4. Find all numbers x for which

(i) 4 - x < 3 - 2x.

$$4-x < 3-2x \Longrightarrow 4 < 3-3x$$

$$\Longrightarrow 4 < 3(1-x)$$

$$\Longrightarrow \frac{4}{3}-1 < -x$$

$$\Longrightarrow 1-\frac{4}{3} > x, x \in \mathbb{R}.$$

(ii) $5 - x^2 < 8$

 $(5-x^2<8) \Longrightarrow (-x^2<8-5=3) \Longrightarrow (x^2>-3)$. Notice that $x^2=(\pm |x|)^2=(\pm 1)^2|x|^2=|x|^2\geq 0$ for all $x\in\mathbb{R}$.

(iii) $5 - x^2 < -2$

$$(5-x^2<-2) \Longrightarrow (-x^2<-2-5=-7) \Longrightarrow (x^2>7)$$
. Then $x>\sqrt{7}$ or $(-x>\sqrt{7}) \Longrightarrow (x<-\sqrt{7})$ where $x\in\mathbb{R}$.

(iv) (x-1)(x-3) > 0

Note that $(ab > 0) \iff (a < 0 \land b < 0) \lor (a > 0 \land b > 0)$ for $a, b \in \mathbb{R}$. We consider two cases. Suppose $(x - 1) < 0 \land (x - 3) < 0$. Then $(x < 1) \land (x < 3), x \in \mathbb{R}$. Now suppose $(x - 1) > 0 \land (x - 3) > 0$. Then $(x > 1) \land (x > 3), x \in \mathbb{R}$.

(v) $x^2 - 2x + 2 > 0$

Let $x \in \mathbb{R}$. We consider two cases. Suppose x > 0, then

$$x^{2} - 2x + 2 > 0 \Longrightarrow x^{2} + 2 > 0$$

$$\Longrightarrow x^{2} > 2$$

$$\Longrightarrow (x > 2) \lor (-x > 2)$$

$$\Longrightarrow (x > 2) \lor (x < -2).$$

Since x > 0, x < -2 is not a solution. Thus x > 2.

Now suppose x < 0, then

$$x^{2} - 2x + 2 > 0 \Longrightarrow x^{2} - x - 2x + 2 > 0$$
$$\Longrightarrow x(x - 1) - 2(x - 1) > 0$$
$$\Longrightarrow (x - 2)(x - 1) > 0.$$

Since the product of two numbers is positive when both numbers are positive or both numbers are negative, it follows that $(x-2) > 0 \Longrightarrow x > 2$ and $(x-1) > 0 \Longrightarrow x > 1$, or $(x-2) < 0 \Longrightarrow x < 2$ and $(x-1) < 0 \Longrightarrow x < 1$. Since x < 0, x < 2 is the only solution.

Combining solutions from both cases, we get x > 2 or x < 2 for $x \in \mathbb{R}$.

(vi)
$$x^2 + x + 1 > 2$$

Let $x \in \mathbb{R}$. We consider two cases. Suppose x > 0, then

$$x^{2} + x + 1 > 2 \Longrightarrow x^{2} + x > 1$$

$$\Longrightarrow x^{2} + x > 0$$

$$\Longrightarrow x(x+1) > 0$$

$$\Longrightarrow (x > 0 \land x + 1 > 0) \lor (x < 0 \land x + 1 < 0)$$

$$\Longrightarrow (x > 0 \land x > -1) \lor (x < 0 \land x < -1)$$

$$\Longrightarrow x > 0 \lor x < -1.$$

Since we supposed x > 0, x < -1 is not a solution. Now suppose x < 0. Then

$$x^{2} + x + 1 > 2 \Longrightarrow x^{2} + x - 1 > 0$$

$$\Longrightarrow x^{2} > 0$$

$$\Longrightarrow (x > 0) \lor (-x > 0)$$

$$\Longleftarrow (x > 0) \lor (x < 0).$$

Since we supposed x < 0, x > 0 is not a solution. Combining solutions from both cases, we get x > 0 or x < 0 for $x \in \mathbb{R}$.

(vii)
$$x^2 - x + 10 > 16$$

$$x^{2} - x + 10 > 16 \Longrightarrow x^{2} - x - 6 > 0$$

$$\Longrightarrow x^{2} - 3x + 2x - 6 > 0$$

$$\Longrightarrow x(x - 3) + 2(x - 3) > 0$$

$$\Longrightarrow (x + 2)(x - 3) > 0$$

$$\Longrightarrow (x + 2) \wedge x - 3 > 0 \wedge (x + 2 < 0 \wedge x - 3 < 0)$$

$$\Longrightarrow (x + 2 > 0 \wedge x - 3 > 0) \vee (x + 2 < 0 \wedge x - 3 < 0)$$

$$\Longrightarrow (x > -2 \wedge x > 3) \vee (x < -2 \wedge x < 3)$$

$$\Longrightarrow (x > 3) \vee (x < -2), x \in \mathbb{R}.$$

(viii)
$$x^2 + x + 1 > 0$$

Let $x \in \mathbb{R}$. We consider two cases. Suppose x > 0, then

$$x^{2} + x + 1 > 0 \Longrightarrow x^{2} + x + x + 1 > 0$$

$$\Longrightarrow x(x+1) + 1(x+1)$$

$$\Longrightarrow (x+1)^{2} > 0$$

$$\Longrightarrow (x+1 > 0 \lor -(x+1) > 0)$$

$$\Longrightarrow (x > -1 \lor -1 > x).$$

Since we supposed x > 0, -1 > x is not a solution. Now suppose x < 0, then

$$x^{2} + x + 1 > 0 \Longrightarrow x^{2} + 1 > 0$$

$$\Longrightarrow x^{2} > -1$$

$$\Longrightarrow x^{2} > 0$$

$$\Longrightarrow (x > 0 \lor x < 0).$$

Since we supposed x < 0, x > 0 is not a solution. Combining solutions from both cases, we get x > 0 or x < 0 for $x \in \mathbb{R}$.

(ix)
$$(x-\pi)(x+5)(x-3) > 0$$

$$(x-\pi)(x+5)(x-3) > 0 \Longrightarrow ((x-\pi>0) \land (x+5>0) \land (x-3>0)) \lor ((x-\pi<0) \land (x+5<0) \land (x-3<0))$$
$$\Longrightarrow ((x>\pi) \land (x>-5) \land (x>3)) \lor ((x<\pi) \land (x<-5) \land (x<3))$$
$$\Longrightarrow (x>\pi) \lor (x<-5), x \in \mathbb{R}.$$

(x)
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$

Note that $\frac{1}{2} > \frac{1}{3} \Longrightarrow \sqrt{2} = 2^{\frac{1}{2}} > 2^{\frac{1}{3}} = \sqrt[3]{2}$ (1). Observe that

$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0 \Longrightarrow ((x - \sqrt[3]{2}) \wedge (x - \sqrt{2})) \vee ((x - \sqrt[3]{2}) \wedge (x - \sqrt{2}))$$

$$\Longrightarrow ((x > \sqrt[3]{2}) \wedge (x > \sqrt{2})) \vee ((x < \sqrt[3]{2}) \wedge (x < \sqrt{2}))$$

$$\Longrightarrow ((x > \sqrt[3]{2}) \wedge (x > \sqrt{2})) \vee ((x < \sqrt[3]{2}) \wedge (x < \sqrt{2}))$$

$$\Longrightarrow (x > \sqrt{2}) \vee (x < \sqrt[3]{2}), x \in \mathbb{R}.$$
(1)

(xi) $2^x < 8$

Observe that $2^x < 8 = 2^3 \Longrightarrow x < 3$.

(xii) $x + 3^x < 4$

Since $(1) + 3^{(1)} = 4$ and $x + 3^x > 4$ for all $x > 1, x \in \mathbb{R}$, we have that $x + 3^x < 4 \Longrightarrow x < 1$.

(xiii)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$

 $\frac{1}{x} + \frac{1}{1-x} = \frac{(1-x)+x}{x(1-x)} = \frac{1}{x(1-x)}$. Note that $\frac{1}{x}$ and $\frac{1}{1-x}$ are undefined for x=0 and $1-x=0 \Longrightarrow x=1$, respectively. Then we consider three cases.

Suppose x > 1. Note that $x > 1 \implies (x = |x| > 1)$ and 0 > 1 - |x| = 1 - x. Then $\frac{1}{x(1-x)} = \frac{1}{|x|(1-|x|)} < 0$

Now suppose 0 < x < 1. Note that $0 < x \Longrightarrow (0 < |x| = x)$ and $(0 < x < 1) \Longrightarrow (x = |x| < 1) \Longrightarrow (0 < 1 - |x| = 1 - x)$. Then $\frac{1}{x(1-x)} = \frac{1}{|x|(1-|x|)} > 0$.

Now suppose x < 0. Note that $x < 0 \Longrightarrow (x = -|x| < 0)$ and 1 - x = 1 + |x| > 0. Then $\frac{1}{x(1 - x)} = \frac{1}{-|x|(1 + |x|)} < 0$.

Therefore $\frac{1}{x} + \frac{1}{1-x} > 0$ for $0 < x < 1, x \in \mathbb{R}$.

(xiv)
$$\frac{x-1}{x+1} > 0$$

Note that $\frac{x-1}{x+1}$ is undefined when $(x+1=0) \Longrightarrow (x=-1)$. We consider two cases. Suppose x>-1. Then

$$\frac{x-1}{x+1} > 0 \Longrightarrow x-1 > 0$$

$$\Longrightarrow x > 1.$$

Now suppose x < -1. Then

$$\frac{x-1}{x+1} = \frac{-|x|-1}{-|x|+1}$$

$$= \frac{|x|+1}{|x|-1} > 0. \qquad (x < -1 \Longrightarrow -x > 1 \Longrightarrow |x| > 1 \Longrightarrow |x|-1 > 0)$$

Therefore x > -1 or x < -1 for $x \in \mathbb{R}$.