第八章练习题

1. 如图所示电路,设各伏特计内阻无限大,若V的读数为2V, V_1 的读数为1V,

则 V_2 的读数为_____.

2. 如图所示电路,设各伏特计内阻无限大,若 V_1 的读数为 30V, V_2 的读数为 60V,则 V=_____.

3. 已知电路中电压、电流的有效值分别为 $I_1=7A$ 、 $I_2=3A$ 、 $U_{ab}=4V$ 、 $U_{bc}=8V$,由此可以确定图中两交流表的读数分别为

A=_____, V=_____.

5. 图示电路发生谐振时, 电流表 A_2 的读数为 15A, 电流表 A 的读数为 12A, 则电流表 A_1 的读数=

6. 电路中两个伏特表的正确读数为: $V_1 = _____, V_2 = ______$ 。

7. 根据图中电压表的读数,可确定 U=______。

8. 根据图中电流表的读数,可确定 U=____、I=____。

9. 根据图中电流表的读数,可确定 $I=_____、U=_____$

- 10. 已知两正弦电压 $u_1(t) = 20\sin\left(314t \frac{\pi}{6}\right)$ V, $u_2(t) = 10\sin\left(942t + \frac{\pi}{3}\right)$ V。
 - (1) 在同一坐标平面上绘出它们的波形图;
 - (2) 将纵坐标轴向右移动 $\frac{1}{600}$ s 后,两正弦电压的初相应为多少?
- 11. 将下列各正弦量表示成有效值相量,并绘出相量图。

(1)
$$i_1(t) = 2\cos(\omega t - 27^{\circ}) A$$
, $i_2(t) = 3\sin(\omega t + \frac{\pi}{4}) A$;

12. 将下列各正弦量表示成有效值相量,并绘出相量图。

$$u_1(t) = 100 \cos\left(314 t + \frac{\pi}{4}\right) \text{V}, \ i_2(t) = 250 \sin 314 t \text{ A}.$$

13. 写出对应于下列各有效值相量的正弦时间函数式,并绘出相量图。

$$\dot{I}_1 = 10 \angle 72^{\circ} \text{A}, \quad \dot{I}_2 = 5 \angle -150^{\circ} \text{A}$$

14. 写出对应于下列各有效值相量的正弦时间函数式,并绘出相量图。

$$\dot{U}_1 = 200 \angle 120^{\circ} \text{ V}, \quad \dot{U}_3 = 250 \angle -60^{\circ} \text{ V}.$$

- 15. 已知一正弦电压的幅值为 310 V,频率为 50 Hz,初相为 $\frac{\pi}{4}$ 。
 - (1) 写出此正弦电压的时间函数表达式;
 - (2) 计算 t=0, 0.0025 s, 0.0075 s, 0.0100 s, 0.0125 s, 0.0175 s 的电压瞬时值;
 - (3) 绘出波形图。

第七章练习题

- 1. 图示 RLC 动态电路,由动态分析可得 u_C 的零输入响应 $u_C(t)=$ ____(选择答案)
- a. $u_C(t) = A\cos(0.866t + \theta)$
- b. $u_C(t) = A_1 e^{-0.5t} + A_2 e^{-0.866t}$
- c. $u_C(t) = (A_1 + A_2 t)e^{-0.5t}$
- d. $u_C(t) = Ae^{-0.5t} \cos(0.866t + \theta)$

- 2. 图示 RLC 动态电路, 由动态分析可得 $\mathbf{u}_{\mathbf{c}}$ 的零输入响应 $\mathbf{u}_{\mathbf{c}}(t)$ = (选择答案)
- a. $u_C(t) = A\cos(0.866t + \theta)$
- b. $u_C(t) = A_1 e^{-0.5t} + A_2 e^{-0.866t}$
- c. $u_C(t) = (A_1 + A_2 t)e^{-0.5t}$
- d. $u_C(t) = Ae^{-0.5t} \cos(0.866t + \theta)$

- 3. 图示 RLC 动态电路,由动态分析可得 u_C 的零输入响应 $u_C(t)=$ _____(选择答案)
- a. $u_C(t) = A\cos(0.866t + \theta)$

b.
$$u_C(t) = A_1 e^{-0.5t} + A_2 e^{-0.866t}$$

c.
$$u_C(t) = (A_1 + A_2 t)e^{-0.5t}$$

d.
$$u_C(t) = Ae^{-0.5t} \cos(0.866t + \theta)$$

4. 图示 RLC 动态电路,由动态分析可得 u_C 的零输入响应 $u_C(t)=$ _____(选择答案)

a.
$$u_C(t) = A\cos(\omega t + \theta)$$

b.
$$u_C(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t}$$

c.
$$u_C(t) = (A_1 + A_2 t)e^{pt}$$

d.
$$u_C(t) = Ae^{pt} \cos(\omega t + \theta)$$

5. . 图示 RC 电路, 原处于直流稳态, 当 t=0 时, 开关从 1 投向 2, 则按三要素公式

6. 如图所示电路,原开关闭合,已处于稳态,在 t=0 时开关 K 断开,求电容电压和其导数的初始值。.

7. 如图所示电路,原开关闭合,已处于稳态,在 t=0 时开关 K 断开,求 $t \ge 0$ 时的 $i_L(t)$.

8. 图示电路中, $U_c=50V$, $R_1=5\Omega$, $R_2=R_3=10\Omega$,C=0.5F, $I_s=2A$,电路换路前已达到稳态,求 s 闭合后电容上的电压 $u_c(t)$ 。

9. 图示电路中: $R_1=10\,\Omega$, $R_2=4\,\Omega$, $R_3=15\,\Omega$, L=1H, 电压 u_1 的初始值为 u_1 (0 $^+$) = 15V,求零输入 响应 u_L (t)。

10. 图所示电路中, R_1 =15 Ω , R_2 =10 Ω ,C=50 μ F , t = 0 时将开关 S 闭合,并且 $u_c(0^-)$ = 9V,求电路的零输入响应 $u_c(t)$ 。

11. 图示电路中, u_s =2V, R_1 =1K Ω , R_2 =2K Ω ,C=300 μ F,t <0 时电路处于稳态,在 t = 0 时,将开关 s 闭合,求 $u_c(t)$ 。

12. 图示电路中, R_1 =3 Ω ,C=1F, U_c (0^-) =100V, R_2 =6 Ω ,开关 s 原处于断开状态,当电压 U_c 低于 50V 时自动导通,求 t >0 时的电容电压 u_c (t)和电流 i_c (t)。

13. 图示电路中, R_1 =6 Ω , R_2 =5 Ω , R_3 =20 Ω ,L=2H, U_s =12V, I_s =3A,t < 0 时电路处于 稳态,t = 0 时换路,求 t > 0 时的电流 i(t)的全响应。

14. 图示电路中, $I_s = \mathcal{E}(t)$, L = 2H, $R_1 = R_2 = 10\Omega$, 求 u_L 的单位阶跃响应。

15. 图示线性时不变电路中, $R=1\Omega$,C=1F,求 $i_0(t)$ 的单位阶跃响应响应。

16. 图示电路中, R_1 =1 Ω , R_2 =2 Ω ,C=3F, I_s = ϵ (t),且 u_c (0^-) = 0,计算单位阶跃响应 u_c (t)。

17. 图示电路中 t=0 时开关 S_1 打开, S_2 闭合,开关动作前,电路已处于稳态。,求 t>0 时的 $i_L(t)$ 和 $u_L(t)$ 。(6-18)

18. 图示电路中,开关合在 1 时已达稳态。t=0 时开关由 1 合向 2, 求 t>0 时的 $u_L(t)$ 。

19. 图示电路中电路换路前已达到稳态, 求 s 闭合后电容上的电压 $u_c(t)$ 并作出其波形图。

第六章练习题

1. 根据元件的 VAR 直接填写图中的未知量。

当 *i*=4A 时,则 *u*=____,

当 *i*=2e^{-2t}A 时,则 *u*=____,

2. 根据元件的 VAR 直接填写图旁的未知量。

当 *u*=7e^{-2t}V 时,则 *i*=____,

3. 根据元件的 VAR 直接填写图中的未知量。

当 u_c=3V 时,则 *i*=____,

当 u_c=e^{-3t}V 时,则 u=____,

4. 按元件的 VAR 直接填写图旁的未知量。

当 *i*_L =1A 时,则 *i*=_____,

当 *i*_L =e^{-t}A 时,则 *i*=_____,

5. 按元件的 VAR 直接填写图中的未知量。

当 *i*_L =-2e^tA 时,则 *i*=_____,

