

3 Steps to Design Cisco SD-WAN On-Prem

Andraz Piletic, Consulting Engineer / Instructor Prashant Tripathi, Global Technical Solutions Architect

BRKRST-2559

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Agenda

- Designing controllers connectivity
- Deployment requirements
- Managing SA/VA
- Certificate Authority Options
- Zero Touch Provisioning
- vManage Cluster
- Designing high availability and scale

Architecture

Controllers Deployment Options

Colors, Address Assignments, and Connectivity

On-Prem Design Consideration

- How to connect WAN Edge devices to controllers?
 - Internet
 - MPLS
 - Multiple Transports

Should I use private IPs, NAT, public IPs?

What transport colors should I assign to my controllers?

Where to place controllers in on-prem environment?

Transport Colors

- Color attribute is used to identify:
 - Individual WAN transport tunnel TLOC Interface
 - Underlay network attachment
- The specific color is categorized as Private or Public
 - Private Colors [mpls, private1-6, metro-ethernet]
 - All other colors are public [default, red, blue,..., public-internet,...]
- Private vs Public color is highly significant
- Color setting applies to:
 - WAN Edge to Controller Communication
 - WAN Edge to WAN Edge Communication

Transport Colors and Control Connections

Local Color: Public Controller Color: Public

Use: Public IP

Local Color: Private Controller Color: Public

Use: Public IP

Local Color: Private
Controller Color: Private

Use: Private IP

Public IP

O Public Color

Private IP

Option A) Assigning Public IPs to Controllers

- 1 WAN Edge points to the vBond public IP and learns about vManage and vSmart public IPs
- 2 Optionally advertise controllers' public IPs also into private transport.
- 3 WAN Edge establishes control connections also via private transport using same controllers' public IPs

O Private Color

Option B) Assigning NATed Public IPs to Controllers

- 1 WAN Edge points to the vBond FQDN that resolves to NATed IP.
- 2 WAN Edge communicates with vSmart and vManage NATed public IP over the Internet only.
- Same design option as used in cloudhosted scenario.

- Public IP (post-NAT)
- O Public Color O Private Color

Private IP (pre-NAT)

Option B) Assigning NATed Public IPs to Controllers

- 1 vSmart and vManage point to the vBond NATed public IP.
- 2 vBond learns interface private and NATed IP address of vSmart and vManage.
- 3 vSmart and vManage use private IPs for communication
- Same Site-ID must be used
- Public IP (post-NAT) O Public Color
- cisco Life!
- Private IP (pre-NAT)

Option C) Assigning Private IPs to Controllers

- 1 Controllers' private IPs are advertised across private transports.
- 2 WAN Edge points to the vBond private IP address.
- vBond private IP address is reachable through all private transports.
- 3 WAN Edge communicates with vSmart and vManage by connecting to their private IP address.

- Public IP
- O Public Color
- Private IP
- Private Color

Option D) Assigning NATed Public IPs to Controllers

1 WAN Edge points to the vBond FQDN that resolves both public and private IP.

	Private IP	Public IP
MPLS	✓	×
Internet	×	✓

- WAN Edge communicates with vSmart and vManage NATed public IP over Internet and use private IPs over MPLS
- Private color to private color uses private IP, public color to public color uses public IP.
- Public Color O Private Color

cisco live!

Private IP (pre-NAT)

Option D) Assigning NATed Public IPs to Controllers

- 1 vSmart and vManage point to the vBond NATed public IP.
- 2 vBond learns interface private and NATed IP address of vSmart and vManage.
- 3 vSmart and vManage use private IPs for communication
- vSmart and vManage use private color (non-default).
- Public IP (post-NAT) O Private Color
- cisco Live!
- Private IP (pre-NAT)

Review of Design Options

Option	Controller's IPs	Behind NAT	Color Type	Reachable from INET	Reachable from MPLS
Α	Public	No	Public	Yes	Only if advertised
В	Private	Yes	Public	Yes (NAT)	No
С	Private	No	Private	No	Yes
D	Private	Yes	Private	Yes (NAT)	Yes

- Prefer designs with control connections over multiple transports for better resiliency
- Option A) is the cleanest/simplest

Controllers Placement in On-Prem Environment

Using Loopback for TLOC Termination

 Problem: TLOC configuration on WAN interface locks down the interface – control connections are not routed through.

Using Loopback for TLOC Termination

- Problem: TLOC configuration on WAN interface locks down the interface control connections are not passed through
- Solution: Configure TLOC interface on loopback

Connecting Controllers Without WAN CE Router

 Configure TLOC on Loopback to allow control connections passing through the WAN Edge towards controllers.

cisco Live

Firewall Rules for On-Prem Controllers

BRKRST-2559

Deployment Requirements

Controllers' Requirements

- All controllers are deployed as virtual machines
- Supported Hypervisors in on-prem deployment
 - KVM
 - VMware ESXi (5.5 6.5)
- SSD-based storage required for all controllers

 One underlay (VPN0) interface is supported on each controller, optional additional interface for out-of-band management (VPN512)

Verifying vManage System Requirements

Devices	vCPUs	RAM	OS Volume	Database Volume	Bandwidth	vNICs
1-250	16	32 GB	20 GB	500 GB, 1500 IOPS	25 Mbps	2
251-1000	32	64 GB	20 GB	1 TB, 3072 IOPS	100 Mbps	2
1000+	32	64 GB	20 GB	1 TB, 3072 IOPS	150 Mbps	3*

- Private lab setup for learning purposes will work with less resources.
- * vManage Cluster requires dedicated interface for message bus.

Verifying vBond System Requirements

Devices	vCPUs	RAM	OS Volume	Bandwidth	vNICs
1-50	2	4 GB	10 GB	1 Mbps	2
51-250	2	4 GB	10 GB	2 Mbps	2
251-1000	2	4 GB	10 GB	5 Mbps	2
1001+	4	8 GB	10 GB	10 Mbps	2

- vBond is installed using vEdgeCloud OVA.
- OVA is preconfigured with four vCPUs.

Verifying vSmart System Requirements

Devices	vCPUs	RAM	OS Volume	Bandwidth	vNICs
1-50	2	4 GB	16 GB	2 Mbps	2
51-250	4	6 GB	16 GB	5 Mbps	2
251-1000	4	16 GB	16 GB	7 Mbps	2
1001+	8	16 GB	16 GB	10 Mbps	2

vSmart controller can run also as container instance in vContainer

Performing Controller Installation

 Detailed step by step procedure covered at CiscoLive San Diego & Barcelona 2019:

BRKRST-2559 - 3 Steps to **Deploy** Cisco SD-WAN On-Prem

 Recordings and slides are available in the <u>Cisco Live On-</u> <u>Demand Library</u>

Managing Smart Account & Virtual Accounts

Cisco Smart and Virtual Accounts

• Smart Account (SA) – central repository where you can view, store, and manage licenses across the entire organization.

- Virtual Account (VA) subaccount to organize and manage licenses based company needs.
 - Created and maintained by the customer
 - Individual SD-WAN overlay is mapped to a single VA
- Recommendation: create dedicated VA for SD-WAN needs
- Find SA Admin to accept PnP Agreement

Cisco Software Central - software.cisco.com

govern your use of that software. Read them here.

Modify the properties of your Smart Account and associate individual Cisco Smart Accounts with your

BRKRST-2559

Smart Account.

Learn about Smart Accounts

Access documentation and training.

Workflow Overview

BRKRST-2559

Defining Controller Profile

Controller Profile Details

- Defined Organizational Name must match on all SD-WAN components.
- First profile must be marked as default

- Specify Domain or IP of onprem vBond controller.
- Optionally upload Enterprise Root CA.

Adding Brownfield Devices to PnP Portal

Adding Brownfield Devices to PnP Portal (Cont.)

 Certificate Serial Number is required field for SD-WAN deployments

 On IOS-XE platforms running 16.6.1 or more use: show crypto pki certificates

37

Obtaining License / Provisioning File

Certificate Authorities

Certificate Authority Options

- Cisco PKI can be used for on-prem controllers deployment.
- CSRs can be automatically signed using configured Smart account and internet connectivity from vManage.
- Manual signing is supported via PnP portal.
- Enterprise certificates can be used for on-prem controllers deployment.
- Need to install root certificate chain and sign all CSRs manually.

- DigiCert certificates can also be used also in on-prem deployment.
- Need to contact CloudOps for approval.
- Root certificate is preinstalled in the software.

Utilizing Cisco PKI

BRKRST-2559

Cisco PKI is supported since 19.1 software release

Utilizing Cisco PKI - Manual Method

- For environments where vManage cannot connect to the PnP portal
- Manually generate CSRs for all controllers and submit them to the PnP Portal

Manually Submiting CSR to Cisco PKI

Utilizing Cisco PKI - Downloading Signed Cert

 When approaching expiration date, make sure new CSRs are generate and new certificates obtained and installed.

Using Enterprise CA

- Customer's existing CA infrastructure:
 - Microsoft CA is commonly used within enterprise environments.
- Convenient CA setups for lab testing and PoCs:
 - XCA
 - TinyCA
 - OpenSSL
 - The OpenSSL library is part of most Linux distributions by default.
 - · Can be used for simple certificate generation, signing CSRs, etc.
- If using subordinate servers, make sure you export/import the full root-ca chain.

Utilizing Enterprise CA

Zero Touch Provisioning

Zero Touch Provisioning - vEdge HW Appliance

- Public ZTP vBond can redirect to cloud hosted or On-Prem controllers.
- New devices are linked to organization using the Smart Account when placing order.
- Additional devices can be associated with the customer using the PnP Connect portal
- ZTP for vEdges can be deployed also On-Prem

Option1:

- DHCP on WAN interface
- DNS to resolve ztp.viptela.com

Option2:

- Discover local addressing via ARP
- Google DNS: resolve ztp.viptela.com

Configuring On-Prem ZTP vBond Server

Dedicated vBond server can act as a ZTP server. Required steps:

1. Activate the ZTP role.

vBondZTP(config)# system vbond ip-address local ztp-server

- 2. Obtain a signed certificate by a trusted CA (Symantec / Digicert).
- 3. Define and upload the whitelist file.
- Configure a local DNS server to resolve ztp.viptela.com with ZTP vBond IP.
- 5. Define device templates.

Obtaining Signed Certificate by Trusted CA

```
vBondZTP# request csr upload /home/admin/ztp.csr

Uploading CSR via VPN 0

Enter organization-unit name : ZTPvBond

Re-enter organization-unit name : ZTPvBond

Generating private/public pair and CSR for this vbond device

Generating CSR for this vbond device ......[DONE]

Copying ... /home/admin/ztp.csr via VPN 0

CSR upload successful
```

Generate and submit CSR to <u>Symantec Certificate Enrollment portal</u>

Obtaining Signed Certificate by Trusted CA (Cont.)

```
vBondZTP# request certificate install /home/admin/ztp.pem
Installing certificate via VPN 0
Copying ... /home/admin/ztp.pem via VPN 0
Successfully installed the certificate
vBondZTP# show certificate installed
    Data:
        Version: 3 (0x2) Serial Number: 6f:3a:61:cd:a8:de:3e:b1:b9
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=US, O=Symantec Corporation, OU=Symantec Trust Network,
        CN=Symantec Class 3 Secure Server CA - G4
        Validity
            Not Before: Nov 29 00:00:00 2019 GMT
            Not After: Nov 30 23:59:59 2020 GMT
        Subject: C=US, ST=California, L=San Jose, O=vIPtela Inc,
        OU=ZTPvBond, CN=vbond-088b7cc2-a905-2f4ee1729bf9-0.viptela.com
```

Uploading The ZTP Whitelist Chassis File

```
vBondZTP# vshell
                                                       Define and verify chassis file
vBondZTP~$ cat ztp-chassis-file
12345,6789, valid, 10.0.0.22, 12346, CLEUR 2020 BRKRST - 2559, /home/admin/ca.crt
vBondZTP# request device-upload chassis-file /home/admin/ztp-chassis-file
Uploading chassis numbers via VPN 0
                                                                 Apply chassis file
Copying ... /home/admin/ztp-chassis-file via VPN 0
Successfully loaded the chassis numbers file to the database.
Uploading the serial numbers to the vedge-list ...
Uploading serial numbers via VPN 0
Copying ... /home/admin/ztp-chassis-file via VPN 0
Successfully loaded the vEdge serial numbers
vBondZTP# show ztp entries
     CHASSIS
            SERIAL
                                      VBOND
                                           ORGANIZATION
INDEX
     NUMBER
             NUMBER
                   VALIDITY VBOND IP
                                      PORT
                                           NAME
                                                                  PATH
     12345 6789 valid 10.0.0.22 12346 CLEUR 2020 BRKRST - 2559
                                                                  /home/admin/ca.crt
```

Zero Touch Provisioning - WAN Edge Appliance

- The PnP Connection Manager can redirect to cloud-hosted or On-Prem controllers.
- New devices are linked to organization using the Smart Account when placing order.
- Additional devices can be associated with the customer using the PnP Connect portal
- No on-prem ZTP server support for IOS-XE SDWAN devices at the moment.

ZTP - Bootstraping With Configuration File

```
<... output omitted ...>
#cloud-boothook
  system
   personality
                          vedae
   device-model
                          vedge-ISR-4321
   host-name
                          WanEdge
                         10.255.255.121
   system-ip
   site-id
                        "CLEUR 2020 BRKRST - 2559"
   organization-name
   console-baud-rate
                          9600
   vbond 203.0.113.3 port 12346
interface GigabitEthernet0/0/0
   no shutdown
   ip address 198.0.51.10 255.255.255.0
  exit.
ip route 0.0.0.0 0.0.0.0 198.0.51.1
< ... output omitted ...>
```


 The config file with interface configuration, Root CA, Organization Name, vBond information, is fed into the PnP process.

 Supported only on SD-WAN IOS-XE (since 16.10).

Generating Bootstrap Configuration File

Attach template to device placeholder

Specify device specific variable values

Generate bootstrap config

 Store it on bootflash: or usbflash: as ciscosdwan.cfg

BRKRST-2559

Designing for High Availability and Scale

Controllers High Availability Overview

vBond Active Active vSmart Active Active Active

BRKRST-2559

vBond High Availability and Scale

- Default behavior: WAN Edge tries to resolve and connect to all known vBond IPs on all WAN interfaces. Connection is transient.
- Scale approach:
 - Configure regional domain name to point to specific regional vBond pair
 - Rely on DNS A records or define manual host entry

vSmart High Availability and Scale

Default behavior:

- WAN Edge connects up to two vSmarts on each transport
- Example: WAN Edge with two transports == 2 control connec
- No control over vSmart preference

Scaling approach:

Leverage controller groups and affinity values

Controller Groups

Standalone vManage - Disaster Recovery

- Prerequisites:
 - Same SW version
 - Signed certificate on standby vManage
 - Synchronized clock
 - Reachable vBond
 - Disabled tunnel-interface on standby vManage

Managing Backup of Active vManage Controller

Manually creating vManage backup

```
vmanage# request nms configuration-db backup path /home/admin/db backup
Starting backup of configuration-db
Creating staging directory for backup.
config-db backup logs are available in /var/log/nms/neo4j-backup.log file
Successfully saved database to /home/admin/db_backup.tar.gz
```

Transporting backup to external location

- Caveat: configuration-db does not include local users and repository
- Tip: utilize a script to automate regular backups and exports

Activating Standby vManage Controller

Import backup to standby vManage

Standby-vManage# request nms configuration-db restore /home/admin/db backup.tar.gz Configuration database is running in a standalone mode Importing database...Successfully restored database

- Check all services are running using #request nms all status
- Under *Configuration>Certificates>Controllers* edit existing vBond entries by retyping mgmt IPs and credentials.
- Bring up vManage tunnel-interface
- Send the updated device list to vBond controllers
- Under Configuration>Certificates>WAN Edge List select Send to Controllers
- Invalidate failed vManage controller

Taking VM Level Snapshots

- Taking VM level snapshots for vManage controller is heavily recommended
 - Quick recovery
 - Rollback on controller upgrades

- Similar method is used by Cisco for Cloud hosted environment
 - Daily snapshots kept for 10 day
- Snapshots do not preclude the need for configuration database backups

Designing vManage Cluster with High Availability

vManage Cluster

- · Why cluster:
 - Managing large number of devices
 - Distributing NMS service load
 - Providing HA and redundancy for FT

- · Main vManage services:
 - Application Server (GUI)
 - Statistics DB (statistics, logs, alarms, events)
 - Configuration DB (policies, templates, certificates)
 - Messaging Server (used by cluster)

Understanding the vManage Cluster

- Dedicated interface in VPN0 is used for synchronization (10G recommended)
- Required latency below 5ms (same DC)
- Databases run on odd number of members – quorum required
- Control connections are by default loadbalanced between all members
- By default all services run on all members in a cluster

vManage Cluster Design - Basic Deployment

- 3 nodes, all services run on all nodes
- In case of single node failure:
 - Remaining nodes can support up to 4000 devices.
 - Configuration and statistics DBs are replicated, no data is lost

	vManage 1	vManage 2	vManage 3
Application Server	✓	✓	√
Statistics Database	✓	✓	✓
Configuration Database	✓	✓	√
Messaging Server	✓	✓	√
Control Connections	✓	✓	√

vManage Cluster Design – Increasing Stats DB Performance and Scale

- When improved performance and scale of Statistics DB is required
- Configuration DB redundancy is not provided
- Failure of first node will prevent management until recovery
- In case of other node failure, cluster can support up to 6000 devices

	vManage 1	vManage 2	vManage 3	vManage 4
Application Server	✓	✓	✓	✓
Statistics Database		✓	✓	✓
Configuration Database	✓			
Messaging Server	✓			
Control Connections	✓	√	✓	✓

vManage Cluster Design - Large Deployment

- Improved performance with redundancy
- Nodes 1-3 host everything except Statistics DB. In single node failure scenario can support up to 4000 devices.
- Nodes 4-6 host Statistics DB and no control connections for max performance.

	vManage 1	vManage 2	vManage 3	vManage 4	vManage 5	vManage 6
Application Server	✓	✓	✓	✓	✓	✓
Statistics DB				✓	✓	✓
Configuration DB	✓	✓	✓			
Messaging Server	✓	✓	✓			
Control Conn	✓	✓	✓			

vManage Cluster Disaster Recovery

vManage Cluster Disaster Recovery

- Problem: Cluster nodes must be part of same DC due to low latency requirements.
 Single cluster does not fulfill DR requirements. Need for automatic failover.
- Solution: Primary cluster, standby cluster, and arbitrator instance, which performs automatic failover in case of failure

Understanding DR Arbitrator

- Installed as dedicated vManage instance (low resource profile).
- Tracks health state of the cluster.
- Prevents split-brain scenarios.

- Triggers activation of standby cluster in case of disaster (all nodes down).
 - No configuration changes is needed on WAN edge devices.
- Arbitrator and cluster members need IP connectivity over enterprise network.

Primary vManage Cluster Active

^{*} Control connections between WAN Edges and vBonds/vSmarts not shown

Secondary vManage Cluster Active After Failover

^{*} Control connections between WAN Edges and vBonds/vSmarts not shown

Scenario A) Failed DCI Link Between Clusters

Scenario 2) Failed Connectivity With Arbitrator

Scenario 3) Failed Connectivity With Arbitrator or Failed Arbitrator

Next Steps

Documentation:

Cisco Documentation

https://sdwan-docs.cisco.com

Cisco Live On-Demand Library

BRKRST-2559

Webex Teams room

SD-WAN Guides (CVDs)

Design Guide, Deployment Guide

vManage Cluster White paper

SD-WAN TechNotes

<u>Disaster Recovery</u>

cisco Live!

Breakouts

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

illilli CISCO

Thank you

cisco live!

You make possible

Loopback Interface - Bind mode

- In case of bind mode, each loopback is bound to a physical interface
- Traffic destinated to loopback will be carried to and from mapped physical interface
- This can be used when customers have connected subnets on transport side, and can use loopback to form control connections and data tunnels.

Loopback Interface - Unbind Mode

- In case of unbind mode, loopback interface is not bound to any physical interface
- Traffic destinated to loopback can go through any physical interface (Based on hash lookup)
- This can be used when there are multiple transports available to same provider

