Universidade de São Paulo Instituto de Matemática e Estatística Bachalerado em Ciência da Computação

Tiago Madeira

Geração uniforme de k-trees para aprendizado de redes bayesianas

Supervisor: Prof. Dr. Denis Deratani Mauá

São Paulo Novembro de 2016

Resumo

O resumo ainda não foi escrito.

 ${\bf Palavras\text{-}chave:}\ {\rm sem},\ {\rm resumo},\ {\rm por},\ {\rm enquanto}.$

Abstract

The abstract has not been written yet.

 ${\bf Keywords:}\ {\bf no,\ abstract,\ yet.}$

Sumário

1	Intr	rodução	1
2	Fun	damentos	3
	2.1	Grafos	3
	2.2	k-clique e k -tree	4
	2.3	Redes bayesianas	4
3	Ger	ração aleatória de $k\text{-}trees$	5
	3.1	Introdução à codificação de k-trees	5
	3.2	A solução de Caminiti et al	5
	3.3	Experimentos e resultados	6
4	Apr	rendizado de redes bayesianas	7
5	Cor	nclusão	9

Introdução

A ser escrita.

Fundamentos

Neste capítulo, apresentamos algumas definições que o leitor deve conhecer para compreender o trabalho.

Partimos do pressuposto de que o leitor conhece notações básicas de conjuntos.

2.1 Grafos

Definição 1 (grafo). [?] Um grafo é um par ordenado G = (V, E). Os elementos de V são chamados de vértices de G. Os elementos de E são chamados de arestas de G e consistem em pares (não-ordenados) de vértices. Dados $u, v \in V$, se $(u, v) \in E$ dizemos que u e v são adjacentes em G.

Definição 2 (grafo completo). [?] Um grafo G = (V, E) é dito completo se $(u, v) \in E$ para todo $u, v \in V, u \neq v$.

Definição 3 (subgrafo induzido). [?] Dado um grafo G = (V, E) e um subconjunto V' de V, o subgrafo de G induzido por V', G' = (V', E'), é o grafo formado pelos vértices $V' \subseteq V$ e arestas que só contém elementos de V', ou seja, $E' = \{(u, v) \in E \mid u, v \in V'\}$.

Definição 4 (caminho). [?] Dado um grafo G = (V, E), um caminho é uma sequência de arestas que conectam uma sequência de vértices adjacentes distintos.

Definição 5 (distância). [?] Dado um grafo G = (V, E) e dois vértices $(u, v) \in V$, a distância entre u e v é o número de arestas num menor caminho que os conecte.

Definição 6 (árvore). [?] Dado um grafo G = (V, E), dizemos que ele é uma árvore se cada dois vértices $u, v \in V$ são conectados por exatamente um caminho.

2.2 *k*-clique e *k*-tree

Definição 7 (k-clique). [?] Seja G = (V, E) um grafo. Um k-clique é um subconjunto dos vértices, $C \subseteq V$, tal que $(u, v) \in E \ \forall \ u, v \in C, u \neq v$ (ou seja, tal que o subgrafo induzido por C é completo).

Definição 8 (*k-tree*). [2] Uma *k-tree* é definida da seguinte forma recursiva:

- 1. Um grafo induzido por um k-clique é uma k-tree.
- 2. Se $T_k'=(V,E)$ é uma k-tree, $K\subseteq V$ é um k-clique e $v\not\in V$, então $T_k=(V\cup\{v\},E\cup\{(v,x)\mid x\in K\})$ é uma k-tree.

Definição 9 (*k-tree* enraizada). Uma *k-tree* enraizada é uma *k-tree* com um *k*-clique destacado $R = \{r_1, r_2, \dots, r_k\}$ que é chamado de *raiz* da *k-tree* enraizada.

2.3 Redes bayesianas

Geração aleatória de k-trees

O problema de gerar k-trees está intimamente relacionado ao problema de codificá-las. De fato, se há um código bijetivo que associa k-trees à bytes, basta gerar bytes aleatórios para gerar k-trees aleatórias.

Neste capítulo, apresentamos o problema de codificar k-trees, discutimos a solução linear e bijetiva para codificar/decodificar k-trees proposta por Caminiti et al[1], explicamos como ela foi implementada neste trabalho para gerar k-trees aleatórias e mostramos os resultados obtidos.

3.1 Introdução à codificação de k-trees

3.2 A solução de Caminiti et al

Definição 10 (*k-tree* de Rényi). [3] Uma *k-tree* de Rényi R_k é uma *k-tree* enraizada com n vértices rotulados em [1, n] e raiz $R = \{n - k + 1, n - k + 2, \dots, n\}$.

Definição 11 (esqueleto de uma k-tree enraizada). [1] O esqueleto de uma k-tree enraizada T_k com raiz R, denotado por $S(T_k, R)$, é definido da

seguinte forma recursiva:

- 1. Se T_k é apenas o k-clique R, seu esqueleto é uma árvore com um único vértice R.
- 2. Dada uma k-tree enraizada T_k com raiz R, obtida por T'_k enraizada em R através da adição de um novo vértice v conectado a um k-clique K (ver definição 8), seu esqueleto $S(T_k, R)$ é obtido adicionando a $S(T'_k, R)$ um novo vértice $X = \{v\} \cup K$ e uma nova aresta (X, Y), onde Y é o vértice de $S(T'_k, R)$ que contém K com uma distância mínima da raiz. Chamamos Y de pai de X.

Definição 12 (árvore característica). [1] A árvore característica $T(T_k, R)$ de uma k-tree enraizada T_k com raiz R é obtida rotulando os vértices e arestas de $S(T_k, R)$ da seguinte forma:

- 1. O vértice R é rotulado 0 e cada vértice $\{v\} \cup K$ é rotulado v;
- 2. Cada aresta do vértice $\{v\} \cup K$ ao seu pai $\{v'\} \cup K'$ é rotulada com o índice do vértice em K' (visualizando-o como um conjunto ordenado) que não aparece em K. Quando o pai é R a aresta é rotulada ε .

Note que a existência de um único vértice em $K' \setminus K$ é garantida pela definição 11. De fato, v' precisa aparecer em K, caso contrário K' = K e o pai de $\{v'\} \cup K'$ contém K. Isso contradiz o fato de que cada vértice em $S(T_k, R)$ é ligado à distância mínima da raiz.

3.3 Experimentos e resultados

Aprendizado de redes bayesianas

A ser escrito.

Conclusão

Ainda não foi escrita.

Referências Bibliográficas

- [1] Saverio Caminiti, Emanuele G. Fusco, and Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.
- [2] Frank Harary and Edgar M. Palmer. On acyclic simplicial complexes. Mathematika, 15:115–122, 1968.
- [3] C. Rényi and A. Rényi. The prüfer code for k-trees. Combinatorial Theory and its Applications, pages 945–971, 1970.