1.

Amplification of a Broadband Signal. The transition between two energy levels exhibits a Lorentzian lineshape of central frequency $\nu_0 = 5 \times 10^{14}$ with a linewidth

 $\Delta \nu = 10^{12}$ Hz. The population is inverted so that the maximum gain coefficient $\gamma(\nu_0) = 0.1 \text{ cm}^{-1}$. The medium has an additional loss coefficient $\alpha_s = 0.05 \text{ cm}^{-1}$, which is independent of ν . Approximately how much loss or gain is encountered by a light wave in 1 cm if it has a uniform power spectral density centered about ν_0 with a bandwidth $2\Delta\nu$?

The Two-Level Pumping System. Write the rate equations for a two-level system, showing that a steady-state population inversion cannot be achieved by using direct optical pumping between levels 1 and 2.

Hint: R2=-R1=R

Resonant Absorption of a Medium in Thermal Equilibrium. A unity refractive index medium of volume 1 cm³ contains $N_a = 10^{23}$ atoms in thermal equilibrium. The ground state is energy level 1; level 2 has energy 2.48 eV above the ground state ($\lambda_o = 0.5 \, \mu$ m). The transition between these two levels is characterized by a spontaneous lifetime $t_{\rm sp} = 1$ ms, and a Lorentzian lineshape of width $\Delta \nu = 1$ GHz. Consider two temperatures, T_1 and T_2 , such that $k_B T_1 = 0.026$ eV and $k_B T_2 = 0.26$ eV.

- (a) Determine the populations N_1 and N_2 .
- (b) Determine the number of photons emitted spontaneously every second.
- (c) Determine the attenuation coefficient of this medium at $\lambda_o = 0.5 \,\mu\text{m}$ assuming that the incident photon flux is small.

Hint: there's no pumping, such that, N_0 is negative, which leads to gain coefficient becomes attenuation one.

Number of Longitudinal Modes. An Ar⁺-ion laser has a resonator of length 100 cm. The refractive index n = 1.

- (a) Determine the frequency spacing ν_F between the resonator modes.
- (b) Determine the number of longitudinal modes that the laser can sustain if the FWHM Doppler-broadened linewidth is $\Delta \nu_D = 3.5$ GHz and the loss coefficient is half the peak small-signal gain coefficient.

Threshold Population Difference for an Ar +-Ion Laser. An Ar +-ion laser has a 1-m-long resonator with 98% and 100% mirror reflectances. Other loss mechanisms are negligible. The atomic transition has a central wavelength $\lambda_o = 515$ nm, spontaneous lifetime $t_{\rm sp} = 10$ ns, and linewidth $\Delta \lambda = 0.003$ nm. The lower energy level has a very short lifetime and hence zero population. The diameter of the oscillating mode is 1 mm. Determine (a) the photon lifetime and (b) the threshold population difference for laser action.

Rate Equations in a Four-Level Laser. Consider a four-level laser with an active volume V=1 cm³. The population densities of the upper and lower laser levels are N_2 and N_1 and $N=N_2-N_1$. The pumping rate is such that the steady-state population difference N in the absence of stimulated emission and absorption is N_0 . The photon-number density is n and the photon lifetime is τ_p . Write the rate equations for N_2 , N_1 , N_2 , and n in terms of N_2 , the transition cross section $\sigma(\nu)$, and the times $t_{\rm sp}$, τ_1 , τ_2 , τ_{21} , and τ_p . Determine the steady state values of N and n.