

Der Mainframe gestern, heute und morgen!

Klaus-Dieter Müller kmuller@de.ibm.com

Januar 2009

The Future Runs on System z

© 2008 IBM Corporation

The Global Technology Outlook (GTO 2007)

"I think there is a world market for maybe five computers."

Thomas Watson, chairman of IBM, 1943

"Computers in the future may weigh no more than 1.5 tons."

Popular Mechanics, 1949

Ken Olsen, founder of DEC, 1977

"640K ought to be enough for anybody."

Bill Gates, 1981

"Prediction is difficult, especially about the future"

Yogi Berra

Von 'System/360' (S/360) zu ESA/390 und z/-Architektur

- 1964 S/360
 - CISC, 24bit Adressierung, 'Real Storage', Uniprozessoren
 - Amdahl, G.M., Blaauw, G.A., and Brooks, F.P.: Architecture of the IBM System/360
- 1971 S/370
 - Virtual Storage', Multiprozessor-Unterstützung, ...
- 1981 S/370 XA (E<u>x</u>tended <u>A</u>rchitecture)
 - 31bit Adressierung (2GB), 'Expanded Storage' (>2GB), 'Channel Subsystem'
 - 'Interpretive Execution': Basis für <u>Logische Partitionierung</u> ('LPAR')
- 1988 ESA/370
 - ESA = Enterprise Systems Architecture, Logische Partitionierung
 - Ausbau der Speicher-Zugriffsmethoden: Mehr als ein 'address space'
- 1990 ESA/390
 - 'ESCON' (<u>Enterprise Systems Connection Architecture</u>) Glasfasertechnologie ...
 - Datenkompression, Kryptographie, LPAR Erweiterungen
- 1994 Parallel Sysplex, Übergang von Bipolar zu CMOS Technologie
 - 'Coupling Facility', Cluster von bis zu 32 x 16-way MultiProzessoren
 - 'FICON' (<u>Fi</u>ber Channel <u>Con</u>nectivity), Ausbau der Glasfasertechnologie
- 2000 z/-Architektur (64-bit), z900, z800, z990(2003), z890(2004), z9 EC(2005), z9 BC(2006)
- 2008 z10 EC, z10 BC

IBM z10 EC Continues the CMOS Mainframe Heritage

- G4 1st full-custom CMOS S/390®
- G5 IEEE-standard BFP; branch target prediction
- G6 Cu BEOL

- IBM eServer zSeries 900 (z900) Full 64-bit z/Architecture®
- IBM e Server zSeries 990 (z990) Superscalar CISC pipeline
- z9 EC System level scaling

z10 EC - Architectural extensions

IBM z10 BC continues the CMOS Mainframe heritage

[•] Multiprise 2000 - 1st full-custom Mid-range CMOS S/390

Multiprise 3000 – Internal disk, IFL introduced on midrange

[■] IBM eServer zSeries 800 (z800) - Full 64-bit z/Architecture®

[■] IBM eServer zSeries 890 (z890) - Superscalar CISC pipeline

z9 BC - System level scaling

z10 BC - Architectural extensions

Higher frequency CPU

Mainframe Growth

Do GHz matter?

- GHz does matter
 - It is the "rising tide that lifts all boats"
 - It is especially important for CPU-intensive applications
- GHz is not the only dimension that matters
 - System z focus is on balanced system design across many factors
 - Frequency, pipeline efficiency, energy efficiency, cache / memory design, I/O design
- System performance is not linear with frequency
 - Need to use LSPR + System z capacity planning tools for real client / workload sizing
- System z has been on consistent path while others have oscillated between extremes
 - Growing frequency steadily, with occasional jumps/step functions (G4 in 1997, z10 in 2008)
- z10 leverages technology to get the most out of high-frequency design
 - Low-latency pipeline
 - Dense packaging (MCM) allows MRU cooling which yields more power-efficient operation
 - Virtualization technology (etc.) allows consistent performance at high utilization, which makes CPU power-efficiency a much smaller part of the system/data-center power consumption picture

z10 EC Architecture

- Continues line of upward-compatible mainframe processors
- Rich CISC Instruction Set Architecture (ISA)
 - 894 instructions (668 implemented entirely in hardware)
 - 24, 31, and 64-bit addressing modes
 - Multiple address spaces robust inter-process security
 - Multiple arithmetic formats
 - Industry-leading virtualization support
 - High-performance logical partitioning via PR/SM
 - Fine-grained virtualization via z/VM scales to 1000's of images
 - Precise, model-independent definition of hardware/software interface
- Architectural extensions for IBM z10 EC
 - 50+ instructions added to improve compiled code efficiency
 - Enablement for software/hardware cache optimization
 - Support for 1MB page frames
 - Full hardware support for Hardware Decimal Floating-point Unit (HDFU)

IBM System z: System Design Comparison

Protecting your investment in IBM technology

 Designed to protect your investment by offering upgrades from z9 EC and z990 to the z10 EC

- Full upgradeability within the System z10 family
 - Upgrade to Model E64 will require a planned outage
- Temporary or permanent growth when you need it
 - New provisioning architecture

"Top 10" values of System z

- 1. RAS, RAS, RAS
- 2. Throughput
- 3. Scalability
- 4. Automated Management
- 5. Built-in Security
- 6. Hub for SOA
- 7. Hub for Data
- 8. Virtualization & Flexibility
- 9. Open Standards
- 10. Pre-integration

System z – The Ultimate Virtualization Resource

- Massive, robust consolidation platform; virtualization is built in, not added on
- Up to 60 logical partitions on PR/SM; 100's to 1000's of virtual servers on z/VM
- Virtual networking for memory-speed communication, as well as virtual layer 2 and layer 3 networks supported by z/VM
- Most sophisticated and complete hypervisor function available
- Intelligent and autonomic management of diverse workloads and system resources based on business policies and workload performance objectives

