# ▼ 딥러닝 Classification Model 구현

- 설명: https://towardsdatascience.com/deep-learning-for-tabular-data-using-pytorch-1807f2858320
- 코드: https://jovian.ai/aakanksha-ns/shelter-outcome
- 데이터: https://www.kaggle.com/c/shelter-animal-outcomes/data
- 데이터 사용 동의 처리 필요 : https://www.kaggle.com/c/quora-question-pairs -> data 메뉴 -> data 다운로드 버튼 클릭

### ▼ 데이터 파일 다운로드

```
! pip install -q kaggle
from google.colab import files
files.upload()
      파일 선택 kaggle ison
     • kaggle.json(application/json) - 64 bytes, last modified: 2021. 5. 16. - 100% done
     Saving kaggle.json to kaggle.json
     { 'kaggle.json': b' { "username": "kgpark88", "key": "43d297843da2e99840b860daaae58cc1" }' }
! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/
! chmod 600 ~/.kaggle/kaggle.json
! kaggle competitions download -c shelter-animal-outcomes
     Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.12 / client 1.5.4)
     Downloading train.csv.gz to /content
       0% 0.00/521k [00:00<?, ?B/s]
```

```
100% 521k/521k [00:00<00:00, 32.7MB/s]
     Downloading test.csv.gz to /content
       0% 0.00/191k [00:00<?. ?B/s]
     100% 191k/191k [00:00<00:00, 62.6MB/s]
     Downloading sample submission.csv.gz to /content
       0% 0.00/15.1k [00:00<?, ?B/s]
     100% 15.1k/15.1k [00:00<00:00, 16.6MB/s]
ls -ltr
     total 3928
     drwxr-xr-x 1 root root 4096 May 6 13:44 sample data/
     -rw-r--r 1 root root 64 May 16 12:18 kaggle.ison
     -rw-r--r 1 root root 2824793 May 16 12:19 train.csv
     -rw-r--r-- 1 root root 1009045 May 16 12:19 test.csv
     -rw-r--r 1 root root 172243 May 16 12:19 sample submission.csv
! gzip -d train.csv.gz
! gzip -d test.csv.gz
! gzip -d sample submission.csv.gz
```

# Deep Learning for tabular data using Pytorch

Dataset - https://www.kaggle.com/c/shelter-animal-outcomes

**Problem Statement**: Given certain features about a shelter animal (like age, sex, color, breed), predict its outcome.

There are 5 possible outcomes: Return\_to\_owner, Euthanasia, Adoption, Transfer, Died. We are expected to find the probability of an animal's outcome belonging to each of the 5 categories.

### ▼ Library imports

```
import pandas as pd
import numpy as np
from collections import Counter
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import torch
from torch.utils.data import Dataset, DataLoader
import torch.optim as torch_optim
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
from datetime import datetime
```

### ▼ Load Data

### ▼ Training set

```
train = pd.read_csv('train.csv')
print("Shape:", train.shape)
train.head()
```

|       | Sha            | pe: (2         | 6729, 10)                   |        |                            |                 |                |               |                  |                      |                           |   |
|-------|----------------|----------------|-----------------------------|--------|----------------------------|-----------------|----------------|---------------|------------------|----------------------|---------------------------|---|
|       |                | Anima          | allD                        | Name   | DateTime                   | OutcomeType     | OutcomeSubtype | AnimalType    | SexuponOutcome   | AgeuponOutcome       | Breed                     |   |
|       | 0              | A67            | 1945 Ha                     | mbone  | 2014-02-<br>12<br>18:22:00 | Return_to_owner | NaN            | Dog           | Neutered Male    | 1 year               | Shetland<br>Sheepdog Mix  | E |
|       | 1              | A65            | 6520                        | Emily  | 2013-10-<br>13             | Euthanasia      | Suffering      | Cat           | Spayed Female    | 1 year               | Domestic<br>Shorthair Mix |   |
| ▼ Tes | st se          | t              |                             |        |                            |                 |                |               |                  |                      |                           |   |
|       | _              | , 100          | UTUT                        | Laice  | 40.00.00                   | πορασι          | 103001         | Dog           | INCULCICA IVIAIC | ~ yca13              | LIC DOIL WITA             |   |
| prin  | t("Sh<br>.head | nape:",<br>H() | _csv('tesh<br>_test.sha<br> |        |                            |                 |                |               |                  |                      |                           |   |
|       |                | ID             | Name                        |        | DateTime                   | e AnimalType    | SexuponOutcome | AgeuponOutcom | ne               | Breed                | Color                     |   |
|       | 0              | 1              | Summer                      | 2015-1 | 10-12 12:15:00             | Dog             | Intact Female  | 10 montl      | hs Lab           | rador Retriever Mix  | Red/White                 |   |
|       | 1              | 2 (            | Cheyenne                    | 2014-0 | 07-26 17:59:00             | Dog             | Spayed Female  | 2 yea         | rs German Sheph  | erd/Siberian Husky   | Black/Tan                 |   |
|       | 2              | 3              | Gus                         | 2016-0 | 01-13 12:20:00             | O Cat           | Neutered Male  | 1 ye          | ar Dom           | nestic Shorthair Mix | Brown Tabby               |   |
|       | 3              | 4              | Pongo                       | 2013-1 | 12-28 18:12:00             | Dog             | Intact Male    | 4 montl       | hs               | Collie Smooth Mix    | Tricolor                  |   |
|       | 4              | 5              | Skooter                     | 2015-0 | 09-24 17:59:00             | Dog             | Neutered Male  | 2 yea         | rs Mi            | niature Poodle Mix   | White                     |   |

# ▼ Sample submission file

#### For each row, each outcome's probability needs to be filled into the columns

```
sample = pd.read_csv('sample_submission.csv')
sample.head()
```

|   | ID | Adoption | Died | Euthanasia | Return_to_owner | Transfer |
|---|----|----------|------|------------|-----------------|----------|
| 0 | 1  | 1        | 0    | 0          | 0               | 0        |
| 1 | 2  | 1        | 0    | 0          | 0               | 0        |
| 2 | 3  | 1        | 0    | 0          | 0               | 0        |
| 3 | 4  | 1        | 0    | 0          | 0               | 0        |
| 4 | 5  | 1        | 0    | 0          | 0               | 0        |

# Very basic data exploration

▼ How balanced is the dataset?

Adoption and Transfer seem to occur a lot more than the rest

▼ What are the most common names and how many times do they occur?

There seem to be too many Nan values. Name might not be a very important factor too

```
Counter(train['Name']).most_common(5)

[(nan, 7691), ('Max', 136), ('Bella', 135), ('Charlie', 107), ('Daisy', 106)]
```

### Data preprocessing

OutcomeSubtype column seems to be of no use, so we drop it. Also, since animal ID is unique, it doesn't help in training

```
train_X = train.drop(columns= ['OutcomeType', 'OutcomeSubtype', 'AnimalID'])
Y = train['OutcomeType']
test_X = test
```

▼ Stacking train and test set so that they undergo the same preprocessing

```
stacked_df = train_X.append(test_X.drop(columns=['ID']))
```

splitting datetime into month and year

```
# stacked_df['DateTime'] = pd.to_datetime(stacked_df['DateTime'])
# stacked_df['year'] = stacked_df['DateTime'].dt.year
# stacked_df['month'] = stacked_df['DateTime'].dt.month
stacked_df = stacked_df.drop(columns=['DateTime'])
stacked_df.head()
```

|   | Name    | AnimalType | SexuponOutcome | AgeuponOutcome | Breed                 | Color       |
|---|---------|------------|----------------|----------------|-----------------------|-------------|
| 0 | Hambone | Dog        | Neutered Male  | 1 year         | Shetland Sheepdog Mix | Brown/White |

#### ▼ dropping columns with too many nulls

```
for col in stacked_df.columns:
    if stacked_df[col].isnull().sum() > 10000:
        print("dropping", col, stacked_df[col].isnull().sum())
        stacked_df = stacked_df.drop(columns = [col])

dropping Name 10916
```

stacked\_df.head()

|   | AnimalType | SexuponOutcome | AgeuponOutcome | Breed                       | Color       |
|---|------------|----------------|----------------|-----------------------------|-------------|
| 0 | Dog        | Neutered Male  | 1 year         | Shetland Sheepdog Mix       | Brown/White |
| 1 | Cat        | Spayed Female  | 1 year         | Domestic Shorthair Mix      | Cream Tabby |
| 2 | Dog        | Neutered Male  | 2 years        | Pit Bull Mix                | Blue/White  |
| 3 | Cat        | Intact Male    | 3 weeks        | Domestic Shorthair Mix      | Blue Cream  |
| 4 | Dog        | Neutered Male  | 2 years        | Lhasa Apso/Miniature Poodle | Tan         |

#### ▼ label encoding

```
for col in stacked_df.columns:
    if stacked_df.dtypes[col] == "object":
        stacked_df[col] = stacked_df[col].fillna("NA")
    else:
        stacked_df[col] = stacked_df[col].fillna(0)
    stacked_df[col] = LabelEncoder().fit_transform(stacked_df[col])
```

stacked\_df.head()

|   | AnimalType | SexuponOutcome | AgeuponOutcome | Breed | Color |
|---|------------|----------------|----------------|-------|-------|
| 0 | 1          | 3              | 5              | 1482  | 146   |
| 1 | 0          | 4              | 5              | 775   | 184   |
| 2 | 1          | 3              | 21             | 1293  | 97    |
| 3 | 0          | 1              | 26             | 775   | 47    |
| 4 | 1          | 3              | 21             | 1101  | 311   |

```
# making all variables categorical
for col in stacked_df.columns:
    stacked_df[col] = stacked_df[col].astype('category')
```

### splitting back train and test

```
X = stacked_df[0:26729]
test_processed = stacked_df[26729:]

#check if shape[0] matches original
print("train shape: ", X.shape, "orignal: ", train.shape)
print("test shape: ", test_processed.shape, "original: ", test.shape)

train shape: (26729, 5) orignal: (26729, 10)
test shape: (11456, 5) original: (11456, 8)
```

### ▼ Encoding target

```
Y = LabelEncoder().fit_transform(Y)
```

```
#sanity check to see numbers match and matching with previous counter to create target dictionary
print(Counter(train['OutcomeType']))
print(Counter(Y))
target_dict = {
    'Return_to_owner' : 3,
    'Euthanasia': 2,
    'Adoption': 0,
    'Transfer': 4,
    'Died': 1
}

Counter({'Adoption': 10769, 'Transfer': 9422, 'Return_to_owner': 4786, 'Euthanasia': 1555, 'Died': 197})
Counter({0: 10769, 4: 9422, 3: 4786, 2: 1555, 1: 197})
```

#### ▼ train-valid split

X\_train, X\_val, y\_train, y\_val = train\_test\_split(X, Y, test\_size=0.10, random\_state=0)
X train.head()

|       | AnimalType | SexuponOutcome | AgeuponOutcome | Breed | Color |
|-------|------------|----------------|----------------|-------|-------|
| 6917  | 1          | 3              | 5              | 1293  | 146   |
| 13225 | 0          | 4              | 33             | 1515  | 231   |
| 2697  | 1          | 4              | 5              | 1353  | 43    |
| 21905 | 1          | 3              | 31             | 245   | 40    |
| 17071 | 0          | 4              | 37             | 775   | 156   |

### Choosing columns for embedding

#categorical embedding for columns having more than two values

```
embedded_cols = {n: len(col.cat.categories) for n,col in X.items() if len(col.cat.categories) > 2}
embedded_cols

{'AgeuponOutcome': 46, 'Breed': 1678, 'Color': 411, 'SexuponOutcome': 6}

embedded_col_names = embedded_cols.keys()
len(X.columns) - len(embedded_cols) #number of numerical columns

1
```

#### ▼ Determining size of embedding

(borrowed from <a href="https://www.usfca.edu/data-institute/certificates/fundamentals-deep-learning">https://www.usfca.edu/data-institute/certificates/fundamentals-deep-learning</a> lesson 2)

```
embedding_sizes = [(n_categories, min(50, (n_categories+1)//2)) for _,n_categories in embedded_cols.items()]
embedding_sizes

[(6, 3), (46, 23), (1678, 50), (411, 50)]
```

### ▼ Pytorch Dataset

```
class ShelterOutcomeDataset(Dataset):
    def __init__(self, X, Y, embedded_col_names):
        X = X.copy()
        self.X1 = X.loc[:,embedded_col_names].copy().values.astype(np.int64) #categorical columns
        self.X2 = X.drop(columns=embedded_col_names).copy().values.astype(np.float32) #numerical columns
        self.y = Y

def __len__(self):
    return len(self.y)

def __getitem__(self, idx):
    return self.X1[idx], self.X2[idx], self.y[idx]
```

```
#creating train and valid datasets
train_ds = ShelterOutcomeDataset(X_train, y_train, embedded_col_names)
valid_ds = ShelterOutcomeDataset(X_val, y_val, embedded_col_names)
```

### ▼ Making device (GPU/CPU) compatible

(borrowed from <a href="https://jovian.ml/aakashns/04-feedforward-nn">https://jovian.ml/aakashns/04-feedforward-nn</a>)

In order to make use of a GPU if available, we'll have to move our data and model to it.

```
def get default device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is available():
        return torch.device('cuda')
    else:
       return torch.device('cpu')
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)
class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device
    def __iter__(self):
        """Yield a batch of data after moving it to device"""
        for b in self.dl:
            yield to_device(b, self.device)
```

```
def __len__(self):
    """Number of batches"""
    return len(self.dl)

device = get_default_device()
device
    device(type='cpu')
```

#### Model

(modified from <a href="https://www.usfca.edu/data-institute/certificates/fundamentals-deep-learning">https://www.usfca.edu/data-institute/certificates/fundamentals-deep-learning</a> lesson 2)

```
class ShelterOutcomeModel(nn.Module):
    def __init__(self, embedding_sizes, n_cont):
        super().__init__()
        self.embeddings = nn.ModuleList([nn.Embedding(categories, size) for categories, size in embedding_sizes])
        n_emb = sum(e.embedding_dim for e in self.embeddings) #length of all embeddings combined
        self.n_emb, self.n_cont = n_emb, n_cont
        self.lin1 = nn.Linear(self.n_emb + self.n_cont, 200)
        self.lin2 = nn.Linear(200.70)
        self.lin3 = nn.Linear(70.5)
        self.bn1 = nn.BatchNorm1d(self.n cont)
        self.bn2 = nn.BatchNorm1d(200)
        self.bn3 = nn.BatchNorm1d(70)
        self.emb\_drop = nn.Dropout(0.6)
        self.drops = nn.Dropout(0.3)
    def forward(self. x cat. x cont):
        x = [e(x_{cat}[:,i]) \text{ for i,e in enumerate(self.embeddings)}]
        x = torch.cat(x, 1)
        x = self.emb\_drop(x)
        x2 = self.bn1(x_cont)
```

```
x = torch.cat([x, x2], 1)
        x = F.relu(self.lin1(x))
        x = self.drops(x)
        x = self.bn2(x)
        x = F.relu(self.lin2(x))
        x = self.drops(x)
        x = self.bn3(x)
        x = self.lin3(x)
        return x
model = ShelterOutcomeModel(embedding sizes. 1)
to device(model, device)
      ShelterOutcomeModel(
        (embeddings): ModuleList(
         (0): Embedding(6, 3)
         (1): Embedding(46, 23)
         (2): Embedding(1678, 50)
          (3): Embedding(411, 50)
        (lin1): Linear(in features=127, out features=200, bias=True)
        (lin2): Linear(in features=200, out features=70, bias=True)
        (lin3): Linear(in_features=70, out_features=5, bias=True)
        (bn1): BatchNorm1d(1, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (bn2): BatchNorm1d(200, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (bn3): BatchNorm1d(70, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (emb_drop): Dropout(p=0.6, inplace=False)
        (drops): Dropout(p=0.3, inplace=False)
```

#### ▼ Optimizer

```
def get_optimizer(model, Ir = 0.001, wd = 0.0):
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optim = torch_optim.Adam(parameters, Ir=Ir, weight_decay=wd)
    return optim
```

#### Training function

```
def train_model(model, optim, train_dl):
    model.train()
    total = 0
    sum_loss = 0
    for x1, x2, y in train_dl:
        batch = y.shape[0]
        output = model(x1, x2)
        loss = F.cross_entropy(output, y)
        optim.zero_grad()
        loss.backward()
        optim.step()
        total += batch
        sum_loss += batch*(loss.item())
    return sum_loss/total
```

#### ▼ Evaluation function

```
def val_loss(model, valid_dl):
    model.eval()
    total = 0
    sum_loss = 0
    correct = 0
    for x1, x2, y in valid_dl:
        current_batch_size = y.shape[0]
        out = model(x1, x2)
        loss = F.cross_entropy(out, y)
        sum_loss += current_batch_size*(loss.item())
        total += current_batch_size
        pred = torch.max(out, 1)[1]
        correct += (pred == y).float().sum().item()
    print("valid loss %.3f and accuracy %.3f" % (sum_loss/total, correct/total))
    return sum_loss/total_correct/total
```

```
def train_loop(model, epochs, Ir=0.01, wd=0.0):
    optim = get_optimizer(model, Ir = Ir, wd = wd)
    for i in range(epochs):
        loss = train_model(model, optim, train_dl)
        print("training loss: ", loss)
        val_loss(model, valid_dl)
```

### Training

```
batch size = 1000
train_dl = DataLoader(train_ds, batch_size=batch_size,shuffle=True)
valid_dl = DataLoader(valid_ds, batch_size=batch_size,shuffle=True)
train_dl = DeviceDataLoader(train_dl, device)
valid dl = DeviceDataLoader(valid dl. device)
train_loop(model, epochs=8, Ir=0.05, wd=0.00001)
      training loss: 1.1929032033886036
      valid loss 0.959 and accuracy 0.593
      training loss: 1.0077161927099516
      valid loss 0.889 and accuracy 0.626
      training loss: 0.9727969404506969
      valid loss 0.875 and accuracy 0.640
      training loss: 0.9615953660582164
      valid loss 0.895 and accuracy 0.641
      training loss: 0.9480069062421993
      valid loss 0.892 and accuracy 0.630
      training loss: 0.9471241884109464
      valid loss 0.882 and accuracy 0.641
      training loss: 0.9440713606088471
      valid loss 0.868 and accuracy 0.643
```

## ▼ Test Output

```
test_ds = ShelterOutcomeDataset(test_processed, np.zeros(len(test_processed)), embedded_col_names)
test_dl = DataLoader(test_ds, batch_size=batch_size)
preds = []
with torch.no_grad():
    for x1,x2,y in test_dl:
        out = model(x1, x2)
        prob = F.softmax(out, dim=1)
        preds.append(prob)
final_probs = [item for sublist in preds for item in sublist]
len(final_probs)
     11456
target_dict
 「→ {'Adoption': 0,
       'Died': 1,
       'Euthanasia': 2,
       'Return_to_owner': 3,
       'Transfer': 4}
sample.head()
```

|   | ID | Adoption | Died | Euthanasia | Return_to_owner | Transfer |
|---|----|----------|------|------------|-----------------|----------|
| 0 | 1  | 1        | 0    | 0          | 0               | 0        |
| 1 | 2  | 1        | 0    | 0          | 0               | 0        |
| 2 | 3  | 1        | 0    | 0          | 0               | 0        |
| 3 | 4  | 1        | 0    | 0          | 0               | 0        |

sample['Adoption'] = [float(t[0]) for t in final\_probs]
sample['Died'] = [float(t[1]) for t in final\_probs]
sample['Euthanasia'] = [float(t[2]) for t in final\_probs]
sample['Return\_to\_owner'] = [float(t[3]) for t in final\_probs]
sample['Transfer'] = [float(t[4]) for t in final\_probs]
sample.head()

|   | ID | Adoption | Died     | Euthanasia | Return_to_owner | Transfer |
|---|----|----------|----------|------------|-----------------|----------|
| 0 | 1  | 0.061584 | 0.013002 | 0.145855   | 0.090792        | 0.688767 |
| 1 | 2  | 0.422662 | 0.004715 | 0.045230   | 0.321695        | 0.205698 |
| 2 | 3  | 0.354422 | 0.006220 | 0.053112   | 0.102744        | 0.483502 |
| 3 | 4  | 0.060504 | 0.012325 | 0.127738   | 0.089680        | 0.709753 |
| 4 | 5  | 0.539624 | 0.001352 | 0.010254   | 0.278997        | 0.169774 |

sample.to\_csv('samp.csv', index=False)

