

Práctica 3: Resolución de ecuaciones no lineales Métodos Numéricos 2024

Brian Luporini

10 de Septiembre de 2024

Ejercicio 3

Qué se obtiene al aplicar reiteradamente a un valor cualquiera la función coseno?

Para empezar a estudiar este problema vamos a utilizar Scilab. Para esto, podemos construir una función en un script de Scilab que permita aplicarle n veces la función $\cos(x)$ a un valor $x_0 \in \mathbb{R}$ arbitrario. Por ejemplo,

```
function y = cos_n(x0,n)
// Entrada: x0 = valor real; n = numero natural
// Salida: y = valor obtenido de aplicar reiteradamente la funcion cos(x) al
    punto x0

y = x0
for i=1:n
    y = cos(y)
end
endfunction
```


Utilizando esta función podemos generar la siguiente tabla.

х0	n	$\cos_{\mathtt{n}}(x0,n)$	x0	n	$\cos_{\mathtt{n}}(x0,n)$
-8	1	-0.1455	100	1	0.8623189
	2	0.9894335		2	0.6506784
	3	0.5491634		3	0.7956731
	4	0.8529615		41	0.7390852
	5	0.6577553		42	0.7390851
	10	0.7499733		43	0.7390851
	20	0.7392953			
	40	0.7390892	-0.0123	1	0.9999244
	42	0.7390852		2	0.540366
	43	0.7390851		41	0.7390852
	44	0.7390851		42	0.7390851
	45	0.7390851		43	0.7390851

Ahora vamos a darle una interpretación geométrica al problema. Sea $x_0\in\mathbb{R}$ un punto arbitrario. La sucesión que se obtiene de aplicar reiteradamente a x_0 la función coseno es la sucesión

$$x_{n+1} = \cos(x_n), \quad n \in \mathbb{N}_0. \tag{1}$$

En la tabla anterior vimos que x_n pareciera acercarse a un valor $y\sim 0,7390851$. Supongamos de momento que $x_n\to \alpha$ para algún $\alpha\in\mathbb{R}$. Luego, como $\cos(x)$ es continua, en (1) aplicando límites a ambos miembros se tiene

$$\alpha = \cos(\alpha)$$
.

Esto es, gráficamente, α es un punto en el eje x que verifica $\cos(x)=y(x)$ donde y(x)=x.

Formalmente, tenemos que probar que x_n converge. Si esto sucede se tiene que converge al α representado en la imagen anterior.

Sea $g:\mathbb{R}\to\mathbb{R}$ la función $g(x)=\cos(x)$, y sea $x_0\in\mathbb{R}$ un punto arbitrario. Definimos la sucesión

$$x_{n+1} = g(x_n), n \in \mathbb{N}_0.$$

La convergencia de este tipo de sucesiones se estudiaron en la teoría en el Teorema 2 (Condición suficiente de convergencia). Para aplicar este teorema necesitamos encontrar un intervalo $[a,b]\subset\mathbb{R}$ donde $g([a,b])\subset[a,b]$ y $\{x_n\}\subset[a,b]$. Observemos la gráfica de q:

Tomando el intervalo [-1,1] se tiene

$$\sup_{x \in [-1,1]} |g'(x)| = \sup_{x \in [-1,1]} |-\sin(x)| = \sup_{x \in [-1,1]} |\sin(x)| = \sin(1) < 1.$$

Como $x_1=\cos(x_0)\in[-1,1]$, por el Teorema 2 aplicado a la sucesión $\{x_n:n>0\}$ (excluimos al x_0 ya que posiblemente $x_0\notin[-1,1]$) tenemos que existe un único punto α tal que $x_n\to\alpha$ cuando $n\to\infty$. Esto es, α verifica la igualdad

$$\alpha = \cos(\alpha),$$

y es el punto donde converge la sucesión que se obtiene de aplicar reiteradamente a un valor cualquiera la función coseno.

Ejercicio 5

Convertir la ecuación $x^2-5=0$ en el problema de punto fijo $x=x+c(x^2-5):=g(x)\text{, con }c\text{ constante positiva. Elegir un valor adecuado de }c$ que asegure la convergencia de $x_{n+1}=x_n+c(x_n^2-5)$ a $z=-\sqrt{5}$.

Observemos que

$$x^{2} - 5 = 0 \Leftrightarrow c(x^{2} - 5) = 0, \quad c > 0 \Leftrightarrow g(x) = x + c(x^{2} - 5) = x, \quad c > 0.$$

Se tiene que resolver $x^2-5=0$ es equivalente a buscar soluciones de $x+c(x^2-5)=x$ para cualquier c>0.

Dado que g(z)=z, para estudiar la convergencia de

$$x_{n+1} = x_n + c(x_n^2 - 5)$$

a z podemos utilizar el Colorario 1. Se tiene g,g^\prime son continuas y

$$q'(x) = 1 + 2cx.$$

Necesitamos que |g'(z)| < 1 para asegurar la convergencia de x_n si x_0 es cercano a z.

$$|g'(z)| = |1 - 2c\sqrt{5}| < 1 \Leftrightarrow -1 < 1 - 2c\sqrt{5} < 1$$
$$-2 < -2c\sqrt{5} < 0$$
$$\frac{1}{\sqrt{5}} > c > 0.$$

Por lo tanto, tomando

$$c < \frac{1}{\sqrt{5}}$$

podemos asegurar la convergencia de la sucesión para un adecuado valor de $x_{
m 0}.$