Mixing and fast dynamo with random ABC flows

Víctor Navarro-Fernández

Imperial College London

Seminario de Ecuaciones Diferenciales Universidad de Granada 4 April 2024

Outline

1 The mixing problem

- The kinematic dynamo
- 3 ABC flows

4 Random dynamics: main results

Passive transport in \mathbb{T}^3

Let $u(t, \mathbf{x}) \in \mathbb{R}^3$ be a vector field with $\mathbf{x} \in \mathbb{T}^3 = \mathbb{R}^3/(2\pi\mathbb{Z})^3$. Assume that $\nabla \cdot u = 0$. The flow given by the vector field is defined by

$$\frac{d}{dt}X_t(\mathbf{x})=u(t,X_t(\mathbf{x})),\quad X_0(\mathbf{x})=\mathbf{x}.$$

1 Passive scalar $\rho(t, \mathbf{x}) \in \mathbb{R}$ advected by u.

$$\partial_t \rho + u \cdot \nabla \rho = 0, \quad \rho(0, \mathbf{x}) = \rho_0(\mathbf{x}).$$

Solution along characteristics: $\rho(t, X_t(\mathbf{x})) = \rho_0(\mathbf{x})$.

2 Passive vector $v(t, \mathbf{x}) \in \mathbb{R}^3$ advected by u.

$$\partial_t v + (u \cdot \nabla)v - (v \cdot \nabla)u = 0, \quad \nabla \cdot v = 0, \quad v(0, \mathbf{x}) = v_0(\mathbf{x}).$$

Solution along characteristics: $v(t, X_t(\mathbf{x})) = (D_{\mathbf{x}}X_t)^{\top}v_0(\mathbf{x})$.

The scalar problem: mixing

$$\partial_t \rho + u \cdot \nabla \rho = 0, \quad \rho(0, \mathbf{x}) = \rho_0(\mathbf{x}), \quad \oint \rho_0(\mathbf{x}) \, d\mathbf{x} = 0.$$

The transport equation presents some conserved quantities, e.g.

$$\int
ho(t, \mathbf{x}) \, \mathrm{d} \mathbf{x} = \int
ho_0(\mathbf{x}) \, \mathrm{d} \mathbf{x} \quad ext{and} \quad \|
ho(t)\|_{L^p} = \|
ho_0\|_{L^p}.$$

• Question: Can we find div-free vector fields u that mix any ρ_0 ?

Figure: Action of an alternating shear flow in \mathbb{T}^2 .

A measure of mixing

How can we measure the degree of mixedness?

• Mathew, Mezić, Petzold (2005); Thiffeault, Doering (2006) The \dot{H}^{-s} norm of θ for some s>0: e.g. in \mathbb{T}^d

$$\|\rho(t)\|_{\dot{H}^{-s}}^2 = \|\nabla^{-s}\rho(t)\|_{L^2}^2 = \sum_{k \in \mathbb{Z}^d: k \neq 0} \frac{|\hat{\rho}(t,k)|^2}{|k|^{2s}}$$

We say u divergence free **mixes** ρ_0 mean zero with rate r(t) if

$$\|
ho(t)\|_{\dot{H}^{-1}}\lesssim r(t)\|
ho_0\|_{\dot{H}^1}\quad ext{where } r(t) o 0 ext{ as } t o \infty$$

- Crippa, De Lellis (2008); Seis (2013); Iyer, Kiselev, Xu (2014)... If u Lipschitz, mixing can be at most exponential: $r(t) \gtrsim e^{-\lambda t}$
- Shear and radial flows: polynomial mixers $r(t) \sim t^{-\lambda}$
- Yao, Zlatos (2017)...: exponential mixers $r(t) \sim e^{-\lambda t}$

Mixing with random vector fields

What about (div-free) vector fields that depend on a random parameter?

• Bedrossian, Blumenthal, Punshon-Smith (2018–2019) Stochastically forced Navier–Stokes in \mathbb{T}^2 (and hyper-viscous in \mathbb{T}^3)

$$\begin{cases}
\partial_t u + u \cdot \nabla u + \nabla p = \nu \Delta u + Q \dot{W}_t \\
\nabla \cdot u = 0
\end{cases}$$

• Blumenthal, Coti Zelati, Gvalani (2023); Cooperman (2023) *Pierrehumbert model*: Alternating shear flows in \mathbb{T}^2 with random phase or random duration

$$u_h(\mathbf{x},\omega) = \begin{pmatrix} \sin(y+\omega_1) \\ 0 \end{pmatrix}, \quad u_v(\mathbf{x},\omega) = \begin{pmatrix} 0 \\ \sin(x+\omega_2) \end{pmatrix}$$

The vector problem: kinematic dynamo

Maxwell equations for a homogeneous moving conductor

$$abla \times E = -\partial_t H, \qquad
abla \cdot E = q,

abla \times H = j, \qquad
abla \cdot H = 0.$$

2 Ohm's law: $j = \sigma(E + u \times H)$,

$$\partial_t H + (u \cdot \nabla)H - (H \cdot \nabla)u = \varepsilon \Delta H, \quad \nabla \cdot H = 0.$$

Coupled with the Euler equations for an inviscid fluid

$$\partial_t u + (u \cdot \nabla)u + \nabla p = F_{\text{ext}}, \quad \nabla \cdot u = 0.$$

The kinematic dynamo equations assume H to be so small compared to u that it does not play a role in the Euler equations: $F_{\text{ext}} = j \times H \sim 0$.

Kinematic fast dynamo problem

 $F_{\text{ext}} \rightarrow 0$ and $\varepsilon \rightarrow 0$: nondissipative kinematic dynamo equations,

$$\partial_t H + (u \cdot \nabla)H - (H \cdot \nabla)u = 0, \quad \nabla \cdot H = 0.$$

We say that u is a (nondissipative) **kinematic fast dynamo** if

$$||H(t)||_{L^2} \geq Ce^{\lambda t}||H_0||_{L^2}.$$

• Vainshtein, Zeldovich (1972): Stretch-Twist-Fold picture

Jennifer Schober (EPFL)

ABC flows

The ABC vector fields are smooth vector fields of the form

$$u(x, y, z) = \begin{pmatrix} A \sin z + C \cos y \\ B \sin x + A \cos z \\ C \sin y + B \cos x \end{pmatrix},$$

where A, B, C $\in \mathbb{R}$, and $\mathbf{x} = (x, y, z) \in \mathbb{T}^3$.

- Beltrami (1889) The ABC vector fields have the Beltrami property: $\nabla \times u = \lambda u$.
- Arnold (1965) Interested in the topology of solutions to **3D Euler**: $\omega = \nabla \times u$,

$$\partial_t \omega + (u \cdot \nabla)\omega - (\omega \cdot \nabla)u = 0, \quad \nabla \cdot u = 0.$$

Childress (1970)
 Proposed as an example of dynamo in the context of MHD.

ABC flows

Hénon (1966), Dombre et al. (1986), Zhao et al. (1993)...
 Evidence of chaotic streamlines in the ABC flow for different configurations of A, B, C ≠ 0.

Figure: If either A, B or C are zero, the ABC flow is integrable.

Random ABC flows

Random vector $\omega = (A, \alpha, B, \beta, C, \gamma) \in \Omega_0 = ([-U, U] \times [0, 2\pi))^3$. Probability space $(\Omega_0, \mathcal{B}_0, \mathbb{P}_0)$. \mathbb{P}_0 uniform probability in Ω_0 .

$$f_{a}(x,y,z) = \begin{pmatrix} x + A\sin(z + \alpha) \\ y + A\cos(z + \alpha) \\ z \end{pmatrix},$$

$$f_{b}(x,y,z) = \begin{pmatrix} x \\ y + B\sin(x + \beta) \\ z + B\cos(x + \beta) \\ x + C\cos(y + \gamma) \\ y \\ z + C\sin(y + \gamma) \end{pmatrix}, \quad f_{\omega}(\mathbf{x}) = (f_{c} \circ f_{b} \circ f_{a})(\mathbf{x}).$$

Iterative scheme: $\underline{\omega}^{\textit{N}} = (\omega_1, \ldots, \omega_{\textit{N}}) = \Omega_0^{\textit{N}}$, $\underline{\omega} = (\omega_1, \ldots) \in \Omega = \Omega_0^{\mathbb{N}}$,

$$X_N(\mathbf{x}) = f_{\omega^N}(\mathbf{x}) = (f_{\omega_N} \circ \ldots \circ f_{\omega_1})(\mathbf{x}).$$

Mixing result: decay of correlations

- (H_1) Absolutely continuous noise: $\mathbb{P}_0 = \rho_0 \, dLeb$, and $(\omega, \mathbf{x}) \mapsto f_{\omega}(\mathbf{x})$ is C^2 .
- (\emph{H}_2) \emph{f}_ω preserves the Lebesgue measure ($\Leftarrow
 abla \cdot \emph{u} = 0$).
- (H₃) There exists L > 0 such that $|D_x f_\omega|, |(D_x f_\omega)^{-1}| \le L$, \mathbb{P}_0 —a.s.

Theorem [Coti Zelati, NF (2024)]

For all s>0, there exists a deterministic constant $\delta>0$, and a random constant $D_{\underline{\omega}}$ almost surely positive such that for all mean free $g,h\in\dot{H}^s$,

$$\left| \int_{\mathbb{T}^3} g(\mathbf{x}) h(f_{\underline{\omega}^n}(\mathbf{x})) \, \mathrm{d}\mathbf{x} \right| \leq D_{\underline{\omega}} \|g\|_{\dot{H}^s} \|h\|_{\dot{H}^s} e^{-\delta n}$$

for all $n \in \mathbb{N}$. Moreover $\mathbb{E}|D|^q < \infty$ for all q > 0.

• Decay of *correlations* \Rightarrow decay of H^{-s} norm (by duality): Let $g = \rho_0 \in H^1$, then $\|\rho(t)\|_{\dot{H}^{-1}} \leq D_{\underline{\omega}} \|\rho_0\|_{\dot{H}^1} e^{-\delta' t}$.

Random dynamics

Key idea: $(f_{\underline{\omega}^n})_{n\in\mathbb{N}}$ defines a random dynamical system.

• One-point chain: $\mathbf{x} \in \mathbb{T}^3$

$$P(\mathbf{x}, A) = \mathbb{P}_0[f_{\omega}(\mathbf{x}) \in A].$$

• Projective chain: $(\mathbf{x}, \mathbf{v}) \in \mathbb{T}^3 \times \mathbb{S}^2$

$$\hat{P}((\boldsymbol{x},\boldsymbol{v}),\hat{A}) = \mathbb{P}_0\left[\left(f_{\omega}(\boldsymbol{x}),\frac{D_{\boldsymbol{x}}f_{\omega}\boldsymbol{v}}{|D_{\boldsymbol{x}}f_{\omega}\boldsymbol{v}|}\right) \in \hat{A}\right].$$

• Two-point chain: $(\pmb{x}^1, \pmb{x}^2) \in \mathbb{T}^3 imes \mathbb{T}^3 \setminus \Delta$

$$P^{(2)}((\mathbf{x}^1,\mathbf{x}^2),A^{(2)})=\mathbb{P}_0\left[(f_{\omega}(\mathbf{x}^1),f_{\omega}(\mathbf{x}^2))\in A^{(2)}
ight].$$

Chapman-Kolmogorov:

$$P_{n+1}(\mathbf{x},A) = \int P_n(\mathbf{x}',A)P(\mathbf{x},d\mathbf{x}').$$

Exponential ergodicity and mixing

Exponential ergodicity of the two-point chain \Rightarrow Exponential mixing.

• Let X be a complete metric space.

Harris Theorem

Let P be a Markov-Feller chain and assume that

- 1 it is topologically irreducible, aperiodic, and admits a small set;
- 2 there exist $V: X \to [1, \infty)$, constants $\delta \in (0, 1)$, b > 0, and a compact set K such that $PV(\mathbf{x}) \leq \delta V(\mathbf{x}) + b\chi_K(\mathbf{x})$.

The, P is V-geometrically ergodic, i.e. there exists an invariant measure μ in X and constants k>0, $\sigma\in(0,1)$ such that for all $\varphi\in L_V^\infty$,

$$\left| P_n \varphi(\mathbf{x}) - \int_{\mathbf{X}} \varphi \, \mathrm{d}\mu \right| \leq k V(\mathbf{x}) \sigma^n.$$

• If X compact, then **2** is not needed: *uniform exponential ergodicity*.

Decay of correlations: heuristics

Exponential ergodicity of the two-point chain implies decay of correlations:

$$\mathbb{P}\left[\left|\int_{\mathbb{T}^3} g(\mathbf{x}) h(f_{\underline{\omega}^n}(\mathbf{x})) d\mathbf{x}\right| > \varepsilon^n\right] \le \frac{1}{\varepsilon^{2n}} \mathbb{E}\left|\int_{\mathbb{T}^3} g(\mathbf{x}) h(f_{\underline{\omega}^n}(\mathbf{x})) d\mathbf{x}\right|^2$$
$$= \frac{1}{\varepsilon^{2n}} \int_{\mathbb{T}^3 \times \mathbb{T}^3} h^{(2)} P_n^{(2)} g^{(2)} d\mathbf{x}^1 d\mathbf{x}^2,$$

where $h^{(2)}(\mathbf{x}^1, \mathbf{x}^2) = h(\mathbf{x}^1)h(\mathbf{x}^2)$, $g^{(2)}(\mathbf{x}^1, \mathbf{x}^2) = g(\mathbf{x}^1)g(\mathbf{x}^2)$.

• If $P^{(2)}$ is exponentially ergodic then for some $\sigma \in (0,1)$

$$\int_{\mathbb{T}^3 \times \mathbb{T}^3} h^{(2)} P_n^{(2)} g^{(2)} \, \mathrm{d} x^1 \, \mathrm{d} x^2 \lesssim \|P_n^{(2)} g^{(2)}\|_{L^{\infty}} \lesssim \sigma^n.$$

• Borel-Cantelli argument: The probability of the $\limsup_{n\to\infty}$ of the correlations at time n being larger than ε^n is zero provided that

$$\sum_{n=1}^{\infty} \mathbb{P}\left[\left|\int_{\mathbb{T}^3} g(\mathbf{x}) h(f_{\underline{\omega}^n}(\mathbf{x})) \, \mathrm{d}\mathbf{x}\right| > \varepsilon^n\right] < \infty.$$

How to deal with the diagonal

Main challenge: $X = \mathbb{T}^3 \times \mathbb{T}^3 \setminus \Delta$ is not compact, the Lyapunov-drift condition **2** for $P^{(2)}$ is difficult to verify.

- There is an invariant measure supported at $\Delta = \{x^1 = x^2\}!$ Steps to overcome this problem.
 - **1** \mathbb{T}^3 and $\mathbb{T}^3 \times \mathbb{S}^2$ compact: Prove *uniform* exponential ergodicity for P and \hat{P} .
 - Positivity of the Top Lyapunov exponent:

$$\lambda_1(\underline{\omega}, \mathbf{x}) = \lim_{n \to \infty} \frac{1}{n} \log |D_{\mathbf{x}} f_{\underline{\omega}^n}|.$$

MET: If P ergodic, the limit exists and it is a.s. constant over $(\underline{\omega}, \mathbf{x})$. Furstenberg criterion: Sufficient conditions for $\lambda_1 > 0$. Growth of $|D_{\mathbf{x}}f_{\omega}|$ implies some repulsion from the diagonal,

$$f_{\omega}(\mathbf{x}^1) \sim f_{\omega}(\mathbf{x}^2) + D_{\mathbf{x}^2} f_{\omega}(\mathbf{x}^1 - \mathbf{x}^2).$$

The nondissipative kinematic dynamo

Going back to the kinematic dynamo equations in \mathbb{T}^3 ,

$$\partial_t H + (u \cdot \nabla)H - (H \cdot \nabla)u = 0, \quad \nabla \cdot H = 0,$$
 (KD)

with $u = u_{abc}$ the random ABC vector field

$$f_{\underline{\omega}^n}(\mathbf{x}) = f_{\underline{\omega}^{n-1}}(\mathbf{x}) + u_{\mathsf{abc}}(\omega_n, f_{\underline{\omega}^{n-1}}(\mathbf{x})), \quad t \in [n-1, n).$$

Theorem [Coti Zelati, NF (2024)]

For all $p \in [1, \infty]$, there exist deterministic constants $c, \lambda > 0$ such that the solution to (KD) advected by the random ABC vector field $u_{\rm abc}$ satisfies

$$||H(t)||_{L^p} \geq c||H_0||_{L^p}e^{\lambda t},$$

for all t > 0. In particular u_{abc} is a kinematic fast dynamo.

The nondissipative kinematic dynamo

This result come as a byproduct of our study of the decay of correlations.

• Nonrandom multiplicative ergodic theorem: If \hat{P} ergodic, then for a.a. $(\underline{\omega}, \mathbf{x})$ and all $\mathbf{v} \in \mathbb{S}^2$

$$\lambda_1 = \lim_{n \to \infty} \frac{1}{n} \log |D_{\mathbf{x}} f_{\underline{\omega}^n} \mathbf{v}|.$$

• If the top Lyapunov exponent is positive $\lambda_1 > 0$: For all $\varepsilon \in (0, \lambda_1)$, $\exists c > 0$ such that for a.a. $(\underline{\omega}, \mathbf{x})$ and all $\mathbf{v} \in \mathbb{S}^2$

$$|D_{\mathbf{x}}f_{\omega^n}\mathbf{v}| \geq ce^{(\lambda_1-\varepsilon)n}.$$

• Since the flow map generated by u_{abc} is measure preserving,

$$\int_{\mathbb{T}^3} |H(t,\boldsymbol{x})| \, \mathrm{d}\boldsymbol{x} = \int_{\mathbb{T}^3} |H(t,X_t(\boldsymbol{x}))| \, \mathrm{d}(X_t)_{\#}\boldsymbol{x} = \int_{\mathbb{T}^3} |H(t,X_t(\boldsymbol{x}))| \, \mathrm{d}\boldsymbol{x}.$$

H passive vector advected by u_{abc} : $H(t, X_t(\mathbf{x})) = (D_{\mathbf{x}}X_t)^{\top}H_0(\mathbf{x})$.

Some Key References

- V. Arnold. Sur une propriété topologique des applications globalement canoniques de la mécanique classique.
 C. R. Acad. Sci. Paris 261 (1965), 3719–3722.
- V. Arnold and B. Khesin. Topological methods in hydrodynamics. Second ed., Applied Mathematical Sciences, vol. 125, Springer, 2021.
- 3 J. Bedrossian, A. Blumenthal, and S. Punshon-Smith. Lagrangian chaos and scalar advection in stochastic fluid mechanics. *JEMS* 24, 6 (2022) 1893–1990.
- 4 J. Bedrossian, A. Blumenthal, and S. Punshon-Smith. Almost-sure exponential mixing of passive scalars by the stochastic Navier-Stokes equations. Ann. Probab. 50 (2022), no. 1, 241–303.
- 5 A. Blumenthal, M. Coti Zelati, and R. Gvalani. Exponential mixing for random dynamical systems and an example of Pierrehumbert. Ann. Probab. 51, 4 (2023) 1559–1601.
- **6** S. Childress. New solutions of the kinematic dynamo problem. *J. Mathematical Phys.* 11 (1970), 3063–3076.
- M. Coti Zelati, and V. Navarro-Fernández. 3D exponential mixing and nondissipative kinematic fast dynamo with random ABC flows. In preparation.