

Why

We want to talk about several objects in order.

Definition

Suppose A is a set. A list (or finite sequence, n-tuple, string, dataset) in A (or of elements from or of A) is a function

$$a:\{1,\ldots,n\}\to A.$$

In other words, a list is a family whose index set is $\{1, ..., n\}$. The length (or size) of the list is the size of its domain. The kth entry (or term, record) of A is the result a_k of k; here $k \in \{1, ..., n\}$.

Notation

Since the natural numbers are naturally ordered, we denote lists using this order, from left to right, between parentheses. For example, we denote the function $a:\{1,\ldots,4\}\to A$ by (a_1,a_2,a_3,a_4) .

Orderings and numberings

Let A be a set with |A| = n. A sequence $a : \{1, ..., n\} \to A$ is an ordering of A if a is invertible. In this case, we call the inverse a numbering of A. An ordering associates with each number a unique object and a numbering associates with each object a unique number (the object's index).

Relation to Direct Products

A natural direct product is a product of a list of sets. We denote the direct product of a list of sets A_1, \ldots, A_n by $\prod_{i=1}^n A_i$. If each A_i is the same set A, then we denote the product $\prod_{i=1}^n A_i$ by A^n . The direct product A^n is set of lists in A.

Natural unions and intersections

We denote the family union of the list of sets A_1, \ldots, A_n by $\bigcup_{i=1}^n A_i$. Similarly, we denote the intersection by $\bigcap_{i=1}^n A_i$.

Slices

An index range for a list s of length n is a pair (i,j) for which $1 \leq i < j \leq n$. The slice corresponding to (i,j) is the length j-i list s' defined by $s'_1 = s_i, s'_2 = s_{i+1}, \ldots, s'_j = s_{i+j-1}$.

We denote the (i, j)-slice of s by $s_{i:j}$. If i = 1 we use $s_{:j}$ and if j = n we use $s_{i:}$ as shorthands for the slices $s_{1:j}$ and $s_{i:n}$.

