一、选择题(每题 5 分, 共 20 分,根据正确答案的选项涂黑答题卡对应的位置) 1.下列选项中**错误**的是 (C)

- (A) $H(u) = E 2uu^H$ (其中 $u ∈ C^n$, $u^H u = 1$), $\bigcup ||H(u)x||_2 = ||x||_2$;
- (B) $U ∈ C^{n \times n}$ 为酉矩阵、 λ 为其任意特征值、则 $|\lambda| = 1$;
- (C) $A \in C^{3\times 4}$, 则 $A^{H}A \ni AA^{H}$ 的特征值相同;
- (D) $A \in C^{m \times n}$, U, V 为酉矩阵且 B = UAV, 则 A = B 的奇异值相同.
- 2.下列选项中正确的是 (A)
- (B)若 $A^2 = A$, 则 $R(A) \perp N(A)$;

(C) $A \in C_n^{m \times n}$ 的充要条件是 $AA^- = E_n$;

- (D) 若 A 和 B 分别是行满秩和列满秩矩阵,则(AB)⁺ = B⁺A⁺.
- (A) $X, Y \in A\{1\}$, $\bigcup Z = XAY \in A\{1, 2\}$;

3.下列选项中错误的是 (B)

(B)若谱半径 r(E-A) < 1, 则 $\sum_{k=0}^{\infty} A^k = (E-A)^{-1}$;

(D) $A \in C^{m \times n}$, $\mathbb{M} \operatorname{rank}(A^{H} A) = \operatorname{rank}(AA^{H})$.

- (C) $A \in C^{n \times n}$ 为正规矩阵, U 为酉矩阵且 $B = UAU^H$, 则 B 为正规矩阵;
 - 4.下列选项中**正确**的是 (D)
- (A) $A \in C^{n \times n}$, $\mathbb{M}(A^2)^+ = (A^+)^2$; (B) $A^2 = A(\neq 0)$ 则 $||A||_2 = 1$;
- (C) 设 $A \in \mathbb{R}^{n \times n}$, A 的 n 个特征值 $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$, 则 $\lambda_1 = \max_{x'' \neq -1} x^T Ax$.;
 - (D) $A \in C^{m \times n}$, $\bowtie R(A^+) = R(A^H)$.
 - 5. 下列选项中正确的是 (C)

 - 二. 判断题(20分)(正确的在答题卷涂黑【T】, 错误的涂黑【F】)

(D) 设 V_1, V_2 为空间V 的任意子空间,则 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cup V_2)$.

(A) 设 $x = (x_1, x_2, ..., x_n)^T \in C^n$, 则 $||x|| = \sum_{i=1}^n k_i |x_i|^2 (k_i \ge 0)$ 是 C^n 上向量x的范数;

6. 矩阵 $A \in C^{n \times n}$ 的非零特征值的个数与其非零奇异值的个数一定相等. (×)

(B) 对任意方阵 A, B, 均有 $\cos(A+B) = \cos A \cos B + \sin A \sin B$;

(C) 若 $A^H = A$ 为严格对角占优矩阵且对角元均小于零,则A负定;

- **三.** 设矩阵 $A = \begin{pmatrix} 9 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & -3 \end{pmatrix}$, 求其正特征值的个数.
- 又因为实矩阵 A 如有复特征值必成共轭对出现, 所以 A 的正特征值的个数为 2 个.

(2) 求特征向量: $\lambda_1 = 1$ 对应的特征向量为 $p_1 = (-1,1)^T$;

答案:

 $\lambda_2 = 2$ 对应的特征向量为 $p_2 = (0,1)^T$.

证: (1) 设
$$A = (a_{ij})_{n \times n}$$
, 则 $A^H A = \begin{pmatrix} \frac{a_{11}}{a_{12}} & \frac{a_{21}}{a_{22}} & \cdots & \frac{a_{n1}}{a_{n2}} \\ \frac{a_{11}}{a_{12}} & \frac{a_{22}}{a_{22}} & \cdots & \frac{a_{n1}}{a_{n2}} \\ \frac{a_{21}}{a_{21}} & \frac{a_{22}}{a_{22}} & \cdots & \frac{a_{2n}}{a_{2n}} \\ \frac{a_{21}}{a_{22}} & \frac{a_{22}}{a_{22}} & \cdots & \frac{a_{2n}}{a_{2n}} \\ \frac{a_{21}}{a_{2$

所以 $||A||_{m_2}^2 = tr(A^H A)$ (1分), 同理可得 $||A||_{m_2}^2 = tr(AA^H)$.

因而矩阵 A 的谱半径 $r(A) \le ||A||_{\infty} = 0.9 < 1$,

五. $A \in C^{n \times n}$, 且U, V 为酉矩阵, 证明: (1) $||A||_{m_2}^2 = tr(A^H A)$; (2) $||A||_{m_2} = ||U^H A V||_{m_2}$.

(2) 所以 $||A||_{m_2}^2 = tr(A^H A) = tr(AA^H) = tr(AVV^H A^H) = tr[(AV)(AV)^H]$

故矩阵幂级数 $\sum_{k=0}^{\infty} A^k$ 收敛(2分); (2) 其和为 $(E-A)^{-1} = \frac{2}{3} \begin{bmatrix} 4 & 7 \\ 3 & 9 \end{bmatrix}$.

#2: $|\lambda E - A| = \begin{vmatrix} \lambda - 0.1 & -0.7 \\ -0.3 & \lambda - 0.6 \end{vmatrix} = \lambda^2 - 0.7\lambda - 0.15 = 0$,

(2) 其和为 $(E-A)^{-1} = \frac{2}{3} \begin{bmatrix} 4 & 7 \\ 3 & 9 \end{bmatrix}$.

小范数解; 如无解, 求最小二乘解和最佳逼近解.

七.设 $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$ (1) 求 A 的最大秩分解; (2) 求 A^+ ; (3) 用广义

逆矩阵方法判断线性方程组 Ax=b 是否有解: (4) 线性方程组 Ax=b 如有解, 求通解和最

得 $\lambda_1 = \frac{0.7 + \sqrt{1.09}}{2}$, $\lambda_2 = \frac{0.7 - \sqrt{1.09}}{2}$,

因而矩阵 A 的谱半径 r(A) < 1(2 分),

故矩阵幂级数 $\sum_{k=0}^{\infty} A^k$ 收敛(2分);

解:

矩阵 A 的最大秩分解为 $A=BD = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, (2) $B^{+} = (B^{H}B)^{-1}B^{H} = \frac{1}{10} \begin{pmatrix} 0 & 2 & 4 & 0 \\ 1 & -1 & -2 & 2 \end{pmatrix}$

 $(1) A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $D^{+} = D^{H} (DD^{H})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$

 $A^{+} = D^{+}B^{+} = \frac{1}{30} \begin{pmatrix} -1 & 5 & 10 & -2 \\ 2 & -4 & -8 & 4 \\ 1 & 1 & 2 & 2 \end{pmatrix}$

最小二乘解为 $A^+b+(E-A^-A)u, \forall u \in C^4$

八. A为正规矩阵,证明: $R(A) = R(A^H)$.

(3) $AA^{\dagger}b = \frac{1}{5} \begin{pmatrix} 7 \\ 2 \\ 4 \end{pmatrix} \neq b$,所以无解. (4) 最佳逼近解为 $A^+b = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

答案:

- (1): A 为正规矩阵 $\Leftrightarrow A^{H}A = AA^{H} \Rightarrow R(A^{H}A) = R(AA^{H})$; (2): $R(AA^{H}) \subset R(A)$, $rank(AA^{H}) = rank(A) \implies R(AA^{H}) = R(A)$;
- (3): $R(A^{\mathsf{H}}A) \subset R(A^{\mathsf{H}})$, $\operatorname{rank}(A^{\mathsf{H}}A) = \operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{H}}) \implies R(A^{\mathsf{H}}A) = R(A^{\mathsf{H}})$. 故 $R(A) = R(A^{H})$.

7.
$$A \in C^{n \times n}, x \in C^n$$
 且 $\sigma_1(A)$ 为 A 的最大奇异值,则 $\|Ax\|_2 \le \sigma_1(A) \|x\|_2$. (\vee) 8. 若 $A \in C^{m \times n}$ 的列向量标准正交,则 $A^+ = A^H$. (\vee)

9. 设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
, $x, y \in \mathbb{C}^2$, 则 $(x, y) = x^H A y$ 为 x, y 的内积. (\times)
10. 若矩阵级数 $\sum_{i=1}^{\infty} A_i$ 收敛,则 $\left(\sum_{i=1}^{\infty} A_i\right)^T = \sum_{i=1}^{\infty} A_i^T$.

答金:
$$S_1 = \{z \mid z-9 | \le 2\}$$
, $S_2 = \{z \mid z-3 | \le 2\}$, $S_3 = \{z \mid z+3 | \le 2\}$. 所以三个盖尔圆都是孤立圆盘,故每个盖尔圆中只有一个特征值.

四. 判断矩阵 $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ 是否为单纯矩阵,若为单纯矩阵,求其谱分解.

(1) 由 $|\lambda E - A| = (\lambda_1 - 1)(\lambda_2 - 2) = 0$, 得特征值为 $\lambda_1 = 1, \lambda_2 = 2$, 故可相似对角化.

(3) 谱分解:令 $P = (p_1, p_2) = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$, 则 $P^{-1} = P = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \omega_1^T \\ \omega^T \end{pmatrix}$. $\Leftrightarrow A_1 = p_1 \omega_1^T = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, A_2 = p_2 \omega_2^T = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},$ 故谱分解式为 $A=1A_1+2A_2$.

$$= tr[(AV)^{H}(AV)] = tr(V^{H}A^{H}AV) = tr(V^{H}A^{H}UU^{H}AV) = tr[(U^{H}AV)^{H}(U^{H}AV)]$$
$$= ||U^{H}AV||_{m_{2}}^{2}.$$