2º Trabalho Computacional

Análise Numérica (2 a 16/12 de 2020)

Notas Gerais:

O relatório deve ser apresentado num único ficheiro PDF (< 6 páginas), que submetem no Fenix.

O ficheiro deve ser nomeado $\mathbf{T2}$ - $\mathbf{G}NN$. \mathbf{pdf} onde NN é o número do grupo (NN=00 para o Grupo 0).

Esse relatório deve conter o texto com a programação necessária para correr os resultados apresentados.

Rotinas pré-existentes, não são consideradas como programação vossa.

Considere G o seu número de grupo e g o seu número mecanográfico.

Questão 1:

Considere a matriz $M \in [0, 255]^{m \times n}$ associada ao mapa (preto-branco) que usou no 1º trabalho computacional. Calcule uma decomposição SVD, pelos passos seguintes:

- (i) Implemente, por Gram-Schmidt modificado, o método QR;
- (ii) Efectue uma decomposição $M^{\top}M = Q^{\top}D^2Q$;
- (iii) Defina M = UDQ com $U = MQ^{\top}D^{-1}$; e considere $M_s = U_{m \times s}D_{s \times s}Q_{s \times n}$.
- a) Explicite $E_s = \frac{1}{mn} ||M M_s||_{\infty}$ em função de s num gráfico.
- **b)** Apresente figuras dadas por M_s para três valores de s, que considere pertinentes, e comente, tendo em conta a) e o factor

$$\phi = \frac{(m+n+1)s}{mn}$$

Questão 2:

Considere a resolução de um sistema de equações diferenciais ordinárias resultante do modelo SIR (percentagem de Susceptíveis-Infectados-Recuperados) na propagação de uma epidemia.¹

Use $\beta = 1$ (ou outro valor).

$$\begin{cases} s'(t) = -s(t) \ i(t)\beta, \\ R_0 \ i'(t) = (R_0 \ s(t) - 1) \ i(t)\beta, \\ R_0 \ r'(t) = i(t)\beta \end{cases}$$

onde R_0 é o número básico de reprodução, aqui razão entre a taxa de infecção β e a taxa de recuperação. Neste caso a população total é p, com s(t) + i(t) + r(t) = 1. Assuma que a percentagem de susceptíveis inicial é s(0) = 1 - i(0), pois no dia inicial a percentagem de infectados foi i(0).

a) Simule o resultado para p = g e $R_0 = 1 + G/15$, implementando o método de Adams-Bashforth de ordem 4, com inicialização por Runge-Kutta.

Apresente um gráfico ilustrativo do número de infectados em função do tempo.

Analise experimentalmente numa tabela, a ordem de convergência do método.

- b) Identificando o número de infectados ao número de internados, que usou no 1º trabalho:
- (i) Fixo p por si, qual o valor de R_0 que melhor se ajusta (norma ℓ_2) aos valores dos primeiros 100 dias, após o início dos internamentos em Portugal?
 - (ii) O mesmo que em (i) mas agora variando β e também R_0 .
 - (iii) Calcule também (ii) para os últimos 100 dias, antes de Dezembro.

Nos casos anteriores descreva o processo que usou, e apresente os gráficos comparativos entre o modelo e o registado. Comente os valores e o modelo.

¹Y. Okabe, A. Shudo (2020) A Mathematical Model of Epidemics - A Tutorial for Students, Mathematics (8) 7, 1174.