БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и информатики Кафедра многопроцессорных систем и сетей

РАЗРАБОТКА АЛГОРИТМОВ НАВИГАЦИИ БПЛА

Дипломная работа Пажитных Иван

> Научный руководитель: Кондратьева Ольга Михайловна

Цель

Исследовать возможность применения камеры дрона для определения текущего местоположения

Решение задачи навигации беспилотного летательного аппарата в условиях отсутствия GPS сигнала

Постановка задачи

- Проанализировать алгоритмы компьютерного зрения
- □ Исследовать методы построения 3D карты местности
- Подготовить данные и провести эксперименты
- □ Разработать и реализовать приложение,решающее задачу позиционирования БПЛА на 30 карте местности

Методы построения 30 карты

Structure From Motion (SFM) input

input feature image cameras triangulate Bundle Adjustment reconstruction

Simultaneous
Localization and
Mapping (SLAM)

Особая точка

Свойства:

- 1. Уникальность
- 2. Компактность
- 3. Устойчивость к:
 - Повороту
 - □ Масштабированию
 - Сдвигу
 - Изменению яркости

input images feature extraction

image matching cameras estimation

triangulate

Bundle Adjustment

reconstruction

Сопоставление дескрипторов

Дескриптор:

- Представляет ключевую точку в удобном для сравнения виде
- □ Позволяет ввести отношение равенства для изображений

При сопоставлении дескрипторов находятся пары изображений, на которых представлены одни и те же объекты в реальном мире

Алгоритм Bundle Adjustment

Реконструкция

Разработанное приложение

Выполняет процесс Structure From Motion

- Создание/Открытие проекта
- Просмотр датасета проекта
- Построение 3D модели по набору снимков
- Визуализация построенной модели
- □ Поиск снимка на 3D модели

Разработанное приложение

Пример работы алгоритма SLAM

- 1. Позиция полученная через одометрию
- 2. Обновление данных об ориентирах
- 3. Обновление позиции на основе данных с сенсоров

input data

landmark extraction

 $data\ association$

state estimation

state & landmarks update

odometry changes loop

Robot Operating System (ROS)

Фреймворк для программирования

Калибровка камеры

Параметры камеры:

- Фокусное расстояние
- Угол наклона
- Принципиальная точка
- □ Коэффициенты искажения

SLAM + ROS + WEBCAM + SFM

Заключение

- □ Проанализированы алгоритмы компьютерного зрения SIFT, SURF, ORB
- Исследованы методы построения 3D карты местности SLAM и SFM
- Разработано приложение:
 - построение 3D карты местности по набору снимков
 - □ поиск положения заданного снимка на карте
- Настроена и проанализирована Robot Operating System
- □ Демонстрация SLAM + ROS + Webcam + SFM