Lista 1 Introdução à Álgebra Linear

IPRJ/UERJ - Prof. Pedro Mineiro Cordoeira - pedro.cordoeira@iprj.uerj.br
novembro de 2024

Exercícios

 \bullet 1. Mostre que as matrizes a, b e c são linearmente independentes.

$$\mathbf{a} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \mathbf{a} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{a} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

• 2. Prove que os polinômios são linearmente independentes.

$$p(x) = x^3 - 5x^2 + 1$$
 $q(x) = 2x^4 + 5x - 6$ $r(x) = x^2 - 5x + 2$

- 3. Mostre que os vetores $\mathbf{u}=(1,1,1), \mathbf{v}=(1,2,1)$ e $\mathbf{w}=(2,1,2)$ são linearmente dependentes.
- 4. Mostre que os vetores $\mathbf{u}=(1,1)$, $\mathbf{v}=(-1,1)$ formam uma base de \mathbb{R}^2 . Exprima cada um dos vetores $\mathbf{e}_1=(1,0)$, $\mathbf{e}_2=(0,1)$ como combinação linear dessa base.
- 5. Considere o subespaço \mathbb{R}^4 gerado pelos vetores $\mathbf{v}_1 = (1, -1, 0, 0)$, $\mathbf{v}_2 = (0, 0, 1, 1)$, $\mathbf{v}_3 = (-2, 2, 1, 1)$ e $\mathbf{v}_4 = (1, 0, 0, 0)$. Verifique se (i) o vetor $(2, -3, 2, 2) \in [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$; (ii) exiba uma base para $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$ determinando uma dimensão; (iii) verifique se $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4] = \mathbb{R}^4$.
- 6. Sejam os espaços $W_1 = \{(x, y, z, t) | \in \mathbb{R}^4 | x + y = 0, t = 0\}$ e $W_2 = \{(x, y, z, t) | \in \mathbb{R}^4 | x y z + t = 0\}$ subspaços de \mathbb{R}^4 , determine o espaço $W_1 \cap W_2$.
- 7. Sejam $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\}$ e $\beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 , (i) ache as matrizes de mudança de base $[I]^{\beta_1}_{\beta_1}, [I]^{\beta}_{\beta_1}, [I]^{\beta}_{\beta_2}, [I]^{\beta}_{\beta_3};$ (ii) quais são as coordenadas de $\mathbf{v} = (3,-2)$ em relação à β , β_1 , β_2 e β_3 ; (iii) se $[\mathbf{u}]_{\beta_1} = (4,0)$, determine $[\mathbf{u}]_{\beta}, [\mathbf{u}]_{\beta_2}$ e $[\mathbf{u}]_{\beta_3}$.