Assignment Project Exam Help Dr Timothy Kimber

https://tutorcs.com

WeChat: estutores

More Terminology

Assignment Project Exam Help

WeChat: cstutorcs

- Each edge in a weighted graph has an associated cost or weight
- We denote the weight of the edge $\{u, v\}$ by w(u, v)

More Terminology

Pefinition (Tree) Project Exam Help A tree is pair (6,7) where Project Exam Help vertex of G, called the root.

A nonrooted tree is a connected, acyclic graph

Algorithms (580) Weighted Graphs February 2018 3 / 55

More Terminology

Aignsighment, Project Examp Help spanning See for G.

Given some network (road, phone, water \dots) a minimum spanning tree (MST) is an important attribute

Lowest cost way to connect all points

Minimum Spanning Tree

Assignment Project Exam Help Given graph G = (V, E), find a new graph T such that T is an MST of G.

https://tutorcs.com WeChat: cstutorcs

Question Assignment Project Examuthelp the MST problem, and then test them:

- What would you generate?
 What trisposits apply Utores.com

Algorithms (580) Weighted Graphs February 2018 6 / 55

An MST for G will comprise

Assignment Project Exam Help

• If such a tree also has minimal weight it is an MST

Algorithms (580) Weighted Graphs February 2018 7 / 55

Exercise

Five grage-by-rase definition of pronction ring ledges that returns a principal training of the property of th

- What are the inputs?
- What preft in Sase/cates it orcs.com
 How many instances of this problem are there?

Algorithms (580) Weighted Graphs February 2018 8 / 55

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

- (Does the problem have optimal substructure?)
- $min_edges(|E|, |V| 1)$ has $|E| \times (|V| 1)$ subproblems
- Unfortunately, min_edges might not produce MST. Why?

 Algorithms (580)
 Weighted Graphs
 February 2018
 9 / 55

Update to tree_edges and only return a set of edges that forms a tree Assignment sProject Exam Help

```
 \begin{cases} E_{T} & \text{if } |E_{T}| = |V| - 1 \\ min\_wtitetes(i-1, E_{T})] & \text{otherwise} \end{cases}
```

- Subprise Coverage test stell tring roused set of edges)
- If $\{E[i]\} \cup E_T$ not a tree, do not use E[i]
- If $|E_T| + (i-1) < |V| 1$, insufficient edges
- $tree_edges(|E|, \varnothing)$ still has $|E| \times (|V| 1)$ subproblems

Algorithms (580) Weighted Graphs February 2018

10 / 55

A New Strategy

Assignment Project Exam Help

- Add edge i
- Do not add edge i

Have asshttensi.co/Itutoresucom

- Maybe this time a greedy approach will actually work!
- A greedy algorithm picks the 'obvious' first step
- This Waldahatered Stutores
- It leaves just one subproblem to solve

So, we identify edge g, the greedy edge, and continue with $E_{\mathcal{T}} \cup \{E[g]\}$

Algorithms (580) Weighted Graphs February 2018

11 / 55

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutor

Assignment Project Exam Help

 Algorithms (580)
 Weighted Graphs
 February 2018
 12 / 55

Assignment Project Exam Help

Algorithms (580) Weighted Graphs February 2018 12 / 55

Assignment Project Exam Help

Algorithms (580) Weighted Graphs February 2018 13 / 55

As Siedin in recht in Froject Exam Help We have to show that the choice must lead to a correct solution

- (As you have seen, much easier to prove if greed is bad)
- Theorem https://tutorcs.com

Let G be a connected, weighted graph. If e_m is an edge of least weight in G, then e_m is in some minimum spanning tree for G.

The general method of proving that the greedy choice is OK is:

- Suppose you have an optimal solution to the problem
- 2 Show that it is still optimal when the greedy choice is included

Algorithms (580) Weighted Graphs February 2018 14 / 55

Proof

T is some MST for G

Assignment Project Exam Help • Suppose e_m is not in T

Let $e_m = \{u, v\}$, let the path from u to v in T include the edge $\{v, x\}$, and let the vertex $\{v, v\}$ be compared to $\{v, v\}$.

Proof

Now construct T' by removing $\{v, x\}$ from T and adding $\{u, v\}$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

- ullet Since T is a spanning tree, T' is a spanning tree
- Since T is an MST and $w_m \leq w$, T' is an MST
- e_m is in T'
- QED

Assignment Project Exam Help

Algorithms (580) Weighted Graphs February 2018 17 / 55

More Greed

Our greedy choice can be made more general

The set of that is part of an MST for G, and let P be a connected component in the graph $\{V, E_T\}$. If E_{PQ} is the set of edges $\{u, v\}$ where exactly one of $\{u, v\}$ is a letter of the $\{u, v\}$ is a letter of $\{u, v\}$ is a letter of $\{u, v\}$ then e_m is in a minimum spanning tree for G.

Proof

The proof is similar

Assign the Mental Project Exam Help

• Suppose e_m is not in T

Let $e_m = \{u(t)\}$ be the fits repeat to v in T that is in E_{PQ} be $\{x,y\}$, and let the weights of $\{u,v\}$ and $\{x,y\}$ be w_m and w

Proof

Now construct T' by removing {x, y} from T and adding {u, v}

Assignment Project Exam Help

https://tutorcs...com

- Since T is a spanning tree, T' is a spanning tree
- Since T is an MST and $w_m \leq w$, T' is an MST
- e_m is in T'
- QED