{targets}

What is {targets}?

"a Make-like pipeline tool for statistics and data science in R"

- manage a sequence of computational steps
- only update what needs updating
- ensure that the results at the end of the pipeline are still valid

Script-based workflow

01-data.R

```
1 library(tidyverse)
2 data <- read_csv("data.csv", col_types = cols()) %>%
3     filter(!is.na(Ozone))
4 write_rds(data, "data.rds")
```

02-model.R

```
1 library(tidyverse)
2 data <- read_rds("data.rds")
3 model <- lm(Ozone ~ Temp, data) %>%
4     coefficients()
5 write_rds(model, "model.rds")
```

03-plot.R

```
1 library(tidyverse)
2 model <- read_rds("model.rds")
3 data <- read_rds("data.rds")
4 ggplot(data) +
5     geom_point(aes(x = Temp, y = Ozone)) +
6     geom_abline(intercept = model[1], slope = model[2])
7 ggsave("plot.png", plot)</pre>
```

Problems with script-based workflow

- Reproducibility: if you change something in one script, you have to remember to re-run the scripts that depend on it
- Efficiency: that means you'll usually rerun all the scripts even if they don't depend on the change
- Scalability: if you have a lot of scripts, it's hard to keep track of which ones depend on which
- File management: you have to keep track of which files are inputs and which are outputs and where they're saved

{targets} workflow

R/functions.R

```
get data <- function(file) {</pre>
      read csv(file, col types = cols()) %>%
 3
        filter(!is.na(Ozone))
 5
   fit model <- function(data) {</pre>
      lm(Ozone ~ Temp, data) %>%
        coefficients()
10
   plot model <- function(model, data) {</pre>
12
      ggplot(data) +
13
        geom point(aes(x = Temp, y = Ozone)) +
```

{targets} workflow

_targets.R

```
library(targets)
 3 tar source()
   tar option set(packages = c("tidyverse"))
 5
   list(
     tar target(file, "data.csv", format = "file"),
     tar target(data, get data(file)),
     tar target(model, fit model(data)),
10
     tar target(plot, plot model(model, data))
|11|
```

Run tar_make() to run pipeline

{targets} workflow

Targets are "hidden" away where you don't need to manage them

```
— _targets.R

— data.csv

— R/

| — functions.R

— _targets/

| — objects

| — data

| — model

| — plot
```

My typical workflow with {targets}

- 1. Read in some data and do some cleaning until it's in the form I want to work with.
- 2. Wrap that in a function and save the file in R/.
- 3. Run use_targets() and edit _targets.R accordingly, so that I list the data file as a target and clean_data as the output of the cleaning function.
- 4. Run tar_make().
- 5. Run tar_load(clean_data) so that I can work on the next step of my workflow.
- 6. Add the next function and corresponding target when I've solidified that step.

_targets.R tips and tricks

```
list(
      tar_target(
        data file,
 3
        "data/raw data.csv",
       format = "file"
 5
 6
      ),
      tar target(
        raw_data,
 8
        read.csv(data file)
10
11
     tar_target(
12
        clean_data,
13
        clean_data_function(raw_data)
```

_targets.R tips and tricks

```
preparation <- list(</pre>
      tar_target(
 3
        clean_data,
 5
        clean data function(raw data)
 6
   modeling <- list(</pre>
      tar target(
        linear model,
10
11
        linear_model_function(clean_data)
12
13
```

By grouping the targets into lists, I can easily comment out chunks of the pipeline

targets.R tips and tricks

```
1 ## prepare ----
   prepare <- list(</pre>
 3
      ### cleanData.csv ----
      tar target(
 5
        cleanData.csv,
        file.path(path to data,
 6
                   "cleanData.csv"),
        format = "file"
 8
10
      ### newdat ----
11
      tar target(
12
        newdat,
13
        read csv(cleanData.csv,
```

```
prepare
                          raw
cleanData.csv
                           log_res_raw
newdat
                           mult res raw
fulldat
                           ctc res raw
flow
                           tte res raw
loglinear
                           tte res raw very
                           all res raw
log_dat
log_dat_covid_mild...
                          imputation
log_dat_covid
                           mice params
                           cols_to_impute
log_est
log est severity
                           fulldat_imputed
loglinear_spon
                           log_dat_imputed
                           mice_comparison
log est spon
log_est_severity_spon
                          tabs figs
log est ind
                           descriptive table
log est severity ind
                           descriptive_table_o...
                           outcomes table
mult est
mult_est_severity
                           risk_plot
ctc
                           tte_plot
                           followup_tab
ctc dat
cases
                           testing_plot
                          all targets
controls
```

Key {targets} functions

- use_targets() gets you started with a _targets.R script to fill in
- tar_make() runs the pipeline and saves the results in _targets/objects/
- tar_make_future() runs the pipeline in parallel¹
- tar_load() loads the results of a target into the global environment (e.g., tar_load(clean_data))
- tar_read() reads the results of a target into the global environment (e.g., dat <- tar_read(clean_data))
- tar_visnetwork() creates a network diagram of the pipeline
- tar_outdated() checks which targets need to be updated
- tar_prune() deletes targets that are no longer in _targets.R
- tar_destroy() deletes the .targets/ directory if you need to burn everything down and start again

Advanced {targets}

"target factories"

repo status Active <u>tarchetypes</u> makes it easy to add certain kinds of common tasks to reproducible pipelines. Most of its <u>functions</u> create families of targets for <u>parameterized R Markdown</u>, <u>simulation studies</u>, and other general-purpose scenarios.

repo status Active stantargets is a workflow framework for Bayesian data analysis with cmdstanr. With concise, easy-to-use syntax, it defines versatile families of targets tailored to Bayesian statistics, from a single MCMC run with postprocessing to large simulation studies.

repo status Active Like stantargets, jagstargets is a workflow framework for Bayesian data analysis, with support for both single MCMC runs and large-scale simulation studies. It invokes <u>JAGS</u> through the <u>R2jags</u> package, which has nice features such as the ability to parallelize chains across local R processes.

{tarchetypes}: reports

Render documents that depend on targets loaded with tar_load() or tar_read().

- tar_render() renders an R Markdown document
- tar_quarto() renders a Quarto document (or project)

What does report. qmd look like?

```
2 title: "My report"
   ```{r}
 5 library(targets)
 6 tar load(results)
 7 tar load(plots)
 There were `r results$n` observations with a mean age of `r result
   ```{r}
|11 library(ggplot2)
12 plots$age plot
13
```

Because report qmd depends on results and plots, it will only be re-rendered if either of those targets change.

{tarchetypes}: branching

Using data from the National Longitudinal Survey of Youth,

_targets.R

```
1 library(targets)
 2 library(tarchetypes)
   tar source()
   targets setup <- list(</pre>
      tar target(
        CSV,
        "data/nlsy.csv",
        format = "file"
10
11
      tar target(
12
        dat,
13
        readr::read csv(csv,
14
          show col types = FALSE)
15
16)
```

R/functions.R

we want to investigate the relationship between age at first birth and hours of sleep on weekdays and weekends among moms and dads separately

Option 1

Create (and name) a separate target for each combination of sleep variable ("sleep_wkdy", "sleep_wknd") and sex (male: 1, female: 2):

```
targets 1 <- list(</pre>
     tar target(
 3
       model 1,
       model function(outcome var = "sleep wkdy", sex val = 1, dat =
     tar target(
       coef 1,
 8
       coef function(model 1)
10
```

... and so on...

Option 2

Use tarchetypes::tar_map() to map over the combinations for you (static branching):

```
targets 2 <- tar map(</pre>
     values = tidyr::crossing(
        outcome = c("sleep wkdy", "sleep wknd"),
 3
       sex = 1:2
 5
     tar target(
       model 2,
 8
       model function(outcome var = outcome, sex val = sex, dat = dat
     tar_target(
10
111
       coef 2,
12
       coef function(model 2)
13
```

Option 2, cont.

Use tarchetypes::tar_combine() to combine the results of a call to tar_map():

```
combined <- tar_combine(
combined_coefs_2,
  targets_2[["coef_2"]],
  command = vctrs::vec_c(!!!.x),

tar_read(combined_coefs_2)</pre>
```

command = vctrs::vec_c(!!!.x) is the default, but you can supply your own function to combine the results

Option 3

Use the pattern = argument of tar_target() (dynamic branching):

```
1 targets 3 <- list(</pre>
 2
     tar target(
       outcome_target,
 3
       c("sleep wkdy", "sleep wknd")
 5
     tar_target(
 6
       sex target,
      1:2
 8
     tar_target(
10
       model 3,
11
       model_function(outcome_var = outcome_target, sex_val = sex_tar
12
13
       pattern = cross(outcome target, sex target)
```

Branching

Dynamic	Static
Pipeline creates new targets at runtime.	All targets defined in advance.
Cryptic target names.	Friendly target names.
Scales to hundreds of branches.	Does not scale as easily for tar_visnetwork() etc.
No metaprogramming required.	Familiarity with metaprogramming is helpful.

Branching

- The book also has an example of using metaprogramming to map over different functions
 - i.e. fit multiple models with the same arguments
- Static and dynamic branching can be combined
 - e.g. tar_map(values = ..., tar_target(..., pattern
 = map(...)))
- Branching can lead to slowdowns in the pipeline (see book for suggestions)

{tarchetypes}: repetition

tar_rep() repeats a target multiple times with the same arguments

```
targets 4 <- list(</pre>
     tar_rep(
       bootstrap coefs,
       dat >
          dplyr::slice sample(prop = 1, replace = TRUE) |>
         model_function(outcome_var = "sleep_wkdy", sex_val = 1, dat
 6
         coef function(),
      batches = 10,
       reps = 10
10
11 )
```

The pipeline gets split into batches x reps chunks, each with its own random seed

{tarchetypes}: mapping over iterations

```
1 sensitivity_scenarios <- tibble::tibble(
2 error = c("small", "medium", "large"),
3 mean = c(1, 2, 3),
4 sd = c(0.5, 0.75, 1)
5 )</pre>
```

tar_map_rep() repeats a target multiple times with different arguments

```
1 targets_5 <- tar_map_rep(
2   sensitivity_analysis,
3   dat |>
4    dplyr::mutate(sleep_wkdy = sleep_wkdy + rnorm(nrow(dat), mean,
5    model_function(outcome_var = "sleep_wkdy", sex_val = 1, dat =
6    coef_function() |>
7    data.frame(coef = _),
8   values = sensitivity_scenarios,
```

```
9 batches = 10,
10 reps = 10
11 )
```

{tarchetypes}: mapping over iterations

```
1 tar_read(sensitivity_analysis) |> head()
```

Ideal for sensitivity analyses that require multiple iterations of the same pipeline with different parameters

```
1 tar_read(sensitivity_analysis) |>
2 dplyr::group_by(error) |>
3 dplyr::summarize(q25 = quantile(coef, .25),
4 median = median(coef),
5 q75 = quantile(coef, .75))
```

Summary

- {targets} is a great tool for managing complex workflows
- {tarchetypes} makes it even more powerful
- The user manual is a great resource for learning more

Exercises

We'll clone a repo with {targets} already set up and add some additional steps to the analysis.