The pollination trade-off

Supplementary information

Fernando Cagua, Hugo Marrero, Jason Tylianakis, Daniel Stouffer

Figure S1: Distribution of the stigmatic pollen density for one of the bootstrap replicates used in the model sets. When (A) using directly the gain in pollen density and (B) when pollen density is log transformed (for the relative amount of conspecific pollen, density was log-transformed prior to calculating the gain).

Figure S2: Distribution of plant abundance as (A) raw counts of floral units across communities, and (B) after applying a data transformation in which the counts have been log transformed and scaled to have a mean of zero and a standard deviation of one.

Table S1: Comparison of the different random structures we considered. The table shows median delta AIC values of 99 bootsrap resamples of the data. The 5th and 95th percentile are shown inside square brackets. Communities are defined by individual fragments but ignore the hierarchical arrangement of sampling sites.

pollen type	random structure	delta_AIC
conspecific (absolute)	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	13.1 [0, 29.5] 17.4 [4.2, 33.7] 15.9 [3.1, 24.6] 0 [0, 11.3] 51.3 [37, 74]
conspecific (relative)	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	0 [0, 0] 4.2 [3.9, 4.2] 6.9 [0.8, 20.2] 16 [5, 33.3] 22.5 [6.9, 44.8]
heterospecific	1 community / plant sp. 1 locality / land use / fragment / plant sp. 1 locality / land use / plant sp. 1 locality / plant sp. 1 plant sp.	0 [0, 0] 4.2 [4.2, 4.2] 9.9 [3.8, 19.8] 43.6 [15.7, 72.6] 36.7 [10.1, 67.1]

Table S2: Results of testing the alternative hypothesis that the conspecific pollen density in open flowers is greater than the density in bagged flowers. Tests were performed at the species level (across communities).

plant species	difference	statistic	p value
Aloysia gratissima	31.6666177	9.0	0.0382613
Baccharis pingraea	2.9999531	156.0	0.0000308
$Carduus\ a can thoides$	0.0000386	1077.0	0.4953884
$Cirsium\ vulgare$	-109.7728636	82.0	0.9969050
$Condalia\ microphylla$	-8.9004993	20.0	0.7499117
$Cypella\ herbertii$	2428.2500000	20.0	0.0151515
$Descurania\ argentina$	21.5000000	61.0	0.0599151
Diplotaxis tenuifolia	198.7500000	217.0	0.1661275
$Dipsacus\ sp.$	6.7177679	28.5	0.0085552
$Gaillardia\ megapotamica$	-411.7500000	9.0	0.9999504
$Glandularia\ hookeriana$	-68.5833333	5.0	0.8690476
$Hirschfeldia\ incana$	29.5000848	9510.0	0.1014593
Lycium chilense	394.1666667	24.0	0.1969697
$Mentha\ pulegium$	1.0104167	34.0	0.2205997
$Nierembergia\ aristata$	769.7500000	70.0	0.0000514
$Nothoscordum\ euosimum$	199.4166667	44.0	0.0247752
$Physalis\ viscosa$	1074.0000000	15.0	0.0178571
$Prosopidastrum\ globosum$	3.3096971	20.0	0.2051239
$Senecio\ pulcher$	-25.0000000	6.0	0.7142857
$Sisyrinchium\ platense$	-22.2500000	49.0	0.6918285
$Solanum\ sisymbrii folium$	2195.00000000	3.0	0.2500000
Sphaeralcea crispa	5.7000000	15.0	0.0178571
$Stemodia\ lanceolata$	1261.0000000	25.0	0.0039683
$The lesperma\ megapotamicum$	-23.3333333	4.0	0.6500000
$Turnera\ sidioides$	151.0000205	327.0	0.0000224
$Verbena\ intermedia$	87.0833333	367.0	0.0062368

Table S3: Comparison of the different fixed structures we considered. The table shows median delta AIC values of 99 bootsrap resamples of the data. The 5th and 95th percentile are shown inside square brackets.

pollen type	fixed structure	delta_AIC
conspecific (absolute)	~ abundance + share pollen + degree + func. originality ~ abundance + share pollen ~ abundance + share pollen + func. originality ~ abundance + share pollen + degree ~ share pollen + degree + func. originality ~ share pollen + func. originality ~ share pollen + degree ~ share pollen ~ abundance ~ abundance ~ abundance + degree ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ abundance + degree + func. originality ~ degree ~ 1	0 [0 ,0.3] 0.5 [0 ,1.2] 1 [0.5 ,1.7] 1 [0.7 ,1.6] 2 [1.2 ,2.8] 3.3 [2.1 ,4.4] 123.7 [91 ,158.2] 124.9 [92.3 ,159.7] 199.8 [171.8 ,225.3] 201.6 [173.1 ,227.1] 201.7 [173.8 ,227.2] 202.5 [174.2 ,227.8] 202.8 [173.8 ,228.2] 203.4 [174.9 ,228.8] 357.5 [311.8 ,406.6] 376.4 [330.8 ,426.2]
conspecific (relative)	~ share pollen + func. originality ~ abundance + share pollen + func. originality ~ abundance + share pollen ~ share pollen + degree + func. originality ~ abundance + share pollen + degree + func. originality ~ abundance + share pollen + degree ~ share pollen ~ share pollen + degree ~ abundance + func. originality ~ abundance ~ func. originality ~ abundance + degree + func. originality ~ degree + func. originality ~ abundance + degree ~ degree ~ degree ~ degree ~ 1	0 [0 ,0.4] 1 [0.2 ,1.7] 1.6 [0 ,3.6] 2.1 [1.7 ,2.5] 3 [2.1 ,3.7] 3.6 [2.1 ,5.7] 108.9 [92.1 ,129.4] 110.6 [94.1 ,131.3] 215.6 [197.4 ,233.9] 217 [198.9 ,234.3] 217.2 [199 ,234.8] 217.6 [199.4 ,235.8] 217.4 [200.1 ,235.3] 218.1 [199.8 ,235.7] 390.4 [361.6 ,414.3] 392.9 [363.6 ,417.2]
heterospecific	~ abundance + share pollen ~ abundance + share pollen + degree ~ abundance + share pollen + func. originality ~ abundance + share pollen + degree + func. originality ~ share pollen + func. originality ~ share pollen + degree + func. originality ~ share pollen ~ share pollen ~ share pollen ~ share pollen + degree ~ abundance + degree ~ abundance + func. originality ~ abundance + func. originality ~ func. originality ~ degree + func. originality ~ 1 ~ degree	0 [0 ,0] 0.9 [0 ,1.5] 1.2 [0.9 ,1.5] 2.6 [1.9 ,3.2] 7.9 [6.7 ,9.1] 9.9 [8.7 ,11.1] 67.3 [59.9 ,72.8] 69.4 [62 ,74.8] 200.4 [172.9 ,224.5] 201.8 [176.3 ,225.8] 202.3 [175 ,226.4] 203 [177.6 ,226.6] 209.3 [186.1 ,233.9] 211.4 [188.2 ,236] 331.8 [302.2 ,356.9] 332.7 [303.6 ,358.1]

Figure S3: Corelation between the explanatory variables included in the statistical models.

Figure S4: Distribution of effect estimates for models of conspecific and heterospecific pollen density gain. Only results for the models with the most parsimonous fixed effects.