Please submit your solutions to the following problems on Gradescope by **10pm** on the due date. Collaboration is encouraged, however, you must write up your solutions individually.

1) Mixed boundary conditions. Solve the heat equation in the unit square, $\Omega = [-1, 1] \times [-1, 1]$, when no heat flux is permitted through the vertical boundaries $x = \pm 1$ and the temperature is held constant along the horizontal boundaries $y = \pm 1$. That is, solve

$$\partial_t u = \Delta u$$
, where $\partial_x u|_{x=\pm 1} = u|_{y=1} = 0$, $u|_{y=-1} = 1$, and $u|_{t=0} = g$.

- (a) Find eigenfunctions of Δ that satisfy homogeneous Neumann boundary conditions on the vertical boundaries and Dirichlet boundary conditions on the horizontal boundaries.
- (b) Find an equilibrium solution to the heat equation, which satisfies $\Delta u_* = 0$, that satisfies the mixed Neumann and Dirichlet boundary conditions in the problem statement.
- (c) Using your work from part (a) and (b), derive a series solution to the heat equation that satisfies the initial condition and boundary conditions in the problem statement.
- 2) Advection and diffusion. Consider the advection-diffusion equation, given by

$$\partial_t u = \alpha \partial_x^2 u + \beta \partial_x u$$
, such that $u = \text{periodic on } [-1, 1)$,

with initial condition u(x,0) = g(x) and non-negative constants α and β . The notebook hw1_soln.ipynb on the 18.303 course repository may be helpful in part (d).

- (a) Find a Fourier series solution using the operator exponential for the right-hand side.
- (b) If $\alpha > 0$, derive an equilibrium solution from the Fourier series solution. How does the case $\beta > 0$ (advection-diffusion) compare to the case $\beta = 0$ (pure heat equation)?
- (c) Discretize the advection-diffusion equation in the problem statement using secondorder finite differences in space and backward Euler's method in time. Solve the PDE numerically with $\beta=1$, initial condition $g(x)=5\exp(-10\cos^2(\pi x))$, and $\alpha=0.1$, 0.01, and 0.001. Try 100 gridpoints in space and a time-step of 0.01 for $0 \le t \le 5$. How do your observations compare with your results from part (b)?