Модуль 5 Дифференциальные уравнения высших порядков

Тема 1 Дифференциальные уравнения, допускающие понижение порядка

1.1 Понятие дифференциальных уравнений высших порядков.

Определение. Дифференциальным уравнением n-го порядка, $n \in \square$, называется уравнение вида $F(x, y, y', y'', ..., y^{(n)}) = 0$. Если его можно разрешить относительно старшей производной, то получим нормальную форму этого уравнения:

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)}).$$

Решением дифференциального уравнения n-го порядка является всякая n раз дифференцируемая функция y=y(x), которая обращает данное уравнение в тождество. Общим решением уравнения называется функция $y=y(x,C_1,C_2,...,C_n)$, где $C_1,C_2,...,C_n$ – произвольные постоянные.

Задача нахождения решения y=y(x), удовлетворяющего начальным условиям $y(x_0)=y_0$, $y'(x_0)=y_0'$, ..., $y^{(n-1)}(x_0)=y_0^{(n-1)}$, где x_0 , y_0 , y_0' , ..., $y_0^{(n-1)}$ — заданные числа, называется задачей Коши.

Геометрический смысл дифференциального уравнения 2-го порядка.

Поскольку $y'' = \frac{y''}{(1+y'^2)^{3/2}} \cdot (1+y'^2)^{3/2}$, где отношение $\frac{y''}{(1+y'^2)^{3/2}}$ определяет кривизну y = y(x) в точке (x,y), то уравнение 2-го порядка выражает общее свойство интегральных кривых, устанавливая зависимость между координатами точки и кривизной функции в ней. Задача Коши для такого уравнения с геометрической точки зрения означает выделение из семейства интегральных кривых данного уравнения той, что проходит через заданную точку (x_0,y_0) под заданным углом α : $\operatorname{tg} \alpha = y_0' \equiv y'(x_0)$.

1.2 Дифференциальные уравнения, допускающие понижение порядка

1. Уравнение вида
$$F(x, y^{(n)}) = 0$$
 или $y^{(n)} = f(x)$.

Уравнение, не содержащее искомой функции y и всех ее производных, кроме старшей, решается последовательным интегрированием n раз.

Пример. Найти общее решение уравнения $y''' = -\sin 2x$.

Решение. Это уравнение рассмотренного типа 3-го порядка. Проинтегрируем его

последовательно три раза:

$$y'' = \int (-\sin 2x) dx = \frac{\cos 2x}{2} + C_1,$$

$$y' = \int \left(\frac{\cos 2x}{2} + C_1\right) dx = \frac{\sin 2x}{4} + C_1 x + C_2,$$

$$y = \int \left(\frac{\sin 2x}{4} + C_1 x + C_2\right) dx = -\frac{\cos 2x}{8} + \frac{C_1 x^2}{2} + C_2 x + C_3, \qquad \text{где} \qquad C_1, C_2, C_3 \qquad -$$

произвольные постоянные. Полученная функция y = y(x) и есть общее решение исходного уравнения.

Пример. Найти частное решение уравнения $y^{IV} = x \ln x$, y(1) = 1, y'(1) = 0, y''(1) = -1, y'''(1) = 0.

Решение. Это дифференциальное уравнение рассматриваемого типа 4-го порядка. Проинтегрируем его последовательно четыре раза, находя из начальных условий значения произвольных постоянных на каждом этапе.

Интегрируем первый раз: $y''' = \int x \ln x dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C_1$. Определим константу C_1 из начального условия y'''(1) = 0: $0 = -\frac{1}{4} + C_1$ или $C_1 = \frac{1}{4}$.

Интегрируем второй раз: $y'' = \int \left(\frac{x^2 \ln x}{2} - \frac{x^2}{4} + \frac{1}{4}\right) dx = \frac{x^3 \ln x}{6} - \frac{5x^3}{36} + \frac{x}{4} + C_2$.

Определяем C_2 из начального условия y''(1) = -1: $-1 = -\frac{5}{36} + \frac{1}{4} + C_2$ или $C_2 = -\frac{10}{9}$.

Интегрируем третий раз:

$$y' = \int \left(\frac{x^3 \ln x}{6} - \frac{5x^3}{36} + \frac{x}{4} - \frac{10}{9}\right) dx = \frac{x^4 \ln x}{24} - \frac{13x^4}{288} + \frac{x^2}{8} - \frac{10x}{9} + C_3.$$
 Из начального условия

$$y'(1) = 0$$
 находим C_3 : $0 = -\frac{13}{288} + \frac{1}{8} - \frac{10}{9} + C_3$ или $C_3 = \frac{33}{32}$.

Интегрируем последний раз:

$$y = \int \left(\frac{x^4 \ln x}{24} - \frac{13x^4}{288} + \frac{x^2}{8} - \frac{10x}{9} + \frac{33}{32} \right) dx = \frac{x^5 \ln x}{120} - \frac{77x^5}{7200} + \frac{x^3}{24} - \frac{5x^2}{9} + \frac{33x}{32} + C_4.$$

Находим константу C_4 из начального условия y(1) = 1:

$$1 = -\frac{77}{7200} + \frac{1}{24} - \frac{5}{9} + \frac{33}{32} + C_4$$
или $C_4 = \frac{114}{225}$.

Получили частное решение уравнения: $y = \frac{x^5 \ln x}{120} - \frac{77x^5}{7200} + \frac{x^3}{24} - \frac{5x^2}{9} + \frac{33x}{32} + \frac{114}{225}$.

2. Уравнение вида
$$F(x, y^{(k)}, ..., y^{(n)}) = 0$$
.

Уравнение, не содержащее искомой функции y и первых (k-1)-х ее производных, $k \in \square$ решают с помощью замены $z = y^{(k)}$, где z = z(x). Таким образом, порядок исходного уравнения понижается на k единиц: $F(x,z,...,z^{(n-k)}) = 0$. Полученное уравнение решают далее в зависимости от его типа.

Пример. Найти общее решение уравнения xy'' + 2y' = 0.

Решение. Это уравнение 2-го порядка, не содержащее явно искомой функции y. Введем новую функцию z = y', где z = z(x), и продифференцируем: y'' = z'. Подставим вместо y' и y'' в исходное уравнение новые выражения, xz' + 2z = 0, и проинтегрируем уравнение с разделяющимися переменными: $\frac{dz}{z} = -\frac{2dx}{x}$ $z \neq 0$, $x \neq 0$.

В результате имеем: $\ln |z| = -2 \ln |x| + \ln C_1$, откуда $z = C_1 x^{-2}$ — общее решение промежуточного уравнения.

Возвращаемся к старым переменным: $y' = C_1 x^{-2}$ — уравнение первого порядка. Интегрируем его: $\int dy = \int C_1 x^{-2} dx$.

Получаем $y = C_1 x^{-1} + C_2$ — общее решение исходного уравнения.

Пример. Найти частное решение уравнения y'' - 2y' = 0, $y(0) = \frac{3}{2}$, y'(0) = 1.

Решение. Заданное уравнение имеет 2-й порядок. Делаем замену $z = y', \ z = z(x)$. Тогда y'' = z', и заданное уравнение принимает вид: z' - 2z = 0.

Получили дифференциальное уравнение 1-го порядка с разделяющимися переменными. Решаем его: $\frac{dz}{z} = 2dx$, $\ln|z| = 2x + \ln C_1$ или $z = C_1 e^{2x}$.

Возвращаясь к старой переменной, получим: $y' = C_1 e^{2x}$.

Определим константу C_1 из начального условия y'(0)=1. Тогда $1=C_1e^0$ или $C_1=1$. Таким образом, $y'=e^{2x}$. Интегрируем и получаем: $y=\int e^{2x}dx=\frac{e^{2x}}{2}+C_2$.

Определяем C_2 из 2-го начального условия: $y(0) = \frac{3}{2}$, т. е. $C_2 = 1$.

Частным решением исходного дифференциального уравнения является функция $y = \frac{e^{2x}}{2} + 1.$

3. Уравнение вида
$$F(y, y', ..., y^{(n)}) = 0$$

Уравнение, не содержащее независимой переменной x, решают с помощью замены y'=z, где z=z(y), y=y(x). Этой заменой порядок исходного уравнения понижается на единицу, поскольку $y''=z'_yy'_x=z'_yz$ (функцию z(y) дифференцируют по x как сложную). Аналогично выражают y''' и т. д.

Пример. Найти общее решение уравнения $yy'' - 2(y')^2 = 0$.

Решение. Это уравнение 2-го порядка, не содержащее явно независимой переменной x. Поэтому делаем замену y'=z, где z=z(y), y=y(x). Дифференцируем новую функцию по x как сложную функцию, получаем: $y''=z'_yy'_x=z'z$. Подставляем выражения для y' и y'' в исходное уравнение: $yz'z-2z^2=0$. Это уравнение с разделяющимися переменными. Решаем его: $\frac{dz}{dy}yz=2z^2$ или $\frac{dz}{z}=\frac{2dy}{y}$, $z\neq 0$, $y\neq 0$. Далее интегрируя, имеем: $\ln|z|=2\ln|y|+\ln C_1$, откуда $z=C_1y^2$ – общее решение.

Возвращаемся к старым переменным, получаем $y' = C_1 y^2$ — уравнение с разделяющимися переменными. Тогда $\frac{dy}{dx} = C_1 y^2$ или $\frac{dy}{y^2} = C_1 dx$.

Интегрируем: $-\frac{1}{y} = C_1 x + C_2$ или $y = \frac{1}{C_1 x + C_2}$ — общее решение исходного дифференциального уравнения.

Пример 2. Найти частное решение уравнения:

Пример. Найти частное решение уравнения $3yy'' = 2(y')^2$, y(0) = 1, y'(0) = 2.

Решение. Это уравнение 2-го порядка, не содержащее явно переменную x.

Делаем замену y'=z, z=z(y), y=y(x). Тогда y''=z'z, и заданное уравнение примет вид $3yz'z=2z^2$. Получили уравнение 1-го порядка с разделяющимися переменными.

Интегрируем его:
$$\frac{dz}{z} = \frac{2dy}{3y}$$
, имеем: $\ln|z| = \frac{2}{3}\ln|y| + \ln C_1$ или $z = C_1 y^{\frac{2}{3}}$.

Возвращаемся к старой переменной: $y' = C_1 y^{\frac{2}{3}}$. Определяем C_1 , используя 2-е начальное условие: $2 = C_1 \cdot 1$, отсюда $C_1 = 2$.

Получаем $y' = 2y^{\frac{2}{3}}$ — уравнение 1-го порядка с разделяющимися переменными. Его решение: $3y^{\frac{1}{3}} = 2x + C_2$ или $y = \frac{1}{27}(2x + C_2)^3$. Определяем константу c_2 ,

используя первое начальное условие: $1 = \frac{1}{27}C_2^3$, откуда $C_2 = 3$.

Тогда частным решением заданного уравнения является функция $y = \frac{1}{27}(2x+3)^3$.

Замечание. При решении задачи Коши в приведенных примерах произвольные постоянные находились на каждом этапе интегрирования при первом появлении. Можно это делать по-другому: сразу найти общее решение исходного уравнения, а затем, продифференцировав его n-1 раз, решить полученную систему n уравнений относительно неизвестных $C_1, C_2, ..., C_n$.

4. Однородное уравнение

Определение. Уравнение вида $F(x, y, y', ..., y^{(n)}) = 0$ называется однородным относительно искомой функции y и ее производных $y', y'', ..., y^{(n)}$, если функция F однородна относительно $y, y', ..., y^{(n)}$, т. е. $F(x, \lambda y, \lambda y', ..., \lambda y^{(n)}) = \lambda^m F(x, y, y', ..., y^{(n)})$, где $m \in \square$ – степень однородности, $\lambda \neq 0$ – произвольное число.

Для решения используется замена $z = \frac{y'}{y}$, где z = z(x), понижающая порядок исходного уравнения на единицу.

Пример. Найти общее решение уравнения: $x^2yy'' - (y - xy')^2 = 0$.

Решение. Это уравнение 2-го порядка, однородное относительно y, y' и y'', так как $x^2 \lambda y \lambda y'' - (\lambda y - x \lambda y')^2 = \lambda^2 (x^2 y y'' - (y - x y')^2)$, где λ – произвольное число. Делаем замену $z = \frac{y'}{y}$, где z = z(x), отсюда получаем: y' = zy. Дифференцируем это равенство еще раз: y'' = z'y + zy', – и получаем $y'' = z'y + z^2 y$, $y'' = y(z' + z^2)$.

Подставляем выражения для y' и y'' в исходное уравнение: $x^2 y y (z' + z^2) - (y - x z y)^2 = 0.$

Делим его на $y^2 (y \neq 0)$: $x^2(z'+z^2)-(xz-1)^2=0$.

После упрощения имеем уравнение $x^2z'-1+2xz=0$.

Делим его почленно на $x^2 (x \neq 0)$: $z' + \frac{2z}{x} = \frac{1}{x^2}$.

Получили линейное уравнение 1-го порядка. Решаем его, например, методом Бернулли: z = uv, z' = u'v + uv'. Тогда оно примет вид: $u'v + uv' + \frac{2uv}{x} = \frac{1}{x^2}$, т. е.

$$u'v + u\left(v' + \frac{2v}{x}\right) = \frac{1}{x^2}.$$

Полагаем $v' + \frac{2v}{x} = 0$, откуда $\frac{dv}{v} = -\frac{2dx}{x}$. Интегрирование приводит к равенству $\ln |v| = -2\ln |x|$. Тогда имеем: $v = \frac{1}{x^2}$ – искомая функция v.

Далее имеем: $\frac{u'}{x^2} = \frac{1}{x^2}$, т. е. du = dx, что означает $u = x + C_1$. Отсюда $z = (x + C_1)x^{-2}$.

Возвращаемся к старым переменным: $\frac{y'}{y} = (x + C_1)x^{-2}$ или $\frac{dy}{y} = \left(\frac{1}{x} + \frac{C_1}{x^2}\right)dx$.

Интегрируем: $\ln |y| = \ln |x| - \frac{C_1}{x} + \ln C_2$. Используя свойства логарифма, получаем:

$$\ln\left(\frac{y}{C_2x}\right) = \frac{-C_1}{x}$$
или $\frac{y}{C_2x} = e^{-\frac{C_1}{x}}$.

Таким образом, $y = C_2 x e^{-\frac{C_1}{x}}$ — общее решение исходного уравнения.