A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires

Argentina

Este artículo presenta una formulación alternativa de la relatividad especial que puede ser aplicada en cualquier sistema de referencia inercial. Además, una nueva fuerza universal es propuesta.

Introducción

La masa intrínseca (m) y el factor frecuencia (f) de una partícula masiva están dados por:

$$m \doteq m_o$$

$$f \doteq \left(1 - \frac{\mathbf{v} \cdot \mathbf{v}}{c^2}\right)^{-1/2}$$

donde (m_o) es la masa en reposo de la partícula masiva, (\mathbf{v}) es la velocidad de la partícula masiva y (c) es la velocidad de la luz en el vacío.

La masa intrínseca (m) y el factor frecuencia (f) de una partícula no masiva están dados por:

$$m \doteq \frac{h \kappa}{c^2}$$

$$f \doteq \frac{\nu}{\kappa}$$

donde (h) es la constante de Planck, (ν) es la frecuencia de la partícula no masiva, (κ) es una constante universal positiva con dimensión de frecuencia y (c) es la velocidad de la luz en el vacío.

En este artículo, una partícula masiva es una partícula con masa en reposo no nula y una partícula no masiva es una partícula con masa en reposo nula.

Cinemática Alternativa

La posición especial $(\bar{\mathbf{r}})$, la velocidad especial $(\bar{\mathbf{v}})$ y la aceleración especial $(\bar{\mathbf{a}})$ de una partícula $(\bar{\mathbf{a}})$ ano masiva $(\bar{\mathbf{a}})$ están dadas por:

$$\bar{\mathbf{r}} \doteq \int f \mathbf{v} dt$$

$$\bar{\mathbf{v}} \doteq \frac{d\bar{\mathbf{r}}}{dt} = f \mathbf{v}$$

$$\bar{\mathbf{a}} \doteq \frac{d\bar{\mathbf{v}}}{dt} = f \frac{d\mathbf{v}}{dt} + \frac{df}{dt} \mathbf{v}$$

donde (f) y (\mathbf{v}) son el factor frecuencia y la velocidad de la partícula.

Dinámica Alternativa

Sea una partícula (masiva o no masiva) con masa intrínseca (m) entonces el momento lineal (${\bf P}$) de la partícula, el momento angular (${\bf L}$) de la partícula la fuerza neta (${\bf F}$) que actúa sobre la partícula, el trabajo (${\bf W}$) realizado por la fuerza neta que actúa sobre la partícula y la energía cinética (${\bf K}$) de la partícula están dados por:

$$\mathbf{P} \doteq m\bar{\mathbf{v}} = mf\mathbf{v}$$

$$\mathbf{L} \doteq \mathbf{P} \dot{\times} \mathbf{r} = m\bar{\mathbf{v}} \dot{\times} \mathbf{r} = mf\mathbf{v} \dot{\times} \mathbf{r}$$

$$\mathbf{F} = \frac{d\mathbf{P}}{dt} = m\bar{\mathbf{a}} = m\left[f\frac{d\mathbf{v}}{dt} + \frac{df}{dt}\mathbf{v}\right]$$

$$\mathbf{W} \doteq \int_{1}^{2} \mathbf{F} \cdot d\mathbf{r} = \int_{1}^{2} \frac{d\mathbf{P}}{dt} \cdot d\mathbf{r} = \Delta \mathbf{K}$$

$$\mathbf{K} \doteq mfc^{2}$$

donde $(f, \mathbf{r}, \mathbf{v}, \bar{\mathbf{v}}, \bar{\mathbf{a}})$ son el factor frecuencia, la posición, la velocidad, la velocidad especial y la aceleración especial de la partícula y (c) es la velocidad de la luz en el vacío. La energía cinética (K_o) de una partícula masiva en reposo es $(m_o c^2)$ § Por otro lado, $(\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a})$ o $(\mathbf{a} \times \mathbf{b} = \mathbf{b} \wedge \mathbf{a})$

Fuerza Cinética

La fuerza cinética \mathbf{K}_{ij}^a ejercida sobre una partícula i con masa intrínseca m_i por otra partícula j con masa intrínseca m_j está dada por:

$$\mathbf{K}_{ij}^{a} = -\left[\frac{m_i m_j}{\mathbb{M}} \left(\bar{\mathbf{a}}_i - \bar{\mathbf{a}}_j \right) \right]$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i, $\bar{\mathbf{a}}_j$ es la aceleración especial de la partícula j y \mathbb{M} ($=\sum_z m_z$) es la suma de las masas intrínsecas de todas las partículas del Universo.

La fuerza cinética \mathbf{K}_i^u ejercida sobre una partícula i con masa intrínseca m_i por el Universo está dada por:

$$\mathbf{K}_{i}^{u} = -m_{i} \frac{\sum_{z} m_{z} \bar{\mathbf{a}}_{z}}{\sum_{z} m_{z}}$$

donde m_z y $\bar{\mathbf{a}}_z$ son la masa intrínseca y la aceleración especial de la z-ésima partícula del Universo.

De las ecuaciones anteriores se deduce que la fuerza cinética neta \mathbf{K}_i (= $\sum_j \mathbf{K}_{ij}^a$ + \mathbf{K}_i^u) que actúa sobre una partícula i con masa intrínseca m_i está dada por:

$$\mathbf{K}_i = -m_i \, \bar{\mathbf{a}}_i$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i.

Ahora, reemplazando ($\mathbf{F}_i = m_i \, \bar{\mathbf{a}}_i$) y reordenando, se obtiene:

$$\mathbf{T}_i \doteq \mathbf{K}_i + \mathbf{F}_i = 0$$

Por lo tanto, la fuerza total T_i que actúa sobre una partícula i es siempre cero.

Bibliografía

- A. Einstein, Sobre la Teoría de la Relatividad Especial y General.
- E. Mach, La Ciencia de la Mecánica.
- C. Møller, La Teoría de Relatividad.

Apéndice I

Sistema de Ecuaciones I

$$[1] \qquad \frac{1}{\mu} \left[\int \mathbf{P} \ dt \ - \iint \mathbf{F} \ dt \ dt \ \right] = 0$$

$$[2] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \right] = 0$$

$$[3] \qquad \frac{1}{\mu} \left[\frac{d\mathbf{P}}{dt} - \mathbf{F} \right] = 0$$

$$[4] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \, \right] \dot{\times} \, \mathbf{r} \, = \, 0$$

$$[5] \quad \frac{1}{\mu} \left[\frac{d\mathbf{P}}{dt} - \mathbf{F} \right] \dot{\mathbf{x}} \mathbf{r} = 0$$

$$[\,6\,] \qquad \frac{1}{\mu} \left[\int \frac{d\mathbf{P}}{dt} \cdot d\mathbf{r} \, - \int \mathbf{F} \cdot d\mathbf{r} \, \right] = \, 0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)

Apéndice II

Sistema de Ecuaciones II

$$\begin{bmatrix}
[1] \\
\downarrow dt \downarrow
\end{bmatrix}$$

$$\downarrow dt \downarrow$$

$$\downarrow dt \downarrow$$

$$[5] \quad \leftarrow \dot{\mathbf{r}} \leftarrow \qquad [2]$$

$$[5] \quad \leftarrow \dot{\mathbf{r}} \leftarrow \qquad [3] \quad \to \int d\mathbf{r} \rightarrow \qquad [6]$$

$$[1] \quad \frac{1}{\mu} \left[m\bar{\mathbf{r}} - \iint \mathbf{F} dt dt \right] = 0$$

$$[2] \quad \frac{1}{\mu} \left[m\bar{\mathbf{v}} - \iint \mathbf{F} dt \right] = 0$$

$$[3] \quad \frac{1}{\mu} \left[m\bar{\mathbf{a}} - \mathbf{F} \right] = 0$$

$$[4] \quad \frac{1}{\mu} \left[m\bar{\mathbf{v}} - \iint \mathbf{F} dt \right] \dot{\mathbf{r}} = 0$$

$$[5] \qquad \frac{1}{\mu} \left[m \, \bar{\mathbf{a}} - \mathbf{F} \right] \dot{\mathbf{x}} \, \mathbf{r} \, = \, 0$$

$$[\, 6\,] \qquad \frac{1}{\mu}\, \left[\,\, m\, f\, c^2\, - \int {\bf F} \cdot d{\bf r}\,\, \right] = \,0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)