Devoir surveillé n° 4

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

- 1) Montrer que : $\forall x \in \mathbb{R} \quad \lfloor x \rfloor + \lfloor -x \rfloor = \begin{cases} 0 & \text{si } x \in \mathbb{Z} \\ -1 & \text{sinon} \end{cases}$.
- 2) En déduire que, si $p, q \in \mathbb{N}^*$ sont premiers entre eux, on a

$$\sum_{k=1}^{q-1} \left| k \times \frac{p}{q} \right| = \frac{(p-1)(q-1)}{2}.$$

II. Une équation de Mordell.

On cherche déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de l'équation (de Mordell) suivante :

$$y^2 = x^3 + 16. \tag{M}$$

On désigne par *cube parfait* tout cube d'entier. Ainsi, un entier $a \in \mathbb{Z}$ est un cube parfait s'il existe $n \in \mathbb{Z}$ vérifiant $a = n^3$.

- 1) Résultats préliminaires. Ces deux questions sont indépendantes, et leurs résultats pourront être utilisées dans le reste du devoir.
 - a) Soit $a \in \mathbb{Z}$. Montrer que a est pair si et seulement si a^2 est pair et que a est pair si et seulement si a^3 est pair.
 - b) Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux, tels que ab soit un cube parfait. Montrer que a et b sont des cubes parfaits. Indication: On pourra partir de la décomposition en produit de facteurs premiers du nombre dont ab est le cube.
- 2) Soit $(x, y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit impair.
 - a) Montrer que y^2 est impair et en déduire que x est impair.
 - b) Soit d un diviseur de y-4 et de y+4. Montrer que d est impair et que d divise 8.

- c) En déduire que y-4 et y+4 sont premiers entre eux.
- d) En déduire qu'il existe $a, b \in \mathbb{Z}$ tels que $y + 4 = a^3$ et $y 4 = b^3$.
- e) Montrer que a b est pair et que $a^2 + ab + b^2$ est impair.
- f) En factorisant $a^3 b^3$, montrer que a = b + 8 et $3b^2 + 24b + 64 = 1$.
- g) Conclure en donnant l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solution de (\mathscr{M}) tel que y soit impair
- 3) Soit $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit pair.
 - a) Montrer que si $y \equiv 0[4]$ alors $y^2 \equiv 0[16]$, et si $y \equiv 2[4]$ alors $y^2 \equiv 4[16]$.
 - b) En démontrant des résultats analogues concernant x^3 , montrer que x et y sont divisibles par 4.

On note alors x = 4x' et y = 4y'.

- c) Montrer que y' est impair.
- On note alors y' = 2n + 1.
- d) Montrer que n et n+1 sont premiers entre eux et sont des cubes parfaits.

On note alors $n = c^3$ et $n + 1 = d^3$.

- e) Montrer que d = c + 1, et en déduire les valeurs de n, y', x', y et x.
- 4) Déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de (\mathcal{M}) .

III. Fonctions sup-continues.

On considère l'ensemble $E = [0, 1] \subset \mathbb{R}$, que l'on munit de l'ordre usuel sur \mathbb{R} . On s'intéresse aux applications allant de E dans E. Soit $f : E \to E$ une telle application.

On rappelle que f est croissante si et seulement si :

$$\forall (x,y) \in E^2, \ x \leqslant y \Longrightarrow f(x) \leqslant f(y)$$

On dit que f est sup-continue si et seulement si :

$$\forall A \in \mathcal{P}(E), \ A \neq \varnothing \Longrightarrow f(\sup A) = \sup f(A)$$

- 1) Justifier que la définition de f sup-continue est correcte (c'est-à-dire que ce qui est écrit a toujours un sens).
- 2) Soit f et g deux applications de E dans E.
 - a) Montrer que pour tout $A \subset E$, $(g \circ f)(A) = g(f(A))$.

- b) En déduire que si f et g sont sup-continues, alors $g \circ f$ est sup-continue.
- 3) Montrer que si une application $f: E \to E$ est croissante, alors pour toute partie $A \subset E$ non vide, on a $\sup(f(A)) \leq f(\sup A)$.
- 4) Exhiber un exemple d'application $f: E \to E$ qui est croissante, mais qui n'est pas sup-continue.
- 5) Montrer que si $f: E \to E$ est sup-continue, alors f est croissante.

On considère désormais une application $f: E \to E$ qui est sup-continue. On note l'ensemble des points fixes de f:

$$Fix(f) = \{ x \in E \mid f(x) = x \}.$$

On note aussi:

$$X = \{ x \in E \mid f(x) \leqslant x \}.$$

On définit, pour tout $n \in \mathbb{N}^*$,

$$f^n = \underbrace{f \circ f \circ \dots \circ f}_{n \text{ fois}}$$

avec la convention $f^0 = \mathrm{Id}_E$, et l'on pose finalement :

$$Y = \{ f^n(0) \mid n \in \mathbb{N} \} = \{ y \in E \mid \exists n \in \mathbb{N}, y = f^n(0) \}.$$

- 6) Montrer que X possède une borne inférieure, que l'on notera désormais α .
- 7) Justifier que $\alpha \in E$.
- 8) Montrer que α est le plus petit élément de Fix(f).
- 9) Justifier que Y possède une borne supérieure, que l'on notera β , et que $\beta \in E$.
- **10)** Montrer que

$$f(Y) = \{ f^n(0) \mid n \in \mathbb{N}^* \}$$

et que

$$\sup Y = \sup f(Y).$$

11) Montrer que $\alpha = \beta$.