

A Joint Training Framework for Open-World Knowledge **Graph Embeddings**

Karthik Venkat Ramanan, Beethika Tripathi, Mitesh M. Khapra, Balaraman Ravindran

Robert Bosch Centre for Data Science and Al Indian Institute of Technology, Madras

Open-World KG Completion

KNOWLEDGE GRAPH

Essential Properties

- Open-world Embedding Generation
- Efficient Ranking
- Sequence-Size Aware
- Joint Training

FOIK - Framework for Open-World KG embeddings

FOIK(s)

We train our description embedding module, structural embedding module and projection module jointly using a combination of losses

$$\begin{split} \mathscr{L} &= \sum_{(h,r,t) \in \mathcal{T}^{\circ}} log(1 + exp(-I_{h,r,t}Re(\langle \boldsymbol{h},\boldsymbol{r},\overline{\boldsymbol{t}}\rangle))) \\ \mathscr{L}_{proj} &= \sum_{e \in \mathcal{E}} \left| \left| \phi_{\boldsymbol{P}}(\phi_{\boldsymbol{D}}(e)) - e \right| \right|_{2} \\ \mathscr{L}_{X}(h,r,t) &= \mathscr{L}(\boldsymbol{h},\boldsymbol{r},\phi_{\boldsymbol{P}}(\phi_{\boldsymbol{D}}(\boldsymbol{t}))) + \mathscr{L}(\phi_{\boldsymbol{P}}(\phi_{\boldsymbol{D}}(\boldsymbol{h})),\boldsymbol{r},\boldsymbol{t}) \\ \text{closed-world completion open-world alignment} \\ \mathscr{L}_{\texttt{FOlk}} &= \overbrace{\mathscr{L} + \lambda \mathscr{L}_{reg}}^{\text{closed-world completion}} + \overbrace{\alpha\mathscr{L}_{proj} + \beta\mathscr{L}_{X}}^{\text{closed-world completion}} \end{split}$$

FOIK(I)

Significant performance benefit on using contextual embedding models with long descriptions. We train the three modules phase-wise.

```
Algorithm 1: Algorithm for FO1K(l)
Input: Triplets: \mathcal{T}_{train}, \mathcal{T}_{valid}, \mathcal{T}_{valid}^{open}
Output: \Theta_S, \Theta_{D_t}\Theta_P
Initialise \Theta_{D_I} on RoBERTa's pre-training tasks
Initialise \Theta_S and \Theta_P
while MRR no longer improves on \mathcal{T}_{valid} do
     Train \Theta_{S} by optimising \mathcal{L} + \lambda \mathcal{L}_{reg};
end
i \leftarrow 0
while MRR no longer improves on \mathcal{T}_{valid}^{open} do
     Phase 1: Freeze \Theta_{D_i} and \Theta_P
     if i \neq 0 then
           Train \Theta_S by optimising \mathcal{L} + \lambda \mathcal{L}_{req} + \alpha \mathcal{L}_{proj} + \beta \mathcal{L}_X; // Until MRR no
                longer improves on \mathcal{T}_{valid}
     end
     Phase 2: Freeze \Theta_S
     Train \Theta_{D_l} and \Theta_P by optimising \alpha \mathscr{L}_{proj} + \beta \mathscr{L}_X; // //Until MRR no longer
           improves on \mathcal{T}_{valid}^{open}
     i \leftarrow i + 1:
end
```


Results - Open-World KG Completion

We outperform existing open-world KG embedding models across the board. Average MRR improvement of 35%

-	YAGO3-10-Open			WN18RR-Open				FE	FB15k-237-OWE(L)			
Model	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
JointE	5.1	1.8	4.5	11.0	8.2	4.5	8.2	16.0	10.3	5.1	10.9	20.0
DKRL-CNN	2.6	1.5	2.2	4.1	2.5	1.1	2.4	5.1	19.9	13.9	21.7	32.1
DKRL-CBOW	2.7	1.6	2.4	4.2	2.4	1.0	2.3	4.9	20.7	14.5	22.6	33.4
ConMask	17.3	10.3	18.9	31.3	23.3	10.3	22.7	38.4	21.1	14.0	23.4	34.6
$\overline{\text{OWE}}$	21.6	14.9	23.3	34.3	21.7	17.3	23.4	29.4	32.4	25.1	35.6	46.0
FOlk(l). iter. 1	25.7	19.0	27.5	38.9	35.6	30.9	37.9	45.5	42.4	33.6	45.7	57.2
FOlk(l). iter. 2	26.5	19.5	28.0	40.0	40.3	32.2	40.8	50.0	43.6	34.8	47.6	59.8

Open-World KG Completion - Short Descriptions

FB15k-237-OWE has an average description length of 4.9. We obtain an MRR improvement of 11%

	FB15k-237-OWE						
Model	MRR	H@1	H@3	H@10			
JointE	6.7	2.5	7.0	14.2			
DKRL-CNN	19.0	13.0	21.2	31.0			
DKRL-CBOW	19.3	13.1	21.5	31.9			
ConMask	9.1	3.7	9.5	20.5			
OWE	35.2	27.8	38.6	49.1			
FOlk(l) iter. 1	38.8	29.9	42.6	54.5			
FOlk(l) iter. 2	39.1	32.1	42.5	52.1			
${ t FOlk(s)}$	39.1	30.3	43.0	56.1			

Geometric properties

Visualization of embeddings using PCA. The closed-world and projected embeddings are differentiated by red and blue dots respectively. FOIK embeddings are indistinguishable from each other. In OWE, the two embeddings cluster separately.

(a) F01K(s) on FB15k-237-OWE

(b) F01K(l) on FB15k-237-OWE(L)

(c) OWE on FB15k-237-OWE

(d) OWE on FB15k-237-OWE(L)

Geometric properties

Eigenvalue Similarity is a measure of the geometric similarity between the two spaces. Hubness is the minimum % of induced embeddings that are the nearest neighbours to at least N% of structural embeddings. We use ↑ to indicate that a higher value is better and vice-versa

	FB15k-237-	OWE	FB15k-237-OWE(L)			
	Eig. Sim.↓	Hub. 10%↑	Eig. Sim.↓	Hub. 10%↑		
OWE (Offline)	998	0.2	34981	0.3		
FOIK (Joint)	15.3	1.3	1.5	0.8		

Thank You!

