

Fault Operation and Control of 3-Level NPC Inverters

Ahmetcan Akuz 2025468 Advisor: Assist. Prof. Emine Bostancı Özkan

Seminar Presentation March 25, 2024 Middle East Technical University

Outline

- Electrical Machine Drives
- Inverters
- Aim of the Study
- Inverter Control Techniques
- 3- Level NPC Inverters & Drive Methods
- Possible Fault States
- Operation Vector Under Fault States
- Conclusion

Electrical Machine Drives

- AC Machine Applications,
- Electrical Vehicles
- Renewable Energy Systems
- Control of an AC Machine for desired Speed, Torque
- DC/AC Converters (Inverters)

Inverters

- DC voltage to AC voltage
- Opening and closing the switches with different times
- Square wave output voltage

Inverters

2-level Inverters

- [Vdc/2, -Vdc/2] voltage levels
- 6 switches
- Voltage stress of switch: Vdc

3-Level NPC Inverters

- [Vdc/2, 0, -Vdc/2] voltage levels
- 12 switches, 6 diodes
- Voltage stress of switch: Vdc/2

Aim of the Study

- 800V 15 kW AC Motor Drives with 3-Level NPC Inverter
- Control Methods Abilities of the Inverter
- Observing Fault Situation Behavior of Inverter
- Fault Tolerant Operations of 3-level NPC Inverters

Inverter Control Techniques

Sinusoidal PWM

- 2 carrier triangular signals
- 3 reference signal with 120° phase shift
- Modulation index, m_i

•
$$V_{out} = \frac{m_i V_{dc}}{2}$$

Inverter Control Techniques

- Space Vector PWM (SVPWM)
- Rotating frame to Stationary frame
- Equivalent vector defined sum of three vector.
- Clark & Park Transformations

3- Level NPC Inverters & Drive Methods

12 switches & 6 diodes to obtain P, O, N states.

State	Vout	Q1	Q2	Q ₃	Q4
P	+Vdc/2	ON	ON	OFF	OFF
o	0	OFF	ON	ON	OFF
N	-Vdc/2	OFF	OFF	ON	ON

3-Level NPC Inverter Circuit

Control Techniques

 Space Vector PWM (SVPWM) for 3-Level NPC Inverter

- Totally 27 pace vectors
- Required output vector is obtained by using four vectors.
- Reference vectors can also be manipulated with small vectors.
- [PPP], [OOO], [NNN]: zero vectors

Space Vector Diagram of 3-Level NPC Inverter

Possible Fault Scenarios

Short Circuit

- Overcurrent condition
- Current distortion observed significantly.

Open Circuit

- Chance to operate with limited conditions
- Effect of fault of middle switches is larger

Current flow of phase-a when Ia>0 and at P-state

Space Vector Diagram for Q1 fault

Current flow of phase-a when Ia>0 and at P-state

Current flow of phase-a when Ia>0 and at O-state

Space Vector Diagram for Q2 fault

Current flow of phase-a when Ia<0 and at O-state

Current flow of phase-a when Ia<0 and at N-state

Space Vector Diagram for Q3 fault

Space Vector Diagram for Q4 fault

Conclusion

 3-Level NPC Inverters are efficient inverter solutions for High Voltage AC Machines.

Open circuit fault is tolerable

 Fault in 1st and 4th switches can be tolerable with limited conditions.

Thank you for your attention.