Part 14

Frenet Formulas, continued

Printed version of the lecture Differential Geometry on 19. October 2009

Tommy R. Jensen, Department of Mathematics, KNU

Overview

Contents

1 Frenet Approximation 1

2 Plane Curves 4

3 Conclusion

1 Frenet Approximation

Planes

We will think of a plane in \mathbb{R}^3 as the set of all points that are orthogonal to some tangent vector.

Definition

Let p,q be points in \mathbb{R}^3 , with $q \neq \vec{0}$.

Then the plane through p orthogonal to q is the set of all points r in \mathbb{R}^3 such that

$$(r-p) \bullet q = 0.$$

14.1

14.4

Taylor approximation of β

Taylor approximation of Euclidean coordinate functions

Given the unit-speed curve $\beta = (\beta_1, \beta_2, \beta_3)$,

$$\beta_i(s) \sim \beta_i(0) + \frac{d\beta_i}{ds}(0)s + \frac{d^2\beta_i}{ds^2}(0)\frac{s^2}{2!} + \frac{d^3\beta_i}{ds^3}(0)\frac{s^3}{3!}$$

are the first four terms of the Taylor series for β_i at the point s = 0 for i = 1, 2, 3.

The \sim means that the difference between the left hand side and the right hand side converges to 0 as s tends to 0.

Taylor approximation of the curve

From the approximations of the Euclidean coordinate functions we get an approximation

$$\beta(s) = (\beta_1(s), \beta_2(s), \beta_3(s)) \sim \beta(0) + \beta'(0)s + \beta''(0)\frac{s^2}{2} + \beta'''(0)\frac{s^3}{6}.$$

Applying the Frenet formulas to the approximation

Substituting derivatives

We defined $T(s) = \beta'(s)$, so

$$\beta'(0) = T(0) = T_0$$

We also defined $N(s) = T'(s)/\kappa(s) = \beta''(s)/\kappa(s)$, so

$$\beta''(0) = \kappa(0)N(0) = \kappa_0 N_0.$$

To calculate $\beta'''(0)$ we can use the Leibniz rule:

$$\beta''' = \frac{d(\kappa N)}{ds} = \frac{d\kappa}{ds} N + \kappa N'.$$

From the Frenet formulas we have $N' = -\kappa T + \tau B$. Now

$$\beta'''(0) = -\kappa_0^2 T_0 + \frac{d\kappa}{ds}(0)N_0 + \kappa_0 \tau_0 B_0,$$

where $\tau_0 = \tau(0)$ and $B_0 = B(0)$.

The Frenet approximation

We have calculated:

$$\beta(s) \sim \beta(0) + \beta'(0)s + \beta''(0)\frac{s^2}{2} + \beta'''(0)\frac{s^3}{6},$$

$$\beta'(0) = T_0, \ \beta''(0) = \kappa_0 N_0, \ \beta'''(0) = \kappa_0^2 T_0 + \frac{d\kappa}{ds}(0)N_0 + \kappa_0 \tau_0 B_0.$$

Approximating $\beta(s)$ as a linear combination of T_0, N_0, B_0 :

$$\beta(s) \sim \beta(0) + (s + \kappa_0^2 \frac{s^3}{6}) T_0 + (\kappa_0 \frac{s^2}{2} + \frac{d\kappa}{ds}(0) \frac{s^3}{6}) N_0 + \kappa_0 \tau_0 \frac{s^3}{6} B_0.$$

Definition

$$\hat{\beta}(s) = \beta(0) + sT_0 + \kappa_0 \frac{s^2}{2} N_0 + \kappa_0 \tau_0 \frac{s^3}{6} B_0$$

is called *Frenet approximation* of β near s = 0.

The Frenet approximation at point s_0

We found

$$\hat{\beta}(s) = \beta(0) + sT_0 + \kappa_0 \frac{s^2}{2} N_0 + \kappa_0 \tau_0 \frac{s^3}{6} B_0$$

as approximation of β near s = 0.

As approximation at a point s_0 we have in general

$$\hat{\beta}_{s_0}(s) \sim \beta(s_0) + (s - s_0)T_{s_0} + \kappa_{s_0} \frac{(s - s_0)^2}{2} N_{s_0} + \kappa_{s_0} \tau_{s_0} \frac{(s - s_0)^3}{6} B_{s_0}$$

as the Frenet approximation of β near $s = s_0$.

Tangent line and osculating plane

The Frenet approximation

$$\hat{\beta}(s) = \beta(0) + sT_0 + \kappa_0 \frac{s^2}{2} N_0 + \kappa_0 \tau_0 \frac{s^3}{6} B_0$$

Definition

The curve defined by $s \mapsto \beta(0) + sT_0$ is the *tangent line* to β at s = 0.

It is the best linear approximation to β near $\beta(0)$.

Definition

The curve defined by $s \mapsto \beta(0) + sT_0 + \kappa_0 \frac{s^2}{2} N_0$ is a parabola which is the best quadratic approximation to β at s = 0.

This parabola lies in the plane through $\beta(0)$ orthogonal to B_0 .

This plane is called the *osculating plane* of β at s = 0.

Osculate

The curves meet in a point where they have a common tangent.

2 Plane Curves

Plane curves

Definition

A *plane curve* in \mathbb{R}^3 is a curve in \mathbb{R}^3 such that all its points lie in the same plane in \mathbb{R}^3 .

If the torsion τ of β at s=0 is zero, $\tau(0)=0$, then the Frenet approximation becomes

$$\hat{\beta}(s) = \beta(0) + sT_0 + \kappa_0 \frac{s^2}{2} N_0,$$

so $\hat{\beta}$ is a plane curve in the osculating plane of β at s = 0.

14.7

14.10

Torsion-free curves

Corollary 3.5

Let β be a unit-speed curve in \mathbb{R}^3 with positive curvature $\kappa > 0$.

Then β is a plane curve if and only if $\tau = 0$.

Proof of the "only if" part of Corollary 3.5

Assume that β is a plane curve.

So there are p, q in \mathbb{R}^3 such that $(\beta(s) - p) \bullet q = 0$ for all s.

Differentiating $(\beta(s) - p) \bullet q = 0$ gives

$$\beta' \bullet q + (\beta - p) \bullet 0 = \beta' \bullet q = 0$$
 and $\beta'' \bullet q = 0$.

So also $T \bullet q = 0$ and $N \bullet q = 0$.

By orthonormal expansion, $q = (q \bullet B)B$.

From ||B|| = 1 follows B = q/||q|| or B = -q/||q||.

Since *B* is constant, we get B' = 0.

The definition of τ is given by $B' = -\tau N$.

It follows from $N \neq 0$ that $\tau = 0$.

14.11

Proof of the "if" part of Corollary 3.5

Assume that β is a curve with $\tau = 0$. So B' = 0, and B is parallel, that is, a constant $B = (b_1, b_2, b_3)$.

We want to show that β lies in the plane through $\beta(0)$ orthogonal to B.

So consider the function $f : \mathbb{R} \to \mathbb{R}, s \mapsto (\beta(s) - \beta(0)) \bullet B$.

We immediately see that f(0) = 0.

Since *B* is constant,

$$\frac{df}{ds} = \beta' \bullet B = T \bullet B = 0.$$

Hence f is a constant, which implies f = 0.

The equation

$$(\beta(s) - \beta(0)) \bullet B = 0$$

precisely means that β lies in the plane through $\beta(0)$ orthogonal to B.

14.13

Torsion-free curves with constant curvature

Lemma 3.6

If β is a unit-speed curve with constant curvature $\kappa > 0$ and torsion zero, $\tau = 0$, then β moves on a circle of radius $1/\kappa$.

Proof of Lemma 3.6

The assumption $\tau = 0$ implies that β is a plane curve, by Corollary 3.5.

Define a new curve $\gamma = \beta + N/\kappa$.

Differentiate using that κ is constant, and using $N' = -\kappa T$:

$$\gamma' = \beta' + N'/\kappa = T + (-\kappa T)/\kappa = T - T = 0.$$

Which implies that γ is constant.

Assume $\gamma(s) = c$ for all s. Then $\beta(s) + N(s)/\kappa = c$ for all s.

The distance from c to $\beta(s)$ is equal to

$$d(c, \beta(s)) = ||c - \beta(s)|| = ||N(s)/\kappa|| = 1/\kappa,$$

so it is constant $1/\kappa$.

14.14

Spherical curves

Conclusion

The End

END OF THE LECTURE!

Next time:

Solving equation by

$$\frac{1}{n}\sin x = ?$$

$$\sin x = 6$$

$$\sin x = 6$$

$$six = 6$$

Friday: Midterm test 14.17