Optimisations de la traduction en CPS

Dans ce document, on décrit les optimisations réalisées dans fouine, notamment au niveau de la traduction d'un code fouine en code fouine CPS-ifié.

Dans fouine, nous avons implémenté deux optimisations :

- 1. précalcul lorsque cela est possible ;
- 2. optimisation concernant l'application de fonctions.

I. Précalcul.

On définit une relation \rightsquigarrow entre une expression fouine et un résultat précalculé. C'est une fonction partielle.

Dans le cas de la somme d'entiers, on a :

• $n_1 \oplus n_2 \rightsquigarrow n$ où $n = n_1 + n_2$.

On peut faire de même avec les autres opérations arithmétiques simples (\ominus, \otimes) . Pour la division d'entiers \oplus (et le modulo), on s'assure que n_2 n'est pas toujours nul :

• $n_1 \oplus n_2 \rightsquigarrow n$ où $n_2 \neq 0$ et $n = n_1/n_2$.

On fait de même pour les opérations unaires.

Lorsqu'on a une fonction, c'est une valeur et on s'arrête donc de précalculer. Il faut cependant se rappeler de traduire par continuation la suite de e, noté $\llbracket e \rrbracket$:

• fun $x \to e \rightsquigarrow$ fun $x \to [e]$.

Lorsqu'on a une variable x, un entier, un flottant, une chaîne de caractères, un caractère, un unit (), ou un booléen, ces objets se réduisent en eux-mêmes :

 $\rightarrow x \rightsquigarrow x$.

Lorsqu'on a une application, on ne réduit plus :

• $e_1 e_2$ say \cdots .

En effet, on pourrait engendrer des *effets de bord* : par exemple, le code prInt 3 est sous forme de deux expressions précalculées mais

pré-effectuer le calcul engendrerait une absence des effets de bords lors de l'exécution.

Si l'on a un type algébrique $C(e_1,\ldots,e_n)$, alors on a la forme précalculé en précalculant chacun des éléments :

•
$$C(e_1, \ldots, e_n) \rightsquigarrow C(e'_1, \ldots, e'_n)$$
 si, pour tout $1 \leq i \leq n$, $e_i \rightsquigarrow e'_i$.

Il suffit qu'un des e_i ne soit pas pré-calculable pour que l'on ne puisse pas calculer le type algébrique.

Lorsqu'on a une séquence, on a :

•
$$e_1$$
; $e_2 \rightsquigarrow e_2'$ si $e_1 \rightsquigarrow e_1'$ et $e_2 \rightsquigarrow e_2'$.

Comme c'est une séquence, on s'en fiche du résultat de e'_1 , on sait juste qu'il n'est pas utile. En passant, s'il ne génère pas d'effets de bords, pourquoi avait-on une séquence alors ? C'est exactement équivalent d'écrire e_2 .

Lorsqu'on a un if, et qu'on précalcule que la condition est true ou false, alors on élimine le if (peu importe si e_1 et e_2 sont réductibles) et on tente de réduire la branche correspondante.

Dans les autres cas, on ne se réduit pas.

Avant de commencer à traduire, on parcours l'arbre de syntaxe nœud par nœud en commençant par les feuilles et en tentant de précalculer toutes les expressions possibles. Ceci a pour but de simplifier l'expression finale

```
1 + 2 * (if 4 > 2 then 4 * 3 * 2 * 1 else 34 mod 17)
```

en

49

directement.

II. Application.

Comme expliqué dans le document CPS-transformation.pdf, on décrit la transformation classique de l'application :

```
\bullet \ \llbracket e_1 \ e_2 \rrbracket := \operatorname{fun} \ k \to \llbracket e_2 \rrbracket \ (\operatorname{fun} \ v \to \llbracket e_1 \rrbracket \ (\operatorname{fun} \ f \to f \ v \ k)).
```

Dans ce document, on ne s'intéresse pas aux variables libres, ni à la 2nde continuation (la continuation boom ne demande que d'ajouter $snd \ k$ à dans les définitions de continuations).

Lorsqu'on peut précalculer (au sens de la section précédente) un terme, e_1 ou e_2 , il n'est pas nécessaire de le traduire, puis de l'évaluer, et d'attendre que la continuation nous rappelle. Il suffit d'intercaler le résultat précalculé au moment de la traduction.

On a donc la disjonction de cas suivante :

• si $e_1 \rightsquigarrow e'_1$ et $e_2 \rightsquigarrow e'_2$ alors

$$\llbracket e_1 \ e_2 \rrbracket_{\text{opt}} := \mathbf{fun} \ k \to e_1' \ e_2' \ k \ ;$$

• si $e_1 \rightsquigarrow e'_1$ et $e_2 \rightsquigarrow \cdots$ alors

$$\llbracket e_1 \; e_2 \rrbracket_{\mathrm{opt}} \coloneqq \mathtt{fun} \; k \to \llbracket e_2 \rrbracket_{\mathrm{opt}} \; (\mathtt{fun} \; v \to e_1' \; v \; k) \; ;$$

• si e_1 2005 · · · et e_2 vv) e_2' alors

$$\left[\!\left[e_1\right.\right]_{\mathrm{opt}}^- := \mathbf{fun}\ k \to \left[\!\left[e_1\right]\!\right]_{\mathrm{opt}}^- \left(\mathbf{fun}\ f \to f\ e_2'\ k\right)\ ;$$