Devoir surveillé n°5

samedi 29 février 2020 Durée : 4 heures

♦ Le candidat peut admettre le résultat d'une question et l'utiliser dans la suite à condition de l'écrire clairement sur sa copie.

♦ Si le candidat repère ce qu'il croit être une erreur d'énoncé, il l'indique sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Exercice 1

Dans le plan complexe, on considère le point A d'affixe 1, le cercle \mathcal{C} de centre O d'affixe 0 et de rayon 1 ainsi que $\overline{\mathcal{D}}$ le disque fermé de centre O et de rayon 1. Soit $B \neq A$ un point du cercle \mathcal{C} dont un système de coordonnées polaires est (r_B, φ) avec $r_B \geq 0$.

- 1. Montrer que $r_B = 1$.
- 2. (a) Montrer que (AB) | $\sin(\varphi)x + (1 \cos(\varphi))y \sin(\varphi) = 0$.
 - (b) Soit M un point du plan dont un système de coordonnées polaires est (r, θ) . Donner une expression de la distance d(M, (AB)) du point M à la droite (AB).
- 3. Soit Δ la médiatrice du segment [AB]. Donner une équation cartésienne de Δ . Dans la suite, on note I le milieu de [AB].
- 4. (a) Soit $M \in \Delta$. Montrer que d(M, (AB)) = IM.
 - (b) Montrer qu'il existe M_0 et M_1 tel que $\Delta \cap \mathcal{C} = \{M_0, M_1\}$ puis calculer M_0M_1 .
 - (c) On suppose dans la suite que $IM_0 \ge IM_1$. Montrer que $d(M_k, (AB)) = 1 + (-1)^k OI$, pour $k \in \{0, 1\}$.
 - (d) Soit $M \in \bar{\mathcal{D}}$. Montrer que $d(M, (AB)) \leq 1 + OI$.
- 5. On suppose que $\varphi \in]0, \pi[$. Déterminer tous les points du disque $\bar{\mathcal{D}}$ dont la distance à la droite (AB) est maximale. Pour simplifier, on admet que les points réalisant cette distance maximale ne sont pas situés sur la bisectrice (demi-droite) de l'angle \widehat{AOB} . On donnera un système de coordonnées polaires de ces points en fonction de φ .

Problème 1

On souhaite étudier quelques propriétés de la matrice $A \in \mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -1 & 3 \\ 0 & -1 & 2 \end{pmatrix}.$$

Soient P et D les matrices

$$P = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Partie I. Puissances de A par diagonalisation

- 1. Montrer que P est inversible et déterminer P^{-1} .
- 2. Montrer que $D = P^{-1}AP$.
- 3. Montrer que $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$.
- 4. Soit $n \in \mathbb{N}^*$. Donner une expression explicite de A^n en fonction de n.

Partie II. Puissances de A par Newton

Dans cette partie, on définit $J = A - I_3$.

- 1. Calculer J, J^2 et J^3 .
- 2. Pour tout entier naturel $n \in \mathbb{N}^*$, en déduire une expression de J^n en fonction de J et J^2 .
- 3. Soit pour tout entier naturel $n \in \mathbb{N}^*$,

$$a_n = \sum_{\substack{k \in [0,n] \\ k \text{ pair}}} \binom{n}{k} \text{ et } b_n = \sum_{\substack{k \in [0,n] \\ k \text{ impair}}} \binom{n}{k}.$$

Montrer que $\forall n \in \mathbb{N}^*, a_n = b_n = 2^{n-1}$. On pourra calculer $a_n + b_n$ et $a_n - b_n$.

4. Soit $n \in \mathbb{N}^*$. En utilisant le binôme de Newton, déterminer une expression explicite de A^n en fonction de n.

1

Partie III. Racines carrées de A

Dans cette partie, on cherche toutes les matrices $X \in \mathcal{M}_3(\mathbb{R})$ telles que

$$X^2 = A$$
.

Dans ce cas, on dit que X est une racine carrée de la matrice A.

1. Soit $X \in \mathcal{M}_3(\mathbb{R})$. En notant $Y = P^{-1}XP$, montrer que

$$X^2 = A \iff Y^2 = D.$$

- 2. Soit $Y \in \mathcal{M}_3(\mathbb{R})$. Dans cette question, on suppose que $Y^2 = D$.
 - (a) Montrer que Y et D commuttent.
 - (b) Montrer que Y est une matrice diagonale.
 - (c) En déduire une expression explicite de Y
- 3. Déterminer toutes les racines carrées de A.

Partie IV. Commutant de A

Dans cette partie, on note $\mathcal{C}(A) = \{M \in \mathcal{M}_3(\mathbb{R}) \ / \ AM = MA\}$ l'ensemble des matrices qui commuttent avec A.

- 1. Montrer que $\forall (X,Y) \in \mathcal{C}(A)^2$, $\forall (\lambda,\mu) \in \mathbb{R}^2$, $\lambda X + \mu Y \in \mathcal{C}(A)$.
- 2. Montrer que pour toute matrice M,

$$M \in \mathcal{C}(A) \iff P^{-1}MP \text{ et } D \text{ commutant.}$$

3. Montrer que pour toute matrice M,

$$M \in \mathcal{C}(A) \iff P^{-1}MP \in \mathcal{D}_3(\mathbb{R}).$$

Problème 2

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(n) = \left\{ \begin{array}{ll} \frac{n}{2} & \text{si } n \text{ est un entier naturel pair} \\ 3n+1 & \text{sinon} \end{array} \right.$$

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de nombres réels telle que $\forall n\in\mathbb{N}, x_{n+1}=f(x_n)$.

Partie I. Généralités

- 1. Montrer que $x_0 \in \mathbb{N}^* \implies (\forall n \in \mathbb{N}, x_n \in \mathbb{N}^*)$.
- 2. Montrer que $\forall x \in \mathbb{N}^*, (x \text{ est impair}) \implies (f(x) \text{ est pair}).$
- 3. Dans cette question, on fixe $y \in \mathbb{N}$.
 - (a) Résoudre l'équation f(x) = y pour $x \in \mathbb{N}^*$.
 - (b) L'application $f: \mathbb{N}^* \to \mathbb{N}^*$ est-elle bijective? injective? surjective?
- 4. On suppose dans cette question que $x_0 = 3$.
 - (a) Déterminer x_{10} .

On dit que la suite (x_n) est p-périodique à partir d'un certain rang $(p \in \mathbb{N}^*)$ lorsque

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge n_0) \implies (x_{n+p} = x_n).$$

- (b) Montrer que (x_n) est 3-périodique à partir d'un certain rang.
- 5. Déterminer trois valeurs de x_0 telles que (x_n) est 3-périodique à partir d'un certain rang.

Partie II. Cycles de Collatz

Dans cette partie, on fait l'hypothèse que $(x_n)_{n\in\mathbb{N}}$ est N-périodique (où $N\in\mathbb{N}^*$) et que $x_0,x_1,\cdots,x_{N-1}\in\mathbb{N}^*$ sont des entiers naturels deux à deux distincts. On définit \mathcal{C} par

$$\mathcal{C} = \{x_n \mid n \in \mathbb{N}\},\$$

l'ensemble des valeurs prises par la suite (x_n) . Soit \mathcal{C}_0 et \mathcal{C}_1 les deux ensembles définis par

$$C_0 = \{c \in \mathcal{C} \mid c \text{ est pair.}\}\ \text{ et } C_1 = \{c \in \mathcal{C} \mid c \text{ est impair.}\}\$$

1. Montrer que $N \geq 3$.

- 2. Dans cette question, on donne des propriétés sur le cardinal des ensembles $\mathcal{C}, \mathcal{C}_0$ et \mathcal{C}_1 .
 - (a) Montrer que \mathcal{C} est un sous-ensemble fini de \mathbb{N} et calculer le cardinal de \mathcal{C} .
 - (b) En déduire que C_0 et C_1 sont finis.

Dans la suite, on note $p = \#C_0$ et $q = \#C_1$. On définit $a_1, \dots a_p$ et $b_1, \dots b_q$ tels que

$$C_0 = \{a_1, \dots, a_p\}$$
 et $C_1 = \{b_1, \dots, b_q\}$.

- (c) Montrer que $f:\mathcal{C}\to\mathcal{C}$ est une bijection.

- (d) Montrer que C = C₀ ⊔ C₁, C = f(C) = f(C₀) ⊔ f(C₁) et que f(C₁) ⊂ C₀.
 (e) En déduire les inégalités q ≤ N/2 ≤ p.
 3. Soit m le plus petit élément de C. Donner une expression de f(m) en fonction de m. En déduire que m ≥ 1.
- 4. Dans cette question, on définit $P = \prod x$ le produit de tous les éléments de C.
 - (a) Montrer que $P = \frac{1}{2^p} \left(\prod_{j=1}^p a_j \right) \times \left(\prod_{j=1}^q (3b_j + 1) \right)$.
 - (b) En déduire l'égalité caractéristique du cycle $\mathcal C$

$$2^p = \prod_{j=1}^q \left(3 + \frac{1}{b_j}\right).$$

(c) Montrer que $3^q \le 2^p \le \left(3 + \frac{1}{m}\right)^q$.

Partie III. Cas où N=5, N=18.

On conserve les notations des parties précédentes. On se place dans les conditions de la partie II et l'on suppose que $m = x_0$.

- 1. Dans cette question uniquement N=5.
 - (a) Exprimer x_1, x_2 et x_4 en fonction de x_0 .
 - (b) En raisonnant par l'absurde montrer que x_2 est impair puis exprimer x_3 en fonction de x_0 .
 - (c) Déterminer la valeur de x_0 . Est-il possible que N=5?
- 2. Dans cette question N = 18.
 - (a) Montrer que m > 1.
 - (b) En déduire l'encadrement

$$3^q < 2^{18-q} < 4^q$$
.

(c) Un calcul donne $3^7 = 2187$ et $2^{11} = 2048$. Est-il possible que N = 18?

FIN.