COMPUTING CLASSICAL MODULAR FORMS

ABSTRACT. We discuss the practical aspects of computing classical modular forms

1. Notes from discussions

- * Magma doesn't compute Atkin-Lehner eigenvalues for quadratic character
- * Sage code for Conrey labels
- * Polredabs the polys in mffield_500.txt
 - -> Sort decomp by trace up to absolute degree <= 20
- * Compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate up to degree <= 4 (or 6), decide how to remark the compute Hecke eigenvalues for one Galois conjugate eigenvalues for eigenvalues for one Galois conjugate eigenvalues for one Galois conjugate eigenvalues for eigenvalues for
- * Compute L-function data whenever feasible (and then they might not have labels), including pro-
 - -> is CM?, has inner twist (what is relationship to Galois conjugates?), Sato-Tate group
 - -> special to weight 2: numerical (geometric) endomorphism algebra, database of modular abel

In database entry:

- at least a_n's up to Sturm bound

Two boxes:

k*N <= 1000

k = 2, N = larger bound

.tv:

* a_n or a_p

Bober has:

- * N <= 999, k <= 4 : labeling for decomp (Conrey label), a_{p^n} 's for $p^n < 2000$
- * N <= 99, k <= 12
- * N <= 30, k <= 30

polydb:

- $* N \le 434, k \le 3,4$
- $* N*k \le 390, k \le 30$
- * Make exact matches for Galois orbits

=====

* $T_1 + T_p + T_q$ linear combinations to pick out quadratic subspaces, k = 2 and chi = triv

Date: August 29, 2018.

- 2. Introduction
- 3. Running time

3.1. In theory.

This is a bit optimistic, but typically OK, yes:

- 1) you assume that the weight is fixed (otherwise the size of the matrix entries must be taken into account); and that the Nebentypus has fixed order as well [otherwise you need to work in cyclotomic fields or large degree, which increases the cost of "base field" computations]
- 2) splitting the space may need many (linear combinations of) T_p [I don't know anything better than the Sturm bound to guarantee that the T_p , $p \le B$, generate the Hecke algebra]. So $O^{\sim}(d^4)$ would be a worst case [given assumption 1)]
- > * To get further eigenvalues, you typically only need one row of > T_p , but you still need to multiply this row by each eigenvector, so > it ends up being basically soft-O(d*p) again.

For the trace formula, here's a quick back-of-the-enveloppe computation. Will check this with Henri in september :-):

- 1) We must first build the space S_k^new:
- 1.a) we pick successive forms T_j Tr^new until they generate the space. Assuming the first $O^{\sim}(d)$ values of j are enough [heuristic for now but it may be possible to prove this; it's true in practice], this requires expanding those $O^{\sim}(d)$ forms up to Sturm bound $O^{\sim}(d)$. So will need $O^{\sim}(d * max(j)) = O^{\sim}(d^2)$ coeffs of Tr^new.
- 1.b) all Hurwitz class numbers of index $O^{(d * max(j))}$ are precomputed [cost $O^{(d^3)}$]; the coefficient Tr(n) [= trace of T_n on the space S_k] costs O(sqrt(n)). I am assuming that the weight and Nebentypus are fixed, otherwise we need to take into account the "size" of coefficients.

So computing all Tr(n) up to $O^{\sim}(d^2)$ costs $O^{\sim}(d^3)$. The $Tr^{\sim}new(n)$ are simple convolutions of the Tr(n) with Moebius function and the like and costs the same up to log factors (sums over divisors etc.).

- 1.c) we compute the rank of the matrix made up by the coefficients of the T_j Tr^new , and hope to get maximal rank in O(1) trials with $O^n(d)$ forms: $O(d^3)$ [or whatever exponent: no soft-Oh because we expect to detect the rank by projecting $Z[\chi]$ to a small finite field]
- 1.d) we precompute base change matrices from and to Miller's basis: at least $0^{(d^\infty)}$ [the T_j Tr^new form a somewhat random basis and the

coefficients in the original -> Miller base change matrix are huge]

Total [heuristic] cost for this phase: O~(d^\omega+1)

- 2) To compute the matrix of T_p on our basis for S_k new, we now need coefficients of T_n new up to O(d * max(j) * p). The Hurwitz class number precomputation and subsequent coefficients computation jumps to $O(d^3 p^{3/2})$.
- 3) Then it's the same as in the other methods: characteristic polynomial, factorization over Q(\chi), splitting, etc.

Thus, in theory, I would expect the trace formula to be slower than modular symbols because of

- the cost to convert to Miller basis (or to express a random form in terms of the T_j Tr^new basis)
- the extra costs (extra coefficients) involved in hitting T_j Tr^new by T_p

In practice, as long as p doesn't get too large (and the linear algebra involved in converting T_j Tr^new -> Miller basis doesn't get dominant), I'm not sure at all that this is the case. It also depends on how you get S_k^new from modular symbols when N is highly composite: kernels of degeneracy maps can get expensive since they apply on "huge" S_k (of dimension D), not "tiny" S_k^new (of dimension d).

I'm *very* interested in data points if you compare the above guesstimates with Sage or Magma running times. :-)

3.2. In practice.

Thanks for this! I notice that in fact you computed a lot more spaces than N*k <= 1000. I ex

The Magma run has completed all the spaces with $N*k \le 500$, and I get an exact match with your

I uploaded the files mfdecomp_500.m.txt and mfdecomp_500.gp.txt to your repo which contain corr

4. How to deal with spaces that are too big

I propose we run Magma on a range of weights, levels, and characters, but keeping only Hecke orbits of dimension <= 4. The 4 is arbitrary, it says we'll e.g. be interested in fourfolds but not fivefolds; I think that's reasonable for where we're at now. Here's what it would look like in pari:

```
? for(i=1,#L, T = gettime(); Snew = mfinit([N,4,[G,L[i]]], 0); [vF,vK]
= mfsplit(Snew, bnd); print1(mfdim(Snew)); print1(" ");
print(gettime()/1000.);)
```

This already seems to take forever for me in a space with N = 220; I think the linear algebra over cyclotomic fields has not been optimized in Pari.

My proposed strategy, for weight k >= 3:
 choose a large prime p split in the cyclotomic field,
 factor a Hecke polynomial mod p,
 for the combinations of factors that give dimension <= 4, find
lifted polynomials that are q-Weil polynomials,
 and for these, find the exact eigenspace, and then compute the

remaining Hecke eigenvalues over the cyclotomic field

Variant: try several large primes to find one with minimal splitting; or take a prime which is not necessarily split but of approximately the same norm.

For weight $k \ge 3$, my expectation is that there are few small eigenspaces, most will be discarded, and there will not be a combinatorial explosion in the third step.

OTOH, for weight k=2, we should instead loop over p-Weil polynomials with character and repeated split the space, just like Cremona does for elliptic curve--I would expect many eigenforms.

4.1. Polredabs and polredbest. Really important: take version of Pari = blank, Sage 8.3.

5. ATKIN-LEHNER OPERATORS

JV is right, the A-L operators W_M for $M \mid N$ map $S_k(N, chi)$ to $S_k(N, chi')$ with some explicit definition

6. CM and inner twist

7. Questions and observations

- > In order to identify conjugate forms that Magma erroneously lists, I am
- > comparing absolute traces of a_n for n up to the Sturm bound. Stupid
- > question: this is obviously necessary, but is it sufficient? Comparing
- > minpolys would certainly be enough, and traces up to some bound is certainly
- > enough, the question is whether the Sturm bound works. In any case
- > comparing the results with Pari should catch any problems this might cause.

>

- > Sure, but can non-conjugate forms give rise to the same isogeny class of
- > abelian varieties over Q? If not then there is some B such that checking
- > traces of a_n for n <= B is enough, and then the questions is whether B
- > is the Sturm bound or larger. Or are you are telling me that non-conjugate
- > forms can define the same AV over Q (in other words, non-conjugate modular
- > AVs with isogenous restrictions of scalars)? Do you know any examples?

Sorry, no, I was trying to say that I don't see a way to use the Sturm bound for this purpose.

The non-empty spaces of level 2 always seem to decompose as [floor(d/2), ceil(d/2)]. I know th

I would guess this is just the Maeda conjecture in level 2 after you decompose the space under the Atkin-Lehner operator--so far from a theorem.

But is it at least a theorem that Atkin-Lehner will split the space as evenly as possible in level 2?

8. Weight 1

```
> chi := Generators(FullDirichletGroup(383))[1];
> M := ModularForms(chi,1);
> Dimension(M);
190
> HeckeOperator(M,5);
>> HeckeOperator(M,5);
```

Runtime error: Hecke operator computation currently only supported for spaces with a single character that takes values ± 1 .

References