Inteligência Artificial Aula 10 - vídeo 2 - Regressão Linear e Logística

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

28 de outubro de 2020

- Algorítmo mais geral, usado em outros algorítmos de aprendizado de máquina.
- Usado para minimizar vários tipos de função.
- Considere uma função (qualquer) $J(\theta_0, \theta_1)$,onde estamos interessados em $min_{\theta_0, \theta_1}J(\theta_0, \theta_1)$.
 - Inicie com algum θ_0, θ_1 (por exemplo, $\theta_0 = \theta_1 = 0$)
 - Altere os valores de θ_0, θ_1 para reduzir $J(\theta_0, \theta_1)$ até atingir um mínimo.

- Repetir até convergir:
 - $temp_0 := \theta_0 \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$
 - $temp_1 := \theta_1 \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$
 - $\theta_0 := temp_0$
 - $\theta_1 := temp_1$
- α : taxa de aprendizado (learning rate). Determina o tamanho do passo que estamos dando.
- Note que θ_0 e θ_1 são atualizados simultaneamente.

Considere que queremos $min_{\theta_1}J(\theta_1)$.

$$\theta_1 := \theta_1 - \alpha \frac{dJ(\theta_1)}{d\theta_1}$$

- $\frac{dJ(\theta_1)}{d\theta_1} > 0$: $\theta_1 := \theta_1 \alpha(+) = \theta_1 \alpha(\cdots)$
- $\frac{dJ(\theta_1)}{d\theta_1} < 0$: $\theta_1 := \theta_1 \alpha(-) = \theta_1 + \alpha(\cdots)$

Regressão Linear

•
$$Y = \theta_0 + \theta_1 * X$$

•
$$J(\theta_0, \theta_1) = \sum_{i=1}^{n} (y_{i_{real}} - y_{i_{previsto}})^2 = \sum_{i=1}^{n} (y_i - (\theta_1 * x_i + \theta_0))^2$$

Regressão Linear

- $Y = \theta_0 + \theta_1 * X$
- $J(\theta_0, \theta_1) = \sum_{i=1}^{n} (y_{i_{real}} y_{i_{previsto}})^2 = \sum_{i=1}^{n} (y_i (\theta_1 * x_i + \theta_0))^2$
- Erro Quadrático Médio:

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i_{real}} - y_{i_{previsto}})^2 = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (\theta_1 * x_i + \theta_0))^2$$

- Regressão Linear
 - $Y = \theta_0 + \theta_1 * X$

•
$$J(\theta_0, \theta_1) = \sum_{i=1}^{n} (y_{i_{real}} - y_{i_{previsto}})^2 = \sum_{i=1}^{n} (y_i - (\theta_1 * x_i + \theta_0))^2$$

Erro Quadrático Médio:

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} (y_{i_{real}} - y_{i_{previsto}})^2 = \frac{1}{2n} \sum_{i=1}^{n} (y_i - (\theta_1 * x_i + \theta_0))^2$$

Usar Gradiente Descendente para minimizar o Erro Quadrático Médio

- Gradiente Descendente
 - Repetir até convergir:
 - $temp_0 := \theta_0 \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$
 - $temp_1 := \theta_1 \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$
 - $\theta_0 := temp_0$
 - $\theta_1 := temp_1$

•
$$\frac{\partial J(\theta_0,\theta_1)}{\partial \theta_0} = \frac{1}{n} \sum_{i=1}^n (y_i - (\theta_1 * x_i + \theta_0))$$

•
$$\frac{\partial J(\theta_0,\theta_1)}{\partial \theta_1} = \frac{1}{n} \sum_{i=1}^n (y_i - (\theta_1 * x_i + \theta_0)) * x_i$$

- Repetir até convergir:
 - $temp_0 := \theta_0 \alpha * \frac{1}{n} \sum_{i=1}^n (y_i (\theta_1 * x_i + \theta_0))$
 - $temp_1 := \theta_1 \alpha * \frac{1}{n} \sum_{i=1}^n (y_i (\theta_1 * x_i + \theta_0)) * x_i$
 - θ₀ := temp₀
 - $\theta_1 := temp_1$

X	Y
95.724162408	197.179636092
35.7576189281	67.5906695414
28.8168474238	60.8541328206
99.9584813087	196.907396981
66.8097483121	125.311128524
58.2156926413	115.785784589
53.8210763379	110.762772705
81.2960821704	157.98528569
80.6486970595	159.61941373
78.2528136925	149.003865539

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x$$

X_1	X_2	X_3	Y
95.724162408	5	45.08	197.179636092
35.7576189281	3	34.32	67.5906695414
28.8168474238	3	11.12	60.8541328206
99.9584813087	2	32.32	196.907396981
66.8097483121	7	67.76	125.311128524
58.2156926413	1	21.21	115.785784589
53.8210763379	2	44.76	110.762772705
81.2960821704	0	55.32	157.98528569
80.6486970595	6	2.21	159.61941373
78.2528136925	4	66.54	149.003865539

- n: número de features. Na tabela, n = 3.
- $x^{(i)}$: entrada do i-ésimo exemplo de treinamento. Exemplo: $x^{(2)} = [35.7576189281, 3, 34.32]$
- $x_j^{(i)}$: valor da j-ésima feature no i-ésimo exemplo de treinamento. Exemplo: $x_3^{(2)} = 34.32$

X_1	X_2	<i>X</i> ₃	Y
95.724162408	5	45.08	197.179636092
35.7576189281	3	34.32	67.5906695414
28.8168474238	3	11.12	60.8541328206
99.9584813087	2	32.32	196.907396981
66.8097483121	7	67.76	125.311128524
58.2156926413	1	21.21	115.785784589
53.8210763379	2	44.76	110.762772705
81.2960821704	0	55.32	157.98528569
80.6486970595	6	2.21	159.61941373
78.2528136925	4	66.54	149.003865539

Antes:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

E agora?

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

Generalizando

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

Considere
$$x_0 = 1(x_0^{(i)} = 1)$$
. Logo: $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Fazendo:
$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 e $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \cdots \\ \theta_n \end{bmatrix}$

temos:
$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = [\theta_0, \theta_1, \dots, \theta_n] \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \theta^T x$$

Regressão Linear com Múltiplas Variáveis: $h_{\theta}(x) = \theta^T x$

Regressão Linear com Múltiplas Variáveis - Gradiente Descendente

Hipótese

$$h_{\theta}(x) = \theta^{\mathsf{T}} x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- Parâmetros: $\theta: \theta_0, \theta_1, \cdots, \theta_n$
- Função de Custo: $J(\theta) = J(\theta_0, \theta_1, \cdots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2$

- Repetir até convergir:
 - $\theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \cdots, \theta_n) = \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta)$
- Atualização simultânea.

Normalização

- Normalizando as features: diferentes features fiquem na mesma escala.
- x_1 variando de 0-2000 e x_2 variando de 1-5.
- $x_1 = \frac{x_1}{2000}$ e $x_2 = \frac{x_2}{5}$
- Ter uma convergência mais rápida.

- Mean Normalization: $x_i = \frac{x_i \mu_i}{total} (x_1 = \frac{x_1 1000}{2000} \text{ e } x_2 = \frac{x_2 2}{5})$
- Toda feature: aproximadamente $-1 \le x_i \le 1$

- $\theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta)$
- Como saber se o gradiente descendente está funcionando corretamente e como escolher α ?

- $J(\theta)$ deve decrescer a cada iteração.
- Se $J(\theta)$ estiver crescendo, utilize um α menor. Isso pode retardar a convergência. $(\alpha = \cdots, 0.001, \cdots, 0.01, \cdots, 0.1, \cdots)$

Inteligência Artificial Aula 10 - vídeo 2 - Regressão Linear e Logística

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

28 de outubro de 2020