MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

25. september 2024

1/109

Vsebina

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- 🜀 Pravokotni koordinatni sistem, linearna funkcija

Section 1

Osnove logike in teorije množice

3/109

- Osnove logike in teorije množice
 - Osnove logike
 - Osnove teorije množic
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- Pravokotni koordinatni sistem, linearna funkcija

Jan Kastelic (GAA)

Matematična izjava

Jan Kastelic (GAA)

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

5 / 109

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

5 / 109

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

5 / 109

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

• izjava je **resnična/pravilna**, oznaka R/P/1/T;

5 / 109

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

5 / 109

Matematična izjava

Matematična izjava je vsaka smiselna poved, za katero lahko določimo resničnost oziroma pravilnost.

Logična vrednost matematične izjave

Matematična izjava lahko zavzame dve logični vrednosti:

- izjava je **resnična/pravilna**, oznaka R/P/1/T;
- izjava je **neresnična/nepravilna**, oznaka $N/0/\bot$.

Izjave označujemo z velikimi tiskanimi črkami (A, B, C ...).

5 / 109

6/109

Osnove logike

Ali so naslednje povedi izjave?

Ali so naslednje povedi izjave?

- Danes sije sonce.
- Koliko je ura?
- Piramida je geometrijski lik.
- Daj mi jabolko.
- Število 12 deli število 3.
- Število 3 deli število 10.
- Ali si pisal matematični test odlično?
- Matematični test si pisal odlično.
- Ali je 10 *dl* isto kot 1 *l*?
- Število 41 je praštevilo.

25. september 2024

Spodnjim izjavam določite logične vrednosti.

7/109

Spodnjim izjavam določite logične vrednosti.

- A: Najvišja gora v Evropi je Mont Blanc.
- B: Število je deljivo s 4 natanko takrat, ko je vsota števk deljiva s 4.
- C: Ostanek pri deljenju s 4 je lahko 1, 2 ali 3.
- D: Mesec februar ima 28 dni.
- E: Vsa praštevila so liha števila.
- F: Število 1 je naravno število.
- G: Praštevil je neskončno mnogo.

7 / 109

Osnove logike

Jan Kastelic (GAA)

Izjave delimo med:

Izjave delimo med:

• elementarne/enostavne izjave – ne moremo jih razstaviti na bolj enostavne;

8 / 109

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

8 / 109

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- sestavljene izjave sestavljene iz elementarnih izjav, ki jih med seboj povezujejo logične operacije (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

8 / 109

Izjave delimo med:

- elementarne/enostavne izjave ne moremo jih razstaviti na bolj enostavne;
- **sestavljene izjave** sestavljene iz elementarnih izjav, ki jih med seboj povezujejo **logične operacije** (imenovane tudi izjavne povezave oziroma logična vezja).

Vrednost sestavljene izjave izračunamo glede na vrednosti elementarnih izjav in izjavnih povezav med njimi.

Pravilnost sestavljenih izjav nazorno prikazujejo **resničnostne/pravilnostne tabele**.

8 / 109

Jan Kastelic (GAA) MATEMATIKA

Negacija

9/109

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

9/109

Negacija

Negacija izjave A je izjava, ki **trdi nasprotno** kot izjava A.

¬**A Ni res**, da velja izjava A.

9/109

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija

Negacija izjave A je izjava, ki trdi nasprotno kot izjava A.

¬**A Ni res**, da velja izjava A.

Če je izjava A pravilna, je $\neg A$ nepravilna in obratno: če je $\neg A$ pravilna, je A nepravilna.

Negacija negacije izjave je potrditev izjave. $\neg(\neg A) = A$

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

10 / 109

Izjavam določite logično vrednost, potem jih zanikajte in določite logično vrednost negacij.

- $A: 5 \cdot 8 = 30$
- B: Število 3 je praštevilo.
- C: Največje dvomestno število je 99.
- D: Število 62 je večratnik števila 4.
- E: Praštevil je neskončno mnogo.
- *F*: 7 ≤ 5
- G: Naša pisava je cirilica.

10 / 109

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

11 / 109

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z **in (hkrati)**.

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

11 / 109

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z **in (hkrati)**.

 $A \wedge B$ Velja izjava A in (hkrati) izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

11 / 109

Konjunkcija izjav A in B nastane tako, da povežemo izjavi A in B z in (hkrati).

A ∧ **B** Velja izjava A **in (hkrati)** izjava B.

Če sta izjavi A in B pravilni, je pravilna tudi njuna konjunkcija, če je pa ena od izjav nepravilna, je nepravilna tudi njuna konjunkcija.

Α	В	$A \wedge B$
P	Р	Р
Р	Ν	Ν
N	Р	Ν
N	Ν	Ν

11 / 109

Osnove logike

Naloga

Določite logično vrednost konjunkcijam.

12 / 109

Naloga

Določite logično vrednost konjunkcijam.

- Število 28 je večratnik števila 3 in večkratnik števila 8.
- Število 7 je praštevilo in je deljivo s številom 1.
- Vsakemu celemu številu lahko pripišemo nasprotno število in obratno število.
- Ostanki pri deljenju števila s 3 so lahko 0, 1 ali 2, pri deljenju s 5 pa 0, 1, 2, 3 ali 4.
- Število je deljivo s 3, če je vsota števk deljiva s 3, in je deljivo z 9, če je vsota števk deljiva z 9.

12 / 109

Osnove logike

Disjunkcija izjav A in B nastane s povezavo **ali**.

13 / 109

Disjunkcija izjav A in B nastane s povezavo ali.

A ∨ **B** Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

13 / 109

Disjunkcija izjav A in B nastane s povezavo **ali**.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A ali izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

13 / 109

Disjunkcija izjav A in B nastane s povezavo ali.

 $\mathbf{A} \vee \mathbf{B}$ Velja izjava A **ali** izjava B (lahko tudi obe hkrati).

Disjunkcija je nepravilna, če sta nepravilni obe izjavi, ki jo sestavljata, v preostalih treh primerih je pravilna.

A	В	$A \lor B$
P	Р	Р
Р	Ν	Р
Ν	Р	Р
Ν	Ν	Ν

25. september 2024

Osnove logike

14 / 109

Naloga

Določite logično vrednost disjunkcijam.

14 / 109

Naloga

Določite logično vrednost disjunkcijam.

- Število 24 je večratnik števila 3 ali 8.
- Število 35 ni večratnik števila 7 ali 6.
- Število 5 deli število 16 ali 18.
- Ploščina kvadrata s stranico a je a^2 ali obseg kvadrata je 4a.
- Ni res, da je vsota notranjih kotov trikotnika 160°, ali ni res, da Pitagorov izrek velja v poljubnem trikotniku.

14 / 109

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

• negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$

15 / 109

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Asociativnost konjunkcije in disjunkcije

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \lor B) \lor C = A \lor (B \lor C)$$

Distributivnost zakona za konjunkcijo in disjunkcijo

$$(A \lor B) \land C = (A \land C) \lor (B \land C)$$

$$(A \wedge B) \vee C = (A \vee C) \wedge (B \vee C)$$

De Morganova zakona

- negacija konjunkcije je disjunkcija negacij: $\neg(A \land B) = \neg A \lor \neg B$
- negacija disjunkcije je konjunkcija negacij: $\neg(A \lor B) = \neg A \land \neg B$

←□ → ←□ → ← 亘 → ← 亘 → りへ()

Osnove logike

16 / 109

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

16 / 109

Naloga

Katere od spodnjih izjav so pravilne in katere nepravilne?

- $(3 \cdot 4 = 12) \wedge (12 : 4 = 3)$
- $(a^3 \cdot a^5 = a^{15}) \vee (a^3 \cdot a^5 = a^8)$
- (3|30) ∧ (3|26)
- (3|30) ∨ (3|26)
- $(2^3 = 9) \lor (3^2 = 9)$
- $((-2)^2 = 4) \land \neg (-2^2 = 4)$

16 / 109

Osnove logike

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

17 / 109

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $A \Rightarrow B$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 17 / 109

Implikacija izjavA in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $A \Rightarrow B$ Če velja izjava A, potem velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

17 / 109

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 17 / 109

Implikacija

Implikacija izjav A in B je sestavljena izjava, ki jo lahko beremo na različne načine.

 $\mathbf{A} \Rightarrow \mathbf{B}$ Če velja izjava A, **potem** velja izjava B. / Iz A sledi B.

Izjava A je **pogoj** ali **privzetek**, izjava B pa (logična) posledica izjave A.

Implikacija je nepravilna, ko je izjava A pravilna, izjava B pa nepravilna, v preostalih treh primerih je pravilna.

Α	В	$A \Rightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Р
Ν	Ν	Р

17 / 109

Naloga

Določite, ali so izjave pravilne.

Naloga

Določite, ali so izjave pravilne.

- Če je število deljivo s 100, je deljivo tudi s 4.
- Če je štirikotnik pravokotnik, se diagonali razpolavljata.
- Če je štirikotnik kvadrat, se diagonali sekata pod pravim kotom.
- Če sta števili 2 in 3 lihi števili, potem je produk teh dveh števil sodo število.
- Če je število 18 deljivo z 9, potem je deljivo s 3.
- Če je 7 večkratnik števila 7, potem 7 deli število 43.
- Če je število deljivo s 4, potem je deljivo z 2.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 18 / 109

Osnove logike

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

19 / 109

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 19 / 109

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 19 / 109

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	Ν
Ν	Р	Ν
Ν	Ν	Р

Ekvivalenca izjavi A in B poveže s če in samo če oziroma natanko tedaj, ko.

A ⇔ B Izjava A velja, če in samo če velja izjava B./Izjava A velja natanko tedaj, ko velja izjava B.

Ekvivalenca dveh izjav je pravilna, če imata obe izjavi enako vrednost (ali sta obe pravilni ali obe nepravilni), in nepravilna, če imata izjavi različno vrednost.

Ekvivalentni/enakovredni izjavi pomenita eno in isto, lahko ju nadomestimo drugo z drugo.

Α	В	$A \Leftrightarrow B$
Р	Р	Р
Р	Ν	N
Ν	Р	N
Ν	Ν	Р

Osnove logike

Naloga

Določite, ali so naslednje izjave pravilne.

Naloga

Določite, ali so naslednje izjave pravilne.

- Število je deljivo z 12 natanko takrat, ko je deljivo s 3 in 4 hkrati.
- Število je deljivo s 24 natanko takrat, ko je deljivo s 4 in 6 hkrati.
- Število je praštevilo natanko takrat, ko ima natanko dva delitelja.
- Štirikotnik je kvadrat natanko tedaj, ko se diagonali sekata pod pravim kotom.
- Število je sodo natanko tedaj, ko je deljivo z 2.

20 / 109

Osnove logike

25. september 2024

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

negacija,

21 / 109

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,

21 / 109

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Kadar so izjave povezane z več izjavnimi povezavami, pri določanju logične vrednosti upoštevamo oklepaje in naslednji **vrstni red** oziroma **prioriteto izjavnih povezav**:

- negacija,
- konjunkcija,
- disjunkcija,
- implikacija,
- ekvivalenca.

Če moramo zapored izvesti več enakih izjavnih povezav, velja pravilo združevanja od leve proti desni.

25. september 2024

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

Naloga

V sestavljeni izjavi zapišite oklepaje, ki bodo predstavljali vrstni red operacij. Nato tvorite pravilnostno tabelo za sestavljeno izjavo glede na različne logične vrednosti elementarnih izjav.

- $A \lor B \Leftrightarrow \neg A \Rightarrow \neg B$
- $A \lor \neg A \Rightarrow \neg B \land (\neg A \Rightarrow B)$
- $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$
- $A \land \neg B \Leftrightarrow A \Rightarrow B$
- $C \Rightarrow A \lor \neg B \Leftrightarrow \neg A \land C$
- $\neg A \lor \neg B \Leftrightarrow B \land (C \Leftrightarrow \neg A)$

25. september 2024

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 23 / 109

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

23 / 109

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 23 / 109

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

• ∀ (beri '(za) vsak') – izjava velja za vsak element dane množice

23 / 109

Tavtologija ali **logično pravilna izjava** je sestavljena izjava, ki je pri vseh naborih vrednosti elementarnih izjav, iz katerih je sestavjena, pravilna.

Protislovje

Protislovje je sestavljena izjava, ki ni nikoli pravilna.

Kvantifikatorja

- ∀ (beri '(za) vsak') izjava velja za vsak element dane množice
- ullet (beri 'obstaja' ali 'eksistira') izjava je pravilna za vsaj en element dane množice

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 23 / 109

Pomen izjav v matematiki

24 / 109

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

24 / 109

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

24 / 109

Pomen izjav v matematiki

Aksiomi so najpreprostejše izjave, ki so očitno pravilne in zato njihove pravilnosti ni treba dokazovati.

Izreki ali **teoremi** so izjave, ki so pravilne, vendar pa njihova pravilnost ni očitna. Pravilnost izreka (teorema) moramo potrditi z dokazom, ki temelji na aksiomih in na preprostejših že prej dokazanih izrekih.

Definicije so izjave, s katerimi uvajamo nove pojme. Najpreprostejših pojmov v matematiki ne opisujemo z definicijami (to so pojmi kot npr.: število, premica ipd.); vsak nadaljnji pojem pa moramo definirati, zato da se nedvoumno ve, o čem govorimo.

25 / 109

Množica

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

• lahko naštejemo vse njene elemente ali

25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami $(A, B, C \dots \text{ ali } A, B, C \dots)$.

Univerzalna množica

25 / 109

Množica

Množica je skupek elementov, ki imajo neko skupno lastnost.

Množica je določena, če:

- lahko naštejemo vse njene elemente ali
- poznamo pravilo/skupno lastnost, ki pove, kateri elementi so v množici.

Označujemo jih z velikimi črkami (A, B, C... ali A, B, C...).

Univerzalna množica

Univerzalna množica ali **univerzum** (\mathcal{U}) je množica vseh elementov, ki v danem primeru nastopajo oziroma jih opazujemo.

Element množice je objekt v množici.

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Prazna množica

25. september 2024

Element množice je objekt v množici.

Označujemo jih z malimi črkami $(a, b, c \dots)$.

Elemente množice zapisujemo v zavitem oklepaju (npr. $A = \{a, b, c\}$).

Element je lahko vsebovan v množici (npr. $a \in A$) ali pa v množici ni vsebovan (npr. $d \notin A$).

Prazna množica

Prazna množica $(\emptyset, \{\})$ je množica, ki ne vsebuje nobenega elementa.

25. september 2024

Moč množice

Moč množice

Število elementov v množici predstavlja **moč množice**. Oznaka: $\mathbf{m}(\mathcal{A})$ ali $|\mathcal{A}|$.

Množica je lahko:

- končna množica vsebuje končno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \mathbf{n}$;
- neskončna množica vsebuje neskončno mnogo elementov: $\mathbf{m}(\mathcal{A}) = \infty$.

Če ima množica toliko elementov, kot jih ima množica naravnih števil, je ta števno neskončna. Njeno moč pišemo kot: $m(A) = \aleph_0$.

Za množici, ki imata isto moč, rečemo, da sta ekvipolentni oziroma ekvipotentni.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 27 / 109

Podmnožica

Množica $\mathcal B$ je **podmnožica** množice $\mathcal A$, če za vsak element iz $\mathcal B$ velja, da je tudi element množice $\mathcal A$.

$$\mathcal{B} \subseteq \mathcal{A} \Leftrightarrow \forall x \in \mathcal{B} \Rightarrow x \in \mathcal{A}$$

- $\forall A : A \subseteq A$ Vsaka množica je podmnožica same sebe.
- $\forall A : \emptyset \subseteq A$ Prazna množica je podmnožica vsake množice.

Moč podmnožice \mathcal{B} množice \mathcal{A} je manjša ali enaka moči množice \mathcal{A} :

$$\mathcal{B} \subseteq \mathcal{A} \Rightarrow m(\mathcal{B}) \leq m(\mathcal{A})$$

4□ > 4□ > 4 = > 4 = > = 9 q

25. september 2024

Množici \mathcal{A} in \mathcal{B} sta **enaki**, če imata iste elemente; sta druga drugi podmnožici.

$$\mathcal{A} = \mathcal{B} \Leftrightarrow (\mathcal{A} \subseteq \mathcal{B}) \wedge (\mathcal{B} \subseteq \mathcal{A})$$

Podmnožica \mathcal{B} množice \mathcal{A} , ki ni enaka množici \mathcal{A} , je **prava podmnožica** množice \mathcal{A} .

Potenčna množica

Potenčna množica množice \mathcal{A} je množica vseh podmnožic množice \mathcal{A} .

Oznaka: $\mathcal{PA} / \mathcal{P}(\mathcal{A})$.

$$\mathcal{P}\mathcal{A} = \{\mathcal{X}; \mathcal{X} \subseteq \mathcal{A}\}$$

$$m(\mathcal{P}\mathcal{A})=2^{m(\mathcal{A})}$$

Potenčna množica ni nikoli prazna – vsebuje vsaj prazno množico.

Operacije z množicami

Komplement množice

Komplement množice \mathcal{A} (glede na izbrani univerzum \mathcal{U}) je množica vseh elementov, ki so v množici \mathcal{U} in niso v množici \mathcal{A} .

Oznaka: $\mathcal{A}^{\complement}$ / \mathcal{A}' .

$$\mathcal{A}^{\complement} = \{x; x \in \mathcal{U} \land x \notin \mathcal{A}\}$$

$$\left(\mathcal{A}^{\complement}
ight)^{\complement}=\mathcal{A}$$

30 / 109

Unija množic

Unija množic \mathcal{A} in \mathcal{B} je množica vseh elementov, ki pripadajo množici \mathcal{A} ali množici \mathcal{B} . Oznaka: $\mathcal{A} \cup \mathcal{B}$.

$$\mathcal{A} \cup \mathcal{B} = \{x; x \in \mathcal{A} \lor x \in \mathcal{B}\}$$

$$\mathcal{A}\cup\mathcal{A}^\complement=\mathcal{U}$$

31 / 109

Presek množic

Presek množic $\mathcal A$ in $\mathcal B$ je množica vseh elementov, ki hkrati pripadajo množici $\mathcal A$ in množici $\mathcal B$.

Oznaka: $A \cap B$.

$$A \cap B = \{x; x \in A \land x \in B\}$$

$$\mathcal{A}\cap\mathcal{A}^{\complement}=\emptyset$$

Množici, katerih presek je prazna množica, sta **disjunktni** množici.

Section 2

Naravna in cela števila, izrazi, enačbe in neenačbe

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 33 / 109

- 1) Osnove logike in teorije množice
- Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - ullet Reševanje linearnih in razcepnih enačb v množici $\mathbb Z$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 34 / 109

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

25. september 2024

Jan Kastelic (GAA)

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

36 / 109

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

37 / 109

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 38 / 109

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0;
- množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število števila a je -a.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 39 / 109

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo razliko a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

40 / 109

Računski zakoni

Komutativnostni zakon:

$$a+b=b+a$$
 in $a\cdot b=b\cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

41 / 109

25. september 2024

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $\bullet (-a) \cdot (-b) = a \cdot b$

42 / 109

Računanje z naravnimi in celimi števili

44 / 109

Izraz, enačba, neenačba

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 45 / 109

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m = a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 46 / 109

Razčlenjevanje izrazov

47 / 109

Razstavljanje izrazov v množici $\mathbb Z$

48 / 109

Reševanje linearnih in razcepnih enačb v množici Z

49 / 109

Reševanje linearnih neenačb v množici Z

50 / 109

Section 3

Deljivost, izjave, množice

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 51 / 109

- 1 Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- Oeljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice

25. september 2024

Relacija deljivosti

53 / 109

Pravila za deljivost

54 / 109

Praštevila in sestavljena števila

55 / 109

Največji skupni delitelj in najmanjši skupni večkratnik

56 / 109

Osnovni izrek o deljenju

57 / 109

Evklidov algoritem in zveza Dv = ab

58 / 109

Številski sestavi

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 59 / 109

Izjave

MATEMATIKA

Množice

Jan Kastelic (GAA)

Section 4

Racionalna števila

25. september 2024

Jan Kastelic (GAA)

62 / 109

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti

25. september 2024

Številski ulomki

Jan Kastelic (GAA) MATEMATIKA 2

65 / 109

Jan Kastelic (GAA) MATEMATIKA 2

25. september 2024

Jan Kastelic (GAA)

25. september 2024

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

Glede na predznak razdelimo racionalna števila v tri množice:

- ullet množico negativnih racionalnih števil \mathbb{Q}^- ,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

Jan Kastelic (GAA)

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

66 / 109

Jan Kastelic (GAA)

67 / 109

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

67 / 109

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

67 / 109

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

67 / 109

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

67 / 109

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- **3** ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

67 / 109

Jan Kastelic (GAA)

Slika večjega racionalnega števila $\frac{a}{b}$ je na številski premici desno od slike manjšega racionalnega števila $\frac{c}{d}$.

68 / 109

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

68 / 109

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

25. september 2024

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

68 / 109

69 / 109

Monotonost vsote

69 / 109

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

69 / 109

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

69 / 109

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

69 / 109

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

69 / 109

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 69 / 109

Urejenost racionalnih števil

70 / 109

70 / 109

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

70 / 109

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

70 / 109

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

25. september 2024

Urejenost racionalnih števil

71 / 109

71 / 109

Jan Kastelic (GAA) MATEMATIKA

Ureienost racionalnih števil

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

71 / 109

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

71 / 109

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

71 / 109

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

71 / 109

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

71 / 109

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

MATEMATIKA

Algebrski ulomki

Računanje z ulomki

Potence s celimi eksponenti

74 / 109

Pravila za računanje s celimi eksponenti

75 / 109

Premo in obratno sorazmerje

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 76 / 109

Odstotki

25. september 2024

Section 5

Realna števila, statistika

78 / 109

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb

25. september 2024

Realna števila

Jan Kastelic (GAA)

Kvadratni in kubični koren

81 / 109

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\check{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\left(g\right)\ 8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}(\sqrt{2}-1)-(\sqrt{5}+2\sqrt{6})(4-2\sqrt{2})$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$\left(5\sqrt{3} + 2\sqrt{27}\right)\left(\sqrt{75} - 4\sqrt{12} + \sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(u)
$$(\sqrt{17}-3)\sqrt{26+6\sqrt{17}}-\sqrt{2}(\sqrt{2}+\sqrt{6})$$

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b. Števili a in b imenujemo **krajišči intervala**.

83 / 109

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

83 / 109

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

83 / 109

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

83 / 109

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Števili a in b imenujemo krajišči intervala.

Vključenost krajišč

- Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.
- Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b] \neq [b,a]$$

83 / 109

Jan Kastelic (GAA)

Zaprti interval

84 / 109

Zaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

84 / 109

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \le \mathbf{x} \le \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

25. september 2024

Jan Kastelic (GAA)

Zaprti interval

$$[\mathbf{a},\mathbf{b}] = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a}, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

25. september 2024

Polodprti/polzaprti interval

85 / 109

Polodprti/polzaprti interval

$$[\mathbf{a},\mathbf{b})=\{\mathbf{x}\in\mathbb{R};\mathbf{a}\leq\mathbf{x}<\mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

85 / 109

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

85 / 109

86 / 109

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

86 / 109

- ullet $[\mathbf{a},\infty)=\{\mathbf{x}\in\mathbb{R};\mathbf{x}\geq\mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \mathsf{x} > \mathsf{a}\}$

- $\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$
- $\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$
- $\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \leq \mathbf{b} \}$

25. september 2024

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

b

$$\bullet \ (-\infty, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b} \}$$

25. september 2024

$$\bullet [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$ullet$$
 $(-\infty, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b}\}$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}=\mathbb{R}$

25. september 2024

b

Naloga 423 (Linea nova)

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

87 / 109

Naloga 423 (Linea nova)

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

87 / 109

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

• Zapiši $I \cap J$ in $I \cup J$.

87 / 109

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

87 / 109

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2, 4] in $(2, \infty)$

Jan Kastelic (GAA)MATEMATIKA25. september 202487 / 109

Zapišite množico vseh neengativnih realnih števil, ki so manjša od 6, ter iskano množico predstavite na številski premici.

Naloga 585

Dana sta intervala I = [-2, 5) in J = (3, 6).

- Zapiši $I \cap J$ in $I \cup J$.
- ullet Izračunaj vsoto največjega celega števila iz I in najmanjšega celega števila iz J.

Naloga 583

Zapiši unijo in presek danih intervalov.

- (c) [4,8] in (3,5]
- (f) [-2,4] in $(2,\infty)$
- (g) $(-\infty, 3]$ in (-1, 5]

Jan Kastelic (GAA)

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

88 / 109

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitve linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

88 / 109

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

• na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 88 / 109

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 88 / 109

Linearna neenačba ima v splošnem obliko: $\mathbf{ax} + \mathbf{b} < \mathbf{cx} + \mathbf{d}$; $a, b, c, d \in \mathbb{R}$.

Reševanje linearne neenačbe

Neenačbo rešimo tako, da ji po korakih prirejamo enostavnejšo ekvivalentno neenačbo, dokler ne pridemo do rešitve. Množica rešitev linearne neenačbe je interval, množica intervalov, točka, množica točk ali pa nima rešitve.

Pravila preoblikovanja

- na levi in desni strani neenačbe lahko prištejemo (ali odštejemo) isto število;
- levo in desno stran neenačbe lahko pomnožimo z istim (pozitivnim) številom;
- če levo in desno stran neenačbe pomnožimo z negativnim številom, se znak neenakosti obrne.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 88 / 109

Intervali

Reši neenačbo in rešitev zapiši z intervalom.

Jan Kastelic (GAA)

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

89 / 109

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

89 / 109

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

89 / 109

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 89 / 109

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

89 / 109

Jan Kastelic (GAA) MATEMATIKA

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

89 / 109

Reši neenačbo in rešitev zapiši z intervalom.

(f)
$$3 - (2 - 2x)^2 > 4x(1 - x)$$

(I)
$$\frac{x+3}{8} \ge \frac{2x-9}{4}$$

(p)
$$\frac{x+3}{6} - \frac{2x-1}{12} \le (3+4)^0 + \frac{3x-2}{8}$$

Naloga 584

Reši sistem neenačb in rešitev zapiši z intervalom.

(č)
$$x + 4 \le 8$$
; $5 - x < 8$

(h)
$$3 - (2 + 4x) < x^2 - (2 - x)^2$$
; $2 - (2 - x)(x + 2) \ge x^2$

(e)
$$5x - 3 \ge 4$$
; $11 - 10x \ge -3$

89 / 109

Jan Kastelic (GAA) MATEMATIKA

Intervali

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

90 / 109

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza
$$A = 3 - (2x - 1)^2 + 4x(x + 2)$$
 in $B = 2 - \frac{x+1}{3}$. Za katere x je:

90 / 109

Reši neenačbo $4 - (2x+3)^3 \ge -101 - 4(x+1)(2x^2+7x)$ v množici:

- realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A=3-(2x-1)^2+4x(x+2)$ in $B=2-\frac{x+1}{3}$. Za katere x je:

vrednost izraza A negativna,

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 90 / 109

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,

Jan Kastelic (GAA) MATEMATIKA 25. september 2024 90 / 109

Reši neenačbo $4 - (2x + 3)^3 \ge -101 - 4(x + 1)(2x^2 + 7x)$ v množici:

- o realnih števil in rešitev ponazori na številski premici,
- naravnih števil in rešitev ponazori na številski premici,
- o celih števil in rešitev ponazori na številski premici.

Naloga 588

Dana sta izraza $A = 3 - (2x - 1)^2 + 4x(x + 2)$ in $B = 2 - \frac{x+1}{3}$. Za katere x je:

- vrednost izraza A negativna,
- vrednost izraza B vsaj -88,
- vrednost izraza B za 20 manjša od vrednosti izraza A?

90 / 109

MATEMATIKA

Absolutna vrednost

Jan Kastelic (GAA)

Sistem linearnih enačb

92 / 109

Jan Kastelic (GAA)

Obravnavanje linearnih enačb, neenačb, sistemov

93 / 109

Absolutna in relativna napaka

94 / 109

Sredine

95 / 109

Razpršenost podatkov

96 / 109

Prikazi

Jan Kastelic (GAA)

Section 6

Pravokotni koordinatni sistem, linearna funkcija

98 / 109

- Osnove logike in teorije množice
- 2 Naravna in cela števila, izrazi, enačbe in neenačbe
- 3 Deljivost, izjave, množice
- Racionalna števila
- Sealna števila, statistika
- Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 Jan Kastelic (GAA)

25. september 2024

Pravokotni koordinatni sistem

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 100 / 109

Razdalja med točkama in razpolovišče daljice

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 101 / 109

Ploščina trikotnika

102 / 109

Osnovno o funkcijah

103 / 109

Linearna funkcija in premica

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 104 / 109

Oblike enačbe premice

105 / 109

Presešišče premic

106 / 109

Sistem linearnih neenačb

107 / 109

Modeliranje z linearno funkcijo

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 108 / 109

(i) Linearno programiranje

 Jan Kastelic (GAA)
 MATEMATIKA
 25. september 2024
 109 / 109