NSERC CREATE for BioZone Machine Learning Bootcamp

Natural Language Processing & GPT

What is Natural Language Processing (NLP)?

- Subfield of AI that focuses on reading, deciphering and producing human language
- Combines computational linguistics (e.g. rule-based modelling of language) with statistical, ML, and deep learning approaches
- Through NLP, machines can understand, analyze and generate language in ways that are meaningful and contextually appropriate
- While LLMs have driven an explosion in interest, there are many older technologies which paved the way

Common Applications

- Text Classification: e.g. spam detection, news classification
- Question Answering: processing input and finding relevant information
- Machine Translation
- Sentiment Analysis
- Code Generation

Challenges in NLP

- Ambiguity: Words can mean different things depending on context
- Nuances: Languages are full of idioms, slang, cultural references, sarcasm...
- Syntax vs Semantics: A
 grammatically correct sentence
 might not make sense, or a
 grammatically incorrect one
 might be easy to understand

- I saw a man on the hill with the telescope
- That's a cool cat

- Colourless green ideas sleep furiously
- Me went store

Quick history of NLP

• 1950s:

- Alan Turing publishes "Computing Machinery and Intelligence", in which he proposes the Turing test
- Noam Chomsky publishes "Syntactic Structures", an attempt to construct a formal theory of linguistic structure

• 1960s:

- Georgetown University develops a machine translation system, which automatically translates 60 Russian sentences into English using an extremely complex flowchart and a limited vocabulary
- The authors claim machine translation could be a solved problem in five years

Quick history of NLP

- 1980s 1990s:
 - Transition from rule-based to statistical approaches
 - Idea of using existing text to train a model begins to appear (e.g. bilingual documents from the Canadian parliament)
- 2000s 2010s:
 - Deep Learning takes over
 - Tools such as convolutional networks, and later RNNs, transform the field
- 2020s: The era of the Large Language Model

Foundations of LLMs

- Fundamental goal of language modelling: next word prediction
- *P*(*cat* | *the dog and the*)
- To generate, pick the word with highest likelihood
- Early models could handle one, two words of context
- Locally coherent, but longer texts quickly lose meaning
- More context requires more complexity!

How does an LM "understand" word meaning?

- In order to predict the likelihood of a word, we must have some sense of its meaning
- Some words have similar meanings, and can easily fit in the same place
- In the same way CNNs convert an image into a set of feature maps, we can convert a word into a set of abstract linguistic features
- Word2Vec: 300 features
- GPT-3: 12,888

How does an LM "understand" word meaning?

- Key concept of word embeddings: similar words should have similar vectors
- How do we accomplish this?

Building Word Embeddings

Building Word Embeddings

Building Word Embeddings

Results

Results

Building GPT

Building GPT: The Transfomer

Building GPT: Positional Embedding

Building GPT

Building GPT

Building GPT: Attention

Building GPT: Attention

Building GPT: Attention

Building GPT

Building GPT: Top-P

Building GPT: Top-P

Top 10 documentaries about artificial intelligence:

1. AlphaGo (2017)

```
2017 = 96.15%

2016 = 2.79%

2018 = 0.88%

2015 = 0.07%

2019 = 0.03%
```

Building GPT

Number of Parameters

Number of Parameters

Number of Parameters

GPT's Training Data

- 1 token ≈ ¾ word
- Some datasets are sampled more times than others
- Common Crawl: billions of webpages collected over 7 years
- Webtext2: Dataset of webpages that have been shared on Reddit
- Books1: Free ebooks (?)
- Books2: Secret!
- English Wikipedia

Dataset	Quantity (tokens)	Weight in training mix
Common Crawl (filtered)	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

No more humans involved!

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning