1. Loiuville's Theorem: If a function f is entire and bounded in the complex plane, then f(z) is constant throughout the plane.

Let M be an upper bound of f. Since f is entire, for any $r \in \mathbb{R}$, by Cauchy's Inequality, for any $z_0 \in \mathbb{C}$, $0 \le |f'(z_0)| \le \frac{M}{r}$.

Since $\lim_{r\to\infty}\frac{M}{r}=0$, $f'(z_0)=0$. So f'(z)=0 for all $z\in\mathbb{C}$, so f(z) is constant. \square