Teste 1

No problema das meias-luas com $r_2 = -4$ visto em aula, considerou-se o algoritmo LMS com três passos de adaptação diferentes: $\eta_1 = 10^{-2}$, $\eta_2 = 10^{-4}$ e $\eta_3 = 10^{-5}$. Na Figuras (a), (b) e (c) abaixo estão mostrados os coeficientes do LMS ao longo das iterações (curvas contínuas) e a solução de Wiener (curvas tracejadas) para cada um desses passos, sendo que as taxas de erro obtidas com os pesos fixos da última iteração e com os dados de teste foram iguais a (a) 10%, (b) 10% e (c) 28%, respectivamente.

Pede-se:

- (a) Associe os passos às figuras.
- (b) Qual passo você usaria? Justifique.
- (c) Se você usasse a solução ótima de Wiener em vez dos pesos da última iteração do LMS a taxa de erro diminuiria? Justifique.
- (d) O algoritmo LMS é adequado para este problema? Justifique.

Teste 2

A.T	NO LICE
Nome:	N^{o} USP:

O perceptron de Rosenblatt pode ser usado para implementar funções lógicas. Determine os valores dos pesos e bias para implementar as funções lógicas binárias AND e OR. Explique porque o perceptron de Rosenblatt não pode implementar o OU EXCLUSIVO (XOR). Todas essas operações lógicas estão indicadas nas tabelas verdade abaixo.

AND operation: Truth Table 1

Inp	outs	Output
x_1	x_2	у
1	1	1
0	1	0
1	0	0
0	0	0

OR operation: Truth Table 2

Inp	Inputs	
x_1	x_2	у
1	1	1
0	1	1
1	0	1
0	0	0

XOR operation: Truth Table 3

Inp	outs	Output
x_1	x_2	у
1	1	0
0	1	1
1	0	1
0	0	0

Teste 3

Nome:	№ USP:

Vimos que o perceptron de Rosenblatt não consegue implementar a função lógica OU EXCLUSIVO (XOR), cuja tabela verdade está apresentada abaixo. Considere então a rede MLP com configuração (2–1) da Figura 1, cujos pesos e biases estão indicados na Tabela 1. Considere ainda a função de ativação degrau ($\varphi(v)=0$ para v<0 e $\varphi(v)=1$ para $v\geq0$) em todos os neurônios. Determine o valor do bias $b_1^{(2)}$ para que essa rede implemente corretamente a função lógica XOR. Verifique se isso ocorre de fato, preenchendo a Tabela 2.

EXCLUSIVE OR operation: Truth table 4

Inp	Inputs	
x_1	x_2	у
1	1	0
0	1	1
1	0	1
0	0	0

Figura 1: Rede MLP com configuração 2–1 usada para implementar a função lógica XOR.

Tabela 1: Pesos e biases da rede MLP da Figura 1.

Peso ou bias	$w_{11}^{(1)}$	$w_{12}^{(1)}$	$b_1^{(1)}$	$w_{21}^{(1)}$	$w_{22}^{(1)}$	$b_2^{(1)}$	$w_{11}^{(2)}$	$w_{12}^{(2)}$	$b_1^{(2)}$
Valor	+1,0	+1,0	-1, 5	+1,0	+1,0	-0, 5	-2, 0	+1,0	A determinar

Tabela 2: Saídas dos combinadores lineares e dos neurônios da rede MLP da Figura 1.

x_1	1	0	1	0
x_2	1	1	0	0
$v_1^{(1)}$				
$y_1^{(1)}$				
$v_2^{(1)}$				
$y_2^{(1)}$				
$v_1^{(2)}$				
$y_1^{(2)}$				

Para fazer fora da aula: use o algoritmo backpropagation com função de ativação sigmoidal $\varphi(v) = (1 + e^{-v})^{-1}$ para treinar essa rede.

Teste 4	Teste	4
---------	-------	---

Nome:______ Nº USP:_____

1) Considere a imagem de entrada ${\bf I}$ e o filtro ${\bf K}$ abaixo

$$\mathbf{I} = \begin{bmatrix} 3 & 9 & 7 \\ 0 & 6 & 7 \\ 2 & 4 & 5 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}.$$

Calcule a convolução entre \mathbf{I} e \mathbf{K} com stride de passo 1 (s=1) sem zero padding (p=0).

2) Considere a imagem ${\bf I}$ e o filtro ${\bf K}$ abaixo

$$\mathbf{I} = \begin{bmatrix} 3 & 3 & 6 & 7 & 2 \\ 5 & 1 & 4 & 5 & 5 \\ 0 & 1 & 5 & 8 & 9 \\ 2 & 6 & 4 & 0 & 7 \\ 2 & 8 & 2 & 1 & 4 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 2 & 4 & 0 \\ 1 & 5 & 1 \\ 1 & 5 & 1 \end{bmatrix}.$$

Calcule a imagem de saída S, resultante da convolução do filtro com a imagem considerando *stride* de passo 2 (s = 2) sem zero padding (p = 0).

3) Considere a imagem abaixo

3	3	6	7	2	3
5	1	4	5	5	1
0	1	5	8	9	2
2	6	4	0	7	0
2	8	2	1	4	7
2	8	0	1	3	9

Calcule a imagem 3×3 resultante do max-pooling e a imagem 3×3 resultante do average pooling.

4) Considere que a entrada de uma camada convolucional de uma CNN tem dimensões $256 \times 128 \times 15$. Essa camada é composta por 32 filtros de dimensões $15 \times 15 \times 15$, qual a dimensão da saída dessa camada? Considere *stride* de passo 1 (s = 1) sem *zero padding* (p = 0).

PSI-3471 Fundamentos de Sistemas Eletrônicos Inteligentes

Teste	5
-------	---

Nome:	Nº USP:
	· · · · · · · · · · · · · · · · · ·

Considere os números de verdadeiros positivos (VP), falsos positivos (FP), falsos negativos (FN) e verdadeiros negativos (VN) dos oito exemplos de classificação binária da tabela abaixo. Para cada exemplo calcule a Acurácia (Acc), Precisão (P), Sensibilidade, F_1 -score (F1), Especificidade (E) e taxa de falsos positivos (FPR). Comente o que essas medidas refletem sobre o resultado da classificação.

Obs: Caso ocorra divisão por zero, preencha da tabela com NaN (not a number)

Exemplo	VP	FP	FN	VN	Acc (%)	P (%)	S (%)	F1 (%)	E (%)	FPR (%)
1	1	2	0	7						
2	9	1	0	0						
3	1	0	8	1						
4	0	1	1	8						
5	2	1	7	0						
6	1	9	0	0						
7	9	0	0	1						
8	0	9	1	0						