

Intro lesson

Charlie Beirnaert

Thomas More University of Applied Sciences Business School Data Science, Protection & Security Data Science Advanced

Welcome!

Practicalities

This Lesson

Machine Learning overview Focus of this course Example

Welcome!

Practicalities

This Lesson

Machine Learning overview Focus of this course Example

Practicalities: lessons

- ▶ 3 hours lecture per week
- each lecture (except this one) contains:
 - ► A quiz
 - Theory part (I talk and draw on the board, you ask as many questions as you like).
 - DIY part (python, I work in Jupyter notebooks)
 - Some things to read/look at before next lesson (tested in the next lesson quiz)
- Attendance is not compulsory but strongly advised, most theory is given by me talking

Course Material (Canvas)

- Slides
- Project asssignment (on Canvas)
- Exercises (on Canvas)
- Example analysis notebooks

Evaluation Criteria

First exam opportunity

- 30% on permanent evaluation
 - Quizes each lecture
 - Small take home assignments (usually when progress in class is slow, so up to you how many)
 - ▶ 1 or 2 bigger take home assignments
 - ▶ 1 large project (end of semester)
- ▶ 70% oral exam (theory + maybe some questions on your large project)

Retake

▶ 100 % project + oral exam

Lesson Topics

Exploratory data analysis	Machine Learning
Pre-Processing	Performance evaluation
Data Leakage	Cross-Validation
	Feature Selection
	Forecasting

Welcome!

Practicalities

This Lesson

Machine Learning overview

Focus of this course Example

Al vs ML

Before we start:

Source: levity.ai

Al vs ML

Before we start:

Source: softwaretestinghelp

Different types of learning

- Unsupervised Learning
- Supervised Learning (focus of this course)
- Reinforcement Learning

A short and very incomplete overview of Machine Learning

Many different types of ML aims:

- clustering (unsupervised)
- computer vision (detecting cancer in images, self driving cars)
- Natural Language Processing (Lernout & Hauspi / Alexa / Siri)
- Classification (binary / multi-class)
- ► Recommender systems

Welcome!

Practicalities

This Lesson

Machine Learning overview

Focus of this course

Example

Binary Classification

- Supervised ML (Labels are known in learning phase)
- Aims to predict labels of new data
- Matrix format of data (rows X features)

Welcome!

Practicalities

This Lesson

Machine Learning overview Focus of this course

Example

Example

Figure: This is a flower

See Canvas notebooks for ML example

Welcome!

Practicalities

This Lesson

Machine Learning overview Focus of this course Example

That's it!

By next lesson, read the following sources

- https://towardsdatascience.com/ exploratory-data-analysis-8fc1cb20fd15
- https://www.itl.nist.gov/div898/handbook/eda/ section1/eda11.htm
- https:
 //r4ds.had.co.nz/exploratory-data-analysis.html
 (this is in R, ideas still hold for python where you can make
 similar plots)

