

Lecture Unit 07

Laser-based Joining and Cutting

Beam Processing Technologies within DIN 8580

Primary Shaping	Forming	Cutting	Joining	Coating	Change of mat. prop
PBF-EB/M	Laser Bending	Water Jet Cutting	Electron Beam Welding	DED-LB/M	Hardening
PBF-LB/M		Laser Beam Cutting	Laser Beam Welding		VPP
DED-LB/M		Laser Beam Drilling			
		Electron Beam Drilling			

Laser beam can be found in all groups of DIN 8580

Properties of Laser Light

Laser radiation is light with special properties

Light in everyday life (e.g. sun, light bulb):

- superposition of numerous light waves
- different wavelengths and directions

Laser light:

- unidirectional beam
- monochromatic
- temporal and spatial coherence

Generation of Laser Radiation

Principle of Light Amplification

Schematics of an optical resonator

Live-Survey

Which emission mechanism is crucial for the generation of laser radiation?

- a) spontaneous emission
- b) stimulated emission

Result

Absorption Spectra of Different Materials

Laser Beam: Interaction with Matter

Interaction of continuous laser radiation with matter

Live-Survey

Which beam-based tool can be deflected faster?

- a) laser beam
- b) electron beam

Result

Applications of the Laser Beam

Brazing

Cutting

Welding

Laser Beam Brazing

Classification of Laser Beam Brazing according to DIN 8580 and 8505-3

© KÖNIG,KLOCKE

Different Soldering Methods

Soldering:

- Thermal process in which metal parts are joined together or coated by molten solder (filler metal)
- Soldering flux and/or shielding gases may be used

- Up to 450°C: Soft soldering
- From 450°C: Brazing
- From 900°C: High-temperature brazing

Schematic Representation of Laser Beam Brazing

Process Sequences and Characteristics of Laser Beam Brazing

Process sequences:

- 1. Heating-up of the joining partners, the filler material and the flux (better melting, protection against oxidation, cleaning)
- 2. Activation of the flux/protective gas: Removal of surface oxides
- 3. Melting of the filler metal
- 4. Wetting of the joining partners
- 5. Diffusion processes: Forming of mixed crystals or intermediate compounds

Characteristics of brazing:

- Joint partners only warmed, only filler material is molten (T_M > 450 °C)
- 2. Mechanical strength of joint comparable to that of the filler material
- 3. Properties of joint depend on amount of wire and temperature distribution

Live-Survey

What does decisively influence the wetting during laserbased brazing?

- a) surface temperature of the joining partners
- b) flux
- c) both

Result

Wetting and Diffusion

Wetting

- Contact angle φ is determined by the surface tension
- Solderability depends on the contact angle

Diffusion

Diffusion zone 1-10 µm, depends on:

- Temperature
- Brazing time
- Alloys

Application of Laser Beam Brazing

Laser beam brazed joints

© BMW AG

© Audi AG

© Laserline

Advantages and Disadvantages of Laser Beam Brazing

Advantages

- Solid joint with lower heat input into the base material than brazing in a furnace
- Good gap bridging due to added material
- Dense, firmly bonded connection
- Little need for post-processing
- Direct coating possible (better surface than weld seams)
- Joints are detachable by melting the braze
- Joining of diverse material possible

Disadvantages

- Surface preparation necessary -> removal of surface oxides
- Strength of the joint is lower than that of the base material
- Risk of corrosion due to differences in potential of the braze and base material
- Feed rates < 4 m/min (welding 8-10 m/min)

Laser Beam Welding of Metals

Classification of Laser Beam Welding according to DIN 8580 and 1910

© KÖNIG,KLOCKE

Heat Conduction Welding

Characteristics:

- Intensity > 10⁵ W/cm² -> no evaporation
- High energy input per unit length (power / feed rate)
- Semi-circular transverse section of the seam with a seam width of ~2x seam depth
- Uniform weld bead and weld root
- Weld depth depends significantly on thermal conductivity of the material
- Fields of application:
 - Covers and housing
 - Jewellery
 - Medical components
 - Electronics

Laser Deep Penetration Welding

Characteristics:

- Laser intensity > 10⁶ W/cm² -> evaporation of metallic material
- High feed rates (10 m/min)
- Low thermal influence on surrounding material
- High energy coupling efficiency due to multiple reflections inside keyhole
- Large ratio of weld depth to width
- Uniform weld bead and weld root
- Fields of application:
 - Welding of thick-walled pieces
 - Gear components

Heat Conduction Welding Deep Penetration Welding

Front view of the keyhole with slight inclination to the weld path

Simulation of Melt Pool Dynamics during Laser Deep Penetration Welding

Steel, s = 1 mm $r_f = 200 \mu m$ $l = 1.5e6 \text{ W/cm}^2$ v = 6 m/min

Physical Effects

Applications of Laser Beam Welding (1)

Contacting inside electric motors

Welding of car doors

Circumferential joint weld on an endoscope

Advantages and Disadvantages of Laser Beam Welding

Advantages

- Higher intensity compared to TIG welding
- Higher feed rate (8-10 m/min) than brazing (4 m/min)
- Welding under specified atmospheric conditions
- Less thermal distortion compared to TIG welding
- Welding of areas which are difficult to access
- Weldability of different materials

Disadvantages

- Bad gap-bringing due to frequently no additional material
- Lower efficiency level than electron beam welding
- Protection from laser radiation needed
- Spatter formation requires safety housing for optical components

Laser Beam Welding of Plastics

Material requirements:

- Thermoplastics (meltable polymers)
- Overlapping melting temperature range of joining partners
- Compatibility of molten materials (miscibility, weldability)
- Transmission of the laser radiation through upper joining partner
- Absorption of the laser radiation by lower joining partner

Fusion of CFRP with Polycarbonate

Laser Beam Cutting

Classification of Laser Beam Cutting according to DIN 8580 and 2310

© KÖNIG,KLOCKE

Laser Beam Cutting: Motivation

Laser beam cutting of hot-formed steels

Hardness of the material is challenging for mechanical cutting:

- Extremely high tool wear
- High processing forces required
- Risk of micro-cracks at cutting edges

Advantages of laser beam cutting:

- No wear of tool and stable process
- No deformation effects, small HAZ
- Cutting of different geometries by adjusting NC-Code

Laser Beam Cutting

Source: <u>directindustry.de</u>

Laser Beam Cutting: Process Variants

Sublimation cutting

- Evaporation of material (sublimation)
- Inert gas protection (e.g. Argon)
- Low plate thickness
- Very low feed rates

Fusion cutting

- Melting of material
- Dissipation of metal vapour by inert gas under high pressure
- Driving out of melt by inert gas flow
- Medium plate thickness
- Medium feed rates

Flame (oxygen) cutting

- Melting and burning of material
- Active gas, e.g. oxygen
- Cutting of thick plates (steel: up to 80 mm)
- High feed rates

Live-Survey

Which of the processes has the higher energy efficiency, considering an equivalent gap size?

- a) sublimation cutting
- b) fusion cutting
- c) both are similar

Result

Laser Beam Fusion Cutting and Flame Cutting: Execution

 Fusion and flame cutting are comparable processes: in flame cutting O₂ is used as cutting gas for additional heat input through exothermal reaction

Laser Beam Fusion and Flame Cutting: Comparison

- Fusion cut
- Stainless steel
- Oxide free cutting edge (shielding gas N₂)

- Flame (oxygen) cut
- Stainless steel
- Strong accumulation of oxide

Process parameters: P=750 W, v=2.5 m/min, v=1.4 m/min, s=2 mm

Laser Beam Cutting: Applications

- Flame cutting of mild steel up to 80 mm
- Fusion cutting of stainless steel up to 15 mm
- Sublimation Cutting: Cutting of fine outlines

Mild steel (thickness 40 mm)

Wheel of a printer

Laser beam cutting of jewellery

Laser cut implant systems

General Advantages of Laser Beam Cutting

- Non-contact tool → no mechanical stress on the workpiece, no tool wear
 Mechanical cutting: High mechanical stress due to chipped manufacturing, wear of the cutting tool
- High precision → laser can produce highly precise cuts and fine contours
 Mechanical cutting: Precision limited by dimension of the cutting tool
- Small HAZ→ little thermal stress on the workpiece
 - Mechanical cutting: High thermal stress on the workpiece, cooling and/or lubricant necessary
- Flexibility

 variety of tasks can be performed with the same tool, different processes can be carried out on one machine

Mechanical cutting: new task requires a new cutting tool, which is often time-consuming and not suitable for a small lot size

Quelle: Fuchs/blz

Advantages and Disadvantages of different Laser Beam Cutting Techniques

	Outling rechniques						
	Sublimation cutting:	Fusion cutting:	Flame (oxygen) cutting:				
Advantages	 Reduced amount of melt material → high quality of kerf edges Small HAZ Oxide-free cut edges Suitable for non-metals (e.g. wood, textile, etc.) and thin sheet metal 	•	 Additional energy due to the exothermic reaction between oxygen and the base material -> high cutting speeds Suitable for cutting of thick material (up to 80 mm steel) 				
Disadvantages	 High laser intensities required (> 10⁶ W/cm²) Relatively slow cutting speeds Limited material thickness 	 Precise adjustment of process parameters necessary Larger HAZ than Sub. Cutting Formation of grooves at the cross section of the cut High consumption of inert gas 	 Oxidation of cutting edges Risk of material erosion (can be avoided with proper process control) High consumption of cutting gas 				