第二十三届全国信息学奥林匹克竞赛

第二试

竞赛时间: 2006年7月26日上午8:00-13:00

题目名称	最大获利	聪明的导游	神奇口袋
目录	profit	guide	bag
可执行文件名	profit	N/A	bag
输入文件名	profit.in	guide1.in~guide10.in	bag.in
输出文件名	profit.out	guide1.out~guide10.out	bag.out
每个测试点时限	2 秒	N/A	1秒
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	无	有	无
题目类型	传统	提交答案	传统

提交源程序须加后缀

对于 Pascal 语言	profit.pas	N/A	bag.pas
对于 C 语言	profit.c	N/A	bag.c
对于 C++ 语言	profit.cpp	N/A	bag.cpp

注意: 最终测试时, 所有编译命令均不打开任何优化开关

除了提交答案题以外,其余两题只需要向输出文件输出一行,行内不得有多余空白字符,行末须有一个换行/回车符,格式不对不能得分。

最大获利

【问题描述】

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。

在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为 P_i ($1 \le i \le N$)。

另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为 A_i , B_i 和 C_i : 这些用户会使用中转站 A_i 和中转站 B_i 进行通讯,公司可以获益 C_i 。(1 $\leq i \leq M$, 1 $\leq A_i$, $B_i \leq N$)

THU 集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

【输入格式】

输入文件中第一行有两个正整数N和M。

第二行中有N个整数描述每一个通讯中转站的建立成本,依次为 P_1 , P_2 , ..., P_N 。

以下M行,第(i+2)行的三个数 A_i , B_i 和 C_i 描述第i个用户群的信息。所有变量的含义可以参见题目描述。

【输出格式】

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

【输入样例】

5 5

12345

123

234

133

142

453

【输出样例】

4

【样例说明】

选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。

【评分方法】

本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。

【数据规模和约定】

80%的数据中: $N \le 200$, $M \le 1000$ 。 100%的数据中: $N \le 5000$, $M \le 50000$, $0 \le C_i \le 100$, $0 \le P_i \le 100$ 。

聪明的导游

【问题描述】

小佳最近迷上了导游这个工作,一天到晚想着带游客参观各处的景点。正好 M 市在举行 NOI,来参观的人特别的多。不少朋友给小佳介绍了需要导游的人。

M 市有 n 个著名的景点,小佳将这些景点从 1 至 n 编号。有一些景点之间存在双向的路。小佳可以让游客们在任何一个景点集合,然后带着他们参观,最后也可以在任何一个景点结束参观。不过,来参观的游客们都不愿去已经参观过的地方。所以,小佳不能带游客们经过同一个景点两次或两次以上。

小佳希望你帮助他设计一个方案, 走可行的路线, 带游客们参观尽可能多的地方。

【输入格式】

输入文件为 guide1.in~guide10.in,第一行为两个整数 n,m,分别表示景点数和路的条数。接下来 m 行,每行两个整数 a,b,表示景点 a 和景点 b 之间有一条双向路。

【输出格式】

你需要将答案输出到 guide1.out~guide10.out 中,guide?.out 为对应 guide?.in 的答案。输出的第一行为 p,表示你能找到的路径所经过的景点个数。接下来 p 行,每行一个整数,按顺序表示你所找到的路径上的每一个景点。

【说明】

这是一道提交答案式的题目,你不需要提供任何源代码,只需要将自己的输 出文件放在与*.in 同一个目录即可。

【样例】

样例输入	样例输出
5 5	4
1 2	1
3 2	2
2 4	4
2 5	5
4 5	

【样例说明】

题目可能有多解,该样例有4个解,你只需输出其中任何一个解。

解 1	解 2	解 3	解 4
4	4	4	4
1	1	3	3
2	2	2	2
4	5	4	5
5	4	5	4

【评分方法】

你的评分将由你的答案与标准答案之间的差异来给定。设你的答案正确且参观的景点数为 x, 我们所给出的结果为 ans, 则按下表计算你的得分:

得分	条件	得分	条件
12	x > ans	5	$x \ge ans * 0.93$
10	x = ans	4	$x \ge ans * 0.9$
9	$x \ge ans - 1$	3	$x \ge ans * 0.8$
8	$x \ge ans - 2$	2	$x \ge ans * 0.7$
7	$x \ge ans - 3$	1	$x \ge ans * 0.5$
6	$x \ge ans * 0.95$	0	x < ans * 0.5

如果有多项满足,则取满足条件中的最高得分。

神奇口袋

【问题描述】

Pòlya 获得了一个奇妙的口袋,上面写着人类难以理解的符号。Pòlya 看得入了迷,冥思苦想,发现了一个神奇的模型(被后人称为 Pòlya 模型)。为了生动地讲授这个神奇的模型,他带着学生们做了一个虚拟游戏:

游戏开始时,袋中装入 a_1 个颜色为 1 的球, a_2 个颜色为 2 的球,…, a_t 个颜色为 t 的球,其中 $a_i \in Z^+(1 \le i \le t)$ 。

游戏开始后,每次严格进行如下的操作:

从袋中随机的抽出一个小球(袋中所有小球被抽中的概率相等), Pòlya 独自观察这个小球的颜色后将其<u>放回</u>,<u>然后再把</u>d 个与其颜色相同 的小球放到口袋中。

设 c_i 表示第 i 次抽出的小球的颜色 $(1 \le c_i \le t)$,一个游戏过程将会产生一个**颜 色序列** $(c_1, c_2, ..., c_n, ...)$ 。

Pòlya 把游戏开始时 t 种颜色的小球每一种的个数 $a_1,a_2,...,a_t$ 告诉了所有学生。然后他问学生:一次游戏过程产生的颜色序列满足下列条件的概率有多大?

$$c_{x_1} = y_1, c_{x_2} = y_2, L, c_{x_i} = y_i, L, c_{x_n} = y_n$$

其中 $0 < x_1 < x_2 < ... < x_n$, $1 \le y_i \le t$ 。 换句话说,已知 $(t, n, d, a_1, a_2, ..., a_t, x_1, y_1, x_2, y_2, ..., x_n, y_n)$,你要回答有多大的可能性会发生下面的事件:"**对所有k**, $1 \le k \le n$,第 x_k 次抽出的球的颜色为 y_k "。

【输入格式】

第一行有三个正整数 t, n, d; 第二行有 t 个正整数 $a_1,a_2,...,a_t$,表示游戏开始时口袋里 t 种颜色的球,每种球的个数。

以下n行,每行有两个正整数 x_i,v_i ,表示第 x_i 次抽出颜色为的 v_i 球。

【输出格式】

要求用分数形式输出(显然此概率为有理数)。输出文件包含一行,格式为:分子/分母。同时要求输出最简形式(分子分母互质)。特别的,概率为0应输出

0/1, 概率为 1 应输出 1/1。

【样例】

样例1的输入	样例 1 的输出
2 3 1	1/12
1 1	
1 1	
22	
3 1	

样例 2 的输入	样例 2 输出
3 1 2	1/3
1 1 1	
5 1	

【样例1说明】

初始时,两种颜色球数分别为(1, 1),取出色号为 1 的球的概率为 1/2;第二次取球之前,两种颜色球数分别为(2, 1),取出色号为 2 的球的概率为 1/3;第三次取球之前,两种颜色球数分别为(2, 2),取出色号为 1 的球的概率为 1/2,所以三次取球的总概率为 1/12。

【数据规模和约定】

 $1 \le t, n \le 1000,$ $1 \le a_k, d \le 10,$ $1 \le x_1 < x_2 < ... < x_n \le 10000,$ $1 \le y_k \le t$

【评分方法】

本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。