# 1 Results

#### 1.1 $2 \times 2$ lattice, analytical expressions

If we scale the value of  $\beta$  from  $1/k_BT$  to 1/J (Scaling factor  $k_BT/J$ ) in the analytical expression from section ??, we will get a good benchmark for computer computations to come. These values are listed in table 1 below. Note that all values are divided by four, since we want the values per bond, and not for the entire lattice.

| Mean energy, $\langle \mathbf{E} \rangle$                    | -1.9960 |
|--------------------------------------------------------------|---------|
| Mean absolute magnetization, $\langle  \mathcal{M}  \rangle$ | 0.9987  |
| Specific heat capacity, C <sub>V</sub>                       | 0.0321  |
| Susceptibility, $\chi$                                       | 3.9933  |

Table 1: Benchmark for material characteristics per bond for a  $2 \times 2$  lattice

## 1.2 Ising model: simulation over temperature

We ran the program for different amounts of Monte Carlo cycles and plotted the error (analytical – simulated) in figure 9 below. Using  $10^7$  Monte Carlo cycles, we seem to be getting pretty accurate results.



Figure 1: Shows the accuracy of different amount of MC cycles over temperature.

## 1.3 $20 \times 20$ lattice

T = 1.0



Figure 2: Shows the computed value for the mean magnetization, with ordered initialization, against the number of MC cycles. The scaled temperature is  $T=1.0\,$ 

# Ordered spin orientation



Figure 3: Shows the computed value for the mean magnetization, with ordered initialization, against the number of MC cycles. The scaled temperature is  $T=1.0\,$ 

#### Random spin orientation



Figure 4: Shows the computed value for the mean magnetization, with random initialization, against the number of MC cycles. The scaled temperature is  $T=1.0\,$ 



Figure 5: Shows the computed value for the mean magnetization, with random initialization, against the number of MC cycles. The scaled temperature is  $T=1.0\,$ 

Likevekt ved:

#### T = 2.4



Figure 6: Shows the computed value for the mean magnetization, with ordered initialization, against the number of MC cycles. The scaled temperature is T=2.4

## Ordered spin orientation



Figure 7: Shows the computed value for the mean magnetization, with ordered initialization, against the number of MC cycles. The scaled temperature is  $T=2.4\,$ 

# Random spin orientation



Figure 8: Shows the computed value for the mean magnetization, with random initialization, against the number of MC cycles. The scaled temperature is  $T=2.4\,$ 



Figure 9: Shows the computed value for the mean magnetization, with random initialization, against the number of MC cycles. The scaled temperature is  $T=2.4\,$ 

Antall aksepterte spinn totalt etter et gitt antall mcs(100k maks): Set start point T = 1 Bilde :accepted<sub>s</sub> $pinn_T1_mcs_cumsum(y)_log10.pngStabiliserersegvedmcd = 1E3.5(allespinnblirheretterakseptert)$ 

 $T = 2.4 \text{ Bilde: accepted}_s pinn_T 2_m cs_c umsum(y)_log 10.png Stabiliserersegved mcd = 1E3.5, mendetermangefleresomblirakseptert(Seyaksen)$ 

Random start point: T = 1: Bilde: accepted  $_spins_T1_random_cumsum(y)_mcs_log10.pngT = 2.4Bilde: accepted _spins_T2_random_cumsum(y)_mcs_log10.png$ 

Temperaturavhengighet(skal vi lage plot her også- eller holder det med kommentar i resultater?): Økt temperatur gjør at mange flere spinn aksepteres ved lavere antall mcs dvs tidligere.(sjekk prosenten på y aksen) Ved random vs ikke random: omtrent like mange som aksepteres, men i random så aksepteres flere spinn ved lavere mcs. Ved T1 random får man en liten økning ved 1E1.5, mens hos T1 set startpont så før vi ikke en økning i aksepterte spinn før ved 1E3.5

For T2 så får vi økningen på samme sted. 1E4 på både random og satt startpunkt.