INFO3406
Introduction to Data
Analytics
W2: Data Acquisition and
Exploration

Presented byDr Ali Anaissi
School of IT

Overview of Week 2

Last time: Introductions and Housekeeping

Objective

Housekeeping; Learn about backgrounds and goals; Define data science.

Lecture

- Welcome, introductions
- Unit overview, assessment, resources
- Learning Python with Grok
- Discuss definitions/scope of data science

Readings

- Data Science from Scratch: Ch 1
- <u>Is being a data scientist really the best job in America?</u>
- 8 skills you need to be a data scientist

Exercises

- Introductions / interviews
- Interests / definitions

TODO in W1

- Grok Python modules 1-4
- Choose possible project data

Today: Data Cleaning and Exploration (via spreadsheet)

Objective

Use interactive tools to explore a new data set quickly.

Lecture

- Data types, cleaning, preprocessing
- Descriptive statistics, e.g., mean, stdev, median
- Descriptive visualisation, e.g., scatterplots, histograms

Readings

Data Science from Scratch: Ch 2-3

Exercises

- Google Sheets: Visualisation
- Google Sheets: Descriptive stats

TODO in W2

- Grok Python modules 1-4
- Grok SQL modules 1-4
- Explore project data

Exploratory Analysis Workflow

Preliminaries: Types of Data

Nominal Data

What main industry	have you worked in?
Choose	₩
What key experience do you have? *	
Relational databases	S
☐ NoSQL	
Information retrieval	

- Values are names
- No ordering is implied
- Eg jersey numbers

Ordinal Data

- Values are ordered
- No distance is implied
- Eg rank, agreement
- central tendency can be measured by mode¹ or median
- the mean cannot be defined from an ordinal set
- dispersion can be estimated by the Inter-Quartile Range (IQR)

¹The mode is the number that is repeated more often than any other

Ordinal Data

How to calculate the median for the given output data:

the 'cut-off' points are called **quartiles**

How to calculate the IQR:

The IQR is the difference between the first and third quartile. i.e:

$$Q3 - Q1 = 4 - 3 = 1$$
.

Interval Data

- Interval scales provide information about order, and also possess equal intervals
- Values encode differences
- equal intervals between values
- No true zero
- Addition is defined
- Eg Celsius temperature

"Thermometer" by Christer Edvartsen is licenced under CC BY 2.0

central tendency can be measured by mode, median, or mean

Ratio Data

How many years professional experience do you have? *

Your answer

How many years programming experience do you have? *

Your answer

- Values encode differences
- Zero is defined
- Multiplication defined
- Ratio is meaningful
- Eg length, weight, income

Levels of Measurement

	Nominal	Ordinal	Interval	Ratio
Countable	✓	✓	✓	✓
Order defined		✓	✓	✓
Difference defined (addition, subtraction)			✓	✓
Zero defined (multiplication, division)				✓

What about text data?

How would you define data science in one sentence? *

Your answer

- Not defined as traditional data type in statistics
- Requires interpretation,
 coding or conversion
- More in future lectures...

Data Acquisition and Cleaning

Exploratory Analysis Workflow

Data Acquisition – Where does data come from?

- File Access
 - You or your organisation might already have a data set, or a colleagues provides you access to data.
 - Or: Web Download from an online data server
 - Typical exchange formats: CSV, Excel, sometimes also XML
- Programmatically
 - Scrapping the web (HTML)
 - or using APIs of Web Services (XML/JSON)
 -> Cf. textbook, Ch 9
- Database Access -> Week 4 onwards
- Collect data yourself, eg. via a survey

This week: Using data from our online survey from Week 1

Acquire data

- Create new Google spreadsheet
 - Go to https://docs.google.com/spreadsheets
 - File > New > Spreadsheet
 - Rename "INFO3406 Survey analysis (NAME, UNIKEY)"
- Download response data: https://goo.gl/n8U7Mb
 (link on Canvas)
- Load survey data
 - File > Import
 - Click on Upload
 - Select and load: Survey INFO3406 2018s2 (Responses) Form Responses 1.csv

← → C https://docs.google.com/spreadsheets/d/1QyP

Untitled spreadsheet

File Edit View Insert Format Data Tools Add-ons

*** S % .0 .0 .00 123 → Arial →

fx

A B C D

Cleaning and Transforming Data

- Real data is often 'dirty'
- Important to do some data cleaning and transforming first
- Typical steps involved:
 - type and name conversion
 - filtering of missing or inconsistent data
 - unifying semantic data representations
 - matching of entries from different sources
- Later also:
 - Rescaling and optional dimensionality reduction

What Questions Can We Answer?

Exploratory Analysis Workflow

Some descriptive questions

- What areas of data analytics are considered important?
- How do professional/programming experience compare?
- How does programming experience differ across industries?
- What skills do we know? What would we like to learn?
- Which industries are most desirable? Do past/future differ?
- What skills co-occur most? How strong is the association?

Summarising Nominal Data:

What industries do we know? What would we like to go into?

Summarise nominal data with histograms

Measures of central tendency:

- mode

Measures of dispersion:

– counts/distribution%

Calculating the Mode

- The most frequent value
- Defined for nominal data, but spreadsheets might not compute

Can read from a histogram

Creating Histograms (bar charts)

- Count frequency of each category
- Display on bar chart
- In Google Sheets
 - Select data range (e.g., C1:Cn*)
 *n is the total number of responses
 - Click "insert chart" icon
 - On "DATA" tab under "Series", select "Aggregate column C" and "Use row 1 as headers"
 - Change the chart type, select "bar chart"

Histograms comparing known and future industries

Summarising Ordinal Data:

What areas of data analytics are considered important?

Summarise ordinal data: histograms, median, percentiles

Measures of central tendency:

- median, mode

Measures of dispersion:

- counts/distribution
- min/max/range
- percentiles

Calculating descriptive statistics

- First sort values, then:
 - Median is the middle value (or average of two middle values)
 - Minimum is the first value
 - Maximum is the last value
 - 10th percentile is item at index 0.1*N
 - 90th percentile is item at index 0.9*N
 - Range is Maximum minus Minimum

Creating a Histogram chart

- Count frequency, e.g., of ordinal values within each category
- Display on histogram chart with one variable grouped inside
- In Google Sheets
 - Select data range (e.g., G1:Ln)
 - Click "insert chart" icon
 - For chart type, select "Histogram Chart"
 - On "DATA" tab under "Series", select "Use row 1 as headers"
 - Configure rest to your liking

Histogram chart comparing areas of data science

Good:

- Illustrates tendency
- Areas differentiated

Bad:

- buckets on x-axis not clear and no clear separation
- no axis titles (add manually)

Summarising Ratio Data:

How do professional/programming experience compare?

Ratio (and interval) data

Measures of central tendency:

- mean, median, mode

Measures of dispersion:

- counts/distribution
- min/max/range
- percentiles
- stdev/variance

Calculating descriptive statistics

- Median and percentiles good here too
- Mean is the sum of values divided by the number of values:

$$\frac{\sum X_i}{N}$$

$$\frac{\sum (X_i - mean)^2}{N-1}$$

$$\sqrt{variance}$$

Creating a Scatterplot

- Plots relationship between two different variables
- Display, e.g., professional experience on x-axis vs.
 programming experience on y-axis for each respondent
- In Google Sheets
 - Select data range (e.g., D1:En)
 - Click "insert chart" icon
 - Select chart type "Scatter Chart"

Binned histograms for experience

Comparison with scatterplot and histogram overlays

Professional vs programming experince

Pivot Tables:

How does programming experience differ across industries?

Creating a pivot table

- Summarise data by calculating statistics over sub-populations
- E.g., average programming experience by industry
- In Google Sheets
 - Select data range (e.g., C1:En)
 - Go to Data > Pivot Table (should insert a new sheet)
 - Select industry under row
 - Select professional experience under value
 - Summarise by average

Table and Histogram of programming by industry

	AVEDAGE
	AVERAGE
ASIC/FPGA engineering	25.00
Banking	2.00
Civil structural	2.00
Education and Training	2.00
Electrical Engineering	0.00
Financial and Insurance Services	2.59
HEALTH	1.00
healthcare	0.00
Information Technology	7.31
Law	0.00
Management Consulting	0.25
Manufacturing	3.67
Market Research	0.50
Media and Communications	0.60
Mining	0.50
Public Service	0.00
Retail	0.67
Scientilc Research	1.78
Sydney Trains	2.00
Transport (Airline)	3.00
Utilities	15.00
Grand Total	3.57

Complex Counting:

What skills do we know? What would we like to learn?

How create a histogram of skills?

- Multiple values in cells within the skills column, e.g.: "Software engineering, Requirements gathering, Product-driven thinking"
- Need to split possible values:
 =sort(unique(transpose(split(join(", ", N2:Nn), ", ", False))))
- Then count:
 =countif(N\$2:N\$n, concat(concat("*", T1), "*"))

- Could use similar to get word counts
- Better to use programming language (clarity, reusability, etc)

Histograms of current and desired skills (as of 2016...)

Review

Participation

Objective

Ensure everybody is keeping up.

Requirements

- Submit code at end of each exercise
- Complete Grok (Python+SQL)by Week 6

Marked:

- Code/spreadsheets from exercises
- each week's participation assessed as:
 all done, partially done, no participation

Marking

10% of overall mark

TODO until Friday next week: Export full workbook as PDF and upload to Canvas

W2 Review: Data cleaning and exploration

Objective

Use interactive tools to clean and explore a new data set quickly.

Lecture

- Data types, cleaning, preprocessing
- Descriptive statistics, e.g., mean, stdev, median
- Descriptive visualisation, e.g.,
 scatterplots, histograms

Readings

Data Science from Scratch: Ch 2-3

Exercises

- Google Sheets: Visualisation
- Google Sheets: Descriptive stats

TODO in W2

- Grok Python modules 1-4 + SQL modules 1-2
- Explore project data

Levels of Measurement

	Nominal	Ordinal	Interval	Ratio
Countable	✓	✓	✓	✓
Order defined		✓	✓	✓
Difference defined (addition, subtraction)			✓	✓
Zero defined (multiplication, division)				✓

Measures of Central Tendency

	Nominal	Ordinal	Interval	Ratio
Mode	✓	✓	✓	✓
Median		✓	✓	✓
Mean			✓	✓

Measures of Dispersion

	Nominal	Ordinal	Interval	Ratio
Counts / Distribution	✓	✓	✓	✓
Minimum, Maximum		✓	✓	✓
Range		✓	✓	✓
Percentiles		✓	✓	✓
Standard deviation, Variance			✓	✓

Google's answer to exercises...

- Google Forms provides a summary
- Useful but not perfect
 - Legend includes 0 labels
 - Pie chart doesn't show N
 - Does not clean noisy input
 - Labels incomplete
 - Does not handle text

57 responses

The University of Sydney 0 5 10 15 20 25 30 50

Tips and Tricks

- Data cleaning important for any meaningful analysis
- Spreadsheet software is good for quick interactive analysis
 Need programmatic analysis for bigger/complex data
- Careful about which types of data allow what kind of measures & viz.
- Measures of central tendancy (e.g., mean) are not sufficient
 Always explore and communicate spread as well (e.g., stdev)
- Good visualisations help convey distributions and relationships
 - Label all plots and diagrams with readable and visible fonts
 - Use same axis bounds when comparing plots
 - Use meaningful axis bounds to convey effect size
 (50-55 on a 100 point scale over-sells small differences)
 - Design so comparison/effect is clear, include description of axes

Next Time

Next week: Data Exploration with Python

Objective

Learn Python tools for exploring a new data set programmatically.

Lecture

- Data types, cleaning, preprocessing
- Descriptive statistics, e.g., median, quartiles, IQR, outliers
- Descriptive visualisation, e.g., boxplots, confidence intervals

Readings

Data Science from Scratch: Ch 4-5

Exercises

- matplotlib: Visualisation
- numpy/scipy: Descriptive stats

TODO in W2

- Grok Python modules 1-4
- Grok SQL modules 1-4
- Explore and select project data

Project Stage 1

Project stage 1: Explore, Clean, Pitch

Objective

Explore a data set and define a research question based on research/business requirement.

Activities

- Choose a data set
- Explore, summarise and prepare data
- Define problem, specify requirements

Output

2-page report summarising problem,
 analysis and proposal (plus code)

Marking

13% of overall mark

Suggested timeline for Assignment 1 (Project Stage 1)

- W1: Identify possible data sets
- W2: Identify & Explore possible data sets
- W3: Select project data set
- W4: Problem & Exploratory analysis
- W5: Clean and prepare data
- W6: Submit 2-page report

Types of projects to consider

- Discover clusters in data
- Learn association rules
- Train a classifier and evaluate prediction accuracy
- Train a regression model and evaluate prediction accuracy