proof

@闫朝阳 2022.03.28

定义输入矩阵为 X_{m*n} , m为维度, n为样本;

对 X_{m*n} 进行KernelPCA分析,即等价于,将 X_{m*n} 映射到高维空间得到 $F_{d*n}(d>>m)$ 对其进行PCA分析。

记: $F = \varphi(X)$ 为由X到F的映射函数。而往往, $\varphi()$ 和F不可知。因此,对于高维空间的 F_{d*n} 的样本间内积 $F \cdot F^T$ 难以计算,此时,设定义核函数 $k(x,y) = \varphi(x) * \varphi(y)'$,表示X映射到高维空间的内积,可直接由X应用核函数等价。

即,核函数k(X)确定核矩阵 K_{n*n} ,等价于 $F^T \cdot F$ 。

此时,对 F_{d*n} 进行PCA,

假设 F_{d*n} 已中心化,

则协方差矩阵 $D_{d*d} = \frac{1}{n} F_{d*n} \cdot F_{n*d}^T$ [1], D_{d*d} 为实对称矩阵, 有性质:

 D_{d*d} 可被对角化,且有 $U^T \cdot D_{d*d} \cdot U = \Lambda$,其中 Λ 为对角元素为 D_{d*d} 特征值组成的对角矩阵; U_{d*d} 每一列为特征值对应的特征向量;

其中, D_{d*d} 求特征值特征向量可以表示为: $D \cdot U = \lambda U$ [2]。

我们知道,对 F_{d*n} 进行PCA,即求协方差矩阵 D_{d*d} 的前k个特征向量按行组成的矩阵 P_{k*d} 使得

 $P_{k*d} \cdot F_{d*n} = \dot{F}_{k*n}$ [3];

此时 \dot{F}_{k*n} 是我们希望的输出;

由PCA可知(这里对PCA不做讨论),

即, P_{k*d} 等于上述前k特征值对应的特征向量组成的矩阵,即矩阵U的前k列的转置矩阵, U_{k*d}^T

即, $U_{k*d}^T \cdot F_{d*n} = \dot{F}_{k*n}$ [4]

此时, 联立[1,2]式:

 $D \cdot U = \lambda U$

即, $rac{1}{n}F_{d*n}\cdot F_{n*d}^T\cdot U=\lambda U$,

两边左乘 F^T 矩阵,

则, $\frac{1}{n}F^T \cdot F \cdot F^T \cdot U = \lambda F^T \cdot U$,

将 $F^{T} \cdot F$ 视作整体,

即, $(F^T \cdot F) \cdot (F^T \cdot U) = n\lambda (F^T \cdot U)$,

显然, $F^T \cdot F$ 特征值为 $n\lambda$, 特征向量为 $F^T \cdot U$ [5],

而根据[4]式,我们希望的输出是:

 $\dot{oldsymbol{F}}_{k*n} \!= U_{k*d}^T\!\cdot F_{d*n} \!= (F_{n*d}^T\!\cdot U_{d*k})^T$,

即,为[5]式中 $F^T \cdot F$ 的前k个特征值对应的特征向量。

因此,我们只需对 $F^T \cdot F$ 进行特征分解即可。

而 $F^T \cdot F$,正是我们已知的核矩阵 K_{n*n} 。

解答2与KPCA

当前方案中,

workflow先对输入矩阵 X_{m*n} 进行距离度量获得dissimilative matrix M_{n*n} ; 然后workflow对 M_{n*n} 标准化后得到 \bar{M}_{n*n} ,我们假设由X到 \bar{M} 映射函数为 $\phi(x)$; workflow然后对 \bar{M} 进行PCA分析并获取其前k个主成分,

也就是,获取了 \bar{M}_{n*n} 的协方差矩阵 T_{n*n} 的前k个特征值对应的特征向量矩阵;我们形式化为:

$$T_{n*n} = rac{1}{n}ar{M}_{n*n}\!\cdot\!ar{M}_{n*n}^T_{_T}\![\mathbf{6}]$$
 ,

将 $n \cdot T_{n*n} = \bar{M}_{n*n} \cdot \bar{M}_{n*n}^T$ 可等价于上述核矩阵 K_{n*n} ,

则,以上做法形式上等价于对X进行KPCA。

另外, $n \cdot T_{n*n}$ 核矩阵为协方差矩阵,因此一定为半正定矩阵,(reference),满足核函数mercer定理;因此**核函数形式上等价**;

Mercer 定理: 任何半正定的函数都可以作为核函数。所谓半正定的函数f(xi,xj),是指拥有训练数据集合 (x1,x2,...xn),我们定义一个矩阵的元素aij=f(xi,xj),这个矩阵式n*n的,如果这个矩阵是半正定的,那么f(xi,xj)就称为半正定的函数。

但,这里 \bar{M}_{n*n} 已知,由X经 $\phi(x)$ 映射,并非向高维空间映射,因此,并**不严格意义等价**。

疑问

能否不经过dissimilarity matrix度量,而是直接获取到的就是核矩阵K, 此时直接对核矩阵K进行特征分解即严格满足。或者说,我获取到的dissimilarity matrix不做协方差矩阵运算,而直接进行特征分解?

解答1与PCoA

PCoA中,对dissimilaity matrix构建离差矩阵(实对称矩阵),该矩阵同样具有性质:

 $U^T\cdot D_{d*d}\cdot U=\Lambda$,其中 Λ 为对角元素为 D_{d*d} 特征值组成的对角矩阵; U_{d*d} 每一列为特征值对应的特征向量; 即, $D_{d*d}=U\cdot \Lambda\cdot U^T$

进而,
$$D_{d*d} = U \cdot \Lambda \cdot U^T = U \cdot \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} \cdot U^T$$
,

 $C = \Lambda^{\frac{1}{2}} \cdot U^T$ 即为坐标矩阵;即取前k个特征值对应的特征向量按行组成,并乘各自特征值的平凡根,即为PCoA输出。

当前方案中,

workflow先对输入矩阵 X_{m*n} 进行距离度量获得dissimilative matrix M_{n*n} ;

然后计算协方差矩阵 T_{n*n} , 等价于PCoA中获得离差矩阵;

然后对 T_{n*n} 进行特征分解获取前k个特征值对应特征向量,相当于 $C = U^T$ 而没有考虑特征值。

此外,有一点值得注意,workflow中dissimilaity matrix送入PCA中之前经过了一次数据标准化,导致原本dissimilaity matrix的数据结构性被破坏了。也就不满足PCoA的输入形式。因此,从这两个角度理解下来,workflow做法都不等价于PCoA。