

BEST AVAILABLE COPY

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 57022521 A

(43) Date of publication of application: 05.02.82

(51) Int. Cl.

G01J 5/02
G01J 1/06

(21) Application number: 65097861

(71) Applicant:

HORIBA LTD

(22) Date of filing: 25.07.80

(72) Inventor:

IMAGAWA YASUSHIROU
KOTANI HARUO

(54) CONFIRMING METHOD FOR RADIATION OR IRRADIATED AREA

(57) Abstract:

PURPOSE: To confirm easily a radiation area and an irradiated area when a distance between a detector or a light source and an object changes by arranging visible rays approximately parallel to the external or internal edge of invisible radiations that are radiated from the objects or irradiated to the objects.

CONSTITUTION: A plurality of parallel visible rays B along the external edge of infrared radiations A radiated from a radiation area of an object 2 to be inspected toward an infrared detector 1 is irradiated from a light source 5 to an object 2 to be inspected. A radiation area 2a is confirmed directly from the reflected light. In this case when detector 1 or the object 2 travels to cause a change in the radiation area 2a, an irradiation position of the beam to the surface of the object follows the variation. On the other hand, a mirror 17 reflects approximately parallel visible radiations D from a light source 15 in the direction of an object 12 in parallel to the external edge of infrared radiations C from a light source 11. The confirmation of an irradiation area 12a is performed by a visual observation of visible rays reflected from the object surface.

COPYRIGHT: (C)1982,JPO&Japio

Printed from Mimosa 03/28/87 09:37:42 page -1-

F-9L F.82

03/31/87 MON 02:50 [TX/RX NO 6509]
EX-00000000

3 April - 97

Fax to

Examiner D. GUTIERREZ

Group 3108

from Atty. W.A. DRUCKER

Re Prior Art - Japan

(A) JAPAN - S 57-22521

pp 105, 106, 107

English Text / English Abstract

(B) JAPAN - 62-12848 pp 39-43

Claim in English

~~English Abstract~~

る。第1図に知りながら反射される不可視光線とし
て例えば赤外線を検出する場合にシテ、固定領域
確認方法を示したもので、図中1はCから反射
される赤外線を検出する赤外線検出部、2は
該検出部1への赤外線反射領域(固定領域)、3
は同記検出部1を収納した物体、4は該物体の角
直角部に設けられたコリメータ、5は可視光を
発する光源例えは電球ランプ等で、物体表面の反射
領域2より検出部1に向かつて反射される赤外
線Aの外側になるべく近付けた状態で設けられて
いる。又、各光路5…には屈面に偏光のカバー6
…が被せてあつて、コリメータ又はレンズにより
西方のみ路平行可視光線B…を発するよう
調整されていると共に、該可視光線Bの方向が
同記赤外線Aの外側に路平行となるよう調整され
ている。尚、光源5…は反射領域2より明らかに
するために強度適当間隔3…に設ける必要がある。

この実施例にこれにコリメータ4にて定まる入

射角と本例の反射角は等しくなることである。
なげじたが該領域2から反射される光がつて立
射される赤外線Aの外側に沿つて該子午線の
路平行可視光線B…が被検物体3に照射されてい
るので、その反射光から直徑に反射領域2を確
認することができる。そしてこの確認方法にこれ
は、は出口1又は被検物体3の一方が移動して改
射領域2が変化しても可視光線B…の物体表面
への照射位置が同記変化に追従するため、常に正
確な反射領域を確認することができるものである
次に第2回は物体に不可視光線として例えば赤
外線を照射する場合における反射領域の確認方法
を示したものであり、図中、11は赤外線光素、
12は該光素より発する赤外線Cが照射された物
体、12…はその反射領域、13は同記光素11
を収納する物体、14はコリメータ(但し、コリ
メータ以外に例えは凹レンズ又は凸レンズを用ひ
ともできる)、15…は可視光を発する光源
で同記電球等と同様、電球ランプ等を用い且つ該方

にのみ路平行可視光(たとえば短い可視光)を発
するこうべコリメータ、又はレンズを有するカバ
ー16が設けられている。17…は同記光素11
…から発せられた路平行可視光線Dを同記赤外線
Cの外側に路平行し且つそれに沿つて物体12方
向に反射するミラーである。

しかししてこの実施例にかける反射領域12…の
確認は前記実施例にかける反射領域の確認と同様
を方法、即ち物体表面から反射される可視光を目
視することによつて行なうことができるものであら
う。

尚、この実施例及び前述した実施例においては
路平行可視光線B又はDを赤外線A又はCの外側
に路平行に沿わせているが、赤外線の内側に路平行
に沿わせる想像で実施することができるし、また理
論上本の路平行可視光線の数本を外側に複数の
反射を内側にそれぞれ路平行に沿わせた想像で実
施することもできる。

この発明に係る反射又は反射領域確認方法は以
上説明した如く、物体から反射され若しくは物体
に反射された不可視光線の外側若しくは内側に沿

つて路平行となるように複数の路平行可視光線を
同記物体に照射し、物体からの可視光線の反射方
向により不可視光線の反射又は反射領域を確認する
こうにしたものであるから同記反射領域又に反射
領域を測定者が目視することによつて簡単に且つ
直接的に確認することができるものであり、即に
検出器及び光源と被検物体との位置関係に変化が
生じるとき、即ち、反射領域又に反射領域が変化
する場合でも通常よく正確に確認できるといふ
確率を効果を有する。

4 図面の簡単な説明

第1回は反射領域を確認する方法を示した図、
第2回は反射領域を確認する方法を示した図であ
る。

Z. 12…一物体、 A. C…不可視光線

B. D…可視光線。

第2図

かつては
は直線的
されてい
222を用
て云ふよた
めして直
の物体を直
つ、常に正
のである
これは取
つ因縁万葉
外國文書、
付される物
已光緒11
当し、ヨリ
ンズを用る
免する光緒
へ且つ東方

可逆光緒を
子の反射光
を確認する
交叉は設計
简单に且つ
あり、特に
係に変化が
生じが变化
きるという

示した図、
した圖であ

元

314/121

(15) Japan Patent Office (JP)

(11) Patent Application Disclosure

(12) Disclosure Patent Application Official Report

S57-22521

(51) Int. Cl.
G 01 J 5/02
1/06

Identification Symbol

Internal Office No.
7172-2G
7172-2G

(43) Date of Disclosure: 5 February 1982

Number of Inventions: 1
Application for examination: not yet entered

(54) Confirmation method of radiation or irradiated area

(72) Name of Inventor: Haruo Kozumi

(21) Date of Application: S54-9784
15.7.1980

(73) Applicant: K.K. Horiba Seisakusho

(72) Name of Inventor: Yuzishiro Imagawa

(74) Representative Attorney: Eiichi Fujimoto

Detailed descriptionAiming System

1. Name of invention: Confirmation method of radiation or irradiated area

2. Area of the patent claim:

A method of confirming a radiation area of an object surface of an invisible beam radiated from the object surface, or a radiation area of an object surface of said invisible beam irradiated to the object surface comprising:

irradiating a plurality of visible rays, leaving an appropriate space therebetween around said invisible beam, which goes straight to said object surface substantially parallel to external edge of said invisible beam in an external or internal side close to said edge; and

confirming said radiation area or radiated area of said object surface of said invisible ray through reflected rays of said visible rays from said object surface.

3. Detailed explanation of the invention

This invention is related to the method of confirmation that makes clear the invisible area of radiation from the object and irradiated to the object.

The surface temperature of objects such as the human body or iron etc. can be measured using IR-detectors to detect the infrared energy radiated from the object. In this case it is a necessary condition of the measurement to define the measurement area which radiates the IR-energy from the object to the detector. Since in general the measurement area can be determined based on the structure of the detector and the distance to the object, one can confirm the area when one uses collimation type of optics. However this method of confirmation is based on the assumption that the distance of the detector and object is fixed, if the detector or object is moving and the distance between the detector and object is changing, e.g. such a case occurs when one uses a handytype of detector, the above mentioned method cannot make a confirmation of the radiation area.

This disadvantage is realized in both cases, when one measures infrared energy from the object and also when one irradiates invisible light against the object. This problem occurs in a more general sense when one handles invisible light.

Therefore this invention presents a new method which simply confirms, by using the eyes, the radiation area from the object and also the irradiated area of the object, when the distance between detector and object or source of invisible light and object is changing.

The figures explain a preferred embodiment of the invention. Fig. 1 shows the method of confirming the radiation area of the object for instance when using IR detectors. The detector (1) detects the IR-radiation radiated from the object (2). (2a) is the infrared radiation area (measurement area) of the detector (1). (3) is the enclosure which includes the detector. (4) is the collimator which is set in front of the said enclosure. (5) is the source which radiates the visible light, for example a small lamp. The small lamp is located so as to be close to the outer zone of the IR area which radiates from (2a). Also the light source (5) can have a cylinder type of cover which gives parallel visible light that can radiate to the front through the lens or collimator. And also the direction of this light source is to be adjusted to become parallel to the outside zone of the invisible radiation. The lamp source (5) may be installed in multiple numbers with some reasonable distances between them to give a more clear indication of the radiation area (2a).

If one uses this type of preferred embodiment, one can define the radiation area (2a) using the angle of incidence which is determined by the collimator (4) and the distance between detector (1) and object (2). However if one does not take this definition one can also confirm the radiation area (2a) more easily because one can have multiple visible sources which radiate to the object in parallel to the outside of the infrared beam, which radiates from the area (2a) to the detector (1), and one can confirm the radiation area (2a) based on the reflected light projected from the multiple visible sources. If one uses this confirmation method one can confirm very accurately the radiation area because if detector (1) or object (2) is moving, which changes the radiation area (2a), this visible source can follow the change in distance between the detector and object.

Fig. 3 shows the method of confirmation of the irradiated area when one irradiates an invisible source, e.g. IR-light, to the object. (11) is the IR light source. (12) is the object which receives radiation from the invisible source (11). (12a) is the irradiated area. (13) is the enclosure which includes the said light source (11). (14) is the collimator (not only collimators, one can also use a convex or concave lens) (15) is the light source which radiates the visible light. In this case one can also use a small lamp and can also install the cover which holds the collimator or the lens and which radiates the parallel visible ray to the front. (17) is a mirror which reflects light radiated from the light source (15) parallel to the outside of the infrared beam.

Therefore one can confirm the irradiated area (12a) because one can see the reflection of the visible ray from the surface of the object. This is the same method which was explained previously.

In the above two preferred embodiments multiple visible light rays are set parallel along the outside of the invisible beam. But one can locate visible rays also parallel along the inside of the invisible beam. And also one can locate several visible rays along the outside and other visible rays along the inside of the beam. This method of confirmation of the irradiated area and radiation area related to this invention is explained in all the above paragraphs; one radiates the multiple visible rays parallel along the outside or the inside of the irradiated or radiation area of the object, and one can easily confirm the invisible irradiated or radiation area from the reflection of these visible rays from the target surface. Therefore one can confirm by ones eyes the said invisible irradiated area and radiation area. This invention gives a significant effect to confirm the area very accurately when the distance between detector and object or light source and object changes i.e. the irradiation or radiation area is changing.

EP 91 10 7987

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
A	US-A-3 081 632 (S.N.HOWELL) "column 2, lines 37 - 65; figure" -----	1,3,5	G 01 J 5/00		
A	DE-C-3 710 486 (TESTOTHERM MESSTECHNIK) "claim 1; figure 1" -----	1			
A	US-A-4 081 678 (TH.F.MACALL) "figure 1" -----	5			
TECHNICAL FIELDS SEARCHED (Int. Cl.5)					
G 01 J					
The present search report has been drawn up for all claims					
Place of search	Date of completion of search	Examiner			
Berlin	29 November 91	FUCHS R			
CATEGORY OF CITED DOCUMENTS					
X : particularly relevant if taken alone	E : earlier patent document, but published on, or after the filing date				
Y : particularly relevant if combined with another document of the same category	D : document cited in the application				
A : technological background	L : document cited for other reasons				
O : non-written disclosure					
P : intermediate document					
T : theory or principle underlying the invention					
& : member of the same patent family, corresponding document					

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.