

2. ANALYSE EXPLORATOIRE ET TRANSFORMATION DES DONNÉES

3. SYNTHÈSE DES DIFFÉRENTS MODÈLES

1. CONTEXTE DU PROJET

Le société de e-commerce Olist souhaite connaître les différents types de client de leur site ainsi que leur comportement et habitudes afin d'effectuer des campagnes marketing ciblées.

Pour cela, le jeu de données comprenant les commandes effectuées sur le site ainsi que le fichier des clients et des paiements serviront à effectuer une segmentation des clients.

2. ANALYSE EXPLORATOIRE ET TRANSFORMATION DES DONNÉES

Le jeu de données comprend 8 fichiers à savoir le fichier des clients, des commandes, des paiements, du détail des commandes, des commentaires client, des vendeurs, un fichier sur la géolocalisation et un fichier sur les produits vendus sur le site.

Le fichier qui a servi à la segmentation vient de la fusion des 6 fichiers suivants :

fichier des commandes, des paiements, des clients, des détails des commandes, des commentaires, des produits et des vendeurs.

Les dates du fichier fusionnée sont transformées en type Datetime, les variables catégorielles en variables numériques à l'aide du One hot encoding ou Label encoding.

Base de données du site Olist

Répartition de l'état de la commande

Fréquence d'achat en fonction du temps

Nombre de commandes au cours de la semaine

Nombre de commandes au cours de la journée

Durée de livraison en nombre de jours

Répartition des clients par ville du Brésil

Répartition des commandes par état du Brésil

Répartition du montant de paiement sur le site

Distribution des types de paiement

paiement, les clients du site paient avec une carte de crédit ou le boleto qui est un moyen de paiement en espèces

Distribution des scores des commandes

3. SYNTHÈSE DES DIFFÉRENTS MODÈLES

SEGMENTATION MÉTIER RFM

Représentation graphique de la Récence

Fréquence des commandes par client

Nombre d'achats	Effectif	Pourcentage
1	94753	97.13
2	2339	2.39
3	296	0.3
4	106	0.1
5	52	0.05

99% de la Fréquence des commandes est inférieure à 5 dont 97% correspond à un achat

Représentation graphique du Montant

Les Gros clients sont ceux générant le plus de revenus sur le site. Les clients Régulier sont les plus loyaux

Définition des différents types de client Olist

Définition de différents segments clients :

Fidèle - '123'

One shot - '311', '312', '313'

Nouveau - '111', '112', '113'

Gros - '323', '213', '223

Régulier - '221', '222', '321', '322', '121', '122', '211', '212''

Les clients fidèles achètent régulièrement et pour des montants importants

CLUSTERING DES DONNÉES BRUTES AVEC K PROTOTYPE

Evolution du coût du clustering en fonction du nombre de cluster

Caractéristiques des 7 types de clients

paym	ent_value_mean	review_s	score_mode	price_mean	order_status_mode	pay_inst_mode	purchase_time_day	purchase_dayofweek	product_category
Segment									
Cluster 1	196.844499		5.0	143.537914	delivered	1.0	Afternoon	Mon	informatica ace
Cluster 2	168.232581		5.0	113.814975	delivered	1.0	Afternoon	Tue	cama mesa
Cluster 3	144.042377		5.0	101.681568	delivered	1.0	Afternoon	Tue	cama mesa
Cluster 4	205.722824		5.0	139.467668	delivered	1.0	Afternoon	Mon	beleza
Cluster 5	179.523710		5.0	119.278593	delivered	1.0	Afternoon	Wed	cama mesa
Cluster 6	191.282884		5.0	143.420538	delivered	1.0	Afternoon	Tue	informatica ace
Cluster 7	219.829522		5.0	156.642450	delivered	1.0	Afternoon	Mon	informatica ace
purchase_time_o	day purchase_da	yofweek	product_cate	egory_name	customer_state seller	_state_mode or	d_purch_year_mode o	ord_purch_month_mode	Total
Afterno	oon	Mon	informatic	a acessorios	SP	PR	2018.0	7.0	11831
Afterno	oon	Tue	cama	mesa banho	RJ	SP	2018.0	5.0	23953
Afterno	oon	Tue	cama	mesa banho	SP	SP	2018.0	8.0	38412
Afterno	oon	Mon	t	eleza saude	DF	SP	2018.0	7.0	10932
Afterno	oon	Wed	cama	mesa banho	RS	SP	2018.0	5.0	15441

SP

RS

MG

PR

2017.0

2018.0

Afternoon

Afternoon

Tue

Mon

informatica acessorios

informatica acessorios

8.0

8.0

9626

Interprétabilité des 10 clusters formés par K-prototype

CLUSTERING DES DONNÉES RFM AVEC K MEANS

Recherche du nombre optimal de clusters k

Affichage du coefficient de silhouette pour chaque cluster

Affichage des 8 clusters ainsi que les centroïdes

Radar Chart des clusters 1, 2 et 3

Définition des différents clusters :

One shot - Clusters 1 et 3

Gros clients - Cluster 2

Radar Chart des clusters 4, 5 et 6

Définition des différents clusters :

Gros One shot - Cluster 5

Très Réguliers - Cluster 4

Nouveaux - Cluster 6

Radar Chart des clusters 7 et 8

Définition des différents clusters :

Fidèles - Cluster 7

Moins Réguliers - Cluster 8

CLUSTERING DES DONNÉES BRUTES OLIST AVEC K MEANS

Affichage du coefficient de silhouette pour chaque cluster

Mesure de la performance à l'aide de l'indice Davies Bouldin

La mesure de la performance par l'indice Davies Bouldin nous montre une valeur stables dès avril 2018 indiquant une meilleur segmentation des clients en 10 clusters.

Mesure de la similarité des clusters au fil des mois

Une périodicité de 5 mois est mis en évidence sur la stabilité du score ARI qui mesure la variabilité du clustering. Un contrat de maintenance de la segmentation des clients de Olist tous les 5 mois est réaliste afin d'opérer un nouveau clustering

Interprétabilité des 10 clusters

4. CONCLUSION

Segmentation métier RFM

Segmentation par K Means

Segmentation par K Prototype

Définition de 5 types de client :

Fidèle - '123'

One shot - '311', '312', '313'

Nouveau - '111', '112', '113'

Gros - '323', '213', '223

Régulier - '221', '222', '321', '322', '121', '122', '211', '212''

Définition de 8 types de client à partir des données RFM ::

One shot - Clusters 1 et 3

Gros clients - Cluster 2

Gros One shot - Cluster 5

Très Réguliers - Cluster 4

Nouveaux - Cluster 6

Fidèles - Cluster 7

Moins Réguliers (montants importants) - Cluster 8

Définition de 7 types de client :

Achetant du matériel informatique et habitant à Sao Paulo - Clusters 1, 6 et 7 (26000 clients)

Achetant des couvertures de lit et le vendeur est à Sao Paulo. Les clients habitent à Sao Paulo, Rio et Rio Grande do Sul - Clusters 2, 3 et 5 avec le plus de clients (75000 clients)

Achetant des produits de beauté et habitant le **District Fédéral** - **Clusters 4 (11000 clients)**

RECOMMANDATIONS POUR OLIST

Pour augmenter les revenus, Olist doit convertir les **Gros clients** et les clients **One Shot et Nouveaux** en clients fidèles qui représentent moins de 1% de la clientèle. Cela passe par des envois réguliers d'offres promotionnels par mail ou sms à ces clients afin d'augmenter leurs fréquentations sur le site,

On peut augmenter le montant d'achat des **Nouveaux clients** ainsi que **les réguliers** en attribuant une réduction à partir d'un certain montant d'achat.

Les clients du site Olist achètent moins le week-end. Afin d'augmenter les commandes en fin de semaine, Olist pourrait lancer des offres promotionnels spéciales week-end.

Les clients du site Olist achètent moins le matin et la nuit. Afin d'augmenter les commandes durant ces périodes, Olist pourrait lancer des offres promotionnels spéciales nuit et matin.

