Making Flips with Quadrotors in Constrained Environments

Elie Hatem

Advisors: Dr. Sebastien Briot, Dr. Isabelle Fantoni

August 24, 2021

Introduction

2 Model Predictive Control

3 acados

(a) DJI Phantom quadcopter (UAV)¹

(b) Quadrotor Concept. Width of the arrows is proportional to the angular speed of the propellers²

Figure: Commercial quadrtotor platform (left) and quadrotor concept (right).

¹ https://en.wikipedia.org/wiki/Quadcopter#/media/File:Quadcopter_camera_drone_in_flight.jpg

 $^{^2\}mathrm{Design}$ and control of quadrotors with application to autonomous flying, 2007, S. Bouabdallah

Over the last few years, quadrotors have gained large popularity in academia and industry. Because, they are:

- Simple to design and assemble using relatively cheap components.
- Different use cases: aerial photography, agriculture, surveillance tasks, etc.
- Quite agile and maneuverable during flight, especially when compared to other types of UAVs.

One of the main challenges

Capability to design control and planning methods to allow tracking aggressive trajectories.

This is due to:

- The fast dynamics associated with the small dimensions of such agile quadrotors.
- Several dynamic effects that will become important during aggressive flight maneuvers.
- The motors will be commanded high speeds and accelerations, which will cause them to saturate and introduce delays.

The goals of the master thesis:

- Study of multi-flip maneuvers.
- Implement Model Predictive Control to solve the presented issues.
- Perform the maneuvers in a constrained environment.

(a) Quadrotor performing a triple flip³

(b) Quadrotor going though a loop⁴

Figure: Representation of the issues to be tackled in this master thesis.

³Adaptive fast open-loop maneuvers for quadrocopters, 2012, S. Lupashin and R. D'Andrea

https://newatlas.com/drones/muscle-signals-drone-control/

Figure: Diagram of the general control architecture of a quadrotor.

- Position controller: slow rise time drives translational dynamics errors to 0.
- Attitude controller: faster rise time drives rotational dynamics errors to 0.
- Motor controller: fastest rise time maps the control inputs to motor speeds.

Remark

- The designed controller cannot be faster than the one at a lower level.
 - The orientation cannot be controlled any faster than the motors can be controlled.

A well-established finding is that the dynamic model of a quadrotor is differentially flat:

• The system with state $\mathbf{x} \in \mathbb{R}^n$ and input $\mathbf{u} \in \mathbb{R}^m$ has flat outputs $\mathbf{y} \in \mathbb{R}^m$ which have the following form:

$$y = y(x, u, \dot{u}, ..., u^{(p)})$$
 (1)

With,

$$\begin{cases} x = x(y, \dot{y}, ..., y^{(q)}) \\ u = u(y, \dot{y}, ..., y^{(r)}) \end{cases}$$
 (2)

- Very useful property in under-actuated systems where m < n, such as quadrotors.
- Allows to generate trajectories in the lower dimensional space m.
- The trajectories can then be mapped into the full dimensional space n.

The standard choice of flat outputs for the quadrotor are:

$$\mathbf{y} = \begin{bmatrix} x & y & z & \psi \end{bmatrix}^{\mathsf{T}} \tag{3}$$

As a result:

- Trajectories can be designed in the 4-dimensional space.
- They can then be mapped to the 6-dimenstional space.
 - Since the rotational and translational dynamics are tightly coupled.

Introduction

2 Model Predictive Control

acados

General idea of MPC:

Figure: Basic idea of MPC⁵

- It is a feedback control algorithm.
- It uses a model to predict future outputs.
- It solves an online optimization problem to select the optimal control.

⁵Principles of Optimal Control, 2008, J. How

MPC Design parameters:

- · Sample time.
- Prediction horizon.
- Control horizon.
- Constraints.
- Weights.

Choosing proper values for these parameters is important as they affect:

- The controller performance.
- The computational complexity of the MPC algorithm.

MPC Design parameters:

- · Sample time.
- Prediction horizon.
- Control horizon.
- Constraints.
- Weights.

Choosing proper values for these parameters is important as they affect:

- The controller performance.
- The computational complexity of the MPC algorithm.

The most popular uses for MPC in quadrotors are:

- Centralized MPC: Single control loop for the system.
- Non-centralized MPC: Cascaded control consisting of more than 1 control loop.
 Examples:
 - MPC_{master}-MPC_{slave}
 - MPC-PD-P
 - Other options can be used for the inner loop.

Remark

- Centralized MPC: More accurate, high computation cost.
- Non-centralized MPC: Less accurate, lower computation cost.

Inputs of centralized MPC:

• Desired x, y and z positions and the yaw angle ψ .

Outputs of centralized MPC:

- Total thrust f_t.
- Torques: τ_x, τ_y and τ_z

Another version of the centralized MPC exists with:

• Added ϕ and θ angles as outputs.

Figure: Non-centralized MPC (MPC $_{master}$ -MPC $_{slave}$)

Outer-loop: master MPC

Inputs: Desired x, y, z, ψ.

• Outputs: f_t , τ_z , θ_{ref} , ϕ_{ref} .

Inner-loop: slave MPC

• Inputs: θ_{ref} , ϕ_{ref} .

• Outputs: τ_x , τ_y .

Figure: Non-centralized MPC (MPC-PD-P)

Outer-loop: master MPC

• Inputs: Desired x, y, z, ψ .

• Outputs: f_t , τ_z , θ_{ref} , ϕ_{ref}

Inner-loop: PD-P controller

• Inputs: θ_{ref} , ϕ_{ref} .

• Outputs: τ_X , τ_Y .

Another example of a non-centralized MPC:

Figure: Non-centralized MPC

Remark

The inner-loop can remain fixed, while the outer loop can be reprogrammed to meet the required task.

Introduction

2 Model Predictive Control

acados

The software used for implementing MPC controller is acados:

- Contains efficient optimal control algorithms implemented in C.
- Has a modular architecture enabling rapid prototyping of solution algorithms.
- Interfaces to C++, Python and MATLAB.
- Uses the high-performance linear algebra package BLASFEO.
- Compatible with CasADi expressions.
- Deployable on a variety of embedded devices.
- Free and open-source software.

Main drawback:

- Prediction horizon and control horizon must be of same length.
 - This issue can be solved using the real-time iteration (RTI) method.

The general form of the nonlinear program that can be handled by acados is:

$$\min_{\substack{x_0, \dots, x_N \\ u_0, \dots, u_{N-1} \\ z_0, \dots, z_{N-1} \\ s_0, \dots, s_N}} \sum_{k=0}^{N-1} I_k(x_k, u_k, z_k) + M(x_N) + \sum_{k=0}^{N} \rho_k(s_k)$$
s.t.
$$\begin{bmatrix} x_{k+1} \\ z_k \end{bmatrix} = \phi_k(x_k, u_k) & k = 0, 1, \dots, N-1, \\
0 \ge g_k(x_k, z_k, u_k) - J_{s,k} s_k & k = 0, 1, \dots, N-1, \\
0 \ge g_N(x_N) - J_{s,N} s_N, & k = 0, 1, \dots, N-1, \\
0 < s_k & k = 0, 1, \dots, N-1$$

And,

$$\rho_k(\mathbf{s}_k) = \sum_{i=1}^{n_{\mathbf{s}_k}} \alpha_k^i \mathbf{s}_k^i + \beta_k^i \mathbf{s}_k^{i^2}$$
 (5)

with $\alpha_k^i \in \mathbb{R}, \beta_k^i > 0$.

Figure: Overview of the Python API classes in acados⁶

 $^{^{\}rm 6}_{\rm https://docs.acados.org/python_api/}$

- Some
- Appearing
- Bullets
 - With sub-bullets

- Some
- Appearing
- Bullets
 - With sub-bullets

- Some
- Appearing
- Bullets
 - With sub-bullets

- Some
- Appearing
- Bullets
 - With sub-bullets

- Some
- Appearing
- Bullets
 - With sub-bullets

- Some
- Appearing
- And disappearing
- Bullets
 - With sub-bullets
- That appear and disappear with their parent

- Some
- Appearing
- And disappearing
- Bullets
 - With sub-bullets
- That appear and disappear with their parent

- Some
- Appearing
- And disappearing
- Bullets
 - With sub-hullets
- That appear and disappear with their parent

- Some
- Appearing
- And disappearing
- Bullets
 - With sub-bullets
- That appear and disappear with their parent

- Some
- Appearing
- And disappearing
- Bullets
 - With sub-hullets
- That appear and disappear with their parent

Some

- 2 Numbers
 - With sub-bullets

3 That appear and the same time

4 Nicely spaced on the slide

- Should be done with \fullcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal

- You may also use \smallcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal
 - It takes less space...

- Check all imported references for
 - Name / Journal name / vear / editor (iournals)
 - Carefully check conference name (IEEEexplore)

- Should be done with \fullcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal

- You may also use \smallcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal
 - It takes less space...

- Check all imported references for:
 - Name / Journal name / vear / editor (iournals)
 - Carefully check conference name (IEEEexplore)

- Should be done with \fullcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal

- You may also use \smallcite
 - O. S. Pythagoras (Feb. -580). "Theorem". In: Some old journal
 - It takes less space...

- Check all imported references for:
 - Name / Journal name / year / editor (journals)
 - Carefully check conference name (IEEEexplore)

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b: (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2\cos \phi \sin \phi + 1$

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b: (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2\cos \phi \sin \phi + 1$

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b : (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2\cos \phi \sin \phi + 1$

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b: (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2\cos \phi \sin \phi + 1$

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b : (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2\cos \phi \sin \phi + 1$

$$\forall \phi: \quad \cos^2 \phi + \sin^2 \phi = 1 \tag{6}$$

Do not have a number if used with \begin{equation*}

$$\forall a, b: (a+b)^2 = a^2 + 2ab + b^2$$

$$\forall a, b: (a-b)^2 = a^2 - 2ab + b^2$$

- Probably more suited to slides as we use less equation references
- Can also be included in the text / bullets
 - $\forall \phi$: $(\cos \phi + \sin \phi)^2 = 2 \cos \phi \sin \phi + 1$