Étale groupoid algebras

Benjamin Steinberg, City College of New York

August 1, 2014 Groups, Rings and Group Rings

Outline

Étale Groupoids

Étale Groupoid Algebras

Representation Theory

• Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - ullet commutative C^* -algebras

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - ullet commutative C^* -algebras
 - ullet group C^* -algebras

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - ullet commutative C^* -algebras
 - ullet group C^* -algebras
 - group action C^* -algebras

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - commutative C^* -algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - commutative C^* -algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - commutative C^* -algebras
 - group C^* -algebras
 - ullet group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.
- Algebraic properties can often be seen from the groupoid.

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - ullet commutative C^* -algebras
 - ullet group C^* -algebras
 - ullet group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - inverse semigroup C^* -algebras.
- Algebraic properties can often be seen from the groupoid.
- Morita equivalence of groupoid algebras is often explained by a Morita equivalence of the groupoids.

- Groupoid C^* -algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault's influential monograph (1980).
- They simultaneously generalize:
 - ullet commutative C^* -algebras
 - group C^* -algebras
 - group action C^* -algebras
 - Cuntz-Krieger/graph C^* -algebras
 - ullet inverse semigroup C^* -algebras.
- Algebraic properties can often be seen from the groupoid.
- Morita equivalence of groupoid algebras is often explained by a Morita equivalence of the groupoids.
- Groupoids are espoused by Connes as noncommutative models of spaces.

• Many groupoid C^* -algebras have analogues in the context of associative algebras.

- Many groupoid C^* -algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are algebraic analogues of Cuntz-Krieger C*-algebras.

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are algebraic analogues of Cuntz-Krieger C*-algebras.
- The ring of k-valued continuous functions with compact support on a totally disconnected space is an algebraic analogue of a commutative C*-algebra.

- Many groupoid C*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are algebraic analogues of Cuntz-Krieger C^* -algebras.
- The ring of k-valued continuous functions with compact support on a totally disconnected space is an algebraic analogue of a commutative C*-algebra.
- Over a field, these are precisely the idempotent-generated commutative algebras.

- Many groupoid C^* -algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are algebraic analogues of Cuntz-Krieger C^* -algebras.
- The ring of k-valued continuous functions with compact support on a totally disconnected space is an algebraic analogue of a commutative C^* -algebra.
- Over a field, these are precisely the idempotent-generated commutative algebras.
- Surprising similarities between operator algebras and their algebraic analogues have been known for some time.

• In 2009 [Adv. Math. '10], I introduced an algebraic analogue of groupoid C^* -algebras for a class of étale groupoids.

- In 2009 [Adv. Math. '10], I introduced an algebraic analogue of groupoid C*-algebras for a class of étale groupoids.
- My hope was that it would explain many of the similarities between the algebraic and analytic setting, especially for Leavitt path algebras.

- In 2009 [Adv. Math. '10], I introduced an algebraic analogue of groupoid C*-algebras for a class of étale groupoids.
- My hope was that it would explain many of the similarities between the algebraic and analytic setting, especially for Leavitt path algebras.
- Initially, I focused on applications to inverse semigroup algebras.

- In 2009 [Adv. Math. '10], I introduced an algebraic analogue of groupoid C*-algebras for a class of étale groupoids.
- My hope was that it would explain many of the similarities between the algebraic and analytic setting, especially for Leavitt path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
- Groupoid algebras over C were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who have kindly dubbed them "Steinberg algebras."

- In 2009 [Adv. Math. '10], I introduced an algebraic analogue of groupoid C*-algebras for a class of étale groupoids.
- My hope was that it would explain many of the similarities between the algebraic and analytic setting, especially for Leavitt path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
- Groupoid algebras over C were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who have kindly dubbed them "Steinberg algebras."
- Many of my hopes have since been borne out by
 J. Brown, L. O. Clark, C. Farthing, A. Sims and
 M. Tomforde, who seem to produce new results faster
 than I can keep up with.

 \bullet A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.

- \bullet A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.

- A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.

- \bullet A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.
- $d, r \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ are the domain and range maps.

- A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.
- $d, r \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ are the domain and range maps.
- $m: G^{(2)} \to G^{(1)}$ is the multiplication map.

- A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.
- $d, r \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ are the domain and range maps.
- $m \colon G^{(2)} \to G^{(1)}$ is the multiplication map.
- $\iota \colon G^{(1)} \to G^{(1)}$ is the inversion map.

- A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.
- $d, r \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ are the domain and range maps.
- $m: G^{(2)} \to G^{(1)}$ is the multiplication map.
- $\iota \colon G^{(1)} \to G^{(1)}$ is the inversion map.
- We view $\mathcal{G}^{(0)} \subseteq \mathcal{G}^{(1)}$ by identifying objects and identity arrows.

- A groupoid ${\cal G}$ is a small category in which all morphisms are isomorphisms.
- $\mathcal{G}^{(0)}$ is the object set.
- $\mathcal{G}^{(1)}$ is the arrow set.
- $d, r \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ are the domain and range maps.
- $m \colon G^{(2)} \to G^{(1)}$ is the multiplication map.
- $\iota \colon G^{(1)} \to G^{(1)}$ is the inversion map.
- We view $\mathcal{G}^{(0)} \subseteq \mathcal{G}^{(1)}$ by identifying objects and identity arrows.
- Often $\mathcal{G}^{(0)}$ is called the unit space of \mathcal{G} .

• A topological groupoid is a groupoid $\mathcal G$ with a topology on $\mathcal G^{(1)}$ such that if $\mathcal G^{(0)}$ is given the induced topology, then all the structure maps are continuous.

- A topological groupoid is a groupoid $\mathcal G$ with a topology on $\mathcal G^{(1)}$ such that if $\mathcal G^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.

- A topological groupoid is a groupoid $\mathcal G$ with a topology on $\mathcal G^{(1)}$ such that if $\mathcal G^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.
- \mathcal{G} is étale if $d \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a local homeomorphism.

- A topological groupoid is a groupoid $\mathcal G$ with a topology on $\mathcal G^{(1)}$ such that if $\mathcal G^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.
- \mathcal{G} is étale if $d \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a local homeomorphism.
- This forces all the structure maps to be local homeomorphisms and $\mathcal{G}^{(0)}$ to be open.

- A topological groupoid is a groupoid $\mathcal G$ with a topology on $\mathcal G^{(1)}$ such that if $\mathcal G^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.
- $\mathcal G$ is étale if $d\colon \mathcal G^{(1)} o \mathcal G^{(0)}$ is a local homeomorphism.
- This forces all the structure maps to be local homeomorphisms and $\mathcal{G}^{(0)}$ to be open.
- We assume $\mathcal{G}^{(0)}$ is locally compact Hausdorff, but $\mathcal{G}^{(1)}$ need not be Hausdorff.

Étale groupoids

- A topological groupoid is a groupoid \mathcal{G} with a topology on $\mathcal{G}^{(1)}$ such that if $\mathcal{G}^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.
- $\mathcal G$ is étale if $d\colon \mathcal G^{(1)} o \mathcal G^{(0)}$ is a local homeomorphism.
- This forces all the structure maps to be local homeomorphisms and $\mathcal{G}^{(0)}$ to be open.
- We assume $\mathcal{G}^{(0)}$ is locally compact Hausdorff, but $\mathcal{G}^{(1)}$ need not be Hausdorff.
- Renault calls an étale groupoid ${\cal G}$ ample if ${\cal G}^{(0)}$ has a basis of compact open sets.

Étale groupoids

- A topological groupoid is a groupoid \mathcal{G} with a topology on $\mathcal{G}^{(1)}$ such that if $\mathcal{G}^{(0)}$ is given the induced topology, then all the structure maps are continuous.
- Étale groupoids form one of the most important classes of topological groupoids.
- \mathcal{G} is étale if $d \colon \mathcal{G}^{(1)} \to \mathcal{G}^{(0)}$ is a local homeomorphism.
- This forces all the structure maps to be local homeomorphisms and $\mathcal{G}^{(0)}$ to be open.
- We assume $\mathcal{G}^{(0)}$ is locally compact Hausdorff, but $\mathcal{G}^{(1)}$ need not be Hausdorff.
- Renault calls an étale groupoid ${\cal G}$ ample if ${\cal G}^{(0)}$ has a basis of compact open sets.
- Many important C^* -algebras come from ample groupoids: group algebras, Cuntz-Krieger algebras and inverse semigroup algebras.

 A discrete group is the same thing as a one-object étale groupoid.

- A discrete group is the same thing as a one-object étale groupoid.
- Indeed, if $\mathcal{G}^{(0)}$ is discrete, then because d is a local homeomorphism also $\mathcal{G}^{(1)}$ is discrete.

- A discrete group is the same thing as a one-object étale groupoid.
- Indeed, if $\mathcal{G}^{(0)}$ is discrete, then because d is a local homeomorphism also $\mathcal{G}^{(1)}$ is discrete.
- More generally, any discrete groupoid is an étale groupoid.

- A discrete group is the same thing as a one-object étale groupoid.
- Indeed, if $\mathcal{G}^{(0)}$ is discrete, then because d is a local homeomorphism also $\mathcal{G}^{(1)}$ is discrete.
- More generally, any discrete groupoid is an étale groupoid.
- In fact, discrete groups and groupoids are ample.

ullet Let X be a locally compact Hausdorff space.

- Let X be a locally compact Hausdorff space.
- ullet Then X is an étale groupoid in which all arrows are identities.

- Let X be a locally compact Hausdorff space.
- Then X is an étale groupoid in which all arrows are identities.
- That is, $\mathcal{G}^{(0)} = X = \mathcal{G}^{(1)}$.

- Let X be a locally compact Hausdorff space.
- Then X is an étale groupoid in which all arrows are identities.
- That is, $\mathcal{G}^{(0)} = X = \mathcal{G}^{(1)}$.
- X is an ample groupoid if and only if it has a basis of compact open sets.

- Let X be a locally compact Hausdorff space.
- Then X is an étale groupoid in which all arrows are identities.
- That is, $\mathcal{G}^{(0)} = X = \mathcal{G}^{(1)}$.
- X is an ample groupoid if and only if it has a basis of compact open sets.
- This guarantees X has enough continuous maps into any non-trivial discrete ring to separate points.

 \bullet Let G be a discrete group acting on a locally compact Hausdorff space X.

- Let G be a discrete group acting on a locally compact Hausdorff space X.
- The semidirect product $G \ltimes X$ has object space X and arrow space $G \times X$.

- Let G be a discrete group acting on a locally compact Hausdorff space X.
- The semidirect product $G \ltimes X$ has object space X and arrow space $G \times X$.
- Think

$$(g,x) = gx \xleftarrow{g} x.$$

- Let G be a discrete group acting on a locally compact Hausdorff space X.
- The semidirect product $G \ltimes X$ has object space X and arrow space $G \times X$.
- Think

$$(g,x) = gx \xleftarrow{g} x.$$

Composition is

$$gh \xrightarrow{gh} ghx \xleftarrow{g} hx \xleftarrow{h} x$$

- Let G be a discrete group acting on a locally compact Hausdorff space X.
- The semidirect product $G \ltimes X$ has object space X and arrow space $G \times X$.
- Think

$$(g,x) = gx \stackrel{g}{\longleftarrow} x.$$

Composition is

Inversion is

$$gx \stackrel{g}{\longleftarrow} x$$

• Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.
- Q^{ω} is the space of infinite paths in Q.

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.
- Q^{ω} is the space of infinite paths in Q.
- Let $T \colon Q^{\omega} \to Q^{\omega}$ be the shift map

$$T(e_0e_1e_2\cdots)=e_1e_2\cdots.$$

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.
- Q^{ω} is the space of infinite paths in Q.
- Let $T: Q^{\omega} \to Q^{\omega}$ be the shift map

$$T(e_0e_1e_2\cdots)=e_1e_2\cdots.$$

• The Deaconu-Renault groupoid \mathcal{G}_Q has object space Q^ω and arrow space

$$\{x \xrightarrow{m-n} y \mid T^m(x) = T^n(y)\} \subseteq Q^\omega \times \mathbb{Z} \times Q^\omega.$$

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.
- Q^{ω} is the space of infinite paths in Q.
- Let $T: Q^{\omega} \to Q^{\omega}$ be the shift map

$$T(e_0e_1e_2\cdots)=e_1e_2\cdots.$$

• The Deaconu-Renault groupoid \mathcal{G}_Q has object space Q^ω and arrow space

$$\{x \xrightarrow{m-n} y \mid T^m(x) = T^n(y)\} \subseteq Q^\omega \times \mathbb{Z} \times Q^\omega.$$

Composition is

$$x \xrightarrow{m-n} y \xrightarrow{m'+n'} z = x \xrightarrow{(m+m')-(n+n')} z$$

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite guiver.
- Q^{ω} is the space of infinite paths in Q.
- Let $T: Q^{\omega} \to Q^{\omega}$ be the shift map

$$T(e_0e_1e_2\cdots)=e_1e_2\cdots.$$

• The Deaconu-Renault groupoid \mathcal{G}_O has object space Q^ω and arrow space

$$\{x \xrightarrow{m-n} y \mid T^m(x) = T^n(y)\} \subseteq Q^\omega \times \mathbb{Z} \times Q^\omega.$$

Composition is

$$x \xrightarrow{m-n} y \xrightarrow{m'+n'} z = x \xrightarrow{(m+m')-(n+n')} z$$

• $(x \xrightarrow{m-n} y)^{-1} = y \xrightarrow{n-m} x$.

- Let $Q = (Q^{(0)}, Q^{(1)})$ be a finite quiver.
- Q^{ω} is the space of infinite paths in Q.
- Let $T: Q^{\omega} \to Q^{\omega}$ be the shift map

$$T(e_0e_1e_2\cdots)=e_1e_2\cdots.$$

• The Deaconu-Renault groupoid \mathcal{G}_Q has object space Q^ω and arrow space

$$\{x \xrightarrow{m-n} y \mid T^m(x) = T^n(y)\} \subseteq Q^{\omega} \times \mathbb{Z} \times Q^{\omega}.$$

Composition is

$$x \xrightarrow{m-n} y \xrightarrow{m'+n'} z = x \xrightarrow{(m+m')-(n+n')} z$$

- $(x \xrightarrow{m-n} y)^{-1} = y \xrightarrow{n-m} x$.
- This ample groupoid gives rise to Cuntz-Krieger C^* -algebras and Leavitt path algebras.

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

• Note that s^*s , ss^* are idempotents.

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

- Note that s^*s , ss^* are idempotents.
- Groups are inverse semigroups.

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

- Note that s^*s , ss^* are idempotents.
- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

- Note that s^*s , ss^* are idempotents.
- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- E(S) is a semilattice with $e \wedge f = ef$.

$$ss^*s = s$$
 and $s^*ss^* = s^*$.

- Note that s^*s , ss^* are idempotents.
- Groups are inverse semigroups.
- The idempotents E(S) commute and form a subsemigroup.
- E(S) is a semilattice with $e \wedge f = ef$.
- If G is a group acting on a semilattice E, then the semidirect product $E \rtimes G$ is an inverse semigroup.

ullet Let X be a topological space.

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense:

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense:

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense:

• The empty partial function is a zero element of I_X .

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense:

- The empty partial function is a zero element of I_X .
- If $f: U \to V$, then $f^* = f^{-1}: V \to U$.

- Let X be a topological space.
- I_X is the inverse semigroup of all homeomorphisms between open subsets of X.
- Composition is defined where it makes sense:

- The empty partial function is a zero element of I_X .
- If $f: U \to V$, then $f^* = f^{-1}: V \to U$.
- Inverse semigroups abstract pseudogroups of partial homeomorphisms from differential geometry.

ullet S is an inverse semigroup.

- ullet S is an inverse semigroup.
- ullet X is a locally compact Hausdorff space.

- ullet S is an inverse semigroup.
- X is a locally compact Hausdorff space.
- An action $S \curvearrowright X$ is a homomorphism $\theta \colon S \to I_X$ with

$$\bigcup_{e \in E(S)} \operatorname{dom}(\theta(e)) = X \tag{1}$$

- S is an inverse semigroup.
- X is a locally compact Hausdorff space.
- An action $S \curvearrowright X$ is a homomorphism $\theta \colon S \to I_X$ with

$$\bigcup_{e \in E(S)} \operatorname{dom}(\theta(e)) = X \tag{1}$$

• Since $dom(\theta(s)) = dom(\theta(s^*s))$, (1) is equivalent to X being the union of the domains of all elements of S.

- S is an inverse semigroup.
- X is a locally compact Hausdorff space.
- An action $S \cap X$ is a homomorphism $\theta \colon S \to I_X$ with

$$\bigcup_{e \in E(S)} \operatorname{dom}(\theta(e)) = X \tag{1}$$

- Since $dom(\theta(s)) = dom(\theta(s^*s))$, (1) is equivalent to X being the union of the domains of all elements of S.
- If S is a group, (1) implies the action is by homeomorphisms.

- S is an inverse semigroup.
- X is a locally compact Hausdorff space.
- An action $S \cap X$ is a homomorphism $\theta \colon S \to I_X$ with

$$\bigcup_{e \in E(S)} \operatorname{dom}(\theta(e)) = X \tag{1}$$

- Since $dom(\theta(s)) = dom(\theta(s^*s))$, (1) is equivalent to X being the union of the domains of all elements of S.
- If S is a group, (1) implies the action is by homeomorphisms.
- If $s \in S$ and $e \in E(S)$, then $\theta(se)$ is the restriction of $\theta(s)$ to $dom(\theta(e))$.

• Suppose $S \curvearrowright X$ is an action of an inverse semigroup.

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.
- Think

$$[s,x] = sx \xleftarrow{s} x.$$

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.
- Think

$$[s,x] = sx \stackrel{s}{\longleftarrow} x.$$

Composition and inversion are like in the group action case.

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.
- Think

$$[s,x] = sx \xleftarrow{s} x.$$

- Composition and inversion are like in the group action case.
- $(s,x) \sim (t,y) \iff x=y \text{ and } \exists e \in E(S) \text{ with } x \in \text{dom}(e), se=te.$

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.
- Think

$$[s,x] = sx \xleftarrow{s} x.$$

- Composition and inversion are like in the group action case.
- $(s,x) \sim (t,y) \iff x=y \text{ and } \exists e \in E(S) \text{ with } x \in \text{dom}(e), se=te.$
- $S \ltimes X$ is not Hausdorff in general.

- Suppose $S \curvearrowright X$ is an action of an inverse semigroup.
- We can form a groupoid of germs $S \ltimes X$.
- X is the object space and $(S \times X)/\sim$ is the arrow space.
- Think

$$[s,x] = sx \xleftarrow{s} x.$$

- Composition and inversion are like in the group action case.
- $(s,x) \sim (t,y) \iff x=y \text{ and } \exists e \in E(S) \text{ with } x \in \text{dom}(e), se=te.$
- $S \ltimes X$ is not Hausdorff in general.
- It is ample if X has a basis of compact open sets and the domains of elements of S are compact open.

• Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E(S)}$ by $s \cdot \chi(e) = \chi(s^*es)$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(\widehat{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(\widehat{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes \widehat{E(S)}$.

- Let $\widehat{E(S)} \subseteq \{0,1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi \colon E(S) \to \{0,1\}$.
- S acts on $\widehat{E}(\widehat{S})$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $\mathcal{G}(S)$ is $S \ltimes E(S)$.
- Paterson proved $C^*(\mathcal{G}(S)) \cong C^*(S)$.

 \bullet Let \Bbbk be a unital comm. ring with the discrete topology.

- \bullet Let \Bbbk be a unital comm. ring with the discrete topology.
- Let $\mathcal G$ be an ample groupoid.

- \bullet Let \Bbbk be a unital comm. ring with the discrete topology.
- Let ${\cal G}$ be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.

- Let k be a unital comm. ring with the discrete topology.
- Let \mathcal{G} be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.
- The underlying vector space consists of the continuous k-valued functions on G with compact support.

- Let k be a unital comm. ring with the discrete topology.
- Let \mathcal{G} be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.
- The underlying vector space consists of the continuous
 k-valued functions on G with compact support.

→ This definition needs adjustment for the non-Hausdorff case.

- Let k be a unital comm. ring with the discrete topology.
- Let \mathcal{G} be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.
- The underlying vector space consists of the continuous \Bbbk -valued functions on $\mathcal G$ with compact support.
- Ample implies there are many such functions.

- Let k be a unital comm. ring with the discrete topology.
- Let \mathcal{G} be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.
- The underlying vector space consists of the continuous \Bbbk -valued functions on $\mathcal G$ with compact support.
- Ample implies there are many such functions.
- The product is convolution:

$$f * g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).$$

- Let k be a unital comm. ring with the discrete topology.
- Let \mathcal{G} be an ample groupoid.
- The groupoid algebra $\Bbbk \mathcal{G}$ is defined as follows.
- The underlying vector space consists of the continuous \Bbbk -valued functions on $\mathcal G$ with compact support.
- Ample implies there are many such functions.
- The product is convolution:

$$f * g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).$$

 The sum is finite because fibers of d are closed and discrete and f, g have compact support.

• If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.

- If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.
- If X is a space, kX is the ring of continuous k-valued functions with compact support.

- If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.
- If X is a space, $\mathbb{k}X$ is the ring of continuous \mathbb{k} -valued functions with compact support.
- The Leavitt path algebras are the algebras of Deaconu-Renault groupoids.

- If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.
- If X is a space, kX is the ring of continuous k-valued functions with compact support.
- The Leavitt path algebras are the algebras of Deaconu-Renault groupoids.
- If $G \curvearrowright X$ is a group action, $\Bbbk(G \ltimes X)$ is the cross product $\Bbbk X \rtimes G$.

- If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.
- If X is a space, kX is the ring of continuous k-valued functions with compact support.
- The Leavitt path algebras are the algebras of Deaconu-Renault groupoids.
- If $G \curvearrowright X$ is a group action, $\Bbbk(G \ltimes X)$ is the cross product $\Bbbk X \rtimes G$.

Theorem (BS)

Let S be an inverse semigroup and k a comm. ring with 1. Then $kS \cong k\mathcal{G}(S)$.

• $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- This lets us recover $C^*(S) \cong C^*(\mathcal{G}(S))$ for an inverse semigroup S.

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- This lets us recover $C^*(S) \cong C^*(\mathcal{G}(S))$ for an inverse semigroup S.
- $\mathbb{k}\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- This lets us recover $C^*(S) \cong C^*(\mathcal{G}(S))$ for an inverse semigroup S.
- $\mathbb{k}\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
- kG has local units (is a directed union of unital subrings).

First properties

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- This lets us recover $C^*(S) \cong C^*(\mathcal{G}(S))$ for an inverse semigroup S.
- $\Bbbk \mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
- kG has local units (is a directed union of unital subrings).
- Abrams, Ahn and Marki developed a successful Morita theory for rings with local units.

First properties

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
- This lets us recover $C^*(S) \cong C^*(\mathcal{G}(S))$ for an inverse semigroup S.
- $\mathbb{k}\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
- kG has local units (is a directed union of unital subrings).
- Abrams, Ahn and Marki developed a successful Morita theory for rings with local units.
- $\mathbb{k}\mathcal{G}$ carries an involution $f^*(g) = f(g^{-1})$.

• The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).
- $G \ltimes X$ is effective iff $G \curvearrowright X$ is topologically free.

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).
- $G \ltimes X$ is effective iff $G \curvearrowright X$ is topologically free.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).
- $G \ltimes X$ is effective iff $G \curvearrowright X$ is topologically free.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:
 - 1. $\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).
- $G \ltimes X$ is effective iff $G \curvearrowright X$ is topologically free.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:
 - 1. $\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$

h

2. $g \mapsto \text{implies } f(ghg^{-1}) = f(h)$:

- The isotropy group G_x of $x \in \mathcal{G}^{(0)}$ consists of all loops $x \xrightarrow{g} x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\operatorname{Int}(\mathcal{G}_{iso}) = \mathcal{G}^{(0)}$.
- The Deaconu-Renault groupoid is effective iff the Leavitt path algebra satisfies condition (L).
- $G \ltimes X$ is effective iff $G \curvearrowright X$ is topologically free.
- $f \in \mathbb{k}\mathcal{G}$ is a class function if:
 - 1. $\operatorname{supp}(f) \subseteq \mathcal{G}_{iso}$

h

2. $g \mapsto \text{implies } f(ghg^{-1}) = f(h)$:

Theorem (BS)

The class functions form the center of $\mathbb{k}\mathcal{G}$.

• The orbit \mathcal{O}_x of $x \in \mathcal{G}^{(0)}$ consists of all y such that there exists $x \xrightarrow{g} y$.

- The orbit \mathcal{O}_x of $x \in \mathcal{G}^{(0)}$ consists of all y such that there exists $x \xrightarrow{g} y$.
- If $G \curvearrowright X$ is a group action, then the orbits of $G \ltimes X$ are the orbits of G on X.

- The orbit \mathcal{O}_x of $x \in \mathcal{G}^{(0)}$ consists of all y such that there exists $x \stackrel{g}{\longrightarrow} y$.
- If $G \curvearrowright X$ is a group action, then the orbits of $G \ltimes X$ are the orbits of G on X.
- \mathcal{G} is minimal if every orbit is dense.

- The orbit \mathcal{O}_x of $x \in \mathcal{G}^{(0)}$ consists of all y such that there exists $x \stackrel{g}{\longrightarrow} y$.
- If $G \curvearrowright X$ is a group action, then the orbits of $G \ltimes X$ are the orbits of G on X.
- ullet ${\cal G}$ is minimal if every orbit is dense.

Theorem (BS)

Let G be an effective, Hausdorff ample groupoid with a dense orbit. Then

$$Z(\Bbbk \mathcal{G}) = egin{cases} \&, & \textit{if } \mathcal{G}^{(0)} \textit{ is compact} \ 0, & \textit{else}. \end{cases}$$

- The orbit \mathcal{O}_x of $x \in \mathcal{G}^{(0)}$ consists of all y such that there exists $x \stackrel{g}{\longrightarrow} y$.
- If $G \curvearrowright X$ is a group action, then the orbits of $G \ltimes X$ are the orbits of G on X.
- ullet ${\cal G}$ is minimal if every orbit is dense.

Theorem (BS)

Let G be an effective, Hausdorff ample groupoid with a dense orbit. Then

$$Z(\Bbbk \mathcal{G}) = egin{cases} \&, & \textit{if } \mathcal{G}^{(0)} \textit{ is compact} \\ 0, & \textit{else}. \end{cases}$$

 This generalizes an earlier result of L. O. Clark and C. Edie-Michelle for the minimal case.

Theorem (L. O. Clark, C. Edie-Michelle)

Let $\mathcal G$ be a Hausdorff ample groupoid and $\mathbb K$ a field. Then $\mathbb K \mathcal G$ is simple if and only if $\mathcal G$ is effective and minimal.

Theorem (L. O. Clark, C. Edie-Michelle)

Let G be a Hausdorff ample groupoid and k a field. Then kG is simple if and only if G is effective and minimal.

• First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over \mathbb{C} .

Theorem (L. O. Clark, C. Edie-Michelle)

- First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over C.
- Translates into simplicity criterion for Leavitt path algebras.

Theorem (L. O. Clark, C. Edie-Michelle)

- First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over \mathbb{C} .
- Translates into simplicity criterion for Leavitt path algebras.
- I can use to characterize inverse semigroups S with simple contracted semigroup algebras provided $\mathcal{G}(S)$ is Hausdorff.

Theorem (L. O. Clark, C. Edie-Michelle)

- First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over \mathbb{C} .
- Translates into simplicity criterion for Leavitt path algebras.
- I can use to characterize inverse semigroups S with simple contracted semigroup algebras provided $\mathcal{G}(S)$ is Hausdorff.
- This answers in part a question of Munn.

Theorem (L. O. Clark, C. Edie-Michelle)

- First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over \mathbb{C} .
- Translates into simplicity criterion for Leavitt path algebras.
- I can use to characterize inverse semigroups S with simple contracted semigroup algebras provided $\mathcal{G}(S)$ is Hausdorff.
- This answers in part a question of Munn.
- A sufficient condition for Hausdorff is being 0-E-unitary:

Theorem (L. O. Clark, C. Edie-Michelle)

- First proved by J. H. Brown, L. O. Clark, C. Farthing and A. Sims over C.
- Translates into simplicity criterion for Leavitt path algebras.
- I can use to characterize inverse semigroups S with simple contracted semigroup algebras provided $\mathcal{G}(S)$ is Hausdorff.
- This answers in part a question of Munn.
- A sufficient condition for Hausdorff is being 0-E-unitary:
 - $se, e \in E(S) \setminus \{0\} \implies s \in E(S)$.

• Recall: a ring is primitive if it has a faithful simple module.

- Recall: a ring is primitive if it has a faithful simple module.
- Let $\mathcal G$ be a Hausdorff ample groupoid and \Bbbk a field.

- Recall: a ring is primitive if it has a faithful simple module.
- Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a field.

Theorem (BS)

If G is effective, then $\Bbbk G$ is primitive iff G has a dense orbit.

- Recall: a ring is primitive if it has a faithful simple module.
- Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a field.

Theorem (BS)

If G is effective, then $\Bbbk G$ is primitive iff G has a dense orbit.

Theorem (BS)

Suppose that \mathcal{G} has a dense orbit \mathcal{O}_x with $\mathbb{k}G_x$ primitive. Then $\mathbb{k}\mathcal{G}$ is primitive. The converse holds if x is isolated.

- Recall: a ring is primitive if it has a faithful simple module.
- Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a field.

Theorem (BS)

If G is effective, then $\Bbbk G$ is primitive iff G has a dense orbit.

Theorem (BS)

Suppose that \mathcal{G} has a dense orbit \mathcal{O}_x with $\mathbb{k}G_x$ primitive. Then $\mathbb{k}\mathcal{G}$ is primitive. The converse holds if x is isolated.

• Recall that G_x is the isotropy group at x.

- Recall: a ring is primitive if it has a faithful simple module.
- Let $\mathcal G$ be a Hausdorff ample groupoid and \Bbbk a field.

Theorem (BS)

If G is effective, then $\Bbbk G$ is primitive iff G has a dense orbit.

Theorem (BS)

Suppose that \mathcal{G} has a dense orbit \mathcal{O}_x with $\mathbb{k}G_x$ primitive. Then $\mathbb{k}\mathcal{G}$ is primitive. The converse holds if x is isolated.

- Recall that G_x is the isotropy group at x.
- A dense orbit is always necessary for primitivity.

- Recall: a ring is primitive if it has a faithful simple module.
- Let $\mathcal G$ be a Hausdorff ample groupoid and \Bbbk a field.

Theorem (BS)

If G is effective, then $\Bbbk G$ is primitive iff G has a dense orbit.

Theorem (BS)

Suppose that G has a dense orbit O_x with kG_x primitive. Then kG is primitive. The converse holds if x is isolated.

- Recall that G_x is the isotropy group at x.
- A dense orbit is always necessary for primitivity.
- There is a non-Hausdorff version.

Semiprimitivity: the effective case

 Recall: a ring is semiprimitive if it has a faithful semisimple module.

Semiprimitivity: the effective case

 Recall: a ring is semiprimitive if it has a faithful semisimple module.

Theorem (BS)

Let $\mathcal G$ be a Hausdorff effective ample groupoid and $\mathbb K$ a semiprimitive comm. ring with 1. Then $\mathbb K \mathcal G$ is semiprimitive.

Theorem (BS)

Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a semiprimitive comm. ring with 1. If $\mathbb{k}G_x$ is semiprimitive for all x in some dense subset $X \subseteq \mathcal{G}^{(0)}$, then $\mathbb{k}\mathcal{G}$ is semiprimitive. The converse holds if X consists of isolated points.

Theorem (BS)

Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a semiprimitive comm. ring with 1. If $\mathbb{k}G_x$ is semiprimitive for all x in some dense subset $X \subseteq \mathcal{G}^{(0)}$, then $\mathbb{k}\mathcal{G}$ is semiprimitive. The converse holds if X consists of isolated points.

A non-Hausdorff version holds.

Theorem (BS)

Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{K} a semiprimitive comm. ring with 1. If $\mathbb{K}G_x$ is semiprimitive for all x in some dense subset $X \subseteq \mathcal{G}^{(0)}$, then $\mathbb{K}\mathcal{G}$ is semiprimitive. The converse holds if X consists of isolated points.

- A non-Hausdorff version holds.
- Isotropy groups for Deaconu-Renault groupoids are trivial or Z, recovering semiprimitivity of Leavitt path algebras.

Theorem (BS)

Let $\mathcal G$ be a Hausdorff ample groupoid and $\mathbb k$ a semiprimitive comm. ring with 1. If $\mathbb k G_x$ is semiprimitive for all x in some dense subset $X\subseteq \mathcal G^{(0)}$, then $\mathbb k \mathcal G$ is semiprimitive. The converse holds if X consists of isolated points.

- A non-Hausdorff version holds.
- Isotropy groups for Deaconu-Renault groupoids are trivial or Z, recovering semiprimitivity of Leavitt path algebras.

Corollary

Let $\mathcal G$ be an ample groupoid and \Bbbk be a field of characteristic 0 such that $\Bbbk/\mathbb Q$ is not algebraic. Then $\Bbbk \mathcal G$ is semiprimitive.

Semiprimitivity

Theorem (BS)

Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a semiprimitive comm. ring with 1. If $\mathbb{k}G_x$ is semiprimitive for all x in some dense subset $X \subseteq \mathcal{G}^{(0)}$, then $\mathbb{k}\mathcal{G}$ is semiprimitive. The converse holds if X consists of isolated points.

- A non-Hausdorff version holds.
- Isotropy groups for Deaconu-Renault groupoids are trivial or \mathbb{Z} , recovering semiprimitivity of Leavitt path algebras.

Corollary

Let $\mathcal G$ be an ample groupoid and $\mathbb k$ be a field of characteristic 0 such that $\mathbb k/\mathbb Q$ is not algebraic. Then $\mathbb k\mathcal G$ is semiprimitive.

Proof.

Apply Amitsur '59 with $X = \mathcal{G}^{(0)}$.

Corollary

Corollary

Let k be a semiprimitive comm. ring with 1 and S an inverse semigroup. If kG_e is semiprimitive for every maximal subgroup G_e of S, then kS is semiprimitve. The converse holds if E(S) is pseudofinite.

Sufficiency was proved by Domanov (1976).

Corollary

- Sufficiency was proved by Domanov (1976).
- The converse was proved by Munn (1987).

Corollary

- Sufficiency was proved by Domanov (1976).
- The converse was proved by Munn (1987).
- G_e is the group of units of eSe for e idempotent.

Corollary

- Sufficiency was proved by Domanov (1976).
- The converse was proved by Munn (1987).
- G_e is the group of units of eSe for e idempotent.
- E(S) is pseudofinite if the characteristic functions of principal filters are discrete in $\widehat{E(S)}$.

Corollary

- Sufficiency was proved by Domanov (1976).
- The converse was proved by Munn (1987).
- G_e is the group of units of eSe for e idempotent.
- E(S) is pseudofinite if the characteristic functions of principal filters are discrete in $\widehat{E(S)}$.
- This is a topological reformulation of the original definition.

ullet Let R be a ring with local units.

- ullet Let R be a ring with local units.
- $\bullet \ \, \text{An R-module M is unitary if $RM=M$.}$

- Let R be a ring with local units.
- An R-module M is unitary if RM = M.
- The category of unitary R-modules is denoted R-mod.

- Let R be a ring with local units.
- An R-module M is unitary if RM = M.
- The category of unitary R-modules is denoted R-mod.
- R and S are Morita equivalent if R-mod is equivalent to S-mod.

- Let R be a ring with local units.
- An R-module M is unitary if RM = M.
- The category of unitary R-modules is denoted R-mod.
- R and S are Morita equivalent if R-mod is equivalent to S-mod.
- Morita equivalence can also be formulated in terms of Morita contexts.

Sheaves of \mathcal{G} -modules

• Let $\mathcal G$ be an ample groupoid and \Bbbk a comm. ring with 1.

- Let $\mathcal G$ be an ample groupoid and \Bbbk a comm. ring with 1.
- A \mathcal{G} -sheaf of \mathbb{k} -modules is a sheaf of \mathbb{k} -modules over $\mathcal{G}^{(0)}$ with an action of \mathscr{G} .

- Let $\mathcal G$ be an ample groupoid and \Bbbk a comm. ring with 1.
- A \mathcal{G} -sheaf of \mathbb{k} -modules is a sheaf of \mathbb{k} -modules over $\mathcal{G}^{(0)}$ with an action of \mathscr{G} .
- Roughly, this means that if $x \xrightarrow{g} y$ is in $\mathcal{G}^{(1)}$, then g takes the stalk over x to the stalk over y by a k-module isomorphism.

- Let $\mathcal G$ be an ample groupoid and \Bbbk a comm. ring with 1.
- A \mathcal{G} -sheaf of \mathbb{k} -modules is a sheaf of \mathbb{k} -modules over $\mathcal{G}^{(0)}$ with an action of \mathscr{G} .
- Roughly, this means that if $x \xrightarrow{g} y$ is in $\mathcal{G}^{(1)}$, then g takes the stalk over x to the stalk over y by a k-module isomorphism.
- There are also some continuity conditions.

- Let $\mathcal G$ be an ample groupoid and \Bbbk a comm. ring with 1.
- A \mathcal{G} -sheaf of \mathbb{k} -modules is a sheaf of \mathbb{k} -modules over $\mathcal{G}^{(0)}$ with an action of \mathscr{G} .
- Roughly, this means that if $x \xrightarrow{g} y$ is in $\mathcal{G}^{(1)}$, then g takes the stalk over x to the stalk over y by a k-module isomorphism.
- There are also some continuity conditions.
- If \mathcal{G} is discrete, this amounts to a functor $\mathcal{G} \to \mathbb{k}\text{-}\mathrm{mod}$.

Sheaves of \mathcal{G} -modules

- Let \mathcal{G} be an ample groupoid and \mathbb{k} a comm. ring with 1.
- A \mathcal{G} -sheaf of \mathbb{k} -modules is a sheaf of \mathbb{k} -modules over $\mathcal{G}^{(0)}$ with an action of \mathscr{G} .
- Roughly, this means that if $x \xrightarrow{g} y$ is in $\mathcal{G}^{(1)}$, then g takes the stalk over x to the stalk over y by a k-module isomorphism.
- There are also some continuity conditions.
- If $\mathcal G$ is discrete, this amounts to a functor $\mathcal G \to \Bbbk\operatorname{-mod}$.

Theorem (BS)

• If Z is a locally compact space and $f \colon Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.

- If Z is a locally compact space and $f\colon Z\to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}$.

- If Z is a locally compact space and $f \colon Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}.$
- Groupoids $\mathcal G$ and $\mathcal H$ are Morita equivalent if there is a locally compact space Z and continuous open surjections $p\colon Z\to \mathcal G^{(0)}$ and $q\colon Z\to \mathcal H^{(0)}$ such that $\mathcal G[Z]\cong \mathcal H[Z]$.

- If Z is a locally compact space and $f \colon Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}.$
- Groupoids $\mathcal G$ and $\mathcal H$ are Morita equivalent if there is a locally compact space Z and continuous open surjections $p\colon Z\to \mathcal G^{(0)}$ and $q\colon Z\to \mathcal H^{(0)}$ such that $\mathcal G[Z]\cong \mathcal H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent ample groupoids, then $\Bbbk G$ is Morita equivalent to $\Bbbk H$.

- If Z is a locally compact space and $f \colon Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}.$
- Groupoids $\mathcal G$ and $\mathcal H$ are Morita equivalent if there is a locally compact space Z and continuous open surjections $p\colon Z\to \mathcal G^{(0)}$ and $q\colon Z\to \mathcal H^{(0)}$ such that $\mathcal G[Z]\cong \mathcal H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent ample groupoids, then kG is Morita equivalent to kH.

• Gives a uniform explanation for Morita equivalences of graph C^* -algebras and Leavitt path algebras.

- If Z is a locally compact space and $f: Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}.$
- Groupoids $\mathcal G$ and $\mathcal H$ are Morita equivalent if there is a locally compact space Z and continuous open surjections $p\colon Z\to \mathcal G^{(0)}$ and $q\colon Z\to \mathcal H^{(0)}$ such that $\mathcal G[Z]\cong \mathcal H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent ample groupoids, then kG is Morita equivalent to kH.

- Gives a uniform explanation for Morita equivalences of graph C^* -algebras and Leavitt path algebras.
- The original proof constructed a Morita context.

- If Z is a locally compact space and $f: Z \to \mathcal{G}^{(0)}$ is continuous, there is a pullback groupoid $\mathcal{G}[Z]$.
- $\mathcal{G}[Z]^{(0)} = Z$, $\mathcal{G}[Z]^{(1)} = \{z \xrightarrow{g} z' \mid f(z) \xrightarrow{g} f(z')\}.$
- Groupoids $\mathcal G$ and $\mathcal H$ are Morita equivalent if there is a locally compact space Z and continuous open surjections $p\colon Z\to \mathcal G^{(0)}$ and $q\colon Z\to \mathcal H^{(0)}$ such that $\mathcal G[Z]\cong \mathcal H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent ample groupoids, then kG is Morita equivalent to kH.

- Gives a uniform explanation for Morita equivalences of graph C*-algebras and Leavitt path algebras.
- The original proof constructed a Morita context.
- A result of Moerdijk implies if \mathcal{G}, \mathcal{H} are Morita equivalent, then so are their categories of sheaves.

• Fix $x \in \mathcal{G}^{(0)}$.

- Fix $x \in \mathcal{G}^{(0)}$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.

- Fix $x \in \mathcal{G}^{(0)}$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .

- Fix $x \in \mathcal{G}^{(0)}$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .

• So $\mathbb{k}L_x$ is a free $\mathbb{k}G_x$ -module.

- Fix $x \in \mathcal{G}^{(0)}$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .

- So kL_x is a free kG_x -module.
- It is in fact a $\mathbb{k}\mathcal{G}$ - $\mathbb{k}G_x$ -bimodule.

- Fix $x \in \mathcal{G}^{(0)}$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x .

- So kL_x is a free kG_x -module.
- It is in fact a $\mathbb{k}\mathcal{G}$ - $\mathbb{k}G_x$ -bimodule.
- If $f \in \mathbb{k}\mathcal{G}$ and $t \in L_x$, then

$$f \cdot t = \sum_{d(s)=r(t)} f(s)st.$$

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x\operatorname{-mod} \to \Bbbk \mathcal{G}\operatorname{-mod}$ given by

$$M \longmapsto \mathbb{k} L_x \otimes_{\mathbb{k} G_x} M.$$

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x\operatorname{-mod} \to \Bbbk \mathcal{G}\operatorname{-mod}$ given by

$$M \longmapsto \mathbb{k} L_x \otimes_{\mathbb{k} G_x} M.$$

• It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x\operatorname{-mod} \to \Bbbk \mathcal{G}\operatorname{-mod}$ given by

$$M \longmapsto \mathbb{k} L_x \otimes_{\mathbb{k} G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x\operatorname{-mod} \to \Bbbk \mathcal{G}\operatorname{-mod}$ given by

$$M \longmapsto \mathbb{k} L_x \otimes_{\mathbb{k} G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.
- Res_x sends simple modules to simple modules or 0.

• There is an exact functor $\operatorname{Ind}_x \colon \Bbbk G_x\operatorname{-mod} \to \Bbbk \mathcal{G}\operatorname{-mod}$ given by

$$M \longmapsto \mathbb{k} L_x \otimes_{\mathbb{k} G_x} M.$$

- It has a right adjoint $\operatorname{Res}_x \colon \mathbb{k}\mathcal{G}\operatorname{-mod} \to \mathbb{k}G_x\operatorname{-mod}$.
- Ind_x preserves simple modules.
- Res_x sends simple modules to simple modules or 0.

Theorem (BS)

Let k be a field and $\mathcal G$ an ample groupoid. Then the finite dimensional simple $k\mathcal G$ -modules are the $\operatorname{Ind}_x(M)$ with $|\mathcal O_x|<\infty$ and M a finite dimensional simple $k\mathcal G_x$ -module.

A question of Exel

Question (Exel)

Let k be a field and $\mathcal G$ a Hausdorff ample groupoid. Is every primitive ideal of $k\mathcal G$ a kernel of an induced module $\operatorname{Ind}_x(M)$ with M a simple kG_x -module?

A question of Exel

Question (Exel)

Let k be a field and G a Hausdorff ample groupoid. Is every primitive ideal of kG a kernel of an induced module $\operatorname{Ind}_x(M)$ with M a simple kG_x -module?

• A C^* -algebraic analogue is true if $\mathcal G$ is amenable.

A question of Exel

Question (Exel)

Let k be a field and G a Hausdorff ample groupoid. Is every primitive ideal of kG a kernel of an induced module $\operatorname{Ind}_x(M)$ with M a simple kG_x -module?

- A C^* -algebraic analogue is true if $\mathcal G$ is amenable.
- It is true for Leavitt path algebras.

ullet There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.

- There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.
- Algebras associated to tilings.

- There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.
- Algebras associated to tilings.
- Algebras associated to self-similar/automaton groups.

- There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.
- Algebras associated to tilings.
- Algebras associated to self-similar/automaton groups.
- Algebras associated to Cantor dynamical systems.

- There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.
- Algebras associated to tilings.
- Algebras associated to self-similar/automaton groups.
- Algebras associated to Cantor dynamical systems.
- Algebras associated to higher rank graphs.

- There are still many ample groupoid C^* -algebras whose algebraic analogues have not been studied.
- Algebras associated to tilings.
- Algebras associated to self-similar/automaton groups.
- Algebras associated to Cantor dynamical systems.
- Algebras associated to higher rank graphs.
- Algebras associated to partial group actions.

The end

Thank you for your attention!