Основы комбинаторики и теории чисел

Сергей Григорян

19 сентября 2024 г.

Содержание

1	Лекция 2								
	1.1	Отобр	ажения и соответствия	3					
	1.2	Образ	и прообраз	4					
	1.3	Компо		5					
2	Лекция 3								
	2.1	Мощн	ОСТИ МН-В	6					
		2.1.1	Парадоксы	6					
		2.1.2	Счётных мн-в	8					
		2.1.3	Отношение равномощности	G					
		2.1.4	Сравнимость по мощности	Ĝ					

1 Лекция 2

1.1 Отображения и соответствия

<u>Определение</u> 1.1. Соответствие (или многозначная ф-ция, или точечномнож. отображение) - подмн-во декартова произведения мн-в \boldsymbol{A} и \boldsymbol{B} .

 $F \subset A \times B$ - соответствие между A и B

Замечание. Непустозначное соответствие: $\forall x, \exists y : (x, y) \in F$

Картинки графика и двудольного графа

Определение 1.2. Отображение - однозначное соотв.

$$\forall x, \exists ! y : (x, y) \in f$$

∀- для любого, ∃! – существует единственный

Определение 1.3. Частично определённая ф-ция:

$$\forall x : (\neg \exists y : (x, y) \in F) \lor (\exists ! y : (x, y) \in F)$$

Определение 1.4. Инъекция - отображение, т. ч. $\forall x, y (x \neq y \rightarrow f(x) \neq f(y))$

Определение 1.5. f(x) - тот элемент z: $(x,z) \in f$

Определение 1.6. F(x) - образ $x \iff F(x) = \{z : (x, z) \in F\}$

Определение 1.7. Инъективные соответствия:

$$\forall x,y(x\neq y\rightarrow F(x)\cap F(y)=\emptyset)$$

Определение 1.8. Сюрьекция - отображение, т. ч. $\forall y, \exists x (y = f(x))$

Определение 1.9. Сюрьективное соответствие:

$$\forall y, \exists x: \, (x,y) \in F$$

Или по другому: $\forall y, \exists x : y \in F(x)$

Определение 1.10. Биекция - отображение, которое одновременно сюрьекция и инъекция.

Биекция = отображение + сюрьекция + инъекция

Замечание. Отдельного понятия биективного соответствия нет.

Определение 1.11. Обратное соответствие $F \subset A \times B$ - $F^{-1} \subset B \times A$:

$$(x, y) \in F \iff (y, x) \in F^{-1}$$

<u>Теорема</u> 1.1. F - Биекция \iff F - взаимнооднозначное соответствие (т. e. F и F^{-1} - отображения)

<u>Замечание</u>. Частично опред. ϕ -ция + непустознач. соотв = отображение Доказательство.

- ullet F явл. инъективным соответствием \iff $F^{-1}-$ частично опред. ф-ция.
- ullet F явл. сюрьективным соответствием \iff $F^{-1}-$ непустозначное соотв.

1.2 Образ и прообраз

Определение 1.12. Пусть $S \subset A$. Тогда образ S:

- Для отображения: $f(S) = \{f(x) | x \in S\}$
- Для соотв.: $F(S) = \bigcup_{x \in S} F(x)$

Определение 1.13. Пусть $T \subset B$. Тогда прообраз T:

- Для отображения: $f^{-1}(T) = \{x | f(x) \in T\}$
- Для соотв.: $F^{-1} = \{x | F(x) \cap T \neq \emptyset\}$

<u>Утверждение</u> 1.1. $F(S \cap Q) \subset F(S) \cap F(Q)$

Доказательство. Пусть $y \in F(S \cap Q) \Rightarrow \exists x \in S \cap Q : y \in F(x)$:

$$\begin{cases} \exists x \in S : \ y \in F(x) \\ \exists x \in Q : \ y \in F(x) \end{cases} \Rightarrow \begin{cases} y \in F(S) \\ y \in F(Q) \end{cases} \Rightarrow y \in F(S) \cap F(Q)$$

Утверждение 1.2 (Обратное.). Если F - инъективно, то

$$F(S) \cap F(Q) \subset F(S \cap Q)$$

Доказательство.

$$y \in F(S) \cap F(Q) \Rightarrow$$

$$\begin{cases} y \in F(S) \\ y \in F(Q) \end{cases} \Rightarrow \begin{cases} \exists x_1 \in S : \ y \in F(x_1) \\ \exists x_2 \in Q : \ y \in F(x_2) \end{cases} \Rightarrow x_1 \neq x_2 \Rightarrow \text{Нарушает инъективность}$$

$$\Rightarrow x_1 = x_2 = x \Rightarrow \exists x \in S \cap Q : \ y \in F(x)$$

1.3 Композиция

Определение 1.14. Композиция отображений $f \circ g$, опр. так:

$$f \circ g(x) = f(g(x))$$

Определение 1.15. Композиция соотв. $F \circ G$

$$\begin{cases} F : B \to C \\ G : A \to B \end{cases} \Rightarrow F \circ G(x) = F(G(x))$$

Причём G(x) - это мн-во значений $\Rightarrow F(G(x))$ - образ G(x) Или, эквив.: $(x,z) \in F \circ G \iff \exists y((x,y) \in G \land (y,z) \in F)$

Свойства композиции:

- 1) Ассоциативность: $F \circ (G \circ H) = (F \circ G) \circ H$
- 2) Отсутствие коммутативности (в общем случае): $F \circ G \neq G \circ F$

Обозначение. Тождественное отображение:

$$id_A: A \to A$$

 $id_A(x) = x$

$$G: A \rightarrow B \Rightarrow G \circ id_A(x) = id_B \circ G(x) = G(x)$$

Утверждение 1.3. Если $F:A\to A$ - биекция, то:

$$F \circ F^{-1} = id_A = F^{-1} \circ F$$

Обозначение. Мн-во всех отображений из A в B будем называть B^A

Утверждение 1.4. Если |A|=n и |B|=k, то $|B^A|=k^n$

Теорема 1.2. Пусть A, B, C - мн-ва. Тогда:

- 1) $A^C \times B^C \sim (A \times B)^C$
- 2) $A^{B \cup C} \sim A^B \times A^C, B \cap C \neq \emptyset$
- 3) $A^{B \times C} \sim (A^B)^C$

Доказательство. 1)

$$\begin{cases} f: C \to A \\ g: C \to B \end{cases} \longleftrightarrow h: C \to A \times B, h(x) = (f(x), g(x))$$

2)
$$\begin{cases} f: B \to A \\ g: C \to A \end{cases} \longleftrightarrow h: B \cup C \to A \Rightarrow h(x) = \begin{cases} f(x), x \in B \\ g(x), x \in C \end{cases}$$

3)
$$\begin{cases} f: B \times C \to A \\ g: C \to A^B \end{cases} \Rightarrow g(x): B \to A \Rightarrow g(x)(z) = f(z, x)$$

2 Лекция 3

2.1 Мощности мн-в

2.1.1 Парадоксы

Парадокс Галилея:

Все нат. числа	⊉	полные квадаты
n	\longleftrightarrow	n^2

Гранд-отель Гильберта:

1) Все места заняты, нужно подселить постояльца:

Решение	Новый	\rightarrow	0
гешение.	i	\rightarrow	(i + 1)

2) Есть своб. места, хотим занять все комнаты имеющимися постояльцами:

Решение. Если мн-во занятых комнат бесконечно, то:

3) 2 гранд-отеля, полностью заняты. Один закрылся, как всех заселить?

Решение.

 \Rightarrow

4) Гранд-авенью, гранд-отелей. Цель: переселить всех в один отель: Решение.

Отель 0: → неч. номера

Отель 1: \mapsto номера, кот. \vdots 2, $\cancel{7}$ 4

Отель 2: \mapsto номера, кот. \vdots 4, $\cancel{/}$ 8

Отель k: \mapsto номера, кот \vdots 2^k , $neq 2^{k+1}$

2.1.2 Счётных мн-в

Определение 2.1. A и B равномощны $(A \cong B)$, если \exists биекция $f: A \to B$

Определение 2.2. A наз-ся счётным, если $A\cong \mathbb{N}$

Утверждение 2.1. 1) A счётно $\Rightarrow A \cup x$ счётно

- 2) Любое подмн-во счётного мн-ва конечно или счётно
- 3) A, B счётны $\Rightarrow A \cup B$ счётно
- 4) A_0, A_1, \dots сч. $\Rightarrow \bigcup_{i=0}^{\infty} A_i$ сч. или: A, B сч. $\Rightarrow A \times B$ сч.

Доказательство. 1) $f:A \to \mathbb{N}$ - биекция

$$g: A \cup \{x\} \rightarrow \mathbb{N}$$
:

$$\begin{cases} g(x) = 0 \\ g(y) = f(y) + 1, y \in A \end{cases}$$

 $f\,:\,A\rightarrow\mathbb{N},$ - биекция; $B\subset A$

$$g\,:\, B \rightarrow \mathbb{N}; g\left(x\right) = \#\left\{\,y \in B \mid f\left(y\right) < f\left(x\right)\,\right\}$$

3) $f: A \to \mathbb{N}; g: B \to \mathbb{N}$ $h: A \cup B \to \mathbb{N}; h(x) = \begin{cases} 2f(x), x \in A \\ 2g(x) + 1, x \in B \end{cases}$

4)
$$f: A \to \mathbb{N};$$

$$g: B \to \mathbb{N};$$

$$h: A \times B \to \mathbb{N}; h(x, y) = 2^{f(x)} * (2g(y) + 1) - 1$$

2.1.3 Отношение равномощности

Утверждение 2.2. Общие св-ва равномощности:

- 1) Рефлексивность: $A \cong A$ (т. к. id_A биекция)
- 2) Симметричность: $A \cong B \iff B \cong A$ (f биекция $\iff f^{-1}$ биекция)
- 3) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ (т. к. композиция биекций биекция)
- 2.1.4 Сравнимость по мощности

Обозначение.
• Нестрогая: $A \cong B$, если $\exists B' \subset B, A \cong B'$ (A не более мозно чем B)

• Строгая: $A \approx B$, если $A \cong B$, $A \not\cong B$ (A менее мощно чем B)

Утверждение 2.3. Св-ва сравнимости по мощ-ти:

- 1) Рефлексивность: $A \ncong A$; Антирефлексивность: $A \not \curvearrowright A$
- 2) Транзитивность: $A \cong B, B \cong C \Rightarrow A \cong C$ Для строгой сравнимости:

Доказательство.

$$A \approx B, B \approx C \Rightarrow A \approx C$$

 $A \cong C$ - из предыдущего

Нужно: $A \cong C$

Теорема 2.1 (Теорема Кантора-Бернштейна).

$$A \leq B, B \leq A \Rightarrow A \cong B$$

Доказательство. 1) Пусть $f:A_0\to B_1\subset B_0$ - биекция $g:B_0\to A_1\subset A_0$ - биекция

2)
$$B_{i+1} = f(A_i); A_{i+1} = g(B_i)$$

3)
$$C_i = A_i \backslash A_{i+1}; D_i = B_i \backslash B_{i+1}$$

4)
$$C = \bigcap_{i=0}^{\infty} A_i; D = \bigcap_{i=0}^{\infty} B_i$$

<u>Утверждение</u> 2.4. $C_i \cong D_{i+1}$, т. е. $f: C_i \to D_{i+1}$ - биекция Почему? Потому что:

$$C_i = A_i \setminus A_{i+1}; f(A_i) = B_{i+1}, f(A_{i+1}) = B_{i+2}$$

 $f\left(A_{i}\backslash A_{i+1}\right)=$ (т. к. f - биекция) $f\left(A_{i}\right)\backslash f\left(A_{i+1}\right)=B_{i+1}\backslash B_{i+2}=D_{i+1}=f\left(C_{i}\right)$ Утверждение 2.5.

$$D_i \cong C_{i+1}$$
 (симметричо)

Следствие.

$$C_0 \cong C_2 \cong C_4 \cong C_6 \cong \dots$$

 $C_0 \cong D_1 \cong D_3 \cong D_5 \dots$

Утверждение 2.6.

$$C \cong D$$

Доказательство. f - биекция

Пусть $x \in \bigcap_{i=0}^{\infty} A_i \Rightarrow \forall i, x \in A_i \Rightarrow \forall i, f(x) \in B_{i+1} \Rightarrow f(x) \in \bigcap_{i=0}^{\infty} B_i$ Т. е. $f(C) \subset D$:

Инъекция - наследуется

Сюрьекция:
$$y\in \bigcap_{i=0}^\infty B_i\Rightarrow \forall i,y\in B_{i+1}\Rightarrow \forall i,f^{-1}(y)\in A_i\Rightarrow f^{-1}(y)\in C$$

$$A = C \cap C_0 \cap C_1 \cap C_2 \cap C_3 \cap \dots$$
$$B = D \cap D_1 \cap D_2 \cap D_3 \cap D_4 \dots$$

При этом:

$$\begin{cases} C \cong D \\ \begin{cases} C_0 \cong D_1 \\ C_1 \cong D_0 \\ C_2 \cong D_3 \\ C_3 \cong D_2 \end{cases} \Rightarrow A \cong B$$

$$\vdots$$