Learning "What-if" Explanations For Sequential Decision Making IE 708 Project

Hanish Prashant Dhanwalkar

November 19, 2024

Batch IRL

What is IRL:

- Learning technique that aims to infer the reward function of an agent by observing its behavior in a given environment.
- Unlike traditional reinforcement learning, where the reward function is explicitly defined, Batch IRL learns the reward function from a set of expert demonstrations or trajectories.

Why Batch IRL

- **Online Learning:** Classic IRL algorithms require interactive access to the environment, or full knowledge of the environment's dynamics.
- Limited by the assumption that state dynamics are fully-observable and Markovian. NOT true for domains like medicine, where treatment depends on how patient covariates (tumour, side effects) have evolved over time.

"What-if" Explanations

Incorporating counterfactual reasoning into batch IRL

- Learn a parameterized reward function $R(h_t, a_t)$ that is defined as a weighted sum over potential outcomes for taking action at given history h_t .
- This helps in reasoning out why an expert (eq. doctor) have chosen a
 particular action and "what" would have happen if any other
 alternative was taken. These experimentation are not possible in
 medicine domain.

Example: Cancer Treatment

- Consider the decision making process of assigning a binary action given,
 - ► Tumour volume (*U*)
 - ▶ Side effects (*Z*)
- Let $\mathbb{E}[U_{t+1}[a_t]|h_t]$ and $\mathbb{E}[Z_{t+1}[a_t]|h_t]$ be the counterfactual outcomes for the two covariates when action a_t is taken given the history h_t of covariates and previous actions.
- The reward as the weighted sum of these counterfactuals:
 - $P(h_t, a_t) = w_u \mathbb{E}[U_{t+1}[a_t]|h_t] + w_z \mathbb{E}[Z_{t+1}[a_t]|h_t],$
- This allows us to model the preferences of experts: e.g. finding that $|w_u| > |w_z|$ indicates that the expert is treating more aggressively, by placing more weight on reducing tumour volume than on minimizing side effects.

Figure: Explaining decision-making behaviour in terms of preferences over "what if" outcomes. Evolution of tumour volume (U) and side effects (Z) under a binary action.

At timestep t, let $X_t \in X$ be the observed patient features and $A_t \in A$ be the action (e.g. treatment) taken. Let x_t and a_t be realizations of these random variables, $h_t = (x_0, a_0, ..., x_{t1}, at1, x_t) = (x_{0:t}, a_{0:t1}) \in H$ be a realization of the history $H_t \in H$ of patient observations and actions.

- A policy $\pi: H \times A \to [0,1]$, where $\pi(a|h)$ indicates the probability of choosing action $a \in A$ given history $h \in H$ and $\sum_{a \in A} \pi(a|h) = 1$.
- Taking action a_t under history h_t results in observing x_{t+1} and obtaining h_{t+1} . The reward function is $R: H \times A \to \mathbb{R}$ where R(h, a) represents the reward for taking action a A given history $h \in H$.
- The value function of a policy π , $V: H \to \mathbb{R}$ is defined as: $V^{\pi}(h) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(H_t, A_t) | \pi, H_0 = h]$, where $\gamma \in [0, 1)$ is the discount factor.
- The action-value function $Q: H \times A \to \mathbb{R}$ of a policy is defined as $Q^{\pi}(h, a) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} R(H_{t}, A_{t}) | \pi, H_{0} = h, A_{0} = a]$

- Batch IRL: consider a linear reward function $R(h_t, a_t) = w \cdot \phi(h_t, a_t)$ where $||w||_1 \le 1$
- π_E is attempting optimise some unknown reward function $R^*(h_t, a_t) = w^* \cdot \phi(h_t, a_t)$ where w^* are the 'true' reward weights.
- The value of policy π can be re-written as:

$$\mathbb{E}[V^{\pi}(H_0) = w \cdot \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t \phi(H_t, A_t) | \pi]$$

• The feature expectation of π , defined as the expected discounted cumulative feature vector obtained when choosing actions according to π is

$$\mu^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(H_{t}, A_{t}) | \pi\right] \in \mathbb{R}^{d}$$

such that: $\mathbb{E}[V^{\pi}(H_0)] = w \cdot \mu^{\pi}$

- Our aim is to recover the expert weights W^* as well as find a policy π that is close to the policy of the expert π_E
- max-margin IRL approach and measure the similarity between the feature expectations of the expert's policy and the feature expectations of a candidate policy using $||\mu^{\pi_E} \mu^{\pi}||_2$
- In this batch IRL setting, we do not have knowledge of transition dynamics and we cannot sample more trajectories from the environment.

- **Counterfactual reasoning:** To explain the expert's behaviour in terms of their trade-off associated with "what if" outcomes
- define the feature map $\phi(h_t, a_t)$ part of the reward $R(h_t, a_t) = w \cdot \phi(h_t, a_t)$
- Let Y[a] be potential potential outcome, either factual or counterfactual, for treatment $a \in A$. Using Dataset D, learn feature map $\phi(h_t, a_t)$ such that $\phi(h_t, a_t) = \mathbb{E}[Y_{t+1}[a_t]|h_t$.
- The potential outcomes for the other actions are the counterfactual ones and they allow us to understand what would happen to the patient if they receive a different treatment.
- Consider the model for estimating counterfactuals as a black box such that the feature map ϕ represents the effect of taking action a_t for history h_t .

 $R(h_t, a_t) = w \cdot \phi(h_t, a_t) = w \cdot \mathbb{E}[Y_{t+1}[a_t]|h_t]$

Batch IRL using Conterfactuals

- Max-margin IRL starts with an initial random policy π and iteratively performs the following steps to recover the expert policy and its reward weighs:
 - **①** estimate feature expectations μ^{π} of candidate policy π ,
 - 2 compute new reward weights w,
 - lacktriangledown find new candidate policy π that is optimal for reward function R
- This approach finds a policy $\tilde{\pi}$ that satisfies $||\mu^{\pi_E} \mu^{\pi}||_2 < \epsilon$ such that $\tilde{\pi}$ has an expected value function close the expert policy.
- The expert feature expectations can be estimated empirically from the dataset D using:

$$\mu^{\pi_E} = \frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T^i} \gamma^t \phi(h_t^i, a_t^i)$$

Batch IRL using Conterfactuals

Figure: CIRL. Counterfactuals are used to define $\phi(h,a)$, to estimate feature expectations μ^{π} of candidate policy π in batch setting and to learn optimal policy for reward weights w.

Counterfactual μ - Learning

First action a is taken randomly and for $t \ge 1, A_t \sim \pi(\cdot|H_t)$. This can be re-written as:

$$\mu^{\pi}(h, a) = \phi(h, a) + \mathbb{E}_{h', a' \sim \pi(\cdot | h')} \left[\sum_{t=0}^{\infty} \gamma^{t} \phi(h_{t}, a_{t}) | \pi, H_{1} = h', A_{1} = a' \right]$$
$$= \phi(h, a) + \phi \mathbb{E}_{h', a' \sim \pi(\cdot | h')} [Q^{\pi}(h', a')]$$

where h' is the next history.

- Existing methods for estimating feature expectations fall into two extremes:
 - (1) model-based (online)IRL approaches learn a model of the world and then use the model as a simulator to obtain on-policy roll-outs
 - (2) batch IRL approaches use Q-learning for off-policy evaluation (Lee et al., 2019), and can only be used to evaluate policies similar to the expert policy and require warm start.

Counterfactual μ - Learning

- The paper proposes counterfactual μ-learning, a novel method for estimating feature expectations that uses these counterfactuals as part of temporal difference learning with 1-step bootstrapping.
- This approach falls in-between (1) and (2) and allows us to estimate feature expectations for any candidate policy π in the batch IRL setting.
- The counterfactual μ -learning algorithm learns the μ -values for policy π iteratively by updating the current estimates of the μ -values with the feature map plus the μ -values obtained by following policy π in the new counterfactual history $h'=(h,a,\mathbb{E}[Y[a]|h])$

$$\hat{\mu}^{\pi} \leftarrow \hat{\mu}^{\pi}(h, a) + \alpha(\phi(h, a) + \gamma \mathbb{E}_{a' \sim \pi(\cdot | h')}[\hat{\mu}^{\pi}(h', a')] - \hat{\mu}^{\pi}(h', a')$$

where α is the learning rate.

Batch, Max-Margin CIRL

Algorithm 1 (Batch, Max-Margin) CIRL

```
1: Input: Batch dataset \mathcal{D}, max iterations n, convergence threshold \epsilon,
      feature map \phi(h_t, a_t) = \mathbb{E}[Y_{t+1}[a_t]|h_t]
 2: \mu^{\pi_E} \leftarrow \text{compute } \pi_E's feature expectations (Equation 3)
 3: w_0 \leftarrow \text{random initial reward weights}, \ \pi_0 \leftarrow \text{compute optimal policy for } R_0 = w_0 \cdot \phi
 4: \mu^{\pi_0} \leftarrow \text{compute } \pi_0's feature expectations
                                                                                                                          (counterfactual \mu-learning)
 5: \Pi = {\pi_0}, \bar{\Delta} = {\mu^{\pi_0}}, \bar{\mu}_0 = \mu^{\bar{\pi}_0}
 6: for k = 1 to n do
          w_k = \mu^{\pi_E} - \bar{\mu}_{k-1}, \ \pi_k \leftarrow \text{compute optimal policy for } R_k = w_k \cdot \phi
 8: \mu^{\pi_k} \leftarrow \text{compute } \pi_k's feature expectations
                                                                                                                           (counterfacual \mu-learning)
        \Pi = \Pi \cup \{\pi_k\}, \Delta = \Delta \cup \{\mu^{\pi_k}\}
          Orthogonally project \mu^{\pi_E} onto line through \bar{\mu}_{k-1}, \mu^{\pi_k}:
10.
          \bar{\mu}_k = \frac{(\mu^{\pi_k} - \bar{\mu}_{k-1})^T (\mu^{\pi_E} - \bar{\mu}_{k-1})}{(\mu^{\pi_k} - \bar{\mu}_{k-1})^T (\mu^{\pi_k} - \bar{\mu}_{k-1})} (\mu^{\pi_k} - \bar{\mu}_{k-1}) + \bar{\mu}_{k-1}, \qquad t = \|\mu^{\pi_E} - \bar{\mu}_k\|_2
          if t < \epsilon then break
12: end for
13: K = \arg\min_{k:\mu^{\pi_k} \in \Delta} \|\mu^{\pi_E} - \mu^{\pi_k}\|_2, \tilde{R}(h, a) = w_K \cdot \phi(h, a)
```

Figure: Psedo Code for CIRL

14: Output: \tilde{R} , Δ , Π

Thank You