LONGITUD DE CURVAS PARAMETRIZADAS

Curso 2019-2020

Imagen: Aplicaciones integral.nb, ugr.es

Sea $lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $lpha(t)=ig(lpha_1(t),\dots,lpha_n(t)ig)$

Sea $lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \big(\alpha_1(t),\ldots,\alpha_n(t)\big)$

Sea $lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $lpha(t)=ig(lpha_1(t),\dots,lpha_n(t)ig)$

Sea $lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $lpha(t)=ig(lpha_1(t),\dots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \{a = t_0 < t_1 < \dots < t_m = b\}$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \big(\alpha_1(t),\dots,\alpha_n(t)\big)$

Sea $\mathcal{P} \in \mathscr{P}([a,b])$ partición de [a,b]: $\mathcal{P} = \big\{ a = t_0 < t_1 < \cdots < t_m = b \big\}$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \big(\alpha_1(t),\dots,\alpha_n(t)\big)$

Sea $\mathcal{P} \in \mathscr{P}([a,b])$ partición de [a,b]: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum_{j=1}^{m} |\alpha(t_j) - \alpha(t_{j-1})|$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \big(\alpha_1(t),\ldots,\alpha_n(t)\big)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum_{j=1}^{m} |\alpha(t_j) \alpha(t_{j-1})|$
- ▶ Por la desigualdad triangular, si $\mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha, \mathcal{P}) \leq \ell(\alpha, \mathcal{P}')$

Sea $lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum_{j=1}^{m} \left| \alpha(t_j) \alpha(t_{j-1}) \right|$
- $\blacktriangleright \ \, \text{Por la desigualdad triangular, si} \,\, \mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha,\mathcal{P}) \leq \ell(\alpha,\mathcal{P}')$
- La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{ \ell(\alpha,\mathcal{P}) \right\} \in [0,+\infty].$

Sea
$$lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$$
 una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum \left| \alpha(t_j) \alpha(t_{j-1}) \right|$
- $\qquad \text{Por la desigualdad triangular, si } \mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha,\mathcal{P}) \leq \ell(\alpha,\mathcal{P}')$

La longitud de
$$\alpha$$
 es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \big\{ \ell(\alpha,\mathcal{P}) \big\} \in [0,+\infty].$
La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$.

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = (\alpha_1(t),\ldots,\alpha_n(t))$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \cdots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum \left| \alpha(t_j) \alpha(t_{j-1}) \right|$
- $\qquad \text{Por la desigualdad triangular, si } \mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha,\mathcal{P}) \leq \ell(\alpha,\mathcal{P}')$

La longitud de
$$\alpha$$
 es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{ \ell(\alpha,\mathcal{P}) \right\} \in [0,+\infty].$
La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty.$

lacktriangledown as rectificable sii $\{\ell(\alpha,\mathcal{P}): \mathcal{P} \in \mathscr{P}([a,b])\} \subset \mathbb{R}$ es acotado

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = (\alpha_1(t),\ldots,\alpha_n(t))$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = ig\{ a = t_0 < t_1 < \dots < t_m = b ig\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum \left| \alpha(t_j) \alpha(t_{j-1}) \right|$
- $\qquad \text{Por la desigualdad triangular, si } \mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha,\mathcal{P}) \leq \ell(\alpha,\mathcal{P}')$

La noción de curva rectificable y su longitud son independientes de la parametrización: $\ell(\alpha) = \ell(\alpha \circ \varphi)$

Sea
$$lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$$
 una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum |\alpha(t_j) \alpha(t_{j-1})|$
- ▶ Por la desigualdad triangular, si $\mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha, \mathcal{P}) \leq \ell(\alpha, \mathcal{P}')$

- La noción de curva rectificable y su longitud son independientes de la parametrización: $\ell(\alpha) = \ell(\alpha \circ \varphi)$
- ▶ Si α es inyectiva y C es su traza, se define $\ell(C) = \ell(\alpha)$

${f Longitud\ de\ Curvas\ en\ }\mathbb{R}^n$

Sea
$$lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$$
 una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = ig\{ a = t_0 < t_1 < \dots < t_m = b ig\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum |\alpha(t_j) \alpha(t_{j-1})|$
- ▶ Por la desigualdad triangular, si $\mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha, \mathcal{P}) \leq \ell(\alpha, \mathcal{P}')$

- La noción de curva rectificable y su longitud son independientes de la parametrización: $\ell(\alpha) = \ell(\alpha \circ \varphi)$
- \triangleright α es rectificable sii α_i es rectificable (de variación acotada)

Sea
$$lpha\in\mathcal{C}([a,b];\mathbb{R}^n)$$
 una curva parametrizada, $lpha(t)=ig(lpha_1(t),\ldots,lpha_n(t)ig)$

Sea
$$\mathcal{P} \in \mathscr{P}([a,b])$$
 partición de $[a,b]$: $\mathcal{P} = \big\{ a = t_0 < t_1 < \dots < t_m = b \big\}$

- ▶ La longitud de la poligonal es $\ell(\alpha, \mathcal{P}) = \sum |\alpha(t_j) \alpha(t_{j-1})|$
- ▶ Por la desigualdad triangular, si $\mathcal{P} \subset \mathcal{P}' \Longrightarrow \ell(\alpha, \mathcal{P}) \leq \ell(\alpha, \mathcal{P}')$

- La noción de curva rectificable y su longitud son independientes de la parametrización: $\ell(\alpha) = \ell(\alpha \circ \varphi)$
- $\blacktriangleright \ell(\alpha_i) < \ell(\alpha) < \ell(\alpha_1) + \cdots + \ell(\alpha_n)$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

 $\blacktriangleright \ \ell(\alpha) = 0 \Longleftrightarrow \alpha \text{ es constante} \Longleftrightarrow \text{la traza de } \alpha \text{ es un punto de } \mathbb{R}^n$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\dots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- $lackbox{}\ell(lpha)=0\Longleftrightarrowlpha$ es constante \Longleftrightarrow la traza de lpha es un punto de \mathbb{R}^n
- $\blacktriangleright \ \, \text{Si} \, \, a < c < b \, \, \text{y definimos} \, \, \gamma = \alpha_{|[a,c]} \text{,} \, \, \beta = \alpha_{|[c,b]} \Longrightarrow \ell(\alpha) = \ell(\gamma) + \ell(\beta)$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\dots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- $lackbox{}\ell(lpha)=0\Longleftrightarrowlpha$ es constante \Longleftrightarrow la traza de lpha es un punto de \mathbb{R}^n
- $\blacktriangleright \ \, \text{Si} \,\, a < c < b \,\, \text{y definimos} \,\, \gamma = \alpha_{|_{[a,c]}} \text{,} \,\, \beta = \alpha_{|_{[c,b]}} \Longrightarrow \ell(\alpha) = \ell(\gamma) + \ell(\beta)$
- $\ell(\alpha * \beta) = \ell(\alpha) + \ell(\beta) \Longrightarrow \ell(\alpha_1 * \cdots * \alpha_k) = \ell(\alpha_1) + \cdots + \ell(\alpha_k)$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- $lackbox{}\ell(lpha)=0\Longleftrightarrowlpha$ es constante \Longleftrightarrow la traza de lpha es un punto de \mathbb{R}^n
- $\blacktriangleright \ \, \text{Si} \,\, a < c < b \,\, \text{y definimos} \,\, \gamma = \alpha_{|_{[a,c]}} \text{,} \,\, \beta = \alpha_{|_{[c,b]}} \Longrightarrow \ell(\alpha) = \ell(\gamma) + \ell(\beta)$
- $\ell(\alpha * \beta) = \ell(\alpha) + \ell(\beta) \Longrightarrow \ell(\alpha_1 * \cdots * \alpha_k) = \ell(\alpha_1) + \cdots + \ell(\alpha_k)$
- lacksquare Si $\ell\colon [a,b]\longrightarrow \mathbb{R}$, $\ell(t)=\ell\left(lpha_{|[a,t]}
 ight)\Rightarrow \ell$ es creciente, continua y $\ell(a)=0$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- $lackbox{}\ell(lpha)=0\Longleftrightarrowlpha$ es constante \Longleftrightarrow la traza de lpha es un punto de \mathbb{R}^n
- $\blacktriangleright \ \, \text{Si} \,\, a < c < b \,\, \text{y definimos} \,\, \gamma = \alpha_{|_{[a,c]}}, \,\, \beta = \alpha_{|_{[c,b]}} \Longrightarrow \ell(\alpha) = \ell(\gamma) + \ell(\beta)$
- $\ell(\alpha * \beta) = \ell(\alpha) + \ell(\beta) \Longrightarrow \ell(\alpha_1 * \cdots * \alpha_k) = \ell(\alpha_1) + \cdots + \ell(\alpha_k)$
- ightharpoonup Si $\ell\colon [a,b]\longrightarrow \mathbb{R}$, $\ell(t)=\ell\left(lpha_{|[a,t]}
 ight)\Rightarrow \ell$ es creciente, continua y $\ell(a)=0$
- ▶ Si α no es constante en ningún subintervalo de [a,b] $\implies \ell$ es estrictamente creciente

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\dots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina $\operatorname{rectificable}$ si $\ell(\alpha) < +\infty$

¿Qué curvas son rectificables?

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\dots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- ▶ ¿Qué curvas son rectificables?
- ▶ Si α es Lipschitziana: $|\alpha(t) \alpha(s)| \le L|t s| \Longrightarrow \ell(\alpha) \le L(b a)$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- ▶ ¿Qué curvas son rectificables?
- $\blacktriangleright \ \ \text{Si} \ \ \alpha \ \ \text{es Lipschitziana:} \ \ |\alpha(t) \alpha(s)| \leq L|t-s| \Longrightarrow \ell(\alpha) \leq L(b-a)$
 - \rightsquigarrow Si $\alpha \in \mathcal{C}^1([a,b];\mathbb{R}^n)$, entonces α es rectificable

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\dots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- ▶ ¿Qué curvas son rectificables?
- lackbox Si lpha es Lipschitziana: $|lpha(t)-lpha(s)|\leq L|t-s|\Longrightarrow \ell(lpha)\leq L(b-a)$
 - \rightsquigarrow Si $\alpha \in \mathcal{C}^1_s([a,b];\mathbb{R}^n)$, entonces α es rectificable

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

- ▶ ¿Qué curvas son rectificables?
- ▶ Si α es Lipschitziana: $|\alpha(t) \alpha(s)| \leq L|t s| \Longrightarrow \ell(\alpha) \leq L(b a)$ \leadsto Si $\alpha \in \mathcal{C}^1_s([a,b];\mathbb{R}^n)$, entonces α es rectificable

Si
$$\alpha \in \mathcal{C}^1_s([a,b];\mathbb{R}^n)$$
, entonces
$$\ell(\alpha) = \int_a^b |\alpha'(t)| dt = \int_a^b \sqrt{\alpha_1'(t)^2 + \dots + \alpha_n'(t)^2} dt$$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Si
$$\alpha \in \mathcal{C}^1_s([a,b];\mathbb{R}^n)$$
, entonces
$$\ell(\alpha) = \int_a^b |\alpha'(t)| dt = \int_a^b \sqrt{\alpha_1'(t)^2 + \dots + \alpha_n'(t)^2} dt$$

Ejemplo: Calcular la longitud de la elipse

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1, \quad a > b > 0$$

Sea $\alpha \in \mathcal{C}([a,b];\mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = \left(\alpha_1(t),\ldots,\alpha_n(t)\right)$ La longitud de α es $\ell(\alpha) = \sup_{\mathcal{P} \in \mathscr{P}([a,b])} \left\{\ell(\alpha,\mathcal{P})\right\} \in [0,+\infty]$, donde si

$$\mathcal{P} = \{t_j\}_{j=0}^m \in \mathscr{P}([a,b]) \Longrightarrow \ell(\alpha,\mathcal{P}) = \sum_{j=1}^m |\alpha(t_j) - \alpha(t_{j-1})|$$

La curva parametrizada α se denomina rectificable si $\ell(\alpha) < +\infty$

Si
$$\alpha \in \mathcal{C}^1_s([a,b];\mathbb{R}^n)$$
, entonces
$$\ell(\alpha) = \int_a^b |\alpha'(t)| dt = \int_a^b \sqrt{\alpha_1'(t)^2 + \dots + \alpha_n'(t)^2} dt$$

Ejemplo: Calcular la longitud de la Curva de Viviani

$$C = \{x^2 + y^2 + z^2 = a^2, \ x^2 + y^2 = ay\}, \ a > 0$$

Sea $\alpha \in \mathcal{C}(I; \mathbb{R}^n)$ una curva parametrizada, $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$. La longitud de α es $\ell(\alpha) = \sup_{[a,b] \subset I} \left\{ \ell(\alpha_{|[a,b]}) \right\}$

Sea
$$\alpha \in \mathcal{C}(I;\mathbb{R}^n)$$
 una curva parametrizada, $\alpha(t) = (\alpha_1(t),\dots,\alpha_n(t))$. La longitud de α es $\ell(\alpha) = \sup_{[a,b]\subset I} \left\{\ell(\alpha_{|[a,b]})\right\}$

▶ Si $\alpha \in \mathcal{C}^1_s(I;\mathbb{R}^n) \Longrightarrow \ell(\alpha) = \int_I |\alpha'(t)| dt$ como integral impropia

Sea
$$\alpha \in \mathcal{C}(I;\mathbb{R}^n)$$
 una curva parametrizada, $\alpha(t) = (\alpha_1(t),\dots,\alpha_n(t))$. La longitud de α es $\ell(\alpha) = \sup_{[a,b]\subset I} \left\{\ell(\alpha_{|[a,b]})\right\}$

- ► Ejemplo: Calcular la longitud de la espiral logarítmica

$$\alpha \colon (0, +\infty) \longrightarrow \mathbb{R}^2, \quad \alpha(\theta) = \left(e^{-\theta}\cos(\theta), e^{-\theta}\sin(\theta)\right)$$

Campos Escalares y Vectoriales

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- Un campo escalar en Ω es una aplicación $u \colon \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$. Los campos escalares serán habitualmente denotados por u, v, f, g.
- **②** Un campo vectorial en Ω es una aplicación $f : \Omega \longrightarrow \mathbb{R}^n$.

Como $f(x) = (f_1(x), \dots, f_n(x))$, a los campos escalares o funciones $f_j : \Omega \longrightarrow \mathbb{R}^n$, $j = 1, \dots, n$, se las denomina componentes del campo f.

El campo f se denomina de clase $\mathcal{C}^k(\Omega,\mathbb{R}^n)$, $k\geq 0$ si f es de clase $\mathcal{C}^k(\Omega,\mathbb{R}^n)$; es decir, si para cada $j=1,\ldots,n$, $f_j\in\mathcal{C}^k(\Omega)$.

Los campos vectoriales serán denotados por f, g, u, F.

Campos Escalares y Vectoriales

Consideremos $\Omega \subset \mathbb{R}^n$ un abierto no vacío (habitualmente, n=2,3).

- ① Un campo escalar en Ω es una aplicación $u : \Omega \longrightarrow \mathbb{R}$. El campo u se denomina de clase $\mathcal{C}^k(\Omega)$, $k \geq 0$, si u es de clase $\mathcal{C}^k(\Omega)$. Los campos escalares serán habitualmente denotados por u, v, f, g.
- **②** Un campo vectorial en Ω es una aplicación $f: \Omega \longrightarrow \mathbb{R}^n$.

Como $f(x) = (f_1(x), \dots, f_n(x))$, a los campos escalares o funciones $f_j : \Omega \longrightarrow \mathbb{R}^n$, $j = 1, \dots, n$, se las denomina componentes del campo f.

El campo f se denomina de clase $\mathcal{C}^k(\Omega,\mathbb{R}^n)$, $k\geq 0$ si f es de clase $\mathcal{C}^k(\Omega,\mathbb{R}^n)$; es decir, si para cada $j=1,\ldots,n,\ f_j\in\mathcal{C}^k(\Omega)$.

Los campos vectoriales serán denotados por f, g, u, F.

 \leadsto El campo $r \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definido como $r(x) = (x_1, \dots, x_n)$ se denomina campo radial de \mathbb{R}^n . Por tanto, si $j = 1, \dots, n$, la componente j-ésima del campo radial es $r_j(x) = x_j$. Claramente, $r \in \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f:\Omega\longrightarrow\mathbb{R}$ es un campo escalar continuo, (basta que $f:C_{\alpha}\longrightarrow\mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_{α} a $\int_{C_{\alpha}} f d\ell = \int_{\alpha} f d\ell$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f:\Omega\longrightarrow\mathbb{R}$ es un campo escalar continuo, (basta que $f:C_{\alpha}\longrightarrow\mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_α a $\int_{C_\alpha} f d\ell = \int_\alpha f d\ell$

lacktriangle Si f=1, recuperamos la noción de longitud de la curva parametrizada

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f \colon \Omega \longrightarrow \mathbb{R}$ es un campo escalar continuo, (basta que $f \colon C_{\alpha} \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_α a $\int_{C_\alpha} f d\ell = \int_\alpha f d\ell$

- lackbox Si f=1, recuperamos la noción de longitud de la curva parametrizada
- La función $d\ell(t)=|lpha'(t)|$ se denomina también elemento de longitud

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}$ es un campo escalar continuo, (basta que $f: C_{\alpha} \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_α a $\int_{C_\alpha} f d\ell = \int_\alpha f d\ell$

- lacktriangle Si f=1, recuperamos la noción de longitud de la curva parametrizada
- $\blacktriangleright \ \, {\rm Si} \,\, \varphi \colon [c,d] \longrightarrow [a,b] \,\, {\rm es} \,\, {\rm difeomeorfismo} \,\, {\rm de} \,\, {\rm clase} \,\, \mathcal{C}^1([c,d]) \,\, {\rm y} \,\, \beta = \alpha \circ \varphi$

$$\int_{\beta} f d\ell = \int_{\alpha} f d\ell$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f \colon \Omega \longrightarrow \mathbb{R}$ es un campo escalar continuo, (basta que $f \colon C_{\alpha} \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_α a $\int_{C_\alpha} f d\ell = \int_\alpha f d\ell$

lacktriangle Si I es un intervalo la integral de línea ha de entenderse como impropia

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f:\Omega\longrightarrow\mathbb{R}$ es un campo escalar continuo, (basta que $f:C_{\alpha}\longrightarrow\mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_{α} a $\int_{C_{\alpha}} f d\ell = \int_{\alpha} f d\ell$

▶ Ejemplo: Calcular $\int_C x^2 d\ell$, donde C es la intersección de la esfera $x^2+y^2+z^2=1$ y del plano x+y+z=0

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}$ es un campo escalar continuo, (basta que $f: C_{\alpha} \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea como

$$\int_{\alpha} f \, d\ell = \int_{a}^{b} f(\alpha(t)) ||\alpha'(t)|| \, dt.$$

Si α es inyectiva, se denomina integral de f sobre la curva C_{α} a $\int_{C_{\alpha}} f d\ell = \int_{\alpha} f d\ell$

ightharpoonup Si $lpha=eta_1*\cdots*eta_k$, donde $eta_k\in\mathcal{C}^1_s([a_{j-1},a_j])$, $j=1,\ldots,k$

$$\int_{\alpha} f d\ell = \int_{\beta_1} f d\ell + \dots + \int_{\beta_k} f d\ell$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que $f: C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \langle f(\alpha(t)), \alpha'(t) \rangle dt.$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \langle f(\alpha(t)), \alpha'(t) \rangle dt.$$

▶ Si f = (f_1, \ldots, f_n) y $\alpha = (\alpha_1, \ldots, \alpha_n)$, entonces

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \left(f_{1}(\alpha(t)) \alpha'_{1}(t) + \dots + f_{n}(\alpha(t)) \alpha'_{n}(t) \right) dt$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \langle f(\alpha(t)), \alpha'(t) \rangle dt.$$

ightharpoonup Si $f=(f_1,\ldots,f_n)$ y $\alpha=(\alpha_1,\ldots,\alpha_n)$, entonces

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \left(f_{1}(\alpha(t)) \alpha'_{1}(t) + \dots + f_{n}(\alpha(t)) \alpha'_{n}(t) \right) dt$$

▶ Si f = $(f_1, ..., f_n)$, entonces la circulación de f también se denota

$$\int_{\alpha} f \, d\boldsymbol{\ell} = \int_{\alpha} \left(f_1 dx_1 + \dots + f_n dx_n \right)$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que $f: C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} \mathbf{f} \, d\mathbf{\ell} = \int_{a}^{b} \left\langle \mathbf{f} \big(\alpha(t) \big), \alpha'(t) \right\rangle dt.$$

ightharpoonup Si la curva lpha es cerrada, entonces la circulación se denota como

$$\oint_{\alpha} f \, d\boldsymbol{\ell} = \oint_{\alpha} \left(f_1 dx_1 + \dots + f_n dx_n \right)$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que $f: C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} \mathbf{f} \, d\mathbf{\ell} = \int_{a}^{b} \left\langle \mathbf{f} \big(\alpha(t) \big), \alpha'(t) \right\rangle dt.$$

▶ Si α es regular: $\alpha'(t) = \frac{\alpha'(t)}{|\alpha'(t)|} |\alpha'(t)| = \mathsf{t}(t) |\alpha'(t)|$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si $f: \Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que $f: C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \left\langle f(\alpha(t)), \alpha'(t) \right\rangle dt.$$

- $\blacktriangleright \ \, \text{Si} \,\, \alpha \,\, \text{es} \,\, \underline{\text{regular}} \colon \, \alpha'(t) = \frac{\alpha'(t)}{|\alpha'(t)|} \, |\alpha'(t)| = \mathsf{t}(t) \, |\alpha'(t)|$
- ▶ El campo escalar $f_t = \langle f, t \rangle$ es la componente tangencial de f

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \left\langle f(\alpha(t)), \alpha'(t) \right\rangle dt.$$

- ▶ Si α es regular: $\alpha'(t) = \frac{\alpha'(t)}{|\alpha'(t)|} |\alpha'(t)| = \mathsf{t}(t) |\alpha'(t)|$
- lacktriangle El campo escalar $f_t = \langle f, t \rangle$ es la componente tangencial de f

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{a}^{b} \left\langle f(\alpha(t)), \alpha'(t) \right\rangle dt.$$

ightharpoonup Si $lpha=lpha_1*\dots*lpha_k$, donde $lpha_k\in\mathcal{C}^1_s([a_{j-1},a_j])$, $j=1,\dots,k$

$$\int_{\alpha} f d\boldsymbol{\ell} = \int_{\alpha_1} f d\boldsymbol{\ell} + \dots + \int_{\alpha_k} f d\boldsymbol{\ell}$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} \mathbf{f} \, d\mathbf{\ell} = \int_{a}^{b} \left\langle \mathbf{f} \big(\alpha(t) \big), \alpha'(t) \right\rangle dt.$$

▶ Si φ : [c,d] \longrightarrow [a,b] es difeomeorfismo de clase $\mathcal{C}^1([c,d])$ y $\beta=\alpha\circ\varphi$

$$\int_{\beta} f d\boldsymbol{\ell} = \pm \int_{\Omega} f d\boldsymbol{\ell}$$

donde el signo depende de si α y β tienen la misma orientación u opuesta.

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} \mathbf{f} \, d\mathbf{\ell} = \int_{a}^{b} \left\langle \mathbf{f} \big(\alpha(t) \big), \alpha'(t) \right\rangle dt.$$

▶ Si φ : [c,d] \longrightarrow [a,b] es difeomeorfismo de clase $\mathcal{C}^1([c,d])$ y $\beta=\alpha\circ\varphi$

$$\int_{\beta} f d\boldsymbol{\ell} = \pm \int_{\alpha} f d\boldsymbol{\ell}$$

donde el signo depende de si α y β tienen la misma orientación u opuesta.

▶ Si α es inyectiva, se denomina circulación de f a lo largo de la curva orientada C_{α} a $\int_{C_{\alpha}} f d\boldsymbol{\ell} = \int_{\alpha} f d\boldsymbol{\ell}$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$ y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha \subset \Omega$.

Si f: $\Omega \longrightarrow \mathbb{R}^n$ es un campo vectorial continuo, (basta que f: $C_\alpha \longrightarrow \mathbb{R}$ sea continuo) se define la integral de f sobre α o integral de línea o circulación de f a lo largo de α , como

$$\int_{\alpha} \mathbf{f} \, d\mathbf{\ell} = \int_{a}^{b} \left\langle \mathbf{f} \big(\alpha(t) \big), \alpha'(t) \right\rangle dt.$$

▶ Si φ : [c,d] \longrightarrow [a,b] es difeomeorfismo de clase $\mathcal{C}^1([c,d])$ y $\beta=\alpha\circ\varphi$

$$\int_{\beta} f d\boldsymbol{\ell} = \pm \int_{\alpha} f d\boldsymbol{\ell}$$

donde el signo depende de si α y β tienen la misma orientación u opuesta.

ightharpoonup Si lpha es inyectiva y $-C_{lpha}$ es la curva C_{lpha} con la orientación opuesta

$$\int_{-C_{\tau}} f d\boldsymbol{\ell} = -\int_{C_{\tau}} f d\boldsymbol{\ell}$$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$, $\beta \in \mathcal{C}^1_s([c,d],\mathbb{R}^n)$, inyectivas y equivalentes y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha = C_\beta = C \subset \Omega$. Para cada campo vectorial continuo $\mathbf{f} \colon \Omega \longrightarrow \mathbb{R}^n$ (basta que \mathbf{f} sea continuo en C) se tiene que $\int_\alpha \mathbf{f} d\boldsymbol{\ell} = \pm \int_\beta \mathbf{f} d\boldsymbol{\ell}$, dependiendo de si α y β tienen la misma orientación (+) u orientación opuesta (-).

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$, $\beta \in \mathcal{C}^1_s([c,d],\mathbb{R}^n)$, inyectivas y equivalentes y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha = C_\beta = C \subset \Omega$. Para cada campo vectorial continuo f: $\Omega \longrightarrow \mathbb{R}^n$ (basta que f sea continuo en C) se tiene que $\int_\alpha \mathrm{f} d\boldsymbol{\ell} = \pm \int_\beta \mathrm{f} d\boldsymbol{\ell}$, dependiendo de si α y β tienen la misma orientación (+) u orientación opuesta (-).

- ▶ Ejemplo: Calcular la circulación de f(x,y)=(x,yx) a lo largo de la semicircunferencia $x^2+y^2=4$, con $y\geq 0$ utilizando las siguientes parametrizaciones:
 - $\alpha(t) = (2\cos(t), 2\sin(t)), t \in [0, \pi].$
 - ② $\beta(t) = (2\cos(t), -2\sin(t)), t \in [-\pi, 0].$

Sean $\alpha \in \mathcal{C}^1_s([a,b],\mathbb{R}^n)$, $\beta \in \mathcal{C}^1_s([c,d],\mathbb{R}^n)$, inyectivas y equivalentes y $\Omega \subset \mathbb{R}^n$ abierto tal que $C_\alpha = C_\beta = C \subset \Omega$. Para cada campo vectorial continuo $f\colon \Omega \longrightarrow \mathbb{R}^n$ (basta que f sea continuo en C) se tiene que $\int_\alpha f d\boldsymbol{\ell} = \pm \int_\beta f d\boldsymbol{\ell}$, dependiendo de si α y β tienen la misma orientación (+) u orientación opuesta (-).

▶ Ejemplo: Calcular la circulación de f(x,y)=(x,yx) a lo largo de la semicircunferencia $x^2+y^2=4$, con $y\geq 0$

Orientación positiva (α izquierda) y opuesta (β derecha)

Calculeu les integrals de línia $\int_C \mathbf{F} \cdot d \mathbf{\ell}$ següents:

- $\mathbf{F}(x,y)=(x+y,y-x)$, C és l'arc de l'el·lipse $x^2+\frac{y^2}{4}=1$ orientat des del punt (1,0) fins al (0,2).
- **2** $\mathbf{F}(x,y) = (2x+y^2,3y-4x)$, C és la frontera de $R = \{(x,y): y^2 \le x, \ y \ge x^2\}$, recorreguda en sentit positiu.
- $\oint_C \left(ydx+zdy+xdz\right)$, on C és la corba intersecció de z=xy amb $x^2+y^2=1$, orientada de manera que la seva projecció sobre el pla XY sigui positiva.

SUPERFICIES PARAMETRIZADAS

Curso 2019-2020

Imagen: Evy Salcedo, pbx-brasil.com

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ Si S es regular, $\sigma_u = \left(\frac{\partial \sigma_1}{\partial u}, \frac{\partial \sigma_2}{\partial u}, \frac{\partial \sigma_3}{\partial u}\right)^{\top}$ y $\sigma_v = \left(\frac{\partial \sigma_1}{\partial v}, \frac{\partial \sigma_2}{\partial v}, \frac{\partial \sigma_3}{\partial v}\right)^{\top}$ se denominan campos tangentes a S.

- ▶ El conjunto $S = \{\sigma(u, v) : (u, v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $\operatorname{sg}\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S.

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $\operatorname{sg}\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S
 - \rightsquigarrow $\mathbf{n}(u,v) = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|}$ es el campo normal unitario exterior a S
 - \rightsquigarrow Diremos que S tiene la orientación determinada por σ

Consideraremos $\Omega\subset\mathbb{R}^2$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$; es decir, si $\sigma(u,v)=\left(\sigma_1(u,v),\sigma_2(u,v),\sigma_3(u,v)\right)$, entonces $\sigma_j\in\mathcal{C}^k(\Omega)$, j=1,2,3. Supondremos, además, que σ es **inyectiva**

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $\operatorname{sg}\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S

 $|\sigma_u \times \sigma_v| = \sqrt{g(u,v)} = \sqrt{EG - F^2}$, donde $g(u,v) = \det(\mathsf{D}_\sigma^\top \mathsf{D}_\sigma)$ y es el área del paralelogramo de lados σ_u y σ_v .

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $\operatorname{sg}\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S
- $|\sigma_u \times \sigma_v| = \sqrt{g(u,v)} = \sqrt{EG F^2}$, donde $g(u,v) = \det(\mathsf{D}_\sigma^\top \mathsf{D}_\sigma)$ y es el área del paralelogramo de lados σ_u y σ_v .
- ightharpoonup Ejemplo: $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$, $\sigma(x,y) = (x,y,u(x,y))$, $u \in \mathcal{C}^1(\Omega)$

Consideraremos $\Omega\subset\mathbb{R}^2$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$; es decir, si $\sigma(u,v)=\left(\sigma_1(u,v),\sigma_2(u,v),\sigma_3(u,v)\right)$, entonces $\sigma_j\in\mathcal{C}^k(\Omega)$, j=1,2,3. Supondremos, además, que σ es **inyectiva**

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $sg\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- lacktriangle Si S es regular, $\sigma_u imes \sigma_v
 eq 0$ se denomina campo normal a S

Si $\widehat{\Omega} = \{(v,u) \in \mathbb{R}^2 : (u,v) \in \Omega\}$ y $\widehat{\sigma} \colon \widehat{\Omega} \longrightarrow \mathbb{R}^3$ está dada por $\widehat{\sigma}(v,u) = \sigma(u,v)$, $\widehat{\Omega}$ es abierto y $\widehat{\sigma}$ es también una parametrización de S, cuyo campo normal unitario es $\widehat{\mathbf{n}}(v,u) = -\mathbf{n}(u,v)$. A $\widehat{\sigma}$ se le denomina parametrización opuesta a σ y se denotará como -S.

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $sg\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S
- Si $\widehat{\Omega} \subset \mathbb{R}^n$ es abierto y $\widehat{\sigma} \in \mathcal{C}^k(\widehat{\Omega}; \mathbb{R}^n)$, diremos que σ y $\widehat{\sigma}$ son equivalentes si existe $\varphi \colon \widehat{\Omega} \longrightarrow \Omega$ difeomorfismo de clase $\mathcal{C}^1(\widehat{\Omega}; \Omega)$ tal que $\widehat{\sigma} = \sigma \circ \varphi$.

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $sg\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S
- Si $\widehat{\Omega} \subset \mathbb{R}^n$ es abierto y $\widehat{\sigma} \in \mathcal{C}^k(\widehat{\Omega}; \mathbb{R}^n)$, diremos que σ y $\widehat{\sigma}$ son equivalentes si existe $\varphi \colon \widehat{\Omega} \longrightarrow \Omega$ difeomorfismo de clase $\mathcal{C}^1(\widehat{\Omega}; \Omega)$ tal que $\widehat{\sigma} = \sigma \circ \varphi \Longrightarrow \mathsf{D}_{\widehat{\sigma}} = \mathsf{D}_{\sigma} \mathsf{D}_{\varphi}$ y $\widehat{\sigma}_{\widehat{u}} \times \widehat{\sigma}_{\widehat{v}} = (\det \mathsf{D}_{\varphi}) \sigma_u \times \sigma_v$.

Consideraremos $\Omega\subset\mathbb{R}^2$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$; es decir, si $\sigma(u,v)=\left(\sigma_1(u,v),\sigma_2(u,v),\sigma_3(u,v)\right)$, entonces $\sigma_j\in\mathcal{C}^k(\Omega)$, j=1,2,3. Supondremos, además, que σ es **inyectiva**

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $sg\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- ▶ Si S es regular, $\sigma_u \times \sigma_v \neq 0$ se denomina campo normal a S

Si $\widehat{\Omega} \subset \mathbb{R}^n$ es abierto y $\widehat{\sigma} \in \mathcal{C}^k(\widehat{\Omega}; \mathbb{R}^n)$, diremos que σ y $\widehat{\sigma}$ son equivalentes si existe $\varphi \colon \widehat{\Omega} \longrightarrow \Omega$ difeomorfismo de clase $\mathcal{C}^1(\widehat{\Omega}; \Omega)$ tal que $\widehat{\sigma} = \sigma \circ \varphi \Longrightarrow \mathsf{D}_{\widehat{\sigma}} = \mathsf{D}_{\sigma} \mathsf{D}_{\varphi}$. Si $\widehat{\Omega}$ es conexo, $\det \mathsf{D}_{\varphi}$ tiene signo constante y $\widehat{\sigma}$ y σ tienen la misma orientación si $\det \mathsf{D}_{\varphi} > 0$

Superficies Simples Parametrizadas

Consideraremos $\Omega\subset\mathbb{R}^2$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$; es decir, si $\sigma(u,v)=\left(\sigma_1(u,v),\sigma_2(u,v),\sigma_3(u,v)\right)$, entonces $\sigma_j\in\mathcal{C}^k(\Omega)$, j=1,2,3. Supondremos, además, que σ es **inyectiva**

- ▶ El conjunto $S = \{\sigma(u,v) : (u,v) \in \Omega\} \subset \mathbb{R}^3$ se denomina superficie parametrizada y la aplicación σ , parametrización de S.
- ▶ S se denomina regular si $D_{\sigma} = [\sigma_u, \sigma_v]$ tiene rango 2.
- ▶ Si S es regular, σ_u y σ_v se denominan campos tangentes a S.
- ▶ Si S es regular, $sg\{\sigma_u, \sigma_v\}$ se denomina plano tangente a S.
- lacktriangle Si S es regular, $\sigma_u imes \sigma_v
 eq 0$ se denomina campo normal a S

Si $\widehat{\Omega} \subset \mathbb{R}^n$ es abierto y $\widehat{\sigma} \in \mathcal{C}^k(\widehat{\Omega}; \mathbb{R}^n)$, diremos que σ y $\widehat{\sigma}$ son equivalentes si existe $\varphi \colon \widehat{\Omega} \longrightarrow \Omega$ difeomorfismo de clase $\mathcal{C}^1(\widehat{\Omega}; \Omega)$ tal que $\widehat{\sigma} = \sigma \circ \varphi \Longrightarrow \mathsf{D}_{\widehat{\sigma}} = \mathsf{D}_{\sigma} \mathsf{D}_{\varphi}$. Si $\widehat{\Omega}$ es <u>conexo</u>, $\det \mathsf{D}_{\varphi}$ tiene signo constante y $\widehat{\sigma}$ y σ tienen la **misma orientación** sii $\widehat{\mathsf{n}}(\widehat{u}, \widehat{v}) = \mathsf{n}(u, v)$

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la superficie S como

$$\int_{S} f \, dS = \int_{\Omega} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| \, du dv.$$

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la superficie S como

$$\int_{S} f \, dS = \int_{\Omega} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| \, du dv.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:
 - ${\bf 0} \ \ \Omega$ es medible Jordan y $\overline{\Omega}$ es compacto.

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la superficie S como

$$\int_{S} f \, dS = \int_{\Omega} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| \, du dv.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:

 - $② \ \sigma \in \mathcal{C}^k(\widehat{\Omega};\mathbb{R}^n) \ \text{donde} \ \widehat{\Omega} \ \text{es un abierto tal que} \ \overline{\Omega} \subset \widehat{\Omega}.$
- ► También podemos entenderla como integral impropia

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la superficie S como

$$\int_{S} f \, dS = \int_{\Omega} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| \, du dv.$$

Cuando f = 1, el valor

$$\mathsf{a}(S) = \int_S dS = \int_\Omega |\sigma_u \times \sigma_v| \, du dv$$

define el área de S.

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la superficie S como

$$\int_{S} f \, dS = \int_{\Omega} f(\sigma(u, v)) |\sigma_{u} \times \sigma_{v}| \, du dv.$$

Cuando f = 1, el valor

$$\mathsf{a}(S) = \int_{S} dS = \int_{\Omega} |\sigma_{u} \times \sigma_{v}| \, du dv$$

define el área de S.

▶ La función $dS(u,v) = |\sigma_u \times \sigma_v|$ se denomina elemento de área

Calculeu:

lacktriangle L'àrea del Casquet esfèric d'alçada h en l'esfera de radi a.

② L'àrea de la Superfície de Viviani: Si a > 0, $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2, \ x^2 + y^2 = ay, \ z \ge 0\}.$

- **3** L'área de la superfície de \mathbb{R}^3 parametritzada per la funció $q(u,v)=(u-v,u+v,uv),\ u^2+v^2<1.$
- La integral de f(x, y, z) = z, sobre $z = 1 x^2 y^2$, z > 0.

Sean $\Omega \subset \mathbb{R}^2$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S = \sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\mathbf{S} = \int_{S} f d\mathbf{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\mathbf{S} = \int_{S} f d\mathbf{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\mathbf{S} = \int_{S} f d\mathbf{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:

 - \bullet f: $\widetilde{\Omega} \longrightarrow \mathbb{R}^3$ es continuo, donde $\widetilde{\Omega} \subset \mathbb{R}^3$ es abierto y $\overline{S} \subset \widetilde{\Omega}$
- ► También podemos entenderla como integral impropia

Sean $\Omega \subset \mathbb{R}^2$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}^3$ es un campo vectorial, que habitualmente supondremos continuo, entonces se define la integral de f sobre la superficie S, orientada con la orientación de σ , como

$$\int_{\sigma} f d\boldsymbol{S} = \int_{S} f d\boldsymbol{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

▶ Si $f = (f_1, ..., f_n)$, entonces la integral de f sobre la superficie S también se denota por

$$\int_{S} f d\mathbf{S} = \int_{S} \left(f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2 \right)$$

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}^3$ es un campo vectorial, que habitualmente supondremos continuo, entonces se define la integral de f sobre la superficie S, orientada con la orientación de σ , como

$$\int_{\sigma} f d\boldsymbol{S} = \int_{S} f d\boldsymbol{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

 $\qquad \qquad \mathbf{n}(u,v) = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|} \text{ es el campo normal unitario exterior a } S$

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\mathbf{S} = \int_{S} f d\mathbf{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

- $\qquad \qquad \mathbf{n}(u,v) = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|} \text{ es el campo normal unitario exterior a } S$
- ▶ El campo escalar $f_n = \langle f, n \rangle$ es la componente normal de f sobre S

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\mathbf{S} = \int_{S} f d\mathbf{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

- ▶ El campo escalar $f_n = \langle f, n \rangle$ es la componente normal de f sobre S

Sean $\Omega \subset \mathbb{R}^2$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S = \sigma(\Omega)$, que supondremos **regular**.

$$\int_{\sigma} f d\boldsymbol{S} = \int_{S} f d\boldsymbol{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

- $\qquad \qquad \mathbf{n}(u,v) = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|} \text{ es el campo normal unitario exterior a } S$
- ▶ El campo escalar $f_n = \langle f, n \rangle$ es la componente normal de f sobre S

Sean $\Omega\subset\mathbb{R}^2$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}^3$ es un campo vectorial, que habitualmente supondremos continuo, entonces se define la integral de f sobre la superficie S, orientada con la orientación de σ , como

$$\int_{\sigma} f d\boldsymbol{S} = \int_{S} f d\boldsymbol{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

 $\begin{array}{c} \mathbf{Si} \ \widehat{\Omega} \subset \mathbb{R}^n \ \text{es abierto, } \varphi \colon \widehat{\Omega} \longrightarrow \Omega \ \text{es difeomeorfismo de clase } \mathcal{C}^1(\widehat{\Omega}) \ \mathbf{y} \\ \beta = \alpha \circ \varphi \\ & \int_{\mathbb{R}} \mathrm{f} d \mathbf{S} = \pm \int_{\widehat{\Omega}} \mathrm{f} d \mathbf{S} \end{array}$

donde el signo depende de si α y β tienen la misma orientación (+) u orientación opuesta (-).

Sean $\Omega \subset \mathbb{R}^2$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^3$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la superficie parametrizada $S = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon S\longrightarrow \mathbb{R}^3$ es un campo vectorial, que habitualmente supondremos continuo, entonces se define la integral de f sobre la superficie S, orientada con la orientación de σ , como

$$\int_{\sigma} f d\boldsymbol{S} = \int_{S} f d\boldsymbol{S} = \int_{\Omega} \langle f(\sigma(u, v)), \sigma_{u} \times \sigma_{v} \rangle du dv.$$

ightharpoonup Si -S es la superficie S con la orientación opuesta

$$\int_{-s} f d\boldsymbol{S} = -\int_{S} f d\boldsymbol{S}$$

Calculeu les integrals de superfície $\int_S \mathbf{F} \cdot d\mathbf{S}$ indicades:

- $\mathbf{F}(x,y,z)=(x^3,x^2y,x^2z)$, a través de la frontera del conjunt $\left\{x^2+y^2\leq a^2,\ 0\leq z\leq b\right\}$, orientada cap a l'exterior.
- ② $\mathbf{F}(x,y,z)=x\mathbf{i}+z\mathbf{j}+y\mathbf{k}$, a través de la frontera del conjunt $V=\left\{x^2+y^2\leq R^2,\ z\geq 0,\ x\geq z\right\}$, orientada cap a l'exterior.
- $\mathbf{F}(x,y,z)=(x+e^y,z-y,x+y+z)$, a través de la superfície formada per la unió de $\{x^2+y^2+z^2=10z,\ 0\leq z\leq 2\}$ i $\{x^2+y^2=(z-6)^2,\ 2\leq z\leq 6\}$ orientada cap a l'exterior.

Consideraremos $k, m, n \in \mathbb{N}^*$ con m < n, $\Omega \subset \mathbb{R}^m$ un abierto, y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ inyectiva y de clase $\mathcal{C}^k(\Omega; \mathbb{R}^n)$; es decir, si

$$\sigma(u_1,\ldots,u_m)=\big(\sigma_1(u_1,\ldots,u_m),\cdots,\sigma_n(u_1,\ldots,u_m)\big),$$

entonces $\sigma_i \in \mathcal{C}^k(\Omega), j = 1, \ldots, n$.

- ▶ El conjunto $M = \{ \sigma(u) : u = (u_1, \dots, u_m) \in \Omega \} \subset \mathbb{R}^n$ se denomina superficie parametrizada y la aplicación σ , parametrización de M.
- ▶ M se denomina regular si $D_{\sigma} = \begin{bmatrix} \vdots & \ddots & \vdots \\ \end{bmatrix}$ tiene rango m.

Consideraremos $k,m,n\in\mathbb{N}^*$ con $\pmb{m}<\pmb{n},\ \Omega\subset\mathbb{R}^m$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^n$ inyectiva y de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$; es decir, si

$$\sigma(u_1,\ldots,u_m)=\big(\sigma_1(u_1,\ldots,u_m),\cdots,\sigma_n(u_1,\ldots,u_m)\big),$$

entonces $\sigma_j \in \mathcal{C}^k(\Omega)$, $j = 1, \ldots, n$.

- ▶ El conjunto $M = \{\sigma(u) : u = (u_1, ..., u_m) \in \Omega\} \subset \mathbb{R}^n$ se denomina superficie parametrizada y la aplicación σ , parametrización de M.
- ▶ M se denomina regular si D_{σ} tiene rango m.
- $lackbox{Si }M$ es regular, los vectores $\sigma_{u_j}=\left(rac{\partial\sigma_1}{\partial u_j},\ldots,rac{\partial\sigma_n}{\partial u_j}
 ight)^{ op}$, $j=1,\ldots,m$

se denominan campos tangentes a S.

Consideraremos $k,m,n\in\mathbb{N}^*$ con $\pmb{m}<\pmb{n},\ \Omega\subset\mathbb{R}^m$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^n$ inyectiva y de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$; es decir, si

$$\sigma(u_1,\ldots,u_m)=\big(\sigma_1(u_1,\ldots,u_m),\cdots,\sigma_n(u_1,\ldots,u_m)\big),$$

entonces $\sigma_j \in \mathcal{C}^k(\Omega)$, $j = 1, \ldots, n$.

- ▶ El conjunto $M = \{\sigma(u) : u = (u_1, ..., u_m) \in \Omega\} \subset \mathbb{R}^n$ se denomina superficie parametrizada y la aplicación σ , parametrización de M.
- ▶ M se denomina regular si D_{σ} tiene rango m.
- ▶ Si M es regular, $\left\{\sigma_{u_j}\right\}_{j=1}^m$ se denominan campos tangentes a M
- ▶ Si M es regular, $\operatorname{sg}\{\sigma_{u_1},\ldots,\sigma_{u_m}\}$ es el hiperplano tangente a M.

Consideraremos $k,m,n\in\mathbb{N}^*$ con $\pmb{m}<\pmb{n},\ \Omega\subset\mathbb{R}^m$ un abierto, y $\sigma\colon\Omega\longrightarrow\mathbb{R}^n$ inyectiva y de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$; es decir, si

$$\sigma(u_1,\ldots,u_m)=\big(\sigma_1(u_1,\ldots,u_m),\cdots,\sigma_n(u_1,\ldots,u_m)\big),$$

entonces $\sigma_j \in \mathcal{C}^k(\Omega)$, $j = 1, \ldots, n$.

- ▶ El conjunto $M = \{\sigma(u) : u = (u_1, ..., u_m) \in \Omega\} \subset \mathbb{R}^n$ se denomina superficie parametrizada y la aplicación σ , parametrización de M.
- ▶ M se denomina regular si D_{σ} tiene rango m.
- lacktriangle Si M es regular, $\left\{\sigma_{u_j}\right\}_{j=1}^m$ se denominan campos tangentes a M
- ▶ Si M es regular, $\operatorname{sg}\{\sigma_{u_1},\ldots,\sigma_{u_m}\}$ es el hiperplano tangente a M.

Si $g(u) = \det(\mathsf{D}_{\sigma}^{\top}\mathsf{D}_{\sigma})$, $\sqrt{g(u)}$ es el área del paralelepípedo de lados $\sigma_{u_1},\ldots,\sigma_{u_m}$.

Sean $\Omega \subset \mathbb{R}^m$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

Sean $\Omega \subset \mathbb{R}^m$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:

Sean $\Omega \subset \mathbb{R}^m$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

- ▶ La integral existe si se satisfacen las siguientes condiciones:
 - $oldsymbol{0}$ Ω es medible Jordan y $\overline{\Omega}$ es compacto.

 - \bullet $f: \widetilde{\Omega} \longrightarrow \mathbb{R}$ es continua, donde $\widetilde{\Omega} \subset \mathbb{R}^n$ es abierto y $\overline{M} \subset \widetilde{\Omega}$
- ► También podemos entenderla como integral impropia

Sean $\Omega \subset \mathbb{R}^m$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

Cuando f = 1, el valor

$$\mathsf{v}(M) = \int_M dV = \int_{\Omega} \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m$$

define el volumen m-dimensional de M.

Sean $\Omega\subset\mathbb{R}^m$ un abierto y $\sigma\colon\Omega\longrightarrow\mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k\geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M=\sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

Cuando f = 1, el valor

$$\mathsf{v}(M) = \int_M dV = \int_{\Omega} \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m$$

define el volumen m-dimensional de M.

lackbox La función $dS(u)=\sqrt{g(u)}$ se denomina elemento de volumen

Sean $\Omega \subset \mathbb{R}^m$ un abierto y $\sigma \colon \Omega \longrightarrow \mathbb{R}^n$ de clase $\mathcal{C}^k(\Omega;\mathbb{R}^n)$, $k \geq 1$. Supondremos, además, que σ es **inyectiva** y consideraremos la variedad parametrizada $M = \sigma(\Omega)$, que supondremos **regular**.

Si $f\colon M\longrightarrow \mathbb{R}$ es una función, que habitualmente supondremos continua, entonces se define la integral de f sobre la variedad M como

$$\int_{M} f \, dV = \int_{\Omega} f(\sigma(u_1, \dots, u_m)) \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m.$$

Cuando f = 1, el valor

$$\mathsf{v}(M) = \int_M dV = \int_{\Omega} \sqrt{g(u_1, \dots, u_m)} \, du_1 \cdots du_m$$

define el volumen m-dimensional de M.

Las expresiones anteriores no dependen de la parametrización