

Cálculo II Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase N^05 : Cálculo II Sumas de Riemann e Integral Definida

Suma inferior y superior

De acuerdo a lo visto hasta este momento, sabemos que

$$\underline{S}(f,P) = s(f,P) \le A(R) \le S(f,P) = \overline{S}(f,P)$$

lo cual se puede apreciar en la siguiente imagen

Ejercicio

Sea $f:[0,2\pi]\to\mathbb{R}$ la función definida por:

$$f(x) = 1 + \sin(x)$$

Determine $\underline{S}(f,P)$ y $\overline{S}(f,P)$ considerando la siguiente partición:

$$P = \left\{0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, 2\pi\right\}$$

Note que el gráfico de la función está dado por:

Suma inferior y superior

Observación: Notemos que la definición de suma superior e inferior sólo considera funciones continuas y no negativas, pero podemos ampliar la definición para cualquier tipo de funciones acotadas con la siguiente consideración:

$$m_k = \inf\{f(x) : x_{k-1} \le x \le x_k\}$$

 $M_k = \sup\{f(x) : x_{k-1} \le x \le x_k\}$

Lo cual nos permite construir las sumas inferiores y superiores para funciones que no esten definidas en un número finito de puntos, pero aún así dichas funciones siguen siendo acotadas.

Norma de una partición

Definición

Llamaremos norma de la partición P, denotada por $\|P\|$ a la longitud del subintervalo más largo, es decir,

$$||P|| = \max\{\Delta x_i : 1 \le i \le n\}$$

Notemos además que si P es una partición regular, se tiene que $\|P\|=\frac{b-a}{n}$ donde n es el número de subintervalos de [a,b], de donde se deduce que:

$$||P|| \to 0 \Leftrightarrow n \to +\infty$$

Ahora bien, si P es una partición general se verifica que $\frac{b-a}{n} \leq ||P||$ y luego solo se cumple que:

$$||P|| \to 0 \Rightarrow n \to +\infty$$

Refinamiento de una partición

Dadas dos particiones P y Q, tal que $P \subset Q$, cuando se cumpla la condición mencionada diremos que Q es un refinamiento de P.

Observación: Dado un refinamiento Q de P, se cumple de manera evidente que:

$$\underline{S}(f, P) \le \underline{S}(f, Q) \le \overline{S}(f, Q) \le \overline{S}(f, P)$$

Esto último nos dice que a medida que se refina una partición P, los valores de la suma inferior y superior se aproximan cada vez más al valor exacto del área que buscamos.

Integral Definida

Teorema

Si f es continua en [a,b], entonces existe un único número real I tal que:

$$\forall P \text{ partición de } [a,b] : \underline{S}(f,P) \leq I \leq \overline{S}(f,P)$$

y en este caso denotamos a I por:

$$I = \int_{a}^{b} f(x) \ dx$$

Observación: Notemos que I representa la integral definida de f sobre el intervalo [a,b]. La letra x es solo una referencia a los elementos del dominio de la función, por tanto esta puede ser reemplazado por cualquier otro símbolo.

8/17

Integral Definida

Ejemplos: Considerando una partición P cualquiera del intervalo [a,b], determine el valor de las siguientes integrales definidas:

(a)
$$\int_a^b c \, dx$$

(b)
$$\int_a^b x \, dx$$

Ejercicios: Utilizando el resultado anterior determine el valor de las siguientes integrales definidas:

(a)
$$\int_{a}^{b} cx \, dx = \frac{c}{2} (b^2 - a^2)$$

(b)
$$\int_{a}^{b} (x+c) dx = \frac{1}{2}(b^2 - a^2) + c(b-a)$$

◆□▶ ◆□▶ ◆ = ▶ ◆ = ♥ 9 < ○</p>

La siguiente definición de integral es mucho más general que la dada anteriormente pues no considera sólo a funciones continuas, y es conocidad como Integral de Riemann.

Definición

Sea $f:[a,b] \to \mathbb{R}$ una función y sea $P = \{a = x_0, ..., x_n = b\}$ una partición del intervalo [a,b], si escogemos $t_k \in [x_{k-1},x_k]$ con k = 1,...,n. La suma de Riemann de f asociada a la partición P es definida por:

$$S(f, P) = \sum_{k=1}^{n} f(t_k) \Delta x_k = \sum_{k=1}^{n} f(t_k) (x_k - x_{k-1})$$

Definición

Diremos que una función es **Riemann - Integrable** en [a,b] si existe $L \in \mathbb{R},$ tal que:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall \text{ partición } P : ||P|| < \delta \Rightarrow \left| L - \sum_{k=1}^{n} f(t_k) \Delta x_k \right| < \varepsilon$$

donde L está dado por:

$$L = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(t_k) \Delta x_k = \int_{a}^{b} f(x) \, dx$$

Observación: El valor de el limite anterior es llamado integral de Riemann de f en el intervalo [a, b]. Además,

$$\int_{a}^{b} f(x) \ dx = \lim_{\|P\| \to 0} \sum_{k=1}^{n} m_{k} \Delta x_{k} = \lim_{\|P\| \to 0} \sum_{k=1}^{n} M_{k} \Delta x_{k}$$

A continuación definiremos una partición regular que nos ayudarán a realizar algunos cálculos de integrales definidas.

Sea $n \in \mathbb{N}$, se define la partición regular P_n del intervalo [a,b] como:

$$x_0 = a, \quad x_1 =$$

lo cual se puede visualizar en la siguiente figura,

Además, si consideramos $t_k \in [x_{k-1},x_k]$ con k=1,2,...,n, la suma de Riemann de f con respecto a P_n está dada por:

$$S(f, P_n) =$$

Corolario

Si $f:[a,b]\to\mathbb{R}$ es una función continua, entonces:

$$\int_{a}^{b} f(x) \ dx =$$

El corolario anterior nos aclara el uso de la notación $\int_a^b f(x) dx$ para representar la integral de una función, pues para n suficientemente grande,

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{n} \sum_{k=1}^{n} f(t_{k})$$

Con lo anterior se puede pensar que para n muy grande, el símbolo dx representa $\Delta x=\frac{b-a}{n}$ y \int representa el símbolo de la suma, escrito como un S alargada.

Observaciones: Las elecciones más típicas de $t_k \in [x_{k-1}, x_k]$ son:

- 1. el extremos izquierdo $t_k = x_{k-1} = a + (k-1)\frac{b-a}{n}$.
- 2. el extremo derecho $t_k = x_k = a + k \frac{b-a}{n}$.
- 3. el punto medio $t_k = \frac{x_{k-1} + x_k}{2} = a + (k \frac{1}{2}) \frac{b-a}{n}$.

Ejercicios

1. Utilice la definición de integral de Riemann para con P una partición regular cualquiera para comprobar los siguientes resultados.

resultados.
(a)
$$\int_a^b c \, dx = c(b-a)$$
(b)
$$\int_a^b x \, dx = \frac{1}{2}(b^2 - a^2)$$

- 2. Utilizando la suma de Riemann $\frac{b-a}{n}\sum_{k=1}^n f(t_k)$, evalúe las siguientes integrales definidas:
 - (a) $\int_{1}^{3} (x^2 x) dx$; eligiendo a t_k como el punto medio y n = 10.
 - (b) $\int_{0}^{\pi/4}$; eligiendo a t_k como el extremo superior y n = 10.
 - (c) $\int_1^2 \frac{1}{x}; dx$; eligiendo a t_k como extremo inferior y n = 10.

Condición de Integrabilidad

Teorema

Si f es una función continua en todo [a,b], entonces f es una función Riemann Integrable en [a,b].

Observación: La clase de funciones integrables en [a,b] es más amplia que la indicada en el teorema anterior. Por ejemplo, se puede probar que son funciones integrables todas aquellas funciones continuas en todo punto del intervalo [a,b], excepto en un número finito de ellos, por ejemplo $x_1,x_2,...,x_n$ donde los límites laterales existen. Lo anterior se puede visualizar en la siguiente figura.

Ejercicio

Muestre que la función $f:[0,1]\to\mathbb{R}$ definida por:

$$f(x) = \begin{cases} 0 & , x \in \mathbb{Q} \cap [0, 1] \\ 1 & , x \in \mathbb{Q}^c \cap [0, 1] \end{cases}$$

no es Riemann Integrable.

Hint: determina la suma inferior y superior.