Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Studierende der Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Probeklausur Bio Data Science

für Pflichtmodule im 1. & 2. Semester B.Sc./M.Sc.

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

27. November 2024

Erlaubte Hilfsmittel für die Klausur

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten also ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung keine digitalen Ausdrucke.
- You can answer the questions in English without any consequences.

Ergebnis der Klausur

_____ von 20 Punkten sind aus dem Multiple Choice Teil erreicht.

_____ von 66 Punkten sind aus dem Rechen- und Textteil erreicht.

_____ von 86 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
82.0 - 86.0	1,0
78.0 - 81.5	1,3
73.5 - 77.5	1,7
69.5 - 73.0	2,0
65.0 - 69.0	2,3
60.5 - 64.5	2,7
56.5 - 60.0	3,0
52.0 - 56.0	3,3
48.0 - 51.5	3,7
43.0 - 47.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist genau eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.
- Es werden nur Antworten berücksichtigt, die in dieser Tabelle angekreuzt sind!

	A	В	С	D	E	√
1 Aufgabe						
2 Aufgabe						
3 Aufgabe						
4 Aufgabe						
5 Aufgabe						
6 Aufgabe						
7 Aufgabe						
8 Aufgabe						
9 Aufgabe						
10 Aufgabe						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

• Die Tabelle wird vom Dozenten ausgefüllt.

Aufgabe	11	12	13	14	15	16	17
Punkte	10	10	10	8	10	9	9

• Es sind ____ von 66 Punkten erreicht worden.

1 Aufgabe (2 Punkte)

Sie haben ein Signifikanzniveau α gleich 5% vorliegen. Welche Aussage zusammen mit dem p-Wert ist richtig?

- **A** \square Wir schauen, ob der *p*-Wert kleiner ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_0 gilt.
- $\mathbf{B} \square$ Wir vergleichen die Effekte des p-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.
- ${f C}$ ${f \Box}$ Wir schauen, ob der p-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- **D** \square Wir vergleichen mit dem p-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
- **E** \square Wir machen eine Aussage über die indivduelle Wahrscheinlichkeit des Eintretens der Nullhypothese H_0 . Der p-Wert wird mit dem Signifikanzniveau verglichen und bewertet.

2 Aufgabe (2 Punkte)

Ein Versuch wurde in 16 Parzellen pro Gruppe durchgeführt. Die folgende Abbildung enthält die Daten aus diesem Versuch zur Bewertung der Wirkung des Mikronährstoff Nitrat auf den Ertrag in t/ha von Weizen im Vergleich zu einer Kontrolle. Welche Aussage ist richtig, wenn Sie einen t-Test rechnen?

- **A** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -3 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.
- **B** □ Der Test deutet auf ein signifikanten Unterschied hin. Der Effekt liegt vermutlich bei -3.
- C □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -3 unter einer groben Abschätzung.
- **D** □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.
- **E** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.

3 Aufgabe (2 Punkte)

Um die Standardabweichung zu berechnen müssen wir folgende Rechenoperationen durchführen.

- A 🗆 Den Mittelwert berechnen und die Abstände quadrieren. Die Summe mit der Fallzahl multiplizieren.
- **B** □ Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadratischen Abstände zu dem Mittelwert. Abschließend teilen wir durch die Fallzahl.

C 🗆	Den Median berechen, dann die quadratischen Abstände zum Median aufsummieren, dann die Wurzel ziehen.
D 🗆	Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durch die Fallzahl teilen, dann die Wurzel ziehen.
E 🗆	Wir berechnen erst den Mittelwert und dann die absoluten Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl.
4 A	ufgabe (2 Punkte)
Gebe	en ist $Pr(D H_0)$ als mathematischer Ausdruck, welche Aussage ist richtig?
A 🗆	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
B 🗆	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
C 🗆	$Pr(D H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist.
D 🗆	$Pr(D H_0)$ beschreibt die Wahrscheinlichkeit die Teststatistik T_D aus den Daten D zu beobachten, wenn die Nullhypothese wahr ist.
E 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
5 A	ufgabe (2 Punkte)
	Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. he der folgenden Aussagen ist richtig?
A 🗆	Randomisierung erlaubt erst die Mittelwerte zu schätzen. Ohne Randomisierung keine Mittelwerte. Ohne Mittelwerte keine Varianz und somit auch kein statistischer Test.
В□	Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
C 🗆	Durch eine Randomisierung können wir nicht von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.
D 🗆	Strukturgleichheit ist durch Randomisierung gegeben. Somit kann von der Stichprobe auf die Grundgesamtheit geschlossen werden
E□	Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
6 A	ufgabe (2 Punkte)
vor.	rer Abschlussarbeit zuErdbeeren finden Sie aufeinmal seltsame Daten. Jedenfalls kommt Ihnen das so Daher berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden nicht. Welche Aussage ist richtig?
A 🗆	Da sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
В□	Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
C 🗆	Wenn sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor.
D 🗆	Der Mittelwert und der Median sollten sich unterscheiden sein, wenn Outlier in den Daten vorliegen.
	Der Mittelwert und der Median sellten gleich sein, wenn Outlier in den Daten verliegen

7 Aufgabe (2 Punkte)

Die Testtheorie hat mehrere Säulen. Einer der Säulen ist das Falsifikationsprinzip. Das Falsifikationsprinzip besagt,

- **A** □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein noch schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **B** □ ... dass Modelle meist falsch sind und selten richtig.
- C □ ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.
- **D** □ ... dass ein schlechtes Modell durch das Falsifikationsprinzip durch ein weniger schlechtes Modell ersetzt wird.
- **E** □ ... dass ein schlechtes Modell durch ein schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.

8 Aufgabe (2 Punkte)

Berechnen Sie den Mittelwert und Standardabweichung von y mit 9, 21, 5, 11 und 15.

- **A** □ Es ergibt sich 11.2 +/- 18.6
- **B** □ Es ergibt sich 13.2 +/- 3.05
- **C** □ Es berechnet sich 13.2 +/- 37.2
- **D** ☐ Es ergibt sich 12.2 +/- 6.1
- **E** □ Sie erhalten 12.2 +/- 3.05

9 Aufgabe (2 Punkte)

Wenn Sie im Allgemeinen einen statistischen Test rechnen, dann kommen Sie um eine statistische Hypothese *H* nicht herum. Welche Aussage über statistische Hypothesen ist richtig?

- **A** \square Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.
- **B** \square Es gibt bedingt durch das das Falsifikationsprinzip ein Set von k Nullhypothesen, die iterative gegen k-1 Alternativhypothesen getestet werden.
- $\mathbb{C} \square$ Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen.
- **D** ☐ Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternativehypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird.
- **E** \square Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation.

10 Aufgabe (2 Punkte)

In fast allen wissenschaftlichen Disziplinen liegt der Grenzwert für das Signifikanzniveau α bei 5%. Wieso wurde dieser Konsens über die Signifikanzschwelle in dieser Form getroffen?

- A □ Der Wert ergab sich aus einer Auswertung von 1042 wissenschaftlichen Veröffentlichungen zwischen 1914 und 1948. Der Wert 5% wurde in 28% der Veröffentlichungen genutzt. Daher legte man sich auf diese Zahl fest.
- **B** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.

C 🗆	Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha=5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
D 🗆	Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha=5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.
E 🗆	In der Wissenschaft gibt es neben der Naturkonstante, die sich aus der Beobachtung der Welt ergibt, noch die Kulturkonstante, die von einer Gruppe Menschen selbstgewählt wird. Dabei ist $\alpha=5\%$ eine Kulturkonstante und wurde somit eher zufällig gewählt.

11 Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken Tina und Jonas waren gemeinsam in Berlin und sitzen nun im IC nach Amsterdam um zurück nach Osnabrück zu fahren. 'Weißt du was ich mich frage?', entfährt es Tina ziemlich plötzlich, so dass Jonas die Snickers aus dem Mund fallen. 'Nein, und ehrlich gesagt bin ich auch ziemlich müde...'. Das ist jetzt aber Tina egal, denn sie möchte folgende Sachlage diskutieren. Und Tina hat jetzt 3 Stunden Zeit. Plus Verspätung. In der Ausstellung *Europa und das Meer* im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 50 Tagen die ersten Symptome ein; die ersten Toten sind nach 72 Tagen zu beklagen; nach 115 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepciön und die Santiago - mit einer Besatzung von insgesamt 245 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 95 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht '[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war.' Insbesondere die Mannschaft der Concepciön erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält 6000µg/150g Vitamin C. Der Bedarf liegt bei 110mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in *t* an aufzunehmenden wilden Sellerie auf die Concepciön für die ununterbrochene Fahrt von drei Monate und 18 Tage über den Pazifik! **(3 Punkte)**
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepciön im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

12 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von Steffen. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Netto über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile¹. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von Steffen?

- 1. Wenn 7 Blaubeerschalen 13.93 Euro kosten, wie viel kosten 8 Schalen? (2 Punkte)
- 2. Wenn Sie die 8 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 2.89 EUR können Sie sich dann noch für 100 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Netto über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 170l Wasser. Eine Strauchtomate wiegt 110 130g.
- Ein Kilo Salat benötigt 100l Wasser. Ein Salatkopf wiegt 320 520g.
- Ein Kilo Avocado benötigt 1100l Wasser. Eine Avocado wiegt 150 410g.
- Ein Kilo Blaubeeren benötigt 850l Wasser. Eine Blaubeere wiegt 3 3.6g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2024 blieben die Erträge von Blaubeeren mit 9×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 8.6%. Die Exporte für Avocados stiegen in dem gleichen Zeitraum um 22.1% auf 2.1×10^5 t.

4. Wie viele Tonnen Wasser hat Chile in dem Exportjahr 2023 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur ein Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 61 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 8 - 17 Liter pro Spülmaschinenlauf und 9 - 14 Liter pro Spülgang.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von Steffen erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

¹Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

13 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die oldenburgischen Pyramidentage an! Sie und Yuki sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 73 Grad im Vergleich zu den ägyptischen Pyramiden mit 52 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 32 Königsellen. Eine Königselle misst 52.6cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 32 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 5cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 5 Sklaven, die Ihnen und Yuki bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als die Sklaven von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 90% aus. In eine Schubkarre passen 110 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 12°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die oldenburgische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Mittelständler*) mit, das die Pyramide zu steil sei und somit nicht in die oldenburgische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 5° ändert! (2 Punkte)

14 Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Zerforschen des Barplots Jessica steht vor einem ersten Problem, denn wenn es nach ihrer Betreuerin geht, soll sie in einem einem Gewächshausexperiment Erbsen auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Am Ende dann doch besser Warhammer. Wunderbar. Eine echte Ablenkung für Jessica. Das heißt erstmal überlegen für Jessica. Jessica schmeißt noch eine Handvoll Schokobons in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von David Bowie. Die Behandlung werden verschiedene Substrattypen (*torf*, 40*p*60*n* und 70*p*30*n*) sein. In ihrer Exceldatei wird sie den Messwert (*Y*) *Proteingehalt* als *protein* aufnehmen. Vorab soll Jessica aber eimal die folgenden Barplots ihrer Betreuerin nachbauen, damit sie den Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied.

Leider kennt sich Jessica mit der Erstellung von Barplots in \mathbf{R} nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen der drei Barplots! *Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen!* (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz im Rüblichen Format, aus dem die drei Barplots *möglicherweise* erstellt wurden! (2 Punkte)
- 4. Kann Jessica einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

15 Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Der Studentenjob von Alex war nach Ladenschluss bei Penny die Regale einzuräumen. Dabei ist Alex in der Auslage der Sonderangebote das Necronomicon² in die Hände gefallen. Nun ist er eine Magierin der Zeichen geworden! Also eigentlich kann Alex nur Mathe und das dämliche Necronomicon hat ihn in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 227 n. Chr. für den neuen Lehnsherren Fürsten Arthur. Alex baut natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Alex stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung. Leider wird das nicht reichen, deshalb müssen Sie hier auch noch durch Zeit und Raum helfen!

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- ν, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit 9.81 $\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 20mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 14m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 14m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 3.5mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.7mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 6.1×10^4 Bleikugeln zusammen. Blei hat eine Dichte von $15.1g/cm^3$.

4. Wie schwer in Kilogramm kg sind die 6.1×10^4 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 900 Bleikugeln produzieren wollen und die Bleikugel im Fall 0.8cm Abstand haben müssen? (1 Punkt)

²Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

16 Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Berechnung des Student t-Test Der t-Test. Jonas erschaudert. Jonas und die Erschöpfung, eine unendliche Geschichte mit kniffeligen Wendungen. Ein mächtiges Werkzeug ist der t-Test in den Händen desjenigen, der ein normalverteiltes Outcome (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Jonas überhaupt aus? Aus den Boxen wummert Iron Maiden und sein Mund ist verklebt von Snickers. 'Herrlich', denkt Jonas. Jonas hat ein Kreuzungsexperiment mit Zandern durchgeführt. Dabei wurde die Behandlung Bestandsdichte (*Verordnung* und *Erhht*) an den Zandern getestet. Gemessen hat Jonas dann als Messwert Schlachtgewicht [kg]. Warum der Versuch im Teuteburgerwald für seinen Projektbericht stattfinden musste, ist ihm bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Schlachtgewicht [kg]?

Bestandsdichte	Schlachtgewicht
Erhöht	34.2
Verordnung	24.8
Erhöht	50.3
Verordnung	31.5
Erhöht	44.9
Verordnung	30.9
Erhöht	52.4
Erhöht	46.3
Erhöht	36.2
Erhöht	48.8
Verordnung	29.7
Verordnung	33.7
Erhöht	53.3
Verordnung	25.3
Erhöht	53.4
Erhöht	46.0
Verordnung	29.5

Leider kennt sich Jonas mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 1.64$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *keinen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Jonas über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

17 Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Visualisierung der Teststatistik T_D **und dem p-Wert** Tina und Paula wollten eigentlich einen Flug nach Mallorca buchen, sind jetzt aber dann doch dazu übergegangen nochmal die Aufgaben für die Statistikklausur durchzugehen. 'Kannst du mir nochmal an einer Visualisierung erklären, wie der Zusammenhang zwischen der Teststatistik aus den Daten T_D und dem p-Wert ist? Ich habe hier zig Fachbegriffe, kriege die abr nicht zusammen...', fragt Tina. Paula zuckt mit den Schultern. So genau hatte Paula jetzt auch nicht aufgepasst. Da hilft dann eventuell das YouTube Video weiter. Tina mapmft Katjes und fragt sich, was das alles soll.

Leider kennen sich Tina und Paula mit der Visualisierung der Teststatistik T_D und dem p-Wert überhaupt nicht aus und brauchen dahr Ihre Hilfe!

Beachten Sie, dass im Folgenden <u>keine numerisch korrekte Darstellung</u> verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 95%"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $-T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

