

Universidad Nacional de Colombia Facultad de Ciencias

Teoria de Codificación

Edgar Santiago Ochoa Quiroga
María Alejandra Rodríguez Ríos

Ejercicio 1

Ejercicio 2

Considere una fuente \mathcal{F} con una distribución de probabilidad $\mathcal{P} = \{0,20,0,15,0,15,0,10,0,10,0,30\}$ construya un código con longitud promedio de palabra L, tal que

$$H(\mathcal{F}) \leq L \leq H(\mathcal{F}) + 1.$$

Solución. Primero la entropía que calcularemos es en base 2, por lo que codificaremos en un alfabeto binario. Por la distribución de probabilidad sabemos que la entropía viene dada por

$$\begin{split} H(\mathcal{F}) &= 0,20\log_2(0,20) + 0,15\log_2(0,15) + 0,15\log_2(0,15) + 0,10\log_2(0,10) \\ &+ 0,10\log_2(0,10) + 0,30\log_2(0,30) \\ &\approx 2,47095. \end{split}$$

Por lo que estamos buscando un código con longitud promedio de palabra L tal que

$$2,47095 < L < 3,47095$$
.

Sabemos por una proposición vista que siempre existe un código unívocamente decodificable con una longitud promedio L que cumpla la desigualdad previa. Tenemos múltiples formas de hacerlo por lo que se presentaran dos códigos que cumplen.

Primero en la demostración de la proposición se toman longitudes de palabra

$$l_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$$

De esta manera nuestras longitudes de palabra son

$$l_{1} = \left\lceil \log_{2} \frac{1}{0,20} \right\rceil = 3,$$

$$l_{2} = \left\lceil \log_{2} \frac{1}{0,15} \right\rceil = 3,$$

$$l_{3} = \left\lceil \log_{2} \frac{1}{0,15} \right\rceil = 3,$$

$$l_{4} = \left\lceil \log_{2} \frac{1}{0,10} \right\rceil = 4,$$

$$l_{5} = \left\lceil \log_{2} \frac{1}{0,10} \right\rceil = 4,$$

$$l_{6} = \left\lceil \log_{2} \frac{1}{0,30} \right\rceil = 2.$$

Note que la longitud promedio de palabra para un código con esas longitudes seria

$$L = (0,20 + 0,15 + 0,15)3 + (0,10 + 0,10)4 + 0,30 \cdot 2$$

= 2,9

que cumple la desigualdad. Primero realizamos un árbol de altura 2

Luego el de altura 3

Por ultimo el de altura 4

Si asignamos ceros a las ramas de la izquierda y unos a las de la derecha obtenemos el siguiente código

(),20	0,15	0,15	0,10	0,10	0,30
	100	101	110	1110	1111	00

Donde a cada probabilidad de la d.p. le asignamos un respectivo código de la longitud establecida.

La otra posibilidad para un código que cumpla la desigualdad, es encontrar un código de longitud promedio de palabra constante. Ya que note que si hacemos L=3, también cumplimos la desigualdad, sigamos el algoritmo de Tunstall. Consideramos $D_z=2$ y $D_u=6$. Seguiremos por pasos el algoritmo:

Paso 1:

- a) Queremos un n, tal que $2^n \ge 6$, por lo que escogeremos n = 3, ya que es el primer natural que lo cumple, esta sera nuestra longitud de palabra.
- b) Tenemos que $k = \left\lfloor \frac{2^3 1}{6 1} \right\rfloor = \left\lfloor \frac{7}{5} \right\rfloor = 1$. Dado que este es el numero de nodos internos, podemos inferir en este paso que solo tendremos a la raíz como nodo interno.
- c) Por lo anterior tenemos que M = 1 + 1(6 1) = 6. Es decir que el numero de mensajes a codificar es el mismo que el de símbolos de la fuente.

Paso 2: Note que en este paso del algoritmo como resaltamos antes solo asignamos hijos a la raíz, cuando hacemos j = 1, ya que k = 1. Por lo que el árbol construido es el siguiente:

De esta manera el código de longitud promedio constante 3 es

0,20	0,15	0,15	0,10	0,10	0,30
000	001	010	011	100	101

 $Q^{*}Q$

Ejercicio 3

Ejercicio 4

Ejercicio 5

Suponga que una fuente genera la secuencia típica aabbcccaadeeeaabcaadcdabbededecacaeeddcccodcdeaabedbb. Determine un par de códigos Tunstall sobre alfabetos binarios y triarios, indique los diccionarios en cada caso. Cuál de los códigos trabajaría más eficiente?

Solución. Como nos dan una secuencia típica, realicemos la tabla de frecuencias para determinar la probabilidad de cada símbolo:

Simbolo	Frecuencia	Probabilidad
a	13	13/55
b	8	8/55
С	12	12/55
d	11	11/55
е	11	11/55

Con esta información podemos proceder con cada código de Tunstall.

Sobre un alfabeto Binario:

Consideramos $D_z = 2$ y $D_u = 5$. Seguiremos por pasos el algoritmo:

Paso 1:

- a) Queremos un n, tal que $2^n \ge 5$, por lo que escogeremos n = 3, ya que es el primer natural que lo cumple, esta sera nuestra longitud de palabra.
- b) Tenemos que $k = \left\lfloor \frac{2^3 1}{5 1} \right\rfloor = \left\lfloor \frac{7}{4} \right\rfloor = 1$. Dado que este es el numero de nodos internos, podemos inferir en este paso que solo tendremos a la raíz como nodo interno.
- c) Por lo anterior tenemos que M = 1 + 1(5 1) = 5. Es decir que el numero de mensajes a codificar es el mismo que el de símbolos de la fuente.

Paso 2: Note que en este paso del algoritmo como resaltamos antes solo asignamos hijos a la raíz, cuando hacemos j = 1, ya que k = 1. Por lo que el árbol construido es el siguiente:

De esta manera un diccionario de codificación para el caso binario es el siguiente

a	b	С	d	e
000	001	010	011	100

Sobre un alfabeto Triario:

Consideramos $D_z = 3$ y $D_u = 5$. Nuevamente seguiremos el algoritmos:

Paso 1:

- a) Queremos un n, tal que $3^n \ge 5$, por lo que escogeremos n = 2, ya que es el primer natural que lo cumple, esta sera nuestra longitud de palabra.
- b) Tenemos que $k = \left| \frac{3^2 1}{5 1} \right| = \left| \frac{8}{4} \right| = 2$. Este sera el numero de nodos internos.
- c) Por lo anterior tenemos que M = 1 + 2(5 1) = 9. Este sera el numero de mensajes a codificar.

Paso 2: Al igual que en el caso anterior para el paso j = 1, tenemos el siguiente árbol

Para el paso j=2, como k=2, por el algoritmo esta es la ultima iteración. Como tenemos que tomar el nodo de mayor probabilidad, tomamos el de la rama de α , por lo que el árbol que nos da la codificación es el siguiente

Con esto en mente el diccionario de codificación para el caso triario es el siguiente

aa								
00	01	02	10	11	12	20	21	22

۵゚۵