

Apuntes

Nicolas Muñoz

Teoria De Integración Licenciatura en Matemática Pontificia Universidad Católica - Chile

August 28, 2025

Contents

1	Introducción a la Integración de Riemann		
	1.1	Particiones y Sumas de Riemann	2
	1.2	Sumas de Darboux	4
	1.3	Integrales de Darboux	•
	1.4	Medida de un conjunto	2
	1.5	Limitaciones de la Integral de Riemann	2
	1.6	Teorema Fundamental del Cálculo	2
		endiendo la Integral de Riemann La Función Longitud	4

1 Introducción a la Integración de Riemann

1.1 Particiones y Sumas de Riemann

Definición 1. Una partición de un intervalo $[a,b] \subseteq R$ es un subconjunto finito $\pi \subseteq [a,b]$ tal que $a,b \in \pi$. Denotaremos a las particiones como $\pi = \{x_0,\ldots,x_n\}$ donde los puntos están ordenados, es decir $a=x_0 < x_1 < \cdots < x_n = b$. Los intervalos $I_i = [x_{i-1},x_i]$ para $i=1,\ldots,n$ son llamados los intervalos de la partición. A veces identificaremos la partición con $(I_i)_{i=1,\ldots,n}$.

Definición 2. La norma de una partición π se define como:

$$||\pi|| := \max_{i=1,\dots,n} (x_i - x_{i-1}) = \max_{I_i \in \pi} |I_i|$$

Definición 3. Una partición marcada de [a,b] es un par $\pi^* = (\pi,\epsilon)$, donde $\pi = \{x_0,\ldots,x_n\}$ es una partición de [a,b], $y \in \{x_1^*,\ldots,x_n^*\}$ es una colección de puntos tal que $x_i^* \in I_i$ para cada $i=1,\ldots,n$. La norma de una partición marcada se define como $||\pi^*|| = ||\pi||$.

Definición 4 (Suma de Riemann). Sea $f:[a,b] \to R$ acotada y $\pi^* = (\pi, \epsilon)$ una partición marcada. La suma de Riemann de f asociada a π^* se define como:

$$S_R(f, \pi^*) = \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}) = \sum_{I_i \in \pi} f(x_i^*)|I_i|$$

Definición 5 (Integrabilidad de Riemann). Dada $f:[a,b] \to R$ acotada, decimos que es Riemann integrable si existe el límite:

$$\lim_{||\pi^*|| \to 0} S_R(f, \pi^*)$$

Esto significa que $\exists L \in R$ tal que para cualquier $\epsilon > 0$, existe $\delta = \delta(\epsilon) > 0$ tal que si $||\pi^*|| < \delta$, entonces $||S_R(f,\pi^*) - L|| < \epsilon$. Cuando este límite existe, lo llamamos la integral de Riemann de f en [a,b] y lo denotamos por $\int_a^b f(x) dx$.

1.2 Sumas de Darboux

Definición 6. Dadas $f:[a,b] \to R$ acotada $y \pi = (I_i)_{i=1,\dots,n}$ una partición de [a,b], definimos:

- $m_{I_i} := \inf_{x \in I_i} f(x)$
- $M_{I_i} := \sup_{x \in I_i} f(x)$
- La suma inferior de Darboux: $\underline{S}(f;\pi) := \sum_{i=1}^n m_{I_i}(x_i x_{i-1}) = \sum_{I_i \in \pi} m_{I_i}|I_i|$
- La suma superior de Darboux: $\overline{S}(f;\pi) := \sum_{i=1}^n M_{I_i}(x_i x_{i-1}) = \sum_{I_i \in \pi} M_{I_i}|I_i|$

Observación 1. Como $m_{I_i} \leq f(x) \leq M_{I_i}$ para todo $x \in I_i$, para cualquier partición marcada $\pi^* = (\pi, \epsilon)$, se tiene que:

$$\underline{S}(f;\pi) \le S_R(f;\pi^*) \le \overline{S}(f;\pi)$$

Definición 7 (Refinamiento). Una partición π' de [a,b] es un refinamiento de otra partición π si $\pi \subset \pi'$. Equivalentemente, si para todo $J_i \in \pi'$ existe $I_i \in \pi$ tal que $J_i \subseteq I_i$.

Sea $f:[a,b]\to R$ acotada. Entonces:

- Si $\pi \subseteq \pi'$ son particiones de [a,b], entonces $\underline{S}(f;\pi) \leq \underline{S}(f;\pi')$ y $\overline{S}(f;\pi) \geq \overline{S}(f;\pi')$.
- Si π_1, π_2 son particiones de [a, b] cualesquiera, entonces $\underline{S}(f; \pi_1) \leq \overline{S}(f; \pi_2)$.

1.3 Integrales de Darboux

Definición 8. Sea $f:[a,b] \to R$ acotada. Definimos:

• La integral superior (de Darboux) de f como:

$$\overline{\int_{a}^{b}} f(x)dx := \inf_{\pi \ part. \ de \ [a,b]} \overline{S}(f;\pi)$$

• La integral inferior (de Darboux) de f como:

$$\int_{\underline{a}}^{b} f(x)dx := \sup_{\pi \text{ part. de } [a,b]} \underline{S}(f;\pi)$$

Teorema 1. Sea $f:[a,b] \to R$ acotada. Entonces:

$$\int_{a}^{b} f(x)dx = \lim_{\|\pi\| \to 0} \underline{S}(f;\pi), \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{\|\pi\| \to 0} \overline{S}(f;\pi)$$

Equivalentemente, para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n||\to 0$ cuando $n\to\infty$, se tiene que:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \underline{S}(f; \pi_n) \quad y \quad \overline{\int_{a}^{b}} f(x)dx = \lim_{n \to \infty} \overline{S}(f; \pi_n)$$

Teorema 2 (Criterios de Integrabilidad). Dada $f:[a,b] \to R$ acotada, las siguientes afirmaciones son equivalentes:

- 1. f es integrable Darboux, es decir, $\int_a^b f(x)dx = \overline{\int_a^b} f(x)dx$.
- 2. f es Riemann integrable.
- 3. $\lim_{||\pi|| \to 0} (\overline{S}(f;\pi) \underline{S}(f;\pi)) = 0$
- 4. Para cualquier sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $||\pi_n||\to 0$, se tiene que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$.
- 5. Existe una sucesión $(\pi_n)_{n\in\mathbb{N}}$ de particiones de [a,b] tal que $\lim_{n\to\infty}(\overline{S}(f;\pi_n)-\underline{S}(f;\pi_n))=0$

Observación 2. Las integrales en el sentido de Darboux (1) y el de Riemann (2) coinciden.

- Si $f:[a,b]\to R$ es monótona, entonces es Riemann integrable.
- Si $f:[a,b] \to R$ es continua, entonces es Riemann integrable.

1.4 Medida de un conjunto

Definición 9. Decimos que un conjunto $I \subseteq \overline{R} := R \cup \{-\infty, \infty\}$ es un intervalo si satisface que para todo $x, y \in I$, se tiene que $z \in I$ para todo z tal que $\min\{x, y\} \le z \le \max\{x, y\}$.

Definición 10. La medida de un intervalo $I \subseteq \overline{R}$ se define como $|I| := \sup I - \inf I$. Se define $|\emptyset| := 0$ y |x| := 0 para un punto.

Si $I \subseteq J$ son intervalos, entonces $|I| \le |J|$.

Definición 11. Un conjunto $E \subseteq R^d$ se dice de medida nula si, dado $\epsilon > 0$, existe una sucesión de intervalos $(I_n)_{n \in \mathbb{N}}$ de R^d tal que $E \subseteq \bigcup_{n \in \mathbb{N}} I_n$ $y \sum_{n \in \mathbb{N}} |I_n| < \epsilon$.

Teorema 3. Sea $f:[a,b] \to R$ acotada. Entonces, f es Riemann integrable si y sólo si su conjunto de discontinuidades tiene medida nula.

1.5 Limitaciones de la Integral de Riemann

La integral de Riemann tiene algunas limitaciones:

- 1. Solo está definida para funciones acotadas y en intervalos [a, b] acotados. Las integrales impropias resuelven parcialmente este problema.
- 2. La convergencia puntual no siempre garantiza la intercambiabilidad del límite y la integral. Es decir, $f_n \to f$ puntualmente no implica que $\lim \int f_n = \int \lim f_n$. Ejemplos como $f_n(x) = n\chi_{(0,1/n]}$ en [0,1] muestran esta limitación.

Teorema 4. Si $(f_n)_{n\in\mathbb{N}}\subseteq R([a,b])$ y $f_n\to f$ uniformemente en [a,b], entonces $f\in R([a,b])$ y $\lim_{n\to\infty}\int_a^b f_n=\int_a^b f$.

1.6 Teorema Fundamental del Cálculo

Teorema 5 (Teorema Fundamental del Cálculo). Si $f \in R([a,b])$ es continua en $x_0 \in [a,b]$, entonces $F(x) := \int_a^x f(t)dt$ es derivable en x_0 y $F'(x_0) = f(x_0)$. En particular, F es derivable en x y F'(x) = f(x) para todo x salvo un conjunto de medida nula.

Este "casi" no puede removerse. Hay contraejemplos notables:

- Teorema de Hankel (1871): Existe $f \in R([a,b])$ tal que $F(x) = \int_a^x f(t)dt$ no es derivable para ningún punto en un subconjunto denso de [a,b].
- Teorema de Volterra (1881): Existe una función $f:[a,b] \to R$ que es derivable en [a,b] y su derivada f' es acotada en [a,b], pero $f' \notin R([a,b])$.

2 Extendiendo la Integral de Riemann

Una manera de extender el concepto de la integral es a través de funciones escalonadas.

Definición 12 (Función Escalonada). Una función $\phi:[a,b]\to R$ se dice escalonada si existe una partición $\pi=\{x_0,\ldots,x_n\}$ de [a,b] y constantes $c_1,\ldots,c_n\in R$ tales que $\phi|_{(x_{i-1},x_i)}\equiv c_i$ para todo $i=1,\ldots,n$.

Cualquier función escalonada se puede escribir como una combinación lineal de funciones características de intervalos. La integral de una función escalonada se define como:

$$\int_{a}^{b} \phi(x)dx = \sum_{i=1}^{n} c_{i}|I_{i}|$$

2.1 La Función Longitud

Sea \mathcal{I} la colección de todos los intervalos en R. La función longitud $\lambda: \mathcal{I} \to [0, \infty]$ se define como $\lambda(I) := |I|$.

La función longitud λ tiene las siguientes propiedades:

- $\lambda(\emptyset) = 0$.
- Monotonía: Si $I_1, I_2 \in \mathcal{I}$ y $I_1 \subseteq I_2$, entonces $\lambda(I_1) \leq \lambda(I_2)$.
- Aditividad Finita: Si $I \in \mathcal{I}$ tal que $I = \bigcup_{i=1}^n J_i$ con $J_i \in \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^n \lambda(J_i)$.
- Aditividad Contable (σ -aditividad): Si $I \in \mathcal{I}$ es tal que $I = \bigcup_{i=1}^{\infty} I_i$ con $(I_i)_{i \in N} \subseteq \mathcal{I}$ disjuntos, entonces $\lambda(I) = \sum_{i=1}^{\infty} \lambda(I_i)$.
- σ -subaditividad: Si $I \in \mathcal{I}$ verifica $I \subseteq \bigcup_{i=1}^{\infty} I_i$, donde $(I_i)_{i \in N}$ son intervalos (no necesariamente disjuntos), entonces $\lambda(I) \leq \sum_{i=1}^{\infty} \lambda(I_i)$.
- Invarianza por traslaciones: $\lambda(I+x) = \lambda(I)$ para todo $x \in R$.
- $\lambda(\{x\}) = 0$ para todo $x \in R$.

nos gustaría extender λ a una clase más grande que \mathcal{I} . Más precisamente, nos gustaría definir una aplicación $m: \mathcal{M} \to [0, \infty]$, donde \mathcal{M} es una colección de subconjuntos de R tal que $\mathcal{I} \subseteq \mathcal{M}$, de manera tal que , dado $E \in \mathcal{M}$, m(e) represente la "longitud de E". Idealmente, nos gustaría que m cumpla lo siguiente:

- 1. $\mathcal{M} = P(X)$
- 2. Si $I \in \mathcal{I}$, entonces m(I) = |I|
- 3. $m \text{ es } \sigma\text{-aditiva } (E,(E_n)_{n\in\mathbb{N}}) \in \mathcal{M}, E = \bigcup_{n=1}^{\infty} E_n \Rightarrow m(E) = \sum_{n=1}^{\infty} m(E_m)$
- 4. Si $E \in \mathcal{M}$, entonces $E + x \in \mathcal{M}$ y $m(e + x) = m(E) \forall x \in R$
- 5. El problema es que, si asumimos el Axioma de Elección uno puede mostrar que no existe un tal m que cumpla (1) (2) (3) (4) y, de hecho, no se sabe si existe m que cumpla (1) (2) (3). (Si asumimos la hipótesis del continuo, entonces no existe m que cumpla (1) (2) (3))

Luego, para construir m debemos debilitar alguna de las propiedaes.

• Si debilitamos (1) ⇒Teoría de la medida

Si debilitamos (3) pidiendo solo → aditividad finita ⇒ "medida finitamente aditivas"
 y si pedimos σ-subaditividad Rightarrow "medidas exteriores"

Una manera de extender λ es la siguiente:

- 1. Si $E = \bigcup_{i=1}^n I_i$ entonces, definimos $\lambda(E) \sum_{i=1}^n \lambda(I_i)$
- 2. Si $E = \bigcup_{i=1}^{\infty} I_i$ entonces, definimos $\lambda(E) \sum_{i=1}^{\infty} \lambda(I_i)$
- 3. La fórmula anterior nos permite definir $\lambda(G)$ para todo G abierto en R.
- 4. Para conjuntos más generales, "aproximar" por abiertos.

Definición 13. Sea X un conjunto no vacío $y \, \xi$ una colección de subconjuntos de X tal que $\phi \in \xi$. Diremos que una aplicación : $\xi \to [0, \infty]$ es una premedia si $(\emptyset) = 0$ el conjunto no vacío X será llamado un espacio y la colección ξ será llamada una clase (de subconjunto de X).

Intuitivamente, ξ representa la colección de subconjuntos cuyo "tamaño" sabemos medir y nos da su medida. Ejemplos:

- 1. Premedida de Lebesgue $\xi \mathcal{I}I \subseteq R : I$ interalo
- 2. Premedidas de Lebesgue-Stieljes $\lim_{x\to x_o^+} F(x) = F(x_o)$ Sea F:RR monótona creciente y continua a derecha. Una función tal que se dice una función de Lebesgue-Stieljes.

Observamos que, por monotonía, existen los límites. $\begin{cases} F(\infty) \lim_{x \to \infty} F(x) \\ F(-\infty) \lim_{x \to -\infty} F(x) \end{cases}$ Sea además la clase \mathcal{I} de intevalos de R dada por:

Ejemplo (Premedidas)