Ekstrema lokalne funkcji wielu zmiennych

Łukasz Woźny*

dnia 10 listopada 2006

Wprowadzenie

Rozpatrzmy funkcję $f:X\to\mathbb{R},$ gdzie $X\subset\mathbb{R}^n$ jest zbiorem otwartym, a

Definicja 1 Mówimy, że funkcja f ma w punkcie $\bar{x} \in X$ minimum (maksimum) lokalne wtt., gdy

$$\exists r > 0 \,\forall x \in K(\bar{x}, r) \quad f(\bar{x}) \le f(x) \quad (f(\bar{x}) \ge f(x))^{1},$$

gdzie $K(\bar{x},r)$ jest otwartą kulą o środku w \bar{x} i promieniu r.

Twierdzenie 1 Jeżeli funkcja f ma w otoczeniu punktu $\bar{x} \in X$ ciągłe pochodne cząstkowe drugiego rzędu i $f'(\bar{x}) = 0$, to^2 :

- f ma minimum (maksimum) lokalne $w \bar{x}$, gdy macierz $f''(\bar{x})$ jest dodatnio (ujemnie) określona,
- f nie ma ekstremum lokalnego w \bar{x} , gdy macierz $f''(\bar{x})$ jest nieokreślona.

Ograniczenia zadane równaniami

Definicja 2 Niech $f, g_1, g_2, \ldots, g_m : X \to \mathbb{R}$, gdzie $X \subset \mathbb{R}^n$ jest zbiorem otwartym a n > m. Niech ponadto:

$$G = [g_1, g_2, \dots, g_m]^T, \quad M = \{x \in X : G(x) = 0\}.$$

Mówimy, że funkcja f ma w punkcie $\bar{x} \in M$ minimum (maksimum) lokalne warunkowe $na\ zbiorze\ M\ wtt.,\ gdy:$

$$\exists r > 0 \, \forall x \in M \cap K(\bar{x}, r) \quad f(\bar{x}) \leq f(x) \quad (f(\bar{x}) \geq f(x))^3.$$

^{*}lukasz.wozny@sgh.waw.pl.

 $^{^1}$ Jeżeli nierówność jest spełniona dla wszystkich argumentów $x\in X,$ to \bar{x} nazywamy minimum (maksimum) globalnym f na X

²Symbol **0** oznacza wektor $[0, \ldots, 0]^T$ o wymiarze $1 \times n$. ³Jeżeli nierówność jest spełniona dla każdego $x \in M$, to \bar{x} nazywamy minimum (maksimum) globalnym f na M

Poniżej zakładamy, że funkcje f oraz g_i gdzie $i=1,\ldots,m$ są różniczkowalne.

Definicja 3 Punkt $\bar{x} \in M$ nazywamy punktem regularnym ograniczeń wtt. $rzG'(\bar{x}) = m$ a więc wiersze macierzy $G'(\bar{x})$ są liniowo niezależne.

Definicja 4 Funkcją Lagrange'a dla problemu ekstremum warunkowego zadanego przez f i G nazywamy funkcję $\mathcal{L}: X \to \mathbb{R}$ o wartościach

$$\mathscr{L}(x,\lambda) = f(x) + \lambda^T G(x),$$

gdzie $x \in X \subset \mathbb{R}^n$ jest wektorem zmiennych, a $\lambda \in \mathbb{R}^m$ jest wektorem parametrów (mnożników Lagrange'a).

Twierdzenie 2 W problemie zadanym przez różniczkowalne f, g_1, g_2, \ldots, g_m funkcja f może mieć ekstremum lokalne na M tylko w takim \bar{x} , że:

- \bar{x} jest punktem nieregularnym w M,
- \bar{x} wraz z danym wektorem $\bar{\lambda}$ spełnia układ:

$$\begin{cases}
\mathscr{L}'(\bar{x}, \bar{\lambda}) &= 0, \\
G(\bar{x}) &= 0.
\end{cases}$$

Twierdzenie 3 Jeśli w problemie na ekstremum warunkowe zadanym przez f i G funkcje f, g_1, g_2, \ldots, g_m mają ciągłe pochodne cząstkowe drugiego rzędu, \bar{x} jest punktem regularnym w M i $\mathcal{L}'(\bar{x}, \bar{\lambda}) = \mathbf{0}$ to:

- f ma minimum (maksimum) lokalne na M, jeśli forma kwadratowa zadana macierzą $\mathcal{L}''(\bar{x}, \bar{\lambda})$ jest dodatnio (ujemnie) określona na $C = KerG'(\bar{x}), ^4$
- f nie ma ekstremum lokalnego na M, jeśli forma kwadratowa zadana macierzą $\mathcal{L}''(\bar{x}, \bar{\lambda})$ jest nieokreślona na $C = KerG'(\bar{x})$

Przypomnijmy: $C = \operatorname{Ker} G'(\bar{x}) = \{h \in \mathbb{R}^n : G'(\bar{x})h = \mathbf{0}\}$ a dodatnia (ujemna) określoność $\mathcal{L}''(\bar{x}, \bar{\lambda})$ na jądrze C oznacza, że $(\mathcal{L}''(\bar{x}, \bar{\lambda})h|h) > (<)0$ dla $h \in C \setminus \{0\}$.

3 Ograniczenia zadane nierównościami

Rozpatrzmy następujące problem: $\max_{x \in X} f(x)$ przy warunkach $g_i(x) = 0, i = 1, \ldots, m$ oraz $h_j(x) \leq 0, j = 1, \ldots, k$, gdzie $X \subset \mathbb{R}^n$ a $m, k \in \mathbb{N}$ oraz $n \geq k + m$. Zauważmy, gdy m = 0 wtedy mamy tylko ograniczenia

 $^{^4}$ W szczególności, gdy macierz $\mathscr{L}''(\bar{x}, \bar{\lambda})$ jest dodatnio (ujemnie) określona.

zadane nierównościami a gdy k=0 wtedy mamy tylko ograniczenia zadane równaniami. Niech $M \subset \mathbb{R}^n$ oznacza zbiór rozwiązań dopuszczalnych, tzn. $M = \{x \in \mathbb{R}^n \ g_i(x) = 0, h_j(x) \leq 0, i = 1, \dots, m, j = 1, \dots, k\}$. Zakładamy, że funkcje $f, g_i, i = 1, \dots, m$ oraz $h_j, j = 1, \dots, k$ są różniczkowalne.

Definicja 5 Punkt $\bar{x} \in M$ nazywamy punktem regularnym ograniczeń wtt. gdy ograniczenia, które są spełnione dla \bar{x} co do równości są niezależne tzn. gdy wiersze macierzy $D = [G'(\bar{x})H'(\bar{x})]^T$ gdzie $G(\bar{x}) = [g_1(\bar{x}), g_2(\bar{x}), \dots, g_m(\bar{x})]^T$, $H(\bar{x}) = [h_j(\bar{x}), \forall j \text{ takich, } że h_j(\bar{x}) = 0]^T$ są liniowo niezależne.

Twierdzenie 4 (Warunki Kuhn'a-Tucker'a) Niech punkt $\bar{x} \in M$ będzie punktem regularnym ograniczeń. Wtedy istnieją mnożniki $\lambda_i \in \mathbb{R}, i = 1, \ldots, m$ oraz $\lambda_j \in \mathbb{R}_+, j = 1, \ldots, k$, takie, że

• $dla\ ka\dot{z}dego\ l=1,\ldots,n\ zachodzi$:

$$\frac{\partial f(\bar{x})}{\partial x_l} = \sum_{i=1}^m \lambda_i \frac{\partial g_i(\bar{x})}{\partial x_l} + \sum_{j=1}^k \lambda_j \frac{\partial h_j(\bar{x})}{\partial x_l},$$

oraz

• dla każdego j = 1..., k zachodzi $\lambda_j h_j(\bar{x}) = 0$, tzn. $\lambda_j = 0$ dla każdego ograniczenia j, które nie jest spełnione co do równości.

Twierdzenie 5 Niech m=0 oraz funkcja h_j będzie quasi-wypukła dla każdego j. Niech ponadto funkcja f spełnia warunek $f'(x_1)(x_2-x_1)^T>0$ dla każdych x_2, x_1 takich, że $f(x_2)>f(x_1)$. Jeżeli \bar{x} będący punktem regularnym ograniczeń spełnia warunki Kuhn'a-Tucker'a wtedy \bar{x} jest maksimum globalnym funkcji f na zbiorze M.

Twierdzenie 6 Niech zbiór M będzie wypukły a funkcja f silnie quasiwklęsła na M, wtedy istnieje jeden punkt $\bar{x} \in M$ rozwiązujący problem maksymalizacyjny z ograniczeniami.

Przypomnijmy: f jest quasi-wypukła na zbiorze A wtt. $\forall x_1, x_2 \in A$ oraz $\mu \in [0,1]$ zachodzi $f(\mu x_1 + (1-\mu)x_2) \leq \max\{f(x_1), f(x_2)\}$. Funkcja f jest silnie quasi-wypukła jeżeli nierówność jest ostra dla $\mu \in (0,1)$ i każdych $x_1 \neq x_2$. Każda funkcja wypukła jest także quasi-wypukła. Funkcja f jest quasi-wypukła.

4 Opracowane na podstawie:

- [1] Dubnicki W., J. Kłopotowski, T. Szapiro, Analiza matematyczna. Podręcznik dla ekonomistów, Warszawa 1999.
- [2] Mas-Colell, A., Whinston M.D., Green, J.R., *Microeconomic theory*, Oxford University Press 1995.

Więcej na temat optymalizacji wypukłej można znaleźć w świetnym opracowaniu:

[3] Rockafellar, R.T., Convex analysis, Princeton University Press 1997.