Assignment Three

1953871 邓泉

Question 1

P(i,j): 当A还需赢下 i 场,B还需赢下 j 场时,A拿下比赛的可能性。

a. 给出P(i, j)的递推关系式

```
i > 0, j > 0: P(i, j) = p \times P(i - 1, j) + q \times P(i, j - 1)
i = 0, j > 0: P(i, j) = P(0, j) = 1
i > 0, j = 0: P(i, j) = P(i, 0) = 0
```

b. 计算: 当一场比赛A的胜率为0.4时, A赢下7场制系列赛的概率

$$n = 7, p = 0.4, q = 1 - p = 0.6$$

```
0.400000
P(1, 2) = p \times P(0, 2) + q \times P(1, 1) = 0.400000 \times 1.000000 + 0.600000 \times 0.400000 =
P(1, 3) = p \times P(0, 3) + q \times P(1, 2) = 0.400000 \times 1.000000 + 0.600000 \times 0.640000 =
0.784000
0.870400
0.352000
P(2, 4) = p \times P(1, 4) + q \times P(2, 3) = 0.400000 \times 0.870400 + 0.600000 \times 0.524800 =
0.663040
0.064000
0.317440
0.455680
0.025600
0.087040
```

```
P(4, 3) = p \times P(3, 3) + q \times P(4, 2) = 0.400000 \times 0.317440 + 0.600000 \times 0.087040 = 0.179200

P(4, 4) = p \times P(3, 4) + q \times P(4, 3) = 0.400000 \times 0.455680 + 0.600000 \times 0.179200 = 0.289792
```

$i \setminus j$	0	1	2	3	4
0		1	1	1	1
1	0	0.400000	0.640000	0.784000	0.870400
2	0	0.160000	0.352000	0.524800	0.663040
3	0	0.064000	0.179200	0.317440	0.455680
4	0	0.025600	0.087040	0.179200	0.289792

The answer is **0.289792**.

c. 写出使用动态规划法解决上述问题的伪代码,分析其时间复杂度与空间复杂度

```
//参数: 获胜所需赢得比赛的数量 - n
// A单场比赛的胜率 - p
//返回: A在系列赛获胜的概率
probability_A_win (n, p)
{
    q <-- 1 - p;
    // P(0,j) = 1(j>0)
    for j \leftarrow 1 to n do
        P[0,j] \leftarrow 1.0
    // P(i,0) = 0(i>0)
    for i \leftarrow 1 to n do
        P[i,0] \leftarrow 0.0
    // P(i,j) = p * P(i-1, j) + q * P(i, j-1)
    for i \leftarrow 1 to n do
        for j \leftarrow-- 1 to n do
            P[i][j] \leftarrow p * P[i-1, j] + q * P[i][j-1]
    return P[n][n]
}
```

时间复杂度	空间复杂度
$\Theta(n^2)$	$\Theta(n^2)$

Question 2

为下列给定的图构建最小生成树 (MST), 并计算其权重。

a. Using Prim's Algorithm

Tree vertices	Remaining vertices	diagram
1(-,0)	$2(1,28) \ 3(-,\infty) \ 4(-,\infty) \ 5(-,\infty)$ $6(1,10) \ 7(-,\infty)$	10 10 14 16 6 25 24 18 12
6(1, 10)	$2(1,28) \ 3(-,\infty) \ 4(-,\infty) \ 5(6,25)$ $7(-,\infty)$	10 14 28 2 10 14 16 3 25 5 24 18 12
5(6, 25)	$2(1,28)\ 3(-,\infty)\ 4(5,22)\ 7(5,24)$	10 10 14 16 16 25 5 24 18 12
4(5,22)	$2(1,28)\ 3(4,12)\ 7(4,18)$	10 14 14 16 16 25 24 18 12
3(4, 12)	$2(3,16)\ 7(4,18)$	10 14 14 16 6 7 18 12 3
2(3, 16)	7(4,14)	10 14 16 16 3 25 5 22 4 12
7(4,14)		10 14 16 6 7 18 12

the cost of MST: 10+25+22+12+16+14 = **99**

b. Using Kruskal's Algorithm

Tree edges	Sorted list of edges	diagram
	ab (1) cf(2) ef(3) bc(4) ac(5) cd(6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 G 5 C 2 f
ab(1)	ab(1) cf (2) ef(3) bc(4) ac(5) cd(6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 G 5 C 2 f 12
cf(2)	ab(1) cf(2) ef (3) bc(4) ac(5) cd(6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 11 10 3 C 2
ef(3)	ab(1) cf(2) ef(3) bc (4) ac(5) cd(6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 10 3 C 2 f
bc(4)	ab(1) cf(2) ef(3) bc(4) ac(5) cd (6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 3 G 5 C 2 f
cd(6)	ab(1) cf(2) ef(3) bc(4) ac(5) cd(6) be(7) bd(8) df(9) eg (10) de(11) fg(12)	7 e d d 3 G d 3 G d 12
eg(10)	ab(1) cf(2) ef(3) bc(4) ac(5) cd(6) be(7) bd(8) df(9) eg(10) de(11) fg(12)	a 4 d 3 11 10 3 12 5 C 2

the cost of MST: 1+2+3+4+6+10 = 26