This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY

As rescanning documents will not correct images please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11167081 A

(43) Date of publication of application: 22.06.99

(51) Int. CI

G02B 26/10 B41J 2/44 H04N 5/335

(21) Application number: 10267069

(22) Date of filing: 21.09.98

(30) Priority:

30.09.97 US 97 940567

(71) Applicant:

EASTMAN KODAK CO

(72) Inventor:

MARKIS WILLIAM R CUFFNEY ROBERT H WEAVER THOMAS C

(54) VARIABLE FREQUENCY PIXEL CLOCK

(57) Abstract:

PROBLEM TO BE SOLVED: To correct pixel intervals and the expansion of pixel spot by an inexpensive means.

SOLUTION: The variable frequency pixel clock, constituted having a direct digital synthesizer 70, a reference table 60 which gives frequency information to the direct digital synthesizer 70, a 1st oscillator which supplies a reference signal to the direct digital synthesizer 70, and counters 52 and 53 which supplies position information showing the position of a beam along a scanning line to the reference table 60 and generating a series of frequencies programmed so as to compensate variation in beam speed along a scanning line, outputs an output signal having a frequency corresponding to the beam position by the direct digital synthesizer 70.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-167081

(43)公開日 平成11年(1999)6月22日

(51) Int.Cl.*		識別記号	FΙ		
G 0 2 B	26/10		G 0 2 B	26/10	Z
B41J	2/44		H04N	5/335	Z
H 0 4 N	5/335		B41J	3/00	D

審査請求 未請求 請求項の数1 QL (全 8 頁)

(21)出顯番号	特顧平10-267069	(71) 出顧人	590000846
(22)出顧日	平成10年(1998) 9月21日		イーストマン コダック カンパニー アメリカ合衆国, ニューヨーク14650, ロ
			チェスター,ステイト ストリート343
(31)優先権主張番号	940, 567	(72)発明者	ウィリアム・アール・マーキス
(32)優先日	1997年9月30日		アメリカ合衆国・ニューヨーク・14559・
(33)優先権主張国	米国 (US)		スペンサーボート・ギャラップ・ロード・
			577
		(72)発明者	ロパート・エイチ・カフニー
			アメリカ合衆国・ニューヨーク・14472・
			ハニオイ・フォールズ・ヨーク・ストリー
			F · 7
		(74)代理人	弁理士 志賀 正武 (外9名)
			最終頁に続く

(54) 【発明の名称】 周波数可変画素クロック

(57)【要約】

【課題】 画素間隔の修正および画素スポットの伸長の 修正を安価な手段で実施すること。

【解決手段】 ダイレクトデジタルシンセサイザ70 と、ダイレクトデジタルシンセサイザ70に周波数情報を与える参照テーブル60と、ダイレクトデジタルシンセサイザ70に基準信号を与える第1の発振器と、走査線に沿ったビームの位置を示す位置情報を参照テーブルに与えるカウンタ52,53とを有して構成され、走査線に沿ったビーム速度の変動を補償するようにプログラミングされた一連の周波数を発生させる周波数可変画素クロックにおいて、ダイレクトデジタルシンセサイザ70により、ビーム位置に対応した周波数を有する出力信号が出力される。

【特許請求の範囲】

【請求項1】 走査線に沿ったビーム速度の変動を補償 するためにプログラミングされた一連の周波数を発生さ せる周波数可変画素クロックであって、

ダイレクトデジタルシンセサイザと、

前記ダイレクトデジタルシンセサイザに周波数情報を与 える参照テーブルと、

前記ダイレクトデジタルシンセサイザに基準信号を与え る第1の発振器と、

前記走査線に沿った前記ビームの位置を示す位置情報を 10 前記参照テーブルに与えるカウンタとを有して構成さ れ

前記ダイレクトデジタルシンセサイザにより、前記ビー ム位置に対応した周波数を有する出力信号が出力される ことを特徴とする周波数可変画素クロック。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、周波数可変画素 クロック (pixel clock) に係り、特に高速のデジタル 写真製造(写真仕上げ)装置で使用される周波数可変画 20 素クロックに関する。

[関連出願についての参照]: 本特許出願は、1997年 4月21日にWilliam R.Markis により出願され、"補正 用周波数変調機構を備えた発振システム (OSCIL-LATOR SYSTEM WITH CORRECTIVE FREQUENCY MODULATION)"と題 されたアメリカ合衆国特許出願 08/837,633号 の関連出 顧である。

[0002]

【従来の技術および発明が解決しようとする課題】高速 のデジタル写真製造装置では、3色のレーザスキャナが 30 使用され、このレーザスキャナにより、走査した画像が メモリに取り込まれ、画像処理が可能となり、最終的に 感光性受容媒体上にハードコピーのプリントアウトが生 成される。図1には、それぞれレッド、グリーン、およ びブルーの光線を放射する3つのレーザ源12,13, および14を備えたシステム10が示されている。レー ザビームは、画素クロック信号22に同調するプリンタ 回路20から出力される画素データストリームによりそ れぞれ制御される音響光学変調器16,17,および1 8を通過する。3つの音響光学変調器から得られるレー 40 ザビームは、結合器24により光学的に結合され、回転 するポリゴンミラー26上に焦点を合わせられる。そし て、このポリゴンミラーにより、レーザビームが f − θ レンズ30を通してウェブ状の受容媒体28上に走査さ れ、プリントラインが形成される。

【0003】ビームを走査するために使用される装置 は、種々の形態を取ることができる。図1には、1秒間 に多数回回転する多面状の形態を有するミラーから構成 されるポリゴンスキャナが示されている。ポリゴンスキ ャナは、ミラーが回転中心に位置していないために、揺 50

れ (wobble) 、ピラミッド状誤差 (pyramidal error)、 および非線形なスポット速度等の種々の機能的制限を有 している。他の種類のミラースキャナとしては、線形的 でランプ状に駆動されるガルバノメータ(galvanomete r)が上げられる。この装置は、回転中心近傍に配置さ れる単一のミラーから構成される。この種のミラースキ ャナはポリゴンスキャナに付随する揺れを最小化する が、往復運動型装置であることで低速であるという短所 を有している。第3の種類のミラースキャナとしては、 共鳴スキャナ (resonant scanner) が上げられる。この 共鳴スキャナは、部材自体の機械的共鳴周波数で振動す るように正弦波状電気信号で駆動される湾曲部材上のミ ラーから構成される。これらの装置は、線形的でランプ 状に駆動されるガルバノメータが備える長所を有すると ともに、ポリゴンミラーと同等あるいはそれ以上の走査 速度を有している。しかし、共鳴スキャナは回転速度が 変化するため、走査速度に関して、レーザビームの走査 される位置に応じて正弦波的に変化する角速度が与えら れることになる。このようにレーザビームの走査速度が 変化することで、図2に示されるように画素間隔が非線 形的に変化することになる。走査線の両端部では、走査 線の中央部と比較して画素間隔が狭くなっている。この ような画素間隔の問題は、ポリゴンスキャナでも同様に

【0004】 f - 0 レンズでは、入力ビームが走査され る所定の期間において、一定の角度ごとに直接的に与え られる画素配置を実現するために、レンズの歪みの利用 が図られている。それゆえ、共鳴スキャナに付随する画 素間隔の問題は、 $f - \theta$ レンズの機能をその要素として 含有することになる。また、 $f - \theta$ レンズ 3 0 は異なる 波長の光線に対して異なる作用を与えるので、音響光学 変調器 16, 17, および 18 から出力される 3つのレ ーザビームについて、それぞれのビームが受容媒体28 上を横断する見かけ上の走査速度は他のビームの見かけ 上の走査速度と異なるものとなる。ポリゴンスキャナに 関する他の問題としては、図3に示されるように、走査 線上の位置に応じた速度の変化により走査線に沿って異 なるサイズの画素が形成されることが上げられる。走査 線に沿っての見かけ上の走査速度の差異は、8%から1 1%にまで達することがある。

【0005】水晶発振器の出力速度を調整することで、 ビーム間の見かけ上の走査速度の差異を補償する試みが なされている。水晶発振器は時間および温度に対して安 定な出力周波数を有しているので、周波数を 1/2 %以 上変化させる必要があるアプリケーションに適用するに は不適である。したがって、上記のように8%から11 %もの差異が生じる走査速度についての補償を実施する には、水晶発振器の適用のみでは不十分である。

【0006】安定した周波数を有する発振器は、位相同 期ループを用いて構成されている。この位相同期ループ

発生する。

10

20

40

は、基準発振器と、電圧制御型周波数可変発振器と、基 準発振器の出力周波数と実質的に等しくなるように周波 数可変発振器の出力周波数を調整するための分周器(周 波数分割器)と、基準発振器の出力の位相と周波数可変 発振器の出力の位相とを比較するための位相比較器とを 有して構成されている。周波数可変発振器は、位相比較 器の比較出力に応じて制御される。分周器または倍周器 (周波数通倍器)が固定されると、周波数可変発振器の 周波数がロックされ、望ましい周波数を有する信号を確 実に得ることができる。

【0007】上記のようなロック機構を有する従来技術による発振器では、分周器の分割比を変えることで、周波数可変発振器がロックされるべき周波数を変化させることが可能である。しかし、周波数可変発振器がロックされるべき望ましい周波数が基準発振器の出力周波数と比べて比較的に大きく、その結果周波数可変発振器の出力周波数を大きな数で分割する必要がある場合には、分周器の応答時間が望ましくない程度にまで長くなってしまう。分周器の応答時間が長くなると、周波数可変発振器の周波数ロック機能が不安定となり、応答速度が遅くなる。

【0008】補正用周波数変調機能を備えた発振器システムを有する画素クロックを変化させることで上記のような問題を解決する1つの試みが、出願中の特許出願 08/837,633 号に記載されており、この試みはある程度の成功を収めている。しかし、上記の解決手段は、位置決め問題を回避するための装置設定およびハードウエアの位置合わせが必要とされる。

【0009】画素間隔の問題および画素伸長(pixel growth)の問題を修正する他の手段として、これらの問題を修正するように設計された f - 0 レンズの使用が上げられる。しかし、複合レンズは7つもの構成要素を必要とするとともに非常に高価であるので、この解決手段は費用のかかるものとなる。

【0010】本願発明は、従来技術による画素クロックに固有である上述の短所を除去できる改善された画素クロックを提供することを目的とする。本願発明の他の目的は、画素間隔の修正および画素スポットの伸長の修正を安価な手段で実施することである。

[0011]

【課題を解決するための手段】本願発明は、水晶発振器 の正確さに近い長期間の平均的正確さを有するととも に、所定の関数に基づいて走査線内で複数回周波数を変 化させる機能を有する発振器回路を提供する。

【0012】本願発明の1つの特徴によれば、走査線に 沿ったビーム速度の変動を補償するために、周波数可変 画素クロックにより、予めプログラミングされた一連の 周波数が与えられる。画素クロックは、ダイレクトデジ タルシンセサイザ (direct digital synthesizer) と、 ダイレクトデジタルシンセサイザに周波数情報を与える 50 参照テーブルと、ダイレクトデジタルシンセサイザに基準信号を与える第1の発振器とを有して構成されている。カウンタにより、走査線上におけるビームの位置を示す情報が参照テーブルに与えられる。そして、ダイレ

示す情報が参照テーブルに与えられる。そして、ダイレクトデジタルシンセサイザにより、ビームの位置に対応した周波数を有する出力信号が出力される。

4

【0013】本願発明の他の特徴によれば、走査線に沿った種々の書き込み位置における画素速度を制御するために、周波数可変画素クロック回路からイメージスキャナ (image scanner) へ画素クロック信号が出力される。この回路は、ダイレクトデジタルシンセサイザに周波数情報を与える参照テーブルとを有して構成されている。第1の発振器により基準信号がダイレクトデジタルシンセサイザに対して与えられ、カウンタにより走査線上におけるビーム位置を示す情報が参照テーブルに与えられる。そして、ダイレクトデジタルシンセサイザにより、ビームの位置に対応した出力信号が出力される。本願発明の内容、目的、および利点は、以下に示される好適な発明の実施の形態についての詳細な説明からより明らかになるであろう。

[0014]

【発明の実施の形態】以下に記載される好適な発明の実 施の形態についての詳細な説明においては、添付される 図面が参照される。図1は、本願発明に基づく発振器シ ステムが使用されるレーザプリンタを示す概略図であ る。図2は、画素クロックを補正しない場合に共鳴スキ ャナにより画像平面上に形成される画素間隔を示すグラ フである。図3は、ポリゴンスキャナについて補正を行 わないシステムにおいて走査線上の位置の関数として与 えられる画素伸長を示すグラフである。図4は、本願発 明に基づく3色のレーザライタ (laser writer) を示す 概略図である。図5は、本願発明の好適な実施の形態に 基づく発振器システムを示すブロック図である。図6 は、ダイレクトデジタルシンセサイザへロードするタイ ミングを示す図である。図7は、参照テーブル(LU T)内にロードされた周波数補正値の一部を示す図であ る。図8は、それぞれレッド、グリーン、およびブルー のチャネルに対する、画素クロック信号についての周波 数と時間との関係を示すグラフである。

【0015】以下では、特に、本願発明に基づく装置の一部を構成する要素、または本願発明の装置と直接的に協働する要素について説明がなされる。特に図示されない要素または説明されない要素が、いわゆる当業者に周知である種々の形態を取り得ることが解されるであろう。以下では高速のデジタル写真製造装置で使用される3色の走査型レーザシステムに適用されることを前提として本願発明が説明されるが、本願発明が周波数可変画素クロックを利用する他のシステムにも適用可能であることに留意すべきである。

【0016】図4には、本願発明に基づく3色のレーザ ライタ11が示されている。レッドレーザ12、グリー ンレーザ13、およびブルーレーザ14は、それぞれガ ス状態または固体状態にある。それぞれのレーザには、 カプラおよび光ファイバからなる連結部34が取り付け られ、これによりレーザを遠隔位置に設置することが可 能である。カプラおよび光ファイバにより、プリンタ回 路20から信号が入力される音響光学変調器16、1 7、および18ヘレーザビームが導かれる。それぞれの ラインに対しては連続的な画素データが与えられ、3色 10 すべてが同時に書き込まれる。その後、個々のビーム は、フォールドミラー(fold mirror)38とプリズム 40とを有して構成されるビーム結合器39へ導入され る。結合されたビームは、コリメーティングレンズ(∞ llimating lens) 42およびフォールドミラー38を通 過して、共鳴スキャナ44へ向けられる。共鳴スキャナ 44は、正弦波状に変化する速度を有して、結合された ビームを走査する。そして、結合されたビームは、f- θ レンズ3 0へ導入される。この $f - \theta$ レンズ3 0によ り、3色すべてがフィルム位相ドラム46上に焦点を合 20

【0017】図5には、複数チャネルの3色システムにおける周波数可変画素クロック23の単一チャネル45が示されている。ブロック51,52,53,54,および55によりシステムのタイミングが構成されるから、これらのブロックは、それゆえすべてのチャネルにおいて共通であり、以下に詳細に説明される。

わされる。

【0018】好適な実施の形態はダイレクトデジタルシンセサイザ(DDS)70を有して構成され、特にこの装置についてはタイミングとローディング(loading)が詳細に設定される必要がある。このようなダイレクトデジタルシンセサイザの1つが、Analog Devices 社において部品番号 AD9850DDS として製造されている。この種類の装置は、出力信号22について種々の周波数に同調できるように使用されるタイミング信号を与えるマスタークロック55を必要とする。マスタークロック55は、最大125MHzまでの任意の周波数で発振する発振器である。

【0019】DDS70からの出力周波数を設定するために、LUT60からDDS70へ5バイトからなる調 40 整ワードが送られる。バイト単位のコードは、8ビットバス68を介して、1度に1バイトづつLUT60からDDS70へ送られる。論理回路54からは転送クロック信号(W_CLK)がDDSへ送られ、この信号によりそれぞれのバイトコードが計時されて入力されるとともに、次のバイトコードを入力するためにDDSの内部レジスタが進められる。また、論理回路54から入力される他の信号である内部転送クロック信号(FQ_UD)により、5バイトすべてのコードがDDS70内で内部的に他のレジスタへ転送されるとともに、次の5バ 50

イトのためのレジスタ・ポインタがリセットされる。図 6には、DDSに対する上記の処理を実施する際のロー

6には、DDSに対する上記の処理を実施する際のロードタイミング(load timing)が示されている。

6

【0020】8つのアドレスを制御するバイトカウンタ53により形成される下位の3つのアドレスラインのセットが常にアクティブであるように、LUT60は設定される。これにより、新しいデータが継続的にDDS70へ転送される。バイトカウンタ53内の下位の3つのアドレスビットがゼロにラップアラウンドした際には、12ビットカウンタである位置カウンタ52のカウントが1だけ進められる。これにより、新たな5バイトコードを指示するようにLUTの上位12ビットのアドレスが変化させられる。ここで、LUT60はすべての位置に対して8バイトのコードを生成するが、DDS70では更新ごとに5バイトのコードのみを受容し、最後の3バイトが無視されることに留意する必要がある。

【0021】他の言い方をすれば、LUT60について のローディング手続きは、2つのカウンタ52,53を 用いることで実施される。バイトカウンタ53は、フリ ーランニング (free running) の状態にあり、これによ りLUTのアドレスは3ビットの範囲でコード間を一定 に循環する。バイトカウンタ53が000にラップアラ ウンドすると、位置カウンタ52のカウントが1進む。 これにより、バイトカウンタ53の次のサイクルについ て、8つの新しいアドレスが生成される。この新しいア ドレスによりLUT60が更新され、コード中の5バイ トが有効なデータを含む。そして、これらの新しいアド レスには、その前のアドレスのコードとは異なるコード を設定することができるから、異なる周波数を出力する ことができる。アクティブな走査線がその終端に達する まで、位置カウンタ52は上記のように計数を継続す る。そして、位置カウンタ52は、アクティブな走査線 の終端部においてゼロにリセットされるとともに、新し いラインの始まりを示すライン開始信号56を受けるま でその値をゼロに維持する。ライン開始信号を受ける と、位置カウンタ52は再び計数可能となる。周波数更 新信号FQ_UD(T)はバイトカウンタ53のラップ アラウンドに同調され、その結果適切な順序でバイトコ ードが転送される。

【0022】LUT60には、DDS70に送られた際に走査線位置に対応した適切な周波数を生成するコードがロードされている。通常は、図示されないコンピュータにより、バスセパレータ(bus separator)64を用いて参照テーブル(LUT)60へコードがロードされる。

【0023】位置カウンタ52の計数はシステムのライン開始信号56により制御されるので、位置についての正確さが保証される。走査画像処理システム(scan ima gingsystem)の分野においては、画素クロックを、走査線上における空間位置に対して同期させる必要がある。

通常、上記のような同期工程は、固定された検出器を通過する走査ビームにより発生される"ライン開始"信号により実現される。これにより、それぞれの走査線ごとに、時間に係るデータ転送機能と空間に係る物理的走査機能との間の精密な関係が確立される。走査開始信号に同期させられる発振器の構成については、既に種々の方法が周知となっている。

【0024】位置カウンタ52は位置クロック51の8サイクルごとに1進められるので、位置クロックの周波数の選定は、限定的なものとはならないが、参照テープ 10ルのパターン生成を容易にするためには、周波数可変画素クロック23の出力の平均値と一定の関係を有する必要がある。システムの1つの実施の形態においては、画素クロックの名目上の周波数は14MHzに近接するから、位置クロックの周波数を14MHzまたは28MHzにするのが好適である。これにより、それぞれ8画素ごとまたは4画素ごとに新しい周波数を発生することが可能となる。また、論理ブロック54により、LUT60およびDDS70において必要とされるタイミング信号のすべてが与えられる。 20

【0025】装置を動作させる際には、望ましい周波数の組を発生させるのに必要とされる適切な数値がホストコンピュータによりLUT60ヘロードされる。図7には、動作テストにおいて使用される周波数の組の一部が示されている。図8には、それぞれレッド、グリーン、およびブルーのレーザビームについて、動作テストにおいて周波数可変画素クロックにより与えられる周波数と時間との関係を示すグラフが示されている。

【0026】DDS70からの出力は、走査線に沿った 画素間隔を修正するために望ましい周波数を有するコサ 30 イン波として与えられる。そして、デジタルシステムに おいて使用されるクロックエッジを形成するために、コ サイン波信号71は低域通過フィルタ72を通過させら れる。このフィルタにより、信号からほとんどのデジタ ルサンプリングノイズが除去される。その後、フィルタ リングされた信号は、DDS70内の内部比較器に通さ れて、矩形波に変換される。この矩形波が、プリントシ ステムへ送られる画素クロック信号22となる。

【0027】上記の本願明細書中では特定の好適な実施の形態を特に参照して本願発明が詳細に説明されたが、本願発明の思想および範囲内において種々の変更および修正が可能であることが解されるであろう。例えば、上記の実施の形態は共鳴スキャナを対象としているが、本願発明は同様にポリゴンスキャナ、または画素クロックを必要とする他の任意の装置に対して適用することが可能である。

【図面の簡単な説明】

【図1】本願発明に基づく発振器システムが使用される

レーザプリンタを示す概略図である。

【図2】 画素クロックを補正しない場合に共鳴スキャナ により画像平面上に形成される画素間隔を示すグラフで ある。

8

【図3】ポリゴンスキャナについて補正を行わないシステムにおいて走査線上の位置の関数として与えられる画素伸長を示すグラフである。

【図4】本願発明に基づく3色のレーザライタを示す概略図である。

【図5】本願発明の好適な実施の形態に基づく発振器システムを示すブロック図である。

【図6】ダイレクトデジタルシンセサイザへロードする タイミングを示す図である。

【図7】参照テーブル(LUT)内にロードされた周波 数補正値の一部を示す図である。

【図8】(a), (b), 及び(c)はそれぞれレッド、グリーン、およびブルーのチャネルに対する、画素クロック信号についての周波数と時間との関係を示すグラフである。

20 【符号の説明】

- 10 レーザシステム
- 11 レーザライタ
- 12 レッドレーザ
- 13 グリーンレーザ
- 14 ブルーレーザ
- 16, 17, 18 音響光学変調器
- 20 プリンタ回路
- 22 画素クロック信号
- 23 周波数可変画素クロック
-) 30 f-θレンズ
 - 34 カプラおよび光ファイバ
 - 38 フォールドミラー
 - 39 ビーム結合器
 - 40 プリズム
 - 42 コリメーティングレンズ
 - 4.4 共鳴スキャナ
 - 45 チャネル
 - 51 位置クロック
 - 52 位置カウンタ
- 53 バイトカウンタ
 - 54 論理回路
 - 55 マスタークロック
 - 60 参照テーブル
 - 64 バスセパレータ
 - 68 8ビットバス
 - 70 ダイレクトデジタルシンセサイザ
 - 72 低域通過フィルタ

【図1】

【図2】

【図8】

......

【図3】

【図4】

【図5】

【図7】

基準局被数 : 12 00 000000

国業	レッド	グリーン	プルー	インデクッス		位相ワード	
位置	• - •		• •		レッド	グリーン	アルー
	15077185.24	15060480.76	15052342.68	. 0	539633479	539035603	538744329
ă	15076011.88	15059308.7	15051171.26	. 1	539591483	538993653	538702403
16	15074888.52	15058136.64	15049999.83	2	539549487	538951704	538660476
24	15073665.17	15056964.59	15048828.41	3	539507491	838909754	538618549
•		•	•	:	:	:	÷
440	14974047.04	14957456.83	14949374.42	55	535942019	535348233	835058962
448	14967358.9	14950776.1	14942697.3	56	535702642	535109120	5348 19968
456	14960670.76	14944095.37	14936020.18	57	535463264	534870007	534580985

【図6】

フロントページの続き

(72)発明者 トーマス・シー・ウィーヴァー アメリカ合衆国・ニューヨーク・14551・ ソウダス・ピルグリムポート・ロード・ 4639