Eine Woche, ein Beispiel 7.13. stability manifold of P

Ref:

[Okadao5]: So Okada, Stability Manifold of P^1

[GKR03]: A. Gorodentscev, S. Kuleshov, A. Rudakov, t-stabilities and t-structures on triangulated categories, https://arxiv.org/abs/math/0312442

[Brio7]: Tom Bridgeland, Stability conditions on triangulated categories, https://arxiv.org/abs/math/0212237

[Huy23]: Huybrechts, Daniel. The Geometry of Cubic Hypersurfaces.

[Huyo6]: Huybrechts, D. Fourier-Mukai Transforms in Algebraic Geometry. Oxford Math. Monogr. Oxford: Clarendon Press, 2006

Goal: understand the Bridgeland stability and wall crossing in this toy example.

- 1. equivalent definitions of stability conditions
- 2 structure of Coh(IP')
- 3. standard stability
- 4. exceptional stability.
- 5. Stab (IP')

1. equivalent definitions of stability conditions

Def (locally finite stability condition)

Fix a triangular category T, and denote K(T) as the Grothendieck gp of T.

The set of locally finite stability conditions is defined as

$$Stab(T) = \begin{cases} (Z, P) & Z : k(T) \longrightarrow \mathbb{C} & (central charge) \\ P : R \longrightarrow \text{full additive subcategories of } T \end{cases}$$

$$\phi \longmapsto \mathcal{P}(\phi) \quad (slicing)$$

$$st. (a)(b)(c)(d) + (e)$$

(a) (slicing compatible with central charge) if
$$E \in \mathcal{P}(\phi)$$
 then $\frac{Z(E)}{e^{i\pi \phi}} \in \mathbb{R}_{>0}$;

(b) (slicing with shift)
$$P(\phi+1) = P(\phi)[1]$$

(c) (inverse order vanishing)

Homa
$$(A_1, A_2) = 0$$
 for $A_j \in \mathcal{P}(\phi_j), \phi_1 > \phi_2$

Homo $(A_1, A_2) = 0$ for $A_j \in \mathcal{P}(\phi_j)$, $\phi_1 > \phi_2$ (d) (HN filtration) HN = Harder-Navashimhan $\forall E \in \mathcal{T}$, \exists finite seg of real numbers $\phi_1 > \phi_2 > \cdots > \phi_n$

and a filtration
$$0 = E_0 \longrightarrow E_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$

$$A_1 \longrightarrow A_n$$

s.t. $A_j \in \mathcal{P}(\phi_j) \ \forall j$. we define $\phi(E) = \{\phi_1, \dots, \phi_n\}$.

(e) (loc finite)
$$\forall t \in \mathbb{R}$$
, $\exists I = (t - \varepsilon, t + \varepsilon) \subseteq \mathbb{R}$ s.t. $\forall E \in \mathcal{P}(I)$, $\exists a \text{ Jordan-Holder filtration with finite length.}$ $\mathcal{P}(I) := \langle \mathcal{P}(\phi) \mid \phi \in I \rangle_{\text{extension-closed}}$

Rmk. For
$$E \in \mathcal{T}$$
, $E \neq 0$,
 $E \in \mathcal{P}(\phi)$ for some $\phi \in \mathbb{R}$
 \Leftrightarrow the HN filtration of E has length 1
 $\stackrel{\text{def}}{\Leftrightarrow} E$ is semistable

When E is semistable, define $\phi(E) = \phi$ when $E \in \mathcal{P}(\phi)$

Lemma 1.1. $P(\phi)$ is closed under extension.

Proof. Suppose one has one triangle
$$A_1 \longrightarrow E \longrightarrow A_2 \xrightarrow{+1} \qquad (1.1)$$
where $A_1, A_2 \in \mathcal{P}(\phi_0)$, we want to show $E \in \mathcal{P}(\phi_0)$.

Suppose
$$\phi(E) = \{\phi_1, \dots, \phi_n\}$$
, $\phi_1 > \dots > \phi_n, n > 1$, then $\phi_0 > \phi_n$ or $\phi_1 > \phi_0$ or $(\phi_1 = \phi_0, n = 1)$

$$\vdots \\ E \in \mathcal{P}(\phi_0) \vee$$

w.l.o.g. assume $\phi_0 > \phi_n$, then \exists triangle

$$B_1 \longrightarrow E \xrightarrow{u} B_2 \xrightarrow{+1}$$
 where $u \neq 0$, $B_2 \in \mathcal{P}(\phi_n)$.

Apply Hom (-, B2) to (1.1), we get

$$(A, [-1], B_1) \leftarrow Hom(E[-1], B_1) \leftarrow Hom(A_2[-1], B_2)_g$$

$$(A, B_2) \leftarrow Hom(E, B_1) \leftarrow Hom(A_2, B_2)_g$$

$$(A, B_2) \leftarrow Hom(E, B_2) \leftarrow Hom(A_2, B_2)_g$$

Contradiction!

Rmk [Brio7, Lemma 5.2]
$$P(\phi)$$
 is an abelian category.

Def (stable sheaf)
Suppose
$$E \in P(\phi)$$
 is semistable.

$$E$$
 is stable \Leftrightarrow $E \in \mathcal{P}(\phi)$ is simple $E \in \mathcal{P}(I)$ is simple for some $I \ni \phi$

The next lemma conclude the behavior of triangles with stability conditions.

Lemma 1.2.

Suppose
$$A_1 \xrightarrow{u_1} E \xrightarrow{u_2} A_2 \xrightarrow{+1}$$
 (1.2) is a triangle, where $\phi(A_1) = \phi_0$, $\phi(A_2) = \phi'_0$.

(1) If
$$\phi_o > \phi_o'$$
, then
(1.2) is the HN-filtration, so E is not semistable;

(2) If
$$\phi_o = \phi_o'$$
, then $E \in \mathcal{P}(\phi_o)$ by Lemma 1.1;

(3) If
$$u_3 \neq 0$$
, then $\widehat{\phi_o} \leq \phi_o + 1$.

Stab(T)
$$\cong$$

$$\begin{cases} Z \times (T) \longrightarrow \mathbb{C} & \text{(central charge)} \\ \emptyset \times T \longrightarrow \text{finite subsets of } \mathbb{R} \end{cases}$$

$$E \longmapsto \text{Sp.}, \text{pn} \text{(slicing)}$$

$$\text{st. (a)(b)(c)(d) + (e)}$$

$$E \in \mathcal{T} \text{ is semistable} \stackrel{\text{def}}{\iff} \# \phi(E) = 1$$

(a) (slicing compatible with central charge)
For E semistable,
$$\frac{Z(E)}{e^{i\pi}P(E)} \in \mathbb{R}_{>0}$$
,

(b) (slicing with shift)
$$\phi(E[1]) = \phi(E) + 1$$

(b) (slicing with shift)
$$\phi(E[1]) = \phi(E) + 1$$
(c) (inverse order vanishing)
$$Hom_{\mathcal{T}}(A_1, A_2) = 0 \quad \text{for} \quad \phi(A_1) > \phi(A_2), \quad A_1, A_2 \text{ semistable}$$
(d) (HN filtration)
$$\forall E \in \mathcal{T}, \quad \text{denote} \quad \phi(E) = \{\phi_1, \dots, \phi_n\}, \quad \phi_1 < \dots < \phi_n\},$$

3! filtration
$$0 = E_0 \longrightarrow E_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$

$$A_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$
s.t. $\phi(A_i) = \phi_i \quad \forall i$.

(e) (loc finite)
$$\forall t \in \mathbb{R}$$
, $\exists I = (t - \varepsilon, t + \varepsilon) \subseteq \mathbb{R}$ s.t. $\forall E \in \mathcal{T}$ with $\phi(E) \subset I$, \exists a Jordan-Hölder filtration with finite length.

Prop [Okada Ot, Prop 2:3]

$$Stab(T) \cong \left\{ \begin{array}{c|c} (A,Z) & A: heart of T \\ Z: \mathcal{K}(A) \longrightarrow C \\ \text{centered slope-function} \\ \text{with HN property} \end{array} \right\}$$

$$(Z,P) \longrightarrow (\mathcal{P}((0,1]),Z)$$
 $(Z,P) \longleftarrow (A,Z)$

where
$$\mathcal{P}(\phi) = \{ E \in \mathcal{A} \text{ semistable } | \widehat{\phi}(E) = \phi \}$$
 $\forall \phi \in (0,1]$ $\widehat{\phi}(E) = \frac{1}{\pi} \arg Z(E) \in (0,1]$

 $E \in A$ semistable: $\not\equiv dec \circ A \rightarrow E \rightarrow A_2 \rightarrow o s.t.$ $\phi(A_1) > \phi(E) > \phi(A_2)$

2. structure of Coh (IP')

Lemma 2.1.
$$O_n \ \mathbb{P}'$$
, we have SES_s
 $0 \longrightarrow O \xrightarrow{\times \times} O(1) \longrightarrow \mathcal{O}_{\times} \longrightarrow 0$
 $0 \longrightarrow O \longrightarrow O(n) \xrightarrow{\oplus n+1} O(n+1) \xrightarrow{\oplus n} O \xrightarrow{h \geqslant 0} (2.1)$
 $0 \longrightarrow O(-1) \xrightarrow{\oplus n} O \xrightarrow{\oplus n+1} O(n) \longrightarrow O \xrightarrow{n \geqslant 0} O(n)$

which induces triangles

$$\mathcal{O}(k+1) \longrightarrow \mathcal{O}_{x} \longrightarrow \mathcal{O}(k)[1] \xrightarrow{+1} \longrightarrow \\
\mathcal{O}(k+1) \xrightarrow{(k+1)} [-1] \longrightarrow \mathcal{O}(k) \longrightarrow \mathcal{O}(k) \xrightarrow{(k+1)} +1 \longrightarrow n \leq k \quad (2.2) \\
\mathcal{O}(k+1) \xrightarrow{(k+1)} \mathcal{O}(k) \longrightarrow \mathcal{O}(k) \xrightarrow{(k+1)} +1 \longrightarrow n \geq k$$

Lemma 2.2. On IP', we have

$$RHom(O, O(n)) = \begin{cases} C^{n+1}, & n \ge -1 \\ C^{-n-1}[-1], & n \le -1 \end{cases}$$

$$RHom(O, k_p) = C$$

$$RHom(k_p, O) = C[-1]$$

$$RHom(k_p, k_q) = \begin{cases} C \oplus C[-1], & p = q \\ 0, & p \neq q \end{cases}$$

Sketch of proof

$$RHom(O,O(n)) = H'(IP',O(n)) = \begin{cases} C^{n+1} & n \ge -1 \\ C^{-n-\frac{1}{2}} - 1 \end{cases}, \quad n \ge -1$$
Then apply $RHom(O, -)$, $RHom(-, O)$, $RHom(-, k_q)$ to
$$0 \longrightarrow O \longrightarrow O(1) \longrightarrow k_p \longrightarrow 0$$

Lemma 2.3. [GKR03, last line in p16]

 $\forall F \in Coh(IP'), F = (P \Xi_p) \oplus (P O(n_i))$

finite many

Ep: a torsion sheaf supported at p

Lemma 2.4. [GKR 03, Prop 6.3]

 $\forall \mathcal{F} \in \mathcal{D}^b(Coh(IP')), \quad \mathcal{F} := \bigoplus_i A_i[-i] \quad A_i \in Coh(IP')$

It also works for $\mathcal{D}^b(A)$ where gldim A = 1.

E.g.25. Since $\operatorname{Ext}^1(k_p, \mathcal{O} \oplus \mathcal{O}(n)) \cong \operatorname{Ext}^1(k_p, \mathcal{O}) \oplus \operatorname{Ext}^1(k_p, \mathcal{O}(n)) \cong \mathbb{C}^2$, let us describe the extension

$$O \longrightarrow O \oplus O(n) \longrightarrow E \longrightarrow k_p \longrightarrow O$$

Crspd to $(k_1, k_2) \in E \times t'(k_p, O \oplus O(n)).$

For simplicity, assume that n>0 & ki, ki #0.

It is defined as pulling back SES.

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O}(n) \longrightarrow E \longrightarrow \mathcal{K}_{p} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 $E = O \oplus O(n+1)$, $O(1) \oplus O(n)$ or $O \oplus O(n) \oplus k_p$ but which?

We apply RHom (-, 0) to (2.3).

$$0 \leftarrow \operatorname{Ext}^{1}(\mathcal{O}\oplus\mathcal{O}(n),\mathcal{O}) \leftarrow \operatorname{Ext}^{1}(E,\mathcal{O}) \leftarrow \operatorname{Ext}^{1}(\kappa_{p},\mathcal{O}) \leq k,$$

$$-\operatorname{Hom}(\mathcal{O}\oplus\mathcal{O}(n),\mathcal{O}) \leftarrow \operatorname{Hom}(E,\mathcal{O}) \leftarrow \operatorname{Hom}(\kappa_{p},\mathcal{O}) \leftarrow 0$$

$$\stackrel{"}{\mathbb{C}}$$

$$\Rightarrow$$
 RHom $(E, O) = \mathbb{C}^{n-1}[-1]$

$$\Rightarrow E \cong \mathcal{O}(1) \oplus \mathcal{O}(n)$$
.

Q. How to determine (2.3) completely?

$$0 \longrightarrow E \longrightarrow \mathcal{O}(1) \oplus \mathcal{O}(n+1) \oplus k_p \longrightarrow k_p \oplus k_p \longrightarrow 0$$

w.l.o.g assume p=0, by pulling back to local charts of IP', we get

$$0 \longrightarrow [-]_{A_{2}^{'}} \longrightarrow \chi[z] \oplus \chi[z] \oplus \chi[a]_{A}^{'} \longrightarrow \chi[z]_{(z,)}^{(z,)} \oplus \chi[z]_{(z,)}^{(z,)} \longrightarrow 0$$

$$\chi[z]_{A_{2}^{'}}^{(z,)} \oplus \chi[z]_{(z,)}^{(z,)} \longrightarrow 0$$

$$0 \longrightarrow \mathcal{E} /_{A_{\omega}} \xrightarrow{\cong} \mathcal{K}[\omega_{1}] \oplus \mathcal{K}[\omega_{2}] \longrightarrow 0 \longrightarrow 0$$

$$\mathcal{K}[[\omega_{1}] \oplus \mathcal{K}[\omega_{1}]$$

$$(f(z), g(z), \alpha) \longrightarrow (f(o)+a,g(o)+a)$$

$$(f,(z), f_1(z)+zf_2(z),-f_1(o))$$

$$(f(z), g(z), \alpha)$$

$$(\omega f(\bar{\omega}), \omega^{n+1}g(\bar{\omega}))$$

Then transition map is given by

$$E|_{A_{z}^{\prime}} \longrightarrow E|_{A_{\omega}^{\prime}} \qquad (f_{\iota}(z), f_{\iota}(z)) \longmapsto (\omega f_{\iota}(\dot{\omega}), \omega^{n+1} f_{\iota}(\dot{\omega}) + \omega^{n} f_{n}(\dot{\omega}))$$

$$\Rightarrow E \cong \mathcal{O}(1) \oplus \mathcal{O}(n)$$
, and (23) is

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O}(n) \xrightarrow{\binom{k_1 z}{-k_1 z^n k_2}} \mathcal{O}(1) \oplus \mathcal{O}(n) \xrightarrow{(ev_{p_1} \circ)} \mathcal{K}_p \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \binom{1}{z^n z} \qquad \downarrow \triangle$$

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O}(n) \xrightarrow{(k_1 \overline{z}_{k_2 \overline{z}})} \mathcal{O}(1) \oplus \mathcal{O}(n+1) \longrightarrow \mathcal{K}_p \oplus \mathcal{K}_p \longrightarrow 0$$

Shorthand: $Stab(X) := Stab(D^b(Coh(X)))$ for any variety X.

3. standard stability

Goal: classify all stability conditions on IP' where all the l.b.s and xp's are semistable (=) all torsion sheaves are semistable)

E.g. Consider the slope stability (Zo, Po).

$$Z_0(E) = -deg E + i \operatorname{rk}(E)$$
 e.p.

$$Z_o(O(n)) = -n+i$$
 $\phi(O(n)) = -\frac{1}{\pi} arg(-n+i)$
 $Z_o(x_p) = -1$ $\phi(x_p) = -1$

Def. Cacts on Stab (IP') via votating the Z-plane.

$$C \times Stab(P') \longrightarrow Stab(P')$$

$$Z \cdot (Z, P) = (e^{z}Z, P(\cdot - \frac{y}{\pi}))$$

$$Z \cdot (Z, \phi) = (e^{z}Z, \phi(\cdot) - \frac{y}{\pi})$$

Rmk 3.3. This action changes the heart but preserve the (semi)stability of sheaves, i.e.,

E is (semi)stable in $(Z,P) \iff E$ is (semi)stable in z(Z,P).

Now denote

$$Stab_{st}(P') \stackrel{\text{def}}{=} \{(Z,P) \in Stab(P') | all O(n) & tp's semistable}\}$$

by Rmk 3.3, it is a C-fiber bundle over

Stabst, (P')
$$\stackrel{\text{def}}{=} \left\{ (Z, P) \in \text{Stabst}(P') \middle| Z(O(-1)) = 1, \phi(O(-1)) = 0 \right\}$$

Prop.
$$Stabst'(P') \cong H \sqcup R - \left\{ \left\{ 1 \pm \frac{1}{n} \right\} \cap \left\{ 1 \right\} \right\} \stackrel{\triangle}{=} H_{basic}$$

$$(Z, P) \longmapsto Z(O)$$

$$H_{om}(\mathcal{O}(-1),\mathcal{O}) \cong \mathbb{C}^2 \neq 0 \Rightarrow \phi(\mathcal{O}) \geq 0$$

$$0 \rightarrow \kappa_p \rightarrow O(-1)[1] \xrightarrow{+1} \Rightarrow \phi(0) \leq 1$$
 is not an HN-filtration

$$0 \neq Z(O(n)) = (n+1) Z(O) - nZ(O(-1)) \Rightarrow Z(O) \notin \{1 \pm \frac{1}{n} \mid n \in \mathbb{N}_{>0} \} \sqcup \{1\}$$

Step 2. For each
$$z \in \mathcal{H}_{basic}$$
, construct ! $(Z,P) \in Stabst'(P')$ st. $Z(O) = Z$.

Take
$$Z(O(n)) = (n+1)z - n$$

$$Z(k_p) = z-1,$$

 $Z(x_p) = z-1,$ that! determines $(Z, P) \in Stab_{st}$. (P')

Rmk Assume (Z,P) ∈ Stabst (IP').

When $Z(O) \in \mathcal{H}$, all O(n) & k_p are stable; when $Z(O) \in (-\infty, 0)$, only O & O(-1) are stable. In general,

Def. Z acts on Stab (IP') by tensoring with O(-n).

$$Z \times Stab(P') \longrightarrow Stab(P')$$

$$n \cdot (Z, P) = (Z(-\otimes O(-n)), n * P)$$

$$Ob((n * P)(\phi)) = \{E \in T \mid E \otimes O(-n) \in P(\phi)\}$$

$$n \cdot (Z, \phi) = (Z(-\otimes \mathcal{O}(-n)), \phi(-\otimes \mathcal{O}(-n)))$$

Rmk. Stabst (P') has a fundamental domain w.r.t. Z-action. After projection, it is as follows:

4. exceptional stability.

Fix a stability condition (Z, P) st. some l.b. or x_p is not semistable. Denote it as E, then we get

$$A_1 \xrightarrow{u_1} E \xrightarrow{u_2} A_2 \xrightarrow{+1} \tag{4.1}$$

with A_2 semistable, $Hom_{\overline{q}}(A, [n], A_2) = 0 \quad \forall n \ge 0$.

Lemma 4.1. [GKR03, Rmk 6.8]

Assume that we have a triangle

$$A_1 \longrightarrow E \xrightarrow{(f,o)} B_1 \oplus B_2 \xrightarrow{+1}$$

then $A_1 \cong C \oplus B_2[-1]$, $Hom_T(A_1[1], B_1 \oplus B_2) \neq 0$.

Proof. try
$$E \xrightarrow{f} B_1 \xrightarrow{--} C \xrightarrow{+1}$$

$$0 \xrightarrow{(f,0)} B_1 \oplus B_2 \longrightarrow C \oplus B_2 \xrightarrow{+1}$$

$$E \xrightarrow{(f,0)} B_1 \oplus B_2 \longrightarrow C \oplus B_2 \xrightarrow{+1}$$

Therefore, we can assume (4.1) are of form

$$A_{1} \longrightarrow \mathcal{O} \longrightarrow \bigoplus_{n_{1} \geqslant 0} \mathcal{O}(n_{1}) \oplus \bigoplus_{m_{1} \leqslant -2} \mathcal{O}(m_{1})[1] \oplus \bigoplus_{p} \Xi_{p} \xrightarrow{+1}$$

$$A_{1} \longrightarrow \mathcal{L}_{p} \longrightarrow \bigoplus_{n_{1} \geqslant 0} \mathcal{O}(n_{1})[1] \oplus \Xi_{p}' \oplus \Xi_{p}' \xrightarrow{+1}$$

Lemma 4.2 [Okada 06, Lemma 3.1(c)]

If $Hlom_T(A_1[n], A_2) = 0 \quad \forall n \ge 0$ & A_2 semistable, then (4.1) are of form (2.2).

Check it! E.g. 2.5 is one example to determine A_1. It seems easy but turns out to be extremely hard. There are too many cases to discuss.

Lemma 4.3. $\exists k \text{ s.t. } \mathcal{O}(k) \& \mathcal{O}(k+1)$ are semistable, and other l.b. or torsion sheaves are not semistable.

Proof Take

with minimal HN-filtration length, then

$$A_1 \longrightarrow E_0 \longrightarrow A_1 \xrightarrow{+1}$$

is of form (2.2) by Lemma 4.2, so O(k) is semistable.

Since O(k+1) has smaller HN-filtration length then E_0 , O(k+1) is semistable.

 $\Rightarrow \phi(\mathcal{O}(k+1)) > \phi(\mathcal{O}(k)) + 1$

 \Rightarrow all triangles in (22) are HN-filtrations \Rightarrow all other 1 b. or torsion sheaves are not semistable.

5. Stab (IP')

Now we can describe Stab(IP') in a relatively satisfied way. Denote

 $Stab_{ex,k}(IP') = \int (Z,P) \in Stab(IP') \left| O(k),O(k+1) \text{ are semistable} \right|$

by Rmk 3.3, Stabex; -1(IP') is a C-fiber bundle over

 $Stab_{ex',\{P'\}} \stackrel{\text{def}}{=} \{(Z,P) \in Stab_{ex,\{P'\}} | Z(O(-1)) = 1, \phi(O(-1)) = 0\}$

Prop. Stabex,-1(P') \cong $\{x+iy \in \mathcal{H} \mid y>\pi\}$ \xrightarrow{exp} \mathbb{C}^{x} $(Z, \phi) \longmapsto I_{n}|Z(0)|+i\pi\phi(0) \longmapsto Z(0)$

Proof Reduce to construct (Z, ϕ) where $\phi(O) > 1$ and $\frac{Z(O)}{e^{i\pi\phi}} \in \mathbb{R}_{>0}$.

In conclusion: (A foundamental domain of Stab(IP')/Z(C))

 \Rightarrow Stab (IP') \cong \mathbb{C}^2

