Asymmetric Cryptography

2025.08

자동차융합대학

CONTENTS

01 공개키 암호 개요

02 수학적 배경 지식

03 RSA 암호

01

공개키 암호 개요

■ 대칭키 암호

- 안전한 채널을 통해서 사용자가 서로 동일한 키를 사전 공유
- N명이 서로 비밀 통신을 하기 위해서는 $\frac{n(n-1)}{2}$ 개의 키가 필요
- 송신자나 수신자의 부인방지를 제공하지 못함

■ 공개키 (or 비대칭키(Asymmetric) 암호시스템)

- Diffie와 hellman은 1976년 발표된 논문 "New Directions in Cryptography)"에서 공개키 암호시스템 소개
- 각 사람마다 한 쌍의 키(공개키 pk, 개인키 sk)
 - 공개키는 모두에게 공개되고, 개인키는 비밀로 보관
 - 공개키 pk로부터 개인키 sk를 도출하는 것은 계산적으로 불가능 (Computationally Infeasible)

■ 공개키 암호시스템과 대칭키 암호시스템의 차이점

	대칭키 암호시스템	공개키 암호시스템	
비밀키 분배	필요	불필요	
보유 비밀키 개수 (n명이 비밀통신 하는 경 우)	(n - 1)개 (상대방별로 키가 필요)	1개 (자신의 비밀키만 보유)	
암호화 & 복호화 속도	빠름	느림	
대표 예	DES, AES, SEED, ARI A	RSA, ElGamal	

■ 하이브리드 암호시스템

- 대용량의 데이터를 암호화하기 위해서 대칭키 암호 시스템에서 사용되는 secret key를 공개키 암호시스템으로 암호화($E_{pk}(secret\ key)$)하여 분배
- 수신자는 분배된 비밀키를 이용하여 대용량의 데이터를 대칭키 암호시스템 으로 암호화

공개키 암호 개요 - 기본 개념

■ 일방향 함수 (One-Way Function) f

- f is easy to compute.
- f^{-1} is difficult to compute.

■ 소인수분해 문제

- When n is large, n = p * q is a one-way function.
- Given p and q, it is always easy to calculate n; given n, it is very difficult to compute p and q.
- 최근까지 알려진 결과로는 2009년에 232자리의 십진수를 수 백대의 컴퓨터를 사용하여 2년 만에 인수분해에 성공
 - 232자리 십진수를 이진수로 나타내면 768비트가 필요하며 위의 결과는 768비트 RSA의 경우 동일한 계산능력으로 2년 만에 평 문이 복호화 될 수 있음을 의미

공개키 암호 개요 - 기본 개념

■ Trapdoor One-Way Function (TOWF)

- f is easy to compute.
- f^{-1} is difficult to compute.
- Given y and a trapdoor, x can be computed easily.

[그림] 공개키 설계의 기본 개념

02

수학적 배경 지식

- 약수, 공약수, 최대공약수 (GCD: Greatest Common Divisor)
 - gcd(a, b) = gcd(140, 12) = 4
 - 0이 아닌 두 정수 a, b에 대하여, gcd(a,b) = 1을 만족하면 a와 b는 서로소(relative prime)

■ 유클리드 알고리즘(Euclidean Algorithm)

Fact 1: gcd(a, 0) = a

Fact 2: gcd(a, b) = gcd(b, r), where r is

the remainder of dividing a by b

q	r_I	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
	20	0	

■ 유클리드 알고리즘(Euclidean Algorithm)

a. Process

$$r_{1} \leftarrow a; \quad r_{2} \leftarrow b; \quad \text{(Initialization)}$$

$$\text{while } (r_{2} > 0)$$

$$\{ \\ q \leftarrow r_{1} / r_{2}; \\ r \leftarrow r_{1} - q \times r_{2}; \\ r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r; \\ \}$$

$$\text{gcd } (a, b) \leftarrow r_{1}$$

b. Algorithm

[문제] 유클리드 알고리즘

- 다음 두 수의 최대공약수(GCD)를 유클리드 알고리즘을 이용하여 구하시오.
 - gcd(675, 108) = ?

q	r1	r2	r
6	675	108	27
4	108	27	0
	27	0	

• gcd(1666, 6732) = ?

q	r1	r1 r2	
4	6732	1666	68
24	1666	68	34
2	68	34	0
	34	0	

■ 확장 유클리드 알고리즘 (Extended Euclidean Algorithm)

• 적어도 하나는 0이 아닌 두 정수 a와 b에 대하여 다음을 만족하는 s와 t가 존재한다.

$$s \times a + t \times b = \gcd(a, b)$$

•
$$a = 75$$
, $b = 20$ 인 경우
 $75 \times (-1) + 20 \times (4) = \gcd(75, 20) = 5$

• 확장 유클리드 알고리즘은 gcd(a,b) 뿐만 아니라 s와 t를 구해준다.

a. Process

$$r = r_1 - q \times r_2$$
, $s = s_1 - q \times s_2$, $t = t_1 - q \times t_2$


```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
 s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                              (Initialization)
t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
                                                      (Updating r's)
     r_1 \leftarrow r_2; r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                      (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
                                                      (Updating t's)
   \gcd(a,b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

■ Ex: Given a = 161 and b = 28, find gcd(a, g) and the values of s and t.

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	-5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	-5 6	-23
	7 0		-1 4		6 −23	

$$r = r_1 - q x r_2$$
, $s = s_1 - q x s_2$, $t = t_1 - q x t_2$

수학적 배경지식 – modular arithmetic

■ 임의의 정수 a를 양의 정수 n으로 나누면 몫이 q가 되고 음이 아닌 나머지 r을 얻는다.

$$a = qn + r \quad (0 \le r < n)$$

23 = 4 × 5 + 3; -17 = (-3) × 5 + (-2) = (-4) × 5 + 3

■ mod 연산

 $a \mod n = r$

$$23 \mod 5 = 3; -17 \mod 5 = 3$$

수학적 배경지식 – modular arithmetic (cont'd)

■ mod 연산은 임의의 정수 a를 양의 정수 n으로 나누면 몫이 q가되고 음이 아닌 나머지 r을 얻는다.

$$a = qn + r \ (0 \le r < n)$$

 $lacksymbol{\blacksquare}$ mod 연산은 완전잉여계 Z_n 을 만든다.

$$\mathbf{Z}_n = \{ 0, 1, 2, 3, \dots, (n-1) \}$$

$$\mathbf{Z}_2 = \{0, 1\} \left[\mathbf{Z}_6 = \{0, 1, 2, 3, 4, 5\} \right] \left[\mathbf{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \right]$$

■ 합동(Congruence)

$$2 \equiv 12 \pmod{10}$$
 $13 \equiv 23 \pmod{10}$
 $3 \equiv 8 \pmod{5}$ $8 \equiv 13 \pmod{5}$

수학적 배경지식 – modular arithmetic (cont'd)

■ mod 연산의 성질

First Property: $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$

Second Property: $(a - b) \mod n = [(a \mod n) - (b \mod n)] \mod n$

Third Property: $(a \times b) \mod n = [(a \mod n) \times (b \mod n)] \mod n$

$$10 \mod 3 = 1 \longrightarrow 10^n \mod 3 = (10 \mod 3)^n = 1$$

$$10 \mod 9 = 1 \longrightarrow 10^n \mod 9 = (10 \mod 9)^n = 1$$

$$10 \mod 7 = 3 \longrightarrow 10^n \mod 7 = (10 \mod 7)^n = 3^n \mod 7$$

$$a = a_n \times 10^n + \dots + a_1 \times 10^1 + a_0 \times 10^0$$

For example: $6371 = 6 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 1 \times 10^0$

$$a \mod 3 = (a_n \times 10^n + \dots + a_1 \times 10^1 + a_0 \times 10^0) \mod 3$$

$$= (a_n \times 10^n) \mod 3 + \dots + (a_1 \times 10^1) \mod 3 + (a_0 \times 10^0) \mod 3$$

$$= (a_n \bmod 3) \times (10^n \bmod 3) + \dots + (a_1 \bmod 3) \times (10^1 \bmod 3) + \dots$$

$$(a_0 \bmod 3) \times (10^0 \bmod 3)$$

$$= a_n \mod 3 + \cdots + a_1 \mod 3 + a_0 \mod 3$$

$$= (a_n + \cdots + a_1 + a_0) \mod 3$$

수학적 배경지식 - 역원 (Inverses)

■ 덧셈상의 역원, 곱셈상의 역원

• Z_n 상에서 덧셈상의 역원

$$a + b \equiv 0 \pmod{n}$$

• Z_n 상에서 곱셈상의 역원

$$a \times b \equiv 1 \pmod{n}$$

• In modular arithmetic, an integer may or may not have a multiplicative inverse. Number a has the multiplicative Inverse if $gcd(n, a) \equiv 1 \pmod{n}$

수학적 배경 지식 - 확장 유클리드 알고리즘 활용 예제#1

 \blacksquare 85⁻¹ mod 33 \equiv

q	r1	r2	r	s 1	s2	S	t1	t2	t
2	85	33	19	1	0	1	0	1	-2
1	33	19	14	0	1	-1	1	-2	3
1	19	14	5	1	-1	2	-2	3	-5
2	14	5	4	-1	2	-5	3	-5	13
1	5	4	1	2	-5	7	-5	13	-18
4	4	1	0	-5	7	-33	13	-18	85
	1	0		7	-33		-18	85	

수학적 배경 지식 - 확장 유클리드 알고리즘 활용 예제#2

■ $2145^{-1} \mod 133 \equiv$

q	r1	r2	r	s1	s2	S	t1	t2	t
16	2145	133	17	1	0	1	0	1	-16
7	133	17	14	0	1	-7	1	-16	113
1	17	14	3	1	-7	8	-16	113	-129
4	14	3	2	-7	8	-39	113	-129	629
1	3	2	1	8	-39	47	-129	629	-758
2	2	1	0	-39	47	-135	629	-758	2145
	1	0		47	-135		-758	2145	

[문제] 확장 유클리드 알고리즘

■ 다음을 확장 유클리드 알고리즘을 이용하여 계산하시오.

• $131^{-1} \mod 29 \equiv 2$

q	r1	r2	r	S	t
				1	0
4	131	29	15	0	1
1	29	15	14	1	-4
1	15	14	1	-1	5
14	14	1	0	2	-9

• $3714^{-1} \mod 131 \equiv 94$

q	r1	r2	r	S	t
				1	0
28	3714	131	46	0	1
2	131	46	39	1	-28
1	46	39	7	-2	57
5	39	7	4	3	-85
1	7	4	3	-17	482
1	4	3	1	20	-567
3	3	1	0	-37	1049

■ P-NP 문제

- Undecidable
 - No algorithm that solves it.
- Decidable
 - If a problem can be solved in poly-time, it is tractable. Otherwise, it is intractable.
 - P: there exists a poly-time algorithm
 - NP: We don't know if there exists a poly-time algorithm and nobody insists that it cannot be solvable in poly-time.

■ NP 문제

- 비결정적 단계 (Nondeterministic Phase)
 - Guess
- 결정적 단계 (Deterministic Phase)
 - 다항식 시간 검증
- e.g.,) 소인수 분해 문제
 - 입력: 합성수 N
 - ✓ 비결정적 단계: p와 q를 Guess
 - ✓ 결정적 단계: p * q =? N을 다항식시간 안에 검증

■ 오일러 함수 (Euler's Phi Function)

- × 오일러 함수 $\varphi(\cdot)$ 는 1부터 n까지 n과 서로소인 정수의 개수 $\varphi(n) = |\{a \in \mathbb{N} | \gcd(a,n) = 1\}|$
- × p가 소수일 때, $\varphi(p) = p 1$
- \times 서로소인 정수 m,n에 대하여, $\varphi(m \times n) = \varphi(m) \times \varphi(n)$

\blacksquare e.g., $\varphi(10)$

- $\gcd(1,10) = 1$, $\gcd(2,10) = 2$, $\gcd(3,10) = 1$
- $\gcd(4,10) = 2$, $\gcd(5,10) = 5$, $\gcd(6,10) = 2$
- $\gcd(7,10) = 1$, $\gcd(8,10) = 2$, $\gcd(9,10) = 1$
- $^{\times}$ $\varphi(10) = 4$

■ 오일러 정리 (Euler's Theorem)

- \star $n \in \mathbb{Z}$, $\forall a \in \mathbb{Z}_n^* \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- $\times n \in \mathbb{Z}, \quad \forall a \in \mathbb{Z}_n^*, \quad \Rightarrow \quad a^{\varphi(n)+1} \equiv a \pmod{n}$
- × 예) 3⁻¹ mod 14
 - φ(14) = 6 → 3⁶ ≡ 1 (mod 14)
 - ▶ $3 \times 3^5 \equiv 1 \pmod{14}$: 곱셈상의 역원에 대한 정의와 동일
 - $ightharpoonup 3^{-1} \equiv 3^5 \pmod{14}$
 - $ightharpoonup 3^{-1} \equiv 3^5 \equiv 243 \equiv 5 \pmod{14}$

■ 소수의 개수

- * 가장 큰 소수 : 6,320,430자리의 소수 (MSU)
- × 소수의 개수는 무한
- * n보다 작은 소수의 개수 : f(n) $[\frac{n}{\ln n}] < f(n) < [\frac{n}{\ln n 1.08366}]$
 - ▶ n의 값이 커질수록, 그 수가 소수일 확률도 $\frac{1}{\ln n}$ 의 분포를 따라서 작아짐
- * 1,000,000보다 적은 소수의 개수는?
 - ► 72,383 < f(1,000,000) <78,543.
 - ▶ 실제 78,498개의 소수
- ✗ 선택된 수 k 가 소수일 확률

$$P(k \text{ is prim}e) \approx \frac{1}{ln(k)}$$

03

RSA 암호

■ 가장 많이 사용되고 있는 공개키 암호시스템

- Rivest, Shamir, and Adleman의 이름에서 RSA
- Clifford Cocks, an English mathematician working for the UK intelligence agency, described an equivalent system in 1973, but it was mostly considered a curiosity and, as far as is publicly known, was never deployed. His discovery, however, was not revealed until 1998 due to its top-secret classification, and Rivest, Shamir, and Adleman devised RSA independently of Cocks' work.

■ 키 생성

- 1. 서로 다른 두 소수 p와 q 선택 (크기가 동일한 1024비트 이상의 수로 선택); ($P(k \text{ is prime}) \approx \frac{2}{\ln(2^{1024})} = \frac{2}{1024 \ln(2)} \approx \frac{1}{355}$)
- 2. $n = p \times q$ 값을 계산.
- 3. $\varphi(n) = (p-1)(q-1)$
- $4. \ 1 < e < \varphi(n) 1$ 의 범위에서 $\varphi(n)$ 과 서로소인 e를 선택
- 5. $d = e^{-1} \mod \varphi(n)$ (확장 유클리드 알고리즘)
- × (e,n): public-key
- (d,n): private-key

예)

- 1. p = 127, q = 131
- 2. $n = p \times q = 127 \times 131 = 16637$
- 3. $\varphi(n) = \varphi(p \times q) = \varphi(p) \times \varphi(q) = (p-1) \times (q-1) = 126 \times 130 = 16380$
- 4. 공개키 e는 집합 $\mathbb{Z}_{\varphi(n)}^*$ 에서 $gcdig(e, \varphi(n)ig)=1$ 을 만족하는 e=17 로 선택
- 5. $d \equiv e^{-1} \equiv 17^{-1} \equiv 14453 \pmod{16380}$
- 6. 공개키 (n = 16637, e = 17), 개인키 (d = 14453)

■ 암/복호화

- Encryption: $c = m^e \mod n$
 - Note m < n (for uniqueness)
- Decryption: $m = c^d \mod n$

(e,n): public-key(d,n): private-key

■ RSA 암호의 정확성 (correctness)

* **Decryption** : $c^d \equiv (m^e)^d \equiv m^{ed} \pmod{n}$ We know that $ed = k\varphi(n) + 1$ Case 1: GCD(m, p) = 1 and GCD(m, q) = 1 $m^{ed} \equiv m^{k\varphi(n)+1} \equiv (m^{\varphi(n)})^k \cdot m \equiv 1^k \cdot m \equiv m \pmod{n} \pmod{n} \pmod{n} \pmod{n}$ Case 2: $m = i \times p$ and GCD(m, q) = 1 $m^{k\varphi(n)} \equiv (m^{\varphi(n)})^k \equiv (m^{\varphi(p)\varphi(q)})^k \equiv (m^{(q-1)})^{k(p-1)} \equiv 1^{k(p-1)} \pmod{q}$ $m^{k\varphi(n)} = (j \times q) + 1$ $m^{k\varphi(n)+1} = ((j \times q) + 1) \times m = (j \times q \times m) + m = (j \times q \times i \times p) + m$ $= (j \times i \times n) + m$ $\Rightarrow m^{k\varphi(n)+1} \equiv m \pmod{n}$

Case 3: $m = i \times q$ and GCD(m, p) = 1 : similar to Case 2

■ RSA 암호 예시

$$p = 47$$
 and $q = 71$, $n = p*q = 3337$

- (p-1)*(q-1) = 46 * 70 = 3220, GCD(e, (p-1) *(q-1)) = 1
- Choose e at random to be 79
- $\mathbf{d} = 79^{-1} \mod 3220 = 1019$
- ▶ To encrypt message m = 6882326879666683

$$m_1 = 688$$
 $m_2 = 232$ $m_3 = 687$ $m_4 = 966$ $m_5 = 668$ $m_6 = 003$

- $c_1 = m_1^e \mod n = 688^{79} \mod 3337 = 1570$
- ightharpoonup c = 1570 2756 2091 2276 2423 158
- ► To decrypt, $m_1 = c_1^d \mod n = 1570^{1019} \mod 3337 = 688$

■ RSA 암호의 안전성

- RSA 문제
 - $c \equiv m^e \pmod{n}$ 가 주어졌을 때의 c의 $e^{th} root$ 를 구하는 문제
 - ✓ 인수분해 문제 → RSA 문제
 - \circ n=p imes q을 인수분해 o $\varphi(n) \big(=(p-1)(q-1)\big) o e$ 의 곱셈상의 역원 d를 계산
 - ✓ RSA 문제 → 인수분해 문제
 - Not known yet

■ RSA 이용 시 권고사항

- N의 비트는 적어도 (서명의 경우) 2048비트가 되어야 한다.
- 서로 다른 두 소수 p와 q는 적어도 1024비트 이상이 되어야 한다.
- 서로 다른 두 소수 p와 q가 너무 가까이 있는 소수는 선택하지 않는다.
- p-1과 q-1은 적어도 하나의 큰 소인수를 가져야 한다.
- 비율 p/q가 작은 분자나 작은 분모를 갖는 유리수와 가까이 있으면 안된다.
- N을 공통적으로 이용하지 않는다.
- 공개키 e는 $2^{16} + 1 = 65537$ 을 이용하거나 혹은 65537과 가까이 있는 값을 이용한다.
- 만약 개인키 d가 노출되었을 경우, 수신자는 반드시 공개키 n과 e, 개인키 d를 즉시 교체해야 한다.
- OAEP를 이용

■ OAEP (Optimal Asymmetric Encryption Padding)

- × P1 || P2 where P1 = $(m||0^{k1}) \oplus G(r)$, P2 = $H(P1) \oplus r$
- $|P1| = k k_0, |P2| = k_0$

Thank You Mose

- Lab: https://mose.kookmin.ac.kr

- Email: sh.jeon@kookmin.ac.kr