POROČILO ZA 2. SEMINARSKO NALOGO PRI PREDMETU UMETNA INTELIGENCA

Šolsko leto 2020/21

Nik Prinčič (63190240)

1.	Pro	ostor stanj
2.	Im	plementirani algoritmi
:	2.1.	BFS
:	2.2.	DFS
:	2.3.	IDDFS
:	2.4.	A*
:	2.5.	Hill Climbing
:	2.6.	Best First
3.	Pri	merjava učinkovitosti algoritmov
;	3.1.	Primerjava algoritmov, ki dobijo optimalno pot
3	3.2.	Primerjava učinkovitosti algoritma A* z uporabo različnih hevristik
	3.1. posar	Časovno in prostorsko najbolj učinkoviti algoritmi (optimalni in neoptimalni) na meznih primerih

1. Prostor stanj

Prostor stanj je predstavljen z matrikami, ki vsebujejo trenutno postavitev škatel. Iz vsakega stanja pa se naslednike lahko razvije tako, da se vse vrhnje škatle premakne na vsa dovoljena mesta.

Primer:

Začetno stanje:

Nasledniki se bodo generirali v naslednjem zaporedju:

Matrike sem implementiral tako, da matrika hrani indekse že premaknjenih stolpcev, tako da se iz enega stanja ne bi dvakrat razvilo isto stanje.

Pri algoritmih BFS, DFS, Hill climbing in Best first sem razvijanje novih stanj omejil tudi tako da se eno stanje lahko razvije samo enkrat, pri algoritmu IDDFS sem pa razvijanje omejil tako da se v trenutnem skladu ne smeta pojaviti dve isti stanji.

2. Implementirani algoritmi

Implementiral sem 6 algoritmov in pri informiranih algoritmih uporabil 5 različnih hevristik. Vse algoritme sem implementiral iterativno v jeziku Python. Uspešnost algoritmov pa sem meril z sledečimi metrikami:

- Število opravljenih korakov do cilja (Steps)
- Število razvitih stanj/vozlišč (Total nodes generated)
- Število stanj/vozlišč hranjenih v spominu v trenutku ko je bil najden cilj (Nodes in memory)
- Maksimalno število hranjenih stanj/vozlišč v spominu tekom izvajanja (Max. nodes in memory)

Optimalne premike sem dobil z uporabo DFS, IDDFS (izvedel sem samo do 3 primera zaradi predolgega trajanja) in A* z uporabo hevristike »misplaced«.

Optimalne rešitve so sledeče:

Primer	1	2	3	4	5
	['', '', ''] ['', '', 'A'] ['B', ''', 'C'] (1, 0) [''', ''', ''] ['B', 'A', 'C'] (2, 1) [''', '', '']	[' ', ' ', ' '] [' B', ' E', ' '] [' A', ' C', ' D'] None [' ', 'B', ' '] [' A', 'C', 'D'] (0, 1) [' ', 'B', ' '] [' ', 'B', 'A'] [' ', 'C', 'D'] (0, 2) [' ', 'C', 'D'] (1, 0) [' ', 'E', 'A'] [' B', 'C', 'D'] (1, 2) [' ', '', 'E'] [' A', 'C', 'D'] (1, 2) [' ', '', 'A'] [' B', 'C', 'D'] (1, 2) [' ', '', 'A'] [' B', 'C', 'D'] (1, 0) [' E', '', 'A'] [' B', 'A', 'D'] (2, 0) [' E', '', 'A'] [' B', 'A', 'D'] (2, 1) [' E', '', ''] [' B', 'A', 'D'] (2, 1) [' E', '', ''] [' B', 'A', 'D'] (2, 1) [' C', 'D', ''] [' B', 'A', 'B'] (0, 2)	[', ', ', ', ', '] ['e, 'e', ', ', '] ['a', 'c', '0', 'B'] None [', ', ', ', ', ']	['B', 'D', 'F', ', ', '] ['A', 'C', 'E', ', ', '] ['A', 'C', 'E', ', ', '] ['A', 'C', 'E', 'B', ', '] ['A', 'C', 'E', 'B', 'A'] (0, 4) [', ', ', 'E', 'B', 'A'] (1, 0) [', ', ', 'F', 'C', '] ['D', 'C', 'E', 'B', 'A'] (1, 3) [', ', ', 'F', 'C', '] [', 'B', 'A'] (2, 0) [', 'B', 'A'] (2, 0) [', 'E', 'B', 'A'] (2, 0) [', 'E', 'B', 'A'] (2, 0) [', 'E', 'C', 'B', 'A'] (3, 1) [', 'B', 'C', 'E', 'B', 'A'] (3, 1) [', 'C', 'E', 'C', '] [', 'C', 'E', 'C', 'A'] (3, 0) ['A', 'C', 'E', 'C', 'C'] ['B', 'D', 'F', 'B', 'A'] (3, 0) ['A', 'C', 'E', 'C', 'C'] ['B', 'D', 'F', 'C', 'C'] ['B', 'D', 'B', 'C'] ['B', 'D', 'F', 'C', 'C'] ['B', 'D', 'B', 'C']	[',',',',',',',',','] ['A', 'C', 'D', 'E', 'F'] None [',',',',',',',','] ['A', 'C', 'B', 'F', 'F'] (0, 2) [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',',','] [',',',',',',',',','] [',',',',',',',',','] [',',',',',',',',',','] [',',',',',',',',',','] [',',',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',',','] [',',',',',',','] [',',',',',',',','] [',',',',',',','] [',',',',',',','] [',',',',',',','] [',',',',',',','] [',',',',',',','] [',',',',',',',']
Število korakov	5	9	8	12	8

2.1. BFS

Algoritem sem implementiral iterativno z uporabo vrste (queue). Razvijanje novih stanj sem omejil tako, da se stanje ki je že bilo razvito ne sme več razviti. S takim pristopom sem dobil sledeče rezultate:

Case: 1	Time:	0.00798 Steps:	5 T	Total nodes generated:	54	ı	Nodes in memory:	20	ı	Max.	nodes in memory: 20
Case: 2	Time:	0.13863 Steps:	9 T	Total nodes generated:	797	ı	Nodes in memory:	242	П	Max.	nodes in memory: 241
Case: 3	Time:	5.8743 Steps:	8 T	Total nodes generated:	21825	ı	Nodes in memory:	10904	П	Max.	nodes in memory: 10904
Case: 4	Time:	16.00621 Steps:	12 T	Total nodes generated:	32399	Ī	Nodes in memory:	21	Ī	Max.	nodes in memory: 10691
Case: 5	Time:	40.08436 Steps:	8 T	Total nodes generated:	99361	ı	Nodes in memory:	47870	I	Max.	nodes in memory: 47872

2.2. DFS

Algoritem sem implementiral iterativno z uporabo sklada (stack). Razvijanje novih stanj sem omejil tako, da se stanje ki je že bilo razvito ne sme več razviti, zavedam da to ni ravno najboljša rešitev saj se tako lahko zgodi da se stanje najprej razvije na večji globini in se zaradi tega ne more več razviti na manjši globini, a glede na to da DFS ne išče optimalne rešitve se mi je zdela pridobljena časovna pohitritev vredna teg. S takim pristopom sem dobil sledeče rezultate:

Case: 1	Time:	0.00598	S	teps: 9)	Total noo	des generated:	23	П	Nodes in memory:	14	П	Max. nodes in memory: 14
Case: 2	Time:	0.13663	S	teps: 398	3	Total noo	des generated:	1074	1	Nodes in memory:	570	1	Max. nodes in memory: 570
Case: 3	Time:	4.26061	S	teps: 644	3	Total noo	des generated:	29060	1	Nodes in memory:	22507	1	Max. nodes in memory: 22507
Case: 4	Time:	4.28355	S	teps: 7071	1	Total noo	des generated:	29922	1	Nodes in memory:	21610	1	Max. nodes in memory: 21610
Case: 5	Time:	0.02294	S	teps: 29)	Total noo	des generated:	272	1	Nodes in memory:	241	1	Max. nodes in memory: 241

2.3. IDDFS

Algoritem sem implementiral iterativno kliče DFS z omejeno globino in jo po vsaki iteraciji poveča za 1. Razvijanje novih stanj sem omejil tako, da se stanje ki je v trenutni poti, ne sme več razviti, ko DFS zaide v slepo ulico in se vrne na manjšo globino se lahko že nastala stanja na večji globini spet ponovijo. Časovna zahtevnost tega algoritma seveda eksponentno narašča, zato sem uspel izvesti algoritem samo na prvih treh primerih in dobil sledeče rezultate:

Case: 1	Time:	0.03092	Steps:	5	Total nodes generated:	335	Nodes in memory:	8 Max. nodes in memory: 13
Case: 2	Time:	2.56714	Steps:	9	Total nodes generated:	29082	Nodes in memory:	13 Max. nodes in memory: 25
Case: 3	Time:	534.98595	Steps:	8	Total nodes generated:	6841338	Nodes in memory:	37 Max. nodes in memory: 71

2.4. A*

Pri algoritmu A* in tudi pri naslednjih dveh informiranih algoritmih sem uporabil sledeče hevristike:

- row: za vsako škatlo upošteva absolutno razliko vertikalne pozicije škatle v trenutnem stanju in končnem/začetnem
- column: za vsako škatlo upošteva absolutno razliko horizontalne pozicije škatle v trenutnem stanju in končnem/začetnem
- manhattan: Manhatanska razdalja med škatlama v trenutnem in končnem/začetnem stanju
- euclidean: Evklidska razdalja med škatlama v trenutnem in končnem/začetnem stanju
- misplaced: za vsako škatlo ki ni na enakem mestu upošteva njeno vertikalno pozicijo

Algoritem A* sem implementiral s pomočjo prioritetne vrste (priority queue), ki sem jo uporabil kot »open« in množico (set), ki sem jo uporabil kot »closed«. Algoritem sem pognal z vsemi hevristikami, a samo z hevristiko »misplaced« sem dobil optimalno pot na vseh primerih.

Uporabljena hevristika: row

Case: 1	Time:	0.00698		Steps:	5	Total n	odes generated:	98	Ι	Nodes in memory:	50		Max.	nodes	in memory:	50
Case: 2	Time:	0.1506	1	Steps:	9	Total n	odes generated:	2274	1	Nodes in memory:	785	1	Max.	nodes	in memory:	785
Case: 3	Time:	5.46938	Т	Steps:	12	Total n	odes generated:	71555	П	Nodes in memory:	21764	Т	Max.	nodes	in memory:	21764
Case: 4	Time:	20.09229	Т	Steps:	12	Total n	odes generated:	305994	П	Nodes in memory:	32400	Т	Max.	nodes	in memory:	32400
Case: 5	Time:	135.81296	Ĭ.	Steps:	9	Total n	odes generated:	1404254	Ī	Nodes in memory:	133185	ī	Max.	nodes	in memory:	133185

Uporabljena hevristika: column

Case: 1	Time:	0.02094	Steps:	5	l	Total nodes generated:	139	Π	Nodes in memory:	56	Т	Max.	nodes in memory: 56
Case: 2	Time:	0.16256	Steps:	12	ı	Total nodes generated:	1803	Т	Nodes in memory:	716	Π.	Max.	nodes in memory: 716
Case: 3	Time:	21.47709	Steps:	11	ı	Total nodes generated:	284061	Т	Nodes in memory:	46132	Π.	Max.	nodes in memory: 46132
Case: 4	Time:	9.19243	Steps:	12	ı	Total nodes generated:	21267	Т	Nodes in memory:	6641	Π.	Max.	nodes in memory: 6641
Case: 5	Time:	16.9831	Stens:	11	Ī	Total nodes generated:	164543	ī	Nodes in memory:	42097	Т.	Max.	nodes in memory: 42097

Uporabljena hevristika: misplaced

Case: 1 Time:	0.00598 Steps:	5 Total nodes generated:	102 Nodes in memory:	44 Max. nodes in memory: 44
Case: 2 Time:	0.19448 Steps:	9 Total nodes generated:	2610 Nodes in memory:	917 Max. nodes in memory: 917
Case: 3 Time:	3.07138 Steps:	8 Total nodes generated:	46860 Nodes in memory:	14119 Max. nodes in memory: 14119
Case: 4 Time:	24.86224 Steps:	12 Total nodes generated:	314652 Nodes in memory:	32400 Max. nodes in memory: 32400
Case: 5 Time:	17.96144 Steps:	8 Total nodes generated:	221227 Nodes in memory:	49711 Max. nodes in memory: 49711

Uporabljena hevristika: manhattan

Case: 1 Time:	0.01097 Steps:	5	Total nodes generated:	148	Nodes in memory:	58	Max. nodes in memory: 58
Case: 2 Time:	0.1875 Steps:	9	Total nodes generated:	2227	Nodes in memory:	798	Max. nodes in memory: 798
Case: 3 Time:	25.16074 Steps:	8	Total nodes generated:	236676	Nodes in memory:	44169	Max. nodes in memory: 44169
Case: 4 Time:	10.22816 Steps:	12	Total nodes generated:	107570	Nodes in memory:	22051	Max. nodes in memory: 22051
Case: 5 Time:	49.97194 Steps:	9	Total nodes generated:	478943	Nodes in memory:	87551	Max. nodes in memory: 87551

Uporabljena hevristika: euclidean

		0.04005		-		454		50		
case: 1	Ilme:	0.01895	Steps:	۱ د	Total nodes generated:	154	Nodes in memory:	58	Max.	. nodes in memory: 58
Case: 2	Time:	0.21542	Steps:	9	Total nodes generated:	2244	Nodes in memory:	799	Max	. nodes in memory: 799
Case: 3	Time:	21.87322	Steps:	8	Total nodes generated:	183221	Nodes in memory:	38063	Max.	. nodes in memory: 38063
Case: 4	Time:	15.53251	Steps:	12	Total nodes generated:	154449	Nodes in memory:	27786	Max.	. nodes in memory: 27786
Case: 5	Time:	54.17519	Steps:	9	Total nodes generated:	483756	Nodes in memory:	85407	Max.	. nodes in memory: 85407

2.5. Hill Climbing

Algoritem sem implementiral z uporaba sklada (stack) na katerega sem dodajal glede na hevristično oceno urejene naslednike, tako kot A* sem tudi ta algoritem izvedel z vsemi hevristikami in tudi tukaj dobil različne rezultate.

Uporabljena hevristika: row

Case: 1 Time:	: 0.00199 Steps:	6 Total nodes generated:	16 Nodes in memory:	10 Max. nodes in memory: 10
Case: 2 Time:	: 0.3002 Steps:	57 Total nodes generated:	1431 Nodes in memory:	121 Max. nodes in memory: 652
Case: 3 Time:	: 0.25682 Steps:	360 Total nodes generated:	2278 Nodes in memory:	1919 Max. nodes in memory: 1919
Case: 4 Time:	: 0.28076 Steps:	491 Total nodes generated:	2652 Nodes in memory:	2162 Max. nodes in memory: 2162
Case: 5 Time:	: 0.53409 Steps:	710 Total nodes generated:	4139 Nodes in memory:	3429 Max. nodes in memory: 3429

Uporabljena hevristika: column

Case: 1 Time:	0.00449 Steps:	11 Total nodes generated:	32 Nodes in memory:	17 Max. nodes in memory: 17
Case: 2 Time:	0.15359 Steps:	443 Total nodes generated:	1121 Nodes in memory:	532 Max. nodes in memory: 532
Case: 3 Time:	0.24036 Steps:	396 Total nodes generated:	2157 Nodes in memory:	1761 Max. nodes in memory: 1761
Case: 4 Time:	0.19747 Steps:	326 Total nodes generated:	1835 Nodes in memory:	1510 Max. nodes in memory: 1510
Case: 5 Time:	0.71661 Steps:	973 Total nodes generated:	6016 Nodes in memory:	5044 Max. nodes in memory: 5044

Uporabljena hevristika: misplaced

Case: 1	Time:	0.00199	Steps:	8	Total nodes generated:	20 Nodes in memory:	10	Max. nodes in memory: 10
Case: 2	Time:	0.00798	Steps:	18	Total nodes generated:	42 Nodes in memory:	25	Max. nodes in memory: 25
Case: 3	Time:	0.01097	Steps:	20	Total nodes generated:	81 Nodes in memory:	62	Max. nodes in memory: 62
Case: 4	Time:	0.05984	Steps:	115	Total nodes generated:	629 Nodes in memory:	515	Max. nodes in memory: 515
Case: 5	Time:	0.12666	Steps:	165	Total nodes generated:	901 Nodes in memory:	737	Max. nodes in memory: 737

Uporabljena hevristika: manhattan

Case: 1 Time:	0.00199 Steps:	8 Total nodes generated:	20 Nodes in memory:	12 Max. nodes in memory: 12
Case: 2 Time:	0.02793 Steps:	87 Total nodes generated:	251 Nodes in memory:	161 Max. nodes in memory: 161
Case: 3 Time:	0.06782 Steps:	95 Total nodes generated:	630 Nodes in memory:	536 Max. nodes in memory: 536
Case: 4 Time:	0.08178 Steps:	136 Total nodes generated:	829 Nodes in memory:	694 Max. nodes in memory: 694
Case: 5 Time:	0.93251 Steps:	1093 Total nodes generated:	6758 Nodes in memory:	5666 Max. nodes in memory: 5666

Uporabljena hevristika: euclidean

Case: 1 Time:	0.00299 Steps:	11 Total nodes generated:	33 Nodes in memory:	17 Max. nodes in memory: 17
Case: 2 Time:	0.01596 Steps:	54 Total nodes generated:	152 Nodes in memory:	96 Max. nodes in memory: 96
Case: 3 Time:	0.19997 Steps:	238 Total nodes generated:	1542 Nodes in memory:	1305 Max. nodes in memory: 1305
Case: 4 Time:	0.02693 Steps:	48 Total nodes generated:	289 Nodes in memory:	242 Max. nodes in memory: 242
Case: 5 Time:	0.10622 Steps:	133 Total nodes generated:	818 Nodes in memory:	686 Max. nodes in memory: 686

2.6. Best First

Algoritem sem implementiral z uporaba prioritetne vrste (priority queue)v katero dodajam naslednike, njihovo prioriteto pa določa hevristična ocena, tako kot A* sem tudi ta algoritem izvedel z vsemi hevristikami in tudi tukaj dobil različne rezultate.

Uporabljena hevristika: row

Case: 1 Time:	0.00598 Steps:	6 Total nodes generated:	43 Nodes in memory:	19 Max. nodes in memory: 19
Case: 2 Time:	0.09924 Steps:	12 Total nodes generated:	465 Nodes in memory:	203 Max. nodes in memory: 203
Case: 3 Time:	0.51114 Steps:	12 Total nodes generated:	3154 Nodes in memory:	2421 Max. nodes in memory: 2421
Case: 4 Time:	1.29059 Steps:	14 Total nodes generated:	6362 Nodes in memory:	4112 Max. nodes in memory: 4112
Case: 5 Time:	0.22939 Steps:	13 Total nodes generated:	1583 Nodes in memory:	1264 Max. nodes in memory: 1264

Uporabljena hevristika: column

Case: 1 Time:	0.00698 Steps:	7 Total nodes generated:	50 Nodes in memory:	18 Max. nodes in memory: 18
Case: 2 Time:	0.00997 Steps:	13 Total nodes generated:	93 Nodes in memory:	57 Max. nodes in memory: 57
Case: 3 Time:	0.04488 Steps:	17 Total nodes generated:	333 Nodes in memory:	272 Max. nodes in memory: 272
Case: 4 Time:	0.51514 Steps:	12 Total nodes generated:	3318 Nodes in memory:	2481 Max. nodes in memory: 2481
Case: 5 Time:	1.47258 Steps:	14 Total nodes generated:	8847 Nodes in memory:	6755 Max. nodes in memory: 6755

Uporabljena hevristika: misplaced

Case: 1	Time:	0.00399 Steps:	5	Total nodes generated:	28 Nodes in memory:	13 Max. nodes in memory: 13
Case: 2	Time:	0.00399 Steps:	11	Total nodes generated:	36 Nodes in memory:	22 Max. nodes in memory: 22
Case: 3	Time:	0.00898 Steps:	12	Total nodes generated:	63 Nodes in memory:	50 Max. nodes in memory: 50
Case: 4	Time:	0.02444 Steps:	12	Total nodes generated:	225 Nodes in memory:	183 Max. nodes in memory: 183
Case: 5	Time:	0.06981 Steps:	19	Total nodes generated:	334 Nodes in memory:	268 Max. nodes in memory: 268

Uporabljena hevristika: manhattan

Case: 1	Time:	0.00798 Steps:	9	Total nodes generated:	50 Nodes in memory:	16 Max. nodes in memory: 16
Case: 2	Time:	0.0359 Steps:	30	Total nodes generated:	258 Nodes in memory:	145 Max. nodes in memory: 145
Case: 3	Time:	0.0404 Steps:	19	Total nodes generated:	250 Nodes in memory:	211 Max. nodes in memory: 211
Case: 4	Time:	4.25219 Steps:	18	Total nodes generated:	1539 Nodes in memory:	1233 Max. nodes in memory: 1233
Case: 5	Time:	0.38996 Steps:	50	Total nodes generated:	2435 Nodes in memory:	1960 Max. nodes in memory: 1960

Uporabljena hevristika: euclidean

Case: 1	Time:	0.00698	Steps:	9	1	Total nodes generated:	43	1	Nodes in memory:	15	Ι	Max. nodes in memory: 15
Case: 2	Time:	0.02793	Steps:	32	1	Total nodes generated:	212	1	Nodes in memory:	127	Т	Max. nodes in memory: 127
Case: 3	Time:	0.04089	Steps:	19	1	Total nodes generated:	189	1	Nodes in memory:	163	Т	Max. nodes in memory: 163
Case: 4	Time:	0.24684	Steps:	25	П	Total nodes generated:	1885	Т	Nodes in memory:	1494	Т	Max. nodes in memory: 1494
Case: 5	Time:	0.06383	Steps:	31	П	Total nodes generated:	435	1	Nodes in memory:	362	Ι	Max. nodes in memory: 362

3. Primerjava učinkovitosti algoritmov

Na spodnjem grafu lahko približno razberemo, da sta maksimalna poraba pomnilnika in časovna zahtevnost algoritmov linearno povezana.

3.1. Primerjava algoritmov, ki dobijo optimalno pot

Iz spodnjih grafov (skale so logaritemske zaradi velikega razpona vrednosti) lahko razberemo, da je prostorska zahtevnost najboljša (najmanjša) pri algoritmu IDDFS, časovna zahtevnost je pa odvisno od primera boljša pri BFS ali pa A*, sklepam da bi A* pri bolj kompleksnih (večjih) primerih imel veliko boljšo časovno zahtevnost v primerjavi z BFS, pri primerih, kjer pa je rešitev na dokaj majhni globini, pa je BFS boljši, zardi manjšega »overhead-a« (računanje hevristike, premikanje med open in closed, ...), to razliko bi se mogoče dalo rešiti z izbiro boljše hevristike, a se sam nisem spomnil boljše.

3.2. Primerjava učinkovitosti algoritma A* z uporabo različnih hevristik

Iz spodnjih grafov (skale so logaritemske zaradi velikega razpona vrednosti) lahko razberemo, da izbira dobre hevristike pripomore k boljši prostorski in časovni zahtevnosti, poleg tega pa samo ena od hevristik (»misplaced«) najde optimalno rešitev. Različne hevristike sicer na večini primerih dobijo optimalno pot, ne pa na vseh.

3.1. Časovno in prostorsko najbolj učinkoviti algoritmi (optimalni in neoptimalni) na posameznih primerih

Primer 1:

```
Test case 1:

MAX max. memory usage
algorithm a_star_manhattan
max_mem_usage 58

Name: 28, dtype: object

MIN max. memory usage
algorithm hill_climbing_row
max_mem_usage 10

Name: 38, dtype: object

MAX execution duration
algorithm iddfs
time 0.03092

Name: 10, dtype: object

MIN execution duration
algorithm hill_climbing_row
time 0.030199

Name: 38, dtype: object
```

Primer 4:

```
Test case 4:

MAX max. memory usage
algorithm a_star_row
max_mem_usage 32400

Name: 16, dtype: object

MIN max. memory usage
algorithm hill_climbing_euclidean
max_mem_usage 242

Name: 61, dtype: object

MAX execution duration
algorithm a_star_misplaced
time 24.8622

Name: 26, dtype: object

MIN execution duration
algorithm hill_climbing_euclidean
time a0.02693

Name: 61, dtype: object
```

Primer 2:

```
Test case 2:

MAX max. memory usage
algorithm a_star_misplaced
max_mem_usage 917

Name: 24, dtype: object

MIN max. memory usage
algorithm iddfs
max_mem_usage 25

Name: 11, dtype: object

MAX execution duration
algorithm iddfs
time 2.56714

Name: 11, dtype: object

MIN execution duration
algorithm iddfs
time 0.66794

Name: 49, dtype: object
```

Primer 5:

```
Test case 5:
MAX max. memory usage
algorithm a_star_row max_mem_usage 133185
Name: 17, dtype: object
MIN max. memory usage
algorithm dfs
max_mem_usage 241
Name: 9, dtype: object
MAX execution duration
algorithm a_star_row
               135.813
Name: 17, dtype: object
MIN execution duration
algorithm
             dfs
time
            0.02294
Name: 9, dtype: object
```

Primer 3:

```
Test case 3:

MAX max. memory usage
algorithm a_star_column
max_mem_usage 46132

Name: 20, dtype: object

MIN max. memory usage
algorithm hill_climbing_misplaced
max_mem_usage 62

Name: 50, dtype: object

MAX execution duration
algorithm iddfs
time 534.986

Name: 12, dtype: object

MIN execution duration
algorithm hill_climbing_misplaced
time 0.01097

Name: 50, dtype: object
```