R13

Code No: **RT42021**

Set No. 1

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018 **DIGITAL CONTROL SYSTEMS**

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

1.	a)	PART-A (22 Marks) Define the following fundamental parameters of an sample and hold element	
	,	(i) Acquisition time (ii) Aperture time (iii) Droop rate	[3]
	b)	Obtain the Z-transform of $x(t) = \frac{1}{a}(1 - e^{-at})$, where 'a' is a constant	[4]
	c)	Write about the Jordan canonical form.	[3]
	d)	Determine the stability of the characteristic equations by using Jury's stability tests $5z^2-2z+2=0$.	[4]
	e)	What do understand by primary strip and complimentary strips?	[4]
	f)	Enumerate the design steps for pole placement.	[4]
		PART-B (3x16 = 48 Marks)	
2.	a)	Discuss the mathematical model of sample and hold operations with near	
_	,	sketch?	[8]
	b)	Explain the conditions to be satisfied for reconstruction of sampled signal into	
		continuous signals?	[8]
3.	a)	Given the z transform $X(z) = \frac{(1-e^{-aT})}{(z-1)(z-e^{-aT})}$ Where a is a constant and T is the	
		sampling period, determine the inverse z transform $x(kT)$ by use of the partial fraction expansion method.	[8]
	b)	The input output of a sampled data system is described by the difference	F-3
		equation $y(k + 2) + 3y(k + 1) + 4y(k) = r(k)$. Determine the pulse transfer	
		function, the initial conditions are $y(0) = 0$, $y(1) = 1$.	[8]
4.		Consider the discrete control system represented by the following transfer function $G(z) = \frac{1+0.8z^{-1}}{1-z^{-1}+0.5z^{-2}}$. Obtain the state representation of the system in	
		the observable canonical form. Also find its state transition matrix.	[16]
			[10]
5.	a)	How do you map constant damping loci from s-plane to z-plane?	[6]
	b)	Construct the Jury stability table for the following characteristic equation	
		$P(z) = a_0 z^4 + a_1 z^3 + a_2 z^2 + a_3 z + a_4$ Where $a_0 > 0$. Write the stability conditions.	[10]

R13

Code No: **RT42021**

Set No. 1

6. The closed loop transfer function for the digital control system is given as

$$\frac{C(z)}{R(z)} = \frac{z + 0.5}{3(z^2 - z + 0.5)}$$

Find the steady state errors and error constants due to step input.

[16]

[16]

7. Control a system, defined by $\dot{X} = Ax + Bu$ Y = Cx $Where \ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, It is desired to have eigen values at -3.0 and -5.0 by using a state feedback control u = -KX. Determine the necessary feedback gain matrix k and the control signal u.

2 of 2

[2]

[8]

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

PART-A (22 Marks)

- 1. a) What are the advantages offered by digital control? [4]
 - b) Obtain the Z-transform of $x(t) = t^2 e^{-at}$ where 'a' is constant. [4]
 - c) Write about the observable canonical form. [3]
 - d) Determine the stability of the characteristic equations by using Jury's stability tests $z^3 - 0.2z^2 - 0.25z + 0.05 = 0$. [4]
 - e) Write brief note on design procedure in the w-plane. [5]
 - f) Write the sufficient condition for arbitrary pole placement.

PART-B (3x16 = 48 Marks)

- State and explain the theorem required to satisfy to recover the signal e(t) from the samples $e^*(t)$. [8]
 - b) Explain how the reconstructing the input signal by hold circuits. [8]
- 3.

Obtain the inverse Z-transform of the following in the closed form.
(i)
$$F_1 = \frac{0.368z^2 + 0.478z + 0.154}{z^2(z-1)}$$
 (ii) $F_2 = \frac{2z^3 + z}{(z-1)^2(z-1)}$ (iii) $F_3 = \frac{z+2}{z^2(z-2)}$ [16]

- 4. a) Explain any one method of evaluation of state transition matrix. [6]
 - Investigate the controllability and observability of the following system.

- 5. a) Discuss the stability analysis of discrete control system using modified Routh
 - b) Using Jury's stability criterion, determine the stability of the following discrete time systems (i) $z^3 + 3.3z^2 + 4z + 0.8 = 0$ (ii) $z^3 - 1.1z^2 - 0.1z + 0.2 = 0$ [8]

R13

Code No: **RT42021**

Set No. 2

a) Consider the transfer function system shown in figure 6(a). The sampling 6. period T is assumed to be 0.1 sec. obtain G(w).

[8] Figure 6 (a)

- b) List out the transient response specifications and explain in brief. [8]
- 7.

A discrete time regulator system has the plant equation
$$X(k+1) = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} X(k) + \begin{bmatrix} 4 \\ 3 \end{bmatrix} u(k)$$

$$Y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} X(k) + 7u(k)$$

Design a state feedback control algorithm with u(k)=-KX(k) which places the closed loop characteristic root at $\pm i0.5$. [16]

[8]

[8]

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

- a) Illustrate the step motor control system examples of discrete data control systems.
 b) Find the z-transforms of f(t) = t sin(ωt).
 c) State the state transition matrix.
 d) Determine the stability of the characteristic equations by using Jury's stability tests z⁴-1.7z³+1.04z²-0.268z + 0.024 = 0.
 - e) Write the design procedure of lag compensator in w-plane.f) What do you mean by state feedback controller?[3]

PART-B (3x16 = 48 Marks)

- 2. a) Explain the examples of data control systems of the following
 - (i) Microprocessor controlled system
 - (ii) A digital computer controlled rolling mill regulating system.
 - b) Draw the frequency domain characteristics of zero order hold? Explain with necessary mathematical equations. [8]
- 3. a) Obtain the inverse z-transform of the following

(i)
$$X(z) = \frac{z^{-3}}{(1-z^{-1})(1-0.2z^{-1})}$$
 and (ii) $X(z) = \frac{z^{-1}(1-z^{-2})}{(1+z^{-2})^2}$ [8]

b) Write the difference equation governing the system for $G(s) = \frac{1}{s+1}$ as shown in figure.3 (b)

Figure.3 (b)

4. a) Obtain the Jordan canonical form realization for the following transfer function

$$G(z) = \frac{3z^2 - 4z + 6}{(z - \frac{1}{3})^3}.$$
 [8]

b) Consider the following pulse transfer function

$$\frac{Y(z)}{U(z)} = \frac{z+0.2}{(z+0.8)(z+0.2)}$$
. Check this system is completely state controllable or not? [8]

Set No. 3 **R13** Code No: **RT42021**

5. Consider the sample-data system shown in Figure.5 and assume its sampling period is 0.4 Sec. Find the range of K, so that the closed - loop system for which stable.

Figure.5 [16]

- 6. The open loop transfer function of a unity - feedback digital control system is given as $(z) = \frac{K(z^2 + 0.8z + 0.5)}{(z-1)(z^2 - z + 0.2)}$. Sketch the root loci of the system for $0 < K < \infty$. Indicate all important information on the root loci. [16]
- 7. Consider the system defined by

$$\dot{X} = Ax + Bu$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
by using the state feedback control $u = -Kx$, it is desired to have the closed loop

poles at $s = -2 \pm i 4$ and s = -10. Determine the state feedback gain matrix K. [16]

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2018

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART–A (22 Marks)

- 1. a) Explain the digital controller for a turbine and generator examples of discrete [4] data control systems.
 - Find the z transform of $x(k) = \sum_{h=0}^{k} a^h$ where 'a' is a constant. Write about the controllable canonical form. [4]
 - [3]
 - Enumerate the conclusions from the general mapping between the s and z planes by the z transform.
 - Write the design procedure of lead compensator in w-plane. [4] e)
 - Write the necessary conditions for arbitrary pole placement.

PART-B (3x16 = 48 Marks)

- Draw the magnitude and phase curves of the zero order hold and compare these 2. curves with those of the ideal low pass filter? [8]
 - Explain the problems encountered in reconstructing e(t) from its samples. b) [8]
- By using the inversion integral method, obtain the inverse z transform of

$$X(k) = \frac{1 + 6z^{-2} + z^{-3}}{(1 - z^{-1})(1 - 0.2z^{-1})}$$
 [8]

Write the difference equation governing the system for $G(s) = \frac{1}{s^2}$ as shown in figure.3 (b).

Figure.3(b)

[8]

[4]

[3]

- Write the following state space representation of discrete time systems
 - (i) Observable canonical form
- (ii) Jordan canonical form

[6]

Obtain the state transition matrix of the following discrete time system x(k+1) = Gx(k) + Hu(k)

$$y(k) = Cx(k) \text{ Where } G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}, H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
Then, obtain the state $y(k)$ and output $y(k)$ when the input $y(k)$

Then obtain the state x(k) and output y(k) when the input u(k)=1 for k=0,1,2,....

Code No: **RT42021 R13**

Set No. 4

- 5. a) Determine $F(z)|_{z=e^{sT}}$ in terms of F(s). Using this result, explain the relationship between the z-plane and the s-plane. [8]
 - Use the Routh-Hurwitz criterion to find the stable range of K for the closed loop unity feedback system with loop gain $F(z) = \frac{K(z-1)}{(z-0.1)(z-0.8)}$. [8]
- 6. Consider the digital control system shown in figure 6, plot the root loci as the gain K is varied from 0 to ∞ . Determine the critical value of gain K for stability. The sampling period is 0.1 sec, or T=0.1. What value of gain K will yield a damping ratio ζ of the closed loop poles equal to 0.5? With gain K set to yield ζ =0.5, determine the damped natural frequency ω_d and the number of samples per cycle of damped sinusoidal oscillation.

Figure.6 [16]

[9]

- 7. a) Discuss the necessary conditions for design of state feedback controller through pole placement.
 - b) Prove Ackermann's formula for the determination of the state feedback gain. [7]