Fiche de synthèse : Vecteurs du mouvement et loi de Newton Benjamin L'Huillier

1 Vecteur position

Definition 1.1: Vecteur position

Le vecteur position $\overrightarrow{OM}(t)$ d'un point M à l'instant t est le vecteur reliant l'origine O du repère au point M. Il permet de connaître la position du point dans l'espace à chaque instant.

2 Notation Δ (variation)

Definition 2.1: Notation Δ

Pour deux instants t_1 et t_2 , on note :

$$\Delta t = t_2 - t_1$$

De manière générale, Δ indique une variation d'une grandeur entre deux instants.

3 Vecteur vitesse

Definition 3.1: Vecteur vitesse moyenne

Sur un intervalle de temps Δt , le vecteur vitesse moyenne est défini par :

$$\overrightarrow{v} = \frac{\overrightarrow{OM}(t + \Delta t) - \overrightarrow{OM}(t)}{\Delta t}$$

Remarque 3.1: Vitesse instantanée

Lorsque $\Delta t \to 0$, la vitesse moyenne devient la vitesse instantanée, qui est la dérivée du vecteur position :

$$\overrightarrow{v}(t) = \frac{d\overrightarrow{OM}(t)}{dt}$$

Le vecteur vitesse est tangent à la trajectoire et orienté dans le sens du mouvement. Sa norme correspond à la vitesse instantanée.

4 Vecteur variation de vitesse

Definition 4.1: Variation du vecteur vitesse

Sur un intervalle de temps $[t,t+\Delta t]$, la variation du vecteur vitesse est :

$$\Delta \overrightarrow{v} = \overrightarrow{v}(t + \Delta t) - \overrightarrow{v}(t)$$

Cette variation correspond au changement de direction et/ou de norme du vecteur vitesse.

5 Vecteur accélération

Definition 5.1: Vecteur accélération

Le vecteur accélération est la dérivée du vecteur vitesse par rapport au temps :

$$\overrightarrow{a}(t) = \frac{d\overrightarrow{v}(t)}{dt}$$

Il représente la variation instantanée du vecteur vitesse.

Remarque 5.1: Interprétation de l'accélération

Le vecteur accélération peut indiquer :

- un changement de norme de la vitesse (accélération ou ralentissement),
- un changement de direction (cas d'un mouvement circulaire par exemple),
- ou les deux à la fois.

Remarque 5.2: Programme

Le concept de vecteur accélération est au programme de Terminale, mais il est introduit ici pour mieux comprendre la loi de Newton.

6 Deuxième loi de Newton

Propriété 6.1: Loi fondamentale de la dynamique

Pour un objet de masse constante m soumis à un ensemble de forces $\overrightarrow{F}_1, \overrightarrow{F}_2, \cdots$, la somme des forces est égale à la variation du vecteur vitesse par unité de temps :

$$\sum \overrightarrow{F} = m \cdot \frac{\Delta \overrightarrow{v}}{\Delta t}$$

Lorsque $\Delta t \to 0$, on retrouve :

$$\sum \overrightarrow{F} = m \cdot \overrightarrow{a}$$

2

avec \overrightarrow{a} le vecteur accélération.

7 Exemples classiques

• Mouvement rectiligne uniforme : \overrightarrow{v} constant, donc $\overrightarrow{a} = \overrightarrow{0}$ et $\sum \overrightarrow{F} = \overrightarrow{0}$

• Mouvement circulaire uniforme : norme de \overrightarrow{v} constante, mais direction change, donc $\overrightarrow{d} \perp \overrightarrow{v}$ et \overrightarrow{d} centripète

Fiche mémo: à retenir

- $\overrightarrow{OM}(t)$: vecteur position
- $\Delta t = t_2 t_1$: variation de temps
- $\overrightarrow{v} = \frac{\overrightarrow{OM}(t + \Delta t) \overrightarrow{OM}(t)}{\Delta t}$: vitesse moyenne
- $\overrightarrow{v}(t) = \frac{d\overrightarrow{OM}}{dt}$: vitesse instantanée
- $\Delta \overrightarrow{v}$: variation du vecteur vitesse sur Δt
- $\overrightarrow{a}(t) = \frac{d\overrightarrow{v}}{dt}$: accélération
- $\sum \overrightarrow{F} = m \cdot \frac{\Delta \overrightarrow{v}}{\Delta t}$: forme discrète de la 2º loi de Newton
- $\sum \overrightarrow{F} = m \overrightarrow{a}$: forme instantanée