AMENDMENTS

In the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the application.

- 1. (Currently Amended) A high-resistance silicon wafer having resistivity of 100 Ωcm or more, wherein an oxygen precipitate (BMD) having a size of 0.2 µm or more is formed so as to have density of 1 x 10⁴/cm² in the wafer, an oxygen concentration in the wafer <u>as measured in accordance with ASTM F-121, 1979</u> is 12 x 10¹⁷ atoms/cm³ (ASTM F-121, 1979) or less, and a carbon concentration is <u>in a range of 0.5 x 10¹⁶ atoms/cm³ or more to 1.0 x 10¹⁷ atoms/cm³.</u>
- (Currently Amended) The high-resistance silicon wafer according to claim 1, wherein
 a density of a LPD (Light Point Defeet) light point defect having a size of 0.12 µm or more and
 observed on a surface of the wafer is eontrolled so as to be 0.2/cm² or less.
- 3. (Currently Amended) A high-resistance silicon wafer having resistivity of $100 \Omega cm$ or more, wherein a density of a grown-in defect detected by seco etching is $1 \times 10^3 / cm^{-3}$ or less, an oxygen precipitate (BMD) having a size of $0.2 \mu m$ or more is formed so as to have density of $1 \times 10^4 / cm^2$ or more in the wafer, [[and]] an oxygen concentration in the wafer <u>as measured in accordance with ASTM F-121, 1979</u> is 12×10^{17} atoms/cm³ (ASTM F-121, 1979) or less, <u>and a carbon concentration in the wafer is in a range of $0.5 \times 10^{16} \text{ atoms/cm}^3$ to $1.0 \times 10^{17} \text{ atoms/cm}^3$.</u>
 - 4. (Canceled)
- (Currently Amended) The high-resistance silicon wafer according to claim 1 or 3, wherein a DZ (Denuded Zone) denuded zone layer is formed at least 5 μm or more in depth from a surface of the wafer.
- 6. (Currently Amended) The high-resistance silicon wafer according to claim 1 or 3, wherein value of the oxygen concentration (ASTM F-121, 1979) of the wafer as measured in accordance with ASTM F-121, 1979 is limited in ranges of 12 x 10^{17} atoms/cm³ or less, 7 x 10^{17} atoms/cm³ or less, and 5.8 x 10^{17} atoms/cm³ or less when the resistivity of the wafer is not less than 100 Ω cm and less than 300 Ω cm, not less than 300 Ω cm and less than 2000 Ω cm, and not

less than 2000 Ωcm, respectively.

 (Currently Amended) A manufacturing method of manufacturing a high-resistance silicon wafer, characterized in that comprising:

providing a primary silicon wafer in which resistivity is $100~\Omega cm$ or more, oxygen concentration as measured in accordance with ASTM F-121, 1979 is 12×10^{17} atoms/cm³ (ASTM F-121, 1979) or more, and a carbon concentration [[is]] in a range of 0.5×10^{16} atoms/cm³ to 1.0×10^{17} atoms/cm³ or more is used, and

producing the high-resistance silicon wafer in which a remaining oxygen concentration in the wafer is controlled to be 12 x 10¹⁷ atoms/cm³ as measured in accordance with ASTM F-121, 1979 (ASTM F-121, 1979) or less by performing a heat treatment for forming an oxygen precipitate nucleus and a heat treatment for growing the oxygen precipitate on the primary silicon wafer.

 (Currently Amended) A manufacturing method of manufacturing a high-resistance silicon wafer, eharacterized in that comprising:

providing a primary silicon wafer in which resistivity is $100 \Omega cm$ or more, an oxygen concentration as measured in accordance with ASTM F-121, 1979 is 14×10^{17} atoms/cm³ (ASTM F-121, 1979) or more_a carbon concentration in the wafer is controlled to be in a range of 0.5×10^{16} atoms/cm³ to 1.0×10^{17} atoms/cm³, and a density of a grown-in defect detected by seco etching is 1×10^{3} /cm³ is used, a remaining oxygen concentration in the wafer as measured in accordance with ASTM F-121, 1979 is controlled to be 12×10^{17} atoms/cm³ (ASTM-F-121, 1979) or less by performing a heat treatment for forming an oxygen precipitate nucleus and a heat treatment for growing the oxygen precipitate on the primary silicon wafer.

- (Currently Amended) The manufacturing method of the high-resistance silicon wafer
 according to claim 7 or 8, wherein the heat treatment for forming the oxygen precipitate nucleus
 is a low-temperature heat treatment performed at 500 to 900°C for 5 hours or more.
 - 10. (Currently Amended) The manufacturing method of the high-resistance-silicon

wafer according to claim 9, wherein the conditions of the low-temperature heat treatment is at 700 to 900°C for 5 hours or more.

- 11. (Currently Amended) The manufacturing method of the high-resistance silicon wafer according to claim 7 or 8, wherein the heat treatment for growing the oxygen precipitate is a high-temperature heat treatment performed at 950 to 1050°C for 10 hours or more.
- 12. (Currently Amended) The manufacturing method of the high-resistance-silicon wafer according to claim 7 or 8, eharacterized in that further comprising performing an oxygen outward diffusion heat treatment is performed on the wafer at 1100 to 1250°C for 1 to 5 hours before the heat treatment for forming the oxygen precipitate nucleus.
- 13. (Currently Amended) The manufacturing method of the high-resistance-silicon wafer according to claim 12, eharacterized in that <u>further comprising performing</u> the oxygen outward diffusion heat treatment is performed in a gas atmosphere containing nitrogen gas.
- 14. (Currently Amended) The manufacturing method of the high-resistance silicon wafer according to claim 12, characterized in that wherein the oxygen outward diffusion heat treatment is performed in an atmosphere of a hydrogen gas, argon gas or mixed gas of these thereof.
- 15. (Currently Amended) The manufacturing method of the high resistance silicon wafer according to claim 7 or 8, characterized in that further comprising performing a rapid thermal annealing process is performed on the wafer before the heat treatment for forming the oxygen precipitate nucleus.
- 16. (Currently Amended) The manufacturing method of the high-resistance silicon wafer according to claim 15, wherein the conditions of the rapid thermal annealing process is carried out at 1150 to 1300°C for 1 to 60 seconds in an atmosphere containing nitrogen.
 - 17. (Canceled)