The Link Layer

Michael Brodskiy

Professor: E. Bernal Mor

November 20, 2023

- Link Layer: Introduction
 - Terminology
 - * Hosts, routers \rightarrow nodes
 - * Communication channels that connect adjacent nodes along communication path \rightarrow links
 - · Wired links
 - · Wireless links
 - * Over a given link, the transmitting node encapsulates the network-layer packet in a link-layer frame
 - Link layer has responsibility of transferring network-layer packets from one node to a physically adjacent node over a link
- Link Layer: Context
 - Packets transferred by different link protocols over different links
 - * WiFi on first link
 - * Ethernet on next link
 - * Etcetera
 - Each link protocol provides different services
- Link Layer Services
 - Framing
 - * Encapsulate packet into frame, adding header and maybe trailer
 - * Addressing: "MAC" addresses used in frame headers to identify transmitter/receiver node \rightarrow different from IP Address
 - Link access

- * Medium access control (MAC) protocol specifies the rules by which a frame is transmitted onto the link
- Flow control
 - * Pacing between adjacent sending and receiving nodes
- Reliable delivery between adjacent nodes
 - * We learned how to do this already (Transport layer)!
 - * Seldom used on low error rate links, for example: fiber, some twisted pairs
 - * Commonly used on high error rate links, like wireless ones
- Error control
 - * Errors caused by signal attenuation, noise
 - * Error detection: receiver detects presence of errors
 - · Ask sender for retransmission or drops frame
 - * Error correction: receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-Duplex and Full-Duplex Links
 - Unidirectional links (Simplex Links)
 - * Communication occurs in one direction only
 - Bidirectional links
 - * Half-Duplex Link Communication occurs in both directions, but not at same time
 - * Full-Duplex Link Communication occurs in both directions at same time
- Where is the Link Layer Implemented?
 - For the most part, link layer is implemented on a chip called the network adapter, aka a Network Interface Card (NIC)
 - * The NIC implements Link and Physical layers
 - * E.g. Ethernet card, WiFi card or chip
 - NIC attaches into node's system buses
 - Link layer is implemented as a combination of hardware and software
 - * Hardware: NIC implements most of the functions
 - * Software: activating hardware controller, responds to controller interrupts, etc
- Error Control
 - EDC → Error Detection/Correction bits (redundant bits)

- D \rightarrow Data protected by error control, may include header fields
- Error control is not 100% reliable
 - * Error control technique may miss some errors; we want to keep the probability of missing the errors small
 - * Larger EDC field yields better detection and correction
 - * Error correction needs more redundant bits than error detection for same number of errors

- Parity Checking

- * Single bit parity: detect single bit errors
 - · Even parity: set parity bit so there is an even number of 1's
 - · Odd parity: set parity bit so there is an odd number of 1's
- * Two-dimensional bit parity: detect and correct single bit errors
 - · Even parity: no errors
- Cyclic Redundancy Check (CRC)
 - * D: d data bits (given)
 - * G: generator, bit pattern of r+1 bits where MSB must be $1 \to \text{transmitter}$ and receiver agree on G (given)
 - * R: r CRC bits, redundant bits
 - * Transmitter: choose R, such that $\langle D, R \rangle$ is exactly divisible by G (modulo-2 arithmetic) $\to D \cdot 2^r \text{XOR} R = nG$
 - * Receiver: knows G and divides $\langle D, R \rangle$ by $G \to \text{non-zero remainder: error detected!}$
 - · Can detect all burst errors less than r+1 bits
 - * More powerful error-detection technique: widely used in practice (Ethernet, WiFi)