How can you improve the value of your home?

The goal of this project is to examine how an existing homeowner can improve the value of their home. Using King County, WA sales data from 2014-15, I will determine which features are most valuable.

```
In [970]:
           1 import pandas as pd
           2 import numpy as np
           3 import matplotlib.pyplot as plt
           4 import seaborn as sns
           5 from scipy import stats
           6 import statsmodels.api as sm
           7 from statsmodels.formula.api import ols
           8 from sklearn.model_selection import train_test_split
           9 | from sklearn.model_selection import cross_validate, ShuffleSplit
           10 from sklearn.linear_model import LinearRegression
```

11 **from** sklearn.metrics **import** mean_squared_error

12 df = pd.read_csv('kc_house_data.csv')

13 df

Out[970]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wat
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	
21592	263000018	5/21/2014	360000.0	3	2.50	1530	1131	3.0	
21593	6600060120	2/23/2015	400000.0	4	2.50	2310	5813	2.0	
21594	1523300141	6/23/2014	402101.0	2	0.75	1020	1350	2.0	
21595	291310100	1/16/2015	400000.0	3	2.50	1600	2388	2.0	
21596	1523300157	10/15/2014	325000.0	2	0.75	1020	1076	2.0	

21597 rows × 21 columns

Let's examine the columns:

```
In [971]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 21597 entries, 0 to 21596
          Data columns (total 21 columns):
           #
               Column
                              Non-Null Count Dtype
                              -----
           0
               id
                              21597 non-null
                                              int64
           1
               date
                              21597 non-null object
           2
               price
                              21597 non-null float64
           3
               bedrooms
                              21597 non-null
                                              int64
           4
                              21597 non-null
                                             float64
               bathrooms
           5
               sqft_living
                              21597 non-null
                                              int64
           6
               sqft_lot
                              21597 non-null
                                             int64
           7
               floors
                              21597 non-null
                                             float64
           8
               waterfront
                              19221 non-null
                                             object
           9
                              21534 non-null
                                             object
               view
           10
               condition
                              21597 non-null
                                             object
                                              object
           11
               grade
                              21597 non-null
           12
               sqft_above
                              21597 non-null
                                              int64
           13
               sqft basement 21597 non-null
                                              object
               yr_built
                              21597 non-null
                                              int64
           15
               yr_renovated
                              17755 non-null
                                             float64
               zipcode
                              21597 non-null
                                              int64
           16
                              21597 non-null
           17
               lat
                                             float64
           18
               long
                              21597 non-null
                                             float64
           19
               sqft_living15 21597 non-null
                                              int64
           20 sqft lot15
                              21597 non-null int64
          dtypes: float64(6), int64(9), object(6)
          memory usage: 3.5+ MB
```

Let's create a 'Month' columns:

```
1 | df['Month'] = pd.DatetimeIndex(df['date']).month
In [972]:
Out[972]:
           0
                     10
           1
                     12
           2
                      2
           3
                     12
           4
                      2
                     . .
           21592
                      5
                      2
           21593
           21594
                      6
           21595
                      1
           21596
                     10
           Name: Month, Length: 21597, dtype: int64
Out[973]:
```

```
5
      2414
4
      2229
7
      2211
6
      2178
8
      1939
10
      1876
3
      1875
      1771
9
```

Eliminating irrelevant columns:

Out[974]:

	price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	gr
0	221900.0	3	1.00	1180	1.0	Average	0.0	10	Aver
1	538000.0	3	2.25	2570	2.0	Average	1991.0	12	Aver
2	180000.0	2	1.00	770	1.0	Average	NaN	2	6 I Aver
3	604000.0	4	3.00	1960	1.0	Very Good	0.0	12	Aver
4	510000.0	3	2.00	1680	1.0	Average	0.0	2	8 G
21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	8 G
21593	400000.0	4	2.50	2310	2.0	Average	0.0	2	8 G
21594	402101.0	2	0.75	1020	2.0	Average	0.0	6	Aver
21595	400000.0	3	2.50	1600	2.0	Average	0.0	1	8 G
21596	325000.0	2	0.75	1020	2.0	Average	0.0	10	Aver

21597 rows × 9 columns

Correlation Heat Map:

'Sqft_Living' has the highest correlation with 'price'. Let's look at scatter plots and histograms to check the linearity and whether each variable is uniformly distributed.

Let's take a closer look at 'sqft living' and price:

The relationship is certainly linear but it isn't normally distributed. Let's look at the distributions of some of the other variables.

Ok, so it looks like it's best to use 'sqft_living' for our independent variable. So, let's do it:

```
In [983]: 1 X_baseline= df['sqft_living']
2 y_baseline= df['price']
Out[983]:
```

```
0
                       1180
            1
                       2570
            2
                        770
            3
                       1960
In [984]:
                X_baseline= sm.add_constant(X_baseline)
            C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: F
            utureWarning: In a future version of pandas all arguments of concat except fo
            r the argument 'objs' will be keyword-only
              x = pd.concat(x[::order], 1)
In [985]:
Out[985]:
            OLS Regression Results
                 Dep. Variable:
                                          price
                                                     R-squared:
                                                                       0.493
                       Model:
                                          OLS
                                                 Adj. R-squared:
                                                                       0.493
                      Method:
                                  Least Squares
                                                      F-statistic:
                                                                   2.097e+04
                        Date: Thu, 19 May 2022 Prob (F-statistic):
                                                                        0.00
                        Time:
                                      13:02:17
                                                 Log-Likelihood: -3.0006e+05
             No. Observations:
                                        21597
                                                           AIC:
                                                                   6.001e+05
                 Df Residuals:
                                        21595
                                                           BIC:
                                                                   6.001e+05
                    Df Model:
             Covariance Type:
                                      nonrobust
                              coef
                                     std err
                                                      P>|t|
                                                               [0.025]
                                                                          0.975]
                 const -4.399e+04 4410.023
                                               -9.975 0.000 -5.26e+04
                                                                      -3.53e+04
             sqft_living
                          280.8630
                                      1.939 144.819 0.000
                                                              277.062
                                                                        284.664
                  Omnibus: 14801.942
                                         Durbin-Watson:
                                                              1.982
             Prob(Omnibus):
                                 0.000 Jarque-Bera (JB): 542662.604
                      Skew:
                                 2.820
                                               Prob(JB):
                                                               0.00
```

Notes:

Kurtosis:

26.901

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5.63e+03

[2] The condition number is large, 5.63e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Cond. No.

```
In [986]: 1 residuals = baseline_model.resid
2 fig = sm.graphics.qqplot(residuals, dist=stats.norm, fit=True, line='45',)
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:9
93: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "ho" (-> marker='o') The keyword argument will take no

Ok, it really isn't a great fit at all and the residuals are not homoscedastic. **Let's improve by adding more features.**

Data Preparation ,Cleaning, and Preprocessing

So, before we add more features, let's get it ready for processing.

In [988]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 9 columns):
```

Column Non-Null Count Dtype ---------21597 non-null float64 0 price 1 bedrooms 21597 non-null int64 2 bathrooms 21597 non-null float64 3 sqft_living 21597 non-null int64 4 floors 21597 non-null float64 5 condition 21597 non-null object 6 yr_renovated 17755 non-null float64 7 Month 21597 non-null int64 grade 21597 non-null object

Fill in null values for 'yr_renovated'. 0 is actually the mode of this column so it's a good pick.

```
In [989]: 1 df['yr_renovated'].fillna(0.0, inplace=True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype				
0	price	21597 non-null	float64				
1	bedrooms	21597 non-null	int64				
2	bathrooms	21597 non-null	float64				
3	sqft_living	21597 non-null	int64				
4	floors	21597 non-null	float64				
5	condition	21597 non-null	object				
6	yr_renovated	21597 non-null	float64				
7	Month	21597 non-null	int64				
8	grade	21597 non-null	object				
<pre>dtypes: float64(4), int64(3), object(2)</pre>							
memo	ry usage: 1.5+	MB					

```
In [990]: | 1 | df['yr_renovated'].isna().value_counts()
```

Out[990]: False 21597

Name: yr_renovated, dtype: int64

In [991]:

Out[991]:

gr	Month	yr_renovated	condition	floors	sqft_living	bathrooms	bedrooms	price	
Aver	10	0.0	Average	1.0	1180	1.00	3	221900.0	0
Aver	12	1991.0	Average	2.0	2570	2.25	3	538000.0	1
6 I Aver	2	0.0	Average	1.0	770	1.00	2	180000.0	2
Aver	12	0.0	Very Good	1.0	1960	3.00	4	604000.0	3

	price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	gr
4	510000.0	3	2.00	1680	1.0	Average	0.0	2	8 G
			•••						
21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	8 G

Let's make a model with only numeric features:

```
In [992]:
In [993]:
Out[993]:
                  price bedrooms bathrooms sqft_living floors yr_renovated
             0 221900.0
                             3
                                    1.00
                                            1180
                                                   1.0
                                                             0.0
             1 538000.0
                             3
                                    2.25
                                            2570
                                                   2.0
                                                           1991.0
              180000.0
                                             770
                             2
                                    1.00
                                                   1.0
                                                             0.0
              604000.0
                             4
                                            1960
                                    3.00
                                                   1.0
                                                             0.0
```

21592 360000.0 3 2.50 1530 3.0 0.0 **21593** 400000.0 4 2.50 2310 2.0 0.0 2 **21594** 402101.0 0.75 1020 2.0 0.0 **21595** 400000.0 3 2.50 1600 2.0 0.0

0.75

2

2.00

1680

1020

1.0

2.0

0.0

0.0

21597 rows × 6 columns

21596 325000.0

510000.0

```
In [994]: 1 X_numeric= Numeric.drop('price', axis=1)
```

```
In [995]: 1 X_numeric = sm.add_constant(X_numeric)
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: F utureWarning: In a future version of pandas all arguments of concat except fo r the argument 'objs' will be keyword-only

```
x = pd.concat(x[::order], 1)
```

```
In [996]: ( )
```

Out[996]: OLS Regression Results

```
Dep. Variable:priceR-squared:0.513Model:OLSAdj. R-squared:0.513Method:Least SquaresF-statistic:4556.Date:Thu, 19 May 2022Prob (F-statistic):0.00
```

Time:	13:02:22	Log-Likelihood:	-2.9961e+05
No. Observations:	21597	AIC:	5.992e+05
Df Residuals:	21591	BIC:	5.993e+05
Df Model:	5		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	7.171e+04	7661.047	9.361	0.000	5.67e+04	8.67e+04
bedrooms	-5.78e+04	2344.310	-24.654	0.000	-6.24e+04	-5.32e+04
bathrooms	5910.5602	3808.216	1.552	0.121	-1553.825	1.34e+04
sqft_living	308.7572	3.083	100.162	0.000	302.715	314.799
floors	2104.8528	3761.480	0.560	0.576	-5267.927	9477.632
yr_renovated	81.2053	4.799	16.920	0.000	71.798	90.612

Omnibus: 14310.293 **Durbin-Watson:** 1.987

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 479360.010

 Skew:
 2.709
 Prob(JB):
 0.00

 Kurtosis:
 25.435
 Cond. No.
 1.04e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.04e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [997]:
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:9 93: UserWarning: marker is redundantly defined by the 'marker' keyword argume nt and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

ax.plot(x, y, fmt, **plot_style)

So, this looks ok but there are problems as the quantiles increase too dramatically and skew the line. This is sort of similar to the fat tails of the sqft_living histogram from earlier. Log transforming might help it out. But, let's look at the categorical values first.

One Hot Encoding categories

```
In [998]:
 Out[998]: 7 Average
                             8974
           8 Good
                             6065
           9 Better
                             2615
           6 Low Average
                             2038
           10 Very Good
                             1134
           11 Excellent
                              399
                              242
           5 Fair
           12 Luxury
                               89
                               27
           4 Low
           13 Mansion
                               13
            3 Poor
                                1
           Name: grade, dtype: int64
 In [999]:
                new_grades = {'3 Poor':3, '4 Low':4, '5 Fair':5, '6 Low Average':6, '7 Ave
                              '10 Very Good':10, '11 Excellent':11, '12 Luxury':12, '13 Mar
In [1000]:
Out[1000]:
```

price bedrooms bathrooms sqft_living floors condition yr_renovated Month grad

	price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	grad
0	221900.0	3	1.00	1180	1.0	Average	0.0	10	
1	538000.0	3	2.25	2570	2.0	Average	1991.0	12	
2	180000.0	2	1.00	770	1.0	Average	0.0	2	
3	604000.0	4	3.00	1960	1.0	Very Good	0.0	12	
4	510000.0	3	2.00	1680	1.0	Average	0.0	2	
21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	
21593	400000.0	4	2.50	2310	2.0	Average	0.0	2	
21594	402101.0	2	0.75	1020	2.0	Average	0.0	6	
21595	400000.0	3	2.50	1600	2.0	Average	0.0	1	
21596	325000.0	2	0.75	1020	2.0	Average	0.0	10	

In [1003]: 1 Conditions_encoded = pd.DataFrame(Conditions_encoded, columns=ohe.categori

Out[1003]:

	Average	Fair	Good	Poor	Very Good
0	1.0	0.0	0.0	0.0	0.0
1	1.0	0.0	0.0	0.0	0.0
2	1.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	1.0
4	1.0	0.0	0.0	0.0	0.0
21592	1.0	0.0	0.0	0.0	0.0
21593	1.0	0.0	0.0	0.0	0.0
21594	1.0	0.0	0.0	0.0	0.0

```
21595
                       0.0
                             0.0
                                          0.0
                    1.0
                                 0.0
           21596
                    1.0
                       0.0
                             0.0
                                 0.0
                                          0.0
In [1004]:
Out[1004]: <matplotlib.collections.PathCollection at 0x2873a9c4be0>
           7
           6
           5
           4
           3
           2
           1
                    0.2
                            0.4
                                   0.6
                                          0.8
In [1005]:
           1 Month = df[['Month']]
             ohe = OneHotEncoder(categories="auto", sparse=False, handle unknown="ignor
           3 ohe.fit(Month)
Out[1005]: [array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int64)]
In [1006]:
           1 Month encoded = ohe.transform(Month)
Out[1006]: array([[0., 0., 0., ..., 1., 0., 0.],
                [0., 0., 0., \ldots, 0., 0., 1.],
                [0., 1., 0., \ldots, 0., 0., 0.]
                [0., 0., 0., \ldots, 0., 0., 0.]
                [1., 0., 0., ..., 0., 0., 0.]
                [0., 0., 0., ..., 1., 0., 0.]]
In [1007]:
           1 | Month_encoded = pd.DataFrame(Month_encoded, columns=ohe.categories_[0], ir
Out[1007]:
                     2
                                     7
                                                      12
                                               10
                                                  11
              0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
              0.0
                          0.0
                             0.0
                                 0.0
                                    0.0
                                       0.0
                                           0.0
                                              0.0
                                                  0.0
```

Average Fair Good Poor Very Good

```
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12

      21592
      0.0
      0.0
      0.0
      1.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0
```

In [1008]:

Out[1008]:

	January	February	March	April	May	June	July	August	September	October	Novemb
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
2	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
4	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
21592	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	(
21593	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
21594	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	(
21595	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(
21596	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	(

Creating a Completed Renovations Column and a Recent renovations Column:

		price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	grad
	3	604000.0	4	3.00	1960	1.0	Very Good	0.0	12	
	4	510000.0	3	2.00	1680	1.0	Average	0.0	2	
	21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	
	21593	400000.0	4	2.50	2310	2.0	Average	0.0	2	
	21594	402101.0	2	0.75	1020	2.0	Average	0.0	6	
In [1013]:	2 o	2 ohe = OneHotEncoder(categories="auto", sparse=False, handle_unknown="ignor								
Out[1013]:	[array	y([False,	True])]							
In [1014]:	1 F	inished_F	Reno_encod	led = ohe.	transform((Finish	ned_Reno)			
Out[1014]:	array	[1., 0.] [1., 0.] [1., 0.] [1., 0.] [1., 0.] [1., 0.]],],],							

In [1015]:

Finished_Reno_encoded = pd.DataFrame(Finished_Reno_encoded, columns=ohe.ca
Finished_Reno_encoded.columns=['Not_Renovated', 'Renovated']

Out[1015]:

	Not_Renovated	Renovated
0	1.0	0.0
1	0.0	1.0
2	1.0	0.0
3	1.0	0.0
4	1.0	0.0
21592	1.0	0.0
21593	1.0	0.0
21594	1.0	0.0
21595	1.0	0.0
21596	1.0	0.0

```
In [1016]:
              1 Recent_Reno = df[['Recent_Renovation']]
              2 ohe = OneHotEncoder(categories="auto", sparse=False, handle_unknown="ignor
              3 ohe.fit(Recent_Reno)
Out[1016]: [array([False, True])]
In [1017]:
              1 Recent_Reno_encoded = ohe.transform(Recent_Reno)
Out[1017]: array([[1., 0.],
                    [1., 0.],
                    [1., 0.],
                    [1., 0.],
                    [1., 0.],
                    [1., 0.]]
In [1018]:
              1 Recent_Reno_encoded = pd.DataFrame(Recent_Reno_encoded, columns=ohe.catego
              2 Recent_Reno_encoded.columns=['Not_Renovated Recently', 'Renovated Recently
Out[1018]:
                   Not_Renovated Recently Renovated Recently
                0
                                                      0.0
                                     1.0
                 1
                                                       0.0
                                     1.0
                2
                                     1.0
                                                       0.0
                 3
                                     1.0
                                                       0.0
                 4
                                     1.0
                                                       0.0
                                                       ...
             21592
                                     1.0
                                                       0.0
             21593
                                                       0.0
                                     1.0
             21594
                                     1.0
                                                       0.0
             21595
                                     1.0
                                                       0.0
             21596
                                                       0.0
                                     1.0
```

Combining numerical features:

In [1019]: 1 month_and_cond= pd.concat((Month_encoded, Conditions_encoded, Recent_Reno_
Out[1019]:

January	February	March	April	May	June	July	August	September	October	 Dec
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

	January	February	March	April	May	June	July	August	September	October	 Dec
21592	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
21593	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
21594	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
21595	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

In [1020]:

1 df= pd.concat((df,month_and_cond), axis=1)

Out[1020]:

	price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	grad
0	221900.0	3	1.00	1180	1.0	Average	0.0	10	
1	538000.0	3	2.25	2570	2.0	Average	1991.0	12	
2	180000.0	2	1.00	770	1.0	Average	0.0	2	
3	604000.0	4	3.00	1960	1.0	Very Good	0.0	12	
4	510000.0	3	2.00	1680	1.0	Average	0.0	2	
21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	
21593	400000.0	4	2.50	2310	2.0	Average	0.0	2	
21594	402101.0	2	0.75	1020	2.0	Average	0.0	6	
21595	400000.0	3	2.50	1600	2.0	Average	0.0	1	
21596	325000.0	2	0.75	1020	2.0	Average	0.0	10	

21597 rows × 32 columns

```
1 df_corr_2 = df.corr()
In [1021]:
             2
             3
               fig, ax = plt.subplots(figsize=(20, 12))
             4
                sns.heatmap(
             6
                    data=df_corr_2,
             7
                    mask=np.triu(np.ones_like(df_corr_2, dtype=bool)),
             8
             9
                    annot=True,
                    cbar_kws={"label": "Correlation", "orientation": "horizontal", "pad":
            10
            11
```

Some of the correlations are on the Boolean columns will probably create noise in any model.

In [1022]:
Out[1022]:

	price	bedrooms	bathrooms	sqft_living	floors	condition	yr_renovated	Month	grad
0	221900.0	3	1.00	1180	1.0	Average	0.0	10	
1	538000.0	3	2.25	2570	2.0	Average	1991.0	12	
2	180000.0	2	1.00	770	1.0	Average	0.0	2	
3	604000.0	4	3.00	1960	1.0	Very Good	0.0	12	
4	510000.0	3	2.00	1680	1.0	Average	0.0	2	
21592	360000.0	3	2.50	1530	3.0	Average	0.0	5	
21593	400000.0	4	2.50	2310	2.0	Average	0.0	2	
21594	402101.0	2	0.75	1020	2.0	Average	0.0	6	
21595	400000.0	3	2.50	1600	2.0	Average	0.0	1	

```
On to the model:
```

```
In [1024]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 21597 entries, 0 to 21596
          Data columns (total 29 columns):
                                    Non-Null Count Dtype
              ----
                                    -----
           0
              price
                                    21597 non-null float64
                                    21597 non-null int64
           1
              bedrooms
           2
              bathrooms
                                   21597 non-null float64
           3
              sqft_living
                                   21597 non-null int64
           4
              floors
                                    21597 non-null float64
           5
              yr renovated
                                  21597 non-null float64
           6
              Month
                                   21597 non-null int64
           7
                                   21597 non-null int64
              grade
           8
              January
                                   21597 non-null float64
           9
              February
                                    21597 non-null float64
           10 March
                                   21597 non-null float64
                                    21597 non-null float64
           11 April
           12 May
                                   21597 non-null float64
           13
                                   21597 non-null float64
              June
           14 July
                                   21597 non-null float64
           15 August
                                   21597 non-null float64
                                    21597 non-null float64
           16 September
           17 October
                                   21597 non-null float64
           18 November
                                   21597 non-null float64
           19 December
                                    21597 non-null float64
           20 Average
                                    21597 non-null float64
                                    21597 non-null float64
           21 Fair
           22 Good
                                    21597 non-null float64
                                    21597 non-null float64
           23 Poor
           24 Very Good
                                    21597 non-null float64
           25 Not_Renovated Recently 21597 non-null float64
           26 Renovated Recently
                                    21597 non-null float64
           27 Not_Renovated
                                    21597 non-null float64
           28 Renovated
                                    21597 non-null float64
          dtypes: float64(25), int64(4)
          memory usage: 4.8 MB
In [1025]:
           1 X_model_4= df.drop('price', axis=1)
           1 X_model_4= sm.add_constant(X_model_4)
In [1026]:
          C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: F
          utureWarning: In a future version of pandas all arguments of concat except fo
          r the argument 'objs' will be keyword-only
            x = pd.concat(x[::order], 1)
```

In [1027]:

Out[1027]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.570
Model:	OLS	Adj. R-squared:	0.569
Method:	Least Squares	F-statistic:	1242.
Date:	Thu, 19 May 2022	Prob (F-statistic):	0.00
Time:	13:02:34	Log-Likelihood:	-2.9828e+05
No. Observations:	21597	AIC:	5.966e+05
Df Residuals:	21573	BIC:	5.968e+05
Df Model:	23		
Covariance Type:	nonrobust		

const -1.595e+06 3.07e+05 -5.193 0.000 -2.2e+06 -9.93e+05

```
In [1028]:
```

```
residuals = Fourth_model.resid
fig = sm.graphics.qqplot(residuals, dist=stats.norm, fit=True, line='45',)
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:9 93: UserWarning: marker is redundantly defined by the 'marker' keyword argume nt and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

```
ax.plot(x, y, fmt, **plot_style)
```


Again, this model violates the assumption of normality of errors so we need to do a few things to change the data. First, let's drop some boolean and redundant columns.

```
In [1029]:
```

```
1 #drop not recently renovated, not renovated, Month
```

In [1030]:

Out[1030]:

	price	bedrooms	bathrooms	sqft_living	floors	yr_renovated	grade	January	Februa
0	221900.0	3	1.00	1180	1.0	0.0	7	0.0	1
1	538000.0	3	2.25	2570	2.0	1991.0	7	0.0	1
2	180000.0	2	1.00	770	1.0	0.0	6	0.0	
3	604000.0	4	3.00	1960	1.0	0.0	7	0.0	1
4	510000.0	3	2.00	1680	1.0	0.0	8	0.0	
21592	360000.0	3	2.50	1530	3.0	0.0	8	0.0	1
21593	400000.0	4	2.50	2310	2.0	0.0	8	0.0	
21594	402101.0	2	0.75	1020	2.0	0.0	7	0.0	1
21595	400000.0	3	2.50	1600	2.0	0.0	8	1.0	1
21596	325000.0	2	0.75	1020	2.0	0.0	7	0.0	1

21597 rows × 26 columns

```
In [1031]:    1    X_model_5= df.drop('price', axis=1)
```

```
In [1032]: 1 X_model_5= sm.add_constant(X_model_5)
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: F utureWarning: In a future version of pandas all arguments of concat except fo r the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

In [1033]:

Out[1033]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.570
Model:	OLS	Adj. R-squared:	0.569
Method:	Least Squares	F-statistic:	1242.
Date:	Thu, 19 May 2022	Prob (F-statistic):	0.00
Time:	13:02:35	Log-Likelihood:	-2.9828e+05
No. Observations:	21597	AIC:	5.966e+05
Df Residuals:	21573	BIC:	5.968e+05
Df Model:	23		
Covariance Type:	nonrobust		

coef std err t P>|t| [0.025 0.975]

const	-3.908e+05	1.32e+04	-29.591	0.000	-4.17e+05	-3.65e+05
bedrooms	-4.305e+04	2247.409	-19.158	0.000	-4.75e+04	-3.86e+04
bathrooms	-1.356e+04	3631.989	-3.733	0.000	-2.07e+04	-6440.477
sqft_living	212.7252	3.544	60.016	0.000	205.778	219.673
floors	-1.663e+04	3752.016	-4.433	0.000	-2.4e+04	-9279.393
yr_renovated	3707.6403	787.462	4.708	0.000	2164.156	5251.124
grade	1.1e+05	2344.069	46.938	0.000	1.05e+05	1.15e+05
January	-4.107e+04	7328.167	-5.604	0.000	-5.54e+04	-2.67e+04
February	-3.701e+04	6556.983	-5.644	0.000	-4.99e+04	-2.42e+04
March	-5258.1896	5466.352	-0.962	0.336	-1.6e+04	5456.264
April	892.5514	5084.056	0.176	0.861	-9072.574	1.09e+04
Мау	-2.797e+04	4905.965	-5.701	0.000	-3.76e+04	-1.84e+04
June	-3.353e+04	5149.683	-6.511	0.000	-4.36e+04	-2.34e+04
July	-4.41e+04	5106.588	-8.636	0.000	-5.41e+04	-3.41e+04
August	-4.043e+04	5405.426	-7.479	0.000	-5.1e+04	-2.98e+04
September	-4.401e+04	5604.592	-7.853	0.000	-5.5e+04	-3.3e+04
October	-3.156e+04	5466.775	-5.772	0.000	-4.23e+04	-2.08e+04
November	-3.93e+04	6201.602	-6.338	0.000	-5.15e+04	-2.71e+04
December	-4.749e+04	6086.226	-7.802	0.000	-5.94e+04	-3.56e+04
Average	-1.607e+05	9076.636	-17.704	0.000	-1.78e+05	-1.43e+05
Fair	-1.126e+05	1.73e+04	-6.521	0.000	-1.46e+05	-7.87e+04
Good	-9.55e+04	9106.462	-10.487	0.000	-1.13e+05	-7.77e+04
Poor	-1.744e+04	3.74e+04	-0.467	0.641	-9.07e+04	5.58e+04
Very Good	-4600.8581	9903.028	-0.465	0.642	-2.4e+04	1.48e+04
Renovated Recently	-4.954e+04	2.56e+04	-1.936	0.053	-9.97e+04	622.763
Renovated	-7.19e+06	1.57e+06	-4.593	0.000	-1.03e+07	-4.12e+06

Omnibus: 16634.219 **Durbin-Watson:** 1.990

Prob(Omnibus): 0.000 **Jarque-Bera (JB):** 964690.215

Skew: 3.209 **Prob(JB):** 0.00

Kurtosis: 35.107 **Cond. No.** 3.09e+17

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 1.17e-24. This might indicate that there are

```
In [ ]: 1
```

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:9 93: UserWarning: marker is redundantly defined by the 'marker' keyword argume nt and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

```
ax.plot(x, y, fmt, **plot_style)
```


Again, the assumption of normality is violated. The solution may lie in log transforming.

Log transforming

x = pd.concat(x[::order], 1)

```
In [1035]:
           1 continuous = ['sqft_living', 'price']
           2 df_conti= df[continuous]
           3 log_names = [f'{column}_log' for column in df_conti.columns]
           4 df_log = np.log(df_conti)
           5 df_log.columns = log_names
           6 def normalize(feature):
           7
                 return (feature - feature.mean()) / feature.std()
           8
In [1036]:
           In [1037]:
           3 y_log= df_log_normal['price_log']
           1 | X_log = sm.add_constant(X_log)
In [1038]:
          C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: F
          utureWarning: In a future version of pandas all arguments of concat except fo
          r the argument 'objs' will be keyword-only
```

In [1039]:

Out[1039]:

OLS Regression Results

Dep. Variable: price_log **R-squared:** 0.558

Model: OLS Adj. R-squared: 0.557

Method: Least Squares **F-statistic:** 1601.

Date: Thu, 19 May 2022 Prob (F-statistic): 0.00

Time: 13:02:36 **Log-Likelihood:** -21833.

No. Observations: 21597 **AIC:** 4.370e+04

Df Residuals: 21579 **BIC:** 4.385e+04

Df Model: 17

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-2.5342	0.050	-50.841	0.000	-2.632	-2.436
sqft_living_log	0.3725	0.008	45.081	0.000	0.356	0.389
bedrooms	-0.0510	0.006	-7.998	0.000	-0.063	-0.038
floors	-0.0492	0.009	-5.204	0.000	-0.068	-0.031
yr_renovated	0.0002	1.55e-05	13.887	0.000	0.000	0.000
grade	0.3875	0.006	62.933	0.000	0.375	0.400
January	-0.2673	0.020	-13.059	0.000	-0.307	-0.227
February	-0.2380	0.018	-13.004	0.000	-0.274	-0.202
March	-0.1508	0.015	-9.821	0.000	-0.181	-0.121
April	-0.1006	0.014	-7.039	0.000	-0.129	-0.073
May	-0.1822	0.014	-13.157	0.000	-0.209	-0.155
June	-0.1941	0.014	-13.410	0.000	-0.223	-0.166
July	-0.2239	0.014	-15.616	0.000	-0.252	-0.196
August	-0.2270	0.015	-15.002	0.000	-0.257	-0.197
September	-0.2288	0.016	-14.573	0.000	-0.260	-0.198
October	-0.2163	0.015	-14.119	0.000	-0.246	-0.186
November	-0.2406	0.017	-13.863	0.000	-0.275	-0.207
December	-0.2645	0.017	-15.523	0.000	-0.298	-0.231
novated Recently	0.0731	0.051	1.428	0.153	-0.027	0.173

Omnibus: 81.303 Durbin-Watson: 1.978

Prob(Omnibus): 0.000 Jarque-Bera (JB): 81.949

Skew: 0.148 **Prob(JB):** 1.60e-18

Kurtosis: 2.937 Cond. No. 2.28e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 5.72e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

C:\Users\isaia\anaconda3\lib\site-packages\statsmodels\graphics\gofplots.py:9 93: UserWarning: marker is redundantly defined by the 'marker' keyword argume nt and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

```
ax.plot(x, y, fmt, **plot_style)
```


So, this looks alot better. Now, we have a much better fit. Also, the skewness and kurtosis have decreased to acceptable numbers. Now let's look at the scedasticity of 'sqft living log'.

Calculations for Square Footage, Grade, and Renovation.

For a 5% increase in square footage:

```
In [1043]: 1.0183901806917963

1 unit change in grade:

In [1044]: 38.75

Recently Renovated:

In [1045]: 7.31
```

Recommendations

- 1. Improving the square footage by 5% leads to an increase in price of 2%.
- 2. Improving the grade by 1 unit will increase price by 39%.

3. Recently Renovated homes sell for 7% more.

In [1046]: 0ut[1046]: 1.0183901806917963

Overall, it looks good but there are certainly some concerns. First, the model may be overfitted as it hues very closely to the line for most of its duration. Another concern is the R-squared value although the R-squared value is a reflection is of the fact that the model does not contain many important features like zip code, waterfront, and view. Even so, those factors should be excluded because an existing homeowner cannot change them.

We also should be weary of generalizing too much with this data since it is from a very unique real estate market where prices have continued to rise over the last few decades. Comparing the Seattle area with other areas of comparable size may not work since Seattle is home to so much wealth. However, for homeowners in this area, the results are very valuable and can lead to greater potential profits.