

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Projeto Integrador 2

Agricultura de Precisão para Viticultura

Brasília, DF 2020

Agricultura de Precisão para Viticultura

Adrianne Alves da Silva
Beatriz Carolina Borges Pinho
Bruna Medeiros da Silva
Clara Costa Pinheiro
Gabriel Coelho da Silva
Hillary Lemes Rezende Carvalho
Jessica Kamily Oliveira de Sousa
João Lucas Sousa Reis
Leonardo Marques Caldas
Lucas Vitor de Paula
Luciano dos Santos Silva
Pedro Gabriel Oliveira da Silva dos Santos
Pedro Henrique de Sousa Santos

Brasília, DF 2020

Resumo

Este documento formaliza a abertura do projeto de agricultura de precisão condicionado ao monitoramento de videiras com produção destinada à vitivinicultura da região Centro-Oeste. A proposta recebe o nome de SmartVit e objetiva-se no monitoramento dos aspectos essenciais para garantir uvas de qualidade com minimização dos erros associados ao período de produção e colheita. Neste documento é apresentado a proposta técnica inicial para a construção de um produto que seja resultado da integração das engenharias Eletrônica, Energia, Automotiva, Aeroespacial e Software. Aqui é possível compreender a motivação que levou à escolha do projeto, definição de escopo, levantamento de requisitos, o perfil das pessoas envolvidas, conhecimentos necessários para concepção do protótipo, além do modelo gerencial e de desenvolvimento adotado para sucesso do projeto. Na documentação, é apresentado também a forma de trabalho, controle e desenvolvimento alinhado aos modelos de gerenciamento de projetos ágeis, para garantir o progresso e conclusão do projeto dentro do prazo determinado no período letivo referente à matéria de Projeto Integrador 2.

Palavras-chaves: viticultura, *internet das coisas*, agricultura de precisão, produção de uvas, monitoramento eletrônico.

Lista de ilustrações

igura 1 – Esboço da solução adotada para compreensão inicial do produto a ser	
entregue	0
igura 2 — Organograma da Equipe disposta de maneira hierárquica e nominal 3	2
igura 3 – Mapa de entregáveis em <i>sprints</i> , com detalhamento e tempo de duração	
em cada etapa	3
igura 4 – Diagrama de contexto com entradas e saídas pertinentes às partes en-	
volvidas	:0
igura 5 — Estrutura Analítica do Projeto SmartVit	6
figura 6 – Primeira versão da arquitetura de software	9
igura 7 — Segunda versão da arquitetura de software	0
figura 8 – Atual versão da arquitetura de software	0
figura 9 — Representação da integração entre software e o sistema eletrônico $$ 8	3
igura 10 – Sketch prévio da estrutura com o posicionamento de alguns sensores 8	5

Lista de tabelas

Tabela 1 –	Tabela de descrição do problema geral e solução proposta	18
Tabela 2 –	Posição de mercado do produto e relação com propostas existentes	19
Tabela 3 –	Descrição dos envolvidos e interessados no projeto e interessados no	
	projeto, levantamento de suas responsabilidades gerais	24
Tabela 4 -	Relação de usuários finais do produto	25
Tabela 5 –	Cronograma de execução do projeto durante o semestre	27
Tabela 6 –	Orçamento geral de aquisições divididos por subsistemas	27
Tabela 7 –	Técnica de priorização de requisitos - MoSCoW	40
Tabela 8 –	Tabela de requisitos do projeto	45
Tabela 9 –	Detalhamento das atividades a serem entregues nas <i>sprints</i> dentro dos	
	prazos estipulados	49
Tabela 10 –	Detalhamento dos recursos humanos e suas atribuições, deveres e obri-	
	gações	54
Tabela 11 –	Relação de peso e probabilidade de risco	55
Tabela 12 –	Relação de peso e impacto de risco	56
Tabela 13 –	Relação de probabilidade e impacto de risco	56
Tabela 14 –	Níveis de prioridade de risco	56
Tabela 15 –	Gerenciamento de riscos, priorização e plano de ação	58

Lista de abreviaturas e siglas

GDF Governo do Distrito Federal

FGA Universidade de Brasília - Faculdade Gama

IoT Internet of Things

PWA Progressive Web App

AWS Amazon Web Services

API Application Programming Interface

PI2 Projeto Integrador 2

PC Ponto de Controle

EAD Ensino à Distância

CAD Computer Aided Design

PMBOK Project Management Body of Knowledge

EAP Estrutura Analítica do Projeto

EVM Earned Value Management

BFF Back For Frontend

Sumário

1	TERMO DE ABERTURA DO PROJETO	15
1	ESPECIFICAÇÃO	. 17
1.1	Necessidade de Negócio	. 18
1.1.1	Descrição do problema	. 18
1.1.2	Posição do produto	. 19
1.2	Objetivo	. 19
1.3	Escopo	. 19
1.4	Solução	. 20
2	BUSINESS CASE	. 21
2.1	Requisitos do produto	. 21
2.2	Restrições	. 22
2.3	Alternativas e Concorrentes	. 22
2.4	Partes interessadas	. 23
2.4.1	Idealizadores	. 23
2.4.2	Envolvidos	. 24
2.4.3	Usuários	. 25
2.5	Riscos de alto nível	. 25
2.6	Cronograma	. 26
2.7	Orçamento	. 27
2.7.1	Lista de Aquisições	. 27
3	FATORES AMBIENTAIS	. 31
3.1	Código de Conduta	. 31
3.2	Instalações e recursos	. 32
3.3	Estrutura Organizacional	. 32
3.4	Entregáveis	. 33
3.5	Sucesso do Projeto	. 33
п	PLANO DE GERENCIAMENTO	35
4	PLANO DE GERENCIAMENTO DO PROJETO	. 37
5	ESCOPO	
5.1	Plano de Gerenciamento do Escopo	. 39
5.2	Plano de Gerenciamento de Requisitos	. 40

5.3	Requisitos	41
5.4	Estrutura Analítica do Projeto	46
6	TEMPO	47
6.1	Plano de Gerenciamento de Cronograma	47
7	RECURSOS HUMANOS	51
7.1	Plano de Gerenciamento de Recursos Humanos	51
8	RISCOS	55
8.1	Plano de Gerenciamento de Riscos	55
8.1.1	Análise Quantitativa	55
8.1.1.1	Probabilidade	55
8.1.1.2	Impacto	55
8.1.1.3	Prioridade	56
8.1.2	Plano de ação para os riscos	57
9	COMUNICAÇÃO	59
9.1	Plano de Gerenciamento de Comunicação	59
9.1.1	Canais de Comunicação	59
9.1.2	Estratégias de Comunicação	60
9.1.2.1	Reuniões Gerais semanais	60
9.1.2.2	Reuniões de equipes	60
10	QUALIDADE	61
10.1	Plano de gerenciamento de Qualidade	61
11	CUSTOS	69
11.1	Plano de Gerenciamento de Custos	69
11.2	Processos para Gerenciamento de Custo do Projeto	69
11.3	Estimar Custos	69
11.4	Determinar Orçamento	70
11.5	Controlar Custos	70
12	AQUISIÇÃO	73
12.1	Plano de Gerenciamento de Aquisição	73
12.2	Processo de Aquisição	73
12.2.1	Planejar o gerenciamento das aquisições	73
12.2.2	Conduzir as aquisições	
12.2.3	Controlar as aquisições	
12.2.4	Encerrar as aquisições	73

	REFERÊNCIAS	75
	APÊNDICES	77
	APÊNDICE A – PRIMEIRO APÊNDICE	79
A .1	Decisões	79
A.1.1	Decisões Arquiteturais	79
A.1.2	Decisões Tecnológicas	81
A.1.3	Decisões de Outros Enfoques	82
	APÊNDICE B – REPRESENTAÇÃO DA INTEGRAÇÃO ENTRE SOFTWARE E O SISTEMA ELETRÔNICO	83
	APÊNDICE C – SKETCH PRÉVIO DA ESTRUTURA	85
	ANEXOS	87
	ANEXO A – ESPECIFICAÇÕES DA PRODUÇÃO DE UVA	89
A .1	Objetivos	
A.2	Parâmetros Técnicos	

Parte I TERMO DE ABERTURA DO PROJETO

1 Especificação

Comum de regiões frias, as videiras passaram a ganhar o mundo junto com os colonizadores e missionários na difusão do cristianismo, tendo relevância significativa por todo continente americano. No Brasil, a sua inserção foi feita por volta de 1500, onde hoje são os estados da Bahia e Pernambuco, em 1600 chegou na região sul através dos jesuítas. Mas foi só no final do século XIX que a cultura da uva foi impulsionada, através da imigração italiana em São Paulo, Paraná, Santa Catarina e Rio Grande do Sul (PROTAS; CAMARGO, 2011).

A vitivinicultura no Brasil segue uma padronização e requer inúmeros cuidados para garantir a qualidade durante o cultivo e produção da uva e no processo de vinificação. Embora a produção dos insumos provenientes da uva ocorra majoritariamente no Rio Grande do Sul, correspondendo a cerca de 65% da área vitícola nacional (MELLO, 2017), os demais estados brasileiros tem mostrado crescimento nos dados de área de cultivo e produção. Para dar prosseguimento nessa expansão do setor, o emprego de inovações tecnológicas nas etapas do processo se faz necessária. (PROTAS; CAMARGO, 2011; MELLO, 2017).

A utilização de soluções tecnológicas para acompanhamento de parreiras recebe o nome de Viticultura de Precisão que, bem como a agricultura de precisão, objetiva o acompanhamento dos aspectos essenciais para a produção de uvas de qualidade com intuito de mapeamento e melhoria de curto, médio e longo prazo. Estima-se que o uso de robôs na indústria do vinho tenha reduzido os erros de 30% para 10-15% na produção (BONNEAU; RAMAHANDRY, 2017), melhorando o rendimento econômico e reduzindo seu impacto ambiental e risco associado.

Ao redor do mundo é possível encontrar diversos modelos de soluções oferecidos por empresas de tecnologia (Ericsson, Intel, Verizon, Libelium), desde a parte estrutural, eletrônica até o *software* para *dashboard* dos dados de monitoramento e construção de banco de dados, como por exemplo os modelos oferecidos pela empresa PlantCT e Libelium (COSGROVE, 2019; BONNEAU; RAMAHANDRY, 2017).

Seguindo exemplo de modelos existentes, o SmartVit traz a proposta de um produto alinhado com as necessidades do viticultor brasileiro, mais especificamente da região Centro-Oeste, adaptando as soluções adotadas em países europeus para o atendimento das especificações técnicas regionais, adequando-as às condições climáticas, garantindo uma uva de alta qualidade para a produção de vinhos finos.

1.1 Necessidade de Negócio

Apesar da agricultura de precisão ter sido inserida na viticultura no final dos anos 90 na Austrália, as soluções IoT só passaram a se popularizar a partir de 2009, com o desenvolvimento de sensores voltados para as necessidades específicas da vitivinicultura. Atualmente há soluções empregadas em fase de teste, seja utilizando estações fixas de monitoramento ou móveis, com foco no monitoramento do solo, *status* da água, peso do cacho e monitoramento do crescimento, predição de doenças, entre outros (BONNEAU; RAMAHANDRY, 2017; COSGROVE, 2019; GRIZZO, 2019).

Devido as características especiais e condições específicas de cultivo, as soluções tecnológicas precisam estar ajustadas à região, o que torna necessário o desenvolvimento e manutenção de tecnologia local. Sabendo que a região centro-oeste tem apresentado crescimento na produção de uvas finas e ganhando relevância no cenário nacional, torna-se um ambiente propício para desenvolvimento do produto para monitoramento e controle de aspectos ambientais associados à videira (MELLO, 2017; BONNEAU; RAMAHANDRY, 2017; PROTAS; CAMARGO, 2011), .

1.1.1 Descrição do problema

A relação do produto com o problema que ele visa resolver, de acordo com o posicionamento do SmartVit, é descrito abaixo.

O problema	consiste na falta de controle dos recursos utilizados na			
	produção de uvas finas, apresentando um número ele-			
	vado de erro de produção e perdas econômicas. A falta			
	de domínio e controle sobre os fatores ambientais (vento,			
	chuva, insolação). Excesso ou escassez de nutrientes no			
	solo.			
Afetando	a qualidade da uva e quantidade produzida.			
Cujo impacto é	safra perdida ou alto percentual de insumo desperdiçado			
	por não atender às condições necessárias para produção			
	do vinho e recursos ambientais utilizados erroneamente.			
	Alto impacto ambiental.			
Uma boa solução seria	um sistema de monitoramento remoto e digital, dispen-			
	sando a presença física para controle do cultivo, garan-			
	tindo o controle e uniformidade nas análises, de modo			
	que a produção por completo tenha as mesmas carac-			
	terísticas. Sistema de sensoriamento e plataforma de			
	acesso de fácil utilização.			

Tabela 1 – Tabela de descrição do problema geral e solução proposta

1.2. Objetivo

1.1.2 Posição do produto

A apresentação do produto desenvolvido e o seu diferencial em relação às propostas existentes no mercado.

Para	viticultores		
que	desejam acompanhar sua produção remotamente		
o SmartVit	se propõe a disponibilizar em dashboards os dados obtidos a partir		
	do sensoriamento local, realizando análise de dados da vinícola e		
	ativando um sistema de notificações e alertas		
que	tornarão o processo de análise e monitoramento remoto mais dinâ-		
	mico e efetivo		
diferente das	propostas da PlantCT e Libelium		
nosso produto	estará calibrado para monitorar a produção de viticulturas de re-		
	giões com climas tropicais, fornecendo análises precisas, disponibi-		
	lizando dashboards de acompanhamento e atuando na correção do		
	sistema de irrigação quando necessário.		

Tabela 2 – Posição de mercado do produto e relação com propostas existentes.

1.2 Objetivo

O protótipo objetiva-se no sensoriamento e controle dos aspectos do solo, ar e microclima e correção no sistema de irrigação. Contará com um sistema web para transformar os dados coletados pelos sensores e dispositivos em informações utilizáveis. Dessa forma, será possível disponibilizar ao produtor informações úteis que auxiliarão na tomada de decisão, fazendo com que o sistema de coleta de informações, processamento e controle seja completo.

1.3 Escopo

SmartVit é um produto composto por um sistema de coleta e sensoriamento de dados, acoplado ao sistema de irrigação, junto com uma plataforma web pwa (progressive web app) destinado a produtores e profissionais da viticultura que desejam realizar o acompanhamento remoto da sua safra durante o processo. Dessa forma, o sistema irá realizar a coleta dos dados (provindos dos sensores instalados no perímetro da plantação), armazená-los em servidor, para que assim sejam disponibilizados ao usuário por meio de dashboards, a fim de auxiliar na tomada de decisão e consequente manutenção da safra. O sistema realizará uma análise preditiva das condições adversas da natureza, comunicando o usuário por meio de notificações via email, com o intuito de tornar o usuário ciente e fornecer-lhe tempo hábil para realizar a mitigação dos danos.

1.4 Solução

De acordo com o previsto no escopo, a solução do produto precisa atender requisitos técnicos e de adequação aos fatores ambientais locais, para que sua funcionalidade seja garantida em sua totalidade. Sendo assim, o de esboço da solução preliminar seguirá uma linha similar ao apresentado na imagem 1.

Figura 1 – Esboço da solução adotada para compreensão inicial do produto a ser entregue

Na imagem acima é possível identificar os sistemas vitais para garantir o sucesso do projeto, bem como etapa de sensoriamento de solo e disposição dos componentes, estação meteorológica, painel solar, central de processamento (parte onde estará alocado o sistema de eficiência energética, microcontroladores e sistema de comunicação wireless) e sistema de irrigação.

A solução então consiste de um produto obtido a partir da integração dos sistemas eletrônicos, estruturais, energético e de software, de um modo que conversem entre si para compor um único produto utilizável e eficiente. No que compete à solução eletrônica, os sensores estarão dispostos em diferentes pontos e níveis, para que consigam extrair os dados corretamente em relação ao recebido pelas parreiras. A estrutura será projetada para proteger os componentes, suportar o carregamento necessário dos subsistemas e ainda se adequar ergonomicamente para uso e manutenção. O sistema também apresentará uma parte para sintetização e disponibilização dos dados coletados em servidor, para que o usuário final receba o controle de sua produção.

2 Business Case

Descrição das informações necessárias do produto na visão de mercado. Aqui incluise o detalhamento dos requisitos de alto nível, suas restrições e limitações, alternativas e concorrentes, estudo de viabilidade de investimento.

2.1 Requisitos do produto

Os requisitos de alto nível do produto são:

- O produto será de estrutura estática;
- Projetada para suportar as condições climáticas locais;
- Realizar o sensoriamento do solo (temperatura, pH e umidade);
- Estação meteorológica local (umidade relativa do ar, índice pluviométrico, velocidade do vento, direção do vento, pressão atmosférica e temperatura do ambiente);
- Monitoramento dos níveis de incidência solar local;
- Acionamento do sistema de irrigação;
- Sistema energético autossuficiente alimentado por painel fotovoltaico e banco de baterias;
- Unidade de controle para comunicação remota;
- Unidade de processamento de dados e integração dos dados;
- Aplicação para disponibilização dos dados em modelo de dashboard;
- Aplicação para monitoramento do sistema;
- Aplicação para gerenciamento negocial;
- Aplicação para avaliação da safra;
- Aplicação para notificação quanto a intempéries;
- Análise do vinhedo para identificação de possíveis riscos;
- Mapeamento e identificação de criticidades;
- Sugestão de ação quando identificado alguma irregularidade que necessita de intervenção humana;

2.2 Restrições

- O produto deverá ser instalado próximo à parreira;
- O produto não está projetado para catástrofes ambientais;
- Os sensores estarão calibrados para atender às condições ideais de produção somente para a região do centro-oeste;
- O painel solar deverá estar em ponto livre de obstruções ou região de sombra;
- Todas as medições serão realizadas simultaneamente em período específico;
- Unidade processamento de dados será alocada em circuito separado do servidor;
- Unidade de controle para comunicação remota de dados deverá possuir acesso a rede 4G;
- A aplicação deverá ter compatibilidade com os principais navegadores (Google Chrome, Mozilla Firefox e Safari);
- A aplicação terá disponibilidade para dispositivos móveis através da metodologia progressive web app;
- Para o uso do sistema é necessário que o usuário tenha uma aparelho compatível com a aplicação e deve estar conectado à internet;
- A arquitetura seguirá o modelo de microsserviços;
- O design deverá ser simples e intuitivo, baseando-se nas heurísticas de Nielsen;
- O sistema deve garantir que os projetos sejam acessados somente pelos usuários permitidos.

2.3 Alternativas e Concorrentes

• Libelium - Produto de origem italiana, com proposta de monitoramento da temperatura, umidade, composição do solo, temperatura do solo, condições climáticas, radiação solar e umidade foliar. Com software permitindo acesso aos dados da produção, além de gerenciamento de indicadores pelo usuário. O sistema fora planejado para se adequar a diversos modelos de agricultura. Em contrapartida, quando comparado com a proposta do SmartVit, ele não apresenta um sistema para controle de irrigação, além do preço elevado (solução básica: €3.900,00 - aprox: R\$ 23700,00 - 1)(LIBELIUM, 2020).

 $^{^{1}}$ cotação do euro no dia 21/05/2020: R\$6,08

- PlantCT Proposta húngara, inclui barômetro, sensor de umidade foliar, umidade e temperatura do solo, precipitação, radiação solar, monitoramento de irrigação e composição do solo e detecção de pragas. Possui software de alarme de pragas e predição de risco. Apesar de muito se assemelhar com a proposta do SmartVit, o produto não faz menção sobre análise foliar, detalhamento de quais requisitos de alto nível da aplicação de software, também não é possível saber preços ou soluções fora da região europeia (PLANTCT, 2020).
- eVineyard Software de gerenciamento de vinícola, oferecendo calendário online de trabalho da vinícola, previsão de mofo e irrigação, planejamento de trabalho e custos, suporte para sensores de irrigação, estação climática e controle de irrigação. O produto engloba apenas proposta de software, não menciona nem oferece a parte de sensoriamento. O valor completo que compete com o produto oferecido pela SmartVit não é fornecido, não tendo efeito comparativo (EVINEYARD, 2020).
- PreDivine Solução chilena baseada em rede de sensores wireless, estação de clima e algoritmos de predição. Capaz de monitorar as condições de microclima do vinhedo com objetivo preditivo de pragas e doenças. O produto não tem detalhamento quanto aos sensores e nem sobre custos. Não há menção sobre a aplicação do produto em território brasileiro (PREDIVINE, 2020).

2.4 Partes interessadas

As partes interessadas do projeto incluem patrocinadores, clientes, parceiros de negócios, grupos organizacionais, gerentes e outras partes. Dentre esses, as partes interessadas são descritos de acordo com seus idealizadores, envolvidos e usuários.

2.4.1 Idealizadores

Como principal idealizador possui a equipe formada por estudantes de engenharia, onde objetiva-se o desenvolvimento de um produto no intuito de aprimorar as habilidades de trabalho em grupo, gerenciamento de projetos, sintetizar os conteúdos aprendidos ao longo dos cursos de engenharias para a prototipagem, promovendo a capacidade de desenvolvimento técnico e de integração.

Como idealizadores secundários tem-se a banca avaliadora, correspondendo aos professores representantes dos cursos de Engenharia Eletrônica, de Energia, de Automotiva, Aeroespacial e de Software. Podendo inferir nos objetivos e desenvolvimento do projeto, responsáveis pela avaliação e validação dos entregáveis junto à equipe ao longo do projeto.

Em complemento, tem-se o cliente interessado em reduzir os erros associados à safra, com intuito de obter maior controle sobre as características e condições de cultivo, inserindo ferramentas tecnológicas para modernizar sua produção.

2.4.2 Envolvidos

Nome	Descrição	Responsabilidades
Equipe de Eletrônica	Alunos da UnB que desen-	Coletar os dados através de sen-
	volverão a parte eletrônica	soriamento e disponibiliza-los nos
	do produto.	servidores, controlar o sistema de
		irrigação;
Equipe de Energia	Alunos da UnB que desen-	Fornecer energia para o funcio-
	volverão o sistema energé-	namento do sistema, garantindo
	tico.	um produto autossuficiente e de
		baixo impacto ambiental;
Equipe de Estrutura	Alunos da UnB que projeta-	Projetar estrutura ergonômica, de
	rão o modelo estrutural do	baixo impacto ambiental e que su-
	produto.	porte condições climáticas sem se
		deteriorar;
Equipe de Software	Alunos da UnB que desen-	Elicitar requisitos, priorizar tare-
	volverão a plataforma on-	fas, definir arquitetura e desen-
	line;	volver a aplicação web pwa para
		acesso aos dados;
Corpo Docente	Professores ministrantes da	Responsáveis pela avaliação das
	matéria Projeto Integrador	fases de desenvolvimento do pro-
	2.	jeto, validação das etapas, aná-
		lise técnica dos subsistemas (ele-
		trônica, energia, estrutura e soft-
		ware). Fornecer feedbacks e dar
		suporte para desenvolvimento do
		produto, maquinário para produ-
D 1		ção;
Fornecedores	Empresas de eletrônicos,	Fornecer os insumos essenciais
	software e materiais de	para o desenvolvimento do pro-
	construção	jeto nas áreas de eletrônica, efi-
		ciência energética, software e es-
V:+:1+	C4 - 1 - 1 1 1 1 1 1 1 1 1	trutura;
Viticultor	Stakeholder interessado em	Fornecer os requisitos do produto
	automatizar o gerencia-	e dar feedbacks a cada ciclo de en-
	mento de sua vinícola;	tregas;

Tabela 3 — Descrição dos envolvidos e interessados no projeto e interessados no projeto, levantamento de suas responsabilidades gerais

2.5. Riscos de alto nível 25

2.4.3 Usuários

Os usuários serão as pessoas habilitadas para manusear e receber as informações geradas pelo produto, também serão as pessoas que manterão contato com os desenvolvedores para informar quaisquer anormalidades.

Nome	Descrição	$ m A$ ç $ m ilde{o}es$	
		Acessar o sistema;	
		Visualizar o dashboard;	
		Visualizar os indicadores;	
		Acompanhar criticidades;	
Viticultor	Hauário final que pos	Receber alertas e intempéries;	
VIGCUITOI	Usuário final que pos-	Cadastrar pragas;	
	sui cadastro na plata- forma, dono da viní-	Visualizar saúde do sistema;	
	cola cadastrada.	Visualizar características dos tipos de uva;	
	cora cadastrada.	Visualizar notificações;	
		Avaliar safra;	
		Acessar o sistema;	
		Cadastrar e gerenciar contratos;	
		Cadastrar e gerenciar usuários do sistema;	
		Cadastrar e gerenciar vinícolas do sistema;	
Administrador	Usuário final cadas-	Acompanhar as informações coletadas;	
	trado na plataforma	Receber pedidos de contratação;	
		Visualizar saúde do sistema;	
		Visualizar feedbacks;	
		Visualizar e gerenciar suporte aos usuários;	
		Acessar o sistema;	
		Visualizar o dashboard;	
		Visualizar os indicadores;	
Técnico		Acompanhar criticidades;	
	Usuário final cadastrado na plataforma, responsável pelo	Receber alertas e intempéries;	
		Cadastrar pragas;	
		Visualizar saúde do sistema;	
	acompanhamento da	Visualizar características dos tipos de uva;	
	vinícola cadastrada	Visualizar notificações;	
	vinicola cadastrada	Avaliar safra;	

Tabela 4 – Relação de usuários finais do produto

2.5 Riscos de alto nível

O levantamento dos possíveis riscos associados ao projeto se faz necessário para conhecimento do processo, efeito da falha, ação necessária (mitigar ou prevenir), probabilidade de ocorrência, impacto, priorização e plano de ação. Os riscos e falhas podem ser humanos, técnicos, ambientais, podendo estes serem elencados abaixo e o seu plano de ação podendo ser conferido na seção 8.

- Indefinição de escopo;
- Projeto de domínio complexo;
- Desistência de membros;
- Falha na comunicação;
- Baixa produtividade;
- Falta de conhecimento/experiência em soluções adotadas;
- Erros de padronização;
- Alteração na arquitetura;
- Perda de componentes vitais;
- Estouro no orçamento previsto;
- Entregáveis fora do prazo;
- Falta de recursos e matérias-prima;
- Atraso na entrega de componentes;
- Catástrofe natural que impeça a realização do projeto;
- Falta de equipamentos ou meios para a construção da estrutura;
- Problemas na integração dos subsistemas;
- Sensores descalibrados que passem informações errôneas para o sistema;
- Incompatibilidade de componentes;
- Problemas relacionados ao ambiente de desenvolvimento;

2.6 Cronograma

O cronograma de execução fora separado de acordo com as fases necessárias para serem entregues a cada ponto de controle. Tendo os prazos de execução, considerando o tempo de trabalho semanal dentro e fora de sala de aula, estimando necessidade de 12 horas de dedicação semanal por cada membro da equipe. Além de prever que todo o plano de execução do projeto seja cumprido no período de 4 meses, tempo do período letivo que será cursado a matéria. Seu detalhamento com as datas definidas pode ser encontrada na seção 6.

2.7. Orçamento 27

ETAPA	DESCRIÇÃO	PRAZO
PC1	Definição do tema. Contato com clientes.	01 semana
PC1	Levantamento de requisitos. Elaboração de Escopo.	01 semana
PC1	Documentação de início do projeto.	01 semana
PC1	Elaboração do Plano de Gerenciamento do Projeto.	02 semanas
PC2	Fase de cálculos e simulações.	02 semanas
PC2	Desenvolvimento dos subsistemas.	02 semanas
PC2	Testes individuais e coletas de resultados.	02 semanas
PC3	Integração, testes e calibração.	03 semanas
PC3	Teste em campo. Ajustes.	03 semanas
PC4	Entrega do produto final.	02 semanas.

Tabela 5 – Cronograma de execução do projeto durante o semestre

2.7 Orçamento

O orçamento geral do projeto foi elaborado alinhando o melhor custo-benefício na aquisição dos equipamentos e insumos desenvolvidos, sendo um valor estimado, podendo variar ao longo do desenvolvimento, uma vez que parte dos componentes são importados e seus valores dependem das condições de câmbio no ato da compra. Sendo assim, a parte de aquisições está dividida de acordo com os subsistemas na Tabela 6. Importante ressaltar que mesmo com um valor estimado, o controle de custos é essencial para que não haja estouro de orçamento que inviabilize a execução do projeto, podendo ser conferido no Plano de Gerenciamento de Custo, disponível na seção 11.

Aquisições	Valor (R\$)
Sistema Eletrônico	1948,93
Sistema Energético	1037,85
Estrutura	1340,00
Software	640,02 2
TOTAL	4966,80

Tabela 6 – Orçamento geral de aquisições divididos por subsistemas.

2.7.1 Lista de Aquisições

Corresponde à lista preliminar de aquisição dos componentes e materiais necessários para que o escopo e expectativa dos envolvidos sejam cumpridos. Não se tratando de uma lista fechada, podendo ter alteração nas escolhas dos componentes uma vez que sua viabilidade técnica e compatibilidade com demais áreas não fora concluída até a execução desse documento.

Sistema Eletrônico

- Sistema de comunicação para IoT de baixo consumo;
- Unidade de Processamento Central;
- Sensor de temperatura do solo;
- Sensor de pH do solo;
- Sensor de umidade de solo para medição em três níveis;
- Sensor de umidade do ar;
- Sensor de temperatura ambiente;
- Sensor de pressão atmosférica;
- Sensor Pluviométrico;
- Sensor de velocidade do vento;
- Sensor de direção do vento;
- Cabos e conectores;
- Componentes de baixo custo individual (resistores, capacitores, push bottoms, relés, etc)

Sistema Energético

- Painel Solar;
- Bateria;
- Controlador de carga;
- Cabos e conectores;

Estrutura

- Válvula solenoide para controle de fluxo do sistema de irrigação;
- Gotejadores;
- Mangueira;
- Poste e acessórios adicionais metálicos para construção da estrutura que suportará os dispositivos;

2.7. Orçamento 29

Software

• Infraestrutura para disponibilidade da aplicação web na Digital Ocean.

- mLab que se utiliza como hospedagem do banco de dados como serviço para o MongoDB.
- Redis para armazenamento da base de dados NoSQL.
- AWS EC2 para deploy da aplicação.
- API Gateaway para a publicação, manutenção, monitoramento e proteção das API's em qualquer escala. Sendo elas:
 - HTPP APIs
 - REST API
 - WebSocket API

3 Fatores Ambientais

Os fatores ambientais descrevem as condições fora do controle da equipe que influenciam no desenvolvimento do projeto (INSTITUTE, 2013). Neles são inclusos a cultura, políticas e condutas adotadas durante o desenvolvimento do projeto, garantindo assim o bom desenvolvimento e integração entre as partes. Aqui também é levantado os recursos necessários para construção do produto, as instalações utilizadas para reuniões, testes e etapas de validação, a localização das instalações. Nesse capítulo também é possível conhecer os recursos humanos, a estrutura organizacional e o perfil dos envolvidos, bem como suas responsabilidades e atribuições.

3.1 Código de Conduta

Os deveres abaixo pautam a conduta e são extensíveis a todos os membros do grupo SmartVit:

- Cumprimento de todos os requisitos legais e fiscais impostos pelos órgãos competentes durante todas as fases do projeto.
- Responsabilidade por zelar e respeitar todos os desenvolvedores, fornecedores, clientes e demais membros da comunidade.
- Responsabilidade em fornecer informações claras e coerentes a todos os desenvolvedores, fornecedores e clientes.
- Assiduidade em reuniões e eventos oficiais da equipe.
- Cumprimento das atribuições seguindo os prazos determinados.
- Responsabilidade por honrar qualquer contrato realizado com fornecedores e clientes.
- Gerenciamento responsável dos recursos humanos, ambientais, materiais e financeiros
- Documentar reuniões e decisões do projeto, deixando-os acessíveis para todos interessados e envolvidos.
- Zelo com todos os bens materiais necessários para a execução do projeto.
- Cumprimento dos planos de gerenciamento do projeto.

3.2 Instalações e recursos

O projeto inicialmente seria construído nas instalações da UnB, situada na faculdade UnB Gama (FGA), no endereço Setor Leste Projeção A - Gama Leste, Brasília - DF, CEP: 72444-240, com reuniões realizadas nas salas disponibilizadas para o desenvolvimento do projeto. Em virtude das condições sanitárias causadas pela pandemia do corona vírus, todas as reuniões passaram a ser *online*, enquanto a entrega do protótipo foi cancelada pelos responsáveis pela disciplina Projeto Integrador 2. Desta forma, o desenvolvimento de todos os subsistemas serão realizados de maneira remota, com cada integrante do grupo utilizando os recursos próprios para desenvolvimento do mesmo. Caso seja necessário a realização de testes laboratoriais, estes serão feitos nas dependências da FGA mediante agendamento prévio com responsáveis e atentando-se para sua disponibilidade e às regulamentações dos órgãos de saúde do GDF.

3.3 Estrutura Organizacional

A equipe segue o modelo de organização projetizada (INSTITUTE, 2013), onde os membros possuem igual engajamento com o projeto e os diretores técnicos possuem igual autoridade e autonomia. As áreas técnicas são divididas de acordo com os subsistemas, sendo estes conhecidos por Eletrônica e Eficiência Energética (E & E.E.), Estruturas e *Software*. A equipe, tem seu organograma com Coordenação Geral, Diretoria de Qualidade, Diretoria Técnica e desenvolvedores, conforme observado na figura 2. As responsabilidades e atribuições de cada integrante poderá ser conferido na seção 7.

Figura 2 – Organograma da Equipe disposta de maneira hierárquica e nominal

3.4. Entregáveis 33

3.4 Entregáveis

As fases de entregas estão alinhadas com as etapas avaliativas da matéria Projeto Integrador 2, sendo estas compostas por: problematização, detalhamento da solução, projeto e construção dos subsistemas, integração e lançamento da versão piloto. Sua divisão foi feita em sprints, baseada na metodologia ágil *Scrum* e o controle através do método de administração de produção, Kanban. As entregas de cada etapa do projeto está descrita na figura 3, o detalhamento das entregas juntamente com seu calendário de execução podem ser conferidos no plano de gerenciamento de tempo, no capítulo 6.

Figura 3 – Mapa de entregáveis em *sprints*, com detalhamento e tempo de duração em cada etapa.

3.5 Sucesso do Projeto

O sucesso do projeto será medido em termos da sua conclusão, considerando as restrições iniciais, escopo, tempo, custo, qualidade, recursos e riscos, conforme aprovado por equipe gerencial, corpo técnico e clientes. Sendo melhor descrito no Plano de Gerenciamento de Qualidade (Capítulo 10), a validação será feita ao término de cada *sprint*, com a revisão e correção dos pontos necessários. O levantamento de melhorias e mudanças será realizado por meio de *feedbacks* fornecidos pelos envolvidos e partes interessadas. A conclusão e sucesso do projeto será atingida após etapas de planejamento, desenvolvimento, testes e ajustes até que sua documentação de encerramento seja feita.

Parte II PLANO DE GERENCIAMENTO

4 Plano de Gerenciamento do Projeto

O plano de gerenciamento do projeto, consiste na adoção de metodologias e padrões para gerenciar as fases e entregas do projeto, tendo o Termo de Abertura do Projeto (Parte I) como entrada. Ditando as alocações de recursos, concessões e alternativas conflitantes entre áreas, sendo composto por planos auxiliares voltados para a definição da execução, monitoramento, controle e encerramento do projeto. Para o desenvolvimento do SmartVit, torna-se pertinente fazer o monitoramento e controle das atividades documentadas formalmente, para isso tem-se como planos auxiliares os:

- Plano de Gerenciamento de Escopo e Requisitos, seção 5;
- Plano de Gerenciamento de Cronograma, seção 6;
- Plano de Gerenciamento de Recursos Humanos, seção 7;
- Plano de Gerenciamento de Riscos, seção 8;
- Plano de Gerenciamento de Comunicação, seção 9;
- Plano de Gerenciamento de Qualidade, seção 10;
- Plano de Gerenciamento de Custos, seção 11;
- Plano de Gerenciamento de Aquisições, seção 12;

5 Escopo

O projeto é uma proposta de integração das engenharias de *software*, aeroespacial, automotiva, energia e eletrônica, de caráter documental, a ser desenvolvido com orçamento financiado pelas partes interessadas, de cronograma executável durante o período letivo (15 semanas). Terá todas suas fases documentadas e entregues para validação e *feedback* das partes interessadas. Ao final do semestre, será entregue o compilado de conclusões obtidas ao decorrer do desenvolvimento.

O produto consiste na documentação completa de implementação de um sistema destinado à viticultura de precisão da região centro-oeste brasileira. O SmartVit é composto por sistema eletrônico para coleta de dados, parte estrutural para acoplamento e segurança dos componentes, sistema energético autossuficiente e *software* para tratamento e disponibilização dos dados coletados. Possuindo também proposta preditiva de condições climáticas inclusas no sistema de alertas.

5.1 Plano de Gerenciamento do Escopo

O gerenciamento do escopo é realizado em etapas conhecidas e definidas. Em primeiro faz-se o levantamento dos requisitos junto aos envolvidos, para então definir o escopo. Os primeiros requisitos foram fornecidos pelos professores ministrantes da matéria PI2, no qual corresponde ao planejamento e desenvolvimento de um projeto que englobasse as engenharias do *campus* (Aeroespacial, Automotiva, Eletrônica, Energia e *Software*).

Na segunda etapa fez-se pesquisas e estudo preliminar de projetos, para então, por meio de brainstorming os membros apresentarem possíveis ideias do qual tinham afinidades. Fez-se o refino a partir da ideia de concepção, viabilidade econômica, tempo de execução, complexidade e nível de integração entre áreas, até que todos estivessem de acordo com uma proposta de trabalho.

Após validação da ideia por parte dos professores, seguiu-se para o estudo bibliográfico, estudo de mercado e projetos concorrentes, para então realizar o contato com clientes e fazer a coleta dos requisitos técnicos do projeto. Seguindo dessa etapa, fez-se o estudo mais afundo de manuais de cultivo, condições de aplicabilidade do produto para seguir com o refino e definição do escopo.

Dado os primeiros requisitos e a definição do escopo inicial, após os estudos e aprofundamento na solução. O controle do escopo é feito a partir de uma matriz de rastreabilidade, no qual é atualizada registrando as mudanças ocorridas ao longo do desenvolvimento, atualizando o seu status e prazo de conclusão de cada ponto.

40 Capítulo 5. Escopo

5.2 Plano de Gerenciamento de Requisitos

Os requisitos são obtidos a partir do detalhamento e tipificação do escopo separados em itens, assim é possível fazer a sua classificação, descrição, priorização e critérios de aceitação.

Para que o projeto seja conciso e coeso, seus requisitos devem ser mensuráveis, passíveis de testes, rastreáveis, completos, consistentes e aceitáveis para as principais partes interessadas, sendo assim estão divididos em grandes áreas, sendo estas produto e projeto.

Munido de ferramentas e técnicas para o levantamento dos requisitos, tais como entrevistas e questionários, brainstorming com as partes envolvidas e benchmarking com outras equipes e projetos similares. O primeiro passo foi a elaboração do diagrama de contexto, para refino e melhor direcionamento dos questionamentos pertinentes aos requisitos necessários, conforme demonstrado na Figura 4.

Figura 4 – Diagrama de contexto com entradas e saídas pertinentes às partes envolvidas

A partir disso, foi possível elencar os requisitos do projeto, separados pelas áreas E.E.E, Estrutura e *Software*, tipificado entre funcionais, não-funcionais e técnicos, priorizados de acordo com a técnica MoSCoW a tabela 7.

Prioridade	Descrição
0 - Must have	Itens críticos essenciais para o projeto.
1 - Should have	Itens importantes porém não-necessários.
2 - Could have	Itens desejáveis.
3 - Would have	Itens não-críticos, porém de interesse aos envolvidos.

Tabela 7 – Técnica de priorização de requisitos - MoSCoW

5.3. Requisitos 41

A sua tipificação está categorizada entre requisitos funcionais, que correspondem às funcionalidades do sistema, não-funcionas que descrevem as exigências e limitações do sistema servindo de suporte aos demais requisitos, e os requisitos técnicos que detalham como o produto será construído.

5.3 Requisitos

Área	Requisito	Descrição	Tipo	P.*
Software	Cadastro de vinícolas	Baseado nos dados dos contratos	Funcional	0
Software	Visualização de viní-	Visualização rápida das vinícolas e	Funcional	1
	colas cadastradas	dados de nome, localização, último		
		acesso e data de início do contrato		
Software	Filtro de vinícolas	Por localização, nome, último de	Funcional	2
		acesso e data de início do contrato		
Software	Cancelar monitora-	Cancelar o monitoramento da viní-	Funcional	1
	mento via aplicativo	cola em caso de irregularidade ou		
		término de contrato		
Software	Visualizar tráfego de	Possibilitar identificação de sensores	Funcional	1
	dados dos sensores de	com algum problema de funciona-		
	cada vinícola	mento		
Software	Visualizar indicadores	Ver indicadores de água, solo, tem-	Funcional	0
	gerais	peratura - dashboard de fácil en-		
		tendimento, cores diferentes quando		
		valores obtidos forem esdrúxulos		
Software	Visualizar notificações	Ver as notificações com criticidade	Funcional	1
	de criticidade	nos dados coletados		
Software	Notificar usuários de	Notificar aos usuários quando os da-	Funcional	1
	criticidade nos dados	dos coletados apresentar informa-		
	coletados	ções críticas		
Software	Visualizar sistemas	Ver informações específicas de cada	Funcional	0
	instalados na vinícola	sistema instalado - A aplicação deve		
		fornecer os dados em tempo real		
Software	Acionar equipe do sis-	Se necessário entrar em contato com	Funcional	0
	tema	a equipe e solicitar reparos		

42 Capítulo 5. Escopo

Software	Avaliar safra	Após a colheita, o agrônomo pode	Funcional	2
		registrar as características da uva		
		obtida e visualizar as propriedades		
		de sabor e variações que influencia-		
		rão na qualidade do vinho		
Software	Analisar qualidade da	O agrônomo poderá obter uma aná-	Funcional	1
	safra dado um tipo de	lise que indique a qualidade da safra		
	uva	de determinado tipo de uva naquele		
		local		
Software	Alertar sistema	Será possível avisar o sistema	Funcional	2
	quanto a pragas	quanto a pragas		
Software	Alertas de	Informar ao usuário sobre as mu-	Funcional	2
	clima/intempéries	danças climáticas		
	na região da vinícola			
Software	Notificar usuários de	O sistema deve avisar ao usuário	Funcional	1
	atividades automáti-	quando comportamentos automáti-		
	cas quando são acio-	cos forem acionados, ex: irrigação		
	nadas			
Software	Cadastro dos contra-	Cadastrar as informações necessá-	Funcional	0
	tos	rias do contrato para iniciar o aten-		
		dimento		
Software	Cadastro de usuário	Cadastrar os usuários para que te-	Funcional	0
		nham acesso ao sistema		
Software	Gerenciar solicitações	Possibilitar os usuários a gerenciar	Funcional	0
		suas notificações		
Software	Visualizar parceiros	Visualizar parceiros para facilitar	Funcional	2
		correções necessárias na vinícola		
Software	Visualizar fases do ci-	Visualizar as fases do ciclo da uva	Funcional	1
	clo de vida da uva	para obter um parâmetro sobre o		
		seu plantio		
Software	Enviar feedback	Dar um feedback de como melhorar	Funcional	1
		o sistema e se foi encontrados bugs		
		ou erros		
E&EE	Alimentação da su-	Sistema fotovoltaico capaz de forne-	Técnico	0
	bestação de coleta e	cer energia (5V 1A; 5V 0,5A e 3.3V		
	transmissão de dados	0.5A) para os subsistemas de coleta		
		e transmissão de dados, sem depen-		
		der de alimentação da rede		

5.3. Requisitos 43

E&EE	Coletar dados de umi- dade do solo em três	Sensoriamento utilizando sensores capacitivos de umidade	Funcional	0
	níveis de profundidade			
E&EE	Coletar dados de tem-	Sensoriamento com DS18B20	Funcional	0
	peratura do solo			
E&EE	Coletar dados de PH	Sensoriamento com PH-4502C	Funcional	0
	do solo			
E&EE	Coletar dados de tem-	Sensoriamento com BME280	Funcional	0
	peratura do ambiente			
E&EE	Coletar dados de umi-	Sensoriamento com BME280	Funcional	0
	dade do ambiente			
E&EE	Coletar dados de pres-	Sensoriamento com BME280	Funcional	1
	são do ambiente			
E&EE	Coletar dados sobre a	Sensoriamento com BME280	Funcional	2
	altitude da instalação			
	de coleta			
E&EE	Coletar dados sobre a	Sensoriamento com pluviômetro de	Funcional	0
	quantidade de chuva	báscula		
E&EE	Coletar dados de velo-	Sensoriamento com anemômetro	Funcional	1
	cidade do vento	SV10		
E&EE	Coletar dados da dire-	Sensoriamento com biruta DV10	Não-	1
	ção do vento		funcional	
E&EE	Tratamento inicial de	Tratamento no microcontrolador	Técnico	0
	dados a partir de um	MSP430G2553 devido ao baixo con-		
	microcontrolador	sumo		
E&EE	Realizar backup local	Backup via módulo microSD, comu-	Não-	2
	dos dados	nicando com microcontrolador Lora	funcional	
		ESP32		
E&EE	Realizar a transmissão	Transmissão de dados pelo micro-	Não-	0
	do conjunto de dados	controlador Lora ESP32, utilizando	funcional	
	coletados	protocolo LoraWan		
E&EE	Comunicação entre	Comunicação entre MSP430G2553	Não-	0
	módulo de coleta e de	e Lora ESP32 utilizando protocolo	funcional	
	transmissão	I2C		
E&EE	Acionamento automá-	Acionamento se dá a partir de um	Funcional	2
	tico do sistema de irri-	limiar definido, utilizando informa-		
	gação	ções dos sensores de umidade do		
		solo		

Capítulo 5. Escopo

E&EE	Banco de baterias para alimentação	Sistema de alimentação complementar ao fotovoltaico, suprindo a alimentação do sistema em situações de: - Baixa luminosidade - Falha do sistema principal	Técnico	0
Estruturas	Definir um material compatível com os re- quisitos de eletrônica e da estrutura	Material resistente ao tempo e as in- tempéries climáticas e que não in- terfira na transmissão de dados	Técnico	0
Estruturas	Fixação que aguente o peso próprio da es- trutura e de todos os componentes	A fixação da estrutura no solo deve aguentar o peso da estrutura e dos componentes e deve estar devida- mente engastada	Não- funcional	0
Estruturas	Fixação realizada de maneira a não danifi- car o solo	A fixação deve poder ser removida sem causar danos ao solo	Não- funcional	0
Estruturas	Sensores acessíveis para manutenções do sistema	Os sensores devem estar alocados de maneira que possam ser acessados facilmente	Não- funcional	0
Estruturas	Garantir que a pres- são de entrada seja de 100kPa a 500kPa	A pressão de entrada do sistema de irrigação deve estar dentro dos valores estipulados	Não- funcional	0
Estruturas	Manutenção dos gote- jadores	A manutenção quanto ao entupi- mento dos gotejadores é de respon- sabilidade do usuário	Não- funcional	0
Estruturas	A tubulação do sistema de irrigação deve obedecer as especificações do sistema	A tubulação do sistema não pode ser alterada por outra com dimen- sões diferentes das pré determina- das	Não- funcional	0
Estruturas	Fornecer irrigação a uma fileira de compri- mento 2.5 m	A distância entre o poste e o final da mangueira não podem exceder 2.5m de comprimento	Não- funcional	0
Estruturas	Estrutura que permita a passagem de água para o abastecimento controlado da planta- ção	A estrutura deve apresentar encai- xes e passagens para o sistema de irrigação	Técnico	0

5.3. Requisitos 45

Estruturas	Projetar encaixes que	Os encaixes devem suportar as ten-	Não-	0
	resistam às tensões	sões do sistema	funcional	
	exercidas pelos com-			
	ponentes que serão			
	alocados na estrutura			
Estruturas	Estrutura que respeite	A estrutura deve assegurar a inte-	Técnico	0
	os requisitos de prote-	gridade de todos os sensores		
	ção dos sensores. Ne-			
	cessidade de passa-			
	gem de vento, prote-			
	ção contra água, etc.			

Tabela 8 – Tabela de requisitos do projeto

 $^{^{\}star}$ Prioridade.

46 Capítulo 5. Escopo

5.4 Estrutura Analítica do Projeto

Figura 5 – Estrutura Analítica do Projeto SmartVit

6 Tempo

6.1 Plano de Gerenciamento de Cronograma

O gerenciamento do tempo tem como objetivo estipular um cronograma para o qual as atividades devem ser desenvolvidas. Esse cronograma dele levar em consideração a duração de cada atividade, os responsáveis e em qual sequência elas devem ser executadas. De modo a executar um trabalho mais focado, as atividades foram divididas em quatro *sprints* que seguem o cronograma da disciplina. O detalhamento das atividades está apresentado na tabela 9:

Sprint	Entregável	Descrição	Responsável	Data
1	Gestão RH	Definição de papéis e res-	Todos	21/08
		ponsabilidades dos mem-		
		bros;		
1	TAP/EAP	Documentação de abertura	Todos	04/09
		do projeto, cronograma, de-		
		finição de escopo em alto ní-		
		vel, estrutura analítica;		
1	Arquitetura básica de	Desenvolvimento de arqui-	Gerentes	07/09
	solução	tetura do projeto, esboço da		
		solução e proposta de pro-		
		jeto integrado;		
1	Gestão de Riscos	Plano de gerenciamento de	Gerentes	07/09
		riscos e mitigação;		
1	Gestão de Requisitos	Plano de gerenciamento de	Gerentes	07/09
		requisitos;		
1	Apresentação PC1	Apresentação da proposta	Todos	09/09
		em modelo ppt que conte-		
		nha um resumo de todas as		
		etapas de trabalho sintetiza-		
		das até aqui;		
1	Avaliação Individual	Avaliação individual dos in-	Gerentes/Todos	11/09
		tegrantes. Relatório de au-		
		toavaliação e avaliação ge-		
		rencial.		

48 Capítulo 6. Tempo

2	Resultados e Conclu-	Revisão do PC1, discussão	Todos	18/09
	são PC1	de resultados e lições aprendidas.		
2	Modelagem e simula-	Modelagem dos sistemas	Gerentes	23/09
	ções	individualizados, simulação		
		primária, comparativo entre		
		componentes;		
2	Plano de teste de sub-	Definição de plano de testa-	Gerentes	25/09
	sistemas	gem dos subsistemas, asse-		
		gurar o bom funcionamento,		
		justificativa técnica de ro-		
		teiro de teste.		
2	Diagramas de subsis-	Diagramas técnicos dos sub-	Gerentes	30/09
	temas	sistemas e das soluções ado-		
		tadas;		
2	Plano de integração	Elaborar plano de integra-	Gerentes	09/10
		ção entre subsistemas;		
2	Avaliação individual	Avaliação individual dos in-	Gerentes/Todos	09/10
		tegrantes. Relatório de au-		
		toavaliação e avaliação ge-		
		rencial.		
2	Apresentação PC2	Apresentação em ppt do	Gerentes	11/10
		desenvolvimento técnico no		
		PC2		
3	Resultados e Conclu-	Revisão do PC1, discussão	Todos	16/10
	são PC2	de resultados e lições apren-		
		didas.		
3	Plano de integração	Revisão e consolidação do	Todos	21/10
		plano de integração.		
3	Lista de materiais	Lista de materiais com espe-	Todos	23/10
		cificações técnicas, detalha-		
		mento de aquisição. Diagra-		
		mas e especificações dos que		
		serão construídos;		
3	Plano de teste	Roteiro de teste e validação	Gerentes	28/10
		dos sistema integrado. Veri-		
		ficação de possíveis ajustes		
		e alterações.		

3	Plano de fabricação e	Plano de aquisição, fabrica-	Todos	30/10
	montagem	ção e montagem. Constru-		
		ção do projeto.		
3	Apresentação PC3	Apresentação em ppt do ro-	Todos	04/11
		teiro de testes e validação do		
		projeto.		
4	Manual	Manual técnico do projeto,	Todos	11/11
		detalhamento de montagem		
		e condições de uso.		
4	Roteiro de manuten-	Documentação de metodo-	Todos	13/11
	ção	logia de manutenção e cali-		
		bração.		
4	Lições aprendidas	Síntese de resultados e con-	Todos	18/11
		clusões do projeto, mapa de		
		evolução.		
4	Documentação de en-	Documento de encerra-	Todos	20/11
	cerramento	mento do projeto, com		
		propostas de trabalhos		
		futuros.		
4	Vídeo propaganda	Vídeo de propaganda do	Todos	25/11
		produto. Máx 1,5min.		
4	Apresentação	Apresentação final do pro-	Todos	04/12
		jeto.		

Tabela 9 – Detalhamento das atividades a serem entregues nas sprints dentro dos prazos estipulados

7 Recursos Humanos

7.1 Plano de Gerenciamento de Recursos Humanos

O gerenciamento de recursos humanos tem como propósito definir e coordenar as funções e responsabilidades de cada membro, levando em consideração seus conhecimentos e aptidões e fornecendo treinamentos quando necessário. Para averiguar se as atribuições estão sendo cumpridas, será realizado ao final de cada ponto de controle uma avaliação interna dos membros, onde cada membro irá responder um questionário sobre os membros da sua equipe e depois fará uma autoavaliação. Caso algum membro receba uma avaliação geral negativa, o diretor da área e a coordenadora geral ficaram encarregados de entrar em contato com esse membro e averiguar os motivos pelos quais ele não cumpriu com as suas responsabilidades.

Em concordância com o que foi definido no termo de abertura do projeto, temos três equipes (E&E.E, Estruturas e Software) e uma hierarquia que foi apresentada na Fig. 2. A tabela 10 apresenta os membros da equipe e explicita suas equipes, funções e suas respectivas responsabilidades:

Nome	Equipe	Função	Obrigações
Jéssica Kamily	E.&E.E	Coordenadora Geral	Gerenciar as atividades das áreas para que estejam dentro do escopo do projeto. Gerenciar o cumprimento das entregas gerais de cada área dentro dos prazos estipulados pelo cronograma, Aplicar os planos de gerenciamento de custos, riscos, de partes interessadas e qualidade. Além de trabalhar como desenvolvedora na área de E&E.E.

Beatriz Carolina	Estruturas	Diretora de Qualidade	Dar suporte ao gerente geral no planejamento e gestão das atividades. Atuar na definição dos requisitos técnicos do projeto e garantir que o produto atenda aos requisitos Validar as escolhas técnicas e tecnológicas do projeto. Desenvolver e validar a documentação técnica. Além de trabalhar como desenvolvedora na área de estruturas
Gabriel Coelho	E.&E.E	Diretor Técnico de E.&E.E.	Gerenciar as entregas das atividades da área de E.&E.E Gerenciar o cumprimento do cronograma geral e da área pelos colaboradores de E.&E.E Fornecer as métricas para averiguação da qualidade para a gerente geral. Averiguar se as entregas da área satisfazem o escopo do projeto. Atuar como colaborador da área.
Bruna Medeiros	E.&E.E	Desenvolvedora	Definir os requisitos e o sistema de eletrônica. Projetar e executar a arquitetura de eletrônica dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.
Leonardo Marques	E.&E.E	Desenvolvedor	Definir os requisitos e o sistema de eficiência energética. Projetar e executar a arquitetura da eficiência energética. dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.

Pedro Henrique	E.&E.E	Desenvolvedor	Definir os requisitos e o sistema de eficiência energética. Projetar e executar a arquitetura da eficiência energética. dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.
Clara Costa	Estruturas	Diretora Técnica de Estruturas	Gerenciar as entregas das atividades da área de estruturas. Gerenciar o cumprimento do cronograma geral e da área pelos colaboradores de estruturas. Fornecer as métricas para averiguação da qualidade para a gerente geral. Averiguar se as entregas da área satisfazem o escopo do projeto. Atuar como colaboradora da área.
Pedro Gabriel	Estruturas	Desenvolvedor	Definir os requisitos necessários para a construção da estrutura. Projetar e executar a estrutura física do projeto dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.
Hillary Rezende	Estruturas	Desenvolvedora	Definir os requisitos necessários para a construção da estrutura. Projetar e executar a estrutura física do projeto dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.

Adrianne Alves	Software	Diretora Técnica de Software	Gerenciar as entregas das atividades da área de software. Gerenciar o cumprimento do cronograma geral e da área pelos colaboradores de software. Fornecer as métricas para averiguação da qualidade para a gerente geral. Averiguar se as entregas da área satisfazem o escopo do projeto. Atuar como colaboradora da área.
João Lucas	Software	Desenvolvedor	Definir os requisitos de soft- ware. Projetar e executar a ar- quitetura de software dentro dos prazos do cronograma es- tipulado. Evidenciar possíveis problemas do projeto para o gerente da área.
Lucas Vitor	Software	Desenvolvedor	Definir os requisitos de soft- ware. Projetar e executar a ar- quitetura de software dentro dos prazos do cronograma es- tipulado. Evidenciar possíveis problemas do projeto para o gerente da área.
Luciano Santos	Software	Desenvolvedor	Definir os requisitos de software. Projetar e executar a arquitetura de software dentro dos prazos do cronograma estipulado. Evidenciar possíveis problemas do projeto para o gerente da área.

Tabela 10 – Detalhamento dos recursos humanos e suas atribuições, deveres e obrigações

8 Riscos

8.1 Plano de Gerenciamento de Riscos

O plano de gerenciamento de riscos consiste na elaboração de técnicas e estudos para prevenção e mitigação dos riscos associados ao desenvolvimento do projeto e do produto. Os riscos aqui levantados foram obtidos a partir do escopo do projeto, dos fatores ambientais, envolvimento das partes interessadas, requisitos do produto e cronograma. A partir de técnicas analíticas e reuniões foi possível listar os riscos associados e definir sua prioridade, utilizando de metodologia quantitativa para, então, propor um plano de ação específico.

8.1.1 Análise Quantitativa

A análise quantitativa tem por objetivo a priorização e categorização dos riscos de acordo com duas métricas: probabilidade (chances de um risco ocorrer)e impacto (o quanto um risco impacta no projeto). Em posse desses valores é possível determinar a prioridade de um risco, que de acordos com os níveis auxiliam na gestão e tomadas de decisão quanto às ações a serem tomadas.

8.1.1.1 Probabilidade

A probabilidade, como se refere o nome, traz uma classificação da probabilidade do risco acontecer. Esse indicador vai de 0 a 5, compreendendo de probabilidades nulas a probabilidades muito altas.

Probabilidade	Peso
Nula	0
Muito baixa	1
Baixa	2
Média	3
Alta	4
Muito Alta	5

Tabela 11 – Relação de peso e probabilidade de risco

8.1.1.2 Impacto

O impacto consiste em um indicador que relaciona o quanto a ocorrência deste risco poderá afetar a equipe. Ele compreende, assim como a probabilidade, valores que 56 Capítulo 8. Riscos

vão de 0 a 5, englobando desde o impacto nulo ao muito alto.

Impacto	Peso
Nulo	0
Muito baixo	1
Baixo	2
Médio	3
Alto	4
Muito Alto	5

Tabela 12 – Relação de peso e impacto de risco

8.1.1.3 Prioridade

Baseando-se no impacto e na probabilidade é calculada a prioridade dos riscos, o que determina a urgência com que medidas devem ser tomadas para mitigar um risco que pode atrapalhar ou impedir o projeto.

A prioridade segue a seguinte relação entre impacto e probabilidade (impacto x probabilidade):

I/P	Muito baixa	Baixa	Média	Alta	Muito Alta
Muito baixo	1	2	3	4	5
Baixo	2	4	6	8	10
Médio	3	6	9	12	15
Alto	4	8	12	16	20
Muito Alto	5	10	15	20	25

Tabela 13 – Relação de probabilidade e impacto de risco

Para a classificação dos riscos, utiliza-se a tabela de níveis, cujo intervalo diz respeito à priorização realizada no passo anterior. Os níveis são:

Nível	Intervalo
Muito baixo	1 a 5
Baixo	6 a 10
Médio	11 a 15
Alto	16 a 20
Muito Alto	21 a 25

Tabela 14 – Níveis de prioridade de risco

8.1.2 Plano de ação para os riscos

Foram relacionados e categorizados os riscos abaixo. A partir desta tabela será realizado um processo interno de gerenciamento de riscos, responsabilidade de todos os membros da equipe.

Risco	Ação	Plano de ação	Prob.	Impacto	Prior.
Indefinição de es-	Prevenir	Validar escopo de maneira	4	4	16
copo		assertiva, assegurar seu con-			
		trole e acompanhamento			
Projeto de domínio	Prevenir	Definir escopo concretizá-	5	5	25
complexo		vel dentro da realidade da			
		equipe, do tempo disponível			
		relativo à matéria			
Desistência de	Prevenir	Reforçar a importância de	1	5	5
membros		cada membro para o sucesso			
		do projeto			
Falha na comunica-	Prevenir	Adotar meios de comunica-	3	5	15
ção		ção eficazes e comum a to-			
		dos os membros			
Baixa produtivi-	Mitigar	Realizar acompanhamento	2	5	10
dade dos membros		periódico dos membros e			
		elucidar sua importância			
		para o projeto			
Falta de conheci-	Prevenir	Realizar treinamentos e pa-	1	5	5
mento nas soluções		reamento de conhecimento			
adotadas		entre os membros da equipe			
Erros de prioriza-	Prevenir	Planejar entregas em ordem	5	5	25
ção		de prioridade e relevância			
Alteração na arqui-	Prevenir	Definir arquitetura com	3	5	15
tetura		base no conhecimento e			
		domínio da equipe			
Perda de compo-	Prevenir	Atentar-se para especifica-	2	4	8
nentes vitais		ções de uso. Preservar os			
		componentes			
Estouro no orça-	Prevenir	Adotar práticas para aqui-	2	3	6
mento previsto		sição de componentes com			
		opções aplicáveis à reali-			
		dade da equipe			

58 Capítulo 8. Riscos

Entregáveis fora do	Prevenir	Planejar o cronograma de	2	5	10
prazo		entregas dentro do período			
		exequível compatível com as			
		entregas da matéria			
Falta de recursos e	Prevenir	Verificar com fornecedores	1	2	2
matérias-prima		disponibilidade de recursos.			
		Possuir plano de substitutos			
		equivalentes elegíveis			
Catástrofe natural	Mitigar	Elencar atividades que pos-	2	3	6
que impeça a reali-		sam ser executadas em pa-			
zação do projeto		ralelo. Elaborar plano de			
		trabalho a distância.			
Falta de equipa-	Prevenir	Verificar material disponibi-	1	3	3
mentos ou meios		lizado com antecedência			
para construção					
dos subsistemas					
Problemas na inte-	Prevenir	Elaborar plano de integra-	1	5	5
gração dos subsiste-		ção alinhado entre áreas.			
mas		Adotar modelo de padroni-			
		zação.			
Sensores descali-	Prevenir	Definir periodicidade e mé-	2	5	10
brados		todos de calibração.			
Incompatibilidade	Prevenir	Verificar compatibilidade de	2	3	6
de componentes		componentes com soluções			
		adotadas no escopo			
Problemas relacio-	Mitigar	Padronizar ambiente de de-	3	4	12
nados ao ambiente		senvolvimento dos integran-			
de desenvolvimento		tes			

Tabela 15 – Gerenciamento de riscos, priorização e plano de ação

9 Comunicação

9.1 Plano de Gerenciamento de Comunicação

O plano de gerenciamento de comunicação tem como objetivo evidenciar a comunicação interna e externa da equipe, relacionando as ferramentas a serem utilizadas para isso. A escolha visa facilitar e promover a comunicação entre os membros da equipe no que diz respeito à execução do projeto, coleta e solução de dúvidas, assim como a transação de artefatos pertinentes.

9.1.1 Canais de Comunicação

- Whatsapp O aplicativo é utilizado para conversas informais, lembretes e dúvidas rápidas. Escolhido por sua popularidade e familiaridade pela maioria do grupo, a plataforma é utilizada para manter a integração e engajamento dos integrantes da equipe.
- Telegram Os alunos de software optaram na utilização do Telegram, um serviço de mensagens instantâneas disponível para smartphones, tablets e também aplicação web. O aplicativo servirá para comunicação entre os membros de software da equipe, bem como definição das reuniões, dúvidas, entregas, discussões entre os mesmos.
- Microsoft Teams Plataforma de colaboração e comunicação unificada, utilizada para reuniões virtuais, acompanhamento do calendário das atividades. Possui integração entre outras aplicações para gerenciamento de projetos e armazenamento de arquivos.
- Trello Aplicação de gerenciamento de projetos gratuito usado para acompanhamento de tarefas individuais e em equipe em estilo Kanban. Apresenta uma interface intuitiva com quadros, cartões com descrições das tarefas, o tempo de prazo e requisitos a serem concluídos. Possuindo compatibilidade com o Microsoft Teams.
- GitHub Sendo o principal meio de comunicação do código do projeto, o GitHub é essencial para uso de hospedagem da documentação do grupo e do andamento do projeto, determinando pontuação de sprints do código-fonte do projeto, quanto a definição das atividades e o tempo necessário para realização dos mesmos.

9.1.2 Estratégias de Comunicação

Durante a pandemia, apesar de utilizar as ferramentas descritas acima, a comunicação do grupo não funcionou de maneira usual. Entretanto, foram feitas reuniões por videoconferência semanalmente pelo Microsoft Teams, por meio das quais debatemos e priorizamos as tarefas a serem realizadas, mas também revisamos entregas anteriores. As reuniões diárias de acompanhamento se deram por meio do Telegram/Whatsapp, levantando o que foi feito, o que não foi feito e as responsabilidades de revisão.

Após o início das aulas EAD, foram realizadas as estratégias de comunicação a seguir:

9.1.2.1 Reuniões Gerais semanais

Semanalmente são realizadas reuniões com o intuito de aumentar o alinhamento entre as subequipes (E & E.E, Estruturas e Software) que formam a equipe do projeto. Nesta reunião são dispostos resumos de produção de cada área, bem como as tomadas de decisões que afetam a equipe como um todo.

9.1.2.2 Reuniões de equipes

De acordo com a periodicidade definida em cada subequipe, são realizadas reuniões de alinhamento e planejamento de sprints, em conformidade com as decisões tomadas nas reuniões gerais.

10 Qualidade

10.1 Plano de gerenciamento de Qualidade

O documento tem como finalidade apresentar critérios e técnicas da qualidade do projeto, seguindo os padrões e termos definidos pelos integrantes que possam garantir a qualidade fundamental do produto, desde do seu planejamento, nas escolhas das ferramentas e tecnologias que serão utilizadas, quanto na sua produção.

Com o intuito de garantir a qualidade das entregas foram definidos critérios de aceite para os requisitos de cada área. As atividades somente serão marcadas como concluídas quando o cumprimento dos parâmetros for averiguado pelo diretor de qualidade com auxilio dos diretores técnicos e coordenadora geral. Esses critérios estão apresentados na tabela abaixo:

ÁREA	DECLUCITO	CRITÉRIO DE	
AREA	REQUISITO	ACEITE	
		Usuário ser capaz de digitar	
		os dados das vinícolas na in-	
Software	Cadastro de vinícolas	terface da aplicação e no fi-	
Software	Cadasilo de vilicolas	nal os submeter pra o sis	
		tema onde esses dados serão	
		armazenados.	
		Usuário ser capaz de visuali-	
Software	Visualização de vinícolas	zar as vinícolas e seus dados	
		na interface da aplicação.	
		Usuário ser capaz de filtrar	
Software	Filtro de vinícolas	as vinícolas na interface da	
		aplicação.	
	Cancelar monitoramento	Usuário ser capaz de cance-	
Software	via aplicativo	lar o monitoramento da vi-	
	via aplicativo	nícola pela aplicação.	
	Visualizar tráfego de dados	Administrador ser capaz de	
Software	dos sensores de cada viní-	visualizar se algum sensor	
Software	cola	não está apresentando os	
	COIA	dados esperados.	

Software	Visualizar indicadores gerais	Usuário ser capaz de visualizar em um dashboard intuitivo na aplicação os indicadores gerais e ser capaz de identificar o que está acontecendo na plantação além de identificar possíveis problemas.
Software	Visualizar notificações de criticidade	Usuário ser capaz visualizar os indicadores que estão em nível critico através da aplicação de forma intuitiva.
Software	Notificar usuários de criticidade nos dados coletados	Mostrar na interface que os usuários são notificados quando algum indicador fica critico.
Software	Visualizar sistemas instalados na vinícola	Usuário deve ser capaz de selecionar o sistema da vinícola que tem interesse e visualizar os dados respectivos a ele.
Software	Acionar equipe do sistema	Usuário deve ser capaz de contatar a equipe do sistema através da interface.
Software	Avaliar safra	Mostrar o cadastro da sa- fra na interface e permitir a visualização dos parâmetros da uva safra a safra.
Software	Analisar qualidade da safra dado um tipo de uva	Mostrar na interface indicadores da qualidade da uva. Especificar os indicadores e por que eles seriam importantes para o usuário.
Software	Alertar sistema quanto a pragas	Mostrar na interface o alerta quanto a pragas. Especificar quais condições vão gerar o alerta.

Software	Alertas de clima/intempéries na região da vinícola	Mostrar o alerta na interface quando acontecer mudanças no clima que sejam significativas para a plantação. Especificar quais serão as condições que vão gerar o alerta.
Software	O sistema deve avisar ao usuário quando comportamentos automáticos forem acionados, ex: irrigação	Mostrar o alerta na interface quando atividades automáticas forem ser realizadas.
Software	Cadastro dos contratos	Usuário ser capaz de digitar os dados dos contratos na interface da aplicação e no final os submeter pra o sistema onde esses dados serão armazenados
Software	Cadastro de usuário	Usuário ser capaz de digitar os dados dos usuário na interface da aplicação e no final os submeter pra o sistema onde esses dados serão armazenados.
Software	Gerenciar solicitações	Gerenciar solicitações de contratação do serviço atra- vés da interface.
Software	Gerenciar solicitações	Gerenciar solicitações de contratação do serviço através da interface.
Software	Visualizar parceiros para facilitar correções necessárias na vinícola.	Ao identificar a necessidade de ações corretivas, mos- trar na interface profissio- nais responsáveis pela solu- ção do problema.
Software	Visualizar fases do ciclo de vida da uva	Mostrar na interface as fases do ciclo de vida presente na vinícola cadastrada

Software	Envio de feedback do usuário	Mostrar na interface como o usuário será capaz de enviar o feedback.
E&E.E.	Alimentação da subestação de coleta e transmissão de dados	Fornecer circuitos/lista de componentes/simulações que comprovem que as batérias são capazes de fornecer os valores especificados de energia.
E.&E.E.	Coletar dados de umidade do solo em três níveis de profundidade	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da umidade do solo em diversas camadas.
E.&E.E.	Coletar dados de tempera- tura do solo	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da temperatura do solo.
E.&E.E.	Coletar dados de pH do solo	Fornecer circuitos/listas de componentes com especi- ficações/ simulações que comprovem que é possível obter os dados do pH solo.
E.&E.E.	Coletar dados de tempera- tura do ambiente	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da temperatura do ambiente.

E.&E.E.	Coletar dados de umidade do ambiente	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da umidade do ambiente.
E.&E.E.	Coletar dados de pressão do ambiente	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da pressão do ambiente.
E.&E.E.	Coletar dados sobre a alti- tude da estação de coleta	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da altitude da instalação de coleta.
E.&E.E.	Coletar dados sobre a quantidade de chuva	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da a quantidade de chuva.
E.&E.E.	Coletar dados de velocidade do vento	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da velocidade do vento.
E.&E.E.	Coletar dados da direção do vento	Fornecer circuitos/listas de componentes com especificações/ simulações que comprovem que é possível obter os dados da direção do vento.

E.&E.E.	Tratamento inicial de dados a partir de um microcontro- lador	Fornecer circuitos/listas de componentes com especificações/ simulações/código do microcontrador que mostre os dados sendo processados.
E.&E.E.	Realizar backup local dos dados	Fornecer circuitos/listas de componentes com especificações/ simulações/código do módulo que demonstrem o backup dos dados.
E.&E.E.	Realizar a transmissão do conjunto de dados coletados	Fornecer circuitos/listas de componentes com especi- ficações/ simulações/código do módulo que demonstrem a transmissão dos dados.
E.&E.E.	Comunicação entre módulo de coleta e de transmissão	Fornecer circuitos/listas de componentes com especificações/ simulações/código do módulo que demonstrem o sistema de comunicação.
E.&E.E.	Acionamento automático do sistema de irrigação	Apresentar código, circuito e possíveis simulações que comprovem o funcionamento do sistema de irrigação.
E.&E.E.	Banco de baterias para ali- mentação	Fornecer circuitos/lista de componentes/simulações que comprovem que as baterias extras são capazes de fornecer os valores especificados de energia caso o sistema fotovoltaico não consiga suprir tudo. Especificar quanto tempo eles conseguem suprir a alimentação.

Estruturas	Definir um material compa- tível com os requisitos de eletrônica e da estrutura	Simulações e estudos sobre os materiais devem garantir que o material escolhido suportam as condições climáticas e não apresentam nenhuma barreira para a comunicação do sistema.
Estruturas	Fixação que aguente o peso próprio da estrutura e de to- dos os componentes	Simulações da estrutura devem garantir que a estrutura a fixação escolhida aguente a estrutura completa e seus componentes.
Estruturas	Fixação realizada de ma- neira a não danificar o solo	Pesquisa que mostre que a fixação escolhida é adequada para os diversos tipos de solo. Mostrar que a fixação não altera nenhuma propriedade do solo.
Estruturas	Sensores acessíveis para ma- nutenções do sistema	Mostrar com CAD/simulações que todos os sensores e qualquer outra parte que possa necessitar de manutenção pode ser acessada de maneira fácil. Caso seja necessária alguma ferramenta para acessar um sistema é necessário especificá-la na documentação.
Estruturas	Garantir que a pressão de entrada seja de 100kPa a 500kPa	Documentação que apresente esses valores para o usuário.
Estruturas	Manutenção dos gotejadores	Documentação que deixe claro que a manutenção é realizada pelo usuário e que fale como o sistema deve ser utilizado para evitar entupimentos.

	A tubulação do sistema de	Documentação que indique
Estruturas	irrigação deve obedecer as	ao usuário qual as especifi-
	especificações do sistema	cações do sistema.
		Garantir com cálcu-
		los/simulações numéricas
Estruturas	Fornecer irrigação a uma fi-	que todas o sistema de irri-
Estruturas	leira de comprimento 2,5 m	gação é capaz de entregar
		a irrigação para uma fileira
		de 2,5m.
Estruturas	Estrutura que permita a passagem de água para o abastecimento controlado da plantação	Mostrar no CAD o espaço designado para o sistema de irrigação. Indicar local das válvulas e encaixes para as mangueiras
Estruturas	Projetar encaixes que resistam às tensões exercidas pelos componentes que serão alocados na estrutura	Mostrar através de simula- ções a resistência dos encai- xes e caso seja estimar o nú- mero de ciclos que eles são capazes de suportar.
Estruturas	Estrutura que respeite os requisitos de proteção dos sensores	Mostrar no CAD que to- dos os sensores receberam as proteções adequadas e justificar o por que de cada proteção.

11 Custos

11.1 Plano de Gerenciamento de Custos

Com o objetivo de descrever como os custos do projeto serão gerenciados e controlados fornecendo detalhes dos processos e ferramentas usadas e também para servir como guia para a equipe durante o projeto para as questões relacionadas aos custos.

11.2 Processos para Gerenciamento de Custo do Projeto

O processo de gerenciamento vai ser baseado em 4 etapas definidas no PMBOK que são:

- Planejar o Gerenciamento de Custos
- Estimar Custos
- Determinar o Orçamento
- Controlar Custos

Esses processos ajudarão a realizar todo o processo de forma organizada e controlada.

11.3 Estimar Custos

O processo de estimar custos consiste em prever os custos aproximados para a execução do projeto que se baseia nas informações acerca do projeto disponíveis no momento. Algumas delas são:

- Análise de alternativas
- Previsão de reservas necessárias em casos imprevistos

Para auxiliar o processo de estimar custos serão utilizadas as seguintes técnicas:

- Estimativa Análoga: Esta estimativa se baseia na experiência dos membros da equipe em projetos semelhantes.
- Estimativa de três pontos: Esta ferramenta descrita no PMBOK utiliza como base em seu cálculo uma estimativa de três pontos que auxilia na definição de uma faixa aproximada de custos de uma determinada atividade.

70 Capítulo 11. Custos

- Esses três pontos são:
 - Provável(cM)
 - Otimista(cO)
 - Pessimista(cP)
- Tendo esses valores estimados será possível determinar o custo esperado (cE) usando a seguinte fórmula:

$$- cE = (cO + 4cM + cP) / 6$$

Esse processo de estimar custos pode ser realizado várias vezes durante o projeto de acordo com a necessidade.

11.4 Determinar Orçamento

Consiste em determinar a linha de base dos custos, a representação de um orçamento aprovado. Pode ser feito com base no EAP ou nas atividades individuais. A técnica que será utilizada para a determinação do orçamento é:

• Agregação de custos: Se trata de agregar as estimativas de custos dos pacotes de trabalho às contas de controle e, por fim, a todo o projeto.

11.5 Controlar Custos

Esse processo consiste em monitorar o andamento do projeto, comparando os custos previstos no orçamento com os custos reais do projeto, ao longo do tempo. O controle de custos será feito por meio da Gerência do Valor Agregado(EVM) ao decorrer do projeto. Para isso será necessário calcular algumas variáveis em alguns momentos do projeto. Por isso será necessário calcular três elementos: valor planejado (VP), valor agregado(VA) e o custo real (CR).

- Valor Planejado (VP):
 - O valor planejado será estimado a partir das horas, e será dado em reais. Sendo este o número de horas de trabalho planejadas para cada membro da equipe multiplicado pelo número de integrantes e o resultado desta operação multiplicado pelo custo da hora trabalhada.
- Valor Agregado(VA)

11.5. Controlar Custos 71

 Valor agregado (VA) é a medida do trabalho executado expressa em termos do orçamento autorizado para tal trabalho. É o orçamento associado ao trabalho autorizado que foi concluído.

- Ele é calculado por meio da multiplicação do valor planejado para a atividade pela porcentagem concluída da mesma atividade ao fim do tempo planejado. Tendo assim o valor agregado em reais.

• Custo Real(CR)

 O custo real representa o quanto foi gasto na execução do trabalho, sendo este calculado a partir da multiplicação das horas gastas pelos integrantes do projeto pelo preço da hora trabalhada

Com estas dimensões é possível realizar o cálculo da variação de custos e do índice de desempenho de custos, dois importantes indicadores para o gerenciamento do valor agregado.

12 Aquisição

12.1 Plano de Gerenciamento de Aquisição

O plano de gerenciamento de aquisições é um plano que irá descrever como as aquisições do projeto serão gerenciadas. O objetivo desse plano é explicitar o que será comprado ou requisitado ao longo do projeto.

12.2 Processo de Aquisição

12.2.1 Planejar o gerenciamento das aquisições

Documentar as decisões de compras do projeto, especificando a abordagem e identificando fornecedores em potencial. Onde será analisado as necessidades e a viabilidade das aquisições, para que não ultrapassem o orçamento total do projeto.

12.2.2 Conduzir as aquisições

Obter as respostas dos fornecedores, selecionar um fornecedor aplicando os critérios de seleção que foram definidos anteriormente pela equipe de gerência para definir qual a melhor ação a se fazer e qual o melhor serviço a ser adquirido.

12.2.3 Controlar as aquisições

Gerenciar as relações de aquisição monitorando o desempenho do contrato e realizando as mudanças e correções conforme necessário. Nele será possível garantir que as aquisições tão agregando algum valor ao projeto, tornando possível também controlar os gastos do projeto.

12.2.4 Encerrar as aquisições

Nessa etapa acontece o encerramento de todas as aquisições feitas durante o projeto. Nele é possível documentar os acordos que foram realizados para futuras consultas.

Referências

BONNEAU, V.; RAMAHANDRY, T. Smart vineyard: management and decision making support for wine producers. [S.l.], 2017. Citado 2 vezes nas páginas 17 e 18.

COSGROVE, C. The Internet of Wine: From Agtech to Smart Cellars. 2019. Disponível em: https://www.iotforall.com/internet-of-wine-agtech-smart-cellars/. Citado 2 vezes nas páginas 17 e 18.

EVINEYARD. Vineyard management software. 2020. Disponível em: https://www.evineyardapp.com/. Citado na página 23.

GRIZZO, A. Como funciona a viticultura de precisão? 2019. Disponível em: https://revistaadega.uol.com.br/artigo/como-funciona-viticultura-de-precisao_12060.html. Citado na página 18.

INSTITUTE, P. M. Um Guia do Conhecimento em Gerenciamento de Projetos. 2013. Citado 2 vezes nas páginas 31 e 32.

LIBELIUM. Vineyard. 2020. Disponível em: https://www.the-iot-marketplace.com/solutions/vineyard. Citado na página 22.

MANUAL de Produção de Uvas Viniferas de Alta Qualidade. [S.l.]. Citado 2 vezes nas páginas 89 e 90.

MELLO, L. M. R. Panorama da produção de uvas e vinhos no Brasil. [S.l.], 2017. Citado 2 vezes nas páginas 17 e 18.

MIELE, A.; MANDELLI, F. Sistemas de condução da videira: latada e espaldeira. Embrapa Uva e Vinho-Capítulo em livro científico (ALICE), IN: SILVEIRA, SV da; HOFFMANN, A.; GARRIDO, L. da R.; (Ed.). Produção . . . , 2015. Citado na página 89.

PLANTCT. SmartVineyard. 2020. Disponível em: https://plantct.com/>. Citado na página 23.

PREDIVINE. Predicting Diseases of Vine. 2020. Disponível em: https://predivine.ch/. Citado na página 23.

PROTAS, J. F. S.; CAMARGO, U. A. Vitivinicultura brasileira: panorama setorial de 2010. *IBRAVIN: Embrapa Uva e Vinho*, 2011. Citado 2 vezes nas páginas 17 e 18.

APÊNDICE A - Primeiro Apêndice

A.1 Decisões

Este documento tem como finalidade fornecer detalhes sobre as decisões tomadas pela equipe, afim de permitir a rastreabilidade e entendimento do processo lógico que levou às escolhas tomadas pela equipe incluindo arquitetura, tecnologias, metodologias e todas as informações relevantes para o desenvolvimento da aplicação.

A.1.1 Decisões Arquiteturais

Tendo em mãos as definições iniciais de escopo e requisitos, foi definida uma arquitetura cliente-servidor, com a possibilidade de alteração para uma arquitetura de três camadas, com uma camada responsável pela captação e tratamento inicial dos dados, uma camada responsável pelo processamento e uma camada responsável pela apresentação dos dados. A diagramação inicial está apresentada abaixo:

Figura 6 – Primeira versão da arquitetura de software

Com o amadurecimento da proposta, uma nova visão sobre a arquitetura do software foi criada, e a partir dela foi optado pela escolha de uma abordagem de microsserviços devido, dentre outros motivos, à robustez da aplicação, necessidade de evolução e independência de alguns serviços. A diagramação está apresentada abaixo:

Figura 7 – Segunda versão da arquitetura de software

Após a definição da arquitetura de microsserviços, foi percebida a possibilidade de criação de frontends distintos entre os usuários da aplicação. A partir desta nova abordagem, foi decidida a implementação da abordagem BFF (Back For Frontend), uma abordagem que permite contextualizar os microsserviços aos frontends distintos da aplicação. A diagramação está apresentada abaixo:

Figura 8 – Atual versão da arquitetura de software

A.1. Decisões 81

A.1.2 Decisões Tecnológicas

A partir da decisão arquiterural inicial, foram escolhidas as tecnologias que melhor se adequam às necessidades do software e da equipe. As tecnologias escolhidas foram:

- HTML/CSS: Utilizado no desenvolvimento Web de forma padrão e estruturado.
- Python: Linguagem de programação de alto nível, interpretada, de script, imperativa, orientada a objetos, funcional, de tipagem dinâmica e forte.
- Django REST Framework: Biblioteca para o Framework Django que disponibiliza funcionalidades para desenvolvimento de APIs que seguem o estilo arquitetural REST.
- JavaScript: Linguagem de programação que permite a implementação de itens complexos em páginas web de forma dinâmica.
- ReactJS: Biblioteca JavaScript para construção de interfaces de usuários.
- MongoDB: Banco NOSQL orientado a documentos (document database) no formato JSON.

Com a evolução da arquitetura de cliente-servidor para microsserviços, as escolhas tecnológicas foram evoluídas com o intuito de trazer melhor benefício à esta definição arquitetural. As tecnologias esolhidas foram:

- HTML/CSS: Utilizado no desenvolvimento Web de forma padrão e estruturado.
- Python: Linguagem de programação de alto nível, interpretada, de script, imperativa, orientada a objetos, funcional, de tipagem dinâmica e forte.
- Flask: Framework python que disponibiliza funcionalidades para desenvolvimento de APIs que seguem o estilo arquitetural REST.
- JavaScript: Linguagem de programação que permite a implementação de itens complexos em páginas web de forma dinâmica.
- ReactJS: Biblioteca JavaScript para construção de interfaces de usuários.
- MongoDB: Banco NOSQL orientado a documentos (document database) no formato JSON.

A.1.3 Decisões de Outros Enfoques

A ideia inicial para outros enfoques recaía sobre as análises feitas sobre os dados coletados, esta abordagem contava com a criação de bases de dados com os dados coletados para "alimentar"modelos de predição. Após amadurecimento da proposta, os outros enfoques focaram-se nas decisões arquiteturais da equipe, com a implementação de uma arquitetura de microsserviços e implementação de BFF.

Após reavaliação deste tópico, a equipe decidiu pela implementação da implementação arquitetural supracitada com a inclusão de lógica fuzzy para facilitar as análises de dados e BDD (Behavior Driven Development) como estratégia de testes da aplicação.

A documentação completa, contento todas as decisões tomadas na definição da solução sem encontra em: https://pi2-viticultura.github.io/SmartVit//docs/software/decisoes

APÊNDICE B – Representação da integração entre software e o sistema eletrônico

Figura 9 – Representação da integração entre software e o sistema eletrônico

APÊNDICE C – Sketch prévio da Estrutura

Front view Scale: 1:3

Figura 10 – Sketch prévio da estrutura com o posicionamento de alguns sensores

ANEXO A – Especificações da Produção de Uva

A.1 Objetivos

Esse documento tem como intuito descrever como se dá a produção de uvas e quais são os valores padrões que garantem uvas finas em produção na região Centro-Oeste brasileira.

A.2 Parâmetros Técnicos

Para a plantação de uvas de qualidade existe 4 possibilidades de sistemas de condução espaldeira, latada, e Y. O método que permite as uvas de maior qualidade, é o de espaldeira. As dimensões padrões são apresentadas na tabela A.2(MIELE; MANDELLI, 2015):

Distância entre fileiras	2 a 3m
Altura dos postes das extremidades	2,5 m
Altura dos postes internos	2,2 m
Distância entre postes internos	5 m
Altura do primeiro fio em relação ao solo	1 a 1,2 m
Distâncias entre o primeiro fio e os demais fios	30, 65 e 100 cm
Bitola do fio	14x16

Essas medidas serão utilizadas como base para o dimensionamento da estrutura do SmartVit para que seja capaz de comportar todo o sensoriamento e não intervir em nenhum processo da produção. Além da escolha da espaldeira como sistema de condução é necessário para uvas de qualidade que se enquadrem nos seguintes requisitos (MANUAL...,):

- A uva necessita de estar madura, apresentando teor mínimo de acidez e açúcar.
- A uva deve apresentar maturação uniforme.
- Não podem haver podridões nos cachos.
- Os cachos não devem ter pragas.
- A aplicação de pesticidas deve seguir as normas fitossanitárias.

Para definir qual o tipo de vinho/espumante uma plantação é capaz de produzir são analisados os seguintes critérios de uma amostra de uva da safra (MANUAL...,):

- Acidez;
- O pH do mosto;
- Quantidade de açúcar presente no mosto;
- Quantidade de polifenóis do mosto;

Todos esses indicadores e requisitos que garantem a qualidade da uva e suas propriedades são influenciados pelas condições ambientais fazendo com que o monitoramento do sistema seja uma atividade necessária para obter uma safra com os atributos adequados.