```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
```

In [2]: df=pd.read_csv(r"C4_framingham.csv")
 df

ut[2]:		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp
	0	1	39	4.0	0	0.0	0.0	0	0
	1	0	46	2.0	0	0.0	0.0	0	0
	2	1	48	1.0	1	20.0	0.0	0	0
	3	0	61	3.0	1	30.0	0.0	0	1
	4	0	46	3.0	1	23.0	0.0	0	0
	4233	1	50	1.0	1	1.0	0.0	0	1
	4234	1	51	3.0	1	43.0	0.0	0	0
	4235	0	48	2.0	1	20.0	NaN	0	0
	4236	0	44	1.0	1	15.0	0.0	0	0
	4237	0	52	2.0	0	0.0	0.0	0	0
	4238 r	ows ×	16 co	olumns					

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype				
0	male	4238 non-null	int64				
1	age	4238 non-null	int64				
2	education	4133 non-null	float64				
3	currentSmoker	4238 non-null	int64				
4	cigsPerDay	4209 non-null	float64				
5	BPMeds	4185 non-null	float64				
6	prevalentStroke	4238 non-null	int64				
7	prevalentHyp	4238 non-null	int64				
8	diabetes	4238 non-null	int64				
9	totChol	4188 non-null	float64				
10	sysBP	4238 non-null	float64				
11	diaBP	4238 non-null	float64				
12	BMI	4219 non-null	float64				
13	heartRate	4237 non-null	float64				
14	glucose	3850 non-null	float64				
15	TenYearCHD	4238 non-null	int64				
dtypos: $float64(0) int64(7)$							

dtypes: float64(9), int64(7)
memory usage: 529.9 KB

In [4]: df=df.dropna()

In [5]: df.describe()

Out[5]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevale
count	3656.000000	3656.000000	3656.000000	3656.000000	3656.000000	3656.000000	3656
mean	0.443654	49.557440	1.979759	0.489059	9.022155	0.030361	(
std	0.496883	8.561133	1.022657	0.499949	11.918869	0.171602	(
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	(
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	(
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	(
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	(
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	,
4							>

```
In [7]: | df.columns
```

```
In [8]: df1=df[['male', 'age', 'education', 'currentSmoker', 'cigsPerDay', 'BPMeds',
                 prevalentStroke', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',
                 'diaBP', 'BMI', 'heartRate', 'glucose', 'TenYearCHD']]
In [20]: x=df1[['age', 'education', 'currentSmoker', 'cigsPerDay', 'BPMeds',
                 'prevalentStroke', 'prevalentHyp', 'diabetes', 'totChol', 'sysBP',
                 'diaBP', 'BMI', 'heartRate', 'glucose', 'TenYearCHD']]
         y=df1['male']
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         lr=LogisticRegression()
         lr.fit(x train,y train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
         ession)
           n iter i = check optimize result(
Out[20]: LogisticRegression()
In [21]: |lr.predict(x_test)
Out[21]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [22]: |lr.score(x_test,y_test)
Out[22]: 0.6918869644484958
In [23]: | from sklearn.preprocessing import StandardScaler
         fs=StandardScaler().fit transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
Out[23]: LogisticRegression()
In [24]: o=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]]
         prediction=logr.predict(o)
         print(prediction)
         [1]
In [25]: logr.classes
Out[25]: array([0, 1], dtype=int64)
```

```
In [26]: logr.predict_proba(o)[0][0]
Out[26]: 0.023655703523128735
In [27]: logr.predict_proba(o)[0][1]
Out[27]: 0.9763442964768713
In [ ]:
```