AMENDMENTS TO THE CLAIMS

Claims 3, 8-12, 15, 18-23, 25-29, and 34 are currently pending. Please amend claims 3 and 15, as indicated below. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing Of Claims

1-2. (Canceled)

3. (Currently amended) A compound of the formula:

$$O = \bigvee_{NH_2}^{R} \bigvee_{N=(A)n}^{R} \bigvee_{N}^{Q_2} O = \bigvee_{NH_2}^{Q_3} \bigvee_{N}^{R} \bigvee_{Q_2}^{R} \bigvee_{N}^{R} \bigvee_{Q_2}^{R} \bigvee_{N}^{R} \bigvee_{N}^{$$

wherein:

 Q_3 is a 5-6 membered aromatic carbocyclic or heterocyclic ring system; or an 8-10 membered bicyclic ring system-comprising consisting of aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring; wherein Q_3 is substituted with 1 to 4 substituents, each of which is independently selected from halo; C_1 - C_3 alkyl optionally substituted with NR'_2 , OR', CO_2R' or $CONR'_2$; $O-(C_1$ - C_3)-alkyl optionally substituted with NR'_2 , OR', CO_2R' or $CONR'_2$; NR'_2 ; OCF_3 ; CF_3 ; NO_2 ; CO_2R' ; CONHR'; SR'; $S(O_2)N(R')_2$; SCF_3 ; CN; $N(R')C(O)R^4$; $N(R')C(O)C(O)R^4$; $N(R')S(O_2)R^4$; $N(R')R^4$; $N(R^4)_2$; OR^4 ; $OC(O)R^4$; $OP(O)_3H_2$; or N=CH-N(R'):

 Q_2 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems consisting of aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring; wherein:

 $Q_2 \text{ is optionally substituted with up to 4 substituents, independently selected} \\ from halo, CH=N-OH, or CH=O; C_1-C_3 \text{ straight or branched alkyl optionally substituted with} \\ NR'_2, OR', CO_2R', S(O_2)N(R')_2, N=CH-N(R')_2, R^3, NH-CH_3, NH-CH_2CH_2OH, \\ NHCH_2CH(OH)CH_2OH, CH_2OCH_2OCH_3, NH-CH_2CH_2NH_2, NH-phenyl, piperazinyl, \\ pyrrolidinyl or CONR'_2; O-(C_1-C_3)-alkyl optionally substituted with NR'_2, OR', CO_2R', \\ S(O_2)N(R')_2, N=CH-N(R')_2, R^3, or CONR'_2; NR'_2; OCF_3; CF_3; NO_2; CO_2R'; CONHR'; R^3; OR^3; \\ NHR^3; SR^3; C(O)R^3; C(O)N(R')R^3; C(O)OR^3; SR'; S(O_2)N(R')_2; SCF_3; N=CH-N(R')_2; \\ CH=N-OH; CH=O; or CN; \\ \\ \\$

wherein R' is selected from hydrogen, (C₁-C₃)-alkyl; (C₂-C₃)-alkenyl or alkynyl; phenyl or phenyl substituted with 1 to 3 substituents independently selected from halo, methoxy, cyano, nitro, amino, hydroxy, methyl or ethyl:

 $\mbox{\sc R}^3$ is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system:

 $R^4 \ is \ (C_1-C_4)-alkyl \ optionally \ substituted \ with \ N(R')_2, \ OR', \ CO_2R', \ CON(R')_2, \ or \ SO_2N(R^2)_2; \ or \ a \ 5-6 \ membered \ carbocyclic \ or \ heterocyclic \ ring \ system \ optionally \ substituted \ with \ N(R')_2, \ OR', \ CO_2R', \ CON(R')_2, \ or \ SO_2N(R^2)_2;$

 $X \text{ is selected from -S-, -O-, -S(O₂)-, -S(O)-, -N(R²)-, -N(R²)-S(O₂)-, -N(R²)-C(O)O-, -O-C(O)-N(R²), -C(O)-, -C(O)O-, -O-C(O)-, -C(O)-N(R²)-, -N(R²)-C(O)-, -C(O²)-, -C(O²)-, -CH(OH)-; -C(R²)-, -C(R$

each R is independently selected from hydrogen, $-R^2$, $-N(R^2)_2$, $-OR^2$, SR^2 , $-C(O)-N(R^2)_2$, $-S(O_2)-N(R^2)_2$, or $-C(O)-OR^2$, wherein two adjacent R are optionally bound to one another and, together with each carbon to which they are respectively bound, form a 4-8 membered carbocyclic or heterocyclic rine:

 $R^2 \text{ is selected from hydrogen, } (C_1\text{-}C_3)\text{-alkyl, or } (C_2\text{-}C_3)\text{-alkenyl; each optionally}$ substituted with -N(R')2, -OR', SR', -C(O)-N(R')2, -S(O_2)-N(R')2, -C(O)-OR', or R^3 ;

Y is C:

A, if present, is CR'; and

n is 1:

provided that when a compound is of formula Ig, Q_3 is 2,6-dichlorophenyl and both R substituents are H, then Q_2 is neither phenyl nor p-fluorophenyl; and

when a compound is of formula Ie, and Q_3 is 2,6-dichlorophenyl, both R substituents are H, and X is S, then Q_2 is not phenyl.

4-7. (Canceled)

8. (Previously presented) The compound according to claim 3, wherein Q_2 is selected from phenyl or pyridyl and wherein Q_2 optionally contains up to 3 substituents, each of which is independently selected from chloro, fluoro, bromo, methyl, ethyl, isopropyl, -

OCH3, -OH, -NH2, -CF3, -OCF3, -SCH3, -OCH3, -C(O)OH, -C(O)OCH3, -CH2NH2, -N(CH3)2,

-CH2-pyrrolidine and -CH2OH.

9. (Previously presented) The compound according to claim 8, wherein, \mathbf{Q}_2 is selected from:

unsubstituted 2-pyridyl or unsubstituted phenyl.

10.

is selected from phenyl, 2-isopropylphenyl, 3,4-dimethylphenyl, 2-ethylphenyl, 3-fluorophenyl, 2-methylphenyl, 3-chloro-4-fluorophenyl, 3-chlorophenyl,

(Previously presented) The compound according to claim 9, wherein O2

 $\hbox{$2$-carbomethoxylphenyl, 2-carboxyphenyl, 2-methyl-4-chlorophenyl, 2-bromophenyl, 4-bromophenyl, 4-bromopheny$

2-pyridyl, 2-methylenehydroxyphenyl, 4-fluorophenyl, 2-methyl-4-fluorophenyl,

2-chloro-4-fluorophenyl, 2,4-difluorophenyl, 2-hydroxy-4-fluorophenyl or

2-methylenehydroxy-4-fluorophenyl.

 $11. \qquad (Previously \ presented) \ \ The \ compound \ according \ to \ claim \ 3, \ wherein \ X$ is selected from –S-, -O-, -S(O₂)-, -S(O)-, -N(R²)-,

-C(R2)2- or -C(O)-.

is S.

12. (Previously presented) The compound according to claim 11, wherein \boldsymbol{X}

13-14. (Canceled)

(Currently amended) The compound according to claim[[14]]_3.
 wherein each R attached to Y is independently selected from hydrogen or methyl.

16-17. (Canceled)

- 18. (Previously presented) The compound according to claim 3, wherein Q_3 is substituted with 2 to 4 substituents, wherein at least one of said substituents is present in the ortho position relative to the point of attachment of Q_3 to the rest of the inhibitor.
- (Original) The compound according to claim 18, wherein both ortho positions are occupied by one of said independently selected substituents.

- 20. (Original) The compound according to claim 19, wherein Q_3 is a monocyclic carbocyclic ring; and each of said ortho substituents on Q_3 are independently selected from halo or methyl.
- 21. (Previously presented) The compound according to claim 19, wherein Q_3 contains 1 to 2 substituents in addition to said ortho substituents, said additional substituents being independently selected from NR'2, OR', CO₂R' CN, N(R')C(O)R⁴; N(R')C(O)OR⁴; N(R')S(O₂)R⁴; N(R')R⁴; N(R⁴)₂; OR⁴; OC(O)R⁴; OP(O)₃H₂; or N=CH-N(R')₂.
- 22. (Previously presented) The compound according to claim 3, wherein said compound is a compound of formula le:

$$O = \bigvee_{N \vdash (A)_{n}}^{R} \bigvee_{N \vdash (A)_{n}}^{Q_{2}}$$

and is selected from any one of the following compounds:

cpd #	Structure	cpd #	Structure
208	CI ONH ₂	209	CI ONH2

23. (Previously presented) The compound according to claim 3, wherein said compound is a compound of formula Ig:

$$0 \longrightarrow NH_2 \longrightarrow NH_3$$

and is selected from any one of the following compounds:

cpd #	Structure	cpd #	Structure
302	CI NH ₂ OH	310	CI H ₂ N CI

respay to	Dirice Action of May 23, 2006		
303	CI NH2 H	311	H ₃ C CI
304	CI NH ₂ NH	312	CH ₃
305	CI ONH ₂ CH ₃	313	F CI H ₂ N CI
306	CI O NH ₂	314	H ₀ C _S Cl

Reply to C	Office Action of May 23, 2006		
307	CI ONH ₂ NH ₂	315	HO H ₂ N CI
308	O-NO CI	316	O CI
319	F F CI	317	CI C
320	CI H ₂ N CI	318	CI C
321	CI C	328	o-No CI

respiny to t	Reply to Office Action of May 23, 2006				
322	H ₃ C ^O CI	329	F CI		
323	F H ₂ N C C	330	CI H _J N CO		
324	CH ₃	331	H ₂ C CI		
325	CI HAN CO CI	332	F, CI		
326	CI H ₂ N CO CI	333	F CI		

reopiy to c	Reply to Office Action of May 23, 2006				
327	Hilv o	334	H ₂ C ₂ C ₁		
337	P CI	335	CH ₃ H ₂ N CI		
338	F CI	336	HO, H ₂ N CI		
339	F CI	346	CI CI H ₂ N O CI		
340	F CI	347	S H ₂ N C C		
341	F CI H ₂ N O	348	F, Ci		

reopiy to c	Office Action of May 23, 2006		
342	H ₂ N CI	349	CI CI CI NH ₂
343	H ₃ C ^O CI	350	
344	F H ₂ N CI	351	CI NH ₂ H
345	H ₂ N CI	352	CI NH ₂

	Office Action of May 23, 2006		
355	CI ONH _E	353	O O NH ₂
356	CI O NH ₂	354	CI ON NH2
357	CI ONH ₂	364	H ₂ N CI ONH ₂ CH ₃
358	CI NH ₂ H	365	CI ONH ₂

Reply to c	Office Action of May 23, 2006		
359	CI NH ₂ H NH ₂	366	
360	CI NH ₂ H OH	367	NH ₂
361	NH _N CH ₃	368	NH ₂
362	CI ON NH2	369	NH ₂ CH ₃

Reply to C	Office Action of May 23, 2006		
363	CI ONH ₂	370	NH ₂
373	CI NH ₂	371	NH ₂
374	CI O NH AF F	372	CI NH ₂
375	NH _a	382	CI O NH ₂

recpty to c	Reply to Office Action of May 23, 2006				
376	CI ON NH2 CH3 CH3	383	CO NH ₂		
377	CI NH ₂ CH ₃	385	SH ₂		
378	CI ON NH2 OH	386	CI NH ₂		
379	CI O NH ₂	387	CI NH _b		

Reply to C	Reply to Office Action of May 23, 2006				
380	CI ON NH2 OH	388	CI NH ₂		
381	CH ₅ NH ₂	389	NH ₂ CH ₃		
391	CI NH ₂ F	390	CI OH NH2		
392	CI NH ₂	396	CI NH ₂		

Reply to Office Action of May 23, 2006			
393	CI O CH ₃	397	NH ₂
394	CI ON NH2 OH	398	NH ₂
395	CI ON NH2 CH3	399	NH ₂
		1301	NH ₂ CH ₃

24. (Canceled)

Reply to Office Action of May 23, 2006

25. (Previously presented) A pharmaceutical composition comprising an

amount of a compound according to claim 3 effective to inhibit p38, and a pharmaceutically

acceptable carrier.

26. (Previously presented) A method of treating inflammatory diseases,

destructive bone disorders, reperfusion/ischemia in stroke, myocardial ischemia, renal

ischemia, cardiac hypertrophy, rheumatoid arthritis, inflammatory bowel disease, ulcerative

colitis, or Crohn's disease in a patient, said method comprising administering to said patient a

composition according to claim 25.

27. (Previously presented) The method according to claim 26, wherein said

method is used to treat an inflammatory disease selected from acute pancreatitis, chronic

pancreatitis, asthma, allergies, or adult respiratory distress syndrome.

28. (Previously presented) The method according to claim 26, wherein said

method is used to treat rheumatoid arthritis, inflammatory bowel disease, ulcerative colitis, or

Crohn's disease.

29. (Previously presented) The method according to claim 26, wherein said

method is used to treat a destructive bone disorder selected from osteoarthritis, osteoporosis or

multiple myeloma-related bone disorder.

30-33. (Canceled)

23 of 27

34. (Previously presented) The method according to claim 26, wherein said method is used to treat ischemia/reperfusion in stroke, myocardial ischemia, or renal ischemia.

35-37. (Canceled)