Practical Machine Learning

Monika Chuchro

2022-10-30

Packages, language

```
Sys.setlocale("LC_ALL", "English")
## [1] "LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
States.1252; LC_MONETARY=English_United
States.1252; LC_NUMERIC=C; LC_TIME=English_United States.1252"
library(readr)
library(caret)
## Ladowanie wymaganego pakietu: ggplot2
## Ladowanie wymaganego pakietu: lattice
library(corrplot)
## corrplot 0.92 loaded
library(rattle)
## Ladowanie wymaganego pakietu: tibble
## Ladowanie wymaganego pakietu: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Dolaczanie pakietu: 'randomForest'
## Nastepujacy obiekt zostal zakryty z 'package:rattle':
##
##
       importance
## Nastepujacy obiekt zostal zakryty z 'package:ggplot2':
##
##
       margin
```

```
library(kernlab)
##
## Dolaczanie pakietu: 'kernlab'
## Nastepujacy obiekt zostal zakryty z 'package:ggplot2':
##
## alpha
set.seed(12345)
```

Data import, datasets

Importing data into 2 data sets.

```
train<- read_delim("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-</pre>
training.csv", col names=T,)
## New names:
## Rows: 19622 Columns: 160
## -- Column specification
                                  ----- Delimiter: ","
chr
## (34): user_name, cvtd_timestamp, new_window, kurtosis_roll_belt, kurtos...
## (126): ...1, raw timestamp part 1, raw timestamp part 2, num window,
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this
message.
## * `` -> `...1`
test<-read_delim("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-
testing.csv", col_names=T)
## New names:
## Rows: 20 Columns: 160
## -- Column specification
## ------ Delimiter: ","
chr
## (3): user_name, cvtd_timestamp, new_window dbl (57): ...1,
## raw timestamp part 1, raw timestamp part 2, num window, rol... lgl (100):
## kurtosis roll belt, kurtosis picth belt, kurtosis yaw belt, skewn...
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this
message.
## * `` -> `...1`
dim(train)
## [1] 19622
              160
```

```
dim(test)
## [1] 20 160
```

Preprocessing

Variables have a high number of NA, Near Zero Variance (NZV) and Id. Preprocessing will removed them. removing NA column (mostly NA values, and columns with metadata)

```
nvz <- nearZeroVar(train)
train <- train[,-nvz]

train <- train[,colMeans(is.na(train)) < 0.9]
train <- train[,-c(1:7)]
dim(train)
## [1] 19622 52</pre>
```

52 variables left after preprocessing

Data analysis

Pearson correlation coefficient will present relations between pairs of variables.

```
p_cor<-round(cor(train[,-52]),2)
corrplot(p_cor, order = "hclust" , type = "upper",tl.cex = 0.5)</pre>
```



```
high_corr<-findCorrelation(p_cor, cutoff=0.75)</pre>
names(train)[high_corr]
                             "accel dumbbell z"
## [1] "accel belt z"
                                                 "accel belt v"
   [4] "accel_arm_y"
                             "total_accel_belt"
                                                 "accel_belt_x"
## [7] "pitch_belt"
                             "accel dumbbell y"
                                                 "magnet dumbbell x"
## [10] "magnet_dumbbell_y"
                             "accel arm x"
                                                 "accel dumbbell x'
## [13] "accel_arm_z"
                             "magnet arm y"
                                                 "magnet belt z"
## [16] "accel forearm y"
                             "gyros forearm y"
                                                 "gyros dumbbell x"
## [19] "gyros_dumbbell_z"
                            "gyros_arm_x"
```

The more intensive correlation color and the bigger dot is presented, the higher correlation is observed between pair of variables. The highest negative Pearson's correlation coefficient is between pitch_belt and accel_belt_x (-0.97), accel_belt_z and total_accel_belt (-0.97).

Modeling

Dividing data (train dataset) into training and validation dataset. For classification modeles quality we assess on dataset not presented in learning phase. That dataset should contain between 25% to 50% observations. In this project was used validation dataset with 30% of observations.

```
partition <- createDataPartition(y=train$classe, p=0.7, list=F)
training <- train[partition,]
validation <- train[-partition,]</pre>
```

Model 1: Decision tree random seed number (12345) 3-fold cross validation randomly splits the data into V groups of roughly equal size. A resample of the analysis data consists of V-1 of the folds while the assessment set contains the final fold.

```
set.seed(12345)
control <- trainControl(method="cv", number=3, verboseIter=FALSE)

tree1 <- train(classe~., data=training, method="rpart", trControl = control,
tuneLength = 5)
fancyRpartPlot(tree1$finalModel)</pre>
```


Rattle 2022-Oct-30 14:30:21 monik

Model quality:

```
valid_tree1 <- predict(tree1, validation)</pre>
confmat_tree1<- confusionMatrix(valid_tree1, as.factor(validation$classe))</pre>
confmat_tree1
## Confusion Matrix and Statistics
##
              Reference
##
                             C
## Prediction
                  Α
                       В
                                  D
                                        Ε
             A 1527
                     482
                           498
                                423
                                      243
##
##
                 31
                     353
                            37
                                 10
                                      176
             C
                 77
##
                     124
                           423
                                126
                                      150
             D
                 19
                      59
                             7
                                344
##
                                       70
             Ε
##
                 20
                     121
                            61
                                 61
                                     443
##
## Overall Statistics
##
##
                   Accuracy : 0.5251
##
                     95% CI: (0.5122, 0.5379)
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                       Kappa: 0.3784
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
```

```
Class: A Class: B Class: C Class: D Class: E
##
                        0.9122 0.30992 0.41228 0.35685
## Sensitivity
                                                          0.40943
## Specificity
                        0.6091 0.94648 0.90183 0.96850
                                                          0.94524
## Pos Pred Value
                        0.4812
                                0.58155
                                         0.47000 0.68938
                                                          0.62748
## Neg Pred Value
                        0.9458
                                0.85108 0.87904 0.88489
                                                          0.87662
## Prevalence
                        0.2845
                                0.19354
                                         0.17434
                                                 0.16381
                                                          0.18386
## Detection Rate
                        0.2595
                                0.05998
                                        0.07188 0.05845
                                                          0.07528
## Detection Prevalence
                        0.5392 0.10314 0.15293 0.08479
                                                          0.11997
## Balanced Accuracy
                        0.7607 0.62820 0.65706 0.66267 0.67733
```

Model 2: Random Forest

```
set.seed(12345)
tree2 <- train(classe~., data=training, method="rf", trControl = control,
tuneLength = 5)</pre>
```

Model quality:

```
valid tree2<- predict(tree2, validation)</pre>
confmat tree2<- confusionMatrix(valid tree2, as.factor(validation$classe))</pre>
confmat_tree2
## Confusion Matrix and Statistics
##
##
             Reference
                            C
## Prediction
                       В
                                  D
                                       Ε
                 Α
            A 1673
##
                       4
                            0
                                  0
                                       0
                  1 1133
                            3
##
            В
                                  0
                                       0
            C
                  0
                       2 1022
                                  8
                                       0
##
##
            D
                  0
                       0
                            1
                               955
                                       1
##
            Ε
                  0
                       0
                            0
                                  1 1081
##
## Overall Statistics
##
##
                   Accuracy: 0.9964
                     95% CI: (0.9946, 0.9978)
##
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9955
##
##
    Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9994
                                     0.9947
                                              0.9961
                                                        0.9907
                                                                  0.9991
## Specificity
                           0.9991
                                     0.9992
                                              0.9979
                                                        0.9996
                                                                  0.9998
                           0.9976
## Pos Pred Value
                                     0.9965
                                              0.9903
                                                        0.9979
                                                                  0.9991
## Neg Pred Value
                           0.9998
                                     0.9987
                                              0.9992
                                                        0.9982
                                                                  0.9998
## Prevalence
                           0.2845
                                     0.1935
                                              0.1743
                                                        0.1638
                                                                  0.1839
## Detection Rate
                           0.2843
                                     0.1925
                                              0.1737
                                                        0.1623
                                                                  0.1837
```

```
## Detection Prevalence 0.2850 0.1932 0.1754 0.1626 0.1839 ## Balanced Accuracy 0.9992 0.9969 0.9970 0.9951 0.9994
```

Model 3: Support Vector Machine

```
set.seed(12345)
svm1<-train(classe~., data=training, method="svmLinear", trControl = control,
tuneLength = 5, verbose = F)</pre>
```

Model quality:

```
valid_svm1<- predict(svm1, validation)</pre>
confmat svm1<- confusionMatrix(valid svm1, factor(validation$classe))</pre>
confmat svm1
## Confusion Matrix and Statistics
##
             Reference
##
                           C
## Prediction
                      В
                                D
                                     Ε
                 Α
                          97
                               70
                                    76
##
            A 1556
                    160
##
            В
                32 808
                        114
                               47
                                  147
            C
                39
##
                     65
                         761
                              114
                                    60
##
            D
                38
                     21
                          37
                              691
                                    75
            Ε
##
                 9
                     85
                          17
                               42 724
##
## Overall Statistics
##
##
                  Accuracy: 0.7715
##
                    95% CI: (0.7605, 0.7821)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.709
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9295
                                   0.7094
                                             0.7417
                                                               0.6691
                                                      0.7168
## Specificity
                          0.9043
                                   0.9284
                                             0.9428
                                                      0.9653
                                                               0.9681
## Pos Pred Value
                                   0.7038
                          0.7943
                                             0.7324
                                                      0.8016
                                                               0.8255
## Neg Pred Value
                          0.9699
                                   0.9301
                                             0.9453
                                                      0.9457
                                                               0.9285
## Prevalence
                                   0.1935
                                             0.1743
                          0.2845
                                                      0.1638
                                                               0.1839
## Detection Rate
                          0.2644
                                   0.1373
                                             0.1293
                                                      0.1174
                                                               0.1230
## Detection Prevalence
                          0.3329
                                   0.1951
                                             0.1766
                                                      0.1465
                                                               0.1490
## Balanced Accuracy
                          0.9169
                                   0.8189
                                            0.8423
                                                      0.8410
                                                               0.8186
```

ACCURACY in validation datasets:

Decision trees: 0.5251 Random Forest: 0.9961 Support Vector Machine: 0.7715 Out of bag error for Decision Tree and Suport Vector Machine is \sim 0.3, for Random Forest \sim 0. There is posibility that Random Forest model is overfitting.

For validation dataset the best results were obtained with Random Forest.

Testing Random Forest model on test dataset (20 observations)

```
pred_tree2<-predict(tree2, test)
pred_tree2

## [1] B A B A A E D B A A B C B A E E A B B B

## Levels: A B C D E

table(pred_tree2)

## pred_tree2

## A B C D E

## 7 8 1 1 3</pre>
```