Ausgabe: 04. Juli 2023 ______ Besprechung: 10. Juli 2023

Einführung in die angewandte Stochastik

Übungsblatt 10

Quantilstabellen mit den Werten zur Normalverteilung, der t-Verteilung und der χ^2 - Verteilung befinden sich am Ende dieses Übungsblattes.

Aufgabe 41

Auf 12 Versuchsflächen wurde eine neue Weizensorte angebaut. Die einzelnen Flächen erbrachten die folgenden Hektarerträge (in t):

Aus Erfahrung ist bekannt, dass diese Hektarerträge als Realisationen stochastisch unabhängiger, jeweils $N(\mu, \sigma^2)$ -verteilter Zufallsvariablen mit $\mu \in \mathbb{R}$ und $\sigma > 0$ angesehen werden können.

- (a) Ermitteln Sie ein zweiseitiges Konfidenzintervall für den Erwartungswert μ zum Konfidenzniveau 0.9 bei
 - (i) bekannter Varianz $\sigma^2 = 0.0324$,
 - (ii) unbekannter Varianz σ^2 .
- (b) Ermitteln Sie ein einseitiges unteres 99%-Konfidenzintervall für
 - (i) die Varianz σ^2 ,
 - (ii) die Standardabweichung σ .

Aufgabe 42

Ein Mieter leistet monatliche Vorauszahlungen für die jährlichen Heizkosten seiner Wohnung an den Vermieter, der zur Festlegung der Abschläge einen Jahresverbrauch von 2 000 l Heizöl zugrunde legt. Der Mieter hält diese Angabe für überhöht und verweist auf die Verbrauchswerte der vergangenen sieben Jahre (in l):

Die Streitfrage soll mittels einen geeigneten statistischen Tests entschieden werden. Nehmen Sie hierzu an, dass die angegebenen Verbrauchswerte als Realisationen stochastisch unabhängiger, jeweils $\mathcal{N}(\mu, \sigma^2)$ - verteilter Zufallsvariablen mit $\mu \in \mathbb{R}$ und (unbekanntem) $\sigma > 0$ angesehen werden können.

- (a) Formulieren Sie die zugehörigen Hypothesen für den Fall, dass
 - (i) die Beweislast beim Mieter liegt,
 - (ii) Die Beweislast beim Vermieter liegt,
 - (iii) ein unabhängiger Sachverständiger entscheiden soll, ob der erwartete Jahresverbrauch von 2000 l abweicht.

- (b) Geben Sie einen aus der Vorlesung bekannten statistischen Test an, mit dessen Hilfe die Streitfrage entschieden werden kann.
- (c) Prüfen Sie jeweils mittels des in (b) angegebenen statistischen Tests, ob die Behauptungen des Mieters bzw. des Vermieters mit den gegebenen Daten zum Signifikanzniveau $\alpha=5\%$ statistisch nachgewiesen werden können. Zu welcher Entscheidung gelangt der unabhängige Sachverständige?

Aufgabe 43

In einer Supermarktfiliale werden innerhalb eines festgelegten Zeitraumes jeweils die Angebotspreise x_1, \ldots, x_7 und die zugehörigen Absatzmengen y_1, \ldots, y_7 eines bestimmten Artikels notiert:

i	1	2	3	4	5	6	7
Preis x_i (in ϵ/kg)	2.49	2.68	2.62	2.51	2.84	2.65	2.76
Absatzmenge y_i (in 100 kg)	6.7	6.2	5.8	6.2	5.4	6.5	5.9

Es sei das übliche Modell der linearen Regression zugrunde gelegt, d.h.

$$Y_i = a + bX_i + \epsilon_i, \quad i = 1, \dots, 7.$$

Hierbei seien die Fehler $\epsilon_1, \ldots, \epsilon_i$ stochastisch unabhängig, jeweils $\mathcal{N}(0, \sigma^2)$ - verteilt mit unbekannter Varianz $\sigma^2 > 0$.

Bestimmen Sie die zugehörige geschätzte Regressionsgerade

$$\hat{f}(x) = \hat{a} + \hat{b}x, \quad x \in I,$$

und geben Sie deren Definitionsbereich I explizit an. Geben Sie weiter eine Schätzung für die Absatzmenge bei einem Angebotspreis von $2,70 \notin /kg$ an.

278 C Tabellen

Verteilungsfunktion $\Phi(x+h)$										
x h										
	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
		.9975			.9977	.9978	.9979	.9979	.9980	.9981
Beispiel: $X \sim \mathcal{N}(3,9)$, $P(X \le 4.26) = P(\frac{X-3}{\sqrt{9}} \le \frac{4.26-3}{3}) = P(X \le 0.42) = 0.6628$										
I	$P(X \leq$	4.26)	$=P(\frac{\cdot}{\cdot})$	$\frac{X-3}{\sqrt{9}} \le$	$\frac{4.26-}{3}$	$(\frac{3}{2}) = 1$	$P(X \leq$	(0.42)	= 0.6	628

q-Quantile der $t(df)$ -Verteilung							
q							
df 0.9 0.95 0.975	0.98						
1 3.078 6.314 12.706	15.895	31.821	63.657				
2 1.886 2.920 4.303	4.849	6.965					
3 1.638 2.353 3.182		4.541	5.841				
4 1.533 2.132 2.776	2.999	3.747	4.604				
5 1.476 2.015 2.571	2.757	3.365	4.032				
6 1.440 1.943 2.447	2.612	3.143	3.707				
	2.517						
8 1.397 1.860 2.306	2.449	2.896	3.355				
9 1.383 1.833 2.262	2.398	2.821	3.250				
10 1.372 1.812 2.228	2.359	2.764	3.169				
11 1.363 1.796 2.201	2.328	2.718	3.106				
12 1.356 1.782 2.179	2.303	2.681	3.055				
13 1.350 1.771 2.160	2.282	2.650	3.012				
14 1.345 1.761 2.145	2.264	2.624	2.977				
15 1.341 1.753 2.131							
16 1.337 1.746 2.120							
17 1.333 1.740 2.110							
18 1.330 1.734 2.101							
19 1.328 1.729 2.093							
20 1.325 1.725 2.086	2.197	2.528	2.845				
21 1.323 1.721 2.080	2.189	2.518	2.831				
22 1.321 1.717 2.074	2.183	2.508	2.819				
23 1.319 1.714 2.069	2.177	2.500	2.807				
24 1.318 1.711 2.064	2.172	2.492	2.797				
25 1.316 1.708 2.060	2.167	2.485	2.787				
26 1.315 1.706 2.056	2.162	2.479	2.779				
27 1.314 1.703 2.052	2.158	2.473	2.771				
28 1.313 1.701 2.048	2.154	2.467	2.763				
29 1.311 1.699 2.045	2.150	2.462	2.756				
30 1.310 1.697 2.042	2.147	2.457	2.750				
31 1.309 1.696 2.040							
$32\ 1.309\ 1.694\ \ 2.037$	2.141						
Beispiel: $X \sim t(8)$,							
$P(X \le c) = 0.95 \implies c = 1.860$							

 χ^2 - Verteilung

FG	0,01	0,025	0,05	0,1	0,5	0,9	0,95	0,975	0,99
1	0,0002	0,0010	0,0039	0,0158	0,4549	2,7055	3,8415	5,0239	6,6349
2	0,0201	0,0506	0,1026	0,2107	1,3863	4,6052	5,9915	7,3778	9,2103
3	0,1148	0,2158	0,3518	0,5844	2,3660	6,2514	7,8147	9,3484	11,345
4	0,2971	0,4844	0,7107	1,0636	3,3567	7,7794	9,4877	11,143	13,277
5	0,5543	0,8312	1,1455	1,6103	4,3515	9,2364	11,070	12,833	15,086
6	0,8721	1,2373	1,6354	2,2041	5,3481	10,645	12,592	14,449	16,812
7	1,2390	1,6899	2,1674	2,8331	6,3458	12,017	14,067	16,013	18,475
8	1,6465	2,1797	2,7326	3,4895	7,3441	13,362	15,507	17,535	20,090
9	2,0879	2,7004	3,3251	4,1682	8,3428	14,684	16,919	19,023	21,666
10	2,5582	3,2470	3,9403	4,8652	9,3418	15,987	18,307	20,483	23,209
11	3,0535	3,8157	4,5748	5,5778	10,341	17,275	19,675	21,920	24,725
12	3,5706	4,4038	5,2260	6,3038	11,340	18,549	21,026	23,337	26,217
13	4,1069	5,0088	5,8919	7,0415	12,340	19,812	22,362	24,736	27,688
14	4,6604	5,6287	6,5706	7,7895	13,339	21,064	23,685	26,119	29,141
15	5,2293	6,2621	7,2609	8,5468	14,339	22,307	24,996	27,488	30,578
16	5,8122	6,9077	7,9616	9,3122	15,338	23,542	26,296	28,845	32,000
17	6,4078	7,5642	8,6718	10,085	16,338	24,769	27,587	30,191	33,409
18	7,0149	8,2307	9,3905	10,865	17,338	25,989	28,869	31,526	34,805
19	7,6327	8,9065	10,117	11,651	18,338	27,204	30,144	32,852	36,191
20	8,2604	9,5908	10,851	12,443	19,337	28,412	31,410	34,170	37,566
21	8,8972	10,283	11,591	13,240	20,337	29,615	32,671	35,479	38,932
22	9,5425	10,982	12,338	14,041	21,337	30,813	33,924	36,781	40,289
23	10,196	11,689	13,091	14,848	22,337	32,007	35,172	38,076	41,638
24	10,856	12,401	13,848	15,659	23,337	33,196	36,415	39,364	42,980
25	11,524	13,120	14,611	16,473	24,337	34,382	37,652	40,646	44,314
26	12,198	13,844	15,379	17,292	25,336	35,563	38,885	41,923	45,642
27	12,879	14,573	16,151	18,114	26,336	36,741	40,113	43,195	46,963
28	13,565	15,308	16,928	18,939	27,336	37,916	41,337	44,461	48,278
29	14,256	16,047	17,708	19,768	28,336	39,087	42,557	45,722	49,588
30	14,953	16,791	18,493	20,599	29,336	40,256	43,773	46,979	50,892

q -Quantile der $\chi^2(df)$ -Verteilung							
q							
_	0.99	0.995					
36 47.212 50.998 54.437 55.489	58.619	61.581					
37 48.363 52.192 55.668 56.730	59.893	62.883					
38 49.513 53.384 56.896 57.969	61.162	64.181					
39 50.660 54.572 58.120 59.204	62.428	65.476					
40 51.805 55.758 59.342 60.436	63.691	66.766					
41 52.949 56.942 60.561 61.665	64.950	68.053					
42 54.090 58.124 61.777 62.892	66.206	69.336					
43 55.230 59.304 62.990 64.116	67.459	70.616					
44 56.369 60.481 64.201 65.337	68.710	71.893					
45 57.505 61.656 65.410 66.555	69.957	73.166					
46 58.641 62.830 66.617 67.771	71.201	74.437					
47 59.774 64.001 67.821 68.985	72.443	75.704					
48 60.907 65.171 69.023 70.197	73.683	76.969					
49 62.038 66.339 70.222 71.406	74.919	78.231					
50 63.167 67.505 71.420 72.613	76.154	79.490					
51 64.295 68.669 72.616 73.818	77.386	80.747					
52 65.422 69.832 73.810 75.021	78.616	82.001					
53 66.548 70.993 75.002 76.223	79.843	83.253					
54 67.673 72.153 76.192 77.422	81.069	84.502					
55 68.796 73.311 77.380 78.619	82.292	85.749					
56 69.919 74.468 78.567 79.815	83.513	86.994					
57 71.040 75.624 79.752 81.009	84.733	88.236					
58 72.160 76.778 80.936 82.201	85.950	89.477					
59 73.279 77.931 82.117 83.391	87.166	90.715					
60 74.397 79.082 83.298 84.580	88.379	91.952					
61 75.514 80.232 84.476 85.767	89.591	93.186					
62 76.630 81.381 85.654 86.953	90.802	94.419					
63 77.745 82.529 86.830 88.137	92.010	95.649					
64 78.860 83.675 88.004 89.320	93.217	96.878					
65 79.973 84.821 89.177 90.501	94.422	98.105					
66 81.085 85.965 90.349 91.681	95.626	99.330					
67 82.197 87.108 91.519 92.860	96.828	100.554					
68 83.308 88.250 92.689 94.037	98.028	101.776					
69 84.418 89.391 93.856 95.213	99.228	102.996					
$70\ 85.527\ 90.531\ 95.023\ 96.388$	100.425	104.215					