MeBOP Module 2 Introduction

Karine Frenal:

The expert of Toxo glideosome and IMC

Damien Jacot: Expert in ... about everything...

Sunil Kumar Dogga: TgAsp3

Budhaditya Mukherjee:
Biochemistry

Apicomplexans are human and animal pathogens

Malaria

- Caused by
 - Plasmodium falciparum
 - P. vivax
 - P. malariae
 - P. ovale
 - P. knowlesi
- At risk
 - More than 40% of the world population
- Deaths
 - Around 0.7 million per year

- Malaria
 - Fever
 - Anaemia
 - Metabolic dysfunctions : acidosis, hypoglycemia ...

Plasmodium falciparum life cycle

Plasmodium falciparum erythrocytic stages

Egress & Invasion phase

Plasmodium falciparum erythrocytic stages

Apicomplexan invasive tachyzoite and merozoite

Adapted from Frenal K et~al~ (2013) Traffic

Toxoplasma gondii	Plasmodium berghei	Plasmodium falciparum		
Model organism	Mouse malaria	Human malaria		
Easy genetics	"Easy" genetics	Tricky genetics		
"good looking"	<i>In vivo</i> only	Relevant		
Easy to grow	Full life cycle accessible			

Aspartic endopeptidases (ASP/PM)

- ✓ Present in all eukaryotes
- ✓ Broad range of roles:
- protein degradation
- enzyme maturation
- signal transduction
- virulence factors

- ✓ Use Asp residues in the motifs DTG or DSG
- ✓ Pro-region inactivates enzyme
- ✓ Proteolytic maturation leads to activation

Mode of action

Apicomplexan ASPs follow 6 distinct groups

Plasmodium falciparum Plasmepsins

10 aspartic proteases: PfPMI-PfPMX

7 expressed during the erythrocytic stages

Hemoglobin degradation

- A massive catabolic process.
- Consumes ≈75% of the infected cell Hb, which provides an important source of amino acids for the parasite growth and maturation
- In an acidic food vacuole
- Catalyzed by four aspartic proteases (plasmepsins), three cysteine proteases (falcipains) and one metalloprotease (falcilicin)

→ Drug target?

Goldberg, PNAS 2006

"The way you cut your meat reflects the way you live" – Confucius

"The way you cut your meat reflects the way you live" – Confucius

Plasmodium falciparum Plasmepsins

10 aspartic proteases: PfPMI-PfPMX

7 expressed during the erythrocytic stages

Aspartyl proteases implicated in protein export in P. falciparum

PEXEL/HT motif
R/KxLxE/Q/D
PfPMV - Plasmepsin V

Boddey et al, Nature, 2010 Russo et al, Nature, 2010

Homologue in *T. gondii*RxLxE/D
TgASP5 - Aspartyl
Protease 5

Hsiao et al, Traffic, 2013 Curt-Varesano et al, Cell microbial, 2015 Hammoudi et al, PLoS pathogens, 2015 Coffey et al, eLife, 2015

Plasmepsins' expression throughout the life cycle

Plasmodium falciparum Plasmepsins

PMIX localizes at the apical end of merozoites

PfPMIX-Ty-Lox expression/excision

PMIX is critical for blood stages development

Toxoplasma gondii ASPs

Asp3 is a 'post-Golgi' resident protease

Tet-inducible knock-down of ASP3

TgAsp3 is critical for Toxo lytic cycle

hydroxyethylamine scaffold-based drug 49c

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Novel in vivo active anti-malarials based on a hydroxy-ethyl-amine scaffold

Claire-Lise Ciana a, Romain Siegrist a, Hamed Aissaoui a, Léo Marx a, Sophie Racine a, Solange Meyer a, Christoph Binkert a, Ruben de Kanter a, Christoph Fischli b,c, Sergio Wittlin b,c, Christoph Boss a,*

Table 2
In vitro anti-malarial activity of hydroxy-ethyl-amine compounds; optimization of the acid part

Entry	Compound	R	IC ₅₀ NF ₅₄ alb 72 h (nM)	IC _{no} NF _{ne} ser 72 h (nM)	IC _{n0} NF ₁₄ alb 24 h (nM)	IC ₁₀ NF ₃₄ alb 48 b (nM)	IC _{no} P. berghei 24 h (nM)	MLM (µl/ (min mg))
1	26	3-CON*Pt ₂	2.0	10	>500	<3.1	>500	>1250
2	49a	4-CON'Pr2	1.6	6.5	>500	-	>500	>1250
3	49b	2-CON*Pr2	>500	>500	-	-	-	-
4	49c	4-CO-Me-piperazine	0.6	< 0.6	>500		>500	75
5	49d	3-CO-Me-piperarine	98	102	-	me:	-	-
6	49e	OF SEC. Adv. of second	. ICEO at 72 hr	138 High IC	CEO at 24br	-	-	908
7	49f	4-CO-piperidine	v IC50 at 72 hr	I II II II II	C50 at 24hr	-	>500	860
8	49g	3-CO-pyrolidine	4.9	9.3	-	-	-	-
9	49h	3-CO-azepane	3.8	13	-	-	-	-
10	491	3-CONH*Pr	12	30	-	-	-	-
11	49j	4-Me-piperazine	8.7	8.5	>500	-	>500	80
12	49k	3-Me-piperazine	190	300	-	-	-	-

^{*}Actelion Pharmaceuticals Ltd, Drug Discovery Chemistry and Biology, Hegenheimermattweg 91, CH-4123 Albehwü/BL, Switzerland

b Swiss Tropical and Public Health Institute, Parasite Chemotherapy, Sociestrasse 57, CH-4002 Basel, Switzerland

⁴ University of Basel, CH-4003 Basel, Switzerland

hydroxy-ethyl-amine scaffold-based drug 49c

 IC_{50} (24 hours) >500 nM, IC_{50} (72 hours) 0.6 nM

Ciana et al. 2013

- Peptidomimetic inhibitor of aspartic proteases
- Designed to target *Plasmodium* food vacuole aspartyl proteases
- "slow" acting drug and dropped...

Compound 49c efficiently blocks Toxo lytic cycle

What we want!

- Functional characterization of PfPMIX
- Functional characterization of TgAsp3
- Molecular targets of compound 49c