Problema com processador de ciclo longo

Aritmética

ciclo longo:

HEPR Dento de Informática

HEPR Dento de Informática

todas instruções demoram tanto quanto a mais lenta memória real é mais lenta que a idealizada

ci212 — processador multiciclo 2010-2

Redução no ciclo de relógio

"Corta" grafo de dependência e insere registrador faz mesmo trabalho em dois ciclos curtos ao invés de um longo

ci212 — processador multiciclo 2010-2

Redução no ciclo de relógio

lógica de próxPC:

PC ← desv? PC+desl : PC+4

busca de instrução:

 $instrReg \leftarrow mem[PC]$

acesso aos operandos/Regs:

 $A \leftarrow R[rs], B \leftarrow R[rt]$

execução:

res $\leftarrow A + B$

acesso à memória:

 $M[res] \leftarrow R[rt]$

 $R[rt] \leftarrow M[res]$

Redução no ciclo de relógio

Adicionar registradores entre os menores passos

registradores inseridos para balancear duração do ciclo de relógio → atrasos similares entre os regs

registradores mantém informação necessária para uso posterior

HEPR Dento de Informática

ci212 - processador multicicle

2010-2

Circuito de dados multiciclo

No quarto passo de projeto, as transferências entre registradores (TR) lógicas devem ser mapeadas em TR físicas

addu rd,rs,rt $\# R[rd] \leftarrow R[rs] + R[rt]$; PC $\leftarrow PC+4$

 $\mathsf{busca} \colon \mathsf{RI} \Leftarrow \mathsf{mem}[\mathsf{PC}] \; ; \; \mathsf{PC} \Leftarrow \mathsf{PC} {+} \mathsf{4}$

 $\mathsf{decod} \colon \mathsf{A} \leftarrow \mathsf{regs}[\mathsf{rs}] \; ; \; \mathsf{B} \leftarrow \mathsf{regs}[\mathsf{rt}]$

exec: res \Leftarrow A + B

resul: regs[rt] ← res

2010-2

Projeto do processador multiciclo

- Vários ciclos de relógio por instrução
- recursos do circuito de dados podem ser usados mais de uma vez
- ∄ replicação de recursos
- mesmos cinco passos de projeto:
 - * análise do conjunto de instruções c.r.a fluxo de dados
 - * seleção de componentes e metodologia de sincronização
 - * circuito de dados
 - * análise do circuito de dados c.r.a fluxo de controle
 - * circuito de controle

Projeto de CPU em 5 passos

- 1. Analise o conj de intruções ⇒ requisitos de projeto
 - * semântica das instruções como transferências de registradores
 - * circuito deve conter armazenadores para registradores do CdI
 - * circuito deve conter registradores para valores intermediários
 - * circuito de dados deve permitir todas as transferências
- 2. selecione componentes e estabeleça a metodologia de sincronização um ciclo curto por fase de execução
- 3. "monte" o circuito de dados que satisfaça aos requisitos
- 4. analise as instruções para determinar os pontos de controle que afetam as transferências de registradores
- 5. construa a lógica de controle

TIEPP Dento de Informática

ci212 — processador multiciclo 2010

Primeiro passo: subconjunto do CdI do MIPS

busca	$op:rs:rt:rd:sham:fun \Leftarrow M[PC]$			
	$op : rs : rt : imed \Leftarrow M[PC]$			
INSTRUÇÃO	DESCRIÇÃO			
addu rd,rs,rt	$R[rd] \leftarrow R[rs] + R[rt];$	PC← PC+4		
subu rd,rs,rt	$R[rd] \leftarrow R[rs] - R[rt];$	PC← PC+4		
ori rt,rs,im16	$R[rt] \leftarrow R[rs] \lor zExt(im16);$	PC← PC+4		
lw rt,de16(rs)	$R[rt] \Leftarrow M[R[rs] + sExt(de16)];$	PC← PC+4		
sw rt,de16(rs)	$M[R[rs] + sExt(de16)] \Leftarrow R[rt];$	PC← PC+4		
beq rs,rt,de16	$if (R[rs] \equiv R[rt]) PC \Leftarrow PC+4+\{sExt(de16),00\}$			
	else PC \Leftarrow PC+4			

quais as diferenças c.r. ao projeto com ciclo longo?

HEPR Nento de Informática

Segundo Passo – seleção de componentes

Memória

ci212 — processador multiciclo

- * uma porta pode ser usada para instruções e para dados
- registradores (32 de 32bits)
 - ★ Ier RS
 - ★ ler RT
 - ★ escrever RT ou RD

leitura e escrita em ciclos distintos

2010-2

- expansor do sinal/zero (para imediato)
- PC
- ULA efetua TODAS operações lógicas/aritméticas
 - * adiciona 4 ao PC
 - * operações das instruções ADDU, SUBU, ORI
 - \star cálculo de endereço efetivo em LD, ST, BEQ

2º Passo – circuito de dados

registradores em vermelho são temporários que acumulam resultados parciais

estes registradores são invisíveis ao programador

LIEPR Dento de Informática 2010-2 ci212 - processador multiciclo

2º Passo – circuito de dados

Ao final de cada ciclo do relógio, dados são armazenados em registradores invisíveis, para uso nos próximos ciclos o conteúdo destes é usado numa mesma instrução

Dados são transmitidos de instrução para instrução através dos registradores visíveis (\$0..\$31, PC)

registrador de instrução - mantém instrução após busca regDadosMem registrador de dados da memória – mantém dado lido da memória (≠ instrução) A.B mantém operandos lidos do bloco de registradores **ALUout** mantém valor computado pela ALU (> 1 / instrução) todos exceto INST são atualizados na borda do relógio

LIEPR Dento de Informática

2º Passo – metodologia de sincronização

- A cada ciclo de relógio pode ocorrer uma (e só uma) dentre acesso à memória operação de ULA acesso ao bloco de registradores
- limita o período do ciclo à latência da operação mais demorada que é o acesso à memória:

200 ps – acesso à memória

ci212 — processador multiciclo

100 ps - operação de ULA

50 ps – acesso ao bloco de registradores

• os registradores invisíveis são atualizados na borda final do ciclo; escrever/ler o bloco de registradores é demorado porque bloco de regs é uma estrutura complexa

Terceiro passo – busca

Busca instrução & incrementa contador de programa

```
INST := Mem[PC]; /* registrador de instrução */
PC ← PC + 4;
```

- incremento do PC:
 - * entrada A da ULA recebe PC
 - * entrada B da ULA recebe 4
 - * ULA efetua soma
 - * saída da ULA é carregada no PC

e em ALUout

2010-2

- carga da nova instrução:
 - * registrador de instrução INST recebe saída da memória

TIEPR Danto da Informática

ci212 — processador multiciclo

$3^{\underline{\circ}}$ passo – busca

incremento do PC carga da nova instrução

HEPR Pento de Informática 14

ci212 — processador multiciclo 2010-2

incremento do PC carga da nova instrução

3º passo – decodificação

Decodificação de instrução & acesso a registradores

```
A \leftarrow Reg[INST[25..21]]; /* entrada da ULA */B \leftarrow Reg[INST[20..16]]; /* entrada da ULA */ALUout \leftarrow PC + (extSinal(INST[15..0])<<2);
```

- leitura dos registradores
 - * copia saída do bloco de registradores nos temporários A e B
- computa (otimisticamente) endereço destino de desvio
 - * se próx intrução for BEQ, destino já estará pronto

TIEPR Danto da Informática 1

ci212 — processador multiciclo 2010-2

$3^{\underline{o}}$ passo – decodificação

leitura dos registradores cálculo do endereço de desvio

HEPR Danto de Informática 17

 ${}^{{}_{{\tiny ci212-processador\ multiciclo}}}$ 3 ${}^{{\tiny o}}$ passo – decodificação

leitura dos registradores cálculo do endereço de desvio

nnnn+4

nnn+4+D

ALUout

3º passo − execução

Execução

HEPR Dento de Informática 1

ci212 — processador multiciclo

2010-2

3º passo − execução

operação com registradores (tipo-R) cálculo de endereço efetivo ou operação com imediato carga de endereço de desvio

HEPR Dento de Informática 2010-2 ci212 — processador multiciclo 3º passo – execução, desvio tomado busca decod exec nnnn nnnn+4PC **INST** beq rs,rt,32 ALU (nnnn+4nnnn+4+ A,B R[rt] ALUout nnnn+4+32

carga de endereço de desvio

operação com registradores (tipo-R)

IIEPR Dento de Informática 22
ci212 — processador multiciclo 2010-2

3^o passo − acesso à memória

Acesso à memória

/* LW: acesso para leitura */
regDadosMem ← Mem[ALUout];
/* SW: acesso para escrita */
Mem[ALUout] ← B;

- nos dois casos ALUout contém endereço efetivo computado no estado anterior (execução)
- SW escreve direto na memória (custa um ciclo)
- LW escreve em regDadosMem porque dado chega no fim do ciclo
 → não há tempo para acessar banco de registradores

TIEPR Dento de Informática 23
ci212 — processador multiciclo 2010-2

3º passo – acesso à memória

TIEPR Danto de Informática 2

sobre-escrito em result

ci212 — processador multiciclo 2010-2

3º passo − resultado

Resultado

/* escreve resultado da execução na ALU */
Reg[INST[15..11]] := ALUout;
/* escreve resultado da leitura da memória */
Reg[INST[20..16]] := regDadosMem;

- seleciona endereço do registrador destino: \$rt ou \$rd
- seleciona fonte do valor: regDadosMem ou ALUout

HEPR Danto de Informática 26

ci212 — processador multiciclo 2010-2

3^o passo − resultado

resultado de operação de ULA armazena valor lido da memória – LW

Avaliação de desempenho

TEMPO DE PROPAGAÇÃO DOS CIRCUITOS							
memória	200ps	$ps = pico \; s = 10^{-12} s$					
ULA, somador	100ps						
registradores	50ps	duração mínima do ciclo: 200 ps					

INSTRUÇÃO	Ul	UNIDADES FUNCIONAIS OCUPADAS					
addu rd,rs,rt	mem RD	regs RD	ALU	regs WR		4	
subu rd,rs,rt	mem RD	regs RD	ALU	regs WR		4	
ori rt,rs,im16	mem RD	regs RD	ALU	regs WR		4	
lw rt,de16(rs)	mem RD	regs RD	ALU	mem RD	regs WR	5	
sw rt,de16(rs)	mem RD	regs RD	ALU	mem WR		4	
beq rs,rt,de16	mem RD	regs RD	ALU			3	

CPI = ?

TIEPR Danto de Informática 28

ci212 — processador multiciclo 2010-2

CPI do processador multiciclo

Ciclos por Instrução $=\sum_{i=1}^5 \mathsf{freqInstr}_i imes \mathsf{númEstados}_i$

• Iw \approx 20-30%

• sw \approx 5-10%

Freqüência de execução de instruções

• beq $\approx 20\%$

• alu ≈ 30%

• ori $\approx 5\%$

número de ciclos por instrução: [lw: 5, sw: 4, beq: 3, alu: 4, ori: 4]

$$CPI = 0.30*5 + 0.10*4 + 0.20*3 + 0.30*4 + 0.05*4$$

= 3.9 ciclos por instrução

 \leq 5 ciclos por instrução

IIEPR Nanto de Informática 20

ci212 — processador multiciclo 2010-2

Quarto Passo - Pontos de Controle

Quinto Passo - Implementação do Controle

Implementação:

- máquina de estados
- microprograma

HEPR Dento de Informática 31

ci212 — processador multiciclo

2010-2

5º Passo - Controle por Máquina de Estados

HEPR Danto de Informática 3

ci212 — processador multiciclo 2010-2

Exercícios

- Desenhe diagramas de tempo detalhados para todos os estados de todas as instruções;
 ok, não precisa repetir busca e decodificação
- 2. Desenhe os diagramas de estado com todos os sinais de controle ativos em cada estado. Estes diagramas são consistentes com os diagramas de tempo?
- 3. Suponha que o relógio tem ciclo de 100 ps ao invés de 200 ps os acessos à memória duram dois ciclos ao invés de um. Qual o efeito disso no CPI e no desempenho do processador?

Controle - Excessões

- Excessões eventos internos ao processador
 - * overflow
 - * instrução indefinida (opcode inválido)
 - * condição detectada durante execução da instrução
- Interrupções eventos externos ao processador
 - * periféricos necessitam atenção
 - * condição detectada entre a execução de duas instruções
- podem ser benignas (falta de página, interrupção) trata evento e continua execução
- ou malignas (opcode inválido, overflow) talvez aborta programa

Controle - Excessões

Tratamento

- * executa chamada de função assíncrona tratador para tratar evento causador da condição interrupt handler
- * salta para rotina de tratamento através de um vetor de endereços de tratadores de excessões
 - > vetor contém um ponto de entrada para cada rotina/evento
 - - e registrador de status/causa (Cause)
 - ▷ se possível, retorna para ponto onde execução foi interrompida
 ▷ senão, aborta programa

Resumo

- Cinco passos de projeto:
 - * análise do conjunto de instruções c.r.a fluxo de dados
 - * seleção de componentes e metodologia de sincronização
 - ★ projeto/construção do circuito de dados
 - * análise do circuito de dados c.r.a fluxo de controle
 - * projeto/construção do circuito de controle
- regularidade do CdI MIPS facilita/simplifica projeto
- recursos não são replicados → controle mais complexo
- uso de núm variável de ciclos por instr é mais eficiente
- Excessões são eventos internos ao processador
 - * detectadas durante a execução
 - * tratamento através do vetor de interrupções
 - ★ benignas ou malignas

TIEPR Danto da Informática

ci212 — processador multiciclo

2010-2

Processador ciclo longo × multiciclo

Considerando mesmo programa que no slide 29, qual o desempenho relativo dos dois processadores?

tempo de CPU = núm de instr \times CPI \times ciclo de relógio

$$T_{cl}=1.0 imes 600 ext{ps}=600\cdot 10^{-12}$$
 ciclo longo

$$T_m = 3.9 \times 200 \mathrm{ps} = 780 \cdot 10^{-12}$$
 multiciclo

$$T_m / T_{cl} = (NI \times CPI_m \times ReI_m) / (NI \times CPI_m \times ReI_{cl})$$

processador ciclo longo é 780/600 = 1.3 vezes mais rápido

- ⊳ grande diferença entre velocidade do dispositivo mais + lento (mem) e mais rápido (regs)
- ⊳ monociclo é pessimista porque considera pior tempo 600ps

HEPR Danto de Informática 3

ci212 — processador multiciclo 2010-2

Circuito de dados completo

