let n_i be the length of the *i*-th sorted list, and let $n = \sum_{i=1}^k n_i$.

- 1. use heap. $O(n \log k)$.
- 2. merge sort, use $\log k$ rounds. $O(n \log k)$.
- 3. we can merge two sorted lists with length n and m in $O(n\log\frac{m}{n})$ (wlog assume $n\leq m$) [1], see 021. Merge Two Sorted Lists. for $i=1\ldots k$, merge the i-th list with the result list in $O(n_i\log\frac{n}{n_i})$. in total $O(n\log n \sum_{i=1}^k n_i\log n_i)$ time.

for comparison based algorithms, the information-theoretic lower bound is $\log \frac{n!}{\prod_{i=1}^k n_i!} = \Omega(n \log n - \sum_{i=1}^k n_i \log n_i)$, so the algorithm is tight.

References

[1] Mark R Brown and Robert E Tarjan. A fast merging algorithm. Technical report, STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE, 1977.