Cellular Environment and Adhesion

Chapter 20: Part II BIOL 366 May 6, 2025 Matthew Ellis, PhD

Learning Objectives for Today's Lecture:

Upon completing this module, you should be able to:

- Describe the extracellular matrix (ECM) and its role in the cell's microenvironment
- Identify crucial components of the ECM and their functions
- Understand the roles of junctional proteins in intercellular stability and communication
- Review major concepts from Ch 16 Part II Ch 20 for the exam next
 Tuesday, May 13th, 10:30 am 12:30 pm in this room

Key Terms

- Extracellular Matrix: Complex, dynamic network of proteins, sugars, and molecules that surrounds and supports cells
- <u>Collagen</u>: Main structural protein in the extracellular matrix of the connective tissues
- **Elastin**: Extracellular protein involved in endowing elastic recoil to tissues
- Fibronectin: Glycoprotein that plays an important role in cellular adhesion, differentiation, and growth
- <u>Integrin</u>: Transmembrane protein involved in mechanotransduction <u>Tight Junction</u>: Junctional complex preventing leakage of material between cells
- **Gap Junction:** Channel between cells responsible for the direct relaying of intercellular signals

There are 4 basic tissue types defined by their morphology and function

- Composed of cells with specialized functions
- Support and connect to other tissues and/or organs in the body
 - Contain an extracellular matrix

Extracellular Matrix (ECM)

"outside of the cell"

"material that fills the space between cells"

The ECM is comprised of 3 main classes of proteins

Structural proteins

Adhesive glycoproteins

Fibronectin, Laminin

Proteoglycans

Aggrecan in cartilage

Collagens provide tensile strength in connective tissues

Different tissues express different types of collagens

Fiber-forming collagens

Collagens are primarily produced by fibroblasts and undergoes intra- and extracellular processing

Collagens are primarily produced by fibroblasts and undergoes intra- and extracellular processing

Elastin provides our tissues with recoil and elasticity

- A rubbery protein that helps tissues resume shape after stretching or contracting (recoil)
- Abundant in lungs, aorta (the largest blood vessel exiting heart), and skin
- Secreted in a precursor monomeric form
 - Is crosslinked and polymerized into elastic fibers with help of extracellular enzymes and glycoproteins
- Elastin is only produced in the perinatal stages of life, and has a half-life of around 60 years
 - This is why hypertension (high blood pressure) is a common occurrence in older individuals as their blood vessels have become less compliant and more rigid

Fibronectins help organize Collagens in the ECM

- Fibronectins enable cell adhesion and are primarily secreted from fibroblasts as dimers
- Fibronectins contain an ECM binding site that facilitates binding to collagen (fibrils and fibers)

 Additional ECM proteins that Fibronectins bind to include proteoglycans, fibulins, integrins, thrombospondins...and many more!

Integrins enable cellular attachment to the ECM

Integrins link the ECM to the cell's Cytoskeleton

Proteoglycans form a gel-like substance in the

•Proteoglycan = core protein + complex sugar molecules named glycosaminoglycans (GAGs)

 Proteoglycans form aggregates that can adopt extended conformations

 Provide a hydrated space around cells good for shock absorption (found in knees, joints)

ECM

The extracellular matrix is dynamic

Epithelial cells pack together to form epithelial sheets in tissues

e.g., lungs

e.g., epidermis and nails

squamous

e.g., kidney tubules, eye

cuboidal

e.g., epidermis

stratified

columnar

Epithelial cells are polarized primarily due to their cytoskeletal organization

Epithelial sheets attach to the ECM via the basal lamina

- •The basal lamina is a thin layer of ECM primarily made up of type IV collagen
- •Laminins, nidogen proteins, and heparan sulfate proteoglycans are also located in the basal lamina

Epithelial cells are joined together by 4 types of junction proteins

Desmosomes

Adherens junctions

Tight junctions

Gap junctions

Recall: Intermediate filaments are anchored to the cell membrane by adhesive proteins called desmosomes

- Desmosomes attach to intermediate filaments to mediate cell-cell adhesion
- Hemidesmosomes attach to intermediate filaments and to the basal surface of epithelial cells
- Desmosomes and hemidesmosomes help cells resist mechanical forces

Adherens junctions connect cells via actin bundles as a form of cell-to-cell communication

Tight junctions prevents the leakage of molecules between epithelial cells

Gap junctions allow for direct communication between cells

Gap Junctions are also responsible for the propagation of electrical waves in the heart for coordinating the heartbeat

Metacognitive Reflection Form

