

Picosecond Jitter of Picosecond Pulses

THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in PHYSICS

Author:
Student ID:
Supervisor:
Andrea Maccarinelli
4535286
Supervisor:
Dr. Wolfgang Loeffler
Second corrector:
Dr. Evert van Nieuwenburg

Leiden, The Netherlands, July 7, 2025

Picosecond Jitter of Picosecond Pulses

Andrea Maccarinelli

Huygens-Kamerlingh Onnes Laboratory, Leiden University P.O. Box 9500, 2300 RA Leiden, The Netherlands

July 7, 2025

Abstract

Please use $\abstract\{\ldots\}$ to define an abstract in the document preamble.

Contents

1	Intr	oduction	1
2	The	ory	3
	2.1	Introduction to optical jitter	3
	2.2	Temporal characteristics of optical pulses	3
	2.3	Origins of jitter in experimental systems	3
	2.4	Measuring and interpreting optical jitter	3
3	TCS	SPC-Based Analysis of the EOM-Based Pulsed Source	5
	3.1	Experimental setup overview	5
	3.2	Data processing pipeline: from timestamps to $g_2(\tau)$	5
	3.3	Central peak identification and jitter indicators	5
4	Sys	tem-level jitter analysis using a Ti:Sa laser source	7
	4.1	Motivations and experimental setup overview	7
	4.2	TCSPC and HBT measurements: a chaotic starting point	7
	4.3	9.2	7
5	Sin	gle Photon Source Experiments	9
	5.1	QD excitation with cascaded EoMs shaped light	9
	5.2	QD excitation using Ti:Sa light pulses	9
6	Cor	clusions and outlook	11

Introduction

 $^{\circ}$ Chapter $^{\circ}$

Theory

- 2.1 Introduction to optical jitter
- 2.2 Temporal characteristics of optical pulses
- 2.3 Origins of jitter in experimental systems
- 2.4 Measuring and interpreting optical jitter

TCSPC-Based Analysis of the EOM-Based Pulsed Source

- 3.1 Experimental setup overview
- 3.2 Data processing pipeline: from timestamps to $g_2(\tau)$
- 3.3 Central peak identification and jitter indicators

System-level jitter analysis using a Ti:Sa laser source

- 4.1 Motivations and experimental setup overview
- 4.2 TCSPC and HBT measurements: a chaotic starting point
- 4.3 Troubleshooting and experimental limitations

Conclusions and outlook