



# **CONTEÚDO**

- 1. Redes neuronais
- 2. Support Vector Machines
- 3. Vizinho mais próximo
- 4. Aprendizagem semi-supervisionada
- 5. Aprendizagem por transferência

# Redes Neuronais Neural Networks

### Redes neuronais: contexto biológico



https://www.chegg.com/homework-help/questions-and-answers/let-s-put-together-review-steps-action-potential-events-synapses-fill-following-blanks-tra-q41393959



### Redes Neuronais: Artificial Neural Networks (ANNs)



Bre, Facundo & Gimenez, Juan & Fachinotti, Víctor. (2017). Prediction of wind pressure coefficients on building surfaces using Artificial Neural Networks. Energy and Buildings. 158. 10.1016/j.enbuild.2017.11.045.



### Redes Neuronais: biológicas vs. ANNs





The human brain contains neurons that are composed by several *dendrites* (providing inputs to the neuron) and an *axon* (working as the neuron's output). The neurons are connected and the connections, called *synapses*, allow the communication between neurons. When neurons "fire", they send an electrical impulse that propagates through the cell body, to the *axon* and then the *synapse*. From here, the electrical impulse acts as an input for the subsequent neuron. Each *synapse* has an associated strength and the combination of all the inputs received, when compared to a certain threshold, will define if the neuron will "fire" an electrical impulse to the subsequent neuron.

We focus on the multi-layer perceptron which contains units (neurons) organised in layers: the input layer, at least one hidden layer, and the output layer. The units on one layer are connected to the units in the subsequent layer. The output of each unit passes through the connections (synapses) to the units in the next layer. This simulates the input and output through dendrites and axon, respectively. The connections between units have associated weights (synapse strength) that influence the impact of the information passed to the next unit.

Each layer has an associated activation function. The input values from the previous layer's units are fed to the activation function, which aggregates them into a single value that is passed onto the following layer's units. The middle layers are said to be hidden because their activation values are not directly accessible from the outside.

### Tipos de redes neuronais



#### **Feed-forward Neural Network**

Os dados movem-se apenas numa direção a partir da entrada até atingir a saída.

Ao longo do caminho, é calculada a soma dos produtos dos inputs e pesos.

O resultado final é passado para as saídas para processamento.

Usadas principalmente em reconhecimento facial e visão computacional

Estão equipados para lidar com dados que contêm muito ruído.





### Recurrent Neural Network (RNN) Long Short-Term Memory

Guarda a saída de uma camada e realimenta a entrada.

A primeira camada é formada como na rede feedforward, sendo calculada a soma dos inputs e dos pesos.

Nas camadas seguintes, o processo recorrente começa: a cada iteração, o nó lembra-se de algumas informações que possuía na iteração anterior. Atua como uma célula de memória enquanto computa e realiza a operação.

A rede começa da mesma forma que a rede feedforward, mas tem memória das informações para poder usar mais tarde.

#### Muito eficaz para conversão de voz em texto





#### **Radial Basis Function Neural Network**

É considerada a distância de qualquer ponto em relação ao centro.

Tem duas camadas: interna e externa. A camada interna tem os recursos combinados com a função de base radial (função cujo valor depende da distância entre a entrada e um ponto fixo). Em seguida, a saída desses recursos é utilizada ao calcular a mesma saída na próxima iteração.

Usada principalmente em sistemas de restauração de energia.





### **Convolutional Neural Networks (CNN)**

Objetivo principal: extrair características da imagem de entrada.

A convolução preserva a relação espacial entre os pixels, extraindo as características da imagem usando pequenos quadrados de dados de entrada.

Composta por uma ou mais camadas convolucionais totalmente conectadas.

Usadas em visão computacional, reconhecimento de objetos (ex: veículos autónomos).





### Perceptron

Algoritmo para aprendizagem supervisionada de classificadores binários

Permite que os neurónios aprendam e processem elementos no conjunto de treino, um de cada vez.

Executa cálculos para decidir se um input pertence ou não a alguma classe específica.

Há dois tipos principais de perceptrons:

- single layer perceptrons (uma única camada)
- multilayer perceptrons (múltiplas camadas)

São classificados como redes neurais feed-forward: movem-se apenas numa direção.

### Single layer perceptron

Não tem conhecimento prévio de nenhuma entrada: os pesos iniciais são atribuídos aleatoriamente.

Soma todas as entradas ponderadas (pesos) e, se a soma estiver acima de um threshold, os perceptrons estão ativados.

Os valores de input são apresentados ao perceptron e:

- se o output previsto for igual ao desejado, o desempenho é considerado satisfatório e não são feitas alterações nos pesos.
- se o output previsto não corresponder ao desejado, os pesos precisam de ser ajustados para reduzir o erro.



### Multilayer perceptron

Tem a mesma estrutura do single layer perceptron, mas com uma ou mais camadas escondidas adicionadas.

O algoritmo consiste em duas fases:

- a fase forward, onde as ativações são propagadas da camada de entrada para a camada de saída
- a fase backward, onde o erro é propagado para trás de modo a modificar os pesos e valores de bias.



# Informação extra

Para mais informação sobre redes neuronais, ver:

https://towardsdatascience.com/understanding-neural-networks-19020b758230

# **Deep Learning**

Redes neuronais com muitas camadas escondidas

# **Support Vector Machines**

### **Support Vector machines: conceitos**

Objetivo: encontrar a melhor separação das classes

#### Conceitos:

- Hyperplane:
  - 1d: ponto que melhor separa as classes
  - 2d: reta que melhor separa as classes
  - 3d: plano que melhor separa as classes
- Support vectors: pontos mais próximos do hyperplane
- Margin: distância entre os pontos mais próximos de cada classe
- Kernel: função matemática utilizada para transformar os dados de input para outro formato (ex: linear, nonlinear, polinomial, ...) e quantifica a semelhança (distância) entre duas observações



### **Support Vector machines: parâmetros**

- Gamma: define a influencia de um ponto singular
  - Valores mais altos: baixa influência
  - Valores mais baixos: alta influência
- **C** (regularization parameter): controla o tradeoff:
  - fronteira de decisão mais smooth (valores mais baixos)
  - classificar pontos de treino corretamente (valores mais altos).

class  $sklearn.svm.svc(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]$ 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

# Vantagens e desvantagens

| Vantagens                                                                                                                                                                                | Desvantagens                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Versátil para funções de kernel específicas</li> <li>Eficiente em termos de memória</li> <li>Eficaz quando o número de dimensões é maior do que o número de amostras</li> </ul> | <ul> <li>Sujeito a erros e overfitting ao lidar com dados com ruído (ex: pontos sobrepostos com o mesmo label)</li> <li>Longo tempo de computação ao lidar com conjuntos de dados muito grandes</li> <li>Não fornece uma explicação probabilística dos resultados</li> </ul> |  |  |

# Vizinho mais próximo Nearest Neightbor

# **Problema**

| Peso | Altura | IMC       |
|------|--------|-----------|
| 41   | 160    | Magro     |
| 44   | 172    | Magro     |
| 54   | 150    | Normal    |
| 58   | 150    | Sobrepeso |
| 59   | 172    | Normal    |
| 66   | 174    | Normal    |
| 67   | 158    | Sobrepeso |
| 68   | 176    | Normal    |
| 70   | 155    | Sobrepeso |
| 86   | 160    | Obeso     |
| 89   | 177    | Sobrepeso |
| 93   | 153    | Obeso     |
| 65   | 165    | ?         |





### **Algoritmo K Nearest Neighbors**

#### Input:

- O: Conjunto de observações com label
- N: Nova observação sem label
- K: número de vizinhos a considerar

#### Passos:

- 1. Calcular a semelhança de N a  $O_i$
- 2. Obter os K vizinhos mais próximos
- 3. Determinar *label(N)* de acordo com *labels* dos vizinhos
  - · Classificação: moda
  - · Regressão: média

#### **Output:**

Label(N)

### Cálculo da semelhança

#### **Euclidean**

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$





Cosine similarity (ângulo entre vetores)

$$similarity = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

#### Manhattan

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$





Hamming (distância entre strings)

Número de carateres diferentes entre as strings

#### Minkowski

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$



Medidas de distância: https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

| Peso | Altura | IMC       | Distância |
|------|--------|-----------|-----------|
| 67   | 158    | Sobrepeso | 7,3       |
| 66   | 174    | Normal    | 9,1       |
| 59   | 172    | Normal    | 9,2       |
| 70   | 155    | Sobrepeso | 11,2      |
| 68   | 176    | Normal    | 11,4      |
| 58   | 150    | Sobrepeso | 16,6      |
| 54   | 150    | Normal    | 18,6      |
| 86   | 160    | Obeso     | 21,6      |
| 44   | 172    | Magro     | 22,1      |
| 41   | 160    | Magro     | 24,5      |
| 89   | 177    | Sobrepeso | 26,8      |
| 93   | 153    | Obeso     | 30,5      |
| 65   | 165    | ?         |           |



| Peso | Altura | IMC       | Distância | K  |
|------|--------|-----------|-----------|----|
| 67   | 158    | Sobrepeso | 7,3       | 1  |
| 66   | 174    | Normal    | 9,1       | 2  |
| 59   | 172    | Normal    | 9,2       | 3  |
| 70   | 155    | Sobrepeso | 11,2      | 4  |
| 68   | 176    | Normal    | 11,4      | 5  |
| 58   | 150    | Sobrepeso | 16,6      | 6  |
| 54   | 150    | Normal    | 18,6      | 7  |
| 86   | 160    | Obeso     | 21,6      | 8  |
| 44   | 172    | Magro     | 22,1      | 9  |
| 41   | 160    | Magro     | 24,5      | 10 |
| 89   | 177    | Sobrepeso | 26,8      | 11 |
| 93   | 153    | Obeso     | 30,5      | 12 |
| 65   | 165    | ?         |           |    |

# K=1

| Peso | Altura | IMC       | Distância | K  |
|------|--------|-----------|-----------|----|
| 67   | 158    | Sobrepeso | 7,3       | 1  |
| 66   | 174    | Normal    | 9,1       | 2  |
| 59   | 172    | Normal    | 9,2       | 3  |
| 70   | 155    | Sobrepeso | 11,2      | 4  |
| 68   | 176    | Normal    | 11,4      | 5  |
| 58   | 150    | Sobrepeso | 16,6      | 6  |
| 54   | 150    | Normal    | 18,6      | 7  |
| 86   | 160    | Obeso     | 21,6      | 8  |
| 44   | 172    | Magro     | 22,1      | 9  |
| 41   | 160    | Magro     | 24,5      | 10 |
| 89   | 177    | Sobrepeso | 26,8      | 11 |
| 93   | 153    | Obeso     | 30,5      | 12 |
| 65   | 165    | ?         |           |    |

Label: Sobrepeso





### K=2

| - 1 |      |        |           |           |    |
|-----|------|--------|-----------|-----------|----|
|     | Peso | Altura | IMC       | Distância | K  |
|     | 67   | 158    | Sobrepeso | 7,3       | 1  |
|     | 66   | 174    | Normal    | 9,1       | 2  |
|     | 59   | 172    | Normal    | 9,2       | 3  |
|     | 70   | 155    | Sobrepeso | 11,2      | 4  |
|     | 68   | 176    | Normal    | 11,4      | 5  |
|     | 58   | 150    | Sobrepeso | 16,6      | 6  |
|     | 54   | 150    | Normal    | 18,6      | 7  |
|     | 86   | 160    | Obeso     | 21,6      | 8  |
|     | 44   | 172    | Magro     | 22,1      | 9  |
|     | 41   | 160    | Magro     | 24,5      | 10 |
|     | 89   | 177    | Sobrepeso | 26,8      | 11 |
|     | 93   | 153    | Obeso     | 30,5      | 12 |
|     | 65   | 165    | ?         |           |    |

Label: Normal / Sobrepeso





# K=3

| Peso | Altura | IMC       | Distância | K  |
|------|--------|-----------|-----------|----|
| 67   | 158    | Sobrepeso | 7,3       | 1  |
| 66   | 174    | Normal    | 9,1       | 2  |
| 59   | 172    | Normal    | 9,2       | 3  |
| 70   | 155    | Sobrepeso | 11,2      | 4  |
| 68   | 176    | Normal    | 11,4      | 5  |
| 58   | 150    | Sobrepeso | 16,6      | 6  |
| 54   | 150    | Normal    | 18,6      | 7  |
| 86   | 160    | Obeso     | 21,6      | 8  |
| 44   | 172    | Magro     | 22,1      | 9  |
| 41   | 160    | Magro     | 24,5      | 10 |
| 89   | 177    | Sobrepeso | 26,8      | 11 |
| 93   | 153    | Obeso     | 30,5      | 12 |
| 65   | 165    | ?         |           |    |

Label: Normal





# K=4

| Peso | Altura | IMC       | Distância | K  |
|------|--------|-----------|-----------|----|
| 67   | 158    | Sobrepeso | 7,3       | 1  |
| 66   | 174    | Normal    | 9,1       | 2  |
| 59   | 172    | Normal    | 9,2       | 3  |
| 70   | 155    | Sobrepeso | 11,2      | 4  |
| 68   | 176    | Normal    | 11,4      | 5  |
| 58   | 150    | Sobrepeso | 16,6      | 6  |
| 54   | 150    | Normal    | 18,6      | 7  |
| 86   | 160    | Obeso     | 21,6      | 8  |
| 44   | 172    | Magro     | 22,1      | 9  |
| 41   | 160    | Magro     | 24,5      | 10 |
| 89   | 177    | Sobrepeso | 26,8      | 11 |
| 93   | 153    | Obeso     | 30,5      | 12 |
| 65   | 165    | ?         |           |    |

Label: Normal / Sobrepeso





# K=5

|   | Peso | Altura | IMC       | Distância | K  |   |
|---|------|--------|-----------|-----------|----|---|
| П | 67   | 158    | Sobrepeso | 7,3       | 1  | ٦ |
|   | 66   | 174    | Normal    | 9,1       | 2  |   |
|   | 59   | 172    | Normal    | 9,2       | 3  |   |
|   | 70   | 155    | Sobrepeso | 11,2      | 4  |   |
|   | 68   | 176    | Normal    | 11,4      | 5  |   |
|   | 58   | 150    | Sobrepeso | 16,6      | 6  |   |
|   | 54   | 150    | Normal    | 18,6      | 7  |   |
|   | 86   | 160    | Obeso     | 21,6      | 8  |   |
|   | 44   | 172    | Magro     | 22,1      | 9  |   |
|   | 41   | 160    | Magro     | 24,5      | 10 |   |
|   | 89   | 177    | Sobrepeso | 26,8      | 11 |   |
|   | 93   | 153    | Obeso     | 30,5      | 12 |   |
|   | 65   | 165    | ?         |           |    |   |

Label: Normal





### Determinação do melhor K

- Não existe um método estruturado para encontrar o melhor valor para K. É necessário testar diversos valores em tentativa/erro.
- Escolher valores mais baixos para K pode trazer ruído e terá uma influência maior no resultado.
  - K = 1: sensível a outliers
- Valores altos de K terão menor variância, mas maior bias. É computacionalmente mais "caro".
  - K = n, n é o número de amostras dos dados de treino: todas as amostras novas vão ter o mesmo label
    - Classificação: moda
    - · Regressão: média
- Usar *cross validation*: separar conjunto de treino em treino e validação e usá-lo para avaliar diferentes valores de K, escolhendo o que permite melhor desempenho (menor erro: minimização do *validation error*).
- De uma forma geral, na prática, podemos escolher  $K = \sqrt{n}$ , em que n é o número de amostras dos dados de treino.
- Tentar manter o valor de K ímpar para evitar "empates" entre duas classes





| Peso | Altura | IMC       | Distância | K  |
|------|--------|-----------|-----------|----|
| 67   | 158    | Sobrepeso | 7,3       | 1  |
| 66   | 174    | Normal    | 9,1       | 2  |
| 59   | 172    | Normal    | 9,2       | 3  |
| 70   | 155    | Sobrepeso | 11,2      | 4  |
| 68   | 176    | Normal    | 11,4      | 5  |
| 58   | 150    | Sobrepeso | 16,6      | 6  |
| 54   | 150    | Normal    | 18,6      | 7  |
| 86   | 160    | Obeso     | 21,6      | 8  |
| 44   | 172    | Magro     | 22,1      | 9  |
| 41   | 160    | Magro     | 24,5      | 10 |
| 89   | 177    | Sobrepeso | 26,8      | 11 |
| 93   | 153    | Obeso     | 30,5      | 12 |
| 65   | 165    | ?         |           |    |

Label: Normal



### **KNN** em Python

### Código:

| import | pandas  | as   | pd            |
|--------|---------|------|---------------|
| data = | pd.read | d_cs | sv("imc.csv") |

```
x=data.iloc[:,0:2]
y=data.iloc[:,2]
```

#### K=3Peso Altura IMC Distância K 158 Sobrepeso 174 Normal 9,1 2 172 Normal 9,2 3 155 Sobrepeso 11.2 4 176 Normal 11,4 5 150 Sobrepeso 16,6 6 150 Normal 18,6 7 21,6 8 160 Obeso 172 Magro 22,1 9 24,5 10 160 Magro 177 Sobrepeso 26,8 11 153 Obeso 30,5 12

Label: Normal

165 ?



from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n\_neighbors=3, weights='distance', metric="euclidean")
knn.fit(x, y)

print("previsao (65,165): ", knn.predict([[65, 165]]))

#### **Output:**

```
previsao (65,165): ['Normal']
```

# Vantagens e desvantagens de usar K Nearest Neighbors

| Vantagens                                                                                                                                                                          | Desvantagens                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Simples de implementar</li> <li>Flexível</li> <li>Lida naturalmente com <i>multiclass</i></li> <li>Pode ter um bom desempenho na prática com dados suficientes</li> </ul> | <ul> <li>É necessário determinar o valor de K</li> <li>O custo de computação é muito alto porque precisamos calcular a distância de cada instância nova a todas as instâncias de treino</li> <li>Armazenamento de dados</li> <li>Devemos garantir que usamos uma função de distância (semelhança) significativa.</li> </ul> |

# Aprendizagem semi-supervisionada

### **Semisupervised learning**

- Labels são "caros"
- Podemos ter poucos exemplos com label e muitos sem label
  - Ex: Atividades fraudulentas



#### **Framework**

- 1. O algoritmo utiliza para treino uma porção limitada do dataset contendo exemplos labeled
  - 1. Resultado: modelo "parcialmente treinado"
- 2. Esse modelo irá classificar a porção do dataset que não contém labels
  - 1. Resultado: "pseudo-classificados"
- 3. Junta-se as duas porções de exemplos
  - 1. Permite combinar aspetos de aprendizagem descritiva e preditiva

Teoricamente, pode usar-se qualquer algoritmo que seja utilizado para supervised learning

# Aprendizagem por transferência *Transfer Learning*

# **Transfer learning**

Ver documento anexo "transfer\_learning.pdf"



Do conhecimento à prática.