PRÁCTICO 8

Soluciones Álgebra II – Año 2024/1 – FAMAF

(1) Dar las coordenadas del polinomio $2x^2 + 10x - 1 \in \mathbb{K}_3[x]$ en la base ordenada $\mathcal{B} = \{1, x+1, x^2 + x + 1\}.$

Solución:

$$\begin{array}{c}
[2x^{2} + 10x - 1]_{\mathcal{B}} = (a, b, c) \\
\updownarrow \\
2x^{2} + 10x - 1 = a \cdot 1 + b \cdot (x + 1) + c \cdot (x^{2} + x + 1) \\
\updownarrow \\
2x^{2} + 10x - 1 = cx^{2} + (b + c)x + (a + b + c) \\
\updownarrow \\
c = 2, b + c = 10, a + b + c = -1.
\end{array}$$

Este último renglón es un sistema que se resuelve fácilmente por sustitución: $c=2,\ b=8$ y a=-11. Por lo tanto,

$$[2x^2 + 10x - 1]_{\mathcal{B}} = (-11, 8, 2).$$

(2) Dar las coordenadas de la matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ en la base ordenada

$$\mathcal{B} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}.$$

Más generalmente, dar las coordenadas de cualquier matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ en la base \mathcal{B} .

Solución:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\updownarrow$$

$$[A]_{\mathcal{B}} = (b, d, a, c).$$

En particular,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{\mathcal{B}} = (2, 4, 1, 3).$$

(3) a) Dar una base del subespacio $W = \{(x, y, z) \in \mathbb{K}^3 \mid x - y + 2z = 0\}.$

b) Dar las coordenadas de w = (1, -1, -1) en la base que haya dado en el item anterior.

c) Dado $(x, y, z) \in W$, dar las coordenadas de (x, y, z) en la base que haya calculado en el item anterior.

Solución:

a)

$$W = \{(x, y, z) \in \mathbb{K}^3 \mid x - y + 2z = 0\}$$

$$= \{(x, y, z) \in \mathbb{K}^3 \mid x = y - 2z\}$$

$$= \{(y - 2z, y, z) \mid y, z \in \mathbb{K}\}$$

$$= \{y(1, 1, 0) + z(-2, 0, 1) \mid y, z \in \mathbb{K}\}.$$

Por lo tanto, $\{(1,1,0), (-2,0,1)\}$ generan W. Además, como (1,1,0) y (-2,0,1) son LI, entonces $\mathcal{B} = \{(1,1,0), (-2,0,1)\}$ es una base ordenada de W.

b) Primero, es claro que $w=(1,-1,-1)\in W$, pues cumple con la ecuación implícita que define W. Entonces

$$[w]_{\mathcal{B}} = (a, b) \Leftrightarrow (1, -1, -1) = a(1, 1, 0) + b(-2, 0, 1)$$

 $\Leftrightarrow 1 = a - 2b, -1 = a, -1 = b.$

Por lo tanto

$$[w]_{\mathcal{B}} = (-1, -1).$$

c) Sea $(x, y, z) \in W$. Entonces

$$[(x, y, z)]_{\mathcal{B}} = (a, b) \Leftrightarrow (x, y, z) = a(1, 1, 0) + b(-2, 0, 1)$$

 $\Leftrightarrow x = a - 2b, y = a, z = b.$

Por lo tanto

$$[(x,y,z)]_{\mathcal{B}}=(y,z).$$

(4) Escribir las matrices de las siguientes transformaciones lineales respecto de las bases canónicas de los espacios involucrados.

a)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $T(x, y) = (x - y, x + y, 2x + 3y)$.

b)
$$S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $S(x, y, z) = (x - y + z, 2x - y + 2z)$.

c)
$$D: P_4 \longrightarrow P_4$$
, $D(p(x)) = p'(x)$.

d)
$$T: M_{2\times 2}(\mathbb{K}) \longrightarrow \mathbb{K}$$
, $T(A) = \operatorname{tr}(A)$.

e)
$$L: P_3 \longrightarrow M_{2\times 2}(\mathbb{R}), L(ax^2 + bx + c) = \begin{bmatrix} a & b+c \\ b+c & a \end{bmatrix}$$
.

f)
$$Q: P_3 \longrightarrow P_4, \ Q(p(x)) = (x+1)p(x).$$

Solución: denotemos C_n a la base canónica de \mathbb{R}^n , Denotemos \mathcal{B}_n a la base $\{1, x, x^2, \dots, x^{n-1}\}$ de P_n y denotemos $\mathcal{M}_{2\times 2}$ a la base $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ de $\mathcal{M}_{2\times 2}(\mathbb{K})$.

a)

$$T(e_1) = T(1,0) = (1,1,2) = 1(1,0,0) + 1(0,1,0) + 2(0,0,1)$$

 $T(e_2) = T(0,1) = (-1,1,3) = -1(1,0,0) + 1(0,1,0) + 3(0,0,1).$

Por lo tanto, la matriz de T respecto de las bases canónicas es

$$[T]_{\mathcal{C}_2\mathcal{C}_3} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}.$$

b)

$$S(e_1) = S(1,0,0) = (1,2) = 1(1,0) + 2(0,1)$$

 $S(e_2) = S(0,1,0) = (-1,-1) = -1(1,0) - 1(0,1)$
 $S(e_3) = S(0,0,1) = (1,2) = 1(1,0) + 2(0,1)$

Por lo tanto, la matriz de S respecto de las bases canónicas es

$$[S]_{c_3c_2} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 2 \end{bmatrix}.$$

c)

$$D(1) = 0 = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$

$$D(x) = 1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$

$$D(x^{2}) = 2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$

$$D(x^{3}) = 3x^{2} = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^{2} + 0 \cdot x^{3}.$$

Por lo tanto, la matriz de D respecto de las bases canónicas es

$$[D]_{\mathcal{B}_4\mathcal{B}_4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

e) $L(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot E_{11} + 0 \cdot E_{12} + 0 \cdot E_{21} + 1 \cdot E_{22}$ $L(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = 0 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22}$ $L(x^{2}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = 0 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22}$

Por lo tanto, la matriz de L respecto de las bases canónicas es

$$[L]_{\mathcal{B}_3 \, \mathcal{M}_{2 \times 2}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

f)

$$Q(1) = x + 1 = 1 \cdot 1 + 1 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$

$$Q(x) = (x + 1)x = 0 \cdot 1 + 1 \cdot x + 1 \cdot x^{2} + 0 \cdot x^{3}$$

$$Q(x^{2}) = (x + 1)x^{2} = 0 \cdot 1 + 0 \cdot x + 1 \cdot x^{2} + 1 \cdot x^{3}.$$

Por lo tanto, la matriz de Q respecto de las bases canónicas es

$$[Q]_{\mathcal{B}_3 \mathcal{B}_4} = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{bmatrix}.$$

- (5) Sea $\mathcal C$ la base canónica de $\mathbb K^2$ y $\mathcal B=\{(1,0),(1,1)\}$ otra base de $\mathbb R^2.$
 - a) Encontrar la matriz de cambio de base $P_{\mathcal{C},\mathcal{B}}$ de \mathcal{C} a \mathcal{B} .
 - b) Encontrar la matriz de cambio de base $P_{\mathcal{B},\mathcal{C}}$ de \mathcal{B} a \mathcal{C} .
 - c) ¿Qué relación hay entre $P_{\mathcal{C},\mathcal{B}}$ y $P_{\mathcal{B},\mathcal{C}}$?
 - d) Encontrar $(x, y), (z, w) \in \mathbb{K}^2$ tal que $[(x, y)]_{\mathcal{B}} = (1, 4)$ y $[(z, w)]_{\mathcal{B}} = (1, -1)$.
 - e) Determinar las coordenadas de (2,3) y (0,1) en las bases \mathcal{B}_2 .

Solución: recordar que si V es un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{K} y \mathcal{B} y \mathcal{B}' son bases ordenadas de V, la matriz $[Id]_{\mathcal{BB}'}$ es llamada la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} .

a)

$$Id(1,0) = 1 \cdot (1,0) + 0 \cdot (1,1)$$
$$Id(0,1) = (-1) \cdot (1,0) + 1 \cdot (1,1).$$

Por lo tanto,

$$P_{\mathcal{C},\mathcal{B}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

b)

$$Id(1,0) = 1 \cdot (1,0) + 0 \cdot (0,1)$$
$$Id(1,1) = 1 \cdot (1,0) + 1 \cdot (0,1).$$

Por lo tanto,

$$P_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

c)

$$P_{\mathcal{C},\mathcal{B}}P_{\mathcal{B},\mathcal{C}} = \operatorname{Id}$$
.

Por la teórica sabemos que esta relación vale en general.

d)

$$[(x, y)]_{\mathcal{B}} = (1, 4) \Leftrightarrow (x, y) = 1 \cdot (1, 0) + 4 \cdot (1, 1)$$

 $\Leftrightarrow x = 5, y = 4.$

También es posible hacerlo por la matriz de cambio de base:

$$\begin{bmatrix} x \\ y \end{bmatrix} = P_{\mathcal{B},\mathcal{C}}[(x,y)]_{\mathcal{B}} = P_{\mathcal{B},\mathcal{C}} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

De forma análoga,

$$[(z, w)]_{\mathcal{B}} = (1, -1) \Leftrightarrow (z, w) = 1 \cdot (1, 0) + (-1) \cdot (1, 1)$$

 $\Leftrightarrow z = 0, w = -1.$

Obviamente, también es posible hacerlo por la matriz de cambio de base:

$$\begin{bmatrix} z \\ w \end{bmatrix} = P_{\mathcal{B},\mathcal{C}}[(z,w)]_{\mathcal{B}} = P_{\mathcal{B},\mathcal{C}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

e)

$$[(2,3)]_{\mathcal{B}} = P_{\mathcal{C},\mathcal{B}}[(2,3)]_{\mathcal{C}} = P_{\mathcal{C},\mathcal{B}}\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}1 & -1\\0 & 1\end{bmatrix}\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}-1\\3\end{bmatrix}.$$

El caso general es análogo:

$$[(a,b)]_{\mathcal{B}} = P_{\mathcal{C},\mathcal{B}}[(a,b)]_{\mathcal{C}} = P_{\mathcal{C},\mathcal{B}}\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a-b \\ b \end{bmatrix}.$$

(6) Sea $P = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{3\times 3}$.

- a) Calcular la inversa de P.
- b) Dar una base ordenada \mathcal{B} de \mathbb{K}^3 tal que P es la matriz de cambio de coordenadas de la base canónica de \mathbb{K}^3 a la base \mathcal{B} .

c) Encontrar $(x, y, z) \in \mathbb{K}^3$ tal que su vector de coordenadas con respecto a \mathcal{B} es

$$[(x, y, z)]_{\mathcal{B}} = (2, -1, -1).$$

Solución:

a) Utilizamos el método de Gauss-Jordan:

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 3 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -2 & 1 & 0 \\ 0 & -2 & 0 & -3 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{-F_2} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & -1 & 0 \\ 0 & -2 & 0 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 2 & -1 & 0 \\ 0 & 0 & -2 & 1 & -2 & 1 \end{bmatrix}$$

$$\xrightarrow{-\frac{1}{2}F_3} \begin{bmatrix} 1 & 0 & 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 2 & -1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix} \xrightarrow{F_1 - F_3} \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & \frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix}.$$

Concluyendo,

$$P^{-1} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{3}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -1 \\ -1 & 2 & -1 \end{bmatrix}.$$

b) Si \mathcal{C} es la base canónica, queremos encontrar $\mathcal{B} = \{v_1, v_2, v_3\}$, tal que $[\mathrm{Id}]_{\mathcal{CB}} = P$. Es decir, queremos encontrar $v_1, v_2, v_3 \in \mathbb{R}^3$ tal que

$$e_1 = Id(e_1) = 1 \cdot v_1 + 2 \cdot v_2 + 3 \cdot v_3$$

 $e_2 = Id(e_2) = 1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3$
 $e_3 = Id(e_3) = 0 \cdot v_1 + 1 \cdot v_2 + 0 \cdot v_3$.

Podemos plantear este sistemas de ecuaciones en coordenadas y resolverlo, pero es más fácil observar que $P^{-1} = [Id]_{BC}$ y por lo tanto, v_1, v_2, v_3 son las

columnas de P^{-1} , es decir

$$\mathcal{B} = \left\{ (-\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}), (0, 0, 1), (\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}) \right\}.$$

c) Recordar que

$$[v]_{\mathcal{B}} = (a, b, c)$$
 \Leftrightarrow $v = a \cdot v_1 + b \cdot v_2 + c \cdot v_3$.

por lo tanto, $[(x, y, z)]_{\mathcal{B}} = (2, -1, -1)$ significa que

$$(x, y, z) = 2 \cdot \left(-\frac{1}{2}, \frac{3}{2}, -\frac{1}{2}\right) + (-1) \cdot (0, 0, 1) + (-1) \cdot \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$$

$$= (-1, 3, -1) + (0, 0, -1) + \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$= \left(-\frac{3}{2}, \frac{5}{2}, -\frac{3}{2}\right).$$

(7) Sean C_n , n=2,3, las bases canónica de \mathbb{R}^2 y \mathbb{R}^3 respectivamente. Sean $\mathcal{B}_2=\{(1,0),(1,1)\}$ y $\mathcal{B}_3=\{(1,0,0),(1,1,0),(1,1,1)\}$ bases de \mathbb{R}^2 , \mathbb{R}^3 , respectivamente.

a) Escribir la matriz de cambio de base $P_{\mathcal{B}_n,\mathcal{C}_n}$ de \mathcal{B}_n a \mathcal{C}_n , n=2,3.

b) Escribir la matriz de cambio de base P_{C_n,B_n} de C_n a B_n , n=2,3.

Solución:

a) Denotemos $v_1=(1,0),\ v_2=(1,1).$ Luego, por definición la matriz de cambio de base de \mathcal{B}_2 a \mathcal{C}_2 es

$$P_{\mathcal{B}_2,\mathcal{C}_2} = [\operatorname{Id}]_{\mathcal{B}_2\mathcal{C}_2} = \begin{bmatrix} | & | \\ v_1 & v_2 \\ | & | \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \tag{*}$$

Análogamente, denotemos $w_1 = (1, 0, 0)$, $w_2 = (1, 1, 0)$, $w_3 = (1, 1, 1)$, por lo tanto

$$P_{\mathcal{B}_3,\mathcal{C}_3} = [\mathrm{Id}]_{\mathcal{B}_3\mathcal{C}_3} = \begin{bmatrix} | & | & | \\ w_1 & w_2 & w_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}. \tag{***}$$

b) La matriz de cambio de base de C_2 a \mathcal{B}_2 es $[Id]_{\mathcal{C}_2\mathcal{B}_2} = [Id]_{\mathcal{B}_2,\mathcal{C}_2}^{-1}$, por lo tanto debemos calcular la inversa de la matriz (*). Utilizamos el método de Gauss-Jordan:

$$\left[\begin{array}{c|cc} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right] \xrightarrow{F_1 - F_2} \left[\begin{array}{c|cc} 1 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{array}\right].$$

En consecuencia:

$$P_{\mathcal{C}_2,\mathcal{B}_2} = [\operatorname{Id}]_{\mathcal{C}_2\mathcal{B}_2} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

Análogamente, la matriz de cambio de base de C_3 a \mathcal{B}_3 es $[Id]_{\mathcal{C}_3\mathcal{B}_3} = [Id]_{\mathcal{B}_3,\mathcal{C}_3}^{-1}$, por lo tanto debemos calcular la inversa de la matriz (**). Utilizamos el método de Gauss-Jordan:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_1 - F_3} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

En consecuencia:

$$P_{\mathcal{C}_3,\mathcal{B}_3} = [\mathrm{Id}]_{\mathcal{C}_3\mathcal{B}_3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

(8) Sean C_n , B_n como en el ejercicio (7) y sean las siguientes transformaciones lineales:

$$\circ T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T(x,y) = (x-y, x+y, 2x+3y).$$

$$\circ S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, S(x, y, z) = (x - y + z, 2x - y + 2z).$$

Entonces, para cada una de las transformaciones lineales anteriores,

- a) Dar las matrices respecto a las bases \mathcal{B}_n y \mathcal{C}_n .
- b) Dar las matrices respecto a las bases C_n y \mathcal{B}_n .
- c) Dar las matrices respecto a las bases \mathcal{B}_n y \mathcal{B}_n .

Solución:

a) Para calcular $[T]_{\mathcal{B}_2\mathcal{C}_3}$ debemos calcular $T(v_1)$ y $T(v_2)$ en función de la base \mathcal{C}_3 . Pero como esta última es la canónica debemos calcular T(1,0) y T(1,1) y ponerlos como columnas:

$$T(1,0) = (1,1,2) = 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 2 \cdot (0,0,1)$$

$$T(1,1) = (0,2,5) = 0 \cdot (1,0,0) + 2 \cdot (0,1,0) + 5 \cdot (0,0,1).$$

Luego,

$$[T]_{\mathcal{B}_2\mathcal{C}_3} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 2 & 5 \end{bmatrix}.$$

Análogamente,

$$S(1,0,0) = (1,2),$$

 $S(1,1,0) = (0,1),$
 $S(1,1,1) = (1,3).$

Luego,

$$[S]_{\mathcal{B}_3\mathcal{C}_2} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}.$$

b) Para calcular $[T]_{C_2B_3}$ debemos calcular $T(e_1)$ y $T(e_2)$ en función de la base \mathcal{B}_3 . Ahora bien,

$$T(1,0) = (1,1,2) = a_{11} \cdot (1,0,0) + a_{21} \cdot (1,1,0) + a_{31} \cdot (1,1,1)$$

$$= (a_{11} + a_{21} + a_{31}, a_{21} + a_{31}, a_{31})$$

$$T(0,1) = (-1,1,3) = a_{12} \cdot (1,0,0) + a_{22} \cdot (1,1,0) + a_{32} \cdot (1,1,1)$$

$$= (a_{12} + a_{22} + a_{32}, a_{22} + a_{32}, a_{32}),$$

y debemos calcular los a_{ij} . Estas ecuaciones son muy sencillas de resolver pues $a_{31}=2$, $a_{21}=1-a_{31}=-1$, $a_{11}=1-a_{21}-a_{31}=0$. Análogamente, $a_{32}=3$, $a_{22}=1-a_{32}=-2$, $a_{12}=-1-a_{22}-a_{32}=-2$. Por lo tanto,

$$[T]_{\mathcal{C}_2\mathcal{B}_3} = \begin{bmatrix} 0 & -2 \\ -1 & -2 \\ 2 & 3 \end{bmatrix}.$$

Análogamente, para calcular $[S]_{\mathcal{C}_3\mathcal{B}_2}$ debemos calcular $S(e_1)$, $S(e_2)$ y $S(e_3)$ en función de la base \mathcal{B}_2 . Ahora bien,

$$S(1,0,0) = (1,2) = a_{11} \cdot (1,0) + a_{21} \cdot (1,1) = (a_{11} + a_{21}, a_{21})$$

$$S(0,1,0) = (-1,-1) = a_{12} \cdot (1,0) + a_{22} \cdot (1,1) = (a_{12} + a_{22}, a_{22})$$

$$S(0,0,1) = (1,2) = a_{13} \cdot (1,0) + a_{23} \cdot (1,1) = (a_{13} + a_{23}, a_{23}).$$

Por lo tanto, $a_{21} = 2$, $a_{11} = 1 - a_{21} = -1$, $a_{22} = -1$, $a_{12} = -1 - a_{22} = 0$, $a_{23} = 2$, $a_{13} = 1 - a_{23} = -1$. En consecuencia,

$$[S]_{\mathcal{C}_3\mathcal{B}_2} = \begin{bmatrix} -1 & 0 & -1 \\ 2 & -1 & 2 \end{bmatrix}.$$

c) Para calcular $[T]_{\mathcal{B}_2\mathcal{B}_3}$ debemos calcular T(1,0) y T(1,1) en función de la base $\{(1,0,0),(1,1,0),(1,1,1)\}$. Ahora bien,

$$T(1,0) = (1,1,2) = 0 \cdot (1,0,0) + (-1) \cdot (1,1,0) + 2 \cdot (1,1,1)$$

$$T(1,1) = (0,2,5) = (-2) \cdot (1,0,0) + (-3) \cdot (1,1,0) + 5 \cdot (1,1,1).$$

Esto sale por cálculos sencillos. Por lo tanto,

$$[T]_{\mathcal{B}_2\mathcal{B}_3} = \begin{bmatrix} 0 & -2 \\ -1 & -3 \\ 2 & 5 \end{bmatrix}.$$

Análogamente, para calcular $[S]_{\mathcal{B}_3\mathcal{B}_2}$ debemos calcular S(1,0,0), S(1,1,0) y S(1,1,1) en función de la base $\{(1,0),(1,1)\}$. Ahora bien,

$$S(1,0,0) = (1,2) = (-1) \cdot (1,0) + 2 \cdot (1,1)$$

$$S(1,1,0) = (0,1) = (-1) \cdot (1,0) + 1 \cdot (1,1)$$

$$S(1,1,1) = (1,3) = (-2) \cdot (1,0) + 3 \cdot (1,1).$$

Por lo tanto,

$$[S]_{\mathcal{B}_3\mathcal{B}_2} = \begin{bmatrix} -1 & -1 & -2 \\ 2 & 1 & 3 \end{bmatrix}.$$

Observación. Es posible hacer los incisos b) y c) de otra forma, utilizando las matrices de cambio de base. En estos casos quizás no valga la pena, pues la cuentas "directas" son muy sencillas, pero de cualquier forma lo haremos a modo ilustrativo.

b) (Otra forma) Observemos que

$$[T]_{\mathcal{C}_2\mathcal{B}_3} = [\mathrm{Id}]_{\mathcal{C}_3\mathcal{B}_3}[T]_{\mathcal{C}_2\mathcal{C}_3} = [\mathrm{Id}]_{\mathcal{B}_3\mathcal{C}_3}^{-1}[T]_{\mathcal{C}_2\mathcal{C}_3}.$$

Luego debemos primero calcular $[Id]_{\mathcal{B}_3\mathcal{C}_3}$ y $[T]_{\mathcal{C}_2\mathcal{C}_3}$, después la inversa de la primera matriz y finalmente multiplicar matrices. La matriz $[Id]_{\mathcal{B}_3\mathcal{C}_3}$ esta formada por los vectores de la base \mathcal{B}_3 como columnas:

$$[Id]_{\mathcal{B}_3\mathcal{C}_3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Ya vimos que

$$T(1,0) = (1,1,2)$$

 $T(0,1) = (-1,1,3),$

y por lo tanto

$$[T]_{\mathcal{C}_2\mathcal{C}_3} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}.$$

Calculemos ahora la inversa de $[Id]_{\mathcal{B}_3\mathcal{C}_3}$:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_1 - F_3} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Por lo tanto,

$$[Id]_{\mathcal{B}_3\mathcal{C}_3}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Finalmente,

$$[T]_{\mathcal{C}_2\mathcal{B}_3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ -1 & -3 \\ 2 & 3 \end{bmatrix},$$

matriz que, obviamente, ya habíamos obtenido.

Para calcular, $[S]_{\mathcal{C}_3\mathcal{B}_7}$ usamos la fórmula:

$$[S]_{\mathcal{C}_3\mathcal{B}_2} = [\mathrm{Id}]_{\mathcal{C}_2\mathcal{B}_2} [S]_{\mathcal{C}_3\mathcal{C}_2} = [\mathrm{Id}]_{\mathcal{B}_2\mathcal{C}_2}^{-1} [S]_{\mathcal{C}_3\mathcal{C}_2}.$$

c) (Otra forma) Observemos que

$$[T]_{\mathcal{B}_2\mathcal{B}_3} = [\mathrm{Id}]_{\mathcal{C}_3\mathcal{B}_3}[T]_{\mathcal{C}_2\mathcal{C}_3}[\mathrm{Id}]_{\mathcal{B}_2\mathcal{C}_2} = [\mathrm{Id}]_{\mathcal{B}_3\mathcal{C}_3}^{-1}[T]_{\mathcal{C}_2\mathcal{C}_3}[\mathrm{Id}]_{\mathcal{B}_2\mathcal{C}_2}.$$

Ahora bien,

$$[\mathrm{Id}]_{\mathcal{B}_3\mathcal{C}_3}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad [T]_{\mathcal{C}_2\mathcal{C}_3} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix}, \quad [\mathrm{Id}]_{\mathcal{B}_2\mathcal{C}_2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Las dos primeras matrices fueron calculadas en el inciso anterior y la tercera es obvia. Por lo tanto,

$$[T]_{\mathcal{B}_2\mathcal{B}_3} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ -1 & -3 \\ 2 & 5 \end{bmatrix}.$$

Finalmente, para calcular $[S]_{\mathcal{B}_3\mathcal{B}_2}$ usamos la fórmula:

$$[S]_{\mathcal{B}_3\mathcal{B}_2} = [\operatorname{Id}]_{\mathcal{C}_2\mathcal{B}_2}[S]_{\mathcal{C}_3\mathcal{C}_2}[\operatorname{Id}]_{\mathcal{B}_3\mathcal{C}_3} = [\operatorname{Id}]_{\mathcal{B}_2\mathcal{C}_2}^{-1}[S]_{\mathcal{C}_3\mathcal{C}_2}[\operatorname{Id}]_{\mathcal{B}_3\mathcal{C}_3}.$$

(9) Sea $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ la transformación lineal definida por

$$T(x, y, z) = (x - y, x - z).$$

Sean \mathcal{C} la base canónica de \mathbb{R}^3 y $\mathcal{B}' = \{(1,1), (1,-1)\}$ base de \mathbb{R}^2 .

- a) Calcular la matriz $[T]_{\mathcal{CB}'}$, es decir la matriz de T respecto de las bases \mathcal{C} y \mathcal{B}' .
- b) Sea $(x, y, z) \in \mathbb{R}^3$. Dar las coordenadas de T(x, y, z) respecto de la base \mathcal{B}' .

c) Sea $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ una transformación lineal tal que su matriz respecto a las bases \mathcal{B}' y \mathcal{C} es

$$[S]_{\mathcal{B}'\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Calcular la matriz de la composición $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ con respecto a la base \mathcal{B}' .

Solución:

a)

$$T(1,0,0) = (1,1) = 1 \cdot (1,1) + 0 \cdot (1,-1)$$

 $T(0,1,0) = (-1,0) = (-\frac{1}{2}) \cdot (1,1) + (-\frac{1}{2}) \cdot (1,-1)$
 $T(0,0,1) = (0,-1) = (-\frac{1}{2}) \cdot (1,1) + \frac{1}{2} \cdot (1,-1)$

Por lo tanto,

$$[T]_{\mathcal{CB}'} = \begin{bmatrix} 0 & -1/2 & -1/2 \\ 1 & -1/2 & 1/2 \end{bmatrix}.$$

b) Dado el vector (x, y, z), debemos resolver el sistema

$$(x - y, x - z) = a \cdot (1, 1) + b \cdot (1, -1) \implies (x - y, x - z) = (a + b, a - b).$$

Por lo tanto

$$(x - y) + (x - z) = 2a \implies 2x - y - z = 2 \implies a = \frac{1}{2}(2x - y - z)$$

 $(x - y) - (x - z) = 2b \implies z - y = 2b \implies b = \frac{1}{2}(z - y).$

Es decir,

$$[T(x, y, z)]_{\mathcal{B}'} = \frac{1}{2}(2x - y - z, z - y).$$

c) Calculamos en en inciso a) la matriz $[T]_{CB'}$, entonces

$$[T \circ S]_{\mathcal{B}'\mathcal{B}'} = [T]_{\mathcal{CB}'}[S]_{\mathcal{B}'\mathcal{C}}$$

$$= \begin{bmatrix} 0 & -1/2 & -1/2 \\ 1 & -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1/2 \\ 1 & 5/2 \end{bmatrix}.$$

(10) Sea A la matriz del ejercicio (1)a) del práctico 5 y $T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la transformación lineal dada por $T_A(v) = Av$. Hallar los autovalores de T_A , y para cada

uno de ellos, dar una base de autovectores del correspondiente autoespacio. Decidir si T_A es o no diagonalizable. En caso de serlo dar una matriz invertible P tal que $P^{-1}AP$ es diagonal.

Repetir esto para cada una de las matrices de dicho ejercicio.

Solución: Resolvemos el ejercicio para cada una de las matrices del ejercicio (1) del práctico 5. Recordemos que para que una transformación lineal T sea diagonalizable, es necesario y suficiente que exista una base de autovectores. En caso de existir, la matriz de T en dicha base, digamos \mathcal{B} , es diagonal y los valores de la diagonal son los autovalores de T. Más aún, si P es la matriz de cambio de base de la base canónica a \mathcal{B} , entonces $P^{-1}AP$ es la matriz diagonal de T en la base canónica.

a) Denominamos A a la matriz del enunciado a) del práctico 5. entonces,

$$T_A(x,y) = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x - y \\ x + 4y \end{bmatrix}.$$

Como ya fue calculado hay un solo autovalor $\lambda = 3$ y el autoespacio asociado es $\{(t,t): t \in \mathbb{R}\}$. Por lo tanto, T_A no es diagonalizable.

b) Denominamos B a la matriz del enunciado. Luego,

$$T_B(x,y) = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ x - 2y \end{bmatrix}.$$

Los autovalores son $\lambda_1 = -2$ y $\lambda_2 = 1$ y los autoespacios son $V_{-2} = \{(0,t): t \in \mathbb{R}\}$ y $V_1 = \{(3t,t): t \in \mathbb{R}\}$. Por lo tanto una base de autovectores es $\mathcal{B} = \{(0,1),(3,1)\}$ y T_B es diagonalizable. La matriz de cambio de base de la base canónica a \mathcal{B} se calcula resolviendo el sistema

$$(1,0) = a_{11} \cdot (0,1) + a_{21} \cdot (3,1)$$
$$(0,1) = a_{12} \cdot (0,1) + a_{22} \cdot (3,1),$$

el cual se soluciona fácilmente: $a_{11} = -1/3$, $a_{21} = 1/3$, $a_{12} = 1$, $a_{22} = 0$. Por lo tanto,

$$P = \begin{bmatrix} -1/3 & 1 \\ 1/3 & 0 \end{bmatrix}.$$

c) Denominamos C a la matriz del enunciado. Por lo tanto

$$T_C(x, y, z) = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ -x + y - z \\ 2z \end{bmatrix}.$$

Los autovalores son $\lambda_1 = 2$ y $\lambda_2 = 1$ y los autoespacios son $V_2 = \{(-t, t, s) : t, s \in \mathbb{R}\}$ y $V_1 = \{(0, t, 0) : t \in \mathbb{R}\}$, por lo tanto, podemos elegir como base $\mathcal{B} = \{(-1, 1, 0), (0, 0, 1), (0, 1, 0)\}$ y \mathcal{T}_C es diagonalizable. La matriz de cambio

de base de la base canónica a ${\cal B}$ se calcula resolviendo el sistema

$$(1,0,0) = a_{11} \cdot (-1,1,0) + a_{21} \cdot (0,0,1) + a_{31} \cdot (0,1,0)$$

$$(0,1,0) = a_{12} \cdot (-1,1,0) + a_{22} \cdot (0,0,1) + a_{32} \cdot (0,1,0)$$

$$(0,0,1) = a_{13} \cdot (-1,1,0) + a_{23} \cdot (0,0,1) + a_{33} \cdot (0,1,0).$$

Las soluciones son, $a_{11}=-1$, $a_{21}=0$, $a_{31}=1$, $a_{12}=0$, $a_{22}=0$, $a_{32}=1$, $a_{13}=0$, $a_{23}=1$, $a_{33}=0$. Por lo tanto,

$$P = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

d) Denominamos D a la matriz del enunciado. Entonces,

$$T_D(x, y, z) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 3 & -5 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -x \\ 3y - 5z \\ y - z \end{bmatrix}.$$

El único autovalor real de T_D es -1 y el autoespacio asociado es $\{(t,0,0): t \in \mathbb{R}\}$, por lo tanto el operador no es diagonalizable.

e) Denominamos E a la matriz del enunciado. Entonces,

$$T_{E}(x, y, z) = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \lambda x \\ x + \lambda y \\ y + \lambda z \end{bmatrix}.$$

Hay un único autovalor, que es λ y $V_{\lambda} = \{(0,0,t) : t \in \mathbb{R}\}$, por lo tanto el operador no es diagonalizable.

f) Denominamos F a la matriz del enunciado. Entonces

$$T_F(x,y) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta + y \sin \theta \\ -x \sin \theta + y \cos \theta \end{bmatrix}.$$

Como vimos cuando resolvimos el ejercicio f) del práctico 5, hay tres casos para analizar según el valor de θ .

- i) Cuando $\theta = 0$ tenemos que $\lambda_1 = \lambda_2 = 1$. En ese caso, T_F es la identidad y por lo tanto hay un único autovalor, 1, y el autoespacio correspondiente es todo \mathbb{R}^2 . Por lo tanto, T_F es diagonalizable y podemos tomar como base la base canónica, por lo tanto $P = \operatorname{Id}$.
- ii) Cuando $\theta = \pi$, tenemos que $\lambda_1 = \lambda_2 = -1$. En este caso $T_F = -\operatorname{Id}$ y hay un solo autovalor, -1, y el autoespacio correspondiente es todo \mathbb{R}^2 . Por lo tanto, T_F es diagonalizable y podemos tomar como base la base canónica, por lo tanto $P = \operatorname{Id}$.
- iii) Cuando $\theta \neq 0$, π y en este caso no hay autovalores reales. Por lo tanto, T_F no es diagonalizable.

(11) Repetir el ejercicio anterior para cada matriz del ejercicio (1) del práctico 5 pero ahora consideradando a la transformación como una transformación lineal entre los \mathbb{C} -espacios vectoriales \mathbb{C}^n .

Solución: Los incisos a), b), c) y e) tienen la misma respuesta que en el ejercicio anterior, pues los polinomios característicos no tienen raíces complejas. Para resolver los casos d) y f) usamos los resultados del ejercicio (2) del práctico 5.

d) Los autovalores de T_D son $\lambda_1=1+i$, $\lambda_2=1-i$ y los autoespacios son $V_{\lambda_1}=\{((2+i)t,t):t\in\mathbb{C}\}$, $V_{\lambda_2}=\{((2-i)t,t):t\in\mathbb{C}\}$. Por lo tanto, T_D es diagonalizable. Una base de autovectores es $\mathcal{B}=\{(2+i,1),(2-i,1)\}$. La matriz de cambio de base de la base canónica a \mathcal{B} se calcula resolviendo el sistema

$$(1,0) = a_{11} \cdot (2+i,1) + a_{21} \cdot (2-i,1)$$

$$(0,1) = a_{12} \cdot (2+i,1) + a_{22} \cdot (2-i,1),$$

Por lo tanto $a_{11}(2+i)+a_{21}(2-i)=1$, $a_{11}+a_{21}=0$. Resolviendo este sistema obtenemos $a_{11}=-i/2$, $a_{21}=i/2$. De forma análoga, $a_{12}+a_{22}=1$, $a_{12}(2+i)+a_{22}(2-i)=0$ y resolviendo este sistema obtenemos $a_{12}=i/2$, $a_{22}=-i/2$. Por lo tanto,

$$P = \begin{bmatrix} -i/2 & i/2 \\ i/2 & -i/2 \end{bmatrix}.$$

f) Los casos $\theta=0$, π ya se hicieron en el ejercicio anterior. Cuando $\theta\neq0$, π los autovalores de T_F son $\lambda_1=\cos\theta+i\sin\theta$ y $\lambda_2=\cos\theta-i\sin\theta$ y los autoespacios son $V_{\lambda_1}=\{t(-i,1):t\in\mathbb{C}\}$, $V_{\lambda_2}=\{t(i,1):t\in\mathbb{C}\}$. Por lo tanto, T_F es diagonalizable. Una base de autovectores es $\mathcal{B}=\{(-i,1),(i,1)\}$. La matriz de cambio de base de la base canónica a \mathcal{B} se calcula resolviendo el sistema

$$(1,0) = a_{11} \cdot (-i,1) + a_{21} \cdot (i,1)$$

$$(0,1) = a_{12} \cdot (-i,1) + a_{22} \cdot (i,1),$$

cuyas soluciones son $a_{11}=i/2$, $a_{21}=-i/2$, $a_{12}=1/2$, $a_{22}=1/2$. Por lo tanto,

$$P = \begin{bmatrix} i/2 & 1/2 \\ -i/2 & 1/2 \end{bmatrix}.$$

(12) Sea $T:V\longrightarrow V$ una transformación lineal y $v\in V$ un autovector de autovalor λ . Probar las siguientes afirmaciones.

- a) Si $\lambda = 0$, entonces $v \in Nu(T)$.
- *b*) Si $\lambda \neq 0$, entonces $v \in \text{Im}(T)$.

c) Si $T^2 = 0$, entonces T - Id es un isomorfismo.

Solución:

- a) Como v es autovector de autovalor 0, entonces $T(v) = 0 \cdot v = 0$. Por lo tanto, $v \in \text{Nu}(T)$.
- b) Como v es autovector de autovalor λ , entonces $T(v) = \lambda v$. Como $\lambda \neq 0$, podemos dividir por λ y en consecuencia $T(v/\lambda) = \lambda v/\lambda = v$. Por lo tanto, $v \in \text{Im}(T)$.
 - c) Observemos que

$$(T - Id)(T + Id) = T^2 - Id \circ T + T \circ Id - Id^2 = T^2 - Id^2 = -Id$$
.

Por lo tanto, (T - Id)(-T - Id) = Id, análogamente (-T - Id)(T - Id) = Id. Por lo tanto, T - Id es invertible y su inversa es -T - Id.

- (13) Sea V un espacio vectorial de dimensión 3 y $T:V\longrightarrow V$ una transformación lineal. Supongamos que existe $v\in V$ tal que $T^3(v)=0$ pero $T^2(v)\neq 0$.
 - a) Probar que $\mathcal{B} = \{v, T(v), T^2(v)\}$ es una base de V.
 - b) Calcular la matriz de T respecto de la base \mathcal{B} .
 - c) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.

Solución:

a) Alcanza con probar que v, T(v), $T^2(v)$ son LI. Si a, b, $c \in \mathbb{K}$ son tales que $av + bT(v) + cT^2(v) = 0$, entonces

$$0 = T^{2}(av + bT(v) + cT^{2}(v)) = aT^{2}(v) + bT^{3}(v) + cT^{4}(v),$$
(*)

por hipótesis $T^3(v) = 0$, luego también $T^4(v) = 0$ y por lo tanto la ecuación (*) $\Rightarrow aT^2(v) = 0$. Por hipótesis, $T^2(v) \neq 0$ y por lo tanto a = 0, lo cual implica que $bT(v) + cT^2(v) = 0$. Aplicando T a esto último,

$$0 = T(bT(v) + cT^{2}(v)) = bT^{2}(v) + cT^{3}(v) = bT^{2}(v).$$

Como $T^2(v) \neq 0$, entonces b = 0 y por lo tanto $cT^2(v) = 0$. Como $T^2(v) \neq 0$, entonces c = 0. Por lo tanto, a = b = c = 0 y \mathcal{B} es LI. Como dim V = 3, \mathcal{B} es una base de V.

b) La base es $\mathcal{B} = \{v, T(v), T^2(v)\}$ y apliquemos T a cada uno de los vectores de la base:

$$T(v) = T(v) = 0 \cdot v + 1 \cdot T(v) + 0 \cdot T^{2}(v)$$

$$T(T(v)) = T^{2}(v) = 0 \cdot v + 0 \cdot T(v) + 1 \cdot T^{2}(v)$$

$$T(T^{2}(v)) = T^{3}(v) = 0 = 0 \cdot v + 0 \cdot T(v) + 0 \cdot T^{2}(v).$$

Por lo tanto, la matriz de $\mathcal T$ respecto de la base $\mathcal B$ es

$$[T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

c) El polinomio característico de T es

$$p_T(\lambda) = \det \begin{bmatrix} \lambda & 0 & 0 \\ -1 & \lambda & 0 \\ 0 & -1 & \lambda \end{bmatrix} = \lambda^3.$$

En consecuencia, el único autovalor de T es 0 y el autoespacio asociado es $V_0 = \{v \in V : T(v) = 0\} = \text{Nu}(T)$. Ahora bien, $\text{Im}(T) = \langle T(v), T^2(v), T^3(v) \rangle = \langle T(v), T^2(v) \rangle$ y como $T(v), T^2(v)$ son LI entonces dim Im(T) = 2. Por el teorema de la dimensión sabemos que dim Nu(T) + dim Im(T) = dim V = 3, por lo tanto dim Nu(T) = 1. Como dim Nu(T) = 1 y $\text{Nu}(T) = V_0$, se concluye que T no es diagonalizable.