1. Основные понятия

 $E=\{0,1\}$ - булевы переменные, область значений и определения любой булевой функции Алгебра, образованная множеством E и всеми операциями на нём, называется **алгеброй логики**. Количество булевых функций $=2^n$

Способы задания булевой функции:

- ullet аналитический: $f=\overline{x}_1x_2ee x_1x_2=(x_1ee x_2)\wedge(\overline{x}_1ee x_2)$
- таблица истинности:

x_1	x_2	f
0	0	0
0	1	1
1	0	0
1	1	1

Переменные могут быть существенными или несущественными.

Переменная x_i булевой функции $f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)$ называется **существенной**, если

$$f(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)
eq f(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n).$$

Это означает, что существует набор $(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$ размера n-1 такой, что

$$f(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)
eq f(a_1,\ldots,a_{i-1},1,a_{i+1},\ldots,a_n).$$

Тогда говорят, что x_i существенная переменная и $f(\ldots)$ существенно зависит от x_i .

Иначе x_i - несущественная переменная.

Иногда удобно добавить несущественные переменные.

Например:

$$f(x_1, x_2, x_3) = f(x_1, x_3)$$

 x_2 - несущественная переменная.

Элементарные булевы функции

І. Булевы функции одной переменной:

x	f_1	f_2	f_3	f_4
0	0	1	0	1
1	0	1	1	0

$$f_1(x) = 0$$
 - const 0

$$f_2(x)=1$$
 - const 1

 $f_3(x) = x$ - тождественная функция

 $f_4(x)=\overline{x}$ - отрицание или инверсия

II. 16 функций 2 переменных:

- ullet $f_{9}(x_{1},x_{2})=x_{1}\oplus x_{2}$ сложение по модулю 2
- ullet $f_{10}(x_1,x_2)=x_1
 ightarrow x_2$ следование
- $f_{13}(x_1,x_2) = x_1 \equiv x_2$ эквивалентность

Пусть $F = \{f_1, f_2, \dots, f_k\}$. Функция f, полученная подстановкой функций F друг в друга и переименованием переменных, называется **суперпозицией** функций f_1, f_2, \dots, f_k .

Выражение, описывающее суперпозицию, называется формулой над F.

Множество F называется **базисом**.

Функция f получена путём суперпозиции функций базиса F.

 $\varphi(\varphi_1, \varphi_2, \dots, \varphi_n)$, где φ_i - формула над F или переменная, называется **главной или внешней** формулой, а все φ_i называются **подформулами**.

Вложенность подформул называется глубиной.

Для каждой булевой функции можно задать бесконечное число формул.

Базис для $f=\overline{x}_1x_2\vee x_1x_2:\ F=\{\wedge,\vee,\neg\}$

Опр. Формулы, базис которых составляют функции $\{\land,\lor,\neg\}$, называются **булевыми формулами**. Сами операции называются **булевыми операциями**.

Алгебра $< E, \land, \lor, \lnot >$ называется булевой **алгеброй**.

Примеры выражения некоторых булевых функций формулами булевой алгебры:

- $ullet f=x_1\downarrow x_2=\overline{x_1ee x_2}$
- $f=x_1|x_2=\overline{x_1x_2}$
- $ullet f=x_1\oplus x_2=\overline{x}_1x_2ee x_1\overline{x}_2$
- $ullet f=x_1\equiv x_2=\overline{x}_1\overline{x}_2ee x_1x_2$

Свойства операций булевой алгебры

- 1. Ассоциативность:
 - $ullet (x_1\wedge x_2)\wedge x_3=x_1\wedge (x_2\wedge x_3)$
 - $(x_1 \lor x_2) \lor x_3 = x_1 \lor (x_2 \lor x_3)$
- 2. Коммутативность:
 - $ullet x_1 \wedge x_2 = x_2 \wedge x_1$
 - $\bullet \ \ x_1 \vee x_2 = x_2 \vee x_1$
- 3. Дистрибутивность:
 - $\bullet \ \ x_1 \wedge (x_2 \vee x_3) = (x_1 \vee x_2) \wedge (x_1 \vee x_3)$
 - $ullet x_1 ee (x_2 \wedge x_3) = (x_1 \wedge x_2) ee (x_1 \wedge x_3)$
- 4. Идемпотентность:
 - $ullet x_1 \wedge x_1 \wedge \cdots \wedge x_1 = x_1$
 - $\bullet \ \ x_1 \vee x_1 \vee \dots \vee x_1 = x_1$
- 5. Закон де Моргана:
 - $ullet \ \overline{x_1ee x_2}=\overline{x}_1\wedge\overline{x}_2$
 - $ullet \overline{x_1 \wedge x_2} = \overline{x}_1 ee \overline{x}_2$
- 6. Двойное отрицание (кратное отрицание):
 - \bullet $\overline{\overline{x}} = x$
 - $\bullet \quad \overline{\overline{x}} = \overline{x}$
- 7. Свойства констант:
 - $x \lor 0 = 0$
 - $x \lor 1 = 1$
 - $x \wedge 0 = 0$
 - $x \wedge 1 = x$
- 8. Противоречие:

•
$$x \wedge \overline{x} = 0$$

9. Тавтология:

•
$$x \vee \overline{x} = 1$$

10. Поглощение конъюнкции:

•
$$x_1 \lor (x_1 \land x_2) = x_1$$

Правило замены: если в некоторой формуле φ подформулу φ_i заменить на логически эквивалентную φ_k , то полученная формула φ' будет эквивалентна исходной.

$$arphi(\ldots arphi_i\ldots),\ arphi_k=arphi_i$$
 $arphi(\ldots arphi_k\ldots)=arphi(\ldots arphi_i\ldots)$ $arphi(arphi_k|arphi_i)$ - $arphi_k$ вместо **некоторых** вхождений $arphi_i$ $arphi(arphi_k|arphi_i)$ - $arphi_k$ вместо **всех** вхождений $arphi_i$

Таким образом, используя логическую эквивалентность подформул(бесконечное кол-во) при помощи подстановки одних подформул вместо других, можно преобразовывать исходную формулу, не теряя логической эквивалентности полученной формулы исходной.

Пример:

$$ullet$$
 $x_1x_2ee x_1\overline{x}_2=x_1$ - склеивание

• обобщённое склеивание:

$$x_1x_3\vee x_2\overline{x}_3\vee x_1x_2=x_1x_3\vee x_2\overline{x}_3\vee x_1x_2(x_3\vee\overline{x}_3)=x_1x_3\vee x_2\overline{x}_3\vee x_1x_2x_3\vee x_1x_2\overline{x}_3=x_1x_3\vee x_2\overline{x}_3$$

$$ullet x_1ee \overline{x}_1x_2=(x_1ee \overline{x}_1)\wedge (x_1ee x_2)=x_1ee x_2$$

$$x_1 \vee f(x_1, x_2, \dots, x_n) = x_1 \vee f(x_2, \dots, x_n)$$
 - ????????