Matrices

Angelica Bravo¹

¹Department of Basic Science University of Cundinamarca

2016

Tabla de Contenido

- Geometria Analitica en el Plano
 - Parabola
 - Ejemplos
 - Operaciones
 - Producto de dos Matrices
- sistemas lineales con matrices
- matrices inversa
- Determinantes
 - Definicion
- 5 aplicaciones
- 6 aplicaciones en ingenieria ambiental

Outline

- 🕕 Geometria Analitica en el Plano
 - Parabola
 - Ejemplos
 - Operaciones
 - Producto de dos Matrices
- 2 sistemas lineales con matrices
- 3 matrices inversa
- 4 Determinantes
 - Definicion
- aplicaciones
- aplicaciones en ingenieria ambiental

Definicion

- Una parabola es el conjunto de todos los puntos P del plano que son equidistantes de una recta fija L, llamada directriz, y de un punto F, llamado foco.
- Las matrices se escriben en mayusculas.
- Las matrices se dividen en filas (horizontal) y columnas (verticales).
- Los elementos a_{ij} se llaman entradas de la matriz, i representa las filas y j las columnas. Una matriz se escribe como:

$$A=(a_{ij}) (1)$$

- Las matrices tienen dimensiones *mxn*, tambien se llama Tamao de la matriz.
- Una matriz de tamano nxn se llama MATRIZ CUADRADA

Una Matriz A de mxn

es un arreglo rectangular de mn nmeros dispuestos en m renglones y n columnas.

• Si las entradas de una matriz son todas cero, esta se llama matriz cero.

- Si las entradas de una matriz son todas cero, esta se llama matriz cero.

- \bullet $\begin{vmatrix} -1 & 3 & 6 \\ 4 & 2 & 7 \end{vmatrix}$ es una matriz de 2x3
- $\bullet \left| \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right| \text{ es una matriz cero de } 2x3$

- Si las entradas de una matriz son todas cero, esta se llama matriz cero.
- ullet $\begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix}$ es una matriz cuadrada de 2x2
- | -1 3 | es una matriz de 3x2 | 1 3 |
- ullet $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ es una matriz cero de 2x3
- Third item.

- Si las entradas de una matriz son todas cero, esta se llama matriz cero.
- ullet $\begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix}$ es una matriz cuadrada de 2x2
- | -1 3 | • | 4 2 | es una matriz de 3x2 | 1 3 |

- Third item.
- Fourth item.

- Si las entradas de una matriz son todas cero, esta se llama matriz cero.
- $\begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix}$ es una matriz cuadrada de 2x2
- | -1 3 | es una matriz de 3x2 | 1 3 |
- $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ es una matriz cero de 2x3
- Third item.
- Fourth item.
- Fifth item.

- Si las entradas de una matriz son todas cero, esta se llama matriz cero.
- $\begin{vmatrix} 1 & 3 \\ 4 & 2 \end{vmatrix}$ es una matriz cuadrada de 2x2
- | -1 3 | es una matriz de 3x2 | 1 3 |
- $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ es una matriz cero de 2x3
- Third item.
- Fourth item.
- Fifth item. Extra text in the fifth item.

Outline

- 🕕 Geometria Analitica en el Plano
 - Parabola
 - Ejemplos
 - Operaciones
 - Producto de dos Matrices
- sistemas lineales con matrices
- 3 matrices inversa
- 4 Determinantes
 - Definicion
- 5 aplicaciones
- 6 aplicaciones en ingenieria ambiental

Operaciones

Igualdad

Dos matrices $A = (a_{ij})$ y $B = (b_{ij})$ son iguales si:

- (1) son del mismo tamano,
- (2) las componentes correspondientes son iguales.

Vectores

Los vectores son matrices de un renglon o una columna.

El vector renglon o fila tiene n componentes y es una matriz de 1xn.

$$(a_1, a_2, ..., a_m)$$

El vector columna tiene m componentes y es una matriz de nx1.

operaciones

Producto α

Sean $A = (a_{ij})$ y una matriz de mxn y α un escalar, entonces la matriz αA esta dada por:

$$\alpha \mathsf{a}_{11} \quad \alpha \mathsf{a}_{12} \quad \dots \quad \alpha \mathsf{a}_{1j} \quad \dots \quad \alpha \mathsf{a}_{1n}$$

$$\alpha \mathsf{a}_{21} \quad \alpha \mathsf{a}_{22} \quad \dots \quad \alpha \mathsf{a}_{2j} \quad \dots \quad \alpha \mathsf{a}_{2n}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$\alpha \mathsf{A} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha \mathsf{a}_{i1} & \alpha \mathsf{a}_{i2} & \dots & \alpha \mathsf{a}_{ij} & \dots & \alpha \mathsf{a}_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \alpha \mathsf{a}_{m1} & \alpha \mathsf{a}_{m2} & \dots & \alpha \mathsf{a}_{mj} & \dots & \alpha \mathsf{a}_{mn} \end{bmatrix}$$

Suma

Sean $A = (a_{ij})$ y $B = (b_{ij})$ dos matrices de $m \times n$ la suma de A y B es la matriz A + B dada por:

Propiedades de la Suma

Sea A,B,C tres matrices de mxn y sean $\alpha y\beta$ dos escalares. Entonces:

- A + 0 = A
- OA = 0
- **1** (A+B)+C=A+(B+C) (Ley asociativa para la suma de las matrices)
- **1** A = A

Propiedades de la Suma

Producto

Producto Escalar entre vectores

Entonces el **producto escalar** de **a** y **b** esta dado por:

$$a \cdot b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n \tag{2}$$

algunas veces se llama **producto interno** de vectores. El producto interno de vectores es un escalar.

Producto Escalar entre vectores

Theorem

Sean a,by c tres n-vectores y sean $\alpha y\beta$ dos escalares. Entonces:

- **1** $a \cdot 0 = 0$
- 2 $a \cdot b = b \cdot a$ (Ley conmutativa)

Producto de dos Matrices

Sea A una matriz mxn y B una matriz nxp. Entonces el producto de A y B es una matriz mxp, C en donde:

$$c_{ij} = (renglonideA) * (columnajdeB)$$
 (3)

Es decir, el elemento ij de AB es el producto punto del renglon i de A y la columna j de B.

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$
 (4)

Si el numero de columnas de A es igual al numero de columnas de B, entonces se dice que A y B son compatibles bajo la multiplicacin.

leyes

Ley asociativa para la multiplicacin de matrices

Sea A una matriz $m \times n$, B una matriz $n \times p$ y C una matriz $p \times q$. Entonces la ley asociativa:

$$A(BC) = (AB)C (5)$$

se cumple y ABC, definida por cualquiera de los lados de la ecuacin es una matriz mxp

leyes

Ley distributiba para la multiplicacin de matrices

Si todas las matrices y todos los productos siguientes estan definidos, entonces:

$$A(B+C) = AB + AC \tag{6}$$

$$(A+B)C = AC + BC \tag{7}$$

Combinacin Lineal

El producto de la matriz A de mxn y el vector columna x es una combinacin lineal de las columnas de A.

sistemas

$$Ax = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 1*x_1 + 2 * x_2 \\ 3*x_1 + 4 * x_2 \end{vmatrix}$$

Un sistema lineal de ecuaciones se puede representar de forma matricial como:

$$Ax = b \tag{8}$$

combinacion lineal

ejemplo

$$2x_1 + 4x_2 + 6x_3 = 18$$

A son los coeficientes de las variables x, esa es la matriz A: $\begin{bmatrix} 2 & 4 & 0 \\ 4 & 5 & 6 \\ 3 & 1 & -2 \end{bmatrix}$

El vector X representa las variables:
$$\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}$$

y el vector b son los valores despues del igual: 18 24

inversa de una Matriz Cuadrada

Identidad

La matriz identidad I_n de nxn es una matriz cuyos elementos de la diagonal principal son iguales a 1 y todos los demas son cero.

Inversa

Sea A y B dos matrices de nxn. Suponga que

$$AB = BA = I$$

Entonces B se llama la matriz inversa de A y se denota por A^{-1} , se tiene:

$$AA^{-1} = A^{-1}A = I$$

Si A tiene inversa se dice que es invertible.

Si A no tiene inversa se dice que es singular.

inversa de una Matriz Cuadrada

Inversa

- Se puede decir que $(A^{-1})^{-1} = A$ si es invertible.
- 2 No todas las matrices cuadradas tienen inversa.
- 3 La inversa de una matriz es unica.
- Sean A y B invertibles, entonces AB es invertible y:

$$(AB)^{-1} = B^{-1}A^{-1} (9)$$

- **5** Si A es invertible es sistema Ax = b tiene una solucion unica.
- Una matriz A cuadrada es invertible si y solo si su forma escalonada reducida por renglones es la matriz identidad; es decir, si su forma escalonada reducida por renglones tiene n pivotes.

Determinantes

Definicin

Sea A=
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Se define el determinante de A = $a_{11}a_{22} - a_{12}a_{21}$ El determinante de A se escribe como det A

Inversa

Sea A una matriz de 2x2 entonces:

- **1** A es invertible si y slo si $detA \neq 0$.
- ② Si el $detA \neq 0$ entonces:

$$A^{-1} = \frac{1}{\det A} \begin{vmatrix} a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{vmatrix}$$

(10)

Sistemas Lineales

Inversa

Se tienes el sistema Ax = b, si y slo si, la matriz A tiene inversa, se puede decir que:

$$x = A^{-1}b \tag{11}$$

Transpuesta de una matriz

Definicin y propiedades

Sea A una matriz de mxn. Entonces la transpuesta de A, es la matrix nxm obtenida al cambiar los renglones por las columnas de A. Asi, $A^t = (a_{ji})$. Suponga que A es una matriz de mxn y B es una matriz de mxp entocnes:

- $(A^t)^t = A$
- $(AB)^t = B^t A^t$
- **3** Si A y B son de mxn entonces $(A + B)^t = A^t B^t$
- **3** Si A es invertible, entonces A^t es invertible y $(A^t)^{-1} = (A^{-1})^t$
- Una Matriz A (cuadrada) se llama Simtrica si $A^t=A$. Las columnas de A son tambin las filas de A. $\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$

Determinantes

determinante nxn

Sea A una matriz de nxn. Entonces el determinante de A, esta dado por:

$$detA = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \dots + a_{1n}A_{1n}.$$
 (12)

$$det A = \sum_{k=1}^{n} a_{1k} A_{1k} \tag{13}$$

Determinantes Propiedades

Si A es una matriz triangular Superior o inferior, entonces el

$$detA = a_{11}A_{11} + a_{22}A_{22} + a_{33}A_{33} + \dots + a_{nn}A_{nn}.$$
 (14)

Es igual al producto de sus componentes en la diagonal principal.

- ② Si A es una matriz triangular Superior, entonces A e invertibler si y solo si $detA \neq 0$.
- **1** El area generada por A = valorAbsolutodetA
- **3** Sean A y B dos matrices de $n \times n$. Entonces det AB = det A det B
- Si una matriz cuadrada tiene factorizacin LU, A=LU donde L tiene unos en la diagonal, entonces: detA = detU =productos de loselementos de la diagonal de U.

Determinantes Propiedades

- Si PA = LU, donde P es una matriz de permutacin y L y U son son como antes entonces: $detA = \frac{detU}{detP} = \pm detU$
- \bigcirc $det A^t = det A$
- Se puede calcular det A expandiendo los cofactores en cualquier fila, tambien se puede calcular el det A expandiendo por cofactores en cualquier columna de A.

$$det A = a_{1j} A_{1j} + a_{2j} A_{2j} + ... + a_{nj} A_{nj}.$$
 (15)

- **1** Si cualquier fila o columna de A es un vector cero, entonces det A = 0
- Si la fila i o la columna j de A se multiplica por una escalar c, entonces detA se multiplica por c.

Determinantes Propiedades

- Si A,B,C son matrices identicas excepto por la columna j y que la columna j de C es la suma de las j-esimas columnas de A y B. Entonces, dertC = detA + detB. Igual para los renglones.
- ② El intercambio de cualesquiera dos filas(columnas) distintos de A tiene el efecto de multiplicar el detA por -1.
- **3** Si A tiene dos filas o columnas iguales, entonces det A = 0
- **3** Si una fila (o columna) de A es un multiplo escalar de otra fila(o columna), entonces detA = 0.
- Si se suma un multiplo escalar de una fila(o columna)de A a otra fila(o columna) de A, el determinante no cambia.

Inversa

Matriz Menor

Sea A la matriz de $n \times n$, se define como matriz menor M_{ij} a la matiz de n-1 filas eliminando elrenglon i y n-1 columnas eliminando la columna j..

Ejemplo:
$$A = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 1 & 2 & 4 \end{vmatrix}$$

Tiene 9 matrices menores, la primera es : M_{11} que se define eliminando la

fila 1 y la columna 1.
$$M_{11} = \begin{vmatrix} 3 & 3 \\ 2 & 4 \end{vmatrix}$$

La segunda es:
$$M_{12} = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix}$$

Las otras son: M_{13} , M_{21} , M_{22} , M_{23} , M_{31} , M_{32} , M_{33} .

Inversa: Cofactores

Cofactores

Sea A una matriz de $n \times n$. El cofactor ij de A, denotado por A_{ij} , est dado por:

$$A_{ij} = (-1)^{i+j} det(M_{ij})$$
 (16)

El cofactor es 1 si la suma i+j es par. El cofactor es -1 si la suma i+j es impar.

Matriz Adjunta

Dada la Matriz B de *nxn* como la matriz compuesta de cofactores de A, B

$$= \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix}$$

La adjunta de A es la transpuesta de la matriz B. adj $A = B^T =$

$$A_{11}$$
 A_{21} A_{12} A_{22}

Inversa

Determinante

Sea A una matriz de nxn. A es invertible si y solo si $detA \neq 0$.

$$A^{-1} = \frac{1}{\det A} adjA \tag{17}$$

Regla de Cramer

Sea A una matriz de nxn y suponga que $detA \neq 0$. Entonces la solucion unica del sistema Ax = b es:

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, x_3 = \frac{D_3}{D}, ..., x_n = \frac{D_n}{D}$$
 (18)

Outline

- 🕕 Geometria Analitica en el Plano
 - Parabola
 - Ejemplos
 - Operaciones
 - Producto de dos Matrices
- 2 sistemas lineales con matrices
- 3 matrices inversa
- Determinantes
 - Definicion
- 5 aplicaciones
- aplicaciones en ingenieria ambiental

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem,

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.