Алгебраическая геометрия с геометрической точки зрения.

1 Вступление

Пусть k — поле констант (очень часто $\bar{k} = k$ или char k = 0). Пусть \mathbb{A}^n — аффинное пространство над полем k и пусть y_1, \ldots, y_n — аффинные координаты.

Обозначение 1.1. Если $\mathfrak a$ — идеал в кольце многочленов $\Bbbk[y_1,\ldots,y_n],$ определим V

$$V(\mathfrak{a}) = \{ y \in \mathbb{A}^n \mid f(y) = 0 \text{ для любого } f \in \mathfrak{a} \}$$

Другими словами, $V(\mathfrak{a})$ — множество нулей всех многочленов \mathfrak{a} . Соответственно, если \mathfrak{a} — конечно порожденный, то это множество решений конечной системы уравнений.

Обозначение 1.2. Если X — подмножество \mathbb{A}^n , определим I

$$I(X) := \{ f \in \mathbb{k}[y_1, \dots, y_n] \mid I(x) = 0$$
для любого $x \in X \}.$

Другими словами, I(X) — множество всех многочленов, зануляющихся на X.

Замечание 1.1. Соответствие V обладает следующими нехитрыми свойствами:

- (1) $V((0)) = \mathbb{A}^n, V(\mathbb{k}[y_1, \dots, y_n]) = \emptyset;$
- (2) если $\mathfrak{a} \subset \mathfrak{b}$, то $V(\mathfrak{b}) \subset V(\mathfrak{a})$;
- (3) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}) = V(\mathfrak{ab});$
- (4) $V(\sum_{i \in I} \mathfrak{a}_i) = \bigcap_{i \in I} V(\mathfrak{a}_i).$

Замечание 1.2. Соответствие I обладает следующими свойствами:

- (1) $I(\varnothing) = \mathbb{k}[y_1, \dots, y_n], I(\mathbb{A}^n) = (0);$
- (2) если $X \subset Y$, то $I(Y) \subset I(X)$;
- (3) $I(\bigcup_{i\in I} X_i) = \bigcap_{i\in I} I(X_i)$.

Определение 1.1. Радикалом идеала а называется идеал

$$\sqrt{\mathfrak{a}} = rad(\mathfrak{a}) := \{ g \in \mathbb{k}[y_1, \dots, y_n] \mid g^t \in \mathfrak{a} \}.$$

Замечание 1.3. Очевидно, что

$$V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}).$$

Топология Зарисского. Чтобы задать топологию достаточно определить замкнутые множества. В топологии Зарисского это множества $V(\mathfrak{a})$ (по всевозможным \mathfrak{a}). Нетрудно заметить, что база топологии состоит из множеств вида

$$\mathbb{A}_f^n := \mathbb{A}^n - V(f) = \{ y \in \mathbb{A}^n, f \in \mathbb{k}[y_1, \dots, y_n] \mid f(y) \neq 0 \}.$$

То есть открытые множества дополняют гиперповерхности до \mathbb{A}^n .

2 Немного коммутача

Напоминание. Теорема Гильберта о базисе. Если кольцо A — нётерово, то A[x] — тоже. Следовательно, $A[x_1, \ldots, x_n]$ — нётерово.

Замечание 2.1. Топология Зарисского на \mathbb{A}^n задает не хаусдорфово пространство (но оно является пространством Фреше).

Замечание 2.2. Если $X=V(\mathfrak{a})$ — алгебраическое множество, будем говорить, что фактор-кольцо $\mathbb{k}[X]=\mathbb{k}[Y_1,\ldots,Y_n]\backslash I(X)$ является координатным кольцом X. Кроме того, пара $(X,\mathbb{k}[X])$ — это аффинное алгебраическое многообразие. Отсюда немедленно следует, что X неприводимо, если и только если идеал I(X) прост. Иначе говоря, координатное кольцо — область целостности.

◄ Действительно, рассмотрим $f_1, f_2 \notin I(X)$, пусть X_i — подмножества, зануляющиеся на f_i . Тогда $X \supseteq (X_1 \cup X_2)$. Тогда существует точка $x \in X - (X_i \cup X_2)$, для которой $f_1 f_2(x) \neq 0$, следовательно, $f_1 f_2 \notin I(X)$. Значит, идеал I(X) — простой.

Наоборот, предположим, что $X = X_1 \cup X_2$, а $f_1, f_2 \notin I(X)$ таковы, что $f_1(X_1) = 0 = f_2(X_2)$. Отсюда следует, что $f_1 f_2 \in I(X)$. Противоречие с простотой идеала.

Определение 2.1. Элемент кольца называется *целым*, если он является корнем некоторого приведенного многочлена над данным кольцом.

Предложение 2.1. Следующие условия эквивалентны:

- (1) x целый над R степени n;
- (2) R[x] порожден $1, x, \ldots, x^{n-1}$;
- (3) x лежит в некоторой подалгебре R', порожденной как R модуль n элементами
- (4) Существует точный R[x] модуль M (Ann(M) = 0), порожденный n элементами.

Доказательство. (1) \Rightarrow (2) любой одночлен x^k , где $k \geqslant n$ представляется как комбинация меньших.

- $(2) \Rightarrow (3)$ Достаточно положить R' = R[x].
- $(3) \Rightarrow (4)$ Достаточно положить M = R'.

 $(4)\Rightarrow (1)$ Пусть m_1,\ldots,m_n — порождающие. Запишем матрицу A отображения $m\mapsto mx$. По теореме Гамильтона-Кэли характеристический многочлен этого оператора его зануляет, то есть $0=\chi_A(A)M=\chi_A(x)M$. Поскольку Ann(M)=0, $\chi_A(x)=0$.

Определение 2.2. Пусть $K \subset L$ — расширение полей. Набор алгебраически независимых над K элементов $l_1, \ldots, l_k \in L$ называется трансцендентным базисом, если $K(l_1, \ldots, l_k) \subset L$ — алгебраическое. Трансцендентной размерностью $tr.deg_{\mathbb{K}}R$ целостного кольца R называется количество элементов трансцендентного базиса Frac(R) над \mathbb{K} .

Замечание 2.3. Для трансцендентного базиса верно многое, что верно для обычного: любую алгебраически независимую систему можно дополнить до базиса, все базисы равномощны. Этого я доказывать не буду. Хотя, возможно, и стоило бы.

Лемма Эмми Нётер о нормализации. Пусть B — конечнопоржденная \Bbbk — алгебра. Пусть $tr.deg_{\Bbbk}B=s$. Тогда существуют такие алгебраически независимые элементы b_1,\ldots,b_s , что B — целое над $\Bbbk[b_1,\ldots,b_s]$.

Доказательство. (1) Пусть char k = 0. Начнем с системы породающих x_1, \ldots, x_l . Если они алгебрически зависимы, то для некоторого $F \in k[y_1, \ldots, y_l]$ выполнено $F(x_1, \ldots, x_l) = 0$. Сделаем линейную замену

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_l \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 - \alpha_2 x_1 \\ \dots \\ x_l - \alpha_l x_1 \end{pmatrix}$$

Можно подобрать такие $\alpha_i \in \mathbb{k}$, что коэффициент при старшем x_1^k будет в точности 1. Тогда y_1 зависит от y_2, \ldots, y_l . Так можно делать, пока порождающие алгебраически зависимы.

(2) Пусть char k = p. Хотим сделать похожую замену:

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_l \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 - x_1^{k_2} \\ \dots \\ x_l - x_1^{k_l} \end{pmatrix}$$

Подберем l_i так, чтобы все одночлены имели разную степень по x_1 (Тода автоматически при старшем x^k коэффициент из поля \Bbbk). Пусть в записи F был одночлен $a_J x_1^{j_1} x_2^{j_2} \dots x_l^{j_n}$ (J пробегает все одночлены F). При такой замене он перейдет в

$$a_J x_1^{j_1} (x_2 + x_1^{k_2})^{j_2} \dots (x_l + x_1^{k_l})^{j_n}.$$

Таким образом, при раскрытии скобок вынесется самый старший по x_1 одночлен со степенью $d_J = j_1 + k_2 j_2 + \ldots + k_l j_n$. Пусть $l > \max_{l,k} (j_k)$. Тогда установим $k_i = l^i$.

Лемма 2.1. Пусть $A\subset B$, где B — область целостности, целая над A. Тогда A — поле, тогда и только тогда, когда B — поле.

Доказательство. Предположим, A — поле, рассмотрим произвольный ненулевой $b \in B$. Запишем для него многочен (такой есть в силу того, что b — не делитель нуля):

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_0 = 0, \ a_i \in A, a_0 \neq 0.$$

Тогда
$$b^{-1} = -\frac{1}{a_0}(b^{n-1} + a_{n-1}b^{n-2} + \ldots + a_1)$$
, то есть B — тоже поле.

Предположим, что B — поле. Нужно показать, что для любого ненулевого $a \in A$ его обратный элемент a^{-1} тоже лежит в A. Для начала заметим, что $\frac{1}{a} \in B$, то есть можно записать многочлен:

$$\left(\frac{1}{a}\right)^n + a_{n-1}\left(\frac{1}{a}\right)^{n-1} + \ldots + a_0 = 0, \ a_i \in A.$$

Домножим все на a^{n-1} и выразим $\frac{1}{a}$:

$$\frac{1}{a} = -(a_{n-1} + a_{n-2}a + \dots + a_0a^{n-1}) \in A.$$

 \Box

Таким образом, A — поле.

Теорема Гильберта о нулях Пусть \Bbbk — алгебраически замкнутое поле. Тогла

- (1) для каждого максимального идеала $\mathfrak m$ справедливо $V(\mathfrak m)=P$ для некоторой точки $P=(a_1,\dots,a_n)\in\mathbb A^n;$
 - (2)если \mathfrak{a} идеал, отличный от $\mathbb{k}[Y_1,\ldots,Y_n]$, то $V(\mathfrak{a})\neq\varnothing$;
- (3) Пусть $I = (f_1, \dots, f_k)$. Предположим, что f(x) = 0 для любого $x \in V(I)$. Тогда $f^n \in I$ $(f \in \sqrt{I})$.

Доказательство. (1) Достаточно показать, что $\mathfrak{m} = ((x_1 - a_1), \dots, (x_n - a_n))$ для некоторых a_i . А для этого достаточно показать, что $k = \mathbb{k}[x_1, \dots, x_n]/\mathfrak{m} \simeq \mathbb{k}$. Тогда $x_i \equiv_{\mathfrak{m}} a_i$.

k — поле. Тогда по теореме Нётер о нормализации существуют такие алгебраически независимые $y_1, \ldots, y_s \in k$, что расширение $A = \mathbb{k}[y_1, \ldots, y_s] \subset k = B$ —

алгебраическое. По предыдущей лемме $A=\Bbbk[y_1,\ldots,y_s]$ — поле. Но тогда s=0. Что и требовалось.

- (2) Очевидно следует из (1), поскольку любой идеал содержится в некотором максимальном.
- (3) Заметим, что $(f_1,\ldots,f_n,tf-1)=(1)$ по условию (это называется Rabinovich trick). Тогда существуют такие $g_i(x_1,\ldots,x_n,t)$, что $\sum\limits_i g_i f_i + g_0(f-1)=1$. Подставим $t=\frac{1}{f}$ и домножим на очень большую степень f. Получим то, что нужно.

Следствие 2.1. Для любого идеала \mathfrak{a} справедливо $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

3 Компактность в топологии Зарисского

Предложение 3.1. \mathbb{A}^n компактно в топологии Зарисского.

Доказательство. Действительно, кольцо $\Bbbk[Y_1,\ldots,Y_n]$ — нётерово, следовательно, любой идеал конечно порожден. Значит, любое замкнутое подмножество является пересечением конечного числа базовых замкнутых множеств (алгебраических множеств). Теперь, любое открытое покрытие можно разбить на множества из базы и искать конечное подпокрытие уже тут. Итак $\mathbb{A}^n = \bigcup_{\alpha} \mathbb{A}^n_{f_{\alpha}}$, следоватльно, $\bigcap_{\alpha} V(f_{\alpha}) = \varnothing$. Если \mathfrak{a} — идеал, натянутый на f_{α} , то $\mathfrak{a} = \Bbbk[Y_1,\ldots,Y_n]$ (потому что любой идеал содержится в нектором максимальном, а максимальный задает точку — непустое множество). Но тогда 1 — линейная комбинация конечного числа f_i . Соответствующие им $\mathbb{A}^n_{f_i}$ образуют конечной подпокрытие.

4 Еще немного коммутача

Предложение 4.1. A-модуль M — нётеров, если и только если любой его подмодуль конечно порожден.

 $Доказательство. (\Rightarrow)$ Утверждение очевидно, иначе можно построить бесконечно возрастающую цепочку.

(⇐) Предположим, нашлась бесконечно возрастающая цепочка подмодулей. Рассмотрим их объединение, там есть конечная система порождающих, но тогда цепочка стабилизируется.

5 Алгебры на аффинных подмножествах

Замечание 5.1. Нам определили двойственное отображение. Пусть X, Y — аффинные алгебраические множества (хорошо вкладываются в \mathbb{A}^n), $\varphi: X \to Y$. Определим $\varphi^*: \mathbb{k}[Y] \to \mathbb{k}[X] \ \varphi^*(f)(x) = f(\varphi(x))$.

Определение 5.1. Отображение $f: X \to Y$ между алгебраическими множествами называется *регулярным*, если существуют такие i_x, i_y, Φ такие, что диаграмма коммутативна $(i_x, i_y -$ вложения в аффинное пространство, $\Phi(x) = \Phi(x_1, \ldots, x_n) = (\varphi_1(x), \ldots, \varphi_m(x))$, причем $\varphi_k -$ многочлен).

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow^{i_x} & & \downarrow^{i_y} \\
\mathbb{A}^n & \xrightarrow{\Phi} & \mathbb{A}^m
\end{array}$$

Замечание **5.2.** Потом это определение расширяется до существования рациональных отображений для окрестности каждой точки.

Теорема 5.1. Пусть $X \subset \mathbb{A}^n$, $W \subset \mathbb{A}^m$ — алгебраические множества, а $Y_1, \ldots, Y_n, T_1, \ldots, T_m$ — соответствующие координаты. Тогда имеет место следующее: (1) Морфизм $\varphi: X \to W$ индуцирует гомоморфизм \mathbb{k} —алгебр $\varphi^*: \mathbb{k}[W] \to \mathbb{k}[X]$.

- (2) Наоборот, любому гомоморфизму \Bbbk –алгебр $\theta^* : \Bbbk[W] \to \Bbbk[X]$ соответствует единственный морфизм $\varphi : X \to W$.
 - (3) Если $\varphi: X \to W, \, \psi: W \to Z$ морфизмы, то $(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$.

Доказательство. (1) Пусть $\varphi(x) = (f_1(x), \dots, f_m(x))$. Установим $\varphi^*(g)(x) = g \circ \varphi(x) = g(f_1(x), \dots, f_m(x))$. Это отображение корректно определено на классах эквивалентности и сохраняет групповую структуру.

(2) Пусть $\theta(t_i) = \theta_i$. Так как θ — гомоморфизм алгебр, то $\theta(g) = g(\theta_1, \dots, \theta_m)$. Определим морфизм φ как $\varphi(x) := (\theta_1(x), \dots, \theta_m(x))$. Тогда $g \circ \varphi = \theta(g) = \varphi^*$.

Осталось доказать, что $\operatorname{im}(\varphi)\subset W$. Для этого достаточно доказать, что для любого $F\in I(W)$ выполнено $F(\theta_1,\dots,\theta_m)=0$. Действительно,

$$0 = \theta(0) = \theta(F((t_1, \dots, t_m))) = F(\theta_1, \dots, \theta_m).$$

Такое φ единственно, поскольку $\varphi^*(t_i) = f_i$.

(3) А это является следствием свойства ассоциативности

$$(\psi \circ \varphi)^*(h) = h \circ (\psi \circ \varphi) = \psi^*(h) \circ \varphi = \varphi^*(\psi^*(h)).$$

6

Теперь отсюда вылазит два сюжета.

Сюжет 1. Пусть $f: X \to Y$ — морфизм аффинных алгебраических многообразий, $Z \subset X$ — подмногообразие. Тогда хотелось бы понять, какое многообразие задается f(Z). Стоит сразу отметить, что f(Z) не обязано быть замкнутым и поэтому образ многообразия не всегда многообразие. А вот если взять его замыкание, то уже да.

Действительно, попробуем найти все многочлены φ , которые зануляются на y=f(z):

$$0=\varphi(y)=\varphi(f(y))=f^*(\varphi(z)).$$

Таким образом, $f^*\varphi\in I(Z)$. Но тогда просто по определению топологии Зарисского $(f^*)^{-1}I(Z)=I(\overline{f(Z)})$.

Сюжет 2. Он в каком-то смысле обратный. Теперь есть подмногообразие $W \subset Y$. Тут уже все корректно $f^{-1}(W)$ — нормальное подмногообразие. В этом случае искомым идеалом будет $rad(f^*(I(W)))$. Почему? Потому что очевидно, что многочлены, которые задают нужное множество, это $f^*(I(W))$. Но это не все, по теореме Гильберта о нулях нужно взять радикал.

Следствие 5.1. Если Z — неприводим, то $\overline{f(Z)}$ — тоже, потому что прообраз простого идеала прост.

6 Регулярные функции

Определение 6.1. Пусть $U \subset X$ — открытое множество, а $P \in U$. Тогда функция $f \in \mathbb{k}(X)$ называется регулярной в точке P, если существует такая окрестность U_P точки P, что

$$f=rac{g}{h},\ g,h\in \Bbbk[X],\ h(x)
eq 0$$
 для любого $x\in U_P$

Будем говорить, что f- peryлярно на U, если оно регулярно в каждой его точке.

Теорема 6.1. Если функция f(x) регулярна на X, то у нее существует единое для всех точек представление.

Доказательство. Покроем наше многообразие открытыми множествами $U_i = \{x \in X \mid q_i(x) \neq 0\}$, на которых $f(x) = \frac{p_i(x)}{q_i(x)}$. Поскольку U_i покрывают все многообразие, по теореме Гильберта о нулях существуют такие $g_i(x)$, что $\sum_i g_i(x)q_i(x) = 1$. Тогда $f(x) = \sum_i g_i(x)q_i(x)f(x)$. Как мы знаем, на U_i выполнено $p_i(x) = q_i(x)f(x)$. Тогда положим

$$F = \sum_{i} g_i(x) p_i(x).$$

Осталось проверить, что на U_i функция определена хорошо, то есть f(x)=F(x). Заметим, что $U_i\cap U_j$ — открыто и непусто. На открытом множестве выполнено $\frac{p_i(x)}{q_i(x)}=\frac{p_j(x)}{q_j(x)},$ значит и везде выполнено, где определено. Тогда на U_i везде выполнено $p_j=q_j\frac{p_i}{q_i},$ то есть все хорошо.

Предложение 6.1. Регулярные на $\mathbb{P}(V)$ функции (согласующиеся со стандартным атласом) — суть константы.

 $\ \ \,$ Доказательство. Пусть даны функции на i – ых картах f_i соответственно. Что значит, что они согласованы на пересечении?

$$f_i(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_0}, \dots, \frac{x_n}{x_0}) \cdot x_i^{deg(f_i)} = \hat{f}_i$$

— это однородный многочлен. Заметим, что $\hat{f}_i x_j^{deg(f_j)} = \hat{f}_j x_i^{deg(f_i)}$. Откуда следует, что f — константа.

7 Отделимость и полнота

Определение 7.1. Диагональю мноообразия X называется

$$\Delta_X = \{(x, y) \in X \times X \mid x = y\}.$$

Определение 7.2. Алгебраическое многообразие X называется *отделимым*, если диагональ Δ_X замкнута в $X \times X$ в топологии Зарисского.

Замечание 7.1. Если алгебраическое многообразие Y — отделимо, то любое его алгебраическое подмногообразие X — тоже отделимо (потому что $\Delta_X = \Delta_Y \cap (X \times X)$). Поэтому, чтобы доказать что любое аффинное алгебраическое многообразие отделимо, достаточно показать, что \mathbb{A}^n — отделимо.

Определение 7.3. Алгебраическое многообразие X называется *полным*, если для любого алгебраического Y и любого замкнутого подмножества $Z \subset X \times Y$ проекция $\pi_Y(Z) \subset Y$ — замкнута.

Предложение 7.1. Замкнутое подмногообразие $Z\subset X$ алгебраического полного многообразия X тоже полно.

Доказательство. Рассмотрим произвольное алгебраическое Y и замкнутое подмногообразие $W \subset Z \times Y$. Достаточно показать, что W замкнуто в $X \times Y$. А это так, потому что $Z \times Y$ замкнуто в $X \times Y$.

8

Замечание 7.2. Отсюда следует, что если \mathbb{P}^n полно, то любое проективное многообразие тоже полно.

Предложение 7.2. Пусть $f: X \to Y$ — морфизм алгебраических многообразий, причем X — полно, а Y — отделимо. Тогда f(X) замкнуто в Y и полно.

Доказательство. Построим множество

$$\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}.$$

Если Γ_f замкнуто в $X \times Y$, то поскольку X полно, то прокция будет замкнута в Y, а проекция — то в точности f(X).

Для доказательства замкнутости рассмотрим отображение

$$\Phi: X \times Y \to Y \times Y,$$

$$\Phi: (x, y) \mapsto (f(x), y).$$

Заметим, что $\Phi^{-1}(\Delta_Y) = \Gamma_f$ — замкнуто как прообраз замкнутого.

Осталось доказать полноту. Пусть $W \subset f(X) \times Z$ — замкнуто, где Z — некоторое аффинное многообразие. Построим коммутативную диаграмму:

$$\begin{array}{cccc} X\times Z & \xrightarrow{f\otimes 1} & f(X)\times Z \\ & & & \uparrow \iota & & \uparrow \iota & & \\ f^{-1}(W) & \xrightarrow{f} & W & & \longrightarrow & \pi_Z(W) \end{array}$$

П

здесь ι — вложение, а $f^{-1}(W)$ — полный прообраз отображения $f\otimes 1.$

Предложение 7.3. Пусть X — полно и неприводимо. Тогда $\Bbbk[X] = \Bbbk$.

Доказательство. Рассмотрим некоторую функцию f на $X, f: X \to \mathbb{A}^1$. Продолжим теперь f вложением в \mathbb{P}^1 , получим морфизм $\widetilde{f}: X \to \mathbb{P}^1$ полного пространства в отделимое. По предложению 7.2. $\widetilde{f}(X)$ — замкнуто. Замкнутые подмножества \mathbb{P}^1 — только конечные наборы точек и все пространство. Но $\widetilde{f}(X)$ тоже должно быть неприводимо и отлично от всего \mathbb{P}^1 , поскольку вложение $\mathbb{A}^1 \to \mathbb{P}^1$ — не сюръективно, то есть это на самом деле образ — всего одна точка.

8 Отступление про результант

Замечание 8.1. Пусть $f: V \to W$ — линейное отображение векторных пространств. Оно сюрьективно тогда и только тогда, когда его матрица имеет ранг $\dim W$, то есть существует невырожденный минор соответствующего размера.

Теорема 8.1. Пусть $f_1, \ldots, f_n \in \mathbb{k}[x_0, \ldots, x_N]$ — однородные многочлены, $deg f_i = d_i > 0$. Тогда существует система полиномиальных условий на коэффициенты, которая целиком зануляется в случае, когда существует нетривиальное решение $f_1(x_0:\ldots:x_N) = \ldots = f_n(x_0:\ldots:x_N)$.

Доказательство. Тривиальное решение всегда есть в силу однородности. Если есть только оно, тогда идеал, порожденный $\mathfrak{m} = (f_1, \dots, f_n)$, содержит все x_i в некоторой степени (по теореме Гильберта о нулях):

$$x_i^{\ell_i} = \sum_{k=1}^n g_{ik} f_k.$$

Тогда для любых $h_i \geqslant \ell_i$ выполнено $x_i^{h_i} \in \mathfrak{m}$. Следовательно, если $\sum J_i \geqslant \sum \ell_i = M$, то некоторый $j_i \geqslant \ell_i$ и $x_0^{j_0} \cdot \ldots \cdot x_N^{j_N} \in \mathfrak{m}$.

В частности, $\mathbb{k}[x_0:\ldots:x_N]/\mathfrak{m}$ — векторное пространство конечной размерности.

Рассмотрим отображение

$$\Phi_d: S^{d-d_1}(V) \times \ldots \times S^{d-d_n}(V) \to S^d(V),$$
$$(g_1, \ldots, g_n) \to \sum g_i f_i.$$

Таким образом, решение системы тривиально тогда и только тогда, когда для больших d отображение Φ_d — сюръективно. Тогда нетривиальное решение существует тогда и только тогда, когда все Φ_d — не сюръективны, то есть все миноры нулевые.

Последнее, все миноры образуют идеал, который конечнопорожен в нётеровом кольце. Таким образом, базис этого идеала и есть система равенств, которую мы ищем.

9 Доказательство полноты \mathbb{P}^N

Предложение 9.1. Пусть $Z\subset \mathbb{P}^N \times \mathbb{A}^M$ — замкнуто. Тогда $\pi(Z)\subset \mathbb{A}^M$ — тоже замкнуто.

10

Доказательство. Пусть $x=(x_0:\ldots:x_N),\,t=(t_1,\ldots,t_M)$ — координаты в \mathbb{P}^N и \mathbb{A}^M соответственно, а поверхность Z задается однородными по t полиномами $f_1(x,t),\ldots,f_k(x,t)$. Тогда существует полиномиальное условие $g_1(t),\ldots,g_l(t)$ на коэффициенты при x (которые являются многочленами от t), чтобы система имела решение. Тогда многочлены $g_1(t),\ldots,g_l(t)$ и задают проекцию в \mathbb{A}^M .

Теорема 9.1. Любое проективное многообразие полно.

Доказательство. По замечанию можно доказывать это утверждение только для \mathbb{P}^N . Пусть $Y=\cup U_i$ — покрытие аффинными подмножествами, $Z_i=Z\cap (\mathbb{P}^N\times U_i)$. Как мы проверили выше, условие полноты выполнено для $Y=\mathbb{A}^M$, тогда оно выполнено и для любого его замкнутого подмножества. Тогда и для конечного покрытия аффинными подмножествами — тоже.

10 Какие-то примеры

Замечание 10.1. Аффинное многообразие не может быть замкнуто в \mathbb{P}^n (Тогда оно полно как замкнутое подмножество в полном, но если оно полное и аффинное, то оно изоморфно точке).

Предложение 10.1. $\mathbb{A}^1 \times \mathbb{P}^1$ не аффинно и не полно.

Доказательство. Очевидно, что многообразие не полно, потому что

$$\Bbbk[\mathbb{A}^1\times\mathbb{P}^1]=\Bbbk[\mathbb{A}^1]\otimes_{\Bbbk} \Bbbk[\mathbb{P}^1]\simeq \Bbbk[x]\neq \Bbbk.$$

Осталось доказать, что $\mathbb{A}^1 \times \mathbb{P}^1$ не аффинно. Докажем это двумя способами. <u>Способ 1.</u> Заметим, что замкнутое подногообразие аффинного многообразия — аффинное. Но тогда $\mathbb{P}^1 \simeq \{0\} \times \mathbb{P}^1 \hookrightarrow AA^1 \times \mathbb{P}^1$ должно быть замкнутым, а мы доказали, что это не так.

<u>Способ 2.</u> Множество нулей максимального идеала $\Bbbk[\mathbb{A}^1 \times \mathbb{P}^1]$ — прямая, а должна быть точка.

Тут нам напомнили про Сегре и Веронезе.

11 Конечные морфизмы

Определение 11.1. Пусть $f: X \to Y$ — морфизм аффинных многообразий. f называется *конечным*, если k[X] конечно порожден как k[Y] — модуль (или, что то же самое, над $f^*(k[Y])$).

Замечание 11.1. Тогда любой элемент $g \in \mathbb{k}[X]$ — целый над $\mathbb{k}[Y]$.

Определение 11.2. Морфизм $f:X\to Y$ называется доминирующим, если $\overline{f(X)}=Y.$

Замечание 11.2. Морфизм $\varphi: X \to Y$ — доминирующий тогда и только тогда, когда $\varphi^*: \Bbbk[Y] \to \Bbbk[X]$ — инъективен. Действительно, пусть $g \in \Bbbk[Y]$ такой, что $\varphi^*(g)(x) = 0$. Тогда $g(\varphi(x)) = 0$ для всех x, но значения $\varphi(x)$ — всюду плотны, а потому g(y) = 0 для всех y.

Определение 11.3. Пусть R'/R — целое расширение колец, $\mathfrak{p} \subset R$, $\mathfrak{p}' \subset R'$ — простые идеалы. Будем говорить, что \mathfrak{p}' лежсит над \mathfrak{p} , если $\mathfrak{p}' \cap R = \mathfrak{p}$.

Теорема из коммутача. Пусть R'/R — целое расширение колец, $\mathfrak{p} \subset R$ — простой идеал. Пусть $\mathfrak{p}' \subset \mathfrak{q}' \subset R'$ — вложенные простые идеалы, \mathfrak{q}' — произвольный идеал в R'.

- (1) Если максимальный идеал \mathfrak{p}' лежит над \mathfrak{p} , то \mathfrak{p} тоже максимальный.
- (2) Если оба идеала \mathfrak{p}' и \mathfrak{q}' лежат над \mathfrak{p} , то они совпадают, то есть $\mathfrak{p}' = \mathfrak{q}'$.
- (3) Существует простой идеал $\mathfrak{r}' \subset R'$, лежащий над \mathfrak{p} .
- (4) Предположим, что $\mathfrak{a}' \cap R \subset \mathfrak{p}$. Тогда в (3) мы можем выбрать $\mathfrak{r}' \supset \mathfrak{a}'$.

Доказательство. (1) Заметим, что расширение $R/\mathfrak{p} \hookrightarrow R'/\mathfrak{p}'$ — тоже целое. Тогда по лемме 1 если одно из них — поле, то и второе — тоже.

- (2) Локализуем оба кольца по $R = \mathfrak{p}$. Тем самым сведем задачу к случаю, когда R локально с максимальны идеалом \mathfrak{p} . Но тогда оба \mathfrak{p}' и \mathfrak{q}' максимальны, то есть совпадают.
- (3) Локализуем так же. Теперь кольцо R локально. Тогда мы можем выбрать любой максимальный в R'. По (1) этот идеал лежит над некоторым максимальным в R, а там такой один \mathfrak{p} .
 - (4) Теперь нужно выбрать не любой идеал, а содержащий а.

Предложение 11.1. Пусть $\varphi:X \to Y$ — конечный морфизм. $Z \subset X$ — замкнутое подмножество.

 \Box

- (1) Тогда морфизм $\varphi|_Z:Z o Y$ тоже конечный.
- (2) Если X неприводимо, то $\varphi(Z)$ замкнуто в Y.
- (3) Если X неприводимо и $Z \neq X$, то $\varphi(X) \neq Y$.

Доказательство. (1) Верно и более общее утверждение (которое очевидно): композиция конечных морфизмов сама является конечным морфизмом. Осталось заметить, что $i:Z\to X$ — конечный.

- (2) Покажем, что $\overline{\varphi(X)} = \varphi(X)$. Рассмотрим точку $p \in \varphi(X)$, этой точке соответствует макимальный идеал $\mathfrak{m}(p)$. Посмотрим на его прообраз при отображении $\varphi^*(\mathfrak{m}(p))$. Точки, которые зануляются многочленами из этого прообраза прообразы точки p. Действительно, пусть $f \in \mathfrak{m}(p)$ и $\varphi^*(f)(a) = f(\varphi(a)) = 0$. Это выполнено для все f, следовательно, $\varphi(a) = p$. Таким образом, достаточно доказать, что $V(\varphi^*(\mathfrak{m}(p)))$ непусто. В случае, когда оно пусто, $\sqrt{\varphi^*(\mathfrak{m}(p))} = \mathbb{k}[X]$, но тогда $\langle \varphi^*(\mathfrak{m}(p)) \rangle = \mathbb{k}[X]$. Заметим, что на самом деле мы уже доказали более общее утверждение в Теореме из коммутача (3). То есть над нашим максимальным идеалом $\mathfrak{m}(p)$ обязан лежать какой-то идеал из $\mathbb{k}[X]$.
- (3) Поскольку $Z \neq X$, то существует такой ненулевой полином $f \in \mathbb{k}[X]$, что f(z) = 0 для любого $z \in Z$. Элемент f целый над $\mathbb{k}[Y]$, это значит, что

$$f^n+arphi^*(g_{n-1})f^{n-1}+\ldots+arphi^*(g_0)\equiv 0,$$
 где $g_i\in \Bbbk[Y]$ и $g_0
eq 0,$

иначе это можно переписать как

$$f^n + g_{n-1}(\varphi(x))f^{n-1} + \ldots + g_0(\varphi(x)) = 0$$
, для любого $x \in X$.

Но тогда для любого $z\in Z$ $g_0(\varphi(z))=0.$ Таким образом, $\varphi(Z)$ не может быть плотно в Y.

 \Box

12 Конечные морфизмы в общем

Определение 12.1. Морфизм алгебраических многообразий $f: X \to Y$ называется конечным, если существует такое покрытие $Y = \cup U_i$ аффинными множествами, что $f^{-1}(U_i)$ — тоже аффинно и каждый из морфизмов $f: f^{-1}(U_i) \to U_i$ — конечен.

Теорема 12.1. Пусть X — отделимо. $U,V\subset X$ — аффинные открытые подмножества, тогда $U\cap V$ — тоже аффинное открытое.

Доказательство. Рассмотрим вложение

$$\Phi: U \times V \to X \times X$$
.

Поскольку X — отделимо, то Δ_X — замкнуто, но тогда и $\Phi^{-1}(\Delta_X)$ — замкнуто в аффинном $U \times V$. Осталось заметить, что $\Phi^{-1}(\Delta_X) \simeq U \cap V$.

13 Нормальные многообразия

Определение 13.1. Область целостности R называется *нормальной*, если она целозамкнута в своем поле частных Frac(R).

Предложение 13.1. Факториальное кольцо — нормально.

Определение 13.2. Аффинное многообразие X — *нормально*, если $\mathbb{k}[X]$ — нормально.

Определение 13.3. Произвольное многообразие X — *нормально*, если существут покрытие нормальными аффинными открытыми $X = \cup U_i$.

Замечание 13.1. Если A — нормально, а S — мультипликативное подмножество, то локализация $A_S = S^{-1}A$ — тоже нормальна. Таким образом, если X — нормальное аффинное многообразие, то $X\backslash\{f=0\}$ — тоже нормальное аффинное.

Предложение 13.2. Пусть A — нормальное кольцо с полем частных Q_A и B — произвольная Q_A — алгебра. Если элемент $b \in B$ цел над A, то его минимальный многочлен $\mu(x)$ над Q_A принадлежит A[x].

Доказательство. Пусть $f(x) \in A[x]$ — минимальный приведенный многочлен b. Тогда $f(x) = \mu(x)q(x)$ и по лемме Гаусса $\mu \in A[x]$.

 \Box

Лемма 13.1. Пусть $\varphi: X \to Y$ — сюръективный конечный морфизм аффинных многообразий, Y — нормально. Пусть $U \subset X$ — открыто, тогда F(U) — тоже открыто в Y.

Доказательство. Представим U в виде объединения главных открытых $U = \bigcup U_i, \ U_i = X \setminus \{f_i = 0\}$. Достаточно доказать, что $f(U_i)$ — открыто. Пусть $f \in \mathbb{k}[X], \ p \in X, \ f(p) \neq 0$. Покажем, что существет такая функция $a \in \mathbb{k}[Y]$, что $\varphi(p) \in D(a(x)) \subset \varphi(D(f))$.

Для этого рассмотрим $\psi = \varphi \times f: X \to Y \times \mathbb{A}^1.$

$$\psi^*: \mathbb{k}[Y][t] \to \mathbb{k}[X].$$

Таким образом, если φ — конечно, то и ψ — тоже.

По предыдущему предложению минимальный многочлен f над $\Bbbk(Y)$ принадлежит $\Bbbk[Y][x]$. Таким образом (μ_f) = $\ker \psi^*$. Таким образом, образ ψ — это подмногообразие в $Y \times \mathbb{A}^1$, задаваемое уравнением:

$$\mu_f(y,t) = t^n + a_1(y)t^{n-1} + \ldots + a_n(y).$$

Образ $\varphi(D(f))$ остоит из тех точек y, для которых у многочлена $\mu_f(y,t)$ не все корни нулевые. Таким образом, существует такое i, для которого $a_i(p) \neq 0$. Положим тогда $a = a_i(y)$.

14

14 Теория размерностей

Определение размерности 1. Пусть X — неприводимо, а n — максимальная длина цепи вида

$$X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X,$$

где каждое из X_i тоже неприводимо. В этом случае $n=\dim X-\mathit{pasmephocmb}$ многообразия X.

Определение размерности 2. $\dim X = tr.deg_{\mathbb{k}}(\mathbb{k}(X))$.

Замечание 14.1. В случае, когда $\mathbb{k} = \bar{\mathbb{k}}$, мы докажем равносильность этих определений.

Лемма 14.1. Пусть $\varphi: X \to Y$ — сюръективный конечный морфизм неприводимых алгебраических многообразий. Тогда $\dim X = \dim Y$.

Доказательство. Определение 2. По условию $\mathbb{k}[X]$ конечно порожден над $\mathbb{k}[Y]$. Тогда $[\mathbb{k}(Y):\mathbb{k}(X)]$ — конечное расширение и $tr.deg\mathbb{k}(X)=tr.deg\mathbb{k}(y)$.

Определение 1. Рассмотрим некоторую цепочку в $X: X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_n = X$. Заметим, что по предложению 11.1.(3) образ такой цепочки — тоже цепочка в Y. Таким образом, $\dim X \leqslant \dim Y$.

Далее, если рассмотреть цепочку в $Y:Y_0\subsetneq Y_1\subsetneq\ldots\subsetneq Y_n=Y$, то прообраз каждого Y_i содержит неприводимую компоненту, так можно найти вложенную цепочку.

П

 \Box

Предложение 14.1. Проекция π_p гиперповерхности $X = \{f = 0\}$ в \mathbb{P}^n на гиперплоскость $x_0 = 0$ через произвольную точку p $(f(p) \neq 0)$ — конечный морфизм проективных многообразий.

Доказательство. Нетрудно убедиться, что $\mathbb{k}[X] = \mathbb{k}[x_0,\dots,x_n]/f(x)$. Покроем \mathbb{P}^n афиными картами и ограничим проекцию на одну из них. Тогда $\mathbb{k}[X\cap\{x_i\neq 0\}] = \mathbb{k}[u_1,\dots,u_n-1][\lambda]/f(\lambda p+u)$. Мы хотим проверить, что это — конечно порожденный модуль над $\mathbb{k}[u_1,\dots u_{n-1}]$. Достаточно доказать, что λ — цел над $\mathbb{k}[u_1,\dots u_{n-1}]$.

Поскольку f — однородный, то старший коэффициент при λ — $f(p) \neq 0$. Таким образом, при раскрытии всех скобок и делении на f(p), получится приведенный многочлен, зануляющий λ .

Лемма 14.2. dim $\mathbb{A}^n = n$.

Доказательство. Неравенство $\dim \mathbb{A}^n \leq n$ — очевидно: $\mathbb{A}^0 \subsetneq \mathbb{A}^1 \subsetneq \ldots \subsetneq \mathbb{A}^{n-1} \subsetneq \mathbb{A}^n$. Для доказательства второго неравенства рассмотрим предпоследнюю компоненту $X = \{f(x) = 0\}$. Многообразие X можно отобразить конечным сюрьективным морфизмом в \mathbb{A}^{n-1} (по предложению 14.1.). Тогда $\dim X = n-1$.

П

15 Критерий аффинности многообразия

Определение 15.1. Морфизм $f: X \to Y$ называется *аффинным*, если для любого $U \subset Y$ — открытого аффинного открытого подмножества, $f^{-1}(U)$ — тоже открытое аффинное.

Теорема. Критерий аффинности. Пусть X — алгебраическое многообразие, $\mathbb{k}[X] = \mathcal{A}$ — конечно порожденная алгебра. Предположим, существуют такие $f_1, \ldots, f_k \in \mathcal{A}$, что $(f_1, \ldots, f_k) = 1$ (то есть существуют такие $g_1, \ldots, g_k \in \mathcal{A}$, что $f_1g_1 + \ldots + f_kg_k = 1$) и $D_{f_i} = \{f_i(x) \neq 0\}$.

Доказательство. Пока что не поняла, стоит понять и дописать

16 Про некоторые свойства аффинности и конечности

Лемма 16.1. Пусть M-A – модуль и существуют такие $f_i,g_i\in A$, что $\sum\limits_{k=1}^n f_k g_k=1$. Предположим, что M_{f_i} — конечно порожденный A_{f_i} – модуль для любого i. Тогда M — тоже конечно порожденный.

 \mathcal{A} оказательство. Пусть $\dfrac{m_i^{(j)}}{f_j^{N_j}}$ — образующие M_{f_j} . Тогда для некоторых $\widetilde{a}_i^{(j)} \in$

 A_{f_j} выполнено $m = \sum_i \widetilde{a}_i^{(j)} \frac{m_i^{(j)}}{f_j^{N_j}}$, следовательно, для некоторых $a_i^{(j)} \in A$ и большого единого $N \in \mathbb{N}$ верно:

$$f_j^N m = \sum_i a_i^{(j)} m_i^{(j)}.$$

по условию существуют такие $b_i \in A$, что $\sum_j b_j f_j^N = 1$. Тогда

$$m = \sum_{j} b_{j} m f_{j}^{N} = \sum_{i,j} b_{j} a_{i}^{(j)} m_{i}^{(j)}.$$

Таким образом, $m_i^{(j)}$ — образующие.

Лемма 16.2. Пусть $f: X \to Y$ — морфизм многообразий, причем X — аффинное, а Y — отделимое. Тогда для любого открытого аффинного $U \subset Y$ подмножество $f^{-1}(U)$ — тоже открытое аффинное.

 \Box

П

 \Box

Доказательство. Y — отделимое. Тогда $\Delta_Y \subset Y \times Y$ — замкуто. Рассмотрим морфизм

$$\Phi: X \to X \times Y,$$
$$x \mapsto (x, f(x)).$$

В силу предложения 7.2. подмножество $\Gamma = \Phi(X)$ — замкнуто. Заметим, что $f^{-1}(U) \simeq (X \times U) \cap \Gamma$ — замкнутое подмножество аффинного, то есть открытое.

Предложение 16.1. Пусть $f: X \to Y$ — морфизм многообразий, $Y = \cup U_i$ — покрытие открытыми аффинными картами. Предположим, что $V_i = f^{-1}(U_i) \subset X$ — тоже открытое аффинное. Тогда для любого открытого аффинного $U \subset Y$ подмножество $V = f^{-1}(U)$ — тоже открытое аффинное.

Доказательство. Мы хотим воспользоваться критерием аффинности. Для этого нам нужно придумать покрытие V аффинными множествами, удовлетворяющими условию критерия, и показать, что $\Bbbk[V]$ — конечно порожденная.

$$U \cap U_i = U \backslash Z$$
, где $Z = V(g_1^{(i)}, \dots, g_k^{(i)})$. Положим

$$U_{g_j^{(i)}} = U \cap U_i \setminus \{g_j^{(i)} = 0\}.$$

Поскольку V_i — аффинно по условию, то по лемме 16.2. $f^{-1}(U\cap U_i)$ — аффинно. Заметим, что

$$f^{-1}(U_i \cap U) = \bigcup_j (V_i)_{f^*(g_j^{(i)})} = \bigcup_j (V_i \cap \{f^*(g_j^{(i)} \neq 0)\}).$$

В силу леммы 16.1. алгебра будет конечной. Тогда критерий аффинности применим (критерий мы применяем для $(V_i)_{f^*(g_j^{(i)})}$, так можно, потому что для некоторых $h_{i,j}$ выполнено $\sum h_{i,j}g_j^{(i)}=1$).

Предложение 16.2. Композиция $f\circ\varphi$ конечных морфизмов произвольных многообразий $X\xrightarrow{\varphi} Y\xrightarrow{f} Z$ — тоже конечна.

Доказательство. Это прямое следствие предложения 16.1.

Предложение 16.3. Пусть $f: X \to Y$ — морфизм многообразий. Предположим, для открытого аффинного покрытия $Y = \cup U_i$ выполнены условия, что $V_i = f^{-1}(U_i)$ — открытые афффиные и $f: V_i \to U_i$ — конечные морфизмы, тогда для любого $U \subset Y$ морфизм $V = f^{-1}(U) \to U$ — тоже конечный.

Доказательство. В силу предложения 16.1. подмножество V — аффинно. Обозначения будут все те же, что и в предложении 16.1.

По условию модуль $\Bbbk[V_i]$ — конечно порожден над $\Bbbk[U_i]$. Тогда $\Bbbk[V_i]_{f^*g_j^{(i)}}$ — конечно порожден над $\Bbbk[U_i]_{g_j^{(i)}}$. В силу леммы 16.1. тогда $\Bbbk[V]$] — конечно порожден над $\Bbbk[U]$.

17 Теорема Крулля о главных идеалах

Замечание 17.1. Если $\{f=0\}=Z\subset \mathbb{A}^n,$ то $\dim Z=n-1.$ Это мы по сути доказали в 14 части.

Теорема (Крулль). Пусть X — произвольное неразложимое многообразие, $f \in \mathbb{k}[X]$ — некоторый необратимый элемент (иначе говоря, $(f) \neq \mathbb{k}[X]$). Рассмотрим подмногообразие $Z = \{f = 0\}$ (это замкнутое подмножество X). Тогда $\dim Z = \dim X - 1$.

Доказательство. Мы можем считать, что X – аффинно и $\dim X = N$. Тогда существует вложение $\pi^*: \mathbb{k}[t_1,\ldots,t_N] \hookrightarrow \mathbb{k}[X]$, которое отправляет t_i в базис трансцендентности. $\mathbb{k}[X]$ — конечно порожденный модуль над $\mathbb{k}[t_1,\ldots,t_N]$. Таким образом, мы имеем конечное сюрьективное отображение

$$\pi: X \to \mathbb{A}^N$$
.

По сути тут мы доказали, что любое аффинное многообразие может быть конечно вложено в некторое \mathbb{A}^n .

Рассмотрим морфизм

$$\varphi = \pi \times fX \to \mathbb{A}^n \times \mathbb{A}^1,$$

$$\varphi(x) = (\pi(x), f(x)).$$

Тогда мы имеем

$$\varphi^* : \mathbb{k}[\mathbb{A}^N][t] \to \mathbb{k}[X],$$

$$\varphi^*(t)(x) = t(\varphi(x)) = f(x).$$

Заметим, что k[X] — конечно порожденный и над $k[\mathbb{A}^n][t]$. По лемме Hërep о нормализации f — целый над $k[\mathbb{A}^N]$ (тут $k[\mathbb{A}^N]$ отождествляется с $\pi^*(k[\mathbb{A}^N])$), то есть существуют такие $a_i \in \mathbb{A}^N$, что

$$f^m + a_{m-1}f^{m-1} + \ldots + a_0 = 0.$$

 $\Bbbk[\mathbb{A}^N]$ — нормально, потому что факториально. Рассмотрим две вложенные точные последовательности:

Заметим, что \ker — главный идеал в $\Bbbk(\mathbb{A}^N)[t]$, то есть \ker = (F(t)), где F — многочлен с коэффициентами $\Bbbk(\mathbb{A}^N)$. По предложению 13.2 коэффициенты многочлена лежат на самом деле в $\Bbbk[\mathbb{A}^N]$. Таким образом, \ker = \ker $- \Bbbk[\mathbb{A}^N][t] = (F(t))$. Таким образом, $\varphi(X)$ — множество нулей $F(t) = t^m + a_{m-1}t^{m-1} + \ldots + a_0$.

Поскольку φ — конечный морфизм, $\varphi(X)$ — замкнуто в $\mathbb{A}^N \times \mathbb{A}^1$. По лемме 14.1. $\dim X = \dim \varphi(X)$ и $\dim(Z) = \dim(\varphi(Z))$. Заметим, что $\varphi(Z) = \varphi(X) \cap \{t=0\}$. То есть $\varphi(Z)$ лежит в гиперплоскости t=0, тогда по замечанию 17.1. $\dim(\varphi(Z)) = N-1$.

Следствие 17.1. Пусть X — произвольное алгебраическое многообразие, $f_1,\dots,f_t\in \Bbbk[X]$ — алгебраически независимы, $Z=\{f_1=0,\dots,f_r=0\}$. Тогда $\dim Z\leqslant\dim X-r$.

Доказательство. Будем доказывать по индукции, используя теорему Крулля. Если проблем не возникнет (то есть условия теоремы выполнены на каждом ша-ге), то достигается равенство. Если возникли проблемы, это значит, что многообразие в некоторый момент разложилось на компоненты. Без ограничения общности $Z(f_1) = \cup Z_i(f_1)$ — разложение на неприводимые компоненты. На одной из компонент f_2 может быть тождественно равно 0, таким образом, неравенство становится строгим.

Предложение 17.1. Пусть $X,Y\subset \mathbb{A}^N$ — аффинные многообразия и они непусто пересекаются. Тогда $\dim(X\cap Y)\geqslant \dim X+\dim Y-N$.

Доказательство. \mathbb{A}^N — отделимо, $\Delta(\mathbb{A}^N)\hookrightarrow \mathbb{A}^N\times \mathbb{A}^N$. Подмногообразие $(X\times Y)\cap \Delta(\mathbb{A}^N)=X\cap Y$ задается N полиномами: $x_i=y_i$. Тогда утверждение верно по следствию из теоремы Крулля.

Предложение 17.2. Если $X,Y\subset \mathbb{P}^N$ — проективные многообразия. Если $\dim X+\dim Y\geqslant N$, то многообразия X и Y непусто пересекаются.

Доказательство. \mathbb{P}^n — проекция $\mathbb{A}^{N+1}\setminus\{0\}$, пусть $\hat{X},\,\hat{Y}$ — прообразы $X,\,Y$ соответственно. Заметим, что $\dim \hat{X} = \dim X + 1$ и $\dim \hat{Y} = \dim Y + 1$. Тогда по предложению 17.1. $\dim(X\cap Y) + 1 \geqslant \dim X + 1 + \dim Y + 1 - (N+1) = (\dim X + \dim Y - N) + 1 \geqslant 1$.

18 Теорема о размерности слоя и следствия из неё

Теорема о размерности слоя. Пусть $f:X\to Y$ — морфизм алгебраических многообразий и $\overline{f(X)}=Y$. Тогда

- (1) для любой точки $x \in X$ выполнено неравенство $\dim f^{-1}(f(x)) \geqslant \dim X \dim Y$;
- (2) Существует такое открытое подмножество $U \subset Y$, что для любой точки $y \in U$ достигается равенство $\dim f^{-1}(y) = \dim X \dim Y$.

Доказательство. (1) Без ограничения общности X, Y — аффинные.

По теореме Нётер о нормализации (аналогично тому, как мы это делали в теореме Крулля) мы имеем

$$\pi: Y \to \mathbb{A}^m, \ m = \dim Y,$$

где π — конечный сюръективный морфизм.

Положим $\varphi: X \xrightarrow{f} Y \xrightarrow{\pi} \mathbb{A}^m$. Поскольку π — конечно, то $\pi^{-1}(z) = \bigcup_i y_i$ — конечное множество. Пусть $z = (a_1, \dots, a_m) \in \mathbb{A}^m$, эта точка определяется максимальным идеалом $(z_1 - a_1, \dots, z_m - a_m)$. Что такое $\pi^{-1}(z)$? Это пересечение m гиперповерхностей $\pi^*(z_i - a_i) = 0$. Таким образом, множество $\varphi^{-1}(z) = \bigcup_i f^{-1}(y_i)$ определяется m полиномами. Пусть $x \in \varphi^{-1}(z)$. По следствию из теоремы Крулля $\dim(\varphi^{-1}(z)) \geqslant \dim X - m = \dim X - \dim Y$.

(2) Предположим, $\dim \mathbb{A}^N > \dim f^{-1}(y)$. Замкнуто вложим $i: X \hookrightarrow \mathbb{A}^N$. Тогда

$$\psi: X \Rightarrow \mathbb{A}^N \times Y,$$

$$x \mapsto (i(x), f(x)).$$

Это инъекция. Рассмотрим новое вложение:

$$X \hookrightarrow \mathbb{A}^N \times Y \hookrightarrow \mathbb{P}^N \times Y$$
.

Выберем точку $p \in \mathbb{P}^N$ так, чтобы $p \times Y \notin \overline{X}$. Пусть $Z = p \times Y \cap \overline{X} \neq \overline{X}$. Заметим, что $Z \subset \mathbb{P}^n \times Y$, а \mathbb{P}^N — полное, следовательно, $\pi_Y(Z) \subset Y$ — замкнуто. Существует точка $p \times y \notin Z$, тогда $\pi_Y(Z) \neq Y$. Рассмотрим $U_1 = Y \setminus \pi_Y(Z)$ — открытое подмножество.

Положим $X_1=\overline{X}\cap(\mathbb{P}^N\times U_1)$. Тогда, если спроецировать в p на какую-то гиперплоскость, мы имеем $X_1\to \mathbb{A}^N\times U_1\times \mathbb{A}^{N-1}\times U_1$ — сюръективный конечный морфизм. Будем так спускаться и на ходу заменять X,Y на их аффинные подмножества. Мы можем так продолжать, пока умеем выбирать точку p. А когда не можем? Когда $\overline{X}=\mathbb{P}^N\times Y$. Это значит, что $\dim X-\dim Y=N$. Ограничим на слой: $\varphi^{-1}(y)=\mathbb{A}^N\times y$, то есть N— размерность слоя.

Теорема Шевалле о полунепрерывности. Пусть $f:X \to Y$ — морфизм алгебраических многообразий, $\overline{f(X)} = Y$

$$X_k = \left\{ x \in X \mid \dim_x f^{-1}(f(x)) \geqslant k \right\}.$$

Тогда подмножество X_k — замкнуто.

Доказательство. По теоерме о размерности слоя это выполнено для $k=\dim X-\dim Y$ (потому что $X_k=X$). Дальше будем доказывать индукцией по $\dim X+\dim Y$ и для больших k. По (2) мы знаем, что существует такое $U\subset Y$, что $f^{-1}(U)\cap X_k=\varnothing$. То есть X_k лежит в подмногообразии, размерность которого строго меньше $\dim X$. Вот и переход.

Следствие 18.1. Предположим, $f: X \to Y$ — замкнутый морфизм алгебраических многообразий и $\dim(f^{-1}f(x)) = const$, а Y и все слои — неприводимыю. Тогда X — тоже неприводимо.

Доказательство. Пусть это не так и $X=X_1\cup X_2$ — разложение на компоненты. Заметим, что $\varphi^{-1}(y)=\varphi^{-1}\big|_{X_1}(y)\cup\varphi^{-1}\big|_{X_2}(y)$, следовательно, из неприводимости $\varphi^{-1}(y)=\varphi^{-1}\big|_{X_1}(y)$. $(X_1)_k$, $(X_2)_k$ — замкнуты в X. Тогда $\varphi((X_1)_k)$, $\varphi((X_2)_k)$ — замкнуты в Y. Но Y — неприводимо, то есть $Y=\varphi((X_1)_k)$. Таким образом, все слои лежат в одной и той же компоненте X_1 , значит, эта компонента совпадает с X

19 Лемма о конечных морфизмах

Предложение 19.1. Пусть $f:X\to Y$ — конечный морфизм аффинных многообразий, Y — нормально, $\Bbbk[X]$ — конечное расширение $\Bbbk[Y]$. Тогда для любого $y\in Y$

$$#f^{-1}(y) \leqslant [\mathbb{k}[X] : \mathbb{k}[Y]].$$

Доказательство. Пусть $x_1, \ldots, x_n \in f-1(y)$. Рассмотрим такое $g \in \mathbb{k}[X]$, что $g(x_i)\neg(x_j)$. Тогда минимальный многочлен g(x) — это $F \in \mathbb{k}[Y](t)$ (в силу нормальности Y):

$$F(g) = g^{n} + a_{n-1}(f(x))g^{n-1} + \ldots + a_{0}(f(x)) = 0.$$

 \Box

20 Грассманианы

Определение 20.1. *Грассманианом* Gr(k,n) называется множество всех подпространств размерности k в \mathbb{k}^n .

Мы хотим на этом множестве задать различные структуры, чтобы оно было хорошим.

Топологическая и алгебраическая структуры. Это множество можно представлять себе как множество матриц размера $k \times n$ ранга k, под действием группы $GL_k(\Bbbk)$ левыми умножениями. У каждой такой матрицы есть представитель, содержащий единичную подматрицу E_k . Покроем грассманиан аффинными картами U_I , где $I=(i_1,\ldots,i_k)$ — строго возраствающий набор индексов, а

$$U_I = \{x \in Mat_{k \times n} \mid det(s_I(x)) \neq 0\}/GL_k,$$

где $s_I(x)$ — подматрица, соответствующая этому набору столбцов. Заметим, что в U_I лежат подпространства, которые биективно проектируются на I —ое стандартное подпространство вдоль других базисных векторов.

Рассмотрим теперь пространство матриц $Mat_{k\times(N-k)}\simeq \mathbb{A}^{k(N-k)}$. Для всех I ему соответствует карта X_I , которая состоит из матриц $Mat_{k\times N}$, приклеиванием единичной матрицы E_k на место I. Таким образом, имеем биективное отображение $X_I\to U_I$.

21 Вложение Плюккера

Пусть $U\subset V$ — линейные векторные пространства, $\dim U=k, \dim V=N.$ Рассмотрим вложение $\Lambda^kU\hookrightarrow \Lambda^kV.$ Заметим, что $pt=\mathbb{P}(\Lambda^kU)\hookrightarrow \mathbb{P}(\Lambda^kV).$ Это

вложение $\mathcal{P}: Gr(k,N) \to \Lambda^k V$ называется вложением Плюккера. Это действительно вложение, потому что разные подпространства имеют разные базисы. Пусть $t \in \Lambda^k V$, тогда $t = \sum_I a_{Ie_I} = \sum_I a_{i_1,...,i_k} e_{is_1} \wedge ... \wedge e_{i_k}$. Мы хотим найти такие условия на t, что $t = u_1 \wedge ... \wedge u_k$, то есть этот тензор разложим.

Определение 21.1. *Аннулятором* тензора t назовем множество

$$Ann(t) = \{ v \in V \mid v \land t = 0 \}.$$

Предложение 21.1. Тензор t — разложим $(t = u_1 \land ... \land u_k)$, если $Ann(t) = \langle u_1, ..., u_k \rangle$.

Доказательство. Ясно, что Ann(t) — векторное подпространство V. Разложим дополним тогда базис u_1, \ldots, u_k до базиса V. В получившемся большом базисе запишем t. Получается, что все одночлены содержат все u_i , что и требовалось.

Замечание 21.1. Это условие, кстати, однозначно восстанавливает U. Определение 21.2. Пусть $t \in V^{\otimes k}$ (аналогично для $\Lambda^k V$, $S^k V$), определим

П

 $Supp(t) = \{$ наименьшее подпространство $U \subset V \mid t \in U^{\otimes k} \}.$

Предложение 21.2. $Ann(t) \subset Supp(t)$.

Доказательство. Предположим, $v \notin Supp(t) = U$. Выберем базис u_1, \ldots, u_m в U. Дополним этот базис векторами v, w_1, \ldots, w_l . Если $v \in Ann(t)$, то в записи тензора t в выбранном базисе в каждом одночлене встречается v, а должны только u_1, \ldots, u_m , противоречие.

Следствие 21.1. Тензор разложим, если Ann(t) = Supp(t).

Пусть $\varphi_I: V^{\otimes k} \otimes (V^*)^{\otimes m}$, где $I \subset \{1, \ldots, k\}, \ k > m$, действует по правилу

$$(v_1 \otimes \ldots \otimes v_k, l_1 \otimes \ldots \otimes l_m) \mapsto l_1(v_{i_1}) \cdot \ldots \cdot l_m(v_{i_m}).$$

Пусть U=Supp(t), обозначим $\Phi_I(t)\subset U^{\otimes (k-m)}\subset V^{\otimes (k-m)}$ — образы всевозможных (t,l).

Обозначим $\{\bar{i}\} = \{1, \dots, \hat{i}, \dots, k\}.$

Предложение 21.3. Supp(t) — линейная оболочка $\left\langle \Phi_{\{\bar{i}\}}(t) \right\rangle$ по всем $i \in \{1,\ldots,k\}.$

Доказательство.

$$\Phi_{\{\bar{i}\}}: V^{\otimes k} \otimes (V^*)^{\otimes (k-1)} \to V,$$

Заметим, что $\Phi_{\{\bar{i}\}}(t) \subset Supp(t)$. Пусть u_1,\ldots,u_m — базис в $U,\,w_{m+1},\ldots,w_n$ его дополнение до базиса $V,\,\xi_1,\ldots,\xi_m,\eta_{m+1},\ldots\eta_n$ — соответствующий двойственный базис.

Предположим противное, что $\left\langle \Phi_{\{\bar{i}\}}(t) \right\rangle_i \neq Supp(t)$. Это значит, что существует линейная функция ξ , которая зануляется на всех $\Phi_{\{\bar{i}\}}(t)$, но не зануляется на Supp(t). Без ограничения общности $\xi = \xi_1$. Докажем тогда, что t может быть записана в базисе u_2, \ldots, u_k .

Расмотрим одночлен, входящий в t: $a_I u_1 \otimes u_{i_2} \ldots \otimes u_{i_k}$.

$$a_I = \langle t, \xi_1 \otimes \xi_{i_2} \otimes \dots \xi_{i_k} \rangle = \langle \xi_1, \langle t, \xi_{i_2} \otimes \dots \xi_{i_k} \rangle \rangle \in \langle \xi_1, \Phi_{\{\bar{1}\}} \rangle = \{0\}.$$

22 Соотношения Плюккера

В силу всего сказанного выше, нам интересно понять, когда Ann(t) = Supp(t). А это так тогда и только тогда, когда $\Phi_{\{\bar{i}\}}(t) \in Ann(t)$ для всевозможных i. Таким образом, $t \in \mathbb{P}(\Lambda^k V)$ соответствует некоторое k – гиперплоскости пространства V, когда для всех $i \in \{1,\ldots,m\}$ и для всех $J = (j_{i_1},\ldots,j_{i_{k-1}}) \subset \{1,\ldots,n\}$ выполнено $t \wedge \Phi_{\{\bar{i}\}}(t,\xi_J) = 0$. Ясно, что это какие-то квадратные уравнения от координат a_I . Эти уравнения определяют проективное многообразие Gr(k,N) и называются соотношениями Плюккера. Отметим, что зачастую их больше, чем нужно.

Далее будем рассматривать случай k=2.

Предложение 22.1. (Это мы доказывали на геометрии) t — разложимо, тогда и только тогда, когда $t \wedge t = 0$.

Предложение 22.2. Пусть ω, η — разложимые, тогда $\omega \wedge \eta = 0$ тогда и только тогда, когда $U \cap W = 6\{0\}$.

Доказательство. Пусть $U \cap W = \{0\}$. Тогда любые их базисы между собой независимы. Тогда и произведение не может обнулиться.

Ну а в другую сторону совсем очевидно.

Замечание 22.1. В силу предыдущих предложений, в случае k=2 многообразие Грассмана — квадрика в проективном пространстве размерности $\frac{n(n-1)}{2}$ —1, то есть сама она имеет размерность $\frac{n(n-1)}{2}$ —2. Соотношение $\omega \wedge \eta = 0$ значит, что соответствующие точки лежат в касательных пространствах друг друга.

23 Разложение Шуберта

Надо написать.

24 Кубические поверхности в \mathbb{P}^3

Пусть V — четырехмерное векторное пространство. $\mathbb{P}^3 = \mathbb{P}(V), S_f \subset \mathbb{P}^3$ — поверхность размерности d, задаваемая однородным многочленом f соответствующей степени. Мы хотим понять, когда такая поверхность содержит прямую $\ell \in Gr(2,4)$.

Пусть
$$\Gamma = 6\{(S, \ell) \mid \ell \subset S\} \subset \mathbb{P}(S^dV^*) \times Gr(2, 4).$$

Напоминание. Грассманиан Gr(2,4) живет в \mathbb{P}^5 и задается *квадрикой Плюк-* $kepa\ Q=x_{01}x_{23}-x_{02}x_{13}+x_{03}x_{12}=0.$

Предложение 24.1. Все слои $\Gamma \to Gr(2,4)$ — проективные пространства размерности $\frac{d(d+1)(d+5)}{6}-1.$

Доказательство. Рассмотрим прямую ℓ , без ограничения общности она задается уравнениями $x_2=x_3=0$, то есть определяется идеалом (x_2,x_3) (он простой $\mathbb{k}[x_0,x_1,x_2,x_3]/(x_2,x_3)=\mathbb{k}[x_0,x_1]$).

Если f зануляется на ℓ , то $f \in (x_2, x_3)$, другими словами $f(x) = x_2 F_2(x) + F_3(x)$. То есть f лежит в образе отображения

$$\Phi: S^{d-1}V^* \oplus S^{d-1}V^* \to S^dV^*,$$

$$\Phi: (F_2, F_3) \mapsto x_2 F_2(x) + F_3(x).$$

Заметим, что $\ker \Phi \simeq S^{d-2}V^*$. Тогда несложно посчитать, что $\dim(Im(\Phi)) = \frac{d(d+1)(d+5)}{6}$.

Замечание 24.1. $\Gamma \to Gr(2,4)$ — сюръективно, тогда по следствию из теоремы Шевалле Γ — неприводимо и $\dim \Gamma = \frac{d(d+1)(d+5)}{6} + 3$.

Тут осталась 1-2 лекции.