Estimating parameters

Goal

Logistic regression model:

$$Y_i \sim Bernoulli(\pi_i) \ \ \logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 X_i.$$

Given data $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$, how do I estimate β_0 and β_1 ?

 $Y_i = \text{result of flipping a coin (Heads or Tails)}$

Is Y_i a random variable?

 $Y_i = \text{result of flipping a coin (Heads or Tails)}$

Is Y_i a random variable?

Yes -- there are two possible outcomes, but we don't know which will happen until we flip the coin.

 $Y_i = \text{result of flipping a coin (Heads or Tails)}$

Let's make a model:

Step 1: Distribution of the response

$$Y_i \sim Bernoulli(\pi)$$

Step 2: Construct a model for the parameters

$$\pi = ??$$

 $Y_i =$ result of flipping a coin (Heads or Tails)

Let's make a model:

Step 1: Distribution of the response

$$Y_i \sim Bernoulli(\pi)$$

Step 2: Construct a model for the parameters

$$\pi = ??$$

Right now, we don't have any information to help us estimate π

 $Y_i =$ result of flipping a coin (Heads or Tails)

Suppose your friend estimates that the probability of heads is 0.9

- \bullet $Y_i \sim Bernoulli(\pi)$
- $\hat{\pi} = 0.9$

How can we assess whether this estimate $\widehat{\pi}$ is reasonable?

 $Y_i =$ result of flipping a coin (Heads or Tails)

Suppose your friend estimates that the probability of heads is 0.9

- $lacktriangledown Y_i \sim Bernoulli(\pi)$
- $\hat{\pi} = 0.9$

How can we assess whether this estimate $\widehat{\pi}$ is reasonable?

See if the estimate fits observed data.

Suppose we flip the coin 5 times, and observe

$$y_1,\ldots,y_5=T,T,T,T,H$$

What is the probability of (i.e., how *likely* is) getting this string of flips if $\pi=0.9$? Discuss with your neighbor for 2 minutes, then we will discuss as a class.

Likelihood

Definition: The *likelihood* L(Model) = P(Data|Model) of a model is the probability of the observed data, given that we assume a certain model and certain values for the parameters that define that model.

- lacktriangle Model: $Y_i \sim Bernoulli(\pi)$, and $\widehat{\pi} = 0.9$
- lacktriangle Data: $y_1,\ldots,y_5=T,T,T,H$
- lacktriangle Likelihood: $L(\widehat{\pi}) = P(y_1, \ldots y_5 | \pi = 0.9) = 0.00009$

Class Activity, Part I

https://sta214-f22.github.io/class_activities/ca_lecture_5.html

Class Activity

$$L(0.2) = P(y_1, \dots, y_5 | \pi = 0.2)$$

= $(0.2)(0.8)(0.8)(0.2)(0.8) = 0.020$
 $L(0.3) = P(y_1, \dots, y_5 | \pi = 0.3)$
= $(0.3)(0.7)(0.7)(0.3)(0.7) = 0.031$

Which value, 0.2 or 0.3, seems more reasonable?

Class Activity

Which value of $\widehat{\pi}$ in the table would you pick?

Maximum likelihood

Maximum likelihood principle: estimate the parameters to be the values that maximize the likelihood

$\widehat{\pi}$	Likelihood
0.30	0.031
0.35	0.033
0.40	0.036
0.45	0.033

Maximum likelihood estimate: $\widehat{\pi}=0.4$

Maximum likelihood

Maximum likelihood principle: estimate the parameters to be the values that maximize the likelihood

Steps for maximum likelihood estimation:

- Likelihood: For each potential value of the parameter, compute the likelihood of the observed data
- Maximize: Find the parameter value that gives the largest likelihood

Maximum likelihood for logistic regression

$$\logigg(rac{\pi_i}{1-\pi_i}igg) = eta_0 + eta_1 \; Size_i \hspace{0.5cm} \pi_i = rac{\exp\{eta_0 + eta_1 \; Size_i\}}{1+\exp\{eta_0 + eta_1 \; Size_i\}}$$

Observed data:

Suppose $eta_0=-2,\ eta_1=0.5.$ How would I compute the likelihood?

Class Activity, Part II

https://sta214-f22.github.io/class_activities/ca_lecture_5.html

Class Activity

$$\widehat{\pi}_i = rac{\exp\{-2 + 0.5\ Size_i\}}{1 + \exp\{-2 + 0.5\ Size_i\}}$$

Tumor cancerous	Yes	No	No	Yes	No
Size of tumor (cm)	6	1	0.5	4	1.2
$\widehat{\pi}_i$					

Likelihood =

Maximum likelihood for logistic regression

Likelihood:

$$\qquad \textbf{For estimates } \widehat{\boldsymbol{\beta}}_0 \text{ and } \widehat{\boldsymbol{\beta}}_1, \widehat{\boldsymbol{\pi}}_i = \frac{\exp\{\widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 X_i\}}{1 + \exp\{\widehat{\boldsymbol{\beta}}_0 + \widehat{\boldsymbol{\beta}}_1 X_i\}}$$

$$+ L(\widehat{\beta}_0, \widehat{\beta}_1) = P(Y_1, \dots, Y_n | \widehat{\beta}_0, \widehat{\beta}_1)$$

Maximize:

 \bullet Choose $\widehat{\beta}_0, \widehat{\beta}_1$ to maximize $L(\widehat{\beta}_0, \widehat{\beta}_1)$

So far, we only considered a few values for β_0 and β_1 . How should we check other values, to make sure our estimates actually maximize likelihood?

Computing likelihood in R

Observed data: T, T, T, T, H

• We are going to consider several different potential values for $\widehat{\pi}$:

$$0, 0.1, 0.2, 0.3, \ldots, 0.9, 1$$

For each potential value, we will compute the likelihood:

$$L(\widehat{\pi}) = (1 - \widehat{\pi})^4(\widehat{\pi})$$

- We then see which value has the highest likelihood.
- Is this all possible values? No, but let's start here.

```
# List the values for pi hat
pi_hat <- seq(from = 0, to = 1, by = 0.1)</pre>
```

```
# List the values for pi hat
pi_hat <- seq(from = 0, to = 1, by = 0.1)
# Create a space to store the likelihoods
likelihood <- rep(0,length(pi_hat))</pre>
```

```
# List the values for pi hat
pi_hat <- seq(from = 0, to = 1, by = 0.1)

# Create a space to store the likelihoods
likelihood <- rep(0,length(pi_hat))

# Compute and store the likelihoods
for( i in 1:length(pi_hat) ){
  likelihood[i] <- pi_hat[i]*(1-pi_hat[i])^4
}</pre>
```

```
# List the values for pi hat
pi_hat <- seq(from = 0, to = 1, by = 0.1)

# Create a space to store the likelihoods
likelihood <- rep(0,length(pi_hat))

# Compute and store the likelihoods
for( i in 1:length(pi_hat) ){
   likelihood[i] <- pi_hat[i]*(1-pi_hat[i])^4
}</pre>
```

Run this code in your R console. Which value of $\widehat{\pi}$ gives the highest likelihood?

Results

pi_hat	likelihood
0.0	0.00000
0.1	0.06561
0.2	0.08192
0.3	0.07203
0.4	0.05184
0.5	0.03125
0.6	0.01536
0.7	0.00567
0.8	0.00128
0.9	0.00009
1.0	0.00000