Khôlles de Mathématiques - Semaine 24

Hugo Vangilluwen, George Ober

22 Avril 2024

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F'des sous-espaces vectoriels respectivement de E et de F.

Nous rappelons que $\dim\{0_E\} = 0$ et que $\{0_E\} = \text{Vect }\emptyset$.

1 Existence d'un supplémentaire en base finie

Pour tout sous-espace vectoriel de E, il existe un sous-espace vectoriel complémentaire.

Démonstration.

Théorème de la base incomplète (admis ici mais démontré dans le cours) : pour toute famille libre de E, nous pouvons y adjoindre une partie d'une famille quelconque génératrice de E (généralement une base, la base canonique si elle a un sens) pour en faire une base de E.

Posons $n = \dim E$ et $p = \dim E'$. Ainsi, il existe (e_1, \ldots, e_p) base de E'. Appliquons le théorème de la base incomplète pour cette famille. Il existe (e_{p+1},\ldots,e_n) n-pvecteurs de E tel que (e_1, \ldots, e_n) est un base de E. Posons $E'' = \text{Vect } \{e_{p+1}, \dots, e_n\}$ et vérifions qu'il est complémentaire à E'.

- $\ast\,$ Par définition de Vect, E'' est un sous-espace vectoriel .
- * Trivialement, E' + E'' = E.
- * $\{0_E\} \subset E' \cap E''$ car E' et E'' sont deux sous-espaces vectoriels .

$$X \in E' \implies \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p : x = \sum_{i=1}^p \lambda_i e_i \\ X \in E'' \implies \exists (\lambda_{p+1}, \dots, \lambda_n) \in \mathbb{K}^{n-p} : x = \sum_{i=p+1}^n \lambda_i e_i \\ \text{Par différence, } \sum_{i=1}^p \lambda_i e_i + \sum_{i=p+1}^n (-\lambda_i) e_i = 0_E. \\ \text{Or } (e_i)_{i \in \llbracket 1; n \rrbracket} \text{ est une base de } E \text{ donc } \forall i \in \llbracket 1; p \rrbracket, \lambda_i = 0_{\mathbb{K}}. \\ \text{donc } x = 0_E. \text{ Ainsi, } E' \cap E'' \subset \{0_E\}.$$

Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$

 $\mathcal{L}_{\mathbb{K}}(E,F)$ est dimension finie et

$$\dim \mathcal{L}_{\mathbb{K}}(E, F) = \dim E \times \dim F \tag{1}$$

П

Démonstration. Notons $n = \dim E$ et $(e_i)_{i \in [1:n]}$ une base de E. Considérons

$$\varphi \mid^{\mathcal{L}_{\mathbb{K}}(E,F)} \xrightarrow{f} \xrightarrow{\text{\'evaluation de f en la base choisie}} F^n$$

- * φ est linéaire.
- $*\varphi$ est bijective d'après le théorème de création des applications linéaires qui établit que pour toute famille de n vecteurs de F, il existe une unique application linéaire de E dans Fenvoyant la base $(e_i)_{i \in [\![1:n]\!]}$ sur cette famille.

Ainsi, $\mathcal{L}_{\mathbb{K}}(E,F)$ et F^n sont isomorphes. F^n est de dimension finie, ce qui conclut.

3 Formule de Grassman

Supposons E de dimension finie.

Soient E_1 et E_2 deux sous-espaces vectoriels. Alors $E_1 + E_2$ est de dimension finie et

$$\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2 \tag{2}$$

Démonstration. Commençons par prouver une version simplifier de la somme directe. Supposons que E_1 et E_2 sont en somme directe.

Fixons \mathcal{B}_1 et \mathcal{B}_2 deux bases de E_1 et E_2 .

Alors $(\mathcal{B}_1, \mathcal{B}_2)$ engendre $E_1 + E_2$. Or $(\mathcal{B}_1, \mathcal{B}_2)$ est finie donc $E_1 + E_2$ est de dimension finie. Posons $n = \dim E_1$ et $p = \dim E_2$. Notons $(e_i)_{i \in [1;n]}$ la base \mathcal{B}_1 et $(f_i)_{i \in [1;n]}$ la base \mathcal{B}_2 .

Soient $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_p$) $\in \mathbb{K}^{n+p}$ fixés quelconquesfixés quelconques $\sum_{i=1}^n \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0_E$. Alors $\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^p (-\mu_i) f_i$. Or $\sum_{i=1}^n \lambda_i e_i \in E_1$ et $\sum_{i=1}^n (-\mu_i) e_i \in E_2$ donc $\sum_{i=1}^n \lambda_i e_i \in E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = \tilde{0}$. De même $\mu = \tilde{0}$

 $E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = \tilde{0}$. De même, $\mu = \tilde{0}$.

Donc $(\mathcal{B}_1, \mathcal{B}_2)$ est libre.

Ainsi, $(\mathcal{B}_1, \mathcal{B}_2)$ est une base de $E_1 \oplus E_2$. Donc dim $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| =$ $\dim E_1 + \dim E_2$.

Enlevons l'hypothèse que E_1 et E_2 sont en somme directe.

 $E_1 \cap E_2$ est un sous-espace vectoriel de E_2 et E_2 est un \mathbb{K} -espace vectoriel de dimension finie donc il existe E_2' sous-espace vectoriel de E_2 tel que $E_2 = (E1 \cap E_2) \oplus E_2'$.

Montrons que $E_1 + E_2 = E_1 \oplus E_2'$

* E_1 et E_2' sont en somme directe.

$$E_1 \cap E_2' = E_1 \cap (E_2' \cap E_2)$$
 car $E_2' \subset E_2$
= $(E_1 \cap E_2) \cap E_2'$ car \cap est associative et commutative
= 0_E car E_1 et E_2 sont en somme directe et E_2' sev

$$\begin{array}{l} * \ E_1 + E_2 \subset E_1 + E_2' \\ \text{Soit } x \in E_1 + E_2. \ \text{Alors } \exists (x_1, x_2) \in E_1 \times E_2 : x = x_1 + x_2. \\ \text{Or } x_2 \in E_2 = (E_1 \cap E_2) \oplus E_2' \ \text{donc } \exists (x_{21}, x_2') \times E_2' : x_2 = x_{21} + x_2'. \\ \text{D'où } x = \underbrace{x_1 + x_{21}}_{\in E_1} + \underbrace{x_2'}_{\in E_2} \in E_1 + E_2. \end{array}$$

* Trivialement, $E_1 + E_2' \subset E_1 + E_2$ (car $E_2' \subset E_2$).

Ainsi, E_1 et E_2' (car sev) étant de dimension finie, $\dim E_1 \oplus E_2' = \dim E_1 + \dim E_2'$. De plus, $\dim E_2 = \dim(E_1 \cap E_2) \oplus E'_2 = \dim E_1 \cap E_2 + \dim E'_2$. Donc dim $E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2$.

4 Caractérisation injectivité/bijectivité/surjectivité par le rang

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

(i) Si E est de dimension finie

$$f \text{ injective } \iff \operatorname{rg} f = \dim E$$
 (3)

(ii) Si F est de dimension finie

$$f \text{ surjective } \iff \operatorname{rg} f = \dim F$$
 (4)

(iii) Si E et F sont de même dimension finie

$$f$$
 bijective \iff f injective \iff f sujective

C'est l'accident de la dimension finie!

Démonstration.

(i) Supposons E de dimension finie, fixons (e_1, \ldots, e_n) une base de E (avec $n = \dim E$) Supposons f injective:

$$\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \}$$

Donc $(f(e_1), \dots f(e_n))$ est génératrice. $(f(e_1), \dots f(e_n))$ est de plus libre car f est injective. Donc c'est une base, donc

$$\dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \} = n = \dim E$$

donc $\operatorname{rg} f = \dim E$. Réciproquement, supposons que $\operatorname{rg} f = \dim E = n$. Alors

$$n = \operatorname{rg} f = \dim \operatorname{Vect} \{ f(e_1), \dots, f(e_n) \}$$

Donc $(f(e_1), \ldots f(e_n))$ est génératrice de cardinal n, égal à la dimension du sous-espace vectoriel engendré. C'est donc une base du sous-espace vectoriel engendré. Donc $(f(e_1), \ldots, f(e_n))$ est libre, donc f est injective.

(ii) Supposons F de dimension finie

$$f$$
 surjective \iff Im $f = F \iff$ dim Im $f = \dim F$

(iii) Supposons E et F de même dimension finie

$$f$$
 injective \iff rg $f = \dim E \iff$ rg $f = \dim F \iff$ f surjective

D'où la bijectivité.

5 Rang d'une composition d'applications linéaires

Soit G un \mathbb{K} -espace vectoriel et $(u,v) \in \mathcal{L}_{\mathbb{K}}(E,F) \times \mathcal{L}_{\mathbb{K}}(F,G)$. Si E et F sont de dimension finie alors

$$\operatorname{rg} u = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u \tag{5}$$

Démonstration. Considérons que E et F sont de dimension finie. Soient de tels objets. Appliquons le théorème du rang à $v_{|\operatorname{Im} u}$ ce qui est autorisé puisque $v_{|\operatorname{Im} u}$ est une application linéaire et $\operatorname{Im} u$ est un $\mathbb K$ -ev de dimension finie (car sev de F).

$$\dim \operatorname{Im} u = \operatorname{rg} v_{|\operatorname{Im} u} + \dim \ker v_{|\operatorname{Im} u}$$

 $\ker v_{\mid \operatorname{Im} u} = \{ y \in \operatorname{Im} u \mid v(y) = 0_G \} = \{ y \in \operatorname{Im} u \mid y \in \ker v \} = \operatorname{Im} u \cap \ker v$

 $\operatorname{Im} v_{|\operatorname{Im} u} = v(Imu) = \operatorname{Im} v \circ u$ (cette égalité est vraie pour deux fonctions de E dans F et de F dans G quelconques, pas forcément linéaires.)

Donc

$$\operatorname{rg} f = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u$$