Reinforcement Learning

Markov Decision Processes

Stefano Albrecht, Pavlos Andreadis 21 January 2020

Lecture Outline

- Markov decision process
- Policies, goals, rewards, returns
- Value functions and Bellman equation
- Optimal value functions and policies

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

- Agent observes environment state at time t: $S_t \in \mathcal{S}$
- and selects an action at step t: $A_t \in \mathcal{A}$
- Environment sends back reward $R_{t+1} \in \mathcal{R}$ and new state $S_{t+1} \in \mathcal{S}$

The Agent-Environment Interface

Markov Decision Process

Markov decision process (MDP) consists of:

- ullet State space ${\cal S}$
- Action space ${\cal A}$

MDP is finite if S, A, R are finite

- Reward space \mathcal{R}
- Environment dynamics:

$$p(s',r|s,a) = \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s,a) = \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

$$r(s,a) = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

Markov Property

Markov property:

Future state and reward are independent of past states and actions, *given the current state and action*:

$$Pr\{S_{t+1}, R_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, ..., S_0, A_0\} = Pr\{S_{t+1}, R_{t+1} \mid S_t, A_t\}$$

- State S_t is sufficient summary of interaction history
 - \Rightarrow Means optimal decision in S_t does not depend on past decisions
- Designing compact Markov states is "engineering work" in RL

4

- Mobile robot must collect cans in office
- States:
 - high battery level
 - low battery level
- Actions:
 - search for can
 - wait for someone to bring can
 - recharge battery at charging station
- Rewards: number of cans collected

$\underline{\hspace{1cm}}$	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{ t search}$
${ t high}$	${ t search}$	low	$1-\alpha$	$r_{ t search}$
low	search	${\tt high}$	$1-\beta$	-3
low	search	low	β	$r_{ t search}$
high	wait	high	1	$\mid r_{ exttt{wait}} \mid$
high	wait	low	0	_
low	wait	high	0	_
low	wait	low	1	$\mid r_{ exttt{wait}} \mid$
low	recharge	high	1	0
low	recharge	low	0	_

Policy

MDP is controlled with a policy:

 $\pi(a|s)$ = probability of selecting action a when in state s

$\pi(a s)$	search	wait	recharge
high	0.9	0.1	0
low	0.2	0.3	0.5

Special case: deterministic policy $\pi(s) = a$

 $\pi(extsf{S})$ high o search low o recharge

Remark: MDP coupled with fixed policy π is a "Markov chain"

Goals and Rewards

Agent's goal is to learn a policy that maximises cumulative reward

Reward hypothesis:

All goals can be described by the maximisation of the expected value of cumulative scalar rewards.

Rewards specify what the goal is

- Rewards do not specify how to achieve goal
- But if done carefully, good reward design may help to learn faster
 - ⇒ Like state design, reward design is "engineering work" in RL

Total Return

Formally, policy should maximise expected return:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

= $R_{t+1} + G_{t+1}$

where T is final time step

Assumes terminating episodes:

- e.g. Chess game: terminates when one player wins
- e.g. Furniture building: terminates when furniture completed
- Can enforce termination by setting number of allowed time steps

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0,1)$:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

 $\begin{array}{c} \text{low } \gamma \text{ is shortsighted} \\ \text{high } \gamma \text{ is farsighted} \end{array}$

- e.g. Financial portfolio management
- e.g. Server monitoring and maintenance

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0, 1)$:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

low γ is shortsighted high γ is farsighted

• Sum is finite for $\gamma < 1$ and bounded rewards $R_t \leq r_{\sf max}$:

$$\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \leq r_{\max} \sum_{k=0}^{\infty} \gamma^k = r_{\max} \frac{1}{1-\gamma}$$

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0, 1)$:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

low γ is shortsighted high γ is farsighted

• Sum is finite for $\gamma < 1$ and bounded rewards $R_t \leq r_{\sf max}$:

$$\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \leq r_{\max} \sum_{k=0}^{\infty} \gamma^k = r_{\max} \frac{1}{1-\gamma}$$

 Definition also works for terminating episodes if terminal states are "absorbing": absorbing state always transitions into itself and gives reward 0

Given policy π , can quantify expected return in any state s with state-value function:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

Given policy π , can quantify expected return in any state s with state-value function:

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

In general, assuming terminating episodes (need more math for non-terminating episodes), let $\mathcal{H}(s)$ be the set of all possible episodes starting in s:

$$\mathcal{H}(s) \doteq \left\{ h = (s^t, a^t, r^{t+1}, s^{t+1}, a^{t+1}, r^{t+2}, s^{t+2}, ..., r^T, s^T) \mid s^t = s \right\}$$

Given policy π , can quantify expected return in any state s with state-value function:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

In general, assuming terminating episodes (need more math for non-terminating episodes), let $\mathcal{H}(s)$ be the set of all possible episodes starting in s:

$$\mathcal{H}(s) \doteq \left\{ h = (s^t, a^t, r^{t+1}, s^{t+1}, a^{t+1}, r^{t+2}, s^{t+2}, ..., r^T, s^T) \mid s^t = s \right\}$$

Each $h \in \mathcal{H}(s)$ has associated probability of occurring and cumulative reward:

$$\Pr(h|\pi) = \prod_{\tau=t}^{T-1} \pi(a^{\tau}|s^{\tau}) \, p(s^{\tau+1}, r^{\tau+1}|s^{\tau}, a^{\tau}) \quad \text{ and } \quad G(h) = \sum_{\tau=t}^{T} \gamma^{\tau-t} \, r^{\tau}$$

Given policy π , can quantify expected return in any state s with state-value function:

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

In general, assuming terminating episodes (need more math for non-terminating episodes), let $\mathcal{H}(s)$ be the set of all possible episodes starting in s:

$$\mathcal{H}(s) \doteq \left\{ h = (s^t, a^t, r^{t+1}, s^{t+1}, a^{t+1}, r^{t+2}, s^{t+2}, ..., r^T, s^T) \mid s^t = s \right\}$$

Each $h \in \mathcal{H}(s)$ has associated probability of occurring and cumulative reward:

$$\Pr(h|\pi) = \prod_{\tau=t}^{T-1} \pi(a^{\tau}|s^{\tau}) \, p(s^{\tau+1}, r^{\tau+1}|s^{\tau}, a^{\tau}) \quad \text{ and } \quad G(h) = \sum_{\tau=t}^{T} \gamma^{\tau-t} \, r^{\tau}$$

Then compute state value as $v_{\pi}(s) = \sum_{h \in \mathcal{H}(s)} \Pr(h|\pi) G(h)$

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

Markov: past states/actions don't matter given current state

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) \left[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} | S_{t+1} = s' \right] \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Can also define action-value function:

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Optimal Value Functions and Policies

Policy π is optimal if

$$V_{\pi}(s) = V_{*}(s) = \max_{\pi'} V_{\pi'}(s)$$
$$q_{\pi}(s, a) = q_{*}(s, a) = \max_{\pi'} q_{\pi'}(s, a)$$

Because of the Bellman equation, this means that for any optimal policy π :

$$\forall \hat{\pi} \ \forall S : V_{\pi}(S) \geq V_{\hat{\pi}}(S)$$

Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s') \right]$$
$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

Bellman optimality equations

Example: Gridworld

Gridworld:

- States: cell location in grid
- Actions: move north, south, east, west
- Rewards: -1 if off-grid, +5/+10 if in B/A, 0 otherwise

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function for uniform policy $\pi(a|s) = \frac{1}{4}$ for all s, a

Example: Gridworld

Gridworld:

- States: cell location in grid
- Actions: move north, south, east, west
- Rewards: -1 if off-grid, +5/+10 if in B/A, 0 otherwise

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Optimal policy and state-value function

Solving the Bellman Equation

Bellman equation for v_{π} forms a system of n linear equations with n variables, where n is number of states (for finite MDP):

$$v_{\pi}(s_1) = \sum_{a} \pi(a|s_1) \sum_{s',r} p(s',r|s_1,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_{\pi}(s_2) = \sum_{a} \pi(a|s_2) \sum_{s',r} p(s',r|s_2,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$\vdots$$

$$v_{\pi}(s_n) = \sum_{a} \pi(a|s_n) \sum_{s',r} p(s',r|s_n,a) \left[r + \gamma v_{\pi}(s')\right]$$

$$v_{\pi}(s) \text{ are variables}$$

$$\pi(a|s), p(s',r|s,a), r, \text{ and}$$

$$\gamma \text{ are constants}$$

$$\vdots$$

$$v_{\pi}(s_n) = \sum_{a} \pi(a|s_n) \sum_{s',r} p(s',r|s_n,a) \left[r + \gamma v_{\pi}(s')\right]$$

- Value function v_{π} is unique solution to system
- Solve for v_{π} with any method to solve linear systems (e.g. Gauss elimination)

Solving the Bellman Equation

Bellman optimality equation for v_* forms a system of n non-linear equations with n variables

- Equations are non-linear due to max operator
- ullet Optimal value function v_* is unique solution to system
- ullet Solve for v_* with any method to solve non-linear equation systems

Can solve related set of equations for q_π / q_*

Once we have v_* or q_* , we know optimal policy π_*

Solving for v_* in recycling robot example (states: h/1, actions: s,w,re):

$$v_{*}(\mathbf{h}) = \max \left\{ \begin{array}{l} p(\mathbf{h}|\mathbf{h},\mathbf{s})[r(\mathbf{h},\mathbf{s},\mathbf{h}) + \gamma v_{*}(\mathbf{h})] + p(\mathbf{1}|\mathbf{h},\mathbf{s})[r(\mathbf{h},\mathbf{s},\mathbf{1}) + \gamma v_{*}(\mathbf{1})], \\ p(\mathbf{h}|\mathbf{h},\mathbf{w})[r(\mathbf{h},\mathbf{w},\mathbf{h}) + \gamma v_{*}(\mathbf{h})] + p(\mathbf{1}|\mathbf{h},\mathbf{w})[r(\mathbf{h},\mathbf{w},\mathbf{1}) + \gamma v_{*}(\mathbf{1})], \\ \end{array} \right\}$$

$$= \max \left\{ \begin{array}{l} \alpha[r_{s} + \gamma v_{*}(\mathbf{h})] + (1 - \alpha)[r_{s} + \gamma v_{*}(\mathbf{1})], \\ 1[r_{w} + \gamma v_{*}(\mathbf{h})] + 0[r_{w} + \gamma v_{*}(\mathbf{1})], \\ \end{array} \right\}$$

$$= \max \left\{ \begin{array}{l} r_{s} + \gamma[\alpha v_{*}(\mathbf{h}) + (1 - \alpha)v_{*}(\mathbf{1})], \\ r_{w} + \gamma v_{*}(\mathbf{h}) \end{array} \right\}.$$

$$v_*(\mathbf{1}) = \max \left\{ \begin{array}{l} \beta r_{\mathbf{s}} - 3(1 - \beta) + \gamma [(1 - \beta)v_*(\mathbf{h}) + \beta v_*(\mathbf{1})], \\ r_{\mathbf{w}} + \gamma v_*(\mathbf{1}), \\ \gamma v_*(\mathbf{h}) \end{array} \right\}$$

Choose numbers for $r_s, r_w, \alpha, \beta, \gamma$ and solve for unique $v_*(h) / v_*(1)$ pair

Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy π will produce an ergodic set of states \hat{S} :

- ullet Every state in $\hat{\mathcal{S}}$ visited infinitely often
- Steady-state distribution: $P_{\pi}(s) = \lim_{t \to \infty} \Pr\{S_t = s \mid A_0, ..., A_{t-1} \sim \pi\}$

Performance of π can be measured by average reward:

$$r(\pi) \doteq \lim_{h \to \infty} \frac{1}{h} \sum_{t=1}^{h} \mathbb{E}[R_t \mid S_0, A_0, ..., A_{t-1} \sim \pi]$$

$$= \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) r \qquad \text{Independent of initial state } S_0!$$

Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average reward!

$$\sum_{s} P_{\pi}(s) v_{\pi}(s) = \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$= r(\pi) + \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [\gamma v_{\pi}(s')]$$

$$= r(\pi) + \gamma \sum_{s'} P_{\pi}(s') v_{\pi}(s')$$

$$= r(\pi) + \gamma [r(\pi) + \gamma \sum_{s'} P_{\pi}(s') v_{\pi}(s')]$$

$$= r(\pi) + \gamma r(\pi) + \gamma^{2} r(\pi) + \gamma^{3} r(\pi) + \cdots$$

$$= r(\pi) \frac{1}{1 - \gamma} \qquad \Rightarrow \gamma \text{ has no effect on maximisation!}$$

Discounting and Average Reward

We will focus on discounted return since:

- Most of current RL theory was developed for discounted return
- Discounted and average setting give same limit results for $\gamma \to 1$ \Rightarrow This is why most often people use $\gamma \in [0.95, 0.99]$
- Discounted return works well for finite and infinite episodes

Outlook

- Markov decision process is the fundamental model in RL
- MDPs can be solved exactly if we know all components of the MDP (i.e. S, A, R, p(s', r|a, s))
 - ⇒ But number of states/actions is problem for scalability
- We will discuss RL techniques which *learn* optimal policy by *interacting* with MDP
 - \Rightarrow Methods try to find good *approximate* solutions with reasonable effort

Reading

Required:

• RL book, chapter 3

Optional:

- Dynamic Programming by Richard Bellman (university library has copies)
- Markov Decision Processes: Discrete Stochastic Dynamic Programming by Martin Puterman (university library has copies)
- Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward Temporal-Difference Learning. Machine Learning, 49, 179–191