Improving meIRL-based motion modelling in video games using general player classification

Inge Becht

Supervised by: Sander Bakkes

Universiteit van Amsterdam

April 24, 2013

Introduction

- Research topics in game AI
 - adaptive
 - fair
 - using imperfect information

Problem statement

To what extent can general player classification improve melRL-based motion modelling in video-games?

• Multiple aspects to this research

Tools

- Capture the Flag (CTF)
 - Team multi-agent environment
 - Straightforward game objective
- AlSandbox
 - CTF AI development environment
 - Used for competitions
- Use existing AI
 - Terminator: 3rd place in competition
 - naive opponent response reasoner
 - adding of own motion modeller

Background Motion Modeling

- Maximum Entropy Inverse Reinforcement Learning (melRL)
 - Position expressed in terms of features
 - Construct reward function
 - Offline modelling
 - Distribution grid
- Has been done (Tastan et al., 2012), but:
 - No general modelling
 - No examination of map invariance
 - Different domain
- General classes of specific behaviours

Approach Player Classification

- Prediction depends on classification
- Different behaviours, e.g.
 - flag defensive
 - flag attacking
 - patrolling
 - flag running defender
 - flag retriever
- Classification Features,
 - history of opponent spotting
 - orientation
 - position (expressed in features)
 - game state, e.g.
 - Both flags at base
 - Both flags gone
 - Enemy flag intercepted
 - Own flag intercepted
- Classification method not yet decided

Approach Reasoner

- Current Terminator motion model: Only reasons on where enemy is seen
- Add enemy position prediction to Terminator
- Further improvements:
 - Ambushing enemy
 - Avoiding enemy
 - Anticipating actions

Evaluation

Problem statement (again)

To what extent can general player classification improve melRL-based motion modelling in video-games?

- How well can behaviour be classified?
 - Needs labeled data to test with
 - Better than random
- Does general player classification successfully predict position?
 - Absolute error comparison with (Tastan et al., 2012)
- Improvement of Terminator?
 - Create Competition
 - Compare performance by win-rate

Plan

Week No.	Research Planning	Report planning
18	Implement IRL motion model	
19	Implement IRL motion model	
20	Create classifier	
21	Implement into Terminator Al	
22		Preparation midpresen-
		tation and assignment 8
23	Evaluation of classifier, possible adaption	
24	Evaluation of AI performance	Assignment 9
25	Finishing paper	
26	Finishing paper	Preparing final presenta-
		tion and logbook

References

Tastan, B., Chang, Y., and Sukthankar, G. (2012). Learning to intercept opponents in first person shooter games. In *Computational Intelligence* and Games (CIG), 2012 IEEE Conference on, pages 100–107.