IF3055 - Manajemen File

Henny Y. Zubir STEI - ITB

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 1

Ikhtisar

- Konsep File
- Metode Akses
- Implementasi File
- Implementasi Direktori
- Manajemen Media Penyimpanan
- Efisiensi & Performansi
- Pemulihan

Manajemen File

- File: koleksi informasi bernama
- File manager mengelola kumpulan dengan cara:
 - Menyimpan informasi pada perangkat
 - Pemetaan blok pada media penyimpanan dengan view lojik
 - Alokasi/dealokasi media penyimpanan
 - Menyediakan direktori file

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 3

Kebutuhan Penyimpanan Informasi

- Dapat menyimpan data dalam jumlah besar dan jangka panjang
- Informasi harus tetap disimpan meskipun proses yang menggunakannya telah berakhir
- Informasi harus dapat diakses secara konkuren oleh banyak proses

Konsep File: Penamaan

- Terdiri dari nama dan ekstensi
- Contoh:

Extension	Meaning
file.bak	Backup file
file.c	C source program
file.gif	Compuserve Graphical Interchange Format image
file.hlp	Help file
file.html	World Wide Web HyperText Markup Language document
file.jpg	Still picture encoded with the JPEG standard
file.mp3	Music encoded in MPEG layer 3 audio format
file.mpg	Movie encoded with the MPEG standard
file.o	Object file (compiler output, not yet linked)
file.pdf	Portable Document Format file
file.ps	PostScript file
file.tex	Input for the TEX formatting program
file.txt	General text file
file.zip	Compressed archive

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 5

Konsep File: Struktur (1)

- Tidak ada struktur sekuens of words atau bytes
- Struktur rekord sederhana
 - Baris
 - Panjang tetap
 - Panjang bervariasi
- Struktur kompleks
 - Dokumen terformat
 - Relocatable load file
- Siapa yang menentukan struktur?
 - OS
 - Program

Konsep File: Atribut

- Nama informasi untuk pengacuan file, disimpan dalam bentuk yg dapat dibaca user
- Tipe diperlukan untuk sistem yang mendukung tipe berbeda
- Lokasi pointer ke lokasi file pada perangkat
- Size ukuran file saat ini
- Proteksi mengontrol siapa yang bisa membaca, menulis, atau mengeksekusi file
- Time, date, dan user identification data untuk proteksi, security, dan monitoring penggunaan
- Informasi mengenai file disimpan pada struktur direktori, yang dikelola pada disk

- a) File Executable
- b) File archive

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 9

Konsep File: Metode Akses

- Akses sekuensial
 - Membaca semua bytes/records dari awal
 - Tidak dapat melompat, hanya bisa melakukan rewind atau back up
 - Baik jika digunakan pada media pita magnetik
- Akses random
 - bytes/records dibaca tidak terurut
 - penting untuk sistem basisdata
 - pembacaan dapat berupa:
 - memindahkan penanda file (seek), kemudian baca, atau ...
 - baca dan kemudian pindahkan penanda file

Konsep File: Operasi (1)

- create
- delete
- read
- write
- open (F_i) mencari entri F_i pada struktur direktori pada disk dan memindahkan isi entri tsb ke memori
- close (F_i) memindahkan isi entri F_i di memori ke struktur direktori pada disk
- seek reposisi pada file
- truncate
- append
- get attributes
- set attributes
- rename

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 11

Konsep Direktori: Struktur

Kumpulan nodes yang berisi informasi mengenai semua file

Baik struktur direktori maupun file berada pada disk

Konsep Direktori: Atribut

- Nama
- Tipe
- Alamat
- · Panjang saat ini
- Panjang maksimum
- Tanggal terakhir diakses (untuk arsip)
- Tanggal terakhir diupdate (untuk dump)
- ID pemilik
- · Informasi proteksi

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 13

Konsep Direktori: Operasi

- Pencarian file
- Pembuatan file
- Penghapusan file
- List isi direktori
- Rename file
- Menjelajah (traverse) sistem file

Konsep Direktori: Issue

- Efisiensi pencarian file dgn cepat
- Penamaan menyenangkan bagi user
 - Dua user bisa memiliki nama yg sama utk file yg berbeda
 - File yg sama bisa memiliki beberapa nama yg berbeda
- Grouping pengelompokan lojik dari file berdasarkan jenisnya (mis. Program Pascal, game, ...)

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 15

Konsep Direktori: Struktur (1)

- Direktori Satu Tingkat:
 - Satu direktori tunggal untuk semua user
 - Kelebihan/kekurangan:
 - Penamaan
 - Pengelompokan (grouping)

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori

Konsep Direktori: Struktur (2)

• Direktori Dua Tingkat:

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 17

Konsep Direktori: Struktur (3)

- Direktori Dua Tingkat (Lanj.):
 - Direktori terpisah untuk tiap user
 - Kelebihan/kekurangan:
 - Nama path
 - Bisa memiliki nama file sama utk user yg berbeda
 - Pencarian efisien
 - Tidak memiliki kemampuan grouping

Konsep Direktori: Struktur (5)

- Struktur Pohon (Lanj.):
 - Pencarian efisien
 - Memiliki kemampuan grouping
 - Current directory (working directory)
 - cd /spell/mail/prog
 - type list
- Nama path absolut atau relatif
- Pembuatan file baru dilakukan pd current directory

Konsep Direktori: Struktur (6)

- Menghapus file: rm < nama-file>
- Pembuatan sub-direktori baru dilakukan pada current directory
 - mkdir <nama-dir>
 - contoh: jika current directory /spell/mail
 mkdir count

 Menghapus "mail" ⇒ menghapus keseluruhan subtree yang akarnya "mail"

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 21

Konsep Direktori: Struktur (6)

- Graf asiklik:
 - Memiliki sub-direktori dan file yang dapat digunakan bersama

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori

Konsep Direktori: Struktur (7)

- Graf asiklik (Lanj.):
 - Dua nama yg berbeda (alias)
 - jika *dict* menghapus *list* ⇒ dangling pointer
 Solusi:
 - Backpointer, sehingga kita dapat menghapus semua ponter backpointer menggunakan model daisy chain
 - Solusi entry-hold-count

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 23

Konsep Direktori: Struktur (8)

Direktori Graf Umum:

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori

Konsep Direktori: Struktur (9)

- Direktori Graf Umum (Lanj.):
 - Bagiamana menjamin tidak terdapat cycle?
 - Hanya mengizinkan link ke file, bukan sub-direktori
 - Melakukan garbage collection
 - Setiap kali link baru ditambahkan, gunakan algoritma pendeteksian cycle untuk menentukan OK/tidaknya

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 25

Proteksi

- Pemilik/pembuat file harus dapat mengontrol:
 - Akses apa yg dapat dilakukan
 - Oleh siapa
- Tipe akses
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Proteksi: Access List dan Grup

- Mode akses: read, write, execute (r, w, x)
- · Tiga kelas user

a) akses pemilik
$$\begin{array}{ccc} & \text{RWX} \\ 7 & \Rightarrow & 1\ 1\ 1 \\ \text{RWX} \\ \text{b) akses group 6} & \Rightarrow & 1\ 1\ 0 \\ \text{RWX} \\ \text{c) akses publik 1} & \Rightarrow & 0\ 0\ 1 \\ \end{array}$$

- Manager dpt membuat group (unik), dan menambahkan user untuk group tsb
- Definisikan mode akses pada file atau sub-direktori

• Berikan group ke file: chgrp G game

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 27

Implementasi File: Struktur

- Struktur file
 - Unit penyimpanan lojik
 - Kumpulan informasi yg saling terkait
- Sistem file berada media penyimpanan sekunder (disk)
- Sistem file diorganisasikan dalam beberapa layer
- File control block struktur penyimpanan yg berisi informasi mengenai file

Implementasi File: Alokasi Kontigu

- Tiap file menempati satu set blok kontigu pada disk
- Sederhana hanya memerlukan lokasi awal (block #) dan panjang (banyaknya blok)
- Akses random
- Pemborosan ruang (masalah alokasi penyimpanan dinamis)
- File tidak bisa bertambah besar
- Pemetaan dari lojik ke fisik LA/512
- Blok yg akan diakses = ! + alamat awal
- Displacement ke blok = R

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 29

Implementasi File: Alokasi Berkait (1)

- Tiap file merupakan list berkait dari blok disk: blok berada tersebar pada disk
- Alokasikan sebanyak yang diperlukan

STEI-ITB/HY/Agt-08 IF3055 <u>– Manajemen Me</u>mori

Implementasi File: Alokasi Berkait (2)

- Sederhana hanya perlu alamat awal
- Sistem pengelolaan ruang kosong tidak ada pemborosan ruang
- Tidak ada akses random
- Pemetaan LA/511
 - Blok yg akan diakses adalah blok ke-Q pada rantai blok berkait yg merepresentasikan file
 - Displacement ke blok = R + 1
- File-allocation table (FAT) alokasi ruang disk yg digunakan oleh MS-DOS and OS/2

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 31

Implementasi File: Alokasi Berindeks (1)

- Bawa semua pointer ke blok indeks
- View lojik
- · Perlu tabel indeks
- Akses random
- Akses dinamis tanpa fragmentasi eksternal, tapi memiliki overhead dari blok indeks
- Pemetaan dari lojik ke fisik pada file dgn ukuran maksimum 256K words dan ukuran blok 512 words. Perlu 1 blok utk tabel indeks
 - -Q = displacement ke tabel index
 - -R = displacement ke blok

Tabel indeks

Implementasi File: Alokasi Berindeks (3)

- Pemetaan
 - Pemetaan dari lojik ke fisik pd file dgn panjang tak terbatas (ukuran blok 512 words)
 - Skema berkait blok link dari tabel indeks (tidak ada batasan pada ukuran)
 - LA / (512 x 511)
 - Q_1 = blok dari tabel indeks
 - R_1 digunakan sbb:
 - Q_2 = displacement ke blok pada indeks tabel
 - R₂ displacement ke blok file:

Implementasi File: Alokasi Berindeks (4)

- Indeks two-level (ukuran file maksimum 5123)

LA / (512 x 512)
$$\stackrel{Q_1}{\underset{R_1}{\bigcirc}}$$

- Q_1 = displacement ke indeks luar
- R₁ digunakan sbb:

$$R_1 / 512 < Q_2$$
 R_2

- Q_2 = displacement ke blok pd tabel indeks
- R₂ displacement blok file:

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 35

Implementasi File: Alokasi Berindeks (5)

Ptb

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori

Manajemen Ruang Kosong (1)

• Bit vector (*n* blok)

Kalkulasi nomor blok

(banyaknya bit per word) * (banyaknya 0-value words) + offset bit 1 pertama

Manajemen Ruang Kosong (2)

- Bit map memerlukan ruang tambahan.
 - Contoh:

```
ukuran blok size = 2^{12} bytes
ukuran disk = 2^{30} bytes (1 GByte)
n = 2^{30}/2^{12} = 2^{18} bits (or 32KBytes)
```

- Mudah untuk memperoleh file kontigu
- List berkait (list kosong)
 - Sukar memperoleh ruang kontigu
 - Tidak ada pemborosan ruang
- Grouping
- Counting

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 39

Manajemen Ruang Kosong (3)

- Perlu memproteksi:
 - Pointer ke list kosong
 - Bit map
 - Harus disimpan pada disk
 - Salinan pada memori dan disk mungkin berbeda
 - Tidak memungkinkan blok[i] berada pd situasi dimana bit[i] = 1 pada memori dan bit[i] = 0 pada disk
 - Solusi:
 - Set bit[i] = 1 pada disk
 - Alokasikan block[i]
 - Set bit[i] = 1 pada memori

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori

Implementasi Direktori

- List linier dari nama file dgn pointe ke blok data
 - Sederhana utk diprogram
 - Lama dalam eksekusi
- Hash Table list linier dgn struktur data hash
 - mengurangi waktu pencarian direktori
 - collitions situasi dimana dua nama file hash ke lokasi ya sama
 - ukuran fixed

STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 41

Ffisiensi & Performansi

- Efisiensi tergantung pada:
 - Algoritma alokasi disk dan direktori
 - Tipe data yg disimpan pada entri direktori file
- Performansi
 - disk cache bagian memori utama yg menyimpan isi blok yg sering diakses
 - free-behind and read-ahead teknik utk optimasi akses sekuensial
 - meningkatkan performansi PC dgn menjadikan sebagian memori untuk virtual disk atau RAM disk

Disk Caching

Berbagai alternatif lokasi disk cache

PHD Institut Teknologi Bandura STEI-ITB/HY/Agt-08 IF3055 – Manajemen Memori Page 43

Pemulihan

- Consistency checker membandingkan data pada struktur direktori dgn blok data pada disk, dan mencoba memperbaiki inkonsistensi
- Menggunakan program utk mem-backup data dari disk ke perangkat penyimpanan lainnya (floppy disk, magnetic tape)
- Memulihkan kehilangan file atau disk dgn mengambil data dari backup

