30042018.notebook May 03, 2018

12.1 Konvergens av rekker

En rekke er en uendelig lang sum:

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

$$S = \lim_{n \to \infty} \left(a_1 + a_2 + a_3 + ... + a_n \right)$$

fins, sier vi at rekken konvergerer mot S. I motsatt fall divergerer rekken.

Geometriske rekker er på formen

$$a + ar + ar^{2} + ar^{3} + ... = \sum_{n=0}^{\infty} a r^{n}$$

$$a + ar + ar^2 + ar^3 + \dots = \frac{a}{1-r}$$

Teorem Sum av geometriske rekker $a + ar^2 + ar^3 + ... = \frac{a}{1-r}$ for alle reelle fall $a \neq 0$ og |r| < 1. Hvis $|r| \ge 1$, divergerer rekken.

Kan anta r = ±1. Får Bevis

$$S_{n} = \alpha + \alpha r + \alpha r^{2} + ... + \alpha r^{n}$$

$$r. S_{n} = \alpha r + \alpha r^{2} + \alpha r^{3} + ... + \alpha r^{n}$$

$$S_{n} - r. S_{n} = \alpha - \alpha r^{n}$$

$$S_{n} (1-r) = \alpha (1-r^{n}), \quad \alpha |f| s_{n}^{n}$$

$$S_{n} = \alpha \cdot \frac{|-r|}{|-r|} \quad \text{fins ikke}$$

$$hvis$$

$$|r| > 1.$$

30042018.notebook May 03, 2018

eks.
$$yx^{2} + yx^{5} + yx^{8} + yx^{11} + ...$$
 $x = x^{3}$
 $yx^{2} + yx^{2} \cdot (x^{3})^{1} + yx^{2} \cdot (x^{3})^{2} + ...$
 $x = yx^{2}$
 yx^{2}
 yx^{2}
 yx^{3}
 yx^{3}
 yx^{2}
 yx^{3}
 yx^{3}

Regneregler for rekker:

$$\bigcirc$$
 $\sum_{i=1}^{\infty} Ca_i = C \cdot \sum_{i=1}^{\infty} a_i$ for konstant tall C , gitt at however rette konv.

Divergenstesten

Huis rekken Zan konvergerer, så er lim an = 0

Grenselov for
$$=$$
 $\lim_{n\to\infty} S_n - \lim_{n\to\infty} S_{n-1}$
 $=$ $S - S = 0$ hvis vekkan konv. mot S . \square

eks.
$$\sum_{n=0}^{\infty} \frac{e^{n}}{n^{2} + 2e^{n}} \quad \text{Konvergerer ?}$$

$$\lim_{n \to \infty} \frac{e^{n}}{n^{2} + 2e^{n}} = \lim_{n \to \infty} \frac{e^{n}}{2n + 2e^{n}} = \lim_{n \to \infty} \frac{e^{n}}{2 + 2e^{n}}$$

$$= \lim_{n \to \infty} \frac{e^{n}}{2e^{n}} = \frac{1}{2} \neq 0$$

Dus. divergens ved div. testen.

12.2 Konvergenstester

Integral testen

Hvis funksjonen f er kontinuerlig, autakende og positiv på intervallet $[1,\infty)$, har vi at

vekken
$$\sum_{n=1}^{\infty} f(n)$$
 og integralet $\int_{0}^{\infty} f(x) dx$

enten begge konvergerer eller begge divergerer.

Bevis

så hvis integralet divergerer, divergerer summen også.

Ser at $\sum_{n=1}^{\infty} f(n) \geqslant \int_{0}^{\infty} f(x) dx$ Ser at $\sum_{n=1}^{\infty} f(n) \leq \int_{0}^{\infty} f(x) dx$

så hvis inlegralet konvergerer, konvergerer summen også (kompletthet)

口

eks.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 Konvergerer?
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

Integrallesten med $f(x) = \frac{1}{x}$:

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln x \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\ln b - \ln 1 \right] = +\infty, \text{ divergens}$$

$$p$$
-rekkene $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konv. for $p > 1$ og div. for $p \leq 1$.

Bevis Antar
$$p \neq 1$$
. Integral testen:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \left[\frac{1}{-p+1} x^{-p+1} \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{1}{-p+1} \cdot b - \frac{1}{-p+1} \cdot 1 \right]_{1}^{b}$$

$$\approx h_{vis}$$

$$0 \text{ hvis } p > 1$$

So vi har divergens for p<1 og konvergens for p>1. D

eks.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{konv.} \qquad (p=2)$$

$$\sum_{n=1}^{\infty} \frac{1}{3l_2} \quad \text{konv.} \qquad (p=3/2)$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad \text{div.} \qquad (p=1/2, \quad \text{skriver} \quad \frac{1}{\sqrt{n}} = \frac{1}{n^{1/2}})$$

Sammenlikningstesten

Anta at $0 \le a_n \le b_n$ for alle n. Da:

(i) $\sum b_n$ konv. $\Rightarrow \sum a_n$ konv.

(ii) $\sum a_n$ div. $\Rightarrow \sum b_n$ div.

Bavis Kompletthet. (Detaljer droppes.)

eks.
$$\sum_{n=1}^{\infty} \frac{2}{(\sin^2 n)\sqrt{n} + 2^n}$$
 Konv. ?

$$V_i \text{ har } \frac{2}{(\sin^2 n)\sqrt{n} + 2^n} \leq \frac{2}{2^n}$$

$$\lim_{n=1}^{\infty} \frac{2}{2^n} \text{ er rekken}$$

Dermed konvergerer rekken var ved sml-tasten. []

30042018.notebook May 03, 2018

Grensesammenlikningstesten (GS-testen)

La Zan og Zbn være rekker med positive ledd. Hvis

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

fins og $0 < L < \infty$, så enlen konvergerer begge rektene eller divergerer begge rektene.

Hvis L=0 og Zlan konv., så konvergerer Zan også.

Bavis Vely Pog Q slikat O<P<L<Q.

Siden $\frac{a_n}{b_n} \to L$, har vi for store n

 $P < \frac{a_n}{b_n} < Q$, dus. $P \cdot b_n < a_n < Q \cdot b_n$

Vaulig sul-test:

Zandiv => ZQ.bn = Q. Zbn div, dus. Zbn div.

Ian kow => IP. bn = P. Ibn kom., dus. Ibn konu.

30042018.notebook May 03, 2018

eks.
$$\sum_{n=2}^{\infty} \frac{1}{n^2-n}$$
 Konvergerer?

GS-teston, sammenlikner med
$$\sum \frac{1}{n^2}$$
: (konvergent p-rekte)

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n^2 - n}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 - n}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \frac{1}{n^2}} = 1$$

Altså konvergens ved GS-tosten

$$\sum a_n$$
. La $L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{a_n} \right|$

Forholdstesten

Giff rekke
$$\Sigma$$
 an . La $L = \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right|$

Da har vi:
$$\begin{cases} L < 1 \implies \text{Rekken konvergerer} \\ L > 1 \implies \text{a divergerer} \end{cases}$$

Bevis Anta L < 1

Velg r slik at L < r < 1. Da fins N slik at for n≥ N er

$$\left|\frac{a_{n+1}}{a_n}\right| < r$$
, dus. $\left|a_{n+1}\right| < \left|a_n\right| \cdot r$

Altsa

$$|a_{N}| + |a_{N+1}| + |a_{N+2}| + ...$$

geometrisk rekte
$$< |a_N| + |a_N| \cdot r + |a_N| \cdot r^2 + ...$$

med $r < 1$

$$= \frac{|a_N|}{1 - r}$$
Alfså konv. ved sammenliknings-
testen.

Anta L>1

For store nok n har vi na $\left|\frac{a_{n+1}}{a_n}\right| > 1$, dus. $\left|a_{n+1}\right| > \left|a_n\right|$.

Altså lim an = 0 umulig. Altså divergens ved div. testen.

30042018.notebook May 03, 2018

eks.
$$\sum_{n=1}^{\infty} \frac{100^{n}}{n!} \quad \text{Konv ?} \quad \text{Forholdstesten :}$$

$$\left| \frac{\alpha_{n+1}}{\alpha_{n}} \right| = \frac{\frac{(00^{n+1})!}{(n+1)!}}{\frac{100^{n}}{n!}} = \frac{100^{n+1}}{(n+1)!} \cdot \frac{n!}{100^{n}}$$

$$= 100 \cdot \frac{1}{n+1} \rightarrow 0 \quad \text{nor } n \rightarrow \infty$$

dus. L=O i forholdstosten. Altså konvergans.

Mer generelt: For alle faste tall x har vi at

 $\sum_{n=1}^{\infty} \frac{x^n}{n!} \quad \text{konvergerer.}$ Altså har vi også at $\lim_{n \to \infty} \frac{x}{n!} = 0 \quad \text{for alle faste } x.$

(fakultet dominerer pokus.)

Rot-testen

Giff rekke $\sum a_n$. La $L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$ Da har $vi : \begin{cases} L < 1 : \text{Rekken konvergerer} \\ L > 1 : n \end{cases}$ divergerer.

Bevis Anta L<1 Velg r slik at L < r < 1. Da fins N slik at for $n \ge N$ er $\left|a_{n}\right|^{\frac{1}{n}} < r$, $d_{vs.}$ $\left|a_{n}\right| < r^{n}$

> Rekken Zr er geometrisk med v<1, såden konvergerer. Dermed konvergerer var rekte ved sml - fester.

Anta L>1 For store nok n har vi na $\left|a_{n}\right|^{\frac{1}{n}} > 1$, dus. $\left|a_{n}\right| > 1$. Dus. divergens. D

eks. $\sum_{n=1}^{\infty} \frac{1}{(4n+1)^n}$ Konv? Rot-teston: $\left|a_{n}\right|^{\frac{1}{n}} = \frac{1}{4n+1} \rightarrow 0$ nor $n \rightarrow \infty$ dus. L=0 v rot-testen. Altså konvergens. D

12.3 Alternerende rekker

Alternerende rekke: Annethvert ladd positivt/negativt.

eks.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n+1} = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \dots$$

Alternerende rekke - testen

Gitt en alternerende rekke Zan.

Hvis $|a_n| > |a_{n+1}| > 0$ for alle n, oq

så konvergerer rekton. Videre: Hvis vi tilnærmer summen av hele rekton med delsummen S_N opp til a_N , er feilen vi gjør mindre enn $|a_{N+1}|$.

Bavis Figur:

S_N: Sum av de N første leddene i rekken.

Fordi ledden autor i absolutiverdi, og absolutiverdien av leddene går mot O, vil delsummene stobilisere seg på noe "midt i " når $N \rightarrow \infty$. (Bruker kompletthot.) Feiloskmaket: Feilen blir mindre enn knyden av neste pil, som er $|a_{N+1}|$. \square

eks.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \left| -\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots \right|$$

- a) Vis at rekken konvergerer
- b) Finn N slik at delsummen opp fil keld N filmerner summen av rekken med feil høyst 0,01.

Løsn.

a) Alt. rekke-testen: Rekken er alternerende, og $\lim_{N\to\infty} |a_n| = \lim_{N\to\infty} \frac{1}{n+1} = 0 \qquad (ok)$

Videre: Med $f(x) = \frac{1}{x+1}$ has vi $f(n) = |a_n|$.

 V_i for $f'(x) = \frac{d}{dx} [(x+1)^{-1}] = -(x+1)^{-2} = \frac{-1}{(x+1)^2} < 0$ for x>0

Dermed er fautokende på (0,00). Altså

Altsin konvergerer rekken ved alt. rekke-testen.

30042018.notebook May 03, 2018

b)
$$|a_{N+1}| = 0.01$$
 gir
 $\frac{1}{(N+1)+1} = \frac{1}{N+2} = 0.01$, des. $N = 9.8$ holder.

12.4 Absolute ag betinget konvergens

 $\sum a_n$ kalles <u>absolute</u> konvergent hvis rekken $\sum |a_n| = |a_1| + |a_2| + |a_3| + \dots$ konvergerer

Huis I an konvergerer, men ikke er absolutt konvergent, kalles den betinget konvergent.

Absolut konvergens - testen

 $\geq |a_n|$ konv. $\Rightarrow \geq a_n$ konv.

Bevis Se bok. D

 $\frac{\text{eks.}}{\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+2} \sin^3 n}{n^2}} \quad \text{Konv } \text{?}$

 $V_i \text{ har : } \left| \frac{\left(-1\right)^{n+2} \sin^3 n}{n^2} \right| \leqslant \frac{1}{n^2}$

Rekken $\sum_{n=2}^{\infty}$ konvergerer (p-rekke med p=2)

Ergo er rekken var absolutt konvergent, så den konvergerer ved abs. konv. – testen. []