Нелинейная регрессия Обобщёные линейные модели Нестандартные функции потерь

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 16 октября 2021

Содержание

- Нелинейная регрессия
 - Нелинейная модель регрессии
 - Логистическая регрессия
 - Обобщённая аддитивная модель
- Обобщённая линейная модель
 - Обобщённая линейная модель
 - Экспоненциальное семейство распределений
 - Максимизация правдоподобия для GLM
- 3 Неквадратичные функции потерь
 - Квантильная регрессия
 - Робастная регрессия
 - SVM-регрессия

Нелинейная модель регрессии

 $X^\ell=(x_i,y_i)_{i=1}^\ell$ — обучающая выборка, $x_i\in\mathbb{R}^n$, $y_i\in\mathbb{R}$ $y_i=y(x_i)$, $y\colon X\to Y$ — неизвестная регрессионная зависимость $f(x,\alpha)$ — нелинейная модель регрессии, $\alpha\in\mathbb{R}^p$

Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha}.$$

Метод Ньютона-Рафсона:

- 1. Начальное приближение $\alpha^0 = (\alpha_1^0, \dots, \alpha_p^0)$.
- 2. Итерационный процесс

$$\alpha^{t+1} := \alpha^t - h_t(Q''(\alpha^t))^{-1}Q'(\alpha^t),$$

 $Q'(lpha^t)$ — градиент функционала Q в точке $lpha^t$, вектор из \mathbb{R}^p $Q''(lpha^t)$ — гессиан функционала Q в точке $lpha^t$, матрица из $\mathbb{R}^{p imes p}$ h_t — величина шага (можно полагать $h_t=1$).

Метод Ньютона-Рафсона

Компоненты градиента:

$$\frac{\partial Q(\alpha)}{\partial \alpha_j} = 2 \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i) \frac{\partial f(x_i, \alpha)}{\partial \alpha_j}.$$

Компоненты гессиана:

$$\frac{\partial^2 Q(\alpha)}{\partial \alpha_j \partial \alpha_k} = 2 \sum_{i=1}^{\ell} \frac{\partial f(x_i, \alpha)}{\partial \alpha_j} \frac{\partial f(x_i, \alpha)}{\partial \alpha_k} - 2 \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i) \frac{\partial^2 f(x_i, \alpha)}{\partial \alpha_j \partial \alpha_k}.$$

Не хотелось бы обращать гессиан на каждой итерации...

Линеаризация $f(x_i, \alpha)$ в окрестности текущего α^t :

$$f(x_i, \alpha) = f(x_i, \alpha^t) + \sum_{i=1}^{p} \frac{\partial f(x_i, \alpha_j^t)}{\partial \alpha_j} (\alpha_j - \alpha_j^t) + o(\alpha_j - \alpha_j^t).$$

Метод Ньютона-Гаусса

Матричные обозначения:

$$F_t = \left(rac{\partial f}{\partial lpha_j}(x_i,lpha^t)
ight)_{\ell imes p}$$
 — матрица первых производных; $f_t = \left(f(x_i,lpha^t)
ight)_{\ell imes 1}$ — вектор значений f .

Формула t-й итерации метода Ньютона—Гаусса:

$$\alpha^{t+1} := \alpha^t - h_t \underbrace{(F_t^{\mathsf{T}} F_t)^{-1} F_t^{\mathsf{T}} (f_t - y)}_{\beta}.$$

eta — это решение задачи многомерной линейной регрессии

$$||F_t\beta-(f_t-y)||^2\to \min_{\beta}.$$

Нелинейная регрессия сведена к серии линейных регрессий.

Скорость сходимости — как и у метода Ньютона—Рафсона, но для вычислений можно применять линейные методы.

Задача классификации. Логистическая регрессия

$$Y = \{-1, +1\}$$
 — два класса, $a(x, w) = \operatorname{sign}(w^{\mathsf{T}} x)$, $x, w \in \mathbb{R}^n$.

Функционал аппроксимированного эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L}(w^{\mathsf{T}} \mathsf{x}_i \mathsf{y}_i) \to \min_{w},$$

где
$$\mathscr{L}(M) = \log(1 + e^{-M})$$
 — логарифмическая функция потерь

$$M_i = w^{\mathsf{T}} x_i y_i$$

Метода Ньютона-Рафсона

Метода Ньютона-Рафсона для минимизации функционала Q(w):

$$w^{t+1} := w^t - h_t(Q''(w^t))^{-1}Q'(w^t),$$

Элементы градиента — вектора первых производных $Q'(w^t)$:

$$\frac{\partial Q(w)}{\partial w_j} = -\sum_{i=1}^{\ell} (1 - \sigma_i) y_i f_j(x_i), \quad j = 1, \ldots, n.$$

Элементы гессиана — матрицы вторых производных $Q''(w^t)$:

$$\frac{\partial^2 Q(w)}{\partial w_i \partial w_k} = \sum_{i=1}^{\ell} (1 - \sigma_i) \sigma_i f_j(x_i) f_k(x_i), \quad j, k = 1, \dots, n,$$

где $\sigma_i = \sigma(y_i w^{\mathsf{T}} x_i), \ \ \sigma(z) = \frac{1}{1+e^{-z}} - \mathsf{сигмоидная} \ \mathsf{функция}.$

Снова сведение к задаче линейной регрессии

В матричных обозначениях $F = ig(f_j(x_i)ig)_{\ell imes m{n}'} D = \mathsf{diag}((1-\sigma_i)\sigma_i)$

$$\left(Q''(w)\right)^{-1}Q'(w) = -\left(F^{\mathsf{T}}DF\right)^{-1}F^{\mathsf{T}}\left(\frac{y_i}{\sigma_i}\right).$$

Это совпадает с МНК-решением линейной задачи регрессии со взвешенными объектами и модифицированными ответами:

$$Q(w) = \sum_{i=1}^{\ell} (1 - \sigma_i) \sigma_i \left(w^{\mathsf{T}} x_i - \frac{y_i}{\sigma_i} \right)^2 \to \min_{w}.$$

Интерпретация:

- ullet $\sigma_i = \mathsf{P}(y_i|x_i)$ вероятность правильной классификации x_i
- ullet чем ближе x_i к границе, тем больше вес $(1-\sigma_i)\sigma_i$
- чем выше вероятность ошибки, тем больше $\frac{1}{\sigma_i}$

ВЫВОД: на каждой итерации происходит более точная настройка на «наиболее трудных» объектах.

MHK с итерационным перевзвешиванием объектов IRLS — Iteratively Reweighted Least Squares

Вход: F, y — матрица «объекты—признаки» и вектор ответов; **Выход**: w — вектор коэффициентов линейной комбинации.

```
1: w := (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y — нулевое приближение, обычный МНК;
2: для t := 1, 2, 3, \ldots
        \sigma_i = \sigma(y_i w^\mathsf{T} x_i) для всех i = 1, \ldots, \ell;
3:
       \gamma_i := \sqrt{(1-\sigma_i)\sigma_i} для всех i=1,\ldots,\ell;
4:
5: \tilde{F} := \operatorname{diag}(\gamma_1, \dots, \gamma_\ell) F:
      \tilde{y}_i := y_i \sqrt{(1-\sigma_i)/\sigma_i} для всех i=1,\ldots,\ell;
6:
        выбрать градиентный шаг h_t;
7:
        w := w + h_t(\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}\tilde{v}
8:
        если \{\sigma_i\} мало изменились то выйти из цикла;
9:
```

Обобщённая аддитивная модель (Generalized Additive Model)

Регрессия с нелинейными преобразованиями признаков φ_j :

$$f(x,\alpha) = \sum_{j=1}^{n} \varphi_j(f_j(x),\alpha_j)$$

В частности, при $arphi_j(f_j(x),lpha_j)=lpha_jf_j(x)$ это линейная модель

Идея 1: поочерёдно уточнять φ_j по выборке $\left(f_j(x_i), z_i\right)_{i=1}^\ell$:

$$\sum_{i=1}^{\ell} \left(\varphi_j(f_j(x_i), \alpha_j) - \underbrace{\left(y_i - \sum_{k \neq j} \varphi_k(f_k(x_i), \alpha_k) \right)}_{z_i} \right)^2 + \tau R(\alpha_j) \rightarrow \min_{\alpha_j}$$

 ${\sf Идея}\ {\sf 2}$: постепенно уменьшать au у регуляризатора гладкости

$$R(\alpha_j) = \int (\varphi_i''(\zeta, \alpha_j))^2 d\zeta$$

В качестве $arphi_j$ использовать сплайны или ядерное сглаживание

Метод backfitting [Хасти, Тибширани, 1986]

Вход: F, y — матрица «объекты—признаки» и вектор ответов; Выход: $\varphi_j(f_j, \alpha_j)$ — обучаемые преобразования признаков.

1: начальное приближение:

$$\alpha :=$$
 решение задачи МЛР с признаками $f_j(x)$; $\varphi_i(f_i, \alpha_i) := \alpha_i f_i(x), \quad j = 1, \dots, n$;

- 2: повторять
- 3: для $j = 1, \ldots, n$

4:
$$z_i := y_i - \sum_{k=1, k \neq j}^n \varphi_k(f_k(x_i), \alpha_k), \quad i = 1, \ldots, \ell;$$

5:
$$\alpha_j := \arg\min_{\alpha} \sum_{i=1}^{r-1} (\varphi(f_j(x_i), \alpha) - z_i)^2 + \tau R(\alpha);$$

- 6: уменьшить коэффициент регуляризации τ ;
- 7: пока $Q(\alpha, X^{\ell})$ и/или $Q(\alpha, X^k)$ заметно уменьшаются;

Напоминание: связь ММП и МНК

Модель данных с некоррелированным гауссовским шумом:

$$y_i = f(x_i, \alpha) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell.$$

Эквивалентная запись: $y_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $\mu_i = \mathsf{E} y_i = f(\mathsf{x}_i, \alpha)$.

МНК эквивалентен методу максимума правдоподобия (ММП):

$$L(\varepsilon_1,\ldots,\varepsilon_\ell|\alpha) = \prod_{i=1}^\ell \frac{1}{\sigma_i\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2}\varepsilon_i^2\right) o \max_{\alpha};$$

$$-\ln L(\varepsilon_1,\ldots,\varepsilon_\ell|\alpha) = \operatorname{const}(\alpha) + \frac{1}{2}\sum_{i=1}^\ell \frac{1}{\sigma_i^2} \big(f(x_i,\alpha) - y_i\big)^2 \to \min_\alpha;$$

Как использовать линейные модели, если y_i не гауссовские, в частности, если y_i дискретнозначные?

Обобщённая линейная модель (Generalized Linear Model, GLM)

Нормальная линейная модель для математического ожидания:

$$y_i \sim \mathcal{N}(\mu_i, \sigma_i^2), \qquad \mu_i = x_i^{\mathsf{T}} \alpha = \mathsf{E} y_i$$

Обобщённая линейная модель для математического ожидания:

$$y_i \sim \mathsf{Exp}(\theta_i, \phi_i), \qquad \theta_i = x_i^{\mathsf{T}} \alpha = g(\mathsf{E}y_i)$$

 Exp — экспоненциальное семейство распределений с параметрами θ_i , ϕ_i и параметрами-функциями $c(\theta)$, $h(y,\phi)$:

$$p(y_i|\theta_i,\phi_i) = \exp\left(\frac{y_i\theta_i - c(\theta_i)}{\phi_i} + h(y_i,\phi_i)\right)$$

 $g(\mu)$ — монотонная функция связи (link function)

Математическое ожидание и дисперсия с.в. $y_i \sim \mathsf{Exp}(\theta_i, \phi_i)$:

$$\mu_i = \mathsf{E} y_i = c'(\theta_i) \Rightarrow \theta_i = \mathbf{g}(\mu_i) = [c']^{-1}(\mu_i)$$

$$\mathsf{D} y_i = \phi_i c''(\theta_i)$$

Примеры распределений из экспоненциального семейства

Нормальное (гауссовское) распределение, $y_i \in \mathbb{R}$:

$$p(y_i|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{1}{2\sigma_i^2} (y_i - \mu_i)^2\right) =$$

$$= \exp\left(\frac{y_i \mu_i - \frac{1}{2}\mu_i^2}{\sigma_i^2} - \frac{y_i^2}{2\sigma_i^2} - \frac{1}{2} \ln(2\pi\sigma_i^2)\right);$$

$$\theta_i = g(\mu_i) = \mu_i, \qquad c(\theta_i) = \frac{1}{2}\mu_i^2 = \frac{1}{2}\theta_i^2, \qquad \phi_i = \sigma_i^2.$$

Распределение Бернулли, $y_i \in \{0,1\}$:

$$p(y_i|\mu_i) = \mu_i^{y_i} (1 - \mu_i)^{1 - y_i} = \exp\left(y_i \ln \frac{\mu_i}{1 - \mu_i} + \ln(1 - \mu_i)\right);$$

$$heta_i = g(\mu_i) = \ln rac{\mu_i}{1-\mu_i}, \qquad c(heta_i) = -\ln(1-\mu_i) = \ln(1+e^{ heta_i}).$$

Примеры распределений из экспоненциального семейства

Биномиальное распределение, $y_i \in \{0,1,\ldots,n_i\}$:

$$p(y_i|\mu_i, n_i) = C_{n_i}^{y_i} \mu_i^{y_i} (1 - \mu_i)^{n_i - y_i} =$$

$$= \exp\left(y_i \ln \frac{\mu_i}{1 - \mu_i} + n_i \ln(1 - \mu_i) + \ln C_{n_i}^{y_i}\right);$$

$$heta_i=g(\mu_i)=\lnrac{\mu_i}{1-\mu_i}, \qquad c(heta_i)=-n_i\ln(1-\mu_i)=n_i\ln(1+e^{ heta_i}).$$

Пуассоновское распределение, $y_i \in \{0,1,2,\dots\}$:

$$p(y_i|\mu_i) = \frac{e^{-\mu_i}\mu_i^{y_i}}{y_i!} = \exp\left(\frac{y_i\ln(\mu_i) - \mu_i}{1} - \ln y_i!\right);$$

$$\theta_i = g(\mu_i) = \ln(\mu_i), \qquad c(\theta_i) = \mu_i = e^{\theta_i}, \qquad \phi_i = 1.$$

Примеры распределений из экспоненциального семейства

- нормальное (гауссовское)
- распределение Пуассона
- биномиальное и мультиномиальное
- геометрическое
- χ²-распределение
- бета-распределение
- гамма-распределение
- распределение Дирихле
- распределение Лапласа с фиксированным матожиданием

Контр-примеры не экспоненциальных распределений:

• t-распределение Стьюдента, Коши, гипергеометрическое

Максимизация правдоподобия для GLM

Принцип максимума правдоподобия:

$$L(\alpha) = \ln \prod_{i=1}^{\ell} p(y_i | \theta_i, \phi_i) = \sum_{i=1}^{\ell} \frac{y_i \theta_i - c(\theta_i)}{\phi_i} \to \max_{\alpha},$$

где $heta_i$ линейно зависит от lpha: $heta_i = x_i^{\mathsf{T}} lpha = \sum_{j=1}^n lpha_j f_j(x_i)$.

Метод Ньютона-Рафсона: $\alpha^{t+1} := \alpha^t + h_t (L''(\alpha^t))^{-1} L'(\alpha^t)$.

Компоненты вектора градиента $L'(\alpha)$:

$$\frac{\partial L(\alpha)}{\partial \alpha_j} = \sum_{i=1}^{\ell} \frac{y_i - c'(x_i^{\mathsf{T}} \alpha)}{\phi_i} f_j(x_i).$$

Компоненты матрицы Гессе $L''(\alpha)$:

$$\frac{\partial^2 L(\alpha)}{\partial \alpha_j \partial \alpha_k} = -\sum_{i=1}^{\ell} \frac{c''(x_i^{\mathsf{T}} \alpha)}{\phi_i} f_j(x_i) f_k(x_i).$$

Матричные обозначения

$$F = \left(f_j(x_i)\right)_{\ell imes n}$$
 — матрица «объекты-признаки»; $ilde{F} = W_t F, \;\; W_t = \mathrm{diag}\Big(\sqrt{rac{1}{\phi_i}}c''(heta_i)\Big), \;\; heta_i = x_i^{\mathsf{T}} lpha^t;$ $ilde{y} = \left(ilde{y}_i\right)_{\ell imes 1}, \;\; ilde{y}_i = rac{y_i - c'(heta_i)}{\sqrt{\phi_i c''(heta_i)}}$ — модифицированный вектор ответов.

Тогда метод Ньютона-Рафсона снова приводит к IRLS:

$$\alpha^{t+1} := \alpha^t - h_t \underbrace{\left(F^{\mathsf{\scriptscriptstyle T}} W_t W_t F \right)^{-1} F^{\mathsf{\scriptscriptstyle T}} W_t}_{\left(\tilde{F}^{\mathsf{\scriptscriptstyle T}} \tilde{F} \right)^{-1} \tilde{F}^{\mathsf{\scriptscriptstyle T}}} \left(\underbrace{\sqrt{\frac{\phi_i}{c''(\theta_i)}} \frac{y_i - c'(\theta_i)}{\phi_i}}_{\tilde{y}_i} \right)_{\ell \times 1}.$$

Это совпадает с МНК-решением линейной задачи регрессии со взвешенными объектами и модифицированными ответами:

$$Q(\alpha) = \|\tilde{F}\alpha - \tilde{y}\|^2 \to \min_{\alpha}.$$

Логистическая регрессия как частный случай GLM

Распределение Бернулли,
$$y_i \in \{0,1\}$$
: $p(y_i|\mu_i) = \mu_i^{y_i}(1-\mu_i)^{1-y_i}$

$$heta_i = g(\mu_i) = \ln rac{\mu_i}{1-\mu_i}$$
 $\mu_i = g^{-1}(heta_i) = rac{1}{1+\exp(- heta_i)} \equiv \sigma(heta_i)$

Апостериорная вероятность классов:

$$P(y_i = 1 | x_i) = Ey_i = \mu_i = \sigma(\theta_i)$$

$$P(y_i = 0 | x_i) = 1 - \mu_i = \sigma(-\theta_i)$$

$$p(y_i | x_i) = \sigma(\underbrace{\tilde{y}_i x_i^\mathsf{T} \alpha}_{\text{margin}, \ \tilde{y}_i = 2y_i - 1})$$

Максимум правдоподобия \Leftrightarrow минимум критерия log-loss:

$$-\sum_{i=1}^{\ell} y_i \ln \mu_i + (1-y_i) \ln (1-\mu_i) = \sum_{i=1}^{\ell} \ln \left(1 + \exp(-\tilde{\mathbf{y}}_i \mathbf{x}_i^{\mathsf{T}} \alpha)\right) \rightarrow \min_{\alpha}$$

Линейный классификатор и *отношение шансов* (odds ratio):

$$x_i^{\mathsf{T}} \alpha = \theta_i = \ln \frac{\mu_i}{1 - \mu_i} = \ln \frac{\mathsf{P}(y_i = 1 | x_i)}{\mathsf{P}(y_i = 0 | x_i)}$$

Метод наименьших модулей

$$arepsilon_i = ig(a(x_i) - y_iig)$$
 — ошибка $\mathscr{L}(arepsilon_i)$ — функция потерь

$$Q = \sum\limits_{i=1}^\ell \mathscr{L}(arepsilon_i) o \min_{s}$$
 — критерий обучения модели по выборке

Метод наименьших квадратов, $\mathscr{L}(\varepsilon) = \varepsilon^2$:

$$\sum_{i=1}^{\ell} (a-y_i)^2 \to \min_{a}, \qquad a = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i.$$

Метод наименьших модулей, $\mathscr{L}(\varepsilon) = |\varepsilon|$:

$$\sum_{i=1}^{\ell} |a-y_i| o \min_a, \qquad a = \mathsf{median}\{y_1, \ldots, y_\ell\} = y^{(\ell/2)},$$

где $y^{(1)}, \ldots, y^{(\ell)}$ — вариационный ряд значений y_i

Квантильная регрессия

$$\mathscr{L}(\varepsilon) = \begin{cases} C_{+}|\varepsilon|, & \varepsilon > 0 \\ C_{-}|\varepsilon|, & \varepsilon < 0; \end{cases}$$

$$\sum_{i=1}^{\ell} \mathscr{L}(a-y_i) \to \min_{a}, \qquad a = y^{(q)}, \quad q = \frac{\ell C_{-}}{C_{-} + C_{+}}$$

где $y^{(1)},\ldots,y^{(\ell)}$ — вариационный ряд значений y_i

Линейная модель регрессии: $a(x_i) = \langle x_i, w \rangle$.

Сведение к задаче линейного программирования:

замена переменных $\varepsilon_i^+ = (a(x_i) - y_i)_+, \ \varepsilon_i^- = (y_i - a(x_i))_+;$

$$\begin{cases} Q = \sum_{i=1}^{\ell} C_{+} \varepsilon_{i}^{+} + C_{-} \varepsilon_{i}^{-} \rightarrow \min_{w}; \\ \langle x_{i}, w \rangle - y_{i} = \varepsilon_{i}^{+} - \varepsilon_{i}^{-}; \quad \varepsilon_{i}^{+} \geqslant 0; \quad \varepsilon_{i}^{-} \geqslant 0. \end{cases}$$

Пример. Задача прогнозирования объёмов продаж

Робастная регрессия

Модель регрессии: $a(x) = f(x, \alpha)$

Функция Мешалкина: $\mathscr{L}(\varepsilon) = b(1 - \exp(-\frac{1}{b}\varepsilon^2))$

Постановка задачи:

$$\sum_{i=1}^{\ell} \exp\left(-\frac{1}{b}(f(x_i,\alpha)-y_i)^2\right) \to \max_{\alpha}.$$

Эта задача также решается методом Ньютона-Рафсона.

SVM-регрессия (напоминание)

Модель регрессии: $a(x) = \langle x, w \rangle - w_0, \ w \in \mathbb{R}^n, \ w_0 \in \mathbb{R}$.

Функция потерь:
$$\mathscr{L}(\varepsilon) = \big(|\varepsilon| - \delta\big)_+$$

Постановка задачи:

$$\sum_{i=1}^{\ell} (|\langle w, x_i \rangle - w_0 - y_i| - \delta)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

Задача решается путём замены переменных и сведения к задаче квадратичного программирования

SVM-регрессия

Замена переменных:

$$\xi_{i}^{+} = (\langle w, x_{i} \rangle - w_{0} - y_{i} - \delta)_{+};$$

$$\xi_{i}^{-} = (-\langle w, x_{i} \rangle + w_{0} + y_{i} - \delta)_{+};$$

Постановка задачи SVM-регрессии:
$$\begin{cases} \frac{1}{2}\|w\|^2 + C\sum_{i=1}^{\ell}(\xi_i^+ + \xi_i^-) \to \min_{w,w_0,\xi^+,\xi^-}; \\ y_i - \delta - \xi_i^- \leqslant \langle w, x_i \rangle - w_0 \leqslant y_i + \delta + \xi_i^+, \quad i = 1,\dots,\ell; \\ \xi_i^- \geqslant 0, \quad \xi_i^+ \geqslant 0, \quad i = 1,\dots,\ell. \end{cases}$$

- это выпуклая задача квадратичного программирования;
- решение единственно; выражается через опорные векторы;
- при замене $\langle x, x_i \rangle$ ядром $K(x, x_i)$ регрессия становится нелинейной, оставаясь линейной в спрямляющем пространстве.

Пример

SVM-регрессия с полиномиальным ядром степени 2:

- Выделены опорные векторы
- ullet Результат слабо зависит от константы C

Резюме в конце лекции

- Нелинейная регрессия
 - сводится к последовательности линейных регрессий
 - используется метод Ньютона-Рафсона
- Логистическая регрессия
 - не регрессия, а классификация
 - используется метод Ньютона-Рафсона
- Обобщённая линейная модель (GLM)
 - мощно обобщает обычную и логистическую регрессию
 - используется метод Ньютона-Рафсона
- Обобщённая аддитивная регрессия (GAM, backfitting)
 - сводится к серии одномерных сглаживаний
- Неквадратичные функции потерь
 - проблемно-ориентированные (зависят от задачи)
 - приводят к разным методам, отличным от МНК