Sri Lanka Institute of Information Technology

Lab Submission Lab sheet 08

IT24100024 Mayureshan Parameswaran

Probability and Statistics | IT2120

B.Sc. (Hons) in Information Technology

1. Calculate the population mean and population standard deviation of the laptop bag weights.

```
> setwd("C:\\Users\\IT24100024\\Desktop\\IT24100024")
> # Read the data from the text file (make sure to use the correct path to the file)
> data <- read.table("Exercise - LaptopsWeights.txt", heade r = TRUE)
> # View and edit the data if needed
> fix(data)
```

■ Data Editor —						×	<
File Edit Help							
	Weight.kg.	var2	var3	var4	var5	var6	^
1	2.46						
2	2.45						
3	2.47						
4	2.71						
5	2.46						
6	2.05						
7	2.6						
8	2.42						
9	2.43						
10	2.53						
11	2.57						
12	2.85						
13	2.7						
14	2.53						
15	2.28						
16	2.2						
17	2.57						
18	2.89						
19	2.51						
							~

2. Draw 25 random samples of size 6 (with replacement) and calculate the sample mean and sample standard deviation for each sample.

```
sample_means num [1:25] 2.68 2.66 2.62 2.45 2.22 ...
sample_stds num [1:25] 0.16 0.111 0.144 0.169 0.328 ...
```

3. Calculate the mean and standard deviation of the 25 sample means and state the relationship of them with true mean and true standard deviation.

```
# 3. Calculate the mean and standard deviation of the 25 sample means
mean_of_sample_means <- mean(sample_means)</pre>
std_of_sample_means <- sd(sample_means)</pre>
# Output the results
cat("Population Mean:", population_mean, "\n")
cat("Population Standard Deviation:", population_std, "\n")
cat("Mean of Sample Means:", mean_of_sample_means, "\n")
cat("Standard Deviation of Sample Means:", std_of_sample_means, "\n")
> # 3. Calculate the mean and standard deviation of the 25 sample means
> mean_of_sample_means <- mean(sample_means)</pre>
> std_of_sample_means <- sd(sample_means)</pre>
> # Output the results
> cat("Population Mean:", population_mean, "\n")
Population Mean: 2.468
> cat("Population Standard Deviation:", population_std, "\n")
Population Standard Deviation: 0.2561069
> cat("Mean of Sample Means:", mean_of_sample_means, "\n")
Mean of Sample Means: 2.469867
> cat("Standard Deviation of Sample Means:", std_of_sample_means, "\n")
Standard Deviation of Sample Means: 0.1402073
```