1.1 Tipos de polarización

$$\vec{P} = \vec{P}_d + \vec{P}_i + \vec{P}_e$$

1.1 Tipos de polarización

Existen rangos de frecuencia efectivos para los distintos tipos de polarización

• Rango **bajo**:
$$\vec{P} = \vec{P}_d + \vec{P}_i + \vec{P}_e$$

• Rango **medio**:
$$\vec{P} = \vec{P}_i + \vec{P}_e$$

• Rango alto:
$$\vec{P} = \vec{P}_e$$

Causa: las estructuras más grandes necesitan Un tiempo mayor para orientarse hacia el campo

Su contribución se atenúa

1.2 Ecucaciones de relajación de Debye

Modelo para la zona donde actua la polarización dipolar, Si deja de actuar el campo eléctrico los dipolos vuelven a su posición inicial según:

$$\overrightarrow{P}_{d} = \overrightarrow{P}_{d0} \cdot e^{\frac{-t}{\tau}} \qquad \overrightarrow{P}_{d} = \frac{\overrightarrow{P}_{d0}}{1/\tau + j\omega} \qquad \stackrel{P_{\omega} + P_{o}}{\uparrow} \qquad \stackrel{P_{o(t)}}{\downarrow} \qquad \stackrel{P_{o(t)}$$

¿Relación entre P y E?
$$\vec{P}_d(\omega) = \frac{\vec{P}_{d0}}{1/\tau + j\omega} = \varepsilon_0 \chi_e \vec{E}(\omega)$$

Contribución instantánea del resto de componentes

1.2 Ecucaciones de relajación de Debye

Despejando tenemos:

$$\varepsilon_0 \chi_e = \frac{\mathbf{P_{d0}}}{\mathbf{E}} \frac{1}{1/\tau + j \omega} \Rightarrow \mathbf{\vec{D}} = \mathbf{\vec{E}} \left(\varepsilon_\infty + \frac{\chi_s}{1/\tau + j \omega} \right) = \varepsilon_c \mathbf{\vec{E}}$$

$$\chi_s = \frac{\mathbf{P_{d0}}}{\mathbf{E}}$$

Valor de saturación $\varepsilon_s \equiv \tau \chi_s - \varepsilon_\infty$ (ε' máximo)

Identificando parte real e imaginaria:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (\omega \tau)^{2}} \qquad \qquad \varepsilon'' = \omega \tau \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (\omega \tau)^{2}}$$

1.2 Ecucaciones de relajación de Debye

$$\omega \rightarrow 0 \Rightarrow \varepsilon_c = \varepsilon_s$$

$$\omega \rightarrow \infty \Rightarrow \varepsilon_c = \varepsilon_\infty$$

Máximo en pérdidas:

$$\omega = \frac{1}{\tau} \equiv \omega_0$$

Limitación: La forma de la gráfica se deformará en presencia de distintos tiempos de relajación

1.3 Polarización iónica y electrónica, frecuencia de resonancia

Polarización iónica y electrónica, se utiliza un modelo de oscilador amortiguado

Ecuación de movimiento

$$\frac{d^2x}{dt^2} + y \frac{dx}{dt} + \omega_0^2 x = \frac{q}{m} \mathbf{E} e^{j\omega t}$$
 Solución forzada
$$\mathbf{x} = \frac{q}{m} \frac{1}{\omega_0 - \omega^2 + j y \omega} \mathbf{E}$$

- γ Constante de amortiguación
- m,q Masa y carga a considerar(electrón o ión)
- $\omega_0 \equiv \sqrt{\gamma/m}$ Frecuencia natural

1.3 Polarización iónica y electrónica, frecuencia de resonancia

Siguiendo un procedimiento igual al modelo de Debye:

$$\vec{P} = \varepsilon_0 \chi_e \vec{E} = Nq \vec{x}$$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$\vec{x} = \frac{q}{m} \alpha(\omega) [(\omega_0^2 - \omega^2) - j \omega] \vec{E}$$

$$\varepsilon' = \varepsilon_0 + \frac{Nq^2}{m} \alpha(\omega) (\omega_0^2 - \omega^2)$$

$$\varepsilon'' = \frac{Nq^2}{m} \alpha(\omega) \gamma \omega$$

$$\alpha(\omega) \equiv \frac{1}{(\omega_0^2 - \omega^2) + \gamma^2 \omega^2}$$

1.3 Polarización iónica y electrónica, frecuencia de resonancia

Consecuencias

Tenemos un máximo en pérdidas debido a resonancia en ω_0

La masa de los iónes será mucho mayor así que su frecuencia de resonancia será menor

Límites del modelo:

- Ignora interacciones entre moléculas
- Campo local pequeño
- No contempla distintas constantes y frecuencias de resonancia

De forma teórica y con objetivo de simetrizar las ecuaciones de Maxwell introducimos las **fuentes magnéticas**

En medios lineales

$$\vec{D} = \vec{D}_e + \vec{D}_m$$

$$\vec{B} = \vec{B}_e + \vec{B}_m$$

De la linealidad:

$$\nabla \cdot \vec{D}_{e} = \rho$$

$$\nabla \cdot \vec{B}_{e} = 0$$

$$\nabla \times \vec{E}_{e} = -\mu_{0} \frac{\partial \vec{H}_{e}}{\partial t}$$

$$\nabla \times \vec{H}_{e} = \vec{J} + \varepsilon_{0} \frac{\partial \vec{E}_{e}}{\partial t}$$

$$\nabla \cdot \vec{D}_{m} = 0$$

$$\nabla \cdot \vec{B}_{m} = \rho_{m}$$

$$\nabla \times \vec{E}_{m} = -\vec{J}_{m} - \mu_{0} \frac{\partial \vec{H}_{m}}{\partial t}$$

$$\nabla \times \vec{H}_{m} = \varepsilon_{0} \frac{\partial \vec{E}_{m}}{\partial t}$$

De la linealidad:

$$\nabla \cdot \vec{D}_{m} = 0$$

$$\nabla \cdot \vec{B}_{m} = \rho_{m}$$

$$\nabla \cdot [\vec{B}_{m} / \varepsilon_{0}] = \rho_{m} / \varepsilon_{0}$$

$$\nabla \times \vec{E}_{m} = -\vec{J}_{m} - \mu_{0} \frac{\partial \vec{H}_{m}}{\partial t}$$

$$\nabla \times (\vec{B}_{m} / \varepsilon_{0}) = \mu_{0} [\vec{J}_{m} + \varepsilon_{0} \frac{\partial \vec{B}_{m} / \varepsilon_{0}}{\partial t}]$$

$$\nabla \times (\vec{B}_{m} / \varepsilon_{0}) = \frac{-\partial [-\mu_{0} \vec{E}_{m}]}{\partial t}$$

$$\nabla \times (\vec{B}_{m} / \varepsilon_{0}) = \frac{-\partial [-\mu_{0} \vec{E}_{m}]}{\partial t}$$

Dualidad entre campos

Podemos expresar los campos magnéticos en función de sus propios potenciales:

$$\nabla \cdot \vec{D}_{m} = 0 \Rightarrow \vec{D}_{m} = -\nabla \times \vec{F}$$

$$\nabla \times \vec{H}_{m} = \varepsilon_{0} \frac{\partial \vec{E}_{m}}{\partial t} \Rightarrow \nabla \times (\vec{H}_{m} + \frac{\partial \vec{F}}{\partial t}) = 0 = -\nabla \Psi$$

$$\vec{D}_{m} = -\nabla \times \vec{F}$$

$$\Psi = \frac{1}{4 \pi \mu_{0}} \int_{V'} \frac{[\rho_{m}]}{R} dv'$$

$$\vec{F}_{m} = -\nabla \Psi - \frac{\partial \vec{F}}{\partial t}$$

$$\vec{F} = \frac{\varepsilon_{0}}{4 \pi} \int_{V'} \frac{[\vec{J}_{m}]}{R} dv'$$

Usando dualidad

Dualidad entre los **campos**:

 \vec{E}_{e}

Φ

À

$$-\mu_0 \vec{E}_m$$

 $\vec{B}_m / \varepsilon_0$

 $\frac{\mu_0}{\mathcal{E}_0} \Psi$

 $\frac{\mu_0}{\varepsilon_0}\vec{F}$

Dualidad de las fuentes

ρ

 \vec{J}

 $ho_{\scriptscriptstyle m}$

 \vec{J}_m

La elección no es única

Algunos ejemplos de fórmulas magnéticas

Ecuaciones de onda no homogéneas

$$\nabla^2 \vec{A} - \mu_0 \, \varepsilon_0 \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}$$

$$\nabla^2 \Phi - \mu_0 \varepsilon_0 \frac{\partial^2 \Phi}{\partial t^2} = \frac{-\rho}{\varepsilon_0}$$

$$\nabla^2 \vec{F} - \mu_0 \, \varepsilon_0 \, \frac{\partial^2 \vec{F}}{\partial t^2} = - \, \varepsilon_0 \, \vec{J}_m$$

$$\nabla^2 \Psi - \mu_0 \, \varepsilon_0 \frac{\partial^2 \Psi}{\partial t^2} = \frac{-\rho_n}{\mu_0}$$

Campos de radiación lejanos

$$\nabla^{2}\vec{A} - \mu_{0} \varepsilon_{0} \frac{\partial^{2}\vec{A}}{\partial t^{2}} = -\mu_{0} \vec{J}$$

$$\nabla^{2}\vec{F} - \mu_{0} \varepsilon_{0} \frac{\partial^{2}\vec{F}}{\partial t^{2}} = -\varepsilon_{0} \vec{J}_{m}$$

$$\vec{E} \cdot_{m,rad} = \frac{-1}{4\pi cr} \int_{V'} \frac{\partial \vec{J}_{m}(\vec{r}', t - \frac{r}{c} + \frac{\vec{r}'\dot{r}}{c})}{\partial t} \times \hat{r} dv'$$

$$\nabla^{2}\Phi - \mu_{0} \varepsilon_{0} \frac{\partial^{2}\Phi}{\partial t^{2}} = \frac{-\rho}{\varepsilon_{0}}$$

$$\vec{B} \cdot_{m,rad} = \frac{1}{4\pi c^{2}r} \int_{V'} \left[\frac{\partial \vec{J}_{m}(\vec{r}', t - \frac{r}{c} + \frac{\vec{r}'\dot{r}}{c})}{\partial t} \times \hat{r} dv' \right]$$

$$\vec{B}._{m,rad} = \frac{1}{4\pi c^2 r} \int_{V'} \left[\frac{\partial J_m(\vec{r}', t - \frac{r}{c} + \frac{r}{c})}{\partial t} \times \hat{r} \right] \times \hat{r} \, dv$$

Soluciones generales de los campos en función de los potenciales

Simétricas

Condiciones de frontera

$$\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \rho_s$$

$$\hat{n} \cdot (\vec{B}_2 - \vec{B}_1) = \rho_{sm}$$

$$\hat{n} \times (\vec{E}_2 - \vec{E}_1) = -\vec{J}_{sm}$$
 $\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{J}_s$

$$\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{J}_s$$

PEC

Lineas de E normales a la superficie

$$\hat{n}\cdot\vec{D}_2 = \rho_s$$

$$\hat{n}\cdot\vec{B}_2=0$$

$$\hat{n} \times \vec{E}_2 = 0$$

$$\hat{n} \times \vec{H}_2 = \vec{J}_s$$

PMC, Análogo con fuentes magnéticas y H

$$\hat{n}\cdot\vec{D}_2=0$$

$$\hat{n} \cdot \vec{B}_2 = \rho_{sm}$$

$$\hat{n} \times \vec{E}_2 = -\vec{J}_{sm}$$

$$\hat{n} \times \vec{H}_2 = 0$$

Lineas de H normales a la superficie

Variaciones armónicas

Condición de Lorentz

$$\Psi = \frac{j}{\omega \, \varepsilon_0 \, \mu_0} \nabla \, \vec{F}$$

$$\vec{E} = -j\frac{c^2}{\omega}\nabla(\nabla\vec{A}) - j\omega\vec{A} - \frac{1}{\varepsilon_0}\nabla\times\vec{F}$$

$$\vec{H} = -j\frac{c^2}{\omega}\nabla(\nabla\vec{F}) - j\omega\vec{F} + \frac{1}{\mu_0}\nabla\times\vec{A}$$

Solo necesitamos los potenciales vectoriales

Ejemplo: Elemento de corriente magnética diferencial

$$\vec{J}_m = i_m(t)\delta(x')\delta(y')z' \in [-\Delta z/2, \Delta z/2]$$

Usando dualidad:

$$\vec{E} = \vec{E}_m = \frac{-\Delta z}{4\pi} \left(\frac{1}{cr} \frac{d[i_m]}{dt} + \frac{1}{r^2} [i_m] \right) \operatorname{sen} \theta \hat{\varphi}$$

$$\vec{B} = \vec{B}_m = \frac{\Delta z}{4\pi} \left(\frac{1}{r^3} \int_{-\infty}^t [i_m] dt + \frac{1}{cr^2} [i_m] \right) \left(2\cos\theta \hat{r} + \sin\theta \hat{\theta}\right) + \frac{\Delta z}{4\pi} \frac{1}{c^2 r} \frac{d[i_m]}{dt} \sin\theta \hat{\theta}$$

$$\vec{E}._{m,rad} = \frac{-\Delta z}{4\pi c r} \frac{d[i_m]}{dt} \operatorname{sen} \theta \hat{\varphi} \qquad \qquad \vec{B}._{m,rad} = \frac{\Delta z}{4\pi \mu_0 c^2 r} \frac{d[i_m]}{dt} \operatorname{sen} \theta \hat{\theta}$$

Comparando con el generado por una espira real

$$\vec{E}$$
._{m,rad} = $\frac{-\Delta z}{4 \pi c r} \frac{d[i_m]}{dt} \operatorname{sen} \theta \hat{\varphi}$

$$\vec{B}_{m,rad} = \frac{\Delta z}{4 \pi c^2 r} \frac{d[i_m]}{dt} \operatorname{sen} \theta \hat{\theta}$$

$$\vec{E}._{e,rad} = \frac{-\mu_0 S}{4 \pi c r} \frac{d^2[i]}{dt^2} \operatorname{sen} \theta \hat{\varphi}$$

$$\vec{B}._{m,rad} = \frac{\mu_0 S}{4 \pi c^2 r} \frac{d^2[i]}{dt^2} \operatorname{sen} \theta \hat{\theta}$$

$$i_m \Delta z = \mu_0 S \frac{d i}{d t} \Leftrightarrow \dot{p_m} = \mu_0 \dot{m}$$

Dipolo magnético como cargas magnéticas

Teoremas fundamentales

9.2.1 Teorema de Unicidad: Campos EM con variación temporal arbritaria

Solución única si conocemos:

- -Fuentes en $t>t_0$ en interior V.
- $-\vec{E}(t_0)$ y $\vec{H}(t_0)$.
- $-t>t_0$, $\overrightarrow{E_t}(t)$ y $\overrightarrow{H_t}(t)$.

$$\vec{E}' = \overrightarrow{E_1} - \overrightarrow{E_2}$$

$$\vec{H}' = \overrightarrow{H_1} - \overrightarrow{H_2}$$

$$\vec{J}' = \overrightarrow{J_1} - \overrightarrow{J_2} = 0$$

9.2.1 Teorema de Unicidad: Campos EM con variación temporal arbritaria

Demostración:

To Poynting:
$$-\int_{V} \vec{J}' \cdot \vec{E}' dV = \oint_{S} (\vec{E}' \times \vec{H}') \cdot d\vec{S} + \frac{\partial}{\partial t} \int_{V} \frac{1}{2} (\vec{E}' \cdot \vec{D}' + \vec{B}' \cdot \vec{H}') dV + \int_{V} \sigma E'^{2} dV$$

$$\vec{J}' = 0$$

$$(\vec{E}' \times \vec{H}') \cdot \vec{n} \cdot dS = (\vec{n} \times \vec{E}') \cdot \vec{H}' \cdot dS = (\vec{H}' \times \vec{n}) \cdot \vec{E}' \cdot dS$$

Integrando entre t y t_0 :

$$0 = \int_{V} \frac{1}{2} (\vec{E}' \cdot \vec{D}' + \vec{B}' \cdot \vec{H}') dV + \int_{t_{0}}^{t} \int_{V} \sigma E'^{2} dV dt$$

$$\vec{E}' = 0 \text{ y } \vec{B}' = 0$$

$$\vec{E}_{1} = \vec{E}_{2} \text{ y } \vec{B}_{1} = \vec{B}_{2}$$

9.2.2 Teorema de Unicidad: Campos EM armónicos

Demostración: Diferencia es que estaremos en medio con pérdidas

To Poynting será:

$$-\int_{V} \vec{\boldsymbol{J}}'^{*} \cdot \vec{\boldsymbol{E}}' \, dV = j\omega \int_{V} (\mu H_{0}'^{2} - \varepsilon E_{0}'^{2}) dV + \int_{V} \sigma E_{0}'^{2} dV + \oint_{S} (\vec{\boldsymbol{E}}' \times \vec{\boldsymbol{H}}'^{*}) \cdot d\vec{S}$$

$$(\vec{E}' \times \vec{H}') \cdot \vec{n} \cdot dS = (\vec{n} \times \vec{E}') \cdot \vec{H}' \cdot dS = (\vec{H}' \times \vec{n}) \cdot \vec{E}' \cdot dS$$

$$0 = j\omega \int_{V} (\mu H_0'^2 - \varepsilon E_0'^2) dV + \int_{V} \sigma E_0'^2 dV$$

Igualando parte real e imaginaria

$$\vec{E}' = 0$$
 y $\vec{B}' = 0$

$$\vec{E}' = 0 \text{ y } \vec{B}' = 0$$
 $\overrightarrow{E_1} = \overrightarrow{E_2} \text{ y } \overrightarrow{B_1} = \overrightarrow{B_2}$

9.3 Teoría de imágenes

Sea distribución de fuentes en V+ superficie conductora S que rodea V

Buscamos distribución de fuentes ficticias que, junto reales, satisfagan las condiciones de contorno

Las distribuciones ficticias:

- Simulan a la superficie conductora, cambiando problema con límites a uno sin límites
- Están fuera de la zona de cálculo
- Producen solución válida en región donde están las cargas reales

-Sea una carga puntual q frente a una superficie esférica conductora conectada a tierra, hallar el campo eléctrico en un punto P cualquiera del espacio.

- Esfera conductora $\rightarrow \vec{E} = 0$ en su interior, y el potencial $\varphi = cte$. Como $\varphi = 0$ en la superficie, y es cte en el interior tal que debe ser continua $\rightarrow \varphi = 0$ en el interior.
- q frente a la esfera conductora reordenará las cargas de la superficie esférica, conque habrá en ella una densidad superficial distinta de cero.

Carga + superficie conductora → Método de imágenes

Sustituimos sup. por carga / puntos en r=a deben seguir verificando $\varphi=0$

$$\vec{r} = r\widehat{u_r}$$

$$\vec{d} = d\widehat{u_k}$$

$$\vec{R} = r\widehat{u_r} - d\widehat{u_k}$$

$$\vec{d'} = d'\widehat{u_k}$$

$$\vec{R'} = r\widehat{u_r} - d'\widehat{u_k}$$

Potencial en un punto cualquiera (externo a esfera): $\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|r\widehat{u_r} - d\widehat{u_k}|} + \frac{1}{4\pi\varepsilon_0} \frac{q'}{|r\widehat{u_r} - d'\widehat{u_k}|}$

Potencial en superficie:
$$\varphi(a, \theta, \gamma) = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{d|\frac{a}{d}\widehat{u_r} - \widehat{u_k}|} + \frac{q}{a|\widehat{u_r} - \frac{d'}{a}\widehat{u_k}|} \right] = 0$$

$$\begin{bmatrix}
1 & \frac{a}{d}\widehat{u_r} - \widehat{u_k} \\
\frac{a}{d}\widehat{u_r} - \widehat{u_k}
\end{bmatrix} = |\widehat{u_r} - \frac{a'}{a}\widehat{u_k}| = \sqrt{\left(\frac{a}{d}\right)^2 + 1} = \sqrt{1 + \left(\frac{d'}{a}\right)^2}$$

$$2 & \frac{q}{d} + \frac{q'}{a} = 0$$

1)
$$\left(\frac{a}{d}\right)^2 + 1 = 1 + \left(\frac{d'}{a}\right)^2$$
 $\frac{a}{d} = \frac{d'}{a}$ $d' = \frac{a^2}{d}$

2) $\frac{q}{d} + \frac{q'}{a} = 0$ $q' = -q\frac{a}{d}$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{R^3} \vec{R} + \frac{-q \frac{a}{d}}{R'^3} \vec{R'} \right]$$

• Resolvemos problema en el mismo medio pero cambiando la distribución de fuentes, donde habrá una relación entre el campo EM obtenido y el original.

$$\nabla \times \overrightarrow{H}_{a} = \overrightarrow{J}_{a} + j\omega\epsilon_{0}\overrightarrow{E}_{a}$$

$$\nabla \times \overrightarrow{E}_{a} = -\overrightarrow{J}_{ma} + j\omega\epsilon_{0}\overrightarrow{H}_{a}$$

$$\nabla \times \overrightarrow{H}_{b} = \overrightarrow{J}_{b} + j\omega\epsilon_{0}\overrightarrow{E}_{b}$$

$$\nabla \times \overrightarrow{E}_{b} = -\overrightarrow{J}_{mb} + j\omega\epsilon_{0}\overrightarrow{H}_{b}$$

$$\nabla \times \overrightarrow{H}_{a} = \overrightarrow{J}_{a} + j\omega\epsilon_{0}\overrightarrow{E}_{a}$$

$$\nabla \times \overrightarrow{E}_{a} = -\overrightarrow{J}_{ma} + j\omega\epsilon_{0}\overrightarrow{H}_{a}$$

Calculemos:

$$\nabla \cdot (\vec{E}_b \times \vec{H}_a) = -\vec{E}_b \cdot \nabla \times \vec{H}_a + \vec{H}_a \cdot \nabla \times \vec{E}_b = -j\omega\epsilon_0 \vec{E}_a \cdot \vec{E}_b - j\omega\mu_0 \vec{H}_a \cdot \vec{H}_b - \vec{E}_b \cdot \vec{J}_a - \vec{H}_a \cdot \vec{J}_{mb}$$
$$-\nabla \cdot (\vec{E}_a \times \vec{H}_b) = \vec{E}_a \cdot \nabla \times \vec{H}_b - \vec{H}_b \cdot \nabla \times \vec{E}_a = j\omega\epsilon_0 \vec{E}_a \cdot \vec{E}_b + j\omega\mu_0 \vec{H}_a \cdot \vec{H}_b + \vec{E}_a \cdot \vec{J}_b + \vec{H}_b \cdot \vec{J}_{ma}$$

Teorema de reciprocidad diferencial de Lorentz

$$-\nabla \cdot \left(\overrightarrow{E}_a \times \overrightarrow{H}_b - \overrightarrow{E}_b \times \overrightarrow{H}_a \right) = \overrightarrow{E}_a \cdot \overrightarrow{J}_b + \overrightarrow{H}_b \cdot \overrightarrow{J}_{ma} - \overrightarrow{E}_b \cdot \overrightarrow{J}_a - \overrightarrow{H}_a \cdot \overrightarrow{J}_{mb}$$

Integrando en V y recordando el teorema de la divergencia $\int_V \nabla \cdot \vec{K} dV = \oint_S \vec{K} \cdot d\vec{S}$

Teorema de reciprocidad integral de Lorentz

$$\oint_{S} (\vec{E}_{a} \times \vec{H}_{b} - \vec{E}_{b} \times \vec{H}_{a}) \cdot d\vec{S} = \int_{V} (-\vec{E}_{a} \cdot \vec{J}_{b} - \vec{H}_{b} \cdot \vec{J}_{ma} + \vec{E}_{b} \cdot \vec{J}_{a} + \vec{H}_{a} \cdot \vec{J}_{mb}) dV$$

Extendiendo integral hasta infinito, en ella priorizarán los campos de radiación, donde tendremos ondas planas: $\vec{H}_{rad,a} = \eta_0^{-1}(\hat{n} \times \vec{E}_{rad,a})$ $\vec{H}_{rad,b} = \eta_0^{-1}(\hat{n} \times \vec{E}_{rad,b})$

$$\begin{aligned} \overrightarrow{E}_{a} \times \overrightarrow{H}_{b} - \overrightarrow{E}_{b} \times \overrightarrow{H}_{a} \approx \\ \approx \overrightarrow{E}_{rad,a} \times \overrightarrow{H}_{rad,b} - \overrightarrow{E}_{rad,b} \times \overrightarrow{H}_{rad,a} = \\ = \eta_{0}^{-1} \left[\overrightarrow{E}_{rad,a} \times \left(\widehat{n} \times \overrightarrow{E}_{rad,b} \right) - \overrightarrow{E}_{rad,b} \times \left(\widehat{n} \times \overrightarrow{E}_{rad,a} \right) \right] = 0 \end{aligned}$$

Por tanto:
$$\oint_{S} (\vec{E}_{a} \times \vec{H}_{b} - \vec{E}_{b} \times \vec{H}_{a}) \cdot d\vec{S} = \int_{V} (-\vec{E}_{a} \cdot \vec{J}_{b} - \vec{H}_{b} \cdot \vec{J}_{ma} + \vec{E}_{b} \cdot \vec{J}_{a} + \vec{H}_{a} \cdot \vec{J}_{mb}) dV = 0$$

Despejando, y asumiendo que las corrientes se encuentran encerradas en distintos volúmenes (integraremos donde las corrientes son no nulas):

$$\int_{V_a} \left(-\overrightarrow{H}_b \cdot \overrightarrow{J}_{ma} + \overrightarrow{E}_b \cdot \overrightarrow{J}_a \right) dV = \int_{V_b} \left(-\overrightarrow{H}_a \cdot \overrightarrow{J}_{mb} + \overrightarrow{E}_a \cdot \overrightarrow{J}_b \right) dV$$

$$< b, a >$$

$$< a, b >$$

$$|$$
Reacción del campo "a" sobre las fuentes de "b"

Teorema de reciprocidad de Lorentz

$$< a, b > = < b, a >$$

9.5 Teorema de equivalencia

Si buscamos solución en el interior de V:

9.5.1 Equivalente de Love

Queremos simplificar el teorema de equivalencia:

• Forzamos
$$\overrightarrow{E_2} = 0$$
 y $\overrightarrow{H_2} = 0$

$$\overrightarrow{J_{se}} = -\widehat{n} \times \overrightarrow{H_1}$$
 y $\overrightarrow{J_{sme}} = -\overrightarrow{E_1} \times \widehat{n}$ (en medio homogéneo indefinido)

9.5.1.1 Principio de Equivalencia de Schelkunoff

Simplificamos equivalente de Love: modificamos región de no interés

9.5.1.1 Principio de Equivalencia de Schelkunoff

Demostración PEC: Nos ayudaremos del teorema de reciprocidad.

$$\overrightarrow{J_b}(\overrightarrow{r}) = \delta(x - x_i)\delta(y - y_i)\delta(z - z_i)I \cdot d\overrightarrow{l}$$

$$\overrightarrow{J_{ma}} = \overrightarrow{J_{mb}} = 0$$

9.5.1.1 Principio de Equivalencia de Schelkunoff

Demostración PEC: Nos ayudaremos del teorema de reciprocidad.

$$\int_{V_a} \left(-\vec{H}_b \cdot \vec{J}_{ma} + \vec{E}_b \cdot \vec{J}_{sea} \right) \, dV = \int_{V} \left(-\vec{H}_a \cdot \vec{J}_{mb} + \vec{E}_a \cdot \vec{J}_b \right) \, dV =$$

$$= \int_{V_a} \vec{E}_b \cdot \vec{J}_{sea} \, dV = \int_{V} \vec{E}_a \cdot \vec{J}_b \, dV = \int_{V} \vec{E}_a \cdot \delta(x - x_i) \delta(y - y_i) \delta(z - z_i) I \cdot d\vec{l} \, dV = \vec{E}_a(\vec{r}) \cdot d\vec{l}$$

En PEC, \vec{J}_{sea} no produce ningún campo, conque tendremos que calcular los campos en V con \vec{J}_{sme}

Por dualidad, en PMC, será \bar{J}_{se} quien produzca los campos