중2 수학

4-2.삼각형의 외심과 내심

한 빈출유형

TOP 3

- 1. 삼각형의 외심
- ☑ 삼각형 외심의 성질에 대한 문제
- ☑ 둔각삼각형의 외심과 단순 계산 문제
- ☑ 직각삼각형과 외접원에 대한 문제

빈출 ☆

1. 점 O는 $\triangle ABC$ 의 외심이다. $\triangle ABC = 50 \text{ cm}^2$, $\overline{AD} = 4 \text{ cm}$, $\overline{OD} = 5 \text{ cm}$ 일 때, 다음 중 옳은 것은?

- \bigcirc $\overline{OC} = 7.5 \, \text{cm}$
- \bigcirc $\angle OBE = \angle OAF$
- ⑤ 사각형 *OECF*의 넓이는 20 cm²이다.
- **2.** 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이다. $\angle DBO = 20\,^\circ$, $\angle OBE = 30\,^\circ$ 일 때, $\angle BAC$ 의 크기를 구하면?

- ① 50°
- 25°
- 360°
- 465°
- ⑤ 70°

- 빈출
- **3.** 점 O는 둔각삼각형 ABC의 외심이다. $\angle OAC = 35^\circ$, $\angle ACB = 20^\circ$ 일 때, $\angle B$ 의 크기는?

- ① 110°
- ② 115°
- ③ 120°
- 4) 125°
- ⑤ 130°
- **4.** $\angle A = 90^{\circ}$ 인 $\triangle ABC$ 에서 점 M은 \overline{BC} 의 중점이고, 점 A에서 \overline{BC} 에 내린 수선의 발을 H라 하자. $\angle B = 34^{\circ}$ 일 때, $\angle MAH$ 의 크기는?

- ① 17°
- ② 22°
- 3 28°
- ④ 56°
- (5) 68°

- 빈출 🌣
- 5. 그림과 같은 직각삼각형 ABC에서 $\angle C = 30\degree$, $\overline{AB} = 7$ 이고, 점 O가 \overline{AC} 의 중점일 때, $\triangle ABC$ 의 외접원의 반지름의 길이는?

1 7

2 7.5

3 6

4 8.5

⑤ 9

변출유형 TOP 3

2. 삼각형의 외심의 응용

- ☑ 삼각형의 외심과 꼭짓점의 각을 구하는 문제
- ☑ 삼각형의 외심과 내각을 나눈 각의 계산 문제
- ☑ 삼각형의 외심과 비례식이 주어진 문제
- **6.** \triangle ABC**에서** 점 O는 **외심이다**. $\overline{BC} \perp \overline{OD}$, $\angle ACB = 70^{\circ}$, $\angle CAO = 30^{\circ}$ **일** 때, $\angle BOD$ **의** 크기 는?

- $\bigcirc 45^{\circ}$
- ② 50°
- ③ 55°
- (4) 60°
- (5) 65°

7. 점 O가 \triangle ABC의 외심일 때, $\angle x + \angle y$ 의 값은?

- ① 118°
- ② 177°
- 3186°
- 4 189 $^{\circ}$
- ⑤ 196°

- 8. 점 O는 $\triangle ABC$ 의 외심일 때, $\angle x$ 의 크기를 구하 면?

- ① 20°
- 22°
- 324°
- **4**) 30°
- (5) 32°
- **9.** 그림과 같이 $\triangle ABC$ 의 외심 O에서 \overline{AC} 에서 내 린 수선의 발을 D라고 하자. \overline{AD} = 3cm, $\triangle AOC$ 의 둘레의 길이가 $16 \, \mathrm{cm}$ 일 때, $\triangle ABC$ 의 외접원의 둘 레의 길이는?

- ① $10\pi \,\mathrm{cm}$
- $211\pi \text{ cm}$
- $\Im 12\pi \,\mathrm{cm}$
- (4) $13\pi \, \text{cm}$
- \bigcirc $14\pi\,\mathrm{cm}$

10. $\angle BAC = 90^{\circ}$ 인 직각삼각형 ABC에서 점 O는 변 BC의 중점이다. $\overline{AB} = 5 \, \text{cm}$,

 $\angle OAB$: $\angle OAC = 2:1$ 일 때, $\triangle ABC$ 의 외접원의 넓이는?

- ① $5\pi \,\mathrm{cm}^2$
- $2 10\pi \text{ cm}^2$
- $315\pi \,\mathrm{cm}^2$
- $40 \ 20\pi \, \text{cm}^2$
- ⑤ $25\pi \, \text{cm}^2$

11. 세 주민센터 A, B, C로부터 거리가 모두 같은 지점에 공공자전거 대여소를 설치하려고 한다. 세 주민센터의 위치를 각각 점 A, B, C, 자전거 대여소의 위치를 점 P라고 하자. $\overline{AB} = \overline{BC}$ 일 때, \langle 보기〉중 옳은 것을 있는 대로 고르면?

<보기>

- ㄱ. $\angle BAC = 50$ ° 이면, $\angle BCA = 65$ ° 이다.
- ∟. ∠*ABC* = 68°이면, ∠*APC* = 136°이다.
- \subset . $\angle BAC = \angle ABC$ 이면 점 P는 $\angle ACB$ 의 이등분선 위에 있다.
- ① ¬
- ② L
- 3 ⊏
- ④ ¬, ∟
- ⑤ ∟, ⊏

한 빈출유형

TOP 3

- 3. 삼각형의 내심
- ☑ 삼각형 내심의 성질에 대한 문제
- ☑ 삼각형의 내심과 평행성의 성질에 관한 문제
- ☑ 내심과 평행성과 삼각형의 둘레의 길이를 구하는 문제

12. 그림에서 점 I는 $\triangle ABC$ 의 내심이다. 다음 중 옳은 것은?

- ① $\angle BIC = 2 \angle A$ 이다.
- ② \overline{IC} 는 $\angle C$ 의 이등분선이다.
- ③ $\triangle IBC$ 는 이등변삼각형이다.
- ④ \overline{BC} 의 수직이등분선은 점 I를 지난다.
- ⑤ 점 I에서 세 꼭짓점에 이르는 거리는 같다.

13. $\triangle ABC$ 의 내심 I를 지나고 변 BC에 평행한 직선이 \overline{AB} , \overline{AC} 와 만나는 점을 각각 D, E라고 할때, 옳은 것은?

- (1) $\overline{ID} = \overline{IE}$
- $\bigcirc \overline{AD} = \overline{AE}$
- \bigcirc $\angle DBI = \angle ADI$
- \bigcirc $\angle EIC = \angle ECI$
- **14.** 다음 그림에서 점 I는 삼각형 ABC의 내심이다. $\overline{DE}//\overline{BC}$ 일 때, \overline{CE} 의 길이는?

- ① 1cm
- ② 2 cm
- ③ 2.5 cm
- 4 3 cm
- ⑤ 3.5 cm

15. 그림과 같이 점 I는 $\triangle ABC$ 의 내심이고, $\overline{AB}//\overline{DE}$ 일 때, $\triangle DEC$ 의 둘레의 길이를 구하면?

- ① 15 cm
- ② 16 cm
- ③ 17cm
- 4) 18 cm
- ⑤ 19 cm

16. 그림에서 $\overline{DE}//\overline{BC}$ 이고, 점 I는 $\triangle ABC$ 의 내심이다. $\angle DIB + \angle ECI = 49^{\circ}$ 일 때, $\angle A$ 의 크기는?

- ① 49°
- ② 76°
- 382°
- 4) 89°
- (5) 98°
 - 한 빈출유형

TOP 3

4. 삼각형의 내심의 응용

- ☑ 삼각형의 내접원에 관한 문제
- ☑ 삼각형의 외심과 내심의 성질에 관한 문제
- ☑ 삼각형의 외심과 내심 사이의 각에 대한 문제
- **17.** 그림에서 점 I는 $\triangle ABC$ 의 내심이고

 $\angle ABC = 80$ °, $\angle ACB = 52$ °이다. 점 A에서 \overline{BC} 에 내린 수선의 발을 H라 할 때, $\angle HAD + \angle DIC$ 의 크기는?

- ① 60°
- ② 62°
- 3 64°
- 4 66°
- ⑤ 68°
- **18.** 점 P가 $\triangle ABC$ 의 내심일 때, $\angle x$ 의 크기는?

- ① $105\degree$
- ② 110°
- 3115°
- 4 120°
- \bigcirc 125 $^{\circ}$

19. 그림에서 점 I는 직각삼각형 ABC의 내심이고, $\overline{AB} = 10 \text{cm}$, $\overline{BC} = 8 \text{cm}$, $\overline{CA} = 6 \text{cm}$ 이다. 이 때, 내접 원의 둘레의 길이는?

- ① $2\pi cm$
- $2\pi cm$
- $34\pi cm$
- $4) 5\pi cm$
- ⑤ 6πcm

20. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. $\triangle ABC$ 의 넓이가 $98 \, cm^2$ 일 때, $\triangle IBC$ 의 넓이는?

- ① $30 \, cm^2$
- ② $31.5 \, cm^2$
- $32 cm^2$
- $(4) 34.5 cm^2$
- ⑤ $36 \, cm^2$
- **21.** 다음 그림에서 점 I는 △ABC의 내심이고 세 점 D, E, F는 각각 내접원과 세 변의 접점이다. ∠C=90°, ∠B=38°일 때, ∠DFE의 크기는?

- ① 68°
- ② 69°
- 3 71°
- 4 72°
- ⑤ 75°

22. 아래 그림에서 두 점 O와 I는 각각 $\triangle ABC$ 의 외심과 내심이다. $\angle BIC = 100\,^{\circ}$ 일 때, 다음 설명 중 옳지 않은 것은?

- ① ∠*BAC*의 크기는 20°이다.
- ② ∠*BOC*의 크기는 40°이다.
- ③ $\triangle BOC$ 의 외심과 내심은 모두 $\angle BOC$ 의 이등분선 위에 있다.
- \bigcirc $\angle IBC + \angle ICA + \angle IAC = 90^{\circ}$
- \bigcirc $\triangle OAC + \triangle OCA + \triangle OBC = 90^{\circ}$

23. $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 점 O와 점 I는 각각 $\triangle ABC$ 의 외심과 내심이다. $\angle A = 52\,^{\circ}$ 일 때, $\angle OBI$ 의 크기는?

- ① 4°
- ② 5°
- 36°
- **4** 7°
- (5) 8°

- 빈출 🌣
- **24.** 다음 그림에서 $\triangle ABC$ 는 $\angle BAC = 76 \degree$ 이고 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이다. \overline{AF} 위의 두 점 0 와 I는 각각 $\triangle ABC$ 의 외심과 내심이고 $\overline{AD} = \overline{CD}$ 일 때, $\angle x$ 의 크기를 구하면?

- ① 36°
- ② 52°
- 354°
- **4**) 60°
- (5) 64°

25. 그림과 같이 $\angle A = 90\,^\circ$ 인 직각삼각형 ABC의 내접원과 외접원을 그릴 때, 색칠한 부분의 넓이를 구하면?

- ① $20\pi cm^2$
- $21\pi cm^2$
- $3 22\pi cm^2$
- $4 \ 27\pi \, cm^2$
- ⑤ $28\pi \, cm^2$

정답 및 해설

1) [정답] ①

[해설] ① $\triangle OAF$ 와 $\triangle OCF$ 에서

 $\overline{AF} = \overline{CF}$, $\angle AFO = \angle CFO = 90$ °, \overline{OF} 는 공통이 므로 $\triangle OAF \equiv \triangle OCF(SAS$ 합동) $\therefore \overline{AF} = \overline{CF}$

2) [정답] ③

[해설] 점 O가 삼각형 ABC의 외심이므로

 $\angle DBO = \angle DAO = 20^{\circ}$.

 $\angle DBO + \angle OBE + \angle OAC = 90^{\circ}$

 $20^{\circ} + 30^{\circ} + \angle OAC = 90^{\circ} \quad \therefore \angle OAC = 40^{\circ}$

 $\therefore \angle BAC = \angle DAO + \angle OAC = 60^{\circ}$

3) [정답] ④

[해설] 점 O는 $\triangle ABC$ 의 외심이므로 $\overline{OA} = \overline{OB} = \overline{OC}$

즉, $\angle OAC = \angle OCA = 35$ 이므로

 $\angle AOC = 110^{\circ}$

 ΔABC 에서

 $\therefore \angle B = \frac{1}{2} \times 250^{\circ} = 125^{\circ}$

4) [정답] ②

[해설] $\triangle ABH$ 에서

 $\angle BAH = 180\degree - (34\degree + 90\degree) = 56\degree$

점 M은 $\triangle ABC$ 의 외심이므로 $\overline{AM} = \overline{BM}$

 $\angle MAB = \angle MBA = 34^{\circ}$

 $\therefore \angle MAH = 56^{\circ} - 34^{\circ} = 22^{\circ}$

5) [정답] ①

[해설] 점 O는 $\triangle ABC$ 의 외심이므로

외심의 성질에 의해 $\overline{OA} = \overline{OB} = \overline{OC}$

 $\angle BAC = 60$ °이므로 $\triangle ABO$ 는 정삼각형이다.

 $\overline{OA} = \overline{OB} = \overline{AB} = 7$ 이므로

 $\triangle ABC$ 의 외접원의 반지름의 길이는 7이다.

6) [정답] ②

[해설] $\overline{OA} = \overline{OC}$ 이므로 $\angle OAC = \angle OCA = 30^{\circ}$

 $\overline{OB} = \overline{OC}$ 이므로

 $\angle OCB = \angle OBC = 70^{\circ} - 30^{\circ} = 40^{\circ}$

 $\therefore \angle x = 90^{\circ} - 40^{\circ} = 50^{\circ}$

7) [정답] ②

[해설] 점 O는 $\triangle ABC$ 의 외심이므로

 \angle OCB = \angle OBC = 34 $^{\circ}$, \angle OCA = \angle OAC = 25 $^{\circ}$

 $\therefore \angle x = \angle OCB + \angle OCA = 59^{\circ}$

 $\angle y = 2 \angle x = 118$ °

 $\therefore \angle x + \angle y = 59 \degree + 118 \degree = 177 \degree$

8) [정답] ①

[해설] 점 O가 $\triangle ABC$ 의 외심이므로

 $\angle x + 32^{\circ} + 38^{\circ} = 90^{\circ}$

 $\therefore \angle x = 20^{\circ}$

9) [정답] ①

[해설] 삼각형의 외심의 성질에 의해

 $\overline{OA} = \overline{OC}$ 이고 $\triangle AOC$ 는 이등변삼각형이므로

 $\overline{AD} = \overline{CD} = 3 \, cm$

 ΔAOC 의 둘레의 길이가 16cm이므로

 $\overline{OA} = \overline{OC} = 5cm$

 $\therefore \triangle ABC$ 의 외접원의 둘레의 길이 $=10\pi\,cm$

10) [정답] ⑤

[해설] $\angle BAO = 90^{\circ} \times \frac{2}{3} = 60^{\circ}$, $\overline{OA} = \overline{OB}$ 이므로

 $\triangle ABO$ 는 정삼각형이다.

 $\therefore \overline{OA} = \overline{OB} = 5cm$

따라서 ΔABC 의 외접원의 넓이는

 $\pi \times 5^2 = 25\pi (cm^2)$

11) [정답] ⑤

[해설] $\triangle ABC$ 는 \overline{AB} = \overline{BC} 인 이등변삼각형이므로

 $\angle BAC = \angle BCA$

ㄱ. $\angle BAC = 50$ 이면 $\angle BCA = 50$ 이다.

ㄴ. 점 P는 $\triangle ABC$ 의 외심이므로 $\angle ABC = 68$ °이

면 ∠*APC*=2∠*ABC*=136°이다.

 \Box . $\angle BAC = \angle ABC$ 이면 $\triangle ABC$ 는 정삼각형이므

로 점 P는 $\angle ACB$ 의 이등분선 위에 있다.

12) [정답] ②

[해설] ① $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A$

③ $\triangle IBC$ 는 이등변삼각형이 아니다.

④ \overline{BC} 의 수직이등분선은 점 I를 지나지 않는다.

⑤ 점 I에서 세 변에 이르는 거리는 같다.

13) [정답] ⑤

[해설] ① $\overline{ID} = \overline{BD}$

② $\overline{AD} \neq \overline{AE}$

 \bigcirc $\overline{AD} + \overline{DI} = \overline{AD} + \overline{BD} = \overline{AB}$

 $\textcircled{4} \angle DBI = \angle CBI = \angle DIB$

14) [정답] ②

[해설]

내심의 성질에 의해

 $\angle DBI = \angle CBI, \ \angle ECI = \angle BCI$

 $\overline{DE}//\overline{BC}$ 이므로

 $\angle DIB = \angle CBI, \ \angle EIC = \angle BCI$

 $\stackrel{\triangle}{=}$, $\overline{DB} = \overline{DI} = 3$ cm, $\overline{EI} = \overline{CE} = 5 - 3 = 2$ (cm)

15) [정답] ①

[해설] 내심의 성질에 의해

$$\angle BAI = \angle DAI, \ \angle ABI = \angle EBI \ \cdots \bigcirc$$

 $\overline{DE}//\overline{AB}$ 이므로

 $\angle EIB = \angle ABI$, $\angle DIA = \angle BAI$... ©

 \bigcirc , ⓒ에 의해 $\angle DAI = \angle DIA$, $\angle EIB = \angle EBI$ 이므

 $\neq \overline{DI} = \overline{DA} \cdot \overline{EI} = \overline{EB}$

따라서 ΔDEC 의 둘레의 길이는

$$\overline{CD} + \overline{DI} + \overline{EI} + \overline{CE} = \overline{CD} + \overline{DA} + \overline{EB} + \overline{CE}$$

 $=\overline{AC}+\overline{BC}=7+8=15$ (cm)

16) [정답] ③

[해설] $\overline{DE}//\overline{BC}$ 이므로

$$\angle DIB = \angle CBI$$
, $\angle EIC = \angle BCI$

내심의 성질에 의해

$$\angle DBI = \angle CBI$$
. $\angle ECI = \angle BCI$

$$\therefore \angle DBI = \angle DIB, \angle EIC = \angle ECI$$

$$\angle DBI + \angle EIC = 49^{\circ}$$

따라서 $\triangle ABC$ 에서 세 내각의 합은 $180\,^{\circ}$ 이므로

$$\angle A + 49^{\circ} + 49^{\circ} = 180^{\circ}$$

$$\therefore \angle A = 82^{\circ}$$

17) [정답] ③

[해설] $\triangle ABH$ 에서

$$\angle BAH = 180^{\circ} - (90^{\circ} + 80^{\circ}) = 10^{\circ}$$

$$\Delta ABC$$
에서 내심의 성질에 의해

$$\angle BAI = \angle CAI = \frac{180\degree - (90\degree + 52\degree)}{2} = 24\degree$$

$$\therefore \angle HAD = 24^{\circ} - 10^{\circ} = 14^{\circ}$$

 ΔABD 에서

$$\angle ADC = \angle BAD + \angle ABD = 24^{\circ} + 80^{\circ} = 104^{\circ}$$

$$\triangle DIC$$
에서 $\angle DIC = 180^{\circ} - (104^{\circ} + 26^{\circ}) = 50^{\circ}$

$$\therefore \angle HAD + \angle DIC = 14^{\circ} + 50^{\circ} = 64^{\circ}$$

18) [정답] ⑤

[해설]
$$\angle IBA = \angle IBC = 35$$
 이므로 $\angle ABC = 70$

$$\therefore \angle x = \frac{1}{2} \angle ABC + 90^{\circ}$$

$$=\frac{1}{2}\times70^{\circ}+90^{\circ}=125^{\circ}$$

19) [정답] ③

[해설] 내접원의 반지름의 길이를 r이라 하면

 ΔABC 의 넓이에서

$$\frac{1}{2} \times 8 \times 6 = \frac{r}{2} \times (8 + 6 + 10)$$

24 = 12r이므로 r = 2

따라서 내접원의 둘레의 길이는 $2\pi r = 4\pi$

20) [정답] ⑤

[해설] 내접원의 반지름을 rcm라 하면

$$\frac{1}{2} \times r \times (\overline{AB} + \overline{BC} + \overline{AC}) = 98$$

$$\frac{1}{2} \times r \times 49 = 98 \quad \therefore r = 4$$

따라서

$$\Delta I\!BC\!=\frac{1}{2}\!\times\overline{BC}\!\!\times\!r\!=\frac{1}{2}\!\times\!18\!\times\!4\!=\!36(cm^2)$$

21) [정답] ③

[해설]
$$\angle BAC = 90\degree - 38\degree = 52\degree$$

$$\overline{AD} = \overline{AF}$$
이므로

$$\angle AFD = (180^{\circ} - 52^{\circ}) \div 2 = 64^{\circ}$$

$$\overline{CE} = \overline{CF} \circ | \Box = \exists$$

$$\angle$$
 CFE= (180 $^{\circ}$ -90 $^{\circ}$) \div 2 = 45 $^{\circ}$

$$\therefore \angle DFE = 180^{\circ} - 64^{\circ} - 45^{\circ} = 71^{\circ}$$

22) [정답] ⑤

[해설] ①
$$\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC$$
이므로

$$100^{\circ} = 90^{\circ} + \frac{1}{2} \angle BAC$$
 $\therefore \angle BAC = 20^{\circ}$

②
$$\angle BOC = 2 \angle BAC = 40^{\circ}$$

③ $\triangle BOC$ 는 $\overline{OB} = \overline{OC}$ 인 이등변삼각형이므로 외심과 내심은 모두 $\angle BOC$ 의 이등분선 위에 있다.

④ 점 I가 삼각형의 내심이므로 $\angle IAB = \angle IAC$, $\angle IBA = \angle IBC$, $\angle ICA = \angle ICB$ 이다.

따라서 $\angle IBC + \angle ICA + \angle IAC = 90$ °이다.

⑤ 점 O가 삼각형 ABC의 외심이므로

$$\angle OAB = \angle OBA$$
, $\angle OCA = \angle OAC$,

$$\angle OBC = \angle OCB$$
이다.

따라서 $\angle OAC + \angle OBC + \angle OAB = 90$ °이다.

23) [정답] ③

[해설]
$$\angle BOC = 2 \angle BAC = 2 \times 52^{\circ} = 104^{\circ}$$

$$\overline{OB}$$
= \overline{OC} 이므로 $\angle OBC$ = $\frac{180\degree-104\degree}{2}$ = $38\degree$

$$\angle ABC = \frac{180^{\circ} - 52^{\circ}}{2} = 64^{\circ}$$

$$\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 64^{\circ} = 32^{\circ}$$

$$\therefore \angle OBI = 38^{\circ} - 32^{\circ} = 6^{\circ}$$

24) [정답] ⑤

[해설]
$$\angle ACB = (180^{\circ} - 76^{\circ}) \div 2 = 52^{\circ}$$

$$\angle ACI = 52 \div 2 = 26^{\circ}$$

또한
$$\overline{OD} \perp \overline{AC}$$
이므로

$$\therefore \angle x = 90^{\circ} - 26^{\circ} = 64^{\circ}$$

25) [정답] ②

[해설] 내접원의 반지름을 rcm라 하면

$$\triangle ABC = \frac{1}{2} \times r \times (\overline{AB} + \overline{BC} + \overline{AC})$$
이므로

$$\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times r \times 24$$

$$24 = 12r$$
 $\therefore r = 2$

따라서 내접원의 넓이는 $2^2\pi=4\pi cm^2$ 이고, 직각삼각형 의 외심은 빗변의 중점이므로 외접원의 반지름은 5cm, 넓이는 $5^2\pi=25\pi cm^2$ 이다.

따라서 색칠한 부분의 넓이는 $25\pi-4\pi=21\pi cm^2$ 이 다

