ECE 544NA: Pattern Recognition Lecture 23: November 13

Lecturer: Alexander Schwing Scribe: Yao Xu

1 Overview

This lecture introduces reinforcement learning and Markov decision process (MDP).

1.1 Recap

Machine learning paradigms discussed so far: discriminative learning and generative learning

- Discriminative learning: regression, classification, SVM, etc. Discriminative models study the condition probability P(y|x) and predict label y given variable x [1].
- Generative learning: K-Means, GMM, HMM, etc. Generative models study the probability distribution of given variable x, i.e. P(x) [2].

Goal of both discriminative learning and generative learning is to extract **parameters leading to** maximum likelihood.

1.2 Reinforcement Learning

Reinforcement learning studies how should an **agent** take **actions** in an **environment** to maximize the **cumulative reward** [3].

Goal of reinforcement learning is to find a **policy**.

1.3 Application Examples of Reinforcement Learning

- Fly stunt manoeuvres in a helicopter
- Play Atari games
- Defeat the world champion at Go
- Manage investment portfolio
- Control a power station
- Make a humanoid robot walk

2 Formula of Reinforcement Learning

For an agent at step t

• Current state s_t

- Action to perform a_t
- ullet Reward for this action r_t
- Agent reaches state s_{t+1}

Settings of reinforcement learning: deterministic and stochastic

ullet Deterministic: next state s_{t+1} is determined by current state s_t and action a_t , i.e.

$$s_{t+1} = f(s_t, a_t) \tag{1}$$

• Stochastic: next state s_{t+1} is not determined by current state s_t and action a_t , but can be effected by other random factors from environment, i.e., all possible future states with action a_t at current state s_t satisfies

$$\sum_{s' \in S} P(s'|(s_t, a_t)) = 1 \tag{2}$$

Figure 1: Deterministic and Stochastic setting

3 Markov Decision Process

3.1 Formula of Markov Decision Process

- A set of states $s \in S$
- A set of actions $a \in A_s$
- A transition probability P(s'|(s,a))
 - The probability that an agent in state s, and takes action a, will transit itself to state s'

- A reward function R(s, a, s')
 - The reward the agent get by transiting from state s to state s' by action a
 - May be simplified as R(s) or R(s')
- A start state, and maybe a terminal state

Figure 2: Example of an MDP

3.2 Markov Properties of an MDP

The future state s_{t+1} is only related to the current state s_t and the action a_t . I.e., given the present state, the future and past are **independent**.

$$P(S_{t+1} = s' | (S_t = s_t, A_t = a_t), (S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}), ...(S_0 = s_0, A_0 = a_0)) = P(S_{t+1} = s' | (S_t = s_t, A_t = a_t))$$
(3)

3.3 Goal of solving an MDP

Definition of policy: a policy is a mapping from states S to actions A_s that denotes action to be taken at state s.

$$\pi(s): \mathbf{S} \to \mathbf{A_s} \tag{4}$$

Goal of solving an MDP is to find an optimal policy $\pi^*(s)$ that leads to maximum expected future reward $V^{\pi^*}(s_0)$.

3.4 Policy Evaluation

The value of state s with policy π , $V^{\pi}(s)$, is defined as the possible future rewards.

For a terminal state s_G , there is no future state, therefore,

$$V^{\pi}(s_G) = 0$$

For a deterministic environment, the future reward is recursively defined as the reward of transiting from current state s to next state s', plus the expected future reward of next state s'. i.e.

$$V^{\pi}(s) = R(s, \pi(s), s') + V^{\pi}(s')$$

For a stochastic environment, the next state s' is not determinate. Therefore, the future reward is defined as the expectation among all possibilities.

Generally, the value of a state s with policy π is defined as

$$V^{\pi}(s) = \begin{cases} 0, & \text{if } s \in \mathbf{G} \\ \sum_{s' \in S} P(s'|s, \pi(s))[R(s, \pi(s), s') + V^{\pi}(s')], & \text{otherwise} \end{cases}$$
 (5)

Methods to compute expected future reward of initial state $V^{\pi}(s_0)$ for policy π :

- Direct Computation
- Backpropagation
- Linear System

Example: for an MDP shown as the graph below, green circles denotes states, red circles denotes actions, blue numbers denotes rewards, and red numbers denotes transition probabilities. This MDP has a terminal state s_G

Figure 3: Example MDP

Figure 4: Policy π_1

3.4.1 Direct Computation

For policy $\pi_1(s) = \{\pi_1(s_0) = a_1, \pi_1(s_1) = a_1\}, V^{\pi_1}(s_0)$ can be computed directly:

$$V^{\pi_1}(s_G) = 0$$

$$V^{\pi_1}(s_1) = R(s_1, \pi_1(s_1), s_G) + V^{\pi_1}(s_G) = 1 + 0 = 1$$

$$V^{\pi_1}(s_0) = R(s_0, \pi_1(s_0), s_1) + V^{\pi_1}(s_1) = 10 + 1 = 11$$

3.4.2 Backpropagation

For policy $\pi_2(s)=\{\pi_2(s_0)=a_2,\pi_2(s_2)=a_1\},$ $V^{\pi_2}(s_0)$ can be computed by backpropogation:

Figure 5: Policy π_2

$$V^{\pi_2}(s_G) = 0$$

$$V^{\pi_2}(s_1) = R(s_1, \pi_2(s_1), s_G) + V^{\pi_2}(s_G) = 1 + 0 = 1$$

$$V^{\pi_2}(s_2) = R(s_2, \pi_2(s_2), s_G) + V^{\pi_2}(s_G) = 1 + 0 = 1$$

$$V^{\pi_2}(s_0) = P(s_1|s_0, \pi_2(s_0))[R(s_0, \pi_2(s_0), s_1) + V^{\pi_2}(s_1)] + P(s_2|s_0, \pi_2(s_0))[R(s_0, \pi_2(s_0), s_2) + V^{\pi_2}(s_2)]$$

$$= 0.6(10 + 1) + 0.4(5 + 1)$$

$$= 9$$

Figure 6: Policy π_3

3.4.3 Linear System

For policy $\pi_3(s) = \{\pi_3(s_0) = a_2, \pi_3(s_2) = a_2\}$, $V^{\pi_3}(s_0)$ can be computed by solving a linear system:

$$V^{\pi_3}(s_G) = 0$$

$$V^{\pi_3}(s_1) = R(s_1, \pi_2(s_1), s_G) + V^{\pi_3}(s_G) = 1 + 0 = 1$$

$$\begin{split} V^{\pi_3}(s_2) &= P(s_G|s_2, \pi_3(s_2))[R(s_2, \pi_3(s_2), s_G) + V^{\pi_3}(s_G)] + P(s_0|s_2, \pi_3(s_2))[R(s_2, \pi_3(s_2), s_0) + V^{\pi_3}(s_0)] \\ &= 0.7(1+0) + 0.3(0+V^{\pi_3}(s_0)) \\ &= 0.7 + 0.3V^{\pi_3}(s_0) \end{split}$$

$$V^{\pi_3}(s_0) = P(s_1|s_0, \pi_3(s_0))[R(s_0, \pi_3(s_0), s_1) + V^{\pi_3}(s_1)] + P(s_2|s_0, \pi_3(s_0))[R(s_0, \pi_3(s_0), s_2) + V^{\pi_3}(s_2)]$$

$$= 0.6(10+1) + 0.4(5+V^{\pi_3}(s_2))$$

$$= 8.6 + 0.4V^{\pi_3}(s_2)$$

3.4.4 Iterative Refinement

Solving system of linear equations is expensive. Substantially, iterative refinement is an approach for an acceptable solution.

- Initialize $V_0^{\pi}(s)$ for all $s \in S$
- iteratively refine $V^{\pi}(s)$ by

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s' \in S} P(s'|s, \pi(s))[R(s, \pi(s), s') + V_i^{\pi}(s')]$$
 (6)

3.5 Methods to find best policy π^*

3.5.1 Exhaustive Search

- Enumerate all policies $\pi(s)$
- Compute expected future reward $V^{\pi}(s_0)$
- Choose policy π^* with largest expected future reward $V^{\pi^*}(s_0)$

Drawback: exploring all possible policies is expensive. Number of policies may reach to

$$\prod_{s \in S} |A_s| \tag{7}$$

3.5.2 Policy Iteration

- Initialize policy $\pi(s)$
- Repeat the iteration below until $\pi(s)$ does not change
 - Solve policy evaluation equations (directly or iteratively)

$$V^{\pi}(s) = \sum_{s' \in S} P(s'|s, \pi(s))[R(s, \pi(s), s') + V^{\pi}(s')]$$
(8)

- For each state s, update $\pi(s)$ with action that leads to maximum expected future rewards

$$\pi(s) = \arg\max_{a \in A_S} \underbrace{\sum_{s' \in S} P(s'|s, a) [R(s, a, s') + V^{\pi}(s')]}_{Q(s, a)}$$

$$(9)$$

For the example MDP mentioned above, suppose $\pi(s)$ is initialized with $\{\pi(s0) = a_2, \pi(s2) = a_1\}$.

1. Policy evaluation:

$$V^{\pi}(s_G) = 0$$

 $V^{\pi}(s_1) = 1$
 $V^{\pi}(s_2) = 1$
 $V^{\pi}(s_0) = 9$

2. Update state s_2 :

$$Q(s_2, a_1) = R(s_2, a_1, s_G) + V^{\pi}(s_G) = 1 + 0 = 1$$

$$Q(s_2, a_2) = P(s_2, a_2, s_G)[R(s_2, a_2, s_G) + V^{\pi}(s_G)] + P(s_2, a_2, s_0)[R(s_2, a_2, s_0) + V^{\pi}(s_0)]$$

$$= 0.7(1 + V^{\pi}(s_G)) + 0.3(0 + V\pi(s_0))$$

$$= 3.4$$

Therefore, update $\pi(s_2) = a_2$

3. Update state s_0 :

$$Q(s_0, a_1) = R(s_0, a_1, s_1) + V^{\pi}(s_1) = 10 + 1 = 11$$

$$Q(s_0, a_2) = P(s_0, a_2, s_1)[R(s_0, a_2, s_1) + V^{\pi}(s_1)] + P(s_0, a_2, s_2)[R(s_0, a_2, s_2) + V^{\pi}(s_2)]$$

$$= 0.6(10 + V^{\pi}(s_1)) + 0.4(5 + V^{\pi}(s_2))$$

$$= 9$$

Therefore, keep $\pi(s_0) = a_2$

- 4. Repeat step 1-4 again, and no update found this time
- 5. Output: $\{\pi^*(s_0) = a_2, \pi^*(s_2) = a_2\}$ with $V^{\pi^*}(s_0) = 11$

3.5.3 Value Iteration (Bellman optimality principle)

Instead of refining a policy, value iteration method refines the expected future reward V(s) to find $V^*(s)$, and then extract $\pi^*(s)$.

For each state s, the maximum expected future reward is

$$V^{*}(s) = \max_{a \in A_{s}} \underbrace{\sum_{s' \in S} P(s'|s, a)[R(s, a, s') + V^{*}(s')]}_{Q^{*}(s, a)}$$
(10)

I.e., if Q(s, a) denote expected future reward at state s, and the next action to be taken is a,

$$Q^*(s,a) = \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \max_{a' \in A'_s} Q^*(s',a')]$$
(11)

For very small MDPs, $V^*(s)$ can be solved via linear program. Otherwise, iteratively refinement is needed.

- For every state, initialize $V_0(s)$
- In every iteration, compute

$$V_{i+1}(s) \leftarrow \max_{a \in A_s} \sum_{s' \in S} P(s'|s, a) [R(s, a, s') + V_i(s')]$$
(12)

To extract optimal policy:

$$\pi^*(s) = \arg\max_{a \in A_s} \sum_{s' \in S} P(s'|s, a) [R(s, a, s') + V * (s')]$$
(13)

I.e.

$$\pi^*(s) = \arg\max_{a \in A_s} Q^*(s, a) \tag{14}$$

4 Answers to Quiz Questions

4.1 What differentiates Reinforcement Learning from supervised learning?

- No supervisor, only reward signal
- Delayed feedback
- Actions effect received data

4.2 What is an MDP?

A Markov Decision Process is a 4-tuple $(S, A_s, P(s|a, s'), R_a(s, a, s'))$, where

- \bullet **S** is a set of states
- ullet A_s is a set of actions can be taken at state s
- ullet P(s|a,s') is the probability that action a can transit state s to state s'
- R(s, a, s') is the reward of the transition mentioned above

4.3 What differentiates policy iteration from policy evaluation?

Policy iteration is a method to find the optimal policy. It evaluates the current policy and updates it with some strategies.

Policy evaluation is not a method to find a policy, but a method to evaluate a given policy.

References

- [1] Wikipedia. Discriminative model. https://en.wikipedia.org/wiki/Discriminative_model. Accessed November 20, 2018.
- [2] Wikipedia. Generative model. https://en.wikipedia.org/wiki/Generative_model. Accessed November 20, 2018.
- [3] Wikipedia. Reinforcement learning. https://en.wikipedia.org/wiki/Reinforcement_learning. Accessed November 20, 2018.