Part 1: Stationary Time Series

Instructor: Ma, Jun

School of Economics, Renmin University of China

March 6, 2018

Time Series and Stochastic Process

Definition 1 (Time Series)

- 1. A collection of data (observations), collected at every $t \in T$, where T is an index set, e.g., T = [a, b] with continuous observations or $T = \{t_1, t_2, ...\}$ with discrete-time observations.
- $2. \ \,$ The mathematical model that describes how the data is generated.

A stochastic process is a collection of random variables (or vectors) defined on acommon probability space (Ω, \mathscr{F}, P) , denoted by $\{X_t : t \in T\}$ with an index set T.

For a single $\omega \in \Omega$, the function $t \mapsto X_t(\omega) : T \to \mathbb{R}$ is called a sample path.

Time Series and Stochastic Process

Remark 2

For $T = \{1,...,n\}$, our data $\{x_1,...,x_n\}$, starting being observed at time 1 and stop at time n.

We use a stochastic process to describe how the data is generated, $\{X_t\}_{t\in\mathbb{Z}}$, i.e., a process that runs from infinite past to infinite future. The process run before we start observing the output (i.e., before t=1) and will continue after we stop oberving at t=n. Our data $\{x_1,...,x_n\}$ is a realization of the process. I.e.,

$$\{x_1,...,x_n\}=\{X_1(\omega),X_2(\omega),\cdots,X_n(\omega)\}.$$

Notice that $\{\cdots, X_{-1}(\omega), X_0(\omega)\}\$ and $\{X_{n+1}(\omega), X_{n+2}(\omega), \cdots\}$ are unobserved.

Examples

- ▶ (I.I.D. Process) If $\{X_t\}_{t\in\mathbb{Z}}$ is a sequence of i.i.d. random variables, we often write $\{X_t\}_{t\in\mathbb{Z}} \sim \text{i.i.d.}$ or $\{X_t\}_{t\in\mathbb{Z}} \sim \text{i.i.d.}$ (μ, σ^2) to indicate $\mathrm{E}\left[X_1\right] = \mu$ and $\mathrm{Var}\left[X_1\right] = \sigma^2$. X_s and X_t (for all $s \neq t$) are independent and also $\mathrm{P}\left[X_t \leq x\right] = \mathrm{P}\left[X_s \leq x\right]$, for all $x \in \mathbb{R}$
- ▶ (Random Walk) $\{Z_t\}_{t\in\mathbb{Z}}$ is a sequence of i.i.d. random variables. Let

$$X_t := \begin{cases} 0 & \text{if } t = 0\\ \sum_{k=1}^t Z_k & \text{if } t \ge 1. \end{cases}$$

The simplest case corresponds to

$$Z_t = \begin{cases} 1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2}. \end{cases}$$

Examples

• (Moving Average) $\{Z_t\}_{t\in\mathbb{Z}}\sim \text{i.i.d. } (\mu,\sigma^2).$

$$X_t \coloneqq a_1 Z_t + a_2 Z_{t-1} + \cdots + a_1 Z_{t-q-1},$$
 for $(a_1,...,a_q) \in \mathbb{R}^q.$

► (AR(1)) $\{Z_t\}_{t\in\mathbb{Z}}$ ~ i.i.d. (μ, σ^2) .

$$X_t \coloneqq \rho X_{t-1} + Z_t, \ \rho \in \mathbb{R}.$$

► (Signal + Noise) $\{Z_t\}_{t\in\mathbb{Z}} \sim \text{i.i.d.} (\mu, \sigma^2)$.

$$X_{t} := \mu(t) + Z_{t},$$

where μ is a deterministic function.

▶ (Brownian Motion) A Brownian motion is a stochastic process with index set T = [0, 1], such that (1). P[X(0) = 0] = 1, (2). The process has independent increments, i.e., if $0 \le t_1 \le t_2 \le \cdots \le t_m$, then $X(t_1) - X(t_0), \cdots, X(t_m) - X(t_{m-1})$ are independent. (3). For $t_2 > t_1 > 0$. $X(t_2) - X(t_1) \sim N(0, t_2 - t_1)$.

Definition 3 (White Noise)

A process $\{Z_t\}_{t\in\mathbb{Z}}$ is called a white noise if: (1).

 $\operatorname{Var}\left[Z_{t}\right]=\sigma^{2}<\infty$ for all $t\in\mathbb{Z}$, (2). $\operatorname{E}\left[Z_{t}\right]=\mu$, for all $t\in\mathbb{Z}$ and

(3). Cov $[Z_t, Z_{t+h}] = 0$, for all $t \in \mathbb{Z}$ and $h \neq 0$. Write

 $\{Z_t\}_{t\in\mathbb{Z}} \sim \mathrm{WN}\left(\mu,\sigma^2\right).$

Let $\{X_t\}_{t \in T}$ be a stochastic process, the finite-dimensional distribution (f.d.d.) for some $t_1 < t_2 < \cdots < t_n$ is the joint distribution of $(X_{t_1}, ..., X_{t_n})$.

A stochastic process $\{X_t\}_{t\in\mathcal{T}}$ is called Gaussian if all of its f.d.d. are multivariate normal.

Definition 4 (Autocovariance Function)

For a stochastic process $\{X_t\}_{t\in\mathcal{T}}$, for which $\mathrm{Var}\left[X_1\right]<\infty$ (if and only if $\mathrm{E}\left[X_1^2\right]<\infty$), for all $t\in\mathcal{T}$, the autocovariance function (ACF) $\gamma\left(\cdot,\cdot\right)$ of $\{X_t\}_{t\in\mathcal{T}}$ is given by

$$\gamma\left(s,t\right) := \operatorname{Cov}\left[X_{s},X_{t}\right] = \operatorname{E}\left[\left(X_{s} - \operatorname{E}\left[X_{s}\right]\right)\left(X_{t} - \operatorname{E}\left[X_{t}\right]\right)\right],\,\left(s,t\right) \in \mathcal{T}^{2}.$$

The stochastic process $\{X_t\}_{t\in\mathcal{T}}$ is said to be weakly stationary if (1). $\mathrm{E}\left[X_t^2\right]<\infty$ for all $t\in\mathbb{Z}$, (2). $\mathrm{E}\left[X_t\right]=\mu$, all $t\in\mathbb{Z}$ (i.e., the expectation is constant) and (3). $\gamma\left(s,t\right)=\gamma\left(s+r,t+r\right)$ for all $r\in\mathbb{Z}$ and $(s,t)\in\mathbb{Z}^2$.

Remark 5

Apparently, $\gamma\left(s,t\right)=\gamma\left(t,s\right)$ for all $\left(s,t\right)\in\mathbb{Z}^{2}.$ When the process is weakly stationary,

$$\gamma(0, s - t) = \gamma(t, s) = \gamma(t - s, 0) = \gamma(0, t - s).$$

And the ACF of a weakly stationary process can be expressed as a one-parameter function $\gamma(h)$ with h = |s - t|.

Definition 6 (Autocorrelation Function)

The autocorrelation function is

$$\rho(h) := \frac{\gamma(h)}{\gamma(0)} = \frac{\operatorname{Cov}\left[X_{t+h}, X_{t}\right]}{\operatorname{Var}\left[X_{t}\right]} = \operatorname{Corr}\left[X_{t+h}, X_{t}\right].$$

Remark 7 Notice that $\rho(h) = 0$ does not generally imply that X_t is independent of X_{t+h} .

Definition 8 (Strict Stationarity)

A stochastic process $\left\{X_{t}
ight\}_{t\in\mathbb{Z}}$ is strictly stationary if

$$F_{X_{t_1}\cdots X_{t_n}}=F_{X_{t_1+h}\cdots X_{t_n+h}}, ext{ for all } h\in\mathbb{Z}, \ (t_1,...,t_n)\in\mathbb{Z}^n ext{ and } n\in\mathbb{N}$$
 or

$$P[X_{t_1} \le x_1, \cdots, X_{t_n} \le x_n] = P[X_{t_1+h} \le x_1, \cdots, X_{t_n+h} \le x_n]$$

for all
$$(x_{t_1},...,x_{t_n}) \in \mathbb{R}^n$$
, $h \in \mathbb{Z}$, $(t_1,...,t_n) \in \mathbb{Z}^n$ and $n \in \mathbb{N}$.

Remark 9

Example 1: An i.i.d. process is strictly stationary. Example 2: For a random variable X, define $X_t = X$, for all $t \in \mathbb{Z}$. $\{X_t\}_{t \in \mathbb{Z}}$ is strictly stationary.

Remark 10 (Relation between weak and strict stationarity) If $\{X_t\}_{t\in\mathbb{Z}}$ is strictly stationary, the distribution F_{X_t} of X_t is the same for all $t\in\mathbb{Z}$. Any pair (X_t,X_{t+h}) has a joint distribution $F_{X_t,X_{t+h}}$ that does not depend on t. Hence, $\mathrm{E}\left[X_t\right]=\int_{\mathbb{R}}x\mathrm{d}F_{X_t}(x)$ is independent of t and

$$\operatorname{Cov}\left[X_{t}, X_{t+h}\right] = \int_{\mathbb{R}^{2}} (x - \mu) (y - \mu) dF_{X_{t}, X_{t+h}} (x, y),$$

where $\mu := E[X_t]$ is independent of t. So strict stationarity \Longrightarrow weak stationarity.

One important case when weak stationarity implies strict stationarity is that when the process is Gaussian. When $\{X_t\}_{t\in\mathbb{Z}}$ is a Gaussian process, weak stationarity of $\{X_t\}_{t\in\mathbb{Z}}$ implies its strict stationarity since $(X_{t_1},...,X_{t_n})$ and $(X_{t_1+h},...,X_{t_n+h})$ have the same mean and covariance matrix and hence the same distribution for all $h\in\mathbb{Z}$, $(t_1,...,t_n)\in\mathbb{Z}^n$ and $n\in\mathbb{N}$.

Properties of ACF

Proposition 11

If $\gamma(\cdot)$ is the ACF of a stationary stochastic process $\{X_t\}_{t\in\mathbb{Z}}$, then (1). $\gamma(0)\geq 0$

- (2). $|\gamma(h)| \leq \gamma(0)$ for all $h \in \mathbb{Z}$
- (3). $\gamma(h) = \gamma(-h)$ for all $h \in \mathbb{Z}$.

Definition 12 (Positive Semi-Definite)

A real-valued function $\kappa: \mathbb{Z} \to \mathbb{R}$ positive semi-definite (p.s.d.) if

$$\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}\kappa\left(t_{i}-t_{j}\right)\geq0$$

for all $(a_1,...,a_n) \in \mathbb{R}^n$, $(t_1,...,t_n) \in \mathbb{Z}^n$ and $n \in \mathbb{N}$. I.e., fixing any $(t_1,...,t_n) \in \mathbb{Z}^n$, the $n \times n$ matrix where the (i,j)-th element is $\kappa(t_i-t_j)$ is p.s.d.

Properties of ACF

Theorem 13 (Characterization of ACF)

A function $\gamma: \mathbb{Z} \to \mathbb{R}$ is the ACF of a stationary stochastic process $\{X_t\}_{t\in\mathbb{Z}}$ if and only if γ is an even function, i.e., $\gamma(h) = \gamma(-h)$ for all $h \in \mathbb{Z}$ and p.s.d.

Sample Estimates

Assume that we have a stationary time series process $\{X_t\}_{t\in\mathbb{Z}}$ with $\mathrm{E}\left[X_t\right]=\mu$ for all $t\in\mathbb{Z}$ and ACF $\gamma\left(h\right),\ h\in\mathbb{Z}$. In practice, μ and γ must be estimated from the data.

Definition 14 (Sample mean and Sample ACF) Sample Mean:

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

and sample ACF:

$$\widehat{\gamma}(h) := \frac{1}{n} \sum_{k=1}^{n-|h|} \left(X_{k+|h|} - \overline{X}_n \right) \left(X_k - \overline{X}_n \right).$$

Asymptotic Normality

Definition 15

Let $Y_1, Y_2, ...$ be a sequence of random variables. They are said to be asymptotically normal denoted as $Y_n \stackrel{a}{\sim} \mathbb{N}\left(\mu_n, \sigma_n^2\right)$ if $\mu_n = \mathbb{E}\left[Y_n\right], \ \sigma_n^2 = \mathrm{Var}\left[Y_n\right]$ for each $n \in \mathbb{N}$,

$$\lim_{n\to\infty} P\left[\frac{Y_n - \mu_n}{\sigma_n} \le x\right] = \Phi(x), \text{ for all } x \in \mathbb{R},$$

where Φ is the N (0,1) CDF. In other words, $\frac{Y_n - \mu_n}{\sigma_n} \rightarrow_d N(0,1)$.

Remark 16

For sample, let $X_1, X_2, ...$ be i.i.d., $\mu = \mathrm{E}\left[X_1\right]$ and $\sigma^2 = \mathrm{Var}\left[X_1\right]$. Let

$$Y_n := \frac{1}{n} \sum_{i=1}^n X_i, \ \mu_n := \mathrm{E}\left[Y_n\right] = \mu, \ \sigma_n := \mathrm{Var}\left[Y_n\right] = \frac{1}{n} \sigma^2.$$

Then, by standard CLT, $\frac{Y_n - \mu_n}{\sigma_n} = \frac{\sqrt{n}(Y_n - \mu)}{\sigma} \rightarrow_d \mathrm{N}\left(0, 1\right)$.

- ► We can show that the sample mean and sample ACF are consistent and asymptotically normal. For now, we show only consistency of the sample mean.
- ▶ An estimator $\widehat{\theta}_n$ of some parameter θ , n is the sample size.

$$\begin{aligned} & \text{consistency} \begin{cases} \left(\text{weak} \right) & \forall \epsilon > 0, \ \lim_{n \to \infty} P\left[\left| \widehat{\theta}_n - \theta \right| > \epsilon \right] = 0 \\ \left(\text{strong} \right) & P\left(\left\{ \omega \in \Omega : \lim_{n \to \infty} \widehat{\theta}_n \left(\omega \right) = \theta \right\} \right) = 1 \\ \left(\text{MSE} \right) & \lim_{n \to \infty} E\left[\left(\widehat{\theta}_n - \theta \right)^2 \right] = 0. \end{cases} \end{aligned}$$

▶ MSE consistency \Longrightarrow Weak consistency:

$$P\left[\left|\left|\widehat{\theta}_n - \theta\right| > \epsilon\right|\right] \leq \frac{E\left[\left(\widehat{\theta}_n - \theta\right)^2\right]}{\epsilon^2} \stackrel{n \to \infty}{\longrightarrow} 0, \text{ for all } \epsilon > 0.$$

► Strong consistency ⇒ Weak consistency: the proof is difficult.

Proposition 17 Suppose that $\{X_t\}_{t\in\mathbb{Z}}$ is weakly stationary and let γ be its ACF and let μ be its mean. (1). If $\gamma(h) \stackrel{h\to\infty}{\longrightarrow} 0$, then $\mathbb{E}\left[\left(\overline{X}_n - \mu\right)^2\right] \stackrel{n\to\infty}{\longrightarrow} 0$. (2). If $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$,

$$\boldsymbol{n}\cdot\operatorname{Var}\left[\overline{\boldsymbol{X}}_{\boldsymbol{n}}\right]=\boldsymbol{n}\cdot\operatorname{E}\left[\left(\overline{\boldsymbol{X}}_{\boldsymbol{n}}-\boldsymbol{\mu}\right)^{2}\right]\overset{\boldsymbol{n}\to\infty}{\longrightarrow}~\sum~\gamma\left(\boldsymbol{h}\right).$$

Remark 18

In some books, the condition $\gamma(h) \stackrel{h \to \infty}{\longrightarrow} 0$ is referred to as "weak dependence". We say that a stationary process is weakly dependent if it satisfies this. Note that stationarity alone does not guarantee consistency of \overline{X}_n . Here is a counter-example. Let $\{X_t\}_{t \in \mathbb{Z}}$ be i.i.d. mean 0. Let Z be independent of $\{X_t\}_{t \in \mathbb{Z}}$, mean 0. Define $Y_t := X_t + Z$. The process $\{Y_t\}_{t \in \mathbb{Z}}$ is strictly stationary, mean 0. But

$$\frac{1}{n}\sum_{t=1}^{n}Y_{t} = \frac{1}{n}\sum_{t=1}^{n}X_{t} + Z \rightarrow_{p}Z \neq E[Y_{1}],$$

since $\{Y_t\}_{t\in\mathbb{Z}}$ has too much temporal dependence:

$$\operatorname{Cov}\left[Y_{t}, Y_{t+h}\right] = \operatorname{Var}\left[Z\right] \neq 0, \, \forall h.$$

Remark 19

Suppose that $\{X_t\}_{t\in\mathbb{Z}}$ is weakly stationary and let γ be its ACF and let μ be its mean. If we can show \overline{X}_n is asymptotically normal, i.e.,

$$\frac{\overline{X}_n - \mu}{\sqrt{\operatorname{Var}\left[\overline{X}_n\right]}} \to_d \operatorname{N}(0,1).$$

If
$$\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$$
, since $n \cdot \operatorname{Var}\left[\overline{X}_{n}\right] \stackrel{n \to \infty}{\longrightarrow} \sum_{h=-\infty}^{\infty} \gamma(h) =: \tau^{2}$, we have

$$\sqrt{n}\left(\overline{X}_{n} - \mu\right) = \sqrt{n \cdot \operatorname{Var}\left[\overline{X}_{n}\right]} \cdot \frac{\overline{X}_{n} - \mu}{\sqrt{\operatorname{Var}\left[\overline{X}_{n}\right]}}$$

and thus $\sqrt{n}\left(\overline{X}_n - \mu\right) \to_d \mathrm{N}\left(0, \tau^2\right)$. We will provide a CLT for some special weakly stationary process later.