KING SAUD UNIVERSITY COLLEGE OF COMPUTER AND INFORMATION SCIENCES Computer Science Department

CSC 339 Theory of Computation **Tutorial # 4**Context Free Grammar (CFG)

2nd Semester 1443-2022

Exercise 1

Which language is generated by the grammar G given by each of the following productions:

1. $S \rightarrow aSa \mid aBa$

$$B \rightarrow bB \mid b$$

2. $S \rightarrow abScB \mid \lambda$

$$B \rightarrow bB \mid b$$

Exercise 2

Find a CFG that generates each of the following languages over $\Sigma = \{a, b, c, d\}$:

- 1. $L(G) = \{a^n b^m c^m d^{2n} \mid n \ge 0, m > 0\}$
- 2. $L(G) = \{a^n b^m \mid 0 \le n \le m \le 2n\}$
- 3. $L(G) = \{a^n b^m c^k | k = n + m\}$

Exercise 3

Construct a CFG to generate the following languages over $\Sigma = \{0,1\}$:

- 1. $L(G) = \{w \mid w \text{ starts and ends with the same symbol}\}\$
- 2. $L(G) = \{w \mid |w| \text{ is odd}\}$

Exercise 4

Explain why the grammar below is ambiguous:

$$S \rightarrow 0A \mid 1B$$

$$A \rightarrow 0AA \mid 1S \mid 1$$

$$B \rightarrow 1BB \mid 0S \mid 0$$

Exercise 5

Given the following ambiguous CFG:

$$S \rightarrow Ab \mid aaB$$

 $A \rightarrow a \mid Aa$
 $B \rightarrow b$

- 1. Find the string s generated by the grammar that has two leftmost derivations and show them.
- 2. Show the two derivation trees for the string s.
- 3. Find an equivalent un-ambiguous CFG.
- 4. Give the unique leftmost derivation and derivation tree for the string s generated from the unambiguous grammar above.

Exercise 6

Convert the following ambiguous grammar into unambiguous grammar-

bexp \rightarrow bexp or bexp | bexp and bexp | not bexp | T | F

where bexp represents Boolean expression, T represents True and F represents False.