Please check the examination details belo	ow before ente	ering your candidate information
Candidate surname		Other names
Centre Number Candidate Nu Pearson Edexcel Interi		al Advanced Level
Tuesday 16 January		al Advanced Level
Morning (Time: 1 hour 30 minutes)	Paper reference	WCH12/01
Chemistry		♦ ♦
International Advanced Su UNIT 2: Energetics, Group Halogenoalkanes and Alco	Chemi	-
You must have: Scientific calculator, Data Booklet		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P75592A
©2024 Pearson Education Ltd.
S-1/1/1/

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 Which compound has intermolecular hydrogen bonding?

- A HF
- \square **B** H₂Te
- C AsH₃
- \square **D** SnH₄

(Total for Question 1 = 1 mark)

2 In which process are intermolecular hydrogen bonds broken?

- \square **A** $H_2(g) \rightarrow 2H(g)$
- \square **B** $H_2O(I) \rightarrow H_2O(g)$
- \square **C** $H_2(I) \rightarrow H_2(g)$
- $\square \quad \mathbf{D} \quad \mathsf{H}_2(\mathsf{g}) \ + \ \frac{1}{2}\mathsf{O}_2(\mathsf{g}) \ \to \ \mathsf{H}_2\mathsf{O}(\mathsf{g})$

(Total for Question 2 = 1 mark)

- **3** A compound contains
 - molecules with non-polar bonds
 - permanent dipole-permanent dipole forces between its molecules.

What could be the formula of this compound? Use the Data Booklet as a source of information.

- A NO
- **B** BeCl₂
- C PH₃
- \square **D** CI₄

(Total for Question 3 = 1 mark)

- **4** Which alkane has the strongest London forces in the liquid phase?
 - \triangle A (CH₃)₄C
 - B CH₃CH₂CH₂CH₂CH₃
 - \square **C** $(C_2H_5)_4C$
 - □ CH₃(CH₂)₇CH₃

(Total for Question 4 = 1 mark)

- 5 In which liquid solvent would the solubility of lithium chloride (LiCI) be lowest?
 - **A** ammonia
 - B cyclohexane

 - **D** water

(Total for Question 5 = 1 mark)

- **6** Which compound does **not** contain an element with an oxidation number of -1?
 - A HF
 - B NaH
 - \square C H₂O₂
 - ☑ D CH₄

(Total for Question 6 = 1 mark)

- **7** Which reaction involves the oxidation of a Group 7 element?
 - \square A Br₂ + F₂ \rightarrow 2BrF
 - \square **B** U + 3CIF₃ \rightarrow UF₆ + 3CIF
 - \square **C** $2F_2 + 2H_2O \rightarrow 4HF + O_2$
 - \square **D** KCI + H₂SO₄ \rightarrow HCI + KHSO₄

(Total for Question 7 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

8 Equal volumes of some 0.01 mol dm⁻³ solutions were mixed.

Which pair of solutions gave the greatest mass of precipitate?

- A BaCl₂ and AgNO₃
- BaCl₂ and Ag₂SO₄
- ☑ C BaCl₂ and NaNO₃
- ☑ D BaCl₂ and Na₂SO₄

(Total for Question 8 = 1 mark)

- **9** Which test reagent could be used to identify an aqueous solution containing hydrogencarbonate ions, HCO_3^- ?
 - A sodium carbonate
 - **B** sodium hydroxide
 - C nitric acid
 - **D** ammonia

(Total for Question 9 = 1 mark)

10 Bromine, Br₂(I), can be disposed of safely by reaction with aqueous sodium thiosulfate, Na₂S₂O₃(aq).

$$Br_2(I) + 2Na_2S_2O_3(aq) \rightarrow 2NaBr(aq) + Na_2S_4O_6(aq)$$

What is the minimum volume, in cm³, of $0.5 \, \text{mol dm}^{-3} \, \text{Na}_2 \text{S}_2 \text{O}_3(\text{aq})$ needed to react completely with $0.01 \, \text{mol of Br}_2(\text{I})$?

- **■ B** 0.04
- **D** 40

(Total for Question 10 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

- **11** What is the mass of nitrogen **atoms** in 50 cm³ of a 2.0 mol dm⁻³ solution of ammonium nitrate, NH₄NO₃(aq)?

 - **B** 8.0 g

(Total for Question 11 = 1 mark)

12 Which row shows the correct trends **down** the group for the elements of Group 7?

		Boiling temperature	Electronegativity	Reactivity as oxidising agent
	Α	increases	decreases	decreases
	В	decreases	increases	increases
	C	increases	decreases	increases
]	D	decreases	increases	decreases

(Total for Question 12 = 1 mark)

- **13** Which statement **best** explains why the rate of a chemical reaction increases with increasing temperature?
 - A the activation energy decreases
 - **B** the number of collisions increases
 - C the kinetic energy of the particles increases
 - \square **D** the frequency of collisions with $E \geqslant E_a$ increases

(Total for Question 13 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	Α	the position of equilibrium is affected by temperature, by pressure and by catalysts
×	R	the concentration of reactants is constant
×		the forward and backward reactions occur at equal rates
X		·
	U	the equilibrium can be reached from either direction
		(Total for Question 14 = 1 mark)
15 Silv	er ni	trate, in aqueous ethanol, is added separately to four halogenoalkanes.
Wh	ich v	vould form a silver halide precipitate in the shortest time?
×	Α	1-bromobutane
×	В	1-chlorobutane
×	C	1-fluorobutane
×	D	1-iodobutane
		(Total for Question 15 = 1 mark
		the total number of structural isomers for cyclic alcohols with the molecular C_4H_8O ?
TOTI	A	2
TOR		
TORI	В	3
TORI	B C	
TORI		4
× ×	c	4 5
× × ×	C D	4

17 Which is a correct equation for the **incomplete** combustion of butan-1-ol?

- \blacksquare A CH₃CH₂CH₂CH₂OH + 6O₂ \rightarrow 4CO₂ + 5H₂O
- \blacksquare **B** CH₃CH₂CH₂CH₂OH + 6½O₂ \rightarrow 4CO₂ + 5H₂O
- \square C CH₃CH₂CH₂CH₂OH + 4O₂ \rightarrow 4CO + 5H₂O
- \square **D** CH₃CH₂CH₂CH₂OH + 4½O₂ \rightarrow 4CO + 5H₂O

(Total for Question 17 = 1 mark)

18 Which reagent(s) could be used to produce a chloroalkane from a **tertiary** alcohol?

- 1 PCI₅
- 2 concentrated HCI
- 3 concentrated H₂SO₄ and KCI
- **B** 1 and 3 only
- C 2 and 3 only
- □ 1 only

(Total for Question 18 = 1 mark)

19 What amount, in mol, of [O] is needed to convert 1 mol of pentane-1,3,5-triol into 3-oxopentanedioic acid and water?

pentane-1,3,5-triol

3-oxopentanedioic acid

- A 2
- **■ B** 3

(Total for Question 19 = 1 mark)

- A CH₃COOH
- B CH₃COCH₃
- D CH₃CH₂CH₂CH₃

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

DØ NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 21 This question is about the element calcium and some of its compounds.
 - (a) Give the complete electronic configuration, using s, p, d notation, of a calcium atom in the ground state.

(1)

(b) Calcium reacts with chlorine to form calcium chloride.

species involved in this reaction.

$$Ca(s) + CI_2(g) \rightarrow CaCI_2(s)$$

(i) Explain, in terms of oxidation numbers, why this is a redox reaction.

(2)

(ii) Complete the table to indicate the type(s) of bonding and structure in the

(3)

Species	Bonding	Structure
Ca(s)		
	covalent	
		giant

(iii) State the expected flame colour when CaCl₂ is used in a flame test.

(1)

(c) A sample of solid anhydrous calcium nitrate, $Ca(NO_3)_2(s)$, is heated strongly for several minutes in the apparatus shown.

(i) State **two** observations that would be made.

(2)

(ii) Explain why the observations from (c)(i) would be made more quickly if the experiment was repeated with solid anhydrous magnesium nitrate,

(3)

 $Mg(NO_3)_2(s)$.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

*(d) Samples of calcium and magnesium are added to separate test tubes of cold water containing a few drops of universal indicator.	
State and explain the differences in the observations made in each expe	eriment.
Include an equation in your answer.	(6)

DØ NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 21 = 18 marks)

22 This question is about enthalpy changes.

A student wanted to use Hess's Law to determine the enthalpy change, $\Delta_r H_1$, in kJ mol⁻¹, for Reaction **1**.

Reaction 1

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$

 $\Delta_r H_1$

(a) Explain why $\Delta_r H_1$ can also be described as an enthalpy change of formation.

(2)

(b) The student carried out an experiment to determine the enthalpy change of reaction, $\Delta_r H_2$, in kJ mol⁻¹, for Reaction **2**.

Reaction 2

$$MgO(s) \ + \ 2HCI(aq) \ \rightarrow \ MgCI_2(aq) \ + \ H_2O(I)$$

 $\Delta_{\rm r}H_2$

0.189 g of solid magnesium oxide was added to excess hydrochloric acid in a polystyrene cup and stirred until the reaction was complete.

The total mass of the solution formed was 25.0 g.

During the experiment, the temperature increased from 21.5°C to 28.0°C.

Calculate $\Delta_r H_2$, in kJ mol⁻¹, including a sign.

Give your answer to an appropriate number of significant figures.

[Specific heat capacity of the solution = $4.18 \,\mathrm{Jg^{-1} \, °C^{-1}}$.]

(4)

(c) Calculate the enthalpy change of reaction, $\Delta_r H_1$, for Reaction 1. Use your answer to (b), the data provided and the enthalpy cycle shown.

[If you did not calculate an answer to (b), use a value of $-100 \, \text{kJ} \, \text{mol}^{-1}$. This is **not** the correct answer.]

(2)

Data

Mg(s) + 2HCI(aq)
$$\rightarrow$$
 MgCI₂(aq) + H₂(g) $\Delta_r H = -462 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$$
 $\Delta_f H = -286 \text{ kJ mol}^{-1}$

Enthalpy cycle

(Total for Question 22 = 8 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

23 This question is about bromoalkanes with the molecular formula C_4H_9Br .

(a) (i) Give the IUPAC name of the only C_4H_9Br tertiary bromoalkane.

(1)

(ii) Draw the **displayed** formula of the only C₄H₉Br secondary bromoalkane.

(1)

(iii) Draw the **skeletal** formula of the only branched-chain C₄H₀Br primary bromoalkane.

(1)

(b) Give the structure of the C_4H_9Br bromoalkane that would react fastest with aqueous silver nitrate in ethanol.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

(c) Some reactions of $CH_3CH_2CH_2CH_2Br$ are shown.

(i) Complete the table.

(4)

Reaction	Name of mechanism	Formula of reagent	Condition(s)
R1	nucleophilic substitution		
R2			heat in ethanol
R3		NH ₃	
R4			heat in ethanol

(ii) Complete the mechanism for reaction R3. Include curly arrows, and any relevant lone pairs, dipoles and charges.

(4)

NH₃

CH₃CH₂CH₂CH₂NH₂ + NH

(iii) Give the wavenumber range of an absorption in the infrared spectrum of the organic product of reaction R4, which is **not** present in the infrared spectrum of CH₃CH₂CH₂CH₂Br.
Indicate the bond responsible for this absorption.

(2)

Wavenumber range

Bond

(Total for Question 23 = 14 marks)

TOTAL FOR SECTION B = 40 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

24 The elements of Group 7, the halogens, have many important uses.

Fluorine is used to make sulfur hexafluoride, SF₆, a gas which is used as an insulator in electrical equipment.

Chlorine is used as a bleach and as a disinfectant in water treatment.

Bromine is used to make organic chemicals that are used as fire retardants.

lodine has been used in the catalyst in the manufacture of ethanoic acid.

(a) SF_6 can be made from the reaction of sulfur, S_8 , with fluorine.

$$S_8(s) + 24F_2(g) \rightarrow 8SF_6(g)$$
 $\Delta_r H = -9672 \text{ kJ mol}^{-1}$

$$\Delta_{\rm r} H = -9672 \,{\rm kJ \, mol^{-1}}$$

The structure of $S_8(s)$ is shown.

Bond enthalpy data

Bond	Mean bond enthalpy / kJ mol ⁻¹
s—s	268
FF	151

(i) Calculate the mean bond enthalpy, in $kJ \, mol^{-1}$, for a single $S \, \overline{} \, F$ bond.

(3)

(ii)	Give two reasons why your answer to (a)(i) is unlikely to accurately represent the true S — F bond enthalpy in SF_6 .	(2)
(iii)	SF ₆ is a potent greenhouse gas.	
	$1.00\mathrm{g}$ of $\mathrm{SF_6}$ absorbs the same amount of infrared radiation as $23.9\mathrm{kg}$ of $\mathrm{CO_2}$.	
	Calculate the number of molecules of CO_2 , to the nearest whole number, that absorb the same amount of infrared radiation as one molecule of SF_6 in the atmosphere.	
	•	(3)

(b) Bleach, NaClO(aq), is formed by the reaction of chlorine with cold, dilute aqueous sodium hydroxide.

$$CI_2(g) + 2NaOH(aq) \rightarrow NaCIO(aq) + NaCI(aq) + H_2O(I)$$

The following species and equilibria are present in solutions of NaClO(aq).

Equilibrium 1
$$HCIO(aq) \rightleftharpoons H^+(aq) + CIO^-(aq)$$

Equilibrium 2
$$\qquad \qquad HCIO(aq) \ + \ CI^-(aq) \ + \ H^+(aq) \ \rightleftharpoons \ CI_2(aq) \ + \ H_2O(I)$$

Equilibrium 3
$$CI_2(aq) \rightleftharpoons CI_2(g)$$

Household bleach is stored at a pH between 11 and 13. Household bleach should not be stored near strong acid.

(i) Give the formula of the chlorine-containing species present at highest concentration in household bleach at pH 12.

(1)

(ii) Explain why mixing strong acid with bleach is dangerous. Justify your answer using the equilibria shown.

(3)

(iii) On heating, NaCIO disproportionates to form sodium chloride and sodium chlorate(V).

Give the equation for this disproportionation reaction. State symbols are **not** required.

(2)

(c) The structure of a fire retardant is shown.

Calculate the percentage by mass of bromine in this fire retardant. Give your answer to an appropriate number of significant figures.

(2)

(d) The industrial manufacture of ethanoic acid first used an iodine-based catalyst.

Explain, with the aid of a labelled Maxwell–Boltzmann distribution, how a catalyst increases the rate of a chemical reaction.

(4)

(Total for Question 24 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS

DØ NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DØ NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7 0(8)	(18) 4.0 He helium (17) 2	19.0 20.2 F Ne (luorine neon 9 10	35.5 39.9 Cl Ar argon 17 18	_	Br Kr bromine krypton 35 36	126.9 131.3	I Xe todine xenon 53 54	[210] [222]	At Rn astatine radon	4	reported	7.5	Lu Iutetium 71	[257] Lr
	(16)	16.0 1 O oxygen flu	32.1 3 S sulfur chl		Se brose brose 34	127.6 12	Te tellurium io	[209]	Po ast	-	have beer ted		Yb lut	[254] [7 No
9						×					tomic numbers 112-116 hav but not fully authenticated			
S		14.0 N nitrogen 7	31.0 P phosphorus 15	74.9	As arsenic 33	121.8	Sb antimony 51	209.0	Bi bismuth	3	numbers t fully au	169	Tm thullum 69	[256] Md
4	(14)	12.0 C carbon 6	28.1 Silicon 14	72.6	Ge germanium 32	118.7	S # 8	207.2	Pead 5	3	but no	167	Er erbium 68	[253] Fm
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	7.69	Ga gallium 31	114.8	Indium 49	204.4	thallium	5	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165	Ho hotmium 67	[254] Es
			(12)	65.4	Zinc 30	112.4	Cd cadmium 48	200.6	Hercury	8		163	Dy dysprosium 66	[251] Cf
			(11)	63.5	Cu copper 29	107.9	Ag silver 47	197.0	Au gold	[272]	Rg roentgenium 111	159	Tb terbium 65	[245] Bk
			(01)	58.7	Ni ckel 28	106.4	Pd palladium 46	195.1	Pt platinum	[271]	Ds darmstadtlum 110	157	Gd gadolinium 64	[247] Cm
			(6)	58.9	Co cobalt 27	102.9	Rh rhodium 45	192.2	Iridium 77	[368]	Mt meitnerium 109	152	Eu europium 63	[243] Am
	1.0 H hydrogen		(8)	55.8	Fe iron 26	101.1	Ru ruthenium 44	190.2	Os osmium	[777]	Нs hassium 108	150	Sm samarium 62	[242] Pu
			0	54.9	Mn manganese 25	[86]	Tc technetium 43	186.2	Re rhenium	[264]	Bh bohrium 107	[147]	Pm promethium 61	[237] Np
		mass. bol umber	(9)	52.0	Cr chromium 24	626	Mo Tc molybdenum technetium 42 43	183.8	W tungsten	[592]	Sg seaborgium 106	144	Pr Nd Pm praseodymium promethium 59 60 61	238 U
	Key	relative atomic mass. atomic symbol name atomic (proton) number	(5)	6.05	V vanadium 23	92.9	Nobium 41	180.9	Ta tantalum	[292]	Db dubnium 105	141	Pr praseodymium 59	[231] Pa
		relati ato atomic	3	47.9	Ti titanium 22	91.2	Zr zirconium 40	178.5	HF hafnium	[261]	Rf nutherfordfum 104	140	Cerium 58	232 Th
			(3)	45.0	Sc scandium 21	6.88	¥ yttrium 39	138.9	La* lanthanum	[227]	AC* actinium 89		Si.	
7	(2)	9.0 Be beryllium 4	Mg magnesium 12	40.1	Ca calcrum 20	97.6	Sr strontium 38	137.3	Ba barrium	[226]	Ra radium 88	100	Lanthanide series Actinide series	
÷	(3)	6.9 Li Uthium 3	23.0 Na sodium 11	39.1	K potassium 19	85.5	Rb rubidium 37	132.9	Cs caesium 55	[223]	Fr franclum 87	8	. Actini	

