
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2007; month=12; day=20; hr=17; min=9; sec=19; ms=477;]

Validated By CRFValidator v 1.0.3

Application No: 10551176 Version No: 1.1

Input Set:

Output Set:

Started: 2007-12-20 17:08:17.338

Finished: 2007-12-20 17:08:17.671

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 333 ms

Total Warnings: 3

Total Errors: 0

No. of SeqIDs Defined: 5

Actual SeqID Count: 5

Err	or code	Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	IInknown	found	in	<213>	in	SEO	TD	(5)

SEQUENCE LISTING

<110> DeveloGen Aktiengesellschaft

<120> USE OF A DG931 PROTEIN PRODUCT FOR PREVENTING AND TREATING DIABETES AND/OR OBESITY AND/OR METABOLIC SYNDROME

<130>	85DG0102
	10/551,176 2005-12-20
	PCT/EP 2004/003417 2004-03-31
	EP 03 007 274.8 2003-03-31
<160>	5
<170>	PatentIn version 3.1

<212> DNA <213> Homo sapiens

<210> 1

<211> 4574

<400> 1 ggcggctgct cccattgagc tgtctgctcg ctgtgcccgc tgtgcctgct gtgcccgcgc 60 120 tgtcgccgct gctaccgcgt ctgctggacg cgggagacgc cagcgagctg gtgattggag 180 ccctgcggag agctcaagcg cccagctctg cccgaggagc ccaggctgcc ccgtgagtcc catagttgct gcaggagtgg agccatgagc tgcgtcctgg gtggtgtcat ccccttgggg 240 300 ctgctgttcc tggtctgcgg atcccaaggc tacctcctgc ccaacgtcac tctcttagag gagetgetea geaaatacea geacaaegag teteaeteee gggteegeag ageeateeee 360 agggaggaca aggaggagat cctcatgctg cacaacaagc ttcggggcca ggtgcagcct 420 480 caggeeteea acatggagta catgacetgg gatgacgaac tggagaagte tgetgeageg

tgggccagtc agtgca	tctg ggagcacggg	g cccaccagtc	tgctggtgtc	catcgggcag	540
aacctgggcg ctcact	gggg caggtatcgo	: tctccggggt	tccatgtgca	gtcctggtat	600
gacgaggtga aggact	acac ctacccctac	: ccgagcgagt	gcaacccctg	gtgtccagag	660
aggtgctcgg ggccta	tgtg cacgcactac	: acacagatag	tttgggccac	caccaacaag	720
atcggttgtg ctgtga	acac ctgccggaag	g atgactgtct	ggggagaagt	ttgggagaac	780
gcggtctact ttgtct	gcaa ttattctcca	ı aaggggaact	ggattggaga	agccccctac	840
aagaatggcc ggccct	gctc tgagtgccca	cccagctatg	gaggcagctg	caggaacaac	900
ttgtgttacc gagaag	aaac ctacactcca	aaacctgaaa	cggacgagat	gaatgaggtg	960
gaaacggctc ccattc	ctga agaaaaccat	gtttggctcc	aaccgagggt	gatgagaccc	1020
accaagccca agaaaa	cctc tgcggtcaac	: tacatgaccc	aagtcgtcag	atgtgacacc	1080
aagatgaagg acaggt	gcaa agggtccaco	ı tgtaacaggt	accagtgccc	agcaggctgc	1140
ctgaaccaca aggcga	agat ctttggaact	ctgttctatg	aaagctcgtc	tagcatatgc	1200
cgcgccgcca tccact	acgg gatcctggat	gacaagggag	gcctggtgga	tatcaccagg	1260
aacgggaagg tcccct	tett egtgaagtet	gagagacacg	gcgtgcagtc	cctcagcaaa	1320
tacaaacctt ccagct	catt catggtgtca	ı aaagtgaaag	tgcaggattt	ggactgctac	1380
acgaccgttg ctcagc	tgtg cccgtttgaa	aagccagcaa	ctcactgccc	aagaatccat	1440
tgtccggcac actgca	aaga cgaaccttco	: tactgggctc	cggtgtttgg	aaccaacatc	1500
tatgcagata cctcaa	gcat ctgcaagaca	gccgtgcacg	cgggagtcat	cagcaacgag	1560
agtgggggtg acgtgg	acgt gatgecegte	gataaaaaga	agacctacgt	gggctcgctc	1620
aggaatggag ttcagt	ctga aagcctgggc	g actecteggg	atggaaaggc	cttccggatc	1680
tttgctgtca ggcagt	gaat ttccagcacc	aggggagaag	gggcgtcttc	aggagggctt	1740
cggggttttg ctttta	tttt tattttgtca	ı ttgcggggta	tatggagagt	caggaaactt	1800
cctttgactg atgttc	agtg tccatcactt	tgtggcctgt	gggtgaggtg	acatctcatc	1860
ccctcactga agcaac	agca teccaaggte	ı ctcagccgga	ctccctggtg	cctgatcctg	1920
ctggggcccg ggggtc	tcca tctggacgto	ctctctcctt	tagagatctg	agctgtctct	1980
taaaggggac agttgc	ccaa aatgttcctt	gctatgtgtt	cttctgttgg	tggaggaagt	2040
tgatttcaac ctccct	gcca aaagaacaaa	ccatttgaag	ctcacaattg	tgaagcattc	2100
acggcgtcgg aagagg	cctt ttgagcaago	gccaatgagt	ttcaggaatg	aagtagaagg	2160
tagttattta aaaata	aaaa acacagtcco	f tccctaccaa	tagaggaaaa	tggttttaat	2220

gtttgctggt	cagacagaca	aatgggctag	agtaagaggg	ctgcgggtat	gagagacccc	2280
ggctccgccc	tggcacgtgt	ccttgctggc	ggcccgccac	aggccccctt	caatggccgc	2340
attcaggatg	gctctataca	cagcagtgct	ggtttatgta	gagttcagca	gtcacttcag	2400
agatgtatct	tgtctttgtc	aggcccttca	tcttcatggc	ccacctgttt	tctgccgtga	2460
cctttggtcc	cattgaggac	taaggatcgg	gaccctttct	ttacccccta	cccattgtgg	2520
ctcccaccct	gcctcggact	ggtttacgtg	tcctggttca	cacccaggac	ttttctttgc	2580
aagcgaacct	gtttgaagcc	caagtcttaa	ctcctggtct	cgtaaggttc	cactgagacg	2640
agatgtctga	gaacaaccaa	agaaggcctg	ctctttgctg	cttttaaaaa	atgacaatta	2700
aatgtgcaga	ttccccacgc	acccgatgac	ctatttttc	agccgtggga	ggaatggagt	2760
ctttggtaca	ttcctcaccg	aggttagcag	ctcagtttgt	ggttatgaaa	ccgtctgtgg	2820
cctcatgaca	gcgagagatg	ggaatacact	agaaggatct	cttttcctgt	tttcgtgaaa	2880
cgactcttgc	caaacgttcc	cgaggcgcca	aggagtgtag	tacaccctgg	ctgccatcac	2940
tctataaaag	tgcttcatga	gcccagacca	aaagcccaca	gtgaaatgaa	gtaccctttt	3000
gtaaatagca	tttttttgca	gaaggtgaaa	attccactct	ctaccaccgg	gccagccaat	3060
agatcacttt	ggtgaatgct	agtttcaaat	ttgattcaaa	atatttctta	ggtgaaagaa	3120
ctagcagaaa	gtcaaaaact	aagatactgt	agactggaca	agaaattcta	cctgggcacc	3180
taggtgatgc	cttctttctt	tgattgcctt	tctaataaat	gcagaatctg	aaggtaaata	3240
ggtttaaaac	aaaacaaaaa	cccacccctt	taaggagttg	gtaaaaagca	gttcaactct	3300
tagcttgact	gagctaaaat	tcacaggact	acgtgctttg	tgcattgtag	tctagtcgta	3360
attcataggt	actgactcct	cagccccaaa	tgtcggagag	gaagaattcg	gtcagcctgt	3420
caggtcgtga	gtccagttac	caccaaacat	ctgggaaact	tctgggtgct	gggtgctctg	3480
ctgctggact	tttgtggctg	tgtctgtgtc	tgcaagataa	attagatcgc	cctgtggggt	3540
ttgcagaatt	agtgaagggt	ccaggacgat	cccagtgggc	tcgcttccaa	agcatcccac	3600
tcaagggaga	cttgaaactt	ccagtgtgag	ttgaccccat	catttaaaaa	taaagtcccc	3660
gggttcctta	atgcctcctt	cactgggcct	tcctagcagg	atagaaagtc	cttgcccaga	3720
gcaggacctg	gctgtctttt	tttttttt	tttcccgaga	ccaagtttca	ctctgttgcc	3780
caaggtagag	tgcagtggcg	tgatctctgc	tcattgcaac	tgccgcctcc	cgggttcaag	3840
caattctcat	gcatcagcct	cccaagtacc	tgggactaca	ggcgtgagct	accatgcccg	3900

gctaattttt	gtatttttag	tagagatggg	gtttcattat	gttggccagg	ctggtctcga	3960
actccttacc	tcaggtgatc	cacccacctt	ggcctcccga	agtgctggga	ttacaggcat	4020
gagccactgc	gcccggccat	ggacctggct	gtctttatca	tccccacaaa	cattttgaaa	4080
ctggaatatt	tgtcttcaga	aaatggaaac	aagactataa	atgataagcc	ctgtccctag	4140
caccacctct	cctgtgtgtg	gaatagaggc	ccctcgtgct	accaacactt	accctgtgtt	4200
taaaaagatc	ttgtaccaag	ccaacggcgt	tectggetet	cctgcccaca	ggatgaacat	4260
ttteggette	cttaggagtt	ttgccctacc	gtattccaaa	gcgtgtgctg	gtttctcata	4320
ttgtctgtag	gctcactcag	cccgcagttt	atgtgtgtgc	ttttttctat	gaaaaatgat	4380
gtattttgct	acttcctgtg	tacaaagttt	tattgtaaat	gttttttgtg	ctttgcatga	4440
acaggggcca	cgttgttgca	attgtttcag	tagaactggt	ttgatttcta	aaatgttcct	4500
gtaacatatc	ttttatgaac	aaatctgaac	aatttgtgaa	ataaaacatt	gaaaaccaaa	4560
aaaaaaaaa	aaaa					4574

<210> 2

<211> 497

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe Leu 1 5 10 15

Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu Leu Glu 20 25 30

Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser Arg Val Arg 35 40 45

Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu Met Leu His Asn 50 55 60

Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser Asn Met Glu Tyr Met 65 70 75 80

Thr	Trp	Asp	Asp	Glu 85	Leu	Glu	Lys	Ser	Ala 90	Ala	Ala	Trp	Ala	Ser 95	Gln
Càa	Ile	Trp	Glu 100	His	Gly	Pro	Thr	Ser 105	Leu	Leu	Val	Ser	Ile 110	Gly	Gln
Asn	Leu	Gly 115	Ala	His	Trp	Gly	Arg 120	Tyr	Arg	Ser	Pro	Gly 125	Phe	His	Val
Gln	Ser 130	Trp	Tyr	Asp	Glu	Val 135	Lys	Asp	Tyr	Thr	Tyr 140	Pro	Tyr	Pro	Ser
Glu 145	Cys	Asn	Pro	Trp	Cys 150	Pro	Glu	Arg	Суз	Ser 155	Gly	Pro	Met	Cys	Thr 160
His	Tyr	Thr	Gln	Ile 165	Val	Trp	Ala	Thr	Thr 170	Asn	Lys	Ile	Gly	Cys 175	Ala
Val	Asn	Thr	Cys 180	Arg	Lys	Met	Thr	Val 185	Trp	Gly	Glu	Val	190	Glu	Asn
Ala	Val	Tyr 195	Phe	Val	Cys	Asn	Tyr 200	Ser	Pro	Lys	Gly	Asn 205	Trp	Ile	Gly
	210		Tyr			215					220				
225		_	Ser		230					235					240
			Pro	245		-			250					255	
			Glu 260					265					270		
		275	Lys				280					285			
Arg	Cys 290	Asp	Thr	Lys	Met	Lys 295	Asp	Arg	Cys	Lys	Gly 300	Ser	Thr	Cys	Asn

 $\hbox{Arg Tyr Gln Cys Pro Ala Gly Cys Leu Asn His Lys Ala Lys Ile Phe } \\$

305	310	315	320

Gly Thr Leu Phe Tyr Glu Ser Ser Ser Ser Ile Cys Arg Ala Ala Ile 325 330 335

His Tyr Gly Ile Leu Asp Asp Lys Gly Gly Leu Val Asp Ile Thr Arg 340 345 350

Asn Gly Lys Val Pro Phe Phe Val Lys Ser Glu Arg His Gly Val Gln 355 360 365

Ser Leu Ser Lys Tyr Lys Pro Ser Ser Ser Phe Met Val Ser Lys Val 370 380

Lys Val Gln Asp Leu Asp Cys Tyr Thr Thr Val Ala Gln Leu Cys Pro 385 390 395 400

Phe Glu Lys Pro Ala Thr His Cys Pro Arg Ile His Cys Pro Ala His 405 410 415

Cys Lys Asp Glu Pro Ser Tyr Trp Ala Pro Val Phe Gly Thr Asn Ile 420 425 430

Tyr Ala Asp Thr Ser Ser Ile Cys Lys Thr Ala Val His Ala Gly Val 435 440 445

Ile Ser Asn Glu Ser Gly Gly Asp Val Asp Val Met Pro Val Asp Lys 450 455 460

Lys Lys Thr Tyr Val Gly Ser Leu Arg Asn Gly Val Gln Ser Glu Ser 465 470 475 480

Leu Gly Thr Pro Arg Asp Gly Lys Ala Phe Arg Ile Phe Ala Val Arg \$485\$

Gln

<210> 3

<211> 24

<212> DNA

<213>	Artificial	Sequence	

<220>		
<223>	mouse DG931 forward primer	
<400>	3	
cagtca	caa cttcatgacc caag	24
<210>	4	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	mouse DG931 reverse primer	
<400>	4	
ctgtta	cacg tggatccttt gc	22
<210>	5	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
	*	
	-	
<220>		
	mouse DG931 Taqman probe	
	mouse DG931 Taqman probe	