

planetmath.org

Math for the people, by the people.

proof of ratio test

Canonical name ProofOfRatioTest
Date of creation 2013-03-22 12:24:46
Last modified on 2013-03-22 12:24:46

Owner vitriol (148) Last modified by vitriol (148)

Numerical id 6

Author vitriol (148)

Entry type Proof

 $\begin{array}{ll} {\rm Classification} & {\rm msc} \ 40{\rm A}05 \\ {\rm Classification} & {\rm msc} \ 26{\rm A}06 \end{array}$

Assume k < 1. By definition $\exists N$ such that

 $n > N \implies \left| \frac{a_{n+1}}{a_n} - k \right| < \frac{1-k}{2} \implies \left| \frac{a_{n+1}}{a_n} \right| < \frac{1+k}{2} < 1$ i.e. eventually the series $|a_n|$ becomes less than a convergent geometric series, therefore a shifted subsequence of $|a_n|$ converges by the comparison test. Note that a general sequence b_n converges iff a shifted subsequence of b_n converges. Therefore, by the absolute convergence theorem, the series a_n converges.

Similarly for k > 1 a shifted subsequence of $|a_n|$ becomes greater than a geometric series tending to ∞ , and so also tends to ∞ . Therefore a_n diverges.