

Agenda

- Lab Group Assignments
- Review from Last Lab
- Introduce Lab 2

Last Time

Reactive Behaviors

State Machines

Today: Odometry

Odometer: Integrates velocity

Example from last lab: when do I know I turned 180 degrees?

Question: What variable is missing to fully define the robot's pose on the plane?

Today: Odometry

Odometer: Integrates velocity

Example from last lab: when do I know I turned 180 degrees?

Lab Setup

- Which direction is the robot driving in the world coordinate frame?
- What unit is the robot's wheelspeed?
- How many meters is this per second?
- What is its pose after one complete tour?

Lab Setup

- Which direction is the robot driving in the world coordinate frame? Along positive Z
- What unit is the robot's wheelspeed? Rad/s
- How many meters is this per second? Radius*Rad/s
- What is its pose after one complete tour? (0,0,0)

How can I find out how fast the robot is?

Angular and forward speed

Forward Kinematics of a Mobile Robot

Superposition of velocities

Forward Kinematics of a Mobile Robot

Your coordinate system

How can we compute position?

$$\begin{pmatrix} x_I(T) \\ y_I(T) \\ \theta(T) \end{pmatrix} = \begin{pmatrix} \dot{x_I}(t) \\ \dot{y_I}(t) \\ \dot{\theta}(t) \end{pmatrix}$$

How can we compute position?

$$\begin{pmatrix} x_I(T) \\ y_I(T) \\ \theta(T) \end{pmatrix} = \int_0^T \begin{pmatrix} \dot{x}_I(t) \\ \dot{y}_I(t) \\ \dot{\theta}(t) \end{pmatrix} dt \approx \sum_{k=0}^{k=T} \begin{pmatrix} \Delta x_I(k) \\ \Delta y_I(k) \\ \Delta \theta(k) \end{pmatrix} \Delta t$$

int(robot.getBasicTimeStep())

From linear algebra/diff equations to code

$$\begin{pmatrix} \dot{x_I} \\ \dot{y_I} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{r\dot{\phi_l}}{2} + \frac{r\dot{\phi_r}}{2} \\ 0 \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{pmatrix}$$

1. Robot never moves sideways

$$\begin{pmatrix} \dot{x_I} \\ \dot{y_I} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{r\dot{\phi_l}}{2} + \frac{r\dot{\phi_r}}{2} \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{pmatrix}$$

2. Multiply matrices

$$\dot{x_I} = \cos(\theta) \left(\frac{r\dot{\phi_l}}{2} + \frac{r\dot{\phi_r}}{2} \right)
\dot{y_I} = \sin(\theta) \left(\frac{r\phi_l}{2} + \frac{r\phi_r}{2} \right)
\dot{\theta} = \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d}$$

3. Integrate

$$\begin{pmatrix} x_I(T) \\ y_I(T) \\ \theta(T) \end{pmatrix} \leftarrow \begin{pmatrix} \Delta x_I(k) \\ \Delta y_I(k) \\ \Delta \theta(k) \end{pmatrix} \Delta t$$

Sources of Error

Deterministic

- Unequal wheel diameter
- Wheel contact point variation

Non-deterministic

- Variable friction
- Measurement noise

Addressed with calibration

Code Suggestions

- Start implementing line following. Do NOT move forward before line following is not robust.
- Use an if/elif chain to check which state your system is in (unless you want to do it the Pythonic way)
- Don't ever use time.sleep() or estimate the elapsed time, instead skip steps in the loop and call robot_step()

```
current_state = 'STATE_1'
while robot.step(TIME_STEP) != -1:
   if current_state == 'STATE_1':
        pass
elif current_state = 'STATE_2':
        pass
```

Need Help? Send a chat message!

Group programming IDEs: www.codeshare.io | http://collabedit.com/

FAQs:

- What's due at the end of today?
- Nothing, this is a 2-week lab. Due Tuesday 2/21 at 11:59pm.
- What do I turn in?
 - ONE person needs to turn in the lab report and code per group.
- We're done! Can we leave?
 - Yep. Lab is meant to provide an interactive problem-solving time. If you complete the work early, you are free to go!

