

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013

QUÍMICA

TEMA 9: ORGÁNICA

- Junio, Ejercicio 4, Opción B
- Reserva 2, Ejercicio 4, Opción A
- Reserva 3, Ejercicio 4, Opción A
- Reserva 4, Ejercicio 4, Opción A
- Septiembre, Ejercicio 4, Opción B

Sea la transformación química: $A+Br_2\to C$. Si reacciona 1 mol de Br_2 , indique justificando la respuesta si las siguientes afirmaciones son verdaderas o falsas:

a) Cuando A es 1 mol de HC≡C-CH, el producto C no presenta isomería geométrica.

b) Cuando A es 1 mol de $CH_2 = CH - CH_3$ el producto C presenta isomería geométrica.

c) Cuando A es 0'5 mol de HC≡C-CH3 el producto C no presenta isomería geométrica.

QUÍMICA. 2013. JUNIO. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

a) Falsa.

$$HC \equiv C - CH_3 + Br_2 \rightarrow HCBr = CBr - CH_3$$

El alqueno obtenido si presenta isomería geométrica.

b) Falsa.

$$H_2C = CH - CH_3 + Br_2 \rightarrow CH_2Br - C^*HBr - CH_3$$

Se obtiene un derivado dihalogenado de un alcano que tiene isomería óptica, al tener un carbono asimétrico, pero no tiene isomería geométrica.

c) Verdadera.

$$\frac{1}{2} HC \equiv C - CH_3 + Br_2 \rightarrow \frac{1}{2} HCBr_2 - CBr_2 - CH_3$$

Escriba un compuesto que se ajuste a las siguientes condiciones:

- a) Una amina secundaria de cuatro carbonos con un átomo de nitrógeno unido a un carbono con hibridación sp³ y que contenga átomos con hibridación sp².
- b) Un éter de tres carbonos conteniendo átomos con hibridación sp.
- c) El isómero cis de un alcohol primario de cuatro carbonos.
- QUÍMICA. 2013. RESERVA 2. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a) $CH_3 - NH - CH_2 - CH = CH_2$ metilprop-2-enilamina

b) $CH_3 - O - C \equiv CH$ Etinilmetileter

c)

$$CH_3$$
 $C = C$ CH_2OH

cis but-2-en-1-ol

Dado el compuesto HOCH₂CH₂CH₂CH = CH₂

- a) Escriba la reacción de adición de Br₂.
- b) Escriba la reacción de combustión ajustada.
- c) Escriba la reacción de deshidratación con H_2SO_4 concentrado.

QUÍMICA. 2013. RESERVA 3. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a) $HOCH_2CH_2CH_2CH = CH_2 + Br_2 \rightarrow HOCH_2CH_2CH_2CHBr - CH_2Br$

b) HOCH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ + 70 $_2$ \rightarrow 5CO $_2$ + 5H $_2$ O

c) $HOCH_2CH_2CH_2CH = CH_2$ $\xrightarrow{H_2SO_4} CH_2 = CH_2 - CH_2 - CH_2$

Escriba para cada compuesto el isómero que corresponda:

- a) Isómero de posición de CH₃CHClCH₃.
- b) Isómero de cadena de CH₃CH₂CH₂CH₃.
- c) Isómero de función de CH₃CH₂OH.
- QUÍMICA. 2013. RESERVA 4. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

- a) CH₃CH₂CH₂Cl 1-cloropropano
- b) CH₃CH(CH₃)CH₃ metilpropano
- c) CH₃OCH₃ Dimetil eter

Dado el siguiente compuesto $CH_3-CH_2-CHOH-CH_3$, diga justificando la respuesta si las siguientes afirmaciones son verdaderas o falsas:

- a) El compuesto reacciona con ${\rm H_2SO_4}$ concentrado para dar dos compuestos isómeros geométricos.
- b) El compuesto no presenta isomería óptica.
- c) El compuesto adiciona H₂ para dar CH₃-CH₂-CH₂-CH₃
- QUÍMICA. 2013. SEPTIEMBRE. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

- a) Verdadera. El compuesto que se obtiene en la deshidratación del butan-2-ol es el but-2-eno, que presenta isomería geométrica.
- b) Falsa. El butan-2-ol tiene un carbono asimétrico y, por lo tanto, tiene isomería óptica.
- c) Falsa. Ya que al no tener doble enlace no puede adicionar hidrógeno.