НМУ Алгебра Константин Логинов

ЗаТеХано Потошином Георгием

2024

Глава 1

Векторные пространства

1.1 Жорданова нормальная форма

Матрица называется жордановым блоком, если она имеет вид

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}$$

Болок размера $k \times k$ с λ на диагонали и с 1 над диагональю. В прошлый раз мы доказали, что для любого линейного эндоморфизма векторных конечномерных пространств над алгебраически замкнутым полем есть базис, в котором матрица имеет блочно диагональный вид, с жордановыми блоками.

Поле называется алгебраически замкнутым, если каждый многочлен над этим полем положительной степени имеет корень.

$$\begin{pmatrix} J_{k_1}(\lambda_1) & 0 \\ J_{k_2}(\lambda_2) & \\ & \ddots & \\ 0 & J_{k_n}(\lambda_n) \end{pmatrix}$$

Стоит отметить, что λ_i и k_i

Пример: Пусть полем будет $\mathbb{k} = \mathbb{R}$, а пространством $V = \mathbb{R}^2$. Заметим, что $x^2 + 1$ неприводим в этом поле. Тогда возьмём оператор поворота на 90 градусов.

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Для неё нет жордановой нормальной формы над \mathbb{R} , так как у неё нет собственных значений. Если бы они были, то были бы корнем характеристического многочлена $\chi_A(t)=t^2+1$, а у него корней нет. Над \mathbb{C} , наш оператор приводим, так как $\pm \sqrt{-1}$ его собственные значения, а тогда

$$A = \left(\begin{array}{cc} \sqrt{-1} & 0\\ 0 & -\sqrt{-1} \end{array}\right)$$

Заметим, что по жордановой нормальной форме легко вычислять инварианты, так как след – сумма диагональных элементов, $\operatorname{tr}(A) = \sum k_i \lambda_i$.

Замечание: базис, в котором оператор имеет жорданову нормальную форму, вообще говоря не единственен, например тривиальный оператор I.

Тем не менее кое-что определено канонически. Давайте означим за $n_{\lambda,k}$ – количество клеток вида $J_k(\lambda)$ в нашей матрице.

Утверждение:

$$\sum_{p=1}^{k} p n_{\lambda,p} + \sum_{p=k+1}^{\inf} k n_{\lambda,p} = \dim \operatorname{Ker}(A - \lambda \operatorname{Id})^{k}, \ \forall \lambda, k$$

Следовательно, $n_{\lambda,k}$ – инварианты A.

Для доказательства, давайте запишем матрицу в жордановой нормальной форме и посчитаем ядро dimKer $(A-\mathrm{Id})^\lambda$. В таком виде нас будут интересовать только клетки, в которых стоит λ . Тогда можно предполагать, что оператор состоит только из клеток с λ . Если посмотреть на то, что происходит с клетками, то мы увидим

$$J_k(\lambda) - \lambda \operatorname{Id} = \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}$$

И если мы возведем в степень такие клетки, то равенство станет очевидным.

Замечание: Пусть $A \in \operatorname{End}(V)$. Заметим, что задать оператор A, равносильно заданию на V структуры $\mathbb{k}[t]$ -модуля. Структура $\mathbb{k}[t]$ -модуля это в точности \mathbb{k} -модуль с действием t. Зададим это действие следующим образом $t^l \cdot v = A^l(v)$, $v \in V$ и продолжим его по линейности. В обратную сторону, мы зададим оператор через действие t, то есть $A(v) = t \cdot v$. И это также эквивалентно заданию гомоморфизма (колец?) $\phi : \mathbb{k}[t] \to \operatorname{End}(V)$, где образ t будет оператором A. (Скорее всего это работает только в коммутативном случае, когда на $\operatorname{End}(V)$ Есть структура модуля и я бы брал гомоморфизмы модулей!).

Например если $A = J_k(\lambda)$, то $V \cong \mathbb{k}[t]/(t-\lambda)^k$. Давайте поймём почему этот изоморфизм имеет место. Нам нужно во первых убедится, что они изоморфны как \mathbb{k} -векторные пространства, а во вторых, что A действует в V также как t умножением в $\mathbb{k}[t]/(t-\lambda)^k$. Первое верно из наблюдения размерности, в обоих случаях она k. Для второго, нужно понять как $A-\lambda$ Id действует на базисные вектора, а именно $e_1\mapsto 0$ и $e_{i+1}\mapsto e_i$ для $1\le i\le k$. Заметим, что $\{(t-\lambda)^i\}_{0\le i\le k}$ \mathbb{k} -базис фактор кольца, и в нём $t-\lambda$ умножением действует точно также на элементы кольца, а значит у нас есть изоморфизм $\mathbb{k}[t]$ -модулей.

Следствие (из теоремы о существовании ЖНФ) Для $A \in \operatorname{End}(V)$, $V - \Bbbk[t]$ -модуль. То $V \cong_{\Bbbk[t]} \bigoplus_{i=1}^N \Bbbk[t]/(t-\lambda_i)^{k_i}$, где действие A соответствует действию t, а сумма идёт по жордановым блокам. Это верно, так как матрица оператора блочно диагональная, а значит пространство раскладывается в прямую сумму подпространств, так, что на каждом подпространстве наш оператор действует как жорданов блок, а тогда применив предыдущий результат, мы получаем искомое. Такая формулировка теоремы о жордановой нормальной форме более правильная, так как она имеет обобщения, то есть на классификацию конечно порожденных модулей. В частности классификация конечных и конечно порожденных абелевых групп.

Определение: $A \in \operatorname{End}(V)$ называется полупростым, если существует базис, в котором матрица A диагональна. A называется нильпотентом, если $A^m = 0$ для m > 1.

Следствие (из ЖНФ): $A \in \text{End}(V)$, то $A = A_{ss} + A_n$, где A_{ss} – полупрост, а A_n – нильпотент. И эти два оператора коммутируют.

$$J_k(\lambda) = \lambda \operatorname{Id} + \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}$$

Теорема (Гамильтона-Кэли): $A \in \operatorname{End}(V) \Rightarrow \chi_A(A) = 0$. Поле не обязательно алгебраически замкнуто. $\chi_{J_k(\lambda)}(t)|_{t=a} = (t-\lambda)^k|_{t=A} = (A-\lambda)^k = 0$. А значит в каждом блоке будет 0, теорему доказали, но жульничество в том, что нам необходима алгебраическая замкнутость поля, но жульничество можно обойти, показав, что каждое поле вложено в алгебраически замкнутое.

Доказательство:

 $(tE-A)(t\widehat{E-A})=(t\widehat{E-A})(tE-A)=\chi_A(t)$ Іd в кольце $\mathcal{M}at_{n\times n}(\Bbbk[t])=(\mathcal{M}at_{n\times n}(\Bbbk))[t].$ Определим отображение

$$\phi: R \to \mathcal{M}at_{n \times n}(\mathbb{k}),$$

где $R = Z_A(\mathcal{M}at_{n\times n}(K)[t])$, а устроено оно вычислением в A, то есть $\phi(\sum B_i t^i) = \sum B_i A^i$, где $B_i \in \mathcal{M}at_{n\times n}(\mathbb{k})$. Заметим, что ϕ является гомоморфизмом.

$$\chi_A(A) = \phi(\chi_A(t)E) = \phi((tE-A)(tE-A)) = \phi(tE-A\phi(tE-A)) = \phi(tE-A)(A-A) = 0.$$

Замечание: $A \in \operatorname{End}(V)$ задание эндоморфизма эквивалентно заданию гомоморфизма $\phi : \mathbb{k}[t] \to \operatorname{End}(V)$. По теореме Гамильтона-Кэли мы знаем, что $\chi_A(t) \in \operatorname{Ker}(\phi)$. С другой стороны $\operatorname{Ker}(\phi) = (m_A(t))$, тогда можно определить m_A минимальный многочлен оператора A, минимальный многочлен оператора A, он определен однозначно, если старший коэффициент брать за 1. Заметим, что минимальны многочлен делит характеристический.

Упражнение: Существует N, что $\chi_a(t) \mid m_a(t)^N$. **Пример:**

- $m_A(t) = t \lambda$, для $A = \lambda E$. Тогда $\chi_A(t) = (t \lambda)^k$.
- $m_A(t) = t^k$, тогда $A \mathbf{u} \chi_A(t) = t^n$. Можно взять нулевой жордановый блок и нулевую матрицу и соединить их в блочно диагональной манере.
- Если $m_A(t) = (t-1)^k$, то A называется унипотентом.
- Если $m_A(t) = t(t-1)$, то A проектор, идемпотентен

Глава 2

Поля и их расширения

Пусть \mathbb{k} – поле. Тогда можно рассмотреть гомоморфизм $\mathcal{U}: \mathbb{Z} \to \mathbb{k}$, $1 \mapsto 1$, у него есть ядро $\mathrm{Ker}(\mathcal{U}) \subseteq \mathbb{Z}$, это идеал в \mathbb{Z} , он главный, так как идеал кольца главных идеалов, пусть он равен (d).

Утверждение: d – простое число или 0.

Доказательство: Ядро – прообраз простого идеала, а значит ядро просто.

Определение: d – характеристика \mathbb{k} , её мы обозначаем char(\mathbb{k}) = d, то есть простое число или 0, которое однозначно определяется по полю.

- $char(\mathbb{Q}) = 0$
- $\operatorname{char}(\mathbb{Z}/p\mathbb{Z}) = p$

Напоминание: Если $f: \mathbb{K} \to \mathbb{L}$ гомоморфизм полей, то он инъективен. Так как несобственный идеал только 0.

 $A = \text{Im}(\mathcal{H})$ – область целостности. Тогда можно рассмотреть поле частных $\text{Frac}(A) \leq \mathbb{k}$, подполе в \mathbb{k} , оно называется простым подполем.

$$\operatorname{Frac}(A) \cong \left\{ \begin{array}{cc} \mathbb{Q} & \operatorname{char}(\mathbb{k}) = 0 \\ \mathbb{Z}/p\mathbb{Z} & \operatorname{char}(\mathbb{k}) = p \end{array} \right.$$

Простое подполе определено однозначно, так как гомоморфизм \varkappa определен однозначно, канонически. Оно называется простым, так как в нём нет собственных подполей.

Утверждение: Пусть $f: \mathbb{K} \to \mathbb{L}$ – гомоморфизм полей. Тогда char(\mathbb{K}) = char(\mathbb{L}) и f индуцирует изоморфизм простых подполей в \mathbb{K} и \mathbb{L} .

Доказательство:

$$\mathbb{Z} \xrightarrow{\varkappa_K} \mathbb{K} \xrightarrow{f} \mathbb{L}$$

Давайте тогда заметим, что композиция является гомоморфизмом \varkappa для \mathbb{L} , так как композиция переводит единицу в единицу. Отсюда следует, что ядро \varkappa_L равно ядру \varkappa_K , так как f вложение. Более того $\operatorname{Im}(\varkappa_K) \cong_f \operatorname{Im}(\varkappa_L)$, а значит простые подполя изоморфны, а характеристики равны.

Определение: $K \leq L$ называется расширением полей, если $K \hookrightarrow L$, то есть следующий набор данных, поле K, поле L и вложение. Иногда это обозначается (L/K) и черта читается как "над".

Если $K \leq L$, то L является векторным пространством над K. Тогда можно говорить о размерности L над K и если $\dim_K L \leq \infty$, то расширение мы называем конечным, а размерность мы будем писать чуть иначе $\dim_K L = [L:K]$.

 $K_1 \leq K_2 \leq ... \leq K_S$ мы называем башней полей, а расширение $K_i \leq K_{i+1}$ – этаж этой башни.

Пример: $\mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ в этой башне только второй этаж конечен.

Утверждение: Если $F \le K \le L$, то [L:F] = [L:K][K:L]

Доказательство: Пусть $K = \langle x_i \rangle_F$, $x_i \in K$, где $\{x_i\}$ базис K над L и пусть $L = \langle y_j \rangle_K$, $y_j \in L$, где $\{y_j\}$ базис L над F. Тогда мы можем построить базис L над F, а именно $L = \langle x_i y_j \rangle_F$ поверим это. Пусть $a \in L$, тогда его можно разложить над $\{y_j\}$, то есть $a = \sum a_j y_j$, $a_j \in K$. Но тогда a_j можно разложить над $\{x_i\}$, то есть $a_j = \sum a_{i,j} x_i$, $a_{i,j} \in F$, а тогда $a_j \in L$ ито означает $\{x_i y_j\}$ порождает L над F.

Пусть теперь $\sum a_{i,j}x_iy_j=0$, пойдя в обратную сторону и положив $a_j=\sum a_{i,j}x_i\in K$, мы получи $\sum a_jy_j=0$, а тогда по свойству базиса $\{y_j\}$ получим $a_j=0$, но тогда и $\sum a_{i,j}x_i=0$, и по свойству базиса $\{x_i\}$ получим $a_{i,j}=0$, что означает линейную независимость $\{x_iy_j\}$, тогда это и вправду базис и его кардинал равен произведению кардиналов базисов $\{x_i\}$ и $\{y_j\}$.

Следствие: Для конечной башни полей $K_1 \leq K_2 \leq ... \leq K_s$ расширение $K_1 \leq K_s$ конечно, ттогда $K_i \leq K_{i+1}$ конечны $\forall i$.

Определение: Пусть $K \leq L$ расширение полей, элемент $0 \neq \alpha \in L$ называется алгебраичным, что $f(\alpha) = 0$ для некоторого $0 \neq f(x) \in K[x]$. Расширение $K \leq L$ называется алгебраичным, если $\forall \alpha \in L$ оно либо нуль либо алгебраично.

Утверждение: Для любого конечного расширения $K \leq L$ известно, что оно алгебраично.

Доказательство: Для ненулевого $\alpha \in L$ элементы 1, α , α^2 , ..., α^n , где n = [L:K], линейно зависимы, а значит найдутся коэффициенты $a_i \in L$, что $a_0 + a_1\alpha + ... + a_n\alpha^n = 0$, а тогда можно положить $f(x) = a_0 + a_1x + ... + a_nx^n \in K[x]$ и расширение алгебраично.

Обратное не верно, так как бывают бесконечные алгебраические расширения.

Пусть $K \leq L$ – расширение полей, тогда для любого $\alpha \in L$ можно устроить гомоморфизм колец

$$\phi_{\alpha}: K[x] \to L$$
$$g(x) \mapsto g(\alpha)$$

Тогда обозначим целостное кольцо $K[\alpha] = \operatorname{Im} \phi_{\alpha} \leq L$, а его поле частных мы обозначим за $K(\alpha) = \operatorname{Frac} K[\alpha]$.

Заметим, что если α алгебраичен, то ϕ_{α} не вложение. Действительно, ядро не будет тривиальным по определению алгебраичного элемента. Тогда $\operatorname{Ker} \phi_{\alpha} \leq K[x]$ является нетривиальным идеалом, но как мы уже обсуждали многочлены над полем образуют кольцо главных идеалов, а значит $\operatorname{Ker} \phi_{\alpha} = (p(x))$ и $p(x) \neq 0$ и можем считать, что старший коэффициент единица. Будем называть p(x) минимальным многочленом α или неприводимый, то есть $\operatorname{Irr}_{\alpha}^{K}(x)$.

Утверждение: Если $\alpha \in L$ алгебраичен над K, то $K(\alpha) = K[\alpha]$, а также степень расширения полей равна $[K(\alpha):K] = \deg \operatorname{Irr}_{\alpha}^{K}(x)$.

Доказательство: Обозначим $f(x) = \operatorname{Irr}_{\alpha}^{K}(x)$. Пусть есть некий ненулевой элемент $\beta \in K[\alpha]$, тогда мы найдем $g(x) \in K[x]$, что $\beta = g(\alpha)$. Заметим, что f(x) неприводим, так как прост. Тогда (f(x), g(x)) = 1, так как f(x) не может делить g(x), в противном случае мы бы имели $\beta = g(\alpha) = kf(\alpha) = 0$. Тогда мы можем найти соотношение Безу f(x)h(x) + g(x)s(x) = 1, подставим в него α , тогда останется $g(\alpha)s(\alpha) = 0$, а значит $\beta s(\alpha) = 1$ обратим, из этого заключаем, что $K[\alpha]$ - поле и совпадает со своим полем частных $K(\alpha)$.

Заметим, что в $K(\alpha) = K[\alpha] = \langle 1, \alpha, ..., \alpha^{n-1} \rangle_K$ есть базис. Он порождает, так как старшие степени α могут быть вычислены из тех, что мы выписали по минимальному многочлену и он линейно независим, так как иначе мы бы нашли меньший многочлен, зануляющий α , а у нас уже наименьший.

С расширениями полей такая история, что начав изучать, невозможно остановиться

Следствие: Пусть $K \leq L$, $\alpha_i \in L$ – алгебраичны над K и $L = K(\alpha_1, ..., \alpha_n)$, тогда степень расширения $[L:K] < \infty$. Под $K(\alpha_1, ..., \alpha_n)$ можно понимать как минимальное поле, содержащее все элементы в скобках, так и значения рациональных дробей многих переменных, выичсленных в тех же элементах, без обращения знаменателя в ноль.

Доказательство: Рассмотрим башню

$$K \leq K(\alpha_1) \leq K(\alpha_1, \alpha_2) \leq \dots \leq K(\alpha_1, \dots, \alpha_n)$$

Заметим, что α_{i+1} алгебраичен над $K(\alpha_1, ..., \alpha_i)$, а значит каждый этаж башни конечен, а тогда и L/K конечно.

Утверждение: Пусть $F \le K \le L$ – башня полей, тогда L/F алгебраично равносильно тому, что K/F и L/K алгебраичны.

Доказательство Если L/F алгебраично, то для любого $\alpha \in K$, по включению $\alpha \in L$, а значит α – корень некого многочлена $f(x) \in F[x]$ и K/F алгебраично. Точно также так как для любого $\alpha \in L$, есть его зануляющий многочлен $f(x) \in F[x]$, то так как $F[x] \subseteq K[x]$, он же является многочленом над K, а заначит L/K алгебраично. Покажем теперь импликацию в обратную стороную. Пусть K/F и L/K алгебраичны, тогда для $\alpha \in L$ мы найдем зануляющий многочлен $f(x) = x^n + a_n x^{n-1} + ... + a_1$ с коэффициентами в K. Тогда построим башню $F \leq F(a_n, ..., a_1) \leq F(a_n, ..., a_1)(\alpha)$, здесь каждый этаж башни конечен, тогда конечна и вся башня, а тогда $F(a_n, ..., a_1)(\alpha)/F$ конечно, а значит алгебраично, а тогда a алгебраично над a, а тогда и расширение a

Определение: Поле L алгебраически замкнуто, если для любого $f(x) \in L[x]$ есть корень.

Пример: ℂ

Утверждение: Любое поле можно вложить в алгебраически замкнутое.

План: Пусть удалось построить башню полей

$$K \leq K_1 \leq K_2 \leq K_2 \leq \dots$$

с условием, что любой многочлен $f(x) \in K_i[x]$ имеет корень в K_{i+1} . Тогда можно взять объединение $L = \bigcup_{i=1}^{\infty} K_i$. Это поле, так как если $\alpha, \beta \in L$, то мы найдем $\alpha \in K_i$ и $\beta \in K_j$, то можно выбрать номер побольше, что $\alpha, \beta \in K_{\max(i,j)}$ и там их уже можно сложить, умножить, поделить, взять обратные, и так далее. Это поле будет алгебраически замкнутым, так как если $f(x) = x^n + b_1 x^{n-1} + ... + b_n \in L[x]$, то найдутся индексы, что $b_j \in K_{i_j}$, тогда обозначим за $K_l = K_{\max_j(i_j)}$ и $f(x) \in K_l[x]$, а значит имеет корень в K_{l+1} .

Теперь давайте явно построим такую башню. Для этого опишем как по полю F построить поле \widetilde{F} , что для любого многочлена над $F, f(x) \in F[x]$ найдется корень в \widetilde{F} , тогда применяя бесконечное число раз эту конструкцию можно построить эту башню. Рассмотрим $\Lambda = F[\{t_f\}_{f \in F[x]}]$ кольцо многочленов от бесконечного числа переменных, заиндексированных многочленами от x над F.

Давайте построим идеал $I=(f(t_f))_{f\in F[x]\backslash F}$. Покажем, что он собственный, то есть что $\Lambda\neq I$. Если бы $I=\Lambda$, то $1\in I$, и $g_1f_1(t_{f_1})+g_2f_2(t_{f_2})+...+g_nf_n(t_{f_n})=1$

Лемма: Если K поле и $f(x) \in K[x] \setminus K$, то всегда есть расширение L, что $f(\alpha) = 0$, $\alpha \in L$ многочлен в нем имеет корень.

Можно профакторизовать по неприводимому множителю.

Тогда по лемме есть поле L в котором найдутся $\alpha_1, ..., \alpha_n \in L$, что $f_i(\alpha_i) = 0$, тогда подставив $t_{f_i} = \alpha_i$ мы слева получим 0, а справа 1. Значит I собственный, а значит он вложен в некий максимальный идеал m. Тогда можно положить $\widetilde{F} = F[t_f]/m$. В этом поле любой многочлен f(x) имеет корень $[t_f]$. Поэтому у любого поля есть алгебраически замкнутое надполе.

Определение: $K \leq \overline{K}$ называется алгебраическим замыканием, если \overline{K} алгебраически замкнуто и любой $\alpha \in \overline{K}$ алгебраичен ($K \leq \overline{K}$ алгебраическое расширение).

Утверждение: \overline{K} существует (но и единственно)

Доказательство: $K \leq L$, где L - алгебраически замкнуто, тогда положим $\overline{K} = \{$ Все элементы $\alpha \in L$, что α алгебраичен над $K \}$. Проверим, что \overline{K} - поле. Пусть $\alpha, \beta \in \overline{K}$. Можно посмотреть на расширение $K \leq K(\alpha, \beta)$ оно конечно, а значит алгебраично, это значит, что $\alpha + \beta, \alpha\beta, \alpha/\beta$ алгебраичны над K, а значит лежат в \overline{K} . Теперь давайте увидим, что \overline{K} замкнуто, тогда пусть $f(x) \in \overline{K}[x]$ и мы хотим найти у него корень в \overline{K} , но на него можно посмотреть как на многочлен над L и в L у него есть корень α , но $f = x^k + a_1 x^{n-1} + ... + a_n$ и в нём a_i алгебраичны над K. Тогда можно посмотреть на следующую башню

$$K \le K(a_1, \dots, a_n) \le K(a_1, \dots, a_n)[\alpha]$$

В этой башне первый этаж конечен, второй тоже, так как α зануляет f(x), а значит вся башня тоже конечна, а тогда $K(a_1, ..., a_n)[\underline{\alpha}]/K$ конечно, а значит алгебраично, а тогда алгебраичен и α , то есть $\alpha \in \overline{K}$ и \overline{K} алгебраически замкнуто.

Примеры: $\mathbb{C}=\overline{\mathbb{R}}, \overline{\mathbb{Q}}=\{a\in\mathbb{C}\,|\,a$ алгебраичен над $\mathbb{Q}\}$, а что можно сказать о $\overline{\mathbb{F}_p}$?

2.1 Поле разложения многочлена

Определение: L называется полем разложения многочлена $f(x) \in K[x]$, если $K \le L$, $f(x) = c \prod_{i=1}^{n} (x - \alpha_i)$, $\alpha_i \in L$ и $K(\alpha_1, ..., \alpha_n) = L$.

Поле L строится по полю K и $f(x) \in K[x]$.

Поле L существует, так как мы можем например найти все корни в \overline{K} , выпишем эти корни $\alpha_i \in \overline{K}$. Тогда $L = K(\alpha_1, ..., \alpha_n)$. Проверим однозначность конструкции, пусть $L' = K(\alpha'_1, ..., \alpha'_n)$ где $\alpha'_i \in L'$ лежат в каком-то другом поле. Тогда можно устроить морфизм $\sigma: L' \mapsto \overline{K}$, $\sigma(\alpha'_i) = \alpha_i$. Проверим, что это корректно [..?].

Пусть \mathbb{F}_q – конечное поле с q элементами, его характеристика может быть равна только простому числу p, а тогда мы имеем вложение $\mathbb{F}_p \hookrightarrow$

 \mathbb{F}_q и \mathbb{F}_q будет векторным пространством над \mathbb{F}_p , а тогда $q=p^n$ может равняться только степени p. Пусть теперь есть поле \mathbb{F}_q и посмотрим на многочлен $p(x)=x^q-x\in \mathbb{F}_p[x]$. Пусть \mathbb{F}_q^{\times} – мультипликативная группа, её порядок $|\mathbb{F}_q^{\times}|=q-1$, а это означает, что для любого $\alpha\in \mathbb{F}_q^{\times}$, $\alpha^{q-1}-1=0$. А тогда нетрудно видеть, что любой $\alpha\in \mathbb{F}$ является корнем p(x). Тогда по теореме Безу p(x) раскладывается на множители степени 1 над \mathbb{F}_q

$$x^q - x = \prod_{\alpha_i \in \mathbb{F}_q} (x - \alpha_i),.$$

Тогда можно посмотреть на вложение $\mathbb{F}_p(\alpha_1,...,\alpha_q) \leq \mathbb{F}_q$ и оно тривиально является равенством, а тогда \mathbb{F}_q – поле разложения многочлена $x^q - x$.

Чем конечные поля замечательны, в теории полей, если есть расширение $K \leq L$, основной объект, который обычно изучают, это $\mathrm{Aut}_K(L)$ автоморфизмы L над K, те изоморфизмы поля L, что они сохраняют поле K. в конечном случае автоморфимы легко посчитать $\mathrm{Aut}_{\mathbb{F}_q}(\mathbb{F}_{p^n}) = \mathbb{Z}/n\mathbb{Z}$ циклическая группа, с образующей $\phi: \mathbb{F}_q \to \mathbb{F}_q = x \mapsto x^p$.

Утверждение: ϕ - гомоморфизм (Фробениуса).

Пусть есть алгебраическое замыкание $\mathbb{F}_p \leq \overline{\mathbb{F}_p}$. Возьмём многочлен $x^{p^n}-x$, у него есть $\alpha_i \in \overline{\mathbb{F}_p}$ все корни, тогда мы возьмём $\mathbb{F}_p(\alpha_1,...,\alpha_{p^n})$. Осталось проверить, что в $\mathbb{F}_q = \mathbb{F}_p(\alpha_1,...,\alpha_p^n)$ q элементов, для этого перепишем многочлен через фробениуса $\phi(x) = x^p$, а тогда $\phi^n(x) = x^{p^n}$. Тогда видно, что если α,β корни x^q-x , то $\alpha+\beta$, $\alpha\beta$ и α/β корни, так как оперции пропускаются через гомоморфизм Фробениуса. Единственная проблема, что в $\overline{\mathbb{F}_p}$ может быть кратные корни, но кратность корня эквивалентна тому, что это корень производнойб. но $(x^(p^n)-x)'=-1$ корней нет, а значит всего p^n различных корней.

Можно пойти по иному пути и факторизовать многочлены, но как бы мы не старались, поле всегда будет полем разложения полинома $x^q - x$.

Давайте теперь убедимся, что автоморфизмы $\mathrm{Aut}_{\mathbb{F}_p}(\mathbb{F}_{p^n})$ порождены автоморфизмом Фробениуса. То есть группа Галуа очень просто устроена. Про \mathbb{F}_q^{\times} известно, что она циклическая. Пусть $f:\mathbb{F}_q\mapsto \mathbb{F}_q$ автоморфизм поля, тогда он в частности является автоморфизмом циклической мультипликативной группы, а они устроены как возведение в некую степень, но и ноль в некоторой степени тоже ноль. Тогда $f(x)=x^k$. В частности это верно для $f(x+1)=(x+1)^k=x^k+1$, а это означает, что каждый x должен быть корнем $\sum_{i=1}^{k-1} C_k^i x^i$. Тогда если...

Если $\sigma: K \to L$ – гомоморфизм полей, то для $a \in K$ будем обозначать $a^{\sigma} = \sigma(a)$. И если $f(x) = \sum a_i x^i \in K[x]$, то введем обозначение $f^{\sigma}(x) = \sum a_i^{\sigma} x^i$.

Определение: Пусть $\sigma: K \to L$ гомоморфизм полей и пусть K'/K, L'/L – расширения полей. Тогда мы будем говорить, что $\tau: K' \to L'$ – гомоморфизм полей продолжающий σ , если $\tau|_K = \sigma$.

Утверждение Пусть $\sigma: K \to L$ – гомоморфизм полей, K'/K и L'/L – расширения полей и $K' = K(\alpha)$ и α алгебраичен над K и пусть $p(x) = \operatorname{Irr}_{\alpha}^{K}(x)$ – минимальный многочлен α , тогда множество гомоморфизмов $\tau: K' \to L'$ находится в биекции с множеством корней $p^{\sigma}(x)$ в L'.

Доказательство: Пусть $\tau: K' \to L'$ такой, что $\tau | K = \sigma$. Давайте тогда вычислим $p^{\sigma}(\alpha^{\tau}) = p^{\tau}(\alpha^{\tau}) = (p(\alpha))^{\tau} = 0$, таким образом мы получили, что α^{τ} – это корень $p^{\sigma}(x)$.

Обратно, пусть $\beta \in L'$ такой, что $p^{\sigma}(\beta) = 0$. Тогда у нас есть $K' = K(\alpha) = K[\alpha]$, так как α алгебраичен. Тогда мы знаем, что всякий элемент из K' представляется в виде $f(\alpha)$, где $f(x) \in K[x]$. Тогда будем отправлять $\tau : f(\alpha) \mapsto f^{\sigma}(\beta)$. Проверим корректность, $K' = K(\alpha) = K[\alpha] = K[x]/(p(x))$, а α зануляет этот идеал. Более точно, если $f(\alpha) = g(\alpha)$ для некоторых $f, g \in K[x]$, то $(f-g)(\alpha) = 0$, а значит f(x) - g(x) = p(x)h(x), но тогда $f^{\sigma}(\beta) - g^{\sigma}(\beta) = h^{\sigma}(\beta)p^{\sigma}(\beta) = 0$, а это означает, что образ при таком задании не зависит от многочлена.

Тогда есть биекция, так как по гомоморфиму мы построили корень, образ α , и по корню мы построили гомоморфизм, который отправляет α в корень, такое если есть, то он единственный, потому как по предположению $K(\alpha)$ представляется как полиномы от α .

Следствие: количество продолжений $\sigma: K \to L$ на $K' = K(\alpha)$, где α алгебраический, не превосходит $[K':K] = \deg \operatorname{Irr}_{\alpha}^{K}(x)$.

Пример: Если $\mathbb{F}_p \leq \mathbb{F}_q$, $q = p^n$, есть гомоморфизм $\mathrm{Fr} : \mathbb{F}_q \to \mathbb{F}_q : a \to a^n$ и $\mathrm{Fr} \in \mathrm{Aut}(\mathbb{F}_q)$. Про этот автоморфизм известно, что $\mathrm{ord}(\mathrm{Fr}) = n$, $\mathrm{Aut}(\mathbb{F}_q) \cong \mathbb{Z}/n\mathbb{Z}$. Это мы покажем чуть позже.

Определение: Пусть K'/K и K''/K – расширения полей, тогда если $\sigma: K' \to K''$ продолжает $\mathrm{Id}_K: K \to K$. То тогда σ называют гомоморфизмом над K.

Утверждение: Если L/K – алгебраическое расширение и $\sigma: L \to L$ – гомоморфизм над K, то σ – автоморфизм.

Доказательство: Достаточно проверить, что σ – сюрьективен. Пусть $\alpha \in L$, попробуем найти его прообраз. Так как расширение алгебраическое, то α удолетворяет некому полиномиальному уравнению, давайте обозначим $p(x) = \operatorname{Irr}_{\alpha}^K(x)$ – минимальный многочлен. Посмотрим на $\{\alpha_1, ..., \alpha_m\}$ – множество корней p(x) в L. Можно считать, что $\alpha_1 = \alpha$. Тогда рассмотрим $L' = K(\alpha_1, ..., \alpha_m) \le L$ подполе, порожденное всеми корнями p(x). Заметим, что L'/K – конечно порождено и алгебраично над K. Тогда $\dim_K^{L'} < \infty$. Мы знаем, что $\sigma(\alpha_i) = \alpha_i$, а тогда $\sigma(L') \le Li$, так как σ просто перестав-

ляет корни. Но $\sigma|_{L'}$ инъективен, так как гомоморфизм полей над K и K-линеен, а значит по конечномерности $\sigma|L'$ сюрьективен, а тогда найдётся β , что $\sigma(\beta)=\alpha$. Отсюда и следует сюръективность, а значит σ автоморфизм.

Теорема: Если K'/K – алгебраическое расширение полей и $\sigma: K \to L$, где L – алгебраически замкнут, то существует $\sigma': K' \mapsto L$, продолжающий σ .

Доказательство: Пусть $K'' \leq K'$ – максимальное подполе в K', на которое можно продолжить σ . Чуть позже мы покажем, что оно существует. Если K'' = K', то победа, иначе, $\alpha \in K' \setminus K''$. Тогда $K'' \leq K''(\alpha)$ – алгебра-ическое расширение, так как α зануляется многочленом над K. Тогда мы можем продолжить σ на $\sigma'' : K'' \to L$ по предположению о K'', но тогда существует продолжение на $K''(\alpha)$, так как α алгебраичен над K'', а значит (Irr_{α}^{K}) $\sigma(x)$ имеет корень в алгебраически замкнутом поле L. Противоречие, а значит K'' = K'. Осталось пояснить почему максимальный элемент существует. Пусть есть башня $K = K_0 \leq K_1 \leq K_2 \leq ...$ и есть $\sigma_i : K_i \to L$ т.ч. σ_i продолжает σ_j при j < i. Тогда положим $\widetilde{K} = \bigcup_i K_i$ – поле и расширение K_i . Осталось построить гомоморфизм $\widetilde{\sigma} : \widetilde{K} \to L$, каждый элемент лежит в каком-то K_i , а значит продолжение говорит нам куда и что оправлять, а тогда это определено и по той же причине является гомоморфизмом. По лемме Цорна существует K''.

Следствие: Любые два алгебраических замыкание поля К изоморфны.

Доказательство Пусть \overline{K}'/K и \overline{K}''/K - алгебраические замыкания. Тогда по теореме существуют гомоморфизмы $\sigma:\overline{K}'\to\overline{K}''$ и $\tau:\overline{K}''\to\overline{K}'$ такие, что это гомоморфизмы над K. Тогда посмотрим на 2 композиции $\tau\circ\sigma:\overline{K}'\to\overline{K}''$ и $\sigma\circ\tau:\overline{K}''\to\overline{K}''$ они будут автоморфизмами, так как расширения алгебраические. Следовательно σ и τ изоморфизмы. Значит мы доказали единственность алгебраического замыкания.

Поле разложения

Пусть K-поле и $f(x) \in K[x]$ Определение L/K – поле разложения f, если F раскладывается на линейные множители, то есть $f(x) = c(x - \alpha_1) \dots (x - \alpha_n)$ и $c \in K$, $\alpha_i \in L$ и $L = K(\alpha_1, \dots, \alpha_n)$.

Утверждение: Пусть $K \leq \overline{K}$ – алгебраическое замыкание. Тогда для каждого многочлена $f(x) \in K[x]$ существует единственное подполе $L \subseteq \overline{K}$, что L – поле разложения f. И если есть $\sigma: L \mapsto \overline{K}$ над K является изоморфимом на свой образ. Следовательно поле разложения f является единственным с точностью до изоморфизма.

Доказательство: Пусть $K \leq \overline{K}$, тогда $f(x) = c(x-\alpha_1) \dots (x-\alpha_i)$, где $c \in K$ и $\alpha_i \in \overline{K}$, тогда рассмотрим $L = \overline{K}(\alpha_1, \dots, \alpha_i)$, заметим, что это поле разложения f. С другой стороны, если $L' \leq \overline{K}$ тоже поле разложения, то L' тоже

должен содержать все корни, а значит L'=L. Пусть $\sigma:L\to\overline{K}$ гомоморфизм, пусть по прежнему α_1,\ldots,α_n – корни f(x) в \overline{K} . Тогда $f^{\sigma}(x)=f(x)$, так как гомоморфизм над K. Вычислим $f(\alpha_i^{\sigma})=f^{\sigma}(\alpha_i^{\sigma})=(f(\alpha_i))^{\sigma}=0$, а значит корни f в L отправляются в корни $L'\le\overline{K}$ в поле разложении в K, а тогда σ индуцирует гомоморфизм $L\to L'$, он инъективен, и так как является мономорфизмом конечномерного пространства, то изоморфизм. Теперь осталось доказать, что поле разложения единственно с точностью до изоморфизма. Пусть $L\le\overline{K}$ и L' – поля разложения f. Тогда id : $K\to\overline{K}$ можно продолжить на алгебраическое расширение L'/K, а тогда у нас будет продолжение $L'\to\overline{K}$ и по предыдущему утверждению это будет изоморфизм на $L\le\overline{K}$.

Это мы рассуждали про поле разложение одного многочлена, но конечно же можно совершенно аналогично говорить про поле разложения семейства многочленов. Если у нас есть $\{f_i\}_{i\in I}$, где i пробегает I и каждый $f_i\in K[x]$, то мы можем определить поле разложения L/K для этого семейства, если для любого i многочлен f_i раскладывается на линейные множители в L, и L порождено корнями f_i . Совершенно аналогичное определение.

Утверждение: Пусть $K \leq \overline{K}$ – алгебраическое замыкание и $\{f_i\}_{i \in I}$, где $f_i(x) \in K[x]$. Тогда существует единственно подполе $L \leq \overline{K}$, такое, что L – поле разложения для $\{f_i\}$. Для любого поля разложения L любой гомоморфизм $\sigma: L \to \overline{K}$ над K является изоморфизмом на единственное подполе разложения семейства в \overline{K} . И как следствие поле разложения семейства $\{f_i\}$ единственно с точностью до изоморфизма над K. Доказательсво, аналогично, в моменте с сюрьективность нужно будет провернуть трюк с конечным подрасширением. Последняя часть той же диаграммой и доказывается.

2.2 Нормальные расширения

Определение: Пусть L/K – алгебраическое расширение полей, тогда будем говорить L/K – нормально, если любой гомоморфизм $\sigma: L \to \overline{K}$ является автоморфизмом поля L.

Утверждение: Нормальность алгебраического расширения L/K эквивалентна тому, что для любого неприводимого многочлена $f(x) \in K[x]$ если он имеет корень в L, то раскладывается на линейные множители.

Доказательство: $\stackrel{\longleftarrow}{\longleftarrow}$ Пусть $\sigma: L \to K$ гомоморфизм над K. Пусть $\alpha \in L$, тогда положим $p(x) = \operatorname{Irr}_{\alpha}^{K}(x)$. Тогда как мы уже сегодня обсуждали α^{σ} – тоже корень p(x). Отсюда следует, что $\operatorname{Im} \sigma \leq L$, но тогда σ является автоморфизмом, так как L алгебраичен над K.

 \implies : Пусть расширение L/K нормально. Пусть $f(x) \in K[x]$ и $\alpha \in L$ его корень в расширении и $\beta \in \overline{K}$ его корень в алгебраическом замыкании. Тогда как мы видели ранее существует гомоморфизм $\sigma : L \to \overline{K}$ такой, что $\alpha^{\sigma} = \beta$, а значит $\beta \in L$. А тогда любой корень f(x) содержится в L.

Утверждение: Нормальность L/K эквивалентна тому, что L – поле разлоения некоторого семейства $\{f_i\}_{i\in I}$ полиномов.

Доказательство: \Rightarrow : Пусть $\{\alpha_j\}_{j\in J}$ – порождающее множество L над K. Возьмём семейство многочленов $\{\operatorname{Irr}_{\alpha_j}^K(x)\}_{j\in J}$, тогда заметим, что L – поле разложения для этого семейства, так как любой полином из семейства имеет корень, и так как расширение нормально, то они раскладываются на линейные множители, а с другой стороны эти корни по конструкции порождают L.

 $\stackrel{\longleftarrow}{}$ Пусть L – поле разложения $\{f_i\}_{i\in I}$, тогда любой его гомоморфизм над K в алгебраическое расширение имеет одинаковый образ, а тогда оно нормально.

2.3 Конечные поля

Пусть $\mathbb{F} \leq \mathbb{F}_{\mathbb{Q}}$, где $q=p^n$. Тогда у нас есть $\mathrm{Fr} \in \mathrm{Aut}(\mathbb{F}_q)$. Мы знаем, что \mathbb{F}_q – поле разложения x^q-x , так как он раскладывается на разные линейные множители в \mathbb{F}_q и их ровно q штук. Заметим, что порядок $\mathrm{Ord}(\mathrm{Fr}) \leq n$, так как $\mathrm{Fr}^n=\mathrm{Id}$, что следует из факта, что любой элемент поля удовлетворяет $x^q-x=0$. С другой стороны, если бы порядок был бы $k=\mathrm{Ord}(\mathrm{Fr}) < n$, то все корни бы удовлетворяли уравнению $x^{q'}-x=0$, где $q'=p^k$, чего не может быть, так как корней было бы больше, чем степень многочлена, а значит $\mathrm{Ord}(\mathrm{Fr})=n$. Теперь докажем, что $\mathrm{Aut}(\mathbb{F}_q\cong \mathbb{Z}/n\mathbb{Z}$. По утверждению, которое мы видели раньше, количество стрелок $\mathbb{F}_1\to\overline{\mathbb{F}_p}$ не больше степени расширения, то есть n, но Fr порождает как раз n стрелок, а тогда это все стрелки.

2.4 Сепарабельные расширения

Определение: Пусть $f(x) \in K[x]$ неприводим. Тогда мы будем говорить, что он сепарабелен, если f(x) не имеет кратных корней в \overline{K} .

Утверждение: Неприводимый f(x) не сепарабелен тогда и только тогда, когда $\operatorname{char}(K) = p > 0$ и $f(x) = g(x^{p^n})$ для некоторого неприводимого сепарабельного $g(x) \in K[x]$.

Хорошая новость в том, что если характеристика поля равна нулю, то всё сепарабельно. Но в положительной характеристике возникают разные

интересные эффекты, которые мы будем изучать в этом параграфе.

Доказательство: Если многочлен не сепарабелен, то $d = (f(x), f'(x)) \neq 1$. А значит d|f(x), но так как f(x) неприводим и $\deg(d) > 0$, то значит d = f(x), но тогда f(x)|f'(x), и степень второго меньше степени первого, а это возможно только если f'(x) = 0. Отсюда следует, что характеристика не нулевая, так как в противном случае дифференцируемость дает 0 только на скалярах. Пусть $\operatorname{char}(K) = p > 0$. Осталось найти многочлен g. Для этого заметим, что мономы, входящие в f(x) имеют следующий вид ax^k , где p|k. А тогда $f(x) = f_1(x^p)$ и $f_1(x)$ тоже неприводим. А дальше по индукционному спуску мы приходим к виду $g(x^{p^n})$.

В другую сторону, если $\operatorname{char}(K) = p > 0$ и $f(x) = g(x^{p^n}), n \ge 1$, где g(x) сепарабелен и неприводим, то $f(x) = c(x^{p^n} - a) \cdot \dots$ в алгебраическом замыкании. Но в алгебраическом замыкании мы умеем извлекать корни, а значит $f(x) = c(x^{p^n} - b^{p^n}) \cdot \dots = c(x - b)^{p^n} \cdot \dots$, так как характеристика нашего поля равна p.

Определение: Пусть L/K расширение полей, тогда $\alpha \in L$ назвается сепарабельным над K, если $\mathrm{Irr}_{\alpha}^{K}(x)$ сепарабелен. Расширение называется сепарабельным, если любой $\alpha \in L$ сепарабелен.

Замечание: Если char(K) = 0, то всякое алгебраическое расширение является сепарабельным.

Утверждение: Пусть L/K и $\alpha \in L$. Тогда α сепарабельно над K тогда и только тогда, когда существует $f(x) \in K[x]$, что $f(\alpha) = 0$ и f(x) не имеет корней в \overline{K} .

Доказательство: Если α сепарабелен, то $\operatorname{Irr}_{\alpha}^{K}(x)$ занулятся в α и не имеет кратных корней.

В обратную сторону, пускай нашелся такой многочлен $f(x) \in K[x]$, что он не имеет кратных корней в \overline{K} и $f(\alpha) = 0$. Но мы знаем, что $\mathrm{Irr}_{\alpha}^{K}(x)|f(x)$, а значит минимальный многочлен также сепарабелен, как и α .

Следствие: Пусть K < K' < K'' башня полей, тогда если K < K'' сепарабельно, то и промежуточные расширения K < K' и K' < K'' сепарабельны.

Доказательство: Если K < K'' сепарабельно над K, то любой $\alpha \in K''$ сепарабелен над K. От сюда сразу следует, что любой элемент из K' сепарабелен над K, а значит расширение K < K' сепарабельно. Теперь посмотрим что будет со вторым этажом, любой $\alpha \in K''$ сепарабелен над K, это означает, что существует многочлен $f(x) = \operatorname{Irr}_{\alpha}^{K}(x)$ с коэффициентами из K, в частности с коэффициентами из K', такой что он не имеет кратных корней в \overline{K} . Но так как мы этот же многочлен мы можем рассматреть как многочлен в K'[x], но там он уже не обязан быть неприводимым, но всё ещё зануляет α и так как $\overline{K} = \overline{K}'$, то он не имеет там кратных корней, а

значит α сепарабелен над K', а тогда расширение K''/K' сепарабельно.

Следствие: Пусть есть башня полей $K_1 < K_2 < ... < K_n$, тогда она сепарабельна, то есть K_n/K_1 сепарабельно в том и только в том случае, когда каждый этаж K_{i+1}/K_i сепарабелен.

Доказательство: Применяем предыдущее следствие по индукции.

Определение: Пусть у нас есть расширение K'/K и оно конечно. И пусть у нас задан гомоморфизм полей $\sigma: K \to L = \overline{L}$, в алгебраическое замкнутое поле. Вспомним, что продолжением гомоморфизма σ на большее поле K' называется гомоморфизм $\sigma': K' \to L$ такой, что следующая диаграмма коммутирует.

$$\begin{array}{c}
K' \xrightarrow{\sigma'} L \\
\uparrow \\
K
\end{array}$$

Сепарабельной степенью расширения $[K':K]_S$ – количество различных продолжений σ' .

Замечание: На самом деле вы можете спросить, в обозначении $[K':K]_S$ сигма вообще не фигурирует. То есть как-будто это числи зависит только от K' и K и не зависит от σ , но с другой стороны в нашем определении σ будто фигурирует существенным образом.

Утверждение: Сепарабельная степень $[K':K]_S$ не зависит от σ (и от L).

Доказательство: Пусть $\sigma: K \to L = \overline{L}$. Он всегда найдётся, так как поле всегда можно вложить в свое замыкание. Пусть у нас есть другой гомоморфизм $\widetilde{\sigma}: K \to \widetilde{L} = \overline{\widetilde{L}}$. Но мы можем воспользоватся единственностью алгебраического замыкания и использовать его свойство, и мы можем достроить коммутативные диаграммы

А тогда нетрудно заметить, что $\operatorname{Im}(\rho) \cong_{\tau} \operatorname{Im}(\tilde{\rho})$. На самом деле σ' и $\tilde{\sigma}'$ будут бить в $\operatorname{Im}(\rho)$ и в $\operatorname{Im}(\tilde{\rho})$, так как продолжение бъёт в алгебраическое расширение. А тогда изоморфизм τ отождествляет две диаграммы, если мы редуцируем L и \tilde{L} в $\operatorname{Im}(\rho)$ и в $\operatorname{Im}(\tilde{\rho})$, то есть $\tilde{\sigma}' = \tau \circ \sigma'$. [это требует более чательной проверки]

Утверждение: Пусть K < K' < K'' башня конечных расширений. Тогда выполнено $[K'':K]_S = [K'':K']_S[K':K]_S$

Доказательство: Пусть $\sigma: K \to L = \overline{L}$ гомоморфизм полей, а $\sigma_1, \dots, \sigma_n: K' \to L$ его различные продолжения, где $n = [K':K]_S$. Тогда положим $\tau_{i,1}, \dots, \tau_{i,m}: K'' \to L$ различные продолжения σ_i их каждый раз будет ровно $m = [K'':K]_S$ штук. Тогда мы от этого хотим:

- τ_{i,i} различны
- любое продолжение σ на K'' совпадает с некоторым $au_{i,j}$

Пусть так оказалось, что $\tau_{i,j}=\tau_{k,l}$, то совпадут и их ограничения на K', а тогда $\sigma_i=\tau_{i,j}|_{K'}=\tau_{k,l}|_{K'}=\sigma_k$. А значит i=k. А тогда $\tau_{i,j}=\tau_{i,l}$, но тогда j=l, по выбору, так как они различны, с одинаковым первым индексом. А теперь покажем, что других продолжений нет. Пусть $\tau:K''\to L$ продолжение σ на K'', но тогда мы можем ограничить τ на K', но когда ограничение совпадет с некоторым σ_i , но тогда τ является продолжением σ_i на K'', но ими могут быть только $\tau_{i,j}$, а значит $\tau_{i,j}$ образуют все различные продолжения σ на K'' и их ровно mn=[K'':K'][K':K] штук.

Утверждение: $[K':K]_S \leq [K':K]$

Доказательство: Любое конечное расширение может быть профильтровано добавлениями корней. То есть $K < K(\alpha_1) < K(\alpha_1,\alpha_2) < ... < K(\alpha_1,...,\alpha_n) = K'$. Теперь имея такую башню полей понятно, что утверждение достаточно проверить для присоединения одного корня, так как обе степени мультипликативны. Пусть $K < K(\alpha)$, тогда $[K(\alpha):K] = \#\{$ продолжения $\sigma:K \to L\} = \#\{$ корни $\mathrm{Irr}_K^{\alpha}(x)$ в $K(\alpha)\}$, как мы видели в прошлом семестре. Но с другой стороны $[K(\alpha):K] = \mathrm{degIrr}_K^{\alpha}(x)$. Тогда понятно, что одно меньше другого.

Следствие: Если K < K' < K'' – конечные расширения, то $[K'':K]_S = [K'':K]$ эквивалентно тому, что $[K':K]_S = [K':K]$ и $[K'':K']_S = [K':K']$.

Утверждение: Пусть K'/K алгебраическое расширение, и пусть есть какой-то элемент $\alpha \in K'$, тогда рассмотрим его неприводимый многочлен $f(x) = \operatorname{Irr}_{\alpha}^{K}(x)$. Тогда его можно представить $f(x) = g(x^{p^n})$, где g неприводимый и сепарабельный многочлен, то α^{p^n} будет сепарабельным над K и верны следующие равенства для сепарабельной степени $[K(\alpha):K]_S = \deg g(x)$ и $[K(\alpha):] = p^n[K(\alpha):K]_S$

Доказательство: Пусть $\{\beta_1, ..., \beta_m\}$ – корни g(x) в \overline{K} . Пусть α не сепарабелен. Давайте заметим, что для любого β_i существует единственный $\alpha_i \in \overline{K}$, что $\alpha_i^{p^n} = \beta_i$. То что он существует очевидно, так как \overline{K} алгебраически замкнуто. Проверим единственность, пусть есть 2 элемента α_i и

 α_i' такие что $\alpha_i^{p^n} = {\alpha_i'}^{p^n}$, тогда $(\alpha_i - {\alpha_i'}) = 0$, так как поле характеристики p. Но это значит, что $\alpha_i = {\alpha_i'}$. Отсюда мы занаем, что $f(x) = g(x^{p^n}) = \prod_{i=1}^m (x^{p^n} - \beta_i) = \prod_i^m (x - {\alpha_i})^{p^n}$. Но мы знаем чему равна сепарабельная степень, $[K(\alpha):K]_S =$ число различных корней в алгебраическом замыкании $m = \deg g(x)$. С другой стороны мы знаем чему равна степень расширения $[K(\alpha):K] = \deg f(x) = p^n \deg g(x) = p^n [K(\alpha):K]_S$. α^{p^n} будет сепарабельным над K, так как он корень сепарабельного g(x).

Мы разобрались с тем как вычислять сепарабельную степень, теперь у нас будет замечательный критерий.

Следствие: Пусть K'/K расширение полей, тогда $\alpha \in K'$ сепарабелен тогда и только тогда, когда $[K(\alpha):K]_S = [K(\alpha):K]$.

Доказательство: Если α сепарабелен, то все корни ${\rm Irr}_{\alpha}^{K}$ различны, а значит количество продолжений равно степени многочлена, а тогда сепарабельная степень равняется обычной. В другую сторону по предыдущему предположению, если α не сепарабелен, то у нас будет строгое неравенство.

Теорема: Пусть K'/K конечное расширение. Оно сепарабельно тогда и только тогда, когда $[K':K]_S = [K':K]$.

Доказательство: Здесь мы вновь воспользуемся той идеей, что конечное расширение можно отфильтровать прибавлением одного алгебраического элемента. Пусть расширение сепарабельно. У нас будет башня полей $K < K(\alpha) < K'$. Как мы видели сегодня $K < K(\alpha)$ и $K(\alpha) < K'$ тоже будут сепарабельны. Мы знаем, что $[K(\alpha):K]_S = [K(\alpha):K]$, а дальше индукци, мы применяем аналогичную процидуру к этажу $K(\alpha) < K'$. Она завершиться, так как расширение конечно. И мы аккумулируем произведения, так как степень расширения мультипликативна, и будет $[K':K]_S = [K':K]$.

В обратную сторону, мы получим $K < K(\alpha_1) < ... < K(\alpha_1, ..., \alpha_n) = K'$. Так как у нас есть мультипликативность и неравенство, мы получим, что сепарабельная степень каждого этажа совпадает с с обычной степенью. А тогда каждый этаж сепарабелен, а значит, что и расширение K'/K тоже.

Или для одного $\alpha \in K'$ опять же из мультипликативности и неравенств мы получим $[K:K(\alpha)]_S=[K:K(\alpha)]$, тогда расширение $K(\alpha)/K$ сепарабельно, тогда сепарабелен $\mathrm{Irr}_{\alpha}^K(x)$, а значит сепарабелен α , а значит сепарабельно и расширение K'/K, так как это верно для любого α .

Следствие: $K(\alpha_1, ..., \alpha_n)/K$ сепарабельно тогда и только тогда, когда $\alpha_1, ..., \alpha_n$ сепарабельны над K.

Доказательство: ⇒: очевидно, так как элементы сепарабельного расширения сепарабельны.

 \Leftarrow : Мы можем профильтровать расширения $K < K(\alpha_1) < ... < K(\alpha_1, ..., \alpha_n)$.

Каждый этаж сепарабелен, а значит сепарабелен и $K(\alpha_1, ..., \alpha_n)/K$.

Утверждение: Пусть K'/K по прежнему конечное рассуждение. Тогда $[K':K]_S|[K':K]$.

Доказательство: Это достаточно знать для расширений типа $K(\alpha)/K$, для которых мы уже проверили, а дальше можно воспользовататься фильтрацией по присоединениям корней $K < K(\alpha_1) < ... < K(\alpha_1, ..., \alpha_n) = K'$ и получить искомое из мультипликативности степеней.

Определение: Пусть K'/K – конечное расширение, тогда положим

$$[K':K]_i = \frac{[K':K]}{[K':K]_S}$$

и назавём эту величину степенью несепарабельности расширения K'/K. И мы знаем, что она всегда имеет вид $\operatorname{char}(K)^n$. Если $\operatorname{char} K = 0$, то [K':K] = 1.

Определение: Пусть K'/K расширение и пусть $\alpha \in K'$. Тогда будем говорить, что α чисто несепарбелен, если $\alpha^{p^n} \in K$, где p прост, а $n \ge 0$. '/K чисто несепарабельно, если каждый элемент K' чисто не сепарабелен.