Минобрнауки России

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой Борисов Дмитрий Николаевич Кафедра информационных систем 03.05.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.02 Введение в интернет вещей

1. Код и наименование направления подготовки/специальности:

09.03.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Встраиваемые вычислительные системы и интернет вещей

3. Квалификация (степень) выпускника:

Бакалавриат

4. Форма обучения:

Очная

5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра информационных систем

6. Составители программы:

Зуев Сергей Алексеевич (zuyev@sc.vsu.ru)

7. Рекомендована:

протокол НМС №7 от 03.05.2023

8. Учебный год:

2025-2026

9. Цели и задачи учебной дисциплины:

Курс призван познакомить студентов с глобальной инфраструктурой для информационного общества, которая обеспечивает возможность предоставления более сложных услуг путем соединения друг с другом (физических и виртуальных) вещей на основе существующих и развивающихся функционально совместимых информационно-коммуникационных технологий.

Целью дисциплины является изучение инструментария управления и оптимизации процессов, происходящих в современном информационном обществе. Сформировать основные понятия и объяснить терминологию, при разработке конкретных проектов в сфере «Интернета вещей».

Освоить основные технологии интернета вещей: операционные системы реального времени, базы данных, клиент-серверные технологии, промышленный интернет вещей (SCADA).

Задачи учебной дисциплины: формирование основополагающих представлений о вычислительной сети физических объектов («вещей»), оснащённых встроенными технологиями. Данные сети предназначены для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и

операций необходимость участия человека; формирование навыков оценки основных характеристик способов и устройств адресации, а также технологии идентификации этих предметов («вещей»). Методы и средства, применяемые для автоматической идентификации: оптически распознаваемые идентификаторы (штрих коды, Data Matrix, QR-коды), средства определения местонахождения в режиме реального времени.

10. Место учебной дисциплины в структуре ООП:

Учебная дисциплина относится к вариативной части блока Б1. Для успешного освоения программы студент должен:

Владеть языками программирования: C++, Java, XML.

Владеть основами веб-программирования на JavaScript.

Уметь работать в консоли Linux на уровне пользователя.

Иметь представление о культуре и стиле разработки ПО.

Уметь пользоваться системой контроля версий (предпочтительно git).

Знать основы электротехники в объеме школьной программы.

Быть знакомым с курсами: математический анализ, теория вероятностей и математическая статистика, теория информации, объектно-ориентированное программирование, введение в интернет вещей.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников) и индикаторами их достижения:

программы (компетенциями выпус		
Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ПК-1 Способен проводить исследования на всех этапах жизненного цикла программных средств	ПК-1.1 Должен знать методы и средства планирования и организации исследований и разработок	Знает методы и средства планирования и организации исследований и разработок
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.1 Должен знать языки и методы программирования, инструменты и методики тестирования разрабатываемых ИС	Знает языки и методы программирования, инструменты и методики тестирования разрабатываемых ИС
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.2 Должен знать устройство и функционирование современных ИС, протоколы, интерфейсы и форматы обмена данными	Знает устройство и функционирование современных ИС, протоколы, интерфейсы и форматы обмена данными
ПК-4 Способен проводить анализ	ПК-4.1 Способен	Знает принципы

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
требований к программному обеспечению, выполнять работы по проектированию программного обеспечения	проводить анализ требований к программному обеспечению, выполнять работы по проектированию программного обеспечения	построения архитектуры программного обеспечения, методы и средства проектирования программного обеспечения
ПК-4 Способен проводить анализ требований к программному обеспечению, выполнять работы по проектированию программного обеспечения	ПК-4.2 Должен знать методологии и технологии разработки программного обеспечения и технологии программирования	Знает методологии и технологии разработки программного обеспечения и технологии программирования

12. Объем дисциплины в зачетных единицах/час:

2/72

Форма промежуточной аттестации:

Зачет, Контрольная работа

13. Трудоемкость по видам учебной работы

Вид учебной работы	Семестр 8	Всего
Аудиторные занятия		32
Лекционные занятия		16
Лабораторные занятия		16
Самостоятельная работа		40
Курсовая работа		0
Промежуточная аттестация		0
Часы на контроль		0
Всего		72

Заполнить виды учебной работы

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
	Лекции		
	Интернет вещей	Аппаратная составляюща я. Сети передачи данных. Программная составляюща я	https://myitacademy.ru/
	Ключевые технологии	SmartThings, Bluetooth Low Energy, IBM Cloud, GSM, LoRa, Wi-Fi, MQTT, RTOS, MBed, STM32	https://myitacademy.ru/
	Основные задачи интернета вещей	Мониторинг, управление, оптимизация, автономия	https://myitacademy.ru/
	Сферы применения интернета вещей	Медицина, сельское хозяйство, промышленн ость, умный дом, урбанистика, экология, транспорт, ЖКХ, логистика и др.	https://myitacademy.ru/
	STM32	Таймеры,	https://myitacademy.ru/

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
		входы- выходы, многопоточн ость. Управление прерываниям и в системах реального времени. Оптимизация затрат оперативной памяти	
	Сенсоры (или датчики)	Инфракрасный дальномер; Датчики давления, влажности и температуры; Ультразвуко вой сенсор; Гироскоп; Датчики газа, IMU-сенсор; МЕМЅ и др.	https://myitacademy.ru/
	Среды разработки	Mbed; Онлайн-IDE Mbed; Mbed Studio; Keil; IAR; PlatformIO; Visual Studio; STM32Cube; CooCox	https://myitacademy.ru/
	Сетевые	Модель OSI; стек	https://myitacademy.ru/

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
	протоколы	протоколов 802; LAN, PAN, LPWAN, NB- IoT; спецификаци я 802.15.4; IPv6; LoWPAN; ZigBee-сеть	
	Языки представления данных.	XML; JSON; YAML	https://myitacademy.ru/
	Протоколы передачи данных	Протокол СоАР. Протокол МQТТ. Облачные технологии. Платформы Интернета вещей	https://myitacademy.ru/
	Лабораторные работы		
	Использование STM32	Изучение таймеров и многопоточн ости. Реализация управления прерываниям и в системах реального времени	https://myitschool.ru/edu
	Сенсоры	Изучение работы инфракрасно	https://myitschool.ru/edu

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
		го дальномера, датчиков давления, влажности и температуры; гироскопа	
	Среды разработки	Изучение Mbed; Онлайн-IDE Mbed; Mbed Studio; Keil uVision	https://myitschool.ru/edu
	Кодирование для интернета вещей	Изучение XML, JSON	https://myitschool.ru/edu
	Протоколы передачи данных используемые в технологии интернета вещей	Реализация проекта на облачных технологиях. Использован ие платформы Интернета вещей.	https://myitschool.ru/edu

13.2. Темы (разделы) дисциплины и виды занятий

№ п/п	Наименование темы (раздела)	Лекционн ые занятия	Практичес кие занятия	Лаборат орные занятия	Самост оятель ная работа	Все го
1	Интерне т вещей					4
2	Ключевы е технолог ии					4

№ п/п	Наименование темы (раздела)	Лекционн ые занятия	Практичес кие занятия	Лаборат орные занятия	Самост оятель ная работа	Все го
3	Основны е задачи интернет а вещей					2
4	Сферы примене ния интернет а вещей					2
5	STM32: таймеры, входывы ходы, многопо точность					14
6	Сенсоры (или датчики)					12
7	Среды разработ ки					14
8	Сетевые протокол ы					10
9	Языки					10
10	Облачны е технолог ии. Платфор мы Интерне та вещей.					0
Итого		16	0	16	40	72/0

14. Методические указания для обучающихся по освоению дисциплины

Внеаудиторная самостоятельная работа студентов включает проработку материалов лекций, изучение рекомендованной литературы, подготовку к контрольным работам, подготовку к лабораторным работам и их защитам, подготовку к защите типовых проектов.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

№ п/п	Источник
1	Кокунин П.А. Введение в Интернет вещей [Электронный ресурс]: учебное пособие / П.А. Кокунин, И.И. Латыпов, Л.С. Латыпова. — Электрон. текстовые дан. (1 файл: 6,42 Мб). — Казань: Издательство Казанского университета, 2022. — 147 с. — URL: https://kpfu.ru/portal/docs/F_378200975/IOT.pdf

б) дополнительная литература:

№ п/п	Источник
1	Дональд А. Норман. Язык вещей будущего. — М.: Strelka Press, 2013. — 224 с.
2	Суджич, Д. Язык вещей / Д. Суджич. — М. : Strelka Press, 2013. — 240 с.
3	Зараменских, Евгений Петрович. Интернет вещей: исследования и область применения / Е. П. Зараменских, И. Е. Артемьев. – М.: ИНФРА-М, 2015. – 188 с.
4	Грингард, С. Интернет вещей: Будущее уже здесь / С. Грингард. — М. : Альпина Диджитал, 2015. — 188 с.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1	www.lib.vsu.ru ЗНБ ВГУ

16. Перечень учебно-методического обеспечения для самостоятельной работы

<u>№</u> п/п	Источник
1	Андрей Цислав (Стриж). Разработка устройств IoT - то, о чем не написано в книгах. – Режим доступа : https://www.youtube.com/watch?v=75m_AUbM1m8

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

OS Mbed. – Режим доступа: http://osmbed.com

18. Материально-техническое обеспечение дисциплины:

Компьютерные классы факультета компьютерных наук, проектор для демонстрации теоретического материала. Системы на кристалле STM32 типа NUCLEO-L152RE. Отладочная плата на базе MCU STM32L152RET6 (ARM Cortex-M3), ST-LINK/V2-1, Arduino-интерфейс. Сенсоры и вспомогательные плата для Arduino, подключаемые к NUCLEO-L152RE.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ π/π	Разделы дисциплины (модули)	Код компетенции	Код индикатора	Оценочные средства для текущей аттестации
1	Интернет вещей. Ключевые технологии. Основные задачи интернета вещей. Сферы применения интернета вещей	ПК-1	ПК-1.1	Тестовое задание. Типовые проекты
2	STM32. Среды разработки. Сетевые протоколы. Языки представления данных. Протоколы передачи данных	ПК-3	ПК-3.1	Тестовое задание. Типовые проекты
3	Сенсоры (или датчики).	ПК-3	ПК-3.2	Тестовое задание. Типовые проекты
4	Интернет вещей. Ключевые технологии. Основные задачи. интернета вещей. Сферы применения интернета вещей	ПК-4	ПК-4.1	Тестовое задание. Типовые проекты
5	STM32. Сенсоры (или датчики). Среды разработки. Сетевые протоколы. Языки представления данных. Протоколы передачи данных	ПК-4	ПК-4.2	Тестовое задание. Типовые проекты

Промежуточная аттестация

Форма контроля - Зачет ,Контрольная работа

Оценочные средства для промежуточной аттестации

Формирование оценок:

Лабораторные работы после выполнения оцениваются преподавателем, и выставляется оценка «зачтено» при условии ответа на 80% вопросов преподавателя по предметной области лабораторной работы. По итогам лабораторных работ и устного ответа студента выставляется оценка «зачтено» или «не зачтено» по лабораторным работам всей дисциплины. К сдаче зачета с оценкой допускаются студенты, сдавшие 100% лабораторных работ.

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

Критерии оценивания компетенций	Уровень сформированности компетенций	Шкала оценок
Студент владеет теоретическими основами дисциплины, способен применять теоретические знания на практике. Обучающийся может давать неполные ответы на дополнительные вопросы.	Пороговый уровень	Зачтено
Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки в предметной области.	_	Не зачтено

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью тестовых заданий 20.1.1 Тестовое задание

Вариант 1

- 1. Какой уровень в гибридной модели обычно обозначается сокращением МАС?
- 2. По какой модели работает протокол MQTT.
- 3. Операционная система, наиболее часто используемая на одноплатных компьютерах наподобие Raspberry Pi.

Вариант 2

- 1. Укажите, поверх каких транспортных протоколов обычно используются эти протоколы прикладного уровня: MQTT, HTTP, CoAP.
- 2. ARM это фирма-производитель архитектуры процессора, или самих процессоров?
- 3. Зачем нужны GPIO в микроконтроллере?

Вариант 3

1. Какая из нижеприведенных сетей развертывается в лицензируемом диапазоне?

LoRa, SigFox, Стриж/Вавиот, NB-IoT.

2. Расставьте задачи Интернета вещей по уровням, начиная от самого простого (уровень 1) изаканчивая самым сложным (уровень 4)

Управление. Оптимизация. Автономное управление. Мониторинг.

3. По какой модели работает IBM Cloud?

Вариант 4

- 1. Что измеряет тензодатчик?
- 2. Какой символ в протоколе MQTT позволяет выбрать все нижестоящие топики на всех уровнях?

*, #, +, ?

3. Какой стандарт описывает беспроводные сенсорные сети?

802.15.4, 802.11, 802.3, 802.15.1

Вариант 5

- 1. Какой стандарт описывает беспроводные сенсорные сети? 802.15.4, 802.11, 802.3, 802.15.1
- 2. Сфера применения LoRa, где она по-прежнему будет актуальна, несмотря на появление NB-IoT
- 3. По какой модели работает протокол СоАР.

Дополнительные вопросы:

1. Какой термин не существовал до появления интернета вещей?

АСКУЭ

АСУТП

Вавиот

SCADA

2. Вас просят помочь с выбором датчика влажности для теплиц: задача состоит в том, чтобы замерять уровень влаги и в почве, и в воздухе, а при сильном падении или разнице уровней включать систему орошения. Что вы посоветуете?

Датчик AM2302 DHT22

Датчик CCS811 HDC1080

Датчик RS485

Посоветую подключить к обсуждению инженера: данных мало, выбор датчиков большой

3. Какой из элементов умного замка, который открывается благодаря Bluetooth-команде с телефона, не обязателен?

Датчик

Актуатор (Исполнительное устройство) Батарея или иной источник питания Микроконтроллер

Радиомодуль

4. Какой из этих факторов нужно учитывать при выборе датчика в первую очередь?

Энергоэффективность Габариты (размеры) Точность измерений Диапазон измерений Все факторы нужно учесть

5. Как лучше защитить всю систему интернета вещей?

Написать и использовать свою систему шифрования данных на всех этапах их передачи.

Скачать и установить антивирусы на всех устройства, базовые станции и серверы. Обратиться к специалистам по кибербезопасности и заказать комплекс услуг у них.

- 6. Сервер Интернета вещей принимает в среднем 1 измерение в секунду. Сколько необходимо времени для накопления 100 000 данных, необходимых для их анализа в системе Big Data? 1 сутки, 3 часа, 46 минут и 40 секунд
- 7. Что такое «Интернет вещей»? Дать развёрнутый ответ.
- 8. Что такое «Операционная система реального времени»?
- 9. В какой рекомендации МСЭ-Т приведен анализ особенностей сетевой безопасности для сенсорных сетей?
- 10 На какие модели тестирования можно разбить архитектуру интернет вещей?
- 11. Что такое «Интернет вещей»?

Дать развёрнутый ответ.

Интернет вещей – это система взаимосвязанных вычислительных устройств, которые могут собирать и передавать данные по сети Интернет без участия человека и во благо человека.

Интернет вещей связывает различного рода физические объекты, способные взаимодействовать между собой и внешним миром самостоятельно. Концепция «Интернета вещей» может существенно улучшить многие сферы нашей жизни и помочь нам в создании более удобного, умного и безопасного мира.

Интернет вещей — концепция сети передачи данных между физическими объектами (*«вещами»*), оснащёнными встроенными средствами и технологиями для взаимодействия друг с другом или с внешней средой. Предполагается, что организация таких сетей способна перестроить экономические и общественные процессы, исключить из части действий и операций необходимость участия человека.

Если студент отметил все три подхода к определению понятия «Интернет вещей» – оценка – 3.

Если студент назвал 2 подхода – оценка – 2.

Если студент назвал только 1 подход – оценка – 1.

Если студент не назвал ни одного определения — оценка — 0.

- 12. Компания требует использования безопасного зашифрованного интернет-соединения при подключении к корпоративной сети из-за пределов компании. Какие технологии следует использовать, когда сотрудники путешествуют и используют ноутбук?
- VPN
- Точка доступа Wi-Fi
- Сири
- Bluetooth
- 13. Какой тип тестирования может провести компания, чтобы продемонстрировать преимущества подключения к сети новой «вещи», которой раньше не было в сети?
- прототипирование
- перенос
- развитие
- формирование
- 14. Что ограничивает типы различных объектов, которые могут стать интеллектуальными датчиками в Интернете вещей?
- размер интернета
- наше воображение
- законодательство
- наличие мощного сетевого оборудования
- 15. Адрес сервера «Интернета вещей»: 49.122.1.255 как выглядит этот адрес в двоичной системе счисления?

110001.1111010.1.11111111

16. Какие преимущества сулит нам массовое внедрение «Интернета вещей». Освобождение человека от рутинного труда.

20.1.2 Типовые проекты

Выполнение типового проекта является необходимым условием допуска студентов к итоговому зачёту. Типовой проект выполняются в три этапа:

Первый — выбор проекта и подготовка необходимых комплектующих с выводом результатов на встраиваемый индикатор, без управления реальным объектом.

Второй этап — управление реальным объектом с выводом реакции объекта или данных с датчиков на РС.

Третий этап — полное управление объектом или считывание показаний датчиков с передачей данных по радиоканалу или посредством WEB-интерфейса. Сдаются этапы во время рубежных аттестаций. При большой сложности проекта допускается объединение студентов в группы по 2-3 человека в группе.

Примерный перечень проектов с STM32:

- 1. USB генератор-частотомер.
- 2. Часы на светодиодной матрице 8*8
- 3. Сканер шины I2С.
- 4. Измеритель уровня звука.
- 5. Светодиодный 3D куб.
- 6. Музыкальный звонок.
- 7. Цифровой измеритель мощности и КСВ.

- 8. Электронная игровая кость.
- 9. Тетрис.
- 10. Миниатюрный вольтметр на семисегментном LED индикаторе.
- 11. Программатор.
- 12. Автоматическое зарядно-тренирующее устройство и измеритель ёмкости для 12V герметичных аккумуляторов.
- 13. Термостат для электрического чайника.
- 14. Частотный преобразователь для асинхронного двигателя.
- 15. FM радиоприемник, TEA5767, SSD1306.
- 16. Термометр для автомобиля на OLED дисплее.
- 17. Ваттметр переменного тока.
- 18. Цветомузыкальная установка.
- 19. Измеритель длины импульсов.
- 20. Универсальный измерительный прибор.
- 21. HID клавиатура на 16 клавиш.
- 22. Суточный таймер с веб-интерфейсом.
- 23. DDS генератор сигналов на AT90USB162 и AD9833 управляемый по USB.
- 24. 16 канальный регистратор температуры.
- 25. Измеритель частоты и $cos(\phi)$ промышленной сети 50 Гц.
- 26. Электронный регулятор мощности переменного тока.
- 27. Осциллограф DSO.
- 28. Электронное реле с функцией плавного включения света фар.
- 29. Простой мультиметр.
- 30. Электронные часы-календарь-будильник с резервным питанием.
- 31. Измеритель расхода жидкости.
- 32. GSM сигнализация.
- 33. Дистанционное управление по телефону.
- 34. Вольтметр переменного напряжения (трехфазный).
- 35. Блок управления водонагревателем.
- 36. Зарядное устройство для LiPo аккумуляторов.
- 37. DDS генератор на STM32.
- 38. Тестер RC-5.
- 39. Кодовый замок с энкодером.
- 40. ШИМ-регулятор.
- 41. Блок управления вентиляторами компьютера.
- 42. Измеритель емкости и индуктивности.
- 43. Блок питания 0 25В, 0 5А с графическим LCD.
- 44. Генератор тестовых сигналов для мониторов.
- 45. Тестер полупроводниковых элементов.
- 46. Вольтметр с автоматическим выбором пределов измерения.
- 47. 16 канальная система инфракрасного дистанционного управления.
- 48. Анализатор спектра звуковой частоты.
- 49. Универсальный переключаемый пульт ДУ с протоколом RC-5.
- 50. Домашняя метеостанция.

20.2 Промежуточная аттестация

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме индивидуального опроса в рамках рубежных аттестаций. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.