Lecture 3

Binary

- For n binary digits, we can represent 2^n values
- Binary to Decimal:
 - Add up the powers of 2, e.g. $(1111)_2 = 2^3 + 2^2 + 2^1 + 2^0 = (15)_{10}$
- Decimal to Binary:
 - Divide the number by 2, and the remainder is the rightmost digit
 - e.g. 11/2 = 5R1, 5/2 = 2R1, 2/2 = 1R0, 1/2 = 1R1, so $(11)_{10} = (1011)_2$ (reading the remainders from right to left)

Hexadecimal:

- Hexadecimal to Binary:
 - Add up the powers of 16, similar to binary
- Decimal to Hexadecimal:
 - Either divide the number by 16 and keep the remainder as the right-most digit (as in binary)
 - Or convert it to binary then conver every 4 binary digits to a hexadecimal digit (from the right)

Miscellaneous:

- Negative numbers will be covered later in the term
- Fractions: Either fixed point of floating point
 - Floating point: a number is represented as 1.100110... \times 2^{101...}, i.e. two signed binary numbers

Addition of binary numbers

• Exactly the same as decimal, but carry over happens at 2 instead of 10

Addition of hexadecimal numbers

• Exactly the same as decimal, but carry over happens at 16 instead of 10 (note than the numbers 10-15 become A-F, they do not carry over!)

Transistors as switches

- Transistors are the key technology to enable modern computers
- Moore's Laws: number of transistors manufactured on a chip doubles every
 1.5 2 years
- Transistors operate as switches in this class
 - -x=0: Light is off
 - -x=1: Light is on
- Two or more transistors:
 - Series: AND

- voltage and ground