

#### **BACKGROUND**

#### **Certificate of Entitlement (COE)**

- Right to own a vehicle for 10 years.
- Separated into 5 Categories (A E)
- Quotas allocated by government.

#### **Bidding Exercises**

- Semi-Monthly (1st and 3rd week of each month)
- Quota per category to be announced before each bidding exercise.

#### **Purchasing Cars**

Before buying a car, there are various COEs packages to be bought.











#### PROBLEM STATEMENT

• As a car dealer in Singapore, I want to accurately predict COE premiums. This will allow the company to maximise profits and set prices that are competitive in the market.

Successfully bid for COE as soon as possible.

## **GOAL**

- In order to be able to accurately bid for a COE, I will be focusing on reducing MSE of the predictions.
- High success rate in bidding for COE is also important.
  - Success: Predicted price >= premium price



## **EXPLORATORY DATA ANALYSIS**

COE – QUOTAS BY CATEGORY



FOCUS – CATEGORY A PREMIUMS



#### EDA - HEATMAP



## EDA – CAT A VEHICLE ATTRIBUTES



## EDA – OTHER ECONOMIC VARIABLES



#### KEY FINDINGS FROM EDA

- COE premium has a general upward trend.
- COE's 10 years seasonality is not apparent.
- Overall population of vehicle remains the same but median income is increasing.
- Variables have a strong correlation to premium prices but poor estimator.
  - Resolution of variable information is too low vs premium price.

#### FEATURE ENGINEERING

- Scarcity simulate behavioral demand
  - Quota / total bids received
- Lags for other variables
  - Yearly, Quarterly, Monthly data used to predict for the next cycle

# CHECK FOR STATIONARITY

#### COE Premium first-order differenced



## **MODELING**

| Model                     | Univariate / Multivariate | MSE            | Success* % |
|---------------------------|---------------------------|----------------|------------|
| <u>ARIMA</u>              | Univariate                | 170,766,416.86 | 43.3       |
| <u>Linear Regression</u>  | Univariate                | 86,105,841.98  | 83.5       |
| Linear Regression         | Multivariate              | 627,776,111.23 | 100.0      |
| Linear Regression w Lasso | Multivariate              | 629,132,479.33 | 100.0      |
| Linear Regression w Ridge | Multivariate              | 629,122,991.38 | 100.0      |
| <u>SARIMA</u>             | Univariate                | 151,149,668.92 | 50.5       |

#### Variables used:

Linear Regression Model: Quota

Linear Regression Model 2: Quota, Deregistration of Cat A vehicle, Population Growth, STI close price

STRUCTURE OF RECURRENT NEURAL NETWORK MODEL



## MODELING - RECURRENT NEURAL NETWORK

| Model              | Univariate / Multivariate | MSE           | Success % |
|--------------------|---------------------------|---------------|-----------|
| RNN - LSTM         | Univariate                | 15,133,745.46 | 40.5      |
| <u>RNN - GRU</u>   | Univariate                | 7,453,959.03  | 75.9      |
| <u>RNN - GRU I</u> | Multivariate              | 8,823,055.69  | 20.3      |
| RNN - GRU 2        | Multivariate              | 19,145,021.12 | 5.1       |
| RNN - GRU 3        | Multivariate              | 10,139,610.50 | 19.0      |

#### Variables for Multivariate models:

Model 1: Premium, Scarcity

Model 2: Premium, Quota, Deregistration of Cat A vehicle, Population Growth, STI close price

Model 3: Premium, Scarcity, Deregistration of Cat A vehicle, STI close price

ERROR
ANALYSIS –
SUCCESS RATE



#### ERROR ANALYSIS - SUCCESS RATE

- Not accurate to compare across different success rates.
- Using a function, I added a different increment each model so that all models have an 90% success rate.

## ERROR ANALYSIS - SUCCESS RATE



## ERROR ANALYSIS - SUCCESS RATE



## ERROR ANALYSIS – SUCCESS RATE

| Model                | Average difference (Predicted vs Actual) | Standard Deviation |
|----------------------|------------------------------------------|--------------------|
| Linear Regression    | 8830.4                                   | 5205.9             |
| Linear Regression 2  | 11499.5                                  | 5687.4             |
| GRU - Univariate     | 3558.0                                   | 2133.1             |
| GRU - Multivariate I | 3849. I                                  | 2134.4             |
| GRU - Multivariate 2 | 4738.3                                   | 2216.6             |
| GRU - Multivariate 3 | 3892.5                                   | 2142.2             |

#### MODEL SELECTION

Lowest MSE

• High Success Rate with:

Low average difference to actual

Low standard deviation

- Eventual model selected:
  - Univariate GRU model



## PREDICTION FOR MAY'S BIDDING

- Using the model, the predicted premium: \$69,825.63
- To achieve 90% success rate: \$1943 is added to the prediction
- Final prediction = \$71,768.63

• Actual Premium = \$70,901



#### FUTURE AREAS OF WORK

- Due to time constraints, other categories naively uses the same model for CAT A.
- COE's 10 years seasonality might have an effect but there are too little data points to show.
- Prediction for more than just the next cycle
  - Able to price COE packages according to predictions.





ARIMA





## LINEAR **REGRESSION**





SARIMA





UNIVARIATE GRU





**MULTIVARIATE** GRU



