Further Data Structures

The story so far

- Saw some fundamental operations as well as advanced operations on arrays, stacks, and queues
- Saw a dynamic data structure, the linked list, and its applications.
- Saw the hash table so that insert/delete/find can be supported efficiently.

This week we will

- Study data structures for hierarchical data
- Operations on such data.
- Leading to efficient insert/delete/find.

- Consider your home directory.
- /home/user is a directory, which can contain subdirectories such as work/, misc/, songs/, and the like.
- Each of these sub-directories can contain further sub-directories such as ds/, maths/, and the like.
- An extended hierarchy is possible, until we reach a file.

- Consider another example. The table of contents of a book.
- A book has chapters.
- A chapter has sections
- A section has sub-sections.
- A sub-section has sub-subsections,
- Till some point.

- In both of the above examples, there is a natural hierarchy of data.
 - In the first example, a (sub)directory can have one or more sub-directories.
- Similarly, there are several setting where there is a natural hierarchy among data items.
 - Family trees with parents, ancestors, siblings, cousins,...
 - Hierarchy in an organization with CEO/CTO/Managers/...

- What kind of questions arise on such hierarchical data?
 - Find the number of levels in the hierarchy between two data items?
 - Print all the data items according to their level in the hierarchy.
 - Where from two members of the hierarchy trace their first common member in the hierarchy. Put differently, in a family tree, when do two persons start to branch out?

- As a data structure question
 - How to formalize the above notions? Plus,
 - How can more members be added to the hierarchy?
 - How can existing data items be deleted from the hierarchy?

A New Data Structure

- This week we will propose a new data structure that can handle hierarchical data.
- Study several applications of the data structure including those to:
 - expression verification and evaluation
 - searching

The Tree Data Structure

- Our new data structure will be called a tree.
- Defined as follows.
 - A tree is a collection of nodes.
 - An empty collection of nodes is a tree.
 - Otherwise a tree consists of a distinguished node r, called the root, and 0 or more non-empty (sub)trees T₁,
 T₂, · · · , T_k each of whose roots r₁, r₂, ..., r_k are connected by a directed edge from r.
 - r is also called as the parent of the the nodes r_1 , r_2 , ..., r_k .

Basic Observations

- A tree on n nodes always has n-1 edges.
- Why?

Basic Observations

- A tree on n nodes always has n-1 edges.
- Why?
 - One parent for every one, except the root.
- Before going in to how a tree can be represented,
 let us know more about the tree.

An Example

- Consider the tree shown to the right.
- The node A is the root of the tree.
- It has three subtrees whose roots are B, C, and D.
- Node C has one subtree with node E as the root.

An Example

- Nodes with the same parent are called as siblings.
- In the figure, G, H, and I are siblings.
- Nodes with no children are called leaf nodes or pendant nodes.
 - In the figure, B and K are leaf nodes.

A Few More Terms: Height, Level, and Path

- A path from a node u to a node v is a sequence of nodes $u=u_0$, u_1 , u_2 , ..., $u_k = v$ such that u_i is the parent of u_{i+1} , i > 0.
 - The path is said to have a length of k-1, the number of edges in the path.
 - A path from a node to itself has a length of 0.
- Example: A path from node C to F in our earlier tree is C->E->F.
- Observation: In any tree there is exactly one path from the root to any other node.

Depth

- Given a tree T, let the root node be said to be at a depth of 0.
- The depth of any other node u in T is defined as the length of the path from the root to u.
- Example: Depth of node G = 4.
- Alternatively, let the depth of the root be set to 0 and the depth of a node is one more than the depth of its parent.

Height

- Another notion defined for trees is the height.
- The height of a leaf node is set to 0. The height of a node is one plus the maximum height of its children.
- The height of a tree is defined as the height of the root.
- Example: Height of node C = 3.

Ancestors and Descendants

- Recall the parent-child relationship between nodes.
- Alike parent-children relationship, we can also define ancestor-descendant relationship as follows.
- In the path from node u to v, u is an ancestor of v and v is a descendant of u.
- If u ≠ v, then u (v) is called a proper ancestor (descendant) respectively.

Implementing Trees

- Briefly, we also mention how to implement the tree data structure.
- The following node declaration as a structure works.

```
struct node
{
int data;
node *children;
}
```

Applications

- Can use this to store the earlier mentioned examples.
- Need more tools to perform the required operations.
- We'll study them via a slight specialization.

Binary Trees

- A special class of the general trees.
- Restrict each node to have at most two children.
 - These two children are called the left and the right child of the node.
 - Easy to implement and program.
 - Still, several applications.

An Example

- Figure shows a binary tree rooted at A.
- All notions such as
 - height
 - depth
 - parent/child
 - ancestor/descendant

are applicable.

Our First Operation

- To print the nodes in a (binary) tree
- This is also called as a traversal.
- Need a systematic approach
 - ensure that every node is indeed printed
 - and printed only once.

Tree Traversal

- Several methods possible. Attempt a categorization.
- Consider a tree with a root D and L, R being its left and right sub-trees respectively.
- Should we intersperse elements of L and R during the traversal?
 - OK one kind of traversal.
 - No. -- One kind of traversal.
 - Let us study the latter first.

Tree Traversal

- When items in L and R should not be interspersed, there are six ways to traverse the tree.
 - DLR
 - DRL
 - -RDL
 - -RLD
 - LDR
 - LRD

Tree Traversal

- Of these, let us make a convention that R cannot precede L in any traversal.
- We are left with three:
 - LRD
 - LDR
 - DLR
- We will study each of the three. Each has its own name.

The Inorder Traversal (LDR)

- The traversal that first completes L, then prints D, and then traverses R.
- To traverse L, use the same order.
 - First the left subtree of L, then the root of L, and then the right subtree of R.

The Inorder Traversal -- Example

- Start from the root node A.
- We first should process the left subtree of A.
- Continuing further, we first should process the node E.
- Then come D and B.
- The L part of the traversal is thus E D B.

The Inorder Traversal -- Example

- Then comes the root node A.
- We first next process the right subtree of A.
- Continuing further, we first should process the node C.
- Then come G and F.
- The R part of the traversal is thus C G F.

Inorder: EDBACGF

The Inorder Traversal -- Example

```
Procedure Inorder(T)
begin
  if T == NULL return;
  Inorder(T->left);
  print(T->data);
  Inorder(T->right);
end
```


Inorder: EDBACGF

The Preorder Traversal (DLR)

- The traversal that first completes D, then prints L, and then traverses R.
- To traverse L (or R), use the same order.
 - First the root of L, then left subtree of L, and then the right subtree of L.

The Preorder Traversal -- Example

- Start from the root node A.
- We first should process the root node A.
- Continuing further, we should process the left subtree of A.
- This suggests that we should print B, D, and E in that order.
- The L part of the traversal is thus B D E.

The Preorder Traversal -- Example

- We first next process the right subtree of A.
- Continuing further, we first should process the node C.
- Then come F and G in that order.
- The R part of the traversal is thus C F G.

Preorder: A B D E C F G

The Preorder Traversal – Example

```
Procedure Preorder(T)
begin
  if T == NULL return;
  print(T->data);
  Preorder(T->left);
  Preorder(T->right);
end
```


Preorder: A B D E C F G

The Postorder Traversal (LDR)

- The traversal that first completes L, then traverses R, and then prints D.
- To traverse L, use the same order.
 - First the left subtree of L, then the right subtree of R, and then the root of L.

The Postorder Traversal -- Example

- Start from the root node A.
- We first should process the left subtree of A.
- Continuing further, we first should process the node E.
- Then come D and B.
- The L part of the traversal is thus E D B.

The Postorder Traversal -- Example

- We next process the right subtree of A.
- Continuing further, we first should process the node C.
- Then come G and F.
- The R part of the traversal is thus G F C.
- Then comes the root node A.

postorder: EDBGFCA

The Postorder Traversal -- Example

```
Procedure postorder(T)
begin
  if T == NULL return;
  Postorder(T->left);
  Postorder(T->right);
  print(T->data);
end
```


Inorder: EDBGFCA

Another Kind of Traversal

- When left and right subtree nodes can be intermixed.
- One useful traversal in this mode is the level order traversal.
- The idea is to print the nodes in a tree according to their level starting from the root.

How to Perform a Level Order Traversal

- Consider the same example tree.
- Starting from the root, so A is printed first.
- What should be printed next?
- Assume that we use the left before right convention.
- So, we have to print B next.
- How to remember that C follows B.
- And then D should follow C?

Level Order Traversal

- Indeed, can remember that B and C are children of A.
- But, have to get back to children of B after C is printed.
- For this, one can use a queue.
 - Queue is a first-in-first-out data structure.

Level Order Traversal

- The idea is to queue-up children of a parent node that is visited recently.
- The node to be visited recently will be the one that is at the front of the queue.
 - That node is ready to be printed.
- How to initialize the queue?
 - The root node is ready!

Level Order Traversal

```
Procedure LevelOrder(T)
begin
  Q = queue;
  insert root into the queue;
  while Q is not empty do
     v = delete();
     print v->data;
     if v->left is not NULL insert v->left into Q;
     if v->right is not NULL insert v->right into Q;
  end-while
end
```

Level Order Traversal Example

Queue	Output		
			4
Α		()	A)
ВС	Α		1
C D	В	a K	2
DF	С	9	9
FE	D	L.	-AF)
E G	F	0	1
G	E	X	100
EMPTY	G	E	0

Queue and output are shown at every stage.

Analysis – Level Order Traversal

- How to analyze this traversal?
- Assume that the tree has n nodes.
- Each node is placed in the queue exactly once.
- The rest of the operations are all O(1) for every node.
- So the total time is O(n).
- This traversal can be seen as forming the basis for a graph traversal.

Application to Expression Evaluation

- We know what expression evaluation is.
- We deal with binary operators.
- An expression tree for a expression with only unary or binary operators is a binary tree where the leaf nodes are the operands and the internal nodes are the operators.

Example Expression Tree

- See the example to the right.
- The operands are 22,5, 10, 6, and 3.
- These are also leaf nodes.

Questions wrt Expression Tree

- How to evaluate an expression tree?
 - Meaning, how to apply the operators to the right operands.
- How to build an expression tree?
 - Given an expression, how to build an equivalent expression tree?

A Few Observations

- Notice that an inorder traversal of the expression tree gives an expression in the infix notation.
 - The above tree is equivalent to the expression $((22 + 5) \times (-10)) + (6/3)$
- What does a postorder and preorder traversal of the tree give?
 - Answer: ??

Why Expression Trees?

- Useful in several settings such as
 - compliers
 - can verify if the expression is well formed.

How to Evaluate using an Expression Tree

- Essentially, have to evaluate the root.
- Notice that to evaluate a node, its left subtree and its right subtree need to be operands.
- For this, may have to evaluate these subtrees first, if they are not operands.
- So, Evaluate(root) should be equivalent to:
 - Evaluate the left subtree
 - Evaluate the right subtree
 - Apply the operator at the root to the operands.

How to Evaluate using an Expression Tree

- This suggests a recursive procedure that has the above three steps.
- Recursion stops at a node if it is already an operand.

How to Evaluate using an Expression Tree

Example

Example Contd...

Pending Question

- How to build an expression tree?
- Start with an expression in the infix notation.
- Recall how we converted an infix expression to a postfix expression.
- The idea is that operators have to wait to be sent to the output.
 - A similar approach works now.

- Let us start with a postfix expression.
- The question is how to link up operands as (sub)trees.
- As in the case of evaluating a postfix expression, have to remember operators seen so far.
 - need to see the correct operands.
- A stack helps again.
- But instead of evaluating subexpression, we have to grow them as trees.
 - Details follow.

- When we see an operand :
 - That could be a leaf node...Or a tree with no children.
 - What is its parent?
 - Some operator.
 - In our case, operands can be trees also.
- The above observations suggest that operands should wait on the stack.
 - Wait as trees.

- What about operators?
- Recall that in the postfix notation, the operands for an operator are available in the immediate preceding positions.
- Similar rules apply here too.
- So, pop two operands (trees) from the stack.
- Need not evaluate, but create a bigger (sub)tree.

```
Procedure ExpressionTree(E)
//E is an expression in postfix notation.
begin
  for i=1 to |E| do
     if E[i] is an operand then
       create a tree with the operand as the only
         node;
       add it to the stack
     else if E[i] is an operator then
       pop two trees from the stack
       create a new tree with E[i] as the root
        and the two trees popped as its children;
       push the tree to the stack
  end-for
end
```

- Consider the expression
- The postfix of the expression is a b + f c d
 × e + /
- Let us follow the above algorithm.

$$+ f - c d \times e + /$$

 $c d \times e + /$ Stack b a

Another Application – Dictionary Operations

- Consider designing a data structure for primarily three operations:
 - insert,
 - delete, and
 - search.
- Why not use a hash table?
 - a hash table can only give an average O(1) performance
 - Need worst case performance guarantees.

Dictionary Operations

- Further extend the repertoire of operations to standard dictionary operations also such as findMin and findMax.
- Specifically, our data structure shall support the following operations.

```
- Create()
- Insert()
- FindMin()
- FindMax()
- Delete(), and
- Find()
```

Binary Search Tree

- Our data structure shall be a binary tree with a few modifications.
- Assume that the data is integer valued for now.
- Search Invariant:

The data at the root of any binary search tree is larger than all elements in the left subtree and is smaller than all elements in the right subtree.

Binary Search Tree

- The search invariant has to be maintained at all times, after any operation.
- This invariant can be used to design efficient operations, and
- Also obtain bounds on the runtime of the operations.

Binary Search Tree – Example

A binary search tree

Not a binary search tree

Operations

- Let us start with the operation Find(x).
- We are given a binary search tree T.
- Answer YES if x is in T, and answer NO otherwise.
- Throughout, let us call a node deficient, if it misses at least one child.
 - So a leaf node is also deficient.
 - So is an internal node with only one child.

Find(x)

- Let us compare x with the data at the root of T.
- There are three possibilities
 - -x = T->data : Answer YES. Easy case.
 - -x < T->data: Where can x be if it is in T? Left subtree
 - -x > T->data: Where can x be if it is in T? Right subtree
- So, continue search in the left/right subtree.
- When to stop?
 - Successful search stops when we find x.
 - Unsuccessful search stops when we reach a deficient node without finding x.

Find(x)

- Notice the similarity to binary search.
- In both cases, we continue search in a subset of the data.
 - In the case of binary search the subset size is exactly half the size of the current set.
 - Is that so in the case of a binary search tree also?
 - May not always be true.

Find(x)

- How to analyze the runtime?
- Number of comparisons is a good metric.
- Notice that for a successful or an unsuccessful search, the worst case number of comparisons is equal to the height of the tree.
- What is the height of a binary search tree?
 - We'll postpone this question for now.

- Search for 64.
- Since 52 < 64, we search in the right subtree.

- Search for 68.
- Since 52 < 68, we search in the right subtree.
- Since 68 < 70, again search in the left subtree.

- Search for 68.
- Since 52 < 68, we search in the right subtree.
- Since 68 < 70, again search in the left subtree.
- Since 64 < 65, again search in the right subtree.

- Search for 68.
- Since 52 < 68, we search in the right subtree.
- Since 68 < 70, again search in the left subtree.
- Since 64 < 68, again search in the right subtree.
- Finally, find 68 as a leaf node.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.
- Since 36 < 48, search in the right subtree.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.
- Since 36 < 48, search in the right subtree.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.
- Since 36 < 48, search in the right subtree.
- Since 42 < 48, search in the right subtree.

- Consider the same tree and Find(48).
- Since 52 > 48, we search in the left subtree.
- Since 36 < 48, search in the right subtree.
- Since 42 < 48, search in the right subtree.
- finally, 45 < 48, but no right subtree. So declare NOT FOUND.

Find(x) Pseudocode

```
procedure Find(x, T)
begin
  if T == NULL return NO;
  if T->data == x return YES;
  else if T->data > x
     return Find(x, T->right);
  else
     return Find(x, T->left);
end
```

Observation on Find(x)

- Travel along only one path of the tree starting from the root.
- Hence, important to minimize the length of the longest path.
 - This is the depth/height of the tree.

Operation FindMin and FindMax

- Consider FindMin.
- Where is the smallest element in a binary search tree?
- Recall that values in the left subtree are smaller than the root, at every node.
- So, we should travel leftward.
 - stop when we reach a leaf or
 - a node with no left child.
 - Essentially, a deficient node missing a left child.
- FindMax is similar. How should we travel?

Operation FindMin and FindMax

- On the above tree, findMin will travese the path shown in red.
- FindMax will travel the path shown in green.

Operation FindMin and FindMax

```
procedure FindMin(T)
begin
if T = NULL return null;
if T-> left = NULL return T;
return FindMin(T->left);
end
```

- Both these operations also traverse one path of the tree.
- Hence, the time taken is proportional to the depth of the tree.
- Notice how the depth of the tree is important to these operations also.

- Let us now study how to insert an element into an existing binary tree.
- Assume for simplicity that no duplicate values are inserted.

- Where should x be inserted?
- Should satisfy the search invariant.
 - So, if x is larger than the root, insert in the right subtree
 - if x is smaller than the root, insert in the left subtree.
- Repeat the above till we reach a deficient node.
- Can always add a new child to a deficient node.
- So, add node with value x as a child of some deficient node.

- Notice the analogy to Find(x)
- If x is not in the tree, Find(x) stops at a deficient node.
- Now, we are inserting x as a child of the deficient node last visited by Find(x).
- If the tree is presently empty, then x will be the new root.
- Let us consider a few examples.

- Consider the tree shown and inserting 36.
- We travel the path 70 50 42 32.
- Since 32 is a leaf node, we stop at 32.

- Now, 36 > 32. So 36 is inserted as a right child of 32.
- The resulting tree is shown in the picture.


```
Procedure insert(x)
begin
  T' = T;
  if T' = NULL then
     T' = \text{new Node}(x, \text{Null}, \text{Null});
  else
     while (1)
        if T'-> data < x then
              If T'->left then T' = T'-> left;
              Else Add x as a left child of T'
                    break;
        else
              If T'->right then T' = T'-> right;
              Else Add x as a right child of T'
                    break;
     end-while;
End.
```

- New node always inserted as a leaf.
- To analyze the operation insert(x), consider the following.
 - Operation similar to an unsuccessful find operation.
 - After that, only O(1) operations to add x as a child.
- So, the time taken for insert is also proportional to the depth of the tree.

Duplicates?

- To handle duplicates, two options
 - report an error message
 - to keep track of the number of elements with the same value

- Finally, the remove operation.
- Difficult compared to insert
 - new node inserted always as a leaf.
 - but can also delete a non-leaf node.
- We will consider several cases
 - when x is a leaf node
 - when x has only one child
 - when x has both children

- If x is a leaf node, then x can be removed easily.
 - parent(x) misses a child.

- Suppose x has only one child, say right child.
- Say, x is a left child of its parent.
- Notice that x < parent(x) and child(x) > x, and also child(x) < parent(x).
- So, child(x) can be a left child of parent(x), instead of x.
- In essence, promote child(x) as a child of parent(x).

Remove(x) – The Difficult Case

- x has both children.
- Cannot promote any one child of x to be child of parent(x).
- But, what is a good value to replace x?
- Notice that, the replacement should satisfy the search invariant.
- So, the replacement node should have a value more than all the left subtree nodes and smaller than all right subtree nodes.

- One possibility is to consider the maximum valued node in the left subtree of x.
- Equivalently, can also consider the node with the minimum value in the right subtree of x.
- Notice that both these replacement nodes are deficient nodes. Hence easy to remove them.
- In a way, to remove x, we physically remove a leaf node.


```
Procedure Delete(x, T)
begin
  if T = NULL then return NULL;
  T' = Find(x);
  if T' has only one child then
     adjust the parent of the
     remaining child;
  else
     T'' = FindMin(T'-> right);
     Remove T'' from the tree;
     T'-> value = T''-> value;
  End-if
End.
```

• Time taken by the remove() operation also proportional to the depth of the tree.

- What are some bounds on the depth of a binary search tree of n nodes?
- A depth of n is also possible.

- Imagine that each internal node has exactly two children.
- A depth of log₂ n is the best possible.

- So the depth can be between log₂ n and n.
- What is the average depth?

Average Depth

- A good notion as most operations take time proportional on the depth of the binary search tree.
- Still, not a satisfactory measure as we wanted worst-case performance bounds.

- Let us analyze the average depth of a binary search tree.
- This average is on what?
 - Assume that all subtree sizes are equally likely.
- Under the above assumption, let us show that the average depth of a binary search tree is O(log n).

- Internal path length: The sum of the depths of all nodes in a tree.
- Let D(N) to be the internal path length of some binary search tree of N nodes.
 - $-\Sigma_{i=1}^{n}$ d(i), where d(i) is the depth of node i.
- Note that D(1) = 0.

- In a tree with N nodes, there is one root node and a left subtree of i nodes and a right subtree of n-i-1 nodes.
- Using our notation, D(i) is the internal path length of the left subtree.
- D(n-i-1) is the internal path length of the right subtree.

- Further, if now these trees are attached to the root
 - the depth of each node in T_{l} and T_{R} increases by 1.

• So, D(N) = D(i) + D(n-i-1) + n-1

Solving the Recurrence Relation

- If all subtree sizes are equally likely then D(i) is the average over all subtree sizes.
 - That is, i ranges over 0 to N-1.
 - Can hence see that D(i) = (1/n) $\Sigma_{j=0}^{n-1}$ D(j)
- Similar is the case with the right subtree.
- The recurrence relation simplifies to

$$D(n) = (2/n) (\Sigma_{j=0}^{n-1} D(j)) + N - 1$$

- Can be solved using known techniques.
 - Left as homework.

Solving the Recurrence Relation

- The solution to D(N) is D(N) = O(N log N).
- How is D(N) related to the average depth of a binary search tree.
 - There are N paths in any binary search tree from the root.
 - So the average internal path length is O(log N).
- Does this mean that each operation has an average O(log N) runtime.
 - Not quite.

Average Runtime

- Now, remove() operation may introduce a skew.
- Replacement node can skew left or right subtree.
- Can pick the replacement node from the left or the right subtree uniformly at random.
 - Still not known to help.
- So, at best we can be satisfied with an average
 O(log n) runtime in most cases.
- Need techniques to restrict the height of the binary search tree.

- How can we control the height of a binary search tree?
 - should still maintain the search invariant
 - additional invariants required.
- What if the root of every subtree is the median of the elements in that subtree?
 - Difficult to maintain as median can change due to insertion/deletion.

- Would it suffice if we say that the root has both a left and a right subtree of equal height?
- Still, the depth of the tree is not O(log n).
- In the above tree, irrespective of values at the nodes, the root has left and right subtrees of equal height.

- Our condition is too simple. Need more strict invariants.
- Consider the following modification. For every node, its left and right subtrees should be of the same height.
- The condition ensures good balance, but
- The above condition may force us to keep the median as the root of every subtree.
 - Fairly difficult to maintain.

- a small relaxation to Condition 2 works suprisingly well.
- The relaxed condition, Condition 3, is stated below.
- Height Invariant: For every node in the tree, its left and the right subtrees can have heights that differ by at most 1.

Example Height Balanced Trees

Not a Height Balanced Tree

The AVL Tree

- A binary search tree satisfying the
 - search invariant, and
 - the height invariant

is called an AVL tree.

- Named after after its inventors, Adelson–Velskii and Landis.
- Throughout, let us define the height of an empty tree to be -1.

Operations on an AVL Tree

- An insertion/removal can violate the height invariant.
- We'll show how to maintain the invariant after an insert/remove.

- Proceed as insertion into a search tree.
 - At least satisfies the search invariant.
- It may violate the height invariant as follows.

 After inserting as in a binary search tree, notice that all the nodes in the path along the insert may now violate the height invariant.

- How to restore balance?
- Notice that node 7 was in height balance before the insert, but now lost balance.
- Let us try to fix balance at that node.
- Node 7 has a left subtree of height 2 and a right subtree of height 0.
- If node 6 were the root of that subtree, then that subtree will have a left and right subtree of height 1 each.

- Making that change at node 7, would also fix the height violations in all other places too.
- Suggests that fixing the height violation at one node can be of great help.
- Holds true in general.
- So, need to formalize this notion.

- Let node t be the deepest node that violates the height condition.
- Such a violation can occur due to the following reasons:
 - An insertion into the left subtree of the left child of t.
 - An insertion into the right subtree of the left child of t.
 - An insertion into the left subtree of the right child of t, and
 - An insertion into the right subtree of the right child of t.

- Notice that cases 1 and 4 are symmetric.
- Similarly, cases 2 and 3 are symmetric.
- So, let us treat cases 1 and 2.

- Recall the earlier fix at node 7.
- We call that operation a single rotation.
 - In a single rotation, we consider a node x, its parent p, and its grandparent g.
 - Let x be a left child of p, and p a left child of g.
 - After rotation, we make p the root of the subtree.
 - To satisfy the search invariant, g should now be the right child of p and x the left child of p.

Single Rotation Example

Single Rotation Example

Single Rotation – Generalization

Single Rotation – Example

Single Rotation

- Why does it help?
- If k2 is out of balance after the insert, the height difference between Z and k1 is 2.
 - Why can't it be more than 2?
- Now, the height of Z increases by 1 after the rotate
- Also, the height of X and Y decrease by 1.
- So, the subtree at k1 now has the same height as k2 had before the insert.

Case 2 of the Insert

• Single rotation may not help here.

Case 2 of Insert

- Why single rotation did not help?
- Height of Y increased, resulting in increase of height of k2.
- After rotate also, height of Y is same as earlier.
- So, does not help fix the height imbalance.

Case 2 of Insert

- Need more fixes.
- Idea: Y should reduce height by 1.
- We hence introduce double rotation.
- Would be helpful to view as follows.

Double Rotation Generalization

Double Rotation

- Any of X, Y1, Y2, and Z can be empty.
- After the rotation, one of Y1 and Y2 are two levels deeper than Z.
- Though we cannot say which is deeper among Y1 and Y2, it turns out that fortunately, it does not matter.
- The resulting tree satisfies search invariant also.
 - Hence the placement of Y1, Y2, etc.

Double Rotation Example

Remove Operation in an AVL Tree

- A similar approach can be designed.
- Reading exercise.

AVL Tree

- What is the height of an AVL tree?
- The maximum height can be derived as follows.
- Let H(n) be the maximum height of an AVL tree.
- At any node, its left and right subtrees can differ in height by at most 1.
- To deduce H(n), use the following observation.
- Let S(h) be the minimum number of nodes in an AVL tree of height h. Then,

$$S(h) = S(h-1) + S(h-2) + 1.$$