Линейная алгебра. Коллоквиум 2 семестр. Основано на реальных событиях. v0.7

26 мая 2017

Ченжлоги

```
v0.0\ (20.05.2017)\ -\ ucxodhoe: добавлены 1–10 вопросы (спасибо Соне, Даше, Лизе, Наташе, Алёне) v0.1\ (21.05.2017)\ -\ nonpaвил\ 1,\ 2,\ 6 (спасибо Борису, Соне, Александру Г. (Ц.)) v0.2\ (22.05.2017)\ -\ doбавил\ 11–15. Поправил 2, 7 (спасибо Александру Г. (Ц.), Борису, Наташе) v0.3\ (23.05.2017)\ -\ nonpaвил\ 2\ (2\Rightarrow 3\ u\ 3\Rightarrow 4), дополнил 3, (спасибо Наташе, Глебу, Соне), добавил 16–20 v0.4\ (24.05.2017)\ -\ nonpaвил\ 2,\ 3,\ 4,\ 6,\ 8 (спасибо Соне, Боре, Глебу), добавил 21–30 v0.5\ (24.05.2017)\ -\ doбавил\ 31–40, поправил 7,\ 10,\ 11,\ 18,\ 20,\ 22,\ 24,\ 28 (спасибо Наташе, Глебу, Соне, Алексею, Лизе, Юле, Мовсесу, Борису) v0.6\ (25.05.2017)\ -\ doбавил\ 41,\ 42,\ 45\ (спасибо\ Глебу) v0.7\ (25.05.2017)\ -\ nonpaвил\ 18,\ 19,\ 42,\ doбавил\ 44\ (спасибо\ Юле,\ Наташе,\ Артёму,\ Никите)
```

Доказательства

1. Теорема о связи размерности суммы двух подпространств с размерностью их пересечения

Теорема. $\dim(U \cap W) = \dim U + \dim W - \dim(U + W)$ **Доказательство**. Пусть $p = \dim(U \cap W)$, $k = \dim U$, $m = \dim W$. Выберем базис $a = \{a_1, \ldots, a_p\}$ в пересечении. Его можно дополнить до базиса U и до базиса W. Значит, $\exists b = \{b_1, \ldots, b_{k-p}\}$ такой, что $a \cup b$ — базис в U и $\exists c = \{c_1, \ldots, c_{m-p}\}$ такой, что $a \cup c$ — базис в W.

Докажем, что $a \cup b \cup c$ — базис в U + W.

1. Докажем, что U + W порождается множеством $a \cup b \cup c$.

$$v \in U + W \Rightarrow \exists u \in U, \ w \in W : v = u + w$$

$$u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle$$

$$w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle$$

$$\Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow$$

$$\Rightarrow U + W = \langle a \cup b \cup c \rangle$$

2. Докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры
$$\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_{k-p}, \gamma_1, \dots, \gamma_{m-p}$$
 таковы, что
$$\underbrace{\alpha_1 a_1 + \dots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \dots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \dots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$\underbrace{x + y + z = 0}_{z = -x - y}$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \dots, \lambda_p \in F : z = \lambda_1 a_1 + \dots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. Т.е. $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W).$$

2. Теорема о пяти эквивалентных условиях, определяющих набор линейно независимых подпространств векторного пространства

Теорема. Следующие 5 условий эквивалентны:

- 1. Если $u_1+\ldots+u_k=0 \Rightarrow u_1=\ldots=u_k=0 \ (U_1,\ldots,U_k$ линейно независимы)
- 2. Любой u единственным образом представим в виде $u = u_1 + \ldots + u_k$, где $u_i \in U_i$
- 3. Если e_i базис в U_i , то $e_1 \cup \ldots \cup e_k$ базис $U_1 + \ldots + U_k$
- 4. $\dim(U_1 + \ldots + U_k) = \dim U_1 + \ldots + \dim U_k$
- 5. $U_i \cap (U_1 + \ldots + U_{i-1} + U_{i+1} + \ldots + U_k) = \{0\}$

Доказательство.

Пусть
$$u_1 + \ldots + u_k = u'_1 + \ldots + u'_k$$
, где $u_i, u'_i \in U_i$. Тогда
$$\underbrace{(u_1 - u'_1)}_{\in U_1} + \ldots + \underbrace{(u_k - u'_k)}_{\in U_k} = \vec{0} \Rightarrow$$
$$\Rightarrow (u_1 - u'_1) = \ldots = (u_k - u'_k) = \vec{0} \Rightarrow$$
$$\Rightarrow u_1 = u'_1, \ldots, u_k = u'_k.$$

 $(2 \Rightarrow 3)$ Пусть $u \in U_1 + \ldots + U_k$. Тогда u единственно представим в виде $u = u_1 + \ldots + u_k$, где $u_i \in U_i$.

Каждый u единственным образом представим в виде линейной комбинации векторов из $e_1 \cup \ldots \cup e_k$ (так как каждый u_i представляется в базисе e_i) $\Longrightarrow e_1 \cup \ldots \cup e_k$ — базис.

 $(3 \Rightarrow 4)$ Пусть $e_1 \cup \ldots \cup e_k$ — базис $U_1 + \ldots + U_k$ и пусть наш базис — мультимножество (т.е. одинаковые векторы могут учитываться по нескольку раз). Тогда

$$\dim(U_1 + \ldots + U_k) = |e_1^1 + \ldots + e_{s_1}^1 + \ldots + e_1^k + \ldots + e_{s_k}^k| =$$

$$= |e_1^1 + \ldots + e_{s_1}^1| + \ldots + |e_1^k + \ldots + e_{s_k}^k| = \dim U_1 + \ldots + \dim U_k.$$

 $(4\Rightarrow 5)$ Пусть для краткости $\overline{U_i}=U_1+\ldots+U_{i-1}+U_{i+1}+\ldots+U_k$. Тогда

$$\dim(U_i \cap \overline{U_i}) = \dim U_i + \dim \overline{U_i} - \dim \underbrace{(U_i + \overline{U_i})}_{U_1 + \dots + U_k} \leqslant$$

 $\leq \dim U_i + \dim U_1 + \ldots + \dim U_{i-1} + \dim U_{i+1} + \ldots + \dim U_k - \dim U_1 - \ldots - \dim U_k.$

Итак,
$$\dim(U_i \cap \overline{U_i}) \leqslant 0 \Longrightarrow \dim(U_i \cap \overline{U_i}) = 0 \Longrightarrow U_i \cap \overline{U_i} = \{\vec{0}\}.$$

$$(5 \Rightarrow 1) \text{ Пусть } \vec{0} = u_1 + \ldots + u_k, \text{ где } u_i \in U_i. \text{ Тогда для любого } i \text{ имеем}$$

$$u_i = -u_1 - \ldots - u_{i-1} - u_{i+1} - \ldots - u_k \Rightarrow$$

$$\Rightarrow u_i \in U_i \cap \overline{U_i} = \{\vec{0}\} \Rightarrow u_i = \vec{0}.$$

3. Описание всех базисов n-мерного векторного пространства в терминах одного базиса и матриц координат. Формула преобразования координат вектора при замене базиса векторного пространства

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V: \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть набор векторов e'_1, \ldots, e'_n :

$$e'_{1} = c_{11}e_{1} + c_{21}e_{2} + \dots + c_{n1}e_{n}$$

$$e'_{2} = c_{12}e_{1} + c_{22}e_{2} + \dots + c_{n2}e_{n}$$

$$\vdots$$

$$e'_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$$

Обозначим матрицу $C=(c_{ij})$. Тогда можно переписать (e'_1,\ldots,e'_n) как $(e_1,\ldots,e_n)\cdot C$.

Предложение. e_1',\dots,e_n' образуют базис тогда и только тогда, когда $\det C \neq 0$. Доказательство.

$$\Rightarrow e'_1, \dots, e'_n$$
 — базис, а значит $\exists C' \in \mathcal{M}_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n)C' = (e_1, \dots, e_n)CC'$$
$$E = CC'$$
$$C' = C^{-1} \iff \exists C^{-1} \iff \det C \neq 0$$

 \bigoplus $\det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $\lambda_1 e'_1 + \ldots + \lambda_n e'_n = 0$. Тогда можно записать

$$(e'_1, \dots, e'_n)$$
 $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = 0 \iff (e_1, \dots, e_n)C \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = 0$

Так как (e_1,\ldots,e_n) — базис, то $C\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}=0$. Умножая слева на обратную матрицу получаем $\lambda_1=\ldots=\lambda_n=0$.

Предложение. Формула преобразований координат вектора при переходе к новому базису: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Доказательство.

$$C$$
 одной стороны: $v=x_1e_1+\ldots+x_ne_n=(e_1,\ldots,e_n)egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}.$

$$C$$
 другой стороны: $v = x_1'e_1' + \ldots + x_n'e_n' = (e_1', \ldots, e_n') \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = (e_1, \ldots, e_n)C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$ Так как e_1, \ldots, e_n — линейно независимы, то $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$

4. Докажите, что отношение изоморфности на множестве всех векторных пространств является отношением эквивалентности

Теорема. "Изоморфность" — отношение эквивалентности на множестве всех векторных пространств над фиксированным полем F.

Доказательство.

I. Peфлексивность. $\varphi: V \to V$ — изоморфизм. Id: $V \simeq V$

II. Симметричность. $\varphi: V \to W$ — изоморфизм $\Longrightarrow \varphi^{-1}: W \to V$ — тоже изоморфизм. Т.к. отображение φ^{-1} также биективно, то осталось проверить, что оно линейно. Пусть $w_1, w_2 \in W$. Тогда $\exists v_1, v_2 \in V$, такие что

$$w_1 = \varphi(v_1), \ w_2 = \varphi(v_2) \Rightarrow v_1 = \varphi^{-1}(w_1), \ v_2 = \varphi^{-1}(w_2).$$

Теперь $\varphi^{-1}(w_1 + w_2) = \varphi^{-1}(\varphi(v_1) + \varphi(v_2)) = \varphi^{-1}(\varphi(v_1 + v_2)) = v_1 + v_2 = \varphi^{-1}(w_1) + \varphi^{-1}(w_2).$ $\varphi^{-1}(\alpha w) = \varphi^{-1}(\alpha \varphi(v)) = \varphi^{-1}(\varphi(\alpha v)) = \alpha v = \alpha \varphi^{-1}(w).$

III. *Транзитивность.* $\psi \circ \varphi : U \xrightarrow{\varphi} V \xrightarrow{\psi} W$. Если φ и ψ — изоморфизм, то $\psi \circ \varphi$ — тоже изоморфизм.

Докажем, что если φ и ψ — линейны, то $\psi \circ \varphi$ — тоже линейна.

$$(\psi \circ \varphi)(v_1 + v_2) = \psi(\varphi(v_1 + v_2)) = \psi(\varphi(v_1) + \varphi(v_2)) =$$

$$= \psi(\varphi(v_1)) + \psi(\varphi(v_2)) = (\psi \circ \varphi)(v_1) + (\psi \circ \varphi)(v_2).$$

$$(\psi \circ \varphi)(\alpha v) = \psi(\varphi(\alpha v)) = \psi(\alpha \varphi(v)) =$$

$$= \alpha \psi(\varphi(v)) = \alpha(\psi \circ \varphi)(v).$$

Тогда очевидно, что транзитивность следует из линейности, так как композиция двух биективных отображений также биективна.

5. Критерий изоморфности двух конечномерных векторных пространств

Теорема. V, W — конечномерные векторные пространства $\Longrightarrow V \simeq W \Longleftrightarrow \dim V = \dim W$. Докажем две леммы.

Лемма 1. dim $V = n \Rightarrow V \simeq F^n$.

Доказательство. Рассмотрим отображение $\varphi: V \to F^n$. Выберем базис (e_1, \dots, e_n) в V. Тогда

 $x_1e_1 + \ldots + x_ne_n \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in F.$

Отображение является изоморфизмом (т.к. линейно и биективно), а следовательно $V \simeq F^n$.

Лемма 2. Пусть $\varphi:V\simeq W$ — изоморфизм. e_1,\ldots,e_n — базис V. Тогда $\varphi(e_1),\ldots,\varphi(e_n)$ — базис W.

Доказательство. Пусть $w \in W$, тогда существует $v \in V : w = \varphi(v)$. Положим $v = \varphi^{-1}(w)$. Тогда

$$\Rightarrow v = x_1 e_1 + \ldots + x_n e_n, \ x_i \in F$$

$$\Rightarrow w = \varphi(v) = \varphi(x_1 e_1 + \ldots + x_n e_n) = x_1 \varphi(e_1) + \ldots + x_n \varphi(e_n)$$

$$\Rightarrow W = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$$

Теперь покажем, что $\varphi(e_1), \dots, \varphi(e_n)$ — линейно независимы.

Пусть $\alpha_1 \varphi(e_1) + \ldots + \alpha_n \varphi(e_n) = 0$, где $\alpha_i \in F$. Тогда $\varphi(\alpha_1 e_1 + \ldots + \alpha_n e_n) = 0$. Применим φ^{-1} : $\alpha_1 e_1 + \ldots + \alpha_n e_n = \varphi^{-1}(0) = 0$. Так как e_1, \ldots, e_n — базис V, то $\alpha_1 = \ldots = \alpha_n = 0$.

Доказательство теоремы.

- Пусть $\dim V = \dim W = n$. Тогда $V \simeq F^n$, $W \simeq F^n$ (по лемме 1), а следовательно $V \simeq W$.
- \Longrightarrow Пусть $V\simeq W$ и $\dim V=n.$ Пусть $\varphi:V\simeq W$ изоморфизм. (e_1,\ldots,e_n) базис V.

Тогда $\varphi(e_1), \ldots \varphi(e_n)$ — базис W (по лемме 2), а следовательно $\dim W = n = \dim V$.

6. Существование и единственность линейного отображения с заданными образами базисных векторов. Связь между координатами вектора и его образа при линейном отображении. Формула изменения матрицы линейного отображения при замене базисов.

Пусть V, W — векторные пространства. (e_1, \ldots, e_n) — базис $V. \varphi : V \to W$ — линейное отображение.

Предложение 1. φ однозначно определено векторами $\varphi(e_1), \dots, \varphi(e_n)$.

Доказательство. $v \in V \Longrightarrow v = x_1 e_1 + \ldots + x_n e_n$, где $x_i \in F$.

Тогда
$$\varphi(v) = \varphi(x_1e_1 + \ldots + x_ne_n) = x_1\varphi(e_1) + \ldots + x_n\varphi(e_n).$$

Предложение 2. Для любого набора $f_1, \ldots, f_n \in W$ существует единственное линейное отображение $\varphi: V \to f$, такое что $(\varphi(e_1) = f_1), \ldots, (\varphi(e_n) = f_n)$.

Доказательство. $v = x_1 e_1 + \ldots + x_n e_n$.

Положим $\varphi(v) = \varphi(x_1e_1 + \ldots + x_ne_n) = x_1f_1 + \ldots + x_nf_n$. Тогда легко убедиться, что φ линейно (прямая проверка), а единственность следует из пункта 1.

Предложение 3. Если $v = x_1 e_1 + \ldots + x_n e_n$ и $\varphi(v) = y_1 f_1 + \ldots + y_m f_m$, то

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Доказательство.

С одной стороны:

$$\varphi(v) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(e_n) =$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (f_1, \dots, f_m) A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

С другой стороны:

$$\varphi(v) = (f_1, \dots, f_m) \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Так как
$$f_1, \ldots, f_m$$
 — линейно независимы, то $A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$.

Предложение. Пусть V и W — векторные пространства, $e = (e_1, \ldots, e_n)$ и $e' = (e'_1, \ldots, e'_n)$ — базисы V, $f = (f_1, \ldots, f_m)$ и $f' = (f'_1, \ldots, f'_m)$ — базисы W, A — матрица линейного отображения $\varphi : V \to W$ по отношению k e и f, A' — матрица линейного отображения по отношению k базисам e' и f'. e' = eC, f' = fD. Тогда

$$A' = D^{-1}AC \ (A = DA'C^{-1})$$

Доказательство.

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C \Rightarrow$$

$$\Rightarrow \underbrace{(\varphi(e'_1), \dots, \varphi(e'_n))}_{(f'_1, \dots, f'_m)A' = (f_1, \dots, f_m)DA'} = \underbrace{(\varphi(e_1), \dots, \varphi(e_n))}_{(f_1, \dots, f_m)A}C = (f_1, \dots, f_m)AC \Rightarrow$$

$$\Rightarrow DA' = AC \Rightarrow A' = D^{-1}AC.$$

7. Установите изоморфизм между пространствами ${\bf Hom}(V,W)$ и ${\bf Mat}_{m\times n}$, где V и W — векторные пространства размерностей n и m соответственно

Теорема. При фиксированных базисах е и f отображение $\operatorname{Hom}(V,W) \to \operatorname{Mat}_{m \times n}(F)$: $\varphi \to A(\varphi, e, f)$ является изоморфизмом векторных пространств V и W.

Рассмотрим две вещи:

Утверждение. $\operatorname{Hom}(V, W) \to \operatorname{Mat}_{m \times n}(F) : \varphi \mapsto A(\varphi, e, f)$ является биекцией.

Вывод. Задать линейное отображение $V \to W$ — то же самое, что выбрать базис е в V, базис f в W и задать матрицу $(m \times n)$, где $n = \dim V$, $m = \dim W$.

Наглядный пример. $\varphi:\mathbb{R}^3 \to \mathbb{R}^2: (x,\,y,\,z) \mapsto (x,\,y).$

$$e = (e_1, e_2, e_3), f = (f_1, f_2).$$
 Тогда $\varphi(e_1) = f_1$ $\varphi(e_2) = f_2$ $\varphi(e_3) = 0$

Следовательно, $A(\varphi, \mathfrak{e}, \mathfrak{f}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Предложение. Положим

$$\mathbf{e} = (e_1, \dots, e_n)$$
 — базис V $\mathbf{f} = (f_1, \dots, f_m)$ — базис W $A_{\varphi} = A(\varphi, \mathbf{e}, \mathbf{f})$ $A_{\psi} = A(\psi, \mathbf{e}, \mathbf{f})$ $A_{\varphi+\psi} = A(\varphi+\psi, \mathbf{e}, \mathbf{f})$ $A_{\lambda\varphi} = A(\lambda\varphi, \mathbf{e}, \mathbf{f})$

1. $A_{\varphi+\psi} = A_{\varphi} + A_{\psi}$:

С одной стороны: $((\varphi + \psi)e_1, \dots, (\varphi + \psi)e_n) = (f_1, \dots, f_m)A_{\varphi + \psi}$.

С другой стороны:

$$((\varphi + \psi)e_1, \dots, (\varphi + \psi)e_n) = (\varphi(e_1) + \psi(e_1), \dots, \varphi(e_n) + \psi(e_n)) =$$

$$= (\varphi(e_1), \dots, \varphi(e_n)) + (\psi(e_1), \dots, \psi(e_n)) =$$

$$= (f_1, \dots, f_m)A_{\varphi} + (f_1, \dots, f_m)A_{\psi} = (f_1, \dots, f_m)(A_{\varphi} + A_{\psi}) \Rightarrow$$

$$\Rightarrow A_{\varphi + \psi} = A_{\varphi} + A_{\psi}.$$

2. $A_{\lambda\varphi} = \lambda A_{\varphi}$

C одной стороны: $((\lambda \varphi)e_1, \dots, (\lambda \varphi)e_n) = (f_1, \dots, f_m)A_{\lambda \varphi}$.

С другой стороны:

$$((\lambda \varphi)e_1, \dots, (\lambda \varphi)e_n) = (\lambda \varphi(e_1), \dots, \lambda \varphi(e_n)) = \lambda(\varphi(e_1), \dots, \varphi(e_n)) =$$

$$= \lambda(f_1, \dots, f_m)A_{\varphi} = (f_1, \dots, f_m)\lambda A_{\varphi} \Rightarrow$$

$$\Rightarrow A_{\lambda \varphi} = \lambda A_{\varphi}.$$

Таким образом, очевидно, что так как отображение биективно и линейно, то оно является изоморфизмом.

8. Докажите, что ядро и образ линейного отображения являются подпространствами в соответствующих векторных пространствах. Сформулируйте и докажите критерий инъективности линейного отображения в терминах его ядра

Предложение 1. $\mathrm{Ker} \varphi$ — подпространство в V.

Доказательство. Проверим по определению.

- 1. $0_v \in \text{Ker}\varphi$, так как $\varphi(0_v) = 0_w$.
- 2. $v_1, v_2 \in \text{Ker}\varphi \Longrightarrow \varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0_w + 0_w = 0_w \Longrightarrow v_1 + v_2 \in \text{Ker}\varphi.$
- $3. \ v \in \mathrm{Ker} \varphi, \, \lambda \in F \Longrightarrow \varphi(\lambda v) = \lambda \varphi(v) = \lambda 0 = 0 \Longrightarrow \lambda v \in \mathrm{Ket} \varphi.$

Предложение 2. $\text{Im}\varphi$ — подпространство в W.

Доказательство. Проверим по определению.

- 1. $0_w = \varphi(0_v) \Longrightarrow 0_w \in \operatorname{Im}\varphi$.
- 2. $w_1, w_2 \in \operatorname{Im}\varphi \Longrightarrow \exists v_1, v_2 \in V : w_1 = \varphi(v_1), w_2 = \varphi(v_2) \Longrightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \Longrightarrow w_1 + w_2 \in \operatorname{Im}\varphi.$
- $3. \ w \in \mathrm{Im} \varphi, \lambda \in F \Longrightarrow \exists v \in V : \varphi(v) = w \Longrightarrow \lambda w = \lambda \varphi(v) = \varphi(\lambda v) \Longrightarrow \lambda w \in \mathrm{Im} \varphi.$

Таким образом, все условия подпространства выполнены.

Предложение. Отображение φ инъективно тогда и только тогда, когда $\mathrm{Ker} \varphi = \{0\}$. Доказательство.

- \Longrightarrow Очевидно, так как если $\mathrm{Ker} \varphi = \{0\}$, то это значит, что у 0 существует единственный прообраз.
 - \iff Пусть $v_1, v_2 \in V$ таковы, что $\varphi(v_1) = \varphi(v_2)$.

Тогда $\varphi(v_1-v_2)=0 \Longrightarrow v_1-v_2 \in \operatorname{Ker} \varphi \Longrightarrow v_1-v_2=0 \Longleftrightarrow v_1=v_2.$

9. Связь между рангом матрицы линейного отображения и размерностью его образа

Для начала докажем одну лемму.

Лемма. $U \subseteq V$ — подпространство и (e_1, \ldots, e_k) — его базис. Тогда $\varphi(U) = \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle$ — подпространство. В частности, $\dim \varphi(U) \leqslant \dim U$.

Доказательство. $u \in U \Longrightarrow u = \lambda_1 e_1 + \ldots + \lambda_k e_k \Longrightarrow \varphi(u) = \varphi(\lambda_1 e_1 + \ldots + \lambda_k e_k) = \lambda_1 \varphi(e_1) + \ldots + \lambda_k e \varphi(e_k) \in \langle \varphi(e_1), \ldots, \varphi(e_k) \rangle.$

Пусть V, W — векторные пространства, $e = (e_1, \ldots, e_n)$ — базис $V, f = (f_1, \ldots, f_m)$ — базис $W, A = A(\varphi, e, f)$ — матрица линейного отображения φ по отношению K e и f.

Теорема. dim $\text{Im}\varphi = \text{rk}A$

Доказательство. Воспользуемся леммой, доказанной выше: $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle$. Координаты вектора $\varphi(e_i)$ находятся в столбце $A^{(i)} \Longrightarrow \lambda_1 \varphi(e_1) + \dots + \lambda_n \varphi(e_n) = 0 \Longleftrightarrow \lambda_1 A^{(1)} + \dots + \lambda_n A^{(n)} = 0 \Longrightarrow \operatorname{rk} \{\varphi(e_1), \dots, \varphi(e_n)\} = \operatorname{rk} A$. $\dim \langle \varphi(e_1), \dots, \varphi(e_k) \rangle = \dim \operatorname{Im} \varphi$.

10. Оценки на ранг произведения двух матриц

Теорема. Пусть $A \in \operatorname{Mat}_{k \times m}$, $B \in \operatorname{Mat}_{m \times n}$. Тогда $\operatorname{rk} AB \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$.

Доказательство. Реализуем A и B как матрицы линейных отображений, то есть φ_A : $F^m \to F^k, \ \varphi_B: F^n \to F^m$. Тогда AB будет матрицей отображения $\varphi_A \circ \varphi_B$.

$$\operatorname{rk}(AB) = \operatorname{rk}(\varphi_A \circ \varphi_B) = \begin{cases} \leqslant \dim \operatorname{Im} \varphi_A = \operatorname{rk} A \\ \leqslant \dim \operatorname{Im} \varphi_B = \operatorname{rk} B \end{cases}$$

Первое неравенство следует из того, что $\operatorname{Im}(\varphi_A \circ \varphi_B) \subset \operatorname{Im}\varphi_A$, откуда, в свою очередь следует, что $\dim \operatorname{Im}(\varphi_A \circ \varphi_B) \leqslant \dim \operatorname{Im}\varphi_A$.

Рассматривая второе неравенство, получим:

$$\operatorname{Im}(\varphi_A \circ \varphi_B) = \varphi_A(\operatorname{Im}\varphi_B) \Longrightarrow \dim \operatorname{Im}(\varphi_A \circ \varphi_B) = \dim(\varphi_A(\operatorname{Im}\varphi_B)) \leqslant \dim \operatorname{Im}\varphi_B.$$

11. Теорема о связи размерностей ядра и образа линейного отображения

Для начала докажем предложение.

Предложение. Пусть $e = (e_1, \dots, e_n)$ — базис V такой, что (e_1, \dots, e_k) — базис $\operatorname{Ker} \varphi$, а $(\varphi(e_{k+1}), \dots, \varphi(e_n)))$ — базис $\operatorname{Im} \varphi$.

3амечание. Базис с указанным свойством существует всегда, так как его можно получить путём дополнения базиса $\mathrm{Ker} \varphi$ до базиса всего пространства V.

Доказательство. Дополним базис (e_1, \ldots, e_k) до базиса V векторами e_{k+1}, \ldots, e_n . Тогда:

$$\operatorname{Im}\varphi = \langle \varphi(e_1), \dots, \varphi(e_k), \dots \varphi(e_n) \rangle =$$

$$= \langle 0, \dots, 0, \varphi(e_{k+1}), \dots + \varphi(e_n) \rangle =$$

$$= \langle \varphi(e_{k+1}), \dots, \varphi(e_n) \rangle.$$

 $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ — линейно независимы. Тогда пусть $\alpha_{k+1}\varphi(e_{k+1})+\ldots+\alpha_n\varphi(e_n)=0,$ где $\alpha_{k+1},\ldots,\alpha_n\in F.$ Тогда:

$$\varphi(\alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n) = 0 \Rightarrow$$

$$\Rightarrow \alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n \in \operatorname{Ker}\varphi \Rightarrow$$

$$\Rightarrow \alpha_{k+1}e_{k+1} + \ldots + \alpha_n e_n = \beta_1 e_1 + \ldots + \beta_k e_k, \, \text{где } \beta_1, \ldots, \beta_k \in F.$$

Но так как e_{k+1}, \ldots, e_n — базис V, то $\alpha_{k+1} = \ldots = \alpha_n = \beta_1 = \ldots = \beta_k = 0$. То есть векторы $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ — линейно независимы, а значит они образуют базис $\operatorname{Im} \varphi$.

Теорема. dim $\text{Im}\varphi = \dim V - \dim \text{Ker}\varphi$.

Доказательство. Выберем базис в V такой же, как в предположении.

Тогда $\dim \operatorname{Im} \varphi = n - k = \dim V - \dim \operatorname{Ker} \varphi$.

12. Приведение матрицы линейного отображения к диагональному виду с единицами и нулями на диагонали

Пусть $\varphi: V \to W$ — линейное отображение. e — базис V, f — базис W. $A = A(\varphi, e, f) \in \operatorname{Mat}_{m \times n}, \operatorname{rk} A = r.$

Утверждение. Существуют базис e' в V и базис f' в W такие, что $A(\varphi, e', f')$ имеет вид:

$$A' = \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}, rkA' = r$$

Эквивалентное утверждение. Существуют невырожденные матрицы $C \in \mathcal{M}_n, D \in$ M_m , такие что $A' = D^{-1}AC \iff A = DA'C^{-1}$.

Доказательство. Реализуем A как матрицу линейного отображения $\varphi: F^n \to F^m$ в стандартных базисах.

Тогда существует базис $\mathbf{e}=(e_1,\ldots,e_n)$ такой, что (e_{r+1},\ldots,e_n) — базис $\mathrm{Ker}\varphi,$ а $\varphi(e_1),\ldots,\varphi(e_r)$ — базис $\text{Im}\varphi$.

Пусть f — базис F^m , дополняющий систему $\varphi(e_1), \ldots, \varphi(e_r)$. Тогда $A(\varphi, e, f) = A'$. Результат следует из теоремы о замене базисов.

13. Докажите, что всякий базис сопряженного пространства двойственен к некоторому базису исходного векторного пространства

Предложение. Любой базис $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)$ пространства V^* двойственен к некоторому базису пространства V.

Доказательство. Возьмём произвольный базис $e' = (e'_1, \dots, e'_n)$ пространства V. Пусть $\varepsilon'=(\varepsilon_1',\ldots,\varepsilon_n')$ двойственный к \mathfrak{e}' базис в V^* .

Тогда
$$\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} = C \begin{pmatrix} \varepsilon_1' \\ \vdots \\ \varepsilon_n' \end{pmatrix}$$
 для некоторой невырожденной матрицы $C \in \mathcal{M}_n$.

Пусть
$$\varepsilon' = (\varepsilon'_1, \dots, \varepsilon'_n)$$
 двойственный к e' базис в V^* .

Тогда $\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} = C \begin{pmatrix} \varepsilon'_1 \\ \vdots \\ \varepsilon'_n \end{pmatrix}$ для некоторой невырожденной матрицы $C \in \mathcal{M}_n$.

Положим $e = (e_1, \dots, e_n) = (e'_1, \dots, e'_n)C^{-1}$ — некий (искомый) базис в V^* .

Зная, что $\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = E$, имеем $\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix} (e_1, \dots, e_n) = C \begin{pmatrix} \varepsilon'_1 \\ \vdots \\ \varepsilon'_n \end{pmatrix} (e'_1, \dots, e'_n)C^{-1} = C \begin{pmatrix} \varepsilon'_1 \\ \vdots \\ \varepsilon'_n \end{pmatrix}$

14. Докажите, что всякое подпространство в F^n является множеством решений некоторой однородной системы линейных уравнений

Теорема. Всякое подпространство F^n есть множество решений некоторой ОСЛУ. Доказательство. Пусть $a_1x_1 + ... + a_nx_n = 0$.

$$(a_1,\dots,a_n)$$
 $egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$ — значение линейной функции $lpha = (a_1,\dots,a_n)$ на векторе $egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Пусть дано подпространство $U \subseteq F^n$. Выберем в нём базис (v_1, \ldots, v_k) .

Рассмотрим в $(F^n)^*$ подмножество $S := \{\alpha \in (F^n)^* \mid \alpha(v_1) = 0, \dots, \alpha(v_k) = 0\}$. S - подпространство в $(F^n)^*$.

$$S$$
 — множество решений ОСЛУ $\begin{cases} \alpha(v_1)=0, \\ \vdots & \text{на коэффициенты } \alpha. \\ \alpha(v_k)=0 \end{cases}$

Так как v_1, \ldots, v_k линейно независимы, то ранг матрицы коэффициентов равен $k \Longrightarrow \dim S = n - k$.

Выберем в
$$S$$
 базис $\alpha_1,\ldots,\alpha_{n-k}$ и рассмотрим ОСЛУ
$$\begin{cases} \alpha_1(x)=0,\\ \vdots\\ \alpha_{n-k}(x)=0 \end{cases}$$
 относительно неиз-

вестного вектора $x \in F^n$.

Пусть $U' \subseteq F^n$ — подпространство решений этой ОСЛУ.

Ранг матрицы коэффициентов равен n-k, так как $\alpha_1, \ldots, \alpha_{n-k}$ линейно независимы $\Longrightarrow \dim U' = n - (n-k) = k$. Но $U \subseteq U'$ по построению.

Так как
$$\dim U = k = \dim U'$$
, то $U = U' \Longrightarrow \begin{cases} \alpha_1(x) = 0, \\ \vdots \\ \alpha_{n-k}(x) = 0 \end{cases}$ — искомая ОСЛУ.

15. Формула для вычисления значений билинейной формы в координатах. Существование и единственность билинейной формы с заданной матрицей. Формула изменения матрицы билинейной формы при переходе к другому базису

Пусть $e = (e_1, \dots, e_n)$ — базис V $(\dim V = n < \infty)$.

Определение. Матрица $B = B(\beta, e)$, где $b_{ij} = \beta(e_i, e_j)$, называется матрицей билинейной функции β в базисе e.

Пусть
$$B = B(\beta, e), e = (e_1, \dots, e_n)$$
 — базис $V, x = x_1e_1 + \dots + x_ne_n \in V, y = y_1e_1 + \dots + y_ne_n \in V.$
$$\beta(x, y) = \beta(\sum_{i=1}^n x_ie_i, \sum_{j=1}^n y_je_j) = \sum_{i=1}^n x_i \cdot \beta(e_i, \sum_{j=1}^n y_je_j) = \sum_{i=1}^n x_i \sum_{j=1}^n y_j \cdot \underbrace{\beta(e_i, e_j)}_{b_{ij}} = \sum_{i=1}^n \sum_{j=1}^n x_ib_{ij}y_j = \sum_{i=1}^n x_i \sum_{j=1}^n x_ib_{ij}y_j = \sum_{i=1}^n x_i \sum_{j=1}^n x_ib_{ij}y_j = \sum_{i=1}^n x_ib_{ij}y_i = \sum_{i=1}^n x_ib_{ij}y_$$

(*) — формула для вычисления значений б.ф. в координатах.

Пусть e — произвольный базис V. Тогда:

Предложение 1. Любая билинейная функция однозначно определяется своей матрицей в базисе e.

Доказательство 1. Следует из (*).

Предложение 2. Для любой матрицы $V \in M_n(F)$ существует единственная билинейная функция β на V, такая что $B(\beta, e) = B$.

Доказательство 2. *Единственность* следует из 1.

Cуществование: зададим β по формуле (*). Тогда β — билинейная функция на V и её матрицей является B.

Пусть $e = (e_1, \dots, e_n)$ и $e' = (e'_1, \dots, e'_n)$ — два базиса V. β — билинейная функция на V. e' = eC — матрица перехода. $B = B(\beta, e)$ и $B' = B(\beta, e')$.

Предложение. $B' = C^T B C$.

Доказательство. Рассмотрим x в обоих базисах.

$$x = x_1 e_1 + \dots + x_n e_n = x'_1 e'_1 + \dots + x'_n e'_n$$

$$y = y_1 e_1 + \dots + y_n e_n = y'_1 e'_1 + \dots + y'_n e'_n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}; \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$$

$$(x'_1, \dots, x'_n)B'\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix} = \beta(x, y) = (x_1, \dots, x_n)B\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
$$\beta(x, y) = (x'_1, \dots, x'_n)C^TBC\begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$$

Отсюда следует, что $B' = C^T B C$, так как для любого $p \in \operatorname{Mat}_n$ верно

$$p_{ij} = (0 \dots i \dots 0) p \begin{pmatrix} 0 \\ \vdots \\ 1_j \\ \vdots \\ 0 \end{pmatrix}.$$

16. Соответствие между симметричными билинейными формами и квадратичными формами

Пусть в поле F выполняется условие $1+1\neq 0$ (т.е. $2\neq 0$).

Тогда отображение $\beta\mapsto Q_\beta$ является биекцией между симметричными билинейными функциями на V и квадратичными функциями на V.

Доказательство.

Сюръективность. Пусть β — билинейная функция. Рассмотрим ассоциированную с ней квадратичную функцию $Q_{\beta}(x) = \beta(x, x)$. Пусть $\sigma(x, y) = \frac{1}{2}(\beta(x, y) + \beta(y, x))$ — симметричная билинейная функция на V. Тогда:

$$Q_{\sigma}(x) = \sigma(x, x) = \frac{1}{2}(\beta(x, x) + \beta(x, x)) = \beta(x, x) = Q_{\beta}(x)$$

Uнъективность. Пусть $\beta(x, y)$ — симмитричная билинейная функция, $Q_{\beta}(x) = \beta(x, x)$ — соответствующая ей квадратичная функция.

$$Q_{\beta}(x+y) = \beta(x+y, x+y) = \beta(x, x) + \beta(x, y) + \beta(y, x) + \beta(y, y) =$$

$$= Q_{\beta}(x) + Q_{\beta}(y) + \underbrace{2\beta(x, y)}_{\beta(x, y) = \beta(y, x)} \Rightarrow$$

$$\Rightarrow \beta(x, y) = \frac{1}{2}(Q_{\beta}(x+y) - Q_{\beta}(x) - Q_{\beta}(y)).$$

17. Метод Лагранжа приведения квадратичной формы к каноническому виду

Пусть V — векторное пространство, $\dim V = n$, $e = (e_1, \dots, e_n)$ — базис $V, Q: V \to F$ — квадратичная функция на V.

Теорема (метод Лагранжа). Пусть в $F: 1+1 \neq 0$. Тогда для всякой квадратичной функции Q существует такой базис, в котором Q имеет канонический вид.

Доказательство.

Оформим $u + \partial y \kappa u u + \sigma n$.

 $\underline{n} = \underline{1}$: тогда $Q(x) = b_{11}x_1^2$ — канонический вид, очевидно.

Предположим, что для всех < n, докажем для n. Пусть в исходном базисе e:

$$Q(x) = Q(x_1, \dots, x_n) = \sum_{i=1}^n b_{ii} x_i^2 + \sum_{1 \le i < j \le n} 2b_{ij} x_i x_j,$$

где $B = (b_{ij})$ — матрица квадратичной функции (

Случай 0: $b_{ij} = 0$ для всех i, j. Тогда очевидно.

Случай 1: существует такое i, что $b_{ii} \neq 0$. Перенумеруем переменные так, что $b_{11} \neq 0$:

$$Q(x_{1},...,x_{n}) = b_{11}x_{1}^{2} + 2b_{12}x_{1}x_{2} + ... + 2b_{1n}x_{1}x_{n} + Q_{1}(x_{2},...,x_{n}) =$$

$$= \frac{1}{b_{11}}(b_{11}^{2}x_{1}^{2} + 2b_{11}b_{12}x_{1}x_{2} + ... + 2b_{11}b_{1n}x_{1}x_{n}) + Q_{1}(x_{2},...,x_{n}) =$$

$$= \frac{1}{b_{11}}(b_{11}x_{1} + ... + b_{1n}x_{n})^{2} - \underbrace{\frac{1}{b_{11}}(b_{12}x_{2} + ... + b_{1n}x_{n})^{2} + Q_{1}(x_{2},...,x_{n})}_{Q_{2}(x_{2},...,x_{n})} =$$

$$= \frac{1}{b_{11}}(b_{11}x_1 + \dots + b_{1n}x_n)^2 + Q_2(x_2, \dots, x_n) =$$

$$= \frac{1}{b_{11}}x_1^2 + Q_2(x_2, \dots, x_n^2),$$

$$= \frac{1}{b_{11}}x_1 + Q_2(x_2, \dots, x_n),$$
 где
$$\begin{cases} x_1' = b_{11}x_1 + \dots + b_{1n}x_n, \\ x_2' = x_2, \\ \vdots \\ x_n' = x_n \end{cases}$$
, то есть замена координат
$$\begin{cases} x_1 = \frac{1}{b_{11}}(x_1' - b_{12}x_2' - \dots - b_{1n}x_n'), \\ x_2 = x_2', \\ \vdots \\ x_n = x_n' \end{cases}$$
 Лалее применяем предположение индукции к $Q_2(x_2', \dots, x_n')$.

Далее применяем предположение индукции к $Q_2(x_2')$

Случай 2: $b_{ii} = 0$ для всех i, но существует $b_{ij} \neq 0$ при i < j.

Б.о.о. считаем, что $b_{12} \neq 0$. Делаем замену:

$$\begin{cases} x_1 = x_1' - x_2', \\ x_2 = x_1' + x_2', \\ x_3 = x_3', \end{cases}$$
 Тогда $Q(x') = \underbrace{2b_{12}x_1'^2 - 2b_{12}x_2'^2}_{2b_{12}x_1x_2} + \sum_{1\leqslant i < j \leqslant n} 2b_{ij}x_i'x_j',$ что есть 1-й случай.
$$\vdots \\ x_n = x_n' \end{cases}$$

18. Метод Якоби приведения квадратичной формы к каноническому виду

Вначале докажем лемму.

Пусть
$$\mathbf{e}'$$
 — базис V , имеющий вид
$$\begin{cases} e_1' = e_1, \\ e_2' \in e_2 + \langle e_1 \rangle, \\ e_3' \in e_3 + \langle e_1, e_2 \rangle, \\ \vdots \\ e_n' \in e_n + \langle e_1, \dots, e_{n-1} \rangle \\ 12 \end{cases}$$

 $B_k' = B_k(Q, e')$ — матрица k-го углового минора $\delta_k' = \delta_k(Q, \, \mathbf{e}')$ — определитель матрицы k-го углового минора

Лемма. $\forall k = 1, \ldots, n : \delta_k = \delta'_k$.

Доказательство. При любом k имеем $B_k' = C_k^T B_k C_k \Rightarrow \delta_k' = \det B_k' = \det (C_k^T B_k C_k) =$ $(\det C_k^T)(\det B_k)(\det C_k) = \det B_k = \delta_k.$

Теорема (метод Якоби лекционный). Положим, что $\delta_k \neq 0$ для всех $k = 1, \dots, n$. Тогда единственно существует базис $\mathbf{e}' = (e'_1, \dots, e'_n)$ в V такой, что

- 1. е' имеет вид (*)
- 2. В этом базисе Q имеет канонический вид $Q(x) = \frac{\delta_1}{\delta_0} x_1'^2 + \frac{\delta_2}{\delta_1} x_2'^2 + \ldots + \frac{\delta_n}{\delta_{n-1}} x_n'^2$ (то есть $B(Q, e') = \operatorname{diag}(\frac{\delta_1}{\delta_0}, \frac{\delta_2}{\delta_1}, \dots, \frac{\delta_n}{\delta_{n-1}})).$

Доказательство.

Оформим uндукцию по n.

 $\underline{n=1}$: $Q(x)=\delta_1 x_1'^2$ — очевидно, верно.

Докажем для n-1. Пусть векторы e'_1, \ldots, e'_n уже построены:

$$B(Q, (e'_1, \dots, e'_{n-1}, e_n)) = \begin{pmatrix} \delta_1 & & & * \\ & \frac{\delta_2}{\delta_1} & & 0 & * \\ & & \ddots & & * \\ & 0 & & \frac{\delta_{n-1}}{\delta_{n-2}} & * \\ * & * & * & * & * \end{pmatrix}$$

Ищем e'_n в виде $e_n + \langle e_1, \dots, e_{n-1} \rangle = e_n + \langle e'_1, \dots, e'_{n-1} \rangle$, т.е. в виде $e'_n = e_n + \lambda_1 e'_1 + \dots + \lambda_{n-1} e'_{n-1}$. Пусть $\beta: V \times V \to F$ — симметричная билинейная форма, соответствующая Q.

$$\beta(e'_{k}, e'_{n}) = \beta(e'_{k}, e_{n}) + \lambda_{1}\beta(e'_{k}, e'_{1}) + \ldots + \lambda_{k-1}\beta(e'_{k}, e'_{k-1}) =$$

$$= \beta(e'_{k}, e_{n}) + \beta(e'_{k}, e'_{k}) =$$

$$= \beta(e'_{k}, e_{n}) + \lambda_{k} \frac{\delta_{k}}{\delta_{k-1}}.$$

Тогда $\beta(e_k', e_n') = 0$ тогда и только тогда, когда $\lambda_k = -\beta(e_k', e_n) \frac{\delta_{k-1}}{\delta_k}$ — единственное

В итоге построен базис $e' = (e'_1, \dots, e'_n)$ такой, что

$$B(Q, (e'_{1}, \dots, e'_{n-1}, e_{n})) = \begin{pmatrix} \delta_{1} & & & \\ & \frac{\delta_{2}}{\delta_{1}} & & 0 \\ & & \ddots & \\ & 0 & & \frac{\delta_{n-1}}{\delta_{n-2}} \\ & & & ? \end{pmatrix}$$

Но в силу доказанной выше леммы $\delta_n = \delta'_n = \delta_1 \cdot \frac{\delta_2}{\delta_1} \cdot \ldots \cdot \frac{\delta_{n-1}}{\delta_{n-2}} ? = \delta_{n-1} \cdot ? \Longrightarrow ? = \frac{\delta_n}{\delta_n}.$

19. Существование нормального вида для квадратичной формы над \mathbb{R} . Закон инерции

Предложение. Для любой квадратичной формы Q над \mathbb{R} существует базис, в котором Q принимает нормальный вид.

Доказательство. Знаем, что существует базис, в котором Q имеет канонический вид. $Q(x) = b_1 x_1^2 + \ldots + b_n x_n^2.$

Делаем невырожденную замену
$$x_i = \begin{cases} \frac{x_i'}{\sqrt{|b_i|}}, \text{ если } b_i \neq 0, \\ x_i', \text{ если } b_i = 0 \end{cases}$$

Тогда в новых координатах (= новом базисе) Q имеет вид $Q(x') = \varepsilon_1 x_1'^2 + \ldots + \varepsilon_n x_n'^2$, где $arepsilon_i = \mathrm{sgn} b_i = egin{cases} 1, \, b_i > 0, \\ 0, \, b_i = 0, \end{array}$. Всё доказали. $-1, \, b_i < 0$

Пусть Q — квадратичная функция над R, которая в базисе e имеет нормальный вид: $Q(x_1, \ldots, x_n) = x_1^2 + \ldots + x_s^2 - x_{s+1}^2 - \ldots - x_{s+t}^2$

где s — количество положительных слагаемых, t — количество отрицательных слагаемых. Тогда

 $i_{+} := s -$ положительный индекс инерции квадратичной формы Q

 $i_{-} := t - \mathbf{o}$ трицательный индекс инерции квадратичной формы Q

Теорема (закон инерции). Числа $i_{+} = s$ и $i_{-} = t$ не зависят от базиса, в котором Qпринимает нормальный вид.

Доказательство. $s+t=\mathrm{rk}Q$ — инвариантная величина \Rightarrow достаточно доказать инвариантность s.

Пусть базис $e = \langle e_1, \dots, e_n \rangle$ таков, что в нём $Q(x) = x_1^2 + \dots + x_s^2 - x_{s+1}^2 - \dots - x_{s+t}^2$ Пусть базис $e' = \langle e'_1, \dots, e'_n \rangle$ таков, что в нём $Q(x) = x_1'^2 + \dots + x_{s'}'^2 - x_{s'+1}'^2 - \dots - x_{s'+t'}'^2$ Предположим, что $s \neq s'$. Можем считать, что s > s'.

Рассмотрим в V подпространства $\begin{cases} L = \langle e_1, \dots, e_s \rangle, & \dim L = s, \\ L' = \langle e'_{s'+1}, \dots, e'_{s'+t'} \rangle, & \dim L' = s'. \end{cases}$

 $L + L' \subseteq V \Rightarrow \dim(L + L') \leqslant \dim V = n.$

Тогда $\dim(L \cap L') = \dim L + \dim L' - \dim(L + L') \geqslant s + n - s' - n = s - s' > 0.$

Тогда $\exists v \in L \cap L', v \neq 0.$

T.K. $v \in L$, to Q(v) > 0.

T.K. $v \in L'$, to $Q(v) \leq 0$.

Противоречие!

20. Следствие метода Якоби о нахождении индексов инерции квадратичной формы над \mathbb{R} . Критерий Сильвестра положительной определённости квадратичной формы. Критерий отрицательной определённости квадратичной формы

 $Q:V\to\mathbb{R}$ — квадратичная форма

 $e = (e_1, \dots, e_n)$ — базис

B = B(Q, e)

 $B_k = B_k(Q, e)$

 $\delta_k = \det B_k - k$ -й угловой минор

Следствие (метода Якоби). Пусть $\delta_k \neq 0$ для всех k = 1, ..., n.

Тогда i_{-} равен числу перемен знака в последовательности $1, \delta_{1}, \ldots, \delta_{n}$.

Доказательство. Метод Якоби: существует базис, в котором Q принимает вид

$$Q(x) = \frac{\delta}{1}x_1^2 + \frac{\delta_2}{\delta_1}x_2^2 + \ldots + \frac{\delta_n}{\delta_{n+1}}x_n^2.$$

Получаем, что если для некоторого i выполняется $\frac{\delta_i}{\delta_{i-1}}$, значит $\mathrm{sgn}\delta_i \neq \mathrm{sgn}\delta_{i-1}$, что и означает, что отрицательный индекс i_- равен числу перемен знака.

Теорема (Критерий Сильвестра). Q>0 тогда и только тогда, когда $\delta_k>0$ для всех $k=1,\ldots,n.$

Доказательство.

- \iff Следует из следствия метода Якоби: $i_- = 0 \Longrightarrow i_+ = n \Longrightarrow Q > 0$.
- $\Longrightarrow Q > 0 \Longrightarrow$ существует матрица $C \in \mathcal{M}_n(\mathbb{R})$, $\det C \neq 0$, такая что $C^TBC = E$. Тогда $\det C^T \cdot \det B \cdot \det C = 1 \Longrightarrow \delta_n = \det B = \frac{1}{(\det C)^2} > 0$.

 $\forall k \; B_k$ есть матрица ограничения квадратной функции Q на подпространство $\langle e_1, \dots, e_k \rangle$. На этом подпространстве будет также положительная определенность $\Longrightarrow \delta_k = \det B_k > 0$.

Теорема (критерий отрицательной определенности).

$$Q < 0 \Longleftrightarrow \begin{cases} \delta_i < 0, i \not 2 \\ \delta_i > 0, i \vdots 2 \end{cases}$$

Доказательство. $Q < 0 \Longleftrightarrow -Q > 0$. Далее применяем критерий Сильвестра.

21. Неравенство Коши-Буняковского, неравенство треугольника и теорема Пифагора в евклидовом пространстве

Предложение (неравенство K-Б). Пусть $x, y \in \mathbb{E}$. Тогда $|(x, y)| \leq |x||y|$, причём знак равенства возможен только в том случае, если x, y — пропорциональны.

Доказательство.

- 1. x, y пропорциональны (можно считать, что $y = \alpha x, \alpha \in \mathbb{R}$) Тогда $|(x, y)| = |(x, \alpha x)| = |\alpha||(x, x)| = |\alpha||x|^2 = |x||\alpha x| = |x||y|$.
- 2. x, y не пропорциональны Тогда они линейно независимы $\Longrightarrow x, y$ базис в $\langle x, y \rangle$. Ограничение квадратичной функции Q(v) = (v, v) на $\langle x, y \rangle$ положительно определено; тогда по критерию Сильвестра $\det \begin{vmatrix} (x, x) & (x, y) \\ (x, y) & (y, y) \end{vmatrix} > 0$, то есть $(x, x)(y, y) (x, y)^2 > 0 \Longrightarrow |x|^2 |y|^2 > |(x, y)|^2$.

Предложение (неравенство треугольника).

$$\rho(a, b) + \rho(b, c) \geqslant \rho(a, c) \ \forall a, b, c \in \mathbb{E}.$$

Доказательство. Пусть
$$x:=a-b,\ y:=b-c$$
. Надо доказать $|x|+|y|\geqslant |x+y|$: $|x+y|^2=(x+y,\ x+y)=(x,\ x)+2(x,\ y)+(y,\ y)\leqslant |x|^2+2|x||y|+|y|^2=(|x|+|y|)^2$.

Предложение (теорема Пифагора). Пусть $x, y \in \mathbb{E}, \ x \perp y \ ((x, y) = 0).$ Тогда $|x + y|^2 = |x|^2 + |y|^2$.

Доказательство.
$$|x+y|^2=(x+y,\,x+y)=(x,\,x)+(x,\,y)+(y,\,x)+(y,\,y)=|x|^2+|y|^2.$$

22. Свойства определителя матрицы Грама системы векторов евклидова пространства

Пусть v_1, \ldots, v_k — система векторов в \mathbb{E} . $G = G(v_1, \ldots, v_k)$.

Предложение 1. $\forall v_1, \ldots, v_k \in E, \det G(v_1, \ldots, v_k) \geqslant 0.$

Предложение 2. $\det G(v_1,\ldots,v_k)=0$ тогда и только тогда, когда v_1,\ldots,v_k — линейно зависимы.

Доказательство 1. v_1, \ldots, v_k — линейно независимы $\Longrightarrow v_1, \ldots, v_k$ — базис в $\langle v_1, \ldots, v_k \rangle$ \Longrightarrow $\det G > 0$ по критерию Сильвестра (т.к. G есть матрица билинейной функции (\cdot, \cdot) на $\langle v_1, \ldots, v_k \rangle$ в базисе (v_1, \ldots, v_k) .

Доказательство 2. v_1, \ldots, v_k — линейно зависимы.

Тогда $\lambda_{(1)}v_1 + \ldots + \lambda_{(k)}v_k = 0$ для некоторого набора $(\lambda_{(1)}, \ldots, \lambda_{(k)}) \neq (0, \ldots, 0)$.

Тогда $\forall i = 1, \ldots, k$:

$$\lambda_{(1)}(v_1, v_i) + \ldots + \lambda_{(k)}(v_k, v_i) = 0 \Rightarrow$$

$$\Rightarrow \lambda_{(k)}G_{(1)} + \ldots + \lambda_{(k)}G_{(k)} = 0 \Rightarrow$$

 \Rightarrow строки G линейно зависимы \Rightarrow $\det G = 0$.

23. Свойства ортогонального дополнения к подпространству в евклидовом пространстве

Предложение. Пусть $S \subseteq \mathbb{E}$ — подпространство, dim $\mathbb{E} = n$. Тогда:

- 1. $\dim S^{\perp} = n \dim S$
- 2. $\mathbb{E} = S \oplus S^{\perp}$
- 3. $(S^{\perp})^{\perp} = S$

Доказательство.

1. Пусть e_1, \ldots, e_k — базис в S. Дополним его до базиса всего пространства \mathbb{E} . Пусть $x = x_1 e_1 + \ldots + x_n e_n, x \in \mathbb{E}$.

Если $x \in S^{\perp}$, то это то же самое, что $(x, e_i) = 0$ для всех $i = 1, \dots, k$. Тогда:

$$(x, e_i) = x_1(e_1, e_i) + x_2(e_2, e_i) + \ldots + x_n(e_n, e_i) = 0, \forall i = 1, \ldots, k.$$

Тогда x есть решение ОСЛУ: $G\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}=0$ с матрицей $G\in \mathrm{Mat}_{k\times n}(\mathbb{R}),$ где $g_{ij}=$

 (e_i, e_j) .

Так как левый блок размера $k \times k$ матрицы G есть $G(e_1, \dots, e_k)$, где e_1, \dots, e_k — линейно независимы, то $\det G(e_1, \dots, e_n) > 0$, следовательно $\mathrm{rk} G = k$. Тогда $\dim S^{\perp} = n - \mathrm{rk} G = n - k = n - \dim S$.

- 2. Из предыдущего пункта получили, что $\dim S + \dim S^{\perp} = n = \dim \mathbb{E}$. Если $s \in S \cap S^{\perp}$, то $\begin{pmatrix} v \\ \in S \end{pmatrix} = 0 \Longrightarrow v = 0 \Longrightarrow S \cap S^{\perp} = \{0\} \Longrightarrow S$ и S^{\perp} линейно независимы $\Longrightarrow \mathbb{E} = S \oplus S^{\perp}$.
- 3. $\dim(S^{\perp})^{\perp} = \dim \mathbb{E} \dim(S^{\perp}) = \dim \mathbb{E} (\dim \mathbb{E} \dim S) = \dim S$. Остаётся заметить, что $S \subseteq (S^{\perp})^{\perp} \Longrightarrow S = (S^{\perp})^{\perp}$.

24. Формула для ортогональной проекции вектора на подпространство в \mathbb{R}^n , заданное своим базисом

Пусть $\mathbb{E} = \mathbb{R}^n$ со стандартным скалярным произведением. $S \subseteq \mathbb{R}^n$ — подпространство, a_1, \ldots, a_k — базис в S. Образуем матрицу $A \in \operatorname{Mat}_{n \times k}(\mathbb{R})$, где $A^{(i)} = a_i$.

Предложение. $\forall v \in \mathbb{E}: \ pr_S v = A(A^TA)^{-1}A^Tx$

Доказательство. *Корректность*: $A^TA = (a_i, a_j) = G(a_1, \dots, a_k)$ — невырожденная матрица, так как a_1, \dots, a_k — линейно независимы, следовательно $(A^TA)^{-1}$ существует.

Пусть
$$v \in \mathbb{E}$$
, тогда $x = pr_S v \Rightarrow x \in S \Rightarrow x = \lambda_1 a_1 + \ldots + \lambda_k a_k = A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix}$. $y = ort_S v \Rightarrow A^T y = 0$.
$$A(A^T A)^{-1} A^T v = A(A^T A)^{-1} A^T (x + y) =$$
$$= A \underbrace{(A^T A)^{-1} (A^T A)}_{E} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} + A(A^T A)^{-1} \underbrace{A^T y}_{0} =$$
$$= A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} = x = pr_S v.$$

25. Существование ортонормированного базиса в евклидовом пространстве. Описание всех ортонормированных базисов в терминах одного и матриц перехода. Дополнение ортогональной системы векторов до ортогонального базиса

Теорема. Во всяком (конечномерном) евклидовом пространстве существует ортонормированный базис.

Доказательство. Так как квадратичная функция (v, v) положительно определена, то существует базис, в котором она принимает нормальный вид. Этот базис и есть то, что нам требуется.

Другими словами, всякую положительно определённую квадратичную форму можно привести к нормальному виду.

Пусть (e_1,\ldots,e_n) — ортонормированный базис в \mathbb{E} . Пусть также есть ещё один базис (e'_1,\ldots,e'_n) , причём $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot C$.

Предложение. (e'_1,\ldots,e'_n) — ортонормирован $\Longleftrightarrow C^TC=E.$

Доказательство. e' — ортонормированный базис $\Longrightarrow G(e') = E$ с одной стороны (по определению ортонормированного базиса), а с другой $G(e') = C^T G(e) C = C^T C$.

Следствие. Всякую ортогональную (соотв. ортонормированную) систему векторов можно дополнить до ортогонального (соотв. ортонормированного) базиса.

Доказательство. Если (e_1, \ldots, e_k) — такая система, то искомым дополнением будет ортогональный (соотв. ортонормированный) базис в $\{e_1, \ldots, e_k\}^{\perp}$.

26. Формула для ортогональной проекции вектора на подпространство в терминах его ортогонального базиса. Процесс ортогонализации Грама-Шмидта, явные формулы для каждого шага

Пусть $S \subseteq \mathbb{E}$ — подпространство. $e = (e_1, \dots, e_k)$ — ортогональный базис в S.

Предложение.
$$\forall v \in \mathbb{E}: \ pr_S v = \sum_{i=1}^k \frac{(v, e_i)}{(e_i, e_i)} e_i.$$

Доказательство. Представим v в виде суммы $v = pr_S v + ort_S v$. Тогда:

$$(v, e_i) = (pr_S v, e_i) + (ort_S v, e_i) = (pr_S v, e_i), \forall i = 1, \dots, k.$$

Также $pr_Sv=\sum_{j=1}^k \lambda_j e_j$. Следовательно, $(v,\,e_i)=\sum_{j=1}^k \lambda_j (e_j,\,e_i)$. Учитывая, что базис е — ортогональный, то все слагаемые кроме j=i обнулятся, следовательно останется только $(v,\,e_i)=\lambda_i(e_i,\,e_i)\Longrightarrow \lambda_i=\frac{(v,\,e_i)}{(e_i,\,e_i)}.$

Процесс ортогонализации Грама-Шмидта.

Пусть (e_1, \ldots, e_k) — линейно независимая система векторов.

Метод Якоби: $\det G(e_1,\ldots,e_k)>0$, где i-й угловой минор — это $\det G(e_1,\ldots,e_i)>0$. Применим результат — ортогональный базис (f_1,\ldots,f_k) в $\langle e_1,\ldots,e_k\rangle$ так, что (*):

$$f_1 = e_1$$

$$f_2 \in e_2 + \langle e_1 \rangle$$

$$f_3 \in e_3 + \langle e_1, e_2 \rangle$$

$$\vdots$$

$$f_k \in e_k + \langle e_1, \dots, e_{k-1} \rangle$$

Предложение. $\forall i = 1, \dots, k$:

1. $f_i = ort_{\langle e_1, \dots, e_{i-1} \rangle} e_i;$

2.
$$f_i = e_i - \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j;$$
 (**)

3. $\det G(f_1, \ldots, f_i) = \det G(e_1, \ldots, e_i);$

Доказательство. Помним, что при (*) $\langle e_1,\ldots,e_i\rangle=\langle f_1,\ldots,f_i\rangle$ $\forall i$

1. Распишем:

$$f_i \in e_i + \langle e_1, \dots, e_{i-1} \rangle = e_i + \langle f_1, \dots, f_{i-1} \rangle \Rightarrow$$

 $\Rightarrow f_i = e_i + h_i$, где $h_i \in \langle f_1, \dots, f_{i-1} \rangle \Rightarrow$
 $\Rightarrow e_i = f_i - h_i$
ort

Так как $f_i \in \langle f_1, \dots, f_{i-1} \rangle^{\perp}$, то

$$f_i = ort_{\langle f_1, \dots, f_{i-1} \rangle} e_i = ort_{\langle e_1, \dots, e_{i-1} \rangle} e_i$$

2.
$$f_i = ort_{\langle f_1, \dots, f_{i-1} \rangle} e_i = e_i - pr_{\langle f_1, \dots, f_{i-1} \rangle} e_f = e_i - \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j$$
 (по предыдущему)

3. Следует из того, что $G(f_1,\ldots,f_i)=C^TG(e_1,\ldots,e_i)C$, где C — верхнетреугольная с единицами на диагонали, следоавтельно $\det C=1$.

Построение ортогонального базиса f_1, \ldots, f_k (по формулам (**)) называется методом (процессом) ортогонализации Грама-Шмидта.

27. Теорема о расстоянии от точки до подпространства в евклидовом пространстве. Явная формула для расстояния в терминах определителей матриц Грама

Пусть $x \in \mathbb{E}$, $S \subseteq \mathbb{E}$ — подпространство.

Теорема. $\rho(x,S) = |ort_S x|$, причём $pr_S x$ является единственной ближайшей к x точной из S.

Доказательство.

$$y:=pr_Sx,\ z:=ort_Sx,\ x=y+z.$$
 Пусть теперь $y'\in S,\ y\neq 0.$ Покажем, что $\rho(x,\ y+y')>\rho(x,\ y).$ $ho(x,\ y+y')^2=|\underbrace{x-y}_z-y'|^2=|\underbrace{z}_{\in S^\perp}-\underbrace{y'}_{\in S}|^2=|z|^2+|y'|^2>|z|^2=\rho(x,\ y)^2.$

$$S\subseteq\mathbb{E}$$
 — подпространство, $x\in S$, $\mathbf{e}=(e_1,\dots,e_k)$ — базис. **Теорема**. $\rho(x,S)^2=\dfrac{\det G(e_1,\dots,e_k,x)}{\det G(e_1,\dots,e_k)}.$

Доказательство.

- (1) $x \in S \Longrightarrow \rho(x,S) = 0$ и $\det G(e_1,\ldots,e_k,x) = 0$, т.к. e_1,\ldots,e_k,x линейно зависимы
- (2) $x \notin S \Longrightarrow$ Положим $z := ort_S x$. Тогда $\rho(x, S) = |z|$ — уже знаем.

Применим ортогонализацию Грама–Шмидта к e_1, \ldots, e_k, x : получим систему f_1, \ldots, f_k, z .

Но при ортогонализации определитель матрицы Грама не меняется $\Longrightarrow \frac{\det G(e_1,\ldots,e_k,x)}{\det G(e_1,\ldots,e_k)} =$

$$\frac{\det G(f_1,\ldots,f_k,z)}{\det G(f_1,\ldots,f_k)} = \frac{|f_1|^2 \ldots |f_k|^2 |z|^2}{|f_1|^2 \ldots |f_k|^2} = |z|^2 = \rho(x,S)^2.$$

28. Метод наименьших квадратов для несовместных систем линейных уравнений: постановка задачи и её решение. Единственность псевдорешения и явная формула для него в случае линейной независимости столбцов матрицы коэффициентов

Метод наименьших квадратов:

Имеем СЛУ(*) Ax = b, где $A \in \operatorname{Mat}_{m \times n}, x \in \mathbb{R}^n$ — вектор неизвестных, $b \in \mathbb{R}^m$.

 $x_0 \in \mathbb{R}^n$ — решение СЛУ(*) $\Leftrightarrow Ax_0 = b \Leftrightarrow Ax_0 - b = 0 \Leftrightarrow |Ax_0 - b| = 0$ (где \mathbb{R}^n рассматривается как евклидово пространство со стандартным скалярным произведением) $\Leftrightarrow \rho(Ax_0, b) = 0.$

В случае, когда СЛУ(*) несовместна, набор $x_0 \in \mathbb{R}^n$ (вектор-столбец) называется **псевдорешением**, если $\rho(Ax_0, b) = \min \rho(Ax, b)$.

Пусть $S \subseteq \mathbb{R}^n$ — подпространство, натянутое на столбцы матрицы A, то есть S = $\langle A^{(1)}, \dots, A^{(n)} \rangle$.

Предложение 1. x_0 — псевдорешение для (*) тогда и только тогда, когда x_0 — решение для СЛУ $Ax = pr_S b$.

Предложение 2. Если столбцы матрицы A — линейно независимы, то псевдорешение единственно и может быть найдено по формуле $x_0 = (A^T A)^{-1} A^T b$.

Доказательство 1. Так как $Ax = x_1A^{(1)} + x_2A^{(2)} + \ldots + x_nA^{(n)}$, то $\{Ax \mid x \in \mathbb{R}^n\} = S$. Следовательно, $\rho(\lbrace Ax \mid x \in \mathbb{R}^n \rbrace, b) = \rho(S, b)$.

По теореме о расстоянии о точки до плоскости искомый минимум достигается в точке x_0 , для которой $A_{x_0} = or_S b$.

Доказательство 2. Так как столбцы $A^{(1)},\ldots,A^{(n)}$ — линейно независимы, то они образуют базис в $S\Longrightarrow\exists!x_0:A_{x_0}=pr_Sb.$

Так как $pr_Sb = A(A^TA)^{-1}A^Tb$, то $x_0 = (A^TA)^{-1}A^Tb$ является решением для СЛУ $Ax = pr_Sb$.

29. Две формулы для объёма параллелепипеда: в терминах определителя матрицы Грама и в терминах координат в ортонормированном базисе

Пусть a_1, \ldots, a_k — базис пространства \mathbb{E} . P - k-мерный параллелепипед.

Теорема. $vol P(a_1, ..., a_k)^2 = \det G(a_1, ..., a_n).$

Доказательство. Индукция по k:

 $\underline{k=1}$: $|a_1|^2=(a_1,a_1)$ — верно. $\underline{k>1}$): имеем $volP(a_1,\ldots,a_k)^2=volP(a_1,\ldots,a_{k-1})^2|h|^2=\det G(a_1,\ldots,a_{k-1})|h|^2=(*).$

- Если a_1, \dots, a_{k-1} линейно независимы, то $|h|^2 = \frac{\det G(a_1, \dots, a_k)}{\det G(a_1, \dots, a_{k-1})} \Rightarrow$ $\Rightarrow (*) = \det G(a_1, \dots, a_k).$
- Если a_1, \ldots, a_{k-1} линейно зависимы, то $\det G(a_1, \ldots, a_{k-1}) = 0 \Rightarrow vol P(a_1, \ldots, a_k) = 0 = (*)$. Но $\det G(a_1, \ldots, a_k) = 0$, так как a_1, \ldots, a_k линейно зависимы

Теорема. $volP(a_1, ..., a_n) = |\det A|$. Пусть $e = (e_1, ..., e_n)$ — ортонормированный базис в \mathbb{E} .

$$(a_1, \ldots, a_n) = (e_1, \ldots, e_n)A, \ a \in M_n(\mathbb{R}).$$
 Доказательство. $G(a_1, \ldots, a_n) = A^T G(e_1, \ldots, e_n)A \Rightarrow volP(a_1, \ldots, a_n)^2$ $= \det G(a_1, \ldots, a_n) = (\det A)^2.$

30. Связь смешанного произведения с векторным и скалярным в трёхмерном евклидовом пространстве. Антикоммутативность и билинейность векторного произведения. Формула для вычисления векторного произведения в терминах координат в правом ортонормированном базисе

Теорема. $\forall a, b, c \in \mathbb{R}^3$: (a, b, c) = (a, [b, c]) Доказательство.

- 1. b, c пропорциональны $\Longrightarrow [b, c] = 0 \Longrightarrow \begin{cases}$ левая часть = 0 правая часть = 0
- 2. b, c не пропорциональны \Longrightarrow положим d = [b, c].

$$(a,\,[b,\,c]) = (a,\,d) = (pr_{\langle d \rangle}a,\,d) = (ort_{\langle b,\,\,c \rangle}a,\,d) = \begin{cases} |ort_{\langle b,\,\,c \rangle}a| & |d| & \text{, если}(a,\,b,\,c) > 0, \\ & volP(b,\,\,c) & = \\ -|ort_{\langle b,\,\,c \rangle}a||d|, & \text{если}(a,\,b,\,c) < 0 \end{cases} = Vol(a,\,b,\,c) = (a,\,b,\,c).$$

Предложение.

- 1. $[a, b] = -[b, a] \ \forall a, b$ антикоммутативность
- 2. $[\cdot, \cdot]$ линейна по каждому аргументу $[\lambda_1 a_1 + \lambda_2 a_2, b] = \lambda_1 [a_1, b] + \lambda_2 [a_2, b]$ $[a, \mu_1 b_1 + \mu_2 b_2] = \mu_1 [a, b_1] + \mu_2 [a, b_2]$

Доказательство.

1. Ясно из определения

2.

$$\forall x(x, [\lambda_1 a_1 + \lambda_2 a_2, b]) = (x, \lambda_1 a_1 + \lambda_2 a_2, b) =$$

$$= \lambda_1(x, a_1, b) + \lambda_2(x, a_2, b) = \lambda_1(x, [a_1, b]) + \lambda_2(x, [a_2, b]) =$$

$$= (x, \lambda_1[a_1, b] + \lambda_2[a_2, b]).$$

Так как $\forall y = (e_1, y)e_1 + (e_2, y)e_2 + (e_3, y)e_3$ для (e_1, e_2, e_3) — ортонормированного базиса $\Longrightarrow [\lambda_1 a_1 + \lambda_2 a_2, b] = \lambda_1 [a_1, b] + \lambda_2 [a_2, b]$. Линейность по второму аргументу аналогична.

Пусть (e_1, e_2, e_3) — ортонормированный базис.

$$a = a_1e_1 + a_2e_2 + a_3e_3$$
$$b = b_1e_1 + b_2e_2 + b_3e_3$$

Тогда формула для вычисления векторного произведения выглядит так:

$$[a, b] = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = e_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - e_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + e_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} =$$

$$= (a_2b_3 - b_2a_3)e_1 - (a_1b_3 - b_1a_3)e_2 + (a_1b_2 - b_1a_2)e_3 =$$

$$= \underline{((a_2b_3 - b_2a_3), (b_1a_3 - a_1b_3), (a_1b_2 - b_1a_2))}$$

Доказательство.

$$[a_1e_1 + a_2e_2 + a_3e_3, b_1e_1 + b_2e_2 + b_3e_3] =$$

$$= a_1[e_1, b_1e_1 + b_2e_2 + b_3e_3] + a_2[e_2, b_1e_1 + b_2e_2 + b_3e_3] + a_3[e_1, b_1e_1 + b_2e_2 + b_3e_3] =$$

$$= a_1(b_1[e_1, e_2] + b_2[e_1, e_2] + b_3[e_1, e_3]) +$$

$$+ a_2(b_1[e_2, e_1] + b_2[e_2, e_2] + b_3[e_2, e_3]) +$$

$$+ a_3(b_1[e_3, e_1] + b_2[e_3, e_2] + b_3[e_3, e_3]) =$$

$$a_1b_1[e_1, e_1] + a_1b_2[e_1, e_2] + a_1b_3[e_3, e_3] +$$

$$+ a_2b_1[e_2, e_1] + a_2b_2[e_2, e_2] + a_2b_3[e_2, e_3] +$$

$$+ a_3b_1[e_3, e_1] + a_3b_2[e_3, e_2] + a_3b_3[e_3, e_3]$$

В результате, подставив вычисления $[e_2, e_3] = e_1$ и $[e_3, e_2] = -e_1$, получим искомую формулу.

31. Формула для двойного векторного произведения в трехмерном евклидовом пространстве

Предложение. $[a,\,[b,\,c]]=(a,\,c)b-(a,\,b)c.$ Доказательство.

1. b, c — пропорциональны \Longrightarrow можем считать $c = \lambda b$ Правая часть $= (a, \lambda b)b - (a, b)\lambda b = 0$

2. b, c — не пропорциональны

Выберем правый ортонормированный базис e_1, e_2, e_3 так, чтобы

- (a) b пропорционален e_1
- (b) $\langle b, c \rangle = \langle e_1, e_2 \rangle$

Тогда $b = \beta e_1$, $c = \gamma_1 e_1 + \gamma_2 e_2$, $a = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$.

 $[b, c] = [\beta e_1, \gamma_1 e_1 + \gamma_2 e_2] = \beta \gamma_2 e_3$

Левая часть = $[a, [b, c]] = [\alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3, \beta \gamma_2 e_3] = -\alpha_1 \beta \gamma_2 e_2 + \alpha_2 \beta \gamma_2 e_1$

Правая часть = $(\alpha_1\gamma_1 + \alpha_2\gamma_2)\beta e_1 - \alpha_1\beta(\gamma_1e_1 + \gamma_2e_2) = \alpha_2\gamma_2\beta e_1 - \alpha_1\beta\gamma_2e_2 =$ левая часть.

32. Линейные многообразия как сдвиги подпространств. Критерий равенства двух линейных многообразий

Предложение. $L \subseteq \mathbb{R}^n$ — непустое множество $\Rightarrow L$ — линейное многообразие $\Rightarrow L = v_0 + S$ для некоторых $v_0 \in L$ и подпространства $S \subseteq \mathbb{R}^n$.

3амечание. Из предложения следует, что линейные многообразия — в точности сдвиги подпространств в \mathbb{R}^n .

Доказательство.

- ⇒ Ясно и очевидно
- $\stackrel{\frown}{\longleftarrow} L = v_0 + S.$

Так как S — подпространство, то существует ОСЛУ Ax=0, такая что S есть ее множество решений.

Тогда L есть множество решений СЛУ $Ax = A_{v_0}$.

Пусть $L_1 = v_1 + S_1$ и $L_2 = v_2 + S_2$ — два линейных многообразия.

Предложение.
$$L_1=L_2\Longleftrightarrow \begin{cases} S_1=S_2\;(=S)\\ v_1-v_2\in S \end{cases}$$

Доказательство.

- ← Очевидно
- $\stackrel{\frown}{\Rightarrow} L_1 = L_2: v_1 = v_1 + 0 \in v_2 + S_2 \Rightarrow v_1 v_2 \in S_2.$

 \widetilde{A} налогично $v_1 - v_2 \in S_1 \Rightarrow v_1 - v_2 \in S_1 \cap S_2$.

 $v \in S_1 \Rightarrow v_1 + v \in v_2 + S_2 \Rightarrow v \in (v_2 - v_1) + S_2 \subseteq S_2.$

Отсюда $S_1 \cap S_2$. Аналогично $S_2 \subseteq S_1 \Longrightarrow S_1 = S_2 \ (=S)$ и $v_1 - v_2 \in S$.

33. Теорема о плоскости, проходящей через k+1 точку в \mathbb{R}^n

Теорема.

- 1. Через любые k+1 точек в \mathbb{R}^n проходит плоскость размерности $\leqslant k$.
- 2. Если k+1 точек не лежат в плоскости размерности < k, то через них проходит ровно одна плоскость размерности k.

Доказательство.

- 1. Пусть v_0, \ldots, v_k наши точки. Тогда они все лежат в плоскости $P = v_0 + \langle (v_1 v_0), (v_2 v_0), \ldots, (v_k v_0) \rangle$, dim $P = \dim S \leqslant k$.
- 2. В этом случае $\dim P = k \Longrightarrow \dim S = k \Longrightarrow v_1 v_0, \dots, v_k v_0$ линейно независимы. $(v_1 v_0), \dots, (v_k v_0)$ лежат в направляющем подпространстве любой плоскости, проходящей через $v_0, \dots, v_k \Longrightarrow P$ единственная плоскость размерности k с требуемым свойством.

34. Инвариантность определителя матрицы линейного оператора относительно замены базиса. Критерий обратимости линейного оператора в терминах его ядра, образа и определителя. Связь спектра линейного оператора с его характеристическим многочленом

Пусть φ — линейный оператор.

Следствие. $\det A(\varphi, e)$ не зависит от выбора базиса е.

Доказательство. $\det A' = \det(C^{-1}AC)$ — очевидно, так как $\det C^{-1} = \det C = 1$.

Теорема (критерий обратимости). Для $\varphi \in L(V)$ следующие условия эквивалентны: 1. $\operatorname{Ker} \varphi = \{0\}$

- 2. $\text{Im}\varphi = V$
- 3. φ обратим (т.е. φ изоморфизм V на себя)
- 4. $\det \varphi \neq 0$

Доказательство.

 $(1 \Leftrightarrow 2)$ Так как $\dim V = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$.

 $(1\&2 \Leftrightarrow 3)$ Очевидно

 $(2 \Leftrightarrow 4) \operatorname{Im} \varphi = V \Leftrightarrow \operatorname{rk} \varphi = \dim V \Leftrightarrow \det \varphi \neq 0.$

Утверждение. $\lambda \in \operatorname{Spec} \varphi \Leftrightarrow \chi_{\psi} \varphi(\lambda) = 0$, то есть λ — корень характеристического

Доказательство. Докажем аналогичное утверждение, из которого следует текущее:

 $\lambda \in \operatorname{Spec}\varphi \Leftrightarrow \det(\varphi - \lambda \operatorname{Id}) = 0.$

 $\lambda \in \operatorname{Spec}\varphi \Leftrightarrow V_{\lambda}(\varphi) \neq \{0\} \Leftrightarrow \operatorname{Ker}(\varphi - \lambda \operatorname{Id}) \neq \{0\} \Leftrightarrow \operatorname{det}(\varphi - \lambda \operatorname{Id}) = 0.$

35. Связь между алгебраической и геометрической кратностями собственного значения линейного оператора

Предложение. Пусть $\lambda \in \operatorname{Spec} \varphi \Longrightarrow (\operatorname{геом.} \ \operatorname{кратность} \ \lambda) \leqslant (\operatorname{алг.} \ \operatorname{кратность} \ \lambda)$

Доказательство. Пусть d_{λ} — геометрическая кратность = dim $V_{\lambda}(\varphi)$.

Выберем базис $(e_1,\ldots,e_{d_\lambda})$ в $V_\lambda(\varphi)$ и дополним его до базиса $\mathbb{C}=(e_1,\ldots,e_n)$ всего пространства V. Тогда $A(\varphi, e)$ имеет вид:

$$A(arphi,\,\mathbf{e})=egin{pmatrix} \lambda & \cdots & 0 & & & & \\ arphi & \ddots & 0 & & B & & \\ 0 & \cdots & \lambda & & & & \\ \hline & 0 & & D & & \end{pmatrix},\,$$
 количество $\lambda=d_\lambda$

Тогда

$$\chi_{\varphi}(t) = \begin{vmatrix} \lambda - t & \cdots & 0 \\ \vdots & \ddots & 0 \\ 0 & \cdots & \lambda - t \end{vmatrix} = \begin{vmatrix} D - tE \end{vmatrix}$$

$$= (-1)^n (\lambda - t)^{d_{\lambda}} \det(D - tE) = (-1)^{n - d_{\lambda}} (t - \lambda)^{d_{\lambda}} \det(D - tE)$$

Отсюда, (алг. кратн.) $\geqslant d_{\lambda} =$ (геом. кратн.).

36. Линейная независимость собственных подпространств линейного оператора, отвечающих попарно различным собственным значениям. Диагонализуемость линейного оператора, у которого число корней характеристического многочлена равно размерности пространства

Определение. v_1, \ldots, v_s — линейно независимы $\iff \forall v_1 \in V_1, \ldots, v_s \in V_s$ из условия $v_1 + \ldots + v_s = 0$ следует $v_1 = \ldots = v_s = 0$.

Пусть $\{\lambda_1, \ldots, \lambda_s\} \subseteq \operatorname{Spec}\varphi, \lambda_i \neq \lambda_i \ \forall i, j.$

Предложение. Подпространства $V_{\lambda_1}(\varphi),\dots,V_{\lambda_s}(\varphi)$ — линейно независимы. Доказательство.

s=1: очевидно.

Пусть доказано для всех < s, докажем для s:

Пусть $v_1 \in V_{\lambda_1}(\varphi), \dots, v_s \in V_{\lambda_s}(\varphi)$ и $v_1 + \dots + v_s = 0$ (*) $\Longrightarrow \varphi(v_1) + \dots + \varphi(v_s) = \varphi(0) = 0$ $\Longrightarrow \lambda_1 v_1 + \ldots + \lambda_s v_s = 0$

Вычтем (*), умноженное на λ_s : $(\lambda_1 - \lambda_s)v_1 + \ldots + (\lambda_{s-1} - \lambda_s)v_{s-1} = 0$.

Так как $\lambda_i \neq \lambda_s$ при $i \neq s$, то по предположению индукции получаем: $v_1 = \ldots = v_{s-1} =$ 0. Тогда (*) влечет $v_s = 0$.

Следствие. Если $\chi_{\varphi}(t)$ имеет ровно n попарно различных корней, то φ — диагонализуем.

Доказательство. Пусть $\mathrm{Spec}\varphi=\{\lambda_1,\ldots,\lambda_n\},\ \lambda_i\neq\lambda_j$ при $i\neq j$. В каждом $V_{\lambda_i}(\varphi)$ возьмем ненулевой вектор v_i , тогда по предыдущему предложению векторы v_1, \ldots, v_n линейно независимы $\Longrightarrow v_1, \ldots, v_n$ — базис из собственных векторов $\Longrightarrow \varphi$ — диагонализуем.

37. Два критерия диагонализуемости линейного оператоpa

Теорема. Линейный оператор φ диагонализуем \iff выполнены следующие два усло-

- 1. $\chi_{\varphi}(t)$ разлагается на линейные множители
- 2. $\forall \lambda \in \text{Spec}\varphi$ (геом. кратн.) = (алг. кратн.)

Доказательство.

 $(\Rightarrow) \varphi$ диагонализуем \to существует базис $e = (e_1, \dots, e_n)$ такой, что

$$A(\varphi, e) = \operatorname{diag}(\mu_1, \dots, \mu_n) = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_n \end{pmatrix}$$

$$A(\varphi, \mathbb{P}) = \operatorname{diag}(\mu_1, \dots, \mu_n) = \begin{pmatrix} \mu_1 & 0 \\ 0 & \ddots & \mu_n \end{pmatrix}$$
 Тогда $\chi_{\varphi}(t) = (-1)^n \begin{vmatrix} \mu_1 - t & 0 \\ 0 & \ddots & \mu_n - t \end{vmatrix} = (t - \mu_1)(t - \mu_2) \dots (t - \mu_n) \Rightarrow$ условие 1. Теперь перепишем $\chi_{\varphi}(t)$ в виде $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$ и

Тогда $\forall i = 1, \ldots, s: V_{\lambda_i}(\varphi) \equiv \langle e_i \mid \mu_i = \lambda_i \rangle \Rightarrow \dim V_{\lambda_i}(\varphi) \geqslant k_i \Rightarrow \text{(геом. кр.)} = \text{(алг. кр.)}$

кр.) \Rightarrow условие 2.

 $\stackrel{\circ}{(\Leftarrow)}$ Пусть $\chi_{\wp}(t)=(t-\lambda_1)^{k_1}\dots(t-\lambda_s)^{k_s},$ где $\lambda_i
eq \lambda_i$ при i
eq j.

Из условия 2 получаем, что $\dim V_{\lambda_i}(\varphi) = k$. Так как $V_{\lambda_i}(\varphi), \dots, V_{\lambda_s}(\varphi)$ — линейно независимы, то $\dim(V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi)) = \dim V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi) = k_1 + \ldots + k_s = n \Rightarrow$ $V_{\lambda_1}(\varphi) + \ldots + V_{\lambda_s}(\varphi) = V \Rightarrow V = V_{\lambda_1}(\varphi) \oplus \ldots \oplus V_{\lambda_s}(\varphi).$

 $\forall i=1,\ldots,s$ пусть \mathbf{e}_i — базис в $V_{\lambda_i}(\varphi)$, тогда $\mathbf{e}_1\cup\ldots\cup\mathbf{e}_s$ — базис V — он состоит из собственных векторов $\Rightarrow \varphi$ — диагонализуем.

38. Существование одномерного или двумерного инвариантного подпространства для линейного оператора в векторном пространстве над $\mathbb R$

Теорема. Если $F = \mathbb{R}$, то $\forall \varphi \in L(V)$ существует либо одномерное, либо двумерное φ -инвариантное подпространство.

Доказательство.

- 1. $\chi_{\varphi}(t)$ имеет действительные корни \Rightarrow есть собственные векторы \Rightarrow есть одномерное φ -инвариантное подпространство.
- 2. $\chi_{\varphi}(t)$ не имеет действительных корней.

Пусть $\lambda + i\mu$ — комплексный корень $\chi_{\varphi}(t), \lambda, \mu \in \mathbb{R}, \mu \neq 0$.

Выберем базис $e = (e_1, \ldots, e_n)$ в V. Пусть $A = A(\varphi, e)$. Над e у φ есть собственный вектор \Rightarrow существует $u \in \mathbb{R}^n$ и $v \in \mathbb{R}^n$, такие что $A(u+iv) = (\lambda+i\mu)(u+iv) =$ $(\lambda u - \mu v) + i(\mu u + \lambda v).$

Также A(u+iv) = Au + iAv.

Отделив действительные и мнимые части, получаем: $\begin{cases} Au = \lambda u - \mu v, \\ Av = \mu u + \lambda v \end{cases}.$ Пусть $x \in V$ — вектор с координатами u, а $u \in V$ — вектор с координатами v.

Тогда $\begin{cases} \varphi(x) = \lambda x - \mu y, \\ \varphi(y) = \mu x + \lambda y \end{cases} \Rightarrow U = \langle x, y \rangle - \varphi$ -инвар. подпространство и dim $U \leqslant 2$.

39. Линейный оператор в евклидовом пространстве, сопряжённый к данному: определение, существование, единственность. Матрица сопряженного оператора в произвольном и ортонормированном базисах

Определение. Линейный оператор $\psi \in L(\mathbb{E})$ называется сопряженным к φ , если $(x, \varphi(y)) = (\psi(x), y) \ \forall x, y \in \mathbb{E}.$

$$\beta_{\varphi} = \beta_{\psi}^{T}$$

Предложение.

- 1. ψ существует, причём единственно.
- 2. если е ортонормированный базис в \mathbb{E} , то $A_{\psi}=A_{\varphi}^T$, где $A_{\varphi}=A(\varphi,\,\mathbf{e}),\,A_{\psi}=A(\psi,\,\mathbf{e}).$

Доказательство. Пусть e — базис в \mathbb{E} . $G = G(e_1, \dots, e_n)$.

$$B(\beta_{\varphi}^T, \, \mathbf{e}) = A_{\psi}^T G$$

$$B(\beta_{\varphi}, e) = G A_{\psi}$$

 $A_{\psi}^{T}G = GA_{\varphi} \Leftrightarrow GA_{\psi} = A_{\varphi}^{T}G \ (G = G^{T}) \Leftrightarrow A_{\psi} = G^{-1}A_{\varphi}^{T}G.$ Отсюда следует существование и единственность ψ .

Если е — ортонормированный базис, то $G=E\Rightarrow A_{\varphi}=A_{\varphi}^{T}.$

40. Самосопряженный линейный оператор в евклидовом пространстве: инвариантность ортогонального дополнения к инвариантному подпространству и существование собственного вектора

Предложение. $\varphi=\varphi^*,\ U\in\mathbb{E}-\varphi$ -инвариантное подпространство $\Rightarrow U^\perp$ — тоже φ -инвариантное подпространство.

Доказательство.

Имеем $\varphi(U) \in U$.

Хотим $\varphi(U^{\perp}) \in U^{\perp}$.

$$\forall x \in U, \, \forall y \in U^{\perp} : (\underset{\in U}{x}, \, \varphi(y)) = (\underset{\in U}{\varphi(x)}, \, \underset{\in U^{T}}{y}) = 0$$

Предложение. $\varphi = \varphi^* \Rightarrow \mathbf{B} \ \mathbb{E}$ существует собственный вектор.

Доказательство. Знаем существование либо $\begin{cases} 1\text{-мерного }\varphi\text{-инвариантного подпространства}, \\ 2\text{-мерного }\varphi\text{-инвариантного подпространства} \end{cases}$

- 1. Ok
- 2. $U \in \mathbb{E} \varphi$ -инвариантное подпространство, $\dim U = 2$. Фиксируем $\mathfrak{e} = (e_1, \dots, e_n)$ ортонормированный базис в U. $\psi := \varphi|_U, \ \psi = \psi^*.$ $\triangle = \triangle(\varphi, \ \mathfrak{e}) \Rightarrow \triangle = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$ $\chi_{\psi}(t) = (-1)^2 \begin{vmatrix} a t & b \\ b & c t \end{vmatrix} = t^2 (a + c)t + ac b^2.$ $D = (a + c)^2 4(ac b^2) = (a c)^2 + ab^2 \geqslant 0 \Rightarrow \chi_{\psi}(t) \text{ имеет действительные корни} \Rightarrow$

у ψ есть собственный вектор \Rightarrow у φ также есть собственный вектор.

41. Самосопряженный линейный оператор в евклидовом пространстве: существование ортонормированного базиса из собственных векторов, ортогональность собственных подпространств, отвечающих различным собственным значениям. Приведение квадратичной формы к главным осям

Теорема. $\varphi = \varphi * \Rightarrow$ в \mathbb{E} есть ортонормированный базис из собственных векторов. В частности, φ диагонализуем над \mathbb{R} и $\chi_{\psi}\varphi(t)$ разлагается на линейные множители.

Доказательство. Индукция по n.

n = 1: ясно.

 $\underline{n>1}$: существует собственный вектор v.

Предположим $e_1=\frac{v}{|v|},\ U=\langle e_1\rangle.\ U-\varphi$ -инвариантное подпространство U^\perp — тоже φ -инвариантно.

 $\dim U^{\perp} = n-1 \Rightarrow$ по предположению индукции в U^{\perp} существует ортонормированный базис e_1, \ldots, e_n из собственных векторов. Тогда (e_1, \ldots, e_n) — искомый ортонормированный базис.

Следствие. $\varphi = \varphi^*, \ \lambda, \mu \in \operatorname{Spec}\varphi, \ \lambda \neq \mu \Rightarrow \mathbb{E}_{\lambda}(\varphi) \bot \mathbb{E}_{\mu}(\varphi).$

Доказательство. Пусть e_1, \ldots, e_n — ортонормированный базис из собственных векторов: $\varphi(e_i) = \lambda e_i$.

$$v = x_1 e_1 + \ldots + x_n e_n \Rightarrow \varphi(v) = x_1 \lambda_1 e_1 + \ldots + x_n \lambda_n e_n.$$

 $\varphi(v) = \lambda v \Leftrightarrow v \in \langle x_i \lambda_i e_i = \lambda \rangle \Rightarrow \mathbb{E}_{\lambda}(\varphi) \perp \mathbb{E}_{\mu}(\varphi)$ при $\lambda \neq \mu$.

Следствие (приведение кв. ф. к главным осям). Для любой квадратичной формы $Q: \mathbb{E} \to \mathbb{R}$ существует ортонормированный базис $e = (e_1, \dots, e_n)$, такой что в нём Q имеет канонический вид $Q(x) = \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2$ (главные оси — это $\langle e_1 \rangle, \ldots, \langle e_n \rangle$).

Доказательство. Существует единственный самосопряжённый линейный оператор $\varphi \in L(\mathbb{E})$, такой что $Q(x) = (x, \varphi(x))$, для любого ортонормированного базиса $e: B(Q, e) = A(\varphi, e)$, где A — диагонализуема.

42. Ортогональный линейный оператор в евклидовом пространстве: определение, пять эквивалентных условий

Определение. Линейный оператор $\varphi \in L(\mathbb{E})$ называется **ортогональным**, если $(\varphi(x), \varphi(y)) = (x, y) \ \forall x, y \in \mathbb{E}$ (то есть φ сохраняет скалярное произведение).

Предложение. Для $\varphi \in L(\mathbb{E})$ следующие условия эквивалентны:

- 1. φ ортогональный линейный оператор
- 2. φ сохраняет длину, то есть $|\varphi(x)| = |x|, \forall x \in \mathbb{E}$
- 3. $\exists \varphi^{-1}$, причём $\varphi^{-1} = \varphi^*$ (т.е. $\varphi \varphi^* = \varphi^* \varphi = \mathrm{Id}$)
- 4. Для любого ортонормированного базиса e матрица $A(\varphi, e)$ диагональна
- 5. Для любого ортонормированного базиса $e = (e_1, \dots, e_n) : (\varphi(e_1), \dots, \varphi(e_n))$ тоже ортонормированный базис.

Доказательство (из Каина).

$$(1 \Rightarrow 2) |\varphi(x)| = \sqrt{(\varphi(x), \varphi(x))} = \sqrt{(x, x)} = |x|$$

$$(1\&2\Rightarrow3)$$
 Найдём ядро φ : $\varphi(x)=0\Rightarrow |\varphi(x)|=0\Rightarrow |x|=0\Rightarrow x=0.$

Получаем $\text{Ker}\varphi = \{0\}$, следовательно, существует φ^{-1} . Докажем, что $\varphi^{-1} = \varphi$:

$$(\varphi(x)^{-1},\,y)=(\varphi(\varphi(x)^{-1}),\,\varphi(y))=(x,\,\varphi(y))$$

$$\boxed{3 \Leftrightarrow 4} \ \text{Пусть e-- ортонормированный базис, } A = A(\varphi, \operatorname{e}). \ \text{Тогда} \begin{cases} A(\varphi^{-1}, \operatorname{e}) = A^{-1}, \\ A(\varphi^*, \operatorname{e}) = A^T \end{cases} \Rightarrow$$

 $A^T = A^{-1} \Rightarrow A$ — ортогональная матрица.

 $(4\Rightarrow 5)$ Пусть $e=(e_1,\ldots,e_n)$ — ортонормированный базис. Тогда верно, что

$$(\varphi(e_1),\ldots,\varphi(e_n))=(e_1,\ldots,e_n)A, A=A(\varphi,e)$$

Так как A — ортонормированная матрица, то $(\varphi(e_1), \ldots, \varphi(e_n))$ — ортонормированный базис.

 $(5 \Rightarrow 1)$ е — ортонормированный базис, $x = x_1 e_1 + \ldots + x_n e_n$, $y = y_1 e_1 + \ldots + y_n e_n$.

$$(\varphi(x), \varphi(y)) = (\varphi(\sum_{i=1}^{n} x_{i}e_{i}), \varphi(\sum_{j=1}^{n} y_{j}e_{j})) =$$

$$= (\varphi(\sum_{i=1}^{n} x_{i}\varphi(e_{i})), \varphi(\sum_{j=1}^{n} y_{j}\varphi(e_{j})) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}y_{j}(\varphi(e_{i}), \varphi(e_{j}))) =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}y_{j}(e_{i}, e_{j}) = (x, y).$$

43. Классификация ортогональных линейных операторов в одномерном и двумерном евклидовых пространствах

Нет записей

44. Ортогональный линейный оператор в евклидовом пространстве: инвариантность ортогонального дополнения к инвариантному подпространству, теорема о каноническом виде. Классификация ортогональных линейных операторов в трёхмерном евклидовом пространстве

Предложение. $\varphi\in L(\mathbb{E})$ — ортогональный оператор. $\varphi\subseteq\mathbb{E}$ — φ -инвариантное подпространство $\Longrightarrow U^\perp$ — тоже φ -инвариантео

Доказательство.

Имеем $\varphi(U) \in U$.

Хотим $\varphi(U^{\perp}) \in U^{\perp}$.

Положим $\psi = \varphi|_U$. Тогда ψ — ортогональный линейный оператор на $U \Rightarrow \exists \psi^{-1}$. Тогда $\forall x \in U, \forall y \in U^{\perp}: (\underset{\in U}{x}, \varphi(y)) = (\varphi^*(x), y) = (\varphi^{-1}(x), y) = (\psi^{-1}(x), \underset{\in U}{y}) = 0$

Теорема. Для любого ортогонального оператора $\varphi \in L(\mathbb{E})$ существует ортонормированный базис, в котором

$$A(\varphi,\,\mathbf{e}) = \begin{pmatrix} \Pi(\alpha_1) & & & & & \\ & \ddots & & & & \\ & & \Pi(\alpha_k) & & & \\ & & & -1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix} (*), \text{ где } \Pi(\alpha_i) = \begin{pmatrix} \cos\alpha_i & -\sin\alpha_i \\ \sin\alpha_i & \cos\alpha_i \end{pmatrix}$$

Доказательство. Индукция по n.

n = 1, 2 было разобрано на лекциях.

Для n>2: существует либо одномерное, либо двумерное φ -инвариантное подпространство U. Тогда $\mathbb{E}=U\oplus U^\perp$ и $U^\perp-\varphi$ -инвариантно.

Так как $\dim U < n$, $\dim U^{\perp} < n$, то по предположению индукции в U, U^{\perp} существуют ортонормированные базисы с требуемым свойством.

Объединение этих базисов даёт требуемый базис в $\mathbb E$ с точностью до перестановки блоков.

Следствие. Для любого ортогонального линейного оператора φ в \mathbb{R}^3 существует ортонормированный базис \mathbb{R}^3 , такой что либо $A(\varphi,\mathbb{R}) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & 1 \end{pmatrix}$ (поворот), либо $A(\varphi,\mathbb{R}) = \begin{pmatrix} \Pi(\alpha) & 0 \\ 0 & -1 \end{pmatrix}$ (зеркальный поворот).

Доказательство. По теореме существует такой базис, в котором матрица φ имеет (*) вид. Если в (*) есть блок $\Pi(\alpha)$, то всё хорошо. Иначе матрица имеет вид $\begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$, но $\Pi(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\Pi(1) = \Pi(0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

45. Теорема о сингулярных базисах для линейного отображения евклидовых пространств. Сингулярные значения линейного отображения. Сингулярное разложение матрицы и её сингулярные значения

Теорема. Существуют ортонормированные базисы e в \mathbb{E} и f в \mathbb{E}' такие что

$$A(\varphi,\,\mathbb{e},\,\mathbb{f}) = \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & 0 \\ & & \sigma_r & & \\ & & & 0 & \\ & & & 0 & \\ & & & & 0 \end{pmatrix}, \quad \underbrace{\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r}_{\text{определены однозначно}} > 0.$$

Доказательство. $\mathbb{E} = \operatorname{Ker} \varphi \oplus (\operatorname{Ker} \varphi)^{\perp}$.

 $\dim(\operatorname{Ker}\varphi)^{\perp} = r = \dim\operatorname{Im}.$

 $\forall x,y\in ((\mathrm{Ker}\varphi)^\perp)$ положим $\beta(x,y)=(\varphi(x),\,\varphi(y))'.$ Тогда $\beta(x,y)$ — симметричная билинейная форма на $(\mathrm{Ker}\varphi)^\perp.$ Более того, квадратичная форма $Q(x)=\beta(x,x)$ — положительно определена: $Q(x)=(\varphi(x),\,\varphi(x))'\geqslant 0.$ Если Q(x)=0, то $\varphi(x)=0\Rightarrow x\in (\mathrm{Ker}\varphi\cap (\mathrm{Ker}\varphi)^\perp)\Rightarrow x=0.$

Приведём квадратичную форму к главным осям.

Существует ортонормированный базис $e_0 = (e_1, \dots, e_r)$ в $(\text{Ker}\varphi)^{\perp}$, такой что матрица $B(Q, e_0) = \text{diag}(s_1, \dots, s_r)$. Так как Q > 0, то все $s_i > 0$.

Без ограничения общности можно считать, что $s_1 \geqslant \ldots \geqslant s_n > 0$. Положим $\sigma_i = \sqrt{s_i}, \ i=1,\ldots,r.$ $f_i=\frac{1}{\sigma_i}\varphi(e_i).$

Тогда
$$(f_i,f_j)'=(\frac{1}{\sigma_i}\varphi(e_i),\frac{1}{\sigma_j}\varphi(e_j))'=\frac{1}{\sigma_i\sigma_j}(\varphi(e_i),\varphi(e_j))'=\frac{1}{\sigma_i\sigma_j}\beta(e_i,e_j)=\begin{bmatrix}0,\operatorname{при}\ i\neq j,\\ \frac{s_i}{\sigma_i^2}=1,\operatorname{при}\ i=j \end{bmatrix}$$

Получили, что f_1, \ldots, f_r — это ортонормированный базис в $\operatorname{Im} \varphi$. Теперь дополним e_0 до ортонормированного базиса $\mathfrak E$ и дополним f_1, \ldots, f_n до ортонормированного базиса $\mathfrak E$ в $\mathbb E$. Тогда

$$A(\varphi, e, f) = \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & 0 \\ & & \sigma_r & & & \\ & & & 0 & & \\ & & 0 & & \ddots & \\ & & & & 0 \end{pmatrix},$$

Числа $\sigma_1^2,\dots,\sigma_r^2$ — собственные значения в матрице квадратичной формы Q в любом ортонормированном базисе $\Rightarrow \sigma_1,\dots,\sigma_r$ определены однозначно.

Следствие (сингулярное разложение матрицы). $SVD = "singular \ value \ decomposition"$

 $\forall A \in \mathrm{Mat}_{m \times n}(\mathbb{R})$ существует ортогональные матрицы $U \in \mathrm{M}_m(\mathbb{R})$ и $V \in \mathrm{M}_n(\mathbb{R})$, такие что

$$A=U\Sigma V^T$$
, где $\Sigma=egin{pmatrix}\sigma_1&&&&&0\ &&\sigma_r&&&&\ &&&0&&&&\ &&&0&&&&\ &&&&0&&&\ &&&&&0\end{pmatrix},\;\;\sigma_1\geqslant\sigma_2\geqslant\ldots\geqslant\sigma_r>0.$

Более того, числа $\sigma_1, \ldots, \sigma_r$ определены однозначно.

Доказательство. Применим Теорему о сингулярных базисах к линейному отображению $\varphi: \mathbb{R}^n \to \mathbb{R}^n, \, x \mapsto Ax$.

Тогда \exists орт. и $U \in \mathrm{M}_m(\mathbb{R})$ и $V \in \mathrm{M}_n(\mathbb{R})$, такие что

$$U^{-1}AV = \begin{pmatrix} \sigma_1 & & & & & \\ & \ddots & & & 0 & \\ & & \sigma_r & & & \\ \hline & & & 0 & & \\ & & 0 & & \ddots & \\ & & & & 0 \end{pmatrix} = \Sigma$$

 $\Leftrightarrow A = U\Sigma V^{-1} = U\Sigma V^T.$