

Plano de Ensino

- Introdução: Conceitos e Definições.
- Processos, Comunicação e Sincronização de Sistemas Distribuídos.
- Processamento Paralelo e Multiprocessadores.
- Tolerância a falhas.
- Aplicações Distribuídas: Socket.
- Objetos Distribuídos: RMI.

Livro-Texto

- Bibliografia Básica:
 - » TANENBAUM, Andrew S; STEEN, Maarten Van. Sistemas Distribuídos: Princípios e Paradigmas. 2ª Ed. São Paulo: Pearson Prentice Hall, 2007.
- Bibliografia Complementar:
 - » DANTAS, Mario. Computação Distribuída de Alto Desempenho: redes, clusters e grids computacionais.
 1ª Ed. Rio de Janeiro: Axcel Books, 2005.
 - » SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. Sistemas Operacionais - Conceitos e Aplicações. 1ª Ed. Rio de Janeiro: Campus, 2001.

1. Introdução - Definições

- Um Sistema Distribuído é aquele no qual os componentes localizados em computadores interligados em rede se comunicam e coordenam suas ações com troca de mensagens.
- Algumas características:
 - » Concorrência entre componentes.
 - » Falta de relógio global.
 - » Falhas de componentes independentes.
 - » Compartilhamento de recursos.
 - » Heterogeneidade: arquiteturas, SOs, interfaces.
 - » Sistema aberto: segurança.
 - » Escalabilidade: transparência.
 - » Tratamento de falhas.

1. Introdução - Definições

- Segundo Tanembaum:
 - » "Um sistema distribuído é uma coleção de computadores independentes que aparece para os usuários do sistema como um único e coerente sistema".
- Segundo Coulouris:
 - » "Coleção de computadores autônomos interligados através de uma rede de computadores e equipados com software que permita o compartilhamento dos recursos do sistema: hardware, software e dados".

1. Introdução - Definições

- As definições anteriores focam 2 aspectos importantes:
- » Hardware: as máquinas são autônomas.
 - » Software: os usuários pensam que estão trabalhando em um sistema único.

1. Introdução – Definições Desta forma podemos pensar em alguns pontos importantes em Sistemas Distribuídos: Compartilhamento de recursos. Processamento descentralizado. Expansão ou escalonamento fácil. Organização em camadas de software logicamente alocadas → uma camada de alto nível (usuários e aplicações) e uma camada de baixo nível (SO). Permitem a integração de vários sistemas, através da comunicação entre componentes.

1. Introdução - Objetivos

Compartilhamento de recursos

- » É o principal objetivo de um sistema distribuído: usuários 👄 recursos remotos.
- » Recurso: caracteriza o conjunto de elementos que podem ser compartilhados de forma útil em um SD:
 - · Hardware: impressoras, discos, .
 - · Software: arquivos, bancos de dados, compiladores, ...
- » Facilita a colaboração e troca de informações.
- » O compartilhamento reduz custos.
- » Necessário para dar suporte a grupos de usuários.
- » Segurança → ponto importante.

1. Introdução - Objetivos

- Recursos fisicamente encapsulados em um dos computadores de um SD só podem ser acessados por outros computadores através de comunicação.
- Cada conjunto de recursos de um tipo particular deve ser gerenciado por um programa (Gerenciador de Recursos) que oferece uma interface de comunicação.
- Uma interface de comunicação em um Gerenciador de Recursos permite que os mesmos sejam:
 - » Consultados:
 - Deve haver um esquema de nomeação para permitir que recursos individuais sejam acessados a partir de qualquer localização.
 - Mapeamento de nomes de recursos em endereços de
 - » Atualizados: há necessidade de sincronização de acesso concorrente para garantir consistência da informação.

1. Introdução - Objetivos

Abertura

- » Determina se um SD pode ser estendido de várias maneiras:
 - · extensão por hardware
 - · extensão por software
- » Sem a interrupção ou duplicação de serviços existentes.
- » Conseguida através da publicação de interfaces, tornando-as disponíveis para desenvolvedores de software.
- » Unix e Linux são um exemplo de sistemas abertos.
- Um sistema distribuído aberto oferece serviços de acordo com regras padronizadas que descrevem a sintaxe e semântica dos serviços.
 - » Serviços em SD são descritos como interfaces que especificam os nomes das funções, tipos de parâmetros, valores de retorno, exceções, etc.

1. Introdução - Objetivos

- » Outro ponto importante da abertura em SD é a Interoperabilidade que permite que duas implementações diferentes de dois fabricantes distintos coexistam.
- » Além disso, a Portabilidade caracteriza-se como uma aplicação desenvolvida para um sistema distribuído A que pode ser executado, sem modificações em um sistema distribuído B, com a mesma interface.

1. Introdução - Objetivos

Concorrência

- » Concorrência e execução paralela existem em um SD devido:
 - · às atividades separadas de usuários,
 - · à independência de recursos e,
 - à localização de processos em computadores separados.

1. Introdução - Objetivos

Escalabilidade

- » Pode ser mensurado em 3 dimensões:
 - Tamanho: deve-se facilmente adicionar mais usuários ou recursos ao sistema.
 - 2. Localização: recursos e usuários não necessitam estar próximos.
 - Administração: deve-se ter administração fácil, mesmo que existam muitas pedaços de administração independentes.
- » Operação eficiente em diferentes escalas.
- » Processamento deve ser independente do tamanho da rede.

Anhanguera 1. Introdução - Objetivos Tolerância a Falha Em um SD, o hardware essencial para a operação contínua de aplicações críticas pode ser replicado. • este hardware redundante pode ser usado para atividades nãocríticas → quando não há falhas. O software pode ser projetado para recuperar o estado de dados permanentes quando uma falha é detectada. Tipos de falha Transiente: pode acontecer uma vez. · Intermitente: acontece de tempos em tempos. · Permanente: acontece sempre. 1. Introdução - Objetivos Disponibilidade » Quando um componente falha em um SD, apenas a parte que usa este componente é afetada; além disso, o componente pode ser reinicializado em outro computador. » Um SD tem mais partes disponíveis por mais tempo. 1. Introdução - Objetivos Transparência » Um importante objetivo de um sistema distribuído é esconder que seus processos e recursos estão fisicamente distribuídos sobre vários computadores. » O conceito de transparência pode ser aplicado sobre vários aspectos.

1. Introdução - Objetivos

Tipos de Transparência

- » Acesso: operações idênticas para acesso local ou remoto.
- » Localização: esconde onde o recurso está localizado.
- » Mobilidade: movimento de recursos sem afetar o sistema.
- » Concorrência: compartilhamento de recursos sem afetar processos concorrentes.
- » Falha: término das tarefas mesmo com falhas previstas ou imprevistas.
- » Replicação: oculta a réplica de recursos de usuários ou desenvolvedores.
- » Desempenho: reconfiguração de desempenho conforme carga de trabalho.
- » Escalabilidade: expansão sem afetar arquitetura existente ou lógica da aplicação.

1. Introdução - Arquiteturas

Cliente-Servidor

- » Neste tipo de arquitetura, uma aplicação cliente conecta-se a uma aplicação servidor criando com isso um canal para troca de informações.
- » Protocolos para transporte de informações: orientado à conexão (TCP - Trasmission Control Protocol) e não orientada à conexão (UDP - User Datagram Protocol).

1. Introdução - Arquiteturas

■ Peer-to-Peer

- » Neste tipo de arquitetura não existe o papel de cliente/servidor, trabalha-se com o conceito de cooperação com seus pares (peers), sem distinção de papéis, nem em quais computadores são executados.
- » Inicialmente os protocolos envolvidos em tais ambientes eram particulares, mas já existem protocolos abertos como: JXTA, Windows Peer-to-Peer Networking e XNap.

1. Introdução - Arquiteturas

- Diversas variações dos modelos anteriores podem ser extraídas a partir da consideração dos seguintes fatores:
 - » o uso de vários servidores e de caches para aumentar o desempenho e a resiliência;
 - » o uso de código móvel e agentes móveis;
 - » a necessidade dos usuários possuírem computadores de baixo custo, com recursos de hardware limitados e simples de gerenciar;
 - » o requisito de adicionar e remover dispositivos móveis de maneira conveniente.

25

1. Introdução - Arquiteturas

- Serviços fornecidos por vários servidores:
- » Os serviços podem ser implementados como vários processos servidores localizados em diferentes computadores hospedeiros, interagindo conforme necessário para fornecer um serviço para seus clientes.
 - Um serviço em Cluster é um serviço que pode ser particionado por vários servidores garantindo escalabilidade e robustez.
- Servidores proxies e caches:
 - » Armazena os objetos recentemente utilizados mais próximos que os locais reais de origem.
- Código móvel:
 - » Um código é migrado para ser executado localmente pelo seu requisitante.
 - · Os applets são os exemplos mais comuns de código móvel.

1. Introdução - Arquiteturas

- Agente móvel:
 - » É um programa em execução (código e dados) que passa de um computador para outro em um ambiente de rede, realizando uma tarefa em nome de alguém, como uma coleta de informações, e finalmente retornando com os resultados obtidos.
- Computadores de rede:
 - » Nesta arquitetura, tanto o SO, quanto os softwares aplicativos sejam carregados a partir de um servidor de arquivos remoto.
- Objetos distribuídos:
 - » Nesta arquitetura vários objetos ficam distribuídos sobre uma arquitetura de computadores em rede interligada por um canal de objetos (ORB - Object Request Broker) e podem ser requisitadas (através de uma chamada) por um cliente qualquer.
 - » O protocolo envolvido nesta comunicação é o IIOP (Internet Inter-ORB Protocol).

Introdução – Arquiteturas Aarquitetura Orientada a Serviços e fornece serviços de software fracamente acoplados, para acesso a serviços de negócio por clientes. Esta arquitetura não é direcionada a nenhuma tecnologia e pode ser implementada por qualquer uma existente. O protocolo envolvido nesta tecnologia é o SOAP. Clientes leves: Refere-se a uma camada de software, em um computador local, que oferece ao usuário uma interface baseada em janelas para que se possa executar programas aplicativos em um

WTS (Windows Terminal Server).

computador remoto.

	<u>Å</u> Anhanguera
 Economia: microprocessadores oferecem um preço/performance mais atrativo do que mainframes. Velocidade: um sistema distribuído pode ter mais pode processamento que um mainframe. Distribuição Física: algumas aplicações envolvem máquinas separadas espacialmente. Confiabilidade: caso alguma máquina quebre, o siste como um todo pode sobreviver. Crescimento gradativo: o poder computacional pode aumentado de forma gradativa. 	der ma
1. Introdução – Vantagens	Anhanguera
 Compartilhamento de Dados: permite a múltiplos usuários o acesso a um BD comum. 	

• Compartilhamento de Dispositivos: permite a múltiplos

Comunicação: permite a comunicação entre usuários

 Flexibilidade: permite a distribuição de carga de trabalho mais eficiente entre os computadores disponíveis e com

usuários o acesso a dispositivos caros.

mais fácil.

um melhor custo efetivo.

1. Introdução - Desvantagens

- Software: os softwares que trabalham em tais ambientes são complexos e ainda em menor número.
- Rede: a rede pode ficar saturada com o tráfego de informações.
- Segurança: a facilidade de acesso a dados compartilhados pode comprometer a segurança dos mesmos.

