

CT-1.4

Data representation & abstraction

Susan Davidson

Data Representation & Abstraction

- Determining what characteristics of the problem are important and filtering out those that are not
- Use these to create a representation of what we are trying to solve

Students in a University Setting

Data Representation: Students

Important:

- name and billing address
- student id
- on-campus address
- phone number
- •

Not Important:

- favorite color
- shoe size
- food preferences
- ...

Data Representation: Mulching the Yard

Layout: Distances Between Beds

Layout: Shortest Distance

Layout: Maximizing Satisfaction

Data Representation: Books

Important:

- author list
- title
- ISBN
- publication date
- edition
- category
- ratings
- summary
- ...

Not Important:

- color of the cover
- birthplace of authors
- complete contents of the book
- •

Summary

- In data representation and abstraction, we determine what characteristics of the problem are important and filter out those that are not
- Use these to create a representation of what we are trying to solve

CT-1.4

Data representation & abstraction

Susan Davidson

