REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale et de la Reforme du Système Educatif Direction des Examens et des Concours

Baccalauréa

Sciences physiques session complémentaire 2022

Honneur Fraternité Justice Série: Sciences de la nature

Durce: 4H Coefficient: 7

Exercice1 (4pts)

A un instant t = 0, on réalise, dans un bécher, un mélange réactionnel (S) constitué d'un volume $V_1 = 10$ mL d'une solution aqueuse d'iodure de potassium KI de concentration molaire $C_1 = 5.10^{-1}$ mol.L⁻¹ et d'un volume $V_2 = 10$ mL d'une solution aqueuse de peroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire $C_2 = 5.10^{-3}$ mol.L⁻¹.

Les ions iodure I^- réagissent avec les ions peroxodisulfate $S_2 O_8^{2-}$ selon l'équation:

 $2I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2SO_{4}^{2-}$

Au cours de l'expérience la température du mélange reste constante.

- 1. On note x l'avancement de la réaction à l'instant t.
- 1.1. Dresser le tableau d'avancement du système.
- 1.2. Déterminer le réactif limitant. En déduire l'avancement maximal x_{max} de la réaction et la quantité de matière maximale de diiode formé.
- 2. A partir des résultats des mesures de l'avancement en fonction du temps on obtient la courbe traduisant l'évolution de x en fonction du temps (voir figure).

- 2.1. Déterminer graphiquement l'avancement final x_f.
- 2.2. Comparer les valeurs de l'avancement maximal x_{max} et de l'avancement final x_f de la réaction. La réaction est elle limitée ? 0,5pt
- 3.1. Définir la vitesse de la réaction. Déterminer sa valeur à l'instant t =10 min. 0,75pt
- 3.2. Déduire la vitesse de disparition de I à cet instant.
- 3.3. Décrire l'évolution de la vitesse de la réaction au cours du temps.

0,5pt 0,5pt

0,5pt

Exercice2 (5pts)

Un composé organique noté B a pour formule brute C_3H_6O .

Pour reconnaître la fonction et la formule semi-développée de ce composé on réalise les expériences suivantes :

1. On ajoute à ce composé B quelques gouttes de la 2,4-DNPH. Le teşt se révèle positif.

Quelle est la couleur du précipité obtenu?

Déduire de ce test les formules semi-développées possibles pour B en indiquant les noms des composés 1,25pt correspondants.

2. On fait réagir B avec le réactif de Schiff : on obtient un précipité rose.

En déduire la fonction du composé B.

0,5pt

3. Le composé B étudié a été oxydé par une solution aqueuse de dichromate de potassium acidifiée pour donner . un acide C.

Ecrire l'équation bilan de la réaction d'oxydation de B. On donne le couple redox Cr₂O₇²⁻/Cr³⁺.

Le composé B a été obtenu par oxydation d'un alcool A.

4.1. En déduire la classe, la formule semi-développée et le nom de l'alcool A.

0,75pt

0,5pt

4.2. L'alcool A a été préparé par hydratation d'un alcène.

Etablir l'équation bilan de cette réaction en utilisant les formules brutes. Ecrire les formules semi-développées des alcools obtenus. L'alcool A est il majoritaire ou minoritaire ?

5. On prépare une solution de l'acide C de concentration C_A=0,01mơl.L⁻¹. La mesure du pH de cette solution donne pH=3,45. 0,25pt

5.1. Cet acide est il fort ou faible ? Justifier la réponse.

0,75pt

0,501

5.2. Calculer le pKa du couple acide-base associé à C.

5.3. Pour préparer une solution tampon on mélange un volume $V_{\mathtt{A}}$ de la solution d'acide C avec un volume V_B d'une solution de soude de concentration $C_B=0,01$ mol.L⁻¹. Calculer V_A et V_B nécessaires pour obtenir un volume V = 30 mL de la solution tampon.

Série Sciences de la nature Baccalauréat de Sciences Physiques

Session complémentaire

Exercice 3 (5,5pts)

On donne g=10m/s2

1. Un point matériel M de masse m=50g est lancé à partir du point O vers le haut d'un plan incliné de 15° par rapport à l'horizontale avec une vitesse de valeur $V_0 = 3m/s$.

La longueur de ce plan est OA=1m.

1.1. Si l'on suppose que les frottements sont négligeables, avec quelle vitesse V_A le point matériel arrive-t-il au sommet du plan incliné?

1.2. En réalité il y a frottement et la vitesse atteinte au point A par le point matériel vaut V'_A=1m/s. Déterminer l'intensité de la force de frottement f supposée constante et parallèle à OA appliquée par le plan sur le solide entre O et A.

2. Arrivé en A le mobile quitte le plan incliné avec la vitesse V'_A=1m/s.

2.1. Dans le repère (A; x, y), établir l'équation de la trajectoire suivie par le mobile.

2.2. Quelle distance sépare le point H du point de chute D (voir figure).

2.3. Déterminer la valeur de la vitesse V_D au point D.

1,5pt

1 pt 1pt

Exercice4 (5,5pts)

Les questions 1 et 2 de l'exercice sont indépendantes.

1. Une cellule photoélectrique au césium est éclairée par un rayonnement monochromatique de longueur d'onde λ =410.10⁻⁹m. On établit entre son anode A et sa cathode C une tension U_{AC} et on mesure l'intensité I du courant pour chaque valeur de U_{AC}

La courbe de la fig 1 reproduit la caractéristique $I=f(U_{AC})$ de la cellule. Déduire:

- 1.1. La valeur du potentiel d'arrêt U₀ après avoir donné sa définition. 0,75pt
- 1.2. La valeur de La vitesse d'émission des électrons par la cathode. 0,5pl
- 1.3. L'énergie d'extraction \mathbf{W}_0 d'un électron de l'atome de césium, puis la valeur de la fréquence \mathbf{v}_0 seuil photoélectrique du césium.
- 1.4. On applique entre la cathode et l'anode une tension U_{AC} =10V, calculer la vitesse V_A avec la quelle les électrons arrivent sur l'anode. 0,5pl
- 2. Les niveaux d'énergie \mathbf{E}_n de l'atome d'hydrogène sont donnés par l'expression :

La figure 2 représente le diagramme d'énergie de l'atome d'hydrogène.

- 2.1. Reprendre sur votre copie le diagramme de la figure 2 et compléter le.
- 2.2.1. Calculer, en eV, l'énergie d'un photon capable de provoquer la transition de l'électron de l'atome d'hydrogène du niveau n = 1 au niveau n = 3.

