Κεφάλαιο 3 - Ορίζουσες

3.1 Ορίζουσες με ανάπτυγμα

Ορισμός

- An A=(a) είναι 1×1 πίνακας, η **ορίζουσα** του, $\det(A)$ ορίζεται ως $\det A=a$.
- Αν $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ είναι 2×2 πίνακας, η **ορίζουσα** του, $\det(A)$, ορίζεται ως $\det(A)=ad-bc.$

Συμβολίζεται και με
$$|A|$$
 ή $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Υπενθύμιση:
$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

Σ. Δημόπουλος ΜΑΣ029 2 / 11

Θα γενικεύσουμε τον ορισμό της ορίζουσας σε $n \times n$ πίνακες.

Ορισμός

Έστω
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 ένας $n \times n$ πίνακας.

- Η ελάσσονα ορίζουσα του a_{ij} συμβολίζεται με M_{ij} και είναι η ορίζουσα του πίνακα που προκύπτει αν διαγράψουμε από τον A την i-γραμμή και την j-στήλη.
- Το αλγεβρικό συμπλήρωμα του a_{ij} συμβολίζεται με C_{ij} και είναι ο αριθμός $(-1)^{i+j}M_{ij}$.

Σ. Δημόπουλος ΜΑΣ029 3 / 11

Έστω
$$A = \begin{pmatrix} 3 & 1 & -4 \\ 2 & 5 & 6 \\ 1 & 4 & 8 \end{pmatrix}$$
. Να βρεθούν τα C_{11} και C_{32} .

Σ. Δημόπουλος ΜΑΣ029 4 / 11

Να βρεθούν όλα τα αλγεβρικά συμπληρώματα ενός 2 \times 2 πίνακα

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 5 / 11

Παρατήρηση

Το πρόσημο των αλγεβρικών συμπληρωμάτων μπορεί να βρεθεί με τον παρακάτω μνημονικό κανόνα.

Σ. Δημόπουλος MA Σ 029 6 / 11°

Ορισμός

Aν ο A είναι $n \times n$ πίνακας, η ορίζουσα του A, det(A), είναι η ποσότητα που προκύπτει από τον πολλαπλασιασμό των στοιχείων μια γραμμής ή στήλης με τα αντίστοιχα αλγεβρικά τους συμπληρώματα. Δηλαδή,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$$
(ανάπτυγμα ως προς j στήλη)

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{jn}$$
(ανάπτυγμα ως προς *i* γραμμή)

MAΣ029

Να βρεθεί η ορίζουσα του πίνακα
$$A = \begin{pmatrix} 3 & 1 & 0 \\ -2 & -4 & 3 \\ 5 & 4 & -2 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 8 / 11

Να βρεθεί η ορίζουσα του πίνακα
$$A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 9 / 11

Να βρεθεί η ορίζουσα του πίνακα
$$A=egin{pmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 10 / 11

Θεώρημα

Αν ο Α είναι $n \times n$ άνω τριγωνικός, κάτω τριγωνικός η διαγώνιος πίνακας, τότε η ορίζουσά του είναι ίση με το γινόμενο των στοιχείων της κυρίας διαγωνίου.

Σ. Δημόπουλος $MA \Sigma 029$ 11 / 11