

Lecture 1: Introductions

Statistical methods in genetic relatedness and pedigree analysis

NORBIS course, 13th – 17th of June 2022, Oslo Magnus Dehli Vigeland

Outline

- Part I: *Pedigrees*
 - Pedigree symbols and terminology
 - Some common relationships
 - QuickPed
- Part II: Genetics
 - Terminology (Locus, allele, genotype, ...)
 - Mendelian inheritance
- Part III: Probabilities (on pedigrees)
 - Motivation: Real-life problems
 - Ingredients:
 - Hardy-Weinberg equilibrium
 - Mendelian transition probabilities
 - Computing pedigree likelihoods

Part I: Pedigrees

Nonfounders

Pedigrees: Symbols and terminology

= male

= female

Pedigrees: Symbols and terminology

= affected

Alternative ways of drawing pedigrees

Some common relationships

(and some less common...)

Full siblings

First cousins

Second cousins

First cousins once removed

Aunt - nephew

Grandaunt

Half cousin relationships

Half siblings (paternal)

Half first cousins

Half second cousins

Half cousin relationships

Half aunt / half nephew

Half cousin relationships

More complicated relationships

3/4 siblings

What about this?

Double first cousins

The connoisseur's favourite

Quadruple half first cousins!

What software exists to create pedigrees?

- medical genetics
- forensic genetics
- animal pedigrees
- amateur genealogy

In this course:

- R
- QuickPed

QuickPed: An Interactive Pedigree Creator

https://magnusdv.shinyapps.io/quickped/

Purpose: This tool provides a quick way to create pedigree plots and files, and for analysing the relatedness between pedigree members.

Instructions: Choose a suitable start pedigree and modify it by selecting members (by clicking on them in the plot) and using appropriate buttons. For example, to create a new child, select the parents and press *Son* or *Daughter*. (If just one parent is selected, a new spouse is also created.)

More information: Check out the user manual for various tips and tricks, including an introduction to relatedness coefficients. There is also a paper about QuickPed published in BMC Bioinformatics.

Part II: Genetics

Human Genetics

Some important terms

- Locus
- Allele
- Genotype
- Genetic markers
 - SNPs
 - microsatellites

Locus, allele, genotype

Homologous chromosomes

- **LOCUS** = a specific place in the genome
- **ALLELE** = any of the alternative forms of a locus
- **GENOTYPE** = the set (usually: pair) of alleles carried at a given locus

Genetic markers

- Small parts of the genome which ...
 - have known position
 - vary in the population
 - are easy to genotype
- SNPs (single nucleotide polymorphisms)
 - two alleles = minor allele frequency
 - usual requirement: MAF > 1%
 - very common in the genome (millions!)
 - used in medical genetics +++
- STRs (short tandem repeats) = microsatellites
 - consecutive repeats of 2-5 bases
 - multiallelic: 5 70 alleles
 - allele names: # repeats
 - used in forensics


```
...CCGTTATATGGGC...
...CCGTTAGATGGGC...
...CCGTTATATGGGC...
...CCGTTATATGGGC...
```

```
...ACG TTAG TTAG TTAG AAC..
...ACG TTAG TTAG AAC..
...ACG TTAG TTAG TTAG TTAG AAC..
```


Mendelian inheritance: Autosomal (chromosomes 1-22)

Example: autosomal marker with 3 alleles: A, B, C

Mendelian inheritance: X-linked

Example: X-linked marker with 3 alleles: A, B, C

Part III: Probabilities on pedigrees

Suppose:

- 11 is common
- 18 is rare

Who is the true father?

Brothers or half brothers?

Is this woman related to the family?

Many applications involve probabilities of the following form

Often referred to as a pedigree likelihood:

$$L(\text{pedigree} \mid \text{data}) = P(\text{data} \mid \text{pedigree}, \Theta)$$

Ingredients for likelihood computations

Ingredient 1: Founder probabilities

Suppose the allele frequencies are:

$$P(A) = p$$
$$P(B) = q$$

- What are the frequencies of the genotypes AA, AB, BB?
- Under certain assumptions, the alleles can be treated as independent:

$$P(AA) = P(A) * P(A) = p^{2}$$

$$P(BB) = P(B) * P(B) = q^{2}$$

$$P(AB) = P(AB \text{ or } BA) = pq + qp = 2pq$$

$$\uparrow$$
two possible orderings!

The Hardy-Weinberg principle

Assumptions:

- infinite population
- random mating
- no selection
- no mutations
- no migration

Hardy (1908): Shows

«... using a little mathemathics of the multiplication table kind»:

- allele freqs are unchanged from generation to generation
- after 1 generation the genotype freqs stay unchanged

$$P(AA) = p2$$

$$P(AB) = 2pq$$

$$P(BB) = q2$$

HW equilibrium

Ingredient 2: Transition probabilities

 $P(g_{child} \mid g_{parents})$

Easy - directly from Mendel's laws!

child parents	A/A	АВ	ВВ
$AA \times AA$	1	0	0
AA × AB	0.5	0.5	0
AA × BB	0	1	0
AB × AA	0.5	0.5	0
AB×AB	0.25	0.5	0.25
AB×BB	0	0.5	0.5
BB×AA	0	1	0
BB×AB	0	0.5	0.5
BB×BB	0	0	1

Example

$$L = P(g_1, g_2, g_3)$$

$$= P(g_1) \cdot P(g_2) \cdot P(g_3 \mid g_1, g_2)$$

$$= P(AA) \cdot P(AB) \cdot P(AB \mid parents = AA \times AB)$$

$$= p^2 \cdot 2pq \cdot 0.5$$

$$= p^3q$$

assuming HWE!

Example on X

Ingredient 3: How to deal with untyped individuals

Solution: Sum of all possible genotypes for the untyped

$$P(g_{1}, g_{3}) = \sum_{g_{2}} P(g_{1}, g_{2}, g_{3}) = \sum_{g_{2}} P(g_{1}) \cdot P(g_{2}) \cdot P(g_{3} | g_{1}, g_{2})$$

$$= P(AA) \cdot P(AA) \cdot P(AB | AA \times AA) + P(AA) \cdot P(AB) \cdot P(AB | AA \times AB) + P(AA) \cdot P(BB) \cdot P(AB | AA \times BB)$$

$$= p^{2} \cdot p^{2} \cdot 0 + p^{2} \cdot 2pq \cdot 0.5 + p^{2} \cdot q^{2} \cdot 1$$

$$= p^{3}q + p^{2}q^{2} = p^{2}q(p + q) = p^{2}q$$

Pedigree likelihood: General formula

- Given:
 - pedigree with n individuals
 - k members are genotyped: g_1 , g_2 , ..., g_k

founders

non-founders

Then:

$$P(g_1, ..., g_k) = \sum_{G_1} \sum_{G_2} ... \sum_{G_n} P(g_1) \cdots P(g_j) \cdot P(g_{j+1}|par) \cdots P(g_n|par)$$

If everyone is typed: Only one term → easy

 G_i = set of possible genotypes for individual i

- Number of terms grows exponentially in #(untyped)
 - but clever algorithms exist!

Computer algorithms for pedigree likelihoods

- Elston-Stewart algorithm
 - a peeling algorithm
 - linear in pedigree size!

- Lander-Green
 - based on inheritance vectors
 - hidden Markov model
 - best choice with many linked markers
 - small/medium pedigrees only

Software for pedigree likelihoods

- R/ped suite
 - Elston-Stewart
 - mutations, theta correction, ++
- Familias
 - GUI for forensic applications
 - Elston-Stewart
 - handles mutations, theta correction, ++
- MERLIN
 - command line program
 - Lander-Green
 - gold standard for cases with dense SNP markers (but not too large pedigrees)
 - not mutations, not theta correction
- Other (old) software still in use
 - FastLink
 - Allegro
 - +++

Your turn: Exercises!

