Circuite cu reactie pozitiva Circuite Trigger Schmitt

Triggere Schmitt (formatoare de impulsuri)

Folosite pentru adaptarea nivelelor logice şi formarea unor impulsuri cu fronturi abrupte

Folosire - dacă la intrarea unor porţi se aplică semnale cu o variaţie lentă şi însoţite de semnale perturbatoare

https://howtomechatronics.com/how-it-works/electrical-engineering/schmitt-trigger/

Schema fundamentala a unui Trigger Schmitt consista dintr-un comparator cu o bucla de reactie pozitiva, formata din doua rezistente

Caracteristica de transfer: două stări, caracteristică de histerezis Două consecințe pozitive:

- tranziţiile între cele două stări sunt rapide, chiar dacă semnalul de la intrare variază lent
- atât timp cât amplitudinea semnalului de zgomot ce afectează intrarea este mai mică decât histerezisul, va exista doar o tranziţie pentru frontul crescător al intrării şi doar o tranziţie pentru frontul căzător al semnalului de la intrare

Triggere Schmitt realizate cu porţi TTL

Trigger Schmitt realizat cu poarta neinversoare

Trigger Schmitt realizat cu porţi inversoare

Poarta neinversoare: simbol si caracteristica statica de transfer

V_{OL} U_T

Trigger Schmitt realizat cu poarta neinversoare Neglijabile valorile curenţilor de intrare şi ieşire ale porţii, faţă de curentul care trece prin rezistenţele R₁ şi R₂ Tensiunea la intrarea portii depinde de tensiunile de la intrarea si iesirea trigger-ului si de valorile rezistentelor

$$U_P \ = \ U_i \ - \frac{R_1}{R_1 \ + \ R_2} (U_i \ - \ U_e)$$

TTL, U_T

Consideram $U_P=U_T$, $U_i=U_1$ si $U_e=U_{OL}$:

$$U_{T} = U_{1} - \frac{R_{1}}{R_{1} + R_{2}} (U_{1} - U_{OL})$$

$$U_{1} \qquad U_{R1} \qquad V_{OH} \qquad V_{OL} \qquad U_{HIS} \qquad U_{1} \qquad U_{1} \qquad U_{1} \qquad U_{2} \qquad U_{1} \qquad U_{1} \qquad U_{2} \qquad U_{1} \qquad U_{2} \qquad U_{1} \qquad U_{2} \qquad U_{2} \qquad U_{3} \qquad U_{4} \qquad U_{4} \qquad U_{5} \qquad U_{5$$

Tensiunea de intrare corespunzatoare, cand U_p este egala cu nivelul de prag:

$$U_1 = U_T \frac{(R_1 + R_2)}{R_2} - U_{OL} \frac{R_1}{R_2}$$

Când tensiunea de intrare depăşeşte pragul U_1 , la care $U_P = U_T$, are loc comutarea porţilor. Tensiunea de ieşire creşte, producând o reacţie pozitivă prin rezistenţa R_2 şi trecând rapid pe nivelul logic superior, U_e luând valoarea U_{OH} indiferent de creşterea în continuare a tensiunii de intrare.

La scăderea tensiunii de intrare, fenomenul este asemănător: la atingerea în punctul P a tensiunii de prag de comutare a porții TTL, tensiunea de ieșire începe să scadă și datorită reacției pozitive prin rezistența R₂, ea trece rapid pe nivelul inferior, U_{OL}. Tensiunea de intrare care determină comutarea se determină similar:

Rezultă valoarea tensiunii de histerezis:

$$U_{HIS} = U_1 - U_2 = \frac{R_1}{R_2} (U_{OH} - U_{OL})$$

Prin modificarea raportului dintre R₁ şi R₂ se poate modifica ciclul de histerezis

CDB413

- circuit integrat TTL cu funcţie de trigger Schmitt
- funcţia logică ŞI-NU cu patru intrări

Circuitele de intrare şi ieşire identice ca la orice poartă TTL Triggerul format cu tranzistoarele T₂ şi T₃

 $U_1=1,7V, U_2=0,9V, U_{HIS}=0,8V$ $tp_{HL}=30ns, tp_{LH}=35 ns$

Triggere Schmitt realizate cu porţi CMOS

$$U_1 = U_T \cdot \frac{R_1 + R_2}{R_2} - U_L \cdot \frac{R_1}{R_2}$$

$$U_2 = U_T \cdot \frac{R_1 + R_2}{R_2} - U_H \cdot \frac{R_1}{R_2}$$

$$U_L = 0V$$
, $U_H = V_{DD}$, $U_T = V_{DD}/2$

$$U_1 = \frac{R_1 + R_2}{2R_2} \cdot V_{DD}$$

$$U_2 = \frac{R_2 - R_1}{2 R_2} \cdot V_{DD}$$

$$U_{HIS} = U_1 - U_2 = \frac{R_1}{R_2} \cdot V_{DD}$$

Triggere Schmitt integrate CMOS

Circuite cu Trigger Schmitt vs circuite fara Trigger Schmitt

Avantaje

- Tranziţii rapide la iesire, chiar dacă semnalul de la intrare variază lent
- Margine de zgomot crescuta

Dezavantaje

- Mai multe componente
- Integrare pe scara mai redusa
- Cost mai ridicat
- Putere consumata mai mare
- Timp de propagare mai mare

Aplicaţii ale triggerelor Schmitt

Circuit de întârziere

Circuit de întârziere realizat cu un TS şi un circuit RC trece-jos Pentru a cupla circuitele, este necesară respectarea condiţiei: (R1+R2) > 10·R

In acest fel constanta de timp a circuitului de integrare ramâne τ = RC, iar tensiunea de histerezis a TS nu va fi influenţată de rezistenţa R

 R_2

Aplicând la intrare un semnal de tip impuls, la ieşire semnalul va fi întârziat, cu δt_1 pentru frontul anterior \sharp și respectiv δt_2 , pentru frontul posterior Tensiunile U_1 si U_2 fiind tensiunile de

Tensiunile U_1 şi U_2 fiind tensiunile de prag ale TS, relaţiile celor două întârzieri sunt:

$$\delta t_1 = RC \cdot 1 n \frac{V_{DD}}{V_{DD} - U_1} \qquad \delta t_2 = RC \cdot 1 n \frac{V_{DD}}{U_2}$$

Pentru $V_T = V_{DD}/2$: $\delta t_1 = \delta t_2 = RC \cdot 1 n \frac{2 \cdot R_2}{R_2 - R_1}$

Oscilator comandat cu TS

- Realizat cu circuit TS şi circuit RC trece-jos
- Dacă la ieşirea circuitului (poarta P3) se foloseste o poartă ŞI-NU, circuitul va oscila pentru un semnal de comandă corespunzător valorii '1', dacă se foloseste o poartă SAU-NU, circuitul va oscila pentru un semnal de comandă corespunzător valorii '0'

Probleme propuse

 Sa se calculeze marginea de zgomot pentru o poarta TTL standard care comanda un trigger Schmitt cu porti TTL avand R₁=220Ω si R₂=2,2kΩ.

$$U_1 = U_T \frac{(R_1 + R_2)}{R_2} - U_{OL} \frac{R_1}{R_2} = 1.4V$$
 $U_2 = U_T \frac{R_1 + R_2}{R_2} - U_{OH} \frac{R_1}{R_2} = 0.7V$

$$M_{H} = V_{OH \min} - U_{2} = 2.4V - 0.7V = 1.7V$$

$$M_L = U_1 - V_{OLmax} = 1.4V - 0.4V = 1V$$

Sa se proiecteze un circuit de intarziere cu trigger Schmitt cu porti CMOS care intarzie semnalul de intrare cu 0,1 ms. Portile CMOS sunt alimentate de la o tensiune de 5V. Consideram:

R=1KΩ, R₁=5,1K Ω, R₂=24K Ω

R=1K
$$\Omega$$
, R₁=5,1K Ω , R₂=24K Ω

$$U_1 = \frac{R_1 + R_2}{2R_2} V_{DD} = 3V$$

$$U_{2} = \frac{R_{2} - R_{1}}{2R_{2}} V_{DD} = 2V$$

$$U_{e}(t) = U_{e}(\infty) + \left[U_{e}(0) - U_{e}(\infty)\right] e^{-\frac{t}{RC}}$$

$$C = \frac{t}{R \ln \frac{u_e(\infty) - u_e(0)}{u_e(\infty) - u_e(t)}}$$

$$R \ln \frac{u_e \leftarrow u_e \leftarrow u_e$$

0.0m

0.2m

0.4m

0.6m

0.8m

1.0m

 $R_2 24K$

- Sa se calculeze marginea de zgomot pentru o poarta TTL standard care comanda un circuit CDB413.
- Sa se proiecteze un circuit de intarziere cu trigger Schmitt cu porti TTL care intarzie frontul pozitiv al semnalului de intrare cu 0,1 ms. Ce valoare va avea intarzierea frontului negativ?
- Sa se proiecteze un oscilator cu trigger Schmitt cu porti CMOS. Oscilatorul este comandat de un semnal activ 0. Perioada de oscilatie este de 2ms. Portile CMOS sunt alimentate de la o tensiune de 5V.