Saudi Arabia 2022 - Math Camp

Level 3

Geometry - Power of a Point and Radical Axis

Instructor: Regis Barbosa

Definition (Power of a Point) The power of a point P with respect to a circle Γ of center O and radius r is defined by

 $Pot_{\Gamma}P = PO^2 - r^2$

Theorem 3. If P is inside the circle Γ and a line through P cuts Γ at A and B, then $PA \cdot PB = -Pot_{\Gamma}P$

If P is outside the circle Γ , a line through P cuts Γ at A and B and a line through P is tangent to Γ at T, then

$$PA \cdot PB = PT^2 = Pot_{\Gamma}P$$

Proof.

The line OP cross the circle on points E and F.

On the first case we have PE = r + PO and PF = r - PO. By the Chrod Theorem

$$PA \cdot PB = PE \cdot PF = (r + PO)(r - PO) = r^2 - PO^2 = -Pot_{\Gamma}P$$

The second case is analogous.

Problems

7. (AMC/2013-10A) In $\triangle ABC$, AB = 86, and AC = 97. A circle with center A and radius AB intersects BC at points B and X. Moreover BX and CX have integer lengths. What is BC?

(A) 11

(B) 28

(C) 33

(D) 61

(E) 72

8. (AIME I/2019) Let AB be a chord of a circle ω , and let P be a point on the chord AB. Circle ω_1 passes through A and P and is internally tangent to ω . Circle ω_2 passes through B and P and is internally tangent to ω . Circles ω_1 and ω_2 intersect at points P and Q. Line PQ intersects ω at X and Y. Assume that AP = 5, PB = 3, XY = 11, and $PQ^2 = \frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

9. (Euler's relation) In a triangle with circumcenter O, incenter I, circumradius R, and inradius r, prove that

$$OI^2 = R^2 - 2Rr$$

10. (Tuymaada/2012) Point P is taken in the interior of the triangle ABC, so that

$$\angle PAB = \angle PCB = \frac{1}{4}(\angle A + \angle C)$$

Let L be the foot of the angle bisector of $\angle B$. The line PL meets the circumcircle of $\triangle APC$ at point Q. Prove that QB is the angle bisector of $\angle AQC$.

11. (China/2013) Two circles K_1 and K_2 of different radii intersect at two points A and B, let C and D be two points on K_1 and K_2 , respectively, such that A is the midpoint of the segment CD. The extension of DB meets K_1 at another point E, the extension of CB meets K_2 at another point E. Let E1 and E2 be the perpendicular bisectors of E3 and E4, respectively.

i) Show that l_1 and l_2 have a unique common point (denoted by P).

ii) Prove that the lengths of CA, AP and PE are the side lengths of a right triangle.

12. (IMO Shortlist/2011) Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let O_1 and r_1 be the circumcenter and the circumradius of the triangle $A_2A_3A_4$. Define O_2 , O_3 , O_4 and r_2 , r_3 , r_4 in a similar way. Prove that

$$\frac{1}{O_1 A_1^2 - r_1^2} + \frac{1}{O_2 A_2^2 - r_2^2} + \frac{1}{O_3 A_3^2 - r_3^2} + \frac{1}{O_4 A_4^2 - r_4^2} = 0$$