Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный исследовательский университет «МЭИ»

Типовой расчет «Процедуры, функции, модули» Вариант 0

Заоание выполнил: Фамил			
Студент группы А-00-12			
Проверил:			
Оценка:			
Проверил: Оценка: Замечания:			

Москва 2012 НИУ «МЭИ»

Типовой расчет «Процедуры, функции, модули» Пример решения задачи

Абстракция А0.

1.Условие. Если на **главной диагонали** матрицы нет элементов, **кратных пяти**, заменить на нули все некратные пяти элементы матрицы, в противном случае — найти число отрицательных элементов в каждом столбце матрицы и столбец с максимальным их числом.

«Кратно пяти» \rightarrow целочисленная «Главная диагональ» \rightarrow квадратная

2.Уточненная постановка задачи.

Дана **целочисленная квадратная** матрица A из n строк и n столбцов. Если на главной диагонали матрицы нет (flag=False) элементов, кратных пяти, заменить на нули все некратные пяти элементы матрицы A, в противном случае (flag=True) — найти количество отрицательных элементов (Kolich) в каждом столбце матрицы и указать **первый** столбец (Nom) с максимальным их числом.

3.Примеры.

Пример 1. Нет элементов, кратных 5, на гл. диагонали матрицы

$$N = 3$$

$$A = \begin{pmatrix} 1 & 5 & 4 \\ 1 & 2 & 0 \\ 10 & -5 & -3 \end{pmatrix}$$

Изменяем элементы матрицы

$$A = \begin{pmatrix} 0 & 5 & 0 \\ 0 & 0 & 0 \\ 10 & -5 & 0 \end{pmatrix}$$

Пример 2. Есть элементы, кратные 5, на гл. диагонали матрицы

$$N=3$$

$$A = \begin{pmatrix} 1 & -5 & 4 \\ 1 & 10 & 0 \\ 10 & -5 & -3 \end{pmatrix}$$

Второй элемент главной диагонали (10) кратен 5, ищем количество отрицательных элементов в каждом столбце.

$$Kolich = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$$

Максимальное число элементов во втором столбце

Nom = 2

4. Таблица данных

	олица дан				
Класс	Имя	Описание (смысл), диапазон,	Тип	Структура	Формат
		точность			
	A	Заданная матрица, А _{іі} <=100	цел	Двухмерный	+XXX (:4)
Входные				массив (5х5)	
данные	n	число строк и столбцов в матрице	цел	простая	X (:1)
		A, $0 < n \le 5$		переменная	
	A	Измененная матрица, A _{ii} <=100	цел	Двухмерный	+XXX (:4)
Выходные		Į ,		массив (5х5)	
данные	Kolich	Количество отрицательных	цел	Одномерный	X (:1)
		элементов в каждом столбце,		массив (5)	
		0≤ kolich _i ≤5			
	Nom	Номер первого столбца с	цел	простая	X (:1)
		максимальным количеством		переменная	
		отрицательных элементов,			
		$0 < \text{Nom} \le 5$			

	dat	Файл с исходными данными с	Текст.	файл	
Промежу-		именем вида unit_dat#.txt			
точные	res	Файл с отчетом с именем вида	Текст.	файл	
данные		unit_res#.txt			
	flag	= True, если есть на гл. диагонали	ЛОГ	простая	
		есть элемент, кратный пяти, в		переменная	
		противном случае False			
	ii	Строка с некорр. A[ii,jj], 0 <ii≤ 5<="" td=""><td>цел</td><td>простая</td><td>XX (:2)</td></ii≤>	цел	простая	XX (:2)
	jj	Столбец с некорр. A[ii,jj], 0 <jj≤ 5<="" td=""><td>цел</td><td>простая</td><td>XX (:2)</td></jj≤>	цел	простая	XX (:2)
	flagA	= True, если есть некорректные	ЛОГ	простая	
		Aij, в противном случае False		переменная	

5.Входная форма. (Файлы unit_dat<№ теста>.txt)

6.Выходная форма (Файлы unit_res<№ теста>.txt)

```
15 пробелов перед текстом
Обр3
                     Программа с модулем
           Исходная матрица из <n> строк и <n> столбцов:
Обр4
           \langle a[1,1] \rangle \langle a[1,2] \rangle . . . \langle a[1,n] \rangle
           \langle a[2,1] \rangle \langle a[2,2] \rangle . . . \langle a[2,n] \rangle
Обр5
           \langle a[n,1] \rangle \langle a[n,2] \rangle . . . \langle a[n,n] \rangle
                                                                Числа разделены пробелами
           _
Некорректное число строк.
Обр6
           Задача не решалась
           Некорректный элемент матрицы
Обр7
           A[\langle ii \rangle, \langle jj \rangle] = \langle A[ii,jj] \rangle
           Задача не решалась
Обр8.1
           Измененная матрица
           \langle a[1,1] \rangle \langle a[1,2] \rangle . . . \langle a[1,n] \rangle
           \langle a[2,1] \rangle \langle a[2,2] \rangle . . . \langle a[2,n] \rangle
Обр8.2
           \langle a[n,1] \rangle \langle a[n,2] \rangle . . . \langle a[n,n] \rangle
Обр9.1
           Количество отрицательных элементов по столбцам:
Обр9.2
           <kolich[1]> <kolich[2]> . . . <kolich[n]>
           Максимальное их число в столбце <Nom>
Обр10
```

Имена входного и выходного файлов передаются как параметры программы:

Первый – имя файла с исходными данными

Второй – имя файла для вывода исходных данных и результатов

7. Аномалии

No	Описание	Условие возникновения	Реакция
1	Некорректное число строк/столбцов	(n<1) or (n>5)	Обр 6
2	Есть некорректный элемент в матрице	∃ii∃jj (A[ii,jj] >100)	Обр 7

8. Функциональные тесты

№ теста	Входные данные	Ожидаемый результат	Смысл теста
1	N=0	Обр 6	Аномальная ситуация 1 (n<1)
2	N=6	Обр 6	Аномальная ситуация 1 (n>5)
3	N=5 (100 -100 -101 1 1)	Обр 7 A ₁₃ =-101	Аномальная ситуация 2 (A ₁₃ <-100)
	1 1 1 1 1		
	$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$		
	1 1 1 1 1		
	$\begin{pmatrix} 1 & 1 & 1 & 1 & -102 \end{pmatrix}$		
4	N=1 $A = (101)$	Обр 7 A ₁₁ =101	Аномальная ситуация 2 (A ₁₁ >100)
5	n=3; $A = \begin{pmatrix} 1 & 5 & 4 \\ 1 & 2 & 0 \\ 10 & -5 & -3 \end{pmatrix}$	$A = \begin{pmatrix} 0 & 5 & 0 \\ 0 & 0 & 0 \\ 10 & -5 & 0 \end{pmatrix}$	Кратных пяти на гл.диагонали нет данные взяты из примера 1
6	n=3; $A = \begin{pmatrix} 1 & 4 & 4 \\ 1 & 2 & 2 \\ 11 & -6 & -3 \end{pmatrix}$	$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	Кратных пяти нет вообще
7	n=3; $A = \begin{pmatrix} 1 & -5 & 4 \\ 1 & 10 & 0 \\ 10 & -5 & -3 \end{pmatrix}$	$Kolich = \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$ $Nom=2$	На гл.диагонали есть элемент, кратный 5; Во всех столбцах разное количество отрицательных элементов; данные взяты из примера 2
8	n=3; $A = \begin{pmatrix} 0 & 5 & 4 \\ 1 & 10 & 0 \\ 10 & 5 & 5 \end{pmatrix}$	$Kolich = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ $Nom=1$	На гл.диагонали все элементы, кратны 5; Во всех столбцах нет отрицательных элементов;

9. Метод

Отделим ввод-вывод от обработки данных (собственно решения задачи).

То есть, разделим нашу задачу на десять подзадач:

- 1. Подзадача А0.1. Ввести из файла (обр.1) и проверить значение количества строк/столбцов (обр.6)
- 2. Подзадача А0.2. Ввести матрицу из файла (обр.2).
- 3. Подзадача А0.3. Проверить значения элементов матрицы (обр.7)
- 4. Подзадача А0.4. Проверить отсутствие на главной диагонали элементов, кратных пяти
- 5. Подзадача А0.5. Изменить матрицу, заменив все элементы некратные пяти на 0
- 6. Подзадача А0.6. Подсчитать в каждом столбце количество отрицательных элементов
- 7. Подзадача А0.7. Найти номер столбца с максимальным количеством отрицательных элементов
- 8. Подзадача А0.8. Вывести матрицу (обр.5 и 8.2)
- 9. Подзадача А0.9. Вывести количества отрицательных элементов (обр.9)
- 10. Подзадача А0.10. Вывести номер столбца с максимальным количеством отрицательных элементов (обр.10)

Сейчас, на нулевом уровне, опишем ввод-вывод простых переменных и массивов (А0.1, А0.2,

А0.8, А0.9, А0.10) и логику решения задачи вцелом. Остальные пять задач оставим в виде абстракций.

Все подзадачи кроме первой и последней выполним в виде процедур и функций, расположенных в отдельном модуле.

11. Программа на Delphi (с процедурами-заглушками, кроме процедур ввода и вывода). Имена входного и выходного файлов передаются как параметры программы: Первый – имя файла с исходными данными Второй – имя файла для вывода исходных данных и результатов *************Файл основной программы PFU.dpr************ program PFU; **{\$APPTYPE CONSOLE}** uses ProFUn; {там все константы, типы, процедуры и функции} var {раздел описания переменных ------} A: Matrix; Kolich: MasKol; n, Nom, ii, jj: byte; flag, flagA: Boolean; dat, res: TextFile; begin {раздел операторов ----assignFile(dat, ParamStr(1)); reset(dat); assignFile(res, ParamStr(2)); rewrite(res); writeln(' ':15, 'Программа с модулем'); {Обр.3} {ввод n ----readln(dat, n); {Oбp.1} if (N<1) OR (N>Nmax) then begin writeln('Некорректное число строк.'#13#10, 'Задача не решалась'); {Обр.6} CloseFile(dat); CloseFile(res); Halt; end: {ввод и вывод матрицы А ------} readA(dat, n, A); {Обр.2} CloseFile(dat); writeln('Исходная матрица из ',n,' строк и ',n, ' столбцов:'); {Обр.4} writeA(res, n, A); {Oбp.5} ProvA(n, A, FlagA, ii, jj); { Проверка элементов матрицы } If FlagA then Begin WriteIn('Некорректный элемент матрицы'); {Обр.7} WriteIn('A[', ii , ',' , jj , '] = ' , A[ii,jj]); Writeln('Задача не решалась'); CloseFile(res); Halt; end; Flag := ProvDiag(n, A); {Проверка главной диагонали} If flag then {-----} **Begin** Podschet(n, A, Kolich); {Подсчет кол-в отриц.эл. в столбцах матрицы А} Nom:=Poisk(n, Kolich); {Поиск номера столбца с макс. кол-вом отриц.эл-тов} {Вывод массива в файл} writeln(res, 'Количество отрицательных элементов по столбцам:'); {Обр.9.1} writeKolich(res, n, Kolich); {Oбp.9.2} {Вывод пот по обр.10} writeln(res, 'Максимальное их число в столбце ', Nom); {Обр.10} End Else {------} Begin Izmen(n, A); {Изменение элементов матрицы, некратных 5} {Вывод матрицы в файл} writeln(res, 'Измененная матрица'); {Обр.8.1} writeA(res,n, A); {Обр.8.2} End; CloseFile(res); End.

Unit ProFUn;

Interface

Const

Nmax = 5;

Type

Matrix = array [1..Nmax, 1..Nmax] or ShortInt;

MasKol = array [1..Nmax] of byte;

{Ввод матрицы из файла, файл уже открыт}

Procedure readA(var dat: TextFile; const n: byte; out A: Matrix);

{Вывод матрицы в файл, файл уже открыт}

Procedure writeA(var res: TextFile; const n: byte; var A: Matrix);

{Вывод массива в файл, файл уже открыт }

Procedure writeKolich(var res: TextFile; const n: byte; var Kol: MasKol);

Таблица соответствия параметров					
Формальные параметры	Фактические параметры	Тип			
res	res	TextFile			
n	n	Byte			
Kol	Kolich	MasKol			

{Проверка элементов матрицы}

Procedure ProvA(const n:byte; var A: Matrix; out FlagA: Boolean; out ii, jj: byte);

Таблица соответствия параметров					
Формальные параметры	Фактические параметры	Тип			
n	n	Byte			
A	A	Matrix			
FlagA	FlagA	Boolean			
ii	ii	byte			
jj	jj	byte			

{Проверка главной диагонали}

Function ProvDiag(const n:byte; var A: Matrix): Boolean;

{Изменение элементов матрицы, некратных 5}

Procedure Izmen(const n:byte; var A: Matrix);

{Подсчет кол-в отриц.эл. в столбцах матрицы А}

Procedure Podschet(const n:byte; var A: Matrix; out Kol: MasKol);

Таблица соответствия параметров					
Формальные параметры	Фактические параметры	Тип			
n	n	Byte			
A	A	Matrix			
Kol	Kolich	MasKol			

{Поиск номера столбца с макс. кол-вом отриц.эл-тов}

Function Poisk(const n:byte; var Kol: MasKol):byte;

Таблица соответствия параметров					
Формальные параметры	Фактические параметры	Тип			
n	n	Byte			
Kol	Kolich	MasKol			
Poisk (значение функции)	Nom	Byte			

Implementation

```
{Ввод матрицы из файла, файл уже открыт }
Procedure readA(var dat: TextFile; const n: byte; out A: Matrix);
Var i,j: byte;
Begin
 For i:=1 to n do
 begin
  For j:=1 to n do
   Read(dat, A[i,j]);
  Readln(dat);
 end;
End;
   {Вывод матрицы в файл, файл уже открыт }
Procedure writeA(var res: TextFile; const n: byte; var A: Matrix);
Var i,j: byte;
Begin
 For i:=1 to n do
 begin
  For j:=1 to n do
   Write(res, A[i,j]:3, ' ');
  Writeln(res);
 end;
End;
   {Вывод массива в файл, файл уже открыт }
Procedure writeKolich(var res: TextFile; const n: byte; var Kol: MasKol);
Var j: byte;
Begin
 For j:=1 to n do
  Write(res, Kol[j], '');
  Writeln(res);
 end;
End;
   {Проверка элементов матрицы}
Procedure ProvA(const n:byte; var A: Matrix; out FlagA: Boolean; out ii, jj: byte);
  {описания локальных переменных}
Begin
  {Заглушка} writeln('Заглушка - Проверка элементов матрицы ');
  {Tect 3} // ii:=1; jj:=3; FlagA:=true;
  {тест 4} // ii:=1; jj:=1; FlagA:=true;
  {остальные тесты} FlagA:=False;
End:
   {Проверка главной диагонали}
Function ProvDiag(const n:byte; var A: Matrix): Boolean;
Var Flag: Boolean;
  {описания других локальных переменных}
Begin
  {Заглушка} writeln(' Заглушка - Проверка главной диагонали ');
  {тест 7,8} // Flag:=True;
  {остальные тесты} Flag:=False;
 ProvDiag:=Flag;
End;
```

ProFUn.doc Типовой расчет «Процедуры, функции, модули» Стр.9 {Изменение элементов матрицы, некратных 5} Procedure Izmen(const n:byte; var A: Matrix); Var i, j: byte; {описания других локальных переменных} Begin {Заглушка} writeln(' Заглушка - Изменение элементов матрицы, некратных 5'); $\{\text{тест 5}\}\ //\ \text{for i:=1 to 3 do for j:=1 to 3 do A[i,j]:=0};\ A[1,2]:=5;\ A[3,1]:=10;\ A[3,2]:=-5;$ $\{\text{тест } 6\}$ // for i:=1 to 3 do for j:=1 to 3 do A[i,j]:=0; {остальные тесты}; End: {Подсчет кол-в отриц.эл. в столбцах матрицы А} Procedure Podschet(const n:byte; var A: Matrix; out Kol: MasKol); Var i:byte; {описания других локальных переменных} Begin {Заглушка} writeln('Заглушка - Подсчет кол-в отриц.эл. в столбцах матрицы А'); {Tect 7} // Kol[1]:=0; Kol[2]:=2; Kol[3]:=1; $\{\text{тест 8}\}\ //\ \text{for i:=1 to 3 do Kol[j]:=0};$ {остальные тесты}; End; {Поиск номера столбца с макс. кол-вом отриц.эл-тов} Function Poisk(const n:byte; var Kol: MasKol):byte; Var Nom: byte; {описания других локальных переменных} Begin {Заглушка} writeln('Заглушка - Поиск номера столбца с макс. кол-вом отриц.эл-тов'); {Tect 7} // Nom:=2; {Tect 8} // Nom:=1;

{остальные тесты};

Poisk:=Nom;

End;

End.

- 1.Условие. Проверить, есть ли в матрицы элементы, абсолютная величина которых больше 100
- 2.Уточненная постановка задачи.

Дана **целочисленная квадратная** матрица **A** из **n** строк и столбцов. Проверить (FlagA), есть ли в матрицы элементы, абсолютная величина которых больше 100. Если есть, то присвоить FlagA значение True и найти номер строки (ii) и столбца (jj) первого такого элемента, иначе присвоить FlagA значение False.

3.Примеры.

Тест 3 есть некорректный элемент A[1,3]=-101, FlagA= True

Тест 4 есть некорректный элемент A[1,1]=101, FlagA= True

Тесты 5-7 нет некорректных элементов, FlagA= False

4. Таблица данных

Класс	Имя	Описание (смысл), диапазон,	Тип	Структура
		точность		
	A	Заданная матрица, A _{ij} <=100	цел	Двухмерный
Входные				массив (5х5)
данные	n	число строк и столбцов в матрице	цел	простая
		A, $0 < n \le 5$		переменная
	ii	Строка с некорр. A[ii,jj], 0 <ii≤ 5<="" td=""><td>цел</td><td>простая</td></ii≤>	цел	простая
Выходные	jj	Столбец с некорр. А[іі,jj], 0 <jj≤ 5<="" td=""><td>цел</td><td>простая</td></jj≤>	цел	простая
данные	flagA	= True, если есть некорректные Aij,	ЛОГ	простая
		в противном случае False		переменная
Промежу-	i	Номер текущей строки,	цел	простая
точные		$0 < i \le 5$		переменная
данные	j	Номер текущего столбца,	цел	простая
		$0 < j \le 5$		переменная

5.Входная форма.

нет ввода/вывода

6.Выходная форма

нет ввода/вывода

7. Аномалии

нет ввода/вывода

8. Тесты

Тест 3 есть некорректный элемент A[1,3]=-101, FlagA= True

Тест 4 есть некорректный элемент A[1,1]=101, FlagA= True

Тесты 5-7 нет некорректных элементов, FlagA= False

9. Метод (задача типа 1) из файла VseOdin.doc)

Пусть
$$FlagA = \begin{cases} & \text{Истина, если есть в матрице элемент } |A_{i,j}| > 100; \\ & \text{Ложь если нет такого элемента} \end{cases}$$

Предположим сначала, что такого элемента в матрице нет (FlagA:=False).

Затем будем просматривать строки, начиная с первой (i:=1)

Пока не просмотрены все (i≤n) и не найден такой элемент (FlagA=False)

В каждой строке будем просматривать элементы, начиная с первого (j:=1) Пока не просмотрены все (j≤n) и не найден такой элемент (FlagA=False)

Если рассматриваемый элемент А_{іј} по модулю больше 100

То искомый элемент найден! (FlagA:=True)

Запоминаем его местонахождение (ii:=i; jj:=j) Переходим к следующему элементу в строке (j:=j+1)

Переходим к следующей строке

Найденные значения FlagA, іі, іі будут искомыми.

11. Программа на паскале. Процедура общего вида

```
{Проверка элементов матрицы}
Procedure ProvA(const n:byte; var A: Matrix; out FlagA: Boolean; out ii, jj: byte);
      {описания локальных переменных}
 i, j: byte;
Begin
 FlagA:=False;
 i:=1;
 while (i<=n) and not flagA do
 begin
   j:=1;
   while (j<=n) and not flagA do
   begin
      if abs(A[i,j]) > 100 then
      begin
         ii:=i; jj:=j; flagA:=True
      end;
      inc(j);
   end;
   inc(i);
 end;
End;
```

- 1.Условие. Проверить, есть ли на главной диагонали матрицы элементы, кратные 5.
- 2.Уточненная постановка задачи.

Дана **целочисленная квадратная** матрица **A** из **n** строк и столбцов. Проверить (flag), есть ли на главной диагонали матрицы элементы, кратные 5.

3.Примеры.

Тест 5,6 нет на главной диагонали матрицы элементов, кратных 5, Flag= False Тест 7,8 есть на главной диагонали матрицы элементы, кратные 5, Flag= True

4. Таблица данных

Класс	Имя	Описание (смысл), диапазон,	Тип	Структура
		точность		
	A	Заданная матрица, А _{іі} <=100	цел	Двухмерный
Входные		,		массив (5х5)
данные	n	число строк и столбцов в матрице	цел	простая
		A, $0 < n \le 5$		переменная
Выходные	flagA	= True, если есть кратные 5 на	ЛОГ	простая
данные		гл. диагонали, в противном случае		переменная
		False		

Промежу- точные	i	Номер текущей строки, $0 < i \le 5$	цел	простая переменная
данные				1

5.Входная форма.

нет ввода/вывода

6.Выходная форма

нет ввода/вывода

7. Аномалии

нет ввода/вывода

8. Тесты

Тест 5,6 нет на главной диагонали матрицы элементов, кратных 5, Flag= False Тест 7,8 есть на главной диагонали матрицы элементы, кратные 5, Flag= True

9. Метод (задача типа 1) из файла VseOdin.doc)

У элементов, лежащих на главной диагонали индексы равны (i=i).

Предположим сначала, что такого элемента в матрице нет (Flag:=False).

Затем будем просматривать строки, начиная с первой (i:=1)

Пока не просмотрены все (i≤n) и не найден такой элемент (FlagA=False)

В каждой строке будем проверять один элемент A_{ii} Если остаток от деления A_{ij} на 5 равен 0

То искомый элемент найден! (Flag:=True)

Переходим к следующей строке (i:=i+1)

Найденное значение Flag будет искомым.

10. Алгоритм

11. Программа на паскале. Функция

```
{Проверка главной диагонали}
Function ProvDiag(const n:byte; var A: Matrix): Boolean;
Var {описания локальных переменных}
Flag: Boolean;
i: byte;

Begin
Flag:=False;
I:=1;
While (i<=n) and not flag do
Begin
If A[i,i] mod 5 = 0 then flag:=true; // или можно в итерационном цикле flag:= A[i,i] mod 5 = 0;
Inc(i);
End;

ProvDiag:=Flag;
End;
```

- 1.Условие. Заменить в матрице все элементы, некратные пяти, нулями.
- 2.Уточненная постановка задачи.

Дана **целочисленная квадратная** матрица **A** из **n** строк и столбцов. Изменить матрицу, заменив все элементы, некратные пяти, нулями.

3.Примеры.

Тест 5 есть и кратные и некратные пяти

Тест 6 нет кратных пяти – заменяются все

4. Таблица данных

Класс	Имя	Описание (смысл), диапазон,	Тип	Структура
		точность		
	A	Заданная матрица, А _{іі} <=100	цел	Двухмерный
Входные		,		массив (5х5)
данные	n	число строк и столбцов в матрице	цел	простая
		A, $0 < n \le 5$		переменная
Выходные	A	Измененная матрица, Аіі <=100	цел	Двухмерный
данные				массив (5х5)

Промежу-	i	Номер текущей строки,	цел	простая
точные		$0 < i \le 5$		переменная
данные	j	Номер текущего столбца,	цел	простая
		$0 < j \le 5$		переменная

5.Входная форма.

нет ввода/вывода

6.Выходная форма

нет ввода/вывода

7. Аномалии

нет ввода/вывода

8. Тесты

Тест 5 есть и кратные и некратные пяти

Тест 6 нет кратных пяти – заменяются все

9. Метод

Будем просматривать строки, начиная с первой до последнюю (i:=1;+1;n)

В каждой строке будем просматривать все элементы, начиная с первого до последнего (j:=1;+1;n)

Каждый элемент будем проверять

Если остаток от деления A_{ii} на 5 не равен 0

То меняем его на ноль (A[i,j]:=0)

Переходим к следующему элементу в строке

Переходим к следующей строке (i:=i+1)

Матрица изменена

10. Алгоритм

11. Программа на паскале. Процедура общего вида

{Изменение элементов матрицы, некратных 5} Procedure Izmen(const n:byte; var A: Matrix); Var

i, j: byte;

Begin

For i:=1 to n do For j:=1 to n do If $A[i,j] \mod 5 <> 0$ then A[i,j]:=0; // можно написать сложнее $A[i,j]:=Ord(A[i,j] \mod 5 = 0)* A[i,j]$;

End;

- 1.Условие. Найти количество отрицательных элементов в каждом столбце матрицы.
- 2.Уточненная постановка задачи.

Дана **целочисленная квадратная** матрица \mathbf{A} из \mathbf{n} строк и столбцов. Создать новый массив Kol из \mathbf{n} элементов, каждому элементу $\mathrm{Kol}_{\mathbf{j}}$ которого присвоить значение количества отрицательных элементов в соответствующем столбце (\mathbf{j}) матрицы \mathbf{A} .

3.Примеры.

Тест 7 есть отрицательные элементы в столбцах. Во всех разное количество Тест 8 нет отрицательных элементов

4. Таблица данных

Класс	Имя	Описание (смысл), диапазон,	Тип	Структура
		точность		
	A	Заданная матрица, A _{ij} <=100	цел	Двухмерный
Входные		- ,		массив (5х5)
данные	n	число строк и столбцов в матрице	цел	простая
		A, $0 < n \le 5$		переменная
Выходные	Kol	Количество отрицательных цел		Одномерный
данные		элементов в каждом столбце,		массив (5)
		$0 \le \text{kol}_{i} \le 5$		

Промежу-	j	Номер текущего столбца,	цел	простая
точные		$0 < j \le 5$		переменная
данные	i	Номер элемента в столбце,	цел	простая
		$0 < i \le 5$		переменная

Промежуточные данные заполняются не сразу, а по мере необходимости иметь дополнительные переменные

5.Входная форма.

нет ввода/вывода

6.Выходная форма

нет ввода/вывода

7. Аномалии

нет ввода/вывода

8. Тесты

Тест 7 есть отрицательные элементы в столбцах. Во всех разное количество Тест 8 нет отрицательных элементов

9. Метод

Будем просматривать столбцы, начиная с первого до последнего (j:=1;+1;n)

В каждой столбце будем считать количество Koli,

Начальное значение 0 (Kol[j]:=0;)

Проверим элементы в столбце с первого до последнего (i:=1;+1;n)

Если элемент отрицательный (Kol[i]<0)

То увеличиваем количество (Kol[j]:=Kol[j]+1)

Переходим к следующему элементу в столбце

Переходим к следующему столбцу

Массив заполнен

10. Алгоритм

11. Программа на паскале. Процедура общего вида

{Подсчет кол-в отриц.эл. в столбцах матрицы А}

```
Procedure Podschet(const n:byte; var A: Matrix; out Kol: MasKol);
Var
i,j:byte;

Begin

For j:=1 to n do
Begin

Kol[j]:=0;
For i:=1 to n do

If A[i,j]<0 then inc(Kol[j]); // или Kol[j]:=Kol[j] + Ord(A[I,j]<0);
End;

End;
```

- 1.Условие. Найти номер элемента массива с максимальным значением.
- 2.Уточненная постановка задачи.

Дан **целочисленный одномерный** массив **Kol** из **n** элементов. Найти номер (**Nom**) **первого** элемента с максимальным значением.

3.Примеры.

Тест 7 Все элементы разные, Nom=2

Тест 8 Все элементы одинаковые, Nom=1

4. Таблица данных

Класс	Имя	Описание (смысл), диапазон,	Тип	Структура
		точность		
	Kol	Количество отрицательных	цел	Одномерный
Входные		элементов в каждом столбце,		массив (5)
данные		$0 \le \text{kol}_{i} \le 5$		
	n	число строк и столбцов в матрице	цел	простая
		A, $0 < n \le 5$		переменная
Выходные	Nom	Номер первого столбца с	цел	простая
данные		максимальным количеством		переменная
		отрицательных элементов,		
		$0 < \text{Nom} \le 5$		

Промежу-	k	Номер текущего элемента,	цел	простая	
точные		$0 < k \le 5$		переменная	
данные					

5. Входная форма.

нет ввода/вывода

6.Выходная форма

нет ввода/вывода

7. Аномалии

нет ввода/вывода

8. Тесты

Тест 7 Все элементы разные, Nom=2

Тест 8 Все элементы одинаковые, Nom=1

9. Метол

Пусть максимальное значение находится в первом элементе массива. (Nom:=1)

Будем просматривать все остальные элементы со второго до последнего (k:=2;+1;n)

Если найдем элемент больше (Kol[k]>Kol[Nom]),

То изменим значение номера максимума на текущее (Nom:=k)

Переходим к следующему элементу

Текущее значение Nom – искомое

10. Алгоритм

11. Программа на паскале. Функция

{Поиск номера столбца с макс. кол-вом отриц.эл-тов} Function Poisk(const n:byte; var Kol: MasKol):byte;

Var

Nom: byte;

k: byte; {описания других локальных переменных}

Begin

Nom:=1;

For k:=2 to n do

If Kol[k]> Kol[Nom] then Nom:=k;

Poisk:=Nom;

End;

После написания текста программы можно перейти к написанию **структурных тестов**. Для этого составим таблицу, в которой перечислим все структуры ветвления и циклов в порядке их появления в программе.

ProFUn.doc Типовой расчет «Процедуры, функции, модули»

Стр.20

Структурные тесты. Выявление случаев, не покрываемых функциональными тестами (1-8): Тест№ 1 10 11 **12** Структура If (N<1) or (N>5) N<1 истина Не возможно одновременное выполнение этих условий N>5 истина Не возможно одновременное выполнение этих условий N<1 истина N>5 ложь (N=5) N<1 истина N=0 N>5 ложь (N<5) N<1 ложь (N=1) Не возможно одновременное выполнение этих условий N>5 истина N<1 ложь (N>1) N=6N>5 истина N<1 ложь (N=1) Не возможно одновременное выполнение этих условий N>5 ложь (N=5) N<1 ложь (N>1) N=5 N>5 ложь (N=5) N<1 ложь (N=1) N=1N>5 ложь (N<5) N=3 N=3 N=3 N=3 3 2 N<1 ложь (N>1) N>5 ложь (N<5) Ввод/вывод матрицы Η Η For i:=1 to n do Е Е 0 pa3 (i>n) T T Не возможно, п≥1 1 pa₃ (i=n) В В более 1 раза (i<n) 3 3 3 3 3 2 В В For j:=1 to n do O O 0 раз Не возможно, п≥1 Д Д 1 раз A Α более 1 раза Проверка элементов И И while (i<=n) and not flagA do (i<=n) истина (i<n) + + + П П flagA ложь P P (i<=n) истина (i=n) + + +++O O flagA ложь В В (i<=n) истина (i<n) + Е Е flagA истина P P (i<=n) истина (i=n) К К flagA истина И И (i<=n) ложь (i>n) +flagA ложь M M (i<=n) ложь (i>n) Α Α flagA истина T T while (j<=n) and not flagA do P P (j<=n) истина (j<n) + + + И И flagA ложь Ц Ц (j<=n) истина (j=n) + Ы Ы + + + flagA ложь (j<=n) истина (j<n) + flagA истина (j<=n) истина (j=n) flagA истина (j<=n) ложь (j>n) + flagA ложь (j<=n) ложь (j>n) + flagA истина if abs(A[i,j]) > 100 then abs(A[i,j]) > 100-101 101 101 abs(A[i,j]) < 100+++++ + +abs(A[i,j]) = 100100 100 -100 If FlagA then FlagA истина

ProFUn.doc	Типовой рас	счет «	«Проц	едуры	фунн	кции, м	юдули	<i>>></i>		Стр.	21
FlagA ложь				+	+	+	+		+	+	+
Проверка гл.диагонали	_	3	3					3			
While (i<=n) and not flag do		Α	Α					Α			
(i<=n) истина(i <n)< td=""><td></td><td>Д</td><td>Д</td><td>+</td><td>+</td><td>+</td><td>+</td><td>Д</td><td></td><td></td><td></td></n)<>		Д	Д	+	+	+	+	Д			
flag ложь		Α	A					Α			
(i<=n) истина(i=n)		Ч	Ч	+	+	-	-	Ч			
flag ложь		Α	A					Α			
(i<=n) истина (i <n)< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td></td><td></td><td></td></n)<>				-	-	-	+				
flag истина		Н	H					Н			
(i<=n) истина (i=n)		Е	Е	-	-	+	-	Е			
flag истина											
(i<=n) ложь (i>n)		P	P	+	+	-	-	P			
flag ложь		E	Е					Е			
(i<=n) ложь (i>n)		Ш	Ш	- /	1- /	1- /	1- /	Ш	+		
flag истина		A	A					A			
If $A[i,i] \mod 5 = 0$ then		Л A	Л А					Л А			
$A[i,i] \mod 5 = 0$		C	C	-	-	+	+	C		+	+
$A[i,i] \bmod 5 \neq 0$		Ь	Ь	+	+	+	-	P P	+		+
If flag then		В	Ъ				.	Б			
Flag истина						+	+			+	+
Flag ложь	_			+	+				+		\perp
Изменение матрицы											
For i:=1 to n do											
0 раз				Не воз	вможно,	n≥1				_	
1 pa3									+		
Более 1 раза				3	3						
For j:=1 to n do											
0 pa3 (j>n)				Не воз	онжом					_	,
1 pa3 (j=n)									+		
более 1 раза (j <n)< td=""><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td></n)<>				3	3						
Подсчет кол-в											
For j:=1 to n do											
0 раз				Не воз	вможно,	n≥1				_	
1 pa3										+	
Более 1 раза						3	3				2
For i:=1 to n do											
0 pa3 (i>n)				Не воз	вможно,	n≥1	_				
1 pa3 (i=n)										+	
более 1 раза (i <n)< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td>2</td></n)<>						3	3				2
If A[i,j]<0 then											
A[i,j]<0						+					+
A[i,j]>0						+	+			+	+
A[i,j]=0						+	+				+
Поиск столбца с макс.											
For k:=2 to n do											
0 pa3 (k>n)										+	
1 pa3 (k=n)											+
более 1 раза (k <n)< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td></td></n)<>						3	3				
<pre>If Kol[k]> Kol[Nom]</pre>											
Kol[k] > Kol[Nom]						+	-			-	+
Kol[k] = Kol[Nom]						-	+			-	
Kol[k] < Kol[Nom]						+	-			-	
Вывод кол-ва											
For j:=1 to n do]			
0 pa3 (j>n)				Не воз	вможно,	<u>n≥1</u>					
1 pa3 (j=n)										1	
более 1 раза (j <n)< td=""><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td>2</td></n)<>						3	3				2

Выявлено 10 строк в таблице, непокрытых имеющимися 8 тестами. Добавим еще 4 теста 9,10,11,12.

ProFUn.doc

Типовой расчет «Процедуры, функции, модули»

Стр.22

8. Недостающие структурные тесты

№ теста	Входные данные	Ожидаемый результат	Смысл теста
9	N=3 $A = \begin{pmatrix} 100 & 100 & 100 \\ 100 & 101 & 100 \\ 100 & 100 & 100 \end{pmatrix}$	Обр 7 А ₂₂ =101	Аномальная ситуация 2 (А ₂₂ >100)
10	n=1; $A = (1)$	A = (0)	Единственный элемент главной диагонали НЕ кратен 5, одна замена
11	n=1; $A = (5)$	Kolich = (0) Nom=1	Единственный элемент главной диагонали кратен 5
12	n=2; $A = \begin{pmatrix} 1 & 0 \\ 5 & -5 \end{pmatrix}$	Kolich = (0 1) Nom=2	На главной диагонали есть кратный 5 элемент, Во втором столбце отрицательных элементов больше