MSBD 5004 Mathematical Methods for Data Analysis Homework 4

Due date: 1 May, 11:59pm, Friday

- 1. Let V be a Hilbert space. Let $a \in V$ be a given vector. The function $Ax := \langle a, x \rangle$ can be viewed as a linear transformation from V to \mathbb{R} . Find the operator norm ||A||.
- 2. Let f_1, f_2, \ldots, f_n are differentiable functions from $V \mapsto \mathbb{R}$ with V a Hilbert space. Define $F: V \mapsto \mathbb{R}^n$ by

$$F(oldsymbol{x}) = egin{bmatrix} f_1(oldsymbol{x}) \ f_2(oldsymbol{x}) \ dots \ f_n(oldsymbol{x}) \end{bmatrix}, & orall oldsymbol{x} \in V.$$

Prove that

$$DF(oldsymbol{x})(oldsymbol{y}) = egin{bmatrix} \langle
abla f_1(oldsymbol{x}), oldsymbol{y} \\ \langle
abla f_2(oldsymbol{x}), oldsymbol{y} \\ dots \\ \langle
abla f_n(oldsymbol{x}), oldsymbol{y}
angle \end{bmatrix}, \quad orall oldsymbol{x} \in V.$$

- 3. Find $\nabla f(\boldsymbol{x})$ and $\nabla^2 f(\boldsymbol{x})$.
 - (a) $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_2^2$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^m$, and $\lambda > 0$ are given.
 - (b) $f(\mathbf{X}) = \mathbf{b}^T \mathbf{X} \mathbf{c}$, where $\mathbf{X} \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$.
 - (c) $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is non-symmetric.
 - (d) $f(X) = \mathbf{b}^T X^T X \mathbf{c}$, where $X \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$.
 - (e) f(X) = trace(XAXB), where $X, A, B \in \mathbb{R}^{n \times n}$.