Algebra

Chaper 11: Rings

11.1: Definition of a Ring

• Ring: A ring R is a set with two laws of composition + and \times , called addition and multiplication, that satisfy these axioms:

- (a) With the law of composition +, R is an abelian group that we denote by R^+ ; its identity is denoted by 0.
- (b) Multiplication is commutative and associative, and has an identity denoted by 1.
- (c) Distributive law: For all a, b and c in R, (a+b)c = ac + bc.
- **Subring**: Subset which is closed under addition, subtraction, multiplication and which contains 1.
- Noncommutative Ring: Satisfies all of the above axioms, except for the commutative law for multiplication.
- Gauss integers: The complex numbers of the form a + bi where a and b are integers form a subring of \mathbb{C} that we denote by $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. Its elements are points of a square lattice in the complex plane.
 - $-\mathbb{Z}[\alpha]$ subring: Ccontains every complex number $\beta = a_n \alpha^n + ... + a_1 \alpha + a_0$ where a_i are in \mathbb{Z} and α is a complex number.
 - * Analogous to the ring of Gauss integers.
 - * Subring generated by α
 - * Usually not represented as a lattice in the complex plane
- A complex number α is **algebraic** if it is a root of a (nonzero) polynomial with integer coefficients (i.e. if some expression of the form $a_n\alpha^n + ... + a_1\alpha + a_0$ evaluates to 0)
 - When α is algebraic there will be many polynomial expressions that represent the same complex number.
- If there is no polynomial with integer coefficients having α as a root, α is **transcendental**
 - When α is transcendental, two distinct polynomial expressions represent distinct complex numbers, and the elements of the ring $\mathbb{Z}[\alpha]$ correspond bijectively to polynomials p(x) with integer coefficients.
- A polynomial in x with coefficients in a ring R is an expression of the form $a_n x^n + ... + a_1 x + a_0$ with a_i in R.
- **Zero Ring**: A ring containing only the element 0.

Algebra

- A ring R in which the elements 1 and 0 are equal is the zero ring.
- Unit: A *unit* of a ring is an element that has a multiplicative inverse (if it exists, it is unique)
 - Units in the ring of integers are 1 and -1
 - Units in the ring of Gauss integers are ± 1 and $\pm i$
 - Units in the ring $\mathbb{R}[x]$ of real polynomials are the nonzero constant polynomials
 - The identity element 1 of a ring is always a unit

11.2: Polynomial Rings

• Formal Polynomial: A polynomial with coefficients in a ring R is a (finite) linear combination of powers of the variable: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ where the coefficients a_i are elements of R.