Foundations of Machine Learning

Brett Bernstein

August 22, 2018

Conditional Probability Models: Concept Check

Conditional Probability Models

MLE Learning Objectives

- Define the likelihood of an estimate of a probability distribution for some data \mathcal{D} .
- Define a parameteric model, and some common parameteric families.
- Define the MLE for some parameter θ of a probability model.
- Be able to find the MLE using first order conditions on the log-likelihood.

Conditional Probability Models

- Describe the basic structure of a linear probabilistic model, in terms of (i) a parameter θ of the probablistic model, (ii) a linear score function, (iii) a transfer function (kin to a "response function" or "inverse link" function, though we've relaxed requirements on the parameter theta).
- Explain how we can use MLE to choose w, the weight vector in our linear function (in (ii) above).
- Give common transfer functions for (i) bernoulli, (ii) poisson, (iii) gaussian, and (iv) categorical distributions. Explain why these common transfer functions make sense (in terms of their codomains).
- Explain the equivalence of EMR and MLE for negative log-likelihood loss.

MLE/Conditional Probability Model Concept Check Question

1. In each of the following, assume X_1, \ldots, X_n are an i.i.d. sample from the given distribution.

- (a) Compute the MLE for p assuming each $X_i \sim \text{Geom}(p)$ with PMF $f_X(k) = (1 p)^{k-1}p$ for $k \in \mathbb{Z}_{\geq 1}$.
- (b) Compute the MLE for λ assuming each $X_i \sim \text{Exp}(\lambda)$ with PDF $f_X(x) = \lambda e^{-\lambda x}$. Solution.
- (a) The likelihood L is given by

$$L(p; x_1, \dots, x_n) = \prod_{i=1}^{n} (1-p)^{x_i-1} p$$

giving a log-likelihood

$$\log L(p; x_1, \dots, x_n) = n \log p + \left(\sum_{i=1}^n x_i - 1\right) \log(1-p).$$

Differentiating gives

$$\frac{d}{dp}\log L(p; x_1, \dots, x_n) = \frac{n}{p} - \frac{\sum_{i=1}^n x_i - 1}{1 - p}.$$

Solving for a critical point we get

$$\frac{d}{dp}\log L(p;x_1,\ldots,x_n)=0\iff \frac{1}{n}\sum_{i=1}^n x_i=\frac{1}{p}\iff p=\frac{n}{\sum_{i=1}^n x_i}.$$

By the first or second derivative tests, this is the maximum. Thus the answer is

$$\hat{p}_{\text{MLE}} = \frac{n}{\sum_{i=1}^{n} x_i}.$$

(b) The likelihood L is given by

$$L(\lambda; x_1, \dots, x_n) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$$

giving a log-likelihood

$$\log L(\lambda; x_1, \dots, x_n) = n \log \lambda - \lambda \sum_{i=1}^n x_i.$$

Differentiating gives

$$\frac{d}{dp}\log L(p;x_1,\ldots,x_n) = \frac{n}{\lambda} - \sum_{i=1}^n x_i.$$

Solving for a critical point we get

$$\frac{d}{dp}\log L(p; x_1, \dots, x_n) = 0 \iff \lambda = \frac{1}{n} \sum_{i=1}^n x_i.$$

By the first or second derivative tests, this is a maximum. Thus the answer is

$$\hat{\lambda}_{\text{MLE}} = \frac{n}{\sum_{i=1}^{n} x_i}.$$

2. We want to fit a regression model where $Y|X=x\sim \mathrm{Unif}([0,e^{w^Tx}])$ for some $w\in\mathbb{R}^d$. Given i.i.d. data points $(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathbb{R}^d\times\mathbb{R}$, give a convex optimization problem that finds the MLE for w.

Solution. The likelihood L is given by

$$L(w; x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^n \frac{\mathbf{1}(y_i \le e^{w^T x_i})}{e^{w^T x_i}}.$$

Taking logs we get

$$-\sum_{i=1}^{n} w^{T} x_{i} = -w^{T} \left(\sum_{i=1}^{n} x_{i} \right)$$

if $y_i \leq \exp(w^T x_i)$ for all i, or $-\infty$ otherwise. Thus we obtain the linear program

minimize
$$w^T \left(\sum_{i=1}^n x_i \right)$$

subject to $\log(y_i) \le w^T x_i$ for $i = 1, \dots, n$.

3. Explain why softmax is related to computing the maximum of a list of values.

Solution. Let $x_1, \ldots, x_n \in \mathbb{R}$. Let $\operatorname{ArgMax}(x_1, \ldots, x_n)$ denote a 1-hot encoding of the argmax function:

$$\operatorname{ArgMax}(x_1,\ldots,x_n) = \left(\mathbf{1}(\arg\max_i x_i = 1),\ldots,\mathbf{1}(\arg\max_i x_i = n)\right).$$

Recall that softmax has the following definition:

softmax_{$$\lambda$$} $(x_1, \dots, x_n) = \frac{1}{\sum_{i=1}^n e^{\lambda x_i}} (e^{\lambda x_1}, \dots, e^{\lambda x_n}),$

where $\lambda > 0$ is a fixed parameter. We claim that softmax is a differentiable approximation to ArgMax. Consider what happens when we let $x_j \to \infty$ while keeping the other values fixed. Then

$$\frac{e^{\lambda x_j}}{\sum_{i=1}^n e^{\lambda x_i}} \to 1$$

and

$$\frac{e^{\lambda x_k}}{\sum_{i=1}^n e^{\lambda x_i}} \to 0$$

for all $k \neq j$. For example, suppose $x_1 = 1$, $x_2 = -3$, $x_3 = 5$. Then

$$softmax_1(1, -3, 5) = (0.0180, 0.0003, 0.9817)$$

while

$$ArgMax(1, -3, 5) = (0, 0, 1).$$

4. Suppose x has a Poisson distribution with unknown mean θ :

$$p(x|\theta) = \frac{\theta^x}{r!} \exp(-\theta), \qquad x = 0, 1, \dots$$

Let the prior for θ be a gamma distribution:

$$p(\theta|\alpha,\beta) = \frac{\beta^{\alpha}\theta^{\alpha-1}}{\Gamma(\alpha)} \exp(-\beta\theta), \quad \theta > 0$$

where Γ is the gamma function. Show that, given an observation x, the posterior $p(\theta|x,\alpha,\beta)$ is a gamma distribution with updated parameters $(\alpha',\beta')=(\alpha+x,\beta+1)$. What does this tell you about the Poisson and gamma distributions?

Solution. From Bayes' theorem¹, we have:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

$$\propto (\theta^x \exp(-\theta)) (\theta^{\alpha-1} \exp(-\beta\theta))$$

$$= \theta^{x+\alpha-1} \exp(-(\beta+1)\theta))$$

$$\propto \mathcal{G}(\alpha+x,\beta+1)$$

This shows that the gamma is the conjugate prior to the Poisson. Also, note here we exploit a common trick: we manipulate the numerator, ignoring constants independent of θ . If we can recognize the functional form as belonging to a distribution family we know, we can simply identify the parameters and trust that the distribution normalizes!

¹Actually from Roman Garnett, from whom this problem was taken.