HOJA DE EJERCICIOS 5 (Grupo 130) Análisis Matemático. CURSO 2021–2022.

Problema 1. Para cada aplicación $f: \mathbb{R}^n \to \mathbb{R}^n$ y el correspondiente conjunto E que se dan, demuestra que hay un único punto $a \in E$ tal que f(a) = a. Describe un procedimiento para calcular a con dos decimales de precisión.

(a)
$$f(x,y) = \left(\frac{1}{3}\sin x - \frac{1}{3}\cos y + 2, \frac{1}{6}\cos x + \frac{1}{2}\sin y - 1\right), E = \{|x-2| \le 1, |y+1| \le 1\}.$$

(b)
$$f(x,y) = \left(\frac{xe^y}{40}, 1 + \frac{x^2 + 2\cos y}{10}\right), E = \{|x|, |y-1| \le 1\}.$$

(e)
$$f(x,y) = \left(\frac{e^{x/3}}{4} + \frac{y^2}{10}, \frac{1}{5} + \frac{x^2y}{10}\right), E = \{|x|, |y| \le 1\}.$$

1)
$$f: E \to E$$
 $(x,y) \in E$

$$|\frac{1}{3} \sin x - \frac{1}{3} (\cos y + 2 - 2)| = \frac{1}{3} \sin x - \frac{1}{3} (\cos y + 2 - 2)| = \frac{1}{3} \sin x - \frac{1}{3} (\cos y + 2 - 2)| = \frac{1}{3} \sin x - \frac{1}{3} (\cos y + 2 - 2)| = \frac{1}{3} (\cos y + 2 - 2)| = \frac{1}{3} (\cos x + \frac{1}{2} \sin y - 2 + 1)| = \frac{1}{3} (\cos x + \frac{1}{2} \sin y - 2 + 1)| = \frac{1}{3} (\cos x + \frac{1}{2} \sin y - 2 + 1)| = \frac{1}{3} (\cos x + \frac{1}{2} \sin y - 2 + 1)| = \frac{1}{3} (\cos x + \frac{1}{3} \cos y + 2 - \frac{1}{3} \sin x - \frac{1}{3} (\cos y + 2 - \frac{1}{3} \sin x - \frac{1}{3} (\cos y - \cos y)| = \frac{1}{3} (\cos x - \sin x)| + \frac{1}{3} (\cos y - \cos y)| = \frac{1}{3} (\cos x - \sin x)| + \frac{1}{3} (\cos x - \cos x)| + \frac{1}{3} (\cos x - \frac{1}{2} \sin y - 1 - \frac{1}{3} (\cos x) - \frac{1}{2} \sin y - 1 + \frac{1}{3} (\cos x - \cos x)| + \frac{1}{3} (\cos x$$

La desi	gualdad (1 brene un úr) se cumple	on kz	3 < 1.	Porc
tanto f	them un mi	ulo punto:	ap p		
¿ Cómo s	e aproxima	P 3			
	•	_		n.	
X = (2,-1), f(x ₀),	\$(x0), \$	(x ₀)//	f (x ₀),	_
Russaa	n tel que	n+1 11 P (x \ -	P (xa) II	2	
Sabemos	11 th+1(x0)-	P"(x0)	< + 11 fo	(0) - X0	
11 f (2,-	L) - (2,-1)	$\leq \frac{2}{3}$; k=	⅔ . Ess	uficiente e	lgen
	<u> </u>				=
n tal qu	$u \left(\frac{2}{3}\right)^n \frac{3}{3}$	<u> </u>	$\Rightarrow (\frac{2}{3})$	₹ 10	(=
			2/.	2.1	
r1)log ₁₀ (= 3	:) < -2 ;	n+1 ≥	- logio (3)	

Problema 2. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación lineal dada por la matriz

$$A = \frac{1}{10} \begin{pmatrix} 5 & 6 \\ 4 & 3 \end{pmatrix}.$$

Demuestra que A es contractiva de $(\mathbb{R}^2, \|\cdot\|_1)$ en $(\mathbb{R}^2, \|\cdot\|_1)$ pero no lo es de $(\mathbb{R}^2, \|\cdot\|_{\infty})$ en $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

1)
$$A: (\mathbb{R}^2 | 1 | 1|_1) \longrightarrow (\mathbb{R}^2 | 1 | 1|_1)$$

||A|| = maximo de la suma de los valores absolutos de 1->1 las columnas de A (prob 18, Hoja 1)

 $S: \left(\frac{x}{y}\right), \left(\frac{x^{l}}{y}\right) \in \mathbb{R}^{2}, \quad \left(\frac{x}{y}\right) - A\left(\frac{x^{l}}{y^{l}}\right) \right|_{1} \leq \left\|A\left(\frac{x}{y}\right) - \left(\frac{x}{y}\right)\right\|_{1}$

= $\frac{9}{10} \| (\overset{\times}{y}) - (\overset{\times}{y}) \|_{1}$ es contractiva con $H = \frac{9}{10} < 1$.

 $|||A||_{\infty\rightarrow\infty} = \frac{1}{10} \max_{10} \{||, \tau\}| = \frac{11}{10}$

||(|)-(0)||=1 ⇒ k≥ || No es contractiva

 $\underline{\mathbf{Problema}}$ 3. En este ejercicio exploramos lo que pasa al debilitar alguna hipótesis del teorema de la aplicación contractiva.

- a) (Espacio compacto, K=1). Sea $C=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$ la circunferencia unidad. Da un ejemplo de una $f:C\to C$ sin punto fijo, pero que cumpla $\|f(p)-f(q)\|=\|p-q\|$ para cualesquiera $p,q\in C$.
- b) (Espacio no completo). Da un ejemplo de una $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ contractiva pero sin punto fijo.

<u>a)</u>	$f: C \to C$ $f(p) = -p$ No tiene purpo fujo $ f(p) - f(q) = -p - (-q) = p - q $
b)	$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R} \setminus \{0\}, f(x) = \frac{1}{2}x$ $ f(x) - f(x') = \frac{1}{2} x - x' , h = \frac{1}{2}$ Si func $\frac{1}{2}x = x \implies x = 0 \notin \mathbb{R} \setminus \{0\}$

<u>Problema</u> 4. Vamos a hacer uso del siguiente resultado, donde tanto las normas involucradas como las bolas son las euclídeas estándar.

Sean un abierto de $U \subseteq \mathbb{R}^n$, un punto $a \in U$ y $f: U \to \mathbb{R}^n$ de clase \mathcal{C}^1 . Supongamos que existen dos números $r, \lambda > 0$ y una matriz **ortogonal** P tales que

para todo
$$x \in \overline{B}(a,r)$$
 y todo $v \in \mathbb{R}^n$ se tiene $v^t (PDf(x)) v \ge \lambda ||v||^2$.

Entonces
$$f$$
 es inyectiva en $B(a,r)$ y $f(B(a,r)) \supset B(f(a), \lambda r)$.

Se pide dar un radio r de inyectividad alrededor de a y una bola centrada en f(a) en la que esté definida la inversa local con $f(a) \mapsto a$, para cada una de las funciones $f: \mathbb{R}^2 \to \mathbb{R}^2$ y puntos $a \in \mathbb{R}^2$ siguientes:

Indicación: acuérdate de aprovechar la desigualdad $v_1v_2 \ge -(v_1^2 + v_2^2)/2$.

a)
$$a=(4,2)$$
 y $f(x,y)=\begin{pmatrix} xy+e^{y/10}\\5x-\frac{y^2}{2} \end{pmatrix}$. Sugerencia: $P=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}$.

b)
$$a = (1,1)$$
 y $f(x,y) = \begin{pmatrix} x^3 + \frac{\sin y}{6} \\ \frac{x}{10} - e^y \end{pmatrix}$. Sugerencia: $P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

c)
$$a = (0,1)$$
 y $f(x,y) = {5 e^y x + \cos y \choose x + y^4}$. Sugerencia: $P = I_2$.

a)
$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
; $v^{t} P D f(x_1 y) V = \frac{1}{(v_1, v_2)} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y & x + \frac{1}{10} e^{y_0} \\ 5 & - y \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \frac{1}{(v_2, v_1)} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ 5v_1 & -yv_2 \end{pmatrix} = \frac{1}{(v_1, v_2)} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ 5v_1 & -yv_2 \end{pmatrix} = \frac{1}{(v_1, v_2)} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} + \frac{1}{(v_1)} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} + \frac{1}{(v_1)} \begin{pmatrix} yv_1 + yv_2 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv_2 \end{pmatrix} \begin{pmatrix} yv_1 + xv_2 + \frac{1}{10} e^{y_0} \\ yv$

```
b) a=(1,1), f(x,y)=\begin{pmatrix} x^3+\frac{1}{6}kmy\\ x - ey \end{pmatrix}, P=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}
S/V_{t} = V_{t} = V_
    = (V_{1}, -V_{2}) \left( \frac{3x^{2}V_{1} + \frac{1}{6}(\omega y)V_{2}}{\frac{1}{10}V_{1} - e^{y}V_{2}} \right) =
                                      3x2V,2 -1 (604)V,V2 - 10 V2V4 + V2 ey
                                                                                                                                                                                                                                                                                                        \left| \frac{2}{-(\vee_{1} + \vee_{2}^{2})} \right| \leq 2 \vee_{1} \vee_{2} \leq \vee_{1}^{2} + \vee_{2}^{2}
                                                                                                                                                                                                                                                   (x,y) ∈ B(a, ½) => ×≥½
                                                                                                                                                                                                                                                                                                                                                                   + < 4 < 3 < %
                                                                                          B(a, 1/2)
   v^{t} PDf(x,y)v \geq 3x^{2}v_{1}^{2} - \frac{1}{12}(\omega_{2}v_{1}^{2}) - \frac{1}{20}(v_{1}^{2}+v_{2}^{2}) + v_{2}^{2}e^{y}
= (3x^{2} - \frac{1}{2} \omega_{y} - \frac{1}{2})v_{1}^{2} + (e^{y} - \frac{1}{2} \omega_{y} - \frac{1}{2})v_{2}^{2}
  \frac{\sqrt{2}}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} =
```

Problema 5.

Se llama inversa local de una función f a la inversa $(f|_U)^{-1}: f(U) \to \mathbb{R}^n$ de cualquier restricción suya a un abierto $f|_U$ que sea inyectiva.

Elige una inversa local del cambio a polares $x(r,\theta)=r\cos\theta,\,y(r,\theta)=r\sin\theta,$ definida alrededor del punto x=2, $y=-2\sqrt{3}$. Calcula la matriz jacobiana en este punto de la inversa local elegida.

$(X = r \omega_0 \Theta) O < r < \infty$
$\begin{cases} X = r \cos \theta \right\} 0 < r < \infty $ $\begin{cases} y = r \cos \theta \right\} 0 < \theta < 2\pi \text{es inyectiva} \end{cases} 2\pi < \theta < 4\pi \end{cases}$
(0.00)
$(x,y) = (2, -2\sqrt{3})$
$Y = \sqrt{4 + 12} = \sqrt{16} = 4$
$0 \text{ t.g. cos } 0 = \frac{4}{2}, \text{ sm } 0 = -\frac{3}{2} \text{ e.d.}$
$\frac{\theta = -\frac{\pi}{3}}{3}$
$U = \{(r, \theta): 0 < r < \infty, -2\pi < \theta < 0\}$
$D(f_{1})^{-1}(2,-2\sqrt{3}) = [Df(4,-\frac{1}{3})]^{-1}$
$= \frac{(\omega \theta - \gamma) \cos \theta}{(\omega + 1)^{2}} = \frac{(\omega + 1)^{2}}{(\omega + 1)^{2}} = $
$\frac{1}{2} \frac{1}{2} \frac{1}$

Problema 9. Un **polinomio complejo** es una función $f(z): \mathbb{C} \to \mathbb{C}$ dada por

$$\mathbb{C}\ni z\longmapsto f(z)\equiv a_0+a_1z+a_2z^2+\cdots+a_nz^n,$$

donde a_0, \ldots, a_n son números complejos constantes.

Se sabe que si f(z) es un polinomio complejo no constante y $U \subseteq \mathbb{C}$ es cualquier abierto, entonces f(U) también es un abierto. Deduce de esto que una tal función es suprayectiva (teorema fundamental del Álgebra).

Indicación: demuestra que si una sucesión $\{z_j\}_{j=1}^{\infty} \subset \mathbb{C}$ es tal que $\{f(z_j)\}_{j=1}^{\infty}$ es acotada, entonces $\{z_j\}_{j=1}^{\infty}$ ya era acotada para empezar.

S/ Hay gre proban que f(T) = T. Como T es abiento, f(T) es abiento en T. Si probamos que f(T) es arrado, tendriamos f(T) = T porque T es conexo.

Lema 1. Si $\{U_j\}_{j=1}^{\infty} \subset T$ con l'émile en T, entores $\{W_j\}_{j=1}^{\infty}$ es acotada

Lema 2. Si $\{Z_j\}_{j=1}^{\infty} \subset T$ es tal que $\{f(Z_j)\}_{j=1}^{\infty}$ es acotada, entores $\{Z_j\}_{j=1}^{\infty}$ também es acotada

D/ Si $\{Z_j\}_{j=1}^{\infty}$ no flura acotada, $\{J_{j+1}\}_{j=1}^{\infty}$ (subsu) $\{J_{j+1}\}_{j=1}^{\infty}$.

Tenemos

Tenemos $\frac{M}{|z_{jk}|^{n}} > \frac{|f(z_{jk})|}{|z_{jk}|^{n}} = \frac{1}{|z_{jk}|^{n}} |a_{n}z_{jk}|^{n} + a_{n-1}z_{jk}|^{n-1} + a_{0}|$

 $\frac{1}{2|a_{n}|} |a_{n} z_{k}| - \frac{1}{|z_{k}|} |a_{n-1} z_{k}| + a_{0}|$

= |an | - |an | \frac{1}{2jh} + - + \frac{ao}{2jh} \frac{kf\infty}{2} |an | \frac{1}{2} |an | \frac{1}

imposible porge an #0

Probemos que f(C) es cerrado. Sea $W_j J_{j=1}^{\infty} = f(C)$ tal que $\lim_{j\to\infty} w_j = w_0 \in C$. Como $w_j \in f(C)$, existe

