

Database II

Lecture 2: Enhanced Entity Relationship (ERD) Modeling

03 September – 2024

Contents

- EER stands for Enhanced ER or Extended ER
- ▶ EER Model Concepts
 - Includes all modeling concepts of basic ER
 - Additional concepts:
 - subclasses/superclasses
 - specialization/generalization
 - categories (UNION types)
 - attribute and relationship inheritance

Subclasses and Superclasses (1)

- An entity type may have additional meaningful subgroupings of its entities.
 - Example: EMPLOYEE may be further grouped into:
 - SECRETARY, ENGINEER, TECHNICIAN, ...
 - ☐ Based on the EMPLOYEE's Job
 - MANAGER
 - ☐ EMPLOYEEs who are managers
 - SALARIED_EMPLOYEE, HOURLY_EMPLOYEE
 - ☐ Based on the EMPLOYEE's method of pay
- EER diagrams or extend ER diagrams to represent these additional subgroupings, called *subclasses* or *subtypes*.

Subclasses and Superclasses

Subclasses and Superclasses(2)

- ▶ Each of these subgroupings is a subset of EMPLOYEE entities.
- ▶ Each is called a subclass of EMPLOYEE .
- ▶ EMPLOYEE is the superclass for each of these subclasses.
- ▶ These are called superclass/subclass relationships:
 - EMPLOYEE/SECRETARY
 - EMPLOYEE/TECHNICIAN
 - EMPLOYEE/MANAGER
 - **...**

Subclasses and Superclasses(3)

- These are also called IS-A relationships
 - > SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,
- Note: An entity that is member of a subclass represents the same real-world entity as some member of the superclass:
 - The subclass member is the same entity in a distinct specific role
 - An entity cannot exist in the database merely by being a member of a subclass; it must also be a member of the superclass
 - A member of the superclass can be optionally included as a member of any number of its subclasses

Subclasses and Superclasses(4)

Examples:

- A salaried employee who is also an engineer belongs to the two subclasses:
 - ► ENGINEER, and
 - SALARIED_EMPLOYEE
- A salaried employee who is also an engineering manager belongs to the three subclasses:
 - MANAGER,
 - ► ENGINEER, and
 - SALARIED_EMPLOYEE
- It is not necessary that every entity in a superclass be a member of some subclass

Representing Specialization in EER Diagrams

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

8

Attribute Inheritance in Superclass / Subclass Relationships

- An entity that is member of a subclass inherits
 - All attributes of the entity as a member of the superclass
 - All relationships of the entity as a member of the superclass

Example:

- In the previous slide, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the attributes Name, SSN, ..., from EMPLOYEE
- Every SECRETARY entity will have values for the inherited attributes

Specialization (1)

- Specialization is the process of defining a set of subclasses of a superclass
- The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass
 - Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type.
 - May have several specializations of the same superclass

Specialization (2)

- Example: Another specialization of EMPLOYEE based on method of pay is {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.
 - Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams
 - Attributes of a subclass are called specific or local attributes.
 - For example, the attribute TypingSpeed of SECRETARY
 - ▶ The subclass can also participate in specific relationship types.
 - ▶ For example, a relationship BELONGS_TO of HOURLY_EMPLOYEE

Specialization (3)

Generalization (1)

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR,TRUCK generalized into VEHICLE;
 - both CAR,TRUCK become subclasses of the superclass VEHICLE.
 - We can view {CAR,TRUCK} as a specialization of VEHICLE
 - Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

13

Generalization (2)

Figure 4.3

Generalization. (a) Two entity types, CAR and TRUCK.
(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

Types of Specialization

- Generalization is the reverse of the specialization process
- Several classes with common features are generalized into a superclass;
 - original classes become its subclasses
- Example: CAR,TRUCK generalized into VEHICLE;
 - both CAR,TRUCK become subclasses of the superclass VEHICLE.
 - We can view {CAR,TRUCK} as a specialization of VEHICLE
 - Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

15

Constraints on Specialization and Generalization (1)

- If we can determine exactly those entities that will become members of each subclass by a condition, the subclasses are called predicate-defined (or condition-defined) subclasses
 - Condition is a constraint that determines subclass members
 - Display a predicate-defined subclass by writing the predicate condition next to the line attaching the subclass to its superclass.

Constraints on Specialization and Generalization (2)

- If all subclasses in a specialization have membership condition on same attribute of the superclass, specialization is called an attribute-defined specialization
 - Attribute is called the defining attribute of the specialization
 - Example: JobType is the defining attribute of the specialization {SECRETARY, TECHNICIAN, ENGINEER} of EMPLOYEE
- If no condition determines membership, the subclass is called user-defined
 - Membership in a subclass is determined by the database users by applying an operation to add an entity to the subclass
 - Membership in the subclass is specified individually for each entity in the superclass by the user

Displaying an attribute-defined specialization in EER diagrams

Figure 4.4

EER diagram notation for an attributedefined specialization on Job_type.

Constraints on Specialization and Generalization (3)

- Two basic constraints can apply to a specialization/generalization:
 - Disjointness Constraint:
 - Completeness Constraint:

Constraints on Specialization and Generalization (4)

Disjointness Constraint:

- Specifies that the subclasses of the specialization must be disjoint:
 - an entity can be a member of at most one of the subclasses of the specialization
- Specified by <u>d</u> in EER diagram
- If not disjoint, specialization is overlapping:
 - that is the same entity may be a member of more than one subclass of the specialization
- Specified by <u>o</u> in EER diagram

Constraints on Specialization and Generalization (5)

Completeness Constraint:

- Total specifies that every entity in the superclass must be a member of some subclass in the specialization/generalization
- ▶ Shown in EER diagrams by a **double line**
- Partial allows an entity not to belong to any of the subclasses
- Shown in EER diagrams by a single line

Constraints on Specialization and Generalization (6)

- ▶ Hence, we have four types of specialization/generalization:
 - Disjoint, total
 - Disjoint, partial
 - Overlapping, total
 - Overlapping, partial
- Note: Generalization usually is total because the superclass is derived from the subclasses.

Example of disjoint partial Specialization

Figure 4.4

EER diagram notation for an attribute-defined specialization on Job_type.

23

Example of overlapping total Specialization

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (1)

- A subclass may itself have further subclasses specified on it
 - forms a hierarchy or a lattice
- Hierarchy has a constraint that every subclass has only one superclass (called single inheritance); this is basically a tree structure
- In a *lattice*, a subclass can be subclass of more than one superclass (called *multiple inheritance*)

Shared Subclass "Engineering_Manager"

Figure 4.6 A specialization lattice with shared subclass ENGINEERING MANAGER.

Specialization/Generalization Hierarchies, Lattices & Shared Subclasses (2)

- In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses
- A subclass with more than one superclass is called a shared subclass (multiple inheritance)
- Can have:
 - > specialization hierarchies or lattices, or
 - generalization hierarchies or lattices,
 - depending on how they were derived
- We just use specialization (to stand for the end result of either specialization or generalization)

Specialization / Generalization Lattice Example (UNIVERSITY)

Figure 4.7 A specialization lattice with multiple inheritance for a UNIVERSITY database.

Summary

- Introduced the EER model concepts
 - Class/subclass relationships
 - Specialization and generalization
 - Inheritance

Summary

Components of Database Environment

- Database Administrators (DBA): are responsible for physical database design and for managing technical issues in the database environment.
- System Developers: They are systems analysts and programmers who design new application programs.
- End-Users: End users are persons who add, delete and modify data in the database and request information from it.

References

Database Systems: A practical approach to design, implementation, and management.

Questions ...?

