ECE4574 – Large-Scale SW Development for Engineering Systems Lecture 10 – Cloud Computing

Creed Jones, PhD

Course Updates

- Project
 - hope Sprint 1 is going well ☺
- Quiz 4 is next Monday, October 2

Next Week - Oct 2 and 4

Monday, Oct 2 – Project Day

- Come to class and sit in your project groups
 - Online team members should join by zoom or similar
- Use the day to catch up on your project work
 - Stand-up meeting
 - Start on the sprint retrospective
- I will meet briefly with each group

Wednesday, Oct 4 – NO CLASS

No office hours on Tuesday, Wednesday or Thursday (Oct 3, 4 and 5)

Key Topics for Today

- Cloud computing basics
- Cloud service providers
- A simple code example
- Virtual machines
- Kubernetes
- Docker

CLOUD COMPUTING

- In a cloud system, user management is not needed to request and release resources
- Cloud systems are built on the concept of virtualization software runs on virtual machines that do not correspond to specific physical platforms
 - virtualization software provides software-based computers with flexible configurations
 - cloud providers make these resources available in a variety of pricing models
- The big three cloud providers these days are:
 - Amazon Web Services (AWS)
 - Google Cloud
 - Microsoft Azure
 - also IBM, Oracle, Adobe, Cisco...

- Software as a Service (SaaS)
- Software is licensed and provided over the web apps run on the cloud and are accessed via web protocols – often through a browser
- GoogleDocs, Salesforce, Slack
- Many more specific areas of functionality are being touted as "as a service" technologies
- Analytics as a Service
- Blockchain as a Service
- Payments as a Service

What is Cloud Computing?

xorlogics.com

Cloud Computing Services: Who Manages What?

I: Infrastructure P: Platform S: Software

Traditional IT	IaaS	PaaS	Serverless	SaaS
Applications	Applications	Applications	Applications	Applications
Data	Data	Data	Data	Data
Runtime	Runtime	Runtime	Runtime	Runtime
Middleware	Middleware	Middleware	Middleware	Middleware
os	os	os	os	os
Virtualization	Virtualization	Virtualization	Virtualization	Virtualization
Servers	Servers	Servers	Servers	Servers
Storage	Storage	Storage	Storage	Storage
Networking	Networking	Networking	Networking	Networking
			You manage	Provider manages

CLOUD SERVICE PROVIDERS

Cloud providers offer families of services – for example, here are the choices for "Storage" for AWS

Free Trial Available

Amazon Simple Storage Service (S3)

Scalable Storage in the Cloud

Amazon FSx for Lustre

High-performance file system integrated with S3

AWS Backup

Centralized backup across AWS services

Free Trial Available

Amazon Elastic Block Store (EBS)

EC2 block storage volumes

Amazon FSx for Windows File Server

Fully managed Windows native file system

AWS Snow Family

Physical edge computing and storage devices for rugged or disconnected environments Free Trial Available

Amazon Elastic File System (EFS)

Fully managed file system for EC2

Amazon S3 Glacier

Low-cost Archive Storage in the Cloud

Free Trial Available

AWS Storage Gateway

Hybrid Storage Integration

CloudEndure Disaster Recovery

Highly automated disaster recovery

"Storage" is not to be confused with "Database" – here are the AWS offerings in that family

Amazon Aurora

High Performance Managed Relational Database

Amazon DocumentDB (with MongoDB compatibility)

Fully managed document database

Amazon MemoryDB for Redis

Redis-compatible, durable, in-memory database that delivers ultra-fast performance

Free Trial Available

Amazon RDS

Managed Relational Database Service for MySQL, PostgreSQL, Oracle, SQL Server, and MariaDB

Amazon Timestream

Fully managed time series database

Amazon Aurora Serverless v2 (Preview)

Instantly scale to >100,000 transactions per second

Free Trial Available

Amazon ElastiCache

In-memory Caching System

Amazon Neptune

Fully Managed Graph Database Service

Amazon RDS on VMware

Automate on-premises database management

Free Trial Available

AWS Database Migration Service

Migrate Databases with Minimal Downtime

Free Trial Available

Amazon DynamoDB

Managed NoSQL Database

Free Trial Available

Amazon Keyspaces (for Apache Cassandra)

Managed Cassandra-compatible database

Amazon Quantum Ledger Database (QLDB)

Fully managed ledger database

Free Trial Available

Amazon Redshift

Fast, Simple, Cost-effective Data Warehousing

AWS Glue

Simple, scalable, and serverless data integration

Analytics

Application Integration

Blockchain

Business Applications

Cloud Financial Management

Free Trial Available

AWS Step Functions

Coordinate Distributed Applications

Amazon AppFlow

No code integration for SaaS apps & AWS services

Amazon EventBridge
Serverless event bus for SaaS apps & AWS services

Amazon Managed Workflows for Apache Airflow

Highly available, secure, and managed workflow orchestration

Free Trial Available

Amazon MQ

Managed Message Broker Service

Amazon Simple Notification Service (SNS)

Pub/sub, SMS, email, and mobile push notifications

Free Trial Available

Amazon Simple Queue Service (SQS)

Managed Message Queues

Free Trial Available

AWS AppSync

Power your apps with the right data from many sources, at scale

- 1. Sign up for an AWS account there is a free tier https://aws.amazon.com/free/
- Create a user and obtain credentials
 aws_access_key_id and aws_secret_access_key
 See https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/credentials.html for more information
- 3. Install the libraries for the AWS C++ client https://docs.aws.amazon.com/sdk-for-cpp/v1/developer-guide/setup-windows-vcpkg.html
- 4. Write code to use the C++ client libraries to access the cloud service you need

```
#include <iostream>
#include <fstream>
#include <sys/stat.h>
#include <aws/core/Aws.h>
#include <aws/s3/S3Client.h>
#include <aws/s3/model/PutObjectRequest.h>
#include "s3 examples.h"
//snippet-end:[s3.cpp.put object.inc]
* Purpose: Adds an object to an Amazon S3 bucket.
* For an example of a multipart upload, see the s3-crt code example.
* Prerequisites: An Amazon S3 bucket and the object to be added.
* Inputs:
* - bucketName: The name of the bucket.
* - objectName: The name of the object.
* - region: The AWS Region for the bucket.
* Outputs: true if the object was added to the bucket; otherwise, false.
int main()
   Aws::SDKOptions options;
   Aws::InitAPI(options);
       //TODO: Change bucket name to the name of a bucket in your account.
       const Aws::String bucket name = "ece4574fa21";
       //TODO: Create a file called "my-file.txt" in the local folder where your
executables are built to.
      const Aws::String object_name = "c:\\Data\\my-file.txt";
       //TODO: Set to the AWS Region in which the bucket was created.
      const Aws::String region = "us-east-2";
       if (!AwsDoc::S3::PutObject(bucket name, object name, region)) {
          return 1;
   Aws::ShutdownAPI(options);
   return 0;
```

```
bool AwsDoc::S3::PutObject(const Aws::String& bucketName,
    const Aws::String& objectName,
    const Aws::String& region)
    struct stat buffer;
    if (stat(objectName.c str(), &buffer) == -1) {
        std::cout << "Error: PutObject: File '" <<</pre>
            objectName << "' does not exist." << std::endl;</pre>
        return false;
    Aws::Client::ClientConfiguration config;
    if (!region.empty()) {
        config.region = region;
    Aws::S3::S3Client s3 client(config);
    Aws::S3::Model::PutObjectRequest request;
    request.SetBucket(bucketName);
    //We are using the name of the file as the key for the object in the bucket.
    //However, this is just a string and can set according to your retrieval needs.
    request.SetKey(objectName);
    std::shared ptr<Aws::IOStream> input data =
Aws::MakeShared<Aws::FStream>("SampleAllocationTag",
            objectName.c str(),
            std::ios base::in | std::ios base::binary);
    request.SetBody(input data);
    Aws::S3::Model::PutObjectOutcome outcome =
        s3 client.PutObject(request);
    if (outcome.IsSuccess()) {
        std::cout << "Added object '" << objectName << "' to bucket '"</pre>
            << bucketName << "'.";
        return true:
         else
        std::cout << "Error: PutObject: " <<</pre>
            outcome.GetError().GetMessage() << std::endl;</pre>
        return false;
```


Google offers a similar set of service families – storage, database, etc.

Microsoft offers the Azure set of cloud services

One important cloud service is allocation of "virtual machines" virtual Linux or Windows machines that can be used to run application code, and can be allocated/deallocated on demand

Cloud Services Service Fabric

Container Service

Container Registry

Functions

Web Apps

Find the compute product you need

IF YOU WANT TO	USE THIS
Provision Linux and Windows virtual machines in seconds with the configurations of your choice	Virtual Machines
Achieve high availability by autoscaling to create thousands of VMs in minutes	Virtual Machine Scale Sets
Get deep discounts when you provision unused compute capacity to run your workloads	Azure Spot Virtual Machines
Build and scale with managed Kubernetes	Azure Kubernetes Service (AKS)
Accelerate app development using an event-driven, serverless architecture	Azure Functions
Develop microservices and orchestrate containers on Windows and Linux	Service Fabric
Quickly create cloud apps for web and mobile with fully managed platform	App Service
Containerize apps and easily run containers with a single command	Container Instances
Cloud-scale job scheduling and compute management with the ability to scale to tens, hundreds, or thousands of virtual machines	<u>Batch</u>
Create highly available, scalable cloud applications and APIs that help you focus on apps instead of hardware	Cloud Services
Deploy your Azure virtual machines on a physical server only used by your organization	Azure Dedicated Host

Kubernetes is a tool for managing collections of computing resources and allocating what runs on each

- Kubernetes can be used on physical clusters of machines
 - But its most common use is for cloud services
- Kubernetes is built on the concept of containers
 - A container is a portion of a computer's resources (CPU cores, memory, interfaces) that can be allocated to a process
 - A pod is a set of containers co-located on the same node (compute machine)
- "Kubernetes maps out how applications should work and interact with other applications. Due to its elasticity, it can scale services up and down as required, perform rolling updates, switch traffic between different versions of your applications to test features or rollback problematic deployments."

- Ubuntu

Code developed using the Kubernetes API manages pods and nodes to achieve performance and scale

BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

More information on Kubernetes

- https://ubuntu.com/kubernetes/what-is-kubernetes
- https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster
- Online implementations:
 - https://cloud.google.com/kubernetes-engine
 - https://aws.amazon.com/eks
 - https://azure.microsoft.com/en-us/services/kubernetes-service
 - https://www.oracle.com/cloud-native/container-engine-kubernetes

- "While Docker is a container runtime, Kubernetes is a platform for running and managing containers from many container runtimes. Kubernetes supports numerous container runtimes including Docker, containerd, CRI-O, and any implementation of the Kubernetes CRI (Container Runtime Interface).
- A good metaphor is Kubernetes as an "operating system" and Docker containers are "apps" that you install on the "operating system"."

OFELECTRICAL

COMPUTER **ENGINEERING**

Anade

Hosted Docker Registry

Docker Trusted Registry on-prem.

On-premises

('n' private organizations)

Docker Hub Registry

Docker Trusted Registry on-cloud

Azure Container Registry

AWS Container Registry

> Google Container Registry

Quay Registry

Other Cloud

Public Cloud

(specific vendors)

BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

More information on Docker

- https://www.docker.com/
- https://aws.amazon.com/docker/
- Docker in action: https://virginiatech.on.worldcat.org/oclc/1139335604

Key Topics for Today

- Cloud computing basics
- Cloud service providers
- A simple code example
- Virtual machines
- Kubernetes
- Docker