Risk Assessment of Arboviruses in Brazilian State Capitals

2025-08-22

Content:

- 1. Gathering Data
- 2. Preparing Data
- 3. Running Risk Assessment (for 2024, without epidemic years)
- 4. Descriptive graphs of incidence and risk
- 5. Control Diagrams (for 2024, without epidemic years)
- 6. Risk Levels in 2024

1. Gathering Data

2. Preparing Data

Grouping by municipality and epidemiological week

```
## Grouping by municipality and epidemiological week
dengue_df <- dengue_full %>%
  # Correctly group by municipality, year, and week first
  group_by(municipality, year, week) %>%
  summarise(
    cases = sum(likely_cases, na.rm = TRUE),
   population = sum(population, na.rm = TRUE),
   deaths = sum(deaths, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  mutate(
   incidence = ifelse(population > 0, cases / (population / 100000), 0),
    wy = paste0(year, "w", as.integer(week))
  ) %>%
  full_join(epiweek40, by = "wy") %>%
  # IMPORTANT FIX: Group by municipality BEFORE arranging and filling NAs
  group_by(municipality) %>%
  arrange(year_week40, epidemiologic_week_startsweek40) %>%
  mutate(
    # Use across() to apply na.locf cleanly to several columns
   across(c(year, cases, population, deaths, incidence), ~ zoo::na.locf(., na.rm = FALSE)),
   yw = as.character(paste0(year_week40,"-", epidemiologic_week_startsweek40)),
   epi_label = paste0(year_week40, "w", epidemiologic_week_startsweek40)
  # Ungroup at the end to have a clean, final dataframe
  ungroup()
```

3. Risk Assessment

Function for Risk Assessment

```
perform risk analysis <- function(df, analysis year = 2024) {</pre>
  # Defines a function that takes a dataframe 'df' and an 'analysis_year'.
  tryCatch({
    # If an error occurs, the code will jump to the 'error' section at the end.
    # === Part 1: Identify Epidemic Years based on Risk Score ===
    # The goal of this part is to analyze all historical data to determine which years behaved like epi
    # Create a preliminary endemic channel using ALL historical data.
   preliminary_channel <- df %>%
      # 1. Select only data from years before the analysis_year.
     filter(year_week40 < analysis_year) %>%
      # 2. Group data by the epidemiological week number.
      group_by(week2 = epidemiologic_week_startsweek40) %>%
      # 3. For each week, calculate the historical average and standard deviation of incidence.
      summarise(avg_incidence = mean(incidence, na.rm = TRUE), sd_incidence = sd(incidence, na.rm = TRUE)
      # 4. Calculate the upper alert threshold (95% confidence interval).
      mutate(high = avg_incidence + (1.96 * sd_incidence))
```

```
# Check if there is enough historical data to proceed.
if(nrow(preliminary_channel) == 0) return(NULL)
# Assess all historical years against the preliminary channel to find epidemic years.
risk_all_years <- df %>%
  # 1. Select only historical data.
  filter(year_week40 < analysis_year) %>%
  # 2. Add the calculated avg incidence and high threshold to each row based on its week.
  left_join(preliminary_channel, by = c("epidemiologic_week_startsweek40" = "week2")) %>%
  # 3. Group the data by year to analyze each year independently.
  group_by(year_week40) %>%
  # 4. Ensure weeks are sorted chronologically within each year.
  arrange(epidemiologic_week_startsweek40, .by_group = TRUE) %>%
  # 5. Create several new columns (triggers) based on different risk conditions.
  mutate(
    # Trigger: Is incidence above average but below the high threshold? (1=yes, 0=no)
    increasedincidence = ifelse(incidence > avg_incidence & incidence < high, 1, 0),
    # Trigger: Has 'increasedincidence' been true for 4 straight weeks?
    increasedincidence4weeks = zoo::rollapply(increasedincidence, 4, function(x) as.integer(all(x =
    # Trigger: Is incidence above the high threshold?
    increasedincidencehigh = ifelse(incidence > high, 1, 0),
    # Trigger: Has 'increasedincidencehigh' been true for 4 straight weeks?
    increasedincidencehigh4weeks = zoo::rollapply(increasedincidencehigh, 4, function(x) as.integer
    # Trigger: Did deaths increase from the previous week?
    increaseddeath = ifelse(deaths > lag(deaths), 1, 0),
    # Trigger: Has 'increaseddeath' been true for 4 straight weeks?
    increaseddeath4w = zoo::rollapply(increaseddeath, 4, function(x) as.integer(all(x == 1)), fill
    # Calculate log of incidence to check for exponential growth.
    ln_incidence = ifelse(incidence > 0, log(incidence), 0),
    # Calculate the week-over-week change in log(incidence).
    exponentialgrowth = ln_incidence - dplyr::lag(ln_incidence),
    # Trigger: Is growth exponential AND is incidence above the high threshold?
    increasedexpgrowth = ifelse(exponentialgrowth > 0 & incidence > high, 1, 0),
    # Trigger: Has 'increaseddeath' been true for 5 straight weeks?
    increaseddeath5w = zoo::rollapply(increaseddeath, 5, function(x) as.integer(all(x == 1)), fill
  # Replace any NAs created by the rolling functions (at the start of the series) with 0.
  mutate(across(c(increasedincidence4weeks, increasedincidencehigh4weeks, increaseddeath4w, increas
  # Assign risk levels based on the triggers.
  mutate(
    # Risk Level 1: Sustained increase in cases.
   risk_level1 = if_else(increasedincidence4weeks == 1, 1L, 0L),
    # Risk Level 2: High alert for cases or sustained increase in deaths.
    risk_level2 = if_else(increasedincidencehigh4weeks == 1 | increaseddeath4w == 1, 2L, 0L),
    # Risk Level 3: Epidemic level based on exponential growth or prolonged increase in deaths.
    risk_level3 = if_else(increasedexpgrowth == 1 | increaseddeath5w == 1, 3L, 0L),
    # The final risk assessment for a week is the highest level triggered.
   riskassessment = pmax(risk_level1, risk_level2, risk_level3, na.rm = TRUE)
  )
# From the historical assessment, create a list of years that hit risk level 3.
epidemic_years <- risk_all_years %>% filter(riskassessment >= 3) %>% distinct(year_week40) %>% pull
# Create a list of all available historical years.
```

```
all_hist_years <- unique(df$year_week40[df$year_week40 < analysis_year])
# Create the list of non-epidemic years by removing epidemic years from all historical years.
non_epidemic_years <- all_hist_years[!all_hist_years %in% epidemic_years]</pre>
# Select only the 5 most recent non-epidemic years for the final baseline.
non_epidemic_years <- non_epidemic_years %>%
  sort() %>%
  tail(5)
# Fallback condition: Skips the municipality if there are not enough non-epidemic years to build a
if (length(non epidemic years) < 2) {</pre>
  message(paste("Skipping municipality:",
                unique(df$municipality),
                "| Reason: Fewer than 2 non-epidemic years found."))
 return(NULL)
}
# === Part 2: Build Final Control Diagram and Assess the Current Year ===
# The goal of this part is to use the clean "non-epidemic" years to build a
# final, reliable baseline and assess the current analysis_year against it.
# Isolate the incidence and death data for the current analysis_year.
incidence_current_year <- df %>% filter(year_week40 == analysis_year) %>% transmute(incidence_current_year)
# Build the final, clean endemic channel.
control data <- df %>%
  # 1. IMPORTANT: Filter for only the selected non-epidemic years.
  filter(year_week40 %in% non_epidemic_years) %>%
  # 2. Group by week.
  group_by(week2 = epidemiologic_week_startsweek40) %>%
  # 3. Recalculate the average and standard deviation using this cleaner data.
  summarise(avg_incidence = mean(incidence, na.rm = TRUE), sd_incidence = sd(incidence, na.rm = TRUE)
  # 4. Create the final upper and lower thresholds for the control diagram.
  mutate(high = avg_incidence + 1.96*sd_incidence, low = pmax(0, avg_incidence - 1.96*sd_incidence)
  # 5. Join the final channel data with the current year's data.
  left_join(incidence_current_year, by = "week2")
# Perform the final risk assessment for the analysis_year.
risk_final <- control_data %>%
  arrange(week2) %>%
  mutate(
    increasedincidence = ifelse(incidence_current > avg_incidence & incidence_current < high, 1, 0)
    increasedincidence4weeks = zoo::rollapply(increasedincidence, 4, function(x) as.integer(all(x==
    increasedincidencehigh = ifelse(incidence_current > high, 1, 0),
    increasedincidencehigh4weeks = zoo::rollapply(increasedincidencehigh, 4, function(x)as.integer(
    increaseddeath = ifelse(deaths > lag(deaths), 1, 0),
    increaseddeath4w = zoo::rollapply(increaseddeath, 4, function(x) as.integer(all(x==1)), fill=NA
    ln_incidence = ifelse(incidence_current > 0, log(incidence_current), 0),
    exponentialgrowth = ln_incidence - dplyr::lag(ln_incidence),
    increasedexpgrowth = ifelse(exponentialgrowth > 0 & incidence_current > high, 1, 0),
    increaseddeath5w = zoo::rollapply(increaseddeath, 5, function(x) as.integer(all(x==1)), fill=NA
```

```
mutate(across(c(increasedincidence4weeks, increasedincidencehigh4weeks, increaseddeath4w, increas
mutate(
    risk_level1 = if_else(increasedincidence4weeks == 1, 1L, 0L),
    risk_level2 = if_else(increasedincidencehigh4weeks == 1 | increaseddeath4w == 1, 2L, 0L),
    risk_level3 = if_else(increasedexpgrowth == 1 | increaseddeath5w == 1, 3L, 0L),
    riskassessment = pmax(risk_level1, risk_level2, risk_level3, na.rm = TRUE)
)

# Return the results as a list containing two objects.
return(list(risk_final = risk_final, epidemic_years = epidemic_years))

}, error = function(e) {
    # If any error occurred in the 'try' block, this code will run.
    message(paste("Could not process municipality:", unique(df$municipality), "| Error:", e$message))
    return(NULL)
})
```

Running risk assessment

```
# Nest the data, creating a list-column with a dataframe for each municipality
nested_data <- dengue_df %>%
group_by(municipality) %>%
nest()

# Apply function to each nested dataframe
results <- nested_data %>%
mutate(risk_analysis_results = map(data, perform_risk_analysis))

# Unnest the results for the 2024 risk assessment
risk_2024 <- results %>%
# Safely extract the 'risk_final' tibble from the list
mutate(risk_data = map(risk_analysis_results, ~ .x$risk_final)) %>%
select(municipality, risk_data) %>%
unnest(cols = c(risk_data))
```

Table of epidemic years per municipality

```
# Helper function to safely extract epidemic years from the results list
extract_epidemic_years <- function(model_output) {
   if (!is.null(model_output) && "epidemic_years" %in% names(model_output)) {
      if (length(model_output$epidemic_years) > 0) {
        return(tibble(epidemic_year = as.character(model_output$epidemic_years)))
      }
   }
   return(tibble(epidemic_year = character(0)))
}
# Extract and unnest the epidemic years data
```

```
epidemic_years_data <- results %>%
  mutate(epidemic_years = map(risk_analysis_results, extract_epidemic_years)) %>%
  select(municipality, epidemic_years) %>%
  unnest(cols = c(epidemic_years))
# Create a summary table
epidemic_summary_table <- epidemic_years_data %>%
 group by(municipality) %>%
  summarise(
   epidemic_years_list = paste(sort(unique(epidemic_year)), collapse = ", "),
    .groups = "drop"
 ) %>%
  rename(
    `Municipality` = municipality,
    `Epidemic Years` = epidemic_years_list
# Table
knitr::kable(epidemic_summary_table, caption = "Epidemic Years of Dengue by Municipality")
```

Tabela 1: Epidemic Years of Dengue by Municipality

Municipality	Epidemic Years
130260 MANAUS	2016, 2017
230440 FORTALEZA	2015, 2016, 2017
330455 RIO DE JANEIRO	2015, 2016, 2023
350950 CAMPINAS	2014, 2015, 2016, 2019, 2022, 2023
420540 FLORIANOPOLIS	2023
510340 CUIABA	2015, 2016, 2017

4. Descriptive graphs of incidence and risk

Plotting Incidence per Municipality per Epidemiological Week

```
ggplot(dengue_df, aes(x = yw, y = incidence, group = 1)) +
  geom_line(color = "steelblue") +
  facet_wrap(~ municipality, scales = "free_y") +
  labs(
    title = "Weekly Dengue Incidence by Municipality",
    x = "Epidemiological Week (Year-Week)",
    y = "Incidence Rate (per 100,000 people)"
  ) +
  scale_x_discrete(breaks = levels(dengue_df$yw)[seq(1, length(levels(dengue_df$yw)))]) +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, size = 8))
```

Weekly Dengue Incidence by Municipality

Epidemiological Week (Year-Week)

Plotting Risk per Municipality per Epidemiological Week

```
ggplot(risk_2024, aes(x = week2, y = riskassessment, group = 1)) +
    # geom_step is great for visualizing discrete changes in risk level
    geom_step(color = "firebrick") +
    # Create a separate plot for each municipality
    facet_wrap(~ municipality) +
    labs(
        title = "Dengue Risk Assessment for 2024 by Municipality",
        x = "Epidemiological Week of 2024",
        y = "Calculated Risk Level"
    ) +
    scale_y_continuous(breaks = 0:3, limits = c(0, 3)) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, size = 8))
```

```
## `geom_path()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

Dengue Risk Assessment for 2024 by Municipality

Combining the graphs

```
risk_colors <- c(
  "0" = "#2ca25f", # Green
  "1" = "#fdae6b", # Orange
  "2" = "#e31a1c", # Red
  "3" = "#810f7c" # Purple for the highest risk
ggplot(risk_2024, aes(x = week2)) +
  # The historical endemic channel (grey ribbon and dashed line)
  geom_ribbon(aes(ymin = low, ymax = high), fill = "grey80", alpha = 0.6) +
  geom_line(aes(y = avg_incidence), linetype = "dashed", color = "black") +
  # The 2024 incidence line, with color mapped to risk level
  geom_line(aes(y = incidence_current, color = as.factor(riskassessment), group = 1), size = 1.1) +
  # Creating a grid of plots
  facet_wrap(~ municipality, scales = "free_y") +
  # Apply custom color scale and labels
  scale_color_manual(
    name = "2024 Risk Level:",
```

```
values = risk_colors,
labels = c("0 - Normal", "1 - Alert", "2 - High", "3 - Epidemic")
) +

# Update titles and labels for the combined plot
labs(
   title = "Dengue Incidence & Risk Assessment (2024) for Brazilian Capitals",
   subtitle = "The incidence line is colored by its weekly risk score.",
   y = "Incidence Rate (per 100,000)",
   x = "Epidemiological Week of 2024"
) +
theme_minimal() +
theme(legend.position = "top")
```

```
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
## `geom_line()`: Each group consists of only one observation.
## i Do you need to adjust the group aesthetic?
```

Dengue Incidence & Risk Assessment (2024) for Brazilian Capitals The incidence line is colored by its weekly risk score.

Epidemiological Week of 2024

5. Control Diagrams (for 2024, without epidemic years)

```
ggplot(risk_2024, aes(x = week2)) +

# The historical endemic channel (grey ribbon)
geom_ribbon(aes(ymin = low, ymax = high), fill = "lightblue", alpha = 0.8) +

# The historical average line
geom_line(aes(y = avg_incidence, linetype = "Historical Average", group = 1), color = "black") +

# The 2024 incidence line
geom_line(aes(y = incidence_current, linetype = "2024 Incidence", group = 1), color = "red") +

# Create a grid of plots for each municipality
facet_wrap(~ municipality, scales = "free_y") +

# Customize the legend for clarity
scale_linetype_manual(
    name = "Legend",
    values = c("Historical Average" = "dashed", "2024 Incidence" = "solid")
) +

# Add titles and labels
```

```
labs(
   title = "Control Diagrams for Dengue Incidence (2024)",
   subtitle = "2024 Incidence vs. Non-Epidemic Historical Average",
   y = "Incidence Rate (per 100,000)",
   x = "Epidemiological Week of 2024"
) +
theme_minimal() +
theme(legend.position = "top")
```

Control Diagrams for Dengue Incidence (2024)

2024 Incidence vs. Non-Epidemic Historical Average

Epidemiological Week of 2024

6. Risk Levels of Dengue in 2024

```
# Define the colors for each risk level
risk_colors <- c(
   "0" = "green", # Green
   "1" = "yellow", # Orange
   "2" = "orange", # Red
   "3" = "red" # Purple for the highest risk
)

# Create the plot using a bar chart style
ggplot(risk_2024, aes(x = week2)) +</pre>
```

```
# 1. Gray bars representing the upper limit of the endemic channel
geom_col(aes(y = high), fill = "grey80", alpha = 0.9) +
# 2. Blue dashed line for the historical average
geom_line(aes(y = avg_incidence, group = 1), color = "blue", linetype = "dashed", size = 1) +
# 3. Stacked, colored bars for the 2024 incidence, with the color based on risk level
geom_col(aes(y = incidence_current, fill = as.factor(riskassessment))) +
# Create a separate plot for each municipality
facet_wrap(~ municipality, scales = "free_y") +
# Apply the custom color scale
scale_fill_manual(
 name = "Level of Risk",
 values = risk_colors
) +
# Add titles and labels
 title = "Risk Levels of Dengue Outbreak in 2024",
  subtitle = "Weekly incidence compared to the historical endemic channel (excluding epidemic years)"
 y = "Incidence Coefficient (per 100,000 inhabitants)",
 x = "Epidemiological Week"
) +
theme minimal() +
theme(
 legend.position = "bottom",
  axis.text.x = element_text(angle = 90, vjust = 0.5, size = 8)
)
```

Risk Levels of Dengue Outbreak in 2024

Weekly incidence compared to the historical endemic channel (excluding epidemic year

