2-2 集合恒等式

概念:

集合恒等式,集合等式证明

集合恒等式

集合恒等式(算律)

1. 只涉及一个运算的算律:

交换律、结合律、幂等律

	C	\cap	⊕
交换	$A \cup B = B \cup A$	$A \cap B = B \cap A$	<i>A</i> ⊕ <i>B</i> = <i>B</i> ⊕ <i>A</i>
结合	$(A \cup B) \cup C$ $= A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \oplus B) \oplus C$ $= A \oplus (B \oplus C)$
幂等	$A \cup A = A$	$A \cap A = A$	

集合算律

2. 涉及两个不同运算的算律:

分配律、吸收律

	し与へ	○与⊕
分配	$A \cup (B \cap C) =$ $(A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) =$ $(A \cap B) \cup (A \cap C)$	$A \cap (B \oplus C)$ $= (A \cap B) \oplus (A \cap C)$
吸收	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	

集合算律

3. 涉及补运算的算律:

德摩根律,双重否定律

		~
德摩根律	$A-(B\cup C)=(A-B)\cap (A-C)$ $A-(B\cap C)=(A-B)\cup (A-C)$	$\sim (B \cup C) = \sim B \cap \sim C$ $\sim (B \cap C) = \sim B \cup \sim C$
双重否定		~~A=A

集合算律

4. 涉及全集和空集的算律: 补元律、零律、同一律、否定律

	Ø	E
补元律	A ∩~ A =Ø	A ∪~ A = E
零律	A ∩Ø=Ø	A ∪ E = E
同一律	A ∪Ø= A	<i>A</i> ∩ <i>E</i> = <i>A</i>
否定	~Ø= E	~ E =Ø

集合证明题

证明方法: 外延性原理、等式置换法

外延性原理证明的书写规范 (以下的X和 Y代表集合公式)

(1) 证*X*⊆Y

任取x, $x \in X \Rightarrow ... \Rightarrow x \in Y$

(2) 证*X*= Y

方法一 分别证明 XCY和 YCX

方法二

任取x, $x \in X \Leftrightarrow ... \Leftrightarrow x \in Y$

注意: 在使用方法二时,必须保证每步推理都是充分必要的。

集合等式的证明

方法一: 外延性原理

例1: 证明 $A \cup (A \cap B) = A$ (吸收律)

证 任取x,

 $x \in A \cup (A \cap B)$

 $\Leftrightarrow x \in A \lor x \in A \cap B$

 $\Leftrightarrow x \in A \lor (x \in A \land x \in B)$

 $\Leftrightarrow X \in A$

因此得 $A \cup (A \cap B) = A$.

集合等式的证明

例2: 证明 $A-B = A \cap \sim B$

证 任取x,

 $x \in A - B$

 $\Leftrightarrow x \in A \land x \notin B$

 $\Leftrightarrow x \in A \land x \in \sim B$

 $\Leftrightarrow x \in A \cap \sim B$

因此得 $A-B = A \cap \sim B$

等式置换法

方法二: 等式置换法 (利用集合恒等式)

例3: 证明 (A-B) ∪B = A ∪ B

证: (A-B) ∪B

 $= (A \cap \sim B) \cup B$

 $= (A \cup B) \cap (\sim B \cup B)$

 $= (A \cup B) \cap E$

 $= A \cup B$

等式置换法

例4: 已知 $A \oplus B = A \oplus C$, 证明 B = C.

证:已知 $A \oplus B = A \oplus C$,所以有

 $A \oplus (A \oplus B) = A \oplus (A \oplus C)$

- \Rightarrow $(A \oplus A) \oplus B = (A \oplus A) \oplus C$
- $\Rightarrow \varnothing \oplus B = \varnothing \oplus C$
- \Rightarrow B = C

等式置换法

总结

- 集合恒等式
- 集合等式证明