

Table of Content What will We Learn Today?

- 1. Imbalanced Dataset
- 2. Text Classification
- 3. Handling Text Data
- 4. Feature Extraction

Imbalanced Dataset

Imbalanced dataset

- Imbalanced dataset mengacu pada masalah klasifikasi di mana jumlah data per kelas tidak terdistribusi secara merata.
- https://www.kaggle.com/fedesoriano/stroke-prediction-dataset?select=healthcare-dataset-strokedata.csv

How to handle imbalance dataset

- Under sampling = Menyeimbangkan distribusi kelas dengan menghilangkan data dari kelas mayoritas secara acak.
- Oversampling = Meningkatkan jumlah instance di kelas minoritas dengan mereplikasinya secara acak.

Random Under sampling

• Membadingkan training set, sebelum dan sesudah undersampling

Sebelum

Sesudah

Random Over sampling

• Membadingkan training set, sebelum dan sesudah oversampling

Sebelum

Sesudah

Sebelum oversampling

0.0 3663 1.0 169 dtype: int64

Setelah oversampling

1.0 3663 0.0 3663 dtype: int64

SMOTE

- SMOTE = Synthetic Minority Oversampling Technique
- Pendekatan *oversampling* yang menciptakan sampel kelas minoritas secara sintetis.
- Cara kerja:
 - Contoh acak dari kelas minoritas a dipilih terlebih dahulu.
 - Kemudian k dari tetangga terdekat (nearest neighbour) untuk contoh tersebut ditemukan (biasanya k=5).
 - Tetangga b yang dipilih secara acak.
 - Data sintetik c dibuat pada titik yang dipilih secara acak diantara dua data tersebut (a dan b)

SMOTE

• Membadingkan training set, sebelum dan sesudah SMOTE

Sebelum

Sesudah

Sebelum SMOTE 0.0 3663 1.0 169 dtype: int64 Setelah SMOTE 1.0 3663 0.0 3663 dtype: int64

ADASYN

- ADASYN = Adaptive Synthetic Sampling Approach for Imbalanced Learning
- Ide penting dari ADASYN adalah menggunakan pembobotan untuk contoh kelas minoritas
- ADASYN akan fokus pada sampel yang sulit untuk
 diklasifikasikan sementara SMOTE tidak akan membuat perbedaan apa pun.

Membadingkan training set, sebelum dan sesudah ADASYN

Sebelum ADASYN
0.0 3663
1.0 169
dtype: int64
Setelah ADASYIN
1.0 3676
0.0 3663
dtype: int64

Dataset types

- 2.000		Livers and Constraints		Transaction in the		No.						
age	anaemia	creatinine_p	diabetes	ejection_	high_bloc	platelets	serum_cr	serum_so	sex	smoking	time	DEATH_EVENT
75	0	582	0	20	1	265000	1.9	130	1	0	4	1
55	0	7861	0	38	0	263358	1.1	136	1	0	6	1
65	0	146	0	20	0	162000	1.3	129	1	1	7	1
50	1	111	0	20	0	210000	1.9	137	1	0	7	1
65	1	160	1	20	0	327000	2.7	116	0	0	8	1
90	1	47	0	40	1	204000	2.1	132	1	1	8	1
75	1	246	0	15	0	127000	1.2	137	1	0	10	1
60	1	315	1	60	0	454000	1.1	131	1	1	10	1

Heart failure clinical records

airline_sent	airline_sent	negativerea neg	gativerea	airline airline_	sent name	negativerea retweet_co	text t		
neutral	1			Virgin America	cairdin	0	@VirginAmerica What @dhepburn said.		
oositive	0.3486		0	Virgin America	jnardino	0	@VirginAmerica plus you've added commercials to t		
neutral	0.6837			Virgin America	yvonnalynn	0	@VirginAmerica I didn't today Must mean I need to		
negative	1	Bad Flight	0.7033	Virgin America	jnardino	0	@VirginAmerica it's really aggressive to blast obnoxiou		
negative	1	Can't Tell	1	Virgin America	jnardino	0	@VirginAmerica and it's a really big bad thing about it		
negative	1	1 Can't Tell 0.6842 Virgin America		jnardino	0	@VirginAmerica seriously would pay \$30 a flight for seats that didn't have this playing. it's really the only bad thing about flying VA			
oositive	0.6745		0	Virgin America cjmcginnis		0	@VirginAmerica yes, nearly every time I fly VX this â€o		
neutral	0.634			Virgin America	pilot	0	@VirginAmerica Really missed a prime opportunity for		
positive	0.6559			Virgin America	dhepburn				
positive	1			Virgin America	YupitsTate	0	@VirginAmerica it was amazing, and arrived an hour ea		
neutral	0.6769		0	Virgin America	idk_but_you	itube 0	@VirginAmerica did you know that suicide is the secon		
oositive	1			Virgin America	HyperCamiL	ax 0	@VirginAmerica I <3 pretty graphics. so much better		
oositive	1			Virgin America	HyperCamiL	ax 0	@VirginAmerica This is such a great deal! Already think		
oositive	0.6451			Virgin America	mollanderso	on 0	@VirginAmerica @virginmedia I'm flying your #fabulou		
oositive	1			Virgin America	sjespers	0	@VirginAmerica Thanks!		
negative	0.6842	Late Flight	0.3684	Virgin America	smartwater	melon 0	@VirginAmerica SFO-PDX schedule is still MIA.		
nositive	1			Virgin America	ItzBrianHun	tv 0	@VirginAmerica So excited for my first cross country f		

Cat and Dog dataset

- Text classification juga dikenal sebagai text tagging atau text categorization adalah proses mengkategorikan teks ke dalam kelompok tertentu.
- Text classification adalah salah satu tugas dasar dalam natural language processing (NLP) dengan aplikasi yang luas contohnya sentiment analysis, topic labeling, spam detection, dan intent detection.

- Ada tiga pendekatan dalam text classification
- Rule-based System
 - Teks dipisahkan ke dalam kelompok terorganisir menggunakan handicraft linguistic rules.
- Machine Learning-based System
 - ML-based classifier membuat klasifikasi berdasarkan pengamatan sebelumnya dari kumpulan data
- Hybrid System
 - Menggabungkan machine learning classifier dengan rule-based system, digunakan untuk meningkatkan performa.

Sentiment Analysis-Definition

- Salah satu contoh aplikasi dari text classification adalah sentiment analysis.
- Adalah metode yang secara otomatis memahami persepsi pelanggan terhadap suatu produk atau layanan berdasarkan komentar mereka.

Example

- A sentiment analysis job about the problems of each major U.S. airline. Twitter data was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets,
- Source : https://www.kaggle.com/crowdflower/twitter-airline-sentiment

airline_se	nt airline_sent	negativerea	negativerea	airline airl	line_sent name	negativerea retweet_co text t
neutral	1			Virgin America	cairdin	0 @VirginAmerica What @dhepburn said.
positive	0.3486		0	Virgin America	jnardino	0 @VirginAmerica plus you've added commercials to the
neutral	0.6837			Virgin America	yvonnalynr	0 @VirginAmerica I didn't today Must mean I need to 1
negative	1	Bad Flight	0.7033	Virgin America	jnardino	0 @VirginAmerica it's really aggressive to blast obnoxioι
negative	1	Can't Tell	1	Virgin America	jnardino	0 @VirginAmerica and it's a really big bad thing about it
negative	1	Can't Tell	0.6842	Virgin America	jnardino	@VirginAmerica seriously would pay \$30 a flight for 0 seats that didn't have this playing. it's really the only bad thing about flying VA
positive	0.6745		0	Virgin America	cjmcginnis	0 @VirginAmerica yes, nearly every time I fly VX this â€o
neutral	0.634			Virgin America	pilot	0 @VirginAmerica Really missed a prime opportunity for
positive	0.6559			Virgin America	dhepburn	0 @virginamerica Well, I didn't…but NOW I DO! :-D
positive	1			Virgin America	YupitsTate	0 @VirginAmerica it was amazing, and arrived an hour ea
neutral	0.6769		0	Virgin America	idk_but_yo	utube 0 @VirginAmerica did you know that suicide is the secon
positive	1	1		Virgin America	HyperCami	Lax 0 @VirginAmerica I <3 pretty graphics. so much better
positive	1			Virgin America	HyperCami	Lax 0 @VirginAmerica This is such a great deal! Already think
positive	0.6451			Virgin America	mollanders	on 0 @VirginAmerica @virginmedia I'm flying your #fabulou
positive	1			Virgin America	sjespers	0 @VirginAmerica Thanks!
negative	0.6842	Late Flight	0.3684	Virgin America	smartwate	rmelon 0 @VirginAmerica SFO-PDX schedule is still MIA.
nositive	1			Virgin America	ItzBrianHu	ntv

Handling text dataset

Tokenization

- Tokenization adalah memecah teks mentah menjadi potongan-potongan kecil (chunks).
- Tokenization memecah teks mentah menjadi kata-kata, yang disebut tokens.
- Tokens ini membantu dalam memahami konteks atau mengembangkan model untuk NLP.

```
Text

"The cat sat on the mat."

Tokens

"the", "cat", "sat", "on", "the", "mat", "."
```


Pre-processing the Text

- Removing stop words
 - Tanda baca (Punctuations)
 - Example : .?"",';:-[]()
 - Preposisi (Prepositions)
 - Example : "in," "at," "on," "of," and "to."
- Stemming
 - Stemming adalah proses mereduksi kata-kata menjadi bentuk kata dasar (word stem), atau akar kata (root form)
 - Example: walker, walked, walking => walk
- Lemmatization
 - Lemmatization adalah proses mengubah kata ke bentuk dasarnya (base form).
 - Mengubah kata menjadi bentuk dasar (base form) yang bermakna.

Feature Extraction

Bag of Words

- Frequensi istilah (term) dalam dokumen.
- Kita fokus pada skema pengkodean yang mewakili kata-kata, tanpa informasi tentang urutan

```
doc1 = "saya belajar pemrograman dan belajar melukis"
doc2 = "saya membantu adik saya belajar menulis"
```

doc3 = "ibu belajar menjahit"

adik	belajar	dan	ibu	melukis	membantu	menjahit	menulis	pemrograman	saya
0	2	1	0	1	0	0	0	1	1
1	1	0	0	0	1	0	1	0	2
0	1	0	1	0	0	1	0	0	0

• TF-IDF = Term frequency—inverse document frequency,

doc1 = "saya belajar pemrograman dan belajar melukis"

doc2 = "saya membantu adik saya belajar menulis"

doc3 = "ibu belajar menjahit"

- Numerical statistic yang mencerminkan betapa pentingnya sebuah kata bagi dokumen dalam kumpulan atau corpus
- TF-IDF adalah skor frekuensi kata yang mencoba menonjolkan kata-kata yang lebih menarik, misalnya sering muncul dalam dokumen tetapi tidak di seluruh dokumen.

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

For a term i in document j:

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

```
adik
           belajar
                       dan
                                ibu
                                      melukis
                                               membantu
                                                              menjahit
                                                                            menulis
                                                                                      pemrograman
                                                                                                      saya
                   2.0986123
                                       2.0986
                                                                 0
                                                                                       2.09861229
                                                                                                    1.405465
2.098612
                                 0
                                               2.09861229
                                                                           2.0986123
                                                                                                    2.81093
                        0
                               2.0986
                                         0
                                                             2.09861229
                                                    0
                                                                               0
```


Let's practice

Thank YOU

