Khôlles de Mathématiques - Semaine 11

Hugo Vangilluwen

13 décembre 2023

1 Existence de la limite par majoration de l'écart à la limite par une fonction tendant vers 0

Soient
$$f,g: \mathcal{D} \to \mathbb{R}, a \in \overline{\mathcal{D}}$$
 et $\ell \in \mathbb{R}$ où $\mathcal{D} \subset \mathbb{R}$.
Si $|f(x) - \ell| \leq g(x)$ pour x au voisinage de a et $g(x) \xrightarrow[x \to a]{} 0$ alors $f(x) \xrightarrow[x \to a]{} \ell$.

 $D\acute{e}monstration.$ Soient f,g,a,ℓ de telles fonctions et de tels réels.

Soit $\varepsilon \in \mathbb{R}_+^*$ fq.

Appliquons la définition de $g(x) \xrightarrow[x \to a]{} 0$.

$$\exists \eta_1 \in \mathbb{R}_+^* : \forall x \in [a - \eta_1; a + \eta_1], |g(x)| \leqslant \varepsilon$$

Fixons un tel η_1 .

L'égalité $|f(x) - \ell| \leq g(x)$ est vrai au voisinage de a.

$$\exists \eta_2 \in \mathbb{R}_+^* : \forall x \in [a - \eta_2; a + \eta_2], |f(x) - \ell| \leq g(x)$$

Fixons un tel η_2 .

Posons $\eta = \min(\eta_1, \eta_2)$. Par transitivité de \leq ,

$$\forall x \in [a - \eta; a + \eta], |f(x) - \ell| \le \varepsilon$$

Donc
$$f(x) \xrightarrow[x \to a]{} \ell$$
.