■ Παράγωγος σε σημείο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

■ Κανόνες παραγώγισης

Συνάρτηση	Παράγωγος		
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$		
$c \cdot f(x)$	$c \cdot f'(x)$		
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$		
$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$		
f(g(x))	$f'(g(x)) \cdot g'(x)$		

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΦΙΛΟΜΑΘΕΙΑ

😯 : Ιακώβου Πολυλά 24 - Πεζόδρομος

\(: 26610 20144

☑: frontistirio.filomatheia@gmail.com

👣 : Φροντιστήριο - Φιλομάθεια

Παράγώγοι συναρτήσεων

ΑΠΛΕΣ		ΣΥΝΘΕΤΕΣ		
Συνάρτηση	Παράγωγος	Συνάρτηση	Παράγωγος	Λεκτική περιγραφή
С	0			
x	1			
x^{ν}	$\nu x^{\nu-1}$	$f^{v}(x)$	$\nu f^{\nu-1}(x) \cdot f'(x)$	ν (βάση) $^{\nu-1}$ (βαση) $'$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{1}{f(x)}$	$-\frac{f'(x)}{f^2(x)}$	$-rac{(\Pi$ αρονομαστής)'}{\Piαρονομαστής 2
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\sqrt{f(x)}$	$\frac{f'(x)}{2\sqrt{f(x)}}$	$\dfrac{(\mathrm{Υπόριζο})'}{2\cdot\mathrm{Piζ\alpha}}$
ημχ	συνχ	$\eta \mu f(x)$	$\operatorname{ouv} f(x) \cdot f'(x)$	συν(Γωνία) \cdot (Γωνία) $'$
συνχ	– ημ <i>x</i>	$\operatorname{ouv} f(x)$	$-\eta\mu f(x)\cdot f'(x)$	$-$ ημ(Γωνία) \cdot (Γωνία) $'$
εφχ	$\frac{1}{\sigma v^2 x}$	εφf(x)	$\frac{f'(x)}{\operatorname{ouv}^2 f(x)}$	$\frac{(\Gamma\omega\text{v}\text{i}\alpha)'}{\sigma\text{v}\text{v}^2(\Gamma\omega\text{v}\text{i}\alpha)}$
σφχ	$-\frac{1}{\eta\mu^2x}$	$\sigma \varphi f(x)$	$-\frac{f'(x)}{\eta\mu^2f(x)}$	$-\frac{(\Gamma\omega\text{vi}\alpha)'}{\eta\mu^2(\Gamma\omega\text{vi}\alpha)}$
a^x	$a^x \ln a$	$a^{f(x)}$	$a^{f(x)}\ln a \cdot f'(x)$	$a^{\text{Εκθέτης}} \cdot \ln a \cdot (\text{Εκθέτης})'$
e^x	e^x	$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$	$e^{ ext{E} \kappa \theta \acute{\epsilon} au \eta arsigma} \cdot (ext{E} \kappa \theta \acute{\epsilon} au \eta arsigma)'$
$\ln x $	$\frac{1}{x}$	$\ln f(x) $	$\frac{f'(x)}{f(x)}$	(Παράσταση)' Παράσταση

- Παράγωγος συνάρτηση $f':A_1\to\mathbb{R}$ όπου A_1 το σύνολο των $x\in D_f$ ώστε f παραγωγίσιμη.
- Δεύτερη παράγωγος f'' = (f')'
- Νιοστή παράγωγος $f^{(\nu)} = \left(f^{(\nu-1)}\right)', \ \nu \geq 3$
- $\left(\sqrt[\nu]{f(x)^{\kappa}}\right)' = \left(f(x)^{\frac{\kappa}{\nu}}\right)'$ $\alpha \nu \ f(x) \ge 0$
- $\left(\sqrt[\nu]{f(x)^{\kappa}}\right)' = \left(-f(x)^{\frac{\kappa}{\nu}}\right)'$ $\alpha \nu \ f(x) < 0$
- $\bullet \left(f(x)^{g(x)} \right)' = \left(e^{g(x) \ln f(x)} \right)'$
- f παραγωγίσιμη στο $x_0 \Rightarrow$ f συνεχής στο x_0
- f συνεχής στο $x_0 \Rightarrow$ f παραγωγίσιμη στο x_0
- Aν f: 1-1 και παραγ. στο x_0 τότε f^{-1} παραγ. στο $f(x_0)$ με $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$