Movie Recommendation System Report

Team Members: Yuvraj and Shivansh

1. Introduction

The goal of this project is to build a **movie recommendation system** using **collaborative filtering and content-based filtering techniques**. We analyze a dataset containing movies, ratings, and tags to recommend movies based on user preferences and movie characteristics.

2. Data Collection & Preprocessing

We used three datasets:

- movies.csv: Contains movie IDs, titles, and genres.
- ratings.csv: Contains user ratings for different movies.
- tags.csv: Contains user-assigned tags for movies.

Data Cleaning:

- Checked for missing values and removed them.
- Extracted movie release years from titles.
- Merged datasets to form a comprehensive dataset for analysis.

3. Exploratory Data Analysis (EDA)

- Genre Analysis: Counted occurrences of genres to identify popular ones.
- Rating Distribution: Analyzed the range of ratings given by users.
- Popular Movies: Identified movies with high ratings and a significant number of reviews.

- Word Cloud Visualization: Generated a word cloud for genre frequency.
- **Genre Popularity:** Created a histogram to visualize genre distribution.

4. Recommendation Models

A. Collaborative Filtering (SVD)

We applied **Singular Value Decomposition (SVD)** to the **user-item utility matrix**, which predicts ratings by factorizing the matrix into **latent features**.

Evaluation Metrics for SVD:

- Mean Squared Error (MSE): Measures prediction error.
- Mean Absolute Error (MAE): Measures the average absolute prediction error.
- R² Score: Indicates how well the model fits the data.
- Classification Metrics: We classified ratings as "Liked" (≥3.5) or "Not Liked" and evaluated:
 - Accuracy, Precision, Recall, F1-Score, AUC-ROC
 - Confusion Matrix visualization

B. Hybrid Model (SVD + Bayesian Average)

To improve recommendation accuracy, we incorporated **Bayesian Averaging** of movie ratings along with SVD predictions. The hybrid model was constructed as:

Hybrid Prediction= $\alpha \times SVD$ Prediction+ $(1-\alpha) \times Bayesian$ Average\text{Hybrid Prediction} = \alpha \times \text{SVD Prediction} + $(1 - \alpha) \times Bayesian$ \text{Bayesian Average}

where $\alpha = 0.5$ (tunable parameter).

Hybrid Model Performance Comparison:

Model	MSE ↓	MAE ↓	R² Score ↑
SVD	2.0893	1.1606	-0.9224
Hybrid	0.6042	0.6288	0.4440

The **hybrid model outperformed** SVD alone by incorporating Bayesian averaging, making recommendations more stable and reliable.

5. Conclusion & Future Scope

- Our recommendation system effectively suggests movies using collaborative filtering and hybrid approaches.
- The **hybrid model** improves accuracy by considering both user preferences and overall movie popularity.
- Future Improvements:
 - Implement **deep learning**based recommendations.
 - Use genre embeddings for content-based recommendations.
 - Deploy the model as a web-based recommendation system