Data Analysis Suite Package – Documentation

Contents

Installa	ation]	
GUI #1	GUI #1: DAS		
•	Functions		
•	Importing data		
•	Data processing		
•	Event detection	4	
•	Saving detection	4	
GUI #2: DASeV			
•	Functions	5	
•	Loading from the DAS save files	5	
•	Examining & saving events	6	
GUI #3	: DASevDB		
•	Functions		
•	Examining database		
•	Statistics	7	

Installation

- Go to: https://github.com/BenceSzmola/DataAnalysisSuite
- Download the package from the master branch (usually it's the most stable but might not yet have all the latest features)
 - o Click "Code", then "Download ZIP", save it wherever you wish

- Open MATLAB, under Home tab select "Set Path" and using Add Folder, add the folder where you extracted the downloaded ZIP. Don't forget to save!
- Now you can start the GUIs by writing DAS, DASeV and DASevDB respectively in the command line

GUI #1: DAS

- Functions
 - o Import raw data
 - Currently supported formats:
 - Intan's RHD (electrophysiology a.k.a. ephys)
 - MATLAB variables exported from MES Curve Analysis window (electrophysiology & imaging)
 - CSV (treadmill data)
 - Visualizing data
 - Processing tools for raw data
 - Event detection (ephys, imaging, simultaneous)
 - Saving detections
- Importing data

- 1: Checkboxes to select which datatype(s) you want to work with
 - By selecting one, the corresponding import options become available
- 2: Data import options
 - Import RHD: import .rhd files using the Intan import script
 - Import gorobj: import variables which were exported from MES curve analysis window
 - Might extend this to also import from .gor files
 - Import run csv: imports data from the treadmill .csv files
 - Import settings

- Enable upsampling (meant for imaging data) and/or downsampling (meant for ephys data) of imported data
- 3: Listboxes containing the imported data
- 4: Data display section

0

Data processing

- 1: Processing setup: here you can choose what type of processing you want to do and set the required parameters
 - Using the toggle buttons you can set whether the processing will work on the raw data or data that was already processed in some way
- 2: Listboxes containing the raw and processed data
 - The upper box contains the raw data
 - The lower contains the processed data
 - Right click in the lower listbox to delete processed data from memory
- 3: Data visualization
 - Upper graph shows the selected raw data
 - Lower graph shows the selected processed data

• Event detection

- 1: Setup of event detection:
 - Select channel(s) for detection (only ephys)
 - There is the option to select channel(s) from the processed data in memory or to run processing before detection
 - If there are intervals in the recording which shouldn't be taken into consideration when running the detection check the "Select interval" box
 - Select detection method, and specify settings for that method
- o 2: Parameters of detected events
 - Here you can see the automatically extracted parameters for the displayed event
- 3: Display of events and buttons for browsing through them and deleting them if needed

Saving detection

0

- There are some options depending on what was loaded and what was used for detection
 - Which detection to save (ephys, imaging, simultaneous)

- If simultaneous is selected both the ephys and imaging individual detections are also saved
- Should the running data be saved
- Should all loaded channels be saved or only those which were used in the detection
- Choosing the name of the save file
 - There is always a tag attached to the name for easy identification later
 - If RHD was loaded, the RHD filename is used as default, otherwise the current date is the default

GUI #2: DASeV

- Functions
 - Examining detections saved by DAS in more detail
 - Saving individual events to database
- Loading from the DAS save files

- 1: File selection part
 - Select the directory with "Change directory" → select the save file you want to load from the list
 → load it using the "Load selected save" button
- o 2: Information panel
 - Here you get a preview of what is in the highlighted save file

2

• Examining & saving events

- 1: Event parameters
- o 2: Panel for selecting events to be saved to database
- 3: Graphs showing the events + buttons to step through them
 - Ephys data can be displayed in up to three different forms at once (wideband/raw, bandpassed, power)

GUI #3: DASevDB

- Functions
 - Examining the event database
 - Computing statistics from the database
- Examining database

- o 1: Select which group of events to load
- o 2: Information on the source of the event

- Which DAS save file it is from
- Channel and event number in the original detection from where it was taken
- 3: Event parameters
- 4: Display of events
- Statistics

- 1: Setup for statistics computations (basic stats, t-tests)
- 2: Results of the statistics computation
 - If the selected event group contains both ephys and imaging data then the upper table shows the stats for ephys and lower the results for imaging
- 3: Statistically relevant plot generation
 - Select which group(s) you want to use
 - Select the type of plot
 - Select parameter to plot
 - Click "Create graph"