

The Authors

Biran McFee

Prof. Gert Lanckriet

Computer Audition Laboratory,
Department of Electrical and Computer Engineering (ECE)
University of California, San Diego (UCSD)

顧名思義

Metric Learning to Rank

= Metric Learning + Learning to Rank

Metric Learning

Metric Learning

- Aims to learn a distance/similarity function for a given problem $d(\mathbf{x}_1, \mathbf{x}_2) = ||\mathbf{x}_1 \mathbf{x}_2||_W^2 = (\mathbf{x}_1 \mathbf{x}_2)^T W(\mathbf{x}_1 \mathbf{x}_2)$
- Common methods
 - Unsupervised Methods:
 - PCA, Kernel PCA, MDS, ISOMap, Laplacian Eigenmap(LE), Locally Linear Embedding(LLE)
 - Supervised Methods :
 - LDA, Neighborhood Component Analysis (NCA), Large Margin NN Classifier (LMNN), Relevant Components Analysis (RCA), DistBoost
- Cons
 - Previous works only focus on classification problem
 - The same class lie closely

 $= (\mathbf{x}_1 - \mathbf{x}_2)^T L^T L (\mathbf{x}_1 - \mathbf{x}_2)$

 $= ||L\mathbf{x}_1 - L\mathbf{x}_2||^2$

Learning to Rank

- Given query q and document collection $\{d_1, ..., d_N\}$
 - Input: query-document instances $X=\{x_1, ..., x_N\}, x_i=f(d_i,q), x_i \in \mathbb{R}^d$
 - **Output**: ranking $Y=\{y(x_1), ..., y(x_N)\}$: permutation of X by ranker h(x)
 - Evaluation (loss) function: L(Y, R), $R=\{r(x_1), ..., r(x_N)\}$: true relevance of x_i

Learning to Rank

- Common Approach
 - Point-wise

- Pair-wise

- List-wise (Structural)
- Cons
 - No parameterization on the distance metric during optimization

Goal of this work

- Bridge the gap between metric learning and ranking
- Learning a distance function that optimize for true quantity of interest: the ranking
- Provide parameterization of ranking function by distance metric
 - Natural for information retrieval application

Structured SVM

 Similar to SVM, but the ground truth is in complex structure

SVM $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ $[\delta\psi(\mathbf{x},\mathbf{y})]_2$ $[\mathbf{x}]_2$ $\delta\psi(\mathbf{x}_i,\mathbf{y})$ $\rightarrow [\mathbf{x}]_1$ $\min_{\mathbf{w}}(\frac{1}{2}\|\mathbf{w}\|^2)$ $\min_{\mathbf{w}}(\frac{1}{2}\|\mathbf{w}\|^2)$ s.t. $y_i(\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1$ s.t. $\langle \mathbf{w}, \delta \psi(\mathbf{x}_i, \mathbf{y}) \rangle \geq 1$ $\forall \mathbf{x}_i \in \mathcal{X}, y_i \in \{0, 1\}$

Structured SVM
$$f(\mathbf{x}) = \arg\max_{\mathbf{y}} \langle (\mathbf{w}, \psi(\mathbf{x}, \mathbf{y})) \rangle$$

$$[\delta \psi(\mathbf{x}, \mathbf{y})]_{2}$$

$$\delta \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= \psi(\mathbf{x}_{i}, \mathbf{y}_{\mathbf{x}_{i}}) - \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= \psi(\mathbf{x}_{i}, \mathbf{y}_{\mathbf{x}_{i}}) - \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= \sin(\frac{1}{2} \|\mathbf{w}\|^{2})$$
s.t. $\langle \mathbf{w}, \delta \psi(\mathbf{x}_{i}, \mathbf{y}) \rangle \geq 1$

$$\forall \mathbf{x}_{i} \in \mathcal{X}, \forall \mathbf{y} \in \mathcal{Y} \backslash \mathbf{y}_{\mathbf{x}_{i}}, \mathbf{y} \text{ is complex structure}$$

Soft Margin

• Add ξ_i to allow some outliers, avoiding over-fitting Structured SVM $f(\mathbf{x}) = \arg \max \langle (\mathbf{v}) \rangle$

SVM
$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$

Structured SVM
$$f(\mathbf{x}) = \arg \max_{\mathbf{y}} \langle (\mathbf{w}, \psi(\mathbf{x}, \mathbf{y})) \rangle$$

$$[\delta \psi(\mathbf{x}, \mathbf{y})]_{2}$$

$$\delta \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= \psi(\mathbf{x}_{i}, \mathbf{y}_{\mathbf{x}_{i}}) - \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= \psi(\mathbf{x}_{i}, \mathbf{y}_{\mathbf{x}_{i}}) - \psi(\mathbf{x}_{i}, \mathbf{y})$$

$$= (\delta \psi(\mathbf{x}_{i}, \mathbf{y}))_{1}$$

$$\min_{\mathbf{w}, \xi} (\frac{1}{2} \|\mathbf{w}\|^{2} + C \cdot \frac{1}{n} \sum_{i=1}^{n} \xi_{i})$$
s.t. $\langle \mathbf{w}, \delta \psi(\mathbf{x}_{i}, \mathbf{y}) \rangle \geq 1 - \xi_{i}, \quad \xi_{i} \geq 0$

$$\exists \mathbf{x}_{i} \in \mathcal{X}, \forall \mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}_{\mathbf{x}_{i}}, \quad \mathbf{y} \text{ is complex structure}$$

Notation

$$\mathcal{X} \subset \mathbb{R}^d$$
 Input: the training set of n points in \mathbb{R}^d \mathcal{Y} Output: the set of permutations over \mathcal{X} y_q^* The true ranking for point q $\Delta(y_q^*,y)$ The loss incurred by predicting y instead of y_q^* $W\succeq 0$ The learned (positive semidefinite) metric $W=L^\mathsf{T} L$
$$\|a-b\|_W$$
 The learned distance between a and b

Apply to ranking $s.t. \langle \mathbf{w}, \delta \psi(\mathbf{x}_i, \mathbf{y}) \rangle \ge \triangle(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i, \mathbf{y}_i, \mathbf{y}_i) \ge \Delta(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}_i, \mathbf{y}_i, \mathbf{y}_i, \mathbf{y}_i)$

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \cdot \frac{1}{n} \sum_{i=1}^n \xi_i$$
s.t. $\langle \mathbf{w}, \delta \psi(\mathbf{x}_i, \mathbf{y}) \rangle \ge \triangle(\mathbf{y}_{\mathbf{x}_i}, \mathbf{y}) - \xi_i$

$$\xi_i \ge 0, \ \forall \mathbf{x}_i \in \mathcal{X}, \mathbf{y} \in \mathcal{Y} \backslash \mathbf{y}_{\mathbf{x}_i}$$

$$\delta \psi(\mathbf{x}_i, \mathbf{y}) = \psi(\mathbf{x}_i, \mathbf{y}_{\mathbf{x}_i}) - \psi(\mathbf{x}_i, \mathbf{y})$$

$$\min_{w,\xi} \frac{1}{2} \|w\|^2 + C \cdot \frac{1}{|\mathcal{X}|} \sum_{q \in \mathcal{X}} \xi_q \quad , \forall q \in \mathcal{X}, y \in \mathcal{Y} \backslash \mathbf{y}_q^*$$
s.t. $\langle w, \psi(q, \mathbf{y}_q^*) \rangle - \langle w, \psi(q, \mathbf{y}) \rangle \ge \triangle(y_q^*, \mathbf{y}) - \xi_q, \quad \xi_q \ge 0$

Score(good ranking)-Score(bad ranking) ≥ Loss(bad ranking)

Key Problem:

- 1. The definition of y and feature map $\psi(q,y)$ (We often only know weather (q,d_i) is rel or not)
- 2. The definition of loss function $\triangle(y_q^*, y)$
- 3. Efficient algorithm

Partial order feature map

$$\psi_{po}(q,y) = \sum_{i \in \mathcal{X}_q^+} \sum_{j \in \mathcal{X}_q^-} y_{ij} \frac{\phi(q,i) - \phi(q,j)}{|\mathcal{X}_q^+| \cdot |\mathcal{X}_q^-|}$$

 \mathcal{X}_q^+ : relevant docs set of q (ground truth)

 \mathcal{X}_q^- : irrelevant docs set of q (ground truth)

$$i \in \mathcal{X}_q^+, j \in \mathcal{X}_q^-, y_{ij} = \begin{cases} +1 & i \text{ before } j \\ -1 & i \text{ after } j \end{cases}$$

Note:

At testing stage, the predicted \hat{y} is sorting $\langle w, \phi(q,i) \rangle$ in descending order

$$\hat{y} = \arg\max_{y} \langle w, \psi(q, y) \rangle
= \langle w, \phi(q, i) \rangle \searrow i \in \mathcal{X}$$

 $\phi(q,i)$: retrival model results vector (page rank, TF-IDF, etc.)

q=2

 $\forall i, j, \ y_{ij}^* = 1$

Good rankings:

$$y_{21} = 1$$

 $y_{23} = 1$
 $y_{24} = 1$

 $y_{24} = 1$

3

4

Bad rankings:

 $y_{21} = -1$

$$y_{23} = -1$$

 $y_{24} = 1$

$$y_{21} = 1$$

$$y_{23} = -1$$

$$y_{24} = -1$$

Link to metric learning

Making the learned metric in terms of Frobenius Inner Product

$$||q - i||_{W}^{2} = (q - i)^{T} W(q - i)$$

$$= tr(W(q - i)(q - i)^{T})$$

$$= tr(W^{T}(q - i)(q - i)^{T})$$

$$= \langle W, (q - i)(q - i)^{T} \rangle_{F}$$

Leads to a nature choice of ϕ :

$$\phi(q, i) = -(q - i)(q - i)^{T}$$

Note:

$$d(\mathbf{x}_1, \mathbf{x}_2) = ||\mathbf{x}_1 - \mathbf{x}_2||_W^2$$

$$= (\mathbf{x}_1 - \mathbf{x}_2)^T W(\mathbf{x}_1 - \mathbf{x}_2)$$

$$= (\mathbf{x}_1 - \mathbf{x}_2)^T L^T L(\mathbf{x}_1 - \mathbf{x}_2)$$

$$= ||L\mathbf{x}_1 - L\mathbf{x}_2||^2$$

Frobenius Inner Product:

$$\langle A, B \rangle_F = \sum_i \sum_j A_{ij} B_{ij}$$

= $trace(A^T B)$
 $trace(A) = \sum_i A_{ii}$

Note:

$$\langle w, \psi(q, y_q^*) \rangle - \langle w, \psi(q, y) \rangle \ge \triangle(y_q^*, y) - \xi_q$$

$$\psi_{po}(q, y) = \sum_{i \in \mathcal{X}_q^+} \sum_{j \in \mathcal{X}_q^-} y_{ij} \frac{\phi(q, i) - \phi(q, j)}{|\mathcal{X}_q^+| \cdot |\mathcal{X}_q^-|}$$

Loss Function $\Delta(y_q^*,y)$

- $\Delta(y_q^*, y) \leftarrow \text{score}(y_q^*) \text{score}(y) = 1 \text{score}(y)$ score ∈ {AUC, Pre@k, MAP, MRR, NDCG}
 - Area under ROC Curve (AUC)
 - Precision@k
 - Mean Average Precision (MAP)

$$AP(q) = \frac{1}{|\mathcal{X}_q^+|} \sum_{k=1}^{|\mathcal{X}_q^+| + |\mathcal{X}_q^-|} \operatorname{Prec@k} \cdot \mathbb{1}[k \in \mathcal{X}_q^+], \ MAP = \sum_{q \in \mathcal{Q}} AP(q)$$

- $AP(q) = \frac{1}{|\mathcal{X}_q^+|} \sum_{k=1}^{|\mathcal{X}_q^+| + |\mathcal{X}_q^-|} \operatorname{Prec@k} \cdot \mathbb{1}[k \in \mathcal{X}_q^+], \ MAP = \sum_{q \in \mathcal{Q}} AP(q)$ $\text{Mean Reciprocal Rank (MRR)} \quad MRR(q) = \frac{1}{|\mathcal{X}_q^+|} \sum_{k=1}^{|\mathcal{X}_q^+|} \frac{1}{rank(k)}$
- Normalized Discounted Cumulative Gain (NDCG) $NDCG(q; y; k) = \frac{\sum_{i=1}^{k} D(i) \mathbb{1}[i \in \mathcal{X}_{q}^{+}]}{\sum_{i=1}^{k} D(i)}, \ D(i) = \begin{cases} 1 & i = 1 \\ \frac{1}{\log_{2}(i)} & 2 \le i \le k \end{cases}$

$$\frac{1}{2} \left\| w \right\|^2 = \frac{1}{2} w^T w$$

Summary

$$\rightarrow \frac{1}{2}\langle W, W \rangle_F = \frac{1}{2}tr(W^TW)$$

$$\min_{W,\xi} \frac{1}{2} tr(W^T W) + C \cdot \frac{1}{|\mathcal{X}|} \sum_{q \in \mathcal{X}} \xi_q , \ \forall q \in \mathcal{X}, y \in \mathcal{Y} \backslash \mathbf{y}_q^*$$

s.t.
$$\langle W, \psi_{po}(q, \mathbf{y_q^*}) \rangle_F - \langle W, \psi_{po}(q, \mathbf{y}) \rangle_F \ge \triangle(\mathbf{y_q^*}, \mathbf{y}) - \xi_q, \quad \xi_q \ge 0$$

$$\psi_{po}(q, y) = \sum_{i \in \mathcal{X}_q^+} \sum_{j \in \mathcal{X}_q^-} y_{ij} \frac{\phi(q, i) - \phi(q, j)}{|\mathcal{X}_q^+| \cdot |\mathcal{X}_q^-|}$$

$$\phi(q, i) = -(q - i)(q - i)^{T}$$

$$\triangle(y_q^*, y) = \operatorname{score}(y_q^*) - \operatorname{score}(y)$$
$$= 1 - \operatorname{score}(y)$$

score ∈ {AUC, Pre@k, MAP, MRR, NDCG}

Solving structured SVM

- $|\mathcal{Y}|$ is super-exponential
- Cutting-plane algorithm
 - 1-slack scaling $\xi_q, \forall q \in \mathcal{X}
 ightarrow \xi$
 - alternates between updating the set of constraint and finding W and ξ
 - Until the loss of new constraint $<\epsilon$
- Replace 2-norm to 1-norm for sparsity

$$\frac{1}{2}tr(W^TW) \to tr(W)$$

Input: data \mathcal{X} , rankings y_1^*, \ldots, y_n^* , slack trade-off C > 0, accuracy threshold $\epsilon > 0$

Output: metric
$$W \succeq 0$$
, slack variable $\xi \geq 0$

- Set of constraints 1: $\mathcal{C} \leftarrow \emptyset$
- 2: repeat

$$(W,\xi) \leftarrow \operatorname{argmin}_{W,\xi} f(W,\xi) = \operatorname{tr}(W) + C\xi$$
 s. t. $W \succeq 0$
$$\xi > 0$$

$\forall (y_1, y_2, \dots, y_n) \in \mathcal{C}:$

$$\frac{1}{n} \sum_{i=1}^{n} \langle W, \delta \psi_{po}(q_i, y_i^*, y_i) \rangle_F \ge$$

$$\frac{1}{n}\sum_{i=1}^{n}\Delta(y_i^*, y_i) - \xi$$

for
$$i = 1$$
 to n do

for
$$i = 1$$
 to n do
$$y_i \leftarrow \operatorname{argmax}_{y \in \mathcal{Y}} \Delta(y_i^*, y) + \langle W, \psi_{po}(q_i, y) \rangle_F$$
end for

6:

4:

5:

7:
$$\mathcal{C} \leftarrow \mathcal{C} \cup \{(y_1, \dots, y_n)\}$$

8: **until**

$$\frac{1}{n} \sum_{i=1}^{n} \Delta(y_i^*, y_i) - \langle W, \delta \psi_{po}(q_i, y_i^*, y_i) \rangle_F \le \xi + \epsilon$$

Find rankings y that most violate

$$\langle W, \psi_{po}(q, y_q^*) \rangle_F - \langle W, \psi_{po}(q, y) \rangle_F \ge \triangle(y_q^*, y) - \xi_q$$
 \rightarrow add to \mathcal{C}

Can reduce to

sort $\forall i \in \mathcal{X}_q^+$ by desc $\langle W, \phi(q, i) \rangle_F$ sort $\forall j \in \mathcal{X}_q^-$ by desc $\langle W, \phi(q, i) \rangle_F$

Find a interleaving of the above

Terminate if error
$$< \varepsilon$$
 19

Experiment

Classification on UCI Data

Ranking on eHarmony Data

Apply to Music Similarity [McFee et al. ISMIR 2010]

Classification Result

UCI Dataset

	d	# Train	# Test	# Classes
Balance	4	500	125	3
Ionosphere	34	281	70	2
WDBC	30	456	113	2
Wine	13	143	35	3
IsoLet	170	6238	1559	26

KNN Classification error(%)

Dimension Reduction

Ranking Results

 eHarmony: a online dating service witch matching users by personality traits

9	Matchings	Unique users	Queries
Training	506688	294832	22391
Test	439161	247420	36037

Results

	Algorithm	AUC	MAP	MRR	Time	$ \mathcal{C} $
)	MLR-AUC	0.612	0.445	0.466	232	7
	MLR-MAP	0.624	0.453	0.474	2053	23
	MLR-MRR	0.616	0.448	0.469	809	17
	SVM-MAP	0.614	0.447	0.467	4968	36
	Euclidean	0.522	0.394	0.414		20

Apply to Music Similarity

Swat10k Dataset

- 10,870 songs
- 3,748 unique artists

	Training	Validation	Test	Discard
# Artists	746	700	700	1602
# Songs	1842	1819	1862	5347
# Relevant	39.5	37.7	36.4	

Ground truth source

- Collaborative filtering (from last.fm) on artist similarity

$$F_{ui} = \begin{cases} 1 & \text{user } u \text{ listened to artist } i \\ 0 & \text{otherwise,} \end{cases} \qquad S_{ij} = \frac{F_i^\mathsf{T} F_j}{\|F_i\| \cdot \|F_j\|}$$

- Discard artist that fewer than 100 user
- set the top 10 in the collaborative score(S_{ii}) list as relevant
- Transfer to song-level similarity (songs of the same artist share the same relevant scores)

Apply to Music Similarity(2)

Features

- $k(u,v) = \exp\left(-\chi^2(u,v)\right)$ $- \triangle MFCC (39 \dim MFCCs) \qquad \chi^{2}(u, v) = \sum_{i=1}^{5000} \frac{(u_{i} - v_{i})^{2}}{u_{i} + v_{i}}.$
 - Random pick 1000 songs, pick 1000 MFCCs for each → 5000 cluster (codewords)
 - Represent a song as the histogram of the 5000 codewords
 - Further represent a song with chi-square distance to each song in the training set (PCA to 39 dim)

Auto Tagging

- Auto tagger of [D. Turnbull et al. TASLP Feb. 2008]
- 149 dim vector: the ith dim ← the prob(ith tag applies to the song), given the observed \triangle MFCCs

Human Tagging

- Tags from Pandora Music Genome Project
- 1053 dim 0101 weakly-label vector

Apply to Music Similarity(3)

Results

Data source	AUC	MAP	MRR
MFCC	0.630	0.057	0.249
Optimized MFCC	0.719	0.081	0.275
Auto-tags	0.726	0.090	0.330
Optimized auto-tags	0.776	0.116	0.327
Human tags	0.770	0.187	0.540
Optimized human tags	0.939	0.420	0.636

Conclusion

Proposed a metric learning algorithm optimize for rank-based loss function

- MLR improves over baseline Euclidean distance
 - But linear model may not suffice to capture ranking structure
 - Future direction: incorporate non-linear transformations

THANK YOU^