Appendix K Mid-air Collision Case Study Extended Work

K.1 Stage 1-Predictive Thinking Pipeline 3: Predict the Emergence of AIC Complexity Field for Detailed OperationalScenario Articulation

K.1.1 Step 3.2) Predict the extended list of emergent AIC interactions scenarios

Table K.1 Full AIC extended scenario for the entire articulated problem definition

Step 1: Unsafe Problematic Situations	1. AVP:1.2 n10: [AVP][consider][Environment],1.3 n12: [AVP][detect][Other ac],1.5 n22: [AVP][detect][Environment],2. By-passing ac:2.2 n2: [By-passing ac][intersect ac][Physically/visually complicate][AVP],2.4 ac][sense][Environment],2.5 n18: [By-passing ac][avoid ac][sense][Ownship ac],2. By-passing ac:3.2 n3: [Other ac][Physically/visually complicate][AVP],3.4 n13: [Other ac][Physically/visually complicate][AVP],3.4 n13: [Other ac][sense][sense][Environment],4.3 n6: [Ownship ac][sense][sense][Environment],4.3 n6: [Ownship ac][sense][AVP],2. By-passing ac:5.2 n4 complicate][Ownship ac],5.3 n9: complicate][AVP],5.4 n14: [Environment][Physically/visually complicate][Other	ment],1.6 n1: [AVP][guide][Ownship c][Ownship ac],2.3 n7: [By-passing n15: [By-passing id][Other ac],2.6 n23: [By-passing c][avoid][Ownship ac],3.3 n8: [Other r ac][avoid][By-passing ac],3.5 n20: ense][By-passing ac],2. By-passing COwnship ac][govern][AVP],4.4 n11: hip ac][avoid][Other ac],4.6 n21: I: [Environment][Physically/visually [Environment][Physically/visually ually complicate][By-passing ac],5.5
step 2: observed system (obs)	step 3: observed action	step 4: supra source primary purpose
computerized perception-based mid-air collision avoidance system {active_avp}	the perception model does not detect by-passing aircrafts	preventing mid_air collisions

step 5: auxiliary influence interaction	step 6: auxiliary control interaction	step 7: auxiliary appreciation interaction

influence goal:

to accomplish its primary influence objective, the {active_avp} is designed to indirectly enhance the {own_aircraft_pilot_decision_making_process}, ensuring improved situational awareness and informed decision-making during flight operations.

influence actions

- 1. augmenting pilot awareness: the {active_avp} enhances the {own_aircraft_pilot_situation_awar eness} by providing real-time insights into the surrounding airspace, thereby improving the pilot's ability to assess and respond to potential hazards.
- ensuring environmental perception: the {active_avp}

control goal

the {active_avp} is designed to generate
{avoidance_strategy_recommendation} to effectively
influence the
{own_aircraft_pilot_decision_making_process},
ensuring safe and informed pilot decision-making in
response to dynamic airspace conditions.

control actions:

- 1. trajectory identification and tracking
 - 1.1. employ

 {non_deterministic_intelligent_algorithms} for

 {by-passing_aircraft_detection_tracking} to

 accurately identify and track the movements of

 by-passing aircraft based on their {by
 passing_aircraft_motion_pattern}.
- 2. collision threat assessment
 - 2.1. analyse collected {visual_information} to evaluate potential {collision_threat} posed by detected by-passing aircraft.

appreciation goal 1:

the {active_avp} acknowledges the contextual constraints and potential limitations of visual data obtained from imaging sensors {own_aircraft_camera}, ensuring accurate perception and interpretation.

appreciative actions 1:

- comprehensive airspace
 monitoring: actively scan
 and track {bypassing_aircraft_position}
 using {own_aircraft_radar},
 {own_aircraft_lidar}, and
 {own_aircraft_camera} to
 detect presence and
 movement.
- visual data analysis: process and evaluate

facilitates a comprehensive understanding of {surrounding_airspace_safety}, allowing pilots to navigate dynamic airspace conditions with heightened confidence and efficiency.

- 2.2. assess risk factors including {bypassing_aircraft_speed}, {bypassing_aircraft_direction}, {bypassing_aircraft_altitude}, and {bypassing_aircraft_proximity} to determine the
 likelihood of an impending collision.
- 3. threat prediction modelling
 - 3.1. utilize {threat_predictive_model} to forecast the future {by-passing_aircraft_position} and assess the {risk_of_potential_collision}, allowing proactive avoidance strategies.
- 4. cockpit display integration
 - 4.1. continuously update
 {cockpit_display_systems} with real-time
 information about
 {surrounding_airspace_safety}, ensuring that
 {by-passing_aircraft_position} and {bypassing_aircraft_speed} are clearly visualized
 for the pilot.
- 5. pilot awareness and alert system
 - 5.1. provide visual and/or audible alerts to enhance {own_aircraft_pilot_situation_awareness},

- {visual_information}
 captured by
 {own_aircraft_camera} for
 accurate object detection.
- object detection: identify

 and classify by-passing
 aircraft {by passing_aircraft_position}
 based on visual cues.
- 4. environmental context
 assessment: evaluate
 external factors influencing
 {visual_information}
 acquisition conditions.
- 5. obstruction identification: detect {environmental_obstructions} such as {fog}, {raindrops}, {cloud_cover}, {cloud_type}, and {cloud_turbulence} that may impair visibility.

- ensuring that any significant changes in {bypassing_aircraft_position} or potential {collision_threat} are promptly communicated.
- 6. critical collision alerts
 - 6.1. in the event of a detected {collision_threat}, issue immediate alerts to the {own_aircraft_pilot_situation_awareness}, delivering concise information regarding the nature and location of the threat.
 - 6.2. ensure seamless integration of alerts with {aircrafts_existing_warning_systems} for a synchronized response mechanism.
- 7. avoidance strategy generation
 - 7.1. generate
 {avoidance_strategy_recommendation} based
 on comprehensive analysis of
 {surrounding_airspace_safety} and detected
 {collision_threat}, providing structured
 advisories for

{own_aircraft_pilot_situation_awareness}.

8. manoeuver recommendations

- 6. landscape influence
 evaluation: assess the
 impact of
 {landscape_background}
 on the readability and
 detectability of
 {visual_information} in
 dynamic airspace
 conditions.
- daytime influence on imaging: consider the effect of {daytime} and {sunlight} levels on image clarity and sensor performance.
- 8. sun position impact: analyze {sun_position} relative to {own_aircraft_camera} direction, affecting the {active_avp} model's ability to perform {by-

- 8.1. provide clear and actionable {avoidance_strategy_recommendation}, including:
 - 8.1.1. {own_aircraft_roll_change}
 - 8.1.2. {own_aircraft_pitch_change}
 - 8.1.3. {own_aircraft_yaw_change}
 - 8.1.4. adjustments in {own_aircraft_altitude} and {own_aircraft_speed} to mitigate collision risks effectively.
- 9. pilot-friendly guidance delivery
 - 9.1. ensure that all
 {avoidance_strategy_recommendation} are
 presented in a clear, intuitive, and actionable
 format, allowing the
 {own_aircraft_pilot_situation_awareness} to
 interpret and execute the recommended
 actions efficiently.
- 10. seamless system integration
 - 10.1. facilitate the integration of the {active_avp}
 into the
 {own_aircraft_pilot_decision_making_process},

passing_aircraft_detection
_tracking{} accurately.

appreciation goal 2:

the perception system aims to understand and evaluate the position, trajectory, and speed of by-passing aircraft, ensuring accurate detection and risk assessment. this involves analyzing {by-passing_aircraft_motion_pattern}, {by-passing_aircraft_position}, and {by-passing_aircraft_speed} to support collision avoidance strategies.

appreciative actions 2:

 motion pattern analysis:
 examine {bypassing_aircraft_motion_p

ensuring that ai-driven recommendations complement the pilot's cognitive workload rather than adding complexity.

- 11. decision-making enhancement
 - 11.1. structure

{avoidance_strategy_recommendation} to enhance {own_aircraft_pilot_situation_awareness}, enabling pilots to make informed, timely, and safe decisions under various operational conditions.

- 12. dynamic environmental adaptation
 - 12.1. issue

{avoidance_strategy_recommendation} that dynamically guides the {own_aircraft_pilot_decision_making_process} in response to real-time changes in {surrounding_airspace_safety}.

- 13. situational awareness optimization
 - 13.1. alert the

{own_aircraft_pilot_situation_awareness} to any significant environmental changes

- attern} to identify movement trends.
- situation tracking: continuously monitor {bypassing_aircraft_position} for real-time awareness.
- future position prediction: forecast {bypassing_aircraft_position} based on current dynamics.
- speed assessment:
 evaluate {by passing_aircraft_speed} to
 determine motion
 characteristics.
- 5. trajectory evaluation:analyze {by-passing_aircraft_flight_path} to predict potential flightmaneuvers.

affecting {surrounding_airspace_safety},	6. collision impact
ensuring optimal pilot responsiveness to	forecasting: compute
emerging threats.	{collision_time} to
	anticipate possible
	conflicts and response
	timelines.
	appreciation goal 3:
	the perception system aims to
	understand and evaluate the
	current flight path and trajectory of
	the own aircraft, ensuring accurate
	situational awareness and
	decision-making.
	appreciative actions 3:
	flight path monitoring:
	continuously track the
	{own_aircraft_flight_path}
	for real-time trajectory
	awareness.

	2.	trajectory analysis: assess
		the
		{own_aircraft_flight_path}
		to predict movement
		patterns.
	3.	manoeuvrability
		assessment: evaluate
		{own_aircraft_flight_maneu
		vers} and their impact on
		{visual_information}.
	4.	speed impact evaluation:
		analyze
		{own_aircraft_speed} to
		determine its effect on
		{visual_information}
		accuracy.
	5.	response time
		assessment: measure
		{own_aircraft_response_ti
		me} to optimize reaction
		efficiency.
		· · · ,

6. maneuver recommendation: identify appropriate {own_aircraft_flight_maneu vers) for safe navigation. 7. safety evaluation: ensure {own_aircraft_flight_path} adjustments align with collision avoidance and flight safety standards. perception system appreciation of own_aircraft_pilot_decision_makin g_process: appreciation goal 4: ensure the {active_avp} recognizes and integrates human pilot validation feedback to enhance decision accuracy and identification reliability.

appreciative actions 4: 1. incorporate {own_aircraft_pilot_feedback} into {avp_real_time_training} to continuously refine the {active_avp} model for improved real-time decisionmaking.

step 8: predicted problem domain factors or features (with repetition)

factors or features that manifest avp influence goal:

['active_avp', 'own_aircraft_pilot_decision_making_process', 'active_avp', 'own_aircraft_pilot_situation_awareness', 'active_avp', 'surrounding_airspace_safety']

factors or features that manifest avp control goal:

['active_avp', 'avoidance_strategy_recommendation', 'own_aircraft_pilot_decision_making_process', 'non_deterministic_intelligent_algorithms', 'by-passing_aircraft_detection_tracking', 'by-passing_aircraft_motion_pattern', 'visual_information', 'collision_threat', 'by-passing_aircraft_speed', 'by-passing_aircraft_direction', 'by-passing_aircraft_altitude', 'by-passing_aircraft_proximity', 'threat_predictive_model', 'by-passing_aircraft_position', 'risk_of_potential_collision', 'cockpit_display_systems', 'surrounding_airspace_safety', 'by-passing_aircraft_position', 'by-passing_aircraft_speed', 'own_aircraft_pilot_situation_awareness', 'by-passing_aircraft_position', 'collision_threat', 'collision_threat',

'own_aircraft_pilot_situation_awareness', 'aircrafts_existing_warning_systems', 'avoidance_strategy_recommendation', 'surrounding_airspace_safety', 'collision_threat', 'own_aircraft_pilot_situation_awareness', 'avoidance_strategy_recommendation', 'own_aircraft_roll_change', 'own_aircraft_pitch_change', 'own_aircraft_yaw_change', 'own_aircraft_altitude', 'own_aircraft_speed', 'avoidance_strategy_recommendation', 'own_aircraft_pilot_situation_awareness', 'active_avp', 'own_aircraft_pilot_decision_making_process', 'avoidance_strategy_recommendation', 'own_aircraft_pilot_situation_awareness', 'avoidance_strategy_recommendation', 'own_aircraft_pilot_decision_making_process', 'surrounding_airspace_safety', 'own_aircraft_pilot_situation_awareness', 'surrounding_airspace_safety']

factors or features that manifest avp appreciation goal:

['active_avp', 'own_aircraft_camera', 'by-passing_aircraft_position', 'own_aircraft_radar', 'own_aircraft_lidar', 'own_aircraft_camera', 'visual_information', 'environmental_obstructions', 'fog', 'raindrops', 'cloud_cover', 'cloud_type', 'cloud_turbulence', 'landscape_background', 'visual_information', 'daytime', 'sunlight', 'sun_position', 'own_aircraft_camera', 'active_avp', 'by-passing_aircraft_detection_tracking', 'by-passing_aircraft_motion_pattern', 'by-passing_aircraft_position', 'by-passing_aircraft_speed', 'by-passing_aircraft_motion_pattern', 'by-passing_aircraft_position', 'by-passing_aircraft_flight_path', 'collision_time', 'own_aircraft_flight_path', 'own_aircraft_flight_maneuvers', 'visual_information', 'own_aircraft_speed', 'visual_information', 'own_aircraft_pilot_feedback', 'avp_real_time_training', 'active_avp']

step 2: observed system (obs)	step 3: observed action	step 4: supra source primary purpose
by-passing aircraft {by-passing_aircraft}	the by-passing aircraft is in constant motion, following a flight path that intersects with that of own aircraft.	by-passing aircraft aims to be capable of disrupting air traffic system
step 5: auxiliary influence interaction	step 6: auxiliary control interaction	step 7: auxiliary appreciation interaction

Influence Goal

The {by-passing_aircraft_proximity} to the {stabilised_own_aircraft_dynamics} can trigger {conflicted_atc} to issue {emergency_directives} and {rerouting_instructions}, affecting not only the ownship but also other aircraft {other_aircrafts} in the vicinity.

Influence Actions

- Maintain constant motion at a stable {by-passing_aircraft_speed}.
- Intersect with the {own_aircraft_flight_path}, creating potential navigational conflicts.
- Approach the ownship aircraft at an {unsafe_proximity}, increasing collision risk.
- 4. Manoeuvre unpredictably, leading to potential {airspace_conflicts}.

Control Goal

Manipulate the {collision_avoidance_system} and the {own_aircraft_pilot_decision_making_process} to influence decision-making and flight path adjustments under high-risk conditions.

Control Actions

- Triggering Collision Avoidance Systems & Pilot Response
 - 1.1. Activate the {collision_avoidance_system} aboard the own aircraft, compelling an automatic course alteration.
 - 1.2. Induce rapid, stress-induced decisions ({pilot_stress}) by forcing the pilot into highpressure scenarios.
- Ensuring Continuous Detection & Conflict Awareness
 - 2.1. Maintain {by-passing_aircraft_speed} within {radar_and_visual_range} to ensure persistent {by-passing_aircraft_visibility} for both

Appreciation Goal

The {bypassing_aircraft_dynamics} must
appreciate and adapt to the
{stabilised_own_aircraft_dynamics}, ensuring alignment with the
{collision_avoidance_system},
{own_aircraft_pilot_decision_making_process}, and {weather_data}.

Appreciation Actions

- 1. Environmental Awareness:
- 1.1 Regularly assess
 {weather_data} to evaluate the
 impact of {airspace_visibility},
 {wind}, and {cloud_turbulence} on
 {active_avp} aboard
 {stabilised_own_aircraft_dynamics

 Induce {conflicted_atc} to issue {rerouting_instructions} impacting multiple aircraft {other_aircrafts}. {conflicted_atc} and the
{collision_avoidance_system}.

- 3. Flight Path Interference & Conflict Creation
 - 3.1. Manoeuvre to intersect or closely align with the {own_aircraft_flight_path}, disrupting {stabilised_own_aircraft_dynamics} and generating an unavoidable conflict scenario.
 - 3.2. Reduce distance between the by-passing aircraft ({by-passing_aircraft_proximity}) and the {stabilised_own_aircraft_dynamics}, heightening the perceived threat.
- 4. Forcing Avoidance System Activation
 - 4.1. Engage in deliberate flight actions that trigger the {collision_avoidance_system} of the {stabilised_own_aircraft_dynamics}, ensuring forced response.
- Inducing Attention & Stress Through Unpredictable Behavior
 - 5.1. Utilize irregular or unpredictable flight patterns ({unpredictable_by-passing_aircraft_actions}) to demand heightened focus from

} and {bypassing_aircraft_dynamics}.

- 1.2 Determine how {weather_data} affects {bypassing_aircraft_proximity},
 ensuring optimal {bypassing_aircraft_visibility} for the {stabilised_own_aircraft_dynamics}.
- System ThresholdExploitation:
- 2.1 Gain insight into {avp_confidence_threshold} by influencing {active_avp} through {by-passing_aircraft_hack_avp_threshold}.
- 2.2 Assess the impact of {bypassing_aircraft_hack_avp_thresh
 old} on

{conflicted_atc} and {collision_avoidance_system}, {own_aircraft_pilot_decision_making_process}. ensuring that maneuvers

5.2. Through these {unpredictable_bypassing_aircraft_actions}, compel the
{own_aircraft_pilot_decision_making_process}
to make rapid, high-stress decisions

{collision_avoidance_system}, ensuring that maneuvers
effectively trigger {active_avp}.

step 8: predicted problem domain factors or features (with repetition)

conditions.

({pilot_stress}) under immediate threat

factors or features that manifest by-passing aircraft influence goal.

['by-passing_aircraft_proximity', 'stabilised_own_aircraft_dynamics', 'conflicted_atc', 'emergency_directives', 'rerouting_instructions', 'other_aircrafts', 'by-passing_aircraft_speed', 'own_aircraft_flight_path', 'unsafe_proximity', 'airspace_conflicts', 'conflicted_atc', 'rerouting_instructions', 'other_aircrafts']

factors or features that manifest by-passing aircraft control goal.

['collision_avoidance_system', 'own_aircraft_pilot_decision_making_process', 'collision_avoidance_system', 'pilot_stress', 'by-passing_aircraft_speed', 'radar_and_visual_range', 'by-passing_aircraft_visibility', 'conflicted_atc', 'collision_avoidance_system', 'own_aircraft_flight_path', 'stabilised_own_aircraft_dynamics', 'by-passing_aircraft_proximity', 'stabilised_own_aircraft_dynamics', 'collision_avoidance_system', 'stabilised_own_aircraft_dynamics', 'unpredictable_by-passing_aircraft_actions', 'conflicted_atc', 'own_aircraft_pilot_decision_making_process', 'unpredictable_by-passing_aircraft_actions', 'own_aircraft_pilot_decision_making_process', 'pilot_stress']

factors or features that manifest by-passing aircraft appreciation goal.

['by-passing_aircraft_dynamics', 'stabilised_own_aircraft_dynamics', 'collision_avoidance_system', 'own_aircraft_pilot_decision_making_process', 'weather_data', 'weather_data', 'airspace_visibility', 'wind', 'cloud_turbulence', 'active_avp', 'stabilised_own_aircraft_dynamics', 'by-passing_aircraft_dynamics', 'weather_data', 'by-passing_aircraft_proximity', 'by-passing_aircraft_visibility', 'stabilised_own_aircraft_dynamics', 'avp_confidence_threshold', 'active_avp', 'by-passing_aircraft_hack_avp_threshold', 'by-passing_aircraft_hack_avp_threshold', 'collision_avoidance_system', 'active_avp']

step 2: observed system (obs)	step 3: observed action	step 4: supra source primary purpose
ownship aircraft:	action: encountering, avoiding, and detecting by- passing aircraft	maintain safe and secure air-travel
{stabilised_own_aircraft_dynamics}		
step 5: auxiliary influence interaction	step 6: auxiliary control interaction	step 7: auxiliary appreciation
		interaction
influence goal:	control goal :	appreciation goal:
the {stabilised_own_aircraft_dynamics} seeks to maintain a safe distance	to prevent collisions {collision_avoidance} with by- passing aircraft {by-passing_aircraft_position}.	the {stabilised_own_aircraft_dynamics}
{own_aircraft_proximity} from all other aircraft {other_aircrafts}, particularly those	control actions:	} needs to recognize and adapt to external factors or features and
identified as potential threats, thereby contributing to the overall safety of the	 adjust flight path: o recalculate the current flight trajectory {own_aircraft_flight_path}. o 	<pre>dynamics {weather_conditions}, {surrounding_airspace_obstructio</pre>
{surrounding_airspace_safety}. Influence actions:	<pre>implement rerouting decisions {automated_own_aircraft_flight_path_change}., {own_aircraft_altitude_change}</pre>	ns} in the airspace that are beyond its direct control but which critically influence its ability to

- adjust
 {own_aircraft_flight_management_
 system}: adjust the flight plan and
 path {own_aircraft_flight_path} in
 response to the threat for
 maintaining safe separation.
- autonomously execute
 manoeuvres for
 {autonomous_collision_avoidance
 _maneuvers} based on input from
 other systems.
- 3. alerting and warning
 {own_aircraft_pilot_decision_making_process}: provide the pilots
 with immediate alerts
 {potential_collision_threat_alert}
 regarding the proximity of the {bypassing_aircraft_position}.
- 2. manage aircraft movement {disturbed_own_aircraft_dynamics}.: o accelerate or decelerate to change speed {own_aircraft_speed_change}. o execute evasive maneuvers promptly {accelerated_own_aircraft_dynamics}. o stabilize the flight dynamics {stabilised_own_aircraft_dynamics} post manoeuvre.
- control flight attitude: o adjust pitch
 {own_aircraft_pitch_change},
 {own_aircraft_roll_change}, and
 {own_aircraft_yaw_change}for manoeuvring.
 {accelerated_own_aircraft_roll},
 {accelerated_own_aircraft_pitch},
 {accelerated_own_aircraft_yaw} o maintain
 balance during abrupt changes. o align with new
 flight path post manoeuvre.
- engage
 {own_aircraft_flight_management_system} for
 controlled adjustments: o activate
 {own_aircraft_flight_management_system} for

avoid collisions and maintain safe separation.

appreciative actions:

1. for adjust own_aircraft_flight_manag ement_system: o appreciate weather patterns {weather_conditions}: understand and anticipate how changing {weather_conditions_chan ge} can affect {weather data change} which impact flight automated paths and maneuvers {own_aircraft_flight_path_c hange}, {own_aircraft_dynamics_c hange). o monitor air traffic

- precise navigation adjustments. o monitor

 {own_aircraft_flight_management_system}

 performance during manoeuvres. o override

 {own_aircraft_flight_management_system_over

 ride} if manual control is deemed necessary.
- 5. operate {pilot_alerting_and_warning_systems}: o acknowledge and respond to alerts {collision_threat_alert}. o evaluate the proximity of {by-passing_aircraft_proximity}. o prepare for immediate manual intervention if required {manual_own_aircraft_flight_path_change}.
- control: stay informed
 about {conflicted_atc}
 instructions and advisories
 that might affect the flight
 plan and path
 {own_aircraft_flight_path_c
 hange}.
- 2. to execute avoidance
 manoeuvres: o recognize
 nearby aircraft actionss
 {other_aircrafts}: o be
 aware of the unpredictable
 movements and decisions
 {unpredictable_other_aircr
 afts_decision} of nearby
 aircraft which might
 necessitate sudden
 {automated_collision_avoi
 dance_maneuvers}. o
 acknowledge avp
 limitations: understand the
 limitations of {active_avp}

		in complex and rapidly
		changing situations.
	3.	for alerting and warning
		pilot: o consider
		communication delays:
		factors or feature in
		potential delays in
		{avp_detection_communic
		ation_delay_hack} which
		might impact the
		timeliness of alerts. o
		understand
		{own_aircraft_pilot_decisio
		n_making_process}:
		recognize the pilot's
		workload and cognitive
		limitations
		{pilot_cognitive_limit} while
		presenting alerts
		{collision_threat_alert} to
		ensure an effective
		response.

4. for adjust flight path: o monitor airspace restrictions {surrounding_airspace_res trictions}: stay updated on temporary airspace restrictions or zones [like military exercises, restricted areas] {military_aircraft_intrusion} which could necessitate rerouting. 5. to manage aircraft movement: acknowledge airspace congestion: understand the impact of {surrounding_airspace_obs tructions} {other_aircrafts_presence} on the ability to execute evasive manoeuvres or speed adjustments.

environmenta features: be a environmenta features like { or {drone_presonecessitate rails}	aware of how al factors or {bird} activity esence} might
environmenta features like { or {drone_pres	al factors or {bird} activity esence} might
features like { or {drone_pres	(bird) activity esence) might
or {drone_pre	esence} might
necessitate ra	apid
nocessitate re	
movement ch	nanges.
6. for control flig	ght attitude: o
appreciate ex	kternal forces:
understand th	he impact of
external force	es like
{wind_shear_e	_effect_on_ca
mera} or air de	ensity
{air_density_c	change_due_t
o_high_speed	d_effect_on_c
amera} also o	on
{aircraft_attitu	ude_control}.
o monitor	
{mechanical_	_wear_and_te
ar}: stay award	e of the
aircraft's med	chanical

	condition which can affect
	the responsiveness to
	attitude adjustments.
	7. for engage
	{own_aircraft_flight_manag
	ement_system} for
	controlled adjustments: o
	consider system failures:
	be prepared for potential
	{autopilot_system_failure}
	or malfunctions and have
	contingency plans. o
	understand airspace
	complexity: recognize the
	limitations of {active_avp}
	in highly complex airspace
	scenarios.
	for operate
	{pilot_alerting_and_warning_syste
	ms}: be aware of system overload:
	recognize the risk of alert fatigue or
<u> </u>	

	{information_overload_for_pilot}
	during high stress events
	{highly_stressfull_event} and
	design alerts accordingly.

step 8: predicted problem domain factors or features (with repetition)

factors or features that manifest own aircraft influence goal

['stabilised_own_aircraft_dynamics', 'own_aircraft_proximity', 'other_aircrafts', 'surrounding_airspace_safety', 'own_aircraft_flight_management_system', 'own_aircraft_flight_path', 'autonomous_collision_avoidance_maneuvers', 'own_aircraft_pilot_decision_making_process', 'potential_collision_threat_alert', 'by-passing_aircraft_position']

factors or features that manifest own aircraft control goal.

['collision_avoidance', 'by-passing_aircraft_position', 'own_aircraft_flight_path', 'automated_own_aircraft_flight_path_change', 'own_aircraft_altitude_change', 'disturbed_own_aircraft_dynamics', 'own_aircraft_speed_change', 'accelerated_own_aircraft_dynamics', 'own_aircraft_pitch_change', 'own_aircraft_dynamics', 'own_aircraft_pitch_change', 'own_aircraft_yaw_change', 'accelerated_own_aircraft_roll', 'accelerated_own_aircraft_pitch', 'accelerated_own_aircraft_yaw', 'own_aircraft_flight_management_system', 'own_aircraft_flight_management_system', 'own_aircraft_flight_management_system', 'own_aircraft_flight_management_system_override', 'pilot_alerting_and_warning_systems', 'collision_threat_alert', 'by-passing_aircraft_proximity', 'manual_own_aircraft_flight_path_change']

factors or features that manifest own aircraft appreciation goal.

['stabilised_own_aircraft_dynamics', 'weather_conditions', 'surrounding_airspace_obstructions', 'weather_conditions', 'weather_conditions_change', 'weather_conditions_change', 'own_aircraft_flight_path_change', 'own_aircraft_flight_path_change', 'other_aircrafts', 'unpredictable_other_aircrafts_decision', 'automated_collision_avoidance_maneuvers', 'avp', 'avp_detection_communication_delay_hack',

```
'own_aircraft_pilot_decision_making_process', 'pilot_cognitive_limit', 'collision_threat_alert',
'surrounding_airspace_restrictions', 'military_aircraft_intrusion', 'surrounding_airspace_obstructions',
'other_aircrafts_presence', 'bird', 'drone_presence', 'wind_shear_effect_on_camera',
'air_density_change_due_to_high_speed_effect_on_camera', 'aircraft_attitude_control', 'mechanical_wear_and_tear',
'own_aircraft_flight_management_system', 'autopilot_system_failure', 'avp', 'pilot_alerting_and_warning_systems',
'information_overload_for_pilot', 'highly_stressfull_event']
```

K.2 Predictive Thinking Pipeline 4: Predict and Evaluate Problem Domain Factors and Assumptions.

K.2.1 Step 4.1) Perform the most and least frequent factor evaluation

To perform this analysis, we needed to extract all the factors mentioned above and count their frequencies. The frequency of mention indicates the degree of emphasis we place on their influence on our peripheral perception of the problem. The following is Python code that we used to do so:

import csv

from collections import Counter

def extract_text_in_parentheses():

"""

This code accepts text of any length and searches for specific characters to extract the text located between those characters. We employ the following format to define interactions:

```
({roaming_adversarial_drone}_[appreciate]_{powered_powerlines_structure}), where a factor is defined within curly braces {} and an action is
enclosed within square brackets []. This script has been utilised to extract the factors and compile them into a list. Please execute this script in a
local Python environment.
.....
 # Prompt the user to enter a text
  input_text = input("enter your text: ")
  # List to store extracted phrases
  extracted_phrases = []
  # Temporary string to build phrases
  temp_phrase = ""
  inside_parentheses = False
  # Iterate through each character in the text
  for char in input_text:
    if char == '{': # choose the opening character
     inside_parentheses = True
     temp_phrase = ""
```

```
elif char == '}' and inside_parentheses: # choose the closing character
    inside_parentheses = False
    # Add the phrase to the list
    extracted_phrases.append(temp_phrase)
  elif inside_parentheses:
    temp_phrase += char
 return extracted_phrases
predicted_factors = extract_text_in_parentheses()
print("-----")
print("-----")
print("-----")
print("-----")
print(predicted_factors)
def generate_histogram_and_csv(data_list):
 # Count the frequency of each element in the list
 frequency_count = Counter(data_list)
```

```
# Calculate total occurrences for influence level calculation
total_occurrences = sum(frequency_count.values())
# Create a list of dictionaries for CSV writing
csv_data = []
for factor, freq in frequency_count.items():
 influence_level = freq / total_occurrences
 csv_data.append({
   "Predicted Factor": factor,
   "Frequency": freq,
   "Influence Level": influence_level
  })
# Sort the list by frequency in descending order
csv_data.sort(key=lambda x: x["Frequency"], reverse=True)
# Write data to CSV file
with open(r'C:\Users\hal1e20\python_ver\python_projects\Systems_Science\predicted_factors.csv', 'w', newline=") as file:
 writer = csv.DictWriter(file, fieldnames=["Predicted Factor", "Frequency", "Influence Level"])
 writer.writeheader()
```

```
writer.writerows(csv_data)

return r"C:\Users\hal1e20\python_ver\python_projects\Systems_Science\predicted_factors.csv"

# Example usage with a list of elements

#example_data = ["factor1", "factor2", "factor3", "factor2", "factor1"]

#csv_file_path = generate_histogram_and_csv(example_data)

csv_file_path = generate_histogram_and_csv(predicted_factors)

print(csv_file_path) # output the location of the CSV file that compute the frequency of factors during analysis
```

K.2.2 Step 4.3) Define the assumptions made about factors

Table K.2: AVOID Problem Domain Factors, Assumptions and Hazards.

Factor	definition	so what? assumption
	A system designed to enhance the	
	pilot's awareness and decision-making	
	process by providing alerts and	
	recommendations based on the	The AVP system will always provide
	surrounding environment and potential	timely and accurate alerts and
active_avp	threats.	recommendations to the pilot.
	The situation of the aircraft where its	The aircraft's dynamics will remain
	flight dynamics (e.g., speed, altitude,	stable and within the controllable limits
stabilised_own_aircraft_dynamics	direction) are stable and under control.	set by the AVP system during flight.
	The process through which the pilot	, , ,
	makes decisions based on various	The pilot will never over-rely on the
	inputs, including alerts from the AVP	perception system's judgment,
	system, situational awareness, and	maintaining normal vigilance during
own_aircraft_pilot_decision_making_process	environmental conditions.	flight.
	The location of an aircraft not part of	The by-passing aircraft's position will
	the own fleet, potentially posing a	always be accurately detected and
by-passing_aircraft_position	collision risk.	tracked by the AVP system.
by-passing_ancrait_position	The pilot's understanding and	The pilot will maintain high situational
	perception of the current situation and	awareness at all times, regardless of the
own_aircraft_pilot_situation_awareness	environment around the aircraft.	complexity of the flight environment.
own_anciart_phot_situation_awareness	environment around the anciart.	The aircraft will always follow the
	The trajectory or route that the own	planned flight path unless instructed
own_aircraft_flight_path	aircraft is following or plans to follow.	otherwise by ATC or the AVP system.
Own_anciant_ingint_patii	anciart is following of plans to follow.	The surrounding airspace will always be
	The safety status of the airspace around	monitored effectively, ensuring up-to-
currounding aircnace cafety		date and accurate information.
surrounding_airspace_safety	the aircraft, including the presence of	uate and accurate information.

	other aircraft and environmental conditions.	
	Suggestions provided by the AVP	The AVP system will provide accurate
	system on how to maneuver to avoid	and timely avoidance strategy
avoidance_strategy_recommendation	potential collisions.	recommendations at all times.
	Data collected from visual sensors like	The visual information will always be
	cameras, providing imagery or video of	clear and free from obstructions or
visual_information	the aircraft's surroundings.	environmental interferences.
		The AVP system will accurately measure
	The velocity at which a by-passing	and track the speed of by-passing
by-passing_aircraft_speed	aircraft is moving.	aircraft at all times.
	An onboard system designed to prevent	The collision avoidance system will
	collisions by detecting and alerting	always detect potential collision threats
collision_avoidance_system	pilots of potential threats.	accurately and promptly.
		The AVP system will accurately measure
	The closeness or distance of a by-	and maintain a safe proximity between
by-passing_aircraft_proximity	passing aircraft to the own aircraft.	the own aircraft and by-passing aircraft.
	Air traffic control providing directions	ATC will always provide timely and
	to aircraft; may give conflicting	accurate instructions to manage aircraft
conflicted_atc	instructions.	separation and safety.
	An integrated onboard computer	The flight management system will
	system that manages key flight	always operate correctly and manage
own_aircraft_flight_management_system	parameters.	the flight parameters as planned.
	A situation where there is a high risk of	All collision threats will be detected and
	the aircraft colliding with another	addressed promptly by the AVP system
collision_threat	object or aircraft.	and the pilot.
	Cameras mounted on the aircraft to	The cameras will always provide clear
	capture visual information of	and reliable visual information,
own_aircraft_camera	surroundings.	regardless of environmental conditions.
	Other aircraft present in the vicinity of	The AVP system will detect and track all
other_aircrafts	the own aircraft.	other aircraft in the vicinity accurately.

	The pattern or behavior of movement	The AVP system will accurately predict
	of a by-passing aircraft, including	and monitor the motion patterns of by-
by-passing_aircraft_motion_pattern	changes in speed and direction.	passing aircraft.
	Information related to weather	The AVP system will always have access
	conditions like wind, visibility, and	to accurate and up-to-date weather
weather_data	turbulence.	data.
	The process of identifying and	The AVP system will continuously and
	continuously monitoring the position	accurately track the position and
by-passing_aircraft_detection_tracking	and movement of by-passing aircraft.	movement of by-passing aircraft.
own_aircraft_roll_change	Adjustments in the aircraft's roll	The AVP system will accurately
0	(lateral rotation) for manoeuvring.	recommend roll changes and the
		aircraft will execute them effectively.
own_aircraft_pitch_change	Adjustments in the aircraft's pitch	The AVP system will accurately
	(vertical rotation) for maneuvering.	recommend pitch changes, and the
		aircraft will execute them effectively.
own_aircraft_yaw_change	Adjustments in the aircraft's yaw	The AVP system will accurately
, _ 0	(horizontal rotation) for maneuvering.	recommend yaw changes, and the
	, ,	aircraft will execute them effectively.
own_aircraft_speed	The velocity at which the own aircraft	The AVP system will accurately
	is moving.	measure and adjust the aircraft's
		speed as needed.
cloud_turbulence	Atmospheric turbulence associated	The AVP system will accurately detect
_	with certain types of clouds, affecting	and account for cloud turbulence,
	flight stability.	ensuring stable flight operations.
own_aircraft_flight_maneuvers	Various actions taken by the aircraft	The AVP system will recommend
	to change its flight path, speed, or	appropriate flight maneuvers, and the
	orientation.	aircraft will execute them effectively.
rerouting_instructions	Directions provided by ATC or the	The AVP system will effectively
	flight management system to change	communicate rerouting instructions
	the current flight path for safety.	to the pilot and ATC.
pilot_stress	The level of psychological pressure or	The pilot will maintain composure and
	stress experienced by the pilot,	effectively manage stress during high-
		pressure situations.
	L	<u> </u>

	particularly in emergency or demanding situations.	
by-passing_aircraft_visibility	The ability of the AVP system and the pilot to visually detect a by-passing aircraft.	The AVP system will always ensure clear visibility of by-passing aircraft.
unpredictable_by-passing_aircraft_actions	Erratic or non-standard movements of a by-passing aircraft that complicate detection and avoidance strategies.	The AVP system will accurately predict and respond to unpredictable by-passing aircraft behaviour.
by-passing_aircraft_dynamics	The characteristics of the by-passing aircraft's movement, including speed, altitude, and trajectory.	The AVP system will continuously and accurately track the dynamics of bypassing aircraft.
by-passing_aircraft_hack_avp_threshold	An attempt to manipulate or interfere with the AVP system's thresholds or parameters.	The AVP system will be secure against hacking attempts that aim to manipulate its thresholds or parameters.
pilot_alerting_and_warning_systems	Systems designed to alert the pilot about potential threats or necessary actions.	The alerting and warning systems will always function correctly and provide timely alerts.
collision_threat_alert	An alert issued when there is an imminent risk of collision.	The AVP system will always issue timely and accurate collision threat alerts.
weather_conditions	The current situation of the weather, including factors like wind, visibility, clouds, and turbulence.	The AVP system will always have accurate and up-to-date weather condition information.
surrounding_airspace_obstructions	Physical or environmental obstacles in the airspace around the aircraft.	The AVP system will always detect and account for all obstructions in the surrounding airspace.
own_aircraft_flight_path_change	Adjustments made to the original flight path of the aircraft.	The AVP system will recommend necessary flight path changes, and the aircraft will execute them effectively.

non_deterministic_intelligent_algorithms	Algorithms used in AVP systems that provide outputs not strictly determined by their inputs, often used for complex decision-making processes.	The AVP system's algorithms will always provide reliable and accurate outputs.
by-passing_aircraft_direction	The course or path along which a by- passing aircraft is moving.	The AVP system will accurately track the direction of by-passing aircraft at all times.
by-passing_aircraft_altitude	The height above ground or sea level at which a by-passing aircraft is flying.	The AVP system will accurately measure and track the altitude of bypassing aircraft at all times.
41. aircrafts_existing_warning_systems	pre-existing systems in the aircraft designed to warn the pilot of various threats or necessary actions.	the existing warning systems will always function correctly and provide timely alerts.
42. own_aircraft_yaw_change	adjustments in the aircraft's yaw {horizontal rotation} for maneuvering.	the avp system will accurately recommend yaw changes, and the aircraft will execute them effectively.
43. own_aircraft_altitude	the height at which the own aircraft is flying above ground or sea level.	the avp system will accurately measure and maintain the aircraft's altitude.
44. own_aircraft_radar	radar systems on the aircraft used for detecting other objects and aircraft in the vicinity.	the radar system will always accurately detect and track objects and other aircraft.
45. own_aircraft_lidar	lidar systems on the aircraft used for measuring distances and detecting objects by illuminating the target with laser light.	the lidar system will always provide accurate distance measurements and object detection.
46. environmental_obstructions	physical or atmospheric conditions that hinder visibility or the operation of sensors.	the avp system will always detect and account for all environmental obstructions.
47. fog	a weather condition that reduces visibility, potentially impacting sensor performance.	the avp system will effectively account for and mitigate the effects of fog on sensor performance.

48. raindrops	precipitation that can interfere with	the avp system will effectively
	sensor accuracy and visibility.	account for and mitigate the effects of
		raindrops on sensor performance.
49. cloud_cover	the fraction of the sky covered by	the avp system will effectively
	clouds, which can affect visibility and	account for and mitigate the effects of
	sensor operation.	cloud cover on sensor performance.
50. cloud_type	the classification of clouds based on	the avp system will always accurately
	their appearance and altitude,	identify and account for different
	impacting visibility and flight	cloud types.
	conditions.	
51. cloud_turbulance	atmospheric turbulence associated	the avp system will accurately detect
	with certain types of clouds, affecting	and account for cloud turbulence,
	flight stability.	ensuring stable flight operations.
52. landscape_background	the terrain and features in the	the avp system will effectively
	background that could affect sensor	differentiate between concerning
	readings and visibility.	objects and the landscape
		background, ensuring accurate
		sensor readings.
53. daytime	the time during the day, affecting	the avp system will adapt to different
	lighting conditions and thus sensor	lighting conditions throughout the
	performance.	day, maintaining effective sensor
		performance.
54. sunlight	natural light from the sun, influencing	the avp system will mitigate the
	visibility and the effectiveness of	effects of sunlight glare and changes
	visual sensors.	in natural lighting on sensor
		performance.
55. sun_position	the location of the sun in the sky,	the avp system will accurately
	which can impact sensor	account for the sun's position,
	performance and pilot visibility.	ensuring effective sensor
		performance and pilot visibility.
56. own_camera	cameras installed on the aircraft	the cameras will always provide clear
	used to capture visual information.	and reliable visual information,

		regardless of environmental conditions.
57. by-passing_aircraft_flight_path	the trajectory or route followed by an by-passing aircraft.	the avp system will accurately track and predict the flight path of by- passing aircraft at all times.
58. collision_time	the estimated time remaining before a potential collision could occur.	the avp system will accurately calculate the collision time, providing timely alerts and recommendations.
59. own_aircraft_response_time	the time it takes for the own aircraft to respond to control inputs or system commands.	the avp system will ensure minimal response time for control inputs and commands.
60. own_aircraft_pilot_feedback	input or reactions from the pilot in response to the system's performance or alerts.	the pilot will provide accurate and timely feedback to the avp system, enhancing its performance.
61. avp_real_time_training	the process of continuously updating and improving the avp system based on real-time data and pilot feedback.	the avp system will continuously and effectively update its algorithms based on real-time data and pilot feedback.
62. emergency_directives	urgent instructions issued in response to critical situations, such as potential collisions.	the avp system will always issue clear and effective emergency directives in a timely manner.
63. unsafe_proximity	a distance between two aircraft that is considered dangerously close.	the avp system will accurately detect and alert the pilot to any unsafe proximity situations.
64. airspace_conflicts	situations where the paths of multiple aircraft intersect, creating a risk of collision.	the avp system will accurately predict and manage airspace conflicts.
65. radar_and_visual_range	the range within which objects can be detected either by radar or visually.	the avp system will effectively utilize radar and visual data to detect objects within range.
66. airspace_visibility	the clarity of the airspace, affecting the ability to visually detect other aircraft.	the avp system will always ensure clear visibility and detectability of other aircraft.

67. wind	atmospheric wind conditions, which	the avp system will effectively
	can affect flight dynamics and sensor	account for and mitigate the effects of
	operation.	wind on flight dynamics and sensor
		operation.
68. cloud_turbulence	disturbances in the atmosphere	the avp system will accurately detect
	associated with certain cloud	and account for cloud turbulence,
	formations, affecting flight stability.	ensuring stable flight operations.
69. avp_confidence_threshold	the level of certainty at which the avp	the avp system will maintain a high
	system reliably operates.	confidence threshold, ensuring
		reliable operation under various
		conditions.
70. by-passing_aircraft_hack_avp_threashold	an attempt to manipulate or interfere	the avp system will be secure against
	with the avp system's thresholds or	hacking attempts that aim to
	parameters.	manipulate its thresholds or
		parameters.
71. own_aircraft_proximity	the distance of the own aircraft from	the avp system will accurately
	other objects or aircraft.	measure and maintain safe proximity
		from other objects and aircraft.
72. autonomous_collision_avoidance_maneuvers	maneuvers executed by the aircraft's	the avp system will execute
	systems without pilot input to avoid	autonomous maneuvers effectively
	collisions.	and safely.
73. potential_collision_threat_alert	a warning issued when there is a	the avp system will always issue
	possibility of a collision.	timely and accurate collision threat
		alerts.
74. collision_avoidance	measures taken to prevent a collision	the avp system will recommend and
-	from occurring.	execute effective collision avoidance
	~	measures.
75. automated_own_aircraft_flight_path_change	changes to the flight path made	the avp system will accurately and
0 0	automatically by the aircraft's	safely execute automatic flight path
	systems.	changes.
76. own_aircraft_altitude_change	adjustments to the altitude at which	the avp system will accurately
	the aircraft is flying.	measure and maintain the aircraft's
	, 5	altitude.

Changes in the aircraft's flight	the avp system will effectively manage
	and compensate for disturbances in
-	flight dynamics.
	the avp system will accurately
·	measure and adjust the aircraft's
the ancialt is itying.	speed as needed.
The dynamics of the circust when it	•
	The AVP system will accurately
is accelerating or decelerating.	monitor and manage the aircraft's
A.I	acceleration and deceleration.
	the avp system will accurately
(horizontal axis rotation).	recommend yaw changes, and the
	aircraft will execute them effectively.
	the avp system will accurately
undergoing acceleration.	monitor and manage the aircraft's roll
	during acceleration.
the pitch of the aircraft during	the avp system will accurately
acceleration.	monitor and manage the aircraft's
	pitch during acceleration.
the yaw of the aircraft when it is	the avp system will accurately
accelerating.	monitor and manage the aircraft's yaw
	during acceleration.
the ability of the pilot to manually	the avp system will allow seamless
override the automated flight	manual override by the pilot when
management system.	necessary.
changes to the flight path made	the avp system will accurately
manually by the pilot.	account for and integrate manual
	flight path changes made by the pilot.
variations in weather conditions that	the avp system will continuously
can affect flight dynamics and sensor	monitor and adapt to changing
	weather conditions.
•	the avp system will ensure accurate
	and up-to-date weather data
1.200.00 S	processing.
	the yaw of the aircraft when it is accelerating. the ability of the pilot to manually override the automated flight management system. changes to the flight path made manually by the pilot.

88. own_aircraft_dynamics_change	changes in the flight dynamics of the	the avp system will effectively manage
	own aircraft due to various factors.	and adapt to changes in flight
		dynamics.
89. unpredictable_other_aircrafts_decision	erratic or unforeseen decisions made	the avp system will anticipate and
	by other aircraft in the vicinity.	adapt to unpredictable decisions by
		other aircraft.
90. automated_collision_avoidance_maneuvers	manoeuvres executed automatically	the avp system will execute
	by the aircraft's systems to avoid	automated collision avoidance
	collisions.	maneuvers effectively and safely.
91. avp_detection_communication_delay_hack	deliberate attempts to cause delays	the avp system will be secure against
	in the avp system's detection and	hacking attempts that aim to cause
	communication processes.	delays in detection and
		communication.
92. pilot_cognitive_limit	the limitations of the pilot's ability to	the avp system will effectively support
	process information and make	the pilot, minimizing the impact of
	decisions under stress.	cognitive limits under stress.
93. surrounding_airspace_restrictions	limitations or prohibitions in certain	the avp system will always account
	areas of the airspace, affecting flight	for and comply with surrounding
	paths.	airspace restrictions.
94. military_aircraft_intrusion	the presence of military aircraft in the	the avp system will detect and
	airspace, which can affect civil	account for the presence of military
	aviation operations.	aircraft in the airspace.
95. other_aircrafts_presence	the presence of other aircraft in the	the avp system will continuously
	vicinity of the own aircraft.	monitor and track other aircraft in the
		vicinity.
96. birds	birds activity that can pose a risk to	the avp system will detect and
	aircraft, especially during cruise,	account for bird activity near the
	takeoff and landing.	aircraft.
97. drone_presence	the presence of unmanned aerial	the avp system will detect and
	vehicles {drones} in the airspace,	account for the presence of drones in
	which can pose collision risks.	the airspace.

98. wind_shear_effect_on_camera	the impact of sudden changes in wind speed or direction on the	the avp system will effectively account for and mitigate the impact of
	operation of onboard cameras.	wind shear on camera operation.
99.	· · · · · · · · · · · · · · · · · · ·	·
	the effect of changes in air density,	the avp system will effectively
air_density_change_due_to_high_speed_effect_on_camera		account for and mitigate the impact of
	performance.	air density changes on camera performance.
100. aircraft_attitude_control	the system and process of managing	the avp system will accurately
100. ali craft_attitude_controt	the orientation of the aircraft in flight.	manage and control the aircraft's
	the offentation of the aircraft in hight.	attitude in various flight conditions.
101. mechanical_wear_and_tear	the degradation of aircraft	the avp system will detect and
TOT. Mechanicat_wear_and_tear	components over time due to regular	account for mechanical wear and
	-	tear, ensuring continued safe
	use.	operation.
102. autopilot_system_failure	a malfunction or failure of the	the avp system will seamlessly take
102. autopitot_system_faiture	aircraft's autopilot system.	over in the event of an autopilot
	anorare a autophot system.	system failure.
103. information_overload_for_pilot	a situation where the pilot is	
Too. morniation_overtoad_ref_phot	presented with more information than	the avp system will prioritize and filter
	can be effectively processed.	information to prevent pilot overload.
104. highly_stressfull_event	an event or situation that places a	
5 ,2 2	high level of stress on the pilot,	the avp system will support the pilot
	affecting decision-making and	effectively during highly stressful
	performance.	events.
predicted factor	plausibility	
		why is it plausible or not?
own_aircraft_pilot_decision_making_process	not plausible	when the system demonstrates
		reliable results, pilots will eventually
		trust it more and more, leading to
		overtrust.
2. by-passing_aircraft_position	not plausible	detection systems may have
		limitations and may not always
		accurately detect or track by-passing

		aircraft, especially in challenging conditions.
3. stabilised_own_aircraft_dynamics	plausible	aircraft systems are designed to maintain stable flight dynamics, and avp can assist in managing minor deviations effectively.
4. active_avp {avdds perception}	not plausible	system limitations, delays, and potential malfunctions could affect the timeliness and accuracy of alerts and recommendations.
5. own_aircraft_pilot_situation_awareness	not plausible	situational awareness can degrade due to high workload, stress, or over- reliance on automated systems.
6. surrounding_airspace_safety	plausible	current aviation systems and atc provide robust monitoring of airspace, although limitations in detection and communication can exist.
7. avoidance_strategy_recommendation	not plausible	system limitations, data processing delays, and unforeseen scenarios can affect the accuracy and timeliness of recommendations.
8. visual_information	not plausible	weather conditions, lighting, and sensor limitations can impact the quality and clarity of visual information.
9. own_aircraft_flight_path	plausible	modern flight management systems ensure adherence to planned flight paths, although deviations may occur due to unforeseen circumstances.
10. by-passing_aircraft_speed	not plausible	sensor limitations and environmental conditions can affect the accuracy of speed measurements of by-passing aircraft.

11. collision_avoidance_system	not plausible	system limitations, technical failures, and unforeseen scenarios can impact the effectiveness of the collision avoidance system.
12. collision_threat	not plausible	detection systems may not always capture all threats promptly, especially in complex or congested airspace.
13. by-passing_aircraft_proximity	not plausible	sensor limitations and environmental factors can affect the accuracy of proximity measurements.
14. atc {air traffic control}	plausible	atc systems are designed to provide accurate and timely instructions, though human and technical errors can occur.
15. own_aircraft_flight_management_system	plausible	modern flight management systems are highly reliable, though technical failures can still occur.
16. other_aircrafts	not plausible	detection limitations and data processing delays can affect the accuracy and timeliness of tracking other aircraft.
17. by-passing_aircraft_detection_tracking	not plausible	environmental conditions and sensor limitations can impact the continuous and accurate tracking of by-passing aircraft.
18. by-passing_aircraft_motion_pattern	not plausible	predicting motion patterns can be complex due to unpredictable behavior and environmental factors.
19. own_aircraft_camera	not plausible	visual quality can be compromised by weather, lighting conditions, and sensor limitations.

20. own_aircraft_roll_change	plausible	modern aircraft control systems can
		execute roll changes accurately
		based on avp recommendations,
		though pilot input is also crucial.
21. own_aircraft_pitch_change	plausible	modern aircraft control systems can
		execute pitch changes accurately
		based on avp recommendations,
		though pilot input is also crucial.
22. own_aircraft_speed	plausible	modern flight management systems
		can manage speed accurately, though
		sensor and system limitations can
		occur.
23. own_aircraft_flight_maneuvers	plausible	modern aircraft control systems are
		capable of executing complex
		maneuvers based on avp
		recommendations, though pilot
		oversight is necessary.
24. rerouting_instructions	plausible	communication systems are generally
		reliable, though occasional delays or
		errors can occur.
25. pilot_stress	not plausible	high-stress situations can impact a
		pilot's decision-making and
		performance, leading to errors.
26. by-passing_aircraft_visibility	not plausible	environmental factors like weather,
		lighting, and sensor limitations can
		impact visibility.
27. unpredictable_by-passing_aircraft_behaviour	not plausible	predicting erratic behavior is
		inherently challenging and can be
		affected by numerous unpredictable
		factors.
28. by-passing_aircraft_dynamics	not plausible	environmental conditions and sensor
		limitations can impact continuous
		and accurate tracking.

29. weather_data	not plausible	weather data can be affected by unpredictable changes and limitations in real-time data acquisition.
30. pilot_alerting_and_warning_systems	plausible	modern systems are designed to be reliable, though technical failures and malfunctions can occur.
31. collision_threat_alert	not plausible	system limitations, data processing delays, and unforeseen scenarios can affect the accuracy and timeliness of alerts.
32. weather_conditions	not plausible	weather conditions can change unpredictably and may not always be accurately reported in real-time.
33. surrounding_airspace_obstructions	not plausible	sensor limitations and environmental factors can impact the detection of obstructions.
34. own_aircraft_flight_path_change	plausible	modern flight management systems can handle flight path adjustments accurately, though pilot input is also crucial.
35. non_deterministic_intelligent_algorithms	not plausible	non-deterministic algorithms can produce variable outputs, which may not always be reliable.
36. by-passing_aircraft_direction	not plausible	environmental conditions and sensor limitations can affect the accuracy of tracking the direction of by-passing aircraft.
37. by-passing_aircraft_altitude	not plausible	sensor limitations and environmental factors can affect the accuracy of altitude measurements.
38. threat_predictive_model	not plausible	predictive models can be limited by the quality and completeness of the

		data they are based on, leading to inaccuracies.
39. risk_of_potential_collision	not plausible	assessing collision risk involves complex calculations that can be affected by various uncertainties and limitations in data.
40. cockpit_display_systems	plausible	modern cockpit display systems are designed to be reliable, though technical failures can still occur.
41. aircrafts_existing_warning_systems	plausible	modern warning systems are designed to be reliable, though technical failures can occur.
42. own_aircraft_yaw_change	plausible	modern aircraft control systems can execute yaw changes accurately based on avp recommendations, though pilot input is also crucial.
43. own_aircraft_altitude	plausible	modern flight management systems can manage altitude accurately, though sensor and system limitations can occur.
44. own_aircraft_radar	not plausible	environmental conditions and technical limitations can affect radar accuracy.
45. own_aircraft_lidar	not plausible	lidar performance can be affected by weather conditions and technical limitations.
46. environmental_obstructions	not plausible	sensor limitations and environmental factors can impact the detection of obstructions.
47. fog	not plausible	fog can significantly reduce visibility and impact the performance of visual and other sensors.

48. raindrops	not plausible	raindrops can significantly interfere with visual and lidar sensor performance.
49. cloud_cover	not plausible	cloud cover can impact the performance of visual sensors and lidar, reducing the effectiveness of threat detection.
50. cloud_type	not plausible	identifying and accounting for various cloud types can be complex and may not always be accurate.
51. cloud_turbulance	not plausible	turbulence can be unpredictable and difficult to measure accurately, impacting sensor performance and flight stability.
52. landscape_background	not plausible	sensor systems can be confused by complex backgrounds, leading to inaccuracies in detecting concerning objects.
53. daytime	plausible	modern sensor systems can adapt to varying lighting conditions, though extreme changes can still pose challenges.
54. sunlight	not plausible	sunlight can create significant glare and shadows, impacting sensor performance and visibility.
55. sun_position	not plausible	the sun's position can create significant challenges for sensor accuracy and pilot visibility, particularly during sunrise and sunset.
56. own_camera	not plausible	environmental factors such as weather, lighting, and obstructions

		can affect the performance and clarity of camera sensors.
57. by-passing_aircraft_flight_path	not plausible	predicting the flight path of by-passing aircraft can be challenging due to erratic movements and sensor limitations.
58. collision_time	not plausible	calculating collision time involves complex variables and can be affected by inaccuracies in sensor data and unpredictable movements.
59. own_aircraft_response_time	plausible	modern aircraft systems are designed for quick response times, though factors such as system lag or pilot reaction time can vary.
60. own_aircraft_pilot_feedback	not plausible	pilots may experience delays or inaccuracies in providing feedback due to high workload or stress, affecting system performance.
61. avp_real_time_training	not plausible	real-time updates can be challenging due to the complexity of algorithms and potential delays in processing and feedback.
62. emergency_directives	plausible	modern systems are designed to handle emergency situations efficiently, though technical or communication issues can arise.
63. unsafe_proximity	not plausible	sensor limitations and environmental factors can impact the accuracy of proximity detection.
64. airspace_conflicts	not plausible	predicting and managing airspace conflicts involves complex calculations and can be affected by

		unpredictable factors and sensor limitations.
65. radar_and_visual_range	plausible	modern radar and visual systems are generally reliable, though environmental factors and technical limitations can impact performance.
66. airspace_visibility	not plausible	visibility can be affected by weather conditions, lighting, and obstructions, impacting the performance of visual sensors.
67. wind	not plausible	wind conditions can change unpredictably and can significantly impact flight stability and sensor performance.
68. cloud_turbulence	not plausible	turbulence can be unpredictable and difficult to measure accurately, impacting sensor performance and flight stability.
69. avp_confidence_threshold	plausible	avp systems are designed to operate within certain confidence levels, though external factors can affect performance.
70. by-passing_aircraft_hack_avp_threashold	not plausible	cybersecurity threats are a significant concern, and systems can be vulnerable to sophisticated hacking attempts.
71. own_aircraft_proximity	plausible	modern sensors can accurately measure proximity, though environmental factors can sometimes cause inaccuracies.
72. autonomous_collision_avoidance_maneuvers	plausible	autonomous systems are designed for such tasks, though they rely on

		accurate sensor data and may face unexpected situations.
73. potential_collision_threat_alert	not plausible	sensor limitations, data processing delays, and unforeseen scenarios can affect the accuracy and timeliness of alerts.
74. collision_avoidance	plausible	modern systems are capable of executing complex avoidance maneuvers, though unexpected factors can still pose challenges.
75. automated_own_aircraft_flight_path_change	plausible	modern flight management systems are designed to handle such tasks, though they depend on accurate data and real-time processing.
76. own_aircraft_altitude_change	plausible	modern flight management systems can manage altitude accurately, though sensor and system limitations can occur.
77. disturbed_own_aircraft_dynamics	plausible	modern systems are designed to handle dynamic changes, though extreme or unexpected conditions can pose challenges.
78. own_aircraft_speed_change	plausible	modern flight management systems can manage speed accurately, though sensor and system limitations can occur.
79. accelerated_own_aircraft_dynamics	plausible	modern systems are designed to monitor and manage acceleration dynamics accurately, though they can be affected by external factors.
80. own_aircraft_yaw_change	plausible	modern aircraft control systems can execute yaw changes accurately

		based on avp recommendations, though pilot input is also crucial.
81. accelerated_own_aircraft_roll	plausible	modern systems are designed to handle dynamic changes accurately, though extreme conditions can pose challenges.
82. accelerated_own_aircraft_pitch	plausible	modern systems can manage pitch dynamics accurately, though they can be affected by external factors.
83. accelerated_own_aircraft_yaw	plausible	modern systems can handle yaw changes accurately, though external factors can affect performance.
84. own_aircraft_flight_management_system_override	plausible	modern systems provide manual override capabilities, though pilot training and system design are crucial.
85. manual_own_aircraft_flight_path_change	plausible	modern systems can accommodate manual changes, though coordination between pilot and system is necessary.
86. weather_conditions_change	not plausible	weather conditions can change unpredictably and can significantly impact sensor performance and flight stability.
87. weather_data_change	plausible	modern systems are designed to process weather data accurately, though data reliability can vary.
88. own_aircraft_dynamics_change	plausible	modern systems are designed to handle dynamic changes, though extreme or unexpected conditions can pose challenges.

89. unpredictable_other_aircrafts_decision	not plausible	predicting the behavior of other aircraft can be challenging due to the variability and unpredictability of human actions.
90. automated_collision_avoidance_maneuvers	plausible	autonomous systems are designed for such tasks, though they rely on accurate sensor data and may face unexpected situations.
91. avp_detection_communication_delay_hack	not plausible	cybersecurity threats are a significant concern, and systems can be vulnerable to sophisticated hacking attempts.
92. pilot_cognitive_limit	plausible	modern systems are designed to support pilot decision-making, though stress can still significantly impact cognitive abilities.
93. surrounding_airspace_restrictions	plausible	modern flight management systems can account for airspace restrictions, though dynamic changes can pose challenges.
94. military_aircraft_intrusion	not plausible	military aircraft can operate unpredictably and may not always be detectable by civilian systems.
95. other_aircrafts_presence	plausible	modern systems are designed to track other aircraft, though sensor limitations and environmental factors can affect accuracy.
96. birds	not plausible	bird detection is challenging due to their small size and unpredictable movements, impacting sensor effectiveness.
97. drone_presence	not plausible	drones can be difficult to detect due to their small size and low altitude

101. mechanical_wear_and_tear	plausible	regular maintenance and inspections are designed to detect wear and tear, but some issues may still go
102. autopilot_system_failure	plausible	
102. autopilot_system_failure	plausible	redundancy to handle autopilot failures, though unexpected issues can still arise.
103. information_overload_for_pilot	plausible	systems are designed to manage information flow, but high-stress situations can still overwhelm the pilot.
104. highly_stressfull_event	plausible	systems are designed to assist pilots, but extreme stress can still significantly impact their performance.
predicted factor	concerning?	why should we be concerned or not?

own_aircraft_pilot_decision_making_process	concerning	directly impacting flight safety, as
1. own_aircraft_pilot_decision_making_process	concerning	
		over-reliance on the system could
		reduce the pilot's vigilance and
		situational awareness.
2. by-passing_aircraft_position	concerning	crucial for collision avoidance;
		inaccurate detection could lead to
		failure in preventing collisions.
3. stabilised_own_aircraft_dynamics	concerning	stability is essential for accurate
		sensor data and effective collision
		avoidance manoeuvres.
4. active_avp {avdds perception}	concerning	critical for pilot's decision-making and
		ensuring timely response to potential
		threats.
5. own_aircraft_pilot_situation_awareness	concerning	high situational awareness is vital for
or orm_andrant_prot_anadion_amaroness	6611661111118	effective decision-making and safe
		flight operations.
6. surrounding_airspace_safety	concerning	essential for collision avoidance and
o. surrounding_airspace_sarety	Concerning	situational awareness, impacting
		decision-making and safety
7idama atusta kanna analatian		maneuvers.
7. avoidance_strategy_recommendation	concerning	critical for pilot's decision-making and
		immediate response to collision
		threats, directly impacting flight
		safety.
8. visual_information	concerning	vital for accurate detection and
		assessment of potential threats,
		contributing to the overall situational
		awareness.
9. own_aircraft_flight_path	concerning	crucial for maintaining safe
		separation from other aircraft and
		ensuring efficient navigation and
		collision avoidance.

10. by-passing_aircraft_speed	concerning	accurate speed measurement is essential for predicting collision threats and recommending avoidance maneuvers.
11. collision_avoidance_system	concerning	critical for ensuring flight safety and preventing mid-air collisions by providing timely alerts and recommendations to pilots.
12. collision_threat	concerning	essential for the safety of the aircraft, as addressing collision threats is a primary objective of the avp system.
13. by-passing_aircraft_proximity	concerning	maintaining safe proximity is crucial for collision avoidance and ensuring safe flight operations.
14. atc {air traffic control}	concerning	integral to flight safety, ensuring proper aircraft separation and managing air traffic efficiently.
15. own_aircraft_flight_management_system	concerning	critical for maintaining the planned flight path, optimizing performance, and ensuring safety.
16. other_aircrafts	concerning	necessary for maintaining situational awareness and preventing collisions, especially in congested airspace.
17. by-passing_aircraft_detection_tracking	concerning	essential for timely detection and response to potential collision threats, ensuring safe flight operations.
18. by-passing_aircraft_motion_pattern	concerning	important for anticipating potential collision threats and recommending appropriate avoidance strategies.
19. own_aircraft_camera	concerning	crucial for the avp system to detect and assess potential threats

		accurately, contributing to situational awareness.
20. own_aircraft_roll_change	concerning	essential for executing effective avoidance maneuvers and maintaining safe flight operations.
21. own_aircraft_pitch_change	concerning	essential for executing effective avoidance maneuvers and maintaining safe flight operations.
22. own_aircraft_speed	concerning	crucial for maintaining safe separation from other aircraft and ensuring efficient navigation and collision avoidance.
23. own_aircraft_flight_maneuvers	concerning	critical for avoiding potential collisions and maintaining safe flight operations.
24. rerouting_instructions	concerning	integral for maintaining safe and efficient airspace management, preventing collisions.
25. pilot_stress	concerning	stress management is crucial for ensuring effective decision-making and safe flight operations.
26. by-passing_aircraft_visibility	concerning	vital for timely detection and assessment of potential threats, contributing to situational awareness.
27. unpredictable_by-passing_aircraft_behaviour	concerning	important for anticipating potential collision threats and recommending appropriate avoidance strategies.
28. by-passing_aircraft_dynamics	concerning	essential for timely detection and response to potential collision threats, ensuring safe flight operations.

29. weather_data	concerning	crucial for flight planning, situational awareness, and decision-making to avoid weather-related hazards.
30. pilot_alerting_and_warning_systems	concerning	essential for ensuring the pilot is aware of and can respond to potential threats promptly.
31. collision_threat_alert	concerning	crucial for timely pilot response to avoid collisions and ensure flight safety.
32. weather_conditions	concerning	important for flight planning and execution, impacting safety and navigation.
33. surrounding_airspace_obstructions	concerning	essential for maintaining situational awareness and avoiding collisions with obstacles.
34. own_aircraft_flight_path_change	concerning	crucial for avoiding potential conflicts and maintaining safe flight operations.
35. non_deterministic_intelligent_algorithms	concerning	important for decision-making processes and ensuring the accuracy of the avp system's recommendations.
36. by-passing_aircraft_direction	concerning	essential for predicting collision threats and recommending appropriate avoidance maneuvers.
37. by-passing_aircraft_altitude	concerning	important for maintaining safe separation vertically and avoiding collision threats.
38. threat_predictive_model	concerning	critical for anticipating collision threats and recommending timely avoidance strategies.

39. risk_of_potential_collision	concerning	crucial for informing the pilot and avp
		system's decision-making processes
		to prevent collisions.
40. cockpit_display_systems	concerning	essential for maintaining situational
		awareness and ensuring the pilot has
		access to all necessary information
		for safe flight operations.
41. aircrafts_existing_warning_systems	concerning	essential for ensuring the pilot is
		aware of and can respond to potential
		threats promptly.
42. own_aircraft_yaw_change	concerning	essential for executing effective
		avoidance maneuvers and
		maintaining safe flight operations.
43. own_aircraft_altitude	concerning	crucial for maintaining safe
		separation from other aircraft and
		ensuring efficient navigation and
		collision avoidance.
44. own_aircraft_radar	concerning	essential for maintaining situational
		awareness and avoiding collisions
		with other aircraft and objects.
45. own_aircraft_lidar	concerning	crucial for accurate situational
		awareness and preventing collisions
		by detecting objects accurately.
46. environmental_obstructions	concerning	essential for maintaining situational
		awareness and avoiding collisions
		with obstacles.
47. fog	concerning	important for maintaining situational
		awareness and detecting potential
		threats accurately.
48. raindrops	concerning	crucial for accurate sensor data and
		maintaining situational awareness in
		adverse weather conditions.

49. cloud_cover	concerning	important for maintaining situational
		awareness and detecting potential
		threats accurately.
50. cloud_type	concerning	crucial for understanding flight
		conditions and maintaining
		situational awareness.
51. cloud_turbulance	concerning	essential for maintaining flight
		stability and ensuring safe navigation
		through turbulent conditions.
52. landscape_background	concerning	crucial for accurate object detection
		and maintaining situational
		awareness in varying terrains.
53. daytime	concerning	important for ensuring continuous
		and reliable sensor performance
		regardless of the time of day.
54. sunlight	concerning	crucial for maintaining accurate
		sensor readings and situational
		awareness in varying sunlight
		conditions.
55. sun_position	concerning	important for ensuring continuous
		and reliable sensor performance and
		pilot visibility throughout the flight.
56. own_camera	concerning	essential for detecting and identifying
		potential threats accurately,
		contributing to overall situational
		awareness.
57. by-passing_aircraft_flight_path	concerning	crucial for anticipating collision
		threats and recommending
		appropriate avoidance strategies.
58. collision_time	concerning	essential for timely pilot response to
		avoid collisions and ensure flight
		safety.

59. own_aircraft_response_time	concerning	crucial for executing timely avoidance maneuvers and maintaining safe flight operations.
60. own_aircraft_pilot_feedback	concerning	important for continuously improving the avp system's effectiveness and ensuring timely and accurate responses to potential threats.
61. avp_real_time_training	concerning	crucial for maintaining and improving the avp system's effectiveness and accuracy in threat detection and avoidance.
62. emergency_directives	concerning	essential for ensuring timely and effective responses to prevent collisions and ensure safety.
63. unsafe_proximity	concerning	crucial for preventing mid-air collisions and ensuring safe separation between aircraft.
64. airspace_conflicts	concerning	important for maintaining safe navigation and preventing mid-air collisions.
65. radar_and_visual_range	concerning	essential for maintaining situational awareness and detecting potential threats accurately.
66. airspace_visibility	concerning	essential for accurate detection and assessment of potential threats, contributing to overall situational awareness.
67. wind	concerning	important for maintaining flight stability and ensuring accurate sensor readings and effective navigation.
68. cloud_turbulence	concerning	essential for maintaining flight stability and ensuring safe navigation through turbulent conditions.

69. avp_confidence_threshold	concerning	crucial for maintaining the reliability and effectiveness of the avp system in detecting and responding to threats.
70. by-passing_aircraft_hack_avp_threashold	concerning	ensuring the security and integrity of the avp system is crucial for reliable operation and flight safety.
71. own_aircraft_proximity	concerning	essential for maintaining safe separation from other aircraft and preventing collisions.
72. autonomous_collision_avoidance_maneuvers	concerning	crucial for timely and effective collision avoidance, especially when pilot response time is limited.
73. potential_collision_threat_alert	concerning	crucial for timely pilot response to avoid collisions and ensure flight safety.
74. collision_avoidance	concerning	essential for ensuring flight safety and preventing mid-air collisions.
75. automated_own_aircraft_flight_path_change	concerning	crucial for avoiding potential conflicts and maintaining safe flight operations.
76. own_aircraft_altitude_change	concerning	crucial for maintaining safe separation from other aircraft and ensuring efficient navigation and collision avoidance.
77. disturbed_own_aircraft_dynamics	concerning	essential for maintaining flight stability and control under varying conditions.
78. own_aircraft_speed_change	concerning	crucial for maintaining safe separation from other aircraft and ensuring efficient navigation and collision avoidance.

79. accelerated_own_aircraft_dynamics	concerning	important for maintaining flight stability and ensuring safe and efficient operation during changes in speed.
80. own_aircraft_yaw_change	concerning	essential for executing effective avoidance maneuvers and maintaining safe flight operations.
81. accelerated_own_aircraft_roll	concerning	important for maintaining flight stability and ensuring safe and efficient operation during changes in speed.
82. accelerated_own_aircraft_pitch	concerning	essential for maintaining flight stability and ensuring safe and efficient operation during changes in speed.
83. accelerated_own_aircraft_yaw	concerning	crucial for maintaining flight stability and executing effective maneuvers during acceleration.
84. own_aircraft_flight_management_system_override	concerning	essential for allowing pilot intervention in critical situations, ensuring safety and control.
85. manual_own_aircraft_flight_path_change	concerning	important for maintaining flexibility and ensuring safe navigation based on pilot's judgment.
86. weather_conditions_change	concerning	essential for maintaining accurate sensor readings and safe navigation under varying weather conditions.
87. weather_data_change	concerning	crucial for flight planning and decision-making, impacting safety and navigation.
88. own_aircraft_dynamics_change	concerning	essential for maintaining flight stability and control under varying conditions.

89. unpredictable_other_aircrafts_decision	concerning	important for maintaining situational
		awareness and ensuring safe
		navigation amidst other aircraft.
90. automated_collision_avoidance_maneuvers	concerning	crucial for timely and effective
		collision avoidance, especially when
		pilot response time is limited.
91. avp_detection_communication_delay_hack	concerning	ensuring the security and integrity of
		the avp system is crucial for reliable
		operation and flight safety.
92. pilot_cognitive_limit	concerning	important for ensuring that the pilot
		can make informed decisions quickly
		and accurately, even under high
		stress.
93. surrounding_airspace_restrictions	concerning	crucial for ensuring compliance with
		airspace regulations and maintaining
		safe flight paths.
94. military_aircraft_intrusion	concerning	important for maintaining situational
		awareness and avoiding conflicts with
		military operations.
95. other_aircrafts_presence	concerning	crucial for maintaining situational
		awareness and preventing mid-air
		collisions.
96. birds	concerning	important for maintaining situational
		awareness and preventing bird
		strikes, especially during critical flight
		phases.
97. drone_presence	concerning	crucial for maintaining situational
		awareness and preventing collisions
		with drones.
98. wind_shear_effect_on_camera	concerning	important for ensuring accurate visual
		information and maintaining
		situational awareness during
		changing wind conditions.

99.	concerning	crucial for maintaining accurate visual
air_density_change_due_to_high_speed_effect_on_camera		information and situational
		awareness during high-speed flight.
100. aircraft_attitude_control	concerning	essential for maintaining flight
		stability and control, ensuring safe
		and efficient operation.
101. mechanical_wear_and_tear	concerning	crucial for ensuring the long-term
		reliability and safety of the aircraft.
102. autopilot_system_failure	concerning	important for maintaining control of
		the aircraft and ensuring safe
		operation even in the event of a
		system failure.
103. information_overload_for_pilot	concerning	crucial for ensuring the pilot can make
		effective decisions without being
		overwhelmed by excessive
		information.
104. highly_stressfull_event	concerning	important for ensuring the pilot can
		maintain performance and make
		effective decisions under high-stress
		conditions.
predicted factor	hazard?	How and why is it hazardous?
own_aircraft_pilot_decision_making_process	yes	Over-reliance on the system can
		reduce pilot vigilance, potentially
		leading to slower reactions in
		unexpected situations.
2. by-passing_aircraft_position	yes	inaccurate detection can result in the
		failure to avoid collisions, directly
		risking flight safety.
3. stabilised_own_aircraft_dynamics	yes	unstable dynamics can lead to
		inaccurate sensor data and
	1	

		ineffective collision avoidance maneuvers, compromising safety.
4. active_avp {avdds perception}	yes	delays or inaccuracies in alerts can lead to missed or incorrect responses to threats, jeopardizing flight safety.
5. own_aircraft_pilot_situation_awareness	yes	degraded situational awareness can lead to poor decision-making and slow responses to emerging threats, increasing the risk of incidents.
6. surrounding_airspace_safety	yes	inaccurate or delayed information can lead to missed collision threats.
7. avoidance_strategy_recommendation	yes	incorrect recommendations can lead to inappropriate maneuvers, increasing collision risk.
8. visual_information	yes	poor visual information can lead to missed or incorrect identification of threats.
9. own_aircraft_flight_path	yes	deviation from the flight path can lead to unexpected conflicts with other aircraft.
10. by-passing_aircraft_speed	yes	incorrect speed measurement can lead to incorrect threat predictions.
11. collision_avoidance_system	yes	failure to detect threats can lead to collisions.
12. collision_threat	yes	missed threats can result in collisions.
13. by-passing_aircraft_proximity	yes	inaccurate proximity measurements can lead to unsafe distances between aircraft.
14. atc {air traffic control}	yes	delays or inaccuracies in atc instructions can lead to conflicts and collisions.

15. own_aircraft_flight_management_system	yes	system failures can lead to deviations from planned parameters, increasing collision risk.
16. other_aircrafts	yes	failure to detect other aircraft can lead to missed collision threats.
17. by-passing_aircraft_detection_tracking	yes	failure to track by-passing aircraft can lead to missed collision threats.
18. by-passing_aircraft_motion_pattern	yes	incorrect predictions can lead to inadequate avoidance strategies.
19. own_aircraft_camera	yes	poor visual information can lead to missed or incorrect identification of threats.
20. own_aircraft_roll_change	yes	incorrect roll changes can lead to ineffective maneuvers, increasing collision risk.
21. own_aircraft_pitch_change	yes	incorrect pitch changes can lead to ineffective maneuvers, increasing collision risk.
22. own_aircraft_speed	yes	inaccurate speed adjustments can lead to unsafe distances between aircraft.
23. own_aircraft_flight_maneuvers	yes	incorrect maneuvers can lead to ineffective collision avoidance.
24. rerouting_instructions	yes	miscommunication can lead to conflicts and increased collision risk.
25. pilot_stress	yes	high stress can lead to errors in judgment and delayed reactions, increasing collision risk.
26. by-passing_aircraft_visibility	yes	poor visibility can lead to missed or incorrect identification of threats.

27. unpredictable_by-passing_aircraft_behaviour	yes	incorrect predictions can lead to inadequate avoidance strategies, increasing collision risk.
28. by-passing_aircraft_dynamics	yes	failure to track by-passing aircraft accurately can lead to missed collision threats.
29. weather_data	yes	inaccurate weather data can lead to misinformed decisions and increased risk of weather-related incidents.
30. pilot_alerting_and_warning_systems	yes	failure of alerting systems can lead to missed threats and delayed responses, increasing collision risk.
31. collision_threat_alert	yes	delayed or inaccurate alerts can lead to missed threats and increased collision risk.
32. weather_conditions	yes	inaccurate weather data can lead to poor decision-making and increased risk of weather-related incidents.
33. surrounding_airspace_obstructions	yes	undetected obstructions can lead to collisions.
34. own_aircraft_flight_path_change	yes	incorrect or delayed path changes can lead to conflicts with other aircraft or obstacles.
35. non_deterministic_intelligent_algorithms	yes	unreliable algorithm outputs can lead to incorrect decisions and increased risk of collision.
36. by-passing_aircraft_direction	yes	incorrect tracking can lead to missed or incorrect threat predictions.
37. by-passing_aircraft_altitude	yes	incorrect altitude measurements can lead to unsafe distances between aircraft.

38. threat_predictive_model	yes	inaccurate threat predictions can lead to delayed or inappropriate responses, increasing collision risk.
39. risk_of_potential_collision	yes	underestimating collision risk can lead to inadequate preventative actions, increasing collision likelihood.
40. cockpit_display_systems	yes	display system failures can lead to a lack of critical information, impairing the pilot's ability to respond to threats.
41. aircrafts_existing_warning_systems	yes	failure of warning systems can lead to missed threats and delayed responses, increasing collision risk.
42. own_aircraft_yaw_change	yes	incorrect yaw changes can lead to ineffective maneuvers, increasing collision risk.
43. own_aircraft_altitude	yes	inaccurate altitude adjustments can lead to unsafe distances between aircraft.
44. own_aircraft_radar	yes	inaccurate or delayed radar data can lead to missed threats and increased collision risk.
45. own_aircraft_lidar	yes	inaccurate lidar data can lead to missed or incorrect identification of threats.
46. environmental_obstructions	yes	undetected obstructions can lead to collisions.
47. fog	yes	reduced visibility due to fog can lead to missed or incorrect identification of threats.

48. raindrops	yes	interference from raindrops can lead to missed or incorrect identification of
49. cloud_cover	yes	reduced visibility due to cloud cover can lead to missed or incorrect identification of threats.
50. cloud_type	yes	incorrect identification of cloud types can lead to misjudgment of flight conditions and increased risk of incidents.
51. cloud_turbulance	yes	undetected or unaccounted turbulence can lead to sudden instability, impacting control and safety.
52. landscape_background	yes	misidentification due to background complexity can lead to missed or incorrect threat detection.
53. daytime	yes	poor adaptation to lighting changes can reduce visibility and sensor accuracy, increasing collision risk.
54. sunlight	yes	glare and shadows can lead to missed or incorrect identification of threats.
55. sun_position	yes	poor accounting for the sun's position can lead to missed or incorrect identification of threats, increasing collision risk.
56. own_camera	yes	poor visual information can lead to missed or incorrect identification of threats.
57. by-passing_aircraft_flight_path	yes	incorrect predictions can lead to inadequate avoidance strategies, increasing collision risk.

58. collision_time	yes	inaccurate collision time estimates
		can lead to delayed responses,
		increasing collision risk.
59. own_aircraft_response_time	yes	delayed response times can lead to
		inadequate avoidance maneuvers,
		increasing collision risk.
60. own_aircraft_pilot_feedback	yes	inaccurate or delayed feedback can
		reduce the effectiveness of the avp
		system, impacting flight safety.
61. avp_real_time_training	yes	delayed or incorrect updates can
		reduce system effectiveness,
		impacting flight safety.
62. emergency_directives	yes	delayed or unclear directives can lead
		to inadequate responses, increasing
		collision risk.
63. unsafe_proximity	yes	inaccurate detection can lead to
		missed threats and increased
		collision risk.
64. airspace_conflicts	yes	mismanagement of airspace conflicts
		can lead to increased collision risk.
65. radar_and_visual_range	yes	limitations in detection range can lead
-		to missed threats and increased
		collision risk.
66. airspace_visibility	yes	poor visibility can lead to missed or
		incorrect identification of threats.
67. wind	yes	unaccounted wind effects can lead to
		instability and incorrect sensor data,
		increasing collision risk.
68. cloud_turbulence	yes	undetected or unaccounted
		turbulence can lead to sudden
		instability, impacting control and
		safety.

69. avp_confidence_threshold	yes	low confidence thresholds can lead to unreliable system operation and increased risk of missed threats.
70. by-passing_aircraft_hack_avp_threashold	yes	successful hacking attempts can lead to incorrect system operation and increased collision risk.
71. own_aircraft_proximity	yes	inaccurate proximity measurements can lead to unsafe distances and increased collision risk.
72. autonomous_collision_avoidance_maneuvers	yes	ineffective maneuvers can fail to avoid collisions, increasing risk.
73. potential_collision_threat_alert	yes	delayed or inaccurate alerts can lead to missed threats and increased collision risk.
74. collision_avoidance	yes	ineffective collision avoidance measures can lead to increased collision risk.
75. automated_own_aircraft_flight_path_change	yes	incorrect or delayed path changes can lead to conflicts with other aircraft or obstacles.
76. own_aircraft_altitude_change	yes	inaccurate altitude adjustments can lead to unsafe distances between aircraft.
77. disturbed_own_aircraft_dynamics	yes	unmanaged disturbances can lead to instability and increased collision risk.
78. own_aircraft_speed_change	yes	inaccurate speed adjustments can lead to unsafe distances between aircraft.
79. accelerated_own_aircraft_dynamics	yes	mismanaged acceleration dynamics can lead to instability and increased collision risk.

80. own_aircraft_yaw_change	yes	incorrect yaw changes can lead to ineffective maneuvers, increasing collision risk.
81. accelerated_own_aircraft_roll	yes	mismanaged roll during acceleration can lead to instability and increased collision risk.
82. accelerated_own_aircraft_pitch	yes	mismanaged pitch during acceleration can lead to instability and increased collision risk.
83. accelerated_own_aircraft_yaw	yes	mismanaged yaw during acceleration can lead to ineffective maneuvers, increasing collision risk.
84. own_aircraft_flight_management_system_override	yes	inability to override can lead to loss of control in emergencies.
85. manual_own_aircraft_flight_path_change	yes	poor integration of manual changes can lead to navigation errors and increased collision risk.
86. weather_conditions_change	yes	unaccounted weather changes can lead to poor sensor performance and increased risk of incidents.
87. weather_data_change	yes	inaccurate weather data can lead to poor decision-making and increased risk of weather-related incidents.
88. own_aircraft_dynamics_change	yes	unmanaged dynamic changes can lead to instability and increased collision risk.
89. unpredictable_other_aircrafts_decision	yes	unanticipated decisions by other aircraft can lead to conflicts and increased collision risk.
90. automated_collision_avoidance_maneuvers	yes	ineffective maneuvers can fail to avoid collisions, increasing risk.

91. avp_detection_communication_delay_hack	yes	successful hacking attempts can lead to delayed system responses and increased collision risk.
92. pilot_cognitive_limit	yes	cognitive overload can lead to delayed or incorrect decisions, increasing collision risk.
93. surrounding_airspace_restrictions	yes	failure to comply with airspace restrictions can lead to regulatory violations and increased collision risk.
94. military_aircraft_intrusion	yes	unanticipated military aircraft movements can lead to airspace conflicts and increased collision risk.
95. other_aircrafts_presence	yes	inaccurate tracking can lead to missed threats and increased collision risk.
96. birds	yes	undetected bird activity can lead to bird strikes and potential damage to the aircraft.
97. drone_presence	yes	undetected drone activity can lead to mid-air collisions and increased safety risks.
98. wind_shear_effect_on_camera	yes	wind shear can lead to unstable camera footage, reducing the effectiveness of visual sensors.
99. air_density_change_due_to_high_speed_effect_on_camera	yes	air density changes can lead to distorted camera footage, reducing the effectiveness of visual sensors.
100. aircraft_attitude_control	yes	mismanaged attitude control can lead to instability and increased collision risk.
101. mechanical_wear_and_tear	yes	undetected wear and tear can lead to component failures, increasing the risk of incidents.

102. autopilot_system_failure	yes	autopilot failure without effective
		backup can lead to loss of control and
		increased collision risk.
103. information_overload_for_pilot	yes	information overload can lead to
		delayed or incorrect decisions,
		increasing collision risk.
104. highly_stressfull_event	yes	high stress can lead to cognitive
		overload, impaired decision-making,
		and increased collision risk.