What Composition make good quality wine

Karan Vibhute CODE Analytics 08.11.2024

Agenda

- Introduction to Data
- Red Wine data Analysis and Finding
- ☐ White Wine data Analysis and Finding
- ☐ Machine learning model for Red wine
- ☐ Machine learning model for White wine
- ☐ Final Summary

Variables in Data

- ☐ Fixed acidity
 - Volatile acidity
 - ☐ Citric acid
- Residual Sugar
- Chlorides
- ☐ Free Sulfur dioxide
- ☐ Total sulfur dioxide

- Density
- □ pH
- Sulphates
- Quality
 - □ Low (1-4)
 - ☐ Medium (5-6)
 - ☐ High (7-10)

Source: https://archive.ics.uci.edu/dataset/186/wine+quality

Red Wine data Analysis and Finding

Findings for Red Wine

- As we Lower citric acid or higher the pH, it lower the fixed acidity and density of red wine
- If density is Low it increases Percentage of alcohol in Red wine
- ☐ Higher percentage of alcohol increases Quality of wine
- So if comparatively **Lower citric acid** or **higher the pH**, the Quality of Red wine will increases

White Wine data Analysis and Finding

Findings for White Wine

- As we Lower the residual Sugar, it lower the density of White wine
- ☐ If density is Low it increases Percentage of alcohol in White wine
- Higher percentage of alcohol increases Quality of white wine
- So if comparatively **lower the Residual Sugar**, the Quality of White wine will increases

Summary

- ☐ To get good quality of Red Wine we can comparatively decrease citric acid or increase the pH
- To get good quality of White wine we can comparatively lower the Residual Sugar

Machine learning model for Red Wine

- Applied Models : Logistic Regression and Random Forest
- ☐ Chosen Model: Random Forest (It shows Better Result)

Machine learning model for White Wine

- ☐ Applied Models : Logistic Regression and Random Forest
- ☐ Chosen Model: Random Forest (It shows Better Result)

Hyperparameter and Normalization

Data Scaling	Red Wine		White Wine	
	Before	After	Before	After
Hyperparameter	80.20	78.12	82.44	82.55
Normalization	80.20	79.58	82.44	82.65

Table; Accuracy change in % after Data Scaling

Final Summary

- For Red wine all composition important
- For White wine all composition important only Sulphates are low correlated directly or indirectly
- Random forest is best machine learning model for this data set
- Due to less data for High type of both wines Accuracy affected
- Further scope is to check data in details where Wine quality is Higher but predicted lower

THANK YOU

Any Question?