Sistema de Rega Inteligente

1st Tomás Marcos

Faculdade de Ciências Exatas e da Engenharia Universidade da Madeira Funchal, Portugal 2037017@student.uma.pt 2nd Nelson Vieira Faculdade de Ciências Exatas e da Engenharia Universidade da Madeira Funchal, Portugal

2080511@student.uma.pt

Abstract—A água é um recurso precioso, considerado um dos bens essenciais para a vida. No entanto, cada vez mais, ouve-se que é um recurso escasso e que rapidamente está a se esgotar. A água é utilizada para muitas atividades, sejam elas industriais, comerciais ou de lazer. Existem muitas iniciativas que pretendem reduzir o consumo e o desperdício de água. Pretendemos explorar um sistema de rega inteligente que utilize sensores de forma a reduzir a quantidade de água que é utilizada.

Index Terms—IoT, Computação ubíqua, Rega inteligente, Análise literária.

I. Introdução

A Sustentabilidade global não será alcançada sem garantir a disponibilidade de água preciosa para todos os consumidores. Apesar de ser um dos principais objetivos da agenda da UN2030 para o desenvolvimento global sustentável, a atual escassez de água está a crescer rapidamente e afetando um número crescente de consumidores de água residencial, comercial, industrial e agrícola em todo o mundo. Espera-se que a procura global da água suba 55%, enquanto atualmente, cerca de 25% das grandes cidades estão a passar por alguns níveis de stress hídrico.

As mudanças climáticas, secas graves, crescimento populacional, aumento da procura e má administração durante as últimas décadas enfatizaram ainda mais os recursos escassos da água doce em todo o mundo e resultaram numa grave escassez de água para cerca de 4 bilhões de pessoas, pelo menos um mês anualmente. []

Um dos setores de atividade humana que tem maior consumo dos recursos hídricos é a agricultura, "aproximadamente 100 vezes mais do que o uso pessoal é consumida pela alimentação e agricultura e quase 70% das águas fluviais e subterrâneas são utilizadas na irrigação" []. Várias iniciativas foram tomadas para ajudar a minimizar o desperdício de água neste setor, mas, no entanto, não aparentam ter muito sucesso, ou não são apelativas, devido aos elevados custos associados. Os sensores comerciais para sistemas destinados à agricultura e à sua irrigação são muito caros, tornando impossível aos pequenos agricultores a implementação deste tipo de sistema nas suas explorações. No entanto, os fabricantes oferecem actualmente sensores de baixo custo que podem ser ligados a nós para implementar sistemas de baixo custo para a gestão da irrigação e monitorização agrícola. Além disso, devido ao interesse em sensores de baixo custo para monitorizar a agricultura e a água, novos sensores de baixo custo estão a ser propostos em vários estudos. []

Por estes motivos é importante gerir o consumo de água no nosso dia a dia, portanto o que propomos é um sistema de rega inteligente que faz a medição da humidade do solo e rega as plantas apenas durante o tempo necessário poupando o gasto desnecessário da água de rega.

A. Propostas existentes

Segundo um estudo realizado por L. García, existem 178 artigos relacionados com "IoT irrigation, IoT irrigation system, and smart irrigation" [], escritos em Inglês, no período de entre os anos de 2014 e 2019, inclusive, dos quais 106 artigos estão relacionados com a utilização de sensores para monitorizar o estado do solo. Destes 106 artigos estudados, todos os artigos abordam a humidade do solo, 9 discutem a temperatura do solo, 4 exploram o ph do solo e 3 mencionam os nutrientes presentes no solo.

Dos artigos que mencionam o tipo de sensor utilizado, o sensor mais popular é o e YL69 (SparkFun Electronics, Niwot, CO, USA). Este sensor tem um baixo custo e foi criado para operar especificamente com o Arduino. []

B. Questões de investigação

O trabalho descrito neste artigo pertende responder a algumas questões que foram levantadas após alguma investigação sobre soluções já existentes no que diz respeito a sistemas de rega. O sistema proposto permite poupar água? Qual a quantidade de água que é possível poupar? Qual é o custo associado à integração de sensores num sistema de rega convencional? Em comparação com um sistema de rega convencional, qual a poupança que um sistema de rega inteligente proporciona?

C. O nosso sistema

O sistema de rega inteligente que propomos faz uso do Arduino e de um sensor de humidade do solo, mais propriamente serão usados os seguintes modelos:

O dispositivo Arduino, como mostra a figura 1, que usamos é o modelo MKR 1000 WiFi pois é um modelo com capacidade wifi, o que facilita na transmissão dos dados para o utilizador que poderá vê-los no seu smartphone.

O sensor de humidade, ilustrado pela figura 2, é um sensor normal para esta função, tem valores de 0 a 1023, serão usados valores incrementais entre os valores mínimo e máximo para

Fig. 1. Dispositivo Arduino

Fig. 2. Sensor de humidade

fazer uma distinção do grau de escassez do solo. Também pode ser usado um Raspberry Pi para guardar dados do Arduino.

II. EASE OF USE

A. Maintaining the Integrity of the Specifications

The IEEEtran class file is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin measures proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the current designations.

III. PREPARE YOUR PAPER BEFORE STYLING

Before you begin to format your paper, first write and save the content as a separate text file. Complete all content and organizational editing before formatting. Please note sections III-A–III-E below for more information on proofreading, spelling and grammar.

Keep your text and graphic files separate until after the text has been formatted and styled. Do not number text heads— LATEX will do that for you.

A. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as "3.5-inch disk drive".
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: "Wb/m²" or "webers per square meter", not "webers/m²".
 Spell out units when they appear in text: ". . . a few henries", not ". . . a few H".
- Use a zero before decimal points: "0.25", not ".25". Use "cm³", not "cc".)

C. Equations

Number equations consecutively. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in:

$$a + b = \gamma \tag{1}$$

Be sure that the symbols in your equation have been defined before or immediately following the equation. Use "(1)", not "Eq. (1)" or "equation (1)", except at the beginning of a sentence: "Equation (1) is . . ."

D. LATEX-Specific Advice

Please use "soft" (e.g., \eqref{Eq}) cross references instead of "hard" references (e.g., (1)). That will make it possible to combine sections, add equations, or change the order of figures or citations without having to go through the file line by line.

Please don't use the {eqnarray} equation environment. Use {align} or {IEEEeqnarray} instead. The {eqnarray} environment leaves unsightly spaces around relation symbols.

Please note that the {subequations} environment in LATEX will increment the main equation counter even when there are no equation numbers displayed. If you forget that, you might write an article in which the equation numbers skip from (17) to (20), causing the copy editors to wonder if you've discovered a new method of counting.

BIBT_EX does not work by magic. It doesn't get the bibliographic data from thin air but from .bib files. If you use BIBT_EX to produce a bibliography you must send the .bib files.

LATEX can't read your mind. If you assign the same label to a subsubsection and a table, you might find that Table I has been cross referenced as Table IV-B3.

LATEX does not have precognitive abilities. If you put a \label command before the command that updates the counter it's supposed to be using, the label will pick up the last counter to be cross referenced instead. In particular, a \label command should not go before the caption of a figure or a table.

Do not use \nonumber inside the {array} environment. It will not stop equation numbers inside {array} (there won't be any anyway) and it might stop a wanted equation number in the surrounding equation.

E. Some Common Mistakes

- The word "data" is plural, not singular.
- The subscript for the permeability of vacuum μ_0 , and other common scientific constants, is zero with subscript formatting, not a lowercase letter "o".
- In American English, commas, semicolons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an "inset", not an "insert". The
 word alternatively is preferred to the word "alternately"
 (unless you really mean something that alternates).
- Do not use the word "essentially" to mean "approximately" or "effectively".
- In your paper title, if the words "that uses" can accurately replace the word "using", capitalize the "u"; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones "affect" and "effect", "complement" and "compliment", "discreet" and "discrete", "principal" and "principle".
- Do not confuse "imply" and "infer".
- The prefix "non" is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the "et" in the Latin abbreviation "et al.".
- The abbreviation "i.e." means "that is", and the abbreviation "e.g." means "for example".

An excellent style manual for science writers is.

F. Authors and Affiliations

The class file is designed for, but not limited to, six authors. A minimum of one author is required for all conference articles. Author names should be listed starting from left

to right and then moving down to the next line. This is the author sequence that will be used in future citations and by indexing services. Names should not be listed in columns nor group by affiliation. Please keep your affiliations as succinct as possible (for example, do not differentiate among departments of the same organization).

G. Identify the Headings

Headings, or heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.

Component heads identify the different components of your paper and are not topically subordinate to each other. Examples include Acknowledgments and References and, for these, the correct style to use is "Heading 5". Use "figure caption" for your Figure captions, and "table head" for your table title. Run-in heads, such as "Abstract", will require you to apply a style (in this case, italic) in addition to the style provided by the drop down menu to differentiate the head from the text.

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced.

H. Figures and Tables

a) Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation "Fig. 3", even at the beginning of a sentence.

TABLE I TABLE TYPE STYLES

Table	Table Column Head		
Head	Table column subhead	Subhead	Subhead
copy	More table copy ^a		
^a Sample of a Table footnote.			

Fig. 3. Example of a figure caption.

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an

example, write the quantity "Magnetization", or "Magnetization, M", not just "M". If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write "Magnetization $\{A[m(1)]\}$ ", not just "A/m". Do not label axes with a ratio of quantities and units. For example, write "Temperature (K)", not "Temperature/K".

IV. CONCLUSÃO

O Argon2 é um dos algoritmos de hash mais seguros da atualidade, é inspirado nalguns algoritmos também bastante seguros como o berypt e por isso acaba por ser uma evolução lógica dos algoritmos de hash. Apenas uma versão do algoritmo tem vulnerabilidades, mas estas vulnerabilidades podem ser negadas como explicado na secção "Análise criptográfica". Este algoritmo tem muitas vantagens, mas uma desvantagem que pode causar problemas nalgumas situações é o fato do algoritmo poder ser muito lento caso sejam modificados alguns parâmetros, é necessário criar um equilíbrio nestas situações entre segurança e tempo de execução.

ACKNOWLEDGMENT

Gostaria de agradecer a todas as pessoas que me apoiaram até agora, incluindo família, amigos e professores.

REFERENCES