

CBRS framework written in Python

Architecture and its three main modules

Infographic timeline

Infographic timeline

Who's and what's next?

This is a project entirely made by students, with the constant and maximum supervision of the **SWAP** research group:

- Prof. Pasquale Lops
- Ph.D. Marco Polignano
- Prof. Giovanni Semeraro
- Prof. Cataldo Musto
- Prof. Pierpaolo Basile

There's so much to do with so small time, that's why highly motivated people are always welcome to come on board ©

Idea

© ClayRS allows you to conduct a complete experiment, starting from a raw representation of users and items to building and evaluating a recommender system.

It does so with three main modules, which you can also use individually:

Content Analyzer

RecSys

EvalModel

General pipeline

Content Analyzer

Given a raw source, the Content Analyzer:

- Creates and serializes content,
- Using the chosen configuration

Content Analyzer Architecture

What do we mean by Raw Source?

A Raw Source is a file containing several information of the content to represent

```
- Ex. Movies in a JSON file
    { "Title": "Jumanji",
        "IMDB_ID": "0113497"
        "Year": "1995",
        "Rated": "PG",
        "Genre": "Adventure, Family, Fantasy",
        "Released":"15 Dec 1995",
        "Runtime":"104 min",
        ... }
```

- Ex. Users in a CSV file (represented here as a table)

User_ID	Name	Age	Occupation
1	Antonio	24	student
2	Mario	44	lawyer

How can we represent content?

Config

You can set via configuration which fields of every raw content must be represented and how to represent them

Multiple representations for a single field are allowed

```
{ "Title": "Jumanji",
    "Year": "1995",
    "Rated": "PG",

"Genre": "Adventure, Family, Fantasy",
    "Released": "15 Dec 1995",
    "Runtime": "104 min",
    ... }
```

```
tf-idf
{ 'adventure': 0.49122938570380714,
   'family': 0.5631439252085217,
   'fantasy': 0.6645017758605305 }

   embedding with glove-twitter-25 model
array([-0.01160799, -0.28532598, 0.0177138,
        -0.128398, -0.10475059, 0.37144921,
        1.08316798, 0.63348202, 0.226706,
        ..., ...]) 10/50
```

Which representation techniques are implemented?

Every representation technique is implemented as a class, in order to make use of polymorphism

There are two techniques implemented as CollectionBased techniques:

tf-idf
 Synset Document frequency
 SkLearnTfIdf()
 WhooshTfIdf()
 PyWSDSynsetDocumentFrequency()

Which representation techniques are implemented?

There are several SingleContent techniques available:

- o techniques which can store the original representation of the raw source (useful for IndexQuery algorithm):
 - OriginalData()
- techniques which compute the embedding representation of the content (cont.)

Embedding techniques

Embedding techniques implemented include:

- WordEmbedding()
- SentenceEmbedding()
- DocumentEmbedding()

They also exist in their «combined form», given a combiner (Centroid(), Sum()):

- Word2SentenceEmbedding()
- Word2DocumentEmbedding()

•••

For each *embedding* technique, a pre-trained model must be specified. It will be downloaded (optionally) from the following external sources:

- Gensim
- SBERT
- Hugging Face models (BERT and T5 models)
- Local storage

Embedding techniques

It's also possible to train via ClayRS the following Gensim models:

- FastText
- Word2Vec
- RandomIndexing
- LatentSemanticAnalysis
- Doc2Vec

The field of every content of the *raw source* will be used as corpus

- If preprocessing operations are specified, the preprocessed corpus will be used
- The trained model will then be used (and optionally saved) to represent contents

Other available operations

Reduce the content dimensionality

By performing preprocessing operations, such as *stemming*, *lemmatization*, *stopwords removal*, etc. via the *NLTK* library, *SPACY or Ekphrasis*

Save representations in an index

Each representation can be saved in an index, both for exporting reason or to perform a specific recommendation algorithm (IndexQuery)

```
"This is beautiful too and entertaining"
 ['This', 'beautiful', 'entertaining']
   content id: 0113497
      Plot#0#original: After being trapped...
      Plot#1#tfidf: {trapped: 0.0185185..., ...}
```

Content Analyzer | code example

users config = ca.UserAnalyzerConfig(

id="User ID",

source=ca.CSVFile("users info.csv"),

output directory='users codified/'

Let's instantiate a config both for Items and Users:

```
items_info.json
```

```
{ "Title": "Jumanji",
   "IMDB_ID": "0113497"
   "Year": "1995",
   "Rated": "PG",
   "Genre": "Adventure, Family, Fantasy",
   "Released":"15 Dec 1995",
   "Runtime":"104 min",
   ... }
```

users_info.csv

User_ID	Name	Age	Occupation
1	Antonio	24	student
2	Mario	44	lawyer

Let's specify how to represent items:

```
movies_config.add_single_config(
    'Plot',
    ca.FieldConfig(ca.SkLearnTfIdf())
                                                                    Equivalent of using
                                                                  add_multiple_config(...)
movies_config.add_single_config(
                                                                    and passing a list of
    'Plot',
                                                                      representation
    ca.FieldConfig(ca.WhooshTfIdf(),
                    preprocessing=ca.NLTK(stemming=True),
                    id="whooshtfidf")
movies_config.add_single_config(
    'Genre',
    ca.FieldConfig(
        ca.WordEmbeddingTechnique(ca.Gensim('glove-twitter-25')) )
```

Exogenous techniques

You can also expand the content via:

- DBpedia
- BabelFy Entity Linking
- Local dataset

For the DBpedia mapping technique you can choose how to retrieve properties in four different ways:

- only_retrieved_evaluated: retrieve only properties in DBpedia which have a value
- original_retrieved: retrieve only local properties which have a value in DBpedia
- all_retrieved: retrieve all properties from DBpedia
- all: retrieve all properties from DBpedia + all properties in local

Let's add an exogenous representation both for items and users:

```
movies_config.add_single_exogenous(
    ca.ExogenousConfig(
        ca.DBPediaMappingTechnique('dbo:Film', 'dbpedia_label')
)

users_config.add_single_exogenous(
    ca.ExogenousConfig(
        ca.PropertiesFromDataset(field_name_list=['gender', 'occupation'])
    )
)
```

Graphs

ClayRS can represent the User-Item rating matrix as a *graph*, which can be further manipulated by adding other kinds of nodes (property nodes), by removing some others, etc.

Tripartite graph:

Graph with property nodes only linked to item nodes

Full Graph:

Graph with no restriction

Full graph + exogenous techniques

How to export content?

- In a format recognizable by the framework (.xz), so that contents could be used in the recommending phase
- In JSON format which is readable and allows complex representations to be used in other contexts

Content Analyzer | output

Let's serialize items and users with the representations we chose:

```
ca.ContentAnalyzer(movies_config).fit()
ca.ContentAnalyzer(users_config).fit()
```


We could also check if everything went smoothly:

```
from clayrs.utils import load content instance
   item = load content instance('movies codified', '0113497')
   print(item)
                                 Content:
                                           0113497
                                 Exogenous representations:
                                                                                        representation
  Exogenous
                                 internal_id external_id
representations
                                                        {'cinematography': 'http://dbpedia.org/resourc...
                                            NaN
                                 Field: Plot
                                                                                        representation
                                 internal_id external_id
                                                        { 'them': 0.1144577150792816, 'stop': 0.1606690...
      Field
                                            whooshtfidf {'26': 1.3010299956639813, 'After': 0.82390874...
representations
                                 Field: Genre
                                                                                        representation
                                 internal id external id
                                                        [-0.58404666 0.21438999 0.06313567 -0.39509 ...
                                            NaN
```

RecSys

The RecSys module allows to:

- Instantiate a recommender system
 - Using items and users serialized by the Content Analyzer
- Make score prediction or recommend items for the active user

Implemented Recommender Systems

Each recommender system is a specialization of the abstract class RecSys

There are two available implementations:

- Content Based RecSys (ContentBasedRS)
- Graph Based RecSys (GraphBasedRS)

To implement other typologies, simply extend the RecSys class

Content Based RS Architecture

Ratings Table

In order to instantiate a RecSys, the User x Item matrix must be imported. The framework can also manipulate its 'score' field if a *processor* is specified

- NumberNormalizer()
- TextBlobSentimentAnalysis()

Ratings table

NumberNormalizer normalizes conumeric field in the [-1,1]

TextBlobSentimentAnalysis returns the polarity of a text field in the [-1,1] range

How to import Ratings into ClayRS

1. The columns are ordered:

```
ca.Ratings(ca.CSVFile('ratings_ordered.csv'))
```

2. The 'score' column isn't next to the 'item' column:

```
ca.Ratings(
    ca.CSVFile('ratings.csv')),
    score_column='points'
)
```

3. The 'score' column needs to be processed:

```
ca.Ratings(
    ca.CSVFile('ratings.csv')),
    score_column=2,
    score_processor=ca.TextBlobSentimentAnalysis()
)
```


user	item	review	points
Antonio	Inception	good	4.5
Mario	Gravity	bad	1

Splitting the dataset

```
n_split = 2
[train_split1, train_split2], [test_split1, test_split2] =
rs.KFoldPartitioning(n_split).split_all(original_ratings)
```


31/50

Which partitioning techniques are available?

The following are the partitioning techniques available, all using the *sklearn* library:

- o KFoldPartitioning()
- o HoldOutPartitioning()
- o BootstrapPartitioning()

Choosing the CB algorithm

Representations codified

```
import clayrs.recsys as rs
# Centroid Vector alg
alg = rs.CentroidVector(
     'Plot': [0, 'whooshtfidf'],
     'Genre': 0
    similarity=rs.CosineSimilarity()
    # threshold=2
# Classifier alg
alg = rs.ClassifierRecommender(
     'Plot': [0, 'whooshtfidf'],
     'Genre': 0
    classifier=rs.SkKNN(n_neighbors=4)
    # threshold=2
```

Computing recommendations

Regardless of the algorithm chosen, simply instantiate the cbrs:

```
cbrs = rs.ContentBasedRS(alg, train_split1, items_path)
```

And then compute the rank, given the test set (which will only be used to compute which items are eligible for ranking):

User	Item	Rank score
3	0113497	0.98578
3	0114709	0.97324
8	0116367	0.99734
8	0117110	0.99711

Which methodologies are available?

Methodologies available:

(L is the recommendation list, u is the active user, Te is the test set, Tr is the training set)

o TestRatingsMethodology()

$$L_u = Te_u$$

o TrainingItemsMethodology()

$$L_u = \bigcup_{v \neq u} Tr_t$$

Where:

• v is the generic user of the Tr

o TestItemsMethodology()

$$L_u = \bigcup_v Te_v \setminus Tr_v$$

Where:

• v is the generic user of the Te

o AllItemsMethodology()

$$L_u = I \setminus Tr_u$$

Where:

 I is the set which contains all items of the catalog

Graph Based RS Architecture

GBRS | code example

Graph creation:

GBRS definition:

```
alg = rs.NXPageRank(personalized=True)
gbrs = rs.GraphBasedRS(alg, full_graph)
```

And then, just like for ContentBasedRS, you can compute the rank given the test set:

```
gbrs.rank(test_set1, ...)
```

Which recommendation algorithms are available?

GraphBasedRS: rank o PageRank()

PageRank(personalized=True)

ContentBasedRS:

- o CentroidVector() rank
 - CosineSimilarity()

- o LinearPredictor() rank pred
 - SkLinearRegression()
 - SkRidge()
 - SkBayesianRidge()
 - SkSGDRegressor()
 - SkARDRegression()
 - SkHuberRegressor()
 - SkPassiveAggressiveRegressor()

- o ClassifierRecommender() rank
 - SkSVC()
 - SkKNN()
 - SkLogisticRegression()
 - SkDecisionTree()
 - SkGaussianProcess()
- o **IndexQuery()**

Flexibility of CB algorithms | a technical hint

Each content-based algorithm can work on multiple representations of a field, or even multiple representations of multiple fields

 e. g. You could train a classifier using a tfidf representation, a WordEmbedding representation and a DocumentEmbedding representation

Every representation specified will be vectorized (if necessary) and added as a column to the representation matrix that will be used in the *training phase*

• If vectors have different dimensions, they will be transformed into row vectors by using a chosen combiner from those implemented for the Content Analyzer (Centroid(), Sum())

EvalModel

The EvalModel has the task of evaluating a recommender system, using several state-of-the-art metrics

EvalModel architecture

To evaluate a recommender, the EvalModel needs the rankings computed for each split, the relative ground truth, and a list of metrics

 It will return two pandas DataFrame, one containing metrics result for each user, the other containing metrics result of the whole system

EvalModel | code example

```
import clayrs.evaluation as eva
em = eva.EvalModel(
    pred_list=[rank_split0, rank_split1],
    truth list=[test split0, test split1],
    metric list=[
        eva.Precision(),
        eva.PrecisionAtK(k=1),
        eva.RPrecision(sys average='micro'),
        eva.Recall(),
        eva.RecallAtK(k=3),
        eva.FMeasure(),
        eva.FMeasureAtK(k=2),
    ],
sys result, users result = em.fit()
```

System wise results:

sys_result

user_id	Precision - macro	Precision@1	RPrecision – micro	
sys - fold1	0.55662	0.55037	0.56369	•••
sys - fold2	0.54644	0.55885	0.55637	•••
sys - mean	0.55153	0.55461	0.56003	

Results of each user

(avg of the two splits):

users_result

user_id	Precision - macro	Precision@1	RPrecision – micro	
1	0.6	1.0	0.6	
10	0.25	0.5	0.25	•••
100	0.5	0.5	0.5	
101	0.75	1.0	0.75	
			•••	

Which metrics are available?

Classification metrics (sys average computed as micro/macro):

pearson'

- Precision()
- PrecisionAtK()
- RPrecision()
- Recall()
- RecallAtK()
- FMeasure()
- FMeasureAtK()

Ranking metrics:

- NDCG()
- NDCGAtK()
- MRR()
- MRRAtK()
- Correlation('kendall'
- MAP()
- MAPAtK()

Which metrics are available?

Error metrics:

- MSE()
- RMSE()
- MAE()

Fairness metrics:

- GiniIndex()
- PredictionCoverage()
- CatalogCoverage()
- DeltaGap()

Plot metrics:

- LongTailDistr()
- PopProfileVsRecs()
- PopRecsCorrelation()

Pipeline of recommending and evaluating

- Can this be automated?
- What about comparing different algorithms?

Experiment class

With a simple interface, the Experiment class lets you cover a complete experiment!

• It also makes it easy to compare different algorithms

Experiment class: code example

```
rat = ca.Ratings(ca.CSVFile('ratings.csv'))
alg1 = rs.CentroidVector({'plot': 0}, similarity=rs.CosineSimilarity())
alg2 = rs.ClassifierRecommender({'plot': 0}, classifier=rs.SkSVC())
metrics = [eva.RPrecision(sys average='micro'), eva.RecallAtK(k=3)]
rs.ContentBasedExperiment(
        original ratings=rat,
        partitioning_technique=rs.HoldOutPartitioning(),
        algorithm list=[alg1, alg2],
        items_directory='movies_codified_plot',
        metric_list=metrics,
        report=True
).rank(n recs=10)
```


Experiment class: output

Thank you!

Antonio Silletti