G. Fertin guillaume.fertin@univ-nantes.fr

Université de Nantes, LS2N Bât 34 — Bureau 301

M2 ATAL — 2020/2021

Sommaire

Introduction

Introduction •000000000

Recherche de Motif (=Pattern Matching)

Instance:

- un motif P de longueur m
- un texte *T* de longueur *n*

Question : à quelle(s) position(s) P apparaît-il dans T?

Hypothèses de travail :

- m << n, et on supposera n très grand
- le motif et le texte sont sur un alphabet Σ de taille σ
- doit-on considérer que $\sigma = O(1)$?
 - → on discutera les deux possibilités

Recherche de Motif - Applications

- recherche d'un mot/une locution dans un texte :
 - ex : grep, traitement de texte, boîte mail, etc. (Ctrl-F)
 - $\sigma \leq 100$ (26 minuscules, 26 majuscules, caractères spéciaux), $n \in [10^3; 10^6]$
- bio-informatique : motifs biologiquement significatifs dans des séquences
 - ADN : $\sigma = 4$, $n \in [10^3; 10^9]$
 - Protéines : $\sigma = 20, n \in [10^3; 10^5]$
 - Gènes : $\sigma \in [10^3; 10^4]$, $n \in [10^3; 10^5] \rightarrow$ peu de lettres répétées

Quelques notations/définitions

- mot = suite ordonnée de lettres de Σ
- mot vide : noté ε
- un mot u est préfixe d'un mot w s'il existe un mot v (éventuellement vide) tel que

$$w = \mu v$$

 un mot v est suffixe d'un mot w s'il existe un mot u (éventuellement vide) tel que

$$w = uv$$

Introduction 0000000000 Tableau des Suffixes

Paramètres observés

Soit A un algorithme résolvant le pattern matching

Deux paramètres observés :

- espace mémoire requis par A
- temps d'exécution de A

Paramètres observés

Espace mémoire :

- stocker $T \to O(n \log \sigma)$ (O(n) si on considère $\sigma = O(1)$
- stocker $P \to O(m \log \sigma)$ (O(m) si on considère $\sigma = O(1)$
- \Rightarrow but : s'approcher le plus possible de $O((n+m)\log \sigma)$ (donc de $O(n\log \sigma)$ puisque $m \le n$)

Paramètres observés

Temps d'exécution :

- rappel : n très grand
- \Rightarrow pas d'algorithme (par exemple) en $O(n^2)$ ni O(nm)!
- \Rightarrow but : complexité linéaire, càd en O(n+m) (= O(n) puisque $m \le n$)
- Remarque : si P apparaît occ fois dans T :
 - possibilité d'intégrer occ à la complexité
 - ex : O(n + occ)
 - \rightarrow description plus fine de la complexité

Algorithmes à base d'index

- pré-traitement des données d'entrée (P ou T)
- création d'une structure (d'index) suite à ce pré-traitement

Ceci impacte sur :

- l'espace mémoire requis (stocker l'index)
- le temps d'exécution (construire l'index) \rightarrow amorti si requêtes multiples

Paramètres observés (bis)

Classiquement, on sépare les temps de construction de l'index et de recherche de motif \rightarrow 3 paramètres :

- Temps de construction de l'index
- Temps de la recherche de motifs
- Espace requis (index inclus)

Les 3 index vus dans ce cours

- 1. Automate (pré-traitement de P)
- 2. Arbre des suffixes (pré-traitement de T)
- 3. Tableau des suffixes (pré-traitement de T)
- 4. FM-index (pré-traitement de *T*) sur un autre jeu de transparents

Sommaire

Introduction

Automate

Arbre des Suffixes

Tableau des Suffixes

Conclusion

Algorithme à base d'automate

- on suppose que P est connu à l'avance (hypothèse raisonnable)
- T peut ne pas l'être
- \Rightarrow pré-traitement sur P

Algorithme à base d'automate

- \Rightarrow construction de l'Automate Fini Déterministe (AFD) $\mathcal{A}(P)$ qui reconnaît le langage Σ^*P
- $\mathcal{A}(P)$ reconnaît le langage $\Sigma^*P \Leftrightarrow$ tout mot se terminant par P sera reconnu par l'automate
- ⇒ la lecture par l'AFD de tout mot se terminant par *P* aboutira sur l'état final

AFD qui reconnaît Σ^*P

Un automate $\mathcal{A} = (Q, q_0, \mathcal{T}, E)$ se définit par :

- Q = l'ensemble des états de l'automate
- q₀ = état initial
- \mathcal{T} = ensemble des états finaux (ici, un seul)
- E= ensemble des transitions (passage d'un état à l'autre) lci, chaque transition sera étiquetée par une lettre de Σ

Définition de l'AFD

- $Q = \text{ensemble des préfixes de } P \text{ (mot vide } \varepsilon \text{ et } P \text{ inclus)}$
- $q_0 = \varepsilon$
- T = P
- pour tout mot $q \in Q$ (q est donc un préfixe de P) et pour toute lettre $a \in \Sigma$.
 - $(q, a, qa) \in E$ ssi qa est aussi un préfixe de P
 - sinon $(q, a, q') \in E$ lorsque q' est le plus long suffixe de qa qui est aussi un préfixe de P

Exemple: Construction de l'AFD pour le motif P = GCAGAGAG

Algorithme de recherche

Principe de l'algorithme de Recherche de Motif utilisant l'AFD :

- avancer dans T (en démarrant à T[1], la première lettre de T) en suivant les transitions dans l'automate
- à chaque fois qu'on arrive sur l'état final en ayant lu T[i], indiquer qu'une occurrence de P apparaît en T[i - m + 1]

Exemple: Recherche de P dans le texte T = GCATCGCAGAGAGTATACAGTACG

Remarque : sur l'exemple, on a effectué 24 comparaisons de caractères (c'est tout simplement n, la longueur du texte T)

Analyse de la méthode

Temps de Construction de A(P)

- Nombre d'états : m+1
- Nombre de transitions : $(m+1)\sigma$
- Construction de l'automate : pour chaque état q et chaque transition a, il faut calculer l'état dans lequel on aboutit en suivant a partant de q
- On admettra que ce temps de calcul, pour toutes les transitions possibles, est en $O(m\sigma)$ (on ne le démontrera pas)

Analyse de la méthode

Temps de Recherche de Motif

• supposons que $\mathcal{A}(P)$ est codé par une matrice à m+1 lignes (états) et σ colonnes (transitions)

Exemple : de codage des transitions sur l'AFD exemple

État	Préfixe de P	A	С	G	Т
0	ε	0	0	1	0
1	G	0	2	0	0
2	GC	3	0	1	0
3	GCA	0	0	4	0
4	GCAG	5	2	1	0
5	GCAGA	0	0	6	0
6	GCAGAG	7	2	1	0
7	GCAGAGA	0	0	8	0
8	GCAGAGAG	0	2	1	0

Analyse de la méthode

Temps de Recherche de Motif

- permet de passer d'un état à l'autre (dans l'algorithme de recherche) en temps constant O(1)
- ullet \rightarrow chaque lecture d'un caractère de T (et déplacement dans $\mathcal{A}(P)$) coûte O(1)
- Au total : O(n)

Espace Requis:

Matrice codant $\mathcal{A}(P)$ (+ état initial, état final) $\Rightarrow O(m\sigma)$

En résumé

	Construction Index	Recherche de Motifs	Espace Requis (Index)
σ non borné	$O(m\sigma)$	<i>O</i> (<i>n</i>)	$O(m\sigma)$
σ borné	O(m)	O(n)	O(m)

Si on considère que $\sigma = O(1)$, alors :

- complexité totale en temps linéaire, en O(n+m)
- espace mémoire total requis linéaire O(n+m)
- \rightarrow temps optimal si σ constant... mais finalement peu utilisé (KMP ou Boyer-Moore généralement préférés)
- si σ non constant : problème
 - il existe des codages plus complexes pour stocker $\mathcal{A}(P) \rightarrow$ place mémoire diminuée
 - ...au prix d'un coût en temps plus élevé

Introduction

Automate

Arbre des Suffixes

Tableau des Suffixes

Conclusion

Idée principale

Pré-traiter non pas le motif P, mais le texte T

 \rightarrow possible quand le texte T est connu à l'avance, donc *statique*

Exemple : applications biologiques (séquence d'ADN, de protéines, de gènes)

Arbre des suffixes AS(T) : arbre qui contient *tous les suffixes* d'un texte T

Plus précisément :

- chaque arête de l'arbre : étiquetée par un caractère de T
- deux arêtes issues d'un même nœud portent des caractères différents
- appelons r la racine de AS(T) et f une de ses feuilles appelons $r \to f$ le chemin dans AS(T) de r vers f \Rightarrow les caractères lus le long de $r \to f$ forment un suffixe s de T
- feuilles numérotées de 1 à n (numéro = position du premier caractère de s dans T)

Exemple: Arbre des suffixes de T = ATAGT

Problème 1 : l'arbre des suffixes de T = ATAGT possède 5 suffixes mais seulement 4 feuilles!

Solution:

- ajout (artificiel) d'un caractère de terminaison à T
- ce caractère doit être unique (donc n'apparaît pas dans T)
- par convention, on utilise le caractère \$

Exemple: Arbre des suffixes de T = ATAGT\$

Analyse express

Problème 2 : espace mémoire en $O(n^2)$! En effet:

- n suffixes (longueurs 1 à n)
- potentiellement jusqu'à $1+2+\ldots n=\frac{n(n+1)}{2}$ arêtes dans AS(T)
- \rightarrow pour la plupart des applications (typiquement, n > 1000), inapplicable!
- ⇒ utiliser une représentation compacte

Représentation Compacte

- tout chemin "sans fourche" dans l'arbre est "compressé" en une unique arête
- étiquette de cette arête = concaténation des caractères trouvés sur ce chemin

ATTENTION à coder cette étiquette de façon intelligente!

- si codage = sous-séquence de T, on n'a rien gagné
- à la place, codage = intervalle [i,j], tel que T[i..j] = l'étiquette

Exemple: Construction de l'arbre des suffixes de T = ATAGT\$ sous forme compacte

Propriété : l'arbre des suffixes sous forme compacte possède un nombre de nœuds (et donc d'arêtes) en O(n)

Preuve: imaginons construire un AS(T) compact, en insérant (partant d'un arbre vide) tous les suffixes de longueur n+1-i, pour tout i allant de 1 à n (= du plus long au plus court)

- pour chaque $2 \le i \le n$, insertion du suffixe de longueur $n+1-i \to \infty$ on crée une fourche
- chaque création de fourche crée au plus un nœud interne
- \Rightarrow on a donc au plus n-1 nœuds internes
- \Rightarrow au total, au plus 2n-1 nœuds dans l'arbre (n-1) nœuds internes +n feuilles)
- $\Rightarrow O(n)$ nœuds et donc O(n) arêtes puisque c'est un arbre

Espace mémoire requis pour AS(T)

- arbre à O(n) nœuds (et donc O(n) arêtes)
 ⇒ structure d'arbre codable en O(n)
- informations sur les feuilles : entier de 1 à n
 - $\lceil \log_2 n \rceil$ bits par feuille
 - il y a *n* feuilles
 - \Rightarrow informations sur les feuilles codables en $O(n \log n)$
- Informations sur les arêtes : deux entiers i,j tels que $1 \le i \le j \le n$
 - $2\lceil \log_2 n \rceil$ bits par arête
 - il y a O(n) arêtes
 - \Rightarrow informations sur les arêtes codables en $O(n \log n)$

Au total : espace mémoire requis pour AS(T) en $O(n \log n)$

Recherche de motifs dans AS(T)

Rappel: motif P, texte T

- 1. construction de l'arbre des suffixes de T, AS(T)
- 2. partant de la racine, suivre les caractères de P le long d'un unique chemin dans AS(T) jusqu'à ce que :
 - soit une différence apparaît $\rightarrow P$ n'apparaît pas dans T
 - soit on va au bout du motif P :
 - Attention! Cela peut arriver "au milieu" d'une arête (pas gênant)
 - dans tous les cas, parcours du sous-arbre de AS(T) dans leguel on se trouve : les numéros des feuilles donnent toutes les positions d'apparition de P dans T

Exemple 1: recherche de P = AGCT dans T = AAGCAGCAGTATTAGCA

Exemple 2: recherche de P = AGCA dans T = AAGCAGCAGTATTAGCA

- descente dans l'arbre au niveau $m \to O(m\sigma)$: au pire, σ voisins à consulter à partir d'un nœud
- si succès, parcours du sous-arbre (occ feuilles) $\rightarrow O(occ)$

```
\Rightarrow Complexité en temps de la Recherche de Motif : O(m\sigma + occ) (si \sigma = O(1), alors O(m + occ))
```

Construction de l'Arbre des Suffixes

Faisons un point :

Construction Index	Recherche de Motifs	Espace Requis (Index)
???	$O(m\sigma + occ)$	$O(n \log n)$

- [+] : Recherche de motifs rapide $O(m\sigma + occ)$... au prix de
- [-] : stockage $O(n \log n)$ pour AS(T) (au lieu de $O(n \log \sigma)$ pour T)
- Reste le temps de construction → il ne doit pas dépasser la taille de AS(T), sinon aucun intérêt!

Algorithme simple... mais trop coûteux

Algorithme incrémental : on fait grandir l'arbre

- $T_i = 1$ 'arbre qui encode tous les suffixes de longueurs n à n i + 1 $(1 \le i \le n)$
- T_1 = unique branche d'étiquette T\$
- On construit T_{i+1} à partir de T_i :
 - en suivant autant que possible une branche existante
 - en "cassant" cette branche (i.e. en créant une fourche) lorsqu'une différence apparaît
- Complexité : $O(n^2)$ pour un texte T de longueur n

Il en existe plusieurs :

- Weiner (1973)
- McCreight (1976)
- Ukkonen (1995)
- Farach (1997))
- \rightarrow tous en O(n)

Différences de conception entre ces algorithmes : compromis entre "algo compréhensible" et "algo implémentable"

Le plus utilisé en pratique est Ukkonen(1995)

Algorithmes de Construction Linéaire

Dans tous les cas :

- construction linéaire en la taille de $AS(T) \Rightarrow O(n)$
- Algorithme séquentiel :
 - on rajoute dans l'arbre les suffixes les uns après les autres
 - l'ordre de rajout des suffixes dépend de l'algorithme considéré
 - gain de temps (par rapport à $O(n^2)$, cf. Algo Simple) dû à des sauts dans l'arbre en cours de construction.

But : trouver rapidement l'endroit où construire le suffixe courant

Algorithme qui insère les suffixes les uns après les autres, du plus long au plus court

Définitions :

- un préfixe commun à deux mots u et v = mot w qui est préfixe de u et de v
- le plus long préfixe commun à u et v= mot w préfixe commun de u et de v, et tel que $u[|w|+1] \neq v[|w|+1]$

On notera

$$w = LCP(u, v)$$

L'Algorithme de McCreight

Propriété: Pour deux suffixes $s_1 = T[i..n]$ et $s_2 = T[j..n]$ d'un texte T, leur plus long préfixe commun correspond au mot codé par le chemin $r \to p$, où

- r est la racine de AS(T)
- p est le plus petit ancêtre commun dans AS(T) entre les feuilles qui représentent s_1 et s_2 dans AS(T)

Définitions :

- Pour tout i, on appelle tete(i) le LCP de T[i..n] et de T[j..n], parmi tous les j < i
- Pour tout i, on appelle queue(i) le mot tel que T[i..n] =tete(i)·queue(i)

L'Algorithme de McCreight

A chaque itération (= chaque insertion du suffixe T[i..n] dans l'arbre) :

- on cherche tete(i) en suivant un chemin existant dans l'arbre
- on trouve le nœud qui correspond à tete(i) (ou on le crée s'il n'existe pas)
- on crée une fourche qui représente queue(i), et on numérote la feuille ainsi créée par i

Remarque : ce qui vient d'être expliqué n'est pas différent de ce qui est fait dans l'Algorithme Simple!

L'Algorithme de McCreight

Algorithme de McCreight :

- recherche rapide de tete(i) dans l'arbre en cours de construction
- par des sauts dans la lecture de l'arbre

Pour cela, deux concepts :

- 1. les liens suffixes
- 2. une propriété qui lie tete(i) à tete(i+1)

Elelis Sulline

Construction, à chaque itération, de liens supplémentaires : les liens suffixes

Lien suffixe d'un nœud u vers un nœud u' ssi :

- u représente un mot $v = c \cdot v'$, $c \in \Sigma$ (càd, v commence par un caractère c , suivi d'un mot v') et
- u' représente le mot v'

On note

$$u'=s(u)$$

Propriété: on fixe i, et on suppose que tete(i) = T[i..i + k]. Alors T[i + 1..i + k] est un préfixe de tete(i + 1).

Preuve:

- vrai si k = 0 (car $T[i+1...i+k] = \varepsilon$) \Rightarrow supposons que k > 0
- on supposons que tete(i)= $c \cdot v$
- par définition de tete(i), il existe un j < i tel que LCP(i,j) = c · v Note : ici, LCP(i,j) est un abus de notation pour dire LCP(T[i..n], T[j..n])
- \Rightarrow les suffixes T[i+1..n] et T[j+1..n] partagent le même préfixe v
- par définition de tete(i + 1), v est un préfixe de tete(i + 1)

- on sait donc que si tete(i)=T[i..i + k], alors T[i + 1..i + k]est un préfixe de tete(i + 1)
- or T[i+1..i+k] = s(T[i..i+k])
- donc s(tete(i)) est un préfixe de tete(i + 1)
- vu dans l'arbre en cours de construction :

s(tete(i)) est un ancêtre de tete(i+1)

Retour sur l'Algorithme de McCreight

Pour chaque itération i :

- trouver tete(i) (grâce à s(tete(i-1)))
- créer la fourche
- insérer queue(i) et la feuille correspondante portant le numéro i
- construire le lien suffixe s(tete(i))
- \Rightarrow permet d'accélérer la recherche de l'endroit où se situe tete(i)

Analyse amortie de l'algorithme : construction en O(n)

En résumé sur l'Arbre des Suffixes

Construction Index	Recherche de Motifs	Espace Requis (Index)
<i>O</i> (<i>n</i>)	$O(m\sigma + occ)$	$O(n \log n)$

- Complexité en temps : $O(n + m\sigma + occ)$
- Plus grossièrement, $occ \le n m + 1$ et $m \le n \Rightarrow O(n)$
- Question : où est passé le log n dans la construction de AS(T)?

Question : où est passé le $\log n$ dans la construction de AS(T)?

- ordinateur standard, entier stocké sur 32 bits (voire plus)
- \rightarrow si $\log n \le 32$ (càd $n \le 4, 3$ milliards environ), on considére $\log n$ comme une constante
- hypothèse appelée le "RAM model"
- ⇒ dans le RAM model, la complexité de la construction de AS(T) est en O(n)

Remarque 1: on garde quand même le $\log n$ en espace, car permet de mieux comparer les choses

Ex : AS(T) en $O(n \log n)$ alors que T est en $O(n \log \sigma)$

Remarque 2 : nous avons déjà utilisé cette hypothèse (sans le dire) pour complexité en espace de l'AFD reconnaissant Σ^*P

Automate

Arbre des Suffixes

Tableau des Suffixes

Conclusion

Idée générale

- stocker dans un tableau TS[] (plutôt que dans un arbre) tous les suffixes possibles de T
- trier ces suffixes par ordre lexicographique
- faire de la recherche dichotomique de P dans T
- pas meilleur que la solution "arbre des suffixes", mais nettement plus simple à implémenter!

Tableau des Suffixes

Intérêts principaux :

- [+] plus grande simplicité d'implémentation par rapport à l'arbre des suffixes
- [+] occupation mémoire moindre...
 - pas en terme de "grand O"
 - en moyenne un tableau des suffixes prend \sim 4 à 5 fois moins de place qu'un arbre des suffixes

Complexité en espace

Tableau de taille n, contenant des entiers de 1 à $n \to O(n \log n)$

Ex.: Construction du tableau des suffixes TS[] pour T = GCATCGCAGAGAGTATACAGTACG

TS[T] = [17, 22, 8, 10, 19, 12, 15, 3, 7, 18, 2, 23, 5, 24, 9, 11, 6, 1, 20, 13, 16, 21, 14, 4] car :

- T[17..24] = ACAGTACG
- T[22..24] = ACG
- T[8..24] = AGAGAGTATACAGTACG
- T[10..24] = AGAGTATACAGTACG
- T[19..24] = AGTACG
- T[12..24] = AGTATACAGTACG
- T[15..24] = ATACAGTACG
- etc.

- toutes les occurrences de P se trouvent dans un intervalle I = TS[bg..bd] de TS[]
- But : trouver les bornes bg et bd de cet intervalle
- Trouver Borne gauche bg, puis Borne Droite bd o même méthode
- Recherche dichotomique pour trouver la Borne (Gauche ou Droite)
 - on continue même si on a trouvé P
 - on s'arrête quand l'intervalle de recherche est limité à 1 élément

Ex.: Recherche de P = GCAGAGAG dans T = GCATCGCAGAGAGTATACAGTACG en utilisant TS[]

Méthode 1 – Analyse

- TS[] de taille $n \rightarrow \log n$ itérations
- chaque itération : jusqu'à m comparaisons de caractères
- $\rightarrow O(m \log n)$ pour trouver une borne
- → même complexité pour trouver les deux
- $\Rightarrow O(m \log n)$

Recherche de motif - Méthode 2

- ajout d'une information pour accélérer les calculs
- information : LCP = Longest Common Prefix (cf. Arbres des Suffixes)
- tableau annexe stockant dans LCP[i] la longueur du LCP entre les mots représentés par TS[i-1] et TS[i]

```
Exemple: Tableau LCP[] pour T = GCATCGCAGAGAGTATACAGTACG
```

```
TS[T] = [17, 22, 8, 10, 19, 12, 15, 3, 7, 18, 2, 23, 5, 24, 9, 11, 6, 1, 20, 13, 16, 21, 14, 4] et LCP[T] = [0, 2, 1, 4, 2, 4, \ldots] car :
```

- T[17..24] = ACAGTACG
- T[22..24] = ACG
- T[8..24] = AGAGAGTATACAGTACG
- T[10..24] = AGAGTATACAGTACG
- T[19..24] = AGTACG
- T[12..24] = AGTATACAGTACG
- T[15..24] = ATACAGTACG
- etc.

• [+] Permet d'accélérer la recherche de motif \rightarrow passage de $O(m \log n)$ à $O(m + \log n)$

- [-] Construction du tableau LCP + algorithme de recherche difficiles à implémenter (si on veut garantir ces temps d'exécution)
- [-] Algorithme non décrit ici

Remarque 1: partant d'un arbre des suffixes AS(T), on peut

construire TS[] en faisant un parcours en profondeur de AS(T)

Exemple: avec
$$T = \texttt{CUICUI} (TS[] = [4, 1, 6, 3, 5, 2])$$

Remarque 2 : parcours en profondeur d'un arbre est linéaire en sa taille

- ⇒ Un algorithme de construction possible :
 - 1. construction de AS(T)
 - 2. parcours en profondeur de AS(T) pour produire TS[]

Analyse: 1. et 2. en O(n) chacun \Rightarrow construction du TS[] en O(n)

Construction de l'index

- C'est de la triche!
- $\rightarrow TS[]$ est utilisé pour éviter de construire l'arbre des suffixes
- d'autres algorithmes permettent de construire TS[] en O(n) sans passer par l'AS
- le tableau LCP[] peut également être calculé en O(n)
- dépasse le cadre de ce cours faute de temps. Voir par exemple http://www-igm.univ-mlv.fr/~mac/CHL/CHL-2011.pdf pour une description détaillée (et en français)
- vue inverse : partant du *TS*[], on peut construire l'*AS* en temps linéaire (mais reste compliqué)

Complexité de la recherche de motif

	Construction Index	Recherche de Motifs	Espace Requis (Index)
Sans LCP	O(n)	$O(m \log n)$	$O(n \log n)$
Avec LCP	O(n)	$O(m + \log n)$	$O(n \log n)$

- Plus simple à implémenter que l'arbre des suffixes, du moins dans sa version sans I CP
- Espace équivalent à l'arbre des suffixes : $O(n \log n)$
- En pratique, TS[] est plus compact que AS d'un facteur 4 ou 5 (capté dans le O())

Sommaire

Introduction

Automate

Arbre des Suffixes

Tableau des Suffixes

Conclusion

Conclusion

- présentation "express" de 3 structures à base d'index pour la recherche exacte de motifs
- Arbre des Suffixes et Tableau des Suffixes plus souvent utilisés que l'automate reconnaissant Σ^*P
- Très large littérature sur le sujet, très souvent technique. Voir par exemple:

http://www-igm.univ-mlv.fr/~mac/CHL/CHL-2011.pdf

Conclusion

- de nombreux paramètres étudiés : taille de T et P, valeur de σ , espace mémoire théorique (O(...)) et pratique, tests sur des benchmarks, etc.
- applications biologiques
- variante naturelle : motifs avec erreurs, donc approchés
 - insertions
 - suppressions
 - mismatches