Name: Yudhveer Singh Runnoo

Reg. no.: 22MCA0421

Q1. Design a simple linear regression model using all possible features and find the minimum MSE and R2 Score

```
import matplotlib.pyplot as plt
In [1]:
         import pandas as pd
         import pylab as pl
         import numpy as np
         %matplotlib inline
         from sklearn import linear_model
         from sklearn.metrics import r2_score
         df = pd.read_csv("FuelConsumption.csv")
In [2]:
         # take a look at the dataset
         df.head()
```

| Out[2]: |   | MODELYEAR | MAKE  | MODEL         | VEHICLECLASS | ENGINESIZE | CYLINDERS | TRANSMISSION | FUELTYF |
|---------|---|-----------|-------|---------------|--------------|------------|-----------|--------------|---------|
|         | 0 | 2014      | ACURA | ILX           | COMPACT      | 2.0        | 4         | AS5          |         |
|         | 1 | 2014      | ACURA | ILX           | COMPACT      | 2.4        | 4         | M6           |         |
|         | 2 | 2014      | ACURA | ILX<br>HYBRID | COMPACT      | 1.5        | 4         | AV7          |         |
|         | 3 | 2014      | ACURA | MDX<br>4WD    | SUV - SMALL  | 3.5        | 6         | AS6          |         |
|         | 4 | 2014      | ACURA | RDX<br>AWD    | SUV - SMALL  | 3.5        | 6         | AS6          |         |
|         | 4 |           |       |               |              |            |           |              |         |

In [3]: # summarize the data df.describe()

**MODELYEAR ENGINESIZE** CYLINDERS FUELCONSUMPTION\_CITY FUELCONSUMPTION\_HWY 1067.0 1067.000000 1067.000000 1067.000000 1067.000000 count 2014.0 9.474602 mean 3.346298 5.794752 13.296532 std 0.0 1.415895 1.797447 4.101253 2.794510 min 2014.0 1.000000 3.000000 4.600000 4.900000 25% 2014.0 2.000000 4.000000 10.250000 7.500000 **50**% 2014.0 3.400000 6.000000 12.600000 8.800000 **75**% 2014.0 4.300000 8.000000 15.550000 10.850000 2014.0 8.400000 20.500000 12.000000 30.200000 max

pd.unique(df['FUELTYPE']) In [4]:

Out[3]:

Out[4]: array(['Z', 'D', 'X', 'E'], dtype=object)

```
In [5]: plt.scatter(df.FUELTYPE, df.CO2EMISSIONS, color='blue')
  plt.xlabel("FUELTYPE")
  plt.ylabel("Emission")
  plt.show()
```



In [6]: cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION\_COMB','CO2EMISSIONS']]
 cdf.head(9)

| Out[6]: |   | ENGINESIZE | CYLINDERS | FUELCONSUMPTION_COMB | CO2EMISSIONS |
|---------|---|------------|-----------|----------------------|--------------|
|         | 0 | 2.0        | 4         | 8.5                  | 196          |
|         | 1 | 2.4        | 4         | 9.6                  | 221          |
|         | 2 | 1.5        | 4         | 5.9                  | 136          |
|         | 3 | 3.5        | 6         | 11.1                 | 255          |
|         | 4 | 3.5        | 6         | 10.6                 | 244          |
|         | 5 | 3.5        | 6         | 10.0                 | 230          |
|         | 6 | 3.5        | 6         | 10.1                 | 232          |
|         | 7 | 3.7        | 6         | 11.1                 | 255          |
|         | 8 | 3.7        | 6         | 11.6                 | 267          |

```
In [7]: plt.scatter(cdf.CYLINDERS, cdf.CO2EMISSIONS, color='blue')
  plt.xlabel("CYLINDERS")
  plt.ylabel("Emission")
  plt.show()
```



```
In [8]:
          msk = np.random.rand(len(df)) < 0.8</pre>
          train = cdf[msk]
          test = cdf[~msk]
          print(train)
          print(test)
                ENGINESIZE CYLINDERS FUELCONSUMPTION COMB CO2EMISSIONS
          0
                       2.0
          1
                       2.4
                                                          9.6
                                                                         221
          2
                       1.5
                                                          5.9
                                                                         136
          3
                       3.5
                                                         11.1
                                                                         255
                                     6
                       3.5
                                                         10.6
                                                                         244
                                     6
                       . . .
                                   . . .
                                                          . . .
                                                                         . . .
                       3.2
                                                                         258
          1061
                                     6
                                                         11.2
                       3.0
                                                                         271
          1062
                                     6
                                                         11.8
                       3.0
                                                         11.8
                                                                         271
          1064
                                     6
                       3.2
                                                                         260
          1065
                                     6
                                                         11.3
                                                                         294
          1066
                       3.2
                                                         12.8
          [833 rows x 4 columns]
                ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS
          5
                                                         10.0
                       3.5
                                     6
          8
                                                         11.6
                       3.7
                                     6
                                                                         267
                                                         10.0
                                                                         230
          20
                       2.0
                                                          9.3
          21
                       2.0
                                                                         214
                                                         10.0
          22
                       2.0
                                     4
                                                                         230
                       . . .
                                                          . . .
                                                                         . . .
          1041
                       2.0
                                     4
                                                          6.9
                                                                         186
                       2.0
                                     4
                                                          7.1
                                                                         192
          1048
          1054
                       3.6
                                                         12.2
                                                                         281
                                     6
          1060
                       3.0
                                                         11.5
                                                                         264
                                     6
          1063
                       3.2
                                                         11.5
                                                                         264
                                     6
          [234 rows x 4 columns]
 In [9]:
          regr = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['ENGINESIZE']])
          train_y = np.asanyarray(train[['CO2EMISSIONS']])
          regr.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr.coef_)
          print ('Intercept: ',regr.intercept_)
          Coefficients: [[38.93471163]]
          Intercept: [125.52787705]
          test_x = np.asanyarray(test[['ENGINESIZE']])
In [10]:
          test_y = np.asanyarray(test[['CO2EMISSIONS']])
```

#print(test\_y)

```
test_y_ = regr.predict(test_x)
          #print(test_y_)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 24.39
         Residual sum of squares (MSE): 1050.69
         R2-score: 0.64
In [11]: regr = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['CYLINDERS']])
          train_y = np.asanyarray(train[['CO2EMISSIONS']])
          regr.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr.coef_)
          print ('Intercept: ',regr.intercept_)
         Coefficients: [[29.98316342]]
         Intercept: [82.45502337]
In [12]: test_x = np.asanyarray(test[['CYLINDERS']])
         test_y = np.asanyarray(test[['CO2EMISSIONS']])
          #print(test_y)
          test_y_ = regr.predict(test_x)
          #print(test_y_)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 26.04
         Residual sum of squares (MSE): 1112.77
```

R2-score: 0.63

Q 2. Develop a multiple linear regression (MLR) using more than one feature and obtain the minimum possible error.

```
import matplotlib.pyplot as plt
In [1]:
          import pandas as pd
          import pylab as pl
          import numpy as np
          %matplotlib inline
          from sklearn import linear_model
          from sklearn.metrics import r2 score
In [2]:
          df = pd.read_csv("FuelConsumption.csv")
          # take a Look at the dataset
          df.head()
            MODELYEAR MAKE MODEL VEHICLECLASS ENGINESIZE CYLINDERS TRANSMISSION FUELTYF
Out[2]:
         0
                   2014 ACURA
                                    ILX
                                             COMPACT
                                                               2.0
                                                                            4
                                                                                         AS5
                   2014 ACURA
         1
                                    ILX
                                             COMPACT
                                                               2.4
                                                                                          M6
                                    ILX
         2
                   2014 ACURA
                                             COMPACT
                                                               1.5
                                                                            4
                                                                                         AV7
                                HYBRID
                                   MDX
                                          SUV - SMALL
         3
                   2014 ACURA
                                                                                         AS6
                                                               3.5
                                                                            6
                                   4WD
                                   RDX
         4
                   2014 ACURA
                                          SUV - SMALL
                                                               3.5
                                                                            6
                                                                                         AS6
                                   AWD
          # summarize the data
In [3]:
          df.describe()
                MODELYEAR ENGINESIZE
                                         CYLINDERS FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY
Out[3]:
                     1067.0
                            1067.000000
                                         1067.000000
                                                                 1067.000000
                                                                                          1067.000000
         count
         mean
                     2014.0
                               3.346298
                                            5.794752
                                                                   13.296532
                                                                                             9.474602
                                                                                             2.794510
           std
                        0.0
                               1.415895
                                            1.797447
                                                                    4.101253
                     2014.0
                               1.000000
                                            3.000000
                                                                    4.600000
                                                                                             4.900000
          min
          25%
                     2014.0
                               2.000000
                                                                   10.250000
                                                                                             7.500000
                                            4.000000
          50%
                     2014.0
                               3.400000
                                            6.000000
                                                                   12.600000
                                                                                             8.800000
          75%
                     2014.0
                               4.300000
                                            8.000000
                                                                   15.550000
                                                                                            10.850000
                     2014.0
                               8.400000
                                           12.000000
                                                                   30.200000
                                                                                            20.500000
          max
          cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION COMB','CO2EMISSIONS']]
In [4]:
          cdf.head(9)
Out[4]:
            ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS
         0
                    2.0
                                 4
                                                                        196
                                                         8.5
         1
                    2.4
                                 4
                                                         9.6
                                                                        221
         2
                    1.5
                                 4
                                                         5.9
                                                                        136
```

|   | ENGINESIZE | CYLINDERS | FUELCONSUMPTION_COMB | CO2EMISSIONS |
|---|------------|-----------|----------------------|--------------|
| 3 | 3.5        | 6         | 11.1                 | 255          |
| 4 | 3.5        | 6         | 10.6                 | 244          |
| 5 | 3.5        | 6         | 10.0                 | 230          |
| 6 | 3.5        | 6         | 10.1                 | 232          |
| 7 | 3.7        | 6         | 11.1                 | 255          |
| 8 | 3.7        | 6         | 11.6                 | 267          |

```
In [5]: viz = cdf[['CYLINDERS','ENGINESIZE','CO2EMISSIONS','FUELCONSUMPTION_COMB']]
  viz.hist()
  plt.show()
```



```
In [6]: msk = np.random.rand(len(df)) < 0.8
    train = cdf[msk]
    test = cdf[~msk]
    print(train)
    print(test)</pre>
```

|      | ENGINESIZE | CYLINDERS | FUELCONSUMPTION_COMB | CO2EMISSIONS |
|------|------------|-----------|----------------------|--------------|
| 0    | 2.0        | 4         | 8.5                  | 196          |
| 1    | 2.4        | 4         | 9.6                  | 221          |
| 2    | 1.5        | 4         | 5.9                  | 136          |
| 3    | 3.5        | 6         | 11.1                 | 255          |
| 4    | 3.5        | 6         | 10.6                 | 244          |
|      |            |           |                      |              |
| 1060 | 3.0        | 6         | 11.5                 | 264          |
| 1061 | 3.2        | 6         | 11.2                 | 258          |
| 1062 | 3.0        | 6         | 11.8                 | 271          |
| 1064 | 3.0        | 6         | 11.8                 | 271          |
| 1065 | 3.2        | 6         | 11.3                 | 260          |

| [850 | rows x 4 col | umns]     |                      |              |
|------|--------------|-----------|----------------------|--------------|
| -    | ENGINESIZE   | CYLINDERS | FUELCONSUMPTION_COMB | CO2EMISSIONS |
| 5    | 3.5          | 6         | 10.0                 | 230          |
| 8    | 3.7          | 6         | 11.6                 | 267          |
| 12   | 5.9          | 12        | 15.6                 | 359          |
| 13   | 5.9          | 12        | 15.6                 | 359          |
| 40   | 2.0          | 4         | 9.2                  | 212          |
|      |              | • • •     | • • •                | • • •        |
| 1032 | 2.0          | 4         | 7.2                  | 194          |
| 1042 | 1.4          | 4         | 5.4                  | 124          |
| 1048 | 2.0          | 4         | 7.1                  | 192          |
| 1063 | 3.2          | 6         | 11.5                 | 264          |

```
1066
          3.2
                      6
                                       12.8
                                                   294
```

[217 rows x 4 columns] In [7]: regr\_m = linear\_model.LinearRegression() train\_x = np.asanyarray(train[['ENGINESIZE', 'FUELCONSUMPTION\_COMB']]) train\_y = np.asanyarray(train[['CO2EMISSIONS']]) regr\_m.fit (train\_x, train\_y) # The coefficients print ('Coefficients: ', regr\_m.coef\_) print ('Intercept: ',regr\_m.intercept\_) Coefficients: [[19.09277508 10.05170185]] Intercept: [76.17520539] test\_x = np.asanyarray(test[['ENGINESIZE', 'FUELCONSUMPTION\_COMB']]) In [8]: test\_y = np.asanyarray(test[['CO2EMISSIONS']]) test\_y\_ = regr\_m.predict(test\_x) print("Mean absolute error: %.2f" % np.mean(np.absolute(test\_y\_ - test\_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test\_y\_ - test\_y) \*\* 2)) print("R2-score: %.2f" % r2\_score(test\_y\_ , test\_y) ) Mean absolute error: 17.85 Residual sum of squares (MSE): 623.88 R2-score: 0.83 In [9]: regr\_m = linear\_model.LinearRegression() train\_x = np.asanyarray(train[['ENGINESIZE', 'CYLINDERS']]) train\_y = np.asanyarray(train[['CO2EMISSIONS']]) regr\_m.fit (train\_x, train\_y) # The coefficients print ('Coefficients: ', regr\_m.coef\_) print ('Intercept: ',regr\_m.intercept\_) Coefficients: [[27.2783142 10.24073354]] Intercept: [105.60906455] test\_x = np.asanyarray(test[['ENGINESIZE', 'CYLINDERS']]) In [10]: test\_y = np.asanyarray(test[['CO2EMISSIONS']]) test\_y\_ = regr\_m.predict(test\_x) print("Mean absolute error: %.2f" % np.mean(np.absolute(test\_y\_ - test\_y))) print("Residual sum of squares (MSE): %.2f" % np.mean((test\_y\_ - test\_y) \*\* 2)) print("R2-score: %.2f" % r2\_score(test\_y\_ , test\_y) ) Mean absolute error: 23.38 Residual sum of squares (MSE): 930.63 R2-score: 0.73 regr\_m = linear\_model.LinearRegression() In [11]: train\_x = np.asanyarray(train[['CYLINDERS', 'FUELCONSUMPTION\_COMB']]) train\_y = np.asanyarray(train[['CO2EMISSIONS']]) regr\_m.fit (train\_x, train\_y) # The coefficients print ('Coefficients: ', regr\_m.coef\_) print ('Intercept: ',regr\_m.intercept\_) Coefficients: [[14.01904391 10.81328844]] Intercept: [50.06131774] test\_x = np.asanyarray(test[['CYLINDERS', 'FUELCONSUMPTION\_COMB']]) In [12]: test\_y = np.asanyarray(test[['CO2EMISSIONS']]) test\_y\_ = regr\_m.predict(test\_x) print("Mean absolute error: %.2f" % np.mean(np.absolute(test\_y\_ - test\_y)))

print("Residual sum of squares (MSE): %.2f" % np.mean((test\_y\_ - test\_y) \*\* 2))

print("R2-score: %.2f" % r2\_score(test\_y\_ , test\_y) )

```
Mean absolute error: 18.74
         Residual sum of squares (MSE): 659.46
         R2-score: 0.83
         regr_m = linear_model.LinearRegression()
In [13]:
          train_x = np.asanyarray(train[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])
          train_y = np.asanyarray(train[['CO2EMISSIONS']])
          regr_m.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr_m.coef_)
          print ('Intercept: ',regr_m.intercept_)
         Coefficients: [[9.77393562 8.20703436 9.87735185]]
         Intercept: [61.84041662]
         test_x = np.asanyarray(test[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB']])
In [14]:
         test_y = np.asanyarray(test[['CO2EMISSIONS']])
          test_y_ = regr_m.predict(test_x)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 17.97
         Residual sum of squares (MSE): 616.56
         R2-score: 0.84
In [ ]:
```

Q 3. Use MLR to estimate the Mileage per gallon (MPG) using Auto-MPG dataset.

```
import pandas as pd
In [17]:
            import numpy as np
            import pylab as pl
            import matplotlib.pyplot as plt
            from sklearn.metrics import r2_score
            from sklearn import linear_model
In [18]:
            df = pd.read_csv("auto-mpg.csv")
In [19]:
            df.head()
Out[19]:
                                                                                model
              mpg cylinders displacement horsepower weight acceleration
                                                                                        origin
                                                                                                 car name
                                                                                 year
                                                                                                  chevrolet
           0
               18.0
                           8
                                      307.0
                                                    130
                                                            3504
                                                                         12.0
                                                                                   70
                                                                                                  chevelle
                                                                                                    malibu
                                                                                                     buick
               15.0
                           8
                                      350.0
                                                    165
                                                            3693
                                                                         11.5
                                                                                   70
                                                                                                skylark 320
                                                                                                 plymouth
                           8
           2
               18.0
                                      318.0
                                                    150
                                                            3436
                                                                         11.0
                                                                                   70
                                                                                            1
                                                                                                   satellite
                                                                                                 amc rebel
               16.0
                                      304.0
                                                    150
                                                                         12.0
                                                                                   70
           3
                           8
                                                            3433
                                                                                            1
                                                                                                       sst
               17.0
                           8
                                      302.0
                                                    140
                                                            3449
                                                                          10.5
                                                                                   70
                                                                                                ford torino
            column name = 'car name'
In [20]:
            df = df.drop(column_name, axis=1)
            df.head()
In [21]:
Out[21]:
                    cylinders
                              displacement horsepower weight acceleration
                                                                               model year
                                                                                          origin
              mpg
           0
               18.0
                           8
                                      307.0
                                                    130
                                                            3504
                                                                          12.0
                                                                                       70
                                                                                                1
                           8
                                                                                       70
           1
               15.0
                                      350.0
                                                    165
                                                            3693
                                                                         11.5
                                                                                                1
           2
               18.0
                           8
                                      318.0
                                                    150
                                                            3436
                                                                         11.0
                                                                                       70
                                                                                                1
           3
               16.0
                           8
                                      304.0
                                                    150
                                                            3433
                                                                         12.0
                                                                                       70
                                                                                                1
               17.0
                           8
                                      302.0
                                                    140
                                                            3449
                                                                         10.5
                                                                                       70
                                                                                                1
            cdf = df[['cylinders','displacement','horsepower','weight','acceleration',
In [22]:
                        'model year','origin','mpg']]
            cdf.head()
In [23]:
              cylinders displacement horsepower weight acceleration model year origin mpg
Out[23]:
           0
                     8
                                307.0
                                              130
                                                      3504
                                                                   12.0
                                                                                 70
                                                                                          1
                                                                                             18.0
           1
                     8
                                350.0
                                                      3693
                                                                                 70
                                              165
                                                                   11.5
                                                                                          1
                                                                                             15.0
           2
                     8
                                318.0
                                              150
                                                     3436
                                                                   11.0
                                                                                 70
                                                                                          1
                                                                                             18.0
           3
                     8
                                304.0
                                              150
                                                     3433
                                                                   12.0
                                                                                 70
                                                                                             16.0
```

```
cylindersdisplacementhorsepowerweightaccelerationmodel yearoriginmpg8302.0140344910.570117.0
```



```
In [25]: msk = np.random.rand(len(df)) < 0.8
    train = cdf[msk]
    test = cdf[~msk]
    print(train)
    print(test)</pre>
```

| cylinders | displacement                   | horsepower                                                                                         | weight                                                                                                                                                                                                                                                                                  | acceleration                                                                                                                                                                                                                                                                                                                                                                                | model year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8         | 307.0                          | 130                                                                                                | 3504                                                                                                                                                                                                                                                                                    | 12.0                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8         | 350.0                          | 165                                                                                                | 3693                                                                                                                                                                                                                                                                                    | 11.5                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8         | 318.0                          | 150                                                                                                | 3436                                                                                                                                                                                                                                                                                    | 11.0                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8         | 304.0                          | 150                                                                                                | 3433                                                                                                                                                                                                                                                                                    | 12.0                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8         | 302.0                          | 140                                                                                                | 3449                                                                                                                                                                                                                                                                                    | 10.5                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • • •     |                                |                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | 140.0                          | 86                                                                                                 | 2790                                                                                                                                                                                                                                                                                    | 15.6                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | 97.0                           | 52                                                                                                 | 2130                                                                                                                                                                                                                                                                                    | 24.6                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | 135.0                          | 84                                                                                                 | 2295                                                                                                                                                                                                                                                                                    | 11.6                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | 120.0                          | 79                                                                                                 | 2625                                                                                                                                                                                                                                                                                    | 18.6                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4         | 119.0                          | 82                                                                                                 | 2720                                                                                                                                                                                                                                                                                    | 19.4                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 8<br>8<br>8<br>8<br><br>4<br>4 | 8 307.0<br>8 350.0<br>8 318.0<br>8 304.0<br>8 302.0<br><br>4 140.0<br>4 97.0<br>4 135.0<br>4 120.0 | 8       307.0       130         8       350.0       165         8       318.0       150         8       304.0       150         8       302.0       140              4       140.0       86         4       97.0       52         4       135.0       84         4       120.0       79 | 8       307.0       130       3504         8       350.0       165       3693         8       318.0       150       3436         8       304.0       150       3433         8       302.0       140       3449               4       140.0       86       2790         4       97.0       52       2130         4       135.0       84       2295         4       120.0       79       2625 | 8       307.0       130       3504       12.0         8       350.0       165       3693       11.5         8       318.0       150       3436       11.0         8       304.0       150       3433       12.0         8       302.0       140       3449       10.5                4       140.0       86       2790       15.6         4       97.0       52       2130       24.6         4       135.0       84       2295       11.6         4       120.0       79       2625       18.6 | 8       307.0       130       3504       12.0       70         8       350.0       165       3693       11.5       70         8       318.0       150       3436       11.0       70         8       304.0       150       3433       12.0       70         8       302.0       140       3449       10.5       70                  4       140.0       86       2790       15.6       82         4       97.0       52       2130       24.6       82         4       135.0       84       2295       11.6       82         4       120.0       79       2625       18.6       82 |

```
origin
             mpg
0
         1 18.0
1
         1 15.0
2
         1 18.0
3
         1 16.0
4
         1 17.0
393
         1 27.0
394
         2 44.0
395
         1
            32.0
396
         1 28.0
397
         1 31.0
```

4

[326 rows x 8 columns]

|    | cylinders | displacement | horsepower | weight | acceleration | model year | \ |
|----|-----------|--------------|------------|--------|--------------|------------|---|
| 10 | 8         | 383.0        | 170        | 3563   | 10.0         | 70         |   |
| 12 | 8         | 400.0        | 150        | 3761   | 9.5          | 70         |   |
| 20 | 4         | 110.0        | 87         | 2672   | 17.5         | 70         |   |
| 22 | 4         | 104.0        | 95         | 2375   | 17.5         | 70         |   |
| 29 | 4         | 97.0         | 88         | 2130   | 14.5         | 71         |   |
|    |           | • • •        | • • •      |        | • • •        |            |   |

```
381
            4
                       107.0
                                     75
                                           2205
                                                         14.5
                                                                        82
             4
                       108.0
                                     70
                                           2245
                                                          16.9
382
                                                                        82
                                           1965
             4
                        91.0
                                                          15.7
                                                                        82
384
                                     67
             6
                       181.0
                                           2945
386
                                    110
                                                         16.4
                                                                        82
390
             4
                       144.0
                                     96
                                                         13.9
                                                                        82
                                           2665
    origin
            mpg
         1 15.0
10
         1 15.0
12
         2 25.0
20
         2 25.0
22
29
         3 27.0
         3 36.0
381
         3 34.0
382
         3 32.0
384
         1 25.0
386
          3 32.0
390
[72 rows x 8 columns]
```

```
In [26]:
          # Calculate the correlation matrix
          import seaborn as sns
          correlation_matrix = cdf.corr()
          # Create a heatmap using seaborn
          plt.figure(figsize=(10, 8))
          sns.heatmap(correlation_matrix, annot=True)
          plt.title('Correlation Heatmap')
          plt.show()
```



Simple linear regression

```
In [27]:
          regr = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['cylinders']])
          train_y = np.asanyarray(train[['mpg']])
```

```
regr.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr.coef_)
          print ('Intercept: ',regr.intercept_)
         Coefficients: [[-3.56892871]]
         Intercept: [43.12207679]
         test_x = np.asanyarray(test[['cylinders']])
In [28]:
          test_y = np.asanyarray(test[['mpg']])
          #print(test_y)
          test_y_ = regr.predict(test_x)
          #print(test_y_)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 3.15
         Residual sum of squares (MSE): 14.93
         R2-score: 0.60
         regr = linear_model.LinearRegression()
In [29]:
          train_x = np.asanyarray(train[['displacement']])
          train_y = np.asanyarray(train[['mpg']])
          regr.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr.coef_)
          print ('Intercept: ',regr.intercept_)
         Coefficients: [[-0.06099215]]
         Intercept: [35.41953102]
         test_x = np.asanyarray(test[['displacement']])
In [30]:
          test_y = np.asanyarray(test[['mpg']])
          #print(test_y)
          test_y_ = regr.predict(test_x)
          #print(test_y_)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 3.27
         Residual sum of squares (MSE): 14.90
         R2-score: 0.65
         regr = linear_model.LinearRegression()
In [31]:
          train_x = np.asanyarray(train[['weight']])
          train_y = np.asanyarray(train[['mpg']])
          regr.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr.coef_)
          print ('Intercept: ',regr.intercept_)
         Coefficients: [[-0.00770563]]
         Intercept: [46.51894909]
         test_x = np.asanyarray(test[['weight']])
In [32]:
          test_y = np.asanyarray(test[['mpg']])
          #print(test_y)
          test_y_ = regr.predict(test_x)
          #print(test_y_)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 2.79
         Residual sum of squares (MSE): 12.12
```

Multiple liniear regression

```
In [33]:
         regr_m = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['cylinders', 'displacement', 'weight']])
          train_y = np.asanyarray(train[['mpg']])
          regr_m.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr_m.coef_)
          print ('Intercept: ',regr_m.intercept_)
         Coefficients: [[-0.17889553 -0.01419798 -0.00577035]]
         Intercept: [44.48715502]
         test_x = np.asanyarray(test[['cylinders', 'displacement', 'weight']])
In [34]:
          test_y = np.asanyarray(test[['mpg']])
          test_y_ = regr_m.predict(test_x)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 2.81
         Residual sum of squares (MSE): 11.80
         R2-score: 0.72
In [35]:
         from sklearn import linear model
          regr_m = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['cylinders', 'displacement']])
          train_y = np.asanyarray(train[['mpg']])
          regr_m.fit (train_x, train_y)
          # The coefficients
          print ('Coefficients: ', regr_m.coef_)
          print ('Intercept: ',regr_m.intercept_)
         Coefficients: [[-0.33114017 -0.05586234]]
         Intercept: [36.23523441]
         test x = np.asanyarray(test[['cylinders', 'displacement']])
In [36]:
          test_y = np.asanyarray(test[['mpg']])
          test_y_ = regr_m.predict(test_x)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2_score(test_y_ , test_y) )
         Mean absolute error: 3.25
         Residual sum of squares (MSE): 14.69
         R2-score: 0.65
         from sklearn import linear_model
In [37]:
          regr_m = linear_model.LinearRegression()
          train_x = np.asanyarray(train[['displacement', 'weight']])
          train y = np.asanyarray(train[['mpg']])
          regr m.fit (train x, train y)
          # The coefficients
          print ('Coefficients: ', regr_m.coef_)
          print ('Intercept: ',regr_m.intercept_)
         Coefficients: [[-0.0168571 -0.00578506]]
         Intercept: [44.06846878]
         test_x = np.asanyarray(test[['displacement', 'weight']])
In [38]:
          test_y = np.asanyarray(test[['mpg']])
          test_y_ = regr_m.predict(test_x)
          print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
          print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
          print("R2-score: %.2f" % r2 score(test y , test y) )
```

Mean absolute error: 2.81

Residual sum of squares (MSE): 11.84

R2-score: 0.72

In [ ]:

## Comparison tables for FuelConsumption.csv:

Linear regression to predict CO2EMISSIONS:

| Attributes | MAE   | MSE     | R2-Score |
|------------|-------|---------|----------|
| ENGINESIZE | 24.39 | 1050.69 | 0.64     |
| CYLINDERS  | 26.04 | 1112.77 | 0.63     |

## Multiple linear regression (MLR) to predict CO2EMISSIONS:

| Attributes             | MAE   | MSE    | R2-Score |
|------------------------|-------|--------|----------|
| ENGINESIZE,            | 17.85 | 623.88 | 0.83     |
| FUELCONSUMPTION_COMB   |       |        |          |
| ENGINESIZE, CYLINDERS  | 23.38 | 930.63 | 0.73     |
|                        |       |        |          |
| CYLINDERS,             | 18.74 | 659.46 | 0.83     |
| FUELCONSUMPTION_COMB   |       |        |          |
| ENGINESIZE, CYLINDERS, | 17.97 | 616.56 | 0.84     |
| FUELCONSUMPTION_COMB   |       |        |          |

## Comparison tables for auto-mpg.csv:

Linear regression to predict mpg:

| Attributes   | MAE  | MSE   | R2-Score |
|--------------|------|-------|----------|
| cylinders    | 3.15 | 14.93 | 0.60     |
| displacement | 3.27 | 14.90 | 0.65     |
| weight       | 2.79 | 12.12 | 0.71     |

## Multiple linear regression (MLR) to predict mpg:

| Attributes    | MAE  | MSE   | R2-Score |
|---------------|------|-------|----------|
| cylinders,    | 2.81 | 11.80 | 0.72     |
| displacement, |      |       |          |
| weight        |      |       |          |
| cylinders,    | 3.25 | 14.69 | 0.65     |
| displacement  |      |       |          |
| displacement, | 2.81 | 11.84 | 0.72     |
| weight        |      |       |          |