Ex8.1 Strengthen Some Results in the Text.

Ex8.2
$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{E}' \to 0$$
.

X:: variety of dimension n over k, \mathcal{E} :: locally free sheaf of rank > n, $V \subset \Gamma(X,\mathcal{E})$:: k-vector space of global sections which generate \mathcal{E} とする. X:: variety より X:: connected なので \mathcal{E} の rank は X 全体で一定である. rank $\mathcal{E} = r(> n)$ としておこう.

 $x \in X$ について次の写像を考える.

$$\phi_x: V \otimes_k k(x) \to \mathcal{E}_x \otimes_k k(x)$$
$$s \otimes \alpha \mapsto s_x \otimes \alpha$$

k(x)-linear map であることは明らか、 $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x$ と V :: global generators of \mathcal{E} から、これは surjective、なので

$$\dim_{k(x)} \ker \phi_x = \dim_{k(x)} V \otimes_k k(x) - \dim_{k(x)} \mathcal{E}_x \otimes_k k(x) = \dim_k V - r.$$

 $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x$ と ϕ_x の定義の仕方から、 $\ker \phi_x = \{s \otimes \alpha \mid s_x \alpha \in \mathfrak{m}_x \mathcal{E}_x\}.$

V を projective linear space とみなして, $B \subseteq X \times V$ を次のように置く.

$$B = \{(x, s) \mid x \in X, s \in V, s_x \in \mathfrak{m}_x \mathcal{E}_x\}.$$

B は $X \times V$ の closed subscheme である. (以下が closed であることは Ex2.16 を参照.)

$$B = \bigcap_{s \in V} \operatorname{pr}_1^{-1}(\{x \in X \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}).$$

 $\operatorname{pr}_1|_B:B o X$ を p_1 と略す. p_1 についての $x\in X^+$ の fiber は,Ex3.10a より,次のような点から成る.

$$\operatorname{sp} B_x = p_1^{-1}(x) = \{x\} \times \{s \in V \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}.$$

これは $\ker \phi_x$ と同型である. したがって $\dim B_x = \dim_k V - r$. B :: irreducible だから,

$$\dim B = \dim_k V - r + n.$$

r>n なので、 $\dim B<\dim_k V=\dim V-1$. $(\dim V$ は projective space としての次元.)したがって $\operatorname{pr}_2|_B$:: not surjective. よって $s\in V-\operatorname{pr}_2(B)$ が存在し、この s と任意の $x\in X$ について $s_x\not\in\mathfrak{m}_x\mathcal{E}_x$ が成り立つ.

 ψ を以下で定める.

$$\psi: \quad \mathcal{O}_X \quad \to \quad \mathcal{E}$$
$$\langle U, \sigma \rangle \quad \mapsto \quad \langle U, (s|_U) \cdot \sigma \rangle$$

 $s_x \notin \mathfrak{m}_x \mathcal{E}_x$ から、 $((s|_U)^{-1}$ が存在し、) これは injective. Prop5.7 から coker ψ も coherent sheaf. すな わち、以下は coherent sheaf \mathcal{O} exact sequence.

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \operatorname{coker} \psi \to 0.$$

Ex5.7b から coker ψ は locally free.

- Ex8.3 Product Schemes.
- Ex8.4 Complete Intersections in \mathbb{P}^n .
- Ex8.5 Blowing Up a Nonsingular Subvariety.
- Ex8.6 The Infinitesimal Lifting Property.
- Ex8.7 Classifying Infinitesimal Extension: One Case.
- Ex8.8 Plurigenera and Hodge Numbers are Birational Invariants.