Electromagnetic Field Theory (BAB17EMP) Formulas

September 24, 2024

Contents

1	1 Physical Constan	Physical Constants]									
2	2 Electromagnetic	Quai	ntit	ies	an	d	Ur	nit	S															2
3	3 Fundamental Re	lation	ıs																					2
	3.1 General Elect	romag	neti	sm																				2
	3.2 Electrostatics																							4
	3.3 Magnetostation	es																						4
	3.4 Electrodynam	nics .																						F

1 Physical Constants

Constant	Symbol	Value	Units
Speed of light in vacuum	c	2.998×10^{8}	$\mathrm{m}\mathrm{s}^{-1}$
Planck's constant	h	6.626×10^{-34}	$\mathrm{J}\mathrm{s}$
Gravitational constant	G	6.674×10^{-11}	${ m m}^3{ m kg}^{-1}{ m s}^{-2}$
electronvolt	${ m eV}$	1.602×10^{-19}	J
Elementary charge	e	1.602×10^{-19}	С
Electron mass	m_e	9.109×10^{-31}	kg
Proton mass	m_p	1.673×10^{-27}	kg
Permittivity of free space	ϵ_0	8.854×10^{-12}	$\mathrm{F}\mathrm{m}^{-1}$
Permeability of free space	μ_0	1.257×10^{-6}	${ m Hm^{-1}}$
Avogadro's number	$N_{ m A}$	6.022×10^{23}	mol^{-1}
Boltzmann constant	$k_{ m B}$	1.381×10^{-23}	$\mathrm{J}\mathrm{K}^{-1}$

Table 1: Physical constants.

Quantity	Symbol	Unit	SI Units
Charge	q	Coulomb (C)	As
Potential	φ, V	Volt (V)	${ m kg}{ m m}^2{ m A}^{-1}{ m s}^{-3}$
Electric field intensity	$oldsymbol{E}$	Volt per meter (V/m)	${\rm kg}{\rm m}{\rm A}^{-1}{\rm s}^{-3}$
Electric displacement field	D	Coulomb per meter (C/m)	$\mathrm{m}^{-1}\mathrm{A}\mathrm{s}$
Capacitance	C	Farad (F)	${ m A}^2{ m s}^4{ m kg}^{-1}{ m m}^{-2}$
Electric flux	Φ_E	Volt meter (V/m)	${\rm kg}{\rm m}{\rm A}^{-1}{\rm s}^{-3}$
Polarization	\boldsymbol{P}	Coulomb per square meter (C/m^2)	$\mathrm{m}^{-2}\mathrm{A}\mathrm{s}$
Current	I	Ampere (A)	A
Resistance	R	Ohm (Ω)	${ m kg}{ m m}^2{ m A}^{-2}{ m s}^{-3}$
Magnetic field intensity	H	Ampere per meter (A/m)	${ m Am^{-1}}$
Magnetic field	\boldsymbol{B}	Tesla (T)	$kg A^{-1} s^{-2}$
Inductance	L	Henry (H)	${ m kg}{ m m}^2{ m A}^{-2}{ m s}^{-2}$
Magnetic flux	Φ_B	Weber (Wb)	${\rm kg}{\rm m}^2{\rm A}^{-1}{\rm s}^{-2}$
Magnetization	$oldsymbol{M}$	Ampere per meter (A/m)	${ m Am^{-1}}$
Electromagnetic force	\boldsymbol{F}	Netwon (N)	$\mathrm{kg}\mathrm{m}\mathrm{s}^{-2}$
Energy	U	Joule (J)	$ m kgm^2s^{-2}$
Energy density	u	Joule per cubic meter (J/m^3)	${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$
Power	P	Watt (W)	$\mathrm{kg}\mathrm{m}^2\mathrm{s}^{-3}$

Table 2: Several fundamental electromagnetic quantities and their units.

2 Electromagnetic Quantities and Units

3 **Fundamental Relations**

General Electromagnetism 3.1

Linear, surface, volumetric charge density

$$Q = \int_{\ell'} \tau(\mathbf{r}') \, \mathrm{d}\ell' \tag{1}$$

$$Q = \iint_{\mathbb{R}} \sigma(\mathbf{r}') \, \mathrm{d}S' \tag{2}$$

$$Q = \int_{\ell'} \tau(\mathbf{r}') \, d\ell'$$

$$Q = \iint_{S'} \sigma(\mathbf{r}') \, dS'$$

$$Q = \iiint_{V'} \rho(\mathbf{r}') \, dV'$$
(3)

Electric current

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} \tag{4}$$

$$I = \iint_{S} \boldsymbol{J} \cdot d\boldsymbol{S} \tag{5}$$

Maxwell's equations

differential form

$$\nabla \cdot \mathbf{D} = \rho_{\text{free}} \tag{6}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{7}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{8}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{9}$$

integral form

$$\iint_{\partial V} \mathbf{D} \cdot d\mathbf{S} = Q_{\text{free}} \tag{10}$$

$$\iint_{\partial V} \boldsymbol{B} \cdot d\boldsymbol{S} = 0 \tag{11}$$

$$\oint_{\partial S} \mathbf{H} \cdot d\mathbf{l} = I + \iint_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$
(12)

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{l} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$
(13)

Material relations

$$\boldsymbol{D} = \epsilon_0 \boldsymbol{E} + \boldsymbol{P} \tag{14}$$

$$\boldsymbol{B} = \mu_0 \left(\boldsymbol{H} + \boldsymbol{M} \right) \tag{15}$$

linear media

$$D = \epsilon_0 E + \epsilon_0 \chi_e E = \varepsilon E \tag{16}$$

$$\boldsymbol{B} = \mu_0 \left(\boldsymbol{H} + \chi_m \boldsymbol{M} \right) = \mu \boldsymbol{H} \tag{17}$$

free space

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0} \tag{18}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{19}$$

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \frac{1}{c_0^2} \frac{\partial \boldsymbol{E}}{\partial t}$$
 (20)

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{21}$$

3.2 Electrostatics

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\epsilon_0} \tag{22}$$

$$\nabla \times \mathbf{E} = 0 \tag{23}$$

$$\boldsymbol{E} = -\nabla \varphi \tag{24}$$

$$\varphi\left(\boldsymbol{r}\right) = \int \boldsymbol{E} \cdot d\boldsymbol{l} + K \tag{25}$$

$$\nabla \cdot \nabla \varphi = \nabla^2 \varphi = -\frac{\rho}{\epsilon_0} \tag{26}$$

$$\nabla \times \nabla \varphi = 0 \tag{27}$$

$$\boldsymbol{F} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2 (\boldsymbol{r}_1 - \boldsymbol{r}_2)}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^3}$$
(28)

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n} \frac{Q_n \left(\boldsymbol{r} - \boldsymbol{r}'_n\right)}{\left|\boldsymbol{r} - \boldsymbol{r}'_n\right|^3}$$
(29)

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{V'} \frac{\rho(\boldsymbol{r}')(\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \,dV'$$
(30)

3.3 Magnetostatics

$$\nabla \cdot \boldsymbol{B} = 0 \tag{31}$$

$$\nabla \times \boldsymbol{B} = \mu \boldsymbol{J} \tag{32}$$

Biot-Savart law

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\boldsymbol{J}(\boldsymbol{r}') \times (\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3} d^3(\boldsymbol{r})$$
(33)

magnetic vector potential

$$\boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{34}$$

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\boldsymbol{J}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} d^{3}(\boldsymbol{r})$$
(35)

3.4 Electrodynamics

Lorentz Force Law

$$F = Q(E + v \times B) \tag{36}$$

Continuity equation

$$\nabla \cdot \boldsymbol{J} + \frac{\partial \rho}{\partial t} = 0 \tag{37}$$

Poynting vector

$$S = E \times H \tag{38}$$

Poynting theorem

$$\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{S} = -\mathbf{J} \cdot \mathbf{E} \tag{39}$$

Wave equation

$$\nabla^2 \mathbf{E} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \tag{40}$$

$$\nabla^2 \mathbf{B} - \mu_0 \epsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0 \tag{41}$$

Boundary conditions

$$\hat{\boldsymbol{n}} \times (\boldsymbol{E}_2 - \boldsymbol{E}_1) = 0 \tag{42}$$

$$\hat{\boldsymbol{n}} \cdot (\boldsymbol{D}_2 - \boldsymbol{D}_1) = \sigma \tag{43}$$

$$\hat{\boldsymbol{n}} \times (\boldsymbol{H}_2 - \boldsymbol{H}_1) = \boldsymbol{K} \tag{44}$$

$$\hat{\boldsymbol{n}} \cdot (\boldsymbol{B}_2 - \boldsymbol{B}_1) = 0 \tag{45}$$