VE401 Probabilistic Methods in Eng.

RC#3 Multi-variate Random Variable

By TA: DONG Juechu, Mar. 2021

if you want to edit this note, you can find it here https://github.com/joydddd/VE401-2020SP-notes

Discrete Multivariate random variable

joint density function

of the random variable $\boldsymbol{X} = (X_1, \dots, X_n)$

Discrete:
$$f_X(x_1,\ldots,x_n)=P[X_1=x_1\ and\ X_2=x_2\ldots\ and\ X_n=x_n]$$

Continuous: $P[X\in\Omega]=\int_\Omega f_X(x)dx$

has properties:

(i)
$$f_X(x) \geq 0$$

(ii)discrete:
$$\sum_{x\in\Omega}f_X(x)=1$$
. continuous: $\int_{\mathbb{R}^n}f_X(x)dx=1$

marginal density

$$f_{X_k}$$
 for $X_k,\; k=1,\ldots,n$

Discrete:
$$f_{X_k}\left(x_k
ight) = \sum_{x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n} f_X\left(x_1,\ldots,x_n
ight)$$
Continuous: $f_{X_k}\left(x_k
ight) = \int_{\mathbb{R}^{n-1}} f_X(x) dx_1 \ldots dx_{k-1} dx_{k+1} \ldots dx_n$

Bivariate Random Variable

Let $((X,Y),f_{XY})$ be a bivariate random variable with marginal densities f_X and f_Y .

Independent

$$egin{aligned} \operatorname{dom} f_{XY} &= (\operatorname{dom} f_X) imes (\operatorname{dom} f_Y) \ f_{XY}(x,y) &= f_X(x)f_Y(y) \quad ext{ for all } (x,y) \in \operatorname{dom} f_{XY} \end{aligned}$$

conditional density

for X given Y=y is

$$f_{X|y}(x) = rac{f_{XY}(x,y)}{f_{Y}(y)}$$

Expectations

Let $H:\Omega o \mathbb{R}$ be some function. Then the expected value of $H\circ (X,Y)$ is

Discrete:
$$\mathrm{E}[H\circ (X,Y)] = \sum_{(x,y)\in\Omega} H(x,y)\cdot f_{XY}(x,y)$$

$$\text{Continuous:} \quad \mathrm{E}[H \circ (X,Y)] = \iint_{\mathbb{R}^2} H(x,y) \cdot f_{XY}(x,y) dx dy$$

specially consider H(x,y)=x and H(x,y)=y, giving

Conditional Expectations

$$\begin{split} \operatorname{E}[Y\mid x] := \sum_{y} y \cdot f_{Y\mid x}(y), \quad \operatorname{E}[X\mid y] := \sum_{x} x \cdot f_{X\mid y}(x) \\ \operatorname{Continuous:} \\ \operatorname{E}[Y\mid x] := \int_{\mathbb{R}} y \cdot f_{Y\mid x}(y) dy, \quad \operatorname{E}[X\mid y] := \int_{\mathbb{R}} x \cdot f_{X\mid y}(x) dx ds df \end{split}$$

Transformation of Variables

Let (X,f_X) be a continuous multivariate random variable and let $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ be a differentiable, bijective map with inverse φ^{-1} . Then $Y=\varphi\circ X$ is a continuous multivariate random variable with density

$$f_Y(y) = f_X \circ \varphi^{-1}(y) \cdot \left| \det D \varphi^{-1}(y) \right|$$

where $D\varphi^{-1}$ is the Jacobian of φ^{-1} .

Let $((X,Y),f_{XY})$ be a continuous bivariate random variable. Let U=X/Y. Then the density f_U of U is given by

$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(uv,v) \cdot |v| dv$$

Sum of Two Continuous Random Variables

Sum of Two Continuous Random Variables Let X and Y be continuous random variables with parameters with joint density f_{XY} . Let U=X+Y and prove that the density of U is given by

$$f_U(u) = \int_{-\infty}^{\infty} f_{XY}(u-v,v) dv$$

Hint: Consider the transformation $(x, y) \mapsto (x + y, y)$.

Sum of Two Exponential Distributions

Let X and Y be independent exponentially distributed random variables with parameters $\beta_1=1/3$ and $\beta_2=1$ respectively. Let U=X+Y and show that

$$f_U(u) = egin{cases} \left(e^{-u/3} - e^{-u}
ight)/2 & u > 0 \ 0 & u \leq 0 \end{cases}$$

Covariance

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)]$$
$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

- Cov[X, X] = Var[X].
- If X and Y are independent, then Cov[X,Y]=0.

covariance matrix

$$\operatorname{Var}[X] = egin{pmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}[X_1, X_2] & \ldots & \operatorname{Cov}[X_1, X_n] \\ \operatorname{Cov}[X_1, X_2] & \operatorname{Var}[X_2] & \ddots & dots \\ dots & \ddots & \ddots & \operatorname{Cov}[X_{n-1}, X_n] \\ \operatorname{Cov}[X_1, X_n] & \ldots & \operatorname{Cov}[X_{n-1}, X_n] & \operatorname{Var}[X_n] \end{pmatrix}$$

for constant $n \times n$ matrix with real coefficients $C \in \operatorname{Mat}(n \times n; \mathbb{R})$

$$\operatorname{Var}[CX] = C\operatorname{Var}[X]C^{\top}$$

Standardized Random Variable

$$ilde{X} := rac{X - \mu_X}{\sigma_X}$$

$$\mathrm{E}[\tilde{X}] = 0, \quad \mathrm{Var}[\tilde{X}] = 1$$

Pearson coefficient

of correlation of (X, Y)

$$ho_{XY} := rac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}} = \operatorname{Cov}ig[ilde{X}, ilde{Y}ig]$$

- $-1 \le \rho_{XY} \le 1$
- $|\rho_{XY}|=1$ if and only if there exist numbers $\beta_0,\beta_1\in\mathbb{R},\beta_1\neq 0$, such that $Y=\beta_0+\beta_1X$ almost surely.

Linearity of X and Y

Fisher Transformation

$$ho_{XY} = anh \Biggl(\ln \Biggl(rac{\sigma_{ ilde{X}} + ilde{Y}}{\sigma_{ ilde{X} - ilde{Y}}} \Biggr) \Biggr)$$

- If $\rho_{XY} > 0$, X and Y are positively correlated.
- If $\rho_{XY} < 0$, X and Y are negatively correlated.

Bivariate normal distribution

$$f_{XY}(x,y) = rac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-arrho^2}}e^{-rac{1}{2\left(1-arrho^2
ight)}\left[\left(rac{x-\mu_X}{\sigma_X}
ight)^2-2arrho\left(rac{x-\mu_X}{\sigma_X}
ight)\left(rac{y-\mu_Y}{\sigma_Y}
ight)+\left(rac{y-\mu_Y}{\sigma_Y}
ight)^2
ight]} \ ext{where} \ -1 < arrho < 1$$

Covariant and Bivariate normal distribution

Let $X = (X_1, X_2)$ be a random vector. Then we define the expectation vector and the variance-covariance matrix as follows:

$$\mathrm{E}[X] := egin{pmatrix} \mathrm{E}\left[X_1
ight] \\ \mathrm{E}\left[X_2
ight] \end{pmatrix}, \quad \mathrm{Var}\, X := egin{pmatrix} \mathrm{Var}\, X_1 & \mathrm{Cov}(X_1,X_2) \\ \mathrm{Cov}(X_2,X_1) & \mathrm{Var}\, X_2 \end{pmatrix}$$

Let A be a constant 2×2 matrix and $Y = (Y_1, Y_2) = AX$.

- 1. Show that E[AX] = AE[X].
- 2. Show that $Var(AX) = A(Var X)A^T$.
- 3. Suppose that X_1 and X_2 follow independent normal distributions with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. Show that the joint density is given by

$$f_X(x) = f_X\left(x_1, x_2
ight) = rac{1}{2\pi\sqrt{\det\Sigma_X}}e^{-rac{1}{2}\left\langle x - \mu_X, \Sigma_X^{-1}(x - \mu_X)
ight
angle}$$

where $\mu_X=(\mu_1,\mu_2)$ and $\Sigma_X=\mathrm{diag}\big(\sigma_1^2,\sigma_2^2\big)$ is the 2×2 matrix with the variances on the diagonal and all other entries vanishing. (1 Mark)

iv) Suppose that X_1 and X_2 follow independent normal distributions with means $\mu_1,\mu_2\in\mathbb{R}$ and variances $\sigma_1^2,\sigma_2^2>0$, respectively. Let Y=AX where A is an invertible $n\times n$ matrix. Show that

$$f_Y(y) = rac{1}{2\pi\sqrt{\left|\det\Sigma_Y
ight|}}e^{-rac{1}{2}\left\langle y-\mu_Y,\Sigma_Y^{-1}(y-\mu_Y)
ight
angle}$$

where $\mu_Y = \mathrm{E}[Y], \Sigma_Y = \mathrm{Var}\,Y$ and $\langle\cdot,\cdot\rangle$ denotes the euclidean scalar product in \mathbb{R}^2 . v) Show that (*) can be written as

$$f_{Y}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{Y_{1}}\sigma_{Y_{2}}\sqrt{1-\varrho^{2}}}e^{-\frac{1}{2\left(1-\varrho^{2}\right)}}\left[\left(\frac{y_{1}-\mu_{Y_{1}}}{\sigma_{Y_{1}}}\right)^{2}-2\varrho\left(\frac{y_{1}-\mu_{Y_{1}}}{\sigma_{Y_{1}}}\right)\left(\frac{y_{2}-\mu_{Y_{2}}}{\sigma_{Y_{2}}}\right)+\left(\frac{y_{2}-\mu_{Y_{2}}}{\sigma_{Y_{2}}}\right)^{2}\right]$$

where μ_{Y_i} is the mean and $\sigma_{Y_i}^2$ the variance of $Y_i, i=1,2,$ and ϱ is the correlation of Y_1 and Y_2 .