SSY281 Model Predictive Control 2023 PSS 6 - Stability

Rémi Lacombe

March 7th, 2023

Lecture Refresh

Cf PSS notes.

Exercise 1

Simple Lyapunov function

Consider the autonomous system: $x(k+1) = \begin{bmatrix} 0.5 & 1 \\ -0.1 & 0.2 \end{bmatrix} x(k)$.

Find a Lyapunov function of the form $V(x) = x^{T}Sx$ for this system.

Exercise 2

Stability of unconstrained infinite horizon RHC

Consider the infinite horizon RHC minimization problem:

$$V(\boldsymbol{u}, x_0) = \sum_{k=0}^{\infty} x(k)^{\top} Q x(k) + u(k)^{\top} R u(k)$$
 (1a)

s.t.
$$x(k+1) = Ax(k) + Bu(k)$$
, (1b)

with $Q = I_2$, R = 1, $A = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}$, and $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Show that $V(\boldsymbol{u}, x_0)$ is a Lyapunov function for the closed-loop system.

Exercise 3

Infinite to finite horizon RHC

Suppose that the following infinite horizon $(N = \infty)$ LQ problem is to be solved:

minimize
$$V(k) = \sum_{i=0}^{\infty} \left\{ ||z(k+i)||_Q^2 + ||\Delta u(k+i)||_R^2 + ||u(k+i)||_S^2 \right\}$$

subject to $x(k+1) = 0.9x(k) + 0.5u(k)$, $z(k) = C_z x(k)$. (P-I)

- 1. Show that if A is stable and Q > 0, then (P-I) can be equivalently formulated as a **finite horizon problem**. We will assume that there is an index M such that: u(k+i) = 0, $\forall i \geq M$.
- 2. Use this result to write the infinite horizon problem (P-I) as a quadratic program (QP) for the case M=2. You may assume that Q=1, R=0, S=0 and $C_z=1$, for the sake of simplicity.