Problem 5.16)

$$x + 3y - 4z = 25$$

 $-2x + 5y + 7z = -66$
 $3x - 2y + 3z = 7$

Sustituimes en la soyunde y tercera ecuación:

$$-2(-3y+4z+2s)+5y+7z=-66$$

3(-3y+4z+2s)-2y+3z=7

$$x = -3(-2) + 4(-6) + 2s = 3$$

 $(x,y,2) = (7,-2,-6)$

Problem 5. 17)

$$(11) 2 \times -3y + 62 = -12 \xrightarrow{x^2} 4x - 6y + 122 = -24$$

$$(11) 5 \times +2y - 82 = 29 \xrightarrow{x^3} 15x + 6y - 242 = 87$$

$$(111) 2 \times +6y + 42 = 49$$

$$2 \times +6y + 42 = 49$$

Sumamos (1) y (11):

Summes (1) y (111):

$$z = -1/2$$
 $(x_{y},z) = (3,5,-1/2)$
 $y = 5$

Problem 5.18)

$$x = -2 = 2 - 2A + B = -2C + 0$$

$$x=0$$
 \Longrightarrow $0=0$

$$A = C$$
 y $0 = 0$.

I mportante

Si dos expresiones lineoles Son iguales pora todos los valores de X, entonces sus constantes deben ser iguales y los coeficientes de los términos linoules también deben ser iguales.

$$A \times + 0 = C \times + 0$$

Para todo x, entences A = C y B = 0.

Edercicios

$$x + 3y + 2z = 6$$
 $-3x + y + 5z = 29$
 $-2x - 3y + z = 14$

$$-x$$
 $+32 = 20$

$$-X = 20 - 3$$
7

$$x = 3(7) - 20$$
 $z = 7$

$$(x,y,z)=(1,-3,7)$$

= 29 - 5(7)+3

$$-8 + 22 - 242 = 36$$

$$-222 = 44$$
Sushitu yendo $2: 6x - 15y = 75 - 9(-2)$

$$6x - 15y = 93$$

$$2 = -2$$

$$-x-y = -6 - 4(-t)$$

$$-x-y = -6 + 8$$

$$+\frac{-6x-6y=12}{-21y=105}$$
 $-X=-6.4y-42$
 $X=6-y+42$

$$y = \frac{105}{21} = -5$$
 $x = 6+5-8$

$$(9 = 0)$$
 $(9 = 0)$

66 Stabo 27mx 52 + 55 + 16

$$19+y+21 = 18+x+y$$

$$22 = x$$

$$70 = 2$$

 $y + 2 = 26 + 20 = 46$

$$5.6.4$$
)
 $2013b-4c=7$
 $a-b+2c=6$

(a)
$$5i \ \alpha = 0 \qquad 35 - 4c = 7 \qquad (a,b,c) = (0,13,8)$$

$$\frac{4 - 2b + 4c = 6}{b} = 13$$

(b)
$$Si C = 0$$
 $2a + 3b = 7$
 $-2a - 2b = 12$
 $Sb = -S$ $(a,b,c) = (5,-1,0)$
 $b = -1$

(c)
$$2a+3b-4c=7$$
 $\longrightarrow 2a+3b-4c=7$ $a-b+2c=6$ $\longrightarrow 2a-2b+4c=12$ $\longrightarrow 4a+b=19$

Ahord Sustitutions

•
$$2\alpha + 3(19 - 4\alpha) - 4c = 7$$

• $2\alpha + 57 - 12\alpha - 4c = 7$
• $-10\alpha - 4c = 7 - 57$
• $-10\alpha - 4c = 7 - 57$

(1) y (11) son iguales, por lo tanto toda solución de una ecuación será solución de la otra.

$$\left(a,b,c\right)=\left(a,19-4a,\frac{-5a+25}{2}\right)$$

Para Chalquier Malor de a, el triple (a,b,c) satisface ambos echaciones.
Tiene infinitos soluciones