

411.	Let P_1 be a parabola with vertex $(3,2)$ and focus $(4,4)$ and P_2 be its mirror	: image	with respect to the line $\alpha + 2\alpha = 6$. Then the directrix of D , is $\alpha + 2\alpha = 6$.	
1.		image	is with respect to the time $x + 2y = 0$. Then the directix of T_2 is $x + 2y = 0$.	
2,	Let $x = 2t, y = \frac{t^2}{3}$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $SA \perp BA$, where A is any point on the conic. If k is the ordinate of the centroid of the ΔSAB , then $\lim k$ is equal to			
	(1) $\frac{17}{18}$	(2)	19	
	(1) $\frac{17}{18}$ (3) $\frac{11}{18}$ ongo /// mathongo /// mathongo /// mathongo	(4)	$\frac{18}{18}$ thongo ///. mathongo ///. mathongo ///. mathongo ///.	
3.	Let P be a point on the parabola, $y^2=12x$ and N be the foot of the perpen mid-point M of PN , parallel to its axis which meets the parabola at Q . If t	dicular he $y{ m -i}$	drawn from P , on the axis of the parabola. A line is now drawn through the ntercept of the line NQ is $\frac{4}{3}$, then :	
	(1) PN = 4		$MQ = \frac{1}{3}$	
	$(3) MQ = \frac{1}{4}$	` ′	PN=3	
4.	Let $P(4, -4)$ and $Q(9, 6)$ be two points on the parabola, $y^2 = 4x$ and let X be any point on the arc POQ of this parabola, where O is the vertex of this parabola such that the area of ΔPXQ is maximum. Then this maximum area (in sq. units) is:			
	(1) $\frac{625}{4}$	(2)		
///. _			125 hongo /// mathongo /// mathongo /// mathongo ///	
5.	If the x-intercept of a focal chord of the parabola $y^2 = 8x + 4y + 4$ is 3, then the length of this chord is equal to			
6.	Let PQ be a focal chord of the parabola $y^2 = 36x$ of length 100, making an acute angle with the positive x -axis. Let the ordinate of P be positive and M be the point on the line segment PQ such that $PM: MQ = 3:1$. Then which of the following points does NOT lie on the line passing through M and perpendicular to the line PQ ?			
	(1) (-6,45)	(2)	(6,29) mathongo we were well as the weak well as the	
	(3) (3, 33)	(4)	(-3, 43)	
7.		sect the	e parabola at two points P and Q . Let the points $G(10,\ 10)$ be the centroid of	
	(1) 296	(2)		
	(3) 317	(4)		
8.	Let the latus rectum of the parabola $y^2=4x$ be the common chord to the c centres of the circles C_1 and C_2 is:	ircles (C_1 and C_2 each of them having radius $2\sqrt{5}$. Then, the distance between the	
	(1) 12 (3) $8\sqrt{5}$ go /// mathongo /// mathongo /// mathongo	(4)	$_{4\sqrt{5}}^{\circ}$ longo $/\!/\!$ mathongo $/\!/\!$ mathongo $/\!/\!$ mathongo $/\!/\!$	
9.	(3) $8\sqrt{5}$ Let P be a variable point on the parabola $y = 4x^2 + 1$. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point F			
٠.	to the line $u = m$ is:			
	(1) $(3x-y)^2 + (x-3y) + 2 = 0$	(2)	mathons $2(3x-y)^2+(x-3y)+2=0$ Mathons Mathons	
	(3) $(3x-y)^2 + 2(x-3y) + 2 = 0$		$2(x-3y)^2 + (3x-y) + 2 = 0$	
10.	Let a tangent to the curve $y^2 = 24x$ meet the curve $xy = 2$ at the points A and B. Then the mid-points of such line segments AB lie on a parabola with the			
10.	(1) directrix $4x = 3$		directrix $4x = -3$	
	(3) Length of latus rectum $\frac{3}{2}$		Length of latus rectum 2	
11.		r axis a	along x-axis. If its minor axis subtends an angle 60° at the foci, then the square	
12.	Let the eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4\sqrt{\frac{2}{5}},3\right)$, then $a^2 + b^2$ is equal to			
	(1) 29	(2)		
	(3) 32	(4)	34	
13.	If the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ meets the line $\frac{x}{7}+\frac{y}{2\sqrt{6}}=1$ on the x-axis and the	e line	$\frac{x}{y} - \frac{y}{y} = 1$ on the y-axis, then the eccentricity of the ellipse is	
	$\frac{1}{7} = \frac{1}{2\sqrt{6}}$ (1) $\frac{5}{7}$	(2)		
		(4)	$\frac{7}{2\sqrt{5}}$	
			$\frac{2\sqrt{5}}{7}$ hongo ///. mathongo ///. mathongo ///. mathongo ///.	
14.	Let PQ be a focal chord of the parabola $y^2=4x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3,0)$. Let the line segment PQ be also a focal chord of ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a^2 > b^2$. If e is the eccentricity of the ellipse E , then the value of $\frac{1}{e^2}$ is equal to $(1) \ 1 + \sqrt{2}$ $(2) \ 3 + 2\sqrt{2}$			
	ellipse $E: \frac{x^2}{a^2} + \frac{y}{b^2} = 1, a^2 > b^2$. If e is the eccentricity of the ellipse E, the	en the	value of $\frac{1}{e^2}$ is equal to	
	(1) $1+\sqrt{2}$	(2)	$3+2\sqrt{2}$	
	(3) $1 + 2\sqrt{3}$	(4)	$4+5\sqrt{3}$	
15.	Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^2}{a^2}$	$+\frac{y^2}{4}$	a=1,a>2, having one of its vertices at one end of the major axis of the ellipse	
	and one of its sides parallel to the y-axis, be $6\sqrt{3}$. Then the eccentricity of	the elli	pse is:	
	(1) $\frac{\sqrt{3}}{2}$	(2)	$\frac{1}{2}$ mathongo /// mathongo /// mathongo /// mathongo ///	
	(3) $\frac{1}{\sqrt{2}}$ mathongo was mathongo was mathongo	(4)	$\frac{\sqrt{3}}{4}$ matnongo matnong	

Most Important PYQs Questions	Conic Section JEE Main Crash Course			
16. Let $P(\frac{2\sqrt{3}}{3}, \frac{6}{3})$, Q, R and S be four points on the ellipse $9x^2 + 4u^2$	=36. Let PQ and RS be mutually perpendicular and pass through the origin. If			
$\frac{1}{(PQ)^2} + \frac{1}{(RS)^2} = \frac{p}{q}, \text{ where } p \text{ and } q \text{ are coprime, then } p+q \text{ is equal to}$				
(PQ) (RS) 4 ((1) 147 ngo /// mathongo /// mathongo /// mathongo /// mathongo				
	then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be: Thomps with mathongs			
(1) $11x + 7y + 8 = 0$ or $11x + 7y - 15 = 0$	(2) $11x - 7y - 8 = 0$ or $11x + 7y + 15 = 0$			
(3) $2x - 7y + 29 = 0$ or $2x - 7y - 7 = 0$	(4) $2x - 7y - 39 = 0$ or $2x - 7y - 7 = 0$			
	the points A and B respectively. Let the major axis of E be a diameter of the circle C . Let E area of the triangle with vertices E , E and the origin E is E , where E and E are			
coprime, then $m-n$ is equal to mathons				
(1) 16 (3) 17	(2) 15(4) 18			
19. Letithongo /// mathongo /// mathongo /// mathong				
$S = \Bigl\{ (x,y) \in \mathbb{N} imes \mathbb{N} : 9(x-3)^2 + 16(y-4)^2 \le 144 \Bigr\}$				
and $T=\left\{(x,y)\in\mathbb{R} imes\mathbb{R}:(x-7)^2+(\mathrm{y}-4)^2\leq 36 ight\}$ The $n(S\cap T)$ is equal to				
20. The line $y = x + 1$ meets the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$ at two points P and Q	Q. If r is the radius of the circle with PQ as diameter then $(3r)^2$ is equal to			
(1) 20 ongo // mathongo // mathongo // mathongo // mathongo				
21. The locus of the mid-point of the line segment joining the point $(4,3)$ a (1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1}{2}$	and the points on the ellipse $x^2+2y^2=4$ is an ellipse with eccentricity (2) $\frac{1}{2\sqrt{2}}$ (4) $\frac{1}{2}$			
(3) $\frac{1}{\sqrt{2}}$				
22. Let $O(0,0)$ and $A(0,1)$ be two fixed points. Then, the locus of a point $F(0,0)$ $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	P such that the perimeter of $\triangle AOP$ is 4 is $(2) 9x^2 - 8y^2 + 8y = 16$ $(4) 9x^2 + 8y^2 - 8y = 16$			
	the hyperbola $2x^2-2y^2=1$. If the ellipse intersects the hyperbola at right angles, then			
_ · · ·	= 3. If L is also a tangent to the parabola $y^2 = \alpha x$, then α is equal to: authorized			
(1) 12	(2) -12			
(3) 24	(4) -24			
25. Let the hyperbola $H: \frac{x^2}{2} - \frac{y^2}{2} = 1$ pass through the point $(2\sqrt{2}, -2\sqrt{2})$	$\overline{2}$). A parabola is drawn whose focus is same as the focus of H with positive abscissa and			
•	the directrix of the parabola passes through the other focus of H . If the length of the latus rectum of the parabola is e times the length of the latus rectum of H ,			
where e is the eccentricity of H , then which of the following points lies				
(1) $\left(2\sqrt{3},3\sqrt{2}\right)$	(2) $\left(3\sqrt{3}, -6\sqrt{2}\right)$			
$(3) \left(\sqrt{3}, -\sqrt{6}\right)$	$(4) \left(3\sqrt{6}, 6\sqrt{2}\right)$			
mathongo // mathongo // mathongo // mathongo	be such that the length of latus rectum of H is equal to the length of latus rectum of E . If			
e_H and e_E are the eccentricities of H and E respectively, then the value				
21. Let R be a rectangle given by the lines $x = 0$, $x = 2$, $y = 0$ and $y = 5$. divides the area of the rectangle R in the ratio $4:1$. Then, the mid-poin	Let $A(\alpha, 0)$ and $B(0, \beta)$, $\alpha \in [0, 2]$ and $\beta \in [0, 5]$, be such that the line segment AB			
(1) straight line	(2) parabola			
(1) statistic line (2) hyperbola /// mathongo /// mathongo /// mathongo	(4) circle ongo /// mathongo /// mathongo /// mathongo ///			
28. Let $H_n: \frac{x^2}{1+n} - \frac{y^2}{3+n} = 1$, $n \in \mathbb{N}$. Let k be the smallest even value of n	such that the eccentricity of H_k is a rational number. If l is the length of the latus rectum mathongo ma			
7// mathongo 7// mathongo 7// mathongo 7// mathong	a $H: \frac{x^2}{49} - \frac{y^2}{64} = -1$. Let the major and minor axes of the ellipse E coincide with the			
transverse and conjugate axes of the hyperbola H . Let the product of the then the value of 113 l is equal to	e eccentricities of E and H be $\frac{1}{2}$. If l is the length of the latus rectum of the ellipse E,			

30. A square ABCD has all its vertices on the curve $x^2y^2=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of ABCD is