CORSO DI OTTIMIZZAZIONE

Prova scritta del 7 Giugno 2017

Tempo a disposizione: ore 2:00.

Si ricorda che:

- Per quanto possibile, occorre scrivere in bella calligrafia (il testo illeggibile non verrà preso in considerazione).
- Su tutti i fogli che vi abbiamo consegnato occorre riportare cognome, nome e numero di matricola.
- Occorre riportare in modo chiaro tutti i passi che portano alla determinazione del risultato.
- Il numero dell'esercizio che si sta svolgendo va sempre riportato in modo chiaro.
- Non è consentita la consultazione di appunti, libri, etc.
- Non è consentito l'uso di calcolatrici, telefoni cellulari, etc.
- Non è concesso chiedere alcunché ai docenti e agli altri studenti.
- Occorre consegnare anche la brutta copia ai docenti.

Esercizio 1. (Punti 8)

Un'azienda deve allocare i suoi n^2 dipendenti ai suoi n stabilimenti, ad ognuno di essi destinando esattamente n dipendenti. Ogni dipendente $i \in \{1, ..., n^2\}$ abita nella città $c_i \in \{1, ..., m\}$, ed ogni città $k \in \{1, ..., m\}$ dista d_{kj} dallo stabilimento $j \in \{1, ..., n\}$. Obiettivo dell'azienda è minimizzare i rimborsi spese dovuti complessivamente ai dipendenti, che sono proporzionali alla distanza tra la città di residenza e lo stabilimento di lavoro. Si formuli in PLI tale problema.

Esercizio 2. (Punti 4, la risposta occupi al massimo 15 righe)

Parlando di reti, abbiamo visto *due* diverse nozioni di grafo residuo. Quali? In che contesto? Che differenze intercorrono tra di esse?

Esercizio 3. (Punti 8)

Si risolva, tramite l'algoritmo del simplesso primale, il seguente problema di programmazione lineare:

$$\min 2x_1 + 6x_2$$

$$x_1 \le 0$$
 $2x_2 \le x_1$ $x_2 \ge x_1 - 2$ $x_2 \le x_1 + 1$

Si parta dalla base ammissibile corrispondente ai vincoli della prima riga.

Esercizio 4. (Punti 8)

Si risolva il seguente problema MF con tramite l'algoritmo di Goldberg-Tarjan.

Esercizio 5. (Punti 4)

Nell'ambito del modello PLI dell'Esercizio 1, si consideri il seguente, ulteriore vincolo. Ogni dipendente $i \in \{1, \dots, n^2\}$ può fissare un giorno della settimana $g_i \in \{1, \dots, 7\}$ in cui il dipendente stesso non è libero. Occorre però garantire che in ogni stabilimento j e in ogni giorno della settimana, ci siano almeno un certo numero p di dipendenti disponibili a lavorare in quel giorno presso lo stabilimento j. Si formuli tale vincolo.