Question 1:

A. Convert the following numbers to their decimal representation:

$$(456)_{4} = 335$$

3)
$$(38 \text{ A})_{16} = 394$$

 $A \cdot 16^{\circ} + 8 \cdot 16^{\prime} + 3 \cdot 16^{2} = 10 + 128 + 256 = 394$

4)
$$(2214)_5 = 309$$

 $4.5^{\circ} + 1.5' + 2.5^2 + 2.5^3 = 4 + 5 + 50 + 250 = 309$

B. Convert the following numbers to their binary representation:

2)
$$(485)_{10} = (110111)_{2}$$

$$\frac{485}{2} = (110111)_{2}$$

$$\frac{485}{2} = \frac{2}{121} = \frac{2}{121}$$

$$\frac{3}{1} = \frac{2}{121} = \frac{2}{121$$

c) Convert the following numbers to their hexadecimal representation:

$$\frac{1}{10}(1011)_{2} = (6 B)_{16}$$

$$(1011) = (1 \cdot 2 + 1 \cdot 2 + 0 \cdot 2^{2} + 1 \cdot 2^{3}) = 1 + 2 + 8 = 11 -> B$$

$$(110) = (0 \cdot 2 + 1 \cdot 2 + 1 \cdot 2) = 2 + 4 = 6$$

$$2) (895)_{10} = (37 F)_{16}$$

$$\frac{295}{55} = \frac{16}{55} = \frac{16}{3}$$

$$\frac{80}{15} = \frac{16}{3} = \frac{16}{3}$$

0

Question 2: Solve the following, do all calculation in the given base:

Question 3:

A. Convert the following numbers to their 8-bits two's complement representation:

2.
$$(-124)_{10} = (10000 100)_{8bit}$$
 2's comp. $0.000 = 0.000$

3

Question 3

N4: $(-79)_{10} = (10110001)_{3}$ bit 2's compl.

a) $79 \div 2 = 39$ R1 $19 \div 2 = 9$ R1 $19 \div 2 = 9$ R1 10110001 $19 \div 2 = 4$ R1 $4 \div 2 = 2$ R0 $2 \div 2 = 1$ R0 $1 \div 2 = 0$ R1

B. Convert the following numbers (represented as 8-bits two's complement) to their decimal representation:

1) $(00011110)_8$ bit 2's compl. = $(30)_{10}$ 6432 168421

a) 2+4+8+16=302) $(11100110)_8$ bit 2's compl. = $(-26)_{10}$ a) $(000111010)_8$ bit 2's compl. = $(-26)_{10}$ b) $(00011010)_8$

a) + 0001100 b) (00011010) 6432 168 4 2 1 1 1 0 0 0 0 0 0 0 0 0 c) 2 + 8 + 16 = 26

3) (00 10 11 01) & bit 2's comp = (45),0

a) 1+4+8+32 = 45

4) $(10011110)_8$ bit 2's comp = $(-98)_{10}$ a) 01100010 10011110 100000000b) 01100010 100000000c) 64+32+2=98

- A. For each of the following sets, determine 2 is a member of that set.
- a) $\{x \in R \mid x \text{ is an integer greater than } 1\}$ 2 is $\{x \in R \mid x \text{ is an integer greater than } 1\}$ so $\{x \in R \mid x \text{ is an integer greater than } 1\}$ means $\{x \in R \mid x \text{ is positive and start of } 2\}$.

 This set contains $\{x \in R \mid x \text{ is positive and start of } 2\}$.

 This set contains $\{x \in R \mid x \text{ is an integer greater than } 1\}$ so first member of its is 2.
- b) {2, {2}} Yes, we have 2
- c) $\S x \in \mathbb{R} \mid X$ is the square of an integer \S No, when we have $X = 9^2$, so in our set we have $\S 1, 4, 9, 16, \dots \S 1$ that set does to contain 2.
- d) \$\$23, \$\$243 No, two is not a member of that set We have \$23, \$\$233 which is not equal 2.
- No, two is not a member of that set. We have \$23, \$2, \$233. which is not equal 2.
- f) \$5\$ 2332 No, we have \$5\$2424 which is not equal 2. (5)

- B. Determine whether each of these statements is true or false.
- a) X E SXZ True
- b) fx3 & fx3 True
- c) fx} E fx} False
- d) fx} E ss x}} True
- b) Ø ≤ gxq True
- f) $\emptyset \in \{x\}$ False C. Find two sets A and B such that $A \in B$ and $A \subseteq B$.

 $A \in B = A S 1, 2, 33$ B S 1, 1, 2, 2, 3, 34

ACB # A CB; A is subset of B

- D. For each of these pairs of sets, determine whether the first is a subset of the second, the second of the first, or neither is a subset of the other.
 - (i) the set of airline flight from NY to New Delhi, the set of nonstop airline flights from New York to New Delhi.
 - B \(\int A\). Every element in the set of nonstop airline flights will also be an element in the set of all flights.

(ii) the set of people who speak English; the set of people who speak Chinese.

1 Neither of these are subsets of the other. A & B & A.

N(C) iii the set of flying squirres, the set of living creatures that can fly.

flying squirret is the subset of creature that can fly. Not vice versa.

A C B.

Question 5:

let A = Sa, b, c, d, e & and Sa, b, c, d, e, f, g, h & Find:

a) (AVB) = ja, b, c,d, e, f, g, h}

b) (A n B) = ¿a,b,c,d,e3

c) (A-B) = \$ f, g, h}

Question 6:

Draw the Venn diagrams for each of these combinations of the sets A, B, and C. b) (A n B) V (A n C)

Question 4:

Let A, B and C be sets. Use a member table to Show that:

1	B	10	Bnc) = (AUB) n (AL	AUB	Ave	(AUB) n(AUC)
	1	1	1	1	1	1	1
	1	0	0	1	1	1	1
	0	1	0	1	1	1	1
	0	0	0	1	1	1	1
)	1	1	1	1	1	1	1
)	1	0	0	0	1	0	0
0	0	1	. 0	Ö	0	1	0
)	0	0	0	0	0	0	0

AU(BNC) and (AUB) N(AUC) are the same, so identities are valid.

b) (B-A) U(C-A) = (BUC)-A

A	B	C	B-A	C-A	(B-A) U (C-A)	(BUC)	(BUC)-A
1	1	1	0	0	0	1	0
1	1	0	0	0	0	1	0
1	0	1	0	0	0	1	5
1	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1
0	1	0	1	0	1	1	7
0	0	1	0	1	1	1	1
0	0	0	0	0	0	1	1
		0		The State of the S		0	0

(B-A) V(C, -A) and (B VC) - A are the same, so inde identity is valid

Q7 (cont).								
c) (ANBNC) = (AVBVE)								
A	6	0	Anbne	ANBAC	A	18	c	A UB VC
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	. 0	1	0,	0	0	1
0	1	0	0	1	1	0	1	
0	0	1	0	1	1	1	0	
0	0	0	0	1	1	1	1	1
-	10							1
		A	NBNC &	and AL	1B (jī	are	the same,
so it is valid lidentity.								
			1013			0		

9)	(A -	c) n	(c-B	$)=\emptyset$		
A	8	C	(A-C)	(C-B)	1 (A-C) n (C-B)1	0
1		1	0	0	0	5
1	1	0	1	0	0	Ö
1	0	1	0	1	0	0
1	0	0	1	Ó	0	0
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	1	0	1	0	0
0	0	0	0	0	0	0
	(1)					

(A-c) Λ (C-B) and \emptyset are the same, so it is valid identity.

9

Question 7 (e) Let A, B and C be sets. Use a membership table to show that:

e) (A-B)-C = (A-C)

A	В	c	(A-B)	(A-B)-C	(A-C)
1	1	1 0	0	2	1
1	0	1	1	1	1
0	1	1	0	0	0
0	0	1	0	0	0
D	6	0			

All of the elements in (A-B)-C are in (A-C), so it is true.

Question 8:

Let A,B, and C be sets. Use a set indentities to show that:

c)
$$A - (B-C) = (A-B) V (A-\overline{c})$$

 $A - (B-C) => A N (B N C) =$
 $= (A N B) V (A N \overline{c})$
 $= (A - B) V (A - \overline{c})$

Question 9: Can you conclude that A=B, if A,B and C are sets, such that:

a) AVC = BVC?
You can't conclude that A = B if AVC = BVC
It will work if A and B are subset of C.

AUC = 80,14, so A = B.
AUB = 80,14

b) Anc = Bnc?

b) Anc=Bnc?

You early conclude that A = B if $A \cap C = B \cap C$ we need to consider that C could be an empty Set.

Ex: A = 90,13 Anc = 907

B= 90,24 ANB= 907

C = 907

we can see that A FB.

c) (A UC = BUC) and (Anc = Bnc)?

we can conclude that A=B.

we can take A, B, c randomly and

we will find AUC = BUC and

Anc = Bnc only if A=B.

```
Yuestion 10:
 Find Vier Ai and Nier Ai, if for every positive integer i:
a) Ai = {-i, -i +1,..., -1, 0, 1, ..., i - 1, i}
   7,= 5-1,0,14
    Az= 5-2, -1, 0, 1, 24
    A3= {-3,-2,-1,0,1,2,3}
    V A: = A. VAz VA3 = { ... -3, -2, -1, 0, 1, 2,3.. } = 2
    1 Ai = AI N Az N Az ... = g-1, 0, 14
 b) Ai = g -i, i 3
     A, = 8 - 1, 14
     Az = 5-2,24
     A3 = { -3, 34
 V Ai = Ai VA2 VA3 ... = { - 3, - 2, -1, 1, 2, 3... }
```

1 A; = A, MA2 MA3 = Ø

c)
$$A_i = [-i, i]$$
 $-i \le x \le i$
 $A_i = [-1, 1]$
 $A_2 = [-2, 2]$
 $A_3 = [-3, 3]$

V A: = A, VA2 V A3...[...-3,-2,-1,1,2,3] = (3) = [R , R+] NO (Zero)

 $\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap A_3 \dots = [-1, 1]$ $A_1 = [-1, \infty] \quad X \ge -i$ $A_2 = [-2, \infty]$ $A_3 = [-3, \infty]$ $\bigcap_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup A_3 \dots = [R, \infty)$ $\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap A_3 \dots = [-1, \infty)$