Bacharelado em Sistemas de Informação Bacharelado em Ciência da Computação 4719 / 4646 - Pesquisa Operacional Profa. Márcia A. Zanoli Meira e Silva

4ª LISTA DE EXERCÍCIOS PROGRAMAÇÃO INTEIRA: TRANSPORTE, TRANSBORDO E ALOCAÇÃO

Entregar os exercícios: 4b, 5, 7 e 9(b,c)

1. Uma companhia tem três armazéns, numerados 1, 2, 3 contendo 1000, 500 e 1600 unidades de seu produto. No próximo mês, 200, 100, 300, 450, 50, 60 e 95 unidades devem ser transportadas para os entrepostos 1, 2, 3, 4, 5, 6, 7. O custo unitário de transporte de qualquer armazém para qualquer entreposto está contido na tabela a seguir. Determine o programa de transporte cujo seja mínimo.

	1	2	3	4	5	6	7
1	10	8	16	3	10	25	18
2	19	25	18	7	12	18	19
3	20	17	20	5	14	16	17

 $z^* = 12.225$

- **2.** Suponha que em um problema de transporte adiciona-se uma constante k a cada um dos custos c_{ij} . Qual a alteração na solução ótima e no valor ótimo da função objetivo?
- **3.** Considere o problema de transporte com os custos, as ofertas e as demandas apresentados no quadro a seguir.

	1	2	3	Oferta
1	1	2	6	7
2	0	4	2	12
3	3	1	5	11
Demanda	10	10	10	

- a) Determine a solução inicial pela Regra de Vogel.
- b) Determine a solução inicial pelo Método do Canto Noroeste.
- c) Determine a solução ótima a partir da regra do Canto Noroeste.

 $z^* = 40$

4. Determine a solução ótima dos problemas de transporte com os custos, ofertas e demandas dos quadros apresentados.

a)

	1	2	3	4	Oferta
1	8	7	8	7	20
2	6	5	4	3	30
3	8	2	7	8	80
Demanda	80	40	10	20	

 $z^* = 660$

b)

	1	2	3	4	5	Oferta
1	8	6	3	7	5	20
2	5		8	4	7	30
3	6	3	9	6	8	30
4	0	0	0	0	0	20
Demanda	25	25	20	10	20	

 $z^* = 305$

5. Considere o problema de transporte com os custos, as ofertas e as demandas apresentados no quadro a seguir.

	1	2	3	Oferta
1	8	9	7	20
2	9	8	6	30
3	5	8	3	40
4	4	9	6	40
Demanda	10	70	10	

- a) Determine a solução inicial pela Regra de Vogel.
- b) Determine a solução inicial pelo Método do Canto Noroeste.
- c) Determine a solução ótima a partir da regra do Canto Noroeste.

 $z^* = 640$

6. Uma companhia locadora de automóveis possui carros em excesso em algumas cidades e déficit em outras. Em particular, as cidades 1 e 2 apresentam um excesso de 15 e 12 carros, respectivamente, enquanto as cidades 3, 4 e 5 necessitam de 7, 18 e 9 carros adicionais, respectivamente. Os automóveis podem ser expedidos diretamente entre as localidades ou podem ser enviados através de cidades intermediárias onde a companhia possui agências. Se os custos de expedição (em reais por carro) são indicados na tabela a seguir, determine o esquema de expedição de custo mínimo para a locadora.

Cidades	1	2	3	4	5
1		7	12	25	65
2	7		22	25	75
3	12	22		17	28
4	25	25	17		15
5	65	75	28	15	

 $z^* = 614,00$

7. Determine um plano de expedição de custo mínimo para o problema de transbordo esquematizado na figura a seguir.

$$z^* = 640$$

8. O diretor de uma escola deseja inscrever quatro alunos num concurso de matemática que engloba os seguintes assuntos: Álgebra, Análise, Lógica e Geometria. Somente um aluno pode ser inscrito em cada assunto e nenhum aluno pode ser inscrito em mais de um assunto porque as provas do concurso ocorrerão simultaneamente. Para isso, ele seleciona seus quatro melhores alunos, A, B, C, D, e lhes aplica os mesmos exames cobrindo as quatro áreas do concurso. O quadro a seguir indica o número de pontos que foi deduzido da nota de cada aluno em cada uma das áreas. Qual aluno deverá ser selecionado para cada um dos assuntos do concurso?

	Álgebra	Análise	Lógica	Geometria
A	7	10	6	3
В	8	7	8	1
C	4	9	3	5
D	5	4	6	9

$$z^* = 15$$

9. Resolva os problemas a seguir aplicando o Método de Húngaro.

a)				
		1	2	3
	1	8	9	7
	2	4	5	4
	2	7	0	0

$$z^* = 19$$

b)

	1	2	3
1	223	265	277
2	124	225	254
3	345	232	369
4	370	219	288

$$z^* = 620$$

c)

	1	2	3	4
1	12,0	15,0	26,5	17,7
2	20,4	12,7	17,9	25,4
3	13,5	10,8	114,8	26,9
4	23,7	19,9	21,7	18,8

$$z^* = 59,5$$

10. Numa fábrica foram instaladas três novas máquinas e admitidos três novos empregados. A direção da fábrica deseja estabelecer uma relação máquina-empregado recíproca e exclusiva cuja matriz de custo é dada abaixo. Determine a solução deste problema minimizando o custo total.

	Máquinas			
	1	2	3	
Empregado 1	25	31	35	
Empregado 2	24	17	16	
Empregado 3	15	23	18	

$$z^* = 60$$