Nome: Rogério Marcos Fernandes Neto NUSP: 10284632 Curso: Bacharelado em Ciência da Computação MAC0320 - Introducão à Teoria dos Grafos

LISTA 4

E16. Provar (nos moldes da prova vista em aula para o algoritmo de Kruskal) que o algoritmo descrito a seguir constrói uma árvore geradora de custo mínimo.

ALGORITMO DESAPEGADO

Entrada: Grafo conexo G = (V, A), com custos c_a em cada aresta $a \in A$. Saída: Árvore ótima T (árvore geradora de custo mínimo).

- (Ordenação) Ordene as arestas de G em ordem não-crescente de seus custos. Chame-as de a₁, a₂, . . . , a_m , sendo c(a₁) ≥ c(a₂) ≥ · · · ≥ c(a_m).
- T ← G.
- 3. Para i=1 até m faça se $T-a_i$ é conexo então $T\leftarrow Ta_i$
- Devolva T

Solução:

Prova. Seja G um grafo e seja T a árvore geradora de custo mínimo constuída pelo algoritmo DESAPEGADO.

Notemos, primeiramente, que T realmente é uma árvore geradora. O algoritmo remove arestas enquanto o grafo resultante for conexo. Portanto, T é um grafo conexo minimal, ou seja, é uma árvore.

Iremos provar agora que T realmente é ótima. Seja $A(T) = \{e_1, \ldots, e_k\}$, onde $c(e_i) \ge c(e_j)$ se i < j. Seja T^* uma árvore geradora ótima de G com mais arestas em comum com T. Suponha, por absurdo, que $T \ne T^*$.

Seja $e_j = uv$ a primeira aresta em A(T) tal que $e_j \notin A(T^*)$ (isso é, $\{e_1, \ldots, e_{j-1}\} \in A(T^*)$) e seja P o único caminho em T^* que conecta uav. Então existe uma aresta xy em P que não pertence a T (do contrário, T teria um circuito). Como o algoritmo escolheu xy então temos que $c(xy) \ge c(uv)$. De fato, note que como xy pertence a um circuito, então

