Krzysztof Król 305174

Project nr 28 - 1.4.5 c) I, 1.4.7 e) II

1.4.5 c) I

Performance analysis of CSMA/CA network with fragmentation threshold for noisy radio channel

Na początku, obliczona została wartość FER dla ramki danych i ACK przy każdej konfiguracji parametru Frame fragmentation z przedziału [50, 200, 500, 1000, 2034] oraz dla dwóch różnych wartości BER.

Poniżej większość parametrów, użytych podczas symulacji:

Stations	7
Cwmin	31
Cwmax	1023
Frame size [B]	2000
Offered load [bps]	20000000
ACK frame size [B]	14
IAT7	0,0056
tsim [s]	10

Otrzymane wyniki:

BER	5,00E-06				
Fragmentation threshold	50	200	500	1000	2304
DATA frame FER	0,00199800 6322707	0,007968105 003696	0,019801375 703469	0,039210656 927188	0,07688383823 7714
ACK frame FER	0,00055984 462849	0,000559844 62849	0,000559844 62849	0,000559844 62849	0,00055984462 849
Frames delivered	3610	6914	8289	8578	8225
Throughput for BER = 5e-6	5776000	11062400	13262400	13724800	13160000
Collision episodes	586	1082	1248	1277	1184
Collided frames	1222	2237	2596	2643	2453

BER	3,00E-05				
Fragmentation threshold	50	200	500	1000	2304
DATA frame FER	0,01192846 4994509	0,0468668 99192261	0,11308115 9770031	0,21337497 0845127	0,381221063 507095
ACK frame FER	0,00335441 174881	0,0033544 1174881	0,00335441 174881	0,00335441 174881	0,003354411 74881
Frames delivered	3390	6142	6848	6501	5510
Throughput for BER = 3e-5	5424000	9827200	10956800	10401600	8816000
Collision episodes	669	1033	1076	924	585
Collided frames	1369	2114	2211	1896	1193

Wnioski:

Dla niższego współczynnika BER uzyskujemy większą przepustowość. Zatem im niższy BER, tym lepiej.

Fragmentation threshold w obu przypadkach współczynnika BER podobnie się zachowuje. Dla zbyt niskiej, jak i zbyt wysokiej wartości parametru Frag. Threshold otrzymujemy obniżoną przepustowość. Optymalna wartość tego parametru znajduję się prawdopodobnie gdzieś w granicach 500 - 1000 bajtów.

1.4.7 e) II

Performance analysis of CSMA/CA networks of IEEE 802.11a and IEEE 802.11g standard

Po obliczeniu parametru IAT dla konfiguracji 2 i 60 stacji oraz parametru Frame overhead dla przepustowości docelowych 12 i 48 Mbps, uzyskałem następujące zestawy parametrów symulacyjnych:

Number of stations (min)	2
Number of stations (max)	60
Bandwidth min [Mbps]	12
Bandwidth max [Mbps]	48

Frame size [B]	2000
Offered throughput [Mbps]	100
IAT2	0,0016
IAT60	0,048
tsim [s]	10

Frame overhead (12 Mbps)	50
Frame overhead (48 Mbps)	98

Standard	802.11a	802.11g
Slot time [us]	9	20
Short IFS [us]	16	10
Cwmin	15	31
Cwmax	511	1023
Frequency [GHz]	2,4	5

Otrzymane w wyniku symulacji wyniki:

IEEE Standard	802.11a	•	802.11g	-
Transmission mode	12	48	12	48
2 stations:				
Frames Delivered	6011	12499	6366	12499
Collision episodes	181	0	403	0
Collided frames	362	0	806	0
Throughput	9617600	19998400	10185600	19998400
60 stations:				
Frames Delivered	4326	12495	3892	12497
Collision episodes	2844	151	3474	158
Collided frames	6831	306	8819	320
Throughput	6921600	19992000	6227200	19995200

2 stations

60 stations

Wnioski:

W przypadkach obu standardów otrzymujemy lepsze przepustowości dla niższej liczby obsługiwanych stacji. Jest to spowodowane występowaniem większej ilości kolizji dla większej ilości stacji.

Oczywiście, zgodnie z oczekiwaniami uzyskana przepustowość dla 48 Mbps jest większa niż przy 12 Mbps.

Niestety wyniki symulacji z moimi parametrami nie pozwalają na jednoznaczne stwierdzenie o wyższości jednego ze standardów. Przepustowości są zbliżone dla prędkości 48 Mbps. Natomiast dla 12 Mbps w sytuacji 2 stacji faworytem jest standard 802.11g, a przy 60 stacjach standard 802.11a.