Teoria dos Números e Computação: Uma abordagem utilizando problemas de competições de programação

Antonio Roberto de Campos Junior Supervisor: Carlos Eduardo Ferreira

Instituto de Matemática e Estatística Universidade de São Paulo

15 de novembro de 2015

Agenda

- Introdução
- Conjectura de Gyárfás & Lehel
 - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- 3 Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos
- 4 Considerações finais

Objetivos

• Estudar tópicos específicos relacionados à Teoria dos Números

Objetivos

- Estudar tópicos específicos relacionados à Teoria dos Números
- Criar um material que mostre a aplicação direta dessa teoria na solução de problemas de competições de programação

Objetivos

- Estudar tópicos específicos relacionados à Teoria dos Números
- Criar um material que mostre a aplicação direta dessa teoria na solução de problemas de competições de programação
- Demonstração da teoria e implementação dos algoritmos que resolvem os problemas que serão abordados

Motivação

• Experiência nesse tipo de competição

Motivação

- Experiência nesse tipo de competição
- Falta de um bom material didático nesse molde

Conjectura (Gyárfás & Lehel, 1976)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no K_n .

Problema ainda em aberto.

Conjectura (Gyárfás & Lehel, 1976)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no K_n .

- Problema ainda em aberto.
- Técnicas usadas para encontrar respostas afirmativas.

Conjectura (Gyárfás & Lehel, 1976)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no K_n .

- Problema ainda em aberto.
- Técnicas usadas para encontrar respostas afirmativas.
 - Restringir as classes das árvores.

Conjectura (Gyárfás & Lehel, 1976)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no K_n .

- Problema ainda em aberto.
- Técnicas usadas para encontrar respostas afirmativas.
 - Restringir as classes das árvores.
 - Restringir o tamanho da sequência.

Conjectura de Gyárfás & Lehel

- Introdução
- Conjectura de Gyárfás & Lehel
 - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos
- 4 Considerações finais

Quando restringimos as classes das árvores.

Sequências com no máximo 2 árvores diferentes de estrela.
 (Gyárfás & Lehel, 1976)

- Sequências com no máximo 2 árvores diferentes de estrela.
 (Gyárfás & Lehel, 1976)
- Estrelas e caminhos. (Gyárfás & Lehel e Zaks & Liu, 1976)

- Sequências com no máximo 2 árvores diferentes de estrela.
 (Gyárfás & Lehel, 1976)
- Estrelas e caminhos. (Gyárfás & Lehel e Zaks & Liu, 1976)
- Subclasse de lagartas e aranhas. (Fishburn, 1983)

- Sequências com no máximo 2 árvores diferentes de estrela.
 (Gyárfás & Lehel, 1976)
- Estrelas e caminhos. (Gyárfás & Lehel e Zaks & Liu, 1976)
- Subclasse de lagartas e aranhas. (Fishburn, 1983)
- Estrelas e biestrelas. (Hobbs et al., 1987)

- Sequências com no máximo 2 árvores diferentes de estrela.
 (Gyárfás & Lehel, 1976)
- Estrelas e caminhos. (Gyárfás & Lehel e Zaks & Liu, 1976)
- Subclasse de lagartas e aranhas. (Fishburn, 1983)
- Estrelas e biestrelas. (Hobbs et al., 1987)
- Quase-estrelas. (Dobson, 1997)

Estrelas

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ?

Estrelas

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ?

Adicionamos um novo vértice.

Figura: Empacotamento de T_1, \ldots, T_4 no K_4

Estrelas

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ? Ligamos o novo vértice a K_{n-1} .

Figura: Empacotamento de T_1, \ldots, T_5 no K_5

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ?

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ?

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ? Mapeamos x em w

Dado um empacotamento de T_1, \ldots, T_{n-1} no K_{n-1} , como empacotar T_n ?

Mapeamos x em w e y em v.

Subclasse de lagartas e aranhas

- H_n grafo com sequência de graus $(n-1,\ldots,\lfloor n/2\rfloor,\lfloor n/2\rfloor,\ldots,1)$.
- H_n e H_{n-1} constituem uma decomposição do K_n .

Subclasse de lagartas e aranhas

- H_n grafo com sequência de graus $(n-1,\ldots,\lfloor n/2\rfloor,\lfloor n/2\rfloor,\ldots,1)$.
- H_n e H_{n-1} constituem uma decomposição do K_n .

Subclasse de lagartas e aranhas

- H_n grafo com sequência de graus $(n, n-1, \ldots, \lfloor n/2 \rfloor, \lfloor n/2 \rfloor, \ldots, 1)$.
- H_n e H_{n-1} constituem uma decomposição do K_n .

Teorema (Fishburn, 1983)

 T_n e H_{n-2} podem ser empacotados em H_n se T_n é uma estrela, ou uma biestrela, ou uma triestrela unimodal, ou um caminho, ou uma lagarta 3-interior ou um escorpião.

Ideia: Se n par, empacotar T_2, T_4, \ldots, T_n em H_n , e $T_1, T_3, \ldots, T_{n-1}$ em H_{n-1} .

Caminhos

Se T_n é um camino, como empacotar T_n em H_n ?

Caminhos

Se T_n é um camino, como empacotar T_n em H_n ?

Figura: Empacotamento de P_6 em H_6

Escorpião

- Um único vértice de grau maior a 2 (junção).
- No max. uma perna de comprimento maior a 2.

Figura: Escorpião de ordem 10.

Escorpião

Figura: Empacotamento de escorpião no H_{10}

Conjectura de Gyárfás & Lehel

- Introdução
- Conjectura de Gyárfás & Lehel
 - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos
- Considerações finais

Limitando el tamanho da sequência

Qual é o maior s < n tal que T_1, \ldots, T_s pode ser empacotado no K_n ?

Limitando el tamanho da sequência

Qual é o maior s < n tal que T_1, \ldots, T_s pode ser empacotado no K_n ?

Teorema (Bollobás, 1983)

Se s $\leq n/\sqrt{2} (\approx 0.7 n)$, então T_1,\ldots,T_s pode ser empacotado no K_n .

Limitando el tamanho da sequência

Qual é o maior s < n tal que T_1, \ldots, T_s pode ser empacotado no K_n ?

Teorema (Bollobás, 1983)

Se s $\leq n/\sqrt{2} (\approx 0.7 n)$, então T_1, \ldots, T_s pode ser empacotado no K_n .

Dado um empacotamento de T_{k+1}, \ldots, T_s , como empacotar T_k ?

Limitando o tamanho da sequência

Dado um empacotamento de T_{k+1}, \ldots, T_s , como empacotar T_k ?

Se
$$G = K_n - \bigcup_{i=k+1}^n E(T_i)$$
,

Ideia: Encontrar $H \subseteq G$ tal que $\delta(H) \ge k - 1$.

Dado um empacotamento de T_{k+1}, \ldots, T_s , como empacotar T_k ?

Se
$$G = K_n - \bigcup_{i=k+1}^n E(T_i)$$
,

Ideia: Encontrar $H \subseteq G$ tal que $\delta(H) \ge k - 1$.

Proposição

Se
$$|E(G)| > {k-1 \choose 2} + (k-2)(n-k+1)$$
, então existe $H \subset G$ tal que $\delta(H) > k-1$.

Se
$$s \leq n/\sqrt{2}$$
 e $G = K_n - \bigcup_{i=k+1}^s E(T_i)$

$$\Rightarrow |E(G)| > {k-1 \choose 2} + (k-2)(n-k+1).$$

Podemos melhorar o resultado?

Proposição

Se
$$|E(G)| > {k-1 \choose 2} + (k-2)(n-k+1)$$
, então existe $H \subset G$ tal que $\delta(H) \ge k-1$.

Se
$$s \leq n/\sqrt{2}$$
 e $G = K_n - \cup_{i=k+1}^s E(T_i)$

$$\Rightarrow |E(G)| > {k-1 \choose 2} + (k-2)(n-k+1).$$

Podemos melhorar o resultado?

Conjectura (Erdős & Sós, 1963)

Se |E(G)| > (k-2)n/2, então G contém qualquer árvore de ordem k.

Conjectura (Erdős & Sós, 1963)

Se |E(G)| > (k-2)n/2, então G contém qualquer árvore de ordem k.

Supondo a validez da conjectura anterior, obtemos que

Se $s \leq \sqrt{3}n/2 \approx 0.86n \Rightarrow$ podemos empacotar T_1, \ldots, T_s no K_n .

Variantes da conjectura de Gyárfás & Lehel

- Introdução
- Conjectura de Gyárfás & Lehel
 - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- 3 Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos
- Considerações finais

Variantes da conjectura

Conjectura (Hobbs et al., 1987)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no $K_{n/2,n-1}$ se n é par.

Variantes da conjectura

Conjectura (Hobbs et al., 1987)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no $K_{n/2,n-1}$ se n é par.

Conjectura (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático.

Variantes da conjectura

Conjectura (Hobbs et al., 1987)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no $K_{n/2,n-1}$ se n é par.

Conjectura (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático.

Conjectura (Hollingsworth, 2013)

Uma sequência de árvores balanceadas $\hat{T}_1, \ldots, \hat{T}_n$ pode ser empacotada no $K_{n,n}$.

Grafos k-cromáticos

Variantes da conjectura de Gyárfás & Lehel

- - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- 3 Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos

Resultados conhecidos

Conjectura (Hobbs et al., 1987)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no $K_{n/2,n-1}$ se n é par.

Restringimos a classe das árvores

• Estrelas e caminhos. (Zaks & Liu, 1976)

Resultados conhecidos

Conjectura (Hobbs et al., 1987)

Uma sequência de árvores T_1, \ldots, T_n pode ser empacotada no $K_{n/2,n-1}$ se n é par.

Restringimos a classe das árvores

• Estrelas e caminhos. (Zaks & Liu, 1976)

Limitando o tamanho da sequência

Podemos empacotar a sequência T_1, \ldots, T_s no K_n

- Se $s \le (\sqrt{13} 3)n/2 \approx 0.3n$ (Caro & Roditty, 1990).
- Se $s \le \sqrt{5/8} n \approx 0.79 n$ (Yuster, 1997).

Conjectura (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático.

Conjectura (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático.

A validez dessa afirmação implica a conjectura de Gyárfás & Lehel.

Conjectura (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático.

A validez dessa afirmação implica a conjectura de Gyárfás & Lehel.

Teorema (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático se no máximo 3 delas são diferentes de estrelas.

Teorema (Gerbner et al., 2012)

Uma sequência de árvores T_1, \ldots, T_k pode ser empacotada num grafo k-cromático se no máximo 3 delas são diferentes de estrelas.

Faremos a prova para quando no máximo 2 das árvores não são estrelas. Suponha que

- G é grafo k-cromático minimal $(\delta(G) \ge k 1)$.
- Classes C_1, \ldots, C_k .
- $\forall v \in C_i$ existe $u \in C_j$ tq $uv \in E(G)$ (j < i).
- G_i é induzido por $C_k \cup C_{k-1} \cup \ldots \cup C_{k-i+1}$.

Se T_k ou T_{k-1} é uma estrela, podemos fazer o empacotamento como no caso do K_n .

Se T_k ou T_{k-1} é uma estrela, podemos fazer o empacotamento como no caso do K_n .

Suponha que T_k e T_{k-1} não são estrelas, e T_{k-2} e T_{k-3} são estrelas.

Sejam
$$T'_k = T_k - \{x_1, x_2\}$$
 e $T'_{k-1} = T_{k-1} - \{y_1, y_2\}$.

Se T_k ou T_{k-1} é uma estrela, podemos fazer o empacotamento como no caso do K_n .

Suponha que T_k e T_{k-1} não são estrelas, e T_{k-2} e T_{k-3} são estrelas.

Sejam
$$T'_k = T_k - \{x_1, x_2\}$$
 e $T'_{k-1} = T_{k-1} - \{y_1, y_2\}$.

Para o caso em que 3 árvores não são estrelas, a seguinte asserção limita a estrutura de T_k .

Asserção

Se T_k contém uma estrela pendurada de ordem s e T_{k-s} é uma estrela, podemos empacotar T_1, \ldots, T_k , em G.

Para o caso em que 3 árvores não são estrelas, a seguinte asserção limita a estrutura de T_k .

Asserção

Se T_k contém uma estrela pendurada de ordem s e T_{k-s} é uma estrela, podemos empacotar T_1, \ldots, T_k , em G.

Só falta considerar os casos onde T_{k-2} ou T_{k-3} não é uma estrela e T_k tem estrelas penduradas de ordem no max. 3.

A prova se divide em muitos casos dependendo da estrutura de T_k , T_{k-1} e T_{k-2} ou T_{k-3} .

Considerações finais

- Introdução
- Conjectura de Gyárfás & Lehel
 - Restringindo a classe das árvores
 - Limitando o tamanho da sequência
- Variantes da conjectura de Gyárfás & Lehel
 - Grafos bipartidos completos
 - Grafos k-cromáticos
- Considerações finais

Considerações finais

 A técnica usada por Bollobás ajudou a obter resultados em variantes da conjectura original.

 Quando restringimos as classes das árvores, as técnicas usadas não fornecem caminho claro para atacar a conjectura em sua forma mais geral. Obrigado!! Gracias!!