Categories in Tokyo 1st

An Introduction to Stable ∞-Categories

Keima Akasaka

Chiba University

An Introduction to Stable & - Categories
Goals
(1) Answer the question "What Ts a stable co-cat?"
(2) Understand the def of spectra V
Que ! What is a stable on-cat ?
Ans: It is an ∞ -version of (an abelian cat a triangulated cat (Δ -cat).
Plan
(1) Review the classical theory of A-cats. In particular, bad behaviors of A-cats.
(2) Definition of Stable ∞ -cats.
(3) Constructions and properties of stable ocats.
(4) How to construct stable 10-cats?; Stabilization.
(5) The most Important example Sp; the cat of spectra.
References
1. J. Lurie, Higher Algebra Sec 1, 2017.
2. Y. Harpaz, Introduction to stable ∞ -cats, 2013.

1. Review the classical theory of Δ - cats. Def. 1.1. A a-cat (5, I, E) consists of the following data: · An additive cat 5, An equiv of cats ∑ ; 3 -> 5 ; × 1> ∑× • $\dot{\epsilon}$ = the set of diagrams \times $\overset{f}{\rightarrow}$ Y $\overset{g}{\rightarrow}$ Z $\overset{h}{\rightarrow}$ Z $\overset{}{\rightarrow}$ $\Sigma \times$, called distinguished triangles. satistying some axioms. s.t. $\times \to Y \to Z \to \Sigma \times \in \mathcal{E}$ $\downarrow \qquad \downarrow \qquad \downarrow$ $\chi' \to Y' \to Z' \to \Sigma \chi' \in \mathcal{E}$) not unique. non-canonical. Rem. 1.2. (5, 5, E) : A-cat For \$ 1: X → Y ∈ 5, 3 obj Z ∈ 5. s.t. X + Y -> Z -> IX & & , where Z is uniquely determined only up to Isomorphism. → We cannot define a func Arr (c) → C

Rer	η, 1	٤,،	_																					
(For	6	Kan	npl:	و ,	ĨΥ	, - H	۸e	de	ኍTV	ed	Ga	at.	D	(R)	۰ ٥	φ,	C 0 ⁻	mpl	e×€	es ,	,		
	the	Ç.	one	િ	3 (def	ìn∈	ed	onl	γ	ир	te	, h	om	e to	РУ								
!	Hov	vev	Έኍ	,	da	ta	ol) (Jom	1 5 l 1	Tgc	ළප	[s	; r	10+	Co	ont	atr	/ed	Tr	, [7)C	()	•
C	พร	īde	<u>-</u> }	O(he	W	ca	t	wh	v Tet	n f	7av	е	hīg	hei	~ Ì	ìn-fé	SHM	ati	oη	₹0			
ol	၁ ၂ ၔ	cts	ا ر د	Mο.	rphi	TSM	1 5 ,	he	ͻϒηξ	to	oīe	3,	h	om _o	topi	îes.	Ь	/w	ho	mot	7q6	es .	, 111	

2. Definitions of stable ∞ -cats.

Def. 2.1. 6; 00-cat

An obj te & To an Initial obj

del For YX e C, Mapc (A,X) is contractible.

An obj 1 e & To an terminal obj

del For ∀X ∈ C, Map c(X, 1) To contractible.

An obj Oe & Ts a zero obj

Ets pointed def C contains a zero objo.

Del. 2.2. & pted co-cat, Dizero obj of d.

A triangle in C.

A triangle is a coffber seg () It is a cocart, square.

A triangle to a fiber seq & It to a cart, square.

Def. 2.3. C; pted ∞ -cat. $f: X \rightarrow Y \in C$. • A coffber of $f \mapsto A$ coffber $seq \times \xrightarrow{f} Y$ 0 -> coftb(f) A fiber of $f \stackrel{\text{def}}{\rightleftharpoons} A$ fiber seq $f_{1}b(f) \rightarrow X$ $\circ \longrightarrow \Upsilon$ Rem. 2.4. C; pted a- cat. · A cofiber of f, if it exists, is determined unique up to equito. • & = { coffiber segs 3 5 Fun (12 x 12) Define 0; $\stackrel{.}{\varepsilon} \longrightarrow \operatorname{Fun}(\Delta', \stackrel{.}{\varepsilon})$ $\begin{array}{cccc} \uparrow & \downarrow & \downarrow & \mapsto & (\times \xrightarrow{} \downarrow) \\ \times \xrightarrow{} \downarrow & \downarrow & \mapsto & (\times \xrightarrow{} \downarrow) \end{array}$ If morph in c admits a cotiber o is a trivial fibration. \rightarrow 0 admits a section coftb; Fun (Δ' , \mathcal{C}) \rightarrow Fun ($\Delta' \times \Delta'$, \mathcal{C}) We also denote coffi Fun $(\Delta', C) \rightarrow \text{Fun}(\Delta' \times \Delta', C) \xrightarrow{\text{ev}(1,1)} C$ It is a functor ?

Def. 2.5.

An ∞ -cat C is stable \Longrightarrow it satisfies:

(0) ¢ is pted. Tie. 3 zero obj 0 € 6.

(1) Morphism in C admits a fiber and a cofiber.

(2) A triangle in & is a fiber seq iff a cofiber seq.

Rem. 2.6.

· Having a 1-str of additive cat is "structure."

That is, we cannot ask whether an additive cat is a Δ -cat without specifying Σ and dist. triangles.

a 4- cat without specifying 2 and dist. Thangles

· Stability of a - cats is "property."

We can check the given w-cat is stable or not ?

3. Constructions and properties of stable o-cats.

Every obj in stable of cats has "suspension" and "looping."

Nota. 3.1. Ć : stable co-cats

For every obj $X \in C$, define objs ΩX and ΣX as i

Rem. 3.2.

As stated in Rem. 2.4, the constructions

 $X \mapsto \Sigma X$ and $X \mapsto \Omega X$ define functors

 Σ ; $\mathcal{E} \rightarrow \mathcal{E}$ and Ω ; $\mathcal{E} \rightarrow \mathcal{E}$.

Rem. 3.3.

• The previous constructions can be defined for ∞ -cats c with pushouts and pullbacks.

Then two funcs determine an adj $\Sigma \to \Omega$.

· If & is stable, the adj I - 12 is an equity.

('' pushouts (=) pullbacks)

The htpy cat he of a stable o-cat & admits a a-str. We need to show; (1) An additive str on hc. (TT) The translation func Z: hd -> hd (m) The set of dist. triangles $X \rightarrow Y \rightarrow Z \rightarrow X$ [1]. Lem. 3.4. 6; stable 00-cat The htpy cat he is an additive cat. proof. For X, Y & E. Map (n) c (x, Y) has the base pt, given by the zero map $X \to 0 \to Y$. · Since Mape (-, Y) sends colims to lims, $Map \in (\Sigma X, Y) \xrightarrow{\sim} \Omega Map \in (X, Y)$ to Mape(X,Y) ~ To Mape(I2X,Y) (I is an equiv) ~ πο Ω2 Mape(×; Y) (1) ⊆ π2 Map ¿(×´, Y). [def of th) - Hom-set of he admits an abelian group str. D

Def. 3.5. C: stable &-cat. Define the func Σ : $C \rightarrow C$ $X \longrightarrow \Sigma X \ (p.o. of o \leftarrow X \rightarrow o)$ \cdot \longrightarrow It induces the func Σ ; hd \rightarrow hd. (an equity of 1-cats). Del. 3.6. C: stable co-cat A distinguished diagram in & $\times \xrightarrow{t} Y \rightarrow 0$ \rightarrow we obtain a diagram $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{\phi h} \Sigma X \xrightarrow{f} h \stackrel{c}{c}$. A diagram of the form • > • - > • is a distinguished triangle in h c. det It is isomorphic in he to for 3 f; a' > e. Rem. 3.7. We can construct long (co) fiber sequences. $X \rightarrow Y \rightarrow 0$

Prop. 3.8. &; stable 00-cat.
(1) & admits pushouts and pullbacks. (see next page)
(2) & admits finite colims and limits. Cor.
(3) A square in C is cocart = cart.
(4) The coproducts in & coincide with products.
Stable &- cats are closed under many constructions.
Prop. 3.9. ¢; stable ∞-cat.
(1) GOP To stable.
(2) For KesSet, Fun (k.C) To stable
(3) For begular cardinal k, Ind k (c) to stable.
(4) The Idempotent completion Idem (c) is stable.

proof of prop. 3.8. (1) We want to show $\frac{3}{9}$ pushout of $\times \xrightarrow{f} Y$. Since g admits a fiber $fib(a) \xrightarrow{h} X \xrightarrow{f} Y$ $\downarrow \xrightarrow{I} g \downarrow$ $0 \xrightarrow{\Gamma} Z$ · Since the admits a coffber fibig $\xrightarrow{h} \times \xrightarrow{f} Y$ $0 \longrightarrow Z \rightarrow colliptip(3)$ Since left and outer squares are cocartesian. the right square is also cocartesian. (2) Stace C admits an initial obj and pushouts (1), C admits finite colims. D

4. How to construct stable o- cats?; Stabilization We construct a stable ∞ - cat from ∞ - cats In two ways. via (co) homology theory and spectrum objects. Recall A pted & - cat & is stable = It satisfies: (1) 4 morph in & admits a fiber and a cofiber. (2) A triangle in & is a fiber seq iff a coffber seq. Thrm.4.1. c; pted o-cat. TFAE (1) & is stable. (2) Morph in C admits a fiber and the loop func Ω : $C \rightarrow C$ is an equiv. > From a pted on-cat with finite lims &, We can formally add Threeses $\times \Longrightarrow \Omega \times$. Tie. formally invert the loop by taking the limit of the tower " $\xrightarrow{\Omega}$ & $\xrightarrow{\Omega}$ &

Nota. 4.2. & : pted oo-cat with finite lims. $Sp^{\Omega}(\mathcal{E}) := \overline{\lim} \left(\longrightarrow \Omega \right) \xrightarrow{\Omega} \mathcal{E} \xrightarrow{\Omega} \mathcal{E}$ in $Cat^{\overline{\lim}}$ obj ; a seg $1 \times n3$ with $\times n \xrightarrow{\sim} \Omega \times n+1$ Thrm. 4.3. There is the following adj: Cat stable & - cats 3 inc -1 Sp-Cat finlim := & pted oo- cat with finite lims 3 Rem. 4.4. We get the county Ω^{∞} ; $\operatorname{Sp}^{\Omega}(\mathcal{C}) \to \mathcal{C}$; $\operatorname{EXn3} \mapsto \operatorname{Xo}$. Thrm. 4.5 &; pted oo - cat with finite lims. TFAE (1) Ć is stable. (2) The func Ω^{∞} : $Sp^{\Omega}(d) \rightarrow d$ is an equiv.

We can construct Sp(c) in a different way.

Def. 4, 6. F; C - D; func of on-cats.

- Fis beduced = F pies terminal objs.
- F is excisive HP F sends pushouts to pullbacks.
- Exc* (¢, D) = Fun(¢, D) of reduced excisive funcs.

Nota.4.7. C: 00- cat with finite lims.

Sp (d) := Exc* (An *, d); the cat of spectrum objs of d.

Prop. 4.8. C: ∞ - cat with finite lims.

(1) Sp(d) is stable.

(2) $Sp(d) \simeq Sp^{\Omega}(d) := \lim_{n \to \infty} (m \xrightarrow{\Omega} d \xrightarrow{\Omega} d)$.

sketch of proof.

F: An * > & ; teduced excisive & Sp(d).

- $\Rightarrow \exists \text{ equiv } \forall \text{ph} : F(s^h) \xrightarrow{\Lambda} \Omega F(s^{h+1}).$

5. The most important example Sp; the cat of spectra.

Nota. 5.1.

Recall.

· An: the oc-cat of anima (oc-groupoids, tan-cpxs)

An* := An */; the oo-cat of "pted" anima

An * \subseteq An * the minimal pted full subcat which contains $S^o = * \text{ and } is \text{ closed under finite colims.}$

In classical homotopy theory.

A spectrum $\stackrel{\text{def}}{\Longrightarrow}$ A seq $[X \cap 3 \cap 20 \text{ of pted top. spaces}]$ with $X \cap \Omega X \cap \Omega = 0$.

Def. 5,2.

The category of spectra Sp $Sp := |\widehat{Im}(i)| \xrightarrow{\Omega} An(x) \xrightarrow{\Omega} An(x)) \xrightarrow{\Omega} Exc_*(An_*, An(x))$

A spectrum of A reduced excisive func An * - An (*).