10

15

20

25

30

COMPOSITIONS AND METHODS FOR ODOR AND FUNGAL CONTROL IN BALLISTIC FABRIC AND OTHER PROTECTIVE GARMENTS

Dean Larry DuVal Kofi Ofosu-Asante Michael Joseph Orr

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. $60/226,742, {\rm filed\ August\ 18,2000.}$

TECHNICAL FIELD

The present invention relates to stable, preferably translucent, more preferably clear, odor-absorbing and fungal controlling compositions, articles of manufacture, and/or method of use. These compositions, articles of manufacture, and/or methods of use are designed to refresh and protect these garments without the use of harsh chemicals or cleaning procedures that could weaken or degrade the performance of the garments.

The odor-absorbing composition is designed to control odors caused by a broad spectrum of organic odoriferous materials, which may, or may not, contain reactive functional groups, and to preferably remain shelf stable for a substantial period of time. The compositions and methods are for use on ballistic fabrics, especially clothing made of ballistic fabrics, such as bullet proof vests and the like, and protective garments, such as those worn by athletes or workers in hazardous environments, in order to restore and/or maintain freshness by reducing malodor without the need for washing or dry cleaning.

BACKGROUND OF THE INVENTION

At present garments made of ballistic fabrics, are washed by hand with cold water and mild detergent, rinsing thoroughly to remove all traces of detergent. Rinsing properly prohibits the accumulation of residual soap film, which can absorb water and reduce the ballistic resistance of certain types of ballistic fabric. While such a process is time consuming and laborious, it is necessary as machine washing or drying, either in the home or commercially can be damaging to the fabric, ultimately affecting its ballistic performance. Furthermore, some detergents, dry cleaning solvents, bleach and starch may reduce the garment's level of ballistic resistance and most manufacturers strongly recommend against their use. Furthermore, most manufacturers of ballistic fabric strongly recommend that ballistic fabrics never be submerged in water or dried outdoors,

10

20

25

30

35

even in the shade, as ultraviolet light is known to cause degradation of certain types of ballistic fabric.

Similarly, the care and cleaning of protective garments, such as, kneepads, shin guards, is laborious and time consuming.

A problem common to both protective garments and garments made of ballistic fabric, is sweat from the wearer. If the sweat is not removed from these garments, over time fungal and/or bacterial growth results. This fungal and/or bacterial growth ultimately degrades the protective properties of the garment; results in noxious odors and possibly even results in long-term health issues for the wearer.

Consequently, there is needed a way to reduce or eliminate the hand washing of ballistic fabric and protective articles, retard or eliminate fungal and/or bacterial growth, while maintaining the ballistic or protective properties of a fabric or garment.

SUMMARY OF THE INVENTION

The present invention relates to a stable, preferably translucent, more preferably clear, sanitizing, deodorizing and refreshing composition, sanitizing, deodorizing and refreshing methods and articles of manufacture that use such sanitizing, deodorizing and refreshing composition, preferably for use on inanimate surfaces, especially protective garments or ballistic fabrics comprising:

- (A). optionally, an effective amount to absorb malodors, typically from about 0.01% to about 20% by weight of the composition, with concentrated compositions which are meant to be diluted containing from about 3% to about 20%, preferably from about 5% to about 10% by weight of the composition, and, for more dilute "usage conditions" compositions, a range of from about 0.1% to about 5%, preferably from about 0.1% to about 3%, more preferably from about 0.5% to about 2%, by weight of the usage composition, of solubilized, a mild, non-fabric-damaging malodor control agent, preferably a functionally labile cyclodextrin.
- (B). optionally, an effective amount to improve the performance of the composition, preferably from about 0.05% to about 5%, more preferably from about 0.1% to about 3%, and even more preferably from about 0.2% to about 1.5%, by weight of the usage composition, of surfactant, preferably a cyclodextrin compatible surfactant, that preferably provides a surface tension of from about 20 dyne/cm to about 60 dyne/cm, preferably from about 20 dyne/cm to about 45 dyne/cm (with concentrated compositions having a level of from about 0.1% to about 15%, preferably

10

15

20

25

30

35

from about 0.2% to about 8%, more preferably from about 0.3% to about 5%, by weight of the concentrated solution, of surfactant);

- (C). optionally, an effective amount, to kill, or reduce the growth of microbes, of cyclodextrin compatible and water soluble antimicrobial active, preferably from about 0.001% to about 0.8%, more preferably from about 0.002% to about 0.3%, even more preferably from about 0.003% to about 0.2%, by weight of the usage composition, and preferably selected from the group consisting of halogenated compounds, cyclic nitrogen compounds, quaternary compounds, and phenolic compounds (with concentrated compositions having a level of from about 0.003% to about 2%, preferably from about 0.01% to about 1.2%, more preferably from about 0.1% to about 0.8%, by weight of the concentrated solution, of cyclodextrin-compatible and water soluble antimicrobial active);
 - (D). optionally, but preferably, an effective amount to provide olfactory effects of perfume, typically from about 0.003% to about 0.5%, preferably from about 0.01% to about 0.3%, more preferably from about 0.05% to about 0.2%, by weight of the usage composition of hydrophilic perfume, containing at least about 50%, preferably at least about 60%, more preferably at least about 60%, even more preferably at least about 70%, and yet more preferably at least about 80%, by weight of the perfume of perfume ingredients that have a ClogP of less than about 3.5 and optionally, a minor amount of perfume ingredients selected from the group consisting of ambrox, bacdanol, benzyl salicylate, butyl anthranilate, cetalox, damascenone, alpha-damascone, gamma-dodecalactone, ebanol, herbavert, cis-3-hexenyl salicylate, alpha-ionone, beta-ionone, alpha-isomethylionone, lilial, methyl nonyl ketone, gamma-undecalactone, undecylenic aldehyde, and mixtures thereof;
- (E). optionally, but preferably, from about 0.01% to about 3%, more preferably from about 0.05% to about 1%, and even more preferably from about 0.1% to about 0.5%, by weight of the usage composition of low molecular weight polyol:
- (F). optionally, an effective amount to assist in antimicrobial action of aminocarboxylate chelator; preferably from about 0.001% to about 0.3%, preferably from about 0.01% to about 0.1%, more preferably from about 0.02% to about 0.05%, by weight of the usage composition;

10

20

25

30

35

- (G). optionally, but preferably, an effective amount of metallic salt, preferably from about 0.1% to about 10%, more preferably from about 0.2% to about 8%, even more preferably from about 0.3% to about 5% by weight of the usage composition, especially water soluble copper and/or zinc salts, for improved odor benefit;
- (H) optionally, an effective amount of enzyme, from about 0.0001% to about 0.5%, preferably from about 0.001% to about 0.3%, more preferably from about 0.005% to about 0.2% by weight of the usage composition, for improved odor control benefit;
- (I). optionally, an effective amount of solubilized, water-soluble, antimicrobial preservative, preferably from about 0.0001% to about 0.5%, more preferably from about 0.0002% to about 0.2%, most preferably from about 0.0003% to about 0.1%, by weight of the composition;
- (J) optionally, an effective amount of cyclodextrin-compatible fabric wrinkle control agent, preferably from about 0.05% to about 5%, more preferably from about 0.2% to about 3%, even more preferably from about 0.3% to about 2%, by weight of the usage composition; and
- (K). optionally, a carrier;

said composition preferably containing at least one of (B) and (C) and preferably being essentially free of any material that would soil or stain fabric under usage conditions, and/or preferably having a pH of more than about 3, more preferably more than about 3.5.

The present invention also relates to concentrated compositions, wherein the level of cyclodextrin is from about 3% to about 20%, more preferably from about 5% to about 10%, by weight of the composition which are diluted to form compositions with the usage concentrations of cyclodextrin of, e.g., from about 0.1% to about 5%, by weight of the diluted composition, as given hereinabove, which are the "usage conditions". Specific levels of other optional ingredients in the concentrated composition can readily be determined from the desired usage composition and the desired degree of concentration. These concentrated compositions can be used in a process for preparing large volumes of treatment composition in which water is added, either in a separate container, or in the container of the article of manufacture comprising the spray means.

The present invention also relates to the compositions incorporated into a spray dispenser to create an article of manufacture that can facilitate treatment of articles and/or surfaces with said compositions containing uncomplexed cyclodextrin and other optional ingredients at a level that is effective, yet is not discernible when dried on the surfaces.

15

20

25

30

35

The spray dispenser comprises manually activated and non-manual operated spray means and a container containing the odor-absorbing composition.

The present invention also comprises the use of small particle diameter droplets of the compositions herein, even those which do not contain (B) or (C), to treat surfaces, especially fabrics, to provide superior performance, e.g., the method of applying the compositions to fabrics, etc. as very small particles (droplets) preferably having average particle sizes (diameters) of from about $10~\mu m$ to about $120~\mu m$, more preferably from about $20~\mu m$ to about $100~\mu m$.

In another aspect of the invention herein, compositions that contain combinations of water soluble antimicrobial actives, especially those described hereinafter, and especially the bis-biguanide alkane compounds described hereinafter, and the surfactants described hereinafter, especially the polyalkylene oxide polysiloxanes described hereinafter provide superior antimicrobial action in aqueous solutions, either by themselves, or in combination with the other ingredients, including the cyclodextrin.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, "cyclodextrin compatible" means that the cyclodextrin and the other material, or active, do not substantially interact so as to eliminate the odor controlling ability of the cyclodextrin or the desired effect of the material or active.

The term "ballistic" fabric means a fabric which is suitable for use in garments, such as bullet proof vests, flack jackets and the like. It is a fabric which is designed to adsorb the impact of a projectile and protect the wearer from harm. Ballistic fabrics have a wide variety of uses in addition to body armor or bullet proof vests. They are used for other types of protective clothing and equipment (e.g., bicycle and skateboarding helmets), marine and aircraft components, industrial cables, and recreational equipment such as fishing rods and tennis rackets. Typical examples of "ballistic" fabric include Kevlar®, available from Dupont, Kevlar® 129 available from Dupont, Kevlar® Protera. available from Dupont; Spectra ® fiber, manufactured by AlliedSignal, and TWARON® made from an aramid fiber available from Akzo Nobel. The term "ballistic" fabric includes not only fabric made from fibers but also composite materials. Typical examples of composites are, which is then used to make Spectra Shield® composite made from Spectra ® fiber, manufactured by AlliedSignal and Gold Shield ®is manufactured using aramid fibers in place of the Spectra fiber. Gold Shield ®is currently made in three types: Gold Shield ® LCR and GoldFlex ®, which are used in concealable body armor; and Gold Shield ® PCR, which is used in the manufacture of hard armor, such as plates and helmets.

30

35

The "protective garment" means a garment constructed from material which is a non "ballistic" fabric, and is designed to protect the wearer from potential or actual harm and/or injury. One example are helmets, such as polycarbonate crash helmets. These are designed to protect the wearer from potential harm, ie possible head injury in a crash. Another example are fire suits which protect the wearer from an existing danger, that is, heat radiating from the fire they are extinguishing. Other suitable protective garments, but by no means an exhaustive list include, knee pads, leg guards, face masks, gloves, breast plates, athletic supporters, shoulder pads, knee pads, elbow pads, wrist pads, fire suits, "radiation" suits, gas masks, non-ballistic fabric biological and chemical warfare suits, helmets. The compositions of the present invention are especially suitable for removing odor and/or fungal growth in the padding and/or fabric lining of protective garments as well as the garment itself.

All of the patents, patent applications, and references referred to herein are incorporated, either wholly, or in relevant part, by reference. All parts, ratios, and percentages herein are by weight and all numerical limits are used with the normal degree of accuracy afforded by the art unless otherwise specified.

I. COMPOSITION

HIGHLY PREFERRED INGREDIENTS:

(A). CYCLODEXTRIN

As used herein, the term "cyclodextrin" includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof. The alpha-cyclodextrin consists of six glucose units, the beta-cyclodextrin consists of seven glucose units, and the gamma-cyclodextrin consists of eight glucose units arranged in donut-shaped rings. The specific coupling and conformation of the glucose units give the cyclodextrins rigid, conical molecular structures with hollow interiors of specific volumes. The "lining" of each internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms; therefore, this surface is fairly hydrophobic. The unique shape and physical-chemical properties of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules, which can fit into the cavity. Many odorous molecules can fit into the cavity including many malodorous molecules and perfume molecules. Therefore, cyclodextrins, and especially mixtures of cyclodextrins with different size cavities, can be used to control odors caused by a broad spectrum of organic odoriferous materials, which may, or may not, contain reactive functional groups.

30

35

The complexation between cyclodextrin and odorous molecules occurs rapidly in the presence of water. However, the extent of the complex formation also depends on the polarity of the absorbed molecules. In an aqueous solution, strongly hydrophilic molecules (those which are highly water-soluble) are only partially absorbed, if at all. Therefore, cyclodextrin does not complex effectively with some very low molecular weight organic amines and acids when they are present at low levels on wet fabrics. As the water is being removed however, e.g., the fabric is being dried off, some low molecular weight organic amines and acids have more affinity and will complex with the evelodextrins more readily.

The cavities within the cyclodextrin in the solution of the present invention should remain essentially unfilled (the cyclodextrin remains uncomplexed) while in solution, in order to allow the cyclodextrin to absorb various odor molecules when the solution is applied to a surface. Non-derivatised (normal) beta-cyclodextrin can be present at a level up to its solubility limit of about 1.85% (about 1.85g in 100 grams of water) at room temperature. Beta-cyclodextrin is not preferred in compositions which call for a level of cyclodextrin higher than its water solubility limit. Non-derivatised beta-cyclodextrin is generally not preferred when the composition contains surfactant since it affects the surface activity of most of the preferred surfactants that are compatible with the derivatised cyclodextrins.

Preferably, the odor absorbing solution of the present invention is clear. The term "clear" as defined herein means transparent or translucent, preferably transparent, as in "water clear," when observed through a layer having a thickness of less than about 10 cm.

Preferably, the cyclodextrins used in the present invention are highly water-soluble such as, alpha-cyclodextrin and/or derivatives thereof, gamma-cyclodextrin and/or derivatives thereof, derivatives beta-cyclodextrins, and/or mixtures thereof. The derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups. Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a -CH2-CH(OH)-CH3 or a "CH2CH2-OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3-(dimethylamino)propyl ether, wherein R is CH2-CH(OH)-CH2-N(CH3)2 which is cationic at low pH; quaternary ammonium, e.g., 2-hydroxy-3-(trimethylammonio)propyl ether chloride groups, wherein R is CH2-CH(OH)-CH2-N⁺(CH3)2Cl⁻; anionic

30

35

cyclodextrins such as carboxymethyl cyclodextrins, cyclodextrin sulfates, and cyclodextrin succinylates; amphoteric cyclodextrins such as carboxymethyl/quaternary ammonium cyclodextrins; cyclodextrins wherein at least one glucopyranose unit has a 3-6-anhydro-cyclomatto structure, e.g., the mono-3-6-anhydro-cyclodextrins, as disclosed in "Optimal Performances with Minimal Chemical Modification of Cyclodextrins", F. Diedaini-Pilard and B. Perly, The 7th International Cyclodextrin Symposium Abstracts, April 1994, p. 49, said references being incorporated herein by reference; and mixtures thereof. Other cyclodextrin derivatives are disclosed in U.S. Pat. Nos: 3,426,011, Parmerter et al., issued Feb. 4, 1969; 3,453,257; 3,453,258; 3,453,259; and 3,453,260, all in the names of Parmerter et al., and all issued July 1, 1969; 3,459,731, Gramera et al., issued Aug. 5, 1969; 3,553,191, Parmerter et al., issued Jan. 5, 1971; 3,565,887, Parmerter et al., issued Feb. 23, 1971; 4,535,152, Szejtli et al., issued Jul. 7, 1985; 4,616,008, Hirai et al., issued Jan. 20, 1987; and 4,746,734, Tsuchiyama et al., issued May 24, 1988; all of said patents being incorporated herein by reference.

Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature. The availability of solubilized, uncomplexed cyclodextrins is essential for effective and efficient odor control performance. Solubilized, water-soluble cyclodextrin can exhibit more efficient odor control performance than non-water-soluble cyclodextrin when deposited onto surfaces, especially fabric.

Examples of preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin. Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution. Methylated cyclodextrin derivatives typically have a degree of substitution of from about 18, preferably from about 3 to about 16. A known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl-β-cyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14. A preferred, more commercially available, methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin, commonly known as RAMEB, having different degrees of substitution, normally of about 12.6. RAMEB is more preferred than DIMEB, since

30

35

5

DIMEB affects the surface activity of the preferred surfactants more than RAMEB. The preferred cyclodextrins are available, e.g., from Cerestar USA, Inc. and Wacker Chemicals (USA), Inc.

It is also preferable to use a mixture of cyclodextrins. Such mixtures absorb odors more broadly by complexing with a wider range of odoriferous molecules having a wider range of molecular sizes. Preferably at least a portion of the cyclodextrins is alphacyclodextrin and its derivatives thereof, gamma-cyclodextrin and its derivatives thereof, and/or derivatised beta-cyclodextrin, more preferably a mixture of alpha-cyclodextrin, or an alpha-cyclodextrin derivative, and derivatised beta-cyclodextrin, even more preferably a mixture of derivatised alpha-cyclodextrin and derivatised beta-cyclodextrin, most preferably a mixture of hydroxypropyl alpha-cyclodextrin and hydroxypropyl beta-cyclodextrin, and/or a mixture of methylated alpha-cyclodextrin and methylated beta-cyclodextrin.

For controlling odor and fungal growth on fabrics, the composition is preferably used as a spray. It is preferable that the usage compositions of the present invention contain low levels of cyclodextrin so that a visible stain does not appear on the fabric at normal usage levels. Preferably, the solution used to treat the surface under usage conditions is virtually not discernible when dry. Typical levels of cyclodextrin in usage compositions for usage conditions are from about 0.01% to about 5%, preferably from about 0.1% to about 4%, more preferably from about 0.5% to about 2% by weight of the composition. Compositions with higher concentrations can leave unacceptable visible stains on fabrics as the solution evaporates off of the fabric. This is especially a problem on thin, colored, synthetic fabrics. In order to avoid or minimize the occurrence of fabric staining, it is preferable that the fabric be treated at a level of less than about 5 mg of cyclodextrin per gram of fabric, more preferably less than about 2 mg of cyclodextrin per gram of fabric. The presence of the surfactant can improve appearance by minimizing localized spotting.

Concentrated compositions can also be used in order to deliver a less expensive product. When a concentrated product is used, i.e., when the level of cyclodextrin used is from about 3% to about 20%, more preferably from about 5% to about 10%, by weight of the concentrated composition, it is preferable to dilute the concentrated composition before treating fabrics in order to avoid staining. Preferably the concentrated cyclodextrin composition is diluted with about 50% to about 6000%, more preferably with about 75% to about 2000%, most preferably with about 100% to about 1000% by weight of the concentrated composition of water. The resulting diluted compositions have usage

30

5

10

concentrations of cyclodextrin as discussed hereinbefore, e.g., of from about 0.1% to about 5%, by weight of the diluted composition.

(B). SURFACTANT

The surfactant, provides a low surface tension that permits the composition to spread readily and more uniformly on hydrophobic surfaces. It has been found that the aqueous solution, without such a surfactant will not spread satisfactorily. The spreading of the composition also allows it to dry faster, so that the treated material is ready to use sooner. Furthermore, the composition containing a surfactant can penetrate hydrophobic, oily soil better for improved malodor control. The composition containing a cyclodextrin-compatible surfactant also provides improved "in-wear" electrostatic control. For concentrated compositions, the surfactant facilitates the dispersion of many actives such as antimicrobial actives and perfumes in the concentrated aqueous compositions.

The surfactant is also needed in the composition of the present invention that contains a wrinkle control agent such as silicone and/or shape retention polymer. For such agents, the surfactant is also needed, e.g., as a dispersing agent, an emulsifying agent and/or a solubilizing agent.

The surfactant for use in providing the required low surface tension in the composition of the present invention should be cyclodextrin-compatible, that is it should not substantially form a complex with the cyclodextrin so as to diminish performance of the cyclodextrin and/or the surfactant. Complex formation diminishes both the ability of the cyclodextrin to absorb odors and the ability of the surfactant to lower the surface tension of the aqueous composition.

Suitable surfactants, especially cyclodextrin-compatible surfactants, can be readily identified by the absence of effect of cyclodextrin on the surface tension provided by the surfactant. This is achieved by determining the surface tension (in dyne/cm²) of aqueous solutions of the surfactant in the presence and in the absence of about 1% of a specific cyclodextrin in the solutions. The aqueous solutions contain surfactant at concentrations of approximately 0.5%, 0.1%, 0.01%, and 0.005%. The cyclodextrin can affect the surface activity of a surfactant by elevating the surface tension of the surfactant solution. If the surface tension at a given concentration in water differs by more than about 10% from the surface tension of the same surfactant in the 1% solution of the cyclodextrin, that is an indication of a strong interaction between the surfactant and the cyclodextrin. The preferred surfactants herein should have a surface tension in an aqueous solution that is different (lower) by less than about 10%, preferably less than about 5%, and more

preferably less than about 1% from that of the same concentration solution containing 1% cyclodextrin.

Nonlimiting examples of cyclodextrin-compatible nonionic surfactants include block copolymers of ethylene oxide and propylene oxide. Suitable block polyoxyethylene-polyoxypropylene polymeric surfactants, that are compatible with most cyclodextrins, include those based on ethylene glycol, propylene glycol, glycerol, trimethylolpropane and ethylenediamine as the initial reactive hydrogen compound. Polymeric compounds made from a sequential ethoxylation and propoxylation of initial compounds with a single reactive hydrogen atom, such as C_{12-18} aliphatic alcohols, are not generally compatible with the cyclodextrin. Certain of the block polymer surfactant compounds designated Pluronic and Tetronic by the BASF-Wyandotte Corp., Wyandotte, Michigan, are readily available.

Nonlimiting examples of cyclodextrin-compatible surfactants of this type include: Pluronic Surfactants with the general formula $H(EO)_n(PO)_m(EO)_nH$, wherein FO is an ethylene oxide group, PO is a grapular with the surfactants.

wherein EO is an ethylene oxide group, PO is a propylene oxide group, and n and m are numbers that indicate the average number of the groups in the surfactants. Typical examples of cyclodextrin-compatible Pluronic surfactants are:

-	,	- I I I I I I I I I I I I I I I I I I I	Juic.
Name	Average MW	Average n	Average m
L-101	3,800	4	59
L-81	2,750	3	42
L-44	2,200	10	23
L-43	1,850	6	22
F-38	4,700	43	16
P-84	4,200	19	43,

25 and mixtures thereof.

Tetronic Surfactants with the general formula:

$$\begin{array}{l} \mbox{H(EO)n(PO)m} \\ \mbox{NCH}_2\mbox{CH}_2\mbox{N} \\ \mbox{H(EO)n(PO)m} \end{array} \\ \mbox{NCH}_2\mbox{CH}_2\mbox{N} \\ \mbox{((PO)m(EO)nH)} \\ \mbox{((PO)m(EO)nH)} \\ \mbox{NCH}_2\mbox{N} \\ \mbox{NCH}_2\mbox{$$

wherein EO, PO, n, and m have the same meanings as above. Typical examples of cyclodextrin-compatible Tetronic surfactants are:

Name	Average MW	Average n	Average m
901	4,700	3	18

25,000

3,870

114

22,

13

and mixtures thereof.

5 Reverse Tetronic Surfactants

$$\begin{array}{c} \text{H(PO)n(EO)m} \\ \text{NCH}_2\text{CH}_2\text{N} \end{array} \\ \begin{array}{c} \text{(EO)m(PO)nH} \\ \text{(EO)m(PO)nH} \end{array}$$

wherein EO, PO, n, and m have the same meanings as above. Typical examples of cyclodextrin-compatible Reverse Pluronic and Reverse Tetronic surfactants are:

Reverse Pluronic surfactants:

Name Average MW Average n Average m 10 R5 1,950 8 22 25 R1 2,700 21 6 Reverse Tetronic surfactants Name Average MW Average n Average m 130 R2 7,740 26

and mixtures thereof.

70 R2

20

A preferred class of cyclodextrin-compatible nonionic surfactants are the polyalkylene oxide polysiloxanes having a dimethyl polysiloxane hydrophobic moiety and one or more hydrophilic polyalkylene side chains, and having the general formula:

$$R^{1}$$
— $(CH_{3})_{2}SiO$ — $[(CH_{3})_{2}SiO]_{a}$ — $[(CH_{3})(R^{1})SiO]_{b}$ — $Si(CH_{3})_{2}$ — R^{1}

25 wherein a + b are from about 1 to about 50, preferably from about 3 to about 30, more preferably from about 10 to about 25, and each R¹ is the same or different and is selected from the group consisting of methyl and a poly(ethyleneoxide/propyleneoxide) copolymer group having the general formula:

30 with at least one R¹ being a poly(ethyleneoxide/propyleneoxide) copolymer group, and wherein n is 3 or 4, preferably 3; total c (for all polyalkyleneoxy side groups) has a value of from 1 to about 100, preferably from about 6 to about 100; total d is from 0 to about 14, preferably from 0 to about 3; and more preferably d is 0; total c+d has a value of from

30

5

about 5 to about 150, preferably from about 9 to about 100 and each R^2 is the same or different and is selected from the group consisting of hydrogen, an alkyl having 1 to 4 carbon atoms, and an acetyl group, preferably hydrogen and methyl group. Each polyalkylene oxide polysiloxane has at least one R^1 group being a poly(ethyleneoxide/propyleneoxide) copolymer group.

Nonlimiting examples of this type of surfactants are the Silwet® surfactants which are available OSi Specialties, Inc., Danbury, Connecticut. Representative Silwet surfactants are as follows

Name	Average MW	Average a+b	Average total c
L-7608	600	1	9
L-7607	1,000	2	17
L-77	600	1	9
L-7605	6,000	20	99
L-7604	4,000	21	53
L-7600	4,000	11	68
L-7657	5,000	20	76
L-7602	3,000	20	29

The molecular weight of the polyalkyleneoxy group (R¹) is less than or equal to about 10,000. Preferably, the molecular weight of the polyalkyleneoxy group is less than or equal to about 8,000, and most preferably ranges from about 300 to about 5,000. Thus, the values of c and d can be those numbers which provide molecular weights within these ranges. However, the number of ethyleneoxy units (-C₂H₄O) in the polyether chain (R¹) must be sufficient to render the polyalkylene oxide polysiloxane water dispersible or water soluble. If propyleneoxy groups are present in the polyalkylenoxy chain, they can be distributed randomly in the chain or exist as blocks. Preferred Silwet surfactants are L-7600, L-7604, L-7604, L-7605, L-7622, L-7657, and mixtures thereof. Besides surface activity, polyalkylene oxide polysiloxane surfactants can also provide other benefits, such as antistatic benefits, lubricity and softness to fabrics.

The preparation of polyalkylene oxide polysiloxanes is well known in the art. Polyalkylene oxide polysiloxanes of the present invention can be prepared according to the procedure set forth in U.S. Pat. No. 3,299,112, incorporated herein by reference. Typically, polyalkylene oxide polysiloxanes of the surfactant blend of the present invention are readily prepared by an addition reaction between a hydrosiloxane (i.e., a siloxane containing silicon-bonded hydrogen) and an alkenyl ether (e.g., a vinyl, allyl, or

25

5

methallyl ether) of an alkoxy or hydroxy end-blocked polyalkylene oxide). The reaction conditions employed in addition reactions of this type are well known in the art and in general involve heating the reactants (e.g., at a temperature of from about 85° C. to 110° C.) in the presence of a platinum catalyst (e.g., chloroplatinic acid) and a solvent (e.g., toluene).

Nonlimiting examples of cyclodextrin-compatible anionic surfactants are the alkyldiphenyl oxide disulfonate, having the general formula:

wherein R is an alkyl group. Examples of this type of surfactants are available from the Dow Chemical Company under the trade name $Dowfax^{\textcircled{\tiny{0}}}$ wherein R is a linear or branched $C_6\text{-}C_{16}$ alkyl group. An example of these cyclodextrin-compatible anionic surfactant is Dowfax 3B2 with R being approximately a linear C_{10} group. These anionic surfactants are preferably not used when the antimicrobial active or preservative, etc., is cationic to minimize the interaction with the cationic actives, since the effect of both surfactant and active are diminished.

Another type of suitable surfactants are the fluorocarbon surfactants. Fluorocarbon surfactants are the class of surfactants wherein the hydrophobic part of the amphiphile comprises at least in part some portion of a carbon-based linear or cyclic moiety having fluorines attached to the carbon where typically hydrogens would be attached to the carbons together with a hydrophilic head group. Some typical nonlimiting fluorocarbon surfactants include fluorinated alkyl polyoxyalkylene, and fluorinated alkyl esters as well as ionic surfactants. Representative structures for these compounds are given below:

- (1) $R_f R(R_1 O)_x R_2$
- (2) $R_fR-OC(O)R_3$
- (3) R_fR-Y-Z
- (4) R_fRZ

Where Rf contains from about 6 to about 18 carbons each having from about 0 to about 3 fluorines attached. R is either an alkyl or alkylene oxide group which when 30 present, has from about 1 to about 10 carbons and R1 represents an alkylene radical

30

5

having from about 1 to about 4 carbons, R2 is either a hydrogen or a small alkyl capping group having from about 1 to about 3 carbons. R3 represents a hydrocarbon moiety comprising from about 2 to about 22 including the carbon on the ester group. This hydrocarbon can be linear, branched or cyclic saturated or unsaturated and contained moieties based on oxygen, nitrogen, and sulfur including, but not limited to ethers, alcohols, esters, carboxylates, amides, amines, thio-esters, and thiols; these oxygen, nitrogen, and sulfur moieties can either interrupt the hydrocabon chain or be pendant on the hydrocarbon chain. In structure 3, Y represents a hydrocarbon group that can be an alkyl, pyridine group, amidopropyl, etc. that acts as a linking group between the fluorinated chain and the hydrophilic head group. In structures 3 and 4, Z represents a cationic, anionic, and amphoteric hydrophilic head groups including, but not limited to carboxylates, sulfates, sulfonates, quaternary ammonium groups, and betaines. Nonlimiting commercially available examples of these structures include Zonyl® 9075, FSO, FSN, FS-300, FS-310, FSN-100, FSO-100, FTS, TBC from DuPont and FluoradTM surfactants FC-430, FC-431, FC-740, FC-99, FC-120, FC-754, FC170C, and FC-171 from the 3MTM company in St. Paul, Minnesota.

The surfactants above are either weakly interactive with cyclodextrin (less than 5% elevation in surface tension, or non-interactive (less than 1% elevation in surface tension). Normal surfactants like sodium dodecyl sulfate and dodecanolpoly(6)ethoxylate are strongly interactive, with more than a 10% elevation in surface tension in the presence of a typical cyclodextrin like hydroxypropyl-beta-cyclodextrin and methylated beta-cyclodextrin.

Typical levels of surfactants in usage compositions are from about 0.01% to about 2%, preferably from about 0.03% to about 0.6%, more preferably from about 0.05% to about 0.3%, by weight of the composition. Typical levels of surfactants in concentrated compositions are from about 0.1% to about 8%, preferably from about 0.2% to about 4%, more preferably from about 0.3% to about 3%, by weight of the concentrated composition. For composition containing wrinkle control agent, typical levels of surfactants in the usage compositions are from about 0.05% to about 5%, preferably from about 0.1% to about 3%, more preferably from about 0.2% to about 1.5%, by weight of the composition.

(C). ANTIMICROBIAL ACTIVE

The solubilized, water-soluble antimicrobial active, C., is useful in providing protection against organisms that become attached to the treated material. Preferably, the

30

35

5

10

antimicrobial should be cyclodextrin-compatible, e.g., not substantially forming complexes with the cyclodextrin in the odor absorbing composition. The free, uncomplexed antimicrobial, e.g., antibacterial, active provides an optimum antibacterial performance.

Sanitization of ballistic fabrics can be achieved by the compositions of the present invention containing, antimicrobial materials, e.g., antibacterial halogenated compounds, quaternary compounds, and phenolic compounds.

Biguanides. Some of the more robust cyclodextrin-compatible antimicrobial halogenated compounds which can function as disinfectants/sanitizers as well as finish product preservatives (vide infra), and are useful in the compositions of the present invention include 1,1'-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with hydrochloric, acetic and gluconic acids. The digluconate salt is highly water-soluble, about 70% in water, and the diacetate salt has a solubility of about 1.8% in water. When chlorhexidine is used as a sanitizer in the present invention it is typically present at a level of from about 0.001% to about 0.4%, preferably from about 0.002% to about 0.3%, and more preferably from about 0.05% to about 0.2%, by weight of the usage composition. In some cases, a level of from about 1% to about 2% may be needed for virucidal activity.

Other useful biguanide compounds include Cosmoci[®] CQ[®], Vantocil[®] IB, including poly (hexamethylene biguanide) hydrochloride. Other useful cationic antimicrobial agents include the bis-biguanide alkanes. Usable water soluble salts of the above are chlorides, bromides, sulfates, alkyl sulfonates such as methyl sulfonate and ethyl sulfonate, phenylsulfonates such as p-methylphenyl sulfonates, nitrates, acetates, gluconates, and the like.

Examples of suitable bis biguanide compounds are chlorhexidine; 1,6-bis-(2ethylhexylbiguanidohexane)dihydrochloride; 1,6-di-(N1,N1'-phenyldiguanido-N5,N5')hexane tetrahydrochloride; 1,6-di-(N₁,N₁'-phenyl-N₁,N₁'-methyldiguanido-N₅,N₅')hexane dihydrochloride; 1,6-di(N1,N1'-o-chlorophenyldiguanido-N5,N5')-hexane 1,6-di(N1,N1'-2,6-dichlorophenyldiguanido-N5,N5')hexane dihydrochloride: 1,6-di[N₁,N₁'-.beta.-(p-methoxyphenyl) diguanido-N₅,N₅']-hexane dihydrochloride; dihydrochloride: 1,6-di(N₁,N₁'-.alpha.-methyl-.beta.-phenyldiguanido-N₅,N₅')-hexane dihydrochloride; 1,6-di(N1,N1'-p-nitrophenyldiguanido-N5,N5')hexane $dihydrochloride;.omega.:.omega.'-di-(N_1,N_1'-phenyldiguanido-N_5,N_5')-di-n-propylether$ propylether tetrahydrochloride: 1,6-di(N1,N1'-2,4-dichlorophenyldiguanido-

30

35

5

N5,N5')hexane tetrahydrochloride; 1,6-di(N₁,N₁'-p-methylphenyldiguanido-N5.N5')hexane dihydrochloride; 1,6-di(N1,N1'-2,4,5-trichlorophenyldiguanido-Ns.Ns')hexane tetrahydrochloride: 1,6-di[N₁,N₁'-.alpha.-(p-chlorophenyl) ethyldiguanido-N5,N5'] hexane dihydrochloride;.omega.:.omega.'di(N1, chlorophenyldiguanido-N5,N5')m-xylene dihydrochloride; 1,12-di(N₁,N₁'-pchlorophenyldiguanido-N5,N5') dodecane dihvdrochloride; 1,10-di(N₁,N₁'phenyldiguanido-N5,N5')-decane tetrahydrochloride; 1,12-di(N1,N1'-phenyldiguanido-N5,N5') dodecane tetrahydrochloride; 1,6-di(N1,N1'-o-chlorophenyldiguanido-N5,N5') hexane dihydrochloride: 1,6-di(N1,N1'-p-chlorophenyldiguanido-N5,N5')-hexane tetrahydrochloride; ethylene bis (1-tolyl biguanide); ethylene bis (p-tolyl biguanide); ethylene bis(3,5-dimethylphenyl biguanide); ethylene bis(p-tert-amylphenyl biguanide); ethylene bis(nonylphenyl biguanide); ethylene bis (phenyl biguanide); ethylene bis (Nbutylphenyl biguanide); ethylene bis (2,5-diethoxyphenyl biguanide); ethylene bis(2,4dimethylphenyl biguanide); ethylene bis(o-diphenylbiguanide); ethylene bis(mixed amyl naphthyl biguanide); N-butyl ethylene bis(phenylbiguanide); trimethylene bis(o-tolyl biguanide); N-butyl trimethylene bis(phenyl biguanide); and the corresponding pharmaceutically acceptable salts of all of the above such as the acetates; gluconates; hydrochlorides; hydrobromides; citrates; bisulfites; fluorides; polymaleates; Ncoconutalkylsarcosinates; phosphites; hypophosphites; perfluorooctanoates; silicates; sorbates; salicylates; maleates; tartrates; fumarates; ethylenediaminetetraacetates; iminodiacetates; cinnamates: thiocyanates: arginates; pyromellitates; tetracarboxybutyrates: benzoates; glutarates: monofluorophosphates: and perfluoropropionates, and mixtures thereof. Preferred antimicrobials from this group are 1,6-di-(N₁,N₁'-phenyldiguanido-N₅,N₅')-hexane tetrahydrochloride; 1,6-di(N₁,N₁'-ochlorophenyldiguanido-N5,N5')-hexane dihydrochloride: 1,6-di(N1,N1'-2,6dichlorophenyldiguanido-N5,N5')hexane dihydrochloride; 1.6-di(N₁,N₁'-2,4 $dichlorophenyldiguanido-N_5,N_5') hexane \quad tetrahydrochloride; \quad 1,6-di[N_1,N_1'-.alpha.-(p-lorophenyldiguanido-N_5,N_5') hexane \quad 1,6-di[N_1,N_1'-.alpha.-(p-lorophenyldiguanido-N_5,N_5') hexane \quad$ chlorophenyl) ethyldiguanido-N5,N5'] hexane dihydrochloride;.omega.:.omega.'di(N1, N₁'-p-chlorophenyldiguanido-N₅,N₅')m-xylene dihydrochloride; 1,12-di(N₁,N₁'-pchlorophenyldiguanido-N5,N5') dodecane dihydrochloride; 1,6-di(N₁,N₁'-ochlorophenyldiguanido-N5,N5') hexane dihydrochloride; 1,6-di(N₁,N₁'-pchlorophenyldiguanido-N5,N5')-hexane tetrahydrochloride; and mixtures thereof; more preferably, 1,6-di(N1,N1'-o-chlorophenyldiguanido-N5,N5')-hexane dihydrochloride; 1,6- $\label{eq:dinner} {\rm di}(N_1,N_1'-2,6-dichlorophenyldiguanido-N_5,N_5') hexane \ dihydrochloride; \ 1,6-di(N_1,N_1'-2,6-dichlorophenyldiguanido-N_5,N_5') hexane \ dihydrochloride; \ 1,6-dichlorophenyldiguanido-N_5,N_5') hexane \ dihydrochlorophenyldiguanido-N_5,N_5') hexane \ dihydrochlorophenyldiguanido-N_5,N_5') hexane \ dih$

30

35

5

10

 $\label{eq:controlled} \begin{tabular}{ll} (p-chlorophenyll) ethyldiguanido-N_5,N_5'] hexane & dihydrochloride; omega.:.omega.'di(N_1,N_1'-p-chlorophenyldiguanido-N_5,N_5')m-xylene & dihydrochloride; & 1,12-di(N_1,N_1'-p-chlorophenyldiguanido-N_5,N_5') & dodecane & dihydrochloride; & 1,6-di(N_1,N_1'-p-chlorophenyldiguanido-N_5,N_5') & hexane & dihydrochloride; & 1,6-di(N_1,N_1'-p-chlorophenyldiguanido-N_5,N_5')-hexane & tetrahydrochloride; and mixtures thereof. As stated hereinbefore, the bis biguanide of choice is chlorhexidine its salts, e.g., digluconate, dihydrochloride, diacetate, and mixtures thereof. \\ \end{tabular}$

Quaternary Compounds. A wide range of quaternary compounds can also be used as antimicrobial actives. Non-limiting examples of useful quaternary compounds include: (1) benzalkonium chlorides and/or substituted benzalkonium chlorides such as commercially available Barquat® (available from Lonza), Maquat® (available from Mason), Variquat® (available from Witco/Sherex), and Hyamine® (available from Lonza); (2) di(C6-C14)alkyl di short chain (C14 alkyl and/or hydroxyalkyl) quaternary such as Bardac® products of Lonza, (3) N-(3-chloroallyl) hexaminium chlorides such as Dowicide® and Dowicil® available from Dow; (4) benzethonium chloride such as Hvamine® 1622 from Rohm & Haas: (5) methylbenzethonium chloride represented by Hyamine® 10X supplied by Rohm & Haas, (6) cetylpyridinium chloride such as Cepacol chloride available from of Merrell Labs. Examples of the preferred dialkyl quaternary di(C_s-C₁₂)dialkyl dimethyl ammonium chloride, didecyldimethylammonium chloride (Bardac 22), and dioctyldimethylammonium chloride (Bardac 2050). Typical concentrations for biocidal effectiveness of these quaternary compounds range from about 0.001% to about 0.8%, preferably from about 0.005% to about 0.3%, more preferably from about 0.01% to about 0.2%, and even more preferably from about 0.03% to about 0.1%, by weight of the usage composition. The corresponding concentrations for the concentrated compositions are from about 0.003% to about 2%, preferably from about 0.006% to about 1.2%, and more preferably from about 0.1% to about 0.8% by weight of the concentrated compositions.

The surfactants, when added to the antimicrobials tend to provide improved antimicrobial action. This is especially true for the siloxane surfactants, and especially when the siloxane surfactants are combined with the chlorhexidine antimicrobial actives.

(D). PERFUME

The odor absorbing composition of the present invention can also optionally provide a "scent signal" in the form of a pleasant odor which signals the removal of malodor from fabrics. The scent signal is designed to provide a fleeting perfume scent, and is not designed to be overwhelming or to be used as an odor masking ingredient.

30

35

5

When perfume is added as a scent signal, it is added only at very low levels, e.g., from about 0.% to about 0.5%, preferably from about 0.003% to about 0.3%, more preferably from about 0.005% to about 0.2%, by weight of the usage composition.

Perfume can also be added as a more intense odor in product and on surfaces. When stronger levels of perfume are preferred, relatively higher levels of perfume can be added. Any type of perfume can be incorporated into the composition of the present invention. It is essential, however, that the perfume be added at a level wherein even if all of the perfume in the composition were to complex with the cyclodextrin molecules, there will still be an effective level of uncomplexed cyclodextrin molecules present in the solution to provide adequate odor control. In order to reserve an effective amount of cyclodextrin molecules for odor control, perfume is typically present at a level wherein less than about 90% of the cyclodextrin complexes with the perfume, preferably less than about 50% of the cyclodextrin complexes with the perfume, and most preferably, less than about 10% of the cyclodextrin complexes with the perfume. The cyclodextrin to perfume weight ratio should be greater than about 8:1, preferably greater than about 10:1, more preferably greater than about 20:1, even more preferably greater than 40:1 and most preferably greater than about 70:1.

Preferably the perfume is hydrophilic and is composed predominantly of ingredients selected from two groups of ingredients, namely, (a) hydrophilic ingredients having a ClogP of less than about 3.5, more preferably less than about 3.0, and (b) ingredients having significant low detection threshold, and mixtures thereof. Typically, at least about 50%, preferably at least about 60%, more preferably at least about 70%, and most preferably at least about 80% by weight of the perfume is composed of perfume ingredients of the above groups (a) and (b). For these preferred perfumes, the cyclodextrin to perfume weight ratio is typically of from about 2:1 to about 200:1; preferably from about 4:1 to about 100:1, more preferably from about 6:1 to about 50:1, and even more preferably from about 8:1 to about 30:1.

(a). Hydrophilic Perfume Ingredients

The hydrophilic perfume ingredients are more soluble in water, have less of a tendency to complex with cyclodextrin, and are more available in the odor absorbing composition than the ingredients of conventional perfumes. The degree of hydrophobicity of a perfume ingredient can be correlated with its octanol/water partition coefficient P. The octanol/water partition coefficient of a perfume ingredient is the ratio between its equilibrium concentration in octanol and in water. A perfume ingredient with

a greater partition coefficient P is considered to be more hydrophobic. Conversely, a perfume ingredient with a smaller partition coefficient P is considered to be more hydrophilic. Since the partition coefficients of the perfume ingredients normally have high values, they are more conveniently given in the form of their logarithm to the base 10, logP. Thus the preferred perfume hydrophilic perfume ingredients of this invention have logP of about 3.5 or smaller, preferably of about 3.0 or smaller.

The logP of many perfume ingredients have been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP" program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database. The "calculated logP" (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990, incorporated herein by reference). The fragment approach is based on the chemical structure of each perfume ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding. The ClogP values, which are the most reliable and widely used estimates for this physicochemical property, are used instead of the experimental logP values in the selection of perfume ingredients which are useful in the present invention.

Non-limiting examples of the more preferred hydrophilic perfume ingredients are allyl amyl glycolate, allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisyl acetate, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, calone, camphor gum, laevo-carveol, d-carvone, laevo-carveone, cinnamic alcohol, cinnamyl acetate, cinnamic alcohol, cinnamyl formate, cimamyl propionate, cis-jasmone, ci

30

5

hydroxycitronellal diethyl acetal, hydroxycitronellol, indole, isoamyl alcohol, iso cyclo citral, isoeugenol, isoeugenyl acetate, isomenthone, isopulegyl acetate, isoquinoline, keone, ligustral, linalool, linalool oxide, linalyl formate, lyral, menthone, methyl acetophenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benzoate, methyl heptenone, methyl lopinocate, methyl dihydrojasmonate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl isobutenyl tetrahydropyran, methyl-N-methyl anthranilate, methyl beta naphthyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, nerol, nonalactone, octalactone, octyl alcohol (octanol-2), para-anisic aldehyde, para-cresol, para-cresyl methyl ether, para hydroxy phenyl butanone, para-methoxy acetophenone, para-methyl acetophenone, phenoxy ethanol, phenoxyethyl propionate, phenyl acetaldehyde, phenylacetaldehyde diethyl ether, phenylethyl oxyacetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl butyrate, pulegone, rose oxide, safrole, terpineol, vanillin, viridine, and mixtures thereof.

Nonlimiting examples of other preferred hydrophilic perfume ingredients which can be used in perfume compositions of this invention are allyl heptoate, amyl benzoate, anethole, benzophenone, carvacrol, citral, citronellol, citronellyl nitrile, cyclohexyl ethyl acetate, cymal, 4-decenal, dihydro isojasmonate, dihydro myrcenol, ethyl methyl phenyl glycidate, fenchyl acetate, florhydral, gamma-nonalactone, geranyl formate, geranyl nitrile, hexenyl isobutyrate, alpha-ionone, isobornyl acetate, isobutyl benzoate, isononyl alcohol, isomenthol, para-isopropyl phenylacetaldehyde, isopulegol, linalyl acetate, 2-methoxy naphthalene, menthyl acetate, methyl chavicol, musk ketone, beta naphthol methyl ether, neral, nonyl aldehyde, phenyl heptanol, phenyl hexanol, terpinyl acetate, Veratrol, yara-yara, and mixtures thereof.

The preferred perfume compositions used in the present invention contain at least 4 different hydrophilic perfume ingredients, preferably at least 5 different hydrophilic perfume ingredients, more preferably at least 6 different hydrophilic perfume ingredients, and even more preferably at least 7 different hydrophilic perfume ingredients. Most common perfume ingredients which are derived from natural sources are composed of a multitude of components. When each such material is used in the formulation of the preferred perfume compositions of the present invention, it is counted as one single ingredient, for the purpose of defining the invention.

(b). Low Odor Detection Threshold Perfume Ingredient

The odor detection threshold of an odorous material is the lowest vapor 35 concentration of that material which can be olfactorily detected. The odor detection

30

35

5

threshold and some odor detection threshold values are discussed in, e.g., "Standardized Human Olfactory Thresholds", M. Devos et al, IRL Press at Oxford University Press, 1990, and "Compilation of Odor and Taste Threshold Values Data", F. A. Fazzalari, editor, ASTM Data Series DS 48A, American Society for Testing and Materials, 1978, both of said publications being incorporated by reference. The use of small amounts of perfume ingredients that have low odor detection threshold values can improve perfume odor character, even though they are not as hydrophilic as perfume ingredients of group (a) which are given hereinabove. Perfume ingredients that do not belong to group (a) above, but have a significantly low detection threshold, useful in the composition of the present invention, are selected from the group consisting of ambrox, bacdanol, benzyl salicylate, butyl anthranilate, cetalox, damascenone, alpha-damascone, gammadodecalactone, ebanol, herbavert, cis-3-hexenyl salicylate, alpha-ionone, beta-ionone, alpha-isomethylionone, lilial, methyl nonyl ketone, gamma-undecalactone, undecylenic aldehyde, and mixtures thereof. These materials are preferably present at low levels in addition to the hydrophilic ingredients of group (a), typically less than about 20%, preferably less than about 15%, more preferably less than about 10%, by weight of the total perfume compositions of the present invention. However, only low levels are required to provide an effect.

There are also hydrophilic ingredients of group (a) that have a significantly low detection threshold, and are especially useful in the composition of the present invention. Examples of these ingredients are allyl amyl glycolate, anethole, benzyl acctone, calone, cinnamic alcohol, coumarin, cyclogalbanate, Cyclal C, cymal, 4-decenal, dihydro isojasmonate, ethyl anthranilate, ethyl-2-methyl butyrate, ethyl methylphenyl glycidate, ethyl vanillin, eugenol, flor acetate, florhydral, fructone, frutene, heliotropin, keone, indole, iso cyclo citral, isoeugenol, lyral, methyl heptine carbonate, linalool, methyl anthranilate, methyl dihydrojasmonate, methyl isobutenyl tetrahydropyran, methyl beta naphthyl ketone, beta naphthol methyl ether, nerol, para-anisic aldehyde, para hydroxy phenyl butanone, phenyl acetaldehyde, vanillin, and mixtures thereof. Use of low odor detection threshold perfume ingredients minimizes the level of organic material that is released into the atmosphere.

(E). LOW MOLECULAR WEIGHT POLYOLS

Low molecular weight polyols with relatively high boiling points, as compared to water, such as ethylene glycol, diethylene glycol, propylene glycol and/or glycerol are preferred optional ingredients for improving odor control performance of the composition of the present invention. Not to be bound by theory, it is believed that the incorporation

30

35

5

of a small amount of low molecular weight glycols into the composition of the present invention enhances the formation of the cyclodextrin inclusion complexes as the fabric dries

It is believed that the polyols' ability to remain on the fabric for a longer period of time than water, as the fabric dries allows it to form ternary complexes with any cyclodextrin present and some malodorous molecules. The addition of the glycols is believed to fill up void space in the cyclodextrin cavity that is unable to be totally filled by some malodor molecules of relatively smaller sizes. Preferably the glycol used is glycerin, ethylene glycol, propylene glycol, dipropylene glycol or mixtures thereof, more preferably ethylene glycol and propylene glycol. Cyclodextrins prepared by processes that result in a level of such polyols are highly desirable, since they can be used without removal of the polyols.

Some polyols, e.g., dipropylene glycol, are also useful to facilitate the solubilization of some perfume ingredients in the composition of the present invention.

Typically, glycol is added to the composition of the present invention at a level of from about 0.01% to about 3%, by weight of the composition, preferably from about 0.05% to about 1%, more preferably from about 0.1% to about 0.5%, by weight of the composition. The preferred weight ratio of low molecular weight polyol to cyclodextrin is from about 2:1,000 to about 20:100, more preferably from about 3:1,000 to about 15:100, even more preferably from about 5:1,000 to about 10:100, and most preferably from about 1:100 to about 7:100.

OPTIONAL, BUT PREFERRED INGREDIENTS:

(F). OPTIONAL AMINOCARBOXYLATE CHELATORS

Chelators, e.g., ethylenediaminetetraacetic acid (EDTA), hydroxyethylene-diaminetriacetic acid, diethylenetriaminepentaacetic acid, and other aminocarboxylate chelators, and mixtures thereof, and their salts, and mixtures thereof, can optionally be used to increase antimicrobial and preservative effectiveness against Gram-negative bacteria, especially Pseudomonas species. Furthermore, aminocarboxylate chelators can help, e.g., maintaining product clarity, protecting fragrance and perfume components, and preventing rancidity and off odors.

The optional chelators are present in the compositions of this invention at levels of, typically, from about 0.01% to about 0.3%, more preferably from about 0.02% to about 0.1%, most preferably from about 0.02% to about 0.05% by weight of the usage compositions to provide antimicrobial efficacy in this invention.

(G). METAL SALTS

30

35

5

10

Metallic salts can be added to the compositions of the present invention for odor absorption and/or antimicrobial benefit. The metallic salts are selected from the group consisting of copper salts, zinc salts, and mixtures thereof.

Preferably the metallic salts are water-soluble zinc salts, copper salts or mixtures thereof, and more preferably zinc salts, especially ZnCl₂.

When metallic salts are added to the composition of the present invention they are typically present at a level of from about 0.1% to about 10%, preferably from about 0.2% to about 8%, more preferably from about 0.3% to about 5% by weight of the usage composition. When zinc salts are used as the metallic salt, and a clear solution is desired, it is preferable that the pH of the solution is adjusted to less than about 7, more preferably less than about 6, most preferably, less than about 5, in order to keep the solution clear.

(H). ENZYMES

Enzymes can be used to control certain types of malodor, especially malodor from urine and other types of excretions, including regurgitated materials. Proteases are especially desirable. The activity of commercial enzymes depends very much on the type and purity of the enzyme being considered

Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, preferably from about 0.001 mg to about 3 mg, more preferably from about 0.002 mg to about 1 mg, of active enzyme per gram of the aqueous compositions. Stated otherwise, the aqueous compositions herein can comprise from about 0.0001% to about 0.5%, preferably from about 0.001% to about 0.3%, more preferably from about 0.005% to about 0.2% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.0005 to 0.1 Anson units (AU) of activity per gram of aqueous composition.

Nonlimiting examples of suitable, commercially available, water soluble proteases are pepsin, tripsin, ficin, bromelin, papain, rennin, and mixtures thereof. Papain can be isolated, e.g., from papaya latex, and is available commercially in the purified form of up to, e.g., about 80% protein, or cruder, technical grade of much lower activity. Other suitable examples of proteases are the subtilisins which are obtained from particular strains of *B. subtilis* and *B. licheniforms*. Another suitable protease is obtained from a strain of *Bacillus*, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE®. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the trade names

30

ALCALASE® and SAVINASE® by Novo Industries A/S (Denmark) and MAXATASE® by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985); Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985); and proteases made by Genencor International, Inc., according to one or more of the following patents: Caldwell et al, U.S. Patent Nos. 5,185,258, 5,204,015 and 5,244,791.

A wide range of enzyme materials and means for their incorporation into liquid compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al., issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985. Other enzyme materials useful for liquid formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981. Enzymes can be stabilized by various techniques, e.g., those disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al., European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas, and in U.S. Patent 3,519,570. All of the above patents and applications are incorporated herein, at least in pertinent part.

Enzyme-polyethylene glycol conjugates are also preferred. Such polyethylene glycol (PEG) derivatives of enzymes, wherein the PEG or alkoxy-PEG moieties are coupled to the protein molecule through, e.g., secondary amine linkages. Suitable derivatization decreases immunogenicity, thus minimizes allergic reactions, while still maintaining some enzymatic activity. An example of protease-PEG's is PEG-subtilisin Carlsberg from B. *lichenniformis* coupled to methoxy-PEGs through secondary amine linkage, and is available from Sigma-Aldrich Corp., St. Louis, Missouri.

(I). PRESERVATIVE

Solubilized, water-soluble, antimicrobial preservatives can be added to the compositions of the present invention.

Antimicrobial preservatives useful in the present invention include biocidal compounds, i.e., substances that kill microorganisms, or biostatic compounds, i.e., substances that inhibit and/or regulate the growth of microorganisms. List of suitable preservatives is found in U.S. Patent 5,714,137.

30

35

5

10

Preferred levels of preservative are from about 0.0001% to about 0.5%, more preferably from about 0.0002% to about 0.2%, most preferably from about 0.0003% to about 0.1%, by weight of the usage composition.

In order to reserve most of the cyclodextrins for odor control, the cyclodextrin to preservative molar ratio should be greater than about 5:1, preferably greater than about 10:1, more preferably greater than about 50:1, even more preferably greater than about 100:1.

(J). WRINKLE CONTROL AGENT

A fabric wrinkle control agent, preferably selected from the group consisting of: fiber lubricant, shape retention polymer, hydrophilic plasticizer, lithium salt, and mixtures thereof, may also be incorporated into the compositions of the present invention. Preferably the fabric wrinkle control agent, like the other ingredients, are cyclodextrincompatible. Nonlimiting examples of fabric wrinkle control agents are silicones, synthetic solid particles (e.g., Velustrol P-40 oxidized polyethylene emulsion available from Clariant), mono- and polycarboxylic acids, acrylates, acrylamides, esters, amides and imides of carboxylic acids, starches and their derivatives, chitins and their derivatives.

Nonlimiting examples of the preferred shape retention polymers that are commercially available are: polyvinylpyrrolidone/dimethylaminoethyl methacrylate copolymer, such as Copolymer 958®, molecular weight of about 100,000 and Copolymer 937, molecular weight of about 1,000,000, available from GAF Chemicals Corporation: adipic acid/dimethylaminohydroxypropyl diethylenetriamine copolymer, such as Cartaretin F-4® and F-23, available from Sandoz Chemicals Corporation; methacryloyl ethyl betaine/methacrylates copolymer, such as Diaformer Z-SM®, available from Mitsubishi Chemicals Corporation; polyvinyl alcohol copolymer resin, such as Vinex 2019®, available from Air Products and Chemicals or Moweol®, available from Clariant; adipic acid/epoxypropyl diethylenetriamine copolymer, such as Delsette 101®, available from Hercules Incorporated; polyamine resins, such as Cypro 515®, available from Cytec Industries; polyquaternary amine resins, such as Kymene 557H®, available from Hercules Incorporated; and polyvinylpyrrolidone/acrylic acid, such as Sokalan EG 310®, available from BASF.

When silicone is present, it is present at least an effective amount to provide lubrication of the fibers, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3%, more preferably from about 0.3% to about 2%, by weight of the usage composition.

30

35

5

10

When solid polymeric particles are present, they are present at an effective amount to provide lubrication of the fibers, typically from about 0.01% to about 3%, preferably from about 0.05% to about 1%, more preferably from about 0.1% to about 0.5%, by weight of the usage composition.

The adhesive polymer is present in the composition in a sufficient amount to result in an amount of from about 0.001% to about 1%, preferably from about 0.01% to about 0.5%, more preferably from about 0.02% to about 0.4% by weight of polymer per weight of dry fabrics.

Concentrated compositions can also be used in order to provide a less expensive product. When a concentrated product is used, i.e., when the wrinkle reducing active is from about 5% to about 50%, by weight of the concentrated composition, it is preferable to dilute the composition before treating fabric. Preferably, the wrinkle reducing active is diluted with about 50% to about 10,000%, more preferably from about 50% to about 8,000%, and even more preferably from about 50% to about 5,000%, by weight of the composition, of water.

When a hydrophilic plasticizer is used, it is present in the at a level of from 0.01% to 5%, preferably from 0.05% to 2%, more preferably from 0. 1% to 1% by weight of the usage composition.

Useful levels of lithium salts are from about 0.1% to about 10%, preferably from about 0.5% to about 7%, more preferably from about 1% to about 5%, by weight of the usage composition.

(K) CARRIER

Aqueous solutions are preferred for odor control. The dilute aqueous solution provides the maximum separation of cyclodextrin molecules on the fabric and thereby maximizes the chance that an odor molecule will interact with a cyclodextrin molecule.

The preferred carrier of the present invention is water. The water which is used can be distilled, deionized, or tap water. . Water is the main liquid carrier due to its low cost, availability, safety, and environmental compatibility. Water not only serves as the liquid carrier for the cyclodextrins, but it also facilitates the complexation reaction between the cyclodextrin molecules and any malodorous molecules that are on the fabric when it is treated. It has recently been discovered that water has an unexpected odor controlling effect of its own. It has been discovered that the intensity of the odor generated by some polar, low molecular weight organic amines, acids, and mercaptans is reduced when the odor-contaminated fabrics are treated with an aqueous solution. Not to be bound by theory, it is believed that water solubilizes and depresses the vapor pressure

30

5

of these polar, low molecular weight organic molecules, thus reducing their odor intensity.

Water is also very useful for fabric wrinkle removal or reduction. Not to be bound by theory, it is believed that water breaks many intrafiber and interfiber hydrogen bonds that keep the fabric in a wrinkle state. It also swells, lubricates and relaxes the fibers to help the wrinkle removal process.

The level of liquid carrier in the compositions of the present invention is typically greater than about 80%, preferably greater than about 90%, more preferably greater than about 95%, by weight of the composition. When a concentrated composition is used, the level of liquid carrier is typically from about 50% to about 98%, by weight of the composition, preferably from about 60% to about 97%, more preferably from about 70% to about 95%, by weight of the composition.

Optionally, in addition to water, the carrier can contain a low molecular weight organic solvent that is highly soluble in water, e.g., ethanol, propanol, isopropanol, and the like, and mixtures thereof. Low molecular weight alcohols can help the treated fabric to dry faster. The optional solvent is also useful in the solubilization of some shape retention polymers described hereinbefore. The optional water soluble low molecular weight solvent can be used at a level of up to about 50%, typically from about 1% to about 20%, preferably from about 2% to about 15%, more preferably from about 5% to about 10%, by weight of the total composition. Factors that need to consider when a high level of solvent is used in the composition are odor, flammability, and environment impact.

(L) OTHER OPTIONAL INGREDIENTS

The composition of the present invention can optionally contain adjunct odorcontrolling materials, chelating agents, antistatic agents, insect and moth repelling agents,
colorants, especially bluing agents, antioxidants, superspreaders, clarifiers and mixtures
thereof in addition to the cyclodextrin molecules. The total level of optional ingredients
is low, preferably less than about 5%, more preferably less than about 3%, and even more
preferably less than about 2%, by weight of the usage composition. These optional
ingredients exclude the other ingredients specifically mentioned hereinbefore.
Incorporating adjunct odor-controlling materials can enhance the capacity of the
cyclodextrin to control odors as well as broaden the range of odor types and molecule
sizes, which can be controlled. Such materials include, for example, metallic salts, water-

30

35

5

soluble cationic and anionic polymers, zeolites, water-soluble bicarbonate salts, and mixtures thereof.

II. ARTICLE OF MANUFACTURE

The composition of the present invention can also be used in an article of manufacture comprising said composition plus a spray dispenser.

SPRAY DISPENSER

The article of manufacture herein comprises a spray dispenser. The composition is placed into a spray dispenser in order to be distributed onto the fabric or garment. The spray dispenser for producing a spray of liquid droplets can be any of the manually activated means as is known in the art, e.g. trigger-type, pump-type, non-aerosol self-pressurized, and aerosol-type spray means, for treating the odor-absorbing composition to small fabric surface areas and/or small articles, as well as non-manually operated, powered sprayers for conveniently treating the odor-absorbing composition to large fabric surface areas and/or a large number of garments and/or articles. The spray dispenser herein does not normally include those that will substantially foam the composition. It has been found that the performance is increased by providing smaller particle droplets. Desirably, the Sauter mean particle diameter is from about 10 µm to about 120 µm, more preferably, from about 20 µm to about 100 µm. Dewrinkling benefits are improved by providing small particles (droplets), as discussed hereinbefore, especially when the surfactant is present.

The spray dispenser can be an aerosol dispenser. Said aerosol dispenser comprises a container which can be constructed of any of the conventional materials employed in fabricating aerosol containers. The dispenser must be capable of withstanding internal pressure in the range of from about 20 to about 110 p.s.i.g., more preferably from about 20 to about 70 p.s.i.g. The one important requirement concerning the dispenser is that it be provided with a valve member which will permit the composition contained in the dispenser to be dispensed in the form of a spray of very fine, or finely divided, particles or droplets. The aerosol dispenser utilizes a pressurized sealed container from which the composition is dispensed through a special actuator/valve assembly under pressure. The aerosol dispenser is pressurized by incorporating therein a gaseous component generally known as a propellant. Common aerosol propellants, e.g., gaseous hydrocarbons such as isobutane, and mixed halogenated hydrocarbons, which are not preferred. Halogenated hydrocarbon propellants such as chlorofluoro hydrocarbons have been alleged to contribute to environmental problems. Hydrocarbon propellants can form complexes with any cyclodextrin molecules present, thereby reducing the availability of cyclodextrin

30

35

5

molecules for odor absorption. Preferred propellants are compressed air, nitrogen, inert gases, carbon dioxide, etc. A more complete description of commercially available aerosol-spray dispensers appears in U.S. Pat. Nos.: 3,436,772, Stebbins, issued April 8, 1969; and 3,600,325, Kaufman et al., issued August 17, 1971; both of said references are incorporated herein by reference.

Preferably the spray dispenser can be a self-pressurized non-aerosol container having a convoluted liner and an elastomeric sleeve. Said self-pressurized dispenser comprises a liner/sleeve assembly containing a thin, flexible radially expandable convoluted plastic liner of from about 0.010 to about 0.020 inch thick, inside an essentially cylindrical elastomeric sleeve. The liner/sleeve is capable of holding a substantial quantity of odor-absorbing fluid product and of causing said product to be dispensed. A more complete description of self-pressurized spray dispensers can be found in U.S. Pat. Nos. 5,111,971, Winer, issued May 12, 1992, and 5,232,126, Winer, issued Aug. 3, 1993; both of said references are herein incorporated by reference. Another type of aerosol spray dispenser is one wherein a barrier separates the odor absorbing composition from the propellant (preferably compressed air or nitrogen), as disclosed in U.S. Pat. No. 4,260,110, issued April 7, 1981, and incorporated herein by reference. Such a dispenser is available from EP Spray Systems, East Hanover, New Jersey.

More preferably, the spray dispenser is a non-aerosol, manually activated, pump-spray dispenser. Said pump-spray dispenser comprises a container and a pump mechanism which securely screws or snaps onto the container. The container comprises a vessel for containing the aqueous odor-absorbing composition to be dispensed.

The pump mechanism comprises a pump chamber of substantially fixed volume, having an opening at the inner end thereof. Within the pump chamber is located a pump stem having a piston on the end thereof disposed for reciprocal motion in the pump chamber. The pump stem has a passageway there through with a dispensing outlet at the outer end of the passageway and an axial inlet port located inwardly thereof.

The container and the pump mechanism can be constructed of any conventional material employed in fabricating pump-spray dispensers, including, but not limited to: polyethylene; polypropylene; polyethyleneterephthalate; blends of polyethylene, vinyl acetate, and rubber elastomer. A preferred container is made of clear, e.g., polyethylene terephthalate. Other materials can include stainless steel. A more complete disclosure of commercially available dispensing devices appears in: U.S. Pat. Nos.: 4,895,279, Schultz, issued January 23, 1990; 4,735,347, Schultz et al., issued April 5, 1988; and

30

4,274,560, Carter, issued June 23, 1981; all of said references are herein incorporated by reference.

Most preferably, the spray dispenser is a manually activated trigger-spray dispenser. Said trigger-spray dispenser comprises a container and a trigger both of which can be constructed of any of the conventional material employed in fabricating triggerspray dispensers, including, but not limited to: polyethylene; polypropylene; polyacetal; polycarbonate; polyethyleneterephthalate; polyvinyl chloride; polystyrene; blends of polyethylene, vinyl acetate, and rubber elastomer. Other materials can include stainless steel and glass. A preferred container is made of clear, e.g. polyethylene terephthalate. The trigger-spray dispenser does not incorporate a propellant gas into the composition, and preferably it does not include those that will foam the composition. The trigger-spray dispenser herein is typically one, which acts upon a discrete amount of the composition itself, typically by means of a piston or a collapsing bellows that displaces the composition through a nozzle to create a spray of thin liquid. Said trigger-spray dispenser typically comprises a pump chamber having either a piston or bellows which is movable through a limited stroke response to the trigger for varying the volume of said pump chamber. This pump chamber or bellows chamber collects and holds the product for dispensing. The trigger spray dispenser typically has an outlet check valve for blocking communication and flow of fluid through the nozzle and is responsive to the pressure inside the chamber. For the piston type trigger sprayers, as the trigger is compressed, it acts on the fluid in the chamber and the spring, increasing the pressure on the fluid. For the bellows spray dispenser, as the bellows is compressed, the pressure increases on the fluid. The increase in fluid pressure in either trigger spray dispenser acts to open the top outlet check valve. The top valve allows the product to be forced through the swirl chamber and out the nozzle to form a discharge pattern. An adjustable nozzle cap can be used to vary the pattern of the fluid dispensed.

For the piston spray dispenser, as the trigger is released, the spring acts on the piston to return it to its original position. For the bellows spray dispenser, the bellows acts as the spring to return to its original position. This action causes a vacuum in the chamber. The responding fluid acts to close the outlet valve while opening the inlet valve drawing product up to the chamber from the reservoir.

A more complete disclosure of commercially available dispensing devices appears in U.S. Pat. Nos. 4,082,223, Nozawa, issued Apr. 4, 1978; 4,161, 288, McKinney, issued Jul. 17, 1985; 4,434,917, Saito et al., issued Mar. 6, 1984; and 4,819,835, Tasaki, issued

30

35

5

Apr. 11, 1989; 5,303,867, Peterson, issued Apr. 19, 1994; all of said references are incorporated herein by reference.

A broad array of trigger sprayers or finger pump sprayers are suitable for use with the compositions of this invention. These are readily available from suppliers such as Calmar, Inc., City of Industry, California; CSI (Continental Sprayers, Inc.), St. Peters, Missouri; Berry Plastics Corp., Evansville, Indiana, a distributor of Guala® sprayers; or Seaquest Dispensing, Cary, Illinois.

The preferred trigger sprayers are the blue inserted Guala® sprayer, available from Berry Plastics Corp., or the Calmar TS800-1A®, TS1300®, and TS-800-2®, available from Calmar Inc., because of the fine uniform spray characteristics, spray volume, and pattern size. More preferred are sprayers with precompression features and finer spray characteristics and even distribution, such as Yoshino sprayers from Japan. Any suitable bottle or container can be used with the trigger sprayer, the preferred bottle is a 17 fl-oz. bottle (about 500 ml) of good ergonomics similar in shape to the Cinch® bottle. It can be made of any materials such as high density polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyethylene terephthalate, glass, or any other material that forms bottles. Preferably, it is made of high density polyethylene or clear polyethylene terephthalate.

For smaller fluid ounce sizes (such as 1 to 8 ounces), a finger pump can be used with canister or cylindrical bottle. The preferred pump for this application is the cylindrical Euromist Π^{\oplus} from Seaquest Dispensing. More preferred are those with precompression features.

The article of manufacture herein can also comprise a non-manually operated spray dispenser (sprayer). By "non-manually operated" it is meant that the spray dispenser can be manually activated, but the force required to dispense the odor absorbing composition is provided by another, non-manual means. Non-manually operated sprayers include, but are not limited to, powered sprayers, air aspirated sprayers, liquid aspirated sprayers, electrostatic sprayers, and nebulizer sprayers. The composition is placed into a spray dispenser in order to be distributed onto the fabric or garment.

Powered sprayers include self contained powered pumps that pressurize the composition and dispense it through a nozzle to produce a spray of liquid droplets. Powered sprayers are attached directly or remotely through the use of piping/tubing to a reservoir (such as a bottle) to hold the composition. Powered sprayers may include, but are not limited to, centrifugal or positive displacement designs. It is preferred that the powered sprayer be powered by a portable DC electrical current from either disposable

30

35

5

batteries (such as commercially available alkaline batteries) or rechargeable battery units (such as commercially available nickel cadmium battery units). Powered sprayers may also be powered by standard AC power supply available in most buildings. The discharge nozzle design can be varied to create specific spray characteristics (such as spray diameter and particle size). It is also possible to have multiple spray nozzles for different spray characteristics. The nozzle may or may not contain an adjustable nozzle shroud that would allow the spray characteristics to be altered.

Nonlimiting examples of commercially available powered sprayers are disclosed in U.S. Pat. Nos. 4,865,255, Luvisotto, issued Sep. 12, 1989 which is incorporated herein by reference. Preferred powered sprayers are readily available from suppliers such as Solo, Newport News, Virginia (e.g., Solo Spraystar TM rechargeable sprayer, listed as manual part #: US 460 395) and Multi-sprayer Systems, Minneapolis, Minnesota (e.g., model: Spray 1).

Air aspirated sprayers include the classification of sprayers generically known as "air brushes". A stream of pressurized air draws up the composition and dispenses it through a nozzle to create a spray of liquid. The composition can be supplied via separate piping/tubing or more commonly is contained in a jar to which the aspirating sprayer is attached.

Nonlimiting examples of commercially available air aspirated sprayers appears in U.S. Pat. Nos. 1,536,352, Murray, issued Apr. 22, 1924 and 4,221,339, Yoshikawa, issues Sep. 9, 1980; all of said references are incorporated herein by reference. Air aspirated sprayers are readily available from suppliers such as The Badger Air-Brush Co, Franklin Park, Illinois (e.g., model #: 155) and Wilton Air Brush Equipment, Woodridge, Illinois (e.g., stock #: 415-4000, 415-4001, 415-4100).

Liquid aspirated sprayers are typical of the variety in widespread use to spray garden chemicals. The composition is drawn into a fluid stream by means of suction created by a Venturi effect. The high turbulence serves to mix the composition with the fluid stream (typically water) in order to provide a uniform mixture/concentration. It is possible with this method of delivery to dispense the composition of the present invention and then dilute it to a selected concentration with the delivery stream.

Liquid aspirated sprayers are readily available from suppliers such as Chapin Manufacturing Works, Batavia, New York (e.g., model #: 6006).

Electrostatic sprayers impart energy to the composition via a high electrical potential. This energy serves to atomize and charge the composition, creating a spray of fine, charged particles. As the charged particles are carried away from the sprayer, their

30

35

5

common charge causes them to repel one another. This has two effects before the spray reaches the target. First, it expands the total spray mist. This is especially important when spraying to fairly distant, large areas. The second effect is maintenance of original particle size. Because the particles repel one another, they resist collecting together into large, heavier particles like uncharged particles do. This lessens gravity's influence, and increases the charged particle reaching the target. As the mass of negatively charged particles approach the target, they push electrons inside the target inwardly, leaving all the exposed surfaces of the target with a temporary positive charge. The resulting attraction between the particles and the target overrides the influences of gravity and inertia. As each particle deposits on the target, that spot on the target becomes neutralized and no longer attractive. Therefore, the next free particle is attracted to the spot immediately adjacent and the sequence continues until the entire surface of the target is covered. Hence, charged particles improve distribution and reduce drippage.

Nonlimiting examples of commercially available electrostatic sprayers appears in U.S. Pat. Nos. 5,222,664, Noakes, issued Jun. 29, 1993; 4,962,885, Coffee, issued Oct. 16, 1990; 2,695,002, Miller, issued Nov. 1954; 5,405,090, Greene, issued Apr. 11, 1995; 4,752,034, Kuhn, issued Jun. 21, 1988; 2,989,241, Badger, issued Jun. 1961; all of said patents are incorporated herein by reference. Electrostatic sprayers are readily available from suppliers such as Tae In Tech Co, South Korea and Spectrum, Houston, Texas.

Nebulizer sprayers impart energy to the composition via ultrasonic energy supplied via a transducer. This energy results in the composition to be atomized. Various types of nebulizers include, but are not limited to, heated, ultrasonic, gas, venturi, and refillable nebulizers.

Nonlimiting examples of commercially available nebulizer sprayers appears in U.S. Pat. Nos. 3,901,443, Mitsui, issued Aug. 26, 1975; 2,847,248, Schmitt, issued Aug. 1958; 5,511,726, Greenspan, issued Apr. 30, 1996; all of said patents are incorporated herein by reference. Nebulizer sprayers are readily available from suppliers such as A&D Engineering, Inc., Milpitas, California (e.g., model A&D Un-231 ultrasonic handy nebulizer) and Amici, Inc., Spring City, Pennsylvania (model: swirler nebulizer).

The preferred article of manufacture herein comprises a non-manually operated sprayer, such as a battery-powered sprayer, containing the aqueous odor absorbing composition. More preferably the article of manufacture comprises a combination of a non-manually operated sprayer and a separate container of the aqueous odor absorbing composition, to be added to the sprayer before use and/or to be separated for filling/refilling. The separate container can contain an usage composition, or a

30

10

concentrated composition to be diluted before use, and/or to be used with a diluting sprayer, such as with a liquid aspirated sprayer, as described herein above. Also, as described hereinbefore, the separate container should have structure that mates with the rest of the sprayer to ensure a solid fit without leakage, even after motion, impact, etc. and when handled by inexperienced consumers.

III. METHOD OF USE

The composition, which contains, e.g., surfactant, antimicrobial compound, and/or wrinkle control agent, etc., can be used by distributing, e.g., by placing, an effective amount of the aqueous solution onto the surface or article to be treated. Distribution can be achieved by using a spray device, a roller, a pad, etc., preferably a spray dispenser. For odor control, an effective amount, as defined herein, means an amount sufficient to absorb odor to effect a noticeable reduction in the perceived odor, preferably to the point that it is not discernible, by the human sense of smell. Preferably, the amount of solution is not so much as to saturate or create a pool of liquid on said article or surface and so that when dry there is no visual deposit readily discernible. For wrinkle control, an effective amount means an amount sufficient to remove or noticeably reduce the appearance of wrinkles on fabric.

The compositions and articles of the present invention which contain a fabric wrinkle control agent can be used to treat fabrics, garments, and the like to remove or reduce, undesirable wrinkles, in addition to the removal or reduction of undesirable odor on said objects.

An effective amount of the composition of the present invention is preferably sprayed onto fabrics, particularly clothing. When the composition is sprayed onto fabric, an effective amount should be deposited onto the fabric, with the fabric becoming damp or totally saturated with the composition, typically from about 5% to about 150%, preferably from about 10% to about 100%, more preferably from about 20% to about 75%, by weight of the fabric. The amount of active typically sprayed onto the fabric is from about 0.002% to about 5%, preferably from about 0.01% to about 1%, more preferably from about 0.03% to about 5%, by weight of the fabric. It is highly preferable to use the preferred particles sizes described hereinbefore, since the areas that receive too much liquid will be slow to dry. Once an effective amount of the composition is sprayed onto the fabric the fabric is optionally, but preferably stretched. The fabric is typically stretched perpendicular to the wrinkle. The fabric can also be smoothed by hand after it has been sprayed. The smoothing movement works particularly well on areas of

30

35

5

10

clothing that have an interface sewn into them, or on the hems of clothing. Once the fabric has been sprayed and optionally, but preferably, stretched, it is hung until dry.

In a still further aspect of the invention, the composition can be sprayed onto fabrics by in an in-home de-wrinkling chamber containing the fabric to be deodorized and/or dewrinkled, thereby providing ease of operation. Conventional personal as well as industrial deodorizing and/or de-wrinkling apparatuses are suitable for use herein. Traditionally, these apparatuses act by a steaming process which effects a relaxation of the fibers. Examples of home dewrinkling chambers include shower stalls. The spraying of the composition or compounds onto the fabrics can then occur within the chamber of the apparatus or before placing the fabrics into the chamber. Again, the spraying means should preferably be capable of providing droplets with a weight average diameter of from about 8 to about 100 µm, preferably from about 10 to about 50 µm. Preferably, the loading of moisture on fabrics made of natural and synthetic fibers is from about 5 to about 25%, more preferably from about 5 to about 10% by weight of the dried fabric. Other conventional steps that can be carried out in the dewrinkling apparatus can be applied such as heating and drying. Preferably, for optimum dewrinkling benefit, the temperature profile inside the chamber ranges from about 40°C to about 80°C, more preferably from about 50°C to about 70°C. The preferred length of the drying cycle is from about 15 to about 60 minutes, more preferably from about 20 to about 45 minutes.

The steaming step in the dewrinkling apparatus may also be eliminated if the composition is maintained at a temperature range from about 22° C (about 72° F) to about 76° C (170° F) before spraying.

The present invention encompasses the method of spraying a mist of an effective amount of composition onto ballistic fabric and/or garments.

The compositions herein are especially useful, when used to treat garments for extending the time before another wash cycle is needed. Such garments include uniforms and other garments which are normally treated in an industrial process, which can be refreshed and the time between treatments extended.

The presence of the highly preferred surfactant promotes spreading of the solution and the highly preferred antimicrobial active provides improved odor control as well as antimicrobial action, by minimizing the formation of odors. Both the surfactant and the antimicrobial active provide improved performance and the mixture is especially good. When the compositions are applied in the form of the very small particles (droplets), as disclosed hereinbefore, additional benefits are found, since the distribution is even further improved and overall performance is improved.

All percentages, ratios, and parts herein, in the Specification, Examples, and Claims are by weight and are the normal approximations unless otherwise stated.

The following are non-limiting examples of the instant composition. Perfume compositions that are used herein are as follows:

Case 8210

Ballistic Fabric Care Compositions	Sitions											
Ingredients	⋖	ω	ပ	۵	ш	ш	I	I	-	-	¥	_
Cyclomethicone D5	-	9.0										
Short chain silicone (DC 2- 1865)			0.5	0.5	-	-						
Amine oxide							0.1	0.25				
Fluoro surfactant*									0.5	0.5		
Super spreader												
Clarifier (cremaphor HCO-60)	0.075	0.075										
Silwet L77	-	0.5										
Silwet L7200					0.5		-	-	-	0.5	-	0.5
Silwet L7607			-	0.5		0.5						
Fluoro-copolymer**											0.5	0.5
Preservative										0.015	0.015	0.015
Cyclodextrin (5.5 sub)	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Diethylene glycol	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Neodol 23-3	0.25	0.125										
C45-AS	0.05	0.025										
NaOH	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Perfume	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	90.0	0.05	0.05
Biocide***	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Water	Bal	Bal	Bal	Bal	Bal	Bal	Bal	Bal	Bal	Bal	Bal	Bal
Hd	7-8	7-8	7-8	7-8	7-8	7-8	7-8	7-8	7-8	7-8	7-8	7-8
* Zonyl from Dupont *** Bardac, or triclosan, or othophenylphenol												

The compositions of the above Examples are sprayed onto clothing using, e.g., the TS-800 sprayer from Calmar, and allowed to evaporate off of the clothing.

The compositions of the above Examples are sprayed onto clothing, a kitchen countertop, using a blue inserted Guala[®] trigger sprayer, available from Berry Plastics Corp. and a cylindrical Euromist II[®] pump sprayer available from Seaquest Dispensing, respectively, and allowed to evaporate off of the clothing.

The compositions of the above Examples contained in rechargeable battery-operated Solo Spraystar sprayers are sprayed onto large surfaces of fabric, such as several pieces of clothings, and allowed to evaporate off of these surfaces. The level of coverage is uniform and the ease and convenience of application is superior to conventional manually operated trigger sprayers. Consumers prefer this method of application.

The polyalkylene oxide polysiloxane surfactants like the Silwet surfactants provide substantial improvements in the kill of the indicated common organisms when there are antibacterial compounds present. The Pluronic surfactants provide some improvement, but much less.