Masters Bridge Program

Summer 2021

Session 6: Dependence between random variables

Instructor: Bryan Liu Contact: runjing_liu@berkeley.edu

6.1 Conditional densitites

Recall that for a discrete random variable X, then the conditional distribution of Y is given by

$$\mathbb{P}(Y = y | X = x) = \frac{\mathbb{P}(Y = y, X = x)}{\mathbb{P}(X = x)}.$$

However, if X is a continuous random variable, then the denominator X = x has probability 0, which results in an defined expression.

In order to define conditional distributions for continuous random variables X and Y, we can express the conditional distribution in terms of densities.

Conditional density of Y **given** X=x. For random variables X and Y with joint density f(x,y), for each x with marginal density $f_X(x)>0$, the conditional density of Y given X=x is the probability density function

$$f_Y(y|X=x) = \frac{f(x,y)}{f_X(x)}.$$
 (6.1)

Then for any set B,

$$\mathbb{P}(g(Y)|X=x) = \int_{B} f_{Y}(y|X=x) \ dy$$

Exercise 1 (Uniform on a triangle). Let X, Y uniformly distribution on the region $\{(x, y) : 0 < x < y < 2\}$. Find $\mathbb{P}(Y > 1 | X = x)$.

We can re-arrange Equation (6.1) to arrive at the multiplication rule for densities,

$$f(x,y) = f_X(x)f_Y(y|X=x).$$

Exercise 2 (Gamma and uniform). Suppose X has a Exponential(λ) distribution, and that given X = x, Y is uniform on (0, x).

- (a) Find the joint density of (X, Y).
- (b) Find marginal densitiy of Y.

6.2 Conditional expectations

Let g be a function that maps $\mathbb{R} \to \mathbb{R}$. The **conditional expectation of** g(Y) **given** X = x is

$$\mathbb{E}(g(Y)|X=x) = \int g(y)f_Y(y|X=x) \ dx.$$

Exercise 3. Show,

(a) Average conditional probability:

$$\mathbb{P}(Y \in B) = \int \mathbb{P}(Y \in B | X = x) f_X(x) dx$$

(b) The tower property:

$$E(Y) = \int \mathbb{E}(Y|X=x) f_X(x) \ dx.$$

We can succinctly write the tower property as $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X))$.

Exercise 4 (Expectation of a product). Let X and Y be random variables, and h a function of X. Show that

$$\mathbb{E}(h(X)Y) = \mathbb{E}(h(X)\mathbb{E}(Y|X)).$$

Exercise 5 (Predictions). In a previous session, we saw that if we want to predict Y by a constant b, in order to minimize the MSE

$$MSE(b) = \mathbb{E}((Y - b)^2),$$

we should set $b = \mathbb{E}(Y)$.

Now suppose the data come in pairs (X,Y), and we get to observe X in order to predict Y. We want to construct a predictor, which is a function g(X), to predict Y.

If we again want to minimize the MSE,

$$MSE(g(X)) = \mathbb{E}((Y - g(X))^2),$$

argue that the optimal g is $g(x) = \mathbb{E}(Y|X=x)$.

6.3 Covariance and correlation

Given two random variables *X* and *Y*, their *covariance* measures how these variables move together.

For random variables *X* and *Y*, their **covariance** is defined as

$$Cov(X, Y) = \mathbb{E}((X - \mu_X)(Y - \mu_Y)),$$

where $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$.

Exercise 6 (Alternative formula for covariance). Show that we can compute the covariance as $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Generally, Cov(X,Y) is positive if above-average values of X tend to be associated above values of Y. Cov(X,Y) is negative if above-average values tend to be associated with below-average values of Y, and vice-versa.

The magnitude of the covariance may be hard to interpret. We can normalize the covariance as follows:

For random variables *X* and *Y*, their **correlation** is defined as

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X),\operatorname{Var}(Y)}}.$$
(6.2)

Exercise 7. Show that Corr(X, Y) is always between -1 and 1.

Exercise 8 (Empirical correlations). Suppose we observe data pairs $(x_1, y_1), ..., (x_n, y_n)$. Use the plug-in principle, plugging in the empirical distribution for the correlation formula (6.2), to give a formula for the sample correlation.

When two random variables X and Y have zero correlation (or equivalently, zero covariance), we say that the random variables are *uncorrelated*.

Exercise 9 (Independence implies uncorrelated). Show that if random variables X and Y are independence, then X and Y are uncorrelated.

Exercise 10 (Uncorrelated does not imply independence). Let X take values $\{-1,0,1\}$ with equal probability. Let $Y=X^2$. Argue that X and Y are not independent but have Cov(X,Y)=0.

More generally, the correlation (or covariance) measures the *linear* relationship between two random variables. Two variables may have some other, nonlinear relationship, and using the covariance as a metric to measure their dependence may not be appropriate. See Figure 6.1 for an illustration.

TODO exercise. best linear predictor.

Figure 6.1: Plotted are scatter points of (x,y) pairs, with their empirical correlations (Exercise 8). Correlation measures the linear relationship between two random variables; however, zero correlation does not rule out other, nonlinear relationships. Figure taken from https://en.wikipedia.org/wiki/Correlation.