

Positive and Negative Relationships

Positive and Negative Relationships

- Some relations are friendly, but others are antagonistic or hostile; interactions between people or groups are regularly beset by controversy, disagreement, and sometimes outright conflict.
- Positive links represent friendship while negative links represent antagonism.
- Structural balance
 - to understand the tension between these two forces.
 - a connection between local and global network properties; local effects → global consequences

Structure Balance

- A clique or complete graph: graph which an edge connecting each pair of nodes
- Edges are labelled as
 - either friends (+) or enemies (-)
 - no two people are indifferent to one another.
- A set of three people at a time

Balanced Structure

- Three mutual friends
- A third mutual enemy

Unbalanced Structure

- Two common friends don't get along with each other
 - A has stress to side with B or C against the other
- All are enemies
 - Two of them team up against the third

A labelled complete graph is structurally balanced if everyone of its triangles is balanced.

Structural Balance Property:

For <u>every</u> set of three nodes, if we consider the three edges connecting them, either all three of these edges are labeled +, or else exactly one of them is labeled +.

Balanced structure

Not Balanced structure

Local views vs global views

- Local view (Structural balanced property)
 - Conditions on each triangle of the network

Global view (balance theorem)

Requirement that the world be divided into sets of friends.

They are equivalent !!

B

A

Balanced labeled complete graph

Mutual friends

Balance Theorem

- If a labeled complete graph is balanced, then
 - either all pairs of nodes are friends,
 - or else the nodes can be divided into two groups,
 X and Y ,
 - such that every pair of nodes in X like each other,
 - every pair of nodes in Y like each other,
 - and everyone in X is the enemy of everyone in Y.

Proving the Balance Theorem

 If all pairs of nodes are friends, the graph is balanced.

Otherwise, a balance graph must have at least one negative edge and one positive edge.

- Pick a node A, and let
 - X be the friends of A
 - Y be the enemies of A
- We need to prove
 - a) Every two nodes in X are friends.
 - b) Every two nodes in Y are friends.
 - c) Every node in X is an enemy of every node in Y

(a) Every two nodes in X are friends

(a) Every two nodes in X are friends

- Let B and C be two nodes in X
- A is friends with both B and C

Balanced

B and C are Friends

(b) Every two nodes in Y are friends

(b) Every two nodes in Y are friends

- Let D and E be two nodes in Y
- A is enemies with both D and E

Balanced

D and E are friends

Unbalanced

(c) Every node in X is an enemy of every node in Y

16

(c) Every node in X is an enemy of every node in Y

- Let B be a node in X
- Let D be a node in Y

- A is friends with B and enemies with D
- Balanced

B and D are enemies

Unbalanced

Applications of structural balance

- International relationship (by Antal, Krapivsky, and Redner)
- How the network slides into a balanced labeling and into World War I.

— GB : Great Britain

– Fr : France

- Ru: Russia

— It : Italy

– Ge : Germany

— AH : Austria-Hungary

Three Emperors' League 1872-81

Triple Alliance 1882

German-Russian Lapse 1890

French-Russian Alliance 1891–94

Entente Cordiale 1904

British Russian Alliance 1907

Trust and Distrust

- Consumer review sites or on-line rating sites that users can express trust/distrust dichotomy in online ratings.
- Directed Graph or Undirected graph
 - When A expresses trust or distrust of B, we don't know what B thinks of A

- Transferability
 - A trusts B, B trusts C, does A trust C?
 - A distrusts B, B distrusts C, does A trust or distrust C?

A weaker form of structural balance

Structural Balance Property:

For every set of three nodes, if we consider the three edges connecting them, either all three of these edges are labeled +, or else exactly one of them is labeled +.

 Weak Structural Balance Property: There is no set of three nodes such that the edges among them consist of exactly two positive edges and one negative edge.

Structural Balance Property:

Weak Structural Balance Property:

Structural Balance Property:

Weak Structural Balance Property:

Characterization of Weakly Balanced Networks

• If a labeled complete graph is weakly balanced, then its nodes can be divided into groups in such a way that every two nodes belonging to the same group are friends, and every two nodes belonging to different groups are

enemies.

mutual

friends

inside V

set W

mutual friends inside W set X

mutual friends inside X

Proving the characterization

- Pick a node A, and let
 - X be the friends of A
- We need to prove

- All of A's friends are friends with each other
- A and all his friends are enemies with everyone else.

All of A's friends are friends with each other

- Let B and C be two nodes who are friends of A
- A is friends with both B and C

• If

Violet the weak structural balanced

B and C are friends

A and all his friends are enemies with everyone else

- Let B be a node in X
- Let D be a node outside X

- A is friends with B and enemies with D
- If

violet the weak structural balanced

B and D are enemies

Proving the characterization

friends of A

- Pick a node A, and let
 - X be the friends of A
- We have proved

A and all his friends are enemies with everyone

else.

 Remove the set X and A.
 Proceed to the subsequent groups in the graph.

enemies of A

A weaker form of structural balance

• Structural Balance Property:

 Weak Structural Balance Property:

Generalizing the Definition of Structural Balance

- Assumptions we have made
 - 1. Complete graphs
 - Each person must be either friend or enemy to others
 - What if some are *unknown*?
 - 2. The balanced theorem
 - Apply to all triangles in the graph
 - Can we relax this?
 - What if <u>most</u> triangles are balanced?

Structural Balance in Arbitrary (Non-Complete) Networks

Non-complete graph

– positive : friendship

– negative : enmity;

absence: two endpoints do not know each other.

Local view

 Treat non-complete networks as a problem of filling in missing values so as to produce a signed complete graph that is balanced.

Global view

- Divide the nodes into two sets X and Y
 - Positive edge for nodes both inside X
 - Positive edge for nodes both inside Y
 - Negative edge for nodes across X and Y

2019/20 Term 2

Balanced

Not Balanced

Is this graph balanced?

2019/20 Term 2 CSCI4190 by Laiwan Chan 41

Condition for balanced network

 Claim: A signed graph is balanced if and only if it contains no cycle with an odd number of negative edges.

 The graph contains a cycle with an odd number of negative edges. This implies the graph is not

balanced.

Searching for balanced division

 Step 1: find the connected components using positive edges. Declare each component to be

a supernode.

 If any supernode contains a negative edge, there is a cycle with an odd number of negative edges.

Searching for balanced division

• Step 2:

- the supernodes form the reduced graph (negative edges only)
- breadth first search of the reduced graph

Breadth-first search of the reduced graph

- edges connect two nodes
 - in adjacent layers
 - if all edges are of this type, nodes in alternate layers form a set
 - in the same layer
 - a cycle with odd number of nodes

- Each edge connects two nodes
 - in adjacent layers
 - in the same layer
- Edges cannot jump over successive layers

- Each edge connects two nodes
 - in adjacent layers

2019/20 Term 2 CSCI4190 by Laiwan Chan 49

- Each edge connects two nodes
 - in the same layer
- node A and B
- Last node common to them is D
 path length(AD) = k
 path length(BD)= k
 cycle(ABD) = 2k+1

Generalizing the Definition of Structural Balance

- Assumptions we have made
 - Complete graphs
 - Each person must be either friend or enemy to others
 - What if some are *unknown*?
 - The balanced theorem
 - Apply to all triangles in the graph
 - What if *most* triangles are balanced?

Balance Theorem

- If a labeled complete graph is balanced, then
 - either all pairs of nodes are friends,
 - or else the nodes can be divided into two groups,
 X and Y ,
 - such that every pair of nodes in X like each other,
 - every pair of nodes in Y like each other,

and everyone in X is the enemy of everyone in Y.

Approximately Balance Theorem

- Let ε be any number such that $0 \le \varepsilon < \frac{1}{8}$, and define $\delta = \sqrt[3]{\varepsilon}$. If at least 1ε of all triangles in a labeled complete graph are balanced, then either
 - there is a set consisting of at least 1δ of the nodes in which at least 1δ of all pairs are friends, or else
 - the nodes can be divided into two groups, X and Y , such that
 - at least 1δ of the pairs in X like each other,
 - at least 1δ of the pairs in Y like each other, and

at least $1 - \delta$ of the pairs with one end in X and the other end in Y are

enemies.

