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe 90 85 Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu 100 105 Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg 120 Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn 140 135 Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Ala Ser Ala Asn Phe Pro 150 155 Gly Thr Ser Gly Ser Ser Thr Leu Ser Pro Phe Gln His Ala His Lys 165 170 Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala Leu Ile Ile Ala Met 185 180 Ser Thr Ile Phe Ile Met Ala Ile Ala Ile Val Leu Ile Ile Met Phe 200 195 Tyr Ile Leu Lys Thr Lys Pro Ser Ala Pro Ala Cys Cys Thr Ser His 215 220 Pro Gly Lys Ser Val Glu Ala Gln Val Ser Lys Asp Glu Glu Lys Lys 230 235 Glu Ala Pro Asp Asn Val Val Met Phe Ser Glu Lys Asp Glu Phe Glu 245 250 Lys Leu Thr Ala Thr Pro Ala Lys Pro Thr Lys Ser Glu Asn Asp Ala 265 Ser Ser Glu Asn Glu Gln Leu Leu Ser Arg Ser Val Asp Ser Asp Glu 280 Glu Pro Ala Pro Asp Lys Gln Gly Ser Pro Glu Leu Cys Leu Leu Ser 295 Leu Val His Leu Ala Arg Glu Lys Ser Ala Thr Ser Asn Lys Ser Ala 315 Gly Ile Gln Ser Arg Arg Lys Lys Ile Leu Asp Val Tyr Ala Asn Val 330 Cys Gly Val Val Glu Gly Leu Ser Pro Thr Glu Leu Pro Phe Asp Cys 345 Leu Glu Lys Thr Ser Arg Met Leu Ser Ser Thr Tyr Asn Ser Glu Lys 360 Ala Val Val Lys Thr Trp Arg His Leu Ala Glu Ser Phe Gly Leu Lys Arg Asp Glu Ile Gly Gly Met Thr Asp Gly Met Gln Leu Phe Asp Arg 395 Ile Ser Thr Ala Gly Tyr Ser Ile Pro Glu Leu Leu Thr Lys Leu Val 410 Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu Cys Ala Asp Ile Leu 425 Glu Trp Ala Gly Val Val Pro Pro Ala Ser Gln Pro His Ala Ala Ser

<210> 18 <211> 4235 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (433)..(1779) <400> 18 gggggcagac ggccgaagag ccaggtgtgc cagggaccta tggcagcagg gctgaacgtg 60 cccgctccag cctctccagt gctgggagag acctctagat ggtgcaggtg agtttgcaat 120 gagggaaagc ccctcggcaa ggactgagtt tccaaacttg cagacagggc agggagcggt 180 caaggaagag ttcccgggaa gccctttaaa cggaaaggaa gcggggctag tgtcagagag 240 gtgtgccagg tcccaggcag ccctgctgac ccctaaggac atagagtacc tgcttctgag 300 agggctgcca cggtggccac ctgtgaagcc tgtcacccag aactggatgg tacctgactt 360 tetteataga eccatettet getgggaetg aagetgaeet ecaacagaag ecaggtgage 420 cettgggaga gg atg gcc cat gtg ggg gac tgc acg cag acg ccc tgg ctc 471 Met Ala His Val Gly Asp Cys Thr Gln Thr Pro Trp Leu ccc gtc ctg gtg gtg tct ctg atg tgc tca gcc cga gcg gaa tac tca 519 Pro Val Leu Val Val Ser Leu Met Cys Ser Ala Arg Ala Glu Tyr Ser 20 aac tgc ggt gag aac gag tac tac aac cag act acg ggg ctg tgc cag 567 Asn Cys Gly Glu Asn Glu Tyr Tyr Asn Gln Thr Thr Gly Leu Cys Gln 35 gag tgc ccc ccg tgt ggg ccg gga gag gag ccc tac ctg tcc tgt ggc 615 Glu Cys Pro Pro Cys Gly Pro Gly Glu Glu Pro Tyr Leu Ser Cys Gly tac ggc acc aaa gac gag gac tac ggc tgc gtc ccc tgc ccg gcg gag 663 Tyr Gly Thr Lys Asp Glu Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu 70 aag ttt tcc aaa gga ggc tac cag ata tgc agg cgt cac aaa gac tgt 711 Lys Phe Ser Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys 85 gag ggc ttc ttc cgg gcc acc gtg ctg aca cca ggg gac atg gag aat 759 Glu Gly Phe Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn 100 807 gac gct gag tgt ggc cct tgc ctc cct ggc tac tac atg ctg gag aac Asp Ala Glu Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn 120 115 aga ccg agg aac atc tat ggc atg gtc tgc tac tcc tgc ctc ctg gca 855 Arg Pro Arg Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala 130 135

ccc Pro	ccc Pro	aac Asn	acc Thr 145	aag Lys	gaa Glu	tgt Cys	gtg Val	gga Gly 150	gcc Ala	act Thr	tca Ser	gga Gly	gct Ala 155	tct Ser	gcc Ala	903
aac Asn	ttc Phe	cct Pro 160	ggc Gly	acc Thr	tcg Ser	ggc Gly	agc Ser 165	agc Ser	acc Thr	ctg Leu	tct Ser	ccc Pro 170	ttc Phe	cag Gln	cac His	951
gcc Ala	cac His 175	aaa Lys	gaa Glu	ctc Leu	tca Ser	ggc Gly 180	caa Gln	gga Gly	cac His	ctg Leu	gcc Ala 185	act Thr	gcc Ala	ctg Leu	atc Ile	999
att Ile 190	gca Ala	atg Met	tcc Ser	acc Thr	atc Ile 195	ttc Phe	atc Ile	atg Met	gcc Ala	atc Ile 200	gcc Ala	atc Ile	gtc Val	ctc Leu	atc Ile 205	1047
atc Ile	atg Met	ttc Phe	tac Tyr	atc Ile 210	ctg Leu	aag Lys	aca Thr	aag Lys	ccc Pro 215	tct Ser	gcc Ala	cca Pro	gcc Ala	tgt Cys 220	tgc Cys	1095
acc Thr	agc Ser	cac His	ccg Pro 225	gly ggg	aag Lys	agc Ser	gtg Val	gag Glu 230	gcc Ala	caa Gln	gtg Val	agc Ser	aag Lys 235	gac Asp	gag Glu	1143
gag Glu	aag Lys	aaa Lys 240	gag Glu	gcc Ala	cca Pro	gac Asp	aac Asn 245	gtg Val	gtg Val	atg Met	ttc Phe	tcc Ser 250	gag Glu	aag Lys	gat Asp	1191
gaa Glu	ttt Phe 255	gag Glu	aag Lys	ctg Leu	aca Thr	gca Ala 260	act Thr	cca Pro	gca Ala	aag Lys	ccc Pro 265	acc Thr	aag Lys	agc Ser	gag Glu	1239
aac Asn 270	gat Asp	gcc Ala	tca Ser	tcc Ser	gag Glu 275	aat Asn	gag Glu	cag Gln	ctg Leu	ctg Leu 280	agc Ser	cgg Arg	agc Ser	gtc Val	gac Asp 285	1287
agt Ser	gat Asp	gag Glu	gag Glu	ccc Pro 290	gcc Ala	cct Pro	gac Asp	aag Lys	cag Gln 295	ggc Gly	tcc Ser	ccg Pro	gag Glu	ctg Leu 300	tgc Cys	1335
ctg Leu	ctg Leu	tcg Ser	ctg Leu 305	Val	cac His	ctg Leu	gcc Ala	agg Arg 310	gag Glu	aag Lys	tct Ser	gcc Ala	acc Thr 315	agc Ser	aac Asn	1383
aag Lys	tca Ser	gcc Ala 320	Gly	att Ile	caa Gln	ago Ser	cgg Arg 325	Arg	aaa Lys	aag Lys	atc	ctc Leu 330	Asp	gtg Val	tat Tyr	1431
gcc Ala	aac Asn 335	val	tgt Cys	gga Gly	gtc Val	gtg Val 340	Glu	ggt Gly	ctt Leu	ago Ser	e ccc Pro 345	Thr	gag Glu	ctg Leu	cca Pro	1479
ttt Phe 350	Asp	tgc Cys	cto Leu	gag Glu	aag Lys 355	Thr	ago Ser	cga Arg	atg Met	cto Lev 360	. Ser	tcc Ser	acg Thr	tac Tyr	aac Asn 365	1527
tct Ser	gag Glu	g aag 1 Lys	g gct s Ala	gtt Val	. Val	g aaa Lys	a acc	tgg Trp	cgc Arg 375	y His	cto Lev	gco Ala	gag Glu	ago Ser 380	ttc Phe	1575

ggc ctg aag agg gat gag att ggg ggc atg aca gac ggc atg caa ctc Gly Leu Lys Arg Asp Glu Ile Gly Gly Met Thr Asp Gly Met Gln Leu 385 390 395	1623
ttt gac cgc atc agc acg gca ggc tac agc atc cct gag cta ctc aca Phe Asp Arg Ile Ser Thr Ala Gly Tyr Ser Ile Pro Glu Leu Leu Thr 400 405 410	1671
aaa ctg gtg cag att gag cgg ctg gat gct gtg gag tcc ttg tgt gca Lys Leu Val Gln Ile Glu Arg Leu Asp Ala Val Glu Ser Leu Cys Ala 415 420 425	1719
gac ata ctg gag tgg gcg ggg gtt gtg cca cct gcc tcc cag cca cat Asp Ile Leu Glu Trp Ala Gly Val Val Pro Pro Ala Ser Gln Pro His 430 435 440 440	1767
gct gca tcc tga aaagcatgcc tgtgggctgt cctcccagga caagccaagg Ala Ala Ser	1819
atccaacgag ggctctggag ctgtgagtgg tgccaaaaga ctgccaagaa tcaaggctt	1879
tgtgatatgt caccgtatgc cttaggatgt tcaaggagcc agacgaaata aggcctgtc	1939
tccaatttaa ccaaagataa aggactagag ccgggatact ttcagatgct cgcctgtac	1999
tcaccaggca gagtaaatat ctactcactc atacagccag cccaccagcc caccattaa	2059
tcactgaaca atgagacaat gttgaggact caaatgaatc aaaccccgtg ggaatgaca	g 2119
aagtgaagaa tetggteet gtetttaagg agtttgeact eeagtagaag acagaagga	a 2179
cgtatgttta caaaccactt cactggaaga cgtcaaacaa gctgaatgaa ggggcgctt	a 2239
gaaaacgtta atagaagttc taagcgggag atgactccct actgggatga tgaaggatg	g 2299
catcctagtg aagaagcagc tcaaacattt tgataaaatg gcaacaaaat gcagacacc	c 2359
tgctccaggt attatttcag gtttagtaca agtctgttaa taccctatgt ggtttcatt	a 2419
ggataacttt ttacctatcc ttgaggtcat ccatattctt acaggccttc cagtcaata	a 2479
tggaagagct cactctatac aaaaccaata tgcaaggcat gtgtttgtcc aagcaattg	g 2539
atgtgtgcag tagccaattt catttactgc attactcttt ggcctgggaa ccctgtggt	c 2599
tgcactacat gtgaatggcc ttccacttca gtcttaggca gatttgacct tttaggggc	a 2659
gcaatgctga aggacacagc aatttaaatt ataatgtgtc aggctgtgtt ttcacttca	a 2719
acatgtatga gtagtcagct gtaattagag aaatgatgac ttcctaagag ttcagccac	g 2779
cataattcta gatttcaaga gcatctaaga cttgtggatt agcctcatgg catgagagt	t 2839
tcagactcag ccttctgagc cagtcaggga aagtggagtt ctgcagcgca aatgagagc	c 2899
tgggcttggt gtcgagggag ctggcttcta gttgtgccac cttgggcctt gtcttttcc	
ctctctgcct cagtttctcg tctgccaatg agatgttagt tagtgattct ataattggg	
caggtagggt tcaggtgagc aaaaagaaag tggagctata ggaaatgcca ggcctttga	g 3079

S. F

qtqctctatg gaagtcaaca cagtgtggtt tgtccattta aatgggaata aaaacagaaa 3139 aactcagact tggcattttc acaataactg caatggtttg acataacatt tataggcaga 3199 aagttaataa actggcattg ttcttggcat attattgtac tatccctgta actgccaaga 3259 gctcaggagc caggctagtg atcacaccag gggttagagt tcactgctga actccctgat 3319 ggcaggtctg tgtttattac tacattaaaa caaagtctct gacttataaa gcgaggtcgt 3379 aaaaattaca agttgcatga ctgaaaaaat gctttagggg gaaaatcagt catatcttta 3439 acaccaacaa gcaatttccc accaacgaat gtagtacata ctgtgagagg atcataatga 3499 ggtcctgaat atttaatatc atcatttact gtgtctgttt gctgctgttt ttcgaaccta 3559 tttggtttac cctgcaagct aaatactcca cggcagagct taattatcct tttaattcct 3619 ctttgaaatc ctgtggtgcc cccttccccc tgccttgtga tgatgatgag tgagtctccc 3679 cttaattaga ctgcaaatgt cacttgtgat gagtgtgcca ttccaggata acagcttgca 3739 ccctcctcag aatgttttca gcgaaagagt ggggtggctg ttctctgctc ctggtgcttt 3799 ggcctcattt cacactatta gaattctggg gctgtaaggc cagccagtgt cagctcatgt 3859 tccattggct ctccacctgc catttttagg gagctattcc ttatatagtt acaaattccc 3919 ttgtcattta cttatttgga aacatgggat ttactctgac aagctttagc ctatgttatg 3979 ggattcagaa caatgagatc ataataattc tcactgacca aagctgggac tccatcctgc 4039 catttttgtg tggagatatt cataattctg caatacttta aaacatttag aaaacacccc 4099 agggtaggtc tgtggccctt agacagtgaa gtcttaattg tcaatattat ttttgtctaa 4159 4235 aaaaaaaaa aaaaaa

<210> 19

<211> 448

<212> PRT

<213> Mus musculus

<400> 19

Met Ala His Val Gly Asp Cys Lys Trp Met Ser Trp Leu Pro Val Leu 1 5 10 15

Val Val Ser Leu Met Cys Ser Ala Lys Ala Glu Asp Ser Asn Cys Gly
20 25 30

Glu Asn Glu Tyr His Asn Gln Thr Thr Gly Leu Cys Gln Gln Cys Pro 35 40 45

Pro Cys Arg Pro Gly Glu Glu Pro Tyr Met Ser Cys Gly Tyr Gly Thr 50 55 60

Lys Asp Asp Asp Tyr Gly Cys Val Pro Cys Pro Ala Glu Lys Phe Ser 65 70 75 80

- Lys Gly Gly Tyr Gln Ile Cys Arg Arg His Lys Asp Cys Glu Gly Phe 85 90 95
- Phe Arg Ala Thr Val Leu Thr Pro Gly Asp Met Glu Asn Asp Ala Glu 100 105 110
- Cys Gly Pro Cys Leu Pro Gly Tyr Tyr Met Leu Glu Asn Arg Pro Arg 115 120 125
- Asn Ile Tyr Gly Met Val Cys Tyr Ser Cys Leu Leu Ala Pro Pro Asn 130 135 140
- Thr Lys Glu Cys Val Gly Ala Thr Ser Gly Val Ser Ala His Ser Ser 145 150 155 160
- Ser Thr Ser Gly Gly Ser Thr Leu Ser Pro Phe Gln His Ala His Lys 165 170 175
- Glu Leu Ser Gly Gln Gly His Leu Ala Thr Ala Leu Ile Ile Ala Met 180 185 190
- Ser Thr Ile Phe Ile Met Ala Ile Ala Ile Val Leu Ile Ile Met Phe 195 200 205
- Tyr Ile Met Lys Thr Lys Pro Ser Ala Pro Ala Cys Cys Ser Ser Pro 210 215 220
- Pro Gly Lys Ser Ala Glu Ala Pro Ala Asn Thr His Glu Glu Lys Lys 225 230 235 240
- Glu Ala Pro Asp Ser Val Val Thr Phe Pro Glu Asn Gly Glu Phe Gln 245 250 255
- Lys Leu Thr Ala Thr Pro Thr Lys Thr Pro Lys Ser Glu Asn Asp Ala 260 265 270
- Ser Ser Glu Asn Glu Gln Leu Leu Ser Arg Ser Val Asp Ser Asp Glu 275 280 285
- Glu Pro Ala Pro Asp Lys Gln Gly Ser Pro Glu Leu Cys Leu Leu Ser 290 295 300
- Leu Val His Leu Ala Arg Glu Lys Ser Val Thr Ser Asn Lys Ser Ala 305 310 315 320
- Gly Ile Gln Ser Arg Arg Lys Lys Ile Leu Asp Val Tyr Ala Asn Val 325 330 335
- Cys Gly Val Val Glu Gly Leu Ser Pro Thr Glu Leu Pro Phe Asp Cys 340 345 350
- Leu Glu Lys Thr Ser Arg Met Leu Ser Ser Thr Tyr Asn Ser Glu Lys 355 360 365
- Ala Val Val Lys Thr Trp Arg His Leu Ala Glu Ser Phe Gly Leu Lys 370 375 380
- Arg Asp Glu Ile Gly Gly Met Thr Asp Gly Met Gln Leu Phe Asp Arg 385 390 395 400

Ile	Ser	Thr	Ala	Gly 405	Tyr	Ser	Ile	Pro	Glu 410	Leu	Leu	Thr	Lys	Leu 415	Val	
Gln	Ile	Glu	Arg 420	Leu	Asp	Ala	Val	Glu 425	Ser	Leu	Cys	Ala	Asp 430	Ile	Leu	
Glu	Trp	Ala 435	Gly	Val	Val	Pro	Pro 440	Ala	Ser	Pro	Pro	Pro 445	Ala	Ala	Ser	
<213	0 > 2 1 > 1 2 > D 3 > A	9	icia	l Se	quen	ce										
<22) <22	3 > E C	escr ligo DA1-	nucl	on o eoti	f Ar de p	tifi rime:	cial rs u	Seq sed	uenco to ai	e: mpli:	fy e	xon	5 of			
	0> 2 aagc	:0 :agg	acct	cctg	g											19
<21 <21	0 > 2 1 > 1 2 > I 3 > F	.9	icia	.1 Se	quen	ce										
<22 <22	3> I	Descr Dligo EDA1-	nucl	on o eoti	f Ar de p	tifi rime	cial rs u	Seq sed	uenc to a	e: mpli	fy e	xon	5 of			
	0> 2 tcag	21 ggat	cacc	cact	c											19
<21 <21	.0 > 2 .1 > 2 .2 > 1 .3 > 2	26	icia	al Se	equen	ıce										
<22 <22	23>]	Descr Oligo diagr	onuc]	leoti	of Ar ide p	rtifi orime	cial rs t	Sec hat	quenc can	e: be u	.sed	to				
	00> :gtt	22 ggct	atga	actga	act g	gagtg	ıa									26
<21 <21	L0> L1> L2> L3>	20	ficia	al Se	equei	ıce										
		Desc: Oligo diag	onuc:	leot	of An	rtifi	icial ers t	l Sec that	queno can	ce: be ı	ısed	to				

<400> 23 ccctaccaag aaggtagttc	2	0
<210> 24 <211> 22 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence Oligonucleotide primers that can be ciagnose ED.		
<400> 24 ctctcaggat cacccactcc tg	2	2
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence Oligonucleotide primers that can be diagnose ED.		
<400> 25 tgtcaattca ccacagggag	2	0
<210> 26 <211> 19 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence Oligonucleotide primers that can be diagnose ED.		
<400> 26 gaatctagga tgcaggggc	1	9
<210> 27 <211> 16 <212> DNA <213> Artificial Sequence		
<220> <223> Description of Artificial Sequence Oligonucleotide primers that can be diagnose ED.		
<400> 27 tattgcggcg aacacg	1	6

<210><211><212><213>	16	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnos ED.	
<400> tattg	28 cagcg aacacg	16
<210><211><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used to diagnos ED.	
<400> tattgo	29 eggca aaacacg	17
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400> atcato	30 ggctg tgcactctag	20
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400> acctac	31 etgca tgtetgtgga	20
<210><211><212><213>	20	

<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400> cacato	32 getea gtgttgteea	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to screen a BAC library.	
<400> acaca	33 ggctc agtcatgcgg	20
<210><211><212><213>	25	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> gcggt	34 gaccc gggagatctg aattc	25
<210><211><211><212><213>	11	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> gaatt	235 Cagat C	11
<220; <223;	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	

<210> 41

<400> 3 ctgagcg		21
<210> 3 <211> 2 <212> D <213> A	3	
0	Description of Artificial Sequence: Dligonucleotide primers used to clone a murine dl gene.	
<400> 3 ggtctca	37 acga attccgctca gtt	23
<210> 3 <211> 1 <212> D <213> A	1.8	
0	Description of Artificial Sequence: Dligonucleotide primers used to clone a murine dl gene.	
<400> 3 agtgaga	38 aatg atgeetee	18
<220>	19	
C	Oligonucleotide primers used to clone a murine dl gene.	
<400> 3 gcctttg	39 gttc agtcatagg	19
<210> 4 <211> 3 <212> I <213> A	19	
(Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> 4	40 agct ctttgtgag	19

<220>

<211> <212> <213>		
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> cgggat	41 tcctc gaggggggg gggggggh	29
<210><211><212><212><213>	18	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> aagcaq	42 gagct ccacaatc	18
<210><211><211><212><213>	39	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> ggccg	43 ctctg gacaggatat gtttttttt tttttttvn	39
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> ggaaca	44 agtca agagcgagtt	20
<210><211><211><212><213>	30	

<223>	Description of Artificial Sequence: Oligonucleotide primers used to clone a murine dl gene.	
<400> gcggat	45 ccag gccgctctgg acaggatatg	30
<210><211><212><212><213>	17	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tggtg	46 tctct gatgtgc	17
<210><211><212><212><213>	18	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> acagt	47 ggccc ggaagaag	18
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ctgcg	9 48 ggtgag aacgagtac	19
<220:	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400:	> 49	

ggcaaq	ggtgg cgccatgt	18
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ggcaco	50 caaag acgaggacta	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tcagco	51 gtcat tetecatgte	20
<210><211><211><212><213>	46	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ctagad	52 etega gaattegegg eegeactagt ttttttttt ttttt	46
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tctggt	53 cagec teetttggaa	20
<210> <211>		

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ctagac	54 stega gaatteg	17
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400>	55	
tagtco	etegt etttggtgee	20
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400>	56	
gagaat	tege ggeegeae	18
<210>		
<211><212>		
	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400>	57	
agcccc	gtag tctggttgta	20
<210>	58	
<211>		
<212>	DNA Artificial Sequence	
~4132	vicitionar peducuce	
<220>	Description of Autobat 2 a	
CZZZS	Description of Artificial Sequence:	

	Oligonucleotide primers that were used to clone human DL.	
<400> gcgtc	58 gacag tgatgagga	19
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> cagtc	59 ttttg gcaccactca	20
<210><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> acgtg	e 60 gtgtgg agtcgtgga	19
<210><211><211><212><213>	. 19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<4002 ctcgt	> 61 tggat ccttggctt	19
<220: <223:	> > Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400 taca	> 62 tgctgg agaacagacc	20

<210> 63 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used human DL.	to clone
<400> 63 ttccaaagga ggctaccaga	20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used human DL.</pre>	to clone
<400> 64 ttggcagaag ctcctgaagt	20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used human DL.	to clone
<400> 65 tgctcgagat gtgatgaagg	20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that were used human DL.	to clone
<400> 66 aagcagatgg ccacagaact	20
<210> 67 <211> 19 <212> DNA	

<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ggagag	67 ggatg gcccatgtg	19
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> cagaco	68 Catgo catagatgtt c	21
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> acttca	69 aggag cttctgccaa	20
<210><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tcgtc	70 Ettgc tcacttggg	19
<210><211><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone	

	human DL.	
<400> ggatg	71 aattt gagaagetga e	21
<210><211><212><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> ctgac	72 ttgtt cgtggtggc	19
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that were used to clone human DL.	
<400> tccac	73 gactc cacacacgt	19
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> aaata	74 aaggt agccagaccc	20
<210><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> gtaag	75 gggct cagaccact	19

<210><211><212>	21	
<220>		
<400> catgt	76 gtttc taaggaggta c	21
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> caaca	77 atgcc acaagcagga	20
<210><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> gtccg	78 tatgg tttggctgc	19
<210><211><211><212><213>	18	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> gccag	79 ggttt gccaggag	18
<210><211><212><212><213>	19	

<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> gtccag	80 getea cetgtetet	19
<210><211><211><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> accggo	81 etett teetacace	19
<210><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> tggago	82 ettet etggateatt t	21
<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> aactco	83 caggt gatcgatacc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	

<400> 84 ctgggtcatt catgccttct	20
<210> 85 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 85 atggtgtgtg gaageeetg	19
<210> 86 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 86 catgagccaa ttctaactcc t	21
<210> 87 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 87 caggacccca gttcagctt	19
<210> 88 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> 88	19

<210><211><211>	20	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> ccacat	89 cctca cagctcatca	20
<210><211><212><213>	21	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> tttcta	90 actgt tgcccctttc t	21
<210><211><212><212><213>	19	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> cccago	91 ccctt catgtcagt	19
<210><211><212><212><213>	20	
<220> <223>	Description of Artificial Sequence: Oligonucleotide primers that can be used for mutation screening of human DL.	
<400> tctatt	92 cgact gtgacttgca	20
<210><211><211><212><213>	19	

```
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used for
      mutation screening of human DL.
<400> 93
                                                                   19
ctcgttggat ccttggctt
<210> 94
<211> 425
<212> DNA
<213> Homo sapiens
<400> 94
ttttttttt tgggggcaga cggccgaaga gccaggtgtg ccaaggtcat atggcagcag 60
ggctgaacgt gcccgctcca gcctctccag tgctggaaga gacctctaga tggagcaggt 120
gagtttgcaa ttagggaaag cccctcggca aggactgagt ttccaaactt gcagacaggg 180
cagggagcgg tcaaggaaga gttcccggga agccctttaa acggaaagga agcggggcta 240
gtgtcagaga ggtgtgacag gtcccagtca gccctgctgg cccctaagga catagagtac 300
ctgcttctga gagggctgcc acggtggcca cctgtgaagc ctgtcaccca gaactggatg 360
gtacctgact ttcttcatag acccatcttc tgctgggact gaagctgacc tccaacagaa 420
<210> 95
<211> 434
<212> DNA
<213> Homo sapiens
<400> 95
gtaagecetg gteettteet etggttttet aaactettea getgtggeeg agaeggaggt 60
gtcatgggct gggagagag ctgggtgcat ttttgaaatg catgtcattt ttgggttgcg 120
tttgaaggtt tcnccaaacc ctctgagcac gagaaacaca atcactancc tcgggtttaa 180
cettgggeee teegtgtget eetageetee tnteaggete eeteecagge atggetgena 240
ggctgggaag gccccagagt cagcccaagt ggcatgggtn cagcttcagc ttcatgtctg 300
cttttctttt aggatgtata gtttcccctc tgtttgctgg aaggcacctt atatccagtg 360
gggttaaata aaggtagcca gaccccggc tggggtgcta ccgccagtgc ccagctaatg 420
                                                                   434
acqcatnnnt tcaq
<210> 96
<211> 70
<212> DNA
<213> Homo sapiens
<400> 96
gtgagcccct tgggagagga tggcccatgt gggggactgc acgcagacgc cctggctccc 60
cgtcctggtg
<210> 97
<211> 722
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(722)
<223> n represents a, c, t or g.
```

```
<400> 97
gtaagtggte tgageceett acceccacag cacceteate etcatgatgg ttggaetgtt 60
tettggeete tteagetgta aaatgggaat getgateata gteeeteete eacagggtte 120
ttctgagggt gaaatgaaac caggcctgca aagcacagaa ctctgcccca ggctgaagtt 180
acattgattt cgttggtagc tcccttcata gggtctcatg gatataaacg ttcttgattg 240
cttgtttgtg gtgtgataca cacagocotg tgtctatgtg atgagotoat gcttgggggc 300
cgcgcagcta agaaagactt ggaagactca gacccctacc cccatcctcc tggacacgcc 360
ggtgttctga ggagccactg tattagaggc tcagtggggg acaggggcgc ctcctccatg 420
accttggcaa gtgcgttgat gaggagaact canagcaggc cttgatggtg ggatggggct 480
tggccagcag gggtgaaggc agggtggttc tagtgggggc tggccgtgcc cangtggatc 540
aaccaggagc cactggagac ttaacagcag tgagcactna caagcggcac cttcccagac 600
cqaqcccca qcaqaqcccc caccqcaqqq cacccccttc ctatqtcaac cttqgggtct 660
tgcaggagtc acatgtgttt ctaaggaggt acggaggcca caacaccccc ctttgttggc 720
                                                                   722
<210> 98
<211> 123
<212> DNA
<213> Homo sapiens
<400> 98
gtgtctctga tgtgctcagc ccgagcggaa tactcaaact gcggtgagaa cgagtactac 60
aaccagacta cggggctgtg ccaggagtgc cccccgtgtg ggccgggaga ggagccctac 120
<210> 99
<211> 740
<212> DNA
<213> Homo sapiens
<400> 99
gtaaggaccc agccctcctg gagcctggtg cgctctcagg ggaggcctcc tgcttgtggc 60
attgttgccc tgagcctgcc ttgctgtgtg aggggatgcc agggtatatc aaaccagccg 120
gtcacgctcc ctggacgttg agattgatgg caagagctgc cgtgagccca ggaatggcac 180
tcaccagcta agcattcata aacagatttt tcaggagttc tgaaatgttt ttaaaggatc 240
actttcccac tctaccctga ttaaatgagc gtcagatcat ctgattggaa gcaggattga 300
aatattetee agtaetagta catttttee tgagtgetge ateteeetee geetetggge 360
aagctaagcc tgagtgttct gttcagcact aagggaaacc tccggggttt cagtgtccgg 420
ttcttgtage aagctgagga aagtcagatg ccaagtgcta cctgcactgc ctgggcattc 480
cagcagctcg ctgaattcat ctcggggagg ctcagaaaag gggcagcatc tggagcctga 540
gagtggcgag gagaggggca agcccagagc atgagctggt tcctgggggg tttttgcagtt 600
aggacaactc aggaaaccaa ggcccggcaa gagtagcttc tggagacagc tggcacgtca 660
ctgcccaagg actgtgggcc gagtccgtat ggtttggctg ctgcactcac ctgtgtcccc 720
tgtcctcttt ccctggacag
                                                                   740
<210> 100
<211> 182
<212> DNA
<213> Homo sapiens
<400> 100
tectgtgget aeggeaceaa agaegaggae taeggetgeg teceetgeee ggeggagaag 60
ttttccaaag gaggctacca gatatgcagg cgtcacaaag actgtgaggg cttcttccgg 120
gccaccgtgc tgacaccagg ggacatggag aatgacgctg agtgtggccc ttgcctccct 180
gg
```

<210> 101

```
<211> 1169
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1169)
<223> n represents a, c, t, or g.
<400> 101
qtaagcacag geeeteetgg caaaccetgg catgetttet gcagaaaacc cegagggget 60
acqqqcaaqq accttqqqaa caqqggtcat ggatactgca ggcctcggtg cagccgcaca 120
cctqqccttq qtcccatccc acaaggagca gcatccagga cggagagtcc tggcccctcc 180
qqtqqacaqq caqcccatca qqctctgcct ctgtgtctcc taagtggcca ttaaccatca 240
taatatette tgaccaccaa aaggaaacaa attgettgaa taettacagt geagtageee 300
atgtgaaaca ctttgggaaa aagaaaactn naatttnatg caaaaagcag tattttnagt 360
attctggnaa cactctggnn aanctactaa taanntanat ntgagaaaag aaatatnant 420
gangagatta tgannncgaa gnnaagnnan gnanaancan annaggntnn agaaaatgag 480
qttqnnaang antnataana tagnacanng ntgatatnca tnggaaagta aacngcntga 540
gnannagtga tttgtgatng ccagggtatt cntngaggga aaacangact attggancag 600
anngtgngga aaggnacaaa cgntgtntna ncataganaa nntagagttg ntgggtgggc 660
attnnaanna genggtaaag aatagettgn aagtngneaa ggggtneeag aggeaannnt 720
aatqcctata natcccataa qnntqcaqqc tantqqnqan qqtqctnaca aagagcatqt 780
tectecteca ggaaggtetg geetingtig gtgtnacece tggggggeta aneaggeent 840
acatgtgggg gcacagggat atttctggtg natgatgtga tggcacacac actaaacaca 900
gccaccagag agaggaacca gaaaggggct gagatcaaaa gaaaggccca cgttggcagc 960
tcaatattqt taaaaqaatq ctccatttca agacaggctg aaaccccaag gaaactgagt 1020
ggacagagca ggtgactgag tgggcgtggc ctcatgcccg acttgattgt gggcctgcag 1080
actggccacc gtgctctctg caccagtccc tgcctgtgtg ctgtccagct cacctgtcta 1140
ctgttttgtc cttgtgctct ccnccgtag
                                                                  1169
<210> 102
<211> 86
<212> DNA
<213> Homo sapiens
<400> 102
ctactacatg ctggagaaca gaccgaggaa catctatggc atggtctgct actcctgcct 60
cctqqcaccc cccaacacca aqqaat
<210> 103
<211> 484
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(484)
<223> n represents a, c, t, or g.
<400> 103
gtgagtgtct ttgtccttcc accagcacgg tatttgttca ggcacggatc tctttcacta 60
cagagggtgt aggaaagagc cggtcctggc acctggacaa ggtgaatcac agtaacagca 120
ctaqtqaaaq tqctcctqtq qcctqtccaq qcaqqtctat qaaqqqaqqq qcqtttqcca 180
catctgagcc ttgagtcaga ggctgaggtt ctagtgcagg ttggccacca gctacctgac 240
aaqtcactta acctccatqa qcctcqqttt tctcatcqgt aatatggggg tgaaqaaagn 300
acaatancga tgactcttta gggttcatta aacagtctaa qaaatacaaa tatttagctc 360
ccctcagcca tcactgcctc aggcccattc atgatcatga atccagatcc atgagctctg 420
tggcagcgtg ctttgaaggt ggagcttctc tggatcattt gagggactct attttgcctt 480
```

```
484
gcag
<210> 104
<211> 87
<212> DNA
<213> Homo sapiens
<400> 104
gtgtgggagc cacttcagga gcttctgcca acttccctgg cacctcgggc agcagcaccc 60
tgtctccctt ccagcacgcc cacaaag
<210> 105
<211> 799
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(799)
<223> n represents a, c, t, or g.
<400> 105
gtgaggaggg tgctcaggta tcgatcacct ggagttaggt ggtactcgga tgaaagctca 60
gaagaggaga ggaaatgatc atgagtgatg attatggtgc gcttccccac ctggcctcac 120
ctccctaatg taattgaatg acatgttgcc ccccgtgcag gaagtcatta tatctgcaat 180
cagagttgat ccctctatgg gtgtcctggg accgctggga ggtgctggtg gtgaaggcgg 240
gggcatageg geaggtggae ageaeaggea getgeaagee eggeeaggag gagagaeeag 300
gcgtcctggg ctttggtttg gccgngagtt aacagcaatt ctatcactgg ttttcatata 360
aacatgctga ccatagcact ttaatattaa cttgcanaan gtncattttc attctncctt 420
aaccagggaa gangggatcg nggaggaccc caangtttan tntgcctctc acanttagnc 480
ccccacntgg cttgncntna aggttgccaa agcagtagna gcgagaagca agctccctta 540
ggaacaatna ggtancccca qaaaaagtct gganaggcca agtctgaggg cagcgagcaq 600
gggttgtggg cagtcctggt ctggcagcca aaaccagcgc gnaggatttg gttctcagtc 660
taagcaagca cctcagattt cagggttecc tgaaagcatc ccaggggcag ggccattgct 720
tccaggggcc ggagtcctgg agggaagacc agcagggatc ctgagctctg ggtcattcat 780
gccttctctc cacccacag
                                                                   799
<210> 106
<211> 126
<212> DNA
<213> Homo sapiens
<400> 106
aacteteagg ccaaggacae etggccaetg ceetgateat tgcaatgtee accatettea 60
tcatggccat cgccatcgtc ctcatcatca tgttctacat cctgaagaca aagccctctg 120
ccccaq
                                                                   126
<210> 107
<211> 96
<212> DNA
<213> Homo sapiens
<400> 107
gtgacggccc ccatgcgccg gtgccctgcc tcctggactc tccgtcaact ccccctgtcg 60
gagageetgg etgeteacte ceteetet ecceaq
```

```
<210> 108
<211> 75
<212> DNA
<213> Homo sapiens
<400> 108
cctgttgcac cagccacccg gggaagagcg tggaggccca agtgagcaag gacgaggaga 60
agaaagaggc cccag
<210> 109
<211> 243
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(243)
<223> n represents a, c, t, or g.
<400> 109
gtctgtgaac cagggcttcc acacaccatg tgcacggtgc ccatctctgg gtggagggcg 60
ttcccagaag cagcctcctc gctgcttctg ctctcacatg ctgaaccata ctgtgcttac 120
cgtggggtgg tgccacacag acaccgggca gctctgccca acaggaagag cagggttggg 180
ctgagcgcan agccatgagc caattctaac tcctatctcc ccaacctccc catttccctg 240
cag
<210> 110
<211> 73
<212> DNA
<213> Homo sapiens
<400> 110
acaacgtggt gatgttctcc gagaaggatg aatttgagaa gctgacagca acttcagcaa 60
agcccaccaa gag
<210> 111
<211> 1174
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(1174)
<223> n represents a, c, t, or g.
<400> 111
gtatgtggaa gcccccacac caagctgaac tggggtcctg tggatcctga gcagggaggg 60
gttnccaggg tgcagccgag tgaactgaca ggctagcctg ggacactatg gggacgttcg 120
gcgacagaca gtccccacca cctctttgct gactggcagg ggtcaggtgg tgtgaggagc 180
ctgtggaaac agctgcctgc tgctctcggg tcaggcccct gtccctgcat cctgccaaat 240
teeetgggee tteeteetta acateegaat teeteatgee eetteteeag actgggaggg 300
cagaacataa agccaaggat gcatgcctgt tgcggccaac acaccagtac cacccgtgcc 360
ggtgccagta ctgctgccac cgtaatgctg gtaacaaccg tggtgatgac ggctaacagc 420
atttggtgcc tactgcccac caagtgctgg gctagggctg tgaacacatc ctnccttcca 480
ccagcccang agcaaggtgc ttggaatcat ccctggttat aggaatacca cactgaggta 540
tggaagttgt cactcgccca aagtcacaca ctagtgaaca canggcttgg ggtccgaagt 600
ccangctccc aangagccac atggngntaa anaggtnagn cagggtcacc cccctaagtt 660
ccaagagggg ggcttttcna ggcacaaagg gttccattna ggttcccttt tcaatgnctt 720
```

```
ccagagagcc agcatggatt tcagcgccag cngcatccaa tctgtttgct ttaacatgaa 780
gacaccagtt gaacttgggt gcttactggg attaaataca gagatctagg acatattcaa 840
tgaaccttca cggagcatcc attgtgtgtc aggtagcagg gaaggagagg cccgtggatg 900
cctcccaccc gcagtggcag ccccagcccc ttagacgcct gcaggtcacc caccacggac 960
ttgtttgttt ggaaagaagc aggaagccac cggtgtatgt ctcgtctcat gtcccctggt 1020
cccgtgccca caaggtgccc agtaaacacc tgaaaaacaa gtcattgccc cccactgtcc 1080
acagetggge aatggacaag ttcaccacag gagaacttgt cagggetgca geceeeccag 1140
gcactgctaa tgaccatcgc tcttgttttt gcag
<210> 112
<211> 160
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(160)
<223> n represents a, c, t, or g.
<400> 112
cgagaacgat gcctcatcng agaatgagca gctgctgagc cggagcgtcg acagtgatga 60
ggagcccgcc cctgacaagc agggctcccc ggagctgtgc ctgctgtcgc tggttcacct 120
                                                                   160
ggccagggag aagtctgcca ccagcaacaa gtcagccggg
<210> 113
<211> 226
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(226)
<223> n represents a, c, t, or g.
<400> 113
qtqaqqctcc tqcaqqtqcc atgatqagct gtgagatgtg gctccctcac agccgcaagg 60
actaaaactt tettattgaa teagetetee tgeaagaegg ggtgtttete ceagaagtee 120
aagataggag acctggacag tgacaagttc acagcaagat agtcaaaagg gaaaaaaacc 180
ctttcgtttt tgagttttgt tttttttttn ggngatgana gnctng
<210> 114
<211> 61
<212> DNA
<213> Homo sapiens
<400> 114
attcaaaqcc qqaqqaaaaa qatcctcgat gtgtatgcca acgtgtgtgg agtcgtggaa 60
<210> 115
<211> 309
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(309)
```

```
<223> n represents a, c, t, or g.
<400> 115
agagtggnng aagagngaag ggaggngaaa agggggngag ngagggaagg aggngggaan 60
nnggagtgag ggggggaagg ggnagagngg gnggnagngn gnggngagng gganagngaa 120
agnagtgaga ngggaaggna nagngagnag gggnnangag aaagngggag ngtaggnggc 180
gatgngnnng gtngaaatat tnanagaaat tttttcaaat aatttttatt tcatttaaat 240
aatttttcag tgttgacctt ctattgactg tgacttgcaa catctaactg tggccattgg 300
                                                                   309
tqtctqtag
<210> 116
<211> 2781
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(2781)
<223> n represents a, c, t, or g.
<400> 116
gtcttagccc cacggagctg ccatttgatt gcctcgagaa gactagccga atgctcagct 60
ccacgtacaa ctctgagaag gctgttgtga aaacgtggcg ccacctcgcc gagagcttcg 120
gcctgaagag ggatgagatt gggggcatga cagacggcat gcaactcttt gaccgcatca 180
gcacggcagg ctacagcatc cctgagctac tcacaaaact ggtgcagatt gagcggctgg 240
atgctgtgga gtccttgtgt gcagacatac tggagtgggc gggggttgtg ccacctgcct 300
cccagccaca tgctgcatcc tgaaaagcat gcctgtgggc tgtcctccca ggacaagcca 360
aggatccaac gagggctctg gagctgtgag tggtgccaaa agactgccaa gaatcaaggc 420
ttttgtgata tgtcaccgta tgccttagga tgttcaagga gccagacgaa ataaggcctg 480
tcttccaatt taaccaaaga taaaggacta gagccgggat actttcanat gctcgcctgt 540
acctcaccag gcagagtaaa tatctactca ctcatacagc cagcccacca gcccaccatt 600
aactcactga acaatgagac aatgtngagg actcaaatga atcaaacccc gtgggaatga 660
cagantgaag aatctggtcc ctgtctttaa ggagtttgca ctccagtaga agacagaagg 720
aacgtatgtt tacaaaccac ttcactggaa gacgtcaaac aagctgaatg aaggggcgct 780
tagaaaacgt taatagaagt tctaagcggg agatgactcc ctactgggat gatgaaggat 840
ggcatcctag tgaagaagca gctcaaacat tttgataaaa tggcaacaaa atgcagacac 900
cctgctccag gtattatttc aggtttagta caagtctgtt aataccctat gtggtttcat 960
taggataact ttttacctat ccttgaggtc atccatattc ttacaggcct tccagtcaat 1020
aatggaagag ctcactctat acaaaaccaa tatgcaaggc atgtgtttgt ccaagcaatt 1080
ggatgtgtgc agtagccaat ttcatttact gcattactct ttggcctggg aaccctgtgg 1140
tctgcactac atgtgaatgg ccttccactt caagtcttag gcagatttga ccttttaggg 1200
gcagcaatgc tgaaggacac agcaatttaa attataatgt gtcaggctgt gttttcactt 1260
caaacatgta tgagtagtca gctgtaatta gagaaatgat gacttcctaa gagttcagcc 1320
acgcataatt ctagatttca agagcatcta agacttgtgg attagcctca tggcatgaga 1380
gtttcagact cagccttctg agccagtcag ggaaagtgga gttctgcagc gcaaatgaga 1440
gcctgggctt ggtgtcgagg gagctggctt ctagttgtgc caccttgggc cttgtctttt 1500
cctctctctg cctcagtttc tcgtctgcca atgagatgtt agttagtgat tctataattg 1560
gggcaggtag ggttcaggtg agcaaaaaga aagtggagct ataggaaatg ccaggccttt 1620
gaggtgctct atggaagtca acacagtgtg gtttgtccat ttaaatggga ataaaaacag 1680
aaaaactcag acttggcatt ttcacaataa ctgcaatggt ttgacataac atttataggc 1740
agaaagttaa taaactggca ttgttcttgg catattattg tactatccct gtaactgcca 1800
agagctcagg agccaggcta gtgatcacac caggggttag agttcactgc tgaactccct 1860
gatggcaggt ctgtgtttat tactacatta aaacaaagtc tctgacttat aaagcgaggt 1920
cgtaaaaatt acaagttgca tgactgaaaa aatgctttag ggggaaaatc agtcatatct 1980
ttaacaccaa caagcaattt cccaccaacg aatgtagtac atactgtgag aggatcataa 2040
tgaggtcctg aatatttaat atcatcattt actgtgtctg tttgctgctg tttttcgaac 2100
ctatttggtt taccctgcaa gctaaatact ccacggcaga ncttaattat ccttttaatt 2160
cctctttgaa atcctgtggt gcccccttcc ccctgccttg tgatgatgat gagtgagtct 2220
ccccttaatt agactgcaaa tgtcacttgt gatgagtgtg ccattccagg ataacagctt 2280
```

gcaccctcct cagaatgttt tcagcgaaag agtggggtgg ctgttctctg ctcctggtgc 2340

```
tttggcctca tttcacacta ttagaattct ggggctgtaa ggccagccag tgtcagctca 2400
tgttccattg gctctccacc tgccattttt agggagctat tccttatata gttacaaatt 2460
cccttgtcat ttacttattt ggaaacatgg gatttactct gacaagcttt agcctatgtt 2520
atgggattca gaacaatgag atcataataa ttctcactga ccaaagctgg gactccatcc 2580
tgccattttt gtgtggagat attcataatt ctgcaatact ttaaaacatt tagaaaacac 2640
cccagggtag gtctgtggcc cttanacagt gaaagtctta attggcaata ttatttttgc 2700
taattotgga tatatataac nnattatatt tataaatoto aataaacoco atttantaaa 2760
aaaaaaaaa aaaaaaaaa a
                                                                   2781
<210> 117
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used to
      diagnosis ED.
<400> 117
aaaaagtaac actgatccta ttt
                                                                   23
<210> 118
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primers that can be used to
      diagnosis ED.
<400> 118
agaaagcagg acctcctgg
                                                                   19
<210> 119
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotide primer that can be used to amplify
      TNF homology domain of mouse dl.
<400> 119
ggattccagg aacaactgtt atgg
                                                                   24
<210> 120
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:
     Oligonucleotide primer that can be used to amplify
     TNF homology domain of mouse dl.
```

400> 120 ctacacaca gcaagcacct tagag	25
210> 121 211> 22 212> DNA 213> Artificial Sequence	
220> 223> Description of Artificial Sequence: Oligonucleotide primer that can be used to amplify TNF homology domain of mouse dl.	
400> 121 tcgacgaaa atcagccagc tg	22
210> 122 211> 21 212> DNA 213> Artificial Sequence	
220> 223> Description of Artificial Sequence: Oligonucleotide primer that can be used to amplify TNF homology domain of mouse dl.	
400> 122 agcttctag gatgcagggg c	21