UVOD V GEOMETRIJSKO TOPOLOGIJO: 2. TEST 17. 5. 2013

1. NALOGA (5 točk)

Podan je podprostor ravnine

$$A = [0,1] \times \{0\} \, \cup \, \bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} \right\} \times \left[0, \frac{1}{n} \right].$$

Naj bo t realno število. Defirajmo še

$$X_t = A \cup [0,1] \times [t,t+1].$$

Določi vsa tista realna števila t, za katera je X_t absolutni ekstenzor za razred normalnih prostorov. Vse kvalitativno različne primere skiciraj.

Rešitev oziroma odgovor utemelji.

2. NALOGA (5 točk)

- **a.** Ali je prostor $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\}) \cup \{(0,0,0)\}$ mnogoterost? **b.** Ali je prostor $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\}) \cup \{(x,y,0) | x^2 + y^2 < 1\}$ mnogoterost? **c.** Ali je prostor $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\}) \cup \{(x,y,0) | x^2 + y^2 \le 1\}$ mnogoterost?
- d. Naj bo $A \subset \mathbb{R}^2$. Poišči potreben in zadosten pogoj, da je prostor $\mathbb{R}^2 \times (\mathbb{R} \setminus \{0\}) \cup \{(x,y,0) \mid (x,y) \in A\}$ mnogoterost.

Rešitve oziroma odgovore utemelji.

TEORETIČNA NALOGA (5 točk)

ako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (\mathbf{P}) oziroma na (\mathbf{N}) . Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!
Naj bo $f: \mathbb{B}^k \to \mathbb{R}^n$ zvezna preslikava. Tedaj je $\mathbb{R}^n \setminus f(\mathbb{B}^k)$ s potmi povezan prostor.
Naj bo $f\colon \mathbb{S}^1\to \mathbb{R}^3$ vložitev. Tedaj ima $\mathbb{R}^3\setminus f(\mathbb{S}^1)$ natanko dve komponenti za povezanost.
Naj bo $A \subset \mathbb{R}^2$ in $B \subset \mathbb{R}^3$. Če sta prostora A in B homeomorfna, ima B prazno notranjost v \mathbb{R}^3 .
Naj bo J topološka krožnica v \mathbb{R}^2 in naj bo C katerakoli komponenta komplementa $\mathbb{R}^2 \setminus J$. Tedaj je zaprtje \bar{C} homeomorfno disku \mathbb{B}^2 .
Vsak retrakt ravnine \mathbb{R}^2 je absolutni ekstenzor za normalne prostore.
Krožnica \mathbb{S}^1 je kontraktibilen prostor.
Krožica \mathbb{S}^1 je primer mnogoterosti s praznim robom.
Vsak homeomorfizem $\mathbb{B}^2 \to \mathbb{B}^2$ ima vsaj eno negibno točko.
Naj bosta X in Y mnogoterosti. Tedaj je $X \times Y$ mnogoterost in velja $\partial(X \times Y) = (\partial X) \times (\partial Y)$.
Naj bo A zaprta množica v \mathbb{R}^n . Vsaka zvezna injekcija $A \to \mathbb{R}^n$ je zaprta preslikava.