Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

Hongrui Cui

Shanghai Jiao Tong University

Kang Yang

State Key Laboratory of Cryptology

Xiao Wang

Northwestern University

Yu Yu

Shanghai Jiao Tong University Shanghai Qi Zhi Institute

上海期智研究院 SHANGHAI QI ZHI INSTITUTE

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
			AND: 2κ				

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose [LP07,NO09,HKE13,NST17,...]

$$O(\rho\kappa)$$
 or $O(\frac{\rho\kappa}{\log C})$

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose Authenticated Garbling [LP07,NO09,HKE13,NST17,...] [WRK17,KRRW18] $O(\rho\kappa) \text{ or } O(\frac{\rho\kappa}{\log C}) \qquad \Pi_{\text{pre}} : 13\kappa + 8\rho \\ \Pi_{\text{online}} : 2\kappa + 1$

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose	Authenticated Garbling	PCGs	
[LP07,N009,HKE13,NST17,]	[WRK17,KRRW18]	[BCG+19,	
$O(ho\kappa)$ or $O(rac{ ho\kappa}{\log C})$	$\Pi_{pre} : 13\kappa + 8\rho$	YWL+20,	
(i) (log C)	$\Pi_{online} : 2\kappa + 1$	CRR21,]	

Steady improvement in the semi-honest world

Textbook	P&P	GRR3	GRR2	Free-XOR	FleXOR	Half-Gates	Three-Halves
[Yao86]	[BMR90]	[NPS99]	[PSSW90]	[KSO8]	[KMR14]	[ZRE15]	[RR21]
XOR: 8κ	XOR: 4κ	XOR: 3κ	XOR: 2κ	XOR: 0	$\{0, 1, 2\}\kappa$	2κ	$1.5\kappa + 5$
AND: 8κ	AND: 4κ	AND: 3κ	AND: 2κ	AND: 3κ			

What about the malicious world?

Cut-and-Choose	Authenticated Garbling	PCGs	AG from PCG
[LP07,NO09,HKE13,NST17,]	[WRK17,KRRW18]	[BCG+19,	[DILO22]
$O(\rho\kappa)$ or $O(\frac{\rho\kappa}{\log C})$	Π_{pre} : $13\kappa + 8\rho$	YWL+20,	\mathcal{F}_{VOLE} -hyb. $2\kappa + 8\rho$
(in) (in) (in)	$\Pi_{online} : 2\kappa + 1$	CRR21,]	\mathcal{F}_{DAMT} -hyb. 2 $\kappa+4 ho$

Can we close the gap?

Our Contributions

Authenticated garbling with one-way comm. as small as semi-honest half-gates

2PC	Ro	ounds	Communication per AND gate			
_ . •	Prep.	Online	one-way (bits)	two-way (bits)		
Half-gates	1	2	2κ	2κ		
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)		
KRRW-PCG	4	4	$5\kappa + 7$ (2.53×)	$8\kappa+14$ (4.05 $ imes$)		
DILO	7	2	$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)		
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)		
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 (\approx 1.48 \times)$		

Contribution 1: Π_{cpre} with 2-bit comm. per AND gate

Contribution 2: Consistency checking via dual execution

۸ _i	۸	Masked L_{k, Λ_k}
0 0 1 1	0 1 0 1	$L_{k,0} \oplus (\lambda_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\lambda_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \lambda_{j} \oplus \lambda_{k}) \Delta_{A}$ $L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A}$

- controls garbling so it can \blacksquare selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - \blacksquare garble different logic \Rightarrow Add IT-MAC, equality check, etc.

Λ_i	۸		Masked $L_{k, \Lambda_{k}}$
0	0	Ī	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
0	1		$L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_i \oplus \lambda_k) \Delta_A$
1	0		$L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	1		$L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

controls garbling so it can
$$\blacksquare$$
 selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$

- garble different logic \Rightarrow Add IT-MAC, equality check, etc.
- We need preprocessing information to complete garbling

۸ _i	۸ _j	Masked $L_{k, \Lambda_{k}}$
0	0	$L_{k,0} \oplus (\lambda_i \cdot \underline{\lambda}_j \oplus \lambda_k) \Delta_{A}$
0	1	$L_{k,0} \oplus (\lambda_i \cdot \bar{\lambda}_i \oplus \lambda_k) \Delta_A$
1	0	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	1	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \bar{\lambda}_j \oplus \lambda_k) \Delta_A$

controls garbling so it can
$$\blacksquare$$
 selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$

- \blacksquare garble different logic \Rightarrow Add IT-MAC, equality check, etc.
- We need preprocessing information to complete garbling

$$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$$
$$= \lambda_{k} \cdot \Delta_{A} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{A}$$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa pprox 128$

۸ _i	Λ_j	Masked $L_{k, \Lambda_{k}}$
0	0	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_{A}$
0	1	$L_{k,0} \oplus (\lambda_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	0	$L_{k,0} \oplus (\bar{\lambda}_i \cdot \lambda_j \oplus \lambda_k) \Delta_A$
1	1	$L_{k,0} \oplus (\bar{\lambda}_{i} \cdot \bar{\lambda}_{j} \oplus \lambda_{k}) \Delta_{A}$

- controls garbling so it can \blacksquare selective-failure on $\Lambda := z \oplus \lambda \Rightarrow$ Secret share $\lambda := a \oplus b$
 - \blacksquare garble different logic \Rightarrow Add IT-MAC, equality check, etc.
 - We need preprocessing information to complete garbling

$\mathbf{b}, \hat{\mathbf{b}}, \Delta_B$				
a	â	b	ĥ	

۸ _i	۸	Alice's GC	Bob's GC
0 0 1 1	0 1 0 1	$\begin{array}{c} L_{k,0} \oplus K[\Lambda_{00}] \\ L_{k,0} \oplus K[\Lambda_{01}] \\ L_{k,0} \oplus K[\Lambda_{10}] \\ L_{k,0} \oplus K[\Lambda_{11}] \end{array}$	$\begin{array}{c c} M[\Lambda_{00}] \\ M[\Lambda_{01}] \\ M[\Lambda_{10}] \\ M[\Lambda_{11}] \end{array}$

Free-XOR GC
$$\Rightarrow$$
 $|\Delta_{\mathsf{A}}| = \kappa pprox 128$

$$\Lambda_{k} \cdot \Delta_{A} := \lambda_{k} \cdot \Delta_{A} \oplus (\Lambda_{j} \oplus \lambda_{j}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{A}$$
$$= \lambda_{k} \cdot \Delta_{A} \oplus ... \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{A}$$

$$\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}}$$
$$= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus ... \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{B}}$$

۸ _i	۸	Alice's AuthGC	Bob's AuthGC
0 0 1 1	0 1 0 1	${f M}[{f \Lambda}_{00}] \ {f M}[{f \Lambda}_{01}] \ {f M}[{f \Lambda}_{10}] \ {f M}[{f \Lambda}_{11}]$	$egin{array}{c} K[\Lambda_{00}] \ K[\Lambda_{01}] \ K[\Lambda_{10}] \ K[\Lambda_{11}] \end{array}$

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\mathsf{B}}| = \rho \approx 40$

KRRW18: Distributed Half-Gates Garbling + Equality Checking

■ Distributed half-gates garbling is fully compatible with \mathcal{F}_{pre}

$$\begin{split} \Lambda_k \cdot \Delta_\mathsf{A} &:= \lambda_k \cdot \Delta_\mathsf{A} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_\mathsf{A} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_\mathsf{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_\mathsf{A}}_{G_{k,1}} \end{split}$$

$$4\kappa$$
 bits/AND \Rightarrow $2\kappa + 1$ bits/AND KRRW18

KRRW18: Distributed Half-Gates Garbling + Equality Checking

■ Distributed half-gates garbling is fully compatible with \mathcal{F}_{pre}

$$\begin{split} \Lambda_k \cdot \Delta_\mathsf{A} &:= \lambda_k \cdot \Delta_\mathsf{A} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_\mathsf{A} \\ &= \underbrace{(\lambda_k \oplus \lambda_i \lambda_j) \cdot \Delta_\mathsf{A}}_{\text{already shared}} \oplus \underbrace{\Lambda_i \lambda_j \cdot \Delta_\mathsf{A}}_{G_{k,0}} \oplus \underbrace{\Lambda_j (\Lambda_i \oplus \lambda_i) \cdot \Delta_\mathsf{A}}_{G_{k,1}} \end{split}$$

$$4\kappa$$
 bits/AND \Rightarrow $2\kappa + 1$ bits/AND KRRW18

■ **b**-mask removes selective failure, now only need to check correct AND correlation

Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

$$\begin{array}{c}
4\rho \text{ bits/AND} \\
\text{WRK17}
\end{array} \Rightarrow \begin{array}{c}
0 \text{ bits/AND} \\
\text{KRRW18}
\end{array}$$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- lacksquare We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

■ Efficient proof for deg-d relations on **u** [DIO21, YSWW21, ...]

- Efficient protocol for \mathcal{F}_{COT} , \mathcal{F}_{sVOLE} with sublinear comm. and linear comp. from LPN [YWL+20,CRR21,...]
- We refer the $\mathbb{F}_p=\mathbb{F}_2$ variant of $\mathcal{F}_{\mathsf{sVOLE}}$ as $\mathcal{F}_{\mathsf{COT}}$

■ Efficient proof for deg-d relations on u [DIO21, YSWW21, ...]

- In DILO, those PCG correlations are called "simple correlations"
- lacktriangle Unfortunately, we still don't have an efficient direct $\mathcal{F}_{\mathsf{pre}}$ PCG construction
- \blacksquare The closest is the $\mathcal{F}_{\mathsf{DAMT}}$ correlation generated from Ring-LPN, but with ρ -time overhead

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- **\blacksquare** #Guess $> \rho$: Abort is overwhelming

Prior Art: DILO

- Garbler can only guess once
- If b is uniformly random, then guessing leaks no information
- If #Guess is too large, then abort happens overwhelmingly, if #Guess is too little, then we don't require much entropy from **b**

DILO Oberservation 1

It suffices for **b** to be ρ -wise independent

- \blacksquare #Guess $\leq \rho$: Abort is input-independent
- \blacksquare #Guess $> \rho$: Abort is overwhelming

DILO Oberservation 2

We can construct ρ -wise independent **b** by linear expansion

$$oldsymbol{eta} = oldsymbol{f M} oldsymbol{f eta}^*$$

- For $L = O(\rho \cdot \log(\frac{n}{\rho}))$, a uniformly random **M** suffices
- We can encode \mathbf{b}^* in \mathcal{F}_{COT} global keys

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Encoding \mathbf{b}^* as Global Keys

$$oxed{\mathcal{F}_{\mathsf{pre}}}$$

samples
$$[\mathbf{a}], [\hat{\mathbf{a}}], [\mathbf{b}], [\hat{\mathbf{b}}]$$
 $\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}}$

s.t.
$$\hat{a}_k \oplus \hat{b}_k = (a_i \oplus b_i) \cdot (a_j \oplus b_j)$$

= $a_i a_j \oplus a_i b_j \oplus a_j b_i \oplus b_i b_j$

DILO Compression:

$$\mathbf{b} = \mathbf{M} \cdot \mathbf{b}^*, \mathbf{b}^* \in \mathbb{F}_2^L$$

suffices to compute $\mathbf{a} \otimes \mathbf{b}^*$

DILO Implementation of \mathcal{F}_{cpre} : Encoding \mathbf{b}^* as Global Keys

COT can be extended to block COT, preserving PCG efficiency

Using isomorphism $\mathbb{F}_{2^{\kappa L}} \equiv \mathbb{F}_{2^{\kappa}}^{L}$ \Leftrightarrow

$$\frac{\operatorname{Fix}(\Delta_{\mathsf{A}})}{\operatorname{Verify}\; \mathbf{b}^* \cdot \Delta_{\mathsf{B}} \; \text{correlation} \; \mathcal{F}_{\mathsf{DVZK}}}$$

$$\frac{\operatorname{Fix}(\Delta_{\mathsf{A}})}{\operatorname{Verify}\,\mathbf{b}^*\cdot\Delta_{\mathsf{B}}\,\operatorname{correlation}\,\mathcal{F}_{\mathsf{DVZK}}}$$

Define
$$[\tilde{b}_k]_{\Delta_{\mathrm{B}}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\Delta_{\mathrm{B}}}$$

$$lacksquare$$
 $[\mathsf{a}]_{b_j^*\Delta_\mathsf{B}}\equiv [\mathsf{a}b_j^*]_{\Delta_\mathsf{B}}$

By linearity on IT-MAC, we can get $[a_ib_j]_{\Delta_B}$ for any i,j

Verify $\mathbf{b}^* \cdot \Delta_{\mathsf{B}}$ correlation $\mathcal{F}_{\mathsf{DVZK}}$

Define
$$[\tilde{b}_k]_{\Delta_{\mathrm{B}}} := [\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i]_{\Delta_{\mathrm{B}}}$$

$$m_{k,1} := |\tilde{b}_k|$$

$$ilde{b}_k := (ilde{b}_k \oplus ilde{b}_k) \cdot \Delta_{\mathsf{B}}^{-1}$$

$$\hat{b}_k = b_i b_j \oplus \tilde{b}_k$$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

lacksquare It suffices to compute $ilde{b}_k$ since $[\hat{b}_k]_{\Delta_{\mathsf{A}}}=[ilde{b}_k]_{\Delta_{\mathsf{A}}}\oplus [b_ib_j]_{\Delta_{\mathsf{A}}}$

Verify mult. correlation $\mathcal{F}_{\mathsf{DVZK}}$

- $\bullet \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i$
- $\tilde{b}_k \oplus \tilde{b}_k = (\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i) \cdot \Delta_A$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

lacksquare It suffices to compute $ilde{b}_k$ since $[\hat{b}_k]_{\Delta_\mathsf{A}}=[ilde{b}_k]_{\Delta_\mathsf{A}}\oplus[b_ib_j]_{\Delta_\mathsf{A}}$

- $\bullet \tilde{b}_k = \hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i$
- $\tilde{b}_k \oplus \tilde{b}_k = (\hat{a}_k \oplus a_i a_j \oplus a_i b_j \oplus a_j b_i) \cdot \Delta_A$

Verify mult. correlation $\mathcal{F}_{\mathsf{DVZK}}$

$$\mathcal{F}_{\text{bCOT}}$$
Fix $\begin{pmatrix} \{a_i a_j \Delta_A\} \\ \{\hat{a}_k \Delta_A\} \\ \mathbf{a} \Delta_A \end{pmatrix}$
Generate mask $\hat{a}_{k,2} \in \mathbb{F}_{2^\rho}$

Locally comptue $[v_k]_{\Delta_{\mathrm{B}}} := [\tilde{b}_k \cdot \Delta_{\mathsf{A}} \oplus \hat{a}_{k,2}]_{\Delta_{\mathrm{B}}}$

DILO Implementation of $\mathcal{F}_{\mathsf{cpre}}$: Authenticating \hat{b}_k (Under Δ_{A})

It suffices to compute \tilde{b}_k since $[\hat{b}_k]_{\Delta_A} = [\tilde{b}_k]_{\Delta_A} \oplus [b_i b_i]_{\Delta_A}$

 $\mathbf{b}_k = \hat{a}_k \oplus a_i a_i \oplus a_i b_i \oplus a_i b_i$

 $\tilde{b}_{\nu} \oplus \tilde{b}_{\nu} = (\hat{a}_{k} \oplus a_{i}a_{j} \oplus a_{i}b_{j} \oplus a_{j}b_{i}) \cdot \Delta_{A}$

Verify mult. correlation $|\mathcal{F}_{\mathsf{DVZK}}|$

$$\mathcal{F}_{\mathsf{DVZK}}$$

Locally comptue $[v_k]_{\Delta_B} := [\hat{b}_k \cdot \Delta_A \oplus \hat{a}_{k,2}]_{\Delta_B}$

$$m_{k,2} := \langle \tilde{b}_k \rangle$$

$$\tilde{b}_k := (\tilde{b}_k) \oplus \tilde{b}_k$$

$$(\tilde{b}_k)$$

$$\oplus$$
 $\left\{ \tilde{b}\right\}$

$$\tilde{b}_k$$
) · Δ_{B}^-

$$=$$
 \tilde{b}

$$k \in$$

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- Evaluator sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$egin{aligned} \Lambda_k \cdot \Delta_{\mathsf{B}} &:= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \ &= \lambda_k \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \Lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_i \lambda_j \cdot \Delta_{\mathsf{B}} \oplus \Lambda_j \lambda_i \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_k \oplus \hat{b}_k) \cdot \Delta_{\mathsf{B}} \end{aligned}$$

KRRW Check:

- **Evaluator** sends $\{\Lambda_w\}$ for all AND gates \bigwedge
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_k \cdot \Delta_{\mathsf{B}} := \lambda_k \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_{\mathsf{B}} \quad \underbrace{\Lambda_i(a_j \oplus b_j)\Delta_{\mathsf{B}} = \Lambda_i b_j \Delta_{\mathsf{B}} \oplus \Lambda_i \mathsf{K}[a_j] \oplus \Lambda_i \mathsf{M}[a_j]}_{\mathsf{A}_{\mathsf{B}}}$$

$$=\lambda_k\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\Lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_i\lambda_j\cdot\Delta_{\mathsf{B}}\oplus \Lambda_j\lambda_i\cdot\Delta_{\mathsf{B}}\oplus (\hat{a}_k\oplus\hat{b}_k)\cdot\Delta_{\mathsf{B}}$$

KRRW Check:

- \blacksquare Evaluator sends $\{\Lambda_w\}$ for all AND gates \nearrow
- The checking equation reduces to equality check
- Use random linear combination to reduce comm.

DILO-WRK Check

$$\Lambda_{k} \cdot \Delta_{\mathsf{B}} := \lambda_{k} \cdot \Delta_{\mathsf{B}} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j}) \cdot \Delta_{\mathsf{B}} \quad \boxed{\Lambda_{i}(a_{j} \oplus b_{j})\Delta_{\mathsf{B}} = \Lambda_{i}b_{j}\Delta_{\mathsf{B}} \oplus \Lambda_{i}\mathsf{K}[a_{j}] \oplus \Lambda_{i}\mathsf{M}[a_{j}]}$$

$$= \lambda_{k} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{i}\Lambda_{j} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{i}\lambda_{j} \cdot \Delta_{\mathsf{B}} \oplus \Lambda_{j}\lambda_{i} \cdot \Delta_{\mathsf{B}} \oplus (\hat{a}_{k} \oplus \hat{b}_{k}) \cdot \Delta_{\mathsf{B}}$$

 2κ bits/AND

 3ρ bits/AND

CIM/VV .	Actively Secure Half-Cates with Minimum	Overhead under Dunley Networks

Optimizing the Compressed Preprocessing Protocol

The overhead of DILO is $5\rho + 2$ bits per AND gate

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
 - We need to detect against dishonest Fix() input

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- $lackbox{lack} lackbox{lack} [\mathsf{a}\Delta_\mathsf{A}]_{\Delta_\mathsf{B}} \equiv [\mathsf{a}]_{\Delta_\mathsf{A}\cdot\Delta_\mathsf{B}} \quad lackbox{lack} Dual Key Authentication$

- lacksquare $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$

The overhead of DILO is $5\rho + 2$ bits per AND gate

$$ho + 1 ext{ bits}$$

- Why not call $Fix(\tilde{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare $[\mathbf{a}\Delta_\mathsf{A}]_{\Delta_\mathsf{B}}\equiv [\mathbf{a}]_{\Delta_\mathsf{A}\cdot\Delta_\mathsf{B}}$ Dual Key Authentication

- $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$
- Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for $\stackrel{\bullet}{\bullet}$)

 \mathcal{S} can open $y:=\sum_k \chi^k\cdot \widetilde{b}_k\oplus r$ and convince

alls Fix (\tilde{b}_k) and checks $\sum_k \chi^k[\tilde{b}_k] \oplus [r] \oplus y = 0$

The overhead of DILO is $5\rho + 2$ bits per AND gate

- Why not call $Fix(\hat{b}_k)$ directly?
- We need to detect against dishonest Fix() input
- lacksquare lacksquare

- $\mathsf{M}[\mathsf{a}\Delta_\mathsf{A}] \oplus \mathsf{K}[\mathsf{a}\Delta_\mathsf{A}] = \mathsf{a}\overline{\Delta_\mathsf{A}\Delta_\mathsf{B}}$
- We denote it as $\langle \mathbf{a} \rangle$
- Suppose we generate $\langle \tilde{b}_k \rangle$ and $\langle r \rangle$, $[r]_B$ (mask for)

lacksquare can open $y:=\sum_k \chi^k\cdot \widetilde{b}_k\oplus r$ and convince

calls $\operatorname{Fix}(\tilde{b}_k)$ and checks $\sum_k \chi^k[\tilde{b}_k] \oplus [r] \oplus \mathsf{y} = 0$

If so we can reduce 4ρ bits to 1 bit

Our goal is to generate $\langle \tilde{b}_k \rangle := \langle \hat{a}_k \rangle \oplus \langle a_i a_j \rangle \oplus \langle a_i b_i \rangle \oplus \langle a_i b_i \rangle$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

$$egin{aligned} \widehat{\mathcal{F}}_{ extsf{bCOT}}^2 \ \hat{ extbf{a}} + \hat{ extbf{a}} imes [eta_0, \Delta_{ extsf{B}}] \end{aligned}$$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \hat{\mathbf{a}} \end{aligned} = egin{aligned} \hat{\mathbf{a}} \end{aligned} + egin{aligned} \hat{\mathbf{a}} \end{aligned} imes [eta_0, \Delta_{\mathsf{B}}] \end{aligned}$$

The compression technique allows encoding **b** in \mathcal{F}_{bCOT} global keys

[DIO21] gives a modular way of proving equality under independent keys

$$oxedsymbol{\Pi_{\mathsf{Samp}}}\Delta_{\mathsf{A}}, \Delta_{\mathsf{B}} \leftarrow \$ ext{ s.t. } \mathsf{lsb}(\Delta_{\mathsf{A}}\Delta_{\mathsf{B}}) = 1$$

$$ilde{b}_k = m_{k,1} \oplus \operatorname{Isb}(\mathsf{D}_\mathsf{A}[ilde{b}_k])$$

$$\mathbf{Fix}(\tilde{b}_k) \\
\mathbf{y} := r + \sum_k \chi^k \cdot \tilde{b}_k$$

- Check $\{\beta_i\}$ consistency by $Fix(\Delta'_A)$
- Check $\mathbf{b}^*\Delta_B$, $\{a_ia_j\}$, $\{b_ib_j\}$ consistency by $\mathcal{F}_{\mathsf{DVZK}}$
- Check $m_{k,1}$ consistency by CheckZero($\langle y \rangle y$)
- Check Fix (\hat{b}_k) consistency by CheckZero([y] y)

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ [HEK12, HsV20]: Check for equality in circuit outputs

- Optimized \mathcal{F}_{cpre} + DILO-WRK = \longrightarrow \longrightarrow : $2\kappa + 3\rho + 2$ bits, \longrightarrow \longrightarrow : 2 bits
- How about optimizing one-way communication? Maybe dual execution?

■ [HEK12, HsV20]: Check for equality in circuit outputs

Color bits and wire masks are authenticated for every wire

[HK21] Garbled Sharing

This enables checking equality for every wire across two executions

Optimizing the Two-way Communication

Based on the WRK consistency checking

$$\Lambda_{k} := \lambda_{k} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j})
= \lambda_{k} \oplus \Lambda_{i} \Lambda_{j} \oplus \Lambda_{i} \lambda_{j} \oplus \lambda_{i} \Lambda_{j} \oplus \lambda_{i} \lambda_{j}$$

۸ _i	Λj	Alice's AuthGC	Bob's AuthGC
0 0 1 1	0 1 0 1	$M[\Lambda_{00}] \ M[\Lambda_{01}] \ M[\Lambda_{10}] \ M[\Lambda_{11}]$	Κ[Λ ₀₀] Κ[Λ ₀₁] Κ[Λ ₁₀] Κ[Λ ₁₁]

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\rm B}|=
hopprox 40$

Optimizing the Two-way Communication

Based on the WRK consistency checking

$$\Lambda_{k} := \lambda_{k} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j})
= \lambda_{k} \oplus \Lambda_{i} \Lambda_{j} \oplus \Lambda_{i} \lambda_{j} \oplus \lambda_{i} \Lambda_{j} \oplus \lambda_{i} \lambda_{j}$$

$$\stackrel{i}{j} = \sum_{k} k \otimes (\Lambda_{i} \otimes \lambda_{i}) \otimes (\Lambda_{i} \otimes \lambda_{$$

- lacksquare Equivalent to checking $\mathsf{K}[\mathsf{\Lambda}_k] = \mathsf{M}[\mathsf{\Lambda}_k] \oplus \mathsf{\Lambda}_k \cdot \Delta_\mathsf{B}$
- Reduces to linear test if Λ_i , Λ_j , Λ_k are public
- Due to compression, this method does not apply

۸ _i	Λj	Alice's AuthGC	Bob's AuthGC
0 0 1 1	0 1 0 1	$M[\Lambda_{00}] \ M[\Lambda_{01}] \ M[\Lambda_{10}] \ M[\Lambda_{11}]$	$egin{array}{l} K[\Lambda_{00}] \ K[\Lambda_{01}] \ K[\Lambda_{10}] \ K[\Lambda_{11}] \end{array}$

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\rm B}|=
hopprox 40$

Optimizing the Two-way Communication

Based on the WRK consistency checking

$$\Lambda_{k} := \lambda_{k} \oplus (\Lambda_{i} \oplus \lambda_{i}) \cdot (\Lambda_{j} \oplus \lambda_{j})$$

$$= \lambda_{k} \oplus \Lambda_{i} \Lambda_{j} \oplus \Lambda_{i} \lambda_{j} \oplus \lambda_{i} \Lambda_{j} \oplus \lambda_{i} \lambda_{j}$$

$$i$$
 $j = k$

- lacksquare Equivalent to checking $\mathsf{K}[\mathsf{\Lambda}_k] = \mathsf{M}[\mathsf{\Lambda}_k] \oplus \mathsf{\Lambda}_k \cdot \Delta_\mathsf{B}$
- Reduces to linear test if Λ_i , Λ_j , Λ_k are public
- Due to compression, this method does not apply
- lacksquare Our task is to securely check $lacksquare \Lambda_k \cdot \Delta_{\mathsf{B}} = lacksquare \Lambda_k \cdot \Delta_{\mathsf{B}}$
- Equivalent to $(\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \cdot \Delta_B = (\Lambda_k \oplus \lambda_k) \cdot \Delta_B$

۸ _i	Λj	Alice's AuthGC	Bob's AuthGC
0 0 1 1	0 1 0 1	$M[\Lambda_{00}] \ M[\Lambda_{01}] \ M[\Lambda_{10}] \ M[\Lambda_{11}]$	$egin{array}{l} K[\Lambda_{00}] \ K[\Lambda_{01}] \ K[\Lambda_{10}] \ K[\Lambda_{11}] \end{array}$

IT-MAC Soundness
$$\Rightarrow$$
 $|\Delta_{\mathsf{B}}| = \rho \approx 40$

Expanding the Terms

 $\blacksquare \ (\Lambda_i \Lambda_j \oplus \Lambda_i \lambda_j \oplus \lambda_i \Lambda_j \oplus \lambda_i \lambda_j) \cdot \Delta_{\mathsf{B}} = (\Lambda_k \oplus \lambda_k) \cdot \Delta_{\mathsf{B}}$

$$\underbrace{\left(\underbrace{\Lambda_{i}\cdot\Lambda_{j}\oplus\Lambda_{k}\oplus b_{k}\oplus\hat{b}_{k}\oplus\Lambda_{i}\cdot b_{j}\oplus\Lambda_{j}\cdot b_{i}}_{B'_{k}}\oplus a_{k}\oplus\hat{a}_{k}\oplus\Lambda_{i}\cdot a_{j}\oplus\Lambda_{j}\cdot a_{i}\right)\cdot\Delta_{B}=0.$$

 $B'_k \cdot \Delta_B \oplus M[a_k] \oplus K[a_k] \oplus M[\hat{a}_k] \oplus K[\hat{a}_k] \oplus \Lambda_i \cdot (M[a_i] \oplus K[a_i]) \oplus \Lambda_i \cdot (M[a_i] \oplus K[a_i]) = 0$.

$$\underbrace{B'_k \cdot \Delta_B \oplus K[a_k] \oplus K[\hat{a}_k] \oplus \Lambda_i \cdot K[a_j] \oplus \Lambda_j \cdot K[a_i]}_{B_k} \oplus \underbrace{M[a_k] \oplus M[\hat{a}_k]}_{A_{k,0}} \oplus \Lambda_i \cdot M[a_j] \oplus \Lambda_j \cdot M[a_i] = 0 .$$

CWYY · Actively Secure Half-Gates with Minimum Overhead under Duplex Networks

Expanding the Terms

 $\blacksquare \ (\Lambda_i \Lambda_j \oplus \Lambda_i \lambda_j \oplus \lambda_i \Lambda_j \oplus \lambda_i \lambda_j) \cdot \Delta_{\mathsf{B}} = (\Lambda_k \oplus \lambda_k) \cdot \Delta_{\mathsf{B}}$

$$(\underbrace{\Lambda_{i}\cdot\Lambda_{j}\oplus\Lambda_{k}\oplus b_{k}\oplus\hat{b}_{k}\oplus\Lambda_{i}\cdot b_{j}\oplus\Lambda_{j}\cdot b_{i}}_{B'_{k}}\oplus a_{k}\oplus\hat{a}_{k}\oplus\Lambda_{i}\cdot a_{j}\oplus\Lambda_{j}\cdot a_{i})\cdot\Delta_{B}=0.$$

 $B'_k \cdot \Delta_{\mathsf{B}} \oplus \mathsf{M}[a_k] \oplus \mathsf{K}[a_k] \oplus \mathsf{M}[\hat{a}_k] \oplus \mathsf{K}[\hat{a}_k] \oplus \mathsf{\Lambda}_i \cdot (\mathsf{M}[a_j] \oplus \mathsf{K}[a_j]) \oplus \mathsf{\Lambda}_j \cdot (\mathsf{M}[a_i] \oplus \mathsf{K}[a_i]) = 0 .$

$$\underbrace{B'_k \cdot \Delta_B \oplus \mathsf{K}[a_k] \oplus \mathsf{K}[\hat{a}_k] \oplus \Lambda_i \cdot \mathsf{K}[a_j] \oplus \Lambda_j \cdot \mathsf{K}[a_i]}_{B_k} \oplus \underbrace{\mathsf{M}[a_k] \oplus \mathsf{M}[\hat{a}_k]}_{A_{k,0}} \oplus \Lambda_i \cdot \mathsf{M}[a_j] \oplus \Lambda_j \cdot \mathsf{M}[a_i] = 0 .$$

Half-Gates

$$L_{i,0}, L_{i,1}$$
 L_{i,Λ_i} $G_0 = H(L_{i,0}) \oplus H(L_{i,1}) \oplus M$

$$\mathsf{H}(\mathsf{L}_{i,\Lambda_i}) = \mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{\Lambda}_i \cdot (\mathsf{H}(\mathsf{L}_{i,0}) \oplus \mathsf{H}(\mathsf{L}_{i,1}))$$

$$H(L_{i,\Lambda_i}) \oplus \Lambda_i \cdot G_0 = H(L_{i,0}) \oplus \Lambda_i \cdot M$$

Merging Two Multiplications

- Observation: In Free-XOR, each AND gate input value Λ_i , Λ_j is a *public* linear combination of previous AND outputs
- Denoted as $\Lambda_i = \sum_k c_k^i \cdot \Lambda_k$

Merging Two Multiplications

- Observation: In Free-XOR, each AND gate input value Λ_i , Λ_j is a *public* linear combination of previous AND outputs
- lacksquare Denoted as $\Lambda_i = \sum_k c_k^i \cdot \Lambda_k$
- To check the entire circuit, we need to evaluate

$$\sum_{(i,j,k,\wedge)\in\mathcal{C}} \chi^k \cdot \left((\Lambda_i \oplus \lambda_i) \cdot (\Lambda_j \oplus \lambda_j) \oplus (\Lambda_k \oplus \lambda_k) \right) \cdot \Delta_{\mathsf{B}} = 0$$

■ Equivalent to evaluating the secret sharing of $\sum_{i,j,k} \Lambda_i \cdot M[a_j] \oplus \sum_{i,j,k} \Lambda_j \cdot M[a_i]$

$$\sum_k \chi^k \cdot B_k \oplus \sum_k \chi^k \cdot A_{k,0} \oplus \sum_{(i',j',k',\wedge)} \chi^{k'} \cdot \left(\left(\sum_k c_k^{i'} \cdot \Lambda_k \right) \cdot \mathsf{M}[a_{j'}] \oplus \left(\sum_k c_k^{j'} \cdot \Lambda_k \right) \cdot \mathsf{M}[a_{i'}] \right) = 0 .$$

$$\sum_{k} \chi^{k} \cdot B_{k} \oplus \sum_{k} \chi^{k} \cdot A_{k,0} \oplus \sum_{k} \Lambda_{k} \cdot \underbrace{\sum_{(i',j',k',\wedge)} \chi^{k'} \cdot (c_{k}^{i'} \cdot M[a_{j'}] \oplus c_{k}^{j'} \cdot M[a_{i'}])}_{A_{k,1}} = 0.$$

Removing the Random Oracle

- CRHF cannot offer pseudorandomness, so we change to "sum of TCCR hash"
 - (b) P_A computes $h := H'(V_1^A, \dots, V_t^A)$, and then sends it to P_B who checks that $h = H'(V_1^B, \dots, V_t^B)$. If the check fails, P_B aborts.
- (b) P_A computes $h_A := \sum_{i=1}^t H_{tccr}(V_i^A)$, and then sends it to P_B who computes $h_B := \sum_{i=1}^t H_{tccr}(V_i^B)$ and checks that $h_A = h_B$. If the check fails then P_B aborts.

Removing the Random Oracle

- CRHF cannot offer pseudorandomness, so we change to "sum of TCCR hash"
 - (b) P_A computes $h := H'(V_1^A, \dots, V_t^A)$, and then sends it to P_B who checks that $h = H'(V_1^B, \dots, V_t^B)$. If the check fails, P_B aborts.
- (b) P_A computes $h_A := \sum_{i=1}^t H_{tccr}(V_i^A)$, and then sends it to P_B who computes $h_B := \sum_{i=1}^t H_{tccr}(V_i^B)$ and checks that $h_A = h_B$. If the check fails then P_B aborts.
- In some cases, we need the following to be pseudorandom

$$\mathsf{H}(\mathsf{x} \oplus \mathsf{j} \cdot \Delta, \mathsf{i}) \text{ s.t. } \mathsf{i} \in \mathbb{F}_{2^{\kappa}}, \mathsf{j} \in \mathbb{F}_{2^{\kappa}}^*$$

- This is referred to as "extended TCR" in the current draft
- Luckily, the TMMO construction in GKWY20 still works in the RPM

$$\mathsf{TMMO}^{\pi}_{\Delta}(x,i,j) = \pi(\pi(x \oplus \Delta \cdot j) \oplus i) \oplus \pi(x \oplus \Delta \cdot j)$$

Multi-use of Hash Functions in the Standard Model

- String-OT needs TCR
- Half-Gate needs CCRND
- No multi-use security definition
- lacktriangle Must satisfy them simultaneously o TCCR

Conclusion

- Further optimization on the compression technique of [DILO22]
- Dual-key authentication and efficient generation
- Dual execution upon distribution garbling eliminates 1-bit leakage
- Malicious 2PC with one-way comm. of $2\kappa + 5$ bits, two way comm. of $2\kappa + 3\rho + 4$ bits

2PC	Rc	ounds	Communication per AND gate		
2. 0	Prep.	Online	one-way (bits)	two-way (bits)	
Half-gates	1	2	2κ	2κ	
HSS-PCG	8	2	$8\kappa+11$ (4.04 $ imes$)	$16\kappa+22$ (8.09 $ imes$)	
KRRW-PCG	4	4	$5\kappa+7$ (2.53 $ imes$)	$8\kappa+14$ (4.05 $ imes$)	
DILO	7	2	$2\kappa + 8 ho + 1$ (2.25 $ imes$)	$2\kappa+8 ho+5$ (2.27 $ imes$)	
This work	8	3	$2\kappa + 5$ ($pprox 1 imes$)	$4\kappa+10$ (2.04 $ imes$)	
This work+DILO	8	2	$2\kappa + 3\rho + 2$ (1.48×)	$2\kappa + 3\rho + 4 \approx 1.48 \times$	

Thanks for your listening

Merci beaucoup