DEBUG 程序的使用

一、在 DOS 的提示符下,可如下键入 Debug 启动调试程序:

DEBUG [路径\文件名][参数 1][参数 2]

Debug 后可以不带文件名,仅运行 Debug 程序;需要时,再用 N 和 L 命令调入被调试程序。命令中可以带有被调试程序的文件名,则运行 Debug 的同时,还将指定的程序调入主存;参数 1/2 是被调试程序所需要的参数。

在 Debug 程序调入后,根据有无被调试程序及其类型相应设置寄存器组的内容,发出 Debug 的提示符"一",此时就可用 Debug 命令来调试程序。

- 运行 Debug 程序时,如果不带被调试程序,则所有段寄存器值相等,都指向当前可用的主存段;除 SP 之外的通用寄存器都设置为 0,而 SP 指示当前堆栈顶在这个段的尾部; IP=0100h; 状态标志都是清 0 状态。
- 运行 Debug 程序时,如果带入的被调试程序扩展名不是.EXE,则 BX.CX 包含被调试文件大小的字节数(BX 为高 16 位),其他同不带被调试程序的情况。
- 运行 Debug 程序时,如果带入的被调试程序扩展名是.EXE,则需要重新定位。此时,CS:IP和SS:SP根据被调试程序确定,分别指向代码段和堆栈段。DS=ES指向当前可用的主存段,BX.CX包含被调试文件大小的字节数(BX为高16位),其他通用寄存器为0,状态标志都是清0状态。

二、DEBUG命令的格式

Debug 的命令都是一个字母,后跟一个或多个参数: 字母 [参数] 命令的使用中注意:

- ① 字母不分大小写:
- ② 只使用 16 进制数,没有后缀字母:
- ③ 分隔符(空格或逗号)只在两个数值之间是必须的,命令和参数间可无分隔符;
- ④ 每个命令只有按了回车键后才有效,可以用Ctrl+Break 中止命令的执行:
- ⑤ 命令如果不符合 Debug 的规则,则将以"error"提示,并用"^"指示错误位置。

许多命令的参数是主存逻辑地址,形式是"段基地址:偏移地址"。其中,段基地址可以是段寄存器或数值;偏移地址是数值。如果不输入段地址,则采用默认值,可以是缺省段寄存器值。如果没有提供偏移地址,则通常就是当前偏移地址。

对主存操作的命令还支持地址范围这种参数,它的形式是: "开始地址结束地址"(结束地址不能具有段地址),或者是: "开始地址 L 字节长度"。

三、DEBUG 子命令

1、显示命令 D

D(Dump)命令显示主存单元的内容,它的格式如下(注意分号后的部分用于解释命令功能,不是命令本身):

D[地址] : 显示当前或指定开始地址的主存内容

D [范围] : 显示指定范围的主存内容

例如,显示当前(接着上一个D命令显示的最后一个地址)主存内容:

左边部分是主存逻辑地址,中间是连续 16 个字节的主存内容(16 进制数,以字节为单位),右边部分是这 16 个字节内容的 ASCII 字符显示,不可显示字符用点"."表示。一个 D 命令仅显示"8 行×16 个字节"(80 列显示模式)内容。 再如:

-d 100 ; 显示数据段 100h 开始的主存单元

-d cs:0 ; 显示代码段的主存内容

-d 2f0 L 20 : 显示 ds:2f0h 开始的 20h 个主存数据

2、修改命令 E

- E(Enter)命令用于修改主存内容,它有两种格式:
- E 地址 ; 格式 1, 修改指定地址的内容
- E 地址 数据表 ; 格式 2, 用数据表的数据修改指定地址的内容

格式 1 是逐个单元相继修改的方法。例如,键入"e ds:100",Debug 显示原来内容,用户可以直接输入新数据,然后按空格键显示下一个单元的内容,或者按"一"键显示上一个单元的内容;不需要修改可以直接按空格或"一"键;这样,用户可以不断修改相继单元的内容,直到用回车键结束该命令为止。

格式 2 可以一次修改多个单元,例如:

-e ds:100 F3`XYZ'8D ; 用 F3/X`/Y`/Z'/8D 这 5 个数据替代 DS:0100 ~ 0104 的原来 内容

3、填充命令 F

F(Fill)命令用于对一个主存区域填写内容,同时改写原来的内容,其格式为:

F 范围 数据表

该命令用数据表的数据写入指定范围的主存。如果数据个数超过指定的范围,则忽略多出的项,如果数据个数小于指定的范围,则重复使用这些数据,直到填满指定范围。

4、寄存器命令 R

R(Register)命令用于显示和修改处理器的寄存器,它有三种格式。

R: 格式 1, 显示所有寄存器内容和标志位状态

例如,当我们刚进入 Debug 时,就可以执行该命令,显示示例如下:

其中,前两行给出所有寄存器的值,包括各个标志状态。最后一行给出了当前 CS:IP 处的指令,由于这是一个涉及数据的指令,这一行的最后还给出相应单元的内容。

R 寄存器名 ; 格式 2, 显示和修改指定寄存器

例如,键入"rax",Debug 给出当前 AX 内容,冒号后用于输入新数据,如不修改则按 Enter 键。

RF; 格式 3, 显示和修改标志位

Debug 将显示当前各个标志位的状态。显示的符号及其状态如表 F1.1 所示,用户只要输入这些符号就可以修改对应的标志状态,键入的顺序可以任意。

标志	置位符号	复位符号
溢出 OF	ov	NV
方向 DF	DN	UP
中断IF	EI	DI
符号 SF	NG	PL
零位 ZF	ZR	NZ
辅助 AF	AC	NA
奇偶 PF	PE	РО
进位 CF	CY	NC

5、汇编命令 A

汇编命令 A(Assemble)用于将输入的汇编指令汇编成为机器代码保存于主存。

A [地址] ; 从指定地址开始汇编指令

A 命令中如果没有指定地址,则接着上一个 A 命令的最后一个单元开始;若还没有使用过 A 命令,则从当前 CS: IP 开始。

输入 A 命令后,就可以输入 8086 指令,Debug 将它们汇编成机器代码,相继地存放在指定地址开始的存储区中,记住最后要输入一个回车结束 A 命令。进行汇编的步骤如下:

- ① 输入汇编命令 A [地址], 按回车。Debug 提示地址,等待你输入新指令;
- ② 输入汇编指令,按回车;
- ③ 如上继续输入汇编指令,直到输入所有指令;
- ④ 不输入内容就按回车,结束汇编,返回 Debug 的提示符状态。

```
Command Prompt - debug
                                                                                                 _ O X
C:\WINNT\SYSTEM32>debug
   6:0200 mov al,05
F:0202 mov ax,500
            mov ax,
            mov ax,[2000h]
                               Error
            MOV
            mov ax,[2000]
db 'Hello,Assembly !',d,a
dw 2345
            es:
            mov
            8005
880005
8908
A10020
26
A10020
                                             ,0500
                                          AX,[2000]
                                          AX,[2000]
                     6F 2C 41 73 73 65-6D 62 6C 79 20 21 0D 0A
                                                                                 llo,Assembly !..
E#
```

A 命令支持标准的 8086 (和 8087 浮点) 指令系统以及汇编语言语句格式,但要注意以下一些规则:

- 所有输入的数值都是 16 进制数;
- 段超越指令需要在相应指令前,单独一行输入:
- 段间(远)返回的助记符要使用 RETF:
- A 命令也支持最常用的两个伪指令 DB 和 DW。

6、反汇编命令 U

反汇编命令 U(Unassemble) 将主存内容按照机器代码形成汇编指令显示:

U[地址] ; 从指定地址开始,反汇编 32 个字节(80 列显示模式)

U 范围 ; 对指定范围的主存内容进行反汇编

U 命令中如果没有指定地址,则接着上一个 U 命令的最后一个单元开始;若还没有使用过 U 命令,则从当前 CS: IP 开始。

屏幕显示的左边是主存逻辑地址,中间是该指令的机器代码,而右边则是对应的指令 汇编格式。

7、运行命令 G

运行命令 G(Go) 从指定地址处开始运行程序,直到遇到断点或者程序正常结束。

G [=地址] [断点地址 1,断点地址 2,...,断点地址 10]

G 命令等号后的地址指定程序段运行的起始地址,如不指定则从当前的 CS: IP 开始运行。断点地址如果只有偏移地址,则默认是代码段 CS;断点可以没有,但最多只能有 10 个。

程序遇到断点(实际上就是断点中断指令 INT 3),停止执行,并显示当前所有寄存器和标志位的内容、以及下一条将要执行的指令(显示内容同 R 命令),以便观察程序运行到此的情况。程序正常结束,将显示"Program terminated normally"。

注意, G命令以及后面的 T和 P命令要指向正确的指令代码, 否则会出现不可预测的结果,例如"死机"。

8、跟踪命令 T

跟踪命令 T(Trace),也称为单步命令,每执行一条指令就显示运行结果,使程序员可以细致地观察程序的执行情况。

T[=地址] ;逐条指令跟踪

T[=地址][数值]; 多条指令跟踪

从指定地址起执行一条或数值参数指定条数的指令后停下来,每条指令执行后都要显示所有寄存器和标志位的值以及下一条指令。如未指定地址则从当前的 CS:IP 开始执行。注意给出的执行地址前有一个等号,否则会被认为是被跟踪指令的条数(数值)。

T 命令逐条指令执行程序,遇到子程序(CALL)或中断调用(INT n)指令也不例外, 也会讲入到子程序或中断服务程序当中执行。

9、继续命令 P

继续命令 P (Proceed) 类似 T 命令,逐条执行指令、显示结果。但是当遇到子程序调用、中断功能调用和循环指令等时,不在子程序、中断服务程序或循环体中单步执行,而是直接执行完成子程序、中断服务程序或循环体,然后显示结果。

当不需要调试子程序、中断服务程序或循环程序段时,要应用 P 命令,而不是 T 命令。

10、退出命令 Q

退出命令 Q (Quit) 使 Debug 程序退出,返回 DOS。 Q 命令并无存盘功能,可使用 W

命令存盘。

11、命名命令 N

命名命令 N (Name) 把一个或两个可以包含路径的文件全名存入 Debug 中,以便在其后用 L 或 W 命令把文件装入或存盘。

N 文件名 1[,文件名 2]

12、装入命令 L

装入命令L(Load)将磁盘中的文件或扇区内容装载到主存中。

L[地址] ; 格式 1: 装入由 N 命令指定的文件

格式1的L命令装载一个文件到给定的主存地址处。

L 地址 驱动器 扇区号 扇区数 ;格式 2:装入指定磁盘扇区范围的内

格式 2 的 L 命令装载磁盘的若干扇区 (最多 80h) 到给定的主存地址处; 缺省段地址是 CS。其中,0 表示 A 盘,1 表示 B 盘,2 表示 C 盘, ……。

13、写盘命令₩

容

写盘命令 W (Write) 主存内容写入磁盘的文件或扇区中,与L命令相反。

```
C:\WINNT\$YSTEM32>debug
-a
0C7F:0100 mov ah,9
0C7F:0102 mov dx,110
0C7F:0105 int 21
0C7F:0107 mov ax,4c00
0C7F:0108 int 21
0C7F:0100
-a110
0C7F:0110 db 'Hello'
0C7F:0115
-rcx
CX 0000
:15
-n d:\masm611\lt301.com
-w
Writing 00015 bytes
-q
C:\WINNT\$YSTEM32>_
```

格式 1 的 \mathbb{W} 命令将指定开始地址的数据写入一个文件(这个文件应该已经用 \mathbb{N} 命令命名);如未指定地址则从 $\mathbb{C}S$: 100 开始。要写入文件的字节数应先放入 $\mathbb{D}X$ (高字)和 $\mathbb{C}X$ (低字)中。如果采用这个 \mathbb{W} 命令保存你的可执行程序,它的扩展名应是 $\mathbb{C}S$ COM;它不能写入具有 $\mathbb{C}S$ 和 $\mathbb{E}X$ 扩展名的文件。

₩ 地址 驱动器 扇区号 扇区数

: 格式 2: 把数据写入指定磁盘扇区范

用

格式 2 的 \mathbb{V} 命令将指定地址的数据写入磁盘的若干扇区(最多 80H);如果没有给出段地址,则缺省是 CS。其他说明同 L 命令。由于格式 2 的 \mathbb{V} 命令直接对磁盘写入,没有经过 DOS 文件系统管理,所以一定要小心,否则可能无法利用 DOS 文件系统读写

14、其它命令

① 比较命令 C (Compare)

C 范围 地址

② 16 进制数计算命令 H (Hex)

H 数字 1, 数字 2

③ 输入命令 I (Input)

I 端口地址

- ④ 输出命令 0 (Output)
 - 0 端口地址 字节数据
- ⑤ 传送命令 M(Move)

M 范围 地址

- ⑥ 查找命令 S (Search)
 - S 范围 数据
- ⑦ 帮助命令?

: 将指定范围的内容与指定地址内容比较

; 同时计算两个16进制数字的和与差

: 从指定 I/0 端口输入一个字节, 并显示

; 将数据输出到指定的 I/0 端口

;将指定范围的内容传送到指定地址处

; 在指定范围内查找指定的数据

: 显示各命令的简要说明

?