AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Přijímání u ZA Bezkontextové jazyky a ZA Uzávěrové vlastnosti

Přijímání slova u ZA: $L(Z) = N(Z_1)$

- \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - pro zásobníkový automat Z existuje zásobníkový automat Z_1 , že $L(Z)=N(Z_1)$
 - \square $Z_1 = (Q \cup \{q_0', q_f\}, X, Y \cup \{z_0'\}, \delta', q_0', z_0', \emptyset)$
 - na zásobník pomocný symbol z₀'
 - původně vyprázdnění znamenalo konec, nyní by znamenalo přijmutí
 - simulujeme Z
 - v přijímajícím stavu odebereme pomocný z₀′
 - z_0' , q_0' , q_f jsou nové
 - $\delta'(q_0', \lambda, z_0') = \{(q_0, z_0 z_0')\}$
 - $\delta'(q, x, y) = \delta(q, x, y)$ pro všechna $q \in Q$, $x \in X$, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y)$ pro všechna $q \in Q$ -F, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y) \cup \{(q_f, \lambda)\} \text{ pro } q \in F, y \in Y \cup \{z_0'\}$
 - zde rušíme determinismus
 - $\delta'(q_f, \lambda, y) = \{(q_f, \lambda)\}$ pro $y \in Y \cup \{z_0'\}$

Přijímání slova u ZA: $N(Z) = L(Z_2)$

- \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - pro zásobníkový automat Z existuje zásobníkový automat Z_2 , že $N(Z)=L(Z_2)$
 - navíc, když Z je deterministický, je i Z₂ deterministický
 - \square $Z_2 = (Q \cup \{q_0', q_f\}, X, Y \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$
 - na zásobník pomocný symbol z₀
 - simulujeme Z
 - je-li na zásobníku vidět pomocný z₀', přijímáme, neboť to odpovídá původnímu vyprázdnění
 - z_0' , q_0' , q_f jsou nové
 - $\delta'(q_0', \lambda, z_0') = \{(q_0, z_0 z_0')\}$
 - $\delta'(q, x, y) = \delta(q, x, y)$ pro všechna $q \in Q$, $x \in X$, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y)$ pro všechna $q \in Q$, $y \in Y$
 - $\delta'(q, \lambda, z_0') = \{(q_f, \lambda)\}$ pro všechna $q \in Q$
 - □ $w \in N(Z) \Leftrightarrow (q_0, w, z_0) \vdash_Z^* (q, \lambda, \lambda) \text{ pro } q \in Q \Leftrightarrow$ $(q_0', w, z_0') \vdash_{Z_2} (q_0, w, z_0 z_0') \vdash_{Z_2}^* (q, \lambda, z_0') \vdash_{Z_2} (q_f, \lambda, \lambda)$ $\Leftrightarrow w \in L(Z_2)$

Bezkontextová gramatika ⇒ ZA (1)

- □ bezkontextová gramatika $G = (V_N, V_T, S, P)$
 - sestrojíme zásobníkový automat Z, že N(Z)=L(G)
 - myšlenka
 - na zásobníku vytváříme levou derivaci
 - jakmile zásobník začíná terminály, srovnáme zásobník s páskou
 - využití nedeterminismu k uhádnutí derivace
 - = Z = ({q₀}, V_T, V_NUV_T, δ, q₀, S, Ø), kde
 - $\delta(q_0, \lambda, X) = \{(q_0, w) \mid X \rightarrow w \in P\}$ pro všechna $X \in V_N$
 - vytváření levé derivace, pravidlo typu (i)
 - $\delta(q_0, x, x) = \{(q_0, \lambda)\}$ pro všechna $x \in V_T$
 - srovnání zásobníku s páskou, pravidlo typu (ii)
 - platí $(q_0, uv, S) \vdash_Z^* (q_0, v, w) \Leftrightarrow S \Rightarrow_G^{lm*} uw$ pro libovolné $u, v \in V_T^*, w \in (V_T \cup V_N)^*$

Bezkontextová gramatika ⇒ ZA (2)

- $\Box (q_0, uv, S) \vdash_Z^* (q_0, v, w) \Leftrightarrow S \Rightarrow_G^{lm*} uw$
 - □ indukcí podle počtu kroků výpočtu Z (pro ⇒), resp. podle počtu kroků derivace (pro ⇐)
 - ukážeme ⇒ (pro ← je důkaz analogický)
 - 0 kroků
 - w = S, $u = \lambda$, $S \Rightarrow_G^{lm*} S$ jistě platí
 - n+1 kroků
 - n+1 krok pravidlem typu (i)
 - $(q_0, uv, S) \vdash_Z^* (q_0, v, Xw) \vdash_Z (q_0, v, zw) \text{ pro}$ $z \in (V_T \cup V_N)^*$
 - z indukčního předpokladu $S \Rightarrow_G^{lm*} uXw$
 - $uXw \Rightarrow_G^{lm} uzw diky pravidlu X \rightarrow z \in P$
 - n+1 krok pravidlem typu (ii)
 - $(q_0, uxv, S) \vdash_z^* (q_0, xv, xw) \vdash_z (q_0, v, w) pro x∈V_T$
 - z indukčního předpokladu S ⇒_Glm*uxw
- důsledek N(Z) = L(G)
 - $\square(q_0, W, S) \vdash_{Z}^* (q_0, \lambda, \lambda) \Leftrightarrow S \Rightarrow_{G}^{lm*} W$

ZA ⇒ Bezkontextová gramatika (1)

- □ zásobníkový automat Z = (Q, X, Y, δ, q_0 , z_0 , F)
 - sestrojíme bezkontextovou gramatiku G, že L(G) = N(Z)
 - pokud |Q|=1, stačí předchozí konstrukce
 - pro |Q|>1 položíme G = $({S'}\cup\{[q,y,r] \mid q,r\in Q \land y\in Y\}, X, S', P)$, kde
 - S' je nový neterminál
 - pravidla P obsahují
 - $S' \rightarrow [q_0, z_0, q]$ pro všechna $q \in Q$

 - speciálně $[q, y, r] \rightarrow x$, když (r, λ) ∈ δ(q,x,y)
 - □ platí (q, w, y) \vdash_Z^* (r, λ , λ) \Leftrightarrow [q, y, r] $\Rightarrow_G^{lm^*}$ w pro libovolné q,r∈Q, y∈Y a w∈X*

6 | Automaty a gramatiky 9 Pavel Surynek, 2015

$ZA \Rightarrow Bezkontextová gramatika (2)$

- \square (q, w, y) \vdash_{7}^{*} (r, λ , λ) \Rightarrow [q, y, r] \Rightarrow_{G}^{lm*} w
 - indukcí dle délky výpočtu
 - délka výpočtu 1
 - \blacksquare $(q, x, y) \vdash_7 (r, \lambda, \lambda) pro <math>x \in X \cup \{\lambda\}, tedy (r, \lambda) \in \delta(q, x, y)$
 - máme pravidlo $[q, y, r] \rightarrow x$
 - délka výpočtu n+1
 - \blacksquare (q, xu₁u₂...u_k, y) \vdash_7 (q₁, u₁u₂...u_k, y₁y₂...y_k) pro (q₁,y₁y₂...y_k) $\in \delta$ (q,x,y)
 - u, je slovo, při kterém je zpracován symbol y, pro i=1,2,...,k
 - **■** $(q_i, u_i, y_i) \vdash_7^* (q_{i+1}, \lambda, \lambda)$ pro jistá $q_i \in Q$ pro i=1,2,...,k $(q_{k+1} = r)$
 - z indukčního předpokladu $[q_i, y_i, q_{i+1}] \Rightarrow_G^{lm^*} u_i$
 - k tomu první krok
 - $(q, y, r) \Rightarrow_{G}^{lm} x(q_1, y_1, q_2)(q_2, y_2, q_3)...(q_k, y_k, r)$
 - tedy celkem $(q, y, r) \Rightarrow_{G}^{lm^*} xu_1u_2...u_k$

ZA ⇒ Bezkontextová gramatika (3)

- \square (q, w, y) \vdash_{7}^{*} (r, λ , λ) \leftarrow [q, y, r] \Rightarrow_{G}^{lm*} w
 - indukcí podle délky derivace
 - délka derivace 1
 - **■** [q, y, r] \Rightarrow_{G}^{lm} w jedině díky pravidlu [q, y, r] \rightarrow w, tedy (r, λ)∈δ(q,w,y)
 - délka derivace n+1
 - nechť $[q, y, r] \rightarrow x[q_1, y_1, q_2][q_2, y_2, q_3]... [q_k, y_k, r]$ je první použité pravidlo
 - v ZA odpovídá $(q_1,y_1y_2...y_k) \in \delta(q,x,y)$
 - $w = xu_1u_2...u_k$ a $[q_i,y_i,q_{i+1}] \Rightarrow_G^{lm^*} u_i$ pro i=1,2,...,k $(q_{k+1}=r)$
 - z indukčního předpokladu $(q_i,u_i,y_i) \vdash_7^* (q_{i+1},\lambda,\lambda)$
 - celkem $(q, xu_1u_2...u_k, y) \vdash_Z (q_1, u_1u_2...u_k, y_1y_2...y_k) \vdash_Z^* (r, \lambda, \lambda)$
- \square důsledek L(G) = N(Z)
 - \square $(q_0, w, z_0) \vdash_7^* (q, \lambda, \lambda) \Leftrightarrow S' \Rightarrow_G^{lm} [q_0, z_0, q] \Rightarrow_G^{lm*} w$

Bezkontextové uzávěrové vlastnosti (1)

- bezkontextové jazyky jsou uzavřené na konečná sjednocení
 - bezkontextové gramatiky $G_1 = (V_N^1, V_T, S_1, P_1)$ a $G_2 = (V_N^2, V_T, S_2, P_2)$, kde $V_N^1 \cap V_N^2 = \emptyset$
 - □ položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P1 \cup P2 \cup \{S' \rightarrow S_1 \mid S_2\})$
 - S' je nový neterminál
- bezkontextové jazyky jsou uzavřené na konkatenaci
 - položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P_1 \cup P_2 \cup \{S' \rightarrow S_1.S_2\})$
 - S' je nový neterminál
 - platí $L(G) = L(G_1).L(G_2)$
- bezkontextové jazyky jsou uzavřené na iteraci
 - položme G = $(V_N^1 \cup \{S'\}, V_T, S', P_1 \cup \{S' \rightarrow \lambda \mid S'S_1\})$
 - S' je nový neterminál
 - platí $L(G) = L(G_1)^*$
- bezkontextové jazyky jsou uzavřené na zrcadlový obraz
 - položme G = $(V_N^1, V_T, S_1, \{X \rightarrow W^R | X \rightarrow W \in P_1\})$
 - platí $L(G) = L(G_1)^R$

Bezkontextové uzávěrové vlastnosti (2)

- bezkontextové jazyky jsou uzavřené na bezkontextovou substituci
 - substituce $f: X \to 2^{Y^*}$ je bezkontextová substituce, jestliže f(x) je bezkontextový jazyk pro každé $x \in X$
 - máme $G_x = (V_N^x, Y, S_x, P_x)$, že $f(x) = L(G_x)$ pro každé $x \in X$ ■ V_N^x jsou po dvou disjunktní
 - mějme bezkontextovou $G = (V_N, X, S, P)$, zajímá nás bezkontextovost f(L(G))
 - položíme G' = $(V_N \cup U_{x \in X} V_N^x \cup X, Y, S, P \cup U_{x \in X} P^x \cup \{x \to S_x \mid x \in X\})$
 - platí L(G') = f(L(G))
- bezkontextové jazyky <u>nejsou</u> uzavřené na konečné průniky
 - $L_1 = \{a^i b^j c^j | i,j=0,1,2,...\}$
 - $G_1 = (\{S,A,B\}, \{a,b,c\}, S, \{S \rightarrow \lambda | A | B | AB, A \rightarrow a | aA, B \rightarrow bc | bBc\}), L(G_1)=L_1$
 - $L_2 = \{a^i b^i c^j | i,j=0,1,2,...\}$
 - $G_2 = (\{S,A,B\}, \{a,b,c\}, S, \{S \rightarrow \lambda | A | B | AB, A \rightarrow ab | aAb, B \rightarrow c | Bc\}), L(G_2)=L_2$
 - $L(G_1) \cap L(G_2) = \{a^i b^i c^i | i=0,1,2,...\}$, který není bezkontextový

Bezkontextové uzávěrové vlastnosti (3)

- bezkontextové jazyky <u>nejsou</u> uzavřené na doplňky
 - □ L = $\{a^ib^ic^i | i=0,1,2,...\}$, -L = $K_1 \cup K_2 \cup K_3 \cup K_4 \cup K_5 \cup K_6$, kde
 - $K_1 = \{\alpha ba\beta \mid \alpha, \beta \in \{a, b, c\}^*\}$
 - regulární
 - $K_2 = \{\alpha cb\beta \mid \alpha, \beta \in \{a, b, c\}^*\}$
 - regulární
 - $K_3 = \{\alpha ca\beta \mid \alpha, \beta \in \{a, b, c\}^*\}$
 - regulární
 - $K_{\Delta} = \{a^{i}b^{j}c^{k} \mid i,j,k=0,1,2,... \land i \neq j \}$
 - bezkontextový
 - $K_5 = \{a^i b^j c^k \mid i,j,k=0,1,2,... \land j \neq k \}$
 - Bezkontextový
 - $K_6 = \{a^i b^j c^k \mid i,j,k=0,1,2,... \land i \neq k \}$
 - bezkontextový
 - -L je bezkontextový, ale jeho doplněk L <u>nikoli</u>
- alternativně
 - \Box -(-L₁ U -L₂) = \Box (L₁ \cap L₂

Bezkontextovost K_4 G = ({S,A,B,C,D}, {a,b,c}

```
G = ({S,A,B,C,D}, {a,b,c}, S, P), kde

P = {

S \rightarrow AC \mid BC

A \rightarrow aA \mid aD

B \rightarrow Bb \mid Db

C \rightarrow c \mid Cc \mid \lambda

D \rightarrow aDb \mid \lambda

}

L(G) = K<sub>4</sub>
```

Speciální uzávěrové vlastnosti (1)

- bezkontextové jazyky jsou uzavřené na průnik s regulárním jazykem
 - paralelně simulujeme zásobníkový a konečný automat
 - R regulární jazyk, že R = L(A) pro konečný automat A = $(Q_A, X, \delta_A, q_{AO}, F_A)$
 - L bezkontextový jazyk, že L = L(Z) pro zásobníkový automat Z = $(Q_z, X, Y, \delta_z, q_{z0}, z_0,$ F_7
 - definujeme zásobníkový automat Z' = $(Q_{\Delta} \times Q_{\tau}, X, Y, \delta, [q_{\Delta \Omega}, q_{\tau \Omega}],$ z_0 , $F_{\Delta} \times F_7$), kde
 - $\delta([p,q], x, y) \ni ([r,s], u)$, jestliže
 - p=r a (s,u)∈ δ_7 (q,x,y) pro x = λ
 - Z nečte pásku, pracuje na zásobníku, A nepracuje
 - $r = \delta_A(p,x)$ a $(s,u) \in \delta_7(q,x,y)$ pro $x \neq \lambda$
 - Z a A současně zpracují symbol x
 - \blacksquare L(Z') = L(A) \cap L(Z) = R \cap L

Speciální uzávěrové vlastnosti (2)

- bezkontextové jazyky jsou uzavřené na kvocienty s regulárním jazykem
 - paralelně simulujeme konečný a zásobníkový automat, jakmile se KA dostane do přijímajícího stavu, ZA začne zpracovávat vstup
 - R regulární jazyk, že R = L(A) pro konečný automat A = $(Q_A, X, \delta_A, q_{AO}, F_A)$
 - L bezkontextový jazyk, že L = L(Z) pro zásobníkový automat Z = $(Q_z, X, Y, \delta_z, q_{z0}, z_0, F_z)$
 - připomenutí
 - R\L = { v | (∃u∈R) uv∈L }
 - L/R = { u | (∃v∈R) uv∈L }
 - □ definujeme zásobníkový automat $Z' = (Q_A \times Q_z \cup Q_z, X, Y, \delta, [q_{A0}, q_{Z0}], z_0, F_z)$, kde
 - $\delta([p,q], \lambda, y) = \{([r,s], u) \mid (\exists x \in X)(r = \delta_A(p,x) \land (s,u) \in \delta_Z(q,x,y))\}$ \cup $\{([p,s],u) \mid (s,u) \in \delta_Z(q,\lambda,y)\}$ \cup $\{(q,y) \mid p \in F_\Delta\}$
 - $\delta(q, x, y) = \delta_z(q, x, y)$ pro $x \in X \cup \{\lambda\}, q \in Q_z$
 - \Box L(Z') = L(A)\L(Z) = R\L