

SEQUENCE LISTING

<110> The Regents of the University of California
Fenical, William H.
Jensen, Paul R.
Mincer, Tracy

<120> METHOD FOR THE PRODUCTION OF BIOACTIVE SUBSTANCES FROM THE NOVEL ACTINOMYCETE TAXON MAR2 ("Marinophilus")

<130> UCSD1720WO

<150> US 10/873,657
<151> 2004-06-21

<150> US 60/514,127
<151> 2003-10-24

<160> 14

<170> PatentIn version 3.3

<210> 1
<211> 1474
<212> DNA
<213> Marine actinomycete

<400> 1
gttgattcc ctgctcagga cgaacgctgg cggcgtgctt aacacatgca agtcgaacga 60
tgatccggtt tcggccggtg attagtggcg aacgggtgag taacacgtgg gtaatctgcc
ctgcactctg ggataagccc gggaaaactgg gtctaataacc ggatatgacc ttccgtcgca 120
tgatcggttgg tggaaagctt ttgcggtgtg ggatgggccc gcggcctatc agcttgg 180
tgggtgtatg gcctaccaag gcgacgacgg gtagccggcc tgagagggtg accggccaca 240
ctgggactga gacacggccc agactcctac gggaggcagc agtgggaaat attgcacaat 300
ggcgcaagc ctgatgcagc gacgcccgt gaggatgac ggccttcggg ttgtaaacct 360
ctttcagcag ggaagaagcg caagtgcacgg tacctgcaga agaagcaccg gctaactacg 420
tgccagcagc cgccgtaata cgtagggtgc aagcggtgtc cggattatt gggcgtaaag 480
agctcgtagg cggcttgcg cgtcggttgt gaaagccccgg ggcttaaccc tgggtctgca 540
gtcgatacgg gcaggctaga gttcggtagg ggagactgga attcctggtg tagcggtgaa 600
atgcgcagat atcaggagga acaccgggtgg cgaaggcggg tctctgggcc gatactgacg 660
ctgaggagcg aaagcgtggg gagcgaacag gattagatac cctggtagtc cacgctgtaa 720
acggtgtggaa ctaggtgtgg gcagcattcc acgttgtctg tgccgtagct aacgcattaa 780
gttccccgcc tggggagtac ggccgcaagg ctaaaactca aaggaattga cgggggccccg 840
cacaaggcggc ggagcatgtg gcttaattcg acgcaacgcg aagaacctta ccaaggcttgc 900
acatgcacatcg gaagcatcca gagatgggtg tgctttga gtcgggtac aggtggtgca 960
1020

tggctgtcgt cagctcggt cgtgagatgt tgggttaagt cccgcaacga gcgcaaccct	1080
tgtcctgtgt tgccagcgga gccttcgggc tgccggggac tcacgggaga ctgccggggt	1140
caactcgagg gaaggtgggg acgacgtcaa gtcatcatgc cccttatgtc ttgggctgca	1200
cacgtgctac aatggccggt acaatgagct gcgatgccgt gaggtggagc gaatctcaaa	1260
aagccggctc cagttcggt tgggtctgc aactcgaccc catgaagtgc gagtcgctag	1320
taatcgacaga tcagcattgc tgccgtgaat acgttcccgg gccttgcata caccgccccgt	1380
cacgtcacga aagtccgtaa cacccgaagc cggtggccta accccttgc ggagggagtc	1440
gtcgaaggta ggactggcga ttgggacgaa gtcg	1474

<210> 2
<211> 1492
<212> DNA
<213> Marine actinomycete

<400> 2	
agagtttgat cctggctcag gacgaacgct ggccggcgtgc ttaacacatg caagtcgaac	60
gatgatccgg tttcgccgg tgatttagtgg cgaacgggtg agtaacacgt ggttaatctg	120
ccctgcactc tggataaagc ccgggaaact gggtctaata ccggatatac cttcggtcg	180
catgatcggtt ggtggaaagc ttttgcggtg tggatgggc ccgcggccta tcagcttgc	240
ggtgggtga tggctacca aggcgacgac ggttagccgg cctgagaggg tgaccggcca	300
cactggact gagacacggc ccagactcct acgggaggca gcagtgggaa atattgcaca	360
atgggcgcaa gcctgatgca gcgacgccc gtgagggatg acggcattcg gttgtaaac	420
ctctttcagc agggaaaag cgcaagtgc ggtacctgca gaagaagcac cggctaacta	480
cgtgccagca gccgcggtaa tacgtagggt gcaagcggtt tccggatta ttggcgtaa	540
agagctcgta ggcggcttgt cgcgtcggtt gtgaaagccc gggcttaac cctgggtctg	600
cagtcgatac gggcaggcta gagttcggtt gggagactg gaattcctgg tgtagcggtg	660
aaatgcgcag atatcaggag gaacaccggc ggcgaaggcg ggtctctggcc ccgataactga	720
cgctgaggag cgaaacgcgtg gggagcgaac aggattagat accctggtag tccacgctgt	780
aaacgggtgg aactaggtgt gggcagcatt ccacgttgc tgcgtcgtag ctaacgcatt	840
aagttccccg cctggggagt acggccgcaa ggctaaaact caaaggaatt gacggggggcc	900
cgcacaagcg gcggagcatg tggcttaatt cgacgcaacg cgaagaacct taccaggct	960
tgacatgcgtt cggaagcattc cagagatggg tgcgtcgtagt gatcggtgt acaggtgggt	1020
catggctgtc gtcagctcggt gtcgtcgtagt gttgggttaa gtccgcac gacgcacacc	1080
cttgcctgtt gttggccagcg gacgcattcg gctgcccggg actcacggga gactgcccggg	1140

gtcaactcg aggaaggtgg ggacgacgtc aagtcatcat gccccttatg tcttgggctg 1200
cacacgtgct acaatggccg gtacaatgag ctgcgatgcc gtgaggtgga gcgaatctca 1260
aaaagccggt ctcagttcgg attgggtct gcaactcgac cccatgaagt cggagtcgct 1320
agtaatcgca gatcagcatt gctgcggta atacgttccc gggccttcta cacaccgccc 1380
gtcacgtcac gaaagtcggt aacacccgaa gccggtgcc taacccttg tgggagggag 1440
tcgtcgaagg tgggactggc gattggacg aagtctaac aaggtacgca ta 1492

<210> 3
<211> 1492
<212> DNA
<213> Marine actinomycete

<400> 3
agagttttag cctggcttag gacgaacgct ggccggcgtgc ttaacacatg caagtcgaac 60
gatgatccgg tttccggccgg tgattagtgg cgaacgggtg agtaacacgt gggtaatctg 120
ccctgcactc tggataaagc ctgggaaact gggtctaata ccggatataa ctttcggcgtc 180
catgatcggtt ggtggaaagc ttttgcgggtg tggatgggc ccgcggccta tcagcttgg 240
ggtggggtaa tggctacca aggccgacgac gggtagccgg cctgagaggg tgaccggcca 300
cactgggact gagacacccgc ccagactcct acgggaggca gcagtgggaa atattgcaca 360
atgggcaaa gcctgatgca gcgacgcccgtc gtgagggatg acggcattcg gttgtaaac 420
ctcttcagc agggaaagaag cgcaagttagc ggtacctgca gaagaagcac cggctaaacta 480
cgtgccagca gcccggttaa tacgtagggt gcaagcggtt tccggatta ttgggcttaa 540
agagctcgta ggcggcttgt cgcgtcggtt gtgaaagccc ggggcttaac cctgggtctg 600
cagtcgatac gggcaggcta gagttcggtt ggggagactg gaattcctgg tgtagcggtg 660
aaatgcgcag atatcaggag gaacaccggc ggcgaaggcg ggtctctgg ccgataactga 720
cgctgaggag cgaaacggtg gggagcgaac aggattagat accctggtag tccacgctgt 780
aaacgggtggg aactaggtgt gggcagcatt ccacgttgc tgcgtcgtag ctaacgcatt 840
aagttccccg cctggggagt acggccgcaa ggctaaaact caaaggaatt gacgggggcc 900
cgcacaagcg gcggagcatg tggcttaatt cgacgcaacg cgaagaacct taccaggct 960
tgacatgcat cggaaagcattc cagagatggg tgcgtcttt gagtcgggtt acaggtgggt 1020
catggctgtc gtcagctcggt gtcgtcgat gttgggttaa gtcggcaac gagcgcaacc 1080
cttgcgttgtt gttgccagcg gagcttcgg gctgccgggg actcacggga gactgccggg 1140
gtcaactcg aggaaggtgg ggacgacgtc aagtcatcat gccccttatg tcttgggctg 1200
cacacgtgct acaatggccg gtacaatgag ctgcgatgcc gtgaggtgga gcgaatctca 1260

aaaagccgt ctcagttcgg attgggtct gcaactcgac cccatgaagt cggagtcgct	1320
agtaatcgca gatcagcatt gctgcggtga atacgttccc gggccttgt acacccgccc	1380
gtcacgtcac gaaagtcggt aacacccgaa gccggtgcc taacccttg tgggagggag	1440
tcgtcgaagg tgggactggc gattggacg aagtcgtaac aagtagccg ta	1492

<210> 4
<211> 1492
<212> DNA
<213> Marine actinomycete

<400> 4	
agagttttag cctggctcag gacgaacgct ggccgcgtgc ttaacacatg caagtcgaac	60
gatgatccgg tttcgccgg tgattagtgg cgaacgggtg agtaacacgt gggtaatctg	120
ccctgcactc tggataagc ctggaaact gggtctaata ccggatatga cttcggcgtcg	180
catgatcggtt ggtggaaagc ttttgcggtg tggatgggc ccgcggccta tcagcttgg	240
gttggggtag tggctacca aggacacggc ccagactcct acggaggca gcagtgggaa atattgcaca	300
cactgggact gagacacggc ccagactcct acggaggca gcagtgggaa atattgcaca	360
atgggcgaaa gcctgatgca gcgacgccgc gtgagggatg acggccttcg gttgtaaac	420
ctcttcagc agggagaag cgcaagtgcg ggtacctgca gaagaagcac cgctaaacta	480
cgtgccagca gccgcggtaa tacgtagggt gcaagcgttg tccggattt ttggcgtaa	540
agagctcgta ggcggcttgt cgctcggtt gtgaaagccc gggcttaac cttgggtctg	600
cagtcgatac gggcaggcta gagttcggtt gggagactg gaattcctgg ttagcgggt	660
aatgcgcag atatcaggag gaacaccggt ggcgaaggcg ggtctctgg ccgatactga	720
cgctgaggag cgaaagcgtg gggagcgaac aggattagat accctggtag tccacgctgt	780
aaacggtggg aactagggtt gggcagcatt ccacgttgc tgtgccgcag ctaacgcatt	840
aagttccccg cctggggagt acggccgaa ggctaaaact caaaggaatt gacgggggcc	900
cgcacaagcg gcggagcatg tggcttaatt cgacgcaacg cgaagaacct taccaaggct	960
tgacatgcat cggaagcgcc tagagatggg tgtgctttt gagtcgggtt acaggtgg	1020
catggctgtc gtcagctcggt gtcgtgagat gttgggtt aa gtcggcaac gagcgcaacc	1080
cttgcctgt gttgccagcg gagccttcgg gtcgggggg actcacgggaa gactgccggg	1140
gtcaactcgg aggaaggtgg ggacgacgtc aagtcatcat gccccttatg tcttgggctg	1200
cacacgtgt acaatggccg gtacaatgag ctgcgtatgcc gtgaggtggaa gcaatctca	1260
aaaagccagt ctcagttcgg attgggtct gcaactcgac cccatgaagt cggagtcgct	1320
agtaatcgca gatcagcatt gctgcggtga atacgttccc gggccttgt acacccgccc	1380

gtcacgtcac gaaagtccgt aacacccgaa gccgggtggcc taacccttg tgggagggag 1440
tcgtcgaagg tgggactggc gattggacg aagtcgtaac aaggtagccg ta 1492

<210> 5
<211> 1503
<212> DNA
<213> Marine actinomycete

<400> 5
agagtttgcgtccatg gacgaacgct ggccggcgtgc ttaacacatg caagtcgaac 60
gatgatccgg cttcggtcgg ggatttagtgg cgaacgggtg agtaacacgt gggcaatctg 120
ccctgcactc tggataaagc ctgggaaact gggctctaata ccggatatga ctttctctcg 180
catggggag ggtggaaagc ttttgcggtg caggatgggc ccgcggccta tcagcttgc 240
ggtgggttag tggcctacca aggcgacgac gggtagccgg cctgagaggg tgaccggcca 300
cactgggact gagacacggc ccagactcct acgggaggca gcagtgggaa atattgcaca 360
atgggcgcaa gcctgtatgca gcgcgcgcgtgagggatg acggccttcg gttgtaaac 420
ctcttcagc agggagaag cttgccttt ttgggtgggt gacggtactt gcagaagaag 480
caccggctaa ctacgtgcca gcagccgcgg taatacgtag ggtgcaagcg ttgtccggat 540
ttattggcg taaagagctc gttagccggct tgcgtcgtcg attgtgaaag ctcaggcctt 600
aaccctgggt ctgcagtcga tacggcagg cttagttcg gttagggaga ctgaaattcc 660
tggtagcg gtgaaatgcg cagatatcag gaggaacacc ggtggcgaag gcgggtctct 720
ggccgatac tgacgctgag gagcgaaagc gtggggagcg aacaggatta gataccctgg 780
tagtccacgc tgtaaacgggt gggacttagg tgcgtcgtcg attccacgtt gtctgtccg 840
tagctaacgc attaagttcc cgcctgggg agtacggccg caaggctaaa actcaaagg 900
attgacgggg gcccgcacaa gcggcggagc atgtggctt attcgacgca acgcgaagaa 960
cattaccaag gcttgcacata cgccggaaaa ccatggagac atggcccttc tttgagtccg 1020
tgtacaggtg gtgcacggct gtcgtcagct cgtgtcgtga gatgtgggt taagtccgc 1080
aacgagcgc acccttatcc tgtgttgcca gcaactctct tcggaggggt tggggactca 1140
cgggagactg ccgggggtcaa ctcggaggaa ggtggggacg acgtcaagtc atcatgcccc 1200
ttatgtcttg ggctgcacac gtgtacaat ggctggtaca atgagctgcg atgccgtgag 1260
gtggagcga tctcaaaaag ccagtctcag ttccggattgg ggtctgcaac tcgaccccat 1320
gaagtcggag tcgttagtaa tcgcagatca gcattgctgc ggtgaatacg ttcccgcc 1380
ttgtacacac cgcggcgtcac gtcacgaaag tcggtaacac ccgaagccgg tggcctaacc 1440
cccttgcggg gagggagtcg tcgaagggtgg gactggcgat tgggacgaaag tcgtaaacaag 1500

gta

1503

<210> 6
<211> 1508
<212> DNA
<213> Marine actinomycete

<400> 6
agagtttgat ccctggctca ggacgaacgc tggcggcgtg cttaaacacat gcaagtcgaa 60
cgatgatccg gtttcggccg gggatttagtg gcgaacgggt gagtaaacacg tgggtaatct 120
gccctgcact ttgggataag cctggaaac tgggtctaatt accggatatg accttccttc 180
gcatgggggt tggtggaaag ctttgcgtt gcaggatgga cccgcggcct atcagcttgt 240
tggtggggta gtggcctacc aaggcgacga cgggtagccg gcctgagagg gtgaccggcc 300
acactgggac tgagacacgg cccagactcc tacgggaggc agcagtgggg aatattgcac 360
aatgggcgaa agcctgatgc agcgacgccc cgtgagggat gacggccttc gggttgtaaa 420
cctctttcag cagggaaagaa gccttgcctt tttgggtggg tgacggtaact tgcagaagaa 480
gcaccggcta actacgtgcc agcagcccg gtaatacgta gggtgcaagc gttgtccgga 540
tttattgggc gtaaaagagct cgtagggcggc ttgtcacgtc gattgtgaaa gtcagggtct 600
taaccctggg tctgcagtgc atacggcag gctagagttc ggttagggag actggaaattc 660
ctgggttagc ggtgaaatgc gcagatatca ggaggaacac cggtggcgaa ggcgggtctc 720
tgggcccata ctgacgctga ggagcgaaag cgtggggagc gaacaggatt agataccctg 780
ttagtccacg ctgtaaacgg tgggaactag gtgtggcag cattccacgt tgtctgtgcc 840
gcagctaacg catthaagttc cccgcctggg gagtacggcc gcaaggctaa aactcaaagg 900
aattgacggg ggcggcaca agcggccggag catgtggctt aattcgacgc aacgcgaaga 960
accttaccaa ggcttgacat acatcgaaat ctgctggaga cagtagcgct ctttgagtcg 1020
gtgtacaggt ggtgcattgc tgcgtcage tcgtgtcggt agatgttggg ttaagtcccg 1080
caacgagcgc aacccttatt ctgtgttgcc agcatgccc ttcgggggtg atggggactc 1140
acgggagact gccgggggtca actcgaggaa aggtggggac gacgtcaagt catcatgccc 1200
cttatgtctt gggctgcaca cgtgctacaa tggctggtaac aatgagctgc gataccgtga 1260
ggtggagcga atctaaaaaa gccagtcgtca gtcggattt gggctgtcaa ctcgacccca 1320
tgaagtcgga gtcgcttagta atcgacatc agcattgctg cggtaataac gttcccgccc 1380
cttgcacaca ccggccgtca cgtcacgaaa gtcggtaaca cccgaagccg gtggcctaac 1440
cccttgcggg agggagctgt cgaagggtggg actggcgatt gggacgaagt cgtaacaagg 1500
tagccgtaa 1508

<210> 7
<211> 1445
<212> DNA
<213> Marine actinomycete

<400> 7
agagtttcat ccctggctca ggacgaacgc tggcggcgtg cttaacacat gcaagtcgaa 60
cgatgaacccg gtttcggccg gggatttagtg gcgaacgggt gagtaacacg tgggtgacct 120
gccctgcact ctgggataag cccgggaaac tgggtctaatt actggatatg accgggtggcc 180
gcatggtctg ccgggtggaaa gctttatgcg gtgtgggatg ggcccgcggc ctatcagctt 240
gttggtgggg tgatggccta ccaaggcgac gacgggttagc cggcctgaga gggtgaccgg 300
ccacactggg actgagacac ggcggcagact cctacgggag gcagcagtgg ggaatattgc 360
acaatggcg gaaggctgat gcagcgacgc cgctgtgggg atgacggctt tcgggttgtat 420
aaccttttc agcagggaaag aagcgcaagt gacggtacct gcagaagaag caccggctaa 480
ctacgtgcca gcagccgcgg taatacgtag ggtgcaagcg ttgtccggaa ttattggcg 540
taaagagctc gtagggcgcc tgcgcgtcg attgtgaaag cccggggctt aactccgggt 600
ctgcagtcga tacgggcagg ctagagttcg gtaggggaga ctggaaattcc tgggtgtacgc 660
tgaaatgcg cagatatcg gaggaacacc ggtggcgaag gcgggtctct gggccgatac 720
tgacgctgag gagcggaaagc gtggggagcg aacaggatta gataccctgg tagtccacgc 780
tgtaaacggt gggactagg tgtggcgac attccacgtt gtctgtgccg tagctaacgc 840
attaagttcc ccgcctgggg agtacggccg caaggctaaa actcaaagga attgacgggg 900
gccccgcacaa gcggcggagc atgtggctta attcgacgca acgcaagaa cttaccaag 960
gcttgacata cgccggaaat ctctggagac agggctccc ttttggccg gtgtacaggt 1020
ggtgcattgc tgcgtcagc tcgtgtcgtg agatgttggg ttaagtcccg caacgagcgc 1080
aacccttgtc ctgtgttgcg agcaacaccc tcgggtgggtt gggactcac gggagactgc 1140
cggggtcaac tcggaggaag gtggggacga cgtcaagtca tcattccccct tatgtcttgg 1200
gctgcacacg tgctacaatg gccggtacaa agggctgcga tgccgtgagg cggagcgaat 1260
ccccaaaaagc cggctctcagt tcggattggg gtctgcaact cgaccctatg aagtccggagt 1320
cgcttagtaat cgcaagatcg cagtgcgtcg gtgaatacgt tcccgccct tgcgtacacacc 1380
gcccgtcact tcacgaaagt cggtAACACC cgaagccggg gcctaaaccct tcgggaggga 1440
gccgt 1445

<210> 8
<211> 1541

<212> RNA

<213> Escherichia coli

<400> 8

aaauugaaga	guuuugaucau	ggcucagauu	gaacgcuggc	ggcaggccua	acacaugcaa	60
gucgaacggu	aacaggaaac	agcuugcugu	uucgcugacg	aguggcggac	ggugagaua	120
ugucugggaa	acugccugau	ggagggggau	aacuacugga	aacgguagcu	aauaccgcau	180
aacgucgcaa	gaccaaagag	ggggaccuuc	gggccucuug	ccaucagaug	ugcccagaug	240
ggauuagcua	guaggugggg	uaacggcuca	ccuaggcgac	gaucuccuagc	uggucugaga	300
ggaugaccag	ccacacugga	acugagacac	gguccagacu	ccuacgggag	gcagcagugg	360
ggaauauugc	acaauuggcg	caagccugau	gcagccaugc	cgcguguaug	aagaaggccu	420
ucggguugua	aaguacuuuc	agcggggagg	aagggagaua	aguuaauacc	uuugcuauu	480
gacguuaccc	gcagaagaag	caccggcuua	cuccgugcca	gcagccgcgg	uaauacggag	540
ggugcaagcg	uuauaucggaa	uuacuggggcg	uaaaagcgcac	gcagggcgguu	uguuaaguca	600
gaugugaaaa	ccccgggcuc	aaccugggaa	cugcaucuga	uacuggcaag	cuugagucuc	660
guagaggggg	guagaauucc	agguguagcg	gugaaaugcg	uagagaucug	gaggaauacc	720
gguggcgaag	gcggcccccu	ggacgaagac	ugacgcucag	gugcgaaagc	guggggagca	780
aacaggauua	gauacccugg	uaguccacgc	cguaaacgau	gucgacuugg	agguugugcc	840
cuugaggcgu	ggcuuuccgga	gcuaacgcgu	uaaqucgacc	gccuggggag	uacggccgca	900
aguuaaaaacu	caaaugaaauu	gacgggggccc	cgcacaagcg	guggagcaug	ugguuuaauu	960
cgaugcaacg	cgaagaaccu	uaccuggucu	ugacauccac	ggaaguuuuuc	agagaugaga	1020
augugccuuc	gggaacctgug	agacaggugc	ugcauggcug	ucgucagcuc	guguugugaa	1080
auguuggguu	aaguccccgca	acgagcgc当地	cccuaauccu	uuguugccag	cgguccggcc	1140
ggaaacucaa	aggagacugc	cagugauaaa	cuggaggaag	guggggauga	cgucaaguca	1200
ucauggccu	uacgaccagg	gcuacacacg	ugcuacaaug	gcgcauacaa	agagaagcga	1260
ccucgcgaga	gcaagcggac	cuauaaagu	gcuacguagu	ccggauugga	gucugcaacu	1320
cgacucca	aagucggaaau	cgcuaguau	cguggaucag	aaugccacgg	ugaauacgguu	1380
cccgccuu	guacacaccg	cccguacacac	caugggagug	gguugcaaaa	gaaguaggua	1440
gcuuaaccuu	cgggagggcg	cuuaccacuu	ugugauucau	gacuggggug	aagucguaac	1500
aagguaaccg	uaggggaacc	ugcgguugga	ucaccuccuu	a		1541

<210> 9

<211> 20

<212> DNA

<213> Artificial sequence

<220>
<223> Amplification primer

<400> 9
agagttttagt cctggctcag 20

<210> 10
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Amplification primer

<400> 10
tacggctacc ttgttacgac tt 22

<210> 11
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Amplification primer

<400> 11
gtgccagcag ccgcggtaa 19

<210> 12
<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> Amplification primer

<400> 12
gcaacgagcg caaccc 16

<210> 13
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Amplification primer

<400> 13
ccgcggctgc tggcacgta 19

<210> 14
<211> 19
<212> DNA
<213> Artificial sequence

<220>

<223> Amplification primer

<400> 14

tgcgcccccc ccgtcaatt

19