#### **AMENDMENTS TO THE CLAIMS:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

### 1. (Original) A compound of formula (I):

and the pharmaceutically acceptable salts, and other pharmaceutically acceptable biohydrolyzable derivatives thereof;

wherein  $R^1$  is an optionally substituted  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl group or group of formula (II)

wherein X is  $NR^3$ , O, S or  $(CR^{22}R^{22})_n$ , Y is absent or is  $NR^{23}$ , O, or  $(CR^{23}R^{23})_n$ ,  $R^2$  is optionally substituted  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, and  $R^4$  is an optionally substituted five or six membered heterocyclyl group or an optionally substituted six membered carbocyclyl group.

2. (Original) A compound as claimed in claim 1 wherein the optionally substituted carbocyclyl or heterocyclyl group of R<sup>1</sup> is optionally fused to a partially saturated, unsaturated or fully saturated five to seven membered ring containing zero to three heteroatoms, and each substitutable carbon atom in R<sup>1</sup>, including the optional fused ring, is optionally and independently substituted by one or more of halogen, C<sub>1-12</sub> alkyl, C<sub>2-12</sub> alkenyl, C<sub>2-12</sub> alkynyl, haloC<sub>1-12</sub>alkyl, C<sub>3-12</sub> carbocyclyl, C<sub>3-12</sub> heterocyclyl, (CH<sub>2</sub>)<sub>n</sub>OR<sup>5</sup>, (CH<sub>2</sub>)<sub>n</sub>NR<sup>5</sup><sub>2</sub>(CH<sub>2</sub>)<sub>n</sub>SR<sup>5</sup>, OR<sup>5</sup>, SR<sup>5</sup>, NO<sub>2</sub>, CN, NR<sup>5</sup><sub>2</sub>, NR<sup>5</sup>COR<sup>5</sup>, NR<sup>5</sup>CONR<sup>5</sup><sub>2</sub>, NR<sup>5</sup>COR<sup>5</sup>, NR<sup>5</sup>CO<sub>2</sub>R<sup>5</sup>, CO<sub>2</sub>R<sup>5</sup>, COR<sup>5</sup>, CONR<sup>5</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>5</sup>, SONR<sup>5</sup><sub>2</sub>, S(O)<sub>8</sub>R<sup>5</sup>, SO<sub>2</sub>NR<sup>5</sup><sub>2</sub>, or NR<sup>5</sup>S(O)<sub>2</sub>R<sup>5</sup> wherein the C<sub>1-12</sub> alkyl group optionally

contains one or more insertions selected from -O-, -N(R<sup>5</sup>)- -S-, -S(O)- and -S(O<sub>2</sub>)-; and each saturated carbon in the optional fused ring is further optionally and independently substituted by =O, =S, NNR<sup>6</sup><sub>2</sub>, =N-OR<sup>6</sup>, =NNR<sup>6</sup>COR<sup>6</sup>, =NNR<sup>6</sup>CO<sub>2</sub>R<sup>6</sup>, =NNSO<sub>2</sub>R<sup>6</sup>, or =NR<sup>6</sup>; and each substitutable nitrogen atom in R<sup>1</sup> is optionally substituted by R<sup>7</sup>, COR<sup>7</sup>, SO<sub>2</sub>R<sup>7</sup> or CO<sub>2</sub>R<sup>7</sup>;

wherein n is 1 to 6, preferably n is 1, 2 or 3;

wherein  $R^5$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl,  $C_{3-12}$  carbocyclyl,  $C_{3-12}$  heterocyclyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^8$ ,  $SR^8$ ,  $NO_2$ , CN,  $NR^8R^8$ ,  $NR^8COR^8$ ,  $NR^8COR^8$ ,  $NR^8COR^8$ ,  $NR^8CO_2R^8$ ,  $CO_2R^8$ ,

wherein two R<sup>5</sup> in NR<sup>5</sup><sub>2</sub> may optionally form a partially saturated, unsaturated or fully saturated three to seven membered ring containing one to three heteroatoms, optionally and independently substituted by one or more of C<sub>1-6</sub> alkyl, halogen, C<sub>1-6</sub> haloalkyl, OR<sup>8</sup>, SR<sup>8</sup>, NO<sub>2</sub>, CN, NR<sup>8</sup>R<sup>8</sup>, NR<sup>8</sup>COR<sup>8</sup>, NR<sup>8</sup>COR<sup>8</sup>, NR<sup>8</sup>COR<sup>8</sup>, NR<sup>8</sup>CO<sub>2</sub>R<sup>8</sup>, CO<sub>2</sub>R<sup>8</sup>, COR<sup>8</sup>, CONR<sup>8</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>8</sup>, SO<sub>2</sub>NR<sup>8</sup>R<sup>8</sup>, NR<sup>8</sup>S(O)<sub>2</sub>R<sup>8</sup>,

wherein the  $C_{1-6}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^8$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^8$  may be the same or different and is as defined below;

wherein  $R^6$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^8$ ,  $SR^8$ ,  $NO_2$ , CN,  $NR^8R^8$ ,  $NR^8COR^8$ ,  $NR^8COR^8$ ,  $NR^8COR^8$ ,  $NR^8CO_2R^8$ ,  $CO_2R^8$ ,  $CO_2R^8$ ,  $CONR^8_2$ ,  $S(O)_2R^8$ ,  $S(O)_2R^8$ ,  $S(O)_2R^8$ ,  $S(O)_2R^8$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^8$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^8$  may be the same or different and is as defined below;

wherein R<sup>7</sup> is hydrogen, C<sub>6-12</sub> aryl, C<sub>1-6</sub> alkyl or C<sub>1-6</sub> haloalkyl;

wherein R<sup>8</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

3. (Currently Amended) A compound as claimed in claim 1 or 2 wherein Y is absent or is  $NR^{23}$ , O,  $(CR^{23}R^{23})_n$ ,

wherein each R<sup>23</sup> is H, C<sub>1-4</sub> alkyl, C<sub>1-4</sub> alkoxy or C<sub>1-4</sub> haloalkyl;

and n is 1 to 6, preferably n is 1, 2, 3 or 4; and

 $R^2$  is optionally substituted  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, wherein the optionally substituted carbocyclyl or heterocyclyl group is optionally fused to one to three unsaturated, partially unsaturated or fully saturated five to seven membered rings containing zero to three heteroatoms;

each substitutable carbon atom in R<sup>2</sup>, including the optional fused ring, is optionally and independently substituted by one or more of C<sub>1-12</sub> alkyl, C<sub>3-12</sub> cycloalkyl, C<sub>3-12</sub> heterocycloalkyl, C<sub>3-12</sub> aryl, C<sub>3-12</sub> heteroaryl halogen, C<sub>1-12</sub> haloalkyl, OR<sup>9</sup>, SR<sup>9</sup>, NO<sub>2</sub>, CN, NR<sup>9</sup>R<sup>9</sup>, NR<sup>9</sup>COR<sup>9</sup>, NR<sup>9</sup>COR<sup>9</sup>, NR<sup>9</sup>CO<sub>2</sub>R<sup>9</sup>, CO<sub>2</sub>R<sup>9</sup>, COR<sup>9</sup>, CONR<sup>9</sup>R<sup>9</sup>, S(O)<sub>2</sub>R<sup>9</sup>, SONH<sub>2</sub>, S(O)R<sup>9</sup>, SO<sub>2</sub>NR<sup>9</sup>R<sup>9</sup>, NR<sup>9</sup>S(O)<sub>2</sub>R<sup>9</sup>, wherein each R<sup>9</sup> may be the same or different and is as defined below and wherein:

the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -C(O)-, -N(R<sup>9</sup>)-, -S(O)- and -S(O<sub>2</sub>)-, wherein each R<sup>9</sup> may be the same or different and is as defined above;

the  $C_{1-12}$  alkyl,  $C_{3-12}$  cycloalkyl,  $C_{3-12}$  heterocycloalkyl,  $C_{3-12}$  aryl, or  $C_{3-12}$  heteroaryl groups are optionally substituted by one or more of halogen,  $C_{1-12}$  haloalkyl,  $OR^9$ ,  $SR^9$ ,  $NO_2$ , CN,  $NR^9R^9$ ,  $NR^9COR^9$ ,  $NR^9COR^9$ ,  $NR^9COR^9$ ,  $NR^9CO_2R^9$ ,  $CO_2R^9$ ,  $COR^9$ ,  $CONR^9R^9$ ,  $S(O)_2R^9$ ,  $SONH_2$ ,  $S(O)R^9$ ,  $SO_2NR^9R^9$ ,  $NR^9S(O)_2R^9$ , wherein each  $R^9$  may be the same or different and is as defined below; and

the  $C_{3-12}$  cycloalkyl,  $C_{3-12}$  heterocycloalkyl,  $C_{3-12}$  aryl, or  $C_{3-12}$  heteroaryl groups are optionally substituted by one or more  $C_{1-12}$  alkyl groups;

each saturated carbon in  $R^2$ , including the optional fused ring, is further optionally and independently substituted by =O, =S,  $NNR^9R^9$ , =N-OR<sup>9</sup>, =NNHCOR<sup>9</sup>, =NNHCO2R<sup>9</sup>, =NNSO<sub>2</sub>R<sup>9</sup>, or =NR<sup>9</sup>, wherein each R<sup>9</sup> may be the same or different and is as defined below; and

each substitutable nitrogen atom in R<sup>2</sup> is optionally substituted by R<sup>10</sup>, COR<sup>9</sup>, SO<sub>2</sub>R<sup>9</sup> or CO<sub>2</sub>R<sup>9</sup> wherein each R<sup>9</sup> and R<sup>10</sup> may be the same or different and is as defined below;

wherein two R<sup>9</sup> in NR<sup>9</sup><sub>2</sub> may optionally form a partially saturated, unsaturated or fully saturated three to seven membered ring containing one to three heteroatoms, optionally and independently substituted by one or more of C<sub>1-6</sub> alkyl, halogen, C<sub>1-6</sub> haloalkyl, OR<sup>11</sup>, SR<sup>11</sup>, NO<sub>2</sub>, CN, NR<sup>11</sup>R<sup>11</sup>, NR<sup>11</sup>COR<sup>11</sup>, NR<sup>11</sup>COR<sup>11</sup>, NR<sup>11</sup>CO<sub>2</sub>R<sup>11</sup>, CO<sub>2</sub>R<sup>11</sup>, COR<sup>11</sup>, COR<sup>11</sup>, COR<sup>11</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>11</sup>, SO<sub>2</sub>NR<sup>11</sup>R<sup>11</sup>, NR<sup>11</sup>S(O)<sub>2</sub>R<sup>11</sup>,

wherein the  $C_{1-6}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N(R<sup>11</sup>)-, -S(O)- and -S(O<sub>2</sub>)-, wherein each R<sup>11</sup> may be the same or different and is as defined below;

wherein R<sup>11</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl;

wherein  $R^9$  is hydrogen ,  $C_{1-12}$  alkyl or  $C_{3-12}$  aryl, optionally substituted by one or more of  $C_{1-4}$  alkyl, halogen,  $C_{1-4}$  haloalkyl,  $OR^{12}$ ,  $SR^{12}$ ,  $NO_2$ , CN,  $NR^{12}R^{12}$ ,  $NR^{12}COR^{12}$ ,  $NR^{12}CONR^{12}R^{12}$ ,  $NR^{12}COR^{12}$ ,  $NR^{12}CO_2R^{12}$ ,  $CO_2R^{12}$ ,  $COR^{12}$ ,

wherein  $R^{10}$  is  $C_{1-12}$  alkyl or  $C_{3-12}$  aryl, optionally substituted by one or more of  $C_{1-4}$  alkyl, halogen,  $C_{1-4}$  haloalkyl,  $OR^{12}$ ,  $SR^{12}$ ,  $NO_2$ , CN,  $NR^{12}R^{12}$ ,  $NR^{12}COR^{12}$ ,  $NR^{12}COR^{12}$ ,  $NR^{12}COR^{12}$ ,  $COR^{12}$ , C

wherein R<sup>12</sup> is hydrogen, C<sub>1-4</sub> alkyl, or C<sub>1-4</sub> haloalkyl.

4. (Currently Amended) A compound as claimed in any one of claims 1 to 3 claim 1 wherein X is NR<sup>3</sup>; O, S or (CR<sup>22</sup>-R<sup>22</sup>)<sub>n</sub> wherein R<sup>22</sup> is independently one or more of halogen, C<sub>1-12</sub> aikyi, C<sub>2-12</sub> aikenyl, C<sub>2-12</sub> alkynyl, C<sub>1-12</sub> haloalkyl, C<sub>6-12</sub> carbocyclyl, C<sub>5-12</sub> heterocyclyl, (CH<sub>2</sub>)<sub>n</sub>OR<sup>5</sup>, (CH<sub>2</sub>)<sub>n</sub>NR<sup>5</sup><sub>2</sub>, OR<sup>5</sup>, SR<sup>5</sup>, NO<sub>2</sub>, CN, NR<sup>5</sup><sub>2</sub>, NR<sup>5</sup>COR<sup>5</sup>, NR<sup>5</sup>CONR<sup>5</sup><sub>2</sub>, NR<sup>5</sup>COR<sup>5</sup>, NR<sup>5</sup>CO<sub>2</sub>R<sup>5</sup>, CO<sub>2</sub>R<sup>5</sup>, CO<sub>2</sub>R<sup>5</sup>, COR<sup>5</sup>, CONR<sup>5</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>5</sup>, SONR<sup>5</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>5</sup>, SO<sub>2</sub>NR<sup>5</sup><sub>2</sub>, or NR<sup>5</sup>S(O)<sub>2</sub>R<sup>5</sup> wherein each R<sup>5</sup> may be the same or different and is as defined above; and

wherein n is 1 to 6, preferably n is 1, 2, 3 or 4;

and wherein  $R^3$  is a lone electron pair, hydrogen,  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, each of which is optionally substituted, wherein:

the optionally substituted carbocyclyl or heterocyclyl group is optionally fused to one to three unsaturated, partially unsaturated or fully saturated five to seven membered rings containing zero to three heteroatoms,

each substitutable carbon atom in  $R^3$ , including the optional fused ring, is optionally and independently substituted by one or more of  $C_{1-12}$  alkyl,  $C_{3-12}$  cycloalkyl,  $C_{3-12}$  heterocycloalkyl,  $C_{3-12}$  aryl,  $C_{3-12}$  heteroaryl halogen,  $C_{1-12}$  haloalkyl,  $OR^{13}$ ,  $SR^{13}$ ,  $NO_2$ , CN,  $NR^{13}R^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}CO_2R^{13}$ ,  $CO_2R^{13}$ ,  $COR^{13}$ ,

the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -C(O)-, -N(R<sup>13</sup>)-, -S(O)- and -S(O<sub>2</sub>)-, wherein each R<sup>13</sup> may be the same or different and is as defined above:

the  $C_{1-12}$  alkyl,  $C_{3-12}$  cycloalkyl,  $C_{3-12}$  heterocycloalkyl,  $C_{3-12}$  aryl, or  $C_{3-12}$  heteroaryl groups are optionally substituted by one or more of halogen,  $C_{1-12}$  haloalkyl,  $OR^{13}$ ,  $SR^{13}$ ,  $NO_2$ , CN,  $NR^{13}R^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}COR^{13}$ ,  $NR^{13}CO_2R^{13}$ ,  $CO_2R^{13}$ ,  $CO_2R^{13}$ ,  $CO_3R^{13}$ ,  $CO_3R^$ 

CONR<sup>13</sup>R<sup>13</sup>, S(O)<sub>2</sub>R<sup>13</sup>, SONH<sub>2</sub>, S(O)R<sup>13</sup>, SO<sub>2</sub>NR<sup>13</sup>R<sup>13</sup>, NR<sup>13</sup>S(O)<sub>2</sub>R<sup>13</sup>, wherein each R<sup>13</sup> may be the same or different and is as defined below; and

the  $C_{3-12}$  cycloalkyl,  $C_{3-12}$  heterocycloalkyl,  $C_{3-12}$  aryl, or  $C_{3-12}$  heteroaryl groups are optionally substituted by one or more  $C_{1-12}$  alkyl groups;

each saturated carbon in  $R^2$ , including the optional fused ring, is further optionally and independently substituted by =0, =S,  $NNR^{13}R^{13}$ , =N-OR<sup>13</sup>, =NNHCOR<sup>13</sup>, =NNHCO<sub>2</sub>R<sup>13</sup>, =NNHCO<sub>2</sub>R<sup>13</sup>, or =NR<sup>13</sup>, wherein each  $R^{13}$  may be the same or different and is as defined below; and

each substitutable nitrogen atom in  $R^3$  is optionally substituted by  $R^{14}$ ,  $COR^{13}$ ,  $SO_2R^{13}$  or  $CO_2R^{13}$  wherein each  $R^{13}$  and  $R^{14}$  may be the same or different and is as defined below;

wherein two R<sup>13</sup> in NR<sup>13</sup><sub>2</sub> may optionally form a partially saturated, unsaturated or fully saturated three to seven membered ring containing one to three heteroatoms, optionally and independently substituted by one or more of C<sub>1-6</sub> alkyl, halogen, C<sub>1-6</sub> haloalkyl, OR<sup>15</sup>, SR<sup>15</sup>, NO<sub>2</sub>, CN, NR<sup>15</sup>R<sup>15</sup>, NR<sup>15</sup>COR<sup>15</sup>, NR<sup>15</sup>COR<sup>15</sup>, NR<sup>15</sup>COR<sup>15</sup>, NR<sup>15</sup>CO<sub>2</sub>R<sup>15</sup>, CO<sub>2</sub>R<sup>15</sup>, COR<sup>15</sup>, COR<sup>15</sup>, COR<sup>15</sup>, S(O)<sub>2</sub>R<sup>15</sup>, SONR<sup>15</sup><sub>2</sub>, S(O)<sub>R</sub><sup>15</sup>, SO<sub>2</sub>NR<sup>15</sup>R<sup>15</sup>, NR<sup>15</sup>S(O)<sub>2</sub>R<sup>15</sup>,

wherein the  $C_{1-6}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^{15}$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^{15}$  may be the same or different and is as defined below;

wherein R<sup>15</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl;

wherein  $R^{13}$  is hydrogen ,  $C_{1-12}$  alkyl or  $C_{3-12}$  aryl, optionally substituted by one or more of  $C_{1-4}$  alkyl, halogen,  $C_{1-4}$  haloalkyl,  $OR^{16}$ ,  $SR^{16}$ ,  $NO_2$ , CN,  $NR^{16}R^{16}$ ,  $NR^{16}COR^{16}$ ,  $NR^{16}CONR^{16}R^{16}$ ,  $NR^{16}COR^{16}$ ,  $NR^{16}CO_2R^{16}$ ,  $CO_2R^{16}$ ,  $CO_2R^{16}$ ,  $COR^{16}$ ,  $CONR^{16}_2$ ,  $S(O)_2R^{16}$ ,  $SONH_2$ ,  $S(O)R^{16}$ ,  $SO_2$   $NR^{16}R^{16}$ ,  $NR^{16}S(O)_2R^{16}$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^{16}$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^{16}$  may be the same or different and is as defined below;

wherein  $R^{14}$  is  $C_{1-12}$  alkyl or  $C_{3-12}$  aryl, optionally substituted by one or more of  $C_{1-4}$  alkyl, halogen,  $C_{1-4}$  haloalkyl,  $OR^{16}$ ,  $SR^{16}$ ,  $NO_2$ , CN,  $NR^{16}R^{16}$ ,  $NR^{16}COR^{16}$ ,  $NR^{16}CONR^{16}R^{16}$ ,  $NR^{16}COR^{16}$ ,  $NR^{16}CO_2R^{16}$ ,  $CO_2R^{16}$ ,  $CO_2R^{16}$ ,  $COR^{16}$ ,  $CONR^{16}_2$ ,  $S(O)_2R^{16}$ ,  $SONH_2$ ,  $S(O)R^{16}$ ,  $SO_2NR^{16}R^{16}$ ,  $NR^{16}S(O)_2R^{16}$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^{16}$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^{16}$  may be the same or different and is as defined below;

wherein R<sup>16</sup> is hydrogen, C<sub>1-4</sub> alkyl, or C<sub>1-4</sub> haloalkyl;

wherein when X is NR<sup>2</sup>, R<sup>2</sup> and R<sup>3</sup> can form a 3 to 12 membered heterocyclyl ring, more preferably a 5, 6, 7, 8, 9, 10, 11 or 12 membered ring, wherein said ring can be partially saturated, unsaturated or fully saturated containing one to three heteroatoms; wherein the heterocyclylic group formed by R<sup>2</sup> and R<sup>3</sup> can be optionally fused to one to three unsaturated, partially saturated or fully saturated 5 to 7 membered rings containing zero to three heteroatoms, any of said rings being optionally and independently substituted with one or more of C<sub>1-6</sub> alkyl, halogen, C<sub>1-6</sub> haloalkyl, OR<sup>22</sup>, SR<sup>22</sup>, NO<sub>2</sub>, CN, NR<sup>22</sup>R<sup>22</sup>, NR<sup>22</sup>COR<sup>22</sup>, NR<sup>22</sup>CONR<sup>22</sup>R<sup>22</sup>, NR<sup>22</sup>COR<sup>22</sup>, CO<sub>2</sub>R<sup>22</sup>, CO<sub>2</sub>R<sup>22</sup>, COR<sup>22</sup>, CONR<sup>22</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>22</sup>, SONR<sup>22</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>22</sup>, SONR<sup>22</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>22</sup>, SO<sub>2</sub>NR<sup>22</sup>R<sup>22</sup>, NR<sup>22</sup>S(O)<sub>2</sub>R<sup>22</sup>, wherein the C<sub>1-6</sub> alkyl group optionally incorporates one or two insertions from -O-, -N(R<sup>22</sup>)-, -S(O)- and -S(O<sub>2</sub>)- and wherein each R<sup>22</sup> may be the same or different.

5. (Currently Amended) A compound as claimed in any one of claims 1 to 4 claim 1 wherein R<sup>4</sup> is a six-membered carbocyclyl group or a five or six-membered heterocyclyl group containing from 1 to 4 heteroatoms independently selected from N, S or O, wherein the optionally substituted six-membered carbocyclyl or five or six-membered heterocyclyl group is optionally fused to a partially saturated, unsaturated or fully saturated five to seven membered ring containing zero to three heteroatoms, and each substitutable carbon or hetero-atom in R<sup>4</sup> including the optional fused ring, is optionally and independently substituted by one or more of halogen, C<sub>1-12</sub> alkyl, C<sub>2-12</sub> alkenyl, C<sub>2-12</sub> alkynyl, C<sub>1-12</sub> haloalkyl, C<sub>3-12</sub> carbocyclyl, C<sub>3-12</sub> heterocyclyl, (CH<sub>2</sub>)<sub>n</sub>OR<sup>17</sup>, (CH<sub>2</sub>)<sub>n</sub>NR<sup>17</sup><sub>2</sub>, OR<sup>17</sup>, SR<sup>17</sup>, NO<sub>2</sub>, CN, NR<sup>17</sup><sub>2</sub>, NR<sup>17</sup>COR<sup>17</sup>, NR<sup>17</sup>CONR<sup>17</sup><sub>2</sub>, NR<sup>17</sup>COR<sup>17</sup>, CO<sub>2</sub>R<sup>17</sup>, CO<sub>2</sub>R<sup>17</sup>, COR<sup>17</sup>, CONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, SONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, SONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, SONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, SONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, SONR<sup>17</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>17</sup>, wherein the C<sub>1-12</sub> alkyl group optionally contains one or

more insertions selected from -O-, -N(R<sup>12</sup>)- -S-, -S(O)- and -S(O<sub>2</sub>)-; and each saturated carbon in the optional fused ring is further optionally and independently substituted by =O, =S, NNR<sup>18</sup><sub>2</sub>, =N-OR<sup>18</sup>, =NNR<sup>18</sup>CO2<sup>18</sup>, =NNR<sup>18</sup>CO2<sup>18</sup>, =NNSO2<sup>18</sup>, or =NR<sup>18</sup>; and each substitutable nitrogen atom in R<sup>4</sup> is optionally substituted by R<sup>19</sup>, COR<sup>19</sup>, SO2<sup>19</sup> or CO2<sup>19</sup>; wherein n is 1 to 6, preferably n is 1, 2 or 3; preferably, wherein each substitutable carbon or hetero-atom in R<sup>4</sup> is optionally and independently substituted by one or more of C<sub>1-6</sub> alkyl, OR<sup>20</sup>, SR<sup>20</sup>, NO<sub>2</sub>, CN, NR<sup>20</sup><sub>2</sub>, NR<sup>20</sup>COR<sup>20</sup>, NR<sup>20</sup>COR<sup>20</sup>, NHCO2<sup>20</sup>, CO2<sup>20</sup>, CO2<sup>20</sup>, COR<sup>20</sup>, CONR<sup>20</sup><sub>2</sub>, S(O)2<sup>20</sup>, SONR<sup>20</sup><sub>2</sub>, S(O)R<sup>20</sup>, SO2NR<sup>20</sup><sub>2</sub>, or NR<sup>20</sup>S(O)2<sup>20</sup>;

wherein R<sup>20</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl;

wherein  $R^{17}$  is hydrogen ,  $C_{1-12}$  alkyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl,  $C_{3-12}$  carbocyclyl,  $C_{3-12}$  heterocyclyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{21}$ ,  $SR^{21}$ ,  $NO_2$ , CN,  $NR^{21}R^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}CONR^{21}R^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}CO_2R^{21}$ ,  $CO_2R^{21}$ ,  $CO_2R^{21}$ ,  $COR^{21}$ , CO

wherein two  $R^{17}$  in  $NR^{17}_2$  may optionally form a partially saturated, unsaturated or fully saturated three to seven membered ring containing one to three heteroatoms, optionally and independently substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{21}$ ,  $SR^{21}$ ,  $NO_2$ , CN,  $NR^{21}R^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}COR^{21}$ ,  $NR^{21}CO_2R^{21}$ ,  $CO_2R^{21}$ ,  $CO_2R^{$ 

wherein  $R^{18}$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{21}$ ,  $SR^{21}$ ,  $NO_2$ , CN,  $NR^{21}R^{21}$ ,  $NR^{21}COR^{21}$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one

or two insertions selected from the group consisting of -O-, -N( $R^{21}$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^{21}$  may be the same or different and is as defined below;

wherein  $R^{19}$  is hydrogen,  $C_{6-12}$  aryl,  $C_{1-6}$  alkyl or  $C_{1-6}$  haloalkyl;

wherein R<sup>21</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

- 6. (Currently Amended) A compound as claimed in any one of claims 1 to 5 claim 1 wherein R<sup>1</sup> is an optionally substituted five or six membered carbocyclyl or heterocyclyl group selected from optionally substituted phenyl, acridine, benzimidazole, benzofuran, benzothiophene, benzoxazole, benzothiazole, cyclohexyl furan, imidazole, indole, isoindole, isoquinoline, isoxazole, isothiazole, morpholine, napthaline, oxazole, phenazine, phenothiazine, phenoxazine, piperazine, piperidine, pyrazole, pyridazine, pyridine, pyrrole, quinoline, quinolizine, tetrahydrofuran, tetrazine, tetrazole, thiophene, thiazole, thiomorpholine, thianaphthalene, thiopyran, triazine, triazole or trithiane.
- 7. (Currently Amended) A compound as claimed in any one of claims 1 to 6 claim 1 wherein R<sup>1</sup> is a group of formula (II), wherein X is a group NR<sup>3</sup>, Y is absent and one or more of R<sup>2</sup> and R<sup>3</sup> is hydrogen, alkyl or cycloalkyl.
- 8. (Original) A compound as claimed in claim 7 wherein the group of formula (II) is an alkylamino or cycloalkylamino group preferably selected from optionally substituted methylamino, ethylamino, propylamino, isopropylamino, butylamino, cyclobutylamino, pentylamino, cyclopentylamino, hexylamino, cyclohexylamino, heptylamino, cycloheptylamino, octylamino and cyclooctylamino.
- 9. (Currently Amended) A compound as claimed in any one of claims 1 to 8 claim 1 wherein R<sup>1</sup> is substituted with one or more of OR<sup>24</sup>, halogen, C<sub>1-6</sub> alkyl, C<sub>2-6</sub> alkenyl, C<sub>2-6</sub> alkynyl, C<sub>1-6</sub>haloalkyl, C<sub>1-6</sub>alkylaryl, C<sub>1-6</sub>alkylheterocyclyl, (CH<sub>2</sub>)<sub>n</sub>OR<sup>24</sup>, (CH<sub>2</sub>)<sub>n</sub>NR<sup>24</sup><sub>2</sub>, SR<sup>24</sup>, NO<sub>2</sub>, CN, NR<sup>24</sup><sub>2</sub>, CO<sub>2</sub>R<sup>24</sup>, NR<sup>24</sup>C(O)R<sup>24</sup>, NR<sup>24</sup>S(O)<sub>2</sub>R<sup>24</sup>, COR<sup>24</sup>, CONR<sup>24</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>24</sup>, S(O)<sub>2</sub>R<sup>24</sup> or SO<sub>2</sub>NR<sup>24</sup><sub>2</sub>;

wherein  $R^{24}$  is hydrogen,  $C_{1-4}$  alkyl or  $C_{6-12}$  aryl preferably phenyl, or  $C_{5-12}$  heterocyclyl preferably pyridine, and n is 1, 2, 3, 4, 5 or 6;

wherein two R<sup>24</sup> in NR<sup>24</sup><sub>2</sub> may optionally form a partially saturated, unsaturated or fully saturated three to seven membered ring containing one to three heteroatoms, said ring is preferably independently substituted with one or more of halogen, C<sub>1-12</sub> alkyl, C<sub>2-12</sub> alkenyl, C<sub>2-12</sub> alkynyl, C<sub>1-12</sub> haloalkyl, C<sub>3-12</sub> carbocyclyl, C<sub>3-12</sub> heterocyclyl, OR<sup>25</sup>, SR<sup>25</sup>, NO<sub>2</sub>, CN, NR<sup>25</sup><sub>2</sub>, NR<sup>25</sup>COR<sup>25</sup>, NR<sup>25</sup>COR<sup>25</sup>, NR<sup>25</sup>COR<sup>25</sup>, NR<sup>25</sup>CO<sub>2</sub>R<sup>25</sup>, CO<sub>2</sub>R<sup>25</sup>, COR<sup>25</sup>, CONR<sup>25</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>25</sup>, SONR<sup>25</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>25</sup><sub>2</sub>, or NR<sup>25</sup>S(O)<sub>2</sub>R<sup>25</sup>; and each saturated carbon in the optional ring is further optionally and independently substituted by =O, =S, NNR<sup>26</sup><sub>2</sub>, =N-OR<sup>26</sup>, =NNR<sup>26</sup>COR<sup>26</sup>, =NNR<sup>26</sup>COR<sup>26</sup>, or =NR<sup>26</sup>; and each substitutable nitrogen atom is optionally substituted by R<sup>27</sup>, COR<sup>27</sup>, SO<sub>2</sub>R<sup>27</sup> or CO<sub>2</sub>R<sup>27</sup>;

wherein  $R^{25}$  is hydrogen ,  $C_{1\text{-}12}$  alkyl,  $C_{6\text{-}12}$  carbocyclyl or  $C_{5\text{-}12}$  heterocyclyl, optionally substituted by one or more of  $C_{1\text{-}6}$  alkyl, halogen,  $C_{1\text{-}6}$  haloalkyl,  $OR^{28}$ ,  $SR^{28}$ ,  $NO_2$ , CN,  $NR^{28}R^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}CO_2R^{28}$ ,  $CO_2R^{28}$ ,  $CO_2R^{28}$ ,  $COR^{28}$ , CO

wherein  $R^{26}$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{6-12}$  carbocyclyl or  $C_{5-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{28}$ ,  $SR^{28}$ ,  $NO_2$ , CN,  $NR^{28}R^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}COR^{28}$ ,  $NR^{28}CO_2R^{28}$ ,  $CO_2R^{28}$ ,  $CO_2R^{28}$ ,  $COR^{28}$ ,

wherein  $R^{27}$  is hydrogen,  $C_{1-6}$  alkyl,  $C_{1-6}$  haloalkyl or  $C_{6-12}$  aryl;

wherein R<sup>28</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

10. (Currently Amended) A compound as claimed in any one of claims 1 to 9 claim 1 wherein R<sup>4</sup> is selected from phenyl, cyclohexyl, acridine, benzimidazole, benzofuran,

benzothiophene, benzoxazole, benzothiazole, indole, isoindole, indolizine, indazole, isoindole, isoquinoline, morpholine, napthalene, phenazine, phenothiazine, phenoxazine, piperazine, piperidine, pyridazine, pyridine, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinoline, quinolizine, tetrazine, thiomorpholine, thianaphthalene, thiopyran, triazine, trithiane, furan, imidazole, isoxazole, isothiazole, oxazole, oxadiazole, oxathiazole, pyrazole, pyrrole, tetrazole, thiophene, thiadiazole, thiatriazole, thiazole or triazole, wherein each substitutable carbon or hetero-atom in R<sup>4</sup> is optionally and independently substituted by one or more of C<sub>1-6</sub> alkyl, OR<sup>20</sup>, SR<sup>20</sup>, NO<sub>2</sub>, CN, NR<sup>20</sup><sub>2</sub>, NR<sup>20</sup>COR<sup>20</sup>, NR<sup>20</sup>CONR<sup>20</sup><sub>2</sub>, NR<sup>20</sup>COR<sup>20</sup>, NHCO<sub>2</sub>R<sup>20</sup>, CO<sub>2</sub>R<sup>20</sup>, COR<sup>20</sup>, CONR<sup>20</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>20</sup>, SONR<sup>20</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>20</sup>, SONR<sup>20</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>20</sup>, OR<sup>20</sup><sub>2</sub>, OR<sup>20</sup><sub>2</sub>,

wherein R<sup>20</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

11. (Currently Amended) A compound as claimed in any one of claims 1 to 10 claim 1 wherein  $R^4$  is a six-membered carbocyclyl or heterocyclyl group optionally substituted with one or more of  $OR^{29}$ ,  $NR^{29}_2$ ,  $SR^{29}$ ,  $(CH_2)_nOR^{29}$ ,  $(CH_2)_nNR^{29}_2$ , halogen,  $C_{1-6}$  alkyl,  $C_{2-6}$  alkenyl,  $C_{2-6}$  alkynyl, haloalkyl,  $NO_2$ , CN,  $NR^{29}C(O)R^{29}$ ,  $NR^{29}S(O)_2R^{29}$ ,  $CO_2R^{29}$ ,  $COR^{29}$ ,  $CONR^{29}_2$ ,  $S(O)_2R^{29}$ ,  $S(O)_2R^{29}$ ,  $S(O)_2R^{29}_2$ ;

wherein  $R^{29}$  is hydrogen,  $C_{1-4}$  alkyl,  $C_{5-12}$  heterocyclyl or  $C_{6-12}$  aryl preferably phenyl, and n is 1, 2, 3, 4, 5 or 6;

wherein two  $R^{29}$  in  $NR^{29}_2$  may optionally form a partially saturated, unsaturated or fully saturated five to seven membered ring containing one to three heteroatoms, optionally and independently substituted with one or more of halogen,  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{1-12}$  haloalkyl,  $C_{6-12}$  carbocyclyl,  $C_{5-12}$  heterocyclyl,  $OR^{30}$ ,  $SR^{30}$ ,  $NO_2$ , CN,  $NR^{30}_2$ ,  $NR^{30}COR^{30}$ ,  $NR^{30}COR^{30}$ ,  $NR^{30}COR^{30}$ ,  $NR^{30}COR^{30}$ ,  $NR^{30}CO_2R^{30}$ ,  $CO_2R^{30}$ ,  $COR^{30}$ ,  $CONR^{30}_2$ ,  $S(O)_2R^{30}$ ,  $SO_2NR^{30}_2$ , or  $NR^{30}S(O)_2R^{30}$ ; and each saturated carbon in the optional ring is further optionally and independently substituted by =O, =S,  $NNR^{31}_2$ ,  $=N-OR^{31}$ ,  $=NNR^{31}COR^{31}$ ,  $=NNR^{31}CO_2R^{31}$ ,  $=NNSO_2R^{31}$ , or  $=NR^{31}$ ; and each substitutable nitrogen atom is optionally substituted by  $R^{32}$ ,  $COR^{32}$ ,  $SO_2R^{32}$  or  $CO_2R^{32}$ ;

wherein  $R^{30}$  is hydrogen ,  $C_{1-12}$  alkyl,  $C_{6-12}$  carbocyclyl or  $C_{5-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{33}$ ,  $SR^{33}$ ,  $NO_2$ , CN,  $NR^{33}R^{33}$ ,

 $NR^{33}COR^{33}$ ,  $NR^{33}CONR^{33}R^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}CO_2R^{33}$ ,  $CO_2R^{33}$ ,  $COR^{33}$ ,  $CONR^{33}_2$ ,  $S(O)_2R^{33}$ ,  $SONR^{33}_2$ ,  $S(O)_2R^{33}$ ,  $SO_2NR^{33}R^{33}$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-, -N( $R^{33}$ )-, -S(O)- and -S(O<sub>2</sub>)-, wherein each  $R^{33}$  may be the same or different and is as defined below;

wherein  $R^{31}$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{6-12}$  carbocyclyl or  $C_{5-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{33}$ ,  $SR^{33}$ ,  $NO_2$ , CN,  $NR^{33}R^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}COR^{33}$ ,  $NR^{33}CO_2R^{33}$ ,  $CO_2R^{33}$ ,  $COR^{33}$ ,  $COR^{3$ 

wherein  $R^{32}$  is hydrogen,  $C_{6-12}$  aryl,  $C_{1-6}$  alkyl or  $C_{1-6}$  haloalkyl;

wherein R<sup>33</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

12. (Currently Amended) A compound as claimed in any one of claims 1 to 11 claim 1 wherein R<sup>4</sup> is a five-membered heterocyclyl,

wherein A,  $X^2$ ,  $Y^2$  or Z are independently selected from N, O, C, S and M is C or N, wherein one, two, three or four of A,  $X^2$ ,  $Y^2$ , Z and M is other than C;

 $R^{34}$ ,  $R^{35}$ ,  $R^{36}$  or  $R^{37}$  are independently selected from a lone electron pair, hydrogen, halogen,  $C_{1-12}$  alkyl,  $C_{1-12}$  haloalkyl,  $OR^{38}$ ,  $SR^{38}$ ,  $NO_2$ , CN,  $NR^{38}_2$ ,  $NR^{38}COR^{38}$ ,  $NR^{38}CONR^{38}_2$ ,  $NR^{38}COR^{38}$ ,  $NR^{38}COR^{38}_2$ 

wherein n is 1 to 6, preferably n is 1, 2 or 3;

or wherein any two of R<sup>34</sup>, R<sup>35</sup>, R<sup>36</sup> or R<sup>37</sup> may optionally form a partially saturated, unsaturated or fully saturated five to seven membered ring containing zero to three heteroatoms, each saturated carbon in the optional fused ring is further optionally and independently substituted with one or more of halogen, C<sub>1-12</sub> alkyl, C<sub>2-12</sub> alkenyl, C<sub>2-12</sub> alkynyl, C<sub>1-12</sub> haloalkyl, C<sub>6-12</sub> carbocyclyl, C<sub>5-12</sub> heterocyclyl, OR<sup>38</sup>, SR<sup>38</sup>, NO<sub>2</sub>, CN, NR<sup>38</sup><sub>2</sub>, NR<sup>38</sup>CONR<sup>38</sup><sub>2</sub>, NR<sup>38</sup>COR<sup>38</sup>, NR<sup>38</sup>CO<sub>2</sub>R<sup>38</sup>, (CH<sub>2</sub>)<sub>n</sub>OR<sup>38</sup>, (CH<sub>2</sub>)<sub>n</sub>NR<sup>38</sup><sub>2</sub>, CO<sub>2</sub>R<sup>38</sup>, COR<sup>38</sup>, CONR<sup>38</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>38</sup>, SONR<sup>38</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>38</sup>, SONR<sup>38</sup><sub>2</sub>, S(O)<sub>2</sub>R<sup>38</sup>, and each saturated carbon in the optional fused ring is further optionally and independently substituted by =O, =S, NNR<sup>39</sup><sub>2</sub>, =N-OR<sup>39</sup>, =NNR<sup>39</sup>COR<sup>39</sup>, =NNR<sup>39</sup>CO<sub>2</sub>R<sup>39</sup>, or =NR<sup>39</sup>; and each substitutable nitrogen atom in R<sup>4</sup> is optionally substituted by R<sup>40</sup>, COR<sup>40</sup>, SO<sub>2</sub>R<sup>40</sup> or CO<sub>2</sub>R<sup>40</sup>;

wherein n is 1 to 6, preferably n is 1, 2 or 3;

wherein  $R^{38}$  is hydrogen,  $C_{1-12}$  alkyl,  $C_{6-12}$  carbocyclyl or  $C_{5-12}$  heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{41}$ ,  $SR^{41}$ ,  $NO_2$ , CN,  $NR^{41}R^{41}$ ,  $NR^{41}CONR^{41}R^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}CO_2R^{41}$ ,  $CO_2R^{41}$ ,  $COR^{41}$ ,  $CONR^{41}_2$ , CO

wherein  $R^{39}$  is hydrogen,  $C_{1-12}$  alkyl, carbocyclyl or heterocyclyl, optionally substituted by one or more of  $C_{1-6}$  alkyl, halogen,  $C_{1-6}$  haloalkyl,  $OR^{41}$ ,  $SR^{41}$ ,  $NO_2$ , CN,  $NR^{41}R^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}COR^{41}$ ,  $NR^{41}CO_2R^{41}$ ,  $CO_2R^{41}$ ,  $COR^{41}$ ,  $CONR^{41}_2$ ,  $S(O)_2R^{41}$ ,  $S(O)_2R^{41}$ ,  $SO_2NR^{41}R^{41}$ ,  $NR^{41}S(O)_2R^{41}$ , wherein the  $C_{1-12}$  alkyl group optionally incorporates one or two insertions selected from the group consisting of -O-,  $-N(R^{41})$ -, -S(O)- and  $-S(O_2)$ -, wherein each  $R^{41}$  may be the same or different and is as defined below;

wherein  $R^{40}$  is hydrogen,  $C_{1-6}$  alkyl,  $C_{1-6}$  haloalkyl or  $C_{6-12}$  aryl.

wherein R<sup>41</sup> is hydrogen, C<sub>1-6</sub> alkyl, or C<sub>1-6</sub> haloalkyl.

13. (Original) A compound as claimed in claim 12 wherein R<sup>4</sup> is furan, imidazole, isoxazole, isothiazole, oxazole, oxadiazole, oxatriazole, pyrazole, pyrrole, tetrazole, thiophene, thiadiazole,

thiatriazole, thiazole or triazole; and  $R^{34}$ ,  $R^{35}$ ,  $R^{36}$  or  $R^{37}$  are independently selected from a lone electron pair, hydrogen, halogen,  $C_{1-6}$  alkyl,  $C_{1-6}$  haloalkyl,  $OR^{42}$ ,  $SR^{42}$ , CN,  $NR^{42}_{2}$ ,  $NR^{42}COR^{42}$ ,  $CO_2R^{42}$ ,  $COR^{42}$ ,

wherein R<sup>42</sup> is hydrogen, C<sub>1-4</sub> alkyl, preferably methyl or ethyl or carbocyclyl, preferably phenyl.

14. (Currently Amended) A compound as claimed in any one of claims 1 to 13 claim 1 selected from the group consisting of:







15. (Currently Amended) A process for the manufacture of a compound of formula (I) wherein R<sup>1</sup> is a group of formula (II) as defined in the any one of claims 1 to 14 claim 1 of the invention comprising the condensation of an intermediate (III) with an intermediate (IV).

wherein  $R^2$  and  $R^4$  are as defined in any one of claims 1 to 14; and wherein each of  $L^1$  and  $L^2$  is independently a leaving group wherein  $L^1$  and  $L^2$  together form a condensation product.

- 16. (Original) A process as claimed in claim 15 wherein  $L^1$  is OH,  $OR^{50}$ , OM, Cl, Br or I wherein  $R^{50}$  is  $C_{1-6}$  alkyl, preferably methyl or ethyl and M is Na, Li, K, Ca, Mg or Ba, and  $L^2$  is hydrogen or M.
- 17. (Original) A compound of formula (III)

wherein R<sup>4</sup> is as defined any one of claims 1 to 14

$$R^{50}$$
 is  $C_{1-6}$  alkyl, and

M is Na, Li, K, Ca, Mg, or Ba.

# 18. (Original) A process for the manufacture of a compound of formula (V) comprising removal of group R<sup>51</sup> from an intermediate (VI)

wherein  $L^3$  is  $R^1$  or  $L^1$ ;

R<sup>1</sup> and R<sup>4</sup> are as defined in any one of claims 1 to 14;

L<sup>1</sup> is as defined in claim 17;

and R<sup>51</sup> is an amino protecting group selected from R<sup>52</sup>SO<sub>2</sub>, R<sup>52</sup>C(O), R<sup>52</sup><sub>3</sub>Si, R<sup>52</sup>OCH<sub>2</sub>, (R<sup>52</sup>)<sub>2</sub>NSO<sub>2</sub>, (R<sup>52</sup>)<sub>2</sub>NC(O), R<sup>52</sup>OC(O), R<sup>52</sup>(R<sup>52</sup>O)CH, R<sup>52</sup>CH<sub>2</sub>CH<sub>2</sub>, R<sup>52</sup>CH<sub>2</sub>, PhC(O)CH<sub>2</sub>, CH<sub>2</sub>=CH, ClCH<sub>2</sub>CH<sub>2</sub>, Ph<sub>3</sub>C, Ph<sub>2</sub>(4-pyridyl)C, Me<sub>2</sub>N, HO-CH<sub>2</sub>, R<sup>52</sup>OCH<sub>2</sub>, (R<sup>52</sup>)<sub>3</sub>SiOCH<sub>2</sub>, (R<sup>52</sup>O)<sub>2</sub>CH, t-BuOC(O)CH<sub>2</sub>, Me<sub>2</sub>NCH<sub>2</sub>, and tetrahydropyranylamine,

wherein  $R^{52}$  is  $C_{1-6}$  alkyl or  $C_{6-12}$  aryl.

## 19. (Original) A compound of formula (VI)

wherein R<sup>4</sup> is as defined in any one of claims 1 to 14, and

wherein  $L^3$  and  $R^{51}$  are as defined in claim 18.

20. (Currently Amended) A process for the manufacture of a compound of formula (VI) comprising a a) a reaction of a compound of formula (VII) with stannane  $R^4$ -Sn( $R^{53}$ )<sub>3</sub> in the presence of a palladium catalyst or b) reaction of a compound of formula (VII) with boronic acid or ester  $R^4$ -B(OR<sup>54</sup>)<sub>2</sub> in a presence of a suitable palladium catalyst or c) reaction of a compound of formula (VII) with silane  $R^4$ -Si( $R^{55}$ )<sub>3</sub> in the presence of a palladium catalyst;

wherein R<sup>4</sup> is as defined in any one of claims 1 to 14,

L<sup>3</sup> is as defined in claim 18;

R<sup>51</sup> is an amino protecting group as defined in claim 18;

X<sup>3</sup> is F, Cl, Br I or CF<sub>3</sub>SO<sub>3</sub>,

and  $R^{53}$  is independently  $C_{1-6}$  alkyl;

 $R^{54}$  is independently hydrogen or  $C_{1-6}$  alkyl or wherein two  $R^{54}$  groups together optionally form a five, six or seven membered ring with the boron and oxygen atoms, wherein the ring is optionally substituted with one or more  $C_{1-6}$  alkyl group.

and  $R^{55}$  is independently  $C_{1\text{-}6}$  alkyl, F, or OH.

- 21. (Original) A process as claimed in claim 20 wherein the catalyst is one or more selected from  $(PPh_3)_2PdCl_2$ ,  $(PPh_3)_4Pd$ ,  $Pd(OAc)_2$ ,  $[PdCl(\eta^3-C_3H_5]_2$ ,  $Pd_2(dba)_3$ ,  $Pd(dba)_2$  (dba = dibenzylidenacetone), and  $Pd/P(t-Bu)_3$ .
- 22. (Original) A compound of formula (VII)

wherein L<sup>3</sup> is as defined in claim 18;

wherein R<sup>51</sup> is an amino protecting group as defined in claim 18;

wherein  $X^3$  is as defined in claim 20.

23. (Original) A process for the manufacture of a compound of formula (VII) comprising protection of the pyrrole nitrogen with a group R<sup>51</sup>,

wherein L<sup>3</sup> is as defined in claim 18;

wherein R<sup>51</sup> is an amino protecting group defined in claim 18;

wherein  $X^3$  is as defined in claim 20.

24. (Original) A compound of formula (VIII)

wherein L<sup>3</sup> is as defined in claim 18;

and X<sup>3</sup> is as defined in claim 20.

25. (Original) A process for the production of a compound of formula (VIII) by the introduction of an X<sup>3</sup> group into a compound of formula (IX)

wherein L<sup>3</sup> is as defined in claim 18 and X<sup>3</sup> is as defined in claim 20.

26. (Currently Amended) A compound of formula (IX)

wherein  $L^3$  is a group  $L^1$  as defined in claim 17 or a group  $R^1$ , wherein  $R^1$  is a group of formula (II)

wherein X is NR<sup>3</sup>, O, S or  $(CR^{22}R^{22})_n$ , Y is absent or is NR<sup>23</sup>, O, or  $(CR^{23}R^{23})_n$ , R<sup>2</sup> is optionally substituted  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl as elaimed defined in any one of claims 1 to 14.

27. (Original) A process for the production of a compound of formula (VII) by the introduction of a X<sup>3</sup> group to a compound of formula (X)

wherein L<sup>3</sup> and R<sup>51</sup> are as defined in claim 18 and X<sup>3</sup> is as defined in claim 20.

## 28. (Currently Amended) A compound of formula (X)

wherein  $L^3$  is a group  $L^1$  as defined in claim 17 or a group  $R^1$ , wherein  $R^1$  is a group of formula (II)

wherein X is NR<sup>3</sup>, O, S or  $(CR^{22}R^{22})_n$ , Y is absent or is NR<sup>23</sup>, O, or  $(CR^{23}R^{23})_n$ , R<sup>2</sup> is optionally substituted  $C_{1-12}$  alkyl,  $C_{2-12}$  alkenyl,  $C_{2-12}$  alkynyl,  $C_{3-12}$  carbocyclyl or  $C_{3-12}$  heterocyclyl as elaimed defined in any one of claims 1 to 14;

and R<sup>51</sup> is an amino protecting group as defined in claim 18.

29. (Original) A process for the preparation of compound of formula (IX) by the acidcatalysed hydrolysis of nitrile (XI) in the presence of an alcohol,

$$\begin{array}{cccc}
CN & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & & & & \\
N & & & & \\
N & & & & \\$$

wherein  $L^3$  is  $OR^{50}$ ;

and R<sup>50</sup> is as defined in claim 16.

30. (Original) A compound of formula (XI)

$$\widetilde{\mathbf{z}}$$
  $\widetilde{\mathbf{z}}$   $\widetilde{\mathbf{z}}$ 

31. (Original) A process for the production of 1H-Pyrrolo[2,3-b]pyridine-5-carbonitrile (XI) comprising reaction of 5-bromo-1*H*-pyrrolo[2,3-*b*]pyridine with Zn(CN)<sub>2</sub> in the presence of a palladium catalyst.

$$\begin{array}{c|c}
Br & CN \\
\hline
N & Pd catalyst & N \\
\end{array}$$
(XI)

32. (Currently Amended) A compound as claimed in any one of claims 17, 19, 22, 24, 26, 28 or 30 selected from one or more of the group consisting of:

- 33. (Canceled)
- 34. (Currently Amended) A pharmeceutical composition comprising a compound as claimed in any one of claims 1 to 14 claim 1 in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- 35. (Original) A composition as claimed in claim 34, additionally comprising one or more of an anti-inflammatory agent, an AMPA receptor antagonist, a chemotherapeutic agent and/or an antiproliferative agent.
- 36. (Canceled)
- 37. (Canceled)
- 38. (Canceled)
- 39. (Canceled)
- 40. (Canceled)
- 41. (Canceled)

Express Mail Label No. EV 604749793 US
Date of Deposit: Sept. 1, 2006

Atty. Docket No. 102286-00167 US1

42. (Canceled)

43. (Canceled)

44. (Canceled)

45. (Canceled)

46. (Currently Amended) A method of treating or preventing a -mediated disorder in an

individual, which method comprises administering to said individual a compound as claimed in

any of claims 1-14 claim 1 or a composition as claimed in any of claims 34 or 35.

47. (Canceled)

48. (Currently Amended) A method as claimed in claim 46 or 47, wherein the disorder is a

neurodegenerative disorder, inflammatory disease, a disorder linked to apoptosis, particularly

neuronal apoptosis, autoimmune disease, destructive bone disorder, proliferative disorder,

cancer, infectious disease, allergy, ischemia reperfusion injury, heart attack, angiogenic disorder,

organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin induced platelet aggregation

and/or any condition associated with prostaglandin endoperoxidase synthase-2.

49. (Original) A method as claimed in claim 48, wherein the neurodegenerative disorder

results from apoptosis and/or inflammation.

50. (Currently Amended) A method as claimed in claim 48 or 49, wherein the

neurodegenerative disorder is: dementia; Alzheimer's disease; Parkinson's disease; Amyotrophic

Lateral Sclerosis; Huntington's disease; senile chorea; Sydenham's chorea; hypoglycemia; head

and spinal cord trauma including traumatic head injury; acute and chronic pain; epilepsy and

seizures; olivopontocerebellar dementia; neuronal cell death; hypoxia-related neurodegeneration;

acute hypoxia; glutamate toxicity including glutamate neurotoxicity; cerebral ischemia; dementia

linked to meningitis and/or neurosis; cerebrovascular dementia; or dementia in an HIV-infected

patient.

28

Express Mail Label No. EV 604749793 US
Date of Deposit: Sept. 1, 2006

Atty. Docket No. 102286-00167 US1

51. (Currently Amended) A method as claimed in claim 48 or 49, wherein the

neurodegenerative disorder is a peripheral neuropathy, including mononeuropathy, multiple

mononeuropathy or polyneuropathy, such as may be found in diabetes mellitus, Lyme disease or

uremia; peripheral neuropathy caused by a toxic agent; demyelinating disease such as acute or

chronic inflammatory polyneuropathy, leukodystrophies or Guillain-Barré syndrome; multiple

mononeuropathy secondary to a collagen vascular disorder; multiple mononeuropathy secondary

to sarcoidosis; multiple mononeuropathy secondary to a metabolic disease, or multiple

mononeuropathy secondary to an infectious disease.

52. (Currently Amended) A method as claimed in claim 46, 47 or 48, wherein the disorder is

inflammatory bowel disorder; bronchitis; asthma; acute pancreatitis; chronic pancreatitis;

allergies of various types; Alzheimer's disease; autoimmune disease such as rheumatoid arthritis,

systemic lupus erythematosus, glumerulonephritis, scleroderma, chronic thyroiditis, Graves's

disease, autoimmune gastritis, diabetes, autoimmune haemolytis anaemia, autoimmune

neutropaenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis,

multiple sclerosis, ulcerative colitis, Crohn's disease, psoriasis or graft vs host disease.

53. (Currently Amended) A method as claimed in any of claims 46-52, claim 46, wherein

one or more other active agent is administered to the individual simultaneously, subsequently or

sequentially to administering the compound.

54. (Original) A method as claimed in claim 53, wherein the other active agent is an anti-

inflammatory agent.

55. (Canceled)

56. (Canceled)

57. (Canceled)

58. (Canceled)

59. (Canceled)

29

- 60. (Canceled)
- 61. (Canceled)
- 62. (Canceled)
- 63. (Currently Amended) An assay for determining the activity of the compounds as defined in any of claims 1-14, claim 1, comprising providing a system for assaying the activity and assaying the activity of a compound as defined in any of claims 1-14 claim 1.
- 64. (Original) An assay as claimed in claim 63, wherein the assay is for the JNK inhibiting activity of the compound, preferably for the JNK3-specific inhibiting activity of the compound.
- 65. (Currently Amended) An assay as claimed in claim 63 or 64, wherein the assay is a Scintillation Proximity Assay (SPA) using radiolabelled ATP, or is an ELISA.
- 66. (Currently Amended) A method of inhibiting the activity or function of a JNK, particularly JNK3, which method comprises exposing a JNK to a compound as defined in any of claims 1-14 or a composition as defined in any of claims 34-45 claim 1.
- 67. (Original) A method as claimed in claim 66, which is performed in a research model.
- 68. (Original) A method as claimed in claim 67, wherein the research model is an animal model.