

CS310 – AI Foundations (Andrew Abel) February 2024

# Week 5: Monte Carlo Tree Search

1

#### **MCTS** - Introduction

- Ordinary game-tree search has limitations
  - o If it is not a tiny game, we need a good evaluation function
  - o Complex games like Go or Chess have a lot of moves and a large branching factor
- Introduction to Monte-Carlo Tree Search
- Bandit Problems
- UCB Formula

2

### Monte-Carlo Tree Search

- Revolutionised Computer Go
- Only applied to deterministic games fairly recently (since the 2000s)
- Explosion of interest due to non-game applications:
  - o (motion) planning
  - o Optimisation
  - o Finance
  - o Energy Management

#### Go and MCTS

- MCTS is an important technique that led to the success of AlphaGo in creating a strong AI player
  - Developed by Google
  - $\circ\quad \mbox{First computer Go program to beat a human professional (without a$ handicap) in 2015
  - o Replaced by AlphaGo Zero, and then AlphaZero, and then MuZero
- Rough Idea: Simulate games systematically in order to "learn" the value of
- Other techniques in AlphaGo include:

  - o deep neural networks Help to evaluate moves and positions o Reinforcement learning (train strongest AI player against itself)
  - O MCTS is a form of reinforcement learning in some ways

4

#### Recall: Basic Monte Carlo Search (Monte Carlo Roll Outs)

- If no evaluation function present
- o Simulate game using random moves
  - $\circ\quad$  Score game at the end and keep stats of wins and losses
  - o Move to position with best winning chances
  - o Repeat...
- This results in an evaluation function with the hope that the sampling preserves the differences between good and bad moves

5

#### **Basic Monte Carlo Search** • What value do we give the state? state s $V(m_i) = 2/4 = 0.5$ root 1 ply tree root = current position $s_1$ = state after move $m_1$ s<sub>2</sub> = ...

1 1 0 0 Outcomes

#### **Basic Monte Carlo Search**

- What value do we give the state?
- We run 4 random games, 2 won, 2 lost
- We can get the value of the state this way
- 2/4
- However, this relies on a lot of randomness...



7

#### **Naive Approach**

- Use Monte Carlo roll-outs as evaluation function for depth-limited minimax with  $\,\alpha\,$  ß pruning
- Problems
  - o Single roll-out is very noisy (0/1 signal)
  - O Running many roll-outs for for one evaluation is very slow
- Example
  - o typical chess program: 1 million moves/sec
  - o Go: 1 million moves/sec, 400 moves/roll-out, 100 roll-outs/eval ->25 eval/sec
- Consequence: Monte-Carlo was ignored for over 10 years in Go
- If you take the na $\ddot{\text{\sc i}}$  approach, you might have to evaluate a lot of nodes

  - This can be expensiveYou need to choose your nodes wisely!

8

### Monte Carlo Tree Search: High-level

- MCTS builds a statistics tree detailing the value of nodes
  - O Start from the root and build a subtree
  - $\ensuremath{\textsc{o}}$  . Has statistics attached to it giving a value of the nodes
- Statistics tree guides the AI to focus on the most interesting nodes in the game tree
  - O Can be used for further exploration
- value of nodes determined by Monte-Carlo roll-outs

| Repeated X times                                                              |                               |                              |                                                       |  |  |
|-------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------------------------------|--|--|
| Selection                                                                     | Expansion                     | → Play-out                   | Backpropagation                                       |  |  |
|                                                                               |                               |                              |                                                       |  |  |
| 89                                                                            | 99                            | 99                           | <b>\$</b> >                                           |  |  |
| The selection policy is<br>pplied recursively until<br>a leaf node is reached | One or more nodes are created | One simulated game is played | The result of this game is backpropagated in the tree |  |  |

### Monte Carlo Tree Search: Exploitation vs Exploration

- Use results of roll-outs to guide growth of game tree
- Exploitation focus on promising moves
- Exploration focus on moves that are not sufficiently explored yet
- trade-off between exploitation and exploration!
- Idea: use the theory of bandit problems!o Finding the right balance

| Bandit Problems |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |

## **Multi-Armed Puggy problem** Assumptions o Choice of several arms o each arms pull is independent of other pulls o each arm has a fixed, unknown average payoff • Which arm has the best average pay-off?

13

### Consider three slot machines

- Each pull is either a win (payoff 1) or a loss (payoff 0)
- A is the best arm but we do not know that!
- How can you figure out the best machine without losing too much money playing them all?











P(C wins) = 40%

14

### **Exploration vs Exploitation**

- Want to explore all arms but exploration is costly
- Want to **exploit** promising arms more often but might miss better opportunity!
- want to minimize regret = loss from playing non-optimal machine
- Need to balance exploration/exploitation!

### Which machine/arm should we play next?

- ullet a **policy** is a strategy for choosing the next machine to play at time t
- this uses selections & outcomes so far
- - 1. uniform policy: play the machine that has been played least so far
  - 2. greedy policy: play the machine with the highest observed payoff so
- ties are broken randomly
- a better policy?

16

### Upper confidence bound (Auer et al 2002)

- - o First, try each slot machine once.
  - O Then, at each step, choose slot machine that maximises the UCB1 formula for the "upper confidence bound":
    O C = parameter you can tune



17

### **UCB** intuition

• Pick machine that maximises



- Higher observed reward v<sub>i</sub> is better -> Exploitation!
- we expect the "true value" of machine i in some confidence interval  $% \left( 1\right) =\left( 1\right) \left( 1\right)$ around  $v_{i}$

#### **UCB Intuition II**

• Pick machine that maximises



- Value estimate is the expected reward, i.e. the estimate.
- Total/number of attempts
- If played 5 times, with rewards of 10, 20, -5, 5, 10
   n = 5, t = 40, v = 8
- This is exploitation, looking for best value

19

### **UCB Intuition II**

• Pick machine that maximises



- N is total number of visits, i.e. time, number of times all tree has been explored
- n is number of visits of that particular node
- When n = 0, answer is infinity
- This is exploration
- Higher value for nodes that have been explored less

20

### UCB Intuition II

Pick machine that maximises



- C is our tuneable parameter
- Balances between exploration and exploitation
- If C = 0, then we don't care about exploring nodes at all
- As C-> infinity, takes more account of exploration

### **UCB Intuition II**

• Pick machine that maximises



- $\bullet$  Confidence interval is large while  $\mathbf{n_i}$  is small, shrinks in proportion to  $\sqrt{n_i}$
- Low confidence leads to high uncertainty about i which leads to more Exploration!
- $\bullet \;\;$  Explore if number of trials  $n_i$  is small compared to number N of all trials!

22

| Monte Carlo Tree Search - Example |  |  |  |  |  |
|-----------------------------------|--|--|--|--|--|
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |
|                                   |  |  |  |  |  |







































| Fi | n | d | п | n | ø | 9 |
|----|---|---|---|---|---|---|

- As we play, if one branch is producing consistently better results, tree will be biased towards it
- Will not explore tree evenly
- Some nodes will remain unexplored



### How long to play?

- X number of iterations (2000 iterations?)
- T time (10 seconds of thinking time?)
- Depends on how long you configure
- The more you run it, the more accurate it should be



44

### Theoretical properties of UCB

- Main question: rate of convergence to optimal arm
- Intuition: speedy conversion leads to low regret
- Typical goal: regret is O(log N) for N trials.
- For many problems this is the optimum.
- UCB1 is a simple algorithm that achieves this optimal bound for many input distributions!

|    | _  |
|----|----|
| /1 | ь. |

| Summary |  |
|---------|--|
| ·       |  |
|         |  |
|         |  |
|         |  |