4. Convex optimization problems (part 1: general)

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization

Optimization problem in standard form

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p \}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- ullet $p^\star = -\infty$ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints

- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to
$$f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$$

$$\|z-x\|_2 \leq R$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, $dom f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1 3x²-3=0 $\chi = \pm 0$

Implicit constraints

the standard form optimization problem has an implicit constraint

domain of problem including
$$f_i(x)$$

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- ullet we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

$$bi-ai^{\tau}x>0$$

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $\boldsymbol{a}_i^T \boldsymbol{x} < b_i$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{cases} \text{minimize} & 0 \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{cases}$$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- ullet $p^\star = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ a_i^T x = b_i, \quad i = 1, \dots, p \end{cases}$$

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $Ax=b$

important property: feasible set of a convex optimization problem is convex

example

$$z=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{cases} \text{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \text{subject to} & f_1(x) = \underbrace{x_1/(1+x_2^2)}_{h_1(x)} \leq 0 \iff \mathbf{x_1} \leq \mathbf{0} \\ & h_1(x) = \underbrace{(x_1+x_2)^2}_{h_2(x)} = 0 \iff \mathbf{x_2} \leq \mathbf{0} \end{cases}$$

• f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex

as written

- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

$$\begin{cases} \text{minimize} & x_1^2 + x_2^2 \\ \text{subject to} & x_1 \le 0 \\ & x_1 + x_2 = 0 \end{cases}$$

Local and global optima

[min. $f_o(x)$ s.t. $f_i(x) \leq 0$, $a_i^T x = b_i$

• any locally optimal point of a convex problem is (globally) optimal **proof**: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$

 \boldsymbol{x} locally optimal means there is an R>0 such that

$$\underline{z} \text{ feasible}, \quad \|z - x\|_2 \le \underline{R} \quad \Longrightarrow \quad \underline{f_0(z)} \ge f_0(x)$$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2\|y - x\|_2)$

•
$$||y - x||_2 > R$$
, so $0 < \theta < 1/2$

$$G = \frac{R/2}{\|y - x\|}$$

$$Z = G(x - y) + y$$

- \bullet z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

$$\langle f_o(x) \rangle$$

$$f_0(z) \le \theta f_0(x) + (1-\theta)f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

[min.
$$f_o(z)$$

s.t. $z \in X \rightarrow convex$

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y

special case: $\chi = |\chi|^n$ Pfo(x) $y \ge \nabla f_o(x)^T x$, $\forall y \in |\chi|^n$

 $\Leftrightarrow \nabla f_o(x) = 0$

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

$$ullet$$
 unconstrained problem: x is optimal if and only if

$$X = lR^h$$

$$x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

• minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

 \boldsymbol{x} is optimal if and only if

$$x \in \text{dom } f_0, \qquad x \succeq 0, \qquad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

min
$$f_0(x)$$

st $Ax = b$
 x is optimal iff $Ax = b$ and $x \in dom f_0$ and

 $\nabla f_0(x)^T (y-x) \geqslant 0$ $\forall y \in \{y \mid Ay = b\}$ nullspace

 $y \in \{x+\xi \mid g \in N(A)\}$ $A \in \mathbb{R}^{m \times n}$
 $y = x + \delta$ $y - x = \delta$
 $\forall f_0(x)^T \delta \geqslant 0$ $\forall g \in N(A)$ (subspace)

 $\nabla f_0(x)^T \delta \geqslant 0$ since $-\delta \in N(A)$
 $\nabla f_0(x)^T \delta \geqslant 0$ $\forall g \in N(A)$
 $\nabla f_0(x)^T \delta \geqslant 0$ $\forall g \in N(A)$
 $\nabla f_0(x) \perp N(A)$ $\exists y \in \mathbb{R}^n$, $\delta \in N(A)$
 $\nabla f_0(x) \perp N(A)$ $\exists y \in \mathbb{R}^n$, $\delta \in N(A)$
 $\nabla f_0(x) \in \mathbb{R}(A^T)$ $\Leftrightarrow \nabla f_0(x) = A^T = 0$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ \underline{Ax = b} & \iff \left\{ \textbf{z_0+y} \mid \textbf{$y \in N(A)$} \right\} \end{cases}$$
 is equivalent to
$$\begin{cases} \textbf{$y = F$ } \\ \textbf{$y = F$ } \end{cases}$$

$$\begin{cases} \text{minimize (over z)} & f_0(Fz + x_0) \\ \text{subject to} & f_i(Fz + x_0) \leq 0, \quad i = 1, \dots, m \end{cases}$$
 where \$F\$ and \$x_0\$ are such that
$$\begin{cases} \textbf{f_i-f_m} \\ \textbf{f_i-f_m} \end{cases}$$

$$\underbrace{Ax = b} \iff x = Fz + x_0 \text{ for some } z \end{cases}$$

• introducing equality constraints

is equivalent to

minimize (over
$$x, y_i$$
) $f_0(y_0)$ subject to $f_i(y_i) \leq 0, \quad i = 1, \dots, m$ $y_i = A_i x + b_i, \quad i = 0, 1, \dots, m$

• introducing slack variables for linear inequalities

$$\begin{cases} \text{minimize} & f_0(x) \\ \text{subject to} & a_i^T x \leq b_i, \quad i = 1, \dots, m \end{cases}$$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to
$$\begin{cases} a_i^T x + s_i = b_i, & i = 1, \dots, m \\ \hline s_i \geq 0, & i = 1, \dots m \end{cases}$$
 stack variable

• epigraph form: standard form convex problem is equivalent to
$$A = b$$

$$\begin{array}{c} \text{(z^*, t^*)} \\ \text{fo(z^*) = t^* why?} \\ \text{if } \text{fo(n^*) $< t^*} \\ \text{then } \text{t^* can be} \\ \text{further reduced} \end{array} \qquad \begin{array}{c} \text{minimize (over x, t)} \\ \text{fo(x) = t^*} \\ \text{Subject to} \\ \text{fo(x) = t^*} \\ \text{fo(x) = t^*} \\ \text{A$x = b} \\ \text{further reduced} \end{array}$$

minimizing over some variables

$$\begin{cases} \text{minimize} & f_0(\underline{x_1},\underline{x_2}) \\ \text{subject to} & f_i(\underline{x_1}) \leq 0, \quad i=1,\ldots,m \end{cases}$$

is equivalent to

$$\begin{cases} \text{minimize} & \tilde{f}_0(x_1) \\ \text{subject to} & f_i(x_1) \leq 0, \quad i = 1, \dots, m \end{cases}$$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

-> can have locally optimal points that are not (globally) optimal

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e.,

$$f_0(x) \leq t \iff \frac{\phi_t(x) \leq 0}{\uparrow}$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$

$$f_0(x) \le t$$
 $\frac{p(x)}{g(x)} \le t$ \Rightarrow $p(x) \le t g(x)$ $p(x) - t g(x) \le 0$ $\phi_t(x)$

can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \geq 0$, ϕ_t convex in x (sum of 2 convex fets)
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

for any fixed to finding an x is a convex feas. problem:
$$\phi_t(x) \leq 0, \quad f_i(x) \leq 0, \quad i = 1, \dots, m, \quad Ax = b \tag{1}$$

- ullet for fixed t, a convex feasibility problem in x
- -- if feasible, we can conclude that $\underline{t} \geq p^*$; if infeasible, $t \leq p^*$

Bisection method for quasiconvex optimization

given $l \leq p^{\star}$, $u \geq p^{\star}$, tolerance $\epsilon > 0$.

repeat

- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u := t; else l := t.

until
$$u = l \leq \mathfrak{C}$$
 accuracy in $fo(x^*)$

outer

requires exactly $\lceil \log_2((\underline{u-l})/\underline{\epsilon}) \rceil$ iterations (where u, l are initial values)