Problem G: 水時計

問題概要 1/2

- ・格子状のフィールドの上に 30cmの立方体の水槽が様々な高さに存在
 - 同じ高さの水槽が隣接していた場合1つの水槽と見なす
- ・水槽から水があふれたとき、 前後左右の格子に水が流れる
 - 高さが下の水槽から上の水槽へは流れない
- ある水槽に水を流したとき、 他の水槽の水の高さは?

問題概要 2/2

- 同じ高さの水槽が前後左右に隣接していた時、 それらの水槽は一つの水槽として扱う
- ・水槽から水があふれた場合 全流出量*隣接面数/全面数だけ隣接している水槽に流れる。

例

・この場合、中心の#にはあふれた量の3/16が流れることになる。

注意

0 50 0 50 1 50 0 50 0

- このような場合、中心の水槽には 30*30*30 cm^3の水しか溜まらない
 - ・あふれた水は消滅

想定解法

- 幅優先探索+幅優先探索
 - 』 同じ高さの隣接水槽のマージと 水があふれた場合の流出割合の計算
 - 2. 水を流すシミュレーション

幅優先探索1

- ・同じ高さの隣接水槽のマージ
- ・底面積、全面数、隣の水槽との隣接面数を同時に算出
- これらを基にシミュレーション用のグラフを作成
 - ノード:水槽(底面積と全面数を保持)
 - エッジ:隣接している水槽間で上から下へ。コストは隣接面数

幅優先探索2

- 幅優先探索1作成したグラフを基に水を流していく
- ・水は上から下にのみ流れるので ループを考える必要はない
- 流出量
 - max(0, 水槽内の水の量+流入量-30*30*30)

- 今回は水槽自体の配置・容量は不変なので 状態は流した水の量のみに依存する
 - 1ステップごとにシミュレーションせずに 流量(f_0)×計測時間(t)分一気に水を流せばOK

結果

RUPC

- First Accept
 - lyrically さん
 - 118m11s

- Accept Rate
 - 7/38

会津合宿

- First Accept
 - k_operafan さん
 - 199m

- Accept Rate
 - 1/3

問題作成背景など

- 問題作成の分担として実装問題を担当
 - ややこしそうな水関連を選択
 - 参考:ICPC2004国内予選E Water Tank

- あれ?これ水時計じゃないよね…?時間計れないし。
 - ってことに終わってから気付きました。

• 関係者

- Writer: @shirokurostone
- Tester: @kioa341, @epee_noir