

Human Digital Content Interaction for Immersive Home Entertainment

- Project Overview

Young J. Kim
Ewha Womans University

Human-Digital Content Interaction for Immersive Home Entertainment

Ewha W. Univ. Hand Animation and Force Feedback

- Interference-free Hand M odeling
- Grasp Planning and Synth esis
- Haptic Rendering

Korea Univ.

Interaction Techniques using Wearable Devices

- Pinch-based Interaction
- Vibro-tactile Pseudo-haptic Feed back
- Full-body Interaction using Wear able Sensors

Human - Digital Content Interactions for Immersive 4D Home Entertainment

Augmented Hand Inter

- Augmenting immersive movie scene with user's body and environment
- Physical simulation-based natural hand gesture interaction in immersive movie

Victoria Univ.

Perception-based Rend ering

- Perceptually optimized rendering for reducing simulator discomfort in HMD
- Perceptually optimized rendering for seamless
 Examposites

EWHA OBJECTIVES

1 Interference-free Hand Modeling

2 Grasp Planning and Synthesis

3 Haptic Rendering

CURRENT PROGRESS

1st Year Goal

- Hand deformation modeling
 - □ Real-time physics-based
 - ☐ Complex bone structure, more than 20 DOF
 - Subtle skin deformation
 - □ Real-time FEM

Anatomy of the human hand

1st Year Goal

- Real-time collision resolution algorithms
 - Interference-free hand modeling
 - Overlapping effects
 - ☐ Real-time distance field calculations
 - Penetration depth computation

Distance fields calculation

2nd Year Goal

- Content interactions assistance
 - □ Hand tracking device: Leap Motion
 - ☐ Virtual model in virtual space
 - Dexterous manipulation

Leap Motion visualizer

2nd Year Goal

- Grasp planning and synthesis
 - □ Real-time optimization
 - Semi-automated programming
 - Natural animation

Rigid-model for hand grip planning

3rd Year Goal

- Haptic rendering
 - □ 6-DoF haptic device
 - □ Parallel computation
 - ☐ Force/Torque feedback

Penalty-based algorithm to compute response forces

3rd Year Goal

- Dimension reduction technique
 - Map high DoF hand model to 6-DoF haptic device
 - Complex transformation
 - Model reduction algorithms

NEXT STOP

Korea University