1

XE 71

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: A spring mass system is shown in the figure. Take the value of acceleration due to gravity as $g = 9.81m/s^2$. The static deflection due to weight and the time period of the oscillations, respectively, are

(GATE 2023 XE)

Solution:

1) Static deflection due to weight(sdw) let x be sdw.

At mean position in equilibrium Table reference ??

$$Mg = kx \tag{1}$$

$$x = 39.24cm \tag{2}$$

2) Time period of oscillation

$$F = -kx \tag{3}$$

$$m\left(\frac{d^2x}{dt^2}\right) = -kx\tag{4}$$

Initial Conditions be at extreme point of SHM

$$x(0) = 0.3924 \tag{5}$$

$$\frac{dx}{dt} = 0$$
 at $t = 0$ (released from rest) (6)

Taking Laplace transform:

$$msx(0) + \frac{dx(0)}{dt} + kX(s) = 0$$
 (7)

Substituting initial values

$$X(s) = \frac{0.3924}{ms^2 + k} \tag{8}$$

Taking Inverse Laplace Transform:

$$x(t) = 0.3924 \cos\left(\sqrt{\frac{k}{m}}t\right) \tag{9}$$

$$x(t) = 0.3924 \sin\left(5t + \frac{\pi}{2}\right)$$
m (10)

$$x(t) = 39.24 \sin\left(5t + \frac{\pi}{2}\right) \text{ cm}$$
 (11)

The static deflection due to weight and the time period of the oscillations, respectively are 39.24 cm and $\frac{2\pi}{5}$ s

Variable	Description	Value
M	weight of block	4 kg
K	spring constant	$100\frac{N}{m}$
x	Static deflection due to weight	39.24 cm
$\frac{dx}{dt}$	velocity of particle	none
TABLE 2		

INPUT PARAMETERS