

Calcolo del movimento di sistemi dinamici LTI

Analisi modale per sistemi dinamici LTI TD

Analisi modale per sistemi dinamici LTI TD

- Richiami sull'analisi modale
- Modi naturali e analisi modale per sistemi LTI TD
- Esercizio 1
- Esercizio 2

Analisi modale per sistemi dinamici LTI TD

Richiami sull'analisi modale

Analisi modale: richiami (1/3)

Ricordiamo che:

- Con l'analisi modale si possono studiare le proprietà del movimento libero di un sistema dinamico LTI
- Tale studio viene condotto sulla base del comportamento dei modi naturali del sistema al tendere del tempo all'infinito
- La forma dei modi naturali dipende dalle caratteristiche degli autovalori della matrice A del sistema dinamico

Analisi modale: richiami (2/3)

- Per condurre l'analisi modale di sistemi LTI occorre:
 - Determinare l'espressione analitica dei modi naturali corrispondenti a diverse caratteristiche degli autovalori del sistema
 - Valutare il comportamento dei modi naturali al tendere del tempo all'infinito

Analisi modale: richiami (3/3)

- Anche per i modi naturali m(k) di sistemi dinamici LTI TD, definiti per $k \ge 0$, valgono le definizioni:
 - Convergente se:

$$\lim_{k\to\infty}\left|m(k)\right|=0$$

Limitato se $\exists M \in \mathbb{R}$ tale che $\forall k \geq 0$ risulti:

$$0 \le |m(k)| \le M < \infty$$

Divergente se:

$$\lim_{k\to\infty} \left| m(k) \right| = \infty$$

Analisi modale per sistemi dinamici LTI TD

Modi naturali e analisi modale per sistemi LTI TD

Movimento libero

Il movimento libero $x_{\ell}(k)$ di un sistema dinamico LTI TD di ordine n descritto dall'equazione di stato:

$$X(k+1) = AX(k)$$

 $con x(k) \in \mathbb{R}^n e A \in \mathbb{R}^{n \times n}$

è dato da:

$$X_{\ell}(k) = A^{k}X(0)$$

essendo $x(0) \in \mathbb{R}^n$ uno stato iniziale noto

Forma di Jordan (1/2)

- Per evidenziare i modi naturali associati alle varie tipologie di autovalori occorre calcolare A^k
- ightharpoonup Il calcolo di A^k è immediato solo se A è diagonale
- In ogni caso, è possibile semplificare la procedura di determinazione dei modi naturali poiché:

$$A^k = T\tilde{A}^kT^{-1}$$

- T è una matrice costante

Forma di Jordan (2/2)

La forma di Jordan di una matrice quadrata avente q autovalori distinti $\lambda_1, ..., \lambda_q$ di molteplicità $\mu_1, ..., \mu_q$ è una matrice diagonale a blocchi

y(t) = Cx(t)

$$\tilde{A} = \begin{bmatrix} \tilde{A}_1 & 0 & \cdots & 0 \\ 0 & \tilde{A}_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \tilde{A}_q \end{bmatrix}$$

ightharpoonup I **blocchi di Jordan** $\tilde{A_j}$ sono matrici quadrate associate all'*i*-esimo autovalore λ_i , aventi dimensione μ_i x μ_i

Potenza di matrice

➤ La potenza di una matrice in forma di Jordan è data da una forma diagonale a blocchi del tipo:

$$\tilde{\mathcal{A}}^{k} = \begin{bmatrix} \tilde{\mathcal{A}}_{1}^{k} & 0 & \cdots & 0 \\ 0 & \tilde{\mathcal{A}}_{2}^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \tilde{\mathcal{A}}_{q}^{k} \end{bmatrix}$$

dove i blocchi \tilde{A}_{i}^{k} hanno forma diversa a seconda delle caratteristiche degli autovalori di A

Movimento libero e forma di Jordan

Si ha:

$$X_{\ell}(k) = A^{k}X(0) = T\tilde{A}^{k}T^{-1}X(0)$$

ightharpoonup Poiché Te x(0) sono costituite da numeri reali

- L'espressione analitica di $x_{\ell}(k)$ è una combinazione lineare degli elementi della matrice \tilde{A}^k
- La forma semplificata di \tilde{A} (e quindi di \tilde{A}^k) permette di mettere immediamente in evidenza la forma dei modi naturali
- Si possono così analizzare in modo più immediato le proprietà qualitative del movimento libero $x_{\ell}(k)$

Calcolo dei modi naturali

- Studieremo ora, come cambia la forma dei blocchi della matrice \tilde{A}^k al variare delle caratteristiche degli autovalori della matrice A
- Questo permetterà di:
 - Definire la forma dei modi naturali in base alle proprietà degli autovalori
 - Eseguire l'analisi modale del sistema
- Studieremo i seguenti casi:
 - Autovalori con molteplicità unitaria
 - Autovalori con molteplicità maggiore di uno

Autovalori R semplici

I blocchi di \tilde{A}^k corrispondenti ad autovalori reali e distinti hanno forma diagonale:

$$\begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n^k \end{bmatrix}$$

e danno origine a modi naturali del tipo λ_i^k

Autovalori R semplici: analisi modale

Il modo naturale λ^k , associato all'autovalore $\lambda \in \mathbb{R}$ di molteplicità unitaria, risulta:

- Geometricamente convergente se $|\lambda| < 1$ (Es. 0.5^k , $(-0.5)^k$)
- **Limitato** se $|\lambda| = 1$ (Es. $1^k = 1$, $(-1)^k$)
- Geometricamente divergente se $|\lambda| > 1$ (Es. 2^k , $(-2)^k$)
- Si noti che, se $\mathbb{R}e(\lambda)$ < 0 , il modo corrispondente origina una sequenza di campioni (modo alternato) il cui segno cambia ad ogni passo

Autovalori C semplici

I blocchi di \tilde{A}^k corrispondenti ad una coppia di autovalori complessi coniugati con molteplicità unitaria del tipo $\lambda = \sigma \pm j\omega = ve^{\pm j\theta}$ hanno la forma:

y(t) = Cx(t)

$$v^{k}\begin{bmatrix} \cos(\theta k) & \sin(\theta k) \\ -\sin(\theta k) & \cos(\theta k) \end{bmatrix}$$

e danno origine a modi naturali oscillanti della forma $v^k \cos(\theta k)$, $v^k \sin(\theta k)$

Autovalori C semplici: analisi modale

I modi naturali della forma $v^k \cos(\theta k)$, $v^k \sin(\theta k)$, associati ad una coppia di autovalori complessi coniugati di molteplicità unitaria del tipo $\lambda = \sigma \pm j\omega = ve^{\pm j\theta}$ sono:

- Geometricamente convergenti se $|\lambda| = v < 1$ (Es. $0.5^k \sin(k)$)
- Limitati (oscillanti) se $|\lambda| = v = 1$, Arg $(\lambda) = \theta \neq 0$ (Es. sin(5k))
- Geometricamente divergenti se $|\lambda| = v > 1$ (Es. 1.5 $k \sin(k)$)

Autovalori R multipli

I blocchi di \tilde{A}^k corrispondenti ad un autovalore reale λ con molteplicità μ sono matrici diagonali a blocchi contenenti sottomatrici triangolari del tipo:

y(t) = Cx(t)

$$\begin{bmatrix} \lambda^{k} & k\lambda^{k} & \cdots & \frac{k(k-1)\cdots(k-\mu'-2)}{(\mu'-1)!} \lambda^{k-\mu'-1} \\ 0 & \lambda^{k} & \cdots & \frac{k(k-1)\cdots(k-\mu'-3)}{(\mu'-2)!} \lambda^{k-\mu'-2} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda^{k} \end{bmatrix}$$

e danno origine a $\mu' \leq \mu$ modi naturali contenenti termini del tipo $k^{\mu'}\lambda^k$, ..., $k\lambda^k$, λ^k

Autovalori R multipli: analisi modale

I μ' modi naturali contenenti termini del tipo $k^{\mu'}\lambda^k$, ..., $k\lambda^k$, λ^k , associati ad un autovalore reale λ con molteplicità μ sono:

- Geometricamente convergenti se $|\lambda| < 1$ (Es. $k \cdot 0.5^k$, $k \cdot (-0.5)^k$)
- Polinomialmente divergenti se $|\lambda| = 1$ (Es. $k 1^k = k$)
- Geometricamente divergenti se $|\lambda| > 1$ (Es. $k \cdot 1.5^k$, $k \cdot (-1.5)^k$)
- ➤ Anche in questo caso se $\mathbb{R}e(\lambda)$ < 0 si hanno dei modi alternati

Autovalori C multipli

I blocchi di \tilde{A}^k corrispondenti ad una coppia di autovalori complessi $\lambda = \sigma \pm j\omega = ve^{\pm j\theta}$ con molteplicità μ hanno una forma analoga al caso reale e danno origine, in generale, a $\mu' \leq \mu$ modi naturali oscillanti contenenti termini del tipo:

$$k^{\mu'}v^k\cos(\theta k), ..., kv^k\cos(\theta k), v^k\cos(\theta k)$$

 $k^{\mu'}v^k\sin(\theta k), ..., kv^k\sin(\theta k), v^k\sin(\theta k)$

Autovalori C multipli: analisi modale

I μ' modi naturali contenenti termini del tipo $k^{\mu'}v^k\cos(\theta k)$, ..., $kv^k\cos(\theta k)$, $v^k\cos(\theta k)$ $k^{\mu'}v^k\sin(\theta k)$, ..., $kv^k\sin(\theta k)$, $v^k\sin(\theta k)$ associati ad una coppia di autovalori complessi del tipo $\lambda = \sigma \pm j\omega = ve^{\pm j\theta}$ con molteplicità μ sono:

- Geometricamente convergenti se $|\lambda| = v < 1$ (Es. $k \cdot 0.5^k \sin(k)$)
- Polinomialmente divergenti se $|\lambda| = v = 1$, Arg $(\lambda) = \theta \neq 0$ (Es. $k \sin(5k)$)
- Geometricamente divergenti se $|\lambda| = v > 1$ (Es. $k \cdot 1.5^k \sin(k)$)

Analisi modale per sistemi dinamici LTI TD

Esercizio 1

Formulazione del problema

Si consideri un sistema dinamico LTI TD caratterizzato dalla seguente matrice A:

$$A = \begin{bmatrix} 0.1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -0.4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Determinare le caratteristiche dei modi naturali

Soluzione: calcolo dei modi naturali

y(t) = Cx(t)

Poiché la matrice A risulta diagonale, gli autovalori si leggono direttamente sulla diagonale e sono:

$$\lambda_1 = 0.1$$
, $\lambda_2 = -2$, $\lambda_3 = -0.4$, $\lambda_4 = 0$.

Soli autovalori sono reali e distinti pertanto i corrispondenti modi naturali sono del tipo λ_i^k :

$$\lambda_1 \to 0.1^k, \lambda_2 \to (-2)^k, \lambda_3 \to (-0.4)^k, \lambda_4 \to 0^k = \delta(k)$$

Soluzione: analisi modale

- \rightarrow 0.1 $^k \rightarrow$ modo geometricamente convergente
- \rightarrow (-2)^k \rightarrow modo geometricamente divergente (alternato)
- \rightarrow (-0.4)^k \rightarrow modo geometricamente convergente (alternato)
- \triangleright 0 k =δ(k) → modo geometricamente convergente (impulsivo → converge a zero in un passo)

Analisi modale per sistemi dinamici LTI TD

Esercizio 2

Formulazione del problema

Si consideri un sistema dinamico LTI TD caratterizzato dalla seguente matrice A:

$$A = \begin{bmatrix} -0.5 & 0.5 & 0 & 0 \\ -0.5 & -0.5 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Determinare le caratteristiche dei modi naturali

Soluzione: calcolo degli autovalori

- Poiché la matrice A risulta diagonale a blocchi gli autovalori sono quelli delle sottomatrici A_{11} e A_{22}
- Per la sottomatrice A_{11} si ha $\lambda_{1,2} = -0.5 \pm 0.5 j =$ $= \frac{\sqrt{2}}{2} e^{\pm j\frac{5}{4}\pi}$
- Per la sottomatrice A_{22} si ha $\lambda_3 = -1$, $\lambda_4 = 3$

Soluzione: analisi modale

- Il sistema presenta quattro autovalori distinti di cui due reali e due complessi coniugati
- I modi naturali corrispondenti sono:

$$\lambda_{1,2} \rightarrow \left(\frac{\sqrt{2}}{2}\right)^{k} \cos\left(\frac{5}{4}\pi k\right), \left(\frac{\sqrt{2}}{2}\right)^{k} \sin\left(\frac{5}{4}\pi k\right)$$

$$\rightarrow |\lambda_{1,2}| < 1$$

modi oscillanti geometricamente convergenti

- \bullet $\lambda_3 \rightarrow (-1)^k \rightarrow |\lambda_3| = 1 \rightarrow \text{modo limitato (alternato)}$
- $\lambda_4 \rightarrow 3^k \rightarrow |\lambda_4| > 1 \rightarrow \text{modo geometricamente}$ divergente