DATA MINING ASSIGNMENT AMMANAMANCHI SAI KARTHIK B150310CS

10

About the dataset:

buying v-high, high, med, low v-high, high, med, low doors 2, 3, 4, 5-more persons 2, 4, more lug_boot safety low, med, high

The dataset has 6 feature variables and 1 class variable

Number of Instances: 1728 (instances completely cover the attribute space)

Number of Attributes: 6

1 a. Decision Tree with Gini index as the impurity measure

Loading the data

```
data_url <- c("https://archive.ics.uci.edu/ml/machine-learning-
databases/car/car.data");
download.file(url=data_url,destfile = "car.data");
mydata <- read.csv("car.data",sep=",",header=FALSE)</pre>
```

Data Slicing

Splitting the data into training set and test set

```
ind <- sample(2, nrow(mydata), replace=TRUE,prob=c(0.8, 0.2))
train <- mydata[ind==1,]
test <- mydata[ind==2,]</pre>
```


Training the dataset using the caret library based on decision on gini index on university column

```
trctrl <- trainControl(method="repeatedcv", number=10, repeats=3);
set.seed(3333);
dtree_gini<- train(V7 ~.
,data=train,method="rpart",parms=list(split="gini"),trControl=trctrl,tuneLength=10)</pre>
```

Displaying the dataset

prp(dtree gini\$finalModel,box.palette = "Blues",tweak=1.2)

We can check if our dataset contains any missing values using the anyNA(dataset) function

To check the summary of the dataset we can use summary (dataset)

Prediction

Confusion Matrix and statistics

pred_gini <- predict(dtree_gini,newdata = test);
confusionMatrix(test\$V7,pred gini)</pre>

Accuracy: 87.46%

The values of fmeasure, recall, precision are as follows:

Precision, Recall and f- measure

```
They are calculated using:
result <- confusionMatrix(data = test_pred, test$PAID_FINE)
precision <- result$byClass['Pos Pred Value']
recall <- result$byClass['Sensitivity']
f_measure <- 2 * ((precision * recall) / (precision + recall))
```

10 fold cross validation

```
set.seed(1234)
mydata<-mydata[sample(nrow(mydata)),]

#Create 10 equally size folds
folds <- cut(seq(1,nrow(mydata)),breaks=10,labels=FALSE)

#Perform 10 fold cross validation
for(i in 1:10){
    #Segement your data by fold using the which() function
    testIndexes <- which(folds==i,arr.ind=TRUE)
    test <- mydata[testIndexes, ]
    train <- mydata[-testIndexes, ]
    #Use the test and train data partitions however you desire...
}</pre>
```

We use this code for 10 fold cross validation

Now the accuracy is 89.6%

This classifier performs better with case 2 i.e 10 fold cross validation ROC Curve

```
Install pROC library before proceeding
pred<- predict(dtree_gini,test,type='prob')
auc<-auc(test$V7,pred[,2])
plot(roc(test$V7,pred[,2]))</pre>
```

In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive rate (Specificity) for different cut-off points of a parameter. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold. The area under the ROC curve (AUC) is a measure of how well a parameter can distinguish between two class groups.

Area under the curve: 0.8621

1 b. Decision Tree with Entropy as the impurity measure

We now simulate the steps in 1 a and change the statement to obtain the impurity measure

```
dtree_gini<- train(university ~.
,data=train,method="rpart",parms=list(split="gini"),trControl=trctrl,tuneLeng
th=10)</pre>
```


Confusion matrix and Statistics

Accuracy: 91.04%

Using 10 fold cross validation similar to 1 a

The accuracy now is 84.97%.

This classifier performs better with case 1 i.e random sampling

ROC Curve

Find the ROC curve similar to 1 a

Area under the curve: 0.8694

1 c. Naïve Bayesian Classifier

We now install and include the libraries rminer and e1071.

test_pred<-predict(naivemodel,newdata=test);
confusionMatrix(test_pred,test\$V7);</pre>

Confusion Matrix and statistics:

Accuracy: 85.6%

Using 10 fold cross validation similar to 1 a

Accuracy now: 89.02%

This classifier performs better with case 2 i.e 10 fold cross validation

ROC Curve

```
pred<- predict(naivemodel,test,type='raw')
auc<-auc(test$V7,pred[,2])
plot(roc(test$V7,pred[,2]))</pre>
```


Area under the curve: 0.9031

1.d Artificial Neural Network - with and without hidden layers

Neural Network with two hidden layer: