14.1 Functions of several variables

認識多變數函數

- 1. functions of two variables
- 2. functions of more than two variables

0.1 Function of two variables

三角形面積 $A=\frac{1}{2}bh$,可以看成面積是底 (b) 與高 (h) 的函數 $A(b,h)=\frac{1}{2}bh$ 。 圓柱體積 $V=\pi r^2h$,可以看成體積是半徑 (r) 與高 (h) 的函數 $V(r,h)=\pi r^2h$ 。

verbally (文字描述)

Define: A function of two variables 雙變數函數 f is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).

$$f:D\subseteq\mathbb{R}^2\to R\subseteq\mathbb{R}$$

where, D is the domain 定義域 and $R = \{f(x,y) : (x,y) \in D\}$ is the range 値域 of f.

通常寫成 z = f(x, y).

 $\frac{x}{y}$ 叫做 $independent\ variables$ 獨立 (自, 因) 變數 (量, 項)。 z 叫做 $dependent\ variable$ 相依 (依, 應) 變數 (量, 項)。

Note: 定義域沒講就是取最大可能。

Example 0.1 Evaluate f(3,2) and find the domain of

(a)
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$
; (b) $f(x, y) = x \ln(y^2 - x)$.

(a)
$$f(3,2) = \frac{\sqrt{3+2+1}}{3-1} = \frac{\sqrt{6}}{2}$$
,
domain $D = \{(x,y) : x+y+1 \ge 0, x \ne 1\}$. (range $R = \mathbb{R}$)
(b) $f(3,2) = 3\ln(2^2 - 3) = 0$,

(b)
$$f(3,2) = 3\ln(2^2 - 3) = 0$$
,

domain
$$D = \{(x, y) : y^2 - x > 0\}$$
. (range $R = \mathbb{R}$)

numerically (數字表格)

Example 0.2 Wind-chill index 風寒指數 W = W(T, v), T: 溫度, v: 速度。

$T \backslash v$	5	10	15	20	25	30	40	50	60	70	80
5	4	3	2	1	1	0	-1	-1	-2	-2	-3
0	-2	-3	-4	-5	-6	-6	-7	-8	- 9	- 9	-10
-5	-7	- 9	-11	-12	-12	-13	-14	-15	-16	-16	-17
-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

Wind-chill index: $T(^{\circ}C)$, v(km/h).

 $W(T, v) \approx 13.12 + 0.6215T - 11.37v^{0.16} + 0.3965Tv^{0.16}$ (2001 US&Canada).

algebraically (明確的公式表示)

Example 0.3 Cobb-Douglas production function

$$P(L,K) = bL^{\alpha}K^{1-\alpha}$$

P: total production 產量;

L: amount of labor 工時;

K: amount of capital invested 資本投資;

domain $\{(L, K) : L \ge 0, K \ge 0\}.$

Example 0.4 Find the domain and range of $g(x,y) = \sqrt{9 - x^2 - y^2}$.

$$\begin{array}{l} Domain \ D = \{(x,y): 9-x^2-y^2 \geq 0\} = \{(x,y): x^2+y^2 \leq 9\}, \\ Range \ R = \{\sqrt{9-x^2-y^2}: x^2+y^2 \leq 9\} = [0,3]. \end{array}$$

Note: 注意, 由 g(x,y) 只知道值域包含在 [0,3] 之中 (Range of $g\subseteq [0,3]$), 但是不保證所有值都有。(要證明)

Proof. $\forall t \in [0,3], g(\sqrt{9-t^2},0) = t \implies \text{Range of } g \text{ is } [0,3].$

3D 2D visually (圖或等高曲線)

Define: The **graph** \sqsubseteq of a function f of two variables with domain D is $\{(x, y, z) : z = f(x, y), (x, y) \in D\}$.

(先找 domain, 再畫 z = f(x, y).)

Example 0.5 Sketch the graph of f(x,y) = 6 - 3x - 2y.

Note: f(x, y) = ax + by + c is called a *linear function* 線性函數 whose graph z = ax + by + c or ax + by - z + c = 0, a plane 平面。

Example 0.6 Sketch the graph of $g(x,y) = \sqrt{9 - x^2 - y^2}$.

(top-half of sphere 上半球 of $x^2 + y^2 + z^2 = 9$.)

Example 0.7 Find the domain and range and sketch the graph of h(x,y) = $4x^2 + y^2.$

x (elliptic paraboloid 橢圓抛物面 $x^2 + \frac{y^2}{4} = \frac{z}{4}$.)
Domain \mathbb{R}^2 , range $[0,\infty)$. $(\forall \ t \geq 0, \ h(0,\sqrt{t}) = t.)$

大多的電腦繪圖都是畫出 x=k 與 y=k 的曲線 (等間隔的 k), 再把格子填色並移除被遮住的部分.

$$P(L,K) = 1.01L^{0.75}K^{0.25}$$

$$f(x,y) = \sin x + \sin y$$

$$f(x,y) = \frac{\sin x \sin y}{xy}$$

$$f(x,y) = \frac{-3y}{x^2 + y^2 + 1}$$

Define: the *level curves* 等高 (曲) 線 (or *contour lines* 輪廓線) of a function of two variables f are the curves with equations f(x,y) = k, where k is a constant in the range of f.

Example 0.8 Sketch the level curve of $g(x,y) = \sqrt{9-x^2-y^2}$ for k = 0, 1, 2, 3.

 $\sqrt{9-x^2-y^2}=k,\ x^2+y^2=(\sqrt{9-k^2})^2,\ circles\ of\ radius\ 3,2\sqrt{2},\sqrt{5},$ and a point (0,0).

Example 0.9 Sketch the level curve of $h(x, y) = 4x^2 + y^2 + 1$.

$$4x^2 + y^2 + 1 = k$$
, $\frac{x^2}{(\sqrt{k-1}/2)^2} + \frac{y^2}{\sqrt{k-1}^2} = 1$.
 $k = 1$ a point $(0,0)$, $k > 1$ ellipses.

Note: 1. 常用於: 高度 (contour line 等高 (輪廓) 線), 氣壓 (isobar 等壓線), 體積 (isochore 等容線), 溫度 (isotherm 等溫線)。

- 2. 不同 k 值的等高線不會相交, 標出 k 值很重要 (是山是谷)。
- 3. 通常會取 k 成等差, 這時候線越密代表變化越快。

0.2 Function of more than two variables

Define: A function of three variables 三變數函數 f is a rule that assigns to each ordered triple (x, y, z) in a domain D a unique real number denoted by f(x, y, z).

$$f:D\subseteq\mathbb{R}^3\to R\subseteq\mathbb{R}$$

Example 0.10 Find the domain of $f(x, y, z) = \ln(z - y) + xy \sin z$.

Domain $D = \{(x, y, z) : z > y\}$, a **half space** consisting of all points lying above the plane z = y.

Note: 三個變數的叫做 *level surfaces* 等高 (曲) 面 f(x, y, z) = k。

Example 0.11 Find the level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$.

$$x^2 + y^2 + z^2 = (\sqrt{k})^2$$
, spheres of center O and radius \sqrt{k} , $k \ge 0$.

Define: A function of n variables f is a rule that assigns to each an n-tuple (x_1, x_2, \ldots, x_n) of real numbers in a domain D a unique real number denoted by $f(x_1, x_2, \ldots, x_n)$.

$$f:D\subseteq\mathbb{R}^n\to R\subseteq\mathbb{R}$$

Let $\mathbf{x} = \langle x_1, x_2, \dots, x_n \rangle \in V_n$ be the position vector of $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. 常常寫 $f(\mathbf{x})$ 代替 $f(x_1, x_2, \dots, x_n)$. Linear function $f(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ 也可以寫成 $f(\mathbf{x}) = \mathbf{c} \bullet \mathbf{x}$, where $\mathbf{c} = \langle c_1, c_2, \dots, c_n \rangle$.

Note: 有三種觀點: 可以看成 $\begin{cases} n \text{ 個變數} & x_1, x_2, \dots x_n \\ n \text{ 維點} & (x_1, x_2, \dots x_n) \end{cases}$ 到實數的函數。 $n \text{ 維向量} & \langle x_1, x_2, \dots x_n \rangle$

Recall:

單變數函數 $f(x): \mathbb{R} \to \mathbb{R}$, 向量函數 $\mathbf{r}(x): \mathbb{R} \to V_n \cong \mathbb{R}^n$, 多變數函數 $f(\mathbf{x}): V_n \cong \mathbb{R}^n \to \mathbb{R}$ 。

