CS2400 - Data Structures and Advanced Programming Module 4: Efficiency of Algorithms

Hao Ji Computer Science Department Cal Poly Pomona

What is "best"?

- An algorithm has both time and space constraints
 - Time complexity: the time the algorithm takes to execute
 - Space complexity: the memory the algorithm needs to execute
- A "best" algorithm might be the <u>fastest</u> one or the one that uses the <u>least</u> memory

This process of measuring the complexity of algorithms is called analysis of algorithms

Importance of Efficiency

- **Problem Size:** The number of items that an algorithm processes
- Consider the problem of summing

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Importance of Efficiency

- **Problem Size:** The number of items that an algorithm processes
- Consider the problem of summing

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Algorithm A	Algorithm B	Algorithm C
sum = 0 $for i = 1 to n$ $sum = sum + i$	sum = 0 for i = 1 <i>to</i> n { for j = 1 <i>to</i> i	sum = n * (n + 1) / 2
	$sum = sum + 1$ }	

Algorithm A	Algorithm B	Algorithm C
sum = 0 $for i = 1 to n$ $sum = sum + i$	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

	Algorithm A	Algorithm B	Algorithm C
Additions Multiplications Divisions Total basic operations			

Most significant contributor to its total time requirement.

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 to n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

	Algorithm A	Algorithm B	Algorithm C
Additions Multiplications Divisions	n		
Total basic operations	n		

Algorithm A	Algorithm B	Algorithm C
sum = 0 $for i = 1 to n$ $sum = sum + i$	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

	Algorithm A	Algorithm B	Algorithm C
Additions Multiplications Divisions	n	n(n+1)/2	
Total basic operations	n	$(n^2+n)/2$	

Algorithm A	Algorithm B	Algorithm C
sum = 0 $for i = 1 to n$ $sum = sum + i$	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

	Algorithm A	Algorithm B	Algorithm C
Additions	n	n(n+1)/2	1
Multiplications Divisions			1 1
Total basic operations	n	$(n^2+n)/2$	3

Algorithm A	Algorithm B	Algorithm C
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2

	Algorithm A	Algorithm B	Algorithm C
Additions Multiplications Divisions	n	n(n+1)/2	1 1 1
Total basic operations	n	$(n^2+n)/2$	3

Growth-Rate Function

- Computing the actual time requirement of an algorithm is not easy, especially for large problem size.
- In Computer science, we use a function of the problem size that behaves like the algorithm's actual time requirement.
- This function is called a *growth-rate function*, as it measures how an algorithm's time requirement grows as the problem size grows.

Growth-Rate Function

- Computing the actual time requirement of an algorithm is not easy, especially for large problem size.
- In Computer science, we use a function of the problem size that behaves like the algorithm's actual time requirement.
- This function is called a *growth-rate function*, as it measures how an algorithm's time requirement grows as the problem size grows.

Typical growth-rate functions are algebraically simple.

Asymptotic Notation

- Upper bounds
 - T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.
- Lower bounds
 - $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.
- Tight bounds
 - $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$

Asymptotic Notation

- Upper bounds (Big Oh Notation)
 - T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.
- Lower bounds
 - $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.
- Tight bounds
 - $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$

Asymptotic Notation

O(f(n)) means the algorithm requires time proportional to f(n)

- Upper bounds (Big Oh Notation)
 - T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

Asymptotic Notation (Cont'd)

- Rules of using Big O notation.
 - If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$.
 - We can drop the lower order terms and constant factors.
 - Use the smallest/closest possible class of functions
 - For example, "2n is O(n)" instead of "2n is $O(n^2)$ "
 - Use the simplest expression of the class,
 - For example "3n + 5 is O(n)" instead of "3n+5 is O(3n)"

Asymptotic Notation (Cont'd)

- Upper bounds: T(n) = O(f(n))
- Lower bounds: $T(n) = \Omega(f(n))$
- Tight bounds: $T(n) = \Theta(f(n))$
- Example: $3n^3 + 6n^2 4n + 17$, which of the following statements is true?

 - T(n) is $O(n^2)$ T(n) is $O(n^3)$ T(n) is $O(n^3)$
 - T(n) is $\Omega(n^2)$ T(n) is $\Theta(n)$

 - T(n) is $\Theta(n^2)$

- T(n) is $\Omega(n)$ T(n) is $\Theta(n^3)$

Analysis of Algorithms

- For example,
 - Traversing an array of n elements
 - Accessing the *i*th element in an array

Analysis of Algorithms (Cont'd)

- For example,
 - Traversing an array of n elements
 - The time needed is proportional to n, and we say the time is in the order of O(n).
 - Accessing the *i*th element in an array
 - The time needed is only constant time, which is independent of the size of the array, thus is in the order of O(1).

Analysis of Algorithms (Cont'd)

- Common functions used in analysis
 - Constant function f(n) = C
 - Great. Constant algorithm does not depend on the input size.
 - Logarithm function $f(n) = \log n$
 - Very good. Logarithm function gets slightly slower as n grows.
 - Linear function f(n) = n
 - Linea time. Whenever n doubles, so does the running time.
 - N-Log-N function $f(n) = n \log n$
 - It grows a little faster than the linear function. Typically, the time needed for sorting a list of elements
 - Quadratic function $f(n) = n^2$
 - Whenever n doubles, the running time increases fourfold.
 - Exponential Function $f(n) = c^n$
 - Factorial Function f(n) = n!

Analysis of Algorithms (Cont'd)

• In-Class Exercises:

• What is the Big Oh Notation of $3n^2 + 2^n$?

• Show that $log_b n$ is $O(log_2 n)$. What values of c and N did you use?

Worst-Case, Average-Case and Best-Case Analyses

• For some algorithms, execution time depends only on size of data set

- Other algorithms depend on the nature of the data itself
 - Goal is to know best case, worst case, average case

Worst-Case, Average-Case and Best-Case Analyses

- The best case is that the algorithm takes the least time.
 - The algorithm can do no better than its best-case time.
 - If the best-case time is still too slow, you need another algorithm.
- The worst case is that the algorithm takes the most time.
 - If the algorithm can tolerate this worst-case time, that algorithm is acceptable.
- The average-case is a more useful measure of time requirement.
 - Typically, the best and worst cases do not occur.
 - The average-case is harder to estimate, compared to best case and worst case.

Worst-Case, Average-Case and Best-Case Analyses

- The best case is that the algorithm takes the least time.
 - The algorithm can do no better than its best-case time.
 - If the best-case time is still too slow, you need another algorithm.
- The worst case is that the algorithm takes the most time.
 - If the algorithm can tolerate this worst-case time, that algorithm is acceptable.
- The average-case is a more useful measure of time requirement.
 - Typically, the best and worst cases do not occur.
 - The average-case is harder to estimate, compared to best case and worst case.
- What is the time needed to check if an array of integers contains an integer "10"?

- Adding an entry to a bag
 - Array-based implementation
 - Linked Implementation

- Searching a bag for a given entry
 - Array-based implementation
 - Linked Implementation

- Adding an entry to a bag
 - Array-based implementation
 - Linked Implementation

- Searching a bag for a given entry
 - Array-based implementation
 - Linked Implementation

Bag Implementations That Use Arrays

ArrayBag<String> myBag = new ArrayBag<String>;

6

numberOfEntries

- The method add
 - If the bag is full, we cannot add anything to it. myBag.add("Doug"); In that case, the method add should return false
 - Otherwise, we simply add newEntry immediately after the last entry in the array bag

```
public boolean add(T newEntry)
   boolean result = true;
   if (isFull())
      result = false:
   else
      // assertion: result is true here
      bag[numberOfEntries] = newEntry;
      numberOfEntries++;
   } // end if
   return result:
} // end add
```


Doug

myBag.add("Sofia");

Full

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	

- Adding an entry to a bag
 - Array-based implementation
 - Linked Implementation

- Searching a bag for a given entry
 - Array-based implementation
 - Linked Implementation

A Linked Implementation of a Bag

The method add

```
/** Adds a new entry to this bag.
    @param newEntry The object to be added as a new entry
    @return True if the addition is successful, or false if not. */
public boolean add(T newEntry)
                                     // OutOfMemoryError possible
     // Add to beginning of chain:
    Node newNode = new Node(newEntry);
    newNode.next = firstNode; // Make new node reference rest of chain
                              // (firstNode is null if chain is empty)
    firstNode = newNode;
                            // New node is at beginning of chain
    numberOfEntries++;
    return true;
    end add
```

(a) An empty chain and a new node

(b) After adding a new node to a chain that was empty

(a) Before adding a node at the beginning

@ 2019 Pearson Education, Inc.

(b) After adding a node at the beginning

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)

- Adding an entry to a bag
 - Array-based implementation
 - Linked Implementation

- Searching a bag for a given entry
 - Array-based implementation
 - Linked Implementation

Implementing More Methods

- Removing a given entry
 - Search for the entry
 - Remove the entry from the bag

```
/** Removes one occurrence of a given entry from this bag.
@param anEntry The entry to be removed.
@return True if the removal was successful, or false if not. */
  public boolean remove(T anEntry)
        checkIntegrity();
       int index = getIndexOf(anEntry);
       T result = removeEntry(index);
       return anEntry.equals(result);
  } // end remove
                                                        Tia
                                                               Seiji
                                                                              Carlos
                                                                                      Sofia
                                               Doug
                                                                      (Jazmin)
                                  Indices —
                                                           bag[index]
                                               index
                                  © 2019 Pearson Education, In
```

```
// Locates a given entry within the array bag.
// Returns the index of the entry, if located, or -1 otherwise.
// Precondition: checkIntegrity has been called.
private int getIndexOf(T anEntry)
      int where = -1;
      boolean found = false;
      int index = 0;
      while (!found && (index < numberOfEntries))
            if (anEntry.equals(bag[index]))
                   found = true;
                   where = index:
            } // end if
            index++:
      } // end while
      // Assertion: If where > -1, an Entry is in the array bag, and it
      // equals bag[where]; otherwise, anEntry is not in the array
      return where;
} // end getIndexOf
                                                              32
```

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove (anEntry)	O(1), O(n), O(n)	
contains (anEntry)	O(1), O(n), O(n)	

Time requirements for the **best**, **worst**, and **average** cases

A Linked Implementation of a Bag

- The method remove
 - Removing an unspecified entry from a bag
 - Removing a given entry from a bag
 - Search for the given entry in a bag
 - Remove the given entry


```
Locates a given entry within this bag.
// Returns a reference to the node containing the //
entry, if located, or null otherwise.
private Node getReferenceTo(T anEntry)
    boolean found = false;
    Node currentNode = firstNode;
    while (!found && (currentNode != null))
         if (anEntry.equals(currentNode.getData()))
                  found = true;
         else
         currentNode = currentNode.getNextNode();
    } // end while
    return currentNode;
    end getReferenceTo
```

Operation	Fixed-Size Array	Linked	
add(newEntry)	O(1)	O(1)	
remove(anEntry)	O(1), O(n), O(n)	O(1), O(n), O(n)	
contains (anEntry)	O(1), O(n), O(n)	O(1), O(n), O(n)	

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove()		
remove(anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
clear()		
getFrequencyOf (anEntry)		
contains (anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
toArray()		
<pre>getCurrentSize(), isEmpty()</pre>		

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove()	O(1)	O(1)
remove(anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
clear()	O(n)	O(n)
getFrequencyOf (anEntry)	O(n)	O(n)
contains (anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
toArray()	O(n)	O(n)
<pre>getCurrentSize(), isEmpty()</pre>	O(1)	O(1)

Operation	Fixed-Size Array	Resizable Array	Linked
add(newEntry)			
remove()			
remove(anEntry)			
clear()			
getFrequencyOf(anEntry)			
contains (anEntry)			
toArray()			
<pre>getCurrentSize(), isEmpty()</pre>			

Summary

• Efficiency of Algorithms

What I Want You to Do

- Review class slides
- Review Chapter 4
- Next Topic
 - ADT List
 - Implementations of a List