

Introduction to Qiskit

Ana Díaz Muñoz

Who I am?

Ana Díaz Muñoz

https://www.linkedin.com/in/anadiazmunoz/

- 1. What is Qiskit?
- 2. Qiskit components
- 3. Qiskit gates
- 4. IBM Quantum Composer
- 5. It's your turn

What is Qiskit?

Definition

framework developed by IBM to

work with quantum computers.

What is Qiskit?

Objective

Facilitate the creation, simulation and execution of quantum algorithms on real hardware and simulators.

Quantum Computer

Thousand of qubits

DECEMBER 5, 2023 3 MIN READ

IBM Releases First-Ever 1,000-Qubit Quantum Chip

The company announces its latest huge chip—but will now focus on developing smaller chips with a fresh approach to "error correction"

BY DAVIDE CASTELVECCHI & NATURE MAGAZINE

Quantum Computer

Real size

- 1. What is Qiskit?
- 2. Qiskit components
- 3. Qiskit gates
- 4. IBM Quantum Composer
- 5. It's your turn

Qiskit components

Qiskit Ignis

Challenging quantum noise

IBM Quantum

- 1. What is Qiskit?
- 2. Qiskit components
- 3. Qiskit gates

- 4. IBM Quantum Composer
- 5. It's your turn

Qiskit gates

Quantum circuit

Quantum algorithm

```
1 from qiskit import QuantumRegister,
   ClassicalRegister, QuantumCircuit
 2 from numpy import pi
 4 greg g = QuantumRegister(3, 'g')
 5 creg c = ClassicalRegister(3, 'c')
 6 circuit = QuantumCircuit(qreg_q, creg_c)
 8 circuit.h(qreg_q[0])
 9 circuit.x(qreg q[0])
10 circuit.y(qreg_q[0])
11 circuit.z(qreg_q[0])
12 circuit.s(qreg_q[0])
13 circuit.cx(qreg_q[0], qreg_q[1])
14 circuit.cy(qreg_q[0], qreg_q[1])
15 circuit.cz(qreg_q[0], qreg_q[1])
16 circuit.swap(qreg_q[1], qreg_q[2])
17 circuit.ccx(qreg_q[0], qreg_q[1], qreg_q[2])
18 circuit.measure(greg g[0], creg c[0])
19 circuit.measure(qreg_q[1], creg_c[1])
20 circuit.measure(qreg_q[2], creg_c[2])
```


- 1. What is Qiskit?
- 2. Qiskit components
- 3. Qiskit gates
- 4. IBM Quantum Composer
- 5. It's your turn

IBM Quantum Composer

IBM Quantum Composer

https://quantum.ibm.com/composer/

- 1. What is Qiskit?
- 2. Qiskit components
- 3. Qiskit gates
- 4. IBM Quantum Composer
- 5. It's your turn

It's your turn

https://algassert.com/quirk#

```
1 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
   from numpy import pi
 3
   qreg q = QuantumRegister(2, 'q')
  creg_c = ClassicalRegister(2, 'c')
   circuit = QuantumCircuit(greg g, creg c)
  circuit.h(greg g[1])
   circuit.swap(qreg_q[0], qreg_q[1])
10 circuit.s(qreg_q[0])
   circuit.cz(qreg_q[0], qreg_q[1])
12 circuit.measure(qreg_q[0], creg_c[0])
   circuit.measure(qreg_q[1], creg_c[1])
```

.h(target)

.x(target)

.y(target)

.z(target)

.s(target)

.swap(target, target)

.rx(control, target)

· .ry(control, target)

.rz(control, target)

· .ch(control, target)

.cx(control, target)

.cy(control, target)

.cz(control, target)

.cs(control, target)

• .ccx(control, control, target)

· .measure(target qubit, target bit)

Bell state

https://forms.gle/jBGmktXhktXDUQfY6

Thank you for your attention

Ana Díaz Muñoz

https://www.linkedin.com/in/anadiazmunoz/

Check your email