WEST

End of Result Set

Generate Collection Print

L3: Entry 3 of 3

File: JPAB

Apr 7, 1998

PUB-NO: JP410087906A

DOCUMENT-IDENTIFIER: JP 10087906 A

TITLE: POLYOLEFIN COMPOSITION FOR SHAPING, USED FOR PRODUCTION OF

NON-WOVEN FABRIC

PUBN-DATE: April 7, 1998

INVENTOR-INFORMATION:

NAME

NAME COUNTRY

WINTER, ANDREAS DR

VOLLMAR, ANNETTE DIPL ING

FAAIJE, VOLKER DR

BREKNER, MICHAEL-JOACHIM DR

SIEMON, MANFRED DR

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HOECHST AG

APPL-NO: JP09234089

APPL-DATE: August 29, 1997

09294989

INT-CL (IPC): CO8 L 23/02; CO8 K 3/34; CO8 K 5/05; CO8 K 5/098; CO8 L 45/00; DO4 H 1/54; DO4 H 3/00

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a polyolefin composition comprising at least two kinds of different polyolefins obtained by (co)polymerizing olefins and capable of being shaped into nonwoven fabrics having improved strengths.

SOLUTION: The polyolefin composition for shaping comprises at least two kinds of polyolefins obtained by polymerizing or copolymerizing a olefin of the formula R9CH=CHR6(R9, R6 are each H, a 1-14C alkyl, or R9, R6 may form a ring together with a connected atom). The polyolefin composition preferably comprises (A) at least one kind of highly isotactic polyolefin and (B) 5-60wt.%, preferably 7-50wt.%, especially preferably 10-40wt.%, of at least one kind of low isotactic polyolefin. The composition preferably has a melt flow index (230/2.16) of 5-1000dg/min, a molecular mass of 75000-350000g/mol, a polydispersity of 1.8-5.0 and a viscosity

number of 70-250cm3/g.

COPYRIGHT: (C)1998, JPO

WEST Search History

DATE: Thursday, January 02, 2003

Set Name side by side	Query	Hit Count	Set Name result set
DB=USPT,PGPB,JPAB,EPAB,DWPI; PLUR=YES; OP=ADJ			
L1	winter-andreas\$.in.	241	Ll
L2	L1 and (textile or fabric or cloth)	3	L2
L3	L2 and (impact or strength)	3	L3
L4	L1 and (impact or strength)	84	L4
L5	L1 and impact	37	L5
L6	L5 not 13	36	L6
L7	L1 and polypropylene	110	L7
L8	L7 and fiber	31	L8
L9	L8 and (impact or strength)	23	L9

END OF SEARCH HISTORY

Generate Collection Print

L1: Entry 219 of 241

File: EPAB

Jul 28, 1993

PUB-NO: EP000552681A1

DOCUMENT-IDENTIFIER: EP 552681 A1

TITLE: Impact resistant polyolefine molding composition.

PUBN-DATE: July 28, 1993

INVENTOR - INFORMATION:

NAME COUNTRY

WINTER, ANDREAS DR DE
BACHMANN, BERND DR DE
DOLLE, VOLKER DR DE

ASSIGNEE-INFORMATION:

NAME COUNTRY

HOECHST AG DE

APPL-NO: EP93100566

APPL-DATE: January 15, 1993

PRIORITY-DATA: DE04201191A (January 18, 1992)

US-CL-CURRENT: <u>524/310</u>

INT-CL (IPC): C08L 23/10; C08L 23/12

EUR-CL (EPC): C08L023/10; C08L023/12, C08L023/16

ABSTRACT:

CHG DATE=19990617 STATUS=0> A polyolefin moulding composition essentially comprising from 20 to 99 % by weight, based on the moulding composition, of an isotactic polyolefin containing no atactic polymer chains and from 1 to 80 % by weight, based on the moulding composition, of a rubber having a glass transition temperature of below -20 DEG C is distinguished by high impact strength and hardness even at low temperatures.