Name:	Section:	

Physics 2140 Exam 3 April 9, 2015

- Turn off your cellphone, and put away your headphones (if you have them).
- Do not cheat, and avoid the appearance of impropriety.
- Materials permitted: one sheet of notes and a calculator.
- This test contains 17 questions and 64 points.
- Ask questions when confused! Remain seated and raise your hand.
- Partial credit is available everywhere.
- Show your work!
- You are responsible for any corrections or clarifications written on the blackboard.
- Use the blank (_____) for your answer when there is one.
- Circle or box your answer when there isn't a blank.
- Geometric formulae, fundamental constants, and metric prefixes are free for the asking.
- When done, do not stand right outside the door talking about the exam.
- I will post a notice on the website when the grades are available.

$$k = 9 \times 10^9 \,\mathrm{Nm^2/C^2}$$

 $1 \,\mu\mathrm{C} = 10^{-6} \,\mathrm{C}$ $1 \,\mathrm{nC} = 10^{-9} \,\mathrm{C}$

Good luck!

1. Suppose I want to find the electric field of a disk (with charge spread across the entire surface), using the integral

$$\vec{E} = k \int \frac{dq}{d^3} \vec{d}$$

Which of the following is dq?

$$\overline{\mathbf{A}}$$
) λdr $\overline{\mathbf{B}}$) $\lambda R d\theta$ $\overline{\mathbf{C}}$) σdr $\overline{\mathbf{D}}$) $\sigma r dr d\theta$ $\overline{\mathbf{E}}$) $\sigma R dr d\theta$

- **2.** Suppose I have a square with surface charge density σ , as shown. I want to find the electric field at coordinates (A,B), using integration.
- (a) The integration variable(s) is/are... **A)** x **B)** y **C)** x and y **D)** z **E)** A and B

[3] (b) What is
$$\vec{d}$$
?
A) $A\hat{x} + B\hat{y}$ **B)** $(A - x)\hat{x} + (B - y)\hat{y}$ **C)** $x\hat{x} + y\hat{y}$ **D)** $\hat{x} + \hat{y}$ **E)** $-x\hat{x} + B\hat{y}$

3. The vector shown points in which direction?

A) \hat{r} B) $-\hat{r}$ C) $\hat{\theta}$ D) $-\hat{\theta}$

4. Consider a 3×10^{-6} C charge and a -5×10^{-6} C charge. When they are far apart, their potential energy is zero. What is their potential energy when they are half a meter apart.

- **5.** I move a 5×10^{-6} C charge from 2 V to 9 V. The charge starts at rest and ends at rest.
- (a) _____ What direction does the electric field point in this region? A) \leftarrow B) \uparrow C) \rightarrow D) \downarrow

- (b) What work do I do on the charge? (Remember, positive work means I give energy to the charge, while negative means I steal energy.)
 - **A)** $-1.4 \,\mathrm{MJ}$
- **B**) $-35 \mu J$ **C**) $-45 \mu J$
- **D)** $+1.4 \,\mathrm{MJ}$
- **E)** $+35 \mu J$ **F)** $+45 \mu J$

6. What is the potential halfway between two 7 nC charges that are 0.6 m apart, if the potential at infinity is $V_{\infty} = 100 \,\mathrm{V?}$

7. _____ The figure shows three equipotential surfaces created by a sphere in the center. The sphere is

8. A charge is released between two equipotential surfaces $(-5 \,\mathrm{V})$ and 1 V), and spontaneously moves downward.

_____ As the charge moves, its potential energy A) increases B) decreases

9. The graph shows the electric potential along a line. Three locations are marked on the graph.

- 2 (a) _____ At which point is the electric field zero?
- $oxed{2}$ (b) _____ At which point is $\left| ec{E}
 ight|$ largest?
- 3 10. _____ A plasma is a gas where electrons have been stripped from their atoms, and the atoms have positive charge. From this description, we can see that a plasma is

 A) a conductor B) an insulator

3 12. An insulator with $\kappa = 3$ is placed in an external electric field of 6 N/C which points to the left. What is the *net* electric field inside the insulator?

- A) $2 \text{ N/C} \leftarrow$ B) $18 \text{ N/C} \leftarrow$
- C) $2 \text{ N/C} \rightarrow$ D) $18 \text{ N/C} \rightarrow$

3 13. A positive charge is placed next to a metal sphere. If the sphere is in electrostatic equilibrium, what is the electric field at the center of the sphere (at the star)?

- **14.** In this circuit, the current through the 4Ω resistor is 2 A.
- (a) _____ What is the potential difference ΔV across the $4\,\Omega$

- **A)** 0.5 V **B)** 2 V **C)** 4 V **D)** 8 V **E)** 12 V **F)** 16 V

- (b) What is the power output by the 4Ω resistor? **A)** $0.5\,\mathrm{V}$ **B)** $2\,\mathrm{V}$ **C)** $4\,\mathrm{V}$ **D)** $8\,\mathrm{V}$ **E)** $12\,\mathrm{V}$ **F)** $16\,\mathrm{V}$
- (c) $\frac{}{\mathbf{A)}\ 0.5\,\mathrm{A}}$ What is the current through the $2\,\Omega$ resistor? B) $1\,\mathrm{A}$ C) $2\,\mathrm{A}$ D) $4\,\mathrm{A}$ E) $8\,\mathrm{A}$

[3] 15. _____ Four wires come together at a junction. What is the current in the rightmost wire? **A)** $1 \text{ A} \leftarrow \text{ B)} 1 \text{ A} \rightarrow \text{ C)} 3 \text{ A} \leftarrow \text{ D)} 3 \text{ A} \rightarrow \text{ E)} 7 \text{ A} \rightarrow$

 $3 \mid 16$. A 9 V battery produces 6 W of power. What is the current coming out of it?

+3 17. Extra Credit: The electric field in a region has the functional form $\vec{E} = (x+1)\hat{x} + y^2\hat{y}$. Find the potential difference between the two points (0,1) and (2,2).

