

MATERIALES

COMPONENTES.

- PROTOBOAR
- CABLE PARA PROTO
- PINZAS DE CORTE / AGARRE
- DIODOS LED
- FUENTE DE VOLTAJE 5V
- RESISTENCIAS 1KΩ Y 220Ω

CIRCUITOS INTEGRADOS

- LM555
- CD4027

SOFTWARE

- BOOLE-DEUSTO
- PROTEUS DESIGN SUITE.

1. OBJETIVO DEL PROYECTO

• DISEÑAR UN CONTADOR ASÍNCRONO BCD [5, 4, 2, 1]

2. DESARROLLO

<u>SE COMIENZA DISEÑANDO UNA TABLA</u> DE <u>ESTADOS DONDE SE DESCRIBE LA SECUENCIA DEL CONTADOR</u> (QT Y QT+1).

<u>DONDE POR LO MENOS UNA ENTRADA</u> DE LOS <u>FLIP-FLOP ES ASÍNCRONA (CONTROLADA TOTALMENTE POR OTRO</u> FLIP-FLOP) PARA SER CONSIDERADO COMO UN SISTEMA ASÍNCRONO.

<u>SE TIENE</u> UN <u>SISTEMA</u> DE 4 <u>BITS</u> (JA-KA, JB-KB, JC-KC Y JD-KD) Y <u>SE CONSIDERA EL COMPORTAMIENTO DEL FLIP</u>-FLOP TIPO T PARA DETERMINAR EL <u>CONTROL</u> DE LOS <u>DEMÁS</u> J-K.

	Q^T		Q^{T+1}				
Q_A	Q_B	Q_C	Q_A	Q_B	Q_C		
0	0	0	X	X	X		
0	0	1	0	1	0		
0	1	0	1	0	1		
0	1	1	0	0	1		
1	0	0	0	1	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	0	0		

Tabla 1: Tabla De Estados Del Sistema.

Valor Actual	Valor Próximo		
Q^t	Q^{t+1}	J	K
0	0	0	X
1	0	X	1
0	1	1	X
1	1	X	0

Tabla 2: Tabla De Estados Del J-K.

	QT			QT+1			JB-KB		JD-KD			
DECIMAL	QA	QB	QC	QD	QA	QB	QC	QD	JB	KB	JD	KD
0	0	0	0	0	0	0	0	1	0	Х	1	Х
1	0	0	0	1	0	0	1	0	0	Х	Χ	1
2	0	0	1	0	0	0	1	1	0	Х	1	X
3	0	0	1	1	0	1	0	0	1	Х	Χ	1
4	0	1	0	0	1	0	0	0	Χ	1	0	X
5	0	1	0	1	X	X	X	X	Χ	Χ	Χ	X
6	0	1	1	0	X	X	X	X	Χ	Χ	Χ	X
7	0	1	1	1	X	X	X	X	Χ	Х	Χ	X
8	1	0	0	0	1	0	0	1	0	Х	1	Х
9	1	0	0	1	1	0	1	0	0	Х	Χ	1
10	1	0	1	0	1	1	0	0	0	Х	1	X
11	1	0	1	1	1	1	0	0	1	Х	Χ	1
12	1	1	0	0	0	0	0	0	Χ	1	0	X
13	1	1	0	1	X	X	Χ	X	Х	Х	Χ	X
14	1	1	1	0	Х	X	X	Х	Х	Х	Х	Х
15	1	1	1	1	X	X	X	X	Χ	Х	Χ	X

3. OBTENCIÓN DE ECUACIONES

J_B= (QC*QD)

K_B=1

J_D= (~QB)

K_D=1

4. SIMULACIÓN

5. PROTOBOARD

6. CONCLUSIONES

• <u>EL SISTEMA BCD [5,4,2,1] PUEDE SER ASÍNCRONO EN BASE AL DISEÑO DE UN FLIP-FLOP TIPO T</u>

7. BIBLIOGRAFÍA

[1] - G. <u>Rubén</u>, B. <u>Márcos</u>, S. <u>José</u> Antonio, [21-07-2008], <u>Electrónica</u> Digital 1 - <u>Contadores</u>, <u>Unican</u>, <u>España</u>, <u>available on</u>: <u>http://centros.edu.xunta.es/iesmanuelchamosolamas/electricidade/fotos/flip.htm</u>