Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Curso de Graduação em Engenharia Eletrônica

SANTA CATARINA

Projeto de Transformadores para Alta Frequência

Prof. Joabel Moia.

Florianópolis, março de 2019.

Bibliografia para esta aula

Introdução comparativa

- 1. Conversor Forward;
- 2. Projeto do transformador do conversor Forward;
- 3. Conversor Flyback;
- 4. Projeto do transformador do conversor Flyback.

Conversor Forward

Conversor Duplo Forward

Montagem do núcleo (com entreferro):

1) Dados de entrada:

 $F_s = 20 \, kHz$ Freqüência de operação;

 $P_{out} = 120W$ Potência na saída;

 $V_{out} = 12V$ Tensão na saída;

 $V_{in} = 311 \pm 20\% V$ Tensão na entrada;

 $V_{in\,\text{min}} = 249V$ Tensão mínima na entrada;

 $J=450 A / cm^2$ Densidade de corrente;

1) Dados de entrada:

B=0,3*T* Densidade de fluxo máximo;

kp=0,5 Fator de ocupação do primário;

kw=0,4 Fator de ocupação do secudário;

 η =75% Rendimento da estrutura;

 $V_F=1V$ Queda de tensão dos diodos;

 $D_{max} = 0,4$ Razão cíclica máxima;

 $\mu_0 = 4\pi \cdot 10^{-7} Wb / A / m$ Permeabilidade no vácuo.

2) Escolha do núcleo:

$$AeAw = \frac{2 \cdot P_{out} \cdot 10^4}{k_w \cdot k_p \cdot J \cdot F_s \cdot \Delta B \cdot \eta} = \frac{2 \cdot 120 \cdot 10^4}{0,4 \cdot 0,5 \cdot 450 \cdot 20k \cdot 0,3 \cdot 0,75} = 5,9 \, cm^4$$

Núcleo	$A_{\rm e} ({\rm cm}^2)$	$A_{\rm w} ({\rm cm}^2)$	l _e (cm)	l _t (cm)	v _e (cm ³)	$A_{e}A_{w}$ (cm ⁴)
E-20	0,312	0,26	4,28	3,8	1,34	0,08
E-30/7	0,60	0,80	6,7	5,6	4,00	0,48
E-30/14	1,20	0,85	6,7	6,7	8,00	1,02
E-42/15	1,81	1,57	9,7	8,7	17,10	2,84
E-42/20	2,40	1,57	9,7	10,5	23,30	3,77
E-55	3,54	2,50	1,2	11,6	42,50	8,85

3) Cálculo do número de espiras:

$$Np = \frac{V_{in \, \text{min}}}{2 \cdot A_e \cdot \Delta B \cdot F_s} = \frac{249}{2 \cdot 3,54 \cdot 10^{-4} \cdot 0,3 \cdot 20k} = 59 \, \text{espiras}$$

$$\frac{Ns}{Np} = n = 1, 1 \cdot \frac{V_{out} + V_{F} \cdot D_{max}}{V_{in \min} \cdot D_{max}} = 1, 1 \cdot \frac{12 + 1 \cdot 0, 4}{249 \cdot 0, 4} = 0,137$$

$$Ns = n \cdot Np = 0.137 \cdot 59 = 8$$
 espiras

$$Nt = Np = 59$$
 espiras

4) Perdas no núcleo:

$$K_H = 4 \cdot 10^{-5}$$

$$K_E = 4 \cdot 10^{-10}$$

$$P_{nucleo} = \Delta B^{2,4} \cdot \left(K_H \cdot F_s + K_E \cdot F_s^2 \right) \cdot V_e$$

$$P_{nucleo} = 0.3^{2.4} \cdot \left(4 \cdot 10^{-5} \cdot 20000 + 4 \cdot 10^{-10} \cdot 20000^{2}\right) \cdot 42.5$$

$$P_{nucleo} = 2,26W$$

5) Profundidade de penetração:

$$\Delta = \frac{7.5}{\sqrt{F_s}} = \frac{7.5}{\sqrt{20000}} = 0.053 \, cm$$

$$Dfio_{max} = 2 \cdot \Delta = 2 \cdot 0,053 = 0,106 cm$$

Não poderá ser utilizado condutor com diâmetro maior que 0,106 cm. Portanto, podem ser utilizados condutores mais finos que o fio 18 AWG. Escolheu-se o condutor 22 AWG.

$$A_{cu22} = 0,003255 \, cm^2$$
 $S_{22} = 0,004013 \, cm^2$

$$\rho_{22} = 0.000530 \Omega / cm$$

7) Escolha da seção dos condutores (secundário):

$$I_{sef} = \frac{I_{out}}{\sqrt{2}} = \frac{10}{\sqrt{2}} = 7.1A$$

$$S_s = \frac{I_{sef}}{I} = \frac{7.1}{450} = 0.016 \, cm^2$$
 Maior que a área do fio 22 AWG.

$$N_{fios_s} = \frac{S_s}{A_{cu22}} = \frac{0,016}{0,003255} = 5 \text{ fios}$$

7) Escolha da seção dos condutores (primário):

$$I_{pef} = \frac{4 \cdot P_{out}}{V_{i \min}} = \frac{4 \cdot 120}{249} = 1,93 A$$

$$S_p = \frac{I_{pef}}{I} = \frac{1.93}{450} = 0.0043 \, cm^2$$
 Maior que a área do fio 22 AWG.

$$N_{fios_p} = \frac{S_p}{A_{cu22}} = \frac{0,0043}{0,003255} = 2 \text{ fios}$$

7) Escolha da seção dos condutores (terciário):

$$I_{tef} = 0, 2 \cdot I_{pef} = 0, 2 \cdot 1, 93 = 0, 4 A$$

$$S_t = \frac{I_{tef}}{I} = \frac{0.4}{450} = 0.00086 cm^2$$
 Menor que a área do fio 22 AWG.

$$N_{fios_t} = \frac{S_t}{A_{cu22}} = \frac{0,00086}{0,003255} = 0,26 = 1$$
 fio

8) Cálculo da resistência do fio:

$$R_{fiop} = Np \cdot \frac{\rho_{22}}{N_{fios_p}} \cdot lt = 59 \cdot \frac{0,000530}{2} \cdot 11, 6 = 0,18\Omega$$

$$R_{fios} = Ns \cdot \frac{\rho_{22}}{N_{fios}} \cdot lt = 8 \cdot \frac{0,000530}{5} \cdot 11, 6 = 0,0098\Omega$$

$$R_{fiot} = Nt \cdot \frac{\rho_{22}}{N_{fios}} \cdot lt = 59 \cdot \frac{0,000530}{1} \cdot 11,6 = 0,36\Omega$$

9) Perdas no cobre:

$$P_{cobre} = R_{fiop} \cdot I_{pef}^{2} + R_{fios} \cdot I_{sef}^{2} + R_{fiot} \cdot I_{tef}^{2}$$

$$P_{cohre} = 0.18 \cdot 1.93^2 + 0.0098 \cdot 7.1^2 + 0.36 \cdot 0.38^2 = 1.22W$$

10) Perdas totais:

$$P_{totais} = P_{nucleo} + P_{cobre} = 2,26 + 1,22 = 3,48W$$

11) Elevação de temperatura:

$$Rt = 23 \cdot (AeAw)^{-0.37} = 23 \cdot (8.85)^{-0.37} = 10.26 \, {}^{\circ}C / W$$

$$\Delta T = Rt \cdot P_{total} = 10,26 \cdot 3,48 = 35,7 \, ^{\circ}C$$

12) Cálculo do fator de ocupação:

$$Aw_{neces} = \frac{\left(Np \cdot N_{fios_s} + Ns \cdot N_{fios_s} + Nt \cdot N_{fios_t}\right) \cdot S_{22}}{0.7}$$

$$Aw_{neces} = \frac{(59 \cdot 2 + 8 \cdot 5 + 59 \cdot 1) \cdot 0,004013}{0,7} = 1,244 \, cm^2$$

$$K_{ocup} = \frac{Aw_{neces}}{Aw} = \frac{1,244}{2.5} = 0,5$$

Conversor Flyback

1) Dados de entrada:

 $F_s = 20 kHz$ Freqüência de operação;

 $P_{out} = 120W$ Potência na saída;

 $V_{out} = 12V$ Tensão na saída;

 $V_{in} = 311 \pm 20\% V$ Tensão na entrada;

 $V_{in\,\text{min}} = 249V$ Tensão mínima na entrada;

 $J=450 A / cm^2$ Densidade de corrente;

1) Dados de entrada:

B=0,3*T* Densidade de fluxo máximo;

kp=0,3 Fator de ocupação do primário;

kw=0,4 Fator de ocupação do primário;

 η =75% Rendimento da estrutura;

 $V_F=1V$ Queda de tensão dos diodos;

 $D_{max} = 0,4$ Razão cíclica máxima;

 $\mu_0 = 4\pi \cdot 10^{-7} Wb / A / m$ Permeabilidade no vácuo.

2) Cálculo da corrente de pico no primário:

$$I_p = \frac{2 \cdot P_{out}}{\eta \cdot V_{in \min} \cdot D_{\max}} = \frac{2 \cdot 120}{0,75 \cdot 249 \cdot 0,4} = 3,213 A$$

3) Escolha do núcleo:

$$AeAw = \frac{1.1 \cdot P_{out} \cdot 10^4}{k_w \cdot k_p \cdot J \cdot F_s \cdot \Delta B} = \frac{1.1 \cdot 120 \cdot 10^4}{0.4 \cdot 0.3 \cdot 450 \cdot 20k \cdot 0.3} = 4.0 cm^4$$

Núcleo	$A_e (cm^2)$	$A_{\rm w} ({\rm cm}^2)$	l _e (cm)	l _t (cm)	$v_e(cm^3)$	$A_{e}A_{w}$ (cm ⁴)
E-20	0,312	0,26	4,28	3,8	1,34	0,08
E-30/7	0,60	0,80	6,7	5,6	4,00	0,48
E-30/14	1,20	0,85	6,7	6,7	8,00	1,02
E-42/15	1,81	1,57	9,7	8,7	17,10	2,84
E-42/20	2,40	1,57	9,7	10,5	23,30	3,77
E-55	3,54	2,50	1,2	11,6	42,50	8,85

4) Cálculo do entreferro:

$$\Delta W = \frac{P_{out}}{\eta \cdot F_s} = \frac{120}{0,75 \cdot 20k} = 8mJ$$

$$\delta = \frac{2 \cdot \mu_o \cdot \Delta W}{\Delta B^2 \cdot A_o} = \frac{2 \cdot 4\pi \cdot 10^{-7} \cdot 8m}{0.3^2 \cdot 3.54 \cdot 10^{-4}} = 0,631mm$$

$$\lg = \frac{\delta}{2} = \frac{0,631mm}{1} = 0,316mm$$

5) Cálculo do número de espiras:

$$Np = \frac{\Delta B \cdot \delta}{\mu_o \cdot I_p} = \frac{0.3 \cdot 0.631 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 3.213} = 47 \text{ espiras}$$

$$\frac{Ns}{Np} = n = \frac{V_{out} + V_D}{V_{in \, \text{min}}} \cdot \frac{1 - D_{\text{max}}}{D_{\text{max}}} = \frac{12 + 1}{249} \cdot \frac{1 - 0.4}{0.4} = 0.078$$

$$Ns = n \cdot Np = 0,078 \cdot 47 \cong 4 \text{ espiras}$$

6) Perdas no núcleo:

$$K_H = 4 \cdot 10^{-5}$$

$$K_E = 4 \cdot 10^{-10}$$

$$P_{nucleo} = \Delta B^{2,4} \cdot \left(K_H \cdot F_s + K_E \cdot F_s^2 \right) \cdot V_e$$

$$P_{nucleo} = 0.3^{2.4} \cdot \left(4 \cdot 10^{-5} \cdot 20000 + 4 \cdot 10^{-10} \cdot 20000^{2}\right) \cdot 42.5$$

$$P_{nucleo} = 2,26W$$

7) Profundidade de penetração:

$$\Delta = \frac{7.5}{\sqrt{F_s}} = \frac{7.5}{\sqrt{20000}} = 0.053 \, cm$$

$$Dfio_{max} = 2 \cdot \Delta = 2 \cdot 0,053 = 0,106 cm$$

Não poderá ser utilizado condutor com diâmetro maior que 0,106 cm. Portanto, podem ser utilizados condutores mais finos que o fio 18 AWG. Escolheu-se o condutor 22 AWG.

$$A_{cu22} = 0,003255 \, cm^2$$

$$\rho_{22} = 0.000530 \Omega / cm$$

8) Escolha da seção dos condutores (primário):

$$I_{pef} = I_p \cdot \sqrt{\frac{D_{\text{max}}}{3}} = 3,213 \cdot \sqrt{\frac{D_{\text{max}}}{3}} = 1,173A$$

$$S_p = \frac{I_{pef}}{I} = \frac{1{,}173}{450} = 0{,}0026cm^2$$
 Pode ser usado o fio 23 AWG.

9) Escolha da seção dos condutores (secundário):

$$I_{s} = I_{p} \cdot \frac{N_{p}}{N_{2}} = 3,213 \cdot \frac{47}{4} = 37,75 A$$

$$I_{sef} = I_{s} \cdot \sqrt{\frac{1 - D_{\text{max}}}{3}} = 37.75 \cdot \sqrt{\frac{1 - 0,4}{3}} = 16,9 A$$

$$S_s = \frac{I_{sef}}{I} = \frac{16.9}{450} = 0.037 \, cm^2$$
 Maior que a área do fio 22 AWG.

$$N_{fios_s} = \frac{S_s}{A_{cu22}} = \frac{0.037}{0.003255} = 12 \text{ fios}$$

10) Cálculo da resistência do fio:

$$R_{fiop} = Np \cdot \frac{\rho_{23}}{N_{fios_p}} \cdot lt = 47 \cdot \frac{0,000668}{1} \cdot 11, 6 = 0,36\Omega$$

$$R_{fios} = Ns \cdot \frac{\rho_{22}}{N_{fios}} \cdot lt = 4 \cdot \frac{0,000530}{12} \cdot 11, 6 = 0,00205\Omega$$

11) Perdas no cobre:

$$P_{cobre} = R_{fiop} \cdot I_{pef}^{2} + R_{fios} \cdot I_{sef}^{2}$$

$$P_{cobre} = 0.36 \cdot 1.173^2 + 0.00205 \cdot 16.9^2 = 1.08W$$

12) Perdas totais:

$$P_{totais} = P_{nucleo} + P_{cobre} = 2,26 + 1,08 = 3,34W$$

13) Elevação de temperatura:

$$Rt = 23 \cdot (AeAw)^{-0.37} = 23 \cdot (8.85)^{-0.37} = 10.26 \, {}^{\circ}C / W$$

$$\Delta T = Rt \cdot P_{total} = 10,26 \cdot 3,34 = 34,28 \, ^{\circ}C$$

14) Cálculo do fator de ocupação:

$$Aw_{neces} = \frac{Np \cdot N_{fios_s} \cdot S_{23} + Ns \cdot N_{fios_s} \cdot S_{22}}{0.7}$$

$$Aw_{neces} = \frac{47 \cdot 1 \cdot 0,003221 + 4 \cdot 12 \cdot 0,004013}{0,7} = 0,49 \, cm^2$$

$$K_{ocup} = \frac{Aw_{neces}}{Aw} = \frac{0.49}{2.5} = 0.2$$

Vantagens

- Excelente característica térmica (R_{th} 50% menor)
- Baixo Perfil
- Baixa impedância de dispersão
- Fácil fabricação

Appendix 2: Layer design for the planar E 14 forward transformer

Conversores Compactos Baixo Volume por W.

Exemplo: Fabricante SynQor

Conversores Compactos Baixo Volume por W.

Exemplo: Conversores Fabricante SynQor

Transformador com Isolação

Transformador com Isolação

Tarefa 3 para entregar até a próxima aula

Especificação:

Tensão de Entrada: 36 V

Tensão de Saída: 12 V

Frequência de comutação: 100 kHz;

Indutância L: $\Delta I=10\%$ da corrente média

Capacitância C: 100 uF;

Potência: 100 W;

Apresentar:

- Projetar o Indutor L:
 - Utilizar a planilha desenvolvida no Smath e as aulas e definir um núcleo da Thornton;
 - Utilizar a planilha da Magnetics e definir um núcleo de tal fabricante