CS70 Map

CS70 Map: Logic and Proofs

CS70 Map: Logic and Proofs

Q1: Logic (Review)

Logical Symbols: Negation (\neg), AND (Λ), OR (\vee)

Quantifiers: Existential Quantifier (∃), Universal Quantifier (∀)

Implications: $(P \Rightarrow Q) \equiv (\neg P \lor Q)$

Equivalence (\equiv): You can think of it as iff (\Leftrightarrow)¹

 $^{^{1}}$ ≡ and ⇔ aren't exactly the same, but we wouldn't be too strict about this detail in this course. Checkout <u>this</u>. In general, when you proofs, use ⇔ instead of ≡ if both directions hold.

Q2: Contraposition

Goal: To prove $P \Rightarrow Q$

Approach:

Assume ¬ Q.

• • •

Therefore \neg P.

Conclusion: $(\neg Q \Rightarrow \neg P) \equiv (P \Rightarrow Q)$

Q3: Perfect Square (Direct Proof)

Goal: To prove $P \Rightarrow Q$

Approach:

Assume P.

• • •

Therefore Q.

Conclusion: $P \Rightarrow Q$

Q4: Number of Friends (Contradiction)

Goal: To prove P.

Approach:

Assume ¬ P.

... R ...

... ¬ R.

Conclusion: $\neg P \Rightarrow (R \land \neg R)$. Contradiction. Thus, P.

contraposition ≈ direct proof + contradiction. This is what I meant:

```
Goal: To prove P ⇒ Q.

Approach:

Assume P.

Assume ¬ Q.

... ¬ P.

Thus Q.
```

Conclusion: $P \Rightarrow Q$.

```
Contraposition:

Goal: To prove P ⇒ Q.

Approach:

Assume P.

Assume ¬ Q.

... ¬ P.

Thus Q.

Conclusion: P ⇒ Q.
```

```
Direct Proof:

Goal: To prove P ⇒ Q.

Approach:

Assume P.

Assume ¬ Q.

... ¬ P.

Thus Q.

Conclusion: P ⇒ Q.
```

Contradiction:

Goal: To prove $P \Rightarrow Q$.

Approach:

Assume P. Goal inherent from direct proof: Want to prove Q.

Assume ¬ Q.

... ¬ P.

This contradicts with the assumption P.

Thus Q.

Conclusion: $P \Rightarrow Q$.

So, understand the proof techniques, not just remember the names.

Q5: Fermat's Contradiction

Try it on your own:)

Extra Practice: Proof by Cases

Prove that if n is an integer, then $3n^2 + n + 14$ is even.