Özdevinirler Kuramı ve Biçimsel Diller

Geçen Haftanın Özeti

> Örnek 5.5. Prefix notasyonundaki (işleç öncelikli) aritmetik deyimleri türeten G_{5.5} dilbilgisi :

$$G_{5.5} = \langle V_N, V_T, P, S \rangle$$

$$V_N = \{S\}$$

$$V_T = \{+, -, *, /, v, c\}$$

$$P: S \Rightarrow + SS \mid -SS \mid *SS \mid /SS \mid v \mid c$$

Bu dilbilgisi ile örnek bir tümce türetilmesi:

S
$$\Rightarrow$$
 / S S
 \Rightarrow / - S S S
 \Rightarrow / - * V S S S
 \Rightarrow / - * V + S S S S
 \Rightarrow / - * V + C S S S
 \Rightarrow / - * V + C V S S
 \Rightarrow / - * V + C V * S S S
 \Rightarrow / - * V + C V * V C S
 \Rightarrow / - * V + C V * V C S
 \Rightarrow / - * V + C V * V C + S S
 \Rightarrow / - * V + C V * V C + C S
 \Rightarrow / - * V + C V * V C + C V
Sonuç: W = / - * V + C V * V C + C V
Bu deyimin işleç ortada eşdeğeri:

w = (v * (c + v) - v * c) / (c + v)

Geçen Haftanın Özeti

Örnek 5.5.'deki dilbilgisine eşdeğer PDA'nın w = / - *v + cv *vc + cv tümcesini tanıması

PDA'nın Geçiş Çizeneği

PDA w'yi tanıdı

Geçen Haftanın Özeti

> Örnek 5.6. {a, b} alfabesinde, eşit sayıda a ve b içeren dizgileri türeten dibigisi (CFG).

$$G_{5.6} = \langle V_N, V_T, P, S \rangle$$

$$V_N = \{S, A, B\}$$

$$V_T = \{a, b\}$$

$$P \colon S \Rightarrow b A \mid a B$$

$$A \Rightarrow b AA \mid a S \mid a$$

$$B \Rightarrow a BB \mid b S \mid b$$

Bu dilbilgisi ile örnek bir tümce türetilmesi:

 $S \Rightarrow aB$ $\Rightarrow abS$ $\Rightarrow abbA$ $\Rightarrow abbbAA$ $\Rightarrow abbbaA$ $\Rightarrow abbbaA$ $\Rightarrow abbbaa$

Sonuç: w = abbbaa

Geçen Haftanın Özeti

➤ Örnek 5.6. 'daki dilbilgisine eşdeğer PDA'nın w = a b b b a a tümcesini tanıması

PDA'nın Geçiş Çizeneği

$$\mathbf{w} = \mathbf{a} \, \mathbf{b} \, \mathbf{b} \, \mathbf{a} \, \mathbf{a}$$

PDA w'yi tanıdı

A SBA

Geçen Haftanın Özeti

➢ Örnek 5.7.

$$G_{5.7} = \langle V_N, V_T, P, S \rangle$$

$$V_N = \{S\}$$

$$V_T = \{a, b\}$$

$$P: S \Rightarrow aSb \mid aSbb \mid ab \mid abb$$

$$L_{5,7} = \{ a^n b^m \mid 1 \le n, n \le m \le 2n \}$$

Bu dilbilgisi ile örnek bir tümce türetilmesi:

$$S \Rightarrow a S b$$

 $\Rightarrow a a S b b b$
 $\Rightarrow a a a b b b b b$

Sonuç:
$$w = a a a b b b b b$$

Geçen Haftanın Özeti

➤ Örnek 5.7. 'deki dilbilgisine eşdeğer PDA'nın w = a a a b b b b b tümcesini tanıması

PDA'nın Geçiş Çizeneği

 $\begin{array}{c} a \\ b a \\ b S \\ ab \\ Sb \\ Sb \\ Z_0 \end{array}$

PDA w'yi tanıdı

Ozdevinirler Kuramı ve Biçimsel Diller — Prof.Dr. Ünal Yarımağan

Yeni Bölüm :Turing Makineleri

- > Bilgisayar bilimleri ve mühendisliğinde kullanılan matematiksel bir model olan Turing makinelerinin kullanım alanları aşağıdaki gibi sınıflandırılabilir:
 - 1. Dil tanıyıcı. Turing makineleri kısıtlamasız (unrestricted) ya da özyineli sayılabilir (r.e.: recursively enumerable) dilleri tanımak için kullanılabilir.
 - 2. Hesaplayıcı. Turing makineleri, kısmi özyineli tamsayı fonksiyonların (partially recursive integer functions) hesaplanmasında kullanılabilir.
 - 3. Dil üreticisi. Turing makineleri ile, r.e. dillerin tümceleri ardarda üretilebilir.

6.1. Turing Makinelerinin Temel Modeli

 $ightharpoonup M = < Q, \Sigma, \Gamma, \delta, q_0, B, F >$

 Γ : Şerit Alfabesi: giriş alfabesinin tüm simgelerini de içeren sonlu bir kümedir: $\Gamma \supseteq \Sigma$

B: Blank olarak adlandırılan özel bir şerit alfabesi simgesi simge. $B \in \Gamma$, $B \notin \Sigma$

 δ : Geçiş ya da hareket işlevi (transition or move function). Temel modelde, hareket işlevi [Q x Γ]'dan [Q x Γ x {L, R}]'ye bir eşleme oluşturur.

> Turing makinesi hareketlerinin çizenekle gösterilmesi:

$$\delta(q_0, X) = (q_1, Y, R)$$

 $\delta(q_1, Y) = (q_2, Z, L)$

$$q_0, q_1, q_2 \in Q$$

6.1.1. Soyut Makine Görünümü

a) Başlangıç Görünümü

a) Birkaç Hareket Sonraki Görünüm

6.1.2. Anlık Tanımlar (Instantaneous Descriptions)

 \blacktriangleright Anlık tanım (ID) = (α_1, q, α_2)

q: makinenin durumu

α₁: okuma kafasının solundaki dizgi

α₂: okuma kafasının sağındaki dizgi

(okuma kafası α_2 'nin en solundaki simge üzerinde bulunur)

6.1.3. Turing Makinesinin Tanıdığı Dil

$$T(M) = \{ w \mid w \in \Sigma^*, (q_0, w) \models (\alpha_1, p, \alpha_2), \alpha_1, \alpha_2 \in \Gamma^*, p \in F \}$$

6.2. Turing Makinesi Örnekleri

> Örnek 6.1. n sıfırdan büyük (pozitif) bir tamsayı veya sıfır olmak üzere f(n) = 2n

değerini hesaplayan Turing makinesini tasarlayalım.

◆ Başlangıç konfigürasyonu:

- ◆ Çalışma yöntemi:
 - a) 1'ler öbeğinin sağındaki ilk hücre işaretlenecek (örneğin ç ile)
 - b) Soldan sağa doğru her 1'in yerine B yazılacak, buna karşılık ç'nin sağındaki ilk iki B yerine 1 yazılacak.
 - c) En sonunda ç ile işaretlenen hücreye de B yazılacak.

◆ Bitiş konfigürasyonu:

◆ Makinenin biçimsel tanımı:

$$\begin{split} \mathbf{M}_{6.1} &= <\mathbf{Q}, \, \Sigma, \, \Gamma, \, \delta, \, \mathbf{q}_0, \, \mathbf{B}, \, \mathbf{F}> \\ &\mathbf{Q} = \{\mathbf{q}_0, \, \mathbf{q}_1, \, \mathbf{q}_2, \, \mathbf{q}_3, \, \mathbf{q}_4, \, \mathbf{q}_5\} \\ &\Sigma = \{1\} \\ &\Gamma = \{\mathbf{B}, \, 1, \, \varsigma\} \\ &\mathbf{q}_0 : \, \mathbf{Başlangı}\varsigma \, \, \mathbf{durumu}. \\ &\mathbf{F} = \Phi \end{split}$$

◆ Hareket çizeneği:

Örnek 6.2. Bağlamdan-bağımsız L_{6.2} dilini tanıyan Turing makinesi:

$$L_{6.2} = \{ 0^n 1^n \mid n \ge 1 \}$$

◆ Başlangıç konfigürasyonu:

- ◆ Çalışma yöntemi:
 - a) En soldaki 0 yerine X yazılır.
 - b) En soldaki 1 yerine Y yazılır. Her 0 için bir 1 bulunması gerekir. Bulunmazsa makine uç olmayan bir durumda durur ve dizgiyi tanımamış olur.
 - c) 0 'lar bittiğinde 1 'lerin de bittiği kontrol edilir.

◆ Bitiş konfigürasyonu:

◆ Hareket çizeneği:

◆ Makinenin biçimsel tanımı:

$$\begin{split} \mathbf{M}_{6.2} &= <\mathbf{Q}, \, \Sigma, \, \Gamma, \, \delta, \, \mathbf{q}_0, \, \mathbf{B}, \, \mathbf{F}> \\ \mathbf{Q} &= \{\mathbf{q}_0, \, \mathbf{q}_1, \, \mathbf{q}_2, \, \mathbf{q}_3, \, \mathbf{q}_4\} \\ \boldsymbol{\Sigma} &= \{\mathbf{0}, \, \mathbf{1}\} \\ \boldsymbol{\Gamma} &= \{\mathbf{B}, \, \mathbf{0}, \, \mathbf{1}, \, \mathbf{X}, \, \mathbf{Y}\} \\ \mathbf{q}_0 &: \, \mathbf{Başlangıç} \, \, \mathbf{durumu} \\ \mathbf{F} &= \{\mathbf{q}_4\} \end{split}$$

