Лабораторная работа №2

Первоначальная настройка git

Комягин Андрей Николаевич

Содержание

1	Цель работыЙ	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Контрольные вопросы	16
5	Выводы	18
Сп	писок литературы	19

Список иллюстраций

3.1	Установка ПО	7
3.2	Первичная настройка git	8
3.3	алгоритм rsa	Ç
3.4	алгоритм ed25519	10
3.5	ключ gpg	11
3.6	Копирование рдр ключа	12
3.7	Добавление ключа на Github	12
3.8	Настройка подписей	13
3.9	gh авторизация	13
3.10	создание репозитория	14
3.11	Настройка каталога	15

Список таблиц

1 Цель работыЙ

Изучить концепцию и применение средств контроля версий. Приобрести навыки работы с git.

2 Задание

- Создать базовую конфигурацию для работы с git
- Создать ключ SSH
- Создать ключ PGP
- Настроить подписи git
- Зарегистрироваться на Github
- Создать локальный каталог для выполнения заданий по предмету

3 Выполнение лабораторной работы

Установим необходимое ПО.(рис. 3.1).

Установим git:
 dnf install git

 Установка gh
 Fedora:
 dnf install gh

Рис. 3.1: Установка ПО

Настроим git. Зададим имя и почту владельца репозитория, настроим utf-8, зададим имя начальной ветки и настроим параметры отступов рис. (рис. 3.2).

```
[ankomyagin@ankomyagin ~]$ git config --global user.name
"andrey komyagin"
[ankomyagin@ankomyagin ~]$ ^C
[ankomyagin@ankomyagin ~]$ git config --global user.email
   "Komyagin12345@mail.ru"
[ankomyagin@ankomyagin ~]$ git config --global core.quote
path false
[ankomyagin@ankomyagin ~]$ git config --global init.defau
ltBranch master
[ankomyagin@ankomyagin ~]$ git config --global core.autoc
rlf input
[ankomyagin@ankomyagin ~]$ git config --global core.safec
rlf warn
[ankomyagin@ankomyagin ~]$
```

Рис. 3.2: Первичная настройка git

Далее создадим ssh ключи по двум разным алгоритмам - rsa(4096)(рис. 3.3) и ed25519(рис. 3.4).

```
[ankomyagin@ankomyagin ~]$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ankomyagin/.s
sh/id_rsa):
Created directory '/home/ankomyagin/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ankomyagin/.
ssh/id_rsa
Your public key has been saved in /home/ankomyagin/.ssh/
id_rsa.pub
The key fingerprint is:
SHA256:9m313eI51W95JTozMHeNeh7bchczV/J77a/E9HN6ZAU ankom
yaqin@ankomyaqin
The key's randomart image is:
+---[RSA 4096]----+
               Е
                . 1
               . 0
         S
               0=+1
        . .o..++B@|
           .+0+=*^|
            .*o+X%|
              *B00|
+----[SHA256]----+
[ankomyagin@ankomyagin ~]$
```

Рис. 3.3: алгоритм rsa

```
[ankomyagin@ankomyagin ~]$ ssh-keygen -t ed25519
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/ankomyagin/.s
sh/id_ed25519):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ankomyagin/.
ssh/id_ed25519
Your public key has been saved in /home/ankomyagin/.ssh/
id_ed25519.pub
The key fingerprint is:
SHA256:uz3LZEWKf5tBKVd8Fk@UmyY2q+noeRwq7@b6qwdqi3w ankom
yagin@ankomyagin
The key's randomart image is:
+--[ED25519 256]--+
             .+0+0|
     0 . 0 0.0=0
    o o S + =.
    o E . = *o
        o @=+ +
         *=*+0
   --[SHA256]----+
[ankomyagin@ankomyagin ~]$ [
```

Рис. 3.4: алгоритм ed25519

Также создадим ключ gpg с необходимыми опциями (рис. 3.5).

```
[ankomyagin@ankomyagin ~]$ gpg --full-generate-key
gpg (GnuPG) 2.4.3; Copyright (C) 2023 g10 Code GmbH
This is free software: you are free to change and redist
ribute it.
There is NO WARRANTY, to the extent permitted by law.
gpg: создан каталог '/home/ankomyagin/.gnupg'
Выберите тип ключа:
   (1) RSA and RSA
   (2) DSA and Elgamal
   (3) DSA (sign only)
   (4) RSA (sign only)
   (9) ECC (sign and encrypt) *default*
  (10) ЕСС (только для подписи)
 (14) Existing key from card
Ваш выбор? 1
длина ключей RSA может быть от 1024 до 4096.
Какой размер ключа Вам необходим? (3072) 4096
Запрошенный размер ключа - 4096 бит
Выберите срок действия ключа
         0 = не ограничен
      <п> = срок действия ключа - п дней
      <n>w = срок действия ключа - п недель
      <n>m = срок действия ключа - п месяцев
      <n>y = срок действия ключа - п лет
Срок действия ключа? (0) 0
Срок действия ключа не ограничен
Все верно? (y/N) y
GnuPG должен составить идентификатор пользователя для ид
ентификации ключа.
ентификации ключа.
```

Рис. 3.5: ключ дрд

Далее нееобходимо создать учётную запись на Github. Я пропускаю данный этап, так как Github имеется с первого семестра. Выведем список ключей и скопируем отпечаток приватного ключа. Затем ключ в буфер обмена (рис. 3.6)

Рис. 3.6: Копирование рдр ключа

Добавим скопированный ключ на Github (рис. 3.7)

Add new GPG key				
Title				
sway				
Кеу				
cWh6QIoRNdEhkRTEEDpKqC/				
6aP1bU2LNIkPRKhbtU4BvmtgERLE7OCza84GV7L8h				
DXja1T6UXkUJsRgeO8r1gQM77J2iUhWUOyO4BhgCv4JcsFj5 gimmE/Em	zKDa7sX6			
ohGjghhb7Sg12txuc6P0o8TntcOUv6lEMKV2aRPq47NOIIjIri B1Ai6	cHyIBAB1a			
GRyf1uXc				
=hvf1				
END PGP PUBLIC KEY BLOCK				

Рис. 3.7: Добавление ключа на Github

Настроим автоматические подписи коммитов git (рис. 3.8)

```
[ankomyagin@ankomyagin ~]$ git config --globa
r.signingkey Komyagin12345@mail.ru
[ankomyagin@ankomyagin ~]$ git config --globa
mit.gpgsign true
[ankomyagin@ankomyagin ~]$ git config --globa
.program $(which gpg2)
```

Рис. 3.8: Настройка подписей

Затем настроим gh и авторизуемся (рис. 3.9)

Рис. 3.9: gh авторизация

Создадим репозиторий курса на основе шаблона (рис. 3.10)

```
[ankomyagin@ankomyagin ~]$ mkdir -p ~/work/study/
2023-2024/"Операционные системы"
[ankomyagin@ankomyagin ~]$ cd ~/work/study/2023-2
024/Операционные∖ системы/
[ankomyaqin@ankomyaqin Операционные системы]$ ^C
[ankomyaqin@ankomyaqin Операционные системы]$ qh
repo create study 2023-2024 os-intro --template=y
amadharma/course-directory-student-template --pub
lic
/ Created repository ANKomyagin/study 2023-2024 o
s-intro on GitHub
  https://github.com/ANKomyagin/study_2023-2024_o
s-intro
[ankomyagin@ankomyagin Операционные системы]$ git
clone --recursive git clone --recursive git@gith
ub.com:<owner>/study_2022-2023_os-intro.git os-in
tro os-intro
bash: owner: Нет такого файла или каталога
[ankomyagin@ankomyagin Операционные системы]$ git
clone --recursive git clone --recursive git@gith
ub.com:<owner>/study_2023-2024_os-intro.git os-in
tro os-intro
bash: owner: Нет такого файла или каталога
[ankomyaqin@ankomyaqin Операционные системы]$ qit
clone -- recursive qit@qithub.com: ANKomyaqin/stud
y_2023-2024_os-intro.git os-intro
Клонирование в «os-intro»...
The authenticity of host 'github.com (140.82.121.
d)' can't be established.
ED25519 key fingerprint is SHA256:+DiY3wvvV6TuJJh
bpZisF/zLDA0zPMSvHdkr4UvC0qU.
This key is not known by any other names.
Are you sure you want to continue connecting (yes
/no/[fingerprint])?
```

Рис. 3.10: создание репозитория

Настроим каталог курса, а затем отправим его на Github (рис. 3.11)

Рис. 3.11: Настройка каталога

4 Контрольные вопросы

- 1. Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются? Системы контроля версий (VCS) это инструменты, которые помогают отслеживать изменения в исходном коде и управлять ими. Они предназначены для решения задач хранения истории изменений, совместной работы над проектами, отката к предыдущим версиям и т. д.
- 2. Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия.
- Хранилище (repository) это место, где хранится история изменений проекта.
- Commit это операция сохранения изменений в репозитории.
- История (history) это список всех коммитов, которые были сделаны в проекте.
- Рабочая копия (working copy) это каталог на компьютере разработчика, в котором он работает над проектом.
- 3. Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Централизованные VCS имеют единственный центральный сервер, к которому подключаются все разработчики (например, SVN). Децентрализованные VCS позволяют каждому разработчику иметь полную копию репозитория, с которой он может работать независимо (например, Git).
- 4. Опишите действия с VCS при единоличной работе с хранилищем. При единоличной работе с хранилищем в VCS разработчик делает изменения в сво-

- ей рабочей копии проекта, коммитит их в локальный репозиторий и при необходимости откатывается к предыдущим версиям.
- 5. Опишите порядок работы с общим хранилищем VCS. Порядок работы с общим хранилищем VCS включает получение изменений из удаленного репозитория, коммит изменений в локальный репозиторий и отправку изменений обратно в удаленный репозиторий.
- 6. Каковы основные задачи, решаемые инструментальным средством git? Git предназначен для управления версиями файлов, совместной работы над проектами, отслеживания изменений и управления различными ветками разработки.
- 7. Назовите и дайте краткую характеристику командам git.
- git add добавление файла в индекс (обычно точка).
- git commit -m "Сообщение" создание коммита с описанием изменений.
- git push отправка изменений в удаленный репозиторий.
- git pull получение изменений из удаленного репозитория.
- 8. Приведите примеры использования при работе с локальным и удалённым репозиториями. При работе с локальным репозиторием можно использовать команды git add, git commit. При работе с удаленным репозиторием git clone, git push, git pull.
- 9. Что такое и зачем могут быть нужны ветви (branches)? Ветви (branches) в Git позволяют разрабатывать различные функциональности независимо друг от друга, а затем объединять изменения.
- 10. Как и можно игнорировать некоторые файлы при commit? Для игнорирования некоторых файлов при коммите можно использовать файл .gitignore, в который записываются шаблоны файлов или папок, которые не должны попадать в репозиторий.

5 Выводы

В ходе выполнения лабораторной работы я повторил правила работы с git, узнал о системе подписей и pgp ключах.

Список литературы

Туис, курс Архитектура компьютера и операционные системы