Data Science. Lectures. Week 3-4. Big Data.

Starchenko Nikita

27 сентября $2022\ {\rm г}.$

Содержание

1	История Big Data в Amazon Классический анализ данных					
2						
3	Погружаемся глубже	3				
4	Pаспределенная файловая система/Distributed file system/DFS					
	4.1 Как хранить данные?	3				
	4.2 Самые известные реализации	3				
	4.3 Как работает HDFS	4				
	4.4 Что может пойти не так?	4				
	4.5 NameNode x3	4				
5	Расчеты	4				
	5.1 Параллельная сортировка массивов	4				
	5.2 MapReduce	5				
	5.3 Примеры	7				
	5.4 WordCount	8				
	5.5 Что нам нужно делать?					
6	Еще немного про Big Data	10				
	6.1 3 самые главные проблемы в Big Data	10				
	6.2 Корреляции	10				

1 История Big Data в Amazon

Атагоп начинал как маленький интернет-магазин, но за счёт своих рекомендаций он очень быстро начал расти. Его рекомендательные системы были основаны на филологах и критиках, т.е. людей, которые сами читали книги и составляли граф рекомендаций.

Через пару лет у Атагоп накопилась база данных о том, кто какие книги купил, и они попытались создать свою рекомендательную систему, основанную на покупках пользователя. Под капотом они использовали метод похожести книг, т.е. если человек купил книгу про детей, то в разделе рекомендаций ему все время будут попадаться книги именно про детей, в этом и был главный минус системы. На помощь Атагоп'у пришел математик, который ради реализации своей идеи отложил PhD. Суть его метода заключалась не в сортировке книг по похожести, а в сортировке людей по похожести, т.е. посмотреть на похожего по истории покупок человека и предложить ему купить те книги, которые он еще не купил. Эта идея увеличила продажи Атагоп в 100 раз, что позволило им отказаться от филологов и критиков. Свою рекомендательную систему они назвали item-item collaborative filtering.

2 Классический анализ данных

Давайте попробуем посчитать интернет с помощью компьютера.

- Сейчас в интернете 993,059,597 сайтов онлайн
- Каждый сайт оценим в 10 страниц, т.е. ~ 10 миллиардов страниц всего
- Средня страница весит 1 МВ
- Получим 10 000 ТВ (~10 РВ)
- Вся Википедия весит всего 10 ТВ

А теперь давайте попробуем посчитать как часто встречается каждое слово в интернете, чтобы понять, какие слова важные, а какие нет, как устроен человеческий язык в целом.

- Скачиваем страницу в оперативную память
- Считаем там все слова
- Добавляем результат подсчета в словарь вида: (слово, количество повторов)
- Берем следующую страницу и повторяем

А сколько нам понадобится времени, чтобы все это посчитать?

- Необходимо обработать 10 000 ТВ
- Пускай скорость нашего HDD составляет 100 MB/s
- $\bullet \sim 104857600$ сек. = 1200+ дней
- Даже с бесконечной RAM и процессором, который работает бесконечно быстро, время выполнения составит 3 с лишним года

И это не учитывая размер словаря (слово, количество повторов), который не поместится в реальную оперативную память. Процесс чтения и запись на диск занимают у нас огромное количество времени. Единственное, что мы можем сделать, так это увеличить количество компьютеров. На самом деле можно купить SSD, но он обойдется нам дороже, чем время ожидания в 3 года.

Рис. 1: Дата-центр

3 Погружаемся глубже

Дата-центр - это множество обычных компьютеров, объединенных rack switch'ом со скоростью передачи 1 Gbs и все это вместе объединено более быстрым switch'ом(Backbone switch) со скоростью 10 Gbs.

- Пусть компьютер ломается раз в 3 года
- В нашем дата-центре будет 10 000 компьютеров
- В итоге каждый день 10 машин будут ломаться

В связи с этим возникают 2 проблемы:

- Как сохранить данные на сломанном компьютере
- Что делать, если один из серверов, на котором что-то считалось 2 дня упал

4 Распределенная файловая система/Distributed file system/DFS

4.1 Как хранить данные?

- Давайте не будем хранить файл на одном сервере. Можно разбить его на 100 частей и если что-то произойдет с одной из машин, то 99% нашего файла останется это хорошо.
 - Надо делать бэкапы.

4.2 Самые известные реализации

- GFS(Google file system), придуман гуглом для гугла
- HDFS(Hadoop distributed file system), open-source, часть проекта Hadoop

Давайте поговорим об HDFS

4.3 Как работает HDFS

Давайте загрузим наш файл в HDFS. Далее файл разбивается на чанки размером 64 МВ(редко больше или меньше). Потом каждый чанк отправляется на N серверов(в основном на 3). Если один из серверов выйдет из строя, то чанк, который лежал на сервере, отправится на другой сервер, где его еще нет. До отправки чанка на другой сервер у нас все еще будет доступно 2 других машины с данным чанком. А почему мы отправляем один и тот же чанк на 3 разных сервера? почему не на 2? Шанс того, что два сервера выйдут из строя одновременно выше, чем три.

Какие минусы у этой системы? 1 MB теперь будет весить 3 MB. А на самом деле еще больше из-за NameNode.

NameNode - сервер, на котором хранится информация о том, где какой чанк хранится

4.4 Что может пойти не так?

- 1. BackBone switch(NameNode) отключилась из-за отсутствия питания
- 2. BackBone switch(NameNode) проблемы с HDD
- 3. Упал Rack Switch недоступна часть серверов
- 4. Проблемы с HDD на машине
- 1)Ничего страшного, кластер недоступен, но как только появится питание все будет хорошо
- 2)Все плохо, у нас забитые данными серверами, но мы не знаем где какой чанк лежит, можно удалять все и записывать данные заново
- 3)Не критично, у нас есть реплики файлов на других серверах
- 4)Все хорошо, ставим новый HDD, в это время досоздаются утерянные чанки

Исходя из 3 пункта можно понять, что отправлять все чанки одного файла на машины, которые объединены одним rack switch'ом плохая идея, если он(rack switch) упадет, то весь файл будет недоступен.

4.5 NameNode x3

На самом деле NameNode не одна. Всего серверов, которые мы можем назвать NameNode - 3. Работает один сервер, а остальные просто копируют его действия. В случае потери одной NameNode у нас еще будет 2, которые могут ее заменить. А для жесткого диска NameNode делается бэкап.

5 Расчеты

5.1 Параллельная сортировка массивов

Merge Sort очень хорошо можно распределить на много машин.

Результаты Google в сортировке:

- 2007: 1 PB / 12.13 часа
- 2008: 1 PB / 6.03 часа
- 2010: 1 PB / 2.95 часа
- 2011: 1 PB / 0.55 часа
- \bullet 2012: 50 PB / 23 часа

А больше сортировать уже не было смысла, весь интернет весил меньше (10 PB), чем они отсортировали в последний раз.

5.2 MapReduce CMF-2022

Followers Leader NameNode (standby) NameNode (standby) Network file system (NFS)

Рис. 2: NameNodes

5.2 MapReduce

MapReduce - вычислительная модель, которая позволяет решать задачи параллельно и при этом она легко программируема. Была запатентована Google'ом. Про нее точно спросят на собеседовании.

Как ни странно, MapReduce состоит из 2 шагов - Мар и Reduce.

Как работает Мар?

Допустим, у нас есть входной файл с кучей строк. В каждый момент времени мы обрабатываем только 1 строку и в памяти у нас находится тоже только одна строка. К строке применяется функция Мар, которая возвращает пару (ключ, значение).

Далее(где-то между Мар и Reduce), полученные пары сортируются по ключам, т.е. сначала идут все записи с ключом 1, ключом 2, ключом 3 и т.д.

После этого для каждого такого "блока" с одинаковыми ключами запускается функция Reduce. Каждый Reduce принимает один такой блок и на выходе мы получаем уникальные пары (ключ, значение) (На примерах все станет понятно).

5.2 MapReduce CMF-2022

Step one: Map

Рис. 3: Step 1 - Мар

Step two: Reduce

```
      (key1, value)
      Reduce() (key1, value)
      (key1, value)

      (key1, value)
      Sort & (key2, value)
      Grouping (key3, value)
      (key2, value)
      (key2, value)
      (key2, value)
      (key3, value)
      <t
```

5.3 Примеры CMF-2022

5.3 Примеры

Допустим, у нас есть международный магазин и данные о магазине, категории проданного товара, количестве проданного товара, цене товара и выручке. И мы хотим посчитать выручку магазинов в каждом городе.

Shop	Category	Value	Price	Revenue
Moscow	closes	1	12	12
London	closes	1	8	8
Moscow	music	2	5	10
Moscow	toys	12	5	60
Paris	music	4	100	400
London	closes	1	4	4
Paris	music	6	6	36

Рис. 5: Пример

Давайте вытащим из таблички данные о магазине и выручке. Пройдемся маппером, отсортируем полученные пары по ключам и запустим Reduce, который будет суммировать все значения для каждого ключа. В итоге получим выручку магазинов.

На самом деле мы не совсем сортируем пары по ключу и MapReduce работает быстрее, чем MapSortReduce. Мы делаем немного иначе. Давайте возьмем первые 3 записи из таблицы для наглядности (Moscow 12, London 8, Moscow 10). Как только мы встречаем новое значение ключа, например Moscow, мы создаем новый Reducer и отправляем значение (Revenue в нашем случае) в него. После Moscow мы встретим London и снова создадим еще один Reducer. Далее, опять будет Moscow, а мы уже создавали Reducer для такого ключа, поэтому отправляем его туда.

Еще примеры:

- 1. Выручка по категории
- 2. Выручка в разрезе по магазину, по категории
- 3. Средняя выручка по магазину
- 4. Найти уникальные магазины (сколько магазинов всего есть)
- 5. Гистограмма продаж (сколько магазинов продали от 0 до 100, от 100 до 500 и т.д.)

Как сделать?

- 1)То же самое, что и в первом примере, но вытаскиваем из таблицы магазин и категорию.
- 2) Составной ключ. Мар должен выводить Moscow_toys, Paris_toys.
- 3)Проходимся по магазину и по выручке, один Reduce считает количество чисел, а другой сумму выручки и в ответ выведем сумму, деленную на количество чисел.
- 4) Как только Reducer получил уникальный магазин он выдает этот магазин и выключается.

5.4 WordCount CMF-2022

Рис. 6: Пример

5)Проходимся по таблице, видим Moscow 12, значит значение в ключе 0-100 будет равным 1, Paris 400, значение в ключе 100-500 равно 1 и т.д. . И все это отправляется в Reducer, и получается гистограмма.

5.4 WordCount

Подсчет количества встречаемых слов в интернете это то, что мы пытались сделать в самом начале. Это своеобразный Hello World в мире MapReduce. На самом деле это довольно понятная задача, Мар будет выводить (слово, 1), (другое слово, 1) и т.д., а потом все слова отправить в Reducer, который по сути будет просто суммой. И если у нас есть те самые 10 000 машин, то 1200 дней превращаются в 4 часа.

Однако есть одна проблема, существуют стоп-слова(артикли, союзы, предлоги), которые встречаются очень часто. В википедии есть слово, которое встречается 1e+08 раз, скорее всего это артикль "а"в английском языке, после него идут "the "to "for"и другие. Это бессмысленные слова. Мы можем посчитать 99.9% слов и еще 4 дня мы будем ждать пока посчитается количество артиклей "а". Такие тяжелые случаи называются монстрами и Reducer будет на них страдать. Что делать в таких случаях? Для таких случаев у нас есть Combiners.

Давайте заранее сложим результаты операции Мар с одинаковыми ключами, тогда на Reducer у нас придет не больше пар, чем запущено операций Мар, и будем все это делать на машине, на которой запущен Мар.

Однако, не все можно сделать с помощью Combiner. Им подчиняются только коммутативные (f(a,b) = f(b,a)) и ассоциативные (f(a,f(b,c)) = f(f(a,b),c)) правила. Сумму и произведение легко запустить на MapReduce + Combine, среднее сложнее, например у нас есть следующие значения 3, 3, 3, 1 среднее здесь 2.5, а если запустить на Combiners и в один у нас придет 3, 3, 3, а в другой 1, то он посчитает, что среднее равно 2. Исправить это можно следующим образом: пусть Combiner считает среднее и количество значений, а затем считает средневзвешенное, т.е. в том примере у нас будет (3*3+1*1)/(3+1)=2.5. Медиану и квантили посчитать нельзя потому что нам одновременно нужны все данные. Однако, можно взять какую-то часть наших данных и на ней посчитать медиану. В больших данных сотая часть это тоже большие данные.

5.5 Что нам нужно делать?

Нам ничего не нужно делать, Hadoop все сделает за нас

Combiners

 Combiners are reduce function (usually) run on the map node after mapping, before sorting

Рис. 7: Combiner

- Разбиение файла на чанки
- Какая функция на каком сервере будет запускаться (минимизация трафика в сети)
- Группировка и отправка в Reducer
- Отлов ошибок

От программиста на Наdoop требуется только написать 2 функции: Мар - принимает на вход итератор по строкам, Reduce принимает на вход словарь. Практически на любом языке можно их написать(python, c++, java, bash и т.д.).

А что может сломаться внутри машины?

- Map Node
- Reduce Node
- Master Node(Node, которая следит какие ключи куда отправляются)

Что делать?

- 1)Запускаем на тех же данных, на другой машине с этими данными.
- 2) Аналогично.
- 3)Перезапускаем операцию.

6 Еще немного про Big Data

В 80-х годах хранение 1 GB стоило около 100~000\$, а сейчас порядка 0.01~\$. Именно по этой причине мы можем собирать все данные и логи.

Рис. 8: Стоимость памяти

6.1 3 самые главные проблемы в Big Data

- 1. Объем
- 2. Разнообразие данных
- 3. Скорость
- 1)Цитата лектора "Много, сложно, параллельно, очень тяжело"
- 2)Вместо названий у вас будут звездочки(*), куча NaN, не экранированные кавычки, огромный JSON файл, в котором одно значение не будет в кавычках. В общем большое количество самых разных проблем в качестве данных. С другой стороны, данных же много, т.е. то, что нам не нравится мы можем просто выкинуть, потеряем 5 % данных ну и пусть.
- 3)Иногда, данные можно обрабатывать медленно, а иногда нужно сделать это быстро.

6.2 Корреляции

В Від Дата корреляция даже в 3% может сказать о том, что переменные действительно связанны.

Забавная история 1.

Ребята в Wallmart посмотрели на свои данные и поняли, что продажи пива скоррелированны с продажами подгузников. Не совсем было понятно почему, но нас это мало интересует, раз есть корреляция значит можно на этом заработать. Поставить товары рядом, сделать акцию на покупку пива + подгузников (но люди могут что-то заподозрить).

Забавная история 2.

6.2 Корреляции CMF-2022

Рекомендательная система Wallmart по покупкам определяет кто вы, что вам нравится, что вам предложить. И они как-то отправили 15-летней девочке поздравление с беременностью и предложили ей соответствующие товары. Отец девочки подал на них в суд и выиграл иск потому что это было вмешательство в личную жизнь. Оказалось, что девочка действительно была беременна. Wallmart узнал об этом раньше родителей.