

III. Étude du Wi-Fi:

Dans l'objectif d'intégrer les différents domaines scolaires au sein du projet, il m'est demandé de réaliser une étude du réseau Wi-Fi que je vais devoir mettre en place.

La référence du routeur Wi-Fi auquel sera connecté : l'ordinateur de supervision, la caméra IP, l'adaptateur SOLLAE (afficheur LCD géant) et le Raspberry (sous-système médaillons) est Netgear WRN612.

Je vais donc présenter ci-dessous le descriptif technique de l'antenne intégrée à ce matériel :

- Normes Wi-Fi prises en charge : IEEE 802.11n version 2.0, IEEE 802.11n, IEEE 802.11g, IEEE 802.11b 2.4 GHz
- Intervalles de fréquences : 2.412–2.462 GHz (US), 2.412–2.472 GHz (Europe ETSI)

Afin de limiter les interférences dues aux autres ondes possiblement émises, ci-dessous un tableau d'écartement conseillé par le constructeur. L'écart est compris entre l'appareil émettant les interférences et l'enveloppe externe du routeur Wi-Fi.

Périphérique :	Distance minimale conseillée :
Four à micro-ondes	9 mètres
Moniteur pour bébé (analogique)	6 mètres
Moniteur pour bébé (numérique)	12 mètres
Téléphone filaire (analogique)	6 mètres
Téléphone filaire (numérique)	9 mètres
Périphériques Bluetooth	6 mètres
Périphériques ZigBee (électroménager connecté)	6 mètres

En principe, aucun de ces éléments ne devrait se trouver dans le champ des ondes Wi-Fi. Cependant, il est important de prendre en compte les différentes perturbations provoquées par la salle et sa configuration.

Un plan de la salle a donc été établi, celui-ci devrait être relativement proche de la réalité :

a) L'antenne du routeur :

L'antenne intégrée à ce routeur est de type ANT2511AC.

Elle dispose de caractéristiques plus détaillées que celles du routeur. Après plusieurs recherches sur l'antenne individuelle, les informations techniques sont recueillies dans le tableau ci-dessous :

Mode Wi-Fi :	802.11 a/b/g/n/ac
Plage de fréquences :	2,4 à 2,5 GHz et 4,9 à 5,85 GHz
Gain:	2,5 dBi (2,4 GHz) et 4 dBi (5 GHz)
Puissance d'émission :	20 dBm
Rayon d'ajustement :	Horizontal 360° Vertical 75° (2.4 GHz)
	et Horizontal 360° Vertical 22,5° (5
	GHz)
Polarisation :	Linéaire ; Verticale
Connecteurs:	Prise RP-SMA (SMA inversé mâle)
Direction :	Omnidirectionnelle.

Premièrement, nous allons étudier la directivité de l'antenne. Il s'agit de la portée d'émission des ces ondes (et parallèlement de réception). Comme pour les microphones, il existe plusieurs types de directivités.

Voici les principaux :

Ces diagrammes nous permettent de déterminer l'endroit idéal pour placer l'antenne. Notre antenne étant <u>omnidirectionnelle</u>, il serait plus judicieux de la placée au centre de la pièce.

Deux plages de fréquences sont disponibles avec cette antenne, le 2,4 GHz ou le 5 GHz. Cependant, celle-ci ayant destination dans un bâtiment public (mairie), il est probable que d'autres équipements fonctionnent sur le 5 GHz (alarme intrusion, vidéosurveillance, alarme incendie...). De plus, tous les appareils informatiques

n'acceptent pas le 5 GHz. Le choix de la plage de fréquence se porte ainsi sur le 2,4 GHz pour des raisons de perturbations et de compatibilité.

Nous allons désormais chercher à savoir si tous les appareils ayant besoin du Wi-Fi le recevront correctement. Pour ce faire, il est nécessaire d'utiliser les faits ci-dessous :

Atténuation en dbm par matériaux

Matériaux	2.4Ghz	5.8GHz
Plaque de plâtre	3	4
Parois intérieure	4	5
Parois de cabine	5	9
Porte en bois	4	7
Mur en brique <14cm	6	10
Mur en béton <10cm	9	13
Mur en béton >25cm	15	25
Mur en béton armé	18	30
Dalle en béton armé	23	35
Verre simple (non teinté)	3	8
Double vitrage	13	20
Verre pare-balles	10	20
Porte blindée	19	32

Formule de calcul d'atténuation en fonction de la distance :

92,45+20*LOG10(Freq en GHz)+20*LOG10(Dist en km)

Sur le plan de la salle représenté en page précédente, les trois points (sous-système médaillons, caméra IP et afficheur LCD) ont besoin d'une connectivité suffisante au Wi-Fi.

Afin de valider cela, nous allons calculer leur atténuation comme il suit :

Caméra IP :

Atténuation en l'air sec : 92,45+20*LOG10(2,4)+20*LOG10(0,002) = 46 dBm

Source	20 dBm
2m d'air	-46 dBm
Mur en brique	-6 dBm
Bilan	-32 dBm
Qualité du signal	Excellent

Afficheur LCD:

Atténuation en l'air sec : 92,45+20*LOG10(2,4)+20*LOG10(0,005) = 54 dBm

Source	20 dBm
5m d'air	-54 dBm
Mur en brique	-6 dBm
Bilan	-40 dBm
Qualité du signal	Excellent

Sous-système médaillons :

Atténuation en l'air sec : 92,45+20*LOG10(2,4)+20*LOG10(0,003) = 49 dBm

Source	20 dBm
3m d'air	-49 dBm
Mur en brique	-6 dBm
Bilan	-35 dBm
Qualité du signal	Excellent