Principle of Statistics

0 Introduction

- distribution
- p.m.f.
- p.d.f.
- samples
- sample size
- statistical model $\{f(\theta,\cdot)\}$
- law
- parameter space Θ
- correctly specified

Goal.

- (i) Estimation
- (ii) Testing Hypothesis
- (iii) Inference
 - estimator
 - test
 - confidence

1 Likelihood Principle

Setting 1. $\{f(\cdot,\theta):\theta\in\Theta\}$ statistical model, X_i i.i.d. copy of X

- likelihood function $L_n(\theta) = \prod f(x_i, \theta)$
- log-likelihood function $l_n(\theta) = \log L_n(\theta)$
- normalized log-likelihood function $\bar{l}_n(\theta) = \frac{1}{n} l_n(\theta)$
- maximum likelihood estimator (MLE) $\hat{\theta} = \hat{\theta}_{MLE}$

- score function $S_n(\theta) = \nabla_{\theta} l_n(\theta)$

Fact. $S_n(\hat{\theta}) = 0$

Setting 2. model $\{f(\cdot,\theta)\}, X \sim P$

$$-l(\theta) = \mathbb{E}_{\theta_0}(\log(f(X, \theta)))$$

Theorem 1.1. $\mathbb{E}|\log(f(X,\theta))| < \infty$, well specified with $f(x,\theta_0)$, then $l(\theta)$ maximised at θ_0

- sample approximation $\bar{l}_n(\theta) = \frac{1}{n} \sum \log(f(x_i, \theta))$
- strict identifiability —— $f(\cdot, \theta) = f(\cdot, \theta') \iff \theta = \theta'$

Fact. With strict identifiability, maximizer unique hence must be the true value θ_0

– Kullback-Leibler divergence $KL(P_{\theta_0}, P_{\theta}) = l(\theta_0) - l(\theta)$

Setting 3. regular — integration and differentiation can be interchanged

Theorem 1.2. regular, then $\forall \theta \in int(\Theta), \mathbb{E}[\nabla_{\theta} \log(f(X, \theta))] = 0$

Fact. $\mathbb{E}_{\theta_0}[\nabla_{\theta} \log(f(X, \theta))] = 0$

- Fisher information matrix $I(\theta) = \mathbb{E}_{\theta}[\nabla_{\theta} \log f(X, \theta) \nabla_{\theta} \log f(X, \theta)^{\top}]$

Fact. 1-d case, $I(\theta) = \mathbb{E}\left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f(X,\theta)\right)^2\right] = Var_{\theta}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log f(X,\theta)\right]$

Theorem 1.3. regularity assumptions, $\forall \theta \in int(\Theta), \ \underline{I(\theta)} = -\mathbb{E}_{\theta}[\nabla_{\theta}^2 \log f(X, \theta)]$

Fact. 1-d case, relation between variance of score and curvature of l

$$-I_n(\theta) = \mathbb{E}[\nabla_{\theta} \log f(X_1, \dots, X_n, \theta) \nabla \log f(X_1, \dots, X_n, \theta)^{\top}]$$

Proposition 1.4 (Tensorize). X_i i.i.d, $I_n(\theta) = nI(\theta)$

Theorem 1.5 (Cramer-Rao lower bound (1-d)). model $\{f(\cdot,\theta)\}$, regular, $\Theta \subset \mathbb{R}$, unbiased estimator $\tilde{\theta}(X_1,\ldots,X_n)$, then $\forall \theta \in int(\Theta)$, $\underline{Var_{\theta}(\tilde{\theta})} = \mathbb{E}[(\tilde{\theta}-\theta)^2] \geq \frac{1}{nI(\theta)}$

Corollary 1.6. $Var_{\theta}(\tilde{\theta}) \geq \frac{(\frac{d}{d\theta}\mathbb{E}_{\theta}(\tilde{\theta}))^2}{nI(\theta)}$

Proposition 1.7. Φ differentiable functional, $\tilde{\Phi}$ unbiased estimator of $\Phi(\theta)$, then $\forall \theta \in int(\Theta)$, $Var_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \nabla_{\theta} \Phi(\theta)^{\top} I^{-1}(\theta) \nabla_{\theta} \Phi(\theta)$

Fact. $Var_{\theta}(\alpha^{\top}\tilde{\theta}) \geq \frac{1}{n}\alpha^{\top}I^{-1}(\theta)\alpha$

Fact. $Cov_{\theta}(\tilde{\theta}) \succeq \frac{1}{n}I^{-1}(\theta)$ (positive semi-definite)

2 Asymptotic Theory for MLE

- convergence almost surely
- convergence in probability
- convergence in distribution

Proposition 2.1. convergence $a.s. \Rightarrow in \ prob \Rightarrow in \ distribution$

Proposition 2.2 (Continuous mapping theorem). g continuous, then $X_n \xrightarrow{a.s./P/d} X \Rightarrow g(X_n) \xrightarrow{a.s./P/d} g(X)$

Proposition 2.3 (Slutsky's lemma). $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{d} c$ deterministic, then

- (i) $Y_n \xrightarrow{P} c$
- (ii) $X_n + Y_n \xrightarrow{d} X + c$
- (iii) $X_n Y_n \xrightarrow{d} cX$
- (iv) $\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$ if $c \neq 0$

Random matrices $(A_n)_{ij} \xrightarrow{P} A_{ij}$ deterministic, then

- (i) $A_n X_n \xrightarrow{d} AX$
 - bounded in probability $O_P(1)$ $\forall \epsilon > 0, \exists M(\epsilon), \sup_n \mathbb{P}(\|X_n\| > M(\epsilon)) < \epsilon$

Proposition 2.4. $X_n \xrightarrow{d} X$, then (X_n) bounded in probability

Proposition 2.5 (Weak law of large numbers). X_i i.i.d., $Var(X) < \infty$ (unnecessary), then $\bar{X}_n = \frac{1}{n} \sum X_i \xrightarrow{P} \mathbb{E}(X)$

Theorem 2.6 (Strong law of large numbers). X_i i.i.d. $\mathbb{E}|X| < \infty$, then $\overline{X}_n \xrightarrow{a.s.} \mathbb{E}(X)$

Theorem 2.7 (Central limit theorem(1-d)). X_i i.i.d., $Var(X) = \sigma^2 < \infty$, then $\sqrt{n}(\bar{X}_n - \mathbb{E}(X)) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$

-
$$\mathcal{N}(\mu, \Sigma)$$
 ----- p.d.f. $\frac{1}{(2\pi)^{k/2} |\det(\Sigma)|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$

Fact. $X \sim \mathcal{N}(\mu, \Sigma)$, then $\alpha^{\top} X \sim \mathcal{N}(\alpha^{\top} \mu, \alpha^{\top} \Sigma \alpha)$

Proposition 2.8. $AX + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{\top})$

Proposition 2.9. Σ diagonal, $X_{(j)}$ independent

Theorem 2.10 (Central limit theorem(n-d)). X_i i.i.d., $Cov(X) = \Sigma$ positive definite, then $\sqrt{n} \left(\bar{X}_n - \mathbb{E}(X) \right) \xrightarrow{d} \mathcal{N}(0, \Sigma)$

– asymptotic efficiency — $nVar_{\theta_0}(\tilde{\theta}_0) \to I^{-1}(\theta_0)$

Fact. Under suitable assumptions, $\theta_{MLE} \approx \mathcal{N}(\theta, I^{-1}(\theta_0)/n)$

Example (Confidence interval).

- confidence region $C_n = \left\{ |\mu \bar{X}| \le \frac{\sigma z_{\alpha}}{\sqrt{n}} \right\}$
- asymptotic level $1-\alpha$ confidence set

Setting 4. X_i i.i.d., arising from $\{P_{\theta}\}$

– consistency — $\tilde{\theta}_n \xrightarrow{P_{\theta}} \theta_0$

Assumption 1 (Usual regularity assumptions). $\{f(\cdot,\theta)\}$ statistical model of p.d.f. or p.m.f. st

- (*i*) $f(x, \theta) > 0$
- (ii) $\int_{Xf(x,\theta)} dx = 1$
- (iii) $f(x,\cdot)$ continuous
- (iv) Θ compact
- (v) $f(\cdot,\theta) = f(\cdot,\theta') \Rightarrow \theta = \theta'$
- (vi) $\mathbb{E}_{\theta} \sup_{\theta} |\log f(X, \theta)| < \infty$

Theorem 2.11 (Consistency of the MLE). Usual regularity assumptions, X_i i.i.d., then

- (i) MLE exists
- (ii) MLE consistent

Fact. proof can be simplified when l_n differentiable, in this case Θ compact not needed

Theorem 2.12 (Uniform law of large numbers). Θ compact, $q(x,\cdot)$ continuous, $\mathbb{E}\sup_{\Theta}|q(X,\theta)| < \infty$, then $\sup_{\Theta}|\frac{1}{n}\sum q(X_i,\theta) - \mathbb{E}(q(X,\theta))| \xrightarrow{a.s.} 0$

Assumption 2. In addition to usual regularity assumption,

- (i) true $\theta_0 \in int(\Theta)$
- (ii) $\exists U \text{ open } nbhd \text{ of } \theta_0 \text{ st } f(x,\cdot) \in C^2$
- (iii) $I(\theta_0)$ non-singular, $\mathbb{E}_{\theta_0} \|\nabla_{\theta} \log f(X, \theta_0)\| < \infty$
- (iv) $\exists K \subset U$ compact, non-empty interior containing θ_0 st

$$\mathbb{E}_{\theta_0} \sup_{K} \left\| \nabla_{\theta}^2 \log f(X, \theta) \right\| < \infty$$
$$\int_{X} \sup_{K} \left\| \nabla_{\theta} \log f(X, \theta) \right\| dx < \infty$$
$$\int_{X} \sup_{K} \left\| \nabla_{\theta}^2 \log f(X, \theta) \right\| dx < \infty$$

Theorem 2.13. Further usual assumption, $\hat{\theta_n}$ MLE of i.i.d. $X_i \sim P_{\theta_0}$, then $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, I(\theta_0)^{-1})$

- asymptotic efficiency —
$$nVar_{\theta_0}(\tilde{\theta}_n) \to I(\theta_0)^{-1}$$

- Hodge estimator —
$$\tilde{\theta}_n = \begin{cases} \hat{\theta}_n & \text{if } |\hat{\theta}_n| > n^{-1/4} \\ 0 & \text{otherwise} \end{cases}$$

– profile likelihood
$$L^{(p)}(\theta_1) = \sup_{\Theta_2} L((\theta_1, \theta_2))$$

– plug-in MLE
$$\Phi(\hat{\theta}_{MLE})$$

Fact. under new parametrization $\{f(\cdot,\phi):\phi=\Phi(\theta)\},\ \hat{\phi}_{MLE}=\Phi(\hat{\theta}_{MLE})$

Theorem 2.14 (Delta method). $\Phi \in C^1$ at θ_0 , $\nabla_{\theta}\Phi(\theta_0) \neq 0$, let $(\hat{\theta}_n)$ st $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} Z$, then $\sqrt{n}(\Phi(\hat{\theta}_n) - \Phi(\theta_0)) \xrightarrow{d} \nabla_{\theta}\Phi(\theta_0)^{\top} Z$

Fact. if $\hat{\theta}_n$ MLE with asymptotic normality, then $\sqrt{n}(\Phi(\hat{\theta}_n) - \Phi(\theta_0)) \xrightarrow{d} \mathcal{N}(0, \nabla_{\theta}\Phi(\theta_0)^{\top}I^{-1}(\theta_0)\nabla_{\theta}\Phi(\theta_0))$

Fact. plug in MLE asymptotically efficient

- observed Fisher information
$$i_n(\theta) = \frac{1}{n} \sum \nabla_{\theta} \log f(X_i, \theta) \nabla_{\theta} \log f(X_i, \theta)^{\top}$$

$$-\hat{i}_n = i_n(\hat{\theta}_{MLE})$$

Proposition 2.15. Under further assumption, $\hat{i}_n \xrightarrow{P_{\theta_0}} I(\theta_0)$

$$-j_n(\theta) = -\frac{1}{n} \sum \nabla_{\theta}^2 \log f(X_i, \theta)$$

$$-\hat{j}_n = j_n(\hat{\theta}_{MLE})$$

- Wald statistic
$$W_n(\theta) = n(\hat{\theta}_{MLE} - \theta)^{\top} \hat{i}_n(\hat{\theta}_{MLE} - \theta)$$

$$-\xi_{\alpha} - \mathbb{P}(\chi_{p}^{2} \leq \xi_{\alpha}) = 1 - \alpha$$

Proposition 2.16 (Confidence ellipsoids). Under further assumption, define $C_n = \{\theta : W_n(\theta) \leq \xi_{\alpha}\}$, then C_n α -level asymptotic confidence region

Setting 5. hypothesis testing: $\begin{cases} H_0: \theta \in \Theta_0 \\ H_1: \theta \in \Theta \backslash \Theta_0 \end{cases}$

- decision rule ψ_n
- type-one error (false positive) $\mathbb{P}_{\theta}(reject\ H_0) = \mathbb{E}_{\theta}(\psi_n)$ for $\theta \in \Theta_0$
- type-two error (false negative) —— $\mathbb{P}_{\theta}(accept\ H_0) = \mathbb{E}_{\theta}(1-\psi_n)$ for $\theta \in \Theta_1$
- likelihood ratio test $\Lambda_n(\Theta, \Theta_0) = 2 \log \frac{\sup_{\Theta} \prod f(X_i, \theta)}{\sup_{\Theta_0} \prod f(X_i, \theta)} = 2 \log \frac{\prod f(X_i, \hat{\theta}_{MLE})}{\prod f(X_i, \hat{\theta}_{MLE, 0})}$

Theorem 2.17 (Wilks theorem). Under further assumption, hypothesis test with $\Theta_0 = \{\theta_0\}$, $\theta_0 \in int(\Theta)$, then $\Lambda_n(\Theta, \Theta_0) \xrightarrow{d} \chi_p^2$

Fact. test $\psi_n = \mathbb{1} \{ \Lambda_n(\Theta, \Theta_0) \ge \xi_\alpha \}$ controls type-one error at symptotic level $1 - \alpha$

Fact. Θ_0 dimension $p_0 < p$, then $\Lambda_n(\Theta, \Theta_0) \xrightarrow{d} \chi^2_{p-p_0}$

3 Bayesian Inference

Setting 6. \mathcal{X} sample space, probability measure $Q(x,\theta) = f(x,\theta)\pi(\theta)$

- prior distribution π
- posterior distribution $\Pi(\theta|X)$
- conjugate prior $\pi(\theta)$ and $\Pi(\theta|X)$ same family of distributions

Example.

- (i) normal prior, normal sampling, normal posterior
- (ii) Beta prior, binomial sampling, Bata posterior
- (iii) Gamma prior, Poisson sampling, Gamma posterior
 - improper prior —— infinite integral over Θ
 - Jeffreys prior $\pi(\theta)$ proportional to $\sqrt{\det I(\theta)}$

Goal.

- (i) Estimation
- (ii) Uncertainty Quantification
- (iii) Hypothesis Testing
 - posterior mean $\bar{\theta}$ $\bar{\theta}(X_1,\ldots,X_n) = \mathbb{E}_{\Pi}(\theta|X_1,\ldots,X_n)$
 - credible set $C_n \longrightarrow \Pi(C_n|X_1,\ldots,X_n) = 1 \alpha$
 - Bayes factor $\frac{\mathbb{P}(X_1,\dots,X_n|\Theta_0)}{\mathbb{P}(X_1,\dots,X_n|\theta_1)} = \frac{\Pi(\Theta_0|X_1,\dots,X_n)}{\Pi(\Theta_1|X_1,\dots,X_n)}$