

Análisis de Señales

Señales exponenciales y sinusoidales

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Agenda

Señales exponenciales y sinusoidales

Sistemas continuos y discretos

Propiedades básicas de los sistemas

Señales continuas exponencial compleja y sinusoidal

Definicion

La señal continua exponencial compleja es de la forma

$$x(t) = Ce^{at}$$

Figura: Descarga de un condensador.

Señales exponencial reales

Figura: Exponencial real continua $x(t) = Ce^{at}$

Se obtiene considerando el campo puramente imaginario

$$x(t) = e^{j\omega_0 t}$$

Se obtiene considerando el campo puramente imaginario

$$x(t) = e^{j\omega_0 t}$$

Esta señal será periódica con periodo T si

$$e^{j\omega_0 t} = e^{j\omega_0(t+T)} = e^{j\omega_0 t} e^{j\omega_0 T}$$

Se obtiene considerando el campo puramente imaginario

$$x(t) = e^{j\omega_0 t}$$

Esta señal será periódica con periodo T si

$$e^{j\omega_0 t} = e^{j\omega_0(t+T)} = e^{j\omega_0 t}e^{j\omega_0 T}$$

Para que sea periódica debemos tener

$$e^{j\omega_o T}=1$$

Usando la relación de Euler, la exponencial compleja se puede escribir en términos de señales sinusoidales con el mismo periodo fundamental

$$e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$$

Usando la relación de Euler, la exponencial compleja se puede escribir en términos de seciñales sinusoidales con el mismo periodo fundamental

$$e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$$

■ Si ω_0 = 0, entonces x(t) = 1, la cual es periódica para cualquier valor de T. Si $\omega_0 \neq 0$ entonces el periodo fundamental T_0 de x(t) es

$$T_0 = \frac{2\pi}{|\omega_0|}$$

Una señal relacionada en forma muy estrecha con la exponencial periódica compleja es la señal sinusoidal

$$x(t) = A\cos(\omega_0 t + \varphi)$$

Figura: Señal sinusoidal continua $x(t) = A\cos(\omega_0 t + \varphi)$

Usando la relación de Euler, la exponencial compleja se puede escribir en términos de señales sinusoidales con el mismo periodo fundamental

$$e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$$

Figura: Parte imaginaria y real de una exponencial compleja

Usando la relación de Euler

$$Ae^{j(\omega_0 t + \varphi)} = A\cos(\omega_0 t + \varphi) + jA\sin(\omega_0 t + \varphi)$$
$$Ae^{-j(\omega_0 t + \varphi)} = A\cos(\omega_0 t + \varphi) - jA\sin(\omega_0 t + \varphi)$$

La señal sinusoidal en términos de exponenciales complejas períodicas

$$2A\cos(\omega_0 t + \varphi) = Ae^{j(\omega_0 t + \varphi)} + Ae^{-j(\omega_0 t + \varphi)}$$

$$A\cos(\omega_0 t + \varphi) = A\frac{e^{j(\omega_0 t + \varphi)} + e^{-j(\omega_0 t + \varphi)}}{2}$$

$$A\cos(\omega_0 t + \varphi) = \frac{A}{2}e^{j\varphi}e^{j\omega_0 t} + \frac{A}{2}e^{-j\varphi}\bar{e}^{j\omega_0 t}$$

Usando la relación de Euler $e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$

Figura: Parte imaginaria y real de una exponencial compleja

Usando la relación de Euler

$$e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$$

 Podemos expresar una sinusoidal en términos de la señal exponencial compleja

$$A\cos(\omega_0 t + \varphi) = ARe e^{j(\omega_0)t+\varphi}$$

Figura: Parte imaginaria y real de una exponencial compleja

Usando la relación de Euler

$$e^{j\omega_0 t} = \cos \omega_0 t + j \operatorname{sen} \omega_0 t$$

 Podemos expresar una sinusoidal en términos de la señal exponencial compleja

$$A\cos(\omega_0 t + \varphi) = ARe e^{j(\omega_0)t+\varphi}$$

Para la parte imaginaria

$$A \operatorname{sen}(\omega_0 t + \varphi) = A \operatorname{I} m \ e^{j(\omega_0)t + \varphi}$$

Figura: Parte imaginaria y real de una exponencial compleja

Figura: Relación entre la frecuencia fundamental y el periodo; $T_1 < T_2 < T_3$, $\omega_1 > \omega_2 > \omega_3$

Definicion

$$T_0 = \frac{2\pi}{|\omega_0|}$$

El periodo fundamental T_0 de una señal sinusoidal continua o una exponencial compleja periódica es inversamente proporcional a $|\omega_0|$, a la cual nos referimos como *frecuencia* fundamental

Figura: Relación entre la frecuencia fundamental y el periodo; $T_1 < T_2 < T_3$, $\omega_1 > \omega_2 > \omega_3$

Son conjuntos de exponenciales periódicas , las cuales son periódicas, con un periodo común \mathcal{T}_0 . Para que sea periódica con periodo \mathcal{T}_0

$$e^{j\omega T_0}=1,$$

Son conjuntos de exponenciales periódicas , las cuales son periódicas, con un periodo común \mathcal{T}_0 . Para que sea periódica con periodo \mathcal{T}_0

$$e^{j\omega T_0}=1,$$

lo cual implica que ωT_0 sea un múltiplo de 2π

$$\omega T_0 = 2\pi k$$

$$k = 0, \pm 1, \pm 2, ...$$

Son conjuntos de exponenciales periódicas , las cuales son periódicas, con un periodo común T_0 . Para que sea periódica con periodo T_0

$$e^{j\omega T_0}=1$$
,

lo cual implica que ωT_0 sea un múltiplo de 2π

$$\omega T_0 = 2\pi k$$

$$k = 0, \pm 1, \pm 2, ...$$

Por lo tanto

$$\omega = \frac{2\pi}{T_0}k$$

$$\varphi_k(t)=e^{jk\omega_0t} \quad k=0,\pm 1,\pm 2, \cdots$$

Para k=0, $\varphi_k(t)$ es una constante, mientras que para cualquier otro valor de k, $\varphi_k(t)$ es periodica´ con frecuencia fundamental $|k|\omega_0$ y periodo fundamental

$$\frac{2\pi}{|k|\omega_0} = \frac{T_0}{|k|}$$

En una exponencial compleja Ce^{at} donde C se expresa en forma polar y a en forma rectangular

$$C = |C|e^{j\vartheta}$$

У

$$a = r + j\omega_0$$

En una exponencial compleja Ce^{at} donde C se expresa en forma polar y a en forma rectangular

$$C = |C|e^{j\vartheta}$$

у

$$a = r + j\omega_0$$

Entonces

$$Ce^{at} = |C|e^{i\vartheta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\vartheta)}$$

En una exponencial compleja Ce^{at} donde C se expresa en forma polar y a en forma rectangular

$$C = |C|e^{j\vartheta}$$

у

$$a = r + j\omega_0$$

Entonces

$$Ce^{at} = |C|e^{j\vartheta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\vartheta)}$$

Usando la relación de Euler

$$Ce^{at} = |C|e^{rt}\cos(\omega_0t + \theta) + j|C|e^{rt}\sin(\omega_0t + \theta)$$

Figura: Senñales sinusoidal creciente y decreciente $x(t) = Ce^{rt}\cos(\omega_0 t + \theta)$

En tiempo discreto la señal o secuencia exponencial compleja está definida por

$$x[n] = Ca^n$$
,

donde Cy a son, en general, números complejos.

Figura: Ingresos del mercado online de viajes

En tiempo discreto la señal o secuencia exponencial compleja está definida por

$$x[n] = Ca^n$$
,

donde Cy *a* son, en general, números complejos.

Se puede escribir como

$$x[n] = Ce^{\beta n}$$

donde

$$a = e^{\beta}$$

Figura: Ingresos del mercado online de viajes

Señales exponenciales reales

Figura: Señal exponencial real $x[n] = Ca^n$ (a)a > 1; (b)0 < a < 1

Señales exponenciales reales

Figura: Señal exponencial real $x[n] = Ca^n$ (a)a < -1; (b)-1 < a < 0

Si β es puramente imaginaria

$$x[n]=e^{\beta\,n}=e^{j\,\omega_0n}$$

Figura: Señales sinusoidales discretas. (a) $\cos(2\pi n/12)$; (b) $\cos(8\pi n/31)$; (c) $\cos(n/6)$

Si β es puramente imaginaria

$$x[n] = e^{\beta n} = e^{j\omega_0 n}$$

Esta señal
 está relacionada en
 forma muy estrecha
 con una señal
 sinusoidal

$$x[n] = A\cos(\omega_0 n + \varphi)$$

Figura: Señales sinusoidales discretas. (a) $\cos(2\pi n/12)$; (b) $\cos(8\pi n/31)$; (c) $\cos(n/6)$

Como antes, la relación de Euler nos permite relacionar las exponenciales complejas y sinusoidales

$$e^{j\omega_0 n} = \cos(\omega_0 n) + j \operatorname{sen}(\omega_0 n)$$

Figura: Señales sinusoidales discretas. (a) $\cos(2\pi n/12)$; (b) $\cos(8\pi n/31)$; (c) $\cos(n/6)$

Como antes, la relación de Euler nos permite relacionar las exponenciales complejas y sinusoidales

$$e^{j\omega_0 n} = \cos(\omega_0 n) + j \operatorname{sen}(\omega_0 n)$$

$$A\cos(\omega_0 n + \varphi) = \frac{A}{2} e^{j\varphi} e^{j\omega_0 n} + \frac{A}{2} e^{-j\varphi} e^{-j\omega_0 n}$$

Figura: Señales sinusoidales discretas. (a) $\cos(2\pi n/12)$; (b) $\cos(8\pi n/31)$; (c) $\cos(n/6)$

Si escribimos Cy a en forma polar, a saber

$$C = |C|e^{j\vartheta}$$

Figura: (a)Señales sinusoidales crecientes discretas; (b) sinusoidal decreciente discreta.

Si escribimos Cy a en forma polar, a saber

$$C = |C|e^{j\vartheta}$$

V

$$a = |a|e^{j\omega_0}$$

Figura: (a)Señales sinusoidales crecientes discretas; (b) sinusoidal decreciente discreta.

Si escribimos Cy a en forma polar, a saber

$$C = |C|e^{j\vartheta}$$

y

$$a=|a|{\rm e}^{j\omega_0}$$

entonces

$$Ca^n = |C||a|^n \cos(\omega_0 n + \theta)$$

 $+j|C||a|^n\operatorname{sen}(\omega_0 n + \theta)$

Figura: (a)Señales sinusoidales crecientes discretas; (b) sinusoidal decreciente discreta.

Propiedad 1

Considere la exponencial compleja discreta con frecuencia ω_0 + 2π

$$e^{j(\omega_0+2\pi)n}=e^{j2\pi n}e^{j\omega_0n}=e^{j\omega_0n}$$

Propiedad 1

Considere la exponencial compleja discreta con frecuencia ω_0 + 2π

$$e^{j(\omega_0+2\pi)n}=e^{j2\pi n}e^{j\omega_0n}=e^{j\omega_0n}$$

La exponencial con frecuencia $\omega_0+2\pi$ es la misma que aquella con frecuencia ω_0 .

Propiedad 1

Considere la exponencial compleja discreta con frecuencia ω_0 + 2π

$$e^{j(\omega_0+2\pi)n}=e^{j2\pi n}e^{j\omega_0n}=e^{j\omega_0n}$$

La exponencial con frecuencia ω_0 + 2π es la misma que aquella con frecuencia ω_0 .

Para $\omega_0 = \pi$ o cualquier otro multiplo impar de π

$$e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

De manera que la señal oscila rápidamente, cambiado el signo en cada punto de tiempo.

Propiedad 2

Para que la señal $e^{j\omega_0 n}$ sea periódica con periodo N>0, debemos tener

$$e^{j\omega_0(n+N)} = e^{j\omega_0n}$$

Propiedad 2

Para que la señal $e^{j\omega_0 n}$ sea periódica con periodo N>0, debemos tener

$$e^{j\omega_0(n+N)} = e^{j\omega_0n}$$

o, de manera equivalente

$$e^{j\omega_0N}=1$$

Propiedad 2

Para que la señal $e^{j\omega_0 n}$ sea periódica con periodo N>0, debemos tener

$$e^{j\omega_0(n+N)} = e^{j\omega_0n}$$

o, de manera equivalente

$$e^{j\omega_0N}=1$$

Para que se cumpla $\omega_0 N$ debe ser un múltiplo de 2π . Debe haber un entero m tal que

$$\omega_0 N = 2\pi m$$

Propiedad 2

Para que la señ al $e^{j\omega_0 n}$ sea periódica con periodo N>0, debemos tener

$$e^{j\omega_0(n+N)} = e^{j\omega_0n}$$

o, de manera equivalente

$$e^{j\omega_0N}=1$$

Para que se cumpla $\omega_0 N$ debe ser un múltiplo de 2π . Debe haber un entero m tal que

$$\omega_0 N = 2\pi m$$

o equivalente

$$\frac{\omega_0}{2\pi} = \frac{m}{\Lambda}$$

Secuencia de sinusoidales discretas para diferentes frecuencias

Figura: Secuencia de sinusoidales discretas para diferentes frecuencias

Secuencia de sinusoidales discretas para diferentes frecuencias

Figura: Secuencia de sinusoidales discretas para diferentes frecuencias

Continuas $e^{j\omega_0 t}$

Señales para distintos valores de ω_0 .

Discretas e^{jω₀n}

Señales idénticas para valores de ω_0 separadas por múltiplo de 2π .

Continuas $e^{j\omega_0 t}$

Señales para distintos valores de ω_0 .

Periódica para cualquier elección de ω_0 .

Discretas e^{jω₀n}

Señales idénticas para valores de ω_0 separadas por múltiplo de 2π .

Periódica sólo si $\omega_0 = 2\pi m/N$ para algunos enteros N > 0 y m.

Continuas $e^{j\omega_0 t}$

Señales para distintos valores de ω_0 .

Periódica para cualquier elección de ω_0 .

Frecuencia fundamental ω .

Discretas e^{jω₀n}

Señales idénticas para valores de ω_0 separadas por múltiplo de 2π .

Periódica sólo si $\omega_0 = 2\pi m/N$ para algunos enteros N > 0 y m.

Frecuencia fundamental ω_0/m (se supone que m y N no tienen ningún factor en común).

Continuas $e^{j\omega_0 t}$

Señales para distintos valores de ω_0 .

Periódica para cualquier elección de ω_0 .

Frecuencia fundamental ω .

Periodo fundamental $\omega_0 = 0$:indefinido $\omega_0 \neq 0$: $\frac{2\pi}{3}$

Discretas *e*^{jω₀n}

Señales idénticas para valores de ω_0 separadas por múltiplo de 2π .

Periódica sólo si $\omega_0 = 2\pi m/N$ para algunos enteros N > 0 y m.

Frecuencia fundamental ω_0/m (se supone que m y N no tienen ningún factor en común).

Periodo fundamental

$$\omega_0 = 0$$
:indefinido

$$\omega_0 \neq 0: m \frac{2\pi}{\omega_0}$$

Smart grid: possible future HOME PRESENT EVENING NIGHT

Figura: Sistema de transmisión eléctrica. http://ses.jrc.ec.europa.eu//

Figura: Sistema de comunicaciones. Fuente: www.aceitesa.com

Figura: Refinación de petróleo. Fuente:www.acuna-sa.cl

Figura: Diagrama circular económico. Fuente:e-ducativa.catedu.es

Figura: Cuerpo humano. cuerpohumano23.blogspot.com

Considere un circuito RC. Si consideramos a $v_s(t)$ como la señal de entrada y a $v_c(t)$ como señal de salida. La caída de voltaje a través del resistor

$$i(t) = \frac{v_{\rm S}(t) - v_{\rm C}(t)}{R}$$

Figura: Circuito eléctrico

Considere un circuito RC. Si consideramos a $v_s(t)$ como la señal de entrada y a $v_c(t)$ como señal de salida. La caída de voltaje a través del resistor

$$i(t) = \frac{v_{\rm S}(t) - v_{\rm C}(t)}{R}$$

La relación básica para un condensador, relacionando i(t) con la razón del cambio del voltaje

$$i(t) = C \frac{dv_c(t)}{dt}$$

Figura: Circuito eléctrico

$$i(t) = \frac{v_{s}(t) - v_{c}(t)}{R}$$

La relación básica para un condensador, relacionando i(t) con la razón del cambio del voltaje

$$i(t) = C \frac{dv_c(t)}{dt}$$

Igualando se obtiene una relación

entrada-salida

$$\frac{dV_c(t)}{dt} + \frac{1}{RC}V_c(t) = \frac{1}{RC}V_s(t)$$

Figura: Circuito eléctrico

Propiedades básicas de los sistemas

- Sistemas con y sin memoria
- Invertibilidad y sistemas inversos
- Causalidad
- Estabilidad
- Invariancia en el tiempo
- Linealidad

Sistemas con y sin memoria

Definicion

Se dice que un sistema es sin memoria si su salida para cada valor de la variable independiente en un tiempo dado depende solamente de la entrada en el mismo tiempo.

```
y[n] = (2x[n] - x^{2}[n])^{2}

y[n] = x[n-1]

y[n] = x[n+1]
```

Sistemas con y sin memoria

Definicion

Se dice que un sistema es *sin memoria* si su salida para cada valor de la variable independiente en un tiempo dado depende solamente de la entrada en el mismo tiempo.

```
y[n] = (2x[n] - x^2[n])^2 sin memoria

y[n] = x[n-1] con memoria

y[n] = x[n+1] con memoria
```

Invertibilidad y sistemas inversos

Definicion

Se dice que un sistema es invertible si distintas entradas producen distintas salidas.

Figura: Sistema general invertible

Causalidad

Definicion

Un sistema es **CAUSAL** (no-anticipativo o físico) si la salida y(t) en un valor arbitrario de tiempo $t=t_0$ depende solo de la entrada x(t) para $t \le t_0$, es decir depende solo de los valores **presentes y/o pasados** de la entrada; no depende de valores futuros

$$x(t+1)$$
$$x(t)\cos(t+1)$$

No es posible obtener una salida antes que se aplique la entrada.

y(t) = x(t-1)

Para observar mejor el sistema del ejemplo, se inicia con un desplazamiento negativo. Si **t** es en segundos, la salida depende de los valores de **x** hace un segundo atrás (t-1)

Considere los eventos de interés mundial que se transmiten con un retraso de segundos para corregir «fallos» o por seguridad, se puede aún editar lo que los espectadores en televisión pueden observar, en tiempo «casi real»

Por ejemplo:

 La cadena de televisión NBC transmitirá la ceremonia de apertura de los Juegos Olímpicos con una hora de retraso
 eso permitirá a los productores «curar» la cobertura para proporcionar un contexto adecuado.»

En el caso contrario, los sistemas **NO CAUSALES** muestran una salida anticipada a la señal de entrada. ¿es posible? ¿cómo?

Desplazamiento en tiempo, adelanto

$$v(t)=x(t+1)$$

si t es en minutos o años, la salida depende de los valores que x(t) **tendría** un minuto o año después o (t+1).

Si **t** es en días, la situación se vuelve complicada de realizar, es como decir: para determinar el valor de la variable y(t) HOY, necesitamos conocer el valor de x(**t**+1) que es MAÑANA.

Los sistemas **no-casuales** por tener variable independiente referenciada a **tiempo futuro**, **no se pueden implementar en tiempo real**. Sin embargo si los sistemas **no causales** se realizan con variables diferentes al tiempo, por ejemplo «espacio» se podrían implementar.

Sistema con amplitud variable en tiempo

Considere el sistema dado por:

En este sistema, la salida en cualquier tiempo t es igual a la entrada en el mismo tiempo t multiplicada por un número que varia en el tiempo. Usando q(t) =cos(t+1) que es una función variante en el tiempo, el sistema puede escribirse como y(t)=x(t)q(t)

Se observa que solo el valor actual de la entrada x(t) influye en el valor de salida de y(t). Se concluye que el **sistema es causal** y también sin memoria.

Adelanto e Inversión en tiempo y(t) = x(-(t+2))

Suponga que $x(t) = cos(t) \mu(t)$ para hacer notar el inicio de la señal de entrada

Desplazamiento e inversión en tiempo y(t) = x(t)+x(5-t)

Suponga que $x(t) = cos(t) \mu(t)$ para hacer notar el inicio de la señal de entrada

Descripción a ser aplicada a TeneT:

https://www.youtube.com/watch? v=QxhDXmb2O3k&embeds euri=h ttp%3A%2F%2Fblog.espol.edu.ec% 2F&feature=emb_imp_woyt

Estabilidad

Definicion

Un sistema estable es aquel en el que entradas pequeñas conducen a respuestas que no divergen.

Figura: Péndulo simple

Invariancia en el tiempo

Definicion

Un sistema es invariante en el tiempo si el comportamiento y características del mismo están fijos en el tiempo.

Figura: Es invariante si R y C son constantes en el tiempo

Linealidad

Definicion

Un sistema lineal, en tiempo continuo o en tiempo discreto, es aquel que posee la importante propiedad de la superposición. Sea $y_1(t)$ la respuesta del sistema continuo a una entrada $x_1(t)$, y sea $y_2(t)$ la salida correspondiente a la entrada $x_2(t)$. Entonces es lineal si:

La respuesta a $x_1(t) + x_2(t)$ es $y_1(t) + y_2(t)$.

La respuesta a $ax_1(t)$ es $ay_1(t)$, donde a es una constante compleja cualquiera.

Resumen de sesión

- Señales exponenciales y sinusoidales
- Sistemas continuos y discretos
- Propiedades básicas de los sistemas

Siguiente sesión

- sistemas LTI discretos: La suma de convolución
- Sistemas LTI continuos: La integral de convolución
- Tarea: realizar la lectura de las secciones
 - 2.1
 - 2.2

del libro Señales y Sistemas, Alan V. Oppenheim, Segunda Edición.