EDV in Medizin und Biologie 18 (4), 105-107, ISSN 0300-8282 © Eugen Ulmer GmbH & Co., Stuttgart; Gustav Fischer Verlag KG, Stuttgart

A PASCAL program for fitting nonlinear regression models on a micro-computer

Johan D. Buys and Klaus von Gadow

Summary

A numerical algorithm which calculates a least squares fit of data to general nonlinear models is implemented as a PASCAL procedure.

1. Introduction

The use of nonlinear regression models is very popular in forestry research and management. Standard statistical packages are available for fitting data to these models, for example, the routine BMDPAR or the procedure NLIN in SAS. However, as the use of micro-computers is increasing, the need for small, efficient fitting routines arises.

There are commercial programs for fitting a nonlinear model on a small computer. However, these programs are inaccessible to the user and cannot be modified to improve the processing performance under specific circumstances.

For this reason we present a numerical algorithm and a corresponding procedure in PASCAL.

2. The algorithm

We have chosen to implement the well-known algorithm of Levenberg and Marquardt (see I. E. DENNIS and R. B. SCHNABEL, 1983) for minimizing the sum of squares of devia-

$$S(a_1,\,\ldots,\,a_m) = \sum_{i=1}^n \, [y_i - b(x_i;\,a_1,\,\ldots,\,a_m)]^2$$
 where the regression model is

$$y = f(x; a_1, \ldots, a_m) + \varepsilon,$$

the model parameters are a₁, ..., a_m and the data points are $(x_i, y_i), i = 1, ..., n.$

The algorithm is iterative, and starts with initial estimates $a_i^{(0)}$, i = 1, ..., m of the desired parameter values. After k steps of the algorithm, estimates $a_i^{(k)}$, $i=1,\ldots,m$ have been obtained and improved estimates $a_i^{(k+1)}$ are then computed as follows:

$$a_i^{(k+1)} = a_i^{(k)} + \Delta a_i^{(k)}, i = 1, ..., m$$

where the corrections $\Delta a_i^{(k)}$ are obtained as the solution of the set of linear equations

$$[J_k^T J_k + \lambda_k D_k] \Delta a^{(k)} = J_k^T R_k.$$

In the linear system, $\Delta a^{(k)}$ is the vector of corrections $\Delta a_i^{(k)}$, Rk is the residual vector

$$R_k = [y_i - f(x_i; a_1^{(k)}, ..., a_m^{(k)}]^T,$$

 \boldsymbol{J}_k is the $n\times m$ Jacobian matrix

$$J_k = \left[\frac{\vartheta f}{\vartheta a_i} \; (x_i, \, a_1^{(k)}, \, \ldots, \, a_m^{(k)}) \right]\!,$$

 D_k is a diagonal weight matrix which we take as D_k = $\operatorname{diag}(J_k^1 J_k)$, and λ_k is a parameter which is used to enhance convergence of the algorithm (see below).

In our implementation of the algorithm, we compute all derivatives (elements of the matrix J_k) numerically with a finite difference formula, but this can easily be changed if analytical derivatives are available. In order to conserve storage space, the matrix J_k is not stored. $J_k^T J_k$ is formed step by step as the necessary elements are computed. The system of linear equations is solved by the Cholesky method for positive definite systems.

The strategy for choosing the parameter λ_k is as follows. The residual sum of squares $S_k = S(a_i^{(k)}, \ldots, a_m^{(k)})$ is monitored at each step of the algorithm. If $S_{k+1} < S_k$, it is assumed that the algorithm is converging and λ_k is decreased by a fixed factor in order to force the algorithm towards a Gauss-Newton step for fast convergence. If however $S_{k+1} \ge S_k$, the corrections $\Delta a_i^{(k)}$ are not accepted; instead λ_k is increased to force the algorithm towards a steepest gradient step in an effort to enforce convergence, and the corrections $\Delta a_i^{(k)}$ are recomputed.

The algorithm is stopped when the corrections $\Delta a_i^{(k)}$ are small compared to the parameter estimates aik+1).

```
REPEAT it:=it+1;
PROGRAM Nonlin;
     dimdata = ARRAY[1..33] OF REAL; (max of 33 data pairs)
dimpar = ARRAY[1..10] OF REAL; (max of 10 parameters)
dimpar2 = ARRAY[1..10,1..10] OF REAL;
                                                                                                       FOR i:=1 TO n DO
                                                                                                        BEGIN
                                                                                                            VAR
                                                                                                       END;
FOR k:=1 TO m DO
     i : INTEGER;
    fail : BOOLEAN;
fk : CHAR;
x, y : dimdata;
a : dimpar;
                                                                                                            FOR i:=1 TO n DO
                                                                                                            BEGIN
ai:=a[i]; a[i]:=ai+s[i]; hi:=a[i]-ai;
d[i]:=(func(x[k],a) - f[k])/hi; a[i]:=ai;
PROCEDURE constants;
                                                                                                            END;
FOR i:=1 TO n DO
begin
   gin (tree heights(Y) and ages(X)) x[1]:=5.0; x[2]:=10.0; x[3]:=20.0; x[4]:=30.0; x[5]:=40.0; y[1]:=5.0; y[2]:=10.6; y[3]:=18.2; y[4]:=24.5; y[5]:=27.9;
                                                                                                            BEGIN
                                                                                                                 IN
dd[i]:=dd[i]+d[i]*(y[k]-f[k]);
FOR j:=i TO n DO h[i,j]:=h[i,j]+d[i]*d[j];
                                                                                                            END
                                                                                                       END;

FOR i:=1 TO n DO s[i]:=h[i,i];

rep:=0; sqdec:=false;
{specify the equation)
FUNCTION func(x : REAL; a : dimpar) : REAL;
     func:=a[1]*(1-exp(a[2]*X)); {example}
                                                                                                             u:=mu+1.;
FOR i:=1 TO n DO
END; (func)
h[i,i]:=u*s[i]; d[i]:=dd[i];
END;
                                                                                                             cholsolve:
                       x, (Input: Vector of independent observations)
y : dimdata; (Input: Vector of dependent
observations)
                                                                                                             IF fail THEN GOTO stop;
ss:=0.;
FOR i:=1 TO n DO
                                                                                                            ss:=ss+d[i]*dd[i]; d[i]:=a[i]+d[i];
END;
                       VAR fail : BOOLEAN (Output: Error indicator)
i, j, k, it, rep : INTEGER;
ai, er, hi, mu, sq, sqq, ss, u : REAL;
f : dimdata;
d, dd, s : dimpar;
h : dimpar2;
sqdec : BOOLEAN;
CONST
                                                                                                             sqq:=0.;
FOR k:=1 TO m DO
                                                                                                            BEGIN
                                                                                                                f[k]:=func(x[k],d); er:=y[k]-f[k]; sqq:=sqq+er*er;
    repmax: INTEGER = 10; itmax: INTEGER = 50; inc: REAL = 3.; dec: REAL = 5.; eps: REAL = 1.e-6; hh: REAL = 1.e-6;
                                                                                                            END:
                                                                                                            IF sqq > sq+1.e-4*ss THEN BEGIN
LABEL
                                                                                                                stop;
PROCEDURE cholsolve:
                                                                                                            END
                                                                                                       ELSE sqdec:=True;
UNTIL sqdec OR fail;
IF fail THEN GOTO stop;
i, j, k : INTEGER;
s, ss : REAL;
BEGIN
                                                                                                        sq:=sqq; ss:=0.;
     fail:=False;
                                                                                                            FOR i:=1 TO n DO
     FOR j:=1 TO n DO BEGIN
                                                                                                            REGIN
                                                                                                                ai:=Abs(d[i]-a[i])/(1.e-12+Abs(d[i]));

IF ai > ss THEN ss:=ai;

a[i]:=d[i];
         s:=h[j,j];
FOR i:=1 TO j-1 DO s:=s-h[j,i]*h[j,i];
          IF s>=0. THEN
                                                                                                           a[1]:=a[1];
END;
IF rep = 0 THEN mu:=mu/dec;
IF it = itmax THEN fail:=True;
Writeln; Write(it:3,' ',mu:10,' ',sq:10,' ');
FOR i:=1 TO n DO Write(a[i]:9:5,' ');
              s:=Sqrt(s); h[j,j]:=s;
FOR i:=j+1 TO n DO
BEGIN
                  ss:=h[j,i];
ss:=h[j,i];
FOR k:=1 TO j-1 DO ss:=ss-h[i,k]*h[j,k];
                                                                                                            Writeln;
                                                                                                       UNTIL (ss < eps) OR fail;
              h[i,j]:=ss/s;
END
                                                                                                       stop:
         END
ELSE fail:=True;
                                                                                                  END; (nlsq)
     END;
IF NOT fail THEN
                                                                                                       constants;
                                                                                                       constants;
a[1]:=35; a[2]:=-0.05; (initial parameter values)
nlsq(2,5,a,x,y,fail);
Writeln; Write('fail=',fail,' ');
FOR i:=1 TO 2 DO Write(a[i]:10:7,' ');
     BEGIN
          d[1]:=d[1]/h[1,1];
FOR i:=2 TO n DO
          BEGIN
              s:=d[i];
FOR j:=1 TO i-1 DO s:=s-h[i,j]*d[j];
              d[i]:=s/h[i,i];
         END;
d[n]:=d[n]/h[n,n];
FOR i:=n-1 DOWNTO 1 DO
              s:=d[i];
FOR j:=i+1 TO n DO s:=s-h[j,i]*d[j];
              d[i]:=s/h[i,i];
         END
     END
END; (cholsolve)
    mu:=20.; it:=0; sq:=0.;
FOR k:=1 TO m DO
BEGIN
          f[k]:=func(x[k],a); er:=y[k]-f[k]; sq:=sq+er*er;
     END:
```

107

3. Numerical examples

As a first example, we present the under bark radii (r_i) , in centimetres) at different heights (h_i) , in metres) of a Eucalyptus cloeziana tree:

h_i: 0 0,6 1,2 1,35 2,4 4,9 7,3 9,8 12,2 15,2 18,3 r_i: 7,37 6,73 6,10 6,06 5,84 5,08 4,57 3,81 3,05 1,52 0

The following taper model (C. F. Brink and K. von Gadow, 1986) was fitted to the data:

$$r(h) = i + (r_b - i)_e^{p(b-h)} - \frac{pi}{p+q} \left[e^{q(h-H)} - e^{q(b-H)+p(b-h)} \right]$$
(1)

where

r(h) = under bark tree radius (cm),

h = tree height (m),

b = breast height (1,35 m),

r_b = under bark radius at breast height (6,06 cm),

H = total tree height (18,3 m),

e = 2,71...

i, p, q = parameters to be estimated.

The following parameter values were obtained after 28 iterations:

$$i = 10,02$$
; $p = 2,1826$; $q = 0,0524$.

The error mean square was 0,028. These values were very close to those obtained with the commercial routine BMDPAR:

$$i = 10,09$$
; $p = 2,2126$; $q = 0,0520$.

The second example concerns the mean height in a stand of Pinus patula trees (h_i, metres) at different ages (t_i, years):

$$\begin{array}{l} t_i; \ 1,75\,4,24\,6,62 \ 8,75\,12,75\,17,67\,23,67\,29,45\,31,04\,35,38 \\ h_i; \ 1,3 \ 5,4 \ 9,3 \ 12,4 \ 17,0 \ 20,9 \ 24,0 \ 25,3 \ 25,7 \ 26,0 \ 26,7 \end{array}$$

The 3-parameter Chapman Richards model used by O. GAR-CIA (1984) was fitted to the data:

$$h = A(1 - e^{kt})^{1/m}$$
 (2)

where

h = mean height (m),

t = stand age (years),

 $e = 2,71, \dots$

A, k, m = parameters to be estimated.

Given the initial parameter values: A = 40; k = -0.2; m = 0.5; the following final values were obtained after 10 iterations:

$$A = 27.7$$
; $k = -0.1042$; $m = 0.6305$.

The residual SS was 0,1736.

The mean height/age data set was used again to fit the 4parameter Chapman Richards model:

$$h = A(1 - be^{kt})^{1/(1-m)}$$
(3)

using the initial values A = 40; b = 1; k = -0.2; m = 0.5.

The final parameter values were obtained after 22 iterations:

$$A = 28.1$$
; $b = 1.07$; $k = -0.09479$; $m = 0.2341$;

and the residual SS was 0,00919 (note the improved fit when compared with the 3-parameter model).

4. References

Brink, C. F. and K. von Gadow, 1986: On the use of growth and decay functions for modelling stem profiles. EDV in Medizin und Biologie 17(1/2): 20–27.

DENNIS, J. E.; and R. B. SCHNABEL, 1983: Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, New Jersey.

GARCIA, O., 1984: New Class of Growth Models for Even-Aged Stands: Pinus radiata in Golden Downs Forest. N. Z. Journal of Forestry Science 14(1).

Eingegangen am 22. Juli 1987

The authors' addresses: J. D. Buys, Department of Mathematics, K. von Gadow, Department of Forest Science, University of Stellenbosch, 7600 Stellenbosch, South Africa