

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ STUDIJŲ PROGRAMA

Bakalauro baigiamasis darbas

Varžymosi principais grįstų atakų aptikimas naudojant paaiškinamo dirbtinio intelekto metodą kenkėjiškų programų kontekste

Defense Against Adversarial Malware Obfuscation Attacks Using Explainable Artificial Intelligence

Liudas Kasperavičius

Darbo vadovas : prof. dr. Olga Kurasova

Recenzentas : assoc. prof. Linas Petkevičius

Turinys

Ierminų zodynas			2
Sa	Santrumpos		
Įv	adas		5
1.	Lite	ratūros apžvalga	6
	1.1.	Naudojami kenkėjiškų programų požymiai	6
		1.1.1. PE formato programų požymiai	6
		1.1.2. Baitų lygio požymiai	6
	1.2.	Perturbacijos	7
		1.2.1. Baitų lygio perturbacijos	7
		1.2.2. Semantinės perturbacijos	8
		1.2.3. Kompleksinės perturbacijos	9
	1.3.	GAN tipo modelių karkasai	10
		1.3.1. <i>MalGAN</i>	10
		1.3.2. <i>N-gram MalGAN</i>	11
		1.3.3. <i>MalFox</i>	11
	1.4.	Skatinamojo mokymosi tipo modelių karkasai	12
		1.4.1. <i>DQEAF</i>	12
		1.4.2. <i>MalInfo</i>	13
	1.5.	Genetinių algoritmų tipo modelių karkasai	14
		1.5.1. <i>AIMED</i>	14
		1.5.2. <i>GAMMA</i>	15
	1.6.	Nevalidaus PE formato problema	15
	1 7	AE perkeliamumas	16

Terminų žodynas

- **Karkasas** (angl. Framework). Nurodo specifines technologijas, naudojamus požymius ir perturbacijas, siekiamus tikslus AE generacijai. Skirtas apibrėžti procesą ir įrankius, kuriuos naudojant būtų galima generuoti nurodytų tikslų siekiančius AE 2, 6, 7, 10, 11, 12, 13, 14, 15
- **Maišymo funkcija**. Tai funkcija $f: \{0,1\}^* \to \{0,1\}^m$. Naudojama, kai iš begalinės įvesčių erdvės norima gauti fiksuoto dydžio (m) išvestį 3, 6
- **Nulinės sumos žaidimas (angl. Zero-Sum Game).** Dviejų žaidėjų žaidimas, kuriame galimas vienas laimėtojas. Laimėtojo laimėta suma yra lygi pralaimėtojo pralaimėtai sumai 10
- **Pėdsakas.** Programos struktūros ir požymių santrauka, beveik unikaliai identifikuojanti programą (pvz., maišymo funkcija) 5
- **Q-Funkcija** (angl. Q-Function). $Q: S \times A \to \mathbb{R}$, čia S galimų būsenų erdvė (angl. State Space), A galimų veiksmų erdvė (angl. Action Space) 12
- **Sprendimų priėmimo riba (angl. Decision Boundary).** Paprasčiausiems ML modeliams tai yra kreivė plokštumoje. Sudėtingesniems daugiadimensiniams modeliams daugdara (angl. manifold) 5
- **Strategija** (angl. Policy). Tai funkcija $\pi: S \times A \to \{0,1\}$, čia S galimų būsenų erdvė (angl. State Space), A galimų veiksmų erdvė (angl. Action Space). Šią funkciją RL modelis "išmoksta" mokymosi metu 12
- **Surogatinis Modelis (angl. Surrogate Model).** ML modelis, aproksimuojantis kitą ML modelį, kurio parametrai (svoriai) nėra žinomi 10, 11, 12, 13, 14, 15
- **Varžymosi principais grįstas treniravimas**. ML modelio treniravimas naudojant AE kaip mokymosi duomenis. Viena iš apsisaugojimo nuo varžymosi principais pagrįstų atakų strategijų 5
- **Varžymosi principais pagrįstos atakos (angl. Adversarial Attacks)**. Tai atakos, pritaikytos "apgauti" ML klasifikatorius 3, 5, 6, 9, 11, 12, 15, 16

Santrumpos

AE. Varžymosi principais pagrįstomis atakomis obfuskuoti kenkėjiško kodo pavyzdžiai (angl. adversarial examples) 2, 3, 5, 7, 10, 11, 13, 14, 16

API. angl. Application Programming Interface 6, 8, 10, 15

CNN. angl. convolutional neural network 11, 12

DI. Dirbtinis intelektas (angl. artificial intelligence) 5, 16

DLL. Dinamiškai susieta biblioteka (angl. dynamic link library) 6, 8, 9, 12, 15

GA. Genetiniais algoritmais pagristas ML modelis (angl. genetic algorithm) 14

GAN. Generatyviniai priešiški tinklai (angl. generative adversarial networks) 10, 11, 14

GBDT. angl. gradient boosted decision trees 11, 12, 14, 15

KNN. angl. K-Nearest Neighbours 11

ML. Mašininis mokymasis (angl. machine learning) 3, 4, 5, 6, 10, 11, 12, 13, 14, 15

NLP. Skaitmeninis natūraliosios kalbos apdorojimas (angl. natural language processing) 6

PE. angl. portable executable 2, 6, 7, 8, 15

RL. Skatinamasis mokymasis (angl. reinforcement learning) 3, 12, 13, 14

SVM. angl. support vector machine 10, 11

Įvadas

Pastaraisiais metais kenkėjiškas kodas ir programos kuriamos itin sparčiai (~450000 kenkėjiškų programų per dieną 2024 m. AV-TEST¹ duomenimis). Kenkėjiško kodo aptikimo programos, kurios tradiciškai remiasi programų pėdsakais, nespėja atnaujinti pėdsakų duomenų bazių pakankamai greitai. Dėl to DI, tiksliau mašininio mokymosi (ML), naudojimas kenkėjiškų programų ar kenkėjiško kodo aptikimo srityje tapo itin populiarus [DCB+21]. Tačiau ML modeliai, nors ir geba aptikti kenkėjiškas programas iš naujų, dar nematytų, duomenų, yra pažeidžiami varžymosi principais pagrįstoms atakoms [CSD19; HT17; RSR+18; ZHZ+22]. Šių atakų principas yra ML modelio – klasifikatoriaus – sprendimų priėmimo ribos radimas – žinant šią ribą pakanka pakeisti kenkėjiškos programos veikimą taip, kad ML modelis priimtų sprendimą klasifikuoti ją kaip nekenksmingą [DCB+21]. Nustatyta, jog šią ribą galima rasti tiek žinant klasifikatoriaus parametrus, tiek jų nežinant ir net turint labai ribotą prieigą prie klasifikatoriaus rezultatų (pvz., klasifikacijos rezultatą be tikimybių – tokios sąlygos vadinamos "juodos dėžės" atvejai) [FWL+19].

Vis tik varžymosi principais pagrįstos atakos nėra neįveikiamos. Nuolat kuriami nauji jų aptikimo metodai, tokie kaip varžymosi principais grįstas treniravimas, gradientų slėpimas ir kt. Kiekvienas metodas turi savų stiprybių ir silpnybių bei dažniausiai remiasi viena iš specifinio ML modelio įgyvendinimo savybių, kitaip tariant, nėra vieno geriausio, tinkamiausio ar teoriškai teisingo varžymosi principais pagrįstų atakų aptikimo metodo. Tiksliau, nėra pačių AE konstravimo teorinio modelio, dėl šio proceso kompleksiškumo, tad jų aptikimo strategijos teorinis modelis taip pat nėra žinomas [CAD+21]. Šiame darbe siekiama generalizuoti AE aptikimą apjungiant panašiame kenkėjiškų programų aptikimo kontekste naudojamą *LIME* [RSG16] metodą ir kitas mokslinėje literatūroje aprašytas technikas.

Tikslas – pritaikyti *LIME* metodą sėkmingų varžymosi principais grįstų atakų aptikimui ir paaiškinimui vertinant bet kokius požymius.

Uždaviniai:

- 1. Apžvelgti kenkėjiško kodo obfuskacijos metodus bei apsisaugojimo nuo jų strategijas.
- 2. Pritaikyti varžymosi principais pagrįstų atakų aptikimą dvejetainius požymių vektorius naudojantiems modeliams taikant dimensijų mažinimo metodus.
- 3. Sukurti klasifikavimo proceso praplėtimą į jį įtraukiant varžymosi principais pagrįstos atakos aptikimą.
- 4. Ištirti praplėsto klasifikavimo proceso tikslumą (angl. accuracy).

¹https://www.av-test.org/en/statistics/malware

1. Literatūros apžvalga

1.1. Naudojami kenkėjiškų programų požymiai

Varžymosi principais pagrįsta ataka taikosi į ML modeliais paremtus kenkėjiškų programų detektorius. Šie detektoriai yra klasifikatoriai – pateiktį (programą) klasifikuoja kaip kenkėjišką (angl. malicious) arba nekenkėjišką (angl. benign). Kadangi programos nėra fiksuoto dydžio, klasifikatoriai remiasi programų požymiais, kurie gaunami atliekant požymių ištraukimą (angl. feature extraction). Laikoma, jog "juodos dėžės" atvejais sužinoti, kokius tiksliai požymius vertina kenkėjiškų programų detektorius, yra neįmanoma, tad ERRORkarkasas apibrėžimuose, priklausomai nuo jų specifikos ir tikslų, neretai pateikiami jų vertinami programų požymiai. Šiame poskyryje išskiriami ir klasifikuojami mokslinėje literatūroje minimi požymiai.

1.1.1. PE formato programų požymiai

Išskiriami šie pagrindiniai PE formato programų požymiai:

- DLL vardai (arba API vardai [HT17]) [ZCY $^+$ 24]. PE faile turi būti nurodyti visi naudojami DLL ir jų API. Prieš pradedant mokyti ML modelį, atliekama visų turimų programų analizė ir nustatoma visų naudojamų DLL ar jų API aibė D. Tarkime |D|=n. Tuomet, požymių vektorius programai, naudojančiai $X\subseteq D$ DLL, bus n-matis dvejetainis vektorius, kurio i-asis elementas yra $\begin{cases} 0, & \text{jei } D_i \not\in X, \\ 1, & \text{jei } D_i \in X \end{cases}$ čia $D_i i$ -asis D elementas.
- **PE metaduomenys** [AKF⁺18]. Tai visi PE formato faile esantys metaduomenys, tokie, kaip sekcijų pavadinimai, sekcijų dydžiai, *ImportTable* ir *ExportTable* metaduomenys ir kt. Formuojant požymių vektorių skaičiuojama metaduomenų maišymo funkcija.

1.1.2. Baitų lygio požymiai

Baitų lygio požymiai gali būti ištraukiami iš bet kokio formato failų. Mokslinėje literatūroje minimi šie pagrindiniai baitų lygio požymiai:

- Prasmingų žodžių (angl. Strings) kiekis [AKF⁺18]. Prasmingus žodžius suprantame kaip turinčius prasmę žmogui (angl. human readable). Tai gali būti URL, failų keliai (angl. file paths) ar registro raktų pavadinimai. Kadangi prasmingų žodžių kiekis tėra vienas skaičius, požymių vektorius dažniausiai formuojamas prijungiant ir kitus požymius.
- **Baitų/entropijos histograma** [SB15]. Specifinis metodas, užkoduojantis dažniausiai pasikartojančias baitų ir entropijos poras *n* dimensijų vektoriumi.
- n-**gramos** [ZZY⁺22]. Dažniausiai sutinkamos skaitmeniniame natūraliosios kalbos apdorojime (NLP). Tai yra n žodžių junginiai, arba, sukompiliuotų programų apdorojimo kontekste, n

baitų junginiai. Nustatant požymių vektorių, visos n-gramos surikiuojamos pagal pasikartojimą programoje mažėjimo tvarka ("populiariausios" viršuje). Iš pirmų m reikšmių sudaromas m-matis vektorius – tai ir yra požymių vektorius.

1.2. Perturbacijos

Perturbacijos — tai pagrindinis obfuskacijos metodas AE kūrimui. Perturbacijų tikslas yra pakeisti kenkėjiškos programos veikimą išsaugant originalų funkcionalumą. Perturbacijos gali būti sudėtingos ir apimti visą programą (pvz., visos programos užšifravimas ir pridėjimas prie kitos programos), semantinės (pvz., tam tikrų mašininio kodo instrukcijų keitimas į ekvivalentų rezultatą pasiekiančias) arba baitų lygio (pvz., nulinių baitų pridėjimas programos gale) [HT17]. Perturbacijų parinkimas įeina į karkaso apibrėžimą. Šiame poskyryje aptariamos mokslinėje literatūroje minimos perturbacijos.

1.2.1. Baitų lygio perturbacijos

Pačias paprasčiausias baitų lygio perturbacijas galima taikyti bet kokio formato failams, tačiau labiau prasmingos perturbacijos taikomos PE formato failams. Išskiriamos šios pagrindinės baitų lygio perturbacijos:

- ARBE (Append Random Bytes at the End) [FWL⁺19]. PE formato failo gale pridedami atsitiktiniai baitai.
- *ARI (Append Random Import)* [FWL⁺19]. PE formato failo *ImportAddressTable* lentelėje pridedama atsitiktinai pavadinta biblioteka su atsitiktinai pavadinta funkcija.
- ARS (Append Randomly named Section) [FWL⁺19]. PE formato failo Section Table lentelėje pridedamos atsitiktinės sekcijos (sekcijos ir jų tipai yra apibrėžti PE formate).
- RS (Remove Signature) [FWL⁺19]. Sertifikato pašalinimas iš PE formato failo Certificate-Table lentelės.
- Naujas įeities taškas [AKF⁺18]. Prasidėjus programai, iškart peršokama nuo naujo įeities taško į originalųjį.
- *Header Fields* [DCB⁺21]. PE formato failo *PE Header* ir *Optional Header* dalių specifinių laukų keitimas (pvz., sekcijos pavadinimo keitimas [AKF⁺18]).
- *Partial DOS* [DCB⁺21]. PE formato failo *DOS Header* dalies pirmi 58 baitai po *MZ* skaičiaus yra nenaudojami moderniose operacinėse sistemose, tad juos galima keisti.
- *Slack Space* [DCB⁺21]. Dėl PE formato specifikos, kiekviena nauja sekcija turi prasidėti tam tikro skaičiaus, nurodyto *PE Header* dalyje, kartotiniu nuo pradžios. Kompiliatoriai šį reikalavimą išpildo sekcijų gale pridėdami tiek nulinių baitų, kiek reikia teisingam sulygiavimui pasiekti. Būtent ši nulinių baitų erdvė gali būti keičiama be jokios įtakos originaliai programai.

- *Padding* [DCB⁺21]. Nulinių baitų pridėjimas failo gale.
- *Full DOS* [DCB⁺21]. Perturbacijos esmė tokia pat, kaip ir *Partial DOS*, tik naudojami visi *DOS* dalies baitai, išskyrus *MZ* ir *PE Offset* (*Partial DOS* manipuliacijoms naudoja tik dalį tarp *MZ* ir *PE Offset*).
- *Extend* [DCB⁺21]. Pakeičiama PE formato faile *DOS* dalyje esanti *PE Offset* reikšmė į didesnę². Taip padidinama (išplečiama) visa *DOS* dalis. Tolesnis perturbacijos principas yra toks pat, kaip ir *Full DOS*.
- Shift [DCB⁺21]. PE formato failuose kiekvienas sekcijos blokas prasideda su sekcijos vieta nuo pradžios (angl. offset). Tarkime ši reikšmė yra S. Sekcijos kodas pradedamas vykdyti tik nuo adreso P + S, kur P programos pradžios adresas. Vadinasi, padidinus² S per n, atsiranda n baitų laisvos vietos iki sekcijos pradžios, kurią galima keisti be jokios įtakos programos veikimui.

1.2.2. Semantinės perturbacijos

Semantinių perturbacijų įgyvendinimas taip pat atliekamas baitų lygyje, tačiau šie pokyčiai turi aukštesnio lygio prasmę. Išskiriamos šios semantinės perturbacijos:

- Nereikalingų DLL/API vardų požymių pridėjimas [HT17]. PE formato faile ImportTable lentelėje pridedami originalios programos nenaudojami DLL/API vardai.
- Binary Rewriting [DCB+21]. Semantinis instrukcijų perrašymas. Pavyzdžiui, A+B instrukcijos pakeitimas į A-(-B).

²šios reikšmės padidinimas reiškia visos failo struktūros keitimą (*DOS* dalis yra failo pradžioje). Būtina pakeisti visų sekcijų vietas nuo pradžios (*angl. offset*) jų metaduomenyse.

1.2.3. Kompleksinės perturbacijos

Kompleksinės perturbacijos yra pritaikomos tam tikriems tikslams. Obfuskacijos ir varžymosi principais pagrįstų atakų tikslams literatūroje minimos šios kompleksinės perturbacijos:

- *Obfusmal* [ZCY⁺24]. Užšifruojama originalios programos kodo sekcija. Sukuriama ir originalios programos gale pridedama programa *Shell.dll*, kurioje laikomas atšifravimo raktas, originalios programos kodo sekcijos adresas ir dydis. Be to, *Shell.dll* geba atšifruoti originalios programos kodo sekciją ir jai perduoti kontrolę. *Shell.dll* pridedama prie naudojamų DLL, o programos pradžios taškas nustatomas į *Shell.dll* pradžios tašką. Iliustracija pateikiama 1-ame pav.
- *Stealmal* [ZCY⁺24]. Visa originali programa užšifruojama ir pridedama prie programos *Shell.exe* galo. *Shell.exe* geba atšifruoti originalią programą ir perduoti jai kontrolę. Iliustracija pateikiama 1-ame pav.
- *Hollowmal* [ZCY⁺24]. Užšifruojama visa originali programa. Ji pridedama prie kurios nors nekenksmingos programos galo. Prie šio junginio galo pridedama *Hollow.dll* programa, kurios veikiamas panašus į *Shell.exe* iš *Stealmal*. Viso junginio pradžios taškas nustatomas į *Hollow-mal.dll* pradžios tašką. Iliustracija pateikiama 1-ame pav.

1 pav. Obfusmal (a), Stealmal (b) ir Hollowmal (c) perturbacijų veikimo principų iliustracijos. Adaptuota iš $[ZHZ^+22]$

1.3. GAN tipo modelių karkasai

GAN modelių karkasai paremti generatyviniais priešiškais tinklais (GAN), kurių veikimo principas yra du neuroniniai tinklai (generatorius ir diskriminatorius), žaidžiantys nulinės sumos žaidimas [CDH+16]. Kenkėjiško kodo obfuskacijos kontekste ir ypač "juodos dėžės" atvejais, diskriminatorius atlieka surogatinis modelis vaidmenį. Bendras GAN modelių mokymosi etapas yra tokia seka [HT17; ZCY+24; ZZY+22]:

- 1. Generatorius, naudodamas požymių vektorių ir tokios pačios dimensijos "triukšmo" (angl. noise) vektorių, sugeneruoja perturbacijas.
- 2. Originali kenkėjiška programa modifikuojama pagal perturbacijas (sukuriamas AE).
- 3. Diskriminatorius klasifikuoja sugeneruotą AE (kenkėjiškas / nekenkėjiškas). Pagal klasifikacijos rezultatą skaičiuojamos diskriminatoriaus ir generatoriaus nuostolių funkcijos reikšmės (diskriminatoriaus nuostolių funkcijos reikšmė priklauso nuo tikro detektoriaus klasifikacijos).
- 4. Visa seka kartojama nustatytą kiekį kartų.

1.3.1. *MalGAN*

Tai vienas iš pirmųjų ir populiariausių GAN tipo modelių ERRORkarkasas. "Juodos dėžės" detektoriai čia apibrėžiami kaip populiarūs ML klasifikatoriai, tokie, kaip MLP (angl. Multilayer Perceptron), RF (angl. Random Forest), DT (angl. Decision Tree), SVM (angl. Support Vector Machine). MalGAN karkaso [HT17] tikslas ir apibrėžimas pateikiami 1-oje lentelėje.

1 lentelė. MalGAN karkasas

Tikslas	Efektyviai išvengti AE aptikimo, kai ML kenkėjiškų programų detektoriaus įgyvendinimas nežinomas ("juodos dėžės" atvejis).
Suro- gatinis modelis	Daugiasluoksnis tiesioginio sklidimo neuroninis tinklas – klasifikatorius. Įvestis – programos požymių vektorius. Išvestis – klasifikacija į kenksmingą arba nekenksmingą. Šis tinklas taip pat naudojamas kaip diskriminatorius GAN architektūroje.
ML mo- delis	Daugiasluoksnis tiesioginio sklidimo neuroninis tinklas. Įvestis – programos požymių vektorius ir tokios pačios dimensijos "triukšmo" vektorius. Išvestis – modifikuotas požymių vektorius. Šis tinklas naudojamas kaip generatorius GAN architektūroje.
Požymiai	MalGan straipsnyje [HT17] naudojami tik API vardų požymiai, patenkantys į PE formato programų požymių kategoriją (žr. 1.1.1.), tačiau autoriai nurodo, jog gali būti naudojami bet kokie požymiai ³ .
Perturba- cijos	Semantinės perturbacijos (1.2.2.) – nereikalingų API vardų požymių pridėjimas.

³autoriai nagrinėja "juodos dėžės" atvejį su prielaida, jog detektoriaus naudojami požymiai yra žinomi.

1.3.2. N-gram MalGAN

Šis karkasas remiasi MalGAN (1.3.1.) karkasu ir siekia jį pagerinti. N-gram MalGAN karkaso [ZZY^+22] tikslas ir apibrėžimas pateikiami 2-oje lentelėje.

2 lentelė. N-gram MalGAN karkasas

Tikslas	Supaprastinti, pagreitinti ir pagerinti varžymosi principais pagrįstas atakas. Pašalinti prielaidas ³ apie detektorių "juodos dėžės" atvejais.
Suro-	Surogatinio modelio veikimas ir architektūra tokia pati, kaip ir <i>MalGAN</i> (1.3.1.).
gatinis	
modelis	
ML mo-	Pagrindinio modelio veikimas ir architektūra labai panašūs į $MalGAN$ (1.3.1.), tačiau
delis	norėdami stabilizuoti mokymosi procesą, autoriai siūlo nenaudoti "triukšmo" vekto-
	riaus. Vietoje to, generatoriaus išvestis (n -matis vektorius) modifikuojama nekeičiant
	pirmų m dimensijų, o kitas $n-m$ pakeičiant nekenksmingų programų požymiais.
Požymiai	Baitų lygio požymiai (1.1.2.) – n -gramos.
Perturba-	Autoriai neatliko eksperimentų su perturbuotomis programomis, tačiau pažymi, jog
cijos	norint gauti sugeneruotus požymių vektorius užtenka pridėti reikiamus baitus prog-
	ramos gale. Tai atitinka $1.2.1$. apibrėžtą baitų lygio perturbaciją $ARBE$, tik šiuo
	atveju pridedami baitai nebūtų atsitiktiniai, o norimos n -gramos.

1.3.3. *MalFox*

 ${\it MalFox}$ taip pat remiasi ${\it MalGAN}$ (1.3.1.), tačiau siekia kurti AE realiomis sąlygomis, dėl to atlieka esminius pakeitimus. ${\it MalFox}$ karkaso [ZCY $^+$ 24] tikslas ir apibrėžimas pateikiami 3-oje lentelėje.

3 lentelė. MalFox karkasas

Tikslas	Generuoti AE, kurių neaptiktų komerciniai detektoriai (prieš tai aptarti karkasai eks-
	perimentams kaip nepriklausomą detektorių naudojo tokius ML modelius, kaip SVM,
	KNN, GBDT ir kt., bet ne komercinius detektorius). Šio karkaso detektorius yra Vi -
	rusTotal (viešai prieinama paslauga, agreguojanti virš 70 komercinių kenkėjiškų prog-
	ramų detektorių).
Suro-	Surogatinis modelis, kaip ir kituose GAN tipo modelių karkasuose, naudojamas kaip
gatinis	diskriminatorius. Įvestis – perturbuota programa. Išvestis – klasifikacija į kenksmingą
modelis	arba nekenksmingą. Įgyvendinimas – konvoliucinis neuroninis tinklas (CNN).
ML mo-	Standartinis GAN generatorius, požymių vektorių sujungiantis su "triukšmo" vekto-
delis	riumi. Įgyvendinimas – konvoliucinis neuroninis tinklas (CNN).

Požymiai	PE formato programų požymiai (1.1.1.) – DLL vardai.
Perturba-	Visos kompleksinės perturbacijos (1.2.3.).
cijos	

1.4. Skatinamojo mokymosi tipo modelių karkasai

Skatinamojo mokymosi (RL) modeliai susideda iš agento ir aplinkos. Aplinka susideda iš informatyvių požymių ištraukimo metodo (angl. feature extraction) ir kenkėjiškų programų detektoriaus. Šiuo atveju aplinkos būsenų erdvė S yra požymių vektorių erdvė. Agentas – tai algoritmas ar neuroninis tinklas, kurio tikslas yra surasti optimalią strategiją strategija (angl. policy) ko. Šiuo atveju strategijos veiksmų erdvė A susideda iš perturbacijų (žr. 1.2.) [FWL+19]. Bendras RL modelių mokymosi etapas yra tokia seka [FWL+19; ZHZ+22]:

- 1. Agentas, naudodamas dabartinę aplinkos būseną ir praeito veiksmo atlygį (angl. reward), parenka sekantį veiksmą iš galimų veiksmų aibės ir taiko mokymosi algoritmą (algoritmas priklauso nuo agento įgyvendinimo).
- 2. Atliekamas veiksmas perturbuojama programa arba požymių vektorius (priklauso nuo karkaso).
- 3. Gaunami aplinkos kitimo įverčiai nauja būsena ir atlygis, skaičiuojamas pagal detektoriaus klasifikacijos rezultatą.
- 4. Seka kartojama tol, kol agentas nelaiko strategijos optimalia arba nustatytą kiekį kartų.

1.4.1. *DQEAF*

Šis karkasas taiko gilųjį skatinamąjį mokymąsi, kai agentas implementuojamas kaip gilusis neuroninis tinklas. *DQEAF* karkaso [FWL⁺19] tikslas ir apibrėžimas pateikiami 4-oje lentelėje.

4 lentelė. DQEAF karkasas

Tikslas	Parodyti, jog ML kenkėjiškų programų detektoriai, ypač modeliai, išmokyti prižiūrimu mokymusi, yra pažeidžiami varžymosi principais pagrįstoms atakoms.
Suro-	RL karkasuose nenaudojami surogatiniai modeliai. Kaip "juodos dėžės" detektorius
gatinis	pasirinktas GBDT modelis.
modelis	
ML mo-	Agentas implementuotas kaip gilusis Q -tinklas (CNN praplėtimas, kai tinklas nau-
delis	dojamas kaip Q -funkcijos aproksimacija). Taip pat taikomas prioritetizuotas patirčių
	pakartojimo metodas (angl. prioritized experience replay), kuomet agentas mokomas
	tik su aukštą atlygį gavusiais perėjimais ($S imes A$).

Požymiai	Požymių vektorius taip pat apibrėžia visų būsenų erdvę S . Šiuo atveju $S=\mathbb{R}^{513}$.
	Baitų lygio požymiai (1.1.2.) – baitų/entropijos histograma.
Perturba-	Perturbacijos apibrėžia visų galimų agento veiksmų erdvę A . Šiuo atveju $A=\{0,1\}^4$.
cijos	Baitų lygio perturbacijos (1.2.1.):
	• ARBE
	• ARI
	• ARS
	• RS

1.4.2. MalInfo

 $\it MalInfo$ remiasi $\it MalFox$ (1.3.3.). $\it MalInfo$ karkaso [ZHZ+22] tikslas ir apibrėžimas pateikiami 5-oje lentelėje.

5 lentelė. MalInfo karkasas

Tikslas	Surasti optimalią obfuskacijos strategiją konkrečiai programai, pagal kurią sukurtas
	AE nebūtų aptiktas komercinių kenkėjiškų programų detektorių.
Suro-	RL surogatinis modelis nenaudojamas. "Juodos dėžės" detektoriumi pasirinkti ko-
gatinis	merciniai detektoriai (<i>VirusTotal</i>).
modelis	
ML mo-	Agentas implementuotas kaip klasikiniai ML algoritmai (konkrečiai dinaminis prog-
delis	ramavimas ir skirtumų laike (angl. temporal difference) algoritmas).
Požymiai	Agentas nėra neuroninis tinklas ir požymių iš programos netraukia. Agentas mokosi tik iš perėjimų, o būsenų erdvė S yra originali programa ir perturbuoti jos variantai. Teoriškai perturbuotų programos variantų galėtų būti be galo daug, tuomet $S=A^{\infty}, S =\aleph_0$, tačiau autoriai nurodo, jog daugiau nei 3 sluoksniai kompleksinių perturbacijų reikšmingai paveikia programos veikimo laiką, o tai gali "sukelti įtarimų" komerciniams detektoriams. Todėl pasirinkta $S=A^3$.
Perturba-	$A = \{0,1,2,3\}$
cijos	 Null perturbacija – naudinga tik formaliam pilnumui (atitinka nulinį A veiksmą). Visos kompleksinės perturbacijos (1.2.3.), t. y. tokios pačios, kaip ir MalFox (1.3.3.) karkaso.

1.5. Genetinių algoritmų tipo modelių karkasai

Genetinai algoritmai (GA) yra viena seniausių mašininio mokymosi ML apraiškų; jų veikimas paremtas evoliucija [CSD19]. Kenkėjiškų programų obfuskacijai AE generavimas taikant GA yra tokia seka [YPT22]:

- Sukuriama pradinė populiacija (perturbacijos metodai pradinei populiacijai priklauso nuo karkaso).
- 2. Atliekamas tinkamumo (angl. fitness) vertinimas.
- 3. Atliekama selekcija dažniausiai pasirenkami geriausiai įvertinti populiacijos AE, tačiau galimos ir kitos selekcijos strategijos.
- 4. Atliekamas selekcijos atrinktų AE kryžminimas (po 2) taip sukuriant naują AE, turintį po dalį genų iš abiejų kryžmintų AE.
- 5. Tam tikrai daliai AE atliekama dalies genų mutacija.
- 6. Vertinama, ar sugeneruoti AE atitinka kriterijus (vertina detektorius).
- 7. Jei kriterijai nėra tenkinami, seka kartojama nuo 2-o žingsnio.

1.5.1. *AIMED*

AIMED karkaso [CSD19] tikslas ir apibrėžimas pateikiami 6-oje lentelėje.

6 lentelė. AIMED karkasas

Tikslas	AE generavimo greičio padidinimas ir modelių kompleksiškumo sumažinimas, lygi-
	nant su GAN ir RL tipo modelių karkasais.
Suro-	Surogatinis modelis nenaudojamas. Naudojami "juodos dėžės" detektoriai yra 3 ko-
gatinis	merciniai (Kaspersky, ESET, Sophos) ir vienas ML modelis – GBDT.
modelis	
ML mo-	Klasikinis GA modelis – veikimas visiškai atitinką bendrą seką. Tinkamumo (angl.
delis	fitness) vertinamas remiasi AE požymių vektoriaus panašumu į originalios programos
	požymių vektorių (kuo mažiau panašūs, tuo tinkamumo įvertinimas didesnis).
Požymiai	Baitų lygio požymiai (1.1.2.) – atskiras n -gramų atvejis, kai $n=1$.
Perturba-	Baitų lygio perturbacijos ⁴ (1.2.1.).
cijos	

⁴autoriai rėmėsi perturbacijomis, aprašytomis [AKF⁺18]

1.5.2. *GAMMA*

GAMMA karkaso [DBL⁺21] tikslas ir apibrėžimas pateikiami 7-oje lentelėje.

7 lentelė. GAMMA karkasas

Tikslas	Efektyvus (neaptikimo šansų didinimas naudojant perturbacijas, paremtas nekenks-
	mingomis programomis) varžymosi principais pagrįstų atakų kūrimas.
Suro-	Surogatinis modelis nenaudojamas. GBDT ir <i>MalConv</i> pasirinkti kaip "juodos dėžės"
gatinis	detektoriai.
modelis	
ML mo-	Pagrindinė modelio idėja yra požymių ištraukimas iš nekenksmingų programų ir jų
delis	pridėjimas, naudojant tam pritaikytas perturbacijas, į kenksmingas programas kiek-
	vienos populiacijos generavimo metu. Tinkamumo (angl. fitness) ir kriterijų vertini-
	mas atliekamas naudojant detektorių ir pridėtų požymių dydį baitais (norima pridėti
	kuo mažiau požymių).
Požymiai	
	PE formato programų požymiai (1.1.1.).
_	Kodas sekcijose (nestandartinis požymis).
Perturba-	
cijos	• Visos baitų lygio perturbacijos (1.2.1.), gebančios pridėti baitus.
	• Autoriai pažymi, jog gali būti naudojama ir DLL / API vardų pridėjimo semantinė perturbacija (1.2.2.).

1.6. Nevalidaus PE formato problema

Anderson et al. [AKF⁺18], atlikdami eksperimentus su funkcionalumą išlaikančiomis perturbacijomis PE formato failams, pastebėjo, jog ne visais atvejais perturbuotos programos veikia teisingai. Dėl *Windows* operacinės sistemos PE formato failų interpretavimo ir paleidimo specifikos, programas įmanoma parašyti tokiu būdu, jog pakeitus kodo ar kitų sekcijų turinį nekeičiant originalių mašininio kodo instrukcijų, programa neveiktų. Techniškai, programų rašymas tokiu būdu pažeidžia patį PE formato standartą, tačiau šią praktiką neretai naudoja kenkėjiškų programų autoriai.

Norint visiškai išvengti nevalidaus PE formato problemos tenka taikyti perturbacijas, nekeičiančias originalių programų, o taikančias kitokius obfuskacijos metodus. Iš 1.2. poskyryje aptartų perturbacijų, tokias sąlygas atitinka tik 2 kompleksinės perturbacijos (1.2.3.) – *Stealmal* ir *Hollow-mal*.

1.7. AE perkeliamumas

Perkeliamumas DI modeliuose dažniausiai suprantamas kaip žinių perkeliamumas (angl. knowledge transferability). Tačiau tiriant varžymosi principais pagrįstas atakas buvo pastebėtas ir AE perkeliamumas (angl. adversarial sample transferability). Tai reiškia, jog gebant sukurti AE, kuriuos neteisingai klasifikuoja vienas modelis, tikėtina, jog kitas (tos pačios paskirties) modelis taip pat klasifikuos AE neteisingai. Be to, nustatyta, jog AE perkeliamumo savybė galioja skirtingų architektūrų modeliams [DCB+21]. Šia savybe remiasi visos "juodos dėžės" atvejams pritaikytos atakos.

Literatūra ir šaltiniai

- [AKF⁺18] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, P. Roth. *Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning*. 2018. https://doi.org/10.48550/arXiv.1801.08917. (Žiūrėta 2024-09-30).
- [CAD+21] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay. "A Survey on Adversarial Attacks and Defences". Iš: *CAAI Transactions on Intelligence Technology* 6.1 (2021), puslapiai 25–45. ISSN: 2468-2322. https://doi.org/10.1049/cit2.12028. (Žiūrėta 2025-04-07).
- [CDH⁺16] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel. *InfoGAN: Inter*pretable Representation Learning by Information Maximizing Generative Adversarial Nets. 2016. https://doi.org/10.48550/arXiv.1606.03657. (Žiūrėta 2024-10-07).
- [CSD19] R. L. Castro, C. Schmitt, G. Dreo. "AIMED: Evolving Malware with Genetic Programming to Evade Detection". Iš: 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). 2019, puslapiai 240—247. https://doi.org/10.1109/TrustCom/BigDataSE.2019.00040. (Žiūrėta 2024–09-23).
- [DBL⁺21] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, A. Armando. "Functionality-Preserving Black-Box Optimization of Adversarial Windows Malware". Iš: *IEEE Transactions on Information Forensics and Security* 16 (2021), puslapiai 3469–3478. ISSN: 1556-6021. https://doi.org/10.1109/TIFS.2021.3082330. (Žiūrėta 2024-10-14).
- [DCB⁺21] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, F. Roli. "Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection". Iš: *ACM Trans. Priv. Secur.* 24.4 (2021), 27:1–27:31. ISSN: 2471-2566. https://doi.org/10.1145/3473039. (Žiūrėta 2024-09-30).
- [FWL⁺19] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, H. Huang. "Evading Anti-Malware Engines With Deep Reinforcement Learning". Iš: *IEEE Access* 7 (2019), puslapiai 48867–48879. ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2019.2908033. (Žiūrėta 2024-09-18).
- [HT17] W. Hu, Y. Tan. Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN. 2017. (Žiūrėta 2024-09-18).
- [YPT22] J. Yuste, E. G. Pardo, J. Tapiador. "Optimization of Code Caves in Malware Binaries to Evade Machine Learning Detectors". Iš: *Computers & Security* 116 (2022), puslapis 102643. ISSN: 0167-4048. https://doi.org/10.1016/j.cose.2022.102643. (Žiūrėta 2024-10-07).

- [RSG16] M. T. Ribeiro, S. Singh, C. Guestrin. ""Why Should I Trust You?": Explaining the Predictions of Any Classifier". Iš: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. San Francisco California USA: ACM, 2016, puslapiai 1135–1144. ISBN: 978-1-4503-4232-2. https://doi.org/10.1145/2939672.2939778. (Žiūrėta 2025-02-28).
- [RSR+18] I. Rosenberg, A. Shabtai, L. Rokach, Y. Elovici. "Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers". Iš: Research in Attacks, Intrusions, and Defenses. Sudarė M. Bailey, T. Holz, M. Stamatogiannakis, S. Ioannidis. Cham: Springer International Publishing, 2018, puslapiai 490–510. ISBN: 978-3-030-00470-5. https://doi.org/10.1007/978-3-030-00470-5_23.
- [SB15] J. Saxe, K. Berlin. "Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features". Iš: 2015 10th International Conference on Malicious and Unwanted Software (MALWARE). 2015, puslapiai 11–20. https://doi.org/10.1109/MALWARE.2015.7413680. (Žiūrėta 2024-11-04).
- [ZCY⁺24] F. Zhong, X. Cheng, D. Yu, B. Gong, S. Song, J. Yu. "MalFox: Camouflaged Adversarial Malware Example Generation Based on Conv-GANs Against Black-Box Detectors". Iš: *IEEE Transactions on Computers* 73.4 (2024), puslapiai 980–993. ISSN: 1557-9956. https://doi.org/10.1109/TC.2023.3236901. (Žiūrėta 2024-09-15).
- [ZHZ⁺22] F. Zhong, P. Hu, G. Zhang, H. Li, X. Cheng. "Reinforcement Learning Based Adversarial Malware Example Generation against Black-Box Detectors". Iš: *Computers & Security* 121 (2022), puslapis 102869. ISSN: 0167-4048. https://doi.org/10.1016/j.cose.2022.102869. (Žiūrėta 2024-09-14).
- [ZZY⁺22] E. Zhu, J. Zhang, J. Yan, K. Chen, C. Gao. "N-Gram MalGAN: Evading Machine Learning Detection via Feature n-Gram". Iš: *Digital Communications and Networks* 8.4 (2022), puslapiai 485–491. ISSN: 2352-8648. https://doi.org/10.1016/j.dcan. 2021.11.007. (Žiūrėta 2024-09-23).