- ▶ k_{cat} often contains units per second or per minute
- k_{cat} = "turn over" number
- k_{cat} = number of reactions in a given amount of time
 - > This number relates to how many substrate molecules are converted to product per unit of time
- $\frac{k_{cat}}{K_M}$ = a measure of enzyme efficiency
 - It is not enough to consider K_M or k_{cat} independently.
 - We must consider both the enzyme rate and the number of substrate molecules needed (concentration) in order to achieve that rate
 - Remember, the calculation for K_{M} contains the value for k_{cat}

$$K_{M} = \frac{k_{-1} + k_{cat}}{k_{1}}$$

ENZYME EFFICIENCY

- Enzyme Efficiency = Fast Conversion, and With a Small Amount of Substrate
- Speed and Concentration need to reach $\frac{V_{max}}{2}$
- $\frac{k_{cat}}{K_M}$ = number we can use to compare efficiencies.

- IF k_{cat} == Large , Enzyme Efficiency == High ; MORE substrate is being catalyzed by an enzyme to product per unit of time
- IF $k_{cat} == Small$, Enzyme Efficiency == Low; LESS substrate is being catalyzed by an enzyme to product per unit of time

- ▶ IF $K_M == Small$, Enzyme Efficiency == High
- ▶ IF $K_M == Large$, Enzyme Efficiency == Low