14 Zugriffskontrolle: Einleitung (weitergeführt), Bell LaPadula

Satz 14.1 (Safety-Problem). Gegeben ein Sicherheitsmodell, eine (initiale) Zugriffsmatrix M und ein Zugriffsrecht r. Die Entscheidung, ob M sicher in Bezug auf r ist, ist unentscheidbar.

Proof. Wir nutzen das Halteproblems für Turingmaschinen (unentscheidbar):

- Turingmaschine $A = (Q, \Sigma, \Gamma, q_0, \delta, F)$ Übergangsfunktion $\delta : Q \times \Gamma \longrightarrow Q \times \Gamma \times \{\text{links, rechts}\}$
- \bullet O.B.d.A. linksseitig beschränktes Band, nur ein Endzustand q_f
- Halteproblem: Hält A bei Eingabe mit leerem Band (in q_f) (nur Blanksymbole B in den Zellen des Bandes)
- Start: A ist im Zustand q_0 , Kopf steht auf erster Zelle.

Idee: Sicherheitsmodell soll A simulieren:

- Zugriffsrechte $R = Q \cup \Gamma \cup \{\text{own}, \text{end}\}$
- Subjekte, Objekte: $S = O = \{c_1, c_2, \dots\}$ (Zellen von A)
- Zugriffsmatrix wird durch δ modifiziert (siehe unten)
- Ziel: Recht q_f wird hinzugefügt gdw. A hält (in q_f)

Anfangskonfiguration des Sicherheitsmodells $M_1 = \frac{c_1}{c_1 \mid \{q_0, B, \text{end}\}}$

Bedeutung: A ist in Zustand q_0 , liest B und hat bisher nur Zelle 1 besucht.

Weiteres Beispiel: A hat Zellen 1-4 mit wxyz beschrieben und steht im Zustand p auf Zelle 2

	c_1	c_2	c_3	c_4
c_1	{w}	{own}		
c_2		$\{x, p\}$	{own}	
c_3			{y}	{own}
c_4				$\{z, end\}$

Bedeutung own: own $\in m_{c_i c_j}$ gdw. j = i + 1 (aufeinanderfolgende Zellen) Beschreibung der Matrixoperationen über die Übergangsfunktion:

```
• Für \delta(q, x) = (p, y, \text{links}):
        command c_{qx}(c,c')
             if own \in m_{cc'}, q, x \in m_{c'c'} then
                  delete q, x from m_{c'c'}
                  enter y into m_{c'c'}
                  enter p into m_{cc}
             end if
        end
• Für \delta(q, x) = (p, y, \text{rechts}) zwei Fälle (TM geht in alte oder neue Zelle)
        command c_{qx}(c,c') (schon besuchte Zelle wird erneut besucht)
             if own \in m_{cc'}, q, x \in m_{cc} then
                  delete q, x from m_{cc}
                  enter y into m_{cc}
                  enter p into m_{c'c'}
             end if
        end
        command c'_{qx}(c,c') (neue Zelle wird besucht)
             if end, q, x \in m_{cc} then
                  delete end, q, x from m_{cc}
                  enter y into m_{cc}
                  create c'
                  enter end, p, B into m_{c'c'}
                  enter own into m_{cc'}
             end if
        end
```

Es gilt: Recht q_f zu M hinzugefügt gdw. A Zustand q_f erreicht. Also: Alg. für Safety-Problem würde auch Alg. für Halteproblem liefern. \square

Zwei Kategorien von Sicherheitsmodellen

- benutzerbestimmt (Discretionary Access Control, DAC): Nutzer legen Zugriffsrechte ihrer Dateien fest (gängige OSs)
- systembestimmt (Mandatory Access Control, MAC): Meißt für kritische Systeme (Geheimdienste, Militär)

Bell-LaPaduda Sicherheitsmodell

David Bell and Leonard LaPadula (1973) im Auftrag der US Air Force

- Erstes verifiziertes Sicherheitsmodell
- Erweiterung des Matrixmodells um systembestimmte Eigenschaften
- Sicherheitsziel: Vertraulichkeit (Informationsflusskontrolle)

Einfaches Bell-LaPaduda-Modell:

- Zugriffsrechte $R = \{\text{read}, \text{write}, \text{execute}, \text{control}\}$
- Sicherheitsmarken $SM = \{\text{unklassifiziert}, \text{vertraulich}, \text{geheim}, \text{streng geheim}\}$ mit entsprechender Ordnung \leq : unklassifiziert \leq vertraulich \leq geheim \cdots Man spricht daher auch von einem Multi-Level-Security-Modell (MLS)
- Menge von Subjekten S und Objekten O mit
 - clearance $cl: S \longrightarrow SM$ (Subjekte erhalten Ermächtigung)
 - classification $cl: O \longrightarrow SM$ (Objekte erhalten Einstufung)
 - Zugriffsrechte von Subjekten an Objekten: Matrix $M=(m_{s,o})_{\substack{s\in S\\o\in O}}$
- Zugriffskontrolle:
 - (i) Kontrolle von Zugriffen über Zugriffsmatrix M
 - (ii) systembestimmt I: Simple Security Property, no read-up read $\in m_{so} \Rightarrow cl(o) \leq cl(s)$: lesen nur mit entsprechender Ermächtung
 - (iii) systembestimmt II: \star -Property, no write-down write $\in m_{so} \Rightarrow cl(s) \leq cl(o)$: kein Informationsfluss nach unten

(iv) systembestimmt III: Strong Tranquility Property: Nur vertrauenswürdige Personen können M und cl ändern (z.B. Sicherheitsbeauftragte)

Formalisierung:

- Zustände: Tripel (b, M, cl) mit
 - $-b = ((s_1, o_1, r_1), (s_2, o_2, r_2), \dots)$: Aktuelle Zugriffe mit r_i durch Subjekt s_i auf Objekt o_o
 - M: aktuelle Zugriffsmatrix
 - cl: aktuelle Ermächtigungs-/Einstufungsfunktion
- Sicherer Zustand: Alle Regeln werden beachtet
- Zustandsübergänge, Änderung des Tripels (b, M, cl)
- Sichere Zustandsübergänge:
 - Änderung von b durch Nutzer unter Beachtung von (i), (ii), (iii)
 - Änderung von M, cl unter Beachtung von (iv)

Satz 14.2 (Sicherheitstheorem). Nachfolgezustand ist sicher, wenn

- Vorgänger sicher ist, und
- ein sicherer Übergang genutzt wurde.

Problem 1: Need-to-Know-Prinzip aufwändig umsetzbar Nur in Zugriffsmatrix: Für alle Subjekte und Objekte

Lösung: Festlegung von Zuständigkeitsbereichen

Erweiterung des Modells:

- ullet Menge von Zuständigkeitsbereichen Z z.B. Links-, Rechtsterrorismus, Org. Kriminalität, Islamismus, ...
- Sicherheitsklassen $SK = SM \times \mathcal{P}(Z)$ mit partieller Ordnung \leq $(A, B) \leq (A', B') :\iff A \leq A'$ und $B \subseteq B'$

- \bullet Erweiterung der Funktionen cl zu
 - $-sc: S \longrightarrow SK$. Bedeutung sc(s) = (A, B)Subjekt s hat die Ermächtung As ist Subjekt im Zuständigkeitsbereich b für alle $b \in B$.
 - $-sc: O \longrightarrow SK$: Bedeutung sc(o) = (A, B)Objekt o hat die Eintstufung Ao ist Objekt im Zuständigkeitsbereich b für alle $b \in B$.

Übung: Wie müssen die Eigenschaften (i) und (iii) angepasst werden?

Beispiel. Zwei Sicherheitsmarken: $SM = \{\text{secret}, \text{top secret}\}\$

Zwei Zuständigkeitsbereiche: $Z = \{\text{Linksterrorismus}, \text{Rechtsterrorismus}\}.$

Darstellung von $(SM \times \mathcal{P}(Z), \leq) : ((A, B) \to (A', B') \text{ heißt } (A, B) \leq (A', B')$

Formal: SK zusammen mit \leq bildet einen Verband:

- (SK, \leq) ist eine partielle Ordnungsrelation (transitive, reflexive und antisymmetrische)
- Für je zwei Elemente $A, B \in SK$ gilt:
 - es gibt eindeutiges Infimum glb $(A, B) \in SK$ (greatest lower bound) d.h. glb $(A, B) \le A, B$ und für alle $L \le A, B$ gilt $I' \le \text{glb}(A, B)$.
 - es gibt eindeutiges Supremum lub $(A, B) \in SK$ (least upper bound) d.h. lub $(A, B) \ge A, B$ und für alle $U \ge A, B$ gilt $U \ge \text{lub}(A, B)$.
- Informationsfluss nur über die Halbordnung
- Erweitertes BLP: Bsp. für verbandbasiertes Informationsflussmodell

Problem 2: Kein Schreiben von oben nach unten Vorgesetzter kann keine Anweisung nach unten erteilen

Lösung: Zeitlich beschränkte untere Sicherheitsklasse Es gibt für Subjekte zwei Funktionen

- $sc_s(s)$: Sicherheitsklasse von Subjekt s
- $sc_c(s)$: aktuelle Sicherheitsklasse von Subjekt sAktuelle Klasse wird vom Nutzer selbst festgelegt
- Es gilt stets $sc_c(s) \leq sc_s(s)$ Sicherheitsklasse dominiert die aktuelle Sicherheitsklasse

Übung: Wie muss die Eigenschaften (iii) angepasst werden?

Problem 3: Kein Integritätsschutz

- *-property: Erlaubt schreiben nach oben und damit Änderung eingestufter Informationen
- Beispiel für Sicherheitsmodelle für Integritätsschutz: Biba (Übung)

Problem 4: Keine Erfassung verdeckter Informationskanäle Kanäle, die nicht für Informationsfluss vorgesehen sind

- Beispiel. Ressourcen-Konflikt: High-Level-Prozess erzeugt eine Datei, so dass ein Low-Level-Prozess eine Fehlermeldung erhält, wenn eine Datei mit gleichem Namen erzeugt wird
 - High-Level-Prozess kann gemeinsam genutzte Ressourcen (Position des Festplattenkopfes, Inhalt des Caches) in einem Zustand hinterlassen, so dass der Low-Level-Prozess anhand von Antwortzeiten zusätzliche Informationen gewinnen kann (Seitenkanalangriff)

Lösung: Nächste Woche