Лабораторная работа #6

Для нечётных вариантов – Схема 1, для чётных – Схема 2.

Передаточные функции:

данные:

$$W_1(s) = \frac{\tau s + 1}{Ts + 1}; \quad W_2(s) = \frac{k_1}{s \cdot (T_1 s + 1)}; \quad W_3(s) = \frac{k_2}{s}; \quad W_4(s) = 10;$$

Числовые

№ варианта	k_1	k_2	T	T_1	τ	
1	40	80	9	0.025	0.9	
2	30	10	2	0.02	0.2	
3	60	7	8	0.025	0.8	
4	40	10	4	0.04	0.4	
5	50	100	5	0.025	0.5	
6	60	10	2	0.04	0.2	
7	70	20	3	0.01	0.3	
8	80	30	4	0.02	0.4	
9	30	90	9	0.025	0.9	
10	10	45	12	0.045	0.7	
11	18	60	20	0.033	2.0	
12	16	50	4	0.05	0.6	
13	12	40	13	0.04	1.0	
14	14	30	8	0.005	0.2	
15	15	80	1	0.002	0.05	
16	90	20	6	0.06	0.7	
17	20	45	7	0.025	0.4	
18	50	70	13	0.033	0.3	
19	20	90	12	0.04	0.2	
20	30	70	4	0.02	0.8	
21	10	15	9	0.033	0.8	
22	20	90	2	0.002	0.05	

23	30	80	8	0.025	0.8
24	40	70	4	0.02	0.8
25	50	60	5	0.025	0.5
26	60	40	9	0.025	0.9
27	70	30	2	0.02	0.2
28	80	20	3	0.01	0.3
29	90	10	12	0.045	0.7
30	100	20	10	0.04	0.5
31	110	40	20	0.033	2.0
32	120	30	18	0.02	3.0

СОДЕРЖАНИЕ ЗАДАНИЯ

Для системы автоматического управления, структурная схема которой представлена на рисунке, выполнить следующее:

1) Построить график функции ошибки $\varepsilon(t)$, используя п.п.п. МАТLAB, при входном воздействии:

a)
$$g(t) = g_0 = 5$$
; 6) $g(t) = 4\sin(0.5t)$.

По графику приближённо определить установившееся значение ошибки.

- 2) Построить ЛАЧХ и ЛФЧХ разомкнутой системы, используя п.п.п. MATLAB, с указанием запасов устойчивости.
- 3) Построить годограф АФЧХ разомкнутой системы, используя п.п.п. МАТLAB.
- 4) Определить устойчивость замкнутой системы, используя критерии Гурвица и Найквиста
- 5) Построить графики переходной функции h(t) и импульсной переходной функции k(t) замкнутой системы, используя п.п.п. МАТLAB.

Из графика h(t) найти характеристики переходного процесса: время переходного процесса (при $\Delta \pm 5\%$ от $h(\infty)$) и перерегулирование.

<u>Примечание:</u> все результаты, полученные в MATLAB, должны сопровождаться или кодом программы, или картинкой из Симулинка, чтобы было понятно, как это получено.