Tutorial-4: Vector Spaces CZ1104 2020-2021

Presented by: Svetlana (Lana) Obraztsova

Problem-1: Matrix Subspace

Required:

An $n \times n$ matrix A is said to be symmetric if $A^T = A$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3 \times 3}$, the vector space of all 3×3 matrices.

Solution:

Check for the requirements of a subspace:

- (i) Zero "vector" is the 3×3 zero matrix, which is symmetric and, hence, is in S.
- (ii) Let A and B in S, with $A = A^T$ and $B = B^T$. $(A+B)^T = A^T + B^T = A + B$. A+B is symmetric and in S.
- (iii) Let A be in S and c a scalar. $(cA)^T = cA^T = cA$. $\therefore cA$ is also symmetric and, hence, in S.

Problem-2: Affine Spaces

Required:

- (a) Let P be the plane in \mathbb{R}^3 with equation x+y-2z=4. Find two vectors in P and check that their sum is **not** in P.
- (b) Let P_0 be the plane through (0,0,0) and parallel to P. Write the equation for P_0 . Find two vectors in P_0 and check that their sum is **in** P_0 .

- (a) The plane does **not** go through (0,0,0). The sum of (4,0,0) and (0,4,0) is **not** on the plane.
- (b) The parallel plane P_0 has the quation x+y-2z=0. Pick two points, say, (2,0,1) and (0,2,1). Their sum (2,2,2) is in P_0 .

Problem-3: Subspace intersection

Required:

Let H and K be subspaces of a vector space V. The intersection of H and K, written as $H\cap K$, is the set of vectors $v\in V$ that belong to both H and K. Show that $H\cap K$ is a subspace of V.

Solution:

Check for the requirements of a subspace:

- (i) Both H and K contain the zero vector, because they are subspaces of V. Thus, zero vector of V is in $H\cap K$.
- (ii) Let \vec{u} and \vec{v} be in $H \cap K$. Then \vec{u} and \vec{v} are in H. Since H is a subspace, $\vec{u} + \vec{v}$ is in H. Likewise, \vec{u} and \vec{v} are in K, and, since K is a subspace, $\vec{u} + \vec{v}$ is in K. Thus $\vec{u} + \vec{v}$ is in $H \cap K$.
- (iii) Let \vec{u} be in $H\cap K$. Then \vec{u} is in H. Since H is a subspace, $c\vec{u}$ is in H. Likewise, \vec{u} is in K, and K is a subspace, so that $c\vec{u}$ is in K. Thus, $c\vec{u}$ is in $H\cap K$.

Therefore, $H \cap K$ is a subspace.

Problem-4: Vector Space Proper

Required:

Determine if the following set is a vector space:

$$W = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : \begin{array}{ccc} a - 2b & = & 4c \\ 2a & = & c + 3d \end{array} \right\}$$

Solution:

The set W is the set of all solutions to the homogeneous equations:

$$\begin{array}{rcl} a - 2b - 4c & = & 0 \\ 2a - c - 3d & = & 0 \end{array}$$

I.e.,
$$W=\mathbf{N}(A)$$
, the null space of $A=\begin{bmatrix}1&-2&-4&0\\2&0&-1&-3\end{bmatrix}$.

 \therefore W is a subspace of \mathbb{R}^4 and is a vector space.

Problem-5: Matrices and Spaces (part 1)

Required:

Find the matrix A if the following set is C(A):

$$\left\{ \begin{bmatrix} 2s+3t\\ r+s-2t\\ 4r+s\\ 3r-s-t \end{bmatrix} : r,s,t \text{ real} \right\}$$

Solution:

An element in this set may be written as:

$$r \begin{bmatrix} 0 \\ 1 \\ 4 \\ 3 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 1 \\ -1 \end{bmatrix} + t \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} r \\ s \\ t \end{bmatrix} = A \begin{bmatrix} r \\ s \\ t \end{bmatrix},$$

where r, s, t are any real numbers.

 \therefore The set is $\mathbf{C}(A)$, the column space of A.

Problem-6: Matrices and Spaces (part 2)

Required:

For the matrix
$$D = \begin{bmatrix} 2 & -6 \\ -1 & 3 \\ -4 & 12 \\ 3 & -9 \end{bmatrix}$$
, find a nonzero vector in $\mathbf{N}(D)$ and a

nonzero vector in C(D).

Solution:

Either column of D is a non-zero vector in $\mathbf{C}(D)$. To find a non-zero vector in $\mathbf{N}(D)$, find the general solution of $D\mathbf{x} = 0$ in terms of the free variables.

where x_2 is a free variable. Say, $x_2 = 1$, then $\boldsymbol{x} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is in $\mathbf{N}(D)$.

Problem-7: Subspace basis (part 1)

Required:

Find the basis for the set of vectors in \mathbb{R}^3 in the plane x+2y+z=0.

Solution:

Let A = [1, 2, 1]. We wish to find a basis for $\mathbf{N}(A)$. The general solution of $A\mathbf{x} = 0$ in terms of free variables is x = -2y - z.

$$\therefore \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = y \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix},$$

and a basis for
$$\mathbf{N}(A)$$
 is $\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$

Problem-8: Subspace basis (part 2)

Required:

Let
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$ and $H = Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. It can be verified that $4\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3 = 0$. Find a basis for H .

Solution:

Since $4\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3 = 0$, each of the vectors is a linear combination of the others. Thus, the sets $\{\mathbf{v}_1, \mathbf{v}_2\}$, $\{\mathbf{v}_1, \mathbf{v}_3\}$ and $\{\mathbf{v}_2, \mathbf{v}_3\}$ all span H. None of the vectors is a multiple of any of the others. Thus the sets $\{\mathbf{v}_1,\mathbf{v}_2\}, \{\mathbf{v}_1,\mathbf{v}_3\}$ and $\{\mathbf{v}_2,\mathbf{v}_3\}$ are linearly independent.

Therefore, each set forms a basis for H.

Problem-9: Vector Space of Polynomials

Required:

Consider the polynomials $p_1(t)=1+t, p_2(t)=1-t$ and $p_3(t)=2$ (for all t). By inspection, write a linear dependence relation among p_1 , p_2 and p_3 . Then find a basis for $Span\{p_1, p_2, p_3\}$.

Solution:

By inspection, $p_3=p_1+p_2$ or $p_1+p_2-p_3=0$. By the Spanning Set Theorem, $Span\{p_1,p_2,p_3\}=Span\{p_1,p_2\}$. Since neither p_1 nor p_2 is a multiple of the other, they are linearly independent. $\therefore \{p_1,p_2\}$ is a basis for $Span\{p_1,p_2,p_3\}$.

Problem-10: Coordinate systems

Required:

Use an inverse matrix to find the ${\mathcal B}$ -coordinate of the vector x, i.e., $[x]_{{\mathcal B}}$,

for
$$\mathcal{B} = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 6 \end{bmatrix} \right\}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ -6 \end{bmatrix}$

Solution:

Since $P_{\mathcal{B}}^{-1}$ converts x into its \mathcal{B} -coordinate vector:

$$[\boldsymbol{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \boldsymbol{x} = \begin{bmatrix} 3 & -4 \\ -5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ -6 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ -5/2 & -3/2 \end{bmatrix} \begin{bmatrix} 2 \\ -6 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Problem-11: Subspace dimension

Required:

Find the dimension of the subspace H of \mathbb{R}^2 spanned by

$$\begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 10 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix}.$$

Solution:

$$A = \begin{bmatrix} 2 & -4 & -3 \\ -5 & 10 & 6 \end{bmatrix} \xrightarrow{r_2 \leftarrow \frac{2}{5}r_2 + r_1} \begin{bmatrix} 2 & -4 & -3 \\ 0 & 0 & -3/5 \end{bmatrix}$$

The matrix has 2 pivot columns

 $\therefore \dim (\mathbf{C}(A))$ [which is the dimension of H] is 2.

Problem-12: Null and Column (Image) Spaces (part 1)

Required:

Determine the dimensions of $\mathbf{N}(A)$ and $\mathbf{C}(A)$ for $A = \begin{bmatrix} 1 & 0 & 9 & 5 \\ 0 & 0 & 1 & -4 \end{bmatrix}$.

Solution:

The matrix is in row echelon form.

There are 2 pivot columns.

 $\therefore \dim \mathbf{C}(A) = 2.$

There are 2 columns without pivots $\Rightarrow Ax = 0$ has two free variables.

$$\therefore \dim \mathbf{N}(A) = 2.$$

Problem-13: Null and Column (Image) Spaces (part 2)

Required:

If a 3×8 matrix A has rank 3, find $\dim \mathbf{N}(A)$, $\dim \mathbf{C}(A^T)$, and rank of A^T .

Solution:

By the Rank Theorem, $\dim \mathbf{N}(A) = 8 - rank(A) = 8 - 3 = 5$ $\dim \underbrace{\mathbf{C}(A^T)}_{\text{row space}} = rank(A) = 3$ Since $rank(A^T) = \dim \mathbf{C}(A^T) = 3$

Problem-14: Null and Column (Image) Spaces (part 3)

Required:

Suppose the solutions of a homogeneous system of 5 linear equations in 6 unknowns are all multiples of 1 nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations?

Solution:

Consider the system Ax = 0, where A is 5×6 .

Since there is only 1 non-zero solution, $\dim \mathbf{N}(A) = 1$.

From the Rank Theorem, $rank(A) = 6 - \dim \mathbf{N}(A) = 5$.

 $\therefore \dim \mathbf{C}(A) = rank(A) = 5.$

Since C(A) is a subspace of \mathbb{R}^5 , $C(A) = \mathbb{R}^5$.

- \Rightarrow every vector $\mathbf{b} \in \mathbb{R}^5$ is also in $\mathbf{C}(A)$
- $\Rightarrow Ax = \mathbf{b}$ has a solution for all \mathbf{b} .

Problem-15: More on rank

Required:

Verify that the rank of
$$\mathbf{u}\mathbf{v}^T \leq 1$$
 if $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

Solution:

$$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 2\\ -3\\ 5 \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 2a & 2b & 2c\\ -3a & -3b & -3c\\ 5a & 5b & 5c \end{bmatrix}$$

Each column of $\mathbf{u}\mathbf{v}^T$ is a multiple of $\mathbf{u}\Rightarrow\dim\mathbf{C}(\mathbf{u}\mathbf{v}^T)=1$, unless a=b=c=0, in which case $\mathbf{u}\mathbf{v}^T$ is the 3×3 zero matrix and $\dim\mathbf{C}(\mathbf{u}\mathbf{v}^T)=0$.

In either case, $rank(\mathbf{u}\mathbf{v}^T) = \dim \mathbf{C}(\mathbf{u}\mathbf{v}^T) \le 1$.

Problem-16: More on coordinates

Required:

Let $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be bases for V and suppose that $\mathbf{a}_1 = 4\mathbf{b}_1 - \mathbf{b}_2, \mathbf{a}_2 = -\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$ and $\mathbf{a}_3 = \mathbf{b}_2 - 2\mathbf{b}_3$.

- (a) Find the change-of-coordinate matrix from ${\mathcal A}$ to ${\mathcal B}$.
- (b) Find $[x]_{\mathcal{B}}$ for $x = 3a_1 + 4a_2 + a_3$.

Problem-16: More on coordinates

Required:

Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3\}$ be bases for V and suppose that $a_1 = 4b_1 - b_2, a_2 = -b_1 + b_2 + b_3$ and $a_3 = b_2 - 2b_3$.

- (a) Find the change-of-coordinate matrix from ${\mathcal A}$ to ${\mathcal B}.$
- (b) Find $[x]_{\mathcal{B}}$ for $x = 3a_1 + 4a_2 + a_3$.

(a)
$$\mathbf{a}_{1} = 4\mathbf{b}_{1} - \mathbf{b}_{2}, \mathbf{a}_{2} = -\mathbf{b}_{1} + \mathbf{b}_{2} + \mathbf{b}_{3} \text{ and } \mathbf{a}_{3} = \mathbf{b}_{2} - 2\mathbf{b}_{3}$$

$$\therefore [\mathbf{a}_{1}]_{\mathcal{B}} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}, [\mathbf{a}_{2}]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, [\mathbf{a}_{3}]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

$$\therefore P_{\mathcal{B} \leftarrow \mathcal{A}} = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$

Problem-16: More on coordinates

Required:

Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3\}$ be bases for V and suppose that $a_1 = 4b_1 - b_2, a_2 = -b_1 + b_2 + b_3$ and $a_3 = b_2 - 2b_3$.

- (a) Find the change-of-coordinate matrix from ${\mathcal A}$ to ${\mathcal B}.$
- (b) Find $[x]_{B}$ for $x = 3a_1 + 4a_2 + a_3$.

(b)
$$\mathbf{x} = 3\mathbf{a}_1 + 4\mathbf{a}_2 + \mathbf{a}_3 \Rightarrow [\mathbf{x}]_{\mathcal{A}} = \begin{bmatrix} 3\\4\\1 \end{bmatrix}$$
.

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{A}}[\mathbf{x}]_{\mathcal{A}} = \begin{bmatrix} 4 & -1 & 0\\-1 & 1 & 1\\0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 3\\4\\1 \end{bmatrix} = \begin{bmatrix} 8\\2\\2 \end{bmatrix}$$