3-4 (8)

解: Q g(x)= ½²+12t½
由欧拉为程有 ½*= 6t
· ½(t)= t³+ Q, t+Q2
又: ½(0)=0, ½(1)=1
· 解傳 Q1=Q2=0
· 极值轨线为 ½(t)=t³

∴ 极值轨线为 $\chi(t) = t^3$ ∴ $J(x) = \int_0^1 (3t)^2 + 12t^4) dt = \frac{1}{2} = \frac{1}{2}$ ∴ $\frac{1}{2} = \frac{1}{2} =$

二当火*(t)=t³/附,J(x)有极小值量量

3-19

解: f(r) = U(t), $L(r) = U^2(t) + 1$, $\varphi(r) = (xV^2 t)f$) 构造哈鬼顿函数 $H = U^2(t) + 1 + \lambda(t) = 0$ 地态方程 $\lambda^*(t) = -\frac{1}{2}C$ 型制方程 $\frac{1}{2}U(t) + \lambda(t) = 0$ 则有 $\lambda^*(t) = C$, $U^*(t) = -\frac{1}{2}C$ 由 $\lambda^*(t) = \frac{1}{2}U(t) + \lambda(t) = 0$ 用 $\lambda^*(t) = \frac{1}{2}U(t) + \lambda(t) = 0$ 由 $\lambda^*(t) = \frac{1}{2}U(t) + \lambda(t) = 0$ $\lambda^*(t) = \frac{1}{2}U(t) + \lambda(t) = 0$