```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("Social_Network_Ads.csv")

df.head()
```

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

df.shape

(400, 5)

	Age	EstimatedSalary
0	19	19000
1	35	20000
2	26	43000
3	27	57000
4	19	76000

y = df.iloc[:, 4]
y.head()

Name: Purchased, dtype: int64

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_s

```
print("Training data examples: ", x_train.shape)
print("Testing data examples: ", x_test.shape)
    Training data examples: (300, 2)
    Testing data examples: (100, 2)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x train = sc.fit transform(x train)
x test = sc.transform(x test)
from sklearn.svm import SVC
classifier = SVC(kernel='linear', random_state=0)
classifier.fit(x train, y train)
y pred = classifier.predict(x test)
y_pred
    array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
           0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
           0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
           0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1])
from sklearn import metrics
print("Accuracy (Linear kernel):", metrics.accuracy_score(y_test, y_pred))
    Accuracy (Linear kernel): 0.9
from sklearn.svm import SVC
classifier = SVC(kernel='rbf', random state=0)
classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
y_pred
    array([0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
           0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1])
from sklearn import metrics
print("Accuracy (RBF kernel):", metrics.accuracy_score(y_test, y_pred))
```

Accuracy (RBF kernel): 0.93

✓ 0s completed at 11:51 PM