CRYPTOGRAPHIE - BAC S PONDICHÉRY 2016 (SPÉ)

PARTIE A

1)
$$NM = \frac{1}{\det(M)} \begin{pmatrix} 3 & -b \\ -5 & a \end{pmatrix} \begin{pmatrix} a & b \\ 5 & 3 \end{pmatrix} = \frac{1}{3a - 5b} \begin{pmatrix} 3a - 5b & 3b - 3b \\ -5a + 5a & -5b + 3a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$
, I étant la matrice unité de dimension 2×2 . On en déduit que $N = M^{-1}$.

2.a) L'équation (E) est équivalente à 3a-5b=3. Il est évident que (a=6; b=3) est solution de (E).

2.b)
$$3a-5b=3 \Leftrightarrow 3a-5b=3\times 6-5\times 3 \Leftrightarrow 3a-3\times 6=5b-5\times 3 \Leftrightarrow 3(a-6)=5(b-3)$$

5 divise 3(a-6) et est premier avec 3 donc d'après le théorème de Gauss, 5 divise a-6 donc il existe un entier relatif k tel que a-6=5k puis en remplaçant a par 5k+6: 3(5k+6-6)=5(b-3)

Donc b=3k+3

L'ensemble des solutions est S= $\{(a;b) \text{ avec } a = 6 + 5k ; b = 3 + 3k \text{ et } k \in \mathbb{Z}\}.$

PARTIE B

1)
$$Q^{-1} = \frac{1}{3} \begin{pmatrix} 3 & -3 \\ -5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -\frac{5}{3} & 2 \end{pmatrix}$$
.

2) DO
$$\rightarrow X = \begin{pmatrix} 3 \\ 14 \end{pmatrix} \rightarrow Y = \begin{pmatrix} 6 & 3 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 14 \end{pmatrix} = \begin{pmatrix} 60 \\ 57 \end{pmatrix} \rightarrow R = \begin{pmatrix} 8 \\ 5 \end{pmatrix} \rightarrow IF.$$

3.a) $QX = Y \Rightarrow Q^{-1}QX = Q^{-1}Y \Rightarrow X = Q^{-1}Y \Rightarrow 3X = 3Q^{-1}Y$. Alors:

$$3 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 \\ 3x_2 \end{pmatrix} = 3 \begin{pmatrix} 1 & -1 \\ -\frac{5}{3} & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -5 & 6 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 3y_1 - 3y_2 \\ -5y_1 + 6y_2 \end{pmatrix}. \text{ On en tire :}$$

$$\begin{cases} 3x_1 = 3y_2 - 3y_2 \\ 3x_1 = 3y_2 - 3y_2 \end{cases} = \begin{pmatrix} 3x_1 = 3x_1 - 3x_2 \\ 3x_2 = 3y_2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_1 - 3x_2 \\ 3x_2 = 3x_2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_1 - 3x_2 \\ 3x_2 = 3x_2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_1 - 3x_2 \\ 3x_2 = 3x_2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_1 - 3x_2 \\ 3x_2 = 3x_2 - 3y_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 - 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 - 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1 = 3x_2 \\ 3x_2 = 3x_2 \end{pmatrix} = \begin{pmatrix} 3x_1$$

$$\begin{cases} 3x_1 = 3y_1 - 3y_2 \\ 3x_2 = -5y_1 + 6y_2 \end{cases} \Rightarrow \begin{cases} 3x_1 \equiv 3r_1 - 3r_2 \text{ [26]} \\ 3x_2 \equiv -5r_1 + 6r_2 \text{ [26]} \end{cases}$$

3.b)
$$\begin{cases} 27x_1 \equiv 27r_1 - 27r_2 \text{ [26]} \\ 27x_2 \equiv -45r_1 + 54r_2 \text{ [26]} \end{cases} \Rightarrow \begin{cases} x_1 \equiv r_1 - r_2 \text{ [26]} \\ x_2 \equiv 7r_1 + 2r_2 \text{ [26]} \end{cases}$$

3.c) SG
$$\rightarrow R = \begin{pmatrix} 18 \\ 6 \end{pmatrix} \rightarrow \begin{cases} x_1 \equiv 12 \ [26] \\ x_2 \equiv 138 \ [26] \end{cases} \rightarrow X = \begin{pmatrix} 12 \\ 8 \end{pmatrix} \rightarrow MI.$$