Besprechung Zettel 1

Tutorium vom 24.10.2013

Mitschrift aus dem Tutorium (Jens Kosiol), vermutlich mit Fehlern

29. Oktober 2013

Aufgabe 2

```
A_1, A_2 \text{ atomar} \\ G = (G_1 \vee G_2) \text{ bzw. } G = (G_1 \wedge G_2) \text{ (kein } \neg) \\ n = 3 \\ (A_1 \wedge (())) \\ ((() \wedge ()) \\ ((()) \wedge A) \\ a_n = 2 \sum_{i=0}^{n-1} a_1 \cdot a_{n-1-i}, n > 0 \\ a_0 = 2 \\ a_1 = 2 \cdot \sum_{i=0}^{0} a_1 \cdot a_{n-1-i} = 2 \cdot a_0 \cdot a_0 = 2^3 \\ a_2 = 2 \sum_{i=0}^{1} a_1 \cdot a_{n-1-i} = 2(a_0 \cdot a_1 + a_1 \cdot a_6) = 2(2^4 + 2^4) = 2^6 \\ a_3 = 2^9 + 2^7 = 640
```

Aufgabe 3

a)

$$F_1 = (A_1 \wedge A_2)$$

$$\equiv^{1.4} \neg \neg (A_1 \wedge A_2)$$

$$\equiv^{1.4,1.5} \neg (\neg A_1 \vee \neg A_2)$$

$$F_2, F_3 \text{ bereits klar!}$$

b)

$$(A_1 \wedge A_2)$$

$$\equiv \neg \neg (A_1 \wedge A_2)$$

$$\equiv \neg (\neg A_1 \vee \neg A_2)$$

$$\equiv^{Def.} \neg (A_1 \to A_2)$$

c)

$$F_{1} = (A_{1} \land A_{2})$$

$$F_{2} = (A_{1} \lor A_{2})$$

$$\equiv (\neg \neg (A_{1} \lor A_{2}))$$

$$\equiv^{1.4,1.5} \neg (\neg A_{1} \land \neg A_{2})$$

$$F_{3} \text{ klar}$$

$$F_{2} = (A_{1} \lor A_{2})$$

$$\equiv^{1.4,1.5} (\neg \neg A_{1} \lor A_{2})$$

$$=^{Def} (\neg A_{1} \to A_{2})$$

Aufgabe 4

a)

Beh: In jeder semantischen Klasse liegt eine Formel, welche nur \land und \lor benutzt. zz: G Formel $\Rightarrow \exists$ Formel G', sodass $G \equiv G'$ und G' verwendet nur \land und \neg

I.A: G atomar \Rightarrow klar I.S: 3 Fälle

- 1) $G = (G_1 \wedge G_2)$ nach I.V. $\exists G'_1, G'_2$ mit $G_1 \equiv G_1$ und $G'_2 \equiv G_2$ und G'_1, G'_2 verwenden nur \wedge und \vee $\Rightarrow G \equiv^{1.5} (G'_1 \wedge G'_2)$ gilt
- 2) $G = \neg G_1$ nach I.V. $\exists G_1'$ mit $G_1' \equiv G_1$ und G_1' verwendet nur \land und \lor gilt
- 3) $G = (G_1 \vee G_2)$ nach I.V. $\exists G_1', G_2' \text{ mit } G_1' \equiv G_1, G_2' \equiv G_2$ und G_1', G_2' verwenden nur \land, \neg $\Rightarrow G \equiv^{1.5} (G_1' \vee G_2')$ $\equiv \neg(\neg G_1' \land \neg G_2')$

b)

Für echte Teilformeln von G gilt die Aussage $G = (A_1 \vee \neg A_1)$

Beh: In semantischer Klasse von G liegt keine Formel, die nur \land und \lor benutzt. Sei G' Formel, die nur \land und \lor benutzt, f zu G und G' passende Interpretation mit f(A) = F für alle atomaren A, die in G auftreten.

Es gilt
$$f(G) = W$$

$$zz f(G') = F$$

IV: Für echte Teilformeln von G gilt f(H) = F

IA:
$$G'$$
 atomar

$$\Rightarrow f(G') = F$$

IS: 2 Fälle

1)
$$G' = (G_1 \wedge G_2)$$

Nach IV $f(G_1) = f(G_2) = F$
 $\Rightarrow f(G_1 \wedge G_2) = F$

2)
$$G' = (G_1 \vee G_2)$$

Nach IV: $f(G_1) = f(G_2) = F$
 $\Rightarrow f(G_1 \vee G_2) = F$