$$G(S) = \frac{1}{ST + 1}, \qquad G(S) = \frac{W_n^2}{S^2 + 2 \int w_n + w_n^2}$$

$$G(s) = \mathbb{K} \cdot \frac{\prod_{i=1}^{m} (s + \xi_i)}{\prod_{i=1}^{n} (s + \rho_i)}$$

ORDINE SU PERIORE

Supponiamo che abbia Tutti i reali e distinti

RISPOSTA AL GRA DINO

$$U(t) = \mathcal{I}(t) \implies U(s) = \frac{1}{s} = 0 \qquad y(s) = U(s) \cdot G(s) = \mathcal{K} \cdot \frac{\prod_{i=1}^{m} (s + \lambda_i)}{n}$$

$$S \cdot \prod_{i=1}^{m} (s + \rho_i)$$

Notiamo che ogni esponenziale è moltiplicato per il suo residuo; quindi un esponenziale può dominare non solo nel tempo

(velocità di assestamento) ma

-D SCOMPOSIZIONE

$$y(s) = \frac{\xi_0}{s} + \sum_{\kappa=1}^{n} \frac{\xi_{\kappa}}{s + p_{\kappa}}$$

POSSO CALCOLARE I RESIDUI COME:

-D ANTITRASFORMATA

anche in ampiezza! $y(t) = z_0 + \sum_{n=1}^{\infty} z_n \cdot e^{-\rho_n t}, \quad t \ge 0$

Risposta al gradino di un sistema di ordine superiore quando tutti i poli sono reali e distinti

Abbiamo tanti esponenziali quanti sono i poli (n)

Siccome abbiamo una somma di esponenziali, il tempo che il sistema impiega ad arrivare a regime corrisponde a 4/5 costanti di tempo dell'esponenziale più lento, ovvero quello con la costante di tempo **maggiore**.

$$= \underline{K} \cdot \frac{m}{\prod_{i=1}^{|C|} (-P_K + Z_i)}$$

$$(-P_K) \frac{n}{\prod_{i=1}^{|C|} (-P_K + P_i)}$$

$$(S+P_{K}) \cdot \underline{K} \stackrel{m}{=} (S+Z_{i})$$

$$S \cdot \prod_{i=1}^{m} (S+P_{i})$$

Un solo elemento della produttoria è uguale ad (s+pk), quindi lo 'portiamo fuori"

Possier mo quindi scrivere
$$\mathcal{E}_{K} = \lim_{S \to P_{K}} (S + P_{K}) \cdot \underbrace{Y(S)} = \lim_{S \to P_{K}} \underbrace{(S + P_{K})} \cdot \underbrace{K} \cdot \underbrace{\prod_{i=1}^{m} (S + Z_{i})}_{S \cdot \prod_{i=1}^{m} (S + P_{i})} = \lim_{S \to P_{K}} \underbrace{(S + P_{K}) \cdot K} \cdot \underbrace{\prod_{i=1}^{m} (S + Z_{i})}_{S \cdot \prod_{i=1}^{m} (S + P_{i})}$$

Porto un (s+pk) fuori dalla produttoria andando a dire che la produttoria vale per tutti gli da 1 a n tranne per i=k; posso così semplificare.

CONSIDERAZIONE: GLI ZERI MODIFICANO LA RISPOSTA

PERCHE'? $d_{\mathbf{R}} \|_{\mathbf{R}} = \mathbf{K} \cdot \frac{\mathbf{K}}{(-P_{\mathbf{K}} + P_{\mathbf{i}})}$ otteniamo che il residuo associato a quell'esponenziale diventa zero, e con compare nella risposta

Se c'è uno zero Zi che coincide con il polo Pk, otteniamo che il residuo associato a quell'esponenziale diventa zero, e quindi

In fati dalla (1)
$$y(t) = z_0 + \sum_{k=1}^{n} z_k \cdot e$$
 Se $z_k = 0 = 0$ $e = 0$

CASO 2: POLI COMPLESSI E CONJUGATI

Se
$$p_n \triangleq - \int w_n \pm w d\sqrt{1 - f^2}$$
 A due a due

$$\frac{m}{T} \left(s + \frac{\lambda}{2} \right)$$

$$\prod_{i=1}^{m} (s+\xi_i)$$

$$2J_iW_{n_i}S+W_{n_i}^2$$

$$y(t) = z_0 + \sum_{K=1}^{n_2} z_K \cdot e + \sum_{K=1}^{n_2} \left[1 - e \cdot \cos(w d_K t) + \frac{2 f_K W_{mK}}{w d_K} \cdot e^{-f_K W_{mK}} t \right]$$

$$(H|EDERE AL PROF)$$

Res

Possiamo definire delle regioni nel piano complesso:

Ad esempio, voglio che la parte immaginaria sia inferiore ad una certa parte reale **per tutti i poli**;

In questo modo non sapremo se c'è un polo dominante o meno, ma se diciamo che tutti i poli sono a sinistra di una certa ascissa (-sigma), sono sicuro che tutte le costanti di tempo si saranno esaurite dopo 4/sigma.

Allo stesso modo, se dico che voglio che tutti i poli siano all'interno di un certo angolo beta, allora stiamo assegnando un certo coefficiente di smorzamento zeta.

Di conseguenza saremo certi che (se l'angolo è nel range) il coefficiente di smorzamento sarà minore di quello assegnato.

Morale della favola

Possiamo definire delle **regioni**; se tutti i poli sono all'interno di questa regione, allora potremo affermare che la risposta avrà al più una certa costante di tempo o un coefficiente di smorzamento.

Modo del sistema: è l'antitrasformata di un singolo termine della scomposizione in fratti semplici.

EVOLUZIONE LIBERA

Quando abbiamo visto la risoluzione delle equazioni differenziali con il metodo della trasformata di Laplace, abbiamo visto che la derivata (in s) si traduce in s * F(s) - f(0); siccome abbiamo assunto condizioni iniziali nulle, il secondo membro era sempre zero.

L'evoluzione libera è la risposta del sistema quando le condizioni iniziali **non sono nulle.**

$$\begin{cases} \dot{\chi} = A \chi + B u \\ y = C \chi + D u \end{cases} = \begin{cases} \dot{\chi}(t) = A \chi(t) + B u(t) & (1) \\ y(t) = C \chi(t) + D u(t) \end{cases}$$

TRASFORMO LA (1)

$$SX(s) - \chi(0) = AX(s) + BU(s)$$

$$SX(s) - AX(s) = \chi(0) + BU(s)$$

TROVO L'USCITA Y(S)

$$Y(s) = CX(s) + DV(s) = C(SI-A)X(0) + C(SI-A)BU(s) + DU(s)$$

$$= ((SI-A) \times (0) + [C(SI-A)B+D]U(S)$$

L'evoluzione libera non dipende da u(t) ma solo dalle specifiche del sistema e dal suo stato iniziale

È detta forzata perché se U(s)=0 allora anche l'uscita è zero.

Infatti se x(0) = 0 $-b \quad Y(S) = \left[C(SI-A)^{\frac{1}{2}} + D \right] V(S)$ $= D \qquad \frac{y(S)}{\Gamma T(S)} = G(S) = C \left(SI - A \right)^{\frac{1}{2}} + D$

 $\longrightarrow \pm solo \times (SI - o) \times (SI - A) \times (O) + (SI - A) \times (SI$

Quali sono le dimensioni delle matrici?

MATRICE A

Ha Tante righe quante sono le Var di stato : Es n variabili :

[nxn]

APPUNTI PRESI A LEZIONE

* DIFFERENZE

* Esempio sys in stabile . FISSIONE NUCLEARE

• PENDOLO INVERSO - D E' UN SYS NON lineare

Se lineanizzo il penulolo inverso e un sys (LTI) INSTABILE

SISTEMI DI ORDINE SUPERIORE

ASSUNTO

Poli reali e distinti

la presenza deali zeri cambia la risposta del sys

Domina l'exp cou il residuo più grande

 $2n = \lim_{S \to D P_R} (S + P_R) \cdot K \cdot \frac{T}{i-1} (S + Z_i)$ $S \to D P_R \cdot K \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot T \cdot (S + P_i)$ $S \to D P_R \cdot (S$

$$G(S) = I \frac{m}{\prod_{i=1}^{n_2} (S+P_i)} \frac{1}{\prod_{i=1}^{n_2} (S^2 + 2J_i) \omega_{n_i} S + \omega_n^2}$$

Posso definire delle **zone** e dire che tutti gli esponenziali saranno sicuramente più lenti di un certo "-sigma"

EVOLUZIONE LIBERA

L'evoluzione libera è la risposta del sistema quando parte da uno stato iniziale diverso da zero.

$$Y(s) = C(SIA)^{A} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{A} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{A} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$= C(SIA)^{-1} \times (0) + C(SIA)^{-1}B + D U(s)$$

$$A \in \mathbb{R}$$
 $n \times n$
 $n \times 1$
 $n \times 1$
 $n \times 1$
 $n \times 1$
 $n \times 1$

$$y(s) = C(SI-A)^{-1}x(0) + G(S) \cdot U(S)$$

$$Y(s) = (X/s) + DU(s)$$

$$= ((sI-A)^{-1}x/o) + ((sI-A)^{-1}B+D)U(s)$$

$$= ((sI-A)^{-1}x/o) + ((sI-A)^{-1}x/o) + ((sI-A)^{-1}x/o)$$

$$= ((sI-A)^{-1}x/o) + ((sI-A)^{-1}x/o) + ((sI-A)^{-1}x/o)$$

$$= ((sI-A)^{-1}x/o) + ((sI-A)^{-1}x/$$

