RETICULADOS, TEOREMAS DE MINKOWSKI REVISITADOS E TEOREMAS DE SOMAS DE QUADRADOS

1 Definições Iniciais

Os teoremas de Minkowski e Blitchfield, bem como suas respectivas generalizações, tornam-se ferramentas poderosas quando consideramos transformações lineares aplicadas no conjunto de vetores inteiros \mathbb{Z}^n , isto é, conjuntos do tipo $B\mathbb{Z}^n$, $B \in \mathbb{R}^{n \times n}$. Tais conjuntos, denominados reticulados (euclidianos), serão nosso objeto de estudo.

Sejam $m \leq n$ vetores linearmente independentes $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$. Um reticulado Λ com base $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ é o conjunto de todas as combinações lineares inteiras de \mathbf{a}_i , $i = 1, \dots, m$, isto é:

$$\Lambda = \{u_1 \boldsymbol{a}_1 + \ldots + u_m \boldsymbol{a}_m : u_1, \ldots, u_m \in \mathbb{Z}\}. \tag{1}$$

O conjunto $\{a_1, \ldots, a_m\}$ é denominado uma base de Λ . A matriz A cujas colunas são os vetores a_1, \ldots, a_m é dita uma matriz geradora de Λ . Durante o texto, representaremos também um reticulado gerado pela matriz A por $\Lambda(A) = \Lambda(a_1, \ldots, a_m) = \Lambda$, intercambiando livremente as notações quando não houver ambiguidade. O número de vetores de uma base de Λ é chamado de posto ou dimensão. Caso m = n, dizemos que Λ possui posto completo. A partir de agora, trataremos apenas de reticulados de posto completo (apesar de reticulados de posto incompleto, definidos por projeções/interseções serem bastante estudados na teoria). Podemos re-escrever (1) matricialmente como

$$\Lambda(A) = A\mathbb{Z}^n = \{A\boldsymbol{u} : \boldsymbol{u} \in \mathbb{Z}^n\}, \qquad (2)$$

Dizemos que um conjunto $M \subset \mathbb{R}^n$ é discreto se existe $\varepsilon > 0$ tal que $x + B_2(\varepsilon) \cap y + B_2(\varepsilon) = \emptyset$. Da definição, é intuitivo que Λ seja um subgrupo aditivo e discreto do \mathbb{R}^n . O teorema abaixo mostra que esta condição é suficiente para caracterizar um reticulado. Ele encaixa-se no grupo de teoremas denominados por D. West como TONCAs ("The Obvious Necessary Condition is Also Sufficient").

Teorema 1. Um conjunto $\Lambda \subset \mathbb{R}^n$ é um reticulado se, e somente se, é um subgrupo aditivo discreto de \mathbb{R}^n .

Demonstraremos a versão do Teorema 1 para Λ de posto completo, a saber: Um conjunto $\Lambda \subset \mathbb{R}^n$ não contido em nenhum subespaço (n-1)-dimensional do \mathbb{R}^n é um reticulado de posto completo se, e somente se, é um subgrupo aditivo discreto de \mathbb{R}^n . A generalização para reticulados de posto incompleto é direta.

Demonstração. (\Rightarrow) (Easy) É claro que para $\boldsymbol{x}, \boldsymbol{y} \in \Lambda$, $-\boldsymbol{x} \in \Lambda$ e $\boldsymbol{x} + \boldsymbol{y} \in \Lambda$. Para mostrar que Λ é discreto, considere primeiro $\Lambda = \mathbb{Z}^n$. Temos que para qualquer $\varepsilon < 1$, $\boldsymbol{x} + B_2(\varepsilon) \cap \boldsymbol{y} + B_2(\varepsilon) = \emptyset$ para todos $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}^n$, $\boldsymbol{x} \neq \boldsymbol{y}$. Portanto, para um reticulado geral (gerado pela matriz A) temos

$$A\boldsymbol{x} + AB_2(\varepsilon) \cap A\boldsymbol{y} + AB_2(\varepsilon) = \emptyset, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}^n, \boldsymbol{x} \neq \boldsymbol{y}.$$

Mas $AB_2(\varepsilon)$ é um elipsoide e portanto contém uma bola $B_2(\varepsilon')$, demonstrando a condição necessária.

- (\Leftarrow) Assumimos agora que Λ seja um subgrupo aditivo e discreto do \mathbb{R}^n . Mostraremos que Λ é um reticulado construindo, indutivamente, uma base de vetores.
- (i) Escolha do primeiro vetor: Tome \mathbf{a}_1 com a propriedade de que o segmento de reta aberto $\lambda \mathbf{a}_1, \lambda \in (0,1)$ não contenha nenhum outro ponto de Λ . A existência de \mathbf{a}_1 é garantida pelo fato de que Λ é discreto.
- (ii) Suponhamos que $\mathbf{a}_1, \dots \mathbf{a}_j$ foram escolhidos. Tome $\mathbf{c}_{j+1} \notin \Lambda(\mathbf{a}_1, \dots, \mathbf{a}_j)$ e considere o paralelotopo fechado

$$\mathcal{P}_j = \left\{ \alpha_1 \boldsymbol{a}_1 + \ldots + \alpha_j \boldsymbol{a}_j + \alpha_{j+1} \boldsymbol{c}_{j+1} : \alpha_i \in [0, 1]^n \right\}.$$

Como Λ é discreto e \mathcal{P}_j é limitado, $\Lambda \cap \mathcal{P}_j$ é finito. Escolhemos para o próximo vetor \boldsymbol{a}_{j+1} o elemento de $\Lambda \cap \mathcal{P}_j$ tal que $\alpha_{j+1} > 0$ seja mínimo. (iii) Considere que n vetores foram escolhidos. É claro que $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ são LI e, como Λ é um subgrupo, $\Lambda(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n) \subset \Lambda$. Ademais, afirmamos que todo ponto de Λ pode ser escrito como combinação inteira de $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$. Com efeito, escrevemos qualquer ponto $\boldsymbol{x} \in \Lambda$ como combinação (possivelmente não-inteira) dos vetores \boldsymbol{a}_i , isto é:

$$\boldsymbol{x} = u_1 \boldsymbol{a}_1 + \ldots + u_n \boldsymbol{a}_n, u_i \in \mathbb{R}.$$

Suponha que u_n não seja inteiro e considere $\bar{x} = |u_1| a_1 + \ldots + |u_n| a_n \in \Lambda$.

$$z := x - \bar{x} = (u_1 - \lfloor u_1 \rfloor) a_1 + \ldots + (\lfloor u_n \rfloor - u_n) a_n \in \Lambda.$$

À partir de z, obteríamos um vetor em \mathcal{P}_n com α_n menor que o mínimo possível, a menos que $u_n = \lfloor u_n \rfloor$ (ou u_n) seja inteiro. Continuando esse argumento, mostramos que $u_{n-1}, \ldots, u_1 \in \mathbb{Z}$.

Figura 1: Bases distintas para o mesmo reticulado em cada figura

Um reticulado $\Lambda(A)$ possui infinitas bases, como ilustrado na Figura 1. A caracterização de bases distintas é feita a partir de matrizes em $Gl_n(\mathbb{Z})$.

Proposição 1.1. $\Lambda(A) = \Lambda(B)$ se, e somente se, A = BU, em que $U \in Gl_n(\mathbb{Z}^n)$.

Demonstração. Sejam $\mathbf{b}_1, \ldots, \mathbf{b}_n$ e $\mathbf{a}_1, \ldots, \mathbf{a}_n$ as colunas de A e B. Como $\Lambda(A) \subset \Lambda(B)$, então $\mathbf{a}_i = B\mathbf{u}_i$, $\mathbf{u}_i \in \mathbb{Z}^n$, o que implica A = BU, $U \in \mathbb{Z}^{n \times n}$. Analogamente, temos B = AV, $V \in \mathbb{Z}^{n \times n}$, o que implica det $B = \det B \det U \det V \Rightarrow \det U \det V = 1$. Assim U e V são unimodulares e, de fato, não é difícil ver que $V = U^{-1}$.

Exemplo 1. Na Figura 1 estão ilustrados dois reticulados contidos no plano e duas bases distintas para cada um deles. As matrizes geradoras associadas às diferentes bases do reticulado $\mathbb{Z}^2 = \{(u_1, u_2) : u_1, u_2 \in \mathbb{Z}\}$ em 1a são

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} e \overline{B} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

No caso do reticulado hexagonal, 1b, temos

$$A = \begin{pmatrix} 1 & 1/2 \\ 0 & \sqrt{3}/2 \end{pmatrix} e \overline{B} = \begin{pmatrix} 3/2 & 7/2 \\ \sqrt{3}/2 & 3\sqrt{3}/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

Em ambos os casos, a matriz mudança de base unimodular U é dada por

$$U = \left(\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right).$$

Um corolário do teorema acima é que qualquer matriz geradora para o mesmo reticulado possui o mesmo determinante, em módulo. Assim, definimos det $\Lambda := |\det B|$ em que B é qualquer matriz geradora. O determinante det Λ é um importante invariante de um reticulado.

1.1 Sub-reticulados

Sejam $\Lambda, \Lambda' \subset \mathbb{R}^n$ dois reticulados de mesmo posto. Se $\Lambda' \subseteq \Lambda$, dizemos que Λ' é um sub-reticulado de Λ . O índice de Λ' em Λ definido como a det $\Lambda'/\det \Lambda$. Como qualquer ponto de Λ' é também um ponto de Λ , se $\Lambda = \Lambda(A)$ e $\Lambda' = \Lambda(B)$, então as colunas de B podem ser escrita como combinações inteiras das colunas de A. Assim B = AM, $M \in \mathbb{Z}^n$, mostrando que o índice de Λ' em Λ é sempre um número inteiro.

Utilizando a caracterização de Λ' e Λ como grupos abelianos, é possível definir o quociente Λ/Λ' como

$$rac{\Lambda}{\Lambda'} = \{\Lambda' + oldsymbol{x} : oldsymbol{x} \in \Lambda\}$$
 .

Dizemos que $x, y \in \Lambda$ estão na mesma classe de equivalência se $x + \Lambda = y + \Lambda$, o que por sua vez, ocorre se, e somente se, $x - y \in \Lambda'$. A cardinalidade do grupo quociente $|\Lambda/\Lambda'|$ é igual ao número de classes de equivalências distintas em Λ com respeito a Λ' . Temos o seguinte resultado:

Proposição 1.2. A cardinalidade do grupo quociente Λ/Λ' é igual ao índice de Λ' em Λ .

Demonstração. Forma Normal de Smith. Sejam A e B matrizes geradoras para Λ e Λ' , com A = BM, $M \in \mathbb{Z}^{n \times n}$. A Forma Normal de Smith de M é dada por M = UDV, $U, V \in Gl_n(\mathbb{Z})$. Temos, assim

$$A = BUDV \Rightarrow AV^{-1} = BUD \Rightarrow A' = B'D$$

em que $A' = AV^{-1}$ e B' = BU são matrizes geradoras para Λ e Λ' , pela Proposição 1.1. As bases A' e B' satisfazem $\boldsymbol{a}'_i = d_i\boldsymbol{b}_i$. Tome um vetor $\boldsymbol{x} = u_1\boldsymbol{a}'_1 + \ldots + u_n\boldsymbol{a}'_n \in \Lambda$. Provaremos que \boldsymbol{x} está na mesma classe de equivalência de $r_1\boldsymbol{a}'_1 + \ldots + r_n\boldsymbol{a}'_n$, em que r_i é o resto da divisão de u_i por d_i (isto é, $u_i = q_id_i + r_i$, $0 \le r_i < d_i$). Com efeito,

$$\boldsymbol{x} - (r_1 \boldsymbol{a}'_1 + \ldots + r_n \boldsymbol{a}'_n) = q_1 d_1 \boldsymbol{a}'_1 + \ldots + q_n d_n \boldsymbol{a}'_n$$
$$= q_1 \boldsymbol{b}'_1 + \ldots + q_n \boldsymbol{b}'_n \in \Lambda'.$$

Assim, as únicas classes de equivalências são $r_1 \mathbf{a}'_1 + \ldots + r_n \mathbf{a}'_n + \Lambda$, o que nos dá $d_1 d_2 \ldots d_n = |\det B|$ possibilidades, todas elas distintas.

A consequência geométrica é dada a seguir:

Corolário 1. A cardinalidade do quociente Λ/Λ' é igual à quantidade de pontos de Λ no paralelotopo aberto

$$\mathcal{P}(A) = \left\{ \alpha_1 \boldsymbol{a}_1 + \ldots + \alpha_n \boldsymbol{a}_n : \alpha_i \in [0, 1) \right\},\,$$

isto é
$$\Lambda/\Lambda' = \#(\mathcal{P}(A) \cap \Lambda)$$
.

Demonstração. Uma consequência imediata da Seção 5.2, da segunda aula, generalizada para qualquer reticulado Λ .

Seja $m \in \mathbb{N}$. A quantidade de números de sub-reticulados de Λ com um dado índice m é denotada por $L_N(m)$. Pode-se mostrar que $L_N(m)$ é finita e é uma função multiplicativa (isto é $L_N(m_1m_2) = L_N(m_1)L_N(m_2)$ sempre que $\gcd(m_1, m_2) = 1$). Fórmulas para $L_N(m)$ podem ser encontradas em [New72, Cap. 2].

1.2 Teoremas de Minkowski e Blichfeldt

Como $\Lambda(A) = A\mathbb{Z}^n$, as versões gerais dos Teoremas de Minkowski podem ser facilmente enunciadas na linguagem de reticulados. Recapitulando a aula anterior:

Teorema 2. Se $K \subset \mathbb{R}^n$ é um conjunto limitado tal que $0 < \text{vol } K < \infty$, então

$$\lim_{r \to \infty} \frac{\#(K \cap \Lambda)}{\text{vol } rK} = \frac{1}{\det \Lambda}.$$

Teorema 3. Se K é um conjunto fechado, limitado, e vol $K \ge \det \Lambda$, então existem $\mathbf{x}, \mathbf{y} \in K$, $\mathbf{x} \ne \mathbf{y}$, tais que $\mathbf{x} - \mathbf{y} \in \Lambda$.

Teorema 4. Se K é um corpo convexo fechado, centralmente simétrico, e vol $K \ge \det A$, então existem $\mathbf{x}, \mathbf{y} \in K$, $\mathbf{x} \ne \mathbf{y}$, tais que $\mathbf{x} - \mathbf{y} \in \Lambda$.

2 Primeiro Mínimo

Seja K um corpo convexo fechado, centralmente simétrico, e $F_K(\boldsymbol{x})$ a sua função de gauge. Definimos o primeiro mínimo de Λ com relação a K como:

$$\lambda_{1,K}(\Lambda) = \min_{\boldsymbol{x} \in \Lambda \setminus \{\boldsymbol{0}\}} F_K(\boldsymbol{x}). \tag{3}$$

Encontrar $\lambda_{1,K}(\Lambda)$ possui interesse tanto teórico como prático, por exemplo na proposição e análise de esquemas criptográficos (falaremos sobre isso mais

para frente no curso, e nos trabalhos finais). Um caso bastante especial que será estudado mais para frente é quando $K = B_2(1)$ é a esfera euclidiana em \mathbb{R}^n com raio 1. O Teorema de Minkowski para Corpos Convexos 4 nos dá uma estimativa para o primeiro mínimo de Λ :

Teorema 5. Seja K um corpo convexo fechado centralmente simétrico e $\Lambda \subset \mathbb{R}^n$ um reticulado.

$$\lambda_{1,K}(\Lambda) \le 2 \left(\frac{\det \Lambda}{\text{vol } K}\right)^{1/n}.$$
 (4)

Demonstração. Se $r = 2\left(\frac{\det\Lambda}{\operatorname{vol} K}\right)^{1/n}$, então vol $rK = 2^n \det\Lambda$. Pelo Teorema 4, existe $\boldsymbol{x} \in rK \cap \Lambda$. Isso significa que existe $\boldsymbol{x} \in \Lambda$ com $F_K(\boldsymbol{x}) \leq r$, de onde segue o limitante.

Quando $K = B_p(1) = \{ \boldsymbol{x} \in \mathbb{R}^n : |x_1|^p + \ldots + |x_n|^p \leq 1 \}$ é a bola unitária na norma ℓ_p um limitante sutilmente mais fraco que (4), porém bastante útil, pode ser derivado:

Teorema 6 (Minkowski para norma l_p). Seja $\Lambda \subset \mathbb{R}^n$ um reticulado de posto n, $e \ 1 \le p < \infty$. Existe um ponto não-nulo $\mathbf{x} \in \Lambda$ tal que

$$\|\boldsymbol{x}\|_{p} \le n^{1/p} (\sqrt{\det \Lambda})^{1/n} \tag{5}$$

Demonstração. Sabemos que $\|\boldsymbol{x}\|_p \leq n^{1/p} \|\boldsymbol{x}\|_{\infty}$, e portanto vale a inclusão $B_{\infty}(r) \subseteq B_p(n^{1/p}r)$. Tome $r = \sqrt{\det \Lambda}^{1/n}$. O volume de $B_{\infty}(r)$ é o volume do cubo de lado 2R centrado em \boldsymbol{x} , dado por

vol
$$B_{\infty}(r) = 2^n r^n = 2^n \sqrt{\det \Lambda}$$
.

Assim vol $B_p(n^{1/p}r) \ge 2^n \sqrt{\det \Lambda}$ e pelo Corolário 1, existe um ponto $\boldsymbol{x} \in \Lambda \cap B_p(n^{1/p}r)$, de onde vem que

$$\|\boldsymbol{x}\|_p \le n^{1/p} (\sqrt{\det \Lambda})^{1/n}.$$

Observação 1. De fato vale a designaldade estrita vol $B_p(1) < n^{n/p}2^n =$ vol $B_{\infty}(n^{1/p})$. Assim a designaldade (5) pode ser substituída pela designaldade estrita (veja também Exercício 1).

3 Somas de Quadrados

Os teoremas acima parecem, à primeira vista, versar apenas sobre propriedades extremamente específicas e geométricas de reticulados euclidianos. Entretanto, já mostramos na terceira aula uma aplicação do Teorema de Minkowski para Corpos Convexos a aproximações diofantinas simultâneas (ou produtos de formas lineares). Apresentaremos aqui uma aplicações à Teoria dos Números, em particular aos teoremas dos dois e quatro quadrados.

3.1 Teorema dos Dois Quadrados

Teorema 7 (dos Dois Quadrados). Seja $p \in \mathbb{N}$ um número primo. Então $p = a^2 + b^2$, para $a, b \in \mathbb{N}$ se, e somente se, p = 2 ou $p \equiv 1 \mod 4$.

A condição necessária é simples. Com efeito, um inteiro a^2 só pode ser congruente a 0 ou 1 módulo 4. Então se p pode ser representado como soma de 2 quadrados, p=2 ou p é um primo ímpar congruente a 1 módulo 4. Para uma demonstração "clássica" da condição suficiente veja [IN91]. Aqui mostraremos como o teorema segue como uma aplicação do Teorema de Minkowski. Precisamos antes de um simples fato da Teoria dos Números, que é uma consequência de resultados mais gerais acerca de resíduos quadráticos.

Lema 1. Se $p \notin um$ primo tal que $p \equiv 1 \mod 4$, então existe x tal que $x^2 \equiv -1 \mod p$.

Demonstração. Para qualquer $i \in \{1, 2, ..., p-1\}$, existe $a_i \neq i$ tal que $ia_i \equiv -1 \mod p$. Além disso, para $i \neq j$, $a_i \neq a_j$. Assim, agrupando os termos, temos

$$1a_1 \times 2a_2 \times \ldots \times \left(\frac{p-1}{2}\right) a_{\frac{p-1}{2}} \equiv \underbrace{(-1) \times (-1) \ldots \times (-1)}_{(p-1)/2 \text{ vezes}} \equiv (-1)^{\frac{p-1}{2}}.$$

Mas o lado esquerdo da igualdade acima é igual a $(p-1)! \equiv -1 \mod q$ (por quê?). Assim, temos $(-1)^{\frac{p-1}{2}} \equiv -1 \mod p$, o que é absurdo. Logo, existe x tal que $x^2 \equiv -1 \mod p$.

Demonstração do Teorema 3: Seja xtal que $x^2 \equiv -1 \bmod p.$ Seja Λ o reticulado gerado pela matrix

$$A = \left(\begin{array}{cc} p & x \\ 0 & 1 \end{array}\right)$$

Tome agora qualquer elemento em $(pu_1 + u_2x, u_2) \in \Lambda$, $u_1, u_2 \in \mathbb{Z}$. Temos:

$$\|(pu_1 + u_2x, u_2q)\|_2^2 = (pu_1 + u_2x)^2 + (u_2)^2 \equiv 0 \mod q,$$

ou seja, a norma ao quadrado de todos os elementos de Λ é um múltiplo de p. Pelo Teorema 4, existe um elemento não-nulo $\boldsymbol{y}=(y_1,y_2)\in\Lambda$ cujo quadrado da norma satisfaz

$$\|\boldsymbol{y}\|_{2}^{2} \le 2^{2} \frac{\det \Lambda}{\text{vol } B_{2}(1)} \le \frac{4p}{\pi} < 2p$$

Como a norma de \boldsymbol{y} é múltipla de p, temos temos que ter necessariamente $y_1^2 + y_2^2 = p$, finalizando a prova do teorema.

Utilizando a identidade

$$(a_1^2 + b_1^2)(a_2^2 + b_2^2) = (a_1b_1 + a_2b_2)^2 + (a_1b_2 - a_2b_1)^2$$

vemos que se dois números são representados como soma de dois quadrados, então o seu produto também pode ser representado de tal maneira¹. Assim, pode-se demonstrar a versão completa do Teorema dos Dois quadrados

Teorema 8 (dos Dois Quadrados Completo). Dado um número inteiro m, existem a, b tais que $m = a^2 + b^2$ se, e somente se, $m = ck^2$, em que $c \in \mathbb{N}$ não possui nenhum fator primo congruente a 3 módulo 4.

3.2 Teorema dos Quatro Quadrados

O Teorema dos Quatro Quadrados (de Langrage) afirma que todo número inteiro positivo pode ser escrito como a soma de quatro quadrados. O Teorema 5 para o primeiro mínimo de Λ nos auxilia a demonstrar a versão do teorema quando p é um número primo. Primeiramente, precisamos de um lema auxiliar com o mesmo "sabor" do Lema 1.

Lema 2. Seja p um número primo maior que 2. Existem w, z tais que $w^2 + z^2 \equiv -1 \mod p$.

Demonstração. Seja o conjunto

$$S_w = \left\{ w^2 \mod p : w = 0, \dots, \frac{p-1}{2} \right\}.$$

¹Uma maneira esclaredora de demonstrar a identidade sem "abrir os dois lados" é considerar o conjunto de inteiros de Gauss $\mathbb{Z}[i] = \{a+bi: a,b \in \mathbb{Z}\}$, em que $i^2 = -1$. A norma de um ponto em $\mathbb{Z}[i]$ é dada por $a^2+b^2=(a+bi)(a-bi)$. A identidade é equivalente à multiplicatividade da norma, i.e., $N(a_1+ib_1).N(a_2+ib_2)=N((a_1+ib_1)(a_2+ib_2))$.

Afirmamos que $\#S_w = p + 1/2$. De fato, tomando dois pontos $0 \le w_1, w_2 \le (p-1)/2$ com $w_1 > w_2$ temos $w_1^2 \not\equiv w_2^2 \mod p$, caso contário,

$$w_1^2 - w_2^2 = (w_1 + w_2)(w_1 - w_2) \equiv 0 \mod p,$$

e portanto p deveria dividir $w_1 + w_2$ ou $w_1 - w_2$, o que não pode ocorrer pois ambos os termos estão entre 0 e p-1. Assim, $0^2, 1^2, 2^2, \dots (p-1)/2^2$ estão em classes distintas módulo p e portanto $\#S_w = (p+1)/2$. De maneira bastante análoga, mostramos que o conjunto

$$S_z = \left\{ -1 - z^2 \mod p : w = 0, \dots, \frac{p-1}{2} \right\}$$

possui cardinalidade (p+1)/2. Como $\#S_w + \#S_z = p+1$, deve existir um elemento em $\#S_w \cap \#S_z$, dando-nos os números w e z desejados.

Teorema 9. Seja p um número primo. Existe a, b, c, d tais que $a^2 + b^2 + c^2 + d^2 = p$.

Demonstração. Se p=2 o teorema é trivial. Se p>2, sejam w e z dados pelo lema acima. Como é esperado, construímos um reticulado 4-dimensional e aplicamos o teorema de Minkowski. O reticulado considerado é o dado pela matriz

$$A = \left(\begin{array}{cccc} p & 0 & w & -z \\ 0 & p & z & w \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

A norma ao quadrado de um vetor Au, $u \in \mathbb{Z}^4$ é dada por

$$||A\mathbf{u}||^2 = u_3^2 + u_4^2 + (pu_2 + zu_3 + wu_4)^2 + (pu_1 + wu_3 - zu_4)^2.$$

Com a restrição de que $w^2 + y^2 \equiv -1 \mod p$ não é difícil ver que $||A\boldsymbol{u}||^2 \equiv 0 \mod p$. Aplicando o Teorema 5, existe um vetor não nulo \boldsymbol{y} com norma

$$\|\boldsymbol{y}\|^2 \stackrel{(a)}{\leq} 4 \left(\frac{\det \Lambda}{(\pi^2/2)}\right)^{1/2} = \frac{4\sqrt{2}p}{\pi} < 2p,$$

em que $\pi^2/2$ é o volume da bola unitária em \mathbb{R}^4 . Assim $\|\boldsymbol{y}\|^2=p$, provando o teorema.

Para enunciar a versão completa do Teorema dos Quatro Quadrados, precisamos da Identidade de Euler

$$(a_1^2 + b_1^2 + c_1^2 + d_1^2)(a_2^2 + b_2^2 + c_2^2 + d_2^2) =$$

$$(a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2)^2 + (a_1b_2 - b_1a_2 + c_1d_2 - d_1c_2)^2 +$$

$$(a_1c_2 - b_1d_2 - c_1a_2 + d_1b_2)^2 + (a_1d_2 + b_1c_2 - c_1b_2 - d_1a_2)^2.$$

Novamente, é muito simples demonstrar a identidade acima simplesmente expandindo os dois lados. Uma demonstração mais esclarecedora é à partir dos inteiros de Lipschitz

$$\mathcal{L}(i,j,k) = \{a + bi + cj + dk : a,b,c,d \in \mathbb{Z}\},\$$

em que i, j, k são as unidades quaternionicas $i^2 = j^2 = k^2 = ijk = -1$. A norma de um elemento em $\mathcal{L}(i, j, k)$ é dada por

$$N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2 = (a + bi + ci + di)(a - bi - ci - di).$$

A identidade de Euler é equivalente à multiplicativadade da norma, $N(z_1z_2) = N(z_1)N(z_2)$, para $z_1, z_2 \in \mathcal{L}(i, j, k)$.

A Identidade de Euler implica que se dois números são representados como somas de dois quadrados, então o produto deles também é, de onde deduzimos imediatamente

Teorema 10. Seja m um número inteiro. Existem a, b, c, d tais que

$$a^2 + b^2 + c^2 + d^2 = m.$$

Outros teoremas considerando somas de quadrados e formas quadráticas são possíveis. Por exemplo, o seguinte teorema generaliza o dos dois quadrados, versando sobre primos escritos na forma $a^2 + mb^2$.

Teorema 11. Seja p um primo $m \in \mathbb{Z}^n$ tal que m é um resíduo quadrático módulo p (isto é, existe x tal que $x^2 \equiv -m \mod p$). Existem a, b, k tais que $a^2 + mb^2 = kp$, com $1 \leq k \leq \lfloor 4\sqrt{m}/\pi \rfloor$.

A demonstração, como esperado, utiliza um reticulado 2-dimensional conveniente.

Exercício 1. Aprimore o limitante do Teorema 2, utilizando a fórmula de volume para a bola na norma l_p :

vol
$$B_p(r) = 2^n r^n \frac{\Gamma\left(1 + \frac{1}{p}\right)^n}{\Gamma\left(1 + \frac{n}{p}\right)}.$$

Compare com o Teorema 2 em termos assintóticos.

Dica: Utilize a aproximação de Stirling $\Gamma(s) \approx \sqrt{2\pi}e^{-s}s^{s-1/2}$.

Exercício 2. Seja p um primo e 2n+1 um número ímpar. Prove que existe $0 < m < p^{2n}$ tal que

$$mp = a^{2n+1} + b^{2n+1},$$

com $a \in b$ naturais.

Exercício 3. Utilizando a nossa demonstração do Teorema 3, encontre a e b tais que $a^2 + b^2 = p$ para p = 29, p = 252097800629 e p = 2760727302649. Dica: utilize rotinas computacionais para encontrar vetores curtos em um reticulado.

Exercício 4. Demonstre o Teorema 8.

Exercício 5. Demonstre o Teorema 11. É possível melhorar o limitante para o múltiplo k?

Referências

[IN91] H. L. Montgomery I. Niven, H. S. Zuckerman. An Introduction to The Theory of Numbers. Wiley, 5 edition, 1991.

[New72] M. Newmman. Integral Matrices. Academic Press, 1972.