Assignment 1

19/10/2022

Francesco Refolli 865955

Esercizio 1 1

$$max x_1 + x_2 (1)$$

$$x_1 + x_2 \le 2 \tag{2}$$

$$2x_1 - x_2 \le 0 \tag{3}$$

$$x_1, x_2 \ge 0 \tag{4}$$

Costruisco il grafico con le equazioni dei vincoli lungo l'asse $x_1 \times x_2$. Riscrivo per comodita' i primi due vincoli in forma equivalente:

$$x_1 \le 2 - x_2 \tag{5}$$

$$x_1 \le 2 - x_2$$
 (5)
 $x_1 \le \frac{x_2}{2}$ (6)

La direzione di crescita della funzione obiettivo e' perpedincolare al vincolo $x_1 \leq 2 - x_2$, quindi il problema ha **Infinite Soluzioni Ottime**. Le soluzioni sono tutte le coppie $\langle x_1, x_2 \rangle$ che risiedono nello spigolo della regione obiettivo su cui si poggia il vincolo $x_1 \leq 2 - x_2$.

2 Esercizio 2

$$max x_1 + x_2 \tag{7}$$

$$x_1 + x_2 - x_3 = 2 (8)$$

$$2x_1 - x_2 \le 0 \tag{9}$$

$$x_1, x_2 \ge 0 \tag{10}$$

$$x_3 \le 0 \tag{11}$$

Conversione in forma standard

 $\mathbf{1}$ La forma standard non prevede vincoli di non positivita', quindi inverto il segno di x_3 in tutti i vincoli:

$$max x_1 + x_2 (12)$$

$$x_1 + x_2 + x_3 = 2 (13)$$

$$2x_1 - x_2 \le 0 \tag{14}$$

$$x_1, x_2, x_3 \ge 0 \tag{15}$$

2 I vincoli devono essere esclusivamente in forma \leq . Quindi sostituisco il vincolo $x_1 + x_2 + x_3 = 2$ con l'equivalente in termini di disuguaglianze e inverto il segno di quella con \geq .

$$max x_1 + x_2 \tag{16}$$

$$x_1 + x_2 + x_3 \le 2 \tag{17}$$

$$-x_1 - x_2 - x_3 \le -2 \tag{18}$$

$$2x_1 - x_2 \le 0 \tag{19}$$

$$x_1, x_2, x_3 \ge 0 \tag{20}$$

Conversione in forma aumentata

1 Aggiungo tre variabili di slack per portare i tre vincoli \leq in vincoli =.

$$max x_1 + x_2 (21)$$

$$x_1 + x_2 + x_3 + x_4 = 2 (22)$$

$$-x_1 - x_2 - x_3 + x_5 = -2 (23)$$

$$2x_1 - x_2 + x_6 = 0 (24)$$

$$x_1, x_2, x_3 \ge 0 \tag{25}$$

$$x_4, x_5, x_6 \ge 0 \tag{26}$$

2 Quindi esporto la funzione obiettivo f(x) in un vincolo Z - f(x) = 0.

$$max Z$$
 (27)

$$Z - x_1 - x_2 = 0 (28)$$

$$x_1 + x_2 + x_3 + x_4 = 2 (29)$$

$$-x_1 - x_2 - x_3 + x_5 = -2 (30)$$

$$2x_1 - x_2 + x_6 = 0 (31)$$

$$x_1, x_2, x_3 \ge 0 \tag{32}$$

$$x_4, x_5, x_6 \ge 0 \tag{33}$$

Risoluzione con tableau

Iterazione 0

base	riga	Z	x_1	x_2	x_3	x_4	x_5	x_6	termine noto
Z	0	1	-1	-1	0	0	0	0	0
x_4	1	0	1	1	1	1	0	0	2
x_5	2	0	-1	-1	-1	0	1	0	-2
x_6	3	0	2	-1	0	0	0	1	0

Iterazione 1 Sono presenti nella prima riga coefficienti negativi. Seleziono arbitrariamente x_1 , perche' tutti i coefficienti negativi hanno pari valore.

Nella prima colonna considero i coefficienti delle righe 1, 3. Seleziono il minimo rapporto, ovvero 0 della riga 3.

Questo ha l'effetto di togliere dalla base x_6 e inserire x_1 .

base	riga	Z	x_1	x_2	x_3	x_4	x_5	x_6	termine noto
Z	0	1	0	$-\frac{3}{2}$	0	0	0	$\frac{1}{2}$	0
x_4	1	0	0	$\frac{3}{2}$	1	1	0	$-\frac{1}{2}$	2
x_5	2	0	0	$-\frac{3}{2}$	-1	0	1	$\frac{1}{2}$	-2
x_1	3	0	1	$-\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0

Iterazione 2 A questo punto seleziono come variabile entrante x_2 , l'ultima variabile non di base con coefficiente negativo nella prima riga.

Seleziono l'unica riga con coefficiente strettamente positivo, ovvero la riga 1. Quindi x_4 esce dalla base.

base	riga	Z	x_1	x_2	x_3	x_4	x_5	x_6	termine noto
Z	0	1	0	0	1	1	0	0	2
x_2	1	0	0	1	$\frac{2}{3}$	$\frac{2}{3}$	0	$-\frac{1}{3}$	$\frac{4}{3}$
x_5	2	0	0	0	Ŏ	ĺĺ	1	0	Ö
x_1	3	0	1	0	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$

Iterazione 3 Non sono piu' presenti coefficienti negativi nella riga 0, quindi l'algoritmo si arresta.

La soluzione ottimale e':
$$< x_1, x_2, x_3, x_4, x_5, x_6> = < \frac{2}{3}, \frac{4}{3}, 0, 0, 0, 0>$$

Visto che le variabili decisionali sono x_1, x_2 , la soluzione al problema PL e:

$$\langle x_1, x_2 \rangle = \langle \frac{2}{3}, \frac{4}{3} \rangle$$