

Чихэр хуваарилалт

Хонг эгч хажуугийн сургуулийн сурагчдад зориулан n хайрцаг чихэр бэлдэж байгаа. Хайрцгуудыг 0-ээс n-1 тоонуудаар дугаарласан ба тэд анх хоосон байна. i-р ($0 \le i \le n-1$) хайрцаг нь c[i] чихрийн багтаамжтай.

Хонг эгч хайрцгуудыг бэлдэхэд q өдөр зарцуулсан. j-р ($0 \le j \le q-1$) өдөр тэр l[j], r[j] ба v[j] гэсэн гурван бүхэл тоогоор тодорхойлогдох үйлдэл хийнэ. Энд $0 \le l[j] \le r[j] \le n-1$ ба $v[j] \ne 0$ байна. $l[j] \le k \le r[j]$ байх k-р хайрцаг бүрийн хувьд дараах үйлдлийг гүйцэтгэнэ:

- Хэрэв v[j]>0 бол Хонг эгч k-р хайрцаг руу чихрүүдийг нэг нэгээр нь нэмж эхлэх ба яг v[j] тооны чихэр нэмсний дараа эсвэл уг хайрцаг дүүрсний дараа зогсоно. Өөрөөр хэлбэл, хэрэв хайрцагт уг үйлдлийн өмнө p тооны чихэр байсан бол үйлдлийн дараа $\min(c[k], p+v[j])$ чихэртэй болсон байна.
- Хэрэв v[j] < 0 бол Хонг эгч k-р хайрцгаас чихрүүдийг нэг нэгээр нь хасч эхлэх ба яг -v[j] тооны чихэр хасаад эсвэл уг хайрцаг хоосон болсны дараа зогсоно. Өөрөөр хэлбэл, хэрэв хайрцагт уг үйлдлийн өмнө p тооны чихэр байсан бол үйлдлийн дараа $\max(0, p + v[j])$ чихэртэй болсон байна.

Таны даалгавар бол q өдрийн дараа хайрцаг бүрт байх чихрийн тоог олох явдал юм.

Хэрэгжүүлэлтийн мэдээлэл

Та дараах функцийг хэрэгжүүлнэ:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: n урттай массив. $0 \leq i \leq n-1$ утгуудын хувьд c[i] нь i-р хайрцгийн багтаамжийг илэрхийлнэ.
- $l,\ r$ ба v: q урттай гурван массив. j-р ($0\leq j\leq q-1$) өдөр Хонг эгч дээр дурдсан байдлаар $l[j],\ r[j]$ ба v[j] тоонуудаар тодорхойлогдох үйлдлийг хийнэ.
- Уг функц нь n урттай массивыг буцаана. Уг массивыг s гэж тэмдэглэе. $0 \le i \le n-1$ утгуудын хувьд s[i] нь q өдрийн дараа i-р хайрцагт байх чихрийн тоог илэрхийлнэ.

Жишээ

Жишээ 1

Дараах дуудалтыг авч үзье:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Энэ нь 0-р хайрцаг 10 чихрийн багтаамжтай, 1-р хайрцаг 15 чихрийн багтаамжтай, 2-р хайрцаг 13 чихрийн багтаамжтай гэсэн үг юм.

0-р өдрийн төгсгөлд 0-р хайрцагт $\min(c[0],0+v[0])=10$ тооны чихэр, 1-р хайрцагт $\min(c[1],0+v[0])=15$ тооны чихэр, 2-р хайрцагт $\min(c[2],0+v[0])=13$ тооны чихэр байсан.

1-р өдрийн төгсгөлд 0-р хайрцагт $\max(0,10+v[1])=0$ тооны чихэр, 1-р хайрцагт $\max(0,15+v[1])=4$ тооны чихэр байна. 2>r[1] тул 2-р хайрцагт байгаа чихэрний тоонд өөрчлөлт орохгүй. Өдөр бүрийн төгсгөлд байх чихрүүдийн тоог доор үзүүлэв:

Өдөр	Хайрцаг 0	Хайрцаг 1	Хайрцаг 2
0	10	15	13
1	0	4	13

Иймд уг функц [0,4,13] гэсэн буцаалт хийнэ.

Хязгаарлалт

- $1 \le n \le 200\,000$
- 1 < q < 200000
- $1 \le c[i] \le 10^9$ (бүх $0 \le i \le n-1$ утгын хувьд)
- $0 \leq l[j] \leq r[j] \leq n-1$ (бүх $0 \leq j \leq q-1$ утгын хувьд)
- $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (бүх $0 \leq j \leq q-1$ утгын хувьд)

Дэд бодлого

- 1. (3 оноо) $n, q \leq 2000$
- 2. (8 оноо) $\,v[j]>0$ (бүх $\,0\leq j\leq q-1\,$ утгын хувьд)
- 3. (27 OHOO) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 оноо) l[j] = 0 ба r[j] = n-1 (бүх $0 \le j \le q-1$ утгуудын хувьд)
- 5. (33 оноо) Нэмэлт хязгаарлалт байхгүй.

Жишээ шалгагч

Жишээ шалгагч (грейдер) нь оролтыг дараах хэлбэрээр уншина:

- мөр 1: n
- Mep 2: $c[0] \ c[1] \ \dots \ c[n-1]$
- мер 3: q
- MOP 4+j ($0 \le j \le q-1$): $l[j] \ r[j] \ v[j]$

Жишээ шалгагч нь тыны хариултыг дараах хэлбэрээр хэвлэнэ:

• Mep 1: s[0] s[1] \dots s[n-1]