

# Electron Tomography Theory

- Peter Ercius
- Frontiers of Electron Tomography Short Course 2017
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- October 25<sup>th</sup>, 2017











## Structure Directly Affects Functionality



### **Quantum dots**



P Zrazhevskiy et al, Chem So Rev (2010)

#### <u>Tetrapods</u>



L Manna et al, Nature (2003)

- Quantum dot size affects their optical emission color
- Tetrapod shape affects their optical absorption
- Need to measure morphology to determine shape mediated functionality

### Projections Are Misleading





Microscopists study the shadows on the wall because they do not have access to the objects that create them.

### Hetero-/Homo-geneous Structures



- Many biological structures can be copied and purified
  - Averaging improves SNR, reduces damage
  - 3D tertiary form gives molecular functionality and interactions
- Physical science nanomaterials are different on the atomic scale
  - Averaging
- Must resolve local atomic structure directly to measure:
  - Defects, compositional anti-phase boundaries, amorphous structure, dopant atoms

"If you can measure it, you can make it."

- A Liddle (NIST)







J. Park, Angew Chemi (2005)



active core/active shell



E. Chan, Adv Mat (2015)

### Aberration-corrected STEM







- Atomic resolution imaging with a focused probe in TEAM
- Single atom sensitivity for heavy and light elements
- 2D → 3D: No material is perfect! Grains, defects, etc.

# Projection Problem for TEMs



### **Top View Projection**

### Side View





# Techniques for 3D Structural Analysis



#### X-ray/Electron crystallography



Homogeneous 3D crystal

#### **Atom Probe Tomography**





Only 30% – 60% of atoms

#### Cryo-EM



Homogeneous, randomly oriented

Henderson, Arch Biochem Biophys (2015)

#### **Electron tomography**



Single unique object from projections

# Techniques for 3D Structural Analysis



#### X-ray/Electron crystallography



Homogeneous 3D crystal

#### Atom Probe Tomography





Only 30% – 60% of atoms





Homogeneous, randomly oriented

Henderson, Arch Biochem Biophys (2015

#### Electron tomography



Single unique object from projections

## Electron Tomography



Tomography is a method in which a higher dimensional structure is reconstructed from a series lower dimensional projections (usually by sampling the structure from many different directions).

- Original description of projections are in Radon's 1917 paper: Radon, Ber. Verh. K. Sachs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 69, 262 (1917)
- Originally developed for astronomy and more commonly used in medical "CAT-scans"
  - Computer Aided Tomography (CAT)
- Any series of projection images can be utilized
  - Look for inspiration in other fields (bio-, astro-, etc.)

### An Atomic Electron Tomography Experiment





### **Acquisition**

- Acquire HR images from many different angles
- Drift, stability, SNR, monotonic intensity



### **Reconstruction**

- Reconstruct 3D density
- Accurate spatial alignment
- Determination of viewing directions

## Projection Requirement



- Projected intensity must be a monotonic function of some property of the the object
  - Mass, thickness, electric-potential, etc.
- Beer's law for scattering is exponential with thickness:

$$I = I_o \exp^{-t/L_{el}}$$

- TEMs are in fact structure projectors under certain conditions
  - TEM objective aperture enhances amplitude contrast
  - ADF-STEM produces incoherent Z contrast

## Linear Projection Operation





An object's density can be discretized as a function f(x,y,z)

Projection is similar to summation along a given direction:

$$\int f(x,y,z)dz \equiv \sum_{z} f(x,y,z) = f(x,y)$$



$$\int f(x,y,z)d\theta \equiv \sum_{\theta} f(x,y,z) = f_{\theta}(x,y)$$

### STEM vs. TEM Tomography







- **Scanned image (30 sec)**
- **X** Sensitive to defocus
- **X** Contamination, high dose
- ✓ Incoherent imaging method
- ✓ High contrast for heavy materials
- ✓ Multimodal (EELS, EDX)

----- Hard Materials -----



- ✓ Common parallel illumination
- ✓ Single-shot image (1 sec)
- Insensitive to defocus
- ✓ Low dose
- Complex phase information transfer function
- **★** Low contrast → Large defocus
- May require CTF correction

----- Soft Materials -----

## 3 Linear Projections





- A simple sum of the mass at each tilt-angle projected onto a line
- Each tilt tells us a little more about the shape and distribution

## Tomographic Backprojection





- Real space transform
- Only 3 projections produce a clear artifact
- Many projections allow reconstruction of complicated objects

P Ercius 2017 15

## Multi-dimensional data: Image Stack vs Volume



### Image stack





XY = images $Y\theta = sinograms$ 

#### 3D volume



# Meaning of a Sinogram



#### Point object path





- A Sinogram shows the projected density a distance from the tilt axis at each tilt angle
  - Equivalent to Y $\theta$  in previous image stack video
- Reconstruct algorithms interpolate on the sonogram to fill a volume

### Backprojection: Building Up a Reconstruction



18



- Simple Radon Backprojection
- Most common reconstruction method

• ±90°, 60 projections

P Ercius 2017

### Backprojection: Building Up a Reconstruction





- Simple Radon Backprojection and corresponding FFT
- FFT shows how more information is filled in with each additional angle

• ±90°, 60 projections

Percius 2017

# Limited Tomography Reconstruction









±30° missing wedge





Radon backprojection ±70°, 50 projections

FFT of Reconstruction

# (2D) Fourier Slice Theorem

• Object has mass-density f(x,z)

$$F_{2D}\left[f(x,z)\right] = \int \int f(x,z)e^{i2\pi(k_x x, k_z z)} dxdz$$

- A projection
- Acquire many projections to sample the object's information
- Possibility to invert Fourier space to retrieve full 3D information of the object



## 1D → 2D → 3D Fourier Transform





2D object with density function f(x,y) can also be represented in reciprocal space

$$F_{2D}[f(x,y)] = F_x[F_y[f(x,y)]]$$
$$= \underline{F}(k_x, k_y)$$



3D object with density function f(x,y,z) can also be represented in reciprocal space

$$F_{3D}[f(x,y,z)] = F_x[F_y[F_z[f(x,y,z)]]]$$
$$= \underline{F}(k_x, k_y, k_z)$$

### Fourier Slice Theorem



"A projection of an object is equivalent to a central slice of the object's Fourier transform at the viewing angle"



### Connection Between Real and Fourier Space





from ±90°

# Tomographic Reconstruction

## Electron Tomography Reconstruction







#### **Requires**:

- Projection requirement
- Accurate spatial alignment
- Determination of tilt axis
- Accurate angular increments

## 3D Fourier Information Sampling





- Missing information extends along the tilt-axis (X)
  - "Missing wedge of information"
- Artifacts and resolution reduction introduced along Y and Z due to missing information
- Resolution  $\rightarrow$  X:image sampling, Y:tilt angles, Z:max tilt angle

## Tomogram Resolution Estimation (d)





$$d_{y} = \frac{\rho D}{N}$$

$$d_z = d_y e_{zy} = d_y \sqrt{\frac{a + \sin(a)\cos(a)}{a - \sin(a)\cos(a)}}$$

Discrete sampling of a continuous function

Elongation (e<sub>zy</sub>) due to missing wedge

- Resolution along tilt-axis (x) is equivalent to the experimental resolution with perfect alignment
- Y-axis is diminished due to limited # tilt angles
  - 1° tilt steps provides a good sampling
- Z-axis is further diminished due to the missing wedge
  - d<sub>z</sub> elongation is ≤1.3× for ±70° maximum tilt
- Electron dose limits applications for sensitive materials

### Direct Fourier Inversion





- We've acquired the data
- We've aligned and post-processed the data
- Does applying the inverse FFT produce our object?

## Problems with Direct FT Inversion





Acquisition: Radial

• Inverse FT: Cartesian

Inversion requires interpolation

Some newer methods solve this problem (ex. GENFIRE)

P Ercius 2017

### The Radon Transform







#### Radon domain



- Radon transform is a sum along a line at angle  $\theta$
- No Fourier transform is used
  - Avoids reciprocal space amplitude / phase
  - Simpler interpolation

## Weighted Backprojection



#### Weighted Backprojection Filter



- Low-frequency (large objects) over-sampled
- High-frequency (small objects) under-sampled
- Apply r-weighted filter w in F-space after backprojection

# Effect of r-Weighted Backprojection





- Reconstruction with full tilt (±90° rotation)
- Unfiltered reconstruction dominated by low frequencies → blurred
- Filter faithfully reproduces the original

P Ercius 2017 33

## Artifacts in Filtered Backprojections







- Missing information introduces artifacts not seen in the original projections
- Can use the original projections as a reference and comparatively iterate to remove artifacts

P Ercius 2017

### The Iterative Process





- RE-project the model and compare with the original projections to remove artifacts
  - Interpolation occurs on the sinograms

P Ercius 2017

## Iterative Algorithms





#### Simultaneous Iterative Reconstruction Technique (SIRT)



37





1 - 20 SIRT iterations

## SIRT Convergence



38



- Generally, the reconstruction converges after 20 or 30 iterations
- There are only very small changes in the reconstruction beyond this

# Advanced Iterative Fourier Algorithms



- EST is one type of iterative Fourier algorithm
  - Acquire data on a linogram grid to allow direct, iterative Fourier inversion
  - Incorporate constraints into reconstruction (all voxels > 0)
  - Attempts to calculate the best match between the reconstruction and experimental data
- Other newer algorithms provide similar or even improved fidelity of the reconstruction
  - GENFIRE: angle requirement is relaxed and allows for optimized angular alignment (<a href="http://www.physics.ucla.edu/research/imaging/FePt/">http://www.physics.ucla.edu/research/imaging/FePt/</a>)
  - Compressed sensing: improved reconstruction from noisy or fewer projections. Requires a sparsity condition:
    - L<sub>1</sub>- or L<sub>2</sub>-norm penalization (differences or square differences)
    - Total variation minimization (enforcing smoothness but edge preserving)

### Reconstruction Review



- Back-projection is a real space operation
  - Simpler interpolation
- Weighted back-projection
  - r-weighted in Fourier space
- Iterative techniques compare each reconstruction against the original "perfect" projections
- More advanced algorithms are now available
  - Direct iterative Fourier inversion
  - Discrete tomography and atom counting
  - Compressed sensing (TV minimization)



# The Missing Wedge Effect





- Missing wedge causes elongation  $e_{zy}$  along  $e^-$  beam direction
- High tilts are necessary for a faithful reconstruction
- Simulate linear projections of a faceted nanoparticle

### Simulate Particle Reconstructions





- Test reconstruction of the same particle at 4 different orientations: 0°, 15°, 30°, 45°
- All linear projections are along the vertical axis

## Binary Particle Test Reconstructions





- Missing wedge is most prevalent for edges perpendicular to the projection direction
- 45° rotated object gives best results for this shape

## Binary Particle Test Reconstructions







- Missing wedge is most prevalent for edges perpendicular to the projection direction
- 45° rotation gives good results for this faceted object

## Experiment vs Simulation







- On-edge particles are more faithfully reconstructed with minimal artifacts
- Always keep in mind the direction of the missing wedge artifacts

## Grand Challenge: 3D Atom Coordinates



"It would be very easy to make an analysis of any complicated chemical substance; all one would have to do would be to look at it and see where the atoms are...



Richard P. Feynman, 1959,"There's Plenty of Room at Bottom"

#### A grand challenge of materials science

- Image defects in materials
  - Dislocations, point defects
- Image atomic species in 3D
  - Dopant atoms, core-shell
- Ultimately: amorphous materials
  - Glass transition

# Tomography Advancement



#### **Copper interconnect**



P Ercius, et al, Appl. Phys. Lett. 88, 243116 (2006)

#### FePt Nanoparticle



Y Yang, et al, Nature, **542**, 7639 (2016)

# Acknowledgements



- Dr. Colin Ophus (MF, LBNL)
- Dr. Mary Scott (UC Berkeley)
- Prof. John Miao (UCLA)
- Dr. Yongsoo Yang (UCLA)
- Dr. Wolfgang Theis (U. Birmingham)
- Dr. Jim Ciston (MF, LBNL)
- Prof. David A. Muller (Cornell U.)
- Prof. Lena F. Kourkoutis (Cornell U.)
- Prof. Earl J. Kirkland (Cornell U.)



#### Resources









- tomviz: Open source 3D volumetric visualization and analysis (tomviz.org)
  - Volumetric, orthogonal slicing, rotation, animation
- Other reconstruction packages (parallelized):
  - Tomopy, astra-toolbox, IMOD, TomoJ, many others
- Recent review article with lots of background and applications (hard and soft materials)
  - P Ercius et al, "Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research," Advanced Materials
    27:38, pp. 5638–63 (2015). doi: 10.1002/adma.201501015
- International Workshop and Short Course on the Frontiers of Electron Tomography (<a href="www.electron-tomo.com">www.electron-tomo.com</a>)
  - October 23-27, 2017 in Berkeley, CA
  - Registration open now!

