TI Voyage 200 - Befehlsreferenz

1 Basics

1.1 Tipps / Tricks

ON	Bricht die aktuelle Aktion ab.
$\diamond + G$	Aktiviert griechisches Alphabet. (für das nächste Zeichen)
	$\diamond + G \to D = \delta$
	$\diamond + G \rightarrow \uparrow + D = \Delta$

1.2 Basic Funtions

solve(x+1=5,x)	Löse die Gleichung nach x
$solve(x + 1 = y \ and \ y + 2 = x, \{x, y\})$	Löse das Gleichungssystem nach \boldsymbol{x} und \boldsymbol{y}
abs(a)	Betrag $ a $ einer (komplexen) Zahl a
root(a, n)	$\sqrt[n]{a}$ bzw. \sqrt{a} , falls n weggelassen wird.
$limit(n+1,n,\infty)$	$\lim_{n\to\infty}(n+1)$
$\sum (n+1, n, a, b)$	$\sum_{n=a}^{b} n + 1$
$\int (x+1,x,a,b)$	$\int_a^b x + 1 dx$ (a und b optional)
$\delta(x+1,x,n)$	$\frac{\delta^n}{\delta x^n}x + 1$
expand((x+1)(x+2))	Multipliziert den Term aus. Führt auch PBZ durch.
$factor(x^2+x)$	Zerlegt den Term in Faktoren.
factor(x2+x,x)	Faktorisiert den Term nach der Variable \boldsymbol{x}
arcLen(cos(x), x, a, b)	Gibt die Bogenlänge der Funktion zwischen a und b and.
gcd(a,b)	Gibt den grössten gemeinsamen Teiler (ggT) von a und b zurück.
lcm(a,b)	Gibt das kleinste gemeinsame Vielfache (kgV) von a und b zurück.

1.3 Advanced Functions

deSolve(y'' + 2*y' = 2*x, x, y)	Löst die DGL (1. oder 2. Ordnung) und gibt eine allgemeine	
deSolve(y'=x and y(0)=0,x,y)	Lösung aus. Werden Anfangs-/Randbedingungen angegeben wird eine	
deSolve(y'' + y' + y = sin(x)) and	spezielle Lösung ausgegeben. Generelle Eingabe:	
$y(0)=0$ and $y^{\prime}(0)=1,x,y)$	deSolve(DGL and Anfangsbedingung ,unabhängige Variable, abhängige Variable)	
$impDif(x^2 + y^2 = 100, x, y)$	Berechnet die implizite Ableitung der Gleichung, wenn eine Variable	
	implizit durch die Andere gegeben ist. Resultat: $-x/y$	
$nDeriv(x^2, x, [h])$	Berechnet die numerische Ableitung nach x . Der optionale Parameter	
	h gibt die Schrittweite an. Wenn statt x^2 eine Liste oder Matrix	
	verwendet wird, wird die Ableitung über entsprechenden Werte gebildet.	
$fMax(-(x-a)^2, x)$	Gibt Werte für x an, so dass der Term maximal wird.	
$fMax(-(x-a)^2, x) x>3$	mit eingeschränktem Lösungsintervall	
$fMin((x-a)^2,x)$	Gibt Werte für x an, so dass der Term minimal wird.	
$exp \triangleright list(x = 2 \ or \ x = 1, x)$	Gibt durch or getrennte Werte als Liste zurück ($\{2,1\}$)	

2 Zahlensysteme

Der TI Voyage kennt folgende Zahlensysteme und Umrechnungsfunktionen:

- ... ► bin 0b... Binärsystem
- $\dots \blacktriangleright hex \quad 0h\dots$ Hexadezimalsystem
- $\dots
 ightharpoonup dez \qquad \dots \qquad {\sf Dezimal system}$

Unter $MODE \triangleright BASE$ wird das Standard-Zahlensystem festgelegt. Hinweis: Nur die Ausgabe wird verändert. Die Eingabe muss weiterhin mit z.B. 0b... erfolgen.

3 Vektoren / Matrizen

Vektoren und Matrizen werden im TI Voyage 200 folgendermassen eingegeben:

[a,b]	$\begin{bmatrix} a & b \end{bmatrix}$	Zeilenvektoren
[a;b]	$\begin{bmatrix} a \\ b \end{bmatrix}$	Spaltenvektoren
[a, b; c, d] $[[a, b][c, d]]$	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	Matrizen

3.1 Vektor-Funktionen

$crossP(\vec{a}, \vec{b})$	Kreuzprodukt $ec{a} imes ec{b}$
$dot P(\vec{a}, \vec{b})$	Skalarprodukt $ec{a} \circ ec{b}$

3.2 Matrix-Funktionen

det(A)	Determinante der Matrix ${\cal A}$				
rref(A) Gibt die reduzierte Zeilenstaffelform der Matrix	Gibt die reduzierte Zeilanstaffelform der Matrix an	1	0	a	
	dist die reduzierte Zelienstallellorin der Matrix an.	0	1	b	
eigVc(A)	Ergibt eine Matrix, welche die Eigenvektoren der Matrix A enthält.				
eigVl(A)	Gibt eine Liste der Eigenwerte der Matrix ${\cal A}$ zurück.				
identity(n)	Gibt eine Einheitsmatrix der Dimension n zurück.				
diag(a)	Erzeugt eine Matrix mit den Werten der Liste / des Vektors a in der Diagonale				
max(A)	Gibt einen Zeilenvektor zurück, der das Maximum jeder Spalte enthält.				
min(A)	Gibt einen Zeilenvektor zurück, der das Minimum jeder Spalte enthält.				

3.3 Weitere Funktionen

$list \blacktriangleright mat(\{\})$.}) Gibt einen Zeilenvektor mit den Elementen der Liste zurück.		
$list \blacktriangleright mat(\{\},a)$	Gibt eine Matrix mit a Elementen pro Zeile zurück.		
$mat \triangleright list([])$	Gibt eine Liste mit dem Inhalt der Matrix zurück (Zeile für Zeile).		
$[x,y,z] \triangleright cylind$	Gibt den dreidimensionalen Zeilen- oder Spaltenvektor in der Form $[r, \angle \theta, z]$ zurück.		

4 Komplexe Zahlen

Komplexe Zahlen können im TI Voyage 200 in der Form a+bi (Rectangular) oder $r \angle \phi$ (Polar) geschrieben werden. Unter $MODE \blacktriangleright Complex \ Format$ kann der Standard-Modus ausgewählt werden. Der Modus Real zeigt nur komplexe Werte an, wenn auch die Eingabe komplex war. Die Eingabe und Umrechnung geschieht folgendermassen:

4.1 Funktionen

$cFactor(x^2 + a^2, x)$	Komplexe Faktorzerlegung nach \boldsymbol{x}
$cSolve(x^2 + x + 1, x)$	Lösen der komplexen Gleichung nach \boldsymbol{x}
$cSolve(x = 2 * y \ and \ y^2 = -1)$	Lösen komplexer Gleichungssysteme nach \boldsymbol{x} und \boldsymbol{y}
$cZeros(x^2+1,x)$	Bestimmen der (komplexen) Nullstellen
conj(z)	Konjugiert-komplexe Zahl \bar{z}
abs(z)	Betrag $ z $
angle(z)	Winkel $rg(z)$
real(z)	Realteil $\Re(z)$
imag(z)	Imaginärteil $\Im(z)$

4.2 Umrechnungen

$P \blacktriangleright Rx(r,\theta)$	Gibt die X -Koordinate des Paars (r,ϕ) zurück.
$P \blacktriangleright Rx(\{r1, r2\}, \{\theta1, \theta2\})$	Funktioniert auch für Listen
$P \blacktriangleright Rx([r1, r2; r3, r4], [\theta1, \theta2; \theta3, \theta4])$	und Vektoren / Matrizen
$P \triangleright Ry(r,\phi)$	Gibt die Y -Koordinate des Paars (r,ϕ) zurück.
$R \blacktriangleright Pr(x,y)$	Gibt die r -Koordinate des Paars (x,y) zurück.
$R \triangleright P\theta(x,y)$	Gibt die θ -Koordinate des Paars (x,y) zurück.

5 Statistik / Wahrscheinlichkeit

5.1 Funktionen

$mean(\{\})$	Berechnet das arithmetische Mittel der Elemente der Liste.
$mean(\{\ldots\},\{\ldots\})$	Mit einer zweiten Liste lassen sich die Elemente einzeln gewichten.
mean(A)	Gibt einen Zeilenvektor mit den arith. Mitteln der Spalten zurück.
mean(A, B)	Mit einer Matrix B lassen sich die Elemente von A gewichten.
$median(\{\})$	Berechnet den Median der Elemente der Liste.
median(A)	Gibt einen Zeilenvektor mit den Medianwerten der Spalten zurück.
$stdDev(\{\})$	Berechnet die Standardabweichung σ der Liste
$variance(\{\}$	Berechnet die Varianz σ^2 der Liste
nCr(n,k)	Binominalkoeffizient $\binom{n}{k}$ - funktioniert auch für Listen und Matrizen
nPr(n,k)	Anzahl Möglichkeiten unter Berücksichtigung der Reihenfolge k Elemente aus n auszuwählen.
OneVarL1, [L2], [L3], [L4]	Berechnet die Statistiken der Liste L1. Die Statistik wird mit $ShowStat$ eingeblendet.
ShowStat	Folgende Werte werden berechnet: $\bar{x}, \sum x, \sum x^2, \sigma x,$
	Optionale Listen: L2: Häufigkeit, L3: Klassencodes, L4: Klassenliste

5.2 Regression

Zur Berechnung einer Regression muss eine Liste $(\{...\})$ die x-Werte enthalten und eine zweite Liste die y-Werte. Der Befehl $LinReg\ L1, L2$ berechnet die lineare Regression. Mit ShowStat werden die berechneten Werte angezeigt. Es ist auch möglich, die Datenpunkte und die Regressionskurve zu plotten: $Regeq(x) \to y1(x)$ und $NewPlot\ 1, 1, L1, L2$ Optional können weitere Listen angegeben werden: L3: Häufigkeit, L4: Klassencodes, L5: Klassenliste, wobei alle Listen ausser L5 die gleiche Dimension besitzen müssen. 'Iterationen' gibt die maximale Anzahl Lösungsversuche an. (standardmäsig: 64)

Lineare Regression	$LinReg\ L1, L2, [L3], [L4, L5]$
Logarithmische Regression	$LnReg\ L1, L2, [L3], [L4, L5]$
Logistische Regression	$Logistic \ L1, L2, [{\it Iterationen}], [L3], [L4, L5]$
Potenz-Regression	$PowerReg\ L1, L2, [L3], [L4, L5]$
Quadratische Polynomische Regression	$QuadReg\ L1, L2, [L3], [L4, L5]$
Kubische Regression	$CubReg\ L1, L2, [L3], [L4, L5]$
Polynomische Regression 4-ter Ordnung	$QuartReg\ L1, L2, [L3], [L4, L5]$

5.3 Zufallszahlen

RandSeed 1147	Setzt die Ausgangsbasis (Seed) für den Zufallszahl-Generator	
rand()	Gibt eine Zufallszahl zwischen 0 und 1 zurück.	
rand(n)	Gibt eine Zufallszahl zwischen 0 und n (für n pos.)	
	bzw. zwischen n und 0 (für n neg.) zurück.	
randMat(n,m)	Erzeugt eine ganzzahlige Matrix mit n Zeilen und m Spalten mit Werten $-9 < x < +9$.	
randNorm(a,sd)	dNorm(a,sd) Gibt eine reelle Zufallszahl um den Mittelwert a mit der Standardabweichung sd aus.	
randPoly(x,n)	Erzeugt ein Polynom der Variable x der Ordnung n mit Koeffizienten $-9 < x < +9$	