หุ่นยนต์เพื่อการเกษตร AGRICULTURE ROBOT

เสนอ

อาจารย์ปัญญา เหล่าอนันต์ธนา

โดย

นายสิรภัทร บุญจันทร์ 5910501127

นายอัครวิทย์ พงศ์วิรัตน์ 5910501178

นายสุทธิพงศ์ สว่าง 5910503341

STATEMENT OF THE PROBLEMS

SIGNIFICANCE OF THE RESEARCH

หุ่นยนต์เพื่อการเกษตร

จัดทำขึ้นเพื่อช่วยในการเก็บเกี่ยวและยกระดับการเกษตร ให้กับบุคคลากรทางการเกษตร เช่น

- ช่วยเพิ่มประสิทธิภาพของกระบวนการทางการเกษตร
- ลดระยะเวลาที่ใช้ในการเกษตร
- ลดการใช้แรงงานคน

OBJECTIVES

- 1. เพื่อพัฒนาระบบการเกษตรให้มีประสิทธิภาพมากยิ่งขึ้น
- 2. เพื่อเพิ่มประสิทธิภาพในการเก็บเกี่ยวผลผลิตและดูแลรักษา
- 3. อำนวยความสะดวกให้กับเกษตรกรด้วยเทคโนโลยีที่มีอยู่

SCOPE OF STUDY

- 1. สามารถเก็บเกี่ยวผลผลิตในพื้นที่ราบได้
- 2. แสดงผลจากข้อมูลที่ป้อนได้อย่างถูกต้อง
- 3. อุปกรณ์สามารถเคลื่อนที่ได้อย่างราบรื่นและสอดคล้อง

THEORY

\mathbf{z}_{b} [m] \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{A}_{5} \mathbf{A}_{6} \mathbf{A}_{7} \mathbf{A}_{8} \mathbf{A}_{7} \mathbf{A}_{8} \mathbf{A}_{7} \mathbf{A}_{8} \mathbf{A}_{8} \mathbf{A}_{9} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{A}_{5} \mathbf{A}_{6} \mathbf{A}_{7} \mathbf{A}_{8} \mathbf{A}_{9} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{A}_{5} \mathbf{A}_{6} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{A}_{5} $\mathbf{A}_$

ข้อมูลเบื้องต้นของหุ่นยนต์เพื่อการเกษตร

- เคลื่อนที่ได้อย่างอิสระในแนว 3 มิติ
- มีหลาก หลายฟังก์ชั่นการใช้งาน เช่น รดน้ำ ตัดแต่งกิ่ง ฯลฯ
- ใช้ระบบควบคุมแบบเชิงเส้น (Linear Control)

โครงสร้างพื้นฐานทางกายภาพของหุ่นยนต์

- เสาหลัก
- ระบบส่งกำลัง
- ชุดเครื่องมือทางการเกษตร
- เชือกสลิง
- แผงควบคุม

MICRO CONTROLLER

- ตัวควบคุมขนาดเล็กใช้ในการประมวลผลการทำงาน
- โครงงานนี้เลือกใช้ Arduino เนื่องจากใช้งานง่าย
- มีขาที่ใช้งานได้หลายขาไว้รับและส่งข้อมูล
- เขียนโปรแกรมด้วยภาษา C ควบคุมการทำงานได้ง่าย มีความยืดหยุ่น

INTERNET OF THINGS

- Internet of Things หรือ IOT คือการที่อุปกรณ์ สิ่ง ต่างๆ ได้ถูกเชื่อมโยงทุกสิ่งทุกอย่างสู่โลกอินเตอร์เน็ต ทำให้สามารถสั่งการควบคุมผ่านอินเตอร์เน็ตได้
- ในโครงงานนี้ใช้ในขั้นตอนการส่งข้อมูลผ่านทาง
 MQTT Protocol

MQTT PROTOCOL

- เส้นทาง (Topic) คือ ห้องสนทนาที่จะคุยกัน
- คุณภาพข้อมูล (QoS) เป็นลักษณะของการส่งข้อมูล
- การส่งข้อมูล (Public) เป็นการส่งข้อมูลไปยัง Topic ที่ได้กำหนดไว้
- การรับข้อมูล (Subscribe) จะรับข้อมูลได้เฉพาะเมื่อมีการเรียก Subscribe ไปยัง Topic ที่กำหนด

NYYUOLGZ3 能効率能制 (C 電圧を分析 製出剤を36M ② DOOM RICHOR THOU DC MOTOR

ไฟเลี้ยฆอเตอร์ 9 โฟเลี้ยฆอเตอร์ 9 โฟเลลี้ยฆอเตอร์ 9 โฟเลลี้ยฆอ

DC MOTOR

- เป็นอุปกรณ์ที่แปลงพลังงานไฟฟ้าให้เป็นพลังกล
- อุปกรณ์ที่ควบคุมให้มอเตอร์ทำงาน คือ ชนิด H-Bridge โดยทำหน้าที่เป็นสวิตซ์เปิดปิด และ ควบคุมทิศทางการหมุนของมอเตอร์

ENCODER

- เซ็นเซอร์ ใช้วัดระยะทางการหมุนรอบตัวเอง และ แปลงออกมาเป็นรหัสในรูปแบบของสัญญาณไฟฟ้า
- สามารถนำเอารหัสมาแปลง เพื่อหาค่าที่ต้องการ เช่น ความเร็วรอบ ก็นำระยะทางที่ได้มาหารด้วย เวลาใน 1 รอบ เป็นความเร็วรอบของ RPM

CONTROL SYSTEM

ระบบควบคุมมีดังนี้

- 1. อินพุต (Input)
- 2. ระบบ (System)
- 3. เอาท์พุต(Output)

PID CONTROLLER

$$\mathrm{u(t)} = \mathrm{MV(t)} = K_p e(t) + K_i \int_0^t e(au) \, d au + K_d rac{d}{dt} e(t)$$

- ระบบควบคุมแบบป้อนกลับ คำนวณจากค่าความผิดพลาดของ ตัวแปรและค่าที่ต้องการจะควบคุมให้เหลือน้อยที่สุด
- นำมาใช้เพื่อควบคุมการหมุนของมอเตอร์ให้เป็นไปตามที่ ต้องการ

MATH MODEL

• L1=
$$\sqrt{(x-A)^2+(yy-y-A)^2+(zz-z)^2}$$

• L2=
$$\sqrt{(xx-x-A)^2+(yy-y-A)^2+(zz-z)^2}$$

• L3=
$$\sqrt{(x-A)^2+(yy-A)^2+(zz-z)^2}$$

•
$$\bot 4 = \sqrt{(xx - x - A)^2 + (yy - A)^2 + (zz - z)^2}$$

- L1 L2 L3 L4 คือ ความยาวสลิงจากยอดเสาไปที่อุปกรณ์
- A คือ พื้นที่หน้าตัดของอุปกรณ์
- xx คือ ความกว้างของโครงเหล็ก = 560 cm
- yy คือ ความยาวของโครงเหล็ก = **560cm**
- zz คือ ความสูงของโครงเหล็ก = 400 cm
- X Y Z คือ ตำแหน่งพิกัดตามแกน x y z ของอุปกรณ์

EQUIPMENT

OVERALL EQUIPMENT

ส่วนประกอบของโครงงานนี้ประกอบไปด้วย

- DC motor
- กล่องเก็บอุปกรณ์ (BOX)
- Encoder
- Switching hub
- DC supply โครงเสาเหล็ก

NYTO IGCZ NEWS # BIR BASIN NYTO IGCZ NEWS # BIR BASIN O COCH ROOM FOR IC OF INTER

DC MOTOR

ใช้เป็นกำลังหลักในการขับเคลื่อนแกนกลาง ผ่านรอกโดยใช้เกียร์ทด เพื่อเพิ่มแรงบิดOutput

โดยการทำงานทั้งหมดจะถูกควบคุม ผ่าน Arduino

EQUIPMENT IN BOX

ประกอบไปด้วย

- Arduino
- Ethernet shield
- Encoder shield
- Motor Driver

ARDUINO

Arduino เปรียบเสมือนสมองที่คอยสั่งการและควบคุม การทำงานทั้งหมด โดยโครงงานนี้เลือกใช้ รุ่น MEGA2560

Arduino จะใช้ควบคุมการทำงานของMotor ผ่าน Driver และรับค่า Encoder เป็นFeedback

ETHERNET SHIELD

Ethernet shield ใช้เพื่อสื่อสารระหว่างArduino โดยเลือกใช้รุ่น w5500

Ethernet shield จะเป็นตัวสื่อสาร ผ่าน MQTT Protocol เพื่อให้Motor แต่ละตัวทำงาน สอดคล้องกัน

SMILE SMILE CUOZANS PUR

MOTOR DRIVER

รุ่น EVO24V50 และ EVO24X9 Brushed DC Motor Driver ทำหน้าที่ควบคุมการทำงานของMotor โดยรับคำสั่งมาจาก Arduino

ENCODER

ทำหน้าที่ Feedback ค่า เพื่อนำไป คำนวณและสั่งการMotor

SWITCHING HUB

รุ่น TL-SF1008D บริษัท TP-LINK มี 8 port ที่ ความเร็ว 10/100Mbps

ใช้เพื่อเชื่อมต่อแต่ละบอร์ดเข้าด้วยกัน และสื่อสาร กันผ่าน MOTT Protocol

DC SUPPLY

ใช้เป็นแหล่งพลังงานให้กับอุปกรณ์ต่างๆ ซึ่งมีขนาด ต่างๆกันไป

แต่ในโครงงานนี้ใช้ ดังนี้

- 5 V ให้ Arduino และ Encoder
- 12 V ให้ Motor Driver และ Motor

INSTALLATION

การติดตั้งอุปกรณ์ในกล่องเก็บอุปกรณ์นั้น จะใช้ Arduino เป็นฐาน ติดกับกล่อง Mount on top ด้วย Ethernet shield และ Encoder shield ตามลำดับ และมี DC supply Motor Driver สำหรับMotor

Z-AXIS

แกนกลางที่เราเลือกใช้สามารถเคลื่อนที่ได้ 4 แกน

- เลื่อนขึ้นลง
- หมุนอุปกรณ์
- กดหรือเงยอุปกรณ์
- หมุนใบมืด

แกนที่ 1 เลื่อนขึ้นลง มีมอเตอร์ 1 ตัว ควบคุมผ่าน Arduino

แกนที่ 2 หมุนอุปกรณ์ มีมอเตอร์ 1 ตัว ควบคุมผ่าน Arduino

แกนที่ 3 กดหรือเงยอุปกรณ์ มีมอเตอร์ 1 ตัว ควบคุมผ่าน Arduino

แกนที่ 4 หมุนใบมืด มีมอเตอร์ 1 ตัว ควบคุมผ่าน Arduino

แบ่งการทำงานเป็น 3 ส่วนสำคัญ

ขั้นตอนการเริ่มใช้งานหุ่นยนต์ เพื่อการเกษตร

หาพิกัด X, Y, Z ที่เราต้องการให้

หุ่นยนต์เคลื่อนที่ไป

X = 130 cm= 130 cm

= 250 cm

นำค่า X Y Z ที่ได้ไปกรอกลงใน EXCEL

	ใส่พิกัดที่ต้องการ			ขอบเขตพิกัด			
	Z	Y	Х	Α	ZZ	YY	XX
cm	250	130	130	8.5	400	560	560
cm	ค่า pulse						
50	5886	วัดได้		ความยาวสลิง	ความยาวสลิง	ความยาวสลิง	ความยาวสลิง
117.7	pulse/1cm			L4	L3	L2	L1
			cm	464	228	615	464
54575	:Setpoint4_	26851	:Setpoint3_	72359	:Setpoint2_	54575	Setpoint1_

X= 130 cm Y= 130 cm Z= 250 cm

2 นำค่า Setpoint ที่ได้ไปใส่ใน MQTT เพื่อที่จะส่งข้อมูลไปที่ บอร์ด Arduino แต่ละตัว

นำค่า SETPOINT ใส่ลงในช่อง PAYLOAD

Setpoint1_54575: Setpoint2_72359 Setpoint3_26851: Setpoint4_54575

2 กด Publish เพื่อส่งข้อมูล

ส่วนของ CONTROLLER

Arduino

ฟังก์ชั่นชื่อ callback มีหน้าที่ในการรับข้อมูลจาก MQTT

```
void callback(char* topic, byte* payload, unsigned int length)
 mData = "";
 for (int i = 0; i < length; i++)
   mData += (char)payload[i];
 if (String(topic) == "Test2")
   Ini+ PID Control() .
   setpoint = mqttQueryString("Setpoint1_", mData).toInt();
    pulse = setpoint - currentPos;
   mMode = 0;
```


PID-CONTROL

Arduino

ฟังก์ชั่นนี้มีหน้าที่กำหนดค่า Kp, Ki, Kd

```
void Init_PosPID()
 Rn = setpoint;
 Kp = 0.1;
 Ki = 0.003;
 Kd = 0.0001;
void Init_PID_Gain()
 K0 = Kp + (Ki * T) + (Kd / T);
 K1 = (-Kp) - (2 * Kd / T);
 K2 = (Kd / T);
```

🗕 มีการปรับจูนค่า Parameter ต่างๆ เพื่อใช้ในการควบคุม

คำนวณค่า PWM

Arduino

ฟังก์ชั่นนี้มีหน้าที่ในการคำนวณสัญญาณ PWM

```
void PID_Control_Run()
 deltaTime = CalculateDeltaTime();
 deltaPos = CalculateDeltaPos();
 Velocity = ((deltaPos / deltaTime) * 1000 * 60) / 4096.0;
 Init_PID_Gain();
 En = Rn - Cn;
 Mn = Mn1 + (K0 * En) + (K1 * En1) + (K2 * En2) ;
 if (abs(En) <= 100 \&\& mMode == 1)
   Mn = \emptyset;
                               จะได้สัญญาณ PWM เพื่อนำไป
  PWM();
                               ควบคุม motor drive
 // Update Parameters-
 En2 = En1;
 En1 = En;
 Mn2 = Mn1;
 Mn1 = Mn;
 counter ++;
```


การทำงานของ DC MOTOR DRIVE

DC Motor Drive

ชุดเครื่องมือทางเกษตร

- เคลื่อนไหวได้ 4 แกน
- เป็นอิสระต่อกัน
- ใช้ DC Motor ควบคุม
- สื่อสารไร้สาย
- มีผลตอบสนองเร็ว

สิ่งที่ได้รับจากการทำโครงงาน

- ได้นำความรู้และความเข้าใจที่ได้จากการศึกษาในห้องเรียนมาประยุกต์ใช้
- ได้ประสบการณ์การทำงานเป็นทีม
- มีส่วนร่วมในการพัฒนาเกษตรกรรมของประเทศไทย

