DETERMINISTIC MODELLING -Practical considerations and key takeaways

Practical Issues

What do you do when you don't have data?

What is the issue?

- □ Two studies; two issues; two solutions
- Study 1- In-Stream canal
 - No rainfall gauge in the catchment
 - 4 gauges outside catchment

Study 1 – The Catchment

	Impervious Steep	Semi-impervious Flat	Roof	Pervious	Total
Total (m²)	112,316	272,663	317,727	<i>777,</i> 391	<u>1,480,09</u> Z

Study 1 - Spatial Variability

Study 1 - What was done?

□ Average it out....

RMSE Parameter MAE **NSE Calibration** Discharge 1.26 0.82 0.83 0.66 Study 1 - results in. Validation Water level 0.22 0.88 0.76 0.19 Discharge 0.87 0.48 0.85 0.72 Water level 0.91 0.82 0.11 0.11

Calibration:
Rainfall: 74.1 mm

Validation Rainfall: 74.7 mm

Know your Area!

Very important especially in the tropics!

Local Singapore Characteristics (1)

Singapore is not a single watershed!

10

- Rainfall/runoff
 - What do you design for?

Rainfall													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Period of Record
Mean Monthly Total (mm)	241.3	160.9	185.2	178.6	171.7	161.7	159.3	176.1	169.4	193.7	255.9	287.4	
Highest Monthly Total (mm)	818.6 1893	566.7 1910	528.3 1913	454.9 1900	386.6 1892	378.7 1954	527.3 1890	526.8 1878	440.4 1988	497.1 1942	521.5 1874	765.9 2006	1869- 2010
Lowest Monthly Total (mm)	15.4 1997	6.3 2010	18.5 1912	16.6 1977	41.6 1997	21.8 2009	18.6 1997	18 1888	23.7 1994	10.8 2002	53.5 1981	62.5 1932	(142yrs)
Highest 1 day Total (mm)	194.4 31 2003	159.3 04 1995	122.8 08 2004	102.4 27 2007	153.7 04 1990	121.1 05 1984	149.1 27 1941	133.9 7 2008	187.3 21 1988	91.4 08 1952	198.6 02 1995	512.4 02 1978	
Mean Raindays	15	11	14	15	15	13	13	14	14	16	19	19	
Maximum Raindays	26 1927	24 1964	23 1945	23 1970	23 1991	26 1899	20 several	23 1936	22 1986	23 several	24 several	26 several	1891- 2010
Minimum Raindays	3 1976	1 1983	3 1983	3 1963	6 1997	4 1981	6 several	5 1941 1961	3 1997	5 1991	11 1998	8 1920	(120yrs)

Period	Prevailing Winds	Weather Features Raindays 1976 1					
Northeast Monsoon Season (December – early March)	Northerly to northeasterly winds 6 – 10 km/h	 Monsoon Surges cause widespread continuous moderate to heavy rain, at times with 25 – 35 km/h winds in the first half of the season. Rapid development of afternoon and early evening showers. Windy and relatively dry in the later part of the season. 					
Inter-monsoon Period (Late March – May)	Light and variable, interacting with land and sea breezes	 Thunderstorms, at times severe, occur in the afternoon and early evening. Hot afternoons are common (maximum temperature above 32°C). 					
Southwest Monsoon Season (June – September)	Southerly to southwesterly winds 6 - 10 km/h	 Occasional "Sumatra Squalls" with wind gusts of 40 - 80 km/h occuring between the predawn hours and midday. Short duration showers/thunderstorms in the afternoon are common. 					
Inter-monsoon Period (October – November)	Light and variable, interacting with land and sea breezes	 Thunderstorms, at times severe, occur in the afternoon and early evening. Generally wetter than the Inter-monsoon Period earlier in the year. 					

111

Urban

□ Green?

Tropical

Rain Areas Animation

Rain Heavy Moderate Light 2012-08-30 12:20 hr

Radar Image by Meteorphicus Stop 3) 18 Speed + -

Kent Ridge Catchment

PUTTING IT ALL TOGETHER

14

Urban

□ Green?

Tropical

Rain Areas Animation

Project Objectives

 Improve understanding of the hydrological responses on urban areas in Singapore ->

Improve rainfall-runoff simulations for the region

How \$

- Setup model and dense monitoring network
 - Why this catchment?
 - Why this combination?
- What did we hope to achieve?
 - Increase RF forecast lead time
 - Improve RF-RO simulation
 - Model emulation to provide alternatives
 - Integrated control

Issues in Tropical Urban RF-RO

- □ Besides interception, depression, infiltration,
 seepage → Rapid runoff!
- Other issues:
 - Hydrological processes not well understood
 - And changing trend from rapid release to storage (4 TAPS)

Moving from reality → model

Designing the monitoring network

- Computer model support
- Regional Frequency Flow Curve
 - Uses Rational Method:

$$Q (L/s) = C I (mm/hr) A (ha) / 0.36$$

- Used AR&R formula for $Tc = 0.76A^{0.38}$

1D RF-RO Model

- Support MonitoringEquipment Design
 - Triangular and UniformDistribution
 - Horton Infiltration

Inputs and Outputs

		Time (min)		
SI. No	Location Name	Peak flow (m³/s) for 1 in 10 year event		
1	Central Library	0.136		
2	SD_R_01	0.502		
3	TMSI_01	0.328		
4	TMSI_02	0.291		
5	OPP Research Link	0.805		
6	MAIN DRN_01	0.803*		
7	SD_R_02	1.106		
8	SD_R_03	1.052		
9	MAIN DRN_02	2.512*		
10	MAIN DRN_04	3.992		
11	SD_L_01	0.047**		
12	MAIN DRN_03	3.942*		
13	SD_L_02	0.183		
14	SD_R_4	0.440**		
15	SD_R_5	0.612**		

Kent ridge catchment (8.5 ha)

Main land cover:

16% Roofs (R) (1.4 ha)

9% Parking and roads (P) (0.8 ha)

75% Steep unpaved areas (U) (6.3 ha)

Monitoring network:

- □ 5 rainfall stations
- 14 water level stations(3 include flow velocity)
- ☐ Infiltration measurements

1D RF-RO Changes in preparation for network data

- Thiessen Polygon to distribute rainfall
- Change infiltration if necessary (Sacramento/HBV)
- Realign subcatchments based on instrument
- Properly accounting for cascades

A storm event with a return period > 100 years

Deciphering land cover contribution with regards to peak runoff

Sub-catchment delineation allows for a detailed analysis during model calibration and validation

MNDRN01

MNDRN04

SDR02

OPPRLINK

14 monitoring locations and their distinctive land use characteristics

=> Improved understanding of land use specific runoff contribution at catchment level

Schematization of Kent Ridge catchment:

- Runoff at sub-catchment level
 - Runoff delay is a function of landuse
 - Infiltration of land uses
- 1D-Flow through the system:
 - Implementation of cross section of drainage channels
 - Roughness of channel bed (friction)

- Evaluation of land cover towards peak runoff at the outlet:
 - When pavement takes up to 25 % its runoff contribution is 35-40% of the actual peak discharge
 - Unpaved land uses have a delay of 2-5 min to peak discharge at catchment outlet

A new paradigm

A shift – brought upon a reconsideration of the physical problem

Data

□ Can we use it differently?

A new model

Schematize the whole catchment just using rectangles!

Same data set

 Test and validate – boundary conditions; friction factor; porosity

What else can you test with this type of model?

□ Impact of buildings...

Conclusions (Kent Ridge Model)

- Mixed success in prediction of runoff
- 2D model performs better overall than 1D coupled
- Improvement in channel/network description required
- Removal of uncertainty in boundary conditions
- Possibility of measurement errors for certain locations and events

Summary and Conclusions

- Present sub-grid based method is capable of fast, conservative simulations of rainfall-runoff problems with high resolution topography information
- Slope-limiters, Linearized friction, and Porosity provides a set of stabilization and calibration tools
- It is a work in progress. Gridded information regarding soil, land cover could be used as pixel based input. A full sub-surface model is also being developed.

What can a deterministic model give you

- A tool to base well-founded decisions on
- Higher-quality basis-data
- Better knowledge of the basic processes
- Insight in the physical system

Steps in numerical model development

- definition of the objectives of model use
- schematisation of the modelled area
- equations, conditions and solution algorithms
- the modelling environment
- □ model data
- model calibration and verification
- simulations

How do we get good model results?

- learn through the model applications
- critical assessment of results
- check sensitivity of numerical parameters
- check sensitivity of physical parameters
- be aware of effects of extrapolation

Error sources in numerical modelling, quality of the model

Points for attention when calibrating

- Schematisation
- Data quality
- Influence of storage
- Influence of discharge capacity

$$K = C * A * R^{1/2}$$
 using Chezy,
 $K = (1/n)* A * R^{2/3}$ using Manning)

- Can parameters be extrapolated?
- Lateral discharges
- Measurement errors

Stamford Canal

Real-world application

What is the issue (2)?

- □ Study 2 : Stamford Canal
 - \square Rainfall in the catchment \rightarrow runoff into the drains
 - How to make it work better?

Can we solve it?

■ Making use of data and new modeling techniques!

The end result....

□ Nov 2011

Results (1)

Upstream

Results (2)

□ Mid

Results (3)

Downstream

