Javier Moreno Morón

Tutores: Pablo Mesejo Santiago, Óscar Cordón García

Grado en Ingeniería Informática

Universidad de Granada, España

30 de Junio de 2024

Índice

- Introducción
- 2 Fundamentos Teóricos
- Materiales y métodos
- 4 Experimentos
- 6 Conclusiones

Índice

- Introducción

Buscamos diseñar un sistema inteligente explicable para estimar el salario.

Cuatro actores que necesitan conocer el salario de un futbolista:

- El jugador que es el beneficiario del salario.
- El representante que se encarga de negociar el sueldo del futbolista.
- El **club** que es quien **paga el salario** al jugador.
- Las organizaciones que se encargan de controlar que los clubes no incumplen las reglas financieras.

Motivación

- Auge del uso de la Inteligencia Artificial (IA) en aplicaciones del mundo del fútbol.
- Uso de **métodos subjetivos** a la hora de **estimar el salario**.
- Conocer que factores son más influyentes en el salario.

Ejemplo del uso de la IA para la detección del fuera de juego¹.

¹The Athletic (Nov 29, 2023). Premier League continuing to monitor semi-automated offside technology amid behind-the-scenes testing.

Objetivos

0000

- Revisar el **estado del arte**.
- **Diseñar** y **preprocesar** el conjunto de **datos**.
- **Seleccionar** e **implementar** el conjunto de **hipótesis**.
- Seleccionar y comparar con otros estudios el mejor modelo.
- Analizar el estimador para obtener la explicación de las predicciones.

- 2 Fundamentos Teóricos

MACHINE LEARNING -----

Esquema del funcionamiento del ML².

²Turing. Deep Learning vs Machine Learning: The Ultimate Battle.

Métricas de error

Coeficiente de determinación o R²

$$R^2\big(y,y'\big) = 1 - \tfrac{\sum_{i=1}^n (y_i - y_i')^2}{\sum_{i=1}^n (y_i - Y')^2}.$$

Donde
$$Y' = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Error cuadrático medio (MSE)

$$MSE(y, y') = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - y_i')^2$$

Error absoluto medio (MAE)

$$MAE(y, y') = \frac{1}{n} \sum_{i=0}^{n-1} |y_i - y_i'|$$

Selección de características

Tipos de métodos existentes:

- Enfoque de filtro: Relaciona características y variable a predecir.
- Enfoque de **envoltura**: Relaciona **estimador** y **características**.
- Enfoque integrado: El estimador realiza la selección internamente.

Li et al. $(2022)^3$:

- **Explicabilidad** de las predicciones.
- Modelo basado en RF.
- Utiliza datos reales.
- R² de **0 606**

Behravan and Razavi (2021)⁴:

- Uso de técnicas de **selección de** características.
- Modelo basado en SVR más PSO.
- Base de datos de un videojuego.
- R² de 0.74, mejores resultados en este campo.

⁴I. Behravan and S. M. Razavi (2021). "A novel machine learning method for estimating football players' value in the transfer market", In: Soft Computing 25.3, pp. 2499-2511

³C. Li, S. Kampakis, and P. Treleaven (2022). "Machine learning modeling to evaluate the value of football players". In:

Índice

- Materiales y métodos

Esquema del procedimiento llevado a cabo para resolver el problema propuesto.

Conjunto de datos

- 10786 ejemplos con 76 características.
- Pertenecientes a las 5 grandes ligas europeas.
- Datos de las temporadas
 2017-2018 a la 2022-2023.
- Obtenidos mediante técnicas de web scrapping.
- Variable a predecir en euros y ajustada a la tasa de inflación de 2023.

Partición de los datos

Se dividen los datos en entrenamiento y test:

- 9168 ejemplos para entrenamiento (85%).
- 1618 ejemplos para test (15%).
- Sobre el conjunto de entrenamiento usaremos 5 fold cross-validation como protocolo de validación.

Escalado logarítmico del salario.

Distribución de salarios antes de escalar.

Distribución de salarios después de escalar.

Normalización de las características:

Utilizamos normalización min-max para que el rango de las variables se encuentre en [0-1]. La función para normalizar es la siguiente:

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{1}$$

Métodos seleccionados

Conjunto de hipótesis:

- Regresión Lineal (RL): Modelo sencillo, lineal.
- K-Nearest Neighbor (k-NN): Modelo sencillo, no lineal.
- Random Forest (RF) y Gradient Boosting (GB): Modelos basado en árboles⁵.
- Perceptrón Multicapa (MLP): Red neuronal.

Métodos de selección de características utilizados:

- Información Mutua para Selección de Características (MIFS).
- Coeficiente r de Pearson y F-value.
- Eliminación Recursiva de Características (RFE).
- Selector de Características Las Vegas (LVF/LVW).

⁵L. Grinsztajn, E. Oyallon, and G. Varoquaux (2022). "Why do tree-based models still outperform deep learning on typical tabular data?" In: Advances in neural information processing systems 35, pp. 507–520

Aplicación web

Diagrama de casos de uso de la app.

Índice

- Introducción
- 2 Fundamentos Teóricos
- Materiales y métodos
- **4** Experimentos
- 6 Conclusiones

Cronología de los experimentos

- Experimentos utilizando técnicas de reducción de características para seleccionar los mejores modelos.
- Experimentos con los mejores modelos reduciendo complejidad del dataset.
- Experimentos con los mejores modelos aplicando técnicas de selección de características.
- Análisis de los resultados y selección del mejor modelo.
- **Integración** del **estimador** desarrollado dentro de la **aplicación**.

Experimentos iniciales. Reducción de características

Coeficiente de correlación de Pearson:

- 71 características continuas iniciales.
- Eliminamos variables con > 99% de correlación.
- 70 características finales tras aplicar Pearson.

Análisis de Componentes Principales (PCA):

- 70 características continuas iniciales.
- Buscamos quedarnos con al menos un 99% de la varianza explicada total.
- 38 características finales tras aplicar PCA.

Experimentos iniciales. Resultados obtenidos

Métricas error	k-NN	RL	RF	GB	MLP	D-m ⁶
MSE_{train}	0.0	0.5884	0.1509	0.209	0.4155	1.4602
MAE_{train}	0.0	0.5948	0.303	0.3293	0.4906	0.9532
R^2_{train}	1.0	0.597	0.8967	0.8569	0.7154	0.0
MSE _{val}	0.7289	0.5908	0.5227	0.4822	0.464	1.4603
MAE_{val}	0.6763	0.5958	0.5517	0.5262	0.5206	0.9533
R^2_{val}	0.5008	0.5955	0.642	0.6698	0.6823	0.0

Mejores modelos: Gradient Boosting y el Perceptrón Multicapa.

⁶Dummy-mean, un estimador que siempre predice el salario medio.

¿Por qué sin porteros?

Pruebas sin porteros

- Eliminamos los ejemplos y variables de los porteros, quedándonos con 9872 instancias y 64 características.
- Utilizamos solo los mejores modelos (GB y MLP).
- Aplicamos de nuevo Pearson y PCA, quedándonos con 37 características finales.

	Métricas error	GB	MLP
	MSE_{train}	0.3547	0.4091
	MAE_{train}	0.4443	0.4855
	R^2_{train}	0.76	0.7232
	MSE _{val}	0.4923	0.4554
. ,	MAE_{val}	0.5335	0.5142
у -	R ² _{val}	0.6668	0.6918

Pruebas considerando una única posición

- Nos quedamos solo con los centrocampistas, quedándonos con 4839 instancias y 61 características.
- Utilizamos solo los mejores modelos (GB y MLP).
- Aplicamos de nuevo Pearson y PCA, quedándonos con 35 características finales.

	Métricas error	GB	MLP
Ī	MSE_{train}	0.3084	0.4297
	MAE_{train}	0.4107	0.4995
	R^2_{train}	0.8016	0.7236
	MSE _{val}	0.5092	0.4731
. ,	MAE_{val}	0.5425	0.5256
у -	R^2_{val}	0.6711	0.6943

Experimentos de selección de características

- Ya no se utilizan técnicas de reducción de características.
- Una vez obtenido el nuevo dataset, usamos un modelo básico de GB para medir la calidad del dataset seleccionado.
- Para cada método de selección de características, seleccionamos quedarnos con 10, 20, 30, 40 y 50 variables y posteriormente elegimos la que mejores resultados consigue.
- Una vez tenemos el mejor conjunto de cada modelo, los comparamos entre ellos.

Experimentos de selección de características. Mejores resultados

Métodos:	MIFS	Coef. r Pearson	F-value	RFE	LVW
MSE	0.4683	0.4676	0.4678	0.4637	0.4722
MAE	0.5164	0.5159	0.516	0.5129	0.5168
R^2	0.681	0.6815	0.6814	0.6842	0.6783
Nº variables	30	30	40	20	28

La mejor selección de características la consigue la **Eliminación Recursiva de Características**.

Experimentos finales

- Utilizamos el mejor conjunto obtenido en la selección de características.
- Entrenamos y comparamos los mejores modelos (GB y MLP).

Métricas error	GB	MLP
MSE_{train}	0.228	0.461
MAE_{train}	0.35	0.518
R ² train	0.845	0.686
MSE _{val}	0.421	0.471
MAE_{val}	0.487	0.524
$R^2{}_{\mathit{val}}$	0.713	0.679

Seleccionamos **Gradient Boosting** como el mejor modelo.

- Reentrenamos el modelo seleccionado utilizando ahora todo el conjunto de entrenamiento y sin aplicar CV.
- Resultados: MSE: 0.4573, MAE: 0.4978, R²: 0.7034
- 88.79% de ejemplos estimados correctamente dentro de un margen de error del 10%.

Explicabilidad de las predicciones

Aplicación web

https://findthesalary.streamlit.app/

Índice

- 6 Conclusiones

Todos los objetivos cumplidos:

- Revisión del estado del arte.
- 2 Diseño y preprocesamiento del conjunto de datos.
- 8 Selección e implementación del conjunto de hipótesis.
- 4 Selección y comparación con otros estudios del mejor modelo.
- 6 Análisis del estimador para obtener la explicación de las predicciones.
- Además, se han logrado desarrollar una aplicación para probar los resultados obtenidos en la investigación.
- R^2 solo 0.04 puntos por **debajo** del mejor estudio en este campo.

Trabajos futuros

- Métodos más sofisticados de web scrapping.
- Heurísticas más complejas para la selección de características, como Búsqueda Local o algoritmos genéticos.
- Realizar las **predicciones** teniendo en cuenta las **estadísticas de** anteriores temporadas.
- Facilitar al usuario la introducción de los datos en la app web.
- Otras mejoras en la app como mejoras estéticas.
- Repositorio del proyecto: https://github.com/JMMelcrack/code

Preguntas

Búsqueda Scopus

Aplicando técnicas de IA:

- Cantidad reducida de artículos.
- Tendencia ligeramente ascendente.
- Temática muy reciente.

Query: TITLE-ABS-KEY (((deep AND learning) OR (machine AND learning) OR (artificial AND intelligence) OR (data AND mining)) AND (wage OR salary OR (market AND value)) AND (estimation OR prediction) AND (sport OR football OR soocer))). Fecha: 02/05/2024.

Búsqueda Scopus

Explicabilidad de las predicciones:

- Gran cantidad de artículos.
- Tendencia exponencial en los últimos años.

Query: TITLE-ABS-KEY ((explainable AND ((deep AND learning) OR (machine AND learning) OR (soft AND computing) OR (artificial AND intelligence) OR (data AND mining)))). Rango de la búsquedad: Hasta 2023. Fecha: 05/05/2024.

Protocolo de validación

Esquema de cross validation (CV) con $k = 5^7$.

⁷Scikit Learn. Cross-validation: evaluating estimator performance.

