Tota	l No.	f Questions : 4] SEAT No. :		
PB ²	19	[6268]-213 [Total No. of Pages : 2		
S.E. (Electronics / E & TC/Electronics & Computer Engg.) (Insem) PRINCIPLES OF COMMUNICATION SYSTEMS				
	: 1 H	(2019 Pattern) (Semester - IV) (204193) ur] s to the candidates:		
	2) I	nswer Q.1 or Q.2, Q.3 or Q.4. eat diagrams must be drawn whenever necessary. igures to the right indicate full marks. ssume suitable data, if necessary.		
	-/ -			
Q1)	a)	Define fourier transform. Obtain the fourier transform of the following signals. [5] $X(t) = \cos \omega_c t.u(t)$		
	b)	With a neat block diagram explain the working of an eletronic communication system. [5]		
	c)	Define energy signal. Find the energy of the following signal, $X(t) = 2e^{-10t}$. $u(t)$. [5]		
Q2)	a)	Explain the following signals with an example Discrete time signal Digital signal Odd signal, and Deterministic signal		
	b)	Define power signal. Find the power of the following signal, $X(t) = A \cos (\omega_0 t + \theta)$ [5]		
	c)	Define fourier transform. State and explain any two properties of the Fourier transform. [5]		

P.T.O.

0.21	,	
<i>Q3</i>)	a)	Compare DSB-FC AM and SSB-SC AM with respect to any five parameters. [5]
	b)	An AM transmitter has carrier of 500W, which is modulated up to a depth of 40%. Find the total power in the transmitted wave and also the power efficiency in the following cases, i) Standard AM (DSBFC)
		ii) SSB-SC AM [5]
	c)	Explain the working of the super heterodyne AM receiver with the help of neat block diagram. [5]
		OR
Q4)	a)	Explain the working of envelope detector for detection of amplitude modulated signal with the help of neat waveforms and circuit diagram.[5]
	b)	Explain vestigial sideband modulation. [5]
	c)	Calculate the percentage power saving for a DSB-SC signal for the percent modulation of
		i) 100% and
		ii) 50% [5]
		* * *
		ii) 50% [5]
		6.