HEX2BIN

1A

Take each digit at a time, so in this example, take the number 1 and the number A.

D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Н	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F

$$1 = 1 A = 10$$

Look the digit up in the conversion table and make a note of it. This is the denary number.

$$1 = 0001 \quad 10 = 1010$$

Convert each of the denary numbers into binary.

00011010

Put the two binary numbers together to form an 8-bit binary number.

BIN2HEX

0001 1010

Split an 8-bit binary number into two halves.

$$0001 = 1 \quad 1010 = 10$$

Convert each of the binary halves into denary.

D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Н	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F

Look the digit up in the conversion table and make a note of it. This is the hexadecimal number.

$$1 = 1 \ 10 = A$$

1A

Add the two parts of the number back together so it becomes a hexadecimal number.