

Fig 51a. Balloon Pattern Daniell Cell.

(Siemens Brothers & Co, Ltd)

PRACTICAL PRIMARY CELLS

BY

A. MORTIMER CODD, F.Ph.S.

MEMBER OF THE RONTGEN SOCIETY

AUTHOR OF "INDUCTION COIL DESIGN"
"RECTRIC IGNITION FOR INTERNAL COMBUSTION ENGINES"
"RECTRIC LIGHTING, STARTING, AND IGNITION FOR MOTOR VEHICLES"
"RECTRIC VIRING DIAGRAMS FOR MOTOR VEHICLES"

LONDON

SIR ISAAC PITMAN & SONS, LTD. PARKER STREET, KINGSWAY, W C.2 BATH, MELBOURNE, TORONTO, NEW YORK 1929

3213

PREFACE

THE purpose of this little book is to give working details of those cells having the greatest practical value, both for the laboratory and for commercial purposes.

As the Voltaic cell was the first practical source of current, so, we may speculate, some greatly perfected form of cell may, in the future, replace the dynamo as the ultimate source of electrical power

A great many different types of cell have been evolved during the past century, the greater number being at most scientific curiosities. The author has endeavoured to weed out from this mass of detail those cells which can really be used with some satisfaction for the purposes required, and in each case to add data of their performance, a feature hardly ever published in existing textbooks, so that the user may know what output to expect from each type of cell.

In order that the reader may keep in touch with many of those cells which may be of interest but which for some reason or another have become obsolete, an index of cells has been added at the end of the book giving the main details of the constituents of such cells as have fallen into disuse, also references as to where fuller particulars can be found

The author wishes to thank the Silvertown Co, Messrs Siemens Bros & Co, and other manufacturers, for the loan of electros, etc., and to the Atlas Carbon and Battery Co. for help in experimental work for several years past

A MORTIMER CODD

Езнев, 1929

CONTENTS

PREFACE	V
CHAPTER I	
THE SIMPLE VOLTAIC CELL	1
Depolarization — Local action — Amalgamation —E.M F and potential difference—Internal resistance—Becquerel cells	
CHAPTER II	
CLASSIFICATION OF CELLS	18
Osmosis—Watt-hour efficiency—Point of exhaustion—Choice of cells	
CHAPTER III	
PRACTICAL CELLS	29
Standard cell—Single-fluid cells—Chemical depolarizers—The Codd cell	
CHAPTER IV	
SINGLE-FLUID CELLS WITH SOLID DEPOLARIZERS .	46
Lalande cell—Leclanché cell—Agglomerate cell—Sack cells—Electrolyte—Lead peroxide cells	
CHAPTER V	
DRY CELLS	6 9
Sack dry cell—Siemens cells—Inert cells	
CHAPTER VI	
TWO-FLUID CELLS	82
Bichromate cell—Silvertown cell—Bleeck Love cell—Bunsen cell—Daniell cell—Reyniei cell—Ferric chloride cells—Darimont cell	

VIII CONTENTS

CHAPTER VII

MAINTENANCE O	F BATTI	ERIES						PAGE 105
Care of Leclar cells	nché cell	s—Cha	nging	electi	olyte-	-Two-	fluid	
USEFUL DATA List of types of	of voltaic	· cells			•	٠	•	110
APPENDIX .			•					113
INDEX .					•			125

INSET PLATE

BALLOON PATTERN DANIELL CELL (Siemens) Frontispiece

PRACTICAL PRIMARY CELLS

CHAPTER I

THE SIMPLE VOLTAIC CELL

THE earliest primary cell is the simple element devised by Volta in 1793 This consists of a vessel containing dilute acid, in this case dilute sulphuric acid, into which dip two strips of metal, one of zinc, the other of copper (Fig. 1). The liquid is called the electrolyte, and the strips the electrodes.

When these metal plates are introduced into the electrolyte the copper plate shows no apparent action, but the zinc will be attacked by the sulphuric acid giving off bubbles of hydrogen at the zinc plate and forming zinc sulphate in the solution

If a sensitive voltmeter be applied between the ends of the strips there will be found to exist between them a difference of pressure of about 1 volt.

The ends of the strips projecting above the electrolyte may be regarded as the poles of the cell, and the voltmeter (if a moving coil instrument) will show that the copper strip forms the positive or + pole, and the zinc strip the negative or - pole, that is, current is flowing through the voltmeter or exterior circuit from the copper to the zinc electrode.

If, however, we regard the flow of current from the point of view of the interior of the cell we see the current is flowing from the zinc to the copper, that is, the zinc is electro-positive to the copper, whereas the copper is electro-negative to the zinc.

r--(5620)

If we substitute for the electro-positive electrode or zinc a plate of magnesium we shall obtain a voltage of the order of 1.7 volts, if aluminium is used a voltage of about .45, or with iron about 4 volts

Suppose now we remove the copper electrode and substitute a carbon plate, using the original zinc we get a voltage

FIG 1 SIMPLE VOLTAIC CELL

of 104, with magnesium a voltage of about 1.9, with aluminium about 59, and with iron .52 volts.

From this we see some metals or bodies are more electropositive than others, and also in relation to themselves

In this way we can build up a relative table of chemical elements arranged in their various relationships one to another, as shown on page 3

We observe from this table that iron is electro-positive to lead and nickel to gold, etc., so that the farther apart

ELECTRO-CHEMICAL SERIES*

Electro-positive end—	Potassium
•	Sodium
	Magnesium
	Aluminium
	Chromium
	Manganese
	Zinc
	Iron
	Cobalt
	Nickel
	Lead
	Cadmium
	Tin
	Bismuth
	Copper
	Hydrogen
	Mercury
	Silver
	Antimony
	Gold
	Iridium
	Platinum
	Carbon
	Boron
	Nitrogen
	Arsenic
	Selenium
	Phosphorus
	Sulphur
	Iodine
	Bromine
	Chlorine
	Oxygen
****	T21

Electro-negative end— Fluorine

Difference in potential in air

we can choose our electrodes, other things being compatible, the greater the electrical pressure the cell will generate.

Returning to our zinc-sulphuric acid-copper cell, we have seen that it generates on open circuit a pressure of about 1 volt

^{*} Some rarer elements are omitted for brevity It should be noted also that the series vary slightly under different conditions

Suppose now we close the outer circuit through some load, such as a good electric bell in circuit with an ammeter.

For the first moment there will be a heavy rush of current and the bell will ring well, but after the first second or two the current will steadily fall until the bell will either cease to work or only emit a faint tinkle. If, under these circumstances we examine the cell we shall find not only that the zinc is still emitting bubbles, but that the copper plate is becoming coated with a fine layer of bubbles also.

If these bubbles are removed by stirring the copper plate, or better, by removing it and wiping it, the same cycle of events will occur, the current momentarily rising only to fall as the bubbles form on the copper surface.

The formation of these bubbles, which are of hydrogen gas, constitutes what is known as "polarization."

Now a voltaic cell is an arrangement wherein there is a direct transformation of chemical into electrical energy, and, broadly speaking, the more violent the reactions the greater the energy produced.

Of the two electrodes it seems necessary that one alone should be attacked, the second simply serving to form the electro-negative electrode and to collect the current from the cell, presenting a positive pole to the exterior circuit.

The reason for the formation of the bubbles upon the copper plate of the cell will appear simpler if we consider the theory of Grotthus and Clausius

This theory assumes that the molecules of the electrolyte have their atoms charged electro-positively and negatively respectively

In an ordinary solution the molecules may be visualized as lying about or even moving in a higgledy-piggledy manner (Fig 2).

As soon, however, as the circuit is closed, the molecules

as it were stand to attention and form a chain, the hydrogen ends being turned toward the electro-negative or copper plate, and the other ends towards the zinc plate. As long as a current flows there is assumed to be an interchange of partners along the chain.

Under these circumstances we can see that the SO₄ will combine with the zinc plate to form zinc sulphate (ZnSO₄), while hydrogen will be freed at the copper plate

Faraday named the electrode by which the current

Fig 2 Grotthus Chain, Zinc—Sulphuric Acid—Copper

enters a cell (in this case the zinc), the anode, and that by which it leaves the cathode, also those atoms which have been sundered and carried towards the cathode, cathions, those remaining at the anode, anions

Hydrogen and the metals may be regarded as cathions, since they seem to move toward the cathode, chlorine and oxygen as anions

We have seen that if we substitute an element in the electro-chemical series more widely separated from zine, such as carbon, we shall obtain different results, thus, when using carbon against zine in dilute sulphuric acid the voltage is rather over I volt, with magnesium about

1.9 volts, with aluminium about 6 volts, and with iron .52 volts, as was to be expected

Now instead of using dilute sulphuric acid we may, with a zinc carbon couple, use dilute hydrochloric acid without any appreciable change of voltage.

As previously described, the Grotthus chain works out as in Fig 3, hydrogen being evolved at the carbon cathode and zinc chloride at the anode, and also as before the hydrogen film developed on the carbon causes a drop in current

Fig 3 Grotthus Chain, Zinc-Hydrochloric Acid - Carbon

due to polarization, but this time not quite so rapid as with the copper plate, for reasons we will afterwards explain

Depolarization.

Our first experiment has shown that when the hydrogen bubbles begin to form on the surface of our copper or carbon electrode the current begins to fall.

The reason is twofold, first, the lodgment of bubbles increases the internal resistance of the cell by lessening the exposed surface of the plate, and, secondly, hydrogen itself being electro-positive, tends to set up an opposing electrical pressure.

Clearly, if the cell is to be of any practical use we must devise means whereby polarization can be eliminated

This can be effected by three methods-

- 1 Mechanical.
- 2 Chemical
- 3 Electro-chemical

The first, or mechanical, method was also the earliest to be tried, and in the Smee cell arrangement consisted of a silver plate coated with finely-divided platinum, from the surface of which the hydrogen bubbles parted more or less freely. Walker suggested that the rough surface of a carbon plate platinized would aid depolarization, and so to a certain extent it does. In our experiment with the simple cell, using carbon, the voltage was stated to be about 1.04, but when first the carbon plate is inserted the voltage shown is about 1.3 volts. This higher voltage is to some extent due to the superior depolarizing surface of the rough carbon over the smooth copper, but not wholly so. It is noticeable that with the carbon the bubbles rise in a stream to the surface much more readily than with the copper as an electrode.

Other means of mechanical depolarization suggested have been moving the plates in solution by clockwork, brushing the plates mechanically, using wire gauze to disengage the bubbles, and using circular rotating plates half immersed in the solution, so that the exposed half was depolarized in the air

In the Velvo carbon cell, carbon rods formed into a flat grid are covered with a coating of velveteen cemented on and carbonized From this large surface the hydrogen bubbles are readily disengaged, but the voltage is rather low (about ·8 volt) and the surface delicate

The second, or chemical, method consists in adding to the electrolyte some highly-oxydizing substance which will combine with the hydrogen while it is still in a nascent state, or the substance added may have a great affinity for hydrogen, such as chlorine, bromine, and iodine, or may be a metal salt of which the acid radicle will combine with the hydrogen, setting the metal free.

Reverting to the experiment in which we use the carbon rod as cathode, we have seen the initial voltage to be in the neighbourhood of 13 volts. Now this voltage is not altogether due to the superior roughness of the carbon surface over that of copper, but is attributable to the well-known fact that carbon is capable of occluding large quantities of gas, in this case air rich in oxygen, and it is the oxygen occluded within the carbon plate which is responsible for the relatively high initial reading.

Maîche took advantage of this fact in constructing his cell, in which he used lumps of platinized carbon semi-submerged in the electrolyte and revivified by the oxygen of the air. In recent years a very successful class of cells has sprung up, depending upon the air as depolarizer, "air depolarizing" cells, which will be dealt with later.

Amongst chemical depolarizers added to the solution, Poggendorff, Grenet, Fuller and others have used buchromate of potash or soda or chromic acid itself, and Dun has used potassium permanganate. Grove, Bunsen, and Callan suggested nitric acid, Leclanché and Lalande the solid depolarizers manganese dioxide and copper oxide respectively, and Reynier, Fitzgerald, and Harrison lead peroxide.

Upwood constructed powerful cells in which chlorine gas was pumped round the carbon electrodes, but such cells are impracticable for everyday use Figuier, Duchemin, Pabst, Paine, d'Arsonval, and Darimont have employed ferric chloride as a depolarizer, the active principle in this case being the chlorine. Niaudet replaced the manganese dioxide of Leclanché by chloride of lime (bleaching powder), but such a cell gives poorer results and has an unpleasant smell. Many other substances have from time to time been suggested either alone or more generally in conjunction

with some other depolarizer, but, generally speaking, apart from a certain theoretical fancifulness these derivations are worthless.

We now come to the electro-chemical mears of der polarization in which some metal, such as copper, mercury, or silver, is freed instead of the hydrogen bubbles, the arrangement being somewhat analogous to an electro-plating bath reversed Such cells are the Daniell, the Marié Davy and Schanschieff, and the de la Rue respectively, however, all except the Daniell are practically extinct owing largely to the cost of material. These cells will be dealt with later in their appropriate places.

Local Action.

In our simple cell we have seen that when the zinc electrode is immersed in the solution a certain action takes place, the zinc being dissolved and hydrogen gas evolved

This action takes place even when the circuit is not closed and, therefore, it is only a question of time before either the zinc is entirely dissolved or the electrolyte used up If chemically pure zinc could be used there would be little or no action on the zinc, the difference in the behaviour of pure and commercial zinc being due to the impurities contained in the latter Commercial zinc contains minute impurities of iron, cadmium, arsenic, etc., which act as electro-negative electrodes and set up small local couples which tend to consume the zinc; this is known as local action If the cell is to give its output in a run of a few hours' duration local action does not greatly matter, beyond the fact that it also tends to exhaust the electrolyte to some extent, but should the cell be intended for open-circuit work, such as for ringing bells, working signals, wireless apparatus or the like, in which its life may extend over months, then naturally any excessive local action would be fatal Local action cannot be entirely eliminated even by the use of comparatively mild salts,

such as sal-ammoniac instead of acids, for, if precautions are not taken, even with such relatively inactive salts, local action will continue although, perhaps, more slowly. The only exception to this is in cells using an alkaline electrolyte, such as the Lalande cell

Amalgamation.

Kemp, and afterwards Sturgeon, pointed out that if the surface of the zinc electrode is amalgamated with mercury, local action is greatly minimized, and the zinc plate rendered almost immune from the attack of any normal acid on open circuit.

The exact reason for amalgamation having this effect appears obscure

One theory is that the mercury flowing over the surface of the zinc forms a covering to the small particles of impurity, and thus prevents the formation of small local cells tending to feed on the zinc

Others maintain that the impurities float to the surface of the film of mercury, and by ceasing to touch the zine are rendered harmless. This latter certainly seems to the author the more probable explanation, but there remains the peculiar fact that mercury is electro-negative to zine, and that instead of setting up increased local action as an additional impurity it actually acts as a palliative.

The writer is inclined to take the view that the zine in the process of amalgamation floats to the surface of the film of mercury, and as the zine is used up further supplies of zine are dissolved and fed up through the mercury film itself, which is thus acting only as a vehicle for presenting pure zine to the action of the electrolyte. This view is confirmed by the fact that zines amalgamated with a supply of free mercury seem attacked less under similar circumstances than zines cast with mercury as an amalgam.

There are various ways in which zines can be amalgamated, the commonest method for laboratory purposes being to lay the zinc plate in a dish with a little dilute sulphuric acid, and then to rub in a small amount of mercury with a fragment of linen. A fine bright surface will be obtained in this way, but the disadvantage of this method is that when the zinc is stood upright in the cell, after a few hours the mercury drains to the bottom, leaving the top of the zinc open to attack

Another way is to cast the zinc with up to 5 per cent of mercury as an amalgam

This has the advantage that as the zinc is dissolved away the remaining mass is more strongly impregnated with mercury Or, again, the first and second methods may be combined. The zincs used for Post Office Leclanché cells have to contain at least 2.5 per cent of mercury The addition of too much mercury, although not harmful electrically, renders the zincs very brittle Another method of amalgamation which has been used in very active solutions, is to cast the zinc in the form of a cup, or inverted telegraph insulator, on the end of an insulated copper rod, which forms the connection The interior of the cup is filled with an amalgam of zinc heavily impregnated with mercury As there is slight voltaic action between zinc and zinc amalgam the mercury in the amalgam will eventually spread over the zinc cup itself, thereby protecting it from local action

The best p'an for effecting amalgamation is to make the zinc in the form of a squat cone or pyramid, and place it at the bottom of the cell in company with an ounce or two of free mercury, as in the Fuller cell. Owing to the small height of the zinc the mercury is able to mount over the whole mass of the zinc, giving perfect amalgamation.

In some cases, notably with dry cells, light amalgamation is carried out by adding mercuise chloride to the electrolyte with which the cell is charged, but for ordinary wet cells this method is not so good as ordinary amalgamation with liquid mercury

It may not be out of place to mention here that aluminium can be amalgamated with mercury by rubbing with a solution of caustic soda. Aluminium so amalgamated shows a rise in pressure of about .5 volt over aluminium unamalgamated, but the disadvantage of so using aluminium is that when amalgamated it forms heavy growths of oxide which eventually choke up the cell. For a few days' use, however, it is quite satisfactory, the best electrolyte being generally a solution of carbonate of soda or potash

Electromotive Force (E.M.F.) and Potential Difference (P.D.)

We have seen that two dissimilar metals immersed in a suitable solution give a difference in electrification, this, up to the present, we have spoken of as a difference in pressure or voltage, it is, in fact, the electromotive force of the cell (E M.F.) Electromotive force, then, is that which moves or tends to move electricity. Thus, in our simple cell there is a tendency in the exterior circuit for the current to flow from the point of higher electrification, the copper, to a point of lower electrification, that is, the zinc.

The point of higher electrification is conventionally denoted as the + or positive pole, and the zinc, or point of lower electrification, as the - or negative pole. It will be noted that, theoretically, the E.M.F. is the voltage of the cell on open circuit only, and to ascertain this E.M.F. it would be necessary to employ an electrostatic voltmeter or electrometer. Practically, however, we can measure the E.M.F. on open circuit by using a delicate and high resistance voltmeter, but it must be a voltmeter of high resistance in comparison with the size of the cell measured.

For example, it is useless to attempt to measure the E.M.F. of a small flash-lamp cell, using a cheap watch-type voltmeter taking several milliamperes of current.

In this case all that would be measured would be the working or effectual potential difference (P.I).) of the cell,

because the voltmeter is taking a current comparable with the working load of the cell

In other words, the term EMF expresses the voltage of the cell on open circuit, and the term PD the terminal or working voltage

Let us take two other examples.

First, suppose we measure the voltage of a large central station accumulator cell on open circuit with a sensitive voltmeter. Under these conditions we are as nearly as possible measuring its E.M.F., because the tiny current consumed by the voltmeter bears no relation to the enormous current such a cell is capable of giving. To determine the P.D. of such an accumulator cell we must wait until the cell is discharging at its normal rate

Secondly, take a moderate size Leclanché cell and apply a good voltmeter If the cell is new we shall obtain a reading of about 1.5 volts E M F. on open circuit

Now apply a load of 10 ohms, and it will be found that the voltmeter reads about 1.4 volts—this is the working voltage or P D.

Potential difference is what usually concerns the electrician, but E M F. must also be known for reasons we will shortly outline

Internal Resistance.

In our previous examples we have seen that on applying a 10-ohm load to the Leclanché cell we experienced a certain drop in voltage

If, however, we apply a 10-ohm load to the large accumulator cell no appreciable drop would be measurable. The reason for this is that the internal resistance of the accumulator cell is very low indeed, while the internal resistance of the Leclanché cell is appreciable.

In the one case we have large plates close together in an excellent conducting electrolyte, in the other we have relatively small electrodes, well separated and having a porous pot intervening, and a moderately conducting electrolyte only.

The analogy is, in the first case, a large open pipe giving a full bore of water, and in the second a small pipe partially choked with rubbish. Naturally there will be a greater drop in pressure in pounds per sq. in. over the choked pipe than over the larger or open pipe. Yet suppose we stop the flow of water in both pipes by turning off a valve, we shall find that the pressure, when there is no flow of water, is the same in both pipes. This then corresponds to the E.M.F. of a cell when on open circuit.

Generally speaking, then, it is desirable for a cell to have a low internal resistance

This is naturally governed to a large extent by the particular constitution of the cell itself, but, other things being equal, the cell should have electrodes of large area and an electrolyte which is a good conductor. There should, if possible, be an absence of porous septums, etc., which may interpose resistance and also prevent the electrodes being in close juxtaposition, thereby preventing a strong flow of current.

We have said that, generally speaking, it is desirable for a cell to have a low internal resistance, but the internal resistance of a cell should be chosen so as to have some relation to the external resistance of the circuit.

Up to this point we have alluded to single voltaic elements only as cells. Two or more such cells constitute a battery. The total E.M.F. of the cells when connected in series is the sum of the E.M.F. of the individual cells (Fig. 4). This is also true of the internal resistance of the cells, thus by putting our cells in series we not only increase the E.M.F. available, but we also add to the sum of the total internal resistance.

Suppose now we put our cells in parallel (Fig. 5). In this case the E.M.F. of all cells must be the same, and the total E.M.F. of the battery will only be that of any one

cell, no matter how many are in parallel, but the internal resistance will decrease In fact, the paralleling of cells is tantamount to constructing one large cell having the same E.M.F., but lower internal resistance (IR) In practice, paralleling cells is generally to be avoided

Ohm's law teaches us that the current varies directly as the E.M F., and inversely as the resistance of the circuit.

Fig 4. Cells in Series Total voltage 5 1 volts

Fig 5 Cells in Parallel

That is, with an E.M.F. E, applied to a resistance R, a current C will flow,

or
$$C = \frac{E}{R}$$

In the case of a battery working with an exterior circuit of resistance R, it must be understood that R comprehends not only the exterior resistance, but also the resistance of the battery r, therefore we must write

$$C = \frac{E}{R + r}$$

As an example, suppose we have 6 cells in series, each having an E M F of 15 volts and an I R of 5 ohm, then the total E M F, E=9, and the total I R, r=3 Further, suppose this battery to be used to supply current through a circuit of high resistance, such as an electromagnet or land line, having a resistance of 3600 ohms, then

$$C = \frac{9}{3600 + 3} = \frac{9}{3603} = 0025 \text{ amp approx}$$

It is obvious that the internal resistance of the cells in this case is negligible, and that were it ten times as much the current flowing would not be reduced to any great extent, yet by doubling the voltage we should almost double the current

Another example. The high-tension battery of a wireless set consists of 100 cells, having an E M.F. of 1.5 volts and an I R of 2 ohms per cell. The current consumed is $10~\rm ma$, what is the apparent resistance of the exterior anode circuit 2

The total E M F. is then 150, and the total I R. 200 ohms

Since
$$R + r = \frac{E}{C}$$
 $R + 200 = \frac{150}{.01} = 15,000 \text{ ohms}$

therefore the exterior circuit is of approximately 14,800 ohms resistance

Here, again, the I.R of the cells is of no great account from the point of view of flow of current, but to avoid danger of intercoupling between the valve circuits it is prudent to parallel a reservoir condenser over the battery terminals.

Let us now take an exactly opposite case in which we have four cells of an E M.F. 1.5, and an I R of .5 ohm, as before The total E M F being 6 volts, and the I.R 2 ohms, it is desired to pass a current through an external resistance R of 1 ohm, such as a lamp or valve.

Then
$$C = \frac{6}{1+2} = \frac{6}{3} = 2$$
 amp.

Obviously, if the internal resistance of the cells could be halved the current would rise to 3 amp., and so on until if r was so small as to be negligible the current would be 6 amp.

In such a case the EMF. of the battery would equal its $P\,D$, but even with the most powerful primary cell there is an appreciable internal resistance

From these examples the reader will see the importance of choosing the internal resistance in accordance with the work for which the battery is intended

The best results are obtained when the total internal resistance of the battery r equals the total external resistance R

The Becquerel Cell.

If a porous pot containing caustic soda be immersed in a solution of hydrochloric acid, and two similar indifferent electrodes, such as carbon, be inserted, the one inside the pot in the soda and the other outside in the acid solution, we obtain a pressure of just over 7 volt. Such a cell is only capable of turnishing a very weak current, as neither of the electrodes is attacked, the voltage apparently deriving from some interplay of the acid and the alkali within the pores of the porous pot. If, however, zinc and carbon are chosen in suitable solutions, the gain in voltage is very substantial. Unfortunately, porous pots subjected to acid and alkaline solutions simultaneously soon deteriorate and fall to pieces.

A somewhat analogous effect is the formation of what is known as a concentration cell within the element itself. Thus, a Leclanché element, after it has been a short time in use, forms zinc chloride, owing to the action of the ammonium chloride on the zinc. This zinc chloride being of heavier density than the ammonium chloride falls to the bottom of the jar, so that the zinc rod is immersed in two solutions, zinc chloride at its foot and ammonium chloride at its top

The result is that the rod tends to be slowly consumed by this locally-formed cell as well as by local action

CHAPTER II

CLASSIFICATION OF CELLS

Cells may be classified under four headings-

- 1. True single-fluid cells
- 2 Single-fluid cells with solid depolarizers.
- 3. Dry cells.
- 4 Two-fluid cells

Single-fluid cells of any commercial utility are, hitherto, mostly of the bichromate form, or some variation in which chromic acid plays a part.

Thus nitric acid has been added as in the Fermoy cell, or a mixture of nitre and hydrochloric acid added to chromic acid has been suggested by others. There remains such cells as depend on the oxygen of the air to effect depolarization, and cells which use a particular disposition of ferric chloride both as depolarizer and existant, e.g. Figurer, Pabst, and Codd

Of the second class there are the Lalande cell having an electrolyte of caustic soda or potash, and a depolarizing plate of copper oxide, also the vast family of the Leclanché variety with its derivations as dry cells. For completeness we must add cells from time to time introduced in which lead peroxide is used, usually in a solution of dilute sulphuric acid.

Of the two-fluid series we begin with the classic Daniell cell, a very perfect cell up to a point, but having several disadvantages

In this cell a porous pot is usually employed to separate the two fluids, dilute acid or zinc sulphate as the excitant, and a solution of copper sulphate as depolarizer. The main fault in this cell, indeed in any cell using a porous pot, is that osmotic pressure causes the liquid contained in the pot either to rise or fall according to the arrangement of the liquids, and also there is transference of the contents from either side of the porous diaphragm. In this case copper tends to be deposited upon the zinc, causing local action and drop in E M.F., while the leaking out of the zinc sulphate tends to weaken the solution of copper sulphate, copper may also be deposited on or in the pores of the porous pot. These details will be dealt with in the practical section.

Another popular cell is the two-fluid bichromate, known as the Fuller In this cell, instead of mixing the depolarizer (chromic acid) with the excitant (sulphuric acid) directly, the two are separated by a porous pot, resulting in a longer life, but, of course, a higher internal resistance due to the pot. This cell is subject to the same disadvantage as the Daniell and similar cells, in that it is impossible to keep the level on either side of the pot the same. In this class we must also include the Grove and Bunsen cells, rarely used nowadays owing to the unpleasant fumes of the nitric acid. These cells are also subject to a fall in level on the zinc side of the porous pot

To the two-fluid class must be added the Darimont cell, which employs a solution of ferric chloride outside the porous pot and a particular solution of sodium chloride within There remains the dry and inert cell class Although these cells are really special forms of Leclanché cells from C'ass 2, containing an immobilized fluid electrolyte, they are so important as to necessitate a separate section to themselves

Osmosis.

If a porous pot be filled with and immersed in a weak solution of acid to the same height there will, naturally, be no tendency for the levels within and without the pot to differ

If, however, a current is applied by two electrodes

situated within and without the porous wall, a rise in level will eventually be noted in the direction of the current, that is, the level will fall at the anode where the current enters and rise at the cathode where it leaves. This phenomenon is known as electric osmoso.

It will be noted that this phenomenon is exactly similar to that experienced in the Daniell and almost any other two-fluid cell, the excitant falling in the zine or anode compartment and rising in that of the copper or carbon, that is, the cathode compartment, the current from within the cell being, it will be remembered, from zine to carbon

The transference of the liquids from one compartment to another does not affect the migration of the ions for, as we have seen, although in the Daniell cell the zinc sulphate falls, yet copper passes from the cathode compartment and is deposited on the zinc. In a similar way in a ferric chloride-sodium chloride cell the sodium chloride falls, yet iron from the outer compartment passes through the interstices of the porous pot, and is deposited upon the zinc

The author has found that in some cases a state of isosmosis or balance can be established by varying the densities of the two solutions used; thus, if a strong solution of ferric chloride is used in the outer cell and a very strong solution of zinc chloride in the porous pot, hardly any difference in level will take place for many days whether the circuit is open or closed. Still, this fact is not sufficiently certain to render such cells commercially practicable. Varley has already suggested the use of zinc oxide as a lining to the porous pot, and the author has tried impregnating the pores of the pot with prussian blue, soap, gelatine, and the like without much success.

In 1921 Darmont took out a patent for improving the Duchemin cell by adding "an anti-acid material, such as powdered chalk, to the exciting solution. As the perchloride of iron penetrates through the wall of the porous vessel a chemical combination takes place between the perchloride and the chalk, forming an insoluble material which becomes incrusted in the wall of the said vessel, so that this latter soon acts as a porous vessel with a semi-pervious membrane "

In order to prevent the powdered chalk falling to the bottom of the porous pot, the inventor keeps it in suspension in the salt solution by adding a mucilaginous substance, such as cornflour

This cell attained a considerable measure of success, the chief point against it being the necessity to mix two separate chemicals to charge it

Measurements and Testing.

In order to compare the performances of various cells it is necessary to have some standard to which we can work, and which can be applied to any cell

Constant Resistance Test The most usual method of comparison is to discharge the cell continuously through a 10-ohm resistance, noting the voltage on open and closed circuit periodically, the circuit being broken only momentarily for sufficient time to take the reading on open circuit. Such a test is sufficient for ordinary cells of from 1 to 3 pints, but above this capacity, if the cell is a good one, the length of time necessary to elapse before the exhaustion of the cell becomes tediously protracted, and it is frequently the custom to discharge such large cells through 5 ohms only

On the other hand, for small cells for wireless purposes, 10 ohms would give much too drastic a drain on the cell, so that for these small elements 150 ohms is usually used for a continuous discharge

By taking the open and closed circuit readings (E M F and P D), we are able to calculate the I R of the cell as the test progresses

Thus, if E = E.M F on open circuit, V = the PD on closed circuit, and R the exterior resistance (in this case

10 ohms), we can calculate the internal resistance r of the cell—

$$r = \frac{E - V}{V} R$$

For example, suppose a Leclanché cell gives on open circuit a voltage of 1 24, and on a closed circuit of 10 ohms 1 12 volts, then

Internal resistance
$$r = \frac{124 - 1.12}{1.12} \times 10 = 1.07$$
 ohms.

It is useful to note that the voltmeter reading on a closed circuit of 10 ohms gives the current flowing in milhamperes by moving the decimal point to the right, thus, in the above circuit when the voltmeter read 1·12 volts, 112 ma were flowing, therefore the use of an ammeter is superfluous Should such an ammeter be used its resistance must be deducted from the standard 10 ohm coil used, or else the resistance plus the resistance of the meter will be in excess of 10 ohms.

Another example—a wireless high-tension battery of 84 cells shows an E M.F of 131 volts on open circuit, and 129 volts P D on closed circuit through 12,600 ohms load resistance.

Then the total I.R.

$$=\frac{131-129}{129} \times 12,600 = 194$$
 ohms approximately,

that is, 231 ohms per cell

We have already drawn attention to the point that when measuring the E.M.F. of these tiny cells a very delicate voltmeter must be used.

It is even more necessary to use a delicate instrument when taking the P.D., as the resistance of the instrument will lower the resistance of the load by acting as a shunt,

therefore, for accurate work, the resistance of the voltmeter in shunt with the loading resistance must be arranged when in parallel to work out at 150 ohms per cell.

Looked at from another point of view, the battery in question will be giving approximately 10 ma. through a load of 12,600 ohms.

Suppose our voltmeter is a good one and takes only 2 ma for a full deflection of 130 volts, then at the moment of taking the reading the cells will be giving 10+2 or 12 ma, that is, an overload which makes for inaccuracy.

Constant Current Test. Another method of testing cells is to place them on a load of variable resistance and to keep the current constant; thus, a large cell may be set to give 2 amp discharge, and the E M F and P.D noted daily. As the P D falls, resistance is cut out to keep the current constant. Such a method is very suitable for cells intended to work glow-lamps and valves, and is also applied to high-tension wireless batteries, the current being set at 5, 10, or 15 ma, according to the size of the battery.

The above tests give a very good idea of the amperehour capacity of the cells tested, but another question arises, that is, how will the cell behave when used intermittently over an extended period?

INTERMITTENT CIRCUIT TEST The Post Office test is to close the circuit for 5 hours a day per week, that is, 4 hours 17 minutes per day, including Sundays, or 30 hours a week in all During this time the voltage on open and closed circuit is taken at a constant current of from 20 to 100 ma.

As the work the cell has to perform is now extended over a reasonably long period, any defect, such as heavy local action, becomes apparent. This test is really a short Shelf Test. By a shelf test we understand a test in which the cells to be tested are put by and remain untouched for periods of 6, 12, or even 18 months or more without being called upon to pass any current.

Their E M.F is taken occasionally, and at selected times

one or more of a batch are put on the usual 10-ohm test to find out how much they have deteriorated during the period of storage. This test is, of course, more applicable to dry cells, which are made up and sold complete with the necessary pasty electrolyte. It becomes necessary because of the delay which may ensue between the date of manufacture and the time the customer may purchase the cell after it has been stored by the various factors and dealers through whose hands it first passes

The testing of dry cells is not an easy matter. The usual way is to short-circuit the cell momentarily with an ammeter to see if it gives a good current, that is, anything from 5 to 25 amp. This, however, while demonstrating the low internal resistance of the cell, is no criterion of the lasting-power of the cell or its life on shelf test. We shall revert to this point later.

DEPOLARIZATION TEST There remains now the test for depolarization. The Post Office test is to shunt the cell for 10 minutes through 2 ohms, first noting its E.M.F. The E.M.F. is again read as soon as the circuit is opened at the termination of the 10 minutes test.

The differences in voltages expressed as a percentage must not be greater than 20 per cent for cells of about 2 pints, and smaller or greater than 15 per cent for cells of about 3 pints and over

Watt-hour Efficiency.

In concluding this section it may not be out of place to draw the reader's attention to the watt-hour efficiency of the cell

For a certain consumption of zine a certain number of ampere hours of current may be expected. The electrochemical equivalent of zine is .00033698, that is, that quantity of zine in grammes will be used up by one ampere in one second. This is equivalent to 1.213 grm. consumed per ampere hour, or .04245 oz.

This amount of zinc must be used per ampere hour, whether it is used in a Lalande cell or a Leclanché or a bichromate

But whereas in the first cell this ampere hour will be generated at a working pressure of something like ·65 volts, that of the Leclanché cell will be approximately 1 volt, and of the bichromate cell 1·6 volts, so that the higher the E.M F the cell will generate, the greater will be the watt hour output for exactly the same consumption of zinc

Hence, the desirability of choosing a cell of higher E M F, other things being equal In the above figures loss of zinc by local action has not been reckoned, but, of course, this factor must be taken into account when comparing cells

Point of Exhaustion.

In these tests above outlined it is usual to assume the cell exhausted when the voltage (PD) has fallen to half its original value (EMF), thus, a bichromate cell of 2 volts would be accounted exhausted when its PD has fallen to 1 volt, or a Leclanché cell having an EMF of 1.5 volts is considered discharged when its P.D on load has fallen to .75 volts. As such a considerable drop in many cases renders the battery unsuitable for practical use, the ampere hours of Leclanché type cells are sometimes reckoned on a basis of 9 volts being the termination or limit of useful life

The Post Office specifies the limit of exhaustion as being when the EMF. of the cell falls to 975 volt

It is obvious the lower limit is not so important when the cell is operating, say, a bell circuit, as when working a valve or glow-lamp in which the current must be kept up to a minimum value.

It is sometimes recommended that the user should have another cell or two in reserve, so that such cells can be placed in circuit as the main battery fails. The author does not recommend such a course, because, beside being a makeshift, it is better to spend the cost of the reserve cells in buying a larger main battery. Further, when the main battery fails the reserve cells are left on the user's hands only partially discharged This applies more emphatically to wireless high-tension dry cells.

Desirable Points in Cells.*

In choosing a cell we have naturally to bear in mind the particular class of work for which the cell is intended, but, generally speaking, the following points are desirable—

- 1 High E.M.F
- 2 Low IR.
- 3. Constancy
- 4 Small local action.
- 5. Cheapness.
- 6. Preferably be single fluid
- 7. Simplicity and absence of mess.
- 8. Ease of recharge.
- 9. Should be non-poisonous, odourless, and inoffensive.

The Choice of Cells.

For bell ringing, electric clock circuits, and general signalling, Leclanché cells are very suitable, also AD. cells. Of the Leclanché cells preference should be given to the sack type if first cost is not of paramount importance, as the porous pot type is more prone to fur up owing to the capillary attraction of the pot Daniell cells have been much used for telegraph work, or on circuits that are almost continuously closed. For heavy continuous work, such as when charging accumulators, running small electro-motors, etc., when the work desired is of a few hours' duration only, the bichromate, either single or preferably double fluid, is practically essential.

If a heavy current is required intermittently, such as for

^{*} Electrical Review, August, 1928, p. 223. "Primary Wet Cells." A. M. Codd.

operating railway track and signal circuits, or working small electro-motors, Lalande cells can be used. Owing to their low voltage, the necessity of handling caustic potash, and their expense, these cells are not commonly used in this country. In America, however, owing to their low freezing point, they find a certain amount of favour for railway work.

For working electric glow-lamps or wireless valves, that is, for giving a fairly heavy current intermittently, say, for some hours daily, Lalande cells can be used, also large A D. and Leclanché elements will do the work, but batteries of the ferric chloride type keep a more constant P.D. and, owing to their absence of recovery, with a momentary and fictitious rise in voltage overnight, are unlikely to burn out the filaments, as sometimes happens with Leclanché batteries in use.

For wireless high-tension batteries, where portability is not the first essential, wet AD or Leclanché cells should be used in preference to the dry form, as they are more to be relied upon in all cases

On the other hand, batteries for medical purposes, ionization, testing sets, etc., necessitate almost always the use of dry batteries for portability.

In concluding this section there is one method of obtaining relatively heavy currents intermittently which is generally overlooked. Of course, we can charge an accumulator directly by means of a bichromate or other suitable cell, and have done, but a better method consists in trickle charging the accumulator cell or cells by feeble currents continuously applied by A.D., ferric chloride, or Daniell cells. In particular, the Daniell cell shows up well on the score of cost, and, as the circuit is always closed, some of the disadvantages of this cell are minimized, particularly if the gravity form is used. Owing to the rise in P.D. of the accumulator cell when charged the arrangement is almost self-governing

The accumulator used for this purpose when first set up should be nearly fully charged, particularly when air depolarizing cells are used, as otherwise a larger rush of charging current will initially be required of a greater strength than the cells can economically furnish.

CHAPTER III

PRACTICAL CELLS

In describing some of the more useful cells to-day in use we propose to give approximate data of each cell's performance, as hitherto the actual output of any cell of given cubic capacity has, with few exceptions, been given extremely indefinitely

A Standard Cell.

For purposes of comparison between cells of different types, the author has used a Standard cell containing roughly one quart when brim full. The porous pot itself when used as a two-fluid cell holds about half a pint, and when stood in the outer container, together with the necessary carbon electrodes, limits the contents of the outer cell to one pint

In the following experiments, therefore, we have the outer cell containing the depolarizer holding an exact measured one pint, and the inner porous pot holding, roughly, half a pint of excitant

As a single-fluid cell, the container in each experiment has had its contents measured to a total of $1\frac{1}{2}$ pints only, exclusive of the electrodes.

Single-fluid Cells.

AIR DEPOLARIZING CELLS Probably the simplest of all cells are those that derive their depolarizing properties from the oxygen of the air

We have already seen that Maîche made early attempts on these lines with some little success. For light work, indeed, such as the occasional ringing of bells in a small house, a single zinc-sal-ammoniac-carbon element, having relatively large carbons as in the Law cell, is quite adequate. From one point of view it is good practice to fit such a cell with a close-fitting lid to prevent evaporation of the sal-ammoniac solution, since evaporation is one of the chief defects of such cells, as it leads to crystallization and consequent creeping of the solution up the walls of the container

and also frequently up the electrodes In the case, however, of true air depolarizing cells, we cannot use a lid, since to do so would cut off the supply of air on which the

FIG 6 AN A D. (AIR DEPO-LARIZING) CIELL (Messis Le Carbone)

FIG 7 COMPONENTS OF THE A.D. CELL

recovery of the cell depends, so such cells must be left open and preferably in a well-ventilated position.

THE A.D CELL (Messrs. Le Carbone) It will be seen (Fig. 6) that this cell consists of an outer container holding the sal-ammoniac solution in which stands a totally-immersed zinc cylinder and, concentrically within it, a tall cylinder or block of porous carbon only about half immersed and separated from the zinc cylinder by rubber bands. Contact is established with the zinc by means of insulated

flexible wire soldered to the bottom of the zinc cylinder (Fig 7)

The charge of excitant is about half a pound of salammoniac per pint of water. As this is too much to be effectively dissolved and forms a saturated solution, the surplus salt drops to the bottom of the cell and is used up gradually as the life of the cell progresses When the circuit is closed the main action is as follows—

$$2NH_4Cl + Zn = Zn Cl_2 + 2NH_3 + H_2$$

that is, the ammonium chloride (sal-ammoniac) attacks the zinc to form zinc chloride with the evolution of the gases of ammonia and hydrogen

The hydrogen would tend to polarize the cell in the usual manner were it not for the special depolarizing property of the carbon

As we have mentioned, this carbon is of a porous nature, so that it is able to occlude or breathe in abundantly of the oxygen of the air. However, were it ordinary porous carbon, naturally the part immersed would quickly become saturated with the solution in which it is partially standing, but the special feature of the AD carbon is the process of rendering it water-tight by means of a colloidal film, which enables a good contact to be made between the carbon and the electrolyte and yet maintains the interior of the carbon dry, so that the gases may circulate and combine with the occluded oxygen of the air. Of course, should the special carbon from any defect become waterlogged, the cell will cease to act satisfactorily

The actual amount of salt consumed by a cell of this description is theoretically about 2 grm. per ampere hour, and the makers claim this figure to be well adhered to

The hydrogen, having combined with the atmospheric oxygen at the surface of the depolarizing carbon, is returned to the cell as water, nevertheless, it is necessary from time to time to add water to make up the losses due to evaporation

The formation of crystals shows the solution to be too weak Occasionally, under heavy discharge, a crust is formed in which the gases will collect, thereby raising the level of the electrolyte Under such circumstances this crust must be broken by gently rocking the carbon, so that

FIG 8 CURVE OF DISCHARGE OF A D 2-PINT CFLL (No 240)

the gases may escape from the pockets in which they have collected

Fig. 8 shows a curve of discharge taken by the writer for a No. 240 quart-size cell, holding about 1 pint of concentrated electrolyte

The extreme constancy will be noticed in conjunction with the high ampere-hour capacity—in this case well over the 100 ampere hours claimed by the makers, despite the fact that the cell was, by discharging through 10 ohms continuously, passing a current about double that imposed by the manufacturers, i.e. 50 ma.

It should be realized that though the zine is used up

at the end of the discharge of the cell, the carbon electrode is good for at least three lives without appreciable deterioration

To allow of larger current discharges the AD cell is made also with two large carbon units in a single cell. This cell having an I.R of approximately 025 ohm can give frequent momentary discharges of 10 amp, 2 amp for short periods, or 1 amp for 8 hours a day

Fig 9 Curve of Discharge of A D Cell No. 222 (Le Carbone)

Fig 9 shows the curve of discharge supplied by the makers of this cell, size $9\frac{3}{4}$ in $\times 7\frac{7}{8}$ in $\times 6\frac{1}{2}$ in, when giving 1 amp for 4 hours daily, the total capacity being 500 ampere hours

These cells can also be used in a caustic soda electrolyte in special cases if desired

THE FÉRY CELL (Fig 10) is also an air depolarizing cell, the carbon being specially shaped as can be seen from the illustration, and only semi-submerged in the salaminoniac solution

The zinc is a circular collar, or else a plain flat plate placed at the bottom of the cell

When the circuit is closed the chloride of zine formed falls to the bottom of the cell, thereby covering the zine, while the carbon continues to work in clear sal-ammoniac solution which is itself, to a certain extent, oxygenated by the air.

As 992 cub. cm of air contain about 208 cub. cm of oxygen, the importance of good ventilation, so that the air

Fig. 10. Féry Air Depolarizing Ceta.

is free to circulate about the exposed extremities of the carbon electrodes of air depolarizing cells, is manifest. Cells of this type are very economical in zine consumption, the theoretical figure being closely attained

The output from these cells being relatively rather feeble compared to some other cells of different make, the manufacturers advise their use in charging secondary cells if heavy currents are needed. They advise accumulator cells of a capacity of about 10 amp.-hr., so that the losses in the accumulator (being small) will not play a prependerating

part, losses which would again otherwise have to be made up by the primary charging cells

Fig 11 shows a curve of discharge for a Féry cell at 14 ma. extending over a period of more than 300 days, the total capacity claimed being 105 amp.-hr for what would roughly be a quart cell.

It should be noticed that air depolarizing carbons should

Fig. 11 Discharge Curve of Féry Cell $5\frac{1}{2}$ in \times $4\frac{1}{2}$ in at 14 milliamperes Constant

not be washed, it is sufficient to scrape them clear from any adhering crystals, etc, with a piece of blunt wood

Chemical Depolarizers.

THE BICHROMATE CELL appears to have been first suggested by Poggendorff, and in its usual form consists of a zinc plate sandwiched between two plates of carbon, the whole immersed in a solution of chromic acid or bichromate of potash or soda mixed with dilute sulphuric acid. Numerous modifications of this arrangement have been suggested to which the inventors have attached their names, the most common being the Grenet, a bottle-form of cell in which the zinc is screwed on a brass rod free to slide up or down, so that the zinc plate can be immersed

in the solution or withdrawn at will from outside the bottle. This form suffers from the disadvantage that the brass rod and its rubbing contacts soon corrode and fail to effect good contact.

Probably the best form is that ascribed to Trouvé, in which a small windless with cords raises both the elements complete from the solution, the zinc and carbon being attached to a wooden crossbar. A modified form is shown in Fig 45.

The active depolarizer is chromium trioxide, CrO₃, which may be used itself, or, as is more commonly the case, by acting on potassium bichromate or soda with sulphuric acid

Thus

$$K_2Cr_2O_7 + 7H_2SO_4 = K_2SO_4 + 2CrO_3 + 6H_2SO_4 + H_2O$$
potassium sulphuric potassium chromic sulphuric water bichromate acid sulphate acid acid

that is, when the acid is added to potassium bichromate, potassium sulphate and chromic acid are formed.

As soon as the acid in the solution attacks the zine we have the evolution of hydrogen which would tend to polarize the carbon, but the hydrogen is seized by the oxygen in the chromic acid forming water and chromium sesquioxide.

Various combinations of salts have from time to time appeared, but that given by Professor Ayrton seems as good as any and has been adhered to by the author in the following experiments. The solution is prepared as follows: Add I lb. of potassium bichromate crushed to 9½ pints of cold water, and pour in, slowly, I pint of sulphuric acid (S.G. 1-840). Reduced to smaller quantities this equals, roughly, 27 fl. oz. of water, 3 fl. oz. of sulphuric acid, and 2½ oz. of potassium bichromate, forming in all about 1½ pints of solution. The water alone may not dissolve the potassium bichromate, but on adding the sulphuric

acid to the mixture the warmth generated will effect solution. One-seventh of the oxygen in the potassium bichromate is used to form water, and one part of the sulphuric acid is used to form potassium sulphate. Three more parts of the sulphuric acid are used to form chromium sulphate,

Fig 12 Curve of Discharge at 1 amp of 13 pint Single Fluid Bichromate Cell

leaving still three parts of acid to attack the zinc and form zinc sulphate. The proportion of sulphuric acid given can be raised a little if desired, without harmful effects. This solution was used in our Standard cell in conjunction with one zinc (amalgamated) and two carbons 2 in wide immersed for a depth of $4\frac{1}{2}$ in. The distance between the zinc and carbons on each side was $\frac{1}{4}$ in. Total zinc area = 18 sq in , current on short circuit fresh = 13 amp. Fig. 12 gives the curve of P.D. on a constant discharge of 1 amp.

Thus we see the total ampere hours are under 7 at an average P.D. of roughly 1.4 volts, reckoning the cell exhausted at .8 volt. The I.R. of the cell equals .26 ohm approximately

Single-fluid bichromate cells are not very economical, nor can they be left on open circuit. Unless extremely heavy currents of short duration are required, the double-fluid form (described in that section) is much preferable.

Potassium bichromate cells are apt, particularly when nearing exhaustion, to form crystals of chrome alum, which are not easy to dislodge

On this account, and also because of its superior solubility, sodium bichromate is frequently recommended. Sodium bichromate is also relatively cheaper, but contains more water of crystallization, so that about twice the weight must be used, but on the whole sodium bichromate is the better salt.

As the active principle of depolarization is chromium trioxide, chromic acid itself can be used with advantage, and is probably superior to either sodium or potassium bichromate.

In the previous formula it suffices to substitute about $1\frac{1}{2}$ oz of chromic acid for the potassium bichromate, using 27 fl. oz. of water and 3 fl oz of sulphuric acid as before

Potassium permanganate has been suggested as a substitute for potassium bichromate, but, although it gives a higher initial voltage, the current drops much more suddenly

It is also difficult to dissolve, and forms an unpleasant slime upon the electrodes; altogether, it is not to be recommended.

Various patents have been taken out for ready prepared chromium salts; thus, Voisins red salt is prepared by dissolving sodium sulphate in sulphuric acid and adding the potassium bichromate. This is allowed to set and stored in bottles. Probably the simplest storable mixture is that

suggested by Dronier, in which 1 part of potassium bichromate is mixed with 2 parts of potassium bisulphate, 3 parts of this mixture being added to 20 parts of hot water.

FERRIC CHLORIDE CELLS. Figurer, in 1863, appears to have been the first to use a mixture of concentrated ferric

FIG 13 DIAGRAM OF CODD CELL

chloride and sulphate as a single-fluid cell with electrodes of zinc and carbon (E M F 1.5 volts)

Such an arrangement gives excellent results, but, unfortunately, the zinc is strongly attacked, so that the cell cannot be used for open-circuit work. Actually, the addition of the ferric sulphate appears to be of no advantage, and ferric chloride alone gives better results. The advantage of ferric chloride over other depolarizers is its extreme constancy, which persists until the solution is almost exhausted, also it is very soluble and, if properly used,

leaves the cell and electrodes in a clean condition with an entire absence of hard crystalline deposit; moreover, it is one of the cheapest depolarizers procurable

Pabst, later, in 1884, endeavoured to overcome the difficulty of the susceptibility of zine to attack by substituting a block of iron, but with a drop in voltage to .78 volt

FIG. 14 CODD CELL TAKEN APART

The iron, too, is still attacked, although more slowly than zinc, so that on open circuit the ferric chloride becomes reduced with formation of objectionable iron rust deposit

Since then all the attempts to use ferric chloride seem to have been made on the lines of two-fluid cells, which will be enumerated in the appropriate section.

The author has, however, successfully used ferric chloride in a single-fluid cell of special design, as follows-

CODD CELL This cell consists of a container, at the bottom of which is arranged a close-fitting flat zinc plate. Connection from the plate to the exterior circuit is made through a rubber-covered wire. The container is fitted

Fig. 15, Curves of Discharge of $1\frac{1}{2}$ and 3 pint Codd Celes on 10 ohns

with a lid from which hang one or more carbon plates (Fig. 13), reaching to within about ½ in of the zine plate. A little mercury is placed on the zine plate to keep it amalgamated, and the cell filled with a solution of ferric chloride containing a little sand or the like in suspension. As soon as the cell is at rest the sand settles over the zine at the bottom, and in covering it serves the purpose of a mobile porous pot. Fig. 14 shows the simplicity of the cell taken apart

Such a cell has an E.M.F of 1.52 volts, and gives a remarkably constant and high P.D. till the end of its life, when it rapidly falls off and the cell is exhausted. Thus, the current is given at a useful pressure during the whole of the life of the cell, and the watt hours in consequence are high, in fact, higher in relation to the ampere-hour capacity than with any other known cell. Fig. 15 gives curves of discharge for cells of two sizes through 10 ohms resistance

A cell holding 1½ pints of solution has an IR. of about 6 ohm, depending on the amount of sand present and the nearness of the electrodes one to another.

The capacity of the cell is about 24 amp -hr. per pint of normal solution, or about 29 watt-hours, at a mean voltage of 1·2 on closed circuit at a reasonable output Local action on open circuit is small, and zinc consumption appears to be in the neighbourhood of 1·3 grm per amperehour

The action of the cell seems to be the following. The ferric chloride attacks the zinc, forming zinc chloride which, being of a greater density than the ferric chloride, lies at the bottom of the cell and protects the zinc plate, a clear zone being distinctly visible after the cell has been in use some time. The function of the sand is to form a refuge for the zinc chloride to prevent its being disturbed by convection currents in the ferric chloride on long periods of open circuit. For short periods up to, say, a fortnight, if the cell is exhausted quickly, the layer of sand may be

dispensed with, causing a consequent lowering of the I.R of the cell. As the cell approaches the end of its life the clear zone expands, the ferric chloride becoming reduced and assuming a watery yellowish colour. At this point the cell can readily be cleaned by rinsing it under the tap, and recharged with ferric chloride, as the zinc is sufficiently robust.

to last out several charges of ferric chloride

As the capacity of the cell in ampere-hours depends on the volume of its contents, the cells are usually made square or rectangular to economize shelf space (Fig 16), and also for convenience in the packing These cells are capable of giving considerable currents for long periods; thus, a 3pint cell will give 1 amp for 300 hours continuously. double that or more for periods of 4 to 5 hours daily at an average P D. of about 1 2 volts ordinary purposes For

Fig. 16 CODD CELL COMPLETE

cell is deemed exhausted when it falls to a PD of 1 volt Such cells work small glow-lamps, wireless valve filaments, etc., entirely satisfactorily, as well as furnishing weaker currents for open-circuit work, such as electric clocks, bells, etc., and are very cheap and easy to maintain

MISCELLANEOUS CELLS To conclude this section, some allusion must be made to the cells devised by Marié Davy, Schanschieff, and De la Rue

In the Marié Davy cell the elements are disposed in a horizontal direction, the carbon plate lying at the bottom of the cell, which is trough-like in shape. Above the carbon is placed a similar size plate of zinc, the space between

them being filled with mercurous sulphate and the cell filled with water The action is as follows. the zine combines with the sulphuric acid contained in the mercurous sulphate, forming zine sulphate and freeing metallic mercury Some of this mercury goes to amalgamate the zine plate, the rest falls to the bottom of the cell Marié Davy also constructed a two-fluid form of this cell, the carbon with its mercurous sulphate being in the outer vessel, and the zine within the porous pot in a dilute acid solution. The E M.F of these cells is about 15 volts, but they are rather feeble in action

Schanschieff modified this cell by arranging the electrodes as a single-fluid cell in the orthodox position, using a zinc plate between two carbons, and also by using a specially-prepared mercury salt made by repeatedly dissolving metallic mercury in boiling sulphuric acid, the resulting salt being apparently a special acid form of mercuric sulphate. Very fair results can be obtained by using ordinary mercuric sulphate dissolved in sodium bisulphate or other suitable vehicles.

The cell is very clean to use, but in the writer's experience metallic mercury is liable to be deposited on the zinc, even on open circuit, so that the cell soon exhausts itself Mercury salts are also very poisonous, and their high price renders the cell commercially out of court

Cells similar to the above, but constructed with special precautions as to the disposition and purity of the materials employed, form the basis of the standard cells of Clark, Rayleigh, Carhart, and others

The cell devised by De la Rue consists of a mixture of silver chloride, AgCl, fused round a central silver wire, the anode being zine and the excitant a solution of salt (Na('l)). Briefly, the salt acts on the zine when the circuit is closed, forming zine chloride, the hydrogen freed combines with the chlorine in the silver chloride to form hydrochloric acid, and silver is deposited on the silver cathode.

Ammonium chloride was later substituted for salt, the E M F of the cell being about 1.04 volt

These cells are somewhat feeble and, of course, expensive, but it will be remembered it was with a battery of over 14,000 of such cells that De la Rue performed the first experiments in spark discharge in air and in vacuo, and they are of interest as illustrating a system of depolarization.

CHAPTER IV

SINGLE-FLUID CELLS WITH SOLID DEPOLARIZERS

UNDER this classification we have two of the most important cells in practical use to-day, viz., the Lalande and the Leclanché

THE LALANDE CELL, as first devised, consisted of a vessel at the bottom of which was a copper or iron cup containing copper oxide. A wire riveted to the cup leads upward to the outer circuit (Fig. 17).

At the top of the vessel was suspended a zine ring or plate, which constituted the negative pole. The cell was filled with a solution of caustic potash or soda, about 1 lb. of caustic soda being dissolved in 4 pints of water

When the circuit is closed the zinc is attacked and sodium zincate formed, while the hydrogen generated reduces the copper oxide to metallic copper, the sodium zincate remaining in solution.

There is practically no local action whatever with this cell on open circuit.

The chief disadvantages of these cells, apart from expense, are the low E.M.F. generated, which rarely exceeds 75 volt, and the necessity of using caustic soda. In order to avoid the solution being converted into carbonate, a film of oil is generally floated over the caustic soda, in itself rather a messy operation, especially on recharging the cells. In some forms of this cell oil is incorporated with the granulated copper oxide. When the caustic soda is first mixed with water, sufficient heat is generated to throw out the oil, which then floats on the surface of the solution.

On the other hand, this cell is extraordinarily constant,

and can be made to furnish really powerful currents. In one form of this cell the iron cup is enlarged so as to form not only the electrode, but the container as well With our Standard cell an iron tray, $3\frac{1}{2}$ in in diameter and $\frac{3}{4}$ in deep, was arranged at the bottom of a glass vessel, the usual

FIG 17 DIAGRAM OF LALANDE CELL

conducting wire running up the side and being insulated with rubber Eight ounces of granulated copper oxide were emptied loosely into the tray A zinc plate, about $3\frac{1}{2}$ in in diameter, was suspended from the lid about 1 in from the bottom of the tray, and the cell filled with about 1 pint of soda solution. The original EMF was about .76 volt, and the cell gave 2.5 amp on short circuit, the IR averaging about .5 ohin

Fig 18A shows the curve of discharge through 10 ohms. This gives roughly 130 amp -hr per pound of copper oxide, but the watt-hours output handicaps its performance,

because, roughly, twice as many Lalande cells must be used for a given voltage as other ordinary cells

When discharged at the higher rate of 5 amp, continuously (Fig. 18B), the performance in ampere hours is not so

FIG 18A. CURVE OF DISCHARGE OF LALANDE CELL ON 10 OHMS

Fig. 18b Curve of Discharge of Lalande Celliat 5 ampere

good, but a continuous steady current of ½ amp, can be relied on for 50 to 60 hours. The more modern form of Lalande cell (Fig. 19) has the copper oxide compressed into plates clamped in copper frames, and suspended from the lid of the cell, from which also hang the zinc plates, usually one on either side and amalgamated. These zinc plates are frequently cast with a depression at the bottom, this depression naturally being the first part of the plate to

dissolve away into a hole, thus furnishing ocular warning that the cell is nearing exhaustion.

These cells are arranged in deep glass jars, so that the sodium zincate tends to fall to the bottom, leaving the body of the electrolyte uncontaminated. Oil is floated on

FIG 19 MODERN LALANDE CELL

the surface of the liquid to avoid its carbonating. Such a cell, about $13\,\mathrm{m}$ deep by $6\frac{1}{2}\,\mathrm{m}$ diameter, will furnish 500 amp -hr, the working voltage being about 65 volts

THE LECLANCHÉ CELL, to-day, is the most widely-used cell in existence, quite apart from that form of Leclanché cell with immobilized fluid, usually called the "dry" cell Owing to detail improvements, it has gradually superseded

other forms of cell, except for special purposes, doubtless owing to its capability of remaining inert and, with little local action, over long periods of, say, one or two years, with a minimum of attention. As we shall see from output

Fig. 20. Lectanché Cell. (Porous Pot Form)

tests, the original feeble currents have been greatly augmented by development of the components of the cell, and, while on a constant current basis it cannot compete with the bichromate, ferric chloride, and other forms of primary cells, yet its relative freedom from diseases and ease of installation render it very popular. To De la Rue is usually ascribed the suggestion of using manganese dioxide as a depolarizer, but the credit of working out the details of the cell and making it a practical success belongs to

Leclanché, who first introduced the cell in 1868 Countless different forms have been invented, but the essentials remain to-day very much the same as when it was first devised, the main improvements being in the care and selection of the ingredients used in preparing the depolarizing material. On this account we shall only describe a few of the best known and more useful forms of Leclanché cell

The original Leclanché cell (Fig. 20) consisted of a square glass jar with a neck in which a lip is formed to accommodate the zinc electrode in the form of a rod. Within the neck is placed the porous pot which contains the carbon plate, or rod, packed around with a mixture of crushed carbon and manganese dioxide. The porous pot is usually sealed with pitch, two small glass tubes being left protruding to act as vents for the gas generated

The cell is charged with a solution of ammonium chloride, that is, sal-ammoniac, NH_4Cl

Such cells give an EMF of 1.55 volts, which may rise to as high as 1.75 volts in cells charged with specially selected and prepared manganese, but for practical purposes the working EMF, after the first few hours, is 1.4 volts, the internal resistance of porous pot cells varying from 1.2 ohms in the pint size to .8 ohm in the 3-pint size with zinc rod electrode when the cells are new, but this resistance tends to increase as the cell ages

The action of the cell is as follows When the circuit is closed the zinc is attacked by the ammonium chloride, forming zinc chloride (which tends to fall to the bottom of the cell), free hydrogen and ammonia gases Thus,

$$2NH_4Cl + Zn = ZnCl_2 + 2NH_3 + 2H$$

the hydrogen combines with the oxygen of the manganese dioxide, forming water and reducing the dioxide to manganese sesquioxide, thus

$$2H + 2MnO_2 = H_2O + Mn_2O_3$$

the escaping ammonia gas can usually be smelt when the cell is working heavily, and tends to corrode the brass terminal and lead caps of the carbon.

After a current has been passed for a few minutes the exposed surfaces of the manganese ore refuse further to effect depolarization, and the current falls off, but a further period of rest will enable the manganese to neutralize, as it were, its hydrogen opponent, and the cell will again recover It is this slowness of solid depolarizers which is the chief disadvantage of cells using them, and we may here consider what steps have been taken to counter this disability.

Firstly, manganese dioxide alone cannot be used, for although when fresh it is a fair conductor, as the sesquioxide its resistance increases greatly, so it is necessary to add a certain amount of crushed carbon to ensure good conductivity.

In ordinary cells the proportion is about half and half, the poorer cells naturally having a larger proportion of carbon, the better class of cells having as much as 80 per cent of manganese in their composition, moreover, plumbago or graphite is substituted, wholly or in part, for the crushed carbon, to gain in conductivity.

Secondly, the size of the granules of the mixture plays an important part. If the grains are large, the electrolyte can penetrate the mass with a consequent lowering of the resistance of the cell, but the depolarizing effect will be relatively short; on the other hand, if the grains are too fine, the depolarizing effect will be increased, but, owing to the closeness of the mass, the electrolyte will not be able readily to penetrate, and the object will again be defeated.

Thirdly, having determined the best mixture for the purpose for which the cell is intended, there remains the degree of tightness with which the ingredients shall be rammed into the pot; thus, if too tight, good conductivity will be ensured, but the electrolyte may not be able to penetrate,

also the pot may burst, if too loose, the contents of the pot may shake loose in transit and alter the quality of the cell

In order to bind the manganese-graphite contents, the powder is sometimes moistened with dilute hydrochloric acid or sal-ammoniac solution

It will, therefore, be seen that the charging of the pot of a Leclanché cell is largely a matter of experience.

The Post Office requirements in the fineness of the grain of the manganese ore are such that the powder shall pass through a sieve having 40 meshes to the inch, but shall be retained on a sieve of 60 meshes to the inch. Naturally, cells constructed to this high degree of quality are dearer than the cheaper forms usually sold for bell-ringing

The following table shows the approximate capacity that may be expected from a first-class porous pot cell, such as are supplied to the Post Office, large railway companies, etc —

		Capacity in ampere-hours to 75 volt	Porous pot size approv	IR with rod zinc
No 1 ,, 2 ,, 3	3-pint size 2 ,, ,, ,,	60 30 12	$6\frac{1}{2}'' \times 3''$ $5\frac{1}{2}'' \times 2\frac{1}{2}''$ $4\frac{1}{2}'' \times 2''$	8 ohm 9 ,, 1 2 ,,

It must not be thought that such first-quality cells are readily accessible to the average user, and that they can be bought at any ironmonger's or electrician's shop

Fig 21 (a) shows the typical Leclanché discharge curve, taken by the author of a first-class cell of 2-pint capacity, and (b) an exactly similar cell purchased as high grade, such as would be suitable only for domestic bell-ringing purposes. The same electrolyte was used throughout in each test, had it been changed, as advised by the makers, slightly better results might have been obtained for curve

(a), but the writer considered that to change the electrolyte, when comparing with other types of cell, would be unfair.

The IR. of Leclanché cells falls a little if zinc cylinders are used Thus, a No. 2 cell with cylinder instead of rod zinc would have an internal resistance of approximately

Fig. 21. Curves of Disoharge of 2-pint Leglanché Porous Pot Cells on 10 ohms (a) Special Quality (b) Commercial Quality

-5 ohm, but the greater portion of the resistance is created by the porous pot itself. Since the porous pot only fulfils the function of mechanically holding together the solid depolarizer, and not of separating two dissimilar fluids, means were sought whereby its use could be eliminated

This can be accomplished in two ways, by using either agglomerate or sack cells.

The agglomerate cell (Fig. 22) depends in principle as before on the depolarizing action of the manganese carbon mixture, but this mixture, instead of being placed in the pot, is compressed with shellac or similar binding substance and moulded into porous blocks or rods.

Usually, two of these agglomerate blocks are placed one on either side of the flat carbon plate and kept in place by two india-rubber bands, a zinc rod or cylinder is placed in position completing the cell. Such cells are inferior to the porous pot form in capacity, but they are simple and have not much more than half the IR of a pot-type cell.

Fig. 22 Agglomerate Leclanché Cell, Siemens Cylindrical Type

of similar size A powerful form of this cell is the "6-block agglomerate"

In this arrangement, a circular central carbon rod, having 6 flutes moulded in its circumference, houses 6 agglomerate cylinders about 6 in. long of compressed manganese dioxide and carbon. The whole is wrapped in a turn of coarse canvas and kept in place by two rubber rings. Outside this is placed the zinc cylinder, the rubber rings and canvas preventing the electrodes from touching. Such a cell (Fig. 23) has an internal resistance of only 25 ohm approximately.

Fig. 29 Agalonerte Lparoné (fil. Suvertown Grioge Type

Sometimes similar cells are used of twice the height, in which case two tiers of agglomerate rods are used—12 in all—when the resistance falls to about ·15 ohm. Cells of this description are useful for purposes where sudden heavy currents are required, as in mining, or where a large number of bells, etc., are fitted, and can be sealed up for purposes of transport so as to avoid spilling the electrolyte and to reduce evaporation

The last, or sack-type Leclanché cell is probably the

FIG 24 LECLANCHÉ SACK CELL SQUARE GLASS CONTAINER

most important, not only because it is in itself a very efficient form of cell, but because it is intimately connected, as we shall see in the appropriate section, with the manufacture of dry cells

The sack form, as its name implies, consists of a cylindrical container of canvas or calico, which virtually forms a porous pot of negligible resistance, into which the powder of manganese and carbon is forced under pressure around the central carbon plate or rod. When the complete element comes out of the mould the sack is tightly wound

with several turns of twine to keep the contents tight, the bottom is treated with pitch and the top scaled in also, a cardboard ring usually serving as a guard for the compound.

Fig. 24 gives a good idea of the general appearance of a sack cell adapted to square glass container.

Such cells are very much more efficient than with the porous pot or the agglomerate form, since their capacity

Fig 25, Lectanché Sack Cell Cylindrical (hass Container

is largely in excess of the former, while their I R. is as low or lower than the latter.

The superior capacity appears due to the fact that more pressure can be brought to bear in packing a sack cell than one using a porous pot, also the thinness of the sack enables a greater quantity of depolarizing mixture to be stored in the same space, while at the same time the internal resistance is greatly decreased.

As we have previously remarked, however, too much pressure must not be used in packing the sack in the

endeavour to obtain an ultra-high capacity, or the manganese mixture may become almost impermeable to the electrolyte In any case, these highly-efficient sack cells are

Fig. 26a Leclanché Sack Cell, Complete

FIG 26B LECLANCHÉ SACK ELEMENT

the better for at least 24 hours' soaking in solution before being put into use.

Sack cells are usually used with cylindrical or semicylindrical zincs, although zinc rods can be used if preferred at an increased I.R

Approximate capacities for first-class sack elements are given as follows—

		Capacity in ampere-hours to 75 volts	Sack sizes approx	I.R with tine cylinder
To 1 ,, 2 ,, 3	3-pint size 2 ,, ,, ,,	110 70 30	$6\frac{1}{4}$ " < 3 " $< 2\frac{1}{4}$ " < 2 "	-25 27 30
16 15 14 10 09 08		B	4	

Fig. 27. Curves of Discharge of 2-pint Leclanché Sack Cells on 10 ohms (a) Special Quality (b) Commercial Quality

Sometimes sack cells are put up in intermediate sizes, or in round glass jars, instead of the conventional square form. Fig. 25 illustrates the arrangement given to the cell by Messrs Siemens Bros., who also make a larger size sack than the No 1, known as the No 0 element. Two of these elements are sometimes used in two tiers united in the same sack, in which case the element is known as the No 00, illustrated in Fig. 26.

Fig. 27 (a) gives the curve of discharge taken by the

0 Siemens Wet Leclanché Cells Three Types of Elements for Use in No Square Glass Jars ($3\frac{2}{5}$ in Square + 6 $\frac{2}{5}$ in High, External Dimensions) 28 8 Fig

	External Dunensions	Average Output to 0 70 volt P D
No 2 Standard Short Sack Element No 2R Sack Element No 2 Ordinary Porous Pot	2½ m dia × 5½ m high (body) or 6½ m high (overall) 2½ m dia × 5% in high (body) 2½ m dia × 5½ m high (body) or 6½ m dia × 5½ m high (body) or 6% m high (overall)	80 amp -hours 40 amp -hours 20 amp -hours

The test curves are from average figures taken during contanuous discharges through 10 oims external resistance, using a 15 per cent solution of annihonium chloride. The cells were kept free from excessive crystallization by cleaning the clip in the zinc electrodes and renewing the electrolyte as considered necessary

Steriens Wet Leglanghé Cells Three Types of Elements for Use in No Square Glass Jars (4§ in Square × 7½ in, High, External Dimensions) 29

	External Dimensions	Average Output to 0 70 volt P D
No 1 Standard Sack Element	3 m dia × 6 in, high (body)	200 amp -hours
No 1R Sack Element	Of '4 in fight (overall) 2\frac{1}{2} in dia \times \frac{1}{2} in high (body)	75 amp -hours
No 1 Ordinary Porous Pot	or 'f in mgu (overall) 3 m 7½ m hgh (body) or 7½ m hgh (overall)	37 amp -hours

The test curves are from average figures taken during continuous discharges through 10 ohms external resistance, using a 15 per cent solution of ammonium chloride. The cells were kept free from excessive crystallization by cleaning the zinc electrodes and renewing the electrolyte as considered necessary.

SIEMENS SACK CELLS SIZE NO 00 AVERAGE TEST CORVES FOR CONTINUOUS DISCHARGES THROUGH 5 OHMS AND 10 OHMS RESPECTIVELY, USING A 15 PER CENT SOLUTION OF SAL-AMMONIAC AND CIRCULAR CUT-AWAY ZINCS 30 Fig

Ontonts		5 Ohms Test			10 Ohms Test	
an a	To P D 1 volt	To P D 0 75 volt	To P D 0 50 volt	To P D 1 volt	To P D 0 75 volt	To P D 0 50 volt
Amp -hours	156	418	552	840	460	694
Watt-hours	173	388	447	370	479	269

author for a first-class No 2 sack cell similar to that illustrated in Figs. 24 and 25, from which it will be seen that the cell was not exhausted to 75 volts P.D until 770 hours, approximately, had elapsed Fig 27 (b) shows the curve of discharge for a similar cell, such is usually purchasable for bell ringing, the same electrolyte being used in each cell throughout, and not changed as advised by

Fig 31a Miniature Sack Cells for Radio Anode Circuit

FIG 31B COMPONENT PARTS FOR SMALL RADIO WET CELL

the makers from time to time Curves supplied by Messrs Siemens (Fig 28) show discharges from a No 2 porous pot element, and from a standard short sack and a 2R sack element, while Fig 29 gives similar interesting discharge curves for a No 1 porous pot element, and similar sizes of sack elements.

The discharge curves of the extra large size No 00 cell, illustrated in Fig 26, are shown in Fig 30, the discharges being through 5 and 10 ohms respectively. It is interesting to compare the capacities in ampere-hours developed by similar cells at the higher and the lower rates of discharge

In contrast to such large sack cells, we may turn to

the not unimportant type of Leclanché illustrated in Fig. 31, that is, a miniature sack cell for the anode circuit of wireless sets made by the Wet HT Battery Co.

The illustration clearly depicts the small sack with its rubber insulating bands, and the cylindrical zinc which encircles it. The electrolyte recommended for this cell is sal-ammoniac, containing a certain amount of zinc chloride, which keeps the elements in good condition over the protracted intervals of rest which are naturally experienced with broadcast reception. To minimize evaporation, the makers advise the use of a little mineral oil floated on the surface of the electrolyte. These cells are made in various sizes to furnish up to 7, 14, and 30 ma. respectively, and are reckoned as exhausted at 8 volt.

The makers particularly emphasize the need for insulation between these cells, and the care which should be taken not to spill electrolyte over the outside of the containers when filling Cells of this type are more satisfactory than dry batteries if portability is not of the first importance, and are easily set up and cheaply renewed when exhausted

The Electrolyte.

A little care and attention in the preparation of the electrolyte for Leclanché cells will be repaid in future upkeep of the battery

If the cells are to be used for heavy current outputs, a strength of about 6 oz of sal-ammoniac to 1 pint of water (a nearly saturated solution) should be used

A solution of this density will tend to form crystals when the cell is working strongly, and to creep up the sides of the jar, the sack, and the zinc when idling. This applies also to less dense solutions down to 4 oz to the pint

For normal working 3 oz to the pint will be found quite efficient, while at the same time giving a minimum of creeping effect, this particularly applies to warm countries

The strength laid down by the Post Office is a 15 per cent

solution, that is, 3 oz. of sal-ammoniac to 17 oz of water. In certain cases—where cells are totally enclosed—the Post Office favour the use of manganese chloride as an electrolyte in place of ammonium chloride, as this salt does not emit ammonia fumes tending to corrode brass fittings, etc.

Some manufacturers recommend special salts composed of a mixture of the chlorides of ammonium and zinc, the latter, being deliquescent, prevents creeping to some extent

The addition of sulphate of zinc to the manganese-carbon mixture has been tried by other makers with the idea of preventing the formation of crystals of zinc and ammonium oxychloride which is frequently troublesome in its growth. Further, as the zinc sulphate dissolves out, it renders the main depolarizer mass more porous

The growth of insoluble oxychloride crystals is caused by the weakening of the sal-ammoniac solution as it is turned into zinc chloride. The zinc chloride, being denser, falls to the bottom of the cell, and oxychloride crystals are deposited on the zinc and also on the porous pot or sack, as the case may be, and, being non-conducting, adds greatly to the I R of the cell

Usually the solution of a high-grade Leclanché sack cell should be renewed two or even three times during its life to get the best results, avoiding thereby as much as possible the growth of the insoluble and non-conducting oxychloride formations which choke up the cell

The addition of a little mercury perchloride has been suggested to keep the zinc in good order and to discourage the growth of the oxychloride, but as this salt is extremely poisonous, its common use should not be entertained

When the zinc chloride above mentioned falls to the bottom of the cell it tends to set up a concentration cell about the zinc rod used (see p 17), with the consequence that such rods are nearly always attacked more strongly near the water-line, and tend to break off there before the rest of the rod is used up

To counter this, Messrs Siemens Bros and others use a cigar-shaped rod thickened at the water-line and furnished with a hook to hang over the edge of the jar (Fig 32)

Probably the best form of zinc is the short cylindrical pattern hanging from the jar, as this not only lowers the resistance of the cell, but, being suspended in the middle of

the solution, avoids any loss which might be set up by the formation of a concentration cell in the electrolyte

Whatever form of zinc is used in Leclanché cells it should be of good quality, and rod zincs should be drawn—not cast—as cast zincs give inferior results. The British Post Office specifies that zincs supplied should contain at least $2\frac{1}{2}$ per cent mercury as amalgamation and be free from impurities. The diameter of a No 1 zinc rod is generally $\frac{1}{2}$ in , and that of a No 2 $\frac{7}{16}$ in , the former being provided with a terminal wire of 16 S W.G copper, and the smaller with wire of 18 S W G

For other details of Leclanché cells, see chapter entitled "Maintenance and Upkeep of Cells"

Lead Peroxide Cells.

Lead peroxide seems to have been first used practically by Reynier, who employed plates similar to those of an accumulator, and later FIG 32
SIEMENS
NON-INCRUSTING
ZINC

by Harrison, who either compressed the peroxide round a serrated lead rod or held it in a basket-shaped grid. The solution is dilute sulphuric acid, and the anode well amalgamated zinc. Unlike most solid depolarizers, lead peroxide can give very heavy currents without any falling off in volume until the cell approaches exhaustion, also the EMF. is high (about 25 volt), but the cost of the peroxide is also relatively high, especially in view of the total ampere hours capacity obtained.

This type of cell has never been popular owing, probably, to the difficulty of leaving it on open circuit without excessive local action, the nature of the electrolyte (dilute sulphuric acid) acting on the zinc to some extent even when heavily amalgamated with plenty of free mercury

The use of bisulphate of soda in place of dilute sulphuric acid does not help much, and the substitution of any other of the usually known electrolytes considerably depreciates the action of the cell.

To counter the consumption of the zinc on open circuit, the author placed it in a solution of caustic soda within a porous pot, as a two-fluid cell

This arrangement gives a voltage of 3 14 volt, the cell being very active, but, unfortunately, the porous pot does not long survive

For experiments of this nature, well-charged accumulator plates act excellently, or the peroxide may be pressed round a lead or carbon rod within a porous pot, using either single-fluid or two-fluid electrolyte, but this arrangement is not so good as with the conventional lead grid, owing to poor contact and high internal resistance.

Several modifications of Reynier's cell have appeared from time to time, notably an ingenious cell of accumulator type in celluloid case into which a zinc bullet was dropped when it was required to "charge" the cell, but none appears to have survived

CHAPTER V

DRY CELLS

DRY cells are in reality Leclanché cells in which the electrolyte is immobilized so as to render them unspillable, the cell, of course, not being really "dry," but containing a modicum of moisture sufficient to allow the requisite

chemical actions to continue their functions Dryness is, indeed, one of the great enemies of dry cells, and much thought and experiment have been devoted to keeping the cell moist under all conditions of life and for considerable periods. When a "dry" cell becomes really dry it is useless, and there are few things more dead than a dead dry cell

Usually, although not always, the zinc anode is in the form of a square or circular pot which also serves as the container, being usually surrounded by a layer of cardboard or papier maché to avoid accidental short-circuiting when stood upon a metal surface Occasionally the zinc is formed as a cylinder within a glass or earthenware container. The

FIG 33 DANIA DRY CELL Atlas Carbon and Battery Co

first successful dry cell was devised by Gassner in 1888, from which present-day cells are descended with detail improvements in manufacture

This cell consisted of a zinc pot as above described, lined with a paste of plaster of Paris soaked in sal-ammoniac solution. Within this paste was placed centrally the carbon electrode, tightly packed with manganese dioxide and crushed carbon, also moistened with sal-ammoniac

solution The whole cell was then sealed with pitch, two small tubes being sealed in to allow the escape of any gases generated within

Modern dry cells follow broadly two methods of manufacture, thus there are packed cells, mostly favoured in the

Fig. 34 Diagram of Packed Dry Cell

 $\rm U~S~A$, and sack cells as usually made in Europe $\rm ~Fig~33$ depicts such a well-known form of cell

In the packed form of cell (Fig. 34) the zinc pot is lined with a few turns of moistened blotting paper or porous paper pulp, the carbon put centrally in place, and the annular space filled with the depolarizing mixture of manganese and carbon moistened with suitable electrolyte and rammed home tightly. The top of the cell then usually has a paper or cardboard washer fitted on, upon which is placed a layer of sand or sawdust, then another paper

washer, on which the usual pitch seal, with its two ventilating tubes, is poured

A cell of this kind has initially a very low internal resistance, and can give momentarily heavy currents of about 25 amp., but, apart from this somewhat useless

FIG 35 DIAGRAM OF SACK DRY CELL (DANIA TYPE)

feature, these cells are inferior to those constructed on the European plan, as they tend to dry up much more quickly than do properly constructed sack cells

In the sack type of dry cell (Fig 35) the manganese and carbon mixture moistened with sal-ammoniac solution is tightly compressed round the carbon electrode confined in a bag of woven material, such as mutton cloth. This element is frequently spoken of as the "dolly"

The depolarizing element is placed in the zinc pot, and the space between them filled in with either a white plaster-of-Paris mixture or, more usually, a gelatinous compound

In the case of the manganese-carbon mixture this is usually a fairly fine powder, the carbon being either partly or wholly natural graphite, such as Ceylon graphite, to give good conductivity to the mass. The greatest care has to be exercised to make sure the bag wholly contains the depolarizing mixture, for should any of it escape and reach the zinc pot heavy local action would naturally ensue

The white paste above mentioned usually consists of a mixture of roughly four-fifths plaster of Paris and one-fifth flour, or similar farinaceous substance, moistured with sal-ammoniac solution to which zinc chloride is frequently added as a deliquescent to keep the paste moist

The paste may be allowed to set naturally in the pot, but in some cases it is also "cooked" by steam heat

Most of the successful modern cells, however, use a gelatinous paste or jelly instead of the white plaster. This paste may have as its basis gum tragacanth, agar-agar, gelatine, dextrin, or other mucilaginous substance forming a slimy jelly. The excitant used is, as before, a solution of sal-ammoniac, to which are added frequently zinc chloride, glycerine, or calcium chloride, with the idea of keeping the jelly moist for long periods. Mercuric chloride is also sometimes incorporated in the mixture to help in amalgamating the zinc pot, and thus limiting local action and the growth of crystals.

The dolly of depolarizer is kept from touching the pot by strips of waxed cardboard or other suitable means, and sealed in with pitch. Usually an air space occupied by sand, sawdust, cork dust, etc., is arranged between the top of the active ingredients and the pitch, so that any gases generated when the cell is working may escape. This point is essential in a good cell because, although the gases must escape to avoid bursting the cell, the atmosphere must not have too free ingress or the cell may be unduly dried thereby For this reason dry cells should be kept at an equable temperature, otherwise extremes of heat and cooling will cause the cell to breathe through its vent tubes; thus on exhaling there will be a loss of moisture, and on inhaling dry air will be drawn in to the detriment of the life of the cell. Dry cells when freshly manufactured have a comparatively low IR, but as they age, either by use or the passage of time, their internal resistance rises. This is due either to the drying up of the excitant moisture, or to the formation of zinc hydroxide, or both. If the formation of hydroxide is strong the cells frequently burst. The addition of zinc chloride is supposed to neutralize the formations of the ammonium gas, and to retard the growth of hydroxide crystals.

Since a cell may not be called upon to give its output for some considerable time from the day of manufacture, a large amount of experience on the part of the maker is necessary in the choice of ingredients to ensure a reasonable output at the end of a long shelf life

Obviously, it is better to be satisfied with a cell of lower ampere-hour output if it will give that output at the end of, say, 18 months, rather than to choose a cell of higher output in ampere hours which may be uncertain in action at the end of 6 months This applies particularly to small dry cells used for wireless purposes, because they are frequently expected to give their output after relatively long periods of inaction, either due to being in stock at the dealers, lack of interest in the broadcast programme, holidays, or other causes, and the minuteness of the cells naturally does not help in the retention of moisture There is in such batteries arranged in sealed blocks the question of leakage between cell and cell Every precaution should be taken that there is adequate insulation, not only between each individual cell, but between each group of cells, and care must be exercised that such groups, when at considerable difference of potential, should not be adjacent.

Fig. 36, Two Dry Radio Batteries Discharged Continuously at 10 ma.

Fig. 37 Test Curves on a Large Size of Dry Cell as Used for L T Filament Circuits, SHOWING THE BFFECT OF RATE OF DISCHARGE ON THE EFFECTIVE LIFE In each case the cell was discharged for 3 hours continuously per day

Fig 36 gives the output curves of two well-known hightension batteries of similar size

It will be seen that the battery which was at first the more powerful proves in the end less efficient than its competitor

This example shows how extremely difficult it is to judge the efficiency of a battery, either by taking its voltage or its short-circuit current.

A continuous discharge, to some extent, gives a comparative idea but destroys the battery under test, moreover, there is no guarantee that two batteries will behave even approximately in the same way, or that their behaviour will be alike at the end of 6 to 12 months. In this respect wet batteries score heavily over the dry variety, and are to be recommended when portability is not an essential point

The rate of discharge of the batteries shown in the curve (10 ma) is rather severe, and it should be remembered that a better efficiency can be obtained from a dry cell by under-running than by over-running it, provided the current taken is not so low as to allow the whole time of discharge to play a preponderating part, that is, the cell should only be discharged at such a rate that it becomes as it were electrically empty before it becomes stale or dried up by time.

Fig 37 shows a curve of large dry cells suitable for filament heating discharged at various rates. It will be seen that such a cell lasts 155 days when discharged at ½ amp for 3 hours a day, to ·9 volt, but only 60 days at ½ amp, and barely 40 days at ·7 amp. Tabulated in ampere-days this is

				effective life
$\mathbf{A}\mathbf{t}$	25 an	aperə		36
,,	5	,,	•	30
,,	7	,,		28

Hence, the economy of discharging a dry cell well within its limits is well demonstrated by these curves, in other

FIG 38 SIEMENS SPECIAL NO 640 DRY CELL FOR WIRELESS LT FILAMENT CIRCUITS Discharged for 3 hours per day at 0 125 amp, and 0 25 amp, respectively

words, for the higher rate of discharge a larger cell is necessary for true economy

Another concrete example is given in Fig 38, by curves supplied by Messrs Siemens Bros, of the discharge of one of their low-resistance circular cells, 2\frac{5}{2} in in diameter, and 6\frac{3}{4} in. high (Fig 39) Here the capacity falls from

about 62 amp -hr when discharged at ·125 amp., to 41 amp -hr approximately when the current is increased to 25 amp

From these results the necessity of choosing a cell of ample size for the duty imposed can be realized, and this is particularly the case with such small cells as are used for flash-lamp purposes or for wireless high-tension batteries

It is not easy to obtain figures of discharge rates for these latter, because so much depends on circumstances, that is, on the total current taken by the set and on the periods of use and of repose. Taking these as being normal, Messrs Hellesen publish the tables given on the next page as a guide

FIG 39
SIEMENS
LOW RESISTANCE
CELL
(CIRCULAR)

Inert Cells.

Before terminating this chapter, mention must be made of an important branch of dry cells, that is, the mert cell, which is virtually a dry cell put up without the moist paste in place, and with one of the vent holes enlarged to form an opening large enough to carry a small cork (Fig 40) Although the paste is omitted as such, the excitant salts are left in place within the cell, and in some cases the desiccated components of the jelly Under these conditions the cell will store in good condition for very long periods, and when it is required to put the cell in action it is only necessary to add water through the vent (having removed the cork) till the cell is full, using for the purpose a small glass syringe similar to that used to fill a fountain pen

DRY CELLS

STANDARD CAPACITY (MAXIMUM DISCHARGE ADVISED-8 MA)

Periods of Use	Rate of Pischarge in Milliamperes				
	5	10	15	20	
		Life in Hours			
30 hours per week 40 ,, ,, 50 ,, ,, 60 ,, ,,	320 300 280 250	140 130 125 115	85 80 75 70	60 55 55 50	

DOUBLE CAPACITY (MAXIMUM DISCHARGE ADVISED-12 MA)

Periods of Use	Rate of Discharge in Milliamperes			
	5	10	15	20
30 hours per week 40 ,, ,, 50	Life in Hours 550 260 165 120 540 255 160 116			
60 ,, ,,	520 500	250 250	160 155	110

TREBLE CAPACITY (MAXIMUM DISCHARGE ADVISED—20 MA)

Perio	ds of Use	Rate of Discharge in Milliamperes		
		10	15	20
$\frac{40}{50}$,	rs per week	430 420 410	Life in Hours 280 270 260	200 195 185
60 ,		400	250	170

After the cell has stood for some time the excess of moisture, if any, can be shaken out, and the cell, re-corked, is ready for use. Cells of this sort should, in general, be used standing up, although for short periods they may be used in any position

The advantages of cells of this description for long storage or for tropical use are apparent, since deterioration

FIG 40. INERT CELL
Atlas Carbon &
Battery Co, Type
W O. (Water only)

Fig 41 Siemens Inert Flash Lamp Cell

does not begin till the cell is actually in use, hence, the reliability of the cell is greatly increased

Messrs. Siemens Bros. have used this principle in the manufacture of small torch batteries (Fig 41). On receiving the cells it is only necessary to remove the cork and to fill with water as above outlined, allowing the cells to stand for 24 hours. In this case, however, the small cork is not

replaced, but a composition cork disc, or washer, having a central hole to fit the carbon, is forced in place within the edge of the zinc cylinder, thus sealing the cell Paraffin wax may be melted over the cork as an additional safeguard if desired Thus charged, one is in possession of a battery as fresh as if just manufactured.

CHAPTER VI

TWO-FLUID CELLS

WE now come to cells using two fluids with a porous pot to separate them, the one fluid being the depolarizer surrounding the carbon electrode, and the second fluid acting as excitant to the zinc

In all such cells the porous pot plays a most important part, and is also, unfortunately, invariably a point of weakness

As we have said, the function of the porous pot is mechanically to separate the depolarizer and the excitant, while at the same time it must permit interplay of the two chemicals and sufficient conduction of the electric current.

If the porous pot is of the open-pored type of good china clay, its resistance will be relatively low, but transference of the liquids will be marked, while a pot of a harder and less porous kind will more effectively separate the two fluids, but will have a higher resistance

A good white porous pot will show blotches of damp on the exterior in from half to $1\frac{1}{2}$ minutes from the time it is filled with water. The close-grained porous pots are much slower in responding to this test and are usually of a red colour.

As the porous pot has to be a conductor as well as to separate the two constituent solutions of the cell mechanically, it is almost impossible to prevent a certain amount of transference of the one component fluid (generally the depolarizer) into the compartment which should be reserved for the excitant. Again, it is almost impossible to prevent the fall of the exciting fluid within the porous pot from passing by exosmosis into the depolarizer's compartment and so weakening it

The two actions should not be confused for, taking the Daniell cell as an example, we find that although the dilute acid round the zinc within the porous pot falls, yet there is a transference of copper which is deposited on the zinc in the opposite direction

A great amount of work has been done to attempt to

Fig 42 Fuller's Bichromate Cell

check the diffusion of the liquids through the porous pot, whilst at the same time keeping it conducting

Impregnating the pot with collodion, gelatine, zinc oxide and chloride, soap, cuproammonium, etc., has been suggested, but with little success, the method invented by Darimont, to which we shall allude later, being probably the best to date

In addition to the disadvantages enumerated above the porous pot serves as an excellent path up which the salts used may climb by capillary attraction and crystallize out, thereby rendering the cell, sooner or later, useless This disadvantage can be countered to some extent by dipping the edges of the porous pot for about 1 minute in

FIG 42A FULLER TYPE 2-FLUID BICHROMATE CELL (Siemens Bros & Co)

warm paraffin wax for $\frac{3}{4}$ in. in depth There remains the weakness that porous pots tend to disintegrate in time, especially if alkaline solutions are used on the one side and acid or salt solutions on the other.

Two-Fluid Bichromate Cell.

Bunsen is reputed to have first suggested the use of potassium bichromate in a two-fluid cell, possibly as a

variation of the cell of his name, but the first practical model is due to Fuller (Fig 42) In this form the carbon electrode is placed in the outer container with the usual solution of potassium bichromate, sulphuric acid, and water Within the porous pot is placed the zinc, in this case a squat pyramid of zinc with a little free mercury to ensure good amalgamation The exciting solution may be dilute acid, zinc sulphate, or even plain water, according to the IR required of the cell In the case of plain water this becomes acidulated by a certain amount of transference from the outer or depolarizing solution. The edges of the porous pot should be well waxed, and in Fuller's original cell about half of the cylindrical wall was also waxed to limit as much as possible transference between the two liquids Fig 42A shows the general appearance of such a cell, EMF about 201, as supplied by Messrs. Siemens Bros. The central zinc is in this case rather longer than in the original Fuller. giving a lower I R

It may be remarked here that sometimes the reversal of the elements is advocated, that is, that the carbon should be placed within the porous pot and the zinc without Since, however, the depolarizer is the more important of the two solutions a greater volume can generally be placed in the outer container than in the porous pot, and for this reason it is the better disposition of the electrodes and solutions

Using our Standard cell, 1 pint only of Ayrton's solution, as before, was placed in the outer container with two carbon plates 2 in wide

The porous pot was filled with about half a pint of dilute sulphuric acid (I in 20), and a cylindrical zinc 5 in \times 4 in in area placed in the pot with a little mercury Fig 43 shows the curves of discharge at 1 amp and $\frac{1}{2}$ amp respectively. The short-circuit current of this cell is now only 5 amp as against 13 of the single-fluid type, due to the IR. of the porous pot (IR of cell about 45 ohm).

CURVES OF DISCHARGE AT HALF AND ONE AMPERE RATE OF 2-PINT 2-FLUID BICHROMATE CELL (DOTTED LINE SHOWS SINGLE-FLUID CURVE) Frg 43

On the other hand the output of the cell in ampere hours is very much increased, and such a cell is extremely useful for general experimenting, or charging accumulators where a really strong current is required for several hours at a constant rate The cell can also be left on open circuit for reasonable periods, and although, of course, it cannot compete with the sal-ammoniac type cell for open circuit work on feeble currents, yet Fuller cells will afford reasonable service for several weeks, also they are clean and cheap if properly looked after, and probably one of the best cells yet invented where moderately strong currents are required at irregular intervals. It should be noted here that all liquid depolarizers are far more rapid and energetic in their action than solid depolarizers in cells of comparable sizes This is probably due to the fluidity of the depolarizer as a liquid in contrast to the fixed surface presented to the polarizing hydrogen by the solid depolarizer Further, when the outer surface of a solid depolarizer is exhausted the hydrogen has to traverse the exhausted material before meeting fresh depolarizing surfaces, an objection which does not obtain in liquid depolarizers which are ever changing, due to convection and other causes The acid exciting solution in the porous pot can be replaced by zinc sulphate or sodium bisulphate if desired, but, as already stated, the liquid in the porous pot will fall, and there will be a transference of the bichromate solution within the pot In this case no very great harm will be done, especially if the zincs are wiped clean before using

From the curves shown we see that at ·5 amp discharge the ampere hours given were about 18, and at the 1 amp discharge about 22 to 8 volt. On the other hand, the P D of the smaller rate of discharge was maintained at an average of about 1 4 volts as against 1 24 volts with the 1 amp discharge, so that the watt-hours come out about the same, with a slight bias in favour of the smaller rate of discharge, as might be expected.

FIG 44 SLYERTOWN 2-FLUID BICHROMATE CELL, SHOWING COMPONENTS

Both these performances easily surpass that of the single-fluid cell, whose curve is dotted in again for comparison, although only 1 pint of the same solution was used in the outer vessel against 1½ pint for the single-fluid arrangement.

Fig 45 Silvertown 2-fluid Bichromate Battery, showing Lift Device

The superiority of the Fuller's type of cell is thus clearly demonstrated

Silvertown Cell.

Fig 44 shows a powerful form of bichromate cell supplied by the Silvertown Co Owing to the large surface of the electrodes the internal resistance is very low. The pockets for mercury on the sides of the zinc should be noted

Where several cells are used a frame is provided (Fig. 45),

whereby the zinc electrodes can easily be raised out of the exciting solution. Charges of crystals for these cells can be supplied ready mixed if required.

A 3-pint cell will give $1\frac{1}{2}$ amp for 20 hours continuously, and a 10-pint size 5 amp for the same period

THE BLEECK LOVE CELL (E.M F 2 52 volts) is similar to the Fuller except that an alkaline electrolyte of caustic soda is used round the zinc as an excitant, the increased voltage being due to the Becquerel effect at the junction of the acid and alkaline solutions. The inventors add to the alkaline solution a little gum arabic to retard diffusion, and to the depolarizer, which is chromic acid and hydrochloric acid, a little ferrous sulphate. The idea may possibly be that the alkaline solution interacting with the ferrous sulphate in the pores of the pot will deposit a membrane of iron oxide, which will tend to stop diffusion and yet conduct

This is undoubtedly the case, but diffusion is not sufficiently suppressed to qualify the cell for long open-circuit work

The output in watt hours is fair, but except for its high voltage the cell is not as economical as the Fuller, and there is a tendency for a slime of chromium deposit to cover the zinc. In addition, the use of caustic soda is unpleasant, and the porous pots tend to disintegrate unduly, as is always the case when used with an alkaline and acid solution, as already explained

THE BUNSEN CELL (E M F about 1.95 volts) is probably the most powerful primary cell yet known

The Bunsen cell is really a modified form of the cell first suggested by Grove, Bunsen substituting a carbon electrode in place of the expensive platinum plate first used by Grove. The cell consists essentially of an outer vessel containing the carbon electrode in a strong solution of nitric acid, and within the porous pot a zinc plate, usually in the form of a cylinder, with a solution of dilutle sulphuric acid.

FIG 46. BUNSEN CELL WITH ITS COMPONENT PARTS

Fig 46 shows the general appearance of a Bunsen cell In this case the carbon is centrally disposed within the porous pot, and the zinc is in the form of an encircling cylinder

On the circuit being closed the sulphuric acid attacks the zinc, forming zinc sulphate and hydrogen— $H_2SO_4 + Zn = ZnSO_4 + H_2$

The hydrogen passing through the pores of the porous pot meets the nitric acid, and, combining with some of its oxygen, forms water and nitrous acid, thus,

$$H_2 + HNO_3 = NO_3 + H_2O$$

By these means the hydrogen does not reach the carbon plate and polarization is prevented

The chief objection to this cell is the offensive nitrous fumes given off by the depolarizer, which make it essential to use the cells in the open air only, and even then the fumes quickly corrode the terminals of the cells Moreover, the virulent nature of nitric acid renders it an unpleasant material to handle

With the Standard cell, the outer container was filled with 1 pint of strong nitric acid (S G 1 42), and two carbon electrodes 2 in wide were used. The usual porous pot was immersed in the nitric acid, and contained a dilute solution (1 in 20) of sulphuric acid surrounding a cylinder made from sheet zinc, measuring 5 in \times 4 in , and well amalgamated. The short-circuit current was 10 amp, and the I R of the cell about ·25 ohm. Fig. 47 gives the curve of discharge at 1 amp. It will be seen the current remains remarkably steady, and does not fall to 8 volt until over 40 hours have elapsed.

Various attempts have been made to improve on the Bunsen cell, thus a mixture of the nitrates of potash or soda and sulphuric acid has been suggested in place of the nitric acid, but these mixtures give comparatively weak results. D'Arsonval recommends the use of a depolarizing

mixture of nitric acid, hydrochloric acid, and water Other suggestions were the substitution of bichromate of potash or perchloride of iron for the nitric acid, thus bringing us back again to the starting-point of other cells

Callan and others constructed cells in which a cast-iron

Fig 47 Curve of Discharge of 2-pint Bunsen Cell at 1 ampere

container served at once the function of vessel and positive pole

Cast iron, when immersed in strong nitric acid, assumes a passive state and is not attacked, but sometimes, notably if the solution weakens, the iron is acted on and the cell is likely to boil over

DANIELL CELL This cell, originally suggested by Becquerel, was first evolved in its practical form by Professor Daniell

It consists (Fig. 48) of an outer vessel containing a copper

Fig 48 Daniell Cell with Component Parts
The Silvertown Co

plate in a concentrated solution of copper sulphate or bluestone. Sometimes the container is itself made of sheet copper, so as to act both as container and electrode. The copper plate is usually in the form of a cylinder, and within this is placed the porous pot containing a dilute solution of sulphuric acid and a zinc plate, rod, or cylinder

The action of the cell is as follows—as before, the dilute acid attacks the zinc, forming zinc sulphate and generating hydrogen—gas which passes through the porous pot to encounter the solution of copper sulphate when the hydrogen atoms are exchanged for those of copper—Thus,

$$H_2 + CuSO_4 = H_2SO_4 + Cu$$

The result is that the copper sulphate solution is weakened to sulphuric acid, and metallic copper is deposited on the cathode or copper plate

This action continues until the whole of the copper sulphate is used up, the cell remaining extremely constant. In practice, it is usual to add lumps of copper sulphate to the solution to enable it to remain saturated, and, where great constancy and small local action are required, zinc sulphate should be added on starting the cell instead of dilute acid solution

The EMF of the Daniell cell is about 1.07 volts with strong zinc sulphate, and 1 I volts with dilute sulphuric acid

Instead of zinc sulphate, magnesium sulphate, sodium bitartarate, salt, sodium bisulphate, and magnesium sulphate have been used. In the so-called Leclanché-Daniell sal-ammoniac is substituted, but there is little difference apparent in the action of the cell. With zinc sulphate it is hardly necessary to amalgamate the zinc as with dilute acid and other of the more violent excitants.

With our Standard cell the outer container was filled with a concentrated solution of copper sulphate, made by bringing up about 6 oz of copper sulphate to 1 pint with water

In the outer compartment was stood a cylinder of sheet copper, $4\frac{1}{2}$ in \times 9 in, surrounding the porous pot which contained a $\frac{3}{8}$ in. zinc rod in the usual dilute solution of sulphuric acid (1 in 20). Such a cell, when new, gives about 1 amp on short circuit, and has an IR of about 46 ohm, which rises as the cell becomes exhausted to about 18 ohms

Fig 49 shows the curve of discharge, from which it will be seen the PD remains remarkably constant during the whole run

The cell can be recharged almost to its first freshness by adding more crystals of copper sulphate.

Apart from evaporation, the Daniell cell has three main faults. Firstly, copper is liable to be deposited on and in the porous pot whenever the copper or the zinc touches it

The copper sheet, or the spiral of copper wire which forms a cheap substitute, should be arranged clear of the porous pot. This means an increase in internal resistance, but this is relatively unimportant, moreover, it allows a free circulation of the copper sulphate solution. The porous pot should be well impregnated with wax at the bottom as well as round the mouth of the pot, so that copper will then not be deposited at the two places where the zinc usually rests.

The second defect is the falling of the zinc sulphate excitant in the porous pot, and the consequent dilution and rising of the copper sulphate solution which may even rise enough to flood back into the porous pot

Thirdly, there is the transference of the sulphate of copper into the porous pot, and its consequent deposition on the zinc, causing heavy local action. It is therefore necessary occasionally to clean the zincs, to replenish the excitant in the porous pot, and to withdraw by means of a syringe or syphon the copper sulphate solution if it rises too high, adding fresh crystals when necessary

Innumerable modifications of the Daniell cell have been made, but without any great improvement. One of the

Fig. 49 DISCHARGE CURVE OF 2-PINT POROUS POT DANIELL CELL ON 10 OHMS

FIG 50 GRAVITY DANIELL CELL WITH ITS COMPONENT PARTS (The Silvertown Co)

most practical forms is known as the Gravity Daniell (Fig 50).

It will be seen this consists of a vessel, at the bottom of which is placed a copper plate, or spiral, leading to the surface by means of a rubber insulated wire. At the mouth

FIG 51 GRAVITY DANIELL CELL, CROWFOOT FORM (Messrs Stemens Bros & Co)

of the vessel hangs the zinc electrode in the shape of a wheel or other similar configuration, according to the fancy of the maker Copper sulphate crystals are placed at the bottom of the cell on the copper plate, and the vessel gently filled with a solution of zinc sulphate to the level of the zinc.

As the copper sulphate enters into solution its greater density causes it to lie at the bottom of the cell covering

the copper plate, and thus leaves a clear zone of zinc sulphate surrounding the zinc. By this means the porous pot with its attendant resistance is eliminated, as is the deposition of copper in the porous pot itself. Nevertheless, there is a certain amount of transference still with this arrangement, even if the cell is kept (as it should be) on closed circuit, and it is necessary occasionally to clean the zinc as well as to add crystals from time to time

The zinc sulphate also should be partly withdrawn if it becomes too dense. Fig. 51 shows another arrangement of gravity cell, known as the Crowfoot pattern, it is similar to the foregoing wheel type but has no lid. Many forms of gravity cell have been designed, notably by Kelvin, Callaud, Meidinger, Lockwood, Gethins, and others

The Meidinger, or balloon type of gravity Daniell cell, is illustrated in the Frontispiece. It will be seen the copper cylinder is placed at the bottom of the cell surrounding the neck of an inverted bottle or balloon containing copper sulphate crystals and water. On a ledge or gallery towards the top of the cell is placed a zinc cylinder. The cell is filled with a solution of magnesium sulphate (about 1 part of salts to 5 or 6 of water by weight). As the copper sulphate solution at the bottom is used up, fresh crystals of copper sulphate fall down from the balloon and keep up the strength of the solution below, on the principle of a chicken feed fountain.

Gravity cells are naturally not very portable, and on that account we shall mention one remaining arrangement of Daniell cell intermediate between the gravity and the porous-pot form, viz, the Minotto (Fig. 52). This cell is similar to the gravity form in that it has a copper plate at the bottom covered with copper sulphate, but on this is placed a layer of felt or canvas, and upon this is poured sand or sawdust to a depth of about 2 in. On this, again, is placed a second disc of canvas, upon which rests a flat plate of zinc with a suitably raised terminal. Zinc sulphate

FIG 52 MINOTTO DANIELL CELL WITH COMPONENT PARTS (The Silvertown Co.)

is poured in until the sawdust is saturated and the copper sulphate crystals sufficiently moistened for the cell to start work.

Such a cell has a very high internal resistance, some 10 or 20 ohms, but for telegraph and similar work this is of no great consequence

REYNIER CELL Reynier modified the Daniell cell by using caustic soda instead of zinc sulphate as the excitant. The EMF. is thus raised (owing to the Becquerel effect) to 1.65 volts. This cell also is relatively more powerful than the Daniell, and does not usually suffer from the bugbear of copper depositions on the porous pot. It is to be recommended for moderately strong currents over, say, a month's duration, but after that time the porous pot will tend to crack, diffusion and transference become marked, and the cell useless. The author has used copper nitrate successfully in place of copper sulphate with a slight rise in EMF (1.72 volts). Copper nitrate is also very much more soluble than the sulphate, but it is also more expensive

FERRIC CHLORIDE CELLS Buff, Duchemin, and Marron appear to have used two-fluid cells, in which the carbon was immersed in a solution of ferric chloride (iron perchloride) and zinc in the porous pot with a solution of salt (sodium chloride) or dilute acid. Such a cell gives an E M F of 15 volts, and is very constant and powerful. The disadvantages of such a combination are that, owing to transference, iron is deposited on the zinc, and exosmosis tends to empty the porous pot and dilute the depolarizer, so that the cell is not of much use for any run extending longer than a fortnight The author has found a solution of magnesium chloride gives superior results to salt or zinc chloride where strength of current is the first consideration, on the other hand, zinc chloride diminishes exosmosis and transference to some extent at the cost of a slight fall in E.M F. D'Arsonval modified the cell by using caustic soda in place of the salt solution round the zinc, thus raising the voltage of 2·12 volts, but the same difficulties arise and, in addition, the porous pot tends to disintegrate

Darimont appears to have been the first to have discovered a definite and satisfactory solution of the problem. In his cell (Fig 53) he uses the same solution as Duchemin and Buff, but adds to the salt excitant some anti-acid

Fig 53 Darimont 2-Fluid Ferric Chloride Cell

material, such as chalk As the perchloride of iron penetrates the wall of the porous pot, combination with the chalk takes place, forming an insoluble material which acts as a conducting, but semi-pervious, membrane To keep the chalk in a state of suspension and prevent it falling to the bottom of the pot, the salt solution is also mixed with a mucilaginous agglutinant, such as starch or cornflour. To prevent the membrane being too deeply

formed in the wall of the porous pot, thereby unduly increasing the I R of the cell, chromic and/or hydrochloric acid can be added to the ferric chloride. The E.M.F of this cell is 1.6 volts, and a steady and well-maintained curve of discharge, characteristic of ferric chloride cells, is given

It is claimed that the membrane formed under the conditions just explained both prevents exosmosis from the porous pot and transference of iron to the zinc electrode, consequently, these cells can be left if desired on open circuit for really extended periods without deterioration.

CHAPTER VII

MAINTENANCE OF BATTERIES

THE care of batteries, particularly where there is a large number of cells, is essential to economical working.

Generally speaking, batteries should be installed in conditions where they can be left at a cool equable temperature, and where they are easily cleaned and ventilated

Extreme changes in temperature lead to excessive variations in the internal resistance of the cells, a complaint to which some cells are particularly susceptible Cleanliness and ventilation are also necessary to avoid leakage through creeping, and discontinuities due to dirty or corroded terminals

Care of Leclanché Cells.

The greatest enemy of Leclanché cells is evaporation and consequent creeping of the salts up the sides of the glass jar and up the walls of the porous pot or the sack Cells should be periodically inspected, and fresh water added as may be required. With air depolarizing cells the carbon electrode should be moved now and again to break away any crystalline formations which may form gas pockets

Creeping of salts up the jar and pot can be countered to a large extent by dipping the neck of the jar and the top of the porous pot in warm paraffin wax. The evolution of ammonia gas from the cell is liable to attack the brass terminals of the carbon electrode and the copper wires from the zincs, especially if the cells are in a confined space. It will be found helpful to brush the terminals with a little vaseline, or a half-and-half mixture of turpentine and castor oil.

When setting up Leclanché cells it is advantageous to allow them to soak for 24 hours in their sal-ammoniac solution before putting into use.

With porous pot cells, the absorption of the solution can be expedited by drilling one or two holes through the bottom of the pot with a small twist drill to allow the solution to enter more readily

As the cells age it will be found necessary to change the electrolyte and refill with fresh solution of the correct density (see p 65) This should always be done immediately there are any signs of the formation of crystalline or tree-like growths of oxychloride salts; at the same time the zincs should be inspected and, if necessary, renewed It will be found sufficient to remove any white growths of oxychloride if the pots or sacks are scraped with a piece of blunt wood and the zincs with a knife. In the event of the cell working irregularly a bad contact between the carbon and its cap should be suspected, owing to the formation of lead salts if the cap is of lead, or verdigris if the screw terminal is moulded into the carbon (see Carbons, later)

When the cell is exhausted most of the components, except the jar, must be thrown away. The zinc, if in good condition may be cleaned and used again, but the porous pot or sack is practically valueless, as the carbon electrode cannot be used again in a first-class cell owing to the zinc oxychloride deposit within its pores. Such carbons can only be utilized by grinding down and remoulding

The glass jars can be cleaned from hard chalk-like deposits by soaking them in a dilute solution of hydrochloric acid.

Dry cells do not call for much attention, beyond keeping them in a cool place at an equable temperature

When they are exhausted the more economical of our railway companies follow the plan of stripping off the cardboard covering, piercing holes in the zinc pot with a

bradawl, and setting them up as a wet cell in sal-ammoniac solution in a glass container. The solution percolates into the cell and gives a further lease of life. When the zinc pot is entirely used up the cells are sometimes again recovered by taking off the remains of the zinc pot and the surrounding jelly, and setting up the cell as a plain sack cell with fresh solution and a new cylinder or rod zinc. Of course, at this stage the cells are somewhat exhausted, but sufficiently strong to furnish currents for telephone use, etc.

CARBONS are made in two varieties, the older being of the cut variety, that is, the carbon rods or plates are cut from retort coke by means of a rotating disc loaded with wet grit These carbons are the best where strong acids are used, such as in the Bunsen cell, but are naturally expensive.

The second kind, which are now almost universally used in ordinary cells, consist of carbon plates moulded from powdered carbon made into a stiff dough with syrup or tar and then baked in a furnace. In some cases the terminal screw is inserted in the dough before baking. Messrs Siemens insert the screw in a prepared hole and run it in with special alloy. The commonest method is to cast a lead cap over the end, either drilling holes or forming notches in the plate or rod so as to keep the cap into place. Still another way is to mould the head of the carbon with a bridge through which the shank of the terminal screw is inserted, a flat nut being tightened up under the bridge. This method allows the terminal to be removed for cleaning and inspection.

For experimental work it is sometimes convenient to copper-plate the end of the carbon, which can easily be done, and then to solder on the requisite metallic terminal or connector

The carbon having been capped by any of these methods should be placed head down into hot paraffin wax for a few moments, so as to prevent creeping of the electrolyte Should the electrolytic salts of whatever nature reach the junction of the carbon and its metallic connection, increased resistance growing to discontinuity must infallibly be expected, because non-conducting metallic salts will be formed.

As above remarked, Leclanché carbons should not be used a second time for Leclanché cells, but they may be used, after cleaning with sandpaper, quite satisfactorily in bichromate, ferric chloride or similar cells if desired, owing to the superior conducting and depolarizing powers of such cells

Zincs have been freely illustrated throughout this book, but a word may be said about the quality

It is usually held that for Leclanché type cells the zinc rod should be drawn or pressed, and the Post Office specifies not more than I per cent of total impurities. Although this degree of purity may be desirable for Leclanché cells, it is by no means necessary for other primary cells in which ordinary commercial zinc sheet or cast spelter can be used, provided it is suitably amalgamated in the ways already indicated

Zinc can be easily melted in a small crucible or ladle over a gas ring, and cast either in a chill or a mould made of well-dried plaster of Paris or fireclay. By using the Fuller form of pyramid scraps of zinc and condemned zinc rods, etc., can economically be used again, a little mercury being cautiously added to the molten zinc, which should not be too hot or the mercury will be partly driven off as vapour

CONTAINERS are usually of the glass variety, but sometimes glazed earthenware is used

Earthenware should be looked on with suspicion, as the electrolyte has a way of percolating through even the best glaze if there is a slight crack or crazing. This is particularly noticeable with ferric chloride and caustic soda. Ebonite and celluloid form good light substitutes for experimental cells.

Care of Two-fluid Cells.

The efficient working of bichromate and similar cells depends on keeping the components, particularly the porous pots and carbons, clean and in good condition

To this end it is wise to have handy a large earthenware trough or glass accumulator box, containing dilute hydrochloric acid, into which the porous pots and carbons can be placed to wash them clean Porous pots from Daniell cells may need the addition of nitric acid (forming with the hydrochloric acid aqua regia) to free them from any deposited metallic copper

After, the pots and carbons should be stood in plain water overnight to rinse. If nitric acid is used to wash carbons beware of a momentary fictitious voltage when the cell is first set up again, as the nitric acid remaining in the pores of the carbon may give a higher voltage than the form of cell warrants. When mixing bichromate or other solution into which sulphuric acid enters, remember always to pour the acid slowly into the bulk of the solution and not vice versa.

A very useful accessory for batteries is a syringe made from a glass tube, drawn to a nozzle at one end and furnished at the other with a large rubber bulb. With this adjunct liquid can be taken out of cells from the top without disturbing the contents, or with gravity cells strong copper sulphate solution, etc., can be added without disturbing the superimposed level of zinc sulphate.

Finally, have handy a 2-pint measure glass and a reasonably accurate weighing balance. Never guess when making up solutions, even for the most obscure Leclanché cell.

USEFUL DATA

1 Pint of Water = 20 fluid ounces = 20 ounces avoirdupois = 34 68 cubic inches = 568 24 cubic centimetres

ELECTRO-CHEMICAL EQUIVALENTS

			Grammes deposited
Element			per ampere-second
Hydrogen			000010384
Aluminium			-0000932
Magnesium .			0001242
Iron (ferrous) .			0002902
Iron (ferric)			0001935
Copper (cupric)			0003281
Copper (cuprous)		•	0006562
Zinc			00033698
Mercury (mercuric)			0010374
Mercury (mercurous	1)		0020748
Silver	:		0011181
Tin (stannic)			0003058
Tin (stannous)			0006116
Lead			0010716
Nickel .			0003043

Table of Solubility in 100 Parts (of common battery salts)

(The values given below are approximate and depend upon temperature)

Alum (potassium)		5 63
" (ŝodium)		103 1
Ammonium carbonate		100
" chloride .	•	29.4
Calcium chloride		117 4
Chromic acid (trioxide)		163 4
Copper nitrate		243 7
,, sulphate .		32 96
Ferric chloride		. 246
,, nitrate .		V soluble

TABLE OF SOLUBILITY IN 100 PARTS—(contd)

Ferric sulphate .	V. soluble
Ferrous chloride	1 60·1
., nitrate .	200
,, sulphate	32 8
Magnesium chloride	167
,, sulphate	76-9
Manganese chloride	151
Mercuric chloride	6.5
,, nitrate	V. soluble
Mercurous nitrate	V soluble
Potassium bichromate	4 65
,, bisulphate	36.3
,, carbonate	169 2
,, chlorate	3 3
,, chloride	34
,, hydroxide	13.3
,, nitrate	13.3
,, permanganate	2.83
,, sulphate	11 1
Sodium bichromate	239
" bisulphate	28 6
,, carbonate	21 33
,, bicarbonate	96
,, chloride	35 7
,, hydroxide	109
" hyposulphite	18 1
., nitrate	87 7
,, sulphate	36 82
Tartaric acid	115
Zinc chloride	209
,, nitrate	324.5
,, sulphate	143 3

The figures on page 112 are taken from Professor Ayrton's Practical Electricity, and give the theoretical weight of material consumed in various cells. With perhaps the exception of the zinc, these figures are very different in practice, owing to the losses in the cell, and also to the fact that in the tables the current is apparently calculated to zero voltage, while in practice the cell is usually discarded at half its original potential. The figures form, however, an interesting basis of comparison between different cells, and a useful guide when mixing solutions

Approximate Weight of Materials Consumed per 1000 Ampere-hours

		lbs
(Zinc	2 69
Daniell }	Copper sulphate	10 3
•	(copper produced)	(2.61)
Grove or (Zine	2.69
Bunsen	Sulphuric acid (S.G. 18)	4 43
bunsen (Nitric acid (S G 1 4)	7 98
7	Zine	2 69
Leclanché	Sal-ammoniac	4 4 1
(Manganese dioxide	7 08
Bichro-	Zine	2 69
mate Cell	Sulphuric acid (S.G. 18)	10.32
mate Cen (Potassium bichromate	4.04
Chromic	Zinc	2 69
acid cell	Sulphuric acid (S G 18)	9 01
acia ceii (Chromic acid (chromium trioxide)	2.89
Ì	Zinc	2.69
Lalande }	Caustic potash	3.3
(Copper oxide	3 37
	(Copper produced)	(2 61)

APPENDIX

TYPES OF VOLTAIC CELLS

In the following tables will be found details of a number of voltaic cells, which have been invented from time to time since Galvanis' original discovery in 1786. The basis of selection is either historical interest, first invention, or practical utility Many names not particularly filling these conditions have been omitted

The author does not pretend to have tried all the cells enumerated, but, where he has, any errors have been rectified, this applies more particularly to the values of E M F.

It should be understood the author does not guarantee in any way the E.M.F 's, dates, or data in the table, since accurate particulars are frequently somewhat difficult to trace

For economy of space the following symbols have been used—

H_2SO_4	=	sulphuric acid	$\mathbf{Z}\mathbf{n}$	=	zine
HNO_3	==	nitric acid	C	==	carbon
CrO_3	=	chromic acid	Cu	==	copper
HCl	==	hydrochloric acid	$\mathbf{P}\mathbf{b}$	=	lead
Salt	==	sodium chloride	Ag	==	silver
K,Cr,O,	, ==	potassium bichromate	Fe	==	iron
CuSO ₄	==	copper sulphate	$\mathbf{A}\mathbf{l}$	==	alumınıum
\mathbf{ZnSO}_{4}	323	zinc sulphate	\mathbf{Pt}	==	platınum
AmCl	==	ammonium chloride	N_1	=	nickel
NaOH	=	caustic soda	Hg	=	mercury
MnO_2	==	manganese dioxide	Př	=	porous pot
Aq	==	water			

ad signifies that air is probably the depolarizing agent by occlusion from the atmosphere, more or less feebly

USEFUL BOOKS OF REFERENCE

```
Electricity and Magnetism Prof S P Thompson (Macmillan)
Galvanic Batteries S R Bottone (Whittaker & Co)
Piles et Accumulators Electriques L Jumeau (Lib Armand Colin,
Paris)
Practical Electricity Prof W E Ayrton (Cassell & Co)
Primary Batteries W R Cooper (Benn Bros)
Primary Batteries Henry S Carhart (Allyn and Bacon, Boston,
U S A)
The Voltaic Cell Park Benjamin (Wiley & Sons, New York)
```

SINGLE-FLUID CELLS

	Anode	Solution and Depolarizer (if any)	Cathode	E M F	Date
Anderson	Zn Fe	Solution of K ₂ Cr ₂ O ₇ , HCl, and oxalic acid	٥٥	<u>-</u> در	1889
Bagration Barnett	Z Z	Dilute H ₂ SO ₄ in earth or sand Carbonized velvet in dilute H SO	చ్	a 0	1844
Becquerel Bellm	$Z_{ m n}$	Plates mechanically moved in dilute H ₂ SO ₄ 2 parts H ₂ SO ₄ , 3HNO ₅ , 25Ao	Agu	79	1852
Blarr Boettger	Zn	Concentrated potassium carbonate Moistened magnesium sulphate and salt	, Li	ł	1867
Broglio	Zn	Ferric sulphate solution Concentrated solution or notassum healthyte	יסכ		1867
Buchin et Tricoche Callan	Z Z	Solution potassium bisulphate Solvetin Potassium bisulphate Dilita H.SO. and sodium culphate	ာ of C ကို		1884
Chardın Chuteaux	ZuZuZ	Solution I part HCl, 3Aq, 2 Alcohol In sand Solution K.Ch.O. merenne sulphate and	2°	1.2	1886
Defonville and		action of the state of the stat	Crushed C		
Humbert Delauner	Zn Zn	Chlorine water and 10 per cent HCl solution Solution K ₂ Cr ₂ O ₇ , H ₂ SO ₄ , sodium sulphate and ferrous	ت ن ــــــــــــــــــــــــــــــــــــ		
Desbordeaux Duchemm	Zn	surphase CuSO, and ZnSO ₄ mixed Large plates in sea water as electric binov	ට දී ට		1844
Edgar & Milburn Erckmann	Al Zn	Solution AmCl and HCl Dilue H ₂ SO ₄ Rotated discs	5°C		
, compa	119	Solution, nitrate of soda, K ₂ Cr ₂ O ₇ , and HCl	ວ	5 -1	1890

	Anode	Solution and Depolarizer (if any)	Cathode	EMF	Date
Figuer Fitch	Zn	Ferric chloride and ferric sulphate concentrated Chlorate of potash or sodium, and salt or AmCl	CC	15	1863
Fouvielle et Deheram Fyfe Hare Hartmann	Z Z Z Z	Binoxide of hydrogen and 10 per cent solution HCl . Solution CuSO ₄ , potassium intrate and salt Spiral plates in dilute H_2SO_4 . Gauze Porous material in NaOH	Cu Fe Cu Fe or Ag		1858 1837 1824
Helm Higgin Hulot	Zn Zn	Salt and alum Dilute HCl and persulphocyanide of iron Dilute H ₂ SO ₄ (Al roughened in HCl first)	PCC		1882
Jablochkoff	Sodium	Mosst paper placed on porous C	ous C	2 5	1884
Jourdan Laurie Law (a d.)	on Cu Sodum Zn Zn Zn Cadm'm	Mosst sawdust Solution silicate of soda Solution of rodine in rodide of zinc Solution of rodine in rodide of cadmium Very large C	Vessel of C . Pt	22 1 107 15	1885 1880 1881 1886 1886
La Valette and Delaurier Leuchtenberg Maîche	Zn Zn Fe	Solution zinc chloride Dilute H ₂ SO ₄ Dilute HNO ₃ Solution AmCl Platinized crushed carbon C	Cu C C C Don C	over 1 1.25	1845 1864 1874
Martyn Roberts Mouthiers ", Nigudet	Z Z Z Z	HNO ₃ S G 1 24 Solution ammonium carbonate Concentrated ferrous sulphate Dilute H ₂ SO ₄	ည္သင္သ	4	1867

SINGLE-FLUID CELLS—(contd)

Osbo Premer Zn Pabst Fe Pabst Thn Poggandorff Zn also Chardm, Grenet, Trouv Pollak (a d) Zn Prax Zn Pulvermacher Zn Roberts Zn Roberts Zn Schanschieff Zn Schanschieff Zn	Single fluid bichromate cell, revivified by oxygen from mixture of chloride of lime and nickle nitrate Ferric chloride solution For per cent solution stannic chloride Solution K ₂ Cr ₂ O ₇ and H ₂ SO ₄ G, Benko Solution of salt or AmCl Electrodes separated by flannel and paper soaked in AmCl Zn and Cu wires wound on wood spirally, soaked in Cu Changar	0000 D 20 0	2 78 2 1 3	1891 1884 1884 1842
Pabst Fe "Tun Poggendorff Zn also Chardin, Grenet, Trouv Pollak (a d) Zn Prax Pulvermacher Zn Roberts Zn Roudel Zn Schanschieff Zn Schanschieff Zn	or canotive of time and make into the solution at solution stannic chloride K ₂ Cr ₂ O ₇ and H ₂ SO ₄ of salt or AmCl is separated by flannel and pape Ut wires wound on wood spirally	ರಾದ್ದು ವಿ 8		1884 1884 1842
Poggendorff Zn also Chardm, Grenet, Trouv Pollak (a d) Zn Prax Pulvermacher Zn Roberts Zn Roberts Zn Schanschieff Zn Schanschieff Zn	nt solution stannic chloride K ₂ Cr ₂ O ₇ and H ₂ SO ₄ of salt or AmCl s separated by flannel and pape ''u wires wound on wood spirally	on C		1884
Poggendorff Zn also Chardm, Grenet, Trouv Pollak (a d) Zn Prax Zn Pulvermacher Zn Roberts Zn Zn Schanschieff Zn Zn Schanschieff Zn Zn Schanschieff Zn	K ₂ Cr ₂ O ₇ and H ₂ SO ₄ of salt or AmCl is separated by fiannel and pape 'the wires wound on wood spirally	c c Gr		1842
Pollak (a d) Zn Prax Zn Pulvermacher Zn Roberts Zn Roudel Zn Schanschieff Zn Schanschieff Zn	of salt or AmCl ss separated by flannel and pape in wires wound on wood spirally	on C	13	
acher Zn Thn Zn Zn Thn Zn Zn Tn Zn Zn	flannel and pape on wood spirally	3 3	o 1	
Pulvermacher Zn Roberts Thn ', Zn Roudel Zn Schanschieff Zn	Cl response of the control of the co	Çn		1047
Pulvermacher Zn Roberts Thn " Roudel Zn Schanschieff Zn	nd Cu wires wound on wood spirally, soaked in gar	,		1857
Roberts Tin Zn Koudel Zn Schanschieff Zn Zn Cn Zn Schanschieff Zn	រូវបារ			2
Thn Zn		చ్		
Zn Zn cheff Zn	Dilute HNO,	Pb		1852
Zn cheff Zn	Solution of potassium permanganate, potassium bi-			
Zn cheff Zn	chromate, salt and AmCl	೮	18	1886
leff Zn	Solution 20 per cent HCl (Cu covered at bottom by			
leff Zn	mud of potter's clay)	చ్		1860
72.07	Mercurial H ₂ SO ₄ + Aq	ပ		
rer	100 H2SO4 + HNO3	ပ		
Zu	Solution potassium sulphate	r.	Н	1867
Zu	Dilute H ₂ SO ₄	Agit	47	1840
uZ	Solution alum	Ö		
Zn	Dilute H.SO.	Fe		1840
ı Zn 1		Graphite	1 37	1881
" Mg Solution		C or Pb	17	1866
	Solution of sodium bichromate with H ₂ SO ₄	C	1.9	1881

	Anode	Solution and Depolarizer (if any)	Cathode	EMF	Date
Torregiani Tyer Volta, also	Pb Zn Zn	Solution of potassium carbonate Dilute H ₂ SO ₄ Dilute H ₃ SO ₄	C Ag ^{rt} Cu	9	1886
Grukshank, Children, Wollaston Walker Weare Zan Solut Zahwskı	ren, Woll Zn Zn Zn Zn	iaston Solution H ₂ SO ₄ Solution H ₂ SO ₄ in straw or paper pulp Salt solution	ప్రేచ్ర		1859
also Cauderay, Palagı Zalıwskı Cu	lagı Cu	Solution H ₂ SO ₄ and HNO ₃	ى ت		1869
		SINGLE-FLUID CELLS WITH SOLID DEPOLARIZER			
Becquerel	Zm	Solution salt P P solution salt with lead sulphate	ى ت ا	69	1846
Bennet (a d)	Zu	Solution caustic potash P. P. Iron turnings	چ ت	6.1	1883
D'Arsonval	Z	Solution Zinc chloride P Silver nitrate	Ag	1 15	1881
De la Rue	Zn	Solution AmCl or salt Silver chloride fused round	4	1 03	1868
", ", De la Rive Denys	Z Z Z	${ m MnO_2}$ Dilute ${ m H_2SO_4}$ P P lead peroxide Salt or acid solution P P dilute ${ m H_2SO_4}$ cupric oxide	ర్షక	9.4	1843 1870
Fabri et Ravaglia (a d) Féry (a d)	Zm	Caustic potash P P crushed carbon Special porous C	D sno.	16 14	1884
also le Carbone Fortin (a d)	Zn	Solution AmCl P P, crushed carbon	బ	1.08	
also Devos, Weber Gaiffe	r Zn	Solution zinc chloride Silver chloride fused round Ag	md Ag	1 02	

SINGLE-FLUID CELLS—(cond)

	Anode	Solution and Depolarizer (if any)	Cathode	EMF	Date
Heraud Higgin	Zn		ond C	1 45	1879 1882
Howell	uz.	and crushed car	ပ	16	1879
Lagrange (a d)	Zn	Dilute H.SO. Bag of crushed carbon round C	und C	86	1852
Leclanché	Zu	Solution AmCl P.P Crushed MnO_2 and carbon ro	und C	,	1868
Le Roos	Zn	Acidified Aq P.P. Manganese peroxide and HCl	ල ද 	6 1	1853
Leuchs Marié Davy	Zu	Acidified Aq. P.P. paste of sulphate of mercury	Ö	14	1859
Matteuchi	Zu	Solution of salt P P solution of salt and flowers of sulphur	Pb		
Niaudet	Zu	of salt PP chloric	ರ	16	1879
O'Keenan	Zn	Dilute H ₂ SO ₄ Collodion and lead peroxide on C	on C	22.	1883
Pabst Revner	Zn ^{Hg}	Solution zinc chloride Zinc oxide paste on Solution of H.SO. Lead peroxide in grid of Pb	of Pb	1 2 2 3 2	1884
also Wheatstone, De la Rue,	De la Ru	Niaudet, Fitzgerald, and Harrison Solution of salt and sodium bichrom			
Sommonou	Z,	of minium, potassium permanganate and HCl round C Solution of caustic notash	o c	18 15	1886
Sicard and Fallé	Zn	ed carbon,	Ü	2 03	
Walter Wilkins (a d)	Zn	Solution of caustic potash P P crushed carbon Perforated Ni	ted Ni	13	1894

TWO-FLUID CELLS

	Anode	Solution and Depolarizer (if any)	Cathode	E M F	Date
Agapis Anderson	Zn	Potassum cyande PP HNO ₃ Solution of AmCl P P double oxalate of chromium and	D (1880
Archereau Becquerel	Çu Zu	potassium, attute HCl Dilute H,8O4 PP HNO3 Salme solution P P CuSO4	ಶಾಧ	χĊ	1829
Birn and Flasslacher Bleeck-Love	Zu Zu	Solution of causing sods, F. F. aqua regra, terric cinoriue, and/or chromic acid Caustic soda and gum arabic solution P.P. solution	ပ	2 5	1886
Bottone	Zn	CrO ₃ , HCl and ferrous sulphate Solution of zinc chloride P P bromine in dilute HCl	ت ر <u>ت</u> ا	61 e	1908
6	Zu	Dilute HCl Layer of sand on carbon at bottom, solu-) C	o c	0001
Buff	Zn	Solution of Parison of Parison Property Solution of Property	Ας	1 44	1867
" Bunsen	8 Z Z	Date Wheel, I I concentrated lettle chrome and it. Dilute H ₂ SO ₄ , P P HNO ₃ Dilute H ₂ SO ₄ , P P HNO ₃	000	1 37	1857 1842
Callan	Zu	Salt solution, P.P. concentrated H ₂ SO ₄ , HNO ₃ and potassium intrate	۵		1847
Canada	Z Z	phate Solution of zinc chloride, P P solution of K ₂ Cr ₂ O, and	Cn	.i	1861
Damell ,,	Zn	HCl Dilute H ₂ SO ₄ , P P PtCl solution Dilute H ₂ SO ₄ , P P concentrated CuSO ₄	S. P. C.	sug'ted 1 07	1881

TWO-FLUID CELLS—(contd.)

	Anode	Solution and Depolarizer (if any)	Cathode	E M F	Date
	Zn	Solution of salt, chalk, and mucilage PP ferric	Ö	16	1921
d'Arsonval	Zu	Dilute HGI and H ₂ SO ₄ , P.P. solution HNO ₃ , HCl, and H SO	٥	5 5	
•	Zu	Subtraction of salt, P.P. I. HNO ₈ , 1, H ₂ SO ₄ , 1 Aq, saturated CuSO.	۵	18	1881
" Delairier	Zn Fe	Solution of eaustic soda P P solution ferric chloride Salt water P P solution of ferric sulphate and H ₂ SO ₄	೦೦	5	1881 1870
**	Zn	Solution of salt. P.P. 25 CrO ₃ , 25 ferric sulphate,	Ö	2 16	1870
Dering	Zu	Solution of salt P P solution H ₂ SO ₄ and sodium	Ö		
Dowse	Zn	D. D. concentrated solution of CuSO.	중	¢ί	
Duchemm	Zu	Diute H ₂ SO ₄ P P solution of pierre and H ₂ SO ₄ Solution of salt P P solution of ferric chloride	gg	1 5	1867
Duffett	Zu	Solution of AmCl P P solution of HNO ₃ , GrO ₃ , MnO ₂ solution of expectation of the solution of the solut	bon C	~1	1890
Dun	Zu	Solution of caustic potash Potassium permanganate in hollow porous C	ons C	1 8	
Dupre	Zn	Η	ຸ ວ	16	1885
Edgar and	ΙΨ	Solution of AmCl and HCl P P HNO,	బ		
Mılburne Eisenlohr	Zu	Solution of sodium or potassium bitartarate P.P. CuSO_4	Ca		1849

	Anode	Solution and Depolarizer (if any)	Cathode	E M F	Date
Ettore	Zn	Solution of AmCl Chlorine gas generated by HCl on chloride of lime in hollow porous C	ous C	64 70	
Favre Fuller	Zn	Dilute H ₂ SO ₄ , P P solution of CrO ₃ Water P P K ₂ Cr ₂ O ₇ , H ₂ SO ₇ , Aq	g o c	1.35 2.14	1871
Grenet Gerardın Goarant de	Z F	Acidited Aq. F.F. from alum m iron turnings P.P. ferric chloride in aqua regia. Solution of AmCl. P.P. solution of K ₂ Cr ₂ O ₇ , and H ₂ SO ₄	000	-	1866
Tomelin Grove Hawkins	Zn	Dilute H ₂ SO ₄ , P.P. HNO ₃ "passave"	- Pt	1 9	1838 1840
also Callan, Schor Highton	nbein, Ma Zn	also Callan, Schonbein, Maynooth, Turton, and Slater Lighton Zn Salt solution, P P dilute H ₂ SO ₄ , crushed coke round The whole to be boiled for depolarization	۵		1871
•	Zu	Solution of caustic soda or potash P P MnO ₂ , crushed carbon, milk of sulphur, dilute H_2SO_4	Ö		1872
Holmes and Burke	Zu	Solution of salt PP solution of H ₂ SO ₄ and sodium nitrate	ũ	1 92	
King, Mendham	uş.	Diute H ₂ NO ₄ F F Lead Suphace Solution in theorem sulphite of soda	n f	55	1885
Kohlfurst Koosen	ZuZ	Magnesium sulphate Gravity CuSO, Acid solution PP bromine	74 14	19	1884
6	uz,	Salt solution F F Solution of Potassium permangant ate and H ₂ SO ₄	00	c3	1873
Kousmine	Zu	Solution of H ₂ SO ₄ Gravity, dilute Ix ₂ Cr ₂ O ₇ at top)		0601

TWO-FLUID CELLS—(contd)

	Anode	Solution and Depolarizer (if any)	Cathode	E M F	Date
Lacomb	Zn	Salt solution P.P potassium chlorate, ferric sulphate		1	
Toblene	Zn	or chloride, H ₂ SO ₄ and Aq Dillite H.SO — P.P. chloric and	ວບ	2 15	1871
Maîche	Fe	Dilute HNO, PP. concentrated HNO,	ت ت	1 5	1864
	Zu	Dilute HCl. P P. stannic chloride	ಶ	15	1865
Maquay	Zn 95,				1006
Marron	Zn	Ulute H,SO ₄ P.P solution of ferric chloride	C TO	1 5	1000
Mauri	Zu	Solution of salt. P.P. Dilute potassium nitrate, mer-	7		,00
Meidinger, also	Zn	curic chloride, and iodine Macnesium sulphate Gravity CuSO,	ා දී	1 07	1881
Calland, Lockwood		T. C.			
Mmotto		Zine sulphate, sand CuSO4	5	1 07	1863
Pame	Zu	Solution of hyposulphite of soda P P solution of	· ·	-	101
\$	2	rerric chioride	יכ	0 7	1910
Fartz	uz	solution of magnesium surphage of saft. F. F. magne- sum sulphate of salt with CrO, and H.SO, crystals			
		fed by gravity	C	2	
Poner	Fe	Solution of ferrous chloride. P.P ferric chloride	ర	66	
Prevost	Zu	Dilute H ₂ SO ₄ Nitrate of sods and H ₂ SO ₄ in porous	s holloge C		
Remch	Zn	Dilute H ₂ SO ₄ P P aqua regia	0		
Reymer, also	Zn	Solution of caustic soda. P P solution of CuSO ₄	Ç	15	1881
a Arsonyai Rouillon Rousse	Zn Fe	Dilute H ₂ SO ₄ P P aqua regra Aq P P HNO,	Ag	1 2	1866

	Anode	Solution and Depolarizer (if any)	Cathode	Cathode EMF	Date
Rowbotham	FA :	Aq P.P. dilute HNO, and H,SO,	DC	13	1897
Schoenbern Slater	5 55	Dilute H_2SO_4 FF HINO3 and H_2SO_4 Acidulated or salt aq. PP solution of $K_2Cr_2O_7$ Solution of makel sniphate PP dilute HCl	300	15	1881
Sosnowski	Zu	Solution of caustic soda or potash P P HNO ₃ , HCl,	Ö	2 37	1866
Than	Zn	Dilute HSO, PP. HNO, and CrO,	00	10	1884
Thomsen	58	Durite Hrady F F solution of Archive, 412004 At P P chloring gas forced on crushed carbon) Ü	2 2	1886
Watson	Zu	Solution of zinc sulphate and lead acetate Gravity CuSO, in funnel of Pb	of Pb		
Weare	Zn	Concentrated calcium chloride. P.P. saturated cupric	ņ		
Weymersch	Zn	Dilute H ₂ SO ₄ P P solution of sodium nitrate, CrO ₃ , H ₂ SO ₄ .	Ü		1890
Wilbrant	Zn	Solution of AmCl P P saturated solution of ferrous sulphate	ొ	18	1882
Wolcott Gibbs	Zn	Solution of salt P P HNO ₃ saturated with ammonium nitrate	Ö		1878

INDEX

ACCUMULATORS, charging, 27, 34	Cells (contd)—
A.D cells (air-depolarizing), 8,	Codd, 40
29	Daniell, 9, 93
Agglomerate cells, 54	Darimont, 8, 20, 103
Alkaline electrolytes, 10, 17, 33,	D'Arsonval, 8, 92, 102
46, 68, 90, 102	De la Rue, 9 , 44
Aluminium, 12	Dry (see Dry Cells)
Amalgamation, 10, 67, 108	Duchemin, 8, 20, 102
Anode, 5	Dun, 8
—— cells for radio, 64, 76, 79	Fermoy, 18
Atlas Carbon and Battery Co	Féry, 33
cells, 70, 71, 78	Figuier, 8, 18, 39
Ayrton's bichromate solution, 36	Fitzgerald, 8
tables, III	Fuller, 8, 11, 19
·	Gethins, 100
BATTERY, 14	Gravity Daniell, 99
connections in series and	Grenet, 8, 35
parallel, 14	Grove, 8, 90
Becquerel cell effect, 17, 90, 102	Harrison, 8, 67
Bichromate cell	Inert cells, 78
Single fluid, 35	Kelvin, 100
Double fluid, 84	Lalande, 8, 46
Fuller, 85	Law, 30
Silvertown, 89	Leclanché, 8, 49
Mixture, Ayrton's, 36	Lockwood, 100
, Dronier and Voisin, 38	Maîche, 8, 29
Discharge curves, 37, 86	Marié Davy, 9, 43
Bleeck Love cell, 90	Marron, 102
Buff cell, 102	Meidinger, 100
Bunsen cell, 90	Minotto, 100
discharge curve, 93	Niaudet, 8
-	Pabst, 8, 18, 40
Carbons, 107	Paine, 8
Care of cells, 105	Poggendorff, 8, 35
Cast iron as cathode, 93	Reynier, 8, 67, 102
Cathode, 5	Schanschieff, 9, 44
Callan cell, 8, 93	Smee, 7
Cells—	Upwood, 8
Bleeck Love, 90	Velvo carbon, 7
Buff, 102	Walker, 7
Bunsen, 8, 90	Cells in series and parallel, 14
Callan, 8, 93	Charging accumulators, 27, 34
Callaud, 100	Choice of cells, 26

126INDEX

Chromic acid cells (see bichro-Grotthus and Clausius theory, 4 mate cells) Grove's cell, 8, 90 Codd cell, 40 Concentration cell, 17, 67 Haloids as depolarizers, 8 Containers, 108 Hellesen discharge tables for Copper oxide, 46 radio batteries, 79 Creeping, 65, 84, 105 Hydrochloric acid as excitant, Curves of discharge, 32, 33, 35, 37, 41, 48, 54, 60, 61, 62, 63, 74, 75, 77, 86, 93, 97 INERT cells, 78 Internal resistance (I R), 13, 21 Daniell cell, 93 Ions, 5, 20Darimont cell, 8, 20, 103 Iron as anode, 40 d'Arsonval cell, 8, 92, 102 ---- as cathode, 93 Depolarization, 6 Isosmosis, 20 Depolarizers, 7, 87 Diffusion (or osmosis), 19, 96 LALANDE cell, 8, 46 Discharge rates for radio batter-Law cell, 30 1es, 79 Leclanché cell, 49 ______, agglomerate, 54 ______, dry, 69 ______, porous pot, 50 ______ sack, 57 Double-fluid cells (see two-fluid) Dromer's salt, 39 Dry cells, 69 ____, care of, 105 Lead peroxide cells, 8, 67 Local action, 9 ____, discharge rates for Maîche cell, 8, 29 large cells, 76 ____, paste for, 72 ____, testing, 76 Maintenance of batteries, 105 Manganese dioxide as depolar-Duchemin cell, 8, 20, 102 1zer, 50 Dun cell, 8 - chloride as excitant, 66 Marron cell, 102 Efficiency, watt-hour, 24, 42 Meidinger cell, 100 Electro-chemical series, 3 Mercury for amalgamation, 10. Electrodes, 1 42, 44, 47 Electrolyte, 1, 65, 106 ---- chloride, 11, 66, 72 Electro-positive pole, 1 ---- sulphate cells, 44 EMF, 12 Minotto cell, 100 Excitants, 82 Exhaustion, point of, 25, 42 NASCENT hydrogen, 7 Exosmosis, 102 Nıaudet cell, 8 Nitric acid, 8, 90, 109 FERRIC chloride cells, 8, 39, 102 Féry cell, 33 Ohm's law, 15 Fuller cell, 11, 85 Oil for cells, 46, 65 Osmosis, 18, 19 GASSNER dry cell, 69 Graphite, use of, 52, 72 Pabst cells, 8, 18, 40 Gravity, Daniell, 99

Parallel connections, 14

P D , 12 Permanganate of potash, 8, 38 Platinum as cathode, 90 Polarization, 4 Poles, 1 Porous pots, 18, 19, 53, 54, 82, 106 Positive pole, 1 Post Office electrolyte, 65 ————————————————————————————————————	Tables of electro-chemical equivalents, 110 — series, 3 — of solubility, 110 — of material consumed per 1000 amp hr (Ayrton), 111 Tests, constant current, 23 —, resistance, 21 —, depolarization, 24 —, intermittent circuit, 23 —, shelf, 23, 73 Transference, 19, 20, 82, 96 Trickle charging accumulators, 27, 34 Trouvé, windlass cell, 36 Two-fluid cells, 82 — , care of, 109 — , tables of, 119 Types of voltaic cells, 26, 113
SACK cells, 57 Sal-ammoniac, 31 Secondary cells, charging, 27, 34 Series connections, 14 Siemens cells, 54, 60, 64, 78, 81 Silvertown cells, 55, 89, 92, 99, 100 Simple element, action of, 1 Single-fluid cells, 55 ———————————————————————————————————	UPWOOD cell, 8 VARLEY, 20 Velvo carbon cell, 7 Voisins red salt, 38 Voltage, 12 WATT-HOUR efficiency, 24 Wireless cells for anode circuit, 65, 76, 79 ————————————————————————————————————

AN ABRIDGED LIST OF

TECHNICAL BOOKS

PUBLISHED BY

Sir Isaac Pitman & Sons, Ltd.

PARKER STREET, KINGSWAY

LONDON, WC2

The prices given apply only to Great Britain

A complete Catalogue giving full details of the following books will be sent post free on application

ALL PRICES ARE NET		_
THE ARTISTIC CRAFTS SERIES	s.	d
BOOKBINDING AND THE CARE OF BOOKS By Douglas		
Cockerell Fourth Edition	10	6
Dress Design By Talbot Hughes	12	6
EMBROIDERY AND TAPESTRY WEAVING By Mrs A		_
H Christie Fourth Edition	10	6
HAND-LOOM WEAVING By Lither Hooper	10	6
HERALDRY By Sir W H St John Hope, Litt D,		
D.C.I.	12	6
SILVERWORK AND JEWELLERY By H Wilson		
Second Edition .	8	6
STAINED GLASS WORK By C W Whall .	10	6
Wood-Block Printing By F Morley Fletcher	8	6
WOODCARVING DESIGN AND WORKMANSHIP By		
George Tack Second Edition	8	6
WRITING AND ILLUMINATING AND LETTERING By		
Edward Johnston Fifteenth Edition .	8	6
ART AND CRAFT WORK, Etc.		
mar mad didn't works, bec.		
BLOCK-CUTTING AND PRINT-MAKING BY HAND By		
Margaret Dobson, ARE.	12	6
CABINET-MAKING, THE ART AND CRAFT OF By D		
Denning .	7	6
CELLULOSE LACQUERS By S Smith, OBE, PhD.	7	6
Handrailing for Geometrical Staircases By	_	
W A Scott	2	6

B8-11

	S	ď
LACQUER WORK By G Koizumi	15	0
LEATHER CRAFT, ARTISTIC By Herbert Turner LEATHER WORK STAMPED, MOULDED, CUT, CUIR-	5	0
Bouilli, Sewn, etc By Charles G Leland		
Third Edition	5	0
LETTERING, DECORATIVE WRITING AND ARRANGE-	3	U
MENT OF By Prof A Erdmann and A A Braun		
Second Edition .	10	6
LETTERING AND DESIGN, EXAMPLES OF By J		•
Littlejohns, RBA	4	0
LETTERING, PLAIN AND ORNAMENTAL By Edwin		
G Fooks	3	6
Manual Instruction Woodwork By S Barter	7	6
MANUSCRIPT AND INSCRIPTION LETTERS By		_
Edward Johnston Fifth Impression	7	6
MANUSCRIPT WRITING AND LETTERING By An	^	^
Educational Expert	6	0
Edition .	5	0
NEEDLEWORK IN RELIGION. By Mrs Antrobus and	3	U
Miss Preece	21	0
ORNAMENTAL HOMECRAFTS By Idalia B		_
Lattlejohns .	10	6
PLYWOOD AND GLUE, MANUFACTURE AND USE OF		
By B C Boulton, B Sc	7	6
POTTERY, HANDCRAFT By H and D Wren .	12	6
STAINED GLASS THE ART AND CRAFT OF By E W		_
Twining	42	0
STENCIL-CRAFT By Henry Cadness, FSAM . WEAVING FOR BEGINNERS By Luther Hooper .	10	6
WEAVING FOR BEGINNERS BY LUTHER HOOPER . WEAVING WITH SMALL APPLIANCES—	5	0
THE WEAVING BOARD By Luther Hooper .	7	6
TABLE LOOM WEAVING By Luther Hooper .	7	6
TABLET WEAVING By Luther Hooper	7	6
WOOD-CARVING By Charles G Leland Fifth	•	_
Edition .	7	6
WOODCARVING, HANDICRAFT OF By James Jackson	4	0
TEXTILE MANUFACTURE, Etc.		
Approver Street By Toponh Politics Translated		
ARTIFICIAL SILK By Joseph Foltzer Translated into English by T. Woodhouse Fourth Edition	21	0
Artificial Silk. By Dr V Hottenroth Trans-	41	J
lated from the German by Dr. E Fyleman, B.Sc.	30	0
		-

	s	d
ARTIFICIAL SILK, ITS MANUFACTURE AND USES By		
T Woodhouse, FTI.	5	0
BLEACHING, DYEING, PRINTING, AND FINISHING		
FOR THE MANCHESTER TRADE By J W McMyn,		
FCS, and J W Bardsley	6	0
COLOUR IN WOVEN DESIGN By Roberts Beaumont,	_	_
M Sc, M I Mech E Second Edition, Revised and		
Enlarged	21	0
COTTON SPINNER'S POCKET BOOK, THE By James		٠
F Innes	3	6
COTTON SPINNING COURSE, A FIRST YEAR By	•	v
H A J Duncan, ATI.	5	0
Dress, Blouse, and Costume Cloths Design and	Ų	v
Fabric Manufacture By Roberts Beaumont,		
M Sc, M I Mech E, and Walter G Hill	42	0
FLAX CULTURE AND PREPARATION By F Bradbury	42	U
	10	0
Second Edition	10	6
FURS AND FURRIERY By Cyril J Rosenberg Hosiery Manufacture By W Davis, MA.	30	0
HOSIERY MANUFACTURE By W Davis, M A	7	6
PATTERN CONSTRUCTION, THE SCIENCE OF FOR		_
Garment Makers By B W Poole	45	0
PATTERN CONSTRUCTION, THE SCIENCE OF FOR Garment Makers By B W Poole . TEXTILE CALCULATIONS By J H Whitwam, B Sc		
(Lond)	25	0
TEXTILE EDUCATOR, PITMAN'S Edited by L J		
Mills, Fellow of the Textile Institute In three		
volumes	63	0
TEXTILES, INTRODUCTION TO By A E Lewis,		
AMCT	3	G
Union Textile Fabrication By Roberts		
Beaumont, M Sc, M I Mech E	21	0
WEAVING AND MANUFACTURING, HANDBOOK OF		
By H Greenwood	5	0
WOOLLEN YARN PRODUCTION By T Lawson .	3	6
WOOL SUBSTITUTES By Roberts Beaumont	10	6
YARNS AND FABRICS, THE TESTING OF By H P		•
Curtis	5	0
Curus	U	·
DRAUGHTSMANSHIP		
DIVIOGILIONILI		
BLUE PRINTING AND MODERN PLAN COPYING By		
B I Hall M I Mech E	6	0
BLUE PRINT READING By J Brahdy, B Sc , C E.	10	G
DRAWING AND DESIGNING. By Charles G Leland,		
M. A. Torresto Edition	2	G

	s	đ
DRAWING OFFICE PRACTICE By H Pilkington Ward, M Sc, A M Inst C E	7	6
Engineer Draughtsmen's Work By A Practical	2	6
Draughtsman Engineering Hand Sketching and Scale Drawing By Thos Jackson, M I Mech E, and Percy Bentley, A M I Mech E		
Machine Design, Examples in By G W Bird,	3	0
B Sc	6	0
By P W Scott	2	0
Manual Instruction Drawing By S Barter Plan Copying in Black Lines By B J Hall,	4	0
MI Mech E	2	6
PHYSICS, CHEMISTRY, Etc.		
BOTANY, TEST PAPERS IN By E Drabble, D Sc CHEMICAL ENGINEERING, AN INTRODUCTION TO	2	0
By A F Allen, B Sc (Hons), F C S, LL B CHEMISTRY, A FIRST BOOK OF By A Coulthard,	10	6
B Sc. (Hons), Ph D, FIC CHEMISTRY, TEST PAPERS IN By E. J Holmyard,	3	0
MA	2	0
With Points Essential to Answers	3	0
CHEMISTRY, TEST PAPER IN, HIGHER By the same Author 1 Inorganic 2 Organic Each	3	0
DISPENSING FOR PHARMACEUTICAL STUDENTS By F J Dyer and J W Cooper	7	6
ELECTRICITY AND MAGNETISM, FIRST BOOK OF BY W Perren Maycock, MIEE Fourth Edition.	6	0
MAGNETISM AND ELECTRICITY, HIGHER TEST PAPERS IN. By P J Lancelot Smith, M A .	3	0
Engineering Principles, Elementary By G E Hall, B Sc	2	6
Engineering Science, A Primer of By Ewart	_	_
S Andrews, B Sc (Eng) Complete Edition . Part I First Steps in Applied Mechanics .	3	6
Part 1 First Steps in Applied Mechanics .	2 5	6
PHYSICAL SCIENCE, PRIMARY By W R Bower, B Sc PHYSICS, EXPERIMENTAL By A Cowling With	Э	0
arithmetical answers to the problems	1	9
Physics, Test Papers in. By P. J Lancelot-	_	
Smith, MA.	2	0
Points Essential to Answers, 4s In one book .	5	6

	s	\overline{d}
SOURNOR OF MAN SOUR TWO Dr. Charles Westell	3	6
SCIENCE OF THE SOIL, THE By Charles Warrell . Volumetric Analysis By J B. Coppock, B Sc	3	O
VOLUMETRIC ANALYSIS By J B. Coppock, B Sc	_	_
(Lond), FIC, FCS Second Edition	3	6
VOLUMETRIC WORK, A COURSE OF By E Clark,		
B Sc	4	6
METALLURGY AND METAL WORK		
AIRCRAFT AND AUTOMOBILE MATERIALS—FERROUS		
	25	0
Arnor Armon Armon Manager Mana	45	U
AIRCRAFT AND AUTOMOBILE MATERIALS—Non-		
FERROUS AND ORGANIC. By A W Judge, Wh Sc,		_
ARCS	25	0
BALL AND ROLLER BEARINGS, HANDBOOK OF By		
A W Macaulay, AMIMechE	12	6
Engineering Workshop Exercises By Ernest		
Pull, A M I Mech.E, M I Mar E. Second Edition,		
Revised	3	6
FILES AND FILING. By Ch. Fremont, translated	v	v
TILES AND FILING. By Cit. Flemont, translated		
into English under the supervision of George	^-	_
Taylor .	21	0
FITTING, THE PRINCIPLES OF By J Horner,		_
AMIME Fifth Edition, Revised and Enlarged	7	6
IRONFOUNDING, PRACTICAL By J Horner,		
AMIME Fourth Edition	10	0
METAL TURNING By J Horner, AMIME		
Fourth Edition Revised and Enlarged	6	0
METAL WORK, PRACTICAL SHEET AND PLATE By	_	•
E A Atkins, A M I M E Third Edition, Revised		
	~	c
and Enlarged.	.7	6
METALLURGY OF CAST IRON By J E Hurst	15	U
PATTERN MAKING, THE PRINCIPLES OF By J		_
Horner, AMIME Fifth Edition	4	0
Pyrometers By E Griffiths, D Sc	7	6
STEEL WORKS ANALYSIS By J O Arnold, FRS,		
and F Ibbotson Fourth Edition, thoroughly		
Revised	12	6
TURRET LATHE TOOLS, How to LAY OUT Second		
Edition	6	0
WELDING, ELECTRIC By L B Wilson	5	
Warning, Electric by b o vinsuit	J	9
Welding, Electric Arc and Oxy-Acetylene	7	6
By E A Atkins, A M I M E .	,	O
Workshop Gauges and Measuring Appliances	~	^
By L Burn, AMIMech E, AMIEE	5	0

MINERALOGY AND MINING	s.	d
BLASTING WITH HIGH EXPLOSIVES By W. Gerard Boulton	5	0
	25	0
Colliery Electrical Engineering By G M Harvey	15	0
COMPRESSED AIR POWER By A W Daw and Z W Daw	21	0
ELECTRICAL ENGINEERING FOR MINING STUDENTS By G M Harvey, M Sc, B Eng, A M I E E .	5	0
GOLD PLACERS, THE DREDGING OF By J E Hodgson, FRGS	5	0
ELECTRIC MINING MACHINERY By Sydney F. Walker, MIEE, MIME, AMICE, A Amer IEE	15	0
Low Temperature Distillation By S North	-	_
MINERALOGY By F H Hatch, Ph D, FGS, MICE, MIMM Fifth Edition, Revised .	15	0
MINING CERTIFICATE SERIES, PITMAN'S Edited by	6	O
John Roberts, DIC, MIMinE, FGS, Editor of The Mining Educator—		
Mining Law and Mine Management. By Alexander Watson, ARSM	8	6
Mine Ventilation and Lighting By C D Mottram, BSC	8	6
COLLIERY EXPLOSIONS AND RECOVERY WORK By J W Whitaker, Ph D (Eng.), B Sc.,		
FIC, MI Min E	8	6
Evans, B Sc, F G S, M I Min E Mining Machinery By T Bryson, A R T C,	8	6
MIMmE	2	6
Winning and Working By Prof Ira C F Statham, B Eng, FGS, MI Min E (In Preparation)		
MINING EDUCATOR, THE Edited by J Roberts, DIC, MIMin E, FGS In two vols	3	0
Mining Science, A Junior Course in By Henry G Bishop	2	6

Modern Practice of Coal Mining Series	s	d
Edited by D Burns, MIME, and G L Kerr, MIME		
II EXPLOSIVES AND BLASTING—TRANSMISSION OF POWER	6	0
IV Drills and Drilling—Coal Cutting and Coal-Cutting Machinery Tin Mining By C G Moor, M A	6 8	0
CIVIL ENGINEERING, BUILDING, Etc.	J	J
AUDEL'S MASONS' AND BUILDERS' GUIDES In tour volumes Each	7	6
1 Brickwork, Brick-laying, Bonding, Designs		
2 Brick Foundations, Arches, Tile Setting, Estimating		
3 CONCRETE MIXING, PLACING FORMS, REIN- FORCED SIUCCO		
4 PLASTERING, STONE MASONRY, STEEL COn- STRUCTION, BLUE PRINTS		
AUDEL'S PLUMBERS' AND STEAM FITTERS' GUIDES	_	_
Practical Handbooks in four volumes Each	7	6
1 Mathematics, Physics, Materials, Tools, Leadwork		
2 Water Supply, Drainage, Rough Work, Tests		
3 Pipe Fitting, Heating, Ventilation, Gas, Steam		
4 SHEET METAL WORK, SMITHING, BRAZING, MOTORS		
"THE BUILDER" SERIES—		
ARCHITECTURAL HYGIENE, OR, SANITARY		
Science as Applied to Buildings By		
Banister F Fletcher, FRIBA, FSI, and		
H Phillips Fletcher, FRIBA, FSI		_
Fifth Edition, Revised	10	6
CARPENTRY AND JOINERY By Banister F		
Fletcher, FRIBA, FSI, etc., and H Phillips Fletcher, FRIBA, FSI, etc		
Fifth Edition, Revised	10	6
QUANTITIES AND QUANTITY TAKING By		•
W E Davis Sixth Edition .	6	0
Building Educator, Pitman's Edited by R	•	-
Greenhalgh A I Struct E In three vols	63	0

	s	d
FIELD MANUAL OF SURVEY METHODS AND OPERA-		
TIONS By A Lovat Higgins, BSc, ARCS,		_
A.MICE	21	0
FIELD WORK FOR SCHOOLS By E H Harrison,	•	^
BSc, LCP, and C A Hunter	2	0
HYDRAULICS BY E H Lewitt, BSc (Lond),	10	6
MIAeE, AMIME Third Edition SURVEYING AND SURVEYING INSTRUMENTS By	10	O
G A T. Middleton, ARIBA, MSA Third		
Edition Revised	6	0
Surveying, Tutorial Land and Mine By	Ū	Ŭ
Thomas Bryson	10	6
WATER MAINS, LAY-OUT OF SMALL BY H H		
Hellins, M Inst C E	7	6
WATERWORKS FOR URBAN AND RURAL DISTRICTS		
By H C. Adams, M Inst C E, M I C E., F S I	15	0
CONSTRUCTIONAL ENGINEERING		
D D D D		
REINFORCED CONCRETE, DETAIL DESIGN IN By	^	^
Ewart S Andrews, B Sc (Eng)	6	0
REINFORCED CONCRETE BY W Noble Twelvetrees, MIME, AMIEE	21	0
REINFORCED CONCRETE MEMBERS, SIMPLIFIED	41	U
METHODS OF CALCULATING By W Noble		
Twelvetrees Second Edition, Revised and		
Enlarged	5	0
SPECIFICATIONS FOR BUILDING WORKS By W L	•	·
Evershed. FSI	5	0
STRUCTURES, THE THEORY OF By H. W Coultas,		
M Sc, A M I Struc E, A I Mech E	15	0
•		
MECHANICAL ENGINEERING		
Audel's Engineers' and Mechanics' Guides In		
eight volumes Vols 1-7 Each	7	6
Vol 8	15	ŏ
CONDENSING PLANT. By R J. Kaula, M I E E, and		•
I V Robinson, MIEE	30	0
DEFINITIONS AND FORMULAE FOR STUDENTS-		_
APPLIED MECHANICS By E H Lewitt, B Sc,		
AMIMechE	0	6
Definitions and Formulae for Students—Heat		
Engines. By A Rimmer, B Eng	0	6

DIESEL ENGINES MARINE, LOCOMOTIVE, AND STATIONARY By David Louis Jones, Instructor, Dresel Engine Department, U.S. Navy Submarine Department		s.	đ.
STATIONARY By David Louis Jones, Instructor, Dresel Engine Department, U.S. Navy Submarine Department	DIESEL ENGINES MARINE, LOCOMOTIVE, AND		
Engineering Educator, Pitman's Edited by W J Kearton, M Eng., A M I Mech E, A M Inst N A In three volumes	STATIONARY By David Louis Jones, Instructor,		
ENGINEERING EDUCATOR, PITMAN'S Edited by W J Kearton, M Eng., A M I Mech E, A M Inst N A In three volumes			
W J Kearton, M Eng., A M I Mech E, A M Inst N A In three volumes	Department	21	0
A M Inst N A In three volumes FRICTION CLUTCHES BY R Waring-Brown, A M I A E , F R S A , M I P E	Engineering Educator, Pitman's Edited by		
FRICTION CLUTCHES BY R Waring-Brown, A M I A E , F R S A , M I P E	W J Kearton, M Eng., A M I Mech E,		_
A M I A E , F R S A , M I P E FUEL ECONOMY IN STEAM PLANTS BY A. Grounds, B Sc , A I C , A M I Min E	A M Inst N A In three volumes	63	0
FUEL ECONOMY IN STEAM PLANTS By A. Grounds, B Sc, A I C, A M I Min E	FRICTION CLUTCHES By R Waring-Brown,	_	_
BSC, AIC, AMIMINE FUEL OILS AND THEIR APPLICATIONS BY H V. Mitchell, FCS MECHANICAL ENGINEERING DETAIL TABLES BY John P Ross MECHANICAL ENGINEER'S POCKET BOOK, WHITTAKER'S Third Edition, entirely rewritten and edited by W E. Dommett, AFAeS., AMIAE MECHANICS' AND DRAUGHTSMEN'S POCKET BOOK BY W E Dommett, Wh Ex, AMIAE MECHANICS FOR ENGINEERING STUDENTS BY G W Bird, BSC, AMIMECHE Extended to the Critical Pressure English Edition adapted and amplified from the third German Edition by H Moss, DSC, ARCS, DIC MOILIER STEAM DIAGRAMS Separately in envelope MOTIVE POWER ENGINEERING FOR Students of Mining and Mechanical Engineering By Henry C Harris, BSC STEAM CONDENSING PLANT By John Evans, MEng, AMI Mech E STEAM PLANT, THE CARE AND MAINTENANCE OF. A Practical Manual for Steam Plant Engineers BY J E Braham, BSC, ACGI STEAM TURBINE THEORY AND PRACTICE BY W J KEARTON, AMIME Second Edition STRENGTH OF MATERIALS BY F V WARNOCK, Ph D, BSC (Lond), FR.CScI, AMIMECHE THEORY OF MACHINES BY LOUS TOFT, MSCTECH,	AMIAE, FRSA, MIPE	5	O
FUEL OILS AND THEIR APPLICATIONS BY H V. Mitchell, F C S	FUEL ECONOMY IN STEAM PLANTS By A. Grounds,	_	_
Mitchell, FCS	BSc, A1C, AMIMINE	5	O
MECHANICAL ENGINEERING DETAIL TABLES BY John P Ross	FUEL OILS AND THEIR APPLICATIONS BY H V.	_	^
John P Ross Mechanical Engineer's Pocket Book, Whittaker's Third Edition, entirely rewritten and edited by W E. Dommett, A F Ae S., A M I A E		J	U
MECHANICAL ENGINEER'S POCKET BOOK, WHITTAKER'S Third Edition, entirely rewritten and edited by W E. Dommett, A F Ae S., A M I A E	MECHANICAL ENGINEERING DETAIL TABLES By	-7	
WHITTAKER'S Third Edition, entirely rewritten and edited by W E. Dommett, A F Ae S., A M I A E		/	6
and edited by W E. Dommett, AFAeS., AMIAE			
MECHANICS' AND DRAUGHTSMEN'S POCKET BOOK By W E Dommett, Wh Ex, A M I A E	WHITTAKER'S IMIC Edition, entirely rewritten		
MECHANICS' AND DRAUGHTSMEN'S POCKET BOOK By W E Dommett, Wh Ex , A M I A E		10	6
By W E Dommett, Wh Ex, A M I A E		14	0
MECHANICS FOR ENGINEERING STUDENTS BY G W Bird, B Sc, A M I Mech E 5 0 Mollier Steam Tables and Diagrams, The Extended to the Critical Pressure English Edition adapted and amplified from the third German Edition by H Moss, D Sc, A R C S, D I C	MECHANICS AND DRAUGHTSMEN'S FOCKET DOOK	0	c
W Bird, B Sc, A M I Mech E	MENTANCE FOR ENGINEERING STUDENTS By C	4	0
Mollier Steam Tables and Diagrams, The Extended to the Critical Pressure English Edition adapted and amplified from the third German Edition by H Moss, D Sc, A R C S, D I C	W Bird, B Sc, A M I Mech E	5	0
Extended to the Critical Pressure English Edition adapted and amplified from the third German Edition by H Moss, D Sc, A R C S, D I C	MOLLIER STEAM TABLES AND DIAGRAMS. THE		
German Edition by H Moss, D Sc, A R C S, D I C	Extended to the Critical Pressure English		
Mollier Steam Diagrams Separately in envelope Motive Power Engineering For Students of Mining and Mechanical Engineering By Henry C Hairis, BSc	Edition adapted and amplified from the third		
MOLLIER STEAM DIAGRAMS Separately in envelope 2 0 MOTIVE POWER ENGINEERING FOR Students of Mining and Mechanical Engineering By Henry C Harris, B Sc			
MOTIVE POWER ENGINEERING FOR Students of Mining and Mechanical Engineering By Henry C Hairis, B Sc			
Mining and Mechanical Engineering By Henry C Harris, B Sc	Mollier Steam Diagrams Separately in envelope	2	0
C Haitis, B Sc	MOTIVE POWER ENGINEERING For Students of		
STEAM CONDENSING PLANT By John Evans, M Eng, A M I Mech E			_
M Eng, A M I Mech E		10	6
STEAM PLANT, THE CARE AND MAINTENANCE OF. A Practical Manual for Steam Plant Engineers By J E Braham, B Sc, A C G I STEAM TURBINE THEORY AND PRACTICE By W J Kearton, A M I M E Second Edition	STEAM CONDENSING PLANT By John Evans,	-	
A Practical Manual for Steam Plant Engineers By J E Braham, B Sc, A C G I STEAM TURBINE THEORY AND PRACTICE By W J Kearton, A M I M E Second Edition . 15 0 STRENGTH OF MATERIALS By F V Warnock, Ph D, B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,	M Eng, A M I Mech E .	-	9
By J E Braham, B Sc, A C G I . 5 0 STEAM TURBINE THEORY AND PRACTICE By W J Kearton, A M I M E Second Edition . 15 0 STRENGTH OF MATERIALS By F V Warnock, Ph D, B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,	STEAM PLANT, THE CARE AND MAINTENANCE OF.		
STEAM TURBINE THEORY AND PRACTICE By W J Kearton, A M I M E Second Edition . 15 0 STRENGTH OF MATERIALS By F V Warnock, Ph D, B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,	A Practical Manual for Steam Flant Engineers	5	Λ
Kearton, A M I M E Second Edition . 15 0 STRENGTH OF MATERIALS By F V Warnock, Ph D, B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,	Small Transver Transver Ave Practice By W I	J	U
STRENGTH OF MATERIALS By F V Warnock, Ph D, B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,		15	0
B Sc (Lond), F R.C Sc I, A M I Mech E . 12 6 THEORY OF MACHINES By Louis Toft, M Sc Tech,	SERVICE OF MATERIALS BY F V Warnock Ph D		۰
THEORY OF MACHINES By Louis Toft, M Sc Tech,	R Sc /I and \ F R C Sc I A M I Mech F	12	6
and A T I Kersey, BSc 12 6	THEORY OF MACHINES By Louis Toft M Sc Tech		•
	and A T J Kersey, BSc	12	6

Transcontinuos Apprend By Prof W Pobleson	s	d
THERMODYNAMICS, APPLIED By Prof W Robinson, ME, M Inst CE TURBO-BLOWERS AND COMPRESSORS By W J	18	0
Kearton, AMIME	21	0
AERONAUTICS, Etc.		
AEROBATICS By Major O Stewart, M.C., A.F.C. AERONAUTICS, ELEMENTARY, OR, THE SCIENCE AND PRACTICE OF AERIAL MACHINES By A. P.	5	0
Thurston, D Sc Second Edition . AEROPLANE DESIGN AND CONSTRUCTION, ELEMENTARY PRINCIPLES OF By A W. Judge, A R C S,	8	6
Wh Ex, A M I A E AEROPLANE STRUCTURAL DESIGN By T H Jones, BSc, A M I M E, and J D Frier, A R C Sc,	7	6
DIC	21	0
Corps Reserve, USA	21	0
MP. AIRSHIP, THE RIGID By E H Lewitt, BSc,	25	0
MIAeE	3 0	0
Certificates Second Edition	3	6
MARINE ENGINEERING		
MARINE SCREW PROPELLERS, DETAIL DESIGN OF By Douglas H Jackson, M I Mar E, A M I N A	6	0
PHOTOGRAPHY, Etc.		
CAMERA LENSES By A W Lockett COLOUR PHOTOGRAPHY By Capt O. Wheeler,	2	6
FRPS	12	6
COMMERCIAL PHOTOGRAPHY By D Charles COMPLETE PRESS PHOTOGRAPHER, THE By Bell	5	0
R Bell	6	0
Lens Work for Amateurs By H Orford Fourth Edition	3	6
PHOTOGRAPHIC CHEMICALS AND CHEMISTRY By	_	_
T L J Bentley and J Southworth. PHOTOGRAPHY AS A BUSINESS By A G Willis.	3 5	6
RETOUCHING AND FINISHING FOR PHOTOGRAPHERS By J. S. Adamson	4	0
	-	v

with numerous Revisions and Extensions by

THORNYCROFT, THE BOOK OF THE By "Auriga".

6

John Rathbun

	s	d.
Motor-Cyclist's Library, The Each volume in		
this series deals with a particular type of motor-		
cycle from the point of view of the owner-driver		
Each	2	0
A J S, THE BOOK OF THE By W C Haycraft		
ARIEL, THE BOOK OF THE By G S Davison		
BSA, THE BOOK OF THE By "Waysider"		
Second Edition		
Douglas, The Book of the By E W Knott		
Second Edition		
Motor-Cycling for Women By Betty and		
Nancy Debenham, with a Foreword by		
Major H R Watling		
Major H R Watling, P. AND M, THE BOOK OF THE By W. C		
Haycraft		
RALEIGH HANDBOOK, THE By "Mentor"		
Second Edition		
ROYAL ENFIELD, THE BOOK OF THE BY R E		
Ryder. RUDGE, THE BOOK OF THE By L H Cade.		
TRIUMPH, THE BOOK OF THE By E T Brown.		
Motorists' Library, The Each volume in this		
series deals with a particular make of motor-car		
from the point of view of the owner-driver The		
functions of the various parts of the car are		
described in non-technical language, and driving,		
repairs, legal aspects, insurance, touring, equip-		
ment, etc , all receive attention		
AUSTIN TWELVE, THE BOOK OF THE By B		
Garbutt and R Twelvetrees Illustrated by	_	_
H M Bateman Second Edition	5	0
STANDARD CAR, THE BOOK OF THE By		
"Pioneer"	6	0
CLYNO CAR, THE BOOK OF THE By E T Brown.	3	6
ELECTRICAL ENGINEERING, Etc.		
-		
ACCUMULATOR CHARGING, MAINTENANCE AND	_	_
REPAIR. By W S Ibbetson	3	6
Accumulators, Management of By Sir D		
Salomons, Bart Tenth Edition, Revised	7	6
ALTERNATING CURRENT BRIDGE METHODS OF		_
ELECTRICAL MEASUREMENT By B Hague, B Sc	15	0
ALTERNATING CURRENT CIRCUIT By Philip Kemp,		
MIEE	2	6

	s	d
ALTERNATING CURRENT MACHINERY, DESIGN OF	-	
By J R Barr, AMIEE, and R D Archibald,		
BSc, AMICE, AMIEE	30	Λ
ATTERNATION OF THE PROPERTY OF	30	0
ALTERNATING CURRENT MACHINERY PAPERS ON THE		
DESIGN OF By C C. Hawkins, MA, MIEE,		_
S P Smith, D Sc, MIEE, and S Neville, B Sc	21	0
ALTERNATING CURRENT POWER MEASUREMENT By		
G F Tagg	3	6
ALTERNATING CURRENT WORK By W Perren		
Maycock, MIEE Second Edition	10	6
ALTERNATING CURRENTS THE THEORY AND		•
PRACTICE OF By A T Dover, MIEE	18	0
ARMATURE WINDING, PRACTICAL DIRECT CURRENT	10	U
By L Wollison	_	_
Construction Construction	7	6
CONTINUOUS CURRENT DYNAMO DESIGN, ELEMEN-		
TARY PRINCIPLES OF By H M Hobart, MICE,		
MIME, MAIEE .	10	6
CONTINUOUS CURRENT MOTORS AND CONTROL		
APPARATUS By W Perren Maycock, MIEE	7	6
DEFINITIONS AND FORMULAE FOR STUDENTS-	-	•
ELECTRICAL By P Kemp, M Sc, M I E E .	0	6
DIRECT CURRENT ELECTRICAL ENGINEERING,	·	U
ELEMENTS OF By H F Trewman, MA, and		
C E Condliffe, B Sc .	_	_
Drames Condition B	5	0
DIRECT CURRENT ELECTRICAL ENGINEERING,		_
PRINCIPLES OF By James R Barr, AMIEE.	15	0
DIRECT CURRENT DYNAMO AND MOTOR FAULTS		
By R M Archer .	7	6
DIRECT CURRENT MACHINES, PERFORMANCE AND		
DESIGN OF By A E Clayton, D Sc, MIEE	16	0
DYNAMO, THE Its Theory, Design and Manufacture		
By C C Hawkins, MA, MIEE In three		
volumes Sixth Edition—		
Vol. T	21	0
Vol I	15	ő
Vol III	30	_
	30	0
DYNAMO, HOW TO MANAGE THE By A E Bottone	_	_
Sixth Edition, Revised and Enlarged	2	0
ELECTRIC BELLS AND ALL ABOUT THEM By S R		
Bottone Eighth Edition, thoroughly revised by		
C Sylvester, A M I E E	3	6
ELECTRIC CIRCUIT THEORY AND CALCULATIONS BY		
W Perren Maycock, MIEE Third Edition Re-		
vised by Philip Kemp, M Sc, M I E E, A A I E E	10	6
	- 0	J
3		

	s	d
ELECTRIC LIGHT FITTING, PRACTICAL By F C	7	6
Allsop Ninth Edition Revised and Enlarged . ELECTRIC LIGHTING AND POWER DISTRIBUTION	•	O
By W Perren Maycock, M I E E Ninth Edition,		
thoroughly Revised and Enlarged		
Vol I	10	6
Vol II	10	6
ELECTRIC LIGHTING IN FACTORIES AND WORKSHOPS	10	·
By Leon Gaster and J S Dow	0	6
ELECTRIC LIGHTING IN THE HOME By Leon Gaster	ŏ	6
ELECTRIC MOTORS AND CONTROL SYSTEMS By A	•	•
T Dover, MIEE, A Amer, IEE.	15	0
ELECTRIC MOTORS (DIRECT CURRENT) THEIR		-
THEORY AND CONSTRUCTION By H M Hobart,		
MIEE, MInstCE, MAmerIEE Third		
Edition, thoroughly Revised	15	0
ELECTRIC MOTORS (POLYPHASE) · THEIR THEORY		
AND CONSTRUCTION By H M Hobart,		
MInstCE, MIEE, MAmerIEE Third		
Edition, thoroughly Revised	15	0
ELECTRIC MOTORS FOR CONTINUOUS AND ALTERNAT-		
ING CURRENTS, A SMALL BOOK ON By W Perren		
Maycock, MIEE	6	0
ELECTRIC TRACTION By A T Dover, MIEE,		
Assoc Amer I E E Second Edition .	21	0
ELECTRIC WIRING DIAGRAMS By W Perren May-		
cock, MIEE	5	0
ELECTRIC WIRING, FITTINGS, SWITCHES, AND LAMPS		
By W Perren Maycock, MIEE Sixth Edition,		
Revised by Philip Kemp, M Sc, M I E E	10	6
Revised by Philip Kemp, M Sc. M I E E ELECTRIC WIRING TABLES By W Perren Maycock,		
MIEE, and F C Raphael, MIEE Fifth		
Edition	3	6
ELECTRICAL CONDENSERS By Philip R Coursey, RSc Finst P A MIFR		
BSc, FInst P, AMIEE	37	6
BSc, Finst P, AMIEE ELECTRICAL EDUCATOR By J A Fleming, MA,		_
DSc, FRS In two volumes .	63	0
ELECTRICAL ENGINEERING, CLASSIFIED EXAMPLES		
IN By S Gordon Monk, B Sc (Eng), A M I E E		
In two parts—	_	_
Vol I DIRECT CURRENT	2	6
Vol II ALTERNATING CURRENT	3	6
ELECTRICAL ENGINEERING, ELEMENTARY By O	_	_
R Randall, Ph D, B Sc, Wh Ex	5	0

ELECTRICAL ENGINEER'S POCKET BOOK, WHIT-	S	d
TAKER'S Originated by Kenelm Edgcumbe, MIEE, AMICE Fifth Edition Edited by		
MIEE, AMICE Fifth Edition Edited by		_
R E Neale, B Sc (Hons)	10	6
ELECTRICAL INSTRUMENTS IN THEORY AND		
PRACTICE By W H F Murdoch, BSc, and		
U A Oschwald, B A	12	6
ELECTRICAL INSTRUMENT MAKING FOR AMATEURS		
By S R Bottone Ninth Edition	6	0
ELECTRICAL INSULATING MATERIALS By A Monk-		
house, Junr, MIEE, AMIMechE	21	0
ELECTRICAL GUIDES, HAWKINS' Each book in		
pocket size	5	0
No 1 Electricity, Magnetism, Induction,	_	•
Experiments, Dynamos, Armatures,		
Windings		
" 2 Management of Dynamos, Motors, Instruments, Testing		
2 Wiring and Distribution Systems		
Storage Batteries		
,, 4 Alternating Currents and Alternators		
5 A C Motore Transformers Converters		
Rectifiers		
6 AC Systems Circuit Breakers		
Measuring Instruments		
7 AC Wiring Power Stations Tole		
phone Work		
" 8 Telegraph, Wireless, Bells, Lighting " 9 Railways, Motion Pictures, Automo-		
biles, Ignition		
,, 10 Modern Applications of Electricity Reference Index		
ELECTRICAL MACHINES, PRACTICAL TESTING OF		
By L Oulton, AMIEE, and N J Wilson,		
MIEE Second Edition	6	0
Er sempler Tressure our Pro H Cotton M P F	O	V
ELECTRICAL TECHNOLOGY By H Cotton, M B E,	12	6
MS2, AMIEE	12	0
ELECTRICAL TERMS, A DICTIONARY OF By S R	7	0
Roget, MA, AM Inst CE, AMIEE	-	6
ELECTROLYTIC RECTIFIER, THE By N A De	3	6
Bruyne .	3	6
ELECTRO-MOTORS How Made and How Used		
By S R Bottone Seventh Edition Revised by		_
C Sylvester AMIEE	4	6

	s	d
ELECTRO-TECHNICS, ELEMENTS OF By A P.	_	_
Young, OBE, MIEE.	5	0
Engineering Educator, Pitman's Edited by		
W J Kearton, M Eng, A M I Mech E, A M	60	^
Inst N A In three volumes	63	0
INDUCTION COILS By G E Bonney Fifth	e	^
Edition, thoroughly Revised INDUCTION COIL, THEORY OF THE BY E Taylor-	6	0
INDUCTION COIL, THEORY OF THE DY E Taylor-	12	6
Jones, D Sc, F Inst P	12	О
M Eng	21	0
KINEMATOGRAPHY PROJECTION A GUIDE TO By	41	U
Colin H Bennett, FCS, FRPS.	10	6
MERCURY-ARC RECTIFIERS AND MERCURY-VAPOUR	10	U
LAMPS By J A Fleming, M A, D Sc, F R S	6	0
OSCILLOGRAPHS By I T ITWIN MIEE	7	6
OSCILLOGRAPHS By J T ITWIN, MIEE POWER STATION EFFICIENCY CONTROL By John	•	٠
Bruce, AMIEE	12	6
POWER WIRING DIAGRAMS By A T Dover		٠
Power Wiring Diagrams By A T Dover, MIEE, AAmerIEE Second Edition,		
Revised	6	0
RAILWAY ELECTRIFICATION By H F Trewman,	_	•
AMIEE	21	0
STEAM TURBO-ALTERNATOR, THE By L C Grant,		_
AMIEE	15	0
STORAGE BATTERY PRACTICE By R Rankin, B Sc,		
MIEE	7	6
Transformers for Single and Multiphase		
CURRENTS By Dr. Gisbert Kapp, M Inst C E,		
MIEE Third Edition, Revised by R O Kapp,		
B Sc	15	0
THE PODADLY THE POHONY AND		
TELEGRAPHY, TELEPHONY, AND WIRELESS		
BAUDOT PRINTING TELEGRAPH SYSTEM By H W		
Pendry Second Edition	6	0
CABLE AND WIRELESS COMMUNICATIONS OF THE WORLD, THE. By F J Brown, CB, CBE,		
WORLD, THE BY F J Brown, CB, CBE,	_	
MA, BSc (Lond)	7	6
CRYSTAL AND ONE-VALVE CIRCUITS, SUCCESSFUL	3	0
By J H Watkins .	3	6
LOUD SPEAKERS By C M R Balbi, with a Foreword by Professor G W O Howe, D Sc, M I E E		
AMIEE ACGI	3	e

	s.	d
RADIO COMMUNICATION, MODERN By J H Reyner Second Edition	5	0
RADIO YEAR BOOK, PITMAN'S Published annually		
in December	1	6
TELEGRAPHY By T E Herbert, AMI.EE	10	^
Fourth Edition TELEGRAPHY, ELEMENTARY By H W Pendry	18	0
Second Edition, Revised .	7	6
TELEPHONE HANDBOOK AND GUIDE TO THE TELE-	-	•
PHONIC EXCHANGE, PRACTICAL By Joseph Poole,		
AMIEE (Wh Sc) Seventh Edition TELEPHONY By T E Herbert, MIEE	18	0
TELEPHONY By T E Herbert, MIEE	18	0
TELEPHONY SIMPLIFIED, AUTOMATIC By C. W Brown, AMIEE, Engineer-in-Chief's Depart-		
ment, GPO, London	6	0
TELEPHONY, THE CALL INDICATOR SYSTEM IN	·	Ŭ
AUTOMATIC By A G Freestone, of the Automatic		
Training School, GPO, London .	6	0
TELEPHONY, THE DIRECTOR SYSTEM OF AUTOMATIC		
By W E Hudson, B Sc Hons (London),	F	0
Whit Sch, ACGI. WIRELESS MANUAL, THE By Capt J Frost	5 5	ő
Wireless Telegraphy and Telephony, Intro-	J	·
DUCTION TO By Prof J A Fleming .	3	6
MATHEMATICS AND CALCULATIONS FOR ENGINEERS		
ALGEBRA, COMMON-SENSE FOR JUNIORS By F F		
Potter, MA, BSc, and JW Rogers, MSc.	3	0
With Answers	3 2	6
ALGEBRA, TEST PAPERS IN By A E Donkin, M A	2	0
With Answers	2 3	6
With Answers and Points Essential to Answers	3	6
ALTERNATING CURRENTS, ARITHMETIC OF By E H Crapper, M I E E	4	6
CALCULUS FOR ENGINEERING STUDENTS By John		·
Stoney, B Sc, A M I Min E	3	6
DEFINITIONS AND FORMULAE FOR STUDENTS-		
PRACTICAL MATHEMATICS By L Toft, M Sc ELECTRICAL ENGINEERING, WHITTAKER'S ARITH-	0	6
ELECTRICAL ENGINEERING, WHITTAKER'S ARITH-	0	^
METIC OF Third Edition, Revised and Enlarged	3	6
ELECTRICAL MEASURING INSTRUMENTS, COM- MERCIAL By R M Archer, B Sc (Lond),		
ARCSc. MIEE	10	6

	s.	d.
GEOMETRY, ELEMENTS OF PRACTICAL PLANE By	_	
P W Scott	2	6
Also in two parts . Each	1	0
GEOMETRY, TEST PAPERS IN By W E Paterson,		
MA.BSc	2	0
Points Essential to Answers, 1s In one book .	3	0
Points Essential to Answers, Is In one book . GRAPHIC STATICS, ELEMENTARY By J T Wight,		
AMIMechE	5	0
KILOGRAMS INIO AVOIRDUPOIS, TABLE FOR THE		
Conversion of Compiled by Redvers Elder		
On paper .	1	0
LOGARITHMS FOR BEGINNERS By C N Pickworth,		
Wh Sc Fourth Edition	1	6
LOGARITHMS, FIVE FIGURE, AND TRIGONOMETRICAL		
FUNCTIONS By W E Dommett, AMIAE, and		
FUNCTIONS By W E Dommett, A M I A E, and H C Hird, A F Ae S (Reprinted from Mathe-		
matical Tables)	1	0
MATHEMATICAL TABLES By W E Dommett,	_	•
AMIAE, and H C Hird, AFAeS	4	6
MATHEMATICS AND DRAWING, PRACTICAL By	•	·
Dalton Grange	2	6
With Answers	$\tilde{3}$	ŏ
MATHEMATICS, Engineering Application of By	Ü	·
W C Bickley, M Sc	5	0
MATHEMATICS, EXPERIMENTAL By G R Vine, B Sc	J	U
Book I, with Answers	1	4
Book II, with Answers	i	4
MATHEMATICS FOR TECHNICAL STUDENTS By	1	*
G E Hall	5	0
	Э	U
MATHEMATICS, INDUSTRIAL (PRELIMINARY) By G.		^
W Stringfellow	2 2	0 6
With Answers	2	0
MATHEMATICS, INTRODUCTORY By J E Rowe,	10	_
Ph D	10	6
Measuring and Manuring Land, and Thatchers'		
Work, Tables for By J Cullyer Twentieth		^
Impression	3	0
MECHANICAL TABLES By J Foden .	2	0
MECHANICAL ENGINEERING DETAIL TABLES By	_	_
John P Ross	7	6
METALWORKER'S PRACTICAL CALCULATOR, THE	_	_
By J Matheson	2	0
METRIC AND BRITISH SYSTEM OF WEIGHTS, MEASURES, AND COINAGE By Dr F Mollwo Perkin.		_
sures, and Coinage By Dr F Mollwo Perkin.	3	6

	s	d.
METRIC CONVERSION TABLES By W E Dommett,	_	_
AMIAE	1	0
METRIC LENGTHS TO FEET AND INCHES, TABLE FOR		
THE CONVERSION OF Compiled by Redvers Elder.	_	_
On paper	1	0
On cloth, varnished	2	0
MINING MATHEMATICS (PRELIMINARY) By George		
W Stringfellow .	1	6
With Answers	2	0
QUANTITIES AND QUANTITY TAKING By W E		
Davis Sixth Edition .	6	0
REINFORCED CONCRETE MEMBERS, SIMPLIFIED		
METHODS OF CALCULATING By W N Twelve-		
trees, MIME, AMIEE Second Edition,		
Revised and Enlarged .	5	0
Russian Weights and Measures, with their		
BRITISH AND METRIC EQUIVALENTS, TABLES OF		
By Redvers Fider	2	6
SLIDE RULE, THE By C N Pickworth, Wh Sc	_	•
Seventeenth Edition, Revised	3	6
SLIDE RULE · ITS OPERATIONS, AND DIGIT RULES,	·	•
THE By A Lovat Higgins, A M Inst, C E		6
Compute Type Computed by Teach Steel	3	6
STEEL'S TABLES Compiled by Joseph Steel.	J	O
TELEGRAPHY AND TELEPHONY, ARITHMETIC OF		
By T E Herbert, AMIEE, and R G de	_	^
Wardt	5	0
TEXTILE CALCULATIONS By J H Whitwam, B Sc	25	U
TRIGONOMETRY FOR ENGINEERS, A PRIMER OF By	_	_
W G Dunkley, B Sc (Hons)	5	0
TRIGONOMETRY FOR NAVIGATING OFFICERS By		_
W Percy Winter, B Sc (Hon), Lond .	10	6
TRIGONOMETRY, PRACTICAL By Henry Adams,		
MICE, MIME, FSI Third Edition,		
Revised and Enlarged .	5	0
VENTILATION, PUMPING, AND HAULAGE, MATHE-		
MATICS OF By F Birks	5	0
Workshop Arithmetic, First Steps in By H P		
Green	1	0
MISCELLANEOUS TECHNICAL BOOKS		
Brewing and Malting By J Ross Mackenzie,		
FCS, FRMS Second Edition .	8	6
CERAMIC INDUSTRIES POCKET BOOK By A B		_
Searle	8	6

	S	đ
Engineering Inquiries, Data for By J C Connan, BSc, AMIEE, OBE	12	6
LIGHTNING CONDUCTORS AND LIGHTNING GUARDS	^-	Ŭ
By Sir Oliver J Lodge, FRS, LLD, D.Sc,		_
MIEE	15 21	0
PETROLEUM By Albert Lidgett, Editor of the		v
"Petroleum Times" Third Edition	5	0
PRINTING By H A Maddox REFRACTORIES FOR FURNACES, CRUCIBLES, ETC	5	0
Rv. A. R. Searle	5	0
REFRIGERATION, MECHANICAL By Hal Williams,		
MI Mech E, MI E E, MI.Struct. E	20 10	0 6
SEED TESTING By J. Stewart Remington	10	0
PITMAN'S TECHNICAL PRIMERS	_	
Each in foolscap 8vo, cloth, about 120 pp., illustrated	2	6
In each book of the series the fundamental principles of some subdivision of technology		
are treated in a practical manner, providing the		
student with a handy survey of the particular		
branch of technology with which he is con-		
branch of technology with which he is con- cerned. They should prove invaluable to the		
busy practical man who has not the time for		
more elaborate treatises.		
ABRASIVE MATERIALS By A B Searle		
A C Protective Systems and Gears By J		
Henderson, BSc, MC, and C W Marshall,		
BSc, AMIEE		
Belts for Power Transmission By W G.		
Dunkley, B Sc. (Hons) Boiler Inspection and Maintenance By R.		
Clayton		
CAPSTAN AND AUTOMATIC LATHES By Philip		
Gates Central Stations, Modern By C W. Marshall,		
B Sc, A M I E E		
COAL CUTTING MACHINERY, LONGWALL BY G F F. Eagar, M I.Min E		
CONTINUOUS CURRENT ARMATURE WINDING		
By F. M Denton, A C G I, A Amer I E E CONTINUOUS CURRENT MACHINES, THE TESTING		
of By Charles F. Smith, DSc, MIEE.,		
A.MICE.		

đ 2

6

PITMAN'S TECHNICAL PRIMERS—contd. COTTON SPINNING MACHINERY AND ITS USES By Wm Scott Taggart, M I Mech E DIESEL ENGINE, THE BY A Orton
DROP FORCING AND DROP STAMPING BY H Hayes ELECTRIC CABLES By F W Main, AMIEE ELECTRIC CRANES AND HAULING MACHINES By F E Chilton, AMIEE ELECTRIC FURNACE, THE By Frank J Moffett, BA, MIEE, M Cons E ELECTRIC MOTORS, SMALL By E T Painton. BSc, AMIEE ELECTRIC POWER SYSTEMS By Capt W T. Taylor, M Inst C E, M I Mech E. ELECTRICAL INSULATION By W. S Flight. AMIEE ELECTRICAL TRANSMISSION OF ENERGY By W M Thornton, OBE, DSc., MIEE ELECTRICITY IN AGRICULTURE By A H Allen, MIEE ELECTRICITY IN STEEL WORKS By Wm McFarlane, BSc ELECTRIFICATION OF RAILWAYS, THE By H F Trewman, MA ELECTRO-DEPOSITION OF COPPER, THE And its Industrial Applications By Claude W Denny, AMIEE Explosives, Manufacture and Uses of By R C Farmer, O B E, D Sc, Ph D
FILTRATION By T R Wollaston, M I Mech E
FOUNDRYWORK By Ben Shaw and James Edgar GRINDING MACHINES AND THEIR USES By Thos R Shaw, M I Mech E House Decorations and Repairs By Wm Prebble HYDRO-ELECTRIC DEVELOPMENT By J W Meares, FRAS, MInstCE, MIEE, MAmIEE Illuminating Engineering, The Elements of By A P Trotter, MIEE INDUSTRIAL AND POWER ALCOHOL By R C.

Farmer, OBE, DSc, PhD, FIC

s d 2 6

PITMAN'S TECHNICAL PRIMERS-contd. INDUSTRIAL ELECTRIC HEATING By [Beauchamp, MIEE INDUSTRIAL MOTOR CONTROL By A T Dover. MIEE. INDUSTRIAL NITROGEN By P H S Kempton, BSc (Hons), ARCSc KINEMATOGRAPH STUDIO TECHNIQUE By L C Macbean. LUBRICANTS AND LUBRICATION By J H Hyde. MECHANICAL HANDLING OF GOODS, THE By C H Woodfield, MI Mech E MECHANICAL STOKING By D Brownlie, B Sc AMIME (Double vol, price 5s net) METALLURGY OF IRON AND STEEL Based on Notes by Sir Robert Hadfield MUNICIPAL ENGINEERING By H Percy Boulnois. M Inst C E, F R San Inst, F Inst S E OILS, PIGMENTS, PAINTS, AND VARNISHES R H Truelove PATTERNMAKING By Ben Shaw and James Edgar PETROL CARS AND LORRIES By F Heap PHOTOGRAPHIC TECHNIQUE By L I Hibbert. FRPS PNEUMATIC CONVEYING By E G Phillips, MIEE, AMIMech E Power Factor Correction By A E Clayton, BSc (Eng) Lond, AKC, AMIEE RADIOACTIVITY AND RADIOACTIVE SUBSTANCES By J Chadwick, M Sc $\mathbf{B}_{\mathbf{y}}$ RAILWAY SIGNALLING AUTOMATIC Raynar Wilson RAILWAY SIGNALLING MECHANICAL By F Raynar Wilson SEWERS AND SEWERAGE By H Gilbert Whyatt. MICE SPARKING PLUGS By A P Young and H Warren STEAM ENGINE VALVES AND VALVE GEARS E L Ahrons, M I Mech E, M I Loco E EAM LOCOMOTIVE, THE By E L Ahrons, STEAM LOCOMOTIVE, THE MIMech E, MILoco E STEAM LOCOMOTIVE CONSTRUCTION AND MAIN-TENANCE By E L Ahrons, MI Mech E,

M I Loco E.

s d 2 6

PITMAN'S TECHNICAL PRIMERS—contd

STEELS, SPECIAL Based on Notes by Sir Robert Hadfield, Bart; compiled by T H Burnham, B Sc (Double vol, price 5s)

STEELWORK, STRUCTURAL By Wm. H Black STREETS, ROADS, AND PAVEMENTS By H Gilbert Whyatt, M Inst C E, M R San I

SWITCHBOARDS, HIGH TENSION By Henry E Poole, BSc (Hons), Lond, ACGI, AMIEE

SWITCHGEAR, HIGH TENSION By Henry E Poole, B Sc (Hons), A C G I, A M I E E

SWITCHING AND SWITCHGEAR By Henry E Poole, BSc (Hons), ACGI, AMIEE

TELEPHONES, AUTOMATIC By F A Ellson, B Sc, A M I E E (Double vol, price 5s)

TIDAL POWER By A M A Struben, OB.E, A M Inst CE

Tool and Machine Setting For Milling, Drilling, Tapping, Boring, Grinding, and Press Work By Philip Gates

fown Gas Manufacture By Ralph Staley, M.C.

TRACTION MOTOR CONTROL By A T Dover, M I E E

TRANSFORMERS AND ALTERNATING CURRENT MACHINES, THE TESTING OF By Charles F. Smith, D Sc, A M Inst C E, Wh Sc

TRANSFORMERS, HIGH VOLTAGE POWER By Wm. T Taylor, M Inst C E, M I E E

TRANSFORMERS, SMALL SINGLE-PHASE By Edgar T Painton, B Sc Eng, Hons (Lond), A M I E E

WATER POWER ENGINEERING By F F Fergusson, A M Inst C E

Wireless Telegraphy, Continuous Wave By B E G Mittell, A M.I E E

Wireless Telegraphy, Directive Direction and Position Finding, etc. By L. H. Walter, M.A. (Cantab.), A.M.I.E.E.

X-RAYS, INDUSTRIAL APPLICATION OF By P H S Kempton, B Sc (Hons)

	s	d
COMMON COMMODITIES AND INDUSTRIES SERIES		-
Each book is crown 8vo, cloth, with many illustrations, etc	3	0
In each of the handbooks in this series a particular product or industry is treated by an expert writer and practical man of business ACIDS, ALKALIS, AND SALTS By G H J Adlam, MA, BSc, FCS		
ALCOHOL IN COMMERCE AND INDUSTRY By C. Simmonds, O B E, B Sc, F I C., F C S ALUMINIUM Its Manufacture, Manipulation, and Marketing By George Mortimer, M Inst Met Anthracite By A Leonard Summers		
Asbestos By A Leonard Summers Bookbinding Craft and Industry, The By T Harrison		
BOOT AND SHOE INDUSTRY, THE By J S Harding BREAD AND BREAD BAKING By John Stewart BRUSHMAKER, THE By Wm Kiddier BUTTER AND CHEESE By C W Walker Tisdale, F C S, and Jean Jones, B D F D, N D D. BUTTON INDUSTRY, THE By W Unite Jones CARPETS By Reginald S Brinton CLAYS AND CLAY PRODUCTS By Alfred B Searle. CLOCKS AND WATCHES BY G L. Overton CLOTHS AND THE CLOTH TRADE By J A Hunter CLOTHING INDUSTRY, THE By B W Poole		
COAL Its Origin, Method of Working, and Preparation for the Market By Francis H Wilson, M Inst M E COAL TAR By A R Warnes, F C S, A I Mech E		
COCOA AND CHOCOLATE INDUSTRY, THE By A W Knapp, BSc, FIC COFFEE From Grower to Consumer By B B		
Keable Cold Storage and Ice Making By B H. Springett.		
Concrete and Reinforced Concrete By W. Noble Twelvetrees, MIME, A.M.IEE Copper From the Ore to the Metal By HK Picard, MInst of Min and Met		
Cordage and Cordage Hemp and Fibres By T. Woodhouse and P. Kilgour		

d.

3 0 COMMON COMMODITIES AND INDUSTRIES SERIES ---contd CORN TRADE, THE BRITISH By A Barker COTTON From the Raw Material to the Finished Product By R J Peake COTTON SPINNING By A S Wade. CYCLE INDUSTRY, THE By W Grew DRUGS IN COMMERCE By J Humphrey, Ph C, FJI Dyes and Their Application to Textile Fabrics By A J Hall, BSc, FI.C, FCS ELECTRIC LAMP INDUSTRY, THE By G Arnchiffe Percival ELECTRICITY By R E Neale, B Sc (Hons) ENGRAVING By T W Lascelles EXPLOSIVES, MODERN By S I Levy, BA, BSc., FIC FERTILIZERS By H Cave
FILM INDUSTRY, THE By Davidson Boughey.
FISHING INDUSTRY, THE By W E Gibbs, D Sc.
FURNITURE By H E BINSTEAD Second Edition
FURS AND THE FUR TRADE By J C Sachs
GAS AND GAS MAKING. By W H Y Webber, C E
GLASS AND GLASS MAKING. By P MANUFACTURE
BY P MANUFACTURE

MANUFACTURE

HEREFORD

MANUFACTURE

HEREFORD

MANUFACTURE

MAN Honours and Medallist in Glass Manufacture GLOVES AND THE GLOVE TRADE By B E Ellis Gold By Benjamin White GUMS AND RESINS Their Occurrence, Properties, and Uses. By Ernest J Parry, BSc, FI.C, FCS INCANDESCENT LIGHTING By S I Levy, BA., BSc, FIC INK By C Ainsworth Mitchell, MA, FIC INTERNAL COMBUSTION ENGINES By J Okill, MIAE IRON AND STEEL Their Production and Manufacture By C Hood IRONFOUNDING By B Whiteley JUTE INDUSTRY, THE BY T Woodhouse and P Kilgour KNITTED FABRICS. By John Chamberlain and Tames H Quilter LEAD Including Lead Pigments. By J A. Smythe, Ph D, D.Sc

ď

3 0 COMMON COMMODITIES AND INDUSTRIES ---contd LEATHER From the Raw Material to the Finished Product By K J Adcock LINEN From the Field to the Finished Product. By Alfred S Moore. Locks and Lock Making By F J Butter MATCH INDUSTRY, THE By W H Dixon MEAT INDUSTRY, THE By Walter Wood MOTOR BOATS By Major F Strickland, MIEE, MIME. Motor Industry, The By Horace Wyatt, BA NICKEL By F B Howard White, B A OIL POWER By Sidney H North, A Inst PT. Oils Animal, Vegetable, Essential, and Mineral. By C Ainsworth Mitchell, MA, FIC PAINTS AND VARNISHES By A S Jennings, FI.BD PAPER Its History, Sources, and Production By Harry A Maddox, Silver Medallist Papermaking Second Edition PATENT FUELS By J A Greene and F Mollwo Perkin, CBE, PhD, FIC PERFUMERY, RAW MATERIALS OF By E J Parry, BSc, FIC, FCS Photography By William Gamble, FRPS PLATINUM METALS By E A Smith, ARSM, MIMM PLAYER PIANO, THE By D Miller Wilson POTTERY By C | Noke and H | Plant. RICE By C E Douglas, M I Mech E RUBBER Production and Utilization of the Raw Product By C Beadle and H P Stevens, MA, PhD, FIC SALT By A F Calvert, FCS SHIPBUILDING AND THE SHIPBUILDING INDUSTRY By J Mitchell, MINA SILK Its Production and Manufacture By Luther Hooper SILVER By Benjamin White SOAP Its Composition, Manufacture, and Properties By William H. Simmons, B Sc (Lond), FCS. SPONGES, By E. J J. Cresswell

s. d

3 0

COMMON COMMODITIES AND INDUSTRIES SERIES ---contd STARCH AND STARCH PRODUCTS By H A Auden, DSc, FCS STONES AND QUARRIES By J Allen Howe, OBE, BSc, M Inst Min and Met STRAW HATS By H Inwards Cane and Beet By the late Geo Martineau, CB, and Revised by F C Eastick, M A Fifth Edition SULPHUR AND THE SULPHUR INDUSTRY By Harold A Auden, MSc, DSc, FCS TALKING MACHINES By Ogilvie Mitchell TEA From Grower to Consumer Ibbetson TELEGRAPHY, TELEPHONY, AND WIRELESS By Joseph Poole, AMIEE TEXTILE BLEACHING By Alex B Steven, B Sc (Lond), FIC Timber From the Forest to its Use in Commerce By W Bullock Second Edition TIN AND THE TIN INDUSTRY By A H Mundey TOBACCO From Grower to Smoker By A E Tanner VELVET AND THE CORDUROY INDUSTRY By I Herbert Cooke WALL-PAPER By G Whiteley Ward WEAVING By W P Crankshaw WHEAT AND ÎTS PRODUCTS By Andrew Millar WINE AND THE WINE TRADE By André L Simon Wool From the Raw Material to the Finished Product By J A Hunter Worsted Industry, The By J. Dumville and S Kershaw Second Edition

PITMAN'S SHORTHAND INVALUABLE TO ALL BUSINESS AND PROFESSIONAL MEN

ZINC AND ITS ALLOYS BY T E Lones, MA,

LLD.BSc

The following Catalogues will be sent post free, on application—
EDUCATIONAL, COMMERCIAL, SHORTHAND, FOREIGN
LANGUAGE, AND ART

FROM THE SAME PUBLISHERS

DEFINITIONS AND FORMULAE FOR STUDENTS

This series of booklets is intended to provide engineering students with all necessary definitions and formulae in a convenient form

In four booklets. Each in Pocket Size, about 32 pp 6d net

DEFINITIONS AND FORMULAE FOR STUDENTS—ELECTRICAL

By PHILIP KEMP, M Sc., M.I E.E., Head of the Electrical Engineering Department of the Regent Street Polytechnic

DEFINITIONS AND FORMULAE FOR STUDENTS—HEAT ENGINES

By Arnold Rimmer, B Eng, Head of the Mechanical Engineering Department, Derby Technical College

DEFINITIONS AND FORMULAE FOR STUDENTS—APPLIED MECHANICS

By E H LEWITT, B Sc, A M I Mech E

DEFINITIONS AND FORMULAE FOR STUDENTS—PRACTICAL MATHEMATICS

By Louis Toff, MSc, Head of the Mathematical Department of the Royal Technical College, Salford