

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE			
CHIMIE	В, С	Durée de l'épreuve :	3h		
CHIIVIL	В, С	Date de l'épreuve :	01.06.2018		

QC = question de cours : 19 pts ANN = applications non numériques : 22 pts AN = applications numériques : 19 pts

Question I: Le cinnamaldéhyde, composant principal de la cannelle (16 points)

Le cinnamaldéhyde est un liquide huileux jaune, à forte odeur de cannelle, qui est utilisé entre autres comme arôme pour les chewing-gums ou encore comme composé odorant dans des parfums orientaux.

Il présente la formule suivante:

- Donner le nom I.U.P.A.C. du cinnamaldéhyde et préciser sa configuration spatiale
 Pour doser le cinnamaldéhyde dans une boisson rafraîchissante, on laisse réagir à chaud 1 mL de cette boisson en présence d'un excès de liqueur de Fehling.
 - a) Expliquer le rôle de chaque constituant de la liqueur de Fehling et écrire les équations des réactions qui se déroulent lors de sa préparation QC: 3
 - b) Dresser le système rédox et écrire l'équation globale qui se déroule lors du dosage QC: 3
 - c) Sachant qu'il se forme 0,325 mg de précipité rouge, calculer la concentration du cinnamaldéhyde dans la boisson rafraîchissante en g/L AN: 2
- 3) Le cinnamaldéhyde, laissé à l'air libre, perd peu à peu son odeur caractéristique.
 - a) Sachant qu'il se transforme en acide cinnamique, écrire l'équation correspondante ANN: 1
 - b) Comment peut-on expliquer que l'acide cinnamique se présente sous forme de cristaux solides tandis que le cinnamaldéhyde est un liquide?

 QC: 3
 - L'acide cinnamique, par réaction avec le méthanol en présence d'acide sulfurique concentré, se transforme en un composé à odeur de fraise. Ecrire l'équation de cette réaction et donner le nom du produit formé

 ANN: 2

Question II: Synthèse de la vanilline (11 points)

La vanilline, arôme principal de la vanille, peut être synthétisée en deux étapes à partir du 4-hydroxybenzaldéhyde.

- 1) Monobromation du 4-hydroxybenzaldéhyde en présence de bromure d'aluminium
 - a) Ecrire la formule stylisée du 4-hydroxybenzaldéhyde ANN: 1
 - b) En tenant compte des effets des deux groupements carbonyle (effet M-) et hydroxyle, trouver et expliquer la position du substituant -Br dans le produit obtenu (sans détail des formules mésomères)
 - mésomères)

 c) Ecrire l'équation chimique de la monobromation du 4-hydroxybenzaldéhyde

 ANN: 2

 ANN: 2
 - d) Dresser le mécanisme réactionnel. De quel type de réaction et de mécanisme s'agit-il? QC: 5
- 2) Substitution de l'atome de brome par le groupement méthoxy (-OCH₃)

Sachant que cette réaction se fait en laissant réagir le composé obtenu lors de la lère étape avec le méthanolate de sodium, écrire l'équation chimique correspondante

ANN: 1

Question III: La dextroamphétamine, médicament contre l'hyperactivité (ADHS) (9 points)

- 1) Sachant que l'amphétamine s'appelle encore 1-phényl-2-aminopropane, écrire sa formule semidéveloppée. À quelle classe appartient cette amine?
- 2) La dextroamphétamine est l'énantiomère S (dextrogyre) de l'amphétamine. Ecrire sa formule spatiale.

 ANN: 1
- 3) Dans le médicament contre l'hyperactivité, l'amphétamine est présente sous forme de sulfate d'amphétamine. Pour obtenir ce sel, on laisse réagir l'amphétamine avec de l'acide sulfurique dilué.
 - a) Justifier le caractère basique de l'amphétamine

QC: 1

- b) Ecrire les équations de protolyse successives (réactions complètes) qui se déroulent entre l'amphétamine et l'acide sulfurique. Utiliser la formule générale pour l'amine.

 ANN: 2
- c) Comparer, sur base de la structure, la force basique de l'amphétamine à celle de la diéthylamine et expliquer.

 ANN: 1 / QC: 2

Question IV: Huiles, acides gras et savons (9 points)

- L'huile de poisson est une huile très riche en triglycérides formés à partir de l'acide eicosapentaénoïque (EPA). Ce composé est un acide gras "oméga 3" qui permet de diminuer les risques cardiaques.
 - Sachant que le % massique en oxygène de l'EPA vaut 10,6 % et qu'il présente 5 liaisons doubles aux positions 5,8,11,14,17 (toutes configuration Z), trouver la formule brute et la formule stylisée de l'EPA.

 AN: 2 / ANN: 2
- 2) L'huile de coco peut servir à la préparation de savons. Elle est essentiellement composée de triglycérides formés à partir de l'acide laurique (acide gras saturé en C₁₂).
 - a) Ecrire l'équation de la saponification de l'huile de coco en présence d'une solution d'hydroxyde de sodium et nommer les produits obtenus.

 ANN: 3
 - b) Montrer que la structure électronique de l'anion carboxylate détermine le pouvoir nettoyant des savons

Question V: Mélanges d'acides, de bases et de sels (15 points)

- Calculer le pH d'une solution résultant d'un mélange de 5 mL d'acide bromhydrique 0,2M et de 6 mL d'une solution de fluorure de potassium 0,5 M.

 AN: 3
- 2) On considère 10 mL d'une solution d'acide lactique 0,1 M
 - a) Calculer la concentration des ions H_3O^+ dans cette solution et le pK_a de l'acide lactique, sachant que le degré de dissociation de l'acide lactique vaut 0,0367 AN: 3
 - b) Quel volume de NaOH 0,2 M faut-il ajouter pour atteindre le point d'équivalence?
 - c) Déterminer le pH au point d'équivalence

AN: 1 AN: 4

3) Quelle est la couleur de la solution obtenue lorsque l'on ajoute 3 gouttes d'acide chlorhydrique fumant (37% masse; 1,19 g/cm³) et 1 goutte de l'indicateur bleu de thymol à 3 L d'eau ? (volume d'une goutte: 0,05 mL) Justifier votre réponse.

nom d'usage	changement de couleur	pKa
bleu de thymol	rouge jaune	1,7

AN: 4

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

	-1,74 -1,00 0,70 0,80 1,14 1,23 1,26 1,80 1,92
ac. trichloroéthanoïque CCl ₃ COOH CCl ₃ COO an. trichloroéthanoate ac. iodique HIO ₃ IO ₃ an. iodate cat. hexaqua thallium III Tl(H ₂ O) ₆ ³⁺ Tl(OH)(H ₂ O) ₅ ²⁺ cat. pentaqua hydroxo thallium III ac. oxalique HOOCCOOH HOOCCOO an. hydrogénooxalate ac. dichloroéthanoïque CHCl ₂ COOH CHCl ₂ COO an. dichloroéthanoate	0,70 0,80 1,14 1,23 1,26 1,80
ac. iodique HIO_3 IO_3 an. iodate cat. hexaqua thallium III $TI(H_2O)_6^{3+}$ $TI(OH)(H_2O)_5^{2+}$ cat. pentaqua hydroxo thallium III ac. oxalique $HOOCCOOH$ $HOOCCOO$ an. hydrogénooxalate ac. dichloroéthanoïque $CHCl_2COOH$ $CHCl_2COO$ an. dichloroéthanoate	0,80 1,14 1,23 1,26 1,80
cat. hexaqua thallium III $TI(H_2O)_6^{3+}$ $TI(OH)(H_2O)_5^{2+}$ cat. pentaqua hydroxo thallium III ac. oxalique $HOOCCOOH$ $HOOCCOO^-$ an. hydrogénooxalate ac. dichloroéthanoïque $CHCl_2COOH$ $CHCl_2COO^-$ an. dichloroéthanoate	1,14 1,23 1,26 1,80
ac. oxalique HOOCCOOH HOOCCOO an. hydrogénooxalate ac. dichloroéthanoïque CHCl ₂ COOH CHCl ₂ COO an. dichloroéthanoate	1,23 1,26 1,80
ac. dichloroéthanoïque CHCl ₂ COOH CHCl ₂ COO an. dichloroéthanoate	1,26 1,80
	1,80
ac. sulfureux H ₂ SO ₃ HSO ₂ an hydrogénosulfite	
Tizos Tizos unit riyurogenosume	1,92
an. hydrogénosulfate HSO4 SO42 an. sulfate	
ac. chloreux HClO ₂ ClO ₂ an. chlorite	2,00
ac. phosphorique H ₃ PO ₄ H ₂ PO ₄ an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque CH ₂ FCOOH CH ₂ FCOO an. fluoroéthanoate	2,57
cat. hexaqua gallium III $Ga(H_2O)_6^{3+}$ $Ga(OH)(H_2O)_5^{2+}$ cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III $Fe(H_2O)_6^{3+}$ $Fe(OH)(H_2O)_5^{2+}$ cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque CH2CICOOH CH2CICOO an. chloroéthanoate	2,86
ac. bromoéthanoïque CH2BrCOOH CH2BrCOO an. bromoéthanoate	2,90
cat. hexaqua vanadium $V(H_2O)_6^{3+}$ $V(OH)(H_2O)_5^{2+}$ cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux HNO ₂ NO ₂ an. nitrite	3,14
ac. iodoéthanoïque CH2ICOOH CH2ICOO an. iodoéthanoate	3,16
ac. fluorhydrique HF F an. fluorure	3,17
ac. acétylsalicylique C ₈ H ₇ O ₂ COOH C ₈ H ₇ O ₂ COO ⁻ an. acétylsalicylate	3,48
ac. cyanique HOCN OCN an. cyanate	3,66
ac. méthanoïque HCOOH HCOO- an. méthanoate	3,75
ac. lactique CH ₃ CHOHCOOH CH ₃ CHOHCOO an. lactate	3,87
ac. ascorbique $C_6H_8O_6$ $C_6H_7O_6$ an. ascorbate	4,17
ac. benzoïque C ₆ H ₅ COOH C ₆ H ₅ COO an. benzoate	4,19
cat. anilinium C ₆ H ₅ NH ₃ + C ₆ H ₅ NH ₂ aniline	4,62

	T			
ac. éthanoïque	CH₃COOH	CH₃COO⁻	an. éthanoate	4,75
ac. propanoïque	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	Al(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH+	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO₃⁻	SO ₃ ² -	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ -	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ +	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ +	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ -	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN-	an. cyanure	9,31
cat. triméthylammonium	(CH₃)₃NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO₃⁻	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH₃NH₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ +	(CH₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ 2-	PO ₄ 3-	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable	bases fortes (plus fortes que OH ⁻) O ²⁻ , NH ₂ ⁻ , anion alcoolate RO ⁻)
-----------------------------	---

Tableau périodique des éléments

	group	es princi	Daux											gi	oupes p	rincipau	X	
-	1.0		_										111	IV	V	VI	VII	VII
1	H																	4,0 H e
	6,9	9,0											10,8	12,0	14,0	16,0	19,0	20,2
2	Li 3	Be											В	C	N	0	F	Ne
_	23,0	24,3	4				around		ed all and				5	6	7	8	9	10
3	Na						groupe	s secor	idaires				27,0	28,1	31,0	32,1	35,5	39,9
3	11	Mg	-	D /	1 1/	1 10	T > #1	1					Al	Si	P	S	CI	A
_	39,1	40.1	45.0	1V 47.9	V	VI	VII	VIII	50.0	T-0.7	1	II	13	14	15	16	17	18
			1		50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	19 K	Ca 20	Sc 21	Ti 22	23	Cr 24	Mn 25	Fe	Co	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As	Se	Br	Kr
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106.4	107,9	112,4	114,8	118.7	121.8	127,6	35 126.9	36 131.3
5	Rb 37	Sr 38	Y 39	Zr	Nb	Mo	Tc	Ru 44	Rh 45	Pd	Ag 47	Cd	In 49	Sn 50	Sb 51	Te 52	I 53	Xe 54
	132,9	137,3	138,9	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204.4	207,2	209.0	(209)	(210)	(222)
6	Cs 55	Ba 56	La 57	Hf 72	Ta	W	Re 75	Os 76	Ir	Pt 78	Au 79	Hg 80	TI	Pb 82	Bi 83	Po 84	At 85	Rn 86
	(223)	226,0	227,0	(261)	(262)	(266)	(264)	(269)	(268)	(281)	(272)	(285)	-	(289)	100	(293)	103	00
7	Fr 87	Ra 88	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg	Cn		FI 114		Lv 116		

lanthanides

actinides

Ce	D-					1 , .	100,0	102,0	104,3	167,3	100,9	173.0	175.0
58 5	Pr 59	Nd	Pm 61	Sm 62	Eu 63	Gd	Tb 65	Dy 66	Ho	Er 68	Tm 69	Yb	Lu 71
232,0 2 Th 90 9	231,0 Pa	238,0 U 92	237,0 Np 93	(244) Pu 94	(243) Am 95	Cm	(247) Bk 97	(251)	(254) Es 99	(257) Fm 100	(258) Md	(259) No	(256) Lr 103