

PRACTICAL WORK - SOFT MATTER

Numerical simulations of ideal chain model of polymer

Dr. Adrien Nicolaï & Pr. Patrick Senet

Presentation

Theoretical lecture: Pr. SENET

Grade: 50% theoretical exam + 50% practical work

Practical work: Dr. NICOLAÏ

2h Exercise + 4h Practical

Location: computer room D102

GRADE: Report of 4 pages MAX about practical work - template of research paper

DEADLINE: Friday January 12th, 2024 - 6 PM

Introduction

Numerical simulations of ideal chain model of polymer using PYTHON

The **freely-jointed chain** (FJC) model consist of a chain of bonds: the orientation of the different bonds is completely uncorrelated and no direction is preferred.

2 parameters: number of bonds N and bond length b (N + 1 monomers; no exlcuded volume = "phantom" chains)

• One measure of extent: $\langle Q^2 \rangle = Nb^2 + \sum_{i \neq j}^N b^2 \langle cos\theta_{ij} \rangle$

There is no correlation between the segments: angle between 2 bond vectors θ_{ij} (= $180 - \tau_{ij}$) can have all values -> $\langle cos\theta_{ij} \rangle = 0$

i.e. the bond angle τ [0,180] and torsion angle ϕ [0,360] can have any value

Mean square **end-to-end distance** $\langle Q^2 \rangle = Nb^2$

see chapter 2 of theoretical lectures for demonstration

Introduction

Numerical simulations of ideal chain model of polymer using PYTHON

The **freely-jointed chain** (FJC) model consist of a chain of bonds: the orientation of the different bonds is completely uncorrelated and no direction is preferred.

2 parameters: number of bonds N and bond length b (N + 1 monomers; no exlcuded volume = "phantom" chains)

• One measure of extent: $\langle Q^2 \rangle = Nb^2 + \sum_{i \neq j}^{N} b^2 \langle cos\theta_{ij} \rangle$

i.e. the bond angle τ [0,180] and torsion angle ϕ [0,360] can have any value

- Probability distribution **end-to-end distance**
$$P(\vec{Q}) = \left(\frac{3}{2\pi Nb^2}\right)^{3/2} exp\left(-\frac{3Q^2}{2Nb^2}\right)$$

see chapter 2 of theoretical lectures for demonstration

Introduction

Numerical simulations of ideal chain model of polymer using PYTHON

• Another measure of extent R_g : radius of gyration (accounts for the position of all monomers)

$$R_g^2 = \frac{1}{N} \sum_{i=0}^{N} (\vec{R}_i - \vec{R}_{cm})^2$$

 \vec{R}_i : position of monomer i

$$\vec{R}_{cm} = \frac{1}{N} \sum_{i=0}^{N} \vec{R}_{i}$$
 : position of center of mass

Mean square radius of gyration $\langle R_g^2 \rangle = \frac{Nb^2}{6} (N \to \infty)$

i.e. the bond angle τ [0,180] and torsion angle ϕ [0,360] can have any value

see chapter 2 of theoretical lectures for demonstration

Simulations

Numerical simulations of ideal chain model of polymer using PYTHON

Modelling of polymer conformation using FJC model

N+1 monomers \vec{R}

N bonds \vec{b}

N-1 bond angles τ

N-2 dihedral angles ϕ

Algorithm

Numerical simulations of ideal chain model of polymer using PYTHON

- Define parameters: b, N and T
- For t = 1 -> T
 - Generate N bond vectors \vec{b}

generate uniformly distributed numbers in the cube $[-1,1]^3$ and ignore any points that are further than a unit distance r from the origin. This will ensure a uniform distribution in the region $r \le 1$. Next, normalize each random vector to have unit norm so that the vector retains its direction but is extended to the sphere of unit radius. As each vector within the region $r \le 1$ has a random direction, these points will be uniformly distributed on a sphere of radius 1.

OUTPUT: xyz trajectory file (https://en.wikipedia.org/wiki/XYZ_file_format)

Python script

See script_FJC_simulation_STUDENT.ipynb

Jupyter Notebook

Exercise

Numerical simulations of ideal chain model of polymer using PYTHON

Exercise:

- 1) Generate T=1000 conformations of the polymer (N=100)
- 2) Visualize the structures using VMD software
- 3) Compute and plot time series of METRICS Q & R_g
- 4) Compute $<Q^2> \& <R_g^2>$
- 5) Compare numerically with theoretical values

Visualization

VMD

- 1. Load the file *polymer.xyz* (File -> New Molecule -> Browse...-> Load)
- 2. Go to Graphics -> Representation
- 3. Select Coloring Method = Index and Drawing Method = VDW
- 4. Select Material Glossy
- 5. Change Sphere Resolution to 50
- Go to File -> Render...
- 7. Select Tachyon (internal, in-memory rendering)
- 8. Define filename and click on Start Rendering to generate an image of the screen

GOAL: verified numerically the 4 following theoretical results

- Mean square end-to-end distance $\langle Q^2\rangle=Nb^2$ for $N=10\dots 1000$ - Mean square radius of gyration $\left\langle R_g^2\right\rangle=\frac{Nb^2}{6}(N\to\infty)$

- Probability distribution end-to-end distance $P(Q) = 4\pi Q^2 \left(\frac{3}{2\pi Nb^2}\right)^{3/2} exp\left(-\frac{3Q^2}{2Nb^2}\right)$ for N = 100

- Singular behavior $P(Q) = \frac{Q}{2h^2}$ for N = 2

+ study of the influence of T + comparison with theory (estimation of errors)

Numerical simulations of ideal chain model of polymer using PYTHON

3

- Structure factor
$$I(k) = \sum_{i=0}^{N} \sum_{j=0}^{N} \left\langle \frac{\sin(k \|\overrightarrow{R_i} - \overrightarrow{R_j}\|)}{k \|\overrightarrow{R_i} - \overrightarrow{R_j}\|} \right\rangle$$

for N = 100

- Comparison with Guinier approximation

$$I(k) = (N+1)^{2} \left[1 - \frac{(kR_g)^{2}}{3} \right]$$

+ estimation of Rg from I(k) + error

TO GO FURTHER:

Consider a force F along the cartesian X direction and a temperature T. Compute the force-extension curve as a function of the force F applied using a Metropolis Monte-Carlo algorithm.

Algorithm

- Create a structure of FJC polymer (t=0)
- Define a force along x: F = [Fx,0,0]
- Compute potential energy $V = -\vec{F} \cdot \vec{Q}$
- Modify randomly one bond vector
- Compute the new potential energy
- Use Metropolis MC to accept or reject the move
- Iterate over T conformations
- Compute Q(T) = extension

TO GO FURTHER:

Consider a force F along the cartesian X direction and a temperature T. Compute the force-extension curve as a function of the force F applied using a Metropolis Monte-Carlo algorithm.

TO GO FURTHER:

Consider a force F along the cartesian X direction and a temperature T. Compute the force-extension curve as a function of the force F applied using a Metropolis Monte-Carlo algorithm.

$$|\vec{Q}.\vec{u_x}| = Nb \left[\coth(\alpha) - \frac{1}{\alpha} \right], \alpha = \frac{Fb}{k_B T}$$

- Write a report following the template provided to you as a research paper
 - INTRODUCTION
 - METHODS
 - RESULTS and DISCUSSION
 - CONCLUSION
 - REFERENCES

VERY STRICT INSTRUCTIONS ABOUT CONTENTS AND FORMATTING!

END

adrien.nicolai@u-bourgogne.fr

