Suite numérique

N Notation

 ${\mathbb N}$ désigne l'ensemble des nombres entiers positifs appelés **entiers naturels**.

D Suite numérique

Une suite numérique, notée (u_n) ou u, est une fonction définie sur \mathbb{N} . L'image de l'entier n, notée u_n

(sans les parenthèses), est appelée terme de la suite u d'indice n. Ainsi :

$$egin{bmatrix} (u_n): \mathbb{N} & \longrightarrow & \mathbb{R} \ n & \mapsto & u_n \end{bmatrix}$$

D Suite explicite

Une suite explicite est un suite dont les termes sont de la forme : $u_n = f(n)$ ou f est une fonction définie sur un intervalle I de \mathbb{R} .

- 1 Soit $oldsymbol{u}$ une suite numérique définie par : $u_n = n^2$
- a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
- **b)** Calculer les termes u_0 , u_1 , \ldots et u_8 .
- c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 8.
- **d)** Quel est l'indice de u tel que $u_n = 12167$?
- e) Quels sont les indices de u tels que $u_n \leqslant 99$?
- **f)** Quel est l'indice de u tel que $u_n=10$?
- lacksquare Soit $oldsymbol{u}$ une suite numérique définie par : $u_n = \sqrt{n}$
- a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
- **b)** Calculer les termes u_0 , u_1 , u_4 , u_9 , u_{16} , u_{25}
- c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels correspondants à la question précédente.
- **d)** Quel est l'indice de u tel que $u_n=12167$?
- **e)** Quels sont les indices de u tels que $u_n \leqslant 99$?
- f) Quel est l'indice de u tel que $u_n = 10$?

Soit \boldsymbol{u} une suite numérique définie par :

$$u_n=rac{1}{n}$$

- a) Pour quelle(s) valeur(s) de n, u_n n'est pas définie.
- **b)** Calculer les termes u_1 , \ldots et u_5 .
- c) Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 5.
- d) Quel est l'indice de u tel que $u_n = 10^{-34}$?
- e) Quels sont les indices de u tels que $u_n \geqslant 1$?
- Soit u une suite numérique correspondant aux nombres impairs.
- a) Donner la fonction f telle que $u_n = f(n)$.
- **b)** Calculer les 10 premiers termes de la suite u.
- c) Dans un repère, placer les 10 points correspondants aux indices de la question précédente.
- d) Ces points sont-ils alignés? Justifier.

N_2 Relation de récurrence

D Définition

Une suite numérique $oldsymbol{u}$ est définie par une relation de récurrence quand son premier terme est connu et le terme u_{n+1} peut être calculé en fonction du terme u_n .

- $oxed{1}$ Soit $oldsymbol{u}$ une suite numérique définie par : $oldsymbol{u_0} = oxed{1}$ et $u_{n+1} = 3u_n - 2$
- **a)** Calculer les termes u_0 , u_1 , \ldots et u_8 .
- **b)** Dans un repère, placer les points $(n; u_n)$ pour tous les entiers naturels plus petits que 8.
- Soit u une suite numérique définie par : $u_0=2$ et $u_{n+1} = \frac{1}{2} u_n + 3$
- a) Déterminer la fonction f telle que $u_{n+1} = f(u_n)$
- b) Dans un même repère, tracer la courbe représentative de f puis la droite d'équation y=x. Enfin, placer les termes u_1 , u_2 , u_3

$\overline{N_3}$ Suite arithmétique : relation de récurrence

D Définition

Une suite u est arithmétique si il existe un réel r tel que pour tout $n \in \mathbb{N}$ on a :

$$oxed{u_{n+1} = u_n + r}$$
 ou $u_{n+1} - u_n = r$

Le réel r est la *{bld::raison de la suite arithmétique u.

Les suites (u_n) suivantes sont-elles arithmétiques ? Si oui donner leur raison.

- $oxed{1}$ u est une suite numérique définie par : $u_0=1$ et $u_{n+1}=u_n+2$.
- $oxed{2} u$ est une suite numérique définie par : $u_1=2$ et $u_{n+1}=u_n-4$.
- $oxed{u}$ est une suite numérique définie par : $u_0=0$ et $u_{n+1}=u_n^2+1$.
- $oxed{u}$ est une suite numérique définie par : $u_n = -5n+1$ pour $n \in \mathbb{N}$.
- $oxed{5}$ u est une suite numérique définie par : $u_n=4n^2+3$ pour $n\in\mathbb{N}$.
- $oxed{6}$ u est une suite numérique définie par : $u_0=0$ et $u_{n+1}=u_n+2n$.

N_4 | Suite arithmétique : forme explicite

P Propriétés

Si la suite u est arithmétique de raison r alors pour un entier k et pour tout $n\in\mathbb{N}$ on a :

$$oxed{u_n=u_k+(n-k)r}$$
 et pour $k=0$; $u_n=u_0+nr$

Déterminer la forme explicite des suites suivantes :

- (u_n) est une suite arithmétique de premier terme $u_0=1$ et de raison -2.
- (u_n) est une suite arithmétique de raison -1 et telle que $u_5=10$.
- $oxed{5}$ (u_n) est une suite arithmétique telle que $u_5=38$ et $u_8=21$.

N₅ Suite géométrique : relation de récurrence

D Définition

Une suite u est **géométrique** si il existe un réel q
eq 0 tel que pour tout $n \in \mathbb{N}$ on a :

$$\overbrace{u_{n+1}=q imes u_n=qu_n}$$
 ou $\dfrac{u_{n+1}}{u_n}=q$

Le réel $oldsymbol{q}$ est la **raison** de la suite géométrique $oldsymbol{u}$.

Les suites (u_n) suivantes sont-elles géométriques ? Si oui donner leur raison.

- $oxed{1} u$ est une suite numérique définie par : $u_0=1$ et $u_{n+1}=2u_n$.
- $\overline{m{z}}$ u est une suite numérique définie par : $u_1=2$ et $u_{n+1}=-u_n$.
- u est une suite numérique définie par : $u_n=10^n$ pour $n\in\mathbb{N}$.

- u est une suite numérique définie par : $u_n=rac{2^{n+1}}{3^{2n}}$ pour $n\in\mathbb{N}$
- $oxed{8}$ u est une suite numérique définie par : $u_1=1$ et $u_{n+1}=u_n imes 2n$.

N_6 Somme des n premiers entiers

Démontrer que la somme $oldsymbol{S}$ des $oldsymbol{n}$ premiers entiers est égale à :

$$S=\sum_{k=0}^n k=rac{n(n+1)}{2}$$

N_7 Suite géométrique : forme explicite

P Propriétés

Si la suite u est géométrique de raison q alors pour un entier k et pour tout $n\in\mathbb{N}$ on a :

$$oxed{u_n=u_k imes q^{n-k}}$$
 et pour $k=0$; $u_n=u_0 imes q^n$

Déterminer la forme explicite des suites suivantes :

 (u_n) une suite géométrique de premier terme $u_0=1$ et de raison -2.

 $\overline{}$ u est une suite géométrique telle que $u_2=8$ et de raison 3.

 $\overline{\mathfrak{g}}(u_n)$ est une suite géométrique de raison -1 et telle que $u_5=-8$.

 $\overline{\mathfrak{s}}$ (u_n) est une suite géométrique telle que $u_5=-243$ et $u_8=6521$.

$\overline{N_8}$ Somme des premières puissance de q

Démontrer que la somme S des n premières puissance de q, réel non nul et différent de 1, est égale à :

$$S = \sum_{k=0}^n q^k = 1 + q + q^2 + \dots + q^n = rac{1 - q^{n+1}}{1 - q}$$

n°1 Est-ce arithmétique ?

Déterminer si les suites (u_n) , définies pour $n \in \mathbb{N}$ sont arithmétiques. Si oui, donner le premier terme et la raison.

1 4n + 7

 $n^2 + 1$

 $\frac{n}{2}+5$

 $4 8^n$

 $\frac{n+1}{n}$

 $\frac{2n+5}{2}$

 $\frac{n^2+3n+2}{n+2}$

 $\frac{n^2+1}{n+1}$

$n^{\circ}2$ Est-ce géométrique ?

Déterminer si les suites (u_n) , définies pour $n \in \mathbb{N}$ sont géométriques. Si oui, donner le premier terme et la raison.

 $1 - 4 \times 3^n$

2 3

 $\frac{3}{2^{n+2}}$

 $4 8^{n+2}$

 $5 (-2)^n$

 $6 \quad 4n$

 $\frac{2}{n}-3^n$

 $8 \quad 4^{n-1}$

n°3 Représentation graphique

Dans un repère, représenter graphiquement les cinq premiers termes des suites définies explicitement par :

 $1 \quad 5-2n$

 $\frac{n-1}{n-1}$

 $\frac{1}{2}n^2-1$

$n^{\circ}4$ Ni, ni

Soit (u_n) la suite définie pour $n \in \mathbb{N}$ par : $u_{n+1} = 2u_n + 5$ et $u_0 = 1$.

- $lue{1}$ Calculer u_1 , u_2 et u_3 .
- Montrer que (u_n) n'est ni arithmétique ni géométrique.
- On pose $v_n=u_n+5$ pour $n\in\mathbb{N}$. Montrer que (v_n) est une suite géométrique. Donner sa raison et son premier terme.
- Donner la forme explicite de (v_n) .
- En déduire la forme explicite de (u_n) .

$n^{\circ}5$ | Suite u

Soit (u_n) la suite définie pour $n\in\mathbb{N}$ par : $u_{n+1}=2u_n+5$ et $u_0=1$.

- $lue{1}$ Calculer u_1 , u_2 et u_3 .
- Montrer que (u_n) n'est ni arithmétique ni géométrique.
- On pose $v_n=u_n+5$ pour $n\in\mathbb{N}$. Montrer que (v_n) est une suite géométrique. Donner sa raison et son premier terme.
- Donner la forme explicite de (v_n) .
- En déduire la forme explicite de (u_n) .

$n^{\circ}6$ Une autre suite u

Soit (u_n) la suite définie pour $n\in\mathbb{N}$ par : $u_{n+1}=-3u_n+8$ et $u_0=6$.

- $oxed{1}$ Calculer u_1 , u_2 et u_3 .
- On pose $v_n=u_n-2$ pour $n\in\mathbb{N}$. Montrer que (v_n) est une suite géométrique. Donner sa raison et son premier terme.
- Donner la forme explicite de (v_n) .
- En déduire la forme explicite de (u_n) .

$n^{\circ}7$ Augmentation

La population d'une ville augmente de 1% chaque année. En 2000, la ville comportait $110\,000$ habitants. En 2014, combien la ville comportait-elle d'habitants ?

n°8 Vitesse des tornades

A partir des mesures relevées lors d'observations de tornades, des météorologues ont admis la règle suivante : la vitesse des vents dans les tornades diminue régulièrement de 10% toutes les 5 minutes.

Lors de la formation d'une tornade, on a mesuré la vitesse des vents par un radar météorologique et on a trouvé une vitesse initiale de $300 \ kmh^{-1}$.

Soit la suite (u_n) dont le terme u_n correspond à la vitesse des vents après $5 \times n$ minutes. On a donc $u_0 = 300$ et u_1 la vitesse des vents après 5 minutes et u_2 la vitesse des vents après 10 minutes.

- lacktriangle Calculer u_1 , u_2 et u_3 . Que représente u_3 dans le contexte de l'exercice ?
- Démontrer que (u_n) est une suite géométrique de raison q=0,9.
- 3 Déterminer sa forme explicite et sa forme récurrente
- Ecrire un algorithme permettant de déterminer le plus entier n pour que la vitesse des vents de cette tornade soit inférieure ou égale à $150 \ kmh^{-1}$
- $oxed{5}$ En dressant un tableau donner la valeur de $oldsymbol{n}$ de la question précédente.