## APLICACIONES DEL CAPÍTULO IV.

**4.1.** Elaborar un programa para determinar las raíces de una ecuación cuadrática de la forma Ax²+Bx+C=0 para el cual se utiliza las siguientes fórmulas:

$$x_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

$$x_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

El programa en MATLAB sería:

```
% raices de una ecuación de la forma Ax2+Bx+C=0
clc;
A=input('Ingrese A: ');
B=input('Ingrese B: ');
C=input('Ingrese C: ');
x1=(-B+sqrt(B^2-4*A*C))/(2*A);
x2=(-B-sqrt(B^2-4*A*C))/(2*A);
fprintf('x1 =');disp(x1);
fprintf('x2 =');disp(x2);
```

Cuando se ejecuta el programa para valores de A=1, B=5 y C=-20 se obtiene lo siguiente:

```
Ingrese A: 1
Ingrese B: 5
Ingrese C: -20
x1 = 2.6235
x2 = -7.6235
```

**4.2.** Diseñar una función que calcule las raíces de una ecuación cuadrática de la forma Ax²+Bx+C=0, los valores de A, B y C se deben ingresar como parámetros de la función.

Cuando se ejecuta la función para valores de A=3, B=2 y C=-6 se obtiene lo siguiente:

```
>> [r1,r2]=raicesEC(3,2,-6)
r1 =
   1.1196

r2 =
   -1.7863
```

Cuando se ejecuta la función para valores de A=1, B=2 y C=20 se obtiene lo siguiente:

```
>> [r1,r2]=raicesEC(1,2,20)
r1 =
    -1.0000 + 4.3589i
r2 =
    -1.0000 - 4.3589i
```

Lo que significa que la función raicesEC calcula las raíces tanto con números reales como con números complejos.

**4.3.** Elaborar un programa para determinar el área del triángulo cuyos lados se deben ingresar desde el teclado; tener en cuenta que si los lados ingresados no corresponden a un triángulo debe salir el mensaje "Los lados no corresponden a un triángulo".



```
% programa para calcular el área de un triángulo.
clc
a=input('Ingresa lado a: ');
b=input('Ingresa lado b: ');
c=input('Ingresa lado c: ');
if (a+b>c & a+c>b & b+c>a)
```

```
p=(a+b+c)/2;
      area=sqrt(p*(p-a)*(p-b)*(p-c));
      fprintf('área=%1.2f\n',area);
else
      fprintf('Los lados no corresponden a un triángulo');
end
```

Cuando se ejecuta el programa para valores de a=3, b=4 y c=5 se obtiene lo siguiente:

```
Ingresa lado a: 3
Ingresa lado b: 4
Ingresa lado c: 5
área=6.00
```

Cuando se ejecuta el programa para valores de a=2, b=2 y c=100 se obtiene lo siguiente:

```
Ingresa lado a: 2
Ingresa lado b: 2
Ingresa lado c: 100
Los lados no corresponden a un triángulo
```

4.4. Diseñar una función que devuelva el área de un triángulo cuyos lados se deben ingresar como parámetros de la función; tener en cuenta que si los lados ingresados no corresponden a un triángulo debe salir el mensaje "Error: Los lados no corresponden a un triángulo".

```
function area=areatriangulo(a,b,c)
      % Función que calcula el área de un triángulo
      % ingresando los lados a,b,c.
      if (a+b>c & a+c>b & b+c>a)
            p=(a+b+c)/2;
            area=sqrt(p*(p-a)*(p-b)*(p-c));
      else
            disp('Error: Los lados no corresponden a un triángulo');
      end
end
```

Cuando se ejecuta la función para valores de a=3, b=4 y c=5 se obtiene lo siguiente:

```
>> ar=areatriangulo(3,4,5)
```

```
ar = 6
```

Cuando se ejecuta el programa para valores de a=2, b=2 y c=100 se obtiene lo siguiente:

```
>> areatriangulo(2,2,100)
Error: Los lados no corresponden a un triángulo
```

- **4.5**. Diseñar una función que devuelva el factorial doble de un número "n" que se debe ingresar como parámetro de la función; tener en cuenta que si "n" es negativo debe salir el mensaje "Error: No se puede calcular el factorial doble de un número negativo", las condiciones para determinar el factorial doble son:
  - Si "n" es par, entonces se multiplican los pares hasta 2, es decir: 8!! = 8.6.4.2
  - Si "n" es impar, entonces se multiplican los pares hasta 1, es decir: 7!! = 7.5.3.1
  - Si "n" es cero o uno el resultado es uno, es decir: 0!! = 1 y 1!! = 1.

```
function y=factorialdoble(n)
      % Función que calcula el factorial doble de n.
      if (n>=0)
             y=1;
             if rem(n,2) == 0
                   k=2:
             else
                   k=1;
             end
             for (i=k:2:n)
                   y=y*i;
             end
      else
             disp('Error: el parámetro no puede ser negativo');
      end
end
```

Cuando se ejecuta la función para valor de n=8 se obtiene lo siguiente:

```
>> a=factorialdoble(8)
a =
384
```

Cuando se ejecuta la función para valor de n=0 se obtiene lo siguiente:

```
>> a=factorialdoble(0)
a =
  1
```

Cuando se ejecuta la función para valor de n=-7 se obtiene lo siguiente:

```
>> a=factorialdoble(-7)
Error: el parámetro no puede ser negativo
```

4.6. Diseñar una función para realizar el cambio de base 10 a otra base especificada menor iqual a 9.

```
function n=cambiobaseN10(num,base)
      % Función que cambia número de base 10 a base menor igual a 9
      inv=0:
      while (num>0)
            inv=10*inv+rem(num,base);
            num=floor(num/base);
      end
      n=0;
      while (inv>0)
            n=10*n+rem(inv,10);
            inv=floor(inv/10);
      end
end
```

Cuando se ejecuta la función para valor de num=1834 en base 5 se obtiene lo siguiente:

```
>> c=cambiobaseN10(1834,5)
c =
  24314
```

Cuando se ejecuta la función para valor de num=27 en base 2 se obtiene lo siguiente:

```
>> c=cambiobaseN10(27,2)
c =
  11011
```

**4.7.** Diseñar una función para redondear un número "n" a "d" cifras decimales.

```
function y=redondear(n,d)
      % Función que redondea un número "n" a "d" decimales
```

Cuando se ejecuta la función para valor de n=3,2567 y d=2 (redondear a dos decimales) se obtiene lo siguiente:

```
>> redondear(3.2567,2)
ans =
3.2600
```

Cuando se ejecuta la función para valor de n=134,32243 y d=3 (redondear a dos decimales) se obtiene lo siguiente:

```
>> redondear(134.32243,3)
ans =
134.3220
```

**4.8.** Diseñar una función para invertir un número entero que se debe ingresar como parámetro de la función.

```
function inv=invertirnumero(n)
    % Función que invierte los dígitos un número "n"
    inv=0;
    while (n>0)
        inv=10*inv+rem(n,10);
        n=floor(n/10);
    end
return
```

Cuando se ejecuta la función para valor de n=15467 se obtiene lo siguiente:

```
>> invertirnumero(15467)
ans = 76451
```

**4.9.** Diseñar una función para determinar si un número entero que se ingresa como parámetro es capicúa (utilizar la función "*invertirnumero*" diseñado en el ejemplo

anterior). La función debe devolver uno (1) si es capicúa y cero (0) si no los es.

Cuando se ejecuta la función para valor de n=345 se obtiene lo siguiente:

```
>> capicua(345)
ans =
0
```

Cuando se ejecuta la función para valor de n=545 se obtiene lo siguiente:

```
>> capicua(545)
ans =
1
```

**4.10.** Diseñar una función que devuelva la suma de todos los divisores de un número "n" que se debe ingresar como parámetro de la función.

```
function suma=sumadivisores(n)
    % Función que determinar la suma de los divisores de "n"
    suma=0;
    for (i=1:n)
        if (rem(n,i)==0)
            suma=suma+i;
    end
end
```

Cuando se ejecuta la función para valor de n=24 se obtiene lo siguiente:

```
>> sumadivisores(24)
```

```
ans = 60
```

**4.11.** Diseñar una función que devuelva el valor de "E" de la siguiente serie, como parámetro de la función se debe ingresar "n". (7 puntos)

$$E = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \frac{5}{6} - \frac{6}{7} + \dots \pm \frac{n}{n+1}$$

```
function e=serieE(n)
    signo=1;
    e=0;
    for (i=1:n)
        e=e+signo*i/(i+1);
        signo=-signo; %Intercambia el signo entre + y -.
    end
end
```

Cuando se ejecuta la función para valor de n=4 se obtiene lo siguiente:

```
>> serieE(4)
ans =
-0.2167
```

4.12. Elaborar un programa para ingresar desde el teclado los elementos de una lista o vector y luego calcular el valor máximo y mínimo sin utilizar la función max ni min del MATLAB.

```
if (X(i) \le me)
            me=X(i);
      end
end
fprintf('Valor máximo = %1.0f\n',ma);
fprintf('Valor minimo = %1.0f\n',me);
```

Cuando se ejecuta el programa para n=6 e introducir los valores: 3, 12, 5, -2, 8 y 9 se obtiene lo siguiente:

```
Ingrese número de elementos: 6
Ingrese dato (1): 3
Ingrese dato (2): 12
Ingrese dato (3): 5
Ingrese dato (4): -2
Ingrese dato (5): 8
Ingrese dato (6): 9
Valor máximo = 12
Valor mínimo = -2
```

Este mismo programa, pero utilizando las funciones *max* y *min* del MATLAB sería más fácil de programar, y los resultados son los mismos, el código en MATLAB sería:

```
%Programa para ingresar datos de un vector desde el teclado.
n=input('Ingrese número de elementos: ');
for (i=1:n)
      fprintf('Ingrese dato (%1.0f): ',i);
      X(i)=input('');
end
ma=max(X);
me=min(X);
fprintf('Valor máximo = %1.0f\n',ma);
fprintf('Valor minimo = %1.0f\n',me);
```

4.13. Diseñar una función que permita ingresar desde el teclado los elementos de una lista o vector y los almacene en un array unidimensional.

```
function [X]=leervector(n)
       %Función para ingresar datos de un vector desde el teclado.
```

Cuando se ejecuta la función para n=6 e introducir los valores: 4, 7, 2, 8, 1 y 0 se obtiene lo siguiente:

```
>> A=leervector(6)
Ingrese dato (1): 4
Ingrese dato (2): 7
Ingrese dato (3): 2
Ingrese dato (4): 8
Ingrese dato (5): 1
Ingrese dato (6): 0

A =
4 7 2 8 1 0
```

**4.14**. Elaborar el mismo programa del ejemplo 4.12, pero utilizando las funciones leervector(n) diseñado en el ejemplo 4.13 y las funciones *max* y *min* del MATLAB; observen que el código del programa es mucho más pequeño.

```
%Programa para ingresar datos de un vector desde el teclado.
clc
n=input('Ingrese número de elementos: ');
X=leervector(n);
ma=max(X);
me=min(X);
fprintf('Valor máximo = %1.0f\n',ma);
fprintf('Valor mínimo = %1.0f\n',me);
```

Cuando se ejecuta el programa para n=6 e introducir los valores: 3, 12, 5, -2, 8 y 9 se obtiene lo siguiente:

```
Ingrese número de elementos: 6
Ingrese dato (1): 3
Ingrese dato (2): 12
Ingrese dato (3): 5
Ingrese dato (4): -2
```

130

```
Ingrese dato (5): 8
Ingrese dato (6): 9
Valor máximo = 12
Valor mínimo = -2
```

**4.15.** Diseñar una función para invertir el orden de una array unidimensional, por ejemplo si el array es A=[5,2,8,9,1,2,0,6]; la función debe devolver el array B=[6,0,2,1,9,8,2,5] en orden invertido.

```
function [X]=invertirlista(Y)
      % Función que invierte el orden de los datos de Y.
      n=length(Y);
      q=n;
      for (i=1:n)
            X(i)=Y(q);
            q=q-1;
      end
end
```

Cuando se ejecuta la función se obtiene lo siguiente:

```
>> A=[5,2,8,9,1,2,0,6];
>> B=invertirlista(A)
B =
  6 0 2 1 9 8 2 5
```

4.16. Elaborar un programa para ingresar desde el teclado los elementos de una matriz y luego obtener la suma de cada columna (no usar la función sum del MATLAB) que se debe almacenar en un vector.

```
%Programa para ingresar datos de una matriz desde el teclado.
clear X;
clear Y;
clc
f=input('Ingrese número de filas: ');
c=input('Ingrese número de columnas: ');
for (i=1:f)
      fprintf('\nIngrese datos de la fila %1.0f\n',i);
      for (j=1:c)
             fprintf('Ingrese elemento(%1.0f, %1.0f): ',i,j);
            X(i,j)=input('');
```

Cuando se ejecuta el programa para f=3 y c=4 e introducir los valores de la siguiente matriz:

```
1 2 3 4
5 2 3 2
1 4 2 3
Ingrese número de filas: 3
Ingrese número de columnas: 4
Ingrese datos de la fila 1
Ingrese elemento(1,1): 1
Ingrese elemento(1,2): 2
Ingrese elemento(1,3): 3
Ingrese elemento(1,4): 4
Ingrese datos de la fila 2
Ingrese elemento(2,1): 5
Ingrese elemento(2,2): 2
Ingrese elemento(2,3): 3
Ingrese elemento(2,4): 2
Ingrese datos de la fila 3
Ingrese elemento(3,1): 1
Ingrese elemento(3,2): 4
Ingrese elemento(3,3): 2
Ingrese elemento(3,4): 3
1 2 3 4
5 2 3 2
```

132

```
1 4 2 3

La suma de columnas es:
7 8 8 9
```

**4.17.** Diseñar una función que permita ingresar desde el teclado los elementos de una matriz y los almacene en un array bidimensional.

Cuando se ejecuta la función para f=3 y c=4 e introducir los valores de la siguiente matriz:

1234 5232

```
>> A=leermatriz(3,4)

Ingrese datos de la fila 1
Ingrese elemento(1,1): 1
Ingrese elemento(1,2): 2
Ingrese elemento(1,3): 3
Ingrese elemento(1,4): 4

Ingrese datos de la fila 2
Ingrese elemento(2,1): 5
Ingrese elemento(2,2): 2
Ingrese elemento(2,3): 3
Ingrese elemento(2,4): 2
Ingrese datos de la fila 3
Ingrese elemento(3,1): 1
Ingrese elemento(3,2): 4
```

```
Ingrese elemento(3,3): 2
Ingrese elemento(3,4): 3

A =
    1 2 3 4
    5 2 3 2
    1 4 2 3
```

**4.18.** Elaborar el mismo programa del ejemplo 4.16, pero utilizando las funciones *leermatriz(f,c)* diseñado en el ejemplo 4.17 y la función *sum* del MATLAB; observen que el código del programa es mucho más pequeño.

```
%Programa para ingresar datos de una matriz desde el teclado.
clear X;
clear Y;
clc
f=input('Ingrese número de filas: ');
c=input('Ingrese número de columnas: ');
X=leermatriz(f,c);
Y=sum(X);
disp(X);
fprintf('\nLa suma de columnas es:\n');
disp(Y);
```

Su aplicación se muestra a continuación:

```
Ingrese número de filas: 3
Ingrese número de columnas: 4

Ingrese datos de la fila 1
Ingrese elemento(1,1): 1
Ingrese elemento(1,2): 2
Ingrese elemento(1,3): 3
Ingrese elemento(1,4): 4

Ingrese datos de la fila 2
Ingrese elemento(2,1): 5
Ingrese elemento(2,2): 2
Ingrese elemento(2,3): 3
Ingrese elemento(2,4): 2
```

```
Ingrese datos de la fila 3
Ingrese elemento(3,1): 1
Ingrese elemento(3,2): 4
Ingrese elemento(3,3): 2
Ingrese elemento(3,4): 3

1 2 3 4
5 2 3 2
1 4 2 3

La suma de columnas es:
7 8 8 9
```

**4.19.** Diseñar una función para calcular el promedio de todos los elementos impares múltiplos de tres de una matriz de nxm.

```
function prom=promImpares3(A)
      % Función que devuelve el promedio de todos los elementos
      % impares múltiplos de 3 de una matriz A.
      [n,m]=size(A);
      k=0:
      suma=0;
      for (i=1:n)
             for (j=1:m)
                   if (rem(A(i,j),2)==1) && (rem(A(i,j),3)==0)
                          suma=suma+A(i,j);
                          k=k+1;
                   end
             end
      end
      prom=suma/k;
end
```

Su aplicación se muestra a continuación:

```
>> A=[12,10,9;21,13,8;11,15,6]
A =
    12 10 9
    21 13 8
    11 15 6
```

```
>> promImpares3(A)
ans =
15
```

Si observamos la matriz ingresada, los elementos impares múltiplos de 3 son: 9, 21 y 15 cuya suma es 45 por tanto el promedio sería 15.

**4.20.** Diseñar una función para generar una matriz de mxn con elementos consecutivos que empieza con el uno.

Su aplicación se muestra a continuación:

```
>> matrizconsecutivos(3,4)

ans =

1 2 3 4

5 6 7 8

9 10 11 12
```

- **4.21.** Elaborar un programa para ingresar dos números, el programa debe tener un sistema de menú con las siguientes opciones:
  - 1. Sumar.
  - 2. Restar.
  - 3. Multiplicar.
  - 4. Dividir.

Entonces con los números ingresados y la opción seleccionada se debe realizar la operación correspondiente:

```
%Programa con opciones para hacer las 4 operaciones aritméticas.
clc
a=input('Ingrese dato1: ');
```

```
b=input('Ingrese dato2: ');
disp(' ');
disp('MENÚ DE OPCIONES');
disp('1. Sumar');
disp('2. Restar');
disp('3. Multiplicar');
disp('4. Dividir');
opcion=input('Elija una opción (1-4): ');
switch (opcion)
      case 1
            r=a+b;
      case 2
            r=a-b;
      case 3
            r=a*b;
      case 4
            r=a/b;
      otherwise
            disp('Opción equivocada');
end
if (opcion>=1 & opcion<=4)
      fprintf('\nResultado = %1.2f\n',r)
end
```

Cuando se ejecuta el programa para a=8 y b=5 y elegimos la opción 3, se tiene:

```
Ingrese dato1: 8
Ingrese dato2: 5
MENÚ DE OPCIONES
1. Sumar
2. Restar
3. Multiplicar .
4. Dividir
Elija una opción (1-4): 3
Resultado = 40
```

Otra forma de hacer el mismo programa sería usando el if-elseif:

%Programa con opciones para hacer las 4 operaciones aritméticas. clc

```
a=input('Ingrese dato1: ');
b=input('Ingrese dato2: ');
disp(' ');
disp('MENÚ DE OPCIONES');
disp('1. Sumar');
disp('2. Restar');
disp('3. Multiplicar');
disp('4. Dividir');
opcion=input('Elija una opción (1-4): ');
 if (opcion==1)
      r=a+b:
elseif (opcion==2)
      r=a-b:
elseif (opcion==3)
      r=a*b;
elseif (opcion==4)
      r=/b;
else
      disp('Opción equivocada');
end
if (opcion>=1 & opcion<=4)
      fprintf('Resultado = %1.2f\n',r)
end
```

**4.22.** Elaborar un programa para ingresar las edades de "n" personas y para leer las "n" edades se debe utilizar la función leervector(n) diseñado en el ejemplo 4.13; el programa debe calcular la cantidad de personas que corresponden a cada una de las siguientes categorías:

```
Niños de 1 a 12 años.
Adolescentes de 13 a 17 años.
Jóvenes de 18 a 35 años.
Adultos de 35 a 60 años.
Mayores de 60 a más años.
```

%Programa para seleccionar por edades.

```
clc
n=input('Ingrese número de personas: ');
edad=leervector(n);
N=0:
A=0;
J=0;
Ad=0;
M=0;
for (i=1:n)
      if (edad(i) \ge 1 \&\& edad(i) \le 12)
             N=N+1;
      elseif (edad(i) \ge 13 \&\& edad(i) \le 17)
             A=A+1;
      elseif (edad(i) \ge 18 \&\& edad(i) \le 35)
             J=J+1;
      elseif (edad(i) \ge 35 \&\& edad(i) \le 60)
             Ad=Ad+1;
      elseif (edad(i)>60)
             M=M+1;
      end
end
fprintf('\nNiños = %1.0f\n',N);
fprintf('Adolescentes = %1.0f\n',A);
fprintf('Jóvenes = %1.0f\n',J);
fprintf('Adultos = %1.0f\n',Ad);
fprintf('Mayores = %1.0f\n',M);
```

Cuando ejecutamos el programa para 18 personas sería:

```
Ingrese número de personas: 18
Ingrese dato (1): 45
Ingrese dato (2): 67
Ingrese dato (3): 12
Ingrese dato (4): 9
Ingrese dato (5): 25
```

```
Ingrese dato (6): 36
Ingrese dato (7): 12
Ingrese dato (8): 70
Ingrese dato (9): 1
Ingrese dato (10): 45
Ingrese dato (11): 15
Ingrese dato (12): 26
Ingrese dato (13): 29
Ingrese dato (14): 11
Ingrese dato (15): 20
Ingrese dato (16): 50
Ingrese dato (17): 6
Ingrese dato (18): 55
Ni\tilde{n}os = 6
Adolescentes = 1
Jóvenes = 4
Adultos = 5
Mayores = 2
```

Otra forma de hacer el mismo programa sería usando cambiando las condiciones. Sería bueno que analice dichas condiciones y el real funcionamiento de la sentencia "*if-elseif*"

```
%Programa para seleccionar por edades.
clc
n=input('Ingrese número de personas: ');
edad=leervector(n);
N=0;
A=0;
J=0;
```

```
Ad=0;
M=0;
for (i=1:n)
      if (edad(i)<=12)
             N=N+1;
      elseif (edad(i) <= 17)</pre>
             A=A+1;
      elseif (edad(i) <= 35)</pre>
             J=J+1;
      elseif (edad(i) <=60)</pre>
             Ad=Ad+1;
      else
             M=M+1;
      end
end
fprintf('\nNiños = %1.0f\n',N);
fprintf('Adolescentes = %1.0f\n',A);
fprintf('Jóvenes = %1.0f\n',J);
fprintf('Adultos = %1.0f\n',Ad);
fprintf('Mayores = %1.0f\n',M);
```