System Dynamics Homework 3

November 28, 2023

First Last

```
[1]: import control as ct
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
import pandas as pd

# Use whichever pertains to your set-up
# plt.style.use('maroon_ipynb.mplstyle')
# plt.style.use('../maroon_ipynb.mplstyle')
```

Contents

1	1 Problem 1				
	1.1	Given	:		
	1.2	Find	į		
	1.3	Solution			
		1.3.1 Part A			
		1.3.2 Part B			
		1.3.3 Part C	4		
		1.3.4 Part D	4		
		1.3.5 Part E	4		
2 Problem 2					
	2.1	Given			
	2.2	Find			
	2.3	Solution			
		2.3.1 Part A			
		2.3.2 Part B	6		
		2.3.3 Part C			
		2.3.4 Part D	f		

1 Problem 1

1.1 Given

$$m = 10 \ kg$$

$$k_1 = 85\ N/m,\ k_2 = 30\ N/m$$

$$c_1 = 4 \ N \cdot s/m, \ c_2 = 3 \ N \cdot s/m$$

The input force f(t) is in the data.xlsx file.

1.2 Find

Using the control package tf() function to get the forced response, find the following:

- a. The equation of motion for the system.
- b. The transfer function X(s)/F(s).
- c. The forced response for the no noise data. Plot the input force and the response on separate axes.
- d. Repeat part c for the high frequency noise data.
- e. Repeat part c for the low frequency noise data.

1.3 Solution

1.3.1 Part A

1.3.2 Part B

[]:

[]:

	1.3.3	Part C
[]:		
	1.3.4	Part D
[]:		
	1.3.5	Part E
[]:		

2 Problem 2

2.1 Given

$$m_1 = 5 \ kg, \ m_2 = 10 \ kg$$

$$k_1 = 85\ N/m,\ k_2 = 30\ N/m,\ k_3 = 500\ N/m$$

$$c_1 = 4 \ N \cdot s/m, \ c_2 = 3 \ N \cdot s/m$$

$$f(t) = 10^{-t}$$

The initial conditions are $x_0(0) = 0.5$, $\dot{x_0}(0) = 0$, $x_1(0) = 0$, $\dot{x_1}(0) = 0$.

2.2 Find

- a. Determine the equations of motion.
- b. Put the system in the state-variable form.
- c. Define a state-space object using ct.ss.
- d. Plot the response $x_0(t)$ and $x_1(t)$ (first 10 seconds) on the same plot using the ct.forced_response function. You may check the solution using the odeint function as well.

2.3 Solution

2.3.1 Part A

[]:

	2.3.2	Part B
[]:		
	Note:	The state variable model should have no derivatives on the right hand side of each equation.
	2.3.3	Part C
[]:		
	2.3.4	Part D
[]:		