Canonisation and Definability For Graphs of Bounded Rank Width

Roadmap

A brief overview

Results

Machinery

- Foundation
- Logic Algorithm Game Theory
- Split and Flip

Proof Idea

The main ones at least...

Isomorphism Test:

• Runtime: $n^{O(k)}$ from $n^{f(k)}$

k-fixed-point logic with counting:

• Captures polynomial time on graphs rw(k)

The main ones at least...

Isomorphism Test:

• Runtime: $n^{O(k)}$ from $n^{f(k)}$

k-fixed-point logic with counting:

• Captures polynomial time on graphs rw(k)

Detail

Isomorphism Test

- General: quasi-polynomial
- Polynomial of graph classes:
 - Bounded degree, tree width, bounded rank width

Rank width almost invariant to complement

• Dense graphs can have small rank width

Detail

(3k+4)-dim Weisfeiler-Leman algorithm identifies

• *graphs rank width at most k*

Isomorphism in $O(n^{3k+5} \log n)$, $rw(G) \le k$

Sentence from C^{3k+5} characterises, $rw(G) \le k$

Canonisation algorithm in $O(n^{3k+7} \log n)$, $rw(G) \le k$

Graphs

Isomorphism

- $\varphi : V(G) \to V(H)$, bijective and
- $vw \in E(G) \Leftrightarrow \varphi(v)\varphi(w) \in E(H)$

Coloured Graph

• (G, χ) where $\chi \colon V(G) \to \mathcal{C}$

Colourings

Colouring of k-tuple:

• $\chi \colon V(G)^k \to \mathcal{C}$

For (G, χ) and $\overline{v} = (v_1, \ldots, v_k)$

- $\chi^{\bar{v}}:V\to\mathbb{N}$
- $v \mapsto i$ if $v=u_i \land \forall j > i \ v \neq v_j$
- $v \mapsto \chi(v) + k$

Colourings

Refinement $\chi_1, \chi_2 : V(G)^k \to \mathcal{C}$:

- $\chi_1 \preceq \chi_2$
- $\chi_1(\overline{\mathbf{v}}) = \chi_1(\overline{\mathbf{w}}) \Rightarrow \chi_2(\overline{\mathbf{v}}) = \chi_2(\overline{\mathbf{w}})$

Stable Colouring

• χ_{∞} stable $\iff \forall \chi_2 \chi_2 \preceq \chi_{\infty}$

Colourings: Example

$$V := \{ \bullet \bullet \bullet \}$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{1}(\bullet, \bullet) = \bigcirc \qquad \qquad \chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{2}(\bullet, \bullet) = \bigcirc$$

$$\chi_{2}(\bullet, \bullet) = \bigcirc$$

 $\chi_1(v_1, v_2) = \chi_1(w_1, w_2) \Rightarrow \chi_2(v_1, v_2) = \chi_2(w_1, w_2)$

Canonisation

Graph Canonisation for a class $\mathcal C$

- $\kappa: \mathcal{C} \to \mathcal{C}$
- $\forall G \in \mathcal{C}, \kappa(G) \cong G$
- $\forall G, H \in \mathcal{C}, G \cong H \Longrightarrow \kappa(G) = \kappa(H)$

Note that

• Graph isomorphism for $\mathcal{C} \leq_{\mathtt{P}}$ graph canonisation for \mathcal{C}

Weisfeiler-Leman

Correspondence

Correspondence

Specific

k-Weisfeiler-Leman

k-dimensional Weisfeiler Leman

- Uses graph colouring
- Can establish non-isomorphism
- Not complete

Idea:

- Colour k-vertices
- Refine Colouring

k-Weisfeiler-Leman

Notation:

• $\overline{v} \cong \overline{w}$, if $\phi : G[\overline{v}] \to H[\overline{w}]$, $v_i \mapsto w_i$ isomorphism

k-Weisfeiler-Leman

Notation:

• $\overline{v}\cong \overline{w}, \text{ if } \phi: G[\ \overline{v}\] \to H[\ \overline{w}\], \, v_i \mapsto w_i \text{ isomorphism}$

k-Weisfeiler-Leman

Notation:

- $\overline{v}\cong \overline{w}, \ \textit{if} \ \phi: G[\ \overline{v}\] \to H[\ \overline{w}\], \ v_i\mapsto w_i \ \textit{isomorphism}$
- \overline{v} and \overline{w} i-neighbours, if $v_j = w_j$ for all $j \neq i$

k-Weisfeiler-Leman

Notation:

- $\overline{v}\cong \overline{w}, \text{ if } \phi: G[\ \overline{v}\] \to H[\ \overline{w}\], \, v_i \mapsto w_i \text{ isomorphism}$
- \overline{v} and \overline{w} i-neighbours, if $v_j = w_j$ for all $j \neq i$

k-Weisfeiler-Leman

Initialisation:

• \overline{v} , \overline{w} different colours if $\overline{v} \ncong \overline{w}$

Step:

- \overline{v} , \overline{w} different colours if
- $\exists i \leq k \; \exists \; c \in \mathcal{C}$ different number of i-neighbours of colour c
- \Rightarrow (G, χ_{∞}) stable, in O(n^{k+1}log n)

k-Weisfeiler-Leman

 $G \simeq_k H$ if and only if $\forall c \in \mathcal{C} \ |G_c| = |H_c|$

- $G_c := \{ \overline{v} \mid \overline{v} \in V^k(G), \chi_{\infty}(\overline{v}) = c \}$
- $H_c:=\{ \overline{w} \mid \overline{w} \in V^k(H), \chi_{\infty}(\overline{w})=c \}$

 $G \not\simeq_k H$ if and only if $\exists c \in \mathcal{C} \ |G_c| \neq |H_c|$

Identifies $G :\iff \forall H, G \ncong H \Rightarrow G \not\simeq_k H$

k-Weisfeiler-Leman: Example

k-Weisfeiler-Leman: Example

1: •

2: •

3: •

4: •

5:

6:

8: •

9: •

A: •

B •

C: •

k-Weisfeiler-Leman: Example

1: •

2:

3: •

4:

5:

6:

Bijective k-pebble game

Setup:

- Spoiler and Duplicator
- Start Position:
 - -((),())
- Rounds:
 - $\overline{v} = (\overline{v}, \overline{w})$ where $\overline{v} \in E(G)^l$ and $\overline{w} \in E(H)^l$, $0 \le l \le k$

Bijective k-pebble game

Position
$$(\overline{v}, \overline{w}) = ((v_1, \ldots, v_1), (w_1, \ldots, w_1))$$

- Spoiler chooses move
 - Remove pebble (if 1 > 0)
 - Add pebble (if l < k)

Bijective k-pebble game

Remove move:

- Spoiler picks $i \in [1,...,l]$
- Next round starts with

$$-\overline{v} = (v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_l)$$

$$-\overline{w} = (w_1, \ldots, w_{i-1}, w_{i+1}, \ldots, w_l)$$

Bijective k-pebble game

Add move:

- Duplicator picks bijection $\phi : V(G) \rightarrow V(H)$
- Spoiler chooses $v \in V(G)$ and sets $w = \phi(v)$
- Next round starts with
 - $\overline{v} = (v_1, \ldots, v_l, v)$
 - $-\overline{\mathbf{w}} = (\mathbf{w}_1, \ldots, \mathbf{w}_1, \mathbf{w})$

Bijective k-pebble game

Who wins $((v_1, \ldots, v_1), (w_1, \ldots, w_1))$:

- Spoiler wins if:
 - $\exists i \in [1,...,l] \ v_i = \bot \Leftrightarrow w_i = \bot$
 - $\exists i \in [1,...,l] \ \chi_G(v_i) \neq \chi_H(w_i)$
 - $-\exists i, j \in [1,...,l] \ v_i = v_j \Leftrightarrow w_i = w_j$
 - $\exists i, j \in [1,...,l] \ v_i v_j \in E(G) \Leftrightarrow w_i w_j \in E(H)$
- Duplicator wins if the game never ends

- $2 \mapsto 6$
- **3** → **7**
- $4 \mapsto 8$

- $2 \mapsto 6$
- **3** → **7**
- $4 \mapsto 8$

Logic Ck+1 logic

Ck+1 logic

- first-order Logic
- Counting quantifier, e.g. $\exists^{\geq i} x \ \phi(x)$
- k-variable fragment

$$G \equiv_{C^{k+1}} H :\iff \forall \phi \in C^{k+1} G \models \phi \Leftrightarrow H \models \phi$$

Correspondence

Specific

Correspondence

Theorems

For the graphs G and H

- $G \simeq_k H \iff Duplicator wins BP_{k+1}(G,H)$.
- $G \simeq_k H \iff G \equiv_{C^{k+1}} H$
- G (k)-identified $\Longrightarrow \varphi_G \in C^{k+1}$ characterises G

Split and Flip

For $l \in O(k)$, l-WLA identifies G if $rw(G) \le k$

- For $X \subseteq V(G)$, s.t. $\rho_G(X) \leq k$
- Pebbling splits G in C
 - $C \subseteq X$ or $C \subseteq \overline{X}$
 - independent

Split Pair Definition

(A,B) (ordered) split pair for $X \subseteq V(G)$

- $A \subseteq X$ and $B \subseteq \overline{X}$ (A,B tuple)
- $\operatorname{vec}_{X}(A)$ basis of $\langle \operatorname{vec}_{X}(X) \rangle$
- $\operatorname{vec}_{\overline{X}}(B)$ basis of $\langle \operatorname{vec}_{\overline{X}}(\overline{X}) \rangle$

And

• $v \in X$, $vec_X(v) = (a_{vw})_{w \in \overline{X}}$ with $a_{vw} = 1 \Leftrightarrow vw \in E(G)$

1 2 3

Definition

For $\chi: V \to \mathcal{C}$, $f: \mathcal{C} \times \mathcal{C} \to \{0,1\}$ is a flip function

• If $f(c_1, c_2) = f(c_2, c_1)$ for all $c_1, c_2 \in \mathcal{C}$

 $G^f = (V, E^f, \chi)$ is a flipped graph of G where

• $E^f := \{vw \mid vw \in E(G) \land f(\chi(v), \chi(w)) = 0\} \cup \{vw \mid v \neq w \land vw \notin E(G) \land f(\chi(v), \chi(w)) = 1\}$

$$f(\bullet, \bullet)=0$$
 $f(\bullet, \bullet)=1$
 $f(\bullet, \bullet)=0$
 $f(\bullet, \bullet)=1$
 $f(\bullet, \bullet)=0$
 $f(\bullet, \bullet)=1$

$$f(\bullet, \bullet) = 0$$
 $f(\bullet, \bullet) = 1$
 $f(\bullet, \bullet) = 0$
 $f(\bullet, \bullet) = 1$
 $f(\bullet, \bullet) = 0$
 $f(\bullet, \bullet) = 1$

$$\{vw \mid vw \in E(G) \land f(\chi(v), \chi(w)) = 0\}$$

$$\{vw \mid v \neq w \land vw \notin E(G) \land f(\chi(v), \chi(w)) = 1\}$$

$$\{vw \mid vw \in E(G) \land f(\chi(v), \chi(w)) = 0\}$$

$$\{vw \mid v \neq w \wedge vw \notin E(G) \wedge f(\chi(v), \chi(w)) = 1\}$$

$$f(\bullet, \bullet) = 0$$
 $f(\bullet, \bullet) = 1$
 $f(\bullet, \bullet) = 0$
 $f(\bullet, \bullet) = 1$
 $f(\bullet, \bullet) = 0$
 $f(\bullet, \bullet) = 1$

$$\{vw \mid vw \in E(G) \land f(\chi(v), \chi(w)) = 0\}$$

$$\{vw \mid v \neq w \land vw \notin E(G) \land f(\chi(v), \chi(w)) = 1\}$$

Theorem

There exists a flip function f for $G':=(G, \chi_{\infty}^{(\bar{a},\bar{b})})$

• $C \in Comp(G',f)$ s.t. $C \subseteq X$ or $C \subseteq \overline{X}$

$$\mathbf{X}^{((1,2),(3,4)} \Rightarrow \mathbf{X}_{\infty}^{((1,2),(3,4))}$$

Example

$$f(x,y) :=$$

else $\mapsto 1$

Example

$$f(x,y) :=$$

else $\mapsto 1$

Theorem

 $\varphi \colon V(G) \mapsto V(H)$, bijection

• ϕ : $G \cong H \Leftrightarrow G^f \cong H^f$

Similarly,

- Stable colouring
- Game
 - Wins from the same position

Proof (Idea)

Idea

Rank decomposition

- Play along
- For X (small rank) find C's

–
$$C \subset X$$
 or $C \subset \overline{X}$

• Can be treated independently

$X = X_1 \uplus X_2$

Can remove pebbles from parent!

Induction Hypothesis

Position $((\overline{a}, \overline{b}, v), (\overline{a}', \overline{b}', v')) \Rightarrow$ Spoiler wins

- $(\overline{a}, \overline{b})$ ordered split pair $t \in V(T)$ (i.e. $\gamma(t)$)
- $v \in \gamma(t)$
- f flip function wrt. $X = \gamma(t)$
 - $-C \in Comp((G, \chi_{\infty}^{(\overline{a},\overline{b})}),f)$ s.t. $v \in C$
 - $-C' \in Comp((H, \chi_{\infty}(\overline{a}',\overline{b}')),f) \text{ s.t. } v' \in C'$
- $(G[C], \chi_{\infty}^{(\overline{a},\overline{b},v)}) \ncong (H[C'], \chi_{\infty}^{(\overline{a}',\overline{b}',v')})$

Induction Step: Idea

$$|\gamma(t)|>1 \Rightarrow children$$

$$\mathbf{X} = \mathbf{X}_1 \uplus \mathbf{X}_2$$

$$\mathbf{X_1}\!\!:=\boldsymbol{\gamma}(\mathbf{t_1}) \qquad \mathbf{X_2}\!\!:=\boldsymbol{\gamma}(\mathbf{t_2})$$

Spoiler moves to:

$$(\alpha,\alpha')\!:=\!((\overline{a},\!\overline{b},\!\overline{a}_1,\!\overline{b}_1,\!\overline{a}_2,\!\overline{b}_2,\!v),\!(\overline{a}',\!\overline{b}',\!\overline{a}_1',\!\overline{b}_1',\!\overline{a}_2',\!\overline{b}_2',\!v'))$$

Induction Step: Idea

From:

$$(\alpha,\alpha')\!:=\!((\overline{a},\overline{b},\overline{a}_1,\overline{b}_1,\overline{a}_2,\overline{b}_2,v),(\overline{a}',\overline{b}',\overline{a}_1',\overline{b}_1',\overline{a}_2',\overline{b}_2',v'))$$

Goal:

$$((\overline{a}_1, \overline{b}_1, z), (\overline{a}_1', \overline{b}_1', z')) \text{ or } ((\overline{a}_2, \overline{b}_2, z), (\overline{a}_2', \overline{b}_2', z'))$$

$$\Rightarrow \mathsf{IH}$$

Induction Step: Idea Case 1

Can find

- $C_1 \in Comp((G, \chi_{\infty}^{(\overline{a}1,\overline{b}1)}), f_1),$
- $C_1' \in Comp((H, \chi_{\infty}^{(\overline{a}_1, \overline{b}_1)}), f_1)$
- $(G[C_1], \chi_{\infty}^{(\alpha)}) \ncong (H[C_1'], \chi_{\infty}^{(\alpha')})$

Can find z, z'

- z = v, z' = v'
- $z = w, z' = \sigma(w)$

Induction Step: Idea Case 1

Obtain
$$(G[C_1], \chi_{\infty}^{(\alpha,z)}) \ncong (H[C_1'], \chi_{\infty}^{(\alpha',z')})$$

- C_1 connected component in G^{f1}
- C_1 ' connected component in H^{f1}
- \Rightarrow can remove pebbles outside C_1 without worry
 - without effecting the colouring restricted to C_1

$$\Rightarrow \left(G[C_1],\,\chi_{\infty^{(\overline{a1},b\overline{1},z)}}\right) \not\cong \left(H[C_1'],\,\chi_{\infty^{(\overline{a1}',b\overline{1}',z')}}\right) \Rightarrow \mathsf{IH}$$

What about the rank width?

$$(\overline{a}, \overline{b}), (\overline{a}_1, \overline{b}_1) \text{ and } (\overline{a}_2, \overline{b}_2)$$

• Linear basis of $\gamma(t)$, $\gamma(t)$ and $\gamma(t)$

$$rw(G) = k \Rightarrow size smaller k \Rightarrow 6k$$

• actually 6k + 5

Can be improved to 3k + 5

Contributions

Detail

(3k+4)-dim Weisfeiler-Leman algorithm identifies

• *graphs rank width at most k*

Isomorphism in $O(n^{3k+5} \log n)$, $rw(G) \le k$

Sentence from C^{3k+5} characterises, $rw(G) \le k$

Canonisation algorithm in $O(n^{3k+7} \log n)$, $rw(G) \le k$

Thank you.