Math 230B Notes

Spring, 2025

Contents

1 Differentiation		3	
	1.1	The Derivative of a Function	3
	1.2	Local Extrema	10
	1.3	Mean Value Theorems	14
	1.4	Taylor Polynomials	18

Chapter 1

Differentiation

1.1 The Derivative of a Function

Definition 1.1.1. (Differentiability and the Derivative) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$, and $c \in I$.

(i) We say f is differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists (that is, it equals a real number). In this case, the quantity $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is called the derivative of f at c and is denoted by

 $f'(c), \frac{df}{dx}(c), \frac{df}{dx}|_{x=c}$

(ii) If $f: I \to \mathbb{R}$ is differentiable at every point $c \in I$, we say f is differentiable (on I).

Remark. Note that

$$f'(c) = L \iff \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L$$

$$\iff \forall \epsilon > 0 \; \exists \delta > 0 \text{ such that if } 0 < |x - c| < \delta, \text{ then } \left| \frac{f(x) - f(c)}{x - c} - L \right| < \epsilon$$

$$\iff \forall \epsilon > 0 \; \exists \delta > 0 \text{ such that if } 0 < |h < \delta, \text{ then } \left| \frac{f(c + h) - f(c)}{h} - L \right| < \epsilon \quad \text{(Let } h = x - c)$$

$$\iff \lim_{h \to 0} \frac{f(c + h) - f(c)}{h} = L$$

Remark. Let A denote the collection of all points at which $f:I\to\mathbb{R}$ is differentiable. If $A\neq\emptyset$, the function $f':A\to\mathbb{R}$ defined by

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \quad \forall c \in A$$

is called the derivative of f.

Example 1.1.1. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be given by $f(x) = x^2$. Prove that f is differentiable on I and find the derivative.

Proof. $\forall c \in I$,

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c}$$

$$= \lim_{x \to c} x + c$$

$$= 2c \qquad (is continuous)$$

So, $\forall c \in I \quad f'(c) = 2c$. Hence,

$$f': I \to \mathbb{R}, \quad f'(x) = 2x.$$

Example 1.1.2. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be given by $f(x) = x^n$ where $n \in \mathbb{N}, n \geq 3$. Prove that f is differentiable on I and find the derivative.

Proof.

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^n - c^n}{x - c}$$

$$= \lim_{x \to c} \frac{(x - c)(x^{n-1} + cx^{n-2} + \dots + c^{n-1})}{x - c}$$

$$= \lim_{x \to c} \left[x^{n-1} + cx^{n-1} + \dots + c^{n-1} \right]$$

$$= c^{n-1} + c \cdot c^{n-2} + \dots + c^{n-1}$$

$$= n \cdot c^{n-1}$$
(Continuity)
$$= n \cdot c^{n-1}$$

So, $\forall c \in I \ f'(c) = n \cdot c^{n-1}$. Hence,

$$f': I \to \mathbb{R}, \quad f'(x) = nx^{n-1}.$$

Example 1.1.3. Prove that $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| is not differentiable at c = 0.

Proof. We need to show that $\lim_{x\to c} \frac{f(x)-f(0)}{x-0}$ does not exist. Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x| - |0|}{x - 0} = \frac{|x|}{x}$$

Let $g(x) = \frac{|x|}{x}$. We want to show $\lim_{x\to 0} g(x)$ does not exist. By the sequential criterion for limits of functions, it is enough to find two sequences (a_n) and (b_n) in $\mathbb{R}\setminus\{0\}$ such that $a_n\to 0$ and $b_n\to 0$, but $\lim g(a_n)\neq \lim g(b_n)$. Let $a_n=-\frac{1}{n}$ and $b_n=\frac{1}{n}$. Clearly, $a_n\to 0$ and $b_n\to 0$. However,

$$\lim_{n \to \infty} g(a_n) = \lim_{n \to \infty} \frac{|a_n|}{a_n} = \lim_{n \to \infty} \frac{|-1/n|}{-1/n} = \lim_{n \to \infty} (-1) = -1$$

$$\lim_{n \to \infty} g(b_n) = \lim_{n \to \infty} \frac{|b_n|}{b_n} = \lim_{n \to \infty} \frac{|1/n|}{1/n} = \lim_{n \to \infty} (1) = 1$$

Theorem 1.1.1. (Differentiable \implies Continuous)

Let $I \subseteq \mathbb{R}$ be an interval, $c \in I$, and $f: I \to \mathbb{R}$ be differentiable at c. Then f is continuous at c.

Proof. It is enough to show that $\lim_{x\to c} f(x) = f(c)$ (an interval doesn't have an isolated point). Note that

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} (x - c) \right]$$

$$= \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right] \left[\lim_{x \to c} (x - c) \right]$$
(ALT for Functions)
$$= f'(c) \cdot 0 = 0.$$

So,

$$\lim_{x \to c} f(x) = \lim_{x \to c} [f(x) - f(c) + f(c)]$$

$$= \lim_{x \to c} [f(x) - f(c)] + \lim_{x \to c} f(c)$$

$$= 0 + f(c)$$

$$= f(c).$$

Corollary 1.1.1. If $f: I \to \mathbb{R}$ is not continuous at $c \in I$, then f is not differentiable at c.

Example 1.1.4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$.

- (i) Prove f is continuous at 0.
- (ii) Prove f is discontinuous at all $x \neq 0$.
- (iii) Prove that f is nondifferentiable at all $x \neq 0$.
- (iv) Prove that f'(0) = 0.

Proof. (i) We need to show that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that if} \ |x - 0| < \delta \ \text{then} \ |f(x) - f(0)| < \epsilon$$

Let $\epsilon > 0$ be given. Our goal is to find $\delta > 0$ such that

if
$$|x| < \delta$$
 then $|f(x)| < \epsilon$ (*)

Informal Discussion

Note that

Case 1: if $x \notin \mathbb{Q}$ then $|f(x)| = |0| < \epsilon$

Case 2: if $x \in \mathbb{Q}$ then $|f(x)| = |x^2| = |x|^2$

So, we want to find δ such that if $|x| < \delta$, then $|x|^2 < \epsilon$. Clearly, $\delta = \sqrt{\epsilon}$ works.

We claim that (*) holds with $\delta = \sqrt{\epsilon}$. See the discussion.

(ii) Let $c \neq 0$. Our goal is to show f is discontinuous at c. By the sequential criterion for continuity, it is enough to find a sequence (a_n) such that $a_n \to c$ but $f(a_n) \not\to f(c)$. We proceed by two cases:

Case 1: $c \notin \mathbb{Q}$

 \mathbb{Q} is dense in \mathbb{R} , so there exists a sequence of rational numbers (r_n) such that $r_n \to c$. We have

$$\begin{cases} f(r_n) = r_n^2 \ \forall n \\ f(c) = 0 \end{cases} \implies f(r_n) \not\rightarrow f(c)$$

$$r_n \to c$$
 $f(r_n) \not\to f(c)$ $\Longrightarrow f$ is discontinuous at c .

- (iii) Let $c \neq 0$. By (ii), f is not continuous at c. Therefore, f is not differentiable at c.
- (iv) We need to show $\lim_{x\to c} \frac{f(x)-f(0)}{x-0} = 0$. Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x}.$$

Our goal is to show:

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that if} \ 0 < |x - 0| < \delta \ \text{then} \ \left| \frac{f(x)}{x} - 0 \right| < \epsilon.$$

Let $\epsilon > 0$ be given. Our goal is to find $\delta > 0$ such that

if
$$0 < |x| < \delta$$
, then $\left| \frac{f(x)}{x} - 0 \right| < \epsilon$ (*)

We claim that (*) holds with $\delta = \epsilon$ (or any postive number less than ϵ). Indeed, if $x \in \mathbb{R}$ such that $0 < |x| < \delta = \epsilon$, then

Case 1:
$$x \notin \mathbb{Q}$$

$$\left| \frac{f(x)}{x} \right| = \left| \frac{0}{x} \right| = 0 < \epsilon.$$

Case 2: $x \in \mathbb{Q}$

$$\left| \frac{f(x)}{x} \right| = \left| \frac{x^2}{x} \right| = |x| < \delta = \epsilon.$$

Theorem 1.1.2. (Algebraic Differentiability Theorem)

Assume $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$. Then

(i) $\forall k \in \mathbb{R}, kf$ is differentiable at c and

$$(kf)'(c) = k \cdot f'(x)$$

(ii) f + g is differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c)$$

(iii) fg is differentiable at c and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

(iv) $\frac{f}{g}$ is differentiable at c (provided $g(c) \neq 0$) and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}$$

Proof. Here, we will prove (ii) and (iii).

(ii)

$$\lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x - c} = \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

$$= f'(c) + g'(c).$$

So, f + g is differentiable at c, and (f + g)'(c) = f'(c) + g'(c).

(iiii)

$$\lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c} = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c)}{x - c}$$

$$= \lim_{x \to c} \frac{(f(x) - f(c))g(x) + f(c)(g(x) - g(c))}{x - c}$$

$$= \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right] \left[\lim_{x \to c} g(x)\right] + \left[\lim_{x \to c} f(c)\right] \left[\lim_{x \to c} \frac{g(x) - g(c)}{x - c}\right]$$

$$= f'(c) \cdot g(c) + f(c) \cdot g'(c)$$

Thus fg is differentiable at c, and (fg)'(c) = f'(c)g(c) + f(c)g'(c).

Theorem 1.1.3. (Chain Rule)

Let $I_1 \subseteq \mathbb{R}$ and $I_2 \subseteq \mathbb{R}$ be two intervals. Suppose $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$ such that $f(I_1)$ is contained in I_2 , f is differentiable at $c \in I_2$, and g is differentiable at $f(c) \in I_2$. Then the function $g \circ f: I_1 \to \mathbb{R}$ is differentiable at $c \in I_1$, and

$$(q \circ f)'(c) = q'(f(c)) \cdot f'(c).$$

Informal Discussion

The following is an incorrect proof of the theorem:

$$\lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c} = \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$$

$$= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$

$$= \left[\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)}\right] \cdot \left[\lim_{x \to c} \lim_{x \to c} \frac{f(x) - f(c)}{x - c}\right]$$

$$= g'(f(c)) \cdot f'(c)$$

This proof fails because even though $x \to c \implies x \neq c$, it's not necessarily the case that $f(x) \to f(c) \implies f(x) \neq f(c)$. I.e., the algebraic limit theorem for functions fails as f(x) - f(c) might be zero. Dividing by f(x) - f(c) is not legitimate. To see why this fails, consider the case when f is a constant function. We instead use the following idea: Replace $\frac{g(f(x)) - g(f(c))}{f(x) - f(c)}$ with a new function d(f(x)) such that

(i)
$$d(f(x)) = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)}$$
 when $f(x) \neq f(c)$

(ii) d(f(x)) is defined even when f(x) = f(c)

(iii)
$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{x - c}$$
 for all $x \in I_1, x \neq c$

Proof. Let $d: I_2 \to \mathbb{R}$ be defined by

$$d(y) = \begin{cases} \frac{g(y) - g(f(c))}{y - f(c)} & y \neq f(c) \\ \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = g'(f(c)) & y = f(c) \end{cases}$$

Clearly, d satisfies requirements (i) and (ii) from above.

Observation 1: d is continuous at f(c). Indeed,

$$\lim_{y \to f(c)} d(y) = \lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)} = d(f(c))$$

Observation 2: For all $x \in I_1$ with $x \neq c$, we have

$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{x - c}$$

This is true because

Case 1: $f(x) \neq f(c)$

$$d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$
$$= \frac{g(f(x)) - g(f(c))}{x - c}$$

Case 2: f(x) = f(c)

$$LHS = d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} = d(f(c)) \cdot \frac{f(x) - f(c)}{x - c} = g'(f(c)) \cdot 0 = 0$$

$$RHS = \frac{g(f(x)) - g(f(c))}{x - c} = \frac{g(f(c)) - g(f(c))}{x - c} = 0$$

So,
$$LHS = RHS = 0$$
.

We have,

$$\lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c} = \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$$

$$= \lim_{x \to c} \left[d(f(x)) \cdot \frac{f(x) - f(c)}{x - c} \right]$$

$$= \left[\lim_{x \to c} (d \circ f)(x) \right] \cdot \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right]$$

$$\stackrel{(*)}{=} (d \circ f)(c) \cdot f'(c)$$

$$= d(f(c)) \cdot f'(c)$$

$$= g'(f(c)) \cdot f'(c)$$

So, $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

(*) Note that f is continuous at c and d is continuous at f(c), so by composition of continuous functions we conclude that $d \circ f$ is continuous at c and

$$\lim_{x \to c} (d \circ f)(c) = (d \circ f)(c).$$

Example 1.1.5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

- (i) Prove that f is differentiable at all $x \neq 0$.
- (ii) Prove that f'(0) = 0
- (iii) Prove that f' is not continuous at 0.

Proof. (i) We have

Indeed, it follows from the algebraic differentiation theorem and the chain rule that

$$(x^{2} \sin \frac{1}{x})' = (x^{2})' \cdot \sin \frac{1}{x} + x^{2} \cdot (\sin \frac{1}{x})'$$
$$= 2x \cdot \sin \frac{1}{x} + x^{2} \left[(\cos \frac{1}{x})(-\frac{1}{x^{2}}) \right]$$
$$= 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

(ii) Note that f(0) = 0 does not imply f'(0) = 0. When we want to compute f' at any point, in particular at 0, we need to pay attention to the behavior of f in a neighborhood of the point and not just the value of the function at the point. The reason is that f'(c) is defined by taking \lim .

Our goal is to show

$$\lim_{x \to c} \frac{f(x) - f(0)}{x - 0} = 0$$

Note that

$$\frac{f(x) - f(0)}{x - 0} = \frac{x^2 \sin \frac{1}{x} - 0}{x - 0} = x \sin \frac{1}{x}$$

We want to show

$$\lim_{x \to 0} \left(x \sin \frac{1}{x} \right) = 0$$

We have,

$$0 \le \left| x \sin \frac{1}{x} \right| \le |x|$$

$$\lim_{x \to 0} 0 = 0$$

$$\lim_{x \to 0} |x| = |0| = 0$$

$$\Rightarrow \lim_{x \to 0} \left| x \sin \frac{1}{x} \right| = 0$$

Thus $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

(iii) According to parts (i) and (ii):

$$f': \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

By the sequential criterion for continuity, it is enough to find a sequence (a_n) such that

$$a_n \to 0$$
 but $f'(a_n) \not\to f'(0)$

Let $a_n = \frac{1}{2n\pi}$. Clearly, $a_n \to 0$. However,

$$\lim_{n \to \infty} f'(a_n) = \lim_{n \to \infty} \left[\frac{2}{2n\pi} \sin(2n\pi) - \cos(2n\pi) \right]$$
$$= 0 - 1$$
$$\neq 0.$$

1.2 Local Extrema

Definition 1.2.1. (Local Maximum, Local Minimum) Let $\emptyset \neq A \subseteq (X, d)$, and let $f : A \to \mathbb{R}$.

(i) We say that f has a local maximum at $c \in A$ if

 $\exists \delta > 0 \text{ such that } \forall x \in N_{\delta}(c) \cap A \quad f(x) \leq f(c)$

(ii) We say that f has a local minimum at $c \in A$ if

 $\exists \delta > 0 \text{ such that } \forall x \in N_{\delta}(c) \cap A \quad f(x) \geq f(c)$

Lemma 1.2.1. (Order Limit Theorem for Functions) Suppose $\lim_{x\to c} g(x)$ and $\lim_{x\to c} h(x)$ both exist.

- (i) If $\exists \delta > 0$ such that $\forall x \in (c \delta, c)$ $h(x) \leq g(x)$, then $\lim_{x \to c} h(x) \leq \lim_{x \to c} g(x)$
- $(ii) \ \ \text{If} \ \exists \delta > 0 \ \text{such that} \ \forall x \in (c,c+\delta) \ \ h(x) \leq g(x), \ \text{then} \ \lim_{x \to c} h(x) \leq \lim_{x \to c} g(x)$

Proof. Here we will prove (i). The proof of (ii) is analogous. Let (a_n) be a sequence in $(c - \delta, c)$ such that $a_n \to c$. By the sequential criterion for limits of functions we have

$$a_n \to c \implies \begin{cases} \lim_{n \to \infty} g(a_n) = \lim_{x \to c} g(x) \\ \lim_{n \to \infty} h(a_n) = \lim_{x \to c} h(x) \end{cases}$$
 (I)

Also note that

$$\forall n \ a_n \in (c - \delta, c) \implies \forall n \ h(a_n) \le g(a_n)$$

$$\stackrel{\text{OLTS}}{\Longrightarrow} \lim_{n \to \infty} h(a_n) \le \lim_{n \to \infty} g(a_n)$$
(II)

It follows from (I), (II) that $\lim_{x \to c} h(x) \le \lim_{x \to c} g(x)$.

Theorem 1.2.1. (Interior Extremum Theorem)

Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$ be a function and $c \in \overline{I}$. Suppose f is differentiable at c. Then

- (i) If f has a local maximum at c, then f'(c) = 0
- (ii) If f has a local minimum at c, then f'(c) = 0

Proof. Here, we will prove (i). The proof for (ii) is analogous. Suppose f has a local maximum at c.

- 1. f has a local maximum at $c \implies \exists \delta_1$ such that $\forall x \in (c \delta_1, c + \delta_1) \cap I$ $f(x) \leq f(c)$
- 2. c is an interior point of $I \implies \exists \delta_2$ such that $(c \delta_2, c + \delta_2) \subseteq I$

So, if we let $\delta = \min\{\delta_1, \delta_2\}$, then

$$\forall x \in (c - \delta, c + \delta) \ f(x) \le f(c)$$

We have

(I) For all $x \in (c - \delta, c)$

$$\begin{aligned} x - c &< 0 \\ f(x) &\le f(c) \end{aligned} \implies \frac{f(x) - f(c)}{x - c} &\ge 0$$

$$\overset{OLTF}{\Longrightarrow} \lim_{x \to c} \frac{f(x) - f(c)}{x - c} &\ge \lim_{x \to c} 0$$

$$\Longrightarrow f'(c) &\ge 0.$$

1.2. LOCAL EXTREMA

(II) For all $x \in (c, c + \delta)$

$$\begin{aligned} x - c &> 0 \\ f(x) &\leq f(c) \end{aligned} \implies \frac{f(x) - f(c)}{x - c} \leq 0$$

$$\overset{OLTF}{\Longrightarrow} \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \leq \lim_{x \to c} 0$$

$$\Longrightarrow f'(c) \leq 0.$$

It follows from (I), (II) that f'(c) = 0.

Remark. The following are three techniques that can be used in proving the existence of a solution:

1. Suppose $h:[a,b]\to\mathbb{R}$ is continuous. Let α be a given real number. One way to show there exists a number c such that $h(c)=\alpha$ is as follows:

Prove that
$$m \le \alpha \le M$$
 where
$$\begin{cases} m = \min\{h(x) : x \in [a, b]\} \\ M = \max\{h(x) : x \in [a, b]\} \end{cases}$$

2. Suppose $g:[a,b]\to\mathbb{R}$ is differentiable. One way to prove that there exists a number c such that g'(c)=0 is as follows:

Prove there is a point in (a, b) at which g has a local maximum or a local minimum

3. Suppose $h:[a,b]\to\mathbb{R}$ is differentiable. Let α be a given real number. One way to prove that there exists a number c such that $h'(c)=\alpha$ is as follows:

Define $g(x) = h(x) - \alpha x$ and prove that there is a point c at which g'(c) = 0

Theorem 1.2.2. (Darboux's Theorem)

Suppose $f:[a,b] \to \mathbb{R}$ is differentiable such that f'(a) < f'(b) (or f'(b) < f'(a)), and let $\alpha \in \mathbb{R}$ be such that $f'(a) < \alpha < f'(b)$ (or $f'(b) < \alpha < f'(a)$). Then

$$\exists c \in (a,b) \text{ such that } f'(c) = \alpha$$

Proof. Let $g:[a,b] \to \mathbb{R}$ be defined by $g(x) = f(x) - \alpha x$. It follows from the algebraic differentiability theorem that g is differentiable on [a,b], and so it is continuous on [a,b]. It is enough to show that

$$\exists c \in (a, b) \text{ such that } g'(c) = 0$$

To this end, it is enough to show that $\exists c \in (a,b)$ at which g has a local minimum. We have

$$g$$
 is continuous on $[a,b]$ $\Longrightarrow g$ attains its minimum on $[a,b]$

Let \hat{c} be a point at which g attains a minimum. In what follows we will show that $\hat{c} \in (a, b)$ and so it can be used as the c that we were looking for. Note that (since $g'(x) = f'(x) - \alpha$)

$$g'(a) = f'(a) - \alpha < 0$$

$$g'(b) = f'(b) - \alpha > 0$$

Claim 1: $\hat{c} \neq a$

Assume for contradiction that $\hat{c} = a$. Then

$$\forall x \in [a, b] \ g(x) \ge g(a)$$

so,

$$\forall x \in [a, b] \quad \begin{cases} g(x) - g(a) \ge 0 \\ x - a > 0 \end{cases}$$

Thus

$$\forall x \in (a,b) \quad \frac{g(x) - g(a)}{x - a} \ge 0$$

Thus

$$\lim_{x \to c} \frac{g(x) - g(a)}{x - a} \ge \lim_{x \to a} 0$$

That is, $g'(a) \ge 0$. This contradicts the fact that g'(a) < 0.

Claim 2: $\hat{c} \neq b$

Assume for contradiction that $\hat{c} = b$. In a similar manner to claim 1:

$$\forall x \in [a, b] \ g(x) \ge g(b) \implies \forall x \in [a, b] \ \begin{cases} g(x) - g(b) \ge 0 \\ x - b < 0 \end{cases}$$
$$\implies \forall x \in [a, b] \ \frac{g(x) - g(b)}{x - b} \le 0$$

Thus,

$$\lim_{x \to c} \frac{g(x) - g(b)}{x - b} \le \lim_{x \to b} 0$$

That is,

$$g'(b) \leq 0$$
.

This contradicts the fact that g'(b) > 0.

Example 1.2.1. Does there exist a differentiable function $f:[-1,1] \to \mathbb{R}$ whose derivative is $H:[-1,1] \to \mathbb{R}$ defined by

$$H(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & -1 \le x \le 0 \end{cases}?$$

No! H does not have the intermediate value property. So, it cannot be the derivative of any differentiable function.

The following are some geometric conjectures involving the derivative of a function.

Conjecture 1.2.1.

Suppose $f:[a,b]\to\mathbb{R}$ is differentiable. Suppose f(a)=f(b). Then there exists a point $c\in(a,b)$ at which the tangent line is horizontal. I.e., there exists $c\in(a,b)$ such that f'(c)=0.

Conjecture 1.2.2.

Suppose $f:[a,b]\to\mathbb{R}$ is differentiable. Then there exists a point $c\in(a,b)$ at which the tangent line is parallel to the line through the endpoints (a,f(a)) and (b,f(b)). I.e., there exists $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-c}$.

Conjecture 1.2.3.

Suppose $\vec{r}:[a,b]\to\mathbb{R}^2$, $\vec{r}(t)=(f(t),g(t))$ is a differentiable path in \mathbb{R}^2 . Then there exists a point $\vec{r}(c)$ on the curve at which the tangent line is parallel to the line through the endpoints $\vec{r}(a)$ and $\vec{r}(b)$. Let's

1.2. LOCAL EXTREMA

try to find a mathematical formula for this statement:

- *) The direction vector for the tangent line at the point $\vec{r}(c)$: $\vec{r}'(c) = (f'(c), g'(c))$
- *) The direction vector for the line through the endpoints: (f(b) f(a), g(b) g(a))

So, assuming these vectors are nonzero, the claim of the conjecture can be described mathematically as

$$\exists c \exists \lambda \in \mathbb{R} \setminus \{0\}$$
 such that $(f'(c), g'(c)) = \lambda (f(b) - f(a), g(b) - g(a))$

Note that

$$\begin{split} (f'(c),g'(c)) &= \lambda \left(f(b) - f(a), g(b) - g(a) \right) \\ &\Longrightarrow \begin{cases} f'(c) &= \lambda \left(f(b) - f(a) \right) \\ g'(c) &= \lambda \left(g(b) - g(a) \right) \end{cases} \\ &\Longrightarrow \lambda f'(c) \left[g(b) - g(a) \right] = \lambda g'(c) \left[f(b) - f(a) \right] \\ &\Longrightarrow f'(c) \left[f(b) - f(a) \right] = g'(c) \left[g(b) - g(a) \right] \end{split}$$

1.3 Mean Value Theorems

We now study three theorems that make the previous geometric observations precise.

Theorem 1.3.1. (Rolle's Theorem)

Let $f:[a,b]\to\mathbb{R}$ be continuous. Let f be differentiable on (a,b). Suppose f(a)=f(b). Then there exists a point $c\in(a,b)$ such that f'(c)=0.

Proof. It is enough to show that there exists a point $c \in (a, c)$ at which f has a local maximum or a local minimum. We have

$$\begin{array}{c} f \text{ is continuous} \\ [a,b] \text{ is compact} \end{array} \} \stackrel{EVT}{\Longrightarrow} f \text{ attains its maximum and minimum on } [a,b]$$

We consider two cases:

Case 1: Both $\max_{a \le x \le b} f(x)$ and $\min_{a \le x \le b} f(x)$ occur at the endpoints.

In this case, it follows from the assumption f(a) = f(b) that $\max_{a \le x \le b} f(x) = \min_{a \le x \le b} f(x)$. So, f is a constant function on [a,b]. Hence

$$\forall x \in [a, b] \ f'(x) = 0$$

So, we may choose c to be any point we like in (a, b).

Case 2: Either $\max_{a \le x \le b} f(x)$ or $\min_{a \le x \le b} f(x)$ occurs at a point $c \in (a, b)$.

It follows from the interior extreme value theorem that f'(c) = 0.

Theorem 1.3.2. (Mean Value Theorem)

Let $f:[a,b]\to\mathbb{R}$ be continuous and let f be differentiable on (a,b). Then there exists $c\in(a,b)$ such that $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Proof. Let $g:[a,b]\to\mathbb{R}$ be defined by

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$$

Note that

- *) Algebraic continuity theorem $\implies g$ is continuous on [a, b]
- *) Algebraic differentiability theorem $\implies g$ is differentiable on (a, b)

*)
$$g(a) = f(a) - \frac{f(b) - f(a)}{b - a}a = \frac{bf(a) - af(a) - af(b) + af(a)}{b - a} = \frac{bf(a) - af(a)}{b - a}$$

*)
$$g(b) = f(b) - \frac{f(b) - f(a)}{b - a}b = \frac{bf(a) - af(b)}{b - a}$$

g is continuous on [a, b], differentiable on (a, b), and g(a) = g(b). By Rolle's theorem,

$$\exists c \in (a, b) \text{ such that } g'(c) = 0$$

Note that $g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$, so

$$g'(c) = 0 \iff f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$
$$\iff f'(c) = \frac{f(b) - f(a)}{b - a}$$

Theorem 1.3.3. (Generalized Mean Value Theorem)

Let $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ be continuous functions that are differentiable on (a,b). Then there

exists a point $c \in (a, b)$ such that

$$f'(c)[g(b) - g(a)] = g'(c)[f(b) - f(a)]$$

Proof. Let h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x). It follows from the assumptions, the algebraic continuity theorem, and the algebraic differentiability theorem that h is continuous on [a, b] and differentiable on (a, b). Therefore, by the mean value theorem,

$$\exists c \in (a,b) \text{ such that } h'(c) = \frac{h(b) - h(a)}{b-a} \tag{*}$$

Note that

$$h(b) = [f(b) - f(a)] g(b) - [g(b) - g(a)] f(b)$$

$$= f(b)g(b) - f(a)g(b) - g(b)f(b) + g(a)f(b)$$

$$= g(a)f(b) - f(a)g(b)$$

$$h(a) = [f(b) - f(a)] g(a) - [g(b) - g(a)] f(a)$$

$$= f(b)g(a) - f(a)g(a) - g(b)f(a) + g(a)f(a)$$

$$= f(b)g(a) - g(b)f(a)$$

So h(a) = h(b). Hence it follows from (*) that $\exists c \in (a,b)$ such that h'(c) = 0 Now note that

$$h'(x) = [f(b) - f(a)] g'(x) - [g(b) - g(a)] f'(x)$$

$$\implies h'(c) = [f(b) - f(a)] g'(c) - [g(b) - g(a)] f'(c)$$

Therefore.

$$\exists c \in (a,b) \text{ such that } [f(b) - f(a)] g'(c) - [g(b) - g(a)] f'(c) = 0$$

That is,

$$\exists c \in (a, b) \text{ such that } [f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c)$$

Remark. If g' is neer zero in (a, b), then we may rewrite the claim of general mean value theorem as follows:

$$\exists c \in (a, b) \text{ such that } \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Theorem 1.3.4.

Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be differentiable such that $f'(x) = 0 \ \forall x \in I$. Then f is a constant function on I, that is, there exists $k \in \mathbb{R}$ such that $\forall x \in I, f(x) = k$.

Proof. Let $x, y \in I$ with x < y. It is enough to show that f(x) = f(y). To this end, we wil apply the mean value theorem to f on the interval [x, y]:

$$\exists c \in (x,y) \text{ such that } f'(c) = \frac{f(y) - f(x)}{y - x}$$

$$\implies 0 = \frac{f(y) - f(x)}{y - x}$$

$$\implies 0 = f(y) - f(x)$$

$$\implies f(x) = f(y)$$

Remark. Consider $f:A\to\mathbb{R}$ where $A=(-1,0)\cup(2,3)$ and $f(x)=\begin{cases} 1 & x\in(-1,0) \\ -1 & x\in(2,3) \end{cases}$ Then $\forall x\in(-1,0)$

A f'(x) = 0, but f is not a constant function on A. The theorem above doesn't apply since A is not an interval.

Theorem 1.3.5.

Let $I \subseteq \mathbb{R}$ be an interval, and let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be differentiable such that $f'(x) = g'(x) \ \forall x \in I$. Then there exists $k \in \mathbb{R}$ such that $\forall x \in I$, f(x) = g(x) + k.

Proof. Let h = f - g. We have

$$\forall x \in I \quad h'(x) = (f - g)'(x) = f'(x) - g'(x) = 0$$

$$\stackrel{1.3.4}{\Longrightarrow} \exists k \in \mathbb{R} \text{ such that } \forall x \in I \quad h(x) = k$$

$$\Longrightarrow \exists k \in \mathbb{R} \text{ such that } \forall x \in I \quad f(x) - g(x) = k$$

$$\Longrightarrow \exists k \in \mathbb{R} \text{ such that } \forall x \in I \quad f(x) = g(x) + k$$

Theorem 1.3.6.

Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be differentiable. Then

- (i) f is increasing $\iff \forall c \in I \ f'(c) \ge 0$
- (ii) f is decreasing $\iff \forall c \in I \ f'(c) \leq 0$

Proof.

Here, we will prove (i). The proof of (ii) is analogous.

 (\Longrightarrow) Suppose f is increasing on I. Let $c \in I$. Note that for all $x \in I, x \neq c$ we have $\frac{f(x)-f(c)}{x-c} \geq 0$. Indeed,

if
$$x > c$$
 then
$$\begin{cases} x - c > 0 \\ f(x) \ge f(c) \end{cases} \implies \frac{f(x) - f(c)}{x - c} \ge 0$$
if $x < c$ then
$$\begin{cases} x - c < 0 \\ f(x) \le f(c) \end{cases} \implies \frac{f(x) - f(c)}{x - c} \ge 0$$

It follows from the order limit theorem for functions that

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \ge \lim_{x \to c} 0$$

Hence, $f'(c) \ge 0$ as desired.

(\iff) Suppose $\forall c \in I$ $f'(c) \geq 0$. Let $x_1, x_2 \in I$ with $x_1 < x_2$. It is enough to show that $f(x_1) \leq f(x_2)$. To this end, we apply the mean value theorem to the function f on $[x_1, x_2]$:

$$\exists c \in (x_1, x_2) \text{ such that } f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

So, $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. Thus $f(x_2) - f(x_1) \ge 0$, that is, $f(x_1) \le f(x_2)$ as desired.

Theorem 1.3.7. (L'Hôpital's Rule)

Let $I \subseteq \mathbb{R}$ be an interval, and $a \in I$. Let $f: [a,b] \to \mathbb{R}$ and $g: [a,b] \to \mathbb{R}$ be continuous. Suppose f and g are differentiable at all points in $I \setminus \{a\}$ and f(a) = g(a) = 0, $g'(x) \neq 0 \ \forall x \in I \setminus \{a\}$ and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Proof. Our goal is to show that

$$\forall \epsilon > 0 \; \exists \delta > 0 \text{ such that if } 0 < |x - a| < \delta \text{ (with } x \in I) \text{ then } \left| \frac{f(x)}{g(x)} - L \right| < \epsilon$$

Let $\epsilon > 0$. Our goal is to find $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 (with $x \in I$) then $\left| \frac{f(x)}{g(x)} - L \right| < \epsilon$ (*)

Since by assumption $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, for the gien $\epsilon > 0$, there exists $\hat{\delta} > 0$ such that

if
$$0 < |x - a| < \hat{\delta}$$
 (with $x \in I$) then $\left| \frac{f'(x)}{g'(x)} - L \right| < \epsilon$

We claim that this $\hat{\delta}$ satisfies (*). The reason is as follows:

Suppose $x \in I$ such that $0 < |x - a| < \hat{\delta}$. In what follows we will show that $\left| \frac{f(x)}{g(x)} - L \right| < \epsilon$. We consider two cases:

Case 1: $x > a \quad \left(x \in (a, a + \hat{\delta})\right)$

We apply the general mean value theorem to f and g on the interval [a, x]:

$$\exists c \in (a, x) \text{ such that } \frac{f'(x)}{g'(x)} = \frac{f(x) - f(a)}{g(x) - g(a)}$$

Since f(a) = g(a) = 0, we conclude that

$$\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$$

It follows that

$$\left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f'(x)}{g'(x)} - L \right| < \epsilon$$

(the latter inequality is true because $0 < |c - a| \le |x - a| \le \hat{\delta}$)

Case 2: $x < a \quad \left(x \in (a - \hat{\delta}, a) \right)$

We apply the general mean value theorem to f and g on [x,a]:

$$\exists c \in (x, a) \text{ such that } \frac{f'(c)}{g'(c)} = \frac{f(a) - f(x)}{g(a) - g(x)}$$

Since f(a) = g(a) = 0, we conclude that

$$\frac{f'(c)}{g'(c)} = \frac{f(x)}{g(x)}$$

It follows that

$$\left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f'(x)}{g'(x)} - L \right| < \epsilon$$

(the latter inequality is true because $0 < |c - a| \le |x - a| \le \hat{\delta}$)

Taylor Polynomials 1.4

Consider $f: I \to \mathbb{R}$ given by $f(x) = (x - x_0)^k$. What do the n derivatives look like? If n = 0, then by the mean value theorem we have

$$f: I \to \mathbb{R} \text{ is differentiable}$$

$$f(x_0) = 0$$

$$\Rightarrow f(x) = f'(c)(x - x_0)$$

Observation. Let k be a natural number. Let x_0 be a fixed number.

*)
$$\frac{d}{dx} [(x-x_0)^k] = k(x-x_0)^{k-1}$$

*)
$$\frac{d^2}{dx^2} \left[(x-x_0)^k \right] = \frac{d}{dx} \left[k(x-x_0)^{k-1} \right] = k(k-1)(x-x_0)^{k-2}$$

*)
$$\frac{d^2}{dx^2} \left[(x - x_0)^k \right] = \frac{d}{dx} \left[k(x - x_0)^{k-1} \right] = k(k-1)(x - x_0)^{k-2}$$

*) $\frac{d^3}{dx^3} \left[(x - x_0)^k \right] = \frac{d}{dx} \left[k(k-1)(x - x_0)^{k-2} \right] = k(k-1)(k-2)(x - x_0)^{k-3}$

*)
$$\frac{d^k}{dx^k} [(x-x_0)^k] = k(k-1)\dots(2)(1)(x-x_0)^{k-k} = k!$$

*)
$$\frac{d^j}{dx^j} [(x-x_0)^k] = k(k-1)\dots(k-(j-1))(x-x_0)^{k-j}$$

Thus we have

$$\frac{d^{j}}{dx^{j}} \left[(x - x_{0})^{k} \right] = \begin{cases} k(k-1) \dots (k-j+1)(x - x_{0})^{k-j} & \text{if } j < k \\ k! & \text{if } j = k \\ 0 & \text{if } j > k \end{cases}$$

$$\frac{d^{j}}{dx^{j}} \left[(x - x_{0})^{k} \right] \Big|_{x = x_{0}} = \begin{cases} 0 & \text{if } j < k \\ k! & \text{if } j = k \\ 0 & \text{if } j > k \end{cases}$$

Theorem 1.4.1. (Corollary of the General Mean Value Theorem)

Let $I \subseteq \mathbb{R}$ be an open interval, $x_0 \in I$, and $n \in \mathbb{N} \cup \{0\}$. Let $f: I \to \mathbb{R}$ have n+1 derivatives. Suppose $f^{(k)}(x_0) = 0 \ \forall 0 \le k \le n$. Then for each point $x \ne x_0$ in the interval I, there exists a point c_{x,x_0} strictly between x and x_0 such that

$$f(x) = \frac{f^{(n+1)}(c_{x,x_0})}{(n+1)!}(x-x_0)^{n+1}$$

Here we will prove the claim for the case where $x > x_0$. The proof for $x < x_0$ is completely analogous. Let $g: I \to \mathbb{R}$ be defined by $g(t) = (t - x_0)^{n+1}$. Note that

$$g^{(k)}(x_0) = 0 \quad \forall 0 \le k \le n$$

 $g^{(n+1)}(t) = (n+1)! \quad \forall t \in I$

Now, we apply the general mean value theorem to f and g on the interval $[x_0, x]$:

$$\exists x_1 \in (x_0, x) \text{ such that } \frac{f'(x_1)}{g'(x_1)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)}$$

$$\implies \frac{f'(x_1)}{g'(x_1)} = \frac{f(x)}{g(x)} \tag{I}$$

Next, we apply the general mean value theorem to f' and g' on the interval $[x_0, x_1]$:

$$\exists x_2 \in (x_0, x_1) \text{ such that } \frac{f''(x_2)}{g''(x_2)} = \frac{f'(x_1) - f'(x_0)}{g'(x_1) - g'(x_0)}$$

$$\implies \frac{f''(x_2)}{g''(x_2)} = \frac{f'(x_1)}{g'(x_1)}$$

$$\stackrel{(I)}{\implies} \frac{f''(x_2)}{g''(x_2)} = \frac{f(x)}{g(x)}$$

Continuing in this way, we will obtain $x_{n+1} \in (x_0, x)$ such that

$$\frac{f^{(n+1)}(x_{n+1})}{g^{(n+1)}(x_{n+1})} = \frac{f(x)}{g(x)}$$

So,

$$\frac{f^{(n+1)}(x_{n+1})}{(n+1)!} = \frac{f(x)}{(x-x_0)^{n+1}}$$

Thus

$$f(x) = \frac{f^{(n+1)}(x_{n+1})}{(n+1)!} (x - x_0)^{n+1}$$

(We can use x_{n+1} as the c we were looking for)

Question: What are the nicest functions that we know? Which functions are the easiest to work with?

Answer: Polynomials

General Question: Given a function f, is it possible to find a "good" approximation for f among polynomials? Setup:

- *) Let I be a nonempty open interval in \mathbb{R}
- *) Let n be a nonnegative integer
- *) Suppose $f: I \to \mathbb{R}$ has n derivatives and $x_0 \in I$
- *) Suppose that we want to use the values

$$f(x_0), f'(x_0), ..., f^{(n)}(x_0)$$

to construct a polynomial approximation for f

What is the best we could hope for? Find a polynomial such that

$$p(x_0) = f(x_0)$$

$$p'(x_0) = f'(x_0)$$

$$\vdots$$

$$p^{(n)}(x_0) = f^{(n)}(x_0)$$

Observation. Let x_0 be a fixed real number. A general polynomial of degree at most n can be expressed in powers of $(x - x_0)$ in the form

$$p(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0)^n$$

Example 1.4.1. Consider $p(x) = x^2 - 3x - 1$. Let $x_0 = 1$. We can express p(x) in powers of x - 1:

$$p(x) = x^{2} - 3x - 1 = [(x - 1) + 1]^{2} - 3[(x - 1) + 1] - 1$$
$$= (x - 1)^{2} + 2(x - 1) + 1 - 3(x - 1) - 3 - 1$$
$$= (x - 1)^{2} - (x - 1) - 3$$

Theorem 1.4.2. (Uniqueness of the Approximating Polynomial)

Let $I \subseteq \mathbb{R}$ be an open interval and $n \in \mathbb{N}$. Suppose $f: I \to \mathbb{R}$ has n derivatives ad $x_0 \in I$. Then there exists a unique polynomial p(x) of degree at most n such that

$$\forall 0 \le l \le n \ p^{(l)}(x_0) = f^{(l)}(x_0), \text{ with } \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Proof. Let p(x) be a general polynomial of degree at most n:

$$p(x) = c_0 + c_1(x - x_0) + \dots + c_n(x - x_0)^n$$

Our goal is to show that

If
$$\forall 0 \le l \le n$$
 $p^{(l)}(x_0) = f^{(l)}(x_0)$ then $p(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

Note that $p(x_0) = c_0$. Also, for $1 \le l \le n$ we have

$$p^{(l)}(x) = \frac{d^l}{dx^l} \left[c_0 + \sum_{k=1}^n c_k (x - x_0)^k \right]$$
$$= \frac{d^l}{dx^l} \left[\sum_{k=1}^n c_k (x - x)^k \right]$$
$$= \sum_{k=1}^n c_k \frac{d^l}{dx^l} \left[(x - x_0)^k \right]$$

Hence,

$$p^{(l)}(x_0) = \sum_{k=1}^{n} c_k \frac{d^l}{dx^l} \left[(x - x_0)^k \right] \Big|_{x = x_0} = c_l \cdot l!$$

Therefore,

$$\forall 1 \le l \le n \ p^{(l)}(x_0) = c_l \cdot l!$$

We conclude that

$$p \text{ agrees with } f \text{ to order } n \text{ at } x_0 \iff \begin{cases} p(x_0) = f(x_0) \\ p^{(l)}(x_0) = f^{(l)}(x_0) \ \forall 1 \le l \le n \end{cases}$$

$$\iff \begin{cases} c_0 = f(x_0) \\ l!c_l = f^{(l)}(x_0) \ \forall 1 \le l \le n \end{cases}$$

$$\iff \begin{cases} c_0 = f(x_0) \\ c_l = \frac{f^{(l)}(x_0)}{l!} \ \forall 1 \le l \le n \end{cases}$$

$$\iff p(x) = \sum_{k=0}^n c_k(x - x_0)^k$$

$$= c_0 + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

$$= f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

Note. n^{th} Taylor Polynomial centered at 0 is called n^{th} Maclaurin Polynomial

Big Lesson: There is exactly one polynomial of degree at most n that satisfies

$$p(x_0) = f(x_0)$$

 $p'(x_0) = f'(x_0)$
 \vdots
 $p^{(n)}(x_0) = f^{(n)}(x_0)$

This polynomial is called the n^{th} Taylor polynomial for f centered at x_0 , and is given by

$$T_{n,x_0}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Theorem 1.4.3. (Taylor's Theorem with Lagarange Remainder)

Let $I \subseteq \mathbb{R}$ be an open interval, $x_0 \in I$, and $n \in \mathbb{N} \cup \{0\}$. Let $f: I \to \mathbb{R}$ have n+1 derivatives. Then for each point $x \neq x_0$ in I, there is a point c strictly between x and x_0 such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{n!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Remark. Note that clearly the above equality holds at $x = x_0$ too (for any value of c). Recall that for any fixed number R, $\lim_{n\to\infty}\frac{R^{n+1}}{(n+1)!}=0$, however $f^{(n+1)}(c)$ may become very large.

Proof. Let $F_{n,x_0} = f(x) - T_{n,x_0}(x)$. Our goal is to show that

$$R_{n,x_0} = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

for some c between x and x_0 . Note that

f has n+1 derivatives

- (i) $T_{n,x+0}$ is a polynomial of degree n, so it has n+1 derivatives $\Longrightarrow R_{n,x_0}$ has n+1 derivatives $R_{n,x_0} = f - T$
- (ii) $\forall 0 \le k \le n$ $R_{n,x_0}^{(k)}(x_0) = f^{(k)}(x_0) T_{n,x_0}^{(k)}(x_0) = 0$
- (i),(ii), Theorem 1.4.1 \Longrightarrow For each point $x \neq x_0$ in I, we have

$$R_{n,x_0}(x) = \frac{R_{n,x_0}^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1} \text{ for some } c \text{ strictly between } x \text{ and } x_0$$
 (I)

Now note that

$$R_{n,x_0}^{(n+1)}(c) = f^{(n+1)}(c) - T_{n,x_0}^{(n+1)}(c) = f^{(n+1)}(c)$$
(II)

$$(I), (II) \implies R_{n,x_0} = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}$$