ThreeAngleOTF

From Micron

Contents

- 1 Data acquisition
- 2 Analysis
 - 2.1 Widefield PSF generation
 - 2.2 Angle extraction
 - 2.3 OTF generation

Data acquisition

Locate a bead with a clean background at least 1/4 of the field clear around it (even away from focus).

Laser: 488nm

Camera: wheel

Filter: GFP (515)

- Set the laser power to 40mW and exposure time to 5ms.
- Set the camera as follows:
 - EM 5MHz
 - EM gain 200
 - clean, no FT (this is the default setting)
- Click Single-site experiment
- Set up as follows:

- Filename
 - suffix should be 'PSF-[excitation]-[emission]'
 - THERE MUST BE NO SPACES IN THE FILENAME ... some bits of softWoRx hate spaces.
- Click 'Update' to set timestamp on file.
- Click 'Start' to run.

Analysis

- Open the VM.
- NEVER CLOSE softWoRx
- NEVER LOG OUT OF THE VM
- TO CLOSE THE VM, CLICK THE TOP RH 'X', CHOOSE 'SAVE MACHINE STATE' THEN CLICK 'OK'

- Closing the VM
- username: mappassword: micron1
- softWoRx will be running.

Close any open image windows. DO NOT CLOSE THE MAIN SOFTWORX WINDOW OR TERMINAL

- In the softWoRx window:
 - File->Open
 - Open the data file you acquired.
- This opens an image window.
- Use the image window left scrollbar to shift focal plane and find your bead.
- Image window: File->Save
- Drag the save window to the right of the image window.
- Save window: Select Region
- Drag a red box around the bead in the image window.
- Save window: Details...
- Region details window: adjust X/Y/Width/Height to centre bead in a 256x256 box

- Region details window: close
- Save file window: add '-CROP' in 'Output' between 'SI' and '.dv'

- Save file window: 'Do it'
- This

- saves the cropped region to a new file,
- closes your original file,
- opens the crop file.
- Close the crop file for now.

Widefield PSF generation

- softWoRx window: Process->Generate Widefield from SI Image
- This opens the 'Generate OMX Widefield Image' window.
- Click 'Input' and choose the crop file.
- This also populates the Output filename field leave it as it is.
- Check the 'Average directions' box.

- Click 'Do it'.
- This closes your cropped image and opens the pseudo-widefield (WF) image.
- Close the pseudo-WF window.

Angle extraction

- This will repeat 3 times once for each angle.
- Open the cropped image.
- Cropped image window: File->Save
- Save window: Details...
- Details window
 - Find 'Z row: Start/End/Inc'
 - make a note of End (should be 1140 if following acquisition instructions)
 - First run through:
 - set End to original value / 3 (380)
 - Second run through:
 - set Start to (original value / 3) + 1 (381)
 - set End to (2 * original value / 3) (760)
 - Third run through:
 - set Start to (2 * original value / 3) + 1 (761)
 - set End to original End value (1140)
- click 'Close'
- Save window:
 - First run through:
 - replace 'CROP' in filename with 'A0'
 - Second run through:
 - replace 'CROP' in filename with 'A1'

- Third run through:
- replace 'CROP' in filename with 'A2'
- click 'Do it'
- This:
 - saves angle-N slices to new file
 - closes the crop file
 - opens the $a\{0,1,2\}$ file
- Reopen the crop file and repeat from **Angle extraction** for a total of 3 times.

OTF generation

- For each angle file:
 - softWoRx window: Process -> Make OMX OTF
 - Opens the OMX Create OTF window.
 - OMX Create OTF window:
 - click PSF-File, choose an angle file
 - This creates a filename in the OTF file box.
 - Change the OTF file name so that it ends with the angle number (A0, A1, A2)
 - Uncheck 'Leave KZ'
 - Uncheck 'Do bead compensation calculation'

Click 'Do it'

Retrieved from 'http://micronwiki.bioch.ox.ac.uk/mediawiki/index.php?title=ThreeAngleOTF&oldid=3275'

- This page was last modified on 27 January 2016, at 15:38.
- This page has been accessed 13 times.