Relocation Analysis

Vittawat Dolbandarnchoke

July 12, 2020

1.Introduction

1.1. Background

I am currently in the process of relocating from the UK to Bangkok, Thailand and would like to find out which neighborhoods or districts should I choose to live in Bangkok that share some similarity to my current neighborhood in Birmingham, UK.

I used to live in Thailand a long time ago and has frequently visited the country, however, my knowledge about neighborhoods in Bangkok is limited. The last thing I want to happen is to choose a neighborhood to live in and find out later that it does not suit my lifestyle or divert too much from what I enjoy in my current neighborhood in the UK.

Thus, it is of my interests to explore available data and find some insights that could help me choose a neighborhood in Bangkok that suits what I prefer.

1.2. Problem

Data that I need to perform this analysis are neighborhoods/districts in Bangkok and relevant coordinates, coordinate of my current neighborhood - Edgbaston, Birmingham, UK, and venues data obtainable from Foursquare. I will also set the following requirements of venues I would like to have in the area that are within a set distance as well:

• Gym: within 2km

Convenience Store/Grocery Store/Supermarket: within 2km

Coffee Shop: within 1km

1.3. Interest

This problem seems to be heavily focused on my current life event, but I do think that the structure of analysis should be helpful for anyone who is moving to a new, unfamiliar area. The analysis should be adaptable to suit the needs of any user. The user will simply have to look out

for neighborhoods/districts data along with the coordinates to perform the same analysis on different locations.

2.Data Acquisition and Cleaning

2.1. Data Sources

Neighborhoods/Districts data for Bangkok along with relevant coordinates can be found on Wikipedia here. As for my current neighborhood, Nominatim from geopy.geocoders was used to obtain coordinates of the neighborhood based on my post code, which is B5 7SU. Lastly, a Foursquare API was used to obtain venues or point of interests within a specific radius from the coordinates.

2.2. Data Cleaning

Data scraped from Wikipedia for neighborhoods/districts in Bangkok was already formatted and ready to use, thus, there wasn't much required to be carried out. Pandas package was used as a tool to scrape this table from Wikipedia. Table below displays an example of the data from Wikipedia.

District (Khet)	Map Nr ◆	Post- code +	Thai ≑	Popu- lation \$	No. of Subdistricts **Khwaeng**	Latitude +	Longitude +
Bang Bon	50	10150	บางบอน	105,161	4	13.6592	100.3991
Bang Kapi	6	10240	บางกะปิ	148,465	2	13.765833	100.647778
Bang Khae	40	10160	บางแค	191,781	4	13.696111	100.409444
Bang Khen	5	10220	บางเขน	189,539	2	13.873889	100.596389
Bang Kho Laem	31	10120	บางคอแหลม	94,956	3	13.693333	100.5025

Since not all features are needed for analysis, the following were dropped from the table for simplicity: Map Nr, Thai, Population, and No. of Subdistricts *Khwaeng*. The final DataFrame for Bangkok Data looks like the following.

	District	Post Code	Latitude	Longitude
0	Bang Bon	10150	13.659200	100.399100
1	Bang Kapi	10240	13.765833	100.647778
2	Bang Khae	10160	13.696111	100.409444
3	Bang Khen	10220	13.873889	100.596389
4	Bang Kho Laem	10120	13.693333	100.502500

As mentioned in 2.1, Nominatim was used to obtain latitude and longitude of my current neighborhood. These data are stored in another DataFrame in the similar format as Bangkok Data. The following shows the DataFrame storing my current neighborhood's data.

	District	Post Code	Latitude	Longitude
0	Edgbaston	B5 7SU	52.454128	-1.905193

Lastly, venues/point of interests data were obtained through Foursquare API with a limit of 100 venues and radius of 3,000 meters. I chose 3,000 meters as a radius because I happened to currently live in a residential area with few places around, and Bangkok is a large metropolitan with hotspots of venues clustered together. A search through Foursquare with a smaller radius than 3,000 meters yielded significantly fewer results than preferred. Venue data for Bangkok and my neighborhood were then concatenated to a single DataFrame, which were transformed to a final DataFrame that listed out 10 most common venues for each neighborhood. An example of this table is shown below.

	District	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Bang Bon	Convenience Store	Coffee Shop	Noodle House	Fast Food Restaurant	Asian Restaurant	Thai Restaurant	Flea Market	Badminton Court	Hotpot Restaurant	Market
1	Bang Kapi	Noodle House	Coffee Shop	Thai Restaurant	Japanese Restaurant	Dessert Shop	Som Tum Restaurant	Fast Food Restaurant	Steakhouse	Clothing Store	Soccer Field
2	Bang Khae	Noodle House	Coffee Shop	Fast Food Restaurant	Convenience Store	Thai Restaurant	Dessert Shop	Asian Restaurant	Café	Shopping Mall	Department Store
3	Bang Khen	Coffee Shop	Noodle House	Convenience Store	Hotpot Restaurant	Asian Restaurant	Thai Restaurant	Som Tum Restaurant	Golf Course	Bookstore	Vietnamese Restaurant
4	Bang Kho Laem	Noodle House	Thai Restaurant	Coffee Shop	Hotel	Asian Restaurant	Pub	Chinese Restaurant	BBQ Joint	Bar	Massage Studio

3. Exploratory Data Analysis

3.1. k-Means Clustering

Neighborhoods in Bangkok and my current neighborhood were segregated into different clusters using the k-Means method. The neighborhoods were grouped and labelled together based on the similarity they share from the 10 most common venues per the table above. The number of clusters for k-Means is set to 5, which was chosen after trials with different numbers of clusters and 5 seems to yield a good balance for neighborhoods per cluster. A number smaller or larger than 5 yielded results with few clusters having most neighborhoods and the remaining clusters having very few neighborhoods.

3.2. Mapping Neighborhoods

Results from k-Means clustering were plotted on a map of Bangkok via Folium package. A colored circular marker is assigned for each neighborhood based on the cluster label from k-Means. Below is the result map with output indicating the color of the marker for neighborhoods that share similarity to my current neighborhood and the cluster label associated with them. In this case, the neighborhoods with "deepskyblue" as a color and cluster label 2 are those that have similarity with my current neighborhood.

The marker in $\underline{\text{deepskyblue}}$ are neighborhoods that share similarity to my current neighborhood, which have Cluster Label $\underline{2}$

Below is also a summary table showing similar neighborhoods to my current one (only part of the table is shown - see more in the Notebook).

	District	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
13	Chatuchak	2	Coffee Shop	Thai Restaurant	Ice Cream Shop	Gym / Fitness Center	Noodle House	Som Tum Restaurant	Japanese Restaurant	Clothing Store	Hotpot Restaurant	Asian Restaurant
15	Din Daeng	2	Café	Hotel	Thai Restaurant	Coffee Shop	Som Tum Restaurant	Japanese Restaurant	Hostel	Bakery	Bar	Burger Joint
22	Khlong Toei	2	Coffee Shop	Japanese Restaurant	BBQ Joint	Thai Restaurant	Café	Spa	Hotel	Sushi Restaurant	Noodle House	Gym / Fitness Center
31	Phaya Thai	2	Coffee Shop	Thai Restaurant	Noodle House	Café	Japanese Restaurant	Som Tum Restaurant	Restaurant	Bar	Sushi Restaurant	Hotel
48	Watthana	2	Thai Restaurant	Japanese Restaurant	Café	Coffee Shop	Hotel	Bar	Spa	BBQ Joint	Noodle House	Cocktail Bar
50	Edgbaston	2	Pub	Coffee Shop	Indian Restaurant	Café	Bar	Restaurant	Hotel	Park	Indie Movie Theater	Middle Eastern Restaurant

3.3. Narrowing Down the Search

Lastly, I set a set of requirements for the neighborhood to have based on the preference of my lifestyle. The following is the requirement for type of venues and the distance I want:

- Gym: within 2km
- Convenience Store/Grocery Store/Supermarket: within 2km
- Coffee Shop: within 1km

Distance (in kilometer) between each venue and neighborhood it belongs to was calculated using geopy.distance.distance package. The calculated distance is then appended to the

DataFrame, creating a table containing district and its coordinates, venue and its coordinates, and the distance to the venue from district's coordinate. Below is the sample of the table.

	District	District Latitude	District Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Distance(km)
0	Chatuchak	13.828611	100.559722	Baan Sawasdee (Massage & Cafe)	13.820331	100.560363	Spa	0.918676
1	Chatuchak	13.828611	100.559722	Ratchavipha Badminton Court	13.832558	100.560978	Badminton Court	0.457273
2	Chatuchak	13.828611	100.559722	Supalai Fitness Club	13.822622	100.564809	Gym / Fitness Center	0.861114
3	Chatuchak	13.828611	100.559722	Sewana Paploen (เสวนาพาเพลิน)	13.828686	100.569099	Pub	1.013841
4	Chatuchak	13.828611	100.559722	หอจดหมายเหตุพุทธทาส อินทบัญโญ (BIA) Buddhadasa	13.816911	100.556254	Library	1.347610

A filter was then applied to the above table based on the requirements mentioned above. Groupby function was used on the resulted DataFrame to display the number of venues for each district. Below is the summary table of the analysis.

		Venue
District	Venue Category	
Chatuchak	Coffee Shop	4
	Gym / Fitness Center	3
	Supermarket	2
Din Daeng	Supermarket	2
Khlong Toei	Coffee Shop	1
	Convenience Store	2
	Gym / Fitness Center	3
Phaya Thai	Coffee Shop	7
	Gym / Fitness Center	1
	Supermarket	1
Watthana	Watthana Coffee Shop	
	Supermarket	2

The table has shown that the following districts fulfills the requirement I set:

- 1. Chatuchak
- 2. Khlong Toei
- 3. Phaya Thai

There is at least a coffee shop within 1km, a gym within 2km, and a supermarket within 2km from the coordinate of these three districts. The remaining districts do not fulfill all of the requirements.

4.Conclusion

In this study, I performed data analysis comparing neighborhoods in Bangkok to my current neighborhood (Edgbaston, Birmingham, UK) for the purpose of finding a similar neighborhood for myself to relocate to in the near future. I utilized data from Wikipedia to obtain a list of neighborhoods in Bangkok and relevant coordinates and use this information to obtain venues within a specific radius for comparison to my current neighborhood. k-Means clustering method was used to segregate neighborhoods based on the 10 most common venues and the results were mapped with color coded markers for each cluster label. Finally, distance between venues and neighborhood's coordinate was calculated to determine the neighborhood that fits my requirement of having a coffee shop within 1km, and a gym and a supermarket within 2km. The result has shown that there are three districts that share similarity in the 10 most common venues to my current neighborhood and has the required venues within the required distance. It seems my next task would be looking for an affordable house in these districts.