Linear Algebra homework 3.2

中文翻译参考:

1 将 A, B 化简为它们的三角阶梯形 U。问哪些变量是自由的 (free)?

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix}.$$

- 2 对于第 1 题的矩阵,求每一个自由变量的特殊解。(令一个自由变量为 1,其他自由变量都为 0)。
- 3 对第 1 问得到的 U 进行更深入的行操作 (row operation),求它们的简化阶梯形 R。判断对错: R 的零空间等于 U 的零空间,说明原因。
- 5 判断对错 (如果正确说明原因,如果错误举例说明):
 - (a) 方阵没有自由变量;
 - (b) 可逆矩阵没有自由变量;
 - (c) 一个 $m \times n$ 的矩阵的轴变量不超过 n 个;
 - (d) 一个 $m \times n$ 的矩阵的轴变量不超过 m 个;
- 6 在 4×7 的阶梯矩阵 U 中放置尽可能多的 1,使得 U 的轴元列是: (a)2,4,5。
- 7 在 4×8 的简化阶梯形 R 中放置尽可能多的 1, 使得 R 的自由列是: (a)2, 4, 5, 6。
- 8 假设一个 3×5 的矩阵的第 4 列都为零,那么 x_4 可以确定是一个 _____ 变量,该变量的特殊解是 向量 $x = _____$ 。
- 9 假设一个 3×5 的矩阵的第1 列和最后一列相等 (不为零),那么 _____ 是自由变量,求出这个自 由变量的特殊解。
- 10 假设一个 $m \times n$ 的矩阵有 r 个轴元,那么特殊解的个数为 _____,当 r = _____ 时零空间仅包含 x = 0,当 r = _____ 时列空间是整个 \mathbb{R}^m 。

13 (推荐) 平面 x-3y-z=12 平行于 x-3y-z=0, 该平面 (x-3y-z=12) 上的一个特殊点是 (12,0,0),所有平面上的点有以下形式:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

填写上式留下的空。

- 15 构造一个矩阵,它的零空间 N(A) = (2,2,1,0) 和 (3,1,0,1) 的所有线性组合。
- 18 构造一个矩阵,它的列空间包含 (1,1,5) 和 (0,3,1),零空间包含 (1,0,1) 和 (0,0,1)。
- 20 创建一个 2×2 矩阵,它的零空间等于列空间。
- 21 为什么 3×3矩阵的零空间不可能等于其列空间?
- 22 如果 AB = 0,那么 B 的列空间包含在 A 的中,为什么?
- 24 举例证明下列三个说法一般是错误的:
 - (a) A 和 A^{\top} 有相同的零空间;
 - (b) A 和 A^{T} 有相同的自由变量;
 - (c) 如果 R 是简化形式 $\mathbf{rref}(A)$ (即 $R = \mathbf{rref}(A)$),那么 $R^{\top} = \mathbf{rref}(A^{\top})$
- 26 如果 Rx = 0 的特殊解在下列零空间矩阵 N 的列中,由特殊解反过来求简化矩阵 R 的非零行。

$$N = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 和 N =
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 和 N =
$$\begin{bmatrix} 2 & 3 \\ 0 \\ 1 \end{bmatrix}$$
 空的 3×1 向量

- 29 如果 4×4 矩阵 A 可逆,描述一下 4×8 矩阵 $B = \begin{bmatrix} A & A \end{bmatrix}$ 的零空间。
- 30 如果 $C = \begin{bmatrix} A \\ B \end{bmatrix}$, 那么 C 的零空间 $\mathbf{N}(C)$ 与 A, B

的零空间 N(A), N(B) 有何关系?

32 基尔霍夫电流定律 $A^{T}x = 0$ 说明在每个节点: 流进的电流 = 流出的电流。比如在节点 1 有: $y_3 = y_1 + y_4$; 写出四个节点的四个基尔霍夫方程 (箭头的方向表示每个电流 y 的方向)。把 A^{T} 简化成 R,然后在 $A^{T}(4 \times 6$ 矩阵) 的零空间中找到三个特殊解。

图 1. 第 32 题图

- 33 下面哪些定义给出了 A 的秩的正确定义:
 - (a) R(简化阶梯形) 的非零行的个数;
 - (b) 列的个数减去全部的行数;
 - (c) 列的个数减去自由列的个数;
 - (d) 矩阵 R 中 1 的个数。
- 35 假设轴元变量出现在最后而不是最前面,描述其简化阶梯形 R 的四个分块矩阵 (块矩阵 B 必须为 $r \times r$ 矩阵)。

$$R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

问包含特殊解的零空间矩阵 N 是什么?

38 求 $Rx = \mathbf{0}$ 和 $\mathbf{y}^{\mathsf{T}}R = \mathbf{0}$ 的特殊解是什么? 其中 R 为:

$$R = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \not \mathbb{Z} \quad R = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

39 把下面的矩阵填完整使得它们的秩都是 1:

- 40 如果一个 $m \times n$ 矩阵 A 的秩是 r = 1,它的列都是某一列的倍数,它的行都是某一行的倍数。那么它的列空间是 \mathbb{R}^m 中的 ______ (线或平面),零空间是 \mathbb{R}^n 中的 ______ 。零空间矩阵 N 的形状是 (几乘几矩阵)。
- 41 求向量 **u** 和 **v** 满足 $A = \mathbf{u}\mathbf{v}^{\mathsf{T}} =$ 列向量乘行向量:

矩阵 $A = \mathbf{u}\mathbf{v}^{\top}$ 是每一个秩为 1 的矩阵的自然形式 (natural form)。

- 44 假设 P 是一个 $m \times n$ 矩阵中只包含 r 个轴元列的子矩阵,解释为什么这个 $m \times r$ 子矩阵 P 的 秩为 r?
- 45 对第 44 题中的 P 进行转置,找出 $r \times m$ 矩阵 P^{\top} 的 r 个轴元列。将得到的结果($r \times r$ 矩阵)转置回去,得到一个 P 和 A 的 $r \times r$ 可逆子矩

阵
$$S$$
。 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 4 & 7 \end{bmatrix}$, 先求 3×2 矩阵 P , 再求

 2×2 可逆矩阵 S.

- 47 秩为 1 的矩阵 **uv**[⊤] 乘秩为 1 的矩阵 **wz**[⊤] 得到 **uz**[⊤] 乘数字 ____。它们的积 **uv**[⊤]**wz**[⊤] 的秩也是 1, 除非 =0。
- 48 (a) 假设 B 的第 j 列是前面的列的线性组合,证明 AB 的第 j 列也是 AB 的前面列的相同的线性组合。那么 AB 不可能有新的轴元列,所以 $\mathrm{rank}(AB) \leq \mathrm{rank}(B)$

(b) 已知
$$B=\begin{bmatrix}1&1\\1&1\end{bmatrix}$$
,求矩阵 A_1,A_2 ,满足

 $\operatorname{rank}(A_1B) = 1$ 以及 $\operatorname{rank}(A_2B) = 0$

- 50 (重要) 假设 A, B 都是 $n \times n$ 矩阵, 并且 AB = I。 如果 $rank(AB) \le rank(A)$, 证明: A 的秩是 n。所以 A 不可逆, B 必须是它的双边逆矩阵 (Section 2.5)。 所以 BA = I(这个不是显而易见的)。
- 52 假设 A, B 有相同的简化行阶梯形 R。
 - (a) 证明 A, B 有相同的零空间和相同的行空间;
 - (b) 若已知 $E_1A = R$ 和 $E_2B = R$,那么 A 等于 一个 矩阵乘 B。
- 54 求 A, B 的简化行阶梯形 R 和秩 r(依赖于 c)。 A 的轴元列是什么?特殊解是什么?

56 简洁的事实。任意一个秩为 r 的 $m \times n$ 矩阵都可以简化为 $(m \times r)$ 矩阵乘 $(r \times n)$ 矩阵:

A=(A 的轴元列)(R 的前 r 行)= 列乘行。 假设 A为 3×4 矩阵,所有的元素都为 1.将 A写成上述积的形式,"列"是由轴元列构成的 3×1 矩阵,"行"是由 R 得到的 1×4 矩阵。

3.2 C Find the row reduced form R and the rank r of A and B (those depend on c). Which are the pivot columns of A? What are the special solutions?

Find special solutions
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 4 & 8 & c \end{bmatrix}$$
 and $B = \begin{bmatrix} c & c \\ c & c \end{bmatrix}$.

Solution The matrix A has row 2 = 3 (row 1). The rank of A is r = 2 except if c = 4. Row 4 - 4 (row 1) ends in c - 4. The pivots are in columns 1 and 3. The second variable x_2 is free. Notice the form of R: Row 3 has moved up into row 2.

$$c \neq 4$$
 $R = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $c = 4$ $R = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Two pivots leave one free variable x_2 . But when c=4, the only pivot is in column 1 (rank one). The second and third variables are free, producing two special solutions:

$$c \neq 4$$
 Special solution $(-2, 1, 0)$ $c = 4$ Another special solution $(-1, 0, 1)$.

The 2 by 2 matrix $B = \begin{bmatrix} c & c \\ c & c \end{bmatrix}$ has rank r = 1 except if c = 0, when the rank is zero!

$$c \neq 0$$
 $R = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $c = 0$ $R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and nullspace $= \mathbf{R}^2$.

Problem Set 3.2

1 Reduce A and B to their triangular echelon forms U. Which variables are free?

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix}$.

- For the matrices in Problem 1, find a special solution for each free variable. (Set the free variable to 1. Set the other free variables to zero.)
- By further row operations on each U in Problem 1, find the reduced echelon form R. True or false with a reason: The nullspace of R equals the nullspace of U.
- For the same A and B, find the special solutions to Ax = 0 and Bx = 0. For an m by n matrix, the number of pivot variables plus the number of free variables is _____. This is the **Counting Theorem**: r + (n r) = n.

(a)
$$A = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 7 \end{bmatrix}$.

Questions 5–14 are about free variables and pivot variables.

- 5 True or false (with reason if true or example to show it is false):
 - (a) A square matrix has no free variables.
 - (b) An invertible matrix has no free variables.
 - (c) An m by n matrix has no more than n pivot variables.
 - (d) An m by n matrix has no more than m pivot variables.
- Put as many 1's as possible in a 4 by 7 echelon matrix U whose pivot columns are
 - (a) 2, 4, 5

(b) 1, 3, 6, 7

(c) 4 and 6.

- Put as many 1's as possible in a 4 by 8 reduced echelon matrix R so that the free columns are
 - (a) 2, 4, 5, 6

- (b) 1, 3, 6, 7, 8.
- Suppose column 4 of a 3 by 5 matrix is all zero. Then x_4 is certainly a variable. The special solution for this variable is the vector $\mathbf{x} = \underline{\hspace{1cm}}$.
- Suppose the first and last columns of a 3 by 5 matrix are the same (not zero). Then _____ is a free variable. Find the special solution for this variable.
- Suppose an m by n matrix has r pivots. The number of special solutions is _____. The nullspace contains only x = 0 when r =_____. The column space is all of \mathbb{R}^m when r =_____.
- The nullspace of a 5 by 5 matrix contains only x = 0 when the matrix has _____ pivots. The column space is \mathbb{R}^5 when there are _____ pivots. Explain why.
- The equation x 3y z = 0 determines a plane in \mathbb{R}^3 . What is the matrix A in this equation? Which variables are free? The special solutions are ____ and ____.
- (Recommended) The plane x 3y z = 12 is parallel to x 3y z = 0. One particular point on this plane is (12, 0, 0). All points on the plane have the form

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots. Which column has no pivot? What is the special solution? Describe N(A).

Questions 15-22 ask for matrices (if possible) with specific properties.

- Construct a matrix for which N(A) = all combinations of (2, 2, 1, 0) and (3, 1, 0, 1).
- Construct A so that N(A) =all multiples of (4, 3, 2, 1). Its rank is _____.

- Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose nullspace contains (1, 1, 2).
- Construct a matrix whose column space contains (1,1,0) and (0,1,1) and whose nullspace contains (1,0,1) and (0,0,1).
- Construct a matrix whose column space contains (1, 1, 1) and whose nullspace is the line of multiples of (1, 1, 1, 1).
- 20 Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.
- 21 Why does no 3 by 3 matrix have a nullspace that equals its column space?
- 22 If AB = 0 then the column space of B is contained in the ____ of A. Why?
- The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure to be _____. What R is virtually certain if the random A is 4 by 3?
- 24 Show by example that these three statements are generally *false*:
 - (a) A and A^{T} have the same nullspace.
 - (b) A and A^{T} have the same free variables.
 - (c) If R is the reduced form $\mathbf{rref}(A)$ then R^{T} is $\mathbf{rref}(A^{\mathrm{T}})$.
- **25** If N(A) = all multiples of x = (2, 1, 0, 1), what is R and what is its rank?
- If the special solutions to Rx = 0 are in the columns of these nullspace matrices N, go backward to find the nonzero rows of the reduced matrices R:

$$N = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} \\ \end{bmatrix} \quad \text{(empty 3 by 1)}.$$

- 27 (a) What are the five 2 by 2 reduced matrices R whose entries are all 0's and 1's?
 - (b) What are the eight 1 by 3 matrices containing only 0's and 1's? Are all eight of them reduced echelon matrices R?
- **28** Explain why A and -A always have the same reduced echelon form R.
- **29** If A is 4 by 4 and invertible, describe the nullspace of the 4 by 8 matrix $B = \begin{bmatrix} A & A \end{bmatrix}$.
- **30** How is the nullspace N(C) related to the spaces N(A) and N(B), if $C = \begin{bmatrix} A \\ B \end{bmatrix}$?
- 31 Find the reduced row echelon forms R and the rank of these matrices:
 - (a) The 3 by 4 matrix with all entries equal to 4.
 - (b) The 3 by 4 matrix with $a_{ij} = i + j 1$.
 - (c) The 3 by 4 matrix with $a_{ij} = (-1)^j$.

Kirchhoff's Current Law $A^{T}y = 0$ says that *current in = current out* at every node. At node 1 this is $y_3 = y_1 + y_4$. Write the four equations for Kirchhoff's Law at the four nodes (arrows show the positive direction of each y). Reduce A^{T} to R and find three special solutions in the nullspace of A^{T} (4 by 6 matrix).

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

- **33** Which of these rules gives a correct definition of the *rank* of *A*?
 - (a) The number of nonzero rows in R.
 - (b) The number of columns minus the total number of rows.
 - (c) The number of columns minus the number of free columns.
 - (d) The number of 1's in the matrix R.
- **34** Find the reduced R for each of these (block) matrices:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 3 \\ 2 & 4 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} A & A \end{bmatrix} \qquad C = \begin{bmatrix} A & A \\ A & 0 \end{bmatrix}$$

Suppose all the pivot variables come *last* instead of first. Describe all four blocks in the reduced echelon form (the block B should be r by r):

$$R = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

What is the nullspace matrix N containing the special solutions?

- 36 (Silly problem) Describe all 2 by 3 matrices A_1 and A_2 , with row echelon forms R_1 and R_2 , such that $R_1 + R_2$ is the row echelon form of $A_1 + A_2$. Is is true that $R_1 = A_1$ and $R_2 = A_2$ in this case? Does $R_1 R_2$ equal $\mathbf{rref}(A_1 A_2)$?
- 37 If A has r pivot columns, how do you know that A^{T} has r pivot columns? Give a 3 by 3 example with different column numbers in pivcol for A and A^{T} .
- **38** What are the special solutions to Rx = 0 and $y^T R = 0$ for these R?

$$R = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Fill out these matrices so that they have rank 1:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & & \\ 4 & & \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} & 9 & \\ 1 & & \\ 2 & 6 & -3 \end{bmatrix} \quad \text{and} \quad M = \begin{bmatrix} a & b \\ c & \end{bmatrix}.$$

- 40 If A is an m by n matrix with r = 1, its columns are multiples of one column and its rows are multiples of one row. The column space is a _____ in \mathbb{R}^m . The nullspace is a _____ in \mathbb{R}^n . The nullspace matrix N has shape _____.
- 41 Choose vectors u and v so that $A = uv^{T} = \text{column times row}$:

$$A = \begin{bmatrix} 3 & 6 & 6 \\ 1 & 2 & 2 \\ 4 & 8 & 8 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 2 & 2 & 6 & 4 \\ -1 & -1 & -3 & -2 \end{bmatrix}.$$

 $A = uv^{T}$ is the natural form for every matrix that has rank r = 1.

42 If A is a rank one matrix, the second row of R is _____. Do an example.

Problems 43–45 are about r by r invertible matrices inside A.

43 If A has rank r, then it has an r by r submatrix S that is invertible. Remove m-r rows and n-r columns to find an invertible submatrix S inside A, B, and C. You could keep the pivot rows and pivot columns:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- Suppose P contains only the r pivot columns of an m by n matrix. Explain why this m by r submatrix P has rank r.
- Transpose P in Problem 44. Find the r pivot columns of P^{T} (which is r by m). Transposing back, this produces an r by r invertible submatrix S inside P and A:

For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 4 & 7 \end{bmatrix}$$
 find P (3 by 2) and then the invertible S (2 by 2).

Problems 46–51 show that rank(AB) is not greater than rank(A) or rank(B).

46 Find the ranks of AB and AC (rank one matrix times rank one matrix):

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 1.5 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & b \\ c & bc \end{bmatrix}$.

47 The rank one matrix uv^{T} times the rank one matrix wz^{T} is uz^{T} times the number _____. This product $uv^{T}wz^{T}$ also has rank one unless _____ = 0.

- 48 (a) Suppose column j of B is a combination of previous columns of B. Show that column j of AB is the same combination of previous columns of AB. Then AB cannot have new pivot columns, so $\operatorname{rank}(AB) < \operatorname{rank}(B)$.
 - (b) Find A_1 and A_2 so that $rank(A_1B) = 1$ and $rank(A_2B) = 0$ for $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- Problem 48 proved that $rank(AB) \leq rank(B)$. Then the same reasoning gives $rank(B^{T}A^{T}) \leq rank(A^{T})$. How do you deduce that $rank(AB) \leq rank(A)$?
- **50** (Important) Suppose A and B are n by n matrices, and AB = I. Prove from $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$ that the rank of A is n. So A is invertible and B must be its two-sided inverse (Section 2.5). Therefore BA = I (which is not so obvious!).
- If A is 2 by 3 and B is 3 by 2 and AB = I, show from its rank that $BA \neq I$. Give an example of A and B with AB = I. For m < n, a right inverse is not a left inverse.
- **52** Suppose A and B have the *same* reduced row echelon form R.
 - (a) Show that A and B have the same nullspace and the same row space.
 - (b) We know $E_1A = R$ and $E_2B = R$. So A equals an ____ matrix times B.
- Express A and then B as the sum of two rank one matrices:

$$\mathbf{rank} = \mathbf{2} \qquad \quad A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 4 \\ 1 & 1 & 8 \end{bmatrix} \qquad \quad B = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}.$$

Answer the same questions as in Worked Example 3.2 C for

$$A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 4 & 4 \\ 1 & c & 2 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 - c & 2 \\ 0 & 2 - c \end{bmatrix}.$$

55 What is the nullspace matrix N (containing the special solutions) for A, B, C?

$$\text{Block matrices} \quad A = \left[\begin{array}{ccc} I & I \\ \end{array} \right] \quad \text{and} \quad B = \left[\begin{array}{ccc} I & I \\ 0 & 0 \\ \end{array} \right] \quad \text{and} \quad C = \left[\begin{array}{ccc} I & I \\ \end{array} \right].$$

56 Neat fact Every m by n matrix of rank r reduces to (m by r) times (r by n):

$$A = (\text{pivot columns of } A) \text{ (first } r \text{ rows of } R) = (\text{COL})(\text{ROW}).$$

Write the 3 by 4 matrix A of all ones as the product of the 3 by 1 matrix from the pivot columns and the 1 by 4 matrix from R.