Problem set 1

K Kytölä & M Orlich

(Exercise sessions: 13.-14.2.2022) Hand-in due: Tue 18.1.2022 at 23:59

Fill-in-the-blanks 1. Complete the following proofs about injectivity, surjectivity, and bijectivity of two functions given by the same formula, but with different domains and codomains.

Claim (a): Consider the function $f: \mathbb{R} \to [0, \infty)$ given by $f(x) = x^2$ for $x \in \mathbb{R}$. This f is surjective but not injective. It is not bijective.

Proof of (a). To prove surjectivity of f, we must show that for every $y \in [0, \infty)$ there exists ______ such that f(x) = y.

Let $y \in [0, \infty)$. The non-negative number y has a non-negative square root $x = \sqrt{y} \ge 0$. Then we have

$$f(x) = x^2 = (\sqrt{y})^2 =$$
____.

Since $x \in \mathbb{R}$, this shows that f is surjective.

Consider for example $x_1 = -3$ and $x_2 =$ ____. We have $f(x_1) = f(-3) = (-3)^2 = 9 = (____)^2 = f(___) = f(x_2)$. Since $x_1 \neq x_2$, this shows that f is not injective.

Finally, f is not bijective because it ______.

Claim (b): Consider the function $g: [0, \infty) \to \mathbb{R}$ given by $g(x) = x^2$ for $x \in [0, \infty)$. This g is injective but not surjective. It is not bijective.

Proof of (b). To prove non-surjectivity of g, we must show that for some $y \in \mathbb{R}$ there does not exists any ______ such that g(x) = y. For example y = -1 works, because for any x we have $g(x) = x^2 \ge$ _____ and thus in particular $g(x) \ne -1 = y$.

To show injectivity of g, we must prove that if for $x_1, x_2 \in \underline{\hspace{1cm}}$ we have $g(x_1) = g(x_2)$, then necessarily $x_1 = x_2$. So suppose that x_1, x_2 are such a pair. From $x_1^2 = g(x_1) = g(x_2) = x_2^2$, we then get $x_1 = \pm \sqrt{x_2^2} = \pm |x_2|$. However, since $\underline{\hspace{1cm}}$, this is only possible if $x_1 = x_2$. Injectivity follows.

Now g is not bijective because it ______. \square

Fill-in-the-blanks 2. Complete the following proof of the squeeze theorem (sandwich principle, lemma of two policemen).

Claim: If three sequences $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, and $(c_n)_{n\in\mathbb{N}}$ of real numbers satisfy $a_n \leq b_n \leq c_n$ starting from some index, and if

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = \beta \in \mathbb{R},$$

then the sequence $(b_n)_{n\in\mathbb{N}}$ also converges, and $\lim_{n\to\infty} b_n = \beta$.

Proof. Since the beginning of a sequence affects neither the convergence nor the limit of the sequence, we may assume that $a_n \leq b_n \leq c_n$ holds for all $n \in \mathbb{N}$. We will show that $\lim_{n\to\infty} b_n = \beta$.

Let $\varepsilon > 0$. We must show that $|b_n - \beta| < \varepsilon$ from some index on.

Idea: the expression $b_n - \beta$ has to be estimated from both directions; one relying on the sequence $(a_n)_{n \in \mathbb{N}}$, and the other on the sequence $(c_n)_{n \in \mathbb{N}}$. (Draw a figure!)

Since	$\lim_{n\to\infty} a_n = \beta$ and $\varepsilon > 0$, there exists an $n'_{\varepsilon} \in \mathbb{N}$ such that
	for all $n \geq n'_{\varepsilon}$.
Since	$\lim_{n\to\infty} c_n = \beta$ and $\varepsilon > 0$, there exists an $n''_{\varepsilon} \in \mathbb{N}$ such that
	for all
Now o	choose

With this choice, for any $n \geq n_{\varepsilon}$ we have $n \geq n'_{\varepsilon}$. Therefore we get

$$\beta - b_n \le \beta - a_n \le |\beta - a_n| < \underline{\hspace{1cm}}$$

(the leftmost inequality holds by virtue of the assumption $a_n \leq b_n$). Similarly, for $n \geq n_{\varepsilon}$ we have $n \geq n_{\varepsilon}''$, so we get

$$b_n - \beta \leq c_n - \beta \leq \underline{} < \underline{}$$

(the leftmost inequality holds by virtue of the assumption $b_n \leq c_n$). The above inequalities imply that

$$|b_n - \beta| < \underline{\hspace{1cm}}$$

for all $n \geq n_{\varepsilon}$. We have thus proved the claim. \square