Ground Penetrating Radar (day 1)

Receiver

EOSC 350 '06

Today's Topics

- Introduction to GPR
- Setup: Motivational Problems
- Physical Properties
 - Dielectric Permittivity and Radiowaves
 - Microwave Example
- Basic Principles:
 - Propagation of Radiowaves
 - Attenuation
 - Reflection and Refraction

*See GPG introduction, physical properties and basic principles pages

Introduction to GPR

Introduction to GPR

 GPR is an EM method (depends on ε, σ, and μ)

 Uses a pulse of high-frequency radiowaves (10s MHz to GHz)

 Generally shallow surveys (10s of metres or less)

- Radiowaves reflect and refract at boundaries
 - → Theory very similar to seismic
- Radiowave propagation depends on Earth's EM properties
 EOSC 350 '06

Introduction to GPR: 2D Example

- Sends a pulse of waves not continuous waves
- What features/behaviours do you see?

Introduction to GPR

- Returning radiowave signals are measured
- These signals are represented using a radargram
- Radargrams essentially seismograms for GPR

Radargram example

Slide 6

Some Motivational Problems

Mapping Peat Thickness (Ireland)

Urban Geotechnical Problems

Mapping Ice Thickness (Antarctica)

Archaelogy (Jordan)

Some Motivational Problems

- Looking for buried pipes, objects
- Investigating concrete structures, roads
- Ice/snow: avalanche, search and rescue
- Near surface soil conditions: salinity, saturation
- Geotechnical work (tunnels)
- Forensics
- Archaeology

http://sensoft.ca/

Dielectric Permittivity (ε):

How easily a material is electrically polarized

Electrical Conductivity (σ):

How easily electrical charges flow through a material

Magnetic Permeability (μ):

How strongly a material supports magnetism

Dielectric Permittivity (ε):

- → Considered the diagnostic physical property for GPR
- → Impacts velocity and reflection/refraction of radiowaves
- \rightarrow Significantly impacted by water content ($\varepsilon_r = 80$)

Electrical Conductivity (σ):

→ Impacts attenuation (amplitude loss) of GPR signals

Magnetic Permeability (μ):

→ Only important if things are very susceptible (generally ignored)

Dielectric Permittivity: &

Magnetic Permeability: μ

Relative Permittivity: $\varepsilon_{\mathbf{r}} = \frac{\varepsilon}{\varepsilon_{0}}$

Relative Permeability: $\mu_{r}=\frac{\mu_{r}}{\mu_{0}}$

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$

 $\mu_0 = 1.26 \times 10^{-6} \text{ H/m}$

$$1 \leq \varepsilon_r \leq 80$$

Dielectric Permittivity: &

Magnetic Permeability: µ

$$\varepsilon_{\mathbf{r}} = \frac{\varepsilon}{\varepsilon_0}$$

Relative Permittivity: $\left| \epsilon_r = \frac{\epsilon}{\epsilon_0} \right|$ Relative Permeability: $\mu_r =$

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$

$$\mu_0 = 1.26 \times 10^{-6} \text{ H/m}$$

$$1 \leq \varepsilon_r \leq 80$$

$$\mu_{\rm r}=1$$

Dielectric Permittivity and Radiowaves

- Water has strongest effect on ε in geologic materials.
- Velocity of radar signals is (usually) most affected by ε.

Table of relative dielectric permittivity (e_R), electrical conductivity (σ), and velocity.				
Material	e _R		V avg (m/ns)	
Air	1		.3	
Distilled water	80	$v = \frac{c}{\sqrt{\epsilon_r}}$	0.033	
Fresh water	80	$\sqrt{\epsilon_r}$	0.033	
Sea water	80	•	0.01	
Dry sand	3 - 5		0.15	
Saturated sand	20-30	$ c = 3 \times 10^8 m/se$	0.06	
Limestone	4-8		0.12	
Shales	5-15		0.09	
Silts	5-30	c = 0.3m/ns	0.07	
Clays	5-40	,	0.06	
Granite	4-6	\mathcal{E}	0.13	
Dry salt	5-6	$\varepsilon_r = \frac{1}{\varepsilon_0}$	0.13	
Ice	3-4	٥٥	0.16	

Introduction to GPR: 2D Example

- What has faster propagation velocity?
- What has larger dielectric permittivity?

Microwave Oven Example

- Radiowaves and microwaves support oscillating electric and magnetic fields (why ε,σ and μ are all significant)
- Microwaves use very high frequencies (~ 2.45 GHz)

• Wavelength:
$$L = \frac{c}{f} = \frac{3.00 \times 10^8 \ m/s}{2.45 \times 10^9 \ s} \approx 12 \ cm$$

Microwave Oven Example

- Microwaves (and radiowaves) reflect off conductive walls
- Microwaves (and radiowaves) don't interact with plastic turntable
- Microwaves energy absorbed by water in food

Microwave Oven Example

- Water molecules are naturally polarized
- Water molecules align strongly with electric fields (large permittivity)

 Reorientation of water molecules happens at the frequency of the microwaves (2.45 GHz is 2.45 billion times per second!!!)

E-field E-field F-field F-fiel

EOSC 350 '06

electromagnetic wave dii

The Magic of Microwave Ovens

- 1. Microwaves reach food
- 2. Microwaves cause rapid re-orientation of water molecules in food (because of ε_r)
- 3. 2.45 GHz is the resonance frequency for water
 - → Energy absorbed and turned into kinetic energy (heat)
- 4. Water molecules transfer heat to the rest of the food

Microwave Oven Recap

- Microwaves (and radiowaves) are high-frequency, short wavelength waves
- Conductive objects reflect microwaves (and radiowaves) very efficiently.
- The operating frequency has a significant impact on how microwaves (and radiowaves) interact with materials.
- Materials containing water are strongly polarized by microwaves (and radiowaves)

Questions: Recap

Q: What geophysical survey is most comparable to GPR?

Q: What is the scale of GPR surveys? Applications?

Q: What is the diagnostic physical property for GPR?

Q: What impacts this physical property the most?

Q: What is the signal that GPR sends into the ground? Is it continuous or a pulse?

GPR sends a pulse of EM waves. Not continuous!

GPR is 100s MHz to GHz which are radiowaves

- EM waves carry oscillating electric and magnetic fields at a particular frequency
- EM waves move through different materials at different speeds

• In general:
$$V = \sqrt{\frac{2}{\mu\varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega\varepsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$$

• Wave regime ($\sigma \ll \omega \varepsilon$): $V = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$

• Non-magnetic approximation ($\mu_r = 1$):

$$V = rac{c}{\sqrt{arepsilon_r}}$$

- EM waves carry oscillating electric and magnetic fields at a particular frequency
- EM waves move through different materials at different speeds

• In general:
$$V = \sqrt{\frac{2}{\mu\varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega\varepsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$$

• Wave regime ($\sigma \ll \omega \varepsilon$):

$$V = rac{1}{\sqrt{\mu arepsilon}} = rac{c}{\sqrt{\mu_r arepsilon_r}}$$

• Non-magnetic approximation ($\mu_r = 1$):
EOSC 350 '06

$$V=rac{c}{\sqrt{arepsilon_r}}$$

Table of relative dielectric permittivity (e_R), electrical conductivity (σ), and velocity				
Material	e _R	σ(mSeimens/m)	V avg (m/ns)	
Air	1	0	.3	
Distilled water	80	0.01	0.033	
Fresh water	80	0.5	0.033	
Sea water	80	3000	0.01	
Dry sand	3 - 5	0.01	0.15	
Saturated sand	20-30	0.1-1.0	0.06	
Limestone	4-8	0.5-2.0	0.12	
Shales	5-15	1-100	0.09	
Silts	5-30	1-100	0.07	
Clays	5-40	2- 1000	0.06	
Granite	4-6	0.01-1.0	0.13	
Dry salt	5-6	0.01-1.0	0.13	
Ice	3-4	0.01	0.16	

• Velocity decreases as $oldsymbol{arepsilon}_{\mathbf{r}}$ increases: $oldsymbol{V} = rac{c}{\sqrt{arepsilon_{oldsymbol{r}}}}$

$$V = rac{c}{\sqrt{arepsilon_r}}$$

- Radiowaves always travel faster in the air than in the Earth.
- Radiowaves travel slower in water saturated sediments ($\varepsilon_r = 80$ for water)

Wave Attenuation

 Defines the rate of amplitude loss a wave experiences as it travels:

$$\frac{|\mathbf{A}|}{|\mathbf{A_0}|} = e^{-\alpha z}$$

 EM waves experience an exponential amplitude loss as they travel.

$$lpha = \omega \sqrt{rac{\mu arepsilon}{2}} iggl[iggl(1 + iggl(rac{\sigma}{\omega arepsilon} iggr)^2 iggr)^{1/2} - 1 iggr]^{1/2} pprox iggl\{ \sqrt{rac{\omega \mu \sigma}{2}} & ext{for } \omega arepsilon \ll \sigma \ rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \sigma \ll \omega arepsilon \ \end{pmatrix}$$

- Quasi-Static ($\omega \varepsilon << \sigma$): Conductive/Low-frequency
- Wave Regime ($\sigma << \omega \epsilon$): Resistive/High-frequency

Wave Attenuation

 Defines the rate of amplitude loss a wave experiences as it travels:

$$\frac{|\mathbf{A}|}{|\mathbf{A_0}|} = e^{-\alpha z}$$

 EM waves experience an exponential amplitude loss as they travel.

$$lpha = \omega \sqrt{rac{\mu arepsilon}{2}} \left[\left(1 + \left(rac{\sigma}{\omega arepsilon}
ight)^2
ight)^{1/2} - 1
ight]^{1/2} pprox \left\{ egin{align*} rac{\sqrt{\omega \mu \sigma}}{2} & ext{for } \omega arepsilon \ll \sigma \ \hline rac{\sigma}{2} \sqrt{rac{\mu}{arepsilon}} & ext{for } \sigma \ll \omega arepsilon \end{array}
ight.$$

- Quasi-Static ($\omega \varepsilon << \sigma$): Conductive/Low-frequency
- Wave Regime ($\sigma << \omega \epsilon$): Resistive/High-frequency

Radiowave Attenuation

Table of relative dielectric permittivity (e_R), electrical conductivity (σ), and velocity.				
Material	e _R	σ(mSeimens/m)	V avg (m/ns)	
Air	1	0	.3	
Distilled water	80	0.01	0.033	
Fresh water	80	0.5	0.033	
Sea water	80	3000	0.01	
Dry sand	3 - 5	0.01	0.15	
Saturated sand	20-30	0.1-1.0	0.06	
Limestone	4-8	0.5-2.0	0.12	
Shales	5-15	1-100	0.09	
Silts	5-30	1-100	0.07	
Clays	5-40	2- 1000	0.06	
Granite	4-6	0.01-1.0	0.13	
Dry salt	5-6	0.01-1.0	0.13	
Ice	3-4	0.01	0.16	

Radiowaves attenuate quickly if conductivity is large

Radiowave Attenuation: Skin Depth

- **Skin Depth:** Distance at which a wave is reduced to 37% of its original amplitude
- Aumming Earth is non-magnetic $(\mu_r = 1)$:

$$\delta pprox \left\{ egin{array}{ll} 503\sqrt{rac{1}{\sigma f}} & ext{ for } \omegaarepsilon \ll arepsilon \ 0.0053rac{\sqrt{arepsilon_r}}{\sigma} & ext{ for } \sigma \ll \omegaarepsilon \ \end{array}
ight.$$

- The skin depth is smaller if the frequency of the radiowaves is higher.
- The skin depth is larger in materials with lower conductivities.
- The skin depth is larger is materials with higher dielectric permittivities.

Questions: Recap

Q: What happens to wave amplitude as it propagates?

Q: Is the wave velocity higher/lower in water saturated sediments?

$$V=rac{c}{\sqrt{arepsilon_r}}$$

Q: What happens to skin depth at higher frequencies?

Reflection and Transmission

$$R = rac{ ext{Reflected Amplitude}}{ ext{Incident Amplitude}} = rac{\sqrt{arepsilon_1} - \sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}} \qquad -1 < R < 1.$$

$$-1 < R < 1$$

$$T = rac{ ext{Transmitted Amplitude}}{ ext{Incident Amplitude}} = rac{2\sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}}$$

- If $\varepsilon_1 \approx \varepsilon_2$, most of the wave is transmitted
- If $\varepsilon_1 \ll \varepsilon_2$ or $\varepsilon_1 \gg \varepsilon_2$, most of the wave is reflected EOSC 350 '06

Reflection and Transmission

$$R = rac{ ext{Reflected Amplitude}}{ ext{Incident Amplitude}} = rac{\sqrt{arepsilon_1} - \sqrt{arepsilon_2}}{\sqrt{arepsilon_1} + \sqrt{arepsilon_2}} \hspace{0.5cm} -1 < R < 1.$$

Material	e _R
Air	1
Distilled water	80
Fresh water	80
Sea water	80
Dry sand	3 - 5
Saturated sand	20-30
Limestone	4-8
Shales	5-15
Silts	5-30
Clays	5-40
Granite	4-6
Dry salt	5-6
Ice	3-4

EOSC 350 '06

Example: Dry Sand ----- R ~ 0.101 Limestone **Example:** Dry Sand ----- R ~ 0.429 Wet Sand **Example:** Air ----- R ~ 0.799

Sea Water

Reflection from Conductors

$$V = \sqrt{rac{2}{\muarepsilon}} \left[1 + \left(1 + \left(rac{\sigma}{\omegaarepsilon}
ight)^2
ight)^{1/2}
ight]^{-1/2}$$

- Shows $V \rightarrow 0$ as $\sigma \rightarrow \infty$
- Thus radiowaves don't propagate in perfect conductors
- Waves get completely reflected

Reflection and Transmission

- What can we said about ε_1 and ε_2 ?
- Does wave go through conductor or reflect?

Refraction

• Snell's Law:

$$rac{\sin\! heta_1}{V_1} = rac{\sin\! heta_2}{V_2}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$\sqrt{\varepsilon_1}\sin\theta_1 = \sqrt{\varepsilon_2}\sin\theta_2$$

Critical Refraction

$${
m sin} heta_c=rac{V_1}{V_2}$$

Requires $V_1 < V_2$

Refraction

Can we see any refraction?

Scattering

Deviations in ray paths due to localized non-uniformities.

- \rightarrow leads to noisy data.
- → decreases amplitude of usable signal
- Irregular surface shape of larger buried objects (below left).
- Rocky soils, which are a large contributor to the scattering of GPR signals (below right).

t=008 ns

Gas bubbles trapped in ice.

Clutter made up of small buried objects

Geometrical Spreading

- As the wave front travels, it spreads geometrically
- The rate of geometrical spreading depends on the velocity
- Spreading causes the radiowave to lose amplitude

$$rac{|\mathbf{A}|}{|\mathbf{A_0}|} \propto rac{1}{R}$$

Geometrical Spreading

Can we see geometrical spreading?

Material Recap

 Radiowaves reflect at boundaries where the velocity/dielectric permittivity changes:

$$R = \frac{\text{Reflected Amplitude}}{\text{Incident Amplitude}} = \frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$$

- Conductors are large reflectors of radiowaves
- Snell's law applies to GPR:

$$rac{\sin\! heta_1}{V_1} = rac{\sin\! heta_2}{V_2}$$

$$\sqrt{\varepsilon_1}\sin\theta_1 = \sqrt{\varepsilon_2}\sin\theta_2$$

Questions Recap

Q: What happens to a wave that undergoes geometrical spreading?

Q: Why is scattering an issue?

Ray Path vs. Wavefront

EOSC 350 '06

Model

V_0 Tx Rx V_1 V_2

Radargram

Model

Radargram

1) Direct Air Wave

Travel Time:
$$egin{array}{c} t_{air} = rac{x}{c} \end{array}$$

$$V=c/\!\sqrt{arepsilon_r}$$

$$c=3.00 imes10^8$$
 m/s

Model

Radargram

2) Direct Ground Wave

Travel Time:
$$t_{ground} = \frac{x}{V_1}$$

$$V=c/\!\sqrt{arepsilon_r}$$
 $V_1< c,$

$$V_1 < c$$

Model

V_0 T_X V_1 V_2 V_1 V_2 V_1 V_2

Radargram

3) Reflected Wave

Travel Time:
$$t_{ref} = rac{\sqrt{x^2 + 4h^2}}{V_1}$$

Model

Х V_0 Tχ V_1 V_2

Radargram

4) Refracted Wave

Travel Time:
$$t_c = \frac{x}{c} + ext{Constant}$$

$$V_1 < V_0$$

Identifying Ray Paths

EOSC 350 '06

Recap Questions

Q: What is the difference between a wavefront and a ray path?

Q: Can a wave be critically refracted at the surface?

Unit Activities

- Labs (GPR)
 - Monday, October 21st
 - Tuesday, October 22nd
- TBL:
 - Friday, October 18th
- Quiz:
 - Friday, October 18th