## JK Latch and JK Flip-Flop

D Flip Flop ဟာ digital circuit design တွေမှာအသုံးများတဲ့ flip-flop တစ်ခုဖြစ်ပါတယ်။ ၄င်းအပြင်နောက်ထပ်အသုံးများတဲ့ flip flop နှစ်ခုရှိပါတယ်။ အဲဒါတွေကတော့ JK Flip flop နဲ့ T Flip-flop တို့ဖြစ်ကြပါတယ်။ ဆက်လက်ပြီးတော့ဆွေနွေးသွားပါဦးမယ်။

J-K Flip-flop ရဲ့ J နဲ့ K input တွေဟာ clock pulse ရဲ့ အတက်၊ အဆင်းနေရာမှာဘဲ input က data တွေဟာ Flip-flop ရဲ့ output ဆီကို ကူးပြောင်းသွားတဲ့အတွက် synchronous input တွေလို့ ခေါ်ပါတယ်။



ဘယ်ဘက်ကပုံရဲ့ clock အတက်မှာ J=1, K=0 ဖြစ်တဲ့အတွက်ကြောင့် clock အတက်မှာဘဲ SETဖြစ်ပါမယ်။ အရင်က SET ဖြစ်ခဲ့ရင် SET အဖြစ်မပြောင်းလဲ ဘဲကျန်ခဲ့မယ်။ ညာဘက်ပုံရဲ့ clock အတက်မှာ J=0, J=1 ဖြစ်တဲ့အတွက်တော့ clock အတက်မှာဘဲ RESET ဖြစ်ပါမယ်။



ဘယ်ဘက်ကပုံက J=1 နဲ့ K=1 ဖြစ်တဲ့အတွက် toggle ဖြစ်ပါမယ်။ ညာဘက်ကပုံက J=0 နဲ့ K=0 ဖြစ်တဲ့အတွက် အရင်က SET ဖြစ်ခဲ့ရင် SET ဖြစ်မှာဖြစ်ပြီးတော့ အရင်က RESET ဖြစ်ခဲ့ရင် RESET ဖြစ်မှာ ဖြစ်ပါတယ်။ No Change ပါ။ Truth Table ကိုအောက်မှာပြသထားပါတယ်ခင်ဗျာ။

| Inputs |   |     | Outputs          |                      |           |  |
|--------|---|-----|------------------|----------------------|-----------|--|
| J      | K | CLK | Q                | $\overline{\varrho}$ | Comments  |  |
| 0      | 0 | 1   | $Q_0$            | $\overline{Q}_0$     | No change |  |
| 0      | 1 | Ť   | 0                | 1                    | RESET     |  |
| 1      | 0 | 1   | 1                | 0                    | SET       |  |
| 1      | 1 | 1   | $\overline{Q}_0$ | $Q_0$                | Toggle    |  |

ကောင်းပါပြီ။ JK Flip Flop ကို Verilog HDL နဲ့ ရေးကြပါမယ်။

module 
$$jk_flip(j,k,clk,clrn,q)$$
; input  $j$ ,  $k$ ,  $clk$ ,  $clrn$ ; output reg  $q$ ; always @ (posedge  $clk$  or negedge  $clrn$ ) begin if (! $clrn$ )  $q <= 0$ ; else  $q <= j \& \sim q | \sim k \& q$ ;

end

## endmodule

အပေါ် က Verilog HDL Code မှာ JK Flip-flop ကိုတည်ဆောက်ဖို့ ရန်အတွက်  $q_n=jq(bar)+k(bar)q$  ကိုအသုံးပြုပါတယ်။ posedge ဆိုတာ clock အတက်ကိုပြောတာဖြစ်ပြီးတော့ negedge ဆိုတာ clock အဆင်းကိုပြောဖြစ်ပါတယ်။ jk flip-flip ကို Reset လုပ်မယ့် Code ကတော့ clrn ကို on ပေးမထားဘူးဆိုရင် q output ကို ဘာမီးမှမလင်းအောင် လုပ်မယ့် if (!clrn) q <= 0; ဖြစ်ပါ တယ်။

| Node Name | Direction | Location | I/O Bank | VREF Group | Fitter Location |
|-----------|-----------|----------|----------|------------|-----------------|
| in_ clk   | Input     | PIN_N5   | 2        | B2_N0      | PIN_N5          |
| Lin_ clrn | Input     | PIN_D12  | 7        | B7_N0      | PIN_D12         |
| in_ j     | Input     | PIN_C10  | 7        | B7_N0      | PIN_C10         |
| in_ k     | Input     | PIN_C11  | 7        | B7_N0      | PIN_C11         |
| out q     | Output    | PIN_A8   | 7        | B7_N0      | PIN_A8          |

JK Latch

## ပြန်လုပ်ပါမယ်။ FPGA board ထဲကိုထည့်ပြီးရင်စမ်းလို့ ရပါပြီ။



DE10-Lite ထဲမှာထည့်ပြီးတော့ လက်တွေ့စမ်းထားတဲ့ ပုံတွေကိုအောက်မှာကြည့်နိုင်ပါတယ်။









