Université Chouaib Doukkali Faculté des Sciences - EL JADIDA Département de Mathématiques

Année Universitaire 2023/24

Niveau : Algèbre 2 (MIP & IA)

Série 2

Exercice 1. Soient \mathcal{E} un ensemble non vide et F un espace vectoriel. Montrer que \mathcal{E} est un espace affine de direction F si et seulement si \mathcal{E} est muni d'une loi externe + qui à un couple (A, \overrightarrow{u}) de $\mathcal{E} \times F$ associe un élément $A + \overrightarrow{u}$ de \mathcal{E} vérifiant les axiomes suivantes :

1.
$$\forall A \in \mathcal{E}, \forall \overrightarrow{u}, \overrightarrow{v} \in F, A + (\overrightarrow{u} + \overrightarrow{v}) = (A + \overrightarrow{u}) + \overrightarrow{v}$$

2.
$$\forall A, B \in \mathcal{E}, \exists ! \overrightarrow{u} \in F, B = A + \overrightarrow{u}$$

Dans ce cas, \mathcal{E} est de direction F.

Exercice 2. Soit \mathcal{E} un espace affine et soit \mathcal{F} une partie non vide de \mathcal{E} .

1. On suppose que \mathcal{F} un sous espace affine de \mathcal{E} de direction $\overrightarrow{\mathcal{F}}$ et soit A un point quelconque de \mathcal{F} . Montrer que

$$\{\overrightarrow{AM}/M \in \mathcal{F}\} = \{\overrightarrow{MN}/M, N \in \mathcal{F}\}$$

et donc l'ensemble $\overrightarrow{\mathcal{F}}$ ne dépend pas du point A.

2. On suppose que \mathcal{F} un sous espace affine de \mathcal{E} de direction $\overrightarrow{\mathcal{F}}$ et soit A un point de \mathcal{F} . Montrer que

$$M \in \mathcal{F} \Longleftrightarrow \overrightarrow{AM} \in \overrightarrow{\mathcal{F}}.$$

3. Montrer que \mathcal{F} est un sous espace affine de \mathcal{E} si et seulement si il existe $A \in \mathcal{F}$ et un sous-espace vectoriel $\overrightarrow{\mathcal{G}}$ de $\overrightarrow{\mathcal{E}}$ tel que $\mathcal{F} = A + \overrightarrow{\mathcal{G}}$. Dans ce cas, $\overrightarrow{\mathcal{G}}$ est la direction de \mathcal{F} .

4. En déduire que \mathcal{F} est un sous-espace affine de \mathcal{E} si et seulement si il existe un point A de \mathcal{F} tel que l'ensemble $\overrightarrow{G} = \{\overrightarrow{AM}/M \in \mathcal{F}\}$ est un sous-espace vectoriel de $\overrightarrow{\mathcal{E}}$.

Exercice 3.

1. Montrer que l'ensemble des solutions S d'un système d'équations linéaires

compatible à n inconnues (S) est un sous espace affine de \mathbb{R}^n de direction l'ensemble des solutions S_0 du système homogène associé.

2. Généralement, si dim $(\mathcal{E}) = n$, $\mathcal{R} = (A, \mathcal{B})$ un repère cartésien de \mathcal{E} et (S) un système d'équations linéaires compatible à n inconnues. Alors l'ensemble \mathcal{F} des points $M = (x_1, \ldots, x_n)_{\mathcal{R}}$ tels que $(x_1, \ldots, x_n) \in S$ est un sous espace affine de \mathcal{E} de direction $\overrightarrow{\mathcal{F}} = \{(x_1, \ldots, x_n)_{\mathcal{B}}/(x_1, \ldots, x_n) \in S_0\}$.

Exercice 4. Montrer que

- 1. L'ensemble $F=\{(x,y,z,t)\in\mathbb{R}^4/x+y=1,2x+y+z+t=2\text{ et }x+y+2z-t=1\}$ est un sous espace affine de \mathbb{R}^4 .
- 2. L'ensemble $G=\{(x-2y+z-1,y+z,2x+3y-z\sqrt{2})/x,y,z\in\mathbb{R}\}$ est un sous espace affine de \mathbb{R}^3 .

Exercice 5.

1. Montrer que l'ensemble

$$H = \{ P \in \mathbb{R}_3[X]/4P(X) = P(X+1) + XP'(X) + Q(X) \}$$

est un sous espace affine de $\mathbb{R}_3[X]$ où $Q(X) = 1 + X + 2X^2$.

- 2. Déterminer un repère cartésien \mathcal{H} de H et la dimension de H.
- 3. Soit $P = aX^3 + bX^2 + cX + d \in H$. Déterminer les coordonnées de P dans le repère \mathcal{H} .

Exercice 6. Soient \mathcal{E} et \mathcal{F} deux espaces affines quelconques et soit G un espace vectoriel. Les propositions suivantes sont-elles vraies ou fausses? Justifier.

- 1. Si $A \in \mathcal{E}$ alors $\{A\}$ est un sous espace affine de \mathcal{E} .
- 2. Un espace affine de dimension 0 est un point.
- 3. Un sous-espace vectoriel de G est un sous-espace affine de G.
- 4. Un sous-espace affine de G est un sous-espace vectoriel de G.
- 5. Un sous-espace affine de G passant par $\overrightarrow{0}$ est un sous-espace vectoriel de G.
- 6. Soient \mathcal{H} et \mathcal{T} deux sous-espaces affines de \mathcal{E} de même dimension. Si $\mathcal{H} \subseteq \mathcal{T}$ alors $\mathcal{H} = \mathcal{T}$

- 7. Si \mathcal{H} est un sous-espace affine de \mathcal{E} et si A et B sont deux points distincts de \mathcal{H} alors la droite (AB) est contenue dans \mathcal{H} .
- 8. On suppose que $\dim(\mathcal{E}) \geq 1$. Si $A \in \mathcal{E}$ alors il existe au moins une droite \mathcal{D} de \mathcal{E} qui passe par A.
- 9. On suppose que $\dim(\mathcal{E}) \geq 2$. Si $A, B \in \mathcal{E}$ alors il existe au moins un plan \mathcal{P} de \mathcal{E} qui passe par A et B.
- 10. On suppose que $\dim(\mathcal{E}) \geq 2$. Si \mathcal{D} est une droite de \mathcal{E} alors il existe au moins un plan \mathcal{P} de \mathcal{E} qui contient \mathcal{D} .
- 11. On suppose que $\dim(\mathcal{E}) \geq 2$. Si \mathcal{D} est une droite de \mathcal{E} et A un point de \mathcal{E} qui n'appartient pas à \mathcal{D} , alors il existe un unique plan \mathcal{P} de \mathcal{E} qui contient \mathcal{D} et qui passe par A.
- 12. On suppose que $\dim(\mathcal{E}) \geq 2$. Trois points alignés sont coplanaires.
- 13. On suppose que $\dim(\mathcal{E}) \geq 2$. Si $A \in \mathcal{E}$ et \mathcal{D} une droite de \mathcal{E} alors A et \mathcal{D} sont coplanaires.
- 14. $\mathcal{E} \times \mathcal{F}$ est un espace affine.
- 15. L'image d'un sous-espace vectoriel de G par une translation est un sous-espace vectoriel de G.

Exercice 7. La partie $E = \{x \in \mathbb{R}/x > 0\}$ de \mathbb{R} est-elle un sous-espace affine de \mathbb{R} ?

Exercice 8. Montrer que

- i) Si \mathcal{F} et \mathcal{G} sont parallèles, alors \mathcal{F} et \mathcal{G} sont confondus ou bien leur intersection est vide.
- ii) Si \mathcal{F} est faiblement parallèle à \mathcal{G} , alors \mathcal{F} est contenu dans \mathcal{G} ou \mathcal{F} ne rencontre pas \mathcal{G} .

Exercice 9. Montrer que

- 1) les points A, B et C sont alignés si et seulement si la famille $\{\overrightarrow{AB}, \overrightarrow{AC}\}$ est liée.
- 2) les points A, B, C et D sont coplanaires si et seulement si la famille $\{\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\}$ est liée.

Exercice 10. Soient les points pondérés $(A_i, \lambda_i)_{1 \le i \le k}$ avec $\sum_{i=1}^k \lambda_i \ne 0$.

Montrer qu'il existe un unique point $G \in \mathcal{E}$ tel que $\sum_{i=1}^k \lambda_i \overrightarrow{GA_i} = \overrightarrow{0}$. Dans ce cas on a

$$\overrightarrow{OG} = \frac{\sum_{i=1}^{k} \lambda_i \overrightarrow{OA_i}}{\sum_{i=1}^{k} \lambda_i}.$$

où O est un point quelconque.

Exercice 11. Dans l'espace muni d'un repère orthonormé, montrer que la droite $D = D((1, 2, 0), \overrightarrow{u} = (2, -1, 2))$ est faiblement paralléle au plan P: 2x + 6y + z + 5 = 0 est perpendiculaire au plan P': -2x + y - 2z + 3 = 0.

Exercice 12. Dans l'espace muni d'un repère orthonormé, montrer que le plan P: 2x+6y+z+5=0 est perpendiculaire au plan P': -2x+y-2z+3=0.

Exercice 13. Soit \mathcal{E} un espace affine quelconque.

- 1. Montrer que l'image d'un sous espace affine de \mathcal{E} par une translation de \mathcal{E} est un sous espace affine de \mathcal{E} parallèle à ce sous-espace affine.
- 2. Montrer que l'image d'un sous espace affine de \mathcal{E} par une homothétie de \mathcal{E} est un sous espace affine de \mathcal{E} parallèle à ce sous espace affine.

Exercice 14. (Bases affines)

Soit \mathcal{E} un espace affine de direction F.

- 1. Une famille $(M_1, ..., M_n)$ de points de \mathcal{E} est dite affinement génératrice lorsque tout point de E peut s'exprimer comme barycentre des M_i .
- Montrer que $(M_1, ..., M_n)$ est affinement génératrice si et seulement si la famille de vecteurs $(\overrightarrow{M_1M_2}, \overrightarrow{M_1M_3}, ..., \overrightarrow{M_1M_n})$ est génératrice.
- 2. Une famille $(M_1, ..., M_n)$ de points de \mathcal{E} est dite affinement libre lorsqu'aucun des points M_i ne peut s'exprimer comme barycentre des autres points. Montrer que $(M_1, ..., M_n)$ est affinement libre si et seulement si la famille de vecteurs $(\overrightarrow{M_1M_2}, \overrightarrow{M_1M_3}, ..., \overrightarrow{M_1M_n})$ est libre.
- 3. Une famille $(M_1, ..., M_n)$ de points de \mathcal{E} est dite une base affine lorsqu'elle est affinement génératrice et libre.
- a) Montrer que si $(A_0, ..., A_m)$ est une base affine de \mathcal{E} de dimention m, alors $(A_0, \overrightarrow{A_0A_1}, \overrightarrow{A_0M_2}, ..., \overrightarrow{A_0A_m})$ est un repère cartésien de \mathcal{E} .

b) Réciproquement, si $(A, \overrightarrow{u_1}, \dots, \overrightarrow{u}_m)$ est un repère cartésien de \mathcal{E} , alors en posant $A_i = A + \overrightarrow{u_i}$, la famille (A, A_1, \dots, A_m) est une base affine.

""Ainsi, une base affine fournit naturellement des repères cartésien""

- 4. Soit $(A_0, ..., A_m)$ est une base affine de \mathcal{E} et soit M un point de \mathcal{E} . Si M est le barycentre des (A_i, λ_i) , on dit que $(\lambda_0, ..., \lambda_m)$ sont les coordonnées barycentriques du point M dans la base affine $(A_0, ..., A_m)$.
- a) Montrer que si $(\lambda_0, \ldots, \lambda_m)$ et $(\alpha_0, \ldots, \alpha_m)$ sont des coordonnées barycentriques de M alors il existe $\beta \in \mathbb{R}^*$ tel que $(\lambda_0, \ldots, \lambda_m) = \beta(\alpha_0, \ldots, \alpha_m)$.
- b) Il y a unicité des coordonnées barycentriques si on impose $\sum \lambda_i = 1$. Dans ce cas les coordonnées sont dites normalisées.
- ""Ainsi, on peut repérer les points de $\mathcal E$ de manière différente que le repérage en coordonnées cartésiennes""