Assignment 4 Question 3: CS 663, Digital Image Processing

Tanmay Randhavane, 110050010 Nilesh Kulkarni, 110050008 Deepali Adlakha, 11d170020

October 19, 2014

Consider a matrix **A** of size $m \times n$. Define $\mathbf{P} = \mathbf{A}^T \mathbf{A}$ and $\mathbf{Q} = \mathbf{A} \mathbf{A}^T$.

1. Prove that for any vector \mathbf{y} with appropriate number of elements, we have $\mathbf{y}^t \mathbf{P} \mathbf{y} \geq 0$. Similarly show that $\mathbf{z}^t \mathbf{Q} \mathbf{z} \geq 0$ for a vector \mathbf{z} with appropriate number of elements. Why are the eigenvalues of \mathbf{P} and \mathbf{Q} non-negative?

A is of size $m \times n$ and $\mathbf{P} = \mathbf{A}^T \mathbf{A}$

 \therefore **P** is of size $n \times n$

Let \mathbf{y} be any vector of size $n \times 1$, Consider,

$$\mathbf{y}^{t}\mathbf{P}\mathbf{y} = \mathbf{y}^{t}\mathbf{A}^{T}\mathbf{A}\mathbf{y}$$
$$= (\mathbf{A}\mathbf{y})^{T}\mathbf{A}\mathbf{y}$$
$$= \Sigma(\mathbf{A}\mathbf{y})_{i}^{2}$$
$$> 0$$

 $\mathbf{Q} = \mathbf{A}\mathbf{A}^T$

 \therefore **Q** is of size $m \times m$ Let **z** be any vector of size $m \times 1$, Consider,

$$\mathbf{z}^{t}\mathbf{Q}\mathbf{z} = \mathbf{z}^{t}\mathbf{A}\mathbf{A}^{T}\mathbf{z}$$

$$= (\mathbf{A}^{T}\mathbf{z})^{T}\mathbf{A}^{T}\mathbf{z}$$

$$= \Sigma(\mathbf{A}^{T}\mathbf{z})_{i}^{2}$$

$$> 0$$

Let λ be any eigenvalue of **P**, then

$$\mathbf{Py} = \lambda \mathbf{y}$$

$$\mathbf{y}^{t} \mathbf{Py} = \lambda \mathbf{y}^{t} \mathbf{y}$$

$$\therefore \lambda \mathbf{y}^{t} \mathbf{y} \geq 0 (from \ previous \ results)$$

$$But, \ \mathbf{y}^{t} \mathbf{y} \geq 0 (length \ of \ \mathbf{y})$$

$$\therefore \lambda \geq 0$$

Similary, let λ be any eigenvalue of **P**, then

$$\mathbf{Q}\mathbf{y} = \lambda \mathbf{y}$$

$$\mathbf{y}^{t}\mathbf{Q}\mathbf{y} = \lambda \mathbf{y}^{t}\mathbf{y}$$

$$\therefore \lambda \mathbf{y}^{t}\mathbf{y} \geq 0 (from \ previous \ results)$$

$$But, \ \mathbf{y}^{t}\mathbf{y} \geq 0 (length \ of \ \mathbf{y})$$

$$\therefore \lambda \geq 0$$

2. If \mathbf{u} is an eigenvector of \mathbf{P} with eigenvalue λ , show that $\mathbf{A}\mathbf{u}$ is an eigenvector of \mathbf{Q} with eigenvalue μ , show that $\mathbf{A}^T\mathbf{v}$ is an eigenvector of \mathbf{P} with eigenvalue μ . What will be the number of elements in \mathbf{u} and \mathbf{v} ?

Let **u** be a eigenvector of **P** with eigenvalue λ , then

$$\mathbf{P}\mathbf{u} = \lambda \mathbf{u}$$

$$\mathbf{A}\mathbf{P}\mathbf{u} = \lambda \mathbf{A}\mathbf{u}$$

$$\mathbf{A}\mathbf{A}^{T}\mathbf{A}\mathbf{u} = \lambda \mathbf{A}\mathbf{u}$$

$$\mathbf{Q}\mathbf{A}\mathbf{u} = \lambda \mathbf{A}\mathbf{u}$$

Therefore, $\mathbf{A}\mathbf{u}$ is an eigenvector of \mathbf{Q} with eigenvalue λ .

Similarly,

Let **v** be a eigenvector of **Q** with eigenvalue μ , then

$$\mathbf{Q}\mathbf{v} = \mu \mathbf{v}$$

$$\mathbf{A}^T \mathbf{Q} \mathbf{v} = \mu \mathbf{A}^T \mathbf{v}$$

$$\mathbf{A}^T \mathbf{A} \mathbf{A}^T \mathbf{v} = \mu \mathbf{A}^T \mathbf{v}$$

$$\mathbf{P} \mathbf{A}^T \mathbf{v} = \mu \mathbf{A}^T \mathbf{v}$$

Therefore, $\mathbf{A}^T \mathbf{v}$ is an eigenvector of \mathbf{P} with eigenvalue μ .

P is of size $n \times n$ \therefore **u** has n elements. While, **Q** is of size $m \times m$ \therefore **v** has m elements.

3. If \mathbf{v}_i is an eigenvector of \mathbf{Q} and we define $\mathbf{u}_i = \frac{\mathbf{A}^T \mathbf{v}_i}{\|\mathbf{A}^T \mathbf{v}_i\|}$. Then prove that there will exist some real, non-negative γ_i such that $\mathbf{A}\mathbf{u}_i = \gamma_i \mathbf{v}_i$. \mathbf{v}_i is an eigenvector of \mathbf{Q} with eigenvalue λ . Therefore,

$$\begin{aligned} \mathbf{Q}\mathbf{v}_i &= \lambda \mathbf{v}_i \\ \mathbf{A}\mathbf{A}^T\mathbf{v}_i &= \lambda \mathbf{v}_i \\ \mathbf{A}\frac{\mathbf{A}^T\mathbf{v}_i}{\|\mathbf{A}^T\mathbf{v}_i\|} &= \frac{\lambda}{\|\mathbf{A}^T\mathbf{v}_i\|}\mathbf{v}_i \\ \mathbf{A}\mathbf{u}_i &= \gamma_i \mathbf{v}_i \end{aligned}$$

$$where, \ \gamma_i = \frac{\lambda}{\|\mathbf{A}^T\mathbf{v}_i\|}$$

4. It can be shown that $\mathbf{u}_i^T \mathbf{u}_j = 0$ for $i \neq j$ and likewise $\mathbf{v}_i^T \mathbf{v}_j = 0$ for $i \neq j$ for correspondingly distinct eigenvalues.¹. Now, define $\mathbf{U} = [\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3 | ... | \mathbf{v}_m]$ and $\mathbf{V} = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | ... | \mathbf{u}_n]$. Now show that $\mathbf{A} = \mathbf{U} \mathbf{\Gamma} \mathbf{V}^T$ where $\mathbf{\Gamma}$ is a diagonal matrix containing the non-negative values $\gamma_1, \gamma_2, ..., \gamma_n$. With this, you have just established the existence of the singular value decomposition of any matrix \mathbf{A} . This is a key result in linear algebra and it is widely used in image processing, computer vision, computer graphics, statistics, machine learning, numerical analysis, natural language processing and data mining. [5+5+5+5=20 points] Let,

 \mathbf{v}_i be an eigenvector of \mathbf{Q} .

From, result of part (b) and (c), $\mathbf{u}_i = \frac{\mathbf{A}^T \mathbf{v}_i}{\sigma_i}$ is an eigenvector of \mathbf{P} where, $\sigma_i = \|\mathbf{A}^T \mathbf{v}_i\|$ Consider,

¹This follows because **P** and **Q** are symmetric matrices. Consider $\mathbf{P}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$ and $\mathbf{P}\mathbf{u}_2 = \lambda_2\mathbf{u}_2$. Then $\mathbf{u}_2^T\mathbf{P}\mathbf{u}_1 = \lambda_1\mathbf{u}_2^T\mathbf{u}_1$. But $\mathbf{u}_2^T\mathbf{P}\mathbf{u}_1$ also equal to $(\mathbf{P}^T\mathbf{u}_2)^T\mathbf{u}_1 = (\mathbf{P}\mathbf{u}_2)^T\mathbf{u}_1 = (\lambda_2\mathbf{u}_2)^T\mathbf{u}_1 = \lambda_2\mathbf{u}_2^T\mathbf{u}_1$. Hence $\lambda_2\mathbf{u}_2^T\mathbf{u}_1 = \lambda_1\mathbf{u}_2^T\mathbf{u}_1$. Since $\lambda_2 \neq \lambda_1$, we must have $\mathbf{u}_2^T\mathbf{u}_1 = 0$.

$$\mathbf{u}_{i}^{T} \mathbf{A}^{T} \mathbf{v}_{j} = \frac{(\mathbf{A}^{T} \mathbf{v}_{i})^{T} \mathbf{A}^{T} \mathbf{v}_{j}}{\sigma_{i}}$$

$$= \frac{\mathbf{v}_{i}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{v}_{j}}{\sigma_{i}}$$

$$= \frac{\mathbf{v}_{i}^{T} \mathbf{Q} \mathbf{v}_{j}}{\sigma_{i}}$$

$$= \frac{\mathbf{v}_{i}^{T} \mathbf{Q} \mathbf{v}_{j}}{\sigma_{i}}$$

$$= \frac{\mu_{i} \mathbf{v}_{i}^{T} \mathbf{v}_{j}}{\sigma_{i}}$$

Therefore, $\mathbf{u}_i^T \mathbf{A}^T \mathbf{v}_j = 0$ if $i \neq j$ and γ_i for i = jNow, define $\mathbf{U} = [\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3 | ... | \mathbf{v}_m]$ and $\mathbf{V} = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | ... | \mathbf{u}_n]$ Therefore,

$$\mathbf{V}^T \mathbf{A}^T \mathbf{U} = \mathbf{\Sigma}$$

where Σ is a $n \times m$ matrix with $\Sigma_i i = \gamma_i$ and $\Sigma_i j = 0$ for $i \neq j$ Taking transpose,

$$\mathbf{U}^T \mathbf{A} \mathbf{V} = \mathbf{\Sigma}^T$$

Since, $\mathbf{u}_i^T \mathbf{u}_j = 0$ for $i \neq j$ and likewise $\mathbf{v}_i^T \mathbf{v}_j = 0$ for $i \neq j$, \mathbf{U} and \mathbf{V} are orthonormal. Therefore,

$$\mathbf{U}\mathbf{U}^{T}\mathbf{A}\mathbf{V}\mathbf{V}^{T} = \mathbf{U}\boldsymbol{\Sigma}^{T}\mathbf{V}^{T}$$
$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}^{T}\mathbf{V}^{T}$$
$$\mathbf{A} = \mathbf{U}\boldsymbol{\Gamma}\mathbf{V}^{T}$$