Ce Zhang

https://zhangce01.github.io/ @ zhangce1203@gmail.com

Education

> Carnegie Mellon University, Pittsburgh, United States

Aug 2023 - Present

M.Sc. in Machine Learning, Machine Learning Department, School of Computer Science

GPA: 3.89/4.00

Courses: Introduction to Machine Learning, Convex Optimization, Probability Graphical Models, Probability and Mathematical Statistics, Machine Learning in Practice, Intermediate Deep Learning, Independent Research.

> Southern University of Science and Technology (SUSTech), Shenzhen, China

Aug 2019 - Jun 2023

B.Eng. in Communication Engineering (Summa Cum Laude), College of Engineering

GPA: 3.91/4.00 Rank: 1/33

Selected Courses: Data Structures and Algorithm Analysis (100), Linear Algebra (100), Artificial Intelligence (96).

■ Selected Publications (*Equal Contribution)

- > Ce Zhang, Simon Stepputtis, Katia Sycara, Yaqi Xie. Enhancing Vision-Language Few-Shot Adaptation with Negative Learning. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2025. Also presented at *ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation Models*. [PDF] [Code]
- > Ce Zhang, Simon Stepputtis, Katia Sycara, Yaqi Xie. Dual Prototype Evolving for Test-Time Generalization of Vision-Language Models. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2024. Also presented at *ICML 2024 Workshop on Foundation Models in the Wild*. [PDF] [Project] [Code]
- > **Ce Zhang**, Simon Stepputtis, Joseph Campbell, Katia Sycara, Yaqi Xie. HiKER-SGG: Hierarchical Knowledge Enhanced Robust Scene Graph Generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR*), 2024. Also presented at *NeurIPS 2023 New Frontiers in Graph Learning Workshop*. [PDF] [Project] [Code]
- > Ce Zhang, Kailiang Wu, and Zhihai He. Critical Sampling for Robust Evolution Operator Learning of Unknown Dynamical Systems. *IEEE Transactions on Artificial Intelligence (IEEE TAI)*, 2023. Also presented at *First Workshop on Out-of-Distribution Generalization in Robotics at CoRL 2023*. [PDF]
- ➤ Yi Zhang*, **Ce Zhang***, Zihan Liao, Yushun Tang, and Zhihai He. BDC-Adapter: Brownian Distance Covariance for Better Vision-Language Reasoning. In *British Machine Vision Conference (BMVC)*, 2023. [PDF] [Project]
- > Yushun Tang, **Ce Zhang**, Heng Xu, Shuoshuo Chen, Jie Cheng, Luziwei Leng, *et al.* Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023. [PDF]
- > Xueting Hu, **Ce Zhang**, Yi Zhang, Bowen Hai, Ke Yu, and Zhihai He. Learning to Adapt CLIP for Few-Shot Monocular Depth Estimation. In *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV*), 2024. [PDF]
- ➤ Yi Zhang, **Ce Zhang**, Ke Yu, Yushun Tang, Zhihai He. Concept-Guided Prompt Learning for Generalization in Vision-Language Models. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2024. [PDF]
- > Zhehan Kan, Shuoshuo Chen, **Ce Zhang**, Yushun Tang, *et al.* Self-Correctable and Adaptable Inference for Generalizable Human Pose Estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR*), 2023. [PDF]

₽ Preprints (*Equal Contribution)

> Ce Zhang*, Zifu Wan*, Zhehan Kan, Martin Q. Ma, Simon Stepputtis, Deva Ramanan, Russ Salakhutdinov, Louis-Philippe Morency, Katia Sycara, Yaqi Xie. Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models. Submitted to International Conference on Learning Representations (ICLR), 2025. Also presented at NeurIPS 2024 Workshop on Responsibly Building the Next Generation of Multimodal Foundational Models.

Work Experience

Research Assistant at Advanced Agent Robotics Technology Lab, Carnegie Mellon University

Aug 2023 - Present

Advisor: Prof. Katia Sycara, IEEE/AAAI Fellow

Pittsburgh, United States

- > My main duty is to develop generalizable and robust visual perception systems for practical robotics applications.
- > Developed a self-correcting mechanism for large vision-language models to enhance their real-world reliability.
- > Enhanced vision-language models to generalize to out-of-distribution domains through few-shot/test-time adaptation.
- > Designed a hierarchical inference approach for accurate scene graph generation under real-world corruptions.

Research Experience

#1. Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in LVLMs Jun 2024 - Oct 202-

- ➤ Introduced self-correcting Decoding with Generative Feedback (DeGF), a training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process to mitigate hallucinations in LVLMs.
- > Demonstrated generative models can provide self-feedback for mitigating hallucinations at response/token levels.
- > Outperformed state-of-the-art approaches in effectively mitigating hallucinations in LVLMs across five benchmarks.

#2. Dual Prototype Evolving for Test-Time Generalization of Vision-Language Models

Feb 2024 - May 2024

- > Proposed Dual Prototype Evolving (DPE) that effectively accumulates task-specific knowledge from multi-modalities.
- > Introduced and optimized learnable residuals for each test sample to align the prototypes across modalities.
- > Outperformed state-of-the-art methods across 15 datasets while maintaining competitive computational efficiency.

#3. Enhancing Vision-Language Few-Shot Adaptation with Negative Learning

Dec 2023 - Apr 2024

- > Explored the negative inference capabilities of VLMs, and introduced a unique dual-path adaptation approach for CLIP.
- > Proposed a plug-and-play instance reweighting technique to mitigate the impact of noisy samples.
- > Outperformed other methods in both adaptation performance and generalizability across 15 diverse recognition tasks.

#4. HiKER-SGG: Hierarchical Knowledge Enhanced Robust Scene Graph Generation

Aug 2023 - Nov 2023

- > Proposed a novel method for generating scene graphs through a hierarchical inference approach over structured domain knowledge, allowing it to gradually specify increasingly granular classifications through iterative sub-selection.
- > Introduced a new synthetic VG-C benchmark for practical SGG, containing 20 challenging image corruptions.
- > Outperformed SOTA methods on SGG tasks, while providing a zero-shot baseline for SGG from corrupted images.

#5. Concept-Guided Prompt Learning for Generalization in Vision-Language Models

May 2023 - Sep 2023

- > Created a low-level visual concept cache to enable concept-guided prompting for vision-language models.
- > Incorporated rich multi-level visual semantics to optimize the textual features using a vision-to-language projector.
- > Verified the effectiveness on base-to-novel generalization, cross-dataset transfer, and domain generalization tasks.

#6. Learning to Adapt CLIP for Few-Shot Monocular Depth Estimation

Mar 2022 - Jul 2023

- > Explored the monocular depth estimation task using vision-language models in a new few-shot setting.
- > Designed learnable prompts and learnable depth codebooks to adapt the CLIP model for different scenes effectively.
- > Outperformed the previous SOTA by 10.6% MARE and achieved performance comparable to fully-supervised methods.

#7. BDC-Adapter: Brownian Distance Covariance for Better Vision-Language Reasoning

Feb 2023 - Jun 2023

- > Introduced BDC to vision-language reasoning to provide a more robust metric for measuring feature dependence.
- > Integrated BDC prototype similarity reasoning and multi-modal reasoning network prediction to adapt CLIP efficiently.
- > Achieved SOTA performance on CLIP-based few-shot learning, domain generalization, and visual reasoning tasks.

#8. Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation

May 2022 - Nov 2022

- > Explored neurobiology-inspired Hebbian learning for effective early-layer representations for test-time adaptation.
- > Combined unsupervised Hebbian learning with a learned neuro-modulator to capture feedback from external responses.
- ➤ Outperformed the previous state-of-the-art by 1.4%, 2.4%, 2.3% on CIFAR10-C, CIFAR100-C and ImageNet-C datasets.

#9. Critical Sampling for Robust Evolution Behavior Learning of Unknown Dynamical Systems Jan 2022 - Oct 2022

- > Introduced a joint spatial-temporal evolution network for robust learning the evolution operator with very few samples.
- > Discovered new locations adaptively to collect most critical samples based on multi-step reciprocal prediction error.
- > Reduced the numbers of samples needed for robust learning of evolution behaviors of PDE systems by up to 100 times.

#10. Self-Correctable and Adaptive Inference for Generalizable Human Pose Estimation

Feb 2022 - Aug 2022

- > Designed a self-supervised prediction-feedback-correction scheme to adjust the prediction results during test-time.
- > Introduced a self-supervised feedback error to perform quick adaptation of the correction network during inference.
- > Achieved state-of-the-art performance on public MS COCO test-dev dataset, with average precision gain of 1.4%.

A Project Experience

#1. Emperical Analysis of Deep Learning Models on Neural Machine Translation | Python

Oct 2023 - Dec 2023

- > Implemented recurrent neural network and Transformer with second-order AdaHessian optimizer from scratch.
- > Adopted Llama-2-7B and Llama-2-70B models for translation tasks via in-context learning and low-rank fine-tuning.
- > Achieved a BLEU score of 41.06 using our implemented Transformer and 20.49 BLEU with a fine-tuned Llama-2 model.

$\textbf{\#2. Calculator and Music Player Applications Design} \mid \texttt{Kotlin}, \texttt{Android Studio}$

Feb 2022 - Jun 2022

- > Designed numerical and operational buttons and supported advanced mathematical operations (e.g. factorial, square root). Designed seek bar, song list, functional buttons, and supported page jumping for the music player application.
- > Developed light and dark mode user interfaces for both applications. Adapted to different real mobile devices.

\$ Honors and Awards

> Top 10 Summa Cum Laude Graduates (highest distinction, top 1%), SUSTech

Jun 2023

➤ Top 10 Undergraduate Graduates (top 2%), College of Engineering, SUSTech

May 2023 Nov 2022

National Scholarship (top 0.2%), Ministry of Education of the People's Republic of China
School Motto Scholarship Special Award (top 1%), SUSTech

Nov 2022

> Outstanding Teaching Award, SUSTech

Jan 2022 & Jun 2022

> The First Prize of Outstanding Student Scholarship (top 5%), SUSTech

Nov 2020 & Nov 2021 & Nov 2022

Academic Service

- > Journal Reviewer: IEEE TCSVT, IEEE TMM, IEEE TAI
- > Conference Reviewer, ICLR 2025, WACV 2025, ICASSP 2025, BMVC 2024 (Outstanding Reviewer), ICME 2024
- > Teaching Assistant, Linear Algebra @ SUSTech for 3 semesters (Fall 2021, Spring 2022, Fall 2022)