1.给定 CFG 文法 G: S->S+S|SS|(S)|S*|a 和输入串(a+a)*a

(1) 给出这个输入串的一个最左推导(Leftmost Derivation);

$$S\Rightarrow SS\Rightarrow S*S\Rightarrow (S)*S\Rightarrow (S+S)*S\Rightarrow (a+S)*S\Rightarrow (a+a)*S\Rightarrow (a+a)*a$$

(2) 给出这个输入串的一个最右推导(Rightmost Derivation);

$$S \Rightarrow SS \Rightarrow Sa \Rightarrow S*a \Rightarrow (S)*a \Rightarrow (S+S)*a \Rightarrow (S+a)*a \Rightarrow (a+a)*a$$

(3) 给出这个输入串的一颗语法分析树(Parse Tree);

(4) 判断该文法是否为二义性(Ambiguity)文法并给出适当说明或解释;

该文法是二义性文法,说明:例如,对+没有指定结合性,对于串a+a+a,运用最左推导,有两棵对应的 语法分析树,故该文法是二义性文法

(5) 该文法是否为 LL 文法? 若是,说明原因;若否,请将其调整为 LL。

该文法不是LL文法,因为 $FIRST(S+S) \cap FIRST(SS) \cap FIRST(S*) \neq \emptyset$

调整为LL文法:

期末如果有类似的题目希望大家可以像这样简洁一些 $S' \rightarrow +SS'|*S'|SS'|\epsilon$ 推导过程+最终一个简洁结果会比较好

2. 给定 CFG 文法 G:

$$B o ATB | \epsilon$$

$$C o MFC | \epsilon$$

$$A \rightarrow + |-$$

$$M o *|/$$

(1) 求文法 G 的 FIRST 和 FOLLOW 集

FIRST集:

$$FIRST(E) = FIRST(T) = FIRST(F) = \{ (, a \}) \}$$

$$FIRST(B) = \{+, -, \epsilon\}$$

$$FIRST(C) = \{ *, /, \epsilon \}$$

$$FIRST(A) = \{+, -\}$$

$$FIRST(M) = \{ *, / \}$$

FOLLOW集:

$$FOLLOW(E) = FOLLOW(B) = \{ \}, \}$$

$$FOLLOW(T) = FOLLOW(C) = \{ \}, +, -, \$ \}$$

$$FOLLOW(F) = \{ \}, +, -, *, /, \$ \}$$

$$FOLLOW(A) = FOLLOW(M) = \{(, a \}$$

(2) 判断 G 是否为 LL(1)文法, 并详细说明理由

G为LL(1)文法,原因是对于 $B \to ATB | \epsilon$,

$$FIRST(ATB) = \{+, -\} \cap FOLLOW(B) = \{\), \ \$\ \} \neq \emptyset; \$$
对于 $C \rightarrow MFC | \epsilon, FIRST(MFC) = \{\ *, \ /\} \cap FOLLOW(C) = \{\), \ +, \ -, \ \$\ \} \neq \emptyset;$

3. 给定以下 CFG 文法 G1 和 G2:

G1:	G2:
S -> A	S -> A
Α -> ε	A -> ε A -> Abb
A -> bbA	A -> Abb

(1) 对文法 G1, 求解其 FIRST 和 FOLLOW 集, 并构建 LL(1)分析表;

FIRST集:

$$FIRST(S) = FIRST(A) = \{ b, \epsilon \}$$

FOLLOW集:

$$FOLLOW(S) = FOLLOW(A) = \{ \$ \}$$

LL(1)分析表:

table	b	\$
S	S o A	S o A
А	A o bbA	$A ightarrow \epsilon$

(2) 判断 G1 和 G2 是否是 LL(1)文法, 并简述理由。若不是, 怎样使其成为 LL(1)文 法?

G1是LL(1)文法,因为G1的LL(1)分析表中每个表项至多有一条规则。G2不是LL(1)文法,因为存在左递 归,并且: $S \rightarrow A$

 $FIRST(\epsilon) = \{ \epsilon \}, FOLLOW(A) \cap FIRST(Abb) = \{ b \} \neq \emptyset$ 修改文法消除左递归: A -> A'

 $3 \leftarrow A$

(3) 请借助(1)中得到的 G1 文法 LL(1)分析表,列出解析输入串 bbbb 的过程,包括 每一步输入串、 $A' \xrightarrow{} bbA' \mid \epsilon$

栈的变化情况和应用的产生式。注:如有需要,请自行添加更多行 Stack(left is top) Input Action S o AS\$ bbbb\$ A\$ A o bbAbbbb\$

bbA\$ bbbb\$ match bA\$ bbb\$ match A\$ A o bbAbb\$ bbA\$ bb\$ match bA\$ b\$ match A\$ \$ $A
ightarrow \epsilon$ \$ \$ accept