Ain Shams University

Faculty of Engineering

Electronics and Communication Department

ECE 451 - Communication Systems (2)

Fall 2021

Course Mini-Project Implementation of a Digital Modulation Group No.17 (256-PSK)

NAME	CODE
Ahmed Ayman Ahmed Hassan	1700037
Sara Wael Ahmed Youssef	1700598
Salma Tarek Elalfy Mohamed	1700620
Abdelrahman Mohamed Anwar Ahmed	1700757
Farid Mohamed Farid Ibrahim	1700985
Yumna Ahmed Mohamed Ghoniem	1701692
Youliana Fouad Sameer Saad	1701766

Submitted to:

Dr. Bassant Abdelhamid

Eng. Mostafa Mohamed

Contents

1.	Constellation diagram of the signals at the input	3
2.	The Signal to Noise ratio (SNR) in dB takes the values {30, 10, 5, 0, -3 dB}	4
•	at SNR=30 dB	4
•	at SNR=10 dB	5
•	at SNR=5 dB	6
•	at SNR=0 dB	7
•	at SNR=-3 dB	8
•	Comment:	8
3.	BER vs. Eb/No	9
•	Theoretical formula:	9
•	Simulated and theoretical	9
•	Comment:	9
4.	Input stream of mapper vs output stream of de-mapper	10
•	Without noise	10
•	With noise	11

1. Constellation diagram of the signals at the input

- 2. The Signal to Noise ratio (SNR) in dB takes the values {30, 10, 5, 0, -3 dB}.
 - at SNR=30 dB

• at SNR=10 dB

• at SNR=5 dB

• at SNR=0 dB

• at SNR=-3 dB

• Comment:

As SNR decreases signal is more affected by noise which make it difficult to be recovered as constellation diagram becomes ambiguous.

3. BER vs. Eb/No

• Theoretical formula:

$$Peb = \frac{2}{\log_2 M} Q \left(\sqrt{\frac{\log_2(M)Eb}{No}} \sin\left(\frac{\pi}{M}\right) \right)$$

Simulated and theoretical

Comment:

BER which includes Q function is not accurate because it has some approximations, but the simulated BER curve is more accurate because it compares all error bits with total transmitted bits without any approximations.

4. Input stream of mapper vs output stream of de-mapper

Without noise

At Mapper

	1	2	3	4	5	6	7	8
1	1	0	1	0	1	0	1	1
2	1	1	1	1	1	1	1	1
3	1	0	0	1	1	1	0	1
4	1	0	0	0	0	0	1	1
5	1	1	1	0	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	0	1	0	1	0	1	0
8	0	1	0	0	0	1	1	0
9	0	1	1	1	0	0	1	0
10	0	0	0	0	1	0	0	1
11	1	1	0	1	0	0	0	1
12	0	0	0	0	1	1	0	0
13	1	1	1	0	1	1	0	1
14	1	1	1	1	1	1	1	1
15	1	0	0	1	1	1	0	0
16	0	0	0	0	0	0	1	1
17	1	1	1	0	1	1	0	0
18	0	0	1	1	1	1	1	1
19	1	0	1	0	0	1	0	0
20	0	0	1	0	1	1	0	1
21	1	0	1	0	1	0	1	0
22	0	1	0	0	0	1	1	0
23	1	1	1	0	1	0	1	0
24	0	1	1	0	1	1	0	0

At De-mapper

	1	2	3	4	5	6	7	8
_	'							0
1		0	1	0	1	0	1	- 1
2	1	1	1	1	1	1	1	1
3	1	0	0	1	1	1	0	1
4	1	0	0	0	0	0	1	1
5	1	1	1	0	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	0	1	0	1	0	1	0
8	0	1	0	0	0	1	1	0
9	0	1	1	1	0	0	1	0
10	0	0	0	0	1	0	0	1
11	1	1	0	1	0	0	0	1
12	0	0	0	0	1	1	0	0
13	1	1	1	0	1	1	0	1
14	1	1	1	1	1	1	1	1
15	1	0	0	1	1	1	0	0
16	0	0	0	0	0	0	1	1
17	1	1	1	0	1	1	0	0
18	0	0	1	1	1	1	1	1
19	1	0	1	0	0	1	0	0
20	0	0	1	0	1	1	0	1
21	1	0	1	0	1	0	1	0
22	0	1	0	0	0	1	1	0
23	1	1	1	0	1	0	1	0
24	0	1	1	0	1	1	0	0

With noise

At Mapper

	1	2	3	4	5	6	7	8
1	1	0	0	0	1	1	0	1
2	1	1	0	0	1	1	0	0
3	1	1	1	1	1	0	0	1
4	0	0	1	0	0	0	0	1
5	1	0	1	0	1	0	1	0
6	1	0	0	0	1	1	1	0
7	0	1	1	0	0	0	0	0
8	1	0	0	1	1	1	0	1
9	0	1	0	0	0	0	0	1
10	1	1	1	0	1	0	1	0
11	0	0	1	1	1	0	0	1
12	1	1	0	0	0	0	0	1
13	1	0	0	0	1	0	1	1
14	1	0	0	1	0	1	1	1
15	0	0	1	0	1	0	1	1
16	0	1	0	0	1	1	1	0
17	1	1	1	1	0	0	0	0
18	1	1	1	1	0	0	0	0
19	1	1	1	0	0	1	1	0
20	1	0	0	1	0	0	1	1
21	0	0	0	0	1	0	0	0
22	0	1	1	1	0	1	1	0
23	1	0	0	1	1	1	0	1
24	1	1	0	0	1	1	1	1

At De-mapper

	1	2	3	4	5	6	7	8
1	1	0	0	0	1	0	1	0
2	1	1	0	0	1	1	1	1
3	1	1	1	1	0	0	0	1
4	0	0	1	0	0	1	1	1
5	1	0	1	0	1	0	1	0
6	1	0	0	0	0	1	1	1
7	0	1	1	0	0	0	0	0
8	1	0	0	1	1	1	0	0
9	0	0	1	1	1	1	0	0
10	1	1	1	1	0	0	0	1
11	0	0	1	1	1	0	0	1
12	1	1	0	0	0	0	0	0
13	1	0	0	0	1	0	1	1
14	1	0	0	1	1	0	0	0
15	0	0	1	0	1	0	1	0
16	0	1	0	0	1	1	0	1
17	1	1	1	1	0	0	0	1
18	1	1	1	1	0	1	1	0
19	1	1	1	0	0	0	1	1
20	1	0	0	1	0	1	0	1
21	0	0	0	0	1	1	0	0
22	0	1	1	1	0	1	1	1
23	1	0	1	0	0	0	0	0
24	1	1	0	0	1	0	1	1