5.

CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN

VÉC-TO

Học xong bài này, người học cần nắm được các nội dung sau.

- Khái niệm và cách xác định một hệ véc-tơ là độc lập tuyến tính hay là phụ thuộc tuyến tính.
- Khái niệm cơ sở và số chiều của một không gian véc-tơ.
- Cách kiểm tra một tập có là cơ sở của một không gian véc-tơ hay không và xác
 định số chiều của một không gian hữu hạn chiều.
- Cách xây dựng một cơ sở cho một không gian véc-tơ từ một tập độc lập tuyến tính hoặc từ một tập sinh.

5.1 TẬP VÉC-TƠ ĐỘC LẬP TUYẾN TÍNH

5.1.1 Định nghĩa. Tập các véc-tơ $\{v_1, v_2, ..., v_m\}$ trong một không gian véc-tơ được gọi là *phụ thuộc tuyến tính* nếu tồn tại các số $\alpha_1, \alpha_2, ..., \alpha_m$ không đồng thời bằng không sao cho

$$\alpha_1 V_1 + \alpha_2 V_2 + ... + \alpha_m V_m = \mathbf{0}.$$
 (*)

Ngược lại, tập $\{v_1, v_2, ..., v_m\}$ được gọi là độc lập tuyến tính (hay còn gọi các véctor $v_1, v_2, ..., v_m$ độc lập tuyến tính).

Vậy tập $\{v_1, v_2, ..., v_m\}$ độc lập tuyến tính có nghĩa là hệ thức (*) chỉ đúng trong một trường hợp duy nhất là $\alpha_1 = \alpha_2 = ... = \alpha_m = 0$.

Note 1-- Nhớ ngay

- 1-Tập véc tơ: Phụ thuộc tuyến tính.
 - -VD: 2 véc tơ,...
- 2-Tập véc tơ: Độc lập tuyến tính.
 - -VD: 2 véc tơ,...

- NX: 2 véc tơ trong Rⁿ:
- Cùng phương: PTTT => VD:
- K cùng phương: ĐLTT => VD:

Note 2-- Xét nhanh 2 véc tơ trong R², 3 véc tơ trong R³ có ĐLTT hay không?

- B1- Xếp các véc tơ thành ma trận A.
- B2- Tính định thức: detA = L
- B3 Nếu L khác 0 thì hệ véc tơ độc lập tuyến tính
 - Nếu L = 0 thì hệ véc tơ phụ thuộc tuyến tính

VD: Xét 2 **VD,...**

5.1.4 Định lí. Trong không gian véc-tơ X, các mệnh đề sau đúng.

- a) Tập véc-tơ {v₁, v₂, ..., v_m} của X là phụ thuộc tuyến tính khi và chỉ khi có một véc-tơ trong chúng là tổ hợp tuyến tính của các véc-tơ còn lại.
- b) Nếu trong các véc-tơ {v₁, v₂, ... vm} có véc-tơ 0 thì chúng phụ thuộc tuyến tính.
- c) Khi thêm véc-tơ vào một tập phụ thuộc tuyến tính ta được tập phụ thuộc tuyến tính.
- d) Khi loại véc-tơ ra khỏi một tập độc lập tuyến tính ta được tập độc lập tuyến

 $\ensuremath{\mathscr{P}}$ Về mặt hình học, trong $\ensuremath{\mathbb{R}}^3$, ba véc-tơ đồng phẳng thì phụ thuộc tuyến tính, ngược lại, ba véc-tơ không đồng phẳng thì độc lập tuyến tính.

5.1.5 Định lí (bổ đề cơ bản). Cho m véc-tơ y_1 , y_2 ,..., y_m là tổ hợp tuyến tính của k véc-tơ v_1 , v_2 , ..., v_k . Nếu m>k thì các véc-tơ y_1 , y_2 , ..., y_m phụ thuộc tuyến tính.

Ta chấp nhận kết quả này.

5.2 CƠ SỞ VÀ SỐ CHIỀU

5.2.1 Định nghĩa. Tập $S = \{v_1, v_2,..., v_m\}$ trong không gian véc-tơ X được gọi là một $c\sigma s\dot{\sigma}$ của X nếu

- (1) tập S độc lập tuyến tính, và
- (2) tập S là tập sinh của X, nghĩa là X=Span(S).

Lưu ý rằng mỗi không gian véc-tơ có thể có vô số cơ sở.

Note 3--Cơ sở và Số chiều.

Note 4 -- Cơ sở, số chiều

- 1-Cơ sở khác Tập sinh (Cơ sở cũng là tập sinh, nhưng tập sinh chưa chắc là cơ sở, vì tập sinh có thể PTTT).
- -Trong tập sinh sẽ tìm được 1 cơ sở.
- 2-KG Hữu hạn chiều: dimX = dim(X) = n (hữu hạn), như vậy, nếu biết cơ sở => tìm được số chiều).
- (=> số phần tử của tập sinh >= n)
- 3-KGVT X có thể có nhiều cơ sở nhưng số phần tử trong cơ sở thì bằng nhau và = số chiều
 - = dimX = dim(X) = n.
- 4-KG vô hạn chiều: trong X luôn tìm được số Véc tơ ĐLTT tùy ý.

5.2.10 Định li. Trong không gian véc-tơ n chiều:

- (1) Bất kỳ tập có số véc-tơ lớn hơn n đều phụ thuộc tuyến tính;
- (2) Bất kỳ tập có số véc-tơ nhỏ hơn n đều không là tập sinh của không gian;
- (3) Mọi tập n véc-tơ độc lập tuyến tính đều là cơ sở;
- (4) Mọi tập n véc-to sinh không gian đều là cơ sở.

Từ định lí này ta có hệ quả sau đây.

5.2.11 Hệ qua Trong không gian véc-tơ n chiều:

- (1) Số chiều là số tối đại các véc-tơ độc lập tuyến tính;
- (2) Số chiều là số tối thiểu các véc-tơ của các tập sinh;
- (3) Số chiều của không gian con không vượt quá n.

5.2.12 Định li. Cho không gian véc-tơ n chiều X. Khi đó, một tập k véc-tơ độc lập

tuyến tính bất kì trong X đều có thể được bổ sung (n - k) véc-tơ để trở thành một cơ sở của X.

Note 5 -- Số chiều cụ thế

TT	Ký hiệu	Số chiều	Ghi chú
1	R ⁿ	n	Không gian R ⁿ
2	$P_n[t]$	n+1	Tập tất cả các đa thức có bậc <= n
3	$M_n[K]$	$n*n = n^2$	Tập tất cả các ma trận vuông cấp n
4	$M_{mxn}[K]$	m*n	Tập tất cả các ma trận cấp mxn

Hãy viết ra 1 cơ sở cho mỗi KGVT trên?

Note 6 -- Cách CM tập E là cơ sở của X

B1- CM: E sinh ra X, tức là: X = span(E)

(Mọi véc tơ trong X đều biểu diễn được qua các véc tơ

trong E – Xem lại các VD trong giáo trình + vở)

B2- CM: E độc lập tuyến tính

B3- Kết luận: E là cơ sở của X

Bài Tập Bài học 5

- •Đã có, Làm và nộp Online,
- Sẽ tính điểm vào cột hoặc điểm thưởng,...

Quan trọng:

Buổi sau Kiểm tra ½ HK

Từ bài 1-5

(yêu cầu làm hết BT TL, TN, Làm thêm)

Có nên có 1 buổi live để sửa BT không?