Machine Learning in Practice: a Crash Course

Lecture 2: Reframe & Generalization & Metrics

胡津铭 DolphinDB

Recap

- Machine learning is the study of computer systems that improve their performance through experience (mostly, data)
- To use ML, there should be some patterns in the data
 - Sometimes we know these patterns/features, but not know how to use it, for example the parameters. ML learn how to use them
 - Sometimes ML can discover the patterns themselves
- In machine learning, we study two types of problems:
 - Supervised learning
 - Unsupervised learning

Recap

• It is often an iterative process

A toy example

- Fish Classification: Salmon v. Sea Bass
- Feature: length. Model: histogram
- Now the model is not good enough
- We ask some experts in this area, they suggest we'd better use other features. Length of images are not very robust.

- 3. Transform data & Get features
 - Previously we use the length of a fish
 - Maybe lightness is a better feature.
 - How to show this?

- 3. Transform data & Get features
 - Maybe using more features may help?
 - The fishers tell us that width is another useful feature
 - So we add this feature
 - (How to make sure that this is useful?)

- 4. Design & train a model (Training)
 - Now there are more features, we should use other models.
 - Maybe a linear (simple) boundary?

- 4. Design & train a model (Training)
 - How about a more complicated model like this?
 - This model seems to give lower (actually 0) training error, so is it a better model? Why?
 - Why do we need the test set?

lightness	width	label
10	20	sea bass
5	15	salmon

15	20	?

Generalization: why we need test set?

Generalization: why we need test set?

- A generalization of a concept is an extension of the concept to less-specific criteria.
- Generalization of the classifier (model)
 - The performance of the classifier on test data.
- Training error:
 - Simple model → large training error
 - Complex model → less training error
- Test error:
 - Simple model \rightarrow ?
 - Complex model →?

Generalization: why we need test set?

- 5. Use the model to predict
 - Testing
 - Deploying & serving
- What if the training data is significant different from the test data?
- Will the metrics on testing data good or not?
- What if the testing data is significant different from the real-world (serving) data?
- Will the ML system give good results?
- We should try to align the training data and testing data.
- Also, try to align the testing data with the real-world data.

ML Pipeline: a real-world case study

- 1. Define a ML problem
 - Articulate your problem
 - What are the labels and where are they from?
 - Are these labels appropriate?
 - What is the metric?

1. Define a ML problem

- Let's try a real-world problem!
- Assume we are engineers in Youtube. The main income of our company is from ads.
- Youtube will display ads at the beginning, and, say, every 5mins. The more/longer ads the user watches, the more we earn.
- But we also do not want to annoy users.

1. Define a ML problem

- How to convert it to a ML problem? What is the target?
 - Maybe we can use ML to rank the list. How to rank?
 - A straightforward is to predict the click-through rate (CTR). Then rank the list according to CTR. So CTR is target.
 - What is the problem with this target?
 - Maybe the expected watching time? Why is this target better?
 - What is the problem with this target?
 - Maybe a trade-off between CTR and expected watching time.
 - Say we use expected watching time as target.
 - Supervised or Unsupervised?
 - Classification or Regression

1. Define a ML problem

- Are there patterns in the data? Ask yourself!
 - We have special preferences for different videos.
 - People may have different preferences, but similar people may share similar preferences. Also, if we prefer some kinds of videos, maybe we will prefer similar items. So there are patterns.
- Can we get data easily? What is the label? Where are they from?
 - From the user watching history data.
 - The label is directly from the user watch history.
- What are the metrics?
 - Mean Squared Error. Will talk more about metrics later.

• MSE
$$(f, \theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, \theta))^2$$

2. Construct dataset

- Collect it from user watching history.
- Split it into train/test dataset. Will talk more later.

3. Transform data & feature engineering

- What are the possible useful features? Ask yourself!
- User features:
 - Personal features: age, gender, job, income
 - Geographic: where are the users from?
 - Watching history
- Video features:
 - Uploaders, when is it uploaded,...
 - contents: topics, ···, visual contents, length, ···
 - who watched this?
- Context:
 - When the users search? What is hot at this time?
 - The search tokens.

4. Design & train models

• We will talk a lot more later in this course. So we skip it currently.

5. Use the model to predict

Testing

- How to evaluate the model? What is the testing dataset?
- Remember, try to make testing align with the realworld serving scenario!
- Deploying & Serving
 - Wont talk about it here.

Question?

Metrics for supervised learning

- Classification
 - $Accuracy = \frac{\sum_{i}(y_i!=f(x_i))}{n}$
 - What are the problems with this metric?
 - Consider cancer detection. Just classify people as not getting cancer can get an accuracy over 99.9%
 - Are all the errors equally important?
 - Consider the bomb detection in railway station. Also, the cancer detection.
 - Consider the spam/ham email detection.
 - $Precision = \frac{TP}{TP+FP}$, $Recall = \frac{TP}{TP+FN}$
 - Some other metrics for different scenarios...

	Spam(label)	Ham(label)
Spam(predict)	TP	FP
Ham(predict)	FN	TN

Metrics for supervised learning

- Regression
 - MSE $(f, \theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i, \theta))^2$
 - Why cant we use accuracy?
 - What are the problems with this metric?
 - Outliers will contribute a lot to it
 - Mean Absolute Error $MAE(f, \theta) = \frac{1}{n} |y_i f(x_i, \theta)|$

Metrics for supervised learning

- Cost
- What is the speed? For example, how many FPS?
 - In some scenarios, speed is extremely important.
- What is the memory consumption?
- What is the platform required for running?
 - CPU vs GPU
 - Server, workstation, laptop, mobile/embedded system
 - The requirement can be very different for different platforms
- What is scale of data required for this model?

• It is often an iterative process

Question?

Thanks and welcome to give us suggestions and feedbacks afterwards.