두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Rokey Dan	제출자 성명	한준모
참여 명단	이호준, 위석환, 한준모		
모임 일시	2025 년 3 월 27 일 19 시 30 분 ~ 20 시 30 분(총 1 시간)		
장소	Discord	출석 인원	3
학습목표	Modern Robotics 10 장 동작계획 Paper review		
학습내용	모션 플래닝 (Motion Planning) 목차 정리 10.1 모션 플래닝 개요 (Overview of Motion Planning) • 10.1.1 모션 플래닝 문제의 유형 (Types of Motion Planning Problems) • 10.1.2 모션 플래너의 속성 (Properties of Motion Planners) • 10.1.3 모션 플래닝 기법 (Motion Planning Methods) 10.2 기초 개념 (Foundations)		

- 10.2.1 구성 공간 장애물 (Configuration Space Obstacles)
- 10.2.2 장애물 거리 및 충돌 감지 (Distance to Obstacles and Collision Detection)
- 10.2.3 그래프 및 트리 (Graphs and Trees)
- 10.2.4 그래프 탐색 (Graph Search)
 - 10.3 완전한 경로 계획 알고리즘 (Complete Path Planners)
 - 10.4 그리드 기반 기법 (Grid Methods)
- 10.4.1 다중 해상도 그리드 표현 (Multi-Resolution Grid Representation)
- 10.4.2 모션 제약을 포함한 그리드 기법 (Grid Methods with Motion Constraints)
 - 10.5 샘플링 기반 기법 (Sampling Methods)
- 10.5.1 RRT 알고리즘 (The RRT Algorithm)
- 10.5.2 PRM 알고리즘 (The PRM Algorithm)
 - 10.6 가상 퍼텐셜 필드 (Virtual Potential Fields)
- 10.6.1 구성 공간 내의 한 점 (A Point in C-space)
- 10.6.2 네비게이션 함수 (Navigation Functions)

- 10.6.3 작업 공간 퍼텐셜 (Workspace Potential)
- 10.6.4 바퀴형 이동 로봇 (Wheeled Mobile Robots)
- 10.6.5 퍼텐셜 필드의 모션 플래닝 활용 (Use of Potential Fields in Planners)
 - 10.7 비선형 최적화 (Nonlinear Optimization)
 - 10.8 경로 다듬기 (Smoothing)

오늘은 각자 10 장을 읽고 A*, RRT, PRM Algorithm 을 github 소스 코드를 이용하거나 직접 구현하여 동작하는 시간을 가졌다.

석환님은 python turtle tool 을 이용해서 구현된 깃 허브의 소스코드를 사용했고 호준님은 직접 코드를 작성했으며 저는 matlab 의 robotics toolbox 에 있는 PRM 예제를 가져왔다. 해당 코드를 직접 구현해보면서 알고리즘을 더 깊이 이해하는 시간을 가졌다.

활동평가

이후 RT1 과 RT2 관련 논문 리뷰를 했다. 해당 논문에서 어떻게 이미지와 단어 토큰을 엮어서 사용하는지에 대한 아키텍쳐를 알 수 있었다. 또한 이러한 방식을 또 한번 로봇의 관절 위치까지 연결해서 로봇이 작동이 되는 논문이고 RT2 로 가면서 좀 더 세밀한 제어가 되었다.

이후 논문은 Weekly Spatial AI 에서 발표한 논문들을 간단히 소개하였다. 정리하면 다음과 같다.

	 Map 없이 현재 위치를 파악하는 기법 Computer vision 과 AR 을 엮어서 원격으로 조종 논문 휴머노이드를 손과 패달로 조종하는 논문 Low cost 로 manipulator 미세한 조종 논문 	
	이상이다.	
과제	다음주는 시험기간으로 쉬어 갑니다~	
향후 계획	04.08 일에 다시 모여서 추후 계획 세울 예정.	

