An Analytical Introduction to Probability Theory

4. Random Variables

DASN, NTU

https://personal.ntu.edu.sg/wptay/

Throughout this note, we consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

4.1 Measurable Functions

Definition 4.1. A function $X : (\Omega, \mathcal{A}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable if $\forall B \in \mathcal{B}(\mathbb{R}), X^{-1}(B) \triangleq \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}$. In probability theory, X is called a random variable or random element.

Lemma 4.1. X is a random variable iff $\forall t \in \mathbb{R}$, $\{\omega \in \Omega : X(\omega) \leq t\} \in \mathcal{A}$.

Proof. ' \Rightarrow ': Suppose X is a random variable. Since $(-\infty, t] \in \mathcal{B}$, we have $\{\omega \in \Omega : X(\omega) \le t\} \in \mathcal{A}$.

 \leftarrow : Let $\mathcal{D} = \{B \in \mathcal{B} : X^{-1}(B) \in \mathcal{A}\}$. Since

$$X^{-1}(B^c) = (X^{-1}(B))^c,$$
$$X^{-1}\left(\bigcup_{i>1} B_i\right) = \bigcup_{i>1} X^{-1}(B_i),$$

 \mathcal{D} is a σ -algebra. Since $(-\infty, t] \in \mathcal{D}$ and $\{(-\infty, t]\}$ generates $\mathcal{B}(\mathbb{R})$, we have $\mathcal{B}(\mathbb{R}) \subset \mathcal{D}$ and X is a random variable.

Lemma 4.2. Suppose X is a random variable, then $\inf_{n\geq 1} X_n$, $\sup_{n\geq 1} X_n$, $\limsup_{n\to\infty} X_n$, $\liminf_{n\to\infty} X_n$ are random variables.

Proof. We show that $\inf_{n\geq 1} X_n$ is a random variable. We have for any $t\in \mathbb{R}$,

$$\left\{\inf_{n\geq 1} X_n \leq t\right\} = \bigcup_{n\geq 1} \{X_n \leq t\} \in \mathcal{A},$$

since each X_n is a random variable. By Lemma 4.1, the result follows. The proofs for the other claims are similar.

The law or distribution of a random variable X is given by

$$\mathbb{P}_X(B) \triangleq \mathbb{P}(X \in B) = \mathbb{P}(\{\omega : X(\omega) \in B\})$$
$$= \mathbb{P}(X^{-1}(B))$$
$$= \mathbb{P} \circ X^{-1}(B),$$

and we write

$$\sigma(X) = \sigma$$
-algebra generated by X
= $\{X^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}.$

Note that the RHS of the last equality is a σ -algebra.

Suppose $g: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable, i.e., $g^{-1}(B) \in \mathcal{B}(\mathbb{R})$ for all $B \in \mathcal{B}(\mathbb{R})$, then g(X) is a random variable since

$$(g \circ X)^{-1}(B) = X^{-1}(g^{-1}(B)) \in \mathcal{A}.$$

4.2 Expectation

For $A \in \mathcal{A}$, the indicator function for A is given by

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1, & \text{if } \omega \in A, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Definition 4.2. $X(\omega)$ is a simple random variable if there is a discrete set of numbers $x_1 < x_2 < \ldots < x_n$, such that $X(\omega) = \sum_{i=1}^n x_i \mathbf{1}_{A_i}(\omega)$, where $A_i \in \mathcal{A}$, $A_i \cap A_j = \emptyset$ for $i \neq j$, and $\bigcup_{i=1}^n A_i = \Omega$.

Definition 4.3. The expectation (Lebesgue integral) of a simple random variable (measurable function) $X : \Omega \to \mathbb{R}$ is given by

$$\int_{\Omega} X(\omega) d\mathbb{P} = \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \mathbb{E}[X] \triangleq \sum_{i=1}^{n} x_{i} \mathbb{P}(A_{i}).$$

Lemma 4.3. For any measurable partition B_1, B_2, \ldots, B_n of Ω (i.e., for $i \neq j$, $B_i \cap B_j = \emptyset$ and $\bigcup_{i=1}^n B_i = \Omega$), with $X(\omega) = \sum_{j=1}^m b_j \mathbf{1}_{B_j}(\omega)$, then $\mathbb{E}X = \sum_{j=1}^m b_j \mathbb{P}(B_j)$.

Proof. For $\omega \in A_i \cap B_j$, we have $x_i = X(\omega) = b_j$. Therefore, we obtain

$$\sum_{i=1}^{n} x_i \mathbb{P}(A_i) = \sum_{i=1}^{n} x_i \sum_{j=1}^{m} \mathbb{P}(A_i \cap B_j)$$
$$= \sum_{i} \sum_{j=1}^{n} x_i \mathbb{P}(A_i \cap B_j)$$
$$= \sum_{i} \sum_{j=1}^{n} b_j \mathbb{P}(A_i \cap B_j)$$
$$= \sum_{i} b_j \mathbb{P}(B_j),$$

where the interchange of summations is allowed because the number of terms in the summand is finite. \Box

The following result follows from Definition 4.3 using similar computation as in Lemma 4.3.

Lemma 4.4. Suppose X and Y are simple random variables. Then we have:

- (i) $X(\omega) \leq Y(\omega) \implies \mathbb{E}X \leq \mathbb{E}Y$.
- (ii) For any $a \in \mathbb{R}$, aX is a simple random variable and $\mathbb{E}[aX] = a\mathbb{E}X$.
- (iii) X + Y is a simple random variable and $\mathbb{E}[X + Y] = \mathbb{E}X + \mathbb{E}Y$.

Definition 4.4. If $X \geq 0$, we define

$$\mathbb{E}X = \sup\{\mathbb{E}Z : Z \le X, Z \text{ is simple}\}.$$

Let $X^+ = \max(X,0) \ge 0$ and $X^- = -\min(X,0) \ge 0$. We have $X = X^+ - X^-$. We can then define $\mathbb{E}X = \mathbb{E}X^+ - \mathbb{E}X^-$, if not both $\mathbb{E}X^+$ and $\mathbb{E}X^-$ are infinite. If $\mathbb{E}X^+$ and $\mathbb{E}X^-$ are both infinite, then the expectation of X is undefined.

If $\mathbb{E}|X| = \mathbb{E}X^+ + \mathbb{E}X^- < \infty$, we say that it is integrable. This implies that both $\mathbb{E}X^+$ and $\mathbb{E}X^-$ are finite, hence $\mathbb{E}X$ exists and is finite.

Lemma 4.5. If $0 \le X \le Y$, then $\mathbb{E}X \le \mathbb{E}Y$.

Proof. For any simple r.v. Z, since $\{Z \leq X\} \subset \{Z \leq Y\}$, $\mathbb{E}X \leq \mathbb{E}Y$ follows from Definition 4.4.

Our goal is to prove the following theorem, which shows that expectations are additive.

Theorem 4.1. Suppose $X, Y \ge 0$, then $\mathbb{E}[X + Y] = \mathbb{E}X + \mathbb{E}Y$.

We first show the following.

Lemma 4.6. Suppose $X, Y \ge 0$, then $\mathbb{E}[X + Y] \ge \mathbb{E}X + \mathbb{E}Y$.

Proof. $\forall \epsilon > 0, \exists$ simple random variables $Z_1 \leq X$ and $Z_2 \leq Y$ such that

$$\mathbb{E}X \le \mathbb{E}Z_1 + \frac{\epsilon}{2},$$
$$\mathbb{E}Y \le \mathbb{E}Z_2 + \frac{\epsilon}{2},$$

so that

$$\mathbb{E}X + \mathbb{E}Y \le \mathbb{E}Z_1 + \mathbb{E}Z_2 + \epsilon$$
$$= \mathbb{E}[Z_1 + Z_2] + \epsilon$$
$$\le \mathbb{E}[X + Y] + \epsilon,$$

where the first equality follows from Lemma 4.4 and the last inequality from $Z_1 + Z_2 \leq X + Y$ and Definition 4.4. Since ϵ can be arbitrarily small, the proof is complete.

To complete the proof of Theorem 4.1, we need to show subadditivity: $\mathbb{E}[X+Y] \leq \mathbb{E}X + \mathbb{E}Y$. It turns out that this is highly non-trivial and in the process we learn several nice proof techniques and the very useful theorem below.

Theorem 4.2 (Monotone Convergence Theorem (MCT)). Suppose $0 \le X_n \le X_{n+1}$, for $n \ge 1$ and $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega$. Then

$$\lim_{n \to \infty} \mathbb{E} X_n = \mathbb{E} \left[\lim_{n \to \infty} X_n \right] = \mathbb{E} X.$$

We first give an example why we cannot always interchange the order of integration and limit.

Example 4.1. Consider the probability space $((0,1),\mathcal{B}((0,1)),\lambda)$, where λ is the Lebesgue measure, and let

$$X_n(\omega) = \begin{cases} n, & \text{if } 0 < \omega \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < \omega < 1. \end{cases}$$
 (2)

Then we have $\mathbb{E}X_n = 1$ while $\lim_{n\to\infty} X_n(\omega) = 0$ for all ω .

To prove the MCT, we first show the following.

Lemma 4.7. Suppose that $X \ge 0$ is a simple random variable and $B_n \subset B_{n+1}$ for $n \ge 1$. Let $B = \bigcup_{n \ge 1} B_n$. We have

$$\lim_{n\to\infty}\mathbb{E}[X\mathbf{1}_{B_n}]=\mathbb{E}[X\mathbf{1}_B].$$

Proof. Suppose

$$X = \sum_{i=1}^{m} x_i \mathbf{1}_{A_i},$$

then

$$X\mathbf{1}_{B_n} = \sum_{i=1}^m x_i \mathbf{1}_{A_i \cap B_n},$$

and from Lemma 4.3, we obtain

$$\mathbb{E}[X\mathbf{1}_{B_n}] = \sum_{i=1}^m x_i \mathbb{P}(A_i \cap B_n).$$

Since $\mathbb{E}[X\mathbf{1}_{B_n}] \leq \mathbb{E}[X\mathbf{1}_{\{B_{n+1}\}}]$ is an increasing sequence in \mathbb{R} , its limit exists (can be ∞). Taking limit as $n \to \infty$ on both sides, we obtain

$$\lim_{n \to \infty} \mathbb{E}[X\mathbf{1}_{B_n}] = \sum_{i=1}^m x_i \lim_{n \to \infty} \mathbb{P}(A_i \cap B_n)$$

$$= \sum_{i=1}^m x_i \mathbb{P}\left(\bigcup_{n \ge 1} \{A_i \cap B_n\}\right)$$

$$= \sum_{i=1}^m x_i \mathbb{P}(A_i \cap B)$$

$$= \mathbb{E}[X\mathbf{1}_B].$$

Proof of MCT. Since $X_n \leq X$ for all $n \geq 1$, we have $\mathbb{E}X_n \leq \mathbb{E}X$ from Lemma 4.5. As $\mathbb{E}X_n \leq \mathbb{E}X_{n+1}$ is an increasing bounded sequence, its limit exists and

$$\lim_{n\to\infty} \mathbb{E}X_n \le \mathbb{E}X.$$

Let Z be a simple random variable such that $0 \le Z \le X$. Let $0 < \rho < 1$, and define

$$B_n = \{ \omega : X_n(\omega) > \rho Z(\omega) \}.$$

We have $B_n \subset B_{n+1}$. Furthermore, for n sufficiently large, we have $X_n(\omega) \geq \rho X(\omega) \geq \rho Z(\omega)$ $\forall \omega \in \Omega \text{ (i.e., } B_n = \Omega), \text{ so that } \bigcup_{j \geq 1} B_j = \Omega.$ For such n, we then have

$$\rho Z \mathbf{1}_{B_n} \le X_n \mathbf{1}_{B_n} \le X_m, \ \forall m \ge n,$$
$$\rho \mathbb{E}[Z \mathbf{1}_{B_n}] \le \mathbb{E} X_m,$$

from Definition 4.4 since $Z\mathbf{1}_{B_n}$ is simple. Letting $m \to \infty$,

$$\rho \mathbb{E}[Z\mathbf{1}_{B_n}] \le \lim_{m \to \infty} \mathbb{E}X_m,$$

and $n \to \infty$, we have from Lemma 4.7,

$$\rho \mathbb{E} \Big[Z \mathbf{1}_{\bigcup_{n \ge 1} B_n} \Big] \le \lim_{m \to \infty} \mathbb{E} X_m,$$
$$\rho \mathbb{E} [Z] \le \lim_{m \to \infty} \mathbb{E} X_m.$$

Taking sup over all simple $Z \leq X$, we have

$$\rho \mathbb{E} X \le \lim_{n \to \infty} \mathbb{E} X_n,$$

and $\rho \to 1$ completes the proof.

The following procedure gives an explicit construction of a sequence of increasing simple random variables that approximate $X \ge 0$. For each $k \ge 1$ and $0 \le j < 2^{2k}$, let

$$B_{k,j} = \left\{ \omega : \frac{j}{2^k} < X(\omega) \le \frac{j+1}{2^k} \right\},\$$

$$B_{k,2^{2k}} = \left\{ \omega : X(\omega) > 2^k \right\},\$$

and

$$Z_k = \sum_{j=0}^{2^{2k}} \frac{j}{2^k} \mathbf{1}_{B_{k,j}}.$$

We have $Z_k(\omega) \leq Z_{k+1}(\omega)$ and

$$0 \le X(\omega) - Z_k(\omega) \le 2^{-k}, \ \forall \omega \text{ s.t. } X(\omega) \le 2^k,$$

 $Z_k(\omega) = 2^k, \ X(\omega) > 2^k.$

Therefore $Z_k(\omega) \uparrow X(\omega)$ as $k \to \infty$. We finally have all the tools to prove Theorem 4.1.

Proof of Theorem 4.1. For any $X, Y \geq 0$, \exists simple $X_n \uparrow X$ and simple $Y_n \uparrow Y$. We then have $X_n + Y_n \uparrow X + Y$ and $\mathbb{E}[X_n + Y_n] = \mathbb{E}X_n + \mathbb{E}Y_n$. From the MCT, taking $n \to \infty$, we obtain $\mathbb{E}[X + Y] = \mathbb{E}X + \mathbb{E}Y$.

Note that additivity of expectations for general random variables follows from Theorem 4.1 since $\mathbb{E}X = \mathbb{E}X^+ - \mathbb{E}X^-$.

The steps in the proof of Theorem 4.1 are quite standard in measure theory:

- (i) Prove for simple random variables.
- (ii) Extend to non-negative random variables X by using simple random variables $\uparrow X$, then apply MCT.
- (iii) Extend to general $X = X^+ X^-$.

4.3 Fatou's Lemma and the DCT

Lemma 4.8 (Fatou's Lemma). Suppose that $X_n \geq 0$ for $n \geq 1$. We have

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n\right] \le \liminf_{n\to\infty} \mathbb{E}X_n.$$

Proof. Let $Y_k = \inf_{n \geq k} X_n \geq 0$. We have $Y_k \leq Y_{k+1}$ and $Y_k \leq X_n$, $\forall n \geq k$ so that

$$\mathbb{E} Y_k \le \inf_{n \ge k} \mathbb{E} X_n$$

$$\lim_{k \to \infty} \mathbb{E} Y_k \le \lim_{k \to \infty} \inf_{n \ge k} \mathbb{E} X_n = \liminf_{n \to \infty} \mathbb{E} X_n.$$

From MCT and Lemma 1.8, we have

$$\begin{split} &\lim_{k \to \infty} \mathbb{E} Y_k = \mathbb{E} \Big[\lim_{k \to \infty} Y_k \Big] \\ &= \mathbb{E} \Big[\lim_{k \to \infty} \inf_{n \ge k} X_n \Big] \\ &= \mathbb{E} \Big[\lim_{n \to \infty} \inf_{n \ge \infty} X_n \Big], \end{split}$$

and we obtain

$$\mathbb{E}\Big[\liminf_{n\to\infty} X_n\Big] \le \liminf_{n\to\infty} \mathbb{E} X_n.$$

A similar proof as that for Lemma 4.8 shows that if $X_n \leq Y$ where $\mathbb{E}|Y| < \infty$, then

$$\mathbb{E}\left[\limsup_{n\to\infty} X_n\right] \ge \limsup_{n\to\infty} \mathbb{E} X_n.$$

Theorem 4.3 (Dominated Convergence Theorem (DCT)). Suppose $|X_n(\omega)| \leq Y(\omega) \ \forall \omega \in \Omega$, and $\mathbb{E}|Y| < \infty$. If $\lim_{n\to\infty} X_n = X$, then $\mathbb{E}X$ exists, $\mathbb{E}|X| \leq \mathbb{E}Y$ and

$$\lim_{n\to\infty} \mathbb{E}X_n = \mathbb{E}X.$$

Proof. From Lemma 4.5, we have $\mathbb{E}|X_n| \leq \mathbb{E}Y$, and Fatou's Lemma (Lemma 4.8) yields $\mathbb{E}|X| \leq \mathbb{E}Y$. Therefore, $\mathbb{E}X$ exists. Since $Y + X_n \geq 0$, from Fatou's Lemma, we have

$$\mathbb{E}\left[\liminf_{n\to\infty} (Y+X_n)\right] \le \liminf_{n\to\infty} \mathbb{E}[Y+X_n]. \tag{3}$$

We also have

$$\mathbb{E}\left[\liminf_{n\to\infty} (Y+X_n)\right] = \mathbb{E}[Y+X] = \mathbb{E}Y + \mathbb{E}X,$$

and

$$\liminf_{n\to\infty} \mathbb{E}[Y+X_n] = \mathbb{E}Y + \liminf_{n\to\infty} \mathbb{E}[X_n],$$

so that (3) yields

$$\mathbb{E}X \le \liminf_{n \to \infty} \mathbb{E}X_n.$$

Similarly, we have $Y - X_n \ge 0$ and Fatou's Lemma implies that

$$\mathbb{E}\left[\liminf_{n\to\infty} (Y - X_n)\right] \le \liminf_{n\to\infty} \mathbb{E}[Y - X_n],$$

$$\mathbb{E}X \ge \limsup_{n\to\infty} \mathbb{E}X_n.$$

Therefore, $\mathbb{E}X = \lim_{n \to \infty} \mathbb{E}X_n$.

Lemma 4.9 (Scheffe). Suppose that $X_n \geq 0$ for $n \geq 1$, $\lim_{n \to \infty} X_n = X$, both X_n and X are integrable, and $\lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X$. Then, $\lim_{n \to \infty} \mathbb{E}|X_n - X| = 0$.

Proof. Since $X_n \geq 0$ and $X \geq 0$, we have

$$0 \le (X_n - X)^- \le X.$$

As $\mathbb{E}X < \infty$ and $(X_n - X)^- \to 0$ since $X_n \to X$, DCT yields $\mathbb{E}(X_n - X)^- \to 0$. From

$$\mathbb{E}(X_n - X) = \mathbb{E}(X_n - X)^+ - \mathbb{E}(X_n - X)^-,$$

and $\mathbb{E}(X_n - X) \to 0$, we obtain $\mathbb{E}(X_n - X)^+ \to 0$ and

$$\mathbb{E}|X_n - X| = \mathbb{E}(X_n - X)^+ + \mathbb{E}(X_n - X)^- \to 0.$$

Hence, any sequence of r.v.s satisfying the conditions of the DCT also converges in L^1 .

4.4 Notes

Suppose $f:(\Omega, \mathcal{A}, \mu) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a non-negative measurable function, where μ is a general measure (i.e., does not have the restriction that $\mu(\Omega) = 1$), then the Lebesgue integral of f over a measurable set $A \in \mathcal{A}$ denoted by

$$\int_A f \, \mathrm{d}\mu$$

is defined in exactly the same way as in Definition 4.4. In fact, the proofs of MCT, Fatou's Lemma and DCT do not require that the underlying measure is a probability measure! Therefore, all the results we have seen so far are true for the general Lebesgue integral. If f is a.e. continuous, then its Lebesgue integral and Riemann integral give the same value, but their constructions are different.

For $p \geq 1$, we define

$$L^p(\Omega, \mathcal{A}, \mu) = \left\{ f : (\Omega, \mathcal{A}, \mu) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R})) \, \middle| \, \int_{\Omega} |f|^p \, \mathrm{d}\mu < \infty \right\}.$$

If obvious from the context, we usually shorten the notation to $L^p(\mu)$ or $L^p(\Omega)$. An integrable function means it is in $L^1(\mu)$. Using Minkowski's inequality, it can be shown that

$$||f||_p = \left(\int |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

is a norm, hence $L^p(\mu)$ is a normed space.

If g is a measurable function, then from Definition 4.3, we have

$$\mathbb{E}g(X) = \int g(X(\omega)) \, d\mathbb{P}(\omega).$$

Letting $x = X(\omega)$, we obtain

$$\mathbb{E}g(X) = \int g(x) \, d\mathbb{P} \circ X^{-1}(x)$$
$$= \int g(x) \, d\mathbb{P}_X(x). \tag{4}$$

Note that $X^{-1}(B) = \{\omega : X(\omega) \in B\}$ is defined as the inverse map for Borel sets, and is different from a traditional inverse function, which requires bijectiveness. In particular, $X^{-1}(\cdot)$ is always well-defined.

For discrete random variables $X \in \{x_1, x_2, \ldots\}$, suppose $\mathbb{P}_X(\{x_i\}) = p_i$, a discrete measure. Then the expectation (4) reduces to a sum $\sum_i g(x_i)p_i$. For "continuous" random variables you are familiar with in undergrad probability courses, we need a definition.

Definition 4.5. If $\mu(A) = 0 \implies \nu(A) = 0$ for all measurable sets A, then we say that ν is absolutely continuous w.r.t. μ and write $\nu \ll \mu$.

A measure μ is σ -finite if $\Omega = \bigcup_{i>1} \Omega_i$, where the Ω_i are disjoint and $\mu(\Omega_i) < \infty$.

Theorem 4.4 (Radon-Nikodym). Suppose the ν is finite and μ is σ -finite. If $\nu \ll \mu$, then there exists measurable $f \geq 0$ with $\int |f| d\mu < \infty$ (i.e., $f \in L^1(\mu)$) such that

$$\nu(A) = \int_A f \, \mathrm{d}\mu.$$

Notation-wise, we usually write $f = \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$, which is called the Radon-Nikodym derivative.

Definition 4.6. X is a continuous random variable if $\exists f \in L^1(\mathbb{R}, \lambda)$, where λ is the Lebesgue measure, i.e., $\lambda([a,b]) = b - a$, s.t.

$$\mathbb{P}_X(A) = \int_A f \, \mathrm{d}\lambda = \int_A f(x) \, \mathrm{d}x$$

for all measurable A. The function f is called the probability density function (pdf) of X.

We also have $\mathbb{E}g(X) = \int g(x) d\mathbb{P}_X(x) = \int g(x) f(x) dx$.