Math 230A: Homework 4

Lance Remigio

September 26, 2024

1. Consider \mathbb{R} with its standard metric. Let $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Prove that $E' = \{0\}$.

Proof. Note that $0 \notin E$. To show that $E' = \{0\}$, it suffices to show that for $\varepsilon > 0$

$$N_{\varepsilon}(0) \cap E \neq \emptyset$$

$$(-\varepsilon,\varepsilon)\cap E\neq\emptyset.$$

which is equivalent to $(-\varepsilon,\varepsilon)\cap E\neq\emptyset.$ Let $\varepsilon>0$. By the Archimedean Property of $\mathbb R$, there exists $m\in\mathbb N$ such that $\frac{1}{m}<\varepsilon$. Thus, $1/m\in(-\varepsilon,\varepsilon)\cap E$ and so $0\in E'$.

- 2. Consider $\mathbb R$ with its standard metric.
 - (a) Prove that $\mathbb{N}' = \emptyset$. Is \mathbb{N} closed?

Solution. Suppose for sake of contradiction that $\mathbb{N}' \neq \emptyset$. Let $n \in \mathbb{N}'$. Let $\varepsilon = 1$. Then $N_1(n) \cap \mathbb{N} \setminus \{n\} \neq \emptyset$ where $N_1(n) = (n-1, n+1)$. But note that (n-1, n+1) only contains one point, namely, n and nothing else. Hence, n must be an isolated point be an isolated point of $\mathbb N$ which is a contradiction. Thus, $\mathbb N=\emptyset$. Because $\emptyset\subseteq\mathbb N,\,\mathbb N$ must be

(b) Prove that $\mathbb{Q}' = \mathbb{R}$. Is \mathbb{Q} closed?

Solution. Let $a \in \mathbb{R}$ and let $\varepsilon > 0$. Consider the open interval $(a - \varepsilon, a + \varepsilon)$. Since \mathbb{Q} is dense in \mathbb{R} , we can find an $x \in \mathbb{Q}$ such that $x \in (a - \varepsilon, a + \varepsilon)$ which is equivalent to saying that $|x-a| < \varepsilon$. So, any $a \in \mathbb{R}$ must be a limit point of \mathbb{Q} . Therefore, we conclude that $\mathbb{Q}' = \mathbb{R}$. Consequently, \mathbb{Q} must not be closed since its limit points take are outside of

3. Consider \mathbb{R}^2 with its standard metric. Let $E=\{(x,y)\in\mathbb{R}^2:x^2+y^2<4\}$. Prove that $E'=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq4\}$.

Proof. We want to show that

$$E' = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$$

Set p=(a,b). Choose $\delta=\frac{1}{2}(\sqrt{a^2+b^2}-2)>0$. Then we must have $N_{\delta}(p)\cap E\setminus\{p\}=\emptyset$, showing that $p\notin E'$ and that $a^2+b^2>4$. For $p\in E'$, then we must have $N_{\delta}(p)\cap E\setminus\{p\}\neq\emptyset$; that is, $a^2+b^2\leq 4$. Thus,

$$E' = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$$

4. Let (X, d) be a metric space. Prove that X and \emptyset are both open sets.

Proof. We want to show the following:

- (i) X is open
- (ii) ∅ is open

Let $x \in X$. For (i), we want to show that there exists $\delta > 0$ such that $N_{\delta}(x) \subseteq X$. Pick another point $q \neq x$ such that $q \in X$. Choose $\delta = \frac{1}{2}d(x,q)$. Since $q, x \in X$, it follows that $N_{\delta}(x) \subseteq X$. So, X is open.

Since there are no points to consider in \emptyset , it must immediately follow that \emptyset is an open set.

5. Let (X,d) be a metric space. Prove that X and \emptyset are both closed sets.

Proof. We will proving the following statements:

- (i) X is closed
- (ii) ∅ is closed.

Let x be a limit point of X. Then for all $\varepsilon > 0$, we have $N_{\varepsilon}(x) \cap X \setminus \{x\} \neq \emptyset$. But note that $N_{\varepsilon}(x)$ is an open set that is contained in X. Thus, x must be contained within X which proves (i).

For (ii), note that the complement of \emptyset is just X itself. Since X is open by part (a), we see that $X^c = \emptyset$ must be closed.

6. Consider \mathbb{R} equipped with the discrete metric. Let $E = \{1, 2, 3\}$. Prove that E is open, that is, $E^{\circ} = E$.

Proof. We will check that for every element x in E that there exists $\delta > 0$ such that $N_{\delta}(x) \subseteq E$. Choose $\delta = 1$, then we have d(1, x) = 0 < 1. Since this is the only point that satisfies δ , we must have that $N_1(1) = \{1\} \subseteq E$. Similarly, $N_1(2) = \{2\} \subseteq E$ and $N_1(3) = \{3\} \subseteq E$. Thus, E must be open.

- 7. Consider $X = \mathbb{R}$ equipped with the standard metric. Let a < b.
 - (a) Prove that the sets $(a, b), (a, \infty)$, and $(-\infty, a)$ are open.

Proof. We will show that the following intervals in \mathbb{R} are open:

- (i) (a,b)
- (ii) (a, ∞)
- (iii) $(-\infty, a)$

Starting with (i), we want to show that there exists a $\delta > 0$ such that $N_{\delta}(x) \subseteq (a,b)$ where $N_{\delta}(x) = (x - \delta, x + \delta)$. Let $x \in (a,b)$. Choose $\delta = \frac{1}{2} \min\{b - x, x - a\}$. Then we have $N_{\delta}(x) \subseteq (a,b)$. Thus, we conclude that (a,b) is open.

With (ii), observe that the neighborhood $N_{\delta}(x)$ constructed in the proof of (i) is contained within (a, ∞) . Thus, (a, ∞) is open as well.

Lastly and similarly, observe that the neighborhood $N_{\delta}(x)$ constructed in (i) that is contained in (a,b) is also contained within $(-\infty,b)$. Thus, $N_{\delta}(x) \subseteq (-\infty,b)$ for some $\delta > 0$ implying that $(-\infty,b)$ is open.

(b) Prove that the sets $[a, b], [a, \infty)$, and $(-\infty, b]$ are closed.

Proof. We will showing that the following intervals are closed in \mathbb{R} :

- (i) [a,b]
- (ii) $[a, \infty)$
- (iii) $(-\infty, b]$

Starting with (i), we want to show that every limit point x of [a,b] is contained in [a,b]. Thus, let x be a limit point of x. By definition, for all $\delta > 0$, we have $N_{\delta}(x) \cap [a,b] \setminus \{x\} \neq \emptyset$. So, $N_{\delta}(x)$ contains a point $q \neq x$ such that $q \in [a,b]$. This means that $a \leq q \leq b$.

Using the fact that $q \in N_{\delta}(x)$, we have

$$\begin{aligned} |x - q| < \delta & \Longleftrightarrow q - \delta < x < q + \delta \\ & \Longrightarrow a - \delta \leq x \leq b + \delta. \end{aligned}$$

Since $\delta > 0$ is arbitrary, we conclude that $a \leq x \leq b$ which means that $x \in [a, b]$. Thus, [a, b] is closed.

With (ii), we will employ the same process. Let x be a limit point of $[a, \infty)$. Then for all $\varphi > 0$, we see that $N_{\varphi}(x) \cap [a, \infty) \setminus \{x\} \neq \emptyset$. To this end, pick $p \neq x$ such that $p \in [a, \infty)$. Since p is also contained within $N_{\varphi}(x)$, we see that

$$|x - p| < \varphi \Longleftrightarrow p - \varphi < x < p + \varphi$$
$$\iff a - \varphi \le x$$

This implies that $a \le x < p$ since $\varphi > 0$ is arbitrary. Thus, we have $x \in [a, \infty)$ and so $[a, \infty)$ is closed.

The last case is similar to (ii). Let $\varepsilon > 0$. If x is a limit point of $(-\infty, b]$, then $N_{\varepsilon}(x) \cap [-\infty, b) \setminus \{x\} \neq \emptyset$ implies that we can pick $p \neq x$ such that $p \in [-\infty, b)$. Since $\varepsilon > 0$ is arbitrary, we have

$$q - \varepsilon < x < q + \varepsilon \le b + \varepsilon$$

implies

$$q < x \le b$$
.

Hence, $x \in (-\infty, b]$ and so $(-\infty, b]$ is a closed set.

8. Let (X,d) be a metric space. Let $p \in X$ and $\delta > 0$. Prove that the closed ball $C_{\delta}(p) = \{x \in X : d(x,p) \leq \delta\}$ is indeed closed.

Proof. Let $p \in X$ and $\delta > 0$. Our goal is to show that

$$C_{\delta}(p) = \{ x \in X : d(x, p) \le \delta \}$$

is a closed set; that is, we need to show that every limit point of $C_{\delta}(p)$ is contained in $C_{\delta}(p)$. Let x be a limit point of $C_{\delta}(p)$. By definition, choose $\varepsilon = \frac{\delta}{2}$ such that

$$N_{\frac{\delta}{2}}(x) \cap C_{\delta}(p) \setminus \{x\}.$$

Choose this point to be y such that $y \neq x$ and $y \in C_{\delta}(p)$. Thus, we see that $d(y,p) \leq \frac{\delta}{2}$. Likewise, y being contained in $N_{\frac{\delta}{2}}(x)$ implies that $d(x,y) < \frac{\delta}{2}$. In order for x to be contained in $C_{\delta}(p)$, we need to show that

for all
$$\delta > 0$$
 that $d(x, p) \leq \delta$.

Using the triangle inequality, we see that

$$d(x,p) \le d(x,y) + d(y,p) \le \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Thus, we see that $x \in C_{\delta}(p)$ and so we can now conclude that, indeed, $C_{\delta}(p)$ is a closed set.

9. Give an example that shows that the equality $\overline{N_{\delta}(p)} = C_{\delta}(p)$ is not always true.

Solution. Consider the interval [0,1] in \mathbb{R} with the discrete metric. Clearly, we see that $1/2 \in [0,1]$. If we let $\varepsilon = 1$, then

$$N_1(1/2) = \{x \in \mathbb{R} : d(x, 1/2) < 1\} = \{1/2\}$$

since the only case when the inequality is satisfied is when x = 1/2. If we consider the closure

of this neighborhood, we just get

$$\overline{N_1(1/2)} = \{1/2\}.$$

Now, consider the closed ball

$$C_1(1/2) = \{x \in \mathbb{R} : d(x, 1/2) \le 1\}.$$

Observe that for any $x \in \mathbb{R}$, either x = 1/2 or $x \neq 1/2$ in [0,1], the inequality of the set above we always be satisfied; that is, the set will just be all elements contained in [0,1]. Thus, we see that $C_1(1/2) = [0,1]$ and, in this case, that $C_1(1/2) \neq \overline{N_1(1/2)}$.

10. Let (X, d) be a metric space. Prove that an arbitrary intersection of closed sets is closed. Prove that a finite union of closed sets is closed.

Proof. Let (X, d) be a metric space. We will prove that

- (1) An arbitrary intersection of closed sets is closed.
- (2) A finite union of closed sets is closed.

To this end, we will proceed by showing the propositions above.

(1) Let $\{F_{\alpha}\}$ be an arbitrary collection of closed sets. We want to show that

$$\bigcap_{\alpha} F_{\alpha}$$
 is closed.

It suffices to show that the complement of this set is open. Consider the complement

$$\left(\bigcap_{\alpha} F_{\alpha}\right)^{c} = \bigcup_{\alpha} F_{\alpha}^{c}.\tag{1}$$

Observe that each F_{α}^{c} is open since each F_{α} is closed. But note that the arbitrary union of open sets is open and so the union of the right-hand side of (1) is open. Thus, the left-hand side of (1) is open. Hence, the complement

$$\left(\bigcap_{\alpha} F_{\alpha}\right)^{c}$$
 is open $\iff \bigcap_{\alpha} F_{\alpha}$ is closed

and we are done.

(2) Let $\{F_i : 1 \leq i \leq n\}$ be a finite collection of closed sets F_i . We want to show that $\bigcup_{i=1}^n F_i$ is a closed set. It suffices to show that the complement of this set, that is $\left(\bigcup_{i=1}^n F_i\right)^c$ is open. Observe that

$$\left(\bigcup_{i=1}^{n} F_i\right)^c = \bigcap_{i=1}^{n} F_i^c.$$

Note that each F_i^c is open if and only if each F_i is closed. Thus, the finite intersection of each open set F_i^c is open; that is,

$$\left(\bigcup_{i=1}^{n} F_i\right)^c = \bigcap_{i=1}^{n} F_i^c$$
 is open.

Hence, the finite union of closed sets

$$\bigcup_{i=1}^{n} F_i \text{ is closed.}$$

11. Let E be a subset of a metric space (X, d). Show that $\overline{E} = \{x \in X : \forall x > 0 \ N_{\varepsilon}(x) \cap E \neq \emptyset\}$.

Proof. Let E be a subset of a metric space (X,d). We want to show that

$$\overline{E} = \{ x \in X : \forall \varepsilon > 0 \ N_{\varepsilon}(x) \cap E \neq \emptyset \}.$$

Denote

$$A = \{ x \in X : \forall \varepsilon > 0 \ N_{\varepsilon}(x) \cap E \neq \emptyset \}.$$

It suffices to show the following two inclusions:

- (1) $\overline{E} \subseteq A$.
- (2) $A \subseteq \overline{E}$.

Starting with (1), suppose $x \in \overline{E}$. Then either $x \in E$ or $x \in E'$ (or both). If $x \in E'$, then x is a limit point of E. Then for all $\varepsilon > 0$,

$$N_{\varepsilon}(x) \cap E \setminus \{x\} \neq \emptyset.$$

Since $E \setminus \{x\} \subseteq E$, we we see that

$$N_{\varepsilon}(x) \cap E \neq \emptyset$$

which implies that $x \in A$. Suppose $x \in E$. Then for all $\varepsilon > 0$, we see that

$$N_{\varepsilon}(x) \cap E \neq \emptyset$$
.

If x is a limit point and $x \in E$, then we immediately have that

$$N_{\varepsilon}(x) \cap E \neq \emptyset$$
.

by definition of limit point. Thus, we see that in the three cases outlined that $\overline{E} \subseteq A$.

With (2), suppose $x \in A$. We want to show that $x \in \overline{E}$; that is, x is either a limit point of E or an element of E. Suppose that x is NOT an element of E. By definition of A, we see that for all $\varepsilon > 0$,

$$N_{\varepsilon}(x) \cap E \neq \emptyset$$
.

If we take away x from E, then the intersection above is nonempty; that is,

$$N_{\varepsilon}(x) \cap E \setminus \{x\} \neq \emptyset.$$

Thus, x is a limit point of E and so $x \in \overline{E}$. Otherwise, when x is not a limit point of E, then the nonempty intersection

$$N_{\varepsilon}(x) \cap E$$

implies that $x \in E$ and so $x \in \overline{E}$. Thus, $A \subseteq \overline{E}$.

12. Let (X,d) be a metric space. Show that the closure of a bounded set is bounded.

Proof. Let $E \subseteq X$ be a bounded set and let \overline{E} be the closure of E; that is, $\overline{E} = E \cup E'$. Our goal is to show that \overline{E} is bounded; that is, there exists $M \in \mathbb{R}$ and $q \in X$ such that d(p,q) < M for all $p \in \overline{E}$. Let $p \in \overline{E}$. Let us consider two cases:

- (1) $p \in E$
- (2) $p \in E'$; that is, p is a limit point of E.

Suppose $p \in E$. Since E is bounded, there exists $M \in \mathbb{R}$ and $q \in X$ such that d(p,q) < M. Hence, \overline{E} is bounded. Now, suppose $p \in E'$. Then we know that p is a limit point of E; that is, choose $\varepsilon = M > 0$ such that

$$N_M(p) \cap E \setminus \{p\} \neq \emptyset.$$

So, pick $q \neq p$ such that $q \in E$. Since $q \in N_{\varepsilon}(p)$, we have that $d(p,q) < \varepsilon$. But since \overline{E} is a closed set, we know that $p \in \overline{E}$, this must also mean that \overline{E} is bounded.

13. Prove that a nonmepty subset A of a metric space (X,d) is open if and only if it is a union of neighborhoods (open balls).

Proof. Let A be a nonempty subset of a metric space (X, d) that is an open set. Thus, define the collection of open balls as

$$V_{\varepsilon}(x) = \{N_{\varepsilon}(x) : x \in A\}.$$

Our goal is to show that

$$A = \bigcup_{x \in A} N_{\varepsilon}(x);$$

that is, we need to show the following two inclusions:

(1) $A\subseteq \bigcup_{x\in A}N_{\varepsilon}(x)$ (2) $\bigcup_{x\in A}N_{\varepsilon}(x)\subseteq A$. Now, we proceed with the proof of the result for the two cases above:

(1) Let $x \in A$. Since A is open, there exists an $\varepsilon > 0$ such that $N_{\varepsilon}(x) \subseteq A$. But note that $N_{\varepsilon}(x) \subseteq \bigcup_{x \in A} N_{\varepsilon}(x)$. Since $x \in N_{\varepsilon}(x)$, we must have $x \in \bigcup_{x \in A} N_{\varepsilon}(x)$. Hence,

$$A \subseteq \bigcup_{x \in A} N_{\varepsilon}(x)$$

(2) Let $p \in \bigcup_{x \in A} N_{\varepsilon}(x)$. Then for some $\varepsilon > 0$, then $y \in N_{\varepsilon}$. But since N_{ε} is an open set of A, we must have $y \in A$. Thus,

$$\bigcup_{x \in A} N_{\varepsilon}(x) \subseteq A.$$

Thus, with (1) and (2) we have that A is the union of open balls in A.

$$A = \bigcup_{x \in A} N_{\varepsilon}(x). \tag{*}$$

We want to show that A is open; that is, we need to find a $\delta > 0$ such that $N_{\delta}(x) \subseteq A$. Let $x \in A$. Then by (*), we know that $x \in \bigcup_{x \in A} N_{\varepsilon}(x)$. By definition of the arbitrary union, we see that we can find $\delta > 0$ such that $N_{\delta}(x) \subseteq \bigcup_{x \in A} N_{\varepsilon}(x) = A$. Thus, A must be an open

- 14. On page 9, Rudin implicitly defines a subset $E \subseteq \mathbb{R}$ to be "dense" if it satisfies:
 - (i) For all $x, y \in \mathbb{R}$ with x < y, there exists $p \in E$ such that x .

On page 32, he defines a subset E of a metric space X to be "dense" if it satisfies:

(ii) Every point of X is either a limit point of E or a point of E (that is, $\overline{E} = X$).

Prove that $E \subseteq \mathbb{R}$ satisfies (i) if and only if it satisfies (ii).

Proof. (\Longrightarrow) Suppose $E\subseteq\mathbb{R}$ satisfies the property (i). We want to show that every point in \mathbb{R} must either be a limit point of E or a point in E. To this end, let $x \in \mathbb{R}$ be an arbitrary point. Suppose that x is not an element of E. Thus, we want to show that x is a limit point of E; that is, we will show that

$$\forall \delta > 0 \ N_{\delta}(x) \cap E \setminus \{x\} \neq \emptyset.$$

$$N_{\delta}(x) = \{y \in \mathbb{R} : |x - y| < \delta\} = (x - \delta, x + \delta)$$

Let $\delta > 0$. Then denote the open neighborhood of x as $N_{\delta}(x) = \{y \in \mathbb{R} : |x-y| < \delta\} = (x-\delta, x+\delta).$ But note that $x-\delta < x+\delta$ implies that there exists a $p \neq x \in E$ such that $x-\delta .$

Thus, we see that $|x-p| < \delta$ and hence, we see that

$$N_{\delta}(x) \cap E \setminus \{x\} \neq \emptyset.$$

Hence, x is a limit point of E. Now, if x is NOT a limit point, then x is an isolated point of E and that $x \in E$.

 (\Leftarrow) Let $x, y \in \mathbb{R}$ such that x < y. We will show that there exists $p \in E$ such that x < y < y. Suppose $E \subseteq \mathbb{R}$ satisfies property (ii); that is, every point of X is either limit point of E or a point of E. We will consider a few cases:

- (1) x is a limit point and $y \in E$
- (2) $x \in E$ and $y \in E$
- (3) $x \in E$ but y is a limit point.
- (4) x and y are limit points of E

Suppose case (1). If x is a limit point, then for all $\delta > 0$, we have

$$(x - \delta, x + \delta) \cap E \setminus \{x\} \neq \emptyset.$$

Hence, pick $p \neq x$ such that $p \in E$. Thus, $x - \delta . Since <math>y > x$, we see that

$$x - \delta .$$

Since $\delta > 0$ is arbitrary, we can see that x .

Now, consider case (2). Then immediately if x < y, then choose $p = \frac{y-x}{2}$. Clearly, we have x .

Next, consider the case (3) when $x \in E$, but y is a limit point of E. Since y is a limit point of E, we have for all $\delta > 0$,

$$N_{\delta}(y) \cap E \setminus \{y\} \neq \emptyset.$$

That is,

$$(y - \delta, y + \delta) \cap E \setminus \{y\} \neq \emptyset.$$

To this end, pick $p \neq y$ in E such that

$$y - \delta .$$

If x < y, then we see that

$$x - \delta .$$

Since $\delta > 0$ is arbitrary, we have that x .

Finally, suppose x and y are limit points of E. By definition, for all $\varepsilon > 0$ and $\delta > 0$, we have

$$(x - \varepsilon, x + \varepsilon) \cap E \setminus \{x\} \neq \emptyset$$
$$(y - \delta, y + \delta) \cap E \setminus \{y\} \neq \emptyset.$$

$$(y-o,y+o)\cap E\setminus\{y\}\neq\emptyset.$$

Without loss of generality, let $\varepsilon = \delta > 0$ and pick $p \neq x \in E$ such that $p \in (x - \varepsilon, x + \varepsilon)$. Since x < y, we have that

$$x - \varepsilon .$$

Thus, we see that

$$x .$$

- 15. Let A and B be subsets of a metric space (X, d).
 - (a) If $A \subseteq B$, then $A' \subseteq B'$.

Proof. Let $x \in A'$. We want to show that $x \in B'$; that is, x is a limit point of B. By

definition, $x \in A'$ implies that for all $\varepsilon > 0$, $N_{\varepsilon}(x) \cap A \setminus \{x\} \neq \emptyset$. So, pick $p \neq x$ such that $p \in A$. But note that $A \subseteq B$. Thus, $p \in B$ and we must have for all $\varepsilon > 0$,

$$N_{\varepsilon}(x) \cap B \setminus \{x\} \neq \emptyset.$$

Thus, x is also a limit point of B (that is, $x \in B'$) and we conclude that $A' \subseteq B'$.

(b) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

Proof. Suppose $A \subseteq B$. By part (i), we see that $A' \subseteq B'$. Thus,

$$\overline{A} = A \cup A' \subseteq B \cup B' = \overline{B}.$$

Hence $\overline{A} \subset \overline{B}$

(c) Prove that $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

Proof. Our goal is to show that $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Let $x \in \overline{A \cap B}$. Then either $x \in A \cap B$ or $x \in (A \cap B)'$. Suppose $x \in A \cap B$. Then both $x \in A$ and $x \in B$ and so $x \in \overline{A}$ and $x \in \overline{B}$ since $A \subseteq \overline{A}$ and $B \subseteq \overline{B}$. Now, suppose $x \in (A \cap B)'$. Then x is a limit point of $A \cap B$; that is, for all $\varepsilon > 0$, $N_{\varepsilon}(x) \cap (A \cap B) \setminus \{x\} \neq \emptyset$. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we must have that

$$N_{\varepsilon}(x) \cap A \setminus \{x\} \neq \emptyset \tag{1}$$

and

$$N_{\varepsilon}(x) \cap B \setminus \{x\} \neq \emptyset.$$
 (2)

Thus, (1) and (2) imply that $x \in A'$ and $x \in B'$ meaning that x is both a limit of point of A and B. Hence, $x \in \overline{A}$ and $x \in \overline{B}$. Thus, we have $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ in both of these cases.

- 16. Let (X, d) be a metric space and let $E \subseteq X$.
 - (a) Prove that E' is closed.

Proof. Our goal is to show that E' is closed; that is, any limit point of E' is contained within E'. Let x be a limit point of E'. Then for all $\varepsilon > 0$, $N_{\varepsilon}(x) \cap E' \setminus \{x\} \neq \emptyset$. To this end, pick $y \neq x$ such that $y \in E'$. But this tells us that y is a limit point of E. Thus, for all $\delta > 0$, $N_{\delta}(y) \cap E \setminus \{y\} \neq \emptyset$. Thus, we can pick $p \neq y$ such that $p \in E$. Note that $p \neq y \neq x$ and $p \in E$ imply that

$$N_{\varepsilon}(x) \cap E \setminus \{x\} \neq \emptyset.$$

Thus, x is a limit point of E and so $x \in E'$. Hence, E' is closed.

(b) Prove that E and \overline{E} have the same limit points.

Proof. To prove that E and \overline{E} have the same limit points, we need to show that $E' = (\overline{E})'$. We will prove the following two inclusions:

- $(1) E' \subseteq (\overline{E})'$
- $(2) \ (\overline{E})' \subseteq E'.$

Starting with (1), let $x \in E'$. Then x is a limit point of E. Thus, for all $\varepsilon > 0$, $N_{\varepsilon}(x) \cap E \setminus \{x\} \neq \emptyset$. Since $E \subseteq \overline{E}$, we must have that

$$N_{\varepsilon}(x) \cap \overline{E} \setminus \{x\} \neq \emptyset.$$

Thus, $x \in \overline{E}'$ which proves (1).

Now with (2), let $x \in \overline{E}'$. Then for all $\varepsilon > 0$, $N_{\varepsilon}(x) \cap \overline{E} \setminus \{x\} \neq \emptyset$. From this nonempty intersection, pick $y \neq x$ such that $y \in \overline{E}$; that is, $y \in E$ or $y \in E'$. If $y \in E$, then x is a limit point of E and thus $x \in E'$. If $y \in E'$, then y is a limit point of E. Hence, for all

 $\delta > 0$ $N_{\delta}(y) \cap E \setminus \{y\} \neq \emptyset$. From this, we can pick $q \neq y \neq x$ such that $q \in E$. But this tell us that

$$N_{\varepsilon}(x) \cap E \setminus \{x\} \neq \emptyset$$

proving that x is a limit point of E and so $x \in E'$

(c) Construct an example that shows E and E' do not necessarily have the same limit points?

Proof. Suppose we have the following set $E = \{x < \frac{1}{n} : n \in \mathbb{N}, x \in \mathbb{R}\}$ and its set of limit points $E' = \{\frac{1}{n} : n \in \mathbb{N}\}$. Do these two sets necessarily have the same limit points?

17. Construct a bounded set of real numbers with exactly three limit points.

Solution. Consider $(a,b) \subseteq \mathbb{R}$. Then the three limit points of this set are a,b and a $p \in \mathbb{Q}$ with $a since <math>\mathbb{Q}$ is dense in \mathbb{R} .

- 18. Let (X, d) be a metric space and $E \subseteq X$.
 - (a) Prove that E° is always open, that is $(E^{\circ})^{\circ} = E^{\circ}$.

Proof. To show that E° is open, we will show that $(E^{\circ})^{\circ}$. To do this, we will need to show the following two inclusions:

- $(1) (E^{\circ})^{\circ} \subseteq E^{\circ}$
- $(2) E^{\circ} \subseteq (E^{\circ})^{\circ}.$

Starting with (1), let $x \in (E^{\circ})^{\circ}$. By definition of interior points, there must exists a $\delta > 0$ such that $N_{\delta}(x) \subseteq E^{\circ}$. Clearly, we have $x \in E^{\circ}$ which proves (1).

Now, let $x \in E^{\circ}$. Then there exists $\varepsilon > 0$ such that $N_{\varepsilon}(x) \subseteq E$ where $x \in E$. Suppose for sake of contradiction that x is NOT in the interior of E° . Then for all $\delta > 0$, $N_{\delta}(x) \not\subseteq E^{\circ}$. That is, $N_{\delta}(x) \cap (E^{\circ})^{c} \neq \emptyset$. Since $E^{\circ} \subseteq E$, it follows that $x \in E^{c}$. But this is a contradiction because we had assume that $x \in E^{\circ}$ and so $x \in E$. Thus, we must have x lie in the interior of E° . From (1) and (2), we conclude that E° is open.

(b) If $G \subseteq E$ and G is open, prove that $G \subseteq E^{\circ}$.

Proof. Suppose $G \subseteq E$ and G is open. We will show that $G \subseteq E^{\circ}$. Let $x \in G$. Since G is open, there exists $\delta > 0$ such that $N_{\varepsilon}(x) \subseteq G \subseteq E$. Thus, x must be in the interior of E; that is, $x \in E^{\circ}$. Hence, $G \subseteq E^{\circ}$.

(c) Prove that $E^{\circ} = \overline{E^c}^c$.

Proof. We will show that $E^{\circ} = (\overline{E^c})^c$. We will show the following two inclusions:

- $(1) E^{\circ} \subseteq (E^c)^c$
- $(2) \ (\overline{E^c})^c \subseteq E^{\circ}.$

Starting with (1), let $x \in E^{\circ}$. Then there exists a $\delta > 0$ such that $N_{\delta}(x) \subseteq E$. This implies that x cannot be in E^{c} . Otherwise, x is not an interior point of E. Subsequently, we have that for all $\delta > 0$, $N_{\delta}(x) \cap E^{c} = \emptyset$. Thus, neither $x \in E^{c}$ nor $x \in (E^{c})'$. Hence, $x \in (\overline{E^{c}})^{c}$.

With (2), let $x \in (\overline{E^c})^c$. Then $x \notin \overline{E^c}$. Since $\overline{E^c} = E^c \cup (E^c)'$, we have $x \notin E^c$ and $x \notin (E^c)'$. Then there exists $\delta > 0$ such that

$$N_{\delta}(x) \cap E^{c} \setminus \{x\} = \emptyset \iff N_{\delta}(x) \cap E^{c} = \emptyset.$$

Since $x \notin E^c$, we must have $x \in E$. Thus, $N_{\delta}(x) \subseteq E$ for some $\delta > 0$ and so $x \in E^{\circ}$ which proves (2).

(d) Give an example that shows that E and \overline{E} do not always have the same interiors.

Proof. Let $x \in \mathbb{R}$. Consider the following open ball in the set of real numbers

$$N_{1/n}(x) = \left\{ y \in \mathbb{R} : |x - y| < \frac{1}{n} \right\}.$$

Since $N_{1/n}(x)$ is open, we know that $N_{1/n}(x) = (N_{1/n}(x))^{\circ}$. Note that the closure of this set is

$$\overline{N_{1/n}(x)} = \left\{ y \in \mathbb{R} : |x - y| \le \frac{1}{n} \right\}.$$

But this is also equal to the interior of the closure $N_{1/n}(x)$. Clearly, we see that

$$(\overline{N_{1/n}(x)})^{\circ} \neq N_{1/n}(x)$$

(e) Give an example that shows that E and E° do not always have the same closures.

Proof. Consider the set of rational numbers \mathbb{Q} . Then observe that \mathbb{Q}° is empty since for all $\varepsilon > 0$, $N_{\varepsilon}(x)$ contains irrational numbers which are not contained in \mathbb{Q} . Hence, $\overline{\mathbb{Q}^{\circ}} = \emptyset$. But notice that the closure $\overline{\mathbb{Q}} = \mathbb{R}$. Clearly, $\overline{\mathbb{Q}} \neq \overline{\mathbb{Q}^{\circ}}$.

19. Let (X, d) be a metric space and let $A \subseteq X$. Prove that A is dense in X if and only if any nonempty open set in X has a nonempty intersection with A.

Proof. (\Longrightarrow) Let B be a nonempty open set in X. Let $b \in B$. We will show that $A \cap B \neq \emptyset$. Since $b \in X$ and A is dense in X, either

- (1) b is a limit point of A or
- (2) $b \in A$

If b is a limit point of A, then for all $\delta > 0$,

$$N_{\delta}(b) \cap A \setminus \{b\} \neq \emptyset.$$

Since B is an open set, we know that $N_{\delta}(b) \subseteq B$. Together with the fact that $A \setminus \{b\} \subseteq A$, we can conclude that

$$B \cap A \neq \emptyset$$
.

On the other hand, $b \in A$ immediately implies that $B \cap A \neq \emptyset$.

(\iff) Let $p \in X$ and let $A \subseteq X$. We need to show that A is dense in X; that is, we need to show that p is either a limit point of A or $p \in A$. Suppose that $p \notin A$. We will show that p is a limit point of A. Let $\varepsilon > 0$ and consider the open neighborhood $N_{\varepsilon}(p)$. By assumption, the open ball $N_{\varepsilon}(p)$ contains a nonempty intersection with A; that is,

$$N_{\varepsilon}(p) \cap A \neq \emptyset$$
.

Subsequently, we have

$$N_{\varepsilon}(p) \cap A \setminus \{p\} \neq \emptyset.$$

Thus, p is a limit point of A. On the other hand, if p is not a limit point of A, then p is an isolated point of A. Thus, $p \in A$.

- 20. Let (X, d) be a metric space and $A_i \subseteq X$ for all $i \in \mathbb{N}$.
 - (a) Prove that for all $n \in \mathbb{N}$, we have $\overline{\bigcup_{i=1}^n} A_i = \bigcup_{i=1}^n \overline{A_i}$.

Proof. For all $i \in \mathbb{N}$, we see that

$$\frac{1}{\bigcup_{i=1}^{n} A_i} = \left(\bigcup_{i=1}^{n} A_i\right) \cup \left(\bigcup_{i=1}^{n} A_i\right)'$$

$$= \left(\bigcup_{i=1}^{n} A_i\right) \cup \left(\bigcup_{i=1}^{n} A_i'\right)$$

$$= \bigcup_{i=1}^{n} A_i \cup A_i'$$

$$= \bigcup_{i=1}^{n} \overline{A_i}.$$

(b) Prove that $\bigcup_{i=1}^{\infty} \overline{A_i} \subseteq \overline{\bigcup_{i=1}^{\infty}} A_i$.

Proof. Our goal is to show that $\bigcup_{i=1}^{\infty} \overline{A_i} \subseteq \overline{\bigcup_{i=1}^{\infty}} A_i$. Let $x \in \bigcup_{i=1}^{\infty} \overline{A_i}$. Then for some $i \in \mathbb{N}$, we see that $x \in \overline{A_i}$. Then either $x \in A_i$ or $x \in A_i'$. If $x \in A_i$ and $A_i \subseteq \bigcup_{i=1}^{\infty} A_i$, we see that $x \in \overline{\bigcup_{i=1}^{\infty} A_i}$. Suppose $x \in A_i'$. Note that $A_i' \subseteq \left(\bigcup_{i=1}^{\infty} A_i\right)'$. So, $x \in \left(\bigcup_{i=1}^{\infty} A_i\right)'$. Thus, $x \in \overline{\bigcup_{i=1}^{\infty} A_i}$. Hence, we have

$$\bigcup_{i=1}^{\infty} \overline{A_i} \subseteq \overline{\bigcup_{i=1}^{\infty}} A_i.$$

(c) Show, by an example, that the inclusion in part (b) can be proper.

Solution. Consider the sequence of open intervals in \mathbb{R} , $A_i = (0, 1 + \frac{1}{i})$. Observe that

$$\bigcup_{i=1}^{\infty}\overline{\left(0,1+\frac{1}{i}\right)}=\bigcup_{i=1}^{\infty}\left[0,1+\frac{1}{i}\right]=[0,2).$$

$$\overline{\bigcup_{i=1}^{\infty} \left(0, 1 + \frac{1}{i}\right)} = \overline{(0, 2)} = [0, 2].$$

Clearly, [0,2) is a proper subset of [0,2].

- 21. Let (X, d) be a metric space and $A_i \subseteq X$, for all $i \in \mathbb{N}$.
 - (a) Prove that for all $n \in \mathbb{N}$, we have $\left(\bigcap_{i=1}^n A_i\right)^{\circ} = \bigcap_{i=1}^n A_i^{\circ}$.

Proof. Our goal is to show that $\left(\bigcap_{i=1}^n A_i\right)^\circ = \bigcap_{i=1}^n A_i^\circ$; that is, we need to show the following two inclusions:

(1) $\left(\bigcap_{i=1}^n A_i\right)^\circ \subseteq \bigcap_{i=1}^n A_i^\circ$.

(2) $\bigcap_{i=1}^n A_i^\circ \subseteq \left(\bigcap_{i=1}^n A_i\right)^\circ$.

Starting with (1), let $x \in \left(\bigcap_{i=1}^n A_i\right)^\circ$. Then there exists $\delta > 0$ such that $N_\delta(x) \subseteq \bigcap_{i=1}^n A_i$. Thus, $x \in \bigcap_{i=1}^n A_i$ implies that $x \in A_i$ for all $1 \le i \le n$. But this tell us that

 $N_{\varepsilon}(x) \subseteq A_i$ for all $1 \le i \le n$, and so $x \in A_i$. Hence,

$$x \in \bigcap_{i=1}^{n} A_i^{\circ}.$$

Thus, we conclude that

$$\left(\bigcap_{i=1}^{n} A_i\right)^{\circ} \subseteq \bigcap_{i=1}^{n} A_i^{\circ}.$$

With (2), let $x \in \bigcap_{i=1}^n A_i^{\circ}$. Then for all $1 \le i \le n$, we have $x \in A_i^{\circ}$. By definition, there exists $\delta > 0$ such that $N_{\varepsilon}(x) \subseteq A_i$ for all $1 \le i \le n$. Thus, $x \in A_i$ for all $1 \le i \le n$ and so

$$x \in \bigcap_{i=1}^{n} A_i.$$

Subsequently, $N_{\delta}(x) \subseteq \bigcap_{i=1}^{n} A_i$ and so $x \in (\bigcap_{i=1}^{n} A_i)^{\circ}$. Therefore, we have

$$\bigcap_{i=1}^{n} A_{i}^{\circ} \subseteq \Big(\bigcap_{i=1}^{n} A_{i}\Big)^{\circ}.$$

Hence, (1) and (2) gives us our desired result.

(b) Prove that $\left(\bigcap_{i\in\mathbb{N}}A_i\right)^{\circ}\subseteq\bigcap_{i\in\mathbb{N}}A_i^{\circ}$.

Proof. Let $x \in \left(\bigcap_{i \in \mathbb{N}} A_i\right)^{\circ}$. Then there exists $\delta > 0$ such that $N_{\delta}(x) \subseteq \bigcap_{i \in \mathbb{N}} A_i$. Hence, $x \in \bigcap_{i \in \mathbb{N}} A_i$ if and only if $x \in A_i$ for all $i \in \mathbb{N}$. But this also tells us that $N_{\delta}(x) \subseteq A_i$. Hence, $x \in A_i^{\circ}$ for all $i \in \mathbb{N}$. Thus,

$$\left(\bigcup_{i\in\mathbb{N}}A_i\right)^{\circ}\subseteq\bigcup_{i\in\mathbb{N}}A_i^{\circ}.$$

(c) Give an example where equality does not hold in (b).

Solution. Consider the sequence of closed intervals A_i in \mathbb{R} defined by

$$A_i = \left[a - \frac{1}{i}, b\right].$$

Then the interior of these closed intervals are

$$A_i^{\circ} = \left(a - \frac{1}{i}, b\right).$$

Now, observe that

$$\bigcup_{i\in\mathbb{N}}A_i^\circ=[a,b).$$

But

$$\left(\bigcup_{i\in\mathbb{N}} A_i\right)^{\circ} = [a,b]^{\circ} = (a,b).$$

Hence, we have $(a,b) \subset [a,b)$

22. Let (X, d) be a metric space and $A_i \subseteq X$, for all $i \in \mathbb{N}$.

(a)
$$\bigcup_{i\in\mathbb{N}} A_i^{\circ} \subseteq \left(\bigcup_{i\in\mathbb{N}} A_i\right)^{\circ}$$
.

Proof. Let $x \in \bigcup_{i \in \mathbb{N}} A_i^{\circ}$. Then for some $i \in \mathbb{N}$, we have $x \in A_i^{\circ}$. Then there exists a $\delta > 0$ such that $N_{\delta}(x) \subseteq A_i$. But note that $P_{\delta} = \sum_{i \in \mathbb{N}} A_i$ and so $N_{\delta}(x) \subseteq \bigcup_{i \in \mathbb{N}} A_i.$ This tells us that $x \in \left(\bigcup_{i \in \mathbb{N}} A_i\right)^{\circ}$. Therefore, $\bigcup_{i \in \mathbb{N}} A_i^{\circ} \subseteq \left(\bigcup_{i \in \mathbb{N}} A_i\right)^{\circ}.$

$$A_i \subseteq \bigcup_{i \in \mathbb{N}} A_i$$

$$N_{\delta}(x) \subseteq \bigcup_{i \in \mathbb{N}} A_i$$

$$\bigcup_{i\in\mathbb{N}} A_i^{\circ} \subseteq \Big(\bigcup_{i\in\mathbb{N}} A_i\Big)^{\circ}.$$

(b) Give an example of a finite collection in which equality does not hold in (a).

Solution. Consider the two closed intervals A = [0,1] and B = [1,2]. Note that $A^{\circ} = [0,1]$ whereas $A^\circ \cup B^\circ = (0,1) \cup (1,2)$ $A^\circ \cup B^\circ = (0,1) \cup (1,2)$ $(A \cup B)^\circ = ([0,2])^\circ = (0,2).$

$$A^{\circ} \cup B^{\circ} = (0,1) \cup (1,2)$$

$$(A \cup B)^{\circ} = ([0,2])^{\circ} = (0,2)$$

So, $(0,1) \cup (1,2) \subseteq (0,2)$ since 1 is not included in $(0,1) \cup (1,2)$.