Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Notes

Chris Doble

June 2023

Contents

1	Vec	cors 2
	1.1	Vectors in 2-Space
	1.2	Vectors in 3-Space
	1.3	Dot Product
	1.4	Cross Product
	1.5	Lines and Planes in 3-Space
	1.6	Vector Spaces
	1.7	Gram-Schmidt Orthogonalization Process
2	Mat	rices 6
	2.1	Matrix Algebra
	2.2	Systems of Linear Algebraic Equations
	2.3	Rank of a Matrix
	2.4	Determinants
	2.5	Properties of Determinants
	2.6	Inverse of a Matrix
	2.7	Cramer's Rule
	2.8	The Eigenvalue Problem
	2.9	Powers of Matrices
	2.10	Orthogonal Matrices
		Approximation of Eigenvalues
		Diagonalization
		LU-Factorisation
		Cryptography
3	Vect	or Calculus 17
	3.1	Vector Functions
	3.3	Curvature and Components of Acceleration
	3.4	Partial Derivatives

3.5	Directional Derivative	20
3.6	Tangent Planes and Normal Lines	20
3.7	Curl and Divergence	21
3.8	Line Integrals	21
3.9	Independence of the Path	22
3.10	Double Integrals	23
3.11	Double Integrals in Polar Coordinates	24
3.12	Green's Theorem	24
3.13	Surface Integrals	24

1 Vectors

1.1 Vectors in 2-Space

- The zero vector can be assigned any direction
- The vectors **i** and **j** are known as the **standard basis vectors** for \mathbb{R}^2

1.2 Vectors in 3-Space

• In \mathbb{R}^3 the octant in which all coordinates are positive is known as the **first** octant. There is no agreement for naming the other seven octants.

1.3 Dot Product

- \bullet The dot product is also known as the inner product or the scalar product and is denoted $a \cdot b$
- Two non-zero vectors are orthogonal iff their dot product is 0
- The zero vector is considered orthogonal to all vectors
- The angles α , β , and γ between a vector and the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} , respectively are called the **direction angles** of the vector
- The cosines of a vectors direction angles (the **direction cosines**) can be calculated as

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{\|\mathbf{a}\| \|\mathbf{i}\|}$$

$$= \frac{a_1}{\|\mathbf{a}\|}$$

$$\cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{\|\mathbf{a}\| \|\mathbf{j}\|}$$

$$= \frac{a_2}{\|\mathbf{a}\|}$$

$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{\|\mathbf{a}\| \|\mathbf{k}\|}$$

$$= \frac{a_3}{\|\mathbf{a}\|}$$

Equivalently, these can be calculated as the components of the unit vector $\mathbf{a}/||\mathbf{a}||$.

 $\bullet\,$ To find the component of a vector ${\bf a}$ in the direction of a vector ${\bf b}$

$$comp_{\mathbf{b}}\mathbf{a} = ||\mathbf{a}||\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||}$$

• To project a vector **a** onto a vector **b**

$$\mathrm{proj}_{\mathbf{b}}\mathbf{a} = (\mathrm{comp}_{\mathbf{b}}\mathbf{a})\frac{\mathbf{b}}{||\mathbf{b}||} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right)\mathbf{b}$$

1.4 Cross Product

- The cross product is only defined in \mathbb{R}^3
- The scalar triple product of vectors a, b, and c is defined as

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- The area of a parallelogram with sides \mathbf{a} and \mathbf{b} is $||\mathbf{a} \times \mathbf{b}||$
- The area of a triangle with sides **a** and **b** is $\frac{1}{2}||\mathbf{a} \times \mathbf{b}||$
- The volume of a paralleleipied with sides \mathbf{a} , \mathbf{b} , and \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ iff \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar

1.5 Lines and Planes in 3-Space

• There is a unique line between any two points $\mathbf{r_1}$ and $\mathbf{r_2}$ in 3-space. The equation for that line is

$$\mathbf{r} = \mathbf{r_1} + t(\mathbf{r_2} - \mathbf{r_1}) = \mathbf{r_1} + t\mathbf{a}$$

where t is called a **parameter**, the nonzero vector **a** is called a **direction** vector, and its components are called **direction numbers**.

• Equating the components of the equation above we find

$$x = r_1 + ta_1$$
$$y = r_2 + ta_2$$

$$z = r_3 + ta_3.$$

These are the **parametric equations** for the line through $\mathbf{r_1}$ and $\mathbf{r_2}$.

• By solving the parametric equations for t and equating the results we find the **symmetric equations** for the line

$$t = \frac{x - r_1}{a_1} = \frac{y - r_2}{a_2} = \frac{z - r_3}{a_3}.$$

• Given a point P_1 and a vector \mathbf{n} , there exists only one plane containing P_1 with \mathbf{n} normal. The vector from P_1 to another point P on that plane will be perpendicular to \mathbf{n} , so the equation for the plane is

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_1) = 0$$

where $\mathbf{r} = \overrightarrow{OP}$ and $\mathbf{r_1} = \overrightarrow{OP_1}$. If

$$\mathbf{n} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

the cartesian form of this equation is

$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

and is called the **point-normal form**.

- The graph of any equation ax + by + cz + d = 0, where a, b, and c are not all zero, is a plane with the normal vector $\mathbf{n} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$.
- Given three noncollinear points, a normal vector can be found by forming two vectors from two pairs of points and take their cross product.
- A line and a plane that aren't parellel intersect at a single point.
- Two planes that aren't parallel must intersect in a line.

1.6 **Vector Spaces**

- The length of a vector is called its **norm**
- The process of multipying a vector by the reciprocal of its norm is called normalizing the vector
- Two nonzero vectors **a** and **b** in \mathbb{R}^n are said to be orthogonal if $\mathbf{a} \cdot \mathbf{b} = 0$

Definition 7.6.1 Vector Space

Let V be a set of elements on which two operations called **vector addition** and **scalar multiplication** are defined. Then V is said to be a **vector space** if the following 10 properties are satisfied.

Axioms for Vector Addition:

- If x and y are in V, then x + y is in V. (*i*)
- For all \mathbf{x} , \mathbf{y} in V, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- (iii) For all \mathbf{x} , \mathbf{y} , \mathbf{z} in V, $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.
- (iv) There is a unique vector $\mathbf{0}$ in V such that
 - 0 + x = x + 0 = x.
- For each x in V, there exists a vector -x such that
 - x + (-x) = (-x) + x = 0.

← zero vector

← commutative law

← associative law

← negative of a vector

Axioms for Scalar Multiplication:

- (vi) If k is any scalar and x is in V, then kx is in V.
- $(vii) \quad k(\mathbf{x} + \mathbf{y}) = k\mathbf{x} + k\mathbf{y}$
- $(viii) (k_1 + k_2)\mathbf{x} = k_1\mathbf{x} + k_2\mathbf{x}$
- $(ix) \quad k_1(k_2\mathbf{x}) = (k_1k_2)\mathbf{x}$
- $1\mathbf{x} = \mathbf{x}$

- ← distributive law
- ← distributive law
- If a subset W of a vector space V is itself a vector space under the operations of vector addition and scalar multiplication defined on V, then Wis called a **subspace** of V
- Every vector space has at least two subspaces: itself and the zero subspace
- A set of vectors $\{x_1, x_2, \dots, x_n\}$ is said to be linearly independent if the only constants satisfying the equation

$$k_1\mathbf{x_1} + k_2\mathbf{x_2} + \dots + k_n\mathbf{x_n} = \mathbf{0}$$

are $k_1 = k_2 = \cdots = k_n = 0$. If the set of vectors is not linearly independent it is said to be **linearly dependent**.

- If a set of vectors $B = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ in a vector space V is linearly independent and every vector in V can be expressed as a linear combination of vectors in B then B is said to be a **basis** for V.
- The number of vectors in a basis B for a vector space V is said to be the dimension of the space.

- If the basis of a vector space contains a finite number of vectors, then the space is **finite dimensional**; otherwise it is **infinite dimensional**.
- If S denotes any set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ in a vector space V, then the set of all linear combinations of the vectors in S

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n$$

is called the **span** of the vectors and is denoted Span(S).

- Span(S) is a subspace of V and is said to be a subspace spanned by its vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- If V = Span(S) then S is said to be a spanning set for the vector space
 V or that S spans V.

1.7 Gram-Schmidt Orthogonalization Process

- An orthonormal basis is a basis whose vectors are mutually orthogonal and are unit vectors.
- If $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ is an orthonormal basis for \mathbb{R}^n then an arbitrary vector \mathbf{u} can be expressed as

$$\mathbf{u} = (\mathbf{u} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{u} \cdot \mathbf{w}_2)\mathbf{w}_2 + \dots + (\mathbf{u} \cdot \mathbf{w}_n)\mathbf{w}_n$$

- The Gram-Schmidt Orthogonalization Process is a process for converting any basis of a vector space into an orthonormal basis. First the basis vectors are made orthogonal to each other, then they are normalized. More specifically, to convert a basis $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ into an orthogonal basis $B' = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$
 - 1. Let $\mathbf{v}_1 = \mathbf{u}_1$
 - 2. Let $\mathbf{v}_2 = \mathbf{u}_2 \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_2$
 - 3. ..
 - 4. Let $\mathbf{v}_n = \mathbf{u}_n \operatorname{proj}_{\mathbf{v}_1} \mathbf{u}_n \operatorname{proj}_{\mathbf{v}_2} \mathbf{u}_n \cdots \operatorname{proj}_{\mathbf{v}_{n-1}} \mathbf{u}_n$

and to convert B' into an orthonormal basis $B'' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$, normalize each \mathbf{v}_i , $i = 1, 2, \dots, n$.

2 Matrices

2.1 Matrix Algebra

• Vectors can be written as horizontal or vertical arrays of numbers

• A matrix is any rectangular array of numbers or functions

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- The numbers or functions in the array are called the elements or entries
 of the matrix
- If a matrix has m rows and n columns we say that its **size** is m by n or $m \times n$
- An $n \times n$ matrix is called a **square** matrix of **order** n
- The entry in the *i*th row and the *j*th column of an $m \times n$ matrix **A** is written a_{ij}
- An $m \times 1$ matrix

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

is called a column vector

• A $1 \times n$ matrix

$$(a_1 \quad a_2 \quad \cdots \quad a_n)$$

is called a row vector

Definition 8.1.6 Matrix Multiplication

Let **A** be a matrix having m rows and p columns, and let **B** be a matrix having p rows and n columns. The **product AB** is the $m \times n$ matrix

$$\mathbf{AB} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mp} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & & & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1p}b_{p1} & \cdots & a_{11}b_{1n} + a_{12}b_{2n} + \cdots + a_{1p}b_{pn} \\ a_{21}b_{11} + a_{22}b_{21} + \cdots + a_{2p}b_{p1} & \cdots & a_{21}b_{1n} + a_{22}b_{2n} + \cdots + a_{2p}b_{pn} \\ \vdots & & & \vdots \\ a_{m1}b_{11} + a_{m2}b_{21} + \cdots + a_{mp}b_{p1} & \cdots & a_{m1}b_{1n} + a_{m2}b_{2n} + \cdots + a_{mp}b_{pn} \end{pmatrix}$$

$$= \left(\sum_{k=1}^{p} a_{ik}b_{kj}\right)_{m \times n}.$$

- Matrix multiplication is associative, i.e. A(BC) = (AB)C
- \bullet Matrix multiplication is distributive, i.e. A(B+C)=AB+AC and (B+C)A=BA+CA
- The transpose of an $m \times n$ matrix **A** is an $n \times m$ matrix \mathbf{A}^T

$$\begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

i.e. the matrix is flipped along the main diagonal

Theorem 8.1.2 Properties of Transpose

Suppose A and B are matrices and k a scalar. Then

(i) $(\mathbf{A}^T)^T = \mathbf{A}$ \leftarrow transpose of a transpose (ii) $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$ \leftarrow transpose of a sum (iii) $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$ \leftarrow transpose of a product (iv) $(k\mathbf{A})^T = k\mathbf{A}^T$ \leftarrow transpose of a scalar multiple

- A matrix that consists of all zero entries is called a **zero matrix**
- A square matrix is said to be a **triangular matrix** if all of its entries above or below the main diagonal are zeroes. More specifically they are called **lower triangular** and **upper triangular** matrices, respectively.
- A square matrix is called a **diagonal matrix** if all entries not on the main diagonal are 0.
- A square matrix whose entries on the main diagonal are all equal is called a scalar matrix
- A square matrix that has the property $\mathbf{A} = \mathbf{A}^T$ is called a **symmetric** matrix

2.2 Systems of Linear Algebraic Equations

• In a linear system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

the values a_{ij} are called the **coefficients** and the values b_n are called the **constants**

- If all the constants are zero the system is said to be **homogeneous**, otherwise it is **nonhomogeneous**
- A linear system is said to be **consistent** if it has at least one solution, otherwise it's **inconsistent**
- A linear system can be transformed into an equivalent system (i.e. one that has the same solutions) via three elementary operations:
 - 1. Multiply an equation by a nonzero constant
 - 2. Interchange the positions of equations in the system
 - 3. Add a multiple of one equation to any other equation
- A linear system can be represented by an **augmented matrix**, e.g.

$$\begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{pmatrix}$$

- We say that two matrices are **row equivalent** if one can be obtained from the other via a series of elementary row operations
- **Gaussian elimination** is the process of applying elementary row operations to a matrix to put it into **row-echelon form** where:
 - 1. The first nonzero entry in a row is a 1
 - 2. In subsequent rows, the first 1 entry appears to the right of the 1 entry in earlier rows
 - 3. Rows consisting of all zeroes are at the bottom of the matrix
- Gauss-Jordan elimination is the same as Gaussian elimination with an additional constraint that puts the matrix into reduced row-echelon form where a column containing a first entry 1 has zeroes everywhere else
- A homogeneous linear system always has a trivial solution where all variables are equal to zero and will have an infinite number of nontrivial solutions if the number of equations m is less than the number of variables n, i.e. m < n
- If X_1 is a solution to AX = 0, then so is cX_1 for any constant c
- If X_1 and X_2 are solutions of AX = 0, then so is $X_1 + X_2$
- If a linear system contains more equations than variables it is said to be **overdetermined**; if it contains fewer equations than variables it is said to be **underdetermined**

2.3 Rank of a Matrix

- The ${\bf rank}$ of a matrix ${\bf A}$ denoted ${\bf rank}({\bf A})$ is the number of linearly independent row vectors in ${\bf A}$
- The row vectors of an $m \times n$ matrix **A** span a subspace of \mathbb{R}^n . This is called the **row space** of **A**. The set of linearly independent row vectors in **A** are a basis for that subspace

Theorem 8.3.1 Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

- (i) the row space of A = the row space of B,
- (ii) the nonzero rows of **B** form a basis for the row space of **A**, and
- (iii) rank(A) = the number of nonzero rows in B.
- A linear system of equations $\mathbf{AX} = \mathbf{B}$ is consistent iff the rank of the coefficient matrix \mathbf{A} is equal to the rank of the augmented matrix of the system $(\mathbf{A}|\mathbf{B})$
- Suppose a linear system $\mathbf{AX} = \mathbf{B}$ with m equations and n variables is consistent. If $\operatorname{rank}(\mathbf{A}) = r$ then the solution of the system contains n r variables

2.4 Determinants

• Suppose **A** is an $n \times n$ matrix. Associated with **A** is a number called the **determinant of A** and is denoted by

$$\det \mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

- A determinant of an $n \times n$ matrix is called a **determinant of order** n
- The determinant of a 1×1 matrix is the element of the matrix
- Each element in an $n \times n$ matrix has an associated **cofactor** defined as

$$a_{ij} = (-1)^{i+j} M_{ij}$$

where M_{ij} is the determinant of the $(n-1) \times (n-1)$ matrix produced by deleting row i and column j from \mathbf{A}

• The determinant of an arbitrary $n \times n$ matrix **A** can be calculated by choosing an arbitrary row or column and summing the products of each element in that column/row with their cofactors, e.g. if we choose the first row of a 3×3 matrix then

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}M_{11} + a_{12}M_{12} + a_{13}M_{13}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}(a_{22}|a_{33}| - a_{23}|a_{32}|) - a_{12}(a_{21}|a_{33} - a_{23}|a_{31}|)$$

$$+ a_{13}(a_{21}|a_{32}| - a_{22}|a_{31}|)$$

2.5 Properties of Determinants

- The determinant of a matrix and its transpose are the same
- If any two rows/columns of a matrix are the same its determinant is zero
- If all the entries in a row/column of a matrix are zero, then its determinant is zero
- Interchanging any two rows/columns of a matrix negates its determinant
- \bullet Multiplying a row/column of a matrix by a nonzero real number k also multiplies the determinant by k
- If **A** and **B** are both $n \times n$ matrices, then $\det \mathbf{AB} = \det \mathbf{A} \cdot \det \mathbf{B}$
- Adding a multiply of one row/column to another doesn't change the determinant
- The determinant of a triangular matrix is the product of the entries along the main diagonal
- Sometimes it's faster to calculate a matrix's determinant by reducing it to row-echelon form and multiplying the elements along the main diagonal than performing cofactor expansion
- Multiplying the entries of a row/column with the cofactors of another row/colum and summing the results always equals zero

2.6 Inverse of a Matrix

- Given an $n \times n$ matrix **A**, if there exists another $n \times n$ matrix **B** such that $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$ then **A** is said to be **nonsingular** or **invertible** and **B** is said to be the unique **inverse** of **A**, i.e. $\mathbf{B} = \mathbf{A}^{-1}$
- Some $n \times n$ matrices don't have an inverse and are called **singular**

• The **adjoint** of an $n \times n$ matrix **A** is the transpose of the matrix of cofactors corresponding to the entries of **A**

$$\operatorname{adj} \mathbf{A} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & & & \vdots \\ C_{n1} & C_{n2} & \dots & C_{nn} \end{pmatrix}^{T} = \begin{pmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & & & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{pmatrix}$$

• If **A** is an $n \times n$ matrix and det $\mathbf{A} \neq 0$ then

$$\mathbf{A}^{-1} = \left(\frac{1}{\det \mathbf{A}}\right) \operatorname{adj} \mathbf{A}$$

• From the above, the inverse of a 2×2 matrix **A** is

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

• An $n \times n$ matrix **A** is nonsingular (has an inverse) if det $\mathbf{A} \neq 0$

Theorem 8.6.4 Finding the Inverse

If an $n \times n$ matrix **A** can be transformed into the $n \times n$ identity **I** by a sequence of elementary row operations, then **A** is nonsingular. The same sequence of operations that transforms **A** into the identity **I** will also transform **I** into A^{-1} .

ullet Inverse matrices can be used to solve linear systems. If $\mathbf{A}\mathbf{X} = \mathbf{B}$ and \mathbf{A} is invertible, then

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} \Rightarrow \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

- When det $\mathbf{A} \neq 0$ the solution of the system $\mathbf{A}\mathbf{X} = \mathbf{B}$ is unique
- A homogeneous system of linear equations $\mathbf{AX} = \mathbf{0}$ has only the trivial solution iff \mathbf{A} is nonsingular and an infinite number of solutions iff it is singular

2.7 Cramer's Rule

• If **A** is the coefficient matrix of a linear system and det $\mathbf{A} \neq 0$, then the solution of the system is given by

$$x_1 = \frac{\det \mathbf{A}_1}{\det \mathbf{A}}$$

$$x_2 = \frac{\det \mathbf{A}_2}{\det \mathbf{A}}$$

$$\vdots$$

$$x_n = \frac{\det \mathbf{A}_n}{\det \mathbf{A}}$$

where \mathbf{A}_n is the matrix obtained by replacing column n of \mathbf{A} with the constants of the system.

2.8 The Eigenvalue Problem

- If **A** is an $n \times n$ matrix, a number λ is said to be an **eigenvalue** of **A** if there exists a nonzero solution vector **K** of the linear system $\mathbf{AK} = \lambda \mathbf{K}$. The solution vector **K** is said to be an **eigenvector** corresponding to the eigenvalue λ .
- Rearranging the equation above we find

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{K} = \mathbf{0}$$

which only has nontrivial solutions if $det(\mathbf{A} - \lambda \mathbf{I}) = 0$.

- Calculating $\det(\mathbf{A} \lambda \mathbf{I})$ results in an *n*-th degree polynomial in λ called the **characteristic equation** of \mathbf{A} , the solutions to which are its eigenvalues.
- The eigenvector associated with a particular eigenvalue can be found by applying Gauss-Jordan elimination to the augmented matrix $(\mathbf{A} \lambda \mathbf{I}|\mathbf{0})$.
- A nonzero constant multiple of an eigenvector is another eigenvector.
- If λ is a complex eigenvalue of a matrix, then its conjugate λ* is also an
 eigenvalue. If K is an eigenvector corresponding to λ then its conjugate
 K* is an eigenvector corresponding to λ*.
- $\lambda = 0$ is an eigenvalue of a matrix iff the matrix isn't invertible
- The determinant of a matrix is the product of its eigenvalues
- If λ is an eigenvalue of a matrix **A** with eigenvector **K**, then $1/\lambda$ is an eigenvalue of \mathbf{A}^{-1} with the same eigenvector.
- The eigenvalues of a triangular matrix are the entries along the main diagonal.

2.9 Powers of Matrices

- Any $n \times n$ matrix **A** satisfies its own characteristic equation, i.e. λ can be replaced with **A** in the characteristic equation.
- This gives us an expression for \mathbf{A}^n as a linear combination

$$\mathbf{A}^n = c_0 \mathbf{I} + c_1 \mathbf{A} + c_2 \mathbf{A}^2 + \dots + c_{n-1} \mathbf{A}^{n-1}.$$

If we multiply this expression by \mathbf{A} we get an expression for \mathbf{A}^{n+1} and we can replace the \mathbf{A}^n term with the original expression. This can be repeated an arbitrary number of times to find expressions for any power of \mathbf{A} .

- The constants of the linear combination can be determined by substituting the matrix's eigenvalues into the characteristic equation, resulting in a linear system where the constants are the variables. Solving the system determines the constants.
- If **A** is a nonsingular matrix, the fact that it satisfies its own characteristic equation can be used to determine its inverse. This can be achieved by replacing λ with **A** in its characteristic equation, solving for **I**, and multiplying both sides by \mathbf{A}^{-1} . This results in an expression for \mathbf{A}^{-1} as a linear combination of powers of **A**.

2.10 Orthogonal Matrices

- If A is a symmetric matrix with real entries, then the eigenvalues of A
 are real.
- If **A** is a symmetric matrix, then the eigenvectors corresponding to different eigenvalues are orthogonal.
- An $n \times n$ nonsingular matrix **A** is **orthogonal** if $\mathbf{A}^{-1} = \mathbf{A}^T$.
- An $n \times n$ matrix **A** is orthogonal iff its columns form an orthonormal set.
- If an $n \times n$ matrix **A** has n distinct eigenvalues, an orthogonal matrix can be formed by normalizing its eigenvectors and using them as column vectors in a new matrix.

2.11 Approximation of Eigenvalues

• Let $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the eigenvalues of an $n \times n$ matrix **A**. The eigenvalue λ_k is said to be the **dominant eigenvalue** of **A** if

$$|\lambda_k| > |\lambda_i|, i = 1, 2, \dots, n, i \neq k.$$

An eigenvector corresponding to λ_k is called the **dominant eigenvector** of **A**.

- **Power iteration** is a method for approximating the dominant eigenvector of an $n \times n$ matrix **A**.
 - 1. Choose an arbitrary starting vector \mathbf{X}_0
 - 2. An approximation of the dominant eigenvector is $\mathbf{X}_m = \mathbf{A}^m \mathbf{X}_0$
 - 3. An approximation of the dominant eigenvalue is

$$\lambda pprox rac{\mathbf{A}\mathbf{X}_m \cdot \mathbf{X}_m}{\mathbf{X}_m \cdot \mathbf{X}_m}$$

- If \mathbf{X}_m is computed via repeated multiplications of \mathbf{A} rather than computing \mathbf{A}^m in advance the entries of the intermediary vectors can become quite large and pose problems for computers. This can be avoided by normalising or scaling down the vectors after each iteration.
- The **method of deflation** is a way to find nondominant eigenvalues of an $n \times n$ symmetric matrix **A** that has eigenvalues $|\lambda_1| > |\lambda_2| > |\lambda_3| \ge \cdots \ge |\lambda_n|$.
 - 1. Compute the dominant eigenvalue λ_1 and normalised eigenvector \mathbf{K}_1 of the matrix using power iteration.
 - 2. Compute the matrix $\mathbf{B} = \mathbf{A} \lambda_1 \mathbf{K}_1 \mathbf{K}_1^T$ which has eigenvalues $0, \lambda_2, \lambda_3, \dots, \lambda_n$
 - 3. Apply power iteration to find λ_2 and \mathbf{K}_2
 - 4. Repeat steps 2 and 3 to compute subsequent eigenvalues
- The **inverse power method** is a way to find the eigenvalue with smallest absolute value. If \mathbf{A} is nonsingular then the eigenvalues of \mathbf{A}^{-1} are the reciprocals of the eigenvalues of \mathbf{A} . This means the eigenvalue of \mathbf{A} with smallest absolute value is the dominant eigenvalue of \mathbf{A}^{-1} and can be found via power iteration.

2.12 Diagonalization

- If an $n \times n$ nonsingular matrix **P** can be found so that $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ is a diagonal matrix, then we say that the $n \times n$ matrix **A** can be **diagonalised**, or is **diagonalisable**, and that **P diagonalises A**.
- An $n \times n$ matrix **A** is diagonalisable iff **A** has n linearly independent eigenvectors $\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_n$. If we let $\mathbf{P} = \begin{pmatrix} \mathbf{K}_1 & \mathbf{K}_2 & \cdots & \mathbf{K}_n \end{pmatrix}$ then

$$\mathbf{AP} = \begin{pmatrix} \mathbf{AK_1} & \mathbf{AK_2} & \cdots & \mathbf{AK_n} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 \mathbf{K_1} & \lambda_2 \mathbf{K_2} & \cdots & \lambda_n \mathbf{K_n} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{K_1} & \mathbf{K_2} & \cdots & \mathbf{K_n} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

$$= \mathbf{PD}$$

- If an $n \times n$ matrix **A** has n distinct eigenvalues, it is diagonalisable. If it has fewer than n distinct eigenvalues it may still be diagonalisable.
- Symmetric matrices with real entries are always diagonalisable.

2.13 LU-Factorisation

- If an $n \times n$ matrix **A** can be written as a product **A** = **LU** where **L** and **U** are lower and upper triangular matrices, respectively, then we say that $\mathbf{A} = \mathbf{LU}$ is an **LU-factorisation** of **A**.
- An $n \times n$ matrix **A** can have several LU-factorisations
- Doolittle's method is a method of performing LU-factorisation.
 - 1. Assume the diagonal entries of **L** are 1, i.e. $l_{ii} = 1, i = 1, 2, ..., n$
 - 2. Multiply L and U (with placeholder entries)
 - 3. Equate the resulting entries with those of the original matrix this gives n^2 equations, but each equation only uses variables determined in previous equations allowing the system to be solved
- An alternative algorithm for Doolittle's method is
 - 1. Perform elementary row operations on ${\bf A}$ until you have an upper triangular matrix ${\bf U}$
 - 2. Each time you add a c times row i to row j, record the -c in the j-th row and i-th column of an identity matrix
 - 3. The matrix from step 2 is L
- Given a linear system $\mathbf{AX} = \mathbf{B}$, if \mathbf{A} has an LU-factorisation the system can be solved as follows:
 - 1. Rewrite the system $\mathbf{LUX} = B$
 - 2. Let $\mathbf{UX} = \mathbf{Y}$ where

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

- 3. Solve $\mathbf{LY} = \mathbf{B}$ via forward substitution, i.e. find y_1 , use that to find y_2 , etc.
- 4. Substitute the values of y_n into $\mathbf{UX} = \mathbf{Y}$ and solve via back substitution, i.e. find x_n , use that to find x_{n-1} , etc.
- If a matrix ${\bf A}$ has an LU-factorisation ${\bf A} = {\bf L} {\bf U}$ then the determinant of ${\bf A}$ can be calculated as $\det {\bf A} = \det {\bf L} \cdot \det {\bf L}$ which is simply the product of the diagonal entries of ${\bf L}$ and ${\bf U}$
- \bullet If row interchanges are required to arrive at U then an LU-factorisation doesn't exist

2.14 Cryptography

• If you define a mapping between a set of characters allowed in messages and a list of integers, messages can be represented as an $n \times m$ matrix, a nonsingular $n \times n$ matrix **A** can be used as an encryption key, and its inverse \mathbf{A}^{-1} can be used as a decryption key.

3 Vector Calculus

3.1 Vector Functions

- A curve C in the xy-plane is a set of ordered pairs (x,y). We say C is a **parametric curve** if the x- and y-coordinates of a point on the curve are defined by a pair of functions x = f(t) and y = g(t) that are continuous on some interval $a \le t \le b$.
- If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$.
- If **r** is a differentiable vector function and s = u(t) is a differentiable scalar function, then the derivative of $\mathbf{r}(s)$ with respect to t is

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt} = \mathbf{r}'(s)u'(t).$$

Theorem 9.1.4 Rules of Differentiation

Let \mathbf{r}_1 and \mathbf{r}_2 be differentiable vector functions and u(t) a differentiable scalar function.

(i)
$$\frac{d}{dt} [\mathbf{r}_1(t) + \mathbf{r}_2(t)] = \mathbf{r}'_1(t) + \mathbf{r}'_2(t)$$

(ii)
$$\frac{d}{dt} [u(t)\mathbf{r}_1(t)] = u(t)\mathbf{r}'_1(t) + u'(t)\mathbf{r}_1(t)$$

$$(iii) \frac{d}{dt} [\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)] = \mathbf{r}_1(t) \cdot \mathbf{r}_2'(t) + \mathbf{r}_1'(t) \cdot \mathbf{r}_2(t)$$

(iv)
$$\frac{d}{dt} [\mathbf{r}_1(t) \times \mathbf{r}_2(t)] = \mathbf{r}_1(t) \times \mathbf{r}_2'(t) + \mathbf{r}_1'(t) \times \mathbf{r}_2(t)$$
.

- Because the cross product of two vectors isn't commutative, the order in which \mathbf{r}_1 and \mathbf{r}_2 appear above is important.
- The indefinite integral of a vector function is defined as

$$\int \mathbf{r}(t) dt = \langle \int f(t) dt, \int g(t) dt, \int h(t) dt \rangle = \mathbf{R}(t) + \mathbf{c}$$

• The definite integral of a vector function is defined as

$$\int_{a}^{b} \mathbf{r}(t) dt = \langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \rangle = \mathbf{R}$$

• The length of the curve traced out by a vector function from t=a to t=b is

$$s = \int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt$$

3.3 Curvature and Components of Acceleration

• As $\mathbf{r}'(t)$ is always tangential to the curve a unit tangent vector is given by

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$$

• The **curvature** of a point on a curve is given by

$$\kappa = \left| \left| \frac{d\mathbf{T}}{ds} \right| \right|$$

where s is the arc length parameter or

$$\kappa = \frac{||\mathbf{T}'(t)||}{||\mathbf{r}'(t)||}$$

• By differentiating

$$\mathbf{T} \cdot \mathbf{T} = 1$$

$$\mathbf{T} \cdot \frac{d\mathbf{T}}{dt} + \frac{d\mathbf{T}}{dt} \cdot \mathbf{T} = 0$$

$$2\mathbf{T} \cdot \frac{d\mathbf{T}}{dt} = 0$$

$$\mathbf{T} \cdot \frac{d\mathbf{T}}{dt} = 0$$

we find that **T** and $\frac{d\mathbf{T}}{dt}$ are orthogonal.

• If $\left| \left| \frac{d\mathbf{T}}{dt} \right| \right| \neq 0$ the vector

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{||d\mathbf{T}/dt||}$$

is a unit normal to the curve and is called the **principal normal**.

• Since $\kappa = \frac{||d\mathbf{T}/dt||}{v}, d\mathbf{T}/dt = \kappa v \mathbf{N}$ and

$$\begin{aligned} \mathbf{a}(t) &= \frac{d}{dt} \mathbf{v}(t) \\ &= \frac{d}{dt} v \mathbf{T} \\ &= v \frac{d \mathbf{T}}{dt} + \frac{dv}{dt} \mathbf{T} \\ &= \kappa v^2 \mathbf{N} + \frac{dv}{dt} \mathbf{T} \\ &= a_N \mathbf{N} + a_T \mathbf{T} \end{aligned}$$

where a_N and a_T are the normal and tangential components of acceleration, respectively.

• The unit vector defined by

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

is called the **binormal**.

- The three unit vectors **T**, **N**, and **B** form a right-handed set of mutually orthogonal vectors called the **moving trihedral**. When used as a coordinate system they're called the **TNB-frame**.
- The plane of **T** and **N** is called the **osculating plane**.
- The plane of **N** and **B** is called the **normal plane**.
- The plane of **T** and **B** is called the **rectifying plane**.
- Explicit formulas for the tangential and normal components of acceleration are given by

$$a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{||\mathbf{r}'(t)||}$$
$$a_N = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||}$$

and since $a_N = \kappa v^2$

$$\kappa = \frac{||\mathbf{r}'(t) \times \mathbf{r}''(t)||}{||\mathbf{r}'(t)||^3}$$

• The reciprocal of curvature $\rho = \frac{1}{\kappa}$ is called the **radius of curvature** and represents the radius of the circle that best "fits" the curve there.

3.4 Partial Derivatives

- The **level curves** of a function of two variables z = f(x, y) are the curves resulting from the equation c = f(x, y) for any real value of c.
- The level surfaces of a function of three variables w = f(x, y, z) are the surfaces resulting from the equation c = f(x, y, z) for any real value of c.
- The partial derivative of a function $f(x_1, x_2, ..., x_n)$ with respect to a variable x_i is the derivative of that function with respect to x_i while holding all other variables constant.
- The partial derivative of f with respect to x can be denoted $\frac{\partial f}{\partial x}$ or f_x .

• Because partial derivatives are themselves multivariable functions you can take subsequent partial derivatives, including in other variables, e.g.

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \text{ or } \frac{\partial f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right).$$

- When multiple derivates are taken in different variables it's called a **mixed** partial derivative.
- The order in which a mixed partial derivative is computed doesn't matter, i.e.

$$\frac{\partial f}{\partial x \partial y} = \frac{\partial f}{\partial y \partial x}.$$

Theorem 9.4.1 Chain Rule

If z = f(u, v) is differentiable and u = g(x, y) and v = h(x, y) have continuous first partial derivatives, then

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}, \qquad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$
 (5)

3.5 Directional Derivative

• In n dimensions the vector differential operator is defined as

$$\nabla = \frac{\partial}{\partial x_1} \hat{\mathbf{e}}_1 + \frac{\partial}{\partial x_2} \hat{\mathbf{e}}_2 + \dots + \frac{\partial}{\partial x_n} \hat{\mathbf{e}}_n.$$

- When the vector differential operator is applied to a scalar function the result is called the **gradient** of the function. The gradient of a function points in the direction in which the function increases most rapidly.
- The directional derivative of a function $f(x_1, x_2, ..., x_n)$ in the direction of the unit vector **u** is given by

$$D_{\mathbf{u}}f(x_1, x_2, \dots, x_n) = \nabla f(x_1, x_2, \dots, x_n) \cdot \mathbf{u}.$$

3.6 Tangent Planes and Normal Lines

- If f(x,y) is a two-dimensional function, ∇f is always orthogonal to the level curves of f(x,y).
- If f(x, y, z) is a three-dimensional function, ∇f is always normal to the level surfaces of f(x, y, z).

Theorem 9.6.1 Equation of Tangent Plane

Let $P(x_0, y_0, z_0)$ be a point on the graph of F(x, y, z) = c, where ∇F is not **0**. Then an equation of the tangent plane at P is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$
 (5)

3.7 Curl and Divergence

• The **curl** of a vector field $\mathbf{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ is defined as

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \rangle.$$

• The divergence of the same vector field is defined as

$$\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

 \bullet If f is a scalar function with continuous second partial derivatives then

$$\nabla \times (\nabla f) = \mathbf{0}.$$

• If **F** is a vector function with continuous second partial derivatives then

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

3.8 Line Integrals

• The line integral of a function G(x, y) over a curve C defined parametrically by x = f(t) and y = g(t) is defined as

$$\int_{C} G(x,y) dx = \int_{a}^{b} G(f(t), g(t)) f'(t) dt$$

$$\int_{C} G(x,y) dy = \int_{a}^{b} G(f(t), g(t)) g'(t) dt$$

$$\int_{C} G(x,y) ds = \int_{a}^{b} G(f(t), g(t)) \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

where a and b are the values of t at which the curve starts and ends, respectively.

• If the curve is defined by an explicit function y = f(x) the integrals become

$$\int_{C} G(x, y) dx = \int_{a}^{b} G(x, f(x)) dx$$

$$\int_{C} G(x, y) dy = \int_{a}^{b} G(x, f(x)) f'(x) dx$$

$$\int_{C} G(x, y) ds = \int_{a}^{b} G(x, f(x)) \sqrt{1 + [f'(x)]^{2}} dx$$

- A line integral along a piecewise smooth curve C is defined as the sum of the integrals over the smooth segments that comprise C.
- The integral of a vector function $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ over a curve C described by $\mathbf{r}(t) = \langle f(t), g(t) \rangle$ can be denoted

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P \, dx + Q \, dy.$$

3.9 Independence of the Path

• A vector function \mathbf{F} in 2- or 3-space is said to be **conservative** if \mathbf{F} can be written as the gradient of a scalar function ϕ . The function ϕ is called a **potential function** for \mathbf{F} .

Theorem 9.9.1 Fundamental Theorem

Suppose *C* is a path in an open region *R* of the *xy*-plane and is defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $a \le t \le b$. If $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a conservative vector field in *R* and ϕ is a potential function for \mathbf{F} , then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla \phi \cdot d\mathbf{r} = \phi(B) - \phi(A), \tag{2}$$

where A = (x(a), y(a)) and B = (x(b), y(b)).

- A region is said to be **connected** if every pair of points A and B in the region can be joined by a piecewise-smooth curve that lies entirely in the region.
- A region is said to be **simply connected** if it is connected and every simple closed curve C lying entirely within the region can be shrunk to a point without leaving the region. That is, the region contains no holes.
- A region is said to be **open** if it contains no boundary points.
- In an open and connected region R, \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is independent of the path C iff the vector field \(\mathbf{F} \) is conservative in R.

Theorem 9.9.4 Test for a Conservative Field

Suppose $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a conservative vector field in an open region R, and that P and Q are continuous and have continuous first partial derivatives in R. Then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \tag{6}$$

for all (x, y) in R. Conversely, if the equality (6) holds for all (x, y) in a simply connected region R, then $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ is conservative in R.

• **Partial integration** is the integration counterpart to partial differentiation.

- The potential function $\phi(x,y)$ associated with a vector field $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ can be found by:
 - 1. Partially integrate P(x, y) with respect to x to find an expression for $\phi(x, y)$ with a constant of integration g(y).
 - 2. Take the partial derivative of the above with respect to y.
 - 3. Equate the result with Q(x, y) to determine g'(y).
 - 4. Integrate g'(y) with respect to y to find g(y).
 - 5. Substitute g(y) into $\phi(x, y)$.

3.10 Double Integrals

• The double integral

$$V = \iint_{R} f(x, y) \, dA$$

is the volume above the region R and below the surface z = f(x, y).

Theorem 9.10.1 Properties of Double Integrals

Let f and g be functions of two variables that are integrable over a region R. Then

(i)
$$\iint\limits_R kf(x, y) \, dA = k \iint\limits_R f(x, y) \, dA$$
, where k is any constant

(ii)
$$\iint\limits_{R} [f(x, y) \pm g(x, y)] dA = \iint\limits_{R} f(x, y) dA \pm \iint\limits_{R} g(x, y) dA$$

(iii)
$$\iint_R f(x, y) dA = \iint_{R_1} f(x, y) dA + \iint_{R_2} f(x, y) dA$$
, where R_1 and R_2 are subregions of R that do not overlap and $R = R_1 \cup R_2$.

- A region defined as the area between two fixed x values $a \le x \le b$ and two variable y values $g_1(x) \le y \le g_2(x)$ is called a **region of Type I**.
- A region defined as the area between two fixed y values $c \le y \le d$ and two variable x values $h_1(y) \le x \le h_2(y)$ is called a **region of Type II**.

Theorem 9.10.2 Fubini's Theorem

Let f be continuous on a region R.

(i) If R is of Type I, then

$$\iint f(x, y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx. \tag{6}$$

(ii) If R is of Type II, then

$$\iint_{\mathbb{T}} f(x, y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy.$$
 (7)

• Sometimes it's difficult or impossible to evaluate the components of a double integral in a particular order. The order can be swapped to avoid this without changing the result.

3.11 Double Integrals in Polar Coordinates

• Double integrals can be evaluated in polar coordinates as

$$\iint_{R} f(r,\theta) dA = \int_{\alpha}^{\beta} \int_{q_{1}(\theta)}^{g_{2}(\theta)} f(r,\theta) r dr d\theta$$

or

$$\iint_R f(r,\theta) \, dA = \int_a^b \int_{h_1 r}^{h_2(r)} f(r,\theta) r \, d\theta \, dr.$$

• An integral in cartesian coordinates can be converted to polar coordinates

$$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

providing R can be described by the region bounded by $\alpha \leq \theta \leq \beta$ and $g_1(\theta) \leq r \leq g_2(\theta)$.

3.12 Green's Theorem

- The **positive direction** around a simple closed curve C is the direction you must travel in order to keep the region bounded by C to the left.
- Green's theorem states that if C is a piecewise-smooth simple closed curve bounding a simply connected region R and P, Q, $\partial P/\partial y$ and $\partial Q/\partial x$ are continuous on R, then

$$\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

3.13 Surface Integrals

• The area of a function f over a surface R is given by

$$A = \iint_{R} dS = \iint_{R} \sqrt{1 + [f_{x}(x, y)]^{2} + [f_{y}(x, y)]^{2}} dA$$

where dS is known as the differential of the surface area and dA is known as the differential of the area.

• The suface integral of a function G(x, y, z) over a surface S is given by

$$\iint_{S} G(x, y, z) dS = \iint_{R} G(x, y, z) \sqrt{1 + [f_{x}(x, y)]^{2} + [f_{y}(x, y)]^{2}} dA.$$

- If the surface is expressed in the form x = f(y, z) or y = g(x, z) instead of z = h(x, y), the above integral can be modified to use different partial derivatives.
- A surface is said to be **orientable** if there exists a continuous unit normal vector function defined at each point on the surface. A Möbius strip is not orientable, for example.
- An open surface has an **upward orientation** when the unit normals are directed upward and a **downward orientation** when they're downward.
- A closed surface has an **inward orientation** when the unit normals are directed inward and a **outward orientation** when they're outward.
- If a surface is piecewise defined we take the surface integral to be the sum of the surface integrals of the various pieces.