Esame di Ricerca Operativa del 15/01/19

	(Cogno	ome)	<u> </u>	(Nome)		(Numer	ro di Matrio	cola)
Esercizio	1. Effettuare	e due iterazioni	dell'algoritme	o del simplesso pri	imale:			
			$\begin{cases} & \text{max} \\ & -6 \\ & 7 \text{ a} \\ & 4 \text{ a} \\ & -2 \\ & -2 \\ & 2 \text{ a} \end{cases}$	$ \begin{array}{l} \text{ax } 6 \ x_1 - x_2 \\ 3 \ x_1 + 10 \ x_2 \le 17 \\ x_1 + 2 \ x_2 \le 28 \\ x_1 - 3 \ x_2 \le 16 \\ 2 \ x_1 - 4 \ x_2 \le 3 \\ 2 \ x_1 + 2 \ x_2 \le 3 \\ x_1 - x_2 \le 19 \end{array} $				
	Base	x	Degenere?	y		Indice uscente	Rapporti	Indice entrante
1° passo	$\{4,5\}$							
2° passo								
puó acquis quantitá d	tare al prezz i materiale ri	o di 50 euro al	Kg. Il fornito durre 1 giubbe	otti A, B e C. Pe ore puó al massim otto, i costi di ma ente tabella.	o fornire 10	000 kg di tale r	nateriale al 1	mese. La
			Material	le manodopera 30	prezzo			
		-	A - B 0.3	18	80 50			
			C 0.4	10	40			
				ipo A prodotti dev lo che determini u				
variabili d		di tipo C. Scri	rere un moder	io che determini t	ш ріапо рі	oduttivo che m	assiiiizzi i g	uauagiii.
modello:								
			CO	OMANDI DI MAT	LAB			
C=				into	on=			
A=				b=				
Aeq=				beq=	:			
1b=				ub=				

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,3) (2,4) (4,3) (4,6) (5,4) (6,7)	2 10010210110
Archi di U	(3,5)	
x		
degenere?		
π		
degenere?		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 13 \ x_1 + 7 \ x_2 \\ 14 \ x_1 + 13 \ x_2 \ge 61 \\ 9 \ x_1 + 19 \ x_2 \ge 60 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo														
visitato		ı		1		r		1		1		r		
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di caricare un container di volume pari a 511 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	5	15	10	8	20	13	23
Volumi	120	4	114	25	37	156	307

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$
--------------------	------------

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = 2x_1 + 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : 16 - x_1^2 - x_2^2 \le 0, -x_1 + 2x_2 \le 0}.$$

Soluzioni del sistema l	Mass	imo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{8\sqrt{13}}{13}, -\frac{12\sqrt{13}}{13}\right)$							
$\left(-\frac{8\sqrt{5}}{5}, -\frac{4\sqrt{5}}{5}\right)$							
$\left(\frac{8\sqrt{5}}{5}, \frac{4\sqrt{5}}{5}\right)$							

Esercizio 8. Si consideri il seguente problema:

$$\left\{ \begin{array}{ll} \min \ 2 \ x_1^2 + 4 \ x_1 \ x_2 - 10 \ x_1 - 3 \ x_2 \\ x \in P \end{array} \right.$$

e i vertici di P sono (-2,1) , (0,4) , (-2,-4) e (5,-4). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(\frac{1}{3}, -4\right)$						

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{4, 5\}$	$\left(-\frac{3}{2},\ 0\right)$	$\left(0,\ 0,\ 0,\ -\frac{5}{6},\ -\frac{13}{6},\ 0\right)$	4	$12, \ \frac{77}{3}, \ 132, \ 132$	1
2° iterazione	{1, 5}	$\left(\frac{1}{2},\ 2\right)$	$\left(\frac{5}{4},\ 0,\ 0,\ 0,\ -\frac{27}{4},\ 0\right)$	5	$2, \frac{80}{11}, \frac{80}{7}$	2

Esercizio 2.

COMANDI DI MATLAB

Esercizio 3. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione				
Archi di T	(1,3) $(2,4)$ $(4,3)$ $(4,6)$ $(5,4)$ $(6,7)$	(1,3) (2,4) (3,5) (4,6) (5,4) (6,7)				
Archi di U	(3,5)					
x	(0, 2, 0, 3, 9, 1, 4, 6, 0, 0, 0)	(0, 2, 0, 3, 8, 0, 4, 5, 0, 0, 0)				
π	(0, -5, 4, -1, -5, 8, 15)	(0, 14, 4, 18, 14, 27, 34)				
Arco entrante	(3,5)	(1,2)				
ϑ^+,ϑ^-	Inf , 1	6,2				
Arco uscente	(4,3)	(1,3)				

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 13 \ x_1 + 7 \ x_2 \\ 14 \ x_1 + 13 \ x_2 \ge 61 \\ 9 \ x_1 + 19 \ x_2 \ge 60 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{61}{13}\right)$$
 $v_I(P) = 33$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,5)$$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $13 x_1 + 12 x_2 \ge 57$ $r = 4$ $8 x_1 + 7 x_2 \ge 33$

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7	
	π	p	π	p	π	p	π	p	π	p	π	p	π	p	
nodo visitato	1		3	3		2		5		4		7		6	
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1	
nodo 3	7	1	7	1	7	1	7	1	7	1	7	1	7	1	
nodo 4	$+\infty$	-1	$+\infty$	-1	26	2	16	5	16	5	16	5	16	5	
nodo 5	$+\infty$	-1	12	3	11	2	11	2	11	2	11	2	11	2	
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	33	4	31	7	31	7	
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	22	5	22	5	22	5	22	5	
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	6,	7	(;	Q)	

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	7	(7, 0, 0, 7, 0, 0, 0, 0, 7, 0, 0)	7
1 - 3 - 5 - 7	5	(7, 5, 0, 7, 0, 5, 0, 0, 12, 0, 0)	12
1 - 2 - 4 - 6 - 5 - 7	3	(10, 5, 3, 7, 0, 5, 3, 0, 15, 3, 0)	15

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 6. Si consideri il problema di caricare un container di volume pari a 511 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	5	15	10	8	20	13	23
Volumi	120	4	114	25	37	156	307

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile = (1, 1, 1, 1, 1, 1, 0) $v_I(P) = 71$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, 1, 1, 1, 1, \frac{175}{307}\right)$$
 $v_S(P) = 79$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = 2x_1 + 3x_2$ sull'insieme

$${x \in \mathbb{R}^2 : 16 - x_1^2 - x_2^2 \le 0, -x_1 + 2x_2 \le 0}.$$

Soluzioni del sistema LKT				Massimo		Minimo	
x	λ	μ	globale	locale	globale	locale	
$\left(-\frac{8\sqrt{13}}{13}, -\frac{12\sqrt{13}}{13}\right)$	$\left(-\frac{\sqrt{13}}{8},0\right)$		NO	SI	NO	NO	NO
$\left(-\frac{8\sqrt{5}}{5}, -\frac{4\sqrt{5}}{5}\right)$	$\left(-\frac{7\sqrt{5}}{40}, -\frac{4}{5}\right)$		NO	SI	NO	NO	NO
$\left(\frac{8\sqrt{5}}{5}, \ \frac{4\sqrt{5}}{5}\right)$	$\left(\frac{7\sqrt{5}}{40}, -\frac{4}{5}\right)$		NO	NO	NO	NO	SI

Esercizio 8. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \min \ 2 \ x_1^2 + 4 \ x_1 \ x_2 - 10 \ x_1 - 3 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (-2,1), (0,4), (-2,-4) e (5,-4). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(\frac{1}{3}, -4\right)$	(0, -1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(\frac{74}{3},0\right)$	$\frac{7}{37}$	$\frac{7}{37}$	(5, -4)