Package 'BAGEL'

June 30, 2020

Title BAGEL: A Bayesian Graphical Model for Inferring Drug Effect Longitudinally on Depres-

Type Package

Usage

sion in reopic with the				
Version 0.1.0				
Description This package implements BAGEL, a Bayesian graphical model to investigate the longitudinal effects of ART drugs on a range of depression symptoms while adjusting for participants' demographic, behavior, and clinical characteristics, and taking into account the heterogeneous population through a Bayesian nonparametric prior.				
License GPL-3				
Encoding UTF-8				
LazyData true				
LinkingTo Rcpp, RcppArmadillo, RcppDist				
Imports Rcpp				
RoxygenNote 7.0.2				
R topics documented:				
depression_prob_predict generate_simulate_data main_mcmc simulated_data	1 2 3 5			
Index	6			
depression_prob_predict				
The prediction function				
	_			
Description				
This function returns the predicted probability of reporting depression for each depression item	for			

a new visit, provided covariates, ART usage information, and previous visit time

depression_prob_predict(mcmc, z_new, x_new, seed = 1)

Arguments

mcmc	the MCMC output given by main_mcmc
z_new	the binary indicator matrix for drug usage information for new visit to predict
x_new	the covariates matrix for new visit to predict, it also includes the patient ID (1st column) and visit time (2nd column)
seed	the starting number used to generate random numbers

Value

the predicted probability of reporting depression for each depression item

See Also

See main_mcmc for an example.

```
generate_simulate_data
```

The function generates simulated data

Description

This function generates simulated data, provided the scale of the dataset

Usage

```
generate_simulate_data(
   D,
   Q,
   S,
   N,
   H,
   B = 10,
   rho = 0.1,
   prob = NULL,
   f = NULL,
   Comega = NULL,
   a = c(-100, 0, 1, 2, 100),
   sigma_square = 1,
   seed = 1
)
```

Arguments

D	the number of drugs
Q	the number of depression scores
S	the number of covariates
N	the number of patients in the dataset
Н	the number of clusters

main_meme 3

В	the number of bases for P-spline
rho	the prior probability of the binary indicator cube entries being 1
prob	the probabilities of patients being assigned to clusters. If not given, it will be equal probabilities.
f	the function designed to capture the longitudinally on depression. If not given, it will be constant $\boldsymbol{0}$
Comega	the correlation matrix which captures the dependencies among depression items. If not given, it will be an identity matrix
а	the thresholds that connects the latent and observed depression scores
sigma_square	the variance of noise for the latent continuous depression scores
seed	the starting number used to generate random numbers

Value

a simulated dataset with observated data and unobserved parameters

Examples

```
D = 5; Q=3; S=5; N=100; H=10
simulated_data <- generate_simulate_data(D, Q, S, N, H)
```

main_mcmc	The function returns the posted-brun-in MCMC samples thinned by
	the thinning factor

Description

This function returns the posted-brun-in MCMC samples thinned by the thinning factor, provided observed data and initial values for some parameters.

Usage

```
main_mcmc(Data, Burnin, Niter, thin = 1, hyper_parameter = list(), seed = 1)
```

Arguments

Data a list giving observed data. It includes: U giving the depression scores, each

row corresponds to one visit; Z giving the binary indicator matrix for drug usage information, each row corresponds to one visit; X giving the covariates matrix, it also includes the patient ID (1st column) and visit time (2nd column); D giving the number of drugs; Q giving the number of depression scores; S giving the number of covariates; N giving the number of patients in the dataset; B giving

the number of bases for P-spline.

Burnin number of burn-in iterations in MCMC

Niter number of iterations after burn-in in MCMC

thin the MCMC thinning factor

hyper_parameter

a list giving hyperparameters used in MCMC. See details below for more infor-

mation.

seed the starting number used to generate random numbers

4 main_mcmc

Details

hyper_parameter is a list giving hyperparameters used in MCMC. It includes: Comega_init giving the intial value of Comega, which is the correlation matrix which captures the dependencies among depression items; rho_init giving the intial value of rho, which is the prior probability of the binary indicator cube entries being 1; H_init giving the intial value of H, which is the number of clusters; a_init giving the intial value of a, which is the thresholds that connects the latent and observed depression scores; e_init giving the intial value of e, which is the clustering membership vector; alpha_init giving the intial value of alpha, which is the linear coefficients dependent on drug effect (it should be a cube, each slice corresponds to one cluster, each slice should be a 'S' by 'DQ' matrix); gamma_init giving the intial value of gamma, which is the linear coefficients for the P-spline (it should be a cube, each slice corresponds to one cluster, each slice should be a 'B' by 'DQ' matrix); beta_init giving the intial value of beta, which is the linear coefficients not dependent on drug effect (it should be a cube, each slice corresponds to one cluster, each slice should be a 'Q' by '1+S' matrix with the first column being the intercept); R_init giving the intial value of R, which is the binary indicator cube (it should be a cube, each slice corresponds to one cluster, each slice should be a 'Q' by 'D' matrix); sigma_square_alpha_init giving the intial value of sigma_square_alpha, which is the variance of alpha; sigma_square_beta_init giving the intial value of sigma_square_beta, which is the variance of beta; sigma_square_gamma_init giving the intial value of sigma_square_gamma, which is the variance of gamma; sigma_square giving the variance of noise for the latent continuous depression scores; m0 giving the concentration parameter for Dirichlet Process; H_max giving the maximum number of clusters allowed; a_rho giving the first hyper-parameter of rho with default value being 1, where we assume rho~Beta(alpha, beta); b_rho giving the second hyper-parameter of rho; step_a giving the step size for Metropolis-Hastings algorithm updating a; step_Comega giving the step size for Metropolis-Hastings algorithm updating Comega; a_beta giving the first hyper-parameter of sigma_square_beta, where we assume variance of beta is sampled from inv-Gamma(a,b); b_beta giving the second hyper-parameter of sigma_square_beta; a_alpha giving the first hyper-parameter of sigma_square_alpha, where we assume variance of alpha is sampled from inv-Gamma(a,b); b_alpha giving the second hyper-parameter of sigma_square_alpha; a_gamma giving the first hyper-parameter of sigma_square_gamma, where we assume variance of gamma is sampled from inv-Gamma(a,b); b_gamma giving the second hyper-parameter of sigma_square_gamma.

Value

the posted-brun-in MCMC samples thinned by the thinning factor, along with the following: D the number of drugs; Q the number of depression scores; S the number of covariates; knots the knots for P-spline; B the number of bases for P-spline; sigma_square the variance of noise for the latent continuous depression scores; m0 the concentration parameter for Dirichlet Process.

Examples

```
## Not run:
library(BAGEL)
data("simulated_data")
mcmc <- main_mcmc(Data=simulated_data, 2,10,5)
x_new <- simulated_data$X[10,]
z_new <- simulated_data$Z[10,]
depression_prob_predict(mcmc, z_new, x_new)
## End(Not run)</pre>
```

simulated_data 5

simulated_data

An example simulated dataset.

Description

It is a list generated by function generate_simulate_data (the example code). We assumed 5 drugs, 3 depression items, 5 covariates, 10 bases, and 100 patients.

Usage

```
data(simulated_data)
```

Format

- A list giving the following variables.
- U the depression scores, each row corresponds to one visit
- Z the binary indicator matrix for drug usage information, each row corresponds to one visit
- X the covariates matrix, it also includes the patient ID (1st column) and visit time (2nd column). Each row corresponds to one visit
- D the number of drugs
- Q the number of depression scores
- S the number of covariates
- N the number of patients in the dataset
- B the number of bases for P-spline
- H the number of clusters

beta the linear coefficients not dependent on drug effect

alpha the linear coefficients dependent on drug effect

gamma the linear coefficients for the P-spline

- R the binary indicator cube that introduce sparsity
- e the clustering membership vector
- a the thresholds that connects the latent and observed depression scores

Comega the correlation matrix which captures the dependencies among depression items

Examples

```
# output true clustering membership
data("simulated_data")
simulated_data$e

# get the details of the list
str(simulated_data)
```

Index

```
*Topic datasets
    simulated_data, 5

depression_prob_predict, 1
generate_simulate_data, 2, 5
main_mcmc, 2, 3
simulated_data, 5
```