

10/26/00
JCS 914 U.S. PRO

Please type a plus sign (+) inside this box

PTO/SB/05 (08-00)

Approved for use through 10/31/2002 OMB 0651-0032

U.S. Patent and Trademark Office U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

**UTILITY
PATENT APPLICATION
TRANSMITTAL**

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 002717.P013

First Inventor Manish Rathi

Title METHOD AND APPARATUS FOR MANAGEMENT OF

CONFIGURATION IN A NETWORK

Express Mail Label No. EL054453735US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents

1. Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Applicant claims small entity status.
See 37 CFR 1.27.
3. Specification [Total Pages 23]
(preferred arrangement set forth below)
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to sequence listing, a table, or a computer program listing appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
4. Drawing(s) (35 U.S.C. 113) [Total Sheets 3]
5. Oath or Declaration [Total Pages 3]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 17 completed)
 - i. **DELETION OF INVENTOR(S)**
Signed statement attached deleting inventor(s) named in the prior application, see 37 CFR 1.63(d)(2) and 1.33(b)
6. Application Data Sheet. See 37 CFR 1.76

ADDRESS TO:
Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

7. CD-ROM or CD-R in duplicate, large table or Computer Program (Appendix)
8. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Form (CRF)
 - b. Specification Sequence Listing on:
 - i. CD-ROM or CD-R (2 copies); or
 - ii. paper
 - c. Statements verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

9. Assignment Papers (cover sheet & document(s))
10. 37 C.F.R. § 3.73(b) Statement Power of Attorney
(when there is an assignee)
11. English Translation Document (if applicable)
12. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
13. Preliminary Amendment
14. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
15. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
16. Other: _____

17. If a CONTINUATING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

 Continuation Divisional Continuation-in-part (CIP) of prior application No: _____

Prior application Information: Examiner _____

Group/Art Unit: _____

For CONTINUATION OR DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 5b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

18. CORRESPONDENCE ADDRESSPATENT TRADEMARK OFFICE
(Insert Customer No. or Attach bar code label here)or Correspondence address below

Name			
Address			
City	State	Zip Code	
Country	Telephone	Fax	

Name (Print/Type)	Clive D. Menezes	Registration No. (Attorney/Agent)	45,493
Signature		Date	10/26/00

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

JC914 U.S. PRO
09/699248

10/26/00

FEE TRANSMITTAL for FY 2000

Patent fees are subject to annual revision

TOTAL AMOUNT OF PAYMENT (\$ 1,148.00)

Complete if Known

Application Number	
Filing Date	October 26, 2000
First Named Inventor	Manish Rathi
Examiner Name	
Group/Art Unit	
Attorney Docket No.	002717.P013

METHOD OF PAYMENT (check one)

1. The Commissioner is hereby authorized to charge indicated fees and credit any overpayments to:

Deposit Account Number 02-2666

Deposit Account Name Blakely, Sokoloff, Taylor & Zafman LLP

 Charge Any Additional Fee(s) Required
Under 37 CFR §§ 1.16, 1.17, 1.18 and 1.20 Applicant claims small entity status
See 37 CFR 1.272. Payment Enclosed: Check Credit card Money Order Other

FEE CALCULATION

BASIC FILING FEE

Large Entity		Small Entity		Fee Description	Fee Paid
Fee Code	Fee (\$)	Fee Code	Fee (\$)		
101	710	201	355	Utility filing fee	710.00
106	320	206	160	Design filing fee	
107	490	207	245	Plant filing fee	
108	710	208	355	Reissue filing fee	
114	150	214	75	Provisional filing fee	
SUBTOTAL (1)		(\$)			710.00

EXTRA CLAIM FEES		Extra Claims	Fee from below	
Total Claims	31	- 20 **	= 11 X 18.00 =	\$198.00
Independent Claims	6	- 3 **=	= 3 X 80.00 =	\$240.00
Multiple Dependent				

**or number previously paid, if greater. For Reissues, see below

Large Entity		Small Entity		Fee Description	Fee Paid
Fee Code	Fee (\$)	Fee Code	Fee (\$)		
103	18	203	9	Claims in excess of 20	
102	80	202	40	Independent claims in excess of 3	
104	260	204	135	Multiple Dependent claim, if not paid	
109	80	209	40	**Reissue independent claims over original patent	
110	18	210	9	**Reissue claims in excess of 20 and over original patent	
SUBTOTAL (2)		(\$)			438.00

*Reduced by Basic Filing Fee Paid

SUBTOTAL (3) (\$)

Complete (if applicable)

Name (Print/Type)	Clive D. Menezes	Registration No. (Attorney/Agent)	45,493	Telephone	(503) 684-6200
Signature			Date	10/26/00	

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2039.

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO Assistant Commissioner for Patents, Washington, DC 20231

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

TITLE OF THE INVENTION

METHOD AND APPARATUS FOR MANAGEMENT OF CONFIGURATION
IN A NETWORK

INVENTORS

MANISH RATHI
TIM AIKEN

Prepared by

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1026
(503) 684-6200

Express Mail Label No. EL034435735US

COPYRIGHT NOTICE

Contained herein is material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction of the patent disclosure by any person as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all rights to the copyright whatsoever.

BACKGROUND OF THE INVENTION

10

Field of the Invention

The present invention is related to network management. In particular, the present invention is related to a method and apparatus for management of configuration in a network.

15 Description of the Related Art

Network management stations perform network management functions including, but not limited to, fault detection, configuration of network elements, performance management, and security management. Typically, a network management station (NMS) invokes management software to communicate with agent software associated with network elements such as switches, routers, gateways, bridges, etc.

In the Internet, the protocol commonly used to communicate between a NMS and network elements is the Simple Network Management Protocol (SNMP). The set of specifications that define SNMP and associated databases may be found in Request For

Comments (RFC) 1155, 1213, and 1157. SNMP defines both the syntax and semantics of the messages that a NMS and agents exchange.

In addition to the SNMP, separate standards for Management Information Bases (MIB) define the objects that SNMP maintain, the operations allowed, and the meaning 5 of the specified operations. For example, the MIB for the Internet Protocol (IP) specifies that the SNMP agent must keep a count of all octets that arrive over each network interface of a router and that the network managing station can only read the count. MIB variables may specify network status parameters and track various aspects of the status of a network. By keeping MIBs independent of the SNMP, additions to MIBs can be 10 defined without affecting the installed base of SNMP based network management stations, and the protocol can be used to communicate with network elements that have different versions of the same MIB.

In order to configure and manage network elements, the NMS uses a fetch-store paradigm. The SNMP get-request and set-request commands are the basic fetch and store 15 operations respectively. The SNMP trap command enables a network element to communicate asynchronously with a NMS. The trap command is initiated by an SNMP agent associated with the network element, and provides the NMS with notification of some significant event as to the status of the network element. Specific traps may be user defined, and the SNMP agent may transmit an SNMP trap command when one or more 20 user defined object values change. In SNMP trap-directed polling, information regarding a change in the network element is included in the trap packet sent to the NMS.

The use of traps to communicate information to the NMS is unreliable as traps can be lost due to the connectionless oriented nature of the SNMP. For management of

configuration, lost traps are problematic because tracking network configuration requires that all changes in a network are reported to the NMS. Usually, network management stations regularly poll network elements in the network for the status and configuration of their managed objects. Based on the information regarding the managed objects obtained

5 from the agent associated with the network element, the NMS may take some action.

However, the polling mechanism used for configuring and monitoring networks is inefficient, especially if the NMS manages a large number of network elements. Periodic polling utilizes network capacity as polling is initiated by network management stations even when there may be no change in the objects that are being monitored. What is

10 needed, therefore, is a more efficient method to configure and monitor network elements.

BRIEF SUMMARY OF THE DRAWINGS

Figure 1 illustrates an example of a network in which an embodiment of the present invention is utilized.

Figure 2 is a flow diagram of an embodiment of the present invention.

- 5 Figure 3 illustrates an apparatus comprising an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Described is a method for management of configuration in a network. In particular, the invention describes a method for managing the configuration of network elements such as routers, gateways, bridges, etc. by one or more network management stations in an Internetwork. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known architectures, steps, and techniques have not been shown to avoid unnecessarily obscuring the present invention. For example, specific details are not provided as to whether the method is implemented in a router, server or gateway, as a software routine, hardware circuit, firmware, or a combination thereof.

Parts of the description will be presented using terminology commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. Also, parts of the description will be presented in terms of operations performed through the execution of programming instructions. As well understood by those skilled in the art, these operations often take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, and otherwise manipulated through, for instance, electrical components.

Various operations will be described as multiple discrete steps performed in turn in a manner that is helpful in understanding the present invention. However, the order of description should not be construed as to imply that these operations are necessarily performed in the order they are presented, or even order dependent. Lastly, repeated

usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.

Figure 1 illustrates a network 107 comprising a network management station (NMS) 104 connected to LAN 105 and managing network elements comprising router 5 101, gateway 102, server 103, and switch 109. In one embodiment, the NMS comprises a plurality of network management stations managing network configurations. Connecting the network elements are LANs 105, 106, 108 and 110. Each managed network element comprises agent software to communicate with the NMS. While the description that follows addresses the method as it applies to an internetwork architecture, it is 10 appreciated by those of ordinary skill in the art that the method is generally applicable to any network architecture including, but not limited to, Local Area Networks (LANs), Metropolitan Area Networks (MANs), and Wide Area Networks (WANs).

As Figure 1 illustrates, the network 107 comprises a NMS 104 which could be a dedicated computer with network management software that configures and monitors 15 network elements such as router 101, gateway 102, and server 103. Each network element has agent software installed that enables it to communicate with a NMS and hence with a network administrator, and provides the network administrator with configuration and status information of the network element. In one embodiment, the communication protocol between NMS software and agents is SNMP. One skilled in the 20 art will appreciate that other network management protocols may alternatively be used by the present invention.

One embodiment of the present invention uses MIB objects to monitor configuration parameters on network elements. In particular, the invention uses a trap-

based method to monitor configuration parameters and changes thereto. Because the trap-based method is asynchronous, accessing the network element occurs only after a network element first sends the NMS a notification via a trap.

With reference to Figure 2, in one embodiment of the invention, at 210, the NMS

- 5 first selects the configuration objects, whether represented by scalars (MIB leaf objects) or tables (MIB trees), it is interested in monitoring. This determination could be made either manually by a network administrator, or in accordance with a programmed algorithm. At 220, a request to monitor the selected MIB configuration objects is transmitted by the NMS to the agent software on a network element. Associated with
- 10 each object in a MIB is an identifier called an object identifier (OID) that serves to uniquely identify the object. In one embodiment, the NMS writes to a MIB rules table associated with the network element identifying the OIDs it is interested in monitoring. In addition, the NMS transmits a rule to the network element specifying the conditions under which the network element is to send a trap to the NMS. Thus, each entry in the
- 15 MIB rules table on a network element includes a rule that is used by the agent associated with the network element to generate a trap should there be an addition, deletion, modification, or any change in the configuration of the network element. In other words, if there is a change in the selected scalar, or in the value of any variable in a selected table, the agent associated with the network elements generates a trap.

- 20 In one embodiment, if the granularity of the selected MIB object is not supported by the agent, the agent sends a trap to the NMS with a less specific OID in the branch of the MIB tree. Thus, neither the agent nor the NMS have to keep track of each defined object on every network element. The trap is basically an indicator to the NMS notifying

it that some change has occurred in a configuration object on the network element that the NMS is interested in monitoring. If more than one NMS is monitoring the configuration of the network element, in addition to transmitting the selected MIB objects and a rule specifying the condition for sending a trap, each NMS transmits information 5 regarding its own identity in the form of a trap destination index. The agent associated with the network element uses the trap destination index to identify a particular NMS to which a trap is transmitted. As an example, Table 1 below illustrates the process by which network management software tracks the configuration of virtual local area networks (VLANs) on a LAN switch.

10

300	Index = 5	essentially the next available index in the rules table.
305	RowStatus = ACTIVE	
310	Desired OID = extremeVlanIfTable	A table indexed by Interface number that stores a list of VLANs.
315	Operation = ANY	
320	TrapDestinationIndex = 2	This is the index of the net mgmt software host in the trap-receivers table.
325	SupportedOID=extremeVlanIfTable	The Agent software sets the value of SupportedOID, as either the value that was asked for, or to a less specific OID supported by the agent software.

Note: This rule means that if any operation is performed which causes a Vlan configuration, represented by extremeVlanIfTable to be added, deleted or modified, then a smarttrap instance is recorded, and the SNMP manager is notified.

15

Table 1

In Table 1 at 300, an entry is made in a MIB rules table located on the LAN switch, here called the extremeSmartTrapsRulesTable. At 305, the tracking for the 20 defined OID is set to Active state. This means that the agent software on the switch starts

tracking the defined object identifier (OID). At 310, the NMS specifies that the desired OID it is interested in monitoring is the extremeVlanIf Table. The OID is defined as follows:

enterprises.extremenetworks.extremeagent.extremevlan.extremevlangroup.extremevlanitable.

5 At 315, the NMS specifies that for any change in the OID the agent on the LAN switch is to notify the NMS by sending a trap. Thus, for example, if a VLAN is added, modified or deleted, the agent is to notify the NMS by sending a trap. At 320, the agent software is to send the trap to TrapDestinationIndex = 2. This is the index of a NMS in the trap-receivers table. In this example multiple network management stations are monitoring

10 the configuration of the network. Hence, the trap is to be sent to the second NMS. At 325, the agent sets the value of the SupportedOID as the OID value specified by the NMS. In one embodiment, if the selected OID is not supported by the agent, the agent sets the SupportedOID parameter to a less specific OID that it does support, i.e., one that is defined by the previous node in a branch of the MIB tree. In the example above, if the

15 NMS selects the extremevlanitable OID for the agent to monitor, but the agent software only supports the extremevlangroup OID, then a trap is sent whenever the agent software detects a change in the more specific than the supported OID, i.e., when there is a change in any OID that is contained in the extremevlangroup.

Returning to figure 2, at 230, once the agent has received an indication of the selected MIB objects the NMS is interested in monitoring, the agent monitors the objects for any changes in accordance with the specified rules. If no change is detected at 240, the agent continues to track the OIDs. However, if a change is detected at 250, the change is logged to a MIB instance table on the network element.

Table 2 below illustrates a MIB instance table on a network element.

400	Index = TrapDestinationIndex	obtained from the RulesTable. This identifies the manager for whom data was obtained.
405	RuleNumber = 5	which rule is this log corresponding to.
410	ChangedOID = extremeVlanIfTable.67	if the operation was performed on the vlan represented by the 67th index.
415	Operation = DELETE	if operation was delete.
420	ChangeTime = 9567423	the SysUpTime when this action happened.

Table 2

The entries in the MIB instance table include at 400, an entry identifying each

network management station that requested the monitoring of the particular configuration

5 object, at 405 an entry identifying the index of the rule in the MIB rules table in accordance with which the entry was created, at 410 an entry identifying the OID value that has changed, at 415 an entry identifying the operation performed that caused the generation of the trap, and at 420 an entry identifying the time when the entry was created.

10 Returning to figure 2 at 260, after logging the changes in the MIB instance table, the agent associated with the network element sends a trap to the NMS that initiated the writing of the selected MIB objects in the MIB rules table. The NMS, on receipt of the trap, at 270, may contact the agent that sent the trap and read the MIB instance table. At this time, the NMS may, in one embodiment of the invention, clear the MIB instance 15 table. By having the NMS read the MIB instance table after receipt of the trap, rather than have the information sent to the NMS as part of the trap packet, as is done in SNMP-based trap polling, the embodiment of the present invention ensures that configuration

information is not lost due to dropped packets. Moreover, by having the NMS read the MIB instance table after receipt of a trap, rather than periodically polling the network elements, increased network bandwidth is made available for other applications. In another embodiment of the invention, if the NMS has not received a trap within some 5 predetermined time interval, it is possible for the NMS to read the MIB instance table on its own initiative to examine the configuration of network elements. In one embodiment, polling of all the data tables is not necessary as merely reading the MIB instance table is sufficient. This is done infrequently as compared with the frequency of periodically polling the agents. Hence, despite this poll a substantial savings in bandwidth and 10 processor utilization is achieved.

Figure 3, illustrates an apparatus that contains an embodiment of the invention on which the agent software is installed. The apparatus comprises I/O devices 300 that include a network transceiver, to receive a request to monitor at least one configuration object and to receive a request to read a log containing entries with regard to additions, 15 deletions, modifications, or any changes to selected configuration objects.

Communicatively coupled to the transceiver are one or more microprocessors 320 and memory 310. The agent software executed by the microprocessor monitors changes to the selected configuration objects, logs any changes to a file stored in the memory, and transmits a trap to a NMS. The memory stores a MIB rules table that contains the 20 selected configuration objects along with the parameters or rules needed to generate a trap. The transceiver transmits, via network connection 330, a trap that is an indication to the NMS that a change in value of the selected configuration object has occurred.

In another embodiment, Figure 3 illustrates an apparatus that comprises a transceiver to receive a trap, that is, an indication from a network element of a change in a selected configuration object. Communicatively coupled to the transceiver are one or more microprocessors 320 and memory 310. The management software executed by the 5 microprocessor analyzes the trap or indication received from the network element and manages the configuration of the network element accordingly. The transceiver transmits a request to monitor at least one configuration object on a network element, and to read the log containing the configuration changes on the network element.

Thus, a method has been disclosed for management of configuration in a network 10 environment. Embodiments of the invention may be represented as a software product stored on a machine-readable medium (also referred to as a computer-readable medium or a processor-readable medium). The machine-readable medium may be any type of magnetic, optical, or electrical storage medium including a diskette, CD-ROM, memory device (volatile or non-volatile), or similar storage mechanism. The machine-readable 15 medium may contain various sets of instructions, code sequences, configuration information, or other data. For example, the procedures described herein for polling network elements by network management stations can be stored on the machine-readable medium. Those of ordinary skill in the art will appreciate that other instructions and operations necessary to implement the described invention may also be stored on the 20 machine-readable medium.

CLAIMS

What is claimed is:

- 1 A method comprising:
 - 2 receiving a request at a network element to monitor at least one object on the network
 - 3 element;
 - 4 logging information about the at least one object by the network element in response to a
 - 5 change in value of the object;
 - 6 transmitting an indication from the network element of the change in value of the at least
 - 7 one object; and
 - 8 receiving a request at the network element to read the information about the at least one
 - 9 object logged on the network element in response to the transmitted indication.

- 1 2. The method of claim 1, wherein receiving a request at a network element to
- 2 monitor at least one object on the network element comprises establishing a rule in a
- 3 management information base rules table on the network element to monitor a
- 4 configuration object on the network element.

- 1 3. The method of claim 2, wherein monitoring a configuration object comprises
- 2 logging a change in value of the configuration object as specified by the request.

1 4. The method of claim 2, wherein monitoring a configuration object comprises
2 specifying the configuration object's object identifier in the management information
3 base tree.

1 5. The method of claim 4, wherein specifying the configuration object's object
2 identifier comprises using a less specific object identifier in the management information
3 base tree, if monitoring the configuration object is not supported in the management
4 information base tree.

1 6. The method of claim 1, wherein logging information by the network element in
2 response to a change in value of the object comprises logging information about the
3 change in the network element's configuration in a management information base
4 instance table.

1 7. The method of claim 1, wherein receiving a request at a network element to
2 monitor at least one object on the network element comprises receiving a request from
3 one or more network management stations to monitor at least one object on the network
4 element.

1 8. The method of claim 1, wherein transmitting an indication from the network
2 element of the change in value of the object comprises transmitting a SNMP trap to a
3 network management station whenever a change in value of the object is detected by the
4 network element.

1 9. The method of claim 1, wherein receiving a request at the network element to
2 read the information logged on the network element in response to the transmitted
3 indication comprises a network management station reading the logged data from a
4 management information base instance table on the network element.

1 10. A method comprising:
2 transmitting a request to a network element to monitor at least one object on the network
3 element;
4 receiving an indication from the network element in response to a change in the value of
5 the object being monitored; and
6 reading information logged on the network element in response to the indication
7 received.

1 11. The method of claim 10, wherein transmitting a request to the network element to
2 monitor at least one object on the network element comprises writing a rule to a
3 management information base rules table on the network element to monitor a
4 configuration object of the network element.

1 12. The method of claim 11, wherein writing a rule to a management information
2 base rules table on the network element to monitor a configuration object further
3 comprises writing a rule to monitor at least one of an addition, deletion, modification or a
4 change in value of the configuration object by the network element.

1 13. The method of claim 11, wherein writing a rule to a management information
2 base rules table on the network element to monitor a configuration object further
3 comprises specifying the configuration object's object identifier in the management
4 information base tree.

1 14. The method of claim 10, wherein receiving an indication from the network
2 element in response to a change in the value of the object being monitored comprises
3 receiving a SNMP trap from the network element.

1 15. The method of claim 10, wherein reading information logged on the network
2 element in response to the indication received comprises reading the information logged
3 in a management information base instance table on the network element.

1 16. An article of manufacture comprising:
2 a machine-readable medium that provides instructions, that when executed
3 by a machine, cause said machine to perform operations comprising:
4 receiving a request at a network element to monitor at least one object on the network
5 element;
6 logging information about the at least one object by the network element in response to a
7 change in value of the object;
8 transmitting an indication from the network element of the change in value of the at least
9 one object; and

10 receiving a request at the network element to read the information about the at least one
11 object logged on the network element in response to the transmitted indication.

1 17. The machine-readable medium of claim 16, wherein said instructions for receiving a
2 request at the network element to monitor at least one object on the network element
3 includes further instructions to direct said machine to establish a rule in a management
4 information base rules table on the network element to monitor a configuration object of
5 the network element.

1 18. The machine-readable medium of claim 17, wherein said instructions for
2 monitoring a configuration object includes further instructions to direct said machine to
3 log a change in value of the configuration object as specified by the request.

1 19. The machine-readable medium of claim 17, wherein said instructions for
2 monitoring a configuration object on the network element includes further instructions to
3 direct said machine to specify the configuration object's object identifier in the
4 management information base tree.

1 20. The machine-readable medium of claim 19, wherein said instructions for
2 specifying the configuration object's object identifier includes further instructions to
3 direct said machine to specify a previous object identifier in the management information
4 base tree if the specified configuration object's object identifier is not defined in the
5 management information base.

1 21. The machine-readable medium of claim 16, wherein said instructions for
2 transmitting an indication from the network element of the change in value of the object
3 includes further instructions to direct said machine to transmit a SNMP trap to a network
4 management station whenever a change in value of the object is detected by the network
5 element.

1 22. The machine-readable medium of claim 16, wherein said instructions for
2 receiving a request at the network element to read the information logged on the network
3 element in response to the transmitted indication includes further instructions for a
4 network management station reading the logged data from a management information
5 base instance table on the network element.

1 23. An article of manufacture comprising:
2 a machine-readable medium that provides instructions, that when executed
3 by a machine, cause said machine to perform operations comprising:
4 transmitting a request to a network element to monitor at least one object on the network
5 element;
6 receiving an indication from the network element in response to a change in the value of
7 the object being monitored; and
8 reading information logged on the network element in response to the indication
9 received.

1 24. The machine-readable medium of claim 23, wherein said instructions for
2 transmitting a request to the network element to monitor at least one object on the
3 network element includes further instructions to write a rule to a management
4 information base rules table on the network element to monitor a configuration object of
5 the network element.

1 25. The machine-readable medium of claim 24, wherein said instructions for writing a
2 rule to a management information base rules table on the network element to monitor a
3 configuration object includes further instructions to write a rule to monitor at least one of
4 an addition, deletion, modification or a change in value of the configuration object by the
5 network element.

1 26. The machine-readable medium of claim 24, wherein writing a rule to a
2 management information base rules table on the network element to monitor a
3 configuration object includes further instructions to specify the configuration object's
4 object identifier in the management information base tree.

1 27. The machine-readable medium of claim 23, wherein receiving an indication from
2 the network element in response to a change in the value of the object being monitored
3 includes further instructions to read the information logged in a management information
4 base instance table on the network element.

1 28. An apparatus comprising:

2 a transceiver to receive a request at the network element to monitor at least one
3 configuration object on the network element, and to receive a request to read information
4 logged in a management information base instance table in a memory;
5 a microprocessor communicatively coupled to the transceiver and the memory, to execute
6 a program to monitor the configuration object and to log said information in a
7 management information base instance table in the memory, in response to a change in
8 value of a configuration of the monitored object; and
9 the transceiver to transmit an indication of a change in value of the object being
10 monitored.

STATEMENT OF GOVERNMENT INTEREST

1 29. The apparatus of claim 28, wherein the indication transmitted by the transmitter is
2 a SNMP trap.

1 30. The apparatus of claim 28, wherein the memory maintains a management
2 information base rules table containing the object identifiers of the configuration objects
3 to be monitored.

1 31. An apparatus comprising:
2 a transceiver to transmit a request to a network element to monitor at least one
3 configuration object on the network element, and to read information logged in a
4 management information base instance table on the network element;

5 a microprocessor communicatively coupled to the transceiver, and a memory to execute a
6 program to analyze information received from the network element and to manage the
7 configuration of the network element based on the information analyzed; and
8 the transceiver to receive an indication from the network element in response to a change
9 in the value of the configuration object.

1 32. The apparatus of claim 31 wherein the indication received by the receiver is a
2 SNMP trap.

ABSTRACT OF THE DISCLOSURE

A method for configuring and managing network elements comprising receiving a request at a network element to monitor at least one object on the network
5 element; logging information by the network element in response to a change in value of the object; transmitting an indication from the network element of the change in value of the object; and receiving a request at the network element to read the information logged on the network element in response to the transmitted indication.

10

Computer Network Engineering

107

FIGURE 1

FIGURE 2

FIGURE 3

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below, next to my name.

I believe I am the original, first, and sole inventor (if only one name is listed below) or any original, first, and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

METHOD AND APPARATUS FOR MANAGEMENT OF CONFIGURATION IN A NETWORK

the specification of which is attached hereto.

was filed on _____ as _____
United States Application Number _____
or PCT International Application Number _____
and was amended on _____

(if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claim(s), as amended by any amendment referred to above. I do not know and do not believe that the claimed invention was ever known or used in the United States of America before my invention thereof, or patented or described in any printed publication in any country before my invention thereof or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, and that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months (for a utility patent application) or six months (for a design patent application) prior to this application.

I acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d), of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s):

APPLICATION NUMBER	COUNTRY (OR INDICATE IF PCT)	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 37 USC 119
			<input type="checkbox"/> No <input type="checkbox"/> Yes
			<input type="checkbox"/> No <input type="checkbox"/> Yes
			<input type="checkbox"/> No <input type="checkbox"/> Yes

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below:

APPLICATION NUMBER	FILING DATE

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION NUMBER	FILING DATE	STATUS (ISSUED, PENDING, ABANDONED)

I hereby appoint the persons listed on Appendix A hereto (which is incorporated by reference and a part of this document) as my respective patent attorneys and patent agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith.

Send correspondence to:

Clive D. Menezes, Reg. No. 45,493, BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN, LLP

(Name of Attorney or Agent)

12400 Wilshire Boulevard, 7th Floor, Los Angeles, California 90025 and direct telephone calls to:

Clive D. Menezes, (503) 684-6200.

(Name of Attorney or Agent)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full Name of Sole/First Inventor (given name, family name) Manish Rathi

Inventor's Signature _____ Date _____

Residence San Jose, California India Citizenship India
(City, State) (Country)

P. O. Address 371 Elan Village Lane, Apt 225
San Jose, California 95134 India

Full Name of Second/Joint Inventor (given name, family name) Tim Aiken

Inventor's Signature _____ Date _____

Residence San Jose, California USA Citizenship USA
(City, State) (Country)

P. O. Address 20261 Via Santa Teresa
San Jose, California 95120 USA

Appendix A

I hereby appoint BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP, a firm including: William E. Alford, Reg. No. 37,764; Farzad E. Amini, Reg. No. 42,261; William Thomas Babbitt, Reg. No. 39,591; Carol F. Barry, Reg. No. 41,600; Jordan Michael Becker, Reg. No. 39,602; Lisa N. Benado, Reg. No. 39,995; Bradley J. Bereznak, Reg. No. 33,474; Michael A. Bernadicou, Reg. No. 35,934; Roger W. Blakely, Jr., Reg. No. 25,831; R. Alan Burnett, Reg. No. 46,149; Gregory D. Caldwell, Reg. No. 39,926; Andrew C. Chen, Reg. No. 43,544; Thomas M. Coester, Reg. No. 39,637; Donna Jo Coningsby, Reg. No. 41,684; Dennis M. deGuzman, Reg. No. 41,702; Stephen M. De Klerk, Reg. No. P46,503; Michael Anthony DeSanctis, Reg. No. 39,957; Daniel M. De Vos, Reg. No. 37,813; Sanjeet Dutta, Reg. No. P46,145; Matthew C. Fagan, Reg. No. 37,542; Tarek N. Fahmi, Reg. No. 41,402; George Fountain, Reg. No. 36,374; Paramita Ghosh, Reg. No. 42,806; James Y. Go, Reg. No. 40,621; James A. Henry, Reg. No. 41,064; Willmore F. Holbrow III, Reg. No. P41,845; Sheryl Sue Holloway, Reg. No. 37,850; George W Hoover II, Reg. No. 32,992; Eric S. Hyman, Reg. No. 30,139; William W. Kidd, Reg. No. 31,772; Sang Hui Kim, Reg. No. 40,450; Walter T. Kim, Reg. No. 42,731; Eric T. King, Reg. No. 44,188; Erica W. Kuo, Reg. No. 42,775; George B. Leavell, Reg. No. 45,436; Gordon R. Lindeen III, Reg. No. 33,192; Jan Carol Little, Reg. No. 41,181; Kurt P. Leyendecker, Reg. No. 42,799; Joseph Lutz, Reg. No. 43,765; Michael J. Mallie, Reg. No. 36,591; Andre L. Marais, under 37 C.F.R. § 10.9(b); Paul A. Mendonsa, Reg. No. 42,879; Clive D. Menezes, Reg. No. 45,493; Chun M. Ng, Reg. No. 36,878; Thien T. Nguyen, Reg. No. 43,835; Thinh V. Nguyen, Reg. No. 42,034; Dennis A. Nicholls, Reg. No. 42,036; Daniel E. Ovanezian, Reg. No. 41,236; Kenneth B. Paley, Reg. No. 38,989; Marina Portnova, Reg. No. P45,750; William F. Ryann, Reg. 44,313; James H. Salter, Reg. No. 35,668; William W. Schaal, Reg. No. 39,018; James C. Scheller, Reg. No. 31,195; Jeffrey Sam Smith, Reg. No. 39,377; Maria McCormack Sobrino, Reg. No. 31,639; Stanley W. Sokoloff, Reg. No. 25,128; Judith A. Szepesi, Reg. No. 39,393; Vincent P. Tassinari, Reg. No. 42,179; Edwin H. Taylor, Reg. No. 25,129; John F. Travis, Reg. No. 43,203; Joseph A. Twarowski, Reg. No. 42,191; Thomas A. Van Zandt, Reg. No. 43,219; Lester J. Vincent, Reg. No. 31,460; Glenn E. Von Tersch, Reg. No. 41,364; John Patrick Ward, Reg. No. 40,216; Mark L. Watson, Reg. No. P46,322; Thomas C. Webster, Reg. No. P46,154; and Norman Zafman, Reg. No. 26,250; my patent attorneys, and Firasat Ali, Reg. No. 45,715; and Justin M. Dillon, Reg. No. 42,486; Raul Martinez, Reg. No. 46,904; my patent agents, with offices located at 12400 Wilshire Boulevard, 7th Floor, Los Angeles, California 90025, telephone (714) 557-3800, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected herewith.