Economía y finanzas matemáticas Optativa del grado en Matemáticas, UAM, 2013-2014

Examen final, 12-5-2014

$Nombre\ y\ Apellidos$.	 	 		
		 	,	

- 1. (4 puntos) Contesta brevemente a las siguientes cuestiones:
 - a) El depósito 1 promete duplicar el valor de la inversión inicial en 10 años. El segundo depósito es a un plazo de 2 años y aplica un tipo R anual, con composición semestral. Ambos tiene el mismo TAE. ¿Cuánto vale R?
 - b) La cartera 1 consta de un contrato forward comprado en el que se establece un precio de compraventa K_1 en tiempo T para una determinada acción; y de un forward vendido, con las mismas características, salvo que el precio de compraventa es K_2 (con $K_2 > K_1$). La cartera 2 está formada por un bono cupón cero de vencimiento T y nominal M. ¿Qué puedes decir de los respectivos precios de las carteras (en función de los tres parámetros involucrados, K_1 , K_2 y M)?
 - c) En el modelo de Black-Scholes, el precio de una call digital con strike K y vencimiento T viene dado por

$$\text{precio call digital} = e^{-rT} \, \Phi(d_-) \,, \qquad \text{donde } d_- = \frac{1}{\sigma \sqrt{T}} \, \big(\ln(S_0/K) + (r - \sigma^2/2) T \big).$$

Halla el precio de la correspondiente put digital.

- d) Justifica por qué la call europea y la call americana (con mismo subyacente, vencimiento y strike) deben tener el mismo precio (en ausencia de dividendos).
- 2. (1.5 puntos) Una acción cotiza hoy a $S_0 = 100$. El factor de descuento a 1 año es del 96 %. La call europea (que tiene a la acción como subyacente) con strike K = 500/6 y vencimiento T = 1 año vale 30. Formamos hoy una cartera comprando 2 calls y 2 puts (ambas con el mismo subyacente, strike K = 500/6 y vencimiento T = 1 año). Dibuja (con detalle) el perfil del beneficio (pérdida o ganancia) que se puede obtener con esta inversión en tiempo T.

Nota. Recuerda homogeneizar, si vas a comparar dinero de hoy con dinero de T=1 año.

3. (1.5 puntos) Fijamos T=1 año. En el mercado se negocian dos activos: una acción, que hoy vale 100, y una call (con subyacente el activo anterior, vencimiento T=1 y strike K=100), que hoy vale 8. En nuestro modelo, la acción puede tomar, en T=1, los valores 110 y 80. ¿Cuál deberá ser el factor de descuento (al plazo T=1) en este modelo? Justifica convenientemente tu respuesta.

4. (1.5 puntos) Diseñamos el siguiente plan de ahorro: desde hoy, y hasta dentro de 9 años, depositaremos cada año una cantidad a (es decir, 10 pagos, desde el año 0 hasta el 9). El gestor del depósito nos garantiza un $R=5\,\%$ de rentabilidad anual. El año 10 recuperaremos el capital acumulado, excepto una comisión del 10 % (sobre el montante de ese capital). Halla la TIR del plan.

Nota: algunos valores de la función $f(x) = \sum_{j=1}^{10} (1+x)^j$:

X	1%	1,1%	1,2%	1,3%	1,4%	1,5%	1,6%	1,7%	1,8%	1,9%	2,0%	2,1%	2,2%	2,3%
f(x)	10,567	10,625	10,684	10,744	10,803	10,863	10,924	10,984	11,045	11,107	11,169	11,231	11,293	11,356
X	2,4%	2,5%	2,6%	2,7%	2,8%	2,9%	3,0%	3,1%	3,2%	3,3%	3,4%	3,5%	3,6%	3,7%
f(x)	11,420	11,483	11,548	11,612	11,677	11,742	11,808	11,874	11,940	12,007	12,074	12,142	12,210	12,278
X	3,8%	3,9%	4,0%	4,1%	4,2%	4,3%	4,4%	4,5%	4,6%	4,7%	4,8%	4,9%	5,0%	
f(x)	12,347	12,417	12,486	12,556	12,627	12,698	12,769	12,841	12,913	12,986	13,059	13,133	13,207	

- 5. (1.5 puntos) El descuento a t (años) viene dado por $P(0,t)=(0.98)^t$. Queremos valorar el siguiente swap "perpetuo": el nominal es M y los intercambios de pagos se producen cada Δt años. En concreto, en cada instante $j \cdot \Delta t$ (desde j=1),
 - una de las partes paga intereses según el tipo simple para el periodo que se haya fijado el periodo anterior; es decir, paga en cada instante $j \cdot \Delta t$ una cantidad

$$R_{\rm s}((j-1)\Delta t, j\cdot \Delta t)\cdot M\cdot \Delta t;$$

■ la otra parte paga intereses según un tipo fijo K. Es decir, paga en el instante $j \cdot \Delta t$ (desde j = 1) una cantidad $K \cdot M \cdot \Delta t$.

Determina el valor del tipo K que hace que este contrato valga hoy 0. Argumenta la respuesta.

Notas:

• Serie geométrica: si |x| < 1,

$$\sum_{j=0}^{\infty} x^j = \frac{1}{1-x}.$$

 \blacksquare Fórmula de paridad call-put (strike K, vencimiento T):

$$p(t) - c(t) = K \cdot P(t, T) - S(t) \qquad \text{para cualquier } 0 \le t < T,$$

donde P(t,T) es el factor de descuento de la fecha T a la fecha t.

■ El tipo (simple) implícito para el periodo $t_1 \rightarrow t_2$ viene dado por

$$F_{\rm s}(0,t_1,t_2) = \frac{1}{t_2 - t_1} \left(\frac{P(0,t_1)}{P(0,t_2)} - 1 \right).$$