HW 3, due 02.03

- 1. Let $f: \mathbb{C} \to \mathbb{C}$ be given by f(a+bi) = a-bi (for all $a+bi \in \mathbb{C}$). (As you know, a-bi is referred to as *conjugate* of a+bi, and a-bi is denoted $\overline{a+bi}$).
 - (a) Show f above is a ring automorphism of \mathbb{C} .

- (b) Let $Aut_{\mathbb{R}}(\mathbb{C})$ be the ring automorphisms of \mathbb{C} that fix \mathbb{R} pointwise, i.e., $g(x) \in Aut_{\mathbb{R}}(\mathbb{C})$ if $g(x) \in Aut(\mathbb{C})$ and for all $r = r + 0i \in \mathbb{C}$, g(r) = r. Show that the only non-identity member of $Aut_{\mathbb{R}}(\mathbb{C})$ is f above, the complex conjugation map.
- 2. For a finite group G, let $exp(G) = \min\{k \in \mathbb{N} : \forall g \in G \in g^k = e\}$. So exp(G) is the least positive power that "kills off" each element of G. It is easy to see that if G is cyclic, then exp(G) = |G|. The converse holds for finite Abelian groups, as you'll prove.

Let G be a finite Abelian group with $|G|=p_1^{r_1}\dots p_k^{r_k}$ a prime factorization.

(a) Explain briefly why every Sylow- p_i subgroup in G is normal. Use the Sylow Theorem (be sure to cite which part of the Sylow Theorem you are using in your proof).

(b) For $i=1,\ldots,k$, you've proven that's there a unique Sylow- p_i group. Let's call it P_i . Find the finite group theoretic cardinality result (*)—cite the result and the page number of (*) in the text—that can be used to show that $G=P_1\ldots P_k$, briefly explaining how (*) is applied to show $G=P_1\ldots P_k$.

(c) We proved that (**) if H is a group with normal subgroups A and B satisfying $A \cap B = \{e\}$ and AB = G, then $G \cong (A \times B)$. Use (b) and (**) to explain, briefly but convincingly, why $G \cong P_1 \times \cdots \times P_k$. You can use the phrase "inductively", or something like it.

- (d) As you know, for $g \in P_1 \dots P_k$ with $g = (g_1, \dots, g_k)$, then $|g| = \text{lcm}(|g_1|, \dots, |g_k|)$. Use this observation to show that $exp(G) = exp(P_1) \times \dots exp(P_k)$. (This is easy since for each i, $exp(P_i)$ is a power of p_i . I'll look for a **short**, **coherent** argument.)
- (e) Of course if G is cyclic, then exp(G) = |G|. Use what you've proven above to show that |G| = exp(G) implies G is cyclic. (So we now know that if G is finite, Abelian, then G is cyclic if and only if |G| = exp(G).)

(f) We proved in class that (***) if F is a field and $g(x) \in F[x]$ with $\deg(g(x)) = n \in \mathbb{N}$, then g(x) has no more than n roots in F. Use (***) and (e) to prove that \mathbb{Z}_p^x is cyclic.

(g) More generally, suppose F is a field, and K is a finite subfield of F. Let $K^* = K - \{0\}$, the units of K, a finite subgroup. Using (***) and (e), prove that K^* is cyclic.

- 3. Number 4, page 293 (Don't turn in-Scott and Christen will present.)
- 4. Number 4. page 301. (Don't turn in—YoYo and Jacob will present.)
- 5. Number 4, page 306, (a), (b), (c) only.