ITAM

Departamento de Estadística

Inferencia Estadística— Laboratorio #4 Estimación Puntual: Sesgo, Varianza, Error Cuadrático Medio, Consistencia

1. Demuestra que

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) - B^2(\hat{\theta})$$

- 2. Suponga que $\hat{\theta}$ es un estimador para un parámetro θ y $E\left[(\hat{\theta}\right]=a\theta+b$ para $a,b\neq0.$
 - (a) En términos de a, b y θ . Encuentre $B(\hat{\theta})$
 - (b) Encuentre una función de $\hat{\theta}$, sea θ^* , que sea un estimador no sesgado para θ
 - (c) Usando este estimador insesgado, exprese $MSE(\hat{\theta}^*)$ como función de $V(\hat{\theta})$
 - (d) Dé un ejemplo de valores de a,b para los cuales se cumpla $MSE(\hat{\theta}^*) > MSE(\hat{\theta})$
- 3. Suponga Y_i , i=1,2,3 denotan una m.a. de una distribución exponencial con f.d.p $f(y)=\frac{1}{\theta}e^{\frac{-y}{\theta}},\ y>0$. Considere:

$$\hat{\theta}_1 = \frac{Y_1 + 2Y_2}{3}, \quad \hat{\theta}_2 = \min\{Y_1, Y_2, Y_3\}, \quad \hat{\theta}_3 = \bar{Y}$$

- (a) Determina cuál de estos estimadores es insesgado
- (b) ¿Cuál tiene la varianza más pequeña?
- 4. Si $Y \sim Bin(n, p)$. Demuestra que:
 - (a) $\hat{p}_1 = \frac{Y}{n}$ es insesgado.
 - (b) Sea $\hat{p}_2 = \frac{(Y+1)}{(n+2)}$ deduzca el sesgo de \hat{p}_2
 - (c) Dime los valores de p
 para los que $MSE(\hat{p}_1) < MSE(\hat{p}_2)$
- 5. Suponga que $X_i, Y_i, i = 1, 2, ..., n$ son m.a.'s independientes provenientes de poblaciones con medias μ_1, μ_2 y varianzas σ_1, σ_2 respectivamente. Demuestre que $\bar{X} \bar{Y}$ es un estimador consistente de $\mu_1 \mu_2$

- 6. Se dice que $\hat{\theta}$, un estimador insesgado de θ es consistente en $MSE(\hat{\theta})$ si $\lim_{n\to\infty} MSE(\hat{\theta}) = 0$.
 - (a) Pruebe que $\hat{\theta}$ es consistente en $MSE(\hat{\theta})$ si y sólo si $\lim_{n\to\infty}V(\hat{\theta})=0$
 - (b) Pruebe que consistencia en MSE implica consistencia en probabilidad.
 - (c) Use estos dos incisos para demostrar que $\hat{\theta}$ es consistente si $\lim_{n\to\infty} E(\hat{\theta}) = \theta$
- 7. Sea X_i i=1,2,...,n una m.a de $X_i \sim U(0,\theta) \ \forall i$, use el ejercicio anterior para demostrar que $T=X_{(n)}$ es consistente.