SADS-II problem-11

Perspiration from a sample of 20 healthy females was analyzed. Three components, X_1 = Sweet rate, X_2 = Sodium content and X_3 = Potassium content, were measured and the results, which we call the sweat data are given in the below table.

Date: 24-04-2024

Sweat Data			
Individual	X ₁ (Sweat rate)	X ₂ (Sodium)	X ₃ (Potassium)
1	3.7	48.5	9.3
2	5.7	65.1	8.0
3	3.8	47.2	10.9
4	3.2	53.2	12.0
5	3.1	55.5	9.7
6	4.6	36.1	7.9
7	2.4	24.8	14.0
8	7.2	33.1	7.6
9	6.7	47.4	8.5
10	5.4	54.1	11.3
11	3.9	36.9	12.7
12	4.5	58.8	12.3
13	3.5	27.8	9.8
14	4.5	40.2	8.4
15	1.5	13.5	10.1
16	8.5	56.4	7.1
17	4.5	71.6	8.2
18	6.5	52.8	10.9
19	4.1	44.1	11.2
20	5.5	40.9	9.4

Find the principal components of the above data and also find the proportion of total variation explained by first and second principal components.

Solution:-> setwd("D:\\dataset\\")

```
> data=read.csv("principalcom.csv")
> data
        x2 x3
    X1
1 3.7 48.5 9.3
  5.7 65.1 8.0
  3.8 47.2 10.9
  3.2 53.2 12.0
  3.1 55.5 9.7
  4.6 36.1 7.9
  2.4 24.8 14.0
  6.7 47.1 8.5
10 5.4 54.1 11.3
11 3.9 36.9 12.7
12 4.5 58.8 12.3
13 3.5 27.8 9.8
```

```
14 4.5 40.2 8.4
15 1.5 13.5 10.1
16 8.5 56.4 7.1
17 4.5 71.6 8.2
18 6.5 52.8 10.9
19 4.1 44.1 11.2
20 5.5 40.9 9.4
> head(data)
   X1 X2
1 3.7 48.5 9.3
2 5.7 65.1 8.0
3 3.8 47.2 10.9
4 3.2 53.2 12.0
5 3.1 55.5 9.7
6 4.6 36.1 7.9
> setwd("D:\\dataset\\")
> data=read.csv("principalcom.csv")
> head(data)
            х3
   X1 X2
1 3.7 48.5 9.3
2 5.7 65.1 8.0
3 3.8 47.2 10.9
4 3.2 53.2 12.0
5 3.1 55.5 9.7
6 4.6 36.1 7.9
> ##step2: Standardize the data
> scale_data=scale(data)
> head(scale_data)
                            X2
[1,] -0.55396106  0.2204127 -0.3491471
[2,] 0.62467949 1.3950038 -1.0316904
[5,] -0.90755322  0.7157222 -0.1391338
[6,] -0.02357281 -0.6569927 -1.0841937
> ##Step 3: Perform Principal Component Analysis (PCA)
> # Perform PCA
> pca_result <- prcomp(scale_data, scale. = TRUE)</pre>
> pca_result
Standard deviations (1, ..., p=3):
[1] 1.3440666 0.8955140 0.6257313
Rotation (n \times k) = (3 \times 3):
            PC1
                     PC2
                                  PC3
x1 0.6534351 -0.1023336 -0.7500336
x2 0.4870226 0.8153574 0.3130516
x3 -0.5795097 0.5698422 -0.5826219
> # Summary of PCA
> summary(pca_result)
Importance of components:
                                       PC2
Standard deviation
                      1.3441 0.8955
Proportion of Variance 0.6022 0.2673
Cumulative Proportion 0.6022 0.8695
                      0.6257
Standard deviation
Proportion of Variance 0.1305
Cumulative Proportion 1.0000
> ##Step 4: Interpret Principal Components Extract and Interpret Loadings
> # Extract loadings
> loadings <- pca_result$rotation</pre>
> # Print loadings
> print(loadings)
                                  PC3
                       PC2
            PC1
X1 0.6534351 -0.1023336 -0.7500336
```

```
X2  0.4870226  0.8153574  0.3130516
X3 -0.5795097  0.5698422 -0.5826219
> ##step5:Proportion of Variance
> # Proportion of variance explained
> prop_variance <- pca_result$sdev^2 / sum(pca_result$sdev^2)
>
> # Print proportion of variance
> print(prop_variance)
[1]  0.6021717  0.2673151  0.1305132
> ##step6: percentage
> per =((0.6021717+0.2673151)/sum(prop_variance))*100
> per
[1]  86.94868
```