Part IB — Analysis and Topology

Based on lectures by Dr P. Russell

Michaelmas 2022

Contents

I	Generalizing continuity and convergence	1
	Three Examples of Convergence $1.1 \text{Convergence in } \mathbb{R} $	
2	Metric Spaces	3
3	Topological Spaces	3
П	Generalizing differentiation	3

Part I Generalizing continuity and convergence

§1 Three Examples of Convergence

§1.1 Convergence in \mathbb{R}

Let (x_n) be a sequence in \mathbb{R} and $x \in \mathbb{R}$. We say (x_n) converges to x and write $x_n \to x$ if

$$\forall \epsilon > 0 \quad \exists N \quad \forall n \ge N \quad |x_n - x| < \epsilon.$$

Useful fact: $\forall a, b \in \mathbb{R} |a+b| \leq |a| + |b|$ (Triangle Inequality).

Bolzano-Weierstrass Theorem (BWT) A bounded sequence in \mathbb{R} must have a convergent subsequence (Proof by interval bisection).

Recall: A sequence (x_n) in \mathbb{R} is Cauchy if

$$\forall \epsilon > 0 \quad \exists N \quad \forall m, n \ge N \quad |x_m - x_n| < \epsilon.$$

Easy exercise Convergent \implies Cauchy

General Principle of Convergence (GPC) Any Cauchy sequence in \mathbb{R} converges.

Outline. If (x_n) Cauchy then (x_n) bounded so by BWT has a convergent subsequence, say $x_{n_j} \to x$. But as (x_n) Cauchy, $x_n \to x$.

§1.2 Convergence in \mathbb{R}^2

Remark 1. This all works in \mathbb{R}^n

Let (z_n) be a sequence in \mathbb{R}^2 and $z \in \mathbb{R}^2$. What should $z_n \to z$ mean?

In \mathbb{R} : "As n gets large, z_n gets arbitrarily close to z."

What does 'close' mean in \mathbb{R}^2 ?

In \mathbb{R} : a, b close if |a - b| small. In \mathbb{R}^2 : Replace $|\cdot|$ by $||\cdot||$

Recall: If z = (x, y) then $||z|| = \sqrt{x^2 + y^2}$.

Triangle Inequality If $a, b \in \mathbb{R}^2$ then $||a + b|| \le ||a|| + ||b||$.

Definition 1.1

Let (z_n) be a sequence in \mathbb{R}^2 and $z \in \mathbb{R}^2$. We say (z_n) converges to z and .. $z_n \to z$ if $\forall \epsilon > 0 \exists N \ \forall n \geq N \ \|z_n - z\| < \epsilon$.

Equivalently, $z_n \to z$ iff $||z_n - z|| \to 0$ (convergence in \mathbb{R}).

Example 1.1

Let $(z_n), (w_n)$ be sequences in \mathbb{R}^2 with $z_n \to z, w_n \to w$. Then $z_n + w_n \to z + w$.

Proof.

$$||(z_n + w_n) - (z + w)|| \le ||z_n - z|| + ||w_n - w||$$

 $\to 0 + 0 = 0$ (by results from IA).

In fact, given convergence in \mathbb{R} , convergence in \mathbb{R}^2 is easy:

Proposition 1.1

Let (z_n) be a sequence in \mathbb{R}^2 and let $z \in \mathbb{R}^2$. Write $z_n = (x_n, y_n)$ and z = (x, y). Then $z_n \to z$ iff $x_n \to x$ and $y_n \to y$.

Proof. (
$$\Longrightarrow$$
): $|x_n - x|, |y_n - y| \le ||z_n - z||$. So if $||z_n - z|| \to 0$ then $|x_n - x| \to 0$ and $|y_n - y| \to 0$.

$$(\Leftarrow)$$
: If $|x_n - x| \to 0$ and $|y_n - y| \to 0$ then $||z_n - z|| = \sqrt{(x_n - x)^2 + (y_n - y)^2} \to 0$ by results in \mathbb{R} .

Definition 1.2 (Bounded Sequence)

A sequence (z_n) in \mathbb{R}^2 is **bounded** if $\exists M \in \mathbb{R}$ s.t. $\forall n ||z_n|| \leq M$.

Theorem 1.1 (BWT in \mathbb{R}^2)

A bounded sequence in \mathbb{R}^2 must have a convergent subsequence.

Theorem 1.2 (GPC for \mathbb{R}^2)

Any Cauchy sequence in \mathbb{R}^2 converges.

Proof. Let
$$(z_n)$$
 be a Cauchy sequence in \mathbb{R}^2 . Write $z_n = (x_n, y_n)$. For all $m, n, |x_m - x_n| \le ||z_m - z_n||$ so (x_n) is a Cauchy sequence in \mathbb{R} , so converges by GPC. Similarly, (y_n) converges in \mathbb{R} . So by $\ref{eq:converges}$, (z_n) converges.

Thought for the day What about continuity? Let $f : \mathbb{R}^2 \to \mathbb{R}$. What does it mean for f to be continuous? (Simple modification of defin for $\mathbb{R} \to \mathbb{R}$).

What can we do with it?

Big theorem in IA: If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function on a closed bounded interval then f is bounded and attains its bounds.

Is there a similar theorem for $\mathbb{R}^2 \to \mathbb{R}$. What do we replace 'closed bounded interval' by? We proved the theorem using BWT. Why did it work? Why did we need a closed bounded interval to make it work? What can we do in \mathbb{R}^2 ?

- §2 Metric Spaces
- §3 Topological Spaces

Part II Generalizing differentiation