

Report No.: EESZG12010020-2 Page 1 of 34

TEST REPORT

Product WEO Wireless Stereo Neckband

Trade mark WEO

Model/Type reference X-501, X-502, X-503, X-504, X-505,

X-506, X-507, X-508

Serial number N/A

Ratings Charging input: 5V===

lithium Battery: 3.7V== 250mAh, IPX0, Class III

FCC ID 2ADPQ-X-50X

Report number EESZG12010020-2

Date Dec. 12, 2014

Regulations See below

Test Standards	Results
	PASS

Prepared for:

WEO TECHNOLOGIES INC 20700 DEARBORN STREET, CHATSWORTH, CA 91311, **United States**

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested

Jimmy Li

Reviewed by:

Dec. 12, 2014

Date:

Check No.: 1727864255

_ab manager

Approved by:

www.cti-cert.com

Page 2 of 34

TABLE OF CONTENTS

1.	CEI	RIFICATIO	IN INFORMATION				4
2.	TES	ST SUMMAI	RY				 4
3.	ME	ASUREMEN	NT UNCERTAINTY				 5
4.	PRO	ODUCT INF	ORMATION				 5
_			ENT LIST				_
5.	IES	SI EQUIPM	ENI LISI		(C)		 5
6.	SUI	PPORT EQI	JIPMENT LIST				 5
7.	6DE	BANDWIE	OTH MEASUREMENT	/ *\		/ °	 6
<u> </u>	7.1.	LIMITS					
	7.2.		IAGRAM OF TEST SETU				
	7.3.		OCEDURE				
	7.4.		SULT				
			TRAL DENSITY				
8.	PO	WER SPEC	TRAL DENSITY				 9
8	3.1.						
8	3.2.		IAGRAM OF TEST SETU				
8	3.3.	TEST PRO	OCEDURE				 9
8	3.4.	TEST RES	SULT				 9
9.	MA	XIMUM PEA	AK CONDUCTED OUTP	UT POWER MI	EASUREMEN	т	 12
ç	9.1.	LIMITS					12
ç	9.2.	BLOCK D	IAGRAM OF TEST SETU	P			 12
ç	9.3.	TEST PRO	OCEDURE				 12
9	9.4.		SULT				
10.	٠,	CONDUCTE	D BANDEDGE EMISSIC	N MEASURE	MENT	(0,)	 15
1	10.1.	LIMITS					 15
1	10.2.	BLOCK D	IAGRAM OF TEST SETU	P			 15
1	10.3.	TEST PRO	OCEDURE		(((2))		15
1	10.4.	TEST RES	SULT				15
11.	CO	NDUCTED :	SPURIOUS EMISSION N	MEASUREMEN	IT		 17
	11.1.	LIMITS					 17

Page 3 of 34

	o. : EESZG12010020-2				Page 3 of 34
11.2.	BLOCK DIAGRAM OF	TEST SETUP			17
11.3.	TEST PROCEDURE				17
11.4.	TEST RESULT		(0)		17
12.	RADIATED BANDEDGE	EMISSION / RAD	NATED SPURIOUS	EMISSION MEAS	SUREMENT20
12.1.	LIMITS				20
12.2.	BLOCK DIAGRAM OF	TEST SETUP	<u></u>		20
12.3.	TEST PROCEDURE.				21
12.4.	TEST RESULT				22
13.	AC CONDUCTED EMIS	SION TEST			25
13.1.	LIMITS				25
13.2.					25
13.3.	PROCEDURE OF CO	NDUCTED EMISS	ION TEST		25
13.4.	GRAPHS AND DATA				26
	DIX 2 EXTERNAL PHOT				
APPENI					
APPENI	DIX 3 INTERNAL PHOT				
APPENI	DIX 3 INTERNAL PHOT				
APPENI	DIX 3 INTERNAL PHOT	OGRAPHS OF PR			

1. CERTIFICATION INFORMATION

Applicant: WEO TECHNOLOGIES INC

20700 DEARBORN STREET, CHATSWORTH, CA 91311,

Page 4 of 34

United States

VISION ELECTRONICS CO., LTD. Manufacturer:

NO. 5 JU LONG RD., SHI GU, TANG XIA, DONG GUAN,

GUANGDONG, CHINA 523729

FCC ID: 2ADPQ-X-50X

WEO Wireless Stereo Neckband Product:

Model/Type reference: X-501, X-502, X-503, X-504, X-505, X-506, X-507, X-508

Trade Name: WEO

N/A Serial Number:

Report Number: EESZG12010020-2

Sample Received Date: Dec. 02, 2014

Sample tested Date: Dec. 02, 2014 to Dec. 12, 2014

The above equipment was tested by Centre Testing International (Shenzhen) Corporation for compliance with the requirements set forth in the FCC Rules and the measurement procedure according to ANSI C63.4:2009.

2. TEST SUMMARY

No.	Test Item	Rule	Result
1	6dB Bandwidth	FCC PART15.247(a)(2)	PASS
2	Transmitter Output Power	FCC PART15.247(b)(3)	PASS
3	Power Spectral Density	FCC PART15.247(e)	PASS
4	Conducted Bandedge Emission / Conducted Spurious Emission	FCC PART15.247(d)	PASS
5	Radiated Bandedge Emission / Radiated Spurious Emission	FCC PART15.247(d)	PASS
6	AC Conducted Emission	FCC PART15.207	PASS
7	Antenna requirements	FCC PART15.203	PASS (See Notes)

^{*:} According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The EUT has a built in antenna which is a short wire solder on the PCB, this is permanently attached antenna and meets the requirements of this section.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission Test	3.2 dB
Radiated Emissions / Bandedge Emission	4.5 dB

4. PRODUCT INFORMATION

Items		Description		
Rating	Charging input: 5V= lithium Battery: 3.7\		X0, Class III	
Type of Modulation	BT4.0/BLE			
Antenna Type	Integral antenna	(67)		0
Frequency Range	2402 ~ 2480 MHz			
Gain	0dBi			

All models are same product just different surface color and model names. The test model is X-501and the test results are applicable to others.

5. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/19/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	06/25/2015
Multi device Controller	maturo	NCD/070/10711 112)	N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/19/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015

6. SUPPORT EQUIPMENT LIST

			16.4.7.7	L D A A A A
Device Type	Brand	Model	Data Cable	Remark
Notebook	Lenovo	E42L	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

7. 6DB BANDWIDTH MEASUREMENT

7.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (kHz)	Result
2402	696	PASS
2440	693	PASS
2480	693	PASS

Page 7 of 34

Report No.: EESZG12010020-2

Please see the following plots (worst case):

Date: 2.DEC.2014 14:51:48

2402MHz

Date: 2.DEC.2014 14:52:49

Report No.: EESZG12010020-2

*RBW 100 kHz *VBW 300 kHz SWT 10 ms Marker 1 [T1] Ref 20 dBm *Att 30 dB 78 dBr 2.78 dBr 480336000 GHz Center 2.48 GHz 300 kHz/ Span 3 MHz

Date: 2.DEC.2014 14:53:34

2480MHz

8. POWER SPECTRAL DENSITY

8.1. LIMITS

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz.
- d) Set the VBW \geq 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

8.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	-8.69	PASS
2440	-6.99	PASS
2480	-6.47	PASS

E-mail:info@cti-cert.com

CENTRE TESTING INTERNATIONAL CORPORATION

Page 10 of 34

Report No.: EESZG12010020-2

Please see the following plots (worst case):

Date: 2.DEC.2014 14:37:47

2402MHz

Date: 2.DEC.2014 14:39:38

Report No.: EESZG12010020-2

Page 11 of 34

Date: 2.DEC.2014 14:40:32

Center 2.48 GHz

2480MHz

150 kHz/

Span 1.5 MHz

9. MAXIMUM PEAK CONDUCTED OUTPUT POWER MEASUREMENT

9.1. LIMITS

The maximum peak conducted output power of the intentional radiator shall not exceed the following:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt (30dBm).

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- a) Set the RBW ≥ DTS bandwidth.
- b) Set the VBW \geq 3 x RBW
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.4. TEST RESULT

The test data of worst case are below:

Frequency (MHz)	Measured Value (dBm)	Result
2402	7.27	PASS
2440	8.59	PASS
2480	9.10	PASS

Remark:

Antenna Gain: 0dBi

E-mail:info@cti-cert.com

Page 13 of 34

Report No.: EESZG12010020-2

Please see the following plots (worst case):

Date: 2.DEC.2014 14:18:55

2402MHz

Date: 2.DEC.2014 14:20:18

400-6788-333

www.cti-cert.com

Report No.: EESZG12010020-2

*RBW 3 MHz *VBW 10 MHz SWT 10 ms Marker 1 [T1] 9.10 dBm 2.479675000 GHz Ref 20 dBm *Att 30 dB Center 2.48 GHz 2.5 MHz/ Span 25 MHz

Date: 2.DEC.2014 14:25:44

2480MHz

Report No. : EESZG12010020-2 Page 15 of 34

10. CONDUCTED BANDEDGE EMISSION MEASUREMENT

10.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- a) Set to the maximum power setting and enable the EUT transmit continuously.
- b) Set RBW = 100 kHz, VBW = 300 kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- c) Enable hopping function of the EUT and then repeat step a and b.
- d) Measure and record the results in the test report.

10.4. TEST RESULT

Worst case data attached.--- please see the following plots.

www.cti-cert.com

Page 16 of 34

Report No.: EESZG12010020-2

Low Band Edge Plot on 2402MHz:

Date: 2.DEC.2014 16:26:10

High Band Edge Plot on 2480MHz:

Date: 2.DEC.2014 16:27:19

Page 17 of 34

11. CONDUCTED SPURIOUS EMISSION MEASUREMENT

11.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

11.2. BLOCK DIAGRAM OF TEST SETUP

11.3. TEST PROCEDURE

- a) The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- b) Set to the maximum power setting and enable the EUT transmit continuously.
- c) Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- d) Measure and record the results in the test report.
- e) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

11.4. TEST RESULT

Worst case data---Please see the following plots.

Report No.: EESZG12010020-2

Page 18 of 34

Date: 2.DEC.2014 16:37:46

2402MHz:

Date: 2.DEC.2014 16:34:12

2440MHz:

Report No.: EESZG12010020-2

Page 19 of 34

Date: 2.DEC.2014 16:32:26

2480MHz

12. RADIATED BANDEDGE EMISSION / RADIATED SPURIOUS EMISSION MEASUREMENT

12.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

	1 00 V 1	
Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

12.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Report No. : EESZG12010020-2 Page 21 of 34

For radiated emissions from 1GHz to 25GHz

12.3. TEST PROCEDURE

Below 30MHz

- a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect (300Hz RBW in 9kHz to 150kHz and 10kHz RBW in 150kHz to 30MHz) Function and Specified Bandwidth with Maximum Hold Mode.

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 100 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value (120 kHz RBW): vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The EUT was placed on the non-conductive turntable 0.8 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.

CENTRE TESTING INTERNATIONAL CORPORATION

Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EESZG12010020-2 Page 22 of 34

12.4. TEST RESULT

Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

30MHz \sim 1GHz:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB		Height cm	Azimuth deg	Polarization
47.460000 57.160000 101.780000 220.120000 495.600000 935.980000	20.60 19.70 17.90 18.90 26.30 33.50	14.7 14.1 12.6 13.8 20.1 26.4	40.0 40.0 43.5 46.0 46.0	19.4 20.3 25.6 27.1 19.7 12.5	QP QP QP QP	200.0 200.0 100.0 100.0 100.0	280.00 250.00 197.00 75.00 93.00 283.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL
					7.00.0			

Page 23 of 34

V:

Frequency MHz		Level dBµV/m		Limit dBµV/m	Margin dB		Height cm	Azimuth deg	Polarization
	37.760000 57.160000	20.90 23.30		40.0 40.0	19.1 16.7	~	100.0 100.0	149.00 54.00	VERTICAL VERTICAL
	103.720000	18.80	12.4	43.5	24.7	QP	200.0	117.00	VERTICAL
	225.940000	20.20	13.9	46.0	25.8	QP	200.0	322.00	VERTICAL
	528.580000	26.40	20.7	46.0	19.6	QP	100.0	87.00	VERTICAL
	875.840000	32.50	25.9	46.0	13.5	OP	200.0	169.00	VERTICAL.

Page 24 of 34

Report No.: EESZG12010020-2

Above 1GHz:

Test Results-(Measurement Distance: 3m)_Channel low_2402MHz_GFSK mode:

	Thorne Brotanioor only			_0. 0	_
Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2390.0	36.32	74	PK	H	Р
2400.0	45.69	74	PK	(A)	Р
2402.0*	101.36		PK	Н	Р
4804.0	37.36	74	PK	Н	Р
2390.0	37.66	74	PK	V	Р
2400.0	46.96	74	PK	V	Р
2402.0*	103.63		PK	V	Р
4804.0	35.96	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2440MHz_GFSK mode:

- '	canto (inicacai	Simonic Brotanico: Cir	. <u>/_</u> =	<u> </u>		
	Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
	2440.0*	103.96		PK	Н	Р
	4880.0	36.49	74	PK	Н	Р
	2440.0*	104.66		PK	V	Р
	4880.0	38.26	74	PK	V	Р

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m) Channel high 2480MHz GFSK mode:

Frequency (MHz)	Measurement (dBuV/m)	Limit (dBuV/m)	Detector Type	Antenna (H/V)	Result (P/F)
2480.0*	104.56		PK	Н	P
2483.5	48.63	74	PK	Н	Р
4960.0	36.99	74	PK	Н	Р
2480.0*	105.86	()	PK	V	Р
2483.5	49.66	74	PK	V	Р
4960.0	37.95	74	PK	V	Р

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. No emission found from 18GHz to 25GHz.
- 3. All outside of operating frequency band and restricted band specified are below 15.209.

13. AC CONDUCTED EMISSION TEST

13.1. LIMITS

Limits for Class B digital devices

Frequency range	Limits dB(μ	ıV)
(MHz)	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

13.2. BLOCK DIAGRAM OF TEST SETUP

13.3. PROCEDURE OF CONDUCTED EMISSION TEST

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

E-mail:info@cti-cert.com

Report No. : EESZG12010020-2 Page 26 of 34

13.4. GRAPHS AND DATA

Product: WEO Wireless Stereo Neckband

Model/Type reference : X-501

Power: DC 5VTemperature: 18° CMode: Keeping TXHumidity: 52° M

L:

No.	Reading_Level Correct Measurement . Freq. (dBuV) Factor (dBuV)					Lin (dB			rgin dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1787	46.54		29.55	9.90	56.44		39.45	64.54	54.54	-8.10	-15.09	Р	
2	0.1980	43.90		19.23	9.90	53.80		29.13	63.69	53.69	-9.89	-24.56	Р	
3	0.4940	25.67		20.96	9.90	35.57		30.86	56.10	46.10	-20.53	-15.24	Ρ	
4	3.6380	25.48		12.82	9.90	35.38		22.72	56.00	46.00	-20.62	-23.28	Р	
5	7.2460	17.51		10.93	9.91	27.42		20.84	60.00	50.00	-32.58	-29.16	Р	

Page 27 of 34

N: 80.0	0 dBuV																
															Limit AV6:		-
30	* 2 W	mypung,	Mary Mary		www.lapel	Ц	Markingasperially popular	dr'i Ladi _{rad} i	hoder physical participal and the control of the co			on the	6	M	oogidista ay ah	and the same of th	pea u ^{dh}
-20 0.	150			0.5				(MHz)		ļ	5					30.	000
No	. Freq.		ling_Le dBuV)	vel	Corre			asurer dBuV	nent	Lin (dB			ı	Margin (dB)			
	MHz	Peak	QP	AVG	dB		peak	QP	AVG	 QΡ	AV(3	QI	P AV	'G P/F	Comment	

	No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	Measurement (dBuV)			nit uV)	Margin (dB)			
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.1620	47.12		28.12	9.90	57.02		38.02	65.36	55.36	-8.34	-17.34	Р	
	2	0.1940	45.18		20.67	9.90	55.08		30.57	63.86	53.86	-8.78	-23.29	Р	
,	3	0.4980	30.22		28.79	9.90	40.12		38.69	56.03	46.03	-15.91	-7.34	Р	
y	4	0.9940	22.19		15.85	9.90	32.09		25.75	56.00	46.00	-23.91	-20.25	Р	
ĕ	5	3.6580	14.68		4.74	9.90	24.58		14.64	56.00	46.00	-31.42	-31.36	Р	
1	6	7.7420	20.00		16.42	9.92	29.92		26.34	60.00	50.00	-30.08	-23.66	Р	

Page 28 of 34

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

TEST SETUP OF RADIATED EMISSION (above 1GHz)

Page 29 of 34

TEST SETUP OF CONDUCTED EMISSION

Page 30 of 34

Report No.: EESZG12010020-2

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF PRODUCT

Fig.1- General View

Fig.2- General View

Page 31 of 34

Page 32 of 34

Report No.: EESZG12010020-2

APPENDIX 3 INTERNAL PHOTOGRAPHS OF PRODUCT

Fig.1- Terminal View

Fig.2- Inner View

Page 33 of 34

Report No.: EESZG12010020-2

Fig.3- Inner View

Fig.4- PCB View

Fig.5- PCB View

Fig.6- Battery View

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

