

Regresija

Statistički metodi 2019/2020

dr Aleksandar Tomašević 11.12.2019.

Filozofski fakultet u Novom Sadu

Plan časa

- 1. Regresioni model
- 2. Regresiona linija i njeni koeficijenti
- 3. Greška regresije
- 4. Testiranje značajnosti regresije
- 5. Regresiono predviđanje

Regresioni model

Regresioni model u populaciji/osnovnom skupu

$$\hat{Y} = \beta_0 + \beta_1 X + \varepsilon$$

koeficijenti _____

Regresiona linija i njeni

Jednačina regresione linije

$$y = b_0 + b_1 x$$

$$b_1 = \frac{SXY}{SSX}$$

$$b_0 = \overline{Y} - \overline{X}b1$$

Ucrtavanje regresione linije

Tačka 1: $(0, b_0)$

Tačka 2: $(\overline{X}, \overline{Y})$

Greška regresije

Odstupanja od regresione linije

Greška regresije

Greška regresije

$$S = \sqrt{\frac{\sum Y^2 - b_0 \sum Y - b_1 \sum XY}{n-2}}$$

Standardna greška koeficijenta nagiba

Standardna greška b₁

$$s_{b_1} = \frac{s}{SSX}$$

Testiranje značajnosti regresije

Hipoteze i uslov odbijanja

Nulta hipoteza

$$H_0: \beta = 0$$

Alternativna hipoteza

$$H_1: \beta \neq 0$$

Uslov odbijanja H_0

$$t > t_{n-2;\frac{\alpha}{2}}$$

T-statistika za koeficijent nagiba

$$t = \frac{b_1}{s_{b_1}}$$

Primer

U jednom pilot anketnom istraživanju od 9 studenata prikupljeni su podaci o njihovoj prosečnoj oceni (Y) i prosečnom vremenu koje dnevno provode na društvenim mrežama (X). Rezultati su prikazani u tabeli ispod. Opišite zavisnost prosečne ocene od vremena provedenog na društvenim mrežama putem regresionog modela. Testirajte značajnost modela na nivou pouzdanosti od 95%.

Х	Υ
10	6.6
2	8
12	7
5	9.5
14	6.2
3	8.5
1	9.2
2	9.5
8	7.8

Regresiono predviđanje

Interpolacija

Predivđena vrednost Y

$$y_P = b_0 + b_1 x_p$$

Greška predviđanja

Standardna greška predviđene vrednosti

$$s_{y_p} = s\sqrt{1 + \frac{1}{n} + \frac{(x_p - \overline{X})^2}{SSX}}$$

Interval poverenja previđene vrednosti

$$y_p - s_{y_p} t_{n-2;\frac{\alpha}{2}} \le Y_p \le y_p + s_{y_p} t_{n-2;\frac{\alpha}{2}}$$