Notas Variedades

Cristo Daniel Alvarado

18 de diciembre de 2023

Índice general

4.	Vari	iedades	2
	4.1.	Variedades Topológicas	2
	4.2.	Compatibilidad de Cartas	3

Capítulo 4

Variedades

4.1. Variedades Topológicas

Para hacer toda la parte de introducción a varidedades, se hará uso del libro de Loring W. Tu 'An introduction to manifolds'. Hablaremos inicialmente de variedades topológicas. Para entender mejor los conceptos usados a lo largo de la sección, consultar al apéndice A del libro mencionado anteriormente.

Recordemos varias cosas, Un espacio topológico M es **segundo numerable** si tiene una base a lo sumo numerable. Una **vecindad** de un punto $p \in M$ es cualquier conjunto abierto que contenga a p. Una **cubierta abierta de** M es una colección $\{U_{\alpha}\}_{{\alpha}\in A}$ de conjuntos abiertos de M tales que $\bigcup_{{\alpha}\in A}U_{\alpha}=M$.

Definición 4.1.1

Un espacio topológico M es localmente euclideano de dimensión \mathbf{n} si todo punto $p \in M$ tiene una vecindad $U \subseteq M$ tal que existe un homeomorfismo $\phi: U \to V$, donde $V \subseteq \mathbb{R}^n$ es abierto. Al par $(U, \phi: U \to V)$ se le conoce como una carta, U es una vecindad coordenada o conjunto abierto coordenado, y ϕ es el mapeo mapeo coordenado o sistema coordenado sobre U.

Decimos que una carta (U, ϕ) está centrada en $p \in U$ si para $\phi(p) = 0$. Una carta (U, ϕ) alrededor de p simplemente significa que (U, ϕ) es una carta y que $p \in U$.

Definición 4.1.2

Una Variedad Topológica de dimensión n es un espacio topológico localmente euclideano de dimensión n, Hausdorff y segundo numerable.

Recordamos que la condición de Hausdorff y la segunda numerabilidad son propiedades hereditarias, esto es, son heredadas a los subespacios de estos espacios topológicos. Un subespacio de un espacio Hausdorff es Hausforff y un subespacio de un espacio segundo numerable es segundo numerable. Así que de forma inmediata, como \mathbb{R}^n es Hausdorff y segundo numerable, cualquier subespacio de él es automáticamente Hausdorff y segundo numerable.

Ejemplo 4.1.1

El espacio euclideano \mathbb{R}^n es una variedad topológica de dimensión n, pues pues es un espacio topológico localmente euclideano, pues para todo $p \in \mathbb{R}^n$ existe $\phi = \mathrm{id}_{\mathbb{R}^n}$ homeomorfismo de \mathbb{R}^n en \mathbb{R}^n , además \mathbb{R}^n es Hausdorff y segundo numerable.

Ejemplo 4.1.2

Considere la gráfica de la función $f\mathbb{R} \to \mathbb{R}$, $x \mapsto x^{2/3}$. Su gráfica tiene la siguiente forma: Su gráfica (denotada por $\Gamma(f)$) es una variedad topológica, esto en virtud de ser un subespacio de \mathbb{R}^2 , el cual es Hausdorff y segundo numerable. Y es localmente euclideano ya que es homeomorfo a \mathbb{R} , usando el mapeo $\pi : \mathbb{R}^2 \to \mathbb{R}$, $(x, x^{2/3}) \mapsto x$.

Ejemplo 4.1.3

Considere la cruz como subconjunto de \mathbb{R}^2 . Claramente es Hausdorff y segundo numerable. Probaremos que no es una variedad topológica de dimensión 1 ó 2. Suponga que lo es, entonces para $p \in M$ (la intersección de la cruz) existe un mapeo $\phi: U \to V$, donde $U \subseteq M$ (M es el espacio topológico) con $V \subseteq \mathbb{R}^n$, donde $n \in \mathbb{N}$. Podemos suponer que U es abierto conexo (si no es conexo, basta tomar una bola tal que esté contenida en U). Notemos que $U/\{p\}$ es un conjunto que tiene 4 componentes conexas. Si

- n = 1, como los abiertos conexos en \mathbb{R} son intervalos conexos, al quitarles un punto del interior, se tiene que $V/\{\phi(p)\}$ tiene dos componentes conexas.
- n > 1, como a los conexos abiertos de \mathbb{R}^n con n > 1 al quitarles un punto siguen siendo conexos, se tiene que $V/\{\phi(p)\}$ tiene una componente conexa.

como los homeomorfismos mandan componentes conexas en componentes conexas, no puede suceder que la imagen de $U/\{p\}$ el cual es $V/\{\phi(p)\}$ tenga 2 o una componente conexa. Luego el espacio topológico M no es localmente euclideano y por tanto, no es variedad topológica.

4.2. Compatibilidad de Cartas

Sea M una variedad topológica y considere $(U, \phi : U \to \mathbb{R}^n)$ y $(V, \psi : V \to \mathbb{R}^n)$ dos cartas de la variedad topológica M.

Definición 4.2.1

Dadas dos cartas de una variedad topológica (usando la notación de lo escrito anteriormente), decimos que son C^{∞} -compatibles si los dos mapeos

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$$

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$

$$(4.1)$$

son C^{∞} . Estos dos mapeos son llamados funciones de transición entre las cartas.

Observación 4.2.1

En el contexto de la definición anterior, en caso de que la intersección de las dos cartas sea vacía, las cartas serán en automático C^{∞} -compatibles.

Para simplificar la notación, escribiremos

$$U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$$

У

$$U_{\alpha\beta,\gamma} = U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

Como nuestro interés va solo sobre cartas C^{∞} -compatibles, seguidamente vamos a omitir la mención de C^{∞} y hablaremos simplemente de cartas compatibles.

Definición 4.2.2

Un Atlas C^{∞} o simplemente un atlas en un espacio localmente euclideano, es una colección $\mathbb{U} = \{(U_{\alpha}, \phi_{\alpha})\}\$ de cartas C^{∞} -compatibles a pares que cubren a M, es decir tales que $M = \bigcup_{\alpha} U\alpha$.

Observación 4.2.2

La C^{∞} -compatibilidad de cartas es una relación reflexiva, simétrica, pero no es transitiva. En efecto.

Demostración:

Sea ${\cal M}$ un espacio localmente euclideano.

Teorema 4.2.1 (Nombre) Teorema	
D (N l)	
Proposición 4.2.1 (Nombre) Proposición	
Corolario 4.2.1 (Nombre) Corolario	
Lema 4.2.1 (Nombre) Lema	
Definición 4.2.3 (Nombre) Definición	
Observación 4.2.3 (Nombre) Observación	
Ejemplo 4.2.1 (Nombre) Ejemplo	
Ejercicio 4.2.1 (Nombre) Ejercicio	