MTH 312 Homework 2

Philip Warton

April 17, 2020

(1) 6.3.2

Let
$$h_n(x) = \sqrt{x^2 + \frac{1}{n}}$$
.

(a)

Find the pointwise limit of h_n and prove that it converges uniformly.

$$\lim_{n \to \infty} h_n(x) = h(x) = \sqrt{x^2}$$

Before proving uniform convergence let us do some scratch work. Let a and b be real non-negative numbers. We know that $\sqrt{a+b}\leqslant \sqrt{a}+\sqrt{b}$ by the triangle inequality. Since $\sqrt{a}\leqslant \sqrt{a+b}$, and of course $-\sqrt{b}\leqslant 0$, it follows that

$$\sqrt{a} - \sqrt{b} \leqslant \sqrt{a+b} \leqslant \sqrt{a} + \sqrt{b}$$

Which is equivalent to the statement

$$\left| \sqrt{a+b} - \sqrt{a} \right| \leqslant \left| \sqrt{b} \right|$$

Proof. Let $\epsilon>0$ be arbitrary. Then let $N>\frac{1}{\epsilon^2}.$ Then for all $n\geqslant N,$ $\sqrt{\frac{1}{n}}<\epsilon.$

$$|h_n(x) - h(x)| = \left| \sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2} \right| \leqslant \sqrt{\frac{1}{n}} < \epsilon$$

(b)

Take the derivative of $h_n(x)$ and we get

$$h_n'(x) = \frac{x}{2\sqrt{x^2 + \frac{1}{n}}}$$

Note that $h'_n(0) = \frac{0}{2\sqrt{\frac{1}{n}}}$ for every natural number n. Since $\lim_{n\to\infty}\frac{1}{n}=0$, we say that

$$\lim_{n \to \infty} h'_n(x) = g(x) = \begin{cases} \frac{x}{2\sqrt{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Since the pointwise limit g(x) is not continuous at 0, it follows that $h'_n(x)$ cannot converge uniformly on any neighborhood of 0. This is the case because continuity is preserved under uniform convergence, yet each h'_n is continuous while g is not.

(2) 6.3.5

Let
$$g_n(x) = \frac{nx + x^2}{2n}$$
.

(a)

We can take the limit of $g_n(x)$ to be

$$\lim_{n \in \mathbb{N}} g_n(x) = \lim_{n \in \mathbb{N}} \frac{nx + x^2}{2n}$$

$$= \lim_{n \in \mathbb{N}} \frac{nx}{2n} + \lim_{n \in \mathbb{N}} \frac{x^2}{2n}$$

$$= \lim_{n \in \mathbb{N}} \frac{x}{2} + x^2 \lim_{n \in \mathbb{N}} \frac{1}{2n}$$

$$= \frac{x}{2} + x^2(0)$$

$$= \frac{1}{2}x$$

And thus we say,

$$\lim g_n(x) = g(x) = \frac{1}{2}x$$

Then we can use the power rule to compute the derivative

$$g'(x) = \frac{1}{2}$$

(b)

We want to show that $g'_n(x)$ converges uniformly on every interval [-M, M].

Proof. Let us first compute what g'_n is. We know $g_n(x) = \frac{nx + x^2}{2n}$. Then since the function is continuous and differentiable on all of $\mathbb R$ we can use familiar rules such as the seperation and the power rules. We determine that $g'_n(x) = \frac{n+x}{2n}$. Now taking the pointwise limit we get $g(x) = \frac{1}{2}$. Let $M > 0, \epsilon > 0$ be arbitrary. Choose $N > \frac{M}{2\epsilon}$. Then for all $n \geqslant N$, $\frac{M}{2n} < \epsilon$ hence,

$$|g'_n(x) - g(x)| = \left| \frac{n+x}{2n} - \frac{1}{2} \right| = \left| \frac{1}{2} + \frac{x}{2n} - \frac{1}{2} \right| = \left| \frac{x}{2n} \right| \le \left| \frac{M}{2n} \right| < \epsilon$$

This is true so long as $|x| \leq M$. Therefore on the interval $[-M, M], g'_n$ converges uniformly.

Choose the point x=0, then $x\in [-M,M]$. Also for all $n\in \mathbb{N}$, $g_n(0)=\frac{n(0)+(0)^2}{2n}=0$. This of course converges to g(0)=0. By Theorem 6.3.3 (f_n) converges uniformly and the limit function $f=\lim f_n$ is differentiable. Also by this theorem we conclude that $g'=\lim g'_n$.