Relations:-

- R is a relation on those n sets.
- If it is a set of recorded n- tuples (d1, d2,....,dn) such that d1,d2 belongs to d2dn belongs to dn.
- > Set d1,d2,.... Dn are the domains of R.
- The value n is degree of R.

Emp_code	Name	Designation
101	Paresh	Programmer
102	Mahesh	DBA
103	Ramesh	Manager
104	Sunil	Software
105	Prakash	I T Programmar
106	Piyush	System Analyst

- In this figure shows a relation called employee.
- > It has three domains named Emp code, Name, Designation.
- It has three degree.
- > The Relational data model represents entities with attributes.

Entities:-

- An entity is simply a person, place, event, or thing for which we wish to collect data.
- Example, in a university environment, entities of interest might students, faculty member, coerces.
- Another example if you work for an airline, appropriate entities might be pilots, aircraft, routes, suppliers and any number of additional items for which data must be gathered.

❖ Attributes:-

- Each entity has certain characteristics known as attributes.
- For example the student entity have attributes likes student number, name, city, marks, date of birth, home, address, phone number and so on.
- It is also called columns of table.

❖ Tuple:-

- Row of a relation or table is referred as tuple.
- > A tuple having a set of n-number of attribute is termed as n-tuple.

❖ Domain:-

- The values for an attribute or a column are received from a set of values known as domain.
- > The domain of an attribute contains the set of values that the attributes may assume.
- In above EMPLOYEE relation domain for designation is (Programmer, Manager, DBA, System Analyst).
- In the relation model note that no two entities are a identical and the ordering of a rows is not significant. For example the domain for {1, 2, 3, 4, 5, and 6} or domain for coin {head, tail}.

❖ Degree:-

- > Degree indicates the number attributes in a relation.
- Employee relations have three column and thus relation have three.

Cardinality:-

- Cardinality expresses the specific number of entity or row occurrences.
- > Cardinality for relation employee is 6.

❖ Keys:-

- > Tables within the database share common attribute that enable us to link the tables together. Such as attributes is called as a key.
- Keys are central to the use of relational tables.
- > Keys define functional dependencies ex. Other attribute are dependent on the key and can therefore be found if the key value is known.

• Candidate key:- one or more attributes in a relation that uniquely indentify. Each value of an entity.

Primary Key:-

A candidate key (1) having unique values in any given row. (2) cannot contain null values.

Foreign key:-

An attribute (or combination of attributes) in one table whose values must either match the primary key in another table or be null.

OR

It is a part of primary key in a table or relation and also primary key in another relation. It represents relationship between tables.

Alternate key or secondary key:-

A candidate key that is not the primary key is called an alternate key.

Discuss about Traditional set of operator in details.

- There are four types of relational operator.
 - 1) Union (U)
 - 2) Difference (-)
 - 3) Intersection (n)
 - 4) Divide (*)

1) Union:-

- In Union operation we can union or gather one or more relation and get results which have unique record.
- For ex.

Α	В
No	Name
1	ABC
2	PQR
3	XYZ

Α	В
No	Name
1	PQR
2	XYZ
3	MNO

A U B		
No	Name	
1	ABC	
2	PQR	
3	XYZ	
4	MNO	

➤ In above example there are two relations A&B with performing union operation on this relation have unique record.

2) Difference:-

- > In Difference operation we can remove common data from a given table and get final result.
- For ex.

Α	В
No	Name
1	ABC
2	PQR
3	XYZ

Α	В
No	Name
1	PQR
2	XYZ
3	MNO

A - B	
No	Name
1	ABC
2	MNO

> In above example there are two relation A & B perform difference operation which remove common data of both relation get final result.

3) intersection:-

In this operation give only a common data from relation.

Α	В
No	Name
1	ABC
2	PQR
3	XYZ

Α	В
No	Name
1	PQR
2	XYZ
3	MNO

Α	N B
No	Name
1	PQR
2	XYZ

> In above example A & B are two relation and we can perform intersection operation and get final result.

4) Cartesian:-

- > Cartesian produces a list of all possible pairs of rows form two tables. Therefore if, one table has 4 rows and the other table has 2 rows. The product list of 4*2=8 rows.
- > For ex.

В
Name
Anant
Hetul
Chirag
Roshan

Α	В
No	Name
1	J1
2	J2

❖ <u>Discuss about special Relational operator in details.</u>

- There are four types of relational operator.
 - 5) Selection
 - 6) Projection
 - 7) Join
 - 8) Divide

5) Selection:-

- Selection or Select sql command fields values for all attributes found in a table.
- Select can be used to list all or select rows values for each attribute words.
- Select fields a horizontal subset of a table.
- For ex. Person where id < 105

Result of Selection Person

Id	Name
101	Anant
103	Hetul
104	Chirag
108	Roshan

Id	Name
101	Anant
103	Hetul
104	Chirag

6) Projection:-

- Projection or Project produces a list of all values for selected attributes.
- In other words, project, fields a vertical subset of a table.
- > This is due to the delectation of duplicate tuples in the project relation.
- For ex. Person where name

Id	Name
101	Anant
102	Anant
103	Hetul
104	Hetul
105	Chirag
106	Chirag

Id	Name
101	Anant
103	Hetul
104	Chirag

7) <u>Join:-</u>

- Join allows us to combine information from two or more tables.
- For example,

Employee (E)

Id	Name
101	Anant
103	Hetul
104	Hetul
107	chirag

Salary (S)

Id	Salary
101	5000
103	7000
104	8000
107	9000

E Join S

Id	Name	Salary
101	Anant	5000
103	Hetul	7000
104	Hetul	8000
107	chirag	9000

8) Divide:-

• Divide requires the use of one single column table and two column tables.

S#	P#
S1	P1
S1	P1
S1	P1

S1	P1
S1	P1
S1	P1
S1	P1

P#
P1
P#
P2
P4
P#
P1
P2
P3
Р3

S#	
S1	
S2	
S#	
S1	
S2	
S#	
S1	
S2	
S3	