Vv156 Honors Calculus II

Runze Cai

University of Michigan - Shanghai Jiao Tong University Joint Institute

Fall 2021

Part XI

Sequences and Series

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Overview

A sequence is an infinite list of numbers listed in a definite order, e.g.,

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

Definition

A *sequence* is a **function** whose domain is the set of positive integers $\mathbb{N} \setminus \{0\}$, or natural numbers \mathbb{N} , e.g.,

$$f: \mathbb{N} \to \mathbb{R}$$
$$n \mapsto a_n$$

Often denoted by $\{a_n\}$, $\{a_n\}_{n=1}^{\infty}$, (a_n) , or $(a_n)_{n=1}^{\infty}$. Note that $f \in \mathbb{R}^{\mathbb{N}}$.

$$\blacktriangleright \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right)$$

$$\qquad \left(-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n (n+1)}{3^n}, \dots\right)$$

$$ightharpoonup (1,-1,1,-1,\ldots,(-1)^n,\ldots)$$

Convergence and Divergence

Definition

A sequence (a_n) has the *limit L* and we write

$$\lim_{n\to\infty} a_n = L$$
 or $a_n \to L$ as $n\to\infty$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty}a_n$ exists, we say that the sequence *converges* (or is *convergent*). Otherwise, we say the sequence *diverges* (or is *divergent*).

- igl| $\left(\frac{1}{2},\frac{1}{4},\frac{1}{8},\ldots\right)$. $\lim_{n\to\infty}\frac{1}{2^n}=0$. The sequence converges to 0.
- ▶ (2,4,8,16,...). $\lim_{n\to\infty} 2^n = \infty$. The sequence "diverges to ∞ ".
- \blacktriangleright (1,-1,1,-1,...). $\lim_{n\to\infty} (-1)^{n+1}$ does not exist. The sequence diverges.
- $lacksquare (1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, \dots)$. $\lim_{n \to \infty} \frac{(-1)^{n+1}}{n} = 0$. The sequence converges to 0.

Convergence and Divergence

Theorem

Let (a_n) , (b_n) , and (c_n) be real sequences such that $a_n \le b_n \le c_n$ for all n > N, where N is some positive integer. Then

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L \Rightarrow \lim_{n\to\infty} b_n = L.$$

Example

Compute $\lim_{n\to\infty} \frac{\sin n}{n}$.

Basic Properties

Theorem

Let $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$, where $A,B\in\mathbb{R}$. Then

- $1. \lim_{n\to\infty} (a_n \pm b_n) = A + B$
- $2. \lim_{n\to\infty} (a_n b_n) = AB$
- 3. $\lim_{n\to\infty} (ka_n) = kA$ for any constant k.
- 4. $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B} \text{ if } B\neq 0.$
- 5. $\lim_{n\to\infty} (a_n^p) = A^p \text{ if } p > 0 \text{ and } a_n > 0.$

Basic Properties

Theorem

Let f be a **continuous** function defined for all $x \ge N$ for some positive integer N. Suppose that (a_n) is a real sequence such that $a_n = f(n)$ for $n \ge N$. then

$$\lim_{x\to\infty} f(x) = L \Rightarrow \lim_{n\to\infty} a_n = L$$

Example

Consider $f(x) = \frac{1-x}{x^2}$, which is defined for all x > 1. Thus

$$\lim_{n\to\infty}\frac{1-n}{n^2}=\lim_{x\to\infty}\frac{1-x}{x^2}=0$$

Basic Properties

Example (Cont.)

 $\lim_{n\to\infty} \sqrt[n]{n}$ Consider $f(x)=x^{1/x}$, which defined for all $x\geq 1$, thus

$$\lim_{n \to \infty} n^{1/n} = \lim_{x \to \infty} x^{1/x} = \exp\left[\lim_{x \to \infty} \ln(x^{1/x})\right] = \exp\left(\lim_{x \to \infty} \frac{\ln x}{x}\right)$$
$$= \exp\left(\lim_{x \to \infty} \frac{1/x}{1}\right) = e^0 = 1$$

$$\lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} \frac{(n+1)n!}{n!} = \lim_{n \to \infty} (n+1) = \infty.$$
 (diverges to ∞)

Table of Contents

1. Sequences

2. Series

- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Overview

A *series* is a sum of infinitely many numbers.

Definition

A series is an expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots,$$

where a_1, a_2, \ldots are the terms. We say that a_n is the n-th or general term of the series.

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

Geometric Series

Definition

A series is **geometric** if each term (except for the first) can be obtained from the previous by multiplying it by a constant r, called the **ratio** of the series.

Theorem

A geometric series

$$\sum_{n=1}^{\infty} ar^n = \sum_{n=1}^{\infty} ar^{n-1} = ar^0 + ar^1 + ar^2 + ar^3 + \cdots$$

where $a \neq 0$ is a fixed constant, is

- 1. convergent if |r| < 1, in which case $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$,
- 2. divergent if $|r| \ge 1$.

Example of Geometric Series

1.
$$\sum_{n=1}^{\infty} \frac{3}{10^n} = \frac{3/10^1}{1 - 1/10} = \frac{1}{3}.$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1/2}{1 - 1/2} = 1.$$

3.
$$\sum_{n=1}^{\infty} 2^n$$
 diverges. (b/c $r = 2 \ge 1$)

4.
$$\sum_{n=1}^{\infty} \left(-\frac{1}{5} \right)^n = \frac{-1/5}{1 - (-1/5)} = -\frac{1}{6}.$$

Non-Geometric Series

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + \cdots$$

$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$$

Theorem

If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n\to\infty} a_n = 0$.

Corollary ("Divergence Test")

If $\lim_{n\to\infty} a_n \neq 0$ or does not exist (i.e., $a_n \neq 0$ as $n\to\infty$), then $\sum_{n=1}^{\infty} a_n$ diverges.

- $ightharpoonup \sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges. (b/c $\frac{n}{n+1} \to 1$ as $n \to \infty$)
- ► The harmonic series: $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$ diverges. (but **NOT** due to the divergence test.)

Partial Sums

Definition

A *partial sum* of a series is the sum of all terms up to a_k ,

$$s_k = a_1 + a_2 + \cdots + a_{k-1} + a_k = \sum_{k=1}^{k} a_k$$

Theorem/Definition

The series $\sum a_n = s$ iff the sequence of partial sums (s_k) converges to s.

$$ightharpoonup \sum_{k=0}^{\infty} (-1)^{n}$$
, with $(s_{k}) = (1, 0, 1, 0, \dots)$

$$ightharpoonup \sum_{k=1}^{\infty} \frac{1}{2^n}$$
, with $(s_k) = (\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots)$

$$ightharpoonup$$
 A "telescoping series" $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, with $(s_k) = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots)$

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Overview

Divergence Test

If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

The converse of this statement fails: a series may diverge even though $a_n \to 0$ as $n \to \infty$.

Harmonic series:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges while $\lim_{n \to \infty} \frac{1}{n} = 0$.

Integral Test

Integral Test

Suppose f is a continuous, positive, decreasing function for all $x \ge N$, where N is a positive integer. If $a_n = f(n)$, then

$$\sum_{n=1}^{\infty} a_n < \infty \Leftrightarrow \int_{N}^{\infty} f(x) \, dx < \infty$$

Sketch of proof.

Note that

$$\sum_{n=N+1}^{\infty} f(n) \cdot 1 \le \int_{N}^{\infty} f(x) \, dx \le \sum_{n=N}^{\infty} f(n) \cdot 1$$

that is,

$$\sum_{n=N+1}^{\infty} a_n \le \int_{N}^{\infty} f(x) \, dx \le \sum_{n=N}^{\infty} a_n$$

Integral Test

Example

Harmonic Series:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.

Consider
$$f(x) = \frac{1}{x}$$
, which is continuous, positive, and decreasing for all $x \ge 1$.

Note that

$$\int_{1}^{\infty} \frac{1}{x} dx \text{ diverges}$$

hence the harmonic series diverges.

p-series

Definition

A *p*-series is a series of the form $\sum_{p=0}^{\infty} \frac{1}{n^p}$, where *p* is a fixed real number.

Example

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} n^{1/3}$$

Theorem

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

- ightharpoonup converges if p > 1,
- \triangleright diverges if p < 1.

Proof.

Use the integral test.

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Limit Comparison Test

Limit Comparison Test

Suppose $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are series with positive terms. Let $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. Then

- ▶ If $0 < L < \infty$, then both series converge or both diverge.
- ▶ If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- ▶ If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Example

Consider
$$\sum_{n=1}^{\infty} \frac{1}{2n^{3/2}+5}$$
. Let $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$, then

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(2n^{3/2} + 5)}{1/n^{3/2}} = \lim_{n \to \infty} \frac{n^{3/2}}{2n^{3/2} + 5} = \frac{1}{2}$$

By limit comparison test, $\sum_{n=1}^{\infty} \frac{1}{2n^{3/2} + 5}$ is convergent.

Limit Comparison Test

How to choose $\sum b_n$

To find b_n , simplify the ratio of the largest power of n in the numerator and the largest power of n in the denominator.

Example

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(3n+1)/(n^2+2n+1)}{1/n} = \lim_{n \to \infty} \frac{3n^2+n}{n^2+2n+1} = 3 > 0$$

Now since $\sum b_n = \sum \frac{1}{n}$ diverges, $\sum a_n$ also diverges.

$$\sum a_n = \sum_{n=1}^{\infty} \frac{1}{n!}. \text{ Try } b_n = \frac{1}{n^2}, \text{ note that } \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty, \text{ and}$$

$$a_n = \sum_{n=1}^{\infty} \frac{1}{n!}. \text{ Try } b_n = \frac{1}{n^2}, \text{ note that } \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty, \text{ and}$$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{1/n!}{1/n^2}=\lim_{n\to\infty}\frac{n^2}{n!}=0.\ \ \text{In fact, } \sum_{n=1}^\infty\frac{1}{n!}=e-1.$$

Ratio Test

Ratio Test

Let $\sum_{n=1}^{\infty} a_n$ be a series and let $r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Then

- ▶ $\sum a_n$ converges if r < 1.
- ▶ $\sum a_n$ diverges if r > 1 or $r = \infty$.
- ightharpoonup inconclusive if r=1.

$$\lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Hence
$$\sum a_n < \infty$$
.

Ratio Test

$$\lim_{n\to\infty}\frac{10^{n+1}/(2n+2)!}{10^n/(2n)!}=\lim_{n\to\infty}\frac{10^{n+1}(2n)!}{10^n(2n+2)!}=\lim_{n\to\infty}\frac{10}{(2n+1)(2n+2)}=0$$

Hence
$$\sum a_n < \infty$$
.

Root Test

Root Test

Let $\sum_{n\to\infty} a_n$ be a series with nonnegative terms and let $r=\lim_{n\to\infty} \sqrt[n]{a_n}$. then

- ▶ $\sum a_n$ converges if $0 \le r < 1$.
- ▶ $\sum a_n$ diverges if r > 1 or $r = \infty$.
- ightharpoonup inconclusive if r=1.

Example

$$r = \lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n^{10}}} = \lim_{n \to \infty} \frac{2}{\sqrt[n]{n^{10}}} = \lim_{n \to \infty} \frac{2}{n^{10/n}} = 2$$

Hence $\sum a_n$ diverges.

Root Test

Example

- From ratio test: $(a_{n+1}/a_n) = (1, \frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}, \dots)$ diverges.
- From root test: note that $a_n \leq \frac{1}{2^{n/2-1}}$, we have

$$\lim_{n\to\infty} \sqrt[n]{a_n} \le \lim_{n\to\infty} \sqrt[n]{\frac{1}{2^{n/2-1}}} = \frac{1}{\sqrt{2}} < 1$$

Hence $\sum a_n$ is convergent.

 $ightharpoonup \sum a_n = \sum_{n=1}^{\infty} \frac{1}{n!}$. Note that $n! > \lceil n/2 \rceil^{\lceil n/2 \rceil}$, hence $(n!)^{1/n} > \sqrt{n/2}$, thus

$$r = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n!}} < \lim_{n \to \infty} \frac{1}{\sqrt{n/2}} = 0$$

Hence $\sum a_n$ is convergent.

Direct Comparison Test

Direct Comparison Test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms, and $0 < a_n \le b_n$ for all n. Then

- ▶ $\sum a_n$ converges if $\sum b_n$ converges;
- ▶ $\sum b_n$ diverges if $\sum a_n$ diverges.

- $ightharpoonup \sum_{n=1}^{\infty} \frac{1}{n}$. Divergence follows from

$$\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{k=1}^{\infty} \sum_{i=2k}^{2^{k+1}-1} \frac{1}{i} > \sum_{k=1}^{\infty} \sum_{i=2k}^{2^{k+1}-1} \frac{1}{2^{k+1}} = \sum_{k=1}^{\infty} \frac{2^k}{2^{k+1}} = \sum_{k=1}^{\infty} \frac{1}{2} = \infty$$

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test

5. Alternating Series

- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Overview

Consider the Leibniz series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \pm \cdots$$

In general, a series of the form $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ with $b_n > 0$ is called an *alternating* series.

Alternating Series Test

Given $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ with $b_n > 0$. Then the series is convergent if

- (1) $\lim_{n\to\infty}b_n=0$, and
- (2) $b_{n+1} \leq b_n$ for all $n \geq N$ for some positive integer N.

Remark

Note that (1) and (2) are often summarized as $b_n \downarrow 0$ (or $b_n \searrow 0$) as $n \to \infty$.

Estimating sums

Alternating Series Estimation Theorem

If $s=\sum_{n=1}^{\infty}(-1)^nb_n$ is the sum of an alternating series $(b_n\downarrow 0$ as $n\to\infty)$, then the remainder $r_n=s-s_n$ satisfies

$$|s-s_n|=|r_n|\leq b_{n+1}$$

Example

$$\sum a_n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} \pm \cdots, \text{ then}$$

$$s_4 = \frac{7}{12} \Rightarrow \left| s - \frac{7}{12} \right| = |r_4| \le b_5 = \frac{1}{5}$$
$$\Rightarrow -\frac{1}{5} \le s - \frac{7}{12} \le \frac{1}{5} \Rightarrow \frac{23}{60} \le s \le \frac{47}{60}$$

that is, roughly, $0.383 \le s \le 0.783$.

Types of Convergence

Definition

A series $\sum a_n$ is called

- **absolutely convergent** if $\sum |a_n|$ is convergent.
- ightharpoonup conditionally convergent if $\sum a_n$ is convergent by not absolutely convergent.

Absolute Convergence Test

Theorem

If $\sum a_n$ is absolutely convergent, then it is convergent. That is,

$$\sum \lvert a_n \rvert < \infty \Rightarrow \sum a_n < \infty$$

(Equivalently, if $\sum a_n$ diverges, then $\sum |a_n|$ diverges.)

Proof (without Cauchy sequences).

Note that for all k we have $a_n \leq |a_n|$ with $0 \leq |a_n|$, thus $0 \leq a_n + |a_n| \leq 2|a_n|$. Since $\sum a_n$ is absolutely convergent, then by definition $\sum |a_n| < \infty$. Thus $2\sum |a_n| < \infty$, hence $\sum (a_n + |a_n|) < \infty$ by direct comparison test. Now since

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k + |a_k|) - \sum_{k=1}^{\infty} |a_k|$$

therefore $\sum a_k < \infty$ as the difference of two convergent series.

Rearrangements

Theorem (Riemann Series Theorem)

If a series $\sum a_n$ is convergent but not absolutely convergent, then for any $\alpha \in \mathbb{R}$ (including $\pm \infty$), there exists a rearrangement of the series that converges to α .

Acceleration of Convergence

The Shanks Transformation

Let $S_N = \sum_{n=1}^N a_n$ be the N-th partial sum of a convergent series $\sum_{n=1}^N a_n$. Suppose that $S_N = S + AB^N$ with |B| < 1, so that $S_N \to S$ as $N \to \infty$. Now we have

$$S_{N-1} = S + AB^{N-1}$$
 $S_{N-1} - S = AB^{N-1}$
 $S_N = S + AB^N$ \Rightarrow $S_N - S = AB^N$
 $S_{N+1} = S + AB^{N+1}$ $S_{N+1} - S = AB^{N+1}$

thus

$$\frac{S_N-S}{S_{N-1}-S}=B=\frac{S_{N+1}-S}{S_N-S}$$
 thus $S_N^2-2SS_N+S^2=S_{N+1}S_{N-1}-S(S_{N+1}+S_{N-1})+S^2$, therefore
$$S=\frac{S_N^2-S_{N+1}S_{N-1}}{2S_N-S_{N+1}-S_{N-1}}$$

Acceleration of Convergence

The Shanks Transformation

We call the nonlinear mapping

$$\mathscr{S}(S_N) = \frac{S_N^2 - S_{N+1}S_{N-1}}{2S_N - S_{N+1} - S_{N-1}}$$

the Shanks transformation.

Acceleration of Convergence

Consider

$$S = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right) = \pi$$

Compute the following table.

n	S_n	$\mathscr{S}(S_n)$	$\mathscr{S}^{\circ 2}(S_n)$	$\mathscr{S}^{\circ 3}(S_n)$
0	4.00000000	_	_	_
1	2.66666667	3.16666667	_	_
2	3.46666667	3.13333333	3.14210526	_
3	2.89523810	3.14523810	3.14145022	3.14159936
4	3.33968254	3.13968254	3.14164332	3.14159086
5	2.97604618	3.14271284	3.14157129	3.14159323
6	3.28373848	3.14088134	3.14160284	3.14159244
7	3.01707182	3.14207182	3.14158732	3.14159274
8	3.25236593	3.14125482	3.14159566	3.14159261
9	3.04183962	3.14183962	3.14159086	3.14159267
10	3.23231581	3.14140672	3.14159377	3.14159264
11	3.05840277	3.14173610	3.14159192	3.14159266
12	3.21840277	3.14147969	3.14159314	3.14159265

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Motivation

Recall that we can approximate a function f near the point x=a with the tangent line to the function at x=a. For example, near x=a,

$$f(x) \approx f(a) + f'(a)(x - a) = f'(a)x + f(a) - af'(a)$$

Tangent Line Approximation

Example

Approximate $f(x) = \cos x$ near x = 0 using a *linear approximation*. Use this to estimate f(0.05), f(0.4), $f(\pi)$.

Note that $f'(0) = -\sin 0 = 0$, we have $f(x) \approx \cos 0 = 1$ near x = 0.

Х	cos x	linear approximation
0.005	0.99875	1
0.4	0.921 06	1
π	-1	1

Qudratic Approximation

Example

Approximate $f(x) = \cos x$ near x = 0 using a *quadratic approximation*. Use this to estimate f(0.05), f(0.4), $f(\pi)$.

Note that $f'(0)=-\sin 0=0$, we have $f(x)\approx\cos 0=1$ near x=0. By symmetry, we choose a quadratic polynomial $1-cx^2$, with c>0. We choose to match the second derivative, i.e., let $-2c=-\cos 0=1$, hence $c=\frac{1}{2}$. Thus we can use $1-x^2/2$ to approximate $\cos x$ near x=0.

Х	cos x	quadratic approximation
0.005	0.99875	0.998 75
0.4	0.921 06	0.92
π	-1	-3.9348

Next: Try cubic and quartic polynomials.

Taylor Polynomials

Key Idea

Incereasing the degree of the approximating polynomial improves the approximation.

These approximating polynomials are called *Taylor polynomials*.

Definition

The **Taylor polynomial** of order n approximating f(x) near x = a ("centered at a" or "about a") is

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Taylor Polynomials

Example

Compute the 4-th order Taylor polynomial of $f(x) = \cos x$ centered at x = 0.

n	$f^{(n)}(x)$	$f^{n}(0)$	$f^{(n)}(0)/n!$
0	cos x	1	1
1	$-\sin x$	0	0
2	$-\cos x$	-1	-1/2
3	sin x	0	0
4	cos x	1	1/24

thus
$$T_4(x) = 1 - \frac{1}{2}x + \frac{1}{24}x^4$$
.

X	COS X	quartic approximation
0.005	0.99875	0.99875
0.4	0.921 06	0.921 07
π	-1	0.123 91

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Motivation

Example

For any value of x, the following is a geometric series (i.e., $\sum a \cdot r^n$)

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$

Note that r = x and a = 1. This series converges if |r| = |x| < 1, i.e., -1 < x < 1.

Definition

Let x be a variable and $a \in \mathbb{R}$ some constant. Then the series

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

is called a power series centered at a.

In particular, $\sum_{n=0}^{\infty} c_n x^n$ is a **power series centered at** 0.

Consider a power series

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots$$

What happens if we plug in x = a?

We have

$$\sum_{n=0}^{\infty} c_n 0^n = c_0 0^0$$

By convention, we define $0^0 := 1$.

Convergence of Power Series

Theorem

For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are only three possibilites:

- (i) The series converges only when x = a;
- (ii) The series converges for all x;
- (iii) There is a positive number R such that the series converges if |x a| < R, and diverges if |x a| > R.

The number R in (iii) is called the *radius of convergence (ROC)* of the power series. By convention, we have R=0 in (i) and $R=\infty$ in (ii).

Definition

The *interval of convergence (IOC)* of a power series is the interval that consists of all values of x for which the series converges. We have in

- (i) $IOC = [a, a] \text{ or } \{a\};$
- (ii) $IOC = (-\infty, \infty)$;
- (iii) Four possibilities, IOC =

►
$$(a-R, a+R)$$
 ► $(a-R, a+R)$ ► $[a-R, a+R)$ ► $[a-R, a+R]$

Convergence of Power Series

Example

Series	ROC	IOC
$\sum_{\substack{n=0\\\infty}}^{\infty} x^n$	R = 1	(-1,1)
$\sum n! x^n$	R = 0	{0}
$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$	R = 1	[2,4)
$\sum_{n=0}^{n=1} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$	$R = \infty$	$(-\infty,\infty)$

Inverval of Convergence

Try the ratio test to find the IOC.

Example

Find the IOC of
$$\sum_{n=1}^{\infty} \frac{n(x+1)^n}{4^{n+1}}.$$

Note that

$$\sum_{n=1}^{\infty} \frac{n(x+1)^n}{4^{n+1}} = \sum_{n=1}^{\infty} \frac{n}{4^{n+1}} [x - (-1)]^n$$

Apply the ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x+1)^{n+1}/4^{n+2}}{n(x+1)^n/4^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x+1)}{4n} \right|$$
$$= \frac{|x+1|}{4} \lim_{n \to \infty} \left(\frac{n+1}{n} \right) = \frac{|x+1|}{4}$$

Thus the series converges if $\frac{|x+1|}{4} < 1$ and diverges if $\frac{|x+1|}{4} > 1$. Therefore the IOC contains (-5,3). Check -5 and 3 separately.

Table of Contents

- 1. Sequences
- 2. Series
- 3. Divergence and Integral Tests
- 4. The Ratio, Root, and Comparison Test
- 5. Alternating Series
- 6. Polynomial Approximation
- 7. Power Series
- 8. Taylor Series

Motivation

Recall the polynomial approximations of functions:

$$nf(x) \approx T_n(x) = \sum_{k=1}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Letting $n \to \infty$ yields a power series called a *Taylor series*:

$$\sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

We say that this is the *series of* f(x) if it converges to f(x). If a=0, then a Taylor series is called a *Maclaurin series*.

Example

Find the Maclaurin series of $f(x) = e^x$.

Since $f^{(n)}(x) = e^x$ for all $n \in \mathbb{N}$, thus

$$f(x) = \sum_{k=0}^{\infty} c_k x^k = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

That is,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

To find the IOC, by the ratio test,

$$\lim_{k \to \infty} \left| \frac{c_{k+1}}{c_k} \right| = \lim_{k \to \infty} \left| \frac{x^{k+1}/(k+1)!}{x^k/k!} \right| = \lim_{n \to \infty} \left| \frac{x}{k+1} \right|$$
$$= |x| \lim_{k \to \infty} \frac{1}{k+1} = 0 \text{ for all } x \in \mathbb{R}$$

Thus the IOC is $(-\infty, \infty)$.

Example

Find the Maclaurin series of $f(x) = \cos x$.

Note that

$$f^{(n)}(x) = \begin{cases} \cos x, & n = 4k \\ -\sin x, & n = 4k+1 \\ -\cos x, & n = 4k+2 \end{cases}, \qquad k \in \mathbb{N}$$
$$\sin x, & n = 4k+3$$

thus

$$f^{(n)}(0) = \begin{cases} 1, & n = 4k \\ -1, & n = 4k + 2, & k \in \mathbb{N} \setminus \{0\} \\ 0, & o/w \end{cases}$$

Hence

$$\cos x = \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Example (Cont.)

To find the IOC, by the ratio test,

$$\lim_{k \to \infty} \left| \frac{c_{k+1}}{c_k} \right| = \lim_{k \to \infty} \left| \frac{(-1)^{k+1} x^{2(k+1)} / (2(k+1))!}{(-1)^k x^{2k} / (2k)!} \right| = \lim_{n \to \infty} \frac{(2k)!}{2k+2} |x|^2$$
$$= |x|^2 \lim_{k \to \infty} \frac{1}{(2k+1)(2k+2)} = 0 \text{ for all } x \in \mathbb{R}$$

Thus the IOC is $(-\infty, \infty)$.

Example

Find the Maclaurin series of $f(x) = x \cos x$.

Note that

$$\cos x = \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

then

$$x\cos x = x\sum_{k=1}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k)!}$$

Theorem

A real power series may be integrated or differentiated any number of times within the interval of convergence. In particular, a function represented by a power series has derivatives of all orders. Specifically, If the power series $\sum c_n(x-a)^n$ has radius of convergence R>0,

(i)
$$\frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} [c_n (x-a)^n] = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$

(ii)
$$\int \left[\sum_{n=0}^{\infty} c_n(x-a)^n\right] = \sum_{n=0}^{\infty} \int c_n(x-a)^n = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Remark

The radius of convergence remains the same when a power series is differentiated or integrated, this does not mean that the interval of convergence ∞

remains the same. For example, consider
$$f(x) := \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
, f' , and f'' .

Example

Given power series

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$$

then by differentiating both sides, we get

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + x^3 + \dots = \sum_{n=1}^{\infty} nx^n = \sum_{n=0}^{\infty} (n+1)x^n$$

Example

Given power series

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n$$

then by integrating both sides, we get

$$\ln(1+x) = \int \frac{dx}{1+x} = \int (1-x+x^2-x^3+\cdots) dx$$
$$= C+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots$$
$$= C+\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \qquad |x|<1$$

Let x = 0, we have ln(1 + 0) = C, thus C = 0.

Example

Find a power series representation for $f(x) = \arctan x$.

Observe that $f'(x) = 1/(1+x^2)$. Then

$$\arctan x = \int \frac{dx}{1+x^2} = \int (1-x^2+x^4-x^6+\cdots) dx$$
$$= C+x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots$$

Let x = 0, then we have $C = \arctan 0 = 0$. Therefore

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$