Automatic classification of event logs sequences for failure detection in WfM/BPM systems

Johnnatan Jaramillo and Julián Arias-Londoño Universidad de Antioquia

Outline

Business Process Management and Problem Context

Characterization of event logs

Modeling

Performance

Experiments and Results

Future Work

Conclusions

References

Questions

Thank you!

Business Process Management and Problem Context

It is a **methodology** that seeks to control, analyze, and improve organizational processes.

Problem: 7

Identify which work items are there in an error or failure state, given the large number of active work items that could be active in the system.

Problem: 8

Identify which work items are there in an error or failure state, given the large number of active work items that could be active in the system.

Proposed Solution:

To use techniques of Computational Intelligence and Machine Learning to detect failures in a business process, and to predict which of these work items will end up in an error state. All this from event logs.

Characterization of event logs

- ▶ e.g. Operation identifier, Event type, Originator Identifier.
- ► One-Hot Encoding.

Workflow Id	Ev	vent	Ту	ре	OI	oera	tion	ı Id	Integer
	1	2	3	4	1	2	3	4	
208aefee-e047	1	0	0	0	0	0	1	0	130
208aefee-e047	0	1	0	0	1	0	0	0	72
208aefee-e047	0	0	1	0	0	1	0	0	36
208aefee-e047	0	0	0	1	0	0	0	1	17

Required to:

- ▶ Hidden Markov Model.
- ▶ Hidden *semi*-Markov Model.
- ▶ Non-stationary Hidden *semi*-Markov Model.

Modeling

Figure: A standard Hidden Markov Model, taken from [2].

Figure: A general Hidden semi-Markov Model, taken from [2].

- ► Transition probability matrix "A".
- ► Emission observation probability matrix "B".
- ▶ Initial probabilities vector " π ".
- \triangleright Set of hidden states with size "M".
- ightharpoonup Observation dictionary with size "k".

HMM:

$$a_{ij} \equiv P\left[S_t = j | S_{t-1} = i\right]$$

▶ Discrete random variable "D".

HSMM:

 $\begin{array}{c} \bullet \ a_{(i)(j,d)} \equiv \\ P\left[S_{[t+1:t+d]} = j | S_{t]} = i\right] \end{array}$

NHSMM:

$$\begin{array}{c} \blacktriangleright \ a_{(i,j)(d)} \equiv \\ P\left[S_{t+1} = j | S_{[t-d+1:t} = i\right] \end{array}$$

Performance

- ► An important consideration when using ML methods is his **computational complexity**.
- ▶ In a HMM, the complexity in terms of memory is O(MT).
- ▶ And the complexity in terms of time is $O(M^2T)$.
- ▶ In HSMM, there is a computational complexity of $O((M^2 + MD^2)T)$ during training.
- ▶ In NHSMM is of $O(M^2TD^2)$ during training.
- ► The implementations of HMM and HSMM models used in this work were made in **Apache Spark**.
- ▶ With this implementation the performance of the algorithms can be **scalable**.

Experiments and Results

Dataset 19

► The event logs were generated by a **WfM system**.

- ► This system supports a **real-life** business process related to banking.
- ► The dataset contains around **sixty millions** of event logs, that correspond to **460,000** event logs sequences.
- ► There are **two groups** of sequences: a group that finish successfully, and a group that finish incorrectly o with some error.
- ▶ 60% of sequences correspond to the first group, and the remaining 40% to the second group.

- ▶ Cross-validation was performed with five folds.
- ▶ The parameter M was varied between 10 and 50, and the parameter D between 3 and 6.
- ► The classification performance indicators are calculated as follows:
 - sensitivity: tp/(tp+fn)
 - specificity: tn/(tn+fp)
 - accuracy: (tp+tn)/#observations
 - geometric mean: $\sqrt{sensitivity * specificity}$

k-means and k = 57

M	Sensitivity	Specificity	Accuracy	G-mean
40	45.33%	74.46%	62.52%	58.10%

k-mode and k = 300

M	Sensitivity	Specificity	Accuracy	G-mean
40	45.31%	74.46%	62.51%	58.08%

Without clustering and k = 4039

M	Sensitivity	Specificity	Accuracy	G-mean
20	74.35%	70.37%	72.00%	72.34%

Results HSMM without clustering, M=10 and k=4039

D	Sensitivity	Specificity	Accuracy	G-mean
3	78.98%	72.97%	75.43%	75.70%
4	99.90%	77.49%	86.70%	87.72%
5	99.93%	67.84%	81.04%	82.16%
6	99.91%	75.17%	85.34%	86.53%

Results HSMM without clustering, M = 10 and k = 4039

D	Sensitivity	Specificity	Accuracy	G-mean
3	75.21%	70.24%	72.29%	72.69%
4	75.12%	70.24%	72.25%	72.64%
5	75.25%	70.25%	72.30%	72.71%
6	75.31%	70.23%	72.31%	72.72%

Future Work

➤ To use current Deep Learning techniques such as Long-short-term memory (LSTM), which do not explicitly model the time, but present a good performance in the classification of event log sequences.

Conclusions

- ► Fail detection in WfM/BPM systems can be carried out using HMM/HSMM/NHSMM models.
- ► The **performance** obtained by the HSMM model is superior to the one shown by the HMM and NHSMM.
- ► The best performance obtained in this work was an accuracy of 86.7%.
- ▶ Experiments showed that setting M=10 and D=4 is a good choice.
- ▶ This is the first step to implement a system that allows predicting the behavior of the process in real time within a Big Data context.

References

- G. A. Fink, Markov Models for Pattern Recognition, vol. 1. London: Springer London, second edi ed., 2014.
- S.-Z. Yu, Hidden Semi-Markov Models Theory, Algorithms and Applications.
 Elsevier, oct 2016.
- W. M. P. Van der Aalst, "Business Process Management Demystified: A Tutorial on Models, Systems and Standards for Workflow Management," Lecture Notes in Computer Science: Lectures on Concurrency and Petri Nets: Advances in Petri Nets, vol. 3098, pp. 1–65, 2004.

Questions

Thank you!

