Linear System Theory

Problem Set 3

Linear Time-Varying Systems, Linear Time-Invariant Systems

Issue date: Oct. 21, 2019 Due date: Oct. 31, 2019

Exercise 1. (Linear Time-Varying Systems, [50 points in total])

Let $A_1(t), A_2(t), F(t) \in \mathbb{R}^{n \times n}$ be piecewise continuous matrix functions. Let Φ_i be the state transition matrix for $\dot{x}(t) = A_i(t)x(t)$, for i = 1, 2. Consider the matrix differential equation:

$$\dot{X}(t) = A_1(t)X(t) + X(t)A_2^T(t) + F(t), \ X(t_0) = X_0,$$

where $X(t) \in \mathbb{R}^{n \times n}$ for any $t \ge t_0$.

- 1. [20 **points**] Show that this is an affine time-varying system. (Hint: An affine time-varying system is a system of the form $\dot{x}(t) = A(t)x(t) + b(t)$, where x(t) and b(t) are vectors.)
- 2. [30 points] Assume that the solution of the above system can be written as:

$$X(t) = \Phi_1(t, t_0) X_0 \Phi_2^T(t, t_0) + \int_{t_0}^t \Phi_1(t, \tau) M(t, \tau) d\tau.$$

Express the matrix $M(t,\tau)$ as a function of $\Phi_1(t,\tau)$, F(t), and $\Phi_2(t,\tau)$. (Hint: $\Phi_1(t,\tau)$, F(t), and $\Phi_2(t,\tau)$ may not all appear in the expression of $M(t,\tau)$.)

Solution 1.1

Let $x_{ij}, a_{ij}^{(1)}, a_{ij}^{(2)}, f_{ij}$ denote the i^{th} row and j^{th} column element of matrix X, A_1, A_2, F respectively. According to the matrix differential equation, x_{ij} can be expressed as

$$x_{ij} = \sum_{k=1}^{n} a_{ik}^{(1)} x_{kj} + \sum_{k=1}^{n} x_{ik} a_{jk}^{(2)} + f_{ij}$$
$$= \sum_{k=1}^{n} \left(a_{ik}^{(1)} x_{kj} + a_{jk}^{(2)} x_{ik} \right) + f_{ij}$$

Define vector $v \in \mathbb{R}^{n^2}$ and let $v_{i+n(j-1)} = x_{ij}$. Plug v into the equation above:

$$v_{i+n(j-1)} = \sum_{k=1}^{n} a_{ik}^{(1)} v_{k+n(j-1)} + \sum_{k=1}^{n} v_{i+n(k-1)} a_{jk}^{(2)} + f_{ij}$$
(1)

Similarly, define vector b and let $b_{i+n(j-1)} = F_{ij}$. As a consequence, we can rewrite the system dynamics as

$$\dot{v}(t) = A(t)v(t) + b(t) ,$$

where A(t) is uniquely defined by (1) and b(t) defined by F(t). Thus, the system is an affine time-varying system.

Solution 1.2

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{t_0}^t \Phi_1(t,\tau) M(t,\tau) \mathrm{d}\tau \right] &= \int_{t_0}^t \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi_1(t,\tau) M(t,\tau) \right) \mathrm{d}\tau + \Phi_1(t,t) M(t,t) \cdot 1 \\ &= \int_{t_0}^t A_1(t) \Phi_1(t,\tau) M(t,\tau) \mathrm{d}\tau + \int_{t_0}^t \Phi_1(t,\tau) \frac{\mathrm{d}}{\mathrm{d}t} M(t,\tau) \mathrm{d}\tau + M(t,t) \\ &= A_1(t) \int_{t_0}^t \Phi_1(t,\tau) M(t,\tau) \mathrm{d}\tau + \int_{t_0}^t \Phi_1(t,\tau) \frac{\mathrm{d}}{\mathrm{d}t} M(t,\tau) \mathrm{d}\tau + M(t,t) \end{split}$$

$$\begin{split} \dot{X}(t) &= A_1(t)\Phi_1(t,t_0)X_0\Phi_2^T(t,t_0) + \Phi_1(t,t_0)X_0\Phi_2^T(t,t_0)A_2^T(t) + \frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{t_0}^t \Phi_1(t,\tau)M(t,\tau)\mathrm{d}\tau \right] \\ &= A_1(t)X(t) - A_1(t) \int_{t_0}^t \Phi_1(t,\tau)M(t,\tau)\mathrm{d}\tau + X(t)A_2^T(t) - \int_{t_0}^t \Phi_1(t,\tau)M(t,\tau)\mathrm{d}\tau A_2^T(t) \\ &+ A_1(t) \int_{t_0}^t \Phi_1(t,\tau)M(t,\tau)\mathrm{d}\tau + \int_{t_0}^t \Phi_1(t,\tau)\frac{\mathrm{d}}{\mathrm{d}t}M(t,\tau)\mathrm{d}\tau + M(t,t) \\ &= A_1(t)X(t) + X(t)A_2^T(t) - \int_{t_0}^t \Phi_1(t,\tau)M(t,\tau)\mathrm{d}\tau A_2^T(t) + \int_{t_0}^t \Phi_1(t,\tau)\frac{\mathrm{d}}{\mathrm{d}t}M(t,\tau)\mathrm{d}\tau + M(t,t) \end{split}$$

From the matrix differential equation, we also know that

$$\dot{X}(t) = A_1(t)X(t) + X(t)A_2^T(t) + F(t)$$

Compare these two equations, it follows immediately

$$F(t) = -\int_{t_0}^t \Phi_1(t,\tau) M(t,\tau) d\tau A_2^T(t) + \int_{t_0}^t \Phi_1(t,\tau) \frac{d}{dt} M(t,\tau) d\tau + M(t,t)$$

Exercise 2. (Linear Time-Invariant Systems, [50 points in total])

Consider the following affine system:

$$\dot{x}(t) = Ax(t) + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t).$$

where $A \in \mathbb{R}^{3\times 3}$. The matrix A has eigenvalues $\lambda_1 = -2$ with multiplicity 2, and $\lambda_2 = -1$ with multiplicity 1. The eigenvalue λ_1 has an eigenvector $v_1 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, and a generalized eigenvector $v_1' = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

The eigenvalue λ_2 has the eigenvector $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

- 1. [20 points] Find the matrix A.
- 2. [20 points] Calculate $\exp(At)$.
- 3. [10 points] Given $x(0) = [0\ 0\ 1]^{\top}$, compute y(t).