Аннотация

В данной работе исследована возможность использования семантико-синтаксического анализатора Compreno в качестве источника высокоуровневых признаков для решения задачи распознавания именованных сущностей в рамках нейросетевого подхода. Исследование проводилось на англоязычном корпусе CoNLL 2003. Полученные результаты показывают, что высокоуровневые признаки дают ощутимый прирост оценки качества, без какой-либо инженерии над ними.

Ключевые слова: нейронные сети, распознавание именованных сущностей.

Содержание

Вв	едение		
1	Анали	тический раздел	7
	1.1	Анализ того и сего	7
	1.2	Существующие подходы к созданию всячины	8
2	Констр	рукторский раздел	11
	2.1	Архитектура всячины	11
	2.2	Подсистема всякой ерунды	11
	2	2.2.1 Блок-схема всякой ерунды	11
3	Технол	погический раздел	13
4	Экспер	оиментальный раздел	15
За	ключен	ие	16
A	Карти	нки	19
Б	Еще ка	артинки	20

Глоссарий

 ${f Pacпpeдe}$ ленный — Слово, которое нельзя употреблять. Но надо протестировать длинные строки в глоссарии.

Обозначения и сокращения

АИС — Автоматизированная информационная система. Но надо протестировать длинные строки в определениях.

Введение

Именованная сущность - это слово или словосочетание обозначающее предмет или явления определенной категории. Примерами именованных сущностей являются имена людей, названия организаций и локаций. Задача распознавания именованных сущностей (Named Entity Recognition, NER) состоит в выделении и классификация именованных сущностей в тексте. В рамках конференции CoNLL 2003 проводилось соревнование для оценки качества методов распознавания именованных сущностей четырех типов на англоязычном корпусе [Tjong Kim Sang and De Meulder 2003]. Для решения задачи NER предлагалось много разных подходов [Nadeau and Sekine 2007]. В последнее время было показано, что методы на основе нейронных сетей показывают лучшие результаты для различных языков и корпусов, включая CoNLL 2003 [Yang et al. 2016].

Вместо большого количества вручную построенных признаков решающих определенную задачу, нейросетевые методы используют универсальные векторные представления слов [Mikolov et al. 2013]. Согласно гипотезе о дистрибутивности, эти представления кодируют в себе смысл слов [Sahlgren 2008]. Это позволяет строить мультизадачные и языконезависимые архитектуры [Collobert et al. 2011, Yang et al. 2016].

Несмотря на то, что использование универсальных векторных представлений получило в последнее время огромную популярность в силу своей эффективности и огромной экономии человеческих усилий, большой интерес все еще представляет исследование возможностей использования высокоуровневых признаков в качестве входных данных для нейросетей. Так, например, в работах [Xu et al. 2014, Bian et al. 2014] описано использование морфологических, синтаксических и семантических признаков для построения более совершенных векторных представлений слов.

Сотрено - это технология автоматического анализа текстов на естественном языке, в основе которой лежит многоуровневое лингвистическое описание, создававшееся профессиональными лингвистами в течение длительного времени [Anisimovich et al. 2012]. Помимо ручного описания Сотрено использует для анализа большое количество инфор-

мации, извлекаемых различными статистическими методами из текстовых корпусов. В Compreno реализована процедура семантико-синтаксического анализа текста, в результате которой любому предложению на естественном языке (английском или русском) ставится в соответствие семантико-синтаксическое дерево, моделирующее смысл предложения и содержащее грамматическую и семантическую информацию о каждом слове предложения.

В данной работе исследована возможность использования семантико-синтаксического анализатора Compreno в качестве источника высокоуровневых признаков для задачи NER на корпусе CoNLL 2003 в рамках нейросетевого подхода.

Статья организована следующим образом: в части 1 проведен обзор связанных работ. Выбранная нейросетевая модель и способы внедрения синтактико-семантических признаков описаны в части 2. В части 3 описаны проведенные эксперименты и программная реализация.

Полученные результаты показывают повышение F1-меры почти на 1% на корпусе CoNLL 2003 при использовании синтактико-семантических признаков Compreno (87.49% против 88.47%). При этом затраты на их внедрение были минимальными - инженерия над признаками не проводилась.

1 Аналитический раздел

В данном разделе анализируется и классифицируется существующая всячина и пути создания новой всячины. А вот отступ справа в 1 см. — это хоть и по Γ OCT, но ведь диагноз же...

1.1 Анализ того и сего

Рисунок 1.1 — Рисунок

В? указано, что...

Кстати, про картинки. Во-первых, для фигур следует использовать [ht]. Если и после этого картинки вставляются «не по ГОСТ», т.е. слишком далеко от места ссылки, — значит у вас в РПЗ слишком мало текста! Хотя и ужасный параметр !ht у окружения figure тоже

никто не отменял, только при его использовании документ получается страшный, как в ворде, поэтому просьба так не делать по возможности.

1.2 Существующие подходы к созданию всячины

Известны следующие подходы...

- а) Перечисление с номерами.
- б) Номера первого уровня. Да, ГОСТ требует именно так сначала буквы, на втором уровне цифры. Чуть ниже будет вариант «нормальной» нумерации и советы по её изменению. Да, мне так нравится: на первом уровне выравнивание элементов как у обычных абзацев. Проверим теперь вложенные списки.
 - 1) Номера второго уровня.
 - 2) Номера второго уровня. Проверяем на длииииной-предлииииииииинной строке, что получается.... Сойдёт.
- в) По мнению Лукьяненко, человеческий мозг старается подвести любую проблему к выбору из трех вариантов.
 - г) Четвёртый (и последний) элемент списка.

Теперь мы покажем, как изменить нумерацию на «нормальную», если вам этого захочется. Пара команд в начале документа поможет нам.

- 1) Изменим нумерацию на более привычную...
- 2) ... нарушим этим гост.
 - а) Но, пожалуй, так лучше.

В заключение покажем произвольные маркеры в списках. Для них нужен пакет **enumerate**.

- 1. Маркер с арабской цифрой и с точкой.
- 2. Маркер с арабской цифрой и с точкой.
 - І. Римская цифра с точкой.
 - II. Римская цифра с точкой.

В отчётах могут быть и таблицы — см. табл. 1.1 и 1.2. Небольшая таблица делается при помощи **tabular** внутри **table** (последний полностью аналогичен **figure**, но добавляет другую подпись).

Таблица 1.1 — Пример короткой таблицы с длинным названием на много длинных-длинных строк

Тело	F	V	E	F+V-E-2
Тетраэдр	4	4	6	0
Куб	6	8	12	0
Октаэдр	8	6	12	0
Додекаэдр	20	12	30	0
Икосаэдр	12	20	30	0
Эйлер	666	9000	42	$+\infty$

Для больших таблиц следует использовать пакет **longtable**, позволяющий создавать таблицы на несколько страниц по ГОСТ.

Для того, чтобы длинный текст разбивался на много строк в пределах одной ячейки, надо в качестве ее формата задавать р и указывать явно ширину: в мм/дюймах (110mm), относительно ширины страницы (0.22\textwidth) и т.п.

Можно также использовать уменьшенный шрифт — но, пожалуйста, тогда уж во **всей** таблице сразу.

Таблица $1.2 - \Pi$ ример длинной таблицы с длинным названием на много длинных-длинных строк

Вид шума	Громкость, дБ	Комментарий
Порог слышимости	0	
Шепот в тихой библиотеке	30	
Обычный разговор	60-70	
Звонок телефона	80	Конечно, это было до эпо-
		хи мобильников
Уличный шум	85	(внутри машины)
Гудок поезда	90	

Продолжение на след. стр.

Продолжение таблицы 1.2

Шум электрички	95	
Порог здоровой нормы	90-95	Длительное пребывание на более громком шуме может привести к ухуд-шению слуха
Мотоцикл	100	
Power Mower	107	(модель бензокосилки)
Бензопила	110	(Doom в целом вреден для здоровья)
Рок-концерт	115	
Порог боли	125	feel the pain
Клепальный молоток	125	(автор сам не знает, что это)
Порог опасности	140	Даже кратковременное пребывание на шуме большего уровня может привести к необратимым последствиям
Реактивный двигатель	140	
	180	Необратимое полное повреждение слуховых органов
Самый громкий возможный звук	194	Интересно, почему?

2 Конструкторский раздел

В данном разделе проектируется новая всячина.

2.1 Архитектура всячины

Проверка параграфа. Вроде работает.

Вторая проверка параграфа. Опять работает.

Вот.

- Это список с «палочками».
- Хотя он и не по Γ ОСТ, кажется.
- 1) Поэтому для списка, начинающегося с заглавной буквы, лучше список с цифрами.

Формула 2.1 совершено бессмысленна.

$$a = cb (2.1)$$

Окружение cases опять работает (см. 2.2), спасибо И. Короткову за исправления..

$$a = \begin{cases} 3x + 5y + z, \text{ если хорошо} \\ 7x - 2y + 4z, \text{ если плохо} \\ -6x + 3y + 2z, \text{ если совсем плохо} \end{cases}$$
 (2.2)

2.2 Подсистема всякой ерунды

Культурная вставка dot-файлов через утилиту dot2tex (рис. 2.1).

2.2.1 Блок-схема всякой ерунды

Кстати о заголовках

У нас есть и **subsubsection**. Только лучше её не нумеровать.

Рисунок 2.1 — Рисунок

3 Технологический раздел

В данном разделе описано изготовление и требование всячины. Кстати, в Latex нужно эскейпить подчёркивание (писать «some_function» для some function).

Для вставки кода есть пакет **listings**. К сожалению, пакет **listings** всё ещё работает криво при появлении в листинге русских букв и кодировке исходников utf-8. В данном примере он (увы) на лету конвертируется в koi-8 в ходе сборки pdf.

Eсть альтернатива listingsutf8, однако она работает лишь с \lstinputlisting, но не с окружением \lstlisting

Вот так можно вставлять псевдокод (питоноподобный язык определен в **listings.inc.tex**):

Листинг 3.1 — Алгоритм оценки дипломных работ

```
def EvaluateDiplomas():
1
        for each student in Masters:
2
              student.Mark \leftarrow 5
3
        for each student in Engineers:
4
              <u>if</u> Good(student):
5
                    student.Mark \leftarrow 5
6
              \underline{\mathbf{else}}:
7
                    student.Mark \leftarrow 4
8
```

Еще в шаблоне определен псевдоязык для BNF:

Листинг $3.2 - \Gamma$ рамматика

```
ifstmt → "if" "(" expression ")" stmt |

"if" "(" expression ")" stmt1 "else" stmt2

number → digit digit *
```

В листинге 3.3 работают русские буквы. Сильная магия. Однако, работает только во включаемых файлах, прямо в Т_ГХ нельзя.

Листинг $3.3 - \Pi$ ример (**test.c**)

```
1 #include <stdio.h>
2 int main()
3 {
4 return 0;
5 }
```

Можно также использовать окружение **verbatim**, если **listings** чем-то не устраивает. Только следует помнить, что табы в нём «съедаются». Существует так же команда **verbatiminput** для вставки файла.

```
a_b = a + b; // русский комментарий if (a_b > 0) a_b = 0;
```

4 Экспериментальный раздел

В данном разделе проводятся вычислительные эксперименты. А на рис. 4.1 показана схема мыслительного процесса автора...

Рисунок 4.1 — Как страшно жить

Заключение

В результате проделанной работы стало ясно, что ничего не ясно...

Список использованных источников

- Anisimovich, K. V., Druzhkin, K. J., Minlos, F. R., Petrova, M. A., Selegey, V. P., and Zuev, K. A. (2012). Syntactic and semantic parser based on ABBYY Compreno linguistic technologies. In Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference Dialog, page 18.
- Bian, J., Gao, B., and Liu, T.-Y. (2014). Knowledge-powered deep learning for word embedding. In *Machine Learning and Knowledge Discovery in Databases*, pages 132–148. Springer.
- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119.
- Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification. *Linguisticae Investigationes*, 30(1):3–26.
- Sahlgren, M. (2008). The distributional hypothesis. from context to meaning: Distributional models of the lexicon in linguistics and cognitive science (special issue of the italian journal of linguistics). *Rivista di Linguistica*, 20(1).
- Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-2003 shared task: Language-independent named entity recognition. In *Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4*, pages 142–147. Association for Computational Linguistics.
- Xu, C., Bai, Y., Bian, J., Gao, B., Wang, G., Liu, X., and Liu, T.-Y. (2014). Rc-net: A general framework for incorporating knowledge into

word representations. In *Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management*, pages 1219–1228. ACM.

Yang, Z., Salakhutdinov, R., and Cohen, W. (2016). Multi-task cross-lingual sequence tagging from scratch. CoRR, abs/1603.06270.

Приложение А Картинки

Рисунок A.1 — Картинка в приложении. Страшная и ужасная.

Приложение Б Еще картинки

Рисунок Б.1 — Еще одна картинка, ничем не лучше предыдущей. Но надо же как-то заполнить место.