ITERATIVE METHODS

Numerical methods in chemical engineering Ivo Roghair

Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

OVERVIEW

- Sparse matrices
- Large systems of linear equations
- Iterative methods for large systems of equations
 - Jacobi method
 - Gauss-Seidel method

Sparse matrices

- In many engineering cases, we deal with sparse matrices (as opposed to dense matrices)
 - A matrix is sparse when it mostly consists of zeros
 - Linear systems where equations depend on a limited number of variables (e.g. spatial discretization)
- Storing zeros is not very efficient:

```
>> A = eye(10000);
>> whos A
>> S = sparse(A);
>> whos S
```

- Can you think of a way to achieve this?
- Sparse matrix formats: Yale, CRS, CCS

Sparse matrices

- Example: Yale storage format, storing 3 vectors:
 - A = [5836]
 - IA = [00234]
 - JA = [0121]

0	0	0	0
5	8	0	0
0	0	3	0
0	6	0	0 floor

- A stores the nonzero values
- IA(i) stores the index in A of the first non-zero in row i
- JA stores the column index
- Zero-based indices

Sparse matrices

LAPLACE'S EQUATIONS

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

Thermal diffusivity

The steady state problem:

$$\nabla^2 T = 0$$

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$

TRACK TEMPERATURE ON A GRID

ESTIMATES OF THE SECOND DIFFERENTIALS FOR x

 Assume a piece-wise linear profile in the temperature, e.g.:

$$\frac{\partial^{2} T}{\partial x^{2}} \approx \frac{\frac{\partial T}{\partial x}\Big|_{i+1/2} - \frac{\partial T}{\partial x}\Big|_{i-1/2}}{\Delta x}$$

$$\frac{\left(T_{i+1,j} - T_{i,j}\right)_{-} \left(T_{i,j} - T_{i-1,j}\right)_{-}}{\Delta x}$$

$$\approx \frac{\Delta x}{\Delta x}$$

$$= \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\frac{1}{\Lambda}}$$

INCLUDE THE ESTIMATES OF THE SECOND DIFFERENTIALS FOR y

$$\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} + \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta y^2} = 0$$

$$\frac{T_{k+1} - 2T_k - T_{k-1}}{\Delta x^2} + \frac{T_{k+Nx} - 2T_k - T_{k-Nx}}{\Delta y^2} = 0$$

Equal spaced grid $\Delta x = \Delta y = 1$

$$T_{k-Nx} + T_{k-1} - 4T_k + T_{k+1} + T_{k+Nx} = 0$$

$$AT = b$$

LET'S WRITE THIS STUFF AS MATRIX EQUATIONS

```
Nx=5; %number of points along x direction
Ny=5; %number of points in the y direction
e = ones(Nx*Ny,1);
A = spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nx*Ny,Nx*Ny);
```


MATRIX SPARSITY

$$spy(A)$$
 $Nx=Ny=5$

A sparse matrix structure,

which is not tridiagonal: there are offset bands.

Offset bands can cause your trouble!!

LU decomposition

With LU decomposition we produce matrices that are less sparse than the original matrix.

Sparse storage often required, and also numerical techniques that fully utilizes this!

How to impose boundary conditions?

• For the nodes on the boundary, we have a simple equation:

 $T_{k,boundary}$ = Some fixed value

- However, we have set all nodes to be a function of their neighbors...
 - Find the boundary node indices using k = i + Nx(j-1)
 - -i = 1, j = 1:Ny
 - i = Nx, j = 1:Ny
 - j = 1, i = 1:Nx
 - j = Ny, i = 1:Nx
 - Reset the row in A to zeros, set A_{kk} = 1
 - Set value in rhs: b_k = T_{boundary}
- Boundary conditions are often more elaborate to implement!

A full program, including solver, may look like (OASE):

```
function [x, y, T, A] = solveLaplaceEq(Nx, Ny)
% Solves the Laplace equation for steady-state heat conduction
if (nargin < 2)
    Nx = 5;
    Nv = 5;
end
d = 1/Nx;
                                    % Grid spacing
alpha = 1;
                                    % Heat conduction
Tb = [10 \ 20 \ 30 \ 40];
                                    % Fixed boundary temperatures
% Fill sparse matrix with [1 1 -4 1 1]
e = ones(Nx*Ny,1);
A = spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nx*Ny,Nx*Ny);
A = A*alpha/d^2; % This doesn't matter, steady state...
b = zeros(Nx*Ny,1); % Right hand side vector
[A,b] = setBoundaryConditions(A,b,Tb,Nx,Ny); % Set boundary conditions
T = A \setminus b;
                                             % Solve matrix
Tc = reshape(T, [Nx, Ny]);
                                             % Reshape x-vec to mat Nx, Ny
[xc yc] = meshgrid(1:Nx, 1:Ny);
                                             % Get position arrays
surf(xc,yc,Tc)
                                             % Surface plot
```

Solution to the Laplace equation

LU DECOMPOSITION

- Gaussian elimination on a matrix like A requires more memory (with 3D problems, the offset in the diagonal would even be bigger!)
- In general extra memory allocation will not be a problem for MATLAB
- MATLAB is clever, in that sense that it attempts to reorder equations, to move elements closer to the diagonal)

Iterative methods

- Alternatives for Gaussian elimination
- Use iterative methods when systems are large and sparse.
- Often such systems are encountered when we want to solve PDE's of higher dimensions (>1D)

Examples of iterative methods

- Jacobi method
- Gauss-Seidel method
- Succesive over relaxation

- bicg Bi-conjugate gradient method
- pcg preconditioned conjugate gradient method
- gmres generalized minimum residuals method
- bicgstab Bi-conjugate gradient method

The Jacobi method

In our example we derived the following equation:

$$T_{k-Nx} + T_{k-1} - 4T_k + T_{k+1} + T_{k+Nx} = 0$$

Rearranging gives:

$$T_k = \frac{T_{k-Nx} + T_{k-1} + T_{k+1} + T_{k+Nx}}{4}$$

THE JACOBI METHOD

- In the Jacobi scheme the iteration proceeds as follows:
 - Start with an initial guess for the values of T at each node, we calculate an new, updated values using the equation of the previous slide and store a new vector:

 Do this for all other nodes, and use new values as guess, Repeat!

$$T_{k,new} = \frac{T_{k-Nx,old} + T_{k-1,old} + T_{k+1,old} + T_{k+Nx,old}}{4}$$

NOW WITH MATRICES

Consider a matrix A:

Split it into a diagonal matrix D and another matrix S:

SOLVE AT-b

- Now we can solve AT=b by:
 - (D+S).T = b
 - D.T = b –S.T
 - $D.T^{new} = b S.T^{old}$
 - $T^{\text{new}} = D^{-1}(b-S.T^{\text{old}})$

See Wikipedia: Jacobi_method

$$x^{(k+1)} = D^{-1} \left(b - Sx^{(k)} \right)$$

$$x_i^{(k+1)} = \frac{1}{A_{ii}} \left(b_i - \sum_{j \neq i} A_{ij} x_j^{(k)} \right)$$

DIAGRAM OF JACOBI METHOD

Exercise: implement this method and solve a (small) Ax=b system

The core of the solver may look like:

```
while ( norm(A*x-b, 2) > err && it jac < 1000 )
     x \text{ old} = x;
   \rightarrow for i=1:N
          s = 0;
        \rightarrow for j = 1:N
            → if (i ~= i)
                    % Sum off-diagonal*x old
                  \rightarrow s = s+A(i,j)*x old(j);
               end
          end
          % Compute new x value
          x(i) = (b(i)-s)/A(i,i);
     end
     % Increate number of iterations
     it jac = it jac+1;
end
Nested loops, conditional statement, scalar computations. This
  makes Matlab slow. It is much better at performing matrix
                  operations as a whole!
```

Convergence

Protection against infinite loops

Store the previous solution

Resetting the sum for each row

A few remarks on the implementation

- Convergence criterion considerations
 - Compare current and previous solution
 - Compare Ax and b
 - Based on the norm of a vector. Which one?
 - L1-norm (sum)
 - L2-norm (Euclidian distance)
 - L∞-norm (max)
- Number of iterations
 - May be used to detect non-converging cases.
- Start vector x
 - Not shown in the previous example, but should be there
 - Can have huge impact on performance!

The solver using array indices:

```
function [x0,it jac] = solveJacobi(A,b,tol)
% Set default error
if nargin < 3
   tol = 1e-6;
end
x0 = 25*ones(size(b)); % Initial guess
x = zeros(size(b)); % Pre-allocate vector x
N = length(A);
               % Number of equations
it jac = 1;
                    % Init number of iterations
% --- Initial iteration to get x here ---
while ( norm(x-x0, 1) > tol > tol && it jac < 1000 )
    x0 = x;
    for i = 1:N
       x(i) = (1/A(i,i))*((b(i) - A(i,[1:i-1,i+1:N]) * ...
              x0([1:i-1,i+1:N]));
    end
    it jac = it jac + 1;
end
it jac
```

Iterations...

Gauss-Seidel method

- Gauss-Seidel method is quite similar to Jacobi method
- Define a lower and strictly upper triangular matrix, such that A = L + U
 - (L+U)x=b
 - Lx = b-Ux
 - $Lx^{new} = b Ux^{old}$
 - $x^{\text{new}} = L^{-1}(b-Ux^{\text{old}})$

See Wikipedia: Gauss-Seidel method

$$\begin{split} x^{(k+1)} &= L^{-1} \left(b - U x^{(k)} \right) \\ x_i^{(k+1)} &= \frac{1}{A_{ii}} \left(b_i - \sum_{j < i} A_{ij} x_j^{(k+1)} - \sum_{j > i} A_{ij} x_j^{(k)} \right) \end{split}$$

SUMMARY

- Partial differential equations can be written as sparse systems of linear equations
- Sparse systems can be handled with a direct method like Gaussian elimination
- If you have systems of more than 1 dimension, a direct method still can be used, if there are no memory issues, otherwise an iterative method may be attractive.
- The Jacobi method was introduced. Many other methods are based on the Jacobi method (SOR method, for example)

