MATH 2111: Tutorial 6 Inverse and Determinant of a Matrix

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

Department of Mathematics, HKUST

- Algorithm for finding the inverse of a matrix
- The invertible matrix theorem, invertible linear transformations
- Definition of determinant
- Properties of determinant

Find the inverses of the matrices below, if they exist

$$\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$$

Suppose T and U are linear transformations from \mathbb{R}^n to \mathbb{R}^n such that $T(U\mathbf{x}) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . Is it true that $U(T\mathbf{x}) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n ? Why or why not?

Compute the determinants by cofactor expansions.

$$\begin{vmatrix} 4 & 0 & -7 & 3 & -5 \\ 0 & 0 & 2 & 0 & 0 \\ 7 & 3 & -6 & 4 & -8 \\ 5 & 0 & 5 & 2 & -3 \\ 0 & 0 & 9 & -1 & 2 \end{vmatrix}$$

$$\begin{vmatrix}
6 & 3 & 2 & 4 & 0 \\
9 & 0 & -4 & 1 & 0 \\
8 & -5 & 6 & 7 & 1 \\
2 & 0 & 0 & 0 & 0 \\
4 & 2 & 3 & 2 & 0
\end{vmatrix}$$

Find the determinant by row reduction to echelon form.

$$\begin{vmatrix} 1 & 3 & -1 & 0 & -2 \\ 0 & 2 & -4 & -2 & -6 \\ -2 & -6 & 2 & 3 & 10 \\ 1 & 5 & -6 & 2 & -3 \\ 0 & 2 & -4 & 5 & 9 \end{vmatrix}$$

Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that $\det(A + B) = \det A + \det B$ if and only if a + d = 0.