Goal: Develope a mathematical approach for representing and operating on the configurations.

- 1. Find an easy way to draw the configurations and write the adjurency matrices
 - > Each input and output should be its own vertex but they are grouped by the analyses block.

The top-bottom position of the obt indicates its name:

→ · 8:1	B	Bo1 •	>
- Biz		Bo20	•

Input-output matrix:

8:	X ₁	XZ	Ao1	B.1	BoZ	tota
Ai1				•		1
Aiz	•					1
Bi7			0			1
Bi2		ė				1
y,						1

The input output matrix is a reduced matrix from the adjacency matrix. Using the fact that all inputs from an analysis block map to all inputs, the adjacency matrix can be found from the input-output matrix.

the Set of edges can be partitioned into intra-and inter-analysis block edges

cause conflicts.

$$E = \{(x_1, A; 2), (x_2, B; 2), (Ao1, B; 2), (Bo1, A; 1), (Bo2, y_1) \}$$

$$\{(A; 1, Ao1), (A; 2, Ao1), (B; 1, Bo2), (B; 2, Bo2) \}$$
Only the inter-analysis blocks can

Goal: Determine the number of and/or enumerate than all possible configurations. To start, consider only graphs without any cycles.

Task: Find all subgraphs of G, the maximal connectivity graph such that all inputs are filled without any conflicts.

There are three sources of conflict, each castle with 3, 2, and 2 choices. The total number of configurations is 12, but only 9 of them are practical. The 3 that are impractical are the ones that do not use the any outputs from G. The 12 comes from $12 = {3 \choose 1}{2 \choose 1}$, where ${n \choose k}$ is n-choose-k notation.

Groal: Investigate techniques that do not involve considering all possible configurations.

Observation: The example problem can be divided into two independent sub problems.

- 1.) Find a reverse path from IiI to AoI (or x)

 There are 3
- 2.) Find a reverse path from IiZ to AoI (or x.) > there are 3

:3.3=9: (because they are independent)

> Filling inputs is an independent problem
> shortest path algorithms can be used.