

Power Capping what works, what does not

Pavlos Petoumenos

Lev Mukhanov, Zheng Wang Hugh Leather, Dimitrios S. Nikolopoulos

Fan et al. Power provisioning for a warehouse-sized computer. ISCA '07

warehouse-sized computer. ISCA '07

warehouse-sized computer. ISCA '07

warehouse-sized computer. ISCA '07

Power Capping - DFS

Power Capping - DFS

Power Capping - DVFS

Power Capping - RAPL

Power Capping - Forced Idleness

Power Capping - Forced Idleness

Power Capping - Forced Idleness

Power Capping - Thread Packing

Power Capping - Thread Packing

Power Capping - NOP Insertion

Power Capping - NOP Insertion


```
label1:
instr_1
instr_2
nop
nop
instr_3
instr_4
jmp label1
```

Power Capping - Compiler assisted

Power Capping - Compiler assisted

Power Capping - Compiler assisted

With multiple transformations:

Evaluation

Effectiveness

Overhead

Predictability

Optimal strategy?

Effectiveness

Predictability - Power

Predictability - Power

Predictability - Performance

Predictability - Performance

Predictability - Performance

Thread Packing

Thread Packing

Thread Packing

Thread Packing

Thread Packing

Thread Packing

Thread Packing

Thread Packing

10x Speedup!

Conclusions

Thank you!

Effectiveness - all

Power predictability - Errors

Runtime vs Power Limit - all

