

Life-cycle Decisions

Female vs. Male

Jorge L. García G.-Menéndez The University of Chicago, Economics

January 14, 2014

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

Objective

- Objective: compare two models of life-cycle decisions
 - ► One model for females one model for males
 - ► "Females Model": Keane and Wolpin (2010)
 - ► "Males Model": Keane and Wolpin (1997)
- 2 Learn about modeling decisions
- Understand the main features of female and male life-cycle or career decisions

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

Motivation: Females

- Large differences in economic and demographic characteristics of majority (white) compared to minority (black and Hispanic) women
- 2 NLSY79 in 1990 (Ages 25 to 33):
 - ► Mean schooling years: white 13.4; black 12.8; Hispanic 12.1
 - ► Marriage percentages: white 65%; black 32%; Hispanic 55%.
 - ▶ Children: white 1.2; black and Hispanic 1.7
 - ► Employment: white 74%, black 66%, Hispanic 67%
 - ▶ AFDC previous year: white 4%, black 20%, Hispanic, 11%

Motivation: Males

 Analyze the "life-cycle" or career decisions of a core sample of white men

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

Research Question and Approach: Females

- ► Model labor supply, marriage markets, preference heterogeneity, and the welfare system to answer:
 - How much observed of observed minority-majority differences in behavior can attributed to differences in labor market and marriage opportunities, and preferences?
 - We How does to welfare system affects augment the differences minority-majority differences?
 - **3** How will the new cohorts that grow up under the new welfare system (TANF) behaves compared to older cohorts?

Research Question and Approach: Males

- ► Combine the extensions to the basic Roy (1951) model in Heckman and Sedlaeck (1985) and Willis (1986) to asses self-selection in three dimensions, schooling, work, and occupational choice, and understand
 - Human capital investment
 - School attendance
 - Work
 - Occupational choices
 - Future work decisions
 - Wage patterns

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

Model: Females, Basics

- $j = 1, \dots, J$ defines the types of women
- ► At each time *a* each women *j* decides to:
 - $\mbox{\bf 0}$ work (if she gets an offer), h_a^p, h_a^f
 - $oldsymbol{2}$ attend school to schoo, s_a
 - **3** be married (if someones proposes), m_a
 - lacktriangle become pregnant (if at fecund age), p_a
 - government help (if eligible)
- ▶ Life span: 14 to 62 (fecund stage: 14 to 45)
- Utility depends on:
 - Past and current choices
 - 2 Number of children, N_a
 - \odot Consumption, C_a
 - lacktriangle Completed level of Schooling, S_a

Model: Females, Utility and BC

$$U_{a}^{j} = U_{a} \left(C_{a}, S_{a}, m_{a}, p_{a}, g_{a}, h_{a}^{p}, h_{a}^{f}; \varepsilon_{a}, \mathbf{1}(type = j), \Omega_{a}^{a} \right)$$

$$c_{a} = y_{a}^{o} (1 - m_{a})(1 - z_{a}) + [y_{a}^{o} + y_{a}^{m}] m_{a} \tau_{a}^{m}$$

$$+ [y_{a}^{o} + y_{a}^{z} \tau_{a}^{z}] z_{a} + \beta_{1} g_{a} - [\beta_{3} (\mathbf{1}(S_{a} \ge 12))]$$

$$+ \beta_{4} (\mathbf{1}(S_{a} \ge 16))$$

Model: Females, Job Offers and Wages

- ▶ Probabilities of receiving full and part time job offers: π^{wp} . π^{wf}
- ► Earnings: $y_a^o = 500 w_a^p h_a^p + 1000 w_a^f h_a^f$
- ▶ Hourly wage: $\ln w_a^k = r^k + \Psi_a(\cdot) + \varepsilon_a^w$, for k = p, f and where r^k is rental rate and $\Psi_a(\cdot)$ is human capital stock
- ► Marriage:
 - $\ensuremath{\mathbf{0}}$ offers to marry married depend on age and welfare status, π_a^m
 - ② offers to continue married depend on age and marriage current duration
- ▶ Husband's human capital: (conditional on marriage offer) drawn from a distribution that depends on woman's race/ethnicity, schooling, age, state of residence, type, Psi_a^m
- ► After marriage, husband's earnings are $\ln y_a^m = \mu^m + \Psi_{0a}^m + \varepsilon_a^m$

Model: Females, Welfare System

► The welfare system is time and state particular

$$b_t^s\left(N_{at}^{18},y_{at}^o,y_{at}^z\right) = \begin{cases} b_{0t}^s + b_{1t}^s N_{at}^{18} - b_{3t}^s \beta_2 y_{at}^z z_{at}, & y_{at}^o < y_{at}^{s1}(\cdot) \\ b_{2t}^s + b_{4t}^s N_{at}^{18} - b_{3t}^s \\ \times \left[y_{at}^o - y_{at}^{s1} + \beta_2 y_{at}^z z_{at}\right], & y_{at}^{s1}(\cdot) < y_{at}^o < y_{at}^{s2}(\cdot) \\ 0, & \text{otherwise} \end{cases}$$

► The parameters that define the welfare system evolve according to a VAR

$$\mathbf{b}_t^s = \lambda^s + \Lambda^s \mathbf{b}_{t-1}^s + \mathbf{u}_t^s \tag{1}$$

▶ (1) is estimated outside the model with simulated data

Model: Females, Dynamic Problem

$$V_a(\Omega_a) = \begin{cases} \max_{l \in \mathcal{L}} U_a^j + \delta \mathbb{E} \left(V_{a+1}(\Omega_{a+1} | l \in \mathcal{L}, \Omega_a) \right), & a < A \\ U_A^j, & a = A \end{cases}$$

- ▶ The value of option $l \in \mathcal{L}$ depends on the current state space: Ω_A , which includes residence, the WS rule parameters, preference shocks, own husband's earnings shocks, parental income shocks, labor market, marriage, and parental co-residence opportunities
- ▶ Solution: set of "Emax's" for all $l \in \mathcal{L}$ and all elements in Ω_a

Model: Males, Basics

- $ightharpoonup k=1,\ldots,J$ defines the types of men (by human capital at age 16)
- At each age a individuals choose among five mutually exclusive, exhaustive alternatives $(m=1,\ldots,5)$:
 - Blue collar job
 - White collar job
 - Military job
 - Go to school
 - Second to the second to the
- ► Per period reward:

$$R(a) = \sum_{m=1}^{5} R_m(a) d_m(a)$$

where $R_m(a)$ is the per period reward in the m_{th} alternative and $d_m(a)$ indicates the choice of the m_{th} alternative

Model: Males, Utility

▶ For m = 1, 2, 3:

$$R_m(a) = w_m(a)$$

= $r_m \exp[e_m(16) + e_{m1}g(a) + e_{m2}x_m(a)$
- $e_{m3}x_m^2 + \epsilon_m(a)$]

▶ For m = 4, 5:

$$R_4(a) = e_4(16) - tc_1 \mathbf{1}[g(a) \ge 12] - tc_2 \mathbf{1}[g(a) \ge 16] + \epsilon_4(a)$$

 $R_3(a) = e_5(16) + \epsilon_4(a)$

▶ r_m , rental rate of human capital; completed schooling years, g(a); work experience, $x_m(a)$; skill endowment, $e_m(16)$; tc_1, tc_2 college/grad school costs; $\epsilon_m(a)$ skill technology shock

Model: Males, Dynamic Problem

$$V(\mathbf{S}_a) = \begin{cases} R_m(\mathbf{S}_a) + \delta \mathbb{E} \left[V((S(a+1)) | d_m(a), \mathbf{S}(a) \right], & a < A \\ R_m(\mathbf{S}_a), & a = A \end{cases}$$

- ▶ The value of option m depends on the current state space, \mathbf{S}_a : endowment at age 16 (occupation and type particular), $\mathbf{e}(16)$; completed schooling years, g_a , experience in each (labor) occupation, $\mathbf{x}(a)$; skill technology shocks (occupation particular), $\epsilon(a)$
- ▶ Solution: set of "Emax's" for $m=1,\dots,5$ and all elements in \mathbf{S}_a

Model: Males, Model Extension

- Extensions to fit the data adequately:
 - Skill technology functions:
 - ► Occupation particular skill depreciation
 - ► First year experience effect
 - ► Age effects
 - ► High School and College graduation effects
 - Mobility and search costs:
 - Direct monetary job-finding cost (when unemployed last period)
 - Additional monetary job-finding cots when no occupational specific experience
 - 3 Non-pecuniary rewards for civilian workers (additive parameter)
 - Consumption value of school attendance (function of age)
 - Reentry costs to high school and post-secondary school
 - Remaining-at-home payoff as a function of age
 - Psychic reward of earning high school/college diploma; psychic cost of leaving the military early

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

Data, Females

- ► NLSY79: represents the cohort of young (ages 14 to 21) individuals in 1979: 12,686 total observations
- ► 6,000 women (nationally representative sample plus over sample of poor white, blacks, and Hispanics)
- ► Data on all decisions available in very high frequency
- Period decision: trade-off between information precision and computational burden
 - \blacktriangleright 6 months from 14 to 45
 - \blacktriangleright 1 year from 45 to 62
- ► Restrict sample to U.S. states with largest sample representations: CA, MI, NY, NC, OH

Choice Distribution by Age, Females

Jorge Luis García, The University of Chicago

Table 1 KW(2010) goes here.

Estimated Monthly Benefits, Females

Table 2 KW(2010) goes here.

Data, Males

- ► NLSY79: represents the cohort of young (ages 14 to 21) individuals in 1979: 12,686 total observations
- ► Focus on core white males who reach 16 years on 1977-1981
- ▶ Period decision: one schooling years
 - ► Age span, 16 to 26 years old (follow up to 1988)

Choice Distribution by Age, Males

Table 1 KW(1997) goes here.

Choice-State Combinations, Males

Table 3 KW(1997) goes here.

Average Real Wages, Males

Table 4 KW(1997) goes here.

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments

- 1 Two Models of Life-cycle Choices
- 2 Motivation of the Papers
- 3 Research Question and Approach
- 4 Models
- 5 Data
- 6 Estimation Results
- Counter Factual Exercises
- 8 Comments