In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. Ideally, the programming language best suited for the task at hand will be selected. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Code-breaking algorithms have also existed for centuries. Scripting and breakpointing is also part of this process. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Use of a static code analysis tool can help detect some possible problems. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Whatever the approach to development may be, the final program must satisfy some fundamental properties. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. It is very difficult to determine what are the most popular modern programming languages. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Use of a static code analysis tool can help detect some possible problems. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display.