Vlada Gromova, 323770, grupa 1, projekt 2, zadanie 11

Wstęp

Zadanie polegało na napisaniu funkcji obliczającej całkę oznaczoną na przedziale [a,b] za pomocą 3-punktowej złożonej kwadratury Gaussa-Legendre'a. Najpierw wejsciowy przedział [a,b] należalo podzielic na m podprzedziałów, a następnie podwajać podział aż do momentu uzyskania wartości bezwzględnej różnicy kolejnych przybliżeń mniejszej od δ , gdzie δ - parametr wejściowy funkcji oznaczony jako tol. Dodatkowo, w celu uniknięcia bardzo dużej liczby podprzedziałów, jako parametr wejściowy funkcji podana była maksymalna liczba podprzedziałów m_{max} .

Z eksperymentów numerycznych wywnioskowano, że metoda obliczania całki oznaczonej za pomocą kwadratury Gaussa-Legendre'a działa nie gorzej (a czasem nawet lepiej), gdzy stosujemy ją na przedziałe [-1,1], czyli na "wzorcowym" przedziałe dla tej kwadratury.

Opis kwadratury Gaussa-Legendre'a

Z Metod Numerycznych 1 wiemy, że można przybliżyć wartość całki oznaczonej

$$I(f) = \int_{a}^{b} f(x)dx$$

za pomocą kwadratur postaci

$$S(f) = \sum_{k=0}^{n} w_k f(x_k)$$

gdzie w_k to są wspłczynniki kwadratury, a x_k - węzły kwadratury z przedziału [a, b].

Załóżmy teraz, że [a,b]=[-1,1] i chcemy znaleźć 3-punktową kwadraturę o maksymalnym rzędzie r, czyli taką, która będzie dokładna dla wszystkich wielomianów stopnia mniejszego niż r (także powinien istnieć wielomian stopnia r dla którego kwadratura nie będzie dokładna). Szukaną kwadraturą jest kwadratura Gaussa-Legendre'a, węzłami której są pierwiastki wielomianu Legendre'a 3-go stopnia:

 $p_3(x) = \frac{1}{2}(5x^3 - 3x)$

Współczynniki w_i obliczają się ze wzoru:

$$w_i = \frac{2}{(1 - x_i^2)[p_3'(x_i)]^2}$$

Rząd 3-punktowej kwadratury Gaussa-Legendre'a wynosi 6, a zatem kwadratura będzie dokładna dla wszystkich wielomianów stopnia 5 i niżej.

Załóżmy teraz, że chcemy zastosować kwadraturę opisaną wyżej na dowolnym przedziale [a, b]. Żeby to zrobić trzeba zmienić przedział całkowania stosując wzór wymieniony niżej:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \sum_{k=0}^{2} w_{k} f(\frac{b-a}{2} x_{k} + \frac{a+b}{2})$$

Eksperymenty numeryczne

Dla ekperymentów numerycznych zostały wybrane następujące podstawowe funkcje: x^a , exp(x), sin(x), a^x . Dla pewnych ekperymentów wymienione wyżej funkcje zdecydowano podnieść do potęgi.

Kwadratura Gaussa-Legendre'a "klasycznie" stosuje się do obliczania całek na przedziale [-1,1]. Podczas przeprowadzenia ekperymentów numerycznych zaobserwowano, że przesunięcie tego przedziału o 1 z zachowaniem długości może znacznie zwolnić proces obliczania, co zilustrowano w tabeli 1. Za miarę szybkości przyjęta liczba końcowych podprzedziałow.

Zauważmy, że w przypadku funkcji trygonometrycznych i potęgowych sytuacja wygląda inaczej, co jest pokazane w tabeli 2.

Tabela 1: Dla każdego przykładu $tol=10^{-9}$, m=10, $m_{max}=10^6$ W pierwszej kolumnie są przedstawione funkcje wejściowe, w druiej i trzeciej - liczba iteracji niezbędna do osiągnięcia żądanej dokładności na przedziałach [-1,1] oraz [0,2] odpowiednio.

	[-1, 1]	[0, 2]
x^9	20	80
x^{24}	160	1280
x^{50}	320	655360
exp(x)	20	20
$(exp(x))^{10}$	320	655360

Tabela 2: Dla każdego przykładu $tol=10^{-9}$, m=10, $m_{max}=10^6$ W pierwszej kolumnie są przedstawione funkcje wejściowe, w druiej i trzeciej - liczba iteracji niezbędna do osiągnięcia żądanej dokładności na przedziałach [-1,1] oraz [0,2] odpowiednio.

	[-1, 1]	[0, 2]
$(sin(x))^2$	20	20
$(sin(x))^9$	20	40
$(sin(x))^{20}$	40	40
$\frac{(\cos(5x))^9}{(\cos(5x))^{20}}$	80	160
$(\cos(5x))^{20}$	80	160
2^x	20	20
10^x	40	40
0.2^{x}	20	20

Podsumowując: 3-punktowa złożona kwadratura Gaussa-Legendre'a ma największy możliwy rząd, daje wystarczająco dokładny wynik przy małej liczbie iteracji. Wzór jest łatwy do implementacji i można go stosować na innym przedziale, niż [-1,1], ale należy pamiętać, że nawet mała zmiana tego przedziału może znacznie zwolnić program.