第 2 章 f: 矩阵的初等变换

数学系 梁卓滨

2019-2020 学年 I

We are here now...

1. 初等变换,初等矩阵

2. 等价标准形

3. 初等行变换求逆矩阵

初等行变换

初等列变换

初等行变换

- 交换第 i 行和第 j 行:
- 第 i 行乘以 k 倍 (k ≠ 0):
- 第 i 行加上第 j 行的 l 倍:

初等列变换

矩阵初等变换 1/20 ⊲ ▷ △ ▽

初等行变换

- 交换第 i 行和第 j 行:
- 第 i 行乘以 k 倍(k≠0):
- 第 i 行加上第 j 行的 l 倍:

初等列变换

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0):
- 第 i 行加上第 j 行的 l 倍:

初等列变换

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍:

初等列变换

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍(k≠0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

初等列变换

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 j 列的 l 倍:

矩阵初等变换 1/20 ◁ ▷ △ ▽

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

初等列变换

- 交换第 i 列和第 j 列: $c_i \leftrightarrow c_j$
- 第 i 列乘以 k 倍 (k≠0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

初等列变换

- 交换第 i 列和第 j 列: c_i ↔ c_j
- 第 i 列乘以 k 倍 (k ≠ 0): k × ci
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k ≠ 0): k× r_i
- 第 i 行加上第 j 行的 l 倍: r_i + lr_j

初等列变换

- 交换第 i 列和第 j 列: $c_i \leftrightarrow c_j$
- 第 i 列乘以 k 倍 (k ≠ 0): k × c_i
- 第 i 列加上第 j 列的 l 倍: c_i + lc_j

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}$$

(7)
$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

 $\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_2 - 3r_1}$

 $\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

 c_2-c_3

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2-c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用"→",而不用"="。

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix}$$

矩阵初等变换

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

矩阵初等变换

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

矩阵初等变换

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$c_2-c_3$$

列

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\frac{c_2 - c_3}{c_3} = \begin{vmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{vmatrix}$$

矩阵初等变换

例

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$
$$\xrightarrow{\underline{c_2 - c_3}} - \begin{vmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{vmatrix} = -8$$

矩阵初等变换

定义 对n 阶单位矩阵I 施以一次初等变换得到的矩阵,称为 \overline{n} 初等矩阵。

定义 对 n 阶单位矩阵 I 施以一次初等变换得到的矩阵,称为 \overline{n} 初等矩阵。 具体地,有如下的初等矩阵:

● 对 I 施以第一种初等变换($r_i \leftrightarrow r_i$ 或 $c_i \leftrightarrow c_i$)得到的矩阵;

矩阵初等变换 3/20 < ▷ △ ▽

定义 对 n 阶单位矩阵 I 施以一次初等变换得到的矩阵,称为 初等矩阵。 具体地,有如下的初等矩阵:

- 对 I 施以第一种初等变换($r_i \leftrightarrow r_i$ 或 $c_i \leftrightarrow c_i$)得到的矩阵;
- 对 I 施以第二种初等变换($k \times r_i$ 或 $k \times c_i$)得到的矩阵;

EPPY初等变换 3/20 < ▶ △ ▼

定义 对 n 阶单位矩阵 I 施以一次初等变换得到的矩阵,称为 初等矩阵。 具体地,有如下的初等矩阵:

- 对 I 施以第一种初等变换($r_i \leftrightarrow r_i$ 或 $c_i \leftrightarrow c_i$)得到的矩阵;
- 对 I 施以第二种初等变换($k \times r_i$ 或 $k \times c_i$)得到的矩阵;
- 对 I 施以第三种初等变换($r_i + lr_i$ 或 $c_i + lc_i$)得到的矩阵。

定义 对 n 阶单位矩阵 I 施以一次初等变换得到的矩阵,称为 \overline{n} 初等矩阵。 具体地,有如下的初等矩阵:

- 对 I 施以第一种初等变换 $(r_i \leftrightarrow r_i \text{ d} c_i \leftrightarrow c_i)$ 得到的矩阵;
- 对 *I* 施以第二种初等变换(*k* × *r_i* 或 *k* × *c_i*)得到的矩阵;
- 对 I 施以第三种初等变换($r_i + lr_i$ 或 $c_i + lc_i$)得到的矩阵。

下面我们以 3 阶初等矩阵为例, 进行讨论。

矩阵初等变换 3/20 < ▶ △ ▼

• 对 3 阶单位矩阵施以第一种初等变换:

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3}$$

矩阵初等变换 4/20 < ▶ △ ▼

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3}$$

矩阵初等变换 4/20 < ▶ △ ▼

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3}$$

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 \leftrightarrow r_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_3}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{x}_{C_1} \leftrightarrow C_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 \leftrightarrow r_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_3}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

• 对 3 阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{q}_{C_1} \leftrightarrow C_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{\vec{r}_2 \leftrightarrow r_3}
\xrightarrow{\vec{q}_{C_2} \leftrightarrow C_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_3}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

对3阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

对3阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

对3阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = I(23)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

对3阶单位矩阵施以第一种初等变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = I(23)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_1} \leftrightarrow c_3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = I(13)$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_3} \xrightarrow{k \times r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_1}
\begin{pmatrix}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & k
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{\mathbf{k} \times r_1}
\begin{pmatrix}
k & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{\mathbf{k} \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{\mathbf{k} \times r_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & k
\end{pmatrix}$$

$$\xrightarrow{\mathbf{k} \times r_3}
\xrightarrow{\mathbf{k} \times r_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & k
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(1(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gk} \times c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(1(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(2(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gk} \times c_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_1} \begin{pmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(1(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(2(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix} = I(3(k))$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_3}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_3}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_3} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_3}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_3} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_1} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_2}
\begin{pmatrix}
1 & l & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_3}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_1}
\begin{pmatrix}
1 & 0 & 0 \\
l & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & l \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_2}
\begin{pmatrix}
1 & l & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_3}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_1}
\begin{pmatrix}
1 & 0 & 0 \\
l & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & l \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_2}
\begin{pmatrix}
1 & l & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_3}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_1}
\begin{pmatrix}
1 & 0 & 0 \\
l & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_2 + lr_3}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & l \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_1}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
l & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_3 + lr_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_1 + lr_3} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_2 + lr_1} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_2 + lr_3} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_3 + lr_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{x_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_3} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_1} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + lr_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\vec{r}_3 + lr_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\vec{r}_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\vec{r}_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\vec{r}_3 + lr_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_2 + lc_1}} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(13(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_2 + lc_3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_2 + lc_3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + lr_2} \begin{pmatrix} 1 & l & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_2 + lc_1}} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(13(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_1}} \begin{pmatrix} 1 & 0 & 0 \\ l & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(21(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix} = I(23(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix} = I(31(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_3 + lc_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l & 0 & 1 \end{pmatrix} = I(32(l))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\overrightarrow{gc_2 + lc_3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & l \end{pmatrix} = I(32(l))$$

设 $A \in m \times n$ 矩阵,则

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵

矩阵初等变换 7/20 < ▶ △ ▽

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j}$$
 , $A \xrightarrow{k \times r_i}$, $A \xrightarrow{r_i + lr_j}$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} \qquad , \qquad A \xrightarrow{r_i + lr_j}$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j}$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵

EPE的等变换 7/20 < ▷ △ ▽

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵

E阵初等变换 7/20 < ▶ △ ▼

设 *A* 是 *m* × *n* 矩阵,则

性质 1 对 A 作初等 $\overline{1}$ 变换等价于对 $\overline{1}$ 大乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵:

$$A \xrightarrow{c_i \leftrightarrow c_j}$$
 , $A \xrightarrow{k \times c_i}$

$$A \xrightarrow{k \times c_i}$$

,
$$A \xrightarrow{c_j + lc_i}$$

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵:

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ii), \qquad A \xrightarrow{k \times c_i} \qquad A \xrightarrow{c_j + lc_i}$$

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵:

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i}$$

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵:

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i} AI(ij(l))$$

EPE的等变换 7/20 < ▶ △ ▼

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对 A 作初等 列 变换等价于对 A 右乘 相应种类的初等矩阵:

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i} AI(ij(l))$$

注 性质 1 中的初等矩阵是 $m \times m$,而性质 2 中的初等矩阵是 $n \times n$

矩阵初等变换 7/20 ◁ ▷ △ ▽

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

I(12)A

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

I(12)A

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

矩阵初等变换 8/20 ◁ ▷ △ ▽

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{23} & a_{23} \\ a_{23} & a_{23} \\ a_{23} & a_{23} \\ a_{24} & a_{24} \\ a_{25} & a_{25} \\ a_{25$$

矩阵初等变换 8/20 ⊲ ▷ △ ▽

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ & & & \end{pmatrix}$$

矩阵初等变换 8/20 ⊲ ▷ △ ▽

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{pmatrix}$$

矩阵初等变换 8/20 < ▶ △ ▼

验证

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

矩阵初等变换 8/20 ⊲ ▷ △ ▽

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp Φ } (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{\nu}))$, 其中 $(k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• I(ij)I(ij) =

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{\nu})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp Φ } (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j}$$

矩阵初等变换 9/20 < ▶ △ ▽

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp p} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

矩阵初等变换 9/20 < ▶ △ ▽

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{\nu})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) =$

矩阵初等变换 9/20 ◁ ▷ △ ▽

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{\nu})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$, 其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{C_i \leftrightarrow C_j} * \xrightarrow{C_i \leftrightarrow C_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) =$

矩阵初等变换 9/20 < ▶ △ ▽

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp Φ } (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$

矩阵初等变换 9/20 < ▶ △ ▽

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i}$$

矩阵初等变换 9/20 < ▶ △ ▼

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

矩阵初等变换 9/20 < ▶ △ ▼

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• I(ij(l))I(ij(-l)) =

矩阵初等变换 9/20 ◁ ▷ △ ▽

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

 $I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$ $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$

矩阵初等变换 9/20 < ▶ △ ▼

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp Φ } (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

$$I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$$

矩阵初等变换 9/20 < ▶ △ ▼

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{\sharp Φ } (k \neq 0)$$

•
$$I(ij(l))^{-1} = I(ij(-l))$$
,其中 $(i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$
• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$
• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$, 这是利用:
$$I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j - lc_i}$$

矩阵初等变换

<mark>性质</mark> 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(i(k))^{-1} = I(i(\frac{1}{k})), \ \mbox{id} \ (k \neq 0)$
- $I(ij(l))^{-1} = I(ij(-l))$,其中 $(i \neq j)$

证明

- I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:
- $I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$ $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:
- $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$,这是利用: $I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j lc_i} I$

矩阵初等变换

We are here now...

1. 初等变换,初等矩阵

2. 等价标准形

3. 初等行变换求逆矩阵

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix}_{m \times n}$$

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & \end{pmatrix}_{m \times n}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的 矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & & \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的 矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的 矩阵:

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围:

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: 0 ≤ r,

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

例1 4 × 3 矩阵 (* * * * * *) 所有可能的等价标准形是什么?

4×3矩阵等价标准形的一般形式是

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & \end{pmatrix} \qquad = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

11/20 ▽ ▷ △ ▽

4×3矩阵等价标准形的一般形式是

$$O = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中0 < r < 3

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

例14×3矩阵 (*****) 所有可能的等价标准形是什么?

4 × 3 矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix}_{A \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

例14×3矩阵 (* * * * * *) 所有可能的等价标准形是什么?

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$,所以全部可能是:

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

矩阵初等变换

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

矩阵初等变换 12/20 < ▷ △ ▽

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1}$$

矩阵初等变换 12/20 < ▷ △ ▽

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

EPE的等变换 12/20 < ▶ △ ▼

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

矩阵初等变换 12/20 < ▷ △ ▽

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

矩阵初等变换 12/20 ⊲ ▷ △ ▽

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

矩阵初等变换 12/20 ⊲ ▷ △ ▽

解

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow[c_3 - \frac{3}{3}c_1]{} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

矩阵初等变换 12/20 ⊲ ▷ △ ▽

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow[c_4 - \frac{3}{2}c_1]{} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

 $\frac{1}{2} \times r_1$

足阵机等支换

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2}$$

解

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

矩阵初等变换 12/20 ◁ ▷ △ ▽

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

矩阵初等变换 12/20 ✓ ▷ △ ▽

例 2 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_{4} - \frac{3}{2}c_{1}
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_3 - c_2} \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

矩阵初等变热

例 2 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{c_3 - c_2}{c_4 - c_2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

矩阵初等变换 12/20 ◁ ▷ △ ▽

例 2 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{c_3 - c_2}{c_4 - c_2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵初等变换 12/20 ◁ ▷ △ ▽

例 2 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_3 - c_1 & 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{c_3 - c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{(-1) \times r_2}$$

矩阵初等变换 12/20 < ▷ △ ▽

例 2 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_3 - c_1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{c_3 - c_2}{c_4 - c_2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{(-1) \times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵初等变换 12/20 < ▷ △ ▽

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1}$$

解

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

EPE的等变换 13/20 < ▷ △ ▽

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$c_2 - 4c_1$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$c_{2-4c_1} \begin{pmatrix} 1 & 0 \\ 0 & 2 & 2 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow{c_2-4c_1} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{cases}
1 & 0 \\
0 & 2 \\
0 & -2
\end{cases}$$

解

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -2 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 & 2 \end{pmatrix}$$

 $\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 2 \\
0 & -2 & -2
\end{pmatrix}$

解

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

解

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}$$

EPPY初等变换 13/20 < ▶ △ ▽

解

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$c_3-c_2$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3 - c_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{c_3 - c_2}
\xrightarrow{c_4 - \frac{3}{2}c_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_2}$$

例 3 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3 - c_2}
\xrightarrow{c_4 - \frac{3}{2}c_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

矩阵初等变换

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2+r_1}$$

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 4 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1}$$

例 4 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 4 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

 $r_2 \leftrightarrow r_3$

例 4 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix}$$

矩阵初等变

例 4 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2}$$

矩阵初等变

例 4 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$
$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

14/20 < ▷ △ ▽

We are here now...

1. 初等变换,初等矩阵

2. 等价标准形

3. 初等行变换求逆矩阵

性质 任意 n 阶可逆方阵,都可通过有限次初等 $\frac{1}{1}$ 变换化为单位矩阵。

性质 任意 n 阶可逆方阵,都可通过有限次初等 $\frac{1}{1}$ 变换化为单位矩阵。

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。

性质 任意 n 阶可逆方阵,都可通过有限次初等 行 变换化为单位矩阵。

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

```
(* * *
* * *
* * *
```

性质 任意 n 阶可逆方阵,都可通过有限次初等 行 变换化为单位矩阵。

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

性质 任意 n 阶可逆方阵,都可通过有限次初等 行 变换化为单位矩阵。

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

初等行变换求逆矩阵的步骤 设 Anxn 是可逆方阵

(A : I)

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

初等行变换求逆矩阵的步骤 设 Anxn 是可逆方阵

$$(A:I) \xrightarrow{-$$
系列初等行变换

矩阵初等变换 15/20 < ▷ △ ▽

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

初等行变换求逆矩阵的步骤 设 Anxn 是可逆方阵

$$(A \vdots I) \xrightarrow{-\text{\vec{A}}} (I \vdots B)$$

矩阵初等变换 15/20 < ▷ △ ▽

性质 任意 n 阶可逆方阵,都可通过有限次初等 $\frac{1}{1}$ 变换化为单位矩阵。

例 用初等行变换,把 3 阶可逆矩阵化为单位矩阵。通常的步骤是:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

初等行变换求逆矩阵的步骤 设 Anxn 是可逆方阵

$$(A \vdots I) \xrightarrow{-\text{\vec{A}}} (I \vdots B)$$

则此时 B 就是逆矩阵 A^{-1}

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{f_3-2f_1}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0
\end{pmatrix}$$

$$\downarrow_{r_3-2r_1}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{r_3-2r_1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{r_2-r_3}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0
\end{pmatrix}$$

$$\downarrow r_3 - 2r_1$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

$$\downarrow r_2 - r_3$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

矩阵初等变换

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 1 & 0
\end{pmatrix}$$

$$\downarrow_{r_3-2r_1}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

$$\downarrow_{r_2-r_3}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0
\end{pmatrix} \longrightarrow (A : I)$$

$$\downarrow r_{3}-2r_{1}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

$$\downarrow r_{2}-r_{3}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0
\end{pmatrix} = (A : I)$$

$$\downarrow r_{3-2r_{1}} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_{1}A : P_{1}I)$$

$$\downarrow r_{2}-r_{3}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{pmatrix} = (A : I)$$

$$\downarrow r_{3}-2r_{1} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix} = (P_{1}A : P_{1}I) = (P_{1}A : P_{1}I)$$

$$\downarrow r_{2}-r_{3}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 & 0 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0
\end{pmatrix} = (A : I)$$

$$\downarrow_{r_3-2r_1} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_1A : P_1I) = (P_1A : P_1)$$

$$\downarrow_{r_2-r_3} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_2P_1A : P_2P_1)$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0 \\
0 & 1 & 1 & | & 0 & 0 & 1
\end{pmatrix} = (A : I)$$

$$\downarrow r_{3}-2r_{1} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_{1}A : P_{1}I) = (P_{1}A : P_{1}I)$$

$$\downarrow r_{2}-r_{3} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_{2}P_{1}A : P_{2}P_{1}) = (I : P_{2}P_{1})$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
2 & 0 & 1 & | & 0 & 1 & 0 \\
\downarrow r_3 - 2r_1 & & & & \downarrow \\
\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 1 & | & 0 & 1 & 0 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_1A : P_1I) = (P_1A : P_1)$$

$$\downarrow r_2 - r_3 & & \downarrow \downarrow$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 \\
0 & 1 & 0 & | & 2 & 1 & -1 \\
0 & 0 & 1 & | & -2 & 0 & 1
\end{pmatrix} = (P_2P_1A : P_2P_1) = (I : P_2P_1)$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 2 & 1 & 0 & | & 0 & 1 & 0 \\ -3 & 2 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$r_2 - 2r_1$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{array} \right)$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix}$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2}$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

矩阵初等变换

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow[r_3-2r_2]{\begin{array}{c|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array}}$$

$$\frac{1}{2}r_3$$

例 1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \xrightarrow{\begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}-2r_{2}} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix}$$

矩阵初等变换

例 1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 2 & -2 & 3 & 0 & 1
\end{pmatrix}
\xrightarrow{r_{3}-2r_{2}} \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 2 & 7 & -2 & 1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 7/2 & -1 & 1/2
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}}$$

矩阵初等变换 17/20 ◁ ▷ △ ▽

例 1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 2 & -2 & | & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}-2r_{2}} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 2 & | & 7 & -2 & 1 \end{pmatrix} \\
\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_{2}+2r_{3}} \begin{pmatrix} 0 & 1 & 0 & | & 5 & -1 & 1 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix}$$

例 1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 2 & -2 & | & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}-2r_{2}} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 2 & | & 7 & -2 & 1 \end{pmatrix} \\
\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_{2}+2r_{3}} \begin{pmatrix} 0 & 1 & 0 & | & 5 & -1 & 1 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix}$$

例1 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c|cccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\frac{r_2-2r_1}{r_3+3r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\frac{1}{2}r_3 \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_2+2r_3} \begin{pmatrix} 1 & 0 & 0 & -5/2 & 1 & -1/2 \\ 5 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix}$$
所以 $A^{-1} = \begin{pmatrix} -5/2 & 1 & -1/2 \\ 5 & -1 & 1 \\ 7/2 & -1 & 1/2 \end{pmatrix}$
矩阵初等变换

例1 求 $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$ 的逆矩阵

 $(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
的逆矩阵

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$r_2-r_1$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & & 0 & 1 & 0 \\ 2 & 0 & 3 & & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_2-r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_2-r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_3-2r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow[-2]{(-1)\times r_3}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{\begin{array}{c|ccccc} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{array}} \xrightarrow[-2 \ 0 \ 1 \xrightarrow[]{(-1)\times r_3} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & -1 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{\left(\begin{array}{c|cccc}1 & 0 & 2 & 1 & 0 & 0\\0 & 1 & -1 & -1 & 1 & 0\\0 & 0 & -1 & -2 & 0 & 1\end{array}\right)} \xrightarrow[c-1) \times r_3} \left(\begin{array}{c|cccc}1 & 0 & 2 & 1 & 0 & 0\\0 & 1 & -1 & -1 & 1 & 0\\0 & 0 & 1 & 2 & 0 & -1\end{array}\right)$$

 $r_2 + r_3$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & -1 & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{3}-2r_{1}} \begin{pmatrix}
0 & 1 & 0 & 1 & 1 & -1 \\
0 & 0 & 1 & 2 & 0 & -1
\end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & -1 \end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 & 0 & -1 \end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & -1 & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix}
1 & 0 & 0 & -3 & 0 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 & -1 \\
0 & 0 & 1 & 2 & 0 & -1
\end{pmatrix}$$

例 2 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

所以 $A^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \end{pmatrix}$

$\xrightarrow{r_3-2r_1} \left(\begin{array}{ccc} 0 & 1 & -1 \\ 0 & 0 & -1 \end{array} \right)$	$\begin{bmatrix} -1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -1 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$
$\xrightarrow[r_1-2r_3]{r_2+r_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{array}{ccc} -3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 0 & -1 \end{array} $		
$(-3 \ 0)$	2 \		

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

例3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$r_2 - 2r_3$$

例 3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix}$$

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2}$$

例 3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\frac{1}{5} \times r_3$$

例3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/52/5 - 3/5 \end{pmatrix}$$

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3}$$

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

19/20 < ▷ △ ▽

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$\begin{array}{c}
\mathbf{f} \\
(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix} \\
\xrightarrow{r_2 - 2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 - 2 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 122 & 10 & 0 \\ 014 & 21 - 2 \\ 005 & 22 - 3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/52/5 - 3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 010 & 2/5 - 3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

矩阵初等变换 19/20 < ▶ △ ▽

例3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$\begin{array}{l}
\mathbf{R} \\
(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix} \\
\xrightarrow{r_2 - 2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 - 2 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 122 & 10 & 0 \\ 0 & 14 & 21 - 2 \\ 0 & 05 & 22 - 3 \end{pmatrix} \\
\xrightarrow{1 \dots r_n} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 122 & 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 120 & 1/5 - 4/5 & 6/5 \\ 122 & 1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 & 1 & 0 & 0 \\ 0 \ 1 \ 4 & 2 & 1 & -2 \\ 0 \ 0 \ 1 & 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 1 \ 2 \ 0 & 1/5 \ -4/5 \ 6/5 \\ 0 \ 1 \ 0 & 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 & 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

矩阵初等变换 19/20 < ▶ △ ▽

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$r_1 - 2r_2$$

例3 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$\begin{array}{l}
\mathbf{fr} \\
(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 122 & 2 & 100 \\ 0-3-2 & -210 \\ 0-2-3 & -201 \end{pmatrix} \\
\begin{matrix}
r_3 - 2r_2 & 122 & 100 \\ 0-2-3 & -201 \\ 0$$

$$\frac{r_{2}-2r_{3}}{\longrightarrow} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3}+2r_{2}} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\frac{1}{5} \times r_{3} \longrightarrow \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_{2}-4r_{3}} \begin{pmatrix} 1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例3 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$\begin{array}{l}
(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix} \\
\begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 2 & 1 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 2 & 1 & 0 & 0 & 0 \\ \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{r_1-2r_2} \begin{pmatrix} 1\ 0\ 0 & -3/5 & 2/5 & 2/5 \\ 0\ 1\ 0 & 2/5 & -3/5 & 2/5 \\ 0\ 0\ 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} -3/5 & 2/5 & 2/5 \\ 2/5 & -3/5 & 2/5 \\ 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
的逆矩阵,其中 a_i 都不为 0 。

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A \vdots I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_3 & 0 & 0 & 0 & 1 & 0 \\ \alpha_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 10 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 10 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

20/20 ⊲ ⊳ ∆ ⊽

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_3 & 0 & 0 & 0 & 0 & 0 \\ \alpha_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

20/20 ⊲ ⊳ ∆ ⊽

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 \\ 0 & 0 & 0 & \alpha_3 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{1000} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix}
a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & a_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_2 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{\begin{array}{c}
\frac{1}{a_4} \times r_1 \\
\frac{1}{a_1} \times r_2 \\
\frac{1}{a_2} \times r_3 \\
\frac{1}{a_3} \times r_4
\end{array}}$$

20/20 ⊲ ⊳ ∆ ⊽

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 \\ 0 & 0 & 0 & \alpha_3 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix}
a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_3 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\frac{\frac{1}{a}}{\frac{1}{a}}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 \\ 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{a_4} \times r_1}_{\frac{1}{a_1} \times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{1}{a_4} \\ 0 & 1 & 0 & 0 & \frac{1}{a_1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \frac{1}{a_2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \frac{1}{a_3} & 0 \end{pmatrix}$$

20/20 < ▷ △ ▽

例 4 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 \\ 0 & 0 & 0 & \alpha_3 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$