```
In [4]: import pandas as pd
   import numpy as np
   from pandas_profiling import ProfileReport
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import metrics
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

```
In [5]: df=pd.read_csv(r'C:/Users/97150/Desktop/study/TA/PHY_TRAIN.csv')
```

#### In [6]: df.head()

#### Out[6]:

|   | exampleid | target | feat1    | feat2    | feat3     | feat4 | feat5    | feat6 | feat7     | feat8 |  |
|---|-----------|--------|----------|----------|-----------|-------|----------|-------|-----------|-------|--|
| 0 | 1         | 0      | 0.000000 | 0.000000 | 0.000000  | 0     | 0.000000 | 0.0   | 0.000000  | 0     |  |
| 1 | 2         | 0      | 0.920167 | 0.817883 | -0.646473 | -1    | 0.000000 | 0.0   | 0.000000  | 0     |  |
| 2 | 3         | 1      | 0.868397 | 0.178202 | 0.150828  | -1    | 0.000000 | 0.0   | 0.000000  | 0     |  |
| 3 | 4         | 0      | 0.000000 | 0.000000 | 0.000000  | 0     | 1.577894 | 0.0   | -0.369792 | -1    |  |
| 4 | 5         | 0      | 0.000000 | 0.000000 | 0.000000  | 0     | 0.000000 | 0.0   | 0.000000  | 0     |  |

5 rows × 80 columns

# In [7]: profile = ProfileReport(df)

C:\Users\97150\Anaconda3\lib\site-packages\pandas\_profiling\describe.py:392:
FutureWarning: The join\_axes-keyword is deprecated. Use .reindex or .reindex\_
like on the result to achieve the same functionality.

variable\_stats = pd.concat(ldesc, join\_axes=pd.Index([names]), axis=1)

In [8]: profile

#### Out[8]:

# **Overview**

#### Dataset info

Number of variables 80
Number of observations 50000
Total Missing (%) 4.5%
Total size in memory 30.5 MiB
Average record size in memory 640.0 B

Variables types

 Numeric
 56

 Categorical
 0

 Boolean
 7

 Date
 0

 Text (Unique)
 0

 Rejected
 17

 Unsupported
 0

#### Warnings

- feat1 has 42281 / 84.6% zeros Zeros
- feat2 has 43594 / 87.2% zeros Zeros
- <u>feat3</u> has 42281 / 84.6% zeros | zeros
- <u>feat4</u> has 42281 / 84.6% zeros | zeros
- feat5 has 44813 / 89.6% zeros Zeros
- <u>feat6</u> has 45922 / 91.8% zeros Zeros
- feat7 has 44813 / 89.6% zeros Zeros
- <u>feat8</u> has 44813 / 89.6% zeros Zeros
- C 10 h = = C00 / 4 00/ ====== [=
- <u>feat9</u> has 638 / 1.3% zeros | zeros
- <u>feat10</u> has 4669 / 9.3% zeros Zeros
- <u>feat11</u> has 638 / 1.3% zeros | zeros
- <u>feat12</u> has 638 / 1.3% zeros | zeros
- feat14 has 877 / 1.8% zeros | zeros
- feat15 has 5865 / 11.7% zeros | zeros
- feat16 has 24209 / 48.4% zeros Zeros
- feat17 has 42270 / 84.5% zeros Zeros
- <u>feat18</u> is highly correlated with <u>feat17</u> (ρ = 0.95692) Rejected
- <u>feat20</u> has 34202 / 68.4% missing values | Missing
- <u>feat21</u> has 34202 / 68.4% missing values Missing
- <u>feat22</u> has 34202 / 68.4% missing values Missin
- <u>feat24</u> has 877 / 1.8% zeros | zeros
- <u>feat25</u> has 5864 / 11.7% zeros Zeros
- feat26 has 19938 / 39.9% zeros | zeros
- <u>feat27</u> has 19938 / 39.9% zeros Zeros
- <u>feat28</u> has 19938 / 39.9% zeros <u>Zeros</u>
- <u>feat29</u> has 30062 / 60.1% missing values Missing

```
feat31 has 19938 / 39.9% zeros | zeros
feat32 has 28050 / 56.1% zeros | zeros
feat33 has 20807 / 41.6% zeros | zeros
feat34 is highly correlated with feat27 (\rho = 0.90777) Rejected
feat37 has 48823 / 97.6% zeros | zeros
feat38 has 48823 / 97.6% zeros | zeros
feat39 has 48823 / 97.6% zeros | zeros
<u>feat40</u> has 48823 / 97.6% zeros | zeros
<u>feat41</u> is highly skewed (y1 = 27.959) | Skewed
<u>feat41</u> has 48823 / 97.6% zeros | zeros
<u>feat42</u> is highly skewed (\gamma 1 = 24.131) Skewed
feat42 has 48823 / 97.6% zeros Zeros
feat44 has 14469 / 28.9% missing values Missing
feat44 has 19938 / 39.9% zeros Zeros
<u>feat45</u> is highly correlated with <u>feat43</u> (\rho = 0.96715) Rejected
feat46 has 14469 / 28.9% missing values Missing
<u>feat46</u> has 19938 / 39.9% zeros | zeros
feat47 has constant value 0 Rejected
feat48 has constant value 0 Rejected
feat49 has constant value 0 Rejected
feat50 has constant value 0 Rejected
<u>feat51</u> has constant value 0 Rejected
<u>feat52</u> is highly correlated with <u>feat45</u> (\rho = 0.96715) Rejected
<u>feat53</u> is highly correlated with <u>feat52</u> (\rho = 0.92105) Rejected
<u>feat54</u> has 31398 / 62.8% zeros | zeros
feat55 has 18602 / 37.2% missing values Missing
<u>feat56</u> has 31398 / 62.8% zeros | zeros
feat57 has 36532 / 73.1% zeros | zeros
feat58 has 31982 / 64.0% zeros Zeros
<u>feat59</u> is highly correlated with <u>feat53</u> (\rho = 0.93239) Rejected
<u>feat60</u> is highly correlated with <u>feat44</u> (\rho = 0.99377) Rejected
<u>feat61</u> is highly correlated with <u>feat60</u> (\rho = 0.90097) Rejected
<u>feat62</u> is highly correlated with <u>feat46</u> (\rho = 0.97318) Rejected
<u>feat63</u> has 35946 / 71.9% zeros | zeros
feat64 has 4744 / 9.5% zeros Zeros
<u>feat65</u> has 4744 / 9.5% zeros | zeros
<u>feat66</u> has 4744 / 9.5% zeros | zeros
<u>feat67</u> has 4744 / 9.5% zeros | zeros
<u>feat68</u> has 20406 / 40.8% zeros | zeros
feat69 has 20406 / 40.8% zeros | zeros
feat70 has 20406 / 40.8% zeros | zeros
feat71 has 20406 / 40.8% zeros Zeros
feat72 has 45621 / 91.2% zeros Zeros
<u>feat73</u> is highly correlated with <u>feat2</u> (\rho = 0.91618) Rejected
<u>feat74</u> has 45621 / 91.2% zeros | zeros
feat75 has 45621 / 91.2% zeros | zeros
```

22/04/2020 Final\_Datamining

- <u>feat76</u> is highly correlated with <u>feat72</u> (ρ = 0.90826) Rejected
- <u>feat77</u> has 45621 / 91.2% zeros Zeros
- feat78 is highly correlated with feat76 (ρ = 0.92963) Rejected

# **Variables**

# exampleid

Numeric

```
Distinct count 50000
Unique (%) 100.0%
Missing (%) 0.0%
Missing (n) 0
Infinite (%) 0.0%
Infinite (n) 0
Mean 25000
Minimum 1
Maximum 50000
Zeros (%) 0.0%
```

Toggle details

# target

Boolean

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

**Mean** 0.49722

0 251391 24861

Toggle details

#### feat1

Numeric

 Distinct count
 7706

 Unique (%)
 15.4%

 Missing (%)
 0.0%

 Missing (n)
 0

 Infinite (%)
 0.0%

 Infinite (n)
 0



#### feat2

Numeric

**Distinct count** 6397 Unique (%) 12.8% Missing (%) 0.0% Missing (n) 0.0% Infinite (%) Infinite (n) Mean 0.084876 Minimum Maximum 3.4296 Zeros (%) 87.2%

Toggle details

#### feat3

Numeric

**Distinct count** 7704 Unique (%) 15.4% Missing (%) 0.0% Missing (n) 0.0% Infinite (%) Infinite (n) -0.050354 Mean Minimum -1 Maximum 0.99995 Zeros (%) 84.6%

Toggle details

#### feat4

Numeric

Distinct count 3



#### feat5

Numeric

```
Distinct count
                  5175
  Unique (%)
                 10.3%
  Missing (%)
  Missing (n)
   Infinite (%)
                  0.0%
   Infinite (n)
    Mean
             0.12657
Minimum
                   0
Maximum
               2.719
Zeros (%)
               89.6%
```

Toggle details

# feat6

Numeric

```
Distinct count 4072
Unique (%) 8.1%
Missing (%) 0.0%
Missing (n) 0
Infinite (%) 0.0%
Infinite (n) 0
Mean 0.049887
Minimum 0
Maximum 3.0546
Zeros (%) 91.8%
```

Toggle details

#### feat7

Numeric

| Distinct count | 5178      |
|----------------|-----------|
| Unique (%)     | 10.4%     |
| Missing (%)    | 0.0%      |
| Missing (n)    | 0         |
| Infinite (%)   | 0.0%      |
| Infinite (n)   | 0         |
| Mean           | -0.038344 |
| Minimum        | -1        |
| Maximum        | 0.99927   |
| Zeros (%)      | 89.6%     |
|                |           |
|                |           |
|                |           |

Toggle details

#### feat8

Numeric

```
Distinct count
                    3
  Unique (%)
                 0.0%
  Missing (%)
                0.0%
  Missing (n)
  Infinite (%)
   Infinite (n)
   Mean
             0.00286
Minimum
                  -1
Maximum
                   1
Zeros (%)
              89.6%
```

Toggle details

#### feat9

Numeric

49086 **Distinct count** Unique (%) 98.2% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.84835 Minimum 0 Maximum 6.6998 Zeros (%) 1.3%



#### feat10

Numeric

**Distinct count** 45130 Unique (%) 90.3% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.67349 Minimum Maximum 5.2837 9.3% Zeros (%)

Toggle details

# feat11

Numeric

**Distinct count** 49193 Unique (%) 98.4% 0.0% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) -0.28392 Mean Minimum Maximum 0.99991 1.3% Zeros (%)

Toggle details

# feat12

Numeric

| Distinct count | 3    |
|----------------|------|
| Unique (%)     | 0.0% |
| Missing (%)    | 0.0% |
| Missing (n)    | 0    |
| Infinite (%)   | 0.0% |



#### feat13

Numeric

```
Distinct count
                 48753
  Unique (%)
                 97.5%
  Missing (%)
                  0.0%
  Missing (n)
                      0
                  0.0%
   Infinite (%)
   Infinite (n)
                     0
             0.0072603
    Mean
Minimum
                     -1
Maximum
                     1
                  0.0%
Zeros (%)
```

Toggle details

#### feat14

Numeric

**Distinct count** 48807 97.6% Unique (%) Missing (%) 0.0% Missing (n) 0 0.0% Infinite (%) Infinite (n) 0 0.00085638 Mean Minimum -1 Maximum 0.99999 Zeros (%) 1.8%

Toggle details

# feat15

Numeric



#### feat16

Numeric

```
Distinct count
                   10
  Unique (%)
                 0.0%
  Missing (%)
  Missing (n)
   Infinite (%)
                 0.0%
   Infinite (n)
             0.85558
    Mean
Minimum
                   0
Maximum
                   9
Zeros (%)
               48.4%
```

Toggle details

#### feat17

Numeric

```
Distinct count
                     5
  Unique (%)
                 0.0%
  Missing (%)
  Missing (n)
                 0.0%
   Infinite (%)
   Infinite (n)
             0.16806
    Mean
Minimum
                   0
Maximum
                    4
Zeros (%)
               84.5%
```

Toggle details

#### feat18

Highly correlated

This variable is highly correlated with feat17 and should be ignored for analysis Correlation 0.95692

#### feat19

Numeric

**Distinct count** 49422 Unique (%) 98.8% Missing (%) Missing (n) 0 Infinite (%) Infinite (n) Mean 1.1212 Minimum 0 Maximum 6.0773 Zeros (%)

Toggle details

# feat20

Numeric

**Distinct count** 15761 Unique (%) 31.5% Missing (%) 68.4% Missing (n) 34202 Infinite (%) Infinite (n) Mean 0.0011184 Minimum -2.4537 Maximum 4.5072 Zeros (%)

Toggle details

# feat21

Numeric

 Distinct count
 15753

 Unique (%)
 31.5%

 Missing (%)
 68.4%

 Missing (n)
 34202



# feat22

Numeric

**Distinct count** 15753 Unique (%) 31.5% Missing (%) 68.4% Missing (n) 34202 Infinite (%) Infinite (n) Mean -0.6199 Minimum -0.99997 Maximum -2.8348e-05 Zeros (%)

Toggle details

# feat23

Numeric



Toggle details

#### feat24

22/04/2020

Numeric

**Distinct count** 48885 Unique (%) 97.8% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) 0 Mean 0.82601 Minimum 0 Maximum 4.79 Zeros (%)



Toggle details

#### feat25

Numeric

**Distinct count** 43946 Unique (%) 87.9% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.52308 Minimum Maximum 6.4519 Zeros (%) 11.7%

Toggle details

#### feat26

Numeric

**Distinct count** 29937 Unique (%) 59.9% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) 0 Mean 0.40489 Minimum 0 Maximum 1 Zeros (%) 39.9%



#### feat27

Numeric

**Distinct count** 29839 Unique (%) 59.7% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.091401 Minimum 0 Maximum 0.24999 39.9% Zeros (%)

Toggle details

# feat28

Numeric

**Distinct count** 29440 Unique (%) 58.9% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) 0.014918 Mean Minimum 0 Maximum 1 39.9% Zeros (%)

Toggle details

### feat29

Boolean

Distinct count 2
Unique (%) 0.0%
Missing (%) 60.1%
Missing (n) 30062

22/04/2020 Final\_Datamining

0.0 19938 (Missing) 30062

Toggle details

#### feat30

Boolean

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

 Mean
 0.40062

0 29969

1 20031

Toggle details

#### feat31

Numeric

**Distinct count** 3 Unique (%) 0.0% Missing (%) Missing (n) Infinite (%) Infinite (n) Mean 0.00168 Minimum -1 Maximum 1 Zeros (%) 39.9%

Toggle details

# feat32

Numeric

**Distinct count** 471 Unique (%) 0.9% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) Mean 361.68 Minimum 0 10000 Maximum 56.1% Zeros (%)



#### feat33

Numeric

**Distinct count** 360 Unique (%) 0.7% Missing (%) 0.0% Missing (n) 0 Infinite (%) 0.0% Infinite (n) 4.3702 Mean Minimum 0 75 Maximum 41.6% Zeros (%)

Toggle details

#### feat34

Highly correlated

This variable is highly correlated with feat27 and should be ignored for analysis Correlation 0.90777

#### feat35

Boolean

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

 Mean
 0.02354

0 48823

1177

Toggle details

#### feat36

Boolean

Distinct count 2 Unique (%) 0.0% Missing (%) 0.0% Missing (n)

Mean 0.02306

> 0 48847

1153 1

Toggle details

#### feat37

Numeric

**Distinct count** 1176 Unique (%) 2.4% Missing (%) Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 0.0027108 Minimum -6.4702 Maximum 7.5655 Zeros (%) 97.6%

Toggle details

#### feat38

Numeric

**Distinct count** 1176 Unique (%) 2.4% Missing (%) Missing (n) 0 Infinite (%) 0.0% Infinite (n) 0 Mean 0.0045754 Minimum -10.772 Maximum 9.4373 97.6% Zeros (%)

Toggle details

#### feat39

Numeric

**Distinct count** 1176 Unique (%) 2.4%



#### feat40

Numeric

**Distinct count** 1176 2.4% Unique (%) Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) 0 0.0031947 Mean Minimum Maximum 1.9385 97.6% Zeros (%)

Toggle details

#### feat41

Numeric

**Distinct count** 1175 Unique (%) 2.4% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) 0 0.0036662 Mean Minimum Maximum 3.5483 97.6% Zeros (%)

Toggle details



#### feat43

Boolean

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

**Mean** 0.60124

1 300620 19938

Toggle details

#### feat44

Numeric

**Distinct count** 15542 Unique (%) 31.1% Missing (%) 28.9% 14469 Missing (n) 0.0% Infinite (%) Infinite (n) Mean 0.42765 Minimum Maximum 2.8788 Zeros (%) 39.9%

Toggle details

#### feat45

Highly correlated

This variable is highly correlated with <u>feat43</u> and should be ignored for analysis **Correlation** 0.96715

#### feat46

Numeric

Distinct count 15556 31.1% Unique (%) Missing (%) 28.9% Missing (n) 14469 Infinite (%) Infinite (n) 0 Mean -0.26815 -0.99999 Minimum Maximum 0 Zeros (%) 39.9%

Toggle details

#### feat47

Constant

This variable is constant and should be ignored for analysis Constant value 0

#### feat48

Constant

This variable is constant and should be ignored for analysis

Constant value 0

#### feat49

Constant

This variable is constant and should be ignored for analysis

Constant value 0

#### feat50

Constant

This variable is constant and should be ignored for analysis Constant value 0

#### feat51

Constant

This variable is constant and should be ignored for analysis

Constant value 0

#### feat52

Highly correlated

This variable is highly correlated with <u>feat45</u> and should be ignored for analysis **Correlation** 0.96715

#### feat53

Highly correlated

This variable is highly correlated with feat52 and should be ignored for analysis Correlation 0.92105

#### feat54

Numeric

```
Distinct count
              18361
  Unique (%)
                36.7%
  Missing (%)
                 0.0%
  Missing (n)
                    0
  Infinite (%)
                 0.0%
   Infinite (n)
            0.012835
    Mean
Minimum
                    0
Maximum
                    1
               62.8%
Zeros (%)
```

Toggle details

#### feat55

Boolean

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 37.2%

 Missing (n)
 18602

 Mean
 0

0.0 31398

(Missing) 18602

22/04/2020 Final\_Datamining

Toggle details

#### feat56

Numeric

```
Distinct count
                     3
  Unique (%)
                 0.0%
  Missing (%)
  Missing (n)
                     0
                 0.0%
   Infinite (%)
   Infinite (n)
             0.00256
    Mean
Minimum
                   -1
Maximum
                   1
Zeros (%)
               62.8%
```

Toggle details

#### feat57

Numeric

```
Distinct count
                  420
  Unique (%)
                 0.8%
  Missing (%)
  Missing (n)
                    0
                 0.0%
   Infinite (%)
   Infinite (n)
             218.78
    Mean
Minimum
                  0
              10000
Maximum
Zeros (%)
              73.1%
```

Toggle details

#### feat58

Numeric

**Distinct count** 337 0.7% Unique (%) Missing (%) Missing (n) 0 0.0% Infinite (%) Infinite (n) 2.6589 Mean Minimum 0 Maximum 75



#### feat59

Highly correlated

This variable is highly correlated with feat53 and should be ignored for analysis Correlation 0.93239

#### feat60

Highly correlated

This variable is highly correlated with feat44 and should be ignored for analysis Correlation 0.99377

#### feat61

Highly correlated

This variable is highly correlated with <u>feat60</u> and should be ignored for analysis Correlation 0.90097

#### feat62

Highly correlated

This variable is highly correlated with feat46 and should be ignored for analysis Correlation 0.97318

#### feat63

Numeric

Distinct count 27 Unique (%) 0.1% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) 0.00234 Mean Minimum -22 Maximum 22 71.9% Zeros (%)

22/04/2020 Final\_Datamining

Toggle details

#### feat64

Numeric

**Distinct count** 45079 Unique (%) 90.2% Missing (%) 0.0% Missing (n) 0 0.0% Infinite (%) Infinite (n) Mean 0.010682 Minimum 0 Maximum 0.099991 Zeros (%) 9.5%

Toggle details

#### feat65

Numeric

```
Distinct count
                 44916
                 89.8%
  Unique (%)
  Missing (%)
                  0.0%
  Missing (n)
                      0
                  0.0%
   Infinite (%)
   Infinite (n)
             0.96576
    Mean
Minimum
                   0
Maximum
              5.6262
                9.5%
Zeros (%)
```

Toggle details

#### feat66

Numeric

**Distinct count** 3 Unique (%) 0.0% Missing (%) Missing (n) 0 0.0% Infinite (%) Infinite (n) 0 -0.00364 Mean Minimum -1 Maximum 1



#### feat67

Numeric

**Distinct count** 44691 Unique (%) 89.4% 0.0% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.78429 Minimum 0 Maximum 1 Zeros (%) 9.5%

Toggle details

#### feat68

Numeric

**Distinct count** 29523 Unique (%) 59.0% 0.0% Missing (%) Missing (n) Infinite (%) 0.0% Infinite (n) Mean 0.1599 Minimum -0.99999 Maximum Zeros (%) 40.8%

Toggle details

#### feat69

Numeric

Distinct count 3
Unique (%) 0.0%
Missing (%) 0.0%
Missing (n) 0



# feat70

Numeric

```
Distinct count
                 29276
  Unique (%)
                 58.6%
  Missing (%)
                  0.0%
  Missing (n)
   Infinite (%)
   Infinite (n)
    Mean
             0.00047824
Minimum
                      -1
Maximum
                       1
                  40.8%
Zeros (%)
```

Toggle details

#### feat71

Numeric



Toggle details



#### feat73

Highly correlated

This variable is highly correlated with <u>feat2</u> and should be ignored for analysis **Correlation** 0.91618

#### feat74

Numeric

**Distinct count** 4372 Unique (%) 8.7% Missing (%) 0.0% Missing (n) Infinite (%) 0.0% Infinite (n) Mean -0.014101 Minimum -1 Maximum 0.99987 91.2% Zeros (%)

Toggle details

#### feat75

Numeric

| Distinct count | 3    |
|----------------|------|
| Unique (%)     | 0.0% |
| Missing (%)    | 0.0% |
| Missing (n)    | 0    |
| Infinite (%)   | 0.0% |
| Infinite (n)   | 0    |



#### feat76

Highly correlated

This variable is highly correlated with feat72 and should be ignored for analysis Correlation 0.90826

#### feat77

Numeric



Toggle details

#### feat78

Highly correlated

This variable is highly correlated with feat76 and should be ignored for analysis Correlation 0.92963

# **Correlations**





# Sample

| feat      | feat6 | feat5    | feat4 | feat3     | feat2    | feat1    | target | exampleid |   |
|-----------|-------|----------|-------|-----------|----------|----------|--------|-----------|---|
| 0.000000  | 0.0   | 0.000000 | 0     | 0.000000  | 0.000000 | 0.000000 | 0      | 1         | 0 |
| 0.000000  | 0.0   | 0.000000 | -1    | -0.646473 | 0.817883 | 0.920167 | 0      | 2         | 1 |
| 0.000000  | 0.0   | 0.000000 | -1    | 0.150828  | 0.178202 | 0.868397 | 1      | 3         | 2 |
| -0.369792 | 0.0   | 1.577894 | 0     | 0.000000  | 0.000000 | 0.000000 | 0      | 4         | 3 |
| 0.000000  | 0.0   | 0.000000 | 0     | 0.000000  | 0.000000 | 0.000000 | 0      | 5         | 4 |

```
In [9]: df1=df.copy()
    col_list=df.columns
    empty_col_list=[]
    for i in col_list:
        if(df1[i].isnull().any()):
            empty_col_list.append(i)
    empty_col_list

Out[9]: ['feat20',
        'feat21',
        'feat22',
        'feat44',
        'feat44',
        'feat46',
        'feat46',
        'feat55']
```

# Missing value imputation

```
In [10]: import numpy as np
    from sklearn.impute import SimpleImputer
    imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
    imp_mean.fit(df1)
    df1_imp=pd.DataFrame(imp_mean.transform(df1))
    df1_imp.columns=df1.columns
    df1_imp
```

#### Out[10]:

|       | exampleid | target | feat1    | feat2    | feat3     | feat4 | feat5    | feat6 | feat7     | feat8 |
|-------|-----------|--------|----------|----------|-----------|-------|----------|-------|-----------|-------|
| 0     | 1.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 1     | 2.0       | 0.0    | 0.920167 | 0.817883 | -0.646473 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 2     | 3.0       | 1.0    | 0.868397 | 0.178202 | 0.150828  | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 3     | 4.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 1.577894 | 0.0   | -0.369792 | -1.0  |
| 4     | 5.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
|       |           |        |          |          |           |       |          |       |           |       |
| 49995 | 49996.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49996 | 49997.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49997 | 49998.0   | 1.0    | 0.918590 | 1.012605 | -0.047045 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49998 | 49999.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.855551 | 0.0   | -0.849437 | 1.0   |
| 49999 | 50000.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
|       |           |        |          |          |           |       |          |       |           |       |

50000 rows × 80 columns

# **Checking for Multicollinearity**

#### Chacking Pagreon Correlation

```
In [11]: | from scipy.stats import pearsonr
In [12]:
         pearson corr={}
          k=[]
          for i in df1 imp.columns:
              if(i not in k):
                  for j in df1 imp.columns:
                      p=pearsonr(df1_imp[i],df1_imp[j])[0]
                      if(i!=j):
                          count=1
                          if(p>0.9):
                              1st=[]
                              lst.append(p)
                              lst.append(j)
                              pearson corr[i]=lst
                              #k.append(j)
```

C:\Users\97150\Anaconda3\lib\site-packages\scipy\stats\stats.py:3508: Pearson RConstantInputWarning: An input array is constant; the correlation coefficent is not defined.

warnings.warn(PearsonRConstantInputWarning())

```
In [13]:
         pearson corr
Out[13]: {'feat2': [0.9161779473031394, 'feat73'],
           'feat17': [0.9569214241113242, 'feat18'],
          'feat18': [0.9569214241113242, 'feat17'],
          'feat27': [0.9077698112619299, 'feat34'],
          'feat34': [0.9077698112619299, 'feat27'],
          'feat52': [0.9702970235248272, 'feat61'],
          'feat53': [0.9323928277108464, 'feat59'],
          'feat59': [0.9323928277108464, 'feat53'],
          'feat60': [0.9009721775401007, 'feat61'],
          'feat61': [0.9009721775401007, 'feat60'],
          'feat72': [0.9344205329332373, 'feat78'],
          'feat73': [0.9161779473031394, 'feat2'],
           'feat76': [0.9296293359816603, 'feat78'],
          'feat78': [0.9296293359816603, 'feat76']}
```

# Dropping columns wich are highly correlated

In [15]: df1\_corr

Out[15]:

|       | exampleid | target | feat1    | feat2    | feat3     | feat4 | feat5    | feat6 | feat7     | feat8 |
|-------|-----------|--------|----------|----------|-----------|-------|----------|-------|-----------|-------|
| 0     | 1.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 1     | 2.0       | 0.0    | 0.920167 | 0.817883 | -0.646473 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 2     | 3.0       | 1.0    | 0.868397 | 0.178202 | 0.150828  | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 3     | 4.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 1.577894 | 0.0   | -0.369792 | -1.0  |
| 4     | 5.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
|       |           |        |          |          |           |       |          |       |           |       |
| 49995 | 49996.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49996 | 49997.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49997 | 49998.0   | 1.0    | 0.918590 | 1.012605 | -0.047045 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49998 | 49999.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.855551 | 0.0   | -0.849437 | 1.0   |
| 49999 | 50000.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |

50000 rows × 68 columns

# Checking for Variation Inflation Factor among predictors and removing varibales which has VIF > 10

In [16]: from statsmodels.stats.outliers\_influence import variance\_inflation\_factor

22/04/2020 Final\_Datamining

```
In [17]: vif = pd.DataFrame([variance_inflation_factor(df1_corr.iloc[:,2:].values, i) f
    or i in range(df1_corr.iloc[:,2:].shape[1])], index=df1_corr.iloc[:,2:].column
    s, columns=['VIF_value'])
    vif
```

C:\Users\97150\Anaconda3\lib\site-packages\statsmodels\regression\linear\_mode
l.py:1638: RuntimeWarning: invalid value encountered in double\_scalars
 return 1 - self.ssr/self.uncentered\_tss

#### Out[17]:

|        | VIF_value |
|--------|-----------|
| feat1  | 3.938347  |
| feat2  | 2.069540  |
| feat3  | 3.774698  |
| feat4  | 2.209754  |
| feat5  | 3.330959  |
|        |           |
| feat71 | 2.460268  |
| feat72 | 2.183206  |
| feat74 | 2.629607  |
| feat75 | 1.949437  |
| feat77 | 1.318613  |
|        |           |

66 rows × 1 columns

```
In [18]: vif_col=list(vif.loc[vif['VIF_value']>10].index)
In [19]: vif_col
Out[19]: ['feat9', 'feat19', 'feat22', 'feat44', 'feat45', 'feat65', 'feat67']
```

```
In [20]: vif_col=list(vif.loc[vif['VIF_value']>10].index)
    vif_col
    df1_vif=df1_corr.drop(columns=vif_col)
    df1_vif
```

#### Out[20]:

22/04/2020

|       | exampleid | target | feat1    | feat2    | feat3     | feat4 | feat5    | feat6 | feat7     | feat8 |
|-------|-----------|--------|----------|----------|-----------|-------|----------|-------|-----------|-------|
| 0     | 1.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 1     | 2.0       | 0.0    | 0.920167 | 0.817883 | -0.646473 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 2     | 3.0       | 1.0    | 0.868397 | 0.178202 | 0.150828  | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 3     | 4.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 1.577894 | 0.0   | -0.369792 | -1.0  |
| 4     | 5.0       | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
|       |           |        |          |          |           |       |          |       |           |       |
| 49995 | 49996.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49996 | 49997.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49997 | 49998.0   | 1.0    | 0.918590 | 1.012605 | -0.047045 | -1.0  | 0.000000 | 0.0   | 0.000000  | 0.0   |
| 49998 | 49999.0   | 1.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.855551 | 0.0   | -0.849437 | 1.0   |
| 49999 | 50000.0   | 0.0    | 0.000000 | 0.000000 | 0.000000  | 0.0   | 0.000000 | 0.0   | 0.000000  | 0.0   |

50000 rows × 61 columns

# Checking for constant zeros in entire variable and dropping the column

# Nomralizing data using standard scalar

In [24]: X

Out[24]:

22/04/2020

|       | feat1     | feat2     | feat3     | feat4     | feat5     | feat6     | feat7     | feat8     |      |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| 0     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.  |
| 1     | 1.842888  | 2.481980  | -2.349283 | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.: |
| 2     | 1.718103  | 0.316003  | 0.792852  | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | 0.   |
| 3     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | 3.622068  | -0.222996 | -1.547622 | -3.113754 | -0.4 |
| 4     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | 0.1  |
|       |           |           |           |           |           |           |           |           |      |
| 49995 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.  |
| 49996 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.0 |
| 49997 | 1.839087  | 3.141312  | 0.013042  | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.; |
| 49998 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | 1.819317  | -0.222996 | -3.787221 | 3.095994  | -1.; |
| 49999 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.4 |

50000 rows × 52 columns

## **PCA** for feature Engineering

Determing number of components to choose in PCA

```
In [25]:
         from sklearn.decomposition import PCA
         pca = PCA().fit(X)
         %matplotlib inline
         import matplotlib.pyplot as plt
         plt.rcParams["figure.figsize"] = (20,6)
         fig, ax = plt.subplots()
         xi = np.arange(1, 53, step=1)
         y = np.cumsum(pca.explained_variance_ratio_)
         plt.ylim(0.0,1.1)
         plt.plot(xi, y, marker='o', linestyle='--', color='b')
         plt.xlabel('Number of Components')
         plt.xticks(np.arange(0, 80, step=1)) #change from 0-based array index to 1-bas
         ed human-readable label
         plt.ylabel('Cumulative variance (%)')
         plt.title('The number of components needed to explain variance')
         plt.axhline(y=0.95, color='r', linestyle='-')
         plt.text(0.5, 0.85, '95% cut-off threshold', color = 'red', fontsize=16)
         ax.grid(axis='x')
         plt.show()
```



# assigning number of components = 43 as the curve starts to stabilize at this point

## **Logistic Regression Without terms for PCA features**

```
In [27]: | from sklearn.model_selection import train_test_split
         xtrain,xtest,ytrain,ytest=train test split(X PCA,Y,test size=0.3,random state=
         0)
In [28]: from sklearn.linear model import LogisticRegression
         clf = LogisticRegression(random state=0).fit(xtrain, ytrain)
         clf
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
         32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
         a solver to silence this warning.
           FutureWarning)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: D
         ataConversionWarning: A column-vector y was passed when a 1d array was expect
         ed. Please change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
Out[28]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                            intercept_scaling=1, l1_ratio=None, max_iter=100,
                            multi_class='warn', n_jobs=None, penalty='12',
                            random state=0, solver='warn', tol=0.0001, verbose=0,
                            warm start=False)
In [29]: clf.score(xtest,ytest)
Out[29]: 0.7042
```

## Logistic Regression Without terms for features without PCA

```
In [30]: from sklearn.model_selection import train_test_split
    xtrain1,xtest1,ytrain1,ytest1=train_test_split(X,Y,test_size=0.3,random_state=
    43)
```

```
In [31]: import statsmodels.api as sm

model1 = sm.Logit(ytrain1,xtrain1)
result1 = model1.fit()
```

Optimization terminated successfully.

Current function value: 0.541056

Iterations 6

In [32]: result1.summary()

Out[32]: Logit Regression Results

| Dep     | o. Variable | ):      | targ       | jet <b>No</b> | . Observ | ations: | 35000   |
|---------|-------------|---------|------------|---------------|----------|---------|---------|
|         | Model       | l:      | Lo         | git           | Df Res   | iduals: | 34948   |
|         | Method      | l:      | ML         | _E            | Df       | Model:  | 51      |
|         | Date        | : Wed,  | 22 Apr 202 | 20            | Pseudo I | R-squ.: | 0.2194  |
|         | Time        | ):      | 16:31:4    | 43            | Log-Like | lihood: | -18937. |
| c       | onverged    | l:      | Tro        | ue            | L        | L-Null: | -24259. |
| Covaria | ance Type   | ):      | nonrobu    | ıst           | LLR p    | -value: | 0.000   |
|         | coef        | std err | z          | P> z          | [0.025   | 0.975]  |         |
| feat1   | -0.0043     | 0.029   | -0.148     | 0.882         | -        | 0.052   |         |
| feat2   | 0.0061      | 0.018   | 0.337      | 0.736         | -0.029   | 0.042   |         |
| feat3   | -0.0351     | 0.035   | -1.012     | 0.312         | -0.103   | 0.033   |         |
| feat4   | 0.6844      | 0.028   | 24.323     | 0.000         | 0.629    | 0.740   |         |
| feat5   | -0.0026     | 0.020   | -0.130     | 0.897         | -0.042   | 0.037   |         |
| feat6   | -0.0114     | 0.015   | -0.785     | 0.433         | -0.040   | 0.017   |         |
| feat7   | -0.0175     | 0.017   | -1.007     | 0.314         | -0.052   | 0.017   |         |
| feat8   | 0.2576      | 0.014   | 17.796     | 0.000         | 0.229    | 0.286   |         |
| feat10  | -0.0092     | 0.014   | -0.676     | 0.499         | -0.036   | 0.017   |         |
| feat11  | 0.0187      | 0.013   | 1.423      | 0.155         | -0.007   | 0.045   |         |
| feat12  | -0.0685     | 0.016   | -4.289     | 0.000         | -0.100   | -0.037  |         |
| feat13  | 0.9257      | 0.020   | 46.066     | 0.000         | 0.886    | 0.965   |         |
| feat14  | 0.4538      | 0.016   | 29.121     | 0.000         | 0.423    | 0.484   |         |
| feat15  | 0.1804      | 0.015   | 12.288     | 0.000         | 0.152    | 0.209   |         |
| feat16  | -0.0018     | 0.015   | -0.118     | 0.906         | -0.031   | 0.027   |         |
| feat17  | -0.0029     | 0.015   | -0.200     | 0.841         | -0.032   | 0.026   |         |
| feat20  | 0.1966      | 0.019   | 10.447     | 0.000         | 0.160    | 0.233   |         |
| feat21  | -0.0194     | 0.015   | -1.325     | 0.185         | -0.048   | 0.009   |         |
| feat23  | -0.0023     | 0.014   | -0.167     | 0.867         | -0.029   | 0.025   |         |
| feat24  | 0.0058      | 0.015   | 0.398      | 0.691         | -0.023   | 0.034   |         |
| feat25  | -0.0063     | 0.015   | -0.434     | 0.665         | -0.035   | 0.022   |         |
| feat26  | 0.0186      | 0.024   | 0.779      | 0.436         | -0.028   | 0.065   |         |
| feat27  | -0.0149     | 0.022   | -0.668     | 0.504         | -0.058   | 0.029   |         |
| feat28  | 0.0121      | 0.017   | 0.730      | 0.465         | -0.020   | 0.044   |         |
| feat30  | -0.0041     | 0.018   | -0.229     | 0.819         | -0.039   | 0.031   |         |
| feat31  | -0.1480     | 0.022   | -6.677     | 0.000         | -0.191   | -0.105  |         |
| feat32  | 0.0249      | 0.017   | 1.426      | 0.154         | -0.009   | 0.059   |         |

| feat33 | -0.0207 | 0.018 | -1.121  | 0.262 | -0.057 | 0.015  |
|--------|---------|-------|---------|-------|--------|--------|
| feat35 | 0.0247  | 0.022 | 1.142   | 0.254 | -0.018 | 0.067  |
| feat36 | -0.0004 | 0.014 | -0.027  | 0.979 | -0.027 | 0.026  |
| feat37 | -0.0132 | 0.013 | -1.035  | 0.300 | -0.038 | 0.012  |
| feat38 | -0.0024 | 0.014 | -0.175  | 0.861 | -0.029 | 0.024  |
| feat39 | -0.0117 | 0.014 | -0.841  | 0.401 | -0.039 | 0.016  |
| feat40 | -0.0556 | 0.020 | -2.847  | 0.004 | -0.094 | -0.017 |
| feat41 | -0.0085 | 0.020 | -0.434  | 0.665 | -0.047 | 0.030  |
| feat42 | 0.0654  | 0.019 | 3.429   | 0.001 | 0.028  | 0.103  |
| feat46 | -0.0216 | 0.023 | -0.957  | 0.339 | -0.066 | 0.023  |
| feat54 | -0.0138 | 0.017 | -0.797  | 0.425 | -0.048 | 0.020  |
| feat56 | -0.0711 | 0.021 | -3.439  | 0.001 | -0.112 | -0.031 |
| feat57 | -0.0332 | 0.018 | -1.846  | 0.065 | -0.068 | 0.002  |
| feat58 | 0.0155  | 0.020 | 0.779   | 0.436 | -0.024 | 0.055  |
| feat63 | 0.1291  | 0.018 | 7.328   | 0.000 | 0.095  | 0.164  |
| feat64 | 0.0040  | 0.012 | 0.330   | 0.742 | -0.020 | 0.028  |
| feat66 | 0.1724  | 0.017 | 10.408  | 0.000 | 0.140  | 0.205  |
| feat68 | -0.0048 | 0.014 | -0.347  | 0.729 | -0.032 | 0.022  |
| feat69 | -0.1640 | 0.027 | -6.168  | 0.000 | -0.216 | -0.112 |
| feat70 | 0.0017  | 0.021 | 0.081   | 0.936 | -0.039 | 0.043  |
| feat71 | 0.3204  | 0.020 | 15.995  | 0.000 | 0.281  | 0.360  |
| feat72 | -0.0131 | 0.020 | -0.668  | 0.504 | -0.051 | 0.025  |
| feat74 | 0.0170  | 0.027 | 0.630   | 0.528 | -0.036 | 0.070  |
| feat75 | -0.5952 | 0.024 | -24.802 | 0.000 | -0.642 | -0.548 |
| feat77 | 0.0200  | 0.015 | 1.365   | 0.172 | -0.009 | 0.049  |

## Rejecting variabes with less stastical significant(p> 0.05)

```
In [33]: opt=pd.DataFrame(result1.pvalues[result1.pvalues<0.05])</pre>
```

#### In [34]: opt

#### Out[34]:

|        | 0             |
|--------|---------------|
| feat4  | 1.124544e-130 |
| feat8  | 7.641749e-71  |
| feat12 | 1.795996e-05  |
| feat13 | 0.000000e+00  |
| feat14 | 1.951651e-186 |
| feat15 | 1.053943e-34  |
| feat20 | 1.518693e-25  |
| feat31 | 2.439942e-11  |
| feat40 | 4.411882e-03  |
| feat42 | 6.053734e-04  |
| feat56 | 5.847514e-04  |
| feat63 | 2.336659e-13  |
| feat66 | 2.275366e-25  |
| feat69 | 6.927581e-10  |
| feat71 | 1.378890e-57  |
| feat75 | 8.570518e-136 |

#### Out[35]:

|       | feat4     | feat8     | feat12    | feat13    | feat14    | feat15    | feat20        | feat31    |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|
| 0     | 0.000153  | -0.008880 | -0.995511 | 0.234255  | -0.124441 | 0.006868  | 1.504698e-17  | 1.287499  |
| 1     | -2.544945 | -0.008880 | -0.995511 | -1.550554 | -0.037465 | 0.008326  | -1.559263e+00 | -1.291832 |
| 2     | -2.544945 | -0.008880 | 1.017494  | 1.387947  | 2.777807  | -0.782209 | 1.307239e+00  | -1.291832 |
| 3     | 0.000153  | -3.113754 | 1.017494  | 0.000485  | -0.018978 | 0.006622  | 1.504698e-17  | -0.002167 |
| 4     | 0.000153  | -0.008880 | -0.995511 | -0.011549 | -0.002856 | 0.006928  | 1.504698e-17  | -1.291832 |
|       |           |           |           |           |           |           |               |           |
| 49995 | 0.000153  | -0.008880 | -0.995511 | -1.515229 | 0.011887  | 0.006959  | 1.504698e-17  | -0.002167 |
| 49996 | 0.000153  | -0.008880 | -0.995511 | 0.026945  | 0.001851  | 0.001533  | 1.504698e-17  | -0.002167 |
| 49997 | -2.544945 | -0.008880 | 1.017494  | 1.469257  | 0.129952  | -0.076362 | 3.352785e+00  | -0.002167 |
| 49998 | 0.000153  | 3.095994  | -0.995511 | 1.528164  | -0.000733 | 0.006698  | 1.504698e-17  | -0.002167 |
| 49999 | 0.000153  | -0.008880 | -0.995511 | -0.011537 | -0.003087 | 0.007258  | 1.504698e-17  | -0.002167 |

50000 rows × 16 columns

```
In [69]: X_opt.describe()
```

#### Out[69]:

|       | feat4         | feat8         | feat12            | feat13        | feat14        | feat15        |
|-------|---------------|---------------|-------------------|---------------|---------------|---------------|
| count | 5.000000e+04  | 5.000000e+04  | 5.000000e+04      | 5.000000e+04  | 5.000000e+04  | 5.000000e+04  |
| mean  | -7.760957e-16 | 5.623987e-16  | -9.070744e-<br>16 | 3.295617e-17  | -9.416166e-19 | -3.694116e-16 |
| std   | 1.000010e+00  | 1.000010e+00  | 1.000010e+00      | 1.000010e+00  | 1.000010e+00  | 1.000010e+00  |
| min   | -2.544945e+00 | -3.113754e+00 | -9.955115e-01     | -1.550663e+00 | -3.298207e+00 | -8.349277e+00 |
| 25%   | 1.527059e-04  | -8.879940e-03 | -9.955115e-01     | -4.441958e-01 | -4.656503e-03 | 6.609522e-03  |
| 50%   | 1.527059e-04  | -8.879940e-03 | 1.099101e-02      | -1.117477e-02 | -2.822100e-03 | 6.862371e-03  |
| 75%   | 1.527059e-04  | -8.879940e-03 | 1.017494e+00      | 5.359493e-01  | -9.021375e-04 | 7.108908e-03  |
| max   | 2.545251e+00  | 3.095994e+00  | 1.017494e+00      | 1.528309e+00  | 3.292549e+00  | 8.362368e+00  |

## **Applying Logistic regression**

```
In [36]: from sklearn.model_selection import train_test_split
    xtrain_opt,xtest_opt,ytrain_opt,ytest_opt=train_test_split(X_opt,Y,test_size=
    0.3,random_state=43)
```

```
In [37]: from sklearn.linear_model import LogisticRegression
    clf_log = LogisticRegression(random_state=0).fit(xtrain_opt, ytrain_opt)
    clf_log
```

C:\Users\97150\Anaconda3\lib\site-packages\sklearn\linear\_model\logistic.py:4
32: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify
a solver to silence this warning.
FutureWarning)

C:\Users\97150\Anaconda3\lib\site-packages\sklearn\utils\validation.py:724: D
ataConversionWarning: A column-vector y was passed when a 1d array was expect
ed. Please change the shape of y to (n\_samples, ), for example using ravel().
y = column\_or\_1d(y, warn=True)

```
In [68]:
         y pred opt=clf log.predict(xtest opt)
         print(clf log.score(xtest opt,ytest opt))
         print(clf_log.intercept_)
         0.7112
         [-0.02451236]
In [39]: | cnf_matrix = metrics.confusion_matrix(ytest_opt, y_pred_opt)
         print(cnf matrix)
         class names=[0,1] # name of classes
         fig, ax = plt.subplots()
         tick marks = np.arange(len(class names))
         plt.xticks(tick_marks, class_names)
         plt.yticks(tick_marks, class_names)
         # create heatmap
         sns.heatmap(pd.DataFrame(cnf matrix), annot=True, cmap="YlGnBu" ,fmt='g')
         ax.xaxis.set_label_position("top")
         plt.title('Confusion matrix', y=1.1)
         plt.ylabel('Actual label')
         plt.xlabel('Predicted label')
         [[5406 2079]
          [2253 5262]]
```

#### Out[39]: Text(0.5, 30.5, 'Predicted label')



```
In [40]: print("Accuracy:",metrics.accuracy_score(ytest_opt, y_pred_opt))
    print("Precision:",metrics.precision_score(ytest_opt, y_pred_opt))
    print("Recall:",metrics.recall_score(ytest_opt, y_pred_opt))
```

Accuracy: 0.7112

Precision: 0.7167960768287699 Recall: 0.7001996007984032

```
In [41]: y_pred_proba = clf_log.predict_proba(xtest_opt)[::,1]
fpr, tpr, _ = metrics.roc_curve(ytest_opt, y_pred_proba)
auc = metrics.roc_auc_score(ytest_opt, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
print("Auc:", auc)
```



Auc: 0.7951709762394605

## **Logistic Regression with Interaction terms**

Out[42]:

|       | feat1     | feat2     | feat3     | feat4     | feat5     | feat6     | feat7     | feat8     |      |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| 0     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.  |
| 1     | 1.842888  | 2.481980  | -2.349283 | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.: |
| 2     | 1.718103  | 0.316003  | 0.792852  | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | 0.   |
| 3     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | 3.622068  | -0.222996 | -1.547622 | -3.113754 | -0.4 |
| 4     | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | 0.1  |
|       |           |           |           |           |           |           |           |           |      |
| 49995 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.9 |
| 49996 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.0 |
| 49997 | 1.839087  | 3.141312  | 0.013042  | -2.544945 | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -1.: |
| 49998 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | 1.819317  | -0.222996 | -3.787221 | 3.095994  | -1.: |
| 49999 | -0.375070 | -0.287393 | 0.198443  | 0.000153  | -0.315879 | -0.222996 | 0.179040  | -0.008880 | -0.4 |

50000 rows × 53 columns

#### Generalized Linear Model Regression Results

| UEI                                                    | :=======   |          | •      |                |         | ========       |
|--------------------------------------------------------|------------|----------|--------|----------------|---------|----------------|
| =<br>Dep. Variable:                                    |            | target   | No Oh  | servati        | one:    | 5000           |
| oep. variable.                                         |            | target   | NO. OL | Servaci        | 0115.   | 3000           |
| Model:                                                 |            | GLM      | Df Res | iduals:        |         | 4999           |
| 0                                                      |            | <b></b>  | 2      |                |         |                |
| Model Family:                                          | E          | Binomial | Df Mod | lel:           |         |                |
| 9                                                      |            |          | 6 1    |                |         | 1 000          |
| Link Function:                                         |            | logit    | Scale: |                |         | 1.000          |
| 0<br>Method:                                           |            | IRLS     | Log-Li | .kelihoo       | d·      | -3100          |
| 4.                                                     |            | INLO     | LUG-LI | REITHOU        | u.      | -2100          |
| Date:                                                  | Wed, 22 A  | Anr 2020 | Devian | ice:           |         | 6200           |
| 8.                                                     | ,          | .p       | 20120  |                |         | 0_00           |
| Time:                                                  | 1          | L6:31:45 | Pearso | n chi2:        |         | 4.93e+0        |
| 4                                                      |            |          |        |                |         |                |
| No. Iterations:                                        |            | 5        |        |                |         |                |
| Covariance Type:                                       | no         | nrobust  |        |                |         |                |
|                                                        |            |          |        |                | ======= |                |
| =======================================                | •          | 600      | ef st  | d err          | Z       | P> z           |
| [0.025 0.975]                                          |            | COE      | ei St  | u em           | 2       | P> 2           |
|                                                        | . <b></b>  |          |        |                |         |                |
| Intercept                                              |            | -0.016   | 97     | 0.010          | -1.093  | 0.274          |
| -0.030 0.008                                           |            |          |        |                |         |                |
| center(feat4)                                          |            | 0.171    | L2     | 0.010          | 16.635  | 0.000          |
| 0.151 0.191                                            |            |          |        |                |         |                |
| center(feat12)                                         |            | 0.004    | 10     | 0.010          | 0.397   | 0.692          |
| -0.016 0.024                                           |            |          |        |                |         |                |
| center(feat14)                                         |            | 0.200    | 92     | 0.010          | 19.707  | 0.000          |
| 0.180 0.220                                            |            |          | _      |                |         |                |
| center(feat15)                                         |            | 0.079    | 99     | 0.010          | 7.878   | 0.000          |
| 0.060 0.100                                            |            | 0.750    | 20     | 0 014          | FF 241  | 0.000          |
| center(feat20)<br>0.723 0.777                          |            | 0.756    | 00     | 0.014          | 55.341  | 0.000          |
| center(feat31)                                         |            | -0.261   | ıΩ     | 0.010          | -26.708 | 0.000          |
| -0.281 -0.243                                          |            | 0.201    |        | 0.010          | 20.700  | 0.000          |
| -0.701 -0.743                                          | (5 , )     | 0.016    | 59     | 0.011          | 1.606   | 0.108          |
|                                                        | (†eat12)   |          |        |                |         |                |
| center(feat4):center                                   | (†eat12)   | 0.010    |        |                |         |                |
| center(feat4):center<br>-0.004 0.038                   |            |          | 35     | 0.003          | -1.090  | 0.276          |
| center(feat4):center                                   |            |          | 35     | 0.003          | -1.090  | 0.276          |
| center(feat4):center -0.004 0.038 center(feat14):cente | er(feat15) |          |        | 0.003<br>0.014 |         | 0.276<br>0.712 |

In [44]: pred\_inttrms=(model\_int.predict(xtest\_opt) >= 0.5).astype(int)

```
In [45]: from sklearn.metrics import accuracy_score
    score =accuracy_score(ytest_opt,pred_inttrms)
    score
```

#### Out[45]: 0.6343333333333333

```
In [46]: cnf_matrix = metrics.confusion_matrix(ytest_opt, pred_inttrms)
    print(cnf_matrix)
    class_names=[0,1] # name of classes
    fig, ax = plt.subplots()
    tick_marks = np.arange(len(class_names))
    plt.xticks(tick_marks, class_names)
    plt.yticks(tick_marks, class_names)
    # create heatmap
    sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
    ax.xaxis.set_label_position("top")
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

[[5399 2086] [3399 4116]]

#### Out[46]: Text(0.5, 30.5, 'Predicted label')



In [47]: print("Accuracy:",metrics.accuracy\_score(ytest\_opt, pred\_inttrms))
 print("Precision:",metrics.precision\_score(ytest\_opt, pred\_inttrms))
 print("Recall:",metrics.recall\_score(ytest\_opt, pred\_inttrms))

```
In [48]: y_pred_proba = model_int.predict(xtest_opt)
fpr, tpr, _ = metrics.roc_curve(ytest_opt, y_pred_proba )
auc = metrics.roc_auc_score(ytest_opt, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
print("Auc:", auc)
```

Auc: 0.6990946719342434

### **Random Forest**

```
In [49]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import roc_curve, auc
    import matplotlib.pyplot as plt
```

# To find n\_Estimators in Random Forest, we determine by plotting AUC on each estimators in loop

```
In [50]: n estimators = [1, 2, 4, 8, 16, 32, 64, 100, 200]
         train results = []
         test results = []
         for estimator in n estimators:
             rf = RandomForestClassifier(n estimators=estimator, n jobs=-1)
             rf.fit(xtrain_opt, ytrain_opt)
             train pred = rf.predict(xtrain opt)
             false positive rate, true positive rate, thresholds = roc curve(ytrain opt
         , train pred)
             roc_auc = auc(false_positive_rate, true_positive_rate)
             train results.append(roc auc)
             y pred1 = rf.predict(xtest opt)
             false_positive_rate, true_positive_rate, thresholds = roc_curve(ytest_opt,
         y pred1)
             roc auc = auc(false positive rate, true positive rate)
             test_results.append(roc_auc)
```

- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().
- C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:6: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel().

```
In [51]: %matplotlib inline
    from matplotlib.legend_handler import HandlerLine2D
    line1, = plt.plot(n_estimators, train_results, 'b', label="Train AUC")
    line2, = plt.plot(n_estimators, test_results, 'r', label="Test AUC")
    plt.legend(handler_map={line1: HandlerLine2D(numpoints=2)})
    plt.ylabel('AUC score')
    plt.xlabel('n_estimators')
    plt.show()
```



## Assiging range (50,75)

```
In [52]: r_f={}
    for i in range(50,75):
        rf = RandomForestClassifier(n_estimators=i, n_jobs=-1)
        rf.fit(xtrain_opt, ytrain_opt)
        y_pred1 = rf.predict(xtest_opt)
        r_f[i]= rf.score(xtest_opt,ytest_opt)
```

```
C:\Users\97150\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n_samples,), for example using ravel(). after removing the cwd from sys.path.
```

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve
rsionWarning: A column-vector y was passed when a 1d array was expected. Plea
se change the shape of y to (n\_samples,), for example using ravel().
 after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path.

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel launcher.py:4: DataConve

rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. C:\Users\97150\Anaconda3\lib\site-packages\ipykernel launcher.py:4: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n\_samples,), for example using ravel(). after removing the cwd from sys.path. max\_value = max(r\_f.values()) # maximum value

```
In [53]: max_value = max(r_f.values()) # maximum value
    max_keys = [k for k, v in r_f.items() if v == max_value] # getting all keys co
    ntaining the `maximum`
    print(max_value, max_keys)
```

0.7092666666666667 [55]

## Maximum Auc occurs when n\_estimators = 67

```
In [54]: rf = RandomForestClassifier(n_estimators=67, n_jobs=-1)
    rf.fit(xtrain_opt, ytrain_opt)
    y_pred1 = rf.predict(xtest_opt)
    rf.score(xtest_opt,ytest_opt)
```

C:\Users\97150\Anaconda3\lib\site-packages\ipykernel\_launcher.py:2: DataConve rsionWarning: A column-vector y was passed when a 1d array was expected. Plea se change the shape of y to (n samples,), for example using ravel().

#### Out[54]: 0.7084

```
In [55]: cnf_matrix = metrics.confusion_matrix(ytest_opt, y_pred1)
    print(cnf_matrix)
    class_names=[0,1] # name of classes
    fig, ax = plt.subplots()
    tick_marks = np.arange(len(class_names))
    plt.xticks(tick_marks, class_names)
    plt.yticks(tick_marks, class_names)
    # create heatmap
    sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
    ax.xaxis.set_label_position("top")
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

[[5419 2066] [2308 5207]]

#### Out[55]: Text(0.5, 12.5, 'Predicted label')



In [56]: print("Accuracy:",metrics.accuracy\_score(ytest\_opt, y\_pred1))
 print("Precision:",metrics.precision\_score(ytest\_opt, y\_pred1))
 print("Recall:",metrics.recall\_score(ytest\_opt, y\_pred1))

Accuracy: 0.7084

Precision: 0.7159356524130345 Recall: 0.6928809048569528

```
In [57]: y_pred_proba = rf.predict(xtest_opt)
    fpr, tpr, _ = metrics.roc_curve(ytest_opt, y_pred_proba)
    auc = metrics.roc_auc_score(ytest_opt, y_pred_proba)
    plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
    plt.legend(loc=4)
    plt.show()
    print("Auc:", auc)
```



Auc: 0.7084311003910682

## **Extreme Gradient Boosting**

```
In [59]: import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score, KFold
```

```
In [60]: | xgbc = XGBClassifier()
         XGBClassifier(objective='binary:logistic',base score=0.5, booster='gbtree', co
         lsample bylevel=1,
                colsample bynode=1, colsample bytree=1, gamma=0, learning rate=0.1,
                max_delta_step=0, max_depth=3, min_child_weight=1, missing=None,
                n estimators=100, n jobs=1, nthread=None,
                random state=0, reg alpha=0,
                reg lambda=1, scale pos weight=1, seed=None, silent=None,
                subsample=1, verbosity=1)
Out[60]: XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
                       colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=None,
                       importance_type='gain', interaction_constraints=None,
                       learning rate=0.1, max delta step=0, max depth=3,
                       min child weight=1, missing=nan, monotone constraints=None,
                       n_estimators=100, n_jobs=1, nthread=None, num_parallel_tree=Non
         e,
                       objective='binary:logistic', random state=0, reg alpha=0,
                       reg lambda=1, scale pos weight=1, seed=None, silent=None,
                       subsample=1, tree_method=None, validate_parameters=False,
                       verbosity=1)
In [61]: xgbc.fit(xtrain_opt, ytrain_opt)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
         9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
         2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
Out[61]: XGBClassifier(base score=0.5, booster=None, colsample bylevel=1,
                       colsample bynode=1, colsample bytree=1, gamma=0, gpu id=-1,
                       importance_type='gain', interaction_constraints=None,
                       learning_rate=0.300000012, max_delta_step=0, max_depth=6,
                       min child weight=1, missing=nan, monotone constraints=None,
                       n_estimators=100, n_jobs=0, num_parallel_tree=1,
                       objective='binary:logistic', random_state=0, reg_alpha=0,
                       reg lambda=1, scale pos weight=1, subsample=1, tree method=Non
         e,
                       validate_parameters=False, verbosity=None)
In [62]: | xgbc.score(xtest_opt,ytest_opt)
Out[62]: 0.72353333333333334
```

## **Using Kfold Cross Validation**

```
In [63]: kfold = KFold(n_splits=10, shuffle=True)
   kf_cv_scores = cross_val_score(xgbc, xtrain_opt, ytrain_opt, cv=kfold )
   print("K-fold CV average score: %.2f" % kf_cv_scores.mean())
   kf_cv_roc = cross_val_score(xgbc, xtrain_opt, ytrain_opt,scoring='roc_auc',cv=kfold )
   print("K-fold AUC OF ROC average score: %.2f" % kf_cv_roc.mean())
```

K-fold CV average score: 0.72

```
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
 y = column or 1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column or 1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
pected. Please change the shape of y to (n_samples, ), for example using rave
1().
 y = column_or_1d(y, warn=True)
C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
```

```
pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
         9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
         2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n samples, ), for example using rave
         1().
           y = column or 1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
         9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
         2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column or 1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:21
         9: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         C:\Users\97150\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:25
         2: DataConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n_samples, ), for example using rave
         1().
           y = column_or_1d(y, warn=True)
         K-fold AUC OF ROC average score: 0.82
In [64]: ypred = xgbc.predict(xtest opt)
```

```
In [65]: cnf_matrix = metrics.confusion_matrix(ytest_opt, ypred)
    print(cnf_matrix)
    class_names=[0,1] # name of classes
    fig, ax = plt.subplots()
    tick_marks = np.arange(len(class_names))
    plt.xticks(tick_marks, class_names)
    plt.yticks(tick_marks, class_names)
    # create heatmap
    sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
    ax.xaxis.set_label_position("top")
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

[[5532 1953] [2194 5321]]

Out[65]: Text(0.5, 12.5, 'Predicted label')



In [66]: print("Accuracy:",metrics.accuracy\_score(ytest\_opt, ypred))
print("Precision:",metrics.precision\_score(ytest\_opt, ypred))
print("Recall:",metrics.recall\_score(ytest\_opt, ypred))

Accuracy: 0.72353333333333334 Precision: 0.731509485839978 Recall: 0.7080505655355954

```
In [67]: y_pred_proba = xgbc.predict(xtest_opt)
    fpr, tpr, _ = metrics.roc_curve(ytest_opt, y_pred_proba)
    auc = metrics.roc_auc_score(ytest_opt, y_pred_proba)
    plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
    plt.legend(loc=4)
    plt.show()
    print("Auc:", auc)
```



Auc: 0.7235643609241103