MAST20022 Group Theory and Linear Algebra Assignment 2

Due: 4pm Friday September 13

- ⊳ Submission is by file upload on the LMS. Scans or photos must be of good quality. You are responsible for checking that your file(s) has uploaded correctly.
- ⊳ Include your name, student number and tutorial time at the top of every page.
- > All answers should be fully justified.
- \triangleright Soliciting answers to assignment questions from internet forums (or elsewhere) is strictly forbidden.
- 1. Consider the matrix $M = \begin{bmatrix} i & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & i \end{bmatrix} \in M_3(\mathbb{C}).$
 - (a) Find the minimal polynomial of M.
 - (b) Use your answer for part (a) to determine whether M is diagonalizable.
 - (c) Find the Jordan normal form of M.
- 2. Let $A \in M_n(\mathbb{C})$ and suppose that $A^3 = A^2$. Show that A^2 is diagonalisable and $A^2 A$ is nilpotent.
- 3. Let $A \in M_3(\mathbb{R})$ be given by

$$A = \begin{bmatrix} 5 & 5 & -3 \\ -2 & -3 & 2 \\ 4 & 2 & -1 \end{bmatrix}$$

- (a) Show that X 1 and $X^2 + 1$ are relatively prime in $\mathbb{R}[X]$.
- (b) Given that the characteristic polynomial of A is $(X-1)(X^2+1)$, find the minimal polynomial $m(X) \in \mathbb{R}[X]$ of A.
- (c) Find matrices $B \in M_1(\mathbb{R})$, $C \in M_2(\mathbb{R})$, and $P \in M_3(\mathbb{R})$ such that P is invertible and

$$P^{-1}AP = B \oplus C$$

.

- 4. Suppose $f: \mathbb{C}^5 \to \mathbb{C}^5$ is a linear transformation such that $f^5 = f^4$ and dim(ker(f)) = 3.
 - (a) Describe all the possibilities for the Jordan normal form of f that are compatible with these conditions.
 - (b) Suppose that, in addition to the above conditions, f satisfies $\dim(\ker(f^2)) = 5$. What now are the possibilities for the Jordan normal form of f?