I. Unrestringierte Probleme

1.2 Lösbarkeit

Definition 1.2.3 (Lösbarkeit).

Das Minimierungsproblem P heißt lösbar, falls ein $\overline{x} \in M$ existiert mit

$$\inf_{x \in M} f(x) = f(\overline{x})$$

Satz 1.2.5. Das Minimierungsproblem P ist genau dann lösbar, wenn es einen globalen Minimalpunkt besitzt.

Bemerkung. Es können drei Fälle der Unlösbarkeit auftreten:

- $\inf_{x \in M} f(x) = +\infty$
- $\inf_{x \in M} f(x) = -\infty$
- Ein endliches Infimum wird nicht angenommen.

Satz 1.2.6 (Satz von Weierstraß).

Die Menge $M \subseteq \mathbb{R}^n$ sei nichtleer und kompakt, und die Funktion $f: M \to \mathbb{R}$ sei stetig. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt und einen globalen Maximalpunkt.

Definition 1.2.8 (Unter Niveaumenge). Für $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$ und $\alpha \in \mathbb{R}$ heißt

$$\operatorname{lev}_{\leq}^{\alpha}(f, X) = \left\{ x \in X \mid f(x) \leq \alpha \right\}$$

untere Niveaumenge von f auf X zum Niveau α . Im Fall $X = \mathbb{R}^n$ schreiben wir auch kurz

$$f_{\leq}^{\alpha} := \text{lev}_{\leq}^{\alpha}(f, \mathbb{R}^n) = \{x \in \mathbb{R}^n \mid f(x) \leq \alpha\}$$

Übung 1.2.10. Für eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ sei die Funktion $f: X \to \mathbb{R}$. Dann ist die Menge $\text{lev}^{\alpha}_{<}(f,X)$ für alle $\alpha \in \mathbb{R}$ abgeschlossen.

Übung 1.2.11. Für eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ und endliche Indexmengen I und J seien die Funktion $g_i \colon X \to \mathbb{R}, i \in I$, und $h_j \colon X \to \mathbb{R}, j \in J$, stetig. Dann ist die Menge

$$M = \{x \in X \mid g_i(x) \le 0, i \in I, \ h_j(x) = 0, j \in J\}$$

abgeschlossen.

Definition. Die Menge der globalen Minimalpunkte lautet:

$$S = \{ \overline{x} \in M \mid \forall x \in M : f(x) \ge f(\overline{x}) \}$$

Lemma 1.2.12. Für ein $\alpha \in \mathbb{R}$ sei $\operatorname{lev}_{<}^{\alpha}(f, M) \neq \emptyset$. Dann gilt

$$S \subseteq \operatorname{lev}^{\alpha}_{<}(f, M).$$

Satz 1.2.13 (Verschärfter Satz von Weierstraß). Für eine (nicht notwendigerweise beschränkte oder abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ sei $f : M \to \mathbb{R}$ stetig, und mit einem $\alpha \in \mathbb{R}$ sei lev $\leq (f, M)$ nichtleer und kompakt. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt.

Definition 1.2.21 (Koerzivität). Gegeben seien eine abgeschlossene Menge $X \subseteq \mathbb{R}^n$ und eine Funktion $f: \mathbb{R}$ fall für alle Folgen $(x^k) \subseteq X$ mit $\lim_k ||x^k|| = +\infty$ auch

$$\lim_{k} f(x^k) = +\infty$$

 $gilt, \ dann \ hei \beta t \ f \ koerziv \ auf \ X.$

Übung 1.2.24. Gegeben sei die quadratische Funktion $q(x) = \frac{1}{2}x^TAx + b^Tx$ mit einer symmetrischen (n,n)-Matrix A (d.h. es gilt $A = A^T$) und $b \in \mathbb{R}^n$. Die Funktion q ist genau dann koerziv auf \mathbb{R}^n , wenn A positiv definit ist (d.h. wenn $d^TAd > 0$ für alle $d \in \mathbb{R}^n \setminus \{0\}$ gilt).

Beispiel 1.2.25. Auf kompakten Mengen X ist jede Funktion f trivialerweise koerziv.

Lemma 1.2.26. Die Funktion $f: X \to \mathbb{R}$ sei stetig und koerziv auf der (nicht notwendigerweise beschränkten) abgeschlossenen Menge $X \subseteq \mathbb{R}^n$. Dann ist die Menge $\text{lev}_{\leq}^{\alpha}(f, X)$ für jedes Niveau $\alpha \in \mathbb{R}$ kompakt.

Korollar 1.2.27. Es sei M nichtleer und abgeschlossen, aber nicht notwendigerweise beschränkt. Ferner sei die Funktion $f: M \to \mathbb{R}$ stetig und koerziv auf M. Dann besitzt f auf M (mindestens) einen globalen Minimalpunkt.

1.3 Rechenregeln und Umformungen

Übung 1.3.1 (Skalare Vielfache und Summen). Gegeben seien $M \subseteq \mathbb{R}^n$ und $f, g \colon M \to \mathbb{R}$. Dann gilt

- a) $\forall \alpha \geq 0, \ \beta \in \mathbb{R}$: $\min_{x \in M} (\alpha f(x) + \beta) = \alpha (\min_{x \in M} f(x)) + \beta$
- b) $\forall \alpha < 0, \beta \in \mathbb{R} : \min_{x \in M} (\alpha f(x) + \beta) = \alpha (\max_{x \in M} f(x)) + \beta$
- c) $\min_{x \in M} (f(x) + g(x)) \ge \min_{x \in M} f(x) + \min_{x \in M} g(x)$

Übung 1.3.2 (Separable Zielfunktion auf kartesischem Produkt). Es seien $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, $f: X \to \mathbb{R}$ und $g: Y \to \mathbb{R}$. Dann gilt

$$\min_{(x,y)\in X\times Y}\left(f(x)+g(y)\right)=\min_{x\in X}f(x)+\min_{y\in Y}g(y)$$

Übung 1.3.3 (Vertauschung von Minima und Maxima). Es seien $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$, $M = X \times Y$ und $f: M \to \mathbb{R}$ gegeben. Dann gilt:

- a) $\min_{(x,y)\in M} f(x,y) = \min_{x\in X} \min_{y\in Y} f(x,y) = \min_{y\in Y} \min_{x\in X} f(x,y)$
- b) $\max_{(x,y)\in M} f(x,y) = \max_{x\in X} \max_{y\in Y} f(x,y) = \max_{y\in Y} \max_{x\in X} f(x,y)$
- c) $\min_{x \in X} \max_{y \in Y} f(x, y) \ge \max_{y \in Y} \min_{x \in X} f(x, y)$

Übung 1.3.4 (Monotone Transformation). Zu $M \subseteq \mathbb{R}^n$ und einer Funktion $f: M \to Y$ mit $Y \subseteq \mathbb{R}$ sei $\psi: Y \to \mathbb{R}$ eine streng monoton wachsende Funktion. Dann gilt

$$\min_{x \in M} \psi\left(f(x)\right) = \psi\left(\min_{x \in M} f(x)\right),\,$$

und die lokalen bzw. globalen Minimalpunkte stimmen überein.

Übung 1.3.5 (Epigraphumformulierung). Gegeben seien $M \subseteq \mathbb{R}^n$ und eine Funktion $f \colon M \to \mathbb{R}$. Dann sind die Probleme

$$P \colon \min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } x \in M \text{ und } P_{epi} \colon \min_{(x,\alpha) \in \mathbb{R}^n \times \mathbb{R}} \alpha \text{ s.t. } f(x) \leq \alpha, x \in M$$

äquivalent, d.h. die Minimalwerte stimmen überein und Minimalpunkte entsprechen sich.

Definition 1.3.6 (Parallelprojektion). Es sei $M \subseteq \mathbb{R}^n \times \mathbb{R}^m$. Dann heißt

$$\operatorname{pr}_x M = \left\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^m : (x, y) \in M \right\}$$

Parallel projektion von M (den "x-Raum") \mathbb{R}^n .

Übung 1.3.7 (Projektionsumformulierung). Gegeben seien $M \subseteq \mathbb{R}^n \times \mathbb{R}^m$ und eine Funktion $f \colon \mathbb{R}^n \to \mathbb{R}$, die nicht von den Variablen aus \mathbb{R}^m abhängt. Dann sind die Probleme

$$P \colon \min_{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m} f(x) \quad s.t.(x,y) \in M \quad und \quad P_{proj} \colon \min_{x \in \mathbb{R}^n} f(x) \quad s.t. \quad x \in \operatorname{pr}_x M$$

äquivalent, d.h. die Minimalwerte stimmen überein und Minimalpunkte entsprechen sich.

2.1 Optimalitätsbedingungen