

Fine and Wilf's theorem on words

 ${\bf Canonical\ name} \quad {\bf Fine And Wilfs Theorem On Words}$

Date of creation 2013-03-22 18:00:39 Last modified on 2013-03-22 18:00:39 Owner Ziosilvio (18733) Last modified by Ziosilvio (18733)

Numerical id 18

Author Ziosilvio (18733)

Entry type Theorem
Classification msc 68Q70
Classification msc 68Q45
Classification msc 68R15

Let w be a word on an alphabet A and let |w| be its length. A period of w is a value p > 0 such that $w_{i+p} = w_i$ for every $i \in \{1, 2, ..., |w| - p\}$. This is the same as saying that $w = u^k r$ for some $u, r \in A^*$ and $k \in \mathbb{N}$ such that |u| = p and r is a prefix of u.

Fine and Wilf's theorem gives a condition on the length of the periods a word can have.

Theorem 1 Let w be a word on an alphabet A having periods p and q. If $|w| \ge p+q-\gcd(p,q)$, then w has period $\gcd(p,q)$. The value $p+q-\gcd(p,q)$ is the smallest one that makes the theorem true.

As a counterexample showing that the condition on |w| is necessary, the word aaabaaa has periods 4 and 6, but not $2 = \gcd(4, 6)$. This can happen because its length is 7 < 4 + 6 - 2 = 8.

Observe that Theorem ?? can be restated as follows (cf. [?]).

Theorem 2 Let u and w be words over an alphabet A. Suppose u^h and w^k , for some h and k, have a common prefix of length $|u| + |w| - \gcd(|u|, |w|)$. Then there exists $z \in A^*$ of length $\gcd(|u|, |w|)$ such that $u, w \in z^*$. The value $|u| + |w| - \gcd(|u|, |w|)$ is also the smallest one that makes the theorem true.

In fact, Theorem ?? clearly implies Theorem ??. Now, suppose Theorem ?? is true. Suppose w has periods p and q and length at least $p+q-\gcd(p,q)$: write $w=u^kr=v^hs$ with |u|=p, |v|=q, r prefix of u, s prefix of v. Let M be a common multiple of p and q greater than p, q, and |w|: then $u^{M/p}$ and $v^{M/q}$ have the common prefix w, so they also have a common prefix of length $p+q-\gcd(u,v)$. Then u and v are powers of a word z of length $\gcd(p,q)$, and it is easy to see that $w=z^mt$ for some m>0 and some prefix t of z.

References

[1] M. Lothaire. Combinatorics on words. Cambridge University Press 1997.