

CONTENIDOS

ANÁLISIS LÉXICO	3
CORRIENDO GETTOKEN()	7
SCANNER Y ESPACIOS	7
El scanner no sabe si es DO o DO1OJ se debe avanzar hasta eliminar la ambigüedad	8
GENERADORES DE SCANNERS	8
DETECCIÓN DE TOKENS	8
LENGUAJE	9
PREFIJOS DE UNA HILERA	12
SUFIJOS DE UNA HILERA	12
SUBHILERA DE UNA HILERA	13
CONCATENACIÓN DE HILERAS	13
CONCATENACIÓN DE HILERAS	14
POTENCIA N-ÉSIMA DE UNA HILERA	14
MULTIPLICAR DE ALFABETOS	15
CONJUNTO Σ*	15
CONJUNTO 5+	17

OBJETIVO DEL CURSO

Comprarle a Torres un lapicero que escanea colores, para que su existencia tenga sentido.

ANÁLISIS LÉXICO

Toma el código fuente y los descompone en tokens (categoría léxica mínima).

Las palabras usualmente son lo que aprendemos primero de un idioma foráneo, lo más básico que podemos entender.

Los seres humanos a partir de la información que escuchamos creamos el lenguaje.

Lo más importante del analizador léxico es reconocer las palabras (Tokens) y el tipo de estas.

- Identificadores
- Literales
- Palabras reservadas
- Operadores

El trabajo termina al generar código al generar código intermedio o inclusive puede generar lenguaje máquina.

No es la única organización posible, pero es la más usada.

Parser es el cliente del scanner (solicita cosas al scanner).

El Parser llama o utiliza getToken() para obtener el siguiente token

Token familia de lexemas, es una categoría.

- Un solo elemento (LEFT_PARENTHESES).
- Cantidad pequeña de elementos (INT, FLOAT, CHAR).
- Conjunto infinito (Números, hileras).

Lexema ejemplo particular de la variable; k, cont, numPollitos, Izcar_1

• Concatenación de letras símbolos.

Hay una relación de 1 a N entre el token y los lexemas.

CORRIENDO GETTOKEN()

El scanner mantiene una posición actual.

Omite los espacios (blancos, saltos de línea, tabs, comentarios), avanza hasta reconocer un token completo y lo devuelve (la ESTRUCTURA).

SCANNER Y ESPACIOS

Usualmente no hay un token que represente espacios, pero en Python estos son importantes.

Hay que ignorarlos, en **Fortran** se eliminaban antes de compilar, pero no era una buena idea, se generaban ambigüedades que sobrecargaban de tareas al scanner, por lo tanto, los espacios son nuestros amigos.

AMBIGÜEDADES

Fortran

Ejemplo

k = k + J

10 CONTINUE

El scanner no sabe si es DO o DO1OJ se debe avanzar hasta eliminar la ambigüedad.

Aquí se da cuenta que es DO y no una variable.

GENERADORES DE SCANNERS

Hay mucha teoría y experiencia, la mayor parte se puede automatizar (Lex,Flex). Generarlos es fácil, pero siempre es necesario agregar código extra.

DETECCIÓN DE TOKENS

Es la función principal del scanner (Tokenizador).

¿Cómo lo logra?

- Lenguajes formales
- Teoría de Autómatas
- DFA

Recomendaciones: Leer "Introduction to automata theory languages and computation".

LENGUAJE

Lenguaje:

- Habilidad para adquirir y usar complejos sistemas de comunicación.
- Conjunto de sonidos articulados con que el humano manifiesta lo que piensa o siente.

Lingüística: ciencia que estudia el lenguaje humano y las lenguas.

Lenguajes Natural

Español, inglés, francés.

Lenguajes de computadora

Español, inglés, francés.

Lenguaje Matemático

Lenguajes Formales

Símbolos primitivos y reglas para unir esos símbolos están formalmente especificados.

Símbolos (termino primitivo = algo que se asume)

Es la representación convencional de un concepto, idea, aunque realmente es arbitrario.

Alfabeto

Conjunto de símbolos / finito no vacío.

∑: alfabeto

\(\): \{0, 1\}

\(\): {A, T, C, G}

\(\) {Ala, Arg, Asn, Cys, Gln, Leu, Trp} -> aminoácidos

Hilera sobre \sum , secu<u>encia</u> (palabras, frases) de longitud arbitraria formada con símbolos tomados de un alfabeto \sum .

Ejemplos:

Sea **\(\sum_{1} \)** {0, 1}

10101111

NULL

1111

101010111001

Tiene un orden, puede haber símbolos repetidos.

ATCGTTCG

Α

NULL

GG

Longitud de hilera

Cantidad de símbolos.

|w|: sea w una hilera sobre \sum .

|GATA| = 4

|TGCCGTATGCATGACTAGAGT| = 21

 $|\delta| = 0$ es una hilera vacía se puede representar con épsilon o lambda.

PREFIJOS DE UNA HILERA

w sobre alfabeto \sum , el prefijo de w es una hilera de los primeros $\mathbf k$ símbolos desde la izquierda.

- $0 \le k \le |w|$.
- k<|w| prefijo propio.
- k=0 prefijo vacío.
- & es prefijo de cualquier hilera.

$$\sum$$
: {A, T, C, G}
k = 6

TGCCGTATGCATGACTAGAGT

SUFIJOS DE UNA HILERA

w sobre alfabeto \sum , el prefijo de w es una hilera de los últimos k símbolos desde la derecha.

- 0 <= k <= |w|.
- k<|w| sufijo propio.
- k=0 sufijo vacío.
- & es sufijo de cualquier hilera.

$$\sum$$
: {A, T, C, G}
k = 6

TGCCGTATGCATGACTAGAGT

SUBHILERA DE UNA HILERA

w sobre alfabeto \sum , el prefijo de w es una hilera de los k símbolos desde la derecha a partir de una posición j.

- $0 \le k, j \le |w|$.
- $0 \le k + j \le |w|$.
- •
- k + j < |w| y j > 0 subhilera propia.
- k=0 subhilera vacía.
- & es subhilera de cualquier hilera.

$$k = 6, j = 6$$

TGCCGTATGCATGACTAGAGT

CONCATENACIÓN DE HILERAS

Sean v y w sobre alfabeto \sum .

Si

$$w = b1,b2,b3,...,bk$$

entonces la concatenación de v y w es a1, a2, a3, ..., ak b1,b2,b3,..., bk y se denota como vw.

Ejemplos

Sea
$$\sum = \{0, 1\}$$

$$v = 11$$

$$w = 01000$$

$$x = 1101$$

$$y = 011101110$$

Entonces

$$vw = 1101000$$

$$xy = 1101011101110$$

$$yy = 011101110011101110$$

CONCATENACIÓN DE HILERAS

• Es asociativa.

$$vwx = (vw)x = v(wx)$$

- No es conmutativa.
- Longitudes se suman.

$$|vw| = |v| + |w|$$

• Hay un elemento neutro de la concatenación.

$$\delta v = v\delta = v$$

POTENCIA N-ÉSIMA DE UNA HILERA

- Sea v una hilera sobre ∑.
- La potencia n-ésima de v es la hilera resultado de concatenar n copias de v.

- $\mathbf{v}^0 = \mathbf{g}$

Ejemplos

$$v = ATTAC$$

$$v^2 = ATTACATTAC$$

MULTIPLICAR DE ALFABETOS

 \sum^k conjunto de todas las hileras sobre el alfabeto tales que tengan longitud de k.

Sea
$$\sum = \{0, 1\}$$

$$\sum_{i=1}^{2} = \{00, 01, 10, 11\}$$

$$\Sigma^3$$
 = {000, 001, 010, 011, 100, 101, 110, 111}

$$\sum\nolimits^{0}=\left\{ \mathbf{\delta}\right\}$$

CONJUNTO ∑*

Conjunto de hileras de cualquier longitud formadas únicamente a partir de símbolos del alfabeto Σ .

Conjunto infinito.

- 1. δ∈∑*
- 2. Si $w \in \Sigma^*$ $y \ a \in \Sigma$, entonces $wa \in \Sigma^*$

3. $w \in \Sigma^*$ solo si se puede ser construida desde δ usando el paso 2 repetidamente. Equivalentemente Σ^* =

$$\bigcup_{i=0}^{\infty} \Sigma^{i} \; = \; \Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{0} \cdots \, \cup \Sigma^{\infty}$$

Stephen Cole Kleene (1909-1994)

- Fue un lógico y matemático estadounidense.
- PhD Matemática de Princeton University.
- Estudio con Alanzo Church.
- Tenía trabajos en lógica.
- Creador de lenguaje formal.
- Cierre de Kleene ∑*.

CONJUNTO ∑+

Conjunto de hileras de longitud mayor a cero formadas únicamente a partir de símbolos del alfabeto Σ .

Conjunto infinito.

- 1. $a \in \Sigma$, $\Rightarrow a \in \Sigma^+$
- 2. $w \in \Sigma$, => $a \in \Sigma$, entonces $wa \in \Sigma^+$
- 3. $\mathbf{w} \in \Sigma^+$ solo si se puede ser construida desde \mathbf{b} usando el paso 2 repetidamente. Equivalentemente Σ^+ =

$$\bigcup_{i=0}^{\infty} \Sigma^{i}$$