Code No: 123AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 **MATHEMATICS – III**

(Common to EEE, ECE, EIE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A	
		(25 Marks)
1.a)	Find the particular integral of $x^2 \frac{d^2y}{dx^2} - 6x \frac{dy}{dx} + 10y = x^2$.	[2]
b)	Find the singular points of the differential equation	
	$x^{3}(x-1)\frac{d^{2}y}{dx^{2}} + 2(x-1)\frac{dy}{dx} + y = 0.$	[3]
c)	Prove that $P'_{n}(1) = \frac{1}{2}n(n+1)$.	[2]
d)	Express $J_3(x)$ in terms of J_0 and J_1 .	[3]
e)	Find the analytic function whose real part is xy.	[2]
f)	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x^2$.	[3]
g)	Find the zeros of the function $\sin\left(\frac{1}{z}\right)$	[2]
h)	Show that the function e^z has an essential singularity at $z = \infty$.	[3]
i)	Find the fixed points of the transformation $w = \frac{z-1+t}{z+2}$	[2]
j)	Find the points at which $w = \cosh z$ is not conformal.	[3]
	DA DT. R	

PART-B

2.	Solve the equation in series $x^2y'' + xy' + (x^2 - 4)y = 0$.	(50 Mark [10]
	OR	

3. Solve
$$(x+a)^2 \frac{d^2y}{dx^2} - 4(x+a)\frac{dy}{dx} + 6y = x$$
 [10]

State and prove the generating function for $P_n(x)$. 4.

- 5.a)
- Prove that $(n + 1)P_{n+1}(x) = (2n + 1)xP_n(x) nP_{n-1}(x)$. Prove that $\frac{d}{dx}(J_0(x)) = -J_1(x)$. b)
- State and prove Cauchy's intergral formula. 6. [10]

Verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle 7. with vertices -1, 1, 1+i, -1+i. [10]

8. State and prove Laurent series for the function f(z). [10]

OR

- 9 Evaluate $\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$; (a>b>0). [10]
- 10. Find the bilinear transform which maps the points z = 0, -i, -1 into the points w = i, 1, 0. Find the image of the line y = mx under this transformation. [10]

OR

11. Determine the region of the w -plane into which the region bounded by $\frac{1}{2} \le x \le 1$ and $\frac{1}{2} \le y \le 1$ is mapped under the transformation $w = z^2$. [10]

---ooOoo---