# Константы

| Скорость света, <i>с</i>              | $2.998\times 10^8\mbox{m}\mbox{c}^{-1}$             |
|---------------------------------------|-----------------------------------------------------|
| Число Авогадро, $N_A$                 | $6.022 	imes 10^{23}$ моль $^{-1}$                  |
| Элементарный заряд, $e$               | $1.602 \times 10^{-19}  \text{K}$ л                 |
| Масса электрона, $m_e$                | $9.109 	imes 10^{-31}$ кг                           |
| Универсальная газовая постоянная, $R$ | $8.314\mathrm{Дж}\mathrm{моль}^{-1}\mathrm{K}^{-1}$ |
| Постоянная Больцмана, $k_B$           | $1.381 \times 10^{-23}$ Дж К $^{-1}$                |
| Постоянная Фарадея, $F$               | 96 485 Кл моль <sup>-1</sup>                        |
| Постоянная Планка, $h$                | $6.626 \times 10^{-34}$ Дж с                        |
| Число пи, π                           | 3.141 592 653 589 793                               |
| Температура в Кельвинах (К)           | $T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$            |
| Ангстрем, Å                           | $1 \times 10^{-10} \mathrm{m}$                      |
| пико, п                               | $1 \text{ mM} = 1 \times 10^{-12} \text{ M}$        |
| нано, н                               | $1 \text{ HM} = 1 \times 10^{-9} \text{ M}$         |
| микро, мк                             | $1$ мкм = $1 \times 10^{-6}$ м                      |

| 1               |                     |          |                  |                  |                     |                     |                     |                 |                 |                     |                 |                 |                 |                  |                  |                    | 10                 |
|-----------------|---------------------|----------|------------------|------------------|---------------------|---------------------|---------------------|-----------------|-----------------|---------------------|-----------------|-----------------|-----------------|------------------|------------------|--------------------|--------------------|
| 1               | -                   |          |                  |                  |                     |                     |                     |                 |                 |                     | ſ               |                 |                 |                  |                  |                    | 18                 |
| H H             | 2                   |          |                  |                  |                     |                     |                     |                 |                 |                     |                 | 13              | 14              | 15               | 16               | 17                 | 2<br>He            |
| 1.008           | _                   |          |                  |                  |                     |                     |                     |                 |                 |                     |                 | 13              |                 | 13               | 10               | 1,                 | 4.003              |
| 3<br>Li         | 4                   |          |                  |                  |                     |                     |                     |                 |                 |                     |                 | 5<br>B          | 6               | 7                | 8                | 9                  | 10                 |
|                 | Ве                  |          |                  |                  |                     |                     |                     |                 |                 |                     |                 |                 | C               | N                | 0                | F                  | Ne                 |
| 6.94            | 9.01                |          |                  |                  |                     |                     |                     |                 |                 |                     |                 | 10.81           | 12.01           | 14.01            | 16.00            | 19.00              | 20.18              |
| 11              | 12                  | 7        |                  | -                | ,                   | 7                   | 0                   |                 | 40              | 4.4                 | 42              | 13<br><b>Al</b> | 14<br>Si        | 15<br><b>P</b>   | 16<br>S          | 17<br>CL           | 18                 |
| Na<br>22.99     | Mg<br>24.31         | 3        | 4                | 5                | 6                   | /                   | 8                   | 9               | 10              | 11                  | 12              | Αι<br>26.98     | 28.09           | 30.97            | 32.06            | <b>Cl</b><br>35.45 | <b>Ar</b><br>39.95 |
|                 |                     | 21       | 22               | 27               | 24                  | 2.5                 | 26                  | 27              | 20              | 20                  | 70              |                 |                 |                  |                  |                    |                    |
| 19<br><b>K</b>  | <sup>20</sup><br>Ca | 21<br>Sc | 22<br>Ti         | 23<br><b>V</b>   | <sup>24</sup><br>Cr | <sup>25</sup><br>Mn | <sup>26</sup><br>Fe | 27<br><b>Co</b> | 28<br><b>Ni</b> | <sup>29</sup><br>Cu | 30<br><b>Zn</b> | 31<br>Ga        | 32<br><b>Ge</b> | 33<br><b>As</b>  | 34<br>Se         | 35<br>Br           | 36<br><b>Kr</b>    |
| 39.10           | 40.08               | 44.96    | 47.87            | 50.94            | 52.00               | 54.94               | 55.85               | 58.93           | 58.69           | 63.55               | 65.38           | 69.72           | 72.63           | 74.92            | 78.97            | 79.90              | 83.80              |
| 37              | 38                  | 39       | 40               | 41               | 42                  | 43                  | 44                  | 45              | 46              | 47                  | 48              | 49              | 50              | 51               | 52               | 53                 | 54                 |
| Rb              | Sr                  | Υ        | Zr               | Nb               | Мо                  | Tc                  | Ru                  | Rh              | Pd              | Ag                  | Cd              | In              | Sn              | Sb               | Te               | 1                  | Xe                 |
| 85.47           | 87.62               | 88.91    | 91.22            | 92.91            | 95.95               | -                   | 101.1               | 102.9           | 106.4           | 107.9               | 112.4           | 114.8           | 118.7           | 121.8            | 127.6            | 126.9              | 131.3              |
| 55              | 56<br>D-            | 57-      | 72               | 73<br><b>T</b> - | 74                  | 75<br>D =           | 76                  | 77              | 78              | 79                  | 80              | 81<br>Tl        | 82              | 83               | 84               | 85                 | 86                 |
| Cs<br>132.9     | Ba<br>137.3         | 71       | Hf<br>178.5      | Ta<br>180.9      | W<br>183.8          | Re<br>186.2         | Os<br>190.2         | lr<br>192.2     | Pt<br>195.1     | Au<br>197.0         | Hg<br>200.6     | 1 L<br>204.4    | Pb<br>207.2     | Bi<br>209.0      | Po<br>-          | At                 | Rn<br>-            |
| _               | 88                  |          |                  | 105              | 106                 | 100.2               | 108                 | 109             | 110             | 111                 | 112             | 113             | 114             |                  |                  |                    |                    |
| 87<br><b>Fr</b> | Ra                  | 89-      | 104<br><b>Rf</b> | Db               | Sg                  | Bh                  | Hs                  | Mt              | Ds              | Rg                  | Cn              | Nh              | Fl              | 115<br><b>Mc</b> | 116<br><b>Lv</b> | 117<br>Ts          | 118<br><b>Og</b>   |
| -               | -                   | 103      | -                | -                | -                   | -                   | -                   | -               | -               | -                   | -               | -               | -               | -                | -                | -                  | -                  |
|                 |                     |          |                  |                  |                     |                     |                     |                 |                 |                     |                 |                 |                 |                  |                  |                    |                    |
|                 |                     |          | 57               | 58               | 59                  | 60                  | 61                  | 62              | 63              | 64                  | 65              | 66              | 67              | 68               | 69               | 70                 | 71                 |
|                 |                     |          | La               | Ce               | Pr                  | Nd                  | Pm                  | Sm              | Ĕu              | Gd                  | 65<br><b>Tb</b> | Dy              | Но              | Er               | Tm               | Yb                 | Lu                 |
|                 |                     |          | 138.9            | 140.1            | 140.9               | 144.2               | -                   | 150.4           | 152.0           | 157.3               | 158.9           | 162.5           | 164.9           | 167.3            | 168.9            | 173.0              | 175.0              |
|                 |                     |          | 89               | 90<br>Th         | 91<br><b>Pa</b>     | 92<br>  ]           | 93<br>No            | 94<br>D.        | 95              | 96<br>Cm            | 97<br>DL        | 98<br>C£        | 99<br>Fa        | 100              | 101              | 102                | 103                |
|                 |                     |          | Ac               | Th<br>232.0      | 231.0               | 238.0               | Np                  | Pu              | Am              | Cm                  | Bk              | Cf              | Es              | Fm               | Md               | No                 | Lr<br>-            |
|                 |                     |          |                  | 232.0            | 231.0               | 230.0               | ,                   |                 | ,               | -                   | -               | -               | -               | _                |                  |                    | -                  |



# Содержание

| Обращение к участникам                        | 3  |
|-----------------------------------------------|----|
| Уравнения и законы                            | 3  |
| Задача №1. Разминка (3%)                      | 4  |
| Задача №2. Неизвестные газы (4%)              | 5  |
| Задача №3. Неизвестные кристаллогидраты (14%) | 6  |
| Задача №4. <b>Нитраты (10%)</b>               | 9  |
| Задача №5. Изомеры комплексов (15%)           | 12 |
| Задача №6. Коллигативные свойства (12%)       | 14 |
| Задача №7. Равноправие в термодинамике (12%)  | 16 |

# Обращение к участникам

Уважаемые участники заключительного этапа!

Поздравляем вас с окончанием очередного цикла республиканских олимпиад! В этом году были как и простые задания, так и задания, которые по своей сложности могут сравниться с заданиями для отбора сборной. Но несмотря на это, мы надеемся, что для вас задачи были интересными и вы смогли узнать что-то, чего не знали раньше. А для обратной связи по заключительному этапу просим вас заполнить анкету по этой ссылке.

# Уравнения и законы

| Уравнение Менделеева-Клапейрона                                 | pV = nRT                                                                  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------|
| $\Theta$ нтальпия, $H$                                          | H = U + pV                                                                |
| Изменение энтропии                                              | $\Delta S = \int \frac{dQ_{\text{rev}}}{T}$                               |
| Энергия фотона                                                  | $E=\frac{hc}{\lambda}=hv$                                                 |
| Уравнение Нернста                                               | $E = E^{\oplus} - \frac{RT}{nF} \ln \frac{c_{\text{red}}}{c_{\text{ox}}}$ |
| Уравнение Аррениуса                                             | $k = Ae^{-E_{a}/RT}$                                                      |
| Константа равновесия реакции $a  A + b  B \implies c  C + d  D$ | $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$                                       |
| Волновое число, $\tilde{v}$                                     | $\widetilde{\nu} = \frac{1}{\lambda}$                                     |
| Объем сферы с радиусом $r$                                      | $V = \frac{4}{3}\pi r^3$                                                  |

### Задача №1. Разминка

| Bcero | Bec(%) |
|-------|--------|
| 6     | 3      |

Автор: Бегдаир С.

### 1.1 (6 баллов)

Определяем молярную массу газовой смеси:

$$n({
m cмесь}) = rac{V({
m cмесь})}{V_m} = 5\,{
m mоль}$$
  $M({
m cмесь}) = rac{m({
m cмесь})}{n({
m cmecb})} = 52\,{
m r\,mons}^{-1}$ 

Находим мольные доли каждого вещества:

$$\chi(A) = \frac{3}{3+2} = 0.6$$
$$\chi(B) = \frac{2}{3+2} = 0.4$$

Подставляем все данные в уравнение молярной массы смеси и находим молярные массы каждого компонента:

$$M(\text{смесь}) = M(A) \cdot \chi(A) + M(B) \cdot \chi(B)$$
 $M(B) = 1.455 \cdot M(A)$ 
 $52 = M(A) \cdot 0.6 + 1.455 \cdot M(A) \cdot 0.4$ 
 $M(A) = 44 \, \Gamma \, \text{моль}^{-1}$ 
 $M(B) = 1.455 \cdot 44 = 64 \, \Gamma \, \text{моль}^{-1}$ 

Данные молярные массы соответсвуют диоксиду серы ( $SO_2$ ) и углекислому газу ( $CO_2$ ) (или пропану ( $C_3H_8$ )). Другие варианты для газов, которые удовлетворяют условию задачи, можно принимать верными.

$$A = CO_2$$
$$B = SO_2$$
$$или$$
$$A = C_3H_8$$
$$B = SO_2$$

За нахождение молярной массы смеси — 1 балл За определение мольных долей компонентов в смеси — 2 балла За каждое правильно найденное вещество — 1.5 балла (общ. 3 баллов)

Всего за пункт — 6 баллов.

### Задача №2. Неизвестные газы

| Bcero | Bec(%) |
|-------|--------|
| 14    | 4      |

### 2.1 (14 баллов)

Находим молярную массу смеси:

$$M$$
(смесь) =  $V_m \cdot \rho$ (смесь) = 22.4 · 1.29 = 28.9 г моль<sup>-1</sup>

Раскрываем уравнение молярной массы и подставляем в данное уравнение соотношение молярных масс (мольная доля газа A,  $\chi(A)$  обозначена за x):

$$M(A) = 1.071 \cdot M(B)$$

$$M(cm.) = M(A) \cdot \chi(A) + M(B) \cdot \chi(B)$$

$$28.9 = 1.071 \cdot M(B) \cdot x + M(B) \cdot (1 - x)$$

$$M(B) = \frac{28.9}{1 + 0.071 \cdot x}$$

Используем уравнение массовой доли и находим неизвестный x. При этом можно отметить, что раскрыв массы веществ, мы получаем химические количества, которых можно заменить мольными долями:

$$\omega(A) = \frac{m(A)}{m(A) + m(B)}$$

$$\omega(A) = \frac{M(A) \cdot \chi(A)}{M(A) \cdot \chi(A) + M(B) \cdot \chi(B)}$$

$$0.46713 = \frac{1.071 \cdot \frac{28.9}{1+0.071 \cdot x} \cdot x}{1.071 \cdot \frac{28.9}{1+0.071 \cdot x} \cdot x + \frac{28.9}{1+0.071 \cdot x} \cdot (1-x)}$$

$$x = 0.45$$

Определяем молярные массы неизвестных веществ:

$$M(B) = \frac{28.9}{1 + 0.071 \cdot 0.45} = 28 \,\mathrm{r}\,\mathrm{моль}^{-1}$$
 $M(A) = 1.071 \cdot 28 = 30 \,\mathrm{r}\,\mathrm{моль}^{-1}$ 

Данные молярные массы соответсвуют азоту  $(N_2)$  и оксиду азота (NO). Другие варианты для газов, которые удовлетворяют условию задачи, можно принимать верными.

$$A = NO$$
$$B = N_2$$

За нахождение молярной массы смеси — 1 балл

За определение мольных долей компонентов в смеси — 4 балла

За каждое правильно найденное вещество — 4.5 балла (общ. 9 баллов)

Всего за пункт — **14 баллов**.

### Задача №3. Неизвестные кристаллогидраты

| 3.1 | 3.2 | 3.3 | Всего | Bec(%) |
|-----|-----|-----|-------|--------|
| 26  | 22  | 2   | 50    | 14     |

Автор: Бегдаир С.

### **3.1** (26 баллов)

Бледно-желтым осадком (вещество  ${\bf B}$ ) является бромид серебра. Находим его химическое количество:

$$n(B) = \frac{11.28}{188} = 0.06 \text{ моль}$$
 $B = AgBr$ 

Вещество **A** является кристаллогидратом и уменьшение массы обусловлено потерей воды. Находим его массу и химическое количество:

$$m({
m H_2O}) = 9.81 \cdot (1-0.67) = 3.24 \, {
m r}$$
  $n({
m H_2O}) = {m({
m H_2O}) \over M({
m H_2O})} = {3.24 \over 18} = 0.18 \, {
m mod}$ ь

В веществе А содержится бром, вода и некий металл. Определяем массу металла:

$$n(\mathrm{Br}^-)=n(\mathrm{AgBr})=0.06$$
 моль 
$$m(\mathrm{Br}^-)=M(\mathrm{Br}^-)\cdot n(\mathrm{Br}^-)=80\cdot 0.06=4.8\ \mathrm{r}$$
  $m(\mathrm{Me})=m(\mathrm{A})-m(\mathrm{Br}^-)-m(\mathrm{H}_2\mathrm{O})=9.81-4.8-3.24=1.77\ \mathrm{r}$ 

Информация о валентности металла не дана, поэтому решаем методом подбора. Подставляя разные значения валентности (I, II, III), к разумному ответу можно прийти только в случае валентности равной двум. Определяем химическое количество металла и его молярную массу:

$$n(\text{Me}) = \frac{n(\text{Br}^-)}{2} = 0.03 \text{ моль}$$

$$M(\text{Me}) = \frac{m(\text{Me})}{n(\text{Me})} = 59 \text{ г моль}^{-1}$$

Два металла соответствуют данной молярной массе — никель и кобальт. Однако, правильным ответом будет именно кобальт, по двум причинам: 1) цвета веществ соответствует соединениям кобальта; 2) при дальнейшем решении задачи можно понять, что в некоторых соединениях у металла имеется степень окисления +3, которая бывает у кобальта, но не у никеля.

$$A = CoBr_2 \cdot 6 H_2O$$
$$B = CoBr_2$$

В растворе содержится нитрат кобальта, который реагирует с поташом (карбонат калия), образуя некий осадок и углекислый газ. Из условий реакции понятно, что, скорее всего, в качестве продукта образуется не карбонат кобальта. С помощью расчетов, находим выражение для молярной массы продукта:

$$n({
m Co(NO_3)_2}) = n({
m CoBr_2}) = 0.03$$
 моль  $n(\Gamma) = \frac{n({
m Co(NO_3)_2})}{n} = \frac{0.03}{n}$   $M(\Gamma) = \frac{m(\Gamma)}{n(\Gamma)} = 106 \cdot n$ 

n — количество атомов кобальта в формуле вещества  $\Gamma$ . При n=1, молярная масса выходит равной 106 г моль $^{-1}$ , но под нее не получается подобрать молекулярную формулу соединения. Но при n=2, молярная масса выходит равной 212 г моль $^{-1}$ , что соответствует карбонату гидроксокобальта.

$$\Gamma = (CoOH)_2CO_3$$

Полученный осадок отфильтровали, и прокалили на открытом воздухе, что, скорее всего, намекает на реакцию с кислородом в воздухе. Формулу вещества **Д** можно найти с помощью массы кобальта:

$$m(\text{Co}) = M(\text{Co}) \cdot n(\text{Co}) = 59 \cdot 0.03 = 1.77 \, \text{г}$$
 $m(\text{O}) = 2.41 - 1.77 = 0.64 \, \text{г}$ 
 $n(\text{O}) = \frac{m(\text{O})}{M(\text{O})} = \frac{0.64}{16} = 0.04 \, \text{моль}$ 
 $n(\text{Co}) : n(\text{O}) = 0.03 : 0.04 = 3 : 4$ 
 $\Pi = \text{Co}_3\text{O}_4$ 

Предположим что в  ${\bf E}$  содержится лишь один атом натрия. Исходя из этого, находим молярную массу  ${\bf E}$ :

$$M(E) = \frac{M(Na)}{w(Na)} = 103 \text{ г моль}^{-1}$$
  
 $E = NaBr$ 

Данное значение молярной массы соответствует бромиду натрия (NaBr). При реакции бромида натрия, бромида кобальта (II) и фтора, образуется гексафторокобальтат натрия:  $2 \, \text{CoBr}_2 + 6 \, \text{NaBr} + 6 \, \text{F}_2 = 2 \, \text{Na}_3 [\text{CoF}_6] + 5 \, \text{Br}_2$  Бром является образованной жидкостью.

$$\mathcal{K} = \text{Na}_3[\text{CoF}_6]$$
  
3 = Br<sub>2</sub>

Определяем молярную массу комплекса К:

$$M(K) = \frac{M(Co)}{w(Co)} = 321 \,\mathrm{r}\,\mathrm{моль}^{-1}$$

Отнимаем массу соли от комплекса К и полученное значение делим на 6:

$$M_1 = M(\mathrm{K}) - M(\mathrm{CoBr}_2) = 321 - 219 = 102 \,\mathrm{г}$$
 моль $^{-1}$  
$$M(\mathrm{H}) = \frac{M_1}{6} = 17 \,\mathrm{г}$$
 моль $^{-1}$ 

По молярной массе можно понять, что это аммиак.

$$H = NH_3$$

$$K = [Co(NH_3)_6]Br_2$$

При долгом кипячении раствора вещества **K** происходит реакция разложения. При этом мы знаем, что образуется аммиак и осадок **Л**. Определяем химическое количество вещества **Г** и **K**:

$$n([\text{Co(NH}_3)_6]\text{Br}_2) = \frac{m([\text{Co(NH}_3)_6]\text{Br}_2)}{M([\text{Co(NH}_3)_6]\text{Br}_2)} = 0.02 \text{ моль}$$

Предположим, что в веществе  $\mathbf \Lambda$  содержится лишь один атом кобальта. Из этого находим его молярную массу:

$$n([\text{Co(NH}_3)_6]\text{Br}_2) = n(\Pi) = 0.02$$
 моль  $M(\text{K}) = \frac{m(\Pi)}{n(\Pi)} = 156\,\text{г}\,\text{моль}^{-1}$ 

Данная молярная масса схожа с молярной массой гидроксобромида кобальта.

$$\Pi = CoBr(OH)$$

Образование серого осадка может говорить о выделении металлического кобальта. То есть, газ **M**, скорее всего, является восстановителем, что соответствует водороду. Данное предположение можно доказать путем расчетов.

$$M = H_2$$

За каждое определенное вещество — по 2 балла.

Всего за пункт — 26 балла.

### 3.2 (22 баллов)

```
CoBr_2 \cdot 6H_2O \longrightarrow CoBr_2 + 6H_2O
                                                                                                                           (р-ция 1)
                    CoBr_2 + 2 AgNO_3 \longrightarrow 2 AgBr + Co(NO_3)_2
                                                                                                                           (р-ция 2)
2 Co(NO_3)_2 + 2 Na_2CO_3 + H_2O \longrightarrow Co_2CO_3(OH)_2 + CO_2 + 4 NaNO_3
                                                                                                                           (р-ция 3)
               3 \text{Co}_2 \text{CO}_3 \text{(OH)}_2 + \text{O}_2 \longrightarrow 2 \text{Co}_3 \text{O}_4 + 3 \text{CO}_2 + 3 \text{H}_2 \text{O}
                                                                                                                           (р-ция 4)
          2 \operatorname{CoBr}_2 + 6 \operatorname{NaBr} + 6 \operatorname{F}_2 \longrightarrow 2 \operatorname{Na}_3[\operatorname{CoF}_6] + 5 \operatorname{Br}_2
                                                                                                                           (р-ция 5)
                        CoBr_2 + 6NH_3 \longrightarrow [Co(NH_3)_6]Br_2
                                                                                                                           (р-ция 6)
             [Co(NH_3)_6]Br_2 + H_2O \longrightarrow CoBr(OH) + 5NH_3 + NH_4Br
                                                                                                                           (р-ция 7)
   [Co(NH_3)_6]Br_2 + H_2 + 4H_2O \longrightarrow Co + 2NH_4Br + 4NH_4OH
                                                                                                                           (р-ция 8)
```

За р-ции 1 и 2 — по 2 балла (общ. 4 балла) За остальные реакции — по 3 балла (общ. 18 баллов)

Всего за пункт — 22 балла.

#### **3.3** (2 балла)

Комплексные вещества Ж и К отличаются степенью окисления комплексообразователя и лигандами.

За каждое отличие — по 1 баллу. Всего за пункт — 2 балла.

# Задача №4. Нитраты

| 4.1 | 4.2 | 4.3 | Всего | Bec(%) |
|-----|-----|-----|-------|--------|
| 8   | 14  | 5   | 22    | 10     |

### Автор: Бегдаир С.

### **4.1** (8 баллов)

При реакции твердого остатка с соляной кислотой образовался некий газ. Этим газом может быть водород, если в твердом остатке имеется металл. Однако, нужно учесть, что при разложении нитратов, металлы образуются в случае нитратов малоактивных металлов, которые не реагируют с раствором соляной кислоты.

Другое предположение — это выделение хлора. Хлор выделяется лишь при реакции соляной кислоты с каким-то окислителем. Окислителем, который может образоваться при разложении нитрата, может быть только оксид марганца (IV). Исходя из этого, мы определили один из нитратов и теперь делаем нужные расчеты для определения второго нитрата.

$$n(\mathrm{Cl_2}) = \frac{2.24}{22.4} = 0.1 \,\mathrm{моль}$$
 $\mathrm{MnO_2} + 4 \,\mathrm{HCl} \longrightarrow \mathrm{MnCl_2} + \mathrm{Cl_2} + 2 \,\mathrm{H_2O}$ 
 $n(\mathrm{MnO_2}) = n(\mathrm{Cl_2}) = 0.1 \,\mathrm{моль}$ 
 $m(\mathrm{MnO_2}) = n(\mathrm{MnO_2}) \cdot M(\mathrm{MnO_2}) = 0.1 \cdot 87 = 8.7 \,\mathrm{r}$ 
 $n(\mathrm{HCl}) = 4 \cdot n(\mathrm{MnO_2}) = 0.4 \,\mathrm{моль}$ 
 $n_0(\mathrm{HCl}) = 16 \cdot 0.1 = 1.6 \,\mathrm{моль}$ 

Находим массу второго компонента в твердом остатке (X) и химическое количество соляной кислоты с которой он прореагировал:

$$m(X) = 32.7 - 8.7 = 24 \,\Gamma$$
  
 $n(HCl) = 1.6 - 0.4 = 1.2 \,\text{моль}$   
 $X + nHCl \longrightarrow \cdots$ 

Вещество **X** является оксидом некого металла. (Простой металл и нитрит металла никак не подходят под условие задачи.) В зависимости от стехиометрии реакции, молярная масса данного вещества может иметь значения кратные 20. Это значит, что молярная масса оксида может быть равна  $20\,\mathrm{r}$  моль $^{-1}$ ,  $40\,\mathrm{r}$  моль $^{-1}$ ,  $60\,\mathrm{r}$  моль $^{-1}$  и т.д.

При молярной массе 20 г/моль, выходит невозможный оксид, в котором молярная масса неизвестного элемента равна 8 г/моль.

При молярной массе 40 г/моль, выходят два варианта: MgO и  $C_2O$ .  $C_2O$  не существует, а MgO соответствует условию задачи.

При молярной массе 60 г/моль, выходит  $SiO_2$ . Однако, в природе не существует нитрата кремния.

Значит, в исходной смеси содержится нитрат магния  $(Mg(NO_3)_2)$  и нитрат марганца  $(Mn(NO_3)_2)$ .

### **4.2** (14 баллов)

Находим массу растворенной части смеси в воде:

$$m = 83.3 - 32.7 = 50.6 \,\mathrm{r}$$

Данная масса является смесью нитратов. Далее данная смесь была обработана гидроксидом натрия, после чего образовались осадки. Из этого находим химические количества веществ в смесях:

$$Mg(NO_3)_2 + 2 NaOH \longrightarrow Mg(OH)_2 + 2 NaNO_3$$
 $Mn(NO_3)_2 + 2 NaOH \longrightarrow Mn(OH)_2 + 2 NaNO_3$ 
 $n(Mg(NO_3)_2) = n(Mg(OH)_2) = x$ 
 $n(Mn(NO_3)_2) = n(Mn(OH)_2) = y$ 
 $50.6 = 148 \cdot x + 179 \cdot y$ 
 $23.6 = 58 \cdot x + 89 \cdot y$ 
 $x = 0.1 \text{ моль}$ 
 $y = 0.2 \text{ моль}$ 

Определяем массы веществ в смесях для вычислениях массовых долей:

### Для Смеси 1:

$$n_o(\mathrm{Mn}(\mathrm{NO_3})_2) = 0.2 + 0.1 = 0.3$$
 моль  $n_o(\mathrm{Mg}(\mathrm{NO_3})_2) = 0.1 + 0.6 = 0.7$  моль  $m_o(\mathrm{Mn}(\mathrm{NO_3})_2) = 0.3 \cdot 179 = 53.7$  г  $m_o(\mathrm{Mg}(\mathrm{NO_3})_2) = 0.7 \cdot 148 = 103.6$  г  $w(\mathrm{Mn}(\mathrm{NO_3})_2) = \frac{53.7}{157.3} = 0.3414$   $w(\mathrm{Mg}(\mathrm{NO_3})_2) = \frac{103.6}{157.3} = 0.6586$ 

### Для Смеси 2:

$$m(\text{Mn}(\text{NO}_3)_2) = 0.2 \cdot 179 = 35.8 \text{ r}$$

$$m(\text{Mg}(\text{NO}_3)_2) = 0.1 \cdot 148 = 14.8 \text{ r}$$

$$m(\text{MnO}_2) = 0.1 \cdot 87 = 8.7 \text{ r}$$

$$m(\text{MgO}) = 0.6 \cdot 40 = 24 \text{ r}$$

$$w(\text{Mn}(\text{NO}_3)_2) = \frac{35.8}{83.3} = 0.43$$

$$w(\text{Mg}(\text{NO}_3)_2) = \frac{14.8}{83.3} = 0.178$$

$$w(\text{MnO}_2) = \frac{8.7}{83.3} = 0.104$$

$$w(\text{MgO}) = \frac{24}{83.3} = 0.288$$

#### Для Смеси 3:

$$m(\text{MnO}_2) = 0.1 \cdot 87 = 8.7 \text{ r}$$
  
 $m(\text{MgO}) = 0.6 \cdot 40 = 24 \text{ r}$   
 $w(\text{MnO}_2) = \frac{8.7}{32.7} = 0.266$   
 $w(\text{MgO}) = \frac{24}{32.7} = 0.734$ 

### Для Смеси 4:

$$m(\text{Mn(OH)}_2) = 0.2 \cdot 89 = 17.8 \text{ r}$$
  
 $m(\text{Mg(OH)}_2) = 0.1 \cdot 58 = 5.8 \text{ r}$   
 $w(\text{Mn(OH)}_2) = \frac{17.8}{23.6} = 0.754$   
 $w(\text{Mg(OH)}_2) = \frac{5.8}{23.6} = 0.246$ 

### 4.3 (5 баллов)

Определяем массу полученного раствора:

$$m = 149.4 + (83.3 - 32.7) = 200 \,\mathrm{r}$$

Находим массовые доли растворенных веществ в растворе:

$$w(\text{Mn(NO}_3)_2) = \frac{35.8}{200} = 0.179$$
  
 $w(\text{Mg(NO}_3)_2) = \frac{14.8}{200} = 0.074$ 

## Задача №5. Изомеры комплексов

| 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | Всего | Bec(%) |
|-----|-----|-----|-----|-----|-------|--------|
| 1   | 3   | 3   | 1   | 2   | 10    | 15     |

Автор: Бекхожин Ж.

### **5.1** (1 балл)

Неметалл в  $\bf A$  является галогеном так как только они дают бинарные соединения, растворимые в воде и при этом дают белый осадок с нитратом серебра. Основываясь на том что для синтеза использовали карбонат и при реакции полученного комлекса выделяется газ дающий осадок с известковой водой,  $\bf Д$  -  ${\rm CO_2}$ .  $\bf 0.5$  балла за  $\bf Д$  и  $\bf 0.5$  балла за то что неметалл это галоген.

### **5.2** (3 балла)

Оба лиганда - бидентантные, что говорит о том что это карбонат и этилендиамин, так как перекись водорода образовывала бы слишком напряженный трехчленный цикл при координировании через оба кислорода. **0.5** балла за правильные лиганды. Из массовых долей азота и углерода можно получить что в молекуле присутствуют 4 атома азота и 5 атомов углерода:

$$\frac{\omega_N}{M_N}: \frac{\omega_C}{M_C} = \frac{0.2041}{14.01}: \frac{0.2186}{12.01} = 1: 1.25 = 4:5$$

Это соответствует двум этилендиаминам и одному карбонату так как контрион это тот же галоген и в контрионе не можеть быть углерода и азота. 0.5 балла за правильное число лигандов. Такие лиганды идеально дают октаэдрическое окружение, что соответствует условию. Используя массовую долю металла и число атомов азота, получаем что масса металла составляет 58.92 г моль $^{-1}$ , что соответствует кобальту:

$$rac{\omega_N}{M_N}:rac{\omega_X}{M_X}$$
 =  $4:1$   $M_X$  =  $4\cdot M_N\cdotrac{\omega_N}{\omega_X}$  =  $58.92$ г моль $^{-1}$ 

1 балл за молярную массу металла и что это кобальт. Так как выход комплекса **Б** - количественный, масса металла в **A** равна массе металла в **B**; используя массовую долю кобальта, это  $1.371 \cdot 0.2146 = 0.2942$ г. Тогда оставшаяся масса приходится на галоген; учитывая, что кобальт в основном встречается в степенях окисления 2 или 3, соответствуя формуле  $CoHal_n$  находим что молярная масса галогена составляет  $M_{Hal} = M_{Co} \cdot \frac{m_A - m_{Co}}{m_{Co}} \div n = 35.43$  или 23.62 г моль $^{-1}$ ; первое значение соответствует хлору, таким образом **A** -  $CoCl_2$ . **0.5** балла за хлор. Структуру **Б** смотрите в следующем пункте (**0.5** балла).

### **5.3** (3 балла)

Так как  $\bf B$  получается при реакции с соляной кислотой и массовая доля азота остается примерно такой же, можно предположить что рас уж углекислый газ улетучился, карбонатный лиганд разложился на углекислый газ и воду, тогда возможно  $\bf B$  это аквакомплекс с хлоридом в качестве контриона, однако это не соответствует массовой доле азота. Тогда значит  $\bf B$  это хлоридный комплекс, что соответствует массовой доле. В  $\bf \Gamma$  массовая доля азота возросла, что говорит о том что азотистая кислота вошла в состав комплекса. Из массоввой доли и того что все азоты образуют связь с металлом,  $\bf \Gamma$  - нитрокомплекс. Так как хлориды в  $\bf B$  находятся во внутренней координационной сфере, количество осадка образованного с нитратом серебра не изменится, несмотря на то что  $\bf B$  содержит три атома хлора.  $\bf 1$  балл за каждую из структур  $\bf B$  и  $\bf \Gamma$ ;  $\bf 1$  балл за правильный ответ что количество осадка не изменится. Структуры  $\bf 5$ ,  $\bf 8$  и  $\bf \Gamma$ :

### **5.4** (1 балл)

Энантиомеры  $\Gamma$  (**0.5** балла за каждую структуру):

### **5.5** (2 балла)

Рассчитаем число атомов азота, зная что в катионе находятся два атома металла:

$$\frac{\omega_N \cdot M_{Co}}{\omega_{Co} \cdot M_N} \cdot 2 = 10$$

Так как тут пропускают кислород через раствор, он является окислителем, кобальт является восстановителем. Молярная масса катиона будет  $10 \cdot M_N \div \omega_N = 320.23 \, \mathrm{r}$  моль $^{-1}$  и если отнять массу 10 молекул аммиака и 2 атомов кобальта, остается  $32.03 \, \mathrm{r}$  моль $^{-1}$ , что соответствует кислороду. Тогда, зная что только после окисления лиганд стал радикалом и что кислород был восстановлен,  $\mathbf{\mathcal{I}}$ , - пероксокомплекс, где пероксид выступает мостиковым лигандом. В

### Задача №6. Коллигативные свойства

| 6.1 | 6.2 | 6.3 | Всего | Bec(%) |
|-----|-----|-----|-------|--------|
| 5   | 2   | 3   | 10    | 12     |

Автор: Бекхожин Ж.

### **6.1** (5 баллов)

Пусть массовая доля серной кислоты в изначальном растворе -  $\omega_{H_2SO_4}$ , тогда используя определение эбулиоскопической постоянной и моляльности, получаем:

$$C = \frac{3 \cdot \omega_{H_2SO_4} \cdot \rho_{H_2SO_4} \cdot V_{H_2SO_4} \div M_{H_2SO_4}}{(1 - \omega_{H_2SO_4}) \cdot \rho_{H_2SO_4} \cdot V_{H_2SO_4} + \rho_{H_2O} \cdot V_{H_2O}} = \frac{\Delta T}{C_{ebuoloscopic}}$$

В числителе дроби находится число молей растворенных ионов, что является трижды числом молей серной кислоты так как одна молекула диссоциирует на два иона водорода и олин ион сульфата, в знаменателе - масса воды в кг которая является растворителем, что дает моляльность, которая связана с повышением температуры кипения через эбулиоскопическую постоянную. Решая полученное уравнение, находим что

$$\omega_{H_2SO_4} = 89.11\%$$

### 1 балл за правильный ответ.

При растворении олеума в воде, вся пиросерная кислота гидролизуется до серной, тратя один эквивалент воды. Таким образом в числителе находится число ионов от серной (3 от одной молекулы) и пиросерной (6 от одной молекулы так как образуются две молекулы серной кислоты при гидролизе), в знаменателе масса воды которая снизилась из-за того что часть воды была затрачена на реакцию. Серная кислота аббревиирована как S; пиросерная как S2, олеум как S3.

$$C = \frac{3 \cdot \omega_{S} \cdot \rho_{ol} \cdot V_{ol} \div M_{S} + 6 \cdot \omega_{S2} \cdot \rho_{ol} \cdot V_{ol} \div M_{S2}}{\rho_{H_{2}O} \cdot V_{H_{2}O} - M_{H_{2}O} \cdot \omega_{S2} \cdot \rho_{ol} \cdot V_{ol} \div M_{S2}} = \frac{\Delta T}{C_{ebuoloscopic}}$$

$$\omega_{H_{2}SO_{4}} = 9.77\%; \omega_{H_{2}S_{2}O_{7}} = 90.33\%$$

1 балл за каждую правильную массовую долю.

Зная начальные и конечные массовые доли а также стехиометрию реакции, получаем следующие уравнения:

$$n'_{H_2SO_4} + n'_{H_2S_2O_7} = n_{H_2O} + n_{H_2SO_4} = \rho_1 \cdot V_1 \cdot \left(\frac{\omega'_{H_2O}}{M_{H_2O}} + \frac{\omega'_{H_2SO_4}}{M_{H_2SO_4}}\right)$$

$$\omega'_{H_2SO_4} = \frac{M_{H_2SO_4} \cdot n'_{H_2SO_4}}{M_{H_2SO_4} \cdot n'_{H_2SO_4} + M_{H_2S_2O_7} \cdot n'_{H_2S_2O_7}}$$

Значения со штрихом относятся к конечному раствору. Отсюда масса прореагировавшего серного ангидрида:

$$m_{SO_3} = M_{SO_3} \cdot (n_{H_2O} + n'_{H_2S_2O_7}) = 117r$$

масса раствора -  $117 \cdot 1.81 + 117 = 328.77$ г, **1.5** балла за правильную массу. Доля прореагировавшего серного ангидрида -  $117 \div 200 \cdot 100\% = 58.5\%$ , **0.5** балла за правильную долю.

### **6.2** (2 балла)

Рассчитаем число молей сульфата кальция, для этого определим число молей серы в олеуме так как именно сульфат здесь является реагентом определяющим конечное число молей.

$$\begin{split} n_{CaSO_4} = n_{H_2SO_4} + 2 \cdot n_{H_2S_2O_7} = \rho \cdot V \cdot \left( \frac{\omega_{H_2SO_4}}{M_{H_2SO_4}} + 2 \cdot \frac{\omega_{H_2S_2O_7}}{M_{H_2S_2O_7}} \right) \\ n_{CaSO_4} = 0.2227 \text{mol} \end{split}$$

Теоретическая разница в температуре кипения если происходит полная диссоциация:

$$\Delta T_{max} = 2 \cdot 2.146 \cdot 0.2227 \div 1 = 0.9558^{\circ} \text{C}$$

 ${f 1}$  балл за правильную разницу. Пусть  ${f lpha}$  - степень диссоциации сульфата кальция, то есть отношение количества молей ионов кальция к общему количеству кальция. Тогда

$$\Delta T_{max} \cdot \alpha + \Delta T_{max} \div 2 \cdot (1 - \alpha) = \Delta T$$
$$\alpha = 46.47\%$$

1 балл за правильную степень диссоциации.

#### **6.3** (3 балла)

Так как все значения конечной массовой доли серной кислоты больше чем текущая массовая доля (9.77 %), нужно только добавлять воду. При этом пиросерная кислота реагирует с одной молекулой воды и дает две молекулы серной кислоты. В общем виде, после добавления m' граммов воды к m граммам олеума, если воды не слишком много чтобы полностью гидролизовать всю пиросерную кислоту, конечная массовая доля серной кислоты будет:

$$\omega' = \frac{\omega_{H_2SO_4} \cdot m + 2 \cdot m' \div M_{H_2O} \cdot M_{H_2SO_4}}{m + m'}$$
 
$$m'_{10\%} = 0.00213 \text{r}; m'_{30\%} = 0.191 \text{r}; m'_{50\%} = 0.387 \text{r}$$
 
$$m'_{70\%} = 0.591 \text{r}; m'_{90\%} = 0.803 \text{r}$$

0.6 баллов за каждую массу.

## Задача №7. Равноправие в термодинамике

| 7.1 | 7.2 | 7.3 | 7.4 | Всего | Bec(%) |
|-----|-----|-----|-----|-------|--------|
| 6   | 14  | 16  | 5   | 41    | 12     |

Автор: Касьянов А.

### 7.1 (6 баллов)

Поскольку атом аргона помещен в трёхмерное пространство, он может свободно перемещаться в трёх измерениях. Следовательно, атом аргона имеет **3 трансляционных степени свободы**. Каждая из степеней свободы, согласно теореме, вносит вклад в размере  $\frac{1}{2}kT$ . То есть трансляционная энергия атома аргона состалвяет:

$$E_T = 3 \times \frac{1}{2}kT = \frac{3}{2}\frac{RT}{N_A}$$

Подставим имеющиеся значения:

$$E_T = \frac{3}{2} \times \frac{8.314 \times 300}{6.022 \times 10^{23}} = 6.21 \times 10^{-21}$$
Дж

Из курса физики известно, что кинетическая энергия объекта с массой m и скоростью v равна:

$$E_k = \frac{mv^2}{2}$$

Приравняем трансляционную и кинетическую энергию атома аргона:

$$\frac{mv^2}{2} = \frac{3RT}{2N_A}$$

и выразим кинетическую энергия этого атома, заметив, что масса атома аргона равна  $m_{Ar} = \frac{M_{Ar}}{N_{\star}}$ :

$$v_{Ar} = \sqrt{\frac{3RT}{M_{Ar}}}$$

Рассчитаем скорость атома аргона при  $T = 300 \, \mathrm{K}$ :

$$v_{Ar} = \sqrt{\frac{3 \times 8.314 \times 300}{0.03995}} = 432.78 \,\mathrm{m}\,\mathrm{c}^{-1}$$

Из выражения  $v = \sqrt{\frac{3RT}{M}}$  видно, что скорость молекулы увеличивается при увеличении температуры и уменьшается при увеличении ее молярной массы, при чем увеличение температуры в n раз приводит к увеличению скорости молекулы в  $\sqrt{n}$  раз. Таким образом, верны следующие утверждения:

- При одинаковых условиях, свободная молекула кислорода имеет большую скорость, чем атом аргона
- При увеличении температуры в 4 раза, скорость молекулы возрастет в 2 раза
- **2 балла** за расчет трансляционной энергии атома аргона, равной  $\frac{3}{2}kT$
- **2 балла** за расчет скорости атома аргона, приравняв трансляционную и кинетическую энергии

**По 1 баллу** за каждое верное утверждение, за вычетом 1 балла за каждое неверное утверждение.

### 7.2 (14 баллов)

| SO <sub>2</sub>                           | H <sub>2</sub> O                | CO <sub>2</sub>                 | Kr        |
|-------------------------------------------|---------------------------------|---------------------------------|-----------|
| o= <sup>S</sup> =0                        | H O H                           | 0 <u> </u>                      | Kr        |
| $f_R = 3$                                 | $f_R = 3$                       | $f_R = 2$                       | $f_R = 0$ |
| $E_R$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_R = 6.21 \times 10^{-21}$ Дж | $E_R = 4.14 \times 10^{-21}$ Дж | $E_R = 0$ |

### Примечания:

- Для нелинейных многоатомных молекул  $f_R = 3$ , для линейных  $f_R = 2$ , для одноатомных  $f_R = 0$  (все оси вращения являются осями молекулы)
- Энергия вращения молекул рассчитана по формуле  $E_R = rac{f_R R T}{2 N_A}$

По 1 баллу за структуру каждой молекулы

**По 1.5 балла** за определение  $f_R$  для каждой молекулы

**По 1 баллу** за расчет  $E_R$ 

#### 7.3 (16 баллов)

Количество вибрационных степеней свободы рассчитывается по формуле  $f_V = 3N - f_T - f_R$ , где N - количество атомов в молекуле

Каждый вид энергии рассчитывается следующим образом:

$$E_T = \frac{f_T RT}{2N_A}$$
  $E_R = \frac{f_R RT}{2N_A}$   $E_V = \frac{f_V RT}{2N_A}$ 

Общую энергию можно рассчитать как  $U = E_T + E_R + E_V$ .

| H <sub>2</sub> O                          | CH <sub>4</sub>                           | С <sub>2</sub> Н <sub>2</sub> (ацетилен)  | PCl <sub>5</sub>                          |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| <i>f</i> <sub>V</sub> = 3                 | <i>f</i> <sub>V</sub> = 9                 | f <sub>V</sub> = 7                        | <i>f</i> <sub>V</sub> = 12                |
| $E_T$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_T$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_T$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_T$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж |
| $E_R$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_R = 6.21 \times 10^{-21}$ Дж           | $E_R$ = 4.14 $	imes$ 10 <sup>-21</sup> Дж | $E_R = 6.21 \times 10^{-21}  \text{Дж}$   |
| $E_V$ = 6.21 $	imes$ 10 <sup>-21</sup> Дж | $E_V$ = 1.86 $	imes$ 10 <sup>-20</sup> Дж | $E_V$ = 1.45 $	imes$ 10 <sup>-20</sup> Дж | $E_V$ = $2.49 	imes 10^{-20}$ Дж          |
| $U$ = $1.86 \times 10^{-20}$ Дж           | U = 3.11 $	imes$ 10 <sup>-20</sup> Дж     | $U = 2.49 \times 10^{-20} \mathrm{Дж}$    | $U = 3.73 \times 10^{-20}$ Дж             |

За каждое верное значение  $f_V$  — по 0.5 балла. За каждое верное значение  $E_V$  — по 0.5 балла. За каждое верное значение  $E_T$ ,  $E_R$  или U — по 1 баллу. Если участник укажет верное значение  $f_T$  (или  $f_R$ ), но неверно посчитает  $E_T$  (или  $E_R$ ), дается 0.5 балла вместо 1 балла.

Всего за пункт — 16 баллов.

### **7.4** (5 баллов)

Теплоемкость является энергетической емкостью молекул при заданной температуре. По условию задачи, данная emkocmb молекулы определяется только трансляцией, вращением и вибрацией молекул. Молекулы  $\mathrm{CO}_2$  и  $\mathrm{N}_2\mathrm{O}$  имеют одинаковую молярную массу, следовательно кинетическая энегрия их молекул при одинаковой температуре будет одинаковой. Вибрационную энергию при данной температуре можно принять

# Заключительный этап республиканской олимпиады по химии 2023-2024. Комплект решений теоретического тура. 9-класс.

незначительной. Энергия вращения у  ${\rm CO_2}$  и  ${\rm N_2O}$  будет одинаковой, поскольку обе молекулы линейные. Таким образом, у молекул  ${\rm N_2O}$  и  ${\rm CO_2}$ , теплоемкость должна быть **одинаковой**.

**Примечание.** На самом деле, теплоемкость  $N_2O$  выше, чем у  $CO_2$ , однако это различие обусловлено факторами, не относящимися к трансляции и вращению молекул, что находится вне контекста задачи.

**5 баллов** за сравнение теплоемкостей газов **Максимально 1 балл** за ответ без обоснования. Принимаются другие обоснования, не противоречащие законам химии.