15 October 2020

Coefficient of determination

$$R^2 = \frac{Reg~S.S.}{Total~S.S.}$$
 (coefficient of determination)
$$0 < R^2 < 1$$

 $\sqrt{R^2} \begin{cases} \text{simple linear reg. - simple correlation coeff. } (=r) \text{ (linear relationship between } y \text{ and } x) \\ \text{multiple linear reg. - multiple correlation coeff. } (\text{linear relationship between } y \text{ and } \underline{x}) \end{cases}$

Added variable plot / Partial regression plot

Purposes:

- 1. Look for a graphical representation of $\hat{\beta}_{1,bi}$.
- 2. Give an explanation of regression coefficient in multiple linear regression.
- 3. Define partial correlation coefficient.

How to construct Added Variable Plot

- 1. The y coordinate, $\hat{e}_{Y(x_1)}$, is the residual for the model of y_i on x_{i2} , i.e., $\hat{e}_{Y(x_1),i} = y_i \bar{y} \hat{\delta}_1(x_{i2} \bar{x}_2)$, where $\hat{\delta}_1 = \frac{\overline{S}_{x_2y}}{\overline{S}_{x_2x_2}}$ (Regress y on x_2 and the model is $y = \delta_0 + \delta_1 x_2 + e$).
- 2. The x coordinate, \hat{e}_1 , is the residual for the model of x_{i1} on x_{i2} , i.e., $\hat{e}_{1,i} = x_{i1} \bar{x}_1 \hat{\gamma}_1(x_{i2} \bar{x}_2)$, where $\hat{\gamma}_1 = \frac{S_{x_1x_2}}{S_{x_2x_2}}$ (Regress x_1 on x_2 and the model is $x_1 = \gamma_0 + \gamma_1x_2 + e$).
- 3. It can be proved that the slope of the fitted line of $\hat{e}_{Y(x_1)}$ on \hat{e}_1 is equal to $\hat{\beta}_{1,bi}$, i.e., equal to

$$\frac{S_{x_1y}S_{x_2x_2}-S_{x_1x_2}S_{x_2y}}{S_{x_1x_1}S_{x_2x_2}-S_{x_1x_2}^2}\ .$$

Interpretation

- 1. $\beta_{1,bi}$ can be explained as the increase (or decrease) in y for each unit increase in x_1 after adjusted by x_2 (or, removing the effect of x_2).
- 2. The simple correlation coefficient of $\hat{e}_{Y(x_1)}$ on \hat{e}_1 is defined as the partial correlation coefficient of y and x_1 after adjusted by x_2 . Thus, partial corr. coeff. of y and x_1 on x_2

15

$$= \frac{r_{1y} - r_{12}r_{2y}}{\sqrt{1 - r_{2y}^2}\sqrt{1 - r_{12}^2}}$$