goal: derive algorithms to solve MDP/SOCP when model is "known"

Neuro-Dynamic Programming

Dimitri P. Bertsekas and John N. Tsitsiklis

o given finite upp/socp
$$(X, \mathcal{U}, P, c)$$
 - infinite-horizon, exponentially-discounted i.e. win $E[c(X, \mathcal{U})]$ $c(X, \mathcal{U}) = \sum_{t=0}^{\infty} \chi^{t} \cdot \mathcal{L}(x_{t}, \mathcal{U}_{t})$ $s.t. x^{t} v P(X, \mathcal{U}), |X|, |\mathcal{U}| < \infty$

we can define Bellman operators associated with MDP, $T: X \to \Delta(u)$ $T: R^X \to R^X$ — nonlinear / piecewise-affine $: v \mapsto (Tv)(x) = \min \sum_{u \in \mathcal{U}} P(x^+ | x_i u) \cdot (\mathcal{L}(x_i u) + v \cdot v(x^+))$ $u \in \mathcal{U} x^+ \in X$

$$T_{\pi}:\mathbb{R}^{X}\to\mathbb{R}^{X}-\text{affire}$$

$$: N\mapsto (T_{\pi})(x)=\sum_{u\in\mathbb{N}}\pi(u|x)\cdot\sum_{x^{+}\in X}P(x^{+}|x_{i}u)\cdot(\mathcal{L}(x_{i}u)+Y\cdot V(x^{+}))$$

learning Page 1

 $: V \mapsto (T_{t}V)(x) = \sum_{u \in \mathcal{U}} T(u|x) \cdot \sum_{x' \in X} P(x' \mid x_i u) \cdot (\mathcal{L}(x_i u) + Y \cdot V(x'))$

*recall that $T \xi T_{\pi}$ are contractions: $\|Tv - Tw\|_{\infty} \leq T \|v - w\|_{\infty}$ $\|T_{\pi v} - T_{\pi w}\|_{\infty} \leq T \|v - w\|_{\infty}$

- \rightarrow propose a <u>value iteration</u> algorithm that approximates $v^* (= Tv^*)$ (discuss compitational complexity)
 - starting from any $v \in \mathbb{R}^X$, iteratively evaluate (nonlinear) operator $T: v \mapsto Tv \mapsto T^2v \mapsto \cdots \mapsto T^kv$

 - each iteration (evaluation of t) regimes O(IXI-121) approximans
- \sim given v^* , can determine an optimal deterministic policy $\tau^*: X \to 2l$ by evaluating τ
- \rightarrow propose a policy iteration algorithm that computes $V^T (= T_T V^T)$ and then approximates T^* (discuss computational complexity)
- given any $\pi: X \to \Delta(u)$, can compute v^{π} by solving affine equation $v^{\pi} = T_{\pi}v^{\pi}$ in $O(|X|^3)$ operations to 3
- can improve polices with greedy update:

 $\forall x \in X: \pi^+(x) = \alpha g \min_{x \in X} \sum_{x \in X} P(x^+|x_iu) \cdot (\mathcal{L}(x_iu) + Y \cdot V^{\pi}(x^+))$

 $\forall x \in X: \pi^{+}(x) = \text{arg min} \sum_{u \in \mathcal{U}} P(x^{+}|x_{i}u) \cdot (\mathcal{L}(x_{i}u) + Y \cdot V^{\pi}(x^{+}))$