Лабораторная работа № 4

NTRU Криптосистема

Дедлайн: 15.05.2023

Исторически, одним из первых предложенных постквантовых решений в области криптосистем является криптосистема NTRU, предложенная в 1996-м поду Сильверманом, Хоффштейном и Пайпером в своей статье [3]. Оригинальная статья вводила так называемое NTRU предположение, состоящее в том, что нахождение решения уравнения h = f/g $\pmod{x^n-1}\pmod{q}$ для простого q, n – степени двойки, где h известно, а неизвестные fи q малы относительно еквклидовой нормы, является вычислительно сложной задачей.

Есть множество вариантов NTRU: классический, упомянутый выше, HRSS, HPS, NTRU Prime [4]. В данной лабораторной работе мы используем HRSS подобный вариант NTRU. Процедура генерации ключей в нашей лабораторной выглядит следующим образом:

Algorithm 1 KeyGen

```
Input:
              \Phi_d – многочлен степени d,
              p – малое простое (обычно 3),
              q – простое.
Output:
             f,g \in \mathbb{Z}[x]/\Phi – секретный ключ (f – обратим),
              h \in \mathbb{Z}[x]/\Phi – открытый ключ.
1: f, g \leftarrow^{\$} \{-p/2 \leqslant k < p/2\}, где f обратим в \mathbb{Z}[x]/\Phi
2: Обратить f \in \mathbb{Z}[x]/\Phi сначала по модулю p, затем по модулю q:
                             \mathbf{f} := ((f^{-1} \pmod{p})^{-1} \pmod{q} \pmod{\Phi})
3: h := p \cdot q \cdot \mathbf{f} \mod q \mod \Phi
4: return g, f, h
```

Алгоритм шифрования представлен ниже:

```
Algorithm 2 Encrypt
             \Phi_d – многочлен степени d,
 Input:
             p — малое нечётное простое (обычно 3),
             q – простое,
             f, g – секретный ключ,
             m \in \mathbb{Z}[x]/\Phi — сообщение с коэффициентами m_i \in \{-p/2 \leqslant k < p/2\}
 Output: c – зашифрованное сообщение.
 1: r \leftarrow^{\$} \{-p/2 \leqslant k < p/2\} — ослепляющий многочлен.
2: c := h \cdot r + m \pmod{q}
 3: return c
```

Расшифровать сообщение можно при помощи следующего алгоритма:

Algorithm 3 Decrypt

Input: Φ_d - многочлен степени d,

p - малое простое (обычно 3),

q - простое,

f,g - секретный ключ,

 $c \in \mathbb{Z}[x]/\Phi$ - зашифрованное сообщение.

Output: m – дешифрованное сообщение

1: $a := (e \cdot f \pmod{q}) \pmod{p}$

2: **return** $m = (a \cdot (f^{-1} \pmod{p})) \pmod{p}$

Доказать корректность несложно: по модулю q имеем $e = (p \cdot g \cdot \mathbf{f}) \cdot r + m$. Тогда $a = e \cdot f = p \cdot g \cdot r + m \cdot f$. Если взять a по модулю p и в результате операций зашифрования и расшифрования не произошло переполнения, то останется $b = m \cdot f \pmod{p}$. Умножим b на $f^{-1} \pmod{p}$ и получим $m \pmod{p}$. Заметьте, что хранить коэффициенты всех элементов кольца многочленов по модулю p или q нужно в промежутках $\{-p/2 \le k < p/2\}$ и $\{-q/2 \le k < q/2\}$ соответственно.

В 1999-м году Копперсмитом [1] была предложена первая атака при помощи решёток на криптосистему NTRU. Оригинальная атака опиралась на особый вид многочлена $\Phi = x^{2^n} - 1$, но мы приведём более общую атаку. Рассмотрим алгебраическую решётку:

$$B = \begin{pmatrix} q & 0 \\ h & 1 \end{pmatrix},\tag{1}$$

где, помимо векторов (q,0) и (h,1) из $(\mathbb{Z}[x]/\Phi)^2$ лежат также их линейные комбинации с коэффициентами из $\mathbb{Z}[x]/\Phi$, если Φ – это циклотомический многочлен. В этом случае $\mathbb{Z}[x]/\Phi$ - это кольцо целых числового поля $\mathbb{Q}[x]/\Phi$.

В ней же лежит вектор с коэффициентами (g,f) относительно базиса B. Его координатами являются $(g,f)\cdot B=(qg+g,f)$. Так как вместе с вектором решётки вида (qt+x,y) в ней же лежит и вектор вида (x,y) (подумайте, почему), то в решётке, порождённой B лежит и вектор (g,f). Он является аномально коротким и может быть найден при помощи ВКZ алгоритма.

Но как редуцировать алгебраические решётки? На данный момент нам неизвестно о существовании специализированных эффективных алгоритмов редукции алгебраических решёток. Поэтому нам придётся погрузить решётку в поле \mathbb{Q} . Пусть $K = \mathbb{Q}[x]/\Phi$ циклотомическое поле, заданное циклотомическим многочленом Φ . Тогда K получается присоединением примитивного корня ζ_f степени f из единицы 1 . Коэффициентным вложением элемента $k = \sum_{0 \le i < d} k_i \cdot \zeta^i \in K$ является вектор размерности d, состоящий из чисел k_i . Вложением вектора (x,y) является решётка над полем \mathbb{Q} размерности d задаваемая базисом, состоящим из d векторов длины 2d: $\zeta^i \cdot (x,y)$ для $0 \le i < d$. Базис вложения решётки является базисом, состоящим из вложений всех исходных векторов алгебраической решётки.

Пример: пусть K – шестое циклотомическое поле ($\Phi = x^2 - x + 1$). Тогда d = 2 и мы имеем $\zeta_6^2 - \zeta_6 + 1 = 0$. Пусть:

$$B = \begin{pmatrix} 7 & 0 \\ 1 \cdot \zeta_6 + 1 & 1 \end{pmatrix}. \tag{2}$$

 $^{^{-1}}$ Число f называют кондуктором поля. Степень d поля и кондуктор соотносятся через функцию Эйлера: $d=\phi(f)$

Тогда вложением элемента $x + y \cdot \zeta_6 \in K$ в \mathbb{Q} будет решёлка ранга 2, порождённая векторами (x,y) и $(\zeta_6 x, \zeta_6 y)$, а вложением B будет:

$$\begin{pmatrix}
7 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 \\
1 & 1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{pmatrix}$$

Как и в случае с RSA, неправильно подобранные параметры могут привести к слабой защищённости криптосистемы. В случае криптосистем на решетках, как правило, чем больше размерность поля, тем защищённей система. Однако непропорционально большой q, суперполиномиально зависящий от d тоже сильно бьёт по защищенности системы [2]. Данная атака основана на наблюдении, что нам необязательно находить секретный ключ: достаточно найти достаточно короткий вектор (g', f') в алгебраической подрешётке, порождённой (g, f) и использовать его в качестве ключа.

Задание

В данной лабораторной работе вам будет дан 432-й циклотомический многочлен $x^{144}-x^{72}+1$ степени 144, простые $q\approx 2^{13},\ p=3$, публичный ключ h и зашифрованное сообщение e. Вам нужно найти короткий вектор решётки (g',f') из плотной подрешётки, порождённой (g,f) и дешифровать с его помощью сообщение. Для этого вам следует построить базис решётки B, вложить его в $\mathbb Q$ и вызвать на нём LLL. После этого следует вызвать ВКZ алгоритм с возрастающим параметром размера блока β^2 . Примеры составлены так, что при $\beta\approx 40$ такой вектор должен отыскаться. В сообщении содержится название музыкальной группы, поэтому корректность атаки можно проверить наглядным образом. Заметьте, что секретный ключ (g',f') будет найден с точностью до знака и умножения на степень ζ_{432}^i , где i<144, поэтому стоит сгенерировать 288 ключей и проверить, какой из них подойдёт.

Параметры системы для каждой группы представлены в файле https://crypto-kantiana.com/elena.kirshanova/teaching/lattices_2023/lab4params.txt

Список литературы

- [1] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In *Advances in Cryptology—EUROCRYPT'97*, pages 52–61. Springer, 1997.
- [2] Léo Ducas and Wessel van Woerden. NTRU fatigue: How stretched is overstretched? Cryptology ePrint Archive, Report 2021/999, 2021. https://ia.cr/2021/999.
- [3] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem. In Joe Buhler, editor, *ANTS-III*, pages 267–288, 1998.
- [4] John M Schanck. A comparison of NTRU variants, 2018. https://eprint.iacr.org/2018/1174.

 $^{^{2}}$ Мы вызывали, начиная с $\beta=4$ с шагом в 2.