Zadanie 5. Hybrydowy Algorytm Ewolucyjny

Oskar Kiliańczyk 151863 & Wojciech Kot 151879

1 Opis zadania

Celem zadania jest porównanie hybrydowego algorytmu z i porównanie go z metodami MSLS, ILS i LNS z poprzedniego zadania. Opisy tych metod znajdują się w poprzednim sprawozdaniu.

2 Opisy algorytmów

2.1 Hybrydowy Algorytm Ewolucyjny

- steady state
- z populacją elitarną 20 osobników
- Usuwanie duplikatów rozwiązań (Dwa rozwiązania są uznawane za duplikat, jeśli mają identyczną wartość funkcji celu)
- Wykorzystywane parametry to flagi use mutation, use local search oraz mutation rate = 0.1

2.1.1 Główny algorytm

- 1. Wygeneruj populację początkową.
- 2. Dopóki czas nie został przekroczony, powtarzaj:
 - (a) Wybierz parę rodziców (rodzic1, rodzic2) losowo z populacji
 - (b) Utwórz dwa rozwiązania potomne* (Procedura rekombinacji)
 - (c) Jeśli jest ustawiona flaga use mutation wykonaj mutację** (Procedura mutacji)
 - (d) Jeśli jest ustawiona flaga use local search wykonaj przeszukiwanie lokalne
 - (e) Oblicz koszt rozwiązań potomnych
 - (f) Dla każdego z rozwiązań potomnych:
 - i. Jeśli koszt rozwiązania potomnego jest lepszy niż obecnie najgorszy koszt w populacji, oraz jeśli nie ma identycznego w populacji:
 - ii. Zamień najgorsze rozwiązanie z populacji z obecnie sprawdzanym rozwiązaniem potomnym.
- 3. Zapisz i zwróć najlepsze rozwiązanie z obecnej populacji

2.1.2 Procedura rekombinacji

- 1. Parametry: dwa rozwiązania wejściowe
- 2. Wybierz pierwsze rozwiązanie jako bazowe, drugie jako referencyjne
- 3. Stwórz zbiór krawędzi z rozwiązania referencyjnego (r edges)
- 4. Dla każdego cyklu w rozwiązaniu bazowym:
 - (a) Usuń wierzchołki, które tworzą krawędzie nieistniejące w zbiorze r_edges
- 5. Utwórz zbiór wierzchołków nieużytych w obecnym rozwiązaniu
- 6. Dopóki istnieją wierzchołki w tym zbiorze:
 - (a) Wybierz losowy wierzchołek z tego zbioru
 - (b) Wstaw go do cyklu w miejsce minimalizujące koszt
- 7. Zwróć nowe rozwiązanie jako rozwiązanie potomne

2.1.3 Procedura mutacji

- 1. Dla każdego cyklu:
 - (a) Z prawdopodobieństwem mutacji równym mutation_rate:
 - i. Wybierz losowo typ mutacji (zamiana krawędzi lub zamiana wierzchołków)
 - ii. Jeśli wybrano zamianę krawędzi: zamień dwie losowo wybrane krawędzie w cyklu
 - iii. W przeciwnym wypadku zamień dwa losowo wybrane wierzchołki w cyklu

3 Wyniki

3.1 Tabela wynikowa

Algorytm	Best	Avg	Worst	Best Time	Avg Time	Worst Time	Avg Perturbations
MSLS	34630	35375.7	35862	235.639	269.287	327.604	-
ILS	31016	31919.8	33193	270.753	270.851	270.946	4977.8
LNS	29690	30559.4	32006	272.054	272.242	272.595	5714.6
LNS bez LS	30980	31801.6	33356	272.005	272.142	272.295	35672.0
HAE	00	00.0	00	00.00	00.00	00.00	00.00
HAE +M	00	00.0	00	00.00	00.00	00.00	00.00
HAE +LS	00	00.0	00	00.00	00.00	00.00	00.00
HAE +M +LS	00	00.0	00	00.00	00.00	00.00	00.00

Tabela 1: Wyniki dla kroA200

Algorytm	Best	Avg	Worst	Best Time	Avg Time	Worst Time	Avg Perturbations
MSLS	34819	35501.6	36081	256.952	279.947	380.768	-
ILS	31475	32454.2	33343	281.034	281.280	281.655	6057.1
LNS	30092	30770.9	31762	282.524	282.865	283.275	5768.0
LNS bez LS	30980	31801.6	33356	272.005	272.142	272.295	35672.0
HAE	00	00.0	00	00.00	00.00	00.00	00.00
HAE +M	00	00.0	00	00.00	00.00	00.00	00.00
HAE +LS	00	00.0	00	00.00	00.00	00.00	00.00
HAE +M +LS	00	00.0	00	00.00	00.00	00.00	00.00

Tabela 2: Wyniki dla kroB200

3.2 Wizualizacja wyników

3.2.1 ILS

Rysunek 1: kroA200, losowy start

Rysunek 2: kroB200, losowy start

3.2.2 MSLS

Rysunek 3: kroA200, losowy start

3.2.3 LNS

Rysunek 5: kroA200, losowy start

3.2.4 LNS bez LS

Rysunek 7: kroA200, losowy start

Rysunek 4: kroB200, losowy start

Rysunek 6: kroB200, losowy start

Rysunek 8: kroB200, losowy start

3.2.5 HAE - bazowy

Rysunek 9: kroA200, losowy start

2000 1750 1500 1000 750 500 0 500 1000 1500 2000 2500 3000 3500 4000

Rysunek 10: kroB200, losowy start

3.2.6 HAE z mutacją

Rysunek 11: kroA200, losowy start

Rysunek 12: kroB200, losowy start

3.2.7 HAE z lokalnym przeszukiwaniem

Rysunek 13: kroA200, losowy start

Rysunek 14: kroB200, losowy start

3.2.8 HAE z mutacją i lokalnym przeszukiwaniem

Rysunek 15: kroA200, losowy start

Rysunek 16: kroB200, losowy start

4 Wnioski i analiza wyników

5 Link do repozytorium

 Kod źródłowy w repozytorium Git Hub dostępny pod linkiem: Repozytorium.