Knowledge Representation and Reasoning

Part 1: Introduction

Ivan Varzinczak

LIASD, Université Paris 8, France https://www.ijv.ovh Semantics Symbolic representation Truth

Motivation

ons Semantics Symbolic representation Truth

Motivation

Example of a basic epistemic scenario

Central question: "What is the state of the system?"

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system?

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!
- Can the agent know everything about the system by observation?

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!
- Can the agent know everything about the system by observation?
- What else is needed?

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!
- Can the agent know everything about the system by observation?
- What else is needed? Knowledge!

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!
- Can the agent know everything about the system by observation?
- What else is needed? Knowledge! What else is useful?

Motivation

- Central question: "What is the state of the system?"
- Why does the agent want to know the state of the system? Safety!
- Can the agent know everything about the system by observation?
- What else is needed? Knowledge! What else is useful? Common sense!

Motivation

Another basic epistemic scenario

Motivation

Another basic epistemic scenario

Fundamental features

- The agent
- The system
- The incomplete information
- The motivation to identify the state of the system

Motivation

Another basic epistemic scenario

Fundamental features

- The agent
- The system
- The incomplete information
- The motivation to identify the state of the system
- How to extract more information from the system?

Motivation

Another basic epistemic scenario

Fundamental features

- The agent
- The system
- The incomplete information
- The motivation to identify the state of the system
- How to extract more information from the system? By reasoning!

Outline

Representations

Semantics

Symbolic representation

Truth

Outline

Representations

Semantics

Symbolic representation

Truth

What is an agent?

Artificial agents

- Software: a spell-checker, a chatbot, . . .
- Hardware: a thermostat, a fire alarm, . . .
- Both: a robot, a self-driving car, . . .

What is an agent?

Artificial agents

- Software: a spell-checker, a chatbot, . . .
- Hardware: a thermostat, a fire alarm, . . .
- Both: a robot, a self-driving car, . . .

Agent's behaviour

- Identification of a pattern
- Actions taken by an agent need to bear some relation to its environment
- Ability to adapt in response to the environment
- Supposed to be rational

What is an agent?

Responsiveness to the environment

- Achieved via an internal representation of the environment
- The representation is a substitute for the real system
- The representation is consulted and manipulated by the agent

What is an agent?

Responsiveness to the environment

- Achieved via an internal representation of the environment
- The representation is a substitute for the real system
- The representation is consulted and manipulated by the agent

Spectrum of representations

- Iconic representations: analog or continuous
- Symbolic representations: digital or discrete

What is an agent?

Responsiveness to the environment

- Achieved via an internal representation of the environment
- The representation is a substitute for the real system
- The representation is consulted and manipulated by the agent

Spectrum of representations

- Iconic representations: analog or continuous
- Symbolic representations: digital or discrete

Varieties of agents

- Simplest agents: only iconic representations
- More complex agents: both iconic and symbolic representations

Iconic v. symbolic representations

Iconic representation

- Somehow directly resembles or mimics the external system
- More concrete
- E.g. a person's photograph, a map, a model aeroplane in a wind tunnel
- The model resembles the real thing in those aspects considered relevant

Iconic v. symbolic representations

Iconic representation

- Somehow directly resembles or mimics the external system
- More concrete
- E.g. a person's photograph, a map, a model aeroplane in a wind tunnel
- The model resembles the real thing in those aspects considered relevant

Symbolic representation

- The resemblance with the environment is indirect or conventional
- More abstract
- Usually a description in some language
- E.g. a person's name, a description of a system in some language
- But not always: a wedding ring is a symbol of a mutual agreement

Iconic v. symbolic representations

In this module

- We are concerned with agents that also have a symbolic representation
- We assume agents have access to a symbolic language

Iconic v. symbolic representations

In this module

- We are concerned with agents that also have a symbolic representation
- We assume agents have access to a symbolic language

Importance of language

- Communication between agents fostering cooperative behaviour
- It is discrete, easing its processing and storage
- It can be mapped into an iconic representation, its semantics
- It lends itself naturally to verification and explanation

Information

What is it?

- Our agents are information-processing agents
- The more possibilities are ruled out, the more information one has
- Complete information: exclusion of all possibilities except the actual one

Information

What is it?

- Our agents are information-processing agents
- The more possibilities are ruled out, the more information one has
- Complete information: exclusion of all possibilities except the actual one

Levels of information

- The agent level: the information the agent can extract from the system
- The designer's level: information about both the system and the agent

Information

What is it?

- Our agents are information-processing agents
- The more possibilities are ruled out, the more information one has
- Complete information: exclusion of all possibilities except the actual one

Levels of information

- The agent level: the information the agent can extract from the system
- The designer's level: information about both the system and the agent

We are at the designer's level

Outline

Representation

Semantics

Symbolic representation

Truth

The light-fan system

- Two components: a light and a fan
- Each component may be either on or off
- A state of the system is determined only by these facts

The light-fan system

- Two components: a light and a fan
- Each component may be either on or off
- A state of the system is determined only by these facts
- How many possible states of the system are there?

The light-fan system

- Two components: a light and a fan
- Each component may be either on or off
- A state of the system is determined only by these facts
- ullet How many possible states of the system are there? $\{00,01,10,11\}$

The light-fan system

- Two components: a light and a fan
- Each component may be either on or off
- A state of the system is determined only by these facts
- How many possible states of the system are there? $\{00, 01, 10, 11\}$

The light-fan system

Description

- Two components: a light and a fan
- Each component may be either on or off
- A state of the system is determined only by these facts
- How many possible states of the system are there? $\{00, 01, 10, 11\}$

What information can an agent extract from the system via its sensors?

Phases of information gathering

Let S denote the possible states of a system.

Phases of information gathering

Let S denote the possible states of a system.

Fixed information

- First, the agent acquires his fixed information: the system's constraints
- Exclusion of 0 or more states leading to $C_{\mathsf{f}} \subseteq \mathcal{S}$

Phases of information gathering

Let S denote the possible states of a system.

Fixed information

- First, the agent acquires his fixed information: the system's constraints
- Exclusion of 0 or more states leading to $C_{\mathsf{f}} \subseteq \mathcal{S}$

Evidence

- Second, the agent acquires evidence by observation or communication
- Exclusion of 0 or more states leading to $C_{\mathsf{fe}} \subseteq \mathcal{S}$

Phases of information gathering

Let S denote the possible states of a system.

Fixed information

- First, the agent acquires his fixed information: the system's constraints
- Exclusion of 0 or more states leading to $C_f \subseteq S$

Evidence

- Second, the agent acquires evidence by observation or communication
- Exclusion of 0 or more states leading to $C_{\mathsf{fe}} \subseteq \mathcal{S}$

Default rule

- Finally, the agent may bring to bear a default rule
- These correspond to heuristics, statistical data, or commonsense
- Exclusion of 0 or more states leading to $C_{\text{fed}} \subseteq S$

Phases of information gathering

Example (Light-fan system)

Candidate states to be the actual state: $\mathcal{S} = \{00, 01, 10, 11\}$

- 1. "The fan is never on when the light is off": $C_f = \{00, 10, 11\}$
- 2. The agent sees the light is on: $C_{fe} = \{10, 11\}$
- 3. "When the light is on, then usually the fan is on": $\mathit{C}_{\mathsf{fed}} = \{11\}$

Phases of information gathering

Example (Light-fan system)

Candidate states to be the actual state: $\mathcal{S} = \{00, 01, 10, 11\}$

- 1. "The fan is never on when the light is off": $C_f = \{00, 10, 11\}$
- 2. The agent sees the light is on: $C_{fe} = \{10, 11\}$
- 3. "When the light is on, then usually the fan is on": $C_{\mathsf{fed}} = \{11\}$

Semantics Symbolic representation

Outline

Representations

Semantics

Symbolic representation

Truth

A knowledge-representation language

Representing facts

- The state of the system is completely determined by its basic facts
- E.g. whether the light is on and whether the fan is on
- With P we denote a set of propositional atoms
- E.g. $\mathcal{P} = \{p, q\}$, where p = "the light is on" and q = "the fan is on"

A knowledge-representation language

Representing facts

- The state of the system is completely determined by its basic facts
- E.g. whether the light is on and whether the fan is on
- With P we denote a set of propositional atoms
- E.g. $\mathcal{P} = \{p, q\}$, where p = "the light is on" and q = "the fan is on"

What about more complex claims?

Equip the language with connectives

```
\begin{array}{lll} \neg & (\mathsf{negation}) & \to & (\mathsf{conditional}) \\ \land & (\mathsf{conjunction}) & \leftrightarrow & (\mathsf{biconditional}) \\ \lor & (\mathsf{disjunction}) \end{array}
```

Build complex sentences from atoms and connectives

A knowledge-representation language

Let α and β be sentences

- $\neg \alpha$ is read "not α "
- $\alpha \wedge \beta$ is read " α and β "
- $\alpha \vee \beta$ is read " α or β (or both)"
- $\alpha \to \beta$ is read "if α , then β "
- $\alpha \leftrightarrow \beta$ is read " α if and only if β "

A knowledge-representation language

Let α and β be sentences

- $\neg \alpha$ is read "not α "
- $\alpha \wedge \beta$ is read " α and β "
- $\alpha \vee \beta$ is read " α or β (or both)"
- $\alpha \to \beta$ is read "if α , then β "
- $\alpha \leftrightarrow \beta$ is read " α if and only if β "

Some remarks

- In $\alpha \wedge \beta$, we call α , β the conjuncts
- In $\alpha \vee \beta$, we call α , β the disjuncts
- In $\alpha \to \beta$, α is the antecedent and β the consequent

Outline

Representations

Semantics

Symbolic representation

Truth

Semantics of sentences

How to tell whether a sentence correctly describes the state of the system?

Semantics of sentences

How to tell whether a sentence correctly describes the state of the system?

Methodology

- We put ourselves as external observers to the system
- Each state assigns truth values to the propositional atoms
- The truth value of a sentence is computed from those of the atoms
- A sentence correctly describes a state iff it is true

Semantics of sentences

How to tell whether a sentence correctly describes the state of the system?

Methodology

- We put ourselves as external observers to the system
- Each state assigns truth values to the propositional atoms
- The truth value of a sentence is computed from those of the atoms
- A sentence correctly describes a state iff it is true

A sentence α only has a truth value relative to a given state

Semantics of sentences

Compositionality

α	$\neg \alpha$
1	0
0	1

α	β	$\alpha \wedge \beta$
0	0	0
0	1	0
1	0	0
1	1	1

α	β	$\alpha \vee \beta$
0	0	0
0	1	1
1	0	1
1	1	1

α	β	$\alpha \to \beta$
0	0	1
0	1	1
1	0	0
1	1	1

α	β	$\alpha \leftrightarrow \beta$
0	0	1
0	1	0
1	0	0
1	1	1

Semantics Symbolic representation Truth

Epilogue

Summary

- The basic epistemic scenario, hotbed for complex realistic systems
- Different types of representation: iconic and symbolic
- The phases of information gathering
- The foundations of a representation language
- The notion of truth

Epilogue

Summary

- The basic epistemic scenario, hotbed for complex realistic systems
- Different types of representation: iconic and symbolic
- The phases of information gathering
- The foundations of a representation language
- The notion of truth

What next?

- Opaque representation languages
- Semantic foundations of reasoning