Set de subiecte : varianta A

Subjectul I (3 puncte)

(1.pct.) a) În spațiul vectorial $(\mathbf{R}^2, \mathbf{R})$, se consideră vectorul x = (-16,10) și reperul $B = (b_1 = (-4,3), b_2 = (12,-7))$. Folosind tehnica de pivotare să se determine matricea $[x]_B$ a coordonatelor vectorului x în reperul B.

(1.pct.) b) Se consideră funcționala pătratică definită pe $(\mathbf{R}^3, \mathbf{R})$,

$$V(x) = -x_1^2 + x_2^2 + 2x_3^2 - 2x_1x_3 + 2x_2x_3$$
, unde $x = (x_1, x_2, x_3)$.

Folosind metoda lui Iacobi determinați o formă canonică a funcționalei pătratice și precizați natura ei.

(1.pct.) c) În spațiul vectorial $C_{\mathbf{R}}([0,1])$, al funcțiilor continue reale definite pe intervalul [0,1], dotat cu produsul

scalar
$$\langle f,g\rangle = \int_{0}^{1} f(t)g(t)dt$$
, să se calculeze $\langle f,g\rangle$ și $\cos \angle (f,g)$ pentru $f(x)=x^{4}$ și $g(x)=-4x$.

Subjectul II (2 puncte)

(1.pct.) a) Fie operatorul liniar $U: \mathbb{R}^3 \to \mathbb{R}^3$,

$$U(x) = (-2x_1 - 2x_2 + x_3, -2x_1 + x_2 - 2x_3, x_1 - 2x_2 - 2x_3), \forall x = (x_1, x_2, x_3) \in \mathbf{R}^3.$$

Aflați valorile proprii ale operatorului și subspațiile proprii asociate acestora.

(1.pct.) b) Să se determine soluția generală a sistemului de ecuații diferențiale liniare

$$\begin{cases} y'(x) = -2y(x) + 3z(x) \\ z'(x) = 3y(x) - 2z(x) \end{cases}, \text{ unde } x \in \mathbf{R}.$$

Subjectul III (2 puncte)

(1.pct.) a) Se consideră subspațiul $\mathbf{X} = span(\{(1,0,1),(0,1,1),(1,2,3)\})$ în $(\mathbf{R}^3,\mathbf{R})$. Să se găsească o bază ortonormată pentru \mathbf{X} (folosind procedura Gram-Schmidt) și pentru \mathbf{X}^{\perp} .

(1.pct.) b) Să se definească adjunctul unui operator liniar în contextul spațiilor unitare. Enunțati principalele trei proprietăți ale adjunctului unui operator liniar.

Subjectul IV (2 puncte)

(1.pct.) a) Definiți acoperirea liniară a unei mulțimi de vectori. Arătați, în spațiul vectorial (V, K), că dacă X_1, X_2 sunt două subspații vectoriale, atunci: $X_1 + X_2 = span_K(X_1 \cup X_2)$.

(1.pct.) b) Să se verifice că într-un spațiu euclidian avem

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \text{ vectori }.$$

- 1) Punctajul maxim îl obține soluția corectă, completă și cu toate justificările necesare, într-o redactare clară și ușor lizibilă.
- 2) În timpul examenului este interzisă a) folosirea materiale ajutătoare; b) utilizarea tehnicii electronice (telefoane mobile, tablete grafice, ...); c) deranjarea bunei desfășurări a examenului și comunicarea cu colegii.

Set de subiecte : varianta B

Subjectul I (3 puncte)

(1.pct.) a) În spațiul vectorial $(\mathbf{R}^2, \mathbf{R})$, se consideră vectorul x = (-6.7) și reperul $B = (b_1 = (2.1), b_2 = (4.-3))$. Folosind tehnica de pivotare să se determine matricea $[x]_B$ a coordonatelor vectorului x în reperul B.

(1.pct.) b) Se consideră funcționala pătratică definită pe $(\mathbf{R}^3, \mathbf{R})$,

$$V(x) = 2x_1^2 - x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_2x_3$$
, unde $x = (x_1, x_2, x_3)$.

Folosind metoda lui Iacobi determinați o formă canonică a funcționalei pătratice și precizați natura ei.

(1.pct.) c) În spațiul vectorial $C_{\mathbf{R}}([0,1])$, al funcțiilor continue reale definite pe intervalul [0,1], dotat cu produsul

scalar
$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$
, să se calculeze $\langle f, g \rangle$ și $\cos \angle (f, g)$ pentru $f(x) = -x^3$ și $g(x) = 2x^2$.

Subjectul II (2 puncte)

(1.pct.) a) Fie operatorul liniar $U: \mathbb{R}^3 \to \mathbb{R}^3$,

$$U(x) = (2x_1 + 2x_2 - x_3, 2x_1 - x_2 + 2x_3, -x_1 + 2x_2 + 2x_3), \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3$$
.

Aflați valorile proprii ale operatorului și subspațiile proprii asociate acestora.

(1.pct.) b) Să se determine soluția generală a sistemului de ecuații diferențiale liniare

$$\begin{cases} y'(x) = -3y(x) + z(x) \\ z'(x) = y(x) - 3z(x) \end{cases}, \text{ unde } x \in \mathbf{R}.$$

Subjectul III (2 puncte)

(1.pct.) a) Se consideră subspațiul $\mathbf{X} = span(\{(2,0,1),(0,1,2),(2,-1,-1)\})$ în $(\mathbf{R}^3,\mathbf{R})$. Să se găsească o bază ortonormată pentru \mathbf{X} (folosind procedura Gram-Schmidt) și pentru \mathbf{X}^{\perp} .

(1.pct.) b) Să se definească endomorfismul autoadjunct în contextul spațiilor unitare. Enunțati principalele trei proprietăți ale endomorfismelor autoadjuncte.

Subjectul IV (2 puncte)

(1.pct.) a) Enunțați teorema dimensiunii a lui Grassmann. Arătați, în spațiul vectorial (V, K), că dacă X_1, X_2, X_3 sunt subspații vectoriale în V astfel încât $V = X_1 + X_2 + X_3$ și $\dim_K V = \dim_K X_1 + \dim_K X_2 + \dim_K X_3$, atunci:

$$X_i \cap (X_j + X_k) = \{0_V\}$$
 pentru $i, j, k \in \{1, 2, 3\}$ cu $i \neq j \neq k \neq i$.

(1.pct.) b) Demonstrați că pe un spațiu euclidian (real)

$$\varphi(x,y) = \frac{1}{2} (||x+y||^2 - ||x||^2 - ||y||^2), \forall x, y \text{ vectori},$$

definește o funcțională biliniară simetrică.

- 1) Punctajul maxim îl obține soluția corectă, completă și cu toate justificările necesare, într-o redactare clară și ușor lizibilă.
- 2) În timpul examenului este interzisă a) folosirea materiale ajutătoare; b) utilizarea tehnicii electronice (telefoane mobile, tablete grafice, ...); c) deranjarea bunei desfășurări a examenului și comunicarea cu colegii.

Set de subiecte : varianta C

Subjectul I (3 puncte)

(1.pct.) a) În spațiul vectorial $(\mathbf{R}^2, \mathbf{R})$, se consideră vectorul x = (21, -7) și reperul $B = (b_1 = (-3.5), b_2 = (9, -8))$. Folosind tehnica de pivotare să se determine matricea $[x]_B$ a coordonatelor vectorului x în reperul B.

(1.pct.) b) Se consideră funcționala pătratică definită pe $(\mathbf{R}^3, \mathbf{R})$,

$$V(x) = -3x_1^2 + x_2^2 - x_3^2 - 2x_1x_2 + 2x_1x_3$$
, unde $x = (x_1, x_2, x_3)$.

Folosind metoda lui Iacobi determinați o formă canonică a funcționalei pătratice și precizați natura ei.

(1.pct.) c) În spațiul vectorial $C_{\mathbf{R}}([0,1])$, al funcțiilor continue reale definite pe intervalul [0,1], dotat cu produsul

scalar
$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$
, să se calculeze $\langle f, g \rangle$ și $\cos \angle (f, g)$ pentru $f(x) = 2x$ și $g(x) = x^3$.

Subjectul II (2 puncte)

(1.pct.) a) Fie operatorul liniar $U: \mathbb{R}^3 \to \mathbb{R}^3$,

$$U(x) = (-x_1 + 2x_2 + 2x_3, 2x_1 - x_2 + 2x_3, 2x_1 + 2x_2 - x_3), \ \forall x = (x_1, x_2, x_3) \in \mathbf{R}^3.$$

Aflați valorile proprii ale operatorului și subspațiile proprii asociate acestora.

(1.pct.) b) Să se determine soluția generală a sistemului de ecuații diferențiale liniare

$$\begin{cases} y'(x) = y(x) - 3z(x) \\ z'(x) = -2y(x) + 2z(x) \end{cases}, \text{ unde } x \in \mathbf{R} .$$

Subjectul III (2 puncte)

(1.pct.) a) Se consideră subspațiul $\mathbf{X} = span(\{(1,0,2),(0,1,-1),(1,-1,3)\})$ în $(\mathbf{R}^3,\mathbf{R})$. Să se găsească o bază ortonormată pentru \mathbf{X} (folosind procedura Gram-Schmidt) și pentru \mathbf{X}^{\perp} .

(1.pct.) b) Să se definească endomorfismul ortogonal (unitar) în contextul spațiilor unitare. Enunțati principalele trei proprietăți ale endomorfismelor ortogonale (unitare).

Subjectul IV (2 puncte)

(1.pct.) a) Enunțați teorema de caracterizare a sumei directe. Arătați, în spațiul vectorial (V,K), că dacă X_1,X_2 sunt două subspații vectoriale, X_1' este suplementul direct al lui $X_1 \cap X_2$ în X_1 , X_2' este suplementul direct al lui $X_1 \cap X_2$ în X_2 , atunci: $X_1' \cap X_2 = X_1 \cap X_2' = \{0_V\}$.

(1.pct.) b) Demonstrați că pe un spațiu euclidian (real)

$$\varphi(x, y) = \frac{1}{4} (||x + y||^2 - ||x - y||^2), \quad \forall x, y \text{ vectori },$$

definește o funcțională biliniară simetrică.

- 1) Punctajul maxim îl obține soluția corectă, completă și cu toate justificările necesare, într-o redactare clară și ușor lizibilă
- 2) În timpul examenului este interzisă a) folosirea materiale ajutătoare; b) utilizarea tehnicii electronice (telefoane mobile, tablete grafice, ...); c) deranjarea bunei desfășurări a examenului și comunicarea cu colegii.

Set de subiecte : varianta D

Subjectul I (3 puncte)

(1.pct.) a) În spațiul vectorial $(\mathbf{R}^2, \mathbf{R})$, se consideră vectorul x = (25, -6) și reperul $B = (b_1 = (5,12), b_2 = (-10, -2))$. Folosind tehnica de pivotare să se determine matricea $[x]_B$ a coordonatelor vectorului x în reperul B.

(1.pct.) b) Se consideră funcționala pătratică definită pe $(\mathbf{R}^3, \mathbf{R})$,

$$V(x) = -2x_1^2 + x_3^2 + 6x_1x_2 + 4x_1x_3 - 2x_2x_3$$
, unde $x = (x_1, x_2, x_3)$.

Folosind metoda lui Iacobi determinați o formă canonică a funcționalei pătratice și precizați natura ei.

(1.pct.) c) În spațiul vectorial $C_{\mathbf{R}}([0,1])$, al funcțiilor continue reale definite pe intervalul [0,1], dotat cu produsul

scalar
$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$
, să se calculeze $\langle f, g \rangle$ și $\cos \angle (f, g)$ pentru $f(x) = -x^2$ și $g(x) = 3x$.

Subjectul II (2 puncte)

(1.pct.) a) Fie operatorul liniar $U: \mathbb{R}^3 \to \mathbb{R}^3$,

$$U(x) = (-x_1 + 3x_2 + 3x_3, 3x_1 - x_2 + 3x_3, 3x_1 + 3x_2 - x_3), \ \forall x = (x_1, x_2, x_3) \in \mathbf{R}^3.$$

Aflați valorile proprii ale operatorului și subspațiile proprii asociate acestora.

(1.pct.) b) Să se determine soluția generală a sistemului de ecuații diferențiale liniare

$$\begin{cases} y'(x) = y(x) + 4z(x) \\ z'(x) = 3y(x) + 2z(x) \end{cases}, \text{ unde } x \in \mathbf{R} .$$

Subjectul III (2 puncte)

(1.pct.) a) Se consideră subspațiul $\mathbf{X} = span(\{(1,1,0),(0,1,1),(1,0,-1)\})$ în $(\mathbf{R}^3,\mathbf{R})$. Să se găsească o bază ortonormată pentru \mathbf{X} (folosind procedura Gram-Schmidt) și pentru \mathbf{X}^{\perp} .

(1.pct.) b) Să se definească operatorul de proiecție ortogonală în contextul spațiilor euclidiene. Enunțati principalele trei proprietăți ale operatorilor de proiecție ortogonală.

Subjectul IV (2 puncte)

(1.pct.) a) Definiți suma directă a unor subspații vectoriale. Arătați, în spațiul vectorial (V, K), că dacă X_1, X_2 sunt două subspații vectoriale, X_1' este suplementul direct al lui $X_1 \cap X_2$ în X_1, X_2' este suplementul direct al lui $X_1 \cap X_2$ în X_2 , atunci: $(X_1' + X_2') \cap (X_1 \cap X_2) = \{0_V\}$.

(1.pct.) b) Să se verifice că într-un spațiu unitar avem

$$||x + iy||^2 = ||x||^2 + ||y||^2 + 2 \operatorname{Im}\langle x, y \rangle, \quad \forall x, y \text{ vectori }.$$

- 1) Punctajul maxim îl obține soluția corectă, completă și cu toate justificările necesare, într-o redactare clară și ușor lizibilă
- 2) În timpul examenului este interzisă a) folosirea materiale ajutătoare; b) utilizarea tehnicii electronice (telefoane mobile, tablete grafice, ...); c) deranjarea bunei desfășurări a examenului și comunicarea cu colegii.