А. Л. Вернер В. И. Рыжик Т. Г. Ходот

Геометрия

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

7 класс

Учебное пособие для общеобразовательных организаций

2-е издание

Москва «Просвещение» 2017 УДК 372.8:514 ББК 74.262.21 В35

Вернер А. Л.

B35

Геометрия. Методические рекомендации. 7 класс: учеб. пособие для общеобразоват. организаций / А. Л. Вернер, В. И. Рыжик, Т. Г. Ходот. — 2-е изд. — М.: Просвещение, 2017. — 132 с.: ил. — ISBN 978-5-09-043920-6.

Книга предназначена для учителей, преподающих геометрию в 7 классе по учебнику авторов А. Д. Александрова, А. Л. Вернера, В. И. Рыжика, Т. Г. Ходот. Она написана в соответствии с методическими установками учебника, полностью соответствует ему как по содержанию, так и по структуре.

Книга содержит концепцию построения курса геометрии в 7—9 классах, методические рекомендации по ведению уроков, тесты и контрольные работы, указания к решению задач, тематическое планирование.

УДК 372.8:514 ББК 74.262.21

ISBN 978-5-09-043920-6

- © Издательство «Просвещение», 2013, 2017
- © Художественное оформление. Издательство «Просвещение», 2013, 2017 Все права защищены

Содержание

концепция построения курса теометрии основной школы 4
1. Структура цикла учебников геометрии нового поколения для основной школы 4
основной школы 4
2. Александровские принципы преподавания геометрии 7
3. О системе задач в курсе геометрии 7—9 классов 10
Геометрия 7 класса — это геометрия построений 15
1. Обсуждение теоретического материала учебника 15
2. Решение задач учебника и ответы к ним 34
Гуманитарная составляющая курса геометрии 101
1. Развитие речи на уроках геометрии 103
2. Геометрические экскурсии 114
Изготовление наглядных пособий и работа с ними 116
Тесты по курсу геометрии 123
Тематическое планирование 130

Концепция построения курса геометрии основной школы

1. Структура учебников геометрии А. Д. Александрова для основной школы

Каким должен быть курс геометрии в школе? Академик Александр Данилович Александров выделил основные и важнейшие принципы её преподавания: «Задача преподавания геометрии — развить у учащихся три качества: пространственное воображение, практическое понимание и логическое мышление». Следовательно, преподавание геометрии должно включать три тесно связанных, но вместе с тем и противоположных элемента: логику, наглядное представление, применение к реальным вещам. Стандарт второго поколения даёт возможность решить эту трудную педагогическую задачу, история которой уходит вглубь тысячелетий, ведь в них говорится о тех же трёх элементах, необходимых при изучении геометрии. Учебники написаны в соответствии с Федеральным государственным образовательным стандартом основного общего образования.

В своём курсе авторы выделяют три важнейшие линии: линию построений геометрических фигур — ведущую линию в учебнике «Геометрия, 7», линию вычислений геометрических величин — ведущую линию в учебнике «Геометрия, 8» и линию идей и методов современной геометрии — ведущую линию в учебнике «Геометрия, 9».

Каждый из трёх учебников обладает цельностью и завершённостью своего содержания, и работа по нему не требует обращения к другим учебникам. Это обеспечивается тем, что учебник «Геометрия, 8» начинается с повторения важнейших понятий и предложений курса 7 класса, а в учебнике «Геометрия, 9» повторяются необходимые сведения курса 8 класса. Вместе же эти три учебника охватывают весь раздел «Геометрия» Основного содержания математического образования, в том числе и стереометрическую его часть подраздела «Наглядная геометрия». Раздел Наглядная геометрия в новой примерной программе по математике для основной школы входит в курс «Математика» для 5—6 классов. Знакомясь на наглядно-интуитивном уровне со всеми важнейшими фигурами элементарной геометрии, школьники осваивают геометрическую терминологию, учатся рисовать данные фигуры, моделировать. На это отводится 45 ч в течение двух лет. Включение стереометрической части «Наглядной геометрии» в систематический курс геометрии 7—9 классов авторам представляется необхо-

димым по следующим причинам. Во-первых, элементам стереометрии в курсе «Математика» уделяется мало времени и стоит их повторить более обстоятельно в 7—9 классах. Во-вторых, отсутствие стереометрического материала в трёхлетнем систематическом курсе геометрии ведёт к утрате учениками пространственных представлений, что вредно для общекультурного развития учеников и создаёт большие трудности в изучении курса стереометрии в старших классах. Наконец, в-третьих, систематический курс геометрии 7—9 классов должен охватить весь раздел «Геометрия» Основного содержания, чтобы создать у выпускников основной школы целостное представление об этом предмете.

Геометрия изучает мир, окружающий учеников, и помогает совершенствовать этот мир. Это надо донести до сознания учеников и использовать тот естественный интерес к новому, который всегда есть у большинства из них.

Задача о построении геометрической фигуры с теми или иными заданными свойствами ставится как первая задача геометрии уже во введении учебника для 7 класса. Ясно, сколь важна такая задача в практической жизни. Первые уроки систематического курса геометрии — самое трудное место этого курса. Их следует сделать максимально интересными. Чтобы не отпугнуть учеников объективными трудностями нового для них курса: геометрической терминологией, строгой логикой, изображением геометрических фигур. Поэтому уже во введении мы рассказываем об истории геометрии, Евклиде и его началах, логике курса геометрии — об основных понятиях и аксиомах, о задачах геометрии и её роли в практике. Мы не торопимся с доказательствами теорем (их всего 9, и они будут доказаны во втором полугодии). Ученики много строят циркулем и линейкой и, аргументируя, что построили фигуру с нужными свойствами, учатся доказывать.

Итоговой теоремой курса 7 класса является одна из главных теорем евклидовой геометрии — теорема о сумме углов треугольника. Ей предшествует тема параллельности прямых, которая позволяет рассказать о проблеме пятого постулата и геометрии Лобачевского.

Если геометрию 7 класса можно назвать геометрией построений, то геометрия 8 класса — это геометрия вычислений, геометрия формул. Связи с курсом алгебры становятся очень прочными. Основные задачи в 8 классе связаны с вычислением важнейших геометрических величин — длин, мер углов, площадей. Обстоятельно изучаются элементы тригонометрии, доказываются теоремы синусов и косинусов. Это исключительно важно, поскольку теперь тригонометрия в основной школе входит лишь в раздел «Геометрия».

Геометрия для 9 класса — это в основном идеи и методы современной геометрии: векторы, координаты, преобразования. Для этого курса создан инновационный учебно-методический комплекс «Геометрия, 9. Динамическая геометрия» (авторы А. Л. Вернер и др.). Он помещён в Интернете на сайте Министерства образования и науки Российской Федерации в разделе «Цифровые образовательные материалы». В комплексе много динамических моделей, три интерактивные рабочие тетради, формирующие умение работать с электронными носителями информации.

В стандарте второго поколения появился раздел *Математика в историческом развитии*. Он предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников. Конечно, научно-исторический раздел делает учебники геометрии интереснее, оживляет их. В александровских учебниках много исторического материала. Это самые разные вопросы: история геометрии в древности, «Начала» Евклида, рассказы о Пифагоре и Фалесе, истории тригонометрии, создании геометрии Лобачевского и пятом постулате, о работах Архимеда и работах Гаусса, о координатном методе Декарта и Ферма и многое другое.

Учебники не ограничиваются чисто геометрическим содержанием. В них много внимания уделяется общематематическому развитию учеников, о котором речь идёт в разделе «Логика и множества» Основного содержания. В самом начале курса вводятся операции объединения и пересечения фигур, рассказано об аксиомах и теоремах, специальные пункты посвящены способу доказательства от противного, взаимно обратным теоремам, говорится о характерных свойствах, о логической связке «тогда и только тогда». Всё это формирует универсальные логические действия.

Общекультурному развитию учеников способствует наличие в учебниках рубрики «Справка словесника», в которой даются переводы геометрических терминов, приводятся однокоренные с этими терминами слова. Этому же способствуют иллюстрации архитектурных сооружений («застывшей геометрии»), рассказы о симметрии, о её роли, и т. п. Всё это делает учебники интересными для учеников.

Эти учебники рассчитаны на то, что ученики будут их читать, знакомиться в их основном содержании с языком науки — геометрии, понимать этот язык, а в дополнительном материале находить разнообразные связи геометрии с другими сторонами науки и культуры.

Учебники разбиты на главы, параграфы и пункты. Основной теоретический материал в учебниках цикла минимизирован: в нём оставлены лишь те предложения, которые необходимы для дальнейших теоретических положений. Второстепенные теоретические предложения перенесены в задачный материал.

В каждом пункте, где имеется теоретический материал, после теории идут вопросы для самоконтроля и задачи. Задачный материал разбит на рубрики, названия которых ориентируют учителей и учеников на основной вид деятельности при решении задач этой рубрики. Заголовки задачных рубрик: разбираемся в решении, дополняем теорию, смотрим, рисуем, представляем, планируем, доказываем, находим величину, исследуем, строим, применяем геометрию и т. д. Решения задач из рубрик формируют различные познавательные универсальные действия. Обобщающий характер имеют задачи к главам. В них имеется рубрика применяем компьютер, рассчитанная на работу со средой «Живая математика».

Как учителю работать с каждой из этих рубрик будет рассказано в разделе «О системе задач в курсе геометрии 7—9 классов».

2. Александровские принципы преподавания геометрии

Преподавание геометрии в школе имеет тысячелетние традиции: всем известно, что «Нет царского пути в геометрии!», что учебник геометрии должен быть лаконичен и сух («После Всемирного потопа сухой осталась одна геометрия»). И с этим мирились как с неизбежным. А учебники геометрии академика Александра Даниловича Александрова (1912—1999) заговорили с учителем и учеником совсем другим языком. Вот как начал он первый свой учебник «Начала стереометрии, 9» (М.: Просвещение, 1981):

«Геометрию можно коротко определить как науку о фигурах. Каждый человек имеет наглядное понятие о пространстве, о телах, о фигурах. Но в геометрии свойства фигур изучаются в отвлечённом (абстрактном) виде и с логической строгостью.

Своеобразие геометрии, выделяющее её среди других разделов математики, да и всех наук вообще, заключается в неразрывном органическом соединении живого воображения со строгой логикой. Геометрия в своей сути и есть пространственное воображение, пронизанное и организованное строгой логикой.

Во всяком подлинно геометрическом предложении, будь то аксиома, теорема или определение, неразрывно присутствуют эти два элемента: наглядная картина и строгая формулировка, строгий логический вывод. Там, где нет одной из этих двух сторон, нет и подлинной геометрии.

Наглядность, воображение принадлежат больше искусству, строгая логика — привилегия науки. Сухость точного вывода и живость наглядной картины — «лёд и пламень не столь различны меж собой». Так геометрия

соединяет в себе эти две противоположности. Так её и надо изучать: соединяя живость воображения с логикой, наглядные картины — со строгими формулировками и доказательствами.

Поэтому основное правило состоит в том, что, обращаясь к определению, теореме или задаче, нужно прежде всего представить и понять их содержание: представить наглядно, нарисовать или, ещё лучше, хотя и труднее, вообразить то, о чём идёт речь, и одновременно понять, как это точно выражается.

Приступая к изучению доказательства теоремы или к решению задачи, следуйте такому принципу: старайтесь видеть — нарисовать, вообразить — и одновременно следить за логикой рассуждения; карандаш должен набрасывать или аккуратно рисовать соответствующие картинки и тут же выписывать кратко в словах и формулах основные ходы рассуждения.

Геометрия возникла из практических задач, её предложения выражают реальные факты и находят многочисленные применения. В конечном счёте, в основе всей техники так или иначе лежит геометрия, потому что она появляется повсюду, где нужна малейшая точность в определении формы и размеров; и технику, и инженеру, и квалифицированному рабочему геометрическое воображение необходимо, как геометру или архитектору» (с. 6—7).

В процитированном отрывке говорится и о принципах изучения геометрии, и о принципах её преподавания. Ряд таких принципов сформулирован А. Д. Александровым в его статьях в журнале «Математика в школе». Выделим главные из них.

Принцип 1. Геометрия в своей сущности есть такое соединение живого воображения и строгой логики, в котором они взаимно организуют и направляют друг друга. Поэтому геометрия и должна быть преподана в соединении *наглядности и логики*, как живое пространственное воображение, пронизанное строгой логикой.

Принцип 2. Поскольку одной из сторон геометрии является её строгая логичность, а школьники 7—9 классов уже способны воспринять эту логичность, то курс геометрии должен быть изложен с достаточной строгостью, без логических разрывов в *основной линии курса*.

Принцип 3. Так как второй основной стороной геометрии является её наглядность, то в преподавании геометрии каждый элемент курса следует начинать с возможно более простого и наглядного, с того, что можно нарисовать на доске, показать на моделях, на реальных предметах, насколько это возможно.

Принцип 4. Далее, несмотря на высокую степень абстрактности, геометрия возникла из практики и применяется на практике. Поэтому

преподавание геометрии обязательно должно связывать её с реальными вещами, с другими дисциплинами, с искусством, с архитектурой и т. д.

Таким образом, уже перечисленные принципы преподавания геометрии приводят к следующему выводу: задача преподавания геометрии — развить у учащихся три качества — пространственное воображение, практическое понимание и логическое мышление. Следовательно, преподавание геометрии должно включать три тесно связанных, но вместе с тем и противоположных элемента: логику, наглядное представление, применение к реальным вещам.

Принцип 5. Учебник, предназначенный для общеобразовательной средней школы, в основной своей части не должен включать ничего лишнего, второстепенного, малозначительного.

Принцип 6. Но так как способности и наклонности учащихся весьма различны, то в таком учебнике должен содержаться дополнительный материал, предназначенный для учащихся более сильных и интересующихся математикой.

Принцип 7. Геометрия должна быть изложена геометрически, она сама содержит в себе метод — прямой геометрический метод понимания, доказательства теорем и решения задач. Синтетический метод элементарной геометрии не должен быть подавлен в школьном преподавании ни координатным, ни векторным, ни каким-либо другим методом. Прямой геометрический метод проще, важнее и естественнее для целей всеобщего среднего образования и соответствует самому существу геометрии. Он нужен любому человеку, имеющему дело с пространственными объектами.

Принцип 8. Курс школьной геометрии *должен быть причастен к современной науке, включать, по возможности, элементы современной математики*. Кроме того, курс геометрии, как логическая система, где всё доказано, важен для воспитания элементов научного мировоззрения, которое требует доказательств, а не ссылок на авторитеты.

Принцип 9. Но поскольку абсолютной строгости вообще не существует, то должен быть выбран и принят некоторый уровень строгости и он должен быть выдержан во всём курсе. Курс не должен иметь логических разрывов, во всяком случае, в основной линии. Иначе в нём будет потеряна система, смазана логика изложения, получится не целостная наука — геометрия, а её фрагменты.

Обсуждая в дальнейшем содержание учебника и методику работы с ним, мы постоянно ссылаемся на эти положения, сформулированные А. Д. Александровым.

3. О системе задач в курсе геометрии 7—9 классов

Естественно, что авторские установки в преподавании элементарной геометрии проявились в подборе и структуре задач учебника.

Мы отказались от деления их по сложности и даже от их чисто дидактической классификации. Главным для нас было желание организовать многообразную деятельность ребёнка в процессе геометрического образования. Это стремление определило и содержание, и структурные особенности задачного материала. Важно было и то, что требовалось учесть самые разные ученические мотивации, наклонности и способности.

При этом мы понимаем, что современные возможности позволяют учителю работать в соответствии с собственными установками в преподавании, а потому старались предоставить ему таковые возможности — разнообразием содержания, разными его уровнями и обилием задач, чтобы ему было из чего выбирать. Разумеется, надо отказаться от желания решать все задачи к конкретному пункту. Это вряд ли возможно практически и, по существу, нелепо. Ещё раз — мы даём и учителю, и ученику возможность выбора в организации своей деятельности. Ясно, насколько это стремление отвечает установкам гуманной педагогики.

В учебнике принято такое распределение задач по рубрикам.

1. Разбираемся в решении.

Здесь мы показываем ученикам не только готовые решения и доказательства, присущие теоретическому курсу, но и то, как они могут получаться. Иногда в тексте такого решения появляется (в скобках) знак вопроса — в этом месте ученику предлагается дополнить наше рассуждение самостоятельно.

2. Дополняем теорию.

Известно, что для некоторых часто встречающихся на практике ситуаций удобно иметь и такие сведения, которых, как правило, нет в теоретическом тексте. Например: как расположен центр окружности, описанной около равнобедренного треугольника по отношению к самому треугольнику. На такие сведения, помещённые среди задач, возможны ссылки наравне с теоретическими сведениями.

3. Смотрим.

Здесь мы учим детей разбираться в информации, представленной наглядно. Также эти задачи нацелены на развитие пространственных (двумерных и трёхмерных) представлений. Ученики должны увидеть в разных ситуациях и положениях уже знакомые фигуры, например, вершины правильного треугольника среди вершин правильного шестиугольника. Ясно, что эти задачи предшествуют самостоятельному изображению фигур.

4. Рисуем.

Опять же развиваем пространственное мышление, но уже в активной форме. Пространственные образы не должны оставаться статичными, для полноценного пространственного мышления необходима их динамика. Этот раздел задач направлен как раз на развитие динамических пространственных представлений. К тому же есть определённая графическая культура, которой надо научить.

5. Представляем.

А здесь нагрузка на пространственное мышление резко возрастает. Более того, решение задачи, приведённой в этом разделе, и ответ к ней возможны на основании только наглядных представлений, без каких-либо теоретических обоснований. Слово *очевидно* здесь вполне уместно, хотя, конечно, и не гарантирует безошибочности. Например, очевидно, что две прямые могут разбить плоскость на 4 части. Доказательство этого утверждения весьма скучно.

Вместе с тем понятно, что учитель может предложить обосновать полученный учениками ответ к задаче такого рода, тем более что результаты наглядного представления могут не совпадать у разных учеников.

6. Работаем с формулой.

Важный в практическом отношении момент. Даже если ученики и знают некую формулу, они нередко плохо её применяют — не узнают её, если она приведена в других буквенных обозначениях; неверно выражают одну из величин через другие; не связывают её с известными функциональными зависимостями; не чувствуют её в динамике, т. е. при изменении величин, в неё входящих. Особенно все эти ученические недостатки в работе с формулой проявляются при изучении физики.

7. Планируем.

В подавляющем большинстве учебных задач важен не результат, к которому приходит ученик, а тот путь, который приводит к этому результа-

ту. Само же получение результата после того, как путь уже намечен, можно оставить ученикам в качестве самостоятельной работы. Помимо прочего, это экономит и время на уроке. В вычислительных задачах ученики должны доводить до конца именно типовые расчёты, все прочие — по желанию учителя. В задачах на планирование более существенно именно понимание последовательности в выполнении операций, а не фактическое их исполнение циркулем и линейкой.

8. Находим величину.

Это обычные учебные задачи на вычисление. Их место в учебном процессе определяется только существующими традициями в преподавании элементарной геометрии.

9. Ищем границы.

Эти задачи достаточно разнообразны, они позволяют сочетать разные математические умения (работа с функцией, решение уравнений и неравенств, тригонометрия), легко варьируется объём работы.

10. Доказываем.

Сюда отнесены более трудные задачи теоретического характера.

11. Исследуем.

Сюда отнесены те задачи, в условии которых или в возможном результате есть некая неопределённость, незавершённость, даже неоднозначность. Вплоть до отсутствия решения.

12. Строим.

Здесь приведены вполне обычные задачи на построение.

Для решения их предполагается использование в основном циркуля и линейки. К сожалению, широкое использование задач такого типа в обучении школьников вряд ли возможно — хорошо известно, что полное (четырёхэтапное) решение такой задачи требует немало времени. Особенно много работы в таких задачах требуется при исследовании, когда встаёт вопрос о существовании и о единственности решения. В задачах нашего учебника сделана попытка убрать эту трудность, оставив другие особенности задач на построение. Ученикам предлагается восстановить некую фигуру по оставшимся её фрагментам. В такой редакции ясно, что задача заведомо имеет решение (хотя остаётся вопрос о единственности решения). Ценность задачи на построение ещё и в том, что мы в процессе её решения обучаем

школьника составлению алгоритмов, что по нынешним временам очень важно.

Иногда набор инструментов при решении такой задачи ограничен, и тогда она может находиться в разделе «Занимательная геометрия». Такого рода задачи (с разными ограничениями на возможности) способствуют развитию гибкости мышления и близки по стилю к инженерным задачам.

Заметим, кстати, что ограничения на набор используемых инструментов выглядят сейчас только как дань традиции.

13. Занимательная геометрия.

В этом разделе — задачи занимательные, исторические и вообще с определённой «непрямой» спецификой.

14. Применяем геометрию.

Задачи этого раздела имеют внематематическое происхождение, их ещё надо перевести на математический язык. В отличие от задач, возникших в реальной практике, они могут иметь достаточно искусственное условие.

15. Участвуем в олимпиаде.

Содержание раздела ясно из названия. Все задачи этого раздела взяты из сборников олимпиадных задач.

16. Рассуждаем.

Задачи на чистую логику. Подведение объекта под понятие, построение примеров и контрпримеров, формулировка обратных утверждений, необходимость и достаточность и т. д.

Кроме этих разделов, есть и другие, например, *Работаем с моделью*. Ясно, что в учебнике есть такие задачи, которые можно отнести сразу к нескольким разделам, и даже такие, которые не вполне вписываются в предлагаемую структуру. Здесь учитель может действовать по своему усмотрению.

17. Применяем компьютер.

Задачи этой рубрики демонстрируют возможности компьютеров в изучении геометрии. Решая их, используем, например, среду «Живая математика», которую можно скачать по адресу: http://www.uchportal.ru/load/24-1-0-2276.

Методические указания по работе со средой «Живая математика» с демонстрацией учебных видеороликов находятся по адресу: http://www.int-edu.ru/page.php?id=912

К данному курсу существует Электронная форма учебника (ЭФУ) — соответствующая по структуре, содержанию и художественному оформлению печатной форме учебника и включающая в себя интерактивные ссылки, расширяющие и дополняющие материал печатного учебника.

Функциональные особенности ЭФУ:

- удобный и понятный интерфейс и навигация по ЭФУ;
- работа в онлайн- и офлайн-режимах;
- тестовые задания к каждой теме, разделу учебника;
- возможность добавления материалов, созданных учителем;
- инструменты изменения размера шрифта, создания заметок и закладок;
- удобная навигация.

Педагогические возможности использования ЭФУ:

- организация контроля и самоконтроля по результатам изучения темы;
- реализация технологий мобильного, дистанционного или смешанного обучения;
- реализация требований ФГОС по формированию информационнообразовательной среды системой электронных образовательных ресурсов и др.

Геометрия 7 класса — это геометрия построений

1. Обсуждение теоретического материала учебника

Структура «Геометрии, 7» такова: Введение «Что такое геометрия», глава I «Начала геометрии», глава II «Треугольники», глава III «Расстояния и параллельность», Дополнение «Аксиома прямоугольника и параллельность», предметный указатель, избранные ответы.

Введение (3 часа)

Это своего рода увертюра ко всему курсу геометрии. Оно разбито на 5 пунктов. *1*. Как возникла и что изучает геометрия. 2. О задачах геометрии. 3. Плоские и пространственные фигуры. *4*. Задачи. *5*. Плоскость, прямая, точка. 6. Об истории геометрии. Значение геометрии.

Урок 1 (п. 1. Как возникла и что изучает геометрия; п. 2. О задачах геометрии).

В пункте 1 Как возникла и что изучает геометрия рассказано о возникновении геометрии, о превращении геометрии из чисто прикладной науки в научную теорию, говорится о том, что геометрические фигуры, которые изучает геометрия, — это мысленные образы реальных предметов. А в следующем пункте 2 О задачах геометрии рассказывается о разнообразных задачах геометрии и выделяется важнейшая для курса 7 класса задача о построении фигур с заданными свойствами. Хотелось бы, чтобы уже с первого урока, посвящённого пунктам 1 и 2, ученики стали читать учебник, обсуждать прочитанное.

Урок 2 (п. 3. Плоские и пространственные фигуры; п. 4. Задачи; п. 5. Плоскость, прямая, точка).

В пункте 3 Плоские и пространственные фигуры вспоминаются уже знакомые ученикам из **Наглядной геометрии** многоугольники и многогранники, их элементы, приводятся рисунки важнейших фигур, вводятся операции объединения и пересечения фигур. Операции объединения и пересечения фигур в дальнейшем используются очень часто. Все задачи во Введении — это задачи к п. 3. Решая их, ученики учатся видеть и рисовать простейшие многоугольники и многогранники, их объединение и пересечение. Рисовать и строить семиклассники будут очень много, что соответству-

ет основной линии геометрии 7 класса как геометрии построений. Следует подчеркнуть, что хотя в систематическом курсе планиметрии прямоугольник и квадрат будут построены лишь в последней главе, но в задачах они (как и прямоугольный параллелепипед и куб) появляются с самого начала. Вряд ли у семиклассников возникнут сомнения в их существовании.

В пункте 5 *Плоскость*, *прямая*, *точка* рассказано, как пришли геометры к важнейшим геометрическим понятиям: *точка*, *прямая*, *плоскость*. О двух плоскостях, имеющих общую точку, сказано, что они пересекаются по прямой, а две плоскости, не имеющие общих точек, названы параллельными.

Урок 3 (п. 6. Об истории геометрии. Значение геометрии.)

В последнем пункте 6 История геометрии. Значение геометрии рассказано о Евклиде и его «Началах», о логическом строении геометрии и о роли в геометрии основных утверждений (постулатов и аксиом). Формулируются три первых постулата Евклида, в которых речь идёт о построении отрезков и окружности. Затем формулируются и некоторые интуитивно очевидные аксиомы. Например, равные одному и тому же равны между собой или и половины одного и того же равны между собой. В дальнейшем такого рода утверждения будут использоваться при доказательствах. В этом же пункте сказано о значении геометрии, и он завершается такой фразой: «Словом, всё, что ни есть в мире, всё находится в пространстве, всё имеет свои формы, и люди сами их создают. И во всем этом — геометрия».

Введение ориентирует семиклассников на дедуктивное, логическое построение систематического курса планиметрии, идущее от «Начал» Евклида и мотивирует важность изучения геометрии. Об истории геометрии, о великих геометрах речь пойдёт в течение всего курса геометрии.

Глава І. Начала геометрии (28 ч, 2 контрольные работы).

Глава носит вводный, в основном описательный, ознакомительный характер. Она состоит из трёх параграфов. § 1. Отрезки. § 2. Окружность и круг. Сфера и шар. § 3. Углы.

§ 1. Отрезки (7 часов). 1.1. Отрезок. 1.2. Лучи и прямые. 1.3. Сравнение и равенство отрезков. 1.4. Действия с отрезками. 1.5. Измерение длины отрезка. Расстояние между точками. 1.6. Понятие о равенстве фигур. Равенство треугольников.

Согласно своему принципу 3, что в преподавании геометрии каждый элемент курса следует начинать с возможно более простого и наглядного,

с того, что можно нарисовать на доске, показать на моделях, на реальных предметах, насколько это возможно, А. Д. Александров основными понятиями при построении геометрии считает такие понятия: точка, отрезок, конец отрезка, равенство отрезков.

Именно в § 1 возникает вопрос об *уровне строгости*, который будет выдержан во всём курсе (см. принцип 9). Авторы решили, что неуместно семиклассникам формулировать аксиомы порядка и непрерывности, потребность в которых появилась у геометров лишь в XIX веке, а Н. И. Лобачевский прекрасно обходился ещё без них. Если вести доказательства на уровне строгости оснований геометрии (именно такой уровень строгости выдержан в монографии А. Д. Александрова «Основания геометрии» (М.: Наука, 1987), то в п. 1.1 следовало бы сформулировать следующие аксиомы:

- 1. Существуют по крайней мере две точки (аксиома существования точек).
- 2. Каждые две точки можно соединить отрезком (аксиома существования отрезка).
- 3. У каждого отрезка есть два и только два конца, а также существуют другие принадлежащие ему точки (*аксиома концов отрезка*).

О точках отрезка, отличных от концов, говорят, что они лежат внутри этого отрезка.

- 4. Точка C, лежащая внутри отрезка AB, разбивает его на два отрезка AC и CB, т. е. AB есть объединение отрезков AC и CB, которые имеют лишь одну общую точку C (аксиома разбиения отрезка).
- 5. Каждый отрезок можно продолжить за каждый из его концов, т. е. для каждого отрезка AB существует содержащий его отрезок AC с концом C, отличным от конца B (аксиома продолжения отрезка).
- 6. Объединение двух отрезков, имеющих две общие точки, является отрезком; его концами служат два из концов этих отрезков (*аксиома объединения отрезков*).

Урок 4 (п. 1.1. Отрезок).

Из этих шести аксиом формулируем в п. 1.1 четыре наглядно очевидных утверждения: 2, 4, 5, 6 (не называя их аксиомами). Аксиомы 2 и 5 — это уже знакомые ученикам первый и второй постулаты Евклида. Аксиомы 1 и 3 в 7 классе, конечно, не формулируем.

Урок **5** (п. 1.2. Лучи и прямые).

Луч и прямая получены в п. 1.2 продолжением отрезка в одну сторону или в обе его стороны: луч AB — это объединение всех отрезков AM,

содержащих отрезок AB, а прямая AB — это объединение всех отрезков MP, содержащих отрезок AB.

Утверждение о том, что *через каждые две точки проходит прямая и притом только одна*, формулируется, поясняется, но в седьмом классе не доказывается. Может быть, в конце курса геометрии стоило бы вернуться к нему и доказать его. Такое доказательство дано в конце нашего учебника «Геометрия, 7—9» (М.: Просвещение, 2003).

В п. 1.2 формулируются три предложения о разбиении: 1) прямая разбивается точкой на два луча (полупрямые); 2) плоскость разбивается прямой на две полуплоскости; 3) пространство разбивается плоскостью на два полупространства. Из этих трёх предложений второе часто принимают за одну из аксиом порядка. Так поступает и А. Д. Александров. Формулируя его в п. 1.2, мы не говорим о том, что оно является аксиомой.

Урок 6 (п. 1.3. Сравнение и равенство отрезков).

Отношение *равенства отрезков* в аксиоматике А. Д. Александрова фигурирует в четырёх аксиомах. Вот первые две из них. Они сформулированы в п. 1.3.

- 7. Два отрезка, равные одному и тому же отрезку, равны (аксиома сравнения отрезков).
- 8. На каждом луче от его начала можно отложить отрезок, равный данному отрезку, и притом только один (аксиома откладывания отрезка).

Эти две аксиомы иллюстрируются в учебнике сравнением реальных отрезков — деревянных реек наложением их друг на друга. Мотивируя формулировки этих двух аксиом, вполне естественно применять реальные наложения друг на друга реек, но о равенстве предметов в более сложных ситуациях (например, для двух окон или для двух кирпичей) говорить об их наложении друг на друга нелепо. Поэтому в дальнейшем, говоря о равенстве других фигур, начиная с треугольников, мы даём их определения через равенство соответствующих отрезков, а для равенств отрезков сформулированы аксиомы.

Урок 7 (п. 1.4. Действия с отрезками).

Аксиома откладывания отрезка позволяет ввести в п. 1.4 операцию сложения отрезков и умножения отрезка на натуральное число.

Для измерения длины отрезка требуются ещё три аксиомы.

- 9. Если точка C лежит внутри отрезка AB, а точка C_1 лежит внутри отрезка A_1B_1 и выполняются равенства $AC = A_1C_1$ и $CB = C_1B_1$, то $AB = A_1B_1$ (аксиома сложения отрезков).
- 10. Для каждых двух отрезков AB и MP существует отрезок AC,

равный nMP и содержащий отрезок AB (аксиома Архимеда).

11. Если дана последовательность отрезков A_1B_1 , A_2B_2 , A_3B_3 , ... и отрезок A_1B_1 содержит отрезок A_2B_2 , отрезок A_2B_2 содержит отрезок A_3B_3 и вообще отрезок A_nB_n содержит отрезок $A_{n-1}B_{n-1}$, то существует точка, принадлежащая всем этим отрезкам (аксиома вложенных отрезков).

Эти три аксиомы в учебнике не формулируются: аксиомы 10 и 11 — это аксиомы непрерывности, а аксиома 9 — это частный случай аксиомы 2 Евклида о том, что *если к равным прибавляются равные, то и целые будут равны*, сформулированной в п. 5 Введения.

Урок 8 (п. 1.5. Измерение длины отрезка. Расстояние между точками).

В этом пункте на описательном уровне рассказано об измерении ∂ *лины отрезка*, а также определено *расстояние между точками* как длина отрезка, соединяющего эти точки. Через длины отрезков выражаются, в конце концов, все другие геометрические величины (площади, объёмы, меры углов).

Урок 9 (п. 1.6. Понятие о равенстве фигур. Равенство треугольников). В конце § 1 в п. 1.6 ведётся разговор о равенстве фигур, которое сводится к равенству соответственных отрезков, и (что очень важно!) определяется равенство треугольников, как треугольников, соответственные стороны которых равны. Это определение позволяет сразу же судить о равенстве треугольников по равенству их сторон и сокращает число традиционных признаков равенства треугольников — убирается трудное доказательство третьего признака равенства треугольников.

Развивая пространственные представления семиклассников, авторы учебника предлагают им в п. 1.6 рисунки тетраэдров (определение тетраэдра дано ещё в п. 1.1), на которых указаны равенства некоторых рёбер тетраэдра, и спрашивают о равенстве граней этих тетраэдров.

Итак, в § 1 построена геометрия на прямой — *одномерная геометрия*.

Урок 10. Решение задач по теме «Отрезки».

§ 2. Окружность и круг. Сфера и шар (5 часов). 2.1. Определения окружности и круга. 2.2. Части окружности и круга. 2.3. Центральная симметрия. 2.4. Построения циркулем и линейкой. 2.5. Как определяют сферу и шар. 2.6. Сферическая геометрия.

Описательное знакомство с окружностью и кругом, сферой и шаром сочетается с пунктами о построениях циркулем и линейкой, а также о центральной симметрии.

Урок 11 (п. 2.1. Определения окружности и круга).

Определения окружности и круга в п. 2.1 формулируются дважды разными словами. Полезно приучать учеников к тому, что одно и то же можно сказать по-разному. Это обогащает речь, делает её выразительней. Здесь же говорится и о том, что иногда одни и те же слова могут иметь разный смысл. Так слова радиус окружности означают и отрезок, соединяющий центр окружности с любой её точкой, и расстояние от центра окружности до любой её точки. Что именно имеется в виду, обычно ясно из контекста.

Pавными окружностиями называются окружности, имеющие равные радиусы.

Урок 12 (п. 2.2. Части окружности и круга).

В этом пункте термин *хорда*, введённый поначалу лишь для окружности и круга, расширяется затем на отрезок, соединяющий две граничные точки любой фигуры. Дальнейшее показывает удобство такого понимания слова *хорда*. А понятие *граничная точка фигуры* тоже определяется легко — это такая точка, для которой, в любом круге с центром в этой точке содержатся как точки данной фигуры, так и точки, не принадлежащие этой фигуре. Вряд ли стоит ученикам заучивать эти определения — достаточно будет того, что они смогут оперировать этими понятиями.

Урок **13** (п. 2.3. Центральная симметрия).

Здесь начинается важный разговор о симметрии фигур. Он начинается с *центральной симметрии*. Чтобы сказать о центральной симметрии достаточно знать, что такое середина отрезка. Говорить о центральной симметрии, на плоскости как о повороте на 180° авторам представляется неудачным, поскольку в пространстве аналогии с поворотом нет, а фигуры, имеющие центральную симметрию, встречаются часто: например, наклонный параллелепипед.

Урок 14 (п. 2.4. Построения циркулем и линейкой).

В этом пункте рассказывается о построениях циркулем и линейкой, решается задача о построении треугольника по трём сторонам, и её решение позволяет обсудить проблему разрешимости задачи на построение и вопрос о единственности решений. Здесь же рассказано о неразрешимости цирку-

лем и линейкой классической задачи об удвоении куба и связанной с ней легенде.

Урок 15 (п. 2.5. Как определяют сферу и шар; п. 2.6. Сферическая геометрия).

Завершается § 2 рассказом о сфере и шаре, о сферической геометрии (в пунктах 2.5 и 2.6). Авторы подчёркивают полную аналогию в определении этих стереометрических фигур с определениями окружности и круга. Естественно, рассказ о сфере и шаре связан с тем, что известно школьникам о них из географии. И в дальнейшем сравнение сферической и евклидовой геометрии будет еще встречаться в учебнике (например, при классификации треугольников по углам).

Урок 16. Решение задач.

Урок 17. Контрольная работа № 1. Отрезки. Окружность и круг.

Вариант 1

- 1. Дан отрезок AB. Его длина 12 см. На отрезке AB взята точка K. Вычислите KB, если: а) KA = 1 см; б) KB = 2KA; в) расстояние от точки K до точки A на 1 см больше расстояния от точки K до точки B; г) расстояние от точки K до точки C, середины отрезка AB, равно 1 см.
- 2. Постройте на одной прямой два отрезка *AB* и *KM* длиной 6 см каждый так, чтобы расстояние между их серединами было равно 1 см. Вычислите длину их пересечения и объединения.
- 3. Постройте окружность с центром в точке *М* радиусом 3 см. Проведите диаметр *AB* и хорду *AC*. Затем проведите радиус *MC*. а) Выпишите равные отрезки, имеющиеся на чертеже. б) Вычислите длину отрезка *AB*. в) Закрасьте сектор, не являющийся сегментом. г) Закрасьте сегмент, являющийся сектором.
- 4. Верно ли утверждение: каждая точка ребра куба принадлежит двум его граням?

Вариант 2

- 1. Дан отрезок MP. Его длина 6 см. На отрезке MP взята точка K. Вычислите KM, если: а) KP = 1 см; б) KP = 2KM; в) расстояние от точки K до точки M на 2 см больше расстояния от точки K до точки P; г) расстояние от точки K до точки C, середины отрезка MP, равно 1 см.
- 2. Постройте на одной прямой два отрезка *BC* и *MP* длиной 8 см каждый так, чтобы расстояние между их серединами было равно 2 см. Вычислите длину их пересечения и объединения.

- 3. Постройте окружность с центром в точке O радиусом 2,5 см. Проведите диаметр AB и хорду AC. Затем проведите радиус OC. а) Выпишите равные отрезки, имеющиеся на чертеже. б) Вычислите длину отрезка AB. в) Закрасьте сегмент, не являющийся сектором. г) Закрасьте сектор, являющийся сегментом.
- 4. Верно ли утверждение: каждая точка ребра тетраэдра принадлежит двум его граням?

Здесь даётся один из возможных вариантов контрольной работы по темам «Отрезки» и «Окружность и круг». Но, конечно, учитель может как эту, так и дальнейшие контрольные работы составлять по своему усмотрению и проводить в удобные для него сроки.

§ 3. Углы (10 часов). 3.1. Что называют углом в геометрии. Смежные углы. 3.2. Равенство углов. Свойство равных углов. 3.3. Откладывание угла. 3.4. Сравнение углов. Прямой угол. Биссектриса угла. 3.5. Построение биссектрисы угла. Построение прямого угла. 3.6. Вертикальные углы. Перпендикулярные прямые. 3.7. Действия с углами. 3.8. Измерение углов. 3.9. Двугранный угол.

Если в двух первых параграфах изложение ещё ведётся на наглядноинтуитивном уровне, то, начиная с § 3, после формулировки двух аксиом об углах в п. 3.2 и 3.3 уже проводятся необходимые доказательства о свойствах рассматриваемых или построенных фигур. Доказанные утверждения ещё не называются теоремами — слово *теорема* появится в следующем параграфе, и, вообще, оно во всём курсе употребляется нечасто, лишь для самых важных утверждений.

$\mathbf{\mathit{Урок}}$ 18 (п. 3.1. Что называют углом в геометрии. Смежные углы).

Геометрия углов изучается по аналогии с геометрией отрезков, но она богаче геометрии отрезков. *Угол* определяется как часть плоскости, ограниченная двумя лучами с общим началом. Такое определение позволяет естественно рассмотреть далее действия с углами — *арифметику углов*.

Урок 19 (п. 3.2. Равенство углов. Свойство равных углов).

Определение равенства углов сводится к равенству отрезков. В определении равенства углов, данном А. Д. Александровым, употребляется понятие хорды угла — отрезка, соединяющего точки на различных сторонах угла. Два угла называются равными, если у них найдутся равные соответственные хорды (т. е. хорды, концы которых равноудалены от вершин углов соответственно). Такое определение в п. 3.2 сначала мотивируется практи-

ческим примером об углах между рейками. Чтобы зафиксировать такой угол, надо скрепить стороны угла ещё одной рейкой — в теории это хорда угла. Полученную жёсткую фигуру можно двигать и с её помощью строить углы, равные исходному углу.

Из определения равенства углов непосредственно вытекает, что *все* развёрнутые углы равны. Это утверждение и аксиома Евклида о том, что если от равных отнимают равные, то остатки равны (аксиома 3), позволяют сделать следующий вывод: два угла, смежные с равными углами, равны (задача 3.10).

Фактически именно из определений о равенстве углов и о равенстве треугольников и вытекает утверждение о том, что *в равных треугольниках соответственные углы равны*. Оно будет сформулировано позднее в п. 4.4 как теорема 2.

Совмещая реальные равные углы, например, два одинаковых чертёжных угольника, убеждаемся в том, что совмещаются соответственные хорды равных углов. Это приводит нас к *аксиоме о свойстве равных углов*: соответственные хорды равных углов равны.

Аксиоме о свойстве равных углов можно дать и такую формулировку: соответственные хорды от равных углов отсекают равные треугольники. Первый признак равенства треугольников (он станет теоремой 1 в п. 4.3) — простое следствие этой аксиомы. В задачах к п. 3.2 в рубрике Смотрим дано много рисунков с треугольниками, у которых соответственно равны две стороны и угол между ними. Ученики учатся находить такие треугольники и делать вывод об их равенстве.

Урок 20 (п. 3.3. Откладывание угла).

Подвижность плоскости обеспечивает *аксиома об откладывании угла*: от каждого луча в заданную полуплоскость можно отложить угол, равный данному углу, и притом только один (п. 3.3).

Аналогами этой аксиомы являются аксиомы подвижности плоскости в аксиоматике А. Н. Колмогорова или аксиома о построении треугольника, равного данному треугольнику, в аксиоматике А. В. Погорелова. Как циркулем и линейкой выполнить построение угла, равного данному углу, подробно описывается при решении задачи 3.15. Важно отметить, что в этом решении доказано, что построен именно искомый угол.

Урок 21 (п. 3.4. Сравнение углов. Прямой угол. Биссектриса угла).

Аксиома об откладывании угла позволяет в п. 3.4 сравнивать углы (подобно тому, как аксиома откладывания отрезка позволяет сравнивать отрезки). *Прямым углом* называется угол, равный смежному с ним углу.

Острый угол — это угол, меньший прямого угла, а тупой угол — это угол, больший прямого угла.

В п. 3.4 определяются понятия биссектриса угла и биссектриса треугольника.

Урок 22 (п. 3.5. Построение биссектрисы угла. Построение прямого угла).

Данный пункт посвящён построению циркулем и линейкой биссектрисы угла. В решении этой задачи присутствуют все четыре этапа, на которые распадается решение задачи на построение: 1) анализ (этот этап назван в учебнике *планом* построения; 2) построение; 3) доказательство; 4) исследование. По такому плану в дальнейшем можно решать задачи на построение.

Частным случаем задачи о построении биссектрисы угла является задача о построении прямого угла — биссектриса развёрнутого угла.

Итак, в § 3 решаются циркулем и линейкой важные задачи на построение — построение угла, равного данному углу (задача 3.15), построение биссектрисы угла и прямого угла (п. 3.5), деление отрезка пополам (задача 3.42). Напомним, что линия геометрии построений — ведущая линия в курсе геометрии 7 класса. Решая эти задачи и доказывая, что построена фигура с нужными свойствами, ученики привыкают к необходимости доказательств в геометрии.

Уровень строгости в этих пунктах \S 3 становится уже достаточно высоким. В следующих параграфах он в дальнейшем выдерживается. Из аксиом осталось сформулировать в \S 7 лишь аксиому параллельности. Все результаты до \S 7 не опираются на неё, т. е. относятся к так называемой абсолютной геометрии.

Урок **23** (п. 3.6. Вертикальные углы. Перпендикулярные прямые).

Пункт посвящён вертикальным углам. Его содержание вполне традиционно.

Урок 24 (п. 3.7. Действия с углами).

Здесь рассматриваются действия с углами по аналогии с действиями с отрезками.

Урок 25 (п. 3.8. Измерение углов).

По аналогии с измерением длин отрезков рассказано и о градусной мере углов (п. 3.8).

Отметим также, что если в двух первых параграфах фактически не было задач на доказательство (лишь по одной в каждом из этих параграфов), то в § 3 задач на доказательство уже много.

Уроки 26 и 27. Решение задач по теме «Углы».

Урок **28**. Контрольная работа № 2. Углы.

Вариант 1

- 1. Постройте угол ab с вершиной в точке O величиной 120°. Пусть луч c выходит из точки O и лежит внутри угла ab. Вычислите $\angle cb$, если: a) $\angle ca = 40^\circ$; б) $\angle cb = 2\angle ca$; в) $\angle cb \angle ca = 10^\circ$.
- 2. Постройте тупой угол. Постройте циркулем и линейкой его биссектрису. Постройте другой угол с той же биссектрисой. Дополнительные построения не стирайте.
- 3. Начертите две прямые, пересекающиеся в точке O. Отложите на одной прямой равные отрезки OP и OM, на другой отрезки OA и OB, такие, что OA = 2OP и OB = 2OM. Постройте отрезки AP и BM и докажите, что они равны.
- 4. Нарисуйте куб $ABCDA_1B_1C_1D_1$ и проведите в его гранях диагонали AB_1 и B_1D_1 . Пусть точка O середина отрезка B_1D_1 . Верны ли утверждения: а) отрезок OC_1 перпендикулярен отрезку B_1D_1 ; б) треугольники ABB_1 и $A_1B_1C_1$ равны?

Вариант 2

- 1. Постройте угол cb с вершиной в точке O величиной 60° . Пусть луч p выходит из точки O и лежит внутри угла cb. Вычислите $\angle pb$, если: a) $\angle pc = 10^{\circ}$; б) $\angle pb = 2\angle pc$; в) $\angle pb \angle pc = 10^{\circ}$.
- 2. Постройте острый угол. Постройте циркулем и линейкой его биссектрису. Постройте другой угол с той же биссектрисой. Дополнительные построения не стирайте.
- 3. Начертите две прямые, пересекающиеся в точке K. Отложите на одной прямой равные отрезки KA и KB, на другой отрезки KM и KP, такие, что KM = 2KA и KP = 2KB. Постройте отрезки AM и BP и докажите, что они равны.
- 4. Нарисуйте куб $ABCDA_1B_1C_1D_1$ и проведите в его гранях диагонали AC и C_1D . Пусть точка O середина отрезка AC. Верны ли утверждения: а) отрезок OD перпендикулярен отрезку AC; б) треугольники CAD и DCC_1 равны?

Урок 29 (п. 3.9. Двугранный угол).

Аналогия с обычными углами прослеживается в пункте 3.9 о двугранных углах. Стереометрический материал развивает пространственные представления учеников.

Уроки 30—32. Резерв.

Изучение главы I — это первое полугодие учебного года. Если она будет изучена раньше, то в конце полугодия можно предложить ученикам несколько докладов по истории геометрии, связанных с единицами измерения геометрических величин.

Глава II. Треугольники (20 ч, одна контрольная работа)

Глава начинает изучение *геометрии треугольников*, которое продолжится в 8 классе. В ней два параграфа. § 4. Первые теоремы о треугольниках. § 5. Сравнение сторон и углов треугольника.

§ 4. Первые теоремы о треугольниках (10 часов). 4.1. О теоремах. 4.2. Элементы треугольника. 4.3. Первый признак равенства треугольников. 4.4. Равенство соответственных углов равных треугольников. 4.5. Теорема о внешнем угле треугольника. Классификация треугольников. 4.6. Перпендикуляр. Единственность перпендикуляра. 4.7. Доказательство способом от противного. Второй признак равенства треугольников. 4.8. Высота треугольника.

Урок **33** (п. 4.1. О теоремах).

Слово *теорема* используется в курсе сравнительно редко, главным образом для тех важных теоретических утверждений, которые составляют основную логическую линию курса (в курсе 7 класса всего 9 теорем). Но можно назвать теоремой и любое утверждение, которое доказано. Поэтому любая задача на доказательство — это тоже теорема. Об этом и идёт речь в кратком пункте 4.1. С учениками стоит вспомнить те утверждения из первой главы, которые можно было бы назвать теоремами.

Урок 34 (п. 4.2. Элементы треугольника).

Этот пункт посвящён терминологии геометрии треугольника: вершины и углы треугольника, прилежащие и противолежащие вершины и стороны, медианы. Учеников учат находить и указывать в треугольнике прилежащие и противолежащие стороны и углы. Даётся определение медианы треугольника.

Урок **35** (п. 4.3. Первый признак равенства треугольников).

Первый признак равенства треугольников (теорема 1, п. 4.3) — это простое следствие аксиомы о свойстве равных углов. Объясняется структура формулировки теоремы и предлагается дать аналогичные формулировки для некоторых доказанных ранее утверждений.

Урок **36**. (п. 4.4. Равенство соответственных углов равных треугольников).

Теорема 2 о том, что в равных треугольниках соответственные углы равны (п. 4.4) — это просто следствие определений равных углов и равных треугольников.

Урок 37. Решение задач.

Урок **38** (п. 4.5. Теорема о внешнем угле треугольника).

Первое доказательство, использующее дополнительное построение, — это теорема 3 о внешнем угле треугольника (п. 4.5). Эта теорема затем получает многочисленные применения.

Урок 39 (п. 4.5. Классификация треугольников).

Первое применение теоремы о внешнем угле треугольников — классификация треугольников по углам (п. 4.5).

Урок 40 (п. 4.6. Перпендикуляр. Единственность перпендикуляра).

Здесь даётся определение перпендикуляра к прямой, доказывается единственность перпендикуляра, опущенного на прямую из данной точки. Отсюда вытекает параллельность на плоскости двух прямых, перпендикулярных одной прямой. Два последних утверждения доказываются способом от противного.

Урок 41 (п. 4.7. Доказательство способом от противного. Второй признак равенства треугольников).

Доказательство способом от противного применяется в курсе довольно часто, поэтому ему посвящен отдельный пункт 4.7. Этим способом доказан второй признак равенство треугольников.

Урок 42 (п. 4.8. Высота треугольника).

В этом пункте определяются высоты треугольника и устанавливается их расположение относительно треугольника. Третьего признака равенства треугольников нет, так как равенство треугольников определяется равенст-

вом их соответственных сторон. Теория треугольников значительно упростилась

§ 5. Сравнение сторон и углов треугольников (8 часов). 5.1. Равнобедренный треугольник. 5.2. Серединный перпендикуляр. 5.3. Взаимно обратные утверждения. 5.4. Сравнение сторон и углов треугольника. 5.5. Осевая симметрия.

Урок 43 (п. 5.1. Равнобедренный треугольник).

Урок 44 (п. 5.2. Серединный перпендикуляр).

Содержание пунктов 5.1 и 5.2 вполне традиционно: в п. 5.1 доказана теорема 4 о свойствах равнобедренного треугольника, а в п. 5.2 доказаны свойство и признак серединного перпендикуляра.

Урок 45 (п. 5.3. Взаимно обратные утверждения).

Свойство и признак серединного перпендикуляра являются взаимно обратными утверждениями. Таким утверждениям, их истинности и ложности посвящен специальный пункт 5.3. Он начинается отрывком из известной книги Л. Кэрролла «Алиса в Стране Чудес», где участники «безумного чаепития» объясняют Алисе, что взаимно обратные утверждения — это не одно и то же. Итогом п. 5.3 является теорема 5 о серединном перпендикуляре, в формулировке которой используется выражение тогда и только тогда, которое в дальнейшем часто используется для краткой формулировки равносильных утверждений.

Уроки **46 и 47** (п. 5.4. Сравнение сторон и углов треугольника).

В этом пункте, как и в предыдущем, доказаны два взаимно обратных утверждения о том, что в треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. Они объединены в теореме 6. При доказательстве теоремы 6 используется теорема о внешнем угле треугольника. Из теоремы 6 получены важные следствия: признак равнобедренного треугольника, утверждения, что катет короче гипотенузы, что углы, прилежащие к большей стороне треугольника, острые, что высота на большую сторону треугольника лежит внутри него.

Уроки **48 и 49** (п. 5.5. Осевая симметрия).

§ 5 завершается пунктом 5.5 об осевой симметрии. Продолжается линия знакомства учеников с симметрией фигур. В этом пункте вводится много новых понятий. Ученики должны уметь объяснять, что значит две точки

(две фигуры) симметричны относительно прямой и что значит фигура имеет ось симметрии, приводить примеры фигур, обладающих осевой симметрией. Доказано, что осью симметрии угла является прямая, содержащая биссектрису угла.

Уроки 50 и 51. Решение задач по главе 2 «Треугольники».

Глава II — это строго дедуктивно изложенный раздел абсолютной геометрии.

Урок 52. Контрольная работа № 3. Треугольники.

Вариант 1

- 1. Проведите две прямые, пересекающиеся в точке O. На одной из них отложите равные между собой отрезки OA и OB, на другой равные между собой отрезки OK и OM. Докажите, что AK = BM. Укажите на построенном чертеже угол, равный углу OAK.
- 2. Восстановите равнобедренный треугольник, если от него остались основание и точка на боковой стороне.
- 3. Нарисуйте треугольник ABC и внутри него зафиксируйте две точки K и M. Постройте на сторонах треугольника ABC точки, равноудаленные от точек K и M.
- 4. Дан тетраэдр PABC, в котором PA = BC, AB = PC, AC = PB. На гранях этого тетраэдра укажите углы, равные углу ABC.

Вариант 2

- 1. Проведите две прямые, пересекающиеся в точке P. На одной из них отложите равные между собой отрезки PK и PM, на другой равные между собой отрезки PA и PC. Докажите, что AK = CM. Укажите на построенном чертеже угол, равный углу PKC.
- 2. Восстановите равнобедренный треугольник, если от него остались боковая сторона и точка на высоте к основанию.
- 3. Нарисуйте окружность и внутри круга, ограниченного ею, зафиксируйте две точки A и B. Постройте на окружности, точки, равноудаленные от точек A и B.
- 4. Дан тетраэдр KMOP, в котором OK = MP и OM = PK. На гранях этого тетраэдра укажите угол, равный углу OKP.

Глава III. Расстояния и параллельность (14 ч и 1 контрольная работа)

Название главы говорит о том, что в ней речь пойдёт не только о традиционном определении параллельности (которое на практике проверить невозможно), но и о постоянстве расстояния между параллельными прямыми (которое и проверяется реально на практике). В учебнике авторы постоянно обращаются к практике и ученики понимают, что в геометрии изучается окружающий их мир. В главе три параграфа. § 6. Расстояние между фигурами. § 7. Параллельность прямых. § 8. Сумма углов треугольника.

§ 6. Расстояние между фигурами (3 часов). 6.1. Понятие о расстоянии. 6.2. Неравенство треугольника.

Урок 53 (п. 6.1. Понятие о расстоянии).

В этом пункте сначала определяется расстояние от точки до фигуры (как расстояние от точки до ближайшей точки фигуры), частным случаем которого является расстояние от точки до прямой. Затем определяется расстояние между фигурами, как расстояние между их ближайшими точками. Приводятся примеры из практики. Опираясь на то, что перпендикуляр короче наклонной, определяем перпендикуляр, опущенный из заданной точки A на плоскость, как кратчайший отрезок, соединяющий точку A с точками этой плоскости. Это позволяет определить высоту пирамиды.

Урок 54 (п. 6.2. Неравенство треугольника). Доказательство неравенства треугольника в п. 6.2 вполне традиционно. Это неравенство позволяет получить условие разрешимости задачи о построении треугольника по трём сторонам.

Урок 55. Решение задач по содержанию § 6.

§ 7. Параллельность прямых (6 часов). 7.1. Признаки параллельности прямых. 7.2. Пятый постулат Евклида и аксиома параллельности. 7.3. Проблема пятого постулата. 7.4. Свойства углов, образованных параллельными и секущей. 7.5. Построение прямоугольника. 7.6. Полоса.

Урок 56 (п. 7.1. Признаки параллельности прямых).

Признаки параллельности прямых (п. 7.1) — простые следствия теоремы о внешнем угле треугольника. Получить эти следствия ученики могут

сами, применив знакомый им способ от противного и вспомнив ещё раз теорему о внешнем угле треугольника.

Уроки 57 и 58 (п. 7.2. Пятый постулат Евклида и аксиома параллельности; п. 7.3. Проблема пятого постулата).

Формулировку Евклидом пятого постулата естественно связать с построением треугольника по стороне и двум углам — пятый постулат обеспечивает разрешимость этой задачи (п. 7.2). После решения этой задачи в п. 7.2 сказано, что сейчас пятый постулат заменяют аксиомой параллельности, формулируется эта аксиома, а затем из неё выводятся два планиметрических следствия: о том, что две прямые, параллельные третьей прямой, параллельны, и о том, что прямая, пересекающая одну из двух параллельных прямых, пересекает и вторую из них. В конце п. 7.2 доказана равносильность пятого постулата (в нём говорится о непараллельности прямых!) и современной формулировки аксиомы параллельности. Поэтому в дальнейшем, когда требуется установить параллельность прямых, можно ссылаться на пятый постулат.

Специальный пункт 7.3 посвящён истории работ по проблеме пятого постулата и созданию Н. И. Лобачевским неевклидовой геометрии.

Урок 59 (п. 7.4. Свойства углов, образованных параллельными и секущей).

Содержание этого пункта вполне традиционно. В нём снова применяется способ от противного. Стоит обратить внимание учеников на силу этого способа.

Урок **60** (п. 7.5. Построение прямоугольника).

Здесь описано построение прямоугольника — фигуры давно и хорошо известной ученикам, но существование которой может быть лишь теперь логически обосновано. При построении прямоугольника установлен его признак: четырёхугольник, имеющий три прямых угла, является прямоугольником.

Равными названы прямоугольники, имеющие соответственно равные стороны.

Урок 61 (п. 7.6. Полоса).

В последнем пункте § 7 — п. 7.6 установлено, что две параллельные прямые идут на постоянном расстоянии друг от друга, и вводятся понятия nonoca и uupuna nonoca.

§ 8. Сумма углов треугольника (4 часов). 8.1. Теорема о сумме углов треугольника. 8.2. Следствия из теоремы о сумме углов треугольника.

Урок 62 (п. 8.1. Теорема о сумме углов треугольника).

Теорема о сумме углов треугольника — важнейший факт евклидовой геометрии.

Урок 63 (п. 8.2. Следствия из теоремы о сумме углов треугольника).

В этом пункте получены важные следствия из теоремы о сумме углов треугольника: 1) о сумме острых углов прямоугольного треугольника; 2) о внешнем угле треугольника; 3) об угле равнобедренного прямоугольного треугольника.

Уроки 64 и 65. Решение задач по материалу главы III.

Урок **66**. Контрольная работа № 4. Параллельность. Сумма углов треугольника.

Вариант 1

- 1. Вычислите углы треугольника ABC, если $\angle A = \angle B = \frac{1}{2} \angle C$.
- 2. Начертите две параллельные прямые и секущую их прямую. Отметьте пару внутренних односторонних углов. Постройте биссектрису каждого из них. Докажите, что эти биссектрисы взаимно перпендикулярны.
- 3. В треугольнике $ABC \angle A = 60^{\circ}$, $\angle C = 80^{\circ}$, CC_1 биссектриса треугольника ABC, $CC_1 = 6$ см. Найдите длину отрезка BC_1 .
- 4. В тетраэдре PABC PA = PB = PC, $\angle APB = 40^{\circ}$, $\angle PBC = 70^{\circ}$. Докажите, что треугольник ABC равнобедренный.

Вариант 2

- 1. Вычислите углы треугольника ABC, если $\angle A = 120^{\circ}$, а $\angle B = 2\angle C$.
- 2. Начертите две параллельные прямые и секущую их прямую. Отметьте пару внутренних накрест лежащих углов. Постройте биссектрису каждого из них. Докажите, что эти биссектрисы параллельны.
- 3. В треугольнике $ABC \angle A = 70^{\circ}$, $\angle C = 75^{\circ}$, AA_1 биссектриса треугольника ABC, отрезок $BA_1 = 4$ см. Найдите длину биссектрисы AA_1 .
- 4. В тетраэдре $KMOP \ KM = KO = KP, \angle KOM = 50^{\circ}, \angle OKP = 80^{\circ}$. Докажите, что треугольник MOP равнобедренный.

Последние *уроки* 67—70 (если для них останется время) можно посвятить итоговому повторению или Дополнению к учебнику. Материал для итогового повторения можно взять из Введения к учебнику «Геометрия, 8»,

в котором кратко повторяется основное содержание курса геометрии 7 класса.

В учебнике имеется краткое Дополнение. «Аксиома прямоугольника и параллельность». В нём дан ещё один вариант изложения содержания темы *Параллельносты*, т. е. двух последних параграфов учебника.

За два тысячелетия решения геометрами проблемы пятого постулата они установили много разнообразных утверждений геометрии, каждое из которых может заменить пятый постулат и тем самым может заменить традиционную аксиому параллельности. С точки зрения авторов и согласно их принципам, традиционную аксиому параллельности, которая не может быть проверена на практике, стоило бы заменить на аксиому о возможности построения прямоугольника с заданными сторонами (мы окружены всевозможными реальными прямоугольниками, сделанными руками человека). В некоторых ранее изданных наших учебниках мы уже шли по такому пути, причём как учителя, так и ученики хорошо работали по этим учебникам. В академическом учебнике мы даём оба варианта изложения темы Параллельность. Учитель может выбрать тот путь, который ему больше нравится, или сравнить с учениками оба этих пути. Обсуждая два различных подхода к изложению темы Параллельность, учитель вместе с учениками выполнит исследование по проблеме пятого постулата.

В первом пункте Дополнения формулируется аксиома прямоугольника: по любым двум отрезкам а и b можно построить прямоугольник со сторонами а и b. Во втором пункте сначала доказывается, что сумма острых углов прямоугольного треугольника равна 90° (достраивая его до прямоугольника). А затем, разбивая высотой любой треугольник на два прямоугольных треугольника, получаем, что сумма углов любого треугольника равна 180°. Наконец, в п. 3 Дополнения доказывается единственность параллельной прямой.

Итоги

Завершается курс 7 класса. Выделим основное, изученное семиклассниками, вспомнив, какие задачи мы ставили перед курсом геометрии.

Во-первых, школьники научились строить фигуры с теми или иными свойствами.

Во-вторых, они стали доказывать, что построенные фигуры обладают требуемыми свойствами.

В-третьих, ученики узнали об аксиомах, на которые опираются доказательства остальных предложений геометрии.

В-четвёртых, опираясь на эти аксиомы, учащиеся доказали девять теорем и вывели многие следствия из них.

В-пятых, школьники начали знакомиться с симметрией фигур.

В-шестых, они научились видеть и рисовать геометрические фигуры.

В-седьмых, повысилась логическая культура учащихся: они узнали о взаимно обратных утверждениях, о способе доказательства от противного и о других общематематических понятиях.

В-восьмых, решая разнообразные задачи, выбирая различные способы их решения, семиклассники постоянно развивали свои умственные способности.

Наконец, в-девятых, они начали знакомство с богатой историей геометрии, узнали о её применениях в практике.

Это хороший итог занятий геометрией в 7 классе и прочный фундамент для её изучения в дальнейшем.

2. Решение задач учебника и ответы к ним Введение. Что такое геометрия

- **6.** Если один из двух кубов содержит другой куб, то их объединением будет больший куб, а пересечением меньший куб.
 - **7.** a) Можно; б) можно; в) нельзя.
 - **8.** a) Можно; б) можно; в) можно; г) нельзя.
- **9.** Цилиндр: а) можно; б) можно; в) нельзя. Конус: а) можно; б) нельзя; в) можно.

Глава I. Начала геометрии § 1. Отрезки

- **1.1.** а) 6; б) 9; в) 6; г) 10; д) 18; е) 30.
- **1.2.** а) BC имеет общую точку B с AB и с BB_1 и общую точку C с CC_1 и CD; б) отрезок AC_1 имеет общую точку A с рёбрами, идущими из этой точки, и общую точку C_1 с рёбрами, идущими из этой точки.
- **1.3.** С отрезком AC_1 (BC) не имеют общих точек рёбра, не имеющие с ним общих вершин параллелепипеда.
 - **1.4.** Нет, не лежит.
- **1.7.** Отрезок с поверхностью куба может не иметь общих точек, может иметь одну или две общие точки, а также иметь бесконечное число общих точек.
 - 1.8. Эти три диагонали куба пересекаются в одной точке.
- **1.9.** а) Три отрезка; б) стало 6 отрезков добавилось три отрезка. в) В этой задаче *подсчитывают* пары точек (концы отрезков), составленные из заданной совокупности точек, *перечисляя* эти пары. Если точек стало n

(к уже имевшимся n-1 точкам добавили ещё одну), то число отрезков возросло на n-1. Всего число S пар из n точек равно такой сумме: (n-1)+(n-2)+...+2+1. Эту сумму уже можно считать ответом. Чтобы найти более краткую формулу для суммы S, напишем её ещё раз со слагаемыми, идущими в обратном порядке: S=1+2+...+(n-2)+(n-1). Тогда становится ясно, что 2S=n(n-1), поскольку (n-1)+1=n, (n-2)+2=n, ..., 2+(n-2)=n, 1+(n-1)=n. Следовательно, S=0.5n(n-1).

- **1.10.** a) Отрезком *AB*; б) прямой *AB*.
- **1.11.** 4.
- **1.12.** Два луча *CA* и *CB*.
- **1.13.** Три прямые и 12 лучей.
- **1.14.** Три или одна.
- **1.15.** Треугольник ABC (рис. 1). Следует обратить внимание на то, что отрезки, идущие из точки C в точки отрезка AB, заполняют треугольник ABC.

1.16. Последовательно рассматриваются такие случаи: а) все четыре точки лежат на одной прямой — тогда прямая одна (рис. 2, a); б) три точки лежат на одной прямой, а четвёртая лежит не на этой прямой — тогда прямых четыре (рис. 2, δ); в) среди четырёх точек нет трёх, лежащих на одной прямой, — тогда прямых шесть (рис. 2, δ).

1.17. Решение такое же, как в предыдущей задаче.

- **1.18.** а) Снова подсчитываются пары точек 10 пар из пяти точек. 6) Если точек n, то, как в задаче 1.9, число прямых равно 0.5 n(n-1). При n=6 их 15, а при n=7 их 21.
- **1.19.** Если четыре прямые лежат в одной плоскости, то может быть столько же точек пересечения, сколько пар прямых, т. е. шесть. Если же они не лежат в одной плоскости, то у них не более четырёх точек пересечения.
 - **1.21.** Окружности с центром O и радиусом OA.
 - 1.22. Решение даёт рисунок 54 учебника.
- **1.26.** Точки X заполнят: а) отрезок AB; б) луч, дополнительный к лучу BA.
- **1.27.** Точки X заполнят: а) отрезок CB, серединой которого является точка A; б) лучи, дополнительные к лучам BA и CA.
- **1.28.** Точки X заполнят отрезок MB, где M такая точка отрезка AB, что AM = CD.
 - **1.29.** Отрезок *CB* и отрезок *MK*, где AK = AC и AM = AB.
 - **1.30.** Луч CA, где точка C середина отрезка AB.
 - **1.31.** $AB < AC < AC_1$.
- **1.32.** У прямоугольного параллелепипеда могут быть равными друг другу только 4, 8 или 12 рёбер.
- **1.37.** а) Дано: AC = BD. Доказать: AD = BC. Если точки C и D совпали, то очевидно, что AD = BC. Если точки C и D не совпали, то для расположения точек C и D могут представиться такие случаи. 1) Отрезки AC и BD общих точек не имеют (рис. 3, a). Тогда AB = AC + CB и AB = AD + DB, а потому AD = BC (аксиома 3 Евклида). 2) Равные отрезки AC и BD имеют общий отрезок CD (рис. 3, δ). Тогда AC = AD + DC и BD = BC + CD, а потому AD = BC (аксиома 3 Евклида). 6) В этом случае применяем аксиому 2 Евклида.

1.38. Пропедевтика преобразования гомотетии. Аккуратные построения и измерения должны дать такие результаты: MN = 2BC и PQ = 3BC.

1.41. Рис. 4.

1.42. Рис. 5.

1.43. Рис. 6.

1.44.
$$AB = BC = CD = \frac{1}{3}AD = \frac{1}{2}AC = \frac{1}{2}BD$$
.

1.45. a) 24 mm; б) 68 mm.

1.46. a) 48 mm; б) 16 mm; в) 64 mm.

1.47. Рис. 7.

1.48. При решении задач «а» и «б» ученики должны понять, что длина объединения двух перекрывающихся отрезков меньше суммы их длин на длину их общей части. Поэтому в случае «а» длина объединения равна 5+6-2=9, а в случае «б» длина пересечения равна 5+6-10=1.

Если в задаче «в» неизвестную длину второго отрезка обозначить через x, то x+4=7+1. Поэтому x=4.

- **1.49.** а) Рис. 8, а.
- б) Рис. 8, б и в.
- в) Если a > b, то d = 0.5(a b) (рис. 8, ε).

Если a < b, то d = 0.5(b-a) (рис. $8, \partial$). Эти формулы можно объединить так: d = 0.5|a-b|.

a)
$$A = D = C = B$$

$$AC = 10 \text{ cm}, CB = 2 \text{ cm}, AD = 6 \text{ cm}, CD = 10 - 6 = 4 \text{ cm}$$

6)

$$A = C D B$$
 $AC = 3 \text{ cm}, CD = 1 \text{ cm}, AD = AC + CD = 4 \text{ cm}$
 $BD = AD = 4 \text{ cm}, CB = CD + DB = 5 \text{ cm}$

A)
$$AC = a, CB = b, a < b, AD = DB = \frac{a+b}{2} > a,$$

$$CD = AD - AC = \frac{a+b}{2} - a = \frac{b-a}{2} = d$$

Рис. 8

1.50. Пусть точка C разбивает отрезок AB длиной a на отрезки AC = c и CB = b (рис. 9). Поскольку AC + CB = AB, то c + b = a. Пусть точка K — середина отрезка AC, а точка M — середина отрезка CB. Тогда KM = KC + CM = 0.5c + 0.5b = 0.5(c + b) = 0.5a.

- **1.51.** Полагая длины сторон треугольника равными a, b c, имеем a+b=10, b+c=10, c+a=10. Складывая эти равенства, получаем, что 2(a+b+c)=30. Поэтому периметр a+b+c=15 (см), а длина каждой стороны равна 5 см.
- **1.52.** а) 4a; б) увеличится на 4x; в) уменьшится на 4y; г) увеличивается в k раз; д) $4 ; е) изменились на <math>\frac{1}{4}q$; ж) сторона увеличилась в пять раз.
- **1.53.** Пусть известны расстояния AB и BC. Требуется найти AC. Если точка B лежит внутри отрезка AC, то длина AC равна сумме расстояний AB и BC: AC = AB + BC. Если точка B лежит вне отрезка AC, то длина AC равна модулю разности расстояний AB и BC (рис. 10).

1.54. Пусть a — длина отрезка, а x и y — длины его частей. а) Если x = ky, то ky + y = a, y = a: (1 + k), x = ka: (1 + k). б) Если x - y = b, то $x = \frac{1}{2}$ (a + b) и $y = \frac{1}{2}$ (a - b). Если точка C лежит вне отрезка AB = a на луче AB, то AC = x и BC = y, и можно задать отношение x: y = k, а тогда ky - y = a, y = a: (k - 1), x = ka: (k - 1). В этом случае можно также задать x + y = b, а так как x - y = a, то $x = \frac{1}{2}$ (a + b) и $y = \frac{1}{2}$ (b - a).

- **1.56.** а) Врыт 21 столб. Пятый от конца столб удалён от конца на 4 м. Поэтому от начала он удалён на 16 м (20-4=16). Десятый от начала столб удалён от начала на 9 м, и десятый от конца столб удалён от конца на 9 м. Поэтому расстояние между этими столбами равно 20-9-9 м, т. е. 2 м. б) 298 столбов.
- **1.58.** Если в основании пирамиды квадрат со стороной 5 см (10 см), то боковое ребро пирамиды равно 15 см (10 см). Такие пирамиды можно построить. Если же основание пирамиды равно 15 см, то пирамиду с боковым ребром 5 см построить нельзя. В общем случае у таких пирамид боковое ребро должно быть больше половины диагонали квадрата, который является основанием пирамиды.

1.61. Три (рис. 11).

- 1.62. Четыре равных друг другу треугольника.
- **1.64.** Можно так: два четырёхугольника равны, если равны их соответствующие стороны и соответствующие диагонали.
- **1.65.** Пусть $\triangle ABC$ основание пирамиды PABC, AB = AC и PA = PB = PC. Возможны следующие случаи. 1) $AB \neq BC$, $AB \neq PA$. Тогда два равных треугольника: $\triangle PAB = \triangle PAC$. 2) $AB \neq BC$, AB = PA. Тогда две пары равных треугольников: $\triangle PAB = \triangle PAC$ и $\triangle ABC = \triangle PBC$. 3) AB = BC и $AB \neq PA$. Тогда $\triangle PAB = \triangle PAC = \triangle PBC$. 4) AB = BC и AB = PA. Тогда все 4 грани пирамиды равны друг другу.

1.66. Рис. 12.

1.67. Рис. 13.

§ 2. Окружность и круг. Сфера и шар

2.2. На три части (рис. 14, a, δ). На три части (рис. 14, ϵ , ϵ) или на четыре части (рис. 14, ∂).

2.3. Если две окружности равны, то случаев, аналогичных случаям на рис. 14, δ и 14, ϵ , нет. Две равные окружности разобьют плоскости либо на три части (рис. 15, a, δ), либо на четыре (рис. 15, ϵ).

- **2.5.** Ответ даёт рис. 11 к задаче 1.61.
- **2.7.** Круг с центром O и радиусом a.
- **2.8.** а) Окружность с центром O и радиусом, равным половине радиуса исходной окружности; б) концы, отличные от точки O, заполнят окружность с центром O и радиусом, равным удвоенному радиусу исходной окружности.
 - 2.9. Эти окружности равны.
 - 2.10. Эти центры лежат на одной прямой.
- **2.11.** Наименьший радиус имеет окружность с центром в середине данного отрезка. Остальные окружности имеют любые большие радиусы, а потому окружности с наибольшим радиусом нет.
- **2.12.** Ширина кольца между двумя концентрическими окружностями это разность их радиусов.
 - 2.14. По окружности, концентрической с данной.
- **2.15.** Можно: вращать надо лист бумаги вокруг одной из ножек циркуля.
- **2.16.** Надо учитывать, что каждая пара точек на окружности задаёт две дуги.
 - 2.18. Рис. 16.

2.20. В плоскости окружность и прямая могут иметь либо две общие точки (рис. 17, a), либо одну общую точку (рис. 17, δ), либо не иметь общих точек (рис. 17, s).

В плоскости круг и прямая могут иметь либо общий отрезок (рис. 18, a), либо одну общую точку (рис. 18, δ), либо не иметь общих точек (рис. 18, s).

Если прямая не лежит в плоскости окружности (круга), то она может либо иметь с окружностью (с кругом) одну общую точку (когда эта точка является точкой пересечения прямой с плоскостью, рис. 19, a), либо не иметь с окружностью (с кругом) общих точек (рис. 19, δ).

Рис. 19

2.21. На рисунке 20 перечислены возможные случаи.

- Рис. 20
- 2.22. Сектором, большим полукруга, или кругом.
- **2.23.** Если два сектора имеют общий радиус, то их объединение это новый сектор, если такого радиуса нет то это два исходных сектора.
 - 2.24. Либо сектор, либо диаметр.
 - 2.25. Либо сектор, либо радиус, либо точка центр круга.
 - 2.26. Да, полукруг является и сектором и сегментом круга.
 - 2.27. Да, на два полукруга.
- **2.28.** а) Диаметр круга самая длинная его хорда; б) самой короткой хорды в круге нет; в) да; г) да; д) да.
- **2.29.** Две дуги одной окружности можно назвать равными, если, вопервых, их стягивают равные хорды и, во-вторых, обе эти дуги либо не больше полуокружности, либо обе они не меньше полуокружности. Середина дуги это точка, которая разбивает её на равные дуги.

2.30. а) 3 или 4; б) 4, 5, 6 или 7. Четыре хорды могут разбивать круг на пять, шесть, ..., одиннадцать частей (рис. 21).

Рис. 21

- **2.31.** a) Две; б) две; в) одну; г) ни одной.
- **2.42.** То, что центрально-симметричные прямые и плоскости параллельны, ученики пока доказать не могут. Поэтому здесь эти утверждения остаются для них на интуитивном уровне. Позднее они будут доказаны.
- **2.43.** Ученик ошибается окружность должна лежать в некоторой плоскости, а линия на сфере не обязана лежать в некоторой плоскости.
 - 2.44. Рис. 22.

Рис. 22

2.45. а) Рис. 23; б) рис. 24; в) рис. 25.

2.46. а) Отрезок можно получить в пересечении шара с отрезком, с лучом или с прямой; б) круг можно получить в пересечении шара с кругом, с плоскостью, с полуплоскостью и с другими плоскими фигурами, содержащими круг; в) единственную общую точку с шаром имеет, например, любой отрезок, у которого один конец лежит на поверхности шара, а все остальные точки не принадлежат шару.

2.47. Рис. 26.

2.48. Пусть сфера S радиуса R имеет своим центром точку O (рис. 27 на с. 46).

$$OX = OX_1 = OZ = OZ_1 = R$$

 $OY = OY_1 < R$

Рис. 27

Докажем, что точка O является центром симметрии и сферы S, и ограниченного ею шара T. Чтобы доказать это, надо убедиться, что для любой точки X (Y) сферы S (шара T) симметричная ей относительно точки O точка X_I (Y_I) тоже является точкой сферы S (шара T). Так как $OX_1 = OX$ ($OY_1 = OY$) и OX = R ($OY \le R$), то $OX_1 = R$ ($OY_1 \le R$), т. е. точка X_1 (Y_1) является точкой сферы S (шара T).

Это достаточно формальное доказательство можно дополнить наглядным представлением о том, что сфера (и шар) состоит из пар точек, симметричных относительно центра O: X и X_1 , Z и Z_1 (Y и Y_1). Симметричные относительно центра точки сферы являются концами диаметра сферы (диаметрально противоположными). Если формальное доказательство не проводится, то можно ограничиться этим наглядным представлением.

- **2.49.** Любая плоскость, проходящая через точки A и B, пересекает сферу по окружности, так как таких плоскостей бесконечно много, то и окружностей, проходящих через точки A и B, бесконечно много.
- **2.50.** Если точки A и B не диаметрально противоположные, то через них на сфере S с центром O проходит единственная большая окружность: она получается в пересечении сферы с плоскостью AOB (рис. 28, a). Если же точки A и B диаметрально противоположны, то центр O лежит на отрезке AB и любая плоскость, проходящая через прямую AB, пересекает S по большой окружности, проходящей через точки A и B (рис. 28, δ).

Рис. 28

2.51. На четыре двуугольника.

2.52. Три большие окружности, не проходящие через одну точку, разобьют сферу на 8 частей. Если провести ещё одну, четвёртую окружность, то три предыдущие разобьют её на 6 дуг, и к восьми частям добавится ещё шесть, т. е. станет 14 частей. И далее, добавляя к n уже имеющимся окружностям ещё одну, получаем, что они разбивают её на 2n частей, а потому добавляется к уже имеющимся 2n частей. Формула получится такая: 2+2+4+6+8+...+2n=2+n(n+1).

§ 3. Углы

- **3.7.** Эти лучи заполнят угол AOB.
- 3.8. У граней треугольной пирамиды 12 углов.
- 3.9. У граней четырёхугольной пирамиды 16 углов.
- **3.10.** а) На простейшем уровне можно сказать, например, так: все развернутые углы равны друг другу; поэтому если из них удалить (от них отнять) равные друг другу углы, то оставшиеся смежные им углы тоже будут равны (аксиома 3 Евклида).

Но можно дать и строгое доказательство, опираясь на аксиомы об углах.

 \square Пусть равны $\angle O$ и $\angle O_1$. Тогда (по свойству равных углов) равны и их соответственные хорды AB и A_1B_1 (рис. 29).

Рис. 29

Рассмотрим углы BOM и $B_1O_1M_1$, смежные с углами O и O_1 , полагая, что $OM = O_1M_1$ (рис. 30).

Тогда отрезки BM и B_1M_1 — соответственные хорды этих углов. Так как $\angle BAO$ и $\angle B_1A_1O_1$ имеют равные соответственные хорды OB и O_1B_1 , то $\angle BAO = \angle B_1A_1O_1$ (по признаку равенства углов). Но отрезки BM и B_1M_1 — соответственные хорды равных углов BAO и $B_1A_1O_1$. По свойству равных углов $BM = B_1M_1$. А так как эти равные отрезки являются и соответственными хордами углов $\angle BOM$ и $\angle B_1O_1M_1$, то по признаку равенства углов $\angle BOM = \angle B_1O_1M_1$. б) Является следствием пункта «а».

3.18. Например, можно поступить так: построить любой угол O и провести любую окружность S с центром в точке O. Стороны угла O пересекут эту окружность в некоторых точках A и B (рис. 31). Последовательно строим хорды окружности S, равные хорде AB, и проводим через их концы из точки O лучи. Эти лучи и будут ограничивать углы, равные углу O.

51

- **3.19.** $\angle OBC = \angle OCB$ (по определению равенства углов). А тогда $\angle OBA = \angle OCD$ как углы, смежные с равными углами.
 - **3.20.** $\angle A = \angle B$ по определению равенства углов.
- **3.21.** а) $\angle AOB = \angle AOC$ по определению равенства углов, так как OA = OA, OB = OC и AB = AC. б) Доказывается аналогично.
- **3.22.** а) OA = PA, OB = PB, AB = AB. Поэтому $\angle AOB = \angle APB$. 6) OA = PA, OB = PB, OP = OP. Поэтому $\angle OAP = \angle OBP$. в) Если радиусы окружностей не равны, то углы OAP и OBP равны, но углы AOB и APB не равны (рис. 32).

- **3.23.** Верёвка сначала заменит циркуль. Поэтому она даст возможность построить те точки O_1 , A_1 и B_1 , которые строятся в решении задачи 3.15. Натянутая верёвка заменит линейку, когда нужно будет соединить эти точки отрезками.
 - 3.26. Нет, углы могут быть прямыми.
- **3.27.** а) Биссектриса развёрнутого угла составляет с его сторонами прямой угол. б) Биссектриса угла, меньшего развёрнутого, составляет с его сторонами острый угол. Биссектриса угла, большего развёрнутого, составляет с его сторонами тупой угол.
- **3.28.** На плоскости это верно, а в пространстве нет: например, углы соседних граней куба не смежные.
 - **3.29.** 24.

- **3.30.** Все диагонали граней куба являются соответственными хордами равных друг другу прямых углов. Поэтому все диагонали граней куба равны между собой.
- **3.31.** Пусть ABCD квадрат (или ромб). Рассмотрим $\triangle ABC$ и $\triangle ADC$: AC = AC, AB = AD, BC = DC. Поэтому $\angle BAC = \angle DAC$ (по определению равенства углов).
- **3.32.** Пусть ABCD квадрат (или ромб) и O точка пересечения его диагоналей. Так как $\angle BAO = \angle DAO$ (предыдущая задача), AB = AD и AO = AO, то BO = DO как соответственные хорды равных углов. Аналогично AO = OC.
- **3.33.** AB = BC = CA как соответственные хорды равных углов. Требуемые равенства углов следуют из определения равенства углов.
- **3.34.** Верёвка и мел позволяют откладывать равные отрезки на сторонах угла и сравнивать их соответственные хорды.
 - 3.35. Следует проверить, что этот угол равен смежному с ним углу.
 - 3.36. Биссектрисы должны пересечься в одной точке.
- **3.37.** Шесть пар из четвертей исходного угла, три пары, равные его половине и одна пара из $\frac{3}{4}$ угла. Всего десять пар.
 - 3.38. Три прямых угла.
 - 3.39. Продолжение задачи 3.36.
 - **3.40.** Четырёхугольник ABCD, в котором AB = BC = CD = DA.
- **3.41.** Если отрезки OA и OB не равны, то отрезки AC и BC не являются соответственными хордами. Поэтому углы AOB и BOC равны не будут.
- **3.43.** Луч BD_1 не лежит в плоскости угла A_1BC_1 , а потому его биссектрисой не является.
 - **3.45.** На семь частей.
- **3.47.** Если O точка пересечения диагоналей основания пирамиды PABCD, то две пары вертикальных углов образованы прямыми AC и BD, две пары прямыми PO и AC, и две пары прямыми PO и BD. Всего шесть пар.
 - 3.48. Тоже вертикальными.
- **3.49.** Если O центр окружности, то $\angle AOC = \angle BOD$ и $\angle AOD = \angle BOC$ как вертикальные. Так как OA = OB = OC = OD, то AC = BD и AD = BC.
- **3.50.** Углы AOD и BOC вертикальные, они равны, а AD и BC соответственные хорды этих углов. Поэтому AD = BC. Если AO = OC, то AB = CD.

- **3.51.** Лучи AK и AM дополнительные. Если допустить, что дополнительным к лучу будет некоторый луч AP, отличный от AM, то получим, что $\angle CAP = \angle ABK$ как вертикальные, и тогда от луча AC отложены два равных угла CAM и CAP, что противоречит аксиоме откладывания угла.
- **3.53.** Первое равенство верно, а второе нет, так как точка D не лежит в плоскости угла AB_1C .
- **3.57.** Если сложить два оставшихся угла, то получится удвоенный больший угол, а если их вычесть, то получится удвоенный меньший угол.
- **3.59.** Сумма смежных углов равна развёрнутому углу. Значит сумма половин смежных углов равна половине развёрнутого угла, т. е. прямому углу (рис. 33). Биссектрисы смежных углов являются сторонами этого прямого угла. Поэтому они перпендикулярны.

3.60. Пусть луч p является биссектрисой некоторого угла 1 (рис. 34, a). Луч p разбивает угол 1 на два равных угла 3 и 4. Луч p_1 , дополнительный к лучу p, разобьёт угол 2, вертикальный углу 1, на углы 5 и 6, вертикальные углам 3 и 4 и равные соответственно этим углам (рис. 34, δ).

Так как $\angle 3 = \angle 4$, $\angle 3 = \angle 5$ и $\angle 4 = \angle 6$, то $\angle 5 = \angle 6$. Поэтому луч p_1 является биссектрисой угла 2, т. е. лучи p и p_1 — биссектрисы вертикальных углов 1 и 2 — составляют одну прямую.

- **3.61.** Биссектрисы двух пар вертикальных углов образуют две прямые (задача 3.60). Их перпендикулярность следует из задачи 3.59.
- **3.62.** $\angle ad = \angle ab \angle bd$. $\angle bc = \angle ab \angle ac$. Так как $\angle bd = \angle ac$, то $\angle ad = \angle bc$ (по аксиоме 3 Евклида). Во втором случае углы ad и bc представляем как суммы и ссылаемся на аксиому 2 Евклида.
 - **3.63.** Должно получиться равенство: $\angle ABC + \angle DCB = \angle ADC$.
 - 3.64. Должен получиться развернутый угол.
 - 3.65. Должно получиться равенство этих сумм.
 - 3.69. Рис. 35.

- **3.70.** а) Коническая фигура, которая получена вращением угла $CAB=60^\circ$ вокруг прямой AB; б) коническая фигура, которая получена вращением угла $MBK=120^\circ$ вокруг прямой AB, где BK луч, дополнительный к лучу BA; в) плоскость, проходящая через точку B и покрытая прямыми, перпендикулярными прямой AB.
- **3.71.** а) $\alpha + \beta = 180^\circ$; б) линейной, от 0° до 180° ; в) при возрастании одной другая убывает.
- **3.73.** б) Если известны два вертикальных угла, то остальные найти нельзя.
- **3.74.** Если данный угол имел величину α , то полученные углы будут равны α , $\frac{\alpha}{2}$, $90^\circ-\frac{\alpha}{2}$, $90^\circ+\frac{\alpha}{2}$, 90° .

3.75—3.80. Ответы даны в учебнике.

3.81. а) Пусть AOB — острый угол, луч $OK \perp OA$, луч $OM \perp OB$ и $\angle KOM$ — острый (рис. 36, a). Тогда $\angle AOK = \angle AOB + \angle BOK$, $\angle BOM = \angle BOK + \angle KOM$. Так как углы AOK и BOM — прямые, то они равны. Поэтому $\angle AOB$ + $\angle BOK$ = $\angle BOK$ + $\angle KOM$. Следовательно, $\angle AOB = \angle KOM$. б) Если перпендикуляры OK и OM являются сторонами тупого угла, то этот угол вместе с углом AOB и двумя прямыми углами AOKи BOM составляет полный угол, т. е. 360° (рис. $36, \delta$). Поэтому сумма углов *AOB* и *KOM* равна 180°.

- 3.82. Углы со взаимно перпендикулярными сторонами либо равны, либо их сумма равна 180°.
- 3.83. Равенство «а» верно в случае, указанном на рис. 37. Равенство «б» верно для лучей, не идущих в одну полуплоскость. Для лучей, не лежащих в одной плоскости, оно неверно.

Рис. 37

- 3.84. Эти углы острые.
- **3.85.** $\angle ABC > \angle ACB$.
- **3.86.** Углы *A* и *B* острые.
- 3.89. Три двугранных угла.

Задачи к главе І

- **I.1.** а) Объединение данных отрезков разбивается их концами на три отрезка, длины которых a-c, c, b-c. Поэтому (a-c)+c+(b-c)=d. Следовательно, a+b=c+d. б) В этом случае длина объединения уменьшается. в) Длина пересечения уменьшается.
- **I.2.** а) x + (x + 1) + (x + 2) = 10; б) x + 2x + 4x = 10; в) x + 0.5x + x = 10; г) $x + \frac{x+1}{2} + (x+1) = 10$. Решая уравнения, находим длины отрезков.
- **I.3.** в) Положим AB=a, BC=b, AC=c, CD=d (рис. 38). Найдём зависимости между этими величинами. Для обоих случаев расположения то чки C имеем a=|b-c|. Выразим d через a, b, c. Если c>b (рис. 38, a), то CD=CB+BD, т. е. d=b+0.5a=0.5(b+c). Если b>c (рис. 38, δ), то CD=CA+DD, т. е. d=c+0.5a=0.5(b+c). Итак, в обоих случаях $d=\frac{b+c}{2}$.

- **І.4.** а) Надо учесть, что точка C может занять два положения на прямой. Если C между A и B, AC = 2 см. Если B между A и C, AC = 6 см. б) Снова два случая: AD = 10 см или AD = 2 см.
- **I.5.** Можно считать прямую AB числовой осью с началом в точке A, на которой точка B имеет координату 2, точка C координату 3, а точка X координату X (рис. 39).

Тогда равенство |AX| = |BX| + |CX| приводит к уравнению |x| = |x-2| + |x-3|. Число решений этого уравнения и показывает, сколько

раз выполнялось равенство |AX| = |BX| + |CX|. Таких решений два: x = 5 и $x = \frac{5}{3}$. Аналогично можно рассмотреть равенства |BX| = |AX| + |CX| и |CX| = |AX| + |BX|.

І.6. Будем считать прямую AB числовой прямой с началом в точке B и положительным лучом BA, а координату точки A положим равной a (рис. 40).

$$\frac{B}{\overrightarrow{v}} \quad \frac{C}{\overrightarrow{V}}$$
Puc. 40

Тогда координата середины отрезка AB — точки C — равна 0.5a. Через промежуток времени t координата точки B станет равной v_2t , координата точки A станет равной $a+v_1t$, а координата точки C станет равной их полусумме: $0.5(a+v_1t+v_2t)$. Поэтому за время t середина отрезка AB пройдёт путь, равный $0.5(v_1t+v_2t)$. Следовательно, скорость середины отрезка AB равна $0.5(v_1t+v_2)$.

- **1.7.** Рассмотреть два случая: точки могут двигаться в одном направлении или в разных направлениях. Если точки двигаются в одном направлении, то AB = s, если двигаются в разных, то AB = s + 2vt.
- **I.8.** Удобно представить себе луч AB, на котором последовательно отложены отрезки, каждый длиной в 2 м, и точки A и B чередуются (рис. 41).

Тогда переменное по направлению движение точки X на отрезке AB изобразится поступательным движением этой точки по лучу AB.

- а) Расстояние между соседними точками A на луче AB равно 4 м. Поэтому в точках A точка X оказывается через число секунд t_A , кратное четырём: $t_A = 4n$. В минуте, а также и в часе, число секунд кратно четырём. Поэтому и через 10 мин, и через 1 ч точка X окажется в точке A. А через 5 с точка X окажется в середине отрезка AB точке C. Поэтому от точки A точка X будет через 5 с удалена на 1 м.
- б) Первый раз в точке C точка X окажется через 1 с. Расстояния между соседними точками C на луче AB равно 2 м. Поэтому расстояние между

первой и десятой точками C равно 18 м. Его точка X пройдёт за 18 с. Следовательно, десятый раз точка X окажется в точке C через 19 с.

- в) За 180 с точка X прошла от первой до сорок шестой точки A (180 : 4 = 45). Ближе к точке A (чем к точке B) она была тогда, когда находилась на отрезках AC и CA (а не на отрезках CB и BC). Сумма длин отрезков AC и CA между первой и сорок шестой точками A равна сумме длин отрезков CB и BC. Поэтому ближе к точке A, чем к точке B (точнее, не дальше от точки A, чем от точки B), точка X была через 90 с.
- **І.9.** а) Ясно, что через 1 с точки K и L встретятся в точке C такой, что AC = 1 м (рис. 42).

Точка K возвращается в точку A через 6 с. Точка L возвращается в точку B через 3 с. Так как 10 мин = 600 с, а 1 ч = 3600 с, то через 10 мин и 1 ч точки K и L будут в исходных положениях, а потому KL = 3 м. 6) Точки K и L возвращаются в исходные положения через 6 с и процесс повторяется. За 6 с они встретятся 3 раза: через 1 с в точке C, через 3 с в точке B и через 5 с снова в точке C. Поэтому за 60 с они встретятся 30 раз, а за 3 мин = 180 с они встретятся 90 раз. в) Расстояние 3 м между точками K и L может быть в двух ситуациях. 1) Точка K находится в точке A, а точка L находится в точке L Приходит в точку L через 3 + 6L с (где L находится в точке L приходит в точку L через 1,5 + 3L с (где L натуральное число). А точка L приходит в точку L через 1,5 + 3L с (где L натуральное число). Ясно, что ситуация, при которой точка L находится в точке L наход

I.10. а) Пусть AB — подвижный отрезок, а CD — неподвижный. И пусть в начальный момент расположение точек на прямой такое: A, B, C, D. Встреча двух отрезков начинается тогда, когда точка B совпадает с точкой C. Заканчивается встреча, когда точка A совпадает с точкой D. Время встречи определяется тем временем, когда точка A сначала попадёт в точку C, а затем в точку D. Для этого она должна пройти расстояние, равное сумме длин этих отрезков, т. е. 3 м. Так как она двигается со скоростью 1 м/с, то искомое время составляет 3 с. б) Решение задачи сводится к предыдущему решению «а», если считать второй отрезок неподвижным, а скорость первого считать равной сумме скоростей, т. е. 3 м/с.

- **I.11.** В случае «а» движения складываются и через 10 с длина OA = 10 см и длина AX = 10 см; поэтому OX = 20 см. В задаче «б» приходится рассматривать ещё и движение точки X относительно точки O на её пути от B к A, т. е. против хода отрезка. Эта скорость, согласно данным задачи, равна O, т. е. относительно точки O точка X в таком движении неподвижна. Когда отрезок AB пройдёт O см (а это, согласно данным задачи произойдёт через O см O точка O пройдёт расстояние O двигается в точке O и затем начнёт своё движение к точке O не меняется и остаётся равным O см. Следующие O м, оставшиеся до O м, точка O пройдёт, двигаясь снова от O к O с суммарной скоростью O м/с, т. е. за O с. Общее время равно O но O с O
- **I.12.** а) 1 м в обоих случаях эти дуги покроют всю окружность. в) Длина пересечения не меньше 0.8 м и не больше 0.9 м, а длина объединения не меньше 0.9 м и не больше 1 м.
- **I.13.** а) Половину. б) Возможны два случая расположения точек A, B, C: рис 43, a и δ . В первом случае (рис. 43, a) дуга AB составляет $\frac{5}{12}$ окружности, дуга $AK \frac{5}{24}$ окружности, а дуга CAK равна $\frac{1}{4} + \frac{5}{24} = \frac{11}{24}$ окружности. Дуга CBK дополняет дугу CAK до полной окружности. Во втором случае (рис. 43, δ) дуга AB составляет $\frac{1}{12}$ окружности, дуга $AK \frac{1}{24}$ окружности, а дуга CAK равна $\frac{1}{4} + \frac{1}{12} = \frac{1}{3}$ окружности. Дуга CBK дополняет дугу CAK до полной окружности.

І.14. а, б) Дуга *PH* равна 0,35 окружности (рис. 44).

Рис. 44

I.15. Может быть два случая (рис. 45, a, δ).

Рис. 45

І.16. а) Рис. 46, a. б) Рис. 46, δ . в) Если γ — величина угла dc, где d — биссектриса угла ab (рис. 46, e, e), то $\gamma = |\beta \pm 0.5\alpha|$.

Рис. 46

- **І.17.** В случаях «а» и «б» угол равен 80°. В случае «в» $\,c\,$ любой луч угла $\,ab.$
 - **I.18.** 90°; 50°; 130°.
- **I.19.** Наименьшее число областей для n окружностей равно n+1. Наибольшее число для трех окружностей 8, а для четырех 8+6=14 (рис. 47).

Рис. 47

I.20. а) На 3 или 4; б) 4, 5, 6, 7; в) наименьшее — 5, наибольшее — 11. **I.21.** а) 3; б) 5; в) 3; г) 3 (рис. 48).

Рис. 48

I.22. а) Никакие три точки не должны лежать на одной прямой. б), в) Рис. 49.

I.23. а) Построить угол, равный 20°, как разность прямого угла и угла в 70°, а затем поделить его пополам. б) $7^{\circ} = (90^{\circ} - 34^{\circ}) : 8$. в) $65^{\circ} = 20^{\circ} + 90^{\circ} : 2$.

I.24. Рис. 50.

Рис. 50

- **1.25.** Пусть лучи на плоскости идут в таком порядке: a, b, c, d. При этом углы ab и cd прямые, причём лучи a и d не лежат на одной прямой. Пусть m биссектриса угла bc, а n биссектриса угла da. Имеем $\angle mn = \angle mb + \angle ba + \angle an = 0.5 \angle bc + \angle ba + 0.5 \angle ad = 90^{\circ} + 0.5(\angle bc + \angle ad) = 90^{\circ} + 0.5(360^{\circ} \angle ab \angle cd) = 90^{\circ} + 0.5(360^{\circ} 180^{\circ}) = 180^{\circ}$.
- **1.26.** Три прямые могут разбить плоскость на 7 частей (рис. 51, *a*). *Четвёртая* прямая, которую пересекают три исходные прямые, точками пересечения с ними будет разбита на *четыре* части и к уже имеющимся семи частям добавятся еще *четыре*, т. е. станет 7 + 4 = 11 частей. Аналогичное рассуждение можно провести, если добавить *пятую* прямую: тогда ста-

нет 11 + 5 = 16 частей (рис. 51, δ). Отметим ещё, что проводя первую прямую, мы увеличили число частей на 1, проводя вторую — на 2, проводя третью — на 3. А для n прямых наибольшее возможное число частей равно 1 + 1 + 2 + 3 + 4 + ... + n, т. е. 1 + 0.5n(n + 1).

- **I.27.** Биссектриса является продолжением одного из имеющихся лучей.
 - **I.28.** Из одного утверждения не следует и из двух тоже (рис. 52).

1.29. а, б) Взаимно перпендикулярные прямые; в) это возможно для невыпуклых углов (рис. 53).

Рис. 53

І.31. Оба неправы. Результат зависит от расположения углов относительно данного отрезка: лучи этих углов могут находиться с одной стороны от него, а могут и с разных сторон от него. Соответственно этому будут получаться разные ответы. Необходимо рассматривать оба случая.

I.32. а) Полученные точки A и B будут центрально симметричны относительно точки O пересечения этих прямых. Этот результат можно получить, доказав, что угол между лучами OA и OB — развёрнутый. Равенство отрезков OA и OB можно будет доказать позже. б) Полученные отрезки будут центрально симметричны относительно точки O пересечения этих прямых. Центральная симметричность их концов получается сразу, а центральную симметричность их внутренних точек можно будет доказать позже.

I.33. Можно (рис. 55).

Рис. 55

- **І.34.** Задача может быть решена, исходя из наглядных или практических соображений. Из наглядных соображений решение может быть, например, таким. Нарисуем вокруг данной окружности шесть таких же, имеющих с данной одну общую точку. Затем проведём два отрезка, соединяющих противоположные точки касания. Другой способ двукратное перегибание рисунка так, чтобы окружность самосовместилась.
- **I.35.** Траектория зависит от направления удара. Если удар будет направлен в середину соседней стороны, то шар вернётся в первоначальную точку.
- **1.36.** Это случалось тогда, когда угол поворота был один и тот же и равнялся $180^{\circ}\left(1-\frac{2}{n}\right)$, где n целое число, большее двух (это угол правильного многоугольника). Простейший пример, когда n=3 и угол поворота равен 60° . Для n=4 имеем 90° .
- **I.37.** а) 6°; б) 30°, 75°, 172,5°, 2,5°, 96°– 0,5° = 95,5°; в) 13.00; в 14.00 угол был равен 60°, за 1 мин он сокращается на 5,5°; чтобы угол сократился

- на 15° должно пройти 15 : 5,5 мин, т. е. угол 45° будет в 14 ч $\frac{30}{11}$ мин; 14.00; 15.00; 20.00; для угла в 135° следует провести аналогичное рассуждение, отсчитывая по 5,5° за минуту после 20.00; 21.00; 18.00.
- **I.38.** Каждая стрелка (минутная и часовая) движутся равномерно. Поэтому минутная относительно часовой движется равномерно. В такой ситуации мы можем считать, что часовая стрелка неподвижна, а минутная движется со скоростью, равной разности скоростей этих стрелок. Фиксируем положение часовой стрелки в 12.00, и будем считать, что минутная стрелка находится в положении 9.00. Острый угол минутная стрелка со стоящей в положении 12.00 часовой стрелкой образует от 9.00 до 3.00. Тупой же угол она образует от 3.00 до 9.00. Поскольку в эти промежутки минутная стрелка проходит одинаковый путь, то затраченное время в обоих случаях одно и то же.
 - **І.40.** а, б) 45°; в) 135°; г) 90°; д) 180°; е) 90°.
- **I.41.** Указание: для изменения расположения прямой достаточно перемещать одну из задающих её точек.
- **I.42.** Указание: середину отрезка нужно строить с помощью последовательного выполнения двух команд: «Построения» и «Середина», предварительно выделив внутреннюю часть отрезка с помощью мыши. Для измерения расстояния между точками воспользуйтесь последовательным выполнением двух команд: «Измерение» и «Расстояние», предварительно выделив обе точки с помощью мыши.
- **I.43.** Указание: биссектрису угла нужно строить с помощью последовательного выполнения двух команд: «Построения» и «Биссектриса», предварительно выделив сначала точку на одной стороне угла, далее вершину, и, наконец, точку на другой стороне угла с помощью мыши. Для измерения угла воспользуйтесь последовательным выполнением двух команд: «Измерение» и «Угол», предварительно выделив сначала точку на одной стороне угла, далее вершину, и, наконец, точку на другой стороне угла с помощью мыши.

Глава ІІ. Треугольники

§ 4. Первые теоремы о треугольниках

4.5. Следствие определения центральной симметрии, свойства вертикальных углов и первого признака равенства треугольников (рис. 56).

Рис. 56

4.6. У центрально-симметричных треугольников соответственные стороны равны (по задаче 4.5). Следовательно, такие треугольники равны (рис. 57).

4.9. В учебнике на рис. 155 три четырёхугольные пирамиды с вершиной в точке A: $ACDD_1C_1$, ACC_1B_1B , $AA_1B_1C_1D_1$. Равны друг другу их основания — квадраты, шесть треугольников, на которые диагонали AD_1 , AC, AB_1

граней куба разбивают эти грани, также $\triangle AD_1C_1 = \triangle AB_1C_1 = \triangle ACC_1$ (рис. 58).

Рис. 58

4.14. a) AC=BC, так как $\triangle BOC = \triangle AOC$ (по теореме 1, рис. 59, a). б) $\angle OCA = \angle OCB$ как соответственные углы равных треугольников BOC и AOC (по теореме 2). в) Пусть K — точка пересечения отрезка AB с лучом OC (рис. 59, б). Тогда $\triangle ACK = \triangle BCK$ (по теореме 1). Поэтому $\angle AKC =$ $= \angle BKC$ (по теореме 2). Так как эти углы смежные, то они — прямые, т. е. $AB \perp CO$.

4.15. Равенство углов AOB и COD следует из равенства треугольников AOB и COD.

4.16. Пусть S — окружность с центром O, AB — диаметр этой окружности и её точки K и M равноудалены от точки A: AK = AM (рис. 60, *a*). Проведём радиусы OA и OB, а также хорды BK и BM (рис. 60, *б*). $\triangle OAK = \triangle OAM$ (по трём сторонам). Поэтому $\angle AOK = \angle AOM$ (по теореме 2) и $\angle KOB = \angle MOB$ (как смежные с равными углами AOK и AOM). Поэтому $\triangle BOK = \triangle BOM$ (по теореме 1) и BK = BM.

Рис. 60

4.17. Возможны два случая расположения хорд AK и BP (рис. 61, a, δ). Проведём радиусы OK и OP и рассмотрим треугольники AOK и BOP. Они равны (по трём сторонам). Поэтому $\angle KAB = \angle PBA$. Проведём хорды AP и BK (рис. 62, ϵ , ϵ). Треугольники ABP и ABK равны (по теореме 1). Поэтому AP = BK.

Рис. 61

- 4.18. Следствие первого признака равенства треугольников.
- **4.19.** Угол A треугольника ABC в сумме со смежным с ним внешним углом α равен 180° : $\angle A + \alpha = 180^\circ$ (рис. 62). По теореме $3 \angle B < \alpha$. Поэтому $\angle A + \angle B < 180^\circ$.

- **4.21.** а) По числу сторон: треугольники, четырёхугольники и т. д.; б) острые, прямые, тупые, развёрнутые; в) по числу граней.
- **4.25.** Так как сумма любых двух углов треугольника меньше 180°, то эти углы могут быть лишь острыми. Третий угол треугольника может быть любым углом. Если же все углы треугольника равны, то эти углы острые.
- **4.30.** Интуитивно ясно, что при возрастании длины отрезка BX длина отрезка AX также возрастает. Доказать это можно после изучения теорем о сравнении сторон и углов треугольника (§ 5).
- **4.31.** На плоскости два отрезка, перпендикулярные третьему отрезку, либо лежат на одной прямой, либо лежат на параллельных прямых. В пространстве эти прямые могут также и пересекаться, и не лежать в одной плоскости (рис. 63).

4.38. Этот треугольник — равнобедренный. Действительно, если высота BK треугольника ABC является и его биссектрисой, то она разбивает этот треугольник на два прямоугольных треугольника ABK и CBK. Эти треугольники имеют общий катет BK и две пары соответственно равных углов,

прилежащих к *BK*. Поэтому $\triangle ABK = \triangle CBK$ (по второму признаку равенства треугольников). Следовательно, AB = CB.

4.39. Рис. 64.

4.40. Пусть в треугольнике ABC углы A и B — острые. Тогда высота CK треугольника ABC лежит внутри этого треугольника (рис. 65, a). Если допустить противное, то приходим к противоречию: один из углов A или B должен быть тупым, так как смежным с ним будет острый угол прямоугольного треугольника (рис. 65, δ). Поэтому все высоты остроугольного треугольника идут внутри него. Обратное: если высота CK идёт внутри треугольника, то углы A и B этого треугольника — острые углы прямоугольных треугольников CKA и CKB. Следовательно, высота, проведённая к той стороне треугольника, у которой один из прилежащих углов — тупой, идёт вне треугольника (рис. 65, a). А в тупоугольном треугольнике таких сторон — две.

4.41. Для прямоугольного.

§ 5. Сравнение сторон и углов треугольника

5.1. Если в треугольнике ABC медиана AM является и высотой (рис. 66), то $\triangle AMB = \triangle AMC$ (по двум катетам) и потому AB = AC.

5.3. Рис. 67 и 68.

Рис. 67

Рис. 68

5.4. Рис. 69.

- **5.5.** Хорды одной окружности постоянной длины это основания равнобедренных треугольников, боковыми сторонами которых являются радиусы этой окружности. Медианы этих треугольников, соединяющие центр окружности с серединами оснований, имеют равные длины. Поэтому все эти середины заполнят окружность, концентрическую с данной окружностью.
- **5.7.** а) Если x длина основания, то x+5 это боковая сторона, а потому x+2(x+5)=100 и x=30 (см); б) x+2x+2x=100, x=20 (см); в) $x+\frac{2}{3}x+\frac{2}{3}x=100$, $x=\frac{300}{7}$ (см).
- **5.8.** а) Пусть периметр равнобедренного треугольника ABC (AB = AC) равен 12 см, а медиана AM = 1 см. Тогда сумма периметров треугольников AMB и AMC больше периметра треугольника ABC на 2AM, т. е. равна 14 см. Поэтому периметр каждого из них равен 7 см.
- б) Можно, например, задать периметры треугольников ABC и AMB и попросить найти медиану AM.
- **5.13.** В равнобедренном треугольнике такое разбиение производит медиана, проведённая к основанию. Пусть стороны треугольника ABC равны a, b, c. Из вершины A проведём хорду AM треугольника ABC и положим BM = x. Периметры треугольников AMB и AMC будут равны, если AB + BM = AC + CM, т. е. c + x = b + a x. Из этого уравнения находим, что x = 0.5(a + b c). Соответствующая хорда AM и даёт ответ на вопрос.
 - 5.15. Можно сослаться на аксиому о свойстве равных углов.
- **5.16.** Треугольник мог быть равнобедренным, а медиана и биссектриса были проведены к его боковой стороне.
- **5.17.** Треугольник, одна вершина которого лежит в центре окружности, а две другие вершины лежат на окружности, равнобедренный. Поэтому центр окружности равноудалён от концов хорды и лежит на серединном перпендикуляре хорды этой окружности (согласно признаку серединного перпендикуляра).
- **5.18.** Прямые, содержащие высоты равностороннего треугольника ABC, являются серединными перпендикулярами его сторон. Точки каждой такой прямой равноудалены от двух вершин равностороннего треугольника. Поэтому точка O пересечения серединных перпендикуляров сторон AB и BC равноудалена от всех трёх вершин треугольника ABC: OA = OB = OC. Следовательно, серединный перпендикуляр и стороны AC пройдет через точку O.
 - 5.19. Те же самые рассуждения, что и в предыдущей задаче.

- **5.20.** Эти серединные перпендикуляры являются медианами изображений граней *PAB*, *PBC* и *PAC* пирамиды *PABC*.
- **5.21.** Центр окружности равноудалён от концов любой её хорды. Поэтому серединные перпендикуляры этих хорд содержат центр окружности, т. е. все они проходят через центр окружности.
- **5.22.** а), б) $\angle OXA = \angle OXB$ и $\angle OAX = \angle OBX$ как соответственные углы равных прямоугольных треугольников AOX и BOX; в) $\angle XAK = \angle XBK$ как соответственные углы равных треугольников XAK и XBK.
- **5.23.** а) В равнобедренном треугольнике XAB угол A равен углу B. Треугольники AXK и BXT равны (по теореме 1). Поэтому XK = XT. б) В равнобедренном треугольнике HKT угол HKT равен углу KTH. Поэтому равны смежные им углы: $\angle HKA = \angle HTB$. Следовательно, равны треугольники HKA и HTB (теорема 1). Поэтому HA = HB.

Можно было бы рассуждать и так: у отрезков AB и HK общая середина, а потому у них общий серединный перпендикуляр и его точки равноудалены как от концов одного отрезка, так и от концов другого.

- **5.24.** а) Пусть прямая b серединный перпендикуляр отрезка AB. Для расположения прямых a и b есть три возможности: 1) они пересекаются и тогда на a есть единственная точка, равноудалённая от точек A и B; 2) прямые a и b параллельны и тогда такой точки нет; 3) a и b совпадают и тогда все точки прямой a равноудалены от A и B. Случаи b0 и b0 исследуются аналогично.
- **5.25.** Свои предположения о том, что точка, равноудалённая от всех вершин треугольника, лежит внутри остроугольного треугольника, на гипотенузе прямоугольного треугольника и вне тупоугольного треугольника ученики пока обосновать не могут для этого нужна аксиома параллельности или какой-либо её эквивалент (например, утверждение о том, что сумма углов треугольника равна 180°).
- **5.26.** Да, для этого надо построить с одной стороны от прямой AB две точки, равноудалённые от точек A и B.
 - **5.27.** Да, они лежат на серединном перпендикуляре отрезка *AB*.
- **5.28.** Если бы точка X лежала на прямой p, то выполнялось бы равенство XA = XB, что противоречит условию задачи. Поэтому точка X не лежит на прямой p.
- **5.29.** Утверждения, что в равнобедренном треугольнике медиана, проведённая к основанию, является его биссектрисой и высотой, являются свойствами равнобедренного треугольника и доказаны в теореме 4. Докажем обратные им утверждения, которые являются признаками равнобедренного треугольника. а) Пусть в треугольнике ABC медиана AM является также и биссектрисой (рис. 70, a). Продолжим AM за точку M на отрезок

MK, равный AM, и проведем отрезок BK (рис. 70, δ). Треугольники AMC и KMB равны по первому признаку. Поэтому BK = AC и $\angle CAM = \angle BKM$. Но $\angle CAM = \angle MAB$. Значит $\angle MAB = \angle MKB$ и треугольник ABK — равнобедренный (по теореме 5). Получили, что AB = BK. А так как BK = AC, то AB = AC.

б) Если в треугольнике ABC биссектриса AM является и высотой (рис. 71), то треугольники AMB и AMC равны по второму признаку равенства треугольников, а потому AB = AC.

- в) Прямоугольные треугольники AMB и AMC равны по двум катетам, а потому AB = AC.
- **5.30.** Если углы вертикальные, то они равны. Обратное утверждение (если углы равны, то они вертикальные) неверно.
- **5.31.** Пусть диагонали AC и BD прямоугольника ABCD пересекаются в точке O (рис. 72).

Рис. 72

Прямоугольные треугольники DAB и ABC равны (по двум катетам). Поэтому $\angle DBA = \angle CAD$. Следовательно, в треугольнике OAB два равных угла и по теореме 5 он равнобедренный: OA = OB. Аналогично доказываем равенства OB = OC, OC = OD. Поэтому OA = OC и OB = OD.

- **5.32.** Вытекает из определения центральной симметрии и из предыдущей задачи.
- **5.38.** $\triangle ABM = \triangle ACK$ (по первому признаку). Поэтому $\angle ABM = \angle ACK$. А тогда углы OBC и OCB равны (как разности равных углов). Поэтому треугольник OBC равнобедренный (по признаку равнобедренного треугольника).
- **5.39.** Доказательство аналогично доказательству в предыдущей задаче.
- **5.40.** Если AX высота, то AX < AB и AX < AC. Если AX не перпендикулярно BC, то один из углов AXB или AXC тупой. Пусть, например, $\angle AXB$ тупой. Тогда AX < AB (согласно теореме 6). Если $\angle AXC$ тупой, то AX < AC.
- **5.41.** Проведём отрезок AY. Тогда, согласно предыдущей задаче, отрезок XY меньше одного из отрезков AY или BY. Отрезок BY меньше BC. А отрезок AY меньше одной из сторон AB или AC. Отсюда и следует, что XY меньше одной из сторон треугольника ABC.
- **5.42.** а) Наибольший угол A, наименьший угол C; б) углы B и C равны и меньше угла A; в) углы A и B равны и больше угла C.
- **5.43.** В треугольнике ABC: a) BC < AB < AC; б) AB = BC < AC; в) AB = AC = BC.
- **5.44.** а) Треугольник ABC равнобедренный и его основание AC больше его боковых сторон. Поэтому угол B больше равных друг другу

- углов A и C; б) Наибольшей является сторона AB, а потому наибольшим является угол B. Какой угол наименьший, сказать нельзя.
- **5.45.** а) Треугольник PMK равнобедренный (MK = PK) и основание MP наименьшая сторона; б) наибольший угол $\angle K$, наименьший угол $\angle M$; поэтому наибольшая сторона PM, а наименьшая сторона PK.
- **5.46.** а) Наименьший отрезок ребро куба, а наибольший диагональ куба; б) наименьший отрезок это ребро 2, а наибольший это диагональ параллелепипеда.
- **5.47.** A, B, E, Ж, З, К, М, H, О, П, С, Т, Ф, Х, Ш, Э, Ю (полагаем, что эти буквы без завитков на концах).
 - **5.48.** 3, 8, 0.
 - 5.53. а) Тоже по часовой стрелке; б) против часовой стрелки.
- **5.54.** Диагонали квадрата ABCD равны друг другу, взаимно перпендикулярны и пересекаются в точке O, которая делит их пополам. Поэтому точки A и C, стороны AB и CB, а также стороны AD и CD симметричны относительно диагонали BD.
- **5.55.** Вершины квадрата попарно симметричны относительно такого перпендикуляра.
 - 5.56. Это прямая, проходящая через центры этих окружностей.
 - **5.57.** Рис. 73, *a* к задаче «а» и рис. 73, *б* к задачам «б» и «в».

Рис. 73

Задачи к главе II

- **II.1.** Вершинами правильного тетраэдра являются концы непараллельных диагоналей двух параллельных граней куба.
- **II.3.** Каждая из вершин этих трёх равнобедренных треугольников лежит на серединном перпендикуляре общего основания треугольников, так как она равноудалена от его концов.

II.4. a)
$$2x + (x + 12) = 100$$
, $x = 29\frac{1}{3}$.

II.7. a) 1 м через 1 с, 1,5 м через 1,5 с, 1 м через 2 с, 1 м через 10 с;

6)
$$t = \frac{10}{100} = 0.1 \text{ c}, t = \frac{20}{100} = 0.2 \text{ c}.$$

- **II.8.** Достаточно одну из сторон разделить на равные части и соответствующую сторону второго треугольника разделить на столько же равных частей. Затем противоположную этой стороне вершину каждого треугольника соединить со всеми точками деления.
- **II.9.** а) Равенство биссектрис вытекает, например, из второго признака равенства треугольников. б) Если бы в главе 2 уже была доказана теорема о сумме углов треугольника, то равенство высот тоже следовало бы из второго признака равенства треугольников. А именно, равенство высот вытекало бы из признака равенства прямоугольных треугольников по гипотенузе и острому углу. Но этот признак можно доказать и без теоремы о сумме углов треугольника. Сделаем это.

Пусть в прямоугольных треугольниках ABC и $A_1B_1C_1$ равны гипотенузы AB и A_1B_1 , а также острые углы A и A_1 . Покажем, что $AB = A_1B_1$. Допустим, что это не так. Отложим на луче AB отрезок AK, равный A_1B_1 . Точка K не совпадает с точкой C. Треугольник ABK равен треугольнику $A_1B_1C_1$ (по первому признаку). Следовательно в нём угол K — прямой. Но тогда из точки B на прямую AC опущены два перпендикуляра BC и BK, что невозможно. Мы пришли к противоречию. Признак равенства прямоугольных треугольников по гипотенузе и острому углу доказан.

- **II.10.** Треугольники равны: а) по .определению; б) по первому признаку; в) по второму признаку; г) по второму признаку.
- **II.11.** а), б) Треугольники OAP и OBP равносторонние. б) Из равенства треугольников OAP и OBP будет верным равенство $\angle OAP = \angle OBP$.
- **II.12.** а), б) Оба эти утверждения вытекают из равенств KA = KB = HA = HB; в) Если окружности не равны, то $KA \neq HA$, но KA = KB и HA = HB, а потому K и H точки серединного перпендикуляра отрезка AB, т. е. прямая KH серединный перпендикуляр отрезка AB.

- **II.13.** Полагаем, что точки B и C лежат с одной стороны от прямой AO. Имеем равенства треугольников: $\triangle OAB = \triangle OAB_1$ и $\triangle OAC = \triangle OAC_1$. Углы, равенства которых следует установить в пунктах «б» и «в» являются разностями и суммами соответственно равных углов этих треугольников. Равенство $BC = B_1C_1$ вытекает из равенства треугольников ABC и AB_1C_1 .
- II.14, II.15. Задача II.14 является частным случаем задачи II.15, так в равностороннем треугольнике высоты лежат на серединных перпендикулярах его сторон, а также высоты равностороннего треугольника равны друг другу (задача ІІ.9). Уже доказано, что серединные перпендикуляры сторон треугольника пересекаются в одной точке (задача 5.19). Эту точку для равностороннего треугольника ABC обозначим через O. Пусть точки K, L, M середины его сторон СВ, СА, АВ соответственно. Прямые АК, ВL и СМ являются серединными перпендикулярами сторон треугольника АВС и пересекаются в точке O. Поэтому OA = OB = OC. Из равенства равнобедренных треугольников ОАВ, ОВС и ОАС следует, что равны их углы: $\angle AOB = \angle BOC = \angle COA = 120^{\circ}$ — и равны их высоты: OK = OL = OM. Проведём равные друг другу перпендикуляры KA_1 , LB_1 и MC_1 к сторонам треугольника во внешнюю сторону. Имеем $OA_1 = OK + KA_1$, $OB_1 = OL + LB_1$, $OC_1 = OM + MC_1$. Так как в этих суммах первые слагаемые равны друг другу, а также вторые слагаемые равны друг другу, то $OA_1 = OB_1 = OC_1$. Угол A_1OB_1 — вертикальный с углом AOB, а потому он равен 120°. Аналогично, $\angle B_1 O C_1 = \angle A_1 O C_1 = 120^\circ$. Поэтому равны треугольники $A_1 O C_1$, C_1OB_1 , B_1OA_1 , из чего следует равенство сторон треугольника $A_1B_1C_1$.
- **II.16.** а) Прямоугольные треугольники PAB и PAC равны. Поэтому PB = PC. б) Для этого достаточно, чтобы PA = AB и угол BAC был прямым.
- **II.17.** Треугольники AKP и AKB равны по первому признаку. Поэтому KP = KB.
- **II.18.** а) Это соответственные медианы в равных треугольниках PAB, PAC, PBC; б) BK = CK при любом положении точки K на ребре PA, так как треугольники PBK и PCK равны при любом положении точки K на ребре PA; в) CK = CM как соответственные медианы в равных треугольниках PAC и PBC; г) если K середина PA, M середина PB, H середина PC, то треугольники PKM, PMH и PHK равны, а потому KM = MH = HK.
- **II.19.** До аксиомы параллельности (или теоремы о сумме углов треугольника) доказать утверждения о положении точки, равноудалённой от вершин треугольника, нельзя.

- **II.20.** а) Пусть X_1 и X_2 два положения точки X, причём $OX_2 > OX_1$. Так как угол OX_1A внешний угол треугольника X_1AX_2 , то он больше угла OX_2A . Поэтому угол, под которым виден отрезок OA при удалении точки X от точки O, убывает. б) Из теоремы о внешнем угле треугольника вытекает, что тот угол, который имеет вершину в удаляющейся точке, убывает, а угол, который имеет вершину в точке, двигающейся к точке O, возрастает.
- **П.21.** В задаче ставится вопрос о нескольких признаках равенства треугольников. Ответ будет отрицательным, если приводится пример двух треугольников, у которых названные элементы (стороны, углы, медианы, высоты, биссектрисы) соответственно равны, а сами треугольника не равны. Формулировка этой задачи могла бы быть и такой: единственно ли решение задачи на построение треугольника по указанным элементам. Если это построение не однозначно, то признак места не имеет. Обсудим эти признаки. а) Вообще говоря, нет, не равны (рис. 74); но если что-то еще дополнительно указано (например, что угол прямой или тупой), то такие треугольники будут равны.

б) Да, равны, но доказать это, применив второй признак равенства треугольников, можно после доказательства теоремы о сумме углов треугольника в \S 8. в) Да, равны; третья их сторона (точнее, её половина) является медианой в треугольнике, у которого две данные стороны, а третья сторона — удвоенная медиана (рис. 164, δ учебника). г) Нет, не равны (рис. 74). д) Да, равны, но доказать это можно после того, как появится формула для площади треугольника. е) Нет, не равны. Если рассмотреть треугольник CA_1B с данным углом B и половиной данной стороны BA_2 ,

который отсекает данная медиана CA_1 (рис. 75), то получим случай, рассмотренный в пункте «а».

ж) Нет, не равны. Обосновать это будет легче после того, как появится аксиома параллельности. Тогда в треугольнике AMC, который отсечёт медиана AM от треугольника ABC, высота будет равна половине высоты треугольника ABC (рис. 76, a).

Для построения треугольника ABC сначала надо построить треугольник AMC по двум сторонам AM и MC и высоте MK. А задача на построение такого треугольника не решается однозначно (рис. 76, δ). 3) Да, равны. Соответствующая задача на построение имеет единственное решение. и) Да, равны, но доказать это и решить соответствующую задачу на построение можно после теоремы о точке пересечения медиан треугольника. к) Поскольку в случае, когда высота, медиана и биссектриса равны друг другу (случай равнобедренного треугольника) таких треугольников бесконечное множество, то ответ отрицательный.

II.22. а, б) Можно.

II.23. *Указание:* для измерения угла воспользуйтесь последовательным выполнением двух команд: «Измерение» и «Угол», предварительно выделив сначала точку на одной стороне угла, далее вершину и, наконец, точку на другой стороне угла с помощью мыши.

II.24. Указание: для измерения угла воспользуйтесь последовательным выполнением двух команд: «Измерение» и «Угол», предварительно выделив сначала точку на одной стороне угла, далее вершину, и наконец, точку на другой стороне угла с помощью мыши.

Для измерения длины отрезка есть два способа: а) воспользоваться последовательным выполнением двух команд: «Измерение» и «Расстояние», предварительно выделив оба конца отрезка с помощью мыши, б) воспользоваться последовательным выполнением двух команд: «Измерение» и «Длина», предварительно выделив внутреннюю часть отрезка с помощью мыши.

II.25. Указание: постройте точку D, симметричную точке A относительно прямой a, и воспользуйтесь тем, что длина отрезка AC равна длине отрезка DC.

Для построения точки D, симметричной точке A относительно прямой a, опустите перпендикуляр из точки D на прямую a с помощью последовательного выполнения двух команд: «Построение» и «Перпендикуляр», предварительно выделив прямую a и точку D с помощью мыши. Затем отложите от основания перпендикуляра отрезок, длина которого равна длине перпендикуляра, с помощью последовательного выполнения двух команд: «Построение» и «Окружность по центру и радиусу», предварительно выделив основание перпендикуляра и сам перпендикуляр с помощью мыши. В условии задачи переместите точки A и B. Проверьте, что ваше построение по-прежнему даёт верное решение задачи.

Примечание: эта задача, кроме упражнения на осевую симметрию, является подготовкой к изучению темы «Неравенство треугольника».

Глава III. Расстояния и параллельность

§ 6. Расстояния между фигурами

6.1. Пусть в окружности с центром O проведена хорда AB и точка Q — её середина. Так как треугольник OAB равнобедренный, то OQ — его медиана, а потому — высота. Но тогда OQ < OX, где X любая точка хорды, отличная от Q.

6.6. Рис. 77.

Рис. 77

6.7. Рис. 78.

Рис. 78

6.8. Рис. 79.

Рис. 79

- **6.9.** Нарисуем на плоскости горизонтальную прямую a и выше неё окружность F с центром в точке O. Пусть точка X лежит на прямой a. Расстояние от X до F равно длине отрезка XY, где Y точка пересечения отрезка OX с окружностью F. Когда точка X пробегает прямую a слева направо, то отрезок XY сначала убывает, становится минимальным, когда $OX \perp a$, и затем снова возрастает.
- **6.10.** Такой фигурой будет вся плоскость, из которой удалён круг с центром в данной точке и радиусом данного расстояния. В пространственном случае удаляется шар.
- **6.11.** а) К треугольникам AOB и BOB_1 ; б) к треугольнику AOB; в) расстояние от этой точки до всех треугольников одинаковое; г) к треугольнику A_1OB_1 .
- **6.12.** Надо взять меньшую из двух длин отрезка, указанных в условии.
- **6.13.** б) Пусть AH, BK и CM высоты треугольника ABC. Так как $AH \le AB$ и $AH \le AC$ и в одном из двух случаев имеет место строгое неравенство, 2AH < AB + AC. Поэтому AH < 0.5(AB + AC). Аналогично, BK < 0.5(BA + BC) и CM < 0.5(CA + CB). Складывая эти три неравенства, получаем. Что AH + BK + CM < AB + BC + AC.
- **6.14.** Высота пирамиды может либо совпадать с каким-либо ребром пирамиды, либо не совпадать с ним. В первом случае высота пирамиды равна ребру пирамиды, а во втором меньше ребра, так как является катетом в прямоугольном треугольнике, гипотенузой которого является ребро пирамиды.
- **6.15.** Расстояния от центра окружности до любой точки окружности равно её радиусу, а потому все эти радиусы кратчайшие отрезки от центра до окружности.
 - 6.16. Нет. Окружность и её центр.
 - 6.17. Да. Окружность (сфера) и её центр.
 - **6.18.** a) Да; б) нет; в) да.
 - 6.19. Следует из неравенства треугольника и из свойств неравенств.
 - **6.20.** a) 15 или 18; б) 20.
 - **6.21.** Любым, большим 20.
 - **6.22.** Любым в интервале (20, 40).
 - **6.23.** a) 1 < x < 3; б) 0 < x < 4; в) |a b| < x < a + b.
 - **6.24.** a) (30; 54); б) (28; 56); в) (28; 58).
- **6.25.** а) Проводим отрезок CK и применяем неравенство треугольника к треугольнику ACK; б) проводим отрезок DB и применяем неравенство треугольника к треугольнику DBK; в) AB = AK + KB, CK + KD = CD,

- AK < AC + CK, KB < KD + DB; складывая последние два неравенства, получаем требуемое неравенство.
- **6.26.** а) Применяем неравенство треугольника к треугольнику ACK; б) применяем неравенство треугольника к треугольнику BDK; в) перпендикуляры AB и DC на прямую BC короче наклонных AK и DK.

§ 7. Параллельность прямых

- **7.4.** В ромбе ABCD проведём диагональ AC. Из равенства равнобедренных треугольников ABC и ADC следует равенство накрест лежащих углов DAC и ACB. Поэтому $DA \parallel BC$. Аналогично, $AB \parallel DC$.
- **7.5.** Пусть ABC равнобедренный треугольник, в котором AB = AC, точки D и K середины сторон AB и AC соответственно. Проведем биссектрису AM в треугольнике ABC. Прямая AM перпендикулярна прямым BC и DK (задача 5.29). Поэтому $BC \parallel DK$.
- **7.7.** Углы между стрелками компасов и курсами кораблей должны быть равны.
- **7.8.** В противном случае получаем два перпендикуляра, проведённые из одной точки к одной прямой, что невозможно (см. п. 4.6).
 - **7.10**. a) На три; б) на 4; в) на 5; г) на 11.
 - **7.11.** 9.
 - **7.12.** Диаметр.
- **7.13.** Они параллельны: в противном случае прямая, параллельная первой из них, пересекала бы вторую, но не пересекала бы первую.
- **7.14.** Нет, не могут: если прямые a и b параллельны, то третья прямая c, пересекающая первую из них, должна пересекать и вторую.
- **7.15.** Пятый постулат говорит об односторонних углах. Аналогично, можно говорить и о других углах. Например, если соответственные углы, образованные при пересечении двух прямых третьей прямой, не равны, то первые две прямые не параллельны.
- **7.16.** Нижний и верхний края листа перпендикулярны боковому краю, а потому параллельны.
- **7.17.** Они параллельны потому, что две прямые, перпендикулярные одной прямой, параллельны.
- **7.20.** Пусть в равнобедренном треугольнике ABC с вершиной B точка K середина стороны AB и $KL \parallel AC$. Тогда $\angle BKL = \angle BAC$, $\angle BLK = \angle BCK$, $\angle B = \angle A$, следовательно, $\angle K = \angle L$, откуда следует, что треугольник BKL равнобедренный, значит: BL = BK = 0.5BA = 0.5BC.
- **7.21.** а) Пусть AB диаметр окружности с центром O, BD и AC хорды, $BD \parallel AC$. Проведём радиусы OA, OB, OC, OD. Имеем OA = OB = OB

- = OC = D = R, $\angle AOC = \angle BOD$. Так как у равнобедренных треугольников AOC и BOD равны углы при основании и боковые стороны, то они равны, а потому AC = BD.
- б) Так как $\angle AOC = \angle BOD$, то лучи OC и OD лежат на одной прямой, а потому CD диагональ четырёхугольника ABCD. $\angle AOC = \angle OCA$, $\angle OAD = \angle ODA$. Следовательно, $\angle OCA + \angle ODA = \angle OAC + \angle OAD = \angle CAD$, следовательно, угол $\angle CAD$ прямой.
- 7.22. Рассмотрим четырёхугольник ABCD. Пусть центр окружности O лежит внутри него. Проведём радиусы во все вершины четырёхугольника. Так как $2\angle OAD + \angle ODC + \angle OAB = 180^\circ$, $2\angle OBC + \angle OCD + \angle OBA = 180^\circ$ и $\angle OAB + \angle OAD + \angle ODA + \angle ODC = 180^\circ$, то $\angle OAB + \angle ODC = \angle AOD$. Точно так же $\angle COB = \angle OBA + \angle OCD$. Поэтому $\angle AOD = \angle COB$, треугольники AOD и COB равны по первому признаку и AB = CD.

Докажем второе утверждение. Сначала докажем его для случая, когда AB — диаметр. Проведём радиусы OB и OC. Так как OA = OB = OC = OD = R и AB = CD (по предыдущей задаче), то треугольники OAB и OCD равны, а потому равны углы A и B. Тогда равны треугольники ABC и ABD, а потому AC = BD.

Пусть теперь обе хорды AB и CD отличны от диаметра и лежат с разных сторон от диаметра KL, им параллельного. Проведём отрезки KA, KD, LB, LC, KC, LD. Мы уже получили ранее, что KA = LB, KC = DL, $\angle CKL = \angle DLK$, $\angle AKL = \angle BLK$, следовательно, $\angle AKC = \angle BLD$. Поэтому треугольники AKC и BLD равны, следовательно, AC = BD.

- 7.24. а) Два перпендикуляра к одной прямой параллельны; б) треугольники будут равны по определению равенства треугольников; в) диагонали равны как гипотенузы равных прямоугольных треугольников; г) это следует из того, что, во-первых, точка пересечения диагоналей делит их пополам и, во-вторых, каждая сторона прямоугольника при центральной симметрии относительно точки пересечения диагоналей переходит в противоположную сторону.
- **7.25.** Эти свойства вытекают из того, что диагонали квадрата разбивают квадрат на четыре равных друг другу равнобедренных прямоугольных треугольника.
- **7.26.** Каждая средняя линия прямоугольника является его осью симметрии, а точка их пересечения является центром его симметрии. Поэтому каждая из четырёх полученных его частей переходит в другую часть в результате осевой или центральной симметрии.
- **7.33.** Две оси симметрии, которые содержат средние линии четырёхугольника.

- **7.34.** Четыре оси симметрии, о двух из которых уже сказано в задаче 7.33, а две другие содержат диагонали квадрата.
 - 7.35. Ответы в учебнике. Решение очевидно.
 - **7.36.** Рис. 80.

- **7.37.** а) Построить прямоугольный треугольник, у которого гипотенуза вдвое больше катета, и достроить его до прямоугольника; б) это квадрат.
- **7.38.** а) Четырёхугольник, имеющий три прямых угла, является прямоугольником; б) прямая, перпендикулярная одной из двух параллельных, перпендикулярна и второй из них.
- **7.39.** Они являются прямоугольниками, у которых соответственно равны смежные стороны. Так как прямоугольник однозначно задаётся парой смежных сторон, то такие прямоугольники равны.
 - **7.41.** a)—г) Можно (рис. 81); д) нельзя.

Рис. 81

- **7.42.** Восстановить можно тогда, когда осталась средняя линия и точка на стороне, которой параллельна средняя линия. В других случаях восстановить нельзя.
- **7.43.** После развёртывания листа дыра в нём сложена из четырёх одинаковых отрезанных фигур (рис. 82). Получатся: а) ромб (рис. 82, a); б) квадрат (рис. 82, δ); в) прямоугольник (рис. 82, δ).

Рис. 82

- 7.44. Толщину небольших предметов измеряют штангенциркулем. Поэтому можно предложить инструмент, похожий на большой штангенциркуль — рейку, вдоль которой двигаются две перпендикулярные ей рейки.
- 7.45. Можно сделать обход, который представляет собой три стороны прямоугольника.
 - **7.46.** Рис. 83 для тетраэдра.

Рис. 83

§ 8. Сумма углов треугольника

- **8.1.** Все углы его равны 180° : $3 = 60^{\circ}$.
- 8.2. а), б). Достроим данный треугольник до равностороннего.
- **8.3.** а) 70°; б) 75°; в) 80°; г) 72°; д) 120°; е) 80°; ж) 36°.
- **8.4—8.7.** Ответы в учебнике.
- 8.8. Решается аналогично решению задачи 8.25, данному в учебнике.
- **8.9.** Если α и β данные углы. Решения в двух возможных случаях даны на рис. 84 и рис. 85. Ответы: в первом случае $0.5|\beta-\alpha|$, во втором случае $0.5(\alpha + \beta)$.

 $\angle DCK = \beta - \frac{\beta + \alpha}{2}$

Рис. 84

$$\angle DCK = \alpha + \frac{\beta - \alpha}{2}$$

8.10. Рис. 86.

CK — биссектриса, CM — медиана $\angle KCH = 45^{\circ} - \alpha$

8.11. Рис. 87.

Рис. 87

- **8.12.** Чтобы было удобнее вычислять углы, концы отрезков стоит обозначить.
- **8.13.** Грань ABC равносторонний треугольник, остальные грани равные друг другу равнобедренные треугольники, угол при вершине которых известен. Если он равен α , то остальные углы равны $90^{\circ}-0.5\alpha$.
 - **8.14.** От 128° до 130°.
- **8.15.** а) Меньший угол в интервале $(0^\circ; 45^\circ)$, больший угол равен 90° ; б), в) меньший угол в интервале $(0^\circ; 60^\circ)$, а больший угол в интервале $(60^\circ; 180^\circ)$.

- 8.16. Равносторонним треугольником.
- **8.17.** Углы 15° и 80° могут быть как углами при вершине равнобедренного треугольника, так и углами при его основании; угол 160° может быть лишь углом при вершине равнобедренного треугольника.
 - 8.18. Например, три угла четырёхугольника.
- **8.19.** Невозможно, чтобы: а) лишь в одном из углов число градусов было не целым; б) лишь в одном из углов были указаны секунды; в) число градусов было нечётным; г) сумма последних цифр градусов не равнялась 10; д) сумма углов была меньше 180°.
- **8.20.** а) Это вытекает из того, что сумма острых углов прямоугольного треугольника равна 90° (рис. 88).

б) Пусть CO — медиана прямоугольного треугольника ABC, проведённая к его гипотенузе AB (рис. 89).

Рис. 89

Продолжим медиану CO на отрезок OM = OC и проведём отрезок MA. Так как $\triangle OAM = \triangle OCB$, то $\angle OAM = \angle B$. Поэтому $\angle CAM$ равен сумме острых углов прямоугольного треугольника, т. е. этот угол прямой. Прямоугольные треугольники ABC и CMA равны (по двум катетам). Поэтому рав-

ны их гипотенузы CM = AB, а значит, равны и половины этих гипотенуз: OC = OA = OB.

- **8.21.** Оба признака являются следствиями второго признака равенства треугольников.
- **8.22.** Одна из диагоналей четырёхугольника разбивает его на два треугольника, сумма углов которых и даёт сумму углов четырёхугольника, т. е. $180^{\circ} + 180^{\circ} = 360^{\circ}$.
 - **8.23.** a) 35°; б) 130°; в) 90°; г) 130°; д) 100°; е) 90°.
 - **8.24.** В интервале (0°; 65°).
- **8.26.** Пусть в остроугольном треугольнике ABC проведены высоты AH и BK, которые пересекаются в точке M. Рассмотрим углы четырёхугольника CKMH: два угла по 90°, угол C треугольника ABC и тупой угол KMH между высотами. Так как сумма углов четырёхугольника равна 360°, то угол C равен острому углу между высотами AH и BK.
- **8.27.** Пусть в треугольнике *ABC* проведены биссектрисы *AH* и *BK*, которые пересекаются в точке *O*. В задаче 8.11 доказано, что $\angle AOB = 90^{\circ} + 0.5 \angle C$. Поэтому смежный с ним острый угол α между биссектрисами равен $90^{\circ} 0.5 \angle C$. Следовательно, $\angle C = 180^{\circ} 2\alpha$.
- **8.28.** Рис. 90. Как использовать этот результат для деления и удвоения угла, показано на рис. 91, a, δ .

8.29. Пусть внешний угол при вершине A равнобедренного треугольника ABC равен 2α . а) Тогда внешний угол при основании треугольника ABC равен $180^{\circ} - \alpha$. б) Пусть биссектрисы внешних углов при основании пересекаются в точке O. $\angle BCO$ равен половине внешнего угла, найденного в п. «а», т. е. он равен $90^{\circ} - 0.5\alpha$. Поэтому $\angle BOC = \alpha$. в) Этот угол является углом при основании MK равнобедренного треугольника OMK с углом α при вершине O, т. е. он равен $90^{\circ} - 0.5\alpha$. Этот же результат можно получить,

рассмотрев накрест лежащие углы при параллельных прямых BC и $K\!M$ и секущей $O\!M$.

8.30. Пусть из точки *O* проведены перпендикуляры *OK*, *OM* и *OP* на стороны *AB*, *BC* и *AC* соответственно (рис. 92). Пусть $\angle KOP = \alpha$, $\angle KOM = \beta$. Тогда $\angle A = 180^{\circ} - \alpha$, $\angle B = 180^{\circ} - \beta$, $\angle C = \alpha + \beta - 180^{\circ}$.

8.31. BC = AO = 1 (puc. 93).

8.32. Рис. 94.

8.33. в) Рис. 95.

Рис. 95

8.34. Рис. 96.

Рис. 96

Задачи к главе III

III.1. Образец решения такой задачи дан в учебнике — задача 8.25.

III.2. Посчитаем: a) $360^{\circ} \cdot 8 - 360^{\circ} \cdot 6 = 720^{\circ}$; б), в) $360^{\circ} \cdot 4 - 180^{\circ} \cdot 4 = 720^{\circ}$ = 720° ; г) $360^{\circ} \cdot 5 - 360^{\circ} - 180^{\circ} \cdot 4 = 720^{\circ}$. Получится всегда 720° для любого выпуклого многогранника. Это следует из формулы Эйлера e - k + f = 2 для числа вершин, рёбер и граней такого многогранника.

III.3. а) И основание, и боковая сторона лежат в интервале $\left(0, \frac{1}{2}\right)$;

б) в интервале $\left(\frac{10}{3}; 5\right)$.

III.4, III.15. Пусть дан треугольник ABC, в нём выбрана точка O и $OA = a_1$, $OB = b_1$, $OC = c_1$. По неравенству треугольника имеем $c < a_1 + b_1$, $a < b_1 + c_1$, $b < a_1 + c_1$. Складывая все три неравенства, получим $2(a_1 + b_1 + c_1) > a + b + c$. Далее имеем $a_1 + c_1 < a + c$, $b_1 + c_1 < b + c$, $a_1 + b_1 < a + b$. Складывая эти неравенства и сокращая на два, получаем, что $a_1 + b_1 + c_1 < a + b + c$.

III.5. Каждые две пересекающиеся прямые дают одну точку пересечения. Поэтому если каждые две из данных прямых пересекаются, то общее

число точек равно $\frac{(n-1)n}{2}$. Можно рассуждать и так: две прямые пересе-

каются в одной точке. Когда добавляется третья прямая, то число точек пересечения возрастает на 2, получаем 1+2; когда добавляется четвёртая прямая, то число точек пересечения возрастает на 3, т. е. получаем 1+2+3; ... когда происходит переход от n-1 к n, то добавляется n-1 точка, т. е. количество точек равно $1+2+3+\ldots+(n-1)$. Такую сумму мы уже считали: она равна $\frac{(n-1)n}{2}$.

- **III.6.** Через вершину A треугольника ABC проходят две такие прямые: одна из них параллельна прямой BC, другая содержит биссектрису угла A треугольника ABC.
- **III.7.** Пусть в треугольнике ABC сторона BC наибольшая. Опустим на неё высоту AH. Это наименьшая из высот треугольника ABC. Полоса, ограниченная прямой BC и прямой, проходящей через точку A и параллельной BC, имеет наименьшую ширину.
- **III.8.** Даны две точки A и B, а также отрезок a < AB. Строим прямоугольный треугольник ABC с катетом BC = a. Проводим прямую AC и параллельную ей прямую через точку B.
- **III.9.** а) Сначала в полосе строится прямоугольный треугольник с катетом, равным ширине полосы, и гипотенузой данной длины. Затем через данную точку проводится прямая *a*, параллельная гипотенузе построенного треугольника. б) Заданная точка должна быть равноудалена от краёв полосы. Тогда любая хорда полосы, проходящая через эту точку, делится ею пополам.
- **III.10.** Пусть дана полоса, ограниченная прямыми a и b. Возьмём любую точку A на прямой a и проведём через неё прямую p, наклонённую к прямой a на 60° . Прямая p пересечёт прямую b в некоторой точке b. Отложим на прямой a от точки a отрезок a0 так, чтобы угол a0 был равен a0. Треугольник a1 пскомый.
- **III.11.** Чтобы разбить плоскость на n частей достаточно на ней провести n-1 параллельную прямую.
- **III.12.** Пусть внутри угла A взяли точку M. Продолжим отрезок AM на отрезок MB, равный отрезку AM. Проведём через точку B прямые, параллельные сторонам угла, и обозначим через C и D точки пересечения их со

сторонами угла. Отрезок $C\!D$ — искомая хорда угла A, точка M — её середина.

- **III.13.** Пусть два равнобедренных треугольника ABC и KBC лежат с одной стороны от прямой BC и $\angle A$ меньше $\angle K$. Тогда $\angle KBC > \angle ABC$. Поэтому точка A лежит внутри треугольника KBC. Прямая AK является серединным перпендикуляром отрезка AB и делит пополам углы при вершинах A и K. Угол BAK тупой, а потому в треугольнике BAK сторона KB больше стороны AB. Следовательно, периметр треугольника KBC больше периметра треугольника ABC.
- **III.14.** Если вершины малого треугольника лежат на сторонах большого, то решение получается непосредственно из неравенства треугольника.

Если вершины малого треугольника лежат внутри большого треугольника, то вершины малого треугольника можно поочерёдно утянуть на стороны большого, увеличивая тем самым его периметр. Утягивание при этом можно производить по лучам, являющимся продолжением биссектрис малого треугольника за его вершины. При этом будут получаться тупые углы, которые и обеспечат выполнение нужных неравенств.

III.16.
$$a + b > c$$
; $a + b + c > 2c$; $c < \frac{1}{2}(a + b + c)$.

III.17. Пусть ABCD — четырёхугольник, точки K и L лежат на его сторонах AD и BC соответственно. В треугольнике BKC отрезок KL меньше какой-либо стороны KB или KC. Пусть он меньше KC. В треугольнике ACD отрезок KC меньше какой-либо из сторон AC или CD. Что и отвечает требованию задачи.

Утверждение обобщается на любой выпуклый многоугольник, а также на тетраэдр и вообще на выпуклый многогранник.

- **III.18.** Обозначим края полосы как a и b. Пусть точка A находится на краю a, точка B на краю b, причём прямая AB не перпендикулярна краям полосы. Средняя линия полосы пересекает AB в точке, равноудалённой от краёв полосы, а потому отрезок AB делится этой точкой пополам. Обратное утверждение может быть таково: если точка делит пополам некую хорду этой полосы, то она лежит на средней линии этой полосы. Для доказательства достаточно провести через эту точку прямую, перпендикулярную краям полосы.
- **III.19.** Оба утверждения следуют из теоремы о сумме углов треугольника, равенства углов при основании равнобедренного треугольника и второго признака равенства треугольников.

- **III.20.** а) К условию надо добавить, что и вторая прямая пересекает стороны угла. Тогда требуемое утверждение вытекает из равенства соответственных углов и признака равнобедренного треугольника. б) Вместо равенства соответственных углов используем равенство накрест лежащих углов. в) Если от некоторого угла две прямые отсекают равнобедренные треугольники, то эти прямые параллельны. Их параллельность следует из равенства соответственных углов. а), б) и г) Верны, в) нет.
- **III.21.** Во всех задачах достаточно доказать, что нужные нам точки (вершины треугольников, концы медиан, высот, биссектрис) одинаково удалены от прямой, проходящей через основание треугольника, т. е. равенство соответствующих высот в равных треугольниках.
- **III.22.** Пусть α угол при основании треугольника. Тогда внешний угол равен 2α , угол между его биссектрисой и боковой стороной равен α и утверждение «а» следует из равенства скрещивающихся углов при параллельных прямых, а обратное ему утверждение вытекает из признака параллельности прямых (по равенству скрещивающихся углов).
- **III.23.** Такого быть не может. Это следует из задачи III.14. Вообще периметр любого выпуклого многоугольника меньше периметра содержащего его выпуклого многоугольника.
- **III.24.** Построим точку M, симметричную точке B относительно данной прямой a. Пусть отрезок AM пересекает прямую a в точке C. Ломаная ACB имеет длину, равную длине отрезка AM (рис. 97). Для любой точки X на прямой a, отличной от C, длина ломаной AXB больше длины ломаной ACB, поскольку сумма длин сторон AX и XM треугольника AXM больше его стороны AM, а AC + CB = AM < AX + XM = AX + XB.

Рис. 97

III.25. Каждая сторона треугольника должна быть больше разности двух других. Складной метр состоит из десяти звеньев по 10 см. Наименьшая сторона треугольника больше 10 см, так как разность двух других сторон кратна 10 см. Если наименьшая сторона равна 20 см, то две другие стороны равны по 40 см (других возможностей нет). Если же наименьшая

сторона равна 30 см, то две другие равны 30 см и 40 см (других возможностей нет). Итак, 20, 40, 40 или 30, 30, 40.

- **III.26.** Каждая сторона треугольника должна быть больше разности двух других. Подходит лишь 10 см. Ни 9, ни 11 уже не годятся, так как 10-9=1 и 11-10=1, а 10-10<1.
- **III.27.** Построив любую хорду угла и найдя сумму углов наклона этой хорды к сторонам угла, определим заданный угол как разность развёрнутого угла и этой суммы (рис. 98, a). Затем построим хорду равного наклона и проведём её серединный перпендикуляр (рис. 98, δ). Этот перпендикуляр и является биссектрисой угла.

III.28. Надо последовательно сгибать, прикладывая друг к другу противоположные края листа.

- **III.29.** Пусть точки A, B, C, D лежат на сторонах прямоугольника KLMN: точка A на стороне KL, точка B на стороне LM, точка C на стороне MN, точка D на стороне NK. Отразим точку D от прямой KL и получим точку D_1 . Отразим точку C от прямой LM и получим точку C_1 . Получим ломаную D_1ABC_1 , наименьшая длина которой получится, если её вершины лежат на одной прямой.
- **III.30.** В точке пересечения диагоналей. Это следует из нестрогого неравенства треугольника, записанного для каждой диагонали четырёхугольника. Это неравенство получается, если точку внутри четырёхугольника соединить с его вершинами.
- **III.31.** Задача решается на развёртке куба. Развёртку надо взять такой, чтобы заданные точки соединялись на ней отрезком, не пересекающим края развёртки. Это можно выполнить в качестве практической работы.
- **III.32.** а) Приложим линейку поочерёдно к сторонам данного угла, проведя каждый раз прямую вдоль другого её края. В пересечении прове-

дённых прямых получим точку, равноудалённую от сторон угла, а потому лежащую на её биссектрисе.

- б) Приложим линейку так, чтобы один её край проходил через первый конец данного отрезка, а другой через второй его конец. Проведём две параллельные прямые вдоль её краёв. Повторим эту процедуру, приложив линейку симметричным образом. В результате получим две точки пересечения прямых, проведённых через края линейки. Эти точки равноудалены от концов данного отрезка, а потому лежат на его серединном перпендикуляре.
- в) Пусть данный угол образован лучами a и b. Приложим линейку первый раз так, чтобы один её край совпал с лучом a, а другой край пересекал луч b. Проведём прямую вдоль второго края. Затем приложим линейку так, чтобы один её край совпал с лучом b, а другой её край не пересекал луч a. Проведём прямую вдоль второго края. Обе проведённые прямые пересекаются в некоторой точке. Соединим вершину исходного угла и полученную точку лучом c с началом в вершине исходного угла. Получим угол со сторонами b и c, равный данному, таким образом угол со сторонами a и b0 в два раза больше данного.
- г) Пусть дан отрезок AB. Приложим линейку с краями a и b так, чтобы край a прошёл через точку A, а край b через точку B. Затем приложим линейку ещё раз так, чтобы край a прошёл через точку B. Проведём прямую c через край b. Проведём прямую AB. Там, где она пересечёт прямую c, получим такую точку C, что BC = AB.
- д) Пусть дан отрезок AB и точка C на прямой AB. Удвоим отрезок AC согласно предыдущему построению, получим отрезок CD. Затем построим серединный перпендикуляр отрезка AD (задача «б»)
- е) Пусть дан отрезок AB и точка D вне его. Сначала построим середину отрезка AB точку K. Проведём луч AD и возьмём на нём точку E за точкой D. Проведём лучи BD и KE. Точку пересечения этих лучей обозначим как F. Проведём лучи AF и BE. Точку пересечения этих лучей обозначим как C. Прямая DC параллельна прямой AB.
- ж) Задача сводится к предыдущим. Возьмём на данной прямой отрезок AB. Проведём серединный перпендикуляр отрезка AB. Затем через данную точку проведём прямую, параллельную проведённому серединному перпендикуляру.
- **III.33.** г) Соединяем две точки отрезком, строим серединный перпендикуляр к полученному отрезку и откладываем на нём отрезок, равный половине построенного получим вершину квадрата. д) Соединяем две точки отрезком, строим серединный перпендикуляр к полученному отрезку и откладываем на нём отрезок, равный половине построенного получим

середину стороны квадрата. e) Проводим перпендикуляр из центра на прямую, проходящую через две данные точки на стороне — получим половину стороны квадрата.

- **III.34.** С точки зрения геометрии, эту задачу можно считать задачей о построении квадрата по его центру и двум точкам на его сторонах. О том, какая точка центр, не сказано, и надо последовательно считать центром каждую из трёх заданных точек. Наверное, точки не лежат на одной прямой (если они лежат на одной прямой, то одна из них должна быть серединой отрезка с концами в двух других и по таким точкам квадрат не восстановить). Полагая, что точки лежат на одной стороне, строим квадрат так, как это сделано в пункте «е» предыдущей задачи. Если клад не найден, то, значит, точки лежат на разных сторонах квадрата, а такая задача однозначно не решается: например, если O центр квадрата, а две другие точки A и B концы гипотенузы равнобедренного прямоугольного треугольника OAB.
- **III.35.** *Указание:* построение перпендикуляра описано в задаче II.26 к главе II, измерение угла в задаче I.41 к главе I.
- **III.36.** Указание: измерение угла описано в задаче I.44 к главе I, а сложение величин углов можно произвести с помощью встроенного в программу калькулятора. Если воспользоваться командами «Измерения» и «Вычислить», то появится встроенный калькулятор. Выделяя по очереди величины трёх углов треугольника, вы увидите величины этих углов в рабочем окне калькулятора и сможете их сложить с помощью клавиши «+».
- **III.37.** Указание: построение перпендикуляра описано в задаче II.26 к главе II, измерение угла в задаче I.44 к главе I, сложение величин с помощью встроенного в программу калькулятора описано в задаче III.36 к главе III.

Гуманитарная составляющая курса геометрии

Традиционно в список гуманитарных предметов включаются все языки (родной и иностранные), история, литература, мировая художественная культура, культура речи, рисование. При этом, как правило, даже и не вспоминают о геометрии, хотя геометрия — единственный учебный предмет в школе, в котором органично сочетаются многие педагогические возможности, содержащиеся в перечисленных учебных предметах.

Действительно:

— терминология, которую использует геометрия, в основном латинского или греческого происхождения, и хорошо продуманная работа с

ней может расширить общий кругозор учащихся, подтолкнуть их к размышлениям об этимологии и русских слов;

- геометрия единственный школьный предмет, предполагающий систематическое обучение школьников визуальному способу получения информации: во время работы с геометрическими фигурами, при различных способах их построения и изображения, при чтении чертежей дети обучаются ещё одному «иностранному» языку визуальному (это тем более важно, потому что, как говорят психологи, 90% информации человек получает через органы зрения);
- важность осмысления учащимися формулировок определений и теорем, а также их доказательств приводит к необходимости проведения учителем специальной работы по развитию речи учащихся на уроках геометрии, которая тем самым способствует повышению общего культурного уровня учащихся;
- необходимость проведения доказательных рассуждений при изучении геометрии способствует формированию у учащихся аргументированной речи, умения отстаивать свою точку зрения;
- геометрия одна из самых древних наук, и знакомство учащихся с её историей, как с точки зрения истории математических идей, так и в связи с различными историческими аспектами развития общества, безусловно, является важным элементом гуманитарного образования школьников;
- изучая геометрические фигуры как формы различных реальных предметов, мы имеем возможность иллюстрировать многие геометрические понятия и факты примерами различных архитектурных сооружений и других произведений искусства, тем самым расширяя и углубляя знания учащимися мировой художественной культуры.

Отметим также, что геометрия для школьника — учебный предмет, который в значительной степени похож на другие учебные предметы: ботанику, географию, физику. Каждый из этих предметов изучает окружающий мир, и каждый при этом — с определённой точки зрения. Геометрия изучает этот мир с точки зрения формы и размеров реальных предметов и их взаимного расположения. Так же как в русском языке есть буквы — «картинки», изображающие звуки, а в арифметике есть числа — «картинки», изображающие количество, так и в геометрии есть свои «картинки» — геометрические фигуры, которые изображают форму, размеры или (и) взаимное расположение реальных предметов, являются мысленным образом этих предметов. Так же как один звук на письме может быть изображён разными буквами, так и один предмет может создавать у нас разные мысленные образы, а потому изображаться разными геометрическими фигурами — в зависимости от того, какие свойства предмета в данный момент являются важными. Например, столб может быть

изображён цилиндром, отрезком или точкой, а монета — кругом, цилиндром или отрезком. В связи с этим полезно предложить учащимся упражнения по рисованию геометрических фигур, изображающих разные предметы, и, наоборот, по заданной геометрической фигуре приводить примеры предметов, которые могут быть такой фигурой изображены.

Взгляд на геометрию с точки зрения её гуманитарной составляющей позволяет по-новому осуществлять и преподавание этого предмета. Специальные упражнения по развитию речи на уроках геометрии, обсуждение этимологии каждого нового термина, включение упражнений на картинках, геометрические экскурсии не только помогут учителю подчеркнуть гуманитарность геометрии, развить интерес ученика к предмету и осуществить дифференцированный подход к обучению, но и облегчат учителю решение задачи по развитию абстрактного и в первую очередь логического мышления учащихся.

Рассмотрим более подробно некоторые из перечисленных форм работы.

1. Развитие речи на уроках геометрии

Для некоторых пунктов учебника приведём примеры различного рода упражнений, направленных на развитие речи учащихся.

К п. 1.1—1.2

1. Сравните рисунки 99 и 100. Найдите в них всевозможные различия и запишите их.

- **2.** Поставьте вопросы к выделенным словам и словосочетаниям в приведенных предложениях.
- В дневнике Саши красовалась пятёрка, полученная ею на уроке математики.
- 2. Лучом называется фигура, *полученная при неограниченном продолжении отрезка за один из его концов*.

- 3. Каждый семиклассник, *принимавший участие в олимпиаде*, успешно *справился* с большинством заданий.
- 4. Каждая точка, лежащая на прямой, эту прямую разбивает на два луча.
- **3.** Нарисуйте иллюстрацию предложения, помещенного во втором столбце таблицы. Замените предложения словосочетаниями так, чтобы они описывали рисунок, но не содержали глаголов.

4.

	Описание рисунка	
Рисунок	С глаголом	Без глагола
a) A B	Отрезок соединяет точки A и B .	Отрезок, соединяющий точки A и B .
6) a O b	Прямые a и b пересекаются в точке O .	
B) O c \	Лучи <i>a</i> , <i>b</i> и с имеют общее начало.	
r) N _s	Прямая проходит через точки <i>М</i> и <i>N</i> .	

- **5.** Какое из перечисленных свойств тетраэдра является переводом на русский язык греческого названия этого многогранника:
- а) все грани тетраэдра треугольники; б) у тетраэдра 4 грани; в) у тетраэдра 4 вершины; г) у тетраэдра 6 рёбер?

- **6.** Петя, Коля и Дима измеряли один и тот же отрезок. Петя сказал, что длина отрезка 21,5. Дима возразил: «Нет, длина отрезка 215». А у Коли получилось, что длина отрезка 2,15. Известно, что каждый из мальчиков измерил этот отрезок правильно, но каждый из них допустил ошибку, когда называл результат. Какая это ошибка?
- 7. Для каждой группы слов найдите слово, которое объединяет большинство слов этой группы, и вычеркните лишние слова. Запишите геометрический термин, которым можно продолжить каждую группу.

 эксперимент
 примерка

 перископ
 размер

 перипетия
 мерзлота

 перина
 метраж

 периферия
 метроном

К п. 2.2

8. Прочитайте названия геометрических фигур, связанных с окружностью.

Центр; радиус; диаметр; дуга; полуокружность; хорда; точка, удалённая от центра окружности на расстояние, равное длине диаметра; точка, удалённая от середины диаметра на расстояние, равное длине радиуса.

Запишите их в следующем порядке:

Фигуры:

- а) не имеющие с окружностью общих точек;
- б) имеющие с окружностью ровно одну общую точку;
- в) имеющие с окружностью конечное число общих точек;
- г) лежащие на окружности.

К п. 2.6

9. Из списка различных геометрических фигур и конструкций из них выпишите в один столбик названия плоских фигур, в другой — пространственных.

Тетраэдр; треугольник; пересечение сферы и плоскости; шар; хорда сферы; диаметр окружности; пересечение сферы и ограниченного ею шара; диагональное сечение куба.

10. Заполните таблицу, в которой сравниваются свойства шара и сферы, так, чтобы были видны различия между ними.

Свойства сферы	Свойства шара
1. Все точки, лежащие на сфере, одинаково удалены от её центра.	1
2	2. Центр шара принадлежит шару.
3. Сечение сферы плоскостью — окружность.	3
4	4. Прямая может иметь с шаром бесконечно много общих точек.
5. Нельзя найти отрезок, целиком лежащий в сфере.	5

11. Один ученик так сформулировал определение окружности: «Окружностью называется замкнутая линия, все точки которой одинаково удалены от точки, называемой центром». Объясните, чем это утверждение отличается от определения, приведённого в учебнике. Объясните необходимость слова *плоскость* в определении окружности. Для этого приведите пример соответствующей геометрической фигуры и нарисуйте её.

К п. 3.1

12. Чтобы объяснить, что два угла являются смежными, нужно проверить, что выполняются два условия. Сформулируйте эти условия.

1	имеют общую
2. Две другие	этих углов

Рассмотрите следующие чертежи (рис. 101, a—ж). Укажите рисунки, на которых углы 1 и 2:

- а) не удовлетворяют ни одному из условий;
- б) удовлетворяют хотя бы одному условию;
- в) удовлетворяют только одному условию;
- г) удовлетворяют только первому условию;
- д) удовлетворяют только второму условию;
- е) удовлетворяют обоим условиям.

К п. 3.4

13. Чтобы объяснить, что луч является биссектрисой угла, нужно проверить, что выполняются два условия. Сформулируйте эти условия.

4	`
1) лепит
-	

Рассмотрите рисунки 102, a-e. Укажите рисунки, на которых выделенный луч:

- а) не удовлетворяет ни одному из условий;
- б) удовлетворяет хотя бы одному условию;
- в) удовлетворяет только одному условию;
- г) удовлетворяет только первому условию;
- д) удовлетворяет только второму условию;
- е) удовлетворяет обоим условиям.
- **14.** В каждом пункте из двух простых предложений составьте сложное с помощью союзов: *так как, потому что, поэтому, ибо, вследствие того что, благодаря тому что, так что* и др.
- 1. Мы остались дома. С утра шёл сильный дождь.
- 2. Спектакль закончился. Зрители вышли из театра.
- 3. Отрезки AM и MB равны. M середина отрезка AB.
- 4. Луч *ОМ* биссектриса угла *АОВ*. Угол *АОМ* равен углу *МОВ*.
- 5. Прямая AB лежит в плоскости α . Точки A и B принадлежат плоскости α .

К п. 3.5—3.8

15. Рассказывая решение задачи, ученица 7 класса сказала: «Угол ABC — вертикальный, а угол MNP — смежный». Объясните, почему эта фраза не имеет смысла.

- **16.** В каких из приведённых предложений допущены неуместные сравнения?
- 1. Отрезки AB и CD равны.
- 2. Длина отрезка $A\bar{C}$ равна отрезку BD.
- 3. Отрезок \overline{AD} равен 8 см.
- 4. 10 см длина отрезка *BD*.
- 5. Отрезок CD меньше длины отрезка AK.
- 6. Угол *ACD* и градусная мера угла *AOB* не равны.
- 7. Угол BOC не равен 30°.
- 8. Градусная мера угла ACD больше угла ACD.
 - 17. В каждой группе слов:
- а) найдите то, что объединяет большинство слов группы;
- б) вычеркните лишние слова;
- в) расширьте каждую группу геометрическим термином.

замер	резина	секунда
намеренно	резец	отсекать
померкнуть	изрезанный	рассечённый
измеряющий	резьба	пересечь
замереть	результат	секира
отмерить	порезать	секатор
размерный	резкий	секундант
секта	резолюция	резчик
		-

- **18.** Придумайте задачу, для решения которой можно использовать утверждение: «Градусная мера развёрнутого угла 180° ». Сделайте чертёж к задаче и решите её.
- **19.** Из приведённых названий математических понятий, жизненных явлений и отношений выпишите в левый столбик те утверждения и понятия, которые можно характеризовать словом *взаимно*, в правый те, к которым это слово не подходит.

Дружба; монолог; 5 меньше 15; перпендикулярность двух прямых; 110 делится на 5; диалог; доклад; перпендикулярность прямой и плоскости.

Объясните, почему мы употребляем слово *взаимно*, когда говорим о перпендикулярности двух прямых.

- 20. Придумайте задачу, в которой идёт речь о взаимно-перпендикулярных прямых.
- **21.** Заполните пропуски словами *любой*, *некоторый*, *может быть так*, чтобы получились верные утверждения.

1.	Через	две точки проходит прям	ая.
2.	Сумма	двух смежных углов равн	а развёрнутому углу.
3.		два невертикальных угла	равны.

4.	Две	окружности, лежащие на одн	ной сфе-
	pe,	не пересекающимися.	
5.	Сумма	двух несмежных углов	
	равна развёрнутому углу.		
6.	Разность	тупых углов	острым
	углом.		

22. Сформулируйте какой-нибудь вопрос задачи, условие которой может быть записано так:

Две прямые, пересекаясь, образовали четыре угла. Градусная мера одного из них равна 45° .

Какие ещё вопросы можно задать к условию этой задачи?

- **23.** Придумайте задачу, которой может соответствовать рисунок 102, *г*. Решите её.
- **24.** Придумайте и решите задачу, краткое условие которой записано так: $OA \perp OK$, $OB \perp OM$.
- **25.** Придумайте задачу, для решения которой нужно знать свойства вертикальных и смежных углов.

К п. 3.9

26. Приведённые названия геометрических фигур перепишите в два столбика, поместив в один из них названия плоских фигур, в другой — пространственных.

Двугранный угол; пересечение двух плоскостей; скрещивающиеся прямые; линейный угол двугранного угла; биссектральная плоскость двугранного угла; взаимно-перпендикулярные плоскости; пересекающиеся прямые; куб; квадрат; параллелепипед; смежные двугранные углы; вертикальные углы.

К п. 4.3

27. Выделите условие и заключение из следующих утверждений.

Образец:

Когда растишь щенков от рождения, к ним привыкаешь.

Условие: Растишь щенков от рождения.

Заключение: к ним привыкаешь.

- 1. Долог день до вечера, коли делать нечего.
- 2. Если углы вертикальные, то они имеют общую вершину.
- 3. За двумя зайцами погонишься ни одного не поймаешь.
- 4. Если углы смежные, то их сумма равна 180° .
- **28.** Обведите синим цветом стрелки, указывающие на следствия утверждения «Углы 1 и 2 вертикальные».

Обведите красным цветом стрелки, указывающие на следствия утверждения «Углы 1 и 2 смежные».

29. Придумайте задачу о кубе, для решения которой нужно знать признаки равенства треугольников.

К п. 4.6

- **30.** Прочитайте в учебнике в п. 4.6 доказательство утверждения: «На плоскости две прямые, перпендикулярные третьей, параллельны» и выполните следующие задания.
- 1. Выпишите фрагмент доказательства, где предполагается противоположное тому, что утверждается.
- 2. Выпишите неверный вывод, который был получен в результате неверного предположения.
- 3. Сформулируйте утверждение, с которым в конце доказательства было получено противоречие.
- **31.** Любые две точки можно соединить отрезком, и притом только одним. Теперь вам стала известна теорема: «Из точки, не лежащей на прямой, можно провести единственный перпендикуляр на эту прямую». В чём сходство между этими двумя утверждениями?
 - 32. Выделите условие и заключение в перечисленных утверждениях.
- 1. Если треугольники равны, то в них равны соответственные углы.
- 2. Если треугольники равны, то равны и их периметры.
- 3. В равнобедренном треугольнике найдутся две равные стороны.

- 4. В равнобедренном треугольнике против равных сторон лежат равные углы.
- 5. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, равны между собой.
- **33.** Ответьте на предложенные вопросы. Объясните каждый свой ответ. Верно ли, что:
- а) любые два угла равнобедренного треугольника равны;
- б) в равнобедренном треугольнике найдутся два равных угла;
- в) * если AM биссектриса равнобедренного треугольника ABC, то M середина отрезка BC;
- г) * в равнобедренном треугольнике точки пересечения медиан, высот, биссектрис лежат на одной прямой?
 - 34. Сформулируйте:
- 1. Признак равенства треугольников.
- 2. Признак делимости на 5.
- 3. Свойство вертикальных углов.
- 4. Свойство равнобедренного треугольника.
- 5. Признак равнобедренного треугольника.

К п. 5.3

35. Прочитайте отрывок из сказки М. Горького «Воробьишко».

«Подул однажды ветер — Пудик спрашивает:

- Что, что?
- Ветер дунет на тебя чирик! и сбросит на землю кошке! объяснила мать.

Это не понравилось Пудику, и он сказал:

— А зачем деревья качаются? Пусть перестанут, тогда ветра не будет...»

Объясните, где в рассуждениях воробьишки Пудика перепутаны причина и следствие.

36. Заполните таблицу, сформулировав к каждому утверждению обратное. Поставьте букву ${\bf B}$ против верных утверждений, букву ${\bf H}$ против неверных. Для неверных утверждений приведите соответствующие контрпримеры.

Взаимно обратные утверждения				
Образец Если число заканчивается цифрой 0, то оно чётно.	В	Если число чётно, то оно заканчивается цифрой 0.	Н , Например, 6.	
1. Если угол развёрнутый, то его градусная мера равна 180°.				
2. Если прямая содержит высоту треугольника, то она перпендикулярна к одной из его сторон.				
3. Если периметры двух треугольнико в равны, то равны и эти треугольники.				
4. Если середина отрезка совпадает с серединой стороны треугольника, то этот отрезок является медианой треугольника.				

oốr	а) Закончите к ним тоже был	утверждения так, и верными	чтобы и они был	и верным	ии
-		на 3, то			
	, ,	равносторонних	треугольников	равны,	то
		я так, чтобы они бы ается цифрой 2, то _		ные к ним і	нет. –

- а) верное утверждение, обратное к которому верно;
- б) верное утверждение, обратное к которому неверно;
- в) неверное утверждение, обратное к которому верно.

К п. 5.5

- 39. В каждой группе слов и словосочетаний:
- а) найдите то, что объединяет большинство слов группы;
- б) вычеркните лишнее слово или словосочетание;
- в) расширьте каждую группу подходящим по смыслу словосочетанием или словом.

центр окружности один из концов хорды высота треугольника начало луча вершина угла медиана радиус окружности сторона квадрата биссектриса треугольника равносторонний треугольник

числовая ось ось симметрии фигуры граница полуплоскости ребро двугранного угла пересечение двух плоскостей

2. Геометрические экскурсии

За последние годы в некоторых школах Санкт-Петербурга накопился определённый опыт проведения геометрических экскурсий для учащихся 5—7 классов.

Цель таких экскурсий — на примерах интерьеров, архитектурных и садово-парковых сооружений показать учащимся возможности применения геометрических знаний.

Основная *методика* проведения экскурсий: от истории создания архитектурного или художественного объекта к изучению его внешних форм, разбиению этих форм на детали, определение формы этих деталей, рисование отдельных деталей и здания в целом в разных ракурсах, а затем (чаще всего в качестве домашнего задания) конструирование моделей этих сооружений, а также попытка придумывания новых.

Оснащение экскурсий, как правило, одно и то же: каждый учащийся берёт с собой альбом для рисования, цветные карандаши или фломастеры, тетрадь по геометрии (возможно, пластилин, фотоаппарат).

Можно подготовить и провести экскурсию по теме геометрического материала, который в настоящее время изучается в классе. Экскурсии могут быть обзорные или тематические: «Какие геометрические фигуры бывают»; «Линии»; «Круглые тела»; «Симметрия в природе и архитектуре»; «Паркеты» и др. Такого рода экскурсии удобно проводить в классе, используя фото- и видеоматериалы.

Перечислим некоторые виды упражнений, которые полезно проводить во время экскурсий.

- 1. Посмотрев на здание, а затем отвернувшись от него, перечислите, сколько различных форм окон (колонн, других деталей) оно имеет. Нарисуйте их.
- 2. Нарисуйте с различных точек зрения фасад здания, отдельные его детали, решётки, ограды, фонари и пр.
- 3. Посмотрите на различные фотографии одного и того же здания и попробуйте определить, с какого места произведена съёмка.
- 4. Обойдите здание и определите, нет ли среди видов спереди, справа, сзади, слева одинаковых.
- 5. По предложенным деталям изображения здания соберите это изображение целиком.
- 6. Из одних и тех же моделей (например, цилиндров) соберите разные здания; расставьте цилиндры, имеющиеся у вас, так, чтобы они напоминали колоннаду сначала одного из известных зданий, а затем другого.
- 7. Сравните фотографию здания и его макет, сделанный, например, из пластилина; найдите неточности или ошибки.
- 8. На предложенном плане парка нарисуйте маршрут экскурсии, укажите места расположения тех сооружений, которые вы увидели по ходу этой экскурсии.
 - 9. Найдите неточности в предложенном плане парка и устраните их.
 - 10. Нарисуйте план видимой вам части парка.
- 11. Нарисуйте эскиз понравившегося вам архитектурного сооружения или отдельных его деталей.
- 12. Сравните рисунки, на которых изображён эскиз одного и того же здания; проверьте правильность изображения фигур.

Можно предложить ученикам в качестве домашнего задания нарисовать понравившиеся архитектурные сооружения и на следующем уроке геометрии по готовым рисункам детей вспомнить основные этапы экскурсии, а затем устроить в классе выставку работ ребят.

Полезно также дать детям индивидуальные домашние задания по изготовлению из бумаги или пластилина моделей отдельных фрагментов здания с тем, чтобы затем в классе из этих фрагментов можно было собрать макет всего здания (конечно, в таком случае учитель должен дать детям соответствующие размеры).

Один из видов коллективной работы по материалам экскурсии — составление тематического фото- или художественного альбома. Это могут быть альбомы с фотографиями и зарисовками по темам: «Мостовые нашего города», «Пирамиды и призмы в строениях нашего города», «Решётки», «Фонари» и пр.

Изготовление наглядных пособий и работа с ними

В связи с тем что обсуждаемый курс геометрии содержит в себе не только планиметрию, но и элементы стереометрии, роль наглядных пособий на уроках значительно увеличивается. Сделаем по этому поводу несколько замечаний.

I. Моделями отрезков могут служить не только спицы и карандаши. Отрезки можно сконструировать из тонких полых жёстких цилиндров: палочек для карамели, использованных стержней для шариковых ручек и др. Коктейльные палочки применять неудобно, так как они не являются жёсткими. Полые цилиндры удобно использовать для конструирования каркасных моделей многогранников, продевая внутрь цилиндра жесткую проволоку.

Чтобы сделать модель отрезка желаемой длины, можно взять жёсткие палочки и листы бумаги для записей прямоугольной формы, туго наматывая бумагу на палочку и затем клеем закрепляя эту бумагу.

II. Сплошные модели многогранников лучше не клеить, а складывать — для удобства хранения.

Например, складную модель прямоугольного параллелепипеда можно сделать так:

— на толстом картоне чертим развёртку параллелепипеда, сделав клапаны боковой поверхности и виде прямоугольников (рис. 103, *a*);

Рис. 103

- по чертёжной линейке острым предметом (иголкой, например) слегка прорезаем картон по будущим линиям сгиба и сгибаем его, также используя линейку;
- складываем боковую поверхность параллелепипеда, загибая клапаны внутрь него (рис. 103, δ):
- вставляем основания так, чтобы клапаны боковой поверхности были упором для оснований и скреплялись клапанами оснований.
- **III.** Сплошные модели можно делать прозрачными. Опишем подробно (для примера), как можно сделать прозрачные модели цилиндра, конуса и куба.

Цилиндр

Материалы для изготовления: плотная прозрачная полиэтиленовая папка; несколько листов картона, скотч, нитки.

Инструменты: карандаш, шариковая ручка, циркуль, линейка, иголка. *Этапы изготовления:*

- 1. Вырезаем из картона четыре круга диаметром 9 см.
- 2. Отрезаем от папки шов и разворачиваем её наружной стороной вверх.
- 3. Утюгом, через газету, разглаживаем сгиб папки (регулятор утюга установить на «шерсть» или «шелк», 10—15 с).
 - 4. На получившемся прямоугольном листе шариковой ручкой чертим

развертку боковой поверхности цилиндра (рис. 104, *a*). Вырезаем развёртку. Используя разметку, с двух сторон прямоугольника по всей длине делаем надрезы (через каждый сантиметр, шириной 25 мм). Развёртка боковой поверхности цилиндра готова.

Рис. 104

- 5. Клапаны одной из её сторон пришиваем к вырезанному ранее из картона кругу (рис. 104, δ). Второе основание цилиндра пришиваем к его боковой поверхности с другой стороны аналогичным образом.
- 6. Для того чтобы скрыть многочисленные стежки на основаниях цилиндра, на каждое из них приклеиваем по оставшемуся кругу. Стык боковой поверхности и оснований цилиндра оклеиваем скотчем.

Конус

При изготовлении модели конуса используются те же материалы и инструменты, что и при изготовлении модели цилиндра.

Этапы изготовления:

- 1. Вырезаем из картона два круга радиусом 7 см.
- 2. На прозрачном прямоугольном листе (разглаженной папке) чертим развёртку боковой поверхности конуса сектор радиуса 25 см с угловой величиной дуги 100° (рис. 105, a).

Рис. 105

3. Дальнейшие действия такие же, как при изготовлении модели цилиндра (рис. 105, δ).

В результате получаем модель прямого кругового конуса с образующей 25 см и радиусом основания 7 см.

Куб

При изготовлении моделей многогранников будем использовать термоклеящуюся плёнку. Она удобна тем, что: а) прозрачна; б) легко приклеивается утюгом к любой поверхности; в) при наклеивании, в том числе и на каркасную модель многогранника, не морщится, хорошо натягивается.

Материалы для изготовления: 12 моделей отрезка в виде полого цилиндра длиной 12 см; термоклеящаяся плёнка; 2 м тонкой жесткой проволоки; кусок белого пластилина.

Инструменты: плоскогубцы, утюг.

Этапы изготовления:

Рис. 106

1. Изготавливаем каркасную модель куба, нанизывая отрезки — цилиндры на проволоку (рис 106, a). Проволока может быть как цельной (тогда через некоторые отрезки — цилиндры проволока пройдёт дважды), так и не цельной. При использовании цельной проволоки каркасная модель куба получается более жёсткой. Варианты сборки каркасной модели куба могут быть различными, например: $AB - BC - CD - DA - AA_1 - A_1D_1 - D_1D - DC - CC_1 - C_1B_1 - B_1B - BA - AA_1 - A_1B_1 - B_1C_1 - C_1D_1$. Концы проволоки в вершинах A и D_1 , обкручиваем несколько раз и обрезаем. В вершинах куба залепляем проволоку пластилином.

2. Из термоклеящейся плёнки вырезаем развёртку куба. Удобно использовать развёртку, изображённую на рисунке 107.

Рис. 107

3. Оклеиваем каркасную модель куба термоклеящейся пленкой. Развёртку прикладываем (клеящейся стороной плёнки вниз) к каркасной модели куба так, чтобы какой-нибудь отмеченный на ней квадрат совпал с рёбрами верхней грани куба (рис. 108).

Рис. 108

Проводим утюгом (регулятор утюга установить на «шерсть» или «шелк») по одному из рёбер; натягиваем плёнку и проводим утюгом по ребру, параллельному первому, а затем по двум оставшимся рёбрам этой грани. Остальные грани куба оклеиваются аналогичным образом.

Треугольная пирамида

При изготовлении модели пирамиды используются те же материалы и инструменты, что и при изготовлении модели куба.

Изготовим модель правильной треугольной пирамиды, в основании которой лежит равносторонний треугольник со стороной 10 см, а боковое ребро пирамиды равно 18 см.

Этапы изготовления:

1. Из шести отрезков-цилиндров собираем каркасную модель пирамиды. Один из возможных вариантов сборки: АВ — ВС — СА — АD — DB - BC - CD (рис. 109).

Рис. 109

2. Из термоклеящейся плёнки отрезаем развёртку треугольной пирамиды (рис. 110).

Рис. 110

3. Наклеиваем развёртку на каркасную модель пирамиды — сначала боковые грани, а затем основание (рис. 111).

Рис. 111

IV. Для работы с моделями пространственных фигур удобно использовать так называемый *геометрический конструктор*. Можно придумать разные конструкторы — по внешнему виду, материалу и стоимости. Мы предлагаем вам конструктор, который может быть сделан при минимальной затрате денежных средств.

Основой конструктора является штатив, который можно встретить в школьных кабинетах физики и химии и две прямоугольные рамки с натянутыми на них сетками — модели двух плоскостей. Лучше всего натягивать сетки с помощью тонкой жесткой проволоки, но можно использовать и сетку от комаров. Правда, в последнем случае она довольно быстро растянется. Одну из этих «плоскостей» кладём на горизонтальную подставку штатива, а другую прикрепляем к стойке штатива (рис. 112, а).

Рис. 112

Теперь, используя модели отрезков в виде резинок с закреплёнными на них крючками (плательными или из тонкой проволоки) и набор плоских фигур, мы можем быстро сделать каркасную модель любой пирамиды или призмы (рис. 112, δ), подложив под нижнюю сетку выбранный многоугольник в качестве основания.

Для хранения всех мелких деталей конструктора удобно использовать школьный набор для черчения.

Тесты по курсу геометрии

Наряду с традиционными формами проверки авторы предполагают использование тестов. Тесты знакомят учеников и учителей с ещё одной формой контроля и приводят к экономии времени для проверки. В каждом тесте содержатся пять утверждений, на которые ученик даёт три вида ответов: положительный («да»), отрицательный («нет») или «не знаю». При желании учитель может выставить отметку за выполнение тестового задания. В этом случае предлагается такой способ выставления отметки: за каждый верный ответ на отдельный вопрос теста ученик получает балл «+1», за каждый неверный ответ получает балл «-1», за ответ «не знаю» («затрудняюсь ответить») получает балл «0». По тесту находится сумма набранных баллов. Видимо, за 5 набранных баллов имеет смысл ставить отметку 5, а за число баллов, не большее нуля, вряд ли имеет смысл ставить положительную отметку. Всё остальное — на усмотрение учителя.

При проведении тестовой работы на её выполнение можно отводить примерно 15 минут. Однако учитель может сам решать, сколько его ученикам надо времени для одного теста.

Ученикам надо объяснить, что в тех случаях, когда утверждение может быть для одних случаев верно, а для других неверно, следует давать ответ «нет». Например, мы говорим, что равенство $(x+1)^2 = x^2 + 1$ неверно, хотя при x=0 оно верно, а при других x — неверно.

Тест 1. Пересечение фигур

Пересечением двух квадратов может быть:

- 1) точка;
- отрезок;
- 3) квадрат;
- 4) треугольник;
- 5) восьмиугольник.

Omветы: + + + + +

Тест 2. Объединение фигур

Объединением двух треугольников может быть:

- 1) треугольник;
- квадрат;
- 3) шестиугольник;
- 4) пятиугольник;
- 5) двенадцатиугольник.

Ответы: +++++

Тест 3. Взаимное положение прямых

Дан куб $ABCDA_1B_1C_1D_1$. Тогда:

- 1) прямые AB и C_1D_1 параллельны;
- 2) прямые AD_1 и BA_1 пересекаются;
- 3) прямые B_1D_1 и C_1D не пересекаются;
- 4) прямые AC и BD_1 пересекаются;
- 5) прямые AD_1 и B_1C параллельны.

Ответы: + - + - -

Тест 4. Действия с отрезками

На прямой существуют такие три точки A, B, C, что:

- 1) AB + AC = BC;
- $2) \quad AB + AC > BC;$
- $3) \qquad AB + AC < BC;$
- 4) $AB AC \ge 2BC$;
- 5) $AB + AC \le 3BC$.

Ответы: ++--+

Тест 5. Равенство отрезков

Отрезки AB и CD равны, если:

- 1) они лежат на отрезке AD и AC = BD;
- 2) они являются рёбрами одного и того же куба;
- 3) они имеют общую середину O и AO = CO;
- 4) AB = KL, CD = LK;
- 5) AD = 2 AB + CD, DA = BA + 2 DC.

Ответы: +++++

Тест 6. Перпендикулярные прямые

Могут быть взаимно перпендикулярны:

- 1) диагонали прямоугольника;
- 2) высоты треугольника;
- 3) диаметры окружности;
- 4) две прямые симметричные относительно оси;
- 5) ребро куба и диагональ его грани.

Ответы: + + + + +

Тест 7. Окружность и круг

В каждом круге:

- 1) есть самая большая хорда;
- 2) есть самая маленькая хорда;
- 3) для каждой хорды найдётся равная ей;
- 4) можно провести два диаметра, разбивающие его на три части;
- 5) есть два центра симметрии.

Ответы: + - + - -

Тест 8. Сфера и шар

В каждом шаре:

- 1) есть самая маленькая хорда;
- 2) все меридианы равны;
- 3) две самые далёкие точки центрально симметричны;
- 4) есть самая большая параллель;
- 5) есть самая маленькая параллель.

Ответы: -+++-

Тест 9. Углы

Верны такие утверждения:

- 1) если углы не равны, то они не вертикальные;
- 2) если углы не вертикальные, то они не равны;
- 3) если угол острый, то угол, смежный с ним не прямой;
- если равны углы, смежные с двумя данными углами, то равны и углы, вертикальные с данными углами;
- 5) из двух двугранных углов тот больше, у которого линейный угол больше.

Ответы: +-+++

Тест 10. Углы

Про данный угол было высказано несколько утверждений.

- A) Он больше 60° , но меньше 80° .
- Б) Угол, вертикальный данному, больше 50°.
- В) Угол, смежный с ним, больше 100°.
- Г) Угол, смежный с ним, меньше 130°.
- Д) Биссектриса этого угла образует с его стороной угол больше 40° .
- E) Тупой угол с той же вершиной, что и данный, образованный перпендикулярами к его сторонам, больше 100°, но меньше 120°.

В дальнейшем оказалось, что утверждение A верно. Верны ли при этом:

- 1) утверждение *B*;
- утверждение В;
- 3) утверждение Γ ;
- утверждение Д;
- 5) утверждение E?

Ответы: + + + - +

Тест 11. Перпендикулярность

Две прямые лежат в одной плоскости. Тогда:

- 1) если они перпендикулярны, то они делят плоскость на четыре равных угла;
- 2) на этой плоскости можно провести прямую, перпендикулярную каждой из данных прямых;
- 3) в пространстве можно провести прямую, перпендикулярную каждой из данных прямых;
- 4) через них можно провести две плоскости, перпендикулярные между собой;
- 5) они перпендикулярны, если делят плоскость на четыре равных угла.

Ответы: +-+++

Тест 12. Перпендикулярные прямые

Взаимно перпендикулярны:

- 1) биссектрисы смежных углов;
- 2) биссектрисы внутренних односторонних углов при параллельных прямых, пересечённых третьей прямой;
- 3) две прямые, одна из которых параллельна некоторой прямой, а другая перпендикулярна этой прямой;
- 4) две биссектрисы треугольника;
- 5) диагонали двух смежных граней куба, идущие из одной вершины куба.

Ответы: + + + - -

Тест 13. Равнобедренный треугольник

Треугольник АВС не является равнобедренным, если:

- 1) его углы A и B не равны;
- 2) его периметр равен 5, AB = 1, BC = 2;
- 3) его нельзя разбить одним отрезком на два равных треугольника;
- 4) медиана из вершины A равна высоте из вершины B;
- 5) из треугольника *ABC* и равного ему нельзя составить четырёхугольник с равными сторонами.

Ответы: --+-+

Тест 14. Свойства равнобедренного треугольника

В любом равнобедренном треугольнике:

- 1) хотя бы одна медиана является его биссектрисой;
- 2) хотя бы одна биссектриса не является его высотой;
- 3) хотя бы две высоты равны;
- 4) хотя бы одна высота лежит внутри него;
- 5) найдутся две оси симметрии.

Ответы: + - + + -

Тест 15. Признаки равнобедренного треугольника

Треугольник является равнобедренным, если:

- 1) два его угла равны;
- 2) у него есть ось симметрии;
- 3) одна из его биссектрис является его высотой;
- 4) его вершины находятся в вершинах квадрата;
- 5) его вершины находятся в вершинах A, C, B_1 куба $ABCDA_1B_1C_1D_1$.

Ответы: +++++

Тест 16. Осевая симметрия

Фигура имеет ось симметрии, если эта фигура:

- 1) угол;
- 2) дуга окружности;
- 3) полуплоскость;
- 4) объединение двух равных квадратов, лежащих в одной плоскости, пересечением которых является их общая вершина;
- 5) пересечение двух кругов.

Ответы: +++++

Тест 17. Осевая симметрия.

Один из данных треугольников имеет одну ось симметрии, а другой не имеет осей симметрии. Тогда:

- 1) эти треугольники не равны;
- 2) их пересечение не может иметь ось симметрии;
- 3) их объединение не может иметь ось симметрии;
- 4) симметричный треугольник можно разбить отрезком на части, имеющие оси симметрии;
- 5) не симметричный треугольник нельзя разбить отрезком на части, имеющие оси симметрии.

Ответы: + - - + -

Тест 18. Симметрия прямоугольника

Верны такие утверждения:

- 1) в любом прямоугольнике не меньше двух осей симметрии и не больше четырёх осей симметрии;
- 2) существует прямоугольник, у которого три оси симметрии;
- 3) любое пересечение двух прямоугольников имеет ось симметрии;
- 4) прямоугольник имеет центр симметрии;
- 5) прямоугольник имеет два центра симметрии.

Ответы: + - - + -

Тест 19. Сумма углов треугольника

Верны такие утверждения:

- 1) если каждый из двух углов треугольника больше 60° , то его третий угол меньше 60° ;
- 2) если угол при вершине равнобедренного треугольника меньше 100° , то угол при его основании меньше 40° ;
- 3) если один из углов прямоугольного треугольника не меньше 30° , то в нём найдётся угол не больше 60° ;
- 4) каждый угол треугольника меньше суммы двух других углов;
- 5) при увеличении одного из углов треугольника другие два уменьшаются.

Ответы: +-+--

Тест 20. Сумма углов треугольника

Верно, что:

- 1) в прямоугольном треугольнике один из углов равен сумме двух других;
- 2) наибольший угол треугольника больше суммы двух других;
- 3) средний по величине угол треугольника больше 60° ;

- 4) если из двух треугольников составить четырёхугольник, то сумма углов четырёхугольника равна 360°;
- 5) если у двух равнобедренных треугольников есть по равному углу, то и остальные их углы соответственно равны.

Ответы: + - - + -

Тест 21. Сравнение элементов треугольника

В треугольнике ABC сторона AB = 2, сторона AC = 3 и угол $B < 45^{\circ}$. Верно, что:

- 1) $\angle C < 45^{\circ}$;
- 2) угол *А* тупой;
- 3) периметр треугольника АВС больше 8;
- 4) периметр треугольника АВС меньше 10;
- 5) медиана СМ больше 4.

Ответы: + + + + -

Тест 22. Сравнение длин и углов

В прямоугольнике ABCD сторона AB=3, сторона BC=1. Точка M — середина стороны CD, точка K лежит на отрезке CM.

Верно, что:

- 1) периметр треугольника АВК больше 6;
- 2) AM + MK + KB < 5;
- 3) AM < AK;
- 4) $\angle MBC < \angle MAB$;
- 5) $\angle KAB = \angle AKD$.

Ответы: + + + - +

Тематическое планирование

Дадим два примерных варианта планирования, рассчитанные на изучение геометрии в течение всего года (68 часов) и в течении трёх четвертей (50 часов).

	Вариант 1 (4 четверти, 68 часов)	
Введен	• • • • • • • • • • • • • • • • • • • •	2 ч
	І. Начала геометрии	26 ч
§ 1.	Отрезки	6 ч
§ 2.	Окружность и круг. Сфера и шар	4 ч
Ü	Решение задач	2 ч
	Контрольная работа № 1	1 ч
§ 3.	Углы	10 ч
ō	Решение задач	2 ч
	Контрольная работа № 2	1 ч
Глава	II. Треугольники	18 ч
§ 4.	Первые теоремы о треугольниках	7 ч
§ 5.	Сравнение сторон и углов треугольников	6 ч
Ü	Решение задач	4 ч
	Контрольная работа № 3	1 ч
Глава	III. Расстояния и параллельность	14 ч
§ 6.		3 ч
§ 7.		5 ч
§ 8.	Сумма углов треугольника	3 ч
Ü	Решение задач	2 ч
	Контрольная работа № 4	1 ч
Повторение и резерв		8 ч
	Panyaur 2 (2 yamanry 50 yasan)	
Рродог	Вариант 2 (3 четверти, 50 часов)	2 ч
Введен		2ч 20ч
	I. Начала геометрии	20 ч 6 ч
§ 1.	-	
-	Окружность и круг. Сфера и шар	3 ч
§ 3.	Углы	8ч
	Решение задач	2ч
Г	Контрольная работа № 1	1ч 15
	II. Треугольники	15 ч
§ 4.	Первые теоремы о треугольниках	7ч

Сравнение сторон и углов треугольников	5 ч
Решение задач	2 ч
Контрольная работа № 2	1 ч
III. Расстояния и параллельность	13 ч
Расстояние между фигурами	2 ч
Параллельность прямых	5 ч
Сумма углов треугольника	3 ч
Решение задач	2 ч
Контрольная работа № 3	1 ч
	Решение задач Контрольная работа № 2 III. Расстояния и параллельность Расстояние между фигурами Параллельность прямых Сумма углов треугольника Решение задач

Учебное издание

Вернер Алексей Леонидович Рыжик Валерий Идельевич **Ходот** Татьяна Георгиевна

ГЕОМЕТРИЯ Методические рекомендации 7 класс

Учебное пособие для общеобразовательных организаций Центр естественно-математического образования Редакция математики и информатики Руководитель центра М. Н. Бородин Зав. редакцией Т. А. Бурмистрова Редактор И. В. Рекман, Т. Ю. Акимова Младший редактор Е. В. Трошко, Е. А. Андреенкова Художественный редактор О. П. Богомолова Компьютерная графика С. А. Крутикова Корректор О. Н. Леонова

ГЕОМЕТРИЯ

Примерная рабочая программа

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа основного общего образования по геометрии составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса геометрии обусловлена тем, что его объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует фор-

мированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.

<u>Общая характеристика курса.</u> В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических

величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Место предмета в учебном плане. Базисный учебный (образовательный) план на изучение геометрии в основной школе отводит 2 учебных часа в неделю в течение каждого года обучения, всего 210 уроков на базовом уровне и 3 часа в неделю на углублённом уровне, всего 305 уроков.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ГЕОМЕТРИИ В 7—9 КЛАССАХ

Для обеспечения возможности успешного продолжения образования на базовом и углублённом (выделено *курсивом*) уровнях выпускник получит возможность научиться в 7—9 классах:

Геометрические фигуры

- Оперировать понятиями геометрических фигур;
- извлекать, *интерпретировать и преобразовывать* информацию о геометрических фигурах, представленную на чертежах;
- применять для решения задач геометрические факты, если условия их применения заданы в явной форме; *а также предполагающих несколько шагов решения*;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
 - формулировать свойства и признаки фигур;
 - доказывать геометрические утверждения;
- владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).

В повседневной жизни и при изучении других предметов:

• использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания;

углублённом уровне — знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

¹ Здесь и далее на: базовом уровне — распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия;

• использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения

- Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
- применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
- характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

• использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

- Выполнять измерение длин, расстояний, величин углов с помощью инструментов для измерений длин и углов;
- применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
- применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях;
- оперировать представлениями о длине, площади, объ-ёме как о величинах:
- применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно и которые требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников), вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
 - проводить простые вычисления на объёмных телах;
- формулировать задачи на вычисление длин, площадей и объёмов и решать их.

В повседневной жизни и при изучении других предметов:

- вычислять расстояния на местности в стандартных ситуациях, применять формулы и вычислять площади в простых случаях;
- проводить вычисления на местности, применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения

- Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов;
- изображать геометрические фигуры по текстовому и символьному описанию;
- свободно оперировать чертёжными инструментами в несложных случаях;
- выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
- изображать типовые плоские фигуры и объёмные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

- выполнять простейшие построения на местности, необходимые в реальной жизни;
- оценивать размеры реальных объектов окружающего мира.

Преобразования

- Строить фигуру, симметричную данной фигуре относительно оси и точки:
- оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
- строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
- применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

- распознавать движение объектов в окружающем мире;
- распознавать симметричные фигуры в окружающем мире;
- применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

- Оперировать понятиями: вектор, сумма векторов, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
- определять приближённо координаты точки по её изображению на координатной плоскости;
- выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
- применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

- использовать векторы для решения простейших задач на определение скорости относительного движения;
- использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
 - понимать роль математики в развитии России;
- характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

Методы математики

- Выбирать подходящий изученный метод для решении изученных типов математических задач;
- приводить примеры математических закономерностей в окружающей действительности и произведениях искусства;
- используя изученные методы, проводить доказательство, выполнять опровержение;
- выбирать изученные методы и их комбинации для решения математических задач;
- использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

СОДЕРЖАНИЕ КУРСА ГЕОМЕТРИИ В 7—9 КЛАССАХ

(Содержание, выделенное *курсивом*, изучается на углублённом уровне)

Геометрические фигуры

Фигуры в геометрии и в окружающем мире. Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура». Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол. Биссектриса угла и её свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники. Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. *Выпуклые и невыпуклые многоугольники*. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг. Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и *секущая* к окружности, *их свойства*. Вписанные и описанные окружности для треугольников, *четырёхугольников*, *правильных многоугольников*.

Геометрические фигуры в пространстве (объёмные тела). *Многогранник и его элементы. Названия многогранников с разным положением и количеством граней.* Первичные

представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур. Свойства равных треугольников. Признаки равенства треугольников.

Параллельность прямых. Признаки и свойства параллельных прямых. *Аксиома параллельности Евклида. Теорема Фалеса*.

Перпендикулярные прямые. Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. *Свойства и признаки перпендикулярности*.

Подобие. Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины. Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла. Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади. Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.

Измерения и вычисления. Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике *Тригонометрические функции мупого угла*. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. *Теорема синусов*. *Теорема косинусов*.

Расстояния. Расстояние между точками. Расстояние от точки до прямой. *Расстояние между фигурами*.

Геометрические построения. Геометрические построения для иллюстрации свойств геометрических фигур. Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному. Построение треугольников по трём сторонам, двум сторо-

нам и углу между ними, стороне и двум прилежащим к ней углам. Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования. Понятие преобразования. Представление о метапредметном понятии «преобразование». *Подобие*.

Движения. Осевая и центральная симметрия, *поворот и* параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы. Понятие вектора, действия над векторами, использование векторов в физике, *разложение вектора на составляющие, скалярное произведение.*

Координаты. Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур. Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки. Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н. Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии. Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б. Паскаль, Я. Бернулли, А. Н. Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа т. Золотое сечение. «Начала» Евклида. Л. Эйлер, Н. И. Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира. Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских учёных в развитии математики: Л. Эйлер. Н. И. Лобачевский, П. Л. Чебышев, С. В. Ковалевская, А. Н. Колмогоров. Математика в развитии России: Пётр І, школа математических и навигацких наук, развитие российского флота, А. Н. Крылов. Космическая программа и М. В. Келдыш.

ПРИМЕРНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тематическое планирование реализует один из возможных подходов к распределению изучаемого материала по учебнометодическому комплекту, не носит обязательного характера и не исключает возможностей иного распределения содержания.

В примерном тематическом планировании разделы основного содержания по геометрии разбиты на темы в хронологии их изучения по соответствующим учебникам.

Особенностью примерного тематического планирования является то, что в нём содержится описание возможных видов деятельности учащихся в процессе усвоения соответствующего содержания, направленных на достижение поставленных целей обучения. Это ориентирует учителя на усиление деятельностного подхода в обучении, на организацию разнообразной учебной деятельности, отвечающей современным психолого-педагогическим воззрениям, на использование современных технологий.

А. Д. Александров, А. Л. Вернер, В. И. Рыжик, Т. Г. Ходот «Геометрия, 7», «Геометрия, 8», «Геометрия, 9»

Номер	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
		7	7 класс
Введение.	. Что такое геометрия	8	
1, 2	Как возникла и что изучает геометрия. О задачах геоме- трии	1	Читать и понимать прочитанное: понять, что геометрия возникла из практики, что геометрические фигуры — это мысленные образы реальных предметов. Познакомиться с задачами геометрии и с важнейшей из этих задач — построением фигур с заданными свойствами
3, 4, 5	Плоские и пространственные фигуры. Плоскость, прямая, точка	1	Вспомнить уже известные геометрические фигуры: плоские (отрезок, прямоугольник, треугольник, квадрат, круг) и пространственные (простейшие многогранники и шар). Изображать эти фигуры, их объединение и пересечение в простейших случаях. Называть элементы многогранников. Понимать идеальный характер понятий точка, прямая, плоскость
ω	Об истории геометрии. Евклид и его «Начала». Постулаты и аксиомы. Их роль в логическом построении геометрии. Значение геометрии	-	Узнать, как от опытной геометрии в Древнем Египте перешли к логической геометрии в Древней Греции, о роли Евклида и его «Начал». Приводить примеры постулатов и аксиом Евклида. Понимать значение геометрии в человеческой культуре

Глава I. Нача	Начала геометрии	25	
1.1	Отрезок. Концы отрезка и его внутренние точки. Тетраэдр	-	Приводить примеры реальных отрезков. Выполнять простейшие операции с отрезками: соединять отрезком две точки, разбивать отрезок на два внутренней точкой, продолжать отрезок за его концы. Строить конструкции из отрезков и приводить примеры таких конструкций
1.2	Лучи (полупрямые) и прямые. Полуплоскость	-	Определять луч (полупрямую) неограниченным продолжением отрезка за один из его концов, а прямую неограниченным продолжением отрезка за оба конца. Знать, что через каждые две точки проходит прямая и притом только одна. Определять пересекающиеся прямые. Знать о разбиении прямой на полупрямые, плоскости на полуплирокости, пространства на полупространства
1.3	Сравнение отрезков: их равен- ство и неравенство. Аксиома откладывания отрезка	-	Иллюстрировать сравнение реальных отрезков их наложением. Понятие равенства отрезков — основное. Формулировать две аксиомы о равенстве отрезков — аксиому сравнения и аксиому откладывания. Знать, что при изображении пространственных фигур равные отрезки могут изображаться неравными отрезками (например, рёбра куба). Знать определение равностороннего треугольника
1.4	Действия с отрезками	-	Выполнять (построением) сложение и вычитание отрезков, умножение отрезка на натуральное число. Знать о возможности деления отрезка на равные части
1.5	Длина отрезка. Измерение дли- ны отрезка. Расстояние между точками	-	Знать два основных свойства длины отрезка: длины равных отрезков равны и при сложении отрезков их длины складываются. Знать, как в результате измерения отрезка

Продолжение

Номер пункта	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
			появляется численное значение длины при выбранном единичном отрезке. Уметь изменить численное значение длины отрезка при замене единичного отрезка. Знать, что арифметические действия с численными значениями длин отрезков аналогичны действиям с самими отрезками. Знать о метрической системе длин
1.6	Понятие о равенстве фигур. Равенство треугольников	-	Судить о равенстве двух реальных предметов, измеряя расстояния между их соответствующими точками. Определять равенство двух треугольников равенством их соответствующих сторон. Аргументировать, почему дано такое определение, и применять его
	Решение задач по теме «Отрезки»	-	Решать задачи о построении отрезков по заданным условиям, задачи о вычислении длин (в частности, о вычислении периметров), представлять возможные ситуации в расположении отрезков, лучей и прямых и оценивать число таких ситуаций, решать задачи прикладного характера
2.1	Определения окружности и кру- га. Равные и концентрические окружности	-	Формулировать определения окружности и круга, равных и концентрических окружностей. Строить треугольник, равный данному треугольнику
2.2	Части окружности и круга: дуга, диаметр, хорда, сегмент, сектор. Хорда фигуры	-	Формулировать определения различных частей окружности и круга. Представлять возможные ситуации при объединении и пересечении разных частей круга

2.3	Центральная симметрия	1	Уметь объяснить, что значит: 1) две фигуры взаимно симметричны относительно некоторой точки; 2) некоторая фигура имеет центр симметрии. Приводить примеры фигур, имеющих центр симметрии, и изображать их
2.4	Построения циркулем и ли- нейкой	1	Строить треугольник по трём сторонам. Понимать, что не для любых исходных данных задача на построение имеет решение. Понимать, что значит в геометрии единственность решения задачи на построение. Знать, что не любая задача на построение циркулем и линейкой разрешима этими инструментами, например задача об удвоении куба
2.5, 2.6	Как определяют сферу и шар. Сферическая геометрия	1	Если в 7—9 классах совсем не рассматривать стереометрический материал, то все элементы стереометрии, которые были изучены в «Наглядной геометрии» в 5—6 классах, будут забыты. Поэтому по аналогии с окружностью и кругом рассматриваются сфера и шар и даются наглядные представления о сферической геометрии
	Контрольная работа № 1	-	Ученики письменно решают задачи по темам «Отрезки» и «Окружность и круг»
3.1	Угол, вершина угла, стороны угла. Развёрнутый угол. Смежные углы. Выпуклый и невыпуклый углы	1	Формулировать определения понятий: угол, развёрнутый угол, выпуклый угол, невыпуклый угол, смежные углы, хорда угла. Изображать их и указывать на рисунках
3.2	Равенство углов. Аксиома о свойстве равных углов	-	Определять равенство двух углов как углов, которые имеют равные соответственные хорды. Аргументировать аксиому о свойстве равных углов. Выводить из неё

Продолжение

Номер	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
			утверждение о том, что соответственные хорды отсекают от равных углов равные треугольники. Видеть и указывать на рисунках равные углы
რ	Откладывание угла. Аксиома откладывания угла. Построение угла, равного данному углу	-	Объяснять, что значит отложить угол от данного луча, формулировать аксиому откладывания угла. Строить угол, равный данному углу, циркулем и линейкой. Доказывать, что построенный угол — искомый
¥.£	Сравнение углов. Прямой угол. Острый и тупой углы. Бис- сектриса угла	-	Уметь объяснять, как сравнить два угла. Формулировать определения понятий: прямой угол, острый угол, тупой угол, биссектриса угла. Сопоставлять на рисунках равные углы и равные отрезки. Доказывать равенство диагоналей квадрата и равенство диагоналей граней куба
3.5	Построение биссектрисы угла. Построение прямого угла	1	Строить циркулем и линейкой биссектрису данного угла (в частности, биссектрису развёрнутого угла). Давать до-казательство выполненного построения. Делить пополам данный отрезок (циркулем и линейкой)
3.6	Вертикальные углы. Взаимно перпендикулярные прямые	-	Формулировать определение вертикальных углов и дока- зывать их свойство. Объяснять, какие прямые называют перпендикулярными

3.7	Действия с углами	-	Уметь складывать и вычитать углы, умножать их на на-
			туральные числа, делить пополам. Знать о неразрешимо- сти циркулем и линейкой задачи трисекции угла
3.8	Измерение углов. Градусная мера угла	-	Уметь рассказать о процессе измерения углов и об аналогии его процессу измерения отрезков. Знать о градусной мере углов
	Решение задач	2	Решать задачи на построение отрезков, углов и треугольников, задачи на доказательство, о равенстве отрезков, углов и треугольников, вычислительные задачи о мере угла
	Контрольная работа № 2	1	Письменная контрольная работа по теме «Углы»
3.9	Двугранный угол	-	Рассказать о том, как измеряется угол между пересекаю- щимися плоскостями
Глава II. Тре	Треугольники	20	
4.1	О теоремах	-	Те утверждения, которые доказывают, называются теоремами. В главе I уже доказан ряд теорем (в частности, каждая из задач на доказательство — это теорема). Стоит вспомнить эти результаты главы I
4.2	Элементы треугольника	-	Находить и указывать в треугольнике прилежащие и противолежащие стороны и углы. Формулировать определение медианы треугольника
4.3	Первый признак равенства треугольников	-	Применить аксиому о свойстве равных углов и получить первый признак равенства треугольников. Понять структуру формулировки теоремы и дать аналогичные формулировки для некоторых доказанных ранее утверждений

Продолжение

Номер	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
4.4	Равенство соответственных углов равных треугольников	-	Выводить теорему о равенстве соответственных углов равных треугольников из определения равных углов. Судить о равенстве углов из равенства отрезков
	Решение задач	-	Применяя первый признак равенства треугольников и теорему 2 о равенстве углов, решать задачи на доказательство к пунктам 4.3, 4.4 главы II
4.5	Теорема о внешнем угле тре- угольника	-	Доказать теорему о внешнем угле треугольника
	Классификация треугольников	-	Провести классификацию треугольников по углам. Катеты и гипотенуза прямоугольного треугольника
4.6	Перпендикуляр. Единственность перпендикуляра	-	Формулировать определение перпендикуляра, проведённо- го из данной точки вне прямой к этой прямой, и доказывать его единственность. Вывести из этого утверждения признак параллельности прямых, перпендикулярных одной прямой
4.7	Доказательство способом от противного. Второй признак равенства треугольников	-	Знать, в чём состоит способ доказательства от противного, и уметь его применять. Доказывать этим способом второй признак равенства треугольников
8.	Высота треугольника	-	Формулировать определение высоты треугольника, знать, как расположены высоты в остроугольном, прямоугольном и тупоугольном треугольниках

5.1	Равнобедренный треугольник и его свойства	-	Называть элементы равнобедренного треугольника, дока- зывать его свойства
5.2	Серединный перпендикуляр	-	Формулировать определение серединного перпендикуляра, доказывать теоремы о его свойстве и признаке. Строить циркулем и линейкой серединный перпендикуляр данного отрезка и опускать на прямую перпендикуляр из точки вне прямой
ъ. ъ.	Взаимно обратные утверждения ния. Равносильные утверждения	-	Знать о структуре взаимно обратных утверждений. Уметь формулировать утверждение, обратное данному. Понимать применимость словесного оборота «тогда и только тогда» и знать о равносильных утверждениях. Приводить примеры ры равносильных и неравносильных взаимно обратных утверждений
5.4	Сравнение сторон и углов тре- угольника. Признак равнобед- ренного треугольника	-	Уметь доказать теорему о том, что в треугольнике против большей стороны лежит больший угол, а также и обратное утверждение. Выводить следствия этой теоремы: признак равнобедренного треугольника; катет короче гипотенузы; углы, прилежащие к большей стороне треугольника, острые; высота на большую сторону треугольника лежит внутри его
	Решение задач	2	Решать планиметрические задачи к главе II на вычисление, доказательство и исследование
	Контрольная работа № 3	1	Письменная контрольная работа по главе II
ე. ა.	Осевая симметрия	-	Объяснять, что значит две точки (две фигуры) симметричны относительно прямой и что значит фигура имеет ось симметрии. Приводить примеры фигур, обладающих осевой симметрией

Продолжение

Номер	Содержание материала	Коли-чество	Характеристика основных видов деятельности ученика (на уровне учебных действий)
	Оси симметрии угла, равнобед- ренного треугольника, окруж- ности, круга	+	Доказать, что прямая, содержащая биссектрису угла, является его осью симметрии, что равнобедренный тре-угольник имеет ось симметрии, что любая прямая, проходящая через центр окружности (круга) является её (его) осью симметрии
	Решение стереометрических задач	-	Решать задачи 5.20, ІІ.1, ІІ.16, ІІ.17, ІІ.18
Глава III. ность	Глава III. Расстояния и параллель- ность	16	
6.1	Понятие о расстоянии. Расстояние от точки до фигуры. Расстояние от точки до прямой	-	Объяснять, как находится расстояние от точки до фигуры (в частности, расстояние от точки до прямой), а также расстояние между фигурами. Приводить примеры из практики. Используя факт, что перпендикуляр короче наклонной, определить перпендикуляр, опущенный из заданной точки А на плоскость, как кратчайший отрезок, соединяющий точку А с точками этой плоскости. Это позволяет определить высоту пирамиды
6.2	Неравенство треугольника	-	Доказать, что сторона треугольника меньше суммы двух других его сторон. Отсюда следует условие разрешимости задачи о построении треугольника по трём сторонам

7.1	Решение задач Признаки параллельности пря- мых Пятый постулат Евклида и		Решать задачи рубрики «Ищем границы» к § 6 и главе III Знать, как называются пары углов, образованных при пе-
	знаки параллельности пря	-	Знать как называются пары углов, образованных при пе-
	Евклида		ресечении двух прямых третьей прямой, и указывать их на рисунках. Из теоремы о внешнем угле треугольника получить как следствие признаки параллельности прямых
	аксиома параллельности	-	Знать, что пятый постулат Евклида даёт условия разрешимости задачи о построении треугольника по стороне и двум прилегающим к ней углам и является признаком непараллельности прямых. Формулировать аксиому параллельности прямых и установить, что она равносильна пятому постулату Евклида
7.3	Проблема пятого постулата и неевклидова геометрия	-	Знать о проблеме пятого постулата и её решении в первой половине XIX в. Н. И. Лобачевским — создателем невклидовой геометрии
7.4	Свойства углов, образованных параллельными и секущей	-	Способом от противного доказывать свойства углов, образующихся при пересечении двух параллельных прямых третьей
7.5	Построение прямоугольника	-	Построить прямоугольник с заданными измерениями. Определить равенство двух прямоугольников равенством их измерений. Формулировать признак прямоугольника: четырёхугольник с тремя прямыми углами является прямоугольником
7.6	Полоса	-	Полосой называется часть плоскости между параллельными прямыми. Расстояние между этими прямыми — ширина полосы. Это длина их общего перпендикуляра

Продолжение

Номер пункта	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
8.1	Теорема о сумме углов тре- угольника	-	Формулировать и доказывать теорему о сумме углов тре- угольника
8.2	Следствия из теоремы о сум- ме углов треугольника	-	Выводить следствия из теоремы о сумме углов треугольника: 1) о сумме острых углов прямоугольного треугольника; 2) о внешнем угле треугольника; 3) об угле равнобедренного прямоугольного треугольника
	Решение задач	-	Решать задачи к § 7, 8 главы III
	Контрольная работа № 4	-	Письменная контрольная работа по главе III
1 (допол- нение)	Аксиома прямоугольника	-	Можно заменить аксиому параллельности на аксиому о том, что можно построить прямоугольник с данными измерениями
2 (допол- нение)	Сумма углов прямоугольного треугольника— следствие аксиомы прямоугольника	-	Из аксиомы прямоугольника выводится утверждение о том, что сумма углов треугольника равна 180°
3 (допол- нение)	Единственность параллельной прямой— следствие аксиомы прямоугольника	-	Опираясь на аксиому прямоугольника, можно доказать единственность прямой, проходящей через данную точку и не пересекающей данную прямую. В сильном классе можно дать второй вариант изложения темы о параллельности
	Резерв — 6 часов		

		8	8 класс
Введение.	э. Повторение	4	
-	Треугольники	Ν	Вспомнить, что равенство двух треугольников можно установить по соответственным равенствам: 1) трёх пар сторон; 2) двух пар сторон и углов между ними; 3) паре сторон и прилежащим к ним углам. Повторить свойства и признаки равнобедренного треугольника и взаимно обратные теоремы о серединном перпендикуляре. Вспомнить теоремы о сравнении сторон и углов треугольника и теорему о сумме углов треугольника. Из задач к п. 1 особое внимание уделить задачам рубрики «Дополняем теорию»
0	Параллельность	-	Вспомнить названия углов, образованных при пересечении двух прямых третьей прямой, повторить признаки параллельности прямых и свойства соответственных, накрест лежащих и односторонних углов при параллельных прямых, пересечённых третьей прямой
3	Множество (геометрическое место) точек	1	Объяснять, что такое геометрическое место точек. При- водить примеры геометрических мест точек
Глава I. фигур	Площади многоугольных	30	
1.	Ломаные и многоугольники	-	Распознавать ломаные и многоугольники, формулировать определения многоугольника и его элементов, приводить примеры многоугольников

Продолжение

Номер	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
1.2	Выпуклые и невыпуклые мно- гоугольники	-	Распознавать выпуклые и невыпуклые многоугольники, формулировать их определения. Формулировать и доказывать теорему о сумме углов выпуклого многоугольника
1.3	Четырёхугольники	-	Распознавать выпуклые и невыпуклые четырёхугольники, доказывать теорему о сумме углов любого четырёхуголь- ника
4.1	Правильные многоугольники	0	Строить правильные многоугольники из равнобедренных треугольников. Формулировать определение правильного многоугольника. Доказывать теорему о центре правильного го многоугольника. Ознакомиться с историей задачи на построение правильного многоугольника циркулем и линейкой
1.5	Многоугольные фигуры	-	Формулировать определение многоугольной фигуры, приводить примеры таких фигур, разбивать многоугольную фигуру на многоугольные фигуры и составлять многоугольные фигуры из многоугольных фигур
1.6	Многогранники. Пирамиды	-	Формулировать определение многогранника. Конструировать пирамиду. Называть элементы пирамиды. Формулировать определения правильной пирамиды и правильного тетраэдра. Распознавать пирамиды на изображениях и изображать их при решении задач

Продолжение

5.5	Параллелепипед. Призмы	-	Формулировать определения параллелепипеда и его элементов. Разбивать параллелепипед на две треугольные призмы. Конструировать из треугольных призмы. Формулировать определения прямых и правильных призм. Изображать параллелепипеды и призмы. Приводить примеры правильных призм и правильных пирамид в архитектуре
	Контрольная работа № 2	-	Контрольная работа по теме «Параллелограмм»
Глава III.	Глава II. Геометрия треугольника	29	
6.1	Теорема об отношении пер- пендикуляра и наклонной	-	Находить отношение отрезков, зная их длины. Доказывать теорему об отношении перпендикуляра и наклонной
6.2	Определение синуса	-	Формулировать определение синуса любого выпуклого угла. Доказывать равенство синусов равных углов и смежных углов. Вычислять синусы углов заданной градусной меры и синусы углов простых многоугольников
6.3	Свойства синуса и его график	-	Объяснять изменение синуса угла при возрастании меры угла от 0 до 180°. Строить углы, синусы которых заданы, и находить величины этих углов
6.4	Решение прямоугольных тре- угольников	-	Выражать синус острого угла прямоугольного треуголь- ника как отношение противолежащего ему катета к гипо- тенузе. Решать прямоугольные треугольники, используя синус
6.5	Вычисление площади треуголь- ника	-	Выводить формулу $S\!=\!0,\!5bc\sin A$ и применять её при решении задач

Продолжение

		1				
Характеристика основных видов деятельности ученика (на уровне учебных действий)	Доказывать теорему синусов. Решать треугольники по стороне и двум углам. Рассмотреть практические задачи на применение теоремы синусов	Решать задачи по теме «Синус»	Формулировать определение косинуса для любого выпуклого угла. Установить зависимость косинусов смежных углов. Строить углы, косинусы которых заданы. Вычислять косинусы углов простых многоугольников	Выводить, опираясь на теорему Пифагора, основное тригонометрическое тождество. Знать, что для прямоугольного треугольника с единичной гипотенузой основное тригонометрическое тождество — это теорема Пифагора. Вычислять косинусы углов, градусные меры которых известны, и находить величины углов по их косинусам	Выражать косинус острого угла прямоугольного треугольника как отношение прилежащего к нему катета к гипотенузе. Решать прямоугольные треугольники, применяя косинус	Объяснять убывание косинуса от 1 до –1 при возрастании угла от 0 до 180° и единственность выпуклого угла, имеющего данный косинус
Коли- чество часов	-	-	-	-	-	-
Содержание материала	Теорема синусов	Решение задач	Определение косинуса	Основное тригонометрическое тождество	Косинусы острых углов прямо- угольного треугольника	Свойства косинуса и его гра- фик
Номер	9.9		7.1	7.2	7.3	7.4

7.5	Теорема косинусов (обобщён- ная теорема Пифагора)	-	Доказывать теорему косинусов и применять её при решении треугольников. Определять вид треугольника по длинам его сторон
7.6	Средние линии треугольника и трапеции Применения косинуса в прак- тике	2	Вывести из теоремы косинусов теорему о средней линии треугольника, а затем, применяя эту теорему, доказать теорему о средней линии трапеции. Решать задачи по теме «Косинус»
	Контрольная работа № 3	-	Контрольная работа по § 6, 7
8.1	Тангенс	-	Определять тангенс непрямого угла как отношение синуса этого угла к его косинусу. Выражать тангенс острого угла прямоугольного треугольника как отношение его катетов. Объяснять изменение тангенса угла при возрастании величины угла от 0 до 180°. Решать задачи с применением тангенса
8.2	Котангенс	-	Определять котангенс угла как отношение косинуса этого угла к его синусу. Выражать котангенс острого угла прямоугольного треугольника как отношение его катетов. Объяснять убывание котангенса в интервале (0°, 180°). Решать задачи с применением котангенса
8.3	Из истории тригонометрии	-	Ознакомиться с историей тригонометрии
9.1	Определение подобных тре- угольников	1	Формулировать определение подобных треугольников. Знать, что равенство треугольников — это частный случай их подобия. Доказывать подобие частных видов треугольников, используя определение подобия треугольников. Приводить примеры подобных фигур

Продолжение

подобия треуголь-
Свойства подобных треуголь- ников
Подобие треугольников и па- раллельность. Теорема Фалеса
Применения подобия при ре- шении задач на построение
Построение среднего геомет- рического. Пентаграмма и зо- лотое сечение

10.6	Точка пересечения медиан тре- угольника	1	Доказывать теорему о точке пересечения медиан тре- угольника. Решать задачи
	Решение задач	1	Решать задачи по теме «Подобие треугольников»
	Контрольная работа № 4	-	Контрольная работа по теме «Подобие треугольников»
	Резерв — 7 часов		
		9 к	9 класс
Глава І. І	Глава I. Векторы и координаты	20	
<u> </u>	Скалярные и векторные вели- чины. Направленные отрезки	-	Формулировать определения и иллюстрировать понятия направленного отрезка, вектора, модуля (длины) вектора, коллинеарных и ортогональных векторов
1.2	Сонаправленность векторов	-	Формулировать определения сонаправленных и противо- положно направленных векторов, доказывать признак со- направленности векторов
1.3	Равенство векторов	-	Формулировать определение равных векторов и доказы- вать признаки равенства векторов
1.4, 1.5	О понятии вектора. Нуль- вектор. Угол между векторами	-	Формулировать определение угла между ненулевыми векторами и доказывать теорему о равенстве углов с сонаправленными сторонами
2.1, 2.2	Сложение векторов. Свойства сложения векторов	-	Выполнять сложение векторов по правилу треугольника и по правилу параллелограмма. Доказывать свойства сложения векторов

Продолжение

Номер	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
2.3	Вычитание векторов. Противо- положные векторы	-	Выполнять вычитание векторов. Формулировать определение противоположных векторов
3.1, 3.2	Умножение вектора на число. Распределительные законы умножения векторов на число	-	Выполнять операцию умножения вектора на число и до- казывать её свойства
4.1, 4.2	Векторный метод. Об истории теории векторов	-	Применять векторный метод при решении задач
5.1	Векторы на координатной оси	-	Вычислять координаты векторов на координатной оси и выполнять действия с ними
5.2	Векторы на координатной пло- скости	1	Раскладывать векторы на составляющие по осям коорди- нат и вычислять координаты векторов
	Длина вектора, расстояние между точками, координаты середины отрезка	1	Вычислять длины векторов по их координатам, вычислять расстояния между точками, зная их координаты, находить координаты середины отрезка
5.3	Действия с векторами в коор- динатной форме	-	Выполнять действия с векторами, заданными своими координатами
5.4	Метод координат. Уравнения окружности и прямой	2	Рисовать фигуры, заданные уравнениями и неравенства- ми. Выводить уравнения фигур

6.1	Косинус	-	Формулировать определение косинуса и основное триго- нометрическое тождество, доказывать теорему косинусов
6.2	Скалярное произведение век- торов	Ø	Формулировать определение скалярного произведения векторов, выражать его через координаты векторов, выводить из этой формулы свойства скалярного умножения, применять скалярное умножение при вычислении длин и углов
	Решение задач	2	Решать задачи по теме «Векторы и координаты»
	Контрольная работа № 1	1	Контрольная работа по теме «Векторы и координаты»
Глава II.	Преобразования	23	
7.1	Понятие преобразования	1	Формулировать определения следующих понятий: преобразование фигуры, образ точки, образ фигуры, прообразований
7.2	Важные примеры преобразо- ваний	-	Формулировать определения центральной, осевой и зер- кальной симметрий, параллельного переноса (короче— переноса), гомотетии. Изображать образы фигур при этих преобразованиях
7.3	Взаимно обратные преобразо- вания	-	Формулировать определения взаимно однозначного преобразования и обратного ему преобразования. Строить преобразования, обратные симметриям, переносам и гомотетиям
7.4	Композиция преобразований	-	Формулировать определение композиции преобразований и строить композиции простейших преобразований

Продолжение

Номер пункта	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
8.1	Определение и простейшие свойства движений	-	Формулировать определение движения фигуры, доказывать простейшие общие свойства движений, прочитать связи геометрических и реальных движений
8.2	Свойства фигур, сохраняющие- ся при движении	-	Формулировать свойства фигур, сохраняющиеся при движениях
8.3	Параллельный перенос	-	Доказывать характерное свойство переноса: перенос является движением, сохраняющим направления. Изображать фигуры, полученные переносом
8.4	Центральная симметрия	-	Доказывать, что центральная симметрия является движением. Изображать фигуры, полученные при центральной симметрии. Доказывать характерное свойство центральной симметрии — изменение направлений на противоположные
8.5	Осевая симметрия на плос- кости	-	Доказывать характерное свойство осевой симметрии— наличие прямой, состоящей из неподвижных точек
8.6	Зеркальная симметрия	-	Доказывать характерное свойство зеркальной симметрии— наличие плоскости, состоящей из неподвижных точек
8.7	Поворот на плоскости		Формулировать определение поворота на плоскости. Формулировать и доказывать, что поворот является дви- жением

			T				
Понимать, что любое движение является одним из видов движений: поворотом, либо параллельным переносом, либо скользящей симметрией, частным случаем которой является осевая симметрия	Формулировать два (равносильных) варианта равенства фигур. Проверить, что данное ранее определение равенства треугольников равносильно новому определению их равенства	Формулировать, что значит фигура обладает симметрией. Классифицировать симметрии фигуры по видам движений. Приводить примеры симметричных геометрических фигур и реальных предметов. Изображать и моделировать симметричные фигуры	Доказывать неограниченность фигур, обладающих переносной симметрией. Распознавать и конструировать бор-дюры и паркеты	Распознавать элементы симметрии простейших симметричных фигур. Формулировать определение фигуры врашения	Перечислять элементы симметрии правильных пирамид и призм. Перечислять и моделировать правильные многогранники	Объяснять и иллюстрировать понятие подобия фигур. Приводить примеры подобных фигур. Доказывать простейшие свойства подобия. Выделять движение как частный случай подобия	Доказывать свойства гомотетии
-	-	-	-	-	-	-	-
Классификация движений пло- скости	Равенство фигур и движения	Общее понятие о симметрии фигур. Виды симметрии фигур	Фигуры, обладающие перенос- ной симметрией	Элементы симметрии фигур. Симметрия правильных много- угольников	Симметрия правильных пира- мид и призм. Правильные мно- гогранники	Преобразование подобия и его простейшие свойства	Гомотетия
8.8	8.9	<u>.</u> .	9.2	9.3, 9.4	9.4, 9.5	10.1	10.2

Продолжение

										_
Характеристика основных видов деятельности ученика (на уровне учебных действий)	Представлять подобие как результат последовательно вы- полненных гомотетии и движения. Доказывать свойства подобий	Рассмотреть частный случай подобных фигур — подобные треугольники. Доказывать его равносильность прежнему подходу к подобию треугольников, определённому через пропорциональность их сторон	Решать задачи по всей теме «Подобие»	Контрольная работа по главе «Преобразования»		Формулировать и доказывать свойства хорд окружности. Формулировать определение центрального угла	Формулировать определение касательной к окружности. Доказывать теорему о касательной к окружности	Классифицировать случаи взаимного расположения прямой и окружности	Формулировать определения градусной меры дуги окружности и равенства дуг. Вычислять градусные меры дуг	Формулировать определение вписанного угла, доказывать теорему об измерении вписанного угла и выводить её следствия. Вычислять вписанные углы
Коли- чество часов	-	-	2	-	20	-	1	-	-	-
Содержание материала	Свойства подобных фигур	Признаки подобия треуголь- ников	Решение задач	Контрольная работа № 2	Геометрия круга	Свойства хорд	Касание прямой и окружности	Взаимное расположение пря- мой и окружности	Градусная мера дуги окруж- ности	Измерение вписанных углов
Номер	10.3	10.4			Глава III.	11.1	11.2		11.3	4.11

11.5	Произведение отрезков хорд	-	Доказывать теорему о произведении хорд и вычислять отрезки хорд
	Произведение отрезков се- кущих	-	Доказывать теоремы о произведении отрезков секущих и квадрате касательной. Вычислять отрезки секущих и касательные
11.6	Взаимное расположение двух окружностей	-	Классифицировать взаимное расположение двух окружностей в зависимости от их радиусов и расстояния между центрами
12.1	Окружность, описанная вокруг многоугольника	-	Формулировать определение описанной вокруг многоугольника окружности, приводить примеры многоугольников, имеющих описанную окружность и не имеющих её, доказывать теорему об окружности, описанной вокруг треугольника
	Радиус окружности, описанной вокруг треугольника	1	Выражать радиус описанной вокруг треугольника окружности через сторону треугольника и синус противолежащего угла. Как следствие этой формулы получить теорему синусов
12.2	Окружность, вписанная в мно-гоугольник	-	Формулировать определение вписанной в многоугольник окружности, приводить примеры многоугольников, имеющих вписанную окружность и не имеющих её, доказывать теорему об окружности, вписанной в треугольник. Выразить площадь треугольника через периметр и радиус вписанной в него окружности
12.3	Замечательные точки тре- угольника	-	Доказывать теорему о точке пересечения медиан тре- угольника
	Окружность Эйлера	1	Доказывать теорему об ортоцентре треугольника
13.1	Измерение длины кривой. Длина окружности	-	Доказать, что длина окружности пропорциональна её ра- диусу

Продолжение

Номер пункта	Содержание материала	Коли- чество часов	Характеристика основных видов деятельности ученика (на уровне учебных действий)
13.2	Длина дуги окружности	-	Вычислять длины дуг окружности, зная их градусные меры
13.3	Измерение площади плоской фигуры. Площадь круга	-	Вывести формулу для площади круга. Вычислять площади кругов
	Площадь сектора	-	Вычислять площадь сектора круга, зная градусную меру его дуги
13.4	число π	1	Ознакомиться с историей, связанной с числом π
14.1*, 14.2*	Цилиндры и конусы. Объёмы цилиндра и конуса	-	Ввести понятия цилиндра, конуса, образующей, основания, развёртки. Выводить формулы для вычисления площадей их поверхностей и объёмов
14.3*, 14.4*	Сфера и шар. Объём шара. Площадь сферы. Архимед	-	Вспомнить основные понятия, связанные со сферой и шаром. Выводить формулы для вычисления объёма шара и площади его поверхности, ознакомиться с историей их доказательства Архимедом
	Решение задач по теме «Окружность и круг»	-	Решение вычислительных задач, связанных с окруж- ностью и кругом
	Контрольная работа № 3	1	Контрольная работа по теме «Окружность и круг»
	Итоговое повторение и итого- вая контрольная работа	5	

* — так обозначены пункты для интересующихся математикой