Quantum Field Theory 1 Prof. S. Forte a.a. 2024-25

Leonardo Cerasi 1 GitHub repository: LeonardoCerasi/notes

 $^{^{1}{\}rm leo.cerasi@pm.me}$

Contents

Contents			i	
Ι	Fie	eld Theory	1	
1		ssical Field Theory	2	
	1.1	Continuous limit		
		1.1.1 One-dimensional harmonic crystal	2	
		1.1.2 One-dimensional harmonic string	4	
	1.2	Spacetime symmetries	5	
		1.2.1 Lie groups	5	
		1.2.2 Lorentz group	6	
		1.2.3 Poincaré group	12	
	1.3	Classical equations of motion	14	

Classical Field Theory

1.1 Continuous limit

1.1.1 One-dimensional harmonic crystal

Consider a simple one-dimensional model of a crystal where atoms of mass $m \equiv 1$ lie at rest on the x-axis, with equilibrium positions labelled by $n \in \mathbb{N}$ and equally spaced by a distance a.

Assuming these atoms are free to vibrate only in the x direction (longitudinal waves), and denoting the displacement of the atom at position n as η_n , one can write the Lagrangian for a harmonic crystal as:

$$L = \sum_{n} \left[\frac{1}{2} \dot{\eta}_{n}^{2} - \frac{\lambda}{2} \left(\eta_{n} - \eta_{n-1} \right)^{2} \right]$$
 (1.1)

where λ is the spring constant. From the Lagrange equations, the classical equations of motions are:

$$\ddot{\eta}_n = \lambda \left(\eta_{n+1} - 2\eta_n + \eta_{n-1} \right) \tag{1.2}$$

The solutions can be written as complex travelling waves:

$$\eta_n(t) = e^{i(kn - \omega t)} \tag{1.3}$$

where the dispersion relation is:

$$\omega^2 = 2\lambda \left(1 - \cos k\right) \approx \lambda k^2 \tag{1.4}$$

Therefore, in the long-wavelength limit $k \ll 1$ waves propagate with velocity $c = \sqrt{\lambda}$. To determine the normal modes, there need to be boundary conditions: imposing boundary conditions:

$$\eta_{n+N} = \eta_n \qquad \Rightarrow \qquad k_m = \frac{2\pi m}{N}, \ m = 0, 1, \dots, N-1$$
(1.5)

The normal-mode expansion can then be written as:

$$\eta(t) = \sum_{m=0}^{N-1} \left[\mathcal{A}_m e^{i(k_m n - \omega_m t)} + \mathcal{A}^* e^{-i(k_m n - \omega_m t)} \right]$$

$$\tag{1.6}$$

where the complex conjugate is added to ensure that the total displacement is real. The momentum canonically-conjugated to the displacement is defined as:

$$\pi_n := \frac{\partial L}{\partial \dot{\eta}_n} = \dot{\eta}_n \tag{1.7}$$

In quantum mechanics, η_n and Π_n become operators with canonical commutator $[\hat{\eta}_i, \hat{\pi}_k] = i\hbar \delta_{ik}$. Implementing time evolution with the Heisenberg picture¹:

$$[\hat{\eta}_j(t), \hat{\pi}_k(t)] = i\hbar \delta_{jk} \tag{1.8}$$

The commutator of operators evaluated at different times requires solving the dynamics of the system. It is useful to introduce annihilation and creation operators ${}^2\hat{a}(t)$ and $\hat{a}^{\dagger}(t)$, so that Eq. 1.6 becomes:

$$\hat{\eta}_n(t) = \sum_{m=0}^{N-1} \sqrt{\frac{\hbar}{2\omega_m}} \frac{1}{\sqrt{N}} \left[e^{i(k_m n - \omega_m t)} \hat{a}_m + e^{-i(k_m n - \omega_m t)} \hat{a}_m^{\dagger} \right]$$
 (1.9)

where $[\hat{a}_j, \hat{a}_k^{\dagger}] = \delta_{jk}$ and the $N^{-1/2}$ ensures the normalization of normal modes. The proof of Eq. 1.8 follows from the finite Fourier series identity (sum of a geometric progression):

$$\sum_{m=0}^{N-1} e^{ik_m(n-n')} = N\delta_{nn'} \tag{1.10}$$

The Hamiltonian of the system can be written as:

$$\hat{\mathcal{H}} = \sum_{n} \left[\frac{1}{2} \hat{\pi}_{n}^{2} + \frac{\lambda}{2} \left(\hat{\eta}_{n} - \hat{\eta}_{n-1} \right)^{2} \right] = \sum_{m=0}^{N-1} \hbar \omega_{m} \left(\hat{a}_{m}^{\dagger} \hat{a}_{m} + \frac{1}{2} \right)$$
 (1.11)

Generalizing the harmonic oscillator operator algebra (proven unique by Von Neumann), one can construct the Hilbert space for the harmonic crystal as:

$$\hat{a}_m |0\rangle \quad \forall m = 0, 1, \dots, N - 1 \tag{1.12}$$

$$|n_0, n_1, \dots, n_{N-1}\rangle = \prod_{m=0}^{N-1} \frac{(\hat{a}_m^{\dagger})^{n_m}}{\sqrt{n_m!}} |0\rangle$$
 (1.13)

These are normalized eigenstates of Eq. 1.1 with energy eigenvalues:

$$E_0 = \frac{1}{2} \sum_{m=0}^{N-1} \hbar \omega_m \tag{1.14}$$

$$E_{n_0,n_1,\dots,n_{N-1}} = E_0 + \sum_{m=0}^{N-1} n_m \hbar \omega_m$$
 (1.15)

This Hilbert space is called Fock space and the excited states phonons: these can be thought as "particles" and n_m is the number of phonons in the m^{th} normal mode.

$$\hat{x}(t) = \sqrt{\frac{\hbar}{2\omega}} \left[\hat{a}(t) + \hat{a}^{\dagger}(t) \right] \qquad \qquad \hat{p}(t) = -i\omega\sqrt{\frac{\hbar}{2\omega}} \left[\hat{a}(t) - \hat{a}^{\dagger}(t) \right]$$

Inverting these expressions one finds $[\hat{a}(t), \hat{a}^{\dagger}(t)] = 1$ and $\hat{\mathcal{H}} = \hbar\omega \left(\hat{a}^{\dagger}(t)\hat{a} + \frac{1}{2}\right)$. The time evolution $\hat{a}(t) = e^{-i\omega t}\hat{a}(0)$ ensures that $\hat{\mathcal{H}}$ is times-independent.

¹Recall that $\hat{\mathcal{O}}(t) = e^{\frac{i}{\hbar}\hat{\mathcal{H}}t}\hat{\mathcal{O}}(0)e^{-\frac{i}{\hbar}\hat{\mathcal{H}}t}$ and $\frac{\mathrm{d}\hat{\mathcal{O}}}{\mathrm{d}t} = \frac{i}{\hbar}[\hat{\mathcal{H}},\hat{\mathcal{O}}].$ ²For a harmonic oscillator $\hat{\mathcal{H}} = \frac{1}{2}\hat{p}^2 + \frac{1}{2}\omega^2\hat{x}^2$, so $\frac{\mathrm{d}\hat{x}}{\mathrm{d}t} = \hat{p}(t)$ and $\frac{\mathrm{d}\hat{p}}{\mathrm{d}t} = -\omega^2\hat{x}(t)$ and the solution can be written as:

1.1.2 One-dimensional harmonic string

Taking the continuum limit, the crystal becomes a string: to achieve this, one takes the limits $a \to 0$ and $N \to \infty$ while keeping the total length $R \equiv Na$ fixed. In this context, the displacement becomes a field $\eta(x,t)$ dependent on the continuous real coordinate $x \in [0,R]$, therefore:

$$(\eta_{n+1} - \eta_n)^2 \longrightarrow a^2 \left(\frac{\partial \eta}{\partial x}\right)^2 \qquad \sum_n \longrightarrow \frac{1}{a} \int_0^R dx$$

Proposition 1.1.1. In the continuous limit:

$$\frac{\delta_{nn'}}{a} \longrightarrow \delta(x - x') = \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} e^{ik(x - x')}$$

Proof. By direct calculation:

4

$$a\sum_{n} f(an)\frac{\delta_{nm}}{a} = f(ma) \longrightarrow f(y) = \int_{0}^{R} dx \, f(x)\delta(x-y)$$

Recalling Eq. 1.10, since $k_m n = \frac{k_m}{a} n a \to k x$, symmetrizing $k_m \in [-\pi, \pi]$ (instead of $[0, 2\pi]$) one finds:

$$\delta(x - x') \longleftarrow \frac{\delta_{nn'}}{a} = \frac{1}{Na} \sum_{m} e^{ik_m(n-n')} \longrightarrow \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} e^{ik(x-x')}$$

where integration limits are $\pm \frac{\pi}{a} \to \pm \infty$.

Proof. The inverse Fourier transform of the Dirac Delta reads:

$$\int_0^R \mathrm{d}x \, e^{i(k-k')x} = 2\pi\delta(k-k')$$

By these relations, it can be seen that $\frac{dk}{2\pi}$ has the physical meaning of the number of normal modes per unit spatial volume with wavenumber between k and k + dk, while the interpretation of the divergent $\delta(0)$ varies: in x space, it is the reciprocal of the lattice spacing, i.e. the number of normal modes per unit spatial volume, but in k space $2\pi\delta(0)$ is the (hyper-)volume of the system. In the continuous limit, the Lagrangian of the harmonic string becomes:

$$L = \int_0^R dx \left[\frac{1}{2} \rho_0 (\partial_t \eta)^2 - \frac{\kappa}{2} (\partial_x \eta)^2 \right]$$

where ρ_0 is the equilibrium mass density of the string. It is customary to absorb constants in the fields, thus, setting $\phi(x,t) \equiv \sqrt{\rho_0}\eta(x,t)$ and $\kappa = c^2\rho_0$ and adding a pinning term $\propto \varphi^2$, the Lagrangian can be written as:

$$L = \int_0^R dx \left[\frac{1}{2} (\partial_t \phi)^2 - \frac{c^2}{2} (\partial_x \phi)^2 - \frac{m^2 c^4}{2} \phi^2 \right]$$
 (1.16)

The classical equation of motion of this field yields:

$$\partial_t^2 \phi = c^2 \partial_x^2 \phi - m^2 c^4 \phi \tag{1.17}$$

The solutions of this wave equation can be written as:

$$\phi(x,t) = e^{i(kx - \omega_k t)} \tag{1.18}$$

with dispersion relation:

$$\omega_k^2 = c^2 k^2 + m^2 c^4 \tag{1.19}$$

To quantize this system, one needs to compute the Hamiltonian. The canonical momentum field is:

$$\Pi(x,t) := \frac{\partial L}{\partial(\partial_t \phi)} = \partial_t \phi(x,t)$$
(1.20)

The classical Hamiltonian can then be found as:

$$\hat{\mathcal{H}} = \int_0^R dx \left[\frac{1}{2} \Pi^2 + \frac{c^2}{2} (\partial_x \phi)^2 + \frac{m^2 c^4}{2} \phi^2 \right]$$
 (1.21)

The quantum field is analogous to Eq. 1.9:

$$\hat{\phi}(x,t) = \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} \sqrt{\frac{\hbar}{2\omega_k}} \left[e^{i(kx - \omega_k t)} \hat{a}_k + e^{-i(kx - \omega_k t)} \hat{a}_k^{\dagger} \right]$$
(1.22)

with commutation relations:

$$[\hat{a}_k, \hat{a}_{k'}^{\dagger}] = 2\pi\delta(k - k') \tag{1.23}$$

$$[\hat{\phi}(x,t),\hat{\Pi}(x',t)] = i\hbar\delta(x-x') \tag{1.24}$$

The quantum Hamiltonian can be written as:

$$\hat{\mathcal{H}} = \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} \frac{1}{2} \hbar \omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + \hat{a}_k \hat{a}_k^{\dagger} \right) = E_0 + \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} \hbar \omega_k \hat{a}_k^{\dagger} \hat{a}_k$$
 (1.25)

The ground-state energy can be computed from Eq. 1.14, defining Vol := $2\pi\delta(k=0)$:

$$E_0 = \text{Vol} \int_{\mathbb{R}} \frac{\mathrm{d}k}{2\pi} \frac{1}{2} \hbar \omega_k \tag{1.26}$$

For a strictly continuous system there is no cut-off in the k integral, thus the zero-point energy diverges: however, this is not necessarily a problem, as often only changes in E_0 are relevant (and experimentally accessible), and in this case it is known as $Casimir\ energy$.

1.2 Spacetime symmetries

1.2.1 Lie groups

Definition 1.2.1. A *Lie group* is a group whose elements depend in a continuous and differentiable way on a set of real parameters $\{\theta_a\}_{a=1,\dots,d} \subset \mathbb{R}^d$.

A Lie group can be seen both as a group and as a d-dimensional differentiable manifold (with coordinates θ_a). WLOG it is always possible to choose $g(0, \ldots, 0) = e$.

Definition 1.2.2. Given a group G and a vector space $V(\mathbb{K})$, a representation of G on V is a homomorphism $\rho: G \to \mathrm{GL}(V)$.

Given the isomorphism $GL(V) \to \mathbb{K}^{n \times n}$, with $n \equiv \dim_{\mathbb{K}} V$, it is usual to de facto represent G as matrices acting on elements of V, i.e. $\rho: G \to \mathbb{K}^{n \times n}$.

Proposition 1.2.1. Given a Lie group G and $g \in G$ connected with the identity, a representation of degree n on $V(\mathbb{C})$ as:

$$\rho(g(\theta)) = e^{i\theta_a T^a} \tag{1.27}$$

where $\{T^a\}_{a=1,\dots,d} \subset \mathbb{C}^{n\times n}$ are the generators of G on V.

Definition 1.2.3. Given a Lie group G with generators $\{T^a\}_{a=1,\dots,d} \subset \mathbb{C}^{n\times n}$ on $V(\mathbb{C})$, its Lie algebra is:

$$[T^a, T^b] = i f^{ab}_{c} T^c \tag{1.28}$$

where f_{c}^{ab} are called the *structure constants*.

6

Proposition 1.2.2. The Lie algebra of a Lie group is independent of the representation.

Proposition 1.2.3. Any d-dimensional abelian Lie algebra is isomorphic to the direct sum of d one-dimensional Lie algebras.

As a consequence, all irreducible representations of an abelian Lie group are of degree n=1.

Definition 1.2.4. Given a Lie group with generators $\{T^a\}_{a=1,\dots,d} \subset \mathbb{C}^{n\times n}$ on $V(\mathbb{C})$, a Casimir operator is an operator which commutes with each generator.

Given an irreducible representation, Casimir operators are operators proportional to id_V , and the proportionality constants can be used to label the representation: they correspond to conserved physical quantities.

Proposition 1.2.4. A non-compact group cannot have finite unitary representations, except for those with trivial non-compact generators.

This means that the non-compact component of a group cannot be represented with unitary operators of finite dimension.

1.2.2 Lorentz group

Consider the group of linear transformations $x^{\mu} \mapsto \Lambda^{\mu}_{\nu} x^{\nu}$ on $\mathbb{R}^{1,3}$ which leave invariant the quantity $\eta_{\mu\nu} x^{\mu} x^{\nu}$, i.e. the orthogonal group O(1,3) (with signature (+,-,-,-)). The condition that Λ^{μ}_{ν} must satisfy reads:

$$\eta_{\rho\sigma} = \eta_{\mu\nu} \Lambda^{\mu}_{\ \rho} \Lambda^{\nu}_{\ \sigma} \tag{1.29}$$

This implies that $\det \Lambda = \pm 1$: a transformation with $\det \Lambda = -1$ can always be written as the product of a transformation with $\det \Lambda = 1$ and a discrete transformation which reverses the sign of an odd number of coordinates. One further defines $SO(1,3) := \{\Lambda \in O(1,3) : \det \Lambda = 1\}$.

Writing explicitly the temporal component $1 = (\Lambda^0_0)^2 - (\Lambda^1_0)^2 - (\Lambda^2_0)^2 - (\Lambda^3_0)^2$, it is clear that $(\Lambda^0_0)^2 \ge 1$. Therefore, O(1,3) has two disconnected components: the orthochronous component with $\Lambda^0_0 \ge 1$ and the non-orthochronous component with $\Lambda^0_0 \le 1$. Any non-orthochronous transformation can be written as the product of an orthochronous transformation and a directe transformation which reverses the sign of the temporal component.

Definition 1.2.5. The Lorentz group $SO^+(1,3)$ is the orthochronous component of SO(1,3).

The discrete transformations are factored out of the Lorentz group: these are parity and time reversal, which can be represented as $\mathcal{P}^{\mu}_{\nu} = \operatorname{diag}(+1, -1, -1, -1)$ and $\mathcal{T}^{\mu}_{\nu} = \operatorname{diag}(-1, +1, +1, +1)$. Applying these discrete transformations in all combinations (id, \mathcal{P} , \mathcal{T} and $\mathcal{P}\mathcal{T}$) one gets the four disconnected components of SO(1,3), which are not simply connected. This means that Lorentz invariance does not include parity and time reversal invariance.

Considering the infinitesimal transformation and applying Eq. 1.29:

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} + \omega^{\mu}_{\ \nu} \qquad \Rightarrow \qquad \omega_{\mu\nu} = -\omega_{\nu\mu}$$

Anti-symmetry means that $\omega_{\mu\nu}$ has only 6 parameters, which define the Lorentz group: these can be identified by the 3 angles of spherical rotations in the (x, y), (y, z) and (z, x) planes and the 3 rapidities of hyperbolic rotations in the (t, x), (t, y) and (t, z) planes.

Proposition 1.2.5. The Lorentz group is a non-compact Lie group.

Proof. Spherical and hyperbolic rotations are continuous and differential w.r.t. angles and rapidities, but while angles vary in $[0, 2\pi)$, rapidities vary in \mathbb{R} , so the differentiable manifold associated to $SO^+(1,3)$ is not compact.

1.2.2.1 Lorentz algebra

The 6 parameters of the Lorentz group correspond to 6 generators of the associated Lorentz algebra. Labelling these generators as $J^{\mu\nu}:J^{\mu\nu}=-J^{\nu\mu}$, the generic element $\Lambda\in \mathrm{SO}^+(1,3)$ can be written as:

$$\Lambda = e^{-\frac{i}{2}\omega_{\mu\nu}J^{\mu\nu}} \tag{1.30}$$

The $\frac{1}{2}$ factor arises from each generator being counted twice (product of two anti-symmetric objects). Given a n-dimensional representation of $SO^+(1,3)$, both $[J^{\mu\nu}]^i_j$ and $[\Lambda]^i_j$ are $\mathbb{C}^{n\times n}$ matrices (Λ is real): for example, the n=1 representation acts on scalars, which are invariant under Lorentz transformations, so $J^{\mu\nu}\equiv 0\,\forall\mu,\nu=0,\ldots,3$.

4-vectors The n=4 representation acts on contravariant 4-vectors v^{μ} , which transform according to $v^{\mu} \mapsto \Lambda^{\mu}_{\ \nu} v^{\nu}$, and covariant 4-vectors v_{μ} , which transform according to $v_{\mu} \mapsto \Lambda_{\mu}^{\ \nu} v_{\nu}$. In this representation, the generators are represented as $\mathbb{C}^{4\times 4}$ matrices:

$$[J^{\mu\nu}]^{\rho}_{\sigma} = i \left(\eta^{\mu\rho} \delta^{\nu}_{\sigma} - \eta^{\nu\rho} \delta^{\mu}_{\sigma} \right) \tag{1.31}$$

This is an irreducible representation, and the associated Lie algebra $\mathfrak{so}^+(1,3)$, called the *Lorentz algebra*, is:

$$[J^{\mu\nu}, J^{\sigma\rho}] = i \left(\eta^{\nu\rho} J^{\mu\sigma} - \eta^{\mu\rho} J^{\nu\sigma} - \eta^{\nu\sigma} J^{\mu\rho} + \eta^{\mu\rho} J^{\nu\sigma} \right)$$
(1.32)

It is convenient to rearrange the 6 components of $J^{\mu\nu}$ into two spatial vectors:

$$J^{i} := \frac{1}{2} \epsilon^{ijk} J^{jk} \qquad K^{i} := J^{i0}$$

$$\tag{1.33}$$

The $\mathfrak{so}^+(1,3)$ can then be rewritten as:

$$[J^i, J^j] = i\epsilon^{ijk}J^k \qquad [J^i, K^j] = i\epsilon^{ijk}K^k \qquad [K^i, K^j] = -i\epsilon^{ijk}J^k \qquad (1.34)$$

The first equation defines a $\mathfrak{su}(2)$ sub-algebra, thus showing that J^i are the generators of angular momentum. Angles and rapidities are then defined as:

$$\theta^i := \frac{1}{2} \epsilon^{ijk} \omega^{jk} \qquad \qquad \eta^i := \omega^{i0} \tag{1.35}$$

so that:

8

$$\Lambda = \exp\left[-i\boldsymbol{\theta} \cdot \mathbf{J} + i\boldsymbol{\eta} \cdot \mathbf{K}\right] \tag{1.36}$$

This definition reflect the *alias* interpretation: the angles define counterclockwise rotations of vectors with respect to a fixed reference frame, while rapidities define boosts wich increase velocities with respect to said frame.

1.2.2.2 Tensor Representations

A generic (p,q)-tensor transforms as:

$$T^{\mu_1\dots\mu_p}_{\nu_1\dots\nu_q} \mapsto \Lambda^{\mu_1}_{\alpha_1}\dots\Lambda^{\mu_p}_{\alpha_p}\Lambda_{\nu_1}^{\beta_1}\dots\Lambda_{\nu_q}^{\beta_q}T^{\alpha_1\dots\alpha_p}_{\beta_1\dots\beta_q}$$
(1.37)

The representation of the Lorentz group which acts on (p,q)-tensors is of degree $n=4^{p+q}$, however it is reducible into the direct product of p+q 4-dimensional representations as of Eq. 1.38. Moreover, consider the action of the Lorentz group on (2,0)-tensors: being $T^{\mu\nu} \mapsto \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}T^{\alpha\beta}$, if $T^{\mu\nu}$ is (anti-)symmetric it will remain so under a Lorentz transformation. Therefore, the 16-dimensional representation reduces to a 6-dimensional representation on anti-symmetric tensors and a 10-dimensional representation of symmetric tensors. Furthermore, the trace of a symmetric tensor is invariant, as $T \equiv \eta_{\mu\nu}T^{\mu\nu} \mapsto \eta_{\mu\nu}\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}T^{\alpha\beta} = T$, so the latter representation further reduces into a 9-dimensional representation on symmetric traceless tensors and a 1-dimensional representation on scalars. This means that:

$$4 \otimes 4 = 1 \oplus 6 \oplus 9 \tag{1.38}$$

These are irreducible representations which, given a generic tensor $T^{\mu\nu}$, act on S, $A^{\mu\nu}$ and $S^{\mu\nu} - \frac{1}{4}\eta^{\mu\nu}S$ respectively, with $A^{\mu\nu} \equiv \frac{1}{2} \left(T^{\mu\nu} - T^{\nu\mu} \right)$ and $S^{\mu\nu} \equiv \frac{1}{2} \left(T^{\mu\nu} + T^{\nu\mu} \right)$.

Decomposition under rotations Restricting the action to the SO(3) sub-group of SO⁺(1,3), tensors can be decomposed according to irreducible representations of SO(3), which are labelled by the angular momentum $j \in \mathbb{N}_0$ and are of degree n = 2j + 1. Also recall the Clebsh-Gordan composition of angular momenta:

$$\mathbf{j}_1 \otimes \mathbf{j}_2 = \bigoplus_{j=|j_1-j_2|}^{j_1+j_2} \mathbf{j} \tag{1.39}$$

A Lorentz scalar α is a scalar under rotations too, so $\alpha \in \mathbf{0}$. A 4-vector v^{μ} is irreducible under the action of $\mathrm{SO}^+(1,3)$, but under $\mathrm{SO}(3)$ it is decomposed into v^0 and \mathbf{v} , so $v^{\mu} \in \mathbf{0} \oplus \mathbf{1}$. A (2,0)-tensor then is:

$$T^{\mu\nu} \in (\mathbf{0} \oplus \mathbf{1}) \otimes (\mathbf{0} \oplus \mathbf{1}) = (\mathbf{0} \otimes \mathbf{0}) \oplus (\mathbf{0} \otimes \mathbf{1}) \oplus (\mathbf{1} \otimes \mathbf{0}) \oplus (\mathbf{1} \otimes \mathbf{1})$$
$$= \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1} \oplus (\mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2})$$

This is equivalent to Eq. 1.38: the trace is a scalar, so $S \in \mathbf{0}$, while the anti-symmetric part can be written as two spatial vectors A^{0i} and $\frac{1}{2}\epsilon^{ijk}A^{jk}$, so $A^{\mu\nu} \in \mathbf{1} \oplus \mathbf{1}$. The traceless symmetric part then

decomposes as $\bar{S}^{\mu\nu} \in \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2}$ under spatial rotations.

Equivalently, $T^{\mu\nu}$ can be decomposed into $T^{00} \in (\mathbf{0} \otimes \mathbf{0})$, $T^{0i} \in (\mathbf{0} \otimes \mathbf{1})$, $T^{i0} \in (\mathbf{1} \otimes \mathbf{0})$ and $T^{ij} \in (\mathbf{1} \otimes \mathbf{1})$: the formers are a scalar and two spatial vectors associated to $\mathbf{0} \oplus \mathbf{1} \oplus \mathbf{1}$, while the latter can be decomposed into the trace, which is $\mathbf{0}$, the anti-symmetric part, which is $\mathbf{1}$ ($\epsilon^{ijk}A^{jk}$), and the traceless symmetric part, which is $\mathbf{2}$.

Example 1.2.1. Gravitational waves in de Donder gauge are described by a traceless symmetric matrix, therefore they have j = 2 (spin of the graviton).

There are two *invariant tensors* under SO⁺(1,3): the metric $\eta_{\mu\nu}$, by Eq. 1.29, and the Levi-Civita symbol $\epsilon^{\mu\nu\sigma\rho}$:

$$\epsilon^{\mu\nu\sigma\rho}\mapsto \Lambda^{\mu}_{\ \alpha}\Lambda^{\nu}_{\ \beta}\Lambda^{\sigma}_{\ \gamma}\Lambda^{\rho}_{\ \delta}\epsilon^{\alpha\beta\gamma\delta}=(\det\Lambda)\,\epsilon^{\mu\nu\sigma\rho}=\epsilon^{\mu\nu\sigma\rho}$$

1.2.2.3 Spinorial representations

The Lie algebras $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ are the same, which means that SU(2) and SO(3) are indistinguishable by infinitesimal transformations; however, they are globally different, as SO(3) rotations are periodic by 2π , while SU(2) rotations are periodic by 4π : in particular, it can be shown that SO(3) \cong SU(2)/ \mathbb{Z}_2 , i.e. SU(2) is the universal cover of SO(3). This means that SU(2) representations can be labelled by $j \in \frac{1}{2}\mathbb{N}_0$, where half-integer spin representations are known as *spinorial representations*: they act on spinors, i.e. objects which change sign under rotations of 2π (thus not suitable to represent SO(3)).

Example 1.2.2. The $\frac{1}{2}$ representation of SU(2) is a 2-dimensional representation where $J^i = \frac{\sigma^i}{2}$: Pauli matrices satisfy $\sigma^i \sigma^j = \delta^{ij} + i \epsilon^{ijk} \sigma^k$, thus the $\mathfrak{su}(2)$ algebra is satisfied. Denoting the $m = \pm \frac{1}{2}$ states in the $\frac{1}{2}$ representation as $|\uparrow\rangle$ and $|\downarrow\rangle$, the Clebsch-Gordan decomposition $\frac{1}{2} \otimes \frac{1}{2} = \mathbf{0} \oplus \mathbf{1}$ yields the triplet $(j = 1) |\uparrow\uparrow\rangle$, $\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$, $|\downarrow\downarrow\rangle$ and the singlet $(j = 0) \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$.

Proposition 1.2.6. The Lorentz algebra $\mathfrak{so}^+(1,3)$ can be decomposed as $\mathfrak{su}(2) \times \mathfrak{su}(2)$.

Proof. Given the $\mathfrak{so}^+(1,3)$ algebra in Eq. 1.33, it is possible to define:

$$\mathbf{J}_{\pm} := \frac{1}{2} \left(\mathbf{J} \pm i \mathbf{K} \right)$$

The Lie algebra then becomes:

$$[\mathbf{J}_{\pm}^{i}, \mathbf{J}_{\pm}^{j}] = i\epsilon^{ijk}\mathbf{J}_{\pm}^{k} \qquad [\mathbf{J}_{\pm}^{i}, \mathbf{J}_{\mp}^{j}] = 0$$

These are two commuting $\mathfrak{so}(2)$ algebras, thus proving the thesis.

As observed before, this does not imply that $SO^+(1,3)$ is globally equivalent to $SU(2) \times SU(2)$: in fact, $SU(2) \times SU(2)/\mathbb{Z}_2 \cong SO(4)$, while the universal cover of $SO^+(1,3)$ is $SL(2,\mathbb{C})$, as it can be shown that $SO^+(1,3) \cong SL(2,\mathbb{C})/\mathbb{Z}_2$.

By Prop. 1.2.6, representations of SO⁺(1,3) can be labelled by $(j_-, j_+) \in \frac{1}{2}\mathbb{N}_0 \times \frac{1}{2}\mathbb{N}_0$, with each index labelling a representation of SU(2): as $\mathbf{J} = \mathbf{J}_+ + \mathbf{J}_-$, the (j_-, j_+) representation contains states with all possible spins $|j_+ - j_-| \le j \le j_+ + j_-$, and it is a representation of degree $n = (2j_- + 1)(2j_+ + 1)$. (0,0) is the trivial (scalar) representation, as both $\mathbf{J}_{\pm} = 0$ and $\mathbf{J} = \mathbf{K} = 0$.

 $(\frac{1}{2}, \mathbf{0})$ and $(\mathbf{0}, \frac{1}{2})$ are 2-dimensional spinorial representations. These representations act on different spinors $(\psi_{\mathrm{L}})_{\alpha} \in (\frac{1}{2}, \mathbf{0})$ and $(\psi_{\mathrm{R}})_{\alpha} \in (\mathbf{0}, \frac{1}{2})$, with $\alpha = 1, 2$, which are called *left-* and *right-handed*

Weyl spinors. In $(\frac{1}{2}, \mathbf{0})$ the generators are $\mathbf{J}_{-} = \frac{\sigma}{2}$ and $\mathbf{J}_{+} = \mathbf{0}$, while in $(\mathbf{0}, \frac{1}{2})$ they are $\mathbf{J}_{-} = \mathbf{0}$ and $\mathbf{J}_{+} = \frac{\sigma}{2}$, thus one finds $\mathbf{J}_{L} = \mathbf{J}_{R} = \frac{\sigma}{2}$ and $\mathbf{K}_{L} = -\mathbf{K}_{R} = i\frac{\sigma}{2}$, so that:

$$\psi_{\rm L} \mapsto \Lambda_{\rm L} \psi_{\rm L} = \exp\left[\left(-i\boldsymbol{\theta} - \boldsymbol{\eta}\right) \cdot \frac{\boldsymbol{\sigma}}{2}\right] \psi_{\rm L}$$
 (1.40)

$$\psi_{\rm R} \mapsto \Lambda_{\rm R} \psi_{\rm R} = \exp\left[(-i\boldsymbol{\theta} + \boldsymbol{\eta}) \cdot \frac{\boldsymbol{\sigma}}{2}\right] \psi_{\rm R}$$
 (1.41)

Note that the generators K^i are not hermitian, as expected from Prop. 1.2.4. Furthermore, note that $\Lambda_{L,L} \in \mathbb{C}^{2\times 2}$, therefore $\psi_{L,R} \in \mathbb{C}^2$.

Proposition 1.2.7. Given $\psi_L \in \left(\frac{1}{2}, \mathbf{0}\right)$ and $\psi_R \in \left(\mathbf{0}, \frac{1}{2}\right)$, then $\sigma^2 \psi_L^* \in \left(\mathbf{0}, \frac{1}{2}\right)$ and $\sigma^2 \psi_R^* \in \left(\frac{1}{2}, \mathbf{0}\right)$.

Proof. Recall that for Pauli matrices $\sigma^2 \sigma^i \sigma^2 = -(\sigma^i)^*$, so $\sigma^2 \Lambda_L^* \sigma^2 = \Lambda_R$ and:

$$\sigma^2 \psi_{L}^* \mapsto \sigma^2 \left(\Lambda_{L} \psi_{L} \right)^* = \left(\sigma^2 \Lambda_{L}^* \sigma^2 \right) \sigma^2 \psi_{L}^* = \Lambda_{R} \sigma^2 \psi_{L}^* \quad \Rightarrow \quad \sigma^2 \psi_{L}^* \in \left(\mathbf{0}, \frac{1}{2} \right)$$

where $\sigma^2 \sigma^2 = I_2$ was used. The proof for $\sigma^2 \psi_R^*$ is analogous.

Definition 1.2.6. On Weyl spinors, the *charge conjugation operator* is defined as:

$$\psi_{\mathcal{L}}^c := i\sigma^2 \psi_{\mathcal{L}}^* \qquad \qquad \psi_{\mathcal{R}}^c := -i\sigma^2 \psi_{\mathcal{R}}^* \tag{1.42}$$

By Prop. 1.2.7, charge conjugation changes transforms a left-handed Weyl spinor into a right-handed one and vice versa. Moreover, the i factor ensures that applying this operator twice yields the identity operator.

 $(\frac{1}{2}, \frac{1}{2})$ is a 4-dimensional complex representation: as j=0,1, this representation acts on complex 4-vectors of the form $((\psi_L)_{\alpha}, (\xi_R)_{\beta}) \in \mathbb{C}^4$, called *Dirac spinors*, and $\Lambda = \operatorname{diag}(\Lambda_L, \Lambda_R) \in \mathbb{C}^{4\times 4}$. To explicit this relation, set $\psi_R \equiv i\sigma^2\psi_L^*$, $\xi_L \equiv -i\sigma^2\xi_R^*$ and $\sigma^\mu \equiv (1, \boldsymbol{\sigma})$, $\bar{\sigma}^\mu \equiv (1, -\boldsymbol{\sigma})$: it can be shown, then, that $\xi_R^{\dagger}\sigma^\mu\psi_R$ and $\xi_L^{\dagger}\bar{\sigma}^\mu\psi_L$ are contravariant 4-vectors. Although these 4-vectors are complex by construction, being the matrix $\Lambda^\mu_{\ \nu}$ which represents the Lorentz transformation of a 4-vector real, a reality condition $v_\mu^* = v_\mu$ is Lorentz invariant.

Parity Note that $\mathcal{P}\mathbf{K} = -\mathbf{K}$, as the velocity of the boost gets reversed, while $\mathcal{P}\mathbf{J} = \mathbf{J}$: this means that $\mathcal{P}\mathbf{J}_{\pm} = \mathbf{J}_{\mp}$, i.e. parity exchanges a $(\mathbf{j}_{-}, \mathbf{j}_{+})$ representation into a $(\mathbf{j}_{+}, \mathbf{j}_{-})$ representation. Therefore, a $(\mathbf{j}_{-}, \mathbf{j}_{+})$ representation of $\mathrm{SO}^{+}(1,3)$ is a basis for the representation of the parity transformation iff $j_{-} = j_{+}$.

Example 1.2.3. Weyl spinors (separately) are not a basis for a representation of the parity transformation, but Dirac spinors are.

1.2.2.4 Field representations

Given a field $\phi(x)$, under a Lorentz transformation $x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$ it transforms as $\phi(x) \mapsto \phi'(x')$.

Scalar fields A scalar field transforms as:

$$\phi'(x') = \phi(x) \tag{1.43}$$

Consider an infinitesimal transformation $x'^{\rho} = x^{\rho} + \delta x^{\rho}$, with $\delta x^{\rho} = -\frac{i}{2}\omega_{\mu\nu} [J^{\mu\nu}]^{\rho}_{\sigma} x^{\sigma}$ as of Eq. 1.30. Then, by definition, $\delta \phi \equiv \phi'(x') - \phi(x) = 0$, which corresponds to the fact that the scalar representation of SO⁺(1,3) is the trivial one $(J^{\mu\nu} = 0)$.

However, one can consider the variation at fixed coordinate $\delta_0 \phi \equiv \phi'(x) - \phi(x)$: while $\delta \phi$ studies only a single degree of freedom, as the point $P \in \mathbb{R}^{1,3}$ is kept constant and only $\phi(P)$ can vary (i.e. the base space is one-dimensional), $\delta_0 \phi$ studies $\phi(P)$ with P varying over $\mathbb{R}^{1,3}$, thus the base space is now a space of functions, which is infinite-dimensional. Therefore, $\delta \phi$ provides a finite-dimensional representation of the generators, while $\delta_0 \phi$ an infinite-dimensional one.

To explicit this representation:

$$\delta_0 \phi = \phi'(x) - \phi(x) = \phi'(x' - \delta x) - \phi(x) = -\delta x^{\rho} \partial_{\rho} \phi = \frac{i}{2} \omega_{\mu\nu} \left[J^{\mu\nu} \right]_{\sigma}^{\rho} x^{\sigma} \partial_{\rho} \phi \equiv -\frac{i}{2} \omega_{\mu\nu} L^{\mu\nu} \phi$$

Recalling Eq. 1.31, the generators can be expressed as:

$$L^{\mu\nu} := i \left(x^{\mu} \partial^{\nu} - x^{\nu} \partial^{\mu} \right) \tag{1.44}$$

This is an infinite-dimensional representation, as it acts on the space of scalar fields. As $p^{\mu} = i\partial^{\mu}$ (with signature (+, -, -, -)), it is clear that $L^i \equiv \frac{1}{2} \epsilon^{ijk} L^{jk}$ is the orbital angular momentum.

Weyl fields A left-handed Weyl field transforms as:

$$\psi_{\rm L}'(x') = \Lambda_{\rm L} \psi_{\rm L}(x) \tag{1.45}$$

with Λ_L defined in Eq. 1.40, and similarly for right-handed Weyl fields. The infinite-dimensional representation of the Lorentz generators determined by Weyl spinors can be found as:

$$\delta_0 \psi_{\rm L} \equiv \psi'_{\rm L}(x) - \psi_{\rm L}(x) = \psi'_{\rm L}(x' - \delta x) - \psi_{\rm L}(x)$$

= $\psi'_{\rm L}(x') - \delta x^{\rho} \partial_{\rho} \psi_{\rm L}(x) - \psi_{\rm L}(x) = (\Lambda_{\rm L} - I_2) \psi_{\rm L}(x) - \delta x^{\rho} \partial_{\rho} \psi_{\rm L}(x)$

The second term yields $L^{\mu\nu}$, while the first can be further elaborated by writing:

$$\Lambda_{\rm L} = e^{-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu}} \tag{1.46}$$

Thus:

$$\delta_0 \psi_{\rm L} = -\frac{i}{2} \omega_{\mu\nu} J^{\mu\nu} \psi_{\rm L}$$

where the angular momentum separates into the orbital and the spin components:

$$J^{\mu\nu} = L^{\mu\nu} + S^{\mu\nu} \tag{1.47}$$

This separation is general: $L^{\mu\nu}$ is always expressed as in Eq. 1.44, while $S^{\mu\nu}$ depends on the specific representation. In the scalar representation $S^{\mu\nu}=0$, while in the left/right-handed Weyl representation $S^{i0}=\pm i\frac{\sigma^i}{2}$.

Vector fields A (contravariant) vector field transforms as:

$$V^{\prime\mu}(x^{\prime}) = \Lambda^{\mu}_{\ \nu} V^{\nu}(x) \tag{1.48}$$

A general vector field has a spin-0 and a spin-1 component, and it is acted on by the $(\frac{1}{2}, \frac{1}{2})$ representation.

1.2.3 Poincaré group

If translations are added to the Lorentz group, the result is the *Poincaré group* ISO⁺(1,3). Given a translation $x^{\mu} \mapsto x^{\mu} + a^{\mu}$, the associated group element can be written as:

$$T = e^{-ia_{\mu}P^{\mu}} \tag{1.49}$$

where P^{μ} is the 4-momentum operator. Clearly translations commute, and so do their generators; on the other hand, as **P** is a vector under rotations, while P^0 (energy) a scalar, one has:

$$[J^i, P^j] = ie^{ijk}P^k$$
 $[J^i, P^0] = 0$

These equations uniquely determine the *Poincaré algebra* $\mathfrak{iso}^+(1,3)$:

$$[P^{\mu}, P^{\nu}] = 0$$

$$[J^{\mu\nu}, J^{\sigma\rho}] = i \left(\eta^{\nu\rho} J^{\mu\sigma} - \eta^{\mu\rho} J^{\nu\sigma} - \eta^{\nu\sigma} J^{\mu\rho} + \eta^{\mu\rho} J^{\nu\sigma} \right)$$

$$[P^{\mu}, J^{\rho\sigma}] = i \left(\eta^{\mu\rho} P^{\sigma} - \eta^{\mu\sigma} P^{\rho} \right)$$

$$(1.50)$$

It's easy to check that $[K^i, P^0] = iP^i$, while $[J^i, P^0] = [P^i, P^0] = 0$: given that P^0 generates time translations, linear and angular momentum are conserved quantities, while **K** is not.

1.2.3.1 Field representations

Fields provide an infinite-dimensional representation of the Lorentz group as $J^{\mu\nu} = L^{\mu\nu} + S^{\mu\nu}$, where $S^{\mu\nu}$ does not depend on x^{μ} , but only on the spin of the field.

To represent P^{μ} on fields, their transformation law must be specified: all fields are required to be scalars under translations, independently of their spin. This means that, given a generic field $\phi(x)$, under a translation x' = x + a it transforms as $\phi'(x') = \phi(x)$, so, under an infinitesimal translation $x' = x + \varepsilon$:

$$\delta_0 \phi \equiv \phi'(x) - \phi(x) = \phi'(x' - \varepsilon) - \phi(x) = -\varepsilon^{\mu} \partial_{\mu} \phi(x)$$
$$= e^{-i(-\varepsilon_{\mu})P^{\mu}} \phi'(x') - \phi(x) = \left(e^{i\varepsilon_{\mu}P^{\mu}} - I\right) \phi(x) = i\varepsilon_{\mu} P^{\mu} \phi(x)$$

It is clear then that:

$$P^{\mu} = +i\partial^{\mu} \tag{1.51}$$

Explicitly, $P^0 = i\partial_t$ and $\mathbf{P} = -i\nabla$. It is trivial to check that these generators obey the Poincaré algebra.

1.2.3.2 Particle representations

The Poincaré group can also be represented using the Hilbert space \mathscr{H} of a free particle as a basis. Denoting a generic state as $|\mathbf{p}, s\rangle \in \mathscr{H}$, where \mathbf{p} is the particle's momentum and s collectively labels all other quantum numbers, it is clear that \mathscr{H} is infinite-dimensional, as \mathbf{p} is a continuous unbounded variable.

Theorem 1.2.1 (Wigner). On the Hilbert space of physical states, any symmetry transformation can be represented by a linear and unitary or anti-linear and anti-unitary operator.

By this theorem, Poincaré transformations can be represented by unitary matrices, i.e. J, K, P and P^0 can be represented by hermitian operators. These representations can be labeled by Casimir operators, which for ISO⁺(1,3) are easily found as $P_{\mu}P^{\mu}$ and $W_{\mu}W^{\mu}$, where W^{μ} is the *Pauli-Lubanski* operator:

$$W^{\mu} := -\frac{1}{2} \epsilon^{\mu\nu\sigma\rho} J_{\nu\sigma} P_{\rho} \tag{1.52}$$

On single-particle states $P_{\mu}P^{\mu}=m^2$, while $W_{\mu}W^{\mu}$ can be conveniently computed in a particular frame (due to Lorentz invariance). If $m \neq 0$, this frame is the rest-frame of the particle:

$$W^{\mu} = -\frac{m}{2} \epsilon^{\mu\nu\sigma 0} J_{\nu\sigma} = \frac{m}{2} \delta^{\mu i} \epsilon^{ijk} J^{jk} = \delta^{\mu i} m J^{i}$$

Therefore, on single-particle states of mass m and spin j, the Casimir operator takes the form:

$$W_{\mu}W^{\mu} = -m^2 j (j+1) \tag{1.53}$$

If m=0, the rest-frame does not exist, but it is possible to choose a frame where $P^{\mu}=(\omega,0,0,\omega)$, where $W^0=W^3=\omega J^3$, $W^1=\omega (J^1-K^2)$ and $W^2=\omega (J^2+K^1)$, so that:

$$W_{\mu}W^{\mu} = -\omega^2 \left[\left(K^2 - J^1 \right)^2 + \left(K^1 + J^2 \right)^2 \right]$$
 (1.54)

It is clear that the $m \to 0$ limit is not trivial, and massive and massless representation need to be studied separately.

Massive representations Restricting to $m \in \mathbb{R}^+$ ($m^2 < 0$ states, called tachyons, are excluded), the massive representations are labeled by mass m and spin j: in fact, after a Lorentz transformation such that $P^{\mu} = (m, \mathbf{0})$, spatial rotations can still be performed, i.e. the subspace of single-particle states with momentum $P^{\mu} = (m, \mathbf{0})$ is still a basis for the representation of SU(2) (as spinors must be included too). The group of transformations which leaves invariant a certain choice of P^{μ} is called the *little group*, so SU(2) is the little group of massive single-particle states: massive representations are labelled by m and j, which means that massive particles of spin j have 2j+1 degrees of freedom.

Massless representations The little group for $P^{\mu} = (\omega, 0, 0, \omega)$ clearly is SO(2), the group of rotations in the (x, y) plane generated by J^3 : as for any abelian group, its irreducible representations are one-dimensional, and they are labeled by the eigenvalue h of J^3 , which represents the angular momentum in the direction of propagation of the particle and is called *helicity*. Helicity can be shown to be quantized as $h \in \frac{1}{2}\mathbb{Z}_0$ (by topologic considerations on $\mathrm{ISO}^+(1,3) \equiv \mathbb{R}^4 \times \mathrm{SL}(2,\mathbb{C})/\mathbb{Z}_2$).

As a consequence, massless particles only have one degree of freedom and are characterized by their helicity h. As $SO(2) \equiv U(1)$, on a state of helicity h the little group is represented as:

$$U(\theta) = e^{-ih\theta} \tag{1.55}$$

Although massless particles with opposite helicities are logically two different species of particles, it can be written as $h = \hat{\mathbf{p}} \cdot \hat{\mathbf{J}}$ (unit vectors), so h is a pseudoscalar such that $h \mapsto -h$ under parity: this means that, if the interaction conserves parity, h and -h must be symmetric.

Example 1.2.4. The electromagnetic and gravitational interactions conserve parity, thus photons and gravitons must be a basis for the representation of both ISO⁺(1,3) and parity: photons can have $h = \pm 1$ (left- and right-handed), while gravitons have $h = \pm 2$.

Example 1.2.5. Neutrinos only interact via the weak interaction, which does not conserve parity, and in fact the two states $h=\pm\frac{1}{2}$ are different particles: neutrinos have $h=-\frac{1}{2}$, while antineutrinos have $h=+\frac{1}{2}$.

1.3 Classical equations of motion

Consider a local field theory of fields $\{\phi_i(x)\}_{i\in\mathcal{I}} \equiv \phi(x)$, where $x \in \mathbb{R}^{1,3}$ is a point in Minkoski spacetime. Its Lagrangian takes the form:

$$L = \int d^3x \, \mathcal{L}(\phi, \partial_\mu \phi) \tag{1.56}$$

where \mathcal{L} is the Lagrangian density of the theory (often referred to simply as the Lagrangian), which depends only on a finite number of derivatives. The action is then:

$$S = \int dt L = \int d^4x \mathcal{L}(\phi, \partial_\mu \phi)$$
 (1.57)

The integration is carried on the whole space-time, with usual boundary conditions that all fields decrease sufficiently fast at infinity; this also allows to drop all boundary terms.

Proposition 1.3.1. The stationary action principle $\delta S = 0$ determines the classical equations of motion:

$$\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi_i)} = 0 \tag{1.58}$$

Proof. Varying Eq. 1.57:

$$\delta \mathcal{S} = \int d^4 x \sum_{i \in \mathcal{I}} \left[\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \delta (\partial_\mu \phi_i) \right] = \int d^4 x \sum_{i \in \mathcal{I}} \left[\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right] \delta \phi_i = 0$$

Proposition 1.3.2. Two Lagrangians which differ by a total divergence $\mathcal{L}' = \mathcal{L} + \partial_{\mu} K^{\mu}$ yield the same equations of motion.

Proof. This is a consequence of Stokes theorem:

$$\int_{\Sigma} d^4x \, \partial_{\mu} K^{\mu} = \int_{\partial \Sigma} dA \, n_{\mu} K^{\mu}$$

From the Lagrangian, it is possible to define the conjugate momenta and the Hamiltonian density:

$$\Pi_i(x) := \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi_i)} \tag{1.59}$$

$$\mathcal{H} = \sum_{i \in \mathcal{I}} \Pi_i(x) \partial_0 \phi(x) - \mathcal{L}$$
 (1.60)

Unlike the Hamiltonian formalism, the Lagrangian formalism keeps Lorentz covariance explicit.