

Model Development Phase Template

Model	Description
Content-Based	Content-based filtering recommends restaurants by comparing user preferences
Filtering	(e.g., cuisine type, price range, dietary restrictions) with restaurant attributes. It
	focuses on similarities between items and the user's profile without relying on
	other users' data. This method is effective for users with unique tastes but may
	struggle with limited user profiles (cold start).
Collaborative	Collaborative filtering leverages the preferences of similar users to make
Filtering	recommendations. It uses historical ratings and reviews to identify patterns. This
	model is effective in discovering new items but can suffer from sparsity and cold
	start problems if data is limited.
Hybrid	This combines content-based and collaborative filtering to overcome the
Recommendatio	limitations of each method. By integrating both user preference data and behavior
n Model	of similar users, hybrid models improve recommendation accuracy, diversity, and
	scalability. It is particularly useful in scenarios with large, sparse datasets like
	restaurant recommendations.
Matrix	Matrix factorization techniques decompose the user-item interaction matrix into
Factorization	latent features, capturing underlying patterns in user preferences. Singular Value
	Decomposition (SVD) is a common approach. It is computationally efficient and
	works well for large datasets but requires enough ratings.

Deep Learning	Neural networks can be used to build recommendation systems by learning
(Neural	complex, non-linear relationships between users and restaurants from rich feature
Networks)	sets including reviews, preferences, and metadata. While powerful, they require
	large datasets and are computationally intensive.

	Smail Inter	
Date	02 July 2025	112
Name	Sanika Suresh Patil	
Project Title	Restaurant Recommendation System	
Maximum Marks	5 Marks	

Model Selection Report:

Conclusion:

	Model Selected
Hybrid	The hybrid model was selected because it addresses the limitations of both content-
Recommenda	based and collaborative filtering approaches. It effectively handles the cold start and
tion Model	sparsity issues by integrating multiple data sources such as user profiles, restaurant attributes, and behavioral data. This results in more personalized, diverse, and accurate recommendations, making it highly suitable for a restaurant recommendation system with varying user preferences and data availability.