Parte I

Questas 1

(a) Uma estação não pade ter mais do que uma paragem da mesma linha.

(b) Uma baragem de uma dada linha não bode estar em duas estações diferentes.

 \equiv

uma paragem estei relacionada por R no máximo com uma estação

Ξ

R é simplus

= { (riteria (5.36); Image (5.33); Coreflexive (5.87) }

A. R° & id

(c) Relayas Adjacincia

$$S = R \cdot \frac{\ln R}{\ln R}$$

(duas estações estas relacionadas por 5 se existir uma linha que contém paragens presentes nessas estações)

```
Suntan 2
        X & [ R, 5]
    \equiv \{(F1)\}
          Ker LR,SJ C Ker X
    = { Kerrel (5.32)}
           [R,S] · LR,S] C Ku X
    = { (+3)+
= { Either and converse (5.121); Involution (5.15); Kennel (5.32); (5.59) }
          Ken S G Ken X
     = {(F1)}
         X & R A X & S
  Questas 3
          R é transitivo
    = 1 (5.86)}
          R.R SR
    = (5.13)}
          R. id . R S R
    ≠ f(5.84) raising lower side]
          R.R.R SR
    = 1(5.87)}
         R.R.R SR
    = 4 footnote (1) ou 5.232 (book)}
```

R é difuncional

$$\left(\frac{f}{f} \Rightarrow id\right) = T$$

$$T \subseteq \left(\frac{f}{f} \Rightarrow id\right)$$

$$\frac{f}{f} \cap T \subseteq id$$

$$\frac{f}{f} \subseteq id$$

```
Questão 5
```

Questão 6

Matéria não levionada em 2021/2022

$$\begin{cases} f(Q \leftarrow R) q \\ f(Q \leftarrow S) q \end{cases}$$

```
Questan B
     t = ((a \leftarrow a) \leftarrow (a \leftarrow a)) \leftarrow (a \leftarrow a)
     R_{t} = R
                 (((a \leftarrow a) \leftarrow (a \leftarrow a)) \leftarrow (2 \leftarrow a))
 =4 ... }
      R_{+} = ((R \leftarrow R) \leftarrow (R \leftarrow R)) \leftarrow (id \leftarrow R)
FΤ
    until (R<sub>L</sub>) until
= & Rt calulado }
    until (((R \leftarrow R) \leftarrow (R \leftarrow R)) \leftarrow (id \leftarrow R)) until
= 1 Reynolds - arrow; shunting }
      id ← R ⊆ until°. ((R ← R) ← (R ← R)).until
= { Pointwise; guardanapo}
       | (id \leftarrow R) | q \Rightarrow (until | p) ((R \leftarrow R) \leftarrow (R \leftarrow R)) (until | q) 
 = { Reynolds - arrow; shunting }
     p. R⊆q ⇒ R ← R⊆ (until þ)°. (R ← R). (until q)
 = { Pointwise; guardanapo }
       b. R = q 1 f (R = R) g = (until | f) (R = R) (until q g)
 = | Reynolds arrow]
```

b. R⊆q 1 f. R⊆ R.g = (until þf). R⊆ R. (until qg)

lordário

タ≔ f R := ユ

p. x = q 1 f-x = x·f ⇒ (until þf)·x = x. (until qf)

= { subs ; (2.5)}