

Report No: CCISE170200503

FCC REPORT

(WIFI)

Applicant: Ingram Micro Mexico, S.A. DE C.V.

Address of Applicant: Laguna de Terminos 249, Anahuac Miguel Hidalgo, Mexico

11320

Equipment Under Test (EUT)

Product Name: WIFI Tablet

Model No.: W101, H100

Trade mark: L1BRE

FCC ID: 2AK7BW101

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Feb., 2017

Date of Test: 08 Feb., to 07 Mar., 2017

Date of report issued: 07 Mar., 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	07 Mar., 2017	Original

Tested by: Zora Lee Date: 07 Mar., 2017

Test Engineer

Reviewed by: O7 Mar., 2017

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 CONTENTS	3
4		
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T	5
	5.3 TEST ENVIRONMENT AND MODE	7
	5.4 Measurement Uncertainty	
	5.5 LABORATORY FACILITY	
	5.6 LABORATORY LOCATION	
	5.7 TEST INSTRUMENTS LIST	9
6	6 TEST RESULTS AND MEASUREMENT DATA	10
	6.1 ANTENNA REQUIREMENT:	10
	6.2 CONDUCTED OUTPUT POWER	
	6.3 OCCUPY BANDWIDTH	16
	6.4 POWER SPECTRAL DENSITY	
	6.5 BAND EDGE	
	6.5.1 Conducted Emission Method	
	6.5.2 Radiated Emission Method	33
	6.6 Spurious Emission	
	6.6.1 Conducted Emission Method	
	6.6.2 Radiated Emission Method	59
7	7 TEST SETUP PHOTO	67
8	8 FUT CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	N/A
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable for Non-adaptive equipment.

5 General Information

5.1 Client Information

Applicant:	Ingram Micro Mexico, S.A. DE C.V.
Address of Applicant:	Laguna de Terminos 249, Anahuac Miguel Hidalgo, Mexico 11320
Manufacturer/ Factory:	Ingram Micro Mexico, S.A. DE C.V.
Address of Manufacturer/ Factory:	Laguna de Terminos 249, Anahuac Miguel Hidalgo, Mexico 11320

5.2 General Description of E.U.T.

Product Name:	WIFI Tablet	
Model No.:	W101, H100	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11n(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	1.71dBi	
Power supply:	Rechargeable Li-ion Battery DC3.7V-3000mAh	
Remark:	The No.: W101, H100 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.	

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCISE170200503

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone, 186 (1) 7FF 23116365

Report No: CCISE170200503

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radiated Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017					
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017					
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017					
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017					
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017					
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017					
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017					
8	Spectrum analyzer 9k-30GHz	Spectrum analyzer Rohde & Schwarz		CCIS0023	03-28-2016	03-28-2017					
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017					
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017					
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017					
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017					

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017						
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017						
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.71 dBi.

6.2 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

	vicasai cilic	dicincit Data.										
Test CH	Ма	ximum Conduct	Limit(dBm)	Result								
	1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit	l				
	Lowest	3.05	2.71	2.75	2.05							
	Middle	2.93	1.84	1.88	1.53	30.00	Pass					
	Highest	2.84	0.83	0.79	0.87							

Test plot as follows:

Lowest channel

Middle channel

Highest channel

6.3 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

model of the Market State Stat									
Test CH		6dB Emission	Limit(kHz)	Result					
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nesuit			
Lowest	10.24	16.56	17.76	36.32					
Middle	10.20	16.44	17.84 36.52 >!		>500	Pass			
Highest	10.24	16.56	17.72	36.24					
Test CH		99% Occupy	Limit(kHz)	Result					
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Ki iz)	resur			
Lowest	14.24	16.64	17.76	36.16					
Middle	14.32	16.56	17.68	36.16	N/A N/A				
Highest	14.32	16.56	17.76	36.16					

Test plot as follows:

6dB EBW

Date: 13.FEB.2017 13:01:03

Lowest channel

Date: 13.FEB.2017 13:02:42

Middle channel

Date: 13.FEB.2017 13:03:52

Highest channel

Date: 13.FEB.2017 13:05:29

Lowest channel

Date: 13.FEB.2017 13:07:47

Middle channel

Date: 13.FEB.2017 13:10:11

Highest channel

Date: 13.FEB.2017 13:12:23

Lowest channel

Date: 13.FEB.2017 13:13:47

Middle channel

Date: 13.FEB.2017 13:15:19

Highest channel

Date: 13.FEB.2017 13:17:21

Lowest channel

Date: 13.FEB.2017 13:19:24

Middle channel

Date: 13.FEB.2017 13:22:15

Highest channel

Date: 13.FEB.2017 13:25:58

Lowest channel

Date: 13.FEB.2017 13:25:30

Middle channel

Date: 13.FEB.2017 13:26:22

Highest channel

Date: 13.FEB.2017 13:26:52

Lowest channel

Date: 13.FEB.2017 13:27:19

Middle channel

Date: 13.FEB.2017 13:27:52

Highest channel

Date: 13.FEB.2017 13:28:36

Lowest channel

Date: 13.FEB.2017 13:29:14

Middle channel

Date: 13.FEB.2017 13:29:42

Highest channel

Date: 13.FEB.2017 13:30:17

Lowest channel

Date: 13.FEB.2017 13:30:49

Middle channel

Date: 13.FEB.2017 13:31:44

Highest channel

6.4 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result			
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesult	
Lowest	-6.83	-11.47	-11.31	-13.41			
Middle	-7.10	-12.19	-12.08	-13.85	8.00	Pass	
Highest	-7.04	-13.26	-11.21	-14.39			

Test plot as follows:

Date: 13.FEB.2017 08:49:08

Lowest channel

Date: 13.FEB.2017 08:53:25

Middle channel

Date: 13.FEB.2017 09:00:21

Highest channel

Date: 13.FEB.2017 09:17:53

Lowest channel

Date: 13.FEB.2017 09:19:10

Middle channel

Date: 13.FEB.2017 09:19:45

Highest channel

Date: 13.FEB.2017 09:22:54

Lowest channel

Date: 13.FEB.2017 09:23:22

Middle channel

Date: 13.FEB.2017 09:24:08

Highest channel

Date: 13.FEB.2017 09:24:48

Lowest channel

Date: 13.FEB.2017 09:25:27

Middle channel

Date: 13.FEB.2017 09:26:04

Highest channel

6.5 Band Edge

6.5.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel Highest channel

6.5.2 Radiated Emission Method

Test Requirement:	ECC Part 15 C	Section 15.2	00 and 15 205					
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW		BW	Remark		
	Above 1GHz	Peak RMS	1MHz 1MHz		<u>ИНz</u> ИНz	Peak Value Average Value		
Limit:	Frequenc		mit (dBuV/m @	•	VIITZ	Remark		
Littit.	•		54.00	0111)	A	verage Value		
	Above 1GI	1z	74.00			Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-		
Test setup:	150cm	AE EUT (Turntable)	Hor 3m Ground Reference Plane	rn Antenna	Antenna Tor	wer		
Test Instruments:	Refer to section	5.6 for deta	ils					
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							
	•							

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: WIFI Tablet EUT

Model : W101

Test mode : 802.11b-L mode Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% 101KPa Test Engineer: Zora REMARK :

шши			Antenna Factor				Limit Line		Remark
<u>-</u>	MHz	dBu∇	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2330.102	20.36	23.67	4.63	0.00			-25.34	
2	2330.102	10.17	23.67	4.63	0.00	38.47	54.00	-15.53	Average
3	2390.000	16.47	23.68	4.69	0.00	44.84	74.00	-29.16	Peak
4	2390.000	7.01	23.68	4.69	0.00	35.38	54.00	-18.62	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : WIFI Tablet

: W101 Model

Test mode : 802.11b-L mode

Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Zora

EMARK	:								
			Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	2335. 292	21.57	23.67	4.63	0.00	49.87	74.00	-24.13	Peak
2	2335.292	10.13	23.67	4.63	0.00	38.43	54.00	-15.57	Average
2	2390.000	18.67	23.68	4.69	0.00				
4	2390.000	7.01	23.68	4.69	0.00	35.38	54.00	-18.62	Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : WIFI Tablet

Model : W101

: 802.11b-H mode Test mode

Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

αr	n .									
		ReadAntenna					Limit			
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		+
	2483.500					46.52				
	2483,500	7, 51	23, 70	4, 81	0.00	36, 02	54, 00	-17.98	Average	

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : WIFI Tablet Condition

EUT

: W101 Model

Test mode : 802.11b-H mode Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

m	r :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹		<u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	19.21	23.70	4.81	0.00	47.72	74.00	-26.28	Peak
)	2483, 500	7.47	23, 70	4.81	0.00	35, 98	54,00	-18.02	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : WIFI Tablet Condition

EUT

Model : W101

: 802.11g-L mode Test mode

Power Rating: DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

TU.									
	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹	dB/m	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
4000 00000	0.827 0.827	19.51 10.14	23.67 23.67	4.64 4.64	0.00		74.00		
239	0.000	15.87	23.68	4.69	0.00	44.24	74.00	-29.76	
239	0.000	7.03	23.68	4.69	0.00	35.40	54.00	-18.60	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : WIFI Tablet Condition

EUT

: W101 Model

Test mode : 802.11g-L mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

	Freq		Antenna Factor						Remark
-	MHz	dBu₹	<u>dB</u> /π		<u>ab</u>	dBuV/m	dBu√/m	dB	
1 2	2338.944 2338.944				0.00 0.00				
3	2390.000 2390.000	17.27	23.68	4.69	0.00	45.64	74.00	-28.36	

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : WIFI Tablet Condition

EUT

Model : W101

Test mode : 802.11g-H mode

Power Rating: DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

EMAR	. A								
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500								
2	2483.500	7.40	23.70	4.81	0.00	35.91	54.00	-18.09	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : WIFI Tablet Condition

EUT

: W101 Model

Test mode : 802.11g-H mode Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

a	· .								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	20.52	23.70	4.81	0.00	49.03	74.00	-24.97	Peak
	2483, 500	7.46	23, 70	4.81	0.00	35, 97	54.00	-18.03	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : WIFI Tablet Condition

EUT

: W101 Model

Test mode : 802.11n20-L mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

1 2347.042 21.29 23.67 4.65 0.00 2 2347.042 10.17 23.67 4.65 0.00	Limit Over Level Line Limit Remark
2 2347.042 10.17 23.67 4.65 0.00	dBuV/m dBuV/m dB
	49.61 74.00 -24.39 Peak 38.49 54.00 -15.51 Average 45.31 74.00 -28.69 Peak 35.41 54.00 -18.59 Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : WIFI Tablet Condition

EUT

: W101 Model

Test mode : 802.11n20-L mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK

THENT									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	−dBuV	$\overline{-dB}/\overline{m}$		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	2333.193	21.85	23.67	4.63	0.00	50.15	74.00	-23.85	Peak
2	2333.193	10.15	23.67	4.63	0.00	38.45	54.00	-15.55	Average
3	2390.000					46.97			
4	2390,000	7.01	23.68						Average

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : WIFI Tablet

: W101 Model

: 802.11n20-H mode Test mode

Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

unn									
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∇	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2483,500 2483,500								

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT WIFI Tablet

: W101 Model

Test mode : 802.11n20-H mode Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

1117									
	Freq		Antenna Factor						
-	MHz	dBuV	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500	17.000 (10.000)							
	2483.500	1.42	25.70	4.81	0.00	35.93	54.00	-18.07	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

802.11n (H40)

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : WIFI Tablet

Model : W101

Test mode : 802.11n40-L mode

Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

$\mathbf{n}\mathbf{n}$	1 :									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
<u> </u>	MHz	dBu∜	$\overline{dB}/\overline{m}$		<u>db</u>	dBuV/m	dBu√/m	<u>dB</u>		-
	2353.144	21.88	23.67	4.65	0.00	50.20	74.00	-23.80	Peak	
	2353.144	10.15	23.67	4.65	0.00	38.47	54.00	-15.53	Average	
	2390.000	20.78	23.68	4.69				-24.85		
	2390,000	7.05	23.68	4.69	0.00	35, 42	54.00	-18.58	Average	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: WIFI Tablet EUT

: W101 Model

Test mode : 802.11n40-L mode

Power Rating: DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Zora REMARK:

EWWZ									
	Freq		Antenna Cable Pre Factor Loss Fac					Over Limit	Remark
-	MHz	dBu∜	dB/m	dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2343.878	20.50	23.67	4.65	0.00	48.82	74.00	-25.18	Peak
2	2343.878	10.11	23.67	4.65	0.00	38.43	54.00	-15.57	Average
3	2390.000	15.89	23.68	4.69		44.26			
4	2390.000	7.05	23.68	4.69					Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : WIFI Tablet

: W101 Model

: 802.11n40-H mode Test mode

Power Rating : DC 12V

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

ידניטוניד		Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBuV	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2483.500	19.88	23.70	4.81	0.00	48.39	74.00	-25.61	Peak
2	2483.500	7.40	23.70	4.81	0.00	35.91	54.00	-18.09	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : WIFI Tablet

Model : W101

Test mode : 802.11n40-H mode

Power Rating: DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

	Read	Antenna	Cable	Preamp		Limit	Over	
Freq		Factor						Remark
MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500					47.65 35.95			Peak Average

Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6 Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Test mode: 802.11b

Date: 9.FEB.2017 09:40:49

30MHz~25GHz

Date: 9.FEB.2017 09:42:58

30MHz~25GHz

Date: 9.FEB.2017 09:42:25

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 9.FEB.2017 09:47:12

30MHz~25GHz

Date: 9.FEB.2017 09:45:59

30MHz~25GHz

Date: 9.FEB.2017 09:45:14

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 9.FEB.2017 09:51:33

30MHz~25GHz

Date: 9.FEB.2017 09:53:30

30MHz~25GHz

Date: 9.FEB.2017 09:54:13

30MHz~25GHz

Test mode: 802.11n(H40)

Date: 9.FEB.2017 09:55:52

30MHz~25GHz

Date: 9.FEB.2017 09:56:33

30MHz~25GHz

Date: 9.FEB.2017 09:57:24

30MHz~25GHz

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205				
Test Method:	ANSI C63.10:201	13						
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m Frequency Detector RBW VBW Remark							
Receiver setup:	Frequency	Detect	tor	RBW	V	BW	Remark	
·	30MHz-1GHz Qu		oeak	120KHz	300)KHz	Quasi-peak Value	
	Δh0νρ 1(+H2							
		RMS	-			ЛHz		
Limit:			Limit	,	m)			
							•	
	54.0 Average Value							
	Above 1GHz							
Test Procedure:	1GHz)/1.5m The table wa highest radia 2. The EUT wa antenna, wh tower. 3. The antenna the ground the Both horizon make the me 4. For each suscase and the meters and to find the m 5. The test-reconspecified Ba 6. If the emission the limit spen of the EUT whave 10dB m.	(above 1) as rotated ation. as set 3 m ich was r a height is o determinatal and v easurements spected e en the an the rota to aximum eiver system andwidth on level of cified, the would be margin wo	GHz) d 360 meters mount s varied in the vertical ent. emissing able work with Moof the en test report ould b	above the gradegrees to degrees to degrees to degrees to degree away from the ed on the top ed from one remaximum valued. The edge are set to Peadaximum Hole EUT in peaking could be ted. Otherwise re-tested of degrees to degree away are to peaking could be ted. Otherwise re-tested of degrees to degree away are to peaking could be ted. Otherwise re-tested of degrees to degree to degrees to degree to degrees to degrees to degrees to degree to degrees to degrees to degree to degrees to degree to degree to degree to degree to degree to degrees to degree to degr	he into of a meter value s of the was a condition of the was a condi	at a 3 sine the erferent variable to four of the enterent	meter chamber. e position of the nce-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 es to 360 degrees	

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : WIFI Tablet Condition

EUT : W101 Model Test mode : Wifi mode

Power Rating: DC 12V Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

WINT										
		Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu₹	<u>dB</u> /π	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1	45.855	33.95	17.24	1.29	29.85	22.63	40.00	-17.37	QP	
1 2 3	143.830	35.22	11.34	2.44	29.25	19.75	43.50	-23.75	QP	
3	167.824	37.55	9.82	2.64	29.07	20.94	43.50	-22.56	QP	
4 5	210.786	39.75	10.70	2.86	28.76	24.55	43.50	-18.95	QP	
5	437.120	36.11	16.13	3.17	28.85	26.56	46.00	-19.44	QP	
6	729.358	31.15	19.92	4.29	28.56	26.80	46.00	-19.20	QP	

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : WIFI Tablet Condition

EUT Model : W101 Test mode : Wifi mode Power Rating : DC 12V

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora

REMARK

231111111111111111111111111111111111111									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu∜	<u>dB</u> /m	dB	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	45.375	43.74	17.32	1.29	29.86	32.49	40.00	-7.51	QP
2	117.773	41.59	11.48	2.14	29.40	25.81	43.50	-17.69	QP
3	131.758								
1 2 3 4 5	214.514	42.86	11.02	2.85	28.74	27.99	43.50	-15.51	QP
5	296.184	38.10	12.53	2.93	28.46	25.10	46.00	-20.90	QP
6	441.743	37.58	16.15	3.18	28.86	28.05	46.00	-17.95	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	54.69	36.06	6.81	41.82	55.74	74.00	-18.26	Vertical	
4824.00	53.73	36.06	6.81	41.82	54.78	74.00	-19.22	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.76	36.06	6.81	41.82	41.81	54.00	-12.19	Vertical	
4824.00	41.26	36.06	6.81	41.82	42.31	54.00	-11.69	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	53.03	36.32	6.85	41.84	54.36	74.00	-19.64	Vertical	
4874.00	53.44	36.32	6.85	41.84	54.77	74.00	-19.23	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.56	36.32	6.85	41.84	41.89	54.00	-12.11	Vertical	
4874.00	40.82	36.32	6.85	41.84	42.15	54.00	-11.85	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	54.42	36.58	6.89	41.86	56.03	74.00	-17.97	Vertical
4924.00	53.17	36.58	6.89	41.86	54.78	74.00	-19.22	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	40.52	36.58	6.89	41.86	42.13	54.00	-11.87	Vertical
4924.00	40.71	36.58	6.89	41.86	42.32	54.00	-11.68	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	53.66	36.06	6.81	41.82	54.71	74.00	-19.29	Vertical	
4824.00	52.83	36.06	6.81	41.82	53.88	74.00	-20.12	Horizontal	
Test mode: 80	02.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	40.57	36.06	6.81	41.82	41.62	54.00	-12.38	Vertical	
4824.00	40.95	36.06	6.81	41.82	42.00	54.00	-12.00	Horizontal	

Test mode: 80)2.11g		Test char	nel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.89	36.32	6.85	41.84	54.22	74.00	-19.78	Vertical	
4874.00	53.12	36.32	6.85	41.84	54.45	74.00	-19.55	Horizontal	
Test mode: 80)2.11g		Test char	nel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.35	36.32	6.85	41.84	41.68	54.00	-12.32	Vertical	
4874.00	40.45	36.32	6.85	41.84	41.78	54.00	-12.22	Horizontal	

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	53.75	36.58	6.89	41.86	55.36	74.00	-18.64	Vertical	
4924.00	53.60	36.58	6.89	41.86	55.21	74.00	-18.79	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	40.51	36.58	6.89	41.86	42.12	54.00	-11.88	Vertical	
4924.00	40.56	36.58	6.89	41.86	42.17	54.00	-11.83	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	53.23	36.06	6.81	41.82	54.28	74.00	-19.72	Vertical
4824.00	52.75	36.06	6.81	41.82	53.80	74.00	-20.20	Horizontal
Test mode: 8	02.11n(H20)		Test char	Test channel: Lowest			rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	40.53	36.06	6.81	41.82	41.58	54.00	-12.42	Vertical
4824.00	40.89	36.06	6.81	41.82	41.94	54.00	-12.06	Horizontal

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.87	36.32	6.85	41.84	54.20	74.00	-19.80	Vertical	
4874.00	53.25	36.32	6.85	41.84	54.58	74.00	-19.42	Horizontal	
Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.52	36.32	6.85	41.84	41.85	54.00	-12.15	Vertical	
4874.00	40.43	36.32	6.85	41.84	41.76	54.00	-12.24	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	53.63	36.58	6.89	41.86	55.24	74.00	-18.76	Vertical	
4924.00	52.88	36.58	6.89	41.86	54.49	74.00	-19.51	Horizontal	
Test mode: 8	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	40.25	36.58	6.89	41.86	41.86	54.00	-12.14	Vertical	
4924.00	40.29	36.58	6.89	41.86	41.90	54.00	-12.10	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	52.69	36.06	6.81	41.82	53.74	74.00	-20.26	Vertical
4844.00	52.44	36.06	6.81	41.82	53.49	74.00	-20.51	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	40.26	36.06	6.81	41.82	41.31	54.00	-12.69	Vertical
4844.00	40.19	36.06	6.81	41.82	41.24	54.00	-12.76	Horizontal

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.30	36.32	6.85	41.84	53.63	74.00	-20.37	Vertical	
4874.00	52.68	36.32	6.85	41.84	54.01	74.00	-19.99	Horizontal	
Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.36	36.32	6.85	41.84	41.69	54.00	-12.31	Vertical	
4874.00	40.27	36.32	6.85	41.84	41.60	54.00	-12.40	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	53.07	36.45	6.87	41.85	54.54	74.00	-19.46	Vertical
4904.00	52.74	36.45	6.87	41.85	54.21	74.00	-19.79	Horizontal
Test mode: 80	Test mode: 802.11n(H40)		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	40.32	36.45	6.87	41.85	41.79	54.00	-12.21	Vertical
4904.00	40.21	36.45	6.87	41.85	41.68	54.00	-12.32	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.