Evolving Non-linear Stacking Ensembles for Prediction of Go Player Attributes

Josef Moudřík¹ Roman Neruda²

¹Charles University in Prague Faculty of Mathematics and Physics J.Moudrik@gmail.com

²Institute of Computer Science Academy of Sciences of the Czech Republic roman@cs.cas.cz

IEEE SSCI 2015

Introduction: Game of Go Brief overview

- "Oldest" game in the world,
- perfect information, deterministic rules,
- board size of 19×19 intersections.
- two players Black and White,
- goal (roughly): enclose more territory.
- Al is hard:
- high branching factor,
- no clear evaluation function.

Introduction: Motivation and Goals

- Large collections of Go game records available online.
- Traditionally (computer-wise) used for:
 - Opening dictionaries,
 - learning domain-aware heuristics, e.g. [Coulom, 2007],
 - to train predictive models, e.g. CNN [Clark and Storkey, 2014].
- Our Goal: Predict player attributes (such as strength & style) from a set of games.
- Previous work: [Moudrik et al., 2015]

 Player's Games $\xrightarrow{\text{feature extraction}}$ Dataset
- This work:
 Dataset learning Predictive Model

Methodology: Ensemble Learning A very brief overview

- **Learning:** Given model M, find parameters Θ that maximize accuracy (on some data).
- **Ensemble:** The model M is composed of multiple sub-models m_i (and params Θ_i), with a strategy for training and combining the results.
 - Some Examples: bagging, boosting, stacking, dropout.
- Why should ensembles be interesting? Efficient combination can mitigate individual model's weaknesses and combine their strenghts.
- In Practise, ensembles often improve accuracy and robustness of models.

Methodology: Stacking

- Two-level hierarchical model
- Diverse 1st level models (A D)
- 2nd level model (E) aggregates outputs from 1st level
- Training strategy:
 Internal Cross-validation
- E should learn how to optimally combine A–D predictions.

- So far, only linear models have been used as 2nd level model.¹
- An Engineering Question: When solving a task, how to choose the best combination of **E** and **A**–**D** learners?

¹To our best knowledge.

Methodology: Evolving Non-linear Stacking Ensembles A genetic algorithm

- Let us have a set of **Base Learners** BL.
- Individual encoding: $(I, Folds, \vec{v})$ $I \in [1..|BL|], Folds \in [2..6], \vec{v} \in 2^{|BL|}$
- Mutation 1: changes I or Folds to any correct value.
- Mutation 2: flips one random bit in \vec{v} .
- Crossover: random crossover of \vec{v}_{mother} and \vec{v}_{father} .
- **Fitness:** 1/*RMSE* of the resulting stacking ensemble.

²In each generation, two parents form two offspring, one gets (*I*, *Folds*) from father, one from mother; \vec{v} 's are given by the crossover.

Methodology: Base Learners And their parameterisations

Base learner	Settings
Mean regression	_
PLS regression	$I \in \{2, \dots, 10\}$
<i>k</i> -nearest nb.	$k \in \{10, 20, \dots, 60\}, \ \alpha \in \{10, 20\},$
	$\delta \in \{Manhattan, Euclidean\}$, all combinations.
Random Forests	$N \in \{5, 10, 25, 50, 100, 200\}$
Neural network	$max \in \{50, 100, 200, 500\}$ iterations
	$\epsilon \in \{0.001, 0.005\}$, 1 layer with
	number of neurons $\in \{10, 20\}$, all combinations.
	Symmetric sigmoid activation function.
Bagged Neural	For ensemble sizes of $\in \{20, 40, 60\}$, each
Networks	Neural network (from right above) was tested.

Experiments: Go — Strength Dataset and setup

- Precisely defined in [Moudrik et al., 2015].
- Data from 100 000 games from KGS [Shubert, 2013] were divided by 26 ranks in Go 20 kyu – 1 kyu, 1 dan – 6 dan.
- 26 × 120 pairs $(x, y), |x| = 1040, y \in [1...26].$
- Population was initialized by best hand-tuned learner.

GA Parameter	Value
Population size S	16
Elite size <i>E</i>	1
Max number of iterations	100
Probability of Mutation 1	0.2
Probability of Mutation 2	0.5
Fitness function	1/RMSE, see ³

³Computed using 5-fold CV on a sub-sampled dataset.

Experiments: Go — Strength

Results, fitness evolution and comparison

Learner	RMSE	Mean cmp
Mean regression	7.507	1.00
Random Forrest	3.869	1.94
PLS	3.176	2.36
Bagged NN	2.66	2.82
Hand-tuned learner	2.635	2.85
Best GA stacking ensemble	2.607	2.88

Experiments: Go — Strength Results, best individual

Experiments: Go — Strength

Results, best individual

Ensemble I.	Settings	
	0	
Stacking	6 folds, level 2 learner: Bagged (20×) NN:	
	$\epsilon=0.005$, $max=500$ iter., 1 layer , 10 neurons.	
Base I.	Settings	
Mean regression	_	
PLS regression	<i>I</i> = 3	
Random Forests	<i>N</i> = 50	
Neural network	$\epsilon=0.001$, $max=200$ iter., 1 layer, 20 neurons.	
<i>k</i> -nn	$k=$ 20, $\alpha=$ 20, $\delta=$ Euclidean.	
<i>k</i> -nn	$k=$ 40, $\alpha=$ 10, $\delta=$ Manhattan, Euclidean.	
<i>k</i> -nn	$k=40,\ \alpha=20,\ \delta=$ Euclidean.	
<i>k</i> -nn	$k=$ 50, $lpha=$ 10, $\delta=$ Manhattan.	
<i>k</i> -nn	$k=$ 50, $lpha=$ 20, $\delta=$ Manhattan, Euclidean.	
<i>k</i> -nn	$k=$ 60, $lpha=$ 10, $\delta=$ Euclidean.	
<i>k</i> -nn	$k=60,~\alpha=20,~\delta=$ Euclidean.	
Bagged NN	$20 imes extsf{NN}$: $\epsilon = 0.001$, $ extsf{max} = 100$, 1 layer, 10 neur.	
Bagged NN	40 $ imes$ NN: $\epsilon=$ 0.005, $\textit{max}=$ 100, 1 layer, 10 neur.	
Bagged NN	40 $ imes$ NN: $\epsilon=$ 0.001, $\textit{max}=$ 500, 1 layer, 20 neur.	
Bagged NN	$20 \times \text{NN}$: $\epsilon = 0.005$, $max = 200$, 1 layer, 20 neur.	
Bagged NN	$40 \times \text{NN}$: $\epsilon = 0.005$, $max = 500$, 1 layer, 20 neur.	

Moudřík, Josef Evolving Non-linear Stacking Ensembles

Experiments: Go — Style Dataset and setup

- Precisely defined in [Moudrik et al., 2015].
- Professional games from the GoGoD Database [Hall and Fairbairn, 2011].
- 24 profesionals, each assessed on 4 scales by playing style.
- 24 × 12 pairs $(x, y), |x| = 640, y \in [1...10].$
- Population was initialized by best hand-tuned learner.

Parameter	Value
Population size S	10
Elite size <i>E</i>	1
Number of iterations <i>Max</i>	100
Probability of Mutation 1	0.2
Probability of Mutation 2	0.5
Ensemble size limit	5

Style	1	10
Territoriality	Moyo	Territory
Orthodoxity	Classic	Novel
Aggressivity	Calm	Fighting
Thickness	Safe	Shinogi

Experiments: Go — Style Results, fitness evolution and comparison

1.40

	RMSE	
Learner	Territoriality	Orthodoxity
Mean regression	2.403	2.421
Hand tuned learner	1.434	1.636
The best GA learner	1.394	1.506
Learner	Aggressivity	Thickness
Mean regression	2.179	1.682
Hand tuned learner	1.423	1.484
The best GA learner	1.398	1.432

Iteration

Conclusion

- We shown an algorithm for evolving non-linear stacking ensembles.
- Algorithm forms complex diverse ensembles of learners, which
- give substantial improvements for prediction of Go player attributes.
- One disadvantage is that computing fitness takes quite some time (nested CV) — parallelize!
- Feature extraction and the prediction model → Online Learning Tool: http://gostyle.j2m.cz

References I

Clark, C. and Storkey, A. (2014). Teaching deep convolutional neural networks to play go. arXiv preprint arXiv:1412.3409.

Coulom, R. (2007). Computing Elo Ratings of Move Patterns in the Game of Go. In van den Herik, H. J., Mark Winands, Jos Uiterwijk, and Maarten Schadd, editors, *Computer Games Workshop*, Amsterdam Pays-Bas.

Hall, T. M. and Fairbairn, J. (winter 2011). Games of Go on Disk — GoGoD Encyclopaedia and Database.

Moudrik, J., Baudis, P., and Neruda, R. (2015). Evaluating go game records for prediction of player attributes. In *Computational Intelligence and Games (CIG)*, 2015 IEEE Conference on, pages 162–168.

Shubert, W. (2013). KGS — kiseido go server.

Appendix, Best Hand Tuned Ensemble

Ensemble learner	Settings
Stacking	4 folds, level 2 learner: NN, $\epsilon = 0.005$,
	max = 100 iter., 1 layer, 10 neurons.
Base learners	Settings
Mean regression	_
PLS regression	<i>l</i> = 3
k-NN	$k=$ 50, $lpha=$ 20, $\delta=$ Manhattan.
Random Forests	<i>N</i> = 50
Bagged NN	$20 imes extsf{NN}$: $\epsilon = 0.001$, $ extsf{max} = 100$ iter.,
	1 layer, 10 neurons.