Chapitre 15

Applications : images et antécédents.

Sommaire.

1	Images par une application.	5
	1.1 Image directe	
	1.2 Image réciproque	
2	Applications injectives, surjectives, bijectives.	
	2.1 Injectivité	
	2.2 Surjectivité	
	2.3 Bijectivité et application réciproque	
3	Exercices.	(

Les propositions marquées de 🛨 sont au programme de colles.

L'essentiel du premier cours sur les applications.

Définition 1

Soient E et F deux ensembles.

Une application f de E dans F est un procédé qui à tout élément x de E associe un unique élément dans F, que l'on note f(x). Cet objet est aussi appelé fonction, et décrit par

$$f: \begin{cases} E & \to & F \\ x & \mapsto & f(x) \end{cases}$$

L'ensemble E est alors appelé ensemble de départ et l'ensemble F ensemble d'arrivée de f.

Soient $x \in E$ et $y \in F$ tels que

$$y = f(x);$$

On dit que y est l'**image** de x par f et que x est un **antécédent** de y par f.

L'ensemble des applications de E dans F est noté F^E ou bien $\mathcal{F}(E,F)$.

L'application **identité** sur un ensemble E est

$$id_E: \begin{cases} E & \to & E \\ x & \mapsto & x \end{cases}$$

Proposition 2: Égalité de deux fonctions.

Deux applications sont égales si et seulement si elles sont égales en tout point :

$$\forall (f,g) \in \mathcal{F}(E,G)^2, \quad f = g \iff \forall x \in E, \ f(x) = g(x).$$

Définition 3

Soient E,F,G trois ensembles et $f:E\to F$ et $g:F\to G$ deux applications. La **composée** de f par g, notée $g\circ f$ est l'application

$$g \circ f : \begin{cases} E & \to & G \\ x & \mapsto & g(f(x)) \end{cases}$$

Proposition 4: Propriétés de la composition.

 $\bullet\,$ L'identité est neutre pour la composition :

$$\forall f \in \mathcal{F}(E, F), \quad \mathrm{id}_F \circ f = f \quad \text{ et } \quad f \circ \mathrm{id}_E = f.$$

• La composition est associative :

$$\forall f \in \mathcal{F}(E,F), \ \forall g \in \mathcal{F}(F,G), \ \forall h \in \mathcal{F}(G,H), \quad (h \circ g) \circ f = h \circ (g \circ f).$$

Fonctions indicatrices.

Dans ce qui suit, E est un ensemble.

Définition 5

Soit A une partie de E. La fonction indicatrice de A est l'application notée $\mathbb{1}_A$, définie par

$$\mathbb{1}_A: \begin{cases} E & \to & \{0,1\} \\ x & \mapsto & \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A \end{cases} \end{cases}$$

Proposition 6

Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Les égalités qui suivent sont des égalités entre applications. Si A et B sont disjoints, alors $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B$.

Plus généralement,

$$\mathbb{1}_{A \setminus B} = \mathbb{1}_A - \mathbb{1}_{A \cap B}, \qquad \mathbb{1}_{A \cap B} = \mathbb{1}_A \cdot \mathbb{1}_B, \qquad \mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_{A \cap B}.$$

Preuve:

- 1. Supposons $A \cap B = \emptyset$. Montrons que $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B$. Soit $x \in E$.
- Si $x \in A$, alors $x \notin B$ et $\mathbb{1}_{A \cup B}(x) = 1$ et $\mathbb{1}_A(x) + \mathbb{1}_B(x) = 1$.
- Si $x \in B$, cas symétrique.
- Si $x \notin A \cup B$, alors $x \notin A$ et $x \notin B$ donc $\mathbb{1}_{A \cup B}(x) = 0 = \mathbb{1}_A(x) + \mathbb{1}_B(x)$.
- 2. Supposons A, B quelconques. Soit $x \in E$.
- $-\mathbb{1}_A = \mathbb{1}_{A \cap B} + \mathbb{1}_{A \setminus B} \text{ car } A = (A \cap B) \cup (A \setminus B) \text{ (union disjointe) donc } \mathbb{1}_{A \setminus B} = \mathbb{1}_A \mathbb{1}_{A \cap B}.$
- On a $A \cup B = A \cup (B \setminus A)$ donc $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_{B \setminus A} = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_{A \cap B}$.
- On a

$$1_A \cdot 1_B = 0 \iff 1_A(x) = 0 \text{ ou } 1_B(x) = 0 \iff x \notin A \text{ ou } x \notin B$$

 $\iff \neg(x \in A \text{ et } x \in B) \iff \neg(x \in A \cap B)$
 $\iff x \notin A \cap B \iff 1_{A \cap B}(x) = 0.$

Les deux fonctions valent 0 sur les mêmes points, il n'y a qu'une autre image possible, elles sont donc égales en tout point.

Proposition 7: Une partie est caractérisée par sa fonction indicatrice.

$$\forall (A,B) \in (\mathcal{P}(E))^2 \quad A = B \iff \mathbb{1}_A = \mathbb{1}_B.$$

Images par une application.

Image directe. 1.1

Définition 8

Soit $f: E \to F$ une application et A une partie de E.

On appelle **image** (directe) de A par f et on note f(A) la partie de F ci-dessous

$$f(A) = \{f(x) : x \in A\} = \{y \in F : \exists x \in A \ y = f(x)\}.$$

Lorsque c'est l'image de E tout entier que l'on considère, on peut noter

$$\operatorname{Im}(f) = f(E).$$

Exemple 9

- 1. Que vaut Im(arctan)?
- 2. Soit exp: $z \mapsto e^z$; $\mathbb{C} \to \mathbb{C}^*$ l'exponentielle complexe. Que valent $\exp(\mathbb{R})$ et $\exp(i\mathbb{R})$?

Solution:

- 1. On a Im(arctan) = $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$.
- 2. On a $\exp(\mathbb{R}) = \mathbb{R}_+^*$ et $\exp(i\mathbb{R}) = \mathbb{U}$.

Proposition 10: *

Soit $f: E \to F$ une application. Soient A et B deux parties de E. On a

$$f(A \cup B) = f(A) \cup f(B)$$
 et $f(A \cap B) \subset f(A) \cap f(B)$.

Preuve:

- Soit $y \in f(A \cup B)$: $\exists x \in A \cup B \mid f(x) = y$. Ainsi, $x \in A$ ou $x \in B$: $y \in f(A)$ ou $y \in f(B)$: $y \in f(A) \cup f(B)$.
- Soit $y \in f(A) \cup f(B)$. Alors $y \in f(A)$ ou $y \in f(B)$: $\exists x \in A \cup B \mid y = f(x) \text{ donc } y \in f(A \cup B)$. Par double inclusion, $f(A \cup B) = f(A) \cup f(B)$.
- ★ Soit $y \in f(A \cap B)$, $\exists x \in A \cap B \mid y = f(x)$, donc $x \in A$ et $x \in B$ donc $y \in f(A)$ et $y \in f(B) : y \in f(A) \cap f(B)$.

Exemple 11

Soit $f: x \mapsto x^2$, définie sur \mathbb{R} . Considérons $A = [1, +\infty[$, et $B =]-\infty, 1]$. Montrer que

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Solution:

On a
$$f(A \cap B) = f(\emptyset) = \emptyset$$
 et $f(A) \cap f(B) = [1, +\infty[$.

1.2 Image réciproque.

Définition 12

Soient E et F deux ensembles non vides et $f: E \to F$ une application. Soit A une partie de F. On appelle **image réciproque** de A par f, et on note $f^{-1}(A)$ la partie de E ci-dessous

$$f^{-1}(A) = \{ x \in E : f(x) \in A \}$$

En particulier, si $y_0 \in F$, $f^{-1}(\{y_0\})$ est l'ensemble des antécédents de y_0 par f dans E.

 \bigwedge La notation $f^{-1}(A)$ peut prêter à confusion.

Si $f: E \to F$ n'est pas bijective, **l'application** f^{-1} **n'est pas définie**, contrairement à l'ensemble $f^{-1}(A)$. Bref, sauf dans le cas où la réciproque existe, l'image de la réciproque n'est pas l'image par la réciproque...

Exemple 13

- 1. La fonction tan étant définie sur l'ensemble que l'on sait, déterminer $\tan^{-1}(\mathbb{R}_+)$.
- 2. Soit $f: \begin{cases} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{cases}$. Que valent $f^{-1}(\mathbb{R}_+)$ et $f^{-1}(\{0\})$?

Solution:

- 1. $\tan^{-1}(\mathbb{R}_+) = \{x \in D_{\tan} \mid f(x) \in \mathbb{R}_+\} = \bigcup_{k \in \mathbb{Z}} \left[k\pi, \frac{\pi}{2} + k\pi \right].$

Proposition 14: *

Soit $f: E \to F$ une application. Soient A et B deux parties de F. On a

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
 et $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Preuve:

Soit $x \in E$.

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B \iff f(x) \in A \text{ ou } f(x) \in B \iff x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B)$$

 $\iff x \in f^{-1}(A) \cup f^{-1}(B).$

$$x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B \iff f(x) \in A \text{ et } f(x) \in B \iff x \in f^{-1}(A) \text{ et } x \in f^{-1}(B)$$

 $\iff x \in f^{-1}(A) \cap f^{-1}(B).$

2 Applications injectives, surjectives, bijectives.

2.1 Injectivité.

Définition 15

Une application $f: E \to F$ est dite **injective** si tout élément de F a au plus un antécédent dans E, ce qui s'écrit:

$$\forall x, x' \in E, \quad f(x) = f(x') \Longrightarrow x = x'.$$

Méthode

- 1. Pour démontrer qu'une application $f: E \to F$ est injective :
 - On considère deux éléments x et x' de E,
 - On suppose que f(x) = f(x'),
 - On montre que x = x'.
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas injective, il suffit d'exhiber une paire $\{x, x'\}$ d'éléments de E tels que $x \neq x'$ et f(x) = f(x').

D'une application $f: E \to F$ injective, on peut dire que c'est une **injection** de E vers F.

Exemple 16: 🛨

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle injective ?
- 2. Soient

$$f: \begin{cases} \mathbb{Z}^2 & \to & \mathbb{R} \\ (p,q) & \mapsto & p+\sqrt{2}q \end{cases} \quad \text{et} \quad g: \begin{cases} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{cases}$$

Montrer que f est injective et que g ne l'est pas.

Solution:

- 1. On a $\sin(0) = \sin(\pi) = 0$. Elle n'est pas injective.
- 2. Soit $(p,q) \in \mathbb{Z}^2$ et $(r,z) \in \mathbb{Z}^2$ tels que $p+q\sqrt{2}=r+s\sqrt{2}$.

Alors $p-r+(q-s)\sqrt{2}=0$, or $p-r\in\mathbb{Q}$ et $\sqrt{2}(q-s)\in\mathbb{R}\setminus\mathbb{Q}$ donc p=r et q=s: elle est injective.

gn'est pas injective car g(1,0)=g(0,1)=0.

Exemple 17

Soit $f: X \mapsto \mathbb{R}$, où $X \in \mathcal{P}(\mathbb{R})$. Montrer que si f est strictement monotone, alors elle est injective.

Solution:

Soient $x, x' \in X$ tels que x > x'. Par contraposée, on suppose $x \neq x'$. Montrons que $f(x) \neq f(x')$.

- Si f est strictement croissante, alors f(x) > f(x') donc $f(x) \neq f(x')$.
- Si f est strictement décroissante, alors f(x) < f(x') donc $f(x) \neq f(x')$.

Dans tous les cas, $f(x) \neq f(x')$ donc la fonction est injective.

Proposition 18: *

La composée de deux applications injectives est injective.

Preuve:

Soient $f: E \to F$ et $g: F \to G$ injectives. Soient $x, x' \in E$ tels que $g \circ f(x) = g \circ f(x')$. On a g(f(x)) = g(f(x')) donc f(x) = f(x') car g est injective et x = x' car f est injective.

Proposition 19: Une réciproque partielle.

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est injective $\Longrightarrow f$ est injective.

Supposons $g \circ f$ injective. Soient $x, x' \in E$ tels que f(x) = f(x').

On applique g: g(f(x)) = g(f(x')) donc x = x' par injectivité de $g \circ f$.

2.2Surjectivité.

Définition 20

Une application $f: E \to F$ est dite surjective si tout élément de F a au moins un antécédent dans E, ce qui s'écrit :

$$\forall y \in F, \ \exists x \in E \mid y = f(x).$$

Méthode

- 1. Pour démontrer qu'une application $f: E \to F$ est surjective :
 - On considère une élément y de F,
 - On trouve/prouve l'existence de $x \in E$ tel que y = f(x).
- 2. Pour démontrer qu'une application $f: E \to F$ n'est pas surjective, il suffit d'exhiber un élément de Fn'ayant pas d'antécédent dans E par f.

D'une application $f: E \to F$ surjective, on peut dire aussi que c'est une **surjection** de E vers F.

Exemple 21: \star

- 1. La fonction $\sin : \mathbb{R} \to \mathbb{R}$ est-elle surjective?
- 2. Soient

$$f: \begin{cases} \mathbb{Z}^2 & \to & \mathbb{R} \\ (p,q) & \mapsto & p+\sqrt{2}q \end{cases} \quad \text{et} \quad \begin{cases} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & xy \end{cases}$$

Montrer que g est surjective et que f ne l'est pas.

Solution:

- 1. Elle n'est pas surjective car 2 n'a pas d'antécédent par sin.
- 2. Soit $y' \in \mathbb{R}$: $\exists (x,y) \in \mathbb{R}^2 \mid y' = xy$: (1,y'). Donc g est surjective.

Supposons que 1/2 ait un antécédent par f. Notons le (p,q). Alors $p+\sqrt{2}q=\frac{1}{2}$ et $2p+2\sqrt{2}=1$.

- Si q = 0, alors 2p = 1, impossible car $p \in \mathbb{Z}$.
- Si $q \neq 0$, alors $\frac{p}{q} + \sqrt{2} = \frac{1}{2}$ donc $\frac{p}{q} = \frac{1}{2} \sqrt{2}$ donc $\frac{2p-q}{2q} = \sqrt{2}$. Absurde car $\sqrt{2} \notin \mathbb{Q}$. On en déduit que 1/2 n'a pas d'antécédent par f. Elle n'est pas surjective.

Proposition 22: Vision ensembliste de la surjectivité.

Soit $f: E \to F$ une application. On a

$$f$$
 surjective \iff Im $(f) = F$.

Preuve:

On a:

$$f ext{ surjective } \iff \forall y \in F, \ \exists x \in E \mid f(x) = y$$

$$\iff \forall y \in F, \ y \in f(E) \text{ ou } y \in \operatorname{Im}(f)$$

$$\iff F \subset \operatorname{Im}(f) \iff F = \operatorname{Im}(f).$$

Proposition 23: *

La composée de deux application surjectives est surjective

Preuve:

Soient $f: E \to F$ et $g: F \to G$ deux fonctions surjectives.

Soit $z \in G : \exists y \in F \mid z = g(y)$ par surjectivité de g et $\exists x \in E \mid g(y) = f(x)$ par surjectivité de f.

Alors z = g(f(x)) donc $g \circ f$ est surjective.

Proposition 24: Une réciproque partielle.

Soient deux applications $f: E \to F$ et $g: F \to G$.

 $g \circ f$ est surjective $\Longrightarrow g$ est surjective.

Preuve:

Supposons que $g \circ f$ est surjective. Soit $y \in G$: $\exists x \in E \mid y = g(f(x))$ donc f(x) est antécédent de g par g.

2.3 Bijectivité et application réciproque.

Définition 25

Soit une application $f: E \to F$. Elle est dite **bijective** si elle est à la fois injective et surjective, c'est-à-dire si tout élément de F possède un unique antécédent dans E, ce qui s'écrit

$$\forall y \in F, \ \exists ! x \in E \mid y = f(x).$$

Définition 26

Soit $f: E \to F$ une application bijective. On considère, pour tout élément y de F son unique antécédent par f, que l'on note $f^{-1}(y)$. Ce procédé permet de définir comme suit l'**application réciproque** de f, notée f^{-1} :

$$f^{-1}: \begin{cases} F & \to & E \\ y & \mapsto & f^{-1}(y) \end{cases}$$

Méthode : Calcul de la réciproque d'une fonction.

Soit $f:E\to F$ une fonction bijective et $y\in F.$ S'il est possible de résoudre l'équation

$$y = f(x),$$

c'est-à-dire exprimer x en fonction de y, on a une expression de $f^{-1}(y)$.

Si, pour tout élément $y \in F$, on sait prouver l'existence et l'unicité d'un antécédent dans E, on a prouvé la bijectivité de f.

Théorème 27: Caractérisation de la bijectivité par l'existence d'un inverse à gauche et à droite.

Soit $f: E \to F$ une application. Alors

$$f$$
 est bijective $\iff \exists g \in \mathcal{F}(F, E) : g \circ f = \mathrm{id}_E \quad \text{ et } \quad f \circ g = \mathrm{id}_F.$

Autrement dit, f est bijective ssi elle admet un (même) « inverse » à gauche et à droite pour la composition. De plus, lorsque cet inverse g existe, $g = f^{-1}$.

Preuve:

 \Longrightarrow Supposons f bijective. Posons $g = f^{-1}$ (qui existe bien) : $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$.

Supposons qu'il existe $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$.

On a id_E et id_F bijectives, donc $g \circ f$ et $f \circ g$ aussi.

 $-g \circ f$ est surjective et injective, alors g est surjective et f est injective.

— $f \circ g$ est surjective et injective, alors f est surjective et g est injective.

Donc f est g sont bijectives : f^{-1} existe et $f^{-1} = g$.

Proposition 28

La composée de deux applications bijectives est bijective.

De plus, si $f: E \to F$ et $g: F \to G$ sont bijectives, alors

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Preuve:

Soient $f: E \to F$ et $g: F \to G$ bijectives donc $f^{-1}: F \to E$ et $g^{-1}: G \to F$ existent. On a:

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ f \circ f^{-1} \circ g^{-1} = g^{-1} \circ g \circ f \circ f^{-1} = \mathrm{id}_G$$

$$(f^{-1} \circ g^{-1})(g \circ f) = f^{-1} \circ f \circ g^{-1} \circ g = f^{-1} \circ f = id_E.$$

Par caractérisation, $g \circ f$ est bijective et sa réciproque est $f^{-1} \circ g^{-1}$.

3 Exercices.

Images directes, images réciproques.

Exercice 1: $\Diamond \Diamond \Diamond$

Soit $f: E \to F$ une application. Soient deux parties $A \subset E$ et $B \subset F$. Montrer l'égalité

$$f(A) \cap B = f(A \cap f^{-1}(B)).$$

Solution:

Procédons par double inclusion.

 \odot Soit $y \in f(A) \cap B$. Montrons que $y \in f(A \cap f^{-1}(B))$.

On a $y \in f(A)$ et $y \in B$.

 $\exists x \in A \mid y = f(x) \text{ donc } x \in A \text{ et } x \in f^{-1}(B) \text{ car } y \in B.$

Ainsi $x \in A \cap f^{-1}(B)$ et $f(x) = y \in f(A \cap f^{-1}(B))$

 \odot Soit $y \in f(A \cap f^{-1}(B))$ Montrons que $y \in f(A) \cap B$.

 $\exists x \in A \cap f^{-1}(B) \mid y = f(x) \text{ donc } x \in A \text{ et } x \in f^{-1}(B).$

Ainsi, $f(x) = y \in f(A)$ et $f(x) = y \in B : y \in f(A) \cap B$.

Exercice 2: ♦♦◊

Soit $f: E \to F$ une application. Soit A une partie de E et B une partie de F.

- 1. (a) Montrer que $A \subset f^{-1}(f(A))$.
 - (b) Montrer que si f est injective, la réciproque est vraie.
- 2. Soit B une partie de F.
 - (a) Montrer que $f(f^{-1}(B)) \subset B$.
 - (b) Démontrer que si f est surjective, la réciproque est vraie.
- 3. Montrer que $f(f^{-1}(f(A))) = f(A)$.
- 4. Montrer que $f^{-1}(f(f^{-1}(B))) = f^{-1}(B)$.

Solution:

1.a) Soit $x \in A$. Montrons que $x \in f^{-1}(f(A))$.

On a $x \in A$ alors $f(x) \in f(A)$ et $x \in f^{-1}(f(A))$.

1.b) On suppose f injective, soit $x \in f^{-1}(f(A))$.

On applique $f: f(x) \in f(A)$. Par injectivité de $f, x \in A$.

(2.a) Soit $y \in f(f^{-1}(B))$.

On a $\exists x \in f^{-1}(B) \mid y = f(x)$. Ainsi, $f(x) \in B : y \in B$.

(2.b) Supposons f surjective, soit $y \in B$.

On a $\exists x \in f^{-1}(B) \mid y = f(x) \text{ et } f(x) = y \in f(f^{-1}(B)).$

3. Soit $y \in f(f^{-1}(f(A)))$. Montrons que $y \in f(A)$.

On a $\exists x \in f^{-1}(f(A)) \mid y = f(x) \text{ et } f(x) \in f(A) \text{ donc } y \in f(A).$

Soit $y \in f(A)$. Montrons que $y \in f(f^{-1}(f(A)))$.

On a $\exists x \in A \mid y = f(x)$ alors $f(x) \in f(A)$ et $x \in f^{-1}(f(A))$. Donc $f(x) = y \in f(f^{-1}(f(A)))$.

4. Soit $y \in f^{-1}(f(f^{-1}(B)))$. Montrons que $y \in f^{-1}(B)$.

On a $f(y) \in f(f^{-1}(B))$ alors $y \in f^{-1}(B)$.

Soit $y \in f^{-1}(B)$. Montrons que $y \in f^{-1}(f(f^{-1}(B)))$.

On a $f(y) \in f(f^{-1}(B))$ donc $y \in f^{-1}(f(f^{-1}(B)))$.

Exercice 3: $\Diamond \Diamond \Diamond$

Soit $f: E \to F$ une application. Montrer que

f est injective $\iff [\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)]$

Solution:

 \odot Supposons f injective. Soient $A, B \in \mathcal{P}(E)$.

On sait déjà que $f(A \cap B) \subset f(A) \cap f(B)$.

Montrons alors que $f(A) \cap f(B) \subset f(A \cap B)$.

Soit $y \in f(A) \cap f(B)$. On a que $y \in f(A) \land y \in f(B)$.

Ainsi, $\exists x_A \in A \mid y = f(x_A)$ et $\exists x_B \in B \mid y = f(x_B)$.

Or f est injective : $x_A = x_B$, ainsi $x_A \in A \cap B$.

On a enfin que $f(x_A) \in f(A \cap B)$, alors $y \in f(A \cap B)$.

 \odot Supposons $[\forall A, B \in \mathcal{P}(E) \ f(A \cap B) = f(A) \cap f(B)]$. Montrons que f est injective.

Soient $A, B \in \mathcal{P}(E)$.

Soient $x, x' \in E$. On suppose que f(x) = f(x'). Montrons que x = x'.

On a que $\{x\}$ et $\{x'\} \in \mathcal{P}(E)$.

Ainsi : $f({x} \cap {x'}) = f({x}) \cap f({x'}).$

Supposons que $x \neq x'$. On a alors : $f(\emptyset) = f(\{x\}) \cap f(\{x'\}) : \emptyset = \{f(x)\} \cap \{f(x')\}$.

Or f(x) = f(x') donc $\{f(x)\} \cap \{f(x')\} \neq \emptyset$. C'est absurde : x = x'.

On a bien montré que f est injective.

Applications injectives, surjectives.

Exercice 4: $\Diamond \Diamond \Diamond$

Soient

$$f: \begin{cases} \mathbb{N}^2 & \to & \mathbb{Z} \\ (n,p) & \mapsto & (-1)^n p \end{cases} \quad \text{et} \quad g: \begin{cases} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & \frac{1+ix}{1-ix} \end{cases}$$

Ces fonctions sont-elles injectives? Surjectives?

Solution:

On a que f n'est pas injective : f(0,1) = f(2,1) = 1.

Montrons que f est surjective.

Soit $y \in \mathbb{Z}$. Montrons que $\exists (n,p) \in \mathbb{N}^2 \mid f(n,p) = y$.

Si $y \ge 0$, on prend n = 0 et p = |y|.

Si $y \le 0$, on prend n = 1 et p = |y|.

On a que g n'est pas surjective : 0 n'a aucun antécédent par g.

Montrons que q est injective.

Soient $x, x' \in \mathbb{R}$, supposons g(x) = g(x'). Montrons que x = x'.

On a:

$$g(x) = g(x') \iff \frac{1+ix}{1-ix} = \frac{1+ix'}{1-ix'}$$

$$\iff (1+ix)(1-ix') = (1+ix')(1-ix)$$

$$\iff 1-ix'+ix+xx' = 1-ix+ix'+xx'$$

$$\iff 2ix = 2ix'$$

$$\iff x = x'$$

On a bien que g est injective.

Exercice 5: $\Diamond \Diamond \Diamond$

Dans cet exercice, on admet que π est irrationnel.

Démontrer que $\cos_{|\mathbb{O}}$ n'est pas injective et que $\sin_{|\mathbb{O}}$ l'est.

Solution:

On sait que cos est paire : $\cos_{|\mathbb{Q}}$ l'est aussi.

Alors $\cos_{\mathbb{Q}}(\frac{1}{2}) = \cos_{\mathbb{Q}}(-\frac{1}{2})$. Or $\frac{1}{2} \neq -\frac{1}{2}$: $\cos_{\mathbb{Q}}$ n'est pas injective.

Soient $x, x' \in \mathbb{Q}^2$. Supposons que $\sin_{\mathbb{Q}}(x) = \sin_{\mathbb{Q}}(x')$. Montrons que x = x'.

On a:

$$\sin_{\mathbb{Q}}(x) = \sin_{\mathbb{Q}}(x') \iff x \equiv x'[2\pi] \ (2\pi\text{-p\'eriodicit\'e})$$

 $\iff x = x' + 2k\pi \ (k \in \mathbb{Z})$

Or, $\forall k \in \mathbb{Z}^*, \ x' + 2k\pi \notin \mathbb{Q}$. On a alors que k = 0:

$$\sin_{\mathbb{Q}}(x) = \sin_{\mathbb{Q}}(x') \iff x = x' + 2 \cdot 0\pi \iff x = x'$$

Exercice 6: ♦♦◊

Soit l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \begin{cases} x^2 & \text{si } x \geq 0 \\ 2x^2 & \text{si } x < 0 \end{cases}$

- 1. Montrer que f n'est pas injective.
- 2. Montrer que $f_{|\mathbb{O}}$ est injective.

Solution:

1. On a f(2) = 4 et $f(-\sqrt{2}) = 4$: f n'est pas injective.

2. Soient $x, x' \in \mathbb{Q}$ tels que $f_{|\mathbb{Q}}(x) = f_{|\mathbb{Q}}(\widetilde{x})$. Montrons que $x = \widetilde{x}$.

Cas n°1 : x et \tilde{x} positifs :

$$f_{|\mathbb{Q}}(x) = f_{|\mathbb{Q}}(\widetilde{x}) \iff x^2 = \widetilde{x}^2 \iff x = \widetilde{x}$$

Cas n°2 : x et \widetilde{x} strictement négatifs :

$$f_{|\mathbb{Q}}(x) = f_{|\mathbb{Q}}(\widetilde{x}) \iff 2x^2 = 2\widetilde{x}^2 \iff x^2 = \widetilde{x}^2 \iff x = \widetilde{x} \ \operatorname{car} \ x, \widetilde{x} \in \mathbb{R}_-^*$$

Cas n°3 : $x \ge 0$ et $\widetilde{x} < 0$:

$$f_{|\mathbb{Q}}(x) = f_{|\mathbb{Q}}(\widetilde{x}) \iff x^2 = 2\widetilde{x}^2 \iff x = -\sqrt{2}\widetilde{x} \iff -\frac{x}{\widetilde{x}} = \sqrt{2}$$

Cela est impossible par stabilité de \mathbb{Q} par la division. Donc $f_{|\mathbb{Q}}(x) \neq f_{|\mathbb{Q}}(\widetilde{x})$.

Le cas où x < 0 et $\widetilde{x} \ge 0$ est symétrique.

On a prouvé que $f_{|\mathbb{Q}}$ est injective.

Exercice 7: $\Diamond \Diamond \Diamond$

Soit $f: E \to E$. Montrer que

- 1. f est injective si et seulement si $f \circ f$ est injective.
- 2. f est surjective si et seulement si $f \circ f$ est surjective.

Solution:

1. Supposons f injective. D'après 18, $f \circ f$ est injective.

Supposons $f \circ f$ injective. D'après 19, f est injective.

2. Supposons f surjective. D'après 23, $f \circ f$ est surjective.

Supposons $f \circ f$ surjective. D'après 24, f est surjective.

Exercice 8: ♦♦◊

Soit E un ensemble et $f: E \to E$ une application.

On suppose que $f \circ f = f$ et que f est injective ou surjective. Montrer que $f = id_E$.

Solution:

 \odot Supposons f injective. Soit $x \in E$.

On a $f \circ f(x) = f(x)$. Par injectivité de f, f(x) = x donc $f = id_E$.

 \odot Supposons f surjective. Soit $y \in E$.

On a $f \circ f(y) = f(y)$ et $\exists x \in E \mid f(x) = y$ par surjectivité de f.

Donc $f \circ f \circ f(x) = f \circ f(x)$. Alors $f \circ f(x) = f(x)$ et $f(y) = y : f = \mathrm{id}_E$.

Exercice 9: ♦♦◊

Soit E un ensemble non vide et $f: E \to E$ une application telle que $f \circ f \circ f = f$.

Montrer que

f est surjective $\iff f$ est injective

Solution:

 \odot Supposons f injective, montrons que f est surjective.

Soit $y \in E$. Par définition de $f : f \circ f \circ f(y) = f(y)$.

Par injectivité de $f: f \circ f(y) = y$.

Donc f(y) est antécédent de y:f est surjective.

 \odot Supposons f surjective, montrons f injective.

Soient $y, y' \in E$ tels que f(y) = f(y'). Montrons que y = y'.

Par surjectivité de f, $\exists x, x' \in E \mid f(x) = y \land f(x') = y'$.

Ainsi, $f \circ f(x) = f \circ f(x')$.

Appliquons $f: f \circ f \circ f(x) = f \circ f \circ f(x')$.

Alors: f(x) = f(x') et donc y = y'.

On a bien prouvé l'injectivité de f.

Exercice 10: ♦♦♦

Soit
$$f: \begin{cases} \mathbb{N} \to \mathbb{N} \\ n \mapsto n + (-1)^n \end{cases}$$

Démontrer que f est une bijection de $\mathbb N$ dans lui-même et donner sa réciproque.

Solution:

Montrons que f est un inverse à gauche et à droite d'elle-même. Soit $n \in \mathbb{N}$. On a :

$$f \circ f(n) = f(n + (-1)^n) = n + (-1)^n + (-1)^{n+(-1)^n}$$
$$= n + (-1)^n (1 + (-1)^{(-1)^n})$$

Or $(-1)^n$ est toujours impair : $(-1)^{(-1)^n} = -1$. Ainsi :

$$f \circ f(n) = n + (-1)^n (1-1) = n$$

On a bien que f est un inverse à gauche et à droite d'elle même : f est bijective et est sa propre réciproque.

Exercice 11: ♦♦♦

Soient E un ensemble et $(A, B) \in \mathcal{P}(E)^2$. On définit

$$\Phi: \begin{cases} \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B) \\ X \mapsto (X \cap A, X \cap B) \end{cases}$$

- 1. Calculer $\Phi(\emptyset)$ et $\Phi(E \setminus (A \cup B))$. Que dire de A et B si (A,\emptyset) admet un antécédent par Φ ?
- 2. Montrer que Φ injective $\iff A \cup B = E$.
- 3. Montrer que Φ surjective $\iff A \cap B = \emptyset$.

Solution:

1. On a $\Phi(\emptyset) = (\emptyset, \emptyset)$ et $\Phi(E \setminus (A \cup B)) = ((\overline{A} \cap \overline{B}) \cap A, (\overline{A} \cap \overline{B}) \cap B) = (\emptyset, \emptyset)$.

Si (A, \emptyset) admet un antécéddent par Φ alors A et B sont disjoints : $A \cap B = \emptyset$.

 $\boxed{2.}$ \odot Supposons Φ injective. Montrons $A \cup B = E$.

On a que $\Phi(E) = (A, B)$ et $\Phi(A \cup B) = (A, B)$. Par injectivité de Φ , $E = A \cup B$.

 \odot Supposons $A \cup B = E$. Montrons que Φ est injective.

Soient $X, Y \in \mathcal{P}(E)$ telles que $\Phi(X) = \Phi(Y)$. Montrons que X = Y.

On a

$$(X \cap A, X \cap B) = (Y \cap A, Y \cap B) \Longrightarrow X \cap A = Y \cap A \land X \cap B = Y \cap B$$
$$\Longrightarrow (X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B)$$
$$\Longrightarrow X \cap (A \cup B) = Y \cap (A \cup B)$$
$$\Longrightarrow X = Y \text{ car } A \cup B = E$$

3. \odot Supposons Φ surjective. Montrons $A \cap B = \emptyset$.

 $\overline{\mathrm{On}}$ a que $\exists X \in \mathcal{P}(E) \mid \Phi(X) = (A, \varnothing)$ puisque $(A, \varnothing) \in \mathcal{P}(a) \times \mathcal{P}(B)$ et que Φ est surjective.

Or, puisque X existe, on a que A et B sont disjoints: $A \cap B = \emptyset$.

 \odot Supposons $A \cap B = \emptyset$. Montrons que Φ est surjective.

Soit $Y \in \mathcal{P}(A)$ et $Z \in \mathcal{P}(B)$. Montrons que $\exists X \in \mathcal{P}(E) \mid \Phi(X) = (Y, Z)$.

On choisit $X = Y \cup Z$. On a $\Phi(X) = ((Y \cup Z) \cap A, (Y \cup Z) \cap B)$.

Or $A \cap B = \emptyset$. En particulier, $Y \cap B = \emptyset$ et $Z \cap A = \emptyset$ car $Y \in \mathcal{P}(A)$ et $Z \in \mathcal{P}(B)$.

Alors, $\Phi(X) = (Y \cap A, Z \cap B) = (Y, Z)$. On a bien que X est un antécédent de (Y, Z).

Exercice 12: ♦♦♦

Soit $f \in \mathcal{F}(E, F)$.

1. Démontrer que f est injective si et seulement si elle est inversible à gauche.

Plus précisément, prouver l'assertion

$$f$$
 est injective $\iff \exists g \in \mathcal{F}(F, E) \ g \circ f = \mathrm{id}_E$

2. Démontrer que f est surjective si et seulement si elle est inversible à <u>droite</u>.

Plus précisément, prouver l'assertion

$$f$$
 est surjective $\iff \exists g \in \mathcal{F}(F, E) \ f \circ g = \mathrm{id}_F$

Solution:

1.

- \odot Supposons f injective et soit $g: F \to E$. Soit $y \in F$.
- Si $y \in f(E)$, on a $\exists ! x \in E \mid f(x) = y$, alors on pose g(y) = x.
- Si $y \notin f(E)$, on prend un élément $x \in F$ quelconque et on pose g(y) = x.

On a que g est bien définie sur F et $\forall x \in E, g(f(x)) = x$ par définition.

 \odot Supposons que $\exists g \in \mathcal{F}(F, E) \ g \circ f = \mathrm{id}_E$. Montrons que f est injective.

Soient $x, x' \in E$ tels que f(x) = f(x').

On a $f(x) = f(x') \iff g(f(x)) = g(f(x')) \iff \mathrm{id}_E(x) = \mathrm{id}_E(x') \iff x = x'.$

2.

 \odot Supposons f surjective et soit $g: F \to E$.

Soit $y \in F : \exists x \in E \mid y = f(x)$.

Or il peut exister plusieurs x différents dont y est l'image, on fait le choix de n'en garder qu'un particulier.

Alors on pose g(y) = x. Ainsi, on a f(g(y)) = f(x), c'est-à-dire $f(g(y)) = y : f \circ g = \mathrm{id}_F$.

 \odot Supposons que $\exists g \in \mathcal{F}(F, E) \ f \circ g = \mathrm{id}_F$. Montrons que f est surjective.

Soit $y \in F$. On a que $f \circ g(y) = y$ car $f \circ g = \mathrm{id}_F$. Ainsi, y est l'image de $f \circ g(y) : f$ est surjective.

Exercice 13: ♦♦♦ Théorème de Cantor.

Soit $f \in \mathcal{F}(E, \mathcal{P}(E))$. Montrer que f n'est pas surjective.

Indication : on pourra considérer $A = \{x \in E \mid x \notin f(x)\}.$

Solution:

Montrons que A n'a pas d'antécédent par f.

Supposons qu'il en ait un.

Alors $\exists \alpha \in E \mid A = f(\alpha)$.

 \odot Supposons que $\alpha \in A$. Alors $\alpha \in \{x \in E \mid x \notin f(x)\}$.

Donc $\alpha \notin f(\alpha)$ donc $\alpha \notin A$. Absurde.

 \odot Supposons que $\alpha \notin A$. Alors $\alpha \notin \{x \in E \mid x \notin f(x)\}$.

Donc $\alpha \in A$. Absurde.

 α n'existe pas : An'a pas d'antécédent par f et fn'est pas surjective.