Introduction to Differential Equations Sample problems # 3

Date Given: April 25, 2022

P1. (Existence and uniqueness.)

State where in the ty-plane the hypotheses of Theorem 2.4.2 are satisfied for $y' = \sqrt{1 - t^2 - y^2}$.

Solution: Theorem 2.4.2 guarantees a unique solution to the differential equation through any point (t_0, y_0) such that $t_0^2 + y_0^2 < 1$ since $\partial f/\partial y = -y/\sqrt{1-t^2-y^2}$ is defined and continuous only for $1-t^2-y^2>0$. Note also that $f=\sqrt{1-t^2-y^2}$ is defined and continuous in this region as well as on the boundary $t^2+y^2=1$. The boundary cannot be included in the final region due to the discontinuity of $\partial f/\partial y$ there.

P2. (Existence and uniqueness.)

State where in the ty-plane the hypotheses of Theorem 2.4.2 are satisfied for $y' = (1+t^2)/(3y-y^2)$.

Solution: In this case $f = (1 + t^2)/(3y - y^2)$ and

$$\frac{\partial f}{\partial y} = \frac{1+t^2}{y(3-y)^2} - \frac{1+t^2}{y^2(3-y)},$$

which are both continuous everywhere except for y = 0 and y = 3.

P3. (Existence and uniqueness.)

Solve the initial value problem y' = -4t/y, $y(0) = y_0$, and determine how the interval in which the solution exists depends on the initial value y_0 .

Solution: The differential equation can be written as ydy = -4tdt, so $y^2/2 = -2t^2 + c$ or $y^2 = c - 4t^2$. The initial condition yields $y_0^2 = c$, so that $y^2 = y_0^2 - 4t^2$ which implicitly defines an ellipse (with semi-axes $|y_0|/2$ and $|y_0|$). In the explicit form, $y = \pm \sqrt{y_0^2 - 4t^2}$, which is defined for $4t^2 < y_0^2$ or $|t| < |y_0|/2$. Note that $y_0 \neq 0$ since Theorem 2.4.2 does not hold there.

P4. (Existence and uniqueness.)

In this problem:

(a) Verify that both $y_1(t) = 1 - t$ and $y_2(t) = -t^2/4$ are solutions of the initial value problem

$$y' = \frac{-t + \sqrt{t^2 + 4y}}{2}, \quad y(2) = -1.$$

Where are these solutions valid?

- (b) Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Theorem 2.4.2.
- (c) Show that $y = ct + c^2$, where c is an arbitrary constant, satisfies the differential equation in part (a) for $t \ge -2c$. If c = -1, the initial condition is also satisfied, and the solution $y = y_1(t)$ is obtained. Show that there is no choice of c that gives the second solution $y = y_2(t)$.

Solution:

(a) For $y_1(t) = 1 - t$, $y'_1(t) = -1$, so the substitution into the differential equation gives

$$-1 = \frac{-t + \sqrt{t^2 + 4(1-t)}}{2} = \frac{-t + \sqrt{(t-2)^2}}{2} = \frac{-t + |t-2|}{2}.$$

By the definition of the absolute value, the right side is -1 if $t-2 \ge 0$. Setting t=2 in $y_1(t)$ we get $y_1(2)=-1$, as required by the initial condition.

For $y_2(t) = -t^2/4$, $y_2'(t) = -t/2$, so the substitution into the differential equation gives

$$-\frac{t}{2} = \frac{-t + \sqrt{t^2 + 4(-t^2/4)}}{2} = -\frac{t}{2}.$$

which is valid for all values of t. Also, $y_2(2) = -1$

- (b) By Theorem 2.4.2 we are guaranteed a unique solution only where $f(t,y) = (-t + \sqrt{t^2 + 4(1-t)})/2$ and $\partial f(t,y)/\partial y = 1/\sqrt{t^2 + 4y}$ are continuous. In this case the initial point (2,-1) lies in the region $t^2 + 4y \le 0$, so $\partial f/\partial y$ is not continuous and hence the theorem is not applicable and there is no contradiction.
- (c) In this case $y(t) = ct + c^2$, y'(t) = c, so the substitution into the differential equation gives

$$c = \frac{-t + \sqrt{t^2 + 4(ct + c^2)}}{2} = \frac{-t + \sqrt{(t + 2c)^2}}{2} = \frac{-t + |t + 2c|}{2}.$$

By the definition of the absolute value, the right side is -1 if $t + 2c \ge 0$ that is $t \ge -2c$. If c = -1 the solution $y = y_1(t)$ is obtained.

If $y = y_2(t)$ then we must have $ct + c^2 = -t^2/4$ for all t, which is not possible since c is a constant.

P5. (Exact equations.)

Determine whether the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{ax + by}{bx + cy}$$

is exact or not. If it is exact, find the solution.

Solution: Here M(x,y) = ax + by and N(x,y) = bx + cy. Since $\partial M/\partial y = b = \partial N/\partial x$, the equation is exact

- Since $\partial \psi/\partial x = M = ax + by$, to solve for ψ , we integrate M with respect to x and obtain $\psi = ax^2/2 + bxy + h(y)$.
- Then $\partial \psi/\partial y = bx + h'(y) = N = bx + cy$ implies that h'(y) = cy. Therefore $h(y) = cy^2/2$ and $\psi(x,y) = ax^2/2 + bxy + cy^2/2$. Thus, the solution of the equation, written in the implicit form, can be represented as $ax^2/2 + bxy + cy^2/2 = C$.

P6. (Exact equations.)

Determine whether the equation $(e^x \sin y - 2y \sin x) + (e^x \cos y + 2\cos x)y' = 0$ is exact or not. If it is exact, find the solution.

Solution: Here $M(x,y) = e^x \sin y - 2y \sin x$ and $N(x,y) = e^x \cos y + 2 \cos x$. Since $\partial M/\partial y = e^x \cos y - 2 \sin x = \partial N/\partial x$, the equation is exact.

- Since $\partial \psi / \partial x = M = e^x \sin y 2y \sin x$, to solve for ψ , we integrate M with respect to x and obtain $\psi = e^x \sin y + 2y \cos x + h(y)$.
- Then $\partial \psi/\partial y = -e^x \cos y + 2 \cos x + h'(y) = N = e^x \cos y + 2 \cos x$ implies that h'(y) = 0. Therefore h(y) = const and $\psi(x,y) = e^x \sin y + 2y \cos x + \text{const}$. Thus, the solution of the equation, written in the implicit form, can be represented as $e^x \sin y + 2y \cos x = C$.

P7. (Exact equations.)

Determine whether the equation

$$(y/x + 6x) + (\ln x - 2)y' = 0, \quad x > 0$$

is exact or not. If it is exact, find the solution.

Solution: Here M(x,y) = y/x + 6x and $N(x,y) = \ln x - 2$. Since $\partial M/\partial y = 1/x = \partial N/\partial x$, the equation is exact.

- Finding $\psi(x,y)$ by integrating M(x,y) with respect to x, as in the conventional scheme, leads to longer (but still correct) computations. Instead, we can employ an alternative scheme in which the roles of x and y are interchanged. Specifically, we first find $\psi(x,y)$ by integrating N(x,y) with respect to y.
- Since $\partial \psi/\partial y = N = \ln x 2$, to solve for ψ , we integrate N with respect to y and obtain $\psi = (\ln x 2) y + h(x)$. Then we find h(x) by differentiating $\psi(x,y)$ with respect to x and setting it equal to M(x,y).
- Since $\partial \psi/\partial x = y/x + h'(x) = M = y/x + 6x$ implies that h'(x) = 6x. Therefore $h(x) = 3x^2$ and $\psi(x,y) = (\ln x 2)y + 3x^2$. Thus, the solution of the differential equation, written in the implicit form, can be represented as $\psi(x,y) = (\ln x 2)y + 3x^2 = C$.

P8. (Exact equations: integrating factor.)

Show that the equation $x^2y^3 + x(1+y^2)y' = 0$ is not exact but becomes exact when multiplied by the integrating factor $\mu(x,y) = 1/xy^3$. Then solve this equation.

Solution: Here $M(x,y)=x^2y^3$ and $N(x,y)=x(1+y^2)$. Since $\partial M/\partial y=3x^2y^2\neq\partial N/\partial x=1+y^2$, the equation is not exact. Now, multiplying the equation by $\mu(x,y)=1/xy^3$, the equation becomes $\tilde{M}(x,y)\mathrm{d}x+\tilde{N}(x,y)\mathrm{d}y$, where $\tilde{M}(x,y)=x$ and $\tilde{N}(x,y)=(1+y^2)/y^3$. Now we see that for this equation $\partial \tilde{M}\partial y=0=\partial \tilde{N}/\partial x$, so the transformed equation is exact.

- Since $\partial \psi / \partial x = \tilde{M} = x$, to solve for ψ , we integrate \tilde{M} with respect to x and obtain $\psi = x^2/2 + h(y)$.
- Then $\partial \psi/\partial y = h'(y) = \tilde{N} = (1+y^2)/y^3$. Therefore $h'(y) = 1/y^3 + 1/y$. Therefore $h(y) = -1/2y^2 + \ln|y|$ and $\psi(x,y) = x^2/2 1/2y^2 + \ln|y|$. Thus, the solution of the equation, written in the implicit form, can be represented as $x^2 1/y^2 + 2\ln|y| = C$.

P9. (Exact equations: integrating factor.)

Show that the equation

$$y + (2x - ye^y)y' = 0$$

is not exact but becomes exact when multiplied by the integrating factor $\mu(x,y) = y$. Then solve this equation.

Solution: Here M(x,y)=y and $N(x,y)=2x-ye^y$. Since $\partial M/\partial y=1\neq \partial N/\partial x=2$, the equation is not exact. Now, multiplying the equation by $\mu(x,y)=y$, the equation becomes $\tilde{M}(x,y)\mathrm{d}x+\tilde{N}(x,y)\mathrm{d}y$, where $\tilde{M}(x,y)=y^2$ and $\tilde{N}(x,y)=2xy-y^2e^y$. Now we see that for this equation $\partial \tilde{M}/\partial y=2y=\partial \tilde{N}/\partial x$, so the transformed equation is exact.

- Since $\partial \psi / \partial x = \tilde{M} = y^2$, to solve for ψ , we integrate \tilde{M} with respect to x and obtain $\psi(x,y) = xy^2 + h(y)$.
- Then $\partial \psi/\partial y = 2xy + h'(y) = \tilde{N} = 2xy y^2 e^y$. Therefore $h'(y) = -y^2 e^y$. Integrating by parts¹ we obtain² $h(y) = -e^y(y^2 2y + 2)$ and $\psi(x, y) = xy^2 e^y(y^2 2y + 2)$. Thus, the solution of the equation, written in the implicit form, can be represented as $xy^2 e^y(y^2 2y + 2) = C$.

P10. (Exact equations: integrating factor.)

Find an integrating factor and solve the equation $(3x^2y + 2xy + y^3) + (x^2 + y^2)y' = 0$.

Solution: Here $M(x,y) = 3x^2y + 2xy + y^3$ and $N(x,y) = x^2 + y^2$. Since $\partial M/\partial y = 3x^2 + 2x + 3y^2 \neq \partial N/\partial x = 2x$, the equation is not exact. We will first look for the integrating factor in the form $\mu = \mu(x)$. Since $(\partial M/\partial y - \partial N/\partial x)/N = 3$ is a function of x only, from $d\mu/dx = 3$ we find $\mu(x) = e^{3x}$.

¹It employs the differential of the product d(uv) = udv + vdu, from which one gets $\int udv = uv - \int vdu$.

²The integration by parts gives $\int y^2 e^y dy = \int y^2 d(e^y) = y^2 e^y - \int e^y 2y dy = y^2 e^y - 2 \int y d(e^y) = y^2 e^y - 2 \left(y e^y - \int e^y dy \right) = y^2 e^y - 2 y e^y + e^y = e^y (y^2 - 2y + 2)$

- Now, multiplying the equation by $\mu(x) = e^{3x}$, the equation becomes $\tilde{M}(x,y) dx + \tilde{N}(x,y) dy$, where $\tilde{M}(x,y) = e^{3x}(3x^2y + 2xy + y^3)$ and $\tilde{N}(x,y) = e^{3x}(x^2 + y^2)$. Now we see that for this equation $\partial \tilde{M}/\partial y = e^{3x}(3x^2 + 2x + 3y^2) = \partial \tilde{N}/\partial x$, so the transformed equation is exact.
- Since $\partial \psi/\partial x = \tilde{M} = e^{3x}(3x^2y + 2xy + y^3)$, to solve for ψ , we integrate \tilde{M} with respect to x and obtain $\psi(x,y) = (x^2y + y^3/3)e^{3x} + h(y)$.
- Then $\partial \psi/\partial y = (x^2 + y^2)e^{3x} + h'(y) = \tilde{N} = e^{3x}(x^2 + y^2)$. Therefore h'(y) = 0 and h(y) = const.Then $\psi(x,y) = (x^2y + y^3/3)e^{3x} + \text{const.}$ Thus, the solution of the equation, written in the implicit form, can be represented as $(3x^2y + y^3)e^{3x} = C$.

P11. (Exact equations: integrating factor.)

Find an integrating factor and solve the equation $1 + (x/y - \sin y)y' = 0$.

Solution: Here M(x,y)=1 and $N(x,y)=x/y-\sin y$. Since $\partial M/\partial y=0\neq \partial N/\partial x=1/y$, the equation is not exact. Let us first look for the integrating factor in the form $\mu=\mu(x)$. Since $(\partial M/\partial y-\partial N/\partial x)/N=1/(y\sin y-x)$ is not a function of x only, let us look for the integrating factor in the form $\mu=\mu(y)$. In this case the integrating factor is defined from $\mathrm{d}\mu/\mathrm{d}y=\mu(\partial N/\partial x-\partial M/\partial y)/M$. Since $(\partial N/\partial x-\partial M/\partial y)/M=1/y$ is a function of y only, from $\mathrm{d}\mu/\mathrm{d}y=\mu/y$ we establish⁴ $\mu(y)=y$.

- Now, multiplying the equation by $\mu(y) = y$, the equation becomes $\tilde{M}(x,y) dx + \tilde{N}(x,y) dy$, where $\tilde{M}(x,y) = y$ and $\tilde{N}(x,y) = x y \sin y$. Now we see that for this equation $\partial \tilde{M}/\partial y = 1 = \partial \tilde{N}/\partial x$, so the transformed equation is exact.
- Since $\partial \psi / \partial x = \tilde{M} = y$, to solve for ψ , we integrate \tilde{M} with respect to x and obtain $\psi(x,y) = xy + h(y)$.
- Then $\partial \psi/\partial y = x + h'(y) = \tilde{N} = x y \sin y$. Therefore $h'(y) = -y \sin y$ and $h(y) = -\sin y + y \cos y$. Then $\psi(x,y) = xy \sin y + y \cos y$. Thus, the solution of the equation, written in the implicit form, can be represented as $xy \sin y + y \cos y = C$.

⁴The integration constant is not important here as we are interested in only one solution for $\mu(y)$.

⁵Note that $\int y \sin y dy = - \int y d(\cos y) = -y \cos y + \int \cos y dy = -y \cos y + \sin y$.