Number Theory

Giulia Mauri

Politecnico di Milano

email: giulia.mauri@polimi.it website: http://home.deib.polimi.it/gmauri

April 22, 2015

Giulia Mauri (DEIB) Exercises April 22, 2015 1 / 20

Overview

Modular Arithmetic

2 Exercises

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Modular Arithmetic

Let n be a positive integer.

Definition

$$\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$$

Addition and multiplication modulo n behave as expected.

Example

Consider \mathbb{Z}_6

$$4+5=9 \mod 6=3$$

$$4 \times 5 = 20 \mod 6 = 2$$

Greatest Common Divisor (gcd)

Definition (Greatest Common Divisor (gcd))

For $x, y \in \mathbb{Z}$, $d = \gcd(x, y)$, where d is the largest number that divides both x and y.

Definition (Relatively Prime)

If gcd(x, y) = 1, the x and y are relatively prime.

For all $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that:

$$ax + by = \gcd(x, y)$$

a and b can be found efficiently using the Extended Euclid Algorithm (EEA).

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かり(で

Giulia Mauri (DEIB) Exercises A

4 / 20

Modular Inversion

Definition (Inverse)

The multiplicative inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $xy \mod n = 1$. If such y exists, it is indicated as x^{-1} .

Example

In \mathbb{Z}_7 the multiplicative inverse of 2 is $2^{-1} = 4$. In fact, $2 \times 4 = 8 \mod 7 = 1$.

The multiplicative inverse of $x \in \mathbb{Z}_n$ exist if and only if gcd(x, n) = 1.

Definition

$$\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n \colon \gcd(x, n) = 1 \}$$

All the elements of \mathbb{Z}_n^* have a multiplicative inverse, which can be found efficiently using the EEA.

Giulia Mauri (DEIB) Exercises April 22, 2015 5 / 20

Modular Equations

Solve

$$ax + b = 0$$
 in \mathbb{Z}_n

Three cases:

• If gcd(a, n) = 1, then

$$x = -ba^{-1}$$

- If gcd(a, n) = d > 1 and $b \mod d = 0$, then
 - Consider the new equation

$$(a/d)x + (b/d) = 0$$
 in $\mathbb{Z}_{n/d}$

- ② Find solution $x_0 \in \mathbb{Z}_{n/d}$.
- **3** The *d* solutions to the original equations are

$$x_0, x_0 + (n/d), x_0 + 2(n/d), \dots, x_0 + (d-1)(n/d)$$
 in \mathbb{Z}_n

• If gcd(a, n) = d > 1 and $b \mod d > 0$, then there is no solution.

Fermat's Little Theorem

Theorem (Fermat)

Let p be a prime, $\forall x \in \mathbb{Z}_p^* \colon x^{p-1} = 1$ in \mathbb{Z}_p .

Example

$$xx^{p-2} \mod p = 1 \implies x^{-1} = x^{p-2} \text{ in } \mathbb{Z}_p$$

This is another way to compute inverses, but is less efficient than Euclid.

Generating Random Primes

Problem: generate a random prime number with *I* bits. No fast deterministic algorithm. Standard practice is

- Generate a random odd integer n with / bits
- Apply non-deterministic test of primality.

Fermat Primality Test

```
Input: integer n, candidate prime
Choose a \leftarrow \mathbb{Z}_n
if a^{n-1} \mod n = 1 then
return n may be prime
else
return n is composite
end if
```

The test is repeated several times to reduce the probability of error.

Giulia Mauri (DEIB) Exercises April 22, 2015 8 / 20

Group Definition

Definition (Group)

A group is a set G that, together with an operation \bullet , must satisfy four requirements:

- Closure: for all a, b in G, the result of the operation, $a \bullet b$ is also in G;
- Associativity: for all a, b and c in G, $(a \bullet b) \bullet c = a \bullet (b \bullet c)$;
- Identity element: there exists an element e in G, such that for every element a in G, the equation $a \bullet e = e \bullet a = a$ holds. Such element e is unique;
- Inverse element: for each a in G, there exists an element b in G such that $a \bullet b = b \bullet a = e$, where e is the identity element.

9 / 20

The Group $\mathbb{Z}_{p_0}^*$

Let p be a prime, then \mathbb{Z}_p^* is a cyclic group, that is

$$\exists g \in \mathbb{Z}_p^*$$
 such that $\mathbb{Z}_p^* = 1, g, g^2, g^3, \dots, g^{p-2}$

g is called a generator of \mathbb{Z}_p^* .

Example

$$p = 5, g = 2$$
 $\mathbb{Z}_5^* = \{1, 2, 4, 3\}$

There exists at least one generator, but not all elements are generators.

Example

$$p = 5, g = 4$$
 $\mathbb{Z}_5^* \neq \{1, 4, 1, 4\}$

Lagrange's Theorem

If g is not a generator, it generates a subgroup of \mathbb{Z}_p^* . The size of this subgroup is the order of g.

Definition

$$ord_p(g) = | \langle g \rangle | = \text{smallest } i \text{ s.t. } g^i = 1 \text{ mod } p$$

Theorem (Lagrange)

$$\forall g \in \mathbb{Z}_p^*$$
, $ord_p(g)$ divides $p-1$

Euler's Theorem

Definition (Euler's ϕ)

Let *n* be a positive integer, then $\phi(n) = |\mathbb{Z}_n^*|$.

Calculating $\phi(n)$ is easy if the factorization of n is known:

$$p$$
 prime, $\phi(p)=p-1$ p,q distinct primes, $\phi(pq)=(p-1)(q-1)$

Theorem (Euler)

$$\forall x \in \mathbb{Z}_n^*, \quad x^{\phi(n)} \bmod n = 1$$

Quadratic residue

Definition (quadratic residue)

 $x \in \mathbb{Z}_p$, is a quadratic residue (Q.R.) if it has a square root in \mathbb{Z}_p .

Theorem (Euler's theorem)

 $x \in \mathbb{Z}_p^*$, is a Q.R. if and only if $x^{(p-1)/2} = 1 \mod p$.

Example

in \mathbb{Z}_{11} :

$$1^5, 2^5, 3^5, 4^5, 5^5, 6^5, 7^5, 8^5, 9^5, 10^5$$

=1, -1, 1, 1, 1, -1, -1, -1, 1, -1

Note: $x \neq 0 \rightarrow x^{(p-1)/2} = (x^{p-1})^{1/2} = 1^{1/2} \in \{1, -1\}$ in \mathbb{Z}_p

(□) (□) (□) (□)

Computing square roots mod p

Suppose $p = 3 \pmod{4}$.

Lemma

if $c \in \mathbb{Z}_p^*$ is Q.R., then $\sqrt{c} = c^{(p+1)/4}$ in \mathbb{Z}_p .

If $p = 1 \pmod{4}$ is not possible to find the square root.

EEA

Exercise

The numbers 7 and 23 are relatively prime and therefore there must exists integers a and b such that 7a + 23b = 1. Find such a pair (a, b) with the smallest possible a > 0. Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23} ?

Exercise

The numbers 7 and 23 are relatively prime and therefore there must exists integers a and b such that 7a + 23b = 1. Find such a pair (a, b) with the smallest possible a > 0. Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23} ?

Solution

k	$\begin{vmatrix} k & r_k & q_k \end{vmatrix}$ $\begin{vmatrix} s_k & t_k & r_0 s_k + r_1 t_k \end{vmatrix}$									
0	23			1	0	23				
1	7	3		0	1	7				
2	2	3	23 = 3.7 + 2	1	-3	2				
3	1	2	7 = 3.2 + 1	-3	10	1				
4	0		$2 = 2 \cdot 1 + 0$	7	-23	0				

The pair is (a, b) = (10, -3) and the inverse is $7^{-1} = 10 \mod 23$

Modular Equations

Exercise

Solve the equation 3x + 2 = 7 in \mathbb{Z}_{19} .

Giulia Mauri (DEIB) Exercises April 22, 2015 16 / 20

Modular Equations

Exercise

Solve the equation 3x + 2 = 7 in \mathbb{Z}_{19} .

Solution

Since gcd(3, 19) = 1, then $x = 5 \cdot 3^{-1}$.

k	r_k	q_k		s _k	$ t_k $	$r_0s_k+r_1t_k$
0	19			1	0	19
1	3	6		0	1	3
2	1	3	19 = 6.3 + 1	1	-6	1
3	0		$\begin{vmatrix} 19 = 6.3 + 1 \\ 3 = 3.1 + 0 \end{vmatrix}$	-3	19	0

Thus,
$$x = 5 \cdot (-6) = 5 \cdot 13 = 8$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Exercise

How many elements are there in \mathbb{Z}_{35}^* ?

Giulia Mauri (DEIB) Exercises April 22, 2015 17 / 20

Exercise

How many elements are there in \mathbb{Z}_{35}^* ?

Solution

We compute $\phi(35) = (p-1)(q-1) = (5-1)(7-1) = 24$.

Exercise

How many elements are there in \mathbb{Z}_{35}^* ?

Solution

We compute $\phi(35) = (p-1)(q-1) = (5-1)(7-1) = 24$.

Exercise

What is the order of 2 in \mathbb{Z}_{17}^* ?

Exercise

How many elements are there in \mathbb{Z}_{35}^* ?

Solution

We compute $\phi(35) = (p-1)(q-1) = (5-1)(7-1) = 24$.

Exercise

What is the order of 2 in \mathbb{Z}_{17}^* ?

Solution

 $ord_{17}(2) = smallest \ i \ s.t. \ 2^i = 1 \ mod \ 17$

Moreover, we know that $17 - 1 = 16 = 2^4$. Thus the order of 2 should be 2,4,8,16.

$$2^8 = 256 = 1$$
 $2^4 = 16$ $2^2 = 4$

The order is $ord_{17}(2) = 8$

17 / 20

Exercise

How much is 2¹⁰⁰⁰¹ mod 11?

Hint: use Fermat's theorem.

Exercise

How much is 2¹⁰⁰⁰¹ mod 11?

Hint: use Fermat's theorem.

Solution

We know that $2^{11-1} = 1$. Thus, $2^{10001} = 2^{10000} \cdot 2^1 = 1 \cdot 2 = 2$

Exercise

How much is 2¹⁰⁰⁰¹ mod 11?

Hint: use Fermat's theorem.

Solution

We know that $2^{11-1}=1$. Thus, $2^{10001}=2^{10000}\cdot 2^1=1\cdot 2=2$

Exercise

How much is 2²⁴⁵ mod 35?

Hint: use Euler's theorem.

Exercise

How much is 2¹⁰⁰⁰¹ mod 11?

Hint: use Fermat's theorem.

Solution

We know that $2^{11-1}=1$. Thus, $2^{10001}=2^{10000}\cdot 2^1=1\cdot 2=2$

Exercise

How much is 2²⁴⁵ mod 35?

Hint: use Euler's theorem.

Solution

We know that $2^{24} = 1$. Thus, $2^{245} = 2^{240} \cdot 2^5 = 1 \cdot 32 = 32$

Generator

Exercise

Which of the following numbers is a generator of \mathbb{Z}_{13}^* ?

- $10, < 10 >= \{1, 10, 9, 12, 3, 4\}$
- 8, $< 8 >= \{1, 8, 12, 5\}$
- $7, < 7 >= \{1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2\}$
- 3, $< 3 >= \{1, 3, 9\}$
- 2, $< 2 >= \{1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7\}$

Generator

Exercise

Which of the following numbers is a generator of \mathbb{Z}_{13}^* ?

•
$$10$$
, $< 10 >= \{1, 10, 9, 12, 3, 4\}$

•
$$8$$
, $< 8 >= \{1, 8, 12, 5\}$

•
$$7, < 7 >= \{1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2\}$$

•
$$3$$
, $< 3 >= \{1, 3, 9\}$

•
$$2$$
, $< 2 >= {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}$

Solution

The group should be composed of 12 elements.

Both 7 and 2 generate the entire group \mathbb{Z}_{13}^* .

◆ロ > ← 個 > ← 差 > ← 差 > 一差 ● から(*)

19 / 20

Giulia Mauri (DEIB) Exercises April 22, 2015

Solve Equation with quadratic formula

Exercise

Solve the equation $x^2+4x+1=0$ in \mathbb{Z}_{23} by using the quadratic formula.

Solve Equation with quadratic formula

Exercise

Solve the equation $x^2 + 4x + 1 = 0$ in \mathbb{Z}_{23} by using the quadratic formula.

Solution

$$x = (-4 \pm \sqrt{4^2 - 4})/2 \pmod{23} = (-4 \pm \sqrt{12})/2.$$

$$2^{-1} \pmod{23} = 12$$

$$23 = 3 \pmod{4}$$

$$12^{(23-1)/2} = 1$$
, thus 12 is Q.R.

Then,
$$12^{(23+1)/4} = 9$$
 is the square root.

$$x = (-4 \pm 9) \cdot 12 \pmod{23} = 14$$
 and 5.