STUDY OF THE ENTROPIC BARRIER (ONGOING)

ABDELLAH AZNAG, YASSINE HAMDI UNDER THE SUPERVISION OF: XAVIER ALLAMIGEON, AND STÉPHANE GAUBERT

ABSTRACT. We define the Entropic Barrier as the Cramer Transform of the uniform measure on a convex body in \mathbb{R}^n . In this work, we tropicalize the central path of the Interior Point Methods under the Entropic Barrier. We prove that this tropical path satisfies a specific combinatorial property, proving that Entropic Barrier Interior Point Methods are not strongly polynomial. Our proof is based on the approach used by Allamigeon, Benchimol, Gaubert and Joswig for proving a similar result for the Logarithmic Barrier. We also give our result a probabilistic interpretation, where it can be seen as the tropicalization of the average of a certain class of distributions. This Barrier presents a theoretical interest as it was proved by Bubeck and Eldan to be a (1 + o(1))n-self-concordant barrier. It is also dual to the universal barrier, which was recently proved to be exactly n-self-concordant (by Yin Tat Lee, Man-Chung Yue).

1. Introduction

1.1. **The problem:** One famous open question in Optimization is to determine if solving a linear program can be done by a strongly polynomial algorithm. Interior Point Methods remain widely applied today, as they are considered more efficient for a large panel of situations. In [1], our supervisors (with their co-workers) proved that log-barrier Interior Point Methods are not strongly polynomial, by providing a counter-example with large input entries and slow execution time. In this paper, we show that their counter-example work all the same to another type of barrier, the Entropic Barrier.

1.2. Our Contribution:

1.3. Our approach:

2. Theoretical Frame

In this section, we reintroduce the necessary tools from tropical geometry. All references, All definitions below, along with the non-stated proofs of the lemmas/theorems, were already introduced in detail in [1].

2.1. Fields of real Puiseux series and Puiseux polyhedra. The field \mathbb{K} of absolutely convergent generalized real Puiseux series consists of elements of the form

(1)
$$f = \sum_{\alpha \in \mathbb{R}} a_{\alpha} t^{\alpha},$$

where $a_{\alpha} \in \mathbb{R}$ for all α , and such that: (i) the support $\{\alpha \in \mathbb{R} : a_{\alpha} \neq 0\}$ is either finite or has $-\infty$ as the only accumulation point; (ii) there exists $\rho > 0$ such that the series absolutely converges for all $t > \rho$. The definition of the field \mathbb{K} guarantees that every non-null series has a leading term $a_{\alpha_0}t^{\alpha_0}$, where $\alpha_0 := \max(\sup f)$. Moreover, the field is non-archimedian and totally ordered under the definition $f \leq g$ if g - f is null or has a positive leading coefficient. Denote $\mathbb{K}_+ := \{f \in \mathbb{K} | f \geqslant 0\}$. Notice that $f \geqslant 0$ if and only if $f(t) \geqslant 0$ for all t sufficiently large.

It was shown that with the previous propreties, \mathbb{K} is a real closed set. This is of great interest, since by Tarski's Principle, \mathbb{K} verifies first-order propreties as the reals.

Date: December 9, 2019.

Thus, it is interesting to define linear optimization objects over Puiseux Series. The Puiseux Polyhedra in dimension n is defined as:

(2)
$$\mathcal{P} = \{ \boldsymbol{x} \in \mathbb{K}^n \colon \boldsymbol{A} \boldsymbol{x} \leqslant \boldsymbol{b} \},$$

Since Minkowsi-Weyl Theorem is a first-order proprety, a Puiseux Polyhedra has an internal representation as a Minkowski sum of finite extreme points and extreme rays in \mathbb{K}^n .

A Puiseux Polyhedra can be seen as a family of Real Polyhedras parametrized by t large enough:

(3)
$$\mathcal{P}(t) = \{x \in \mathbb{R}^n : \mathbf{A}(t)x \leqslant \mathbf{b}(t)\},\,$$

One remarkable property is that for t large enough, the internal representation of \mathcal{P} can be seen as the family of internal representations of $\mathcal{P}(t)$:

Proposition 1. Let $u_1, u_2, ..., u_{p+q} \in \mathbb{K}^n$. For all t large enough, the evaluation in t of the Polyhedra generated by the Minkowki sum of the convex hull of $u_1, u_2, ..., u_p$ and the convex cone of $u_{p+1}, u_{p+2}, ..., u_{p+q}$ is the same as the (Real) Polyhedra generated by the convex hull of $u_1(t), u_2(t), ..., u_p(t)$ and the convex cone of $u_{p+1}(t), u_{p+2}(t), ..., u_{p+q}(t)$.

2.2. **The tropical space and tropical polyhedra.** The behavior of Puiseux Series motivates us to define the following *valuation* mapping:

$$\text{val}: \boldsymbol{f} \in \mathbb{K} \mapsto \begin{cases} \max(\sup(\boldsymbol{f})) \text{ if } \sup(\boldsymbol{f}) \text{ is nonempty} \\ -\infty \text{ elsewhere} \end{cases} \in \mathbb{R} \cup \{-\infty\}$$

By this definition, we have

$$\operatorname{val}(\boldsymbol{f}) = \lim_{t \to +\infty} \log_t |\boldsymbol{f}(t)|,$$

with the convention $\log_t 0 = -\infty$. We immediately obtain the following properties (hence justifying the denomination val). for all $f, g \in \mathbb{K}$:

(4)
$$\operatorname{val}(\boldsymbol{f} + \boldsymbol{g}) \leqslant \max(\operatorname{val}(\boldsymbol{f}), \operatorname{val}(\boldsymbol{g})) \text{ and } \operatorname{val}(\boldsymbol{f}\boldsymbol{g}) = \operatorname{val}(\boldsymbol{f}) + \operatorname{val}(\boldsymbol{g}).$$

We define \mathbb{T} the tropical space as the semi-field where the elements are $\mathbb{R} \cup \{-\infty\}$,, the addition is the maximum, and the multiplication is the addition in the reals:

$$(\mathbb{T}, \oplus, \odot) = (\mathbb{R} \cup \{-\infty\}, max, +)$$

We can extend easily these definitions and define tropical vectors, tropical half-spaces, then tropical polyhedras. When equipped with the order topology, finite dimensional tropical spaces \mathbb{T}^n have closed half-spaces and closed polyhedras.

3. The Entropic Barrier and tropicalization of the central path

3.1. Legendre-Fenchel Duality.

Definition 2. for $f: \theta \in D \subset \mathbb{R}^n \to \mathbb{R}$ we define its Legendre-Fenchel Transform as:

$$f^*: x \in D^* \mapsto f^*(x) = \sup_{\theta \in D} (\langle x, \theta \rangle - f(\theta))$$

Theorem 3. If $D \subset \mathbb{R}^n$ is a convex body and $f : x \in D \subset \mathbb{R}^n \to \mathbb{R}$ is convex then $(f^*)^* = f$.

Finally, we have the following interesting result:

Proposition 4. If f is differentiable, strictly convex and big outside of a certain compact, and if $\overline{D^*}$ is compact and f^* is equal to $+\infty$ on ∂D^* and is continuous on $\overline{D^*}$, then for any $\theta \in D$, $\nabla f(\theta)$ is the only value of x maximizing $\langle x, \theta \rangle - f^*(x)$ on D^* .

Proof. Let us define $F: D^* \times D \to \mathbb{R}$, $(x, \theta) \mapsto \langle x, \theta \rangle - f(\theta)$. Then F is differentiable (on the interior of $D^* \times D$). Since f is continuous and too small outside a certain compact, then for any $x \in D^*$, $f^*(x) = \sup_{\theta \in D} (\langle x, \theta \rangle - f(\theta))$ is reached at a certain point θ , and since $F(x, \cdot)$ is strictly convex (since f is), there is a unique such point. Hence we can denote that point by

 $\Theta(x)$, the unique θ satisfying $\langle x, \theta \rangle - f(\theta) = f^*(x)$. Since F is differentiable (since f is), we have $\partial_{\theta} F(x, \Theta(x)) = 0$, that is to say $x = \nabla f(\Theta(x))$.

Let us define $\tilde{F}: D^* \times D \to \mathbb{R}$, $(x, \theta) \mapsto \langle x, \theta \rangle - f^*(x)$. Now, consider any $\theta \in D$. We will show the existence of a (not necessarily unique for now) point $X(\theta)$ such that $\langle X(\theta), \theta \rangle - f^*(X(\theta)) = \sup_{x \in D^*} \tilde{F}(x, \theta)$. Consider a sequence of points $(x_n)_{n \in \mathbb{N}}$ of D^* such that $\tilde{F}(x_n, \theta) \xrightarrow[n \to \infty]{} \sup_{x \in D^*} \tilde{F}(x, \theta)$. Since $\overline{D^*}$ is compact, we can extract a convergent sub-sequence. The limit cannot be on ∂D^* where f^* equals $+\infty$ and $\tilde{F}(x, \theta) = -\infty$, so its an interior, which we denote by $X(\theta)$, and by continuity of f^* wa have $\tilde{F}(X(\theta), \theta) = \sup_{x \in D^*} \tilde{F}(x, \theta)$. So $\tilde{F}(X(\theta), \theta) = (f^*)^*(\theta) = f(\theta)$ (by theorem 3 since f is convex). By the uniqueness property shown above (applied to the vector $x = X(\theta)$), we get $\theta = \Theta(X(\theta))$, and thus $X(\theta) = \nabla f(\theta)$. In particular this shows the

3.2. **The Entropic barrier.** We introduce the barrier which we will be working with by citing the following result from :

Theorem 5. Let $K \subset \mathbb{R}^n$ be a compact convex set with nonempty interior. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined for $\theta \in \mathbb{R}^n$ by

$$\log\left(\int_{x\in\mathcal{K}}\exp\left(\langle x,\theta\rangle\right)dx\right)$$

Then the Fenchel dual $f^*: int(\mathcal{K}) \to \mathbb{R}$, defined for $x \in int(\mathcal{K})$ is a (1+o(1))n-self-concordant barrier on \mathcal{K} .

Now, entropic barrier linear programs have the following very interesting property:

Proposition 6. Let $K \subset \mathbb{R}^n$ be a compact convex set with nonempty interior and f^* the entropic barrier on K defined in theorem 5. Then, for any $c \in \mathbb{R}^n$, for any real $\mu > 0$, the entropic barrier program with parameter μ which states as follows

maximize
$$\langle c, x \rangle - \mu f^*(x)$$
 subject to $x \in D^*$

has a unique solution x equal to $\nabla f(\frac{1}{\mu}c)$.

Proof. By proposition 4...

uniqueness of $X(\theta)$.

- 3.3. Tropicalization of the central path.
 - 4. Description of the Tropical Polyhedra
- 4.1. **Description of** $val(\mathcal{K})$.

Lemma 7. There is a finite family \mathcal{F} of hyperplanes of \mathbb{R}^n such that for all $\epsilon > 0$, for any open ball B which does not intersect any of them, there is a time T_{ϵ} such that either for all $t \geq T_{\epsilon}$, $B \subset k(t)$ or for all $t \geq T_{\epsilon}$, $d(B, k(t)) \geq \epsilon$.

Proof. There is a Puiseux matrix \boldsymbol{A} and vector \boldsymbol{b} such that

$$\mathcal{K} = \{ x \in \mathbb{K}^d \colon \mathbf{A}\mathbf{x} \leqslant \mathbf{b} \}$$

and then

$$\mathcal{K}(t) := \{ x \in \mathbb{R}^d \colon \boldsymbol{A}(t) x \leqslant \boldsymbol{b}(t) \}$$

Assumption 8. val(\mathcal{K}) is a polyhedral cell of nonzero volume (a set whose border is composed of polyhedra and which is homeomorphic to a ball of dimension n).

First, we define

$$y^* := \text{barycenter of } \{ y \in \text{val}(\mathcal{K}) | y \leqslant -val(\boldsymbol{\theta}) \}$$

Secondly, consider T_0^{θ} such that $\forall i \in [n]$, the Puiseux series $\boldsymbol{\theta}_i(t)$ converges and takes negative values for $t \geq T_0^{\theta}$. Let us define, $\forall t \geq T_0^{\theta}$, $\forall \epsilon > 0$, the sub-level :

$$k_{\epsilon}(t) := \{ y \in k(t) | y \leqslant \epsilon - \log_t(-\boldsymbol{\theta}(t)) \}$$

and its complementary $\overline{k_{\epsilon}(t)} = k(t) \setminus k_{\epsilon}(t) = \{ y \in k(t) | \exists i \in [n], y_i > \epsilon - \log_t(-\theta_i(t)) \}.$ We start by proving two lemmas.

Lemma 9. There exists a time T_1 and a constant C such that the coordinates of any point in $\bigcup_{t\geqslant T_1}k(t)$ are all less or equal to C.

Proof. Let $u_1, u_2, ..., u_p \in \mathbb{K}^n$ such that \mathcal{K} is the convex hull of $u_1, ..., u_n$. Since $\forall i \in [p], \forall j \in [n], t \mapsto \log_t(u_{ij}(t))$ is either constant equal to $-\infty$ (if $u_{ij} = 0$) or with real values and converging towards $\operatorname{val}(u_{ij})$ when $t \to +\infty$, and thus - in each case - has a finite upper bound. Let us denote by $C \in \mathbb{R}$ a common upper bound to those (finitely many) functions. We know that there exists a time T_1 such that $\forall t \geqslant T$, $\mathcal{K}(t)$ is the convex hull of $u_1(t), ..., u_n(t)$. Consider a time $t \geqslant T_1$ and a vector $y \in k(t)$, which writes as $y = (\log_t(x_j))_{1 \leqslant j \leqslant n}$ for a certain $x \in \mathcal{K}(t)$. Then x can be written as a convex combination of $u_1(t), ..., u_n(t)$. Hence for any $j \in [n]$, $x_j) \leqslant \max_{1 \leqslant i \leqslant p} u_{ij}(t)$, so by monotony of $\log_t, y_j = \log_t(x_j) \leqslant \max_{1 \leqslant i \leqslant p} \log_t(u_{ij}(t)) \leqslant C$. \square

Lemma 10. For any $\epsilon > 0$, there exists a time $T_2^{\epsilon,\theta}$ such that $\forall t \geqslant T_2^{\epsilon,\theta}$, $\forall y \in k_{\epsilon}(t)$:

$$y \leqslant y^* + 4\epsilon \cdot e$$

where e = (1, 1, ..., 1).

Proof. Consider some $\epsilon > 0$ and a time T^{ϵ} after which $d_{\mathrm{H}}(k(t), k) \geq \epsilon$. Denote by $T_2^{\epsilon, \theta} \geq T^{\epsilon}$ a time from which $\mathrm{val}(\boldsymbol{\theta}) \leq \log_t(-\boldsymbol{\theta}(t)) + \epsilon \cdot e$. Consider a time $t \geq T_2^{\epsilon, \theta}$ and a vector $y \in k_{\epsilon}(t)$.

Then there exists a $y' \in k$ such that $d_H(y, y') \leq \epsilon$, which implies that $\forall i \in [n], y'_i - y_i \leq \epsilon$. So since $y \in k_{\epsilon}(t), \forall i \in [n], y'_i \leq 2\epsilon - \log_t(-\theta) \leq 3\epsilon - val(\theta_i)$. Consider $y'' := y' - 3\epsilon \cdot e$. We argue that $y'' \leq y^*$.

Indeed since $y' \in k = \text{val}(\mathcal{K})$, there exists $\mathbf{Y} \in \mathcal{K}$ such that $y' = \text{val}(\mathbf{Y})$. Denote by $\lambda \in \mathbb{K}$ the Puiseux series $t \mapsto t^{-3\epsilon}$. Since $\mathbf{0} \in \mathcal{K}$ and \mathcal{K} is convex then $(1 - \lambda) \cdot \mathbf{0} + \lambda \cdot \mathbf{Y} \in \mathcal{K}$. Hence its image y'' under the valuation map is in k.

Finally, since $\forall i \in [n], \ y_i'' = y_i' - 3\epsilon \leqslant -val(\boldsymbol{\theta}_i)$, then y'' is in the sub-level, thus we have $y'' \leqslant y^*$ by definition of the tropical barycenter. So $y' \leqslant y^* + 2\epsilon \cdot e$, hence $\forall i \in [n], \ y_i - y_i^* \leqslant (y_i - y_i') + 3\epsilon \cdot e \leqslant d_H(y, y') + 3\epsilon \cdot e \leqslant 4\epsilon \cdot e$.

Now we can give an upper bound to the integrals. We use the notation T_0^{θ} defined before the two lemmas and denote by C and T_1 the constants given by lemma 9 and for any $\epsilon > 0$, we denote by $T_2^{\epsilon,\theta}$ the time given by lemma 10. Finally we define, for any $\epsilon > 0$, $T^{\epsilon,\theta} := max\{T_0^{\theta}, T_1, T_2^{\epsilon,\theta}\}$.

Proposition 11. For any vector $v \in \mathbb{R}^n$ with positive coordinates, if we denote par g the scalar product by v, then for any $\epsilon > 0$, $\forall t \geqslant T^{\epsilon,\theta}$:

$$\int_{k(t)} t^{g(y)} \exp{(\langle t^y, \boldsymbol{\theta}(t) \rangle)} dy \leqslant \exp{(-t^{\epsilon})} \frac{t^{g(C \cdot e)}}{\log(t)^n \prod_{i=1}^n v_i} + \frac{t^{g(y^* + 4\epsilon \cdot e)}}{\log(t)^n \prod_{i=1}^n v_i}$$

Proof. Consider a positive real ϵ and a time $t \geqslant T^{\epsilon,\theta}$.

First, let us deal with the integral on $\overline{k_{\epsilon}(t)}$. We claim that for any $y \in \overline{k_{\epsilon}(t)}$, we have $\langle t^y, \boldsymbol{\theta}(t) \rangle \leqslant -t^{\epsilon}$. Indeed, consider such a y. Then there is an $i \in [n]$ such that $y_i > \epsilon -\log_t(-\boldsymbol{\theta}_i(t))$. Thus, by negativity of $\theta(t)$'s coordinates (since $t \geqslant T_0^{\theta}$), we have $\langle t^y, \boldsymbol{\theta}(t) \rangle \leqslant t^{y_i}\boldsymbol{\theta}_i(t) = -t^{y_i + \log_t(-\boldsymbol{\theta}_i(t))} \leqslant -t^{\epsilon}$. Hence we get:

$$\begin{split} \int_{\overline{k_{\epsilon}(t)}} t^{g(y)} \exp{(\langle t^y, \boldsymbol{\theta}(t) \rangle)} dy &\leqslant \exp{(-t^{\epsilon})} \int_{\overline{k_{\epsilon}(t)}} t^{g(y)} dy \\ &\leqslant \exp{(-t^{\epsilon})} \int_{y \leqslant C \cdot e} t^{g(y)} dy \\ &= \exp{(-t^{\epsilon})} \frac{t^{g(C \cdot e)}}{\log(t)^n \prod_{i=1}^n v_i} \end{split}$$

Now let us tackle the integral on $k_{\epsilon}(t)$. By negativity of $\theta(t)$'s coordinates (since $t \ge T_0^{\theta}$), we can bound the exponential by 1, and by lemma 10 we get :

$$\int_{k_{\epsilon}(t)} t^{g(y)} \exp\left(\langle t^{y}, \boldsymbol{\theta}(t) \rangle\right) dy \leqslant \int_{k_{\epsilon}(t)} t^{g(y)} dy$$

$$\leqslant \int_{y \leqslant y^{*} + 4\epsilon \cdot e} t^{g(y)} dy$$

$$= \frac{t^{g(y^{*} + 4\epsilon \cdot e)}}{\log(t)^{n} \prod_{i=1}^{n} v_{i}}$$

By summing the inequalities on the two integrals, we finally get:

$$\int_{k(t)} t^{g(y)} \exp(\langle t^y, \boldsymbol{\theta}(t) \rangle) dy \leqslant \exp(-t^{\epsilon}) \frac{t^{g(C \cdot e)}}{\log(t)^n \prod_{i=1}^n v_i} + \frac{t^{g(y^* + 4\epsilon \cdot e)}}{\log(t)^n \prod_{i=1}^n v_i}$$

Corollary 12. For any vector $v \in \mathbb{R}^n$ with positive coordinates, if we denote par g the scalar product by v, then:

$$\limsup_{t} \left\{ \log_{t} \left(\int_{k(t)} t^{g(y)} \exp\left(\langle t^{y}, \boldsymbol{\theta}(t) \rangle\right) dy \right) \right\} \leqslant g(y^{*})$$

6. Minoration de l'intégrale

Proposition 13. For any vector $v \in \mathbb{R}^n$ with positive coordinates, if we denote par g the scalar product by v, then for any $\epsilon > 0$, there is a constant $D^{\epsilon,\theta}$ and a time $T^{\epsilon,\theta}$ such that $\forall t \geq T^{\epsilon,\theta}$:

$$\int_{k(t)} t^{g(y)} \exp{(\langle t^y, \boldsymbol{\theta}(t) \rangle)} dy \geqslant D^{\epsilon, \theta} t^{g(y^* - \frac{3\epsilon}{2} \cdot e)}$$

Proof. Unless stated otherwise, all distances considered hereafter are euclidean distances in \mathbb{R}^n . We know that $\forall y \in k, \ \forall \lambda \in \mathbb{R}_{\geq 0}, \ y - \lambda \cdot e \in k$. Consider a positive real ϵ . Denote by y_{ϵ} the point $y^* - \lambda \cdot e \in k$. So, since k is a polyhedral cell of nonzero volume (by assumption 8), there is a nonempty open ball $B \subset k$ whose elements are at a distance of at most $\frac{\epsilon}{2}$ from y_{ϵ} . Since $\frac{\epsilon}{2} < \frac{\epsilon}{\sqrt{2}}$, then $\forall y \in B, \ \forall i \in [n], \ y_i < y_{\epsilon i} + \frac{\epsilon}{\sqrt{2}} = y_i^*$, hence B is a subset of the sub-level. Now, denote by F the family of hyperplanes from lemma 7. Since F is finite, then there is a

Now, denote by F the family of hyperplanes from lemma 7. Since F is finite, then there is a sub-ball $B' \subset B$ such that B' does not intersect any hyperplane in F. Then, by lemma 7, there is a time T such that either for all $t \geq T$, $B' \subset k(t)$ or for all $t \geq T$, $B' \cap k(t) = \emptyset$. But the second possibility is impossible since the Hausdorff distance of B''s center to k(t) must converge towards 0. Then for all $t \geq T$, $B' \subset k(t)$. Thus, for any $t \geq T$, by positivity:

$$\int_{k(t)} t^{g(y)} \exp{(\langle t^y, \theta(t) \rangle)} dy \ge \int_{B'} t^{g(y)} \exp{(\langle t^y, \theta(t) \rangle)} dy$$

then since $B' \subset B$ and B is $\frac{\epsilon}{2}$ -close to y_{ϵ} , which is at distance ϵ from y^* we get, by transitivity and positivity of v:

$$\int_{B'} t^{g(y)} \exp{(\langle t^y, \boldsymbol{\theta}(t) \rangle)} dy \geqslant t^{g(y^* - \frac{3\epsilon}{2} \cdot e)} \int_{B'} \exp{(\langle t^y, \boldsymbol{\theta}(t) \rangle)} dy$$

and since B' is in the sub-level and the function in the above integral is decreasing in each coordinate y_i of y, we finally get :

$$t^{g(y^* - \frac{3\epsilon}{2} \cdot e)} \int_{B'} \exp{(\langle t^y, \theta(t) \rangle)} dy \geqslant t^{g(y^* - \frac{3\epsilon}{2} \cdot e)} \exp{(\langle t^{y^*}, \theta(t) \rangle)} |B'|$$

This inequality is valid for $t \ge T$. Moreover, since $y^* \le -\operatorname{val}(\boldsymbol{\theta})$, the exponential converges towards a strictly positive constant l when $t \to +\infty$, so there is a certain time $T' \ge T$ such that $\forall t \ge T'$:

$$\int_{k(t)} t^{g(y)} \exp\left(\langle t^y, \boldsymbol{\theta}(t) \rangle\right) dy \geqslant t^{g(y^* - \frac{3\epsilon}{2} \cdot e)} \frac{l|B'|}{2}$$

References

[1] X.Allamigeon, P.Benchimol, S.Gaubert, M.Joswig log-barrier interior point methods are not strongly polynomial. siam journal on applied algebra and geometry, 2(1), 140–178, 2018.

(Xavier Allamigeon, Stéphane Gaubert) INRIA AND CMAP, ÉCOLE POLYTECHNIQUE, CNRS, UNIVERSITÉ PARIS-SACLAY, 91128 PALAISEAU CEDEX, FRANCE

FIRSTNAME.LASTNAME@INRIA.FR

(Abdellah Aznag, Yassine Hamdi) École Polytechnique, 91120 Palaiseau, France firstname.lastname@polytechnique.edu