Институт по математика и информатика – БАН Съюз на математиците в България Фондация Георги Чиликов

Седмица на олимпийската математика на ИМИ София, 3-8 януари 2023 г. Условия, кратки решения и критерии за оценяване

Задача 1. Даден е триъгълник ABC с BC > AB > AC. Нека точките B_1 и C_1 са на отсечките AC и AB съответно и отсечките BB_1 и CC_1 се пресичат в точка G. Описаната около триъгълника BB_1C окръжност пресича отсечката AB за втори път в точката X, а описаната около триъгълника BC_1C окръжност пресича отсечката BB_1 за втори път в точката P. Допирателната в G към описаната около триъгълника BGC окръжност пресича отсечката CP в точка CP окръжност пресича отсечката CP в точка CP окръжност пресича отсечката CP в точка CP окръжност пресича отсечката CP за втори път в точката CP а правите CP и CP и CP окръжност пресича отсечката CP за втори път в точката CP а правите CP и CP и CP окръжност пресича отсечката CP за втори път в точката CP а правите CP и CP и CP окръжност пресича отсечката CP за втори път в точката CP а правите CP и CP окръжност пресича отсечката CP за втори път в точката CP в точка CP окръжност пресича отсечката CP за втори път в точката CP в точка CP окръжност пресича отсечката CP за втори път в точката CP за правите CP и CP окръжност пресича отсечката CP за втори път в точката CP за правите CP за отсечката CP за отсе

Задача 2. В изпъкналия четириъгълник ABCD ъглите при върховете A и C са остри. Нека B_1 , B_2 , B_3 са петите на перпендикулярите от B към AD, AC и DC, съответно, и нека D_1 , D_2 , D_3 са петите на перпендикулярите от D към AB, AC и BC, съответно. Да се докаже, че окръжностите, описани около триъгълниците $B_1B_2B_3$ и $D_1D_2D_3$, се пресичат върху правата AC.

Задача 3. Даден е разностранен триъгълник ABC. Произволна окръжност ω_C се допира до правите CA и CB съответно в точките P и Q, като A е между C и P, B е между C и Q и ω_C и триъгълника ABC нямат общи точки. Окръжността Ω_C минава през A и B и се допира до ω_C в точка T_C (като ω_C е във вътрешността на Ω_C). Правите PQ и AB се пресичат в точката K_C , а правата K_CT_C пресича ω_C за втори път в точката L_C . Аналогично се дефинират точките L_A и L_B (като произволните окръжности ω_A , ω_B и ω_C са независими една от друга). Да се докаже, че правите AL_A , BL_B и CL_C се пресичат в една точка.