

CE EMC TEST REPORT

APPLICANT: Dongguan City YingJu Electronics Co.,Ltd.

PRODUCT NAME: Switching Adapter

MODEL NAME : UC11EU,UC11UK

TRADE NAME : ALCATEL onetouch

BRAND NAME : N/A

STANDARD(S) : ETSI EN 301 489-1 V1.9.2 (2011-09)

ETSI EN 301 489-34 V1.4.1 (2013-05)

TEST DATE : 2015-12-10 to 2015-12-16

ISSUE DATE : 2015-12-17

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

1. TECHNICAL INFORMATION	
ORLAN MORE THE LAB	HORE ME AR ARIAN MOR
1.1. APPLICANT INFORMATION	
1.2. EQUIPMENT UNDER TEST (EUT) DESCRIPTION	
B RELAD MORL MIC AB AB	
2. TEST RESULTS	
SRI A. MORE MICHAEL AE SRI AE	MORE THE LEE STAR MOR
2.1. APPLIED REFERENCE DOCUMENTS	,
2.2. ADDENDUM II OF M/455 EN ANNEX II PART A [2] ·	9
2.2.1 LOAD: FPS LOAD REPRESENTATIVE OF A MOBIL F	PHONE WITH THE FOLLOWING
CHARACTERISTICS	
2.2.2. TEST LIMITS ·····	
2.2.3. TEST PROCEDURE ······	
2.2.4. Test Setup	
2.2.5. THE TEST RESULT OF RIPPLE BEFORE THE EMC	
3. EMISSION TESTS	12
TE THE THE THE THE TE	TLAS OFFIE MORE TO SE IN
3.1. EUT SETUP AND OPERATING CONDITIONS	12
3.2. Mains Terminal Disturbance Voltage	13
3.2.1. LIMITS OF MAINS TERMINAL DISTURBANCE VOLTA	
3.2.2. TEST PROCEDURE	
3.2.3. TEST SETUP	
3.2.4. TEST RESULT	
3.3. RADIATED DISTURBANCE	16
3.3.1. LIMITS OF RADIATED DISTURBANCE	
3.3.2. TEST PROCEDURE	
3.3.3. TEST SETUP	
3.3.4. TEST RESULT	
3.4. VOLTAGE FLUCTUATIONS AND FLICKER MEASURE	
3.4.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICKER	
3.4.2. Test Procedure	
3.4.3. TEST SETUP	19
3.4.4. TEST RESULT	

<u>4.</u> IN	MMUNITY TESTS	21
4.1.	EUT OPERATION AND PERFORMANCE CRITERIA	21
4.1.1.		
	PERFORMANCE CRITERIA	
4.2.	ELECTROSTATIC DISCHARGE IMMUNITY	23
4.2.1.		
4.2.2.		23
4.2.3.		
4.2.4.		
4.2.5.		
4.3.	RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TE	ST26
4.3.1.	TEST SPECIFICATION	26
4.3.2.	TEST PROCEDURE	26
4.3.3.	· = •, • = · • · · · · · · · · · · · · · · · ·	
4.3.4.	TEST RESULT ·····	28
4.4.	ELECTRICAL FAST TRANSIENT / BURST IMMUNITY	29
4.4.1.	TEST SPECIFICATION	
4.4.2.		
4.4.3.		
	TEST RESULT ·····	
4.5.	SURGE IMMUNITY	
4.5.1.		
4.5.2.		
4.5.3.		
4.5.4.	TEST RESULT	32
4.6.	IMMUNITY TO CONDUCTED DISTURBANCE INDUCED BY RF FIELDS	33
4.6.1.	TEST SPECIFICATION	33
4.6.2.	TEST PROCEDURE	33
	TEST SETUP	
4.6.4.	TEST RESULT	34
4.7.	VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY	35
	TEST SPECIFICATION	
	TEST PROCEDURE	
	TEST SETUP	
4.7.4.	TEST RESULT	36
	EX A PHOTOGRAPHS OF TEST SETUP	
ANNE	EX A PHOTOGRAPHS OF TEST SETUP	37

<u>PHOTOS OF THE EUT42</u>
TEST UNCERTAINTY50
TESTING LABORATORY INFORMATION51
NTIFICATION OF THE RESPONSIBLE TESTING LABORATORY51
NTIFICATION OF THE RESPONSIBLE TESTING LOCATION51
T ENVIRONMENT CONDITIONS51
T EQUIPMENTS UTILIZED52

	Change History				
Issue	Issue Date Reason for change				
1.0	1.0 2015-12-17 First edition				
MORL	Mo.	The soft wo was a soft of the			

Test Report Declaration

Applicant	Dongguan City YingJu Electronics Co.,Ltd.
Applicant Address	Yewuji Village, Sijia,Shijie Town,Dongguan,Guangdong 523300,People's Republic of China.
Manufacturer	Dongguan City YingJu Electronics Co.,Ltd.
Manufacturer Address	Yewuji Village, Sijia,Shijie Town,Dongguan,Guangdong 523300,People's Republic of China.
Product Name	Switching Adapter
Model Name	UC11EU,UC11UK
Brand Name	N/A
HW Version	N/A
SW Version	N/A
Test Standards	ETSI EN 301 489-1 V1.9.2 (2011-09) ETSI EN 301 489-34 V1.4.1 (2013-05)
Test Result	PASS

Tested by	AP.	ORLA	MOL	S 10.	AB
ORLAN MOR	AB	Wang D	along (Te	st Engineer	
Reviewed by	MORL	LAE MO	ORLAE	MORLAD	A MORL
MORL	AE MO.	Xiao 2	Kiong (EM	IC Manage	r) NE MO
Approved by	LAB	MO. ORL	AE . MO	RLAD NIC	JRL M
		Zena [Dexin (Chi	ef Enginee	r)410 FE

1. Technical Information

Note: Provide by applicant.

1.1. Applicant Information

Company: Dongguan City YingJu Electronics Co.,Ltd.

Address: Yewuji Village, Sijia, Shijie Town, Dongguan, Guangdong 523300, People's

Republic of China.

1.2. Equipment under Test (EUT) Description

EUT Type:	Switching Adapter
Serial No:	(n.a., marked #1 by test site)
Hardware Version:	N/A
Software Version:	N/A
Rated Input:	~ 100-240V, 50/60Hz, 200mA
Rated Output:	= 5V, 1000mA
USB line:	Unshielded, Detachable 0.45m

NOTE:

- There are two models(UC11EU and UC11UK) for the EUT, they are all the same except their pins. They are considered to have the same EMC performance, one model(UC11EU) was tested in this report.
- Please refer to Annex B for the photographs of the EUT. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2. Test Results

2.1. Applied Reference Documents

The objective of the report is to perform testing according to following standards for CE marking:

No.	Identity	Document Title
1	ETSI EN 301 489-1	Electromagnetic compatibility and Radio spectrum Matters (ERM);
RLAE	V1.9.2 (2011-09)	Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements
2	ETSI EN 301 489-34 V1.4.1 (2013-05)	Electromagnetic compatibility and Radio spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 34: Specific conditions for External Power Supply (EPS) for mobile phones
3	EN 61000-3-3: 2013	Electromagnetic compatibility (EMC) Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

Test detailed items required and results are listed as below (the latest versions of basic standards are applied):

No.	Base	Test Type	Result
	Standard		
Emi	ssion (EN 301 48	9-34 Clause 7.1)	Wo.
100	EN 55022	Radiated Emission	PASS
2	EN 55022	Conducted Emission, DC Ports	(n.a.) ^{Note1}
3	EN 55022	Conducted Emission, AC Ports	PASS
4	EN 61000-3-2	Harmonic Current Emissions	PASS Note 2
5	EN 61000-3-3	Voltage Fluctuations & Flicker	PASS
lmm	unity (EN 301 48	9-34 Clause 7.2)	QLAP.
6	EN 61000-4-3	RF Electromagnetic Field	PASS
7.0	EN 61000-4-2	Electrostatic Discharge	PASS
8	EN 61000-4-4	Fast transients common mode, DC Ports	(n.a.) ^{Note1}
9	EN 61000-4-4	Fast transients common mode, AC Ports	PASS
10	EN 61000-4-6	RF common mode 0,15 MHz to 80 MHz, DC Ports	(n.a.) ^{Note1}
11	EN 61000-4-6	RF common mode 0,15 MHz to 80 MHz, AC Ports	PASS
12	EN 61000-4-11	Voltage Dips and Short Interruptions Immunity	PASS

13 EN 61000-4-5 Surge Immunity, AC Ports PASS

Note 1:

This test is applicable to EPS equipment that may have DC cables longer than 3 m as declared by the manufacturer.

Note 2:

There is no need for Harmonics test to be performed on this product (rated power is less than 75W) in accordance with EN 61000-3-2:2006+A1:2009+A2:2009.

For further details, please refer to Clause 7 of EN 61000-3-2:2006+A1:2009+A2:2009 which states:

"For the following categories of equipment, limits are not specified in this edition of the standard: - equipment with a rated power of 75W or less, other than lighting equipment."

2.2. Addendum II of M/455 EN Annex II Part A [2]

2.2.1. Load: EPS load representative of a Mobile Phone with the following characteristics

- USB micro-B socket connection
- Input capacitance of 1µF in parallel with the EPS output
- Input impedance with switchable/variable range of:
- 1) 10k Ω (for 0 % rated current)
- 2) 5Ω 1% tolerance (for Maximum rated current 1000mA)
- 3) Other resistances to obtain the currents and output voltages in step 10 of the test procedure

2.2.2. Test Limits

Output Voltage Ripple (Under load conditions from idle to full): 80mVp-p measured at 20 MHz bandwidth using the test method as defined in EN 62684 [16].

2.2.3. Test procedure

- 1. Place EUT into an environmental chamber.
- 2. Connect the EUT to Generic Load.
- 3. Set the Load to CC mode according to the test parameters in step 10.
- 4. Set the Load to desired load according to the test parameters in step 10.
- 5. Set the oscilloscope to 20mV/div, 1s/div and 20MHz bandwidth.
- 6. Connect the oscilloscope to the EUT output.
- 7. Set the temperature on the environmental chamber.
- 8. Wait for 10 minutes after the temperature stability.
- 9. Connect the AC input of EUT to an AC power source and let the EUT work for 10 minutes.
- 10. Measure the peak-to-peak voltage of the signal on the oscilloscope under each possible combination of the following parameters:

- AC Frequency: 47Hz, 50Hz and 53 Hz for an EPS with nominal AC input of 230Vac
- AC Voltage: 195Vac, 230Vac and 264Vac for an EPS with nominal AC input of 230Vac
- AC Frequency: 47Hz, 50Hz, 60Hz and 63Hz for an EPS with AC input range of 100-230Vac
- AC Voltage: 85Vac, 120Vac, 195Vac and 264Vac for an EPS with AC input range of 100-230Vac
- Load setting: CC mode (0mA) (CC = Constant Current), to (rated output current) at 25% increments and CV (CV = Constant Voltage) mode (Vout =3V to 4.25V) at 250mV increments.

2.2.4. Test Setup

Please refer to Annex B for the photographs of the Test Configuration.

2.2.5. The test result of ripple before the EMC test

AC Voltage(V)	AC Frequency(Hz)	Load Setting	Limit(mV)	Result
05	60	Sr W	S CLA	Pass
85	63	RLAD	MO.	Pass
120	60	HO, OB	RLAB	Pass
120	63	CC to CV	90	Pass
195	47	CC to CV	80	Pass
195	50	Br. MO.	B RLAB	Pass
264	47	RLAB	MO,	Pass
264	50	Mo. VE II.	alas noglir	Pass

A. Test Plot:

NOTE: Only the worst result is recorded in this report. The Output Voltage Ripple of the worst result is 32.8mVp-p.

3. Emission tests

3.1. EUT Setup and Operating Conditions

1 The EUT configuration of the emission tests is EUT + resistance.

During the measurement of test mode, the EUT was connected with the test load, the test load is the slider-type rheostat, and the EUT work at the worst case, 10 % and 100 % of the rated output current and when disconnected from the Representative generic test load (no load condition).

Note: All cases are performed, the worst case for emission tests is 100 % of the rated output current and it was recorded in this report.

3.2. Mains Terminal Disturbance Voltage

3.2.1. Limits of Mains Terminal Disturbance Voltage

Frequency range	Conducted L	imit (dBµV)
(MHz)	Quai-peak	Average
0.15 – 0.50	66 to 56	56 to 46
0.50 – 5	56	46
5 – 30	60	50

NOTE:

- 1. The lower limit shall apply at the band edges.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.2.2. Test Procedure

- The EUT is placed on a 0.8m high insulating table, which stands on the grounded conducting floor, and keeps 0.4m away from the grounded conducting wall. The EUT is connected to the power mains through a LISN which provides 50Ω/50µH of coupling impedance for the measuring instrument.
- The test frequency range is from 150kHz to 30MHz. The maximum conducted interference is searched using Peak (PK), Quasi-peak (QP) and Average (AV) detectors; the emission levels that are more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors.
- 3. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed.

3.2.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

3.2.4. Test Result

NO.	Fre.	Emission Level (dBµV)	Limit (dBµV)	Power-line	Verdict
-----	------	-----------------------	--------------	------------	---------

	(MHz)	Quai-peak	Average	Quai-peak	Average		
10 1	0.15	52.80	18.65	66.00	56.00	B ORL	PASS
2	0.18	45.44	27.18	65.14	55.14	Balle	PASS
3	0.215	41.13	18.77	64.14	54.14	RIA. M	PASS
4	0.23	45.89	32.83	63.71	53.71	Line	PASS
5	0.93	40.21	26.84	56.00	46.00	MOKE	PASS
6	2.015	40.54	27.08	56.00	46.00	B ORLA	PASS

NO.	Fre.	Emission Level (dBµV)		Limit (dΒμV)	Power-line	Verdict
110.	(MHz)	Quai-peak	Average	Quai-peak	Average	1 00001 11110	vordiot
1	0.15	50.98	16.90	66.00	56.00	Q.B	PASS
2	0.515	36.45	27.49	56.00	46.00	- Neutral	PASS
3	0.885	44.73	28.29	56.00	46.00		PASS
4	1.545	36.53	26.52	56.00	46.00		PASS
5	2.075	37.20	27.16	56.00	46.00		PASS
6	16.125	36.51	26.72	60.00	50.00		PASS

Result: Pass

3.3. Radiated Disturbance

3.3.1. Limits of Radiated Disturbance

Frequency range (MHz)	Quasi-Peak Limit (dBµV/m)		
30 - 230	40		
230 - 1000	47		

NOTE:

- 1. The limit is applicable to 3m measurement distance.
- 2. The lower limit shall apply at the transition frequency.
- 3. Additional provisions may be required for cases where interference occurs

3.3.2. Test Procedure

- 1. The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.
- 2. For each suspected emission, the EUT is arranged to its worst case and then the Test Antenna is tuned to the heights from 1 to 4m and the Turn Table is tuned from 0 to 360 degrees to find the maximum reading.
- 3. The Test Antenna is a bi-log one, and its height is varied from 1 to 4m above the ground to determine the maximum value of the field strength. Both the vertical and the horizontal polarizations of the Test Antenna are considered to perform the tests.
- The maximum radiated emission is searched using PK and QP detectors; the emission levels
 more than the limits, and that have narrow margins from the limits will be re-measured with QP
 detectors.

3.3.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

1) For radiated emissions from 30MHz to1GHz

3.3.4. Test Result

	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	la l	LAB
11	32.910	N.A	33.67	N.A	N.A	40.00	N.A	V	PASS
2	54.250	N.A	27.41	N.A	N.A	40.00	N.A	V	PASS
3	66.860	N.A	24.28	N.A	N.A	40.00	N.A	V	PASS
4	129.910	N.A	18.05	N.A	N.A	40.00	N.A	V	PASS
5	316.150	N.A	18.28	N.A	N.A	47.00	N.A	V	PASS
6	612.970	N.A	21.44	N.A	N.A	47.00	N.A	V	PASS

No.	Fre.	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	ANT	Verdict
	MHz	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	dBµV/m	RLI	Mole
1	46.490	N.A	19.39	N.A	N.A	40.00	N.A	Н	PASS
2	99.840	N.A	18.45	N.A	N.A	40.00	N.A	Н	PASS
3	214.300	N.A	20.57	N.A	N.A	40.00	N.A	Н	PASS
4	316.150	N.A	21.52	N.A	N.A	47.00	N.A	Н	PASS
5	622.670	N.A	21.56	N.A	N.A	47.00	N.A	Н	PASS
6	874.870	N.A	24.89	N.A	N.A	47.00	N.A	Н	PASS

Result: Pass

3.4. Voltage Fluctuations and Flicker Measurement

3.4.1. Limits of Voltage Fluctuations and Flicker

Test Item	Limit	Note			
P _{st}	1.0	Short-term flicker indicator			
P _{lt}	0.65	Long-term flicker indicator			
T _{dt}	0.5	Maximum time that dt exceeds 3%			
d _{max} (%)	4%	Maximum relative voltage change			
d _c (%)	3.3%	Relative steady-state voltage change			

3.4.2. Test Procedure

- The EUT is placed on the top of a wooden table 0.8m above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions.
- 2. During the Flicker measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

3.4.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

3.4.4. Test Result

A. Test Specification:

No.	Specification	Value
1	Test Frequency	50Hz
2	Test Voltage	230VAC
3	Waveform	Sine
4	Test Time	10 minutes for P _{st} ; 2 hours for P _{lt}

B. Test Verdict:

Test Mode	Test Parameter	Limit	Measurement Value	Verdict
AB GLAB	P _{st}	1.0	0.023	PASS
RL. MO. OF I	P_{lt}	0.65	0.022	PASS
See section 3.1	T _{dt}	0.5	0.04	PASS
MOT AB IT SLA	d _{max} (%)	4%	0.29%	PASS
"OBT" MOI	d _c (%)	3.3%	0.26%	PASS

4. Immunity Tests

4.1. EUT Operation and Performance Criteria

4.1.1. EUT Setup and Operating Conditions

1 The EUT configuration of the immunity tests is EUT + resistance.

During the measurement of test mode, the EUT was connected with the test load, the test load is the slider-type rheostat. The integral USB cable or the Standard detachable cable assembly, supplied for use with the EPS shall be configured for worst case susceptibility during the immunity tests.

The EUT was tested with the defined representative generic test load.

The EUT was tested at rated nominal voltage at its full rated load.

4.1.2. Performance Criteria

A. General Performance Criteria:

For the EPS, the performance criteria are based on a UE intended to be used with the EPS. For some specific test cases a different compliance level and/or performance criteria has been defined in order to ensure the compliance at the UE and EPS.

The performance criteria are used to make a decision on whether an EPS passes or fails immunity tests.

For the purpose of the present document two categories of performance criteria apply:

performance criteria for continuous phenomena applied to EPS;

During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

performance criteria for transient phenomena applied to EPS.

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

B. Performance criteria for EPS

For a EPS the performance criteria for continuous phenomena shall meet the requirements whilst tested with the representative generic test load as given below:

Output Voltage 5 V ± 0.25 V from no load to maximum output current measured at the USB Micro-B plug.

While the parameters above should monitored at the USB Micro-B plug, the reference for the output voltage is the USB Micro-B plug for an EPS with captive cable and the Standard-A plug for an EPS with detachable cable.

The above criteria shall also be met after exposure to transient phenomena.

The following criteria shall be met after exposure to all immunity phenomena tests:

Output Voltage Ripple (Under load conditions from idle to full): 80mVp-p measured at 20 MHz bandwidth using the test method as defined in EN 62684 [16].

4.2. Electrostatic Discharge Immunity

4.2.1. Test Specification

Specification	Value				
Basic Standard	EN 61000-4-2:2009				
Discharge Impedance	330Ohm / 150pF				
Discharge Voltage	Air Discharge: 8kV; Contact Discharge: 4kV				
Polarity	Positive / Negative				
Number of Discharge	Minimum 20 times at each test point				
Discharge Mode	Single discharge				
Discharge Period	1 second minimum				
Discharge Period	1 second minimum				

4.2.2. Test Procedure

- Electrostatic discharges are applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- 2. The test is performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- The time interval between two successive single discharges is at least 1 second.
- 4. The ESD generator is held perpendicularly to the surface to which the discharge is applied and the return cable is at least 0.2 meters from the EUT.
- 5. Contact discharges are applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- 6. Air discharges are applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator is removed from the EUT and re-triggered for a new single discharge. The test is repeated until all discharges were completed.
- 7. At least ten single discharges (in the most sensitive polarity) are applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator is positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- 8. At least ten single discharges (in the most sensitive polarity) are applied to the center of one

vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m*0.5m) is placed vertically to and 0.1 meters from the EUT.

4.2.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

4.2.4. Test Result

The performance of the EUT complies with the performance criteria for transient phenomena.

	Test Points	Discharge	Discharge	Number of	Test Mode	Verdict	
1	rest r onits	Level (kV)	Mode	Discharge	rest Mode		
7	НСР	12	Contact	20	Full Rated Load	PASS	
	MORT HOP MO	±4	Contact	20	No Load	PASS	
3	VCD	RL MO	Contact	200	Full Rated Load	DAGO	
	VCP	±4		20	No Load	PASS	
4	Other aperture of	.2 .4 .9	ASLAE	20	Full Rated Load	PASS	
)	the EUT	±2,±4,±8	Air	20	No Load	PASS	

4.2.5. The ESD test points

HCP

4.3. Radiated, Radio Frequency Electromagnetic Field Immunity Test

4.3.1. Test Specification

Basic Standard:	EN 61000-4-3:2006+A1:2008+A2:2010
Frequency Range:	80 MHz – 1000MHz, 1400MHz-2700MHz
Field Strength:	3V/m
Modulation:	1 kHz sine wave, 80%, AM modulation
Frequency Step:	1% of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance:	3m
Antenna Height:	1.5m
Dwell Time:	3 seconds

4.3.2. Test Procedure

The test procedure was in accordance with EN 61000-4-3:2006+A1:2008+A2:2010.

- The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- 2. The test signal was 80% amplitude modulated with a 1 kHz sine wave.
- 3. The frequency range was swept from 80 MHz to 1000MHz and 1400MHz to 2700MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers. The rate of sweep did not exceed 1.5×10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- 4. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- 5. The field strength level was 3V/m(10V/m at 751.0MHz, 897.5MHz, 847.0MHz, 1747.5MHz, 1950.0MHz, 2535.0MHz).
- 6. The test was performed with the EUT exposed to both vertically and horizontally polarized

fields on each of the four sides. HORLE HORLE HORLE HORLE HORLE HORLE

4.3.3. Test Setup

For the actual test configuration, please refer to Annex A for the photographs of the Test Configuration.

4.3.4. Test Result

The performance of the EUT complies with the performance criteria for continuous phenomena.

Operating Mode	Field Strength	Frequency (MHz)	Modulation	EUT Face	Verdict
W.C.	3 V/m	80-1000, 1400-2700	41/11- 000/	Front	Pass
See Section			1KHz, 80% Amp. Mod, 1% increment	Rear	Pass
4.1.1				Left	Pass
	0. 6	QLAE .	1 /6 IIICI EIIIEII	Right	Pass

4.4. Electrical Fast Transient / Burst Immunity

4.4.1. Test Specification

Specification	Value				
Basic Standard	EN 61000-4-4:2012				
Test Voltage	AC Power Port: 1kV				
Polarity	Positive / Negative				
Impulse Frequency	5kHz				
Impulse Wave Shape	5/50ns				
Burst Duration	15ms				
Burst Period	300ms				
Test Duration	> 1min				

4.4.2. Test Procedure

- 1. The EUT is tested with 1000V discharges to the AC power input leads.
- 2. Both positive and negative polarity discharges are applied.
- The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1m.
- 4. The duration time of each test sequential is 2min.
- 5. The transient / burst waveform is in accordance with EN 61000-4-4:2012, 5/50ns.

4.4.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

4.4.4. Test Result

The performance of the EUT complies with the performance criteria for transient phenomena.

EUT				Verdict	
Operating Mode	Test Point	Polarity	Test Level (kV)		
MORT MO.	AC Port, L	+/-	MO 1 AB	PASS	
See section 4.1.1	AC Port, N	+/-	1082	PASS	
JEL. MO.	AC Port, L-N	+/-	3 1 al	PASS	

4.5. Surge Immunity

4.5.1. Test Specification

Specification	Value EN 61000-4-5:2006			
Basic Standard				
Waveform	Voltage: 1.2/50µs; Current: 8/20µs			
Test Voltage	AC Power Port: line to ground 2kV, line to line 1kV			
Polarity	Positive / Negative			
Phase Angle	0°, 90°, 180°, 270°			
Repetition Rate	60 seconds			
Times	5 times per condition			

4.5.2. Test Procedure

- 1. The EUT and the auxiliary equipment are placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m*1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT is less than 2 meters (provided by the manufacturer).
- 2. The EUT is connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise is applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- 3. The surges are applied line to line and line(s) to earth. When testing line to earth the test voltage is applied successively between each of the lines and earth. Steps up to the test level specified increased the test voltage. All lower levels including the selected test level are tested. The polarity of each surge level included positive and negative test pulses.

4.5.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

4.5.4. Test Result

The performance of the EUT complies with the performance criteria for transient phenomena.

EUT Operating Mode	Coupling Line	Polarity	Voltage (kV)	Verdict
Connection 4.4.4	AC Port, L-N	+/-	0.5	PASS
See section 4.1.1			R1.A.	PASS

4.6. Immunity to Conducted Disturbance Induced by RF Fields

4.6.1. Test Specification

	V V V V V V V V V V V V V V V V V V V				
Specification	Value				
Basic Standard	EN 61000-4-6:2009				
Frequency Range	0.15MHz - 80MHz				
Field Strength	3Vrms				
Modulation	1kHz sine wave, 80% AM				
Frequency Step	1% of fundamental				
Coupled Cable	AC Power Line				
Coupling Device	CDN-M2				
Coupling Device	CDIN-IVIZ				

4.6.2. Test Procedure

- 1. The EUT shall be tested within its intended operating and climatic conditions.
- 2. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 500hm load resistor.
- 3. The test signal is 80% amplitude modulated with a 1kHz sine wave.
- 4. The frequency range is swept from 150kHz to 80MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The sweep rate shall not exceed 1.5*10-3 decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.
- The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

4.6.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

4.6.4. Test Result

The performance of the EUT complies with the performance criteria for continuous phenomena

EUT Operating Mode	Test Point	Frequency (MHz)	Voltage level(V)	Verdict
See section 4.1.1	AC Port	0.15 - 80	3	PASS

4.7. Voltage Dips and Short Interruptions Immunity

4.7.1. Test Specification

Specification	Value				
Basic Standard	EN 61000-4-11:2004				
Voltage Dips	100% reduction: 10ms; 100% reduction: 20ms; 30% reduction: 500ms				
Voltage Interruptions	100% reduction: 5000ms				
Voltage Phase Angle	0°&180°				

4.7.2. Test Procedure

- The power cord is used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.
- The EUT is tested for a) 100% voltage dip of supplied voltage with duration of 10ms; b) 100% voltage dip of supplied voltage with duration of 20ms;c) 30% voltage dip of supplied voltage and duration 500ms. Both of the dip tests are carried out for a sequence of three voltage dips with intervals of 10 seconds.
- 3. 100% voltage interruption of supplied voltage with duration of 5000ms is followed, which is a sequence of three voltage interruptions with intervals of 10 seconds.
- Voltage reductions occur at 0 degrees crossover point of the voltage waveform. The performance of the EUT is checked after the voltage dip or interruption.

4.7.3. Test Setup

Please refer to Annex A for the photographs of the Test Configuration.

4.7.4. Test Result

The performance of the EUT complies with the performance criteria for transient phenomena.

EUT Operating Mode	Test Mode	Voltage Reduction	Duration (ms)	Times	Interval (sec)	Verdict
See section 4.1.1	B MORLAL	30%	500	3	10	PASS
	Voltage Dips	100%	20	3	10	PASS
	S MORLE N	100%	10 100	3	10	PASS
	Voltage Interruptions	100%	5000	3	10	PASS

Annex A Photographs of Test Setup

1. Mains Terminal Disturbance Voltage Measurement

2. Radiated Field Strength Measurement(30MHz-1GHz)

3. Voltage Fluctuations & Flicker

4. Electrostatic Discharge Immunity Test

5. Radiated, Radio Frequency Electromagnetic Field Immunity Test

6. <u>Immunity to Conducted Disturbance Induced by RF Fields</u>

7. Voltage Dips and Short Interruptions Immunity, Surge Immunity Test

8. Electrical Fast Transient/Burst Immunity Test

9. Output Voltage Ripple Test

Annex B Photos of the EUT

1. Appearance of the EUT:

(UC11EU)

(UC11UK)

2. Inside of the EUT:

Annex C Test Uncertainty

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Uncertainty of Conducted Emission:	±1.8dB	MOET IN	A.B
Uncertainty of Radiated Emission:	±3.1dB	AB RLAD	MORE

Annex D <u>Testing Laboratory Information</u>

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
MORL MO. AB	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
AL. MO. UE III	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
TLAS ORLAS MOR	Province, P. R. China		

3. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	a mo	E CRLAR
Relative Humidity (%):	30 - 60	ORLA: MORE	S W
Atmospheric Pressure (kPa):	86 - 106	ME	RIAL

4. Test Equipments Utilized

Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date
MXE EMI Receiver	Agilent	N9038A	MY54130016	2015.2.21	2016.2.20
Receiver	Narda	PMM 9060	001WX11001	2015.2.21	2016.2.20
Receiver	Narda	PMM 9010	595WX11007	2015.2.21	2016.2.20
LISN	Schwarzbeck	NSLK 8127	812744	2015.2.24	2016.2.23
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9537	2015.2.21	2016.2.20
Test Antenna – Bi-Log	Schwarzbeck	VULB 9163	9163-274	2015.2.25	2016.2.24
Test Antenna - Horn	Schwarzbeck	BBHA 9120D	9120D-963	2015.2.25	2016.2.24
Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2015.2.21	2016.2.20
ESD Test System	KIKUSUI	KES-4021	LJ003478	2015.2.25	2016.2.24
EFT /Surge/Dips Test System	HTEC	HCOMPACT 5	142201	2015.2.21	2016.2.20
Signal Generator	R&S	SMP 02	8330521005	2015.2.21	2016.2.20
Signal Generator	R&S	SME 03	8472021001	2015.2.21	2016.2.20
Power Amplifier	Prana	AP32 SV125A	0607-0751	2015.2.21	2016.2.20
Power Amplifier	Prana	AP32 LT165	0604-0746	2015.2.21	2016.2.20
Power Meter	Giga-Tronics	8542C	1832005	2015.2.21	2016.2.20
Power Meter	Agilent	E4419B	QB43312255	2015.2.21	2016.2.20
Signal Generator	R&S	UPL	A0304214	2015.2.21	2016.2.20
Mouth Simulation	Brüel & Kjær	4227	A0304216	2015.2.21	2016.2.20
Ear Simulation and supply	Brüel & Kjær	2669, 4182, 5935	A0305284	2015.2.21	2016.2.20
CDN	Luthi Elektronik-Fei nmechanlk AG	CDNL-801 M2/M3	2573	2015.2.21	2016.2.20
Acoustical Calibrators	Brüel & Kjær	4231	A0304215	2015.2.21	2016.2.20
Flicker and Harmonic test system	LAPLACE	AC2000A	377949	2015.6.27	2016.6.26

***** END OF REPORT *****