Inteligență Artificială: Tema 2 - ML aplicat Seria CD – Ploscaru Alexandru – 331CD

Descrierea temei

Pentru implementarea acestei teme am folosit cunoștințele învățate în cadrul laboratoarelor și cursurilor de Inteligență Artificială, precum și informații de pe internet, cum ar fi librării deja existente și funcții matematice sau grafice.

Primul pas a fost analiza seturilor de date atribuite acestei teme, SalaryPrediction_full.csv și credit_risk_full.csv, pentru a determina caracteristicile fiecărui atribut, valorile lipsă și cele extreme și corelațiile dintre atribute. În urma acestei analize am constatat că datele trebuie modificate înainte de a fi procesate de un model de învățare automată pentru rezultate optime. Datele au fost preprocesate cu ajutorul explicațiilor oferite în enunțul temei și anumite funcții din librăriile folosite. Ulterior acestei preprocesări, am folosit 2 algoritmi, fiecare în două variante, una din librăria *scikit-learn* și una implementată manual, preluată din cadrul laboratorului.

Am folosit următoarele librării:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import chi2_contingency
import math

from copy import deepcopy
from typing import Optional, Dict, Callable

from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier
from typing import List

from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.impute import SimpleImputer
from sklearn import preprocessing
```

Analiza datelor

Salary Prediction

Setul de date are următoarele coloane, din care coloana money este rezultatul dorit:

Date numerice – am folosit funcția *describe* din *pandas* pentru a afișa anumite valori relevante pentru fiecare atribut în parte:

	fnl	hpw	gain	edu_int	years	loss	prod
count	9999.00000	9199.00000	9999.00000	9999.00000	9999.00000	9999.00000	9999.00000
mean	190352.90209	40.41624	979.85339	14.26203	38.64686	84.11141	2014.92759
std	106070.86269	12.51736	7003.79538	24.77084	13.74510	394.03548	14007.60450
min	19214.00000	1.00000	0.00000	1.00000	17.00000	0.00000	-28.00000
25%	118282.50000	40.00000	0.00000	9.00000	28.00000	0.00000	42.00000
50%	178472.00000	40.00000	0.00000	10.00000	37.00000	0.00000	57.00000
75%	237311.00000	45.00000	0.00000	13.00000	48.00000	0.00000	77.00000
max	1455435.00000	99.00000	99999.00000	206.00000	90.00000	3770.00000	200125.00000

Din acest tabel se poate observa că toate coloanele, mai puțin coloana *hpw* (număr de ore muncite pe săptămână), nu au date lipsă. Coloana *hpw* are câteva valori lipsă în acest set de date, existând doar 9199 valori în tabel, ceea ce înseamnă că lipsesc 800 de valori, care vor trebui adăugate în faza de preprocesare.

În continuare, am analizat datele din fiecare coloană separat, afișând pentru fiecare atribut: valoarea medie, deviația standard, valoarea minimă și maximă, valoarea percentilelor de 25%, 50% și 75%, și am afișat aceste valori cu ajutorul graficului de tip *boxplot*. Pentru fiecare coloană am afișat două *boxplot*-uri, unul cu toate valorile din coloana respectivă și unul cu valorile împărțite în funcție de atributul rezultat (*money*). Am mai afișat outputul funcției *describe* pentru fiecare atribut în parte, pentru valorile separate în funcție de atributul rezultat:

• fnl (Caracteristică socio-economică a populației din care provine individul)

count	7591.00000
mean	190623.98419
std	106638.00497
min	19214.00000
25%	117854.50000
50%	180052.00000
75%	239145.50000
max	1455435.00000
Name:	fnl, dtype: float64

count	2408.00000
mean	189498.34053
std	104280.09122
min	19302.00000
25%	119398.00000
50%	175804.00000
75%	231566.50000
max	1097453.00000
Name:	fnl, dtype: float64

Valorile din stânga sunt pentru exemplele care au valoarea din coloana money = <=50K, iar valorile din dreapta sunt pentru money = >50K, iar acest lucru este valabil pentru toate coloanele în continuare.

• hpw (Număr de ore de muncă pe săptămână)

count	6988.00000
mean	38.86319
std	12.50687
min	1.00000
25%	35.00000
50%	40.00000
75%	40.00000
max	99.00000
Name:	hpw, dtype: float64

```
count
        2211.00000
          45.32474
mean
          11.21846
std
           1.00000
min
25%
          40.00000
50%
          40.00000
          50.00000
75%
          99.00000
max
Name: hpw, dtype: float64
```

Valorile din stânga sunt pentru exemplele care au valoarea din coloana money = <=50K, iar valorile din dreapta sunt pentru money = >50K, dar cum coloana hpw are valori lipsă, aceasta diferă puțin.

• gain (Câștigul de capital)

count	7591.00000
mean	122.01673
std	674.37591
min	0.00000
25%	0.00000
50%	0.00000
75%	0.00000
max	10566.00000
Name:	gain, dtype: float64

count	2408.00000
count	2400.00000
mean	3684.10507
std	13880.99828
min	0.00000
25%	0.00000
50%	0.00000
75%	0.00000
max	99999.00000
Name:	gain, dtype: float64

• edu_int (Numărul de ani de studiu)

count	7591.00000
mean	13.74522
std	24.58773
min	1.00000
25%	9.00000
50%	9.00000
75%	11.00000
max	203.00000
Name: e	edu_int, dtype: float64

count	2408.00000
mean	15.89120
std	25.27549
min	2.00000
25%	10.00000
50%	13.00000
75%	13.00000
max	206.00000
Name:	edu_int, dtype: float64

• years (Vârsta individului)

count	7591.00000
mean	36.85957
std	14.14134
min	17.00000
25%	25.00000
50%	34.00000
75%	46.00000
max	90.00000
Name:	years, dtype: float64

count	2408.00000
mean	44.28115
std	10.59863
min	19.00000
25%	36.00000
50%	44.00000
75%	51.00000
max	90.00000
Name: y	ears, dtype: float64

• loss (Pierderea de capital)

count	7591.00000	
mean	56.66935	
std	317.59182	
min	0.00000	
25%	0.00000	
50%	0.00000	
75%	0.00000	
max	3770.00000	
Name:	loss, dtype:	float64

• prod (Producerea de capital)

count	7591.00000
mean	299.23791
std	1348.93775
min	-28.00000
25%	37.00000
50%	57.00000
75%	72.00000
max	21179.00000
Name:	prod, dtype: float64

mean 7423.48256 std 27761.98362 min -23.00000 25% 42.00000 50% 62.00000 75% 97.00000 max 200125.00000 Name: prod, dtype: float64	count	2408.00000
min -23.00000 25% 42.00000 50% 62.00000 75% 97.00000 max 200125.00000	mean	7423.48256
25% 42.00000 50% 62.00000 75% 97.00000 max 200125.00000	std	27761.98362
50% 62.00000 75% 97.00000 max 200125.00000	min	-23.00000
75% 97.00000 max 200125.00000	25%	42.00000
max 200125.00000	50%	62.00000
	75%	97.00000
Name: prod, dtype: float64	max	200125.00000
	Name:	prod, dtype: float64

Atribute discrete și ordinale:

Am folosit funcția *data_salary.describe(include=['O'])* pentru a afișa un tabel cu coloanele care au valori categorice și nu numerice și numărul de valori unice din fiecare coloană, precum și cea mai frecventă valoare. În continuare, am folosit funcția *data[column_name].unique()* pentru a afișa o listă cu toate valorile unice din coloana respectivă și funcția *data.value_counts(column_name)* pentru a afișa frecvența de apariție a fiecărei valori. Aceste frecvențe au fost reprezentate cu ajutorul unei histograme.

• relation

['NotM' 'NotF' 'H' 'OwnC' 'Other' 'W']

relation

H 4097

NotF 2468

OwnC 1573

NotM 1054

W 491

Other 316

Name: count, dtype: int64

country

['United-States' 'China' 'Mexico' 'Canada' 'Haiti' 'Ecuador' 'India'

'Cuba' 'El-Salvador' 'England' 'Poland' '?' 'Taiwan' 'Puerto-Rico' 'Trinadad&Tobago' 'Dominican-Republic' 'Philippines' 'Germany' 'Portugal' 'Greece' 'Vietnam' 'Italy' 'Jamaica' 'Guatemala' 'Yugoslavia' 'Columbia' 'Thailand' 'Peru' 'Japan' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Ireland' 'Laos' 'Cambodia' 'South' 'Nicaragua' 'Iran' 'Hungary' 'France' 'Honduras' 'Hong']

country

United-States	8978
Mexico	193
?	158
Philippines	61
Germany	41
Canada	40
Cuba	34
Puerto-Rico	33
England	29
India	28
Vietnam	28
South	27
El-Salvador	26
Italy	24

...

Job

['Adm-clerical' 'Craft-repair' 'Sales' 'Exec-managerial'

'Machine-op-inspct' 'Other-service' '?' 'Prof-specialty'

'Farming-fishing' 'Protective-serv' 'Tech-support' 'Transport-moving'

'Handlers-cleaners' 'Priv-house-serv']

job

Craft-repair 1277
Exec-managerial 1271
Prof-specialty 1219
Sales 1150
Adm-clerical 1148
Other-service 1029
? 582

Machine-op-inspct 575

Transport-moving 456
Handlers-cleaners 432
Farming-fishing 316
Tech-support 270
Protective-serv 219
Priv-house-serv 55
Name: count, dtype: int64

work_type

['Priv' 'LGov' 'SelfInc' '?' 'FGov' 'SGov' 'SelfNotInc' 'NW' 'WoPay']

work_type

Priv 6940

SelfNotInc 805

LGov 611

? 580

SGov 417

SelfInc 335

FGov 304

WoPay 5

NW 2

Name: count, dtype: int64

partner

['D' 'NM' 'MCS' 'W' 'S' 'MSA' 'MAS']

partner

MCS 4667

NM 3209

D 1378

S 314

W 303

MSA 123

MAS 5

Name: count, dtype: int64

• edu

['SC' 'HSG' 'B' '11' 'M' '12' '9' 'AA' 'D' '10' 'AV' 'PS' '1-4' '7-8'

'5-6' 'P']

edu

HSG 3178

SC 2261

Name: count, dtype: int64

gender

[nan 'M' 'F'] gender M 6179 F 3020

Name: count, dtype: int64

race

['White' 'Black' 'Asian-Pac-Islander' 'Other' 'Amer-Indian-Eskimo']

race

White 8588
Black 924
Asian-Pac-Islander 310
Amer-Indian-Eskimo 100
Other 77

Name: count, dtype: int64

• gtype (tipul contractului de muncă)

['DC' 'AC'] gtype AC 6711 DC 3288

Name: count, dtype: int64

Analiza echilibrului de clase

Pentru fiecare coloană am afișat două grafice (*boxplot* pentru numerice și *countplot* pentru categorice). Graficul din stânga este din setul de date de train, iar graficul din dreapta este din setul de date de test. Per total, se poate observa că sunt mai multe exemple de *money* = <=50K decât *money* = >50K, dar la nivelul *split-ului* pe fiecare atribut se poate observa că valorile sunt destul de echilibrate.

Corelația dintre atribute

Corelația dintre atribute ne ajută să observăm dacă avem atribute care sunt nefolositoare. Pentru datele numerice se poate folosi funcția din *pandas corr()* care poate fi afișată cu ajutorul unui *heatmap* din *seaborn*. Pentru cele categorice se poate folosi testul Chi-Pătrat, așa cum este specificat în enunțul temei.

Rezultatul testului Chi-Pătrat arată că aproape toate atributele categorice sunt corelate între ele, însă am decis să nu renunț la niciunul, fapt care poate a influențat rezultat algoritmilor ML.

Corelația dintre atributele numerice:

Corelația dintre atributele categorice:

	relation	country	job	work_type	partner	edu	gender	race	gtype
relation	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
country	correlated	correlated	correlated	not-correlated	correlated	correlated	correlated	correlated	correlated
job	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
work_type	correlated	not-correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
partner	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
edu	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
gender	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
race	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated
gtype	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated	correlated

Analiza setului de date Credit_Risk

Setul de date are următoarele coloane, din care coloana *loan_approval_status* este rezultatul dorit:

	residential_status	loan_rate	loan_amount	loan_purpose	loan_approval_status	job_tenure_years	credit_history_length_years	applicant_age	applicant_income	loan_rating	credit_history_default_status	loan_income_ratio	stability_rating	credit_history_length_months
0	Renter	9.99000	5600	Study	Approved	0.00000		25	36276	Very Good	No	0.15000		59
1	Mortgage	16.77000	12000	Business	Approved	5.00000		24	64000	Fair	No	0.19000		34
2	Renter	10.75000	5000	Business	Declined	NaN			12360	Very Good	No	0.40000		54
3	Mortgage	7.51000	13200	Personal	Approved	6.00000		36	83625	Excellent	No	0.16000		151
4	Mortgage	12.99000	3500	Health	Approved	5.00000			24091	Good	Yes	0.15000		31
-														-
9995	Renter	17.04000	7500	Business	Approved	7.00000			48000	Poor	Yes	0.16000		27
9996	Owner	10.59000	2400	Business	Approved	0.00000			19200	Very Good	No	0.13000		42
9997	Renter	NaN	6000	Home Improvement	Approved	5.00000			82000	Good	No	0.07000		44
9998	Renter	12.53000	1600	Personal	Approved	3.00000		24	25000	Good	No	0.06000		40
9999	Renter	6.62000	10000	Study	Approved	7.00000			45000	Excellent	No	0.22000		52

Date numerice – am folosit funcția describe din pandas pentru a afișa anumite valori relevante pentru fiecare atribut în parte:

	loan_rate	loan_amount	job_tenure_years	credit_history_length_years	applicant_age	applicant_income	loan_income_ratio	credit_history_length_months
count	9060.00000	10000.00000	9736.00000	10000.00000	10000.00000	10000.00000	10000.00000	10000.00000
mean	11.00718	9568.03750	4.78574	5.81110	27.74510	65734.21130	0.17013	75.76070
std	3.26639	6350.43158	4.35312	4.05022	6.36015	56944.38708	0.10681	48.67736
min	5.42000	500.00000	0.00000	2.00000	20.00000	4200.00000	0.00000	25.00000
25%	7.90000	5000.00000	2.00000	3.00000	23.00000	38595.00000	0.09000	41.00000
50%	10.99000	8000.00000	4.00000	4.00000	26.00000	55000.00000	0.15000	57.00000
75%	13.47000	12200.00000	7.00000	8.00000	30.00000	78997.00000	0.23000	102.00000
max	23.22000	35000.00000	123.00000	30.00000	123.00000	2039784.00000	0.76000	369.00000

Din acest tabel se poate observa că toate coloanele, mai puțin coloanele *loan_rate* și *job_tenure_years*, nu au date lipsă. Coloana *loan_rate* are câteva valori lipsă în acest set de date, existând doar 9060 valori în tabel, ceea ce înseamnă că lipsesc 940 de valori, care vor trebui adăugate în faza de preprocesare. La fel și în coloana *job_tenure_years*, în tabel sunt doar 9736 de valori, ceea ce înseamnă că lipsesc 264 de valori.

În continuare, am analizat datele din fiecare coloană separat, afișând pentru fiecare atribut: valoarea medie, deviația standard, valoarea minimă și maximă, valoarea percentilelor de 25%, 50% și 75%, și am afișat aceste valori cu ajutorul graficului de tip *boxplot*. Pentru fiecare coloană am afișat două *boxplot-uri*, unul cu toate valorile din coloana respectivă și unul cu valorile împărțite în funcție de atributul rezultat (*loan_approval_status*). Am mai afișat outputul funcției *describe* pentru fiecare atribut în parte, pentru valorile separate în funcție de atributul rezultat:

loan_rate

count	7047.00000
mean	10.39492
std	2.98781
min	5.42000
25%	7.66000
50%	10.59000
75%	12.69000
max	20.30000
Name:	loan rate, dtype: float64
rrame.	toan_race, ucype. 110aco4

Valorile din stânga sunt pentru exemplele care au valoarea din coloana loan_approval_status = Approved, iar valorile din dreapta sunt pentru loan_approval_status = Declined, dar cum coloana loan_rate are valori lipsă, aceasta diferă puţin.

loan amount

count	2182.00000
mean	10819.84418
std	7104.74336
min	1000.00000
25%	5000.00000
50%	9600.00000
75%	15000.00000
max	35000.00000
Name:	loan_amount, dtype: float64

Valorile din stânga sunt pentru exemplele care au valoarea din coloana loan_approval_status = Approved, iar valorile din dreapta sunt pentru loan_approval_status = Declined, iar acest lucru este valabil pentru toate coloanele în continuare

• job_tenure_years

credit history length years


```
count
        2182_00000
           5.60312
mean
           3.98210
std
           2.00000
min
25%
           3.00000
50%
           4.00000
75%
           8.00000
          30.00000
Name: credit_history_length_years, dtype: float64
```

applicant_age

• applicant_income

count	2182.00000	
mean	48700.97250	
std	35599.00843	
min	4200.00000	
25%	29479.00000	
50%	42000.00000	
75%	60000.00000	
max	703800.00000	
Name:	applicant_income, dtype: float	t64

• loan_income_ratio

count	7818.00000
mean	0.14847
std	0.08661
min	0.00000
25%	0.08000
50%	0.13000
75%	0.20000
max	0.69000
Name: 1	loan income ratio, dtype: float64

• credit_history_length_months

count	7818.00000		
mean	76.48874		
std	48.88821		
min	25.00000		
25%	41.00000		
50%	57.00000		
75%	103.00000		
max	369.00000		
Name:	credit_history_length_	months, dt	ype: float64

```
2182.00000
          73.15215
mean
          47.83445
std
          25.00000
min
25%
          40.00000
          55.00000
50%
75%
          97.00000
         366.00000
max
Name: credit_history_length_months, dtype: float64
```

Atribute discrete și ordinale:

Am folosit funcția *data_credit.describe(include=['O'])* pentru a afișa un tabel cu coloanele care au valori categorice și nu numerice și numărul de valori unice din fiecare coloană, precum și cea mai frecventă valoare. În continuare, am folosit funcția *data[column_name].unique()* pentru a afișa o listă cu toate valorile unice din coloana respectivă și funcția *data.value_counts(column_name)* pentru a afișa frecvența de apariție a fiecărei valori. Aceste frecvențe au fost reprezentate cu ajutorul unei histograme.

• Residential status

['Renter' 'Mortgage' 'Owner' 'Unknown']

residential status

Renter 5056

Mortgage 4140

Owner 775

Unknown 29

Name: count, dtype: int64

• Loan purpose

['Study' 'Business' 'Personal' 'Health' 'Home Improvement' 'Debt Consolidation'] loan purpose Study 1971 Health 1865 Business 1755 Personal 1705

Debt Consolidation 1590 Home Improvement 1114 Name: count, dtype: int64

Loan_rating

['Very Good' 'Fair' 'Excellent' 'Good' 'Poor' 'Extremely Poor' 'Very Poor']

loan rating

Excellent 3325
Very Good 3216
Good 1925
Fair 1151
Poor 296
Very Poor 63
Extremely Poor 24

Name: count, dtype: int64

• Credit history default status

['No' 'Yes'] credit_history_default_status No 8264 Yes 1736

Name: count, dtype: int64

• Stability_rating

['C' 'B' 'A' 'D']

stability rating

C 5056

B 4140

A 775

D 29

Name: count, dtype: int64

Analiza echilibrului de date

Pentru fiecare coloană am afișat două grafice (*boxplot* pentru numerice și *countplot* pentru categorice). Graficul din stânga este din setul de date de *train*, iar graficul din dreapta este din setul de date de *test*. Per total, se poate observa că sunt mai multe exemple de *loan_approval_status = Approved* decât *loan_approval_status = Declined*, dar la nivelul *split-ului* pe fiecare atribut se poate observa că valorile sunt destul de echilibrate. Se poate observa și o eroare în afișare deoarece culorile sunt inversate.

Corelația dintre atribute

Corelația dintre atribute ne ajută să observăm dacă avem atribute care sunt nefolositoare. Pentru datele numerice se poate folosi funcția din pandas corr() care poate fi afișată cu ajutorul unui heatmap din seaborn. Pentru cele categorice se poate folosi testul Chi-Pătrat, așa cum este specificat în enunțul temei.

Rezultatul testului Chi-Pătrat arată că aproape toate atributele categorice sunt corelate între ele, însă am decis să nu renunț la niciunul, fapt care poate a influențat rezultat algoritmilor ML.

Corelația dintre atributele numerice:

Corelația dintre atributele categorice:

	residential_status	loan_purpose	<pre>loan_approval_status</pre>	loan_rating	<pre>credit_history_default_status</pre>	stability_rating
residential_status	correlated	correlated	correlated	correlated	correlated	correlated
loan_purpose	correlated	correlated	correlated	not-correlated	not-correlated	correlated
loan_approval_status	correlated	correlated	correlated	correlated	correlated	correlated
loan_rating	correlated	not-correlated	correlated	correlated	correlated	correlated
credit_history_default_status	correlated	not-correlated	correlated	correlated	correlated	correlated
stability_rating	correlated	correlated	correlated	correlated	correlated	correlated

Preprocesarea Datelor

Pentru a putea fi folosite de algoritmii de învățare automată, datele de mai sus trebuie prelucrate. Pașii de prelucrare sunt:

Detecția outliers (valorile extreme) - am folosit metoda explicată în enunțul temei, cu cuantilele de 25 și 75% (am afișat outliers pentru fiecare atribut în parte);

Imputarea valorilor lipsă - imputare înseamnă înlocuirea unei valori cu o altă valoare. Seturile de date au multe valori lipsă. Am folosit funcția IterativeImputer (care înlocuiește cu media valorilor) pentru a înlocui valorile numerice lipsă și funcția SimpleImputer (care înlocuiește cu cea mai frecventă valoare) pentru valorile categorice;

Imputarea valorilor extreme (outliers) - pentru outliers, i-am identificat ca mai sus și am înlocuit fiecare valoare lipsă cu null / nan, pentru a putea fi detectate ca valori lipsă și înlocuite cu ajutorul IterativeImputer și SimpleImputer;

Îndepărtarea atributelor puternic corelate (numerice);

Transformarea valorilor categorice în valori numerice (folosind Label Encoder) - valorile categorice trebuie înlocuite cu valori numerice pentru a putea fi procesate de algoritmii ML. LabelEncoder atribuie fiecărei valori unice un număr;

Scalarea datelor - am folosit algoritmul min_max_scaler pentru a standardiza toate datele.

În cazul setului de date salary, singura coloană care a fost îndepărtată, fiind detectată ca puternic corelată, este coloana *prod*.

În cazul setului de date credit, singura coloană care a fost îndepărtată, fiind detectată ca puternic corelată, este coloana *credit history length years*.

Deși în ambele seturi de date au fost detectate și alte corelații puternice, am luat decizia să nu îndepărtez acele atribute, cu riscul de a afecta rezultatul algoritmilor ML, din cauza faptului că aproape toate atributele categorice erau corelate între ele. Iar din cele numerice, am ales să le elimin doar pe cele care aveau coeficientul de corelatie 1 sau -1.

Algoritmii de învățare automată

Arbori de decizie

Am folosit modelul implementat în librăria scikit-learn, numit DecisionTreeClassifier(), acesta a fost antrenat pe seturile de date de train și apoi testat pe seturile de date de test.

```
Metrici pentru setul de date salary:
```

Accuracy: 0.766

Confussion Matrix:

[[1278 235]

[233 254]]

Precision: [0.84579749 0.5194274]

Recall: [0.84467944 0.52156057]

F1 score: [0.8452381 0.5204918]

Metrici pentru setul de date credit:

Accuracy: 0.842

Confussion Matrix:

[[1369 195]

[121 315]]

Precision: [0.91879195 0.61764706]

Recall: [0.87531969 0.72247706]

F1 score: [0.89652914 0.66596195]

Apoi am realizat implementarea manuală, pornind de la codul din cadrul laboratorului, modificându-l pentru a-l putea antrena și testa pe seturile de date din temă.

Metrici pentru setul de date salary:

Accuracy: 0.7555

Confussion Matrix:

[[1510 3]

[486 1]]

Precision: [0.75651303 0.25

Recall: [0.99801718 0.00205339]

F1 score: [0.86064406 0.00407332]

Metrici pentru setul de date credit:

Accuracy: 0.7805

Confussion Matrix:

[[1536 28]

[411 25]]

Precision: [0.78890601 0.47169811]

Recall: [0.98209719 0.05733945]

F1 score: [0.8749644 0.10224949]

Multi-layered perceptron

Am folosit modelul implementat în librăria scikit-learn, numit MLPClassifier(), acesta a fost antrenat pe seturile de date de train și apoi testat pe seturile de date de test.

Metrici pentru setul de date salary:

Classification		11	C4	
	precision	recall	f1-score	support
0.0	0.86	0.93	0.89	1513
1.0	0.70	0.52	0.60	487
accuracy			0.83	2000
macro avg	0.78	0.73	0.75	2000
weighted avg	0.82	0.83	0.82	2000
Confussion Mat	trix:			
[[1405 108]				
[233 254]]				

Metrici pentru setul de date credit:

Accuracy: 0.8	39				
Classification Report:					
	precision	recall	f1-score	support	
0.0	0.90	0.96	0.93	1564	
1.0	0.81	0.62	0.70	436	
accuracy			0.89	2000	
macro avg	0.86	0.79	0.82	2000	
weighted avg	0.88	0.89	0.88	2000	
Confussion Matrix: [[1501 63] [165 271]]					

Apoi am realizat implementarea manuală, pornind de la codul din cadrul laboratorului, modificându-l pentru a-l putea antrena și testa pe seturile de date din temă.

Metrici pentru setul de date salary:

Accuracy: 0.768

Confussion Matrix:

[[1486 27]

[437 50]]

Precision: [0.77275091 0.64935065]

Recall: [0.98215466 0.1026694]

F1 score: [0.86495925 0.17730496]

Metrici pentru setul de date credit:

Accuracy: 0.799

Confussion Matrix:

[[1532 32]

[370 66]]

Precision: [0.80546793 0.67346939]

Recall: [0.97953964 0.15137615]

F1 score: [0.88401616 0.24719101]

Tabel pentru setul de date salary cu metrici:

	Acuratețe	Precizie	Recall	F1
Arbori de decizie (Scikit-learn)	0.766	0.6836	0.6831	0.6828
Arbori de decizie (Implementare manuală)	0.7555	0.5032	0.5	0.4323
MLP (Scikit- learn)	0.83	0.78	0.73	0.75
MLP (Implemenatre manuală)	0.768	0.711	0.5424	0.5211

Nota: Valorile pentru precision, recall, F1 au fost calculate ca media valorilor celor două clase, fără a lua în calcul weight.

Tabel pentru setul de date *credit* cu metrici:

	Acuratețe	Precizie	Recall	F1
Arbori de decizie (Scikit- learn)	0.842	0.7682	0.7988	0.7812
Arbori de decizie (Implementare manuală)	0.7805	0.6303	0.5197	0.4886
MLP (Scikit- learn)	0.89	0.86	0.79	0.82
MLP (Implementare manuală)	0.799	0.7394	0.5654	0.5656

Nota: Valorile pentru precision, recall, F1 au fost calculate ca media valorilor celor două clase, fără a lua în calcul weight.

Concluzie

Se poate observa că pentru ambele seturi de date, în general, modelul MLP din librăria *scikit-learn* are performanțele cele mai bune, poate din cauza faptului că algoritmii implementați manual nu au fost antrenați suficient sau pentru că MLP este mai eficient decât Arbori de decizie pentru aceste seturi de date. Se mai poate observa și o performanță **per total** relativ slabă care poate fi cauzată de faptul că am preprocesat datele prea puțin.