

Powsybl – Metrix

Practicals on a 6-node grid

Linux Foundation Energy

Introduction to PowSyBl

- PowSyBl (Power System Blocks) is an open-source framework written in Java and dedicated to electrical model grid and simulation
 - Created in 2012 (iTesla EU funded collaborative R&D project)
 - Community of 70 users

Many supported formats
CIM-CGMES, UCTE,
Matpower, PSS/E...

Power-flow analysis Simulations, OPFs, security constraints, dynamic simulation

Advanced features
Analysis tools,
vizualisation tools

Grid topology
operations
Extensions,
Extractions, Merges...

Friendly to non-Java developers Python binding, finetuning using Groovy

Introduction to Metrix (1/3)

- ▲ Metrix is an optimization model used to assess preventive and curative remedial actions to respect the network constraints on a high number of variants.
 - | Created in 2010 (fully open-source including the linear optimizer since 2021)
 - I Interfaced with PowSyBl

Introduction to Metrix (2/3)

Files to launch a calculation

File name	Туре	Role
case-file	.iidm (.xml)	Provides topology of the network
metrix-dsl- file	.groovy	Provides the calculation parameters and the definition of the outputs to be written into the result file
mapping-file	.groovy	Maps the timeseries to elements (ex: generation per unit for each timestep)
time-series	.csv	Provides the timeseries
parades	.CSV	Provides the possible topological remedial action (parades in French) in the hand of the network manager
contingencies -file	.groovy	The list of contingencies to be covered during the computations.

△ Example command using **itools**

```
itools metrix --case-file data/reseau_6noeuds.xiidm --mapping-file data/mapping_file_gen_load.groovy \
    --contingencies-file data/contingencies.groovy --metrix-dsl-file data/conf.groovy \
    --remedial-actions-file data/parades.csv --time-series data/ts/time-series-tp.csv \
    --versions 1 --first-variant 0 --variant-count 3 \
    --csv-results-file results/results5E.csv --chunk-size 3 --log-archive logs \
    --network-point-file results/output_network.xiidm
```


Introduction to Metrix (3/3)

■ Three computation modes

DC security analysis (N, N-k)

No optimization, simple power flow

Inputs:

- Network model
- Base case topology
- Contingencies (N-k)
- Load and generation timeseries (Gen. must match demand)

Results:

- Flows at each element (N)
- Max flow violations (N, N-k)

SC-DCOPF* w/o redispatching (N, N-k)

Minimizing: max flow violations

Inputs:

- Same as DC security analysis
- Available topological remedial actions (preventive and curative)

Results:

- Same as DC security analysis
- Selected preventive actions
- Selected curative actions
- Remaining violations (N, N-k)

SC-DCOPF* w/ redispatching (N, N-k)

Minimizing global cost while satisfying max flow constraints

Inputs:

- Same as DC security analysis
- Available preventive and curative actions
 - Topological remedial actions
 - Redispatch costs

Results:

- Same as SC-DCOPF without redispatching
- Chosen preventive and curative actions
- Production and consumption adjustments (redispatch, curtailment, loss of load)

^{*} SC-DCOPF = Security Constrained Direct Current Approximation Optimal Power Flow

6 nodes model

△ Study case building:

- 6 nodes network
- Mapping dispatchable generation initial set points and load timeseries (3 hourly time steps) to each node.

△ Study computation:

- N-K analysis: only one contingency (dashed line)
- Available remedial actions: preventive and curative remedial actions (Topology, Phase-Shifter, Redispatching)

▲ Analysis (KPIs)

- | Flows on the lines
- Localization of their threats (i.e. the contingency leading to the largest flow on a given line)
- Redispatch costs

Network construction and mapping

▲ Mapping csv file in a table:

Generally speaking, any value in the iIDM grid model can be substituted by timeseries.

△ 6 node model example:

- The permanent limit of line S_SO_2 is mapped to "threshold N" column
 - Blue box on the diagram
- The generation of SO_G1 and SO_G2 units are respectively mapped to "SO_G1" and "SO_G2" columns
 - Green boxes on the diagram
- The load SE_L1 is mapped to "SE_L1" columns
 - Red box on the diagram

Ts	Version	SE_L1	SO_G1	SO_G2	threshold_N
T01	1	960	0	960	400
T02	1	960	960	0	400
T03	1	960	960	0	100

■ Illustration of the mapped network

SC Security Analysis

Load Flow calculation

Security Analysis

- l "load-flow" mode
- .csv results file ----

T01 -290.5 -484.2 S_SO_1 400 T02 -290.5 -484.2 S_SO_1 400 T03 -290.5 -484.2 S_SO_1 100	Ts	FLOW_S_SO_2	MAX_THREAT_1_FLOW_S_ SO_1	MAX_THREAT_1_FLOW_ S_SO_2	Threshold_N
	T01	-290.5	-484.2	S_SO_1	400
T03 -290.5 -484.2 S_SO_1 100	T02	-290.5	-484.2	S_SO_1	400
	T03	-290.5	-484.2	S_SO_1	100

Base case (N)

N-1 case (S_SO_1 line contingency)

Calculated max threat is greater than mapped power limit because no optimization is performed in Security Analysis mode

OPF without redispatching (1/3): curative remedial actions

■ Topological curative actions list

l .csv "parade" (remedial actions) file:

NB	4		
S_SO_1	1	SS1_SS1_DJ_OMN	
S_SO_1	1	SO01_SO01_DJ_OMN	
S_SO_1	2	SS1_SS1_DJ_OMN	SO01_SO01_DJ_OMN
S_SO_1	1	S_SO_2	

For the S_SO_1 contingency, 4 possible curative remedial action:

- Open bus coupler at S resulting in splitting S station into two nodes
- Open bus coupler at SO
 resulting in splitting SO station into two nodes
- Open both couplers
- Open S_SO_2 line

OPF without redispatching (2/3)

Example

- Without the redispatching of generation and therefore only using non-costly topological parades allows to alleviate limit violations.
- Example: opening a coupler
 - In contingency S_SO_1, permanent limit is reached, as shown through SC Security Analysis.
 - At T01 and T02, Metrix opens bus coupler at SO (SOO1_SOO1_DJ_OMN) leading to two nodes: SO_1 and SO_2.
 - Therefore, instead of having a straightforward path from SO to S, flow has to do the following path: SO->NO->SO->S leading to increasing impedance. It limits the flow in SO_S_2 and increases flow going through the north (path SO->NO->N)

SOO1_SOO1_DJ_OMN flow (TS1, TS2)

OPF without redispatching (232)

Example

■ Example: opening a line

- If power flow threshold of the line S_SO_2 is mapped with "Threshold_N" (cf <u>Network construction and mapping</u> slide), flow limit is 100MW at T03: SOO1_SOO1_DJ_OMN is thus not enough anymore.
- Topological parade "open S_SO_2 line" is chosen to avoid limit violation.

S_SO_2 flow (TS3)

Optimal Power Flow

Preventive and curative remedial actions

■ If topological actions are disabled and redispatchir allowed

If topological actions are disabled, curative redispatching will occur to lower the flow in S_SO_2. As a result, more expensive units are started (N_G, SE_G1) while already running units are stopped. In the illustration, new generation set points are shown in red.

If topological actions and curative redispatching allowed

- As topological curative actions are less expensive, Metrix prioritizes such solutions.
- In this case, topological solution exists (solution explained in OPF without redispatching).
- Therefore, no costly extra curative redispatching is made in this situation.

Topological actions disabled and curative redispatching allowed

NG

Conclusion

▲ To sum up

- PowSyBl-Metrix is a powerful SC DCOPF used to optimize preventive and curative remedial actions (Redispatching, topology, Phase-Shifter Transformers, HVDC)
- PowSyBl-Metrix is optimized to perform independent computations on each timestep of long timeseries (annual).

■ To get started with PowSybl-Metrix

- You will find all necessary infos for installation and practicals:

