Package 'spectralAnalysis'

June 12, 2018

Type Package

Title Pre-Process, Visualize and Analyse Process Analytical Data, by Spectral Data Measurements Made During a Chemical Process

Version 3.12.0

LazyData true

Maintainer Adriaan Blommaert <adriaan.blommaert@openanalytics.eu>

URL http://www.openanalytics.eu

Description Infrared, near-infrared and Raman spectroscopic data measured during chemical reactions, provide structural fingerprints by which molecules can be identified and quantified. The application of these spectroscopic techniques as inline process analytical tools (PAT), provides the (pharma-)chemical industry with novel tools, allowing to monitor their chemical processes, resulting in a better process understanding through insight in reaction rates, mechanistics, stability, etc.

Data can be read into R via the generic spc-format, which is generally supported by spectrometer vendor software. Versatile pre-processing functions are available to perform baseline correction by linking to the 'baseline' package; noise reduction via the 'signal' pack-

age; as well as time alignment, normalization, differentiation, integration and interpolation. Implementation based on the S4 object system allows storing a pre-

processing pipeline as part of a spectral data object, and easily transfer-

ring it to other datasets. Interactive plotting tools are provided based on the 'plotly' package. Non-negative matrix factorization (NMF) has been implemented to perform multivariate analyses on individual spectral datasets or on multiple datasets at once. NMF provides a partsbased representation of the spectral data in terms of spectral signatures of the chemical compounds and their relative proportions.

The functionality to read in spc-files was adapted from the 'hyperSpec' package.

License GPL-3

Imports baseline, BiocGenerics, data.table, ggplot2, jsonlite, magrittr, methods, nnls, NMF, plotly, plyr, RColorBrewer, signal, stats, viridis, hNMF

RoxygenNote 6.0.1.9000

Suggests testthat

Collate	'internalHelpers.R' 'allGenericFunctions.R'
'o	bjectSpectraInTime.R' 'objectProcessTimes.R'
'o	bjectLinking.R' 'alignmentFunctions.R'
'd	ataManagementTools.R' 'defaults.R' 'readSPC.R
'sa	aveSpectraInTime.R' 'spectralAnalysis.R'
's ₁	pectralIntegration.R' 'spectralNMF.R'
's	pectralPreprocessing.R' 'spectralVisualization.R'
'sı	ubsetting.R'

NeedsCompilation no

Author Robin Van Oirbeek [aut],
Adriaan Blommaert [aut, cre],
Nicolas Sauwen [aut],
Tor Maes [ctb],
Jan Dijkmans [ctb],
Jef Cuypers [ctb],
Tatsiana Khamiakova [ctb],
Michel Tiel [ctb],
Claudia Beleites [ctb]

Repository CRAN

Date/Publication 2018-06-12 14:30:39 UTC

R topics documented:

selineCorrect	 . 3
eckCompatible	 . 4
eckForRedundantSources	 . 5
eckIdenticalClass	 . 6
mputeNMFResidu	 . 6
	 . 7
ementsToSelect-class	 . 7
stSpectrum	 . 8
tDefaultSumFunc	 . 8
tDefaultTimeFormat	 . 9
tElements	 . 9
tExperimentName	 . 10
tExtraInfo	
tListOfSpectraExample	 . 11
tNMFInputMatrix	 . 11
tPathProcessTimesExample	 . 12
tPreprocessing	 . 12
tProcessTimesExample	 . 12
tProcessTimesFrameExample	 . 13
tRange	 . 13
tSpectra	 . 14
tSpectraInTimeExample	
tStartTime	 . 15

baselineCorrect 3

	getTimePoints	15
	getUnits	16
	getWavelengths	16
	includeRedundantSources	17
	initializeNMFModel	17
	lastSpectrum	18
	loadAllSPCFiles	18
	localBaselineCorrect	19
	nonNegativePreprocessing	20
	normalize	20
	predictNNLS	21
	preprocess	22
	ProcessTimes-class	23
	ProcessTimesFrame-class	23
	r	24
	RangeToSubset-class	24
	readProcessTimes	25
	readSPC	25
	removeRedundantSources	26
	runNMF	26
	saveSpectra	27
	scaleNMFResult	28
	setExperimentName<-	29
	setTimePointsAlt<-	29
	smooth	30
	spectralAnalysis	31
	spectralIntegration	31
	spectralNMF	32
	spectralNMFList	33
	subset-methods	33
	timeAlign	34
	upsampleNMFResult	36
	wavelengthAlign	36
	wavelengthAngh	50
Index		38
base]	lineCorrect generic function to perfom baseline correction	

Description

generic function to perfom baseline correction

4 checkCompatible

Usage

```
baselineCorrect(object, ...)
## S4 method for signature 'SpectraInTime'
baselineCorrect(object, method = "modpolyfit",
  degree = 4, ...)
```

Arguments

```
object a S4 class object

other parameters passed to baseline

method method of baseline correction, default value is to 'modpolyfit', see baseline.modpolyfit degree numeric value, degree of the polynomial used only if method is code'modpolyfit'
```

Note

baseline correction in the wavelength domain by linking to the baseline

Examples

```
spectralEx
                     <- getSpectraInTimeExample()</pre>
plot( spectralEx )
                    <- range( getTimePoints( spectralEx ) )</pre>
timeRange
timesToSelect
                   <- e( seq( timeRange[1] , timeRange[2] , length.out = 5 ) )</pre>
baselineDefault <- baselineCorrect( spectralEx )
baselineHighPolynomial <- baselineCorrect( spectralEx,</pre>
  method = 'modpolyfit', degree = 4 )
# filtering with fast fourier transform, not so good on example
baselineLowpass <- baselineCorrect( spectralEx , method = "lowpass" )</pre>
# visual inspection
plot( baselineDefault[ timesToSelect , ] , type = "time" )
plot( baselineHighPolynomial[ timesToSelect , ] , type = "time" )
plot( baselineLowpass[ timesToSelect , ] , type = "time" )
```

checkCompatible

Check whether 2 objects are compatible before using them together For instance, same experiment name and matching time frames

Description

Check whether 2 objects are compatible before using them together For instance, same experiment name and matching time frames

checkForRedundantSources 5

Usage

```
checkCompatible(x, y, ...)
## S4 method for signature 'SpectraInTime,ProcessTimes'
checkCompatible(x, y)
## S4 method for signature 'ProcessTimes,SpectraInTime'
checkCompatible(x, y)
```

Arguments

x first object

y second object

... additional parameters

checkForRedundantSources

Check if any of the source vectors in the initialized NMF model are redundant, and should be omitted from the actual NMF analysis

Description

Check if any of the source vectors in the initialized NMF model are redundant, and should be omitted from the actual NMF analysis

Usage

```
checkForRedundantSources(seed)
```

Arguments

seed

nmfModel object containing initialization of the factor matrices

Value

boolean vector, indicating which source vector(s) are redundant

Author(s)

Nicolas Sauwen

computeNMFResidu

checkIdenticalClass

check wether all elements of of the same class

Description

check wether all elements of of the same class

Usage

```
checkIdenticalClass(listOfObjects, class)
```

Arguments

```
listOfObjects a list of S4 objects to check class a class to compare with
```

Value

logical value TRUE if all objects are of the correct class

Author(s)

Adriaan Blommaert

computeNMFResidu

Compute relative residual per observation of an NMF fit to a spectral

data set

Description

Compute relative residual per observation of an NMF fit to a spectral data set

Usage

```
computeNMFResidu(object, NMFResult)
```

Arguments

object SpectraInTime-class NMFResult Fitted NMF model

Value

Dataframe, containing time (observation) vector and residual vector

Author(s)

nsauwen

e 7

е

Create an ElementsToSelect-class from a numeric vector or multiple numeric values or vectors

Description

Create an ElementsToSelect-class from a numeric vector or multiple numeric values or vectors

Usage

```
e(x, ...)
```

Arguments

```
x numeric vector
```

... additional numeric vectors

Value

ElementsToSelect-class with unique elements

Examples

```
e(1,5,4.5)
e(1:10,c(4,5,6),7)
```

ElementsToSelect-class

Elements S4 class useful for closest elements subsetting

Description

Elements S4 class useful for closest elements subsetting

Slots

elements numeric vector of elements

Author(s)

Adriaan Blommaert

8 getDefaultSumFunc

 ${\tt firstSpectrum}$

Get the first spectrum

Description

Get the first spectrum

Usage

```
firstSpectrum(object, ...)
## S4 method for signature 'SpectraInTime'
firstSpectrum(object)
## S4 method for signature 'numeric'
firstSpectrum(object)
```

Arguments

object S4 object

... additional parameters

 ${\tt getDefaultSumFunc}$

function to get default summary functions

Description

function to get default summary functions

Usage

```
getDefaultSumFunc()
```

Value

character vector of functions

getDefaultTimeFormat 9

 ${\tt getDefaultTimeFormat} \quad \textit{function to get default time format in the package}$

Description

function to get default time format in the package

Usage

```
getDefaultTimeFormat()
```

Value

character vector specifiying a time format

getElements

generic function to extract elements-slot

Description

generic function to extract elements-slot

Usage

```
getElements(object, ...)
## S4 method for signature 'ElementsToSelect'
getElements(object)
```

Arguments

object a S4 class object

... additional parameters

10 getExtraInfo

getExperimentName

generic function to extract experimentName-slot

Description

generic function to extract experimentName-slot

Usage

```
getExperimentName(object, ...)
## S4 method for signature 'SpectraInTime'
getExperimentName(object)
```

Arguments

object a S4 class object additional parameters

getExtraInfo

generic function to extract extraInfo-slot

Description

generic function to extract extraInfo-slot

Usage

```
getExtraInfo(object, ...)
## S4 method for signature 'SpectraInTime'
getExtraInfo(object)
```

Arguments

object a S4 class object additional parameters

```
getListOfSpectraExample
```

get example list of spectra

Description

get example list of spectra

Usage

```
getListOfSpectraExample()
```

getNMFInputMatrix

Extract spectral input matrix from SPC file and condition properly for NMF

Description

Extract spectral input matrix from SPC file and condition properly for NMF

Usage

```
getNMFInputMatrix(object, method = "")
```

Arguments

object of the 'spectralData' class, such as a raw SPC file

 $\mbox{method} \qquad \mbox{name of the NMF method to be used.}$

Value

spectral matrix, with wavelengths as its rows and time points as its columns

Author(s)

Nicolas Sauwen

Description

example path process times ecport

Usage

```
getPathProcessTimesExample()
```

getPreprocessing

 $generic\ function\ to\ extract\ {\tt preprocessing-} slot$

Description

generic function to extract preprocessing-slot

Usage

```
getPreprocessing(object, ...)
## S4 method for signature 'SpectraInTime'
getPreprocessing(object)
```

Arguments

object a S4 class object ... additional parameters

```
getProcessTimesExample
```

 $\begin{tabular}{ll} \it get & a & \it minimal \\ \it process Times-class & \it example & \it based & \it on \\ \it get Spectra In Time Example \\ \end{tabular}$

Description

get a minimal ProcessTimes-class example based on getSpectraInTimeExample

Usage

```
getProcessTimesExample()
```

Author(s)

Adriaan Blommaert

Examples

```
getProcessTimesExample()
```

```
{\tt getProcessTimesFrameExample}
```

 $get\ mimimal\ example\ {\tt ProcessTimesFrame-class}$

Description

```
get\ mimimal\ example\ {\tt ProcessTimesFrame-class}
```

Usage

```
getProcessTimesFrameExample()
```

Author(s)

Adriaan Blommaert

getRange

generic function to extract range-slot

Description

```
generic function to extract range-slot
```

Usage

```
getRange(object, ...)
## S4 method for signature 'RangeToSubset'
getRange(object)
```

Arguments

```
object a S4 class object additional parameters
```

getSpectra

generic function to extract spectra-slot

Description

generic function to extract spectra-slot

Usage

```
getSpectra(object, ...)
## S4 method for signature 'SpectraInTime'
getSpectra(object)
## S4 method for signature 'SpectraInTime'
getSpectra(object)
```

Arguments

object a S4 class object additional parameters

getSpectraInTimeExample

Artificial example SpectraInTime-class

Description

exponential conversion from 2 concentrations with gaussion curves for spectra at different wavelength per compounds

Usage

```
getSpectraInTimeExample(showPlots = FALSE)
```

Arguments

showPlots logical indicator to show plots

Author(s)

Adriaan Blommaert

Examples

```
ex1 <- getSpectraInTimeExample()
ex2 <- getSpectraInTimeExample( showPlots = TRUE )</pre>
```

getStartTime 15

getStartTime

 $generic\ function\ to\ extract\ {\tt startTime}\hbox{-} slot$

Description

generic function to extract startTime-slot

Usage

```
getStartTime(object, ...)
## S4 method for signature 'SpectraInTime'
getStartTime(object)
```

Arguments

object a S4 class object ... additional parameters

getTimePoints

generic function to extract timePoints-slot

Description

generic function to extract timePoints-slot

Usage

```
getTimePoints(object, ...)
## S4 method for signature 'SpectraInTime'
getTimePoints(object, timePointsAlt = FALSE,
    timeUnit = "seconds")
```

Arguments

object a S4 class object ... additional parameters

timePointsAlt logical indicator to get alternative (shifted) instead of recorded time points, de-

faults to FALSE

timeUnit unit to use , choose between: seconds , minutes or hours, defaults equal to

seconds

16 getWavelengths

Examples

```
spectra <- getSpectraInTimeExample()
getTimePoints( spectra )
getTimePoints( spectra , timePointsAlt = TRUE )
getTimePoints( spectra , timeUnit = "hours" )</pre>
```

getUnits

generic function to extract units-slot

Description

generic function to extract units-slot

Usage

```
getUnits(object, ...)
## S4 method for signature 'SpectraInTime'
getUnits(object)
```

Arguments

object a S4 class object additional parameters

getWavelengths

generic function to extract wavelengths-slot

Description

generic function to extract wavelengths-slot

Usage

```
getWavelengths(object, ...)
## S4 method for signature 'SpectraInTime'
getWavelengths(object)
```

Arguments

```
object a S4 class object additional parameters
```

includeRedundantSources 17

includeRedundantSources

Re-introduce redundant source vectors and corresponding zero abundances into final NMF result

Description

Re-introduce redundant source vectors and corresponding zero abundances into final NMF result

Usage

```
includeRedundantSources(NMFResult, seed_orig, redundantSources)
```

Arguments

NMFResult Fitted NMF model seed_orig Initial NMF model

redundantSources

boolean vector, obtained from checkForRedundantSources

Value

Final NMF model with redundant sources re-introduced

Author(s)

Nicolas Sauwen

initializeNMFModel

Initialize NMF model with initial spectral data

Description

Initialize NMF model with initial spectral data

Usage

```
initializeNMFModel(initSpectralData, spectra, wavelengths = NULL)
```

Arguments

initSpectralData

this can be a list of spectralData objects, containing the pure component spectra.

It can also be either of the NMF factor matrices with initial values

spectral spectral matrix, with wavelengths as its rows and time points as its columns

wavelengths vector of wavelength values

18 loadAllSPCFiles

lastSpectrum

Get the last spectrum

Description

Get the last spectrum

Usage

```
lastSpectrum(object, ...)
## S4 method for signature 'numeric'
lastSpectrum(object)
## S4 method for signature 'SpectraInTime'
lastSpectrum(object)
```

Arguments

object S4 object

... additional parameters

loadAllSPCFiles

Load all or a selection of SPC files from a given directory.

Description

This function automatically recognizes all the files bearing an '.spc' extension and returns a list in which each element corresponds to a different xml file.

Usage

```
loadAllSPCFiles(directoryFiles, selectedFiles = NULL)
```

Arguments

directoryFiles Character vector indicating the directory from which the files needs to be down-

loaded. Note that files with an other extension than '.spc' can be stored in this

directory.

selectedFiles Character vector listing which files of the chosen directory (as expressed by the

'directoryFiles' argument) should be processed. This argument is used when one wants to process a subset of the spc files of the selected directory only. Note that one should add the complete file name to this list, including the file extension! This is an optional argument with as default value NULL, meaning that by default all files of the selected directory are considered.

localBaselineCorrect 19

Value

A list is returned of which each element contains a processed SPC file

localBaselineCorrect local baseline correct, substract a baseline either trough 1 or 2 points

Description

local baseline correct, substract a baseline either trough 1 or 2 points

Usage

```
localBaselineCorrect(object, baseWavelengths = NULL)
```

Arguments

```
object SpectraInTime-class
baseWavelengths
```

numeric vector of 1 or 2 wavelength use to draw a baseline trough, defaults to NULL when no baseline correction is performed

Value

SpectraInTime-class with baseline subset

Author(s)

Adriaan Blommaert

Examples

20 normalize

```
nonNegativePreprocessing
```

condition datamatrix to input in and condition properly for NMF

Description

condition datamatrix to input in and condition properly for NMF

Usage

```
nonNegativePreprocessing(spectra, method = "")
```

Arguments

spectra matrix of spectra

method name of the NMF method to be used.

Details

put negative values to zero, transpose, an add small value zero row (wavelength with only zeros)

Value

matrix, with wavelengths as its rows and time points as its columns

normalize

generic normalization function

Description

generic normalization function

Usage

```
normalize(object, ...)
## S4 method for signature 'SpectraInTime'
normalize(object, method = "normalize",
   wavelengthRange = r(-Inf, Inf), wavelength = NULL, scaleFunction = "sd",
   meanFunction = NULL)
```

predictNNLS 21

Arguments

object a S4 class object additional parameters . . . method a method for normalization or peak correction, choose from: * normalize substract mean and divide by scale * peak scale by reference wavelength * integrate scale by integrating over wavelengthRange wavelengthRange range for integration if method = integration, defaults to complete range wavelength reference wavelength for peak regresssion scale function used when method = normalize defaults to sd scaleFunction meanFunction mean function used when method = normalize defaults to mean

Examples

```
spectralEx
                       <- getSpectraInTimeExample()</pre>
                                   <- range( getTimePoints( spectralEx ))</pre>
timeRange
timesToSelect
                              <- e( seq( timeRange[1] , timeRange[2] , length.out = 5 ) )</pre>
## Not run:
plot( spectralEx )
plot( spectralEx[ timesToSelect , ] , type = "time" )
## End(Not run)
                       <- normalize( spectralEx , method = "peak" , wavelength = 400 )</pre>
normalizePeak
getPreprocessing( normalizePeak )
## Not run:
plot( normalizePeak[ timesToSelect , ] , type = "time" )
plot( normalizePeak )
## End(Not run)
normalizeIntegration <- normalize( spectralEx , method = "integration" )</pre>
## Not run:
plot( normalizeIntegration[ timesToSelect , ] , type = "time" )
## End(Not run)
normalizedUser <- normalize( spectralEx , method = "normalize" , mean = "median" , scale = "sd" )</pre>
plot( normalizedUser[ timesToSelect , ] , type = "time" )
## End(Not run)
```

predictNNLS

Based on previously obtained NMF result NMFResult, estimate coefficients for a new spectralData object object using non-negative least squares fitting. The result is returned as as an NMF model.

22 preprocess

Description

Based on previously obtained NMF result NMFResult, estimate coefficients for a new spectralData object object using non-negative least squares fitting. The result is returned as as an NMF model.

Usage

```
predictNNLS(object, NMFResult)
```

Arguments

object SpectraInTime-class

NMFResult Fitted NMF model

Value

Fitted non-negative least squares result in the form of an NMF model

Author(s)

nsauwen

preprocess

generic function to preprocess an S4 object

Description

generic function to preprocess an S4 object

Usage

```
preprocess(object, with)
## S4 method for signature 'SpectraInTime,list'
preprocess(object, with)
## S4 method for signature 'SpectraInTime,SpectraInTime'
preprocess(object, with)
```

Arguments

object a S4 class object

with an other object containing preprocessing information: other S4 object, list or

expression

ProcessTimes-class 23

Examples

```
object1 <- getSpectraInTimeExample()
object2 <- getSpectraInTimeExample</pre>
```

ProcessTimes-class

S4 Class key process times

Description

S4 Class key process times

Slots

experimentName character vector with name of the experiment timeHeatingAboveMin time when experiment above minimum temperature timeStartReaction time start reaction (end of heating ramp) timeEndProcess time timeEndProcess time end of the process, when cooling down starts Tset the maximum temperature to indicate timeStartReaction comments character vector of comments when NA values are produced

Author(s)

Adriaan Blommaert

ProcessTimesFrame-class

S4 Class key process times in a data frame, every line is convertable to a ProcessTimes-class

Description

S4 Class key process times in a data frame, every line is convertable to a ProcessTimes-class

Slots

processTimes data.frame with every line process times of an experiment

Author(s)

Adriaan Blommaert

24 RangeToSubset-class

r

 $create\ a\ {\tt RangeToSubset-class}\ object\ from\ 2\ elements\ or\ from\ a\ vector$

Description

create a RangeToSubset-class object from 2 elements or from a vector

Usage

```
r(x, y)
## S4 method for signature 'numeric,numeric'
r(x, y)
## S4 method for signature 'RangeToSubset,missing'
r(x, y)
```

Arguments

x numeric value or vector of numeric values

y numeric value missing when x is a vector of values

RangeToSubset-class Ran

Range S4 class (range) useful for subsetting with actual values instead of indicators

Description

Range S4 class (range) useful for subsetting with actual values instead of indicators

Slots

range numeric vector with min and max value

Author(s)

Adriaan Blommaert

readProcessTimes 25

readProcessTimes	read .csv file as process times

Description

read .csv file as process times

Usage

```
readProcessTimes(path, timeFormat = "%Y-%m-%d %H:%M:%OS")
```

Arguments

path to the file containing process times information timeFormat character specifying time format as . POSIXct

Value

```
ProcessTimesFrame-class
```

Examples

```
readProcessTimes( getPathProcessTimesExample() , timeFormat = "%Y-%m-%d %H:%M:%S" )
```

readSPC

Read-in of a SPC file.

Description

This function is an adaptation of the 'read.spc' function of the 'hyperSpec' package: Claudia Beleites and Valter Sergo: 'hyperSpec: a package to handle hyperspectral data sets in R, R package version 0.98-20161118. http://hyperspec.r-forge.r-project.org.

Usage

```
readSPC(filename, keys.log2data = TRUE, keys.hdr2data = FALSE)
```

Arguments

keys.log2data

filename	Character vector expressing the name of the SPC file (just the name, not the
	directory)

directory).

Logical vector indicating whether the full information (consisting of additional information on the experimental conditions) needs to be parsed from the SPC

file or not (TRUE indicates that the full information should be parsed from the

SPC file). The default value is FALSE.

keys.hdr2data a character vector of header object to add to backgroundInformation

26 runNMF

Value

SpectraInTime-class

removeRedundantSources

Remove redundant sources from the initial NMF model

Description

Remove redundant sources from the initial NMF model

Usage

removeRedundantSources(seed, redundantSources)

Arguments

seed nmfModel object containing initialization of the factor matrices redundantSources

boolean vector, obtained from checkForRedundantSources

Value

nmfModel object with redundant sources removed from initial factor matrices

Author(s)

Nicolas Sauwen

runNMF

Actual NMF analysis

Description

Actual NMF analysis

Usage

```
runNMF(spectra, rank, method = "PGNMF", seed = NULL, nruns = 10,
    checkDivergence = TRUE, timePointsList = NULL, subsamplingFactor = 3)
```

saveSpectra 27

Arguments

spectral spectral input matrix, with wavelengths as its rows and time points as its columns

rank number of NMF components to be found

method name of the NMF method to be used, consult the help of the 'nmf' function from

the NMF package for the methods available by default

seed nmfModel object containing initialization of the factor matrices

nruns number of NMF runs. It is recommended to run the NMF analyses multiple

times when random seeding is used, to avoid a suboptimal solution

checkDivergence

Boolean indicating whether divergence checking should be performed, defaults

to TRUE

timePointsList list of time point vectors of the individual experiments

subsamplingFactor

subsampling factor used during NMF analysis

Value

Resulting NMF model (in accordance with the NMF package definition)

Author(s)

Nicolas Sauwen

saveSpectra

 $save\ a\ {\tt SpectraInTime-class}\ as\ a\ .\ {\tt txt}\ file$

Description

```
save a SpectraInTime-class as a .txt file
```

Usage

```
saveSpectra(object, directory, precision = 32)
readSpectra(file)
```

Arguments

object object to save

directory directory to save object

precision number of significant digits controlling precission

file to be read

28 scaleNMFResult

Value

the path to which the file is saved

Note

```
experiment name is used to save the experiment
default time formats are assumed to convert to SpectraInTime-class
some data precession is lost because of internal conversion to JSON format
```

Author(s)

Adriaan Blommaert

Examples

scaleNMFResult

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Description

Apply fixed scaling to NMF model matrices by normalizing the basis vectors

Usage

```
scaleNMFResult(NMFResult)
```

Arguments

NMFResult Fitted NMF model

Value

NMFResult Rescaled NMF model

Author(s)

Nicolas Sauwen

setExperimentName<- 29

setExperimentName<- set the experiment name</pre>

Description

set the experiment name

Usage

```
setExperimentName(object) <- value
## S4 replacement method for signature 'SpectraInTime'
setExperimentName(object) <- value
## S4 replacement method for signature 'SpectraInTime'
setTimePointsAlt(object) <- value</pre>
```

Arguments

object a S4 class object

value a vector of time points

setTimePointsAlt<- set time alternative time axis</pre>

Description

set time alternative time axis

Usage

```
setTimePointsAlt(object) <- value</pre>
```

Arguments

object a S4 class object

value a vector of time points

30 smooth

smooth

generic smoothing function

Description

```
generic smoothing function
smoothing is applied in the wavelength domain, not in the time domain
```

Usage

```
smooth(object, ...)
## S4 method for signature 'SpectraInTime'
smooth(object, method = "sg", order = 3,
  window = order + 3 - order%2, derivative = 0)
```

Arguments

object	a S4 class object
	additional parameters
method	character vector smoothing method, default = 'sg', i.e Savitsky-Golay filter. currently only implemented smoothing method
order	numeric value, order of the polynomial used to interpolate, should be larger than derivative order, defaults to 3 + derivative
window	width of the smoothing
derivative	derivative to be taken, defaults to 0

Note

equal distances between wavelenght intervals are assumed

Examples

```
spectralEx <- getSpectraInTimeExample()</pre>
smoothDefault <- smooth( spectralEx )</pre>
timeRange <- range( getTimePoints( spectralEx ))</pre>
timesToSelect <- e( seq( timeRange[1] , timeRange[2] , length.out = 5  ) )</pre>
# plot( smoothDefault )
# plot( smoothDefault[ timesToSelect , ] , type = "time")
               <- smooth( spectralEx , order = 2 , window = 301 )
smoothALot
# plot( smoothALot )
# plot( smoothALot[ timesToSelect , ] , type = "time" )
derivative1
               <- smooth( spectralEx , derivative = 1 )
# plot( derivative1 )
# plot( derivative1[ timesToSelect ,] , type = "time" )
              <- smooth( spectralEx , derivative = 2 )</pre>
derivative2
```

spectralAnalysis 31

```
# plot( derivative2 )
# plot( derivative2[  timesToSelect , ] , type = "time" )
```

spectralAnalysis: a package to read-in, pre-process, visualise and analyse spectral data

Description

spectralAnalysis: a package to read-in, pre-process, visualise and analyse spectral data

Description

The integrated value over a user-specified wavelength range is calculated (trapezium rule) per time point, afterwards smoothing over time can be applied

Usage

```
spectralIntegration(object, wavelenghtRange, smoothingValue = 0,
   timeUnit = "seconds")
```

Arguments

```
object SpectraInTime-class
wavelenghtRange
numeric vector of 2 elements i.e. integration limits
smoothingValue
numeric value between 0 and 1, amount of codelowess-smoothing, default to 0
i.e no smoothing. Note that smoothing is applied after integration
timeUnit character value, choose between: second , minutes and hours, defaults to seconds
```

Value

data.frame with variables time and integratedValue

Examples

32 spectralNMF

spectralNMF	Perform Non-Negative Matrix factorization on spectral data	

Description

Perform Non-Negative Matrix factorization on spectral data

Usage

```
spectralNMF(object, rank, method = "PGNMF", initSpectralData = NULL,
nruns = 10, subsamplingFactor = 3, checkDivergence = TRUE)
```

Arguments

object SpectraInTime-class

rank number of NMF components to be found

method name of the NMF method to be used. "PGNMF" (default), "HALSacc" and

"semiNMF" are methods derived from the hNMF package. All methods from

the NMF package are also available.

initSpectralData

this can be a list of spectralData objects, containing the pure component spectra.

It can also be either of the NMF factor matrices with initial values

nruns number of NMF runs. It is recommended to run the NMF analyses multiple

times when random seeding is used, to avoid a suboptimal solution

subsamplingFactor

subsampling factor used during NMF analysis

checkDivergence

Boolean indicating whether divergence checking should be performed

Value

Scaled NMF model (in accordance with the NMF package definition)

Author(s)

Nicolas Sauwen

spectralNMFList 33

		— .	
spect	ralN	MEL	ist

Perform Non-Negative Matrix factorization on list of SPC files

Description

Perform Non-Negative Matrix factorization on list of SPC files

Usage

```
spectralNMFList(objectList, rank, method = "PGNMF", initSpectralData = NULL,
nruns = 10, subsamplingFactor = 3, checkDivergence = TRUE)
```

Arguments

objectList list of SPC files

rank number of NMF components to be found

method name of the NMF method to be used, consult the help of the 'nmf' function from

the NMF package for the methods available by default

initSpectralData

list of SPC files containing pure component spectra

nruns number of NMF runs.

subsamplingFactor

subsampling factor used during NMF analysis

checkDivergence

Boolean indicating whether divergence checking should be performed

Value

list of NMF models

Author(s)

Nicolas Sauwen

subset-methods

Subsetting SpectraInTime-class

Description

Subsetting SpectraInTime-class

34 timeAlign

Usage

```
## S4 method for signature 'SpectraInTime, ANY, ANY,
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, missing, ANY, ANY'
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, ANY, missing, ANY'
x[i, j, ..., drop = ""]

## S4 method for signature 'SpectraInTime, missing, missing, ANY'
x[i, j, ..., drop = ""]
```

Arguments

- x object to subset
 i subsetting rows (timePoints)
 j subsetting columns (wavelengths)
 ... additional parameters
 - timeUnit unit at which subsetting should be done choose between seconds , minutes or hours defaults to seconds
 - timePointsAlt logical indicators whater alternative timePoints should be used

drop for consistancy, not used

Examples

timeAlign

Time align first object, using info in the second object

Description

Time align first object, using info in the second object

timeAlign 35

Usage

```
timeAlign(x, y, ...)
## S4 method for signature 'SpectraInTime,ProcessTimes'
timeAlign(x, y, cutCooling = FALSE,
    cutBeforeMinTemp = FALSE)

## S4 method for signature 'list,ProcessTimesFrame'
timeAlign(x, y, cutCooling = FALSE,
    cutBeforeMinTemp = FALSE)

## S4 method for signature 'list,character'
timeAlign(x, y, cutCooling = FALSE,
    cutBeforeMinTemp = FALSE, timeFormat = "%Y-%m-%d %H:%M:%S")
```

Arguments

x and S4 object to be aligned
y object to use time information from
... additional arguments
cutCooling logical indicator if TRUE observation after cooling starts are cut off, defaults to FALSE
cutBeforeMinTemp logical indicator if TRUE observation before minimum temperature are cut off, defaults to FALSE
timeFormat character vector specifying time format as .POSIXct

Examples

36 wavelengthAlign

upsampleNMFResult

Upsample NMF result to original temporal resolution

Description

Upsample NMF result to original temporal resolution

Usage

```
upsampleNMFResult(NMFResult, timePoints, subsamplingFactor, shift = 0)
```

Arguments

NMFResult Fitted NMF model timePoints Original time points

subsamplingFactor

Subsampling factor

shift

Integer that correctly shifts subsampling index when applying NMF to multiple

experiments

Value

Upsampled NMF model

Author(s)

Nicolas Sauwen

wavelengthAlign

Align SpectraInTime objects with differing wavelength axes to a common wavelength axis using cubic spline interpolation.

Description

Align SpectraInTime objects with differing wavelength axes to a common wavelength axis using cubic spline interpolation.

Usage

```
wavelengthAlign(ref, toAlign)
## S4 method for signature 'SpectraInTime, SpectraInTime'
wavelengthAlign(ref, toAlign)
## S4 method for signature 'SpectraInTime, list'
wavelengthAlign(ref, toAlign)
```

wavelengthAlign 37

Arguments

ref SpectraInTime-class object with the reference wavelength vector

toAlign SpectraInTime-class object(s) to be aligned. This can either be a single Spec-

traInTime object or a list of SpectraInTime objects. In case of a list, all objects

in the list should have the same wavelength axis.

Value

List of aligned SpectraInTime objects, including the reference object.

Index

[,SpectraInTime,ANY,ANY,ANY-method	ElementsToSelect-class, 7, 7
(subset-methods), 33	
[,SpectraInTime,ANY,ANY-method	firstSpectrum, 8
(subset-methods), 33	firstSpectrum,numeric-method
[,SpectraInTime,ANY,missing,ANY-method	(firstSpectrum), 8
(subset-methods), 33	firstSpectrum,SpectraInTime-method
[,SpectraInTime,ANY,missing-method (subset-methods), 33	(firstSpectrum), 8
[,SpectraInTime,missing,ANY,ANY-method	${ t getDefaultSumFunc, 8}$
(subset-methods), 33	${\tt getDefaultTimeFormat}, 9$
[,SpectraInTime,missing,ANY-method	getElements, 9
(subset-methods), 33	<pre>getElements,ElementsToSelect-method</pre>
[,SpectraInTime,missing,missing,ANY-method	(getElements), 9
(subset-methods), 33	getExperimentName, 10
[,SpectraInTime,missing,missing-method	<pre>getExperimentName,SpectraInTime-method</pre>
(subset-methods), 33	(getExperimentName), 10
[,SpectraInTime-method	getExtraInfo, 10
(subset-methods), 33	<pre>getExtraInfo,SpectraInTime-method</pre>
[ProcessTimes, SpectraInTime-method	(getExtraInfo), 10
(checkCompatible), 4	<pre>getListOfSpectraExample, 11</pre>
[SpectraInTime, ProcessTimes-method	getNMFInputMatrix, 11
(checkCompatible), 4	<pre>getPathProcessTimesExample, 12</pre>
, , , , , , , , , , , , , , , , , , , ,	getPreprocessing, 12
as.POSIXct, 25, 35	<pre>getPreprocessing,SpectraInTime-method (getPreprocessing), 12</pre>
baseline, 4	getProcessTimesExample, 12
baseline.modpolyfit,4	getProcessTimesExample, 12 getProcessTimesFrameExample, 13
baselineCorrect, 3	getRange, 13
baselineCorrect,SpectraInTime-method	getRange, 13 getRange, RangeToSubset-method
(baselineCorrect), 3	(getRange), 13
checkCompatible, 4	getSpectra, 14
checkCompatible,ProcessTimes,SpectraInTime-	meen Spectral 11 Intermethod
<pre>(checkCompatible), 4</pre>	(getSpectra), 14
checkCompatible,SpectraInTime,ProcessTimes-	methodpectraini illetxallipie, 12, 14
(checkCompatible), 4	getstartime, 15
checkForRedundantSources, 5, 17, 26	getStartTime,SpectraInTime-method
checkIdenticalClass, 6	(getStartTime), 15
computeNMFResidu, 6	getTimePoints, 15
- 7	getTimePoints,SpectraInTime-method
e, 7	(getTimePoints), 15

INDEX 39

getUnits, 16	save (saveSpectra), 27
<pre>getUnits,SpectraInTime-method</pre>	saveSpectra, 27
(getUnits), 16	scaleNMFResult, 28
getWavelengths, 16	sd, <i>21</i>
getWavelengths,SpectraInTime-method	setExperimentName<-, 29
(getWavelengths), 16	<pre>setExperimentName<-,SpectraInTime-method</pre>
includeRedundantSources, 17	setTimePointsAlt<-, 29
initializeNMFModel, 17	<pre>setTimePointsAlt<-,SpectraInTime-method (setExperimentName<-), 29</pre>
lastSpectrum, 18	smooth, 30
lastSpectrum, numeric-method	smooth, SpectraInTime-method (smooth), 30
(lastSpectrum), 18	SpectraInTime-class, 14, 27, 33
lastSpectrum, SpectraInTime-method	spectralAnalysis, 31
(lastSpectrum), 18	spectralAnalysis-package
loadAllSPCFiles, 18	(spectralAnalysis), 31
localBaselineCorrect, 19	spectralIntegration, 31
lowess, <i>31</i>	spectralNMF, 32
	spectralNMFList, 33
mean, <i>21</i>	subset-methods, 33
	Subset methods, 33
nonNegativePreprocessing, 20	TemperatureInfo (ProcessTimes-class), 23
normalize, 20	temperatureInfo (ProcessTimes-class), 23
normalize, SpectraInTime-method	temperatureinfo (ProcessTimes-class), 23
(normalize), 20	timeAlign, 34
(1.61.1162220), 20	timeAlign,list,character-method
predictNNLS, 21	(timeAlign), 34
preprocess, 22	timeAlign,list,ProcessTimesFrame-method
preprocess, SpectraInTime, list-method	(timeAlign), 34
(preprocess), 22	timeAlign, SpectraInTime, ProcessTimes-method
preprocess, SpectraInTime, SpectraInTime-metho	
(preprocess), 22	(CIMEALIGH), 54
ProcessTimes (ProcessTimes-class), 23	upsampleNMFResult, 36
ProcessTimes-class, 12, 23, 23	wavelengthAlign, 36
ProcessTimesFrame-class, 13, 23	wavelengthAlign,SpectraInTime,list-method
- 24	(wavelengthAlign), 36
r, 24	wavelengthAlign,SpectraInTime,SpectraInTime-method
r, numeric, numeric-method (r), 24	(wavelengthAlign), 36
r, RangeToSubset, missing-method (r), 24	(wavelengennillgin), 30
RangeToSubset (RangeToSubset-class), 24	
Rangetosubset (RangeToSubset-class), 24	
rangetosubset (RangeToSubset-class), 24	
RangeToSubset-class, 24, 24	
read (saveSpectra), 27	
readProcessTimes, 25	
readSPC, 25	
readSpectra (saveSpectra), 27	
removeRedundantSources, 26	
runNMF, 26	