Stochastic Gradient Descent (SGD) updates weights based on a single sample at a time, rather than the entire dataset, making it computationally efficient for large datasets. Let's go through an example of **SGD** with detailed calculations for a house price prediction task.

Step 1: Dataset and Model

Dataset

We are predicting house prices using two features:

- $x_1 = \text{Area (sq. ft.)}$
- $x_2 = \text{Bedrooms}$

x_1 (Area)	x_2 (Bedrooms)	y (Price)
2600	3	550000
3000	4	565000
3200	3	610000
3600	5	680000

Model

The model equation is:

Predicted Price = $w_1 \cdot x_1 + w_2 \cdot x_2 + \text{bias}$

Initial Parameters:

- $w_1 = 0.5$, $w_2 = 0.5$, bias = 0
- Learning rate (α) = 0.00000001

Step 2: SGD Process

Iteration 1

For each sample, we calculate:

- 1. Predicted price
- 2. Error
- 3. Gradients
- 4. Update the weights and bias

Sample 1:

- $x_1 = 2600$, $x_2 = 3$, y = 550000
- 1. Predicted Price:

Predicted =
$$w_1 \cdot x_1 + w_2 \cdot x_2 + \text{bias} = 0.5 \cdot 2600 + 0.5 \cdot 3 + 0 = 1301.5$$

2. Error:

Error = Predicted
$$-y = 1301.5 - 550000 = -548698.5$$

- 3. Gradients:
 - $\frac{\partial MSE}{\partial w_1} = 2 \cdot \text{Error} \cdot x_1 = 2 \cdot (-548698.5) \cdot 2600 = -2853230200$
 - $\frac{\partial MSE}{\partial w_2} = 2 \cdot \text{Error} \cdot x_2 = 2 \cdot (-548698.5) \cdot 3 = -3292191$
 - $\frac{\partial MSE}{\partial \text{bias}} = 2 \cdot \text{Error} = 2 \cdot (-548698.5) = -1097397$
- 4. Weight Updates:
 - $w_1 = w_1 \alpha \cdot \frac{\partial MSE}{\partial w_1} = 0.5 0.000000001 \cdot (-2853230200) = 0.50000285323$
 - $w_2 = w_2 \alpha \cdot \frac{\partial MSE}{\partial w_2} = 0.5 0.000000001 \cdot (-3292191) = 0.50000032922$
 - bias = bias $-\alpha \cdot \frac{\partial MSE}{\partial \text{bias}} = 0 0.000000001 \cdot (-1097397) = 0.0010974$

Sample 2:

- $x_1 = 3000$, $x_2 = 4$, y = 565000
- 1. Predicted Price:

2. Error:

Error = Predicted
$$-y = 1500.0198 - 565000 = -563499.98$$

- 3. Gradients:
 - $\frac{\partial MSE}{\partial w_1} = 2 \cdot \text{Error} \cdot x_1 = 2 \cdot (-563499.98) \cdot 3000 = -3380999880$
 - $\frac{\partial MSE}{\partial w_2} = 2 \cdot \text{Error} \cdot x_2 = 2 \cdot (-563499.98) \cdot 4 = -4507999.84$
 - $\frac{\partial MSE}{\partial \text{bias}} = 2 \cdot \text{Error} = 2 \cdot (-563499.98) = -1126999.96$
- 4. Weight Updates:
 - $w_1 = 0.50000285323 0.000000001 \cdot (-3380999880) = 0.50000623432$
 - $w_2 = 0.50000032922 0.000000001 \cdot (-4507999.84) = 0.50000078002$
 - bias = $0.0010974 0.000000001 \cdot (-1126999.96) = 0.0022244$

Repeat for All Samples

After 4 samples:

The weights (w_1, w_2) and bias are updated after every single sample , not after the entire dataset. This is the essence of
SGD.

Key Points:

- 1. **Stochastic Gradient Descent** updates weights after each sample, making it faster and more responsive to the latest data points.
- 2. In large datasets, it converges faster than batch gradient descent.
- 3. Implementation in Python (optional) can demonstrate this concept practically.