DMML, 23 Jan 2019

Decision Trees

Hems: Attubutes As. Az. --, Ave, Categny

Traming dera -> Model

Green (an, an, -, an), predict ce C

Building a model - minform algorithm

Spenfic training data > Spenfic model

Decision trees

- . Ask questions about attribute values
 - Adaphve next question depends on previous answers
- · Sach question prine available possibilities
 - · Stop when
 - Current set has a uniform class
 - Exhausted set of attributes to greny.
 Answer is majority value

Which question to ask?	
-Prefer small trees	
- Exactly computing smallest tree is	NP complete
- Instead, greedy beurish'c	

Measure: "Impurity" ~ uncertainty

Minority % Error Rate Naive measure :

More sophisticated meas	ures of imprinity uncertainty
Information theory	
{a,b,c,d,-,23	Send a string of chars in binary lightarrow = 5 bits / char
Umform 812e en cod	ly = 5 bits/char
Message of N char	
In fact - letters	do not occur uniformly
Use variable lengt	n encoding - shorter seq for freq letters

Clarde Shannon

- uniform 2 5it code N char-> 2N 5its

Uniform en woding

Non umform

{a, b, c, d} 200 characters 1/2 1/4 //8 Uniform = 100 a's 56 l's. 25 c,d Nonuniform : = 350 1.75 bts/char Reverse analysis => ls thus optimal?

Distribution of characters reflects uncertainty in their value

Shannon entropy

Probabilities

a, az... ak

P1 P2 --- PK

2 pi=1

Entropy det n - Stilog2 pi

Entropy measures uncertainty

a₁ a₂
1/2 1/2

 $-\left(\frac{1}{2}\log\frac{1}{2} + \frac{1}{2}\log\frac{1}{2}\right)$

 $0 \quad 1 \quad 2 \quad (0 \log 0 + 1 \log 1)$ $= 0 \quad \text{assume } 0$ $1 \quad 0$

Entropy pros a

For an, an max entropy is $Pi = \frac{1}{k}$ a b c d $\frac{1}{2}\log\frac{1}{2} + \frac{1}{4}\log\frac{1}{4}$ $\frac{1}{2}\log\frac{1}{8}\log\frac{1}{8}$ $\frac{1}{4}\log\frac{1}{8}\log\frac{1}{8}$

Entropy for impurity

8 Y
8 Y
8 N Entropy: - (8 log = +3 log 3)

- Entropy works better than Ross Quinlan Other instrono on many C4.5 benchnarks

ani Index (Economies)

1 - 2 Pi2

G. I=1-1=1

P1=P2--= PK= 1

1-K. L

CART Inplemented in R

Reduction in Impurity = Information Gain n Ønode E Weighted 11+12+13+14=n

Special Case What if Ai = Aadhaar No? Split on Addbaar n (Adhar?) -> whave = 0 E=0 frall Ci

Measure entropy of an attribute Ardhaar = knows - 2 teb5 te Moderate Information Gami (Absolute) by entropy of attribute Assolute Entropy Gam Information Entropy of Attribute Cain

Borrowed Entropy from Inf. Theory
Why does it make sense?
Because it works!