Разработка модели прогнозирования фенотипа растений на основе разреженного разложения искусственных изображений, кодирующих генетические и погодные данные

Студент: Галлямова Нэлли Научный руководитель: к.б.н. К.Н. Козлов

19.06.2023г.

Введение

- Нут одно из важных культурных растений, широко используемых как пищевая культура и ценный источник белка. Прогнозирование времени цветения имеет важное значение для улучшения урожайности.
- Искусственные изображения предоставляют удобный способ визуализации и анализа данных, что облегчает процесс извлечения значимых характеристик и позволяет лучше понять взаимосвязи между генетическими и погодными факторами времени цветения нута.

Цель и задачи исследования

► Цель: Разработка модели прогнозирования фенотипа растений по генетическим и погодным данным, которые представлены в виде искусственных изображений.

▶ Задачи:

- Разработка оптимизированного алгоритма кодирования значений факторов в искусственное изображение и методов извлечения характерных черт на основе создания словаря и разреженного кодирования.
- Создание модели прогнозирования фенотипа растения на основе машины опорных векторов для регрессии.
- Применение разработанных методов для разработки модели прогнозирования времени цветения нута по имеющемуся набору данных.
- Выявление факторов, наиболее сильно влияющих на точность модели.

Постановка задачи

Найти функцию F^* , такую что:

$$F^* = \underset{F \in \mathcal{H}}{\operatorname{argmin}} L(y, F(X))$$

 $X \in \mathbb{R}^{k \times p}$ - матрица входных данных, $x_i \in \mathbb{R}^p$ - вектор факторов i-го растения, $y \in \mathbb{R}^k$ - вектор фенотипов растений, L - функция потерь, \mathcal{H} - пространство гипотез.

Набор исходных данных

Генетические и климатические данные

Генетические данные:

1. Растение и информация о каждом его ОНП

Климатические данные:

- 1. Значения температур максимальная и минимальная температуры в течение дня
- 2. Значение солнечной радиации в течение дня
- 3. Количество выпавших осадков в течение дня
- 4. Длительность светового дня

Источники погодных данных:

- 5 дней до дня цветения
- 20 дней после дня цветения

Кодирование данных

Кодирование генетической информации

- ▶ Последовательность ОНП кодируется с использованием битового сдвига.
- Каждый бит сдвигается влево на количество позиций, равное номеру индекса ОНП в исходной последовательности.
- Затем применяется операция "установки" бита.

Кодирование климатических данных

 Преобразование данных путём выполнения целочисленного деления и вычисления остатка от деления.

ОНП	Индекс	Значение для г-канала	Значение для g-канала
aa	0	0b0	0b0
aa	1	0Ь00	0Ь00
Aa	2	0b100	0Ь000
AA	3	0b1100	0b1000
aa	4	0b01100	0ь01000

Алгоритм оценки качества изображений

Пример изображения Изображение по каналам в градации серого

Обучение словаря

- Основная идея алгоритма:
 Каждый блок изображения может быть представлен в виде взвешенной суммы изображений-шаблонов (атомов), хранящихся в заранее подготовленном словаре.
- Задача: найти наилучший словарь, который представляет входной сигнал как композицию разреженных представлений, решая задачу минимизации:

$$\min_{\mathsf{D},\mathsf{X}} \left\{ \|\mathsf{Y} - \mathsf{D}\mathsf{X}\|_\mathsf{F}^2 \right\} \forall i, \|x_i\| \leq \mathcal{T}_0,$$

Примеры патчей

Примеры атомов словаря

Микропризнаки

 Распределение ненулевых коэффициентов для каждого атома следует логнормальному распределению со следующей функцией плотности вероятности:

$$f(x; \mu; \sigma) = \frac{1}{\sqrt{2\pi}x\sigma} e^{\frac{-(\ln x - \mu)^2}{2\sigma^2}}$$
$$M[x] = e^{\mu + \frac{\sigma^2}{2}}$$

Вектор микропризнаков для атома:

$$f_i^{\rm mic} = e^{\mu + \frac{\sigma^2}{2}},$$

где $f^{\mathsf{mic}} = \left[f_1^{\mathsf{mic}}, \dots, f_k^{\mathsf{mic}} \, \right]$ представляют векторы микропризнаков для всех атомов.

Макропризнаки

Вероятность появления каждого атома:

$$f_i^{mac} = \frac{n_i}{\sum_{i=1}^k n_i}$$

где $f^{mac} = [f_1^{mac}, \dots, f_k^{mac}]$ представляют векторы макропризнаков для всех атомов, n_i — количество появлений атома i для тестового изображения.

Конечный вектор признаков изображения:

$$f = \left[f^{mic}, f^{mac}\right] \in \mathbb{R}^{2k \times 1}$$

Оптимальная модель: Гиперпараметры и метрики

Оценка качества определяется как $Q=f\left(f^{\sf mic}\;,f^{\sf mac}\;
ight)$ $\left(f:\mathbb{R}^{2k imes 1} o\mathbb{R}
ight)$

$$f(x) = \sum_{i=1}^{r} (\alpha_i - \alpha_i^*) K(x_i, x) + b$$

Оптимальные параметры модели:

- ightharpoonup C = 1000
- $\epsilon = 1$
- $ightharpoonup \gamma = 1$

Метрики.

- Средняя абсолютная ошибка: 4.36 дня
- Максимальная ошибка: 14.9 дней
- Среднеквадратичная ошибка: 5.79 дня

Оценка вклада признаков в SVR-модель

Результаты после исключения менее значимых признаков:

- Средняя абсолютная ошибка: 4.32 дня
- ▶ Максимальная ошибка: 13.99 дней
- Среднеквадратичная ошибка: 5.45 дня

Реакция модели в условиях имитации климатических изменений

- Имитация: засухи и глобального потепления.
- Моделирование происходило для каждой географической локации отдельно.
- В наборе данных представлены три геолокации.

Несмотря на изменения окружающих условий, модель отражает схожие тенденции изменения фенотипа для всех трех географических локаций, где выращиваются растения. Значения изменений фенотипа колеблются в пределах от 12.5 до 14.5 дней.

Анализ вклада исходных факторов на модель с использованием перестановочного теста и теста Манна-Уитни

 Определены 11 ключевых факторов*, оказывающих наибольшее влияние на модель, дальнейшее изучение которых позволит получить больше информации о том, как они взаимодействуют и влияют на фенотип растений.

^{*}geo_id, gr_covar2, gr_covar7, dl11, dl18, rain7, rain8, srad16, tmax15, tmax19, tmin18

Выводы

- Разработана модель, способная эффективно прогнозировать фенотип растений.
- Анализ вклада факторов позволил улучшить качество модели и снизить ошибку прогнозирования.
- Модель в целом оказалась устойчива к смоделированным изменениям климата.
- Удалось отобрать 11 ключевых факторов, оказывающих наибольшее влияние на модель прогнозирования фенотипа растений.