WAVE QUANTUM MECHANIC MODEL

WAVE QUANTUM MECHANIC THEORY

WAVE QUANTUM MECHANIC THEORY

quantum mechanics – mathematical description of wave-particle duality of energy / matter

WAVE-PARTICLE WEIRDNESS

When quantum objects such as electrons are fired one by one through a pair of closely spaced slits, they behave like particles: each one hits a screen placed on the far side at exactly one point. But they also behave like waves: successive hits build up a banded interference pattern exactly like that generated by a wave passing through the slits (right). This wave–particle duality is described by a mathematical tool known as the wavefunction.

PREVIOUS ATOMIC MODEL

Old model:

Electrons occupy specific energy levels/shells in an atom.

number of electrons per level = $2n^2$

SCHRÖDINGER

Erwin Schrödinger proposed that:

1) Each energy level had sub-levels

2) Electrons are both particles and waves at the same time (not localized in 2-D orbits)

HEISENBERG UNCERTAINTY PRINCIPLE

Heisenberg's Uncertainty Principle

cannot predict speed and location at the same time for very small particles

orbit – a defined 2-D circle/ellipse around a nucleus where an e⁻ is found

orbital – a space defined by the Schrödinger Wave Equation around a nucleus where an e⁻ is *probably* found

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},\,t)=\hat{H}\Psi=\left(-\frac{\hbar^2}{2m}\nabla^2+V(\mathbf{r})\right)\Psi(\mathbf{r},\,t)=-\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t)+V(\mathbf{r})\Psi(\mathbf{r},\,t)$$

ORBITS VS ORBITALS

Orbits Vs. Orbitals

2-D path	3-D path
Fixed distance from nucleus	Variable distance from nucleus
Circular or elliptical path	No path; varied shape of region
2n ² electrons per orbit	2 electrons per orbital
	Probability Atomic Density of Nucleus Electron

FIXED ENERGY LEVELS ONLY

Since electrons are like waves around the nucleus, they cannot have wavelengths that result in destructive interference (which can collapse the wave).

As a result, the wavelengths must be multiples of whole numbers (n = 1, 2, 3, 4, ...), which explains why there are areas where electrons cannot exist.

FIXED ENERGY LEVELS ONLY

This causes electrons to be confined to certain probabilities (orbitals) around the nucleus.

Each orbital (containing 2 electrons) is further classified under different categorizations based on their shape

f- orbitals

g – orbitals

Orbital shapes are energy dependent and can be solved through Schrödinger's wave equation.

Summary of s, p, d, f orbitals:

Value of I	Sublevel Symbol	Number of Orbitals
0	s (sharp)	1
1	p (principle)	3
2	d (diffuse)	5
3	f (fundamental)	7

ORBITAL CAPACITY

Pauli exclusion principle: No two electrons in an orbital have the same direction (all electrons have angular momentum causing it to have a magnetic direction)

SUBSHELLS IN EACH SHELL

RECALL: Schrödinger proposed that each energy level/shell had a respective number of subshells.

What do you think these subshells are?

SUMMARY

Electron distribution:

Energy Level	Sublevel	Maximum # of Electrons in Energy Level (2n²)	Number of Each Orbital	Maximum # of Electrons in Orbital Type
1	S	2	1	2
2	s p	8	1 3	2 6
3	s p d	18	1 3 5	2 6 10
4	s p d f	32	1 3 5 7	2 6 10 14

Drawing an electron energy-level diagram

Example: Oxygen

How many electrons does oxygen have? 8

aufbau principle: An energy sublevel must be filled before moving to the next higher sublevel

Drawing an electron energy-level diagram

Hund's rule analogy:

Drawing an electron energy-level diagram

Example: Oxygen

How many electrons does oxygen have? 8

$$\begin{array}{c}
2p & \downarrow \downarrow \downarrow \\
2s & \downarrow \downarrow \\
1s & \downarrow \downarrow \\
0
\end{array}$$

aufbau principle: An energy sublevel must be filled before moving to the next higher sublevel

Drawing an electron energy-level diagram

Example: Oxygen

Compare with its Bohr-Rutherford diagram:

Notice how the pairing of electrons in the Bohr-Rutherford diagram matches the energy level diagram

Drawing an electron energy-level diagram

Example: Iron How many electrons does iron have? 26

Each energy level is supposed to begin with one s orbital, and then three p orbitals, and so forth.

There is often a bit of overlap.

In this case, the 4s orbital comes before the 3d orbitals.

aufbau diagram:

Start at the top and add electrons in the order shown by the diagonal arrows.

Drawing an electron energy-level diagram

Example: Iron How many electrons does iron have? 26

So why does bromine still have 7 valence electrons despite how the 3rd energy level can hold 18 electrons?

Why is an electron energy-level diagram drawn as such?

IONS

Drawing an electron energy-level diagram

Example: sulfur vs sulfide ion

Observe how there are two unpaired electrons in sulfur

This explains why sulfur gains 2 electrons in ionic form

This is despite the fact that sulfur has 5 unfilled **d** orbitals

IONS

General rule for anions:

Add the extra electrons corresponding to the ion charge to the total number of electrons

Example: N³⁻

$$\begin{array}{ccc}
2p & & & \downarrow & \downarrow \\
2s & & \downarrow & \\
1s & & \downarrow & \\
& & & N^{3-}
\end{array}$$

IONS

General rule for cations:

Remove the number of electrons corresponding to the charge from the orbitals within the highest energy level number

Example: Na+

Exception to Aufbau Principle:

Example: zinc vs zinc ion

evidence.

Exceptions to Aufbau Principle:

Example: chromium

Following the Aufbau Principle:

What actually happens:

Exceptions to Aufbau Principle:

Example: copper

Following the Aufbau Principle:

What actually happens:

Why do these exceptions exist?

Experimental evidence indicates unfilled subshells are less stable than half-filled & filled subshells (have higher energy)

Filled and half-filled subshells have a lower energy state & are more stable

The 4s orbital is destabilized, but now the entire 3d subshell is stable

Half-filled subshell:

Stability: Rank the following from most to least stable

Working with exceptions:

Only use **d** orbitals where there is a possibility of moving an electron from an **s** to **d** orbital to achieve a half-filled or filled set of orbitals

Example: Au

Writing Electron Configurations

Electron configurations condense the information from electron energy-level diagrams

Electron energy level diagram

Electron configuration

Writing Electron Configurations

Electron configurations:

CI:	
Sn:	
S ²⁻ :	
Fe:	

Writing Electron Configurations

Shorthand form of Electron configurations:

Same	configuration as Neon
CI:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
CI:	
	Same configuration as krypton
Sn:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ²
Sn:	

In the shorthand version, the "core electrons" of an atom are represented by the preceding noble gas

Writing Electron Configurations

Identify the element that has the following electron configuration:

It is polonium (Po)

Explaining multivalent metals:

Electrons are lost to achieve stability:

Cd: [Kr]5s²4d¹⁰ becomes Cd²⁺

We can now explain why some transition metals can form multiple ions:

Pb: $[Xe]6s^{2}4f^{14}5d^{10}6p^{2}$ becomes Pb^{2+} or Pb^{4+}

Fe: [Ar]4s²3d⁶ becomes Fe²⁺ or Fe³⁺

Homework:

- -Read page 171 on magnetism
- Complete page 172 #3 and 10