문제점 개요서

Project	
Name	Fuzz Testing을 통한 위성 SW 분석
Name	

05 조

202002473 김승혁 201902733 이정윤

202002699 조민기

지도교수: 이성호 교수님

Document Revision History

Rev#	DATE	AFFECIED SECTION	Author
1	2025/03/18	초고작성	김승혁
2	2025/03/19	2. 내용 수정	이정윤

Table of Contents

1.	SURVEY PAPER - LIMITATIONS FOCUS	
2	LIMITATIONS AND RESEARCH GAPS	6

List of Figure

그림 목차 항목을 찾을 수 없습니다.

1. Survey Paper - Limitations Focus

번	연구 제목(저자)	저널/컨퍼런스	주요 내용 요약	한계점
호		(연도)		
1	Scaling Software Security	USENIX	위성 소프트웨어의 보안 취약점을 분석하는 데 자동화된 퍼징	특정 위성 시스템(ESTCube-1, OPS-Sat 등)에
	Analysis to Satellites:	Security	(Fuzz Testing) 기법을 도입하는 방법을 연구한다. 기존 수작	초점을 맞추어 연구 결과의 범용성이 부족했
	Automated Fuzz Testing	Symposium	업 방식의 보안 분석이 확장성이 떨어지는 문제를 해결하기 위	다. 또한, 연구의 목적이 보안 분석에 국한되
	and Its Unique Challenges	(2024)	해 퍼징을 적용하고, 실제 위성(ESTCube-1, OPS-Sat, Flying	어 있어, 일반적인 소프트웨어 결함(버그) 탐
			Laptop)에서 발생할 수 있는 문제들을 분석한다.	색에는 충분히 활용되지 않았다.
2	Systematic Fuzz Testing	IEEE ACCESS	CubeSat과 같은 나노위성의 비행 소프트웨어에 퍼징 기법을	연구가 CubeSat의 특정 비행 소프트웨어
	Techniques on a	(2021)	적용하여 결함을 자동으로 발견하는 방법을 연구한다. 테스트	(SUCHAI)에 한정되어 있어 연구 결과의 범용성
	Nanosatellite Flight		는 University of Chile의 SUCHAI-II, SUCHAI-III, PlantSat 위	이 부족했다. 또한, Fuzz Testing 과정에서
	Software for Agile		성 소프트웨어에 적용되었으며, 기존 테스트 방식보다 빠르게	Code Coverage에 대한 분석 및 개선에 대한 내
	Mission Development		12개의 결함을 발견하고 수정할 수 있음을 보여준다.	용이 부족했다.
3	Analysis of Vulnerabilities	IEEE Military	NASA 의 오픈소스 위성 운영 소프트웨어인 core Flight	cFS 기반 오픈소스 위성 소프트웨어의
	in Satellite Software Bus	Communications	System(cFS)의 보안 취약점을 분석한다. 특히, 소프트웨어	취약점을 분석했지만, 연구 범위가 보안
	Network Architecture	Conference	버스(SB)를 이용한 통신 구조에서 인증이 부족하여 공격자가	이슈에 국한되어 있으며, Fuzz Testing 과 같은
		(2022)	쉽게 명령을 실행할 수 있다는 점을 강조하며, 네 가지 주요	자동화된 결함 탐색 기법을 활용하지 않았다.
			공격 사례를 시연하고 이에 대한 보안 강화 방안을 제안한다.	또한, 특정 시스템(cFS) 및 통신 구조에 초점을
				맞추었기 때문에 다른 위성 소프트웨어에도
				적용 가능한 범용적인 분석이 부족하다.

종합설계 1

2. Limitations and Research Gaps

번	기존 연구	한계점	연구 필요성	본 연구의 기여
호				
1	Scaling Software Security	특정 위성 시스템(ESTCube-1, OPS-Sat	특정 위성 시스템이 아닌, 오픈소스	본 연구는 특정 오픈소스 위성 소프트웨어를
	Analysis to Satellites:	등)에 초점을 맞추어 연구 결과의 범용	소프트웨어에 대한 연구가 필요하며,	선정하여 퍼징을 수행하고, 보안 취약점뿐만
	Automated Fuzz Testing	성이 부족했다. 또한, 연구의 목적이	보안 분석이 아닌 일반적인 소프트웨어	아니라 일반적인 소프트웨어 버그를 자동으로
	and Its Unique Challenges	보안 분석에 국한되어 있어, 일반적인	결함(버그)를 효과적으로 찾기 위한 연	탐색함으로써, 퍼징 기법이 오픈소스 위성 소
		소프트웨어 결함(버그) 탐색에는 충분	구가 필요하다.	프트웨어 개발 과정에서 결함 탐지에 효과적임
		히 활용되지 않았다.		을 보인다.
2	Systematic Fuzz Testing	연구가 CubeSat의 특정 비행 소프트웨	특정 위성 시스템이 아닌, 오픈소스	본 연구는 특정 오픈소스 위성 소프트웨어를
	Techniques on a	어(SUCHAI)에 한정되어 있어 연구 결과	소프트웨어에 대한 연구가 필요하며,	선정하여 퍼징을 수행하고, Code Coverage 개
	Nanosatellite Flight	의 범용성이 부족했다. 또한, Fuzz	Fuzz Testing에서 Code Coverage를 중	선을 중점으로 연구하여, 기존 보다 더 넓은
	Software for Agile	Testing 과정에서 Code Coverage에 대	점으로 성능을 개선한 연구가 필요하	범위에서 버그를 효율적으로 찾아낼 수 있음을
	Mission Development	한 분석 및 개선에 대한 내용이 부족했	다.	보인다.
		다.		
3	Analysis of Vulnerabilities	cFS 기반 오픈소스 위성 소프트웨어의	통신 구조 및 보안 분석이 아닌 위성	본 연구는 보안 및 통신 구조에 국한되지 않
	in Satellite Software Bus	취약점을 분석했지만, 연구 범위가 보	소프트웨어의 전반적인 영역에서 효과	고, Fuzz Testing을 통한 자동화 탐색으로 전반
	Network Architecture	안 이슈에 국한되어 있으며, Fuzz Testing	적으로 결함을 찾기 위한 연구가 필요	적인 영역에서 효율적으로 소프트웨어 버그를
		과 같은 자동화된 결함 탐색 기법을 활	하다.	찾아낼 수 있음을 보인다.
		용하지 않았다. 또한, 통신 구조에 초점		
		을 맞추었기 때문에 다른 위성 소프트		
		웨어에도 적용 가능한 범용적인 분석이		
		부족하다.		