Chapitre1: LIMITE-CONTINUITE-DERIVATION

1.1. RESUME DU COURS

Dans ce chapitre, on désigne par l'infini « ∞ », + ∞ ou - ∞ et par C_f la courbe de f dans un repère ortho normal (O, \vec{l}, \vec{j})

Limite d'un polynôme ou d'une fonction rationnelle

- ➤ A l'infini, la limite d'un polynôme est égale à la limite de son monôme de plus haut degré.
- ➤ A l'infini, la limite d'une fonction rationnelle est égale à la limite du rapport du monôme de plus haut degré du numérateur sur celui du dénominateur.

Formes indéterminées

Dans un calcul de limite, si on obtient $*+\infty-\infty*$ ou $*(0.\infty*)$ ou *(0

Pour lever l'indétermination, on fait une transformation d'écriture.

Formes indéfinies

Dans un calcul de limite d'un quotient, si on obtient $\ll \frac{a}{o} \gg$, avec $a \neq 0$, alors on a une forme indéfinie.

Dans ce cas la limite est égale à l'infini; pour déterminer dans quel cas on a $+\infty$ ou $-\infty$, on étudie le signe du dénominateur et on calcule les limites à gauche et à droite.

Théorèmes de comparaison

Soit f, g, u, v des fonctions, L, L' des nombres réels et a un réel ou $+\infty$ ou $-\infty$. Au voisinage de a:

- ightharpoonup Si $f(x) \le g(x)$, f tend vers L et g tend vers L', alors $L \le L$ '.
 - $ightharpoonup \operatorname{Si} f(x) \ge u(x)$ et si u tend vers $+\infty$, alors f tend vers $+\infty$.
 - $ightharpoonup \operatorname{Si} f(x) \le v(x)$ et si v tend vers $-\infty$, alors f tend $-\infty$.
 - ightharpoonup Si $|f(x) L| \le u(x)$ et si u tend vers 0, alors f tend vers
- Si $u(x) \le f(x) \le v(x)$, u tend vers L et v tend vers L, alors f tend vers L.

<u>Remarque</u>: Les suites numériques étant des fonctions particulières, ces théorèmes restent valables dans le cas des suites.

Limite et nombre dérivé

L.

ightharpoonup Si $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0}$, si f et g sont dérivables en x_0 et si

$$g'(x_0) \neq 0 \text{ alors } \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} = \frac{f'(x_0)}{g'(x_0)} \,.$$

ightharpoonup En particulier si $\lim_{x \to x_0} \frac{f(x)}{x - x_0} = \frac{0}{0}$ et si f est dérivable

en
$$x_0$$
, alors $\lim_{x \to x_0} \frac{f(x)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$.

Limite et composée de fonctions

Chacune des lettres a, b, c désigne un nombre réel, $+\infty$ ou $-\infty$. Pour calculer $\lim_{x\to a} g[f(x)]$, on procède ainsi :

Si
$$\lim_{x \to a} f(x) = b$$
 et si $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} g[f(x)] = c$.

Asymptotes

Soit x_0 , a, b des nombres réels, f et g des fonctions, C_f la courbe de f et C_g celle de g.

- Si $\lim_{x \to x_0} f(x) = \infty$ alors la droite d'équation $x = x_0$ est une asymptote à C_f , parallèle à l'axe des ordonnées.
- Si $\lim_{x\to\infty} f(x) = a$ alors la droite d'équation y = a est une asymptote à C_f , parallèle à l'axe des abscisses à l'infini.
- ightharpoonup y = ax + b est une asymptote oblique à C_f à l'infini ssi $\lim_{x \to \infty} [f(x) (ax + b)] = 0.$
- > C_g d'équation y = g(x) est une asymptote à C_f d'équation y = f(x) à l'infini ssi $\lim_{x \to \infty} [f(x) g(x)] = 0$.

Branches infinies

Soit a et b des nombres réels

$$ightharpoonup$$
 Si $\lim_{x \to +\infty} f(x) = \infty$ et si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ alors C_f

admet une branche parabolique de direction asymptotique l'axe des abscisses à $+\infty$.

$$ightharpoonup$$
 Si $\lim_{x \to +\infty} f(x) = \infty$ et si $\lim_{x \to +\infty} \frac{f(x)}{x} = \infty$ alors C_f

admet une branche parabolique de direction asymptotique l'axe des ordonnées à $+\infty$.

$$ightharpoonup$$
 Si $\lim_{x \to +\infty} f(x) = \infty$, $\lim_{x \to +\infty} \frac{f(x)}{x} = a \ (a \ne 0)$ et si

 $\lim_{x\to+\infty} [f(x)-ax] = \infty$, alors C_f admet une branche parabolique de direction asymptotique la droite d'équation

$$y = ax \hat{a} + \infty.$$

Si
$$\lim_{x \to +\infty} f(x) = \infty$$
, $\lim_{x \to +\infty} \frac{f(x)}{x} = a \ (a \ne 0)$ et si

$$\lim_{x \to +\infty} [f(x) - ax] = b, \text{ alors } C_f \text{ admet la droite d'équation}$$

y = ax + b comme asymptote à $+\infty$.

Remarque: On a les mêmes conclusions quand x tend vers - ∞ .

Continuité en un point

Soit f une fonction définie sur un intervalle ouvert I et x_0 appartenant à I.

Définition

$$f$$
 est continue en x_0 ssi $\lim_{x \to x_0} f(x) = f(x_0)$.

> Théorème

$$f$$
 est continue en x_0 ssi $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$.

Dérivabilité en un point

Soit a, b et c des nombres réels, f une fonction définie sur un intervalle I et x_0 un élément de I.

Définition

f est dérivable en x_0 ssi $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$; a est appelé nombre dérivé de f en x_0 et est noté f ' (x_0) .

Dans ce cas C_f admet au point d'abscisse x_0 une tangente de coefficient directeur a.

Théorème 1: f est dérivable à gauche en x_0 ssi

 $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = b$; b est appelé nombre dérivé de f à gauche en x_0 et est noté $f_g'(x_0)$.

Dans ce cas C_f admet à gauche au point d'abscisse x_0 une demi-tangente de coefficient directeur b.

Théorème 2: f est dérivable à droite en x_0 ssi

 $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = c \; ; \quad c \; \text{est appelé nombre dérivé de } f \; \text{à droite en } x_0$ et est noté $f_d'(x_0)$.

Dans ce cas C_f admet à droite au point d'abscisse x_0 une demi-tangente de coefficient directeur c

Théorème 3 : Si f est dérivable à gauche et à droite en x_0 et si $f_g'(x_0) = f_d'(x_0)$ alors f est dérivable en x_0 .

Dans ce cas C_f admet au point d'abscisse x_0 une tangente de coefficient directeur $f_g'(x_0)$ ou $f_d'(x_0)$

Théorème 4 : Si f est dérivable à gauche et à droite en x_0 et si $f_g'(x_0) \neq f_d'(x_0)$ alors f n'est pas dérivable en x_0 .

Dans ce cas C_f admet au point d'abscisse x_0 deux demi-tangentes de coefficients directeurs $f_g'(x_0)$ et $f_d'(x_0)$ qui forment un point anguleux.

Théorème 5 : Si
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \infty$$
 ou

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \infty \text{ alors } f \text{ n'est pas dérivable en } x_0.$$

Dans ce cas C_f admet au point d'abscisse x_0 une demi-tangente d'équation $x = x_0$, parallèle à l'axe des ordonnées.

Equation de la tangente

La tangente à la courbe de f en x_0 ou au point $(x_0; f(x_0))$ a pour équation $y = f'(x_0)(x-x_0) + f(x_0)$.

Remarques

- f'(x0) le nombre dérivé de f en x0 est le coefficient directeur de la tangente.
- Si $f'(x_0) = 0$ alors la tangente est parallèle à l'axe des abscisses.
- Pour obtenir l'équation de la demi-tangente en x_0 , on remplace $f'(x_0)$ dans l'équation ci-dessus par $f_g'(x_0)$ ou $f_{d'}(x_0)$.

Théorèmes généraux sur la continuité et la dérivabilité

- ➤ Les fonctions polynômes, sinus et cosinus sont continues et dérivables surℝ.
- Les fonctions rationnelles et tangente sont continues et dérivables sur leur ensemble de définition.
- La fonction \sqrt{u} est continue si $u \ge 0$ et est dérivable si u > 0 (u étant une fonction).
 - La somme ou le produit de fonctions continues (respectivement dérivables) sur un intervalle I, est continue (respectivement dérivable) sur I.
- Si f et g sont 2 fonctions continues (respectivement dérivables) sur un intervalle I et si $g(x) \neq 0$ sur I, alors le quotient $\frac{f}{g}$ est continue (respectivement dérivable) sur I.
- La composée de deux fonctions continues sur leur ensemble de définition est continue sur son ensemble de définition.
- ightharpoonup Si f est dérivable sur un intervalle I et si g est dérivable sur un intervalle contenant f(I), alors gof est dérivable sur I.

Remarques:

Pour étudier la continuité (respectivement la dérivabilité) d'une fonction définie par intervalles (par exemple

 $h(x) = \begin{cases} f(x) \text{ si } x \in]-\infty; \ a] \\ g(x) \text{ si } x \in [a; +\infty[] \end{cases}$ on applique les théorèmes généraux de la continuité (respectivement de la dérivabilité), sur les intervalles ouverts $]-\infty; a[$ et $]a; +\infty[$; ensuite au point a, on applique le théorème de la continuité (respectivement les théorèmes de la dérivabilité) en un point.

Prolongement par continuité

Soit f une fonction définie au voisinage d'un point x_0 et D_f l'ensemble de définition de f.

Si $x_0 \notin D_f$ et si $\lim_{x \to x_0} f(x) = L$ (L étant un nombre réel) alors f admet un prolongement par continuité en x_0 et ce prolongement est définie par la fonction g, $g(x) = \begin{cases} f(x) & \text{si } x \in D_f \\ L & \text{si } x = x_0 \end{cases}$.

Image d'un intervalle par une fonction continue et strictement monotone

Soit a et b des nombres réels ou + ∞ ou - ∞ . Si f est une fonction continue et strictement monotone sur un intervalle I, alors le tableau suivant donne f(I), l'image de I par f.

I	f(I)					
	f est strictement croissante	f est strictement décroissante				
[a; b]	[f(a);f(b)]	[f(b);f(a)]				
[a ; b[$[f(a); \lim_{x\to b} f(x)]$	$\lim_{x\to b} f(x) \ ; f(a)]$				

]a; b]	$\lim_{x \to a} f(x) ; f(b)]$	$[f(b); \lim_{x \to a} f(x)[$
]a; b[$\lim_{x \to a} f(x); \lim_{x \to b} f(x)[$	$\lim_{x \to b} f(x); \lim_{x \to a} f(x)[$

Conséquence du Théorème des valeurs intermédiaires

Si f est continue sur un intervalle [a; b] et si $f(a)f(b) \le 0$, alors l'équation f(x) = 0 admet au moins une solution α appartenant à [a; b].

Bijection

- ightharpoonup Théorème 1: Si f est continue et strictement croissante (ou strictement décroissante) sur un intervalle I, alors f est une bijection de I vers f(I).
 - > Théorème 2 :

f est une bijection d'un intervalle I vers f(I) ssi \forall y \in f(I), \exists ! $x \in$ I, y = f(x).

- Théorème 3 : Si f est continue et strictement croissante (ou strictement décroissante) sur un intervalle I, alors f est une bijection de I vers f(I); de plus si un nombre λ (en particulier 0) appartient à f(I) alors l'équation $f(x) = \lambda$ (en particulier f(x) = 0) admet une unique solution $\alpha \in I$.
- Théorème 4: Si f est continue et strictement croissante (ou strictement décroissante) sur [a; b] et si $f(a)f(b) \le 0$, alors l'équation f(x) = 0 admet une unique solution α appartenant à [a; b].
- **Théorème 5 :** Si f est une bijection sur I, alors elle admet une bijection réciproque f^{-1} , définie sur f(I), continue sur f(I) et qui varie dans le même sens que f.
 - \triangleright **Théorème 6 :** Si f est une bijection
 - $y = f(x) ssi x = f^{-1}(y)$.

- $(f \circ f^{-1})(y) = y \ et \ (f^{-1} \circ f)(x) = x.$
- Dans un repère orthonormal C_f et $C_{f^{-1}}$ la courbe

de f^{-1} sont symétriques par rapport à la droite d'équation y = x.

Fonctions dérivées

Soit u, v et f des fonctions dérivables, k, a et b des constantes, $r \in \mathbb{Q} - \{0; 1\}$.

f(x)	K	х	x^r	$\frac{1}{x}$	\sqrt{x}	sinx	cosx	tanx
f'(x)	0	1	rx^{r-1}	$\frac{-1}{x^2}$	$\frac{1}{2\sqrt{x}}$	cosx	-sinx	$\frac{1}{\cos^2 x}$

Fonction	u + v	ku	uv	k v	$\frac{u}{v}$	u^r
Dérivée	u' + v'	ku'	u'v+v'u	$\frac{-k}{v^2}$	$\frac{u'v-v'u}{v^2}$	ru' u^{r-1}

$\frac{1}{u^r}$	\sqrt{u}	sinu	cosu	tanu	vou
 $\frac{-ru'}{u^{r+1}}$	$\frac{u'}{2\sqrt{u}}$	u'cosu	-u 'sinu	$\frac{u'}{\cos^2 x}$	u'(v'ou)

Dérivée de la réciproque d'une bijection

➤ **Théorème**: Soit f une bijection d'un intervalle I vers f(I). Si f est dérivable et de dérivée non nulle sur I alors f^{-1} est dérivable sur f(I) et $[f^{-1}(y)]' = \frac{1}{f'[f^{-1}(y)]} = \frac{1}{f'(x)}$.

$$(car f^{-1}(y) = x).$$

Remarques:

- Pour montrer que f^{-1} est dérivable sur un intervalle J, on détermine l'intervalle I tel que J = f(I), puis on montre que f est dérivable sur I et de dérivée non nulle sur I.
- Pour montrer que f^{-1} est dérivable en un point y_0 , on détermine le réel x_0 tel que $y_0 = f(x_0)$, puis on montre que f est dérivable en x_0 et que $f'(x_0) \neq 0$.

Dans ce cas
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$
.

*

Inégalité des accroissements finis

➤ **Théorème**: Soit f une fonction dérivable sur un intervalle I. S'il existe un nombre réel k tel que $|f'(x)| \le k$ sur I, alors pour tous réels x_1 et x_2 appartenant à I,

$$|f(x_1) - f(x_2)| \le k|x_1 - x_2|.$$

1.2. EXERCICES D'APPLICATION

Exercice 1

Soit les fonctions f, g, h, i et j définies par $f(x) = -3x^3 + 2x + 1$; $g(x) = \frac{x-1}{2-x}$; $h(x) = \frac{2x^2 - x - 6}{x-1}$; $i(x) = \sqrt{x^2 + 1} - 2x$; $j(x) = x - 2\sqrt{x - 1}$.

- 1. Pour chacune de ces fonctions, déterminer l'ensemble de définition, les limites aux bornes de l'ensemble de définition et en déduire les éventuelles asymptotes.
- 2. Montrer que la droite (d) d'équation y = 2x+1 est une asymptote oblique à C_h la courbe de h.
- 3. Etudier les branches infinies de C_i à ∞ et de C_j à + ∞ .

Exercice 2

Déterminer la limite de f en a dans les cas suivants