

Instytut Automatyki i Informatyki Stosowanej

Praca dyplomowa magisterska

na kierunku Informatyka w specjalności Systemy Informacyjno-Decyzyjne

System optymalizacji spłaty kredytów walutowych

Łukasz Komorowski

Numer albumu 276373

promotor

Dr inż. Sebastian Plamowski

Streszczenie:

[TEKST]

Słowa kluczowe – [SŁOWA]

Summary:

[TEKST]

Keywords – [SŁOWA]

Zusammenfassung:

[TEKST]

Stichworte – [SŁOWA]

Oświadczenie autora pracy - z systemu USOS oświadczenie autora pracy dyplomowej (Zarządzenie nr 28/2016 Rektora Politechniki Warszawskiej)

Spis treści

1	1	Wst	stęp	7			
2		Ryn	nek kredytowy	8			
	2.1		Sektor bankowy	8			
	2.2		Sektor pożyczkowy (pozabankowy)	9			
	2.3	3	Kredyty mieszkaniowe	10			
	2.4	1	Kredyt walutowy	12			
3		Ryn	nek walutowy	15			
	3.1	1	Źródła danych	18			
	3.1.		1.1 Dane z NBP Web API	19			
	;	3.1.2	19				
4	ļ	21					
	4.1	1	Moduł statsmodels - model ARIMA	21			
	4.2	2	Badania	22			
5	(Opis	ois systemu	23			
6	Wyniki						
7	Wnioski						
8	ı	Bibli	oliografia	26			
9	,	Wyk	ykaz symboli i skrótów	27			
10	0 Spis rysunków						
11	1 Spis tabel						
12	2 Spis załączników						

1 Wstęp

2 Rynek kredytowy

Rynek kredytowy jest ogromny. Tylko w Polsce na koniec 2019 było 15 444 tys. klientów sektorów bankowego i pożyczkowego, którzy posiadali czynne zobowiązania, a łączna kwota zadłużenia gospodarstw domowych wyniosła 671 mld zł. i wzrosła o 7% w porównaniu z końcem 2018 roku. Zauważalny jest silny i trwały trend wzrostowy. W porównaniu z początkiem 2012 roku zadłużenie wzrosło aż o 46,6% (213 mld).

Podziału rynku można dokonać ze względu na sektory:

- bankowy,
- pożyczkowy (pozabankowy).

2.1 Sektor bankowy

W sektorze bankowym kredytobiorców podzielić można ze względu na posiadany produkt:

- kredyt mieszkaniowy
- kredyt ratalny i gotówkowy
- linie i karty kredytowe

Wykres 1.Kredytobiorcy w tys. – kredyty mieszkaniowe^[1]

Kredytobiorców mieszkaniowych w latach 2017-2019 przybywało około 3% rocznie, a na koniec roku 2019 było ich 3 997 tys. W porównaniu z początkiem roku 2012 liczba osób z czynnym kredytem mieszkaniowym wzrosła o 1 mln.

Wykres 2.Kredytobiorcy w tys. – kredyty ratalne i gotówkowe^[1]

Liczba osób posiadająca kredyt konsumpcyjny jest dość stabilna. W porównaniu z początkiem roku 2012 zmniejszyła się ona jednak aż o 321 tys. czego częściowej przyczyny można dopatrywać się w rozwoju sektora pożyczkowego i migracji klientów.

Wykres 3.Kredytobiorcy w tys. – linie i karty kredytowe^[1]

Wzrasta liczba osób posiadających karty kredytowe, w 2018 roku jedynie o 23 tys, ale już rok później przybyło 144 tys. osób. Wyraźny spadek widać w liczbie osób, które posiadają limity kredytowe do rachunków bankowych. W roku 2018 był to spadek o 110 tys, natomiast w roku 2019 już o 223 tys.

2.2 Sektor pożyczkowy (pozabankowy)

W latach 2016-2017 widoczny był znaczny i szybki wzrost liczby pożyczkobiorców pozabankowych, jednak znaczna część tego wzrostu wynikała z coraz bliższej współpracy pomiędzy firmami pożyczkowymi a Biurem Informacji Kredytowej (BIK).

Wykres 4. Klienci firm pożyczkowych^[1]

W 2019 roku liczba klientów firm pożyczkowych spadła w Polsce o 2,3 tys. osób.

Wykres 5. Klienci sektora pożyczkowego bez zobowiązań wobec banków oraz posiadacze kredytów konsumpcyjnych. Struktura wiekowa^[1]

Wyłącznie z pożyczek pozabankowych w Polsce na koniec 2019 roku korzystało 144,5 tys. osób. Głównie były to osoby młode (poniżej 35 roku życia).

2.3 Kredyty mieszkaniowe

Kredyt mieszkaniowy często uznawany jest za to samo co kredyt hipoteczny, jednak pojęcie kredytu mieszkaniowego jest węższe. Kredyt hipoteczny jest to kredyt którego zabezpieczenie stanowi hipoteka, ale cel kredytu może być dowolny. Kredyt mieszkaniowy jest to kredy którego zabezpieczenie również stanowi hipoteka, ale służy on do finansowania zakupu mieszkania. Ogólnie kredyt mieszkaniowy zawsze jest hipoteczny, natomiast kredyt hipoteczny nie musi być mieszkaniowy.

Wykres 6. Kredyty mieszkaniowe (w tys. szt.) udzielone w latach 2017–2019^[1]

W 2019 roku liczba udzielonych kredytów wzrosła o 4% w porównaniu z 2018 (z 229 tys. do 238 tys.) i utrzymuje trend wzrostowy, pomimo wycofania wsparcia z budżetu (program MdM).

Wykres 7. Kwota kredytów mieszkaniowych (w mln zł) udzielonych w latach 2017–2019^[1]

Stale rośnie również wartość udzielanych kredytów mieszkaniowych. Porównując do 2018 roku kwota udzielonych kredytów wzrosła o ponad 14% (z 56,61 mld do 64,78 mld).

Wykres 8. Średnie kwoty kredytów mieszkaniowych (w tys. zł) udzielonych w latach 2007–2019^[1]

Wzrost wartości udzielonych kredytów spowodowany jest nie tylko wzrostem ich liczby ale również średniej kwoty kredytu, która od 2012 ma trend wzrostowy. Porównując do roku poprzedniego, w 2019 roku kwota ta wzrosła o 10% (z 247 tys. do 272 tys.).

Wykres 9. Wzrosty (w pkt. proc.) udziałów rachunków opóźnionych w liczbie otwartych w rocznikach 2007–2018^[1]

Bardzo powolny jest proces wzrostu wraz z wiekiem udziału kredytów opóźnionych. Zdecydowanie najwyższy wzrost notuje się w kryzysowym roczniku 2008, natomiast pozostałe roczniki kredytów psują się znacznie wolniej (około 0,1% r/r).

Wykres 10. Zadłużenie w (mld zł) w kredytach mieszkaniowych^[1]

Stale rośnie całkowite zadłużenie na kredytach mieszkaniowych. Łączna kwota zadłużenia, w porównaniu z rokiem 2018, wzrosła w roku 2019 o prawie 6% (z 470,2 mld do 498,3 mld). Wśród kredytobiorców złotowych zadłużenie wzrosło o 33,8 mld (10,5%), a wśród kredytobiorców walutowych spadło o 5,7 mld (3,8%).

2.4 Kredyt walutowy

Kredyty walutowe, a zwłaszcza kredyty frankowe, były w Polsce bardzo popularne w latach 2004-2009. Dawane były ze znacznie niższym oprocentowaniem niż kredyty złotowe, dlatego tak dużo osób decydowało się na nie, nie zawsze będą świadomymi ryzyka jakie podejmują.

Wykres 11. Kurs franka szwajcarskiego^[2]

Znaczny wzrost kursu franka szwajcarskiego (CHF) spowodował, że sytuacja wielu osób pogorszyła się. Kwota ich zadłużenia przewyższała kwotę zaciągniętego kredytu, a także wartość kupionej nieruchomości. W celu uregulowania udzielania kredytów w obcej walucie wprowadzono rekomendację S. Zgodnie z rekomendacją S wydaną przez KNF w czerwcu 2013 roku od dnia 1 lipca 2014 roku banki mogą udzielać kredytów tylko w walucie zarobków:

Rekomendacja 6

Bank powinien udzielać klientom detalicznym kredytów zabezpieczonych hipotecznie wyłącznie w walucie, w jakiej uzyskują oni dochód, także w przypadku klientów o wysokich dochodach.^[3]

Ma to na celu wyeliminowanie ryzyka walutowego dla klientów indywidualnych.

Wykres 12. Udziały rachunków opóźnionych w obsłudze >90 dni w liczbie kredytów mieszkaniowych udzielonych w rocznikach do 2011 r. Stan bazy BIK na koniec 2019 r. po korekcie o przewalutowania^[1]

Pomimo zawirowań na rynku walutowym, szkodowość kredytów walutowych, mierzona udziałem kredytów opóźnionych o ponad 90 dni, jest niższa niż kredytów złotowych. Wysoka szkodowość rocznika 2008 może być spowodowana tym, że było w nim najwięcej kredytów walutowych i jest w nim najwięcej przewalutowań.

Wykres 13. Liczba wejść do statusu >30 dni opóźnienia w portfelu złotowym i frankowym. Dane miesięczne z lat 2018–2019^[1]

Wykres 14. Liczba wejść do statusu >90 dni opóźnienia w portfelu złotowym i frankowym. Dane miesięczne z lat 2018–2019^[1]

Stabilna jest jakoś kredytów (zarówno złotowych, jak i frankowych) mierzona odsetkiem wejść w status pierwszych opóźnień (ponad 30 dni) oraz poważnych opóźnień (ponad 90 dni). W 2019 roku liczba rachunków wchodzących w status pierwszych opóźnień spadła minimalnie dla kredytów frankowych i wzrosła minimalnie dla kredytów złotowych. Wartym zauważenia jest również stosunek wejść w status pierwszych opóźnień do wejść w status poważnych opóźnień. Dla kredytów złotowych wejść w poważne opóźnienia jest 3,8 razy mniej niż wejść w pierwsze opóźnienia. Dla kredytów frankowych wejść w poważne opóźnienia jest 4,3 razy mniej niż wejść w pierwsze opóźnienia. Oznacza to, że większość wczesnych zaległość regulowana jest przed przejściem w opóźnienia długoterminowe.

3 Rynek walutowy

Rynek finansowy można podzielić na 3 zasadnicze części:

- rynek kapitałowy tworzony przez giełdy papierów wartościowych, na nim inwestorzy kupują oraz sprzedają akcje, obligacje i instrumenty pochodne (termin zapadalności dłuższy niż 1 rok),
- rynek pieniężny zawiera instrumenty finansowe o terminie zapadalności krótszym niż
 1 rok, np. bony skarbowe,
- rynek walutowy przedmiotem wymiany są tu waluty

Rynek walutowy powszechnie nazywany jest FOREX albo FX (akronimy pochodzące od angielskiego Foreign Exchange). Jest rynkiem nieregulowanym (OTC – Over The Counter) na którym obrót odbywa się poprzez wiele pojedynczych transakcji pomiędzy uczestnikami. W rzeczywistości na rynku handel odbywa się za pomocą stałego mechanizmu:

Rysunek 1. Diagram przedstawiający mechanizm działania rynku walutowego

Klienci indywidualni zlecają zakup/sprzedaż waluty firmom brokerskim, które następnie zlecają to międzynarodowym podmiotom bankowym, które dokonują między sobą transakcji o ogromnym wolumenie.

Rysunek 2. Mapa najistotniejszych centrów finansowych rynku walutowego

Handel na rynku walutowym odbywa się 24 godziny na dobę, od poniedziałku do piątku. Najważniejszymi centrami finansowymi z punktu widzenia wymiany walut pod względem liczby i wielkości zawieranych transakcji są:^[4]

- w Europie
 - o Frankfurt,

- o Londyn,
- o Paryż,
- o Zurych,
- w Azji
 - o Hong Kong,
 - o Singapur,
 - Tokio,
- w Australii
 - o Sydney,
- w Amerykach
 - o Nowy Jork.

Currency distribution of OTC foreign exchange turnover

Net-net basis, 1 percentage shares of average daily turnover in April²

Table 2

Currency	2004		2007		2010		2013		2016		2019	
,	Share	Rank	Share	Ranl								
USD	88.0	1	85.6	1	84.9	1	87.0	1	87.6	1	88.3	•
EUR	37.4	2	37.0	2	39.0	2	33.4	2	31.4	2	32.3	2
IPY	20.8	3	17.2	3	19.0	3	23.0	3	21.6	3	16.8	3
GBP	16.5	4	14.9	4	12.9	4	11.8	4	12.8	4	12.8	4
AUD	6.0	6	6.6	6	7.6	5	8.6	5	6.9	5	6.8	!
CAD	4.2	7	4.3	7	5.3	7	4.6	7	5.1	6	5.0	(
CHF	6.0	5	6.8	5	6.3	6	5.2	6	4.8	7	5.0	7
CNY ³	0.1	29	0.5	20	0.9	17	2.2	9	4.0	8	4.3	8
HKD³	1.8	9	2.7	8	2.4	8	1.4	13	1.7	13	3.5	9
NZD³	1.1	13	1.9	11	1.6	10	2.0	10	2.1	10	2.1	10
DKK³	0.9	15	0.8	16	0.6	22	0.8	21	0.8	21	0.6	22
PLN ³	0.4	19	0.8	17	0.8	18	0.7	22	0.7	22	0.6	2
THB⁴	0.2	22	0.2	25	0.2	26	0.3	27	0.4	24	0.5	24

Tabela 1. Rozkład walut obrotu walutowego na FOREX^[5]

Według ukazującego się co 3 lata raportu Banku Rozrachunków Międzynarodowych (BIS -Bank for International Settlements) najpopularniejszymi walutami na FOREX w kwietniu 2019 roku były:

- USD dolar amerykański
- EUR euro
- JPY jen japoński
- GBP funt brytyjski
- AUD dolar australijski

Tylko te 5 walut brało udział w 78,5% transakcji zawieranych na rynku walutowym. Polski złoty znalazł się na 23 miejscu zestawienia, odpowiadając za 0,3% transakcji.

OTC foreign exchange turnover

Net-net basis, 1 daily averages in April, in billions of US dollars

Table 1

Instrument	2004	2007	2010	2013	2016	2019
		•			}	
Foreign exchange instruments	1,934	3,324	3,973	5,357	5,066	6,590
Spot transactions	631	1,005	1,489	2,047	1,652	1,987
Outright forwards	209	362	475	679	700	999
Foreign exchange swaps	954	1,714	1,759	2,240	2,378	3,202
Currency swaps	21	31	43	54	82	108
Options and other products ²	119	212	207	337	254	294
Мето:						
Turnover at April 2019 exchange rates ³	1,854	3,071	3,602	4,827	4,958	6,590
Exchange-traded derivatives ⁴	25	77	144	145	115	127

Tabela 2. Średnie dzienne obrotu na rynku FOREX^[5]

Wartość transakcji zawieranych na rynku walutowym jest ogromna. W kwietniu 2019 roku przeciętna dzienna wartość obrotów na rynku FOREX wyniosła 6,59 bln dolarów amerykańskich. Widać trend rosnący dla wartości, która w ciągu 15 lat (2004-2019) powiększyła się 3,4 razy.

Na rynku walutowym zawiera się transakcje o różnym charakterze. Można podzielić je ze względu na motywację stron zawierających i wtedy wyróżnia się następujące typy operacji:

- inwestycyjne
- spekulacyjne
- hedgingowe
- arbitrażowe

Transakcje inwestycyjne zawierane są z długim horyzontem czasowym, a wybrana waluta związana jest najczęściej z przekonaniem co do pozycji gospodarki danego państwa, a co za tym idzie również jego waluty. Zalicza się tu również transakcje, gdzie wymiana waluty jest tylko środkiem do realizacji celu (np. zagraniczny przedsiębiorca wymienia swoją narodową walutę na PLN w celu otwarcia siedziby w Polsce).

Transakcje spekulacyjne zawierane są z dużo krótszym horyzontem czasowym, dochodzącym nawet do kilku minut lub sekund. Zawierane są na podstawie przekonania co do kształtowania się krótkookresowego kursu danej waluty.

Transakcje hedgingowe (zabezpieczające) mają na celu zabezpieczenie przed ryzykiem kursu walutowego. Wykorzystywane są najczęściej przez eksporterów którzy narażeni są na zmianę kursu waluty w której otrzymują zapłatę do waluty ich kraju. Aby się przed tym uchronić zawierają odpowiednie transakcje na rynku Forex dzięki czemu mogą rekompensować straty w przypadku osłabienia się obcej waluty w stosunku do waluty ich kraju.

Transakcje arbitrażowe są to transakcje pozbawione ryzyka. Polegają na wyszukiwaniu i wykorzystywaniu czasowej nieefektywności rynku do zawarcia konkretnych kontraktów kupna/sprzedaży. Zysk z pojedynczej transakcji arbitrażowej jest zazwyczaj niewielki, przez co staje się opłacalny tylko w przypadku dysponowania dużymi zasobami finansowymi. Klasycznym przykładem jest taki układ trzech kursów który gwarantuje zysk, np.:

waluta2/waluta1 = 4

- waluta3//waluta2 = 2,5
- waluta3/waluta1 = 10,01

Mając 1000 j. waluty 1, inwestor (pomijając koszty zawarcia transakcji) wymienia je na walutę 2 (250 j.), następnie wymienia to na walutę 3 (100 j.) które ponownie wymienia na walutę 1 (1001 j.) co daje mu zysk w wysokości 1 j. waluty 1.

Rynek walutowy podzielić można również ze względu na termin realizacji transakcji. Wyróżnia się następujące grupy:

- transakcje SPOT
- transakcje terminowe.

Transakcje SPOT to transakcje natychmiastowe. Ustalenie kursu walut oraz rozliczenie odbywa się bardzo szybko, a waluta dostarczana jest już po 2 dniach roboczych.

Transakcje terminowe mają czas rozliczenia dłuższy niż 2 dni robocze.

3.1 Źródła danych

Kursy walut są bardzo ważną informacją dla wielu osób. Dotyczą one nie tylko eksporterów i importerów, ale również osób, które posiadają zobowiązania finansowe w innej walucie (np. kredyt walutowy) oraz osób, które wyjeżdżają na wakacje za granicę.

Mechanizm kształtowania się kursów walut jest podobny do analogicznych mechanizmów dla innych towarów. Głównym czynnikiem są popyt i podaż, a wyceną jest wartość jednej waluty względem innej. Wszystkie podmioty dokonujące wymiany walut mają wpływ na kształtowanie ceny.

Wszystkie czynniki wpływające na kursy walut możemy podzielić w następujący sposób:

- Czynniki ekonomiczne zmiany wzrostu gospodarczego, inflacja, stopy procentowe oraz poziom bezrobocia,
- Czynniki polityczne zmiany systemowe, stopień stabilności politycznej, programy poszczególnych partii politycznych oraz wydarzenia losowe lub jednorazowe,
- Czynniki instytucjonalne inwestycje państwa na rynku walutowym,
- Czynniki psychologiczne emocje ludzi inwestujących na Forexie.

Rysunek 3. Czynniki wpływające na kursy walut^[6]

Bardzo często istotna jest znajomość kursu waluty w czasie rzeczywistym. Są one płynne i potrafią zmieniać się w krótkich okresach, jeżeli tylko dochodzi w nich do wymiany walut. W praktyce kursy aktualizowane są w następującym oknie czasowym:

- Od północy w niedzielę (rusza wtedy rynek Azjatycki)
- Do północy w piątek (zamyka się wtedy rynek Amerykański)

Kursy średnie walut są wyliczane na podstawie informacji o wymianie waluty przekazywanej przez banki oraz inne duże instytucje finansowe do agencji informacyjnych, takich jak Bloomberg czy Thompson Reuters. W odpowiedzi, banki otrzymują informację o kursach średnich i generują wykresy wahań kursowych. Następnie z tych informacji korzystają kantory (stacjonarne oraz internetowe), które do kursów średnich dokładają swoją marżę, a następnie udostępniają te wartości swoim klientom.

3.1.1 Dane z NBP Web API

Kurs średni podawany przez NBP opiera się na danych z banków. W celu rzetelnego wyliczenia kursu średniego, powinny zostać zebrane informacje o kursach ze wszystkich banków i kantorów, jednak byłoby to zadanie niezwykle trudne w realizacji oraz nieopłacalne. Dlatego NBP swoje wyliczenia opiera na kursach EUR/PLN i USD/PLN otrzymanych w godzinach 10:55-11:00 każdego dnia roboczego od 10 największych banków w Polsce. Odrzucone zostają dwa najwyższe i dwa najniższe kursy, aby następnie, wyciągając średnią z kursów sprzedaży i kupna, obliczyć kurs średni.

Między godziną 11:45, a 12:15 w każdy dzień roboczy NBP publikuje tabelę A kursów średnich walut obcych. Zawiera ona informacje o kursie średnim dla 35 najpopularniejszych walut. Dodatkowo w każdą środę, w tych samych godzinach publikowana jest tabela B kursów średnich walut obcych w której znajdują się informacje o kursach średnich dla 115, bardziej "egzotycznych" walut.

Łatwy dostęp do danych z rynku walutowego oraz najbardziej aktualnych kursów walut sprawia, że w dzisiejszych czasach kursy średnie prezentowane przez NBP służą głownie do obliczeń statystycznych oraz są pomocne przy wyliczeniach księgowych.

Narodowy Bank Polski udostępnia publiczne Web API umożliwiające wykonywanie zapytań na następujących zbiorach:

- Aktualne i archiwalne kursy walut obcych
- Aktualne i archiwalne ceny złota

Odpowiedź, zależnie od wymagania, zwracana jest w formacie JSON lub XML (domyślnie – JSON). Pojedyncze zapytanie nie może obejmować więcej niż 93 dni, natomiast dane archiwalne dostępne są dla następujących okresów:

- Dla kursów walut od 2 stycznia 2002 r.
- Dla cen złota od 2 stycznia 2013 r.

3.1.2 Inne serwisy walutowe

W Internecie istnieje wiele serwisów oferujących dostęp do danych z rynku Forex w czasie rzeczywistym. Dane, udostępniane poprzez API pozwalają na wykorzystanie ich w komputerowym przetwarzaniu danych oraz, dzięki odpowiedniej analizie, na inwestowanie na rynku walutowym. Przykładowe serwisy udostępniające takie dane to:

- FCS API
- AvaTrade
- IG
- FXCM
- FIXER

Dostęp do API w takich serwisach jest zazwyczaj darmowy, ale również ograniczony (ograniczona dostępna liczba zapytań, ograniczona liczba dni dostępu albo opóźnienie w

danych). Najczęściej za dane w czasie rzeczywistym trzeba zapłacić wykupując odpowiedni abonament.

Z uwagi na charakter tej pracy oraz na brak zapotrzebowania na najświeższe dane, zdecydowano się wykorzystać API udostępnione przez NBP z uwagi na jego wiarygodność, wystarczający poziom aktualności danych oraz darmowy dostęp.

4 Metody analizy danych

Tekst

4.1 Moduł statsmodels

Moduł statsmodels udostępnia klasy i funkcję służące estymacji wielu różnych modeli statystycznych, a także przeprowadzaniu testów statystycznych oraz eksploracji danych statystycznych. Oferuje on szeroką listę parametrów statystycznych dla każdego estymatora. Wyniki obliczeń są porównywane z istniejącymi modelami statystycznymi w celu zapewnienia ich poprawności. Moduł statsmodels jest udostępniany na licencji open source.

Rysunek 4. Moduł statsmodels w Pythonie^[7]

4.1.1 Model ARIMA

Jednym z elementów modułu statsmodels jest autoregresyjny zintegrowany model średniej ruchomej - ARIMA (ang. Autoregressive Integrated Moving Average). Model ten, zgodnie z nazwą, złożony jest z trzech komponentów:

- Procesu autoregresyjnego,
- Procesu średniej ruchomej,
- Stopnia integracji.

Proces autoregresyjny korzysta z modelu AR (ang. Autoregressive Model). Każda z wartości jest liniową kombinacją p wartości poprzednich, gdzie p jest rzędem modelu autoregresyjnego. Model taki definiuje się w następujący sposób:

$$X_t = c + \sum_{i=1}^p \varphi_i X_{t-i} + \varepsilon_t$$

gdzie:

- X_t wartość szeregu w chwili t,
- $\varphi_1, \dots, \varphi_p$ parametry modelu wskazują na wpływ poprzednich wartości szeregu na wartość bieżącą,
- *c* pewna stała (pomijana w celu uproszczenia),
- ε_t biały szum.

Proces średniej ruchomej korzysta z modelu MA (ang. Moving Average). Podobieństwo do modelu AR polega na korzystaniu z danych z chwil poprzednich, jednak model MA korzysta z wartości zaburzeń w poszczególnych momentach z przeszłości. Rząd modelu q określa z ilu wcześniejszych zaburzeń korzystamy. Model MA definiuje się w następujący sposób:

$$X_t = \mu + \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-1}$$

gdzie:

- X_t wartość szeregu w chwili t,
- μ wartość oczekiwana X_t ,

- $\theta_1, \dots, \theta_q$ parametry modelu wskazują na wpływ poprzednich wartości białego szumu na wartość bieżącą szeregu,
- $\varepsilon_t, \varepsilon_{t-1}, \dots$ biały szum.

Model ARIMA, w odróżnieniu od modelu ARMA, można stosować do procesów które są niestacjonarne. Aby możliwe było takie zastosowanie, procesy te muszą być sprowadzalne do stacjonarnej postaci. Procesem stacjonarnym nazywamy taki proces, który zachowuje niezmienne w czasie średnią i wariancję, natomiast jednym ze sposobów sprowadzenia procesu niestacjonarnego do postaci stacjonarnej jest różnicowanie szeregu (ang. Differencing). Polega ono na obliczaniu przyrostów (różnic) jakie dany szereg osiągnął w czasie. Nie zawsze jednokrotne różnicowanie pozwala na osiągnięcie zamierzonego efektu. W takim wypadku korzysta się z wielokrotnego różnicowania, a za określenie stopnia różnicowania odpowiada parametr d.

Połączenie trzech opisanych powyżej metod generuje model ARIMA(p, d, q), gdzie:

- p rząd autoregresji,
- d stopień integracji szeregu,
- q rząd średniej ruchomej.[8]

W 1970 roku George Box wraz z Gwilymem Jenkinsem w książce pod tytułem "*Time series analysis: Forecasting and control*" opisali swoje podejście do modelowania procesów ARIMA. Według nich modelowanie to obejmuje identyfikację odpowiedniego procesu ARIMA, dopasowanie go do danych, a następnie wykorzystanie dopasowanego modelu do prognozowania dalszych wartości. Oryginalnie procedura modelowania Boxa-Jenkinsa obejmowała iteracyjny, trzyetapowy proces wyboru modelu, jednak nowsze źródła (Makridakis, Wheelwright i Hyndman: *"Forecasting: methods and applications*", 1998 rok) dodają na początku etap przygotowania danych oraz na końcu etap stosowania wybranego modelu. Poniżej opisano każdy z tych etapów.

- Przygotowanie danych etap ten obejmuje transformację i różnicowanie danych.
 Transformacja pozwala na ustabilizowanie wariancji szeregu, natomiast proces różnicowania został już opisany powyżej.
- Identyfikacja modelu ARIMA w tym etapie na podstawie wykresów autokorelacji oraz częściowej autokorelacji danych przekształconych i zróżnicowanych dobiera się odpowiednie procesy ARIMA. Powstały różne narzędzie wyboru, np. kryterium informacyjne Akaikego AIC (ang. Akaike Information Criterion).
- Wybór parametrów etap ten polega na wyszukaniu takich współczynników modelu, które zapewniają najlepsze dopasowanie do danych.
- Sprawdzenie modelu w tym etapie wykonywane są testy dopasowania modelu do danych w celu zidentyfikowania obszarów, w których model jest nieodpowiedni. W przypadku nieodpowiedniego dopasowania modelu należy wrócić do etapu identyfikacji modelu ARIMA i wybrać lepszy model.
- Prognozowanie jest to etap w którym wykorzystuje się wybrany model do obliczenia prognozy.^[9]

4.2 Badania

5 Opis systemu

6 Wyniki

7 Wnioski

8 Bibliografia

- Biuro Informacji Kredytowej, Raport Biura Informacji Kredytowej KREDYT TRENDY 2019
- 2) Kursy średnie NBP Frank szwajcarski (CHF) [w:] money.pl [on-line]
- Komisja Nadzoru Finansowego, Rekomendacja S dotycząca dobrych praktyk w zakresie zarządzania ekspozycjami kredytowymi zabezpieczonymi hipotecznie, czerwiec 2013 r.
- 4) Rynek walutowy bez tajemnic [w:] nbportal.pl [on-line]
- 5) Bank Rozrachunków Międzynarodowych, Triennial Central Bank Survey Foreign exchange turnover in April 2019, 16.09.2019
- 6) Czynniki wpływające na kursy walut [w:] inwestycyjnyporadnik.pl [on-line]
- 7) statistical models, hypothesis tests, and data exploration [w:] statsmodels.org [on-line]
- 8) Płonka M.: Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? [w:] support.predictivesolutions.pl [on-line]
- 9) Hyndman R.J.: Box-Jenkins modeling, 25.05.2001

9 Wykaz symboli i skrótów

10 Spis rysunków

RYSUNEK 1. DIAGRAM PRZEDSTAWIAJĄCY MECHANIZM DZIAŁANIA RYNKU WALUTOWEGO	15
RYSUNEK 2. MAPA NAJISTOTNIEJSZYCH CENTRÓW FINANSOWYCH RYNKU WALUTOWEGO	15
RYSLINER 3. CZYNNIKI WPŁYWAJĄCE NA KLIRSY WALLIT ^[6]	_

11 Spis tabel

Tabela 1. Rozkład walut obrotu walutowego na FOREX ^[5]	16
Tabela 2. Średnie dzienne obrotu na rynku FOREX ^[5]	17

12 Spis załączników