STAT 6560 Applied Time Series Analysis

Final Project

Ziyan Lin

Data

• Monthly water usage (mL/day) in London from January 1966 to December 1988.

• This is a 23-year period, and total 276 observations

> water												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1966	76.83	77.74	80.47	79.56	82.28	100.92	113.20	90.92	86.83	82.74	83.65	80.92
1967	83.19	83.65	83.65	83.65	86.83	100.47	91.38	101.38	95.92	88.19	88.19	80.47
1968	80.92	79.56	80.92	88.19	91.83	96.38	97.29	102.29	99.10	92.74	87.29	85.47
1969	91.38	92.74	89.56	88.65	93.20	99.56	109.11	124.56	115.47	96.38	92.29	86.83
1970	87.29	85.92	85.92	88.65	91.83	112.29	101.83	125.02	102.74	95.01	91.83	86.38
1971	87.29	88.19	89.10	89.10	103.65	127.75	125.47	125.47	109.11	100.01	95.01	85.01
1972	86.83	86.83	86.83	86.83	100.47	111.38	105.47	102.74	105.01	96.38	94.10	86.83
1973	92.74	93.20	95.47	96.38	99.56	120.47	123.20	114.11	120.93	102.74	101.83	95.47
1974	100.01	100.01	98.20	100.01	103.65	114.56	134.11	131.84	113.65	107.29	102.29	94.56
1975	97.29	98.20	95.47	100.47	116.38	117.29	140.93	120.02	111.38	108.65	105.92	99.10
1976			102.74									
1977			107.74									
			105.50									
1979			113.10									
1980			109.50									
			119.20									
			121.30									
			122.00									
			129.60									
			130.70									
1986	129.50	134.70	136.60	138.40	149.60	159.50	171.40	162.10	163.10	152.40	145.50	133.90
			141.20									
1988	144.70	143.00	148.30	152.70	173.30	226.30	218.20	184.60	174.90	161.40	161.40	145.80

Time Series Plot

Fig 1 Monthly water usage in London from 1966 to 1988

Time Series Plot

Fig 2 Monthly water usage in London from 1980 to 1988

Power transformation

Sample ACF

Fig 4 Sample ACF on Reciprocal Transformation

Fig 5 Time Series Plot of the First Differences of Monthly Water Usage

Fig 6 Sample ACF of First Differences of Monthly Water Usage

Fig 7 Time Series Plot of First and Seasonal Differences of Monthly Water Usage

Fig 8 Sample ACF of First and Seasonal Differences of Monthly Water Usage

ARIMA(0,1,1) X $(0,1,1)_{12}$

ARIMA(0,1,4) X $(0,1,1)_{12}$

Detect outlier

```
> model
Call:
arima(x = Water, order = c(0, 1, 4), seasonal = list(order = c(0, 1, 1), period = 12),
   io = c(19, 44, 55, 56, 80, 127, 151, 198))
Coefficients:
                                        sma1 IO-19 IO-44 IO-55 IO-56 IO-80 IO-127
         ma1
                 ma2
                        ma3
                                 ma4
                                                                                          IO-151 IO-198
             -0.3522 0.0487
                             -0.1864 -0.8806
                                             0.0015 -1e-03 0.0012
                                                                    -0.0015 4e-04 0.0018
                                                                                          -6e-04 0.0012
     -0.4843
s.e. 0.0677
             0.0741 0.0805
                             0.0664 0.0446 0.0003 3e-04 0.0003
                                                                    0.0003 3e-04 0.0003
                                                                                          3e-04 0.0003
sigma^2 estimated as 1.198e-07: log likelihood = 1710.97, aic = -3395.95
```

> model3

```
Call: arima(x =
```

```
arima(x = Water, order = c(0, 1, 4), seasonal = list(order = c(0, 1, 1), period = 12), fixed = c(NA, NA, 0, rep(NA, 10)), io = c(19, 44, 55, 56, 80, 127, 151, 198))
```

Coefficients:

```
IO-44 IO-55 IO-56 IO-80 IO-127 IO-151 IO-198
                                   sma1 IO-19
        ma1
                ma2 ma3
                            ma4
     -0.5036 -0.3529
                    0 -0.1707
                                -0.8832 0.0015
                                               -1e-03 0.0012 -0.0015
                                                                    3e-04
                                                                          0.0017 -6e-04 0.0012
                                0.0445 0.0003
                                               3e-04 0.0003 0.0003
                                                                    3e-04 0.0003 3e-04 0.0003
s.e. 0.0760 0.0733
                         0.0553
```

 $sigma^2 = 1.164e - 07$: log likelihood = 1710.82, aic = -3397.64

Fig 13 Diagnostic Display for ARIMA(0,1,4)*(0,1,1) with io=19,44,55,56,80,127,151,198 and ma3 = 0

Model Checking

Fig 14 Residuals from the ARIMA(0,1,4)*(0,1,1) Model with io=19,44,55,56,80,127,151,198 and ma3 = 0

Fig 15 ACF of Residuals from the ARIMA(0,1,4)*(0,1,1) Model with io=19,44,55,56,80,127,151,198 and ma3 = 0

Conclusion

- Time series analysis of 23 years of monthly water usage shows a strong upward trend and a seasonal pattern.
- ARIMA $(0, 1, 4) \times (0, 1, 1)_{12}$ model with IO = 19, 44, 55, 56, 80, 127, 151, 198 and ma3 = 0.
- Compared with winter months, people usually take more showers and play more water games in summer, an as a result, the demand for water is higher during the summer months and lower during the winter time.