夏学期第四次作业

1. 查数据确定 O_2 在标准状态(1 bar, 298K)的摩尔熵。然后,请计算其摩尔熵理论值以及与实验值的误差(应小于 1%)。(注意 O_2 的电子基态为三重简并)

解 先求 1 mol O₂ 的熵, 体积是 24.79 L。

平动配分函数 $f_{\text{平动}}=(\frac{2\pi mkT}{h^2})^{\frac{3}{2}}V=4.342\times 10^{30}$,平动熵 $S_{\text{平动}}=\frac{5}{2}Nk+Nk\ln\frac{f_{\text{平动}}}{N}=152.1~\mathrm{J\cdot K^{-1}}$ 。

转动配分函数 $f_{\overline{t}\overline{t}\overline{d}}=\frac{kT}{2hcB}=72.07$,转动熵 $S_{\overline{t}\overline{t}\overline{d}}=Nk+Nk\ln f_{\overline{t}\overline{t}\overline{d}}=43.9~\mathrm{J\cdot K^{-1}}$ 。 振动配分函数不近似, $f_{\overline{k}\overline{d}}=\frac{1}{1-\mathrm{e}^{-h\nu/kT}}=1.0005$,振动热能 $Q_{\overline{k}\overline{d}}=\frac{Nh\nu}{\mathrm{e}^{h\nu/kT}-1}=10.1~\mathrm{J}$,振动熵 $S_{\overline{k}\overline{d}}=\frac{Q_{\overline{k}\overline{d}}}{T}+Nk\ln f_{\overline{k}\overline{d}}=0.04~\mathrm{J\cdot K^{-1}}$

电子配分函数 $f_{\text{电子}} = g_{\text{基态}} = 3$,电子熵 $S_{\text{电子}} = Nk \ln f_{\text{电子}} = 9.13 \text{ J} \cdot \text{K}^{-1}$ 。

把各个运动模式的熵加起来,就得到总熵。 $S=205.2~{
m J\cdot K^{-1}}$,这是 1 mol ${
m O_2}$ 的熵,因此 摩尔熵 $S_{
m m}=205.2~{
m J\cdot mol^{-1}\cdot K^{-1}}$ 。相对误差小于 0.1%。

2. 查数据确定 H_2 在标准状态(1 bar, 298K)的摩尔熵。然后,请计算其摩尔熵理论值以及与实验值的误差(应小于 1%)。(注意 H_2 的转动能隙)

解 先求 1 mol H₂ 的熵, 体积是 24.79 L。

平动配分函数 $f_{\text{平动}}=(\frac{2\pi mkT}{h^2})^{\frac{3}{2}}V=6.789\times 10^{28}$,平动熵 $S_{\text{平动}}=\frac{5}{2}Nk+Nk\ln\frac{f_{\text{平动}}}{N}=117.5~\mathrm{J\cdot K^{-1}}$ 。

 ${
m H}_2$ 转动基本能隙与 kT 相当。用定义计算转动配分函数, ${
m f}_{{
m t}{
m d}}={1\over lpha}\sum_J(2J+1){
m e}^{-J(J+1)hcB/kT}=1.880$,转动热能 $Q_{{
m t}{
m d}}=\sum_JN_J\varepsilon_J=2231$ J,转动熵 $S_{{
m t}{
m d}}={Q_{{
m t}{
m d}}\over T}+Nk\ln{
m f}_{{
m t}{
m d}}=12.7$ J·K $^{-1}$ 。

振动熵比 O_2 还小,可以忽略,也就是采用低温近似, $S_{\overline{k}\overline{n}}=0$ 。

电子配分函数 $f_{\text{电子}} = g_{\text{基态}} = 1$,电子熵 $S_{\text{电子}} = 0$ 。

把各个运动模式的熵加起来,就得到总熵。 $S=130.2~{
m J\cdot K^{-1}}$,这是 1 mol ${
m H_2}$ 的熵,因此 摩尔熵 $S_{
m m}=130.2~{
m J\cdot mol^{-1}\cdot K^{-1}}$ 。相对误差 -0.4%。

Excel 处理表格在后。

转动量子数	简并度	能级能量/J	玻尔兹曼因子	分子数	热能项/J
0	1	0	1	1.60186E + 23	0
1	3	2.418E-21	1.667443181	2.671E + 23	645.8487881
2	5	7.254E-21	0.858537704	1.37525E+23	997.6091689
3	7	1.4508E-20	0.206384357	3.30598E+22	479.6316475
4	9	2.418E-20	0.025324472	$4.05662\mathrm{E}{+21}$	98.08897761
5	11	3.627E-20	0.001641873	2.63004E+20	9.539170019
6	13	5.0778E-20	5.72096E-05	9.16416E + 18	0.465337474
配分函数 (未考虑对称因子)		3.759388796	热能/J	2231.18309	
配分函数		1.879694398			

3. 请根据上次作业中乙烷分子的所有振动频率, 计算各个频率在 300 K 下的熵。按照振动频率从大到小排列, 理解我们上课所讲的熵源于分子在激发态的分布以及能隙的影响。

	HV	1 mol	乙烷分子	温度为	300 K
--	----	-------	------	-----	-------

振动频率	第一激发态玻尔兹曼	() 40	熵	热能	热能/
(cm ⁻¹)	因子	配分函数	(J/(mol·k))	(J/mol)	熵
289	2.50E-01	1.3336022	6.22	1150.75	184.89
822	1.94E-02	1.0198076	0.81	193.75	239.78
995	8.47E-03	1.0085460	0.41	101.08	248.22
1190	3.33E-03	1.0033378	0.18	47.15	255.35
1379	1.34E-03	1.0013460	0.08	22.00	260.63
1388	1.29E-03	1.0012890	0.08	21.21	260.85
1468	8.77E-04	1.0008780	0.06	15.27	262.72
1469	8.73E-04	1.0008738	0.06	15.21	262.74
2896	9.32E-07	1.0000009	1.1*10-4	0.03	279.86
2954	7.06E-07	1.0000007	8.7*10-5	0.02	280.23
2969	6.57E-07	1.0000007	8.2*10-5	0.02	286.08
2985	6.08E-07	1.0000006	7.6*10-5	0.02	286.19

由数据可得,振动能隙对熵的影响更大。

- 4. (1) 计算 300K 时, 1mol 氩气从 1L 压缩到 1ml 的熵变。你肯定会得到一个负熵,但对于这个数的大小可能没有太大的概念,请把这个熵变通过玻尔兹曼公式转换成两种状态的微观结构数(或权重)之比。从而判断气体自动压缩的可能性。
- (2) 假设微观结构之间切换的间隔时间为 100ps, 不考虑除了 1L 和 1mL 两种之外的宏观状态, 计算要经过多长时间才能看到一次这样的气体自动收缩的"见鬼"事件。
- 解 (1) 从平动熵表达式得到熵变公式, $\Delta S=Nk\ln\frac{\ell_{\rm M}}{\ell_{\rm M}}=Nk\ln\frac{V_{\rm M}}{V_{\rm M}}$ 。代入数据,就得到 $\Delta S=-57.4~{
 m J/K}$ 。

把它转换为权重比, $\frac{W_{\&}}{W_{\&}}=\mathrm{e}^{\Delta S/k}=\mathrm{e}^{-4.16\times 10^{24}}$ 。权重比等于概率比,这样小概率事件是几乎不可能发生的!

(2) 要切换 $e^{4.16\times10^{24}}$ 次微观结构才能观察到 1 次这样的事件,要等待的时间是 $e^{4.16\times10^{24}}\times100~ps=e^{4.16\times10^{24}}~s=10^{1.81\times10^{24}}~s!$

5. 第四章课后习题 1

解(1)绝对零度时,t = -273.15°C, $t_F = \frac{9}{5}t + 32 = -459.67$ °F。

- (2) 当 T=0 时, $t_{\rm r}=0$; T 每升高 1 K, $t_{\rm r}$ 升高 $\frac{9}{5}$ R。有了这两个条件,就得到 $t_{\rm r}=\frac{9}{5}T$ 。
- (3) $PV = nRT = nR \cdot \frac{5}{9}t_{\rm r} = nR_{\rm r}t_{\rm r}$,所以 $R_{\rm r} = \frac{5}{9}R = 4.619~{
 m J\cdot mol^{-1}\cdot R^{-1}}$ 。 玻尔兹曼常数 $k_{\rm r} = R_{\rm r}/N_{\rm A} = 7.67 \times 10^{-24}~{
 m J/R}$ 。

6. 第四章课后习题 2

解 从 CRC 物理化学手册中查询到以下数据:

物	7质	摩尔热容/ $(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$	密度/(g·cm ⁻³)
,	水	75.3	0.997
Z	」醇	112.3	0.789

因此,可求出水的热容 $C_{\chi}=4.20~{
m J/K}$,酒精的热容 $C_{\rm 酒精}=0.385~{
m J/K}$,整支温度计的热容 $C_{\rm 温度 H}=4C_{\rm 酒精}=1.54~{
m J/K}$ 。

温度计从 20℃ 到 30℃,得到的热 $q=C_{\rm llgth}\Delta T=15.4~\rm J$ 。这些热是水失去的,所以水改变的温度 $\Delta T=-q/C_{\rm lk}=-3.67~\rm K$ 。因此,测量前水的温度与温度计平衡读数之差为 3.67℃。