Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

13

21

23

24

This manuscript was compiled on May 25, 2023

As one of the most fundamental problem in statistics, robust location estimation has many prominent solutions, such as the symmetric trimmed mean, symmetric Winsorized mean, Hodges–Lehmann estimator, Huber M-estimator, and median of means. Recent studies suggest that their maximum biases concerning the mean can be quite different in asymmetric distributions, but the underlying mechanisms and average performance remain largely unclear. This study establishes several forms of orderliness among quantile averages, similar to the mean-median-mode inequality, within a wide range of semiparametric distributions. From this, a sequence of advanced robust mean estimators emerges, which also explains why the Winsorized mean and median of means typically have smaller biases compared to the trimmed mean. Building on the U-orderliness, the superiority of the median Hodges–Lehmann mean is discussed.

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

n 1823, Gauss (1) proved that for any unimodal distribution, $|m-\mu| \leq \sqrt{\frac{3}{4}}\omega$ and $\sigma \leq \omega \leq 2\sigma$, where μ is the population mean, m is the population median, ω is the root mean square deviation from the mode, and σ is the population standard deviation. This pioneering work revealed that despite potential bias in robust mean estimates, the deviation remains bounded in units of a scale parameter under certain assumptions. Bernard, Kazzi, and Vanduffel (2020) (2) further derived asymptotic bias bounds of any quantile for unimodal distributions with finite second moments, by reducing this optimization problem to a parametric one, which can be solved analytically. They showed that m has the smallest maximum distance to μ among all symmetric quantile averages (SQA_{ϵ}). Daniell, in 1920, (3) analyzed a class of estimators, linear combinations of order statistics, and identified that ϵ -symmetric trimmed mean (STM_{ϵ}) belongs to this class. Another popular choice, the ϵ -symmetric Winsorized mean (SWM $_{\epsilon}$), named after Winsor and introduced by Tukey (4) and Dixon (5) in 1960, is also an L-estimator. Bieniek (2016) derived exact bias upper bounds of the Winsorized mean based on Danielak and Rychlik's work (2003) on the trimmed mean for any distribution with a finite second moment and confirmed that the former is smaller than the latter (6, 7). In 1963, Hodges and Lehmann (8) proposed a class of nonparametric location estimators based on rank tests and, from the Wilcoxon signed-rank statistic (9), deduced the median of pairwise means as a robust location estimator for a symmetric population. Both L-statistics and Rstatistics achieve robustness essentially by removing a certain proportion of extreme values. In 1964, Huber (10) generalized maximum likelihood estimation to the minimization of the sum of a specific loss function, which measures the residuals between the data points and the model's parameters. Some L-estimators are also M-estimators, e.g., the sample mean is an M-estimator with a squared error loss function, the sample median is an M-estimator with an absolute error loss function

(10). The Huber M-estimator is obtained by applying the Huber loss function that combines elements of both squared error and absolute error to achieve robustness against gross errors and high efficiency for contaminated Gaussian distributions (10). Sun, Zhou, and Fan (2020) examined the concentration bounds of Huber M-estimator (11). Mathieu (2022) (12) further derived the concentration bounds of M-estimators and demonstrated that, by selecting the tuning parameter which depends on the variance, Huber M-estimator can also be a sub-Gaussian estimator. The concept of median of means $(MoM_{k,b=\frac{n}{h}}, k \text{ is the number of size in each block, } b \text{ is the})$ number of blocks) was implicitly introduced several times in Nemirovsky and Yudin (1983) (13), Jerrum, Valiant, and Vazirani (1986), (14) and Alon, Matias and Szegedy (1996) (15)'s works. Given its good performance even for distributions with infinite second moments, MoM has received increasing attention over the past decade (16–18). Devroye, Lerasle, Lugosi, and Oliveira (2016) showed that MoM nears the optimum of sub-Gaussian mean estimation with regards to concentration bounds when the distribution has a heavy tail (17). For a comparison of concentration bounds of trimmed mean, Huber M-estimator, median of means and other relavent estimators, readers are directed to Gobet, Lerasle, and Métivier's paper (2022) (19). Laforgue, Clemencon, and Bertail (2019) proposed the median of randomized means (MoRM_{k,b}) (18), wherein, rather than partitioning, an arbitrary number, b, of blocks are built independently from the sample, and showed that MoRM has a better non-asymptotic sub-Gaussian property compared to MoM. In fact, asymptotically, the Hodges-Lehmann (H-L) estimator is equivalent to $MoM_{k=2,b=\frac{n}{k}}$ and $MoRM_{k=2,b}$, and they can be seen as the pairwise mean distribution is approximated by the sampling without replacement and bootstrap, respectively. For the asymptotic validity, readers are referred to the foundational works of Efron (1979) (20), Bickel and Freedman (1981, 1984) (21, 22), and Helmers, Janssen, and

36

37

38

41

43

44

45

46

47

51

52

53

54

60

61

62

63

64

65

66

67

68

69

Significance Statement

In 1964, van Zwet introduced the convex transformation order for comparing the skewness of two distributions. This paradigm shift played a fundamental role in defining robust measures of distributions, from spread to kurtosis. Here, instead of examining the stochastic ordering between two distributions, the orderliness of quantile averages within a distribution is investigated. By classifying distributions through the signs of derivatives, a series of sophisticated robust mean estimators is deduced. Nearly all common nonparametric robust location estimators are found to be special cases thereof.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹ To whom correspondence should be addressed. E-mail: tl@biomathematics.org

Veraverbeke (1990) (23).

72

73

74

75

77 78

79

80

81

83

84

85

86

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

Here, the ϵ,b -stratified mean is defined as

$$\mathrm{SM}_{\epsilon,b,n} \coloneqq \frac{b}{n} \left(\sum_{j=1}^{\frac{b-1}{2b\epsilon}} \sum_{i_j = \frac{(2bj-b+1)n\epsilon}{b-1}}^{\frac{(2bj-b+1)n\epsilon}{b-1}} X_{i_j} \right),$$

where $X_1 \leq \ldots \leq X_n$ denote the order statistics of a sample of n independent and identically distributed random variables X_1, \ldots, X_n . $b \in \mathbb{N}, b \geq 3$. The definition was further refined to guarantee the continuity of the breakdown point by incorporating an additional block in the center when $\lfloor \frac{b-1}{2b\epsilon} \rfloor \mod 2 = 0$, or by adjusting the central block when $\lfloor \frac{b-1}{2b\epsilon} \rfloor \mod 2 = 1$ (SI Text). If the subscript n is omitted, only the asymptotic behavior is considered. If b is omitted, b = 3 is assumed. $SM_{\epsilon,b=3}$ is equivalent to STM_{ϵ} , when $\epsilon > \frac{1}{6}$. When $\frac{b-1}{2\epsilon} \in \mathbb{N}$, $b \mod 2 = 1$, the basic idea of the stratified mean is to distribute the data into $\frac{b-1}{2\epsilon}$ equal-sized non-overlapping blocks according to their order, then further sequentially group these blocks into b equal-sized strata and compute the mean of the middle stratum, which is the median of means of each stratum. In situations where $i \mod 1 \neq 0$, a potential solution is to generate multiple smaller samples that satisfy the equality by sampling without replacement, and subsequently calculate the mean of all estimations. The details of determining the sample size and sampling times are provided in the SI Text. Although the principle resembles that of the median of means, $SM_{\epsilon,b,n}$ is different from $MoM_{k=\frac{n}{h},b}$ as it does not include the random shift. Additionally, the stratified mean differs from the mean of the sample obtained through stratified sampling methods, introduced by Neyman (1934) (24) or ranked set sampling (25), introduced by McIntyre in 1952, as these sampling methods aim to obtain more representative samples or improve the efficiency of sample estimates, but the sample means based on them are not robust. When $b \mod 2 = 1$, the stratified mean can be regarded as replacing the other equal-sized strata with the middle stratum, which, in principle, is analogous to the Winsorized mean that replaces extreme values with less extreme percentiles. Furthermore, while the bounds confirm that the Winsorized mean and median of means outperform the trimmed mean (6, 7, 17, 19) in worst-case performance, the complexity of bound analysis makes it difficult to achieve a complete and intuitive understanding of these results. Also, a clear explanation for the average performance of them remains elusive. The aim of this paper is to define a series of semiparametric models using the signs of derivatives, reveal their elegant interrelations and connections to parametric models, and show that by exploiting these models, a set of sophisticated mean estimators can be deduced, which exhibit strong robustness to departures from assumptions.

Quantile average and weighted average

The symmetric trimmed mean, symmetric Winsorized mean, and stratified mean are all L-estimators. More specifically, they are symmetric weighted averages, which are defined as

$$\mathrm{SWA}_{\epsilon,n} \coloneqq \frac{\sum_{i=1}^{\lceil \frac{n}{2} \rceil} \frac{X_i + X_{n-i+1}}{2} w_i}{\sum_{i=1}^{\lceil \frac{n}{2} \rceil} w_i},$$

where w_i s are the weights applied to the symmetric quantile averages according to the definition of the corresponding L-estimators. For example, for the ϵ -symmetric trimmed mean,

 $w_i = \begin{cases} 0, & i < n\epsilon \\ 1, & i \ge n\epsilon \end{cases}$, provided that $n\epsilon \in \mathbb{N}$. The mean and median are indeed two special cases of the symmetric trimmed mean.

To extend the symmetric quantile average to the asymmetric case, two definitions for the ϵ, γ -quantile average $(QA(\epsilon, \gamma, n))$ are proposed. The first definition is:

$$\frac{1}{2}(\hat{Q}_n(\gamma\epsilon) + \hat{Q}_n(1-\epsilon)), \qquad [1]$$

123

124

125

126

130

131

132

133

136

137

139

140

143

144

145

146

and the second definition is:

$$\frac{1}{2}(\hat{Q}_n(\epsilon) + \hat{Q}_n(1 - \gamma \epsilon)), \qquad [2]$$

where $\hat{Q}_n(p)$ is the empirical quantile function, γ is used to adjust the degree of asymmetry, $\gamma \geq 0$ and $0 \leq \epsilon \leq \frac{1}{1+\gamma}$. For trimming from both sides, [1] and [2] are essentially equivalent. The first definition is assumed in the remainder of this article unless otherwise specified, since many common asymmetric distributions are right-skewed, and [1] allows trimming only from the right side by setting $\gamma = 0$.

Analogously, the weighted average can be defined as

$$WA_{\epsilon,\gamma,n} := \frac{\int_{\epsilon_0=0}^{\frac{1}{1+\gamma}} QA(\epsilon_0,\gamma,n) w_{\epsilon_0}}{\int_{\epsilon_0=0}^{\frac{1}{1+\gamma}} w_{\epsilon_0}}.$$

For any weighted average, if γ is omitted, $\gamma=1$ is assumed. The ϵ, γ -trimmed mean $(\mathrm{TM}_{\epsilon,\gamma,n})$ is a weighted average with a left trim size of $\gamma \epsilon n$ and a right trim size of ϵn , where $w_{\epsilon_0} = \begin{cases} 0, & \epsilon_0 < \epsilon \\ 1, & \epsilon_0 \geq \epsilon \end{cases}.$ Using this definition, the TM computation remains the same, regardless of whether $\gamma \epsilon n \notin \mathbb{N}$ or $\epsilon n \notin \mathbb{N}$, since this definition is based on the empirical quantile function. However, in this article, considering the computational cost in practice, the non-asymptotic definitions of various types of weighted averages are essentially based on order statistics in most cases. Unless stated otherwise, the solution to their decimal issue is the same as that in SM.

Classifying distributions by the signs of derivatives

Let \mathcal{P}_{Υ} denote the set of all continuous distribution over \mathbb{R} . Without loss of generality, the discussion of all the classes outlined below is restricted to the intersection with the nonparametric class of distributions, \mathcal{P}_{Υ} . Besides fully and smoothly parameterizing by a Euclidean parameter or just assuming regularity conditions, there are many ways to classify distributions. In 1956, Stein initiated the problem of estimating parameters in the presence of an infinite dimensional nuisance shape parameter (26). A notable example discussed in his groundbreaking work was the estimation of the center of symmetry for an unknown symmetric distribution. In 1993, Bickel, Klaassen, Ritov, and Wellner published an influential semiparametrics textbook (27) which systematically categorized many common models into three classes: parametric, nonparametric, and semiparametric. Yet, there is another old and commonly encountered class of distributions that receives little attention in semiparametric literature: the unimodal distribution. It is a very unique semiparametric model because its definition is based on the signs of derivatives, i.e., for a continuous distribution, $(f'(x) > 0 \text{ for } x \leq M) \land (f'(x) < 0)$

2 | Lee

189 190

191

192

193

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

227

228

229

230

231

232

233

for $x \geq M$), where f(x) is the probability density function (pdf) of a random variable X, M is the mode. Let \mathcal{P}_U denote the set of all unimodal distributions. There was a widespread misbelief that the median of an arbitrary unimodal distribution always lies between its mean and mode until Runnenburg (1978) and van Zwet (1979) (28, 29) endeavored to determine sufficient conditions for the inequality to hold, thereby implying the possibility of its violation. The class of distributions that satisfy the mean-median-mode inequality constitutes a subclass of \mathcal{P}_U . By analogy, a right-skewed distribution is called γ -ordered, if and only if

$$\forall 0 \le \epsilon_1 \le \epsilon_2 \le \frac{1}{1+\gamma}, \mathrm{QA}_{\epsilon_1, \gamma} \ge \mathrm{QA}_{\epsilon_2, \gamma}.$$

The necessary and sufficient condition below hints at the relation between the mean-median-mode inequality and the γ -orderliness.

Theorem .1. Let P_{Υ} represent an arbitrary distribution in the set \mathcal{P}_{Υ} . P_{Υ} is γ -ordered if and only if the pdf satisfies the inequality $f(Q(\gamma \epsilon)) \geq f(Q(1-\epsilon))$ for all $0 \leq \epsilon \leq \frac{1}{1+\gamma}$ or $f(Q(\gamma \epsilon)) \leq f(Q(1-\epsilon))$ for all $0 \leq \epsilon \leq \frac{1}{1+\gamma}$, where $\gamma \geq 0$.

Proof. Without loss of generality, consider the case of right-skewed continuous distribution. From the definition of γ -orderliness, it is deduced that $\frac{Q(\gamma\epsilon-\delta)+Q(1-\epsilon+\delta)}{2} \geq \frac{Q(\gamma\epsilon)+Q(1-\epsilon)}{2} \Leftrightarrow Q(\gamma\epsilon-\delta)-Q(\gamma\epsilon) \geq Q(1-\epsilon)-Q(1-\epsilon+\delta) \Leftrightarrow Q'(1-\epsilon) \geq Q'(\gamma\epsilon)$, where δ is an infinitesimal positive quantity. Observing that the quantile function is the inverse function of the cumulative distribution function (cdf), $Q'(1-\epsilon) \geq Q'(\gamma\epsilon) \Leftrightarrow F'(Q(\gamma\epsilon)) \geq F'(Q(1-\epsilon))$, thereby completing the proof, given that the derivative of cdf is pdf. \square

According to Theorem .1, if a probability distribution is right-skewed and monotonic, it will always be γ -ordered, provided $\gamma > 0$. For a right-skewed continuous unimodal distribution, if $Q(\gamma \epsilon) > M$, the inequality $f(Q(\gamma \epsilon)) \geq f(Q(1 - \epsilon))$ holds. The principle is extendable to unimodal-like distributions. Suppose there is a right-skewed continuous multimodal distribution following the mean- γ -median-first mode inequality with several smaller modes on the right side, with the first mode, M_1 , having the greatest probability density, and the γ -median, $Q(\frac{\gamma}{1+\gamma})$, falling within the first dominant mode (i.e., if $x > Q(\frac{\gamma'}{1+\gamma})$, $f(Q(\frac{\gamma}{1+\gamma})) \ge f(x)$), then if $Q(\gamma\epsilon) > M_1$, the inequality $f(Q(\gamma \epsilon)) \geq f(Q(1-\epsilon))$ also holds. In other words, while a distribution following the mean- γ -median-mode inequality may not be strictly γ -ordered, the inequality that defines γ -orderliness remains valid for most quantile averages. The mean- γ -median-mode inequality can also indicate possible bounds for γ in practice, e.g., for any distributions, when $\gamma \to \infty$, the γ -median will be greater than the mean and the mode, when $\gamma \to 0$, the γ -median will be smaller than the mean and the mode.

Consider the sign of the derivative of the quantile average with respect to the breakdown point; the above definition of γ -orderliness can also be expressed as

$$\forall 0 \le \epsilon \le \frac{1}{1+\gamma}, \frac{\partial QA_{\epsilon,\gamma}}{\partial \epsilon} \le 0.$$

The left-skewed case can be obtained by reversing the inequality $\frac{\partial QA_{\epsilon,\gamma}}{\partial \epsilon} \leq 0$ to $\frac{\partial QA_{\epsilon,\gamma}}{\partial \epsilon} \geq 0$ and employing the second definition of QA, as given in [2]. For simplicity, it will be

omitted in the following discussion. If $\gamma=1$, the γ -ordered distribution is referred to as ordered.

Furthermore, many common right-skewed distributions are partial bounded, indicating a convex behavior of the QA function when $\epsilon \to 0$. By further assuming convexity, the second γ -orderliness can be defined for a right-skewed distribution as follows,

$$\forall 0 \leq \epsilon \leq \frac{1}{1+\gamma}, \frac{\partial^2 Q A_{\epsilon,\gamma}}{\partial \epsilon^2} \geq 0 \wedge \frac{\partial Q A_{\epsilon,\gamma}}{\partial \epsilon} \leq 0.$$

Analogously, the ν th γ -orderliness of a right-skewed distribution can be defined as $(-1)^{\nu} \frac{\partial^{\nu} Q A_{\epsilon,\gamma}}{\partial \epsilon^{\nu}} \geq 0 \wedge \ldots \wedge - \frac{\partial Q A_{\epsilon,\gamma}}{\partial \epsilon} \geq 0$. If $\gamma=1$, the ν th γ -orderliness is referred as ν th orderliness. Let \mathcal{P}_O denote the set of all distributions that are ordered and $\mathcal{P}_{O_{\nu}}$ and $\mathcal{P}_{\gamma O_{\nu}}$ represent the sets of all distributions that are ν th ordered and ν th γ -ordered, respectively. When the shape parameter of the Weibull distribution, α , is smaller than 3.258, it can be shown that the Weibull distribution belong to $\mathcal{P}_U \cap \mathcal{P}_O \cap \mathcal{P}_{O_2} \cap \mathcal{P}_{O_3}$ (SI Text). At $\alpha \approx 3.602$, the Weibull distribution is symmetric, and as $\alpha \to \infty$, the skewness of the Weibull distribution reaches 1. Therefore, the parameters that prevent it from being included in the set correspond to cases when it is near-symmetric, as shown in the SI Text. Nevertheless, computing the derivatives of the QA function is often intricate and, at times, challenging. The following theorems establish the relationship between \mathcal{P}_O , $\mathcal{P}_{O_{\nu}}$, and $\mathcal{P}_{\gamma O_{\nu}}$, and a wide range of other semi-parametric distributions. They can be used to quickly identify some parametric distributions in \mathcal{P}_O , $\mathcal{P}_{O_{\nu}}$, and $\mathcal{P}_{\gamma O_{\nu}}$.

Theorem .2. For any random variable X whose probability distribution function belongs to a location-scale family, the distribution is ν th γ -ordered if and only if the family of probability distributions is ν th γ -ordered.

Proof. Let Q_0 denote the quantile function of the standard distribution without any shifts or scaling. After a location-scale transformation, the quantile function is $Q(p) = \lambda Q_0(p) + \mu$, where λ is the scale parameter and μ is the location parameter. According to the definition of the ν th γ -orderliness, the signs of derivatives of the QA function are invariant after this transformation. As the location-scale transformation is reversible, the proof is complete.

Theorem .2 demonstrates that in the analytical proof of the ν th γ -orderliness of a parametric distribution, both the location and scale parameters can be regarded as constants. It is also instrumental in proving other theorems, as illustrated below.

Theorem .3. Any symmetric distribution with a finite second moment is ν th ordered.

Proof. Without loss of generality, assuming continuity and m=0. A symmetric distribution is a probability distribution such that for all x, f(x)=f(-x). Its cdf satisfies F(x)=1-F(-x). Let x=Q(p), then, F(Q(p))=p=1-F(-Q(p)) and $F(Q(1-p))=1-p\Leftrightarrow p=1-F(Q(1-p))$. Therefore, F(-Q(p))=F(Q(1-p)). Since the cdf is monotonic, $-Q(p)=Q(1-p)\Leftrightarrow Q(p)+Q(1-p)=0$. As a result, all symmetric quantile averages coincide; the ν th order derivative is zero. The case of $m\neq 0$ follows directly from Theorem .2.

147

148

149

151

152

153

154

155

156

157

158

159

160

161

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

180

181

182

As a consequence of Theorem .3 and the fact that generalized Gaussian distribution is symmetric around the median, it is ν th ordered.

235

236

237

247

248

250

251

252

253

254

255

256

257

258

259

260

261

262

263 264

265

266

267

268

269

270 271

272

275

276

277

278

279

280

281

282

283 284

285

286 287

288

289

290 291

292

293

296

301

302

Theorem .4. Any continuous right-skewed distribution whose 238 quantile function Q satisfies $Q^{(\nu)}(p) \geq 0 \wedge \dots Q^{(i)}(p) \geq 0 \dots \wedge$ 239 $Q^{(2)}(p) \geq 0$, $i \mod 2 = 0$, is $\nu th \gamma$ -ordered, provided that 240 $0 < \gamma < 1$. 241

242 Proof. Since
$$(-1)^i \frac{\partial^i Q A_{\epsilon,\gamma}}{\partial \epsilon^i} = \frac{1}{2}((-\gamma)^i Q^i (\gamma \epsilon) + Q^i (1 - \epsilon)),$$

243 for $0 \le \epsilon \le \frac{1}{1+\gamma}$ and $1 \le i \le \nu$, when $i \mod 2 = 0$,
244 $(-1)^i \frac{\partial^i Q A_{\epsilon,\gamma}}{\partial \epsilon^i} \ge 0$ for all $\gamma \ge 0$. When $i \mod 2 = 1$, if
245 further assuming $0 \le \gamma \le 1$, $(-1)^i \frac{\partial^i Q A_{\epsilon,\gamma}}{\partial \epsilon^i} \ge 0$, since
246 $Q^{(i+1)}(p) \ge 0$.

It is now straightforward to prove that the Pareto distribution follows the ν th γ -orderliness, provided that $0 < \gamma < 1$, since the quantile function of the Pareto distribution is $Q(p) = x_m (1-p)^{-\frac{1}{\alpha}}$, where $x_m > 0$, $\alpha > 0$, and so $Q^{(\nu)}(p) > 0$ for all $\nu \in \mathbb{N}$ according to the chain rule.

Data Availability. Data for Figure ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

ACKNOWLEDGMENTS. I sincerely acknowledge the insightful comments from the editor which considerably elevated the lucidity and merit of this paper.

- CF Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. (Henricus Dieterich), (1823).
- C Bernard, R Kazzi, S Vanduffel, Range value-at-risk bounds for unimodal distributions under partial information. Insur. Math. Econ. 94, 9-24 (2020).
- P Daniell, Observations weighted according to order. Am. J. Math. 42, 222-236 (1920).
- JW Tukey, A survey of sampling from contaminated distributions in Contributions to probability and statistics. (Stanford University Press), pp. 448-485 (1960)
- WJ Dixon, Simplified Estimation from Censored Normal Samples. The Annals Math. Stat. 31 385 - 391 (1960).
- K Danielak, T Rychlik, Theory & methods: Exact bounds for the bias of trimmed means. Aust. & New Zealand J. Stat. 45, 83-96 (2003)
- M Bieniek, Comparison of the bias of trimmed and winsorized means, Commun. Stat. Methods 45, 6641-6650 (2016).
- J Hodges Jr. E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat 34, 598-611 (1963).
- F Wilcoxon, Individual comparisons by ranking methods. Biom. Bull. 1, 80-83 (1945).
- PJ Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35, 73-101 (1964). 273 274
 - 11. Q Sun, WX Zhou, J Fan, Adaptive huber regression, J. Am. Stat. Assoc. 115, 254–265 (2020).
 - T Mathieu, Concentration study of m-estimators using the influence function. Electron. J. Stat. 16 3695-3750 (2022)
 - AS Nemirovskij, DB Yudin, Problem complexity and method efficiency in optimization. (Wiley Interscience), (1983),
 - MR Jerrum, LG Valiant, VV Vazirani, Random generation of combinatorial structures from a uniform distribution. Theor. computer science 43, 169-188 (1986).
 - N Alon, Y Matias, M Szegedy, The space complexity of approximating the frequency moments in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. pp. 20-29 (1996)
 - PL Bühlmann, Bagging, subagging and bragging for improving some prediction algorithms in Research report/Seminar für Statistik, Eidgenössische Technische Hochschule (ETH). (Seminar für Statistik, Eidgenössische Technische Hochschule (ETH), Zürich), Vol. 113, (2003).
 - L Devroye, M Lerasle, G Lugosi, RI Oliveira, Sub-gaussian mean estimators. The Annals Stat. 44, 2695-2725 (2016).
 - P Laforgue, S Clémençon, P Bertail, On medians of (randomized) pairwise means in Interna tional Conference on Machine Learning. (PMLR), pp. 1272-1281 (2019).
 - E Gobet, M Lerasle, D Métivier, Mean estimation for Randomized Quasi Monte Carlo method working paper or preprint (2022)
- 294 B Efron, Bootstrap methods: Another look at the jackknife. The Annals Stat. 7, 1-26 (1979) 295
 - PJ Bickel, DA Freedman, Some asymptotic theory for the bootstrap. The annals statistics 9 1196-1217 (1981).
- PJ Bickel, DA Freedman, Asymptotic normality and the bootstrap in stratified sampling. The 298 annals statistics 12, 470-482 (1984).
- R Helmers, P Janssen, N Veraverbeke, Bootstrapping U-quantiles. (CWI. Department of 299 Operations Research, Statistics, and System Theory [BS]), (1990).
 - 24. J Neyman, On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. J. Royal Stat. Soc. 97, 558-606 (1934).

25. G McIntyre, A method for unbiased selective sampling, using ranked sets. Aust. journal agricultural research 3, 385-390 (1952).

303

304

305

306

307

308

309

310

- CM Stein. Efficient nonparametric testing and estimation in Proceedings of the third Berkeley symposium on mathematical statistics and probability, Vol. 1, pp. 187-195 (1956).
- 27. P Bickel, CA Klaassen, Y Ritov, JA Wellner, Efficient and adaptive estimation for semiparamet ric models. (Springer) Vol. 4, (1993).
- 28 JT Runnenburg, Mean, median, mode, Stat. Neerlandica 32, 73-79 (1978).
- 29. Wv Zwet, Mean, median, mode ii. Stat. Neerlandica 33, 1-5 (1979)

4 Lee