Practica BFS, Dijsktra, AGM

Nahuel

May 25, 2025

1 Ejercicio 1 solucion

Teorema 1. Sea G=(V,E) un grafo simple y no ponderado. Ejecutar **BFS** desde $v\in V$ produce un árbol T tal que para todo w alcanzable desde v se cumple

$$\operatorname{dist}_T(v, w) = \operatorname{dist}_G(v, w).$$

En particular, T es v-geodésico.

Demostración. Denotemos por $\ell(w)$ el nivel (número de iteración) en el que BFS descubre a w.

- (i) Existe un camino de longitud $\ell(w)$ en G: BFS solo encola a w cuando examina una arista (x, w) con x ya extraído de la cola, y $\ell(x) = \ell(w) 1$. Por inducción sobre $\ell(w)$ se obtiene un camino $v \leadsto w$ con $\ell(w)$ aristas.
- (ii) Minimalidad. Supongamos, hacia contradicción, que existe un camino P de v a w con menos de $\ell(w)$ aristas. Sea y el primer vértice de P que BFS descubre después de v. Entonces su predecesor x en P está a nivel $< \ell(w) 1$ y la arista (x,y) haría que y (o eventualmente w) se encolase antes, contradiciendo la definición de $\ell(w)$.

Los incisos (i) y (ii) implican $\ell(w) = \operatorname{dist}_G(v, w)$. Como el camino registrado por BFS en T tiene exactamente $\ell(w)$ aristas, se cumple la igualdad de distancias en el árbol; por lo tanto T es v-geodésico.

Contraejemplo: árbol v-geodésico que no es árbol BFS

Grafo G

Figure 1: Contraejemplo: árbol v-geodésico que no es árbol BFS.

- T es generador (contiene los 5 vértices y tiene 4 aristas).
- Las distancias en T coinciden con las de G:

$$\operatorname{dist}_T(v, a) = \operatorname{dist}_T(v, b) = 1, \quad \operatorname{dist}_T(v, c) = \operatorname{dist}_T(v, d) = 2.$$

Luego T es v-geodésico.

¿Por qué ninguna ejecución de BFS produce T?

- 1. Al iniciar BFS en v se encolan, en algún orden, a y b. Llamemos "primero" al que salga antes de la cola.
- Ese vértice primero (sea a o b) explora sus incidentes (primero, c) y (primero, d).
 Ambos vecinos están sin visitar y reciben como padre al vértice primero; quedan encolados.
- 3. Cuando salga el segundo vértice de $\{a, b\}$, los vértices c y d ya estarán marcados, de modo que **no cambiarán de padre**.

Así, en **todo árbol BFS** ambos vértices de nivel 2 tienen el **mismo padre** (el que se extrajo antes entre $a \ y \ b$).

En el árbol T ocurre lo contrario: c es hijo de b y d es hijo de a.

Por lo tanto, T no puede obtenerse con BFS desde v.

En conclusión:

- Todo árbol que produce BFS es v-geodésico,
- pero **no todo árbol** *v***-geodésico** puede surgir de BFS;
- el grafo y el árbol anteriores son un contraejemplo concreto.

2 Ejercicio 3 Solucion

Teorema 2. Sea G = (V, E) un digrafo. Sea H el digrafo bipartito construido de la siguiente forma:

- $\forall v \in V(G)$ se crean dos copias v^0 y v^1
- $\forall (u,v) \in E(G)$, se agrega la arista dirigida $(u^0,v^1) \in E(H)$

Entonces, una secuencia de vertices $v_1^1, v_2^0, \dots, v_k^{k \bmod 2}$ es un recorrido en H

Nota: Para que el enunciado tenga sentido y la equivalencia sea válida en ambos sentidos, asumimos que por cada arista $(v, w) \in E(G)$, el grafo H contiene tanto la arista $v^0 \to w^1$ como la arista $v^1 \to w^0$.

Demostraci'on. (\Rightarrow) Suongamos que v_1, v_2, \ldots, v_k es un recorrido de G. Entonces por definicion de recorrido de un digrafo se cumple

$$\forall i \in \{1, \dots, k-1\} \quad (v_i, v_{i+1}) \in E(G)$$

Por la construccion del grafo H, existe una arista $(v_i^{i \text{ mod } 2}, v_{i+1}^{i \text{ mod } 2}) \in H$ si y solo si $(v_i, v_{i+1}) \in E(G)$

Por lo tanto:

$$(v_1^1, v_2^0), (v_2^0, v_3^1), \dots, (v_{k-1}^{k \text{ mod } 2}, v_k^{k \text{ mod } 2}) \in E(H)$$

Es decir, la secuencia $v_1^1, v_2^0, v_3^1, \dots, v_k^{k \mod 2}$ es un recorrido en H