ЛАБОРАТОРНАЯ РАБОТА 3.4.2

ЗАКОН КЮРИ-ВЕЙССА

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, автогенератор, термопара.

ТЕОРИЯ

Внешнее магнитное поле ориентирует магнитные моменты в ферромагнетике. Дезориентирующей действие теплового движения, и магнитная восприимчивость убывает с повышением температуры. Для ферромагнитных веществ такая зависимость носит название «закон Кюри-Вейсса».

$$\chi \backsim \frac{1}{T - \Theta_p}$$

Здесь Θ_p - температура близкая к температуре Кюри, и называется парамагнитной точкой Кюри.

Исследование закона для гадолиния будет производить на установке по схеме на Рис. 1. Маленькие

кусочки гадолиния выступают в качестве сердечника для катушки индуктивности, вклюенной в колебательный контур. При изменении магнитной восприимчивости меняется самоиндукция и период автоколебаний генератора.

$$(L - L_0) \backsim \chi$$
$$\tau = 2\pi \sqrt{LC}$$

Откуда

$$T - \Theta_p \sim \frac{1}{\chi} \sim \frac{1}{\tau^2 - \tau_0^2}$$

Настроим приборы и запишем чувствительность термопары $K=24\frac{\mathrm{K}}{\mathrm{MB}}$. Термопара измеряет разницу температур между колбой с образцом и термостатом. Период колебаний автогенератора с катушкой без гадолиния $\tau_0=9.187$ мкС.

Снимем зависимость периода от температуры и построим графики.

Точка Кюри для гадолиния - 16°C.