Axiomatic Semantics

Maria João Frade

HASLab - INESC TEC Departamento de Informática, Universidade do Minho

2021/2022

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 1 / 42

Hoare Logic

Axiomatic Semantics

- Meanings of programs are defined indirectly via de axioms and rules of some program logic.
- Specific properties of the effect of executing the commands are expressed as assertions. Thus there may be some aspects of the executions that are ignored.
- It give us methods for reasoning about program properties and to prove its correction w.r.t. its specification.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 2 / 42

Hoare logic

- Hoare logic (also know as Floyd-Hoare logic) is a method of reasoning mathematically about imperative programs.
 - ▶ Robert Floyd, "Assigning meaning to programs", 1967.
 - ► Tony Hoare, "An axiomatic basis for computer programming", 1969.
- The logic deals with the notion of correction w.r.t. a specification that consists of
 - ▶ a *precondition* an assertion that is assumed to hold when the execution of the program starts
 - ▶ and a *postcondition* an assertion that is required to hold when execution stops.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 4 / 42

A simple programming language - While

A While language whose commands are defined over a set of variables $x \in \mathbf{Var}$

Aexp
$$\ni$$
 $a ::= \ldots |-1|0|1|\ldots |x|a_1 + a_2|a_1 - a_2|a_1 * a_2$

$$\mathbf{Bexp} \ \ni \ b \ ::= \ \mathsf{true} \mid \mathsf{false} \mid \neg b \mid b_1 \wedge b_2 \mid a_1 = a_2 \mid a_1 \leq a_2$$

 $\operatorname{\mathbf{Stm}} \ni C ::= \operatorname{\mathbf{skip}} | C_1; C_2 | x := a | \operatorname{\mathbf{if}} b \operatorname{\mathbf{then}} C_1 \operatorname{\mathbf{else}} C_2 | \operatorname{\mathbf{while}} b \operatorname{\mathbf{do}} C$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 5 / 42

Semantics

- Will consider an *interpretation structure* $\mathcal{M} = (D, I)$ for the vocabulary describing the concrete syntax of program expressions.
- The interpretation of expressions depends on a *state*, which is a function that maps each variable into its value. State = $Var \rightarrow D$
- For the While language the set of states is $State = Var \rightarrow Z$
- Expressions are interpreted as functions from states to the corresponding domain of interpretation.
- We are considering that expression evaluation
 - ▶ is free of side-effects
 - does not go wrong

Assertions about programs

- We need formulas that express properties of particular states of the program.
- Program assertions $\phi, \theta, \psi \in \mathbf{Assert}$ (preconditions and postconditions in particular) are first-order formulas of a language obtained as an expansion of Bexp.
- Note that assertions may contain occurrences of functions and predicates provided by the user.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 6 / 42

Semantics of expressions

Defined inductively as before:

• $A : \mathbf{Aexp} \to (\mathbf{State} \to \mathbf{Z})$

 $\mathcal{A}\llbracket a \rrbracket : \mathbf{State} \to \mathbf{Z}$

or simply

 $\llbracket a \rrbracket : \mathbf{State} \to \mathbf{Z}$

• $\mathcal{B} : \mathbf{Bexp} \to (\mathbf{State} \to \mathbf{T})$

 $\mathcal{B}\llbracket b \rrbracket : \mathbf{State} \to \mathbf{T}$

or simply

 $\llbracket b \rrbracket : \mathbf{State} o \mathbf{T}$

Assertion semantics

- We take the usual interpretation of first-order formulas, noting two facts:
 - \blacktriangleright interpretation of assertions also depends on ${\mathcal M}$
 - ▶ states from **State** can be used as *variable assignments*
- The interpretation of the assertion $\phi \in \mathbf{Assert}$ is then given by

$$\llbracket \phi \rrbracket : \mathbf{State} \to \mathbf{T}$$

- Since assertions may also contain occurrences of functions and predicates provided by the user, the semantics of those must also be given axiomatically by the user.
- We will be reasoning in the context of a first-order theory that is specified in part by the semantics of program expressions and in part by user-provided axioms.

Maria João Frade (HASLab, DI-UM)

Validity

Axiomatics Semantics

SLP 2021/22 9 / 42

- We assume the existence of "external" means for checking the validity of assertions, in the presence of some background theory.
- These tools should additionally allow us to write axioms concerning the uninterpreted functions and predicates.
- Suppose that we wish to encode in the logic a description of what the factorial of a number is. The following axioms could be given

$$isfact(0,1)$$

 $\forall n,r. \ n>0 \rightarrow isfact(n-1,r) \rightarrow isfact(n,n*r)$
 $\forall n. \ isfact(n,fact(n))$
 $\forall n,r. \ isfact(n,r) \rightarrow r = fact(n)$

Program semantics

A natural semantics based on a deterministic evaluation relation

- \bigcirc \langle skip, $s \rangle \rightarrow s$
- $2 \langle x := a, s \rangle \rightarrow s[x \mapsto \llbracket a \rrbracket s]$
- \bullet if $\langle C_1, s \rangle \rightarrow s'$ and $\langle C_2, s' \rangle \rightarrow s''$, then $\langle C_1; C_2, s \rangle \rightarrow s''$
- \bullet if $\llbracket b \rrbracket s = \mathbf{tt}$ and $\langle C_t, s \rangle \to s'$, then $\langle \mathbf{if} \ b \ \mathbf{then} \ C_t \ \mathbf{else} \ C_f, s \rangle \to s'$
- **5** if $[\![b]\!]s = \text{ff}$ and $\langle C_f, s \rangle \rightarrow s'$, then $\langle \text{if } b \text{ then } C_t \text{ else } C_f, s \rangle \rightarrow s'$
- **6** if $[\![b]\!]s = \mathbf{tt}$, $\langle C, s \rangle \rightarrow s'$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ C, s' \rangle \rightarrow s''$, then \langle while b do $C, s \rangle \rightarrow s''$
- of if $[\![b]\!]s = \mathbf{ff}$, then $\langle \mathbf{while}\ b\ \mathbf{do}\ C, s \rangle \rightarrow s$

There is no possible *runtime error*, but a program may *diverge*.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 10 / 42

Hoare triples (for partial correction)

- $\{\phi\} C \{\psi\}$ Notation:
 - \blacktriangleright ϕ is the precondition
 - ψ is the postcondition
- Denote the *partial correctness* of program C relative to specification (ϕ,ψ)

Intended meaning of $\{\phi\} C \{\psi\}$

If ϕ holds in a given state and C is executed in that state, then either execution of C does not stop, or if it does, ψ will hold in the final state.

Examples

$${x = y} x := x + y; x := 10 * x {x = 20 * y}$$

$$\{x=5\}$$
 while $x>0$ do skip $\{false\}$

Hoare triples (for total correction)

- $[\phi] C [\psi]$ Notation:
- Denote the *total correctness* of program C relative to specification (ϕ,ψ)

Intended meaning of $[\phi] C [\psi]$

If ϕ holds in a given state and C is executed in that state, then execution of C will stop, and moreover ψ will hold in the final state of execution.

Examples

$$[x = y] x := x + y; x := 10 * x [x = 20 * y]$$

$$[x = 5]$$
 while $x > 0$ do $x := x - 1 [x = 0]$

$$[\exists a.x = 10 * a] x := x + 18 [\exists v.x = 2 * v]$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 13 / 42

Hoare logic as an Axiomatic Semantics (system H)

$$(\mathsf{skip}) \qquad \overline{\{\phi\}\,\mathbf{skip}\,\{\phi\}}$$

$$(\mathsf{ass}) \qquad \overline{\{\psi[e/x]\}\,x := e\,\{\psi\}}$$

$$(\mathsf{comp}) \quad \frac{\{\phi\}\,C_1\,\{\theta\} \qquad \{\theta\}\,C_2\,\{\psi\}}{\{\phi\}\,C_1\,;\,C_2\,\{\psi\}}$$

$$\frac{\left\{\phi\wedge b\right\}C_1\left\{\psi\right\} \qquad \left\{\phi\wedge\neg b\right\}C_2\left\{\psi\right\}}{\left\{\phi\right\}\ \text{if}\ b\ \text{then}\ C_1\ \text{else}\ C_2\left\{\psi\right\}}$$

$$\frac{\{\theta \wedge b\} C\{\theta\}}{\{\theta\} \text{ while } b \text{ do } C\{\theta \wedge \neg b\}}$$

$$(\text{cons}) \quad \frac{\left\{\phi\right\}C\left\{\psi\right\}}{\left\{\phi'\right\}C\left\{\psi'\right\}} \text{ if } \ \phi' \to \phi \ \text{ and } \ \psi \to \psi'$$

Semantics of Hoare triples

$\models \{\phi\} C \{\psi\}$

The Hoare triple $\{\phi\}$ C $\{\psi\}$ is said to be *valid*, denoted \models $\{\phi\}$ C $\{\psi\}$, whenever for all $s, s' \in \mathbf{State}$,

if
$$\llbracket \phi \rrbracket s = \mathbf{tt}$$
 and $\langle C, s \rangle \rightarrow s'$, then $\llbracket \psi \rrbracket s' = \mathbf{tt}$.

$\models [\phi] C [\psi]$

The Hoare triple $[\phi] C [\psi]$ is said to be *valid*, denoted $\models [\phi] C [\psi]$, whenever for all $s \in \mathbf{State}$.

if
$$\llbracket \phi \rrbracket s = \mathbf{tt}$$
, then $\exists s' \in \mathbf{State}. \langle C, s \rangle \rightarrow s'$ and $\llbracket \psi \rrbracket s' = \mathbf{tt}.$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 14 / 42

Loop invariants

- We call *loop invariant* to any property whose validity is preserved by executions of the loop's body.
- Since these executions may only take place when the loop condition is true, an invariant of the loop while $b \operatorname{do} C$ is any assertion θ such that $\{\theta \wedge b\} C \{\theta\}$ is valid, in which case of course it also holds that $\{\theta\}$ while b do $C\{\theta \land \neg b\}$ is valid.

Warning

Find an adequate loop invariant may be a major difficulty!

Loop variants

- However the validity of $[\theta \wedge b] C [\theta]$ does not imply the validity of $[\theta]$ while b do $C[\theta \land \neg b]$ (why?)
- The required notion here is a *loop variant*: any program expression (or more generally some function on the state) whose value strictly decreases with each iteration, with respect to some well-founded relation.
- The natural choice in our language is to use *non-negative integer* expressions with strictly decreasing values.

$$(\text{while}) \quad \frac{ \left[\theta \wedge b \wedge V = v_0 \right] C \left[\theta \wedge V < v_0 \right] }{ \left[\theta \right] \text{while } b \text{ do } C \left[\theta \wedge \neg b \right] } \quad \text{if} \quad \theta \wedge b \rightarrow V \geq 0$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 17 / 42

Soundness

System H is sound w.r.t. the semantics of Hoare triples If $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$, then $\models \{\phi\} C \{\psi\}$

Proof: By induction on the derivation of $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$.

Proof trees

 $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$ denote the fact that $\{\phi\} C \{\psi\}$ is derivable in system H .

```
\vdash_{\mathsf{H}} \{x = y\} \ x := x + y \ ; \ x := 10 * x \{x = 20 * y\}
(cons)^* since x = y \to 10 * (x + y) = 20 * y
```

Alternative display:

```
\vdash_{\mathsf{H}} \{x = y\} \ x := x + y \ ; \ x := 10 * x \{x = 20 * y\}
         \begin{aligned} & \{x=y\} \, x := x+y \, ; \, x := 10 * x \, \{x=20 * y\} \\ & 1. & \{x=y\} \, x := x+y \, \{10 * x = 20 * y\} \\ & 1.1. & \{10 * (x+y) = 20 * y\} \, x := x+y \, \{10 * x = 20 * y\} \\ & 2. & \{10 * x = 20 * y\} \, x := 10 * x \, \{x = 20 * y\} \end{aligned} 
                                                                                                                                                                            (cons) x = y \to 10 * (x + y) = 20 * y (ass)
```

Maria João Frade (HASLab, DI-UM)

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 18 / 42

Completeness

- Two major difficulties for proving a program:
 - ▶ guess the appropriate intermediate formulas (for sequence, for the loop invariant)
 - prove the logical premises of consequence rule
- System H is complete as long as the assertion language is *sufficiently* expressive to grant the existence of intermediate assertions for reasoning.

System H is complete w.r.t. the semantics of Hoare triples

With **Assert** expressive in the above sense, if $\models \{\phi\} C \{\psi\}$ then $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$.

• This is usually called *relative completeness* [Cook, 1978]

Axiomatics Semantics

Auxiliary variables

• How to specify formally what the following program does?

$$a := x \, ; \, x := y \, ; \, y := a$$

• Employ auxiliary variables, forbidden to occur in the program, to record initial values of variables.

$${x = x_0 \land y = y_0} a := x; x := y; y := a {x = y_0 \land y = x_0}$$

- In fact, auxiliary variables are required in every specification, to avoid trivial solutions.
 - ▶ For instance, an inappropriate specification of factorial would be $(n \ge 0, f = fact(n))$ (Give some solutions!)

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 21 / 42

Annotated programs

- We are interested in automated verification
 - invariants are notoriously difficult to infer automatically
 - ▶ in practice loop invariants are typically given by the programmer as an input to the program verification process
- The syntactic class of annotated programs

$$\mathbf{AStm}\ni C\,::=\,\mathbf{skip}\mid x:=e\mid C_1\,;\,C_2\mid \mathbf{if}\;b\;\mathbf{then}\;C_1\;\mathbf{else}\;C_2\mid \mathbf{while}\;b\;\mathbf{do}\left\{\theta\right\}C$$

- Annotations do not affect the operational semantics.
- The (while) rule

$$\frac{\{\theta \wedge b\} C \{\theta\}}{\{\theta\} \text{ while } b \text{ do } \{\theta\} C \{\theta \wedge \neg b\}}$$

Exercises

• Prove the validity of the following Hoare triple

$$\{x = x_0 \land y = y_0\} \ a := x \ ; \ x := y \ ; \ y := a \ \{x = y_0 \land y = x_0\}$$

• How to specify formally what the following program does?

if
$$x < 0$$
 then $x := -x$ else skip

Prove its correction w.r.t. the specification proposed.

• Consider the following While program for calculating x^e

```
r := 1;
while e > 0 do {
 r := r * x;
 e := e - 1
```

Specify formally what the following program does and prove its correction w.r.t. the specification proposed.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 22 / 42

Annotated programs

- Whereas in the standard presentation a program can be proved correct with respect to a specification if there exists adequate invariants for proving it, with annotated loops a program can only be proved correct if it is *correctly* annotated.
- Soundness is preserved.

Maria João Frade (HASLab, DI-UM)

• Completeness does not hold, since the annotated invariants may be inadequate for deriving the triple.

The factorial example

The following is an example of a correctly annotated program w.r.t. the specification

$$(n \ge 0, f = fact(n))$$

Let **fact** be

```
f := 1 \; ; \; i := 1 \; ;
while i \le n \text{ do } \{ f = fact(i-1) \land i \le n+1 \} \{
  i := i + 1
```

A proof of $\{n \geq 0\}$ fact $\{f = fact(n)\}$ will be given later.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 25 / 42

Mechanising Hoare logic

- In H system two desirable properties for backward proof construction are missing:
 - sub-formula property
 - unambiguous choice of rule

$$\frac{\left\{\phi\right\}C_1\left\{\theta\right\} \quad \left\{\theta\right\}C_2\left\{\psi\right\}}{\left\{\phi\right\}C_1\,;\,C_2\left\{\psi\right\}} \qquad \qquad \frac{\left\{\phi\right\}C\left\{\psi\right\}}{\left\{\phi'\right\}C\left\{\psi'\right\}} \text{ if } \phi'\to\phi \text{ and } \psi\to\psi'$$

- The consequence rule causes ambiguity. Its presence is however necessary to make possible the application of rules for skip, assignment, and while, as well as reuse.
- An alternative is to distribute the side conditions among the different rules.

Mechanising Hoare Logic (extra)

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 26 / 42

Hg a goal-directed system

$$(\mathrm{skip}) \qquad \overline{\{\phi\}\,\mathbf{skip}\,\{\psi\}} \ \ \mathrm{if} \ \phi \to \psi$$

$$(\mathrm{ass}) \qquad \overline{\{\phi\}\,x := e\,\{\psi\}} \ \text{ if } \phi \to \psi[e/x]$$

$$\begin{array}{ccc} \left\{\phi\right\}C_1\left\{\theta\right\} & \left\{\theta\right\}C_2\left\{\psi\right\} \\ \left\{\phi\right\}C_1\,;\,C_2\left\{\psi\right\} \end{array}$$

$$(if) \qquad \frac{\left\{\phi \wedge b\right\} C_1 \left\{\psi\right\} \qquad \left\{\phi \wedge \neg b\right\} C_2 \left\{\psi\right\}}{\left\{\phi\right\} \text{if } b \text{ then } C_1 \text{ else } C_2 \left\{\psi\right\}}$$

$$\begin{array}{ccc} & & & & \{\theta \wedge b\}\,C\,\{\theta\} \\ \text{(while)} & & & \overline{\{\phi\}\,\text{while}\,\,b\,\,\text{do}\,\{\theta\}\,C\,\{\psi\}} \end{array} \text{ if } & & \phi \to \theta \text{ and } \\ & & & \theta \wedge \neg b \to \psi \end{array}$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

Hg properties

Admissibility of the consequence rule in Hg

If $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}, \models \phi' \to \phi$, and $\models \psi \to \psi'$, then $\vdash_{\mathsf{Hg}} \{\phi'\} C \{\psi'\}$.

Proof: By induction on the derivation of $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}$.

Let $|\cdot|: \mathbf{AStm} \to \mathbf{Stm}$ be a function that erases all annotations from a program (defined in the obvious way).

Soundness of Hg

If $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}$, then $\vdash_{\mathsf{H}} \{\phi\} |C| \{\psi\}$.

Proof: By induction on the derivation of $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}$.

Correctly-annotated program

We say that C is *correctly-annotated* w.r.t. (ϕ, ψ) if $\vdash_{\mathsf{H}} \{\phi\} \mid C \mid \{\psi\}$ implies $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}.$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 29 / 42

A strategy for proofs

- $\{\phi\} x := e_1 : y := e_2 : z := e_3 \{\psi\}$
 - 1. $\{\phi\} x := e_1; y := e_2 \{\theta\}$
 - $2. \{\theta\} z := e_3 \{\psi\}$
- Now the second sub-goal is an assignment, which means that the corresponding axiom can be applied by simply taking the precondition to be the one that trivially satisfies the side condition, i.e. $\theta = \psi[e_3/z]$. Now of course this can be substituted globally in the current proof construction
- $\{\phi\} x := e_1; y := e_2; z := e_3 \{\psi\}$
 - 1. $\{\phi\} x := e_1; y := e_2 \{\psi[e_3/z]\}$ 2. $\{\psi[e_3/z]\} z := e_3 \{\psi\}$

A strategy for proofs

- Focus on the command and postcondition: guess an appropriate precondition that guarantees the given postcondition.
- In the rules for skip, assignment, and while, the precondition is determined by looking at the side condition and choosing the weakest condition that satisfies it.
- In the sequence rule, we obtain the intermediate condition by propagating the postcondition.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 30 / 42

A strategy for proofs

- $\{\phi\} x := e_1; y := e_2; z := e_3 \{\psi\}$
 - 1. $\{\phi\} x := e_1 ; y := e_2 \{\psi[e_3/z]\}$ 1.1. $\{\phi\} x := e_1 \{\psi[e_3/z][e_2/y]\}$ 1.2. $\{\psi[e_3/z][e_2/y]\} y := e_2 \{\psi[e_3/z]\}$
 - 2. $\{\psi[e_3/z]\}\ z := e_3\{\psi\}$
- $\{\phi\} x := e_1 : y := e_2 : z := e_3 \{\psi\}$
 - 1. $\{\phi\} x := e_1; y := e_2 \{\psi[e_3/z]\}$ 1.1. $\{\phi\} x := e_1 \{\psi[e_3/z][e_2/y]\},$ 1.2. $\{\psi[e_3/z][e_2/y]\}\ y := e_2\{\psi[e_3/z]\}$
 - 2. $\{\psi[e_3/z]\}\ z := e_3\{\psi\}$
- In step 1.1 we were not free to choose the precondition for the assignment since this is now the first command in the sequence. Thus the side condition $\phi \to \psi[e_3/z][e_2/y][e_1/x]$ is introduced.

Using the weakest precondition strategy to verify fact

```
{n \geq 0} fact {f = fact(n)}
  1. \{n > 0\} f := 1: i := 1 \{n > 0 \land f = 1 \land i = 1\}
      1.1. \{n > 0\} f := 1 \{n > 0 \land f = 1\}
      1.2. \{n > 0 \land f = 1\} i := 1 \{n \ge 0 \land f = 1 \land i = 1\}
  2. \{n > 0 \land f = 1 \land i = 1\}
      while i \le n do \{f = fact(i-1) \land i \le n+1\} C_w
      \{f = fact(n)\}\
      2.1. \{f = fact(i-1) \land i < n + 1 \land i < n\} C_w \{f = fact(i-1) \land i < n + 1\}
           2.1.1. \{f = fact(i-1) \land i \le n + 1 \land i \le n\} \ f := f * i \{f = fact(i-1) * i \land i \le n\}
           2.1.2. \{f = fact(i-1) * i \land i \le n\} i := i+1 \{f = fact(i-1) \land i \le n+1\}
```

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 33 / 42

An architecture for program verification

where C_w represents the command f := f * i; i := i + 1.

At this point we may outline a method for program verification as follows.

- **1** Mechanically produce a derivation with $\{\phi\} C \{\psi\}$ as conclusion, assuming that all the side conditions created in this process hold. The side conditions are called *Verification Conditions (VCs)* or *Proof Obligations (POs)*
- 2 Send the VCs generated in step 1 to some proof tool in order to be checked.
- 3 If all VCs are shown to be valid by a proof tool, then $\{\phi\} C \{\psi\}$ is valid.

Verification Conditions Generator

The mechanisation of the construction of the proof tree following the weakeast precondition strategy does not even explicitly construct the proof tree; it just outputs the set of verification conditions.

This algorithm is called a Verification Conditions Generator (VCGen).

Using the weakest precondition strategy to verify fact

• The following side conditions are required for each node of the tree:

```
1.1 n > 0 \to (n > 0 \land f = 1)[1/f]
   1.2 n > 0 \land f = 1 \rightarrow (n > 0 \land f = 1 \land i = 1)[1/i]
    2. n \ge 0 \land f = 1 \land i = 1 \rightarrow f = fact(i-1) \land i \le n+1 and
        f = fact(i-1) \land i \le n+1 \land \neg(i \le n) \rightarrow f = fact(n)
2.1.1. f = fact(i-1) \land i < n+1 \land i < n \rightarrow (f = fact(i-1) * i \land i < n)[f * i/f]
2.1.2. f = fact(i-1) * i \land i \le n \rightarrow (f = fact(i-1) \land i \le n+1)[i+1/i]
```

• The validity of these conditions is fairly obvious in the current theory.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 34 / 42

An architecture for program verification

Maria João Frade (HASLab, DI-UM)

Discharging the VCs

- VCs are first-order formulas whose validity is to be checked w.r.t. a background theory.
- The VCs are discharged using proof tools.
- Automated proof tools (such as SMT-solvers) are usually the first choice.
 - ▶ It is possible to use a multi-prover approach (as can be seen with Frama-C/Why3)
- If no conclusive answer is given (recall FOL is semi-decidable) one must use a proof assistant.
- If the automated prover finds a counter-example (or if the interactive proof does not succeed), then we do not have a proof tree for the Hoare triple. That means the verification of the program has failed!

Warning

This may be due to errors in the program, specification or annotations!

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 37 / 42

VCGen algorithm

VC produces a set of verification conditions from a program and a postcondition

$$VC(\mathbf{skip}, \psi) = \emptyset$$

$$VC(x := e, \psi) = \emptyset$$

$$VC(C_1; C_2, \psi) = VC(C_1, wlp(C_2, \psi)) \cup VC(C_2, \psi)$$

$$VC(\mathbf{if}\ b\ \mathbf{then}\ C_1\ \mathbf{else}\ C_2,\psi) = VC(C_1,\psi)\ \cup\ VC(C_2,\psi)$$

$$\begin{array}{lcl} \mathsf{VC}(\mathbf{while}\ b\ \mathbf{do}\ \{\theta\}\ C, \psi) & = & \{(\theta \wedge b) \to \mathsf{wlp}(C, \theta), (\theta \wedge \neg b) \to \psi\} \\ & \cup \ \mathsf{VC}(C, \theta) \end{array}$$

$$VCG(\{\phi\} C \{\psi\}) = \{\phi \to wlp(C, \psi)\} \cup VC(C, \psi)$$

Weakest liberal precondition

[Dijkstra, 1975]

Given a command C and a postcondition ψ , $\mathsf{wlp}(C,\psi)$ should return the minimal precondition ϕ that validates the triple $\{\phi\} C \{\psi\}$.

$$\begin{array}{rcl} \mathsf{wlp}(\mathbf{skip},\psi) & = & \psi \\ \\ \mathsf{wlp}(x := e, \psi) & = & \psi[e/x] \\ \\ \mathsf{wlp}(C_1; C_2, \psi) & = & \mathsf{wlp}(C_1, \mathsf{wlp}(C_2, \psi)) \\ \\ \mathsf{wlp}(\mathbf{if} \ b \ \mathbf{then} \ C_1 \ \mathbf{else} \ C_2, \psi) & = & (b \to \mathsf{wlp}(C_1, \psi)) \land (\neg b \to \mathsf{wlp}(C_2, \psi)) \\ \\ \mathsf{wlp}(\mathbf{while} \ b \ \mathbf{do} \ \{\theta\} \ C, \psi) & = & \theta \end{array}$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 38 / 42

VCGen algorithm

Some observations:

- The function VC simply follows the structure of the rules of system Hg to collect the union of all sets of verification conditions.
- According to the weakest precondition strategy the side conditions generated are trivially satisfied (so we do not collect them).
- In fact, only the loop rule actually introduces verification conditions that need to be checked.
- To understand the clause for loops, it may help to observe that this clause is just an expansion of

$$\mathsf{VC}(\mathbf{while}\ b\ \mathbf{do}\left\{\theta\right\}C,\psi) = \left\{\left(\theta \land \neg b\right) \to \psi\right\} \cup \mathsf{VCG}(\left\{\theta \land b\right\}C\left\{\theta\right\})$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

Properties of VCGen

Soundness

If $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}$, then

- $\bullet \vdash_{\mathsf{Hg}} \{\mathsf{wlp}(C,\psi)\} \, C \, \{\psi\}$
- $\models \phi \rightarrow \mathsf{wlp}(C, \psi)$

Proof: By induction on the structure of C.

Adequacy of VCGen

$$\models \mathsf{VCG}(\{\phi\}\,C\,\{\psi\}) \quad \mathsf{iff} \quad \vdash_{\mathsf{Hg}} \{\phi\}\,C\,\{\psi\}$$

Proof:

- \Rightarrow) By induction on the structure of C.
- \Leftarrow) By induction on the derivation of $\vdash_{\mathsf{Hg}} \{\phi\} C \{\psi\}$.

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 41 / 42

Applying the VCGen algorithm to fact

- Start by calculating $VC(\mathbf{fact}, f = fact(n))$.
- Then do the calculation of VCG($\{n \geq 0\}$ fact $\{f = fact(n)\}$).
- The end result should be following set of proof obligations.

$$n \ge 0 \to 1 = fact(1-1) \land 1 \le n+1$$

$$f = fact(i-1) \land i \le n+1 \land i \le n \rightarrow f * i = fact(i+1-1) \land i+1 \le n+1$$

Maria João Frade (HASLab, DI-UM)

Axiomatics Semantics

SLP 2021/22 42 / 42