Pi2 User Manual

Table of Contents

Ta	able of	f Contents	2
R	evisio	n Log	4
1.	F	Product Profile	5
	1.1.	Feature Highlights	5
	1.2.	Specifications	5
	1.3.	Dimensions	6
2.	F	Peripheral Interface	7
	2.1.	Interface Diagram	7
3.	ı	nterface Introduction	8
	3.1.	Power Supply	8
	3.2.	40-pin GPIO	8
	3.3.	UPS POWER	9
	3.4.	SPI FLASH	9
	3.5.	SPDIF OUT	10
	3.6.	eMMC-EN	10
	3.7.	OTG	10
	3.8.	MIC IN	11
	3.9.	DSI	11
	3.10.	CSI	12
4.	F	Flashing the System	13
	4.1.	Download the System Image	13
	4.2.	Write System to MicroSD Card	13
	4.3.	Writing System onto eMMC	
		.1. Using RKDevTool to Write the eMMC (Windows)	14
		.2. Writing System onto eMMC Using a MicroSD Card	
	4.4. 4.4	Erasing eMMC	
	4.4	.2. Using RKDevTool to Erase eMMC (Windows)	19
		.3. Erasing eMMC After Booting from MicroSD Card	
5.	Syste	em Configuration	
	5.1.	Using Ethernet	21
	5.2.	Setting Up WiFi	21
	5.3.	Configuring Overlays	21
	5.4.	Configuring the Display	22
	5.5.	Using SPI to CAN	23
	5.6.	Using CSI Camera and Crowsnest Configuration	23
	5.7.	Using Bluetooth	24

BIGTREETECH Pi 2 User Manual

5.8.	Setting up 3.5mm Headphones Port	26
6.	SSH Connect to Device	28
7.	Precautions	29

Revision Log

Version	Date	Revision		
v1.00	April 24th, 2024	Initial Version		
v1.01	May 28th, 2024	Added account information for minimal version system		
v1.02	Jun 5th, 2024	Added 40 pin GPIO spread sheet and new calculation method		
v1.03	March 26th, 2025	Add 40 Pin GPIO Alternate functions description Correct the explanation for the UPS Power section		
v1.04	April 14th, 2025	V3.0.1 version system, u-boot Loader mode changed to UMS mode		
v1.05	April 21, 2025	The Pin32/Pin33 of 40 Pin GPIO order of PI2/CB2 are different		

1. Product Profile

BIGTREETECH Pi 2 uses the higher performance quad-core A55-RK3566 chipset. It consists of rich interface functions, a built-in eMMC5.1, onboard support for 2.4G/5G dual-mode, and WiFi transmission speeds of up to 433.3Mbps. It also supports the Bluetooth BT5.2 version. It has the same mounting hole positions as the Raspberry Pi; therefore, installation and use are convenient and quick.

1.1. Feature Highlights

- CPU: Rockchip RK3566, quad-core Cortex-A55 @1.8GHz
- GPU: Mali-G52 1-Core-2EE
- NPU: 0.8 TOPS NPU
- RAM: 2GB LPDDR4 (customizable: 1GB/2GB/4GB/8GB)
- Onboard eMMC 32GB (customizable: 8GB/32GB/64GB/128GB...)
- MIPI DSI display support (320P-1080P 60Hz)
- SPI Flash: Customizable W25Q256JWEIQ
- Dual-lane MIPI CSI-2 Camera Interface (320P-1080P 60Hz)
- · 3x USB 2.0 ports, 1x USB 3.0 port
- PCIe 2.1 1x1 Lane (Supports M.2 2242 4PIN+5PIN)
- MicroSD card slot (SDIO2.0)
- Networking: Gigabit Ethernet, 433Mbps WiFi, BT 5.2
- · Audio: 3.5mm jack to support mic input
- · Capacitive mic input
- 40-pin GPIO header
- HDMI 2.0 OUT (480P-4K 60Hz)
- Onboard infrared receiver (38kHz)
- · Same mounting hole positions as Raspberry Pi
- 24V DC power input

1.2. Specifications

Dimensions: 93.8mm x 56mm

Installation Hole Spacing: 58.2mm x 49.4mm

USB-C Input: DC 5V±5%/2A Output Voltage: 3.3V±2%/100mA

WiFi: 2.4G/5G, 802.11 ac/a/b/g/n/ wireless standards

Bluetooth: 5.2

1.3. Dimensions

2. Peripheral Interface

2.1. Interface Diagram

3. Interface Introduction

3.1. Power Supply

Input:

· UBS-C: DC 5V 2A

· Terminal Block: DC 12-24V

3.2. 40-pin GPIO

PI2/CB2 40- Pin GPIO											
function5	function4	function3	function2	function1	P	in	function1	function2	function3	function4	function5
				3. 3V	1	2	5V				
			I2C4_SDA_MO	GPI04_B2(gpiochip4/gpio10)	3	4	5V				
			I2C4_SCL_MO	GPI04_B3(gpiochip4/gpio11)	5	6	GND				
				GPIO3_A1 (gpiochip3/gpio1) SPI1_CS1	7	8	GPI00_D1 (gpiochip0/gpio25)	UART2_TX_MO			
				GND		10	GPI00_D0 (gpiochip0/gpio24)	UART2_RX_MO			
	UARTO_CTSn	PWMO_M1		GPI00_C7 (gpiochip0/gpio23)	11	12	GPI00_B0 (gpiochip0/gpio8) SPI1_CS2				
		UART3_RX_MO	I2C3_SDA_MO	GPI01_A0(gpiochip1/gpio0)	13	14	GND				
		UART3_TX_MO	I2C3_SCL_MO	GPI01_A1(gpiochip1/gpio1)	15	16	GPI04_C6 (gpiochip4/gpio22) SPI1_CS0	PWM13_M1			UART9_RX_M1
				3. 3V	17	18	GPIO4_A3 (gpiochip4/gpio3)				UART7_RX_M2
	SPI1_MOSI_M1			GPI03_C1(gpiochip3/gpio17)	19	20	GND				
UART5_TX_M1	SPI1_MISO_M1			GPI03_C2 (gpiochip3/gpio18)	21	22	GPI00_C4(gpiochip0/gpio20)	PWM5		UARTO_RTSn	
UART5_RX_M1	SPI1_CLK_M1			GPIO3_C3(gpiochip3/gpio19)	23	24	GPIO4_A2(gpiochip4/gpio2)				UART7_TX_M2
				GND		26	GPI00_A6(gpiochip0/gpio6)				
			I2C1_SDA	GPI00_B4(gpiochip0/gpio12)	27	28	GPI00_B3(gpiochip0/gpio11)	I2C1_SCL			
				GPI03_D6(gpiochip3/gpio30)	29	30	GND				
				GPIO3 D7(gpiochip3/gpio31)	31	32	PI2 GPI00_C0 (gpiochip0/gpio16)	PWM1_MO		UARTO_RX	
				01 1 .01	╙	32	CB2 GPI00_C1(gpiochip0/gpio17)	PWM2_MO		UARTO_TX	
	UARTO_TX		PWM2_MO	GPI00_C1(gpiochip0/gpio17) PI2		34	GND				
	UARTO_RX		PWM1_MO	GPI00_C0(gpiochip0/gpio16) CB2							
UART9_TX_M1		SPI3_MISO_M1	PWM12_M1	GPIO4_C5(gpiochip4/gpio21)	_	36	GPI00_A0(gpiochip0/gpio0) SPI3_CS0				
			PWM4	GPI00_C3(gpiochip0/gpio19)		38	GPIO4_C3 (gpiochip4/gpio19)	PWM15_IR_M1	SPI3_MOSI_M1		
	1		1	GND		40	GPI04_C2 (gpiochip4/gpio18)	PWM14_M1	SPI3_CLK_M1	1	

The method for calculating GPIO pins is as follows:

GPIO4_B2 = ('B' - 'A') * 8 + 2 =
$$1 * 8 + 2 = gpiochip4/gpio10$$

GPIO3_D7 = ('D' - 'A') * 8 + 7 = $3 * 8 + 7 = gpiochip3/gpio31$

3.3. UPS POWER

Specifications: PH-2.0MM-5Pin horizontal type, compatible with our company's SKSM emergency power supply board.(Need to crimp cables and terminals by oneself)

3.4. SPI FLASH

Specification model: W25Q256JWEIQ (NOT included. If needed, please contact us for customization.)

3.5. SPDIF OUT

3.6. eMMC-EN

Default position is OFF, which means the eMMC can be used normally. If you do not wish to boot from eMMC, switch the EMMC-EN position to ON. This will short the eMMC signal lines to GND and disable eMMC boot.

3.7. OTG

To enable OTG mode, switch the OTG KEY to the ON position. (Note: The black USB 2.0 port will not function properly in this mode.)

3.8. MIC IN

3.9. DSI

3.10. CSI

4. Flashing the System

4.1. Download the System Image

Only use the image provided in the link: https://github.com/bigtreetech/CB2/releases

4.2. Write System to MicroSD Card

- 1. Download the balenaEtcher software from [https://www.balena.io/etcher/], install, and run it.
- 2. Insert the MicroSD card via a card reader.
- 3. Select your downloaded image.

4. Select the MicroSD card and click "Flash" (WRITE the image will format the MicroSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

5. Wait for the process to complete.

4.3. Writing System onto eMMC

4.3.1. Using RKDevTool to Write the eMMC (Windows)

Download and unzip RKDevTool from the GitHub repository (https://github.com/bigtreetech/CB2) to your computer. DO NOT insert a MicroSD card.

 As shown in the diagram below, toggle the USB OTG switch to the ON position. At this position, the USB OTG port is connected to a Type-C port. Set the eMMC switch to the OFF position, allowing the RK3566 to access the eMMC normally.

2. Hold down the "Recovery" button, then connect the BIGTREETECH Pi 2 to the computer using a Type-C cable. Power on and after 3 seconds, release the button.

3. Install the driver:

(1) In "Device Manager", if you see "Unknown Device", it indicates that the computer is missing drivers.

(2) Open the DriverAssistant tool in the downloaded RKDevTool folder, click "① Uninstall Driver", then click "② Install Driver" to ensure that the latest version of the driver is installed.

(3) After the installation is complete, hold down the "Recovery" button, replug the Type-C cable. "Device Manager" should now recognize a "Rockusb Device", indicating that the driver installation is successful.

4. Open the "RKDevTool" software:

Note: The parameters in the software are set by default as shown in the image. Normally, you only need to set the "④ actual path of the .img system". If the parameters in your software do not match those in the image, manually adjust them to match.

#		Storage	Address	Name	Path
1	V		0x00000000	Loader	\MiniLoaderAll.bin
2	V	EMMC	0x00000000	System	actual path of the .img system

①Find the path where the downloaded RKDevTool is located.

- ②Open the RKDevTool tool.
- ③The software will recognize a "LOADER" or "MASKROOM" device.
- ④ Select the system to be written (the OS image must be unzipped as a .img file beforehand; RKDevTool does not support directly writing compressed .xz files).
- **⑤Check "Write by Address".**
- 6 Click "Run" to start writting the system.
- The control of the co
- 5. After writing is complete, toggle the USB OTG switch to the OFF position to boot normally. Note: Files on the eMMC cannot be accessed by the computer like those on a MicroSD card, so you cannot modify the system.cfg configuration file to set up the WiFi network. Instead, use an Ethernet cable or USB-to-UART connection to configure the terminal.

4.3.2. Writing System onto eMMC Using a MicroSD Card

As shown in the figure, toggle the eMMC switch to the OFF position so that the RK3566 can access the eMMC normally.

First, write the system onto a MicroSD card, then insert the MicroSD card into the board's card slot, and wait for the system to boot.

Connect to the system's terminal via Ethernet, WiFi, or USB to UART. Log in with the following credentials:

login: biqu password: biqu Execute the command sudo nand-sata-install. In the interface that pops up, select "2 Boot From eMMC - system on eMMC" and then select "OK"

(1) Select "Yes" to start erasing and writing the system onto the eMMC.

(2) Choose the filesystem "1 ext4" and then select "OK".

(3) Wait for the writing process to complete.

(4) Upon completion, you will be prompted whether to power off. Select "Power off" to shut down the system.

(5) After the system has powered down, disconnect the power supply, remove the MicroSD card, and then reconnect power. The system should now boot from the eMMC.

4.4. Erasing eMMC

When using a MicroSD card as the system card instead, it's best to erase the data on the eMMC to prevent the motherboard from booting from it by mistake.

4.4.1. Using UMS to Erase eMMC (Windows)

If a V3.0.1 or later version of the system has already been written into eMMC, the computer will recognize eMMC as a UMS device (Mass Storage device). UMS mode has the following advantages over Loader mode:

- a. We can directly modify the configuration in /boot/ partition
- b. We can directly write the system image to eMMC like a Micro SD card
- c. All content in eMMC can be erased through software
- 1. Refer to the steps in "4.3.1 Using RKDevTool to Write the eMMC (Windows)" to connect the motherboard to the computer.
- 2. The computer will recognize eMMC as a UMS device.
- Install <u>SD Card Formatter</u> software to format UMS devices for eMMC. (Please do not directly use the formatting function provided by the Windows system, as it cannot completely erase the data in eMMC)

4.4.2. Using RKDevTool to Erase eMMC (Windows)

If a system with V2.0.0 or earlier has been written into eMMC, the computer will recognize eMMC as a device in Loader mode.

1. Refer to the steps in "4.3.1 Using RKDevTool to Write the eMMC (Windows)" to connect the motherboard to the computer.

Open the "RKDevTool".

- ①Find the path where the downloaded RKDevTool is located.
- 2 Open the RKDevTool.
- ③The software will recognize a "LOADER" device. If it recognizes "MASKROOM," it indicates there is no data in the eMMC, hence no erase operation is necessary.
- 4 Click "Advanced Function."
- ⑤Click "EraseAll" to begin erasing data from the eMMC.
- 6"Erasing sectors success" indicates the erasure is complete.

4.4.3. Erasing eMMC After Booting from MicroSD Card

- 1. Refer to the steps in "4.3.2 Writing System onto eMMC Using a MicroSD Card" and log into the system terminal.
- 2. Run the command sudo mkfs /dev/mmcblk1 and then enter "y" to confirm.

5. System Configuration

5.1. Using Ethernet

Ethernet is plug-and-play and requires no additional setup.

5.2. Setting Up WiFi

After the system image has been written, the MicroSD card will have a FAT32 partition recognized by the computer. In this partition, there is a "system.cfg" file. Open it and replace "Your SSID" with your actual WiFi name and "Your Password" with the actual password.

5.3. Configuring Overlays

Open the "armbianEnv.txt" file in the BOOT partition and set the values for overlays. The configuration file supports only one line of overlays at a time; if multiple overlays are enabled, only the last line will take effect. If you need multiple overlays, place the contents of multiple configurations on the same line separated by a space. For example, if you need to use a DSI screen, MCP2515 SPI to CAN module, and I2C1 simultaneously:

overlays=dsi mcp2515 i2c1

5.4. Configuring the Display

2. The default overlay is set to "hdmi," meaning the system uses an HDMI screen by default. This can be changed to match the actual screen being used, such as:

· "hdmi": HDMI screen

"dsi": DSI screen

· "tft 35": SPI Screen

.

For "tft_35", there is also a "tft35_spi_rotate" parameter for system-level screen rotation, with default "0" meaning no rotation, other options include "90", "180", "270".

Note: Only one screen type can be used at a time.

 To configure KlipperScreen, open the `system.cfg` file in the BOOT partition. Set the screen type with the parameter `ks_src`, and the rotation angle with `ks_angle`.

5.5. Using SPI to CAN

Open the "armbianEnv.txt" file in the BOOT partition and add "mcp2515" to the overlays configuration.

5.6. Using CSI Camera and Crowsnest Configuration

For both RPi v1.3 ov5647 and RPi v2 imx219 cameras, no specific configuration in "armbianEnv.txt" is required as they are plug-and-play. "crowsnest.conf" file configuration is as follows:

device: /dev/video0 # The CSI camera node is fixed as video0 custom_flags: --format=UYVY # The current system's CSI camera does not support the default YUYV, so it needs to be set to the supported UYVY format.

```
[crowsnest]
log_path: /home/biqu/printer_data/logs/crowsnest.log
log_level: verbose  # Valid Options are quiet/verbose/debug
delete_log: false  # Deletes log on every restart, if set to true
no_proxy: false

[cam 1]
mode: ustreamer  # ustreamer - Provides mjpg and snapshots. (All devices)
# camera-streamer is used, this enables also usage of an rtsp server
rtsp_port: 8554
port: 8880  # HIIP/MJPG Stream/Snapshot Port
device: /dev/video0
resolution: 640x480  # Widthxheight format
max fps: 15  # widthxheight format
# If Hardware Supports this it will be forced, otherwise ignored/coerced.
# You can run the Stream Services with custom flags.
# Add v412-ctl parameters to setup your camera, see Log what your cam is capable of.
```

5.7. Using Bluetooth

1. To scan for Bluetooth devices, enter the following command, and a list of Bluetooth devices will appear as shown below:

bluetoothctl --timeout 15 scan on

```
TX errors 0 dropped 0 overruns 0 carrier 0 collisi

root@Hurakan:~# bluetoothctl --timeout 15 scan on

Discovery started
[CHG] Controller 50:41:1C:F1:1B:DD Discomering: yes
[NEW] Device 61:81:3F:1B:80:79 61-81-3F-1B-BC-79
[NEW] Device 67:66:15:E1:7A:62 67-06-15-E1-7A-62
[NEW] Device 78:77:40:B5:D8:02 78-77-40-B5-D8-02
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 61:C5:14:23:27:CC 61-C5-14-23-27-CC
[NEW] Device 6F:D8:78:63:4F:CD 6F-D8-78-63-4F-CD
[NEW] Device 4C:E8:2E:37:02:CE 4C-E8-2E-37-02-CE
[NEW] Device 51:22:49:FC:CF:C1 51-22-49-FC-CF-C1
[NEW] Device 73:B9:DB:2D:F1:08 73-B9-D8-2D-F1-08
```

2. Find your Bluetooth device, for example, if your device name is "HONOR xSport PRO", locate the corresponding Bluetooth MAC ID as shown below.

```
[CHG] Device 42:70:F4:03:91:BA ManufacturerData Value:
10 07 7a 1f 3b 4d ef 5c 68

[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -75
[CHG] Device 45:69:88:00:E0:7B RSSI: -92
[CHG] Device 7F:E1:35:CF:F8:A3 RSSI: -77
[CHG] Device 4E:B0:A9:B4:33:11 RSSI: -88

[CHG] Device 04:7A:0B:19:E7:AF ManufacturerData Value:
0a 10 ff ff ff 64 93 15 36 c3 5c de 20 11 08 08 ...d..6.\...
10 17 25 34

[NEW] Device 04:7A:0B:19:E7:AF Class: 0x000a0110
[CHG] Device 04:7A:0B:19:E7:AF Icon: computer
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 0000fdaa-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001105-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001100-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001110-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001112-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001111-0000-1000-8000-00805f9b34fb
[CHG] Device 04:7A:0B:19:E7:AF UUIDs: 00001102-0000-1000-8000-00805f9b34fb
```

3. To connect to a Bluetooth device, enter the following command, connection success is shown as below

bluetoothctl connect E0:9D:FA:50:CD:4F

```
[CHG] Device 90:0F:0C:2F:50:C2 UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CHG] Device E0:9D:FA:50:CD:4F Connected: yes
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000111e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F Paired: yes
[CHG] Device E0:9D:FA:50:CD:4F Paired: yes
Connection successful
root@bigtreetech-cb2:~#

□ bigtreetech-cb2 □ 2% □ 0.36 GB / 1.94 GB ↑ 0.01 Mb/s □ 0.01 Mb/s □ 64 min □ biqu root □ /: 15
```

(1) If there's an issue while connecting, as shown below, please restart the Bluetooth device and repeat steps 1 and 2 to connect.

(2) If there's an issue while connecting, as shown below, please enter the following commands and then repeat steps 1 and 2:

```
bluetoothctl remove <u>E0:9D:FA:50:CD:4F</u> (Your Bluetooth device's corresponding MAC ID)
rfkill block bluetooth
sleep 3s
rfkill unblock bluetooth
pulseaudio -k
pulseaudio –start
```

```
[DEL] Device 40:60:97:F3:85:D6 40-60-97-F3-85-D6
root@bigtreetech-cb2:~# bluetoothctl connect E0:9D:FA:50:CD:4F
Attempting to connect to E0:9D:FA:50:CD:4F
[CHG] Device E0:9D:FA:50:CD:4F Connected: yes
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110b-0000_1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 0000110e_0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F UUIDs: 000011/e-0000-1000-8000-00805f9b34fb
[CHG] Device E0:9D:FA:50:CD:4F ServicesResolved: yes
Failed to connect: org.bluez.Error.Failed
root@bigtreetech-cb2:~# bluetoothctl remove E0:9D:FA:50:CD:4F
[DEL] Device E0:9D:FA:50:CD:4F HONOR xSport PRO
Device has been removed
root@bigtreetech-cb2:~# rfkill block bluetooth
```

4. If you exit voice playback during the use of Bluetooth and cannot reuse it, manually delete the corresponding playback process. Use the ps command to

view the process number, then use kill -9 process_number to delete the corresponding playback process.

```
biqu@bigtreetech-cb2:~$ ps

PID TTY TIME CMD

2094 pts/0 00:00:00 bash

2270 pts/0 00:00:00 aplay

2347 pts/0 00:00:00 ps

biqu@bigtreetech-cb2:~$ kill -9 2270
```

5.8. Setting up 3.5mm Headphones Port

1. Enter the command: aplay -l

Check for the corresponding sound card, as shown in the image (the sound card for the headphone port shown in the image corresponds to card 0).

```
[ General system configuration (beta): armbian-config ]

Last login: Wed Apr 10 02:18:28 UTC 2024 on tty1
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
aplay -1

****List of PLAYBACK Hardware Devices ****
card 0: rockchiprk809co [rockchip,rk809-codec], device 0: fe410000.i2s-rk817-hifi rk817-hifi-0 [fe41000
Subdevices: 1/1
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
```

2. Enter the command:

amixer -c 0 contents (0 represents the card 0 found in the previous aplay -l command)

Check the settings for playback and recording channels, as shown in the image.

```
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~# amixer -c 0 contents
numid=3,iface=MIXER,name='PCM'
; type=INTEGER,access=rw---R--,values=2,min=0,max=252,step=0
: values=255,255
| dBscale-min=-95.00dB,step=0.37dB,mute=0
numid=2,iface=MIXER,name='Capture MIC Path'
; type=ENUMERATED,access=rw-----,values=1,items=2
; Item #0 'MIC OFF'
; Item #1 'Main Mic'
: values=0
numid=4,iface=MIXER,name='Capture Volume'
; type=INTEGER,access=rw---R--,values=2,min=0,max=255,step=0
: values=255,255
| dBscale-min=-95.00dB,step=0.37dB,mute=0
numid=1,iface=MIXER,name='Playback Path'
; type=ENUMERATED,access=rw-----,values=1,items=11
; Item #0 'OFF'
; Item #1 'RCV'
; Item #2 'SPK'
; Item #3 'HP'
; Item #4 'HP_NO_MIC'
; Item #5 'BT'
; Item #6 'SPK_HP'
; Item #7 'RING_SPK'
; Item #8 'RING_HP'
; Item #9 'RING_HP_NO_MIC'
; Item #9 'RING_HP_NO_MIC'
; Item #10 'RING_SPK_HP'
; values=0
root@bigtreetech-cb2:~#
```

3. Enter the command:

amixer -c 0 cset numid=1 3

Set the playback channel, as shown in the image.

```
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~# amixer -c 0 cset numid=1 3
numid=1,iface=MIXER,name='Playback Path'
; type=ENUMERATED,access=rw-----,values=1,items=11
; Item #0 'OFF'
; Item #1 'RCV'
; Item #2 'SPK'
; Item #3 'HP'
; Item #3 'HP'
; Item #4 'HP_NO_MIC'
; Item #5 'BT'
; Item #6 'SPK_HP'
; Item #6 'SPK_HP'
; Item #8 'RING_SPK'
; Item #9 'RING_HP_NO_MIC'
; Item #10 'RING_SPK_HP'
: values=3
root@bigtreetech-cb2:~#
```

4. Enter the command:

amixer -c 0 cset numid=2 1

Set the recording channel, as shown in the image.

```
: values=3
root@bigtreetech-cb2:~#
root@bigtreetech-cb2:~# amixer -c 0 cset numid=2 1
numid=2,iface=MIXER,name='Capture MIC Path'
; type=ENUMERATED,access=rw-----,values=1,items=2
; Item #0 'MIC OFF'
; Item #1 'Main Mic'
: values=1
root@bigtreetech-cb2:~# ■
```

5. Enter the following command to play audio, with the audio file directory xxx and the audio file name xxxxx.wav:

```
aplay -D plughw:0,0 /xxx/xxxxx.wav
```

6. Enter the following command to record (where 10 represents recording for 10 seconds), storing the recording in directory xxx, file name xxxx.wav: sudo arecord -Dhw:0.0 -d 10 -f cd -r 44100 -c 2 -t wav /xxx/xxxx.wav

7. Enter the following command to play the recording: aplay -D plughw:0,0 /xxx/xxxx.wav

6. SSH Connect to Device

- Install the SSH software Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. After powering on, wait for the system to boot, which typically takes about 1 to 2 minutes.
- 3. Once the device is connected to WiFi or an Ethernet cable is plugged in, it will automatically be assigned an IP address.
- 4. Access the router management interface to find the device's IP (it should be BTT-CB2 here).

 Open Mobaxterm and click "Session", and click "SSH", inset the device IP into Remote host and click "OK" (Note: your computer and the device needs to be in the same network).

6. Login as: biqu password: biqu

7. Precautions

- 1. About 10 seconds after powering on, the system enters the kernel phase. At this time, the blue light stays on, and the green light flashes continuously, indicating that the system is running normally.
- 2. Klipper OS:

Root administrator:

Login: root

Password: root

BIQU user:

Login: biqu

Password: biqu

Minimal OS:

Root administrator:

Login: root

Password: root

Minimal OS is a standard Armbian startup process, It only has the administrator account `root`. After the first boot, the system will guide the user to create their own ordinary account in the terminal.

- 3. The PCIe M.2 interface does not support hot-plugging; the solid-state drive must be connected in advance for the device to be recognized.
- 4. When booting from eMMC, do not insert a MicroSD card. When booting from a MicroSD card, it is necessary to erase the data in the eMMC.

If you need further resources for this product, you can find them at [GitHub](https://github.com/bigtreetech/). If you cannot find what you need, you may contact our after-sales support(service005@biqu3d.com).

If you encounter any other problems during use or have suggestions or feedback, please contact us. Thank you for choosing BIGTREETECH products.