

Divisor graphs have arbitrary order and size

Le Anh Vinh
 School of Mathematics
 University of New South Wales
 Sydney 2052 Australia

Abstract

A divisor graph G is an ordered pair (V, E) where $V \subset \mathbb{Z}$ and for all $u \neq v \in V$, $uv \in E$ if and only if $u | v$ or $v | u$. A graph which is isomorphic to a divisor graph is also called a divisor graph. In this note, we will prove that for any $n \geq 1$ and $0 \leq m \leq \binom{n}{2}$ then there exists a divisor graph of order n and size m . We also present a simple proof of the characterization of divisor graphs which is due to Chartran, Muntean, Saenpholpant and Zhang.

1 Introduction

The notion of divisor graph was first introduced by Singh and Santhosh [2]. A divisor graph $G(V)$ is an ordered pair (V, E) where $V \subset \mathbb{Z}$ and for all $u \neq v \in V$, $uv \in E$ if and only if $u | v$ or $v | u$. A graph which is isomorphic to a divisor graph is also called a divisor graph. The main result of this note is the following theorem.

Theorem 1 *For any $n \geq 1$ and $0 \leq m \leq \binom{n}{2}$ then there exists a divisor graph of order n and size m .*

To prove Theorem 1, we need the following characterization of divisor graphs is due to Chartran, Muntean, Saenpholpant and Zhang [1].

Theorem 2 *A graph G is divisor graph if and only if there is an orientation D of G such that if $(x, y), (y, z)$ are edges of D then so is (x, z) .*

The proof of Theorem 2 in [1] is by induction on the order of the graph. For the completeness of this note, we will present a simple (and direct) proof of this theorem in Section 3. From Theorem 2, we introduce the definition of a divisor digraph which will be usefull in the proof of Theorem 1.

Definition 1 *A digraph G is a divisor digraph if and only if $(x, y), (y, z)$ are edges of G then so is (x, z) .*

It is clear that if G is a divisor digraph then the graph obtained by ignoring the direction of edges of G is a divisor graph.

2 Proof of Theorem 1

Suppose that $G = (V, E)$ is a graph with vertex set $V = \{v_1, \dots, v_n\}$ and size m . The degree of a vertex v_i is the number of edges of G incident with v_i . Let $d_1 \geq d_2 \geq \dots \geq d_n$ be the vertex degrees in non-increasing order and let $f_G = |\{i : d_i \geq i\}|$. Let e_i be the number of vertices with degree at least i , that is $e_i = |\{j : d_j \geq i\}|$. Then we have $e_1 \geq e_2 \geq \dots \geq e_n$. Moreover, we also have

$$d_i = |\{j : e_j \geq i\}|. \quad (1)$$

We have the following lemmas.

Lemma 1 *Let $n - 1 = d_1 \geq \dots \geq d_n \geq 1$ be a sequence of natural numbers and let $e_i = |\{j : d_j \geq i\}|$. Suppose that*

$$\sum_{i=1}^n d_i = 2m, \quad (2)$$

and

$$\sum_{i=1}^t d_i = \sum_{i=1}^t (e_i - 1) \quad (3)$$

for all $1 \leq t \leq f = |\{i : d_i \geq i\}|$. Then there exists a divisor graph of order n and size m .

Proof We construct a digraph G with vertex set v_1, \dots, v_n as follows. For $1 \leq i \leq f$, then (v_i, v_j) is an edge of G for $i + 1 \leq j \leq d_i + 1$. We first show that G is a graph of size m . It suffices to show that $\deg(v_i) = d_i$ for all i (where $\deg(v_i)$ is the number of incident edges of vertex v_i , regardless of their directions). We have three cases.

1. Suppose that $1 \leq i \leq f$. Then it is clear from the construction that $\deg(v_i) = d_i$.
2. Suppose that $i = f + 1$. Then $d_i = d_{f+1} \leq f$ (by the definition of f). From (3), we have $d_j = e_j - 1$ for $1 \leq j \leq f$. If $d_{f+1} < f$ then $e_f \leq f$, or

$$f \leq d_f = e_f - 1 < f,$$

which is a contradiction. Hence $d_{f+1} = f$. For $1 \leq j \leq f$ then $d_j + 1 \geq d_f + 1 \geq f + 1 = i$. So (v_j, v_i) is an edge of G and $\deg(v_i) = f$. Thus, $\deg(v_i) = d_i$.

3. Suppose that $i > f + 1$. Then (v_j, v_i) is an edge of G if and only if $1 \leq j \leq f$ and $j + 1 \leq i \leq d_j + 1$. For $j > f$ we have $d_j \leq d_{f+1} < f + 1 \leq i$. This implies that

$$\deg(v_i) = |\{1 \leq j \leq d : d_j \geq i - 1\}| = |\{j : d_j \geq i - 1\}| = e_{i-1}$$

for all $i > f + 1$. From (1), we have $d_i = e_i - 1$ for $1 \leq i \leq f$. For $i > f + 1$ then $d_j \geq i - 1$ or $e_j \geq i$ only if $j \leq f$ (since $d_{f+1} = f < i - 1$). Hence

$$\begin{aligned} e_{i-1} &= |\{j : d_j \geq i - 1\}| \\ &= |\{1 \leq j \leq f : d_j \geq i - 1\}| \\ &= |\{1 \leq j \leq f : e_j - 1 \geq i - 1\}| \\ &= |\{j : e_j \geq i\}| = d_i. \end{aligned}$$

Thus, $\deg(v_i) = e_{i-1} = d_i$ for all $i > f + 1$.

Therefore, we have $\deg(v_i) = d_i$ for $1 \geq i \geq n$. This implies that G has order n and size m .

Now, we will show that G is a divisor digraph. Suppose that (v_i, v_j) and (v_j, v_k) are two edges of G . Then from the above construction, $1 \leq i, j \leq d$ and $k \leq d_j + 1 \leq d_i + 1$. Thus (v_i, v_k) is also an edge of G . This implies that G is a divisor digraph. Let H be the graph obtained from G by ignoring the direction of edges of G . Then H is a divisor graph of order n and size m . This concludes the proof of the lemma. \square

Lemma 2 *Let $n - 1 = d_1 \geq \dots \geq d_n \geq 1$ be a sequence of natural numbers and set $e_i = |\{j : d_j \geq i\}|$. Suppose that*

$$\sum_{i=1}^n d_i = 2m < n(n - 1), \quad (4)$$

and

$$\sum_{i=1}^t d_i = \sum_{i=1}^t (e_i - 1) \quad (5)$$

for all $1 \leq t \leq f = |\{i : d_i \geq i\}|$. Then there exists a sequence $n - 1 = d'_1 \geq \dots \geq d'_n \geq 1$ of natural numbers such that

$$\sum_{i=1}^n d'_i = 2(m + 1), \quad (6)$$

and

$$\sum_{i=1}^t d'_i = \sum_{i=1}^t (e'_i - 1) \quad (7)$$

for all $1 \leq t \leq f' = |\{i : d'_i \geq i\}|$, where $e'_i = |\{j : d_j \geq i\}|$ for $1 \leq i \leq n$.

Proof If $f \geq n - 1$ then $n - 1 \geq d_1 \geq \dots \geq d_{n-1} \geq d_f \geq f = n - 1$. Hence $d_1 = \dots = d_{n-1} = n - 1$, and

$$\sum_{i=1}^{n-1} e_i = n(n - 1).$$

We have $e_i \leq n$ for $1 \leq i \leq n - 1$, so $e_1 = \dots = e_{n-1} = n$. Hence $d_i \geq n - 1$ for $1 \leq i \leq n$ or

$$\sum_{i=1}^n d_i = n(n - 1),$$

which is a contradiction. Thus, $f < n - 1$. Let g be the smallest index such that $d_g < n - 1$. Then we have $2 \leq g \leq f + 1$ (since $d_{f+1} \leq f < n - 1$). We have two cases.

1. Suppose that $2 \leq g \leq f$. Set $h = d_g + 2$, $d'_g = d_g + 1$, $d'_h = d_h + 1$ and $d'_i = d_i$ for $i \neq g, h$. We have (6) holds since

$$\sum_{i=1}^n d'_i = 2 + \sum_{i=1}^n d_i = 2(m + 1).$$

Recall that from the proof of Lemma 1, we have

$$d_i = \begin{cases} e_i - 1 & \text{if } i \leq f \\ f & \text{if } i = f + 1 \\ e_{i-1} & \text{if } i > f + 1. \end{cases} \quad (8)$$

Since $d_g = h - 2 \geq g$ and $g \leq f$, we have $e_g = h - 1$. This implies that $d_{h-1} \geq g$ and $d_h < g$. Besides, $d_1 = \dots = d_{g-1} = n - 1$ so $d_h \geq d_n = e_{n-1} \geq g - 1$. Hence $d_h = g - 1$, $d'_g = h - 1$ and $d'_h = g$. Therefore, we have $e'_g = e_g + 1$, $e'_h = e_h + 1$ and $e'_i = e_i$ for $i \neq g, h$. We have $d_h = g - 1 \leq f - 1$ so $h > f + 1$. Hence $d'_{f+1} = d_{f+1} < f + 1$ or $f' \leq f$. And we have (7) holds for $1 \leq t \leq f'$ since (5) holds for $1 \leq t \leq f' \leq f$.

2. Suppose that $g = f + 1$. Then from (8) we have $d_g = f = g - 1$. Set $h = f + 2$, $d'_g = d_g + 1$, $d'_h = d_h + 1$ and $d'_i = d_i$ for $i \neq g, h$. Then it is clear that (6) holds. Besides, we have $d_1 = \dots = d_{g-1} = n - 1$ so

$$g - 1 = d_g \geq \dots \geq d_n = e_{n-1} \geq g - 1.$$

Hence $d_g = \dots = d_n = g - 1$. We have $d'_g = d'_h = g < h$, so $f' = f + 1$, $e'_g = e_g + 2 = g + 1$ and $e'_i = e_i$ for $i \neq g$. From (5), we have

$$\sum_{i=1}^t d'_i = \sum_{i=1}^t (e'_i - 1)$$

for $1 \leq t \leq f$. We only need to check for $t = f' (= f + 1 = g)$. We have

$$\sum_{i=1}^g d'_i = g + \sum_{i=1}^f d'_i = e'_g - 1 + \sum_{i=1}^f (e'_i - 1) = \sum_{i=1}^g (e'_i - 1).$$

Thus, (7) holds for $1 \leq t \leq f'$.

This concludes the proof of the lemma. \square

We are now ready to prove Theorem 1. From Lemma 1, we start with the sequence $(n - 1, 1, \dots, 1)$ to obtain a divisor graph of size $n - 1$. Then apply Lemma 1 and Lemma 2 inductively to obtain divisor graphs of order $n, \dots, \binom{n}{2}$. To construct a divisor graph of order n and size m with $m < n - 1$, we choose a vertex and join it with m other vertices. Thus, there exists a divisor graph of order n and size m for any n and $0 \leq m \leq \binom{n}{2}$. This concludes the proof of the theorem.

Remark 1 An interesting and open question is to find necessary and sufficient conditions for a non-increasing sequence $n - 1 \geq d_1 \geq \dots \geq d_n \geq 1$ such that there exists a divisor graphs with degree sequence (d_1, \dots, d_n) .

3 Proof of Theorem 2

Suppose that G is a divisor graph. Then there exists a set V of positive integer such that $G \simeq G(V)$. We give an orientation on each edge (i, j) of G as follows

$$(i, j) \in E(G), \quad i \rightarrow j \quad \text{if and only if} \quad i \mid j.$$

Suppose that $(x, y), (y, z)$ are edges of D . Then $x \mid y$ and $y \mid z$. Hence $x \mid z$ and (x, z) is an edge of G .

Now suppose that there exists an orientation D of G such that if $(x, y), (y, z)$ are edges of D then so is (x, z) . We will show that G is a divisor graph. We will give an explicit labelling for G . We start with any vertex of G and label it by $\{a_1\}$ (a list of one symbol). Suppose that we have labelled k vertices of G and we have used a_1, \dots, a_l symbols (each vertex is labelled by a list of symbols and we will update this list in each step). We choose any unlabelled vertex, says v . Consider two sets

$$\begin{aligned} D_I(v) &= \{u \in V(G) \mid (u, v) \in E(D)\}, \\ D_O(v) &= \{u \in V(G) \mid (v, u) \in E(D)\}. \end{aligned}$$

We label v by $L_v = \{a_{l+1}\}$. For each $u \in D_I(v)$ and u was labelled by a list L_u then we add this list into the list L_v to have a new list L_v for v . And for each $u \in D_O(v)$ which was labelled by a list L_u then we add the new list L_v into L_u to have a new list for u . For each updated vertex u , we consider the set $D_O(u)$. For each $w \in D_O(u)$ which was labelled by a list L_w , we add the new list L_u into the list L_w to have a new list for w . We keep doing until we have no vertex to update or we come back to some vertex which we met along the way. But in the latter case, we have a sequence of vertices, says w_1, \dots, w_t such that $w_1 \rightarrow w_2 \rightarrow \dots \rightarrow w_t \rightarrow w_1$ in D . This implies that

$$w_1 \mid w_2, w_2 \mid w_3, \dots, w_t \mid w_1.$$

Hence $w_1 = \dots = w_t$, which is a contradiction. Thus the process must be stopped. We repeat the process until all the vertices of G have been labelled by lists of symbols. Suppose that we have used r symbols a_1, \dots, a_r . We choose r distinct primes p_1, \dots, p_r and for each vertex $v \in V(G)$ which is labelled by a list $\{a_{i_1}, \dots, a_{i_r}\} \subseteq \{a_1, \dots, a_r\}$ then we label it by the number

$$n(v) = p_{i_1} \dots p_{i_r}.$$

From the construction above, if (u, v) is an edge of G then either $L_u \subset L_v$ or $L_v \subset L_u$. This implies that either $u \mid v$ or $v \mid u$. Hence G is a divisor graph. This concludes the proof of the theorem.

4 Acknowledgement

I would like to thank Professor Ping Zhang for sending me reference papers [1, 3].

References

- [1] G. Chartrand, R. Muntean, V. Saenpholhat, and P. Zhang, Which graphs are divisor graphs?, *Congr. Numer.* **151** (2001) 189-200.
- [2] G. S. Singh and G. Santhosh, Divisor Graphs - I, Preprint.
- [3] R. Gera, V. Saenpholhat and P. Zhang, Divisor graphs with triangles, *Congr. Numer.* **165** (2003) 51-64.
- [4] C. Pomerance, On the longest simple path in the divisor graph, *Congr. Numer.* **40** (1983) 291-304.