- 1. ∠a ≅ ∠b
- 2. ∠c ≅ ∠d
- 3. $\overline{AB} \cong \overline{BC}$ or $\overline{AB} + \overline{BC} \cong \overline{AC}$
- 4. $\angle ABD \cong \angle DBC$ or $\angle ABD + \angle DBC \cong \angle ABC$
- 5. Answer: $\angle A = 40^{\circ}$

Detailed Solution:

$$\angle B \cong \angle A + \angle C$$
, $\angle C = 50^{\circ}$ and $\angle B = 90^{\circ}$

$$B = A + C$$

$$90 = A + 50$$

$$90 - 50 = A$$

$$A = 40$$

$$\angle A = 40^{\circ}$$

- 6. $\angle C = 80^{\circ}$
- 7. Answer: $\angle C = 110^{\circ}$

Detailed Solution;

$$\angle B \cong \angle A + \angle C$$
, $\angle A = 50^{\circ}$ and $\angle B = 160^{\circ}$

$$B = A + C$$

$$160 = 50 + C$$

$$160 - 50 = C$$

$$C = 110$$

$$\angle C = 110^{\circ}$$

8. $\angle A = 47^{\circ}$

9. Answer: $\angle B = 115^{\circ}$

Detailed Solution:

$$\angle B \cong \angle A + \angle C$$
, $\angle C = 84^{\circ}$ and $\angle A = 31^{\circ}$

$$B = A + C$$

$$B = 31 + 84$$

$$B = 115$$

$$\angle B = 115^{\circ}$$

10.
$$\angle B = 86^{\circ}$$

11. Answer: $\angle B = 81^{\circ}$

Detailed Solution;

$$\angle B \cong \angle A + \angle C$$
, $\angle C = 38^{\circ}$ and $\angle A = 43^{\circ}$

$$B = A + C$$

$$B = 43 + 38$$

$$B = 81$$

$$\angle B = 81^{\circ}$$

12.
$$\angle B = 75^{\circ}$$

13. Answer: $3(\angle A) = 72^{\circ}$

Detailed Solution;

$$\angle A = 24^{\circ}$$
, find $3(\angle A)$

$$3(24) = 72$$

$$3(\angle A) = 72^{\circ}$$

14.
$$2(\angle A) = 122^{\circ}$$

15. Answer: $4(\angle A) = 136^{\circ}$

Detailed Solution:

$$\angle A = 34^{\circ}$$
, find $4(\angle A)$

$$4(34) = 136$$

$$4(\angle A) = 136^{\circ}$$

16.
$$5(\angle A) = 120^{\circ}$$

17. Answer: $\frac{\angle B}{4} = 65^{\circ}$

Detailed Solution:

$$\angle B = 260^{\circ}$$
, find $\frac{\angle B}{4}$

$$\frac{260}{4} = 65$$

$$\frac{\angle B}{4} = 65^{\circ}$$

18.
$$\frac{\angle B}{3} = 61^{\circ}$$

19. Answer: $\frac{\angle B}{2} = 78^{\circ}$

Detailed Solution:

$$\angle B = 156^{\circ}$$
, find $\frac{\angle B}{2}$

$$\frac{156}{2} = 78$$

$$\frac{\angle B}{2} = 78^{\circ}$$

20.
$$\frac{\angle B}{5} = 49^{\circ}$$

- 21. Reflexive Property
- 22. Transitive Property
- 23. Additive Property
- 24. Symmetric Property
- 25. Transitive Property
- 26. Reflexive Property
- 27. Symmetric Property
- 28. Additive Property

29. Answer: $\angle a = 60^{\circ}$, $\angle b = 60^{\circ}$ and $\angle c = 60^{\circ}$

Detailed Solution:

Recall from lesson 1.1 that the angles in a triangle sum to 180°.

Therefore: $\angle a + \angle b + \angle c = 180^{\circ}$

The red arcs indicate that all three angles are congruent.

Since angles a and b are congruent, b can be replaced with a in the above equation. Also since angles a and c are congruent, c can be replaced with a in the above equation.

Therefore:
$$\angle a + \angle a + \angle a = 180^{\circ}$$

 $a + a + a = 180$
 $3a = 180$
 $a = 60$
 $\angle a = 60^{\circ}$

Since angles a, b and c are all congruent, then $\angle b = 60^{\circ}$ and $\angle c = 60^{\circ}$.

Therefore: $\angle a = 60^{\circ}$, $\angle b = 60^{\circ}$ and $\angle c = 60^{\circ}$

Check your answer:

$$\angle a + \angle b + \angle c = 180^{\circ}$$

 $60^{\circ} + 60^{\circ} + 60^{\circ} = 180^{\circ}$

30.
$$\angle a = 45^{\circ}$$
, $\angle b = 45^{\circ}$

31. Answer: $\angle a = 70^{\circ}$ and $\angle b = 70^{\circ}$

Detailed Solution:

The angles in a triangle sum to 180°.

Therefore: $\angle a + \angle b + 40^{\circ} = 180^{\circ}$

The red arcs indicate that angles a and b are congruent.

Since angles a and b are congruent, b can be replaced with a in the above equation.

Therefore:

$$\angle a + \angle a + 40^{\circ} = 180^{\circ}$$

$$a + a + 40 = 180$$

$$2a + 40 = 180$$

$$2a = 140$$

$$a = 70$$

$$∠a = 70^{\circ}$$

Since angles a and b are congruent, then $\angle a = 70^{\circ}$ and $\angle b = 70^{\circ}$.

Check your answer:

$$\angle a + \angle b + 40^{\circ} = 180^{\circ}$$

$$70^{\circ} + 70^{\circ} + 40^{\circ} = 180^{\circ}$$

32.
$$\angle a = 76^{\circ}$$
 and $\angle b = 76^{\circ}$

- 33. Answer: x = 56, $\angle a = 60^{\circ}$, $\angle b = 58^{\circ}$
 - **Detailed Solution:**

The angles in a triangle sum to 180°.

Therefore: $\angle a + \angle b + 62^{\circ} = 180^{\circ}$

Angle a = x + 4 and angle b = x + 2.

Therefore:

$$(x + 4) + (x + 2) + 62^{\circ} = 180^{\circ}$$

$$x + 4 + x + 2 + 62 = 180$$

$$2x + 68 = 180$$

$$2x = 112$$

$$x = 56$$

Find: ∠a

$$\angle a = x + 4$$

$$= 56 + 4$$

$$= 60$$

$$\angle a = 60^{\circ}$$

Find: ∠b

$$\angle b = x + 2$$

$$= 56 + 2$$

$$\angle b = 58^{\circ}$$

Therefore: x = 56, $\angle a = 60^{\circ}$ and $\angle b = 58^{\circ}$

Check your answer:

$$\angle a + \angle b + 62^{\circ} = 180^{\circ}$$

$$60^{\circ} + 58^{\circ} + 62^{\circ} = 180^{\circ}$$

34.
$$x = 73$$
, $\angle a = 78^{\circ}$, $\angle b = 76^{\circ}$

- 35. Answer: x = 7, $\angle 1 = 13^{\circ}$ and $\angle 2 = 13^{\circ}$
 - **Detailed Solution:**

$$\angle 1 = x + 6$$
 and $\angle 2 = 2x - 1$

The red arcs indicate that angles 1 and 2 are congruent.

Therefore:

$$x + 6 = 2x - 1$$

$$6 = x - 1$$

$$7 = x$$

Find: 1

$$\angle 1 = x + 6$$

$$= 7 + 6$$

$$\angle 1 = 13^{\circ}$$

Find: ∠2

$$\angle 2 = 2x - 1$$

$$= 2(7) - 1$$

$$= 14 - 1$$

$$\angle 2 = 13^{\circ}$$

Therefore: x = 7, $\angle 1 = 13^{\circ}$ and $\angle 2 = 13^{\circ}$

36.
$$x = 8$$
, $\angle 1 = 30^{\circ}$ and $\angle 2 = 30^{\circ}$

- 37. Answer: x = 2, $\angle 1 = 20^{\circ}$ and $\angle 2 = 20^{\circ}$
 - **Detailed Solution:**

$$\angle 1 = 8x + 4$$
 and $\angle 2 = 3x + 14$

The red arcs indicate that angles 1 and 2 are congruent.

Therefore:

$$8x + 4 = 3x + 14$$

$$5x + 4 = 14$$

$$5x = 10$$

$$x = 2$$

Find: ∠1

$$\angle 1 = 8x + 4$$

$$= 8(2) + 4$$

$$= 16 + 4$$

$$\angle 1 = 20^{\circ}$$

Find: ∠2

$$\angle 2 = 3x + 14$$

$$=3(2)+14$$

$$= 6 + 14$$

$$\angle 2 = 20^{\circ}$$

Therefore: x = 2, $\angle 1 = 20^{\circ}$ and $\angle 2 = 20^{\circ}$

38.
$$x = 6$$
, $\angle 1 = 22^{\circ}$ and $\angle 2 = 22^{\circ}$

- 39. Answer: x = 3, $\angle 1 = 18^{\circ}$ and $\angle 2 = 18^{\circ}$
 - **Detailed Solution:**

$$\angle 1 = 4x + 6$$
 and $\angle 2 = x + 15$

The red arcs indicate that angles 1 and 2 are congruent.

Therefore:

$$4x + 6 = x + 15$$

$$3x + 6 = 15$$

$$3x = 9$$

$$x = 3$$

Find: ∠1

$$\angle 1 = 4x + 6$$

$$= 4(3) + 6$$

$$= 12 + 6$$

$$\angle 1 = 18^{\circ}$$

Find: ∠2

$$\angle 2 = x + 15$$

$$= 3 + 15$$

$$= 18$$

$$\angle 2 = 18^{\circ}$$

Therefore: x = 3, $\angle 1 = 18^{\circ}$ and $\angle 2 = 18^{\circ}$

40. x = 6, $\angle 1 = 40^{\circ}$ and $\angle 2 = 40^{\circ}$

41. Answer: $\angle 1 = 69^{\circ}$ and $\angle 2 = 23^{\circ}$

Detailed Solution:

If $\angle 1$ is three times $\angle 2$ and $\angle 1 + \angle 2 = 92^{\circ}$, find $\angle 1$ and $\angle 2$.

$$\angle 1 = 3(\angle 2)$$

$$\angle 1 + \angle 2 = 92^{\circ}$$

$$3(\angle 2) + \angle 2 = 92^{\circ}$$

$$4(\angle 2) = 92^{\circ}$$

$$\angle 2 = 23^{\circ}$$

$$\angle 1 = 3(\angle 2)$$

$$=3(23^{\circ})$$

$$= 69^{\circ}$$

$$\angle 1 = 69^{\circ}$$

Therefore: $\angle 1 = 69^{\circ}$ and $\angle 2 = 23^{\circ}$

42.
$$\angle 1 = 48^{\circ}$$
 and $\angle 2 = 96^{\circ}$

43. Answer: $\angle 1 = 134^{\circ}$ and $\angle 2 = 33^{\circ}$

Detailed Solution:

If $\angle 1$ is two more then four times $\angle 2$ and $\angle 1 + \angle 2 = 167^{\circ}$, find $\angle 1$ and $\angle 2$.

$$\angle 1 = 2 + 4(\angle 2)$$

$$\angle 1 + \angle 2 = 167^{\circ}$$

$$2 + 4(\angle 2) + \angle 2 = 167^{\circ}$$

$$2 + 5(\angle 2) = 167^{\circ}$$

$$5(\angle 2) = 165^{\circ}$$

$$\angle 2 = 33^{\circ}$$

$$\angle 1 = 2 + 4(\angle 2)$$

$$=2+4\!\left(33^{o}\right)$$

$$= 2 + 132^{\circ}$$

$$\angle 1 = 134^{\circ}$$

Therefore: $\angle 1 = 134^{\circ}$ and $\angle 2 = 33^{\circ}$

44. $\angle 1 = 17^{\circ}$ and $\angle 2 = 37^{\circ}$

45. Answer: $\angle 1 = 127^{\circ}$ and $\angle 2 = 44^{\circ}$

Detailed Solution:

If $\angle 1$ is five less then three times $\angle 2$ and $\angle 1 + \angle 2 = 171^{\circ}$, find $\angle 1$ and $\angle 2$.

$$\angle 1 = 3(\angle 2) - 5$$

$$\angle 1 + \angle 2 = 171^{\circ}$$

$$3(\angle 2) - 5 + \angle 2 = 171^{\circ}$$

$$4(\angle 2) - 5 = 171^{\circ}$$

$$4(\angle 2) = 176^{\circ}$$

$$\angle 2 = 44^{\circ}$$

$$\angle 1 = 3(\angle 2) - 5$$

$$=3(44^{\circ})-5$$

$$= 132^{\circ} - 5$$

$$\angle 1 = 127^{\circ}$$

Therefore: $\angle 1 = 127^{\circ}$ and $\angle 2 = 44^{\circ}$

46. $\angle 1 = 27^{\circ}$ and $\angle 2 = 131^{\circ}$

47. Answer: $\angle 1 = 88^{\circ}$ and $\angle 2 = 164^{\circ}$

Detailed Solution:

If $\angle 1$ is six more then half $\angle 2$ and $\angle 1 + \angle 2 = 252^{\circ}$, find $\angle 1$ and $\angle 2$.

$$\angle 1 = 6 + \frac{\angle 2}{2}$$

$$6 + \frac{\angle 2}{2} + \angle 2 = 252^{\circ}$$

$$6 + \frac{\angle 2}{2} + \frac{2(\angle 2)}{2} = 252^{\circ}$$

$$6 + \frac{3(\angle 2)}{2} = 252^{\circ}$$

$$\frac{3(\angle 2)}{2} = 246^{\circ}$$

$$\angle 2 = 246^{\circ} \left(\frac{2}{3}\right)$$

$$\angle 2 = 164^{\circ}$$

$$\angle 1 = 6 + \frac{\angle 2}{2}$$
$$= 6 + \frac{164^{\circ}}{2}$$

$$= 6 + \frac{164^{\circ}}{2}$$

$$= 6 + 82^{\circ}$$

 $= 88^{\circ}$

Therefore: $\angle 1 = 88^{\circ}$ and $\angle 2 = 164^{\circ}$

48. $\angle 1 = 184^{\circ}$ and $\angle 2 = 102^{\circ}$