5.Gene_expression_analysis

Fay

2022-08-09

load libraries

```
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                             ----- tidyverse 1.3.1 --
## v tibble 3.1.8
                 v dplyr
                          1.0.9
## v tidyr 1.2.0
                 v stringr 1.4.0
         2.1.2
                  v forcats 0.5.1
## v readr
## v purrr
         0.3.4
## -- Conflicts -----
                                  ## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
library(optimx)
```

Import data:

Here, we have the experimental / field data, inlcuding imputed data

```
lab <- read.csv("output_data/gene_expression/data_products/lab_imputed_gene_expression.csv")
field <- read.csv("output_data/gene_expression/data_products/field_imputed_gene_expression.csv")</pre>
```

Selecting genes

It is time to apply the package of Alice Balard et al. on our predictions!

Let's see if we indeed have differences across the hybrid index with our predicted weight loss.

Install the package

```
##
## * checking for file '/tmp/Rtmpy3a1fJ/remotes2e96174a7e12db/alicebalard-parasiteLoad-1b43216/DESCRIPT
## * preparing 'parasiteLoad':
## * checking DESCRIPTION meta-information ... OK
## * checking for LF line-endings in source and make files and shell scripts
## * checking for empty or unneeded directories
## * building 'parasiteLoad_0.1.0.tar.gz'
```

Applying Alice's package on every gene

```
x <- field$ID01
# Define function to be used to test, get the log lik and aic
tryDistrib <- function(x, distrib){</pre>
  # deals with fitdistr error:
 fit <- tryCatch(MASS::fitdistr(x, distrib), error=function(err) "fit failed")</pre>
  return(list(fit = fit,
              loglik = tryCatch(fit$loglik, error=function(err) "no loglik computed"),
              AIC = tryCatch(fit$aic, error=function(err) "no aic computed")))
}
findGoodDist <- function(x, distribs, distribs2){</pre>
  l =lapply(distribs, function(i) tryDistrib(x, i))
  names(1) <- distribs
  print(1)
  listDistr <- lapply(distribs2, function(i){</pre>
    if (i %in% "t"){
      fitdistrplus::fitdist(x, i, start = list(df =2))
    } else {
      fitdistrplus::fitdist(x,i)
    }}
  par(mfrow=c(2,2))
  denscomp(listDistr, legendtext=distribs2)
  cdfcomp(listDistr, legendtext=distribs2)
  qqcomp(listDistr, legendtext=distribs2)
  ppcomp(listDistr, legendtext=distribs2)
  par(mfrow=c(1,1))
tryDistrib(x, "normal")
```

Functions for testing distributions

```
## $fit
##
         mean
                       sd
                   4.3044978
##
     15.1432029
## ( 0.2278182) ( 0.1610918)
##
## $loglik
## [1] -1027.66
##
## $AIC
## NULL
tryDistrib(x, "binomial")
## $fit
## [1] "fit failed"
##
## $loglik
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
tryDistrib(x, "student")
## $fit
## [1] "fit failed"
## $loglik
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
tryDistrib(x, "weibull")
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
## Warning in densfun(x, parm[1], parm[2], ...): NaNs produced
## $fit
##
        shape
                     scale
##
      3.6718724
                 16.7658776
## ( 0.1428414) ( 0.2566000)
## $loglik
## [1] -1032.752
##
## $AIC
## NULL
tryDistrib(x, "weibullshifted")
## $fit
## [1] "fit failed"
##
## $loglik
```

```
## [1] "no loglik computed"
##
## $AIC
## [1] "no aic computed"
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "IFNy")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "IFNy",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: IFNy"
## [1] "Fit for the response: IFNy"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
##
      dLL dDF
                  pvalue
## 1 2.22
            1 0.03531073
## [1] "Testing H1 no alpha vs alpha"
   dLL dDF
                 pvalue
## 1 3.2
           1 0.01145293
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 0.01
            1 0.8704737
## [1] "Testing H2 groupB no alpha vs alpha"
                    pvalue
      dLL dDF
## 1 7.87
          1 7.270491e-05
```

```
## [1] "Testing H3 groupA no alpha vs alpha"
##
                 pvalue
      dLL dDF
## 1 0.29
            1 0.4482965
## [1] "Testing H3 groupB no alpha vs alpha"
                   pvalue
      dLL dDF
## 1 7.69
            1 8.80334e-05
## [1] "Testing H1 vs H0"
##
      dLL dDF
                   pvalue
## 1 4.26
            1 0.003524909
## [1] "Testing H2 vs H0"
       dLL dDF
                     pvalue
## 1 11.04
             3 6.250965e-05
## [1] "Testing H3 vs H1"
                     pvalue
##
       dLL dDF
## 1 10.44
             4 0.0003336357
## [1] "Testing H3 vs H2"
      dLL dDF
                  pvalue
## 1 3.66
            2 0.02585681
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
           L1
                   alpha
                            myshape
                         1.2340092
##
  33.1431666 0.6610428
##
## Log-likelihood: -1521.92
## Best method: bobyqa
##
## $H1
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
##
           L1
                      1.2
                               alpha
                                        myshape
## 27.2414906 38.9834520 0.7464894 1.2538977
```

```
##
## Log-likelihood: -1517.66
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
                   alpha
                            myshape
  29.3185104 -0.1066676 1.1502540
##
##
## Log-likelihood: -776.52
## Best method: bobyqa
##
## $H2$groupB
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
   Coefficients:
##
##
         T.1
                 alpha
                         myshape
##
  35.755998
             1.170877
                        1.437375
##
## Log-likelihood: -734.35
## Best method: bobyqa
##
##
## $H3
  $H3$groupA
##
##
## Call:
##
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
```

```
##
## Coefficients:
##
                      L2
                              alpha
                                       myshape
## 24.7435042 39.9424267 0.4267503 1.1727393
##
## Log-likelihood: -773.59
## Best method: bobyga
##
## $H3$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                    L2
                           alpha
                                   myshape
## 31.911018 38.117710 1.151850 1.448096
## Log-likelihood: -733.63
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "IFNy",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```



```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "CXCR3")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "CXCR3",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: CXCR3"
## [1] "Fit for the response: CXCR3"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
```

```
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
    dLL dDF
              pvalue
## 1 0.3
           1 0.435069
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                pvalue
## 1 0.41
            1 0.362571
## [1] "Testing H2 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.05
            1 0.7442424
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.28
            1 0.4512167
## [1] "Testing H3 groupA no alpha vs alpha"
   dLL dDF
               pvalue
           1 0.5310769
## 1 0.2
## [1] "Testing H3 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.29
            1 0.4490016
## [1] "Testing H1 vs H0"
      dLL dDF
##
                pvalue
## 1 0.28
            1 0.451221
## [1] "Testing H2 vs H0"
      dLL dDF
                pvalue
## 1 0.37
            3 0.863792
## [1] "Testing H3 vs H1"
      dLL dDF
                 pvalue
## 1 0.59
            4 0.8818897
## [1] "Testing H3 vs H2"
    dLL dDF
                pvalue
## 1 0.5
           2 0.6051338
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
## Coefficients:
            L1
                     alpha
                               myshape
## 21.06964395 0.05978311 5.00000000
## Log-likelihood: -941.43
```

```
## Best method: bobyqa
##
## $H1
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
##
            L1
                        L2
                                  alpha
                                            myshape
## 20.84145207 21.31893894 0.07048561 5.00000000
##
## Log-likelihood: -941.15
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
                     alpha
                               myshape
##
##
  20.76691119 0.03505679
                            5.00000000
##
## Log-likelihood: -465.22
## Best method: bobyqa
##
## $H2$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
            T.1
                               myshape
                     alpha
## 21.35517115 0.08226393 5.00000000
```

```
##
## Log-likelihood: -475.84
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
##
                              alpha
                                        myshape
##
  20.3935446 21.3147118 0.0697062 5.0000000
##
## Log-likelihood: -464.72
## Best method: bobyga
##
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
## Coefficients:
                                  alpha
##
                        L2
                                            myshape
## 21.31744395 21.38636087 0.08281592 5.00000000
## Log-likelihood: -475.84
## Best method: bobyqa
bananaPlot(mod = IFNy$HO,
             data = field,
             response = "CXCR3",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
```

will replace the existing scale.

```
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```



```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "IL.6")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "IL.6",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: IL.6"
## [1] "Fit for the response: IL.6"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
```

```
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.04
            1 0.772892
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 0.03
            1 0.8182315
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 0.02
            1 0.8312212
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.8435907
## 1 0.02
## [1] "Testing H3 groupA no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.01
            1 0.887319
## [1] "Testing H3 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.02
            1 0.8363586
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
## 1 0.09
            1 0.6757541
## [1] "Testing H2 vs H0"
##
      dLL dDF
                 pvalue
## 1 0.02
            3 0.9982955
## [1] "Testing H3 vs H1"
      dLL dDF
                 pvalue
## 1 0.02
            4 0.9997268
## [1] "Testing H3 vs H2"
     dLL dDF
                 pvalue
## 1 0.09
            2 0.9105931
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
            L1
                     alpha
                               myshape
## 22.62401299 0.02221795 5.00000000
```

```
##
## Log-likelihood: -967.18
## Best method: bobyqa
##
## $H1
##
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                                  alpha
##
            L1
                        L2
                                            myshape
  22.76423147 22.48362866 0.01791773 5.00000000
##
##
## Log-likelihood: -967.1
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
##
           T.1
                   alpha
                            myshape
## 22.6719470 0.0228637 5.0000000
##
## Log-likelihood: -484.34
## Best method: bobyga
##
## $H2$groupB
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
```

```
L1
                     alpha
                               myshape
## 22.57729903 0.02181845 5.00000000
##
## Log-likelihood: -482.83
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
##
                        1.2
                                  alpha
                                            myshape
## 22.75917669 22.54465135 0.01591037 5.00000000
##
## Log-likelihood: -484.31
## Best method: bobyqa
##
##
  $H3$groupB
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                 alpha
                                            myshape
## 22.78737411 22.43638316 0.02292296 5.00000000
## Log-likelihood: -482.76
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "IL.6",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which

```
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```



```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "IL.10")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                          response = "IL.10",
                          model = "weibull",
                          group = "Sex")
## [1] "Analysing data for response: IL.10"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
```

^{## [1] &}quot;Fit for the response: IL.10"

^{## [1] &}quot;Fitting for all"

^{## [1] &}quot;Fitting model basic without alpha"

^{##} MeanLoad(L1, : some parameters are on the boundary: variance-covariance

^{##} calculations based on Hessian may be unreliable

^{## [1] &}quot;Did converge"

^{## [1] &}quot;Fitting model basic with alpha"

^{##} MeanLoad(L1, : some parameters are on the boundary: variance-covariance

^{##} calculations based on Hessian may be unreliable

```
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
```

```
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                 pvalue
##
## 1 1.13
            1 0.1319113
## [1] "Testing H1 no alpha vs alpha"
                 pvalue
      dLL dDF
            1 0.1949079
## 1 0.84
## [1] "Testing H2 groupA no alpha vs alpha"
                 pvalue
##
      dLL dDF
## 1 0.99
            1 0.1598326
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.4813229
## 1 0.25
## [1] "Testing H3 groupA no alpha vs alpha"
   dLL dDF
                pvalue
## 1 0.7
           1 0.2383206
## [1] "Testing H3 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.23
            1 0.4981587
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
            1 0.3858744
## 1 0.38
## [1] "Testing H2 vs H0"
      dLL dDF
                 pvalue
## 1 0.18
            3 0.9493647
## [1] "Testing H3 vs H1"
      dLL dDF
##
                 pvalue
## 1 0.17
            4 0.9874975
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.37
            2 0.6938127
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
```

```
## Coefficients:
##
           T.1
                   alpha
                            myshape
## 23.9041161 0.1141012 5.0000000
##
## Log-likelihood: -983.29
## Best method: bobyga
## $H1
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
          T.1
                    1.2
                           alpha
                                    myshape
## 24.188503 23.568945
                        0.101235
                                  5.000000
##
## Log-likelihood: -982.92
## Best method: bobyga
## $H2
##
   $H2$groupA
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
           T.1
                   alpha
                            myshape
  23.9618284 0.1430325
                          5.0000000
##
## Log-likelihood: -488.56
  Best method: bobyqa
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
```

```
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                     alpha
                                myshape
##
  23.81497438 0.07976845
                            5.00000000
##
## Log-likelihood: -494.55
## Best method: bobyqa
##
##
## $H3
  $H3$groupA
##
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
           T.1
                      L2
                              alpha
                                        myshape
  24.0988699 23.7295619 0.1299026 5.0000000
##
## Log-likelihood: -488.5
## Best method: bobyqa
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
##
            L1
                        L2
                                  alpha
                                            myshape
  24.24833902 23.47582522
                            0.07739981 5.00000000
##
## Log-likelihood: -494.25
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "IL.10",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
```

```
scale_color_manual(values = c("blue", "red")) +
theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

- ## [1] "Analysing data for response: IL.13"
- ## [1] "Fit for the response: IL.13"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced with alpha"

```
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
##
      dLL dDF
               pvalue
## 1 0.61
            1 0.269707
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.35
            1 0.4040282
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 0.42
           1 0.3593852
## [1] "Testing H2 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.21
            1 0.5161163
## [1] "Testing H3 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.38
            1 0.3836652
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
               pvalue
## 1 0.13
            1 0.605722
## [1] "Testing H1 vs H0"
##
      dLL dDF
                 pvalue
## 1 1.13
            1 0.1327128
## [1] "Testing H2 vs H0"
     dLL dDF
                 pvalue
## 1 1.44
            3 0.4095516
## [1] "Testing H3 vs H1"
     dLL dDF
              pvalue
## 1 2.53
            4 0.281628
## [1] "Testing H3 vs H2"
      dLL dDF
               pvalue
            2 0.1091379
## 1 2.22
##A11
print(IFNy)
```

\$HO

```
## Call:
## bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
           T.1
                   alpha
                            myshape
## 16.9430224 0.1251227 3.2243289
## Log-likelihood: -1118.73
## Best method: bobyqa
##
## $H1
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
## Coefficients:
            L1
                        L2
                                  alpha
                                            myshape
## 17.50789245 16.33902781 0.09726427 3.23125613
##
## Log-likelihood: -1117.6
## Best method: bobyqa
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
           T.1
                   alpha
                            myshape
  17.5328781 0.1425032
##
                          3.3269127
##
## Log-likelihood: -558.67
## Best method: bobyga
##
```

```
## $H2$groupB
##
## Call:
## bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
   Coefficients:
##
          L1
                 alpha
                         myshape
   16.356294
             0.106893
##
                        3.148128
##
## Log-likelihood: -558.62
  Best method: bobyqa
##
##
## $H3
##
  $H3$groupA
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
   Coefficients:
##
                      L2
                               alpha
           T.1
                                        myshape
   17.5602669 17.4965735 0.1403354 3.3265980
##
##
## Log-likelihood: -558.67
## Best method: L-BFGS-B
##
  $H3$groupB
##
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
## Coefficients:
##
            T.1
                        1.2
                                  alpha
                                            myshape
## 17.59224136 15.34317142 0.08582084 3.19159541
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Scale for 'colour' is already present. Adding another scale for 'colour', ## which will replace the existing scale.

[1] "Analysing data for response: IL1RN"

[1] "Fit for the response: IL1RN"

```
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
     dLL dDF
                pvalue
           1 0.4460508
## 1 0.29
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.13
           1 0.6047405
## [1] "Testing H2 groupA no alpha vs alpha"
   dLL dDF
               pvalue
## 1 0.1
           1 0.6613392
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.21
            1 0.5198016
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.01
           1 0.9080646
## [1] "Testing H3 groupB no alpha vs alpha"
               pvalue
##
     dLL dDF
           1 0.561718
## 1 0.17
## [1] "Testing H1 vs H0"
                pvalue
##
     dLL dDF
## 1 0.65
            1 0.2545631
## [1] "Testing H2 vs H0"
   dLL dDF
                pvalue
## 1 1.8
          3 0.3068796
## [1] "Testing H3 vs H1"
##
     dLL dDF
                pvalue
## 1 1.88
           4 0.4407595
```

```
## [1] "Testing H3 vs H2"
      dLL dDF
##
                 pvalue
## 1 0.72
            2 0.4867802
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
##
            L1
                               myshape
                     alpha
## 14.20608660 -0.08178146
                            3.51503257
##
## Log-likelihood: -1033.51
## Best method: L-BFGS-B
##
## $H1
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
## Coefficients:
##
            T.1
                        L2
                                  alpha
                                            myshape
## 13.87671692 14.57381902 -0.05598649
                                        3.51469421
##
## Log-likelihood: -1032.86
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
```

```
##
## Coefficients:
##
                     alpha
                               myshape
## 14.59904776 -0.06987697
                           3.47926954
##
## Log-likelihood: -522.07
## Best method: bobyga
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                     alpha
                               myshape
## 13.82579783 -0.09134731
                            3.59320483
##
## Log-likelihood: -509.64
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
  14.19802997 15.16970637 -0.01880956 3.47961721
##
##
## Log-likelihood: -521.52
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
```

```
alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
##
                        L2
                                 alpha
                                           myshape
## 13.57517204 14.04484807 -0.08226647 3.59270998
##
## Log-likelihood: -509.47
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "IL1RN",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.


```
field$Sex <- as.factor(field$Sex)

speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "CXCR3")</pre>
```

```
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "CXCR3",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: CXCR3"
## [1] "Fit for the response: CXCR3"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
   dLL dDF
              pvalue
## 1 0.3
           1 0.435069
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF
              pvalue
           1 0.362571
## 1 0.41
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                pvalue
           1 0.7442424
## 1 0.05
## [1] "Testing H2 groupB no alpha vs alpha"
##
     dLL dDF
                pvalue
## 1 0.28
           1 0.4512167
## [1] "Testing H3 groupA no alpha vs alpha"
               pvalue
## dLL dDF
## 1 0.2
           1 0.5310769
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
                pvalue
           1 0.4490016
## 1 0.29
## [1] "Testing H1 vs H0"
               pvalue
##
     dLL dDF
## 1 0.28
           1 0.451221
## [1] "Testing H2 vs H0"
     dLL dDF pvalue
           3 0.863792
## 1 0.37
```

```
## [1] "Testing H3 vs H1"
                 pvalue
##
      dLL dDF
## 1 0.59
            4 0.8818897
## [1] "Testing H3 vs H2"
     dLL dDF
                pvalue
## 1 0.5
           2 0.6051338
##A11
print(IFNy)
## $HO
##
##
  Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
##
                     alpha
                               myshape
## 21.06964395 0.05978311 5.00000000
## Log-likelihood: -941.43
## Best method: bobyqa
##
## $H1
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                        L2
##
                                  alpha
                                            myshape
  20.84145207 21.31893894 0.07048561 5.00000000
##
## Log-likelihood: -941.15
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
```

##

```
myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
  20.76691119 0.03505679 5.00000000
##
## Log-likelihood: -465.22
## Best method: bobyqa
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                     alpha
                               mvshape
## 21.35517115 0.08226393 5.00000000
## Log-likelihood: -475.84
  Best method: bobyqa
##
##
##
## $H3
## $H3$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
##
                      L2
                              alpha
                                        myshape
## 20.3935446 21.3147118 0.0697062 5.0000000
##
## Log-likelihood: -464.72
## Best method: bobyqa
## $H3$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
```

```
scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                        L2
                                  alpha
                                            myshape
                            0.08281592
  21.31744395 21.38636087
                                        5.00000000
##
## Log-likelihood: -475.84
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "CXCR3",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.


```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "CASP1")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "CASP1",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: CASP1"
## [1] "Fit for the response: CASP1"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
```

```
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.07
           1 0.7095437
## [1] "Testing H1 no alpha vs alpha"
##
     dLL dDF
                 pvalue
## 1 0.12
           1 0.6176693
## [1] "Testing H2 groupA no alpha vs alpha"
##
     dLL dDF
                pvalue
           1 0.7979228
## 1 0.03
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.32
           1 0.4219593
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
                pvalue
##
## 1 0.01
           1 0.918424
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.34
           1 0.4062534
## [1] "Testing H1 vs H0"
     dLL dDF
                pvalue
## 1 0.26
            1 0.4672829
## [1] "Testing H2 vs H0"
```

```
dLL dDF
                pvalue
## 1 0.29
            3 0.899296
  [1] "Testing H3 vs H1"
      dLL dDF
##
                 pvalue
## 1 0.24
            4 0.9754971
  [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.21
            2 0.8105453
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
                     alpha
                               myshape
  21.44597637 0.02768908
                            5.00000000
##
##
## Log-likelihood: -940.91
## Best method: bobyqa
##
## $H1
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
## 21.21918629 21.68746492 0.03748458 5.00000000
## Log-likelihood: -940.65
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
```

scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),

```
start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
## 21.20758616 -0.02702379 5.00000000
##
## Log-likelihood: -468.37
## Best method: bobyqa
## $H2$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
## Coefficients:
                     alpha
                               myshape
##
  21.69093740
               0.08429205
                            5.00000000
## Log-likelihood: -472.25
## Best method: bobyga
##
##
## $H3
## $H3$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                      L2
                              alpha
                                        myshape
## 21.0271434 21.4677162 -0.0112422 5.0000000
## Log-likelihood: -468.25
## Best method: bobyqa
## $H3$groupB
##
```

```
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                        L2
                                 alpha
                                           myshape
## 21.46719243 21.86842933 0.08695199 5.00000000
## Log-likelihood: -472.15
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
            data = field,
             response = "CASP1",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```



```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "CXCL9")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "CXCL9",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: CXCL9"
## [1] "Fit for the response: CXCL9"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
```

```
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.29
            1 0.4456462
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.33
            1 0.4138825
## [1] "Testing H2 groupA no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.01
            1 0.917288
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
           1 0.2064454
## 1 0.8
## [1] "Testing H3 groupA no alpha vs alpha"
   dLL dDF
               pvalue
           1 0.9980445
       0
## 1
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.8
           1 0.2065262
## [1] "Testing H1 vs H0"
##
      dLL dDF
                 pvalue
## 1 0.08
            1 0.6968073
## [1] "Testing H2 vs H0"
      dLL dDF
                 pvalue
## 1 0.87
            3 0.6261238
## [1] "Testing H3 vs H1"
      dLL dDF
                 pvalue
## 1 0.88
            4 0.7806923
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.08
            2 0.9240358
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
## Coefficients:
                     alpha
                               myshape
## 20.33887663 0.05905836 5.00000000
## Log-likelihood: -968.17
```

```
## Best method: bobyqa
##
## $H1
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
##
                        L2
                                  alpha
                                            myshape
            L1
## 20.22351710 20.46051394 0.06399431 5.00000000
##
## Log-likelihood: -968.09
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
                     alpha
                               myshape
##
  20.19208231 -0.01154039
                            5.00000000
##
##
## Log-likelihood: -484.29
## Best method: bobyqa
##
## $H2$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
           T.1
                            myshape
                   alpha
## 20.5049387 0.1366603 5.0000000
```

```
##
## Log-likelihood: -483.01
## Best method: L-BFGS-B
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                                    alpha
                                                myshape
##
  2.004487e+01 2.039149e+01 2.712052e-04 5.000000e+00
##
## Log-likelihood: -484.21
## Best method: bobyga
##
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
                              alpha
##
                      L2
                                        myshape
## 20.4871080 20.5193241 0.1368788 5.0000000
## Log-likelihood: -483.01
## Best method: bobyqa
bananaPlot(mod = IFNy$HO,
             data = field,
             response = "CXCL9",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
```

will replace the existing scale.

- ## [1] "Analysing data for response: ID01"
- ## [1] "Fit for the response: ID01"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting for groupA : F"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"

```
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.01
            1 0.8748353
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.6759373
## 1 0.09
## [1] "Testing H2 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.05
            1 0.7573443
## [1] "Testing H2 groupB no alpha vs alpha"
    dLL dDF
               pvalue
## 1 0.1
           1 0.660795
## [1] "Testing H3 groupA no alpha vs alpha"
    dLL dDF
              pvalue
## 1 0
           1 0.969714
## [1] "Testing H3 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.13
            1 0.6066322
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
            1 0.2581624
## 1 0.64
## [1] "Testing H2 vs H0"
     dLL dDF
                 pvalue
## 1 1.58
            3 0.3668558
## [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
## 1 1.68
            4 0.4995973
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.74
            2 0.4788598
##A11
print(IFNy)
## $HO
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
```

```
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
                     alpha
                               myshape
## 15.17832328 0.01570283 3.67259140
## Log-likelihood: -1032.74
## Best method: bobyga
##
## $H1
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
                        L2
                                  alpha
                                            mvshape
## 14.84999389 15.56234734
                           0.04229992 3.67087784
## Log-likelihood: -1032.1
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                     alpha
            L1
                               myshape
## 15.14011358 -0.04353434 3.94632263
## Log-likelihood: -506.41
## Best method: bobyqa
##
## $H2$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
```

```
data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
## 15.17803361 0.06249617
                            3.45903628
##
## Log-likelihood: -524.74
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
                          L2
                                     alpha
                                                myshape
   14.759481427 15.697332092
                              0.005473685
                                           3.948013909
##
##
## Log-likelihood: -505.81
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
##
                        L2
                                  alpha
                                            myshape
  14.93962843 15.40727627 0.07387447 3.45669217
## Log-likelihood: -524.62
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
           data = field,
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.


```
## [1] "Analysing data for response: IRGM1"
```

^{## [1] &}quot;Fit for the response: IRGM1"

^{## [1] &}quot;Fitting for all"

^{## [1] &}quot;Fitting model basic without alpha"

^{## [1] &}quot;Did converge"

^{## [1] &}quot;Fitting model basic with alpha"

^{## [1] &}quot;Did converge"

```
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
                pvalue
     dLL dDF
           1 0.4216119
## 1 0.32
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF pvalue
          1 0.364167
## 1 0.41
## [1] "Testing H2 groupA no alpha vs alpha"
      dLL dDF
                pvalue
## 1 0.26
            1 0.4718911
## [1] "Testing H2 groupB no alpha vs alpha"
   dLL dDF
               pvalue
## 1 0
           1 0.9798968
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.63
           1 0.2631179
## [1] "Testing H3 groupB no alpha vs alpha"
##
   dLL dDF
               pvalue
## 1 0
           1 0.9803298
## [1] "Testing H1 vs H0"
     dLL dDF
                pvalue
## 1 0.21
           1 0.5183066
## [1] "Testing H2 vs H0"
     dLL dDF
                    pvalue
## 1 9.42
           3 0.0002956138
## [1] "Testing H3 vs H1"
      dLL dDF
                    pvalue
## 1 10.62
           4 0.000282791
## [1] "Testing H3 vs H2"
##
     dLL dDF
                 pvalue
## 1 1.41
          2 0.2430339
```

```
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                     alpha
                                myshape
##
  11.22656174 -0.08936173
                            3.27063298
##
## Log-likelihood: -955.68
## Best method: bobyqa
##
## $H1
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
           T.1
                      L2
                              alpha
                                        myshape
## 11.3880620 11.0568098 -0.1028669 3.2753228
##
## Log-likelihood: -955.47
## Best method: bobyga
##
## $H2
  $H2$groupA
##
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
```

##

T.1

alpha

myshape

```
## 11.5322347 -0.1209123 3.0559623
##
## Log-likelihood: -495.52
## Best method: bobyqa
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                       alpha
                                  myshape
##
             L1
  11.066045510 0.003499006 3.696406427
##
##
## Log-likelihood: -450.75
## Best method: bobyqa
##
##
## $H3
##
  $H3$groupA
##
##
  Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                      L2
                              alpha
                                        myshape
##
## 11.9670558 10.8855435 -0.2024564 3.0861690
## Log-likelihood: -494.65
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
```

```
control = config$control)
##
##
## Coefficients:
##
             L1
                          L2
                                    alpha
                                               myshape
## 10.669511067 11.320659481 -0.003421731 3.711355847
##
## Log-likelihood: -450.2
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "IRGM1",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.


```
group = "Sex")
## [1] "Analysing data for response: MPO"
## [1] "Fit for the response: MPO"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.27
            1 0.4610341
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
##
                 pvalue
## 1 0.02
            1 0.8427439
## [1] "Testing H2 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.07
            1 0.6992651
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.5135939
## 1 0.21
## [1] "Testing H3 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.05
            1 0.7502735
## [1] "Testing H3 groupB no alpha vs alpha"
                 pvalue
##
      dLL dDF
## 1 0.13
            1 0.6124176
## [1] "Testing H1 vs H0"
      dLL dDF
                  pvalue
## 1 3.26
            1 0.01065468
## [1] "Testing H2 vs H0"
```

model = "weibull",

```
##
      dLL dDF
                 pvalue
## 1 1.23
            3 0.4840111
  [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
## 1 1.81
            4 0.4608187
  [1] "Testing H3 vs H2"
      dLL dDF
                  pvalue
            2 0.02145585
## 1 3.84
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
                     alpha
                                myshape
  19.17550539 -0.06042347
                            4.64090412
##
## Log-likelihood: -1045.14
## Best method: bobyqa
##
## $H1
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
## 18.43201151 20.03697182 -0.01605671 4.68225355
## Log-likelihood: -1041.88
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
```

```
start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
## 19.50478364 -0.04869596 4.58221592
##
## Log-likelihood: -526.39
## Best method: bobyqa
## $H2$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
## Coefficients:
                     alpha
                               myshape
##
  18.86620648 -0.06880878
                            4.73850382
## Log-likelihood: -517.52
## Best method: bobyga
##
##
## $H3
## $H3$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                        L2
                                  alpha
                                            myshape
  18.48894157 20.92642485
                            0.03895738
                                       4.66909307
## Log-likelihood: -523.01
## Best method: bobyqa
## $H3$groupB
##
```

```
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
                                 alpha
                                           myshape
                        L2
## 18.45628993 19.26289416 -0.05328589 4.74755711
##
## Log-likelihood: -517.06
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
            data = field,
             response = "MPO",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```


- ## [1] "Analysing data for response: MUC2"
- ## [1] "Fit for the response: MUC2"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting for groupA : F"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"

```
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
                 pvalue
      dLL dDF
## 1 0.44
            1 0.3494405
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                 pvalue
            1 0.3405081
## 1 0.45
## [1] "Testing H2 groupA no alpha vs alpha"
    dLL dDF
                pvalue
## 1
       0
           1 0.9373544
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.1772277
## 1 0.91
## [1] "Testing H3 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.01
            1 0.8713542
## [1] "Testing H3 groupB no alpha vs alpha"
      dLL dDF pvalue
##
## 1 0.87
            1 0.18644
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
## 1 0.02
            1 0.8556694
## [1] "Testing H2 vs H0"
              pvalue
      dLL dDF
## 1 1.35
            3 0.438556
## [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
## 1 1.42
            4 0.5861176
## [1] "Testing H3 vs H2"
##
      dLL dDF
                 pvalue
## 1 0.08
            2 0.9247695
##A11
print(IFNy)
## $HO
##
## bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
```

```
##
  Coefficients:
##
##
                   alpha
                            myshape
   9.9469606 -0.1247795
##
                          2.6879567
##
## Log-likelihood: -980.67
## Best method: bobyga
##
## $H1
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
   Coefficients:
##
                      1.2
                              alpha
                                        myshape
##
   9.9955568 9.8942658 -0.1298942 2.6889723
##
## Log-likelihood: -980.66
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
                     alpha
                               myshape
  10.43222132 -0.01450596 2.66264451
##
## Log-likelihood: -496.24
## Best method: bobyqa
##
## $H2$groupB
##
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
```

```
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
##
                   alpha
                            myshape
    9.4369379 -0.2595038
                         2.7319104
##
##
## Log-likelihood: -483.08
## Best method: bobyga
##
##
## $H3
## $H3$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
                        1.2
                                  alpha
                                            myshape
##
   10.54518538 10.28574104 -0.03130882
                                         2.66643945
##
## Log-likelihood: -496.2
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
   Coefficients:
##
                      L2
                               alpha
                                        myshape
    9.3391545 9.5218277 -0.2544648
##
                                     2.7315536
##
## Log-likelihood: -483.05
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "MUC2",
             group = "Sex") +
```

```
scale_fill_manual(values = c("blue", "red")) +
scale_color_manual(values = c("blue", "red")) +
theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

- ## [1] "Analysing data for response: MUC5AC"
- ## [1] "Fit for the response: MUC5AC"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"

```
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                pvalue
## 1 0.22
            1 0.5074506
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.11
            1 0.6325418
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
            1 0.8667258
## 1 0.01
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.33
            1 0.4163933
## [1] "Testing H3 groupA no alpha vs alpha"
    dLL dDF
               pvalue
          1 0.9912138
## 1 0
## [1] "Testing H3 groupB no alpha vs alpha"
      dLL dDF
                pvalue
## 1 0.27
            1 0.4642135
## [1] "Testing H1 vs H0"
##
      dLL dDF
              pvalue
## 1 0.32
            1 0.422614
## [1] "Testing H2 vs H0"
     dLL dDF
                pvalue
## 1 0.83
            3 0.6478591
## [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
## 1 0.96
            4 0.7515028
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.45
            2 0.6356185
##A11
print(IFNy)
```

\$HO

```
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
           L1
                   alpha
                            myshape
   10.8800554 -0.1019045
##
                          2.4583481
##
## Log-likelihood: -1039.9
## Best method: bobyqa
##
## $H1
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
  10.63239552 11.17018364 -0.07420493 2.45903404
## Log-likelihood: -1039.57
## Best method: bobyga
## $H2
## $H2$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
##
                     alpha
                               myshape
  11.17872879 -0.03693447 2.39233194
##
## Log-likelihood: -525.46
## Best method: bobyga
```

```
##
## $H2$groupB
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
           L1
                   alpha
                            myshape
## 10.5746961 -0.1739501
                          2.5370220
##
## Log-likelihood: -513.61
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
                                     alpha
##
                          L2
                                                myshape
  10.982065381 11.468748390 -0.002510274 2.390792131
##
##
## Log-likelihood: -525.35
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
           L1
                      L2
                              alpha
                                        myshape
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

[1] "Analysing data for response: MYD88"

```
## [1] "Fit for the response: MYD88"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
                 pvalue
##
      dLL dDF
## 1 0.79
            1 0.2097717
## [1] "Testing H1 no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.34
            1 0.4094372
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 1.03
            1 0.1514522
## [1] "Testing H2 groupB no alpha vs alpha"
##
      dLL dDF
                pvalue
## 1 0.06
           1 0.737854
## [1] "Testing H3 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.29
            1 0.4471382
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
               pvalue
## 1 0.05
            1 0.750039
## [1] "Testing H1 vs H0"
      dLL dDF
                 pvalue
## 1 2.39
            1 0.02882543
## [1] "Testing H2 vs H0"
##
      dLL dDF
                 pvalue
## 1 0.96
            3 0.5902559
## [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
```

```
## 1 0.78
            4 0.8146888
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
            2 0.1091409
## 1 2.22
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
           L1
                   alpha
                            myshape
## 16.2028979 -0.1715168 3.2242197
##
## Log-likelihood: -1133.85
## Best method: bobyqa
##
## $H1
##
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                      L2
                              alpha
                                        myshape
  15.4279025 17.0953502 -0.1112175 3.2289018
##
## Log-likelihood: -1131.46
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
##
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
```

```
##
       control = config$control)
##
##
  Coefficients:
##
           T.1
                   alpha
                            myshape
  15.6723768 -0.3014729
##
                          3.0811816
##
## Log-likelihood: -570.63
## Best method: bobyqa
##
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                     alpha
                                myshape
## 16.68893205 -0.05934728 3.38790276
## Log-likelihood: -562.26
## Best method: bobyqa
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                      L2
                              alpha
                                        myshape
  15.0488790 16.8995836 -0.1635321 3.0811847
##
## Log-likelihood: -569.4
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibul1(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
```

```
data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
##
                        L2
                                 alpha
                                           myshape
## 15.85227466 17.28434955 -0.05552599 3.39720867
##
## Log-likelihood: -561.28
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "MYD88",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

field\$Sex <- as.factor(field\$Sex)</pre>

```
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "NCR1")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "NCR1",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: NCR1"
## [1] "Fit for the response: NCR1"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.76
           1 0.2163148
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.71
           1 0.2332369
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                pvalue
           1 0.4600683
## 1 0.27
## [1] "Testing H2 groupB no alpha vs alpha"
##
     dLL dDF
                pvalue
## 1 0.53
           1 0.3040436
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.34
            1 0.4074304
## [1] "Testing H3 groupB no alpha vs alpha"
   dLL dDF
               pvalue
## 1 0.5
          1 0.3184993
## [1] "Testing H1 vs H0"
               pvalue
   dLL dDF
## 1 0
         1 0.9381331
## [1] "Testing H2 vs H0"
     dLL dDF
                pvalue
## 1 0.14
           3 0.9639115
```

```
## [1] "Testing H3 vs H1"
                 pvalue
##
      dLL dDF
## 1 0.35
            4 0.9519389
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.21
            2 0.8097843
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
##
                     alpha
                               myshape
## 23.60790897 0.09354245 5.00000000
##
## Log-likelihood: -962.17
## Best method: bobyqa
##
## $H1
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                        L2
##
                                  alpha
                                            myshape
  23.63335201 23.57825876 0.09234923 5.00000000
##
## Log-likelihood: -962.17
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
```

##

```
myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
  23.64154580 0.07831271 5.00000000
##
## Log-likelihood: -480.86
## Best method: bobyqa
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
##
          L1
                 alpha
                         myshape
                        5.000000
## 23.583430 0.111089
## Log-likelihood: -481.18
  Best method: bobyqa
##
##
##
## $H3
## $H3$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
##
                      L2
                              alpha
                                        myshape
## 23.4868499 23.8962929 0.0932946 5.0000000
##
## Log-likelihood: -480.78
## Best method: bobyqa
## $H3$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
```

```
scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
           L1
                      L2
                              alpha
                                        myshape
                          0.1085986
  23.8664226 23.3554200
                                     5.0000000
##
## Log-likelihood: -481.04
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "NCR1",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.


```
field$Sex <- as.factor(field$Sex)</pre>
speparam <- parasiteLoad::getParamBounds("weibull", data = field, response = "PRF1")</pre>
IFNy <- parasiteLoad::analyse(data = field,</pre>
                        response = "PRF1",
                        model = "weibull",
                        group = "Sex")
## [1] "Analysing data for response: PRF1"
## [1] "Fit for the response: PRF1"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
```

```
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.26
           1 0.4729116
## [1] "Testing H1 no alpha vs alpha"
##
     dLL dDF
                 pvalue
## 1 0.13
            1 0.6056152
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
##
                pvalue
## 1 0.26
           1 0.4677997
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.04
           1 0.7896671
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
                 pvalue
##
## 1 0.12
           1 0.6217862
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.04
           1 0.7912139
## [1] "Testing H1 vs H0"
     dLL dDF
                pvalue
## 1 0.56
            1 0.2907995
## [1] "Testing H2 vs H0"
```

```
##
      dLL dDF
                pvalue
            3 0.991903
## 1 0.05
  [1] "Testing H3 vs H1"
      dLL dDF
##
                 pvalue
## 1 0.03
            4 0.9994568
  [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 0.54
            2 0.5818403
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
                     alpha
                                myshape
  22.88163888 0.05381747
                            5.00000000
##
##
## Log-likelihood: -964.65
## Best method: bobyqa
##
## $H1
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
## 23.22061491 22.50154864
                            0.03979383 5.00000000
##
## Log-likelihood: -964.09
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
```

scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),

```
start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
## 23.01514358 0.07322802 5.00000000
##
## Log-likelihood: -479.75
## Best method: bobyqa
## $H2$groupB
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
## Coefficients:
                     alpha
                               myshape
## 22.72645504 0.02993458
                            5.00000000
## Log-likelihood: -484.86
## Best method: bobyga
##
##
## $H3
## $H3$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
                        L2
                                  alpha
                                            myshape
## 23.23339196 22.66687326
                           0.05345807 5.00000000
## Log-likelihood: -479.59
## Best method: bobyqa
## $H3$groupB
##
```

```
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
                                           myshape
                        L2
                                 alpha
## 23.20365139 22.37662943 0.02995278 5.00000000
##
## Log-likelihood: -484.47
## Best method: L-BFGS-B
bananaPlot(mod = IFNy$H0,
            data = field,
             response = "PRF1",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
```


- ## [1] "Analysing data for response: RETNLB"
- ## [1] "Fit for the response: RETNLB"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting for groupA : F"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"

```
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                 pvalue
            1 0.3549992
## 1 0.43
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                 pvalue
            1 0.5893313
## 1 0.15
## [1] "Testing H2 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.19
            1 0.5340153
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.24
            1 0.4895309
## [1] "Testing H3 groupA no alpha vs alpha"
     dLL dDF
              pvalue
       0
           1 0.962827
## [1] "Testing H3 groupB no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.21
            1 0.5121995
## [1] "Testing H1 vs H0"
##
      dLL dDF
                  pvalue
## 1 1.88
            1 0.05233018
## [1] "Testing H2 vs H0"
      dLL dDF
                 pvalue
## 1 1.67
            3 0.3421117
## [1] "Testing H3 vs H1"
##
      dLL dDF
                 pvalue
## 1 2.12
            4 0.3734495
## [1] "Testing H3 vs H2"
##
      dLL dDF
                  pvalue
## 1 2.34
            2 0.09664512
##A11
print(IFNy)
## $HO
##
## bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
```

```
##
## Coefficients:
##
                   alpha
                            myshape
## 11.7834882 -0.1369646
                          2.7148447
## Log-likelihood: -1043.42
## Best method: bobyga
## $H1
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                        1.2
                                  alpha
                                            myshape
## 11.18962827 12.46583439 -0.07890748 2.72667918
## Log-likelihood: -1041.54
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
           T.1
                   alpha
                            myshape
  12.1403690 -0.1339339 2.6732491
##
## Log-likelihood: -529.27
## Best method: bobyqa
##
## $H2$groupB
##
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
```

```
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
  Coefficients:
##
##
                   alpha
                            myshape
## 11.4254856 -0.1394769
                          2.7794597
## Log-likelihood: -512.48
## Best method: bobyga
##
##
## $H3
## $H3$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
##
  Coefficients:
                          1.2
                                     alpha
                                                myshape
##
   11.314885820 13.421334337
                              0.009858716
                                            2.698337426
##
## Log-likelihood: -527.14
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                      L2
                               alpha
                                        myshape
## 11.1214734 11.6747011 -0.1312826
                                     2.7826987
##
## Log-likelihood: -512.27
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "RETNLB",
             group = "Sex") +
```

```
scale_fill_manual(values = c("blue", "red")) +
scale_color_manual(values = c("blue", "red")) +
theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

- ## [1] "Analysing data for response: SOCS1"
- ## [1] "Fit for the response: SOCS1"
- ## [1] "Fitting for all"
- ## [1] "Fitting model basic without alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model basic with alpha"
- ## [1] "Did converge"
- ## [1] "Fitting model advanced without alpha"
- ## [1] "Did converge"

```
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
      dLL dDF
                pvalue
## 1 0.06
            1 0.7355477
## [1] "Testing H1 no alpha vs alpha"
##
      dLL dDF
                 pvalue
## 1 0.03
            1 0.8178395
## [1] "Testing H2 groupA no alpha vs alpha"
##
      dLL dDF
                 pvalue
            1 0.3038943
## 1 0.53
## [1] "Testing H2 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.44
            1 0.3461543
## [1] "Testing H3 groupA no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.19
           1 0.5349294
## [1] "Testing H3 groupB no alpha vs alpha"
      dLL dDF
                 pvalue
## 1 0.47
            1 0.3327884
## [1] "Testing H1 vs H0"
##
      dLL dDF
                 pvalue
## 1 0.14
            1 0.6027723
## [1] "Testing H2 vs H0"
     dLL dDF
                  pvalue
## 1 4.28
            3 0.03584161
## [1] "Testing H3 vs H1"
##
      dLL dDF
                  pvalue
## 1 5.61
            4 0.02414239
## [1] "Testing H3 vs H2"
      dLL dDF
                 pvalue
## 1 1.47
            2 0.2296914
##A11
print(IFNy)
```

\$HO

```
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
  Coefficients:
##
            L1
                     alpha
                               myshape
               0.03205676
##
   12.39254617
                            3.59199127
##
## Log-likelihood: -950.39
## Best method: bobyqa
##
## $H1
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
  12.52532286 12.25554898 0.02234286 3.59797296
## Log-likelihood: -950.26
## Best method: bobyga
## $H2
## $H2$groupA
##
## Call:
## bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
##
                   alpha
                            myshape
##
  12.9961677 0.1351202 3.4796588
## Log-likelihood: -484.99
## Best method: bobyga
```

```
##
## $H2$groupB
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
                   alpha
##
           L1
                            myshape
## 11.6652646 -0.1295653
                          3.7937587
##
## Log-likelihood: -461.13
## Best method: L-BFGS-B
##
##
## $H3
## $H3$groupA
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
                                  alpha
##
                        L2
                                            myshape
  13.40435891 12.47152011 0.08670974 3.51490342
##
##
## Log-likelihood: -484.34
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
           L1
                      L2
                              alpha
                                        myshape
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

[1] "Analysing data for response: TICAM1"

```
## [1] "Fit for the response: TICAM1"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
```

```
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
##
     dLL dDF
                pvalue
            1 0.7430379
## 1 0.05
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF
                pvalue
            1 0.6914911
## 1 0.08
## [1] "Testing H2 groupA no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.11
           1 0.6341039
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.41
            1 0.3660989
## [1] "Testing H3 groupA no alpha vs alpha"
## dLL dDF
               pvalue
          1 0.9863344
## 1 0
## [1] "Testing H3 groupB no alpha vs alpha"
   dLL dDF
               pvalue
          1 0.3723029
## 1 0.4
## [1] "Testing H1 vs H0"
   dLL dDF
               pvalue
## 1 0.1
           1 0.6571083
## [1] "Testing H2 vs H0"
     dLL dDF
              pvalue
## 1 0.47
           3 0.814655
## [1] "Testing H3 vs H1"
     dLL dDF
                pvalue
## 1 1.78
           4 0.4697213
## [1] "Testing H3 vs H2"
## dLL dDF
              pvalue
## 1 1.4 2 0.2458067
```

```
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                     alpha
                               myshape
##
  21.10711935 0.02683894
                            5.00000000
##
## Log-likelihood: -967.51
## Best method: bobyqa
##
## $H1
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                        L2
                                  alpha
                                            myshape
## 20.97193522 21.25222238
                            0.03280039 5.00000000
##
## Log-likelihood: -967.41
## Best method: bobyga
##
## $H2
  $H2$groupA
##
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
```

##

L1

alpha

myshape

```
## 20.72060781 -0.05820441 5.00000000
##
## Log-likelihood: -482.78
## Best method: bobyqa
##
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
            L1
                     alpha
                               myshape
  21.43487691 0.09979881 5.00000000
##
##
## Log-likelihood: -484.26
## Best method: bobyqa
##
##
## $H3
##
  $H3$groupA
##
##
  Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
##
  Coefficients:
                                     alpha
##
                          1.2
                                                myshape
  20.222381184 21.547092478 0.002153487 5.000000000
## Log-likelihood: -481.77
## Best method: bobyqa
##
## $H3$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
```

```
control = config$control)
##
##
## Coefficients:
##
            L1
                        L2
                                 alpha
                                           myshape
## 21.88671743 21.09883081 0.09927843 5.00000000
##
## Log-likelihood: -483.87
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "TICAM1",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
 theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.


```
group = "Sex")
## [1] "Analysing data for response: TNF"
## [1] "Fit for the response: TNF"
## [1] "Fitting for all"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting for groupA : F"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
```

model = "weibull"

```
## [1] "Did converge"
## [1] "Fitting for groupB : M"
## [1] "Fitting model basic without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model basic with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced without alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Fitting model advanced with alpha"
## Warning in bbmle::mle2(response ~ dweibull(shape = myshape, scale =
## MeanLoad(L1, : some parameters are on the boundary: variance-covariance
## calculations based on Hessian may be unreliable
## [1] "Did converge"
## [1] "Testing HO no alpha vs alpha"
   dLL dDF
               pvalue
           1 0.4409806
## 1 0.3
## [1] "Testing H1 no alpha vs alpha"
     dLL dDF
                pvalue
## 1 0.28
            1 0.4520113
## [1] "Testing H2 groupA no alpha vs alpha"
               pvalue
   dLL dDF
          1 0.9679167
## 1 0
## [1] "Testing H2 groupB no alpha vs alpha"
     dLL dDF
                 pvalue
## 1 0.66
           1 0.2512043
## [1] "Testing H3 groupA no alpha vs alpha"
##
     dLL dDF
                pvalue
## 1 0.02
           1 0.8275115
## [1] "Testing H3 groupB no alpha vs alpha"
     dLL dDF
               pvalue
## 1 0.63
           1 0.262373
## [1] "Testing H1 vs H0"
   dLL dDF
                pvalue
## 1 0
           1 0.9762002
## [1] "Testing H2 vs H0"
     dLL dDF
                pvalue
## 1 0.44
           3 0.8286785
## [1] "Testing H3 vs H1"
     dLL dDF
                pvalue
## 1 1.17
            4 0.6743423
## [1] "Testing H3 vs H2"
```

```
dLL dDF
                 pvalue
## 1 0.72
            2 0.4843956
##A11
print(IFNy)
## $HO
##
## Call:
  bbmle::mle2(minuslogl = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
            T.1
                     alpha
                               myshape
## 21.17789958 0.06016675 5.00000000
##
## Log-likelihood: -957.93
## Best method: bobyga
##
## $H1
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
## Coefficients:
##
            L1
                        L2
                                  alpha
                                            myshape
## 21.18688044 21.16797844 0.05975504 5.00000000
##
## Log-likelihood: -957.93
## Best method: bobyqa
##
## $H2
## $H2$groupA
##
## Call:
   bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
```

##

```
## Coefficients:
##
            T.1
                     alpha
                               myshape
## 20.95671905 -0.00457202
                            5.00000000
##
## Log-likelihood: -475.34
## Best method: bobyga
## $H2$groupB
##
## Call:
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L1, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], alpha = paramBounds[["alphaLB"]],
##
##
           myshape = paramBounds[["myshapeLB"]]), upper = c(L1 = paramBounds[["L1UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
  Coefficients:
##
                   alpha
                            myshape
##
  21.3862967 0.1233982 5.0000000
##
## Log-likelihood: -482.15
## Best method: bobyga
##
##
## $H3
##
   $H3$groupA
##
## Call:
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
##
       start = start, method = config$method, optimizer = config$optimizer,
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
##
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
       upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
##
       control = config$control)
##
##
  Coefficients:
##
                        L2
                                  alpha
                                            myshape
##
  20.68615061 21.39990594 0.02591594 5.00000000
## Log-likelihood: -475.05
## Best method: bobyqa
##
## $H3$groupB
##
##
  bbmle::mle2(minuslog1 = response ~ dweibull(shape = myshape,
##
       scale = MeanLoad(L1, L2, alpha, HI)/gamma(1 + (1/myshape))),
       start = start, method = config$method, optimizer = config$optimizer,
##
##
       data = data, lower = c(L1 = paramBounds[["L1LB"]], L2 = paramBounds[["L2LB"]],
           alpha = paramBounds[["alphaLB"]], myshape = paramBounds[["myshapeLB"]]),
##
```

```
upper = c(L1 = paramBounds[["L1UB"]], L2 = paramBounds[["L2UB"]],
##
           alpha = paramBounds[["alphaUB"]], myshape = paramBounds[["myshapeUB"]]),
##
       control = config$control)
##
##
## Coefficients:
                      L2
##
           L1
                              alpha
                                       myshape
## 21.8558445 21.0294753 0.1220749 5.0000000
##
## Log-likelihood: -481.72
## Best method: bobyqa
bananaPlot(mod = IFNy$H0,
             data = field,
             response = "TNF",
             group = "Sex") +
  scale_fill_manual(values = c("blue", "red")) +
  scale_color_manual(values = c("blue", "red")) +
  theme_bw()
```

Scale for 'fill' is already present. Adding another scale for 'fill', which ## will replace the existing scale.

