

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

* •

		7	

STATE OF CALIFORNIA
The Resources Agency

epartment of Water Resources

BULLETIN No. 130-68

HYDROLOGIC DATA: 1968

Volume V: SOUTHERN CALIFORNIA

Appendix D: SURFACE WATER QUALITY

Appendix E: GROUND WATER QUALITY

Appendix F: WASTE WATER DATA

UNIVERSITY OF CALIFORNIA

APR 14 1970

LIBRARY

JANUARY 1970

NORMAN B. LIVERMORE, JR.

Secretary for Resources
The Resources Agency

RONALD REAGAN

Governor

State of California

WILLIAM R. GIANELLI

Director

Department of Water Resources

LIBRARY
IINIVERSITY OF CALIFORNIA

STATE OF CALIFORNIA The Resources Agency

Department of Water Resources

BULLETIN No. 130-68

HYDROLOGIC DATA: 1968

Volume V: SOUTHERN CALIFORNIA

Appendix D: SURFACE WATER QUALITY

Appendix E: GROUND WATER QUALITY

Appendix F: WASTE WATER DATA

Capies of this bulletin at \$6.00 each may be ordered from:
Office of Procurement
DOCUMENTS SECTION

P.O. Box 20191 Sacramento, California 95820

Make checks payable to STATE OF CALIFORNIA. California residents add 5 percent sales tax.

JANUARY 1970

FOREWORD

The data collection programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130-68 presents useful, comprehensive, accurate, and timely hydrologic data which are prerequisite for effective planning, design, construction, and operation of water facilities.

The Bulletin No. 130 series is published annually in five volumes. Each volume presents hydrologic data for one of five reporting areas of the State. These areas are delineated on the map to the left.

William R. Gianelli, Director Department of Water Resources The Resources Agency State of California December 2, 1969

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALENT METRIC UNIT
Inch (in)	2.54 Centimeters
Foot (ft.)	0.3048 Meter
Mile (mi)	1.609 Kilometers
Acre	0.405 Hectare
Square mile (sq. mi.)	2.590 Square kilometer
U. S. gallon (gal)	3.785 Liters
Acre-foot (acre-ft)	1,233.5 Cubic meters
U. S. gallon per minute (gpm)	0.0631 Liters per second
Cubic feet per second (cfs)	1.7 -Cubic meters per minute
1 part per million (ppm)	1 milligram per liter (mg/1)
1 part per billion (ppb)	1 microgram per liter (ug/1)
1 part per trillion (ppt)	1 nanogram per liter (ng/1)
1 equivalent per million (epm)	1 milliequivalent per liter (me/1)

TABLE OF CONTENTS

<u>Page</u>
AREAL COVERAGE OF VOLUMES
Appendix A: OBJERTOLOGICAL DATA Appendix B: SURFACE WATER MEASUREMENTS) (Published Separately) Appendix C: GROUND WATER MEASUREMENTS) Appendix D: SURFACE WATER QUALITY
FIGURES
Figure Number
D Location of Surface Water Sampling Stations D-1 Central Coastal Drainage Province (T)
TABLES
Table Number
D-1 Sampling Station Data and Index
Appendix E: GROUND WATER QUALITY
FIGURES
Figure Number
E Names and Areal Code Numbers of Hydrologic Areas E-1 Central Coastal Drainage Province (T)

		<u>Page</u>
	FIGURES (Continued)	
E-3 E-4 E-5 E-6	Lahontan Drainage Province (W)	67 69 71 73
	TABLES	
Table Number		
E-1 E-2	Mineral Analyses of Ground Water	74 160
Appendix	F: WASTE WATER DATA	171
	FIGURES	
Figure Number		
F F-1 F-2 F-3 F-4 F-5 F-6	Waste Water Dischargers Central Coastal Region (No. 3)	175 177 179 181 183 185
	TABLES	
Table Number		
F-1	Summary, Quantity of Waste Water Discharged and Reused, Southern California	186
F-2	Quantity of Waste Water Discharged and Reused, Southern California	187
F-3	Mineral Analyses of Waste Water	197

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

RONALD REAGAN, Governor
NORMAN B. LIVERMORE, Jr., Secretary for Resources
WILLIAM R. GIANELLI, Director, Department of Water Resources
JOHN R. TEERINK, Deputy Director

This volume was prepared in the Southern District James J. Doody District Engineer Jack J. Coe Chief, Planning Branch under the direction of Robert Y. D. Chun Chief, Water Resources Evaluation Section David C. Gildersleeve . . . Head, Water Resources Inventory Unit, and Program Manager by . . . Water Resources Technician II John L. Lewis . . assisted by Robert Baldridge Assistant Engineer, W.R. Assistant Engineer, W.R. Amos Roos William J. Wells Water Resources Technician I Leithel E. Faulmann Senior Typist Clerk

Data Processed by

Machine Computing Section, Southern District

Reviewed and Coordinated

by

Division of Resources Development Water Resources Evaluation Section

ACKNOWLEDGMENTS

In the preparation of this report, valuable assistance and contributions were received from many public and private agencies. Special mention is made of the following agencies whose cooperation is gratefully acknowledged:

Babcock and Sons
California Department of Public Health
Division of Laboratories
Federal Water Pollution Control Administration
Fruit Growers Laboratory, Santa Paula
Imperial Irrigation District

Long Beach Health Department
Long Beach Water Department
Los Angeles County Flood Control District
Los Angeles County Health Department
City of Los Angeles Department of Water and Power

Orange County Department of Agriculture
Orange County Flood Control District
Pomeroy and Associates Laboratory
Riverside County Flood Control and
Water Conservation District
San Bernardino County Flood Control District

San Luis Obispo County Flood Control and
Water Conservation District
The Metropolitan Water District of Southern
California
United States Geological Survey
United Water Conservation District, Ventura
County
University of California at Riverside

ABSTRACT

Appendixes D and E to Volume V, Bulletin 130-68, contain tables showing data on surface and ground water quality in Southern California for the 1967-68 water year. Appendix F contains tables showing data on waste water quantity, quality, and reuse in Southern California for the same period. Figures show location of surface water sampling stations, ground water basins, and waste water dischargers.

Appendix D
SURFACE WATER QUALITY

			OLT	
				4
			¥.	
		•		

Appendix D

SURFACE WATER QUALITY

This appendix presents surface water quality data collected during the period from October 1, 1967, through September 30, 1968. The data were collected from 60 stream and lake sampling stations in Southern California in cooperation with other state, local and federal agencies.

These stations are listed in Table D-1 and the locations of the stations are shown in Figure D-1 through D-6. Water quality sampling stations have been identified by an eightdigit number, i.e., Z-6-1300.00. The first digit designates the area in which the station is located. The second digit designates river basin or valley floor. The third digit designates the particular stream or reach of stream in the river basin, the next five digits are numbers assigned to the particular station. Station numbers have been assigned according to the Department of Water Resources, "Index of Stream Gaging Stations in and Adjacent to California, 1966". At the time of field sampling, dissolved oxygen, pH, and water temperature are determined; an estimate of the flow is made; and the gage height and time are noted. Comments on local conditions are noted in field books which are available in the files of the Department of Water Resources, Southern District.

The mineral constituents were determined in accordance with methods described in "Standard Methods for the Examination of Water and Waste Water", prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 12th Edition, 1965. In some cases, the methods used were those presented in the U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analysis of Water Samples", 1960.

CENTRAL COASTAL DRAINAGE PROVINCE (T)

D-3-1450.00.	Salinas River at Paso Robles
D-3-1475.00.	Paso Robles Creek at Templeton
D-3-1590.00.	Santa Margarita Creek Below Highway at Santa Margarita
D-3-3520.00.	Nacimiento River Near San Miguel
D-5-1100.00.	Arroyo De La Cruz Near San Simeon
D-5-2010.00.	Santa Rosa Creek at Cambria
D-5-5000.00.	Old Creek Above Whale Rock Dam Near Cayucos
D-5-6005.00.	Toro Creek Above Highway 1 Near Cayucos
D-6-3050.00.	Cuyama River Near Garey
D-8-1440.00.	Santa Ynez River Near Solvang
D-8-1565.00.	Lake Cachuma Near Santa Ynez

LOCATION OF SURFACE WATER SAMPLING STATIONS
CENTRAL COASTAL DRAINAGE PROVINCE (T)

LOS ANGELES DRAINAGE PROVINCE (U)

Z-1-1100.00.	Ventura River Near Ventura
Z-1-5500.00.	Matilija Creek Above Dam
Z-2-1300.00.	Santa Paula Creek Near Santa Paula
Z-2-1360.10.	Santa Clara River Near Santa Paula
Z-2-2150.00.	Sespe Creek Near Fillmore
Z-2-3240.00.	Piru Creek Below Santa Felicia Dam
Z-2-3375.00.	Piru Lake Near Piru
Z-3-1135.00.	Santa Clara River at Los Angeles-Ventura County Line
Z-6-1100.00.	Los Angeles River at Pacific Coast Highway
Z-6-1300.00.	Los Angeles River at Figueroa Street
Z-6-1850.00.	Los Angeles Aqueduct Near San Fernando
Z-6-9780.00.	Rio Hondo Above Spreading Grounds
Z-7-1100.90.	San Gabriel River at Whittier Narrows
Z-7-1927.10.	San Gabriel River at Azusa Powerhouse
Z-7-5100.00.	Rio Hondo at Whittier Narrows
Z-7-6150.00.	Mission Creek at Whittier Narrows
W-2-1985.05.	Colorado River Aqueduct (Upper Feeder) at La Verne

LOCATION OF SURFACE WATER SAMPLING STATIONS
LOS ANGELES DRAINAGE PROVINCE (U)

LAHONTAN DRAINAGE PROVINCE (W)

V-9-1620.00.	Mojave	River	Near Victorville
V-9-2150.30.	Mojave	River	at the Forks
V-9-2200.00.	Mojave	River	West Fork Below Cedar Springs
V-9-2250.00.	Mojave	River	East Fork of the West Fork
V-9-2300.00.	Mojave	River	West Fork Above Cedar Springs

LOCATION OF SURFACE WATER SAMPLING STATIONS
LAHONTAN DRAINAGE PROVINCE (W)

COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

W-2-1530.00.	Colorado River Near Topock, Arizona
W-2-1775.10.	Colorado River Below Parker Dam
W-2-1960.00.	Colorado River at Colorado River Aqueduct Intake
W-3-1070.00.	Whitewater River Near Mecca
W-3-1450.00.	Whitewater River Near Whitewater
W-5-1600.70.	Salton Sea at Salton Sea State Park
W-7-1695.00.	Colorado River Below Yuma Main Canal Wasteway
W-7-1750.00.	Colorado River Below Morelos Dam
W-7-1870.05.	Colorado River Near Blythe
W-7-1929.00.	All American Canal Above Pilot Knob Wasteway
W-9-1100.00.	New River Near Westmorland
W-9-1800.00.	New River at International Boundary
W-9-2020.00.	Alamo River at International Boundary
W-9-2100.00.	Alamo River Near Calipatria

LOCATION OF SURFACE WATER SAMPLING STATIONS COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

SANTA ANA DRAINAGE PROVINCE (Y)

Y-1-1550.00.	Santa Ana River Below Prado Dam
Y-2-1210.05.	Chino Creek Near Chino
Y-4-1100.00.	Warm Creek Near Colton
Y-5-1080.00.	Santa Ana River at Colton
Y-5-1978.00.	Santa Ana River Number One Tailrace Near Mentone
Y-6-1225.00.	Santa Ana River Near Norco
Y-6-1400.00.	Santa Ana River Near Arlington
Y-7-1145.00.	San Timoteo Creek at Waterman Avenue Near San Bernardin
Y-8-2200.00.	Lake Elsinore at State Park

LEGEND ● Y-5-1978.00 SURFACE WATER SAMPLING STATION AND NUMBER (SEE PAGE TO THE LEFT) MAP

LOCATION OF SURFACE WATER SAMPLING STATIONS
SANTA ANA DRAINAGE PROVINCE (Y)

SURFACE WATER SAMPLING STATIONS SAN DIEGO DRAINAGE PROVINCE (Z)

X-2-1350.00.	Santa Margarita River Near Fallbrook
X-4-3400.05.	Escondido Creek Near Harmony Grove
X-5-1230.30.	San Diego River at Old Mission Dam
X-6-2020.05.	Spring Valley Creek Near La Pressa

LOCATION OF SURFACE WATER SAMPLING STATIONS SAN DIEGO DRAINAGE PROVINCE (Z)

$\texttt{TABLE} \quad D-1 \\$

SAMPLING STATION DATA AND INDEX SOUTHERN CALIFORNIA

Station	Station number	Location*	Beginning of record	Frequency of sampling	Analyses on page
Alamo River At International Boundary Near Calipatria	W-9-2020.00 W-9-2100.00	17S/16E-18F 11S/13E-22G	February 1951 March 1951	Bimonthly Bimonthly	34, 51 34, 52
Arroyo De La Cruz Near San Simeon	D-5-1100.00	25S/06E ***	November 1950	Annually	19
All American Canal Above Pilot Knob Wasteway	W-7-1929.00	16S/21E-24K	May 1953	Bimonthly	33, 51
Chino Creek Near Chino	Y-2-1210.05	03S/8W-36R	April 1952	Monthly	35, 52, 53
Colorado River Aqueduct Upper Feeder at La Verne At Colorado River Intake (Lake Havasu)	W-2-1985.05 W-2-1960.00	01S/09W-06 03N/27E-28	April 1951 November 1953	M-Composite Monthly	30, 31 30
Colorado River Near Topock, Arizona Below Parker Dam Near Blythe Below Yuma Main Canal Wasteway Below Morelos Dam	W-2-1530.00 W-2-1775.10 W-7-1870.05 W-7-1695.00 W-7-1750.00	07N/24E-08 02N/27E-16 07S/23E-02 16S/23E-26 08S/24W-28**	April 1951 April 1951 May 1953 January 1967 May 1953	Semiannually Semiannually Monthly Bimonthly Monthly	
Cuyama River Near Garey	D-6-3050.00	10N/32W-18M	October 1958	Monthly	19, 41
Escondido Creek Near Harmony Grove	X-4-3400.05	12S/2W-30K	March 1951	Bimonthly	38, 56
Lake Cachuma Near Santa Ynez	D-8-1565.00	06N/29W-19M	April 1958	Monthly	20, 41
Lake Elsinore At State Park	Y-8-2200.00	06S/5W-02J	February 1952	Bimonthly	38, 55
Los Angeles Aqueduct Near San Fernando	Z-6-1850.05	03N/15W-30	April 1951	Monthly	25, 46
Los Angeles River At Figueroa Street At Pacific Coast Highway	Z-6-1300.00 Z-6-1100.00	01S/13W-15 04S/13W-26	April 1951 April 1951	Monthly Monthly	24, 25, 45, 46 24, 44, 45
Matilija Creek Above Dam	Z-1-5500.00	05N/23W-19P	May 1953	Monthly	21, 42
Mission Creek At Whittier Narrows	Z-7-6150.00	02S/11W-06G	April 1951	Monthly	27, 28, 48
Mojave River West Fork Above Cedar Springs East Fork of the West Fork West Fork Below Cedar Springs At The Forks Near Victorville	V-9-2300.00 V-9-2250.00 V-9-2200.00 V-9-2150.30 V-9-1620.00	02N/5W-2 02N/4W-10 03N/4W-32 03N/3W-18Q 06N/4W-29Q	April 1965 April 1965 May 1965 July 1957 March 1951	Monthly Monthly Monthly Monthly Monthly	29 29 28, 29 28, 49 28, 49
Nacimiento River Near San Miguel	D-3-3520.00	25S/11E-4***	December 195	7 Three/year	19
New River At International Boundary Near Westmorland	W-9-1800.00 W-9-1100.00	17S/14E-14Q 12S/13E-19R	April 1951 February 1951	Bimonthly Bimonthly	33, 51 33, 51
Old Creek Above Whale Rock Dam Near Cayucos	D-5-5000.00	28S/10E-26***	February 1961	Annually	19
Paso Robles Creek At Templeton	D-3-1475.00	27S/12E-31***	* 1940) Annually	19

^{*}Township, range, section and 40-acre tract number; referred to San Bernardino Base and Meridian **Gila and Salt River Base and Meridian

^{***} Mount Diablo Base and Meridian

TABLE D-1

SAMPLING STATION DATA AND INDEX SOUTHERN CALIFORNIA (continued)

Station	Station number	Location*	Beginning of record	Frequency of sampling	Analyses on page
Piru Creek					
Below Santa Felicia Dam	Z-2-3240.00	04N/18W-20	June 1957	Monthly	23, 44
Piru Lake Near Piru	Z-2-3375.00	05N/18W-10P	May 1955	Annually	23
Rio Hando					
At Whittier Narrows Above Spreading Grounds	Z-7-5100.00 Z-6-9780.00	02\$/11W-6B 02\$/12W-12B	April 1951 May 1963	Monthly Monthly	26, 27, 47, 48 25, 26, 46, 47
Salinas River At Paso Robles	D-3-1450.00	26S/12E-28***	May 1951	Three/year	19
Salton Sea At Salton Sea State Park	w-5-1600,70	08S/10E-2L	March 1955	Bimonthly	31, 50
San Diego River				DO,	01, 50
At Old Mission Dam	x-5-1230.30	15\$/2W-25F	April 1951	Bimonthly	39, 56
San Gabriel River`					
At Azusa Powerhouse	Z-7-1927.10	01N/10W-22J	March 1957	Monthly	26, 47
At Whittier Narrows	Z-7-1100.90	02S/11W-5K	April 1951	Monthly	26, 47
San Timoteo Creek At Waterman Avenue Near San Bernardino	Y-7-1145.00	01S/4W-23N	March 1964	Monthly	38, 55
Santa Ana River					
Number One Tailrace Near Mentone	Y-5-1978.00	01S/2W-4P	April 1951	Monthly	36, 54
At Colton	Y-5-1080.00	01S/4W-28C	March 1964	Monthly	35, 36, 53, 54
Near Arlington	Y-6-1400.00	02S/6W-25L	January 1951	Monthly	37, 38, 55
Near Norco Below Prado Dam	Y-6-1225.00 Y-1-1550.00	03 S/7W-01A 03S7W-29E	April 1951 April 1951	Monthly Monthly	37, 54, 55 34, 35, 52
Santa Clara River					
At Los Angeles-Ventura County Line	Z-3-1135.00	04N/17W-30K	April 1951	Monthly	23, 24, 44
Near Santa Paula	Z-2-1360.10	03N/21W-12P	April 1951	Monthly	22, 43
Santa Margarita Creek Below Highway At Santa Margarita	D-3-1590.00	29S/13E-21***	January 1961	Annually	19,
Santa Margarita River					
Near Fallbrook	X-2-1350.00	09S/4W-14H	February 1951	Bimonthly	38, 56
Santa Paula Creek					
Near Santa Paula	z-2-1300.00	04N/21W-27N	June 1957	Monthly	21, 22, 42, 43
Santa Rosa Creek At Cambria	D-5-2010.00	27S/08E ***	October 1952	Annually	19
Santa Ynez River					
Near Solvang	D-8-1440.00	06N/31W-21R	April 1951	Monthly	20, 41
Sespe Creek Near Fillmore	z-2-2150.00	04N/20W-128	June 1957	Monthly	22, 23, 43, 44
Spring Valley Creek Near La Pressa	x-6-2020.05	17S/01W-17	March 1958	Bimonthly	39, 56
Toro Creek Above Highway 1 Near Cayucos	D-5-6005.00	29S/10E06***	November 1952	Annually	19
Ventura River	Z-1-1100.00	03N/23W-08F	May 1951	Monthly	20, 21, 42
Warm Creek					
Near Colton	Y-4-1100.00	01S/04W-21L	April 1951	Monthly	35, 53
Whitewater River Near Whitewater Near Mecca	W-3-1450.00 W-3-1070.00	03\$/3E-2B 07\$/9E-30R	February 1951 July 1957	Bimonthly Bimonthly	31, 50 31, 50

TABLE D-2 MINERAL ANALYSES OF SURFACE WATER

An explanation of column headings follows:

GH - The instantaneous gage height in feet above an established datum.

- The instantaneous discharge in cubic feet per second (cfs). "E" indicates the value has been estimated.

DO - The dissolved oxygen content in milligrams per liter.

SAT - The percent saturation.

LAB EC - The electrical conductance in micromhos at 25° Celsius.

FIELD EC - The electrical conductance in micromhos at temperature when sampled.

LAB & FIELD PH - Measure of acidity or alkalinity of water.

TDS - Gravimetric determination of total dissolved solids at 180° Celsius.

TH - Total hardness.

NCH - Non-carbonate hardness.

TIME - Pacific Standard Time on a 24-hour clock.

TEMP - Water temperature in degrees Fahrenheit at the time of field sampling.

The MINERAL CONSTITUENTS are as follows:

The LAB and SAMPLER agency codes are as follows:

1101 - Los Angeles County Flood Control District

1200 - City of Los Angeles Department of Water and Power

4412 - The Metropolitan Water District of Southern California

5050 - Department of Water Resources

5056 - Federal Water Pollution Control Administration

5064 - Department of Water Resources

5091 - California Department of Public Health

5100 - San Bernardino County Flood Control District

5117 - San Luis Obispo County Flood Control and Water Conservation District

5239 - Long Beach Health Department

5411 - United Water Conservation District

5867 - Fruit Growers Laboratory

DATE TÎME S	LAB AMPLEF	GH Q	DO SAT	TEMP	LABORA FIEL PH		MI CA	NERAL CO	ONSTITUI NA	ENTS IN	MILL		PER LENTS EACTANC 504	PER LI	TER TER LUE NO3	MIL F	LIGRAMS B	PER	LITE TDS SUM	TH
			STA	ATION	NUMBER	D314	50.00	SALI	NAS RIV	FR AT P	ASO ROB	LES								
3/13/68 1200		500 E			7.7	842	84 4.19 46	29 2.38 26	55 2.39 26	0.08 1	0.00	286 4.69 53	137 2.85 32	46 1.30 15	2.5 0.04 0	0.4	0.21		553 498	329 94
			STA	ATION	NUMBER	D314	75.00	PASO	ROBLES	CREEK	AT TEMP	LETON								
3/13/68 1130	5050 5117	150 E			8.8	471	57 2.84 60	15 1.23 26	14 0.61 13	3 0.08 2	0.37 8	162 2.65 56	61 1.27 27	14 0.39 8	4.5 0.07 1	0.2	0.00		285 260	204 53
			STA	TION	NUMBER	D315	90.00	SANT	A MARGAS	RITA CR	FEK AFI	OW MIGH	WAY AT	SANTA M	ARGARITA					
2/21/68 1500	5050 5117	12 E			8.0	477	32 1.60 31	32 2.63 51	20 0.87 17	0.02 0	0.00	234 3.83 76	41 0.85 17	12 0.34 7	0.5 0.01 0	0.2	0.04		284 254	212
			S.T.		NUMBER	0225	20.00	NACTI	MIENTO I	DIVED N	EAR SAN	MIGHEL								
3/13/68 1430		1000 E			7.6	315	30 1.50 47	15 1.23 39	10 0.43 14	0.ñ2 1	0.00 0.00	134 2.20 70	37 0.77 24	6 0.17 5	1.0 0.02	0.2	0.10		202 167	137 27
5/07/68 1210	5050 5050		11.4	58	8.3 8.0	308	30 1.50 47	15 1•23 39	10 0.43 14	1 0.02 1	0.00	135 2.21 70	36 0.75 24	7 0.20 6	0.0		0.00	11	168 177	137 26
9/04/68 0725	5050 5050	250 E	8.7 86	60	8.0 7.4	347	32 1.60 48	16 1.31 40	8 0.35 10	2 0.05 1	0.00	150 2.46 72	34 0.71 21	8 0.22 7	0.5 0.01 0		0.80		154 175	146 23
			STA	TION	NUMBER	0511	00.00	APRO	YO DE 1	A COUT	NEAR SA	N SIMFO	N							
3/28/68	5050 5117	 100 E			8.9	459	38 1.90 39	29 2•38 49	13 0.56 12	0.02	16 0.53 11	202 3.31 69	29 0.60 13	12 0.34 7	0.0	0.1	0.10		238 238	214
			STA	TION	NUMBER	0520	10.00	SANT	A DOSA (CDEEN A	T CAMBR	1.4								
3/28/68	5050 5117	:-			9.0	785	40 1.99 25	60 4.93 61	26 1.13	2 0.05	32 1.07	324 5.31 56	111 2.31 24	28 0.79 8	1.0 0.02 0	0.2	0.10			347
			57	TION	NUMBER	DEEA				DOVE WH		K DAM N	EAR CAY	ucos						
7/19/68 1600	5050 5117	3 E			8.6	770 	56 2.79 34	49 4•03 49	32 1.39 17	0.02 0.02	13 0.43 5	344 5.64 68	64 1.33 16	31 0.87	0.1 0.00 0	0•2	0.10		433 416	341 38
						5510				·										
2/19/68 1500	5117	: 5 E			NUMBER	694	40 1.99 28	49 4•03 56	27 1.17 16	0.02 0	14 0.47 6	286 4.69 65	64 1.33 18	26 0.73 10	0.2 0.00 0	5•0	0.10		388 363	301 44
			STA	TION	NUMBER	D630	50.00	CUYA	AA RIVE	R NEAR	GARFY									
3/04/67 090ñ	5050 5050	80.0	10.0	64	8.0	803	87 4.34 46	33 2•71 29	53 2•30 24	0.10	0.00	229 3•75 39	226 4.70 50	33 0.93 10	6.5 0.10 1	0.6	0.22		600 556	353 165
1/07/67 134ô	5050 5050		10.1	64	8.1 7.5	824	81 4.04 46	31 2•55 29	48 2•09 24	5 0•13 1	0.00	205 3•36 38	220 4.58 51	33 0•93 10	2.5 0.04 0	0.6	0.22		600 523	330 162
2/11/67 1126	5050 5050	100	10.5	57	7.8 8.2	886	89 4.44 46	34 2•80 29	50 2•17 23	0.13 1	0.00	222 3.64 38	239 4.97 52	34 0.96 10	1.5 0.02 0	0.6	0.20		600 563	362 180
1/11/68 1945	5050 5050	100	11.8	48	8.0 7.6	914	95 4.74 47	36 2.96 30	50 2.17 22	0.13 1	0.00	234 3.83 39	241 5•02 51	34 0•96 10	2.5 0.04 0	0.6	0.19		629 580	385 193
3/15/68 1000	5050	==	15.7 156		7.7	1365	128 6•39 41	62 5•10 33	88 3.83 25	0 • Î 0 1	0 • 0 0 0	278 4.56 30	438 9•12 59	59 1•66 11	0.5 0.01 0	0.7	0.12		1007 917	
1136	5050	20.0	8.6 96	70	7.7	1517	143 7.13 42	68 5•59 33	99 4.31 25	0•13 1	0.00	295 4.83 29	490 10.20 60	64 1.80 11	0.6	0.7		٠	1104	395
3/03/68 075n	5050 5050	5.0	8.9 87	58	8.5 7.5	1680	149 7.43 39	74 6•08 32	122 5.31 28	0.15 1	10 0.33 2	290 4.75 25	571 11.89 62	77 2.17 11	0.4 0.01 0	0.6	0.30		1230 1153	677 4 22

DÄTE LA		GH Q	DO SAT	TEMP	_	RATORY ELD EC	MI(NERAL CO	ONSTITU	ENTS IN		IGRAMS IEQUIVAI ENT RI MCO3	PER LENTS I EACTANCI 504		ER	MIL	LIGRAMS	PER	LITE TDS SUM	TI
			CT	Tron		ER D814				" RIVER NI				-						
12/11/67 50 1300 50	050 050	0.59		68	8.1 8.0	1099	98 4.89 39	64 5 • 26 42	55 2•39 19	3 0.08	0 0 0 0	376 6•16 48	271 5•64 44	32 0 • 90 7	0.5 0.01	0.5	0.31		774 710	_
01/11/68 50 2040 50)50)50	0.64	10.4	54	8.1	1085	101 5•04 40	62 5•10 41	53 2•30 18	3 0.ñ8 1	0.00	376 6•16 50	254 5•29 43	31 0·87 7	0.6	0.5	0.31		747 691	
02/14/68 5 082n 5	050 050	0.87 25.0	9.9 94	56	8.2 7.5	986	94 4.69 41	55 4 • 52 4 0	48 2•09 18	2 0•05 0	0 • 0 0	342 5.60 50	239 4.97 44	24 0.68 6	0.5 0.01 0	0.5	0.31	••	682 632	
03/15/68 5 0950 5	050 050	0.70 15.0		59	8.2 7.5	1029	95 4.74 40	58 4•77 41	50 2•17 18	0 • 0 5 0	0.00	356 5.83 50	237 4•93 42	31 0.87 7	0.0	0.5	0.29		704 649	
04/05/68 5 1220 5	050 050	0.78 19.0		71	8.3 7.7	1032	81 4•04 36	58 4.77 43	51 2•22 20	2 0•ñ5 0	0.00	308 5.05 46	245 5.10 46	30 0.85 8	0.0	0.5	0.29	••	696	
05/03/68 5 1116 5	050 050	2.47	10.3	64	8.5 7.5	1060	86 4•29 37	58 4•77 41	58 2•52 22	0 • n 5 0	13 0•43 4	303 4.97 43	255 5•31 46	32 0•90 8	0.9	0.3	0.30		707 655	
			51	ATION	NUMB	ER 0815	65.00	LAKE	CACHUM	A NEAR	SANTA Y	NEZ								
10/04/67 5 1020 5	050 050	45.41	9•2 104	72	8.0 7.8	744	72 3.59 41	40 3•29 37	42 1.83 21	0.n8 1	0.00	210 3.44 39	237 4.93 56	15 0•42 5	1.5 0.02 0	0.5	0.44		555 515	
11/07/67 50 1200 50	050 050	44.38	9.9 106	66	8.3	799 	74 3.69 42	39 3•21 37	40 1.74 20	0.08 1	0.00	220 3.60 41	232 4.83 54	15 0•42 5	0.0	0.5	0.39		550 513	
12/11/67 50 1400 50	050 050	44.13	9•5 98	63	7.9 8.2	787 	75 3•74 43	38 3•12 36	38 1.65 19	0.08 1	0.00	225 3.69 43	220 4.58 53	13 0.37 4	0.0	0.5	0.36		545 499	
01/11/68 50 2105 50		43.95	11.7	54	7.9 7.5	795 	77 3.84 44	39 3•21 36	38 1•65 19	0.ñ8 1	0.00	226 3•70 43	219 4.56 53	12 0 • 34 4	0.05	0.5	0.34		545 502	16
02/14/68 56 090â 56	050 050	43.73	10.6 98	54	8.1 7.7	797 	76 3.79 43	39 3•21 37	38 1.65 19	0.ñ8 1	0.00	225 3.69 43	220 4.58 53	13 0.37~ 4	1.0	0.5	0.33		546 502	
03/15/68 56 091ñ 5	050 050	44.40	14.7	56	8.2 7.7	799 	78 3•89 44	38 3•12 36	38 1•65 19	0.n8 1	0.00	225 3•69 42	223 4 • 64 53	15 0.42 5	0.5 0.01 0	0.5	0.32		541 507	1
	050		6.8	55	8.2	••	83 4•14 51	24 1.97 24	2 25		0.00	208 3.41 41	210 4.37 53	16 0•45 5	0.6	0.5	0.50		550 493	12
04/05/68 5 1245 5 05/03/68 5	050	43.51	97		8.2 7.5	804	79 3•94 45 78	38 3•12 35	38 1.65 19	0.ñ8 1	0.00	223 3.65 42	223 4.64 53	0.39 4	0.8	0.5	0.34	••	531 507 546	1
	050		110		7.8	787	3.89 42	3.29 36	1.91 21	0.ñ8 1	0.20	214 3.51 39 210	230 4.79 53 228	17 0 • 48 5	0.8	0.5	0.30		525	1
	050	38.86	120		7.9	777	3.59 41 76	3.29 38	1.74 20	0.ñ8 1	0.00	3.44	4.75 55	0.37	0.00	0.6	0.38		501	1
	050	••	118	•	8.4		3.79 43	3·29 37	1.74	0 • n8 1	0.00	3.54	4.87	0.39	0.00		0000		515	
						ER Z111				ER NFAR	VENTUR									
_	050	4 • 0	10.7		7.9	1055	130 6•49 52	37 3•04 24	68 2•96 24	0·65 0	0.00	290 4.75 38	294 6•12 49	52 1•47 12	12.0 0.19 1	0.6	0.60	-	800 739	5.
	050	8.14			8.0	1101	127 6.34 52	36 2.96 24	2.78 23	0.n5 0	0.00	295 4.83 40	277 5.77 47	48 1•35 11	11.3	0.6	0.53		778 712	2
	050	7.1	11.0		7.7	1060	123 6•14 53	36 2.96 25	58 2.52 22	0.05 0	0.00	289 4.74 41	266 5.54 47	1.24	9.3 0.15 1	0.6	0.44	••	727 682	S
01/11/68 5	050	4.0			8.0	1089	124 6.19 52	36 2.96 25	2.65 22	0.n8 1	0.00	273 4.47 38	274 5.70 48	51 1.44 12	11.0	0.6	0.48		754 696	2
02/14/68 5 102n 5		8.26 4.4	11.1		8.1	1062	117 5.84 52	35 2.88 25	58 2•52 22	0.n5 0	0.00		263 5.47 49	48 1.35 12	0.19	0.6	0.41	••	794 664	

TABLE D-2
MINERAL ANALYSES OF SURFACE WATER

n																				
DATE TIME SA	LAB MPLER	GH Q	DO SAT	TEMP	LABOR FIE	ATORY LD EC	MI	NERAL CO	ONSTITUE NA		MILLI MILLI PERCE CO3	ENT RE	PER LENTS F EACTANCE SO4	VAL	TER LUE	MIL F	LIGRAMS	PER SIO2	TOS	TH
			F. V.	. T . O						K		HC03	304	CL	N03	r	В	3102	SUM	NCH
3/15/68 1615	5050 5050		10.0		8.0	1127	133 6.64 53	38 3•12 25	01 2.65 21	2 0.05	0.00	299 4.90 39	280 5.83 47	52 1.47 12	12.0 0.19 2	0.6	0.42		_	488 243
4/05/68 140ñ	5050 5050	8.45 16.0	9.7 104	66	7.8	1088	125 6•24 53	36 2•96 25	59 2•57 22	2 0•n5	0 • 0 0	270 4.42 38	275 5.72 49	48 1•35	10.1 0.16	0.6	0.47			460 239
5/03/68 124n	5050 5050		10.8	63	8.5	1160	132 6•59 53	35 2•88 23	68 2•96 24	2 0•n5 0	11 0·37 3	284 4.65 37	285 5.93 47	52 1•47 12	10.0 0.16 1	0.5	0.50			474 222
6/11/68 133 ₀	5050 5050	8.12	7.9 87	69	7.7	1153	132 6.59 52	40 3•29 26	64 2.78 22	0.08 1	0.00	311 5•10 40	288 6•00 47	52 1•47 12	7.4 0.12 1	0.7	0.51		818 741	494 239
7/22/68 1136	5050 5050	7.97 0.6	9.9 112	72	7.8 7.6	1074	131 6.54 53	34 2.80 23	65 2.83 23	0·n8	0 • 0 0	293 4.80 40	279 5.81 48	1.38 11	1.5 0.02 0	0.7	0.48			467 227
и-			STA	ATION	NUMBE	R Z155	00.00	MATI	LIJA CRE	EEK ABO	VE DAM									
0/04/67 1205		6.0	9.1 101	70	7.7 7.5	879	103 5.14 50	34 2.80 27	54 2.35 23	0.05 0	0.00	200 3.28 32	298 6.20 60	30 0.85 8	0.0	0.8	1.10			397 233
1/06/67 1255	5050 5050	1.54 6.8	9.4 102	68	8.2 7.5	983	112 5.59 51	32 2•63 24	59 2•57 24	0·08	0 0 • 0 0 0	242 3.97 37	278 5.79 54	37 1-04 10	0.0	1 • 0	1.18			411 213
2/12/67 0845	5050 5050	1.40	10.5	53.	8.0 8.3	998	116 5•79 53	35 2•88 26	50 2•17 20	0·ń5 0	0.00	237 3.88 36	299 6•22 57	27 0•76 7	0.0	0.8	0.75		-	434 239
1645	5050 5050	1.42 11.0	10.7	55	8.2 7.5	965	119 5•94 55	33 2•71 25	2.13 20	0.n5 0	0.00	249 4•08 38	278 5•79 54	28 0•79 7	0.0	0.8	0.82			433 229
7/14/68 1100		1.41			7.8 7.9	950	112 5•59 54	32 2•63 25	2.13 20	0 • n 5 0	0.00	230 3•77 37	276 5•75 56	28 0•79 8	0 • 0 0 • 0 0 0	0.8	0.82			411 223
1430			9.5 104	68	8.1 7.6	927 	102 5•09 51	34 2•80 28	45 1.96 20	0 • ñ 5 0	0.00	207 3.39 35	277 5.77 59	0.62 6	0.0	0.8	0.72			395 225
5/03/68 132n	5050 5050	8.2	9.8 106	67	8.2 7.5	976	103 5•14 53	29 2•38 25	47 2.04 21	3 0•ñ8 1	0.00	122 2•00 22	281 5•85 66	34 0.96 11	6.0 0.10 1	0.7	1.10		565≠	376 276
6/11/68	5050	,	9.1 110		8.0 7.8	978	106 5•29 50	32 2•63 25	59 2.57 24	0.08 1	0.00 0	220 3.60 35	270 5.62 54	1.18 11	0.0	1.0	1•11		623	396 216
1300	5050 5050		150	80	8.2	1010	105 5•24 49	30 2•47 23	72 3•13 29	0.08 1	0.00	214 3•51 32	260 5•41 50	68 1•92 18	0.0	1.4	2•10		744 647	
			STA	ATION	NUMBE	R Z213	00.00	SANT	PAULA	CREEK !	NEAR SAM	NTA PAUL	_A							
3/04/67 135ñ	5050 5050		11.9	72	7.8 7.7	756	75 3•74 44	26 2•14 25	60 2.61 30	2 0.05 1	0.00	181 2.97 35	225 4•68 55	32 0.90 10	1.0 0.02 0	0.5	0.30		560 511	294 146
1210	5050 5050		13.0	62	8.1 7.7	841	83 4.14 46	27 2•22 25	59 2.57 29	0.n5 1	0.00	207 3.39 37	228 4.75 52	33 0.93 10	0.0	0.5	0.28		581 535	318 149
2/12/67 0945	5050 5050		12.2	53	8.1 8.2	867	98 4.89 51	27 2•22 23	54 2•35 25	0·n5 0	0.00	249 4.08 43	218 4.54 48	29 0 • 82 9	1.4 0.02 0	0.5	0.23		583 553	356 152
1545			12.1	58	8.0 7.8	832	87 4•34 49	26 2•14 24	54 2•35 26	0.05 1	0.00	215 3.52 40	213 4.43 50	29 0•82 9	0.9 0.01 0	0.5	0.25		559 519	324 148
1316	5050	ï•5	12•3 117		8.2	814	87 4•34 49	26 2•14 24	54 2•35 26	0.05 1	0.00	228 3.74 43	200 4.16 48	29 0.82 9	1.0 0.02 0	0.5	0.23			137
13/14/68 084ñ	5050	40.0	11.9		8.1	706	83 4•14 55	20 1.64 22	39 1.70 23	0.02	0.00	205 3.36 45	169 3.52 47	20 0.56 8	0.9 0.01 0	0 • 4	0.12	•	435	
1515	5050	12.0			7.5	720	74 3.69 50	1.81 24	1.91 26	0.02	0.00	176 2.88 39	188 3.91 53	22 0.62 8	0.0	0.5	.0.19			131-
5/03/68 1355		7.5	10.6		8.4	837	86 4.29 50	21 1.73 20	58 2.52 29	0·n5 1	0.17 2	212 3.47 40	196 4.08 48	30 0.85 10	0.0	0.4	0.30			301 119

DATE LAB TIME SAMPLER		DO SAT	TEMP	LABOF FIE	RATORY ELD EC	MIN	IERAL CO	NSTITU NA	ENTS IN			PER LENTS F EACTANCE 504		ER	MIL F	LIGRAMS B	PER 5102	LITEI TOS SUM	1
									CDEEN	NEAR SAN	ITA DAII	A							
06/11/68 5050 151â 5050		9.7 119	80	8 • 1 7 • 7	807	74 3.69	24 1.97 24	61 2.65 32	2 0.ñ5	0.00	195 3•20 38	201 4•18 50	34 0.96 11	0.5 0.01 0	0.5	0.33	••	517 494	28
07/22/68 5050 1415 5050	1.56 1	3.8 175	83	8.4	886	64 3.19 34	27 2•22 24	89 3•87 41	2 0•05 0	5 0 • 1 7 2	168 2•75 30	235 4•89 53	52 1•47 16	1.3	0.6	0.46		620 559	
09/16/68 5867 1100 5411	1.55			8.0	1133	92 4.59 40	36 2.96 25	93 4.04 35		0.00	261 4.28 36	285 5.93 50	59 1.66 14	0.0	0.4	0.50		826 695	
		574	Tron	MILIMO	ER Z213	60 10	SANTA	CLADA	DIVER	NEAR SAI	NTA PAU	1 A							
10/04/67 5050 1315 5050	40.0	8.3 96	74	7.7 7.7	1464	166 8.28 46	57 4.69 26	112 4.87 27	5 0.13	0 0•00 0	276 4.52 25	562 11.70 65	53 1•49 8	13.0 0.21	1.1	0.92		1200 1106	_
11/06/67 5050 1156 5050	20.0	7•3 78	66	7.6 7.6	1642	161 8.03 43	64 5•26 28	125 5•44 29	0.13 1	0 • 0 0	256 4•19 22	608 12.66 68	58 1.63 9	9.0 0.14 1	0.9	0.92		1284 1158	
12/12/67 5050 1115 5050		0.6 104	59	7.9 8.0	1597	167 8.33 45	60 4.93 27	114 4.96 27	0.13 1	0.00	301 4.93 27	568 11.82 64	55 1•55 8	12.5 0.20 1	1.2	0.88		1222	
01/11/68 5050 1530 5050	1 50.0	0.1	62	8.0 7.7	1246	123 6•14 44	45 3.70 26	92 4•00 29	0 • 1 0 1	0.00	239 3.92 29	407 8.47 62	42 1.18 9	7.5 0.12 1	0.8	0.64		923 840	
03/14/68 5050 0815 5050	1 70.0	93	53	8.1 7.3	1384	147 7•33 46	52 4•28 27	96 4•17 26	0.10	0.00	261 4•28 27	480 9.99 64	43 1•21 8	10.8 0.17 1	0.8	0.70		1048 963	
04/05/68 5050 1535 5050		9.1 101	70	8.1 7.5	1529	147 7•33 44	57 4•69 28	108 4.70 28	0.10 1	0.00	231 3•79 23	541 11•26 68	51 1•44 9	10.5 0.17 1	1.0	0.84		1166 1034	
05/03/68 5050 141n 5050		9.4 102	68	8.2 7.5	1700	162 8•08 47	53 4•36 25	107 4.65 27	0 • 1 5 1	0.00	170 2•79 16	612 12•74 73	58 1.63 9	13.0 0.21 1	0.8	0.90		1280 1097	4
06/11/68 5050 1530 5050		9.1 110	78	8.0 7.5	1832	174 8.68 41	75 6•17 29	146 6.35 30	0.15 1	0.00	270 4.42 21	709 14.76 69	69 1.94 9	12.0 0.19 1	1.0	0.90		1470 1326	5
07/22/68 5050 1445 5050		6.1 192	77	8•2 8•2	1750	178 8.88 42	72 5•92 28	142 6.18 29	0.15 1	0.00	281 4.60 22	677 14•09 68	64 1 • 80 9	11.5 0.18 1	1.0	0.92		1471	5
09/16/68 5867 1145 5411	35.0			8.0	1802	166 8.28 42	59 4.85 25	150 6.52 - 33		0.00	309 5.06 24	663 13.80 66	66 1.86 9	15.0 0.24 1	0.8	1.00		1428 1273#	# 4
		STA	TION	NUMB	ER Z221	50.00	SESP	E CREEK	NEAR F	ILLMORE									п
10/04/67 5050 134ñ 5050	10.0	8.7 100	73	7.7 7.9	883	83 4.14 41	29 2•38 24	80 3•48 34	0.08 1	0.00	144 2•36 24	288 6•00 60	56 1•58 16	0.5 0.01 0	1.3	1.50		660	
11/06/67 5050 1120 5050		183	62	8.2 7.5	1018	98 4.89 45	27 2•22 21	82 3.57 33	0.ñ8 1	0.00	193 3.16 29	279 5.81 54	62 1.75 16	0.0	1.4	0.80		698	1
17/12/67 5050 1150 5050	41.0	113	54	8 • 0 8 • 4	964	103 5•14 50	32 2•63 25	58 2•52 24	0.05	0.00	217 3.56 34	289 6•02 58	30 0 • 85 8	0.0	1.2	0.86		665 623	2.
01/11/68 5050 1440 5050	35.0	11.9	53	7.9 7.5	989	108 5•39 50	32 2•63 24	61 2•65 25	0 • ñ8 1	0.00	217 3.56 33	295 6•14 58	32 0 • 90 8	0.00	1.3	0.94		700 640 391	2
02/13/68 5050 1205 5050		111	53	7.9 7.5	591	63 3•14 52	17 1•40 23	34 1.48 24	0 • n 5 1	0.00	129 2•11 35	163 3•39 57	17 0 • 48 8	0.5	0.7	0.42		361	1
03/14/68 5050 0740 5050	104	11.3 98	49	8.1	854	106 5.29 56	27 2•22 24	42 1.83 19	0.05 0	0.00	204 3.34 36	260 5.41 59	0.48 5	0.0	0.8	0.46		556	2
04/05/68 5050 1605 5050	35.0	8.1	64	7.7	895	94 4.69 50	30 2.47 26	2.22 23	0.05	0.00	171 2.80 30	283 5.89 63	0.62 7	0.00	1.0	1.20		568	ê
05/03/68 5050 1415 5050	10.0	8.5		7.7	895	79 3.94 42	28 2•30 25	68 2.96 32	0.08 1	0.00	140 2.29 25	276 5.75 63	36 1•01 11 57	0.5 0.01 0	1.4			562	11
06/11/68 5050 1600 5050	0.8	8.1	80		933	3.39 36	31 2•55 27	78 3.39 36	0.08 1	0.17 2	76 1.24 13	6.41		0.00	1 • •	1461		590	

DATE TÎME 5	LAB AMPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	MI	NERAL C	UTITZNO AN	ENTS ÍN K	MILL	ENT R	PER LENTS REACTANC SO4	PER LI	TER TER LUE NO3	MIL F	LIGRAMS	S PER	TDS	R TH NCH
			ST	ATION	NUMB	ER Z221	50.00	SESP	E CREEK	NEAR F	ILLMORE									
7/22/68 144ñ	5050 5050	0.2	19•0 241	83	8.4	1191	119 5.94 45	35 2•88 22	95 4•13 32	0 • 1 0 1	7 0.23 2	110 1.80 14	445 9.26 72	55 1.55 12	0.0	1 • 4	1.07		914 817	_
9/16/68 1330	5867 5411	3.9 <u>0</u>			8.4	1460	134 6.69 44	44 3.62 24	110 4.78 32		6 0.20 1	92 1.51 10	554 11.53 76	69 1•94 13	0.0	1.2	1.20		1009 965	
			ST	ATION	NUMBI	ER Z232	40.00	PIRU	CREEK	BELOW S	ANTA FE	LICIA D	AH							
0/04/67 1410	5050 5050	1.61	8.6	74	8.1 7.7	935	99 4.94 46	3.37 31	55 2.39 22	0.10	0.00	195 3.20 29	343 7.14 66	18 0.51 5	1.5	1 • 1	0.76		_	416 256
1/06/67 1045	5050 5050		10.5	64	8.1 7.5	1003	105 5.24 47	3.45 31	53 2•30 21	0.10	0.00	212 3.47 31	345 7.18 65	13 0.37 3	0.0	1.0	0.78		-	435 261
1/11/68 1416			10.6	62	8.1 7.7	990	101 5.04 45	42 3.45 31	57 2•48 22	0.10	0.00	188 3.08 28	354 7.37 68	14 0.39 4	0.5 0.01 0	1.0	0.78			425 271
2/13/68 1136	5050 5050	-	11.7 107	53	8.2 7.5	1027	108 5.39 47	43 3.54 31	58 2•52 22	0.10	0.00	210 3.44 30	357 7.43 66	0.39 3	0.9 0.01 0	1.0	0.72			447 274
3/14/68 0705	5050 5050	1.09		45	7.8 7.3	1046	113 5.64 48	43 3.54 30	57 2.48 21	0 • 1 0 1	0.00	217 3.56 34	303 6.31 61	15 0•42 4	1.1 0.02 0	0.9	0.80			459 281
4/05/68 1645	5050 5050	2.10 45.0	10.3 93	52,	8.0 7.3	1067	112 5.59 48	43 3.54 30	58 2•52 21	0.10	0.00	212 3.47 30	363 7.56 66	17 0.48 4	0.6 0.01 0	1.0	0.80		770 704	457 283
5/03/68 150ñ	5050 5050	40-1	11.3	55	8.0 7.3	1100	111 5.54 46	43 3.54 30	64 2.78 23	0.10 1	0.00	218 3.57 30	374 7.79 65	18 0•51 4	1.3 0.02 0	0.9	0.90		776 725	454 275
6/Ī1/68 163â	5050 5050	2.11 41.0	10.5	57	7.8 7.3	1067	112 5.59 47	43 3•54 30	59 2•57 22	0.10 1	0.00	217 3•56 30	367 7.64 65	16 0•45 4	1.5 0.02 0	1.2	0.75		765 712	457 279
7/22/68 1615	5050 5050	2.13 45.0	13.0	59	8.1	1036	112 5.59 47	43 3•54 30	61 2.65 22	0.10 1	0.00	215 3.52 30	375 7.81 66	17 0.48 4	1.0 0.02 0	1.2	0.92		814 721	457 280
9/16/68 1330	5867 5411	1.56 7.4			7:8	1141	102 5.09 41	51 4•19 34	69 3•00 24		0.00	217 3.56 29	392 8•16 66	24 0.68 5	0.0	1.1	1.00		855 747	465 287
			STA	AT10N	NUMB	ER Z233	75.00	PIRU	LAKE N	EAR PIR	U									
9/16/68 1100	5867 5411	75.00			7.9	1138	108 5.39 44	47 3.86 31	71 3.09 25		0.00	198 3.24 26	413 8.60 68	25 0.70 6	0.0	0.9	1.10		862 764	463 301
			STA	TION	NUMBE	R Z311	35.00	SANT	A CLARA	RIVER	AT LOS	ANGELES	-VENTUR	A CO. L	INE					
ñ/04/67 150ñ	5050 5050	6.0	8.2 101	80	7.8 7.9	1789	156 7•78 36	72 5•92 28	172 7•48 35	6 0•15 1	0.00	295 4•83 23	662 13.78 65	88 2•48 12	15.0 0.24	1•2	0.60		1410 1318	686 444
ī/06/67 1026	5050 5050	 3.0	9.4 102	68	7.9 7.5	2083	189 9.43 38	83 6•82 28	190 8•26 33	0.15 1	0.00	371 6.08 25	768 15.99 65	88 2•48 10	4.6 0.07 0	0.9	0.76		1676 1513	813 509
2/12/67 1315	5050 5050	15.0	9.6 101	65	8.0	1969	190 9.48 41	78 6•41 28	164 7•13 31	0.15 1	0.00	366 6.00 26	725 15.09 65	76 2•14 9	5.5 0.09 0	1.2	0.62		1574 1427	795 495
1/11/68 135â	5050 5050	13.0	9.0 91	61	8.0 7.7	1665	158 7.88 41	65 5•34 28	137 5•96 31	0.15 1	0.00	298 4.88 26	580 12.07 63	70 1.97 10	5.5 0.09 0	0.9	0.56		1283 1170	662 418
2/13/68 1106	5050 5050	30.0	11.1	59	8.0 7.7	1685	143 7.13 38	65 5•34 29	140 6.09 33	0.13 1	0.00	273 4.47 24	569 11.85 64	7 ₀ 1•97	5.5 0.09 0	1.1	0.46		1264 1134	625 401
3/14/68 0636	5050 5050	10.0	10.2	49	8.2 7.5	1722	165 8.23 41	67 5.51 27	142 6.18 31	0.13 1	0.00	326 5.34 27	603 12.55 63	69 1.94 10	6.7 0.11 0	1.0	0.40		1357 1220	688 420
4/05/68 170n	5050 5050	10.0	9.4 104	69	8.0 7.7	1861	167 8.33 39	72 5.92 28	158 6.87 32	0·15	0.00	289 4.74 22	673 14.01 66	79 2•23 11	5.8 0.09 0	0.9	0.54		1423 1305	713 476
5/03/68 152ô	5050 5050	i.0	7 • 1 85	78	8.3 7.7	2250	182 9.08 35	82 6.74 26	228 9.92 38	8 0.20 1	0.00	290 4.75 18	872 18.15 70	101 2.85 11	7.0 0.11 0	0.8	0.80		1750 1625	792 554
6/11/68 165ñ	5050 5050	2.0		78	7.9 7.6	2370	194 9.68 34	101 8.31 29	234 10.18 36	7 0.18 1	0.00	306 5.01 18	956 19.90 71	106 2.99 11	5.6 0.09 0	1.3	0.76		1895 1757	

TABLE 0-2

MINERAL ANALYSES OF SURFACE WATER

DATE TIME S	LA8 AMPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	MI CA	NERAL (CONSTITU	VENTS I	N MILL PERC	IGRAMS IEQUIVA ENT F HC03	PER ALENTS REACTANO 504	PER LI	TER TER LUE NO3	MIL F	LIGRAMS B	9E	TDS 1
			STA	TION	NUMB	ER Z31	135.00	SAN	TA CLARA	RIVER	AT LOS	ANGELES	5-VENTUR	RA CO. L	INE				
09/16/68 144n	5867 5411	3.83 0.6	••		7.9	3282	219 10•93 28	114 9•37 24	420 18•27 47	••	0.00	337 5.52 14	1358 28.27 73	171 4.82 12	0.00	0.9	1.30	••	2619 101 2450 74
			STA	TION	NUMBI	ER Z61	100.00	LOS	ANGELES	RIVER	AT PAC	FIC COA	AST HIGH	YAW					
10/04/67 1030	5239 5239		0.5	73	7.2		245 12.22 4	475 39.06 14	5350 232.72 82		0.00	216 3.54	1028 21.40 8	8116 228.87 90	1.2				16745 256 15322#238
11/01/67 1100	5239 5239		1.2	70	7.4		325 16.22 5	680 55.92 16	6400 278.40 79		0.00	213 3.49 1	1351 28.13 7	12531 353.37 92	15.5 0.25 0	••			20653 361 21408≠343
12/06/67 1130	5239 5239		3.8 40	64	7.1		37 1.85 2	150 12.33 15	1500 65.25 82	••	0.00	163 2.67 3	407 8.47 10	2724 76.82 87	39.9 0.64 1			••	4936 7; 4938≠ 5
01/03/68			4.0	57	7.4		138 6.89 10	240 19.74 28	1000 43.50 62	••	0.00	223 3.65 5	445 9.26 14	1904 53.69 80	14.2 0.23 0				3912 13: 3851 114
02/07/68 1020			2.2	63	7.3		166 8•28 8	240 19.74 19	1700 73.95 72		0.00	441 7.23 6	474 9.87 9	3469 97.82 85	13.0 0.21 0	⊕ us.			6466 140 6279≠104
03/06/68 1045	5239 5239		0.2	84	7.4		530 26.45	460 37.83		••	0.00	546 8.95	66 1.37	16001 451.23	66.3				27949 321
04/03/68 1100	5239 5239		5.1 55	66	7.2		79 3.94 12	70 5.76 18	500 21.75 69		0.00	135 2.21 6	172 3.58 10	1017 28.68 77	172.2 2.78 7				1742 48 2077≠ 3°
05/01/68 1100	5239 5239		3 · 1 34	68	7.7		304 15.17 5	600 49.34 18	4900 213.15 77	~~	0.00	287 4.70	650 13.53 4	10501 296.13 94	32.0 0.52 0				16450 322 17129#29
06/03/68 1015	5239 5239		2•5 28	70	8.0		89 4.44 22	40 3•29 16	280 12•18 61		0.00	203 3.33 17	311 6.47 33	331 9•33 48	13.0 0.21				1154 38 1164 23
07/03/68 1215	5239 5239		2.1 25	75	7.9			220 18.09	1600 69.60		0.00		39414 820.60	2778 78.34	15.0 0.24				4384
08/07/68 0950	5239 5239		2•3 27	75	7.3		206 10.28 5	313 25.74 14	3520 153.12 81		0.00	157 2.57 1	837 17.43 9	5816 164.01 89	14.0 0.22 0				11627 180 10784 167
09/04/68 1015	5239 5239		20	72	7.6		190 9.48 5	220 18.09 10	3600 156.60 85		0.00	237 3.88 2	680 14.16 8	5815 163.98 90	15.0 0.24 0				969 138 10637 118
09/19/68 100â	5050 5050	24.2	2•2	69	7.3 8.3	5602	114 5.69 10	102 8.39 14	1000 43.50 74	32 0.82 1	0.00	261 4.28 7	443 9•22 16	1570 44.27 77	1.2 0.02 0	0.8	1.60		3489 70 3393 49
			STA	TION	NUMB	ER Z61:	300.00	LOS	ANGELES	RIVFR	AT FIGU	JEROA SI	TREET						
10/04/67 1125	5091 5091		14.0 159	72	8.2		94 4.69 35	26 2•14 16	152 6.61 49		0.00	217 3.56 30	221 4.60 39	118 3.33 28	18.0 0.29 2				827 34 736≠ 16
11/01/67 1030	5091 5091		11.0	62	8.2		90 4.49 32	29 2.38 17	160 6.96 50		0.00	202 3.31 27	256 5.33 43	123 3.47 28	16.0 0.26 2				877 34 774≠ 17
12/06/67 1120	5091 5091		9•1 86	56	8.2		82 4.09 41	23 1.89 19	94 4.09 41		0.00	173 2.83 31	172 3.58 39	77 2.17 24	36.0 0.58 6				660 29 570≠ 19
01/03/68 1130	5091 5091		16.0	50	8.1		86 4.29 39	24 1.97 18	108 4.70 43		0.00	194 3.18 31	210 4.37 42	93 2.62 25	10.0 0.16 2				725 31 627≠ 15
02/07/68 1130	5091 5091		13.0 127	58	8.0		98 4.89 39	26 2.14 17	124 5.39 43		0.00	192 3.15 27	244 5.08 44	104 2.93 26	18.0 0.29 2				814 35 709≠ 19
03/06/68 1115	5091 5091		16.0	60	8.1		90 4.49 35	29 2•38 18	138 6.00 47		0.00	206 3.38 28	245 5•10 42	118 3•33 27	19.0 0.31 2				829 34 741≠ 11
04/ <u>0</u> 3/68 1130			9.4 105	70	7.6		78 3.89 45	15 1.23 14	82 3.57 41	4 4	0.00	137 2.24 28	168 3.50 43	75 2•11 26	12.0 0.19 2				575 25 498≠ 14
05/01/68 0905	5091 5091		9.1		7.6		85 4•24 33	27 2•22 17	150 6.52 50		0 • 0 0	159 2.61 22	269 5.60 47	120 3.38 28	18.0 0.29				860 37 748≠ 1 ¹
06/05/68 1115	5091 5091		11.0	65	8.2		84 4.19 33	29 2.38 19	5.96		0.00	172 2.82 25	5.04	115 3.24 28			••		835 3ï 714≠ 1ℓ

ı																					
9	DATE TIME S	LAB	GH	DO SAT	TEMP		RATORY	HI	NERAL C	ONSTITU	ENTS IN			PER LENTS I EACTANCI	PER LI	TER TER LUE	MIL	LIGRAMS	PER	LITE	R TH
						PH	EC	CA	MG	NA	к	C03	HC03	504	CL	N03	F	8	2012	SUH	
ı				ST	ATION	NUMB	ER Z613	00.00	LOS	ANGELES	RIVER	AT FIGU	EROA ST	REET							
	07/03/68 1136	5091 5091		212	76	7.8		84 4•19 31	29 2•38 18	156 6.78 51		0.00	146 2.39 19	307 6•39 52	122 3.44 28	6.9 0.11 1				865 777≉	329 209
١	08/15/68 1140	5091 5091	••	14.0 159	72	7.4		79 3.94 31	27 2.22 18	148 6.44 51		0.00	0.75 6	278 5.79 47	199 5.61 45	17.0 0.27 2				910 771	308 271
20 20	09/03/68 1145	5091 5091		16.0 174	68	7.7		82 4.09 30	31 2.55 19	160 6.96 51		0.00	177 2.90 22	292 6.08 46	139 3.92 30	14.0				930 805	332 187
	09/19/68 080â	5050 5050	0.27 7.7		67	7.3 7.7	1226	80 3.99 31	28 2•30 18	144 6•26 49	7 0•18 1	0 • 0 0	194 3 · 18 25	280 5.83 46	120 3.38 27	19.2 0.31	1.0	0.65	••	815 776	315 156
				ST	ATTON	NUMB	ER Z618	50.05	1.05	ANGEL ES	AQUEDU	CT NFAR	SAN FF	RNANDO							
	10/17/67	1200		8.4		8.2	291	21	4	30	4		••	28	12	0.5	0.4	0.48	19		69
		1200	495			8.0		1.05 38	0.33 12	1.30	0.10			0.58 63	0.34 36	0.01				120≠	
	11/14/67	1200	464	9.6		8.4	322	1.10	0.41	31 1.35	0.10	••		28 0.58	13 0.37	0.4	0.5	0.40			75
	12/19/67	1200	405	11.2 98	49	8.5	335	1.20	0.49	31 1.35	0.10			33 0.69	0.39	0.2	0.4	0.39	18		85
	01/16/68	1200	409		42	8.2	339	24 1.20 37	0.49 15	34 1.48 45	0.10 3			28 0.58 59	0.39 40	0.4 0.01 1	0.5	0.40	19	131≠	85
	02/20/68	1200	439	11.6 97	46	8.4	348	25 1.25	0.49	36 1.56	0.10		••	30 0.62	16 0•45	0.5 0.01	0.7	0.49	21		87
	03/19/68	1200	442	96	51	8.4	368	25 1.25	0.49	43 1.87	0.10			36 0.75	16 0.45	0.5	0.6	0.79	23		87
	04/22/68	1200 1200	485	9 · 8 94	57	8.2	372	25 1.25 34	7 0.57 15	41 1.78 48	0.10 3			30 0.62 56	17 0.48 43	0.3 0.00 0	0.6	0.52	23	 149≠	91
	05/21/68	1200	495	10.1		8.1	363	25 1•25 33	0.49 13	1.91 51	0.10 3			30 0•62 56	17 0.48 43	0.4 0.01 1	0.6	0.45	23	151≠	87
	06/18/68	1200 1200	 497	8•4 91	67	8.2	345	26 1.30 38	0.41 12	36 1.56 46	0.10			26 0.54 56	15 0.42 43	0.5 0.01 1	0.6	0.51	55	136≠	85
	07/16/68	1200	492	8.0 91	72	8.1 8.2	329	24 1.20 38	5 0.41 13	33 1.43 46	0.10 3			26 0 • 54 57	0.39 42	0.4 0.01 1	0.6	0.40	22	130≠	80
	08/20/68	1200	. 502	8.4 96	73	8.4	320	24 1.20	5 0.41	31 1.35	0.10			24 0.50	13 0.37	0.5	0.5	0.50	22		80
	09/17/68	1200 1200	502	8 • 2 92	71	8.3 8.4	313	23 1.15	0.49	33 1.43	0.10		••	22 0.46	14 0.39	1.1	0.6	0.45	22		82
				STA	ATION	NUMBI	ER Z697	80.00	RIO	HONDO A	BOVE SPI	READING	GROUND	S							
	10/06/67 0812	5050 5050		10.0	72	7.5 7.5	943	73 3•64 35	29 2•38 23	98 4.26 41	5 0•13 1	0.00	161 2•64 25	254 5•29 51	85 2•40 23	7.5 0.12 1	0.6	0.18		675 632	302 170
	11/08/67 082Å	5050 5050		10.0	70	7.6 7.3	1067	75 3•74 34	28 2•30 21	108 4.70 43	6 0 • 1 5 1	0.00	157 2•57 24	264 5•50 51	91 2•57 24	9.5 0.15	0.6	0.21		698 660	
1	12/15/67 103Å	5050 5050		10.0	65	7.6 7.8	952	66 3•29 36	23 1•89 21	85 3•70 41	9 0.23 2	0.00	206 3•38 37	146 3•04 33	72 2•03 22	44.0 0.71 8	1.1	0.38		602 548	
	01/10/68 1216	-5050 5050	1.36 121	9.8 93	56	7.6 7.3	1016	78 3.89 37	29 2•38 23	94 4.09 39	7 0.18 2	0.00	182 2.98 29	231 4.81 46	81 2•28 22	18.0 0.29	0.7	0.24	**	655 629	
2111	02/07/68 1145			10.2	62	7.8 7.5	1065	81 4.04 37	28 2•30 21	101 4.39 40	5 0.13	0.00	160 2.62 24	268 5.58 52	88 2.48 23	8.3 0.13	0.6	0.15		715 659	
	03/12/68 1306			10.0	61	7.9 7.5	1096	83 4.14 37	29 2•38 21	104 4.52 40	5 0•13	0.00	156 2.56 23	284 5.91 53	92 2.59 23	3.1 0.05	0.6	0.07		722 678	
100	04/03/68 1625	5050 5050	1.37 131		66	7.4 7.6	1071	81 4.04 38	27 2•22 21	98 4.26 40	0.15 1	0.00	157 2.57 24	256 5.33 50	88 2.48 23	16.3	0.6	0.15			313 185
3 9 1	05/02/68 082ñ	5050 5050	1.30	8.8		8.0 7.3	1130	85 4•24 38	25 2.05 18	109 4.74 42	_6	0.00	161 2.64 24	283 5.89 53	89 2•51 22	6.2 0.10	0.4	0.20		701 683	

DÄTE LAB TIME SAMPLEI	-	DO TEMP	P LABOR FIE PH		MI	NERAL C	ONSTITU	ENTS IN		IGRAMS IEQUIVA ENT R HCO3	PER LENTS EACTANC 504	PER LI	TER TER LUE NO3	MIL F	LIGRAMS B	SIO2	LITE TDS SUM	
		STATION	N NUMBE	R Z6978	30.00	RIO	HONDO A	BOVE SP	READING	GROUND	s							
06/17/68 5050 1216 5050		9.2 76 109	7.8 7.5	845	52 2•59 33	21 1•73 22	78 3•39 43	0.20 3	0.00	186 3.05 40	112 2•33 30	64 1 • 80 24	29.1 0.47 6	0.9	0.32		519 457	2
09/16/68 5050 0835 5050	1.45 172	8.4 75 98	8.3 8.3	1106	81 4•04 36	30 2.47 22	107 4•65 41	5 0•13 1	0.00	150 2.46 22	298 6•20 55	94 2•65 23	1.2 0.02 0	0.5	0.12		700 691	3:
		STATION	N NUMBE	R Z7116	00.90	SAN	GABRIEL	RIVER	AT WHIT	TIER NA	RROW5						B	E
10/06/67 5050 0835 5050	10.0	8.2 62 84	7.4 7.5	1015	84 4.19 38	26 2•14 19	103 4.48 40	0.28 2	0.00	232 3.80 34	161 3.35 30	108 3.04 27	54.0 0.87 8	0.6	0.56		710 663	3
11/08/67 5050 1016 5050		2.7 64 132	7.4 7.5	1151	74 3.69 32	32 2•63 23	110 4.78 41	0.49 4	0.00	234 3.83 34	165 3.43 31	119 3.35 30	36.0 0.58 5	0.8	0.52		730 672	3
17/15/67 5050 1130 5050	1 30.0	1•2 49 98	7.5 7.5	936 	71 3.54 38	25 2•05 22	78 3.39 37	8 0•20 2	0.00	215 3.52 39	133 2.77 30	79 2•23 24	37.0 0.60 6	0.9	0.30	••	607 538	2.
01/10/68 5050 1200 5050		1.5 53 105	7.3 7.5	1104	90 4.49 40	27 2•22 20	97 4.22 37	0.36 3	0.00	235 3.85 35	178 3.70 33	102 2.88 26	42.0 0.68 6	0.7	0.39	••	696 667	3
02/07/68 5050 1205 5050	11.5	8.3 64 86	7.2 7.7	1070	88 4•39 40	27 2•22 20	94 4•09 37	10 0.25 2	0.00	232 3.80 35	171 3.56 33	98 2.76 25	47.0 0.76 7	0.6	0.30		703 650	
04/03/68 5050 1716 5050	10.5	7.3 72 83	7.5 7.7	953 	83 4 • 1 4 4 4	22 1•81 19	74 3•22 34	8 0.20 2	0.00	194 3.18 34	153 3.18 34	83 2•34 25	39.9 0.64 7	0.6	0.27		582 560	2
07/26/68 5050 103ñ 5050	93.0	7.6 76 90	7.9 8.2	738 	64 3.19 41	22 1•81 23	59 2•57 33	5 0•13 2	0.00	196 3.21 41	139 2.89 37	55 1•55 20	5.3 0.08	0.6	0.16		502 447	2
08/15/68 5050 1036 5050	120	8•1 70 90	7.6 8.1	870 	70 3.49 37	27 2•22 24	82 3.57 38	5 0•13 1	0.00	188 3.08 33	189 3.93 43	74 2•09 23	7.0 0.11	0.6	0.16		607 548	2
09/16/68 5050 1015 5050		9.4 72 107	7.5 8.2	1005	75 3.74 36	30 2•47 24	90 3.91 38	7 0.18 2	0.00	168 2.75 26	243 5.06 49	88 2.48 24	7.0 0.11	0.6	0.14		670 624	3
		STATION	I NIIMQE	9 77102	7 10	SAN	GABRIEL	PIVED	AT AZUC	A DOWED	HOUSE							
10/06/67 5050		7.6 70	7.9	320	35	18	9	_4	0	185	22	6	2.0	0.4	0.04		210	1
0650 5050	80.0	85	7.5		1.75	1.48	0.39	0.10	0.00	3.03 82	0.46 12	0.17	0.03				188	ı
11/08/67 5050 1100 5050		1.1 60	8.0 7.5	362 	45 2.24 56	15 1.23 31	0.43 11	0.08 2	0.00	205 3.36 86	18 0.37 10	0.14 4	0.5	0.4	0.06		210 198	1
12/15/67 5050 1330 5050	100	1.9 50 105	7.9 7.5	342	40 1•99 56	13 1•07 30	10 0•43 12	0.08 2	0.00	183 3.00 82	24 0 • 50 14	0 • 11 3	2.3 0.04 1	0.5	0.07		223 187	1
01/08/68 5050 1300 5050		2.0 46 100	7.9 7.5	358 	2.19 56	14 1.15 30	10 0.43 11	0.10	0.00	194 3.18 83	0.50 13	0.11	2.0 0.03 1	0.4	0.07		210 198	1
02/07/68 5050 1445 5050	80.0	2•1 50 107	8.2 7.7	367	48 2•39 62	12 0•99 25	9 0.39 10	0·10 3	0.00	193 3•16 82	24 0.50 13	5 0 • 1 4 4	2.3 0.04 1	0.4	0.03		200	ì
03/12/68 5050 1515 5050		1.1 54	8.1 7.5	345	45 2.24 63	0.90 25	0.35 10	0.08	0.00	180 2.95 83	0.46 13	0.11	2.3 0.04 1	0.4	0.00		203 185	1
05/02/68 5050 1315 5050		0.6 60 105	8.4 7.5	356 	2.04 61	10 0.82 25	9 0.39 12	0.08 2	0.13 4	163 2.67 90		5 0 • 14 5	1.6 0.02 1	0.3	0.00	-	176 154≠	1
07/26/68 5050 1230 5050	70.0	76 	8.3 8.3	333	41 2.04 58	13 1.07 30	0.35 10	0.05	13 0.43 12	148 2.42 67	25 0.52 14	8 0.22 6	1.5 0.02 1	7.5	0.07		153 185	1
08/15/68 5050 1200 5050	70.0	8.2 75 96	8.1 8.3	341	42 2.09 57	13 1.07 29	10 0.43 12	0.08 2	0.00	183 3.00 80	24 0.50 13	8 0.22 6	0.0	0.4	0.04	••	146 191	1
09/16/68 5050 1205 5050	70.0	8.1 73 93	8.1 8.3	341	41 2.04 56	13 1.07 29	9 0.39 11	0.13 3	0.00	181 2.97 79	27 0.56 15	8 0.22 6	0.0	0.4	0.04		197 193	1
		STATION	NUMBE	R Z7510	0.00	RIO	HONDO AT	T WHIŤT:	ER NARF	Row5								V
10/06/67 5050 080â 5050		8.0 74 93	7.6 7.5	960	75 3•74 36	29 2•38 23	98 4.26 40	0.13 1	0.00	151 2.47 24	268 5.58 53	85 2.40 23	3.0 0.05 0	0.5	0.14		695 638	3

DATE TIME S	LAB AMPLER	GH Q	DO SAT	TEMP	-	RATORY	MI	NERAL C	ONSTITUE	ENTS IN	MILL		PER LENTS EACTANC	PER LI	TER TER LUE	HIL	LIGRAMS	PER	LITE	R TH
1					PH	EC	CA	MG	NA	К		HC03	504	CL	N03	F	8	\$102		NCH
1/08/67	5050	2.22	5T/			ER Z751	00.00 79	RIO 30	HONDO AT	T ₩HŤTT 5	IER NAR	ROWS 156	286	91	1.3	0.5	0.13		744	321
0855	5050		115	'0	7.6	1003	3.94	2.47	4.52 41	0.13 1	0.00	2.56	5.95 54	2.57	0.02	0.5	0.13			193
2/15/67 0945	5050 5050	1.26	5.7 58	62	7.4 7.3	918	93 4.64 48	29 2•38 25	58 2•52 26	0.10	0.00	275 4•51 46	183 3.81 39	46 1•30 13	9.3 0.15	0.8	0.15			352 126
1/10/68 115ñ		2.05 88.9	10·1 95	55	7.8 7.7	1079	78 3.89 35	34 2.80 25	100 4•35° 39	0 • 1 3 1	0.00	166 2•72 25	279 5.81 52	89 2•51 23	2.3 0.04 0	0.6	0.15			335 198
2/07/68 1115			10.2	59	8.0 7.7	1094	82 4.09 36	31 2.55 23	102 4.44 40	0.13 1	0.00	154 2.52 22	289 6.02 54	93 2.62 23	2.3 0.04 0	0.5	0.09			332 206
3/12/68 1245	5050 5050	2.97 200	10.0	60	8.0 7.5	1100	84 4.19 37	29 2.38 21	104 4.52 40	0.13 1	0.00	154 2.52 22	290 6.04 54	93 2•62 23	2.3 0.04 0	0.6	0.07			329 203
4/03/68 164n		2.13 126	9.7 99	62	8.0 7.6	1096	84 4.19 38	30 2.47 22	99 4•31 39	5 0.13 1	0.00	154 2•52 23	286 5.95 54	90 2•54 23	2.3 0.04 0	0.6	0.14		729 673	333 207
5/02/68 0805	5050 5050	2.08 124	8.6	64	8.3 7.5	1150	86 4.29 38	31 2.55 22	100 4.35 38	0.13 1	0.00	155 2.54 22	298 6.20 54	92 2•59 23	2.4 0.04 0	0.3	0.10		717 691	342 215
5/21/68	1101 1101		8.7 93	66	8.2	1100	85 4.24 36	29 2•38 20	115 5.00 42	0.15 1	0.00	154 2.52 21	303 6.31 52	115 3.24 27	1.7 0.03 0					332 205
6/17/68 1200	5050 5050	- mar	11.0	74*	7.7 7.5	729 	75 3.74 49	22 1.81 23	47 2.04 27	0.10	0.00	239 3.92 52	128 2.66 35	33 0.93 12	4.5 0.07	0.7	0.11		478 432	278 82
6/19/68 0630	1101 1101		4.4	63	8.0	638	61 3.04 46	17 1.40 21	49 2.13 32	0.10	0.00	244 4.00 55	99 2.06 28	36 1.01 14	10.0	••		•-	510 396≠	555
7/17/68 0630	1101 1101		1.6	68	7.8	939	79 3.94 39	20 1.64 16	100 4.35 43	7 0.18 2	0.00	248 4.06 40	191 3.98 39	76 2.14 21	4.3 0.07				788 600	280 76
7/26/68 100ñ	5050 5050	1.18	13.6	78	8.0 8.2	878	78 3.89 41	28 2•30 24	74 3.22 34	5 0.13	0.00	263 4.31 45	155 3•23 34	65 1 • 83 19	6.2 0.10	1.0	0.26		614 542	310 94
3/16/68 0615	1101 1101		0.8	68	8.1	876	73 3.64 38	18 1.48 16	96 4.17	6 0.15 2	0.00	233 3.82 41	168 3•50 37	69 1•94 21	7.9 0.13	***			671 5 53	25 6 65
3/16/68 0900	5050 5050	1.00	6.0 65	68	7.5 7.9	846	83 4.14 44	24 1.97 21	71 3•09 33	0.10	0.00	261 4•28 47	157 3•27 36	54 1 • 52 17	4.0 0.06	0.9	0.17		578 527	306 92
7/16/68 091ñ	5050 5050	2°.79 545	7.8 92	76	8.2	1086	80 3.99 35	31 2•55 22	107 4.65 41	5 0•13 1	0.00	144 2•36 21	305 6•35 56	95 2•68 23	1.3	0.5	0.16			327 209
			STA	TION	NUMBE	R Z761	50.00	MISS	ION CREE	K AT W	HITTIER	NARROW!	5							
1/06/67 0745	5050 5050	6.75 15.0	7.2 75	64	7.9 7.3	876	128 6•39 62	31 2•55 25	29 1•26 12	5 0.13 1	0.00	276 4.52 44	209 4•35 42	42 1•18 11	15.0 0.24 2	0 • 4	0.08		66 5 596	447 221
/08/67 094ñ	5050 5050		10.0	64	8.1 7.4	909	128 6•39 63	32 2•63 26	24 1•04 10	0.ñ8 1	0.00	300 4.92 48	210 4.37 43	28 0•79 8	8.8 0.14 1	0.6	0.10		661 582	
?/15/67 110ñ	5050 5050	6.72	7.2 78	68	7.5 7.4	854	101 5•04 54	38 3•12 34	24 1.04 11	3 0.ñ8 1	0.00	258 4.23 45	202 4.20 45	26 0•73 8	9.0 0.14 2	0.6	0.12		618 531	0000
1/10/68 1135		6.75	9.3 90	58	7.5 7.2	869	120 5.99 61	33 2•71 28	22 0.96 10	0.10	0.00	283 4.64 48	199 4.14 43	25 0 • 70 7	11.3	0.5	0.10		594 554	
1/07/68 1055	5050 5050	6.80 7.3	6.5	60	7.9 7.3	887	126 6•29 63	31 2.55 26	23 1 10	0.08 1	0.00	281 4.60 47	196 4.08 42	29 0.82 8	13.0 0.21 2	0.5	0.08		615 560	442 212
VĪ2/68 1225	5050 5050	6.93	6.0	61	7.7 7.1	798	112 5.59 65	25 2•05 24	20 0.87 10	0.10 1	0.00	251 4•11 48	170 3.54 41	27 0.76 9	11.6	0.5	0.06		551 494	
/03/68 1655	5050 5050	6.83 8.3	7.1 76	66	7.8 7.2	841	92 4.59 58	28 2•30 29	22 0.96 12	0.10 1	0.00	187 3.06 40	178 3.70 48	28 0.79 10	11.5	0.5	0.11	••	607 457	
/02/68 083ñ	5050 5050	6.59 5.0	8.8 93	65	8.1 7.3	860	119 5.94 65	25 2.05 22	25 1.09 12	3 0.ñ8 1	0.00	263 4.31 47	186 3.87 42	29 0.82 9		0.3	0.10		526 527	

DATE LAB TIME SAMPLER	GH Q	DO SAT	TEMP	LABORA	.D			ONSTITU		MILL		EACTANC	PER LI'			LIGRAMS		LITE	
				РН	EC	CA	MG	NA	K	C03	нсоз	504	CL	N03	F	В	2105	SUM	N
		51/	ATION	NUMBER	2761	50.00	MISS	ION CRE	EK AT W	HITTIER		S						_	
06/17/68 5050 1226 5050	2.6	9.4	70	7.5 7.3	821	110 5•49 62	2.30 2.30	1 • 04 12	0 • ô 5 1	0.00	271 4.44 50	172 3.58 40	27 0.76 8	9.9 0.16 2	0.9	0.09	••	592 508	
07/26/68 5050 1100 5050	6.08	8•2 91	70	8.1	762 	99 4•94 59	29 2•38 28	23 1 12	0 • n̂ 5	0.00	235 3.85 45	173 3.60 42	35 0.99 12	4.5 0.07 1	0.5	0.10	••	494 482	36
08/15/68 5050 0945 5050	6.02 1.6	7•1 76	66	7.8 7.9	731	101 5.04 61	26 2•14 26	23 1 12	0 • n̂ 5	0.00	252 4•13 49	159 3•31 39	31 0.87 10	6.0 0.10 1	0.5	0.10	••	482 473	3!
09/16/68 5050 0955 5050	6.10 2.1	6.9 74	67	7.6 7.9	776	107 5.34 61	29 2•38 27	22 0.96 11	0.10	0.00	279 4.57 51	163 3.39 38	29 0.82 9	8.0 0.13 1	0.5	0.09		534 500	
		STA	ATION	NUMBER	R V916	20.00	MOJA	VE RIVE	R NEAR	VICTORV	ILLE								
10/05/67 5050		. 4	58	7.8	519	40	13	56	5	0	224	44	32	6.5	0.6	0.08	••	365	1!
0700 5050	20.0					1.99 35	1.07	2.43	0.13	0.00	3.67 66	0.92	0.90 16	0.10				308	
11/09/67 5050 1400 5050	27.0	100	66	7.9	493	40 1.99 38	10 0.82 16	52 2.26 43	0.13 2	0.00	217 3.56 68	36 0.75 14	0.82 16	4.0 0.06 1	0.6	0.08		310 284	1
17/13/67 5050 0945 5050	1.83 42.0	11.2 86	40	7.5 7.8	478	39 1.95 40	0.82 17	44 1.91 40	0.13 3	0.00	205 3.36 69	38 0.79 16	24 0.68 14	4.5 0.07 1	0.5	0.12	••	287 266	1:
01/12/68 5050 1240 5050	38.0	10.6	53	8.1	437	41 2.04 42	9 0.74 15	45 1.96 40	0.13 3	0.00	199 3.26 69	38 0.79 17	22 0.62 13	4.5 0.07	0.5	0.07	-	275 263	1:
02/09/68 5050 0855 5050	50.0	11.3	53	7.9	451 	40 1.99 44	9 0•74 16	40 1.74 38	0.10	0.00	189 3.10 69	35 0.73 16	20 0.56 13	5.5 0.09 2	0.5	0.05		276 247	1
03/13/68 5050 1045 5050	1.90 34.0	8.6	54	7.9	475	42 2•09 43	10 0.82 17	42 1.83 38	0.10 2	0.00	201 3•29 69	36 0.75 16	24 0 • 68 14	4.8 0.08 2	0.5	0.06	•	298 263	1.
04/02/68 5050 1245 5050	1.90 28.0	10.6	67	8.2	506	42 2.09 40	11 0.90 17	48 2.09 40	5 0.13 2	0.00	211 3.46 69	38 0.79 16	25 0.70~	3.0 0.05	0.6	0.11		317 277	1
05/01/68 5050 0830 5050	1.85		62	8.2	517	44 2.19 43	11 0.90 18	44 1.91 37	5 0.13 2	0.00	205 3.36 66	40 0.83 16	28 0.79 16	5.0 0.08 2	0.4	5.16		293 279	1
06/13/68 5050 1230 5050	19.0	5.6 71	83	7.1	504	42 2.09 41	10 0.82 16	48 2.09 41	5 0.13 2	0.00	200 3.28 66	0.92 18	26 0.73 15	3.7 0.06	0.6	0.11		323 278	1
07/24/68 5050 0900 5050	1.75 11.0	9•3 112	78	8.1 8.0	543	45 2•24 40	10 0 • 82 14	56 2•43 43	0·15 3	0.00	221 3.62 65	49 1.02 18	32 0.90 16	2.0 0.03	0.7	0.15		345 310	1
		STA	NOIF	NUMBER	V921	50.30	ALOM	VE RIVE	R AT TH	F FORKS									ľ
10/05/67 5050		11.2		7.2	154	12	5	12	2	0	73	5	9	1.5	0.3	0.04		115	
0745 5050 11/09/67 5050			60		254	0.60	0.41 26	0.52 33	0.05	0.00	1.20 76	0.10	0.25 16	0.02				83	
1445 5050	5 E	8.7 86	60	8.1	250 	0.95 37	0.41 16	27 1.17 45	0.n5 2	0.00	112 1.83 73	0.48 19	7 0.20 8	0.0	1.5	0.06	-	160	ľ
12/13/67 5050 1230 5050	20 E	92	37	7.8 7.9	236	1.10 46	0.49 21	17 0.74 31	0.ñ5 2	0.00	112 1.83 76	15 0.31 13	9 0.25 10	0.5 0.01 0	0.6	0.04		148 128	
01/12/68 5050 1345 5050	30 E	12.3	46	7.7	180	17 0.85 45	0.33 17	16 0.69 37	0.02	0.00	88 1.44 76	12 0.25 13	7 0.20 10	0.5 0.01 0	0.7	0.01		114	-
03/12/68 5050 1115 5050	 я Е	9.4 91	57	7.9	188	19 0.95 50	0.33 17	13 0.56 30	2 0.05 3	0.00	88 1.44 77	9 0.19 10	8 0.22 12	1.2 0.02 1	0.4	0.00	••	136 100	
04/02/68 5050 1100 5050	40 E	14.9 137	53	7.8	158	13 0.65 42	0.33 22	0.52 34	0.02	0.00	76 1.24 82	0.10 7	6 0.17 11	0.00	0.5	0.00		118 79	3
07/24/68 5050 1015 5050		13.0 165	83	8.9 8.4	327	22 1.10 35	0.33 10	38 1.65 52	3 0.08 2	0.20	88 1.44 47	56 1.16 38	10 0.28 9	0.0	2.4	0.09		212 185	2
		ST	AT ION	NUMBER	R V922	00.00	MOJA	VE RIVE	R WEST	FORK BE	LOW CED	AR SPRI	NGS						
04/03/68 5050 153n 5064	5.02 50.0	9.8 101			231	23 1.15 51	6 0.49 22	13	2	0.00	103 1.69 73	15 0.31 14	8 0.22 10	4.3 0.07 3	0.2	0.03		143 123	
									-		. 3		10	,					1

											MTLL	TODANS	neo.		T.O.					
	LAB	GH O	DO SAT	TEMP	LABORA FIEL		MI	NERAL C	ONSTITUE	ENTS IN	MILL		PER LENTS I EACTANCE	PER LI	TER TER LUE	MIL	LIGRAMS	PER		R
					РН	EC	CA	MG	NA	K	C03	HC03	504	CL	N03	F	В	2015	SUM	NCH
05/03/68	5050	4.76	8.6		NUMBER	280	28	MOJA'					AR SPRIM		0 E	0.3	0.05		.74	147
-150ñ			103	**	7.3	200	1.40	0.74	16 0.69 24	0 • n 5 2	0.00	134 2.20 79	13 0.27 10	0+31 11	0.5 0.01 0	0+2	0.05		174	107
06/10/68 1400	5050 5064		9.9 117	76	7.6 7.0	327	34 1.70 52	9 0.74 23	18 0.78 24	0.05 2	0.00	161 2.64 83	12 0.25 8	10 0.28 9	0.0	0.2	0.05	••	197 165	122
09/11/68 0830	5050 5064	4.50 1 E		58	8.2 7.1	354	40 1.99 53	10 0•82 22	20 0.87 23	0.08 2	0.00	193 3•16 87	9 0•19 5	10 0•28 8	0.6 0.01 0	0+3	0.03		223 188	141
			STA	TION	NUMBER	V9225	50.00	ALOM	E RIVER	REAST	FORK OF	THE WE	ST FORK							
10/06/67 0900	5050 5064	2.75	10.7	52	7.9 8.3	241	24 1.20 50	6 0•49 21	15 0.65 27	2 0•65 2	0.00	106 1.74 71	9 0•19 8	17 0.48 19	3.0 0.05 2	0.2	0.05		164 129	85 0
11/09/67 1030	5050 5064	2.53 3.0	10.0	52	7.3 8.3	251	24 1.20 48	6 0•49 20	17 0.74 30	2 0.05 2	0.00	112 1.83 76	8 0.17 7	14 0.39 16	1.0	0.2	0.06		152 128	85 0
01/10/68 093ô	5050 5064		11.8	41	7.6 7.2	202	15 0.75 36	8 0.66 32	14 0.61 29	2 0.05 2	0.00	81 1.33 63	13 0.27 13	12 0.34 16	9.5 0.15 7	0.2	0.05		113 114	7 ₀
03/04/68 1330	5050 5064	3.08	10.0	57	7.9 7.2	202	19 0.95 51	4 0.33 18	13 0.56 30	0.02	0.00	81 1.33 68	11 0.23	10 0.28	6.3 0.10 5	0.2	0.05	••	134 105	64
05/03/68 1245	5050 5064	2.77	9.0 95	65	7.9 7.0	209	18 0.90 44	6 0.49 24	14 0.61 30	2 0.ñ5	0.00	88 1.44 73	7 0.14 7	12 0.34 17	2.8 0.04 2	0.2	0.07	••	111 106	70 0
06/10/68 1215	5050 5064	2.67	8.9	64	7.7 7.0	228	20 1.00 47	6 0.49 23	15 0.65 30	0.n2 1	0.00	90 1.47 70	10 0.21 10	13 0.37 17	4.0 0.06 3	0.2	0.03	••	143 114	75 1
			STA	TION	NUMBER	V9230	0.00	MO.JAV	F RIVER	WEST	FORK AR	OVE CED	AR SPRIN	ıcs						
10/06/67			10.2		8.2	445	52	17	15	4	0	214	47	13	0.0	0 • 4	0.02		339	200
0935 11/09/67	5064	1.50	98	58	7.9	443	2.59 55 55	1 • 4 0 29 15	0 • 65 14	0.10	0.00	3.51 72 210	0•98 20 47	0 • 37 7 8	0.00	0.2	0.00		254	24 199
1130	5064	5.0	106		8.5	••	2.74 58	26	0.65 14	0.10	0.00	3.44 74	0.98	0.22 5	0.00				248	27
01/11/68 1030	5050 5064	1.72	11•7 92	42	8.0 7.8	352	40 1.99 53	14 1•15 31	12 0.52 14	0.08	0.00	161 2.64 70	41 0.85 23	7 0•20 5	5.3 0.08 2	0.2	0.00		202 209	157 25
04/03/68 143ñ	5050 5064	1.71	9.4	59	8.2 7.3	319.	38 1.90 58	10 0•82 25	11 0.48 15	0.08 2	0.00	146 2+39 73	31 0•64 20	7 0•20 6	3.8 0.06 2	0.2	0.00		206 176	136 16
05/03/68 1400	5050 5064	1.87 15.0	8.4 92	68	8.3 7.2	361	43 2.14 56	13 1.07 28	12 0.52 14	0.n8 2	0.00	168 2.75 74	36 0.75 20	7 0.20 5	0.0	0.2	0.03		206 197	161 23
06/10/68 1300	5050 5064	1.67 5.0	93	69	7.9 7.1	397	47 2•34 57	14 1-15 28	13 0.56 14	0.08 2	0.00	183 3.00 74	40 0.83 20	8 0.22 6	0.0	0.2	0.00		233 216	175 25
09/11/68 0900	5050 5064	1.50 1 E	0.6	65	8.0 7.3	537	72 3.59 60	17 1.40 23	21 0.91 15	0.10	0.00	298 4.88 83	35 0.73 12	9 0•25 4	0.0	0.3	0.00		330 305	250 5
10:-			STA	TION	NUMBER	W2153	0.00	COLOR	ADO RIV	ER NEA	R TOPOCH	<								
07/17/68 083ô		18300	7.8 82	65	8.0	1088	85 4 • 24 37	30 2•47 21	107 4.65 40	0 • 13 1	0.00	153 2•51 22	293 6•10 54	97 2•73 24	2.6 0.04 0	0.5	0.14	••	775 696	336 210
09/11/68 1035		4.20 12000	7•3 79	67	8.0	1092	84 4•19 37	30 2•47 22	107 4•65 41	5 0•13 1	0.00	154 2.52 22	301 6.27 54	95 2•68 23	2.5 0.04 0	0.5	0.15		695 701	333 207
!			STA	TION	NUMBER	W2177	5.10	COLOR	ADO RIV	ER BEL	OW PARKE	ER DAM								
07/16/68 162â		22.34 18500		77		1099	83 4.14 36	31 2.55 22	109 4.74 41	5 0.13 1	0.00	151 2.47 22	302 6.29 55	95 2.68 23	1.8 0.03	0.5	0.10	••	790 702	335 211
09/11/68 063n	5050 5050	19.13 4790	6.7 80	77	8.0 8.1	1092	82 4.09 36	30 2.47 22	108 4.70 41	5 0.13	0.00	149 2.44 21	300 6.25 55	97 2.73 24	1.5	0.5	0.14	••	700 698	328 206

DATE LAB TIME SAMPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	MI CA	NERAL O	ONSTITU AN	ENTS IN			PER LENTS REACTANC 504	PER LI	TER TER LUE NO3	MIL F	LIGRAM 8	S PER	LITE TDS SUM	
		ST	ATION		ER W219									KE (LAKE			0.02	3 0 H	
10/08/67 4412				8.1	955	79	30	102	5	0	140	295	87	1.0	0.4		10	679	3;
4412						3.94 36	2.47	4.44	0.13 1	0.00	2.29	6.14	2.45	0.02	V. 4		10		2
11/08/67 4412 1130 4412			68	8.2	1140	82 4.09 37	29 2.38 21	104 4.52 41	0.10	0.00	143 2.34 21	295 6.14 56	90 2.54 23	0.6	0.4	••	9	686 685	3 2
12/06/67 4412 4412			61	8.1	1083	81 4.04 37	30 2.47 22	100 4.35 40	0.13 1	0.00	144 2.36 21	293 6.10 55	90 2.54 23	0.9	0.4	••	9	682 681	3
01/08/68 4412 4412			52	8.2	1090	83 4.14 37	31 2. 5 5 23	97 4.22 38	0.13 1	0.03	146 2.39 22	292 6.08 55	88 2.48 22	1.0 0.02 0	0.5	••	10	681 681	3
02/07/68 4412 4412			53	8.4	1090	83 4.14	30 2.47	100 4.35	0.10	0.00	149 2.44	288	90 2.54	1.4	0.4	••	9	680 680	3
03/06/68 4412			6 <u>1</u>	8.3	1080	37 83 4.14	30 2•47	98 4.26	0.10	0.00	149 2.44	288 6.00	88 2.48	0 1.3 0.02	0.3		9	676 675	3
04/08/68 4412			66	8.4	1090	38 85 4.24	30 2.47	103 4.48	1 5 0.13	0 2 0.07	146 2.39	55 295 6.14	23 91 2.57	0 1.4 0.02	0.4		8	694 693	3 2
05/08/68 4412			71	8.5	1082	37 76 3.79	30 2.47	106 4.61	1 5 0.13	1	21 117 1.92	55 302	23 93 2.62	0.8	0.4		3	678 678	3
06/09/68 4412			70	8.5	1120	34 85	22 31	42 105	5	0.13	17 145	6.29 57 300	24 96	0.01	0.4		8	708	3
4412 07/08/68 4412			8 <u>1</u>	8.4	1100	4.24 37 80	2.55 22 32	4.57 40 105	0.13	0.13 1	2.38 21 137	6.25 54 301	2.71 24	0.02	0.4			707 695	2
4412			•			3.99 35	2.63	4.57 40	0.13	0.03	2.24	6.27 56	2.65	0.02	004		J	695	2
07/09/68 5056 5056				8.3	1120	3.99 35	31 2•55 22	108 4.70 41	0.13 1	0.00	142 2•33 21	303 6•31 56	95 2•68 24					755 692	2 2
07/23/68 5056 5056				7.7	1100	79 3•94 35	31 2.55 22	108 4.70 41	0.13 1	0.00	138 2•26 20	303 6•31 56	96. 2.71 24					753 690	A1 453
08/06/68 5056 5056				7.7	1110	79 3•94 35	31 2•55 22	108 4.70 41	0.13 1	0.00	138 2•26 20	304 6•33 56	95 2•68 24					765 690	P. 1.1
08/07/68 4412 1420 4412			81	8.4	1100	78 3.89 34	31 2.55 22	-4.83 42	0.13 1	0.07 1	126 2.06 18	306 6.37 57	96 2.71 24	0.8 0.01 0	0.4		8	701 701	P.1 F.3
09/03/68 5056 5056				7.8	1120	80 3•99 35	31 2•55 22	107 4•65 41	5 0•13	0.00	141 2•31 20	308 6•41 56	95 2•68 23			••		742 696	A. 6.5
09/08/68 4412 4412			82	8.5	1108	76 3.79 34	32 2•63 24	105 4.57 41	0.13 1	2 0.07 1	121 1.98 18	308 6.41 58	94 2•65 24	0.9 0.01	0.5	••	9	692 692	A1 fc1
09/17/68 5056 5056				7.7	1120	82 4•09 36	31 2•55 22	107 4.65 41	5 0•13		146 2•39 21	307 6•39 56	95 2•68 23					744 699	A3.12
		STA	TION	NIIMO	ER W2198			RADO RI		Calle V III				N. C.					ı
10/00/67 4412		317																	N
4412			74	8.4	1130	80 3.99 36	30 2.47 22	105 4.57 41	0.13 1	0.03	137 2.24 20	298 6•20 56	93 2.62 24	0.7 0.01 0	0.4		9	691 690	20
11/00/67 4412			68	8.3	1080	80 3.99 36	31 2.55 23	100 4.35 40	0.10	0.03 0	133 2.18 20	294 6.12 56	91 2.57 23	0.7 0.01 0	0.4		9	677 677	27 27
12/00/67 4412			60	8.2	1090	81 4.04 36	31 2.55 23	104 4.52 40	5 0.13 1	0.03 0	144 2.36 21	298 6.20 55	92 2.59 23	0.4	0.4	0.11	9	693 693	20
01/00/68 4412 4412			56	8.3	1095	82 4.09 36	31 2.55 23	102 4.44 40	0.13 1	0.03	145 2.38 21	300 6.25 56	90 2.54 23	0.2	0.4		10	693 693	;; ;;
02/00/68 4412			56	8.3	1100	84 4.19 37	30 2.47 22	103 4.48 40	0.10 1	0.03	146 2.39 21	298 6.20 55	92 2.59 23	0.8	0.4		9	695 694	3.5
03/00/68 4412 4412			58	8.3	1100	84 4.19 37	30	102	5 0.13 1	0.03	146	296 6•16 55	93 2.62 23	0.9	0.4		9	695 694	3 2
									_				_						

DATE TIME SA	LAB MPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	MI CA	NERAL (ONSTITU NA	ENTS IN			PEF LENTS REACTANO 504	PER LI	TER TER LUE NO3	MIL. F	LIGRAMS	PE:	TOS	TH
			ST	ATION	MIMO	ER W219	95.05	COLO	DANO DI	VER FOLK	EDUCT III	0 050 56	EDED A	T LA VERI	NE.					
4/00/68	4412 4412			62	8.4	1080	84 4.19 37	30 2•47 22	104 4.52 40	0.10	2 0 • 0 7	145 2.38 21	295 6•14 55	94 2.65 24	1.0	0 • 4		9	696 695	333 211
5/00/68	4412 4412			65	8.5	1110	84 4.19 37	31 2.55 22	105 4.57 40	5 0.13	0.13	143 2.34 21	298 6.20 54	95 2.68 23	1.1	0 • 4		8	703 702	337 213
6/00/68	4412 4412	••		70	8.5	1100	83 4.14 36	31 2.55 22	104 4.52 40	5 0.13	0.07 1	142 2.33 21	298 6.20 55	96 2.71 24	0.7 0.01 0	0.4	0.11	8	699 698	335 215
7/00/68	4412 4412			73	8.3	1105	84 4.19 36	31 2.55 22	107 4.65 40	0.13 1	0.03	143 2.34 21	301 6.27 55	97 2.73 24	1.1	0 • 4		8	706 706	337 218
8/00/68	4412 4412		••	76	8.4	1100	80 3.99 35	32 2.63 23	103 4.48 40	0.13 1	0.03	135 2•21 20	298 6.20 56	95 2.68 24	0.8 0.01 0	0 • 4		7	690 689	331 219
9/00/68	4412			74	8.3	1110	81 4•04 35	32 2.63 23	105 4.57 40	0.13 1	0.03 0	138 2.26 20	307 6.39 56	96 2.71 24	0.5 0.01 0	0.4		9	705 705	334 219
			STA	ATION	NUMB	ER W310	70.00	WHIT	TEWATER	RIVER N	EAR MEC	CA								
1/03/67 0945	5050 5050	120 E	10.1 111	69	8.1	3175	157 7.83 23	43 3.54 10	525 22.84 66	0.31 1	0.00	332 5.44 16	832 17.32 50	405 11•42 33	30.0 0.48 1	3.2	0.94		2230 2172	
1/22/68 1426	5050 5050	70 E	8 .9 98	69-	7.9 8.3	3102	158 7.88 22	42 3•45 10	538 23•40 67	0.28 1	0 0 • 0 0 0	322 5•28 15	829 17.26 50	419 11•81 34	24.8 0.40 1	2.8	0.82		2274 2184	
3/04/68 1105	5050 5050	90 E	9.3 104	70	7.5	3336	167 8•33 24	44 3•62 10	532 23•14 65	0.28 1	0 • 0 0 0	327 5.36 15	841 17•51 50	401 11•31 33	31.0 0.50 1	3.0	0.86		2289 2192	598 330
5/06/68 1305	5050 5050	85 E	_	76	8.3	3440	168 8•38 25	46 3•78 11	494 21•49 63	12 0•31 1	0.00	328 5•37 16	850 17•70 51	10.88	28.0 0.45 1	3.2	0.90		2260 2150	609 340
9/09/68 1415	5050 5050	70 E	6•7 75	70	7.9 8.3	3120	168 8•38 25	43 3•54 11	480 20.88 63	14 0.36 1	0 0.00 0	312 5•11 15	805 16.76 51	372 10•49 32	35.7 0.57 2	3.1	0.90		21 4 2 2076	
			STA	ATION	NUMB	ER W314	50.00	WHIT	TEWATER	RIVER N	EAR WHI	TEWATER	₹							
1/03/67 1120	5050 5050	35.0	10.0	68	8.4	377 	2•44 60	12 0•99 24	13 0•56 14	0.10 2	19 0•63 16	161 2•64 65	31 0.64 16		1.5 0.02 1	1.0	0.02		225 214	172 8
1/22/68 1120		1.20 .5.4	9.0 89	60	8.2	364	48 2•39 57	13 1•07 26	14 0•61 15	0.10	0.00	200 3•28 79	34 0 • 71 17	0 • 11 3	1 • 8 0 • 0 3 1	0.9	0.00		219 218	173 9
3/04/68 0910	5050 5050	1.30	9.0	59	8.3	384	48 2•39 60	12 0•99 25	12 0•52 13	0 • 1 0 2	0 • 0 0	193 3•16 80	32 0•67 17	0 • 1 1 3	1.6 0.02 1	0.9	0.00		234 210	169 11
1150	5050 5050	3.8	8.3 90	68	8.3 7.8	394	2•19 55	13 1•07 27	14 0•61 15	0.13 3	0.00	182 2•98 77	34 0 • 71 18	0 • 17 4	1.2 0.02 0	1 • 1	0.00		191 208	163 14
19/09/68 1545	5050 5050	1.28	7.2 89	80	8.4	378 	48 2•39 57	13 1•07 25	14 0•61 14	0·13 3	0.00	196 3•21 78	37 0•77 19	0 • 1 1 3	1.7 0.03 1	1.0	0.00		219 221	173 13
			ST	ATION	NUMB	ER W516	00.70	SALT	TON SEA	AT SALT	ON SEA	STATE F	PARK							
1/03/67 0910	5050 5050	32.50	9.3 106	72	7.6	42280	850 42.41 7		10500 456.75 77	170 4.35 1	0.00	212 3.47 1		15000 423.00 72	4.0 0.06 0	3.2	9.20		36650 35577	
17/22/68 1535	5050 5050	32.14			7.0 8.5	40816	834 41.62 7	1020 83.88 15	9900 430•65 77	162 4-14 1	0 0 • 0 0	228 3.74 1	7583 157.88 28	14241 401-60 71	5.3 0.08 0	3.8	8.00		35286 3387 ₀	
	5050		9.8		8.1	41186	813 40.57 7	15	9700 421.95 77	156 3.99 1	0.00	0	7397 154.00 28	393.05	4.8 0.08 0	3.2	7.60		34463 33105	5975
	5050		77		7.7	47200	912 45.51 8	83.06 14	10400 452.40 77	190 4.86 1	0.00	0	166.77	71	1.5 0.02 0	2.3	7.30.		37700 35209	6308
1315	5050 5050	32.31	5.1	94	7.9 8.3	41152		87.91	10450 454.57 77	180 4.60 1	0.00		7947 165.46 28		0.0	3•4	9.40		37270 35536	

TABLE D-2

			-	_	
MIN	ERAL	ANALYSES	0F	SURFACE	WATER

DATE TIME	LA8 SAMPLER	GH O	D ^O SAT	TEMP	LAB0 FI PH	RATORY ELD EC	M]	NERAL C	ONSTITU NA	ENTS IN	MILL		PER LENTS EACTANO SO4	PER LI	TER TER LUE NO3	MIL	LIGRAMS B	S PER	LITE TDS SUM	Th
			STA	TION	NUMB	ER W716	95.00	COLO	RADO RI	VER BEL	AMUY WO	MAIN C	ANAL WA	STEWAY						-33
11/02/6° 110ô	7 5050 5050	10.26 646	9.6 106	69	8.0	1462	105 5.24 34	34 2.80 18	168 7•31 47	0.13 1	0.00	200 3.28 21	372 7.74 50	158 4.45 29	1.0	0.6	0.22		975 943	402 238
01/24/68 093n	5050 5050	10.10 560	9.3 90	58	7.8	1930	125 6•24 31	46 3.78 19	223 9•70 49	0.13 1	0.00	229 3.75 19	418 8-70 43	271 7•64 38	1.5 0.02 0	0.8	0.22			50; 314
03/06/68 090â	8 5050 5050	10.05 520	8.0	66	8.0	1957	129 6•44 32	46 3.78 19	229 9.96 49	5 0.13 1	0.00	226 3.70 18	407 8•47 42	277 7.81 39	1.0	0.6	0.25	••	1252 1206	_
05/07/68 0835	8 5050 5050		9.0 102	72	8.3	1400	98 4.89 33	36 2.96 20	153 6.65 45	0.15 1	0.00	179 2•93 21	358 7.45 52	136 3.83 27	2.0 0.03 0	0 • 4	0.20	••		39 ⁻ 241
09/09/68 0835	5050 5050	10.22	6.2 76	80	7.8 8.0	1797	122 6.09 31	45 3.70 19	218 9.48 49	0.15 1	0.00	220 3.60 19	\$09 8.51 44	256 7•22 37	1.2	0.7	0.26		1223 1167	
			STA	TION	NUMB	ER W717	50.00	COLO	RADO RI	VER BELO	OW MORE	LOS DAM	ı							
11/02/67 1145		11.15	8.4 94	70	7.8	6757	290 14.47 20	123 10.11 14	1100 47.85 66	0.25 0	0.00	351 5.75 8	993 20.67 28	1640 46.25 63	12.0 0.19 0	2.0	1.70		432 ₀ 4345	
01/24/68 0854	5050 5050	9.64 204	8 • 2 85	64	7.5 8.1	7782	307 15.32	144 11.84 14	1260 54.81 67	0.31 0	0.00	332 5.44 7	1074 22.36 27	1944 54.82 66	10.5 0.17	2•9	2.00		5165 4920	
03/06/68 â080	5050 5050	8.23 53.0	7•2 78	67	7.7	6309	277 13.82 20	177 14.56 21	935 40.67 59	0.28 0	0.00	364 5.96 9	911 18.97 29	1429 40.30 62	8.4 0.13 0	2.0	1.40		4017	
05/08/68 0745	5050 5050	8.65 150	8 • 0 92	73	8.1	5310	226 11.28 21	99 8.14 15	752 32.71 62	9 0.23 0	0.00	330 5.41 10	848 17.65 34	1040 29.33 56	8.0 0.13	1.8	1.40		3350 3148	
07/01/68	5056 5056				7.9	3900	170 8.48 21	80 6.58 17	559 24.32 61	0.20	0.00		666 13.87 35	789 22•25 56					2470 2375	
07/15/68	5056 5056				8.0	5010	208 10.38 20	97 7.98 15	768 33.41 64	9 0.23	0.00	249 4.08 8	805 16.76 32	1100 31.02		••			3210 3110	
07/22/68	5056 5056				8.0	5310	214 10.68	102 8.39 15	830 36.10 65	9 0.23	0.00	250 4.10 7	840 17.49 32	1180 33.27		••		•-	3470 3298	
07/29/68 	5056 5056				8.1	4270	175 8.73 20	86 7.07 16	649 28.23 64	8 0.20 0	0.00	213 3.49 8	725 15.09 34	898 25.32 58	••				2770 2646	79 61
09/05/68	5056 5056				7.5	3750	180 8.98 23	76 6•25 16	531 23.10 60	8 0.20 0	0.00	244 4.00 10	644 13•41 34	766 21.60 55					2460 2325	
08/26/68	5056 5056				7.4	4940	204 10.18 20	97 7.98 16	744 32.36 64	9 0.23	0.00	232 3.80 7	814 16.95 33	1090 30.74 60					3210 3073	
09/03/68	5056 5056				7.8	5410	217 10.83	102 8.39 15	826 35.93 65	9 0.23 0	0.00	240 3.93	852 17.74 32	1220 34.40 61			••		3520 3344	96 76
09/09/68					7.8	5160	207 10.33 20	100 8.22 16	775 33.71 64	9 0.23 0	0.00	242 3.97 7	827 17.22 32	1140 32.15 60				••	3330 3177	92. 73
09/16/68	5056 5056				7.7	4870	212 10.58 21	94 7.73 16	711 30.93 62	0.23	0.00	279 4.57	813 16.93 34	1020		••			3140 2997	
09/24/68	5056 5056				7.7	6810	265 13.22	123 10-11 14	1080 46.98 67	10 0.25	0.00	305	1000	1620 45.68 64		••			4470 4248	
09/30/6	8 5056 5056				7.7	6830	264 13.17 19	124 10.20 14	1080 46.98 66	10 0.25	0.00	298	998 20.78 29	1640 46.25 64					4490 4263	
			STA	TION	NUMB	ER W7 18	70.05	Cotin		VER NEAL	R BLYTH	Ε								
07/09/6	8 5056 5056				7.4	1210	90 4.49 36	32 2.63 21	116 5.04 41	5	0.00	167 2.74 22	318 6,62 54	104 2.93 24		••			802 748	
07/15/6/ 1430			8.0 98	79	8.1	1116	84 4.19 36	31 2.55 22	111 4.83 41	5	0.00	379	306 6.37 41	98 2.76 18	1.8	0.6	0.12		801 824#	

DATE TIME S	LAB	GH Q	DO SAT	TEMP		RATORY	HI	NERAL C	ONSTITU	ENTS IN	MILL		PER LENTS EACTANO	PER LI	TER Ter Lue	HIL	LIGRAMS	PER	LITE	_
					Рн	EC	CA	MG	NA	К		HC03	504	CL	NO3	F	В	\$102	SUM	NCH
			STA	TION	NUMB	ER W718	70.05	COLO	RADO RI	VER NEA	R BLYTH	E								
7/23/68	5056 5056				7.4	1130	85 4 • 24 36	31 2•55 22	110 4.78 41	0.13 1	0.00	155 2•54 22	308 6•41 55	97 2•73 23		••				340 213
3/06/68	5056 5056			••	7.9	1140	85 4 • 24 36	30 2.47 21	112 4.87 42	0 • 1 3 1	0.00	155 2.54 22	310 6.45 55	97 2•73 23	••				_	336 209
3/20/68	5056 5056				8.5	1160	80 3.99 34	32 2•63 22	118 5•13 43	5 0•13 1	0.00	137 2•24 18	332 6.91 57	105 2.96 24						331 219
3/03/68		==			7.9	1140	85 4.24 36	31 2.55 21	115 5.00 42	0.13 1	0.00	156 2.56 22	313 6.52 55	98 2.76 23		••	••			340 212
9/10/68 0915		8000 E	7•1 87	80	8.1	1152	86 4.29 35	33 2.71 22	116 5.04 41	0.13 1	0-00	156 2.56 21	320 6.66 54	107 3.02 25	1.5 0.02 0	0.5	0.16			350 223
9/17/68	5056 5056			••	7.9	1200	89 4.44 36	33 2•71 22	118 5•13 41	0.13 1	0.00	165 2.70 22	313 6.52 54	104 2•93 24						358 223
			STA	TION	NUM8	ER W719	29.00	ALL	AMERICA	N CANAL	ABOVE	PILOT K	NOB WAS	TEWAY						
ī/02/67 104ċ		17.17 3970	8.8	68	8.0	1353	96 4.79 34	31 2.55 18	154 6.70 47	0.13 1	0.00	183 3.00 21	351 7.31 51	140 3.95 28	1.0	0.6	0.22	~~		367 217
1/24/68 101ñ		17.18 4433			7.8 8.3	1257	89 4.44 34	32 2•63 20	133 5.78 44	0.13 1	0 • 0 0	166 2•72 21	317 6•60 52	122 3•44 27	2.0 0.03 0	0.5	0.14			354 218
3/05/68		17.34 6395		67	8.0	1261	89 4.44 34	31 2•55 20	133 5.78 45	0.13 1	0.00	168 2.75 21	320 6.66 52	121 3•41 26	2.3 0.04 0	0 • 6	0.10			350 212
5/07/68 0815						1360	94 4•69 35	33 2•71 20	138 6.00 44	0.15 1	0 • 13 1	166 2.72 20	337 7.02 52	128 3•61 27	1.8 0.03 0	0 • 4	0.10			370 228
9/09/68 0935	5050 5050	17.22 6453	6.7 85	83	8.1	1306	90 4.49 33	32 2•63 19	147 6•39 47	5 0.13 1	0.00	167 2.74 20	344 7•16 52	137 3.86 28	1.4 0.02 0	0•6	0.19		868 840	
			STA	TION	NUMB	ER W911	00.00	NEW	RIVER N	EAR WES	TMORLAN	D								
1/03/67 080â	5050 5050	2.80 526	7•1 72	62	7.5	5650	235 11•73 19	108 8.88 15	900 39•15 65	25 0.64 1	0.00	271 4.44 7	827 17•22 28	1360 38.35 64	20.0 0.32 0	0.8	1.00	••	3730 3610	
1/23/68 1136	5050 5050	2.80 498	8.0 76	56	7.5 7.8	5618	220 10.93 19	108 8.88 15	872 37•93 65	30 0.77 1	0.00	251 4•11 7	755 15•72 27	1338 37•73 65	29.5 0.47 1	1.1	1.20		3613 3479	
3/04/68 142ñ	5050 5050	3.32 588	6•6 74	70	7.5	5851	229 11•43 19	109 8.96 15	888 38•63 64	32 0•82 1	0.00	268 4•39 7	788 16•41 28	1333 37•59 64	17.0 0.27	0.8	1.05		3660 3530	
5/06/68 1515	5050 5050	3.75 679	6 • 4 74	74	8.0	5710	217 10.83 19	114 9•37 17	800 34.80 62	30 0.77	0.00	264 4.33 8	805 16.76 30	1230 34.68 62	17.0 0.27	0.6	1.30		358 ₀ 3345	1011 794
9/09/68 i 111ô	5050 5050	3.40 564	5.2 67	85	7.5 8.1	4871	210 10.48 20	98 8.06 16	740 32.19 63	26 0.66 1	0.00	251 4•11 8	781 16•26 31	1113 31.39 60	15.0 0.24 0	0.9	1.20		3246 3109	
			STA	NOITA	NUMB	ER W918	00.00	NEW	RIVER A	T INTER	NATIONA	L 80UND	ARY							
1/02/67 090ô	5050 5050	8.50 132		69	7.3	6536	218 10.88 16	109 8.96 13	1035 45.02 68	66 1.69 2	0.00	276 4.52 7	654 13•62 20	1710 48.22 73	5.0 0.08 0	0.8	1.50		4160 3935	993 766
1410	5050 5050		10.0	62	7.4 8.2	6892	231 11.53 16	106 8.72 12	1125 48.94 69	77 1.97 3	0.00	266 4.36 6	645 13.43 19	1848 52.11 74	16.5 0.27 0	1.1	1.55		4350 4182	
3/05/68 0815	5050 5050	8.80	9.6 104	67	7.2 8.0	8183	267 13.32 16	124 10.20 12	1308 56.90 69	93 2.38 3	0.00	271 4.44 5	728 15.16 18	2222 62.66 76	11.6 0.19 0	0.8	1.70		5150 4890	1177 955
15/07/68	5050 5050	184		71	7.9	8810	257 12.82 15	136 11•18 13	1330 57.85 68	108 2.76 3	0.00	288 4.72 5	802 16.70 20	2250 63.45 75	6.4 0.10 0	0.7	2.40		5350 5035	
19/08/68	5050 5050	146		91	7.1 7.9	6293	220 10.98 17	105 8.63 13	1000 43.50 67	66 1.69 3	0.00	246 4.03 6	759 15.80 24	1580 44.55 69	5.5 0.09 0	0.9	1.60		4012 3859	981 780

TABLE 0-2

MINERAL ANALYSES OF SURFACE WATER

	DATE TIME S	LAB SAMPLER	GH R 0	DO SAT	TEMP		RATORY ELD EC	MI CA	NERAL C	ONSTITU;	JENTS IN	MILL		PER LENTS REACTANO 504	PER LI	TER TER LUE NO3	MII F	LIGRAMS B	5 PER	LITE TDS SUM	
				ST	ATION	NUMB	ER W92(020.00	ALAM	O RIVER	AT ÎNT	ERNATIO	NAL BOU	INDARY							
j	17/02/67 093n	7 5050 5050	0.35 2.8	9•4 97	63	7.8	3290	171 8•53 24	73 6•00 17	475 20•66 58	0 • 2 <u>0</u>	0.00	288 4.72 13	664 13.82 39	595 16•78 47	7.4 0.12 0	0.7	1.20		2180 2137	
(152n	5050 5050	0.30 ž.2	11.0	57	8.0	4602	209 10.43 21	115 9•46 19	690 30•01 60	10 0•25 0	0.00	323 5•29 11	905 18.84 38	889 25•07 51	4.0 0.06 0	1.1	1.14		3132 2984	
(091ñ	5050 5050	0.30 2.2	8.6 88	62	7.7	4684	205 10•23 21	115 9•46 19	680 29•58 60	0.28 1	0.00	325 5•33 11	957 19•92 40	874 24.65 49	4.4 0.07 0	1+1	1.08		3169 3009	
(05/07/68 0715	5050 5050	0.30 2.2	6.6 71	67	8.4	3390	160 7.98 24	78 6.41 19	442 19•23 57	0.18 0	0 • 13 0	266 4.36 13	662 13.78 41	548 15.45 46	2.2 0.03 0	0.6	0.90	••	2210 2036	
(9/08/68 1355	5050 5050	0.28 2.0	5•4 69	83	7.6 7.9	2762	139 6.94 24	69 5.67 19	380 16.53 56	0.20 1	0.00	246 4.03 14	577 12•01 40	483 13.62 46	1.8 0.03 0	0.9	0.80		1852 1781	
				STA	ATION	NUMB	ER W921	100.00	ALAM	O RIVER	NEAR C	ALIPATR	IA								
Ī	1/03/67 082ñ	7 5050 5050	9.71 908	8.6 89	63	7.5	3953	205 10.23 23	104 8.55 20	563 24.49 56	$0.\overline{28}$	0.00	239 3.92 9	917 19•09 44	710 20•02 46	30.0 0.48 1	0.9	0.68		2740 2660	
ć	101ñ	5050 5050	9.44 681	10.0	54	7.1 8.2	4090	203 10.13 23	112 9•21 21	558 24.27 55	11 0.28 1	0.00	212 3.47 8	857 17.84 40	778 21.94 50	56.0 0.90 2	0.8	0.56	••	2792 2681	
C	3/04/68 133ñ	5050 5050	9.10 1017	8.1	69	7.4	3899	258 12•87 32	63 5•18 13	505 21•97 54	12 0•31 1	0.00	217 3.56 9	820 17.07 42	689 19•43 48	30.8 0.50 1	0.8	0.44		2565 2486	
Ċ	145ñ	5050 5050	9.08 908	7.9 91	73	8.0	4100	188 9•38 23	110 9•05 22	500 21.75 54	0.28 1	0 0•00 0	228 3.74 9	840 17•49 42	693 19•54 47	27.0 0.43 1	0.5	0.60		1350 2483	
C	9/ <u>0</u> 9/68 1145		9.12 970	6•1 79	85	7.6 8.1	3451	178 8•88 24	92 7•57 20	480 20•88 55	12 0.31 1	0.00	214 3•51 9	809 16.84 45	600 16•92 45	20.0 0.32 1	0.9	0.60		2391 2298	
				STA	TION	NUMBE	ER Y115	50.00	SANT	A ANA R	IVER BE	OW PRA	DO DAM		•						
ī	ñ/05/67 135ñ	5050 5050	2.21 60.0	7.7 87	72	7.5 7.3	1218	103 5•14 40	27 2•22 17	120 5•22 41	0.18 1	0.00	310 5:08 40	134 2•79 22	152 4•29 34	35.0 0.56 4	1.0	0.46		800 732	
ì	1/09/67 1905	5050 5050	2.27 50.0	8.3 91	69	7.5 7.4	1221	103 5.14 40	27 2•22 17	118 5•13 40	8 0•20 2	0.00	312 5.11 41	142 2•96 23	141 3.98 32	32.0 0.52 4	1.3	0.65		770 727	
ĩ	1/30/67 	5100 5100				7.9	1286	116 5.79 43	28 2•30 17	121 5.26 39	0.10 1	0.00	332 5.44 40	150 3.12 23	151 4•26 32	37.0 0.60 4	0.8	0.43		835 772	1
1	2/14/67 160ñ	5050 5050	2.14	10.0	48	7.2 8.0	1326	109 5.44 41	30 2•47 19	118 5•13 39	0•23 2	0 0 • 0 0 0	320 5•24 39	151 3•14 24	153 4•31 32	39.0 0.63 5	1.0	0.36		820 768	
	1/09/68 120ñ	5050	16.01 67.0	8.8	54	7.1	1297	107 5.34 40	31 2•55 19	117 5•09 38	9 0•23 2	0.00	342 5.60 43	142 2•96 23	156 4•40 34	8.1 0.13 1	0.8	0.52		774 740	1
	2/08/68 1015	5050	13.21 58.0	9•0 83	54	7.2	1272	105 5•24 40	30 2•47 19	118 5•13 39	8 0•20 2	0.00	323 5•29 41	143 2•98 23	145 4•09 32	36.0 0.58 4	8•0	0.46		818 746	1
	3/13/68 0735	5050	14.68	8.8 81	53	7.3	1427	121 6.04 40	34 2.80 19	130 5•65 38	17 0.43 3	0.00	354 5.80 40	184 3•83 26	157 4•43 30	32.2 0.52 4	1+1	0•42		905 851	
	110n	5050	15.18 99.0	8•3 86	64	7.6	1180	98 4•89 40	27 2•22 18	108 4•70 39	12 0.31 2	0.00	295 4.83 41	137 2•85 24	132 3•72 31	27.3 0.44 4	0 • 8	0.30			1
	5/02/68 121n	5050	2.10 44.0	7 • 8 85	68	8.4	1300	104 5•19 40	30 2•47 19	117 5.09 39	0.18 1	0.27 2	308 5.05 39	134 2•79 22	147 4•14 32	35.0 0.56 4	0.7	0.40	••		1
	5/21/68	5100				7.6	1311	117 5.84 44	25 2•05 15	122 5.31 40	0.18 1	0.00	322 5.28 40	134 2.79 21	163 4.60 35	24.0 0.39 3	0.9	0.47	••	850 752	1
	7/25/68 1145 8/15/68	5050	2.00	100	79	8.2	1287	113 5.64 42	29 2.38 18	121 5.26 39	0.13 1	0.00	340 5.57 42	145 3.02 23	149 4.20 32	24.0 0.39 3	0.9	0.50	••		1
(1406	5050	1.98	8.0 105	86	7.7 8.2	1240	106 5.29 39	30 2•47 18	127 5.52 41	0.15 1	0.00	328 5.37 40	3.00 22	160 4.51 34	26.0 0.42 3	0.9	0.45		747 762	1

										MILL	IGRAMS	PER	LI	TER					
DATE LAS	GH R Q	DO SAT	TEMP	FI	RATORY		NERAL C		ENTS IN		IEQUIVAL		PER LI	TER LUE NO3	MIL!	LIGRAMS 8	PEH SIO2	LITES TDS SUM	TH
		e v		PH	EC	CA		NA	K	LOW PRAI		304	CL	1403	r	В	3102	30M	NCh
7/17/68 5050 1415 5050	2.01 31.0	7 • 1 85		7.7 8.1	1225	103 5•14 42	29 2•38 19	106 4.61 37	7 0.18	0 0 • 0 0	319 5.23 41	137 2•85 22	148 4•17 33	24.6 0.40 3	0.9	0.59	••	765 713	376 115
		6.7	4 T v ON	NUMB	ER Y212				NEAR C		•		33	3					
5/05/67 5050	==	6.1		7.0	821	46	17	94	ī7	0	271	62	72	25.0	0.6	0.46		580	185
1320 5050	1.0	71				2.29	1.40	4.09 50	0.43	0.00	4.44	1.29	2.03	0.40				468	0
1/09/67 5050 1930 5050		7.6 85	70	7.4	962	2.04 24	21 1.73 20	97 4.22 50	17 0.43 5	0.00	351 5.75 61	63 1•31 14	72 2•03 21	25.0 0.40 4	0.7	0.60	••	530 510≠	189
2/14/67 5050 1645 5050	6.0		40	7.4 7.5	729	55 2•74 37	22 1•81 25	54 2•35 32	17 0.43 6	0.00	237 3.88 54	74 1.54 21-	46 1.30 18	27.0 0.43 6	0.8	0.16		461 413	33 33
1/09/68 5050 1230 5050		7.8 68	49	7.2	807	52 2•59 35	18 1•48 20	60 2•61 35	29 0.74 10	0 0 0 0	212 3.47 46	59 1•23 16	74 2•09 27	51.3 0.83 11	0.8	0.14		472 449	204 30
2/08/68 5050 1045 5050		7.6 70	53	7.3	744	58 2•89 38	19 1•56 20	59 2•57 34	23 0.59 8	0.00	264 4.33 59	57 1•19 16	41 1.16 16	42.2 0.68 9	0.7	0.12		482 430	223 6
3/13/68 5050 0710 5050	-	7.7 70	52	7.8	984	87 4.34 43	27 2•22 22	67 2•91 29	Ž7 0.69 7	0 0•00 0	364 5.96 59	111 2.31 23	55 1•55 15	15.5 0.25 2	1 - 1	0.15		636 57 ₀	328 30
1125 5050		7.1 74	64.	7.7	684	69 3.44 49	17 1.40 20	40 1.74 25	18 0.46 6	0.00	234 3.83 55	77 1.60 23	36 1.01 15	30.4 0.49 7	0.6	0.08		444	242 50
5/02/68 5050 1236 5050	1.0	7.3 80	68	8.4	1110	95 4.74 42	22 1•81 16	102 4.44 39	11 0.28 2	2 0.07 1	201 3•29 30	238 4.95 45	94 2•65 24	8.6 0.14 1	0 • 4	0.10		709 672	328 160
7/25/68 5050 1515 5050	1.0	7•1 91	84	7.5 8.2	723	55 2•74 37	18 1•48 20	66 2•87 38	15 0.38 5	0.00	240 3•93 53	65 1•35 18	63 1 • 78 24	19.8 0.32	0.8	0.39		489 421	211 15
		STA	ATION	NUMB	ER Y411	00.00	WARM	CREEK	NEAR CO	LTON									
n/05/67 5050 104n 5050	6.0	8.7 109		7.4 7.1	911	54 2•69 30	18 1•48 17	100 4 • 35 49	í2 0∙31 3	0.00	207 3•39 37	68 1•41 16	112 3•16 35	67.0 1.08	0.8	0.46		595 534	209 39
1/09/67 5050 1645 5050		7•0 79	72	7.4 7.0	960 	47 2•34 26	20 1•64 18	110 4.78 52	13 0.33	0.00	224 3.67 39	71 1.48 16	108 3•04 33	69.0 1.11	1.3	0.56		610 550	200 16
2/14/67 5050 110n 5050	15.0	10.0	59	7.3 7.3	1100	45 2•24 22	23 1.89 19	129 5•61 56	13 0.33	0.00	214 3.51 34	85 1.77 17	149 4.20 40	55.8 0.90	1.4	0.46		681 607	, 207 31
1/09/68 5050 1000 5050	5.0	8•1 85	65	7•1 7•1	1098	40 1•99 20	27 2•22 22	130 5•65 55	13 0.33	0.00	294 4.82 45	80 1.66	148 4•17 39	8.0 0.13	1 • 0	0.52		639 593≠	
2/08/68 5050 0815 5050		9.9 96	58	7.1 7.1	1393	55 2•74 21	27 2•22 17	174 7•57 59	14 0•36 3	0.00	171 2.80 22	87 1 • 81 14	231 6•51 52	87.3 1.41	1.2	0 • 4 4		842 761	
3/13/68 5050 142n 5050		9•3 98	65	7.3 7.1	1059	61 3•04 31	19 1•56 16	109 4.74 49	13 0•33 3	0.00	247 4•05 40	79 1 • 64 16	120 3•38 34	60.2 0.97	1.5	0.33		647 585	230 28
1/03/68 5050 070n 5050		9•1 93	62	7.4 7.2	1127	52 2•59 26	17 1 • 40 14	128 5•57 56	. 13 0.33 3	0.00	146 2.39 24	70 1•46 15	169 4.76 48	78.1 1.26 13	1 • 1	0.42		691 601	200 80
5/02/68 5050 1115 5050		8 • 8 99	71	7.4 7.1	1200	44 2•19 21	27 2•22 21	130 5.65 54	13 0.33 3	0.00	214 3.51 34	79 1•64 16	162 4.57 45	28.0 0.45 4	0.9	0.60		679 590	221 45
5/17/68 5050 1445 5050		8.1	82	7.3 7.1	1068	49 2.44 25	24 1.97 20	117 5.09 52	13 0.33 3	0.00	232 3.80 38	70 1.46 14	137 3.86 38	62.0 2	1 • 4	0.26		665 588	221 31
7/25/68 5050 0830 5050		12.5 157	82	7.7 7.9	1090	57 2.84 27	18 1•48 14	136 5.91 57	7 0.18	0.00	239 3.92 37	82 1.71 16	165 4.65 43	27.0 0.43	1.0	0.52		634 611	20 216
1		ST	AT TON	I NIIMP	ER Y510					COLTON									
110ñ 5050		8.2	82	7.4	936 	59 2.94	14 1•15	100	12	0.00	215 3.52	7 ₁	112	60.0	0.9	0.46		590 536	205 29
1/09/67 5050 1700 5050		7.3 82	_	7.5	948	34 47 2.34	20 1.64	108 4.70	3 0.73	0	229 3•75	72 1.50	106 2.99	64.0 1.03	1.3	0.48			200
						26	18	52	4	0	40	16	32	11					

																•				
DATE TIME S	LA8 SAMPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	MI	NERAL CO	NSTITU NA	ENTS IN		IGRAMS IEQUIVAL ENT RE HCO3	PER LENTS F EACTANCE 504	PER LI	TER TER LUE NO3	MIL	LIGRAMS 8	5 PER 5102	LITES TOS SUM	ш
																		_		Ш
	. 5.5.					ER Y510		SANTA 23		IVER AT		220	83	139	52.1	1•3	0.44		648	
12/14/67 123â	5050 5050	60.0	10•0 98	59	7.3 7.5	1059	43 2•14 22	1.89	122 5•31 55	0.33	0.00	3.60 36	1.73	3.92 39	0.84	1.03	0.44		585	4
01/09/68 1010	5050 5050	40.0	9.3 96	63	7.2	1081	35 1.75 18	28 2.30 24	119 5.18 54	14 0.36 4	0.00	304 4.98 47	82 1.71 16	129 3.64 35	11.0 0.18 2	1.2	0.52		602 570≠	2
02/08/68 0836	5050 5050	15.0	10•1 99	59	7.6	1370	50 2•49 20	27 2•22 18	166 7•22 59	14 0•36 3	0.00	223 3•65 29	89 1.85 15	211 5•95 48	62.6 1.01 8	1.3	0.46		815 731	2
03/13/68 1435	5050 5050	 15•0	9•3 97	64	7.6	1064	54 2•69 27	23 1.89 19	112 4.87 50	13 0.33 3	0.00	253 4•15 41	80 1.66 16	120 3.38 33	55.8 0.90 9	1.1	0.33	••	634 584	2
04/03/68 065 ₀	5050 5050	4.0	9.6 92	57	7.1	1083	49 2•44 25	21 1•73 17	125 5.44 55	13 0.33 3	0.00	149 2•44 25	68 1•41 15	158 4.45 46	83.7 1.35 14	1.3	0.45		656 593	2
05/02/68 1030	5050 5050	15.0	8 • 1 91	71	7.6	1200	46 2•29 22	25 2•05 20	130 5.65 55	13 0.33 3	0.00	199 3.26 33	76 1.58 16	159 4.48 45	32.0 0.52 5	0.9	0.60	••	696 581	2
06/17/68 1430	5050 5050	20.0	8.3 108	85	7.4	935 	45 2•24 26	23 1•89 22	93 4.04 48	12 0.31 4	0.00	231 3.79 43	66 1.37 15	101 2.85 32	54.6 0.88 10	1.2	0.26		586 510	2
07/25/68 090n	5050 5050	15.0	10 • 1	84	7.1 8.0	1061	32 1.60 16	31 2•55 26	121 5.26 54	13 0•33 3	0.00	233 3.82 39	80 1.66 17	136 3.83 39	35.3 0.57	1•4	0.61	••	630 565	2
08/15/68 113ñ	5050 5050	25.0	8.7 115	87	7.3 7.8	1018	39 1.95 20	27 2•22 23	121 5.26 54	10 0•25 3	0 • 0 0	264 4.33 44	76 1.58 16	124 3.50 36	24.0 0.39	1.2	0.48		57 ₁ 553	2
09/17/68 111ñ	5050 5050	30.0	8.7 115	87	7.3 7.7	1018	33 1.65 18	29 2•38 26	110 4•78 52	17 0•43 5	0 • 0 0	295 4.83 48	82 1•71 17	115 3•24 32	16.5 0.27	1.2	0.58	••	584 550≠	Z
			ET.	A T T ON	MILIMA	FD VE10									J					
10/05/67	5050		10.1		7.9	ER Y519 201	21	5AN1 #	12	IVER NO	0 O	LHACE NI	LAK MEN	I UNE	0.5	0.3	0.00		145	п
0925	5050	50.0	96			**	1.05	0•49 23	0•52 25	0•n5 2	0.00	1.75 83	0.23	0.11,	0.01				110	ı
11/09/67	5050	50.0	9.9 96	58	7.9	207	25 1•25 59	3 0•25 12	13 0.56 27	2 0•05 2	0.00	107 1•75 84	11 0•23 11	0.11 5	0.00	0 • 4	0.02		135	A spirate in
12/14/67 0930	5050	35.0	13.0 96	37	7.8 8.1	222	21 1.05 46	7 0•57 25	0.61 27	2 0•ñ5 2	0 0 • 0 0	117 1.92 82	13 0.27 12	0 • 1 4 6	0.0	0 • 4	0.02	•-	137 120	
01/09/68 0900	5050 5050	70.0	11.8 97	45	7.8 	212	21 1.05 47	7 0•57 26	13 0.56 25	0.05 2	0.00	110 1.80 83	12 0.25 11	0.11 5	0.0	0 • 4	0.03	••	129 114	
02/08/68 0720	5050 5050	80.0	11.6 97	46	7.8	221	24 1.20 54	5 0.41 18	13 0.56 25	2 0•05 2	0.00	112 1.83 83	12 0.25 11	0 • 1 1 5	0.0	0.4	0.00		141 116	6.5
03/13/68 1345		80.0	11.3 96	47	8.1	206	23 1.15 56	0.33 16	12 0.52 25	2 0.ñ5 2	0.00	105 1.72 84	10 0.21 10	0.11 5	0.5 0.01 0	0 • 4	0.00	••	135 108	3
04/03/68 0735	5050 5050	80.0	11.6 94	44	8.0	206	22 1.10 53	5 0.41 20	12 0.52 25	0.02	0.00	103 1.69 82	12 0.25 12	0.11 5	0.0	0.4	0.00		138 107	100
05/01/68 1000	3 5050 5050	80.0	10.8	54	8.1	210	24 1.20 54	5 0•41 18	13 0.56 25	0.05 2	0.00	106 1.74 83	0.23 11	0 • 11 5	0.1	0.3	0.00		129 112#	0
05/20/68	5100 5100			••	7.8	202	24 1.20 56	0.33 15	13 0.56 26	0.ñ5 2	0.00	107 1.75 84	10 0•21 10	0.11 5	0.3	0 • 4	0.10	••	125 111	50
06/13/68 1430	8 5050 5050	80.0	10.2		7.5	213	23 1.15 55	0.33 16	13 0.56 27	2 0.n5 2	0.00	106 1.74 81	14 0.29 14	0.11 5	0.0	0.4	0.00		138 113	14
07/24/68 1500	8 5050 5050	 55.0	9.5 100		8.0 8.1	213	25 1.25 59	3 0.25 12	14 0.61 29	0.02 1	0.00	110 1.80 81	0.23 10	6 0.17 8	1.5	0.4	0.05		10Î 116	5
08/15/68 0930	8 5050 5050	22.0	9.1 86		8.1	217	24 1.20 53	5 0.41 18	14 0.61 27	2 0.ñ5 2	0.00	111 1.82 78	14 0.29 12	8 0.22 10	0.0	0.4	0.02		105 122	0
09/17/68 0955	8 5050 5050	22.0	9.3 90	57	8.0	228	27		14 0.61	2	0.00	117 1.92	17	6	0.0	0 • 4	0.00		145 129	8

										MTLL	IGRAMS	PER	1.1	TER					
ATE LAB	GH Q	DO SAT	TEMP		RATORY ELD	ні	NERAL C	ONSTITU	ENTS IN		IEQUIVA	LENTS	PER LI	TER	MIL	LIGRAMS	PER	LITE	R TH
				РН	EC	CA	MG	NA	К	C03	HC03	504	CL	N03	F	8	2105	SUM	NCH
05/67 5050		ST.		NUM8	ER Y612;	25.00 89	SANT.	A ANA R	IVER NE	AR NORC	283	109	150	42.0	1.4	0.46		735	321
225 5050	50.0	102				4.44	1.97	5.22 44	0.50	0.00	4.64	2.27	4.23	0.68				683	89
109/67 5050 82n 5050	80.0	8•2	68	7.1	1145	94 4•69 39	22 1.81 15	120 5•22 44	8 0.20 2	0.00	303 4.97 42	108 2•25 19	141 3.98 34	35.0 0.56 5	1.4	0.65		710 679	325 71
30/67 5100 5100	••			8.1	1183	102 5.09 41	22 1.81 15	121 5.26 43	0.10 1	0.00	286 4.69 39	113 2.35 19	155 4.37 36	45.0 0.72 6	0.9	0.38		761 704	345 111
14/67 5050 415 5050	70.0	7.0 61	49	7.4 8.0	1218	93 4.64 40	24 1•97 17	112 4.87 42	9 0•23 2	0.00	267 4.38 37	127 2.64 22	141 3.98 34	49.0 0.79 7	1.3	0.30		801 688	331 112
09/68 5050 13a 5050	40.0	8 • 2 8 4		7.1	1165	89 4•44 39	25 2.05 18	110 4.78 42	9 0.23 2	0.00	283 4.64 40	122 2.54 22	135 3.81 33	28.5 0.46 4	1.2	0.46		685 660	325 93
0 08/68 5050 956 5050	50.0	8 • 3 79		7.3	1166	89 4.44 39	24 1.97 17	111 4.83 42	0.20	0.00	268 4.39 39	114 2.37 21	133 3.75 33	45.3 0.73 6	1.0	0.42		709 658	321 101
0 13/68 5050 81n 5050	40.0	8.5 79		7.3	1168	91 4.54 40	24 1.97 17	109 4.74 41	8 0.20 2	0.00	271 4.44 40	119 2.48 22	131 3.69 33	33.5 0.54 5	1.1	0.48		692 651	326 104
03/68 5050 020 5050	60.0	8.1		7.4	1019	83 4•14 41	21 1.73 17	93 4.04 40	8 0•20 2	0.00	248 4.06 41	103 2•14 21	115 3.24 32	35.3 0.57 6	1.0	0.31		632 582	294 90
0 02/68 5050 145 5050	20.0	8.3 94		8.2	1210	90 4.49 38	26 2•14 18	113 4.91 42	0.20 8	0.00	280 4.59 39	120 2.50 21	142 4.00 34	45.0 0.72 6	0.8	0.30		726 683	332 102
0 21/68 5100 5100			••	7.4	1223	101 5.04 41	22 1•81 15	118 5•13	8 0.20	0.00	300 4.92 41	112 2.33 19	151 4.26 36	27.0 0.43 4	1.1	0.44		761 688	343 97
0 17/68 5050 32n 5050	20.0	8.3 109		7.5	1283	89 4.44 38	25 2•05 18	114 4.96 42	8 0.20 2	0.00	292 4.78 41	118 2.46 21	135 3•81 33	35.3 0.57 5	1.3	0.40		731 670	325 86
0 25/68 5050 045 5050	15.0	5•1 68	88	7.7 7.9	1217	97 4.84 40	23 1.89 16	120 5•22 43	6 0.15	0.00	306 5.01 41	114 2.37 20	150 4.23 35	29.0 0.47	1.0	0.56		714 691	337 86
		ST	ATION	NUMBI	ER Y614(00.00	SANT	A ANA R	IVER NE	AR ARLI	NGTON								
1 05/67 5050 20n 5050	3.39	7•0 88	82	7.3 7.3	1153	73 3•64 34	22 1.81 17	117 5.09 47	9 0.23 2	0.00	307 5.03 44	97 2•02 17	142 4.00 35	30.0 0.48 4	1.1	0.46			273 21
1 09/67 5050 745 5050	3.39 30.0	8 • 1 94	74	7.4 7.1	1082	74 3•69 34	25 2•05 19	110 4.78 45	A 0.20 2	0.00	317 5•19 46	103 2.14 19	120 3•38 30	32.0 0.52 5	1.5	0.58			288 28
1 30/67 5100 5100			••	7.5	1158	102 5.09 43	22 1.81 15	107 4.65 39	9 0.23 2	0.00	273 4.47 39	116 2.41 21	147 4•14 36	31.0 0.50 4	0.8	0.32			345 121
1 14/67 5050 33n 5050	3.63 71.0			7.4 7.9	1198	84 4•19 38	23 1.89 17	109 4.74 43	10 0.25 2	0 • 0 0	344 5.64 47	113 2•35 19	132 3.72 31	22.9 0.37 3	1.2	0.22		713 665≉	304
0 09/68 5050 10n 5050	3.39 30.0	8.3		7•2 7•3	1101	80 3.99 38	24 1.97 19	98 4.26 41	A 0.20	0.00	251 4.11 40	114 2•37 23	121 3•41 33	24.0 0.39	0.9	0.46			298 93
0'08/68 5050 1915 5050	3.26	9•8 97	60	8.0	1114	103 5•14 45	24 1.97 17	94 4.09 36	6 0.15	0.00	279 4.57 41	115 2•39 21	126 3•55 31	45.9 0.74 7	0.8	0.24		697 653	356 127
0'13/68 5050 1825 5050	3.30 50.0			7•7 7•3	1092	102 5•09 47	23 1.89 17	85 3•70 34	6 0.15	0.00	298 4 • 88 45	119 2•48 23	110 3·10 28	24.8	1.0	0.23		672 618	
195n 5050	3.51 44.0	8 • 6 95		7.6 7.3	993	89 4.44 45	21 1•73 17	82 3.57 36	7 0.18 2	0.00	244 4.00 41	106	104 2.93 30	43.4	1.2	0.21		634 574	309 108
(°02/68 5050 115 5050	3.16 26.0	8.8	72	8.0	1130	94 4.69 42	24 1.97 18	99 4.31 39	7 0.18	0.00	271 4.44 41	113 2.35 21	120 3.38 31	47.0 0.76 7	0.7	0.20		697 639	333 111
f'21/68 5100 5100				6.9	1135	106 5.29 46	22 1.81	98 4.26 37	6 0.15	0.00	310 5.08	110 2.29 20	129 3.64 32	25.0 0.40 3	0.8	0.32	•	694 650	
(*17/68 5050 35à 5050	61.0	8.1 103	83	7.2 7.2	1175		27		8	0.00		106	131 3.69	23.6 0.38 3	1.2	0.47		710 645≉	298 31
						34	20	44	S	0	40	19	32	3					

OATE LAB TIME SAMPLER	GH O	DO SAT	TEMP		RATORY ELD EC	MI CA	NERAL C	ONSTITU AN	ENTS IN			PER LENTS REACTANO SO4	PER LI	TER TER LUE NO3	MIL F	LIGRAMS B	S PER	LITE TDS SUM	TI
		STA	ATION	NUME	ER Y614	00.00	SANT	A ANA R	IVER NE	AR ARLI	NGTON								
07/25/68 5050 1006 5050	3.25 51.0		83	7•3 7•7	1173	90 4•49 39	25 2•05 18	111 4.83 42	0.18 1	0.00	257 4•21 37	108 2•25 20	152 4·29 37	45.9 0.74 6	1+4	0.39		748 668	
08/15/68 5050 1200 5050	3.26 53.0	6•3 83	86	7.3 7.7	1125	83 4•14 37	24 1•97 17	115 5.00 44	0.18 2	0 • 0 0	313 5•13 45	110 2•29 20	135 3•81 33	16.0 0.26 2	1.1	0.31	••	646 646	30
09/17/68 5050 1256 5050	3.32 53.0		85	7.2 7.7	1130	84 4.19 40	24 1.97 19	94 4•09 39	8 0.20 2	0.00	311 5.10 45	109 2•27 20	126 3•55 31	22.9 0.37 3	1.1	0.47		670 623≠	
		STA	TION	NUMB	ER Y711	45.00	SAN	TIMOTEO	CREEK	AT WATE	RMAN AV	E. NEAF	R SAN BE	RNARDIN	0				
11/09/67 5050 1630 5050	 2.0	12.1	46	8.2 7.9	362	34 1.70 45	6 0.49 13	35 1.52 40	3 0.08 2	0.00	154 2.52 67	30 0.62 17	16 0.45 12	9.0 0.14 4	1.4	0.06		235 211	11
01/09/68 5050 0945 5050	ī.5	10.3	47	7.7	261	26 1.30 47	6 0.49 18	20 0.87 32	0.08 3	0.00	135 2.21 80	18 0.37 14	0.14 5	1.5 0.02 1	0.5	0.02		158 147	9
04/03/68 5050 0915 5050	0.5	9.1 94	63	8.0	521 	47 2•34 45	12 0.99 19	1.74 33	0.15 3	0.00	187 3.06 60	46 0.96 19	22 0•62 12	29.4 0.47 9	0.7	0.02		338 296	16
		STA	TION	NUMB	ER Y822	00.00	LAKE	ELSINO	RE AT S	TATE PA	Rĸ								
11/01/67 5050 073n 5050		7.8 77	60	8.5 8.1	6557	46 2•29 3	56 4.60 7	1375 59.81 88	36 0.92	30 1.00	495 8•11 12	1030 21.44 32	1320 37.22 55	2.5 0.04 0	1.7	2.60		4220 4144	34
01/25/68 5050 1245 5050		13.4	64	8.2 8.4	5770	40 1.99 3	51 4•19 7	1212 52.72 88	29 0.74 1	0 • 0 0	503 8.24 14	899 18•72 31	1156 32.60 55	9.3 0.15 0	1.6	2.30		3736 3648	31
03/07/68 5050 1520 5050		8 • 0 79	59	8.1 7.9	5708 	43 2•14 4	47 3.86 7	1164 50.63 88	28 0.72 1	0.00	491 8.05 14	866 18.03 31	1141 32•18 55	8.1 0.13 0	1.7	2.05		3652 3543	30
05/10/68 5050 1045 5050		12.4 146	76	8.3 8.3	6050	45 2•24 4	43 3.54 6	1100 47.85 88	26 0.66 1	0.00	495 8.11 15	892 18.57 34	987 27.83 51	0.3	1.5	2.50	••	3690 3341	28
09/07/68 5050 1040 5050	 	7.6 97	83	8.5	7107	38 1.90 2	57 4•69 6	1568 68.21 90	35 0.89 1	17 0.57 1	570 9.34 12	1106 23.03 30	1515 42.72 56	0.00	1.9	2.80		4703 4621	32
		STA	TION	NUMB	ER X213	50.00	SANT	A MARGA	RITA RI	VER NEAL	R FALLB	R00K							П
11/01/67 5050 083å 5050	2.22	9•0 88	58	8.2	1294	100 4.99 36	35 2•88 21	132 5.74 42	0.10 1	0 • 0 0	364 5.96 43	157 3·27 24	158 4•45 32	0.5 0.01 0	0 • 6	0.20		805 767	35
01/25/68 5050 120ñ 5050	3.42 4.0	10.0	50	8.2	1312	104 5•19 37	36 2•96 21	130 5•65 41	0.08 0	0.00	332 5•44 39	181 3•77 27	165 4•65 33	0.5 0.01 0	0.6	0.14		824 784	46
03/07/68 5050 1355 5050	3.38 3.5	9•6 93	58	8.2	1296	102 5•09 38	35 2•88 22	122 5•31 40	3 0•ñ8 1	0.00	340 5•57 41	160 3.33 25	160 4•51 34	0 • 0 0 • 0 0 0	0.6	0.13		816 750	39
05/09/68 5050 1535 5050	3.29 2.0	8•2 85	64	8.3 7.9	1330	101 5•04 38	36 2•96 22	121 5•26 39	3 0.n8 1	0.00	348 5•70 41	154 3•21 23	154 4•34 31	40+0 0+64 5		0.20		782 781	13
09/07/68 5050 1155 5050	3.18 1.3	6.6 73	69	8.0	1123	87 4•34 37	28 2•30 20	114 4.96 42	0.n8 1	0.00	310 5•08 43	122 2•54 22	147 4•14 35	0.0	0.6	0.16		675 655	3:
		STA	TION	NUMB	ER X434	00.05	ESCO	NDIDO CI	REEK NE	AR HARM	DNY GRO	٧E							п
11/01/67 5050 1015 5050	á E	4•5 50	69	7.2	2110	62 3.09 16	49 4•03 20	280 12•18 62	16 0•41 2	0.00	234 3.83 19	251 5•22 26	375 10.57 53	25.0 0.40 2	0.7	0.64		1220 1175	3! 1
01/25/68 5050 0945 5050	 4 E	7.9 71	52	6.8 7.6	2089	84 4.19 20	53 4•36 21	273 11.87 57	13 0.33 2	0.00	210 3.44 17	264 5.50 27	370 10.43 51	78.0 1.26 6	1.3	0.59		1272 1241	4:
03/07/68 5050 1145 5050	8 E	9.9 104	65	7.0	2397	83 4.14 18	54 4.44 19	327 14.22 61	13 0.33 1	0.00	184 3.01 13	272 5.66 25	461 14 57	79.9 1.29 6	0.7	0.50		1394 1382	4: 2:
05/09/68 5050 1325 5050	10 E	6.6 77	75	7.6 7.3	2050	87 4.34 22	50 4.11 21	250 10.87 55	13 0.33 2	0.00	148 2.42 13	303 6.31 33	319 8.99 47	91.0 1.47 8	0.5	0.70		1340 1187	4
09/07/68 5050 133â 5050	8 E		76	7.3 7.5	1972	66 3.29 17	56 4•60 24	254 11.05 57	14 0.36 2	0.00	256 4.19 21	286 5.95 30	333 9•39 47	21.1 0.34 2	1.0	0.70		1172 1158	

TABLE D-2
MINERAL ANALYSES OF SURFACE WATER

ATE	LAB AMPLER	GH Q	DO SAT	TEMP		RATORY ELD EC	M I	NERAL O	ONSTITU:	ENTS IN			PER LENTS EACTANO SO4	PER LI	TER TER LUE NO3	MIL	LIGRAM	S PER	LITE TDS SUM	TH
			ST	ATION	NUMB	ER X512	30.30	SAN	DIEGO R	IVFR AT	OLD MIS	SSION D	АМ							
25/68 C45	5050 5050	1 E	7 • 0 61	49	7.2 7.8	2381	112 5•59 23	65 5•34 22	300 13.05 54	8 0.20 1	0.00	295 4.83 20	347 7•22 30	424 11•96 49	14.5 0.23	0.7	0.50	••	1490 1417	
06/68 345	5050 5050	1 E	6.3 64	62	7.0	2225	107 5.34 24	61 5•02 22	275 11.96 53	0.25 1	0.00	273 4.47 20	344 7•16 32	366 10•32 46	27.0 0.43 2	0.6	0.54	••	1392 1326	_
09/68 03Â	5050 5050	1 E	6+1 64	64	7.8 7.6	405	116 5•79 24	63 5•18 21	302 13•14 54	8 0.20 1	0.00	320 5.24 22	358 7•45 31	405 11•42 47	5.6 0.09 0	0 • 4	0.70		1540 1416	
			ST	TION	NUMB	ER X620	20.05	SPRI	NG VALL	EY CREEK	NEAR L	A PRES	SA							
01/67 220	5050 5050	i.3	15.6 170	68	7.5 7.7	12560	558 27.84 21	310 25.49 19	1860 80.91 60	0.13	0.00	329 5.39 4	922 19.20 14	3940 111.11 82	12.0 0.19 0	0.9	1.20		8450 7771	
24/68 615	5050 5050	0.3		62	7.7 8.3	7692 	334 16.67 20	206 16.94 21	1090 47.41 58	0.10	0.00	334 5.47 7	773 16.09 20	2101 59.25 73	48.0 0.77 1	0.8	0.68		5107 4722	_
07/68 810	5050 5050	0.5		58	7.6	10448	491 24.50 22	266 21.87 19	1505 65.47 58	0.10 0	0.00	383 6.28 5	836 17.40 15	3156 89.00 79	25.5 0.41 0	0.8	0.90		6825 6474	
09/68 850	5050 5050	0.3		72	8.0 8.4	11000	448 22.35 20	275 22.61 20	1510 65.68 59	0.15 0	0.00	239 3.92 3	871 18.13 16	3140 88.55 80	2.4 0.04 0	0 • 4	1.00		7580 6372	_

TABLE D-3 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

An explanation of column headings follows:

Coliform - The two values represent analyses of duplicate samples collected at the same time. The determinations were made by the California Department of Public Health.

Turbidity - The values are shown in Jackson Candle Units and reported as "Units".

MBAS - Methylene Blue Active Substance. An indicator of the presence of the surface active agents ABS and LAS in detergents.

Phosphate - Reported as Orthophosphate.

Time - Pacific Standard Time on a 24-hour clock.

The LAB and SAMPLER agency codes are as follows:

1200 - City of Los Angeles Department of Water and Power

4412 - The Metropolitan Water District of Southern California

5050 - Department of Water Resources

5091 - California Department of Public Health

5239 - Long Beach Health Department

5411 - United Water Conservation District

5867 - Fruit Growers Laboratory

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATF (MG/L)	TURBIDITY (UNIT)
STATION	NO.	D63050.0	O CUYAN	MA RIVER NEAR	GAREY			
10-04-67	0900	5050	5050	78 66				<25
11-07-67	1340	5050	5050					<25
12-11-67	1120	5050	5050					<25
01-11-68	1945	5050	5050			₩ €		<25
03-15-68	1000	5050	5050					<25
04-05-68	1130	5050	5050					<25
STATIO	NO.	D81440.0	O SAN	TA YNEZ RIV	ER NEAR	SOLVANG		
12-11-67	1300	5050	5050					<25
01-11-68	2040	5050	5050					<25
02-14-68	0850	5050	5v50					<25
03-15-68	0950	5050	5050				on 40	<25
04-05-68	1220	5050	5050					<25
STATIO	N NO.	D81565.0	OO LAKE	CACHUMA NEAR	SANTA YN	NEZ		
10-04-67	1020	5050	5050					<25
11-07-67	1200	5050	5050					<25
12-11-67	1400	5050	5050					<25
01-11-68	2105	5 5050	5050					<25
02-14-68	0900	5050	5050					<25
03-15-68	0910	5050	5050					<25
04-05-68	1249	5 5050	5050					<25
06-11-68	1240	5050	5050					. <25
07-22-68	0836	5050	5050					<25

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDITY (UNIT)
STATION	N NO.	Z11100.0	O VENT	URA RIVER NEA	ar ventura			(50)
10-04-67	1130	5050	5050					<25
11-06-67	1330	5050	5050					<25
12-12-67	0845	5050	5050					<25
01-11-68	1615	5050	5050					<25
02-14-68	1020	5050	5v50					<25
03-15-68	1615	5050	5050					<25
04-05-68	1400	5050	5050		-			<25
06-11-68	1330	5050	5050	~-				<25
07-22-68	1130	5050	5050					<25
STATION	N NO.	Z15500.0	CTAM OC	LIJA CREEK AF	BOVE DAM	•		41.94
10-04-67	1205	5050	5050					<25
11-06-67	1255	5050	5v50					<25
12-12-67	0845	5050	5050					<25
01-11-68	1645	5050	5050					<25
02-14-68	1100	5050	5050					<25
04-05-68	1430	5050	5050					<25
06-11-68	1420	5050	5050					<25
07-23-68	1300	5050	5050					<25
STATIO	N NO.	Z21 300.0	OO SAN	TA PAULA CREE	K NEAR SAI	NTA PAULA		3750
10-04-67	1350	5050	5050					<25
11-06-67	1210	5050	5u50					<25
12-12-67	0945	5050	5050					<25
01-11-68	1545	5050	5050					<25

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDITY (UNIT)
STATION	NO.	Z21300.0	O SANT	A PAULA CREEK	NEAR SAN	ITA PAULA		
02-13-68	1310	5050	5050	~ ~				< 25
03-14-68	0840	5050	5050					<25
04-05-68	1515	5050	5050	es en				<25
5 06-11-68	1510	5050	5050			-		<25
07-22-68	1415	5050	5050	-				<25
STATION	NO.	Z21360.0	OO SANT	A CLARA RIVER	NEAR SAN	NTA PAULA		
10-04-67	1315	5050	5050				40 40	400
11-06-67	1150	5050	5050					750
12-12-67	1115	5050	5050					<25
01-11-68	1530	5050	5050					275
03-14-68	0815	5050	5050					125
04-05-68	1535	5050	5050					<25
06-11-68	1530	5050	5050					<25
07-22-68	1445	5050	5050	-				<25
STATIO	NO.	Z22150.0	OO SESP	E CREEK NEAR	FILLMORE			
10-04-67			5050	60 60				<25
11-06-67			5050	can da	400 450			<25
²⁵ 12-12-67			5050					<25
01-11-68			5v50					45
25 02-13-68			5050					100
25 03-14-68			5050					- 33
25 04-05-68			5050					<25
25 06-11-68	1600	5050	5050					<25

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDIT (UNIT)
STATION	NO.	Z22150.	00 SESP	E CREEK NEAR	FILLMORE			0.6
07-22-68	1440	5050	5050	on on				<25
STATION	NO.	Z23240.0	00 PIUR	CREEK BELOW	SANTA FEL	ICIA DAM		4.
10-04-67	1410	5050	5050			900 Mile		<25
11-06-67	1045	5050	5050					<25
01-11-68	1410	5050	5050				des des	35
02-13-68	1130	5050	5050	• •			e= es	<25
03-14-68	0705	5050	5050	40 40				<25
04-05-68	1645	5050	5050					<25
06-11-68	1630	5050	5050					<25
07-22-68	1615	5050	5050					<25
STATION	1 NO.	Z31135.0	OO SANTA	A CLARA RIVE	R AT LOS A	ngeles <u>-</u> ventub	A CO. LINE	0.40
10-04-67	1500	5050	5050					300
11-06-67	1020	5050	5050					165
12-12-67	1315	5050	5050					60
01-11-68	1350	5050	5050					40
02-13-68	1100	5050	5050			==		<25
03-14-68	0630	5050	5050					240
04-05-68	1700	5050	5050					140
06-11-68	1650	5050	5050					270
STATION	NO.	z61100.0	OO LOS A	INGELES RIVER	AT PACLE	IC COAST HIGH	YAW	
10-04-67	1030	5239	5239	50000				
11-01-67	1100	5239	5239	62000				
12-06-67	1130	5239	5 239	240000				

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

	DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDITY (UNIT)
	STATION	NO.	z61100.0	oo los	ANGELES RIVER	AT PACIF	COAST HIG	HWAY	
5 0	1-03-68	1050	5239	5239	62000				
0	2-07-68	1020	5239	5239	130000				
5 0	3-06-68	1045	5239	5239	240	-			
5 0	4-03-68	1100	5239	5239	2000				
5 0	5-01-68	1100	5239	5239	1300				
5 0	6-03-68	1015	5239	5239	7000				
5 O	7-03-68	1215	5239	5239	7000	••			
25 0	8-07-68	0950	5239	5239	620				
25 0	9-04-68	1015	5239	5239	24				
25 0	9-19-68	1000	5050	5050				9.5	28
	STATION	1 NO.	z61300.0	DO LOS	ANGELES RIVER	AT FIGUE	EROA STREET		
)(1	0-04-67	1125	5091	5091	7000				
65 1	1-01-67	1030	5091	5091	2400				
60 1	2-06-67	1120	5091	5091	7000			•	
40 O	1-03-68	1130	5091	5091	7000		•		
25) 0	2-07-68	1130	5091	5091	2400				
41 0	3-06-68	1115	5091	5091	7000			•• ••	
4 0	4-03-68	1130	509]	5091	7000				
71 0	5-01-68	0905	5091	5091	2400				
0	6-05-68	1115	5091	5091	7000				
- 0	7-03-68	1130	5091	5091	7000				^ ***
(18-15-68	1140	5091	5091	7000				
. 10	19-03-68	1145	5091	5091	7000				

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE TIME	SAMPLER LAF	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATF (MG/L)	TURRIDIT (UNIT)
STATION NO.	z61300.00 L0	S ANGELES RIVER	AT FIGUE	ROA STREET		(40)
09-19-68 0800	5050 5050		••		4 • 4	<25
STATION NO.	z61850.05 LO	S ANGELES AQUED	UCT NEAR	SAN FERNANDO		1,045
10-17-67	1200 1200				0.26)
11-14-67	1 2 00 1200				0.16	
12-19-67	1200 1200				0.15	
01-16-68	1200 1200				0.13	
02-20-68	1200 1200				0.13	
03-19-68	1200 1200				0.16	
04-22-68	1200 1200				0.12	
05-21-68	1200 1200				0.21	
06-18-68	1200 1200				0.22	
07-16-68	1200 1200				0.20	
08-20-68	1200 1200				0.24	- 1,
09-17-68	1200 1200				0.34	
STATION NO.	z69780.00 RI	HONDO ABOVE S	PREADING	GROUNDS		
10-06-67 0812	5050 5050					<25
11-08-67 0820	5050 5050	en en				<25
12-15-67 1030	5050 5050					125
01-10-68 1210	5050 5050					<25
02-07-68 1145	5050 5050			-		<54
03-12-68 1306	5050 5050					30
04-03-68 1625	5050 505(<21
06-17-68 1210,	, 5050 5v5(< Si

TABLE N-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

hard how	DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURHJDITY (UNIT)	
	STATION	NO.	z69780.00	O. RIO	HONDO ABOVE SI	PREADING	GROUNDS			
25	09-16-68	0835	5050	5050				0.04	<25	
	STATION	NO.	Z71100.9	O SAN	GABRIEL RIVER	AT WHITT	IER NARROWS			
	10-06-67	0835	5050	5050					<25	
	11-08-67	1010	5050	5050					<25	
	12-15-67	1130	5050	5050					510	
	01-10-68	1200	5050	5050					85	
	02-07-68	1205	5050	5050				~-	260	
	04-03-68	1710	5050	5050	₩ •••				105	
	07-26-68	1030	5050	5050					130	
	08-15-68	1030	5050	5050				1.40		
	09-16-68	1015	5050	5050				1.70		
	STATION	1 NO.	Z71927.10	O SAN	GABRIEL RIVER	AT AZUSA	POWERHOUSE			
	10-06-67	0650	5050	5050					<25	
	11-08-67	1100	5050	5050					<25	
	12-15-67	1330	5050	5050					33	
25	01-08-68	1300	5050	5050					<25	
2:	02-07-68	1445	5050	5050					<25	
2:1	03-12-68	1515	5050	5050					<25	
25	08-15-68	1200	5050	5v50				0.00		
25	STATION	NO.	Z75100.0	O RIO	HONDO AT WHIT	TIER NARR	OWS			
3	10-06-67	0800	5050	5050					· <2°,	
76	11-08-67	0855	5050	5v50					<25	
7:1	12-15-67	0945	5050	5u50					<25	

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDIT (TINU)
STATION	NO.	Z75100.0	OO RIO	HONDO AT WHIT	TIER NARF	ROWS		
01-10-68	1150	5050	5050	∞ ←			••	<25
02-07-68	1115	5050	5050					<25
03-12-68	1245	5050	5050					<25
04-03-68	1640	5050	5050					<2.5
05-21-68		5050	5v5()	1840				124
06-17-68	1200	5050	5050					<25
06-19-68	0630	5050	5050	8400				55-4
07-17-68	0630	5050	5050	1600				
07-26-68	1000	5050	5050					28
08-16-68	0900	5050	5050				0.68	
08-16-68	0615	5050	5050	800				
09-16-68	0910	5050	5050				0.02	<25
STATION	NO.	z76150.0	O MISS	SION CREEK AT	WHITTIER	NARROWS		
10-06-67	0745	5050	5050					<25
11-08-67	0940	5050	5050				en en	<25
12-15-67	1100	5050	5050			~ =		<25
01-10-68	1135	5050	5050					<25
02-07-68	1055	5050	5050					<25
03-12-68	1225	5050	5050					<25
04-03-68	1655	5050	5050				W1 (44)	<25
06-17-68	1220	5050	5050					<25
08-15-68	0945	5050	5050		***		0.32	
09-16-68	0955	5050	5050				0.20	
								3

TABLE D-3 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER SOUTHERN CALIFORNIA

	DATE	TIME	SAMPLER		OLIFORM MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIUITY (UNIT)
	STATION	1 NO.	v91620.0	O MOJAVE	RIVER NEAR	VICTORVI	LLE		
	10-05-67	0700	5050	5050					<25
	11-09-67	1400	5050	5050					<25
	12-13-67	0945	5050	5050					<25
-	01-12-68	1240	5050	5050				•-	<25
	02-09-68	0855	5050	5050	••				< 25
-	03-13-68	1045	5050	5050					<25
	04-02-68	1245	5050	5v50					<25
	06-13-68	1230	5050	5050					<25
	07-24-68	0900	5050	5050					<25
	STATION	N NO.	v92150.3	O MOJAVE	RIVER AT T	HE FORKS			
	10-05-67	0745	5050	5050					125
No.	11-09-67	1445	5050	5050					<25
	12-13-67	1230	5050	5050				~~	<25
	01-12-68	1345	5050	5050					<25
	03-12-68	1115	5050	5050					280
1	04-02-68	1100	5050	5050					<25
ļ	07-24-68	1015	5050	5050					<25
2	STATIO	N NO.	W21530.	OO COLORA	DO RIVER N	EAR TOPOCH	ζ		
	07-17-68	0930	5050	5050					<25
; ?	09-11-68	1035	5050	5v50					<25
The state of	STATIO	N NO.	W21775.	10 COL ORA	DO RIVER B	ELOW PARKE	ER DAM		49
	07-16-68	1720	5050	5050					<25
	09-11-68	0630	5050	5u50					<25

TABLE D-3
MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHUSPHATF (MG/L)	TURBIDIT (UNIT)
STATION	N NO.	W31070.(IHW OC	TEWATER RIVE	R NEAR MECC	JA		
11-03-67	0945	5050	5050			ality repin		350
01-22-68	1420	5050	5050	**	••			750
03-04-68	1105	5050	5v50					100
09-09-68		5050	5050					165
STATION	1 NO.	W31450.0	IHW OC	TEWATER RIVER	R NEAR WHIT	TEWATER		
11-03-67	1120	5050	5050					75
01-22-68	1120	5050	5050			-		<25
03-04-68	0910	5050	5050					135
09-09-68	1545	5050	5050			~-		65
STATION	1 NO.	w51600.7	70 SAI	LTON SEA AT SA	ALTON SEA S	STATE PARK		-12-19
11-03-67	0910	5050	5050			400 ***		<25
01-22-68	1535	5050	5050			em en		65
03-04-68	1200	5050	5050			400 400		<2°
09-09-68	1315	5050	5050			-	466 400	<25
STATION	NO.	w71695.(oo coi	LORADO RIVER	BELOW YUMA	MAIN CANAL	WASTEWAY	- 1-0
11-02-67	1100	5050	5050					<25
01-24-68	1030	5050	5050				000 CO	<25
03-06-68	0900	5050	5v50			***		2.
09-09-68	0935	5050	5050					<29
STATION	N NO.	W71750.	oo coi	LORADO RIVER	BELOW MORE	LOS DAM		
11-02-67	1145	5050	5050					<21
01-24-68	0854	5050	5050					<2'
03-06-68	0800	.5050	5v50				-	<2
								4

TABLE D-3 MISCELLANEOUS CONSTITUENTS IN SURFACE WATER SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAR	COLIFORM (MPN/ML)		ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDITY (UNIT)
STATIO	N NO.	w71870.0	5 COLO	RADO RIVER	NEAR BLYTHE			
7-15-68	1430	5050	5 u 50	• •	day edu		-	<25
9-10-68	0915	5050	5050					<25
STATIO	N NO.	W71929.0	O ALL	AMERICAN CA	NAL ABOVE F	PILOT KNOB WA	STEWAY	
1-02-67	1040	5050	5050		en en			<25
1-24-68	3 1010	5050	5050					<25
3-05-68	1035	5050	5050					<25
9-09-68	0935	5050	5050			~ ~		<25
STATIO	N NO.	W91100.0	O NEW	RIVER NEAR	WESTMORLAND)		
1-03-67	0800	5050	5050			• •		150
1-23-68	3 1130	5050	5050					200
3-04-68	3 1420	5050	5050					240
19-09-68								192
STATIO	N NO.	w91800.0	O NEW	RIVER AT IN	TERNATIONAL	L BOUNDARY		
1-02-67	7 0900	5050	5050					5()
11-23-68	3 1410	5050	5050					40
13-05-68	8 0815	5050	5050					27
9-08-68			5050				1.90	<25
STATIO	ON NO.	W92020.0	OO ALAM	O RIVER AT	INTERNATION	NAL BOUNDARY		
1-02-6			5050	-				<25
1-23-68	3 1520	5050	5050					<25
3-05-6			5050					35
19-08-6	3 1355	5050	5050					<25

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

Ū	ATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHOSPHATE (MG/L)	TURBIDIT (UNIT)
S	TATION	NO.	w92100.0	OO ALAM	O RIVER NEAR	CALIPATRI	·A		ocer
01-	23-68	1010	5050	5050					195
03-	04-68	1330	5050	5050					240
09-	09-68	1145	5050	5050					240
11-	03-68	0820	5050	5050					250
S	TATION	NO.	Y11550.0	O SANT	A ANA RIVER	BELOW PRAD	MAG OO		
10-	05-67	1350	5050	5050	-	0.88		8.80	75
11-	09-67	1905	5050	5050		0.64		12.00	75
12-	14-67	1600	5050	5050		1.20		7.30	265
01-	09-68	1200	5050	5050		1.20	• •	10.00	200
02-	08-68	1015	5050	5050		1.12		10.00	150
03-	13-68	0735	5050	5050		0.94		7.50	3000
04-	03-68	1100	5050	5050		0.80		6.30	525
05-	02-68	1210	5050	5050		0.60		8.80	
07-	25-68	1145	5050	5050		0.89			
08-	15-68	1400	5050	5050	~ ~			7.90	
09-	17-68	1410	5050	5050				7.00	41
S	TATION	NO.	Y21210.0	5 CHIN	O CREEK NEAR	CHINO			
10-	05-67	1320	5050	5050		1.80		31.00	20
11-	09-67	1930	5050	5050		2.80		43.00	3
12-	14-67	1645	5050	5050		0.30		11.50	4
01-	09-68	1230	5050	5050		0.64		9.50	4
02-	08-68	1045	5050	5050		0.52		11.50	4
03-	13-68	0710	5050	5050		0.36		5.50	5

TABLE D-3
MISCELLANEOUS CONSTITUENTS IN SURFACE WATER
SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAR	COLIFORM (MPN/ML)	(MG/L)	ARSENIC (MG/L)	PHOSPHATF (MG/L)	TURBIDITY (UNIT)
STATION	NO.	Y21210.0	5 CHING	CREEK NEAR C	HINO			
4-03-68	1125	5050	5050		0.60		2.30	45
5-02-68	1230	5050	5050		0 • 1 0		2.60	
7-25-68			5050		0.56	~-	10.00	42
STATION	NO.	Y41100.0	O WARM	CREEK NEAR CO	LTON			
0-05-67	1040	5050	5050		1.80		24.00	50
1-09-67	1645	5050	5050		1.30		26.00	50
2-14-67	1100	5050	5050		2.20		29.00	60
1-09-68	1000	5050	5050				35.00	85
2-08-68	0815	5050	5050		2.48		35.00	100
3-13-68	1420	5050	5050		1.36	600 600	26.50	230
4-03-68	0700	5050	5050		1.60		8.50	90
5-02-68	1115	5050	5050		0.40		9.50	
6-17-68	1445	5050	5050		1.40		25.50	135
7-25-68	0830	5050	5050		1.70			
STATION	NO.	Y51080.0	O SANTA	A ANA RIVER AT	COLTON			
0-05-67	1100	5050	5050		1.80		25.00	60
1-09-67	1700	5050	5050	-	1.10		28.00	50
2-14-67	1230	5050	5050		1.80	-	27.00	140
1-09-68	1010	5050	5v50		3.10		40.00	100
2-08-68	0830	5050	5050		2.00		38.00	80
3-13-68	1435	5050	5050		1.36		28.00	350
4-03-68	0650	5050	5050		1.28		18.50	130
5-02-68	1030	5050	5050		0.60		33.00	

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MAHS (MG/L)	AKSENIC (MG/L)	PHUSPHATE (MG/L)	TURHIDI (UNIT)
STATION	N NO.	¥51080.0	O SANT	A ANA RIVER AT	COLTON			
06-17-68	1430	5050	5050	•	1.40		26.50	io
07-25-68	0900	5050	5050		2.70	••	38.00	12
08-15-68	1130	5050	5050	- 4			28.00	
STATION	NO.	Y51978.0	O SANTA	ANA RIVER NO.	, TAILE	RACE NEAR MEI	NTONE	
10-05-67	0925	5050	5050					<2
11-09-67	1610	5050	5v50					<2
12-14-67	0930	5050	5v50					</td
01-09-68	0900	5050	5050					<2
02-08-68	0720	5050	5050					<2
03-13-68	1345	5050	5v50					</td
04-03-68	0735	5050	5v50					<2
06-13-68	1430	5050	5050					<2
08-15-68	0930	5050	5v50				0.00	1114
STATION	1 NO.	Y61225.0	O SANT	A AMA RIVER N	EAR NORCO)		7-
10-05-67	1225	5050	5v50	~ *	0 • 44		12.00	4
11-09-67	1820	5050	5050		0.84		13.00	3
12-14-67	1415	5050	5050		1.70		10.00	21
01-09-68	1130	5050	5050		1.50		18.50	15
02-08-68	0950	5050	5v50	••	1.56		11.50	12
03-13-68	0810	5050	5050		1.24		9.50	41
04-03-68	1020	5050	5050		1.12		7.30	67
05-02-68	1145	5050	5050		1 • 0 0		11.00	
06-17-68	1350	5050	5050	***	1.12		10.00	<:1

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER

SOUTHERN CALIFORNIA

	DATE	TIME	SAMPLER	LAB	COLIFORM (MPN/ML)	MARS (MG/L)	ARSENIC (MG/L)		TURBIDITY (UNIT).
	STATIO	N NO.	¥61225.0	O SANTA	A ANA RIVER	NEAR NORCO			
7	'-2 5-68	1045	5050	5v50		1.04			
	STATIO	N NO.	Y61400.0	O SANTA	A ANA RIVER	NEAR ARLIN	GTON		
0	-05-67	1200	5050	5050		1.40		15.00	50
1	-09-67	1745	5050	5050	•	2.10		18.00	50
2	2-14-67	1330	5050	5050		1.40		11.30	85
1	-09-68	1100	5050	5050	••	1.30		15.00	300
2	2-08-68	0915	5050	5050		0.60		5.50	60
3	-13-68	0825	5050	5050		0.92		6.00	210
4	-03-68	0950	5050	5050		0.74		5.80	560
5	-02-68	1115	5050	5050		0.70		9.50	
d 6	-17-68	1350	5050	5050		1.84		19.00	70
7	'-2 5-68	1000	5050	5050		1.10		10.00	55
- 8	3-15-68	1200	5050	5v50				9.60	
9	-17-68	1250	5050	5050				10.00	51
ł	STATIO	N NO.	¥71145.0	OO SAN!	rimoteo cre	EK AT WATER	MAN AVE.	NEAR SAN BERNAR	DINO
ŀ	-09-67	1630	5050	5050					<25
2111	1-09-68	0945	5050	5050			••		165
1	-03-68	0915	5050	5050					460
	STATIO	N NO.	¥82200.0	OO LAKE	ELSINORE A	T STATE PAR	RK		
447	1-25-68	1245	5050	5050					190
6	3-07-68	1520	5050	5050	~ ~				800
.19	9-07-68	1040	5050	5050					550

TABLE D-3

MISCELLANEOUS CONSTITUENTS IN SURFACE WATER
SOUTHERN CALIFORNIA

DATE TIM	E SAMPLER		LIFORM PN/ML)	MABS (MG/L)	ARSENIC (MG/L)	PHUSPHATE (MG/L)	TURBIDIT (UNIT)
STATION NO	. X21350.00	SANTA M	ARGARITA RI	VER NEAR	FALLBROOK		
11-01-67 083	0 5050 5	5v50		es es			<25
01-25-68 120	0 5050 5	5050					<25
03-07-68 135	5 5050 5	5050					<25
09-07-68 115	5 5050 5	5 0 50					<25
STATION NO	. X43400.05	ESCONDI	DO CREEK NE	EAR HARMOI	NY GROVE		- 4
11-01-67 101	5 5050 5	5v50					<20
01-25-68 094	5 5050 5	5050					<5,
03-07-68 114	5 5050 5	5050					4!
09-07-68 133	0 5050 5	5050				en en	<21
STATION NO	. X51230.30	SAN DIE	GO RIVER A	OLD MISS	SION DAM		- 4
01-25-68 084	5 5050 5	5050				-	4
03-06-68 134	5 5050 5	5050					42
STATION NO	. x62020.05	SPRING	VALLEY CREE	EK NEAR L	A PRESSA		
11-01-67 122	0 5050 5	5050			~-		<2
01-24-68 161	5 5050 5	5050					<2
03-07-68 081	0 5050 5	5050	••				<2

Appendix E
GROUND WATER QUALITY

Appendix E

GROUND WATER QUALITY

This appendix presents ground water quality data collected during the period from October 1, 1967 through September 30, 1968. The data were collected from a number of major ground water sources in Southern California in cooperation with other state, local, and federal agencies. Approximately 1500 wells were sampled during the 1968 water year.

At the time of field sampling, a temperature measurement is normally made. Comments on current conditions are noted in field books which are available in the files of the Department of Water Resources, Southern District.

Laboratory analyses of ground waters were performed in accordance with "Standard Methods for the Examination of Water and Waste Water", prepared and published jointly by the American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 12th Edition, 1965. In some cases, the methods used were those presented in the U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analysis of Water Samples", 1960. Trace element analyses were determined by Gordon Bradford, University of California at Riverside, using a Jarrel-Ash direct reading emission spectrograph and by United States Geological Survey using a Jarrel-Ash 2.4 meter Wadsworth grating spectrograph.

Two numbering systems are used by the Department to facilitate processing of water quality data. The two systems are the Areal Designation and the State Well Numbering systems as described below.

The Areal Designation System comprises a series of major drainage provinces which are further subdivided into hydrologic units, hydrologic subunits, and hydrologic subareas. A coding system of the form U-04.A2 has been developed as follows:

Figures E-1 through E-6 show the location and code number of the hydrologic subdivisions in each drainage province.

The State Well Numbering System is based on township, range, and section subdivision of the Public Land Survey. The number of a well, assigned in accordance with this system, is referred to as the State Well Number, as illustrated below:

Township	10N /	11E -	08	K	04	S
Range						
Section_						1
Tract						
Sequence Number						
Base and Meridian						

This number identifies and locates the well. In the example, the well is in Township 10 North, Range 11 East, Tract K of Section 8, located in the San Bernardino Base and Meridian. A section is divided into 40-acre tracts as follows:

D	С	В	A
E	F	G	H
М	L	K	J
N	Р	ବ	R

Sequence numbers in a tract are generally assigned in chronological order. The example designates the fourth well to be assigned a number in Tract K.

FIGURES

AREAL DESIGNATIONS HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

CENTRAL COASTAL DRAINAGE PROVINCE

T-09.00 SALINAS HYDROLOGIC UNIT T-09.H0 Paso Robles Hydrologic Subunit T-09.I0 Pozo Hydrologic Subunit
T-10.00 SAN LUIS OBISPO HYDROLOGIC UNIT T-10.A0 Cambria Hydrologic Subunit T-10.A1 San Carpoforo Hydrologic Subarea T-10.A2 Arroyo De La Cruz Hydrologic Subarea T-10.A3 San Simeon Hydrologic Subarea T-10.A4 Santa Rosa Hydrologic Subarea T-10.A5 Villa Hydrologic Subarea T-10.A6 Cayucos Hydrologic Subarea T-10.A7 Old Hydrologic Subarea T-10.A8 Toro Hydrologic Subarea T-10.B0 San Luis Obispo Hydrologic Subarea T-10.B1 Morro Hydrologic Subarea T-10.B2 Chorro Hydrologic Subarea T-10.B3 Los Osos Hydrologic Subarea T-10.B4 San Luis Obispo Creek Hydrologic Subarea T-10.B5 Point San Luis Hydrologic Subarea T-10.C0 Arroyo Grande Hydrologic Subarea Nipomo Mesa Hydrologic Subarea
T-11.00 CARRIZO PLAIN HYDROLOGIC UNIT
T-12.00 SANTA MARIA-CUYAMA HYDROLOGIC UNIT T-12.A0 Santa Maria Hydrologic Subunit T-12.B0 Sisquoc Hydrologic Subunit Cuyama Valley Hydrologic Subunit
T-13.00 SAN ANTONIO HYDROLOGIC UNIT
T-14.00 SANTA YNEZ HYDROLOGIC UNIT T-14.A0 Lompoc Hydrologic Subunit T-14.E0 Santa Rita Hydrologic Subunit T-14.C0 Buellton Hydrologic Subunit T-14.D0 Santa Ynez Hydrologic Subunit Headwater Hydrologic Subunit
T-15.00 SANTA BARBARA HYDROLOGIC UNIT T-15.A0 Arguello Hydrologic Subunit T-15.C0 South Coast Hydrologic Subunit T-15.C1 Goleta Hydrologic Subarea T-15.C2 Santa Barbara Hydrologic Subarea T-15.C3 Montecito Hydrologic Subarea T-15.C4 Carpinteria Hydrologic Subarea

AREAL DESIGNATIONS HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

LOS ANGELES DRAINAGE PROVINCE

U-01.00	RINCON CREEK HYDROLOGIC UNIT	U=04.C0	Point Dume Hydrologic Subunit Corral Canyon Hydrologic Subarea
U=92.00	VENTURA RIVER HYDROLOGIC UNIT	U=04.C1	
U=02 A0	Lower Ventura River Hydrologic Subunit	U=04.C2	Solstice Canyon Hydrologic Subarea
U=02.B0	Upper Ventura River Hydrologic Subunit	U-94.C3 U-04 C4	Latigo Canyon Hydrologic Subarea
U=02 C0	Ojai Hydrologic Subunit	U=04 C4	Escondido Canyon Hydrologic Subarea Ramera Canyon Hydrologic Subarea
U-02.C1	Upper Ojai Hydrologic Subarea		* * *
U=02.C2		U=04.C6 U=04.C7	Zuma Canyon Hydrologic Subarea
0-02.02	Ojai flydiologic Submed	U=04.C7	Trancas Canyon Hydrologic Subarea
U = 0.3.00	SANTA CLARA-CALLEGUAS HYDROLOGIC UNIT	U=04.170	Camarillo Hydrologic Subunit
U=0.3 A0	Oxnard Plain Hydrologic Subunit	U=04.D2	Encinal Canyon Hydrologic Subarea Los Alisos Canyon Hydrologic Subarea
U-93 A1	Oxnard Hydrologic Subarea	U=04.772 U=04 D3	Nicholas Canyon Hydrologic Subarea
U=03.A2	Pleasant Valley Hydrologic Subarea	U=04.D4	Arroyo Sequit Hydrologic Subarea
U = 0.3 B0	Santa Paula Hydrologic Subunit	U=04.174	
U-03 BI	Santa Paula Hydrologic Subarea		Little Sycamore Canyon Hydrologic Subarea
U-03.B2	Sisar Hydrologic Subarea	U=04.D6	Deer Canyon Hydrologic Subarea
U = 0.3.C0	Sespe Hydrologic Subunit	U=04.D7	Big Sycamore Canyon Hydrologic Subarea
U-93 CI	Fillmore Hydrologic Subarea	U-04.D8	La Jolla Valley Hydrologic Subarea
U-03 C2	Seste Hydrologic Subarea	U-05.00	LOS ANGELES-SAN GABRIEL RIVER HYDROLOGIC UNIT
U = 0.3 100	Piru Hydrologic Subunit	U-05.A0	Coastal Plain of Los Angeles County Hydrologic Subunit
U-03.DI	Piru Hydrologic Subarea	U-05.A1	Palos Verdes Hydrologic Subarea
U-03 D2	Upper Piru Hydrologic Subarea	U-05.A2	West Coast Hydrologic Subarea
U-03.D3	Hungry Valley Hydrologic Subarea	U-05.A3	Santa Monica Hydrologic Subarea
U-03 D4	Stauffer Hydrologic Subarea	U-05 A4	Hollywood Hydrologic Subarea
U = 0.3 E 0	Upper Santa Clara River Hydrologic Subunit	U-05.A5	Central Hydrologic Subarea
U-03.E1	Eastern Hydrologic Subarea	U-05.B0	San Fernando Hydrologic Subunit
U-03 E2	Bouquet Hydrologic Subarea	U-05.B1	San Fernando Hydrologic Subarea
U-03 E3		U-05.B2	Sylmar Hydrologic Subarea
U-03.E4	Sierra Pelona Hydrologic Subarea	U-05.B3	Tujunga Hydrologic Subarea
U=03.E5	Acton Hydrologic Subarea	U-05.B4	Verdugo Hydrologic Subarea
U=03 F0	Calleguas-Conejo Hydrologic Subunit	U-05.B5	Eagle Rock Hydrologic Subarea
U-03 F1	West Las Posas Hydrologic Subarea	U-05.C0	Raymond Hydrologic Subunit
U=03.F2	East Las Posas Hydrologic Subarea	U-05.C1	Pasadena Hydrologic Subarea
U-03.F3	Arroyo Santa Rosa Hydrologic Subarea	U-05.C2	Monk Hill Hydrologic Subarea
U-03.F4	Conejo Valley Hydrologic Subarea	U-05.C3	Santa Anita Hydrologic Subarea
U-03.F5	Tierra Rejada Valley Hydrologic Subarea	U-05.D0	San Gabriel Valley Hydrologic Subunit
U-03.F6	Gillibrand Hydrologic Subarea	U-05.D1	Main San Gabriel Hydrologic Subarea
U = 03.F7	Simi Valley Hydrologic Subarea	U=05.D2	Lower Canyon Hydrologic Subarea
U=0.3, F8	Thousand Oaks Hydrologic Subarea	U-05.D3	Upper Canyon Hydrologic Subarea
11 01 00	MALIBU HYDROLOGIC UNIT	U-05.D4	Foothill Hydrologic Subarea
U=04.00 U=04.A0	Topanga Hydrologic Subunit	U-05.E0	Spadra Hydrologic Subunit
U=04.AU	· · · · · · · · · · · · · · · · · · ·	U-05.E1	Spadra Hydrologic Subarea
U=04.A1		U-05.E2	Pomona Hydrologic Subarea
U=04.A3	• • • • • • • • • • • • • • • • • • • •	U-05.E3	Live Oak Hydrologic Subarea
U=04.A3		U-05 F0	Anaheim Hydrologic Subunit
U=04 A5		U-05.F1	Anaheim Hydrologic Subarea
U-04 A6		U-05.F2	La Habra Hydrologic Subarea
U=04 B0	.,	U-05.F3	Yorba Linda Hydrologic Subarea
	Malibu Creek Hydrologic Subunit Malibu Creek Hydrologic Subarea		
U=04.B1			
U=04.B3 U=04.B3	**		
U=04,B			
U=04.B			
U=04.B			
0-04.130	Sherwood Mydiologic Subated		

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS LOS ANGELES DRAINAGE PROVINCE (U)

AREAL DESIGNATIONS HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

LAHONTAN DRAINAGE PROVINCE

·W-01.00	MONO HYDROLOGIC UNIT	W-20.00 PANAMINT HYDROLOGIC UNIT
		W-20.A0 Wingate Pass Hydrologic Subunit
W-02.00	ADOBE HYDROLOGIC UNIT	W-20.B0 Wild Rose Hydrologic Subunit W-20.B1 White Sage Hydrologic Subarea
W-03.00	OWENS HYDROLOGIC UNIT	W-20.B2 Wild Rose Hydrologic Subarea
W-03.A0	Long Hydrologic Subunit	W-20.C0 Lee Flat Hydrologic Subunit
W-03.B0 W-03.C0	Upper Öwens Hydrologic Subunit Lower Owens Hydrologic Subunit	W-20.D0 Santa Rosa Flat Hydrologic Subunit W-20.D1 Santa Rosa Flat Hydrologic Subarea
W-03.C0 W-03.D0	Centennial Hydrologic Subunit	W-20.D2 Rainbow Hydrologic Subarea
65126		W-20.D3 Silver Dollar Hydrologic Subarea
W-04.00	FISH LAKE HYDROLOGIC UNIT	W-20.E0 Darwin Hydrologic Subunit
W-05.00	DEEP SPRINGS HYDROLOGIC UNIT	W-20.F0 Panamint Hydrologic Subunit
W-0.7.00	1	W-20.G0 Brown Hydrologic Subunit W-20.H0 Robbers Hydrologic Subunit
W-06.00	EUREKA HYDROLOGIC UNIT	W-20.110 Robbers Hydrologic basanic
W-06.A0	Marble Bath Hydrologic Subunit	W-21.00 SEARLES HYDROLOGIC UNIT
W-06.B0	Eureka Hydrologic Subunit	W-21.A0 Searles Hydrologic Subunit
W-07.00	SALINE HYDROLOGIC UNIT	W-21.B0 Salt Wells Hydrologic Subunit W-21.C0 Pilot Knob Hydrologic Subunit
W-07.A0	Saline Hydrologic Subunit	W=21.Co
W-07.B0	Cameo Hydrologic Subunit	W-22.00 COSO HYDROLOGIC UNIT
W-08.00	RACE TRACK HYDROLOGIC UNIT	W-22.A0 Wild Horse Hydrologic Subunit
W-08.A0	Race Track Hydrologic Subunit	W-22.B0 Coso Hydrologic Subunit
W = 08.B0	Hidden Valley Hydrologic Subunit	W-23.00 UPPER CACTUS HYDROLOGIC UNIT
W-08.C0	Ulida Hydrologic Subunit	
W-08.D0	Sand Flat Hydrologic Subunit	W-24.00 INDIAN WELLS HYDROLOGIC UNIT W-24.A0 Rose Hydrologic Subunit
W-09.00	AMARGOSA HYDROLOGIC UNIT	W-24.A0 Rose Hydrologic Subunit W-24.B0 Indian Wells Hydrologic Subunit
W-09.A0	Death Valley Hydrologic Subunit	
W-09.A		W-25.00 FREMONT HYDROLOGIC UNIT
W-09.A W-09.A		W-25.A0 Dove Springs Hydrologic Subunit W-25.B0 Kelso Landis Hydrologic Subunit
W-09.B0	Valjean Hydrologic Subunit	W-25.B0 Kelso Landis Hydrologic Subunit W-25.C0 East Tehachapi Hydrologic Subunit
W-09.B		W-25.D0 Koehn Hydrologic Subunit
W-09.B		
W-09.B		W-26.00 ANTELOPE HYDROLOGIC UNIT W-26.A0 Antelope Hydrologic Subunit
W-09.B W-09.C0	Shadow Hydrologic Subarea Furnace Creek Hydrologic Subunit	W-26.A0 Antelope Hydrologic Subunit W-26.A1 Chafee Hydrologic Subarea
W-09.C		W-26.A2 Gloster Hydrologic Subarea
W-09.C		W-26.A3 Willow Springs Hydrologic Subarea
W-09.D0	Amargosa Hydrologic Subunit	W-26.A4 Neenach Hydrologic Subarea
W-09.D W-09.D		W-26.A5 Lancaster Hydrologic Şubarea W-26.A6 North Muroc Hydrologic Subarea
W-09.D		W-26.A7 Buttes Hydrologic Subarea
W - 09.D		W-26.A8 Rock Creek Hydrologic Subarea
W-10.00	PAHRUMP HYDROLOGIC UNIT	W-27.00 CUDDEBACK HYDROLOGIC UNIT
W-11.00	MESQUITE HYDROLOGIC UNIT	
		W-28.00 MOJAVE HYDROLOGIC UNIT W-28.A0 El Mirage Hydrologic Subunit
W-12.00	IVANPAH HYDROLOGIC UNIT	W-28.B0 Upper Mojave Hydrologic Subunit
W-13.00	OWLSHEAD HYDROLOGIC UNIT	W-28.CO Middle Mojave Hydrologic Subunit
W-13.A0	Lost Lake Hydrologic Subunit	W-28.D0 Harper Hydrologic Subunit W-28.D1 Grass Valley Hydrologic Subarea
W-13.B0	Owlshead Hydrologic Subunit	W-28.D2 Harper Hydrologic Subarea
W-14.00	LEACH HYDROLOGIC UNIT	W-28.E0 Lower Mojave Hydrologic Subunit
		W-28.F0 Troy Hydrologic Subunit W-28.F1 Kane Wash Hydrologic Subarea
W-15.00 W-15.A0	NELSON HYDROLOGIC UNIT McLean Hydrologic Subunit	W-28.F2 Troy Hydrologic Subarea
W-15.B0	Nelson Hydrologic Subunit	W-28.G0 Afton Hydrologic Subunit
		W-28.G1 Caves Hydrologic Subarea
W-16.00	BICYCLE HYDROLOGIC UNIT	W-28.G2 Cronese Hydrologic Subarea W-28.G3 Langford Hydrologic Subarea
W - 17.00	GOLDSTONE HYDROLOGIC UNIT	W-28.HO Baker Hydrologic Subunit
W-18.00	COYOTE HYDROLOGIC UNIT	W-28.H1 Silver Lake Hydrologic Subarea W-28.H2 Soda Lake Hydrologic Subarea
W-19.00	SUPERIOR HYDROLOGIC UNIT	W-28.IO Kelso Hydrologic Subunit
12.00	JOI BRIGHT FILE BRIGHT STO CHILL	W-29.00 BROADWELL HYDROLOGIC UNIT

AREAL DESIGNATIONS

HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

COLORADO RIVER BASIN DRAINAGE PROVINCE

X - 1.00	LUCERNE HYDROLOGIC UNIT	X-19.00 WHITEWATER HYDROLOGIC UNIT
X - 2.00	JOHNSON HYDROLOGIC UNIT	X-19.A0 Morongo Hydrologic Subunit X-19.B0 Shavers Hydrologic Subunit
X-3.00	BESSEMER HYDROLOGIC UNIT	X-19.C0 San Gorgonio Hydrologic Subunit
X-4.00	MEANS HYDROLOGIC UNIT	X-19.C1 Beaumont Hydrologic Subarea
A-4.00		X-19.C2 San Gorgonio Hydrologic Subarea X-19.D0 Coachella Hydrologic Subunit
X - 5.00	EMERSON HYDROLOGIC UNIT	X-19.D1 Gamet Hill Hydrologic Subarea
X-6.00	LAVIC HYDROLOGIC UNIT	X-19.D2 Mission Creek Hydrologic Subarea
X-7.00	DEADMAN HYDROLOGIC UNIT	X-19.D3 Miracle Hill Hydrologic Subarea X-19.D4 Sky Valley Hydrologic Subarea
	YOUNG TREE INDEALOGIC UNIT	X-19.D5 Fargo Canyon Hydrologic Subarea
X-8.00	JOSHUA TREE HYDROLOGIC UNIT Warren Hydrologic Subunit	X-19.D6 Thousand Palms Hydrologic Subarea
X-8.A0 X-8.B0	Copper Mountain Hydrologic Subunit	X-19.D7 Indio Hydrologic Subarea
X-9.00	DALE HYDROLOGIC UNIT	X-20.00 CLARK HYDROLOGIC UNIT
X-9. A0	Twentynine Palms Hydrologic Subunit	X-21.00 WEST SALTON SEA HYDROLOGIC UNIT
X - 9.B0	Dale Hydrologic Subunit	X-22.00 ANZA-BORREGO HYDROLOGIC UNIT
X - 10.00	BRISTOL HYDROLOGIC UNIT	X-22.A0 Borrego Hydrologic Subunit
X-10.A0	Bristol Hydrologic Subunit	X-22. A1 Terwilliger Hydrologic Subarea
X - 10.B0	Fenner Hydrologic Subunit	X-22.A2 Collins Hydrologic Subarea
V 11 00	CADIZ HYDROLOGIC UNIT	X-22. A3 Borrego Hydrologic Subarea
X-11.00	CADIZ HYDROLOGIC ON I	X-22.B0 Ocotillo-Lower San Felipe Hydrologic Sub
X-12.00	WARD HYDROLOGIC UNIT	X-22.C0 Mescal Bajada Hydrologic Subunit
X-13.00	PIUTE HYDROLOGIC UNIT	X-22.D0 San Felipe Hydrologic Subunit
X-13. A0	Lanfair Hydrologic Subunit	X-22.E0 Mason Hydrologic Subunit
X-13.B0	Piute Hydrologic Subunit	X-22.F0 Vallecito-Carrizo Hydrologic Subunit
X-13.C0	Needles Hydrologic Subunit	X-22.F1 Carrizo Hydrologic Subarea
	•	X-22.F2 Vallecito Hydrologic Subarea X-22.F3 Canebrake Hydrologic Subarea
X - 14.00	CHEMEHUEVIS HYDROLOGIC UNIT	X-22.F3 Canebrake Hydrologic Subarea X-22.G0 Jacumba Hydrologic Subunit
X-15.00	COLORADO HYDROLOGIC UNIT	X-22.G1 McCain Hydrologic Subarea
X-15. A0	Vidal Hydrologic Subunit	X-22.G2 Jacumba Hydrologic Subarea
X-15.B0	Big Wash Hydrologic Subunit	•
X-15.C0	Quien Sabe Hydrologic Subunit	X-23.00 IMPERIAL HYDROLOGIC UNIT
X - 15.D0	Palo Verde Hydrologic Subunit	X-23.A0 Imperial Hydrologic Subunit
X-15.E0	Arroyo Seco Hydrologic Subunit	X-23.B% Coyote Wells Hydrologic Subunit
X - 16.00	RICE HYDROLOGIC UNIT	X-24.00 DAVIES HYDROLOGIC UNIT
X - 17.00	CHUCKWALLA HYDROLOGIC UNIT	X-25.00 EAST SALTON SEA HYDROLOGIC UNIT
X - 17.A0	Ford Hydrologic Subunit	X-26.00 AMOS-OGILBY HYDROLOGIC UNIT
X-17.B0	Palen Hydrologic Subunit	
X - 17.C0	Pinto Hydrologic Subunit	X-27.00 YUMA HYDROLOGIC UNIT
X-17.D0	Pleasant Hydrologic Subunit	
X-18.00	HAYFIELD HYDROLOGIC UNIT	

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS COLORADO RIVER BASIN DRAINAGE PROVINCE (X)

AREAL DESIGNATIONS HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

SANTA ANA DRAINAGE PROVINCE

V 01.00 CAN	TA ANA DIUPD HUDDOLOGIO HIME
	TA ANA RIVER HYDROLOGIC UNIT
	Lower Santa Ana River Hydrologic Subunit
Y-01.A1	East Coastal Plain Hydrologic Subarea
Y-01.A2	Santiago Hydrologic Subarea
Y-01.A3	Santa Ana Narrows Hydrologic Subarea
	liddle Santa Ana River Hydrologic Subunit
Y-01.B1	Chino Hydrologic Subarea
Y-01.B2	Harrison Hydrologic Subarea
Y-01.B3	Claremont Heights Hydrologic Subarea
Y-01.B4	Cucamonga Hydrologic Subarea
Y-01.B5	Temescal Hydrologic Subarea
Y-01.B6	Arlington Hydrologic Subarea
Y-01.B7	Riverside Hydrologic Subarea
Y-01.C0 L	ake Methews Hydrologic Subunit
Y-01.C1	Coldwater Hydrologic Subarea
Y-01.C2	Bedford Hydrologic Subarea
Y-01.C3	Cajalco Hydrologic Subarea
Y-01.C4	Lee Lake Hydrologic Subarea
Y-01.C5	Terra Cotta Hydrologic Subarea
	• 5
	Colton—Rialto Hydrologic Subunit
Y-01.D1	Upper Lytle Hydrologic Subarea
Y-01.D2	Lower Lytle Hydrologic Subarea
Y-01.D3	Upper Colton-Rialto Hydrologic Subarea
Y-01.D4	Colton-Rialto Hydrologic Subarea
Y-01.D5	Reche Hydrologic Subarea
Y-01.E0 U	pper Santa Ana River Hydrologic Subunit
Y-01.E1	Cajon Hydrologic Subarea
Y-01.E2	Bunker Hill Hydrologic Subarea
Y-01.E3	Redlands Hydrologic Subarea
Y-01.E4	Mentone Hydrologic Subarea
Y-01.E5	Reservoir Hydrologic Subarea
Y-01.E6	Crafton Hydrologic Subarea
Y-01.E7	Santa Ana Canyon Hydrologic Subarea
Y-01.E8	Mill Creek Hydrologic Subarea
Y-01.E9	Sycamore Hydrologic Subarea
	an Timoteo Hydrologic Subunit
Y-01.F1	Yucaipa Hydrologic Subarea
Y-01.F2	San Timoteo Hydrologic Subarea
Y-01.F3	Cherry Valley Hydrologic Subarea
Y-01.F4	Chicken Hill Hydrologic Subarea
Y-01.F5	Gateway Hydrologic Subarea
Y-01.F6	Oak Glen Hydrologic Subarea
Y-01.F7	South Mesa Hydrologic Subarea
Y-01.F8	Triple Falls Creek Hydrologic Subarea
Y-01.F9	Nobie Creek Hydrologic Subarea
Y-01.G0 S	an Bernardino Mountain Hydrologic Subunit
Y-01.G1	Bear Valley Hydrologic Subarea
Y-01.G2	Seven Oaks Hydrologic Subarea
Y-01.G3	Baldwin Hydrologic Subarea
	JACINTO VALLEY HYDROLOGIC UNIT
	erris Hydrologic Subunit
Y - 02.A1	Perris Valley Hydrologic Subarea
Y-02.A2	Menifee Hydrologic Subarea
Y-02.A3	Winchester Hydrologic Subarea
Y-02.A4	Lakeview Hydrologic Subarea
Y-02.A5	Hemet Hydrologic Subarea
	an Jacinto Hydrologic Subunit
Y-02.B1	San Jacinto Hydrologic Subarea
Y-02.B2	Hemet Lake Hydrologic Subarea
Y-02.B3	Bautista Hydrologic Subarea
	lsinore Hydrologic Subunit
Y-02.C1	Elsinore Hydrologic Subarea
Y-02.C2	Railroad Hydrologic Subarea

DEPARTMENT OF WATER RESOURCES, SOUTHERN DISTRICT, 1969

AREAL DESIGNATIONS HYDROLOGIC UNITS SUBUNITS AND SUBAREAS

SAN DIEGO DRAINAGE PROVINCE

Z-01.00 Z-01.A0 Z-01.A1 Z-01.A2 Z-01.A3 Z-01.B0 Z-01.C0 Z-01.E0 Z-01.E1 Z-01.E2	Laguna Hydrologic Subarea Aliso Hydrologic Subarea Dana Point Hydrologic Subarea San Juan Hydrologic Subunit San Clemente Hydrologic Subunit San Mateo Hydrologic Subunit San Onofre Hydrologic Subunit San Onofre Hydrologic Subarea Las Pulgas Hydrologic Subarea	Z-05.D0 Z-05.D1 Z-05.D2 Z-05.D3 Z-05.D4 Z-05.D5 Z-05.D6 Z-05.D6 Z-05.D7 Z-05.E1 Z-05.E2 Z-05.E3 Z-05.E4 Santa Maria Valley Hydrologic Suburea Lower Hatfield Hydrologic Subarea Upper Hatfield Hydrologic Subarea Upper Hatfield Hydrologic Subarea Upper Hatfield Hydrologic Subarea Upper Hatfield Hydrologic Subarea Hydrologic Subarea Santa Teresa Hydrologic Subarea West Santa Teresa Hydrologic Subarea Santa Ysabel Hydrologic Subarea Pamo Hydrologic Subarea Sutherland Hydrologic Subarea Santa Ysabel Hydrologic Subarea
Z-02.00 Z-02.A0 Z-02.A1 Z-02.A2 Z-02.A3 Z-02.B0 Z-02.81	Chappo Hydrologic Subarea Upper Ysidora Hydrologic Subarea De Luz Hydrologic Subunit	Z-06.00 PENASQUITOS HYDROLOGIC UNIT Z-06.A0 Soledad Hydrologic Subunit Z-06.B0 Poway Hydrologic Subunit Z-06.C0 Scripps Hydrologic Subunit Z-06.D0 Miramar Hydrologic Subunit Z-06.E0 Tecolote Hydrologic Subunit
Z-02.B2 Z-02.B3 Z-02.C0 Z-02.C1 Z-02.C2 Z-02.C3 Z-02.C4 Z-02.C5 Z-02.D0 Z-02.D0 Z-02.D1 Z-02.D2 Z-02.D4 Z-02.E1 Z-02.E2 Z-02.F1 Z-02.F1	Gavilan Hydrologic Subarea Vallecitos Hydrologic Subarea Murrieta Hydrologic Subarea Murrieta Hydrologic Subarea Murrieta Hydrologic Subarea French Hydrologic Subarea Lower Domenigoni Hydrologic Subarea Domenigoni Hydrologic Subarea Diamond Hydrologic Subarea Auld Hydrologic Subarea Auld Hydrologic Subarea Gertrudis Hydrologic Subarea Lower Tucalota Hydrologic Subarea Lower Tucalota Subarea Pechanga Hydrologic Subarea Pechanga Hydrologic Subarea Pechanga Hydrologic Subarea Wilson Hydrologic Subarea Wilson Hydrologic Subarea Wilson Hydrologic Subunit Lancaster Valley Hydrologic Subarea	Z-07.B0 San Vicente Hydrologic Subunit Z-07.B1 San Vicente Hydrologic Subarea Z-07.B2 Kimball Hydrologic Subarea Gower Hydrologic Subarea Barona Hydrologic Subarea El Capitan Hydrologic Subarea Z-07.C1 El Capitan Hydrologic Subarea Glen Oaks Hydrologic Subarea Alpine Hydrologic Subarea Cuyamaca Hydrologic Subunit Z-07.D1 Inaja Hydrologic Subarea Spencer Hydrologic Subarea
Z-02.F2 Z-02.F3 Z-02.G0 Z-02.G1 Z-02.G2 Z-02.G3 Z-02.G4 Z-02.H0 Z-02.H1	Lewis Hydrologic Subarea Wilson Hydrologic Subarea Anza Hydrologic Subunit Lower Coahuila Hydrologic Subarea Upper Coahuila Hydrologic Subarea Anza Hydrologic Subarea Burnt Hydrologic Subarea Aguanga Hydrologic Subunit Vail Hydrologic Subarea	Z-07.D3 Cuyamaca Hydrologic Subarea Z-08.00 CORONADO HYDROLOGIC UNIT Z-08.A0 Point Loma Hydrologic Subunit Z-08.B1 San Diego Mesa Hydrologic Subarea Lindbergh Hydrologic Subarea Z-08.C0 Paradise Hydrologic Subunit Z-08.C1 El Toyan Hydrologic Subarea
Z-02.H1 Z-02.H2 Z-02.H3 Z-02.H4 Z-02.10 Z-02.11 Z-02.12 Z-02.13 Z-02.14	Devils Hole Hydrologic Subarea Redec Hydrologic Subarea Aguanga Hydrologic Subarea Oakgrove Hydrologic Subunit Lower Culp Hydrologic Subarea Oakgrove Hydrologic Subarea Dodge Hydrologic Subarea Chihuahua Hydrologic Subarea	Z-08.C2 Paradise Hydrologic Subarea Z-09.00 SWEETWATER HYDROLOGIC UNIT Z-09.A1 Lower Sweetwater Hydrologic Subarea Z-09.A1 Telegraph Hydrologic Subarea Sweetwater Hydrologic Subarea Middle Sweetwater Hydrologic Subarea Z-09.B1 Jamacha Hydrologic Subarea
Z-03.00 Z-03.A0 Z-03.A1 Z-03.A2 Z-03.A3 Z-03.A4	SAN LUIS REY HYDROLOGIC UNIT Bonsall Hydrologic Subunit Mission Hydrologic Subarea Bonsall Hydrologic Subarea Moosa Hydrologic Subarea Valley Center Hydrologic Subarea	Z-09.B2 Hillsdale Hydrologic Subarea Z-09.B3 Dehesa Hydrologic Subarea Z-09.B5 Galloway Hydrologic Subarea Z-09.B6 Alpine Heights Hydrologic Subarea Z-09.C0 Upper Sweetwater Hydrologic Subarea Loveland Hydrologic Subarea
Z-03.A5 Z-03.A6 Z-03.B0 Z-03.B1 Z-03.B2 Z-03.C0	Woods Hydrologic Subarea Rincon Hydrologic Subarea Monserate Hydrologic Subarea Pala Hydrologic Subarea Pauma Hydrologic Subarea San Luis Rey Hydrologic Subarea Warner Hydrologic Subunit	Z-09.C2 Japatul Hydrologic Subarea Z-09.C3 Viejas Hydrologic Subarea Z-09.C4 Descanso Hydrologic Subarea Z-09.C5 Garnet Hydrologic Subarea Z-10.00 OTAY HYPROLOGIC UNIT Z-10.A0 Coronado Hydrologic Subunit
Z-03.C1 Z-03.C2 Z-04.00 Z-04.A0 Z-04.B0	Warner Hydrologic Subarea Combs Hydrologic Subarea CARLSBAD HYDROLOGIC UNIT Loma Alta Hydrologic Subunit Vista Hydrologic Subunit	Z-10.B0 Z-10.C0 Dulzura Hydrologic Subunit Dulzura Hydrologic Subunit Savage Hydrologic Subarea Proctor Hydrologic Subarea Z-10.C3 Jamul Hydrologic Subarea Z-10.C4 Lee Hydrologic Subarea
Z-04.B1 Z-04.B2 Z-04.C0 Z-04.C1 Z-04.C2 Z-04.D0 Z-04.E0	Carlsbad Hydrologic Subarea Vista Hydrologic Subarea Agua Hedionda Hydrologic Sununit Agua Hedionda Hydrologic Subarea Buena Hydrologic Subarea Encinas Hydrologic Subunit San Marcos Hydrologic Subunit	Z-10.C5 Lyon Hydrologic Subarea Z-10.C6 Dulzura Hydrologic Subarea Z-10.C7 Engineer Springs Hydrologic Subarea Z-11.00 TIA JUANA HYDROLOGIC UNIT Z-11.A0 Tia Juana Hydrologic Subarea Z-11.A1 Tia Juana Hydrologic Subarea
Z-04.E1 Z-04.E2 Z-04.E3 Z-04.F0 Z-04.F1 Z-04.F2 Z-04.F3	Batiquitos Hydrologic Subarea San Marcos Hydrologic Subarea Twin Oaks Hydrologic Subarea Escondido Hydrologic Subunit San Elijo Hydrologic Subarea Escondido Hydrologic Subarea Lake Wohlford Hydrologic Subarea	Z-11.A2 Z-11.B0 Z-11.B1 Z-11.B1 Z-11.B2 Z-11.B2 Z-11.B3 Z-11.B4 Z-11.B5 Z-11.C0 San Ysidro Hydrologic Subarea Potrero Hydrologic Subarea Bee Canyon Hydrologic Subarea Barrett Hydrologic Subarea Potrero Hydrologic Subarea Potrero Hydrologic Subarea Barrett Lake Hydrologic Subarea
Z-05.00 S Z-05.A0 Z-05.A1 Z-05.B2 Z-05.B1 Z-05.B1 Z-05.B2 Z-05.B3 Z-05.B3 Z-05.C1 Z-05.C1 Z-05.C2 Z-05.C3 Z-05.C4 Z-05.C5 Z-05.C5 Z-05.C6	AN DIEGUITO HYDROLOGIC UNIT San Dieguito Hydrologic Subunit San Dieguito Hydrologic Subarea La Jolla 'lydrologic Subarea La Jolla 'lydrologic Subarea Hodges Hydrologic Subunit Hodges Hydrologic Subarea Green Hydrologic Subarea Felicita Hydrologic Subarea Bear Hydrologic Subarea San Pasqual Hydrologic Subunit Highland Hydrologic Subarea San Pasqual Hydrologic Subarea Reed Ilydrologic Subarea Reed Ilydrologic Subarea Guejito Hydrologic Subarea Guejito Hydrologic Subarea	Z-11.D0 Z-11.D1 Z-11.D2 Z-11.E0 Z-11.F0 Z-11.G0 Z-11.G0 Z-11.H0 Z-11.H1 Z-11.H1 Z-11.H2 Z-11.H3 Z-11.H3 Z-11.H3 Z-11.H3 Z-11.H4 Z-11.H5 Z-11.H4 Z-11.H5 Z-11.

NAMES AND AREAL CODE NUMBERS OF HYDROLOGIC AREAS SAN DIEGO DRAINAGE PROVINCE (Z)

TABLE E-1 MINERAL ANALYSES OF GROUND WATER

An explanation of column headings follows:

TDS - Gravimetric determination of total dissolved solids at 180° Celsius (or *105° C).

<u>SUM</u> - Total dissolved solids determined by addition of analyzed constituents. ≠ - Difference between total anions and total cations of over five percent.

 \underline{EC} - The electrical conductance in micromhos at 25° Celsius.

PH - Measure of acidity or alkalinity of water.

TH - Total hardness.

NCH - Non-carbonate hardness.

TIME - Pacific Standard Time on a 24-hour clock.

TEMP - Water temperature in degrees Fahrenheit at the time of field sampling.

The MINERAL CONSTITUENTS are as follows:

В	- Boron	K	- Potassium
CA	- Calcium	MG	- Magnesium
\mathtt{CL}	- Chloride	NA	- Sodium
CO3	- Carbonate	NO3	- Nitrate
F	- Fluoride	SIO2	- Silica
HCO3	- Bicarbonate	ടഠൂ_	- Sulfate

The LAB and SAMPLER agency codes are as follows:

1101 - Los Angeles County Flood Control District

3102 - Orange County Department of Agriculture

4103 - Riverside County Flood Control District 4206 - Long Beach Water Department

4790 - Babcock and Sons

5050 - Department of Water Resources

5100 - San Bernardino County Flood Control District

5102 - Orange County Flood Control District

5867 - Fruit Growers Laboratory

5868 - Pomeroy and Associates

5999 - Unknown

The COUNTY codes are as follows:

13 - Imperial	33 - Riverside
14 - Inyo	36 - San Bernardino
15 - Kern	90 - San Diego
70 - Los Angeles	40 - San Luis Obispo
26 - Mono	42 - Santa Barbara
30 - Orange	56 - Ventura

MINERAL ANALYSES OF GROUND WATER

TATE WELL N DATE TI	ME		Y LAB SAMPLE	TEMP R PH	EC	MINER.	AL CONS	TITUENTS		MILLIGRAM MILLIEGUS PERCENT F	IVALENT	S PER L		N03	MILLIGR <i>i</i> F	AMS PER	LITER 5102	ToS 180C (*105C) SUM	TH NCH
150 ROBLES	HYD	RO SU	BUNIT		T09H0			HYDRO UN			T09	00							
55/12E-16N0 10/20/67 -		40	5050	7.9	832	45 2•24	38 3•12	75 3•26	0 • 0 5		284 4.65	83 1•73	71	17.0	0.4	0.37		491 472	269 26
55/12E-28W0 10/31/67 13		40	5050	65 8•0	1277	67 3.34	36 58 4.77	134 5+83	0 • 13	5 	278 4.56	268 5•58	128 3.61	2.0 0.03	0.4	0.43		854 800	406 168
55/13E-19R0 10/19/67 14		40	5050	8.1	528	35 1.75 32	28 2•30 42	33 1.43 26	0 • 0 2	1 	33 227 3.72 68	40 9 0•19 3	26 41 1•16 21	0 25.0 0.40 7	0.6	0.08		309 285	203
55/13E-3500 68/29/68 13		40	5050	75 7.9	691	27 1•35 18	40 3.29 44	64 2•78 37		_	334 5.47 73	46 0.96 13	39 1•10 15	0.6	0.5	0.42		407 384	23 2
55/14E-10J0 n8/23/68 13		40	5050	70 7.6	853	101 5.04 44	61 5.02 44	31 1.35 12	0.10	• 0	447 7.33 79	16 0.33 4	53 1.49 16	9.6 0.15 2	0.8	0.16		482 497≠	503 127
55/14E-11K0 08/23/68 14	-	40	5050	70 8.0	622	31 1.55 22	53 4.36 63	21 0.91 13	0.0	_	326 5,34 79	17 0.35 5	30 0.85 12	13.2 0.21 3	0.8	0.16		359 330	295 18
5S/14E-32L0 68/07/68 13		40	5050	69 8•3	389	17 0.85 22	16 1.31 34	39 1•70 44	0.0	1 2	129 2.11 56	16 0•33 9	46 1.30 35	0.00	0.5	0.15		206 200	108
55/14E+33Q0 10/31/67 11	_	40	5050	64 8•2	583	28 1•40 21	22 1.81 27	75 3•26 50	0.10	4 0 2	289 4.74 73	0.92 14	27 0•76 12	3.0 0.05	0.6	0.44		372 347	161 0
5S/15E-21P5 08/07/68 15		40	5050	70 7.7	625	52 2•59 39	34 2.80 42	29 1•26 19	0.0	_	200 3.28 49	108 2•25 34	25 0.70 11	24.0 0.39 6	0.6	0.15		417 374	270 96
55/15E-30R0 08/07/68 14		40	5050 	73 8•0	836	85 4.24 48	35 2.88 33	37 1.61 18	0.0	2 5 1	176 2.88 33	159 3.31 38	54 1.52 17	62.5 1.01 11	0.5	0.20		578 522	356 202
55/15E-32P0 08/07/68 15		40	5050	70 8•1	644	63 3.14 46	28 2.30 34	29 1.26 19	0.09	2 5	159 2.61 39	135 2.81 42	28 0.79 12	33.0 0.53 8	0 • 4	0.15		464 397	272 132
65/12E-16NS n2/14/68 20		40	5050	118 7.0	3765	103 5.14 14	3 0.25 1	690 30•01 83	0.5		106 1.74 5	543 11.30 31	814 22.95 64	2.0 0.03 0	5.8	10.80		2359 2245	269 173
<u>6</u> 5/12E-22P0 10/31/67 10		40	5050	71 8•3	695	37 1•85 25	24 1.97 27	79 3•44 47	0.0	3 10 8 0.33 1 5	260 4.26 59	31 0•64 9	64 1 • 80 25	12.0 0.19 3	0.3	0.28		420 389	191
6\$/13E-11F0 10/31/67 12		, 40	5050	82 8•0	796	16 0•80 9	8 0.66 8	158 6•87 82	0.0	3 8 1	325 5•33 64	96 2•00 24	33 0•93 11	2.0 0.03 0	0.6	0.90		520 478	7 3
65/13E-11L0 n8/29/68 13		40	5050	87 8•0	980	0+70 7	8 0•66 6	200 8.70 86	0.09	2 ~~ 5	365 5•98 58	160 3•33 33	32 0•90 9	0 • 4 0 • 0 1 0	0.7	1.18		641 598	68
65/13E-28L0 10/31/67 10		40	5050	65 8•1	558	32 1•60 27	23 1•89 32	52 2•26 39	0.0	3 8 1	246 4.03 68	24 0.50 8	48 1•35 23	2.0 0.03 0	0.2	0.15		357 306	175
65/14E-18J(10/2n/67 8		40	5050	8.2	730	31 1.55 20	15 1•23 16	110 4.78 63	0 • 0	2 5 1	265 4.34 57	109 2•27 30	35 0•99 13	0 • 0 0 • 0 0 0	0.5	0.56		472 434	139
65/14E-3500 10/19/67 13		40	5050	7.9	513	43 2•14 47	7 0.57 13	40 1•74 38	0.0	3 8 2	158 2•59 56	24 0.50 11	46 1•30 28	12.0 0.19 4	0.5	0.05		260 254	137
65/15E-02N(10/20/67 1(40	5050	8.1	2159	43 2•14 10	5 0.41 2	428 18•62 88	0.0	1 2 0	311 5.10 24	537 11•18 52	184 5•19 24	2.0 0.03 0	0.5	1.77	••	1396 1356	128
08/08/68 13	320	40	5050	70 8•2	2111	39 1.95 9	0.33	435 18.92 89	0.1	4 0 0	308 5.05 23	544 11.33 52	186 5.24 24	2.3 0.04 0	0.6	2.80		1369 1370	114
65/15E-20NG 10/20/67 11	100	40	5050	8.2	389	39 1.95 51	0.33 8	35 1.52 40	0.0	? 5 1	143 2.34 61	34 0.71 19	20 0.56 15	12.0 0.19 5	0.2	0.06		229 217	114
65/15E-28Q 10/20/67 1:		40	5050	7.5	4629	427 21.31 36	136 11.18 19	624 27.14 45	0 - 1	4 0 0	320 5.24 9	1686 35.10 61	622 17.54 30	0.0	0.8	2•40		3868 3660	1626 1347
265/16E-318 10/20/67 14		40	5050	8.2	1636	37 1.85 11	21 1.73 10	301 13•09 78	0 - 0	2 5 0	323 5.29 32	365 7.60 46	103 2.90 17	48.0 0.77 5	1.0	2.22		1064 1039	179

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE		EC	MINER	AL CONS	STITUENTS NA	SIN	AILLIGRA AILLIEQU ERCENT CO3	IVALENT	S PER L	_	NO3	MILLIGRA	MS PER	LITER SIO2	TDS 180C (*105C) SUM	
PÃSO ROBLES HY	DRO SI	TINUBU		T09H0			HYDRO UM			T09								
035 (135-A3CA2M	4.0	5050	••	750	62	37	43	1		296	16	88	8.0	0.3	0.05		424	30
275/12E-03C02M 10/16/67 1220	40	5050	8.0	750	3.09	3.04	1.87	0 • 02 0		4.85	0.33	2.48	0.13	0.5	0.00		401	4
27S/12E-29P02M 10/11/67 1400	40	5050	7.8	982	110 5.49 48	42 3.45 30	48 2.09 18	15 0.38 3		251 4.11 38	232 4.83 45	61 1.72 16	3.5 0.06 0	0.3	0.06		675 636≠	44 22
275/13E-09P01M 10/28/67 930	40	5050	68 8•3	637	16 0.80 11	0.66	132 5•74 79	3 0.08 1	16 0.53 8	315 5.16 74	23 0•48 7	25 0.70 10	6.0 0.10 1	0.1	0.28		424 385	7
275/13E-36R01M 11/07/67 915	40	5050	68 8•1	489	60 2•99 60	10 0.82 16	26 1•13 23	0.05 1		200 3.28 66	18 0•37 8	37 1•04 21	16.0 0.26 5	0.5	0.00		318 268	19
275/15E-13A01M 11/07/67 1045	40	5050	8.0	4237	172 8.58 19	66 5.43 12	736 32·01 69	6 0.15		263 4.31 10	863 17.97 40	785 22•14 49	27.5 0.44	1.0	2.90	••	2881 2789	7 ₀
275/16E-23N01M 11/07/67 1115	40	5050	62 8.4	725	39 1.95 27	0.33	111 4.83 67	0.10	14 0.47 6	239 3.92 53	64 1.33 18	52 1.47 20	10.0	0.9	0.46	••	435 417	11
285/12E-10R02M 10/12/67	40	5050	8.2	907	88 4.39	45 3.70	39 1.70	2 0 • 05		318 5.21	128	67 1.89	3.0 0.05	0.3	0.05		519 529	40 12
285/13E-31R02M 10/11/67 1040	40	5050	8.0	979	45 87 4•34	38 57 4.69	17 46 2	0 2 0•05		402 6.59	136 2.83	19 50 1•41	1.0	0.5	0.04		565 578	45
305/18E-01802M 11/04/67 1600	40	5050	72 8.3	2531	39 124 6.19	38 3.12	18 435 18.92	0 2 0.05	7	193 3.16	735 15•30	258 7.27	87.0 1.40	0.9	1.17		1848 1783	46
POZO HYDRO SUBI	TINU			T09I0	22	11	67	0	1	11	56	27	5					
305/15E-10G02M 11/04/67 1100	40	5050	72 7.9	802	82 4.09	16 1.31	64 2.76	0.10		121 1.98 24	216 4•50 55	61 1.72 21	0.0	0.2	0.03		535 503	27 16
3 <u>0</u> 5/15E-21C01M 11/04/67 1015	40	5050	61 7.6	703	58 2.89	35 2.88	34 41 1•78	1 0.02		219 3.59 47	141 2.93 39	23	25.0 0.40	0.5	0.12		464 433	28
					38	38	23	0		• 1	39	7	5					
CAMBRIA HYDRO S			SUBAR	T10A0 EA	T10A1	AN LUIS	08ISP0	HYDR0	UNIT	T10	000							
255/06E-16A02M 11/11/67 1045	40	5050	59 8.1	412	36 1.80 39	28 2.30 50	12 0.52 11	0.02		224 3,67 79	25 0.52 11	17 0.48 10	0.0	0.2	0.08		217 230	2(
255/06E-33N01M 11/11/67 1110	40	5050	59 8.3	509	52 2.59 45	31 2.55 44	14 0.61 10	0.02	12 0.40 7	249 4.08 72	28 0.58 10	21 0.59 10	0.00	0.3	0.10		289 282	2:
SAN SIM	EON HY	rDRO SU	BAREA		T10A3													
275/08E-26C05M 11/16/67	40	5050	7.7	1069	89 4.44 35	75 6.17 48	49 2.13 17	0.02	••	514 8.42 68	124 2.58 21	50 1.41 11	3.0 0.05	0.5	0.21		642 645	5: {
SANTA R	05A H	rDRO SU	BAREA		T10A4		•											
275/08E-21R03M 11/11/67 1200	40	5050	58 8•3	1099	41 2.04 17	84 6.91 56	74 3•22 26	0 • 15 1	14 0.47 4	418 6.85 56	95 1•98 16	107 3.02 24	0.00	0 • 4	0.20		635 628	44
275/08E-26001M 11/16/67	40	5050	7.8	1173	97 4.84 36	79 6.50 48	51 2•22 16	0.02		535 8.77 66	119 2.48 18	73 2.06 15	3.8 0.06	0.5	0.16	••	717 688	56 16
VILLA H	YDRO !	SUBAREA			T10A5	40	10	Ů		00	.0							
285/09E-26E01M 11/11/67 1315		5050	63 8•2	1692	43 2•14 12	84 6.91 39	197 8.57 48	0.02		323 5.29 31	71 1.48	293 8.26 48	135.0 2.18 13	0.6	1.00	••	994 985	41
CAYUCOS	HYDR	SU8AR	EA		T10A6													
285/10E+31F01M 11/11/67 1330		5050	7 ₀ 8.4	1503	45 2.24 14	66 5.43 35	182 7.92 51	0.00	23 0.77 5	368 6.03 39	47 0.98 6	263 7.42 48	18.0 0.29	1.0	0.23		842 827	3
285/10E-32A04M 11/11/67 1345		5050	64 8.6	1428	17 0.85	103 8.47 53	153 6.65 41	5 0.13	37 1.23	503 8.24 51	63 1.31 8	185 5.22 33	0.02	0.5	0.21		803 812	•

MINERAL ANALYSES OF GROUND WATER

TATE WEL	L NO.	COUNT	Y LAB SAMPLE		EC	MINER	AL CONS	TITUENT	S IN M	ILLIGRA ILLIEQU ERCENT CO3	IVALENT	S PER L		N03	MILLIGR/ F	AMS PER	LITER SIO2	TOS 180C (*105C) SUM	TH NCH
AMBRIA H	YDRO S				T10A0	T10A8	AN LUIS	OBISPO	HYDRO	UNIT	Т10	00							
95/11E-0 11/17/67	6L01M	40		62 8.6	790	58 2.89	64 5.26	33 1.43	0 • 0 0	37 1.23	351 5.75	70 1.46	35 0.99	1.0	0.6	0.08	••	460 472	408 59
ÁN LUIS CH	_		RO SUBU		T1080	30 T1082	55	15	0	13	61	15	10	0					
95/10E-2 11/06/67		40	5050	7.8	1084	79 3.94 31	79 6.50 52	49 2.13 17	0.02		481 7.88 64	84 1.75 14	91 2.57 21	4.0 0.06	0.4	0.09		642 624	522 66
35/10E - 2 11/06/67		40	5050	8.5	1025	62 3.09 27	58 4.77 42	79 3.44 30	0.02	0.70 6	357 5.85 52	67 1.39	115 3.24 29	2.0	0.4	0.08		581 581	393 66
95/11E-3 11/06/67		40	5050	8.1	1078	48	88 7.24	52 2.26	i 0•02		512 8.39	42 0.87	89 2.51	2.5	0.6	0.07		594 575	482
95/11E-3 11/02/67		40	5050	60 8.4	1694	50 2.49	137 11.27	130 5.65	0 3 0.08	26	8.78	115 2.39	261 7.36	7.5 0.12	0.2	0.12		1082 994	689 206
LO	S 0505	HYDE	O SUBA	REA		13 T1083	58	29	0	4	45	12	38	1					
05/10E-1 11/02/67		40	5050	58 7.8	187	10 0.50 26	5 0.41 21	23 1 52	0.02 1	••	41 0.67 38	6 0.12 7	33 0.93 53	2.0	0.0	0.02		101 101#	45
05/10E-1 11/02/67		40	5050	64 7+1	198	6 0•30 16	0.49 27	23 1 55	0.02		36 0.59 28	20 0•42 20	35 0.99 47	6.0 0.10 5	0.0	0.00		141 115≠	40
05/11E+0 11/02/67		40	5050	65 7•5	171	8 0 • 4 0 27	0.33 22	1 ⁷ 0 • 74 49	0.02	••	21 0.34 23	0.08	34 0.96 63	8.0 0.13 8	0.0	0.00		111	36 0
5/11E-0 11/02/67		40	5050	62 7•5	242	12 0.60 26	9 0.74 32	22 0.96 41	1 0.02		74 1.21 52	5 0 • 10 4	35 0.99 42	3.0 0.05 2	0.0	0.00		151 124	67 0
jS/11E-0 11/02/67		40	5050	60 7•3	214	9 0•45 23	7 0.57 29	21 0.91 46	1 0•02 1		34 0.56 28	8 0.17 8	34 0.96 47	21.0 0.34 17	0.0	0.00		166 118	51 0
is/11E-0 11/02/67		40	5050	63 7.8	3030	120 5.99 19	140 11.51 37	317 13.79	2 0.05		391 6.41 20	95 1.98	790 22.28 70	73.0 1.18	1.2	0.44		2126 1731	876 512
05/11E-0 11/02/67		40	5050	68 8•2	1051	44 2.19 18	79 6.50 55	72 3.13 26	3 0.08		531 8.70 74	0.08	101 2.85 24	3.0 0.05	0.2	0.11		586 568	435
55/11E-1 11/02/67		40	5050	62 7•8	220	9 0 • 45 25	7 0.57 32	17 0.74 41	0.02		45 0.74 39	5 0 • 1 0 5	33 0.93 49	8.0 0.13	0.0	0.00		176 103≠	51
55/11E-1 11/02/67		40	5050	62 7•4	170	8 0•40 26	0.33 21	18 0.78 51	0.02		41 0.67 42	3 0.06 4	26 0.73 46	7.0 0.11 7	0.2	0.00		113 88	36 0
15/11E-1 11/02/67		40	5050	64 7.9	277	10 0.50 19	9 0.74 29	31 1•35 52	0.00		36 0.59 27	10 0.21 10	48 1.35 63	0.00	0.0	0.04		185 126≠	62
ñ\$/]1E-2 n6/]3/68		40	5050	7.4	626	43 2•14 32	33 2.71 41	40 1.74 26	0.02		325 5.33 81	10 0.21 3	36 1.01 15	1.8 0.03	0.3	0.22		357 326	243 0
SA	N LUIS	OBIS	PO CR	HYDRO	SUBAREA	T1084													
05/12E-3 06/14/68		40	5050	7.5	1195	88 4.39 36	65 5.34 44	52 2.26 19	0.02		348 5.70 48	16 0.33 3	192 5.41 45	30.0 0.48 4	0.4	0.00		872 616	487 158
nS/12E-3 n6/13/68		40	5050	70 7.2	932	49 2.44 25	56 4.60 48	58 2.52 26	0.00		361 5.92 62	16 0·33 3	111 3·13 33	11.3 0.18 2	0.5	0.08		564 480	353 13
ī5/12E-0 n6/14/68		40	5050	7.2	1211	40 1.99 15	116 9.54 71	43 1.87 14	0.00		537 8.80 66	63 1•31 10	103 2.90 22	18.2	0.4	0.04		771 648	577 93
ī\$/12E-1 06/14/68		40	5050	7.7	913	48 2.39 24	77 6.33 62	32 1•39 14	0.02		452 7.41 74	38 0.79 8	59 1.66 17	9.0 0.14	0.3	0.12	•	538 487	437
15/12E-1 02/08/68		40	5050	7,3	1362	45 2.24 14	9.13 59	96 4.17 27	0.02		513 8,41 54	52 1.08 7	190 5.36 34	49.0 0.79 5	0.4	0.04	***	950 797	569 105

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE	TEMP R PH	EC	MINER	RAL CON	STITUENTS NA	IN	PERCENT	JIVALEN'			N03	MILLIGRA F	AMS PER	LITER SIO2	TDS 1800 (#1050 SUM	
SAN LUIS OBISPO				T10B0	5	AN LUI	S 0815P0				000							
SAN LUIS	0815	SPO CR	HYDRO	SUBAREA	T1084													
31S/12E-12E03M 06/14/68	40	5050	7.2	2164	72 3.59 15	181 14.88 63	118 5.13 22	0.02		735 12.05 51	77 1.60 7	284 8.01 34	125.0 2.02 8	0.3	0.11		1517 1220	97
315/12E-16001M 06/21/68 915	40	5050	7.8	661	26 1•30 17	72 5•92 76	13 0.56 7	0 • 0 2 0 • 0		420 6.88 87	10 0•21 3	27 0.76 10	2.0 0.03 0	0.2	0.05		444 358	30
315/12E-29L01M 06/21/68 1000	40	5050	 7.6	880	71 3.54 34	58 4.77 46	46 2 19	3 0 • 08 1		475 7.78 75	77 1•60 15	33 0•93 9	2.0 0.03 0	0.6	0.08		624 525	•
315/12E-32H01M 06/21/68 1015	40	5050	7.8	831	10 0.50 6	5 0 • 41 5	168 7•31 82	27 0•69 8		339 5.56 62	76 1•58 18	61 1•72 19	6.0 0.10	0.2	0 • 4 0	••	577 521	ı
315/12E-33E02M 06/21/68 1030	40	5050	 7.6	1117	61 3.04 23	72 5.92 45	90 3.91 30	12 0•31	••	536 8.78 66	97 2•02 15	87 2.45 18	1.0	0.2	0.13		770 684	4
315/13E-07M01M 06/20/68 900	40	5050	7.6	549	28 1•40 25	41 3.37 60	20 0.87 15	0 • 00	**	195 3.20 58	22 0•46 8	54 1.52 28	21.5 0.35	0.2	0.05		278 283	2:
315/13E-18D01M 06/20/68	40	5050	8.1	1667	73 3.64 22	90 7.40 44	129 5.61 34	2 0•05		223 3.65 22	15 0•31 2	450 12.69 76	8.0 0.13	0.5	0.02		1349 878	5! 3;
PISMO HY	DRO S	UBAREA			T1086		34	Ü			-	, ,	•					
315/13E-16N01M 06/20/68 1020	40	5050	 7.6	749	59 2.94 34	57 4.69 54	24 1.04 12	0.00		380 6.23 73	69 1.44 17	29 0.82	5.5 0.09	0.4	0.14	••	411 431	31
31S/13E-19H02M 06/21/68 1130	40	5050	 7.8	1121	41 2.04	116 9.54 73	33 1.43	? 0.05		515 8.44 65	98 2•04	55 1.55	62.0 1	0 • 4	0.09		850 661	58
315/13E-20D01M 06/20/68 1000	40	5050	 7•8	783	16 44 2•19 24	61 5•02 56	38 1•65	0 0 • 08		399 6.54	16 71 1•48	33 0.93	3.0 0.05	0.3	0.08	••	416 450	36
315/13E-27R01M 06/20/68 1100	40	5050	 7.5	1100	69 3.44 29	82 6.74 58	18 35 1•52	0 • 0 0		73 315 5•16 45	16 58 1•21	93 2.62 23	150.0	0 • 4	0.09		633 643	5) 20
315/13E-29E01M 06/20/68 1430	40	5050	 7.6	1715	131 6.54 30	153 12.58 57	67 2•91	0.00	éé	860 14.09 63	275 5•72 26	73 · 2 · 06 · 9	26.5 0.43 2	0.7	0.24		1227 1150	95
315/13E-31J01M 06/20/68 1400	40	5050	7.2	1012	94 4.69 39	58 4.77 39	60 2•61 22	0 0 • 02 0		580 9.51 77	38 0•79 6	69 1.94 16	1.0	0.3	0.22		693 607	47
325/12E-01J01M 10/04/67 1600	40	5050	68 7.8	918	40 1.99 21	48 3.95 41	82 3.57 37	3 0.08		322 5.28 56	59 1•23 13	95 2•68 28	13.5	0.6	0.27	••	554 500	29
325/13E+06M01M 06/21/68 1100	40	5050	7.4	2079	21 1.05	56 4.60 20	391 17•01 73	20 0•51 2	0.00	992 16.26 70	2 0 • 04	242 6 • 82 29	0.0	0.6	3.95		1280 1225	28
ARROYO GRANDE H				T10C0	T10C1		, 5		·	, •		•	·					
325/13E-01G01M 06/20/68 1115	40	5050 	7.6	934	101 5.04 45	56 4.60 41	32 1.39 12	2 0.05 0		450 7.37 66	132 2.75 25	34 0.96 9	0.5 0.01	0.5	0.09		578 580	48
325/13E-14R02M 06/20/68 1200	40	5050	 7.5	1110	89 4.44 35	65 5.34 42	67 2.91 23	0.10		547 8.96 69	116 2.41 19	55 1.55 12	1.0	0 - 4	0.28		682 667	49
325/13E-15K01M 06/20/68 1320	40	5050	 6.5	776	36 1.80 26	18 1.48 22	79 3.44 51	3 0.08 1		52 0.85 12	46 0.96 14	175 4.93 71	12.0 0.19	0.5	0.03		571 396	16
325/13E-22C01M 06/20/68 1300	40	5050 	 7.0	376	14 0.70 21	8 0.66 19	45 1.96 58	2 0•05		95 1.56 46	15 0 • 31 9	54 1.52 45	1.0	0.9	0.19		276 187	6
325/13E-22R01M 06/20/68 1230	40	5050	 7.4	2014	234 11.68 43	141 11.59 43	80 3.48 13	6 0.15		714 11.70 44	567 11.80 44	115 3.24 12	1.5	0.6	0.14		1666 1497	116 57
325/13E-23F01M 06/20/68 1215	40	5050	 7.5	1941	213 10.63 44	122 10.03 41	83 3.61 15	3 0.08 0		637 10.44 42	518 10.78 43	126 3.55 14	0.5 0.01 0	0.5	0.19		1544 1380	103 51
325/13E-27D03M 06/20/68 1300	40	5050	 7.1	2225	276 13.77 47	131 10.77 37	108 4.70 16	4 0.10 0		628 10.29 35	734 15.28 52	126 3.55 12	1.5	0.6	0.14		1918 1690	122

MINERAL ANALYSES OF GROUND WATER

TE WELL NO			AB TE		EC	MINER	L CONS	TITUENTS	S IN N	AILLIGRAM AILLIEGU: PERCENT S	IVALENT	S PER L			MILLIGRA	MS PER	LITER	TDS 180C (*105C)	
						CA	MG	NA	κ	C03	HC03	504	CL	и03	F	8	2105	SUM	,
ROYO GRANDE				_	T10C0	T10C2	IN LUIS	081SP0	HYORO	UNIT	T10	00							
35W-14001 5/03/68 133		505		55 • 4	1700	128 6•39 34	98 8.06 43	100 4.35 23	0 • 10 0	0 • 13 1	277 4.54 24	533 11•10 59	86 2.42 13	41.0 0.66 3	0.5	0.20	••	1260 1131	723 489
						C	ARRIZO	PLAIN H	YDRO UI	NIT	T11	00							
1/26W-02G01 1/04/67 134		505	-	63 • 4	3095	65 3•24 10	24 1.97 6	625 27.19 84	3 0 • 08	9 0.30	214 3.51	792 16.49 52	384 10.83 34	26.0 0.42	0.9	1.50		2089 2036	261 70
5/Î7E-13R01 1/04/67 161		505	-	64 . 8	886	41 2.04 23	12 0.99 11	131 5.70 65	0.02	•-	160 2.62 30	117 2.43 28	84 2.37 27	74.0 1.19 14	0.8	0.51		567 540	152 5
3/18E-28L01 1/04/67 160		0 50		.2	1123	72 3.59 32	16 1.31 12	148 6.44 57	0.02 0		167 2.74 24	239 4.97 44	74 2.09 19	87.0 1.40 12	0.6	0.59		727 721	246 94
5/2ÎE-18A0] 1/04/67 13(0 50		61 •3	4115	672 33.53 53	151 12.42 20	393 17.09 27	0.15 0		62 1.02 2	2824 58.79 95	70 1.97 3	0.00	1.9	0.97		4576 4150	2299 2233
NTA MARIA H	HYDRO :	SUBUN	17		T12A0	S	ANTA MA	RIA-CUY	AMA HYI	DRO UNIT	T12	00							
N/33W-06G01 9/19/68 104	5 4:	2 50	50	64 • Ì	959	90	53 4.36 39	49 2•13	? 0•05	0.00	239 3.92 36	289 6•02 56	28 0•79 7	4.5	0.5	0.12		616 634	443 247
N/33W-18R01 5/02/68 143		2 50		•3	811	61 3.04 40	17 1.40 18	71 3.09 41	0 3 0•08 1	0.00	164 2.69 36	53 1.10	117 3.30	23.0 0.37 5	0.3	0.00		471 426	222 88
9/19/68 101		ż 50:		<u>-</u> •2	768	61 3.04 41	17 1.40 19	66 2.87 39	3 0.08	0.00	167 2.74 37	58 1•21 16	111 3.13 42	20.0	0.4	0.05	; 	493 419	222 85
N/34h-08H04 5/03/68 144		2 50		68 •5	966	85 4•24 42	40 3.29 33	56 2•43 24	2 0.05 0	6 0.20 2	220 3.60 36	239 4.97 50	40 1.13 11	5.8 0.09	0.2	0.10		644 583	377 186
9/20/68 140		2 50	-	65 •0	676	27 1•35 22	17 1.40 23	74 3.22 53	3 0.08 1	0.00	52 0.85 14	57 1•19 20	133 3•75 62	16.3° 0.26 4	0.3	0.03		426° 354	137 95
N/33W-20F0 5/02/68 15				65 •4	1480	135 6.74 41	65 5.34 32	101 4.39 26	0.10	0.13 1	249 4.08 25	503 10.47 64	48 1.35 8	22.0 0.35 2	0 • 4	0.20	,	1070 1005	605 394
N/34W-17F0: 5/03/68 110		2 50	-	64 •2	1940	200 9.98 44	93 7.65 33	118 5.13 22	0.13 1	0.00	282 4.62 20	718 14.95 66	78 2.20 10	49.0 0.79 3	0.5	0.20	·	1480 1401	882 651
9/19/68 13	55	2 50 -		64 •9	1844	202 10.08 45	91 7.48 33	113 4.91 22	0.10	0.00	274 4.49 20	727 15•14 67	76 2.14 9	50.8 0.82 4	0.9	0.20	·	1528 1400	879 654
N/34W-18L0 9/19/68 14		2 50 -	-	.7	2300	195 9.73 38	62 5.10 20	240 10.44 41	9 0•23 1	0.00	350 5.74 22	521 10.85 43	284 8.01 31	55.5 0.89 3	0.8	0.42	!	1643 1540	742 455
N/34W-18P0 5/03/68 11:		2 50	_	.4	1930	203 10.13 52	63 5.18 27	92 4.00 21	0.13 1	0.13	149 2.44 13	597 12.43 64	120 3.38 17	55.0 0.89 5	0.4	0.20)	1420 1213	766 637
9/19/68 14	35	-	- 7	- •9	1807	181 9.03 43	84 6.91 33	117 5.09 24	0.10	0.00	265 4.34 21	610 12.70 60	112 3•16 15	55.5 0.89 4	0.7	0.23		1309 1295	798 580
N/34W-34E0 5/02/68 16		-		.4	982	91 4.54 42	48 3.95 37	50 2.17 20	0.08 1	0.13 1	239 3.92 37	275 5.72 54	25 0.70 7	3.1 0.05 0	0.2	0.10)	664 617	425 222
9/19/68 13	25			68	900	84 4.19 43	43 3.54 36	2 20	0.08 1	0.00	218 3.57 36	264 5.50 56	27 0.76 8	3.7 0.06 1	0.4	0.07		676 579	387 208
N/35W-04C0 5/03/68 12	50	-		63	1960	224 11.18 47	95 7.81 33	109 4.74 20	0.10		345 5,65 24	752 15.66 66	73 2.06 9	17.0 0.27	0 • 4	0.20	*	1600	950 667
9/20/68 11	10	•		63	1886	223 11.13 48	7.73 33	19	0.10	0	339 5,56 24	741 15.43 66	73 2.06 9	16.3 0.26 1	0.8	0.20		1542 1419	944
N/35W-07F0 5/03/68 13	40	-	50	65 1.2	2200	250 12.47 47	113 9.29 35	110 4.78 18	0 • 1 3 0	0.00	310 5.08 19	841 17•51 67	124 3.50 13	6.7 0.11 0	0.3	0.20)		1089 835

MINERAL ANALYSES OF GROUND WATER

							50011	HERN C	CALIFORN	IA								
STATE WELL NO. DATE TIME		TY LAB SAMPLE		EC	MINER.	RAL CONS	STITUENTS NA	S IN M	MILLIGRAM MILLIEQUI PERCENT F	JIVALENT	TS PER L		NO3	MILLIGRA F	MS PER	SIO2	R TD5 180C (*105C) SUM	
							RIA-CUYA					Ų.	1103			3105	304	
SANTA MARIA HY	DRO SU	JBUNIT		T12A0														
10N/35W-09N015 09/20/68	42	5050	8.0	1077	109 5•44 45	51 4•19 34	57 2•48 20	3 0 • 0 8 1	0.00	240 3.93 33	333 6•93 57	39 1•10 9	5.5 0.09 1	0.4	0.10		797 716	48
10N/35W-09N025 09/20/68 1300		5050	64 8•0	1380	141 7.03 45	5.26 33	77 3.35 21	0.08 0	0.00	238 3.90 25	482 10.03 64	59 1.66 10	10.3 0.17 1	0.6	0.14		1062 955	61
10N/35W-14D01S 09/20/68 1215		5050	65 7.8	1633	170 8.48 45	72 5.92 31	102 4.44 23	0.10		294 4.82 25	533 11.10 58	86 2.42 13	40.0 0.64 3	0.8	0.20		1242 1153	72 48
10N/35W-21C01S 05/03/68 1305	_	5050	65 8.3	1930	160 7.98 38	82 6.74 32	146 6.35 30	0.10	0.00	366 6.00 29	484 10.08 48	148 4.17 20	46.0 0.74 3	0.2	0.20		1380 1251	73 43
09/20/68 1315	42	5050	65 8.0	1728	135 6.74 34	80 6.58 34	140 6.09 31	0.10	0.00	327 5.36 28	446 9.28 48	146 4.12 21	40.0 0.64 3	0.5	0.20		1240 1153	66 39
10N/35W-24B02S 05/03/68 1415		5050	65 8.3	1660	160 7.98 44	72 5.92 32	97 4.22 23	0.10	0.00	306 5.01 27	4.74	80 2.26 12	48.0 0.77 4	0 • 4	0.20	,	1210	69 44
ó9/20/68 1330	42	5050	65 7.8	1417	134 6.69 41	70 5.76 35	87 3.78 23	3 0.08 0	0.00	280 4.59 28	440 9.16 56	70 1.97 12	40.0	0.7	0.14	, ••	1057 983	62 35
11N/34W-27001S 07/31/68 1145		5050	7.3	752	36 1.80 24	22 1.81 24	87 3.78 51	0 0.05	••	197 3.23 43	69 1.44 19	80 2•26 30	32.0 0.52 7		0.04		405 426	18
11N/34W-29P025 09/20/68 950		5050	65 7•7	1526	118 5.89 46	49 4.03 32	64 2.78 22	2 0.05 0	0.00	234 3.83 31	276 5•75 46	69 1.94 16	60.0	0.5	0.11		848 754	45 30
11N/35W-18M01S 05/03/68 1215		5050	8.3	1420	143 7.13 42	74 6.08 36	81 3•52 21	5 0•13	0.00	223 3.65 23	520	47 1.32 8	0.4	0 • 1	0.10	,	1090 981≠	66 ± 47
09/20/68 1020	40	5050	8.1	1350	147 7.33 46	61 5.02 31	82 3.57 22	0.10	0.00	229 3.75 24	521	45 1.27 8	0.5 0.01 0	0.4	0.16	,	1110 974	6) 43
11N/35W-19E02S 05/03/68 1230		5050 	67 8•4	1290	129 6.44 45	53 4.36 30	81 3.52 24	0.10	5 0.17 1	240 3.93 28	423 8.81 62	44 1.24 9	2.9	0.2	0.10		927 861	54 3:
11N/35W-26M01S 05/03/68 1200		5050 	63 8.6	952	105 5.24 53	27 2•22 22	55 2.39 24	0 • 0 5	9 0.30 3	169 2.77 29	244 5•08 52	44 1•24 13	19.0 0.31 3	0.3	0.10		661 589	37. 27
11N/35W-33F01S 05/03/68 1245		5050	65 8 ₊ 2	2110	250 12.47 50	94 7.73 31	106 4.61 18	0 5 0.13	0.00	514 8.42 34	655	93 2•62 11	7.5 0.12	0.3	0.30) 	1590 1464	10) 50
11N/36W-13R01S 05/03/68 1220		5050	8.2	1340	135 6.74 45	58 4.77 32	80 3.48 23	0 4 0.10	0.00	249 4.08 27	460	41 1.16 8	2.2 0.03	0.2	0.10	·	1000 903	5° 3°
09/20/68 1030	40	5050	7.7	1290	127 6.34 44	59 4.85 33	75 3•26 22	3		243 3.98 27	460 9.58 65	40 1.13 8	1.5	0.4	0.15	;	1002 886	5(3(
SÍSQUOC HYDRO	SUBUNI	ΙŢ		T1280	77.7	95	٤.	0		٠,	0.0	-						
09N/30W-33M01S	42	5050		796	34	72	25	2	56	318	20	36	6.5	0.2	0.10		429	31
04/30/68 1025		••	9•1		1.70	5.92 68	1.09 12	0 • 05 1	1.87 22	5.21	0.42	1.01	0.10				409	5
09N/33W-12R01S 05/02/68 1500			8.0	1220	105 5.24 38	5.59 41	2.70 20	0.08	0.00	289 4.74 35	364 7•58 56	0.82 6	18.0	0.3	0.10		863 792	31
09/19/68 1110			65 7.9		106 5.29 40	65 5.34 40	59 2.57 19	0.08 1	0.00	284 4.65 35	362 7.54 57	28 0.79 6	19.8 0.32 2		0.14		868 784	5: 2'
CUYAMA VALLEY	HYDRO	SUBUNI	ΤŢ	T12C0														
07N/23w-15R01S 10/30/67 1045		5050	63 8.6		362 18.06 49	165 13.57 37	117 5.09 14	0-10	••	182 2.98 8	1608 33.48 91	13 0.37 1	2.0 0.03 0	1.7	0.19		2619 2363	151
09/23/68 945	42	5050	7.9	2639	375 18.71 50	168 13.82 37	114 4.96 13	0.10	0.00	178 2.92 8		9 0.25 1	1.4		0.24		2507 2374	16. 14:
07N/23w-16L01S 10/30/67 1030	56	5050				10.77	95 4•13 13	0.10		3.33	1302 27.11 88	0.37	2.0 0.03 0		0.15		2128 1960	13 11

MINERAL ANALYSES OF GROUND WATER

										CACIFORNI	• •								
ATE WELL	NO. TIME	COUN	TY LAB SAMPLER	TEMP R PH	EC	MINER	AL CONS	TITUENTS		MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	TOS 180C (*105C SUM	
YĀHA VAL	LEY	HYDRO	SUBUNI	т	T12C0	S	ANTA MA	RIA-CUY	AMA HY	YDRO UNIT	T12	200							
N/23W-19 0/30/67		56	5050	7.8	1782	207 10.33 45	101 8.31 36	94 4.09 18	0 • 05	2	232 3.80 16	894 18•61 81	20 0.56 2	0.0	1.0	0.19		1566 1434	932 742
4/25/68	Î645	5 6	5050	8.5	1680	204 10.18 59	55 4.52 26	57 2.48 14	0.08	3 4 8 0.13	132 2.16 13	691 14.39 84	18 0.51 3	0.00	1.0	0.10		1330 1098	736 621
9/23/68	930	42	5050	7.6	1599	205 10.23 50	84 6.91 34	71 3.09 15	0.08	3 8	317 5.19 26	693 14.43 72	17 0.48 2	0.5	0.9	0.18		1174 1231	858 591
N/24W-01 1/02/67		56	5050	8.1	2386	29 1.45 6	0.00	497 21.62 92	0.3	1	287 4.70 20	522 10.87 46	272 7.67 33	8.0 0.13 0	0.8	1.40		1454 1484	72 0
N/24W-13 0/30/67	-	56	5050	66 7.9	1912	240 11.98 47	117 9.62 38	3.87 15	0.08		196 3.21 12	1078 22.44 86	17 0.48 2	0.0	1.1	0.20		1740 1642	1081 913
N/24W-06 0/31/67		4Ž	5050	60 8.1	1748	232 11.58 52	7.32 33	76 3.30 15	0.08	3 8	179 2.93 13	920 19.15 84	19 0.53 2	3.0 0.05 0	1.1	0.15		1521 1432	946 792
N/24W-16 1/02/67		56	5050	69 8.5	826	8 0.40 5	13 1.07 13	157 6.83 82	0.0		345 5.65 67	66 1.37 16	33 0.93 11	2.0 0.03 0	1.2	0.94		432 465	73
N/24W-21 0/30/67		42	5050	8.0	1712	219 10.93 50	90 7.40 34	79 3.44 16	0.08	8	184 3.01 14	896 18.65 84	16 0.45 2	2.0 0.03 0	1.1	0.15		1447 1397	917 746
9/23/68	Ĩ020	42	5050	 7.6	1820	231 11.53 48	108 8.88 37	75 3.26 14	0.08		176 2.88 12	968 20.15 86	0.37 2	1.0	1.2	0.17	••	1543 1487	1021 877
N/24W-19 0/31/67		42	5050	8.2	1838	236 11.78 48	101 8.31 34	97 4.22 17	0.10	-	200 3.28 13	990 20.61 83	31 0.87 3	5.0 0.08 0	1.1	0.17		1666 1564	1005 841
4/25/68	ī545	42	5050	8.2	1960	240 11.98 49	102 8.39 34	92 4.00 16	0.10	0.00	194 3.18 13	988 20.57 85	17 0.48 2	5.4 0.09 0	1.0	0.20		1660 1545	1019 860
9/23/68	Ĩ110	42	5050	7 <u>.</u> 6	1868	224 11.18	111 9.13 36	86 3.74	0.10		191 3.13	966 20.11	17 0.48	5.5 0.09 0	1.2	0.19		1560 1509	1016 859
N/24W-33 0/31/67		42	5050	8.5	968	41 2.04 21	0.90	156 6.78 69	0.02		227 3.72 38	157 3.27 33	76 2.14 22	3.0 0.05 0	0.9	0.34		556 579	148
4/25/68	1610	42	5050	8.7	1040	53 2.64 27	0.57 6	148 6.44 66	0.08	-	232 3.80 39	160 3.33 34	77 2.17 22	0.2	1.0	0.30		640 579	161
N/25W-06 0/20/67		42	5050	72 7.8	1620	182 9.08 45	63 5.18 26	131 5.70 28	0.10)	193 3.16 15	812 16.90 82	16 0.45 2	1.5 0.02 0	0.7	0.12		1378 1306	714 530
N/25W-11 0/31/67		42	5050	8.0	1709	190 9.48 42	115 9.46 41	87 3.78 17	0.05	5	186 3.05 13	944 19•65 85	16 0.45 2	1 · 0 0 · 02 0	1.0	0.11		1538 1448	948 770
4/25/68	1530	42	5050	68 8.2	2100	226 11.28 43	132 10.85 41	98 4.26 16	0.08	0.00	249 4.08 16	1040 21.65 83	15 0.42 2	1.7 0.03 0	1.0	0.10		1760 1640	1107 903
N/26W-02 0/21/67		42	5050	8.0	2016	257 12.82 47	111 9.13 33	123 5.35 19	0.08	3	148 2.42 9	1145 23.84 88	28 0.79 3	8.0 0.13 0	0.8	0.06		1897 1749	1098 977
N/26W-06 0/22/67		4Ž	5050	80 7.9	2262	215 10.73 35	149 12.25 40	172 7.48 24	0.18	3	248 4.06 13	1227 25.55 84	28 0.79 3	4.0 0.06 0	0.8	0.12		2184 1925	1150 947
N/26W-09 1/03/67		42	5050	8.1	2463	207 10.33 29	241 19.82 56	123 5.35 15	0.13	3	492 8.06 22	1299 27.04 75	29 0.82 2	0.00	0.9	0.04		2325 2147	1509 1105
N/25W-20 4/25/68		40	5050	63 8.5	1930	249 12.42 54	90 7.40 32	69 3.00 13	0.10	0.20	125 2.05 9	946 19.69 87	15 0.42 2	9.0 0.14 1	1.0	0.10	••	1580 1451	992 880
N/25W-21 0/23/67		40	5050	62 7.8	2604	389 19.41 52	153 12.58 33	124 5,39 14	0.15	5	284 4.65 12	1524 31.73 83	37 1.04 3	45.0 0.72 2	1.1	0.28		2662 2419	1601 1358
4/25/68	1500	40	5050	63 8.2	2370	325 16.22 55	9.13 31	87 3.78 13	0.13	0.00	217 3.56 12	1180 24.57 85	19 0.53 2	24.0 0.39	1.0	0.20	••	2040 1859	1268 1090

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. OATE TIME		TY LAB SAMPLE	_	EC	MINER	RAL CONS	STITUENT	IS IN M		IVALEN1			N03	MILLIGR	AMS PER	LITER SIO2	TDS 180C (*105C 5UM	
CUYAMA VALLEY	HYDRO	SUBUNI	(T	T12C0				TAMA HYD		T12								
10N/25W-21G01S 09/23/68 1300		5050	63 7•9	2213	3 ₀ 3 15•12 52	113 9•29 32	99 4•31 15	0 • 10	0.00	201 3.29	1192 24.82 86	18 0•51 2	22.5 0.36	1.2	0.25	••	1935 1852	12
10N/25W-22E01S 09/23/68 1240		5050	63 7.6	2106	291 14•52 52	116 9.54 34	87 3.78 13	0.10	0.00	191 3.13	1128 23.48 85	18 0•51 2	21.5 0.35	1.2	0.19		1835 1761	12
10N/25W-22F01S 10/23/67 900		5050	63 7.8	2451	323 16.12 48	129 10.61 32	144 6.26 19	8 0.20	••	193 3.16	1274 26.52 79	63 1•78 5	117.0	1.0	0.30		2338 2155	13
10N/25W-22H015 10/23/67 845		5050	65 7.8	1763	232 11.58 51	91 7.48 33	85 3.70 16	0.10		156 2.56	917 19.09 82	41 1.16 5	27.0 0.43 2	1.0	1.19	••	1580 1476	9
ñ4/25/68 1515	40	5050	65 8.3	1990	276 13.77 58	73 6.00 25	91 3.96 17	0.10	0.00	151 2.47 10	925 19.26 82	45 1.27 5	32.0 0.52	0.6	0.10	••	1630 1521	9
09/23/68 1230	42	5050 	66 8.0	1882	233 11.63 48	101 8.31 35	90 3.91 16	0.10	0.00	149 2.44 10	926 19.28 82	49 1.38 6	28.0 0.45 2	1.1	0.24		1566 1506	9
lon/25w-30F02S 10/20/67 1815	42	5050	64 7.9	1742	222 11.08 48	104 8.55 37	81 3.52 15	0.10		179 2.93 13	900 18.74 81	29 0.82 3	34.0 0.55 2	1.0	0.16	••	1530 1464	9
ó9/23/68 1340	42	5050	66 7.6	1809	230 11.48 50	98 8.06 35	76 3.30 14	0.10	0.00	175 2.87	899 18.72 83	16 0.45 2	38.0 0.61	1.2	0.16		1589 1449	9
10N/25W-32H01S 04/25/68 1430	42	5050 	63 8.4	1890	239 11.93 52	92 7.57 33	73 3.17 14	4 0.10 0	4 0.13	160 2.62	886 18.45 82	27 0.76 3	38.0 0.61	1.0	0.00		1540 1443	9
09/23/68 <u>1</u> 400	42	5050	64 7.6	1772	222 11.08 49	101 8.31 37	74 3.22 14	3 0.08	0.00	174 2.85 13	883 18.38 83	18 0.51 2	31.5 0.51 2	1.1	0.16		1469 1420	9
10N/26W-04R01S 10/21/67 1600	40	5050	7.8	1778	215 10.73 46	91 7.48 32	110 4.78 21	0.10		165 2.70 12	913 19.01 84	34 0.96 4	3.0 0.05	1.0	0.60	•-	1587 1453	9
n9/23/68 1430	42	5050	7.9	1816	226 11.28 49	85 6•99 30	105 4.57 20	0.10	0.00	160 2.62 11	929 19•34 85	30 0.85 4	2.7 0.04 0	1.2	0.59		1604 1463	9
10N/26W-04R03S 04/25/68 1230	40	5050 	74 8•5	2170	223 11•13 46	74 6.08 25	162 7•05 29	6 0.15 1	0 • 1 3 0	112 1.83 8	1000 20.82 86	45 1•27 5	7.8 0.04 0	0.5	0.80		1800 1574	8 7
10N/26W-09R03S 04/25/68 1215	42	5050	68 8.5	2070	276 13.77 55	90 7.40 29	88 3.83 15	0.10	6 0.20 1	127 2.08 8	1050 21.86 88	21 0.59 2	11.0 0.18 1	0.5	0.20		1770 1610 \	
09/23/68 1450	42	5050	69 7.6	1965	264 13.17 52	99 8.14 32	94 4.09 16	0.10	0.00	177 2.90 11	1050 21.86 86	17 0.48 2	9.3 0.15	1.0	0.20	•-	1764 1626	10
10N/26W-23P01S 09/23/68 1415	42	5050	72 7.6	1911	264 13.17 52	96 7.89 31	94 4.09 16	5 0•13 0	0.00	146 2.39 10	1061 22.09 88	15 0.42 2	4.8 0.08 0	0.8	0.11		1733 1613	10
10N/26W-23Q02S 04/25/68 1310	40	5050	72 8.6	2070	276 13.77 56	83 6.82 28	88 3.83 16	5 0.13· 0	6 0.20 1	129 2.11 9	1030 21.44 88	18 0.51 2	5.5 0.09 0	0.3	0.10		1760 1576	10
10N/26W-27N02S 09/23/68 1320	42	5050	72 7.7	1249	118 5.89 40	67 5.51 37	75 3.26 22	0.10	0.00	223 3.65 25	505 10.51 71	14 0.39 3	14.0 0.22	0.6	0.08		896 908	ni ci
10N/27W-01P01S 10/27/67 1000	42	5050	8.1	1976	256 12.77 48	102 8.39 32	120 5.22 20	6 0.15 1		175 2.87 11	1093 22.76 86	32 0.90 3	2.0 0.03 0	0.8	0.26		1863 1699	10
10N/27w-11C01S 04/25/68 1130	42	5050	66 8 ₄ 3	4960	526 26.25 41	264 21.71 34	350 15,22 24	8 0•20 0	0.00	278 4.56 7	2800 58.30 92	8 0.22 0	12.0 0.19 0	0 • 4	0.50		4850 4106	
09/23/68 1520	42	5050	7.7	4682	520 25.95 38	306 25.16 37	394 17•14 25	7 0.18 0	0.00	367 6.01 9	2889 60•15 88	79 2•23 3	7.5 0.12 0	1.6	0.52		4785 4386	52
					5	IAN ANTO	ONIO HYD	RO UNIT		Т13	00							
08N/32W-30H07S 05/02/68 1230	42	5050	65 8•2	737	50 2.49 35	26 2.14 30	56 2.43 34	3 0.08 1	0.00	128 2.10 30	137 2.85 41	69 1.94 28	5.4 0.09	0.0	0.10		476 410	1

MINERAL ANALYSES OF GROUND WATER

							30011		CACILONN	• ~									
ATE WELL NO. DATE TIME	COUNT	Y LAB		EC	MINER	AL CONS	TITUENT:	SIN	MILLIGRAN MILLIEQU PERCENT 1 CO3	IVALENT	S PER L	ITER	N03	MILLIGRA F	MS PER	LITER SIO2	TOS 180C (*105C) SUM		
							NIO HYDI			T13		•		,	•				
):/32W-30H07S 9/19/68 915	42	5050	65 6•9	596	42 2•09 36	19 1•56 27	48 2•09 36	3 0 • 08 1		119 1.95 34	93 1•94 33	64 1 • 80 31	7.2 0.12 2	0.3	0.05		408 336	183 85	
N/33W-20R01S 5/02/68 1215	42	5050	8.3	1190	100 4.99 41	32 2.63 21	105 4.57 37	3 0 • 08 1	-	360 5.90 48	178 3•70 30	92 2•59 21	0.0	0.2	0.30		710 688	381 86	
7/19/68 930	42	5050	7.7	1085	101 5.04 43	37 3•04 26	83 3 • 61 31	2 0 • 05 0	0.00	332 5.44 46	186 3.87 33	88 2.48 21	0.0	0.3	0.20		743 661	404 132	
0/12/67 850	42	5050	65 8.1	1239	86 4.29 36	35 2.88 24	109 4.74 39	5 0.13 1		219 3.59 29	126 2.62 21	207 5.84 47	17.0 0.27 2	0.2	0.18		781 694	359 179	
5/02/68 1200	42	5050	65 8.3	1310	90 4.49 36	35 2.88 23	113 4.91 39	6 0•15 1	0.00	218 3.57 29	125 2.60 21	206 5.81 47	24.0 0.39 3	0.2	0.20		857 707	369 190	
9/19/68 950	42	5050	65 7.9	1220	92 4.59 36	34 2.80 22	116 5.04 40	0.13 1	0.00	220 3.60 29	125 2.60 21	209 5.89 47	23.2 0.37 3	0.3	0.18		802 713	37 ₀ 189	
LIPOC HYDRO S	UBUNI			T14A0	S	ANTA YN	EZ HYDR	D UNIT		T14	00								
04/34W-21A01S 9/17/68	42	5050	7.8	733	59 2.94 41	22 1.81 25	55 2•39 33	3 0•08 1	0.00	196 3.21 45	56 1•16 16	99 2•79 39	0.0	0.2	0.06		482 391	238 77	
0W/34W-28G015 0/11/67 1000	42	5050	67 8.1	1792	109 5.44 26	86 7.07 33	195 8.48 40	5 0.13 1		267 4.38 21	594 12.37 59	148 4.17 20	2.0 0.03 0	0.7	0.88		1400 1272	626 407	
/30/68 1450	42	5050	66 8•3	2470	212 10.58 37	105 8.63 30	218 9.48 33	7 0•18 1	0.00	441 7.23 25	797 16.59 58	169 4.76 17	3.1 0.05 0	0.3	1.20		1930 1730	961 600	
/17/68	42	5050	68 7.9	2457	142 7.08 33	86 7.07 33	168 7•31 34	5 0.13 1	0.00	359 5.88 28	546 11•37 54	138 3.89 18	2.0 0.03 0	0.7	0.78	•-	1427 1265	708 414	
01/34W-29K02S 0/11/67 1015	42	5050 	67 7•8	2412	265 13.22 41	139 11.43 36	163 7•09 22	0.13 0		431 7.06 22	895 18•63 59	209 5.89 19	0.00	0.8	0.48		2065 1890	1234 880	
01/34W-30A015 1/11/67 1030	42	5050 	68 7.7	1770	177 8.83 43	83 6.82 33	109 4.74 23	0.13 1	1	361 5.92 28	419 8.72 42	214 6.03 29	5.0 0.08 0	0.5	0.32		1330 1191	783 487	
1/02/68 930	42	5050	64 8.1	1690	153 7.63 43	69 5.67 32	95 4.13 23	0.13 1	0.00	365 5.98 35	306 6.37 37	172 4.85 28	2.0 0.03 0	0.2	0.40		1300 983	666 367	
/17/68 1330	42	5050 	68 7.9	2579	208 10.38 47	7.07 32	107 4.65 21	0.15 1	0.00	7.28 33	404 8.41 38	229 6.46 29	2.4 0.04 0	0.4	0.35		1442 1262	873 509	
04/35W-24K02S /11/67 1200	42	5050 	68 7.8	2473	188 9.38 34	75 6.17 22	274 11.92 43	9 0.23 1	1	418 6.85 25	382 7.95 29	437 12.32 45	13.0 0.21 1	0.5	0.58		1713 1585	778 435	
0/35w-250015 /02/68 1035	42	5050	63 8.1	2960	257 12.82 38	145 11.92 36	196 8.52 25	7 0.18 0	0.00	463 7.59 23	822 17•11 52	294 8 • 29 25	7.6 0.12 0	0.2	0.80		2200 1958	1238 859	
)/35w-250035 //17/68 1420	42	5050	7.7	3650	232 11.58 35	142 11.68 36	209 9.09 28	11 0.28 1	0.00	421 6.90 21	826 17•20 53	296 8.35 26	6.0 0.10 0	0.7	0.67		2156 1931	1164 818	
/35W-36A01S /11/67 1120			64 7.9	1363	101 5.04 33	84 6.91 45	3.48 22	0.05 0	;	323 5.29 34	305 6.35 41	142 4.00 26	0.00	0.5	0.12		975 874	598 333	
S TA RITA HYD	RO SU	TINUE		T1480															
0/32W-18H01S /30/68 1315			65 8•1	3100	294 14.67 40	171 14.06 38	185 8.05 22	0.10	0.00	520 8.52 23	984 20•49 56	248 6.99 19	39.0 0.63 2	1.3	0.80		2550 2183	1438 1011	
/17/68	42		64 7.8	2722	224 11.18 34	174 14.31 43	173 7.52 23	0.08 0.0	0.00	328 5,37 16	894 18-61 57	263 7.42 23	68.7 1.11 3	1.4	0.58		2216 1963	1275 1006	
/33W-20801S /07/68	42	5050	68 7.4	1266	147 7•33 47	67 5.51 36	57 2.48 16	0.10)	553 9.06 60	177 3.68 24	85 2.40 16	0.5 0.01 0	0.3	0.11		867 810	643 189	

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME		AB TEMP PLER PH	EC	MINER	AL CONS		S IN A	WILLIGRA WILLIEGU PERCENT CO3	MS PER I	S PER L		N03	MILLIGRAMS F	PER	LITER	T _D S 180C (*105C) SUM
SANTA RITA HYDR	O SUBUNI	Т	T1480	s	ANTA YN	IEZ HYDRO	O UNIT		T14	00						
06N/33W-21G015 01/12/68	42 50			144 7•18 47	67 5•51 36	56 2•43 16	0 • 1 0 1		542 8.88 59	185 3•85 25	85 2•40 16	0.8	0.3	0.10	••	932 809
06N/33W-21G025 01/26/68	42 50			38 1.90 16	15 1.23 11	190 8.26 72	0.10		151 2.47 22	296 6.16 54	100 2.82 25	1.2	0.5	0.13		717 720
07N/33W~308015 04/30/68 1410	42 50 -			55 2.74 21	36 2.96 23	164 7.13 55	5 0.13 1	0.00	50 0.82 6	36 0.75 6	380 10.72 84	25.0 0.40 3	0.3	0.10	~~	840 726
09/17/68 1100	42 50			57 2.84 22	35 2.88 23	157 6.83 54	5 0.13 1	0.00	50 0.82 6	30 0.62 5	380 10.72 85	29.0 0.47 4	0.3	0.09	~ ~	884 718
07N/34W-35H01S 04/30/68 1350	42 50			129 6,44 21	75 6.17 20	395 17.18 57	12 0.31 1	0.00	585 9.59 32	458 9.53 32	357 10.07 34	20.0 0.32	0.3	1.50	••	2400 1736
BUELLTON HYDRO	SURUNIT		T14C0													
07N/32W-01801S 05/02/68 1245	42 50	-		62 3.09 43	23 1.89 26	49 2.13 30	3 0.08 1	0.00	258 4.23 60	12 0.25 4	79 2•23 32	19.0 0.31 4	0.2	0.10	**	377 375
07N/33W~30R01S 10/11/67 900	42 50			56 2.79 22	33 2.71 22	157 6.83 55	0.10 1		49 0.80 6	30 0.62 5	380 10.72 86	20.0	0.5	0.06	• •	902 705
SANTA YNEZ HYDR	O SUBUNI	T	T1400													
06N/30w-02M01S 09/18/68 930	42 50	_	790	22 1.10 12	73 6.00 66	45 1.96 21	2 0.05 1	0.00	434 7.11 79	28 0•58 6	42 1•18 13	5.8 0.09	0.1	0.10		422° 432
06N/30w-03A01S 04/30/68 910	42 50		850	41 2.04 22	77 6.33 68	22 0.96 10	0.02	62 2.07 22	353 5.78 62	28 0•58 6	29 0.82 9	5.0 0.08 1	0.2	0.10	**	504 439
06N/30W-07C04S 10/13/67	42 50		628	28 1.40 20	55 4.52 65	23 1 14	0.05 1	12 0.40 6	258 4.23 63	13 0.27 4	61 1.72° 25	8.0 0.13 2	0.2	0.20	••	383 330
04/30/68 1010	42 50	-	665	41 2.04 29	46 3.78 55	24 1.04 15	0.05 1	0.80 12	230 3.77 56	12 0·25 4	61 1•72 25	12.0 0.19 3	0.2	0.00	••	375 336
09/18/68 1020	42 50	- 8.5	615	27 1.35 20	54 4.44 66	22 0.96 14	0.02	10 0.33 5	255 4.18 63	13 0.27 4	60 1.69 25	10.3 0.17 2		0.04	••	319 323
06N/30W-24H015 04/30/68 850	42 50	- 8.7	897	105 5.24 65	20 1.64 20	26 1.13 14	0.05 1	0.37 5	158 2.59 33	214 4.45 56	17 0.48 6	0.00		0.30	**	627 474
06N/31w-14G02S 05/02/68 1800	42 50	- 8.2		74 3.69 34	5.10 46	2.13 19	0.05 0	0.00	388 6.36 59	124 2.58 24	56 1.58 15	12.0		0.00		597 570
07N/30W-22E015 10/18/67 1240	42 50	8.2		2.14 20	87 7.15 68 76	26 1.13 11	0.02	56	540 8.85 84	25 0.52 5	39 1.10 10	0.02		0.22		522 489 544
04/30/68 1040	42 50	9.1		51 2.54 26	6.25 64 85	22 0.96 10 27	0.02	1.87	6.18	23 0.48 5	1.01	5.1 0.08 1		0.00		456
09/18/68	-	- 8.6		2.09 20	6.99 68	1.17	0.02	0.87	7.75 76	0.46	1.01	0.08				477
07N/30W-27002S 10/18/67 1420	42 50 -	- 8.5		63 3.14 30	74 6.08 58	28 1.22 12	0.05 0	52 1.73 16	428 7.01 66	34 0.71 7	1.18 11	3.5 0.06 0		0.23	••	527 510
n9/18/68	42 50 -	50 69 - 8.3		36 1.80 17	7.32 70	28 1•22 12	0.05 0	0.00	513 8.41 82	35 0•73 7	36 1.01 10	3.4 0.05 0		0.12		413
07N/30W-33M01S 09/18/68		- 8.5		30 1.50 17	76 6.25 71	24 1.04 12	0.05 1	13 0.43 5	409 6.70 78	20 0•42 5	33 0.93 11	6.0 0.10 1		80.0	••	383
07N/31W-23N055 04/30/68 1130		- 8.3		93 4.64 35	82 6,74 51	1.78 13	0.02	0.00	461 7.55 58	212 4.41 34	32 0.90 7	15.0 0.24 2	0.5	0.10	**	687 704
n9/18/68 1210	42 50	50 - 7.4	1094	93 4.64 36	79 6.50 50	1.78 14	0.05 0	0.00	461 7.55 59	209 4.35 34	26 0.73 6	13.0 0.21 2	0.6	0.11	**	751 691

MINERAL ANALYSES OF GROUND WATER

							SOUTH	EKN	CALIFORN	14								
TE WELL NO.	COUNT	Y LAB SAMPLE	_	EC	MINER	AL CONS	TITUENTS		MILLIGRA MILLIEQU PERCENT	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	TOS 180C (*105C) SUM	TH NCH
							EZ HYDRO			T14			1103	,	0	3102	3011	
DWATER HYDRO	SUBL	INIT		T14E0														
/30W-24H015 /18/67 1050	42	5050	63 8•1	769	84 4.19 48	41 3•37 38	27 1•17 13	0 • 0 2	2	268 4.39 49	190 3.95 44	20 0.56 6	0.0	0.6	0.27	••	557 496	378 159
JELLO HYDRO	SUBU	iIT		T15A0	s	ANTA BA	RBARA HY	DRO L	TINIT	T15	00							
'32W-12G015 '14/67	42	5050	7.9	1173	••	18 1.48 17	167 7.26 83	0.05	5	232 3.80 33	148 3.08 26	168 4.74 41	0.5 0.01 0	1.0	0.94		703 620≠	
/30W-02M015 /30/68 930	42	5050	76 8.9	843	34 1.70 18	66 5.43 58	50 2.17 23	0.05	1.67	344 5.64 62	29 0.60 7	40 1.13 12	6.0 0.10 1	0.2	0.10		473 447	356 0
/35w-18J01S /02/68 1120	42	5050	8.5	5800	67 3.34 6	97 7.98 15	952 41.41 77	1.02	0.57	455 7.46 14	98 2.04 4	1550 43.71 81	6.2 0.10 0	0.4	1.10		3200 3053	566 165
18/68 1410	42	5050	8.1	5376	62 3.09 6	99 8.14 15	985 42.85 78	36 0.92	0.00	483 7.92 14	98 2.04 4	1580 44.55 82	6.8 0.11 0	0.7	1.03		3186 3106	562 166
/35W-18J025 /02/68 1100	42	5050	64 8.2	2450	193 9.63 36	110 9.05 34	176 7.65 29	0.23	0.00	461 7.55 29	459 9.56 36	315 8.88 34	9.3 0.15 1	0.2	0.40		1640 1499	935 556
H COAST HYD GOLETA H			۸ .	T15C0	T15C1													
28W-16J025 16/68 1530	42	5050	70 7•7	977	123 6•14 55	29 2.38 21	60 2•61 23	0.05	0.00	355 5.82 52	206 4•29 38	37 1•04 9	0.00	0.5	0.07		700 633	426 135
28W-18F02S 19/67 940	42	5050	7.9	1584	61 3•04 18	55 4•52 27	207 9•00 53	11 0•28 2	}	432 7.08 42	240 5•00 30	169 4•76 28	0.00	0 • 4	0.46	••	968 957	379 24
23/68 1500	42	5050	68 8.4	1610	102 5.09 30	47 3.86 23	174 7.57 45	18 0.46	0.13	473 7.75 46	240 5.00 29	135 3.81 22	14.0 0.22 1	0.3	0.50		977 968	448 53
16/68 1530	42	5050	68 7•9	1403	51 2.54 18	45 3.70 26	178 7.74 54	17 0.43	0.00	411 6.74 47	139 2.89 20	159 4.48 31	12.5 0.20 1	0.3	0.37		861 805	312 0
SANTA BA	RBARA	HYDRO	SUBAR	EA	T15C2													
28W-15F045 16/68 1430	42	5050	67 7•7	923	93 4•64 48	35 2•88 30	50 2•17 22	0 • 0 2 0	0.00	239 3.92 41	205 4•27 45	40 1•13 12	15.0 0.24 2	0.5	0.05		654 558	376 180
27W-150095 16/67 930	42	5050	74 8•1	724	77 3.84 50	25 2.05 27	41 1.78 23	0.05 1		251 4.11 52	129 2.68 34	37 1.04 13	4.0 0.06 1	0.4	0.17		491 439	295 89
23/68 1145	42	5050	74 8.3	783	83 4.14 51	25 2.05 25	44 1.91 23	0.02		257 4.21 52	136 2.83 35	33 0.93 11	7.2 0.12 1	0.3	0.10		475 456	310 99
16/68 1220	42	5050	74 8.2	727	77 3.84 49	25 2.05 26	43 1.87 24	0.02 0		239 3.92 51	128 2.66 35	32 0.90 12	9.3 0.15 2	0.4	0.03		449 434	295 99
27w-180025 23/68 1300	42	5050	66 8.2	2490	146 7.28 30	51 4.19 17	290 12.61 52	0.05 0	0.00	308 5.05 21	213 4.43 18	513 14.47 60	16.0 0.26 1	0.5	0.10		1460 1383	574 322
28W-15F045 10/67 850	42	5050	67 7.6	894	94 4.69 47	36 2.96 30	51 2•22 22	0.05 0		259 4.24 42	206 4.29 43	43 1.21 12	16.0 0.26 3	0.6	0.04		592 576	383 170
23/68 1345	42	5050	67 8.3	1090	133 6.64 56	36 2.96 25	53 2.30 19	0.02	0.00	366 6.00 51	209 4.35 37	41 1.16 10	17.0 0.27 2	0.4	0.10		712 671	480 180
CARPINTE	RIA H	YDRO SI	JBAREA		T15C4													
25W-20L01S 16/68	42	5050	66 8•2	1038	100 4.99 44	40 3.29 29	71 3•09 27	0 • 02 0	0.00	316 5.18 46	161 3.35 30	45 1•27 11	84.0 1.35 12	0.5	0.09		671 658	414 155
125w-22R035 109/67 1320	42	5050	63 8.2	827	90 4.49 49	27 2.22 24	53 2.30 25	0.05		274 4.49 49	156 3.25 36	32 0.90 10	28.0 0.45 5	0.6	0.14	•• ,	528 524	336 111
23/68 950	42	5050	61 8.2	898	94 4.69 50	27 2.22 24	56 2.43 26	0.02		290 4.75 50	167 3.48 37	29 0.82 9	26.0 0.42 4	0.4	0.10		528 544	346 108

TABLE E-1

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO			Y LAB SAMPLER		EC	MINER	AL CONST	ITUENTS	IN MI	LLIEOU:	MS PER LIVALENTS	PER LI	TER	•	MILLIGRAMS	PER	LITER	T _D S 180C (*105C)
						CA	MG	NA	K	C03	HC03	504	CL	N03	F	В	5102	SUM
						S	ANTA BAF	RBARA H	ORO UNI	T	T150	0						
SOUTH COAST F	HYDR NTER	O SU	BUNIT	JBAREA	T15C0	T15C4												
04N/25W-22R03 09/16/68 94		42	5050	63 8,3	855	96 4.79 51	27 2.22 24	52 2.26 24	0.02	0.00	270 4.42 48	165 3.43 37	29 0.82 9	31.5 0.51 5	0.5	0.09	••	548 535
04N/25W-26B0 10/09/67 12		42	5050	68 8.0	667	60 2.99 43	27 2.22 32	41 1.78 25	0.02 0		173 2.83 39	153 3.18 44	33 0.93 13	15.0 0.24 3	0.5	0.02		454 416
n9/16/68 9	30	42	5050	7.6	869	113 5.64 58	29 2.38 24	40 1.74 18	0.02	0.00	325 5.33 54	157 3.27 33	39 1•10 11	12.8 0.21 2	0.3	0.03	••	568 552
04N/25W-28N0 10/09/67 11	_	42	5050	67 8.0	1043	78 3.89 34	41 3.37 30	91 3.96 35	0.10	••	238 3.90 34	219 4.56 40	100 2.82 25	2.0 0.03 0	0.6	0.20		658 653
n4/23/68 9	00	42	5050	64 8.2	1190	93 4.64 39	40 3.29 28	88 3.83 32	0.10	0.00	295 4,83 41	212 4.41 37	93 2.62 22	1.2 0.02 0	0 • 4	0.20	••	728 677
09/16/68 8	45	42	5050	65 7.6	1209	128 6.39 47	43 3.54 26	83 3.61 26	3 0.08 1	0.00	398 6.52 48	210 4.37 32	90 2.54 19	0.02	0.5	0.17		776 755
64N/25W-29D0 04/23/68 10		42	5050	66 8.2	772	60 2.99 39	26 2.14 28	57 2.48 32	0.02 0	0.00	251 4.11 55	122 2.54 34	26 0.73 10	5.3 0.08 1	0.4	0.10	••	439 422
04N/25W-29D0 10/09/67 13		42	5050	67 8.1	641	51 2.54 38	22 1.81 27	54 2.35 35	0.02		220 3.60 52	117 2.43 35	28 0.79 11	6.0 0.10 1	0.6	0.04	,	408 388
04N/26W-13HS 10/19/67 10		42	5050	60 8•5	640	3 0.15 2	0.08	142 6.18 95	0.10	14 0.47 8	217 3.56 58	80 1.66 27	14 0.39 6	0.00	8.2	1.77	r	331 375≉
04N/26W-24F0 10/09/67 14		42	5050	7.8	1319	67 3•34 25	50 4.11 30	137 5.96 44	0.08 1		344 5.64 40	63 1•31 9	219 6.17 44	53.0 0.85 6	1.0	0.14	, ==	740 763
ñ4/23/68 10	50	42	5050	8.4	1470	97 4.84 33	46 3.78 26	133 5.78 40	0.05 0	0.20 1	360 5.90 42	72 1.50 11	216 6.09 43	28.0 0.45 3	1.0	0.60	,	820 779
ñ9/16/68 -	•	42	5050	8.0	1301	66 3•29 25	47 3.86 30	134 5.83 45	0.02 0	0.00	281 4.60 36	62 1•29 10	222 6•26 48	46.5 0.75 6	0.9	0.59	,	741 719

MINERAL ANALYSES OF GROUND WATER

									30011	CHI	CALIFORN	• •								
	TE WELL	NO.		Y LAB SAMPLE		EC					MILLIGRAI MILLIEQU PERCENT I	IVALENT REACTAN	S PER L	ES		MILLIGR			ToS 180C (*105C)	
) i							CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	\$102	SUM	
U.	ER VENT	JRA F	RIVER	HYDRO	SUBUNI	100280	V	ENTURA	RIVER HY	DRO U	TINI	U02	00							
- 650	1/23W-168 1/03/67	-	56	5050	7.9	1000	122 6.09 56	31 2.55 23	51 2•22 20	0.05	0.00	327 5.36 49	181 3•77 35	49 1•38 13	21.0 0.34 3	0.6	0.56		670 619	432 164
54 16	/26/68		56	5050	7.8	1002	121 6.04 54	34 2.80 25	51 2•22 20	0.05	0.00	315 5.16 47	198 4•12 38	45 1.27 12	19.5 0.31 3	0.6	0.62	••	690 627	442 184
	i HYDRO OJA		NIT RO SU	BAREA		N05C0	U02C2													
	1/22 w- 06. 1/26/68	J075	56	5050	64 7•4	847	111 5•54 60	29 2•38 26	30 1•30 14	0 • 0 2 (0.00	205 3.36 37	203 4•23 46	29 0•82 9	42.0 0.68 7	0 • 4	0.09		640 547	396 228
28							S	ANTA CL	ARA-CALL	EGUAS	S HYDRO U	NIT UO3	0.0							
170	IARD PLAT			UBUNIT SUBARE		U03A0	U03A1					yi S								
	1/22E-25/ 1/26/68	4045	56	5050	7.9	1383	135 6.74 42	50 4.11 25	119 5•18 32	0.10	0.00	262 4.29 27	482 10.03 64	47 1•32 8	8.2 0.13 1	0.9	0.71		1078 976	543 328
	1/21W-191 1/26/68		56	5050	69 7.4	1174	123 6.14 46	39 3.21 24	86 3.74 28	0.10	-	279 4.57 35	346 7.20 55	44 1•24 9	3.6 0.06 0	0.7	0.60		822 785	468 239
	/21W-30/ /26/68		56	5050	71 7.8	1020	97 4.84 43	30 2.47 22	87 3•78 34	0.10	0.00	271 4.44 40	266 5•54 50	36 1.01 9	2.0 0.03 0	0.5	0.62		716 657	366 143
	1/22W-021		56	5050	7.7	1900	212 10.58 45	73 6.00 26	151 6.57 28	0.13	5 0 3 0.00 0 0	281 4.60 20	795 16•55 71	70 1.97 8	0.7 0.01 0	0.9	0.98		1596 1447	830 599
63	1/21W-181 1/02/67	1650	56	5050	7.8	1074	84 4.19 36	26 2.14 18	123 5.35 45	0.10	_	317 5.19 44	237 4.93 42	58 1.63 14	1.0 0.02 0	0.3	0.42		700 690	367 107
121	//21W-190 //26/68	C015	56	5050 	70 7.7	1116	103 5.14 41	36 2.96 23	99 4•31 34	0.18		267 4.38 35	334 6.95 55	46 1.30 10	1.5	0.5	0.51	••	843 759	405 186
1418	I/21W-190 I/21/68		56	5050	7.8	1479	150 7•48 42	52 4•28 24	131 5•70 32	0.18	8	265 4.34 25	541 11•26 66	49 1•38 8	4.5 0.07 0	0.9	0.83		1120 1067	588 371
- 100	1/22W-120 1/26/68	-	56	5050	65 7•6	1451	100 4.99 32	54 4.44 29	137 5•96 38	0.15	5	255 4.18 27	484 10•08 64	48 1•35 9	0.0	0.7	0.64		1123 956	472 263
- 8	1/22W-12H 1/20/68		56	5050	7.6	1538	167 8.33 46	64 5.26 29	99 4•31 24	0.13	3	278 4.56 26	541 11.26 63	1.89 11	2.0 0.03 0	0.9	0.68		1162 1084	680 452
- 10	1/22W-15 1/26/68		56	5050 	66 7.4	1761	189 9.43 44	67 5.51 26	143 6.22 29	0.1		308 5.05 24	620 12.91 61	74 2.09 10	60.0 0.97 5	0.8	0.80		1417 1311	748 495
1	1/22W-201 1/27/68		56	5050	7.7	1351	120 5.99 39	3.45 23	127 5.52 36	0.1	8	198 3.24 22	476 9.91 67	57 1.61 11	3.5 0.06 0	0.8	0.60		965 932	472 310
1	1/22w-24 1/02/67	1200	56	5050	7.8	1451	153 7.63 46	52 4.28 25	108 4.70 28	0.13	5 0 3 0.00 1 0	266 4.36 26	508 10.58 63	1.69	6.5 0.10 1	0.9	0.76		1120 1025	595 377
	1/22W-25 1/26/68	-	56	5050	7.9	1383	135 6.74 42	50 4.11 25	119 5.18 32	0.1	0 0.00	262 4.29 27	482 10.03 64	1.32 8	8.2 0.13	0.9	0.71		1078 976	543 328
	1/22W-26 3/12/68		56	5867	7.3	1483	143 7•13 44	43 3•54 22	124 5•39 34	-		270 4.42 27	480 9.99 62	59 1.66 10	5.0 0.08 0	0.6	0 • 64		112 4 988	534 313
	9/09/68	915	56	5867	7.3	1473	148 7.38 44	49 4.03 24	122 5.31 32	-		270 4.42 25	516 10.74 62	1.69 10	34.0 0.55 3	0.7	0.56		1199 1063	571 350
	PLE	ASAN	T VALL	EY HYD	RO SU	BAREA	U03A2													
	1/21W-09 7/25/68		56	5050	78 7.4	797	3.14 37	20 1.64 19	84 3.65 43	0.1	4 0 1	270 4.42 53	136 2.83 34	39 1.10 13	0.00	0.5	0.16		475 480	240 18
	NTA PAUL SAN			JBUNIT	UBARE	U0380	U0381													
	V/21W-16 ₹/26/68		56	5050	67 7.4	1792	204 10.18 48	68 5•59 27	117 5.09 24	0.1	_	322 5.28 25	650 13.53 64	80 2.26 11	3.0 0.05 0	0.7	0.75		1482 1287	789 525

MINERAL ANALYSES OF GROUND WATER

									CALIFORN								
STATE WELL NO. DATE TIME		TY LAB SAMPLE	-	EC					MILLIGRA MILLIEQU PERCENT	I VALENT REACTAN	S PER L	ES	NOS	MILLIGRA			TDS 180C (*105C
					CA	MG	NA ADA-CAL	K SCHAS	CO3 HYDRO U	HC03	504	ÇL	М03	F	8	2105	SUM
SANTA PAULA HYE SANTA PA		_	UBAREA	U0380	U0381	ANTA CL.	ARA-CAL	LLGOAS	HIORO O	1411 003	,00						
03N/21W-21801S 03/21/68	56	5050	7.3	2083	248 12.37 48	65 5.34 21	179 7.79 30	0.23	}	375 6.15 24	769 16.01 63	115 3.24 13	0.5 0.01 0	0.9	0.94		1690 1572
03N/21W-21E01S 03/21/68	56	5050	79 7•2	2197	246 12.27 45	71 5.84 21	202 8.79 32	0.20 1)	426 6.98 26	779 16•22 61	124 3.50 13	1.5 0.02 0	0.8	1.12		1746 1643
09/26/68	56	5050	67 7.3	2217	238 11.88 42	89 7.32 26	197 8.57 31	0.20 1		476 7.80 28	795 16.55 59	132 3.72 13	5.0 0.08 0	0.7	1.17	••	1888 1700
03N/21W-21F01S 69/26/68	56	5050	7.5	2058	174 8.68 35	79 6.50 26	210 9•13 37	0 • 23 1	1	387 6.34 26	692 14•41 59	136 3.83 16	0.00	0.8	1.06		1667 1493
03N/21W-29R01S 07/31/68	56	5867 		1723		••		•-				96 2•71					
08/26/68	56	5867	7.2	1901	166 8.28	58 4. 77	186 8.09			300 4.92	660 13.74	2.79		0.8	0.85		1469
09/05/68 	56	5867	7.4	1973	170 8.48	60 4.93	196 8.52	•-		309 5.06	672 13•99	107 3.02		0.9	0.76		1511
SESPE HYDRO SUE FILLMORE	_	RO SUBA	REA	U03C0	U03C1												
04N/19W-32G01S 09/27/68	56	5050 	60 8•0	1144	118 5.89 45	47 3.86 29	77 3.35 25	0.10	0.00	228 3.74 29	413 8.60 66	0.59 4	5.3 0.08 1	1.0	0.70		869 800
04N/20W-25J01S 09/06/68 1500	56	5867	 7.0	2470	262 13.07 46	102 8.39 29	163 7.09 25			540 8.85 31	770 16.03 56	94 2.65 9	60.0 0.97 3	0.8	0.60		1991 1718
PĪRU HYDRO SUBU PIRU HYD		BAREA		U03D0	U03D1												
04N/19w-25C025 n9/27/68	56	5050	 7•5	1684	189 9•43 46	80 6.58 32	103 4•48 22	0 • 1 3 1	0.00	268 4•39 21	698 14•53 71	40 1•13 5	30.0 0.48 2	0.9	1.20		1435 1279
UPPER SANTA CLA EASTERN		_		TUO3EO	U03E1							•					
03N/16w-04A02S 09/17/68 900	70	1101 1101	7.4	1260	137 6•84 47	39 3•21 22	103 4.48 31	0 • 0 6 0	0.00	219 3.59 24	474 9.87 66	50 1.41 9	7.3 0.12 1	0.4		0	922 922
04N/14W-17E03S 10/03/67	70	1101 1101	8.6	650	64 3.19 43	18 1.48 20	60 2•61 36	0 • 0 5	0.47	264 4•33 59	72 1.50 20	34 0.96 13	6.0 0.10 1			0	534 400
n9/17/68 1400	70	1101 1101	8.2	670	58 2.89 41	20 1.64 23	58 2•52 36	0 • 0 2 0 • 0	0.00	253 4.15 57	84 1.75 24	47 1.32 18	6.5 0.10 1	0.4		0	527 400
04N/15W-06P02S 09/17/68 1300	70	1101 1101	 7.7	794	65 3.24 37	28 2.30 26	72 3.13 36	0.02	0.00	317 5.19 58	105 2.19 24	42 1.18 13	23.3 0.37 4	0.8		0	654 493
04N/15W-11F01S 10/03/67	70	1101 1101	8.6	1100	58 2.89 24	38 3.12 26	135 5.87 49	0.05	0.47	334 5.47 46	123 2.56 21	96 2.71 23	42.0 0.68 6			0	842 673
09/17/68 1330	70	1101 1101	8.2	1100	91 4.54 37	36 2.96 24	107 4.65 38	0.02	0.00	394 6.46 52	131 2.73 22	95 2.68 21	35.2 0.57 5	1.0		0	891 691
04N/15W-21A01S 09/27/68	70	5050	 7•5	1144	84 4•19 34	40 3.29 27	106 4.61 38	0.10		415 6.80 55	114 2•37 19	94 2•65 21	34.0 0.55 4	0.8	0.70		735 682
04N/15W-21M05S 10/03/67	70	1101 1101	8.8	767	75 3.74 42	26 2.14 24	70 3.04 34	0.05	0.60	286 4.69 52	87 1.81 20	50 1.41 16	31.0 0.50 5			0	64 5 500
ñ9/17/68 1300	70	1101 1101	7.5	779	84 4.19 51	21 1.73 21	50 2.17 27	0 • 0 8 1	0.00	309 5.06 63	69 1.44 18	37 1.04 13	27.2 0.44 5	0.6		0	600 444
04N/15W-23F015 10/03/67	70	1101 1101	8.9	728	72 3.59 44	20 1.64 20	68 2.96 36	0.05	0.80	266 4.36 53	80 1.66 20	44 1•24 15	14.0 0.22 3	••		0	590 455
n9/17/68 1345	70	1101 1101	 7.9	714	74 3.69 47	18 1•48 19	60 2•61 33	0.05	0.00	315 5.16 64	82 1•71 21	36 1.01 13	8.6 0.14 2	0.6		0	596 437
04N/15W-26K01S 10/03/67	70	1101 1101	8.0	769	94 4.69 53	25 2.05 23	44 1.91 22	0.10	0.00	303 4.97 56		16 0•45 5	43.0 0.69 8	~~		0	659 505

MINERAL ANALYSES OF GROUND WATER

	NO. TIME	-	Y LAB Sample	_	EC	MINER.	AL CONS	STITUENTS NA	IN K	MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	T ₀ S 180C (*105C) SUM	
ER SANT	_				TU03E0		ANTA CL	ARA-CALL	EGUAS	S HYDRO U	NIT UO3	100							
EA5		HYDRO 70	SUBARI 1101	EA	996	U03E1	36	96	-	2 0	233	252	50	3.0			0	736	307
/03/67			1101	8.4	,,,	3.19	2.96	4.17	0.05		3.82	5.25	1.41	0.05			v	618	116
/17/68	1130	70	1101 1101	7.6	971	87 4.34 39	34 2.80 25	3.83 35	0.02	0.00	300 4.92 44	230 4.79 43	1.18 11	12.4 0.20 2	0.8		0	795 643	357 111
/16W-21 /27/68		70	5050	67 7•7	864	101 5.04 51	30 2.47 25	52 2•26 23	0 - 1 0		260 4.26 43	237 4.93 50	23 0.65 6	5.0 0.08	0.6	0.21		629 581	376 162
/16W-22I /03/67		70	1101 1101	8.6	653	61 3•04 42	16 1.31 18	64 2•78 39	0.05		204 3.34 46	129 2.68 37	24 0.68 9	6.0 0.10			0	520 417	218 27
/17/68	1145	70	1101 1101	8.4	661	69 3.44 49	16 1.31 19	51 2.22 32	0.02		223 3.65 50	141 2.93 41	22 0.62	1.7			0	524 412	238 55
/16W-230 /03/67		Ŷ0	1101 1101	8.2	842	88 4.39 49	21 1.73 19	65 2.83 31	0 • 08	0.00	314 5.15 53	128 2.66 27	46 1•30 13	37.0 0.60			0	702 543≉	306 48
/17/68	1255	70	1101 1101	 7.8	826	90 4.49 51	19 1.56 18	63 2.74 31	0.05	2 0	258 4.23 49	133 2.77 32	43 1.21 14	29.3 0.47 5	0.6	••	0	637 507	302 90
/16W-27. /17/68		70	1101 1101	 7.7	901	114 5.69 57	26 2.14 21	50 2•17 22	0.02	0.00	230 3.77 39	236 4.91 50	30 0.85	12.4	0.6		0	700 584	391 202
/16W-33I /20/68	L015	70	5050	79 7•5	1570	112 5.59 31	39 3.21 18	207 9•00 50	0.13	;	206 3.38	653 13.59	25 0•70	2.0 0.03	0.6	0.18		1170 1146	440 271
/17/68	945	70	1101 1101	 7.6	1550	117 5.84	35 2.88 16	210 9.13 51	0.08	0	204 3.34 18	687 14-30 78	20 0.56 3	1.6	0.3		0	1277 1175	436 269
/16W-36F /05/67	104S	7 0	1101 1101	 7•7	1020	5.19	31 2.55 24	68 2.96	0.08	0.00		201 4•18 39	46 1.30	20.0 0.32 3			0	773 621	387 141
/17W-126 /03/67	R01S	70	1101 1101	8.7	1190	118 5.89	45 3.70	96 4.17	1 0.08	26	226 3.70	420 8.74	28 0.79	12.0	••		0	974 860	479 250
/17/68 1	1015	7 0	1101 1101	 7.3	1230	127 6.34	45 3.70	100 4.35	0.08	0 0.00	267 4.38	454 9.45	26 0.73	9.8 0.16	0.6		0	1032 897	502 283
/17W-140 /03/67	2015	70	1101 1101	8.5	1600	184 9•18	56 4.60	30 120 5•22	0.10		340 5.57	561 11.68	72 2•03	0.0			0	1337 1165	689 410
/17/68 j	io30	70	1101 1101	7.5	1580	178 8.88	60 4.93	124 5.39	0.10	0.00	382 6.26	547 11.39	73 2.06	10.2	0.6		0	1378 1185	691 378
/17W-15P /03/67		70	1101 1101	8.8	3230	15 0•75	25 0 • 25	764 33•23 97	1 0•02	0.80	318 5.21 15	933 19•42 57	308 8.68 25	0.0			0	2366 2205	49
/17/68	100	70	1101 1101	 7.9	3360	15 0.75 2	0.08	764 33.23	0 16 0.41	0.00	335 5.49 16	986 20.53 58	325 9.16 26	1.5	1.9		0	2445 2276	41
/17W-226 /27/68	E015	70	5050	69 7.9	1523	169 8.43	60	96 103 4.48	5 0.13	0.00	338 5.54	498 10.37	60	7.5 0.12	0.7	0.52		1165 1070	669 392
/17W-226 /03/67		70	1101 1101	8.5	1410	121 6.04	57 4.69	110 4.78	1 4 0 • 1 <u>0</u>	0 0 0 0	200 3.28	58 523 10.89	9 56 1•58	12.0	••		0	1083 982	536 372
/17/68	1045	70	1101 1101	7.4	1480	173 8.63	30 55 4.52	107 4.65	0.10	_	345 5.65	515 10.72	67 1.89	7.6 0.12	0.6		0	1274 1099	658 375
/17W-256 /18/67		70	5050	64 7.8	935	81 4.04	37 3.04	26 77 3.35	0.10		248 4.06	240 5.00	10 41 1.16	3.0 0.05	1.1	0.44		653 607	353 150
/17W-250 /18/67	305S 1300	7 0	5050	66 7.5	1241	38 111 5.54	53 4.36	106 4.61	0.10		260 4.26	391 8.14	63 1.78	11.0 0.18	1.2	0.53		926 869	497 284
/17W-36/ /18/67	A015	70	5050	67 8.0	1153	38 89 4.44 34	30 52 4.28 32	101. 4•39 33	0.10		30 292 4.78 36	354 7.37 55	36 1.01 8	7.0 0.11	1.0	0.39	••	855 788	437 197

MINERAL ANALYSES OF GROUND WATER

							30011	ICHII	CALIFORN	I.W							
STATE WELL NO. DATE TIME		Y LAB	TEMP R PH	EC				SIN	MILLIGRA MILLIEQU PERCENT	IVALENT REACTAN	S PER L	ES		MILLIGRA			TOS 180C (*105C)
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	2105	SUM
UPPER SANTA CLA				U03E0		NTA CL	ARA-CALI	EGUAS	HYDRO U	NIT U03	00						
EASTERN	HYDRO	SUBARI	LA		U03E1												500J
05N/17w-36G01S 10/18/67 1130	70	5050	66 7.6	1223	113 5.64 39	53 4.36 30	98 4•26 30	0.10 1		270 4.42 32	368 7.66 55	59 1.66 12	12.0 0.19 1	1.2	0.53		915 842
05N/17W-36H04S 12/05/67	70	1101 1101	8.1	1070	100 4.99 41	41 3.37 27	87 3•78 31	0 • 1 0 1	0.00	252 4.13 34	317 6.60 54	54 1•52 12	0.0			0	855 727
ñ9/17/68	70	1101 1101	7.9	1020	107 5.34 46	36 2.96 25	76 3•30 28	2 0•05 0	0.00	273 4.47 38	293 6•10 52	41 1•16 10	4.5 0.07	1.1		0	833 695
ACTION H	IYORO	SUBARE	A		U03E5												
04N/13W-12C015 09/27/68	7 0	5050	63 7.4	620	70 3.49	19 1.56	30 1.30	0.05		237	71 1.48	34 0.96	19.0 0.31	0.3	0.06		406 362
CALLEGUAS-CONE	םצא סנ	RO SUBI	UNIT	U03F0	54	24	20	1		59	55	14	5				
WEST LAS	POSA	S HYDR	O SUBAR	EA	U03F1												
02N/21W-08L01S 10/02/67 940	56	5050 	68 8.0	1361	100 4.99 34	46 3.78 25	137 5.96 40	0.10	0.00	271 4.44 30	381 7.93 53	84 2.37 16	7.0 0.11 1	0.5	0.48		960 894
09/26/68 	56	5050	77 7.7	1289	113 5.64 39	45 3.70 26	113 4.91 34	0.10		313 5.13 35	341 7.10 49	74 2.09 14	10.0 0.16 1	0.5	0.39		975 855
EAST LAS	POSA	S HYDRO	O SUBAR	EA	U03F2												
03N/20W-27G035 10/03/67	56	5050	68 8•1	1493	146 7.28 41	76 6.25 35	95 4 • 13 23	5 0•13	0.00	232 3.80 21	600 12.49 69	42 1•18 7	30.0 0.48 3	0.7	0.16		1170 1109
02N/20W-09H01S 09/25/68	56	5050	74 7•8	575	59 2.94	15 1•23	43 1.87	2 0 • 05		191 3.13	96 2•00	25 0.70	11.2	0.3	0.07		336 346
03N/20W-27G03S 09/25/68	56	5050	 7.9	1439	48 141 7.03	74 6.08	90 3•91	1 4 0•10	0	52 221 3.62	560 11.66	40 1•13	33.0 0.53	0.7	0.16		1201 1052
					41	35	23	1		21	69	7	3				
ARROYO S	SANTA	ROSA H	YDRO SU	BAREA	U03F3												
02N/20W-23R025 09/25/68	56	5050	70 7.9	1285	87 4•34 30	74 6.08 43	87 3•78 27	0 • 0 2 0 • 0	0.00	397 6.51 47	148 3•08 22	116 3•27 23	~ 69.0 1.11 8	0.4	0.17		964 778
CONEJO V	ALLEY	HYORO	SUBARE	A	U03F4												
02N/20W-36R01S 09/25/68	56	5050	71 7.9	1585	56 2.79 17	42 3.45 21	240 10.44 62	0.02 0		385 6.31 37	320 6.66 39	138 3.89 23	0.7 0.01 0	0 • 4	0.24		996 988
SIMI VAL	LEY H	YDRO SI	UBAREA		U03F7												
02N/17W-08J065 09/25/68	56	5050	74 7.8	683	51 2•54 35	16 1.31 18	77 3.35 46	0.02 0.00		289 4.74 67	41 0.85 12	51 1•44 20	0.00	0.6	0.34		373 380
02N/18W-10A02S 09/25/68	56	5050	72 7•2	2173	231 11.53	84 6.91	189	5 0.13		355 5.82	794 16.53	126 3.55	22.5 0.36	0.8	1.30		1713 1629
					43	26	31	0		55	63	13	1				
MALIBU CREEK HY TRIUNFO				U0480	MALIBU HYDRO UNIT U0400												
015/18W-05P01S 04/07/68 1130	70	5050	107	877	0	0.00	210 9•13	1 0•02		461 7.55	60 1•25	11 0•31	0.0	1.8	1.09		519 512
1,47,017,00 1130			0.5		0	0	100	0		83	14	3	0				312
COASTAL PL OF L					U05A1	-SAN G	ABRIEL F	RIVER	HŸDRO UN	IT U05	00						
045/14W-10J01S 04/08/68	70	5050	74 7.6	615	2.19 34	12 0.99 15	72 3.13 49	0.13 2		246 4.03 64	0.17 3	73 2.06 33	0.0	0.3	0.12		300 336
WEST COA	AST HY	DRO SU	BAREA		U05A2												
025/14W-19C01S 12/04/67	70	1101 1101	70 8.1	1090	83 4.14 35	31 2.55 21	115 5.00 42	8 0•20	0.00	390 6.39 53	133 2.77 23	100 2.82 23	0.0			0	860 662
n3/04/68	70	1101 1101	7.7	1090	82 4•09 34	31 2.55 21	115 5.00 42	9 0•23 2	0.00	380 6.23 51	150 3•12 26	98 2.76 23	5.5 0.09			0	870 678

MINERAL ANALYSES OF GROUND WATER

TATE WELL DATE	NO. TIME	COUNT	Y LAB SAMPLE		EC	MINERA	MG	TITUENTS		MILLIGRAI MILLIEQU PERCENT I CO3	IVALENT!	S PER L		ЕОМ	MILLIGRAI F	MS PER	LITER 5102	TDS 180C (*105C) SUM	TH
OASTAL PL WES			HYDRO		TU05A0	U05A2	-SAN G	ABRIEL I	RIVER	HÝDRO UN	IT U05	00							
75/14W-19 06/03/68		70	1101 1101	7.8	1100	85 4.24 35	31 2.55 21	115 5.00 42	0.23	9 0	410 6.72 54	126 2.62 21	102 2.88 23	7.7 0.12	••		0	885 678	339 3
09/03/68		70	1101 1101	72 7.5	1100	78 3.89 33	32 2.63 23	112 4.87 42	0.23	0.00	394 6.46 55	117 2.43 21	99 2.79 24	6.8	0 • 4		0	848 648	326 3
25/14W-19 10/03/67		70	1101 1101	71	1310	99 4•94 35	37 3.04 22	133 5.78 41	0.18	7 0	340 5.57 40	190 3.95 28	153 4.31 31	7.0 0.11			0	966 794	399 120
01/03/68		70	1101 1101	69 7.6	1300	94 4.69 35	39 3.21 24	124 5.39 40	0 • 2 (0.00	410 6.72 50	156 3.25 24	122 3.44 26	2.9 0.05 0			0	955 748	395 59
54/01/68	••	70	1101 1101	70 7.7	. 1320	97 4.84 34	35 2.88 20	147 6.39 44	0.25		359 5.88 41	191 3.98 28	148 4.17 29	8.2 0.13			0	995 813	386 92
ñ7/02/68		70	1101 1101	7.7	1230	102 5.09 38	35 2.88 21	120 5.22 39	0 • 18	7 0	410 6.72 50	149 3.10 23	124 3.50 26	0.00	••		0	947 739	398 62
59/03/68		70	1101 1101	7.5	1220	90 4.49 35	35 2.88 22	124 5.39 42	0.20		401 6.57 50	135 2.81 21	131 3.69 28	5.4 0.09	0.4	••	0	929 726	368 39
25/14W-19 11/06/67	K025	70	1101 1101	70 7•9	1850	146 7.28 37	59 4•85 24	176 7.65 38	0.13		478 7.83 39	221 4.60 23	276 7.78 38	3.9 0.06 0	••		0	1364 1122	607 215
12/05/68		70	1101 1101	70 7.7	1850	141 7.03 35	64 5•26 26	176 7.65 38	0.18	_	500 8.19 40	221 4.60 22	272 7.67 37	0.00		••	0	1381 1127	615 205
15/06/68		70	1101 1101	69 8•0	1850	148 7•38 36	58 4.77 23	182 7.92 39	0 • 1 8		511 8.37 41	213 4•43 22	268 7•56 37	2 · 3 0 · 0 4 0			0	1389 1130	608 189
18/06/68		70	1101	72 7•7	1530	119 5•94 36	47 3.86 23	152 6•61 40	0 • 18		454 7.44 44	179 3•73 22	202 5•70 34	4.2 0.07 0			0	1164 934	490 118
19/03/68		70	1101 1101	70 7.5	1890	151 7.53 37	61 5.02 24	182 7.92 38	0.13		457 7.49 37	229 4.77 23	288 8.12 40	2.2	0.3		0	1375 1144	628 253
25/14W-19 11/06/67		70	1101 1101	74 8.2	1050	79 3.94 35	32 2.63 23	107 4.65 41	0.18	7 0	392 6.42 55	111 2.31 20	100 2.82 24	7.9 0.13	••		0	835 637	328 6
12/05/68		70	1101 1101	70 7•8	1200	97 4•84 37	35 2•88 22	115 5•00 39	0 • 23		424 6.95 52	130 2•71 20	128 3•61 27	4 • 2 0 • 0 7 0	••		0	942 727	386 38
i5/06/68		70	1101 1101	72 7.7	1130	84 4.19 34	34 2.80 23	115 5.00 41	0.2		416 6.82 55	118 2.46 20	108 3.04 25	4.2 0.07 0	••	••	0	888 677	349 8
18/05/68		70	1101 1101	77 7•9	1140	93 4•64 36	32 2.63 21	120 5•22 41	0 • 20)	418 6.85 54	120 2•50 20	113 3•19 25	7.5 0.12 1	••		0	911 699	363 20
19/03/68		70	1101 1101	72 7.6	1120	82 4.09 36	33 2.71 24	103 4.48 39	0.20	0.00	394 6.46 55	117 2.43 21	98 2.76 23	4.8 0.08	0 • 4		0	840 640	340 17
S/15W-14 10/03/67		70	1101	71	1380	117 5.84 38	47 3.86 25	132 5•74 37	0.05		450 7.37 47	230 4.79 30	126 3• 5 5 22	4.0 0.06 0	••		0	1108 880	485 116
1/07/67		70	1101 1101	70 7.7	1460	127 6.34 39	50 4.11 25	133 5.78 35	0.05	0 0 0	454 7.44 46	222 4.62 28	122 3.44 21	47.9 0.77 5	••		0	1157 928	522 150
2/04/67		70	1101 1101	59 7.6	1460	127 6.34 39	50 4.11 25	133 5.78 35	0.10	0.00	462 7.57 46	218 4•54 28	123 3•47 21	47.2 0.76 5	••		0	1164 930	522 143
11/03/68		70	1101 1101	54 8.3	1450	97 4.84 32	51 4.19 28	133 5.78 39	0.10	0.00	388 6.36 42	220 4.58 30	121 3.41 23	40.9	••		0	1054 858	452 134
12/05/68		70	1101 1101	56 7.8	1430	126 6.29 39	50 4.11 26	128 5•57 35	0.10	0.00	486 7.96 49	215 4.48 27	116 3.27 20	35.7 0.57 3			0	1160 914	520 121
3/04/68		70	1101 1101	61 7.8	1440	132 6.59 40	50 4.11 25	128 5.57 34	0.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	496 8.13 49	205 4.27 26	122 3.44 21	42.3 0.68 4			0	1178 927	535 128

MINERAL ANALYSES OF GROUND WATER

STATE WELL DATE	NO. TIME	COUNT	TY LAB SAMPLER	_	EC	M1NER CA	AL CONS	STITUENT NA	S IN M		IVALENT			N03	MILLIGRAMS F	PER	LITER SIO2	TOS 180C (*105C SUM
COASTAL PL					TU05A0		A-SAN G	ABRIEL	RIVER H	ŸDRO UN	IT V05	00						
02S/15W-14 04/01/68	0025	70	DRO SUE	60 7.5	1470	129 6.44	51 4.19	128 5.57	4	0 . 00	476 7.80	218 4.54	122	58.7 0.95			0	1186
04/01/00		70	1101	64	1500	39	26	34	1	0	47 505	27	21	6	••		0	1228
n5/06/68	••		1101	7.6		6.79	4.11	6.00 35	0.10	0.00	8.28	4.70	3.38	0.79				972
06/03/68		70	1101	69 7.6	1480	129 6.44 39	50 4.11 25	133 5.78 35	0.08 0	0.00	451 7.39 45	239 4.97 30	123 3.47 21	45.5 0.73 4		**	0	1173 945
07/02/68	••	70	1101 1101	7.6	1510	134 6.69 40	50 4.11 25	133 5.78 35	0.10 1	0.00	503 8.24 47	243 5.06 29	124 3.50 20	44.5 0.72 4	••		0	1235 980
08/05/68		70	1101 1101	72 7.3	1500	133 6.64 39	50 4.11 24	138 6•00 36	3 0.08 0		463 7.59 44	246 5•12 30	131 3.69 21	50.2 0.81 5		••	0	1216 979
ñ9/03/68		70	1101 1101	73 7.5	1470	132 6.59 40	48 3.95 24	134 5,83 35	2 0•05 0	0.00	460 7.54 45	228 4.75 29	126 3.55 21	47.3 0.76 5	0.4		0	1177 944
0?S/15W-23 04/03/68		70	5050	63 7.9	2483	163 8.13 30	85 6.99 25	276 12.00 44	9 0.23 1		343 5.62 20	432 8.99 33	450 12.69 46	3.0 0.05 0	0.8	0.93		1659 1589
02S/15W-23		70	1101 1101	65 8•2	3570	288 14•37 33	119 9.79 22	440 19.14 44	0.13 0	0.00	408 6.69 15	950 19.78 46	424 11.96 28	286.0 4.61 11			0	2920 2713
ñ4/11/68		7 0	1101 1101	69 6•9	2690	255 12.72 40	100 8•22 26	240 10.44 33	0 • 15 0	0.00	492 8.06 25	667 13.89 43	300 8•46 26	94.4 1.52 5		•	0	2154 1905
02S/15W-23 04/03/68		70	5050	63 7•5	4613	280 13.97 29	111 9.13 19	570 24•79 51	8 0•20 0		447 7•33 15	414 8-62 18	1107 31.22 64	79.0 1.27 3	0.9	2.06		3051 2792
02S/15W-23 10/03/67		70	1101 1101	68 8•5	6200	381 19.01 28	216 17.76 26	690 30.01 45	7 0.18 0	0.00	588 9.64 14	836 17.40 26	1400 39.48 59	5.0 0.08 0			0	4123 3825
11/07/67		70	1101 1101	69 7.7	7740	496 24.75 29	301 24.75 29	810 35.23 41	0.13 0	0.00	524 8.59 10	851 17.72 21	2040 57.53 69	4.2 0.07 0			0	5031 4765
12/04/67		70	1101 1101	61 8.2	3560	248 12.37 30	129 10.61 26	420 18,27 44	0.13 0	0.00	682 11.18 27	596 12.41 30	614 17.31 42	44.3 0.71 2		**	0	2738 2392
ñ1/03/68		70	1101 1101	65 7•6	3590	252 12•57 31	136 11•18 27	392 17•05 42	0 • 20	0.00	647 10.60 26	581 12•10 29	648 18•27 45	0 • 0 0 • 0 0 0			0	2664 2336
ñ2/05/68		70	1101 1101	65 7.5	3990	272 13.57 30	137 11.27 25	460 20.01 44	0.23 0	0.00	587 9.62 21	688 14.32 32	752 21.21 47	4.4 0.07 0			0	2909 2611
03/04/68		70	1101 1101	65 7.6	3820	264 13.17 30	131 10.77 24	460 20.01 45	10 0.25 1	0.00	594 9.73 22	719 14.97 33	712 20.08 45	4.5 0.07 0			0	2894 2593
04/01/68		70	1101 1101	60 7.1	3290	230 11.48 30	116 9.54 25	382 16.62 44	0.20	0.00	689 11.29 30	558 11.62 31	520 14.66 39	14.8 0.24 1	••	••	0	2518 2168
04/03/68	730	7 0	5050	61 7•3	3274	224 11.18 30	133 10.94 29	345 15.01 40	7 0.18 0		670 10.98 30	516 10.74 29	532 15.00 41	13.0 0.21 1	0.8	1.12		2228
06/03/68		70	1101 1101	76 7.9	3930	244 12.17 28	134 11.02 25	470 20.44 47	9 0.23 0	0.00	503 8.24 19	747 15.55 35	708 19.96 45	6.0 0.10 0			0	2821 2566
ñ7/02/68		70	1101 1101	67 7.4	3910	248 12.37 27	135 11.10 25	490 21.31 47	0.23 0	0.00	565 9.26 20	774 16•11 35	706 19.91 44	2.7 0.04 0			0	2929 2643
08/05/68		70	1101 1101	67 7.8	4030	249 12.42 27	138 11.35 25	512 22.27 48	0.15 0		582 9.54 20	780 16.24 35	750 21.15 45	2.2 0.03 0			0	3019 2724
03S/13W-19 09/30/68		70	5050	69 7•8	710	65 3•24 45	21 1•73 24	47 2•04 29	0 • 13 2		245 4.01 55	72 1.50 21	60 1.69 23	4.0 0.06 1	0.3	0.10		411 395
03S/13W-29 09/30/68		70	5050	72 7.7	454	36 1.80 38	12 0.99 21	41 1.78 38	0.10		219 3.59 77	0.00	36 1•01 22	3.0 0.05	0.2	0.06	••	220 240

MINERAL ANALYSES OF GROUND WATER

E WELL NO.		TY LAB SAMPLE		EC	MINER	AL CON	STITUENT!		MILLIGRA MILLIEOU PERCENT	IVALENT	S PER L		N03	MILLIGR		LITER SIO2	TDS 180C (*105C)	
	-								HYDRO UN			CL	1103	r	8	2105	SUM	
TAL PL OF WEST CO				TU05A0	U05A2													
13W-29G03S 01/68 1030		5050	74 7.6	412	27 1.35 32	0.66 15	50 2.17 51	0.08	3	220 3.60 84	0.00	25 0.70 16	0.0	0.2	0.11		223 223	100
13W-32E02S 02/68 820		5050	8.0	631	64 3.19 47	17 1.40 21	48 2•09 31	0 • 0	3	218 3.57 53	108 2•25 34	31 0.87 13	0.0	0.3	0.11		376 379	230 51
14W-07K05S 30/68	70	5050	75 8•1	938	2.19 22	26 2•14 22	119 5•18 52	0.36	0.00	461 7.55 76	5 0 • 1 0 1	80 2•26 23	1 • 0 0 • 02 0	0 • 4	0.38	~-	538 517	217
14W-21M015 18/68	70	1101 1101	75 7•4	829	41 2.04 35	12 0.99 17	60 2•61 45	0.13	0.00	291 4.77 81	0.17 3	32 0•90 15	2.9 0.05	0 • 4		0	452 305	151 0
14W-22K01S 01/68 1015	_	5050	72 7.9	543	40 1.99 34	20 1.64 28	48 2•09 36	0.10		232 3.80 - 67	41 0.85 15	36 1•01 18	0 • 0 0 • 0 0 0	0.3	0 - 1 4		285 304	182
14W-22Q01S 24/68	70	5868	77 8•0	527	49 2.44 42	13 1•07 18	50 2•17 37	0.10		242 3.97 68	42 0.87 15	34 0.96 16	0.0	0.5	0.08	31	343 343	176 0
14W-22R02S 11/68 1030	70	5050	7.9	687	62 3.09 44	18 1•48 21	54 2.35 33	0.10	j	227 3.72 54	38 0.79 11	83 2.34 34	0 • 0 0 • 0 0 0	0.3	0.14		381 371	229 43
24/68	70	5868	77 7.6	1640	152 7.58 48	42 3.45 22	106 4.61 29	0 • 18 1)	203 3.33 21	41 0.85 5	417 11.76 74	0.00	0•2	0.17	18	884 884	552 386
14W-25K04S 11/68 1130	70	5050	8.0	519	53 2•64 48	0.99 18	41 1•78 32	0 • 08 1	3	222 3.64 68	36 0.75 14	34 0.96 18	0.00	0 • 4	0.13		284 289	182
4W-27C015	70	5050	69 8•1	935	87 4•34 45	24 1.97 21	72 3•13 33	0 • 1 <u>0</u>		234 3.83 40	53 1•10 12	163 4.60 48	0 • 0 0 • 00 0	0•2	0.11		504 519	316 124
4w-29P03S	70	5050	8.3	1190	34 1.70 15	14 1.15 10	195 8.48 74	0 • 1 <u>0</u> 1	0.17	138 2.26 20	290 6•04 53	101 2.85 25	0.5 0.01 0	0.5	0.12		711 712	142 21
4W-30H02S 6/68	70	5050	7.7	1236	86 4•29 35	50 4•11 33	86 3•74 30	0 • 1 3 1	1	208 3•41 29	80 1•66 14	243 6•85 57	0 • 0 0 • 0 0	0 • 4	0.10		790 653	420 242
4W-35M06S	70	5050	6.3	1346	33 1.65 21	48 3.95 50	48 2•09 26	10 0.25 3	0.00	0.80 7	278 5.79 49	27 0.76 6	282.0 4.55 38	0.5	0.04		738 751≠	280 240
2W-34J02S 7/68	70	1101 1101	 7•7	345	11 0.55 14	0.08 2	72 3•13 83	0 • 0 ≥ 1	0.00	157 2.57 70	28 0•58 16	18 0•51 14	0 • 0 0 • 0 0 0			0	288 209	31
3W-10E03S 3/68 1120	70	5050	71 8•1	682	46 2.29 32	26 2.14 29	63 2.74 38	0.08 1		249 4.08 56	86 1.79 25	49 1.38 19	2.0 0.03 0	0 • 4	0.12		411 398	222 18
3W-19J065 0/68	70	5050	75 7•8	439	28 1•40 31	9 0•74 16	51 2•22 49	0 • 13 3		217 3.56 81	0.00	29 0•82 19	2 • 0 0 • 03 1	0.3	0.07		535 535	107
3W-22E01S	70	5050	79 7•9	404	21 1•05 26	0.41 10	59 2•57 63	0 • 05 1		196 3.21 78	0 • 0 6 1	29 0•82 20	0.5 0.01 0	0.3	0.12		208 217	73
3W-27A02S	70	1101 1101	70 8.4	4240	294 14.67 35	71 5.84 14	480 20.88 50	20.05 0.05	0.00	300 4.92 12	286 5.95 14	1100 31.02 74	6.0 0.10 0			0	2539 2387	1026 780
7/67	70	1101 1101	67 7.9	3890	240 11.98 31	77 6.33 16	460 20.01 52	11 0.28 1	0.00	130 2.13 5	295 6.14 16	1080 30.46 78	10.0 0.16 0		••	0	2303 2237	916 809
6/67	70	1101 1101	7.9	3960	236 11.78 30	77 6.33 16	480 20.88 53	0.36 1	0.00	130 2.13 5	323 6•72 17	1096 30.91 78	3.5 0.06 0			0	2359 2294	906 799
5/68	70	1101 1101	64 7.8	4110	232 11.58 28	76 6.25 15	530 23.05 56	0.4 <u>1</u>	0.00	178 2.92 7	316 6.58 16	1116 31.47 77	6.0 0.10 0	• •		0	2470 2380	892 746
5/68	70	1101 1101	7 ₀ 7 _• 6	4160	346 17.26 40	76 6.25 14	19.14 44	15 0.38 1		322 5.28 12	320 6.66 15	1110 31.30 72	0.07	**		0	2633 2470	1176 912
3/68	70	1101 1101	70 7.5	4190	350 17.46 40	78 6.41 15	432 18.79 44	0.41 1	0.00	421 6.90 16	321 6.68 15	1050 29.61 68	8.3 0.13 0			0	2677 2463	1195 850

MINERAL ANALYSES OF GROUND WATER

STATE WELL	L NO.	COUNT	TY LAB SAMPLE		EC			STITUENT	S IN	BERCENT	PEACTAN	S PER	UES		MILLIGRA			Tos 1800 (*1050
						CA	MG A-SAN	NA GABRIEL	RIVER		HC03	504	CL	N03	F	8	2105	SUM
COASTAL PI			HYDRO		TU05A0	U05A2	, H-5414	ONONIEC	RIVER	HTORO OF	111 00.	500						
045/13W-2 05/07/68		70	1101	7.7	4260	348 17.36 39	82 6.74 15	20.01	20 0.51	0.00	442 7.24 16	321 6.68 15	1090 30.74 69	4.2 0.07 0		••	0	2767 2543
ñ6/05/68		70	1101 1101	6.5	4340	342 17.06 38	75 6.17 14	480 20.88 47	0.38 1	0.00	414 6.78 15	341 7.10 16	1100 31.02 69	10.2	••	••	0	2777 2567
ñ7/09/68		70	1101 1101	71 7.8	4390	340 16.97 37	85 6.99 15	496 21.57 47	16 0.41 1	0.00	426 6.98 15	366 7.62 16	_	9.0 0.14 0			0	2866 2650
ñ9/17/68		70	1101	72 7.3	4420	402 20.06 43	74 6.08 13	20.01	0.23	0.00	373 6.11 13	425 8.85 19		3.2 0.05 0	0.4	**	0	2885 2695
045/14W-0 04/04/68		70	5050	70 8.0	448	34 1.70 36	0.90 19	45 1.96 42	0.10 2	••	177 2.90 64	40 0.83 18		0.5 0.01 0	0.3	0.40		252 250
045/14W-0 04/08/68		70	5050	70 8.1	667	2.99 43	17 1.40 20		0.10 1	••	238 3.90 57	43 0.89 13	2.09	0.5	0.3	0.11	••	364 373
045/14W-109/30/68		70	5050 	73 7.9	515	36 1.80 34	13 1.07 20	52 2•26 43	0.13 2		243 3.98 74	0.06 1	1.35	0.00	0.3	0.10		289 277
045/14h-1 04/10/68		70	5050	72 8.0	921	71 3.54 37	26 2.14 23	83 3•61 38	6 0.15 2		256 4.19 45	0.92 10	145 4.09 44	1.5 0.02 0	0 • 1	0.20	••	513 503
045/14W-10 04/08/68		70	5050	7.6	948	53 2.64 28	18 1.48 15	122 5.31 55	5 0.13 1		300 4.92 52	0.46 5	3.98	2.0 0.03 0	0.2	0.16		484 511
045/14W-1 03/04/68		70	1101 1101	8.0	1120	74 3.69 34	22 1.81 17	5.22	0.15 1	0.00	292 4.78 43	0.23 2	218 6•15 55	0.00			0	743 595
045/14W-3! 04/08/68		70	5050	7.8	1511	117 5.84 35	39 3•21 19	168 7•31 44	7 0.18 1		407 6.67 41	229 4•77 29	4.82	0.0	0 • 4	0.42	••	971 932
055/13W-02 02/08/68		70	1101 1101	70 8.0	40600	486 24.25 5	990 81.42 18	8000 348.00 75	284 7.26 2	0.00	282 4.62 1	2090 43.51 9	14840 418.49 90	17.8 0.29 0	••	••	0	26990 26847
04/03/68		70	1101 1101	68 7.2	42100	488 24.35 5	1080 88.82 19	8040 349.74 74	320 8.18 2	0.00	239 3.92 1		15200 428.64 90	19.7 0.32 0	••		0	27543 27423
09/18/68	••	70	1101 1101	69 6.7	40000	516 25.75 5	997 81.99 18	7995 347.78 75	398 10.18 2	0.00	259 4.24 1		14603 411.80 89	13.8 0.22 0			0	26972 26841
055/13W-02 09/18/68		70	1101 1101	67 6•9	47200	509 25•40 5	1121 92•19 17	9750 424•12 76	507 12.97 2	0.00	401 6.57		17740 500•27 90	24.7 0.40 0			0	32473 32269
055/13w-03 09/18/68		70	1101 1101	70 7.4	43900	552 27.54 5	1140 93.75 18	8780 381.93 74	410 10.49 2	0.00	253 4.15 1		16420 463.04 90	30.4 0.49 0	••	••		29766 29637
055/13W+03 09/18/68		70	1101 1101	74 7.4	36500	528 26.35 6	810 66.61 16	7098 308.76 75	304 7.78 2	0.00	483 7.92 2		13258 373.87 90	0.3				24070 23806
055/13W+03 09/18/68		70	1101 1101	75 7.1	40700	486 24.25 5	752 61.84 13	8385 364.75 79	374 9.57 2	0.00	708 11.60 2		15065 424.83 92	13.0 0.21 0				27116 26704
055/13W-04 09/18/68		70	1101	70 7.6	31400	383 19.11 5	748 61.51 17	6120 266.22 75	257 6.57 2	0.00	542 8.88 2		11086 312.62 89	0.0				20631 20351
055/13W-00 10/03/67		70	1101 1101	87	2050	16 0.80 3	9 0.74 3		11 0.28 1	0.00	514 8.42 37	76 1.58 7	440 12•41 54	26.0 0.42 2	••		0	1572 1311
12/06/67		70	1101 1101	85 8.3	2130	28 1.40 6	15 1.23 6	430 18.70 86	13 0.33 1	0.00	466 7.64 36	16 0.33 2	464 13•08 61	19.2 0.31 1	••		0	1451 1215
01/03/68		70	1101 1101	86 8.4	2120	28 1.40 7	14 1.15 5	420 18.27 86	13 0.33 2	0.00	456 7.47 35	16 0.33 2	464 13.08 62	16.1 0.26		••	0	1427 1196
ñ2/05/68		70	1101 1101	87 8•0	2090	30 1.50 7	12 0.99 4	19.57	14 0.36 2	0.00	534 8.75 39	39 0.81 4	448 12.63 57	1.9 0.03 0			0	1534 ^{II} 1258

MINERAL ANALYSES OF GROUND WATER

TE WEL	L NO. TIME	_	Y LAB SAMPLEI		EC	MINEF	RAL CONS	TITUENTS NA	SIN	MILLIGRAM MILLIEGUI PERCENT F CO3	VALENT	S PER L		N03	MILLIGRAMS F	PER	LITER S102	TOS 180C (*105C) SUM	
STAL P	LOF	LA CO	HYDRO :	SUBUNI	TU05A0	ι	A-SAN G	ABRIEL F	RIVER	HŸDRO UNI	IT U05	00							
	_	_	DRO SUI			U05A2													
/13W-0 /05/68		70	1101	7.7	2090	30 1.50 7	13 1.07 5	420 18.27 86	0.33 2	0.00	482 7.90 37	35 0.73 3	446 12.58 59	13.7 0.22 1			0	1452 1208	128
/01/68		70	1101 1101	86 7.7	2080	31 1•55 7	12 0.99 4	460 20•01 87	15 0•38 2	0.00	540 8.85 39	66 1•37 6	440 12•41 54	13.3 0.21 1			0	1577 1303	126
/07/68		70	1101 1101	88 8.4	2130	32 1.60 7	11 0.90 4	450 19.57 87	14 0.36 2	0.33	530 8.69 39	34 0.71 3	440 12.41 55	22.8 0.37 2			0	1543 1275	125 0
/05/68	1200	70	1101 1101	8.4	2130	26 1.30 6	0.99 4	440 19.14 88	13 0.33 1	0.00	532 8.72 39	28 0.58 3	448 12.63 57	17.7 0.28			0	1516 1247	114
/09/68		70	1101 1101	88 8•3	2110	18 0•90 4	14 1•15 5	440 19•14 89	14 0•36 2	0.00	518 8.49 - 39	33 0.69 3	444 12.52 57	12.8 0.21 1			0	1493 1231	102
/17/68		70	1101 1101	87 7.7	2080	32 1.60 8	12 0.99 5	410 17.83 86	9 0•23 1	0.00	514 8.42 41	19 0.39 2	419 11.81 57	0.0	1.1		0	1418 1155	129 0
/13w-1 /18/68		70	1101 1101	62 7 . 2	49500	480 23.95 4		10374 451.27 77	542 13.86	0.00	213 3.49 1		18834 531.12 90	0 • 0 0 • 00 0			0	34438 34329	6195 6020
/13w-1 /18/68		70	1101 1101	64 7•3	50000	446 22.25 4	1230 101.15 17	10600 461.10 77	566 14.48 2	0.00	218 3.57 1		18903 533.06 89	0.0			0	34854 34743	6176 5997
/13w-1 //18/68		70	1101 1101	69 7.4	51000	792 39.52 6	102.63	10647 463.14 75	382 9.77 2	0.00	438 7.18		19733 556.47 90	0.0			0	35972 35748	7114 6755
SA	NTA M	ONICA	HYDRO	SUBARE	A	U05A3													
/14w-3 /30/68		70	5050	74 7•7	979	59 2.94 28	36 2.96 28	99 4•31 41	7 0 • 18 2	0.00	382 6.26 60	98 2•04 19	77 2.17 21	1.0		0.20		590 566	295 0
/15w-3 //30/68		70	5050	69 7.4	967	82 4.09 41	42 3.45 34	56 2•43 24	0.08 1		264 4.33 43	150 3•12 31	82 2•31 23	20.0 0.32 3	0.4	0.04		628 566	378 161
/15W-1 /04/67	-	70	1101 1101	8.4	1470	73 3•64 23	38 3.12 20	196 8•52 55	12 0•31 2	0.00	402 6.59 42	137 2•85 18	172 4•85 31	78.0 1.26			0	1108 904	338 8
/04/68	1030	70	1101 1101	8.0	1160	94 4•69 37	40 3.29 26	107 4.65 36	7 0 • 1 8 1	0.00	369 6.05 47	210 4•37 34	86 2•42 19	0.0			0	913 726	399 96
/01/68		70	1101 1101	7.7	1090	98 4•89 41	35 2.88 24	94 4•09 34	0 • 1 8 1	0.00	356 5•83 48	219 4•56 37	66 1•86 15	0.0			0	875 694	388 96
/04/68		70	1101 1101	7.6	1460	76 3•79 24	39 3.21 20	200 8.70 54	0 • 28 2	0.00	451 7.39 47	180 3•75 24	160 4•51 28	12.7 0.20 1			0	1129 901	350 0
/05/68		70	1101	7.6	1420	3.99 28	3.29 23	152 6.61 47	0.23 2.0	0.00	388 6.36 44	200 4•16 29	130 3.67 26	8.6 0.14 1	0 • 4		0	1008 811	364 46
/15w-1 //30/68		70	5050	73 7.8	1693	171 8.53 44	67 5.51 29	113 4.91 26	0•23 1	0.00	380 6.23 32	463 9.64 50	118 3.33 17	2.0 0.03 0	0.6	0.20		1286 1131	703 391
CE	NTRAL	HYDRO	5UBAR	ŁA		U05A5													
/11w-0 /19/67	-	70	5868	75 7.5	827	105 5.24 61	20 1.64 19	38 1.65 19	0 • 1 0 1)	238 3.90 45	142 2.96 34	56 1•58 18	16.0 0.26		0.02	18	516 517	344 149
6/11#-1 6/23/68			1101 1101	66 7.3	907	106 5.29 54	18 1.48 15	3.00 30	0.10	0.00	231 3.79 38	208 4.33 43	58 1.63 16	14.6 0.23 2			0	709 592	338 148
7/11W-1 1/17/67		70	1101 1101	63	978	96 4.79 46	21 1.73 16	88 3.83 37	0 • 1 0	0.00	200 3.28 31	233 4.85 46	80 2.26 21	14.0 0.22 2			0	736 635	326 162
(/30/68		70	1101 1101	65 7. 7	942	107 5.34 52	20 1.64 16	71 3.09 30	0 • 1 3 1	0.00	195 3.20 30	226 4.70 45	86 2.42 23	9.3 0.15 1			0 ू	719 621	349 189
/11W-1 /17/67		70	1101 1101	65 8.7	852	86 4.29 48	21 1.73 19	66 2.87 32	0.10	0.00	174 2.85 31	196 4.08 44	68 1.92 21	19.5 0.31 3			0	634 546	301 158

MINERAL ANALYSES OF GROUND WATER

							3001	TIENI	CALIFORN	14							
STATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE		EC	MINER	AL CONS	TITUENT	SIN	MILLIGRA MILLIEQU PERCENT	IVALENT	S PER L			MILLIGR	AMS PER	LITER	TDS 180C (*105C)
					CA	MG	NA	К		HC03	504	CL	N03	F	8	5102	SUM
COASTAL PL OF I	A CO	□AUBU	CHIDIINT	THASAN	L	A-SAN G	ABRIEL	RIVER	HŸDRO UN	IT U05	00						
CENTRAL		_		IUUDAU	U05A5												
025/12w-01M01S 06/19/68	70	1101 1101	78 7.5	847	80 3.99 43	22 1.81 20	76 3.30 36	0.10	0.00	274 4.49 48	151 3•14 34	49 1.38 15	19.5 0.31 3	0.4		0	675 537
02S/12W-01R02S 04/15/68 1100	70	5050	67 8.4	1240	34 1.70 15	12 0.99 9	200 8.70 76	5 0.13 1	0.07 1	147 2.41 20	308 6.41 54	101 2.85 24	1.4	0 • 4	0.20		750 737
025/12W-07C02S 07/15/68 915	70	1101 1101	8 • 1	621	55 2.74 41	15 1•23 18	60 2.61 39	0 • 1 0 1	0.00	232 3.80 56	60 1.25 18	54 1.52 22	11.0 0.18 3			0	491 374
025/12W-09M025 07/15/68 830	70	1101 1101	8.2	823	58 2.89 34	20 1.64 19	90 3.91 46	0.10	0.00	259 4.24 48	85 1.77 20	98 2.76 31	0.0			0	614 483
025/12W-10K035 10/19/67	70	1101 1101	8.5	628	66 3.29 49	13 1.07 16	52 2.26 34	0.05 1	0.00	250 4.10 60	47 0.98 14	60 1.69 25	0.0			0	490 363
07/15/68 845	70	1101 1101	8.0	593	63 3.14 50	10 0.82 13	50 2.17 35	0 • 1 0 2	0.00	224 3.67 59	58 1•21 19	48 1.35 22	0.0			0	457 344
025/12w-12M02S 09/10/68	70	1101 1101	72 7.6	925	108 5.39 54	18 1.48 15	71 3.09 31	0.08 1	0.00	217 3.56 35	179 3.73 37	93 2.62 26	11.0 0.18 2	0 • 4		0	700 591
02S/12W-13D07S 08/20/68	70	1101 1101	67 7•8	952	98 4.89 49	18 1•48 15	81 3•52 35	2 0•05 0	0.00	187 3.06 30	222 4.62 45	85 2•40 23	11.3 0.18 2	0.3		0	704 610
025/12W-13L055 12/19/67	70	5868	75 7•6	916	96 4.79 53	17 1.40 15	62 2•70 30	0.10		181 2.97 33	186 3.87 43	72 2•03 22	12.0 0.19 2	0.4	0.06	17	556 556
025/12W-14B085 08/26/68	70	1101 1101	72 7.4	982	90 4.49 44	19 1.56 15	94 4.09 40	5 0.13 1	0.00	181 2.97 28	232 4.83 46	86 2•42 23	11.4 0.18 2	0.5		0	718 627
025/12W-21J015 10/17/67	70	1101 1101	66	888	102 5.09 54	20 1.64 17	60 2•61 28	3 0.08 1	0 0•00 0	195 3•20 33	203 4•23 44	78 2•20 23	0.00			0	661 562
07/17/68	70	1101 1101	7.9	899	109 5.44 56	17 1-40 14	62 2•70 28	0 • 1 0 1	0 0•00 0	201 3•29 33	210 4•37 43	79 2•23 22	11.6 0.19 2			0	693 592
0?S/12W-24E06S 12/19/67	70	5868	75 7.3	933	91 4.54 49	18 1.48 16	71 3.09 33	0.10 1		165 2.70 29	210 4.37 47	70 1.97 21	10.0	0.5	. 0.11	16	576 572
02S/12W-25E01S 12/19/67	70	5868	75 7•5	996	115 -5.74 57	15 1.23 12	70 3.04 30	0.10 1		156 2.56 25	247 5•14 51	2.37 23	5.0 0.08 1	0 • 4	0.04	17	635 635
025/12W-25E06S 10/17/67	70	1101 1101	65 8•5	971	102 5•09 49	23 1•89 18	76 3•30 32	0 • 1 0 1	0.00	161 2.64 25	249 5•18 50	88 2•48 24	6.0 0.10 1			0	709 628
ô7/17/68	70	1101 1101	63 8.3	973	113 5.64 52	1.81 17	72 3.13 29	0.15 1	0.00	207 3.39 31	239 4.97 46	80 2.26 21	13.0 0.21 2			0	752 647
02S/12W-25G01S 10/17/67	70	1101 1101	69	947	106 5•29 52	19 1•56 15	72 3•13 31	0 • 1 0 1	0.00	178 2•92 28	238 4•95 48	84 2•37 23	6.0 0.10 1			0	707 617
ñ7/17/68 	70	1101 1101	63 8.3	990	104 5.19 49	21 1.73 16	83 3.61 34	5 0•13 1	0.00	167 2.74 25	254 5•29 49	90 2•54 23	13.8 0.22 2			0	737 653
025/12W-25M01S 10/17/67	70	1101 1101	64	921	110 5•49 55	23 1.89 19	56 2•43 25	0 • 1 0 1	0.00	170 2.79 28	231 4•81 48	82 2•31 23	6.6 0.11 1			0	682 597
07/17/68	70	1101 1101	7.9	746	114 5.69 56	23 1.89 19	56 2•43 24	0.13 1	0.00	166 2.72 26	244 5.08 49	84 2.37 23	5.4 0.09			0	697 613
025/12W-27C01S 10/17/67	70	1101 1101	66	980	104 5.19 48	21 1.73 16	88 3.83 35	0 • 1 0 1	0 0 • 0 0 0	178 2.92 28	236 4.91 47	88 2.48 23	13.8 0.22 2		••	0	732 643
07/17/68	70	1101 1101	64 8.4	908	95 4.74 48	18 1.48 15	79 3•44 35	0.13 1	0.00	176 2.88 30	219 4.56 47	77 2.17 22	8.8 0.14 1			0	677 589
025/12W-28Q015 10/17/67	70	1101 1101	66	960	107 5.34 51	22 1.81 17	72 3.13 30	0 • 1 0 1	0.00	196 3.21 31	227 4•73 45	83 2.34 22	13.5 0.22 2		••	0	724 625

MINERAL ANALYSES OF GROUND WATER

TE WEL	L NO. TIME		Y LAB SAMPLEF		EC	MINERA	L CONS	TITUENTS		MILLIGRAN MILLIEQU PERCENT N	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	TOS 180C (*105C) SUM	TH
STAL P					TU05A0		-SAN G	ABRIEL F	RIVER	HÝDRO UN	IT U05	00							
CE1			SUBARE 1101	66 66	963	U05A5	22	75	4	. 0	196	237	82	12.9			0	739	362
/17/68		70	1101	8.4	903	5.44	1.81	3.26 31	0.15 1	0.00	3.21	4.93	2.31	0.21			v	641	201
/12W-29 /17/67		70	1101 1101	68	838	102 5.09 57	23 1.89 21	45 1.96 22	0 • 05 1	0.00	226 3.70 41	169 3.52 39	60 1.69 19	11.5 0.18 2			0	638 524	349 164
/17/68		70	1101 1101	64 8•2	877	110 5.49 59	22 1.81 19	45 1.96 21	0.10 1		221 3.62 36	191 3.98 40	82 2.31 23	7.9 0.13 1			0	682 571≠	365 184
/12W-3 /15/68		70	5050	71 8.4	829	96 4.79 56	19 1.56 18	47 2.04 24	0.08 1	0.13	182 2.98 36	169 3.52 42	59 1.66 20	5.3 0.08 1	0.0	0.10		511 492	318 162
/12W-3 /15/68		70	1101 1101	69 7.9	696	79 3.94 51	20 1.64 21	2 46 2 26	0.08 1	0.00	246 4.03 51	115 2.39 30	46 1.30 16	10.6 0.17 2			0	565 441	279 77
/17/68		70	1101 1101	70 7.8	690	78 3.89 51	19 1.56 21	47 2.04 27	0.05		238 3.90 52	104 2.16 29	47 1.32 18	8.5 0.14 2	0.4		0	543 423	272 77
/12W-34 /17/67		70	1101 1101	70 	743	86 4.29 56	20 1.64 21	38 1.65 21	0.10		175 2.87 31	168 3.50 38	94 2.65 29	8.5 0.14 1			0	593 505≠	297 153
18/68		70	1101 1101	66 8•2	571	72 3.59 60	13 1.07 18	29 1.26 21	0.10	0.00	219 3.59 56	93 1•94 30	28 0.79 12	3.0 0.05 1			0	461 350≠	233 53
17/68		70	1101 1101	8.0	813	110 5.49 62	22 1.81 20	32 1.39 16	0 • 1 3 1	0.00	209 3.42 38	198 4.12 46	46 1.30 14	8.0 0.13 1			0	630 524	365 194
13W-09 130/68		70	5050	72 7.9	1089	115 5.74 49	32 2.63 23	70 3.04 26	9 0•23 2	0.00	318 5.21 46	163 3•39 30	98 2•76 24	1.0 0.02 0	0.5	0.19		701 645	419 158
/13W-10 /15/68		70	1101 1101	8.3	691	72 3.59 50	18 1.48 20	47 2.04 28	0.13 2	0.00	217 3.56 48	113 2•35 32	43 1.21 16	13.8 0.22 3			0	528 419	253 75
′13W-11 ′15/68		70	1101 1101	8•2	787	85 4•24 50	21 1.73 20	54 2+35 28	5 0 • 1 <u>3</u> 1		271 4.44 51	118 2•46 28	62 1•75 20	0.0			0	616 479	298 76
/13W-11 /15/68		70	1101 1101	8 • 2	622	66 3•29 49	16 1•31 19	47 2•04 30	0 • 1 3 2	0.00	251 4•11 58	95 1•98 28	34 0.96 14	0 • 0 0 • 0 0			0	514 387	230 24
/13W-12 /15/68		70	1101 1101	8.4	834	84 4.19 46	24 1.97 22	64 2.78 31	0.10 1	_	279 4.57 50	77 1.60 17	81 2•28 25	46.8 0.75 8			0	659 518	308 79
/13W-13 /18/68		70	1101 1101	74 7•7	588	57 2•84 47	13 1•07 18	2 33	3 0•08 1	0.00	227 3.72 61	67 1•39 23	36 1•01 17	0.0	0.5		0	449 335	195 9
′13W-14 ′15/68		70	1101 1101	8.3	549	53 2•64 44	10 0.82 14	55 2•39 40	0•13 2	0.00	232 3.80 61	75 1•56 25	27 0•76 12	5.5 0.09 1			0	462 345	173 0
/13W-21 /15/68		70	1101 1101	7.9	791	91 4.54 52	21 1.73 20	55 2.39 27	0.13 1	0.00	285 4.67 52	127 2.64 29	49 1.38 15	20.3 0.33 4			0	653 509	313 79
/13W-28 /15/68		70	1101 1101	8.0	728	80 3.99 51	19 1.56 20	50 2•17 28	0 • 1 3 2	0.00	224 3.67 48	122 2•54 33	51 1•44 19	0.0			0	551 438	277 93
/13W-32 /20/68		70	5050	70 7.8	561	62 3.09 51	13 1.07 18	41 1•78 29	0 • 1 0		223 3.65 62	74 1•54 26	26 0.73 12	0.0	0.5	0.09		336 331	208 25
/14W-0! /04/67		70	1101 1101	8.4	1360	103 5.14 34	52 4.28 28	133 5.78 38	0 • 1 0 1	_	470 7.70 50	220 4.58 30	112 3.16 20	0 • 0 0 • 0 0 0			0	1094 856	471 85
1/04/68	Ĩ230	70	1101 1101	7.6	1350	104 5.19 34	51 4.19 28	128 5.57 37	0.15 1		453 7.42 49	223 4.64 30	108 3.04 20	5.5 0.09 1		••	0	1078 849	469 97
C/04/68	••	70	1101	7.8	1460	117 5.84 35	57 4.69 28	133 5.78 35	0.15 1		439 7.19 43	314 6.54 39	110 3.10 18	3.2 0.05 0	••		0	1179 957	526 166
(105/68		70	1101 1101	7.6	1440	119 5.94 37	58 4.77 30	120 5.22 33	0.10	0.00	417 6.83 43	295 6.14 38	107 3.02 19	0.00	0.3	••	0	909	535 193

MINERAL ANALYSES OF GROUND WATER

							200 I H		_IF ORNI							Ten	Tos
STATE WELL NO. C DATE TIME	OUNTY	LAB SAMPLER	TEMP PH	EC		L CONST	ITUENTS NA	IN MIL	LIEQUI	S PER L VALENTS EACTANC HC03	ITER PER LI E VALUE: 504	TER 5 CL	M: NO3	ILLIGRAMS F	PER 8	SIO2	TDS 180C (*105C) SUM
					CA	MG											
COASTAL PL OF LA	A ČO H	HYDRO S	UBUNIT	U0540		-SAN GA	BRIEL R	IVER HŸ	DKO ONI	T U050	U						
CENTRAL	HYDRO	SUBARE	A		U05A5					227	97	33	0.5	0.3	0.17		386
025/14W-14C025 04/04/68 830	70	5050	65 8•2	628	67 3.34 49	16 1.31 19	2 30	0.10		227 3.72 56	2.02	0.93	0.01	0.00			376
025/14W-23H035 04/04/68 900	70	5050	64 8 • 1	741	81 4.04 50	21 1.73 21	51 2.22 27	0.10		253 4.15 53	103 2.14 27	47 1.32 17	12.0 0.19 2	0.3	0.20		455 444
075/14W-23H125 04/04/68 850	70	5050	65 8•1	663	65 3.24 46	22 1.81 26	1.91 27	3 0.08 1		234 3.83 55	89 1.85 27	38 1.07 15	11.0 0.18 3	0 • 4	0.19		401 388
035/11W-16H02S 10/10/67	70	5868	75 7•7	1242	48 2•39 20	33 2.71 23	156 6•78 56	5 0•13 1		350 5.74 48	201 4.18 35	75 2•11 18	0.00	0.3	0.30	23	714 714
03S/11W-17M03S 10/10/67	70	5868	75 7•3	1485	157 7.83 57	32 2.63 19	71 3.09 23	5 0•13 1		290 4.75 35	63 1•31 10	271 7.64 56	0 • 0 0 • 0 0 0	0.1	0.21	16	758 758
035/11W-18G04S 04/18/68	70	1101 1101	 7.9	1210	144 7.18 55	30 2.47 19	77 3•35 25	5 0.13 1	0.00	323 5.29 41	114 2.37 19	173 4.88 38	13.0 0.21 2			0	879 715
07/15/68 1000	70	1101 1101	8.0	1270	139 6.94 51	31 2.55 19	88 3.83 28	6 0.15 1	0.00	362 5.93 43	118 2.46 18	182 5•13 37	13.5 0.22 2			0	939 756
035/11W-18M015 10/10/67	70	5868	75 7•3	1047	120 5•99 58	22 1.81 18	54 2•35 23	5 0.13 1		310 5.08 50	108 2•25 22	101 2•85 28	4.0 0.06 1	0.2	0.17	20	586 587
035/11W-19A025 10/10/67	70	5868	75 7•5	835	97 4.84 61	18 1.48 19	35 1.52 19	0.10		256 4.19 53	49 1•02 13	95 2•68 34	2.0 0.03 0	0.3	0.06	20	446
035/11W-19A03S 10/10/67	70	5868	73 7•5	775	87 4•34 59	17 1.40 19	35 1.52 21	0.10		248 4.06 56	45 0.94 13	79 2.23 31	2.0 0.03 0	0.3	0.06	18	409
035/11W-19E025 10/10/67	70	5868	75 7•7	438	52 2•59 61	9 0•74 17	20 0•87 20	3 0•08 2		214 3.51 81	26 0•54 12	9 0•25 6	1.0 0.02 0	0 • 4	0.06	19	244 245
035/11W-19001S 10/10/67	70	5868 	75 7•8	466	55 2•74 60	9 0•74 16	23 1 22	3 0•08 2		221 3.62 80	28 0•58 13	12 0•34 7	0.00	0.5	0.06	20	260 260
035/11W-20C01S 10/10/67	7 0	5868 	75 7•4	1164	81 4•04 36	30 2.47 22	104 4.52 40	5 0 • 13 1		138 2•26 20	292 6•08 54	103 2•90 26	0.00	0 • 4	0 • 0	3 8	692 692
035/11W-22L015 07/18/68 900	70	1101 1101	74 8•2	858	58 2•89 28	21 1•73 17	125 5•44 53	0 • 1 0 1	0.00	272 4.46 43	175 3•64 35	80 2•26 22	0.0			0	735 597
035/11W-31M03S 07/15/68 1030	70	1101 1101	8 • 0	370	49 2•44 59	7 0.57 14	24 1 • 04 25	0 • 1 0 2	0.00	224 3.67 85	21 0.44 10	7 0 • 20 5	0.0			0	336 223
035/12W-03M01S 10/17/67	70	1101 1101	70 8•4	679	94 4.69 66	13 1.07 15	29 1•26 18	0 • 0 8 1	0.00	170 2.79 40	130 2•71 39	1 • 24 18	9.5 0.15 2			0	492 407
ô7/17/68	70	1101 1101	78 8.0	1070	90 4.49 39	27 2.22 19	107 4.65 40	0.15 1	0.00	152 2.49 21	297 6.18 53	97 2.73 24	10.4 0.17 1			0	786 710
035/12W-05A015 10/31/67	70	5868 	75 7.5	919	126 6.29 66	18 1.48 16	37 1.61 17	0.10 1		246 4.03 43	172 3.58 38	60 1.69 18	6.0 0.10 1	0.3	0.0	4 20	565 565
035/12W-05M01S 10/17/67	70	1101 1101	67 8•5	776	96 4•79 59	22 1•81 22	33 1•43 18	0.08 1	0.00	230 3.77 46	142 2•96 36	43 1•21 15	14.0 0.22 3			0	583 467
07/17/68	70	1101 1101	7.6	789	109 5.44 62	21 1•73 19	36 1•56 18	0.10 1	0.00	259 4.24 47	163 3.39 38	46 1•30 14	5.3 0.08 1			0	643 512
035/12W-11K06S 10/10/67	70	5868	73 7.5	693	82 4.09 61	17 1.40 21	26 1.13 17	0.10		236 3.87 58	95 1•98 30	28 0.79 12	3.0 0.05 1	0.5	0.0		390 390
035/12W-13A02S 07/15/68 945	70	1101 1101	8.0	878	106 5•29 54	22 1.81 19	58 2•52 26	5 0•13 1	0 0•00 0	273 4.47 45	168 3•50 35	56 1.58 16	20.0			0	708 570
035/12W-13F015 10/10/67	5 70	5868	75 7 . 5	785	97 4.84 61	20 1.64 21	32 1.39 17			281 4.60 58	115 2.39 30	30 0.85 11	6.0 0.10 1	0.3	0.0	8 19	461 462

MINERAL ANALYSES OF GROUND WATER

и								3001	HERN C	ACTEORNI	A								
05 800 850 JH	STATE WELL NO. DATE TIME		Y LAB SAMPLE		EC	MINER CA	AL CONS	TITUENT	S IN M	ILLIGRAM ILLIEQUI ERCENT R CO3	VALENTS	S PER LI	TER	N03	TILLIGRA	HS PER	LITER	TOS 180C (*105C) SUM	TH
н							A-SAN G	ADDIEL	DIVED W	PDRO UNI		0.0							
ı	COASTAL PL OF L				TU05A0	U05A5	A-SAN G	ABRIEC	MIACH H	YURU UNI	1 0050	00							
76	c35/12W-14C06S 10/10/67	70	5868	75 7.5	838	105 5.24 63	21 1.73 21	30 1.30 16	0.10 1	••	218 3.57 43	156 3.25 39	48 1.35 16	6.0 0.10 1	0.3	0.04	18	495 496	349 170
35 14	035/12W-14F015 10/31/67	70	5868	75 7.5	831	111 5.54 66	18 1.48 18	30 1.30 15	0.10		224 3.67 44	159 3•31 39	48 1.35 16	4.0 0.06 1	0.3	0.04	19	505 504	351 167
_	035/12W-14J01S 10/10/67	70	5868	75 7.5	738	93 4.64 62	18 1.48 20	29 1.26 17	0.10 1	••	240 3.93 53	118 2.46 33	34 0.96 13	8.0 0.13 2	0.3	0.04	20	442 443	306 109
	035/12W-15A03S 10/31/67	70	5868	75 7.6	742	98 4.89 61	19 1.56 20	32 1•39 17	0.10	••	300 4.92 62	101 2.10 26	33 0.93 12	0.00	0.2	0.04	19	454 454	323 77
	035/12W-15N02S 10/31/67	70	5868	75 7.5	971	124 6.19 62	20 1.64 16	2 20 20	0.10	٠-	369 6.05 61	96 2.00 20	64 1.80 18	0.0	0.2	0.12	20	559 556	392 89
	035/12W-16H01S 10/31/67	70	5868	75 7.6	641	85 4.24 66	13 1.07 17	24 1.04 16	0.08 1		257 4.21 66	79 1.64 26	18 0.51 8	2.0 0.03 0	0.4	0.04	19	370 370	266 55
	035/12W-18L01S 09/17/68	70	5868	80 7.7	595	81 4.04 54	17 1.40 19	1.91 26	0.08 1		302 4.95 67	59 1.23 17	42 1•18 16	1.0 0.02 0	0.4	0.17	23	413 420	272 24
96 87	035/12W-19C01S 09/24/68	70	5868	77 7•7	714	97 4.84 59	18 1.48 18	42 1•83 22	0.08 1		312 5.11 62	81 1.69 20	53 1•49 18	0.00	0.4	0.11	26	475 474	316 60
-	035/12W-21H01S 10/31/67	70	5868	75 7.5	626	84 4.19 65	13 1.07 17	25 1.09 17	0.08 1	••	281 4.60 73	38 0.79 12	33 0.93 15	0.00	0 • 4	0.06	19	358 354	263 33
10	035/12W-22A015 10/31/67	70		75 7•8	502	67 3•34 65	10 0.82 16	20 0.87 17	0.08 1		239 3.92 78	36 0.75 15	12 0.34 7	1 • 0 0 • 02 0	0 • 4	0.08	19	286 286	208
4 55	035/12W-22E01S 10/31/67	70	5868	75 7•6	1018	133 6.64 64	25 2•05 20	36 1•56 15	0 • 1 0 1		369 6.05 59	100 2•08 20	77 2•17 21	0.0	0.3	0.06	19	581 576	435 132
15 (8)	035/12W-23E03S 10/31/67	70	5868	75 7•5	976	127 6•34 64	21 1.73 18	38 1•65 17	0 • 1 0 1	••	360 5.90 60	113 2•35 24	58 1•63 16	0.0	0•3	0.06	20	558 559	403 108
7 N 1000	035/12W-23R01S 10/10/67	70	5868	75 7•3	841	98 4•89 58	23 1.89 22	36 1•56 18	0 • 1 0 1	••	327 5•36 63	97 2•02 24	38 1•07 13	0.00	0.3	0.08	18	475 476	339 71
17	035/12W-24B015 10/10/67	70	5868	73 7•7	994	120 5.99 60	25 2.05 21	41 1.78 18	0.10		323 5•29 53	138 2.87 29	60 1.69 17	2.0 0.03 0	0.3	0.13	18	569 568	402 138
23	035/12W-24001S 10/10/67	70		73 7.5	653	82 4.09 63	15 1.23 19	24 1.04 16	0.10	••	267 4.38 68	69 1.44 22	20 0.56 9	4.0 0.06 1	0.4	0.08	18	367 368	266 47
17	035/12W-24F01S 10/10/67	70	5868	73	1125	138 6.89 62	27 2.22 20	1.96 17	0.10		359 5.88 52	159 3.31 29	72 2.03 18	1.0 0.02 0	0.3	0.17	18	641	456 161
18	035/12W-24K015 10/10/67	70	5868	75 7•3	1005	120 5•99 57	25 2.05 20	52 2•26 22	0 • 13 1	**	348 5.70 55	147 3•06 30	1+52 15	0.0	0.3	0.13	18	592 593	402 117
55	035/12W-33A06S 07/17/68	70	1101	7.5	450	3.04 63	9 0.74 15	0.96 20	0.10	0.00	242 3.97 78	38 0.79 15	12 0.34 7	0.0	••	••	0	388 265≠	189
1	075/12W-34F01S 07/17/68		1101	7.6	417	2·34 52	0.66 15	32 1•39 31	0.10	0.00	227 3.72 79	30 0 • 62 13	12 0•34 7	0.00			0	360 245	150
13	035/13W-09A01S 09/17/68	70	5868	80 7.7	852	101 5.04 55	19 1.56 17	56 2.43 27	0.10		253 4.15 46	117 2•43 27	87 2.45 27	0.02	0.3	0.25	20	530 530	330 123
91 91	035/13W-09K01S 07/17/68	70	1101	8.0	533	59 2.94 50	0.90 15	45 1.96 33	0.10	0.00	238 3.90 63	1.66 27	0.59 10	0.0		••	0	458 337	192
18 78 /	ñ9/17/68	70		80 8•1	577	58 2.89 50	0.99 17	41 1•78 31	0.08 1		228 3.74 65	64 1•33 23	0.65 11	0.02	0.3	0.17	20	336 335	194
12	035/13W-11E015 07/15/68	70	1101	8.2	533	57 2.84 49	0.90 16	45 1.96 34	0.10	0.00	237 3.88 65	62 1.29 21	27 0.76 13	4.2 0.07 1	••		0	447 327	187

MINERAL ANALYSES OF GROUND WATER

STATE WELL DATE	NO.	COUNT	TY LAB SAMPLE	TEMP R PH	EC		AL CONS		S IN M	ERCENT	IVALENT:	S PER L CE VALUI	ES		MILLIGRA			180C (*105C)
						CA	MG	NA	К	C03	HC03	504	CL	N03	F	8	\$102	SUM
COASTAL PL		_	HYDRO SUBAR		TU05A0	U05A5	A-SAN G	ABRIEL	RIVER H	IŸDRO UN	IT U05	00						
035/13W-11 09/17/68		70	1101 1101	67 8.1	549	60 2.99 50	13 1.07 18	43 1.87 31	0.05 1	0.00	227 3.72 62	69 1•44 24	27 0.76 13	2.8 0.04 1	0.4	-	0	445 329
035/13W-12 07/15/68		70	1101 1101	8.2	551	66 3•29 55	13 1.07 18	35 1.52 25	3 0.08 1	0.00	250 4.10 66	65 1•35 22	23 0.65 10	4.5 0.07			0	459 333
035/13W-12 07/15/68		70	1101 1101	8 • 4	521	62 3•09 55	12 0.99 18	33 1•43 25	0.10	0.00	251 4.11 70	57 1•19 20	17 0•48 8	3.7 0.06 1		••	0	439 313
n9/17/68		70	1101 1101	70 8•1	538	66 3.29 58	13 1.07 19	30 1•30 23	0.05 1	0.00	242 3.97 67	65 1.35 23	20 0.56 9	2.5 0.04 1	0.5		0	441 318
035/13W-13 07/15/68		70	1101 1101	8.0	505	57 2.84 51	11 0.90 16	40 1.74 31	0 • 1 0 2	0.00	244 4.00 69	55 1•14 20	21 0.59 10	2.6 0.04 1		••	0	434 311
035/13W-13 09/17/68		70	5868	80 7•7	489	56 2•79 52	12 0.99 18	35 1•52 28	3 0.08 1		242 3.97 75	39 0•81 15	17 0•48 9	1.0 0.02 0	0.3	0.13	20	302 303
035/13W-13 09/17/68		70	5868	.80 7•6	631	71 3.54 52	16 1.31 19	42 1.83 27	0.08 1		254 4.16 62	61 1•27 19	44 1•24 18	3.0 0.05	0.3	0.13	25	390 391
035/13W-13 09/17/68		70	5868 	80 7•8	591	70 3.49 53	13 1.07 16	44 1•91 29	0.08 1		276 4•52 69	53 1•10 17	31 0.87 13	1 • 0 0 • 02 0	0.3	0.06	26	376 378
035/13W-13 09/17/68		70	5868 	80 7•8	502	55 2.74 52	0.90 17	36 1•56 30	2 0•05 1		238 3.90 74	40 0•83 16	18 0.51 10	2.0 0.03 1	0 • 4	0.13	21	302 303
035/13W-13 09/17/68		70	5868 	80 7•8	476	55 2•74 52	12 0.99 19	35 1•52 29	2 0 • 05 1		253 4•15 79	29 0•60 11	16 0•45 9	3.0 0.05 1	0.3	0.15	23	300 300
035/13W-16 09/17/68		70	5868 	80 7.7	552	59 2.94 49	14 1.15 19	43 1.87 31	3 0.08 1		235 3.85 64	63 1•31 22	27 0.76 13	3.0 0.05 1	0 • 4	0.17	23	352 352
035/13W-16 09/17/68		70	5868	80 7•9	561	68 3.39 51	15 1.23 18	45 1•96 29	0.08 1		239 3.92 59	84 1•75 26	35 ~ 0•99 15	1.0 0.02 0	0.3	0.17	23	393 392
035/13W-21 n9/24/68		70	5868	77 7.7	500	59 2.94 50	12 0.99 17	42 1.83 31	0.08 1		234 3,83 66	64 1•33 23	23 0.65 11	1.0 0.02 0	0.5.	0.19	24	344 344
035/13W-21 09/24/68		70	5868	77 7.7	527	58 2.89 50	13 1.07 18	41 1.78 31	0.08 1		231 3.79 65	66 1.37 24	23 0.65 11	1.0 0.02 0	0.4	0.13	24	340 344
035/13W-21 09/24/68	_	70	5868	77 7•8	500	58 2•89 49	12 0.99 17	2 34	0.08 1		232 3.80 63	72 1•50 25	25 0•70 12	1.0 0.02 0	0.5	0.06	23	355 355
035/13W-21 09/24/68	-	70	5868	77 8•0	417	52 2•59 46	13 1.07 19	43 1.87 33	0.08 1		215 3•52 64	62 1•29 23	24 0•68 12	0.00	0.5	0.04	24	328 328
035/13W-22 09/24/68		70	5868	77 8•0	500	49 2.44 42	15 1•23 21	47 2•04 35	0.10		242 3.97 69	42 0•87 15	33 0•93 16	0.0	0.5	0.11	33	343 343
035/13W-25 09/24/68		70	5868	77 7•4	800	103 5•14 54	22 1•81 19	56 2•43 26	0.10 1		275 4•51 47	140 2•91 31	73 2•06 22	0.0	0 • 4	0.13	38	571 572
035/13W-25 07/17/68	_	70	1101 1101	79 8•0	480	41 2•04 40	7 0.57 11	56 2•43 47	3 0 • 0 <u>8</u> 1	0.00	193 3.16 59	66 1•37 26	28 0•79 15	0 • 0 0 • 0 0 0			0	394 296
n9/17/68		70	1101 1101	78 7•8	655	39 1.95 43	0.33	50 2.17 48	0 • 0 5 1	0.00	171 2.80 60	58 1•21 26	22 0.62 13	2.0 0.03 1	0.5	••	0	349 262
ñ9/24/68		70	5868	77 7•9	394	38 1.90 41	0.25 5	56 2•43 52	3 0•08 2		176 2.88 62	51 1•06 23	25 0.70 15	0.0 0.00 0	0.5	0.46	33	297 297
03\$/13W-26 07/17/68		70	1101 1101	 7•9	463	38 1.90 38	0.33	62 2•70 54	0.08 1	0.00	175 2.87 56	68 1•41 28	27 0.76 15	2.0 0.03 1	••		0	379 290
035/13W-34 07/15/68		70	1101 1101	77 8•1	529	51 2.54 47	7 0.57 11	51 2•22 41	0.08 1	0.00	204 3.34 56	65 1•35 23	1.24 21	0.0 0.00 0		••	0	425 322≠

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO DATE TIM		SAMPLE		EC	MINER	AL CONS	TITUENT	S IN M		IVALENT	LITER S PER L ICE VALU S04		N03	MILLIGRA F	MS PER	LITER SIO2	TDS 180C (*105C) SUM	TH NCH
COASTAL PL OF				TU05A0		A-SAN G	ABRIEL	RIVER H	ŸDRO UN	IT U05	00							
04/02/68 113	5 70	5050	7.9	1119	34 1.70	46 3.78 32	140	0.10		151 2.47	297 6.18	99 2.79	0.00	0.5	0.15		707 695	274 150
 	S 7(1101	80	394	14 19 0.95 23	2 0.16	52 69 3.00 72	1 2 0•05 1	0.00	170 2.79 67	20 0.42 10	34 0.96 23	0.0			0	316 230	55 0
145/11W-07N01 01/26/68	5 7(5868	73 7.9	432	51 2.54 55	7 0.57 12	34 1•48 32	2 0.05		232 3.80 81	28 0.58	10	1.0	0.4	0.13	20	268 268	156
145/11W-07P02 n1/26/68	5 70	5868	73 7.7	401	51 2.54 57	8 0.66 15	27 1•17 26	2 0 • 05 1		234 3.83 87	19 0.39 9	0.17	0.00	0.3	0.11	20	251 249	160
145/11W-18P01 04/19/68	5 70	4206	74 8.2	455	46 2•29 48	0.66 14	41 1•78 37	0.05 1	0.00	218 3.57 77	30 0.62 13	15 0.42 9				24	261 274	148
145/12W-05H02 07/17/68	5 70	1101	6.3	720	130 6.49 97	0.16 2	0.04	0.00	0.00	101 1.65 25	40 0.83 12	149 4.20 63	0.00			0	423 372	332 249
045/12W-06D03	5 70	4206	78 7•7	427	28 1.40 39	6 0.49 14	38 1.65 46	3 0•08 2	0.00	175 2.87 68	37 0.77 18	20 0.56 13				22	241 240#	95 0
i9/23/68	70	4206	79 8.1	424	37 1.85 43	0.33 8	2 46 47	3 0.08 2	0.00	174 2.85 67	36 0.75 18	22 0.62 15				17	252 251	109
145/12W-06J01	5 70	4206	84 8•6	390	13 0.65 15	0.00	82 3.57 84	0.02	0.27 7	166 2.72 69	0.00	33 0.93 24	**			18	238 237≠	32
03/05/68	70	4206	82 8.3	388	12 0.60 15	0.00	79 3.44 85	0.02 1	0.00	168 3.08 76	0.00	34 0.96 24		••	••	18	239 237	30
ō7/02/68	70	4206	84	393	11 0.55 15	0.00	70 3.04 84	0.02	0.20 5	165 2.70 68	0.10 3	35 0.99 25				20	230 230≠	27 0
08/06/68	70	4206	87 8•7	386	11 0.55 12	0.00	90 3.91 87	0 • 0 <u>5</u>	11 0.37 9	154 2.52 62	9 0•19 5	35 0•99 24				19	254 253≠	27 0
ô9/03/68 	70	4206	84 8•6	395	11 0•55 14	0.00	76 3•30 85	0.02	5 0 • 1 7 4	163 2.67 62	21 0•44 10	37 1•04 24				16	250 248≠	27 0
045/12W-06J029 02/06/68	70	4206	85 8•6	387	12 0.60 15	0.00	79 3•44 85	0.02	7 0.23 6	166 2.72 71	0.00	31 0.87 23			•-	17	230 229≠	30
03/05/68 	70	4206	82 8.5	388	0.70 17	0.00	75 3.26 82	0.02	6 0.20 5	178 2.92 74	0.00	29 0.82 21	••			18	232 231	35 0
04/10/68	70	4206	75 8.6	392	0.55 14	0.00	75 3.26 85	0.02	19 0.63 15	158 2.59 63	0.00	31 0.87 21				19	235 234#	27
07/02/68	70	4206	84 8•6	388	0.60 18	0.00	63 2•74 81	0.02	7 0.23 6	168 2.75 69	0·12 3	31 0.87 22				20	224 223#	30
ō8/06/68 	70	4206	87 8•7	377	0.60 13	0.00	90 3.91 86	0.05 1	7 0.23 6	169 2.77 67	0.23 6	31 0.87 21				18	256 255≠	30
ñ9/03/68	70	4206	82 8•6	363	0.60 15	0.08	76 3.30 82	0.02	5 0.17 4	167 2.74 71	0.04 1	32 0.90 23				16	229 228	0
045/12W-06K029	70	4206	79 8•4	362	16 0.80 24	0.16 5	53 2.30 69	0.05 1	0.17 5	152 2.49 72	12 0.25 7	20 0.56 16	••		••	18	205 203	48
045/12W-08D029 07/17/68	70	1101	7.7	345	24 1.20 33	0.16	52 2•26 61	0.05	0.00	170 2.79 77	0.31 9	17 0.48 13	1.8 0.03 1			0	283 198	68
045/12W-118039 07/17/68		1101	8.0	373	48 2.39 59	5 0.41 10	27 1.17 29	0.10	0.00	214 3.51 81	25 0.52 12	10 0.28 6	0.00		••	0	333 225#	140
045/12W-13C029 07/18/68	70	1101	7.9	2 22	10 0.50 20	0.16 7	37 1.61 65	0.20 8	0.00	126 2.06 85	7 0.14 6	8 0.22 9	0.0			0	198 134	33

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME		TY LAB SAMPLE		EC	MINER CA	RAL CONS	STITUENT NA	S IN M	ILLIEQU	MS PER (JIVALENT) REACTANO HC03	S PER L		NO3	MILLIGRAN F	MS PER	R LITER	TDS 180C (*105C) SUM	
COASTAL PL OF L	-			TU05A0	U05A5	A-SAN G	ABRIEL	RIVER H	PDRO UN	NIT U05	00							
045/12W-13C03S 09/03/68	_	4206	80 8.0	388	46 2.29	5 0.41	33 1.43	3 0.08	0.00	194	21	0.25				21	234 234≠	13
045/12W-13D01S n7/18/68	7 0	1101 1101	7.6	360	34 1.70	3 0.25	34 45 1•96	3 0 • 08	0.00	208 3.41	11 12 0.25	7 13 0.37	0.0		••	0	318 213	ç
045/12W-13D03S 04/10/68	70	4206	76 7.7	381	43 47 2.34	6 5 0.41	27 1.17	3 0 • 08	0.00	210 3.44	13	9 6 0 • 17	0	••	••	22	227 227	13
045/12W-13N02S 01/12/68	70	4206	78 7.9	395	58 22 1•10	10 3 0.25	49 2.13	2 0.05	0.00	89 171 2.80	31 0.64	14 0.39	en en			19	225 225≠	•
ñ2/06/68	7 0	4206	82 8•4	388	23 1.15	7 2 0.16	65 2.83	2 0 • 0 5	0 5 0.17	159 2.61	22 0.46	15 0.42		••		18	232 231≠	•
ñ3/05/68	7 ₀	4206	81	386	27 25 1.25	2 0.16	67 62 2.70	1 2 0•05	5 0.03	71 177 2.90	24 0•50	15 0.42				18	237 236≠	*
04/10/68	70	4206 	77 8•5	393	30 21 1.05	2 0.16	65 63 2.74	1 2 0•05	0.13	75 165 2.70	26 0•54	11 15 0•42				19	234 234≠	ą
ō7/02/68 	70	4206	81 8•4	388	26 22 1.10 32	2 0.16 5	68 48 2.09	1 0.02	3 4 0.13 3	71 160 2.62 67	36 0.75 19	11 15 0.42				20	228 227#	ŧ.
08/06/68	70	4206	84 8•4	385	23 1.15 27	2 0.16	62 67 2•91 68	1 2 0•05	10 0.33	149 2.44 63	33 0.69 18	11 15 0.42 11		••		19	247 245#	
09/03/68 	70	4206	80 8•3	396	22 1.10 28	2 0.16	60 2.61 66	2 0 • 05	0.00	168 2.75 69	36 0.75 19	17 0.48 12		••	••	19	242 241	-
045/12W-14A02S 02/06/68	70	4206	81 7•9	388	47 2•34 60	5 0.41 10	25 1.09 28	3 0•08 2	0.00		6 0.12 3	9 0•25 7	elle elle			20	215 214≠	1:
ñ3/05/68	70	4206	79 7•8	396	62 3•09 66	6 0.49 10	23	4 0 • 1 0 2	0 • 0 0	203 3.33 88	12 0•25 7	7 0•20 5		-+		20	235 234#	1
04/10/68	Ź0	4206	75 7.9	392	48 2.39 59	6 0.49 12	25 1.09 27	3 0.08 2	0.00	202 3.31 89	9 0.19 5	0.22				20	220 219≠	16
ñ7/02/68	70	4206	81 8•0	387	50 2.49 62	6 0.49 12	23 1 25	2 0 • 05 1	0.00	195 3.20 82	23 0 • 48 12	8 0•22 6	0 • 1 0 • 00 0	**		23	234 231	14
045/12W-14A03S 07/18/68	70	1101 1101	9.2	209	7 0•35 19	0 • 08 4	31 1•35 72	0 • 1 0 5	8 0.27 14	19 0•31 16	46 0•96 50	13 0•37 19	0.0	••		0	129 120	
045/12W-14C05S 01/12/68	70	4206	76 7•9	345	36 1 • 80 58	3 0 • 25 8	22 0•96 31	3 0 • 0 8 2	0.00	172 2.82 81	20 0•42 12	8 0•22 6				20	197 197≠	1:
ñ2/06/68	7 0	4206	83 8•1	336	39 1 • 95 52	0 • 33 9	33 1 • 43 38	2 0 • 0 5 1	0.00	170 2•79 89	0 • 1 2 4	8 0•22 7				19	196 195≠	1
i3/05/68	70	4206	78 8•2	343	40 1.99 54	0 • 33 9	30 1•30 35	3 0 • 0 8 2	0.00	173 2.83 85	14 0·29 9	8 0•22 7				19	204 204≠	1
04/10/68	70	4206	75 7•9	350	33 1.65 46	0.33 9	35 1 • 52 43	2 0•05 1	0.00	170 2.79 84	14 0·29 9	8 0•22 7				19	199 199≠	
ñ7/02/68	70	4206	82 8•1	340	35 1.75 49	0.33 9	33 1.43 40	0.05 1	0.00	166 2.72 80	21 0 • 44 13	8 0.22 7		••		21	206 206≠	1.
ñ9/03/68	70	4206	81 7.9	347	35 1.75 45	0.33	40 1•74 45	3 0.08	0.00	165 2.70 80	21 0•44 13	9 0•25 7				17	211 211≠	1:
045/12W-15801S 07/17/68	70	1101 1101	7.3	333	9 0•45 13	0.08 2	67 2.91 83	2 0.05 1	0.00	133 2.18 62	33 0.69 20	22 0.62 18	0.0	••		0	267 200	
045/12W-16J015 01/12/68	70	4206	79 7.9	304	0.70 27	0.08 3	41 1•78 69	0.02	0.00	135 2•21 71	10 0•21 7	24 0.68 22		••		18	176 176≠	ı

MINERAL ANALYSES OF GROUND WATER

03/05/68 03/05/68 03/05/68 04/10/68 07/02/68 08/06/68 09/03/68 05/12W-16R 01/12/68	NO. C		Y LAB SAMPLER													0.50		TDS	TH
03/05/68 03/05/68 03/05/68 04/10/68 07/02/68 08/06/68 09/03/68 01/12/68 02/06/68				CPA	EC	MINERA	NL CONS'	TITUENTS	IN M	ILLIGRAM ILLIEOUI ERCENT F CO3	VALENTS	PER LI	TER	моз	HILLIGRAMS F	8 BER	5102	180C (*105C) SUH	NCH
CENTE						1.4	-SAN G		RIVER H	PDRO UNI									
03/05/68 03/05/68 04/10/68 07/02/68 08/06/68 09/03/68 01/12/68 02/06/68			HYDRO S	_	U05A0	U05A5	TO AIT OF	-onice r	VIVEN H	YDRO ON	0050	, 0							
04/10/68 07/02/68 08/06/68 09/03/68 09/03/68 01/12/68		70	4206	82 8.9	298	15 0.75 23	0.16 5	53 2.30 71	0.02	13 0.43 14	109 1.79 60	0.04	26 0.73 24	••	••	••	15	181 181≠	46
07/02/68 - 08/06/68 - 09/03/68 - 01/12/68 - 02/06/68 - 02/06/68 - 02/06/68 - 03/02/06/06/06/06/06/06/06/06/06/06/06/06/06/		70	4206	81 8•5	302	15 0.75 24	0.08 3	52 2•26 72	2 0.05 2	0.13 4	133 2.18 72	0.00	25 0.70 23	••		••	16	181	42
08/06/68 09/03/68 045/12W-16R(01/12/68		70	4206	76 8.1	313	0.60 20	0.08 3	53 2.30 76	0.02 1	0.00	134 2.20 74	0.08	25 0.70 24	**		••	15	178 177	34
ñ9/03/68)45/12W-16R(ñ1/12/68 02/06/68		70	4206	82 8•5	303	13 0.65 25	0.08	41 1.78 70	0.05 J	0.13 4	125 2.05 69	0 • 0 8 3	25 0.70 24	••			19	171 170≠	37 0
02/06/68		70	4206	81 8.9	298	13 0.65 20	0.08	56 2•43 76	2 0.05 2	0.33 11	118 1.93 64	0.06 2	24 0.68 22	••		••	16	185 183≠	37 0
ñ1/12/68 ·	••	70	4206	81	303	14 0.70 24	0.08 3	47 2.04 72	0.02 1	0.10 3	128 2.10 71	0.02	26 0.73 25	••	••		16	174 172	39 0
		70	4206	78 7•9	320	16 0.80 29	0.08 3	41 1•78 66	2 0.05 2	0.00	155 2.54 79	0.21 6	16 0.45 14	••			18	181 181≠	0
i3/05/68		70	4206	82 8•6	317	20 1.00 29	0.08 2	54 2.35 68	0.02	7 0.23 8	141 2.31 76	0.04	16 0.45 15	••		••	16	187 187≠	54
		70	4206	79 8.6	322	18 0.90 27	0.08	52 2•26 69	0.05 1	5 0.17 5	150 2.46 78	0.06 2	16 0.45 14	••	••		16	188 187	49
04/10/68 ·		70	4206	75 8•3	322	13 0.65 21	0.08	53 2•30 75	0.02 1	0.03	155 2.54 82	5 0 • 1 0 3	15 0.42 14	••			17	185 183	37 0
n7/02/68		70	4206 	82 8•5	316	17 0.85 28	0.08 3	48 2•09 69	0.02 1	5 0.17 5	143 2.34 74	12 0•25 8	15 0.42 13				19	190 189	47
ñ8/06/68	••	70	4206 	85 8•4	310	17 0.85 26	0.08 2	53 2•30 70	2 0•05 2	13 0.43 13	128 2.10 62	19 0•39 12	16 0.45 13				18	202	47
ñ9/03/68		70	4206	80 8•6	320	16 0•80 23	1 0.08 2	57 2•48 73	2 0 • 05 1	5 0•17 5	142 2•33 72	12 0•25 8	17 0•48 15				16	197 196≠	0
045/12W-17E0 07/17/68		70	1101	7.7	352	0.60 16	0.08	70 3•04 81	0.02	0.00	173 2.83 75	9 0·19 5	26 0.73 19	0.0			0	292 205	34
ñ8/g6/68		70	4206	85 8•7	364	10 0•50 12	0.08 2	78 3•39 84	2 0 • 05 1	0·27 6	166 2•72 67	17 0•35 9	26 0.73 18	••			17	242 241	29
045/12W-17P	2035	70	4206	75 8•1	327	12 0•60 20	0.08	54 2•35 77	0.02	0.00	152 2.49 77	0 • 0 8 3	24 0 • 68 21		••		17	189 188#	34
07/02/68		70	4206	82 8•5	332	13 0.65 24	0.08	45 1•96 72	0 • 0 2 1	0.13 4	143 2•34 72	5 0 • 1 0 3	24 0.68 21	••	••	••	19	184 183#	37 0
045/12W-170		70	4206	80 8.6	336	13 0.65 20	0.08 2	57 2•48 77	0.02 1	0.20 6	143 2.34 71	0.04 1	26 0.73 22				16	194 193	37 0
045/12W-23C n3/05/68	_	70	4206	81 8.6	332	15 0•75 22	0.08 2	58 2•52 74	2 0 • 05 1	0.37 9	187 3.06 72	12 0.25 6	20 0•56 13				16	225 227≠	42
n4/10/68		70	4206 	77 8•2	344	21 1.05 30	0.16 5	52 2•26 65	0.02	0.00	164 2.69 83	0.12 4	15 0.42 13				18	196 196≠	61
ñ7/02/68		70	4206	82 8•4	333	22 1•10 29	0.08	60 2•61 68	0 • 0 Z 1	0.13	153 2•51 72	22 0.46 13	13 0-37 11	••			21	220 220	59 0
n8/06/68				85	334	23	2	55	2	6	150	20	13				18	215	66
045/12W-23K 01/12/68	••	70	4206	8.4	334	1.15	0.16	2.39	0.05 1	0.20 6	2.46 71	0.42	0.37					213≠	0

MINERAL ANALYSES OF GROUND WATER

STATE WELL OATE	NO. TIME		Y LAS SAMPLE		EC	MINER	AL CONS	STITUENTS	IN	PERCENT I	IVALENT	S PER L		NO3	MILLIGRA F	MS PER	LITER SIO2	TDS 180C (*105C) SUM	
COASTAL PL	05 1	4 60	HAVOV	SUBUNIT	THOEAG			GABRIEL R											л
			SUBAR		IOUSAU	U05A5												- 5	
045/12W-24 07/17/68		70	1101	8.0	379	25 1.25 31	0.25 6	56 2.43 61	0.05	0.00	178 2.92 70	0.85 20	0.39 9	0.00	**	••	0	319 229	1
08/06/68		70	4206	84 8•2	376	27 1•35 33	3 0.25 6	54 2•35 58	0.08 2	0.00	173 2.83 73	33 0.69 18	13 0•37 9		••	••	19	238 238	a
n9/03/68		70	4206	81 8•4	391	27 1•35 32	0.25 6	60 2.61 61	0 · 0 5	0.07	165 2.70 70	33 0.69 18	15 0.42 11			••	17	242 241≠	8
045/12W-26 04/05/68		70	4206	78 8.4	368	10 0.50 14	0.08 2	70 3.04 83	0.05	0.10	144 2.36 68	33 0.69 20	0.31 9			••	14	216 215≠	2
045/12W-26 n3/29/68		70	4206	81 8.9	318	9 0•45 14	0.08	62 2.70 82	0.05	0.43	131 2.15 73	0.00	13 0.37 12		••	••	16	181 181≠	2
045/12W-28 01/12/68		70	4206	82 8.6	365	6 0.30 10	0.08 3	57 2.48 86	0.02	0.27	182 2.98 75	10 0.21 5	18 0.51 13				18	214 209#	. 1
02/06/68		70	4206	84 8.9	373	0.40 10	0.00	85 3.70 90	0.02	0.43	172 2.82 73	0.00	0.62 16				17	231 231≠	2
03/05/68		70	4206	82 8.8	374	8 0.40 11	0.00	77 3.35 89	0.02	0.43	192 3.15 77	0.04	17 0.48 12			••	17	232 230≠	2
04/10/68		70	4206	75 8•3	372	0.25 6	0.00	85 3.70 93	0.02	0.00	197 3.23 84	0.08	18 0.51 13		••		18	229 228	1
07/02/68		70	4206	8 • 8	372	5 0•25 8	0.00	69 3.00 92	0.02	0.33	176 2.88 72	0.29 7	18 0.51 13				19	225 223#	1
ñ7/17/68		70	1101 1101	8.1	367	5 0.25 6	0.00	87 3.78 93	0.02	0.00	211 3.46 84	7 0 • 1 4 3	18 0.51 12	0.0			0	329 329	1
08/06/68		70	4206	86 8.2	367	5 0.25 6	0.00	92 4.00 94	0.02 1	0.00	198 3.24 75	28 0.58 13	18 0.51 12		••		18	263 260	i
09/03/68		70	4206	82 9.0	354	0.30 8	0.00	79 3.44 91	0.02	0.53	168 2.75 64	23 0.48 11	20 0.56 13			••	15	244 243#	1
045/12W-35 03/29/68	C015	70	4206	75 7•8	532	218 10.88 59	27 2•22 12	121 5•26 28	5 0 • 1 <u>3</u> 1	0.00	126 2.06 11	58 1•21 7	530 14.95 82				18	1040 1039	6 5 55
045/12W-35 03/29/68		70	4206	81 8•3	338	27 1•35 36	5 0.41 11	43 1.87 50	0 · 08	0.07	154 2.52 78	15 0·31 10	0.31 10				9	193 191≠	8
045/12W=36 04/05/68		70	4206	77 8•0	894	83 4•14 47	12 0.99 11	80 3•48 40	0-10	0.00	230 3.77 42	95 1 • 98 22	116 3•27 36				20	525 524	25 6
05S/12W=02 03/28/68		70	4206	79 8•7	378	0 • 4 0 9	0.08 2	89 3.87 88	0.02	0.27	160 2.62 72	0.00	27 0•76 21			••	16	230 229#	2
SAN FERNAN SAN				SUBARE	U0580	U0581													1
01N/13W-20 09/27/68	G015	70	5050	7.5	588	50 2.49 41	20 1.64 27	46 2 33	0.00		239 3.92 63	52 1.08 17	34 0.96 15	17.0 0.27	0 • 4	0.08		370 337	20
01N/14W-06 04/01/68		70	5050	7.7	460	56 2.79 58	14 1•15 24	19 0.83 17	0 • 0 8 2	3	189 3.10 65	39 0.81 17	21 0.59 12	15.0 0.24 5	0.4	0.15		225 261	19
01N/14W-06 04/01/68		70	5050	7.6	497	62 3.09 60	14 1.15 22	18 0.78 15	0.13	3	198 3.24 64	56 1.16 23	15 0.42 8	15.0 0.24 5	0.5	0.08		220 283	21
01N/14W-09 09/27/68		70	5050	68 7.6	543	58 2.89 49	20 1.64 28	28 1•22 21	0 • 13 2	3	241 3.95 67	53 1•10 19	23 0.65 11	14.0 0.22 4	0.5	0.08		335 321	22
01N/15W-02 04/01/68		70	5050	7.5	1211	79 3.94 30	37 3.04 23	143 6.22 47	0.10)	184 3.01 23	386 8.04 61	73 2•06 16	5.5 0.09 1	0.7	0.39		832 820	34 18

HINERAL ANALYSES OF GROUND WATER

ATE WELL NO		TY LAB SAMPLE		EC	MINER CA	AL CONS	TITUENT	SIN	MILLIGRA MILLIEGU PERCENT CO3	IVALENT	S PER L		N03	MILLIGR <i>i</i> F	AMS PER	LITER SIO2	TOS 180C (*105C) SUM	TH
N FERNANDO I San Fei				U0580	U05B1	A-SAN G	ABRIEL	RIVER	HÝDRO UN	IT U05	00							
N/17W-12A019 0/02/67 749	5 70	442	8.0	800	104 5.19 59	13 1.07 12	56 2.43 28	0.0 <u>5</u>		300 4.92 56	100 2.08 24	62 1.75 20	0.0	.0.6	0.08		510 486	313 67
N/14W-29N025 0/02/67 750		5050	7.8	481	49 2.44 47	9 0.74 14	45 1.96 37	0 • 08 1		249 4.08 78	29 0.60 11	17 0.48 9	4.0 0.06	0.2	0.04		295 279	160
N/15W-330015 0/03/67 1420		5050	68 7.9	623	74 3.69 56	14 1.15 18	36 1.56 24	0.13 2	0.00	220 3.60 55	73 1.52 23	48 1.35 21	5.5 0.09	0.3	0.10		390 365	242
SYLMAR	HYDRO	SUBARE	A		U0582													
19/27/68	70	5050	8.0	652	77 3.84 56	17 1.40 20	34 1.48 22	5 0.13 2		226 3.70 55	78 1.62 24	45 1.27 19	6.0 0.10	0.4	0.12		427 374	262 77
VERDUGO	HYDR	O SUBAR	REA		U0584													
N/13W-18N019 13/29/68 945		5050	78 7.7	581	57 2.84 47	14 1.15 19	46 2 33	0 • 1 0 2		206 3.38 57	63 1•31 22	40 1.13 19	8.0 0.13 2	0.6	0.16		275 334	200 31
N/13W-22N025 8/27/68 1800		5050	7.1	951	51 2.54 27	15 1.23 13	129 5.61 59	0.10		153 2.51 26	192 4.00 42	81 2.28 24	41.0 0.66 7	0.4	0.06		618 589	189 64
N/13W-28N019 19/17/68 1300	_	5050	72 6•7	738	71 3.54 48	28 2.30 31	33 1.43 19	0.10 1	0.00	153 2.51 33	70 1.46 19	63 1.78 23	116.0 1.87 25	0.2	0.02		480 461	292 167
N/13W-29F015 19/17/68 1315		5050	69 6.6	540	47 2.34 44	22 1.81 34	24 1.04 20	0.08 1		153 2.51 46	26 0.54 10	35 0.99 18	88.0 1.42 26	0.2	0.00		348 321	208 82
N/13W-33G01S 19/17/68 1330		5050	71 6.7	672	63 3.14 47	27 2.22 33	28 1•22 18	0.10 1	0.00	153 2.51 38	38 0.79 12	52 1•47 22	114.0 1.84 28	0.3	0.03		442 402	268 143
N/13W-33R01S 19/17/68 1340		5050	71 7.2	451	44 2.19 47	17 1.40 30	24 1 • 04 22	0.08 2	0.00	161 2.64 57	25 0.52 11	23 0.65 14	51.0 0.82	0.4	0.02		299 267	180 48
YNOND HYDRO			0.5	U05C0														
PASADEN				260	U05C1	13	14	_		170	22	10	12.0	2.1		•	200	140
N/11W-07N01S 08/07/68		1101	7.9	360	43 2.14 55	13 1.07 28	0.61 16	0.05 1		170 2.79 74	0.46	0.28	13.8	2.1		0	289 204	160
1M/11W-30H01S 58/07/68		1101	7.7	446	55 2•74 57	13 1.07 22	0.91 19	0.05 1		199 3•26 69	25 0•52 11	0.53 11	25.4 0.41 9	1.1		0	360 260	190 27
IN/12W-09R01S		1101	68 7•8	251	21 1.05 41	7 0.57 22	21 0•91 36	0.05 J		103 1.69 68	0 • 10 4	10 0•28 11	25.0 0.40 16	0.9	••	0	193 142	81 0
N/12W-26C01S		1101	80 8•1	323	23 1•15 33	0 · 49 14	1 • 78 52	0 • 02 1		118 1•93 59	33 0•69 21	0 • 39 12	16.3 0.26 8	1.3		0	253 194≠	82 0
IN/12W-34E015 08/07/68	70	1101	7.9	352	36 1.80 49	9 0 • 74 20	25 1•09 30	0 • 05 1		136 2•23 63	22 0•46 13	18 0 • 51 14	22.0 0.35 10	0.6		0	270 202	126
MONK HI	LL HY	ORO SUB	AREA		U05C2													
N/12W-06M06S	70	1101 1101	7.4	635	62 3.09 49	20 1.64 26	34 1.48 24	0.05 1		205 3.36 54	52 1.08 17	43 1.21 19	36.8 0.59 9	0.4		0	455 351	237 69
IN/13W-01C015 08/27/68 1730		5050	7.5	1004	41 2.04 20	15 1.23 12	156 6.78 67	0.10		162 2.65 26	230 4.79 48	86 2.42 24	12.0 0.19 2	0.5	0.10		632 625	164 31
SANTA A	NITA I	HYDRO S	UBAREA		U05C3													
[N/11W-21G025 08/09/68	70	1101 1101	70 7.7	413	39 1.95 44	7 0.57 13	43 1.87 42	0.05 1		169 2.77 65	33 0.69 16	14 0.39 9	25.5 0.41 10	0.9		0	333 248	126
AN GABRIEL VA MAIN SA	LLEY A	YDRO S	UBUNIT	U05D0	U0501													
15/10W-03A015			77 7.6	529	71 3.54 68	12 0.99 19	14 0.61 12	0.08 1		238 3.90 75	35 0.73 14	10 0.28 5	18.0 0.29	0.1	0.19	14	295 295	227 31
1 5 /10W-03K03S 11/08/67	70	5868	77 7.5	695	89	16	23	3		276	40 0.83 12	20	52.0	0.4	0.08	23	403 403	288 62

MINERAL ANALYSES OF GROUND WATER

															,				
STATE WELL	L NO. TIME		TY LAB SAMPLE		EC				TS IN	MILLIGRA MILLIEOU PERCENT	JIVALENT REACTAN	TS PER L	JES		MILLIGRA			180C (*105C)	
						CA	MG	NA			HCD3	504	CL	ND3	F	В	S102	SUM	
SĀN GABRIE				SUBUNIT YORO SUE		U0501	A-SAN G	ABRIEL	RIVER	HŸDRO UN	IIT U05	.00							
015/10W-04 02/13/68		70	5868	75 7.4	650	102 5.09 67	19 1.56 20	20 0.87 11	0.10 1)	351 5.75 77	36 0.75 10	20 0.56 7	27.0 0.43 6	0.3	0.08	16	417	33) 4)
0 <u>1</u> 5/10W-07		70	1101 1101	60 7•9	338	46 2•29 66	9 0•74 21	9 0•39 11	0.05 1	0.00	160 2•62 78	20 0•42 12	0·17 5	9.5 0.15 5			0	261 181	15
08/14/68		70	1101 1101	60 7•9	338	47 2•34 65	9 0•74 21	10 0•43 12	3 0•08 2	0.00	180 2.95 82	18 0•37 10	0.17 5	5.6 0.09 2	0.4		0	279 188	15.
015/10W-07 02/12/68		70	5868	73 7•8	316	45 2•24 66	0.66 19	10 0.43 13	3 80•0 2		170 2.79 83	17 0•35 10	0.17 5	4.0 0.06 2	0.3	0.04	12	189 189	140
015/10W-08 02/12/68		70	5868	75 7.6	603	88 4.39 66	17 1.40 21	18 0.78 12	0.10 1		. 248 4.06 62	68 1.41 21	30 0.85 13	16.0 0.26 4	0 • 4	0.04	13	376 377	29 ¹
0 <u>1</u> 5/10W-08		70	1101 1101	65 7.9	621	88 4.39 66	17 1.40 21	17 0.74 11	3 0 • 0 8 1		238 3.90 58	70 1.46 22	32 0.90 13	27.7 0.45 7			0	492 372	28
08/14/68		70	1101 1101	65 7.7	601	88 4.39 66	18 1.48 22	16 0.69 10	0 • 1 0 1		244 4.00 62	69 1.44 22	24 0.68 10	23.8 0.38 6	0 • 4		0	487 364	29 ¹
015/10W-10 11/28/67		70	1101 1101	60 7•8	662	85 4.24 61	19 1•56 22	25 1•09 16	0.05 1	0.00	266 4.36 63	47 0.98 14	22 0•62 9	57.0 0.92 13			0	523 388	29 1
08/19/68		70	1101 1101	68 7•8	575	70 3•49 57	19 1.56 25	23 1 16	0 • 10 2		248 4.06 66	40 0.83 13	21 0.59 10	42.0 0.68 11	0.3		0	467 342	25
015/10W-12 08/14/68		70	1101 1101	70 7•5	589	63 3.14 51	18 1.48 24	34 1.48 24	3 0.08 1	0.00	181 2.97 50	50 1.04 18	30 0.85 14	65.6 1.06 18	0.7		0	445 354	23
0]S/10W-13 08/19/68		70	1101 1101	71 8.1	564	59 2.94 51	17 1.40 24	31 1.35 23	0.10 2		174 2.85 49	53 1.10 19	24 0.68 12	70.0 1.13 20	0.6		0	432 345	21
015/10W-14 12/06/67		70	1101 1101	68 7•8	528	59 2•94 54	15 1•23 23	26 1•13 21	0 • 10 2	0.00	188 3.08 55	50 1•04 19	20 0•56 10	35.7 0.90 16			0	417 323	20 ³
08/19/68		70	1101 1101	68 7.3	527	57 2.84 52	17 1.40 26	25 1.09 20	0.10 2	0.00	180 2.95 52	52 1.08 19	20 0.56 10	63.6 1.02 18	0.6		0	419 328	21.
015/10W-16 11/08/67		70	5868	77 7•7	614	76 3.79 63	15 1.23 20	21 0.91 15	3 0.08 1		224 3.67 61	44 0.92 15	20 0.56 9	56.0 0.90 15	0.2	0.06	23	368 369	25
015/10W-20 08/14/68		70	1101 1101	60 7.5	632	85 4.24 61	18 1.48 21	25 1.09 16	0.10 1	0.00	262 4.29 63	42 0.87 13	22 0•62 9	61.4 0.99 15	0.4		0	519 387	28 7
015/10W-20 08/14/68		70	1101 1101	72 7.6	616	71 3.54 53	18 1.48 22	37 1.61 24	2 0.05 1		225 3.69 57	61 1.27 20	27 0.76 12	47.2 0.76 12	0.5		0	488 375	25 6
015/10W-22 08/14/68		70	1101 1101	72 7.7	450	51 2.54 51	14 1.15 23	28 1.22 24	0.08 1	0.00	198 3.24 68	46 0.96 20	16 0•45 9	8.6 0.14 3	0.5		0	365 265	16 2
015/10W-23 08/14/68		70	1101 1101	 7•5	717	76 3•79 48	23 1•89 24	48 2•09 27	0.05 1		228 3.74 48	124 2•58 33	38 1.07 14	24.7 0.40 5	0.5		0	564 449	28 5°
015/10W-31 08/14/68		70	1101 1101	71 7.8	502	54 2.69 49	14 1.15 21	36 1.56 28	0.10 2		220 3.60 67	40 0.83 16	19 0.53 10	23.3 0.37 7	0.5		0	410 299	15
015/11W-02 07/11/68		70	5868	82 7•4	538	78 3.89 60	21 1.73 27	18 0•78 12	2 0•05 1		305 5.00 78	45 0•94 15	12 0.34 5	9.0 0.14 2	0.5	0.04	24	461 360	3.
015/11W-02 07/11/68		70	5868	78 7•3	664	96 4.79 61	26 2.14 27	19 0•83 11	0.05 1		365 5.98 78	29 0•60 8	19 0•53 7	32.0 0.52 7	0 • 4	0.09	25	427 428	34, 4
015/11W-02 08/01/68		70	5868	77 7.9	637	89 4.44 59	26 2.14 28	20 0.87 12	2 0•05 1		338 5.54 74	40 0.83 11	24 0.68 9	29.0 0.47 6	0.3	0.09	23	420 420	32,
08/07/ 6 8		70	1101 1101	7.5	658	94 4.69 62	22 1.81 24	22 0.96 13	0.05 1		334 5.47 71	47 0.98 13	22 26•0 8	40.0 0.64 8	0.5		0	583 414	32
																			_

MINERAL ANALYSES OF GROUND WATER

							3001	HERM	CALIFORNI	^									
TATE WELL NO.	COUNT	Y LAB SAMPLE		EC	MINER	AL CONS	TITUENT	SIN	MILLIGRAM MILLIEQUI PERCENT R CO3	VALENT EACTAN	S PER LI	ITER	N03	HILLIGRA F	MS PER	LITER 5102	TDS 180C (*105C) SUM		
									HÝDRO UNI			-		•	O	3105	3011		
N GABRIEL VAL MAIN SAN					U05D1	- JAN O	PONTEE	NIVEN	HIDAO ONI	. 003	.00								
S/11W-02H01S 8/01/68	70	5868	75 7.7	413	57 2.84 60	14 1.15 24	15 0.65 14	0.05 1		210 3.44 75	28 0.58 13	15 0.42 9	8.0 0.13 3	0.5	0.06	21	264 264	200	
5/11W-02J01S 1/28/67	70	1101	64 7.5	679	102 5.09 69	20 1.64 22	13 0.56 8	0.05	0.00	314 5.15 69	72 1•50 20	16 0.45 6	24.8 0.40 5	•-	••		564 405	337 79	
1/28/67	70	1101 1101	64 7.5	679	102 5.09 69	20 1.64 22	13 0.56 8	0.05 1	0.00	314 5.15 69	72 1.50 20	16 0•45 6	24.8 0.40 5	••	••	0	563 405	337 79	
8/19/68	70	1101 1101	70 7.5	693	99 4.94 65	20 1.64 22	20 0.87 11	0.10	0.00	276 4.52 61	58 1.21 16	40 1.13 15	31.8 0.51 7	0.2	••	0	549 409	329 103	
5/11W-04L02S 7/11/68	70	5868	80 7.3	481	56 2.79 54	17 1.40 27	0.96 18	0.02 0		214 3.51 69	25 0.52 10	18 0.51 10	34.0 0.55 11	0.9	0.22	29	308 309	210 34	
8/07/68	70	1101 1101	68 7•6	512	57 2•84 52	18 1.48 27	25 1.09 20	0.02		205 3.36 60	33 0.69 12	18 0.51 9	62.8 1.01 18	1.2		0	421 317	216 48	
S/11W-060015 8/07/68	70	1101 1101	8.0	347	33 1.65 44	7 0.57 15	34 1.48 39	2 0.05 1		150 2.46 67	37 0.77 21	12 0.34 9	6.8 0.11 3	0.9		0	282 207	111	
S/11W-07N02S R/20/68	70	1101 1101	70 7•6	350	39 1•95 53	10 0.82 22	20 0.87 24	0.02 1	0.00	180 2.95 82	15 0•31 9	10 0.28 8	2.3 0.04 1	0.9		0	278 187	138	
5/11w-10H015 8/07/68	70	1101 1101	68 7•6	400	50 2.49 56	0.99 22	20 0.87 19	0.10		201 3.29 75	26 0.54 12	12 0.34 8	12.5 0.20 5	0.5	••	0	338 236	174	
S/11W-10N06S 8/20/68	70	1101 1101	63 7•8	400	50 2•49 59	13 1.07 25	15 0.65 15	0 • 0 Ž	0.00	209 3.42 81	19 0•39 9	10 0.28 7	8.3 0.13 3	0.6	••	0	325 220	178 7	
5/11W-11C045 7/11/68	70	5868	80 7•4	383	53 2•64 61	12 0.99 23	15 0•65 15	2 0•05 1		203 3.33 79	22 0.46 11	13 0•37 9	3.0 0.05	0.3	0.09	22	242 243	182 15	
S/11W-11F04S 8/06/68	70	1101	65 7•2	340	43 2•14 62	10 0 • 82 24	10 0•43 13	2 0 • 0 5 1		153 2•51 71	26 0•54 15	15 0•42 12	4.8 0.08 2	0•2	••	0	264 187	148 22	
S/11w-12C02S 3/19/68	70	5050	7•8	362	49 2•44 62	12 0•99 25	9 0•39 10	0 • 1 0 3		182 2.98 76	27 0•56 14	10 0•28 7	5.0 0.08 2	0 • 4	0.03		206 206	172 22	
\$/11w-17805S 8/20/68	70	1101 1101	67 7•7	355	40 1•99 53	9 0.74 20	23 1 27	1 9•02 1	0.00	196 3•21 84	14 0•29 8	10 0•28 7	2.5 0.04 1	0 • 8	••	0	296 197	136	
\$/11W-20L015 8/20/68	70	1101 1101	73 8•1	512	71 3•54 66	13 1.07 20	16 0•69 13	2 0•05 1	0.00	213 3.49 68	51 1•06 21	0.31 6	18.3 0.29 6	0 • 4		0	395 288	230 55	
5/12W-11N025 8/07/68	70	1101 1101	 7•9	417	42 2•09 48	10 0.82 19	32 1•39 32	2 0 • 0 1		169 2.77 64	27 0•56 13	21 0.59 14	23.3 0.37 9	0.6		0	326 241	146	
8/07/68	70	1101 1101	7.7	510	50 2•49 46	14 1•15 21	40 1•74 32	0 • 05 1		188 3•08 58	28 0.58 11	38 1.07 20	37.6 0.61 11	0.5		0	398 303	182 28	
%/12W-24E02S 8/20/68	70	1101 1101	75 7•4	397	41 2.04 49	11 0.90 22	27 1•17 28	0.02	0.00	172 2.82 69	15 0.31 8	22 0.62 15	20.3 0.33 8	0.6		0	309 223	147	
S/09W-01E015 0/23/67	70	1101 1101	69 8•0	815	88 4.39 52	28 2.30 27	39 1.70 20	0.05 1	0.00	123 2.01 24	101 2•10 25	38 1•07 13	202.0 3.26 39			0	621 559	334 233	
5/09W-02H015 0/23/67	70	1101 1101	69 8•0	1050	114 5.69 51	37 3.04 27	56 2.43 22	0.05 0	0.00	140 2.29 20	161 3.35 30	80 2.26 20	212.0 3.42 30			0	802 731	436 321	
8/26/68	70	1101 1101	73 7.7	1050	113 5.64 53	35 2.88 27	47 2.04 19	0.02	0.00	163 2.67 25	157 3.27 30	85 2.40 22	148.5 2.39 22	0.7	••	0	750 668	426 292	
S/09W-020015 0/23/67	70	1101	69 7•6	617	61 3.04 49	19 1.56 25	37 1.61 26	0.05 1	0.00	145 2.38 38	54 1•12 18	33 0.93 15	110.0 1.77 29	••	••	0	461 388	230 111	
8/26/68	70	1101	72 7•2	640	65 3.24 50	19 1.56 24	37 1.61 25	0.05 1	0.00	200 3.28 49	1.27 19	33 0.93 14	76.0 1.22 18	0.6	••	0	493 392	240 76	

MINERAL ANALYSES OF GROUND WATER

							SOUT	HERN C	CALIFORN	IA							
STATE WELL NO DATE TIM		TY LAB SAMPLE		EC		RAL CONS		S IN M	AILLIGRA AILLIEQU PERCENT	IVALENT:	S PER L	ES		MILLIGRAM			TDS 180C (*105C)
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	2105	SUM
SAN GABRIEL V	ALLEY	HYDRO S	SUBUNIT	UNSDO	L	A-SAN G	ABRIEL	RIVER H	TYDRO UN	IT U05	00						
			ORO SU		U05D1												
015/09W-03C01 08/26/68	5 70	1101 1101	93 7.4	591	61 3.04 49	24 1.97 32	25 1.09 18	0.05 1	0.00	254 4.16 65	55 1.14 18	20 0.56 9	31.8 0.51 8	0.9		0	473 345
015/09W-04R01 10/23/67	5 70	1101 1101	70 7•9	668	68 3•39 48	23 1.89 27	38 1.65 24	2 0.05 1	0.00	147 2.41 35	57 1•19 17	44 1•24 18	130.0 2.10 30			0	509 435
08/26/68	70	1101 1101	73 7•7	685	79 3•94 57	17 1.40 20	35 1•52 22	2 0.05 1	0.00	200 3.28 49	60 1•25 19	25 0•70 11	88.0 1.42 21	0.7		0	506 405
01S/09W-27R07 08/27/68		1101 1101	80 7•1	1030	120 5.99 54	23 1.89 17	71 3.09 28	0.05 0	0.00	309 5.06 47	131 2.73 25	83 2.34 21	45.2 0.73 7	0.2		0	784 628
015/09W-34801 10/23/67		1101 1101	77 8•1	817	117 5.84 63	23 1.89 20	33 1•43 16	2 0.05 0	0.00	288 4.72 50	140 2.91 31	34 0.96 10	50.3 0.81 9			0	687 541
025/10W-08E01 11/27/67	S 70	1101 1101	68 7.8	752	83 4.14 51	21 1.73 21	50 2.17 27	0.02 0	0.00	262 4.29 53	60 1.25 16	70 1.97 25	31.3 0.50 6			0	578 446
08/19/68 	70	1101 1101	67 7.6	1270	129 6.44 45	3.37 24	100 4.35 31	0.08 0	0.00	358 5.87 41	240 5.00 35	109 3.07 21	28.8 0.46 3	0 • 4		0	1009 828
025/10W-16B01 08/19/68	S 70	1101 1101	67 7.4	1270	129 6.44 45	40 3.29 23	99 4•31 30	0.10	0.00	351 5.75 40	250 5.20 36	107 3.02 21	30.4 0.49 3	0 • 4		0	1010 833
025/11w-05G04 08/20/68	S 70	1101 1101	63 7•7	424	58 2•89 66	9 0.74 17	16 0.69 16	0.08 2	0.00	187 3.06 72	46 0.96 23	0 • 17 4	3.0 0.05	0 • 4		0	328 234
025/11W-06801 08/20/68	S 70	1101 1101	78 7.8	818	117 5.84 64	25 2•05 22	27 1.17 13	3 0.08 1	0.00	364 5.96 64	116 2.41 26	33 0.93 10	1.8 0.03 0	0 • 4		0	687 503
01N/09W-29M01 11/28/67	5 70	1101 1101	60 7•9	386	52 2•59 64	12 0.99 24	10 0.43 11	0.05 1	0.00	199 3.26 78	28 0.58 14	8 0•22 5	6.5 0.10 2			0	317 217
n8/19/68	70	1101	67 7. 9	435	56 2.79 60	13 1.07 23	15 0.65 14	0.10 2	0.00	205 3.36 71	36 0.75 16	12 0.34 7	16.5 0.27 6	0.3		0	357 254
01N/11W-21G02 07/11/68	S 70	5868	80 7•5	380	39 1•95 45	7 0.57 13	40 1 • 74 40	2 0•05 1		175 2•87 68	30 0.62 15	15 0 • 42 10	20.0 0.32 8	0.8	0.11	23	263 263
01N/11W-21G05 07/11/68	S 70	5868	80 7•8	397	36 1-80 40	3 0.25 5	56 2•43 54	0 • 02 1		181 2.97 66	29 0•60 13	16 0.45 10	30.0 0.48 11	0.9	0.13	18	279 279
01N/11w-21H02 07/11/68	S 70	5868	78 7•3	469	51 2.54 47	0.90 17	44 1•91 35	0.05 1		206 3.38 63	53 1•10 21	18 0.51 9	22•0 0•35 7	0.8	0.15	23	326 327
01N/11W-21H03 07/11/68	5 70	5868	80 7•5	452	47 2•34 45	9 0 • 74 14	48 2•09 40	0 • 0 2 0		208 3.41 66	55 1 • 1 4 22	16 0.45 9	10.0 0.16 3	0.9	0.15	22	311 312
01N/11W-26L07 08/20/68	S 70	1101 1101	67 7 . 5	785	93 4.64 57	20 1.64 20	40 1.74 21	0.10 1	0.00	221 3.62 44	116 2.41 29	53 1.49 18	42.2 0.68 8	0.3		0	589 478
01N/11W-27F01 07/11/68	S 70	5868	78 7.1	388	48 2.39 57	13 1.07 26	15 0.65 16	0.05 1		172 2.82 67	19 0.39 9	14 0.39 9	37.0 0.60 14	0.5	0.09	24	258 258
01N/11W-29M01 07/11/68	5 70	5868	80 7.5	593	83 4.14 60	19 1.56 23	26 1.13 16	2 0.05 1		248 4.06 59	76 1.58 23	20 0.56 8	40.0 0.64 9	0.9	0.15	27	416 416
01N/11W-30H01 08/01/68		5868	75 7.7	397	49 2.44 56	12 0.99 22	21 0.91 21	2 0.05 1		202 3.31 75	0.44 10	18 0.51 11	9.0 0.14 3	1 • 0	0.31	23	256 256
01N/11W-30R01 04/19/68	S 70	5868	73 8•1	347	34 1.70 46	7 0.57 16	31 1•35 37	0.05 1		160 2.62 71	29 0.60 16	0.31 8	8.0 0.13 3	1.2	0.17	18	220 520
07/11/68	70	5868	8 ₁ 7.5	531	72 3.59 60	16 1.31 22	23 1 17	0.05 1		210 3.44 57	45 0.94 16	26 0.73 12	54.0 0.87 15	0.7	0.13	27	372 370
01N/11W-32Q02 07/11/68		5868	80 7•3	459	55 2•74 53	16 1•31 25	25 1.09 21	0.02 0		190 3.11 61	27 0.56 11	21 0.59 12	51.0 0.82 16	0.9	0.15	27	317 318

MINERAL ANALYSES OF GROUND WATER

SATE WELL NO			Y LAB Sample	_	EC	MINER	AL CONS	TITUENT		MILLIGRA MILLIEQU PFRCENT	IVALENT	S PER L		N03	MILLIGR <i>i</i> F	AHS PER		TOS 180C (*105C)	TH
										HYDRO UN			CL	403	r	8	\$102	SUM	
SI GABRIEL ! HAIN !				UBUNIT DRO SU		U 05 01													
02/11W-34N03 7/11/68		70	5868	78 7.6	318	42 2.09 57	9 0.74 20	18 0.78 21	0.0	2	188 3.08 87	0.19 5	8 0.22 6	3.0 0.05	0.8	0.09	25	209	142
1/11W-34N05 7/11/68 -		70	5868	78 7•5	317	38 1.90 52	10 0.82 23	20 0.87 24	0 • 0	2	166 2.72 78	0.23 6	0.31 9	15.0 0.24 7	0.9	0.13	24	215 213	136
LOWER	CAN	ON	HYORO	SUBARE	Ā	U0502													
1/10w-27C01 1/19/68		70	1101 1101	63 7•8	431	59 2•94 65	0.90 20	13 0.56 12	0 - 1 (0 0 0 0 0 0 0 0 0	206 3.38 73	33 0•69 15	0.31 7	15.0 0.24 5	0.4		0	352 248	192 23
//10W-29K0		70	1101 1101	59 7•9	392	49 2•44 57	12 0•99 23	18 0.78 18	0 • 0		192 3.15 78	24 0•50 12	9 0•25 6	7.3 0.12 3			0	313 216#	171 13
1/14/68		70	1101 1101	75 7•8	424	55 2.74 59	12 0.99 21	18 0.78 17	0.10		210 3.44 77	33 0.69 15	9 0•25 6	5.0 0.08 2	0 • 4		0	346 240	186 14
1/10W-32J02 1/19/68		70	1101 1101	61 7.9	337	45 2•24 62	11 0.90 25	8 0.35 10	0.10	•	168 2.75 82	23 0.48 14	0 • 11 3	0.0	0.4		0	263 178≠	157 19
UPPER	CANY	ON	HYDRO	SUBARE	A	U0503													
1/10W-03C03 1/19/68		70	1101 1101	68 7.9	569	74 3.69 61	15 1.23 20	23 1 17	0.10	0.00	240 3.93 65	40 0.83 14	0.62 10	41.8 0.67 11	0.2		0	460 338	246 49
1/10W-23C01 1/21/68		70	1101 1101	63 7•9	446	51 2•54 56	12 0.99 22	22 0.96 21	0.08	3 0.00 2 0	192 3.15 68	51 1.06 23	12 0.34 7	4.8 0.08 2	0 • 4		0	348 251	176 18
DRA HYDRO				Δ.	U05E0	U05E2													
/08W-18J02	25	70		81 8.8	268	9 0.45 13	0.00	70 3.04 86	0.02	0.37	114 1.87 51	36 0.75 21	9 0.25 7	25.0 0.40 11	0.1	0.07	12	267 230	22
/08W-19A02 /23/67		70	1101 1101	72 8•1	625	76 3•79 57	13 1.07 16	39 1•70 26	0 • 0 5	0 0 0 0	210 3.44 51	91 1•89 28	36 1•01 15	22.0 0.35 5			0	489 383	243 71
/27/68		70	1101 1101	75 7•7	420	27 1•35 31	4 0.33 7	62 2•70 61	0 • 0 2	0 0 0 0	130 2•13 51	56 1•16 28	9 0•25 6	36.2 0.58	0.3		0	325 260≉	83
LIVE	DAK H	IYDR	O SUBA	REA		U05E3	•	01	•		3.	20	· ·	•					
/08W-04L01 /18/68		7 0	5868	82 7.9	665	79 3•94 60	9 0.74 11	42 1.83 28	0.05	5	181 2.97 46	72 1•50 23	16 0.45 7	98.0 1.58 24	0.2	0.15	23	490 431	234 86
/08W-05A01 /23/67		70	1101 1101	58 8•1	865	99 4•94 49	28 2•30 23	65 2•83 28	0 • 0 2	0.00	150 2•46 25	145 3•02 30	36 1•01 10	215·0 3·47 35			0	739 663	362 239
/26/68		70	1101 1101	75 8.4	758	70 3.49 50	20 1.64 23	43 1.87 27	0.02	0.00	30 0.49 7	158 3.29 44	44 1.24 17	151.5 2.44 33	0.6		0	518 503≠	257 232
HEIM HYDRO		_		FA	U05F0	U05F1													
/08W-33K02 /03/67 110	25	30	3102	7.2	1700	172 8•58 45	68 5•59 29	110 4.78 25	0.08	0.00	365 5.98 31	468 9.74 50	129 3.64 19	0.2	0.6	0.15	20	1240 1151	709 410
/09W-32H03		30	3102	7.6	1270						221 3.62	296 6•16	104	27.0	••				
/09W-32P04 /25/67 130	_	30	3102	7.4	1120					0.00	212 3.47	239 4.97	92 2•59	•-					
/09W-34M01 /03/67 130		30	3102	7.4	1270	126	29 2.38			0.00	225 3.69	294 6•12	107 3•02	18.0 0.29					434 249
/10W-36H01 /09/67 143		30	3102	7.5	754					0.00	245 4.01	90 1.87	57 1.61	••					••
/10W-01801 /09/67		30	3102	7.4	1180		••			0.00	149 2.44		102					••	••
LA HAS		YOR	SU8A	REA		U05F2													
/10W-02N02 /09/67 113		30	3102	7.3	1450			••		0.00	300 4.92		126 3.55	110.0					••

MINERAL ANALYSES OF GROUND WATER

								5001	HERN (CALIFORN	AIA				*				
	STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE	TEMP R PH	EC				SIN	PERCENT	MS PER JIVALENT REACTAN	5 PER L	JES	**22	MILLIGR			TDS 180C (*105C)	
						CA	MG	NA	K	C03	HC03	504	CL	N03	F	В	5102	SUM	
,	ANAHEIM HYDRO S La Habra			REA	U05F0	U05F2	,A=SAN G	SABRIEL	RIVER +	HYDRO UN	IIT U05	00							
	035/10W-04D015 11/09/67 1315	30	3102	7.4	1560					0.00	346 5.67		113 3•19	0.00					ŀ
(035/10W-07H035 11/09/67 1345	30	3102	7.2	1640	172 8.58 56	32 2.63 17	94 4.09 26	0.10	0.00	262 4.29 27	83 1.73 11	288 8.12 52	95.0 1.53 10		0.08	60	1110 957	3
(035/10W~10M015 11/09/67 1200	30	3102	7.5	964			•-		0.00	256 4.19		107 3.02	44.0 0.71					
(035/10W-10M025 11/09/67 1145	30	3102	7.4	960				••	0.00	220 3.60		92 2.59	110.0 1.77	••				
	ñ3/18/68 1130	30	5102	 7•6	925	••	~-			0.00	226 3.70		90 2.54	93.0 1.50			••	= ;	ŀ
(035/10W-11M025 11/00/67	30	3102	7.6	1820					0.00	381 6.24		194 5.47	138.0			••	==	ŀ
(035/10W-15801S 11/09/67 1415	30	3102	7.3	1540					0.00	321 5.26		153 4.31	53.0 0.85	••				ŀ
	YORBA LI	NDA H	IYORO S	UBAREA		U05F3													
C	035/09W-02P015 11/06/67 1200	30	3102	7.8	6560					133 4.43	2880 47.20		885 24.96	0.0	••			::	
	ñ3/14/68 Ĩ430	30	5102	8.2	6670					327 10.90	2500 40.97		940 26.51	0.00					:
Ċ	035/09W-210015 10/25/67 1530	30	3102	7.5	1040					0.00	396 6.49		61 1•72	0.1					ŀ
	03/11/68 1330	30	5102	7.6	1020			••		0.00	400 6.55	••	67 1•89	0 • 1 0 • 00			••		•
	035/09W-21D025 10/25/67 1500	30	3102	 7.5	1080					0.00	435 7.13	••	54 1•52	0.1 0.00	••				ŀ
	n3/11/68 1345	30	5102 	7.6	1080	47 2.34 20	31 2.55 22	148 6.44 56	0.10	0.00	435 7.13 61	138 2.87 24	60 1.69 14	0.4 0.01 0	0.2	0.18	21	682 664	2
	35/09W-21M015 11/06/67 1100	30	3102	7.3	1780					0.00	363 5.95		255 7.19	149.0					1
	03/14/68	30	5102	7•3	1750	**				0.00	368 6•03		254 7•16	159.0 2.56			••		
	35/09W-21M02S 11/06/67 1130	30	3102	7.9	942				•-	0.00	387 6.34		67 1.89	0 • 0 0					
	03/14/68	30	5102	8.0	942					0.00	391 6.41		70 1.97	0.0				== ,	•
	35/09W-28L025 10/25/67 1315	30	3102	7.1	1340				••	0.00	325 5.33		258 7 . 27	0.1					•
	ñ3/11/68 1130	30	5102	7.2	1340				•-	0.00	333 5.46		282 7•95	••	••		••		
	04/03/68 1345	30	5102	8.1	656	28 1•40	9 0.74			0.00	260 4. 26	•-	56 1.58	0.00		0.10			1
)3S/09W-32H03S 03/11/68 1030	30	5102	7.7	1270	132 6•59 49	29 2•38 18	100 4•35 32	0 • 1 0	0.00	239 3•92 28	293 6•10 44	120 3•38 24	25.0 0.40 3	0.6	0.06	21	919 843	4 2
	n9/24/68 1430	30	3102	7.7	1370					0.00	237 3.88	304 6.33	123 3.47	34.0 0.55	••			-:	-
	03S/09W-32P045 03/14/68	30	5102	7.6	1130	112 5.59 47	25 2.05 17	92 4.00 34	5 0.13 1	0.00	220 3,60 30	240 5.00 42	106 2.99 25	16.0 0.26 2	0.3	0.06	19	751 724	P. C.
	09/24/68 1410	30	3102	66 7•5	1130	-	**	••		0.00	207 3.39	247 5•14	102 2.88	12.0 0.19					
	035/09W-33H015 10/03/67 1315	30	3102	7.6	820	67 3.34 41	12 0.99 12	84 3.65 45	3 0.08 1	0.00	231 3.79 47	103 2•14 27	75 2•11 26	0 • 1 0 • 0 0 0	0.4	0.15		490 459	A.
	n3/11/68 1045	30	5102	7.6	892	75 3.74 42	15 1.23 14	88 3.83 43	3 0.08 1	0.00	258 4.23 46	112 2.33 25	92 2.59 28	0.7 0.01 0	0.4	0.12	15	563 529	
	09/27/68	30	3102	7.4	978			••	•-	0.00	269 4.41	119 2.48	100 2.82	3.6 0.06					
0	03S/09W-33K01S 10/03/67 1330	30	3102	7.5	1160					0.00	207 3.39	262 5•45	102 2.88	10.0			••		
	09/27/68 03S/09W-33K01S	30	3102	7.6	978	3.74 42	1.23	3.83	0.08	0.00	4.23 46 269 4.41 207	2.33 25 119 2.48 262	2.59 28 100 2.82	0.01 0 3.6 0.06		0.12			

MINERAL ANALYSES OF GROUND WATER

ATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE	TEMP R PH	EC				IN M	ILLIGRAM	REACTANG	S PER L	ES		MILLIGRAMS			TDS 180C (*105C)	TH
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	2105	SUM	
					LA	-SAN G	ABRIEL R	IVER H	TORO UNI	T U050	00							
IAHEIM HYDRO S YORBA LI			UBAREA	U05F0	U05F3													
5/09W-33K015 3/11/68 1040	30	5102	66 7.5	1120					0.00	216 3.54	254 5•29	108 3.04	8.0 0.13	••	•-			••
9/27/68 1330	30	3102	67 7.4	1200	••		••	•-	0.00	221 3.62	262 5.45	108 3.04	15.0 0.24					
5/09W-34M01S 3/11/68 1100	30	5102	7.5	1240	••				0.00	229 3.75	273 5.68	116 3.27	14.0	••				
9/27/68	30	3102	7.3	1270	••	-*	••		0.00	232 3.80	289 6•02	115 3.24	17.0 0.27					
S/09W-35001S 3/11/68 1115	30	5102	7.6	1160	•	••	••		0.00	187 3.06	299 6•22	104 2.93	0.5 0.01	••				
S/10W-02N02S 3/18/68 1130	30	5102 	7.5	1470					0.00	307 5.03		133 3.75	115.0					
S/10W-07H03S 3/18/68 1230	30	5102	7.3	1750	184 9.18 53	37 3.04 17	118 5.13 29	0.02 0	0.00	274 4.49 26	87 1.81 11	334 9.42 55	82.0 1.32 8		0.10	58	1110 1037	612 387
\$/10W-10M01S 3/18/68	30	5102	 7.6	969					0.00	253 4.15		110 3•10	42.0 0.68					
S/10W-11M02S 3/18/68	30	5102	 7.7	1820			••		0.00	406 6.65		202 5•70	122.0	••				
S/10W-36H01S 3/22/68	30	5102	 7.8	727			•-		0.00	243 3.98	80 1.66	56 1•58	8.0 0.13					
5/10W-01F01S 3/14/68 1330	30	5102	≠ 7.6	1170	125 6•24 50	25 2.05 16	95 4•13 33	5 0.13 1	0.00	162 2.65 21	310 6.45 52	108 3.04 25	14.0 0.22 2		0•05	55	822 785	415 282

MINERAL ANALYSES OF GROUND WATER

7 4 88 2 0 1 99 0 225/44E-09G02M 14 5050 75 146000 3300 1870 78100 2340 144 2880 99999 18.0 0.0 222000 1																		
### CAPTION OF CONTROL TYPE 14 500 10 500 500 10 500 500 10 500		OUN		_					TS IN M	ILL IEOU FRCENT	REACTAN	S PER L	ES					180C (*105C)
AMARQUE NOR 100	UPPER OWENS HYDR	20 SI	BUNIT		₩0380	(OWENS HY	DRO UN	ΙT		W03	100						
CATAL MALLEY MICHO SUBJECT CATALOG CATAL	-	14					-	_		••			_		7.8	0.64		
MANAGER-14/015 0 500							AMARGOSA	HYDRO	UNIT		W09	000						
24-10-12-12-12-12-12-12-12-12-12-12-12-12-12-	-	36				6.29	9.21	59.99	1.33		3.11	15.88	56.65	0.06	4.8	9.00		4763
224 14 53 14 55 14 55 14 53 14 54 54 54 54 54 54 54		14				48 2.39	18 1.48	74 3.22	0.10		130 2.13	179 3.73	43 1•21	0.0	0.9	0.68	••	
240 11 250 25	•	14			_	33 1.65	14 1.15	53 2•30	0.10		137	99 2•06	32 0•90	1.0	1+1	0.38		402 305
24 1 24 25 25 26 26 26 26 26 26		14				114 5.69	56 4.60	531 23.10	18 0.46	••	117	491 10.22	781 22.02	0.0	2.1	8.00		2141 5 2059 4
### ANAGORS HYDRO SUBAREA ### PANAMINT HYDRO UNIT ### PANAMINT HYDRO		14			_	5,64	5.43	20.40	0.23		2.06	3.41	26.45	0.00	0.1	1.40		2097
11N/02E-08X015 36 5050 1500 53 15 241 6 121 347 187 3.5 3.7 4.20 968				AREA	₩0900	W09D2												
1 1 1 1 2 2 2 2 3 5 5 5 2 3 5 2 3 6 5 2 3 6 5 2 5 2 6 7 7 7 7 2 2 4 1 2 3 10 48 0 15 1 1 5 0 3 3 5 0 6 6 6 6 6 6 6 6 6		14	_			0.25	0.08	35.49	0.74		11.47	11.24	12.80	0.00	4.8	8.80		
15/29/68						(COYOTE H	IYDRO UH	NIT		W18	100						
12N/02E-32C015 36 5050		36			_	2.64	1.23	10.48	0.15		1.98	7.22	5.27	0.06	3.7	4.20		
## WINGATE PASS HYDRO SUBUNIT ## W2040 225/44E-09601M		36			1008	1.35	0.82	7.09	0.13		1.80	5.18	2.23	4.5 0.07	6.6	0.65		
01/17/68 7.7	WINGATE PASS HYD	RO S	SUBUNIT		W20A0	ş	PANAMINT	HYDRO	UNIT		W20	100						- 1
225/44E-09602M 14 5050 75 146000 3300 1870 78100 2340 144 2880 99999 18.0 0.0 222000 1 188578#1 ANTELOPE HYDRO SURUNIT CHAFEE HYDRO SUBAREA W26A1 11N/12W-32E01S 15 5050 8.2 2.64 0.57 2.09 0.05 0.00 2.05 2.79 0.37 0.06 323 7 1 323	-,	14				189.62	123.362	797.05	50.01		0.98	26.022	819.97	0.00	0.0	53.00		198000 150 172887≠150
ANTELOPE HYDRO SUBAREA W26A0 1\bar{1}\bar{1}\bar{1}\bar{2}\bar{2}\bar{1}\bar{2}\bar{1}\bar{2}		14	_			164.67	153.793	397.35	2340 59.86		2.36	59.962	819.97	0.29	0.0			222000 15° 188578≠150
1\bar{1}\bar{1}\bar{1}\bar{2}\colon 1 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 &					W26A0		ANTELOPE	HYDRO	TINU		W26	00						1
GLOSTER HYDRO SUBAREA W26A2 10N/13W-24C02S 15 5050 401 27 4 46 1 0 104 67 16 4.1 0.2 0.10 210 06/03/68 8.2 1.35 0.33 2 0.02 0.00 1.70 1.39 0.45 0.07 217 WILLOW SPRINGS HYDRO SUBAREA W26A3 09N/13W-07R04S 15 5050 450 30 4 53 2 1 119 76 19 0.2 0.4 0.20 232 06/04/68 8.4 1.50 0.33 2.30 0.05 0.03 1.95 1.58 0.53 0.00 245 0.00 245 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.0	1]N/12W-32E01S	-	5050			53				_	_				0.3	0.10		
06/03/68 8.2 1.35 0.33 2 0.02 0.00 1.70 1.39 0.45 0.07 2 217 WILLOW SPRINGS HYDRO SUBAREA W26A3 09N/13W-07R04S 15 5050 450 30 4 53 2 1 119 76 19 0.2 0.4 0.20 232 06/04/68 8.4 1.50 0.33 2.30 0.05 0.03 1.95 1.58 0.53 0.00 245 0.00	GLOSTER +	HYDRO	SUBAR	EA			11	39	1	0	39	53	7	1				
09N/13W-07R04S 15 5050 450 30 4 53 2 1 119 76 19 0.2 0.4 0.20 232 16/04/68 8.4 1.50 0.33 2.30 0.05 0.03 1.95 1.58 0.53 0.00 245 245 245 245 245 245 245 245 245 245		15				1.35	0.33	2	0.02	0.00	1.70	1.39	0.45	0.07	0.2	0.10		
06/04/68	WILLOW SE	BING	S HYDR	0 S U8	AREA	W26A3												
06/04/68 8.2 2.29 0.99 2.30 0.05 0.00 3.36 1.39 0.59 0.08 307 41 17 41 1 0 62 26 11 1 11N/14w-148025 15 5050 1040 77 48 82 2 13 519 86 20 1.2 1.5 0.60 615 06/03/68 8.5 3.84 3.95 3.57 0.05 0.43 8.51 1.79 0.56 0.02 587		15	-		-	1.50	0.33	2.30	0.05	0.03	1.95	1.58	0.53	0.00	0 • 4	0.20		
06/03/68 8.5 3.84 3.95 3.57 0.05 0.43 8.51 1.79 0.56 0.02 587		15				2.29	0.99	2.30	0.05	0.00	3.36	1.39	0.59	0.08	0.3	0.10		
		15				3.84	3.95	3.57	0.05	_	8.51	1.79	0.56	0.02	1.5	0.60		

MINERAL ANALYSES OF GROUND WATER

							00011		CALL! OIII	• •								
TE WELL NO.		Y LAB SAMPLE		EC	MINER CA	AL CONS	TITUENTS	5 IN	MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER S102	TDS 180C (*105C) SUM	
ELOPE HYDRO NEENACH		_	FA	W26A0	W26A4	NTELOPE	HYDRO (UNIT		W26	00							
1/10W-06R01S 2/04/67 1130	70	5050	7.8	333	34 1.70	5 0.41 12	28 1•22 36	0.08		146	42 0.87	0.11	0.7	0.3	0.05	••	196 189	105
1/15W-10P01S	7 0	5050	8.2	416	38 1.90	5 0•41	39 1•70	2 0 • 02	0.00	71 149 2.44	28 0 • 58	18 0.51	25.0 0.40	0 • 4	0.10		240 228	115
1/15W-24802S -/04/68	70	5050	71 8•3	416	39 1.95	6 0.49	36 1•56	1 0 • 0 5	0.00	173 2.83	12	15 0 • 42	26.0 0.42	0.4	0.10		236 222	122
1/16W-06Q01S	70	5050	71 7.9	595	63 3.14	13 1.07	39 43 1.87	0.05	0.00	230 3.77	74 1.54	11 15 0.42	11 12.0 0.19	0.3	0.50		366 336	211
J/16W-18H015 -/04/68	70	5050	8.3	424	51 15 0•75	3 0.25 6	30 77 3.35	1 0.02	0.00	206 3.38	26 24 0.50	9 0•25	11.0 0.18	0.9	0.30		265 243	50 0
LANCAST	ER HYC	RO SUB	AREA		17 W26A5	0	77	1	O	. 78	12	6	4					
/12E-32H015 //14/68	70	5050	68 7.9	2152	244 12.17 47	110 9.05 35	110 4.78 18	2 0•05 0	0.00	227 3.72 15	740 15.41 60	178 5.02 20	87.0 1.40 5	0.7	0.14		1737 1584	1062 876
1/10W-05H015 1/04/67 1100	70	5050	8.3	383	43 2•14 53	13 1.07 26	18 0.78 19	3 0•08 2		181 2.97 72	46 0.96 23	0 • 1 4 3	1.8 0.03	0.3	0.02		234 220	161
./05/68	70	5050	8.3	412	45 2.24 53	13 1.07 25	18 0.78 19	0.10 2	0.00	182 2.98 74	43 0.89 22	5 0.14 3	2.2 0.03 1	0.3	0.10		198 221	166 17
1/12W-24C015 1/09/67	70	1101 1101	8.5	311	16 0.80 23	5 0.41 12	50 2.17 64	0.02	-	160 2.62 76	24 0.50 14	12 0.34 10	0.00			0	268 187	60
//09W-30F015 //04/67 1200	70	5050	 7•5	351	19 0•95 28	6 0.49 15	42 1•83 54	0 · 10 3		117 1.92 56	55 1•14 34	7 0•20 6	9.0 0.14 4	0.4	0.04		192 200	72 0
V10W-06R015 V05/68	70	5050	8.3	354	34 1.70 47	6 0.49 14	30 1.30 36	3 0•08 2	0.00	147 2.41 71	40 0.83 25	0.11 3	1.3	0.2	0.10		194 191≠	110
//12W-34J015 /28/67	70	5050	8•5	250	12 0•60 24	2 0.16 7	39 1•70 68	0.02 1	••	120 1.97 79	15 0•31 13	5 0 • 1 4 6	4.0 0.06 3	0.4	0.00		154 138	38 0
//13W-35E01\$ /28/67	70	5050	8.1	711	37 1•85 27	3 0•25 4	105 4•57 68	2 0•05 1		139 2•28 34	86 1•79 26	80 2•26 33	28.5 0.46 7	0.6	0.02		421 411	105
//14W-10F015 -/04/68	70	5050	73 8•1	370	36 1.80 50	3 0.25 7	34 1 • 48 41	0.05 1	0.00	156 2.56 73	11 0.23 6	14 0.39 11	20.0	0.3	0.00		203 197	102
//12W-21C01S /28/67	70	5050	7.7	428	26 1•30 31	6 0•49 12	53 2•30 56	2 0 • 05 1		129 2•11 52	28 0•58 14	44 1 • 24 31	7.5 0.12 3	0.7	0.23		246 231	90
/04/68	70	5050	8.3	465	28 1.40 33	6 0•49 12	54 2•35 55	0.02	0.00	131 2•15 51	26 0•54 13	48 1•35 32	8.4 0.13 3	0.7	0.30		245 237	95 0
//12w-34P025 /29/67	70	5050	8.0	279	31 1.55 54	5 0.41 14	20 0.87 30	0.02 1		154 2.52 89	12 0•25 9	2 0•06 2	0.00	0.4	0.00		163 148	98
1/13W-23H035 1/04/68	70	5050	75 8•3	450	27 1.35 32	0.33 8	56 2•43 58	2 0•05 1	0.00	126 2•06 51	35 0.73 18	39 1•10 27	9.1 0.15 4	0.6	0.40		237 235	84
1/13W-32N025 1/04/68	70	5050	72 8•1	606	53 2•64 44	10 0.82 14	57 2.48 41	0.05 1	0.00	221 3.62 63	33 0•69 12	39 1•10 19	22.0 0.35 6	0.6	0.50	••	324 326	173
1/14W-11G01S 5/04/68	7 0	5050	77 8.3	394	34 1.70 44	0.33	41 1.78 46	2 0•05 1	0.00	168 2.75 74	22 0.46 12	12 0.34 9	11.0 0.18 5	0.2	0.00		22 4 209	101
1/13w-20C02S 1/29/67	15	5050	8.0	599	19 0.95 17	0.25 4	100 4.35 77	3 0 • 08 1		105 1.72 32	101 2•10 39	55 1.55 28	4.3 0.07	4.2	1.90		369 343	60
1/04/68	ĩ5	5050	8.3	633	21 1.05 19	0.25 4	95 4•13 -75	3 0.08 1	0.00	105 1.72 32	101 2·10 39	55 1.55 28	4.5 0.07 1	4.2	2.50		358 341	65 0
1/13W-23B02S 1/04/68	15	5050	68 8.0	1460	171 8.53 56	33 2.71 18	87 3.78 25	0.08 0	0.00	192 3.15 21	389 8.10 54	124 3.50 23	13.0 0.21 1	0.6	0.20		975 916	563 405

MINERAL ANALYSES OF GROUND WATER

							30011	HERN (CALIFORN	1 A				•			
STATE WELL NO. DATE TIME		Y LAB SAMPLE	TEMP R PH	EC				S IN P	AILLIGRA AILLIEGU ERCENT	IVALENT:	S PER L	ES		MILLIGRA			180C (*105C)
					CA	MG	NA	К	C03	HC03	S04	CL	N03	F	В	2015	SUM
ANTELOPE HYDRO	SHRIIN	IT T		W26A0	A	NTELOPE	HYDRO	TINU		W26	00						
NORTH ME			UBAREA		W26A6												
11N/08W-30F01S 06/03/68	15	5050	8.3	1940	112 5.59 31	26 2•14 12	236 10•26 56	9 0•23 1	0.00	190 3•11 17	160 3•33 18	412 11•62 64	9.7 0.16 1	0.5	1.90		1120 1061
11N/09W-26R01S 06/03/68	15	5050	8.2	1860	85 4.24 23	20 1.64 9	278 12.09 67	7 0.18 1	0.00	294 4.82 26	248 5.16 28	288 8.12 45	5.0 0.08 0	0.5	3.00		1070 1080
11N/09W-28K015 11/30/67 1100	15	5050	8.2	675	3 0 • 15 2	0.08	140 6•09 96	0.02 0		186 3.05 47	84 1.75 27	59 1.66 26	1.8 0.03 0	0.7	0.23		405 383
06/03/68	i 5	5050	8.5	735	7 0.35 5	0.16	145 6.31 92	0.02	0.13	201 3.29 48	83 1.73 25	59 1.66 24	3•1 0•05 1	0.9	0.40		434 405
11N/09W-31C01S 06/03/68	15	5050	8.4	1610	72 3.59 25	16 1.31 9	210 9.13 64	0.20 1	0.07	137 2.24 16	67 1.39 10	376 10.60 74	0.2	0.3	0.10	••	885 819
11N/09W-33F015 11/30/67 1157	15	5050	8.0	590	15 0.75 13	5 0.41 7	106 4.61 79	2 0.05 1		200 3.28 57	72 1.50 26	32 0.90 16	3.8 0.06 1	1.4	0.14		380 336
n6/03/68	15	5050	8.4	642	18 0.90 15	0 • 33 5	112 4.87 79	0.05 1	3 0 • 1 0 2	206 3.38 55	75 1•56 25	36 1.01 16	5.0 0.08	1.3	0.30		372 358
11N/09W-34K01S 11/30/67 1215	15	5050	8.4	979	12 0.60 6	0.25 3	193 8.39 90	3 0.08 1	10 0.33 3	272 4.46 47	73 1.52 16	106 2.99 32	7.3 0.12	1.9	0.36		598 544
ñ6/03/68	Ī5	5050	8.6	1060	15 0.75 7	3 0.25 2	210 9•13 89	3 0.08 1	12 0.40 4	300 4.92 49	72 1•50 15	108 3.04 30	8.2 0.13 1	1.9	0.60		620 582
325/39E-33R01M 11/30/67 1250	15	5050	8.2	944	41 2•04 21	0.66 7	154 6•70 70	5 0 • 13 1		327 5•36 56	83 1•73 18	73 2•06 22	20.5 0.33 3	1.2	0.97		601 548
06/03/68 	15	5050	8.3	1000	48 2•39 24	8 0.66 6	158 6•87 68	6 0.15 1	0.00	352 5.77 56	97 2•02 20	73 2•06 20	22.0 0.35 3	1.1	1.40		60 4 588
BUTTES H	YORO	SUBARE	A		W26A7								•				
05N/11W-09A02S 06/05/68	70	5050	8.2	323	36 1.80 57	5 0.41 13	21 0.91 29	2 0.05 2	0.00	144 2.36 75	30 0.62 20	5 0 • 1 4 4	1.4	0.2	0.10		178 172
06N/11W-21N01S 11/30/67 1430	70	5050	7.9	287	30 1.50 51	0.49 17	20 0.87 30	2 0 • 0 5 2		140 2•29 79	19 0•39 14	6 0 • 1 7 6	2.3 0.04	0.2	0.00		180 155
ñ6/05/68	70	5050	8.3	300	33 1•65 52	6 0•49 16	22 0•96 30	2 0•05 2	0.00	143 2•34 78	19 0•39 13	7 0 • 20 7	3.1 0.05 2	0.2	0.10		181 163≠
ROCK CRE	EK HY	DRO SU	BAREA		W26A8												
05N/09W-05F01S 09/18/68	70	1101 1101	7.8	509	28 1.40 29	5 0.41 8	69 3.00 62	0.02	0.00	117 1.92 38	124 2.58 51	18 0.51 10	0.8	1.0		0	363 305
06N/08W-32M01S 11/29/67	70	5050	7.9	586	43 2•14 37	9 0•74 13	64 2•78 48	0·10 2	•-	88 1•44 25	199 4•14 72	5 0 • 1 4 2	1.5 0.02 0	0.6	0.00		394 370
06N/08W-35F02S 06/05/68	70	5050 	76 8.3	505	24 1.20 26	6 0.49 11	64 2.78 61	3 0.08 2	0.00	93 1.52 33	141 2.93 64	0.11	2.1 0.03	0.4	0.10		291 291
EL MIRAGE HYOR) 5 U8U	JNIT		W28A0	м	H SVALO	YDRO UN	ĮΤ		¥28	00						
05N/09W-05F015 09/18/68	70	1101	 7.8	509	28 1•40 29	5 0.41 8	69 3.00 62	0.02	0.00	117 1.92 38	124 2.58 51	18 0.51	0.8 0.01	1.0		0	363 305
06N/06W-18P01S 05/28/68	36	5050	7.9	548	7 0.35	1 0.08 2	103 4.48 91	0.02		96 1.57 30	166 3.46 66	8 0 • 22	0.00	0.8	0.06	••	387 335≠
06N/07W-11R01S 03/18/68	36	5100	8.6	529	5 0•25	0 0 0 0	110 4.78 95	0.02	14 0.47 9	103 1.69 32	140 2•91 56	5 0 • 1 4 3	0.00	1.5	0.11		325 328
05/28/68	36	5050	7.9	536	0.15 3	0 . 0 0	101	0.00		85 1.39 29	151 3.14	7	0.0	1.0	0.06		373 305

MINERAL ANALYSES OF GROUND WATER

E WELL NO.																		
TE TIME	COUNT	Y LAB	TEMP PH	EC			TITUENT	5 IN M	ILLIGRAI ILLIEQU ERCENT	IVALENTS REACTANO	PER L	ES		MILLIGRA			TOS 180C (*105C)	TH
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	2105	SUM	
IRAGE HYDRO	SUBL	INIT		W28A0	M	DJAVE H	YDRO UN	ΙŢ		W280	00							
07W-15C015	36	5050	8.1	527	44 2•19	8	51 2•22	4 0 • 10	***	90 1.47	180 3•75	9	1.0	0.7	0.00		331 342#	143 46
07w-17R01S	36	5100	7.6	697	42 49 2.44	13 11 0.90	43 49 2•13	2 6 0•15	0.00	27 83 1.36	200 4.16	5 0 • 1 4	0 2.4 0.04	0.6	0.02		382 364	168
	36	5050	68	532	43 46	16 11	38 47	3 5	0	24 87	73 176	2 10	1 2•0	0.5	0.00	~-	353	160
27/68	36	5100	7.7	534	2.29 43 50	0.90 17	2•04 38 48	0.13	0	1•42 26 85	3.66 68	0.28 5	0.03 1	0.5	0.04		341	170
26/68		••	7•1		2.49	0.90 16	2.09	0.15	0.00	1.39	3.95 70	0.28	0.02	000			359	100
R MOJAVE HY	ORO S	UBUNIT		M5880														
03W-10E015 16/67 1030	33	5050	76 7•4	938	68 3.39 39	27 2.22 25	70 3.04 35	0.13 1		98 1.61 18	49 1.02 11	204 5•75 64	39.0 0.63 7	0.7	0.27		745 512	281 201
02W-30K155	36	5050	7.2	82	7 0.35 38	4 0.33 36	5 0•22 24	0.02 3	0.00	46 0.75 86	0.06 7	2 0.06 6	0.5 0.01 1	0.1	0.00		46 46	34
02W-32R02S	36	5100	7.1	90	7 0.35 39	2 0.16 18	8 0•35 39	0.02 3	0.00	39 0.64 65	4 0.08 8	9 0•25 26	0.3	0.2	0.01		68 51≠	26
'03W-19P015 '05/68	36	5050	6.6	132	13 0.65 51	2 0.16 13	10 0-43 34	1 0•02 2	0.00	46 0.75 60	2 0•04 3	16 0•45 36	0.00	0.0	0.00		86 67	41
03W-22D015 05/68	36	5100	7.3	134	16 0•80	2 0.16	9	2 0•05	0.00	61 1.00	2	10	0.5	0.3	0.00		67 72#	48
03W-26E015 12/68	36	5050	7.0	197	57 21 1.05	12 7 0•57	28 8 0•35	2 0 • 05	0	75 93 1.52	3 0•06	21 9 0•25	5.7 0.09	0.0	0.00		105 102	81 5
03W-27D01S	36	5050	 6.8	234	52 24 1.20	28 6 0•49	17 14 0.61	2 0.05	0 0 0 0	79 103 1.69	3 8 0•17	13 16 0.45	3.0 0.05	0.0	0.01		119 124	85
04W-04E015 24/68	36	5050	8.3	2120	51 122 6.09	21 28 2.30	26 252 10.96	7 0.18	0	72 134 2.20	7 237 4.93	19 446 12.58	2.5	0.5	1.00		1250 1162	420
04W-06R02S	36	5100		233	31 20	12	56 15	1	0	11 95	25	64	0 16.0	0.1	0.00		67	75
05/68 04W-19A015	36	5050	6.4	122	1.00	0.49 23	0 • 65 30 8	0.02 l	0.00	1.56 71 37	0.04	0•34 15	0.26 12	0.0	0.01		119	35
05/68 04W-01C015	26	 E050	6.2	181	0.45	0.25	0·35 32	0.02	0.00	0.61 57	0.10	0.20	0.16 15				62	4
27/68	36	5050	7.9	191	17 0.85 46	0.33 18	0.61 33	0 • 05 3	0.00	79 1.29 76	11 0·23 13	0.17 10	1.2 0.02 1	0.5	0.00		115 95≠	59 0
04W-28P01S 17/67 945	36	5050	61 7•5	248	18 0•90 35	7 0•57 22	25 1•09 42	1 1 1		116 1.90 75	12 0•25 10	13 0•37 15	0.00	0.4	0.05		138 134	74
04w-32D015 17/67 900	36	5050	61 7•3	287	31 1•55 53	7 0•57 20	18 0.78 27	0.02		131 2•15 72	19 0·39 13	13 0.37 12	5.0 0.08 3	0.2	0.00		185 159	105
04W-32GS1S 22/68 1230	36	5050	8.1	327	40 1•99 55	11 0•90 25	15 0•65 18	2 0•05 1		181 2.97 82	18 0·37 10	9 0•25 7	0.8	0.5	0.00		176 186	145
07W-09M01S 18/68	36	5100	7.8	579	84 4 • 19 63	25 2•05 31	8 0•35 5	0.10	0.00	342 5.60 83	41 0.85 13	9 0•25	0.5	0.3	0.00		352 340	313 32
26/68	36	5050	7.7	610	88	26 2.14	11	0.10	0.00	344 5.64	47	10	0.6	0 • 4	0.00		346 357	327 45
03W-01M01S	36	5100	7.9	1824	124 6.19	28 2.30	7 211 9.18) 5 0.13	0 0 0 0	90 1.47	302 6.29	356 10.04	3.8 0.06	0.5	1.06	••	1197 1076	425 351
					35	13	52	1	0	8	35	56	0					

MINERAL ANALYSES OF GROUND WATER

_4									CALIFORN								
DATE TIME	COUNT	TY LAB SAMPLE	TEMP R PH	EC	MINER	AL CONS	TITUENT	S IN	MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		NO3	MILLIGRA F	AMS PER	SIO2	180C 180C (*105C SUM
					н	OJAVE H	YORO UN	IT		W28	00						
UPPER MOJAVE HY	ORO S	TINUBUS		W28B0													
04N/03W-06D02S 01/09/68	36	5100	8.1	493	58 2•89 58	0.99 20	24 1•04 21	0.0 <u>5</u> 1	0.00	178 2.92 60	0.29 6	13 0·37 7	80.0 1.29 26	0.2	0.00		317 291
ñ7/02/68	36	5100	7.8	439	50 2.49 58	10 0.82 19	21 0.91 21	2 0•05 1	0.00	146 2.39 54	24 0.50 11	16 0.45 10	66.0 1.06 24	0.3	0.00	**	262 283
04N/03W-09N02S 04/02/68	36	5100	7.7	160	15 0.75 45	5 0.41 25	11 0•48 29	0.02 1	0.00	83 1.36 87	0.06 4	5 0 • 14 9	0.0	0.3	0.16		143 82≠
09/29/68	36	5050	 7.9	156	0.70 43	5 0.41 25	11 0.48 30	0.02	0.00	78 1.28 81	5 0 • 10 7	5 0•14 9	3.4 0.05 3	0.3	0.00	••	83 83
04N/03W-09N03S 10/16/67 930	33	5050	78 7.4	988	69 3.44 37	22 1.81 20	3.83 42	0.10 1		100 1.64 18	36 0.75 8	223 6.29 69	25.0 0.40 4	0.8	0.63	••	749 518
04N/03W-11C01S 01/07/68	36	5100	8.0	464	36 1.80 38	8 0.66 14	50 2.17 46	2 0•05 1	0.00	112 1.83 40	96 2•00 44	23 0.65 14	6.2 0.10 2	0.3	0.40		285 277
04N/03W-20L01S 04/02/68	36	5100	7.8	255	30 1.50 56	6 0•49 19	14 0.61 23	2 0•05 2	0.00	110 1.80 71	15 0•31 12	8 0•22 9	12.0 0.19 8	0.3	0.11	••	182 142
ñ9/29/68	36	5050	7.9	227	23 1•15 49	7 0•57 25	13 0•56 24	0.05 2	0.00	100 1.64 70	15 0·31 13	9 0•25 11	9.3 0.15 6	0.2	0.00		130
04N/04W-26C01S 05/27/68	36	5050	7.9	205	19 0.95 46	4 0•33 16	17 0•74 36	0.02 1	0.00	93 1•52 76	15 0·31 16	5 0 • 1 4 7	1.0 0.02 1	0.5	0.00	••	134
04N/04W-29F015 05/24/68	36	5050	67 8•3	217	20 1.00 46	0 • 16 8	22 0•96 45	0.02 1	0.00	101 1.65 77	0.06 3	8 0•22 11	12.0 0.19 9	0.2	0.00		138 118
04N/05W-03G015 05/20/68	36	5050	8.3	540	42 2.09 42	8 0•66 13	49 2•13 43	0.10 2	0.00	94 1.54 31	155 3•23 64	6 0•17 3	6.5 0.10 2	0.3	0.00	••	337 317
04N/05W-05R01S 05/20/68	36	5050	76 8•2	546	42 2.09 41	9 0 • 74 15	49 2•13 42	0.10 2	0.00	90 1.47 29	170 3.54 69	0·11 2	0.4 0.01 0	0.3	0.00		343 323
04N/06W-35C01S n5/21/68	36	5050	67 7•8	718	105 5•24 63	30 2.47 30	10 0.43 5	0 • 1 0 1		304 4.98 60	137 2•85 34	12 0.34 4	6.6 0.11 1	0.3	.0.00		453 455
04N/07W-23L015 05/27/68	36	5050	8.5	502	0 • 1 0 2	0.00	100 4•35 97	0.02 1	0·13 3	132 2.16 56	60 1•25 32	10 0•28 7	1.1 0.02 0	22.0	0.70	••	319 266≠
04N/07w-24D015 03/18/68	36	5100	7.9	824	123 6.14 63	36 2.96 30	11 0.48 5	0.13 1	0.00	354 5.80 60	166 3•46 36	9 0•25 3	7.5 0.12 1	0.4	0.00	••	575. 532
n9/26/68	36	5050 	7.7	797	117 5.84 65	31 2.55 28	12 0.52 6	5 0.13 1	0.00	325 5•33 57	157 3.27 35	18 0.51 5	9.8 0.16 2	0.4	0.15		524 511
05N/02w-09M015 05/22/68	36	5050 	67 8.2	597	54 2.69 47	7 0.57 10	54 2.35 41	0.05 1	0.00	125 2.05 36	137 2.85 51	23 0.65 11	5.3 0.08 1	1.5	0.80	••	376 347
05N/03W-18001S 09/29/68	36	5100	7.8	981	61 3.04 32	0.99 10	124 5.39 57	0.08 1	0.00	85 1.39 14	194 4-04 42	149 4.20 43	2.8 0.04 0	1.3	1.92	••	600 591
05N/03W-24N01S 04/02/68	36	5100	7.7	1460	90 4.49 33	29 2•38 17	156 6•78 49	5 0 • 13 1	0.00	76 1•24 9	217 4•52 33	282 7•95 58	0.00	1.5	0.47		949 819
09/29/68	36	5050	7.7	1459	94 4.69 33	28 2•30 16	160 6•96 49	0+13 1	0.00	98 1.61 11	221 4•60 32	282 7.95 56	0.00	1.6	0.48	••	896 841
05N/03W-25F015 04/02/68	36	5100	7.8	1357	76 3.79 31	16 1.31 11	166 7.22 59		0.00	85 1.39 11	198 4.12 33	250 7.05 56	5.3 0.08 1	1.3	0.18		818 755
05N/04W-08Q015 04/02/68	36	5100	8.1	186	7 0.35 17	0.25 12	33 1•43 70	0.02	0.00	100 1.64 86	0.02	8 0.22 12	1.8 0.03 1	0.2	0.00		144 105≢
05N/04W-09G02S 04/02/68	36	5100	8.5	192	8 0 • 4 0 19	0.16	34 1.48 71	0 • 0 2	0.07	98 1.61 85	0 · 0 4 2	5 0 • 14 7	2.1	0.2	0.01	••	144 105≠

MINERAL ANALYSES OF GROUND WATER

TE WELL NO ATE TIM		COUNT	Y LAB SAMPLE	-	EC	MINER.	AL CONS	TITUENT:		MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		NO3	MILLIGR <i>i</i> F	AHS PER	LITER	T ₀ S 180C (*105C) 5UM	TH NCH
ER MOJAVE	нүр	ORO S	TINUBU		W28B0			YDRO UN			W28		3-			•		- 4.1	
/04W-09J01	ıs	36	5100	••	201	4	1	41	1	10	95	3	6	1.5	0.3	0.00		123	14
/02/68			••	9.0		0.20	0.08	1 • 78 85	0 - 02	0.33	1.56	0.06	0.17	0.02	0.5	0.00		115	0
/04W-09P01 /02/68		36	5100	8.4	191	10 0.50 25	0.16 8	30 1•30 65	0.05	0.07	95 1.56 84	0.06 3	0 · 14 8	1.0	0.3	0.00		150 102≠	33 0
/04W-10N02 /02/68		36	5100	8.9	200	3 0 • 15 7	0.08	42 1.83 88	0.02	_	107 1.75 79	0.08	0.17 8	2.1 0.03 1	0.3	0.03		119 117≉	12
/04W-11N01 /16/68		36	5050	68 8.1	209	0.60 30	0.16 8	28 1.22 61	0.02		88 1.44 74	15 0•31 16	0.17 9	1.0	0.8	0.10		135 110	38
/04W-11P02 /03/68		36	5100	 7.9	415	21 1.05 27	0.33	56 2.43 63	0.05	0.00	85 1.39 38	41 0.85 23	51 1.44 39	1.2	0.6	0.18		238 219	69
/29/68 	•	36	5100	7.5	433	25 1.25 28	6 0.49 11	60 2.61 60	0.02	0.00	90 1.47 33	51 1•06 24	66 1.86 42	0.0	0.6	0.24		234 255	87 13
04W-13N02 116/68		36	5050	69 8.0	956	93 4.64 50	20 1.64 18	65 2.83 31	0.08	0.00	215 3.52 38	146 3.04 32	92 2.59 28	13.0	0 • 4	0.20		593 539	314 138
/04W-14P01 /16/68		36	5050	8.3	178	9 0.45 25	0.08 5	28 1.22 69	0 • 02	0.00	85 1.39 82	8 0.17 10	0 • 1 1 7	1.2	0.5	0.00		114 95	27 0
04w-19J01 02/68		36	5100	8.3	207	11 0.55 25	2 0.16 7	33 1.43 65	0.05	0.07	103 1.69 79	6 0.12 6	7 0•20	3.4 0.05 3	0.3	0.00		119 118	36 0
04W-20B01		36	5100	8.2	198	10 0.50 23	2 0 • 16 8	33 1•43 67	0.05	0 0 0 0	107 1.75	0.00	6 0•17	1.6 0.02	0.2	0.01		123 108#	33
'04W-20H01 '02/68	5	36	5100	8.1	207	19 0.95 43	4 0.33 15	20 0 • 87 40	0.05	0.00	117 1.92 85	5 0•10	7 0.20		0.2	0.00		119 117	64
04W-24A01		36	5100	8.4	171	9 0.45 24	3 0.25	27 1.17 62	0.02	0.00	85 1.39 83	5 0.10	6 0.17 10	0.1	0.5	0.23		128 94#	35 0
29/68		36	5050	8.1	173	8 0.40 21	4 0.33 17	27 1•17 61	0.02		83 1.36 74	9 0.19 10	10 0.28 15	0.7	0.8	0.08	••	90 102	36 0
04W-24R01 02/68		36	5050	8.4	233	9 0.45 19	3 0.25 10	38 1.65 69	0.05	0.07	95 1.56 69	0.08	12 0.34 15	12.0	0.3	0.00		145 129≠	35 0
04W-24X01 07/68		36	5100	8.4	233	9 0 • 45 19	3 0.25 10	38 1•65 69	0 • 05	0.07	95 1.56 69	0.08	12 0•34 15	12.0	0.3	0.00		145 129≠	35 0
04%-36N02 27/68		36	5050	7.9	206	20 - 1 • 00 49 -	0.33 16	16 0•69 34	0.02	0.00	84 1.38 69	13 0 • 27 14	6 0•17 8	11.0 0.18	0.3	0.00		131 113	66
05W-05801 20/68		36	5050	8.6	384	3 0 • 15 4	0.00	76 3.30 96	0.00	0.30	92 1.51 40	79 1 • 64 44	9 0•25 7	1.0	0.5	0.02	••	200 223≠	7
05W-22E02 18/68		36	5100	7.9	430	31 1.55 38	0 • 33 8	49 2•13 52	0 • 08 2	0.00	63 1.03 24	146 3•04 72	0 • 1 1 3	1.6 0.02	0.4	0.00		298 270	94 42
26/68		36	5050	 7.6	425	32 1 • 60 – 37	0 • 33 8	52 2•26 53	3 0 • 08 2	0.00	68 1•11 27	141 2•93 70	0 • 11 3	1.2	0 • 4	0.00		273 271	96 41
05w-22M02 20/68		36	5050	7.5	511	6 0•30 6	0.16 3	106 4.61 91	0.00		201 3.29 65	77 1•60 31	7 0•20 4	0.0	2.0	0.06		272 299	23
06W-22G01 30/68	_	36	5050	7.6	533	2.19 42	8 0.66 13	52 2.26 43	0.10		95 1.56 29	166 3•46 64	0.31 6	4.0 0.06 1	0.4	0.00		344 337	143 65
03W-09D01 1:03/68	-	36	5999	8.5	790	0.25 3	0.08	156 6.78 94	0.08	0.17	83 1.36 20	206 4.29 64	30 0.85 13	1.1	14.4	0.97	,	501 464≠	17
1 29/68		36	5050	8.5	766	0.15	0.16	156 6.78 95	0.05	0.33	63 1.03 16	207 4.31 66	31 0.87 13	1.1	14.3	1.02		477 459≠	16

TABLE E-1

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE		EC	MINER.	AL CONS	STITUENTS NA	IN M		IVALENT	LITER S PER L ICE VALU		N03	MILLIGRA F	M5 PER	LITER	TDS 180C (*105C) 5UM
UPPER MOJAVE HY	DRO S	SUBUNIT		W2880			YDRO UNI	•	(03	W28		Ü.	1103		J		3011
06N/03W-09E015 04/03/68	36	5100	8.2	1870	49	9	364 15•83	4 0 • 10	10 0.33	212 3.47	487 10•14	129 3•64	31.0 0.50	11.0	1.73		1238 1200#
09/29/68	36	5050	7.8	1895	61 3.04 15	11 0.90 4	380 16.53 80	0.10	0.00	273 4.47 23	56 543 11.30 57	20 124 3.50 18	25.0 0.40 2	11.8	2.38		1295 1297
06N/03W-28R015 04/03/68	36	5100	 7,6	1338	104 5.19 37	23 1.89 14	154 6.70 48	3 0.08	0.00	93 1.52	444 9.24 68	98 2.76 20	0.8	1.2	0.45		937 875
ñ9/29/68	36	5050	7.7	1262	104 5.19 38	22 1.81 13	150 6.52 48	3 0.08 1	0.00	95 1.56 12	439 9.14 68	98 2•76 20	0.6 0.01 0	1.2	0.53		919 865
06N/03W-32R015 04/03/68	36	5100	7,9	948	90 4.49 49	17 1.40 15	75 3.26 35	0.08 1	0.00	122 2.00 22	137 2.85 32	123 3.47 38	43.0 0.69 8	0.8	0.20		602 549
09/29/68	36	5100	7.5	923	92 4.59 50	15 1.23 13	76 3.30 36	3 0.08 1	0.00	127 2.08 23	138 2.87 32	119 3.35 37	43.0 0.69 8	0.7	0.19		579 550
06N/04W-29M01S 05/17/68	36	5050	7.2	896	93 4.64 49	19 1.56 16	74 3•22 34	2 0•05 0		221 3.62 38	206 4•29 45	57 1•61 17	0 • 0 0 • 00 0	0.7	0.14	-0	595 561
06N/04W-29M02S n5/17/68	36	5050	7.3	1054	108 5.39 47	22 1.81 16	94 4•09 36	2 0•05 0		262 4.29 38	252 5•25 47	57 1•61 14	2.5 0.04 0	0.6	0.15		660
06N/04W-29N03S 05/17/68	36	5050	 7.6	459	41 2•04 44	0.66 14	45 1.96 42	0 • 02 0		190 3.11 65	38 0•79 17	29 0•82 17	2.3 0.04 1	0.5	0.00		291 259
06N/04W-29N04S 05/17/68	36	5050	7•8	513	46 2•29 43	10 0.82 15	50 2•17 41	0 • 0 2 0		200 3•28 61	50 1•04 19	35 0•99 18	2.0 0.03 1	0 • 4	0.04		336 293
06N/04W-32N04S 05/17/68	36	5050 	75 8•1	194	7 0•35 20	0.08 5	28 1•22 72	2 0•05 3	~~	85 1•39 71	0.00	19 0•53 27	1.2	0.5	0.00		113 101#
06N/05W-02002S n5/16/68	36	5050 	70 7•9	464	20 1.00 69	0.08 6	7 0.30 21	2 0.05 4	0.00	88 1.44 35	125 2•60 62	0 • 08 2	2.0 0.03 1	0 • 4	0.00	••	283 204#
06N/05W-08F01S 03/18/68	36	5100	8.0	454	7 0•35 8	0.16 4	90 3•91 88	0.02 1	0.00	120 1.97 44	113 2•35 52	5 0.14 3	1.9 0.03 1	0.6	0.09		305 280
ñ9/26/68	36	5100	7.7	421	5 0•25 6	0·33 7	89 3.87 86	0 • 02 1	0.00	129 2•11 48	104 2•16 49	3 0•08 2	2.1 0.03 1	0.5	0.15	••	243 273
06N/05W-08F02S 05/20/68	36	5050	68 8•5	450	0 • 25 6	0 • 08 2	85 3•70 91	0 • 02 1	0 • 0 3 1	115 1.88 47	98 2•04 50	5 80•0 3	0.00	0.5	0.10	••	262 252
06N/05W-08F03S 05/20/68	36	5050	8.3	468	7 0•35 8	0.16	84 3.65 87	0.02 1	0 0•00 0	116 1.90 44	108 2•25 52	0 • 0 8 2	2.8 0.04 1	0.5	0.00		290 266
06N/05W-28E01S 03/18/68	36	5100	7.4	469	40 1.99 42	0.66 14	47 2.04 43	2 0 • 05 1	0.00	186 3.05 62	1 • 02 21	28 0•79 16	0.02	0.6	0.04		276 268
n9/26/68	36	5050	6.9	481	43 2•14 42	7 0.57 11	53 2•30 45	0.08 1	0.00	190 3.11 63	1.04 21	28 0.79 16	0.2	0.5	0.04	••	243 279
06N/05W-29Jn25 03/18/68	36	5100	7.8	463	46 2•29 47	0.49 10	2 41	0.05 1	0.00	195 3.20 64	51 1•06 21	25 0.70 14	0.2	0.5	0.06		300 273
n9/26/68	36	5050	7.4	487	46 2•29 44	7 0.57 11	53 2•30 44	0.08	0.00	193 3.16 63	1.08	28 0.79 16	0.5	0.5	0.10		257 285
06N/07W-11R01S 03/18/68	36	5050	8.6	529	0.25 5	0.00	110 4.78 95	0.02	0.47	103 1.69 32	140 2.91 56	0 · 1 4 3	0.00	1.5	0.11	••	325 328
ñ9/26/68	36	5050	8.1	491	0 0 • 0 0 0	0.25 5	107 4.65 94	0.02	0.40	76 1.24 25	150 3•12 64	0 • 1 4 3	0.1	1.1	0.08		308 317
07N/04W-07C015 02/13/68	36	5100	7.6	892	77 3.84 41	18 1.48 16	90 3.91 42	2 0•05 0	0.00	288 4.72 51	150 3.12 34	51 1•44 15	0.00	1.5	0.22		539 532

MINERAL ANALYSES OF GROUND WATER

								30011		ALT FORM									
TE WELL	NO. TIME	COUN	TY LAB		EC	MINERA	AL CONS	TITUENTS	IN M	ILLIGRA ILLIEGU ERCENT	IVALENT	S PER L			MILLIGRA	MS PER		T _D S 180C (*105C)	NCH
						CA	MG	NA	K	C03	HC03	504	CL	Ю3	F	В	2105	SUM	
						MC	JAVE H	YDRO UNI	T		W28	00							
ER MOJA	VE HY	'0R0 !	TINUBUS		W2880														
/04W-070 /05/68		36	5100	7.1	920	83 4.14 41	17 1•40 14	101 4•39 44	3 0.08 1	0.00	261 4.28 43	189 3•93 40	61 1•72 17	0.8 0.01 0	0.8	0.18		623 585	277 63
/04W-31M /03/68		36	5100	8.3	569	22 1.10 19	2 0.16 3	102 4.44 77	2 0.05	5 0.17 3	200 3.28 56	73 1•52 26	30 0.85 14	0.4	1.0	0.29	••	379 336	6
/05W-24M /16/68		36	5050	71 7.2	1068	91 4.54 40	15 1.23 11	123 5.35 48	3 0.08	••	167 2.74 25	323 6.72 60	57 1.61 14	4.5 0.07	0.7	0.30		675 700	28 14
DLE MOJ	AVE H	YDRO	SUBUNI	ī	W28C0														
/03W-04H /21/68		36	5050	8.3	1050	74 3.69 38	13 1.07 11	114 4•96 51	3 0.08	0.00	184 3.01 30	181 3.77 38	111 3•13 31	3.2 0.05	1.2	0.40		667 592	23
/04W-12F /13/68		36	5100	7.7	1522	176 8.78 54	20 1.64 10	133 5.78 35	0.10 1	0.00	454 7.44 45	195 4.06 24	169 4.76 29	22.0 0.35 2	0.7	0.19	~-	982 944	52 14
/05/68		36	5100	7.1	1544	185 9.23 52	28 2.30 13	140 6.09 34	0.10 1	0.00	505 8.28 47	209 4.35 25	165 4.65 26	21.0 0.34 2	0.7	0.25		1041 1002	57 16
/04W-20/ /13/68		36	5100 	8.0	4239	239 11.93 26	45 3.70 8	702 30.54 66	5 0.13 0	0.00	456 7.47 16	800 16.66 37	745 21.01 46	11.0 0.18 0	0.9	1.85		2867 2774	78: 40:
/05/68		36	5100	7.9	3116	165 8.23 25	27 2.22 7	525 22.84 68	0.10 0	0.00	290 4.75 14	598 12.45 38	540 15.23 47	14.0 0.22 1	2.2	i.24		2107 2019	52 28
/04W-210 /05/68	C015	36	5100	7.7	1691	186 9.28 49	30 2.47 13	163 7.09 37	0.08 0	0.00	203 3.33 18	529 11•01 59	147 4.14 22	0.5 0.01 0	0.8	0.22		1240 1160	58 42
/04w-315 /13/68	R015	36	5100	7.7	1645	135 6.74 35	22 1.81 9	238 10.35 55	3 0.08 0	0.00	420 6.88 38	385 8.01 44	111 3.13 17	4.4 0.07 0	1.7	0.55		1110 1108	42
/05/68		36	5050	7.8	1768	149 7.43 37	23 1.89 9	250 10.87 54	3 0.08 0	0.00	481 7.88 39	411 8.56 43	128 3.61 18	0.1	0.6	0.37		1225 1202	46
/04W-32/ /16/68		36	5050	68 8•0	2550	229 11.43 41	37 3.04 11	309 13.44 48	0.15 0	0.00	432 7.08 25	782 16•28 58	165 4.65 17	3.8 0.06 0	0.4	0.70	••	1830 1746	72 37
'02w-01f '13/68		36	5100	7.7	611	51 2.54 41	9 0.74 12	67 2•91 47	0.05 1	0.00	195 3.20 52	81 1.69 28	40 1•13 18	5.7 0.09 1	0.7	0.17	••	381 353	16
05/68		36	5100 	7.9	717	61 3.04 40	10 0.82 11	82 3•57 47	3 0.08 1	0.00	203 3.33 45	105 2•19 30	56 1.58 21	15.0 0.24 3	0.8	0.31		434 433	19
102W-069	9015	36	5100 	7.9	358	32 1.60 44	6 0•49 14	33 1•43 40	0.08 2	0.00	137 2•24 63	33 0•69 19	20 0•56 16	3 · 1 0 · 05 1	0.6	0.04		22 4 199	10
05/68		36		7.9	357	34 1•70 46	0.49 13	33 1•43 39	7 0•05 1	0.00	142 2.33 64	29 0.60 17	23 0.65 18	3.3 0.05 1	0.6	0.08		206 201	11
02W-1705/68	••	36		8.1	742	35 1•75 22	7 0.57 7	124 5•39 69	0.08 1	0.00	200 3.28 42	134 2•79 36	57 1•61 21	4.2 0.07 1	3.6	1.02		468	11
02W-24		36		8.0	602	36 1.80 30	7 0.57 10	82 3•57 59	0.08 1	0.00	205 3.36 56	74 1•54 26	39 1•10 18	0.5	2.8	0.33		371 346	11
03W-01 13/68	J015	36		8.1	620	61 3.04 45	1.15 17	56 2.43 36	0.08 1	0.00	254 4.16 63	68 1•41 22	0.87 13	6.2 0.10 1	0.6	0.15		383 365	21
05/68 9 03w-03			5100	8.2		75 3.74 51	0.99 13	58 2.52 34	0.0R	0.00	278 4.56 61	76 1.58 21	1.21	0.11	0.5	0.18		416 412	23
03W-03 013/68		36		7.9		48 2.39 39	0.82 13	65 2.83 46	0.05	0.00	207 3.39 55	1.37 22	1.35 22	0.02	0.7	0.14		351 343	16
05/68		36	5100	8.3	554	51 2.54 41	0.66 11	68 2.96 48	0.05	0.00	203 3.33 54	1.41 23	1 • 35 22	0.02	0.7	0.15		327 348	16

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. (COUNT	Y LAB SAMPLE	_	EC	MINER	AL CONS	TITUENT NA	S IN M	ILLIGRA ILLIEQU FRCENT CO3	IVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	T _D S 180C (*105C) SUM	N
HÍDDLE HOJAVE H	YDRO	SUBUNI	ī	W28C0		OJAVE H	IYDRO UN	IT	•	W28	00					_		
09N/03W-24J01S 09/05/68	36	5100	7.6	598	37 1.85	6	84 3•65	3	0.00	203 3.33	72 1.50	41 1•16	0.7	1.8	0.29	••	383 346	1
09N/03W-26H01S 02/13/68	36	5100	8.3	694	17 0.85	8 6 0.49	121 5.26	3	0 5 0.17	164 2.69	25 122 2•54	19 44 1.24	6.7 0.11	2.1	0.65		422 409	ı
09/05/68	36	5100	8.0	651	13 16 0.80	7 7 0.57	79 126 5•48	3	0 0 0 0	168 2.75	38 124 2•58	18 43 1•21	6.3 0.10	1.7	0.70		385 411	
09N/03W-28A015	36	5100	8.0	792	57 2.84	10 0.82	79 95 4•13	2 0.05	0	173 2.83	39 153 3•18	18 62 1.75	1 11.0 0.18	0.8	0.25		494 477	1
09N/03h-28A02S	36	5050		1075	36 92	10 16	53 133	1 2	0	36 244	40 228	22 96	4.1	0.7	0.31		724	2
10N/02W-30Q015	36	5100	8.0	394	4.59 39	1.31	5.78 49 41	0.05	0.00	4.00 35	4.75 41 33	2.71 23 22	0.07	0.6	0.09		693	1
ñ2/13/68 	36	5100	8.1	387	1.65 41 35	0.57	1.78 44 42	0.05	0.00	2.75 67	0.69 17 28	0.62 15	0.02	0.6	0.08		223	ı
n9/05/68			7.9		1.75	0.49	1.83	0.05	0.00	2.72	0.58 15	0.65	0.01				220	ı
10N/02h-36N075 05/21/68	36	5050	7.5	632	59 2•94 45	13 1•07 16	2•39 37	0.08 1		215 3.52 53	86 1.79 27	1.16 17	8.6 0.14 2	0.4	0.10		377 372	2
10N/03h-27D015 02/13/68	36	5100	8.2	776	60 2.99 38	0.90 12	89 3.87 49	0.05 1	0.00	181 2.97 37	134 2•79 35	76 2•14 27	3.1 0.05 1	0.7	0.38		494 466	1
09/05/68	76	5100	8.1	774	59 2.94 37	0.90 11	94 4.09 51	0.05 1	0.00	176 2.88 37	132 2.75 35	77 2.17 28	7.9 0.05	0.6	0.39		479 466	1
10N/03W-27D035 05/21/68	36	5050	8.3	1110	75 3.74 36	15 1.23 12	123 5.35 51	3 0.08	0.00	153 2.51 24	201 4.18 40	130 3.67 35	6.3 0.10	0.6	0.60	**	685 630	2
10N/03W-35C03S 02/13/68	36	5100	8.2	400	25 1•25 31	6 0.49 12	50 2.17 55	2 0.05	0.00	132 2.16 56	29 0.60 16	39 1.10 28	0.00	0.8	0.15		263 217	
10N/03W-35E01S 09/05/68	36	5050	8.0	389	26 1•30 32	6 0.49 12	51 2•22 55	0.05	0.00	132 2.16 55	29 0.60 15	40 1.13 29	0.0	0.7	0.14	••	259 220	Ì
10N/03W-36H02S 05/28/68	36	5050	7.6	566	51 -2•54 45	12 0.99 18	46 2 36	3 0.08 1		167 2.74 49	60 1 • 25 22	55 1•55 28	5.5 0.09 2	0.5	0.07	••	324 316	1
10N/03W-36J02S 02/13/68	36	5100	8.0	801	85 4 • 24 51	17 1•40	59 2•57 31	3 0 • 08 1	0.00	181 2.97 36	145 3•02 37	77 2•17 26	5.0 0.08	0.6	0.23		500 481	2
09/05/68	36	5100	8.0	565	59 2•94	10 0.82	48 2•09	2 0.05	0.00	159 2.61	83 1.73	50 1.41	4.3	0.5	0.13		328 336	1
HARPER HYDRO 5UE			A	W28D0	50 W28D2	14	35	1	0	45	30	24	1					ı
11N/03W-28R025 05/22/68	36	5050	8.3	501	18 0.90 19	3 0.25 5	81 3.52 75	0.02	0.00	180 2.95 63	41 0.85	31	0.1	1.5	0.30		298 266	Ŋ
11N/04W-28N025 05/29/68	36	5050	69 8•3	1420	40 1.99	7	232	5 0.13	0.00	164 2.69	240 5.00	19 187 5.27	6.2 0.10	0.9	1.40	••	901 801	1
11N/05h-24G015 05/29/68	36	5050	70 8.2	2160	16 35 1.75	5 0.41	79 390 16.96	1 5 0.13	0.00	21 208 3.41	207 4.31	404 11.39	1 16.0 0.26	1.2	1.30	••	1250 1167	1
325/43E-28001M 12/07/67	36	5100	7.4	1164	9 40 1•99	2 7 0.57	200 8.70	5 0.13	0	18 124 2.03	304 6•33	97 2.73	0.0	2.5	2.43		710 719	1
LOWER MOJAVE HY	DRO S	UBUNIT		W28E0	17	5	76	1	0	18	57	25	0					
09N/01E-01L015 02/15/68	36	5100	8.1	494	45 2.24	7 0.57	54 2.35	0.05	0.00	200	42	30 0.85	4.6	0.6	0.14		285 284	1
08/19/68	36	5100	7.2	486		7 0.57	52 2.26	2 0.05	0.00				1 4.3 0.07	0.5	0.12		318 283	1
					45	11	43	1	0	64	16	18	1					

MINERAL ANALYSES OF GROUND WATER

							3001	HENN (ALIFORN	IA								
TE WELL NO.	COUN	TY LAB SAMPLE		EC	MINER	AL CONS	TITUENT	S IN M	ILLIGRA ILLIEGU FRCENT	IVALENT REACTAN	S PER L	ES		HILLIGR			TDS 180C (*105C)	
							YDRO UN	K T	C03	HC03	504	CL	И03	F	8	2015	SUM	
R MOJAVE HY	DRO S	TINUBUR	•	W28E0		ODATE II	TORO ON			#20	00							
01E-01L045 /15/68	36	5100	8.1	475	2·19 41	8 0.66 12	55 2•39 45	2 0 • 05 1	0.00	200 3.28 64	42 0•87 17	31 0.87 17	4.8 0.08	0.6	0.15		281 286	143
/19/68	36	5100	7.1	489	46 2•29 44	7 0.57 11	52 2•26 44	2 0 • 05 1	0.00	193 3.16 63	41 0.85 17	32 0.90 18	4.8 0.08 1	0.6	0.15		342 281	144
01E-13E01S 14/68	36	5100	8.3	872	75 3.74 39	17 1.40 14	102 4.44 46	0.08 1	0.00	293 4.80 49	127 2.64 27	71 2.00 21	16.0 0.26 3	0.6	0.63		55 4 557	257 17
19/68	36	5100	7.5	662	52 2.59 37	0.90 13	78 3.39 49	0.08 1	0.00	205 3.36 49	96 2.00 29	50 1.41 21	4.6 0.07 1	0.7	0.43		446 397	175 7
01E-13E025 14/68	36	5100	7.9	1009	91 4.54 42	17 1.40 13	107 4.65 43	0.10 1	0.00	325 5.33 49	138 2.87 27	81 2.28 21	20.0	0.3	0.60		645 619	297 31
19/68	36	5100	7.2	987	90 4.49 44	15 1.23 12	103 4.48 43	0.10 1	0.00	303 4.97 48	135 2.81 27	78 2.20 21	22.0 0.35 3	0.6	0.60		653 598	286 38
01E-15N015 10/68	36	5050	7.3	536	46 2.29 43	8 0.66 12	53 2.30 43	2 0•05 1		207 3.39 63	41 0.85 16	36 1.01 19	5.0 0.08 1	0.1	0.05		322 293	148
01E-15N025	36	5100	8.0	1173	100 4.99 40	19 1.56 13	130 5.65 46	0.10	0.00	381 6.24 49	163 3.39 27	104 2.93 23	5.2 0.08 1	0.5	0.71		690 714	328 15
10/68	36	5050	7.4	1175	98 4.89 39	17 1.40 11	139 6•05 49	3 0.08 1		359 5.88 46	187 3.89 30	104 2.93 23	5.2 0.08 1	0.6	0.67		719 731	315 20
19/68	36	5100	6.7	1152	101 5.04 41	17 1.40 11	133 5.78 47	0.08 1	0.00	354 5.80 47	161 3.35 27	3.16 26	1.0 0.02 0	0.5	0.67		750 704	322 32
01E-18H025 23/68	36	5050	73 8.4	879	76 3.79 44	0.90 11	86 3.74 44	3 0.08 1	0.13 2	239 3.92 47	95 1•98 24	80 2.26 27	2.3 0.04	0.4	0.30		535 476	235 32
02E-08F01S 19/68	36	5100	7.4	355	29 1.45 39	0.49 13	39 1.70 46	0 • 0 2 1	0.00	151 2.47 70	28 0•58 16	16 0.45 13	2.5 0.04 1	0.7	0.11	••	251 197	97 0
02E-08N02S 14/68	36	5100	8.2	352	26 1.30 36	7 0.57 16	39 1•70 47	0.02	0.00	154 2.52 71	26 0•54 15	15 0.42 12	2.6 0.04 1	0.7	0.09		212 194	94
10/68	36	5050	7.9	354	27 1•35 39	5 0.41 12	39 1.70 49	0 • 02 1		151 2.47 74	27 0.56 17	10 0•28 8	2.8 0.04 1	0.7	0.00		235 187	88
02E-18E01S 14/68	36	5100	8.2	868	84 4.19 44	16 1.31 14	90 3.91 41	0.08 1	0.00	312 5.11 54	120 2.50 27	55 1.55 16	14.0 0.22 2	0.5	0.24		518 537	276 20
10/68	36	5050	68 7.5	647	57 2.84 44	0.90 14	61 2.65 41	0.08 1		209 3.42 54	79 1.64 26	41 1.16 18	10.5 0.17 3	0.6	0.17		388 366	188
19/68	36	5100	6.9	630	62 3•09 47	9 0.74 11	62 2.70 41	3 0.08 1	0.00	205 3•36 53	80 1.66 26	42 1•18 18	11.0 0.18 3	0.6	0.19		418 371	192 24
02E-30J015	36	5050	73 8.2	618	40 1.99 36	7 0.57 10	68 2.96 53	3 0.08 1	0.00	143 2.34 42	70 1.46 26	60 1.69 30	3.1 0.05 1	0.6	1.60		396 324	129
02E-31R01S	36	5100	8.2	623	27 1.35 21	10 0.82 13	95 4•13 65	2 0.05 1	0.00	159 2.61 42	98 2•04 33	53 1•49 24	1.8 0.03 0	0.7	0.92		365 367	109
10/68	36	5050	8.0	463	32 1.60 36	5 0.41 9	56 2.43 54	0.02 1		170 2.79 62	41 0.85 19	30 0.85 19	1.5 0.02 0	0.7	0.16		288 251	100
19/68	36	5100	7.7	613	34 1.70 28	0.49 8	87 3.78 63	2 0.05 1	0.00	156 2.56 42	94 1.96 32	55 1.55 25	1.6	0.8	0.90		416 358	110
02E-32R015 23/68	36	5050	8.5	486	38 1.90 40	5 0.41 9	54 2.35 50	0.02	0.10	190 3.11 66	34 0.71 15	26 0.73 16	2.0 0.03 1	0.5	0.20		277 258	115
1)3E-36N015 1:23/68	36	5050	8.3	409	28 1.40 36	0.16 4	52 2•26 59	0.02	0.00	156 2.56 67	26 0.54 14	24 0.68 18	2.6 0.04 1	0 • 4	0.20		233 213	78 0

MINERAL ANALYSES OF GROUND WATER

STATE WI DATE	ELL NO. TIME	COUNT	TY LAB SAMPLE	TEMP R PH	EC	MINER	AL CONS	STITUENT	S IN M		IVALENT	LITER IS PER L NCE VALU		N03	MILLIGRA F	AMS PER	LITER	TDS 180C (*105C) SUM
								YDRO UN		COS	W28		CC	1103	,			
LOWER MI	OJAVE HY	YDRO S	SUBUNIT		W28E0												-0.0	-0.11
09N/01W- 06/11/		36	5050	 7.9	664	58 2•89 43	0.90 14	64 2•78 42	3 0.08 1		220 3.60 54	96 2•00 30	36 1•01 15	2.5 0.04 1	0.6	0.12		411 380
09N/01W- 06/10/0		36	5050	 7.6	2794	171 8.53 29	31 2.55 9	420 18.27 62	5 0.13 0		289 4.74 16	690 14.36 48	347 9.78 33	55.0 0.89 3	1.8	3.70	••	1938 1867
09N/01W- 05/23/0		36	5050	8.1	681	60 2.99 44	10 0.82 12	65 2.83 42	0.08 1	0.00	218 3.57 54	96 2.00 30	37 1.04 16	2.4 0.04 1	0.5	0.10	••)	.387 382
09N/01W- 02/15/0		36	5100	8.0	717	68 3.39 46	11 0.90 12	70 3.04 41	3 0.08 1	0.00	244 4.00 53	111 2.31 30	44 1•24 16	1.6 0.02 0	0.6	0.14		447 430
ñ6/1Î/	68	36	5050	7.6	688	62 3.09 44	12 0.99 14	66 2.87 41	3 0.08 1		231 3.79 54	101 2.10 30	39 1.10 16	1.7 0.03 0	0.6	0.13	••	428 399
08/19/0	68	36	5100	7.1	619	60 2.99 44	11 0.90 13	64 2.78 41	3 0.08 1	0.00	232 3.80 56	91 1.89 28	39 1.10 16	1.5 0.02 0	0.5	0.17		424 385
09N/01W- 02/15/		36	5100	8.1	1918	110 5.49 25	20 1.64 8	333 14.48 67	0.10	0.00	591 9.69 45	363 7.56 35	137 3.86 18	16.0 0.26 1	1.4	0.61		1261 1276
ô8/19/	68	36	5100	7.5	1813	106 5.29 25	18 1.48 7	321 13.96 67	0 • 1 0 0	0.00	554 9.08 43	367 7.64 36	140 3.95 19	17.0 0.27	2.0	0.58	••	1309 1248
09N/01W- 06/10/0		36	5050	67 8•1	830	56 2•79 33	12 0.99 12	105 4•57 54	3 0•08 1		223 3.65 44	130 2•71 33	67 1•89 23	3.3 0.05	0.7	0.41	•-	460 488
09N/02W- 02/13/0		36	5100	8.0	769	30 1•50 20	8 0.66 9	123 5•35 71	3 0.08 1	0.00	198 3.24 43	130 2•71 36	53 1•49 20	3.9 0.06	4.8	0.48	••	496 454
10N/01W-		36	5050 	8.2	985	93 4.64 47	19 1.56 16	84 3.65 37	0.08 1	0.00	250 4.10 41	212 4.41 44	47 1.32 13	4.9 0.08 1	0.6	0.10		659 587
10N/01W- 02/15/0		36	5100	 8•0	960	96 4.79 45	16 1.31 12	100 4.35 41	0.10	0.00	242 3.97 38	235 4.89 47	54 1•52 15	2.7 0.04 0	0.6	0.15	••	638 628
Õ8/19/	68	36	5100 	7. 1	876	90 4.49 47	14 1.15 12	86 3•74 39	3 0.08 1	0.00	247 4.05 43	187 3.89 41	52 1•47 15	3.3 0.05 1	0.6	0.16	••	627 558
10N/01W- 06/11/0	_	36	5050	 7.5	1649	175 8.73 47	32 2.63 14	158 6.87 37	0.13 1		366 6.00 33	441 9.18 50	104 2.93 16	5.0 0.08 0	0.6	0.26		1181
10N/04W- 05/24/6		36	5050	 7.9	1920	91 4•54 26	5 0.41 2	276 12.00 70	0.15 1	0.00	85 1.39 8	153 3.18 19	438 12.35 72	12.0 0.19 1	0.6	0.80		1120 1025
TROY HY	ORO SUBI		BAREA		W28F0	W28F2												
08N/04E- 05/29/0		36	5050	8.6	1910	3 0•15 1	0.33 2	395 17•18 97	0.02	11 0.37 2	329 5•39 30	301 6•27 35	203 5•72 32	0.1	4.8	2.30	••	1180 1087
09N/02E- 12/28/0		36	5100	7.7	2218	271 13.52 53	58 4.77 19	160 6.96 27	10 0.25	0.00	95 1.56 6	756 15•74 63	265 7.47 30	3.1 0.05 0	0.7	3.50		1736 1574
09N/04E- 05/29/0		36	5050	8.5	2830	48 2.39 9	7 0.57 2	545 23.71 89	0.05 0	6 0.20 1	380 6.23 23	424 8.83 32	423 11.93 44	5.7 0.09 0	2.4	2.70	••	1660 1653
09N/04E- 05/29/	_	36	5050 	8.3	2190	72 3.59 17	10 0.82 4	396 17.22 79	0.05 0	0.00	430 7.05 32	504 10.49 47	156 4.40 20	9.5 0.15	2.7	4.60		1420 1369
AFTON H	YDRO SUE		SUBAREA		W28G0	W28G1												
10N/03E- 05/24/0		36	5050	8.2	446	22 1.10 27	3 0.25 6	61 2.65 66	0.02 1	0.00	122 2.00 50	48 1.00 25	35 0.99 25	0.0	0.7	0.70		260 232
11N/06E-		36	5050	8.3	522	44 2.19 42	9 0.74 14	50 2.17 42	2 0.05 1	0.00	201 3.29 66	37 0.77 15	29 0.82 16	4.5 0.07 1	0.6	0.20		288 276

TABLE E-1

MINERAL ANALYSES OF GROUND WATER

TATE WELL NO. CO	SAMPLI		EC	MINERA	AL CONS	TITUENTS	S IN	MILLIEG	AMS PER L UIVALENTS REACTANC HC03	PER LI		N03	MILLIGRAMS F	PER	LITER SIO2	TDS 180C (*105C) SUM	TH
				м	JAVE H	YDRO UN	T		W280	0							
KER HYDRO SUBUN SILVER LAK		SUBAREA	W28H0	W28H1													
N/.09E-30E02S 15/28/68	36 5050	92 8•2	1550	30 1-50 10	28 2•30 16	241 10•48 72	0 • 2	_	4.59	167 3.48 24	221 6•23 43	14.0 0.22 1	_	1.10		898 852	190
SODA LAKE	HYDRO SUI	BAREA		M58H5													
N/08E-36B02S 15/28/68	36 5050	8.6	1570	31 1.55 11	30 2.47 17	237 10•31 71	0.2	_	4.31	169 3•52 24	223 6.29 43	14.0 0.22		1.10		912 856	201

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE	TEMP R PH	EC			STITUENT	S IN M	ERCENT	IVALENT REACTAN	S PER L	ES		MILLIGRA			180C (*105C)
					CA	MG UCERNE	HYDRO U	K NIT	C03	HC03	504	CL	М03	F	В	2105	SUM
																	- 1
03N/01E-03F01S 07/10/68	36	5100	8.3	413	2.19 46	20 1.64 35	19 0.83 17	0.05 1	0.33 7	220 3.60 78	21 0.44 9	7 0.20 4	3.2 0.05	0.8	0.01	••	217 236
04N/01E-01R02S 01/12/68	36	5100	8.1	1143	29 1•45 14	3 0•25 2	214 9•31 84	5 0•13 1	0.00	127 2.08 19	254 5•29 49	119 3.35 31	2.2 0.03 0	3.3	0.23		675 693
07/09/68	36	5100	8.0	1089	21 1.05 10	4 0 • 33 3	200 8.70 85	5 0 • 13 1	0.00	100 1.64 16	244 5•08 50	119 3.35 33	0.2 0.00 0	4.9	0.80		629 649
04N/01E-06H01S 01/12/68	36	5100	8.4	1062	106 5.29 43	46 3.78 30	75 3•26 26	0.05 0	0.00	351 5.75 47	236 4.91 40	53 1.49 12	6.5 0.10	0.4	0.37	••	717 698
07/03/68	36	5100	7.8	483	50 2.49 45	18 1.48 27	35 1•52 27	2 0•05 1	0.00	181 2.97 54	87 1•81 33	24 0.68 12	1.2 0.02 0	0.5	0.10		305 307
04N/01E-06Q01S 01/09/68	36	5100	7.8	1176	115 5.74 47	48 3.95 32	56 2.43 20	2 0.05 0	0.00	159 2.61 21	235 4.89 40	161 4.54 37	11.0 0.18 1	0.6	0.07		820 707
07/03/68	36	5100	7.7	1093	110 5.49 46	47 3.86 33	55 2.39 20	0.05 0	0.00	151 2.47 21	226 4.70 41	147 4.14 36	10.0 0.16 1	0.6	0.05		839 672
04N/01E-09A015 01/12/68	36	5100	8.1	577	57 2•84 48	20 1.64 27	33 1•43 24	0 • 0 5 1	0.00	129 2.11 36	151 3•14 54	21 0.59 10	0.4	0.5	0.04		357 349
ò7/09/68	36	5100	7.8	519	57 2.84 48	20 1.64 27	33 1.43 24	0.05 1	0.00	124 2.03 34	155 3.23 54	23 0.65 11	1.4 0.02 0	0.5	0.00	••	438 353
04N/01E-12N01S 01/12/68	36	5100 	8.2	765	45 2•24 29	35 2.88 37	59 2•57 33	0 • 1 0 3	0.00	124 2.03 27	139 2.89 38	94 2.65 35	4.2 0.07	0.6	0.04		468 442
07/09/68	36	5100 	8.1	784	2.44 29	37 3.04 37	62 2.70 32	0.10 1	0.00	117 1.92 23	150 3.12 38	112 3.16 38	3.7 0.06	0.7	0.05		515 476
04N/01E-32A01S 01/29/68	36	5100	8•2	645	32 1.60 23	25 2•05 29	69 3•00 43	14 0 • 36 5	14 0.47 6	276 4.52 63	70 1•46 20	25 0.70 10	0.00	1.8	0.08		390 387
07/10/68	36	5100	7.9	603	40 1.99 30	20 1.64 25	60 2•61 40	12 0•31 5	0.00	286 4•69 72	63 1•31 20	18 0•51 8	0.00	1.5	0.12	••	363 356
04N/02E-07N015 01/12/68	36	5100	8.1	1174	81 4.04 33	43 3.54 29	101 4.39 36	0.15 1	0.00	103 1.69 14	294 6•12 51	147 4.14 35	1.7 0.03 0	0.8	0.21		753 726
ñ7/09/68	36	5100	7.5	1126	80 3.99 33	43 3.54 29	100 4.35 36	0.15 1	0.00	95 1.56 13	298 6•20 53	136 3.83 33	1.0 0.02 0	0.9	0.15		894 712
04N/02E-17R01S 01/12/68	36	5100	8.3	639	43 2.14 34	21 1.73 27	56 2.43 38	0.08 1	0.00	122 2.00 32	104 2.16 35	50 1.41 22	42.0 0.68 11	0.7	0.06	••	379 380
07/09/68	36	5100	8.0	550	34 1.70 30	18 1•48 26	54 2•35 42	0.08 1	0.00	127 2.08 37	93 1•94 35	39 1•10 20	28.0 0.45 8	0.8	0.06		318 333
04N/02E-25J01S 07/09/68	36	5100 	7.7	938	92 4.59 44	29 2•38 23	76 3•30 32	7 0 • 18 2	0.00	195 3.20 31	285 5•93 57	1.24 12	0.00	0.8	0.13	••	740 630
04N/03E-23G01S 01/29/68	36	5100	8.0	1225	84 4.19 30	5.10 37	100 4.35 31	0.15 1	0.00	144 2.36 17	378 7.87 57	123 3.47 25	3.9 0.06 0	0.6	0.00	••	889 829
05N/01E-170025 07/09/68	36	5100	7.8	1409	56 2.79 18	18 1.48 9	257 11.18 72	3 0.08 0	0.00	156 2.56 17	233 4.85 32	258 7.27 49	18.0 0.29 2	2.5	0.94		968 924
05N/01E-19P01S 07/09/68	36		7.6	2657	280 13.97 47	93 7.65 26	182 7.92 27	0.10	0.00	105 1.72 6	270 5.62 19	795 22.42 75	1.9 0.03 0	0.5	0.03		3109 1 1679
05N/01E-23C015 01/12/68	36	5100	7.9	7231	227 11.33 16	19 1.56 2	1332 57.94 81	13 0.33 0	0.00	98 1.61 2	535 11.14 16	2075 58.51 82	0.5 0.01 0	1.5	0.41		4395 4252
ô7/03/68	36	5100	7.4	8203	266 13.27 16	23 1.89 2	1530 66.55 81	0.38 0	0.00	105 1.72 2	600 12.49 15	2370 66.83 82	1.1 0.02 0	3,9	5,63	••	5015 4867

MINERAL ANALYSES OF GROUND WATER

							SOUT	HERN C	ALIFORN	IA								
ATE WELL NO. DATE TIME		Y LAB SAMPLE		EC			STITUENT	S IN M	ERCENT	IVALENT REACTAR	S PER L	ES		MILLIGRA			TOS 180C (*105C)	TH
					CA	MG	NA HYDRO U	K	C03	HC03	504	CL	И03	F	8	2015	SUM	
						OCENIVE	nioko o			^0.	.00							
(N/01E-29N01S	36	5100	8.0	1571	151 7•53 50	57 4.69 31	66 2.87 19	0.08 0	0.00	110 1.80 12	151 3·14 20	375 10.57 68	3.6 0.06 0	0.3	0.05		1252 861	612 521
7/03/68	36	5100	7.6	1464	131 6.54 50	47 3.86 30	60 2.61 20	0.05 0	0.00	115 1.88 14	91 1.89 15	325 9.16 70	4.3 0.07	0.4	0.05		1114 718	520 426
7/01E-31F01S 7/03/68	36	5100	7.8	687	58 2.89 43	20 1.64 24	50 2.17 32	0.05 1	0.00	151 2.47 37	96 2.00 30	75 2.11 32	1.4	0.4	0.03		428 378	227 103
7/03/68	36	5100	7.8	769	76 3.79 48	28 2.30 29	41 1.78 22	0.05 1	0.00	168 2.75 36	136 2.83 37	68 1.92 25	10.4 0.17 2	0.4	0.08		481 445	305 167
01/01E-32P01S 1/12/68	36	5100	7.9	1862	127 6.34 32	5.26 27	186 8.09 41	3 0.08 0	0.00	281 4.60 23	387 8.06 41	251 7.08 36	0.7	0.4	0.40		1227 1158	580 350
//03/68	36	5100	7.8	1842	143 7.13 35	64 5.26 26	176 7.65 38	0.08 0	0.00	330 5.41 27	376 7.83 40	215 6.06 31	28.0 0.45 2	0.4	0.53		1300 1169	620 350
1/01E-32R01S 1/03/68	36	5100	8.1	620	54 2.69 42	21 1.73 27	2 46 31	0.05 1	0.00	129 2.11 34	160 3.33 53	29 0.82 13	1.5 0.02 0	0.5	0.03		434 378	221 115
0//01W-01A01S //03/68	36	5100	8.2	883	86 4•29 44	33 2.71 28	59 2.57 27	0.08 1	0.00	142 2.33 24	108 2•25 23	185 5•22 53	0.0	0.6	0.08		589 545	350 234
1)/01w-01E01S /09/68	36	5100	8.3	571	34 1.70 27	41 3•37 54	25 1.09 17	0.05 1	0.00	239 3.92 66	51 1.06 18	30 0.85 14	9.3 0.15 2	0.5	0.01		333 311	254 58
/03/68	36	5100	 7.8	557	33 1.65 27	39 3.21 53	25 1.09 18	0.05	0.00	222 3.64 63	47 0.98 17	36 1.01 18	6.3 0.10 2	0.6	0.01		348 299	243 61
/01W-01J01S /09/68	36	5100	8.2	545	45 2.24 39	22 1.81 32	37 1.61 28	0.05	0.00	190 3.11 56	85 1.77 32	0.59 11	3.9 0.06 1	0.5	0.01		327 310	203 47
/03/68	36	5100	7.8	511	46 2.29 39	22 1.81 31	38 1.65 28	2 0.05 1	0.00	190 3.11 55	85 1.77 31	25 0.70 12	2.8 0.04 1	0.6	0.05		302 315	205 50
/03/68	36	5100	7.8	769	58 2.89 35	30 2.47 30	64 2.78 34	3 0.08 1	0.00	207 3.39 42	159 3.31 41	46 1.30 16	7.3 0.12	0.6	0.09		487 470	268 98
/01w-01P025 /09/68	36	5100	8.4	1729	128 6.39 32	80 6.58 33	152 6.61 34	0.10 0	31 1.03 5	305 5.00 26	437 9.10 47	129 3.64 19	45.0 0.72 4	0.5	0.23		1242 1157	649 347
/02/68	36	5100	8.0	1564	169 8.43 46	87 7.15 39	63 2.74 15	0.10	0.00	227 3.72 20	422 8.79 48	179 5.05 27	50.0 0.81 4	0.5	0.00		1411 1087	780 594
//01W-02H04S //03/68	36	5100	7.6	3004	206 10.28 35	97 7.98 27	250 10.87 37	5 0.13 0	0.00	146 2.39 8	152 3.16 11	810 22.84 80	3.3 0.05 0	0.6	0.25		2484 1596	914 794
1/01w-09R01S 1/02/68	36	5100	7.8	812	91 4.54 54	17 1.40 17	55 2.39 28	0.05 1	0.00	195 3.20 39	112 2.33 28	76 2.14 26	32.0 0.52 6	0.8	0.16		535 482	297 137
4/01W-11001S 4/09/68	36	5100	8.2	688	65 3.24 41	35 2.88 36	40 1.74 22	0.02	0.00	351 5.75 75	56 1•16 15	14 0·39 5	21.0 0.34 4	0 • 4	0.01		419 405	306 18
W02/68	36	5100	8.3	696	66 3•29 43	33 2•71 35	39 1.70 22	0.02 0	0.00	334 5.47 72	61 1.27 17	17 0.48 6	20.0	0.5	0.00	••	433 402	301 27
1/01W-14Q04S 1/09/68	36	5100	8.1	424	46 2.29 48	22 1.81 38	15 0.65 14	2 0.05 1	0.00	229 3.75 77	29 0.60 12	15 0.42 9	3.8 0.06 1	0.1	0.01	••	251 246	205
c'02/68	36	5100	8.3	437	46 2.29 48	22 1.81 38	14 0.61 13	2 0.05 1	0.00	232 3.80 78	38 0.79 16	7 0.20 4	3.9 0.06 1	0.3	0.00		271 248	205 15
4'01W-18E01S C'09/68	36	5100	8.4	2017	161 8.03 32	86 7.07 28	230 10.00 40	7 0.18 1	58 1.93 8	256 4.19 16	807 16.80 66	91 2.57 10	4.5 0.07 0	2.3	2.90	••	1681 1576	756 449
5 0.05/68	36	5100	8.0	1274	54 2.69 20	24 1.97 15	193 8,39 63	0.15 1	0.00	200 3.28 25	407 8.47 65	43 1.21 9	0.02	1.3	3.13		889 832	234 70

MINERAL ANALYSES OF GROUND WATER

STATE WELL DATE	NO. TIME	COUNT	SAMPLE	-	EC			TITUENT	S IN M	ERCENT	IVALENT REACTAN	S PER L	ES		MILLIGRA			180C (*105C
						CA	MG	NA	К	C03	HC03	504	CL	М03	F	В	5102	SUM
						J	OHNSON	HYDRO U	NIT		X02	00						
02N/02E-19 04/15/68		36	5100	 7.8	284	28 1•40 46	14 1•15 38	10 0•43 14	0.02 1	0.00	161 2.64 90	7 0 • 14 5	5 0 • 1 4 5	0.5 0.01 0	0•2	0.00		171 145
04N/03E-31 02/13/68	_	36	5100	7.5	808	82 4.09 47	24 1.97 22	59 2.57 29	5 0.13 1	0.00	129 2.11 24	266 5•54 64	33 0.93 11	1.9 0.03 0	0.6	0.19		470 536
ñ7/09/68		36	5100	8.3	752	72 3.59 44	26 2.14 26	54 2.35 29	0.13 2	0.07	110 1.80 22	256 5.33 64	38 1.07 13	1.5 0.02 0	0.6	0.13	••	555 510
04N/03E-31 01/29/68		36	5100	8.0	865	60 2.99 32	22 1.81 19	100 4.35 47	5 0.13 1	0.00	137 2.24 24	283 5.89 64	37 1•04 11	2.6 0.04 0	1.8	0.00		600 579
ñ7/09/68		36	5100	8.4	772	87 4.34 49	0.33	95 4.13 46	5 0•13 1	10 0.33 4	107 1.75 20	281 5.85 65	35 0•99 11	2.2 0.03 0	1.8	0.26		586 574
04N/03E-31 01/29/68		36	5100	8.1	843	67 3.34 38	23 1.89 21	80 3.48 39	5 0.13 1	0.00.	129 2.11 24	265 5.52 64	34 0.96 11	3.2 0.05 1	0.8	0.08		566 542
ô7/09/68		36	5100	8.4	755	65 3.24 39	21 1.73 21	73 3.17 38	0.13 1	0.17 2	1.80 21	263 5.47 65	33 0.93 11	2.8 0.04 0	0.9	0.22		563 523
04N/04E-19 01/29/68		36	5100	7.9	3570	240 11.98 29	164 13.49 32	372 16.18 39	9 0•23 0	0.00	151 2.47 6	1067 22•21 55	555 15•65 38	16.0 0.26 1	1.0	0.09	••	2718 2499
ñ7/09/68		36	5100	7.9	2443	170 8.48 29	116 9.54 32	259 11.27 38	7 0.18 1	0.00	154 2•52 9	714 14•86 51	420 11.84 40	10.5 0.17 1	1.3	0.40	••	2170 1774
04N/04E-19 01/29/68		36	5100 	7.9	2157	126 6•29 29	108 8.88 41	150 6.52 30	6 0•15 1	0.00	88 1.44 7	257 5•35 25	515 14.52 68	1.8 0.03 0	0.9	0.18		1642 1209
ñ7/09/68		36	5100	8.0	1955	133 6.64 31	106 8.72 40	140 6.09 28	0.15 1	0.00	112 1.83 9	237 4.93 23	500 14.10 ~		0.9	0.17	**	1607 1190
e					W .	w	HITEWAT	ER HYDR	UNIT		X19	00						
SAN GORGON SAN				SUBARE	X19C0	X19C2												
025/01E-17 10/10/67	LOIS	33	4103	60 8•3	272	33 1.65 57	10 0.82 28	8 0•35 12	0.08 3		141 2.31 78	23 0.48 16	0.17 6	0.0 0.00 0	0.4	0.00	••	127 153
025/01E-33 10/10/67	J015	33	4103	62 8.4	281	32 1.60 54	0.99 33	7 0.30 10	3 0.08 3	0.03 1	120 1.97 74	19 0.39 15	0.22 8	1.5 0.02 1	0.3	0.00		155 143≠
04/24/68	830	33	5050	60 7•9	291	34 1•70 56	12 0•99 32	7 0 • 30 10	2 0•05 2		152 2•49 79	20 0 • 42 13	0 • 1 7 5	3.5 0.06 2	0 • 4	0.00	••	161 160
025/01E-33 10/10/67		33	4103	62 8.4	285	32 1.60 53	12 0.99 33	0.35 12	3 0.08 2	0.17 5	138 2.26 74	20 0.42 14	7 0.20 6	1.5 0.02 1	0.3	0.00	••	130 157
04/24/68	840	33	5050	62 8•2	293	35 1•75 58	0.90 30	7 0•30 10	0 • 05 2		153 2•51 79	20 0.42 13	7 0•20 6	3.0 0.05 1	0 • 4	0.02		133 161#
035/01E-07 04/24/68		33	5050	70 8•0	376	39 1•95 49	12 0•99 25	24 1•04 26	0.02		203 3•33 82	10 0•21 5	15 0•42 10	4.8 0.08 2	0.3	0.00		185 206
	BAIS	33	4103	66 7.9	432	16 0.80 18	22 1.81 40	41 1+78 39	6 0 • 15 3		235 3.85 85	0 • 0 2 0	23 0•65 14	1.0 0.02 0	0.5	0.04	••	259 227
035/02E-22 10/05/67						10												
		33	5050	66 7•8	404	30 1.50 36	10 0.82 20	39 1.70 41	0.15 4		210 3.44 84	0.00	22 0.62 15	0.8 0.01 0	0.5	0.03		225
04/30/68 03S/02E=23	845	33	5050		404 276	30 1.50	0.82	1.70	0.15	0 . 0 0	3.44	0.00	0.62	0.01	0.5	0.03		
10/05/67 04/30/68 035/02E-23 10/05/67 COACHELLA	845 830 C01S	33 SUBU	5050 4103	7.8	276 X1900	30 1.50 36 8 0.40	0.82 20 14 1.15	1.70 41 28 1.22	0.15 4 3 0.08	0.00	3.44 84 129 2.11	0.00 0 11 0.23	0.62 15 16 0.45	0.01 0 4.0 0.06				212

MINERAL ANALYSES OF GROUND WATER

ATE WELL NO.		Y LAB SAMPLE		EC	MINERA	L CONS	TITUENTS NA		MILLIGRAM MILLIEOUI PERCENT F	VALENT	5 PER LI	_	NO3	MILLIGRA F	MS PER	LITER SIO2	ToS 180C (*105C) SUM	TH
					WH	ITEWAT	ER HYDRO	UNI	г	X19	00							
ACHELLA HYDR MISSION				X19D0	X19D2													
IS/05E-14M02S 14/26/68 1210	33	5050	88 7.7	1365	31 1.55 12	0.08	260 11.31 86	0.1		57 0.93 7	397 8.26 65	123 3.47 27	3.0 0.05 0	7.8	Ĩ•12	••	851 857	81 35
IS/05E-18M01S 0/05/67	33	4103	8.2	670	40 1.99 30	14 1.15 17	75 3•26 49	0.10	7 0 8 0.00 9 0	141 2.31 35	177 3•68 56	20 0.56 9	1.0 0.02 0	1.3	0.02		416 405	157 42
5/05E-18R015 0/05/67	33	4103	7.9	1218	56 2.79 22	33 2.71 22	152 6.61 53	0.3		98 1.61 13	431 8.97 74	56 1.58 13	0.5 0.01 0	0.9	0.07		884 791	276 195
IS/05E-20D01S 0/05/67	33	4103	8.0	1076	68 3.39 32	19 1.56 15	127 5•52 52	0.2	9 0 0 3 0 0 0 0 0 0 0 0	91 1.49 14	380 7.91 73	48 1•35 12	4.0 0.06 1	1.1	0.05		744 701	248 173
MIRACLE	HILL	HYDRO	SUBAREA		X1903					ب								
'5/05E-30L015 0/06/67	33	4103	7.9	1561	32 1.60 11	5 0.41 3	280 12.18 85	0.1		38 0.62 4	478 9.95 70	126 3.55 25	8.0 0.13 1	4.0	0.82		972 959	100 69
2/19/68 800	33	5050 	116 7.9	1584	35 1.75 12	0.33 2	285 12.40 84	0.2	-	40 0.65 4	498 10.37 70	133 3.75 25	4.0 0.06 0	5.8	0.82		985 996	104 71
%5/05E-30L02S 0/05/67	33	4103	7.9	1212	52 2•59 21	24 1.97 16	172 7.48 61	0.2	9 0 0 3 0.00 2 0	117 1.92 16	394 8•20 68	66 1.86 15	5.0 0.08 1	1.0	0.11		814 781	229 133
S/04E-10J015 0/05/67	33	4103	7.8	354	15 0.75 21	5 0.41 12	51 2.22 64	0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	152 2.49 72	15 0•31 9	22 0.62 18	3.0 0.05 1	0.6	0.02		178 191	58 0
SKY VAL	LEY HY	ORO SU	BAREA		X19D4													
S/08E-32003S 3/29/68	33	5050 	64 7.7	192	16 0.80 41	3 0.25 13	21 0.91 47	0.0	0 0	76 1.24 62	14 0.29 14	16 0.45 22	2.0 0.03 2	0.2	0.02		165 110	52 0
S/07E-15A01S 5/28/68	33	5050	8.7	1190	13 0.65 6	0.08 1	222 9•66 92	0 • 1		65 1•06 11	304 6•33 67	70 1•97 21	2.0 0.03 0	17.0	1.30		689 670≠	37 0
THOUSAN	D PALM	45 HYDR	O SUBAR	REA	X1906													
S/06E-05M01S 5/28/68	33	5050	8•2	1330	69 3•44 26	22 1.81 14	176 7•65 58	0.2		92 1•51 12	444 9•24 72	71 2•00 16	5.4 0.09 1	1.5	0.30		850 845	263 187
S/06E-17R01S 5/28/68 930		5050	77 8.3	427	45 2•24 55	3 0.25 6	34 1.48 36	0.1	5 0 3 0.00 3 0	141 2.31 58	65 1•35 34	0.31 8	2.3 0.04 1	0.8	0.00		244 236	125 9
INDIO H	YDRO S	SUBAREA			X1907													
S/03E-08M01S 4/26/68 1435		5050	76 8.2	344	36 1.80 49	9 0.74 20	24 1.04 29	0.0	2 5 1	169 2.77 76	13 0.27 7	18 0.51 14	5.0 0.08 2	0.5	0.00		246 191	127 0
S/04E-36M015 0/13/67	33	5100	72 8•0	390	48 2•39 59	10 0•82 20	17 0•74 18	0.0	3 0 8 0.00 2 0	194 3.18 76	27 0•56 13	13 0•37 9	3.0 0.05 1	0.7	0.00		213 218	161 2
4/22/68 855	33	5050	70 8•1	383	46 2•29 56	12 0•99 24	17 0•74 18	0 • 0	3 8 2	193 3.16 77	26 0•54 13	13 0•37 9	3.0 0.05 1	0.7	0.00		191 216	164
S/04E-01N02S 0/13/67	33	4103	70 8•1	318	36 1.80 55	8 0.66 20	17 0•74 23	0.0	3 0 8 0.00 2 0	158 2.59 80	13 0•27 8	0.34 10	3.0 0.05 1	0.6	0.00	••	122 171	123
4/22/68 845	33	5050	72 8•1	317	36 1.80 55	0.66 20	17 0•74 23	0.0	2 5 2	162 2.65 80	13 0.27 8	13 0•37 11	2.5 0.04 1	0.7	0.00		156 172	123
5/04E-11K019 0/13/67	33	4103	74 8•1	466	51 2.54 52	10 0.82 17	32 1•39 28	0.1	5 0 3 0.00 3 0	184 3.01 62	0.92 19	26 0•73 15	13.0 0.21 4	0.5	0.02		267 272	168
5/04E-110019 0/13/67	33	4103	76 8•2	458	50 2.49 51	9 0.74 15	33 1.43 29	0.2	8 0 0 0.00 4 0	198 3.24 67	0.87 18	0.62 13	7.0 0.11 2	0.3	0.02	••	254 269	162 0
4/22/68 1130	33	5050	78 8•1	431	2.19 50	9 0.74 17	31 1•35 31	0.0	3 8 2	176 2.88 64	45 0.94 21	21 0.59 13	6.5 0.10 2	0.3	0.02		224 247	147 3
\$/04E-23C01S 4/23/68 1130		5050	62 7•9	293	30 1.50 55	0.49 18	16 0.69 25	0.0	2 5 2	85 1.39 52	0.12 5	25 0.70 26	29.0 0.47 17	0.2	0.00		187 156	100 30

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUN.	TY LAB SAMPLE	TEMP R PH	EC			TITUENTS	IN A	ILLIGRA ILLIEQU ERCENT	IVALENT: REACTAN	S PER L CE VALU	ES		MILLIGRA			TDS 180C (*105C)
					CA	MG	NA Fo UMBOO	K	C03	HC03	504	CL	NO3	F	8	2105	SUM
COACHELLA HYDRO			1	X1900	X1907	UTICANI	ER HYDRO	ONII		X19	-						111
045/04E-23E015 10/12/67	33	4103	66 7.9	200	21 1.05 54	3 0.25 13	14 0.61 31	2 0.05 3	0.00	87 1.42 70	13 0.27 13	9 0.25 12	4.5 0.07 4	0.0	0.00	••	101 110
04/22/68 1145	33	5050	70 8•0	200	21 1.05 53	4 0.33 16	13 0.56 28	2 0 • 05 3		89 1.46 68	14 0+29 14	10 0.28 13	6.0 0.10 4	0.2	0.00	••	128 114#
045/04E-26A015 10/13/67	33	4103	68 8.1	424	49 2•44 57	0.66 15	26 1.13 26	3 0.08 2	0.00	142 2.33 53	70 1.46 33	20 0.56 13	1.0	0.3	0.01	••	246 248
ñ4/22/68 1045	33	5050	72 7•9	427	49 2•44 56	9 0•74 17	25 1.09 25	3 0.08 2		145 2.38 53	.72 1+50 34	20 0.56 13	0.0	0.3	0.00	••	247 250
045/05E-15R015 05/28/68	33	5050	 8.3	353	46 2•29 65	0.33 9	18 0•78 22	0.10 3	0.00	182 2.98 80	22 0.46 12	7 0•20 5	5.7 0.09 2	0.7	0.00	••	193 197≠
04S/05E+33B01S 04/23/68 1310	33	5050 	70 8.1	445	53 2.64 56	9 0.74 16	29 1.26 27	0.05 1	••	156 2.56 55	65 1.35 29	22 0.62 13	5.5 0.09 2	0.4	0.00		305 263
04S/05E-33802S 04/22/68 1420	33	5050	76 8•2	427	50 2.49 56	10 0.82 19	24 1.04 24	2 0.05 1	••	153 2.51 56	59 1.23 27	19 0.53 12	13.0 0.21 5	0.3	0.00		282 253
045/05E-33G01S 04/23/68 1300	33	5050 	8.1	478	58 2.89 59	10 0.82 17	26 1•13 23	0.05 1		168 2.75 56	65 1•35 27	22 0•62 13	12.0 0.19 4	0.4	0.00		315 278
05/28/68 1100	33	5050	70 8•2	516	70 3.49 72	0.08 2	27 1•17 24	3 0.08 2	0.00	170 2.79 58	66 1•37 29	18 0.51 11	7.7 0.12 3	0.3	0.10		296 277
055/05E-02F02S 04/23/68 915	.33	5050 	80 8•1	402	42 2•09 52	7 0.57 14	29 1•26 31	3 0.08 2		135 2.21 54	54 1•12 27	24 0.68 16	5.5 0.09 2	0.3	0.00	••	535 553
055/06E-21G04S 05/28/68	33	5050 	8•1	565	68 3•39 67	3 0•25 5	31 1•35 26	0 • 1 0 2	0.00	159 2•61 52	70 1•46 29	33 0.93 ~ 19	1.1 0.02 0	0.2	0.00	••	329 289
055/07E-16K015 n5/28/68	33	5050	8•2	308	32 1•60 53	6 0•49 16	19 0•83 27	4 0 • 10 3	0 0•00 0	150 2•46 84	15 0•31 11	6 0•17 6	0 • 0 0 • 0 0 0	0.8	0.10	••	173 157
05S/07E-22K01S 05/28/68 1330	33	5050 	74 8.1	1210	153 7.63 62	19 1.56 13	65 2.83 23	8 0.20 2	0.00	197 3.23 26	290 6.04 49	99 2.79 23	10.0 0.16 1	0,4	0.10		787 742
055/07E-33N015 05/28/68	33	5050 	8.1	956	120 5.99 66	10 0.82 9	48 2.09 23	0.15	0.00	127 2.08 23	213 4.43 _48	89 2.51 27	9•5 0•15 2	0.2	0.20		632 559
065/06E-01G015 05/28/68	33	5050	 8•2	287	0 • 60 22	0.08 3	44 1•91 72	3 0 • 08 3	0.00	76 1•24 46	24 0•50 19	28 0•79 29	9.7 0.16 6	0 • 4	0.00	••	165 160
065/08E-07P01S 05/28/68	33	5050	8.2	768	90 4•49 64	6 0•49 7	45 1•96 28	0 • 1 0 1	0.00	112 1.83 26	118 2•46 34	90 2•54 36	18.0 0.29	0 • 4	0 • 0 0	**	483 427
065/08E-09003S 05/28/68	33	5050 	8.3	265	10 0•50 20	0 • 08 3	41 1•78 73	3 0 • 08 3	0.00	90 1•47 58	28 0•58 23	8 0•22 9	15.0 0.24 10	0.8	0.10	••	159 152
065/08E-10A03S 05/28/68 1530	33	5050	78 8•2	504	21 1•05 23	0 • 0 8 2	75 3•26 73	3 0.08 2	0.00	90 1•47 36	71 1•48 36	40 1•13 28	0 • 0 0 • 0 0 0	5.9	0.30	••	285 °262≠
065/08E-34P01S 05/28/68 1600	33	5050	73 8•3	387	22 1•10 30	3 0•25 7	53 2•30 63	0 • 0 × 1	0.00	134 2•20 62	37 0•77 22	20 0.56 16	0 • 0 0 • 0 0	2.0	0.00	14	218 204
075/08E-28P01S 05/28/68	33	5050	8.3	732	29 1•45 22	6 0•49 8	100 4•35 67	6 0.15 2	0.00	139 2•28 35	116 2•41 37	59 1.66 26	5.7 0.09 1	0.8	0+10	**	409 391
075/09E-29R02S 05/29/68	33	5050	9.4	286	3 0•15 6	0.00	58 2.52 94	0.00	19 0.63 25	56 0•92 37	33 0•69 28	9 0•25 10	0 • 0 0 • 00 0	2.8	0.10		173 153#
085/08E-10801S 05/29/68	33	5050	8.1	1520	90 4.49 32	11 0.90 6	196 8.52 60	7 0.18 1	0.00	47 0.77 5	320 6.66 48	203 5.72 41	51.0 0.82 6	0.4	0.10		934 902

MINERAL ANALYSES OF GROUND WATER

TATE WELL NO.		Y LAB SAMPLE		EC	HINER	AL CON	STITUENT	SIN	AILLIGRA AILLIEQU SERCENT	IVALENT	S PER L	_ITER		MILLIGRAMS	PER		TDS 180C (*105C)	TH NCH
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	В	2105	SUM	
					A	NZA-80	REGO HY	ORO UNI	Ť	X22	00							
)RREGO HYDRO S TERWILL1			UBAREA	X22A0	X22A1													
15/03E-12D01S 15/01/68	33	5050	8.3	744	68 3.39 47	15 1.23 17	58 2.52 35	0.05 1	0.00	132 2.16 31	143 2.98 42	60 1.69 24	11.0 0.18 2		0.00		477 423	231 123
BORREGO	HYDRO	SUBAR	EA		X22A3													
is/06E-24C01S is/29/68	90	5050	7.7	1640	100 4.99 33	0.00	224 9.74 65	10 0.25 2	0.00	20 0.33 2	365 7.60 51	244 6.88 46	1.0 0.02 0	0.6	0.30		1010 955	250 233
15/06E-35N01S 15/29/68	90	5050	8.3	1060	69 3•44 34	7 0•57 6	135 5.87 58	8 0 • 20 2	0.00	92 1.51 15	312 6.49 65	67 1.89 19	1.0 0.02 0	0.4	0.20		688 645	201 126
CUMBA HYDRO S Jacumba			EA	X22G0	X22G2													
IS/08E-07J02S i5/29/68 1530	90	5050	84 7.9	752	32 1.60 23	9 0.74 11	101 4•39 65	0 • 0 <u>5</u> 1	0.00	114 1.87 28	108 2•25 34	89 2•51 38	1.5 0.02 0		0.40		462 402	117 23
PERIAL HYDRO	SUBUN	ΙŢ		X23A0	I	MPERIA	L HYDRO	UNIT		X23	00							
5/13E-13D025 12/08/68 1430	13	5050	104	33784	854 42.61 11	232 19.08 5	7200 313.20 81	504 12.89 3	••	1684 27.60 7		12423 350.33 91	0.0	1.8	0.00		23271 22470	3087 1706
PYOTE WELLS HY	ORO S	UBUNIT	-	X23B0														
\S/09E-25K01S \5/08/68	i3	5050	84	640	27 1.35	6 0.49	82 3.57	5 0•13	0.00	144 2.36	40 0+83	86 2.42	1.8	0.7	0.20		367 320	92

MINERAL ANALYSES OF GROUND WATER

STATE WELL DATE	NO.	COUN	TY LAB SAMPLE		EC				5 IN 1	MILLIGRA MILLIEQU PERCENT	IVALENT REACTAN	S PER L CE VALU	ES		MILLIGRA			TDS 180C (*105C
						CA	MG	NA	K		HC03	504	CL	N03	F	В	5102	SUM
LOWER SANTA					Y01A0 SUBAREA		ANTA AN	# KIAEK	нтоко	UNIT	Y01	00						
015/07W-08N 11/21/67		36	5100	7.9	347	49 2.44 66	8 0.66 18	13 0.56 15	0.05 1	0.00	193 3.16 82	11 0.23 6	9 0.25 7	12.0 0.19 5	0.4	0.03		213
035/09W-350 10/03/67 1		30	3102	 7.6	1120					0.00	212 3.47	240 5.00	101 2.85					
045/09W-066 11/06/67 1		30	3102	7.6	1211		••			0.00	200 3.28	280 5•83	106 2.99	13.0	-+	••	••	
03/11/68 1	015	30	5102	7.6	1180			••		0.00	204 3.34	277 5•77	111 3•13					
045/09W-27F 10/31/67		30	3102	7.4	960		••	••		0.00	212 3.47	193 4.02	67 1.89	41.0 0.66				
04/18/68 1	400	30	5102	7.4	942					0.00	210 3.44	192 4.00	68 1•92	34.0 0.55				
045/10W-018 03/22/68	-	30	5102	7.6	1180					0.00	151 2.47		104 2.93	2.0 0.03	••			
04S/10W-14D 03/14/68 1		30	5102	 7.8	1060					0.00	192 3.15	257 5•35	88 2.48	10.0 0.16				
045/10W-14H 11/06/67 1	-	30	3102	 7.6	1020					0.00	210 3.44	221 4.60	80 2.26	22.0 0.35	~-			==
ñ3/11/68	910	30	5102	60 7•7	1010					0.00	214 3.51	210 4.37	83 2.34	22.0 0.35				
045/10W=240 10/27/67	1025	30	3102	7.4	1060	105 5.24 50	22 1.81 17	78 3•39 32	5 0•13 1	0.00	187 3.06 29	248 5.16 48	82 2•31 22	10.0 0.16	0.5	0.10	22	709 665
03/11/68	900	30	5102	7.7	848	94 4.69 54	18 1.48 17	56 2•43 28	0.10	0.00	196 3.21 36	175 3.64 41	66 1•86 21	7.0 0.11	0.5	0.03	22	589 539
045/10W-24J 11/17/67		30	3102	 7.7	636					0.00	198	91	39 1.10					
n3/18/68 1	000	30	5102	 7.7	617					0.00	202 3.31	80 1.66	38 ¹	5.0 0.08				
045/10W-29M 06/03/68	015	30	5050 	8.2	1240	150 7.48 59	30 2.47 19	60 2.61 21	5 0.13 1	0.00	266 4.36 35	178 3.70 29	103 2.90 23	99.0 1.60 13	0.4	0.10		826 757
045/11W-24P 06/03/68	015	30	5050	8•2	807	100 4•99 59	18 1•48 18	43 1•87 22	3 0•08 1	0.00	266 4.36 53	136 2•83 34	36 1•01 12	0.7 0.01 0	0.5	0.00		509 468
055/07W-29E 03/14/68	015 930	30	5102	7.7	581	72 3•59 57	19 1.56 25	25 1.09 17	0.02 0	0.00	243 3.98 65	87 1•81 29	11 0.31 5	2.0 0.03 0	0 • 1	0.08	17	393 354
05S/08W-31K 10/06/67 1		30	3102	82 7.4	1550	113 5.64 35	52 4.28 26	144 6.26 38	0.10 1	0.00	301 4.93 30	329 6.85 42	154 4•34 27	10.0 0.16 1	••	0.09	52	1080 1007
03/19/68		30	5102	 7•8	1640					0.00	325 5•33		150 4•23	11.0 0.18				
055/08W-32L 10/06/67 1		30	3102	84 7•4	1820	134 6•69 34	58 4.77 24	188 8•18 41	0 • 1 0 0	0.00	303 4.97 25	464 9•66 49	171 4.82 24	13.0 0.21	0.5	0.15	52	1320 1234
ń3/26/68		30	5102	84 7•3	1820					0.00	311 5.10		180 5.08	14.0	••			
055/09W-14Q 10/06/67		30	3102	 7.4	1780					0.00	291 4.77	397 8.26	177 4.99	37.0 0.60				
ñ4/03/68 1	115	30	5102	7.6	1990	133 6,64 33	40 3.29 16	238 10.35 51	0.10	0.00	269 4.41 21	510 10.62 50	198 5.58 26	27.0 0.43 2	0.2	0.21	43	1400 1326
055/09W-15J 10/27/67		30	3102	 7.5	925					0.00	235 3.85	122 2.54	87 2.45	19.0 0.31	**			
	••	30	5102 	78 7.4	1020	99 4.94 47	26 2•14 21	75 3.26 31	2 0.05 0	0.00	229 3.75 37	143 2.98 29	108 3.04 30	25.0 0.40 4	0.3	0.05	29	623 620
055/09w-218 10/06/67 1		30	3102	74 7.6	1070	112 5.59 51	26 2.14 20	72 3•13 29	2 0.05 0	0.00	259 4.24 39	189 3.93 36	73 2.06 19	44.0 0.71 6		0.03	24	741 670
à3∕19∕68		30	5102	 7.9	862	82 4.09 45	23 1.89 21	69 3.00 33	0.02 0	0.00	242 3.97 44	154 3•21 35	53 1.49 16	25.0 0.40 4	0.2	0.04	23	556 550

MINERAL ANALYSES OF GROUND WATER

ATE WELL NO. DATE TIME	COUNT	Y LAB SAMPLE		EC	MINER	AL CONS	TITUENTS	IN	MILLIGRA MILLIEQU PERCENT CO3	IVALENT	S PER L		м03	MILLIGRA F	MS PER	LITER SIO2	TDS 180C (*105C) SUM	
WER SANTA ANA	. D U	/NDA 511	BUNTT	Y0140	S	ANTA AN	A RIVER	HYDRO	TINU	Y01	00							
EAST COA					Y01A1													
5/09W-25E01S 3/26/68	30	5102	80 7.6	1140	**	••			0.00	371 6.08	••	65 1.83	5.0 0.08	~-				
S/09W-25E045 0/06/67 930	30	3102	7.6	2260	129 6.44 26	84 6.91 28	255 11.09 45	0.09	0.00	449 7.36 29	501 10.43 42	211 5.95 24	77.0 1.24 5	0.7	0.29	34	1600 1515	668 299
3/19/68	30	5102	7.6	5510	••				0.00	470 7.70		211 5•95	79.0 1.27	••				
5/09W-32A01S 0/06/67 1335	30	3102	84	442					0.00	174 2.85		13 0•37	0.2					
3/19/68	30	5102	8.8	407					15 0.50	107 1.75		18 0•51						
\$/09W-34J01\$ 4/22/68 1430	30	5102	7.5	771	43 2•14 29	10 0.82 11	102 4.44 59	0 • 0 §		249 4.08 53	90 1-87 24	61 1.72 22	0.0	0.3	0.20	54	491 486	148
5/09W-34J02S 0/06/67 1100	30	3102	7.8	1230			••	• •	0.00	359 5.88		71 2.00	0.3					
3/19/68	30	5102	 7.9	1220					0.00	371 6.08		76 2•14						
\$/09W-34Q015 0/06/67 1115	30	3102	86 7.7	959	39 1•95 22	0.66 7	140 6•09 69	0.08		207 3.39 39	51 1.06 12	150 4.23 49	0.3 0.00 0	0.3	0.25	44	564 538	130
3/19/68	30	5102	86 7.7	942					0.00	214 3.51		154 4.34		••				
5/09W-36B01S 0/06/67 1035	30	3102	81 7•5	1640	113 5.64 32	49 4.03 23	174 7.57 44	0.10	0.00	335 5.49 32	326 6•79 40	160 4.51 26	13.0 0.21	0.3	0.13	48	1090 1053	484 209
3/18/68	30	5102	 7.8	2160	174 8.68 36	80 6.58 27	208 9.05 37	0.08	0.00	376 6.16 25	466 9•70 40	266 7•50 31	65.0 1.05	0.4	0.21	37	1520 1485	764 455
\$/10w-028025 0/25/67 1100	30	3102	 7.4	1050					- 0	363 5.95	101 2.10	76 2•14	44.0					
3/11/68 830	30	5102	7.4	1070					0.00	366 6.00	112 2.33	82 2.31	46.0					
S/10W-13R035 6/04/68 800	30	5050	70 8.1	618	62 3.09 49	16 1.31 21	41 1.78 29	0.09	0.00	217 3.56 59	69 1.44 24	32 0.90 15	10.0 0.16 3	0.3	0.10		353 340	221 43
5/10W-22E03S 6/04/68	30	5050	 7.9	638	73 3•64 56	14 1•15 18	37 1•61 25	0.05		247 4•05 64	65 1•35 21	31 0.87 14	3.6 0.06 1	0.5	0 • 0 0		348 348	240 37
S/10W-28H02S 6/04/6R 830	30	5050	67 8.0	888	108 5.39 59	20 1.64 18	48 2•09 23	0.05	0.00	246 4.03 45	159 3•31 37	56 1.58 18	1.9 0.03 0	0.5	0.10		577 517	352 150
SS/10W-29P04S 16/04/68	30	5050	8.0	1040	127 6.34 59	23 1.89 17	57 2.48 23	0.10		363 5,95 55	137 2.85 26	69 1.94 18	1.6 0.02 0	0 • 4	0.10		638 598	412 114
SS/10W-32Jn15 16/04/68	30	5050	8.0	428	38 1.90 44	9 0•74 17	38 1•65 38	0 • 0	0.00	190 3.11 74	35 0•73 17	12 0•34 8	0 • 1 0 • 0 0 0	0.3	0.00		234 228	132
65/10W-330015 16/04/68	30	5050	8.1	751	87 4.34 58	16 1.31 18	40 1.74 23	0.0	0.00	257 4.21 57	87 1.81 24	46 1.30 17	5.9 0.09	0.5	0.10		355 412	283 72
55/11w-07C01S 16/04/68	30	5050	8.3	424	41 2•04 48	6 0.49 12	38 1.65 39	0.05	0 0 0 0 0	187 3.06 74	35 0.73 18	12 0•34 8	0 • 1 0 • 00 0	0 • 4	0.10		228 227	127
55/11w-07L01S 16/04/68 1300	30	5050	70 8•1	437	39 1.95 44	8 0.66 15	40 1.74 40	0.0		194 3•18 75	35 0.73 17	12 0•34 8	0.0	0 • 4	0.10		229 232	130
35/11W-08C01S 16/04/68 1230	30	5050	76 8.4	395	19 0.95 25	0.16 4	62 2.70 70	0.0		163 2.67 69	34 0.71 18	12 0.34 9	0.0	0.4	0.00		214 216	56
55/11W-14A04S 16/04/68	30	5050	8.1	758	89 4.44 56	18 1.48 19	43 1.87 24	0.1	0 0.00	275 4.51 59	102 2.12 28	36 1.01 13	0.1	0.5	0.10		433 428	296 71
5S/11W-14A095 16/04/68	30	5050	8.2	777	90 4.49 56	18 1.48 18	44 1.91 24	0.1	0 0.00	280 4.59 58	105 2.19 28	39 1.10 14	0.5	0.5	0.10		432 439	299 69

TABLE E-1

MINERAL ANALYSES OF GROUND WATER

SANTA ANA R HYDRO SUBUNIT YOLAO SUBURIT YOLAO SUBUNIT YOLAO SUBUNIT YOLAO SUBUNIT YOLAO SUBURIT	STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE		EC	MINER	AL CONS	TITUENT	S IN M	ILLIEQU	MS PER IVALENT REACTAN HC03	S PER L		N03	MILLIGRA F	MS PER	LITER S102	TOS 180C (*105C) SUM
## STILL-20035 30 5050	OWER SANTA ANA	RHY	rnen su	HUNTT	Y0140												••••	
1876/14-28 1.0						YOLAL												
10.74 10.7	055/11W-20G01S 06/04/68	30			486	2.74	0.49	1.39	0.08	0.00	3.64	0.89		0.00	0.6	0.20	••	
16.751/14-20045 30 5050 1202 0 706 123 505 0 27 570 17 8 0 07 0 100 1460 0 10	55/11W-20J04S 06/04/68	30			577	3.29	0.74	1.61	0.08	0.00	3.44	1.41	0.96	0.03	0.5	0.10	••	-
\$\$711\cdots 30 500 \cdots 1	055/11W-20K09S 06/04/68	30			447	2.24	0.57	1.56	0.08	0.20	3.05	0.75	0.37	0.00	0.5	0.00	•-	
15.74 16.75 16.7	55/11w-200045 06/04/68	30			1820	10.38	2.05	4.00	_	0.00	2.98	1.46	12.27	0.00	0 • 4	0.10		
\$\$\frac{85}{11} \times 200025\$ 30 \$505 \times 8.4 \times 22 \times 22 \times 0.6 \times 22	55/11W-200135 06/04/68	30			818	4.59	10.36	48 2.09	0.08	0.00	3.31	0.94	3.38	0.00	0.4	0.10		453 534≠
\$\$\frac{85}\triangle \text{1} \text{2} \text{1} \text{3} & \text{3} & \text{5} & 5	5S/11w-20R02S 06/04/68	30			624	52 2,59	8	64 2.78	3	3	190 3.11	100	36 1.01	0.2	0.4	0.10		
\$5/ 1-2 0025		30			405	30 1.50	10.08	53 2•30	2	3	160 2.62	36 0.75	15 0•42	0.0	0.4	0.00		
\$5/11x-210055 30 5050 8.6 60 73 10 50 14 6 204 114 79 12.0 0.4 0.10 531 10 0.00 68 8.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	55/11w-21N02S 06/06/68	30			692	76 3.79	12	50 2.17	_	6	192 3.15	147	19 0.53	0.1	0.4	0.00		
55/11x-23w015 30 5050 8.4		30			860	93 4.64	19 1.56	50 2•17		6	204 3.34	114	79 2•23	12.0	0.4	0.10	••	531
\$5/11=238015 30 5050		30			874	108 5•39	20 1.64	47	0.10	5	236 3.87	194 4.04	32 0.90	2.2	0.4	0.10		529
55/11w-26E055 30 5050 8.6	707 110 230010	30	5050 		468	52 2•59	9	31 1•35	3 80•0	0.00	206 3.38	38 0•79	14 0•39	1.7	0.6	0.00	•	250
\$5/11\(\frac{1}{2}\) \frac{6}\) \frac{1}{6}\) \frac{6}\) \frac{1}{6}\) \frac{1}{6}\) \frac{6}\) \frac{1}{6}\) \frac{1}{6}\] \frac{1}{6}\) \frac{1}{6}\] \fra		30			376	13 0.65	10.08	65 2•83	0.05	4 0 • 13	149	31 0.64	12 0•34	1.0	0.5	0.10		
55/11*26P015 30 5050 8.7		30			407	7	10.08	81 3.52	1	2	198 3,24	0.08	16 0.45	0.3	0.7	0.20		241
55/11w-26p035 30 5050 79 401 6 1 80 1 2 182 21 13 0.2 0.7 0.20 233 06/06/68 1100 8.4 0.30 0.08 3.48 0.02 0.07 2.98 0.44 0.37 0.00 215 55/11w-27p055 30 5050 8.5 3.29 1.07 1.74 0.08 0.17 3.41 2.00 0.45 0.00 55/11w-27h045 30 5050 8.4 2.84 0.90 1.61 0.08 0.07 3.38 1.10 0.70 0.05 55/11w-28h045 30 5050 8.4 2.84 0.90 1.61 0.08 0.07 3.38 1.10 0.70 0.05 55/11w-29815 30 5050 8.5 3.29 3.78 2.04 0.10 0.00 3.75 8.24 0.51 0.00 55/11w-29815 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-290045 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29815 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29005 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29005 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29005 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29005 30 5050 8.5 3.4 0.99 2.65 0.08 0.13 2.52 0.75 3.33 0.00 55/11w-29005 30 5050 366 8 1 70 1 5 167 5 17 0.5 0.6 0.10 210 0.06668 8.5 3.6 0.40 0.08 3.04 0.02 0.17 2.74 0.10 0.48 0.01 55/11w-29005 30 5050 366 8 1 70 1 5 167 5 17 0.5 0.6 0.10 210 0.06668 8.5 3.6 0.40 0.08 3.09 0.02 0.17 2.74 0.10 0.48 0.01 55/11w-29005 30 5050 365 9 1 69 1 3 172 10 14 0.7 0.6 0.10 208 0.06668 8.5 3.8 0.40 0.08 3.09 0.02 0.07 2.83 0.10 0.48 0.02 55/11w-29005 30 5050 365 9 1 69 1 3 172 10 14 0.7 0.6 0.10 208 0.06668 8.5 3.0 0.05 0.05 0.00 0.02 0.00 2.82 0.17 2.75 0.37 0.37 0.01 55/11w-35p045 30 5050 365 9 1 69 1 3 172 10 14 0.7 0.6 0.10 208 0.06668 8.5 0.06 0.08 2.87 0.02 0.17 2.72 0.37 0.37 0.37 0.01 55/11w-35p045 30 5050 379 12 1 66 1 5 166 18 13 0.6 0.6 0.10 212 0.060668 8.7 0.06 0.08 2.87 0.02 0.17 2.72 0.37 0.37 0.37 0.01 55/11w-35p045 30 5050 8.7 0.60 0.08 2.87 0.02 0.17 2.72 0.37 0.37 0.37 0.01		30			387	4 0 • 20 5	10.08	76 3•30	0.02	5	150 2.46	31	12 0•34	0.1	0.5	0 • 1 0		
343 360 360 360 360 370 381 370 381 381 383 381 383 383 383 383 383 383		30			401	-	0.08	3.48	0.02	0.07	2.98	0.44	0.37	0.00	0.7	0.20		
\$55/11w-27H04\$ 30 5050 8.4		30			602	3.29	1.07	1.74	0.08	0.17	3.41	2.00	0.45	0.00	0.5	0.10		343
756 6.59 3.78 2.04 0.10 0.00 3.75 8.24 0.51 0.00 0.0		30	-		541	2.84	0.90	1.61		0.07	3,38	1.10	0.70	0.05	0.6	0.10		276
372 372 373 374 375 376 377 377 378 377 377 378 378 378 378 378	•	30			1130	6.59	3.78	2.04	-	0.00	3.75	8.24	0.51	0.00	0.2	0.00		
55/11w-29co15 30 5050 8.6	•	30			733	3.04	0.99	2.65	0.08	0.13	2.52	0.75	3.33	0.00	0.4	0.00		372
193 11 2 86 1 2 81 3 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		30			366	0.40	0.08	3.04	0.02	0.17	2.74	0.10	0.48	0.01	0.6	0.10		210
55/11w-29H01S 30 5050 365 9 1 69 1 3 172 10 14 0.7 0.6 0.10 208 06/06/68 8.4 0.45 0.08 3.00 0.02 0.10 2.82 0.21 0.39 0.01 193 13 2 84 1 3 80 6 11 0 55/11w-35F04S 30 5050 379 12 1 66 1 5 166 18 13 0.6 0.6 0.10 212 06/06/68 8.7 0.60 0.08 2.87 0.02 0.17 2.72 0.37 0.37 0.01		30			363	0 • 4 0	0.08	3.09	0.02	0.07	2.83	0.10	0.48	0.02	0.7	0.10	••	193
06/06/68 8.7 0.60 0.08 2.87 0.02 0.17 2.72 0.37 0.37 0.01 199		30			365	0.45	0.08	3.00	0.02	0.10	2.82	0.21	0.39	0.01	0.6	0.10		208
		30			379	0.60	0.08	2.87	0.02	0.17	2.72	0.37	0.37	0.01	0.6	0.10		

MINERAL ANALYSES OF GROUND WATER

									CALIFORN									
TATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE	TEMP R PH	EC	MINER	AL CONS	TITUENT	SIN	MILLIGRA MILLIEQU PERCENT CO3	IVALENT	5 PER L	_	NO3	MILLIGR/	AMS PER	LITER	TDS 180C (*105C) SUH	TH NCH
												CL	1103	r	0	3102	301	
OWER SANTA ANA						ANTA AN	W MIACK	HTUKU	UNIT	Y01	00							
55/11W-36B025 06/06/68	30	5050	8.3	561	63 3.14 55	12 0.99 17	34 1.48 26	3 0.08 1	0.00	234 3.83 69	52 1.08 19	0.62 11	1.3	0.6	0.00		275 303	207
55/11w-36C01S 06/06/68 1530	30	5050	68 8.4	544	60 2.99 54	12 0.99 18	33 1.43 26	3 0.08 1	3 0.10 2	214 3.51 65	54 1.12 21	21 0.59 11	1.7 0.03 0	0.6	0.00		279 294	199
65/08w-05E02S 10/06/67 1015	30		7.6	978	82 4.09 41	26 2.14 21	84 3.65 37	0.05 0	0.00	266 4.36 45	145 3.02 31	73 2.06 21	20.0	0.4	0.04	54	639 618	31:
ñ3/19/68 	30	5102	82 7.5	1070	87 4•34 38	31 2.55 22	106 4.61 40	0.05 0	0.00	293 4.80 42	198 4.12 36	82 2•31 20	10.0 0.16 1	0.4	0.11	50	711 711	349 10
65/08W-07Q01S 10/06/67 1035	30	3102	 7.5	1240					0.00	209 3.42		153 4.31	48.0 0.77	••				
n3/19/68	30	5102	 7.4	1220					0.00	219 3.59		156 4•40	50.0 0.81					
65/08W-17D025 n3/26/68	30	5102	7.6	1210	81 4.04 34	16 1•31 11	148 6.44 54	3 0.08 1	0.00	214 3.51 30	142 2.96 25	164 4.62 39	44.0 0.71 6	0.4	0.04	50	775 754	268 91
65/09w-01L015 10/06/67 1045	30	3102	78 7.3	1390	114 5.69 41	29 2.38 17	128 5.57 41	0.08 1	0.00	251 4.11 30	193 4.02 29	172 4.85 35	48.0 0.77 6	0.4	0.02	52	933 863	198
65/09W-02D015 10/27/67 1000	30	3102	7.4	807	51 2.54 33	11 0.90 12	98 4.26 55	0.08 1	0.00	216 3.54 46	82 1.71 22	86 2.42 32	0.4 0.01 0	0.3	0.18	56	524 495	17
ñ3/26/68 	30	5102	83 7.6	833	54 2•69 32	12 0.99 12	104 4.52 54	0 • 1 0 1	0.00	213 3.49 43	80 1.66 21	104 2.93 36	0.6 0.01 0	0.3	0.15	54	514 518	18
65/09W-04L025 10/06/67 1130	30	3102	7.2	2790					0.00	297 4.87		379 10.69	74.0 1.19	••	•-			
ñ3/19/68	30	5102	7.3	2713					0.00	299 4.90		406 11•45	68.0 1.10					•-
65/09W-05A015 10/06/67 1315	30	3102	89 8•5	535	15 0•75 15	3 0•25 5	90 3.91 79	2 0•05 1	0.17 3	180 2.95 59	37 0.77 15	38 1.07 22	0.4	0.6	0.18	19	307 299	5
03/19/68 	30	5102	8.2	697	26 1•30 19	8 0.66 10	112 4.87 71	0.05	0.13	184 3.01 46	60 1•25 19	78 2•20 33	0.00	0.7	0.30	20	398 401	9
65/10W-01E025 06/07/68	30	5050	72 9•2	370	0.05 1	0.08 2	77 3•35 95	0 • 0 ? 1	15 0.50 14	149 2•44 69	0 • 0 4 1	19 0.53 15	0 • 1 0 • 00 0	0 • 1	0.10	••	193 190	
65/10W-01E05S 10/27/67 1100	30	3102	7.6	462	0·15 3	0.00	96 4•17 95	0.05 1	0.00	167 2.74 64	0 • 23 5	46 1•30 30	0 • 0 0 • 00 0	••	0.24	15	289 256	(
ó3/19/68 	30	5102	7.8	462	0.20	0.00	103 4•48 96	0.00	0.00	168 2.75 62	0.25 6	52 1 • 4 7 3 3	0.0	0.9	0.21	16	262 271	10
65/10W-01L015 10/27/67 1115	30	3102	7•5	925					0.00	187 3.06		50 1•41	0.0	••	•-			••
ñ3/19/68 	30	5102	7.9	925					0.00	188 3.08	••	53 1•49						
65/10W-058035 06/07/68	30	5050	72 8•4	440	39 1.95 44	9 0.74 17	39 1.70 38	0.05 1	0.17 4	184 3.01 69	40 0.83 19	13 0.37 8	0.0	0.3	0.00		228 238	134
65/10W-068025 06/07/68	30	5050	8.4	568	63 3•14 55	12 0.99 17	36 1.56 27	0.05 1	0.07	233 3.82 67	57 1•19 21	21 0.59 10	0.00	0.5	0.00	••	289 309	207
65/10W-11G03S 10/27/67 1045	30	3102	8.5	384				••	19 0.63	157 2.57		16 0.45	0.00					
03/29/68 900	30	5102	8.7	391					0.47	166 2.72		19 0.53	0.0	••				
65/11W-03R02S 06/07/68	30	5050	8.2	452	9 0.45 11	0.16 4	82 3.57 85	0.02 1	0.00	178 2.92 69	12 0.25 6	38 1.07 25	0 · 1 0 · 00 0	0.7	0.20		258 233	31
65/11W-12E035 06/07/68	30	5050	8.5	761	59 2.94	17 1.40	70 3.04	3	0.13	170 2.79	150 3.12	49	1.1	0.4	0.10		475 438	217

MINERAL ANALYSES OF GROUND WATER

STATE WELL DATE	NO. TIME	COUNT	TY LAB SAMPLE		EC	MINEF	RAL CONS	TITUENT	S IN M	ILLIGRA ILLIEQU ERCENT CO3	IVALENT	S PER I		NO3	MILLIGRA F	MS PER	LITER SIO2	Tps 180C (*105C SUM	
LOWER SANT	A ANA	RHY	rogo su	BUNTT	Y0140			A RIVER			Y01		•						
					SUBAREA	YOLAL													1
065/11W-13 06/07/68		30	5050	8.1	14400	677 33.78 24	238 19.57 14	2010 87.43 62	39 1.00 1	0.00	404 6.62 5	0.21 0	4780 134.80 95	0.0 0.00 0	0.1	2.10		8520 7955	26 23
SAN	TIAGO	HYDE	RO SUBA	REA		Y01A2													
055/07W-29 10/03/67		30	3102	 7.5	917	124 6.19 60	31 2•55 25	33 1.43 14	2 0•05 0	0 0 • 0 0	376 6.16 62	147 3.06 31	26 0•73 7	0.02	0 • 1	0.11	23	618 573	1
05S/08W-01 10/03/67		30	3102	 7.6	1270					0.00	251 4.11		46 1.30						
03/14/68	900	30	5102	7.6	1290					0.00	273 4.47		47 1.32	0.0					1
n9/24/68	1230	30	3102	7.4	1270	105 5.24 39	26 2.14 16	140 6.09 45	0.05 0	0.00	277 4.54 33	385 8•01 58	41 1.16 8	1.3 0.02 0	0.6	0.13	15	874 853	3
SAN	ITA AN	IA NAF	RROWS H	YDRO :	SUBAREA	Y01A3													
03S/08W-25 10/03/67		30	3102	 7.7	1670					0.00	368 6.03	379 7.89	154 4.34						ŀ
03/14/68	1145	30	5102	 7.8	1700					0.00	389 6.37	395 8•22	156 4.40	0.00					
ñ9/27/68	1130	30	3105	7.6	1820	191 9.53 47	49 4.03 20	148 6•44 32	0 • 13 1	0.00	400 6.55 33	430 8.95 44	163 4.60 23	0.5 0.01 0	0.6	0.24	22	1290 1206	3
035/08W-31 10/03/67		30	3102	7.5	1210	••				0.00	190 3.11	303 6.31	100 2.82						
n3/14/68	1045	30	5102	 7•6	1180					0.00	189 3.10	309 6.43	102 2.88	3.0 0.05					1
n9/27/68	1030	30	3102	7.6	1230	103 5.14 41	30 2.47 20	112 4.87 39	0.10	0.00	190 3.11 25	296 6•16 50	103 2.90 24	4.2 0.07 0	0 • 4	0.12	16	817 763	3
035/08W=33 03/14/68		30	5102	 7.3	1720					0.00	385 6.31	477 9•93	130 3.67	2.0					ŀ
ñ9/27/68	1040	30	3102	7.1	1750					0.00	374 6.13	478 9•95	130 3.67	4.5 0.07					
035/08W-34 10/03/67		30	3105	7.3	1640					0.00	363 5.95	398 8•29	135 3.81						d
03/14/68	1130	30	5102	7.4	1700					0.00	369 6.05		144	7.0 0.11					
09/27/68	1115	30	3102	68 7.3	1720	199 9.93 52	47 3.86 20	120 5.22 27	0.13 1	0.00	369 6.05 31	441 9.18 47	141 3.98 21	8.0 0.13 1	0.7	0.20	55	1240 1166	3
035/09W=36 08/20/68		30	3102	7.4	2610	264 13.17 43	98 8.06 26	205 8.92 29	0.20	0.00	344 5.64 18	819 17.05 56	246 6.94 23	50.0 0.81 3		0.12		2017 1860	10
045/09W-01 10/03/67		30	3102	7.6	1520	159 7.93 48	3.62 22	107 4.65 28	0.15 1	0.00	313 5.13 31	354 7.37 45	139 3.92 24	0.9 0.01 0	0.6	0.09	14	1080 979	3
ñ3/14/68	1215	30	5102	 7.8	1700	176 8.78 47	49 4.03 21	132 5.74 31	0.15 1	0.00	317 5.19 28	394 8.20 44	174 4.91 26	19.0 0.31 2	0.5	0.11	13	1180	6
ñ9/27/68	1145	30	3102	 7.4	1500	155 7.73 48	40 3.29 20	116 5.04 31	5 0.13 1	0.00	304 4.98 31	343 7•14 44	140 3.95 24	8.0 0.13	0.7	0.11	16	1033 974	5
MÍODLE SAN CHI			HYDR SUBAREA		TY0180	Y0181													
05S/01E-05 10/06/67	M025	33	4103	8.3	269	0.10	0.00	51 2•22 89	7 0.18 7	0.00	117 1.92 76	12 0•25 10	13 0.37 14	0.0	0.2	0.09		148 143	
015/05W-15 12/01/67	G015	36	5100	8.1	423	63 3.14 70	7 0.57 13	16 0.69 16	2 0.05	0 . 0 0	193 3.16 69	27 0•56 12	13 0.37 8	30.0 0.48 11	0.2	0.03		287 254	1
n6/24/68		36	5100	7.9	435	66 3.29 71	7 0.57 12	16 0.69 15	2 0.05	0.00	193 3.16 69	23 0•48 10	15 0•42 9	30.0 0.48 11	0.3	0.01		235 255	1
0 <u>1</u> 5/05W-16 12/01/67	J015	36	5100	8.2	435	65 3.24 72	6 0.49 11	17 0•74 16	2 0•05 1	0.00	186 3.05 67	30 0.62 14	10 0.28 6	37.0 0.60 13	0.2	0.03		283 259	1

MINERAL ANALYSES OF GROUND WATER

							30011	ILINIA C	ALIFONIA									
STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE		EC	MINER	AL CONST	TITUENTS	IN M	ILLIGRADILLIEGU FRCENT I	VALENTS	PER LI	TER	N03	MILLIGRA F	M5 PER	LITER	ToS 180C (*105C) SUM	
TOOLE SANTA AN CHINO HY			SUBUNI'	TY01B0	Y0181	ANTA AN	A KIAFK	нтоко	UNII	Y01(00							
15/05w-20D015 06/24/68	36	5100	7.6	420	61 3.04 71	6 0.49 11	16 0.69 16	0.05 1	0.00	182 2.98 72	7 0.14 3	19 0.53 13	31.0 0.50 12	0.3	0.00		232 231	177 28
75/05W-218015 n6/24/68	36	5100	7.8	443	69 3.44 74	6 0.49 11	15 0.65 14	0.05 1	0.00	193 3.16 69	24 0.50 11	13 0•37 8	35.0 0.56 12	0.3	0.00	••	240 260	197
15/06W-11801S 11/21/67	36	5100	8.1	336	49 2.44 67	8 0.66 18	11 0.48 13	0 • 0 5 1	0.00	195 3.20 86	15 0•31 8	6 0•17 4	3.4 0.05	0.3	0.03		196 191	155
ń5/23/68 	36	5100	8.2	333	53 2.64 72	7 0.57 16	9 0.39 11	2 0 • 05 1	0.00	178 2.92 82	18 0.37 11	7 0.20 6	3.2 0.05	0 • 4	0.00		189 188	161 15
75/06W-11N015 11/21/67	36	5100	8.1	333	50 2.49 69	9 0.74 20	8 0.35	2 0.05	0.00	183 3.00 80	22 0.46 12	8 0•22 6	2.8 0.04	0.4	0.01		182 193	162 12
n5/23/68	36	5100	8.1	356	52 2.59 68	7 0.57 15	14 0.61 16	2 0.05	0.00	195 3.20 84	12 0.25 6	10 0.28 7	5.7 0.09 2	0.3	0.03		211 199	159 0
15/06W-12P01S 11/21/67	36	5100	7.9	347	54 2.69 71	8 0.66 17	8 0.35	3 0.08	0.00	188 3.08 82	22 0.46 12	0.17	2.5 0.04	0.3	0.02		183 197	168 14
75/06W-16A01S 03/18/68 1100	36	5050	 7.7	336	43 2•14 58	9 0 • 74 20	17 0 • 74 20	2 0•05		179 2.93 82	9 0•19 5	13 0.37 10	6.5 0.10	0.1	0.00		213 188	144
09/05/68 830	36	5050	7.4	339	42 2•09 58	9 0.74 20	17 0.74 20	0.02		179 2.93 81	12 0.25	13 0.37 10	5.0 0.08 2	0.3	0.00		220 188	142
15/06W-16L01S 11/21/67	36	5100	8.1	312	38 1.90	9 0.74	16 0•69	2 0.05	0.00	168 2.75	10 0•21	8 0.22 7	10.0	0.2	0.00		164 176	132
n5/24/68	36	5100	8.2	392	1.75	0.99	1.26	0.10	0.00	2.69	0.71	19 0.53	3.8	0.9	0.05		237 219	137
)īS/06W-21P01S 03/21/68 1135	36	5050	7.7	1263	203 10.13	26 2.14	31 33 1.43	3 0.08	0	67 243 3.98	18 241 5•02	13 154 4.34	1 15.0 0.24	0.1	0.01		1028 795	614 415
ñ9/05/68 815	36	5050	7.6	360	73 41 2•04	15 12 0•99	10 19 0•83	1 2 0•05		29 199 3•26	37 10 0•21	32 12 0•34	9.0 0.14	0.3	0.00		219 204	152
)	36	5100	 8.0	346	52 55 2•74	25 8 0•66	21 8 0•35	2 0•05	0	82 190 3•11	22 0•46	9 5 0•14	2 · 8 0 · 0 4	0.3	0.01		430 197	170
n5/24/68	36	5100	8.3	353	72 51 2•54	17 7 0•57	9 15 0•65	2 0•05	0 0 0 0	188 3.08	15 0•31	12 0•34	9•3 0•15	0.3	0.01		198 204	156
015/07W-08N015 11/21/67	36	5100	7.9	347	66 49 2•44	15 8 0•66	17 13 0•56	1 2 0•05	0 0 0 0	79 193 3.16	8 11 0•23	9 9 0•25	12.0 0.19	0 • 4	0 • 0 3		213 200	155
ñ5/24/68	36	5100	8.0	346	66 49 2•44	18 8 0.66	13 0•56	1 0.02	0 0 0 0	82 183 3•00	6 15 0•31	7 11 0•31	5 11•0 0•18	0 • 4	0.02		219 199	155
015/07W-20A015 11/21/67	36	5100	 8.0	499	66 66 3•29	18 13 1.07	15 16 0•69	2 0•05	0 0 0 0	79 178 2.92	8 37 0•77	8 11 0•31	66.0 1.06	0.5	0.00		291 299	218
n5/24/68	36	5100	 8.0	362	64 44 2•19	21	14 22	1	0	58 171	15 33	6	8.8	0.3	0.01		219	147
ojs/07W-23D01S	36	5100		374	56 47	19 10	0.96 24	0.05	0.00	2.80 71 200	10	0.34	17.0	0.1	0.00		213	158
11/21/67 015/07W-300015	36	5100	8.1	360	2.34 59 46	0.82 21	0.74	0.05	0.00	3.28 81 188	0 • 21 5	0.28	17.0	0.3	0.02		212	160
11/21/67 015/07W-34K01S	36		7.6	369	2·29 59 36	0.90 23	0.61 16 17	0.05 1 2	0.00	3.08 79 198	0 • 1 7 4 8	0.39 10 11	0·27 7	0.3	0.00		205	160
10/25/67	36	5100	7.9	619	1.80 45 82	1.40 35	0.74 19 23	0.05	0.00	3.24 83 227	0.17 4	0.31 8	0.18 5	0.4	0.05		200	275
n5/22/68	33		6.7		4.09	1.40	1 15	0.05 1	0.00	3.72	0.67	1.18	0.82	•••			362	88

MINERAL ANALYSES OF GROUND WATER

							50011	HERN C	ALIFORN	IA								-
STATE WELL NO. DATE TIME		Y LAB SAMPLE		EC	MINER	AL CONST	ITUENT:	S IN M	ILLIEQU	MS PER I IVALENT REACTAN HC03	S PER L		NO3	MILLIGR,	MS PER	LITER SIO2	TDS 180C (*105C) SUM	T NC
												CL	NOS	•	В	3102	JUH	
MIDDLE SANTA AN	-		-	Y01B0	Y0181	ANTA ANA	RIVER	HYDRO	UNIT	Y01	00							1
015/08W-08H01S 07/18/68	70	5868	81 7.7	555	131 6.54 73	18 1.48 16	20 0.87 10	3 0.08 1		193 3.16 36	117 2.43 27	33 0.93 10	146.0 2.35 26	0.0	0.07	23	650 586	40 24
015/08W-10N01S 10/23/67	70	1101 1101	70 8•5	654	58 2•89 42	15 1•23 18	62 2•70 39	2 0•05 1	0.00	148 2.42 36	140 2•91 43	42 1•18 18	13.7 0.22 3		••	0	480 406	20
ñ8/26/68	70	1101 1101	72 7.8	289	28 1.40 47	3 0•25 8	30 1.30 44	1 0•02 1	0.00	137 2.24 78	19 0+39 14	0 · 14 5	6.2 0.10 3	0 • 1		0	229 160	8
015/08W-14A01S 11/20/67	36	5100	8.0	463	57 2.84 59	14 1•15 24	17 0.74 15	2 0 • 05 1	0.00	181 2.97 62	30 0.62 13	9 0•25 5	58.0 0.93 20	0.2	0.00		259 277	20 5
05/24/68	36	5100	7.6	459	60 2.99 61	14 1.15 23	16 0.69 14	2 0.05 1	0.00	181 2.97 59	30 0.62 12	15 0•42 8	60.0 0.97 19	0.3	0.01		290 287	20
0]S/08W-14A03S 10/11/67	36	5100	7.5	459	57 2.84 60	14 1.15 24	16 0.69 15	2 0.05 1	0.00	178 2.92 63	26 0.54 12	9 0•25 5	56.0 0.90 20	0.3	0.05		326 268	19
11/08/67	36	5100	7.4	460	57 2.84 60	14 1.15 24	16 0•69 15	2 0.05 1	0.00	181 2.97 62	30 0.62 13	10 0.28 6	57.0 0.92 19	0.3	0.01		287 276	20
03/21/68	36	5100	7.5	451	58 2.89 59	15 1.23 25	16 0.69 14	2 0.05 1	0.00	183 3.00 62	28 0.58 12	10 0.28 6	58.0 0.93 19	0.3	0.01		273 278	20 5
ñ4/24/68	36	5100	7.8	471	58 2•89 60	14 1.15 24	16 0.69 14	2 0.05 1	0.00	178 2.92 62	28 0.58 12	9 0•25 5	59.0 0.95 20	0 • 4	0.00		282 274	20 5
01S/08W-15J01S 10/11/67	36	5100	7.7	387	54 2•69 64	10 0.82 20	14 0.61 15	2 0.05 1	0.00	173 2.83 68	22 0.46 11	15 0.42 10	28.0 0.45 11	0.3	0.02		283	17 3
ī1/08/67	36	5100	7.4	390	52 2•59 63	11 0.90 22	14 0.61 15	1 0.02 1	0.00	178 2.92 70	27 0•56 13	9 0•25 6	27.0 9.43 10	0.2	0.02		256 229	17
02/01/68	36	5100	8.1	370	58 2•89 65	11 0.90 20	13 0•56 13	2 0•05 1	0.00	178 2•92 66	30 0 • 62 14	10 0•28 6	35.0 0.56 13	0.3	0.02		214 247	19
03/21/68	36	5100	7.4	407	57 2•84 65	11 0.90 21	13 0•56 13	2 0•05 1	0.00	173 2•83 65	29 0•60 14	9 0•25 6	42.0 0.68 15	0.2	0.00		250 249	18
04/24/68	36	5100	8 • 1	434	60 2•99 66	11 0•90 20	13 0•56 12	2 0•05 1	0.00	173 2.83 64	32 0•67 15	12 0•34 8	37.0 0.60 13	0.3	0.00		149 253	19
015/08W-15P02S 10/11/67	36	5100	7.8	398	55 2•74 64	9 0•74 17	17 0•74 17	2 0•05 1	0.00	183 3•00 72	22 0•46 11	10 0•28 7	28.0 0.45 11	0•2	0.03		348 234	171
11/08/67	36	5100	7.4	397	52 2•59 61	11 0•90 21	16 0•69 16	0 • 0 2 1	0.00	183 3•00 72	25 0•52 13	7 0•20 5	26.0 0.42 10	0.2	0.04		279 229	17 21
015/08W-23A03S 10/11/67	36	5100	7.7	524							32 0.67						448	
ī1/08/67	36	5100	7.4	524	71 3.54 67	14 1.15 22	13 0.56 11	2 0.05 1	0.00	183 3.00 56	35 0.73 14	12 0.34 6	77.0 1.24 23	0.3	0.03	••	348 315	23
03/21/68	36	5100	7.6	540	74 3.69 69	13 1.07 20	13 0.56 10	0.05 1	0.00	183 3.00 54	36 0•75 14	15 0•42 8	84.0 1.35 24	0.3	0.00		329 328	23
04/24/68	36	5100	7.8	541	74 3.69 66	16 1•31 23	13 0.56 10	0.05 1	0.00	183 3.00 56	32 0•67 12	12 0.34 6	86.0 1.39 26	0 • 4	0.00		342 326	25
015/08w-24E01S 10/11/67	36	5100	7.6	528	73 3.64 67	14 1.15 21	13 0.56 10	0.05 1	0.00	181 2.97 55	29 0•60 11	17 0.48 9	81.0 1.31 24	0.3	0.02	~-	375 319	24 9
n4/24/68	36	5100	7.9	539	74 3.69 67	15 1.23 22	13 0.56 10	0.05 1	0.00	178 2.92 54	32 0.67 12	15 0.42 8	86.0 1.39 26	0.3	0.02	••	337 325	10
015/08w-25001S 10/11/67	36	5100	7.8	360	40 1.99 53	10 0.82 22	21 0.91 24	0.05 1	0.00	188 3.08 82	0 • 1 0 3	10 0•28 7	17.5 0.28 7	0.3	0.03		302 199	14

MINERAL ANALYSES OF GROUND WATER

TATE WELL NO. DATE TIME	COUNT	Y LAB SAMPLE		EC	MINER	AL CONS	TITUENTS		MILLIGRAI MILLIEQU PERCENT (IVALENT	S PER L		N03	HILLIGRA F	MS PER	LITER SIO2	TDS 180C (*105C) SUM	TH
IDDLE SANTA AN				TY0180	Y0181	ANTA AN	A RIVER	HYDRO) UNIT	Y01	.00							
ns/08w-250015 n1/08/67	36	5100	7.6	358	40 1.99 53	10 0.82 22	21 0.91 24	0.05	0.00	190 3.11 82	11 0.23 6	6 0.17 4	18.0 0.29	0.2	0.00	* =	248 202	141
n2/01/68	36	5100	8.2	350	43 2•14 56	8 0.66 17	22 0.96 25	0.05	2 0	193 3.16 81	9 0 • 19 5	9 0.25 6	19.0 0.31	0.2	0.02		171 208	140
n3/21/68	36	5100	7.7	362	43 2•14 56	8 0.66 17	22 0.96 25	0.05	0.00	188 3.08 80	8 0 • 1 7 4	10 0.28 7	19.0 0.31	0.2	0.00		213 205	140
ñ4/24/68	36	5100	7.8	366	46 2•29 59	7 0.57 15	22 0.96 25	0.05	0.00	188 3.08 80	9 0 • 19 5	9 0•25 7	19.0 0.31 8	0.3	0.00		210 207	144
15/08W-26B01S 10/11/67	36	5100	7.8	504	75 3•74 78	11 0.90 19	2 0•09 2	0 • 0 5	0.00	183 3.00 59	28 0.58 11	15 0•42 8	69.0 1.11 22	0.3	0.03		387 293≉	233 83
īī/08/67	36	5100	7.7	502	73 3.64 72	11 0.90 18	0.48 9	0.02	0.00	183 3.00 58	32 0.67 13	13 0.37 7	69.0 1.11 22	0.3	0.19		334 301	227 77
52/01/68	36	5100	8.0	504	74 3.69 70	13 1.07 20	11 0.48 9	0.05	0.00	188 3.08 58	30 0.62 12	0.39 7	75.0 1.21 23	0.3	0.03		302 312	238 84
63/21/68	36	5100	7.5	509	74 3.69 70	13 1.07 20	11 0.48 9	0.05	0.00	183 3.00 58	28 0.58 11	15 0.42 8	73.0 1.18 23	0.3	0.00		314 307	238 88
15/08W-26H01S 57/18/68	70	5868	81 7.6	574	124 6.19 64	25 2•05 21	31 1+35 14	0.06	3	295 4.83 49	143 2.98 30	34 0.96 10	62.0	0.1	0.07	24	594 592	412 171
15/08W-28E01S	70	5868	82 8•0	348	53 2•64 67	7 0.57 15	15 0.65 17	0.09	5	177 2.90 73	23 0.48 12	7 0•20 5	25.0 0.40 10	0 • 1	0.09	24	301 244	161 16
IS/08W-28E02S IO/23/67	70	1101 1101	68 8•3	400	56 2•79 66	9 0 • 74 17	16 0•69 16	0 • 02 1	0.00	180 2.95 67	27 0.56 13	10 0•28 6	38.3 0.62 14			0	337 246	176 28
56/12/68	70	5050	68 7•5	567	72 3•59 69	13 1•07 20	12 0•52 10	0 • 0 5	,	171 2.80 53	45 0.94 18	13 0•37 7	70.0 1.13 22	0 • 4	0.00	**	343 312	233 93
n8/26/68	70	1101 1101	72 7•8	376	50 2•49 64	9 0 • 74 19	14 0.61 16	0 • 02	0.00	168 2.75 71	26 0.54 14	7 0•20 5	22.5 0.36 9	0.3		0	297 213	161 23
īS/08W-28F01S 57/18/68	70	5868	82 8•1	348	59 2.94 66	9 0•74 16	17 0.74 16	0.05	5	182 2.98 67	26 0.54 12	9 0•25 6	40 • 0 0 • 64 15	0 • 2	0.09	23	335 275	184 35
[S/08W-28G02S 10/11/67	36	5100	 7.7	404	58 2.89 67	10 0.82 19	13 0.56 13	0 • 05	0.00	183 3.00 71	21 0.44 10	0·31 7	31 • 0 0 • 5 0 12	0.3	0.03		292 237	186 36
04/24/68	36	5100	8 • 1	442	62 3•09 68	10 0.82 18	14 0•61 13	0.05	0.00	176 2.88 65	27 0.56 13	0 • 31 7	44.0 0.71 16	0 • 4	0 • 0 0		283 257	196 52
17/18/68	70	5868	82 7.8	417	64 3•19 69	10 0.82 18	13 0.56 12	0 • 05		185 3.03 66	26 0.54 12	10 0 • 28 6	45.0 0.72 16	0 • 0	0 • 0 4	24	345 285	201 49
is/08W-28L01S i7/18/68	70	5868	82 8•2	293	46 2.29 63	7 0.57 16	16 0.69 19	0.05	,	177 2.90 79	20 0.42 11	6 0 • 1 7 5	10.0 0.16 4	0 • 1	0.09	23	275 218	144
15/08w-28M03S 07/18/68	70	5868	82 8•2	293	60 2.99 69	9 0.74 17	13 0.56 13	0.05	0.13	180 2.95 67	23 0.48 11	10 0.28 6	33.0 0.53 12	0.1	0.04	24	268 267	187 33
is/08W-28N01S	70	5050	70 7.7	414	55 2.74 66	10 0.82 20	12 0.52 13	0 • 0 5	;	179 2.93 72	22 0.46 11	0.22 5	28.8 0.46 11	0.4	0.00	**	279 227	178 25
15/08W-28N02S 17/18/68	70	5868	81 8.3	286	53 2.64 70	0.49 13	14 0.61 16	0.05	0.27	174 2.85 74	20 0.42 11	0.17	8.0 0.13 3	0.0	0.04	23	227 226	157 1
īS/08W-30J01S 16/12/68	70	5050	70 7.4	629	89 4.44 68	17 1.40 21	15 0.65 10	0 • 0 5		229 3.75 58	73 1•52 24	17 0•48 7	42.5 0.68 11	0.4	0.00		427 369	292 91
25/05E-30L015 14/15/68 1235	33	5050	1007.8	1568	2.04 14	0.08	287 12.48 85	0.08		37 0.61 4	495 10.30 71	124 3.50 24	5.5 0.09	7.2	0.85		984 983	106

MINERAL ANALYSES OF GROUND WATER

							3001	HENN	CALIFORN	41 W								
STATE WELL NO. DATE TIME	COUNT	Y LAB SAMPLE	TEMP R PH	EC				SIN	MILLIGRA MILLIEQU PERCENT	IVALENT REACTAN	S PER L	ES		MILLIGRA			180C (*105C)	N
					CA	MG	NA	K	C03	HC03	504	CL	103	F	В	2015	SUM	- 13
MIDDLE SANTA AN			SUBUNI	TY0180	Y01B1	ANTA AN	A RIVER	HYDRO	UNIT	Y01	00							ł
02S/05E-30L02S 04/15/68 1250	33	5050	78 7.9	1608	51 2.54 16	0.49 3	285 12.40 80	0.08 0.08		95 1.56 10	478 9.95 65	130 3.67 24	2.5 0.04 0	4.4	0.70		1030 1008	1
015/08W-30K01S 07/18/68	70	5868	82 7.8	553	91 4.54 69	15 1.23 19	17 0.74 11	0.05 1	5	240 3.93 61	71 1•48 23	19 0.53 8	33.0 0.53 8	0.1	0.04	27	393 394	2.
015/08W-31J01S 07/18/68	70	5868	81 7.8	394	67 3.34 65	0.90 18	19 0.83 16	2 0.05	•	218 3.57 69	42 0.87 17	19 0.53 10	10.0 0.16 3	0.2	0.04	27	306 305	2
015/08W-32G015 07/18/68	7 0	5868	81 8•0	338	60 2.99 69	9 0.74 17	13 0.56 13	0 • 0 5	;	196 3.21 74	24 0.50 12	9 0•25 6	22.0 0.35 8	0 • 1	0.04	26	263 ° 262	1
015/08W-33D01S 07/18/68	70	5868	81 8.1	270	53 2.64 65	9 0.74 18	15 0•65 16	0 • 0 <u>5</u>	5	182 2.98 75	24 0.50 12	8 0•22 6	18.0 0.29 7	0.1	0.07	24	242 243	1
015/08W-35C02S 11/20/67	36	5100	8.0	393	56 2.79 67	0.90 22	9 0•39 9	0 • 0 5	0.00	190 3.11 74	19 0•39 9	10 0•28 7	26.0 0.42 10	0 • 4	0.00		252 227	1
015/08W-35001S 11/20/67	36	5100	7.9	336	46 2•29 61	0.90 24	11 0.48 13	0 • 0 5 1		188 3.08 85	16 0•33 9	0·11 3	4.8 0.08 2	0.2	0.02		127 188	1
02S/04W-33R02S 10/04/67	33	4103	72 7.6	790	50 2.49 32	25 2.05 26	72 3.13 40	0 • 1 3 2	0.00	181 2.97 39	46 0.96 12	89 2•51 33	75.0 1.21 16	0.7	0.19		522 452	2.
02S/05W-07N01S 10/24/67	36	5100	7.7	1748	156 7.78 41	57 4.69 25	141 6•13 33	0 • 1 3 1	0.00	408 6.69 36	226 4•70 25	188 5•30 28	128.0 2.06 11	0.5	0.11	••	1185 1103	6 2
05/23/68 	36	5100	8.7	1721	160 7.98 42	58 4.77 25	136 5.91 31	0.13 1		403 6.60 35	220 4.58 24	188 5•30 28	129.0 2.08 11	0.5	0.11		1231 1100	6
02S/05W-14D01S 10/04/67	33	4103	70 8.2	588	28 1.40 26	7 0.57 11	79 3.44 63	0.02 0.00	0.00	110 1.80 33	72 1.50 27	75 2•11 38	6.0 -0.10 2	1.6	0.65		380 325	1
025/06W-05A01S 10/24/67	36	5100	7.2	305	43 2•14 63	0.33 10	20 0•87 26	0 • 0 5 1	0.00	166 2•72 84	12 0•25 8	7 0•20 6	4.6 0.07 2	0 • 1	0.03		151 175	1
ñ5/23/68 	36	5100	9•2	315	43 2•14 63	5 0•41 12	18 0•78 23	0 • 05 1		149 2•44 75	10 0•21 6	10 0•28 9	6.5 0.10 3	0.2	0.00		192 175	1
02S/06W-12M01S 10/24/67	36	5100	7.3	1042	89 4.44 38	3.62 31	79 3.44 30	0.05 0.05	0.00	388 6,36 56	92 1.91 17	95 2.68 24	21.0 0.34 3	0.4	0.13		601 614	4
05/23/68	36	5100	8.1	1030	88 4.39 40	3.45 31	72 3.13 28	0 • 05 0 • 0	0.00	371 6.08 55	88 1.83 17	94 2.65 24	24.0 0.39 3	0.5	0.16		659 594	3
025/06W-14K01S 10/24/67	36	5100	7.2	1272	105 5.24 37	46 3.78 27	113 4.91 35	3 0 • 0 0	_	405 6.64 48	139 2.89 21	123 3.47 25	50.0 0.81 6	0.6	0.08		804 779	1
05/23/68	36	5100	7.7	1251	104 5.19 38	3.95 29	100 4.35 32	0.08 1	0.00	403 6.60 50	129 2.68 20	115 3•24 24	42.0 0.68 5	0.6	0.07		807 740	1
02S/06W-21001S 10/24/67	36	5100	7.4	1319	159 7.93 56	16 1.31 9	113 4.91 34	0.10	0.00	347 5.69 41	143 2.98 22	178 5.02 36	6.2 0.10 1	0.1	0.32		838 791	1
05/23/68	36	5100	8.1	1273	152 7.58 57	16 1.31 10	98 4.26 32	0.10	0.00	356 5.83 43	129 2.68 20	178 5.02 37	1.0 0.02 0	0.2	0.40		811 754	1
025/06W-30001S 10/24/67	36	5100	7.3	1255	187 9.33 68	17 1.40 10	68 2.96 21	0 • 1 0 1		334 5.47 40	198 4•12 30	125 3.52 26	38.0 0.61 4	0.2	0.09		855 802	5 2
ń5/23/68 	36	5100	8.5	1140	166 8.28 66	18 1.48 12	2.61 21	0.10	_	295 4,83 38	175 3.64 28	129 3.64 28	43.0 0.69 5	0.2	0.07		790 741	4 2
02S/06W-31002S 10/24/67	36	5100	7.5	1202	134 6.69 55	20 1.64 14	3.70 30	0.08 1		251 4.11 35	175 3.64 31	110 3.10 26	60.0 0.97 8	0•2	0.05		743 711	4
05/23/68 	36	5100	7.9	1211	161 8.03 61	21 1.73 13	74 3.22 25	0.08 1		366 6.00 46	158 3.29 25	104 2.93 22	50.0 0.81 6	0.3	0.02		818 752	1

MINERAL ANALYSES OF GROUND WATER

ATE WELL NO DATE TIM	_		LAB AMPLE	-	EC	MINER	AL CONS		SIN	MILLIGRAL MILLIEGU PERCENT	IVALENT	S PER L	ES	N03	HILLIGRA F			TOS 180C (*105C)	TH	
							ANTA AN	NA A RIVER	HYDRO		Y01		CL	NUS	r	В	2105	SUM		
DDLE SANTA CHINO				SUBUNI	TY01B0	Y01B1		, waven		, 0.111	,,,									
S/07W-03H01 0/25/67		36	5100	8.0	917	40 1.99 26	15 1.23 16	98 4•26 55	0.31		373 6.11 66	38 0.79 8	80 2.26 24	6.2 0.10	0.5	1.50		492 475≠	162	
5/07W-04801 0/25/67		36	5100	8.0	349	37 1.85 48	14 1-15 30	19 0•83 21	0.09	0.00	183 3.00 81	16 0•33 9	8 0•22 6	8.8 0.14 4	0.2	0.01		227 195	150	
5/22/68		36	5100	7.7	365	44 2•19 58	10 0.82 22	17 0.74 19	0.05	0.00	181 2.97 80	12 0•25 7	11 0•31 8	9.7 0.16 4	0.3	0.00		237 195	151 3	
5/07W-04802 0/18/67 90		36	5050	7.9	350	40 1•99 52	12 0•99 26	18 0•78 20	0 • 0	5	179 2.93 72	33 0•69 17	11 0•31 8	8.0 0.13 3	0.2	0.02	4-5	229 213≠	150 3	
9/05/68 134	5	36	5050	7.5	359	40 1.99 53	12 0.99 26	18 0.78 21	0 • 0 2	2	183 3.00 77	15 0.31 8	15 0.42 11	10.0	0.3	0.00		232	149	
5/07w-06J01 0/25/67	. S	36	5100	8.1	572	62 3•09 52	23 1.89 32	20 0.87 15	0 • 0 5	0.00	212 3.47 59	38 0.79 13	20 0•56	67.0 1.08	0.3	0.01		357 337	249 76	
5/22/68		36	5100	8.0	496	64 3•19 62	14 1.15 22	17 0.74 14	0.09		198 3.24 65	24 0.50 10	16 0•45 9	49.0 0.79 16	0 • 4	0.02		328 284	217 55	
5/07W-10C01 0/18/67 81		36	5050	7.8	1017	107 5•34 49	34 2.80 26	60 2.61 24	0.05	5	321 5.26 49	73 1.52 14	95 2•68 25	82.0 1.32 12	0.2	0.85		682 612	407 144	
3/21/68 84	5	36	5050	7.7	1028	115 5.74 52	33 2.71 25	56 2•43 22	0.05	5	313 5.13 48	81 1.69 16	96 2•71 25	69.0 1.11	0.2	0.88		660 607	423 166	
9/05/68 140	0	36	5050	7.3	931	106 5•29 51	35 2.88 28	50 2•17 21	0.05	2 	325 5.33 52	72 1•50 15	85 2.40 23	60.0	0.2	0.66		624 571	409 142	
S/07W-10H01 0/18/67 83		36	5050	8.2	643	75 3•74 56	23 1.89 28	24 1.04 15		7 5 0.23	224 3.67 55	35 0.73	40 1•13 17	60.0 0.97	0.2	0.03	••	403 377	282 87	
3/21/68 100	0	36	5050	7.6	1027	129 6.44 60	36 2.96 27	31 1.35 12	0.09		304 4.98 46	76 1•58 14	81 2•28 21	126.0 2.03	0.2	0.02		685 631	470 209	
9/05/68 140	5	36	5050	7.7	986	121 6•04 58	37 3 • 04 29	31 1•35 13	0 • 0 5	·	306 5•01 49	76 1•58 15	77 2•17 21	90 • 0 1 • 45 14	0.3	0.00		677 585	454 192	
5/07W-10L04 0/18/67 83		36	5050	7.9	1073	124 6•19 61	26 2•14 21	41 1.78 17	0.05	·	351 5.75 50	73 1•52 13	93 2.62 23	102.0	0.2	0.33	••	726 635≠	466 166	
9/05/68 141	0	36	5050	7.6	1075	117 5.84 52	42 3.45 31	41 1.78 16	0.05	2	350 5.74 51	68 1•41 13	95 2.68 24	89.0 1.43	0•3	0.27	••	692 627	465 166	
S/07W-10M01 0/25/67		36	5100	7.9	1059	112 5.59 50	50 4.11 37	31 1.35	0.05	0.00	330 5.41 48	71 1.48 13	93 2.62 23	111.0 1.79 16	0.3	0.05		691 633	485 215	
5/22/68		36	5100	7.8	951	119 5.94 59	35 2.88 29	26 1.13 11	0.05	0.00	293 4.80 49	53 1.10	85 2.40 25	87.0 1.40	0.4	0.01		620 552	441	
S/07W-11D01 0/25/67		36	5100	7.6	796	106 5.29 62	24 1.97 23	29 1.26 15	0.05	0 0 0	261 4.28 49	65 1.35 16	65 1.83 21	73.0 1.18	0.2	0.07		501 493	363 149	
5/22/68		36	5100	7.6	861	110 5.49 61	26 2.14 24	31 1.35 15	0.05	0 0	273 4.47 51	60 1.25 14	66 1.86 21	70.0 1.13	0.3	0.18		557 500	382 158	
5/07W-15001 0/25/67		36	5100	7.3	1151	137 6.84 55	41 3.37 27	49 2.13 17	0.08	0 0 0 0	471 7.72 62	41 0.85 7	97 2•73 22	64.0	0.2	0.00	••	697 664	511 124	
5/22/68		36	5100	8.2	383	46 2•29 56	11 0.90 22	19 0+83 20	0 • 05	0 0 0 0	205 3.36 85	10 0•21 5	9 0 • 25	8.5 0.14 3	0.2	0.00		237 207	160	
S/07W-15003 9/05/68 143	35 30	36	5050	7.2	742	91 4.54 56	26 2•14 26	32 1•39 17	0.05		353 5.78 69	30 0.62 7	54 1.52 18	24.0 0.39 5	0.2	0.00		465 433	334 45	
5/07w-17001 0/25/67		36	5100	8.0	772	85 4.24 51	34 2.80 34	27 1•17 14	0 • 0 5	0 0 0 0	290 4.75 56	61 1.27 15	31 0.87 10	98.0 1.58 19	0.3	0.02		508 481	352 114	

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. OATE TIME	COUNT	Y LAB SAMPLE	TEMP R PH	ΕC	MINER	AL CONS	TITUENTS	IN M	ILLIGRA ILLIEQU PERCENT CO3	IVALENT	S PER L		N03	MILLIGR <i>i</i> F	AMS PER	LITER SIO2	TDS 180C (*105C) SUM	
MIDDLE SANTA AF	NA RIV	HYDR	SUBUNI	TY0180	5	ANTA AN	A RIVER	HYDRO	UNIT	Y01	00							
CHINO H					Y0181						4.7						1	ı
025/07W-17D015 05/22/68	36	5100	7.5	833	111 5.54 62	29 2.38 27	23 1 11	0.05 1	0.00	298 4.88 56	1.39 16	33 0.93 11	92.0 1.48 17	0.3	0.00		579 504	1
025/07W-17L015 05/22/68	36	5100	7.9	542	70 3.49 61	16 1•31 23	19 0+83 14	0 • 05 1	0.00	229 3.75 67	25 0•52 9	20 0.56 10	46.0 0.74 13	0.3	0.00		350 311	2
025/07W-21L01S 10/25/67	36	5100	8.0	513	54 2.69 49	22 1.81 33	21 0•91 17	2 0•05 1	0 • 0 0 0	234 3.83 70	22 0.46 8	18 0•51 9	42.5 0.68 12	0.3	0.00		338 297	2
10/25/67	36	5100	 7.9	563	71 3.54 59	15 1.23 20	28 1•27 20	0 • 05 1	0.00	254 4.16 69	32 0.67 11	22 0.62 10	36.0 0.58 10	0+2	0 • 0 0	••	349 332	2
n5/23/68	36	5100	8.1	637	84 4.19 61	17 1.40 20	27 1•17 17	2 0.05 1	0.00	281 4.60 67	32 0.67 10	31 0.87 13	46.0 0.74 11	0.2	0.00	-	469 378	2
025/07W-22E015 05/14/68	36	5050	73 8•2	960	115 5.74 56	35 2.88 28	34 1.48 15	2 0.05 0	0.00	429 7.03 71	29 0.60 6	63 1.78 18	29.0 0.47 5	0.2	0.00		593 519	4
025/07w-22K01S 10/25/67	36	5100	 7.7	359	45 2•24 57	10 0.82 21	18 0.78 20	2 0•05	0.00	200 3.28 83	11 0.23 6	12 0.34 9	5.3 0.08 2	0.0	0.00	••	202	1
05/14/68 	36	5050	8.4	386	2.19 57	10 0.82 21	19 0.83 21	1 0•02	0.07	197 3.23 82	13 0•27 7	9 0•25 6	6.8 0.11 3	0.2	0.00		210 202	1
05/22/68	36	5100	8.2	362	47 2•34 59	10 0.82 20	18 0.78 20	2 0.05	0.00	200 3.28 83	11 0.23 6	11 0.31 8	8.0 0.13 3	0.3	0.00		235 206	1
025/07w-22P015 05/14/68	36	5050	71 8.3	939	112 5.59 58	32 2.63 27	33 1.43 15	2 0•05 0	0.00	362 5.93 62	51 1.06 11	48 1•35 14	74.0 1.19	0.3	0.10		562 531	4
025/07W-23E015 10/25/67	36	5100	 7•8	699	87 4•34 58	23 1.89 25	27 1•17 16	2 0•05 1	0 • 0 0	295 4.83 65	41 0.85 11	32 0•90 12	55.0 0.89	0.2	0.00		427 413	6.0
05/22/68 	36	5100	 8•0	709	91 4.54 60	22 1.81 24	26 1•13 15	2 0•05	0 . 0 0	293 4.80 64	40 0.83 11	32 0•90 12	57.0 0.92	0.3	0.00		459 415	
025/07W-27A01S 10/25/67	36	5100	 7•6	1053	126 6•29 52	36 2•96 25	61 2•65 22	3 0 • 08 1	0 • 0 0	491 8.05 68	51 1•06	59 1 • 66 14	60.0 0.97 8	0.2	0.00	••	648 638	4
05/22/68 	36	5100	8.1	11,16	131 6.54 51	43 3.54 28	59 2.57 20	3 0.08 1	0.00	491 8.05 64	60 1.25 10	69 1.94 15	83.0 1.34 11	0.3	0.03		785 690	67
025/07W-27D015 05/14/68	36	5050	73 8.2	994	116 5.79 57	34 2.80 27	36 1.56 15	2 0.05 0	0.00	362 5.93 59	48 1.00 10	47 1.32 13	113.0 1.82 18	0.2	0.00		611 575	1
025/07W-318015 10/24/67	36	5100	7.9	1069	101 5.04 46	35 2.88 26	70 3.04 28	3 0.08 1	0.00	317 5.19 48	117 2.43 22	69 1.94 18	78.0 1.26 12	0.3	0.04	••	756 630	
05/23/68	36	5100	7.7	668	67 3.34 48	15 1•23 18	52 2•26 33	2 0•05 1	0.00	232 3.80 55	73 1•52 22	35 0•99 14	38.0 0.61 9	0.3	0.07		440 397	
025/07W-31E015 10/25/67	36	5100	 7.7	1103	93 4.64 40	26 2.14 18	112 4.87 42	2 0.05 0	0.00	439 7.19 62	101 2.10 18	62 1.75 15	32.5 0.52 4	0.3	0.25		738 645	
05/22/68	36	5100	7.5	1166	120 5.99 47	24 1.97 16	107 4.65 37	2 0.05 0	0.00	464 7.60 61	99 2.06 16	78 2•20 18	41.0 0.66 5	0 • 4	0.27		731 700	
025/07W-32F015 05/23/68	36	5100	8.1	630	67 3•34 51	9 0.74 11	54 2+35 36	3 0.08 1	0.00	232 3.80 58	73 1.52 23	31 0.87 13	22.0 0.35 5	0.2	0.00		414 374	
025/07W-32K035 10/24/67	36	5100	7.1	357	19 0.95 26	5 0.41 11	53 2•30 62	0.02 1	0.00	144 2.36 65	33 0.69 19	15 0.42 12	11.0 0.18 5	0.4	0.28	••	266 209	The second
025/07W-34K025 10/24/67	36	5100	7.5	1888	226 11.28 53	67 5.51 26	105 4.57 21	0.08 0	0.00	332 5.44 26	555 11.55 55	135 3.81 18	5.5 0.09 0	0.4	0.05	••	1416 1261	-
05/23/68 	36	5100	7.6	2032	249 12.42 53	79 6.50 28	98 4.26 18	0.08	0.00	305 5.00 22	612 12.74 56	158 4.45 19	38.0 0.61 3	0.5	0.00		1881 1388	

MINERAL ANALYSES OF GROUND WATER

ATE WELL	NO.	COUNT	Y LAB SAMPLE		EC	MINER	AL CONS	TITUENTS		MILLIGRAM MILLIEQUI PERCENT F	EVALENT	S PER L		N03	MILLIGRA F	MS PER	LITER	TOS 180C (*105C) SUM	TH
ODLE SANT					TY0180	5/		A RIVER		-	Y01						_		
CHIN US/07W-35 0/24/67	J01S	70RO S 36	5100	8.3	703	Y0181 28 1.40	28 2.30	88 3•83	0.0	3 0 8 0.00	273 4.47	52 1.08	65 1.83	0.0	0.0	0.05		365 399	185
10/24/01		36	5100		1033	18	30	50		3 0	60	15	25 75	46.0	0.2	0.00		676	391
5/23/68		30		8.1		5.84 51	1.97	3.57 31	0.0		7.33 64	1.23	2.11	0.74	0 4 2			626	24
5/08W-148 1/20/67		36	5100	8.1	389	51 2.54 62	10 0.82 20	16 0.69 17	0.0	0 0 0 0 0	183 3.00 74	22 0•46 11	12 0.34 8	17.0 0.27 7	0 • 0	0.00		185 220	18
5/21/68		36	5100	7.9	391	51 2•54 62	10 0.82 20	15 0•65 16	0 • 0	0 5 0.00 1	186 3.05 77	18 0•37 9	0.31 8	13.0 0.21 5	0.3	0.00		238 212	168 16
S/08W-14H 1/20/67	_	36	5100	 7.9	389	50 2•49 60	11 0.90 22	16 0•69 17	0.0	2 0 5 0.00 -	173 2.83 70	30 0.62 15	10 0•28 7	18.0 0.29 7	0.2	0.00		252 223	170 28
5/21/68		36	5100	7.4	394	49 2•44 62	10 0.82 21	15 0.65 16	0 • 0	2 0 5 0.00 1 0	171 2.80 73	20 0.42 11	12 0•34 9	18.0 0.29 7	0.3	0.00		238 211	163 23
\$/08W-15L 1/20/67		36	5100	8.0	642	94 4.69 69	14 1.15 17	21 0•91 13	0 • 0	2 0 5 0.00 1 0	222 3.64 52	136 2•83 41	13 0•37 5	8.5 0.14 2	0.2	0.00		410 398	292 110
S/08W-22E		36	5100	8.1	428	56 2•79 62	10 0.82 18	20 0•87 19	0 • 0	2 0 5 0.00 1 0	186 3.05 68	41 0.85 19	13 0•37 8	13.0 0.21 5	0.2	0.00	••	231 247	181 28
S/08W-25L 1/20/67		36	5100	 7.8	861	121 6.04 64	22 1.81 19	33 1•43 15	0 • 0	3 0 8 0.00 1 0	254 4.16 44	178 3•70 39	33 0.93 10	43.0 0.69 7	0•2	0.00		600 559	393 184
5/22/68		36	5100	7.8	839	117 5•84 63	22 1.81 20	34 1.48 16	0 • 0	3 0 8 0.00 1 0	247 4.05 45	145 3.02 33	36 1•01 11	61.0 0.98 11	0 • 4	0.05		602 540	383 180
S/08W-25M 1/20/67	M015	36	5100	8.0	560	75 3•74 63	13 1.07 18	25 1•09 18	0.0	2 0 5 0.00 1 0	229 3.75 63	47 0•98 16	35 0 • 9 9 1 7	.12+0 0+19 3	0.2	0.00		309 322	241 53
5/22/68		36	5100	 7•7	578	77 3.84 63	13 1.07 18	25 1•09 18	0 • 0	2 0 5 0.00 1 0	227 3•72 63	43 0•89 15	38 1•07 18	12.0 0.19 3	0.3	0.04		384 322	246 60
5/08W-26K		36	5100	8.0	908	107 5•34 52	28 2•30 22	58 2•52 25	0 • 0	3 0 8 0.00 1 0	312 5•11 51	184 3•83 38	41 1•16 11	0 • 0	0 • 4	0.05		542 575	382 126
	N015	36	5100	 7•7	764	99 4•94 62	16 1•31 16	39 1•70 21	0 • 0	2 0 5 0.00 1 0	312 5•11 63	64 1•33 16	48 1•35 17	23.0 0.37 4	0 • 1	0.00		552 445	313 57
5/23/68		36	5100	7•8	775	98 4•89 61	18 1•48 18	36 1•56 20	0 • 0	2 0 5 0.00 1 0	286 4.69 59	65 1•35 17	52 1•47 19	24.0 0.39 5	0.2	0.00		562 436	319 84
15/07W-04A	A015	36	5100	7.6	900	106 5.29 59	18 1.48 17	48 2.09 23	0.0		288 4.72 52	109 2.27 25	59 1.66 18	28.0 0.45 5	0.2	0.15		685 512	339 102
5/23/68		36	5100	7.8	885	94 4.69 54	29 2.38 27	37 1.61 18	0.0		278 4.56 51	107 2.23 25	57 1.61 18	28.0 0.45 5	0.3	0.01		667 491	354 126
65/07W-040 0/24/67		36	5100	8.0	494	38 1.90 36	13 1.07 20	52 2•26 43	0 • 0	*	205 3.36 65	40 0 • 83 16	23 0.65 13	20.0 0.32 6	0.3	0.12		311 290	148
5/23/68		36	5100	7.9	601	67 3•34 51	10 0.82 12	55 2•39 36	0 • 0	0 5 0 • 0 0 1	256 4.19 65	48 1•00 15	31 0.87 13	25.0 0.40 6	0.3	0.05		417 365	208
3/07W-04H		36	5100	8.1	1134	95 4.74 39	53 4.36 36	70 3.04 25	0.08		405 6.64 54	100 2.08 17	103 2.90 23	46.5 0.75 6	0.3	0.06		803 670	455 123
5/23/68		36	5100	7.7	1332	135 6.74 52	35 2.88 22	76 3.30 25	0.0		344 5.64 43	116 2.41 18	137 3.86 29	74.0 1.19	0.3	0.03		1008 746	481 199
5/07W-100 1/24/67		36	5100	7.6	583	72 3.59 59	13 1.07 17	32 1•39 23	0 • 0	2 0 0 0 0 0 0 0	266 4•36 71	36 0.75 12	31 0.87 14	11.0 0.18 3	0.2	0.02		341 328	233 15
5/23/68		36	5100	8.1	573	72 3.59 58	15 1.23 20	31 1.35 22	0.0		261 4.28 70	35 0.73 12	37 1.04 17	1.5 0.02 0	0.2	0.01		372 322	241 27

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUNT	TY LAB SAMPLE		EC	MINER	AL CONS	TITUENT NA	SIN	MILLIGRA MILLIEGO PERCENT CO3	JIVALENT	5 PER L		NO3	MILLIGRA F	AMS PER	LITER S102	TDS 180C (*105C SUM	N
MIDDLE SANTA AN				TY0180		ANTA AN	A RIVER	HYDRO	UNIT	Y01	00							0 4
CHINO HY 01N/06W-21P01S	DRO S 36	5050		1119	Y0181 165	29	30	?		235	213	133	17.0	0.2	0.02		951	5
10/18/67 935			7.8		8.23 69	2.38	1.30	0.05		3.85 31	4.43	3.75 30	0.27				705	3
01N/06W-25K01S 11/21/67	36	5100	8.1	327	49 2•44 69	8 0.66 19	0 • 35 10	3 0•08 2	0.00	166 2.72 80	22 0•46 13	7 0•20 6	2.2 0.03 1	0 • 4	0.02		194 182	1
05/23/68	33	5100	7.9	325	48 2•39 66	9 0.74 20	9 0•39 11	3 0 • 08 2	0.00	166 2.72 77	26 0 • 54 15	7 0•20 6	3.1 0.05 1	0.5	0.03		196 188	1
01N/07W-27Q01S 11/27/67	36	5100	7.7	424	48 2•39 52	12 0.99 21	27 1•17 25	2 0•05 1		193 3.16 69	43 0•89 20	8 0•22 5	17.0 0.27 6	0.3	0.02		291 253	1
05/24/68	33	5100	8.3	332	32 1.60 46	9 0.74 21	25 1.09 31	2 0•05 1		178 2.92 83	15 0.31 9	7 0•20 6	5.5 0.09 2	0.2	0.00		225 184	1
HARRISON	HÝDF	RO SUBA	REA		Y0182													
015/08W-17P04S 07/18/68	70	5868	8.6	241	0.40 15	0.00	52 2.26 84	0.02 1		95 1.56 55	28 0.58 21	7 0.20 7	15.0 0.24 9	0.1	0.09	13	178 178	
CLAREMON					Y0183					_								J
0 <u>1</u> 5/08W-03A01S 10/23/67	70	1101	62 8•3	362	51 2.54 62	15 1.23 30	7 0.30 7	0.05 1		193 3.16 77	0.60 15	0.11 3	12.8 0.21 5			0	313 216	1
n8/26/68	70	1101 1101	75 8•1	394	56 2•79 69	12 0.99 24	5 0•22 5	0 • 0 2 1	0.00	192 3.15 77	32 0.67 16	3 0.08 2	10.2 0.16 4	0.4		0	311 214	1
01N/08W-24L01S 11/22/67	36	5100	7.8	350	51 2•54 66	0.90 23	8 0•35 9	2 0•05 1		190 3.11 80	0.60 15	0 • 1 4	3.1 0.05 1	0 • 4	0.05		203	1
01N/08W-34N01S 06/12/68	70	5050 	65 8•0	470	63 3•14 67	11 0.90 19	13 0•56 12	0.05 1		157 2•57 56	37 0.77 17	10 0•28 6	60.0 0.97 21	0.5	0.18		285 274	2
01N/08W-35J01S 05/23/68	33	5100	8.2	390	72 3•59 84	0 • 33 8	7 0•30 7	2 0•05 1	0.00	198 3•24 77	30 0 • 62 15	0 + 1 1 3	13.0 0.21 5	0.4	0.00		256 230	1
CUCAMONG	A HYC	RO SUB	AREA		Y0184													
015/07W-04B02S 11/22/67	36	5100	7.5	286	34 1.70 55	9 0.74 24	0.61 20	0.05 2	0.00	159 2.61 83	15 0.31 10	0.11	6.8 0.11 3	0 • 4	0.02		199 164	1
01N/07W-29E01S 11/22/67	36	5100	8.0	311	46 2·29 67	10 0.82 24	6 0•26 8	? 0•0 <u>5</u> 1	0.00	183 3.00 86	18 0.37 11	0 • 0 8 2	2.2 0.03 1	0 • 4	0.03		207 178	1
01N/07W-33A01S 11/22/67	36	5100	7. 7	404	2.19 53	12 0.99 24	0.91 22	0 • 05 1	0.00	120 1.97 49	35 0•73 18	10 0.28 7	63.0 1.02 25	0 • 4	0.00		288 247	1
0 N/07W-34H01S 11/22/67	36	5100	7.9	330	40 1.99 56	10 0 • 82 23	16 0•69 19	? 0•05 1	0.00	149 2.44 71	22 0 • 46 13	0.31 9	15 • 0 0 • 2 4 7	0 • 4	0 • 0 4		218 190	1
TEMESCAL	HYDF	RO SUBA	REA		Y0185													
035/06W-28H02S 04/19/68 1310	33	5050	68 8•1	1131	91 4.54 37	35 2.88 24	106 4•61 38	0 • 1 0 1		339 5.56 48	128 2•66 23	106 2•99 26	25.0 0.40 3	0.5	0.16		768 663	3
035/07W-15003S 03/20/68 1350	33	5050	6.9	2339	104 5.19 20	127 10.44 41	225 9.79 38	6 0.15 1		583 9.55 38	228 4.75 19	373 10.52 41	32.0 0.52 2	0 • 4	0.88		1534 1383	78
09/11/68 1248	33	5050	7.3	2469	179 8.93 33	7.32 27	248 10.79 40	9 0.23 1	0.00	621 10.18 37	250 5•20 19	396 11.17 41	40.0 0.64 2	0.5	0.94		1647 1518	8) 3(
035/07W-21N01S 04/09/68 1130	33	5050	7.5	1018	108 5.39 45	52 4.28 36	51 2.22 19	0.02		315 5,16 45	222 4.62 40	50 1.41 12	23.0 0.37 3	0.5	0.08		686 663	22
ô9/11/68 1220	33	5050	7.5	1063	107 5.34 44	56 4.60 38	47 2.04 17	0.05 0	0.00	304 4.98 41	246 5.12 42	60 1.69 14	29.0 0.47 4	0.5	0.05		727 697	49
035/07W-22A04S 09/11/68 1245	33	5050	7.1	2314	158 7.88 31	87 7.15 28	225 9.79 38	28 0.72 3	0.00	631 10.34 40	267 5.56 22	334 9.42 37	18.0 0.29	0.4	0.89		1520 1429	75 2:

MINERAL ANALYSES OF GROUND WATER

							3001		ACTI OIII									
TATE WELL NO. (COUNT	Y LAB SAMPLE	TEMP R PH	EC	MINER	AL CONS		S IN M	ILLIGRAN	VALENT	S PER LI		МО3	MILLIGRA F	MS PER	LITER S102	TD5 180C (*105C) SUM	TH NCH
							NA	К	C03			CL	1103	•	8	3102	30H	
IDDLE SANTA ANA				TY0180	Y0185	ANTA AN	A RIVER	HYDRO	UNIT	Y01	00							
35/07W-22H015 04/19/68 1445	33	5050	68 7.7	2070	154 7.68 35	58 4.77 22	208 9.05 42	8 0.20 1		358 5.87 27	270 5.62 26	329 9•28 43	39.0 0.63 3	0.5	0.86		1376 1244	623 330
35/07W-22J04S 03/20/68 1230	33	5050	7.9	1536	148 7.38 45	43 3.54 21	126 5.48 33	0.10 1		416 6.82 41	156 3.25 20	195 5.50 33	60.0 0.97	0.4	0.31		991 938	546 205
n9/11/68 i133	33	5050	7.5	1577	149 7.43 46	39 3.21 20	126 5.48 34	0.15 1	0.00	436 7.15 43	162 3.37 20	192 5.41 32	51.0 0.82 5	0.6	0.30		1005 941	532 175
35/07W-22L015 n9/11/68 1115	33	5050	7.7	1083	110 5.49 50	28 2.30 21	70 3.04 28	5 0•13 1	0.00	269 4.41 41	125 2.60 24	102 2.88 27	55.0 0.89 8	0.7	0.03		680 628	390 169
35/07W-24F015 14/19/68 1425	33	5050	66 8.2	1326	115 5.74 44	29 2.38 18	107 4.65 36	0.10	0.37 3	175 2.87 23	61 1.27 10	280 7.90 62	19.5 0.31 2	0.6	0.50		985 714	406 245
35/07W-25A02S 11/01/67	33	5050	7.2	1880						445 7.29		269 7.58			2.05			616 233
35/07W-25A035 10/04/67 1200	33	5050	7.0	1954	165 8.23 38	59 4.85 22	193 8.39 39	0.05 0		446 7,31 35	213 4.43 21	278 7.84 38	79.0 1.27	0 • 4	2.50	••	1241 1212	654 270
53/12/68 1820	33	5050	7.5	1766	154 7.68 42	37 3.04 16	175 7.61 41	5 0.13 1		373 6.11 33	199 4.14 22	252 7.11 39	64.0 1.03	0.5	2.20		1130 1073	537 212
35/07W-25M01S 04/19/68 1400	33	5050	8.2	1132	118 5.89 49	31 2.55 21	80 3.48 29	3 0.08	11 0.37 3	229 3.75 32	151 3.14 27	123 3.47 30	59.0 0.95	0.6	0.06	••	799 690	422 216
35/07W-27H02S 14/22/68 910	33	5050	66 8•2	1114	136 6.79 56	36 2.96 24	52 2•26 19	3 0.08	18 0.60 5	239 3,92 33	163 3.39 28	95 2•68 22	83.0 1.34	0 • 4	0.04		793 704	488 262
15/07W-35L015 14/22/68 930	33	5050	72 8•0	860	78	29	52 2•26 26	2 0 • 0 5		142 2•33 28	139	81	49.0	0 • 4	0.00		599 501	314 168
\$5/06W-04P01S 19/11/68 1045	33	5050	7.5	1227	137	41 3.37	74 3.22	0.10	0.00	296 4.85	264 5.50	94 2.65	45.0 0.72	0.8	0.09		852 806	511 268
\$\$/06W-08H01S 14/22/68 1035	33	5050	64 8.1	1213	143 7.13	25 25 2.05	86 3.74	2 0.05	0	292 4.78	200 4.16	19 107 3.02	60.0 0.97	0.5	0.05		856 768	460 220
\$5/07W~03F01S 14/22/68 955	33	5050	66 8.0	1265	132 6.59	16 68 5.59	29 55 2.39	0 1 0.07		263 4.31	352 7.33	69 1.94	7 46.0 0.74	0.5	0.09		955 853	609 394
450 -00-70		DO EUO			45	38	16	0		30	51	14	5					
ARLINGTO					Y0186	_	_			_								
35/05E-10J01S 14/15/68	33	5050	7.9	1705	46 2.29 14	0.41 2	310 13.48 83	0.10		45 0.74 5	526 10.95 69	147 4.14 26	0.0	8.1	1.47	••	1090 1070	135
35/05E-18M015 04/15/68 1420	33	5050	76 7.6	647	43 2.14 32	14 1.15 17	74 3.22 48	0.15 2		137 2.24 34	177 3.68 56	20 0.56 9	0.02	1.2	0.06		366 405	165 53
35/05E-18R01S 14/15/68 1400	33	5050 	76 7.6	1147	76 3.79 31	18 1.48 12	157 6.83 55	9 0.23 2		93 1.52 13	420 8.74 74	55 1.55 13	1.0 0.02 0	0.9	0.10		710 783	264 188
75/05E-20001S 74/15/68 1345	33	5050	80 7.5	1026	71 3.54 33	18 1.48 14	127 5.52 51	0.20 ?		90 1.47 14	366 7.62 73	48 1.35 13	2.0 0.03 0	1.1	0.07	••	660 686	251 177
35/05w-170015 05/17/68	33	5050	73 8.3	1270	99 4.94 38	33 2.71 21	121 5.26 40	0.08 1	0.00	352 5.77 45	137 2.85 22	96 2.71 21	84.0 1.35 11	0.3	0.30		778 747	383 94
RIVERSID	E HYI	DRO SUB	BAREA		Y0187													
25/05E-16A035 04/16/68 1210	33	5050	68 7.9	862	87 4.34 46	24 1.97 21	69 3•00 32	0.10 1		320 5.24 57	82 1.71 18	68 1.92 21	21.5 0.35	0.5	0.17	••	490 514	316 53
75/04E-10J01S 04/15/68 1200	33	5050	80 8•1	350	19 0.95 27	4 0.33 9	49 2•13 60	5 0 • 13 4		152 2.49 73	12 0·25	23 0.65	2.0 0.03	0.6	0.02	••	182 190	64
15/04W-28L025	36	5100	7.9	955	95 4.74 46	17 1.40 13	95 4.13 40	4 0.10	0.00	366 6.00 57	99 2.06 20	68 1.92 18	33.0 0.53 5	0.9	0.21		599 593	307
					40	13	70	1	U	31	20	10	5					

MINERAL ANALYSES OF GROUND WATER

							5001	HERN (CALIFORN	11A								
STATE WELL NO. DATE TIME		TY LAB SAMPLE	TEMP R PH	EC		AL CONST		S IN A	ERCENT	MS PER DIVALENT REACTAN	S PER L	ES			RAMS PER	_	TDS 180C (*105C)	•
					CA	MG	NA	К	C03	HC03	504	CL	N03	F	8	S102	SUM	
MIDDLE SANTA AL				TY0180	Y0187	ANTA ANA	RIVER	HYDRO	UNIT	Y01	00							Ì
015/05W-33A025 06/24/68	36	5100	7.6	839	111 5.54 62	18 1.48 16	43 1.87 21	0.10	0.00	435 7.13 77	17 0.35 4	56 1.58 17	8.5 0.14 1	0.3	0.08	••	497 472	23
025/04W-06A01S 11/30/67	36	5100	8.0	805	93 4.64 56	19 1.56 19	45 1.96 24	0.13 1	0.00	293 4.80 58	77 1.60 19	67 1.89 23	1.1	0.0	500.01	500	49 1452	6.3
025/04W-06R01S 03/18/68 910	36	5050	8.0	691	77 3•84 56	18 1•48 21	34 1.48 21	0 • 1 0 1		223 3.65 53	49 1.02 15	62 1.75 25	30.0 0.48 7	0.6	0.04	••	408 385	2
025/04W=33R025 04/25/68 1515	33	5050	7.5	791	49 2.44 31	28 2•30 29	70 3.04 39	0.10 1		192 3.15 41	50 1.04 13	88 2.48 32	63.0 1.02 13	0.6	0.17		483 448	2
025/05W-02P01S 04/16/68 1150	33	5050	66 7.8	812	105 5.24 56	17 1.40 15	60 2.61 28	3 0.08 1		354 5.80 64	70 1.46 16	27 0.76 8	65.0 1.05 12	0.3	0.05		471 522	-
025/05W-10C035 03/01/68	33	5050	7.7	868	85 4.24 44	21 1.73 18	83 3.61 37	0.10 1		390 6.39 69	70 1.46 16	38 1.07 12	18.0 0.29	0.5	0.09	••	573 512	3
02S/05W-10F01S 04/16/68 1200	33	5050	66 7.8	968	94 4.69 46	12 0.99 10	101 4.39 43	3 0.08 1		336 5.51 54	102 2.12 21	79 2•23 22	24.0 0.39 4	0.2	0.11	••	557 581	ě
025/05W-10G03S 03/01/68 1010	33	5050	 7.7	730	84 4•19 57	22 1.81 25	29 1.26 17	0 • 1 0 1		174 2.85 39	74 1 • 54 21	83 2•34 32	30.0 0.48 7	0.2	0.02	••	529 412	1
025/05W-12C01S 04/16/68 1130	33	5050	66 7.9	780	74 3.69 45	12 0.99 12	80 3.48 42	0 • 1 0 1		257 4.21 52	91 1•89 23	57 1.61 20	22.0 0.35 4	0.6	0.41		435	2
025/05W-14D015 10/04/67	33	4103	70 8•2	588	28 1.40 26	7 0.57 11	79 3.44 63	0.02 0	0.00	110 1.80 33	72 1.50 27	75 2•11 38	6.0 0.10 2	1.6	0.65	••	380 325	
11/08/67	33	4103	70 9•3	459	0.00	15 1•23 24	92 4•00 76	0.00	19 0.63 16	31 0.51 13	30 0.62 15	80 2•26 56	1.1	1.9	0.74		262 255≠	
ñ4/19/68 1545	33	5050	70 8.6	489	7 0.35 8	2 0.16 4	90 3.91 88	0.02 1	7 0.23 5	62 1.02 23	41 0.85 20	78 2.20 51	1.8	2.5	0.72		296 262	
025/05W-17R01S 04/16/68 1310	33	5050 	70 7.9	1285	150 7.48 48	53 4.36 28	80 3.48 23	0.10		512 8.39 55	170 3.54 23	97 2.73 18	28.0 0.45 3	0 • 4	0.15		892 835	5
025/05W-20R01S 04/16/68 1430	33	5050	64 7.4	1000	150 7.48 67	21 1.73 15	44 1.91 17	0.10		295 4.83 44	216 4.50 41	54 1.52 14	13.0	0.4	0.08		646 648	4 2
075/05W-22R015 04/16/68 1500	33	5050 	68 7.9	468	66 3,29 64	10 0.82 16	22 0.96 19	0.05 1		199 3.26 67	31 0.64 13	29 0.82 17	8.5 0.14 3	0.3	0.05		253 267≠	2
LAKE MATHEWS H'				Y01C0	Y01C2)		
04S/06W-16R02S 03/12/68	33	5050	7.4	1309	108 5.39 40	29 2.38 17	134 5.83 43	0.00		260 4.26 32	200 4.16 31	168 4.74 35	15.0 0.24 2	0.6	0.21		835 783	3
045/06W-21J01S 03/12/68 1210	33	5050	8.0	1477	198 9.88 56	45 3.70 21	90 3.91 22	2 0.05 0		332 5.44 32	362 7.54 44	96 2.71 16	96.0 1.55 9	8.0	0.19		1129 1054	6
n9/11/68 950	33	5050	7.4	1488	186 9.28 51	48 3.95 22	90 3.91 22	35 0.89 5	0.00	350 5.74 35	348 7.24 44	95 2•68 16	44.0 0.71 4	0.8	0.05		1113 1019≠	6
045/06W-22D01S 03/12/68 1212	33	5050	7.4	1199	146 7.28 55	32 2.63 20	76 3.30 25	2 0•05 0		244 4.00 31	285 5.93 45	76 2•14 16	61.0 0.98 7	0.8	0.13		836 799	4 2
n9/11/68 1005	33	5050	 7.6	1266	154 7.68 56	34 2.80 20	75 3.26 24	0.08 0	0.00	269 4.41 31	306 6•37 45	82 2.31 16	58.0 0.93 7	0.9	0.05		943 846	57 73
COLTON-RIALTO COLTON-				Y01D0 EA	Y0104													
015/04W-15N10S 11/03/67 935		5050	90												1.00		 -,-	
015/04W-18E015 12/01/67	36	5100	8.3	286	40 1.99 65	6 0.49 16	0.56 18	0.02	0.00	159 2.61 81	18 0.37 12	0.11 3	8.1 0.13 4	0.4	0.00		161 169	1

MINERAL ANALYSES OF GROUND WATER

ATE WELL DATE	NO. TIME	-	Y LAB SAMPLE	_	EC	MINER	AL CONS	TITUENTS	IN	MILLIGRA MILLIEQU PFRCENT CO3	IVALENT	5 PER L		I EON	HILLIGR/	AMS PER	LITER	TDS 180C (*105C) SUM	
TON-RIA	1 TO 1	TYDRO	SURUNT	T	Y01D0	S	ANTA AN	A RIVER	HYDRO	UNIT	Y01	00							
	_			SUBAR		Y0104													
5/04W-18 5/24/68	E015	36	5100	7.9	354	52 2.59 71	5 0.41 11	14 0.61 17	0.05 1		170 2.79 79	16 0.33 9	0.20 6	14.0 0.22 6	0.4	0.00		181 194	150 11
5/04W-21 5/24/68	R015	36	5100	7.3	915	80 3.99 42	17 1.40 15	90 3.91 41	0.15 2	0.00	327 5.36 56	84 1.75 18	84 2.37 25	0.8	1.0	0.45		541 524	270 1
\$/04W-28 1/30/67		36	5100	7.9	967	71 3•54 36	21 1.73 18	100 4•35 45	0 • 08 1	-	312 5.11 52	114 2•37 24	67 1.89	29.0 0.47 5	0.8	0.24		604 560	264 8
3/05W-12 3/24/68	N015	36	5100	7.8	351	59 · 2 • 94 75	5 0.41 10	12 0.52 13	2 0 • 05 1	-	182 2.98 80	14 0.29 8	0.17	18.0	0.3	0.00		197 206≠	168
REC	HE HI	roRo S	UBAREA			Y0105	••	10	•		_		·	J					
;/03W-18			4103	70	400	26	10	40	2	0	133	15	39	20.0	0.7	0.03		245	106
1/09/67	••		5.5.	8.0	4.00	1.30	0.82	1.74	0.05 1	0	2.18	0.31	1.10	0.32				219	0
/30/68	1230	33	5050	72 7.6	409	26 1.30 33	0.82 21	1.74 44	0.05 1		132 2.16 57	0.29 8	36 1.01 27	21.0 0.34 9	0.8	0.08		238 215	106
/03W-20 /09/67		33	4103	74 7•6	312	15 0.75 26	5 0.41 14	38 1.65 57	0.08 3	0.00	121 1.98 66	0.17 5	28 0•79 26	4.0 0.06 2	1.1	0.02		198 162	58 0
/30/68	1205	33	5050	74 7•5	307	0.70 24	6 0.49 17	37 1.61 56	0.08 3		112 1.83 63	0.21 7	27 0•76 26	6.0 0.10 3	1.3	0.05	••	206 160	60
/04W-12 /09/67		33	4103	74 7•9	481	35 1.75 38	9 0.74 16	46 2 44	0.05 1		164 2.69 58	15 0.31 7	50 1.41 30	15.0 0.24 5	0.8	0.04		285 254	124
/30/68	1245	33	5050	68 8•0	491	35 1•75 37	11 0.90 19	47 2.04 43	0.05		167 2.74 58	13 0.27 6	52 1.47 31	16.0	0.8	0.02		311 259	133
ER SANT BUN			DRO SUI		YOIEO	Y01E2			•										
/03E-17 /28/68	L015	36	5050	68 8.3	626	86 4.29 70	11 0.90 15	20 0.87 14	0.05 1		193 3.16 53	67 1.39 23	11 0.31 5	67.0 1.08 18	0.6	0.00		378 360	260 102
/03W-01 /27/68		36	5050	 7•9	314	32 1.60 52	8 0.66 21	18 0.78 25	0 • 0 5	0.00	119 1.95 67	24 0-50 17	10 0•28 10	11.0 0.18 6	0.5	0.00		195 164≠	113 15
/03W-03 /27/68		36	5050	8.0	534	63 3·14 61	9 0 • 74 14	27 1•17 23	2 0 • 05 1	0.00	162 2.65 54	36 0.75 15	16 0•45 9	68.0 1.10 22	0.3	0.00		320 301	194 61
/03W-09 /18/68		36	5050	8.0	344	41 2•04 58	8 0.66 19	17 0•74 21	80•0		156 2•56 75	16 0•33 10	13 0•37 11	10.0 0.16 5	0 • 4	0.18		216 186	135 7
/28/68		36	5050	8.3	364	41 2•04 57	8 0.66 18	18 0•78 22	3 0•08 2	0.00	159 2•61 75	19 0•39 11	10 0.28 8	12.0 0.19 6	0.3	0.10		206 190	135 5
/03W-14 /27/68		36	5050	8.2	696	102 5.09 75	11 0.90 13	17 0•74 11	3 0 • 08	0.00	190 3-11 47	69 1 • 4 4 22	13 0•37 5	108.0 1.74 26	0.7	0.00		445 418	300 144
/03W-15 /27/68		36	5050	 7•8	408	59 2.94 70	7 0.57 14	14 0.61 14	3 0 • 08	0.00	224 3.67 89	9 0•19 5	7 0 • 20 5	2.8 0.04	0.3	0.00		235 213	176 0
/03W-15 /27/68		36	5050	8.2	465	61 3.04 67	9 0.74 16	16 0.69 15	0.08	0.00	164 2.69 61	37 0•77 17	9 0•25 6	43.0 0.69 16	0 • 4	0.00		263 259	189 55
/03W-17 /18/68		36	5050	7.6	513	65 3.24 62	12 0.99 19	21	0 • 0 5		213 3.49	32 0.67	27	25.0 0.40 8	0.4	0.09	••	314 290	212
/28/68	••	36	5050	8.3	549	69 3.44	9	18 28 1.22	3 0 • 08	0.00	217 3.56	36 0.75	24 0.68	21.0	0 • 4	0.10	••	305 298	209
/29/68	Ĩ400	36	5050	7.5	619	79 3.94	17 1.40	28 1•22	2 0 • 05	0	67 260 4.26	14 40 0.83	13 41 1.16	28.0 0.45	0 • 4	0.13		394 364	267 54
1'03W-18 ('28/68	L015	36	5050	68 8.3	911	126 6.29 71	16 1.31 15	28 1.22 14	3 0.08	0.00	232 3.80 43	134 2.79 31	23 0.65	7 100.0 1.61 18	0.5	0.10		625 545	380 190

TABLE E+1

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE		EC	MINER	AL CONST	ITUENT	SIN	AILLIGRA AILLIEOU SERCENT	IVALENT	S PER L		,	MILLIGRA	MS PER	LITER	TDS 180C (*105C)
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	2105	SUM
UPPER SANTA AND BUNKER I				Y01E0	YOIE2	ANTA ANA	RIVER	HYDRO	UNIT	Y01	00						
015/03W-19G02S 03/18/68	36	5050 	8.1	446	53 2.64 57	7 0.57 12	30 1.30 28	3 0.08 2		167 2.74 62	37 0.77 17	20 0.56 13	21.0 0.34 8	1.1	0.04		281 255
ñ8/29/68 1330	36	5050	7.8	411	42 2.09 48	9 0.74 17	33 1•43 33	2 0·05 1		170 2.79 65	36 0.75 17	17 0.48 11	18.0 0.29 7	1.2	0.02	7-	252 242
015/03W-20R02S 05/28/68	36	5050	72 8.4	545	64 3.19 60	10 0.82 16	28 1.22 23	0.05 1	0.07 1	183 3.00 59	35 0.73 14	27 0.76 15	35.0 0.56 11	1.1	0.00		316 295
015/03W-28E02S 05/28/68 -+	36	5050	77 8•5	707	74 3.69 55	10 0.82 12	48 2.09 31	3 0.08 1	8 0.27 4	193 3.16 48	45 0.94 14	52 1 • 4 7 22	46.0 0.74 11	1.1	0.00		439 382
015/03W-28H01S 05/28/68	36	5050	 8.5	576	50 2.49 45	6 0.49 9	58 2•52 45	2 0•05 1	3 0.10 2	182 2.98 55	42 0.87 16	31 0.87 16	38.0 0.61 11		0.10		339 320
015/03W-28M035 05/28/68	36	5050	78 8.5	513	36 1.80 36	6 0.49 10	59 2.57 52	3 0.08 1	0.10 2	176 2.88 60	34 0.71 15	34 0.96 20	11.0 0.18 4	1.4	0.00		293 274
015/03W-31H015 05/28/68	36	5050	7 ₁ 8.5	1030	85 4.24 41	22 1.81 17	97 4.22 41	0.08 1	9 0.30 3	316 5.18 50	20 2.10 101	49 1.38 13	81.0 1.31 13	0.8	0.00		636 604
015/03W-35G08S 06/25/68	36	5100	 7•5	538	55 2.74 47	16 1•31 23	39 1.70 29	0.05 1	0.00	200 3.28 57	53 1•10 19	18 0.51 9	53.0 0.85 15	0.5	0.00		321 335
015/04W-03H025 05/29/68	36	5050	67 8•2	396	52 2.59 64	11 0.90 22	11 0.48 12	3 0.08 2	0.00	205 3.36 87	0.29 7	5 0 • 1 4 4	5.5 0.09 2	0.4	0.00		203
015/04W-05E05S 05/30/68	36	5050	8 • 3	513	74 3•69 70	10 0.82 16	15 0•65 12	0 • 1 0 2	0 0 • 0 0	239 3.92 77	0.92 18	0 • 17 3	5.9 0.09 2	0.3	0.00		285 277
015/04W-13G01S 08/29/68 1315	36	5050	 7.6	500	64 3•19 55	14 1•15 20	20 0•87 15	21 0.54 9		215 3•52 69	40 0.83 16	20 0.56 11~	13.0 0.21 4	0 • 4	0.42		326 299#
015/04W-13L015 03/18/68 1345	36	5050	 7.8	737	105 5.24 69	17 1.40 18	20 0.87 11	0.10		198 3.24 42	133 2.77 36	24 0.68 9	58.0 0.93 12	0.5	0.06		480 459
05/28/68 	36	5050	64 8.2	880	116 5.79 63	23 1.89 21	31 1.35 15	0.10 1	0.00	222 3.64 38	200 4.16 44	26 0.73 8	56.0 0.90 10	0 • 4	0.00		590 566
0]S/04W-13R01S 05/28/68	36	5050	8.3	359	47 2•34 66	6 0.49 14	15 0•65 18	0.05 1	0.00	144 2.36 70	24 0.50 15	0·17 5	22.0 0.35 10	0 • 4	0.00		204 194
015/04w-15L03S 11/03/67	36	5050	106 8•6	428	11 0•55 13	0.00	84 3•65 86	0.02	12 0.40 10	110 1.80 44	23 0.48 12	50 1•41 34	0.5 0.01 0	3.0	1.30		260 240
01S/04W-16R03S 11/03/67 900	36	5050	94												1.30		
015/04W-25803S 04/12/68	36	5100	 7.9	960	84 4 • 19 41	33 2•71 26	76 3•30 32	2 0•05 0	0.00	364 5.96 58	111 2•31 22	52 1•47 14	36.0 0.58 6	0.8	0.24	••	578 574
015/04W-258065 04/12/68	36	5100	7.9	908	83 4.14 42	29 2.38 24	76 3.30 33	2 0.05 0	0.00	347 5.69 57	113 2.35 24	48 1.35 14	33.0 0.53 5	0.7	0.29	••	563 556
015/04W-25809S 04/12/68	36	5100	8.1	698	62 3•09 43	14 1.15 16	68 2.96 41	2 0 • 05 1	0.00	281 4.60 63	55 1 • 1 4 1 6	41 1.16 16	24.0 0.39 5	0.7	0.04		400 405
ñ4/12/68	36	5100	8.2	603	74 3•69 60	12 0.99 16	33 1•43 23	0.08 1	0.00	210 3.44 55	55 1•14 18	26 0.73 12	55.0 0.89 14	0.9	0.04	••	374 363
015/04w-25C01S 05/28/68	36	5050	68 8.5	983	89 4.44 44	23 1.89 19	82 3.57 36	3 0.08 1	6 0.20 2	340 5.57 56	110 2.29 23	49 1.38 14	36.0 0.58 6	0.7	0.20		594 567
015/04W-25G01S 04/12/68	36	5100	8.1	939	78 3.89 42	20 1.64 18	82 3.57 39	0.05 1	0.00	300 4.92 53	101 2.10 23	48 1.35 15	56.0 0.90 10	0.7	0.18		568 536
015/04W-25H04S 04/12/68	36	5100	8.0	916	92 4.59 53	16 1•31 15	60 2•61 30	0.08 1	0.00	273 4.47 52	108 2•25 26	50 1•41 16	33.0 0.53 6	0.8	0.08		570 498

MINERAL ANALYSES OF GROUND WATER

							30011	HENN	CALIFORN	11 A								
TATE WELL NO.	COUNT	TY LAB SAMPLE		EC	MINERA	AL CONS	TITUENT:	S IN	MILLIGRA MILLIEQU PERCENT CO3	IVALENTS	S PER L		NO3	MILLIGRA F	MS PER	LITER	T ₀ S 180C (*105C) SUM	TH NCH
					_							CL	7103	r	0	3102	304	
PER SANTA AN				Y01E0		INTA AN	A RIVER	HYDRO	UNIT	Y01	00							
BUNKER				244	YOIEZ												222	100
N/03W-27N01S 5/27/68	36	5050	7.8	364	32 1.60 46	7 0.57 17	28 1•22 35	0.05 1		115 1.88 57	37 0.77 23	0.34 10	19.0 0.31 9	1.4	0.10		232 195	109
N/04W-068015 3/12/68 825	36	5050	70 7.4	585	3.09 48	28 2.30 36	21 0.91 14	0.15 2		283 4.64 74	57 1.19 19	14 0.39 6	5.1 0.08	1.4	0.00		349 334	270 38
1/04W-11L515 2/12/68 1530	36	5050	178 8.0	1478	23 1.15 9	0.00	271 11.79 88	17 0 • 43 3	1	74 1.21 9	482 10.03 75	75 2•11 16	0 • 0 0 • 0 0 0	6.3	2.46		1012 914	57
1/04W-13N055 3/29/68 1320	36	5050	7.6	683	94 4.69 63	19 1.56 21	25 1.09 15	0.05 1		218 3.57 47	131 2.73 36	26 0.73 10	34.0 0.55 7	0.6	0.09		464 439	313 134
1/04W-25A01S 5/29/68	36	5050 	8.1	597	43 2•14 37	10 0.82 14	64 2.78 48	0 • 0 Z	0.00	148 	94 1•96 35	20 0.56 10	41.0 0.66 12	2.2	0.30		375 349	148 27
//04W-25C025 /12/68	33	5100	8.3	954	77 3.84 38	29 2.38 24	86 3.74 37	0.05	0.17	334 5.47 53	103 2.14 21	51 1.44 14	62.0 1 10	0.8	0.08		593 581	312 29
1/04W-29E01S 1/14/68	36	5050	7.7	483	67 3.34 67	12 0.99 20	13 0.56 11	0 • 08 1		232 3.80 75	30 0.62 12	13 0.37 7	19.0 0.31 6	0.6	0.04		301 272	217 18
5/29/68	36	5050	65 8•2	512	70 3.49 68	12 0.99 19	14 0.61 12	3 0 • 0 8 1	0.00	232 3.80 75	32 0.67 13	8 0•22 4	21.0 0.34 7	0.5	0.00		314 275	224 34
1/29/68 1050	36	5050	7. 6	496	65 3•24 64	15 1.23 24	13 0.56 11	0 • 05 1	,	234 3.83 73	36 0.75 14	0.31 6	24.0 0.39 7	0.5	0.02		280 282	224 32
1/04W-29F015 1/14/68	36	5050	7•3	1077	199 9.93 71	36 2•96 21	24 1 • 04 7	0 • 1 3 1	3	292 4.78 34	364 7.58 54	34 0.96 7	38.0 0.61 4	0.6	1.18		924 846	645 406
1/29/68	36	5050	8•2	569	76 3•79 66	15 1•23 21	15 0•65 11	0 • 1 0 2		232 3.80 68	53 1•10 20	10 0•28 5	26.0 0.42 7	0.5	0.00		334 314	251 61
729/68 1105	36	5050	7.3	1046	156 7.78 64	35 2.88 24	31 1.35 11	0.10		281 4.60 39	286 5.95 50	29 0.82 7	34.0 0.55 5	0.5	0.80		757 715	534 303
//04W-29P025 //29/68	36	5050 	66 8.3	726	104 5.19 70	17 1.40 19	17 0.74 10	0.10		234 3.83 53	106 2.21 30	19 0.53 7	40.0 0.64 9	0.5	0.10		482 423	330 138
/05W-02A015 /30/68	36	5050	 7.9	477	50 2•49 52	14 1•15 24	26 1•13 23	0 • 0 2	0.00	232 3.80 76	36 0•75 15	12 0·34 7	7.0 0.11 2	1.0	0 • 0 0		292 762	182
/03W-26E015 /12/68	33	5100	7.0	197	21 1•05 52	7 0•57 28	8 0•35 17	0 • 0 5	0.00	93 1•52 79	3 0•06 3	9 0•25 13	5.7 0.09 5	0•0	0 • 0 0		105 102	81 5
/03W-270015 /12/68	36	5100	6.8	234	24 1•20 51	0.49 21	14 0 • 61 26	0 • 0 9	5 0.00	103 1.69 72	8 0 • 1 7 7	16 0 • 45 19	3.0 0.05 2	0 • 0	0.01		119 124	85 0
/04W-19A01S /05/68	36	5100	6.2	155	9 0•45 42	3 0•25 23	8 0 • 35 32	0 • 0 2 2		37 0.61 57	5 0 • 1 0 1 0	7 0.20 18	10.0 0.16 15	0.0	0.01		54 62	35 4
/04W-30H01S /27/68 1030	36	5050	64 7•1	259	32 1.60 62	6 0.49 19	9 0•39 15	0.10	1	111 1.82 69	31 0.64 24	0 • 1 7 6	0.7 0.01 0	0.2	0.00		134 144	105 14
/04W-31N02S	36	5050	68 7•3	610	63 3•14 46	33 2.71 40	20 0.87 13	0.13	5 3	276 4.52 68	87 1•81 27	12 0.34 5	0.00	1.2	0.00		385 357	293 67
/05W-34A015 /30/68	36	5050	8.0	638	85 4.24 64	16 1.31 20	23 1 15	0.05		307 5.03 77	56 1.16 18	10 0.28 4	3.7 0.06	1.8	0.00		350 349	278 26
REDLAND	S HYO	RO SUBA	AREA		Y01E3													
)/03W-13P02S /27/68	36	5050	8.2	631	84 4.19 68	14 1.15 19	17 0.74 12	0.10		202 3.31 55	55 1.14 19	0.34 6	75.0 1.21 20	0.7	0.00		366 361	267 102
) /03W-04E01S /24/68	36	5100	8.4	819	53 2.64 31	21 1.73 20	92 4-00 47	0.08	3 2 8 0.07 1 1	310 5.08 59	60 1•25 15	62 1.75 20	26.0 0.42 5	0.7	0.00		474 473	219

MINERAL ANALYSES OF GROUND WATER

							3001	TIERIY C	ALTFORM	14							
STATE WELL NO. (COUNT	SAMPLE	R PH	EC		AL CONST		S IN M	ILL I EQU	REACTAN	S PER L CE VALU	ES		MILLIGR			180C (*105C)
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	5102	SUM
UPPER SANTA ANA RESERVIO				YOIEO	Y01E5	ANTA ANA	RIVER	HYDRO	UNIT	Y01	00						
015/03w-35H035 05/28/68	36	5050	8.2	590	58 2.89 49	14 1.15 20	41 1.78 30	0.05	0.00	205 3.36 59	52 1.08 19	0.37 6	56.0 0.90 16	0.5	0.00		352 338
MILL CRE	EK HY	DRO SU	BAREA		Y01E8												
015/02W-14L015	36	5050		483	66	10	18	2	0	208	53	6	6.1	0.8	0.00		283
05/27/68			8.3		3.29	0.82	0.78 16	0.05	0.00	3.41 71	1.10	0.17	0.10				265
5YCAMORE	HYDR		REA		Y01E9												
01N/05W-23A025 10/04/67 1130	36	5050	8.1	506	3.19 59	15 1.23 23	20 0.87 16	0.08 1	••	239 3.92 72	1.08 20	12 0.34 6	5.0 0.08 1	0.5	0.00		280 289
03/17/68	36	5050	 7.8	512	67 3•34 60	16 1•31 24	19 0.83 15	0.08 1		241 3.95 71	52 1.08 19	0.37 7	9.0 0.14 3	0 • 4	0.02	••	315 298
08/29/68 1000	36	5050	7.6	503	66 3.29 60	16 1.31 24	19 0.83 15	2 0.05 1		241 3.95 69	57 1.19 21	13 0.37 6	12.0 0.19	0.6	0.02	••	310 305
SÃN TIMOTEO HYDI YUCAIPA			EA	Y01F0	Y01F1			•									
025/02W-04L01S	36	5100		448	59	12	24	2	0	237	38	5	6.2	0.6	0.00		257
12/01/67	30		8.3	440	2.94	0.99	1.04	0.05 1	0.00	3.88	0.79	0.14	0.10	0.0	0.00		264
06/25/68	36	5100	7.9	464	3.04 60	0.99 20	22 0.96 19	0.05 1	0.00	222 3.64 74	42 0.87 18	0.28 6	6.7 0.11 2	0.5	0.00	••	264 266
025/02W-08K015 12/01/67	36	5100	8.0	418	30 1.50 34	7 0.57 13	51 2•22 51	2 0.05 1	0.00	188 3.08 72	34 0•71 16	17 0.48 11	1.8 0.03	0.5	0.04		254 236
025/02W-08K025 12/01/67	36	5100	8.0	418	30 1.50 34	7 0.57 13	51 2•22 51	2 0•05 1	0.00	188 3.08 72	34 0.71 16	17 0.48 11	1.8 0.03	0.5	0.04		254 236
n6/24/68	36	5100	7.8	461	40	8	48	1	0.00	220 3.60 75	26 0•54	21 0.59	3·2 0·05	0.6	0.02	••	195 256
SAN TIMO	750 4	V000 E	IDADEA		42	14	44	0	0	75	11	12	1				
10					Y01F2	• •		_			•			•			202
025/01W-30E015 04/30/68 1010	33	5050	8.1	412	41 2.04 48	16 1.31 31	20 0.87 20	0.02 1		208 3.41 81	0.19 4	0.53 13	6.0 0.10 2	0.6	0.01		203 215
075/01W-34Q015 04/23/68 1000	33	5050	60 8•0	398	38 1.90 46	17 1•40 34	19 0•83 20	0 • 0 2 1		219 3.59 87	10 0•21 5	9 0•25 6	4.0 0.06 2	0.5	0.00		222 207
025/02w-158015 12/01/67	36	5100	8.1	530	41 2.04 36	12 0.99 17	59 2•57 46	0 • 02 0	0.00	214 3.51 63	58 1•21 22	26 0.73 13	5.8 0.09 2	1.3	0.04		319 310
n6/25/68 	36	5100	7.4	533	42 2•09 37	11 0.90 16	59 2•57 46	2 0•05 1	0.00	210 3.44 61	61 1•27 22	29 0•82 14	6.6 0.11 2	1.5	0.05		310 316
025/02W-24E025 04/30/68 1100	33	5050	72 7•8	387	25 1•25 32	10 0.82 21	42 1.83 47	0.02		179 2.93 76	13 0•27 7	19 0.53 14	7.3 0.12 3	0.6	0.00		222
025/02w-250015 10/09/67	33	4103	62 8•0	493	41	21 1.73	33 1.43	1 0 • 02	0.00	262 4.29	20	20 0.56	5.0 0.08	0.6	0.00		275 271
400 4404 050445			4.0		39	33	27	0	0	80	8	10	1				
025/02W-350015 10/09/67	33	4103	68 8•2	371	27 1•35 35	7 0.57 15	43 1.87 49	0 • 0 2 1	0.00	181 2.97 78	0 • 29 8	18 0•51 13	0.02	1.3	0.00		207
04/30/68 1130	33	5050	66 8•0	370	28 1•40 37	7 0.57 15	40 1.74 46	0.02 1		178 2.92 79	0.31 8	16 0.45 12	0.5 0.01 0	1.6	0.01		210 197
025/03W-108025 12/20/67	36	5100	7.6	487	29 1.45 29	9 0.74 15	63 2.74 55	0.05 1	0.00	200 3.28 67	26 0.54 11	30 0.85 17	13.0 0.21	0.4	0.04	••	252 271
i2/22/67	36	5100	7.7	468	26 1.30 27	9 0.74 15	63 2.74 57	2 0.05	0.00	195 3.20 67	23 0.48 10	31 0.87 18	12.0	1.1	.0.04		254 263
035/01w-03K015 04/23/68 945	33	5050	61 8.0	395	39 1.95 46	17 1.40 33	19 0.83 20	1 0 • 02 1		216 3.54 87	11 0•23 6	9 0.25 6	4.0 0.06 2	0.4	0.01		227 207

MINERAL ANALYSES OF GROUND WATER

TE WELL	NO. TIME	COUN	TY LAB Sample		EC	MINER	AL CONS	TITUENTS	S IN	MILLIGRA MILLIEGU PERCENT CO3	IVALENT	S PER L		EON	MILLIGR F	AMS PER	LITER S102	TDS 180C (*105C) SUM	TH NCH
								A RIVER			Y01				·	b	3102	30.1	
TIMOTE			BUNIT	UBAREA	YOIFO	Y01F2													
/01W-03 /10/67		33	4103	63 8.1	365	35 1.75 45	14 1.15 30	21 0.91 24	0.05		200 3.28 84	10 0.21 5	13 0.37 9	3.5 0.06 1	0.4	0.00		184 198	145 0
/01W-05 /30/68		33	5050	70 8.4	413	3 0.15 4	0.08 2	83 3.61 92	0.08	0.20	133 2.18 57	5 0.10 3	40 1.13 29	15.0 0.24 6	0.7	0.01		234 223	12
/01W-09/ /09/67	0015	33	4103	70 8•1	312	31 1.55 48	9 0•74 23	20 0.87 27	0 • 0 5	0.00	158 2.59 81	0 · 04 1	16 0.45 14	6.0 0.10 3	0.6	0.00		187 165	114
/30/68	945	33	5050	8.0 8.0	314	30 1.50 47	9 0.74 23	20 0.87 27	0 • 0 5	5	157 2.57 82	0 • 0 4	14 0.39 13	7.8 0.12 4	0.6	0.02		183 163	112
CHE	RRY \	ALLE	HYDRO	SUBAR	EA	Y01F3					ب								
/01W-22 /23/68		33	5050	60 7.6	419	46 2.29 53	14 1.15 27	19 0.83 19	0.02		171 2.80 67	41 0.85 20	13 0.37 9	8.3 0.13 3	0.6	0.00		253 227	172 32
/01W-278 /10/67		33	4103	62 8.1	538	47 2.34 41	20 1.64 29	39 1.70 30	0.05	0.00	234 3.83 66	61 1.27 22	22 0.62 11	6.0 0.10 2	0.9	0.02		313 313	200
/23/68	1015	33	5050	63 8.0	537	50 2.49 44	19 1.56 27	37 1.61 28	0.05	i	229 3.75 67	59 1•23 22	17 0.48 9	7.5 0.12 2	0.9	0.01		314 305	203 15
/02W-14I /09/67		33	4103	76 8•4	376	14 0.70 18	0.41 11	61 2.65 70	0.02	0.23	136 2.23 60	17 0.35 9	30 0.85 23	3.5 0.06 1	0.8	0.00		201 207	55 0
/30/68	1040	33	5050	82 8•2	379	17 0•85 22	5 0•41 11	57 2•48 66	0 • 0 2 1		153 2.51 68	0.31 8	28 0.79 21	5.3 0.08 2	0.7	0.00		222 205	63 0
/02W-240 /09/67		33	4103	74 8 • 1	332	14 0.70 21	7 0.57 17	2 61	0 • 0 <u>2</u> 1	_	146 2.39 72	15 0.31 9	19 0•53 16	4.0 0.06 2	0.7	0.00		179 179	64
CHI	CKEN	HILL	HYDRO	SUBARE	A	Y01F4													
/02W-15/ /01/67		36	5100	8.3	542	41 2.04 36	12 0.99 17	61 2.65 46	0.0 <u>5</u>		217 3.56 62	74 1.54 27	19 0.53 9	7.3 0.12 2	1.9	0.00		336 325	152 0
25/68		36	5100	7•8	529	2•19 38	11 0•90 16	61 2•65 46	0 • 05 1		212 3.47 61	66 1•37 24	24 0.68 12	7.6 0.12 2	1.8	0.09		316 322	155 0
GATE	YAW	HYDRO	SUBARI	EA		Y01F5													
'02W-25H '01/67		36	5100	8.1	546	47 2.34 41	0.90 16	56 2.43 42	0.05 1	0.00	237 3.88 68	61 1.27 22	16 0.45 8	8.4 0.13 2	0.5	0.06		337 319	163
25/68		36	5100	7.9	569	57 2•84 46	0.90 15	55 2•39 39	0 • 0 5 1	0.00	261 4•28 71	60 1•25 21	12 0•34 6	8.9 0.14 2	3.3	0.03		341 338	188
Sout	TH ME	SA HY	DRO SUE	BAREA		Y01F7													
'01W-31F '01/67		36	5100	8.3	483	59 2.94 56	13 1.07 20	28 1.22 23	0.05 1	0.00	239 3.92 74	36 0.75 14	0.39 7	13.0 0.21 4	0.5	0.00	••	278 283	201
25/68	••	36	5100	7.7	480	60 2•99 56	13 1.07 20	28 1•22 23	0 • 0 5 1		229 3•75 72	35 0.73 14	17 0•48 9	14.0 0.22 4	0.5	0.01		286 283	203 15
102W-12M 101/67		36	5100	8.3	452	31 1•55 31	9 0.74 15	59 2•57 52	0.05 1	0.00	200 3.28 69	41 0.85 18	22 0•62 13	1 • 0 0 • 02 0	1.2	0.00		241 265	114
25/68		36	5100	8.0	452	36 1.80 36	9 0.74 15	56 2•43 49	0.02		198 3.24 67	38 0.79 16	25 0.70 14	6.7 0.11 2	0.3	0.00		277 270	127
02W-140 01/67		36	5100	8.1	547	43 2•14 37	0.90 15	64 2.78 47	0.02	0.00	214 3.51 61	71 1.48 26	0.65 11	7.1 0.11 2	1.3	0.01		348 327	153
25/68		36	5100	7.8	545	45 2.24 39	12 0.99 17	58 2•52 43	2 0•05 1	0.00	215 3.52 63	61 1•27 23	24 0.68 12	7.7 0.12 2	0.4	0.02		321 316	162 0
02W-140 01/67	0015	36	5100	8.3	529	43 2.14 38	11 0.90 16	59 2.57 45	0.05 1	0.00	217 3.56 64	67 1•39 25	18 0.51 9	7.1 0.11 2	1.6	0.00		331 316	153 0

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO. DATE TIME		TY LAB. SAMPLE		EC	MINER	AL CONS	TITUENT	S IN M	ILLIGRA ILLIEQU ERCENT	IVALENT	S PER L			MILLIGRA	MS PER	LITER	180C
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	В	5102	(*105C) SUM
SÃN TIMOTEO HY	DRO SI	JBUNIT		Y01F0	S	ANTA AN	A RIVER	HYDRO	UNIT	Y01	00						
SOUTH M					Y01F7												
025/02W-14D01S 06/25/68	36	5100	7.8	534	2.19 38	12 0.99 17	57 2.48 43	0.05 1	0.00	217 3.56 62	59 1.23 21	30 0.85 15	0.11	1.5	0.03	••	307 319
NOBIE C	REEK I	TYDRO S	UBAREA		Y01F9												
025/01W-22A035 10/10/67	33	4103 	63 8•1	437	47 2•34 52	16 1•31 29	18 0.78 17	0.05 1	0.00	171 2.80 61	57 1•19 26	17 0•48 10	8.5 0.14 3	0.6	0.01	••	249 251
02S/01W-22H01S 10/10/67	33	4103	61 7.9	512	59 2.94 55	17 1.40 26	23 1 18	2 0•05 1	0.00	248 4.06 73	35 0.73 13	24 0.68 12	6.0 0.10 2	0.6	0.00		275 289
025/01W-22H025 10/10/67	33	4103	61 8•1	448	46 2.29 50	16 1.31 28	22 0•96 21	0.05 1	0.00	203 3.33 70	38 0.79 17	19 0.53 11	4.0 0.06	0.6	0.00	•-	242 248
n4/23/68 1030	33	5050	60 8•1	457	49 2.44 52	16 1.31 28	21 0.91 19	2 0.05 1		200 3.28 72	37 0•77 17	16 0.45 10	5.0 0.08 2	0.6	0.00		266 245
SĀN BERNARDINO BEAR VAI	-		-	Y01G0	Y01G1												
02N/02E-19A01S 04/15/68	36	5050	 7.8	284	28 1.40 46	14 1.15 38	10 0.43 14	1 0.02 1	0.00	161 2.64 90	7 0.14 5	5 0•14 5	0.5 0.01	0.2	0.00		171 145
02N/01W-01L01S 04/16/68	36	5100	7.6	427	65 3.24 68	13 1.07 22	9 0 • 39 8	2 0•05 1	0.00	266 4.36 94	5 0•10 2	5 0 • 14 3	0.6	0.2	0.00	••	247 231
BALDWIN	HYDRO	SUBAR	EA		Y01G3												
02N/01E-24E015 05/23/68 1330	36	5050	 7.6	444	70 3.49 70	14 1.15 23	7 0.30 6	0.02 0		283 4.64 94	0.02	10 0.28 6	1.0	0.1	0.00		185 244
02N/02E-08C01S 05/23/68 1430	36	5050	7.3	911	81 4.04 40	27 2•22 22	83 3.61 36	5 0•13 1		269 4.41 45	195 4.06 41	35 0.99 10	20.0 0.32 3	0.6	0.04	••	572 579
02N/02E-19A025 05/23/68 1245	36	5050 	 7•0	300	28 1•40 43	16 1.31 41	11 0•48 15	2 0.05 2		167 2•74 84	12 0•25 8	10 0•28 9	0.00	0.4	0.00	•-	129 162
					-		NTO NA	5 4	DO 111177	V							
PERRIS HYDRO SU PERRIS V			SUBAR	Y02A0	Y02A1	AN JACII	NIO VALI	.ET HTD	RO UNIT	Y02	00						-75
035/04E-22A025 04/15/68 1135	33	5050	78 8.1	365	9 0.45 13	0.00	68 2.96 85	2 0.05 1		94 1.54 46	59 1.23 36	20 0.56 17	2.0 0.03 1	0.4	0.03		192 207
035/03W-06H01S 05/16/68	33	5050	71 8.1	1170	91 4.54 43	37 3.04 29	63 2.74 26	5 0.13 1	0.00	90 1.47 15	27 0.56 6	231 6.51 65	95.0 1.53 15	0.4	0.00		808 594
035/03W-29E015 04/25/68 1335	33	5050 	7.7	577	22 1•10 20	5 0 • 4 1 8	85 3•70 68	9 0•23 4		85 1•39 27	13 0•27 5	114 3•21 63	14.0 0.22 4	1•1	0.79		310 306≉
035/03W-32H025 10/04/67	33	4103	76 7.9	553	29 1.45 29	6 0.49 10	67 2.91 59	2 0.05 1	0.00	74 1,21 24	20 0.42 8	110 3.10 63	13.0 0.21 4	1.1	0.73		316 286
045/03W-06Q01S 04/25/68 1255	33	5050	8.0	858	52 2•59 29	11 0•90 10	121 5•26 59	3 0•08 1		80 1.31 16	26 0•54 7	207 5.84 73	16.0 0.26 3	0.8	0.51		556 477≉
045/03W-07J01S 04/25/68 1245	33	5050	8.0	1285	102 5.09 40	31 2.55 20	110 4.78 38	7 0.18 l		130 2.13 17	29 0.60 5	328 9.25 76	15.0 0.24 2	0.5	0.40		1008 687
045/03W-17A01S 04/25/68 1230	33	5050	7.8	1936	171 8.53 43	48 3.95 20	166 7.22 36	5 0.13 1		204 3.34 17	63 1.31 7	521 14.69 75	18.0 0.29	0.6	0.86		1449 1094
045/03W-17J01S 10/04/67	33	4103	76 7.9	1519	110 5.49 38	43 3.54 25	121 5.26 37	0.10	0.00	147 2.41 17	53 1.10 8	373 10.52 74	15.0 0.24 2	0.6	0.79		1285 793
045/03W-21F01S 04/25/68 1210	33	5050	7.9	1560	140 6.98 44	32 2.63 16	140 6.09 38	8 0.20 1		99 1.62 10	41 0.85 5	467 13.17 82	20.0 0.32 2	0.6	0.39		1204 898
045/03w-24P015 05/13/68 830	33	5050	77 8.0	710	43 2.14 33	12 0.99 15	74 3.22 50	0.10		126 2.06 32	15 0.31 5	133 3.75 58	23.6 0.38 6	0.3	0.12		409 367

MINERAL ANALYSES OF GROUND WATER

							5001	HENN C	ALIFORNI	A								
ATE WELL NO. DATE TIME		Y LAB SAMPLE		EC	MINERA	L CONS	TITUENT	S IN M	ILLIGRAM ILLIEOUI PERCENT F CO3	VALENTS	PER L	ITER	N03	MILLIGRA F	MS PER	LITER S102	TDS 180C (*105C SUM	-
														·	0	3.02	3011	
RRIS HYDRO SU PERRIS			SUBAR	Y02A0 EA	YOZAI	N JACI	NIU VAL	LET HYD	TINU OR	Y02(90							
S/03W-26F01S 0/06/67	33	4103	7.8	5747	443 22.10 36	121 9.95 16	649 28.23 47	0.31 0	0.00	88 1.44 2	259 5.39 9	1892 53.35 88	7.0 0.11 0	0.4	1.70	••	3947 3429	1604 1532
4/25/68 1145	33	5050	7.4	6600	593 29.59 41	112 9•21 13	763 33.19 46	0.28 0		90 1.47 2	286 5.95 8	2250 63.45 89	2.5 0.04 0	0.4	1.63		4682 4064	1942 1868
5/03W-26J01S 0/06/67	33	4103	7.8	1779	62 3.09 19	5 0.41 2	299 13.01 78	5 0.13 1	0.00	60 0.98 6	43 0.89 5	525 14.80 88	7.5 0.12	0.5	0.50	••	1011 977	175 126
4/25/68 1135	33	5050	7.6	1800	73 3.64 22	2 0.16 1	290 12.61 76	3 0.08 0		61 1.00 6	44 0.92 5	511 14.41 87	13.0 0.21	0.5	0.47		1016 967	190 140
S/03W-28H01S 4/25/68 1200	33	5050	7.6	2860	242 12.07 40	87 7.15 24	248 10.79 36	3 0.08 0	,	234 3.83 13	140 2.91 10	779 21.97 74	53.0 0.85	0.6	0.26		2227 1668	962 770
S/04W-24A01S 0/04/67	33	4103	78 7.9	1060	76 3.79 34	32 2.63 24	103 4.48 41	5 0.13	0.00	137 2.24 21	285 5.93 55	93 2.62 24	2.0	0.6	0.17		720 665	321 209
4/25/68 1310	33	5050	8.0	1084	70 3.49 30	40 3.29 28	107 4.65 40	8 0•20 2		151 2.47 21	290 6.04 52	104 2.93 25	4.0 0.06	0.5	0.15		714 698	339 216
S/03W-03R01S 5/17/68	33	5050	80 8.8	1180	75 3.74 37	10	125 5.44 54	3 0.08	0.13	65 1.06	22 0.46 4	296 8•35 83	5.0 0.08	1.0	0.60		640 574	228 168
MENIFEE	HYODO	CHRADI	FA		Y02A2	Ü	34		•	**	•	63						
(\$/03W-21001\$ 4/23/68 1250	33	5050 	76 7.6	2950	. 361 18.01	82 6.74	109	7 0 • 18		167	140 2•91	857 24 • 17	23.0	0.3	0.05		2512 1662	1239 1095
(\$/03W-35P01S 5/17/68	33	5050	8.0	3170	191 9•53		406 17.66	6 0.15	0.00	311 5.10	10 427 8.89	620 17.48	1 10.0 0.16	0.3	0.60		2060 1869	703 448
(\$/03W-36D02S 5/17/68	33	5050	8.1	1380	30 114 5•69	14 42 3.45	55 97 4•22	0 4 0.10	0 0 0.00	16 122 2.00	28 220 4.58	230 6.49	9.6 0.15	0.4	0.10		949 778	457 357
G/03#-02F01S 5/17/68	33	5050	 7.7	797	42 61 3•04	26 24 1.97	63 2•74	1 3 0•08	0 0 0•00	15 162 2.65	35 105 2•19	86 2•42	22.0 0.35	0 • 4	0.00		522 444	251 118
(5/03W-16C01S 1/23/68 1200	33	5050	58 7.9	969	39 53 2.64	25 27 2•22	35 103 4.48	7 0.18	0	35 80 1.31	29 268 5.58	32 95 2•68	1.0 0.02	0.5	0.10		618 594	243 178
(5/03W-20C015 1/23/68 1145	33	5050	60 7.5	574	28 45 2•24	23 18 1.48	47 40 1.74	2 0.05		14 159 2.61	58 26 0•54	28 64 1.80	36.0 0.58	0 • 4	0.03		346 310	186 56
W. W					41	27	31	1		47	10	33	10					
WINCHEST 63/02W-03M01S 1/23/68 1410	TER HY	5050	70 8•2	774	Y02A3 28 1•40	41 3.37	71 3•09	4 0 • 10	10 0•33	254 4.16	51 1•06	64 1 • 80	36•0 0•58	0.6	0 • 12		485 431	239 14
C5/02W-19N01S	33	5050	78 7.5	735	17 49 2.44	15 1.23	70 3,04	1 2 0.05	4	52 134 2.20	13 45 0.94	108 3.04	7 46.0 0.74	0.3	0.02	••	480	184
					36	18	45	1		32	13	44	11				402	31
G/02w-22G01S 1/23/68 1500	33	5050	70 7.8	667	45 2.24 36	18 1.48 23	57 2•48 39	0.10		162 2.65 42	45 0.94 15	87 2.45 39	18.0 0.29 5	0.6	0.03		401 355	186 37
G/02W-25C01S 5/16/68	33	5050	8.1	1620	125 6.24 40	25 2.05 13	163 7.09 46	6 0.15 1	0.00	106 1.74 11	236 4.91 32	298 8.40 55	15.0 0.24 2	0.3	1.50		1050 922	415 328
G/02W-36001S 5/16/68	33	5050	73 7.9	2710	264 13.17 47	57 4.69 17	226 9.83 35	7 0.18 1	0.00	215 3.52 13	453 9.43 34	515 14.52 52	15.0 0.24 1	0.2	1.00		1970 1644	894 717
LAKEVIE	HYDR	O SUBA	HEA		Y0244													
6/02W-08L015 3/05/68 1400	33	5050	8.1	1028	54 2.69 28	16 1.31 14	122 5•31 56	5 0•13 1		149 2.44 26	35 0.73 8	223 6.29 66	4.8 0.08	0.5	1.80	••	579 536	201 78
G/02W-17002S 5/13/68 1040	33	5050	74 7.6	813	54 2.69 36	15 1.23 16	81 3.52 47	0.10		149 2.44 32	51 1.06 14	137 3.86 51	9.0 0.14 2	0.4	0.89	••	449 426	197 74
G/02W-18A01S 5/13/68 1100	33	5050	76 7.8	1054	56 2.79 29	17 1.40 14	124 5.39 55	5 0.13 1		157 2.57 26	24 0.50 5	234 6.60 68	3.0 0.05 0	0.5	1.80		637 543	210 81

MINERAL ANALYSES OF GROUND WATER

							2001	HEKN C	ALTHURN	IA								
STATE WELL NO. DATE TIME		TY LAB SAMPLE	TEMP R PH	EC	MINER	AL CONS	TITUENT	S IN M	ILLIGRA ILLIEQU ERCENT CO3	IVALENT:	S PER L		N03	MILLIGRA F	MS PER	LITER SIO2	TDS 180C (*105C) SUM	,
							NTO VAL							i i		••••	34	
PERRIS HYDRO S LAKEVIE			REA	0AS0Y	Y02A4	AN JACI	NIO VAL	LET HYD	KO UNIT	Y02	00							
045/02W-18B015 05/13/68 1030		5050	76 7.5	1192	60 2.99 28	18 1.48 14	139 6.05 57	0.13 1		155 2.54 23	0.25 2	284 8.01 74	2.3 0.04 0	0.4	1.80		743 599	ě
045/03W-130015 10/06/67	33	4103	 7.9	772	46 2•29 32	16 1.31 18	80 3.48 48	0.10 1	0.00	135 2.21 31	15 0.31 4	160 4.51 64	3.0 0.05 1	0.2	0.55		436 392	3
n4/25/68 1030	33	5050	74 8.0	774	47 2.34 32	19 1.56 21	77 3.35 45	0.10		134 2.20 31	0.29	161 4.54 64	5.0 0.08 1	0.4	0.51		460 394	1
045/03W-21F01S 10/06/67	33	4103	 7.6	1623	137 6.84 48	30 2.47 17	113 4.91 34	0.10	0.00	96 1.57 11	34 0.71 5	417 11.76 82	20.0	0.6	0.40		1108 804	6 13
045/03W-24P01S 04/25/68 1120		5050	 7.9	703	2.19 34	12 0.99 15	73 3.17 49	0 • 1 n 2	~-	127 2.08 32	16 0.33 5	132 3.72 57	22.0 0.35 5	0 • 4	0.06		410 366	1
05/16/68	33	5050	76 8.4	742	43 2.14 32	13 1.07 16	79 3.44 51	0.10 1	0.07	127 2.08 32	16 0.33 5	132 3.72 57	23.0 0.37 6	0.2	0.10	••	422 375	3
045/03w-25D02S 05/16/68	33	5050	79 8•2	3550	260 12.97 39	76 6.25 19	326 14.18 42	0.20 1	0.00	155 2.54 7	295 6.14 18	874 24.65 73	22.0 0.35	0.2	2.00		2780 1940	8
HEMET H	YDRO S	SUBAREA			Y02A5													
055/01E-07001S 05/16/68	33	5050	73 8•3	653	66 3•29 51	10 0.82 13	50 2.17 34	5 0•13 2	0.00	187 3.06 49	97 2•02 32	29 0.82 13	25.0 0.40 6	0.6	0.00		386 375	à
045/01W-18N01S 01/26/68 1100		5050	8.0	701	42 2•09 29	11 0.90 13	92 4•00 56	6 0•15 2		135 2.21 32	165 3.43 49	44 1.24 18	3.0 0.05	0.6	0.21	••	500 431	1
045/01W-18N02S 01/26/68 1115		5050	8.0	549	34 1.70 30	9 0.74 13	72 3•13 55	5 0•13 2		177 2.90 53	83 1•73 31	30 0.85 15	2.0 0.03 1	0.7	0.08		254 323	1
045/01w-31D01S 10/06/67	33	4103	8.2	1880	101 5.04 28	36 2.96 16	228 9.92 55	10 0.25 1	0.00	141 2.31 13	325 6.77 38	311 8.77 49	6.0 0.10 0	0.9	0.90		1157 1089	4
n4/25/68 920	33	5050 -~	8.0	1807	105 5.24 29	30 2.47 13	239 10.40 57	0.15 1		139 2.28 12	329 6.85 36	337 9.50 51	7.4 0.12 1	0.9	0.96		1164 1124	
045/02W-11C015 10/06/67	33	4103	7.8	725	40 1.99 29	7 0.57 8	96 4.17 61	0.13 2	0.00	138 2.26 33	146 3.04 44	57 1.61 23	2.0	0.7	0.30	••	437 422	1
ñ4/25/68 945	33	5050 	66 7.5	706	40 1.99 29	10 0.82 12	92 4.00 58	0.13 2		139 2.28 32	151 3.14 45	55 1.55 22	4.0 0.06 1	0.7	0.22		418 427	3
055/01W-10P01S 05/02/68 1345		5050	76 7.8	934	83 4.14 45	19 1.56 17	78 3.39 37	7 0.18 2		137 2.24 24	201 4.18 45	77 2.17 23	46.5 0.75 8	0.8	0.04	••	624 580	i
05S/01w-13C01S 04/24/68 1100		5050	76 7.6	937	94 4.69 46	25 2.05 20	72 3.13 31	0.20 8		204 3.34 33	227 4.73 47	61 1.72 17	22.0 0.35 3	0.9	0.05	••	657 611	1
05S/01W-16A01S 05/02/68	33	5050	94 7.9	1553	92 4.59 31	19 1.56 10	194 8.44 57	9 0.23 1		124 2.03 14	184 3.83 26	307 8.66 59	10.5 0.17 1	1.8	3.00	••	991 882	:
05S/01w-20801S 04/24/68 940		5050	74 7.7	911	57 2.84 30	36 2.96 32	78 3.39 36	5 0.13 1		167 2.74 30	190 3.95 44	71 2.00 22	19.0 0.31 3	0.5	0.05		601 539	i
065/01W-04J02S 04/24/68 1010		5050	7.6	590	33 1.65 29	21 1.73 30	53 2•30 40	0.05 1		176 2.88 50	61 1.27 22	49 1•38 24	15.0 0.24 4	0 • 4	0.06		370 321	1
SAN JACINTO HY			LIGADE	Y0280	Y0281													
055/01E-05M02S 04/24/68 1350	33		120 8.8	205	6 0.30	0.00	34 1.48 80	3 0 • 0 8 4	18 0.60 33	42 0.69 37	6 0•12 7	14 0•39 21	2.0 0.03 2	0.2	0.16	••	122	
05S/01E-09J01S 04/24/68 1330		5050	62 8•0	298	35 1.75 58	4 0.33 11	20 0•87 29	2 0.05 2		142 2.33 74	18 0.37 12	14 0.39 13	2.0 0.03	0.4	0, 00		183 166	1
055/01E-14G01S 04/24/68 1215		5050	80 7.9	725	32	12	101	3		169	156 3.25	40	1.0	0.7	0.23		429 429	1

MINERAL ANALYSES OF GROUND WATER

TE WELL NO.	COUN,	TY LAB SAMPLE		EC				S IN M	AILLIGRA AILLIEQU PERCENT	IVALENTS	S PER L			MILLIGRA	MS PER	LITER	TDS 180C (*105C)	TH
					CA	MG	NA	K	C03	HC03	504	CL	N03	F	8	5102	SUM	
MACTINES HYS)00 EI	IGHALTT		Y0280	S	AN JACI	NTO VAL	LEY HYD	RO UNIT	Y020	00							
SAN JACINTO HYD SAN JACI			UBAREA	10260	Y0281													
/01E-170025 /24/68 1200	33	5050	68 7.9	1071	110 5.49 47	31 2.55 22	77 3.35 29	9 0.23 2		215 3.52 30	254 5•29 46	79 2•23 19	34.0 0.55 5	0.9	0.07		745 701	402 196
/01W-03K01S /10/67	33	4103	64 8•1	370	36 1•80 45	14 1•15 29	22 0•96 24	2 0 • 05 1	0.00	204 3.34 83	12 0•25 6	13 0.37 9	4.0 0.06 2	0.3	0.00		193 204	147
/01W-03K03S /23/68 930	33	5050	62 8•3	372	37 1.85 47	14 1•15 29	21 0•91 23	0 • 0 2 1		204 3.34 85	11 0•23 6	10 0•28 7	4.3 0.07 2	0.4	0.00		200 199	150
/02W-07P01S /04/67	33	4103	76 8.5	940	0.30 3	3 0.25 3	206 8.96 94	0.00	0.47 5	342 5.60 60	22 0•46 5	90 2.54 27	15.0 0.24 3	4.0	0.60		561 529	27 0
/25/68 1445	33	5050	8.4	965	7 0.35 3	3 0.25 2	218 9.48 93	0.08 1	16 0.53 5	353 5.78 60	20 0.42 4	94 2.65 27	15.0 0.24 2	3.9	0.56		542 554≠	30 0
/01W-16C01S /06/67	33	4103	8.0	386	32 1.60 41	3 0.25 6	44 1.91 50	0.10 3	0.00	200 3.28 84	0.04 1	17 0.48 12	6.0 0.10 2	0.8	0.03		227 208	92
/01W-16G01S /25/68 850	33	5050	74 8•0	376	32 1.60 39	5 0.41 10	46 2 49	0.05 1		197 3.23 81	9 0•19 5	17 0.48 12	6.0 0.10 2	0.8	0.00	••	212 215	100
//01w-25G015 //15/68 930	33	5050	73 8•1	708	77 3.84 53	12 0.99 14	54 2•35 32	3 0.08 1	0.00	223 3.65 52	125 2•60 37	29 0•82 12	0.0	0.5	0.10		411 411	242 59
0/01W-26R015 (/15/68 1130	33	5050	8.3	296	· 37 1.85 57	5 0.41 13	21 0•91 28	80•0 2	0.00	160 2.62 85	0 • 1 7 5	10 0.28 9	1.0 0.02 0	0.3	0.00		168 164≠	113
/01W-35G01S 1/06/67	33	4103	8.1	338	33 1.65 46	0.90 25	21 0•91 26	0·10 3	0.00	184 3.01 84	9 0•19 5	13 0.37 10	1.0 0.02 0	0.8	0.00		201 184	128
/24/68 1445	33	5050	62 8•0	305	38 1•90 60	0.33 10	20 0•87 27	3 0 • 08 2		162 2.65 84	8 0 • 1 7 5	12 0•34 11	0.00	0.3	0.00		162 165	111
15/68 1530	33	5050	94 8•2	322	38 1.90	5 0.41	24 1.04	3 0.08	0.00						0.00			115
(/16/68	33	5050	70 8.0	660	34 1.70 15	56 4.60 41	110 4.78 43	0.08 1	0.00	382 6.26 92	0.02 0	14 0.39 6	9.4 0.15 2	0.4	0.20		365 416≠	315 2
02/01W-01C01S 1/06/67	33	4103	8.2	397	37 1.85 46	9 0.74 18	30 1•30 32	5 0•13 3	0.00	167 2•74 68	36 0•75 19	18 0•51 13	1.5 0.02 1	0•3	0.00		242 219	129
02/01W-01G01S ('24/68 1415	33	5050	68 7•7	403	47 2•34 55	6 0.49 12	30 1•30 31	4 0 • 1 0 2		169 2.77 66	44 0.92 22	17 0•48 11	2.0 0.03 1	0 • 4	0.00		227 234	142 3
HEMET LA	KE HY	DRO SU	BAREA		Y0282													
6/16/68	33	4790	8.2	210	19 0.95 42	6 0.49 22	18 0.78 34	2 0.05 2	6 0.20 9	85 1.39 61	8 0.17 7	18 0.51 22	0.0	0.3			161 120	72 0
06/03E-09R01S 0/16/68	33	4790	8.3	320	38 1.90 56	4 0.33 10	25 1•09 32	2 0•05 1	12 0.40 12	134 2.20 64	13 0•27 8	18 0.51 15	4.0 0.06 2	0.3			204 183	111

MINERAL ANALYSES OF GROUND WATER

STATE WELL N DATE TI	IO. C	OUNT	Y LAB		EC	MINER	RAL CONS	STITUENT NA	S IN M	ERCENT	IVALENT			NO3	MILLIGR F	AMS PER	LITER S102	T _D S 180C (*105C SUM	
LAGUNA HYDRO	_		SUBARE		Z01A0	Z01A2	SAN JUAN	HYDRO	TINU		201	100						in a	
075/08W-32L0 03/20/68 -	25	30		 7.7	4240	202	126 10•36	667 29•01	6 0•15	0 • 0 0	421 6.90	1157 24.09	628 17•71	0.0	0.9	1.10	14	3090 3009	1
AL TSO	HYC	nen s	SUBAREA			20 Z01A3	21	58	0	0	14	49	36	0					
06\$/07W=07R0			3102		1820	196	46	132	5	0	298	545	88	0.0	0.8	0.22	30	1380	
ñ9/26/68 -	-			7.4		9.78 50	3.78 19	5.74	0.13	0.00	4.88	11•35 61	2.48 13	0.00				1190	ľ
065/08W-2300 03/21/68 -		30	5102	7.5	351	28 1.40 53	7 0.57 22	12 0.52 20	0.15 6	0.00	188 3.08 91	0.04 1	9 0.25 7	0.00 0	0.1	0.20	7	218 164≠	
065/08w-23R0 03/01/68 -		30	5102	60 7.7	1880	165 8.23 40	57 4.69 23	172 7.48 36	0.13 1	0.00	305 5.00 24	589 12.26 58	138 3.89 18	0.6 0.01 0	0.5	0.14	19	1370 1297	
065/08w-26C0 10/18/67 11		30	5102	66 7.4	2830	268 13.37 40	98 8.06 24	262 11.40 34	0.15 0	0.00	350 5.74 17	925 19.26 58	250 7.05 21	64.0 1.03 3	0.2	0.25	27	2210 2073	1
ñ4/24/68 10	35	30	5102	 7.2	2870	268 13.37	97 7.98			0.00	396 6.49		259 7•30	50.0 0.81					1
n9/26/68 -		30	3102	7.3	2750	252 12.57	87 7.15			0.00	392 6.42		232 6.54	42.0 0.68				-:	
075/08W-16Q0		30	3102	8.4	2030	5 0•25	1 0.08			5 0.17	609 9.98		288 8.12	0.1				==	
ñ3/21/68 -		30	5102	70 8•4	2030	4 0.20	2 0.16	435 18.92 97	7 0 • 18	21 0.70 3	593 9.72 47	85 1.77 9	294 8•29 40	0.00	1.0	4.00	27	1210 1172#	
075/08W-32L0 11/09/67 15		30	3102	 7•5	3770					0 • 0 0	369 6•05		526 14•83					=	
SAN JUAN HYD	RO S	URUN	IT		20180														
065/07w-07P0 03/26/68 12		30	5102	60 7•7		163 8•13 56	30 2.47 17	87 3.78 26	0.15 1	0.00	258 4 • 23 28	419 8•72 58	72 2•03 13	- 4.0 0.06 0	0.6	0.19	23	1000	8
065/07W-11J0 10/12/67 13		30	3102	 7•5	590	75 3.74	16 1•31			0.00	181 2.97		11 0.31	0.8 0.01					4
065/07W-11N0 03/26/68 11	15	30	5102	64 7.4	656	90 4.49 64	19 1.56 22	22 0.96 13	2 0•05 1	0.00	216 3.54 51	144 3.00 43	14 0•39 6	0.8	0.1	0.03	23	441 422	3
065/07W=1280 03/26/68 10		30	5102	60 7.8	607	78 3.89 60	20 1.64 25	20 0.87 13	2 0.05 1	0.00	182 2.98 46	147 3.06 48	13 0.37 6	0.00	0.2	0.07	17	419 387	1
065/07W=15F0 03/26/68 11		30	5102	66 7.4	678	93 4.64 64	18 1.48 20	25 1.09 15	0.05 1	0.00	232 3.80 52	140 2.91 40	16 0.45 6	4.8 0.08	0.3	0.05	23	459 437	1
075/07W-32R0 10/17/67 13		30	3102	66 7•6	1590	82 4•09	23 1.89			0.00	267 4•38		197 5•55	6.0 0.10		••			â
ñ3/25/68 13		30	5102	64 7•7	1670	93 4.64 28	24 1.97 12	230 10•00 60	3 0 • 08 0	0.00	295 4.83 28	262 5•45 32	235 6•63 39	5.0 0.08	0.7	0.40	27	1060 1026	3
075/07W-35P0 10/17/67 14	_	30	3102	66 7•5	667	66 3.29	15 1•23			0.00	191 3.13		42 1•18	6.0 0.10					ž
03/25/68 13	30	30	5102	70 7.4	646	64 3.19	15 1.23			0.00	197 3.23		42 1•18	4.0					ê
075/07W-36A0 10/17/67 14		30	3102	65 7.6	504	47 2.34 46	13 1.07 21	37 1.61 32	0.02	0.00	163 2.67 55	63 1•31 27	30 0.85 17	3.0 0.05	0.5	0.10	36	344 311	1
ñ3/27/68 14	30	30	5102	65 7.6	557	54 2.69 49	13 1.07 20	38 1.65 30	0.02	0.00	182 2.98 54	76 1.58 29	33 0.93 17	1.5 0.02 0	0.5	0.10	30	354 337	1
075/08W-25P0 10/18/67 18		30	3102	72 7.6	727	88 4.39	17 1.40			0.00	217 3.56		26 0.73	4.0					2
075/08W-36C0 10/25/67 12	35	30	3102	70 7.4	737	92 4.59 60	19 1.56 20	33 1.43 19	3 0 • 0 8 1	0.00	229 3.75 50	140 2.91 39	28 0.79 10	6.0 0.10	0.4	0.06	24	497 459	3
ñ3/25/68 11	120	30	5102	62 7 . 5	727	90	18 1.48			0	247 4.05		27 0.76	0.7					2

MINERAL ANALYSES OF GROUND WATER

	ATE WELL NO.	COUN	TY LAB SAMPLE	_	EC	HINER.	AL CONS	TITUENT NA		MILLIGRA MILLIEOU PERCENT	IVALENT	S PER L	_	N03	MILLIGR	AMS PER	LITER SIO2	TDS 180C (*105C) SUM	TH
2	I JUAN HYDRO	SUBUR)IT		Z ₀ 180	S	AN JUAN	HYDRO	UNIT		Z01	00							
	5/08W-36P01S 5/25/68 1150	30	5102	66 7•7	862	78 3.89 44	21 1•73 20	71 3.09 35	0 • 0	0.00	208 3.41 38	192 4.00 45	52 1•47 16	0.0	0.3	0.11	3	545 523	281 111
10.00	5/07W-05B01S 5/18/67 1440	30	3102	72 7.6	1230	102 5.09 40	32 2.63 21	110 4.78 38	0.0	3 0	264 4.33 34	271 5.64 45	93 2.62 21	0.2	0 • 6	0.25	26	837 768	386 170
3	1/25/68 1400	30	5102	64 7.6	1260	107 5.34	27 2•22				264 4.33		102	0.0					378 162
	5/08W-01L01S 1/25/68 1520	30	5102	68 7.5	1360	151 7.53 53	32 2.63 19	90 3•91 28	0 • 08	3 0 9 0.00	268 4.39 30	343 7.14 49	97 2.73 19	15.0 0.24 2	0 • 1	0.08	25	953 888	509 289
	6/08W-12L04S 0/25/68 1545	30	5102	8.0	1620	208 10.38	43 3.54			0.00	341 5.59		139 3•92	0.4					696 417
	6/08W-13C02S 6/25/68 1430	30	5102	7.3	2680	320 15.97 51	79 6.50 21	204 8.87 28	0 • 15	5 0.00	425 6.96 22	853 17.76 56	247 6.96 22	0.00	0.3	0.33	26	2070 1945	1124 776
1000	6/08W-14H02S 6/25/68 1500	30	5102	70 7•3	1960	236 11.78	62 5•10			0.00	383 6.28		201 5.67	10.0 0.16		••			844 530
	/08W-23A04S 1/25/68 1440	30	5102	64 7.4	2420	308 15.37	53 4.36			0.00	375 6,15	~ •	260 7.33	1.4					987 680
	MATEO HYDRO	SUBL		•	Z0100														
	3/08W-25804S 1/25/68 1100	30	5102	76 7.3	737	96 4.79 61	19 1.56 20	32 1.39 18	0 • 0		275 4.51 57	129 2•68 34	24 0.68 9	0.3 0.00 0	0.3	0.05	25	477 463	318 92
a	LUZ HYDRO SI	IDIINT 1			Z0280	S	ANTA MA	RGARITA	HYDRO	TINU	Z 0 2	00							
I	VALLECI1	105 HY	ORO SU			Z0283	10	9.1			3.04	154	0.0	5.3				500	205
	6/27/68 1030	33	3030	8.2	730	4.14	1.56	3.52 38	0.13		3.01	3•25 36	2.76 30	0.08 1	0.3	0.00		588 539	285 134
-	6/02W-28G03S 6/27/68 1100	33	5050	8.0	1110	96 4.79 45	16 1.31 12	102 4.44 42	0.10	0.00	142 2.33 22	219 4.56 44	120 3.38 32	12.0 0.19 2	0.5	0.00		708 640	306 189
M	RIETA HYDRO MURRIETA	_		REA	Z02C0	Z02C2													
-	//30/68	33	5050	7.9	641	41 2.04 32	27 2.22 35	2 46 32	0.05	5	209 3.42 52	0.17 2	89 2.51 38	32.0 0.52 8	0 • 4	0.00		507 349	213 42
	3/03W-20A145 3/30/68	33	5050	8.1	789	33 1.65 20	43 3.54 43	69 3•00 36	0.05	5	260 4.26 53	36 0•75 9	94 2.65 33	20 • 0 0 • 32 4	0.3	0.00		525 426	259 46
	/03W-20H03S /30/68	33	5050	8.3	641	30 1.50 23	11 0.90 14	90 3•91 61	0 • 0 <u>9</u>	5	180 2.95 47	33 0.69 11	90 2•54 41	2.0 0.03 0	0 • 4	0.04		391 347	120
1000	/03%-21D02S /30/68	36	5050	7.9	683	30 1•50 22	35 2.88 42	55 2•39 35	0 • 0 2	?	230 3.77 55	21 0•44 6	83 2•34 34	20·0 0·32 5	0.3	0.00		458 359	219 30
200.0	/03W-12N05S /30/68	36	5050	8.1	1009	22 1•10 10	45 3.70 35	131 5•70 54	0 • 0 2	2	216 3.54 35	93 1•94 19	167 4•71 46	2.0 0.03 0	0 • 4	0.09		615 568	240 63
	FRENCH	HYDRO	SUBARE	A		Z02C3													
1000	/03w-23001S /12/68 1045	33	5050	156 9.0	1278	0.40 3	0.00	248 10.79 95	0.20	0.70	0.03 0	20 0.42 4	344 9.70 89	0.00	5.2	4.00		694 660	20
	LOWER DO	DMENIC	ONI HY	DRO SU	BAREA	Z02C4													
ì	/01W-12H01S /27/68 1400		5050	8.0	1250	100 4.99 40	36 2.96 24	101 4.39 35	0.18 1	0.00	264 4.33 35	211 4.39 36	126 3.55 29	0.0	0.6	0.10		810 712	398 181
P	HANGA HYDRO PECHANG			REA	ZOZEO	ZOZEZ											٩		
0	/02W-20B04S /01/68	33	5050	8.3	1270	77 3.84 30	29 2.38 19	145 6.31 50	0.15		220 3.60 29	226 4.70 38	139 3.92 32	5.0 0.08	0 • 4	0.20		768 736	312 131
0	/02W-28M01S /01/68	33	5050	8.4	466	12 0.60 15		76 3.30 82		0.03					5.1	0.80		237 226≠	34

MINERAL ANALYSES OF GROUND WATER

							SOUT	HERN C	ALIFORN	IA								
STATE WELL NO. DATE TIME	COUN	TY LAB SAMPLE	_	EC	MINER		STITUENT	S IN M	ERCENT	IVALENT REACTAR	S PER L	IES	MOD	MILLIGRA			180C	
						MG	NA	K	C03	HC03	504	CL	И03	r	В	2105	SUM	
WILSON HYDRO SU LANCASTE			DRO SU	ZOZFO JBAREA	Z02F1	SANTA MA	RGARITA	HYDRO	UNIT	Z02	200							
085/01E-07Q045 05/01/68	33	5050	70 8•6	1600	79 3.94 25	25 2•05 13	224 9•74 61	7 0•18 1	10 0.33 2	288 4.72 30	246 5•12 33	194 5•47 35	0.0	1.0	0.40		958 928	3
085/01E-17A02S 05/01/68	33	5050	8 • 5	873	28 1•40 18	8 0.66 8	131 5.70 72	0 • 1 3 2	0 • 13 2	134 2.20 28	97 2•02 26	118 3.33 43	2.0 0.03 0	1.0	0 • 4 0		460 461	1
ANZA HYDRO SUBL		A HYDRO	O SUBA	Z02G0 REA	Z02G2													
075/02E-13D015 05/01/68	33	5050 	7.8	581	56 2.79 50	13 1.07 19	36 1.56 28	0.13 2	0.00	136 2.23 42	0.92 17	34 0.96 18	73.0 1.18 22	0.2	0.00		386 329≠	1 ⁴
AGUANGA HYDRO S REDEC HY				Z02H0	Z02H3													
085/01E-190025 05/01/68	33	5050 	66 8•5	1410	121 6.04 41	25 2•05 14	152 6.61 45	0 • 1 0 1	0.27 2	308 5.05 35	272 5.66 39	121 3•41 24	2.0 0.03 0	0.5	0.30		874 858	1:
SAN DIEGUITO HY SAN DIEG			SURARE	Z05A0	S Z05A1	AN DIEG	UITO HY	DRO UNI	Ť	Z05	00							
135/03W-28N02S 04/10/68	90	5050	68 7.4	2057	133 6.64 32	69 5.67 27	192 8.35 40	6 0•15 1		333 5.46 26	239 4.97 24	366 10.32 50	1.5 0.02 0	0.5	0.08		1274 1171	6) 3:
135/03W-32J025 04/09/68	90	5050	68 8•0	2248	112 5.59 24	68 5.59 24	266 11.57 50	8 0.20 1		444 7.28 32	229 4.77 21	384 10.83 47	4.2 0.07 0	0.6	0.10		1334 1291	55 18
135/03w-33C065 04/09/68	90	5050	69 6.9	2943	237 11.83 38	117 9.62 31	217 9.44 30	8 0.20 1		156 2.56 8	653 13.59 44	513 14.47 47	1.7 0.03 0	0.6	0.04		2052 1824	107
135/03W+33E015 04/09/68	90	5050 	66 7.1	3262	223 11.13 33	114 9.37 28	300 13.05 39	9 0.23 1		306 5.01 15	532 11.08 33	622 17.54 52	0.02	0.6	0.14		2095 1954	102 761
145/03W-04P015 04/09/68	90	5050 	69 7.3	3986	336 16.77 40	116 9.54 23	354 15.40 37	0.05 0		320 5.24 13	567 11.80 28	843 23.77 57	42.0 0.68 2	0.7	0.22	••	2722 2419	131
145/03w-07L045 04/09/68	90	5050 	66 7•5	2796	274 13.67 46	66 5.43 18	236 10.26 35	0 • 15 0		290 4.75 16	532 11.08 37	488 13.76 46	2.0 0.03 0	0.7	0.12		1937 1748	95 70
HODGES HYDRO SU	YDRO	SUBAREA		Z0580	205B1													
135/01W-06N01S 04/11/68	90	5050	72 6•2	2612	247 12•32 41	124 10 • 20 34	177 7•70 25	0 • 15 0		122 2.00 7	996 20•74 69	261 7.36 24	1.0 0.02 0	0.4	0.06	••	2094 1873	112
135/02w-02N015 04/10/68	90	5050	70 7.1	2152	156 7.78 35	80 6.58 29	186 8.09 36	0.05 0		369 6.05 27	321 6.68 30	323 9.11 40	43.5 0.70 3	0.6	0.04	••	1458 1294	71 401
135/02W-12C015 04/12/68	90	5050	68 6.3	2688	259 12•92 41	128 10.53 33	180 7.83 25	0.15 0		76 1.24 4	1063 22.13 72	263 7.42 24	5.4 0.09 0	0.7	0.00	••	2148 1943	117
135/02W-12N015 04/11/68	90	5050	74 7.0	1739	92 4.59 27	63 5.18 30	168 7.31 42	0 • 1 0 1		210 3.44 20	254 5•29 30	285 8.04 46	36.0 0.58 3	0.5	0.02		1091 1006	48 ⁶ 30.
135/02W-13C015 04/12/68	90	5050	7.0	1643	89 4•44 28	46 3.78 24	170 7•39 47	0.08 0		237 3.88 24	151 3•14 20	313 8.83 55	4.0 0.06 0	0.5	0.11		995 894	20
GREEN HY	DRO S	UBAREA			Z0582													1
135/02W-15R015 04/11/68	90	5050	71 7.5	1081	45 2•24 20	28 2.30 21	146 6.35 58	2 0.05 0		366 6.00 56	29 0.60 6	144 4.06 38	4.0 0.06 1	1.1	0.11		590 580	221
FELICITA	HYDR	O SUBAR	IEA		20583													
125/02w-27N03S 04/10/68	90	5050 	72 7•1	1038	62 3.09 27	42 3.45 30	109 4.74 42	0.08 1	** **	149 2.44 21	163 3•39 30	148 4•17 37	82.5 1.33 12	0.5	0.04	***	746 684	32! 19?
BEAR HYD	RO 50	BAREA			Z0584													
125/02w-26P015 04/10/68	90	5050	68 7.1	1972	141 7.03 35	89 7.32 36	133 5.78 28	5 0.13 1	••	259 4.24 21	270 5.62 28	287 8.09 40	145.0 2.34 11	c.5	0.00	***	1300 1198	718 491

MINERAL ANALYSES OF GROUND WATER

		44.11. CL	R PH	EC	MINER	AL CONS	TITUENT	S IN MI	LLIEQU		S PER L			MILLIGR	MM2 PER	LIJEK	180C (*105C)	NCH
					CA	MG	NA	К	C03	HC03	504	CL	N03	F	В	2105	SUM	
PASOUAL HYD			REA	Z05C0	Z05C1	AN DIEG	SUITO HY	DRO UNIT		Z05	000							
01W-05M01S 12/68	90	5050	69 6.9	998	29 1•45 16	31 2.55 29	112 4.87 55	2 0.05 1	•-	123 2.01 22	67 1•39 15	159 4.48 50	70.5 1.14 13	0.7	0.03		564 532	200 86
SAN PASO	QUAL 1	HYDRO S	UBAREA		Z05C2													
01W-26N015 12/68	90	5050	71 7.4	748	50 2.49 33	28 2.30 30	62 2.70 36	0.05	••	281 4.60 61	47 0.98 13	65 1.83 24	10.0 0.16 2	0.4	0.00		439 403	240
01W-30R01S 11/68	90	5050	74 7.9	1560	54 2.69 17	36 2.96 19	230 10.00 64	0.02	••	351 5.75 37	142 2.96 19	228 6.43 42	15.3 0.25 2	1.7	0.15		92 4 681	283
01w-31H01S 11/68	90	5050	73 7.5	1935	136 6.79 35	64 5.26 27	164 7.13 37	3 0.08 0		393 6.44	114 2.37 12	364 10.26 54	2.8 0.04 0	0.5	0.00		1136 1042	603 267
01W-32B01S	90	5050	7 ₀ 7.2	958	48 2.39 27	25 2.05 23	103 4.48 50	2 0.05 1	•-	198 3.24 36	37 0.77 9	152 4.29 48	40.5 0.65 7	0.6	0.04		563 506	223 47
)1W-34P01S	90	5050	70 7.4	1004	73 3.64 35	40 3.29 32	75 3.26 32	2 0.05 0		303 4.97 48	104 2.16 21	108 3.04 30	3.3 0.05	0.5	0.04		607 555	347 85
5)1W-35B025	90	5050	67 7•2	600	45 2•24 39	21 1.73 30	40 1.74 30	2 0.05		146 2.39 41	72 1•50 26	56 1.58 27	22.0 0.35 6	0.3	0.00		387 331	199 66
3)1W-36G015 42/68	90	5050	68 7.9	624	47 2•34 38	22 1.81 29	45 1.96 32	2 0 • 05	••	177 2.90 47	71 1•48 24	60 1•69 27	6.5 0.10 2	0.3	0.00		389 341	208
\$)1W-03F015 \$,2/68	90	5050	67 7.1	2081	132 6.59 30	89 7.32 34	177 7.70 35	2 0.05		493 8.08 37	168 3.50 16	317 8.94 41	67.5 1.09	0.6	0.06		1322 1196	696 278
MARIA VAL RAMONA H				Z05D0	Z0501	34	35	O		31	10	•1						
5)1E-11M01S 6.6/68	90	5050	66 7.8	1372	46 2.29 18	54 4.44 34	143 6.22 48	2 0.05 0		331 5.42 43	62 1.29 10	205 5.78 46	6.0 0.10 1	0.7	0.08		713 682	337 52
1E-15E035 6/68	90	5050	67 7•2	625	33 1•65 28	16 1•31 22	66 2•87 49	3 0.08 1		118 1.93 34	33 0•69 12	76 2•14 37	61.0 0.98 17	0.3	0.03		378 347	148 38
6/68	90	5050	68 7.4	1374	58 2•89 23	42 3.45 27	146 6.35 50	0 • 1 0 1		120 1.97 15	39 0.81 6	346 9.76 75	28.0 0.45 3	0.7	0.00		860 723	318 206
1E-24R02S 6/68	90	-5050	67 7•4	833	42 2•09 26	24 1 • 97 25	89 3•87 48	2 0 • 05 1		104 1.70 22	42 0.87 11	132 3•72 47	98.0 1.58 20	0.4	0.00		527 481	204 105
LOWER HA	TFIEL	D HYDRO	SUBAR	REA	Z0502													
2E-17C015 6/68	90	5050	66 7 . 5	481	28 1.40 29	15 1.23 25	50 2•17 45	0.02 0		151 2.47 52	20 0.42 9	47 1•32 28	34.0 0.55 11	0.5	0.02		305 270	132
WASH HOL	LOW H	YDRO SU	JBAREA		Z0503													
2E-09N015 7/68	90	5050	64 7•3	1316	94 4.69 33	51 4.19 29	125 5.44 38	3 0 • 0 8 0		400 6.55 46	88 1•83 13	197 5•55 39	12.0 0.19 1	0.7	0.05		817 768	445 103
UPPER HA	TFIEL	D HYDRO	SUBAR	REA	Z0504													
2E-09H02S	90	5050	64 7.0	830	60 2.99 34	40 3.29 38	55 2.39 27	0.05		263 4.31 49	65 1.35 15	108 3.04 35	3.0 0.05 0	0.3	0.04		559 463	314 85
YSABEL HY				Z05E0	70551													
1E-04K01S		5050	67 7.5	588	33 1.65	23	51	2 0.05	•-	187 3.06	24	67	19.0	0.2	0.02	••	366 312	177
SUTHERLA	אט אי	DRO SUE	APFA		28 Z05E3	33	38	1		53	9	33	5					
3E-31N015 7/68		5050	66 7.4	552	39 1.95 36	22 1.81 34	36 1.56 29	2 0.05		107 1.75 32	63 1•31 24	63 1.78 32	39.0 0.63	0.4	0.01		333 317	188
SANTA YS	ABFI	HYDRO S	SURARF	Α.	Z05E4	34	64	1		32	64	32	11					
3E-16C015		5050	66 7.4	364	27 1.35 36	15 1.23 33	26 1.13 30	0.02		112 1.83 50	29 0.60 16	41 1•16 32	4.0 0.06 2	0.3	0.00		204 199	129

MINERAL ANALYSES OF GROUND WATER

STATE WELL NO.		Y LAB SAMPLE		EC	MINER	AL CONS	STITUENT	м	ILLIGRA	MS PER		ITER		MILLIGR	MS PER	LITER	T _D S 180C
					CA	MG	NA	P K	ERCENT CO3	REACTAN HC03	ICE VALU	ES CL	N03	F	В	5102	(*105C) SUM
					S	AN DIE	SUITO HY	DRO UNI	Ť	Z05	00						
SANTA YSABEL HY				Z05E0	Z05E4												
125/03E-28801S 04/17/68	90	5050	64	428	28 1.40 32	19 1.56 36	30 1.30 30	3 0.08 2		160 2.62 60	33 0.69 16	32 0.90 21	11.0 0.18 4	0.3	0.01		243 235
LOWER SAN DIEGO SANTEE H				Z07A0	Z07A2	AN DIEG	60 HYDRO	UNIT		207	00						-19
155/01E-06N025 06/20/68 820	90	5877	7.3	1200	76 3.79 29	36 2•96 23	141 6•13 47	0.02	0.00	256 4•19 32	95 1•98 15	230 6.49 50	20.0	0.4	0.67		748 726
15S/01E-07L04S 06/20/68 1400	90	5877	71 7.8	950	52 2.59 24	29 2.38 22	129 5.61 53	0.05 0	0.00	268 4.39 40	62 1.29 12	190 5.36 48	0.00	0.5	0.33		700 597
15S/01E-07M02S 06/20/68 1000	90	5877	7.8	950	88 4.39 21	63 5.18 25	252 10.96 53	3 0.08	0.00	415 6.80 31	126 2.62 12	450 12.69 57	0.3	0.4	0.00		1360 1187#
155/01E-17802S 05/22/68	90	5420	7.4	791	69 3.44 41	26 2.14 26	62 2•70 32	3 0.08	0.00	195 3.20 38	159 3.31 39	68 1.92 23	0.3				606 484
155/01E-18A015 06/20/68 1030	90	5877	69 7 . 7	780	64 3.19 39	32 2.63 32	54 2.35 29	0.05	0.00	220 3.60 41	152 3.16 36	70 1.97 23	0.00	0.4	0.10		632 483≠
155/01E-18L01S 05/22/68 955	90	5877	67 7.2	505	60 2.99	22 1.81	50 2.17	1 3 0.08	0.00	208 3,41	87 1.81	60 1.69	0.3	0.3	0.17	••	465 385
155/01E-18M01S 05/22/68 830	90	5877	69 7.2	865	68 3.39	26 39 3.21	31 116 5.04	1 4 0.10	0.00	302 4.95	26 128 2.66	150 4.23	0 · 1 0 · 00	0.2	0.17	••	765 654
1.6(01) 2(01)		5077	7.0	670	29	27	43	1	0	42	22	36	0				- 53
14S/01w-36R01S 06/20/68 900	90	5877	70 7•5	670	28 1.40 21	17 1.40 21	90 3•91 58	0.05 1	0.00	183 3.00 41	0.83 11	120 3.38 47	0.00	1.2	0.00		444 389#
155/01w-01J035 n5/21/68 1445	90	5877	66 7.0	661	2.19 26	29 2.38 28	88 3.83 45	0.05 1	0.00	195 3.20 40	35 0.73 9	140 3.95 49	0.10 1	0.5	0.17		412 441#
155/01w-22G025 06/20/68 1300	90	5877	73 7.3	2000	124 6.19 31	73 6.00 30	183 7.96 39	0.08 0	0.00	256 4.19 21	85 1•77 9	490 13.82 69	15.0 0.24 1	0.7	0.20		1504 1100
155/01w-220035 05/22/68 1235	90	5877	69 6•2	1940	300 14.97 42	149 12.25 34	16n 6.96 20	54 1•38 4	0.00	110 1.80 5	1190 24.77 70	300 8.46 24	12.0 0.19 0	0.7	0.17		2800 I 2220 I
155/01w-23N01S 06/21/68 1530	90	5877	70 7•2	2200	184 9.18 35	97 7.98 30	207 9.00 34	12 0.31 1	0.00	122 2.00 7	820 17.07 64	260 7.33 28	3.7 0.06 0	0.4	0.00		1832 1645
15S/01W-23P01S 05/22/68 1205	90	5877	68 6•2	1370	144 7.18 34	80 6.58 31	160 6.96 33	7 0.18 1	0.00	122 2.00 9	671 13.97 64	210 5.92 27	0.1	0.4	1.00		1545 1334
155/01w-24804S 06/19/68 1500	90	5877	69 7.4	1750	108 5.39 27	68 5.59 28	198 8.61 44	0.10 0	0.00	293 4.80 24	280 5.83 29	340 9.59 47	2.1 0.03	0.6	0.67		1352 1146
155/01w-24C04S 06/19/68 730	90	5877	67 7.8	1750	116 5.79 29	70 5.76 28	198 8,61 43	3 0.08	0.00	281 4.60 23	271 5•64 28	360 10.15 50	1.1 0.02	0.4	0.00		1280 1158
155/01w-24C07S 06/19/68 800	90	5877	71 7•2	2600	264 13.17 42	106 8.72 28	219 9.53 30	6 0.15	0.00	232 3.80	1036 21.57 63	320 9.02 26	0.4	0.7	0.67		2368 2067#
155/01w-27H01S 05/22/68 1300	90	5877	73 7.0	720	52 2.59 27	32 2.63 28	95 4.13	0.10	0.00	159 2.61 27	148 3.08 32	130 3.67 39	9.4 0.15 2	0.5	0.00	••	677 550
155/01W-30K01S 06/20/68 1630	90	5877	7 ₁ 7.8	850	40 1.99	32 2.63	93 4.04	5	0.00	171 2.80	67 1•39	190 5.36	3.3	0.4	0.50		664 516≠
EL CAJON	HYDR	O SURA	REA		23 Z07A3	30	46	1	0	29	14	56	0				
155/01w-28001S n6/21/68 1330	90	5877	74 7.5	2900	172 8.58 30	63 5.18 18	345 15•01 52	3 0 • 0 8	0.00	390 6.39 21	234 4.87 16	670 18.89 63	2.5	0.6	0.90		1980 1683
EL MONTE	HYOR	O SUBA	REA		Z07A5	••		•	·				•				
155/01E-02K015 05/21/68 1000	90	5877	76 7•1	440	52 2.59 40	29 2.38 36	35 1.52 23	2 0.05 1	0.00	232 3.80 64	15 0•31 5	60 1.69 29	5.3 0.08	0 • 1	0.33		376 313#

MINERAL ANALYSES OF GROUND WATER

TATE WELL NO. DATE TIME	COUNT	Y LAB SAMPLER		EC	MINERA	L CONS	TITUENT:		MILLIEGO	AMS PER LI JIVALENTS REACTANCE HC03	PER L		N03	HILLIGRAMS	PER 8	LITER SIO2	T ₀ S 180C (*105C) SUM	TH NCH
														·	0	0.00		
WER SAN DIEGO				Z07A0	Z07A5	IN DIEG	O HYDRO	UNIT		20700	0							
55/01E-02M01S 16/18/68 1410	90	5877	73 7.9	700	52 2.59 33	22 1.81 23	76 3.30 42	0.08	0.00	281 4.60 57	53 1.10 14	80 2.26 28	4.9 0.08		0.67	••	528 431	0 25
35/01E-02N01S 35/21/68 1110	90	5877	67 7.1	440	40 1.99 35	22 1.81 32	42 1.83 32	0.05	5 0.00	171 2.80 51	16 0.33 6	80 2.26 41	9.3 0.15 3		0.83		428 297	190 50
S/01E-02P01S 15/22/68 1030	90	5877	66 6.9	505	52 2.59 37	27 2.22 31	50 2.17 31	0.0		158 2.59 36	82 1.71 24	100 2.82 39	7.1 0.11 2		0.17		508 400	241 111
S/01E-09J02S 6/18/68 1130	90	5877	7.2	1200	128 6.39 44	56 4.60 32	80 3.48 24	0.1	_	183 3.00 20	466 9.70 65	70 1.97 13	18.0 0.29		0.22		1140 913	550 400
S/01E-10H03S 6/18/68 175	58	==	75 0.7	9001	60 2.99 34	32 2.63 30	69 3.00 35	0.0	_	256 4.19 47	117 2.43 27	80 2.26 25	1.4 0.02 0		0.40		620 489	281 71
5/01E-10K015 6/19/68 1330	90	5877	68 7.5	1350	120 5.99 39	61 5.02 32	100 4.35 28	0.1		427 7.00 44	150 3.12 20	200 5.64 35	7.1 0.11 1		0.67		1080 853	551 200
5/01E-10N02S 6/19/68 1400	90	5877	70 7.5	600	52 2•59	19 1.56			- 0 0.00	244 4.00	43 0.89	70 1.97	0.0	-	0.00		476 	208 8
S/01E-11002S 6/18/68 1430	90	5877	67 7.4	500	40 1.99 37	19 1•56 29	41 1•78 33	0 - 0	0 0 0 0	183 3.00 52	55 1•14 20	56 1•58 27	3.5 0.06		0.20		464 306≠	178 28
5/01E-11E015 6/18/68 1600	90	5877	7.7	900	72 3.59 41	39 3.21 36	2 23	0 • 0	2 0 5 0.00 1 0	293 4.80 54	62 1.29 14	96 2.71 30	4.9 0.08		0.20		732 467	340 100
YAMACA HYDRO INAJA HY				Z070 0	20701													
S/04E-07R01S 9/08/68	90	5050 	68 7.4	378	30 1.50 42	9 0.74 21	30 1.30 36	0.09		139 2.28 62	16 0.33 9	36 1.01 28	0.02		0.00		234 193	112
(RRETT LAKE H)	rono s	SUBUNIT		Z11C0	TI	NAUL A	A HYDRO	UNIT		Z110	0							
S/04E-32H01S 6/26/68 1030	90	5050	 6•8	1572	132 6•59 43	69 5•67 37	66 2•87 19	0 • 1		206 3•38 22	71 1•48 10	348 9•81 65	33.0 0.53		0.00		1149 826	614 445
S/04E-33NS1S 6/26/68 1130	90	5050 	7.5	1818	139 6.94 35	78 6.41 33	137 5.96 30	0.29		553 9.06 47	82 1.71 9	298 8.40 44	5.3 0.08 0		0.00		1176 1022	668 214

TABLE E-2 TRACE ELEMENT ANALYSES OF GROUND WATER

The CONSTITUENTS are as follows:

AL - Aluminum GA - Gallium

BE - Beryllium GE - Germanium

BI - Bismuth MN - Manganese

CD - Cadmium MO - Molybdenum

CO - Cobalt NI - Nickel

CR - Chromium PB - Lead

CU - Copper TI - Titanium

FE - Iron V - Vanadium

Z - Zinc

The LAB and SAMPLER codes are as follows:

5010 - United States Geological Survey

5050 - Department of Water Resources

5057 - University of California at Riverside

TRACE- ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

TE WELL NUMBI	ER			
ATE SAMPLED	SAMPLER	DATE	ANALYZED	LAB
DEMARKS				

CONSTITUENTS IN MICROGRAMS PER LITER (* IN MG/L) DEG F MG/L BE CR GA GE MO NI P8 ΤI ZN TEMP TUS

CENTRAL COASTAL DRAINAGE PROVINCE (T)

3.86 PISMO HYDROLOGIC SUBAREA

/12E-12R03M

4/12/68 CLEAR, PETROLEUM ODOR, AIR LIFTED SAMPLE, PPG BO MIN AT ABOUT 4 GPM

<1.4 <1.4 <5.7 <0.3 <1.4 <0.3 <5.7

12E-24B01M

5050 /04/67 4/12/68 5010

CLEAR , NO ODOR

<1.4 <1.4 <1.4 100 <0.3 >343 13 <1.4 <0.6 <5.7 63

104/67 10/ /67 5050 5057 CLEAR NO ODOR

-- 1.0* 0.013* 0.001* <.001* <0.2* -- <.001* 0.002* 0.010*

12E-24802H

/04/67 5050 4/12/68 5010

CLEAR , NO ODOR

<1.4 <1.4 <1.4 <0.6 <0.3 <1.4 <1.4 229 <5.7

/04/67 5050 10/ /67 5057 CLEAR , NO ODOR

<0.1* -- <.001* 0.002* 0.003* -- 0.022* 0.003* 0.001* <.001* -- <.001* 0.005*

12E-24B03M

/04/67

CLEAR . NO ODOR

<1.4 <0.6 <0.3 <1.4 <1.4 <1.4 <1.4 257 <5.7

104/67 5050 10/ /67 5057 CLEAR , NO ODOR

4/12/68

5010

5050

<0.1* -- <.001* 0.002* 0.002* -- <.001* 0.011* <.001* 0.001* -- 0.001* 0.003* · 69

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

STATE	WELL	NUMB	ER			
DATE	SAME	PLED	SAMPLER	DATE	ANALYZED	LAB
RF	MARKS	;				

CONSTITUENTS IN MICROGRAMS PER LITER (* IN MG/L)

DEG F BE CD CO CR ÇU GA GE NI PB ΤI AL BI

1100

<0.7

<1.3

LOS ANGELES DRAINAGE PROVINCE (U)

U-02.80 UPP	PER VENTUR	A RIVE	R HYDF	ROLOGIC	SUBUNI	Т										
4N/23W-16B0	85															
10/11/67 CLEAR+NO	5050 ODOR		2/23/6	8	5010											
<3.3	<1.3	0.7	<3.3	<3.3	<3.3	<3.3	120	<13	<0.7	17	<0.7	4.4	<3.3	<1.3	0.7	1530
9/26/68 CLEAR,NO	5050 COLOR,NO		3/14/6 NO FO		5010 LGAE											
<3.3	<1.3	0.7	<3.3	<3.3	<3.3	<3.3	12	<13		<3.3	<0.7	<0.7	<3.3	<1.3	<0.7	1870
-02.C2 OJA	I HYDROLO	GIC SU	BAREA													
4N/22W- 6J0	75															
9/26/68 CLEAR+NO	5050 COLOR,NO		3/14/6 NO FO		5010	G ON ARE	RIVAL,01	THER NO	. 5							

U-03.A1 OXNARD HYDROLOGIC SUBAREA

31 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3

ĨN/21W-19J035	
10/11/67	

10/11/67 CLEAR+SI	- •	50 ULFUR O	2/23/6 DOR,PPG		5010 RE SYSTE	EM											
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	193	<13	<0.7	>1080	61	7.3	<3.3	<1.3	<0.7	1200	•
1N/21W-19R	55																
9/26/68	50	50	3/14/6	59	5010								•				

5.9 <13 <0.7

11 <0.7

<0.7

<3.3

CLEAR , NO	COLOR		EN SULFI		R+NO FO	AM, NO A	LGAE , PPG	•OTHER	NO. MIC	WAY 1							
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	9.3	<13	<0.7	3.7	16	<0.7	<3.3	<1.3	<0.7	<13	69

1313	1113		1313	1343	13.3	13.3	7.5	113	 3.1	10	10. 1	(3.3	(1.5	 (13	0,9
IN/21W-30A0	25														
9/26/68	505	0	12/11/6	8	5010										

CLEAR , NO	COLOR	NO FOAR	1.NO AL	GAE+HYDR	OGEN SI	ULFIDE	ODOR + PUM	IPED REC	ENTLY . F	PUMPED 3	MIN F	OR SAMPL	.Ε				
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	3.7	<13	<0.7	200	8.0	<0.7	<3.3	<1.3	<0.7	<13	71

1N/22W- 2K045					
·	5050 12/11/68 OR:NO ODOR:NO FOAM:NO	5010 ALGAE, PUMPS INTERMITTEN	ITLY		

8	30 -	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	20	<13	<0.7	<3.3	8.0	<0.7	<3.3	<1.3	1.2	<13	ŤΚ
2N/21W-1	18R05	5																
10/11/6		505	-	2/23/6	58	5010												

CL	EAR+NO	ODOR+I	PPG															
	23	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	160	<13	<0.7	9.3	43	5.1	<3.3	<1.3	0.9	<13	
2N/21	w-19C	015																

9/26/68 CLEAR+NO	505 COLOR,	-	12/11/6 R•NO FO	-	5010 ALGAE, PUN	PED REC	ENTLY + P	UMPED :	3 MIN FO	R SAMPL	E						
49	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	6.0	<13	<0.7	9.3	1.4	<0.7	<3.3	<1.3	1.1	<13	70
2N/21W-19G0	25																

3/21/68	5050	6/03/68	5010												
12 2N/22W-12E0	<1.3 <0.7	<3.3 <3.3	<3.3	21	113	<13	<0.7	15	15	<0.7	<3.3	<1.3	1.9	900	īĸ
10/11/67	5050 SEELING GYELEN	2/23/68	5010												

CLEAR PR	ESSURE		2/23/	58	5010												
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	193	13	<0.7	8.0	<0.7	4.7	<3.3	<1.3	<0.7	<13	
9/26/68 CLEAR+NO	50 COLOR		3/14/0 R+NO FO		5010 LGAE,PP	ON ARE	RIVAL										
52	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	11	<13	<0.7	27	1.8	5.3	<3.3	<1.3	<0.7	<13	65

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

								SOU	THERN	CALIFORN	AIA								
			PLER	DATE AN	ALYZED	LAB	CONS	TITUENTS	IN MI	CROGRAMS	S PER L	ITER (*	IN MG/	L)				DEG F	MG/L
	AL	BE	ві	CD	со	CR	CU	FE	GA	GE	MN	мо	NI	PB	TI	٧	۷N	TEMP	TDS
a 4							LOS	ANGELE	5 DRAI	NAGE PRO	VINCE	(U)							
U=02.A1	OXN	APD HYD	POL OG 1	C SUBAR	FA														
0-03.71	UAIN	AND HID	ROLOGI	C JOBAN	C.A.														
SN/SSM	-12N0	6 S																	
3/20	/68	505	0	6/03/	68	5010													
	13	<1.3	<0.7	₹ 3 ∙3	<3.3	<3.3	13	>28	<13	<0.7	18	8.7	1.2	<3.3	<1.3	<0.7	<13		
2N/22W	-14L05	55																	
10/11 CLE		505 ODOR•N		2/23/ 0R•PPG	68	5010				-									
٠	3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	600	<13	<0.7	₹3.3	<0.7	<0.7	<3.3	<1.3	<0.7	<13		1425
5N/SSM	-1500	15																	
10/11 CLE		505 000R+P		3/01/ SSURE S		5010 JSED EVE	RY DAY												
<	3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	567	<13	<0.7	43	<0.7	<0.7	<3.3	<1.3	2.1	<13		1505
9/26 CLE		505 COLOR,		3/14/ 0R:NO FO		5010 ALGAE													
	37	<1.3	₹0.7	<3.3	<3.3	<3.3	<3.3	5.9	<13	<0.7	<3.3	2.9	<0.7	<3.3	<1.3	<0.7	<13	66	1417
5N\55M				<u>.</u>															
3/27	/68	505	0	6/03/	68	5010													
	8.7	<1.3	₹0.7	<3.3	<3.3	<3.3	9.3	6.4	<13	₹0.7	113	15	<0.7	<3.3	<1.3	1.3	<13		965
2N/22W	-23D0	5S																	
10/11 CLE		505 ODOR,N		2/23/ OR•PPG	68	5010													
			<0.7	<3•3	<3•3	<3•3	<3.3	100	<13	<0.7	<3.3	8 • 0	1 • 7	<3.3	<1.3	1.1	100		885
5N\55#						400													
10/11 CLE		505 0D0R+N		2/23/ OR	68	5010													
. <	3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	160	<13	<0.7	6.0	13	1.9	<3.3	<1.3	1.6	<13		1120
SN\SSM	-25A0	4S -																	
9/26 CLE		COLOR:		12/11/ DR•NO FO		5010 ALGAE,PU	MPS INT	ERMITTEN	ITLY										
	8.0	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	4.3	<13	<0.7	1.9	12	2.9	<3.3	<1.3	1.2	360	Ŧκ	1078
U-03.A2	PLE.	ASANT V	ALLEY	HYDROLO	GIC SUE	BAREA													
ĨN/21W	- 9F0	15																	
9/25 CLE		COLOR:		3/14/ GEN SULF		5010 DR:NO FO	AM NO A	LGAE•PPG	ON AR	RIVAL									
4	3.3	<1.3	<0.7	₹3∙3	<3.3	<3.3	<3.3	23	<13	<0.7	₹3∙3	3.6	<0.7	<3.3	<1.3	<0.7	<13	78	475
1N/21W	1-53VÔ	25																	
	AR . NO		PPG • PR	2/23/ ESSURE S	YSTEM	5010													
	3.3	<1.3	<0.7	<3·3	<3.3	<3.3	<3.3	313	<13	<0.7	53	16	<0.7	<3.3	<1.3	35	<13		2940
U-03.B1	SAN	TA PAUL	A HYDI	ROLOGIC	SUBAPE	A													
3N/21W	-16K0	15																	
10/11 CLE		505 ODOR, F		3/01/ ANDBY WE		5010											**		
	3.3	<1.3	<0.7	29	<3.3	<3.3	<3.3	733	<13	<0.7	267	<0.7	6.7	<3.3	<1.3	2.3	<13	67	1463
9/26 CLE		COLOR:		3/05/ OR•NO FO		5010 ALGAE,PP	G ON AR	RIVAL											

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA STATE WELL NUMBER DATE SAMPLED S SAMPLER DATE ANALYZED LAB REMARKS CONSTITUENTS IN MICROGRAMS PER LITER (* IN MG/L) DEG F MG/L BE CO FE ΝI РΒ Τī ZN TEMP TOS BI CD CR ÇU GE MO AL GA LOS ANGELES DRAINAGE PROVINCE (U) U-03.B1 SANTA PAULA HYDROLOGIC SUBAREA 3N/21W-21B015 - 470 3/21/6B >050 6/03/68 5010 1690 25 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 >313 <13 <0.7 360 13 <0.7 <3.3 <13 <1.3 3N/21W-21E015 6/03/68 3/21/68 5050 5010 . 196

3N/21W-21F01S

>64

31

<3.3

CLEAR, NO ODOR, PPG, PRESSURE SYSTEM, RUSTY AT START 1587 <3.3 <3.3 12 <0.7 <1.3 <1.3 <0.7 <3.3 <3.3 333 <13 <0.7 26 <3.3 <0.7 <13 9/26/68 5050 3/05/69 5010 SLIGHTLY TURBID, SLIGHTLY RUSTY COLORED, HYDROGEN SULFIDE ODOR, NO FOAM, NO ALGAE, PRESSURE TK

<13

<13

<0.7

<0.7

213

1.8

<0.7

<1.3

₹13

1888

<1.3 <0.7 <3·3 <3.3 <3.3 <3.3 4.8 <0.7 <0.7 **<**13 <13 <3.3

U-03.C1 FILLMORE HYDROLOGIC SUBAREA

5050

<1.3 <0.7

5050

<1.3 <0.7

5050

<3.3

12/11/68

3/01/68

12/11/68

3/01/68

₹3∙3

CLEAR, NO COLOR, NO ODOR, NO FOAM, NO ALGAE, PUMPING ON ARRIVAL

<3.3

<3.3

<3.3

<3.3

5010

5010

5010

5010

5010

4N/19W-32G01S 9/27/68

4N/20W-24R025

22

10/11/67

CLEAR, NO COLOR, NO FOAM, NO ALGAE, SLIGHT HYDROGEN SULFIDE ODOR, PPG ON ARRIVAL <3.3 <3.3 <3.3 <3.3 <0.7 5.0 9.3 <0.7 <3.3 <1.3 <13 60 869 <1.3 <0.7

10/11/67 5050 3/01/68 5010 CLEAR , NO ODOR , NO COLOR , PPG <0.7 <3.3 <3.3 <3.3 <3.3 107

U-03.01 PIRU HYDROLOGIC SUBAREA

5050

4N/18W-30L015

10/11/67

CLEAR, NO ODOR, PPG, PRESSURE SYSTEM <1.3 <0.7 <13 <0.7 <0.7 <0.7 <13 <3.3 <3.3 <3.3 <3.3 110 13 <3.3 <1.3

4N/19W-25C025

9/27/68 5050 12/11/68 5010 CLEAR, NO COLOR, NO ODOR, NO FOAM, NO ALGAE, NOT PPG, SAMPLED WATER IN SYSTEM, APPEARS TO BE OPERATING WELL

<0.7 TK <1.3 <0.7 <3.3 <3.3 <3.3 53 <0.7 13 <3.3 <1.3 **<13** <3.3 <13 <3.3

U-03.E1 EASTERN HYDROLOGIC SUBAREA

5050

4N/15W-21A015

5050 12/11/68 5010 CLEAR, NO COLOR, NO ODOR, NO FOAM, NO ALGAE, PUMPS INTERMITTENTLY

3/01/68

<1.3 <0.7 280 13 <3.3 <3.3 <3.3 <3.3 7.3 <13 <0.7 4.7 < 0.7 <3.3 <1.3 TK

4N/16W-210015

10/11/67

<0.7 >6700 <3.3 <1.3 <0.7 <3.3 <3.3 <3.3 233 67 <1.3 <3.3 <13 <0.7 <0.7 <3.3

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

TATE WELL N DATE SAMPL REMARKS	UMBER ED SAMP	LER 0	ATE ANA	LYZED	LAB	CONST	TITUENTS	IN MI	ROGRAMS	S PER LI	TER (*	IN MG/L	_)				UEG F	MG/L
AL	8E	81	CD	CO	CR	Cn	FE	GA	GE	MN	MO	NI	PB	ΤI	٧	۷n	TEMP	TOS
.*						LOS	ANGELE	S URAIN	NAGE PRO	OVINCE (U)							
-03.E1 EAS	TERN HYD	ROLOGI	C SUBAR	EA														
4N/16W-21D0	15																	
9/27/68 CLEAR+NO	5050 COLOR•N		12/11/6 1•NO FOA		5010 LGAE													
		<0.7	<3.3	<3.3	<3.3	<3.3	13	<13	<0.7	<3.3	2.9	<0.7	<3.3	<1.3	3.6	<13	67	629
4N/16W-33L0 3/20/68	5050	1	6/03/6	18	5010													
										ы —								117-
12 4N/17W-22E0		<0.7	<3.3	<3.3	<3.3	9.3	>100	<13	<0.7	5.6	13	<0.7	<3.3	<1.3	3.0	<13	79	1170
9/27/68	5050		12/11/6		5010													
CLEAR, NO										.2.2	7 2	<0.7	43.3	<1.3	1.5	<13	69	1165
9.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	4.8	<13	<0.7	<3.3	7•3	VU. 1	<3.3	(1.3	1.5	(13	0,	1103
-03.E5 ACT	ON HYDRO	LOGIC	SURAREA	1														
4N/12W- 2E0	25																	
10/11/67 CLEAR+NO	5050 000R+N0		3/01/6 PPG•PF		5010 SYSTEM													
<3.3		<0.7	<3.3	<3.3	<3.3	<3.3	247	<13	<0.7	56	<0.7	<0.7	<3.3	<1.3	4.8	5000		282
4N/13W-12C0 9/27/68	5050 5050)	12/11/6	.8	5010													
CLEAR, NO						1PED 9/2	26/68 , PU	MPED 3	MIN FO	R SAMPLE	Ė		,					
17	<1.3	<0.7	<3•3	<3.3	<3.3	<3.3	7•3	<13	<0.7	1.5	<0.7	<0.7	<3.3	<1.3	4.3	<13	63	406
-03.F1 WES	T LAS PO	SAS H	YUROLOG1	IC SUBA	REA													
2N/21W- 8L0	15																	
10/11/67 CLEAR+NO	505(000R+N0		2/23/6 R•PPG	68	5010													
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	220	<13	<0.7	51	15	4.7	<3.3	<1.3	4.3	<13	68	,960
9/26/68 CLEAR • NO	5050 COLOR+I		12/11/6 R+NO FO		5010 LGAE,PU	MPS INT	ERMITTEN		G UN AR	RIVAL								
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	8.7	<13	<0.7	1.7	20	<0.7	<3.3	<1.3	3.9	<13	77	975
1-03.F2 EAS	ST LAS P	OSAȘ H	YUROLOG:	IC SUBA	REA													
2N/20W- 9H	15																	
9/25/68 CLEAR+NO	505 COLUR		3/14/6 R+NO FO		5010 LGAE,PP	G ON AR	RIVAL											
31	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	5.3	<13	<0.7	<3.3	<0.7	<0.7	<3.3	<1.3	<0.7	<13	74	336
3N/20W-27G	505 0 0DOR+P		2/23/	68	5010													
<3.3	<1.3		<3.3	<3.3	<3.3	<3.3	100	<13	<0.7	27	12	3.6	11	<1.3	1.9	100	63	1170
9/25/68 CLEAR+N	505 COLOR,		12/11/6 R+NO FO		5010 LGAE,PU	MPS 1NT	ERMITTEN	NTLY IN	TO LARG	E TANK								
819																		

6.0 <1.3 <0.7 7.3 <3.3 <3.3 <3.3 3.3 <13 <0.7 6.0 10 <0.7 <3.3 <1.3 1.4 67

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

							3001		AC11 01111	• • •								
STATE WELL N DATE SAMPL REMARKS		MPLER D	ATE ANA	LYZED	LA8	CONST	ITUENTS	IN MIC	ROGRAMS	S PER L	ITER (*	IN MG/L	.)				UEG F	M
AL	88	BI	CD	CO	CR	CU	FE	GA	GE	MN	мо	NI	PB	ΤI	V	۷N	TEMP	Ti
						LOS	ANGELES	5 DRAIN	NAGE PRO	VINCE	(U)							
U-03.F3 ARE	ROYU SA	NTA ROSA	HYDROL	.ogIC S	UBAREA													
2N/20W-23H0	25																	3
10/11/67 CLEAR,NO	50' 0 000R•1		2/23/6	8	5010													
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	233	<13	<0.7	133	<0.7	<0.7	<3.3	<1.3	120	<13	67	
2N/20W-23R0					5.1.0													
9/25/68 CLEAR+NO	50 COLOR		12/11/6 NO FO#		5010 LGAE,PUN	1PED REC	ENTLY, P	UMPED 9	5 MIN FO	OR SAMP	LE							
27	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	10	<13	<0.7	5.3	8.0	<0.7	<3.3	<1.3	6.4	<13	70	
U-03.F4 CON	AV OLAN	LLEY HYD	ROLOGIC	SUBAR	EA													
ĨN/20₩-15R(038																	
10/11/67 CLEAR+NO		50 PRESSURE	2/23/6 SYSTEM		5010													
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	193	<13	<0.7	21	6.0	2.6	<3.3	<1.3	0.7	387		
2N/20W-36R	015																	
9/25/68 CLEAR • NO		50 ∙HYDROGE	3/14/6 EN SULF		5010 R,NO FO	AM+NO AL	.GAE+PPG	ON ARE	RIVAL+P	UMPS IN	TERMITT	ENTLY,V	ILLAGE	16				
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	13	<13	<0.7	<3.3	2.7	<0.7	<3.3	<1.3	<0.7	<13	71	
U-03.F7 SI	MI VALL	EY HYDRO	DLOGIC S	SUBAREA														
2N/17W- 8J	065												•					
9/25/68 CLEAR+N	50	50 •NO FOA	3/14/6 M+NO AL		5010 ROGEN S	ULFIDF (DOR•TAS	TES LI	KE IT S	MELLS								
>0.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	3.3	<13	<0.7	<3.3	23	<0.7	<3.3	<1.3	10	<13	74	
2N/18W-10A	025																	
9/25/68 CLEAR+N		50 1.00 ODO	3/14/ R•NO FO		5010 ALGAE,ST	ANDBY W	ELL•SAMP	LED AF	TER PPG	25 MIN	i							
100	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	7.3	<13	<0.7	<3.3	48	<0.7	<3.3	<1.3	6.3	<13	12	. 1
U-05.A2 WE	ST COAS	ST HYDRO	LUGIC S	UBAREA														
3S/13W-19K	025																	
9/30/68 CLEAR+N	_	050 R•NO 0D0	11/27/ R•NO FO	_	5010 ALGAE • PU	MPS INT	ERMITTEN	iTLY										
10	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	19	<13	<0.7	15	<0.7	<0.7	<3.3	<1.3	<0.7	<13	69	
3S/13W-290 9/30/68)50	11/27/	68	5010													
					M.NO ALG	AE												
		<0.7	<3.3	<3.3	<3.3	<3.3	18	<13	<0.7	<3.3	<0.7	2.0	<3.3	<1.3	<0.7	<13	72	
3S/14W- 7K	5	050	2/23/	68	5010													
<3.3		•NO COLO <0.7		<3.3	<3.3	<3.3	347	13	<0.7	37	<0.7	6.7	<3.3	<1.3	<0.7	<13	71	
9/30/68	5	050	11/27/	68	5010 ALGAE,PP					3.		- •	_,,		- - -		•	
60	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	57	<13	<0.7	15	<0.7	6.0	<3.3	<1.3	<0.7	<13	75	
3S/14W-35M																		
9/30/68 CLEAR•N		050 •NO COLO	11/27/ R+NO FO		5010 ALGAE•NO	T PPG-S	AMPLED 6	NCLOSE	n RESEF	SAUIR								
35	<1.3	<0.7	<3.3	<3.3	<3.3	5.3	60	<13	<0.7	13	<0.7	<0.7	<3.3	<1.3	<0.7	<13	Tκ	

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

ATE WELL NUMBER
DATE SAMPLED SAMPLER DATE ANALYZED LAB
REMARKS

MARKS CONSTITUENTS IN MICROGRAMS PER LITER (* IN MG/L)

AL BE BI CD CO CR CU FE GA GE MN MO NI PB TI V ZN TEMP TUS

LOS ANGELES DRAINAGE PROVINCE (U)

0	5.A2	WEST	COAST	HYDROLOGIC	SUBAREA

S/13W-19J06S

9/30/68 5050 11/27/68 5010
NO COLOR, HYDROGEN SULFIDE ODOR, NO FOAM, NO ALGAE, CLEAR, PUMPS INTERMITTENTLY

17 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 <3.3 <3.3 <0.7 <3.3 <0.7 1.2 <3.3 <1.3 <0.7 <13 75 232

S/14W-10002S

9/30/68 5050 11/27/68 5010
NO COLOR, HYDROGEN SULFIDE ODOR, NO FOAM, NO ALGAE, CLEAR, PPG ON ARRIVAL

<1.3 <3.3 <3.3 <3.3 <3.3 19 <13 <0.7 <3.3 <0.7 <0.7 <3.3 <1.3 <0.7 <13 73 289

05.A3 SANTA MONICA HYDRULOGIC SUBAREA

5/14W-32M06S

9/30/68 5050 3/05/69 5010 CLEAR,NO COLOR,HYDROGEN SULFIDE ODOR,NO FOAM,NO ALGAE,PPG

<1.3 <0.7 <3 ₽3 <3.3 <3.3 13 <13 <0.7 27 < 0.7 < 0.7 < 3.3 <1.3 <0.7 <13 590

5/15w-23J01S

10/11/67 5050 2/23/68 5010

CLEAR, NO ODOR, PPG 2 MIN, SUPPLY FOR BOMB SHELTER

25 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 >140 <0.7 <13 15 13 < 0.7 <3.3 <1.3 < 0.7 < 13 255

5/15W-32A055

9/30/68 5050 3/05/69 5010 CLEAR,NO COLOR,NO ODOR,NO FOAM,NU ALGAE,PPG,OTHER NO. 4

57 <1.3 <0.7 <3.3 <3.3 73 <3.3 <3.3 <13 <0.7 4.7 < 0.7 < 0.7 <3.3 <1.3 < 0.7 < 13 69 628

5/15W-33D01S

10/11/67 5050 2/23/68 5010 CLEAR,NO ODOR

<3.3 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 300 <13 <0.7 31 <0.7 6.7 <3.3 <1.3 2.3 <1.3 68 630

S/15W-12803S

9/31/68 5050 3/05/69 5010 CLEAR,NO COLOR,HYDROGEN SULFIDE ODOR,NO FOAM,NO ALGAE,PPG ON ARRIVAL

<3.3 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 <3.3 <0.7 <0.7 <0.7 <3.3 <1.3 <0.7 <13 73 1286

05.45 CENTRAL HYDROLOGIC SUBAREA

S/13#- 58015

9/30/68 5050 3/05/69 5010
CLEAR,NO COLOR,HYDROGEN SULFIDE ODOR,NO FOAM,NO ALGAE,PPG

9.3 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 <1.3 <0.7 <3.3 <0.7 <0.7 <3.3 <1.3 <0.7 <13 72 701

S/13W-20R055

10/11/67 5050 2/23/68 5010

NO ODOR,NO COLOR,SOME TURBIDITY AND SAND,PPG

<3.3 <1.3 <0.7 <3.3 <1.3 <3.3 <3.3 <28 >800 <13 <0.7 37 <0.7 <0.7 <3.3 <1.3 5.3 <13 00 5

'S/13W-25H035

10/11/67 5050 3/01/68 5010 CLEAR, NO ODOR, PPG, PPG ANOTHER WELL NEARBY

47 <1.3 <0.7 <3.3 <3.3 <3.3 <3.3 >733 <13 <0.7 40 73 <0.7 <3.3 <1.3 1.9 <13 69 347

'S/13W-32R11S

3/20/68 5050 6/03/68 5010

19 <1.3 <0.7 <3.3 <3.3 <3.3 35 >193 <13 <0.7 79 8.0 <0.7 26 <1.3 <0.7 <13 70 336

								TABLE	E E-2								
						TRACE	ELEMENT	ANALY:	SES OF	GROUND V	VATER						
							SOU	THERN (CALIFOR	NIA							
STATE WELL P DATE SAMPL REMARKS		MPLER	DATE ANA	ALYZEO	LAB	CONST	TITUENTS	IN MI	CROGRAM	5 PER LI	ITER (*	IN MG/	L)				DEG F MO
AL	BE	81	CO	CO	CR	CU	FΕ	GA	GE	MN	МО	NI	PB	ΤI	٧	ZN	TEMP T
						LOS	ANGELE	S DRAII	NAGE PR	OVINCE	(U)						
U-05.A5 CE	NTRAL H	YDROLOG	GIC SUBAR	REA													
3S/11W-20J	55																
10/11/67 CLEAR•NO	50 000R•		3/01/6 OR•PPG	58	5010												
<3.3 3S/11W-20J0	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	4.7	<13	<0.7	10	<0.7	<0.7	<3.3	<1.3	<0.7	<13	68
3/19/68	50	50	6/03/6	58	5010												12/4
12	<1.3	<0.7	<3.3	<3.3	<3.3	14	55	<13	<0.7	33	<0.7	1.3	<3.3	<1.3	<0.7	<13	
35/11W+30P	25																144
10/11/67 CLEAR+NO	50: 0 000R+		3/01/6 3 EVERY (5010												
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	193	<13	<0.7	93	<0.7	<0.7	<3.3	<1.3	2.0	<13	69
3\$/12W- 1F)7S																
10/11/67 CLEAR+NO	50 ODOR•		2/23/6 OR•PPG•PF		5010 SYSTEM												
17	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	120	<13	<0.7	<3.3	<0.7	<0.7	<3.3	<1.3	1.7	<13	
35/12W+35A0	04S																
10/11/67 CLEAR+NO	50 000R,		2/23/0 DR•PPG•PF		5010 SYSTEM												
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	30	133	<13	<0.7	220	<0.7	<0.7	<3.3	<1.3	1.3	<13	69
45/12W- 2A	055												•				
10/11/67 CLEAR,N	50 0 000R,		2/23/0 0R•PPG•PI		5010 SYSTEM												
12	<1.3	<0.7	<3. 3	<3.3	<3.3	<3.3	220	<13	<0.7	213	<0.7	<0.7	<3.3	<1.3	<0.7	233	3
U-05.81 SA	N FERNA	NDO HY	DROLOGIC	SUBARE	A												
1N/13W-18N	015																
3/29/68	50	50	6/03/	68	5010												

				1
<3.3 <1.3	3 6.4	<13	78	2.
1				
<3.3 <1.3	3 4.7	>6500	Tκ	3
				я
8.7 <1.3	3 1.3	<13		2
35 <1.3	3 2.7	<13		2
<3.3 <1.3	3 5.2	<13	68	3
2	<3.3 <1. 8.7 <1. 35 <1.	<3.3 <1.3 4.7 8.7 <1.3 1.3 35 <1.3 2.7	<3.3 <1.3 4.7 >6500 8.7 <1.3 1.3 <13 35 <1.3 2.7 <13	<3.3 <1.3 4.7 >6500 TK 8.7 <1.3 1.3 <13 35 <1.3 2.7 <13

1N/15W- 2002S

4/01/68 5050

6/03/68 5010

16 <1.3 <0.7 <3.3 <3.3 <3.3 14 33 <13 <0.7

24

77 0.9

--

1.7

<13

3.9 <1.3

TRACE ELEMENT ANALYSES OF GROUND WATER

SOUTHERN CALIFORNIA

E WELL N		PLER (DATE ANA	ALYZEU	LAB													
REMARKS				•								IN MG/					DEG F	
AL	BE	RI	CD	CO	CR	Cη	FE	GA	GE	MN	МО	N1	PB	1.[٧	۷N	TEMP	ไปร
ad ado						1.05	ANGELE	S DDATE	NAGE PD	OVINCE	(11)							
							ANOCEE	S DAMI	NACE FIN	OVINCE	(0)							
B1 SAN	FERNAN	DO HYDI	ROLOGIC	SUBARE	A													
7W-12A0	15																	
11/67	505		2/23/6		5010													
					PPG•PRES													
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	313	<13	<0.7	273	<0.7	5.7	<3.3	<1.3	<0.7	300		S
.B2 SYL	MAR HYD	ROLOGIO	SUBAR	EA														
15w-33Q0	15																	
11/67	505		2/23/6	58	5010													
LEAR, NO																		
21 27/68	<1.3 505		<3.3		<3.3 5010	<3.3	520	<13	<0.7	13	<0.7	3.9	<3.3	<1.3	3.9	<13	68	3
					LGAE,PPG	ON ARE	RIVAL											
10	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	8.7	<13	<0.7	<3.3	3.0	<0.7	<3.3	<0.1	5.2	<13		4
.B3 TUJ	UNGA HY	DROLOG	C SUBA	REA														
4W-29N0	26																	
11/67	<i>2</i> 5 50 5	0	2/23/0	68	5010													
LEAR NO					3010													
33	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	267	<13	<0.7	<3.3	<0.7	5.1	<3.3	<1.3	43	<13		2
C3 SAN	TA ANIT	A HYDR	DLOGIC S	SUBAREA														
114-2160	55																	
/11/67	505	0	2/23/	68	5010													
CLEAR , NO	000R • P	PG																
<3.3	<1.3	<0.7	<3.3	<3.3	<3.3	<3.3	247	<13	<0.7	19	<0.7	5.5	<3.3	<1.3	13	<13	67	ā
.D1 MAI	N SAN G	ABRIEL	HYDROL	ogic su	BAREA													
11W - 11P0	75																	
/11/67	505		2/23/	68	5010													
CLEAR+NO																		
17 11w-12C0	<1.3	<0.7	19	<3.3	<3.3	6.0	93	<13	<0.7	6.7	<0.7	5.7	<3.3	<1.3	1.5	43	68	3
/19/68	505	0	6/03/	68	5010													
	<1.3	<0.7	<3.3	<3.3	<3.3	6.1	16	<13	<0.7	<3.3	2.2	1.3	<3.3	<1.3	1.3	<13		2
11W-33N0 /11/67	505		2/23/	68	5010													
CLEAR NO			2/23/	00	2010													
<3.3		<0.7	<3.3	<3.3	<3.3	13	313	<13	<0.7	17	<0.7	8.0	<3.3	<1.3	1.6	2000		6
9W-18E0			2/22:	. 0	E 0.1 -													
/11/67 CLEAR • NO	509 000R•F		3/01/ SSURE S		5010													
	<1.3	<0.7	<3.3	<3.3	<3.3	28	73	<13	<0.7	5.3	11	2.9	<3.3	1.7	1.6	<13		9
11W- 6R0	38															4	,	
/11/67 CLEAR . NO	505 OUOR • N		2/23/ R•PPG•P		5010 SYSTEM													
		200																

<3.3 <1.3 <0.7 <3.3 <3.3 <3.3 8.0 267 <13 <0.7 8.7 <0.7 5.1 4.7 <1.3 2.3 1570 -- 730

Appendix F
WASTE WATER DATA

¥.	
	8.
	1

Appendix F

WASTE WATER DATA

This appendix contains data on the quality and quantity of waste water discharged at various locations in Southern California and on the use of such waters, during the period from October 1, 1967, through September 30, 1968. Waste waters are a definite part of the State's total resources and, like streams and lakes, if carefully managed, can be put to beneficial use.

In all tabulations data are presented according to Water Quality Control Board regions. These regions are geographic areas defined in Section 13050 of the Water Code. For the Southern California area these are: Los Angeles Regional Water Quality Control Board (No. 4), Colorado River Basin Regional Water Quality Control Board (No. 7), Santa Ana Regional Water Quality Control Board (No. 8), San Diego Regional Water Quality Control Board (No. 9), and portions of Central Coastal Regional Water Quality Control Board (No. 3) and Lahontan Regional Water Quality Control Board (No. 6).

Records are not available from all dischargers of waste water in Southern California. Quantities discharged, reused, and disposed of are those reported to the Department by the dischargers who replied to a questionnaire.

The locations of the waste discharging facilities for which data are reported are shown on Figures F-1 through F-6.

The following terms are defined for use in this appendix:

- "Waste" includes sewage and any and all other waste substances, liquid, solid, gaseous, or radioactive, associated with human habitation, or animal origin, or from any producing, manufacturing, or processing operation of whatever nature. (Section 13050 (d) of the Water Code.)
- "Reclaimed Water" means water which, as a result of treatment of waste, is suitable for a direct beneficial use or a controlled use that would not otherwise occur. (Section 13050 (n) of the Water Code.)
- "Reused Water" Reclaimed water that has been reused for beneficial purposes.
- "MGD" Million gallons per day.

In Bulletin No. 130-67, no distinction was made between "Reclaimed Water" and "Reused Water"; therefore the quantities reported as reused or reclaimed in that bulletin are not comparable with the quantities reported as reused in this bulletin.

WASTE WATER DISCHARGERS CENTRAL COASTAL REGION (No. 3)

- 1. South San Luis Obispo County Sanitation District
- 2. Atascadero County Sanitation District
- 3. Atascadero State Hospital
- 4. Avila Sanitary District
- 5. Buellton Community Services District
- 6. Cachuma Sanitation District
- 7. Camp San Luis Obispo
- 8. Carpinteria Sanitary District
- 9. Federal Correctional Institution, Lompoc
- 10. Goleta Sanitary District
- 11. Guadalupe
- 12. Laguna County Sanitation District
- 13. Lompoc
- 14. Montecito Sanitary District
- 15. Morro Bay Cayucos Sanitary District
- 16. Paso Robles
- 17. Paso Robles School for Boys
- 18. Pismo Beach
- 19. San Luis Obispo
- 20. San Miguel Sanitary District
- 21. San Simeon Acres Community Services District
- 22. Santa Barbara
- 23. Santa Maria
- 24. Santa Maria Public Airport
- 25. Shell Beach Sanitary District
- 26. Solvang Municipal Improvement District
- 27. Summerland Sanitary District
- 28. Vandenberg Air Force Base
- 29. Vandenberg Disposal Company
- 30. Western Pacific Sanitation Company

WASTE WATER DISCHARGERS - CENTRAL COASTAL REGION (NO. 3)

WASTE WATER DISCHARGERS LOS ANGELES REGION (No. 4)

1.	Camarillo Sanitary District
2.	-
3.	Thousand Oaks, City of
4.	Crescenta Valley County Water District
5.	Fillmore
	Los Angeles: City of
6.	Hyperion
7.	Terminal Island
	Los Angeles County Sanitation
	Districts:
8.	Azusa
9.	Joint Disposal Plant
10.	La Canada
11.	Miller
12.	Pomona
13.	Saugus
14.	Whittier Narrows
15.	Montalvo Municipal Improvement District
17.	Oak View Sanitary District
19.	Oxnard
20.	Port Hueneme Sanitation District
21.	Sanitation, Inc.
22.	Santa Paula
23.	
24.	Simi Valley Sanitation Company
25.	United States Naval Air Station, Point Mugu
26.	
	Ventura, City of
27.	Eastside Plant
28.	Seaside Plant

30. 31.	
32.	S
33. 34.	Las Virgines Municipal Water Distric Mullwood Tapia
35.	Los Angeles Valley Settling Basin
36.	Los Angeles County - Acton
37.	Los Angeles County - Afferbaugh
38.	Los Angeles County - Miller-
	Kilpatrick
39.	Los Angeles County - Munz
40.	Los Angeles County - Sheriff No. 13
41.	Los Angeles County - Sheriff No. 18
42.	Los Angeles County - Wayside Honor
	Dairy
	Los Angeles County Sewer Maintenance
	Districts
43.	Malibu Canyon
44.	Trancas

45. Ventura County Waterworks
District No. 6

WASTE WATER DISCHARGERS - LOS ANGELES REGION (NO. 4)

WASTE WATER DISCHARGERS LAHONTAN REGION (No. 6)

- 1. Apple Valley Inn
- 2. Barstow
- 3. Bishop
- 4. Crestline Sanitation District
- 6. Edwards Air Force Base
- 7. Fort Irwin
- 8. General William J. Fox Airfield, Lancaster
- 9. George Air Force Base
- 10. Lake Arrowhead Sanitation District

Los Angeles, City of - Department of Water and Power

- 11. Independence
- 12. Lone Pine

Los Angeles County Sanitation Districts:

- 13. Lancaster
- 14. Palmdale
- 15. Mojave Public Utility District
- 17. Ridgecrest Sanitation District United States Marine Corps Supply Centers: •
- 18. Nebo Area
- 19. Yermo Area
- 20. United States Naval Ornance Test Station, China Lake
- 21. Victorville Sanitary District

WASTE WATER DISCHARGERS - LAHONTAN REGION (NO. 6)

WASTE WATER DISCHARGERS COLORADO RIVER BASIN REGION (No. 7)

- 1. Banning
- 2. Blythe
- 3. Borrego Springs Park
- 4. Brawley
- 5. Calexico
- 6. Calipatria
- 7. Coachella Sanitary District
- 8. Consumers Utilities of California, Inc.
- 9. Desert Crest Mobile Community
- 10. East Blythe County Water District
- 11. El Centro
- 12. Holtville
- 13. Imperial
- 14. Imperial Valley Bowl
- 15. Imperial Valley College
- 16. Imperial Valley Country Club
- 17. Kaiser Steel Corporation, Eagle Mountain
- 18. U. S. Marine Corps Base, Twentynine Palms
- 19. Mecca Sanitary District
- 20. Naval Air Facility, El Centro
- 21. Needles
- 22. Niland Sanitary District
- 23. Coachella Valley County Water District
- 24. Palm Springs
- 25. Pioneers Memorial Hospital
- 26. Thermal Sanitary District
- 27. U. S. Gypsum Company
- 28. Westmorland
- 29. Valley Sanitary District

WASTE WATER DISCHARGERS - COLORADO RIVER BASIN REGION (NO. 7)

WASTE WATER DISCHARGERS SANTA ANA REGION (No. 8)

26. Perris

1. 2. 3.	Beaumont Big Bear Lake Sanitation District California Institution for Men, Chino
4.	California Institution for Women, Chino Chino Plant No. 1
5•	Plant No. 1
8.	Plant No. 2 Colton Corona Cucamonga County Water District Edgemont Community Services District
12.	Elsinore Fontana Glen Helen Rehabilitation Center Sunland Vineyard Co Guasti Hemet - San Jacinto
16. 17. 18. 19.	Kaiser Steel Corporation La Sierra College
	Space Center, Inc. Ontario Orange County Sanitation District Plant No. 1
25A.	Orange County Honor Farm

28.	Redlands Rialto Riverside
-	Plant No. 1 Plant No. 2
31.	Rubidoux Community Services District San Bernardino
32.	Plant No. 1
33.	
	Norton Air Force Base
35.	Seal Beach
	Sunset Beach Sanitary District United States Marine Corps
	Air Station, El Toro
38.	United States Naval Weapons
	Station, Seal Beach Western Pacific Sanitation Compa
39.	Etiwanda
40.	Vina Vista
41.	Brea Mariaine 3 Hatan District
42.	Eastern Municipal Water District Sun City

MAP

LEGEND

DO WASTE DISCHARGING AGENCY

SAN LUTS

ON 1570

ANGILES

M. E. MARADINI

ANGILES

M. E. M. ANGILES

M. M. M. ANGILES

M. M. M. ANGILES

M. M. M. M.

WASTE WATER DISCHARGERS - SANTA ANA REGION (NO. 8)

WASTE WATER DISCHARGERS SAN DIEGO REGION (No. 9)

			A
	Camp Pendleton, U.S.M.C.		
1.	Plant No. 1	33.	San Clemente
2.	Plant No. 2		San Diego, City of - Utility
3.	Plant No. 3		Department
4.	Plant No. 8	34.	Brown Field
5.	Plant No. 9	35.	Callan
-		36.	
6.	Plant No. 10	37.	
7.	Plant No. 11		
8.	Plant No. 12	38.	San Ysidro
9.	Plant No. 13	39.	Sorrento
10.	Capistrano Beach Sanitary District		San Diego County - Department of
			Special District Services
11.	Encina	40.	——————————————————————————————————————
	Dana Point Sanitary District	41.	· · · · · · · · · · · · · · · · · · ·
	Del Mar	42.	±
14.	Encinitas Sanitary District	. — •	
	Escondido:	43.	Julian
15.	Plant No. 1 (old plant)	44.	
-/-	Table net 2 (ela plane,		Facility
16.	Plant No. 2 (new plant)	45.	·
	Fallbrook Sanitary District	46.	
18.	Leucadia County Water District	48.	Viejas Honor Camp
19.	Lawrence Welk's Country Club Village		
20.	Laguna Beach Sanitary District	50.	San Juan Capistrano Sanitary
			District
21.	U. S. Naval Weapons Station,	51.	San Marcos County Water District
	Fallbrook Annex	52.	San Pasqual Academy
	Oceanside:	53.	_
22.	Buena Vista Plant	54.	
23.	La Salinas Plant		5
24.	San Luis Rey Plant	55.	Valle Verde Community Services
26.	Orange County Sanitation District	//-	District
	Moulton Niguel 1A - No. 12	56.	
	110410011 1118401 211 1101 11	,	Ream Field
27.	Palomar Airport		210
28.	Utah Construction Company		•
29.	Pomerado County Water District		
ーノ・	Rainbow Municipal Water District:		
30.	Plant A		
27	Dlant D		

30. 31.

32.

Plant B Plant C

WASTE WATER DISCHARGERS - SAN DIEGO REGION (NO. 9)

TABLE F-1 SUMMARY

QUANTITY OF WASTE WATER DISCHARGED AND REUSED SOUTHERN CALIFORNIA WATER YEAR 1968

	Volume in acre-feet									
Water Quality				Place of d	•		To	Total		
Control Region	Reu	ursed	Lai	nd or rcourse		Saline ater body		harged		
Central Coastal Region 3	(8)	2,429	(15)	14,874	(10)	15,742	(28)	33,045		
Los Angeles Region 4	(13)	32,043	(20)	18,485	(8)	774,539	(36)	825,067		
Lahontan Region 6	(8)	2,756	(20)	13,139	(0)	0	(22)	15,895		
Colorado River Basin Region 7	(7)	3,785	(14)	7,002	(6)	4,763	(21)	15,550		
Santa Ana Region 8	(16)	7,888	(·28)	58,448	(5)	134,482	(38)	200,818		
San Diego Region 9	(·24)	10,764	(29)	8,881	(8)	99,204	(56)	118,849		
TOTALS	(76)	59,665	(126)	120,829	(37)	1,028,730	(201)	1,209,224		

Figures in parentheses indicate number of dischargers reporting in each category. The figure in parentheses under "Total discharged" column indicates the total number of dischargers reporting in the region.

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA CENTRAL COASTAL REGION (REGION 3)

	WATER TEA	IN 1901-00			
DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT REUSED
BUELLTON COMMUNITY SERVICES DISTRICT	•066	74	0		LAND
CAMP SAN LUIS OBISPO (CALIF MENS COLONY)	.780	874	0		CHORRO CREEK
CARPINTERIA SANITARY DISTRICT	1.210	1355	0		PACIFIC OCEAN
GOLETA SANITARY DISTRICT	3.941	4415	0		PACIFIC OCEAN
GUADALUPE. CITY OF	•353	395 ³	265	IRRIGATION	SANTA MARIA RIVER
LAGUNA COUNTY SANITATION DISTRICT	.940	1053	788	IRRIGATION	LAND
LOMPOC. CITY OF	2.152	2410	0		SANTA MARIA RIVER
MONTECITO SANITARY DISTRICT	•383	429	0		PACIFIC OCEAN
MORRO BAY-CAYUCOS SANITARY DISTRICTS	•887	994	0		PACIFIC OCEAN
PASO ROBLES. CITY OF	.854	957	0		SALINAS RIVER
PASO ROBLES SCHOOL FOR BOYS	•066	74	74	IRRIGATION	
PISMO BEACH. CITY OF					
PISMO BEACH PLANT	•204	229	0		PACIFIC OCEAN
SAN LUIS OBISPO, CITY OF	3.930	4402	220	IRRIGATION	SAN LUIS OBISPO CREEK
SAN LUIS OBISPO, COUNTY OF					
ATASCADERO COUNTY SANITATION DISTRICT	•062	69	0		PONDS
SAN SIMEON ACRES COMMUNITY SERVICES DISTRICT	.028	31	0		PACIFIC OCEAN
SANTA BARBARA, CITY OF	6.852	7675	0		PACIFIC OCEAN
SANTA MARIA AIRPORT	.215	241	241	IRRIGATION	
SANTA MARIA, CITY OF	3.689	4132	826	IRRIGATION	LAND
SAWYER CONVALESCENT HOSPITAL	.001	1	1	IRRIGATION	
SOLVANG MUNICIPAL IMPROVEMENT DISTRICT	•201	225	0		LAND
SOUTH SAN LUIS OBISPO COUNTY SANITATION DISTRICT	.474	531	o		PACIFIC OCEAN
SUMMERLAND SANITARY DISTRICT	.063	71	0		PACIFIC OCEAN
US AIR FORCE, CAMBRIA					
AIR FORCE STATION	.011	12	0		PACIFIC OCEAN

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA CENTRAL COASTAL REGION (REGION 3)

DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	PORTION REUSED IN ACRE-FEET	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT RE	
US AIR FORCE, CAMBRIA						
DEPENDENT HOUSING	.012	14	0		SANTA ROSA CREEK	
US AIR FORCE, VANDENBERG AFB	1.467	1643	0		SANTA YNEZ RIVER	
US BUR PRISONS, FED. CORRECTIONAL INSTIT., LOMPOC	•174	195	0		CREEK TRIB. TO SANTA YNEZ	RIVE
VANDENBURG DISPOSAL COMPANY	•386	432	0		LAND	
WESTERN PACIFIC SERVICES, LOMPOC	.100	112	14	IRRIGATION	SANTA YNEZ RIVER	
TOTAL IN REGION 3	3 29.501	33045	2429			1.2

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA LOS ANGELES REGION (REGION 4)

	WATER TER	1 701 -00			
DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	REUSED IN	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT REUSED
an *					
BURBANK. CITY OF	4.173	4674	963	INDUSTRIAL	BURBANK CHANNEL TO L. A. RIVER
CALIF STATE HOSPITAL-CAMARILLO	•292	327	0		LAND
CAMARILLO SANITARY DISTRICT	1.407	1576	1054	IRRIGATION	CALLEGUAS CREEK
CRESCENTA VALLEY COUNTY WATER DISTRICT	•052	58	0		LAND
FILLMORE, CITY OF	•395	443	0		SANTA CLARA RIVER
INDEPENDENT ORDER OF FORESTERS	.006	7	0		LAND
INDIAN HILLS MOBILE HOME VILLAGE	.013	15	0		LAND
LOS ANGELES. CITY OF					
HYPERION PLANT	325.814	364959	1780	IRRIGATION INDUSTRIAL	PACIFIC OCEAN
TERMINAL ISLAND PLANT	7.625	8541	0		PACIFIC OCEAN
VALLEY SETTLING BASIN	•530	594	5	IRRIGATION	RETURNED TO SEWER
LOS ANGELES, COUNTY OF					
ACTON REHABILITATION CENTER	.038	43	43	IRRIGATION	
LOS ANGELES COUNTY SANITATION DISTRICTS					
NO. 21 - POMONA	6.158	6898	6898	RECHARGE IRRIGATION	
NO. 22 - AZUSA	•692	775	775	RECHARGE	
NO. 26 - SAUGUS	1.761	1973	0		LAND
NO. 28 - LA CANADA	.119	133	133	IRRIGATION	
NO. 32 - VALENCIA	.129	145	0		LAND
JOINT WATER POLLUTION CONTROL PLANT	345.049	386505	0		PACIFIC OCEAN
WHITTIER NARROWS PLANT	16.315	18275	18275	RECHARGE	
LUCKY LAGER PLANT (AZUSA)	.347	389	389	RECHARGE	
HONTALVO MUNICIPAL IMPROVEMENT DISTRICT	•119	133	0		LAND
OAK VIEW SANITARY DISTRICT	1.004	1125	0		LAND
OXNARD, CITY OF	9.557	10705	0		PACIFIC OCEAN
PORT HUENEME SANITARY DISTRICT	2•151	2409	0		PACIFIC OCEAN
SANITATION, INC. (SIMI)	1.600	1792	0		LAND
SANTA CATALINA ISLAND COMPANY					
TWO HARBORS PLANT	.004	5	5	IRRIGATION	
SANTA PAULA, CITY OF	.913	1023	0		SANTA CLARA RIVER

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA LOS ANGELES REGION (REGION 4)

DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	PORTION REUSED IN ACRE-FEET	TYPE OF REUSE	PLACE OF FOR WASTE WAT	DISPOSAL ER NOT REUSED
SATICOY SANITARY DISTRICT	•180	202	0		LAND	
THOUSAND OAKS, CITY OF						-
THOUSAND OAKS PLANT	3.736	4185	0		CONEJO CREEK	1
VENTURA COUNTY WATERWORKS DIST. 6 PLANT	.038	43	43	IRRIGATION		
US ARMY NIKE SITES						3
MALIBU (LA 78-A)	.008	9	0		LAND	
OAK MOUNTAIN (LA 88-L)	.012	13	0		LAND	
SAND CANYON (LA 98)	•009	10	0		LAND	
US NAVAL AIR STATION, POINT MUGU (IMHOFF PLANT)	.437	490	0		MUGU LAGOON	-
US NAVAL CONSTRUCTION BATT CTR+ PORT HUENEME	.794	889	0		PACIFIC OCEAN	
VENTURA, CITY OF						
EASTSIDE PLANT	3.467	3883	1680	IRRIGATION	LAND	
SEASIDE PLANT	1.626	1821	0		PACIFIC OCEAN	
TOTAL IN REGION 4	736.570	825067	32043			

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA LAHONTAN REGION (REGION 6)

WATER YEAR 1967-68

	WATER YEA	K 1967-68			
DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT REUSED
APPLE VALLEY INN	•284	318	0		LAND
BARSTOW, CITY OF	1.000	1120	0		LAND
BISHOP, CITY OF	1.860	2083	0		LAND
CALIF DIV FORESTRY-PILOT ROCK CONSERVATION CAMP	•010	11	6	IRRIGATION	LAND
CRESTLINE SANITATION DISTRICT	.173	194	0		LAND
JUNE LAKE PUBLIC UTILITY DISTRICT	•050	56	0		LAND
LAKE ARROWHEAD SANITATION DISTRICT	.380	426	0		LAND
LOS ANGELES COUNTY-FOX AIRFIELD	.004	4	o		LAND
LOS ANGELES COUNTY SANITATION DISTRICTS					
NO. 14 - LANCASTER	3.225	3612	0		LAND
NO. 20 - PALMDALE	1.030	1154	398	IRRIGATION	LAND
LOS ANGELES DEPT. OF WATER AND POWER					
INDEPENDENCE SEWER	.062	70	0		LAND
LONE PINE SEWER	•252	282	0		LAND
MOJAVE PUBLIC UTILITY DISTRICT	.204	229	216	IRRIGATION	LAND
RIDGECREST SANITATION DISTRICT	•608	681	681	IRRIGATION	
US AIR FORCE, EDWARDS AFB	•953	1068	0		LAND
US AIR FORCE, GEORGE AFB	•792	887	300	IRRIGATION	LAND
US AIR FORCE PLANT NO. 42 (PALMDALE)	.164	184	0		LAND
US ARMY, FORT IRWIN	•485	543	543	IRRIGATION	
US MARINE CORPS SUPPLY CENTERS					
NEBO AREA	•330	370	10	IRRIGATION	LAND
YERMO AREA	•192	215	0		LAND
US NAVAL WEAPONS CENTER. CHINA LAKE	1.524	1707	602	IRRIGATION	LAND
VICTORVILLE SANITARY DISTRICT	.608	681	0		LANO
TOTAL IN REGION 6	14.190	15895	2756		

101

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA COLORADO RIVER BASIN REGION (REGION 7)

WATER YEAR 1967-68

DISCHARGER	AVERAGE DISCHARGE RATE IN	VOLUME DISCHARGED IN	IN	TYPE OF REUSE	PLACE OF	DISPOSAL NTER NOT REUSED
	MGD	ACRE-FEET	ACRE-FEET			
BANNING, CITY OF	.444	497	8	IRRIGATION	SHITH CREEK	
BLYTHE, CITY OF	•559	626	0		LAND	
BRAWLEY. CITY OF	1.151	1289	0		NEW RIVER	
COACHELLA SANITARY DISTRICT	.811	908	817	IRRIGATION	WHITEWATER STOR	RM DRAIN
COACHELLA VALLEY COUNTY WATER DIST (PALM DESERT)	•129	145	85	IRRIGATION	LAND	
EAST BLYTHE COUNTY WATER DISTRICT	•285	319	o		LAND	
EL CENTRO. CITY OF	1.910	2140	0		CENTRAL MAIN DE	RAINAGE CANAL
HOLTVILLE. CITY OF	•329	368	0		ALAMO RIVER	10
IMPERIAL. CITY OF	•602	674	0		DOLSON DRAIN	
IMPERIAL VALLEY BOWL	.004	5	0		LAND	
KAISER STEEL CORPORATION, EAGLE MOUNTAIN	•463	519	519	INDUSTRIAL		
MECCA SANITARY DISTRICT	.100	112	0		LAND	
NEEDLES. CITY OF	•620	694	0		COLORADO RIVER	12
PALM SPRINGS. CITY OF	2.193	2456	916	IRRIGATION	WHITEWATER WASH	
PIONEERS MEMORIAL HOSPITAL	.050	56	0		NEW RIVER	
THERMAL SANITARY DISTRICT	.087	97	0		WHITEWATER STOR	M DRAIN
U.S. GYPSUM COMPANY						
DOMESTIC WASTE TREATMENT PLANT	•005	6	0		LAND	
INDUSTRIAL WASTE TREATMENT PLANT	•039	44	0		LAND	1-1-1
US MARINE CORPS. TWENTYNINE PALMS	1.153	1292	581	IRRIGATION	LAND	
US NAVAL AIR STATION. EL CENTRO	•211	236	0		NEW RIVER	
VALLEY SANITARY DISTRICT TOTAL IN REGION :	2.738 7 13.883	3067 15550	859 3785	IRRIGATION	LAND	

100-

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA SANTA ANA REGION (REGION 8)

	WAILK ILA	K 1907-00			
DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT REUSED
BIG BEAR LAKE SANITATION DISTRICT	.174	195	0		LAND
BREA. CITY OF	.030	34	o		LAND
CALIF INSTITUTION FOR MEN. CHINO	•088	99	99	IRRIGATION	
CALIF INSTITUTION FOR WOMEN. FRONTERA	.174	195	0		PRADO FLOOD CONTROL BASIN
CHINO, CITY OF		La Caración de			
PLANT NO. 1	•626	701	574	IRRIGATION	LAND
PLANT NO. 2	1.320	1479	1247	IRRIGATION	
COLTON, CITY OF	2.259	2530	2404	IRRIGATION	SANTA ANA RIVER
CORONA, CITY OF	2.343	2625	0		LAND
CUCAMONGA COUNTY WATER DISTRICT	.789	884	0		LAND
EASTERN MUNICIPAL WATER DISTRICT					
HEMET-SAN JACINTO PLANT	1.314	1472	0		LAND
SUN CITY PLANT	.308	345	0	•	LAND
SUNNYMEAD PLANT	.004	5	0		LAND
EDGEMONT COMMUNITY SERVICES DISTRICT	•250	280	0		LAND
ELSINORE+ CITY OF	.188	211	106	IRRIGATION	LAND
FONTANA, CITY DF	1.985	2224	0		LAND
GLEN HELEN REHABILITATION CENTER	.016	18	0		LAND
IRVINE RANCH WATER DISTRICT	•343	384	384	IRRIGATION	
JURUPA COMMUNITY SERVICES DISTRICT	•544	609	0		SANTA ANA RIVER
LOMA LINDA UNIV., RIVERSIDE CAMPUS	.172	193	193	IRRIGATION	
ONTARIO. CITY OF	9.012	10095	1110	IRRIGATION	LAND
ORANGE COUNTY INDUSTRIAL FARM	.007	8	6	IRRIGATION	LAND
ORANGE COUNTY SANITATION DISTRICTS					9
PLANT NO. 1	42.782	47922	0		PACIFIC OCEAN
PLANT NO. 2	75.934	85057	0		PACIFIC OCEAN
REDLANDS, CITY OF	2.075	2324	0		LAND
RIALTO. CITY OF	1.734	1942	0		SANTA ANA RIVER

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA SANTA ANA REGION (REGION 8)

DISCHARGER		AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF D FOR WASTE WATER	
RIVERSIDE. CITY OF							
PLANT NO. 1		15.466	17324	0		SANTA ANA RIVER	
ROSSHOOR SANITATION, INC.		•983	1101	5	IRRIGATION	LAND	
							7.5
RUBIDOUX COMMUNITY SERVICES DISTR	ICT	.657	736	297	IRRIGATION INDUSTRIAL RECREATION	LAND	
SAN BERNARDINO. CITY OF							
PLANT NO. 1		6.530	7315	146	IRRIGATION	WARM CREEK	
PLANT NO. 2		8.100	9073	0		SANTA ANA RIVER	
SEAL BEACH. CITY OF		1.078	1207	0		SAN GABRIEL RIVER	TIDAL PRISH
SUNSET BEACH SANITARY DISTRICT		.143	160	0		PACIFIC OCEAN	96
US AIR FORCE, MARCH AFB							- 1
MAIN PLANT		-418	468	468	IRRIGATION		
WEST PLANT		.246	276	276	IRRIGATION		
US MARINE CORPS AIR STATION. EL TO	ORO	1.019	1141	571	IRRIGATION	SAN DIEGO CREEK	
US NAVAL WEAPONS STATION, SEAL BE	ACH	•121	136	0		PACIFIC OCEAN	
WESTERN PACIFIC SANITATION COMPAN	Y						
ETIWANDA PLANT		.035	39	0		LAND	
VINA VISTA PLANT		.010	11	2	IRRIGATION	LAND	
	TOTAL IN REGION 8	179.277	200818	7888			

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA SAN DIEGO REGION (REGION 9)

		WHITEN TEN	1701 00			
	DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF DISPOSAL FOR WASTE WATER NOT REUSED
CALIF DIV	FORESTRY-CUYAMACA CONSERVATION CENTER	•009	10	0		LAND
CAPISTRANO	D BEACH SANITARY DISTRICT	•385	431	0		LAND
DANA POINT	SANITARY DISTRICT	.145	162	0		PACIFIC OCEAN
DEL MAR, C	CITY OF	.287	321	0		SAN DIEGUITO RIVER
ENCINITAS	SANITARY DISTRICT	•325	364	364	IRRIGATION	
ESCONDIDO	CITY OF					
PLANT	T NO. 2	2.931	3283	0		ESCONDIDO CREEK
FALLBROOK	SANITARY DISTRICT					
PLANT	T NO. 1 (OLD) '	•356	399	18	IRRIGATION	LAND
PLANT	T NO. 2 (NEW)	.048	54	0		LAND
LAGUNA BEA	ACH. CITY OF	1.759	1970	0		PACIFIC OCEAN
LEUCADIA (COUNTY WATER DISTRICT	.188	211	211	IRRIGATION	
MOULTON-NI	IGUEL WATER DISTRICT					
PLANT	T NO. 1A	•212	237	0		LAND
PLANT	T NO. 2A	•086	96	0		LAND
PLANT	T NO. 3A	•465	521	355	IRRIGATION	LAND
OCEANSIDE	CITY OF					
BUENA	A VISTA PLANT	.261	292	292	RECHARGE IRRIGATION	
LA SA	ALINA PLANT	2.800	3136	3136	RECHARGE IRRIGATION	
SAN L	LUIS REY PLANT	.774	867	867	RECHARGE IRRIGATION	
PAUMA VALL	LEY COMMUNITY SERVICES DISTRICT	.074	83	0		LAND
POMERADO (COUNTY WATER DISTRICT	.207	232	0		LOS PENASQUITOS CREEK
RAINBOW MU	UNICIPAL WATER DISTRICT					
PLANT	A (GIRD ROAD)	.004	4	4	IRRIGATION	
PLANT	T B (HWY. 76)	.007	8	0		LAND
PLAN	C (SAN LUIS REY)	.003	3	0		LAND
SAN CLEHEN	NTE. CITY OF	1.791	2006	251	IRRIGATION	PACIFIC OCEAN
SAN DIEGO	CITY OF					
BROWN	N FIELD PLANT	.033	37	0		LAND
CALL	AN PLANT	.462	517	105	IRRIGATION	SORRENTO VALLEY
POINT	T LOMA PLANT	81.053	90791	0		PACIFIC OCEAN

QUANTITY OF WASTE WATER DISCHARGED AND REUSED

SOUTHERN CALIFORNIA SAN DIEGO REGION (REGION 9)

WATER YEAR 1967-68

	WATER TEA	W 1301-00				
DISCHARGER	AVERAGE DISCHARGE RATE IN MGD	VOLUME DISCHARGED IN ACRE-FEET	IN	TYPE OF REUSE	PLACE OF DISPOS FOR WASTE WATER NOT	
SAN DIEGO. CITY OF						11/2
RANCHO BERNARDO PLANT	.376	421	223	IRRIGATION	LAND	
SORRENTO PLANT	-461	516	0		SORRENTO VALLEY	
SAN DIEGO. COUNTY OF (DEPT. SPEC. DIST. SERVICES)						
ALPINE SANITATION DISTRICT	•032	36	0		LAND	
RANCHO DEL CAMPO PLANT	•032	36	0		CAMPO CREEK	
ENCINA WATER POLLUTION CONTROL FACILITY	2.462	2758	0		PACIFIC OCEAN	
JULIAN SANITATION DISTRICT	.015	17	17	IRRIGATION		-4
LAKESIDE SANITATION DISTRICT	•465	521	0		LAND	
HOUNT PALOHAR AIRPORT	•004	4	0		LAND	190
RAMONA SANITATION DISTRICT	•131	147	0		LAND	
RANCHO SANTA FE SANITATION DISTRICT	.078	87	0		LAND	
SAN ELIJO WATER POLL. CONTROL FACILITY	•904	1013	0		PACIFIC OCEAN	
VIEJAS HONOR CAMP	.017	19	19	IRRIGATION		
SAN JUAN CAPISTRANO. CITY OF	•169	189	0		PACIFIC OCEAN	
SAN MARCOS COUNTY WATER DISTRICT	•512	573	0		LAND	
SAN PASQUAL ACADEMY	.021	24	24	IRRIGATION		
SANTEE COUNTY WATER DISTRICT	1.300	1456	1456	RECHARGE IRRIGATION INDUSTRIAL RECREATION		
SOUTH LAGUNA BEACH SANITARY DISTRICT	•505	566	0		PACIFIC OCEAN	
US MARINE CORPS, CAMP PENDLETON						
PLANT NO. 1	.819	917	917	RECHARGE RECREATION		
PLANT NO. 2	•678	759	759	RECHARGE IRRIGATION		
PLANT NO. 3	.375	420	420	RECHARGE		
PLANT NO. 8	.133	149	149	RECHARGE		
PLANT NO. 9	•253	283	283	RECHARGE		
PLANT NO. 10	.147	165	165	RECHARGE		
PLANT NO. 11	•392	439	439	RECHARGE		
PLANT NO. 12	•256	287	287	RECHARGE		
PLANT NO. 13	•530	594	0		SANTA MARGARITA RIVER	
PLANT NO. 14	•119	133	0		SANTA MARGARITA RIVER	
PLANT NO. 15	.083	93	0		LAND	,
US NAVAL AIR STATION, IMPERIAL BEACH	•115	129	0		TIJUANA RIVER	
US NAVAL WEAPONS STATION-FALLBROOK ANNEX	•054	60	0		LAND	4
VALLEY CENTER HUNICIPAL WATER DISTRICT						•
VALLEY CENTER (PLANT U-6)	.003	3	3	IRRIGATION		

118849

TOTAL IN REGION 9 106.106

10764

TABLE F-3 MINERAL ANALYSES OF WASTE WATER

An explanation of column headings follows:

LAB - Laboratory analysis.

LAB EC - The electrical conductance in micromhos at 25° Celsius.

FIELD EC - The electrical conductance in micromhos at temperature when sampled.

LAB & FIELD PH - Measure of acidity or alkalinity of water.

TDS - Gravimetric determination of total dissolved solids in milligrams per liter. # - Difference between total anions and total cations of over five percent.

SUM - Total dissolved solids determined by addition of analyzed constituents at 180° Celsius.

TH - Total hardness.

NCH - Non-carbonate hardness.

TIME - Pacific Standard Time on a 24-hour clock basis.

TEMP - Water temperature in degrees Fahrenheit at the time of field sampling.

The MINERAL CONSTITUENTS are as follows:

MG - Magnesium В - Boron CA - Calcium NA - Sodium NH₁, - Ammonium CL - Chloride CO₃ - Carbonate NO3 - Nitrate - Fluoride POh - Orthophosphate SIO₂ - Silica HCO3- Bicarbonate SO4 - Sulfate K - Potassium

The LAB and SAMPLER agency codes are as follows:

1200 - City of Los Angeles Department of Water and Power

4412 - The Metropolitan Water District of Southern California

5050 - Department of Water Resources

5091 - California Department of Public Health

5239 - Long Beach Health Department

5411 - United Water Conservation District

5867 - Fruit Growers Laboratory

TABLE F=3
MINERAL ANALYSES OF WASTE WATER

CENTRAL COASTAL REGION (REGION 3)

DATE TIME	LAB SAMPL		LABORATORY FIELD		MINERAL		CONSTITUENTS		IN	MILLIGRAMS MILLIEQUIVALENTS PERCENT REACT			PER LITE ANCE VALUE		₹	MILLIGRAMS			PER LITER TDS TH	
			PH	EC	CA	MG	NA	K	NH4	C03	HC03	504	CL	N03	P04	F	В	2012		NCH
					AVILA	SANITAR	Y DISTR	ICT												
02/13/6	8 505	0 65	6.5	1136	28	28	130	12	41.8	0	155	92	232	2.5	26.0	0.6	0.34		785	185
	505	0			1 • 4 0	2.30	5.65	0.31	2.32	0.00	2.54	1.91	6.54	0.04	0.82				670	58
					12	19	47	3	19	0	21	16	55	0	7					-10
					HIDDEN	HILLS	M081L0D	βE												. 19
02/08/6	8 505	0 64	7.6	1674	26	110	190	14	0 • 4	0	449	81	244	155.0	42.0	0.5	0.30		1223	518 3
162n	505	0			1.30	9.05	8 • 26	0.36	0.02	0.00	7.36	1.69	6.88	2.50	1.33				1084	149 3
					,	48	43	2	0	0	37	8	35	13	7					- 12
		PISMO	REACH	CITY	OF				PI	SMO BEA	CH PLAN	Т								
02/07/6	8 505	0	6.6	1687	72	55	198	15	16.6	0	359	196	256	47.7	35.0	0 • 4	0.48		1080	406
090 ñ	505	0			3.59	4.52	8.61	0.38	0.92	0.00	5.88	4.08	7.22	0.77	1.10				1069≠	112
					20	25	48	2	5	0	31	21	38	4	6					
	1	PISMO	REACH	CITY	OF				SHI	ELL BEAG	CH PLAN	т								
02/15/6	8 505	0	6.6	1682	66	57	198	15	19.1	0	295	191	274	72.6	35.0	0.4	0.48		1137	399
1430	505	0			3.29	4.69	8.61	0.38	1.06	0.00	4.83	3.98	7.73	1.17	1.10				1074	157
					18	26	48	2	6	0	26	21	41	6	6					

TABLE F-3

MINERAL ANALYSES OF WASTE WATER

LOS ANGELES REGTON (REGION 4)

DATE TIME SA			LABOR FIE PH	LD	H CA	INERAL MG	CONST	ITUENTS K	IN NH4	MILL	CENT	ALENTS REACT SO4		LITER LITER VALUE NO3		MIL F			R LIT TOS SUM	TH
					CALIF	STATE H	OSPITAL	-CAMARIL	.L0											
4/09/68			8.2		84 4•19	49 4•03	290 12•61	13 0•33	13.0 0.72		••	388 8.08	282 7.95	39·0 0·63	••	0 • 4	0.42		1370	411
					CAMARI	LLO SAN	ITARY D	ISTRICT												
4/09/68 			8 • 4		61 3•04		300 13•05	18 0•46	4.8 0.27			363 7.56	235 6.63			0.5	1.00		1315	280
					FILLMO	RE. CIT	Y OF													
1/01/67	5867 5411		7.5	2102	148 7•38	63 5•18	250 10•87			0.00	500 8.19	538 11•20	135 3•81	0.00	••		1.19		1634	629 219
2/01/68 1100			7.8	2356	170 8.48	82 6.74	240 10.44			0.00	437 7.16	696 14.49	120 3.38	51.0 0.82		•-	1.33		1796	762 403
4/01/68 100ñ			7.7	2253	139 6.94	61 5.02	284 12.35	••		0	440 7.21	612 12.74	120 3.38	44.0 0.71			1.24	~-	1700	598 237
4/09/68			8+1		138	71 5.84	260 11•31	17 0.43	6.8 0.38			660 13.74	113 3•19	20.4		0 • 4	1.40		1635	637
475	LA	.5 V t	RGENES	MUNIC	TPAL WA	TER DIS	TRICT		MUI	LWOOD PI	LANT									
4/16/68			8.2		22	21	256	15	0.0			339	142	27.5		0.7	1.00		965	141
				٠	1.10	1.73		0.38	0.00			7.06	4.00	0.44						••
4/16/68		S AI	RGENES 8.3	MUNIC	IPAL WA	TER DIS	212	7	TA	PIA PLAI	NT 	487	128	19.5	••	0.4	0.70		1255	466
					4.04	5.26	9.22	0.18	0.00			10.14	3.61	0.31						*=
	LC	S AN	GELE5	COUNTY	SANITA	TION DI	STRICTS		NO	• 26 - 9	SAUGUS									
0/10/67													113 3•19				1.75		845	
1/09/68					••	30 2.47							102 2.88			0.6	1.60		864	
	LC	S AN	GELES	COUNTY	SANITA	TION DI	STRICTS		WH	ITTIER	NARROWS	PLANT								
1/09/68 0800												113 2.35	83 2.34			0.5	0.70		557	
2/13/68 0800												137 2•85	91 2.57				0.55		604	
3/13/68 0800												146 3.04	96 2.71				0.56		596 	
0/10/68												103 2.14	126 3•55			0.7	0.74		652	
1/14/68 0800												130	89 2•51				0.59		572	
2/12/68 0800												119	87 2•45				0.53		554	
					MONTAL	VO MILLI	CIBAL	MDBOUEN	ENT DIE	TD: 67		2.40	C • 43							
4/09/68			8.2		146	76	500	MPROVEME 18	17.0	TRICT		856	364	0.0		0.7	1.50	••	2370	677
1					7.28	6.25	21.75	0.46	0.94			17.82	10.26	0.00						
4/09/68							TARY DI													
			8+3		96 4.79	39 3•21	168 7•31	0.38	13.0	••		288 6.00		3·4 0·05	••				1070	400
					SANITA	ATION. 1	NC. (SI	MI)												
4/16/68 			6.7		19 0.95	21 1•73	295 12•83	16 0.41	28.0 1.55			355 7.39	184 5•19	33·1 0·53	••	0.5	0.75		1035	134
18					SANTA	PAULA,	CITY OF										4			
0/09/67 1000	5867 5411		7.5	2020	109 5.44	34 2.80	282 12.27			0.00	324 5.31	362 7.54	252 7.11	62.0			1.02		1425	412 146
1/07/67			7.5	2172	113	39	310 13.48			0	346 5.67	372 7.74	293 8.26	31.0			0.77		1584	443 159
					2.04	5.51	. 3.40			0.00	2.01		0.20	.,						107

LOS ANGELES REGTON (REGION 4)

	LAB SAMPLE			RATORY	м	INERAL	CONST	ITUENTS	IN	MILI	LIGRAMS LIEQUIVA CENT		PER PER	LITER LITER VALUE	1	ни	LLIGRAM	1S PE	ER LIT	TER Ti
			РН	EC	CA	MG	NA	К	NH4	C03	HC03	504	CL	N03	P04	F	8	5102	SUM	NC
					SANTA	PAULA,	CITY OF													
12/07/67 100n	7 5867 5411		7.6	2172	130 6.49	44 3•62	322 14•01			0 0 • 0 0	381 6•24	423 8.81	292 8•23	29·0 0·47	••		0.78		1621	50
01/05/68 100ñ	8 5867 5411		7.7	2395	119 5.94	50 4•11	332 14•44			0 • 0 0	358 5.87	372 7.74	338 9•53	49.0 0.79			0.81		1618	50: 20!
02/05/68 100n	8 5867 5411		7 • 3	1905	99 4•94	46 3•78	250 10•87			0.00	359 5.88	405 8.43	160 4.51	66.0			0.85		1385	43
03/05/68 100ñ	8 5867 5411		7.7	2443	130 6•49	32 2•63	360 15•66			0 • 0 0	287 4•70	398 8•29	377 10•63	43.0 0.69	••		0.71		1627	45
04/09/68 	8		8 • 2		102 5.09	43 3.54	280 12•18	14 0.36	5.6 0.31			391 8.14	255 7•19	64.8 1.04		1.0	0.86	••	1450	43
					SIMI V	ALLEY S	SANITATIO	ON COMP.	ANY											
04/16/68	3		7.0		20 1.00	31 2.55	285 12.40	17 0.43	13.0 0.72			331 6.89	200 5.64	~-		0 • 4	0.84		1095	17
	T	HOUS A	NO OA	KS, CIT	Y OF															
04/09/68	3		6.8		28 1.40	29 2.38	260 11.31	14 0.36	27.0 1.50			322 6.70	172 4.85	0.2		0.9	0.84		1020	18

LAHONTAN REGION (REGION 6)

						J					LIGRAMS		PER	LITE						
DATE TIME S	LAS	TEMP	LABO	RATORY	M	INERAL	CONST	ITUENTS	IN		LIEGUIV/ CENT	REACT	PER	VALUE		MII	LLIGRAP	15 PE	R LIT	ER Th
I IME 3	AMPLEN		PH		CA	MG	NA	K	NH4	C03	HC03	504	CL	N03	P04	F	В	5102		NCH
					BARSTO	W. CITY	OF						PRIMARY	EFFLUE	NT					
/14/68	5100 5100		7.3	2169	138 6•89 32	16 1•31 6	256 11•13 52	16 0·41 2	31.0 1.72 8	0 • 0 0	391 6.41 28	169 3•52 15	390 11•00 47	1.9 0.03 0	72.0 2.27 10	0 • ,7	0.90		1236 1284≠	
10					BARSTO	W. CITY	OF						OXIDATI	ON POND						
/14/68	5100 5100		7•2	1381	79 3.94 27	12 0.99 7	169 7.35 50	14 0.36 2	38.0 2.11 14	0.00	437 7.16 46	158 3.29 21	129 3.64 23	2.5 0.04 0	48.0 1.52 10	0.6	0.55		815 866≠	-
/19/68	5100		7.5	1325	61 3•04 22	20 1•64 12	169 7•35 54	14 0•36 3	20.0	0 0 0	381 6•24 44	151 3•14 22	146 4•12 29	5.0 0.08 1	15.0 0.47 3	0.9	0.90		855 791	235
					US AIR	FORCE,	GEORGE	AFB			4.0									
/18/68	5100 5100		7.3	933	42 2.09 21	5 0•41 4	125 5•44 56	14 0.36 4	26.0 1.44 15	0.00	347 5.69 54	74 1.54 15	1.80 17	0.00	45.0 1.42 14	1.2	0.83		530 568≉	
/26/68 	5100 5100		7.4	873 	38 1.90 20	10 0.82 9	107 4.65 50	0·31 3	28.0 1.55 17	0.00 0	327 5.36 55	75 1.56 16	54 1.52 16	0.00	42.0 1.33 14	1.0	0.42		444 529≠	136
	US	MAR	INE C	ORPS SU	PPLY CE	NTERS			YE	RMO ARE	A									
/15/68	5100 5100		7.4	808	39 1.95 24	9 0.74 9	99 4•31 54	14 0.36 4	11.0 0.61 8	0.00	198 3.24 39	66 1.37 17	79 2•23 27	56.0 0.90 11	17.0 0.54 6	0.7	1.85		449 490	
/19/68 	5100 5100		7.3	684	46 2•29 33	8 0.66 9	83 3.61 52	8 0•20 3	2.7 0.15 2	0.00	173 2.83 39	67 1.39 19	74 2.09 29	38.0 0.61 8	8.0 0.25 3	0.8	1.46		417 422	148

		JANIA	ANA REGION (KEGION 67				8
DATE LAB TEMP L TIME SAMPLER	FIELD	L CONSTITUENTS	IN MIL	LIGRAMS LIEQUIVALENTS CENT REACT HC03 S04	PER LITER PER LITER ANCE VALUE CL NO3	В М	ILLIGRAMS P 8 SIO2	ER LITER TOS TH SUM NCH
	BEAUMONT, C	ITY OF						
12/04/67 5868 7	1.95 1.4	7 82 10 0 3.57 0.25 9 50 4	0.00	200 40 3.28 0.83 40 10	61 17.0 1.72 0.27 21 3	63.0 0.5 1.99 25	0.06	562 167 428≠ 3
03/19/68 5868 7	1.99 1.4	7 100 11 0 4.35 0.28 7 54 3	0 0 0 0	190 46 3•11 0•96 34 10	77 72.0 2.17 1.16 24 13	56.0 1.1 1.77 19	0.17	554 170 514≠ 14¢
	BIG BEAR LA	KE SANITATION DI	ISTRICT		EFFLUENT			377
03/01/68 5100 7 5100	3.19 1.8	22 37 5 21 1.61 0.13 25 23 2	6.3 0 0.35 0.00 5 0	305 44 5.00 0.92 68 12	39 4.3 1.10 0.07 15 1	8.0 1.3 0.25 3	0.25	425 250 382 0
	3.39 1.6	56 64 9 2.43 0.15 9 29 2	16.0 0.89 10 0.00	371 40 6.08 0.83 68 9	1.13 0.02 13 0	27.0 0.7 0.85 10	0.58	465 252 458 0
09/20/68 5100 7 5100	1.99 2.7	82 14 11 3.57 0.36 6 34 3	35.0 1.94 18 0.00	454 61 7.44 1.27 65 11	57 1.9 1.61 0.03 14 0	37.0 0.9 1.17 10	0.01	554 236 585≠ 0
	BIG BEAR LA	KE SANITATION DI	ISTRICT		EAST END OF LAG	300N		
04/15/68 5100 8 5100	3.44 1.9	24 41 5 27 1.78 0.13 26 23 2	5.1 0.28 0.00 4	325 34 5.33 0.71 71 9	39 5.0 1.10 0.08 15 1	8.0 0.5 0.25 3	0.28	432 271 391 4
	BIG BEAR LA	KE SANITATION DI	ISTRICT		WEST END OF LAG	300N		
04/15/68 5100 7 5100	3.14 1.9	24 40 5 27 1.74 0.13 28 24 2	2.0 0.11 0.00 2 0	317 33 5.19 0.69 70 9	39 5.0 1.10 0.08 15 1	10.0 0.5 0.31 4	0.24	401 256 378 0
	CALIF INST	TUTION FOR MEN+	CHINO					
01/30/68 5100 7 5100	**************************************	7 77 11 67 3.35 0.28 8 48 4	8•3 0•46 7 0•00	256 35 4•19 0•73 68 12	36 13.0 1.01 0.21 16 3~	2.4	0.15	141, 361≠ 0
	CALIF INST	TUTION FOR WOMEN	N. FRONTERA					- 10
10/03/67 4792 75 7		0 82 11	0	280 41 4.59 0.85	46 0.0 1.30 0.00	0.9	0.70 24	480 131
01/03/68 4792 7	7.4 650 26 1.30 0.5	7 118 4 57 5•13 0•10	0 0.00	281 38 4.60 0.79	71 2.00	1.0	0.30 35	520 94
01/30/68 5100 7 5100	7.5 738 33 1.65 0.0	0 106 8 00 4.61 0.20 0 64 3	13.0 0.72 10 0.00	259 45 4.24 0.94 55 12	71 3.1 2.00 0.05 26 1	13.0 1.2 0.41 5	0.50	399 82 422≠ 0
07/18/68 5100 6 5100	0.9 681 28 1.40 0.4	6 100 7 9 4.35 0.18 7 61 2	13.0 0.72 10 0.00	244 55 4.00 1.14 58 17	57 5.0 1.61 0.08 23 1	1.6	0.44	354 95 393 0
CHINO. C	CITY OF		PLANT NO.	1				
01/30/68 5100 7 5100	7.0 1296 69 3.44 0.7	9 115 18 74 5.00 0.46 5 37 3	68.0 3.77 0.00 28	557 55 9.13 1.14 63 8	82 3.1 2.31 0.05 16 0	56.0 0.8 1.77 12	0.65	655 209 751≠ 0
07/18/68 5100 6 5100	0.8 1062 60 1 2.99 1.0 27	13 106 17 07 4.61 0.43 9 41 4	38.0 0 2.11 0.00 19 0	417 62 6.83 1.29 55 10	84 3.1 2.37 0.05 19 0	62.0 1.1 1.96 16	0.85	534 203 653≠ 0
CHINO. C	CITY OF		PLANT NO.	2				1
		10 102 19 32 4.44 0.49 8 46 5	25.0 0 1.38 0.00 14 0	336 80 5.51 1.66 58 18	82 0.0 2.31 0.00 24 0	0.4	0.50	531 171 537 0
10/31/67 5868 6	5.9 1100 56 2.79 0.9	7 100 2 57 4.35 0.05 6 45 0	33.0 1.83 19 0.00	400 90 6.55 1.87 62 18	71 12.0 2.00 0.19 19 2	0.7	0.90	583 169 570≠ 0
01/08/68 5868 7	7.3 1127 56 2.79 0.0	10 88 18 32 3.83 0.46 8 37 4	43.0 0 2.38 0.00 23 0	415 60 6.80 1.25 65 12	85 0.0 2.40 0.00 23 0	0.5	0.70	533 181 566 0
01/31/68 5868 1	7.4 965 60 2.99 0.9	7 99 18 57 4.31 0.46 6 42 4	35.0 0 1.94 0.00 19 0	427 28 7.00 0.58 70 6	85 0.0 2.40 0.00 24 0	0.3	0.40	533 179 543 0
03/04/68 5868	2.99 0.	10 120 17 32 5.22 0.43 7 42 3	3.05 0.00	372 80 6.10 1.66 62 17	71 0.0 2.00 0.00 20 0	0.3	0.70	583 191 597≠ 0

TABLE F-3

MINERAL ANALYSES OF WASTE WATER

DATE TIME	LAB SAMPLE			RATORY ELD EC	MI CA	NERAL MG	CONST NA	ITUENTS K	IN NH4	MILI	LIGRAMS LIEQUIVA CENT HCO3			LITE LITE VALU NO3	R	MII F			R LIT	ER TH NCH
					COLTON,	CITY	OF													
704/6	7 5100 5100		7.4	914	69 3•44 37	7 0.57 6	77 3•35 36	13 0.33 4	28.0 1.55 17	0.00	356 5.83 65	69 1.44 16	60 1.69 19	3.1 0.05 0	•-	0.7	0.48		508 503	201
					CORONA,	CITY	OF													
	7 4790 4790		7•0	2100	116 5•79 27	19 1•56 7	260 11•31 52	20 0•51 2	43.0 2.38 11	0 • 0 0	421 6.90 33	210 4•37 21	337 9.50 45	6.0 0.10 0		0.8	1.90		1221	368 23
/02/6	4790 4790		7.1	2000	112 5•59 29	12 0•99 5	240 10•44 54	18 0.46 2	33.0 1.83 9	0.00	311 5•10 27	210 4.37 23	334 9.42 49	8.0 0.13 1		0.6	1.00	•-	1189 1122	329 74
					CUCAMON	GA COU	INTY WAT	ER DISTA	RICT		ف									
/30/6	5100 5100		7.5	791 	40 1•99 24	8 0•66 8	94 4•09 50	14 0 • 36 4	20.0 1.11 13	0 0.00 0	317 5.19 60	42 0.87 10	53 1.49 17	5.0 0.08 1	30.0 0.95 11	0.3	0.75	••	473 463	133
/31/6	8 4790 4790		7.5	790 	2.19 26	0.16 2	90 3.91 47	17 0.43 5	30.0 1.66 20	0.00	299 4.90 56	88 1.83 21	71 2.00 23	2.0 0.03 0		1.2	0.70	••	540 493	118
		ASTER	N MUN	ICIPAL	WATER DI	STRICT	r		HE	MET-SAN	JACINT	O PLANT	•							
/03/6	7		7.6	1247 -	63 3•14 26	18 1.48 12	147 6•39 52	22 0•56 5	11.0 0.61 5	0.00	305 5•00 40	144 3.00 24	150 4•23 34	11.1 0.18 1		0.5	0.72		722 718	231
/02/6	B		7.4	1150	62 3•09 27	17 1-40 12	141 6•13 54	17 0.43 4	5.2 0.29 2	0 0.00 0	290 4.75 41	128 2.66 23	128 3.61 31	39.0 0.63 5		0.4	0.62	•-	692 681	225 0
/29/6	8 4790 4790		7.2	1300	68 3•39 29	14 1.15 10	134 5•83 50	19 0.49 4	15.0 0.83 7	0 0 • 0 0 0	247 4.05 37	130 2.71 25	112 3•16 29	60.0 0.97 9		1.7	0.60		_	227 25
	Ε	ASTER	N MUN	ICIPAL	WATER DI	STRICT	ī		SU	N CITY	PLANT			٠						
/02/6	7	••	7.6	1505	74 3•69 24	32 2•63 17	186 8•09 53	23 0•59 4	3.6 0.20 1	0.00	173 2•83 19	323 6•72 44	182 5•13 34	33·7 0·54 4		0.7	0.76	••		316 175
/02/6	B		7.5	1550	79 3.94 25	30 2.47 16	192 8.35 53	16 0.41 3	11.0 0.61 4	0.00	204 3.34 22	328 6.83 45	179 5.05 33	1.3 0.02 0		0.7	0.60		-	321 153
/29/6	8 4790 4790		6.9 	1480	76 3•79 28	29 2•38 17	160 6•96 51	19 0•49 4	0 • 4 0 • 0 2 0	0 • 0 0	101 1•65 13	280 5•83 45	149 4•20 32	76.0 1.22 9		0 • 4	0.70	••		309 226
134					EDGEMON	T COMM	UNITY S	ERVICES	DISTRI	ст										
/23/6	8 4790 4790		7.5	1350	64 3.19 24	14 1.15 9	150 6.52 49	16 0.41 3	35.0 1.94 15	0.00	290 4.75 35	200 4.16 31	167 4.71 35	0.0		0.4	0.60		766 790	217
					FONTANA	. CITY	OF						PRIMARY	EFFLUE	NT					
/10/6	7 4790 4790		7.1	820	50 2.49 30	0.90 11	64 2.78 34	15 0•38 5	30.0 1.66 20	0.00	326 5.34 71	12 0•25 3	67 1.89 25	0.00		0.3	0.10		494 410≠	170
/30/6	8 5100 5100		7.2	1174	64 3•19 28	8 0•66 6	107 4.65 40	14 0•36 3	48.0 2.66 23	0.00	395 6•47 53	42 0.87 7	140 3•95 33	2.5 0.04 0	25.0 0.79 6	0.6	0.35		532 646≉	193
/18/6	8 5100 5100		7.2	916 	42 2.09 24	13 1.07 12	69 3•00 34	12 0•31 3	43.0 2.38 27	0 0 • 0 0 0	351 5.75 59	48 1.00 10	61 1.72 18	5.6 0.09 1	36.0 1.14 12	0.9	0.56		403 504#	_
17					GUILD W	INE (SUNLAND	VINEYAR	Rns)											
/18/6	8 5100 5100		7.0	29403	103 5.14 1	18 1.48 0	7640 332.34 97	1.12 0	21.0 1.16 0	0.00	278 4.56 1		12000 338.40 98	3.1 0.05 0	17.0 0.54 0	1.4	0.18	••	19295 20015	_
					JURUPA	COMMUN	ITY SER	VICES DI	STRICT				EFFLUEN'	ſ						
/21/6	7 4790 4790		7.1	1400	84 4.19 28	24 1.97 13	138 6.00 41	23 0.59 4	35.0 1.94 13	0.00	393 6.44 49	100 2.08 16	167 4.71 36	0.0		0.4	0.90		782 766≉	
/08/6	8 4790 4790		7.3	1420	112 5•59 38	10 0.82 6	130 5.65 39	24 0 • 61 4	35.0 1.94 13	0 0.00 0	372 6.10 44	140 2.91 21	167 4.71 34	13.0 0.21 1		0.3	0.30		820 815	321 16

	ATE			RATORY ELD EC	M CA	INERAL MG	CONST	ITUENTS K	IN NH4	MIL PER	LIGRAMS LIEQUIVA CENT HCO3		PER PER ANCE CL	LITEI LITEI VALUI NO3	R	MI	LLIGRAI B	MS PE SIO2	TDS	TER TH NCH
			711				CORPORA			COS	11003	304		NOS	, 04	•	Ö	3102	3011	NCP
					KAISEK	21555														
	'02/67 	4790 4790	 8.2	1710	96 4.79 30	0.82 5	190 8.26 51	75 1.92 12	5.0 0.28 2	0.20	262 4.29 26	260 5.41 33	231 6.51 40	0.0		2.4	0.70	••	1077	281 56
	03/68	4790 4790	 7.5	2000	80 3.99	10 0.82	240 10.44	145 3.71		0.00	146 2.39	290 6.04	288 8.12	2.0		4.3	0.70		1233	241
_	30/68	5100 5100	 6.2	870 	110 5.49 61	15 1.23 14	48 2.09 23	0.15 2	0.0	0.00	20 0.33 4	326 6.79 76	47 1.32 15	30.0 0.48 5	0.0	0.5	0.80		641 594	336. 32(:
02/	27/68	4790 4790	 7.1	1650	92 4.59	12 0.99	140	90 2.30		0.00	180 2.95	250 5.20	220 6.20	0.00		2.3	1.10		922	275 131
	20/68 	5100 5100	 7.8	1436	88 4•39 34	12 0.99 8	90 3•91 30	78 1.99 15	29.0 1.61 12	0 • 0 0	154 2.52 20	167 3•48 27	227 6.40 50	25.0 0.40 3		2•2	0.75			265 141
_	18/68	5100 5100	 6.7	300	15 0.75 26	9 0.74 26	29 1.26 44	0 · 1 0 4	0.0	0.00	32 0.52 18	42 0.87 31	27 0.76 27	33.0 0.53 19	5.0 0.16 5	0.7	1.14		185 182	74 48
					ONTARI	0, CIT	r OF													
	09/67	4790 4790	 6.8	1120	60 2•99 28	12 0•99 9	102 4.44 41	18 0.46 4	35.0 1.94 18	0.00	381 6.24 62	60 1.25 12	89 2•51 25	6.0 0.10 1		0.6	1.10			19¢ ≠ (
	24/67	4790 4790	 7.2	940	52 2.59 26	12 0•99 10	96 4.17 42	17 0.43 4	30.0 1.66 17	0.00	372 6•10 65	50 1.04 11	75 2.11 22	10.0		0.6	0.90		528 527	170
	08/67	4790 4790	 7.8	840	52 2•59 28	12 0.99 11	86 3•74 40	15 0 • 38 4	28.0 1.55 17	0.00	320 5•24 65	0.92 11	66 1.86 23	1 • 0 0 • 02 0		2.4	0.50			± (
	15/68	4790 4790	 7.5	920 	56 2.79 25	24 1.97 18	94 4.09 37	16 0.41 4	33.0 1.83 16	0.00	366 6.00 67	48 1.00 11	71 2.00 22	0.00		1.0	0.80	••		23! # (
	30/68	5100 5100	 7•3	982 	57 2•84 28	9 0 • 74 7	93 4.04 40	13 0•33 3	40 • 0 2 • 22 22	0.00	417 6•83 64	50 1.04 10	71 2.00 19	5.0 0.08	22.0 0.69	1+1	0.65		567	175
_	07/68	4790 4790	 7.9	820	48 2.39 20	34 2.80 24	80 3.48 30	11 0.28 2	50.0 2.77 24	0.00	357 5.85 73	32 0.67 8	53 1.49 19	0.0		0.5	1.40			26t ≠ (
_	18/68 	5100 5100	 7•2	733	59 2•94 39	0 • 33 4	87 3•78 50	11 0•28 4	4.7 0.26	0.00	225 3.69 46	49 1.02 13	64 1.80 22	32·0 0·52 6	33.0 1.04 13	1.1	1.28			164 ≠ (
					REDLAN	US, CII	TY OF													
	01/67	4790 4790	 6.8	960 	60 2•99 31	10 0•82 8	114 4•96 51	16 0•41 4	10 • 0 0 • 5 5 6	0 • 0 0	204 3•34 36	120 2•50 27	112 3•16 34	13·0 0·21 2	~=	2.0	0 • 4 0		558#	± 24
	30/68	5100 5100	 7.4	1019	54 2•69 26	8 0•66 6	100 4•35 42	13 0•33 3	40 • 0 2 • 22 22	0 • 0 0	349 5•72 55	61 1•27 12	94 2•65 25	3.7 0.06 1	24.0 0.76 7	2.4	0.55		591 573	168
	'18/68 	5100 5100	 7 • 2	906 	52 2•59 28	14 1•15 12	92 4•00 43	13 0•33 4	21.0 1.16 13	0 • 0 0	244 4•00 40	106 2•21 22	97 2•73 27	5.0 0.08 1	29.0 0.92 9	1.9	2.02		449 553#	± (²
					RIALTO	, CITY	OF													
01/	′30/68 	5100 5100	 7.5	797 	49 2•44 30	5 0•41 5	83 3•61 45	10 0•25 3	24.0 1.33 16	0.00	298 4 • 88 63	50 1.04 13	60 1.69 22	6.2 0.10 1		0.7	1.00		425 436	(
07/	18/68	5100 5100	 7.2	704	46 2.29 31	6 0.49 7	75 3.26 44	8 0.20 3	20.0 1.11 15	0.00	283 4.64 65	50 1.04 14	50 1.41 20	5.0 0.08		1.0	1.21		331 402	134
					RIALTO	, CITY	OF						EFFLUEN	T						
11/	/01/67 	4790 4790	 7 • 0	690	38 1.90 25	11 0•90 12	74 3.22 42	16 0 • 4 1 5	21.0 1.16 15	0 • 0 0	275 4.51 51	60 1•25 14	53 1.49 17	5.0 0.08	50.0 1.58 18	0.7	0.80	••		14(
01/	/02/68 	4790 4790	 7 • 0	710	35 1 • 75 25	9 0.74 11	68 2.96	17 0•43 6	20.0	0.00	214 3.51	74 1.54 19	50 1.41 18	6.0	45.0 1.42	0.7,	0.30			12
01/	/30/68 	5100 5100	 7.5	797 	49 2.44 30	5 0.41	83 3.61 45	10 0.25 3	24.0 1.33 16	0.00	298 4.88 63	50 1.04 13	60 1.69 22	6.2	18	0.7			425 435	14
						_		_	-	-				_						

TABLE F=3

MINERAL ANALYSES OF WASTE WATER

								•••••												
DATE TIME S			LABOR FIE		M CA	INERAL MG	CONST	I TUENTS K	IN NH4	MIL PER	LIGRAMS LIEQUIV CENT HCO3	_	PER PER ANCE CL	LITEF LITEF VALUE NO3	₹	MII F	LIGRAP B	45 PE 5102	R LITE TDS SUM	ER TH NCH
					RIALTO	• CITY	0F						EFFLUEN1							
3/05/68		••	7.5	827	27 1•35 15	19 1•56 18	86 3•74 43	13 0•33 4	31.0 1.72 20	0.00	337 5•52 55	49 1•02 10	40 1•13 11	56.0 0.90 9	45.0 1.42 14	0.8	1.30		468 534≠	-
7/18/68 	5100 5100		7.2	704	46 2•29 31	6 0•49 7	75 3•26 44	8 0•20 3	20 • 0 1 • 11 15	0.00	283 4•64 63	50 1.04 14	50 1•41 19	5.0 0.08	7.5 0.24 3	1.0	1.21		331 409	139
1111	R)	VERS	IDE, (CITY OF					PL	ANT NO.	1									
1/03/67			7.3	1200	60 2.99 26	10 0.82 7	140 6•09 52	16 0.41 3	23.0 1.27 11	0.00	287 4.70 41	90 1.87 16	160 4.51 39	4.0 0.06 1	14.0 0.44 4	1.5	0.70		696 661	191 0
/30/67	4790 4790		7.8	1290	76 3•79 28	17 1•40 10	138 6•00 45	16 0•41 3	33.0 1.83 14	0.00	305 5•00 - 37	104 2.16 16	192 5•41 40	6.0 0.10 1	24.0 0.76 6	1.7	0.80		743 759	260 10
					RUBIDO	UX COMM	UNITY S	ERVICES	DISTRI	ст										
1/24/67	4790 4790		7.7	1420	104 5.19 37	19 1.56 11	126 5.48 39	18 0.46 3	25.0 1.38 10	0.00	451 7.39 51	120 2.50 17	160 4.51 31	0.0		0.4	0.60		76 ₀ 795	338 0
1/07/68 	4790 4790		7.9	972 	104 5•19	23 1.89	51 2•22	0.10		0.00	278 4•56	93 1•94	91 2•57	36.0 0.58		0.4			622	354 126
	SA	N BE	RNARDI	NO+ CI	TY OF				PL	ANT NO.	1									
·/20/67	4790 4790		7.7	1150	60 2•99 26	12 0•99 9	136 5•91 52	17 0.43 4	20.0 1.11 10	0.00	244 4.00 37	80 1.66 15	160 4•51 42	0.0	18.0 0.57 5	1.1	0.60		700 625≠	-
/30/68	5100 5100	••	7.4	1240	75 3•74 30	13 1•07 9	152 6•61 54	0.36 3	9.0 0.50 4	0.00	227 3.72 30	86 1.79 14	189 5•33 43	48.0 0.77 6	25.0 0.79 6	1.1	0.35		752 725	241 55
/08/68 	4790 4790		7•1	1180	72 3•59 37	7 0•57 6	100 4•35 45	12 0•31 3	15.0 0.83 9	0.00	198 3•24 29	70 1.46 13	204 5•75 51	0.0	25.0 0.79 7	1.3	0.70		653 605≠	209 46
/19/68 	5100 5100		7.0	967 	66 3•29 33	14 1•15 12	107 4.65 47	11 0•28 3	9.9 0.55 5	0 • 0 0	256 4•19 39	72 1•50 14	124 3.50 33	34 • 0 0 • 55 5	31.0 0.98 9	1.1			536 596≠	
	SA	N BE	RNARDI	NO+ CI	TY OF				PL	ANT NO.	2									
/18/67	4790 4790	••	7.4	1080	2.19 22	12 0•99 10	100 4•35 43	17 0•43 4	40.0 2.22 22	0.00	342 5•60 58	76 1•58 16	89 2•51 26	0 • 0 0 • 0 0 0		1•3	0.80		528 549	
/20/67 	4790 4790	••	7.5	920	48 2•39 24	14 1+15 12	96 4•17 42	17 0•43 4	30 • 0 1 • 66 17	0.00	348 5•70 56	80 1.66 16	85 2•40 23	0.0	15.0 0.47 5	1.2	0.50		561 558	-
/30/68	5100 5100		7.6	1105	56 2•79 25	0.90 8	121 5•26 47	14 0•36 3	33.0 1.83 16	0.00	342 5.60 47	92 1•91 16	107 3•02 25	5.6 0.09 1	40.0 1.26 11	1 • 4	0.55		515 650≠	
/08/68 	4790 4790		6.8	1280	56 2•79 25	7 0•57 5	132 5•74 51	16 0•41 4	33.0 1.83 16	0.00	366 6•00 53	80 1.66 15	101 2•85 25	0.0	28.0 0.88 8	1.5	0.90		585 636	
/19/68 	5100 5100	••	7.2	986 	59 2•94 28	0.90 8	103 4•48 42	15 0•38 4	35.0 1.94 18	0.00	359 5.88 48	104 2.16 18	85 2•40 20	9.9 0.16 1	50.0 1.58 13	1.4	0.68		499 652≠	-
17-					US AIR	FORCE+	NORTON	AF8												
/29/68 133n	5050 5088		6.8	667	57 2.84 44	11 0.90 14	38 1.65 26	0 • 1 0 2	17.0 0.94 15	n.00 0	82 1•34 20	232 4.83 74	12 0.34 5	2.0 0.03 0		0.5	0.15		413 414	
	WE	STER	N PACI	FIC SA	NITATION	OMPAI	٧Y		EΤ	IWANDA (PLANT									
/20/68 	5100 5100		7.4	1204	38 1.90 17	0.66 6	200 8.70 77	3 0.08 1	0.0		162 2.65 24	17 0.35 3	279 7.87 72	5.0 0.08 1	••	0.8	0.10	••	635 631	_

SAN DIEGO REGION (REGION 9)

DATE TIME 5	LAB AMPLE	TEMP R		DRATORY IELD EC	CA	IINERAL MG	CONST	ITUENTS K	IN NH4	MIL	LIGRAMS LIEQUIV CENT HCO3	ALENTS REACT SO4	PER PER TANCE CL	LITE LITE VALU NO3	R	MI F	LLIGRA B		R LII TDS SUM	
					CAPIST	RANO BE	ACH SAN	ITARY DI	STRICT											
10/27/67			8.2	2190	88 4.39 21	36 2.96 14	310 13.48 65		0.6 0.03 0	0.00	180 2.95 14	380 7.91 37	320 9.02 42	20.0 0.32	43.0 1.36 6		0.86	21	1360 1308	
11/03/67			7.7	2240	100 4.99 20	46 3•78 15	370 16.09 63	20 0•51 2	0.6 0.03 0	0.00	350 5•74 23	390 8•12 32	380 10.72 43	0.3	12.0 0.38 1	0.8	1.00	32	1630 1525	1
02/01/68 			7.3	2200	100 4.99	38 3.12	300 13.05	20 0.51		0.00	200 3.28	350 7.29	320 9.02	54.0 0.87	••	2.2	0.55		1410	2
					ENCINI	TAS SAN	ITARY D	ISTRICT												
10/12/67							210 9.13					250 5•20	220 6.20	0.9 0.01	12.0 0.38				940	-
11/14/67 			7.6	4800 	240 11.98 25	120 9.87 20	610 26.53 55		0 • 1 0 • 0 0 0	0.00	280 4.59 9	320 6.66 13	1400 39.48 78	9.0 0.14 0	0.3 0.01 0		0.50	43	3270 2881;	
11/14/67 1120			8.0	4750	300 14.97 31	90 7.40 15	600 26.10 54		0 • 1 0 • 0 0 0	0.00	220 3.60 8	330 6.87 14	1310 36.94 78	6.0 0.10 0	0.1 0.00 0		0.37	46	3420 2791	
11/14/67 1455			8.0	5200	300 14.97 28	130 10.69 20	620 26.97 51		0.02	0.00	260 4.26 8	390 8.12 15	1450 40.89 77	6.0 0.10 0	0.02		0.63	44	2950 3070	
11/14/67 1510			8.1	4800	260 12.97 26	120 9.87 20	610 26.53 54		0.3	0.00	260 4.26 9	390 8.12 16	1300 36.66 75	7.5 0.12 0	0.1 0.00 0		0.50	44	3340 2861	
	Ε	SCOND	100,	CITY OF					PL	ANT NO.	2								11	
10/31/67														14.0	32.0 1.01				920	-
11/20/67			7.1	1600	200 9.98 37	90 7.40 27	180 7.83 29	14 0.36 1	79.0 1.61 6			220 4.58 38	220 6•20 52	34.0 0.55 5	22.0 0.69 6	1.2			1011#	8.
11/29/67											-*			34.0 0.55	21.0				1380	
	F	ALLBR	00K 5	SANITARY	DISTRI	СТ														
10/27/67			7 • 2	1700	84 4•19	29 2•38	180 7.83	16 0.41		0.00	250 4•10	330 6•87	190 5•36	2·1 0·03		1.9	0.86		1020	3; 1;
25 (1) (1(0				SANITARY					PL	ANT NO.										
05/16/68			7.8	1630	88 4•39	28 2•30	180 7.83	15 0.38		0.00	220 3.60	350 7.29	140 3.95	1.1 0.02		0.2	0.86		1060	7:1
		ALLBR		ANITARY				_	PL	ANT NO.										
05/16/68			6.8	1650	120 5.99	36 2•96	160 6.96	15 0.38		0.00	140 2.29	310 6.45	6.20 6.20	90.0 1.45	••	0.5	0.86		1220	3:
10/27/68			7.2	1700	84 4.19	29 2•38	180 7.83	16 0.41		0.00	250 4.10	330 6.87	190 5.36	2.1 0.03		1.9	0.86	••	1020	32
					LEUCAD	IA COUN	TY WATE	R DISTRI	СТ											
11/15/67			7.3	6500	970 48.40 61	100 8.22 10	510 22.18 28		0.0	0.00	230 3.77 5	980 20.40 26	1940 54.71 69	11.0 0.18 0	0.5 0.01 0		0.25	46	5530 4671	
03/14/68			8.2	3000	130 6.49 24	58 4.77 18	350 15.22 57		2.4 0.13 0	0.00	240 3.93 14	340 7.08 25	570 16.07 57	30.0 0.48 2	15.0 0.47 2		1.00	19	1800 1634≠	
	0	CEANS	ine,	CITY OF																
11/30/67			7.2	1990	100 4.99 27	24 1.97 10	260 11•31 60	17 0•43 2		0.00	250 4 • 10 20	340 7.08 34	300 8.46 41	0 • 4 0 • 0 1 0	28.0 0.88 4	1.4	0.50	29	1250 1224#	
07/28/68 			7.8	2300 	120 5.99 31	22 1.81 9	250 10.87 57	17 0.43 2		0.00	270 4.42 20	350 7.29 33	320 9.02 41	0.3 0.00 0	40.0 1.26 6	1.6	0.63		1170 1255≠	
	0	CEANS	iDE.	CITY OF											WHE	LAN LA	KE			3
02/26/68				2000		32 2.63 13	250 10.87 55		24.0 1.33 7	0 • 0 0	270 4.42 20	360 7.49 35	310 8.74 40	4.1 0.07 0	28.0 0.88 4			21	1130 1263#	36, 16

SAN DIEGO REGION (REGION 9)

								LOO ME	01011		, ,								
		FI	ELD					IN	MIL! PER	LIEQUIV. CENT	ALENTS REACT	PER	LITER					TOS	TH
		PM	EC	CA	MG	NA		NM4	C03	HCO3	504	CL	NO3	PU4	r	þ	2105	SUM	NCH
0	CEANS	IDE.	CITY OF											WHEL	LAN LAN	KE			
		7.5	2000	96 4•79 24	39 3•21 16	250 10•87 54		23.0 1.27 6	0 • 0 0	260 4•26 20	360 7.49 35	310 8.74 41	3.6 0.06 0	25.0 0.79 4		0.63	19	1200 1255≠	
0	CEANS	IDE.	CITY OF					SA	N LUIS	REY PLA	T								
		7.8	2050	100 4•99 25	34 2.80 14	250 10•87 54	-	24.0 1.33 7	0.00	290 4.75 21	370 7•70 34	320 9.02 40	0 • 7 0 • 0 1 0	29.0 0.92 4		0.63	23	1210 1294≠	
		7.9	2100	110 5.49 27	3.37 16	250 10.87 53		15.0 0.83 4	0.00	280 4.59 21	360 7.49 34	330 9.30 42	8.9 0.14 1	17.0 0.54 2		0.88	20	1310 1291≠	
		8.4	5950	180 8•98 16	120 9.87 17	860 37•41 66		5.7 0.31 1	22 0.73 1	250 4•10 7	420 8.74 15	1630 45.97 77	8.0 0.13 0	6.5 0.20 0		0.88	19	3610 3395≠	_
				POMERA	DO COUN	ITY WATE	R DISTR	ICT											
												380 10.72						1410	
 		6.9	2300	100 4.99	54 4.44	240 10.44			0 0.00	180 2.95	370 7.70	370 10.43	62.0 2	24.0 0.76	2.8	0.60		1500	472 324
S	AN DI	EGO,	COUNTY	OF (DEP)	T. SPEC	. DIST.	SERVICE	ES) AL	PINE SA	NITATIO	N DISTR	ICT							
		8.2	1350	110 5.49 37	29 2.38 16	160 6.96 47		0.4	0.40 3	500 8.19 59	35 0.73 5	160 4.51 33	0.8 0.01 0	0.01		0.63	51	930 805≉	394
		7.1	1290	120 5•99 48	30 2•47 20	93 4•04 32		0.0	0.00	340 5.57 46	51 1.06 9	190 5.36 44	5.3 0.08 1	0.1		0.13	91	730 748	
S	AN DI	EGO•	COUNTY	OF (DEP)	T. SPEC	. DIST.	SERVICE	S) RA	MONA SA	NITATIO	N DISTR	ICT							
==		7.5	2020	100 4.99 26	19 1.56 8	260 11.31 58		27.0 1.50 8	0.00	460 7.54 36	230 4.79 23	260 7•33 35	0.3 0.00 0	45.0 1.42 7		1.00	32	1260 1201≠	
				SAN PAS	SQUAL A	CADEMY													
			1430	31 1•55		290 12.61					94 1•96	170 4.79						950 	
				SANTEE	COUNTY	WATER	DISTRIC	r				FINAL E	FFLUENT	(OLD P	LANT)				
						230 10.00	19 0.49			••	320 6.66	190 5.36	0.6	35.0 1.10				1060	
						230 10.00	19 0.49				340 7.08	210 5•92	1.2	29.0				1150	
						190 8.26	17 0.43				320 6.66	220 6•20	2.7	32.0 1.01				1110	
	••	7.8	1790		••	190 8•26	17 0.43				282 5•87	270 7.61	1.2	31.0 0.98				1080	
		7.3	1800			210 9•13	18 0.46				380 7.91	250 7.05	14.0	37.0 1.17				1040	
		7.5	1850			200 8•70	19 0•49		••		320 6•66	280 7.90	15.0 0.24	37.0 1.17				1060	
V	ALLEY	CENT	ER MUNI	CIPAL WA	ATER DI	STRICT		LA	WRENCE !	WELKS CO	OUNTRY	CLUB VII	LLAGE						
			2070			300 13.05				••	330 6.87	340 9.59						1310	
	O	OCEANS OC	OCEANSIDE, OCEANS	OCEANSIDE, CITY OF 7.5 2000 OCEANSIDE, CITY OF 7.8 2050 7.9 2100 7.9 2100 8.4 5950 6.9 2300 SAN DIEGO, COUNTY 8.2 1350 7.1 1290 7.5 2020 SAN DIEGO, COUNTY 7.5 2020 7.8 1790 7.3 1800 VALLEY CENTER MUNI	OCEANSIDE, CITY OF OCEANSICE OCEANSICE OCEANSICE OCEANSICE OCEANSICE OCEANSICE	OCEANSIDE, CITY OF OCEANSICE OCEANSICE OCEANSICE OCEANSICE OCEANSICE OCEANSICE	OCEANSIDE, CITY OF OCEANSIDE, CITY OF COEANSIDE, COEANSIDE COEANSIDE, CITY OF COEANSIDE, CITY OF COEANSIDE, CITY OF COEA	OCEANSIDE, CITY OF 1 7.5 2000 96 39 250 10.87 24 16 54 OCEANSIDE, CITY OF 2 7.8 2050 100 34 250 10.87 25 14 54 OCEANSIDE, CITY OF 3 7.8 2050 100 34 250 10.87 25 14 54 3 7.9 2100 110 41 250 10 53 3 8.4 5950 180 120 860 10 53 3 8.4 5950 180 120 860 10 53 3 8.4 5950 180 120 860 10 53 4 8.98 9.87 37.41 16 17 66 POMERADO COUNTY WATER DISTRICT 5 4.99 4.44 10.44 SAN DIEGO, COUNTY OF (DEPT. SPEC. DIST. SERVICE 10 53 10 29 160 10 549 2.38 6.96 37 16 47 5 5.49 2.38 6.96 37 16 47 5 7.1 1290 120 30 93 10 5.99 2.47 4.04 SAN DIEGO, COUNTY OF (DEPT. SPEC. DIST. SERVICE 10 55 12 56 11.31 26 8 58 SAN PASQUAL ACADEMY 5 1.55 12.61 SANTEE COUNTY WATER DISTRICT 5 190 17 8.26 0.43 5 1.55 12.61 SANTEE COUNTY WATER DISTRICT 5 190 17 5	### FIELD PH EC CA MG NA K NH4 OCEANSIDE, CITY OF 17.5 2000 96 39 250 23.0 4.79 3.21 10.87 1.27 24 16 54 6 OCEANSIDE, CITY OF SA OCEANSIDE, CITY OF OCEANSICAL OCEANSICAL OCEANSIDE, CITY OF OCEANSICAL OCEANSIDE, CITY OCEANSICAL O	LAB TEMP LABORATORY PIECU CA MG NA K NH4 C03 OCEANSIDE, CITY OF 1 7.5 2000 96 39 250 23.0 0 OCEANSIDE, CITY OF 24 16 54 6 6 0.00 OCEANSIDE, CITY OF 54 10.87 1.27 0.00 OCEANSIDE, CITY OF 54 10.87 1.37 0.00 OCEANSIDE, CITY OF 54 10.87 1.33 0.00 7.8 2050 100 34 250 24.0 0 4.99 2.80 10.87 1.33 0.00 1 7.9 2100 110 41 250 15.0 0 1 7.9 2100 110 41 250 15.0 0 1 8.98 9.87 37.41 0.31 0.73 8.98 9.87 37.41 0.31 0.73 8.98 9.87 37.41 0.31 0.73 4.99 4.44 10.44 0.31 0.73 4.99 4.44 10.44 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) ALPINE SA 10.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) ALPINE SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 32 0 0.00 SAN DIEGO, COUNTY OF (OEPT. SPEC. DIST. SERVICES) RAMONA SA 20 0.00 SAN DIEGO, CO	MAMPLER FIELD PERCENT CA MG NA K NH4 CO3 MCO3	TAB TEMP LABORATORY PIECL CA MO NA K NH4 CO3 MCO3 SOA OCEANSIDE, CITY OF 1 7.5 2000 96 39 250 23.0 0 260 360 OCEANSIDE, CITY OF 24 16 54 6 0 20 35 OCEANSIDE, CITY OF 24 16 54 6 0 20 35 OCEANSIDE, CITY OF 24 16 54 6 0 20 35 OCEANSIDE, CITY OF 24 16 54 6 0 20 35 OCEANSIDE, CITY OF 25 18 54 7 0 0 21 34 1 7.8 2050 100 34 250 24.0 0 290 370 1 7.8 2050 110 34 250 15.0 0 280 360 1 7.9 2100 1110 41 250 15.0 0 280 360 1 5.49 3.37 10.87 0.83 40 21 34 1 8.4 5950 180 120 860 5.7 22 250 420 1 8.4 5950 180 120 860 5.7 22 250 420 1 8.98 9.87 37.41 0.31 0.73 4.10 8.74 1 6.9 2300 100 54 240 0 180 370 SAN DIEGO, COUNTY OF (DEPT, SPEC, DIST, SERVICES) ALPINE SANITATION DISTR 1 7.1 1290 120 30 93 0.0 0 340 51 5.99 2.47 4.40 0.00 0.00 5.57 1.06 SAN DIEGO, COUNTY OF (DEPT, SPEC, DIST, SERVICES) RAMONA SANITATION DISTR 1 7.5 2020 100 19 260 27.0 0 460 230 SAN DIEGO, COUNTY OF (DEPT, SPEC, DIST, SERVICES) RAMONA SANITATION DISTR 2 5.99 2.47 4.40 0.00 0.00 5.57 1.06 SAN DIEGO, COUNTY OF (DEPT, SPEC, DIST, SERVICES) RAMONA SANITATION DISTR 2 1.30 31 290 94 1 7.5 2020 100 19 260 27.0 0 460 230 SAN DIEGO, COUNTY OF (DEPT, SPEC, DIST, SERVICES) RAMONA SANITATION DISTR 2 1.90 17 320 SAN PASQUAL ACADEMY 1.50 17 320 SAN PASQUAL ACADEMY 320 19 320 SAN PASQUAL ACADEMY	LAB TEMP LABORATORY PIELD CA MG NA K NH4 CO3 HOLD SQL CL OCEANSIDE. CITY OF 1 7.5 2000	LAB TEMP LABORATORY MINERAL CONSTITUENTS IN MILLIEOUTYALENTS PER LITER (AMPLER PIECD CA MG NA K NH4 CO3 HCO3 HCO3 HCO3 HCO3 HCO3 HCO3 HCO3	LAB TERP LABORATORY MINERAL CONSTITUENTS IN MILLIEOUTVALENTS PER LITER NAMPLER PRICE CA MG NA K NH4 C03 CHOOS SOL CL VALUE POLAMBRE PRICE NAME REACTION CL VALUE POLAMBRE PRICE NAME PRICE PRICE PRICE PRICE NAME REACTION CL VALUE POLAMBRE PRICE NAME REACTION CL	LAB TEMP LABORATORY MINERAL CONSTITUENTS IN MILLTEOUTWALENTS PER LITER MILLTEOUTWALENT MILLTEOUTWALENTS PER LITER MILLTEOUTWALENT	LAB TEMP LABORATORY MINERAL CONSTITUENTS IN MILLEOUVALENTS PER LITER MILLIGNAL AMPRIER OF HEEC CA MG NA K NH4 CD3 MGO SON MC CL NGO POL MELAN LAKE VALUE POL MELAN LAKE COSCAN MGO SON MC CL NGO POL MELAN LAKE COSCAN MGO SON MC CL NGO POL MELAN LAKE COSCAN MGO SON	MANUELER PRINCE PRICE CA MG AA K NHA C93 CC3 CC3 CC3 CC4 CC4 CC5 CC5 CC5 CC5 CC5 CC5 CC5 CC5	LAB TEMP LABORATORY MINERAL CONSTITUENTS IN MILLIFOUNDALENTS OF PRICE CONSTITUENTS IN MILLIFOUNDALENTS OF PRICE CONSTITUENTS OF PRIC

perfect fort

		•	
			*

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

UCD LIBRARY DUE SEP 29 1971

SEP 2 9 REC'D

OEP 25 1972 JUN 21 REC'D

MON

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50 m·9,'70 (N9877s8) 458—A·31/5,6

Nº 744908

3 1175 02468 7199

California. Dept. of Water Resources.
Bulletin.

PHYSICAL SCIENCES LIBRARY TC824 C2 A2 no.130:68 v.5 appx.D-F c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

	Call Number:
7 111908	TC52L
California. Dept. of	C2
Water Resources.	A2 no.130:68
	_

