

Sequence Modeling

Recurrent Neural Networks and LSTM

N. Rich Nguyen, PhD **SYS 6016**

Text: "I am comfortably watching this lecture at home"

Stock prices:

"I am comfortably watching this lecture at home"

given these words

predict the next word

We can use a fixed window:

"I am comfortably watching this lecture at home"

given these predict the two words next word

Problem 1: Long-term Dependencies

One-hot encoding tells us what each word is: [1 0 0 0 0 0 1 0 0 0] → prediction lecture at

Using a short window (2 words), we can't model long-term dependencies:

"The coronavirus is originated in China, and We should not call it the _____"

not enough info!

We need information from the distant past...

Problem 2: Word Order in the Sequence

What if we use the entire sequence as a bag-of-words vector?

"I am comfortably watching this lecture at"

*bag-of-words"

[0 1 0 0 1 0 1 1 ... 0 0 1 1 0 0 1 0 0 0]

However, bag of words does **not preserve the order** of words in the sequence.

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Problem 3: Parameter Sharing

What if we use a very long fixed window:

"I am comfortably watching this lecture at home"

given these words predict the next word

```
[1 0 0 0 0 0 0 0 1... 0 1 0 0 0 0 0 1 0 ] \rightarrow prediction

| am ... | lecture at
```

Each of these inputs has separate parameters which are not shared across the sequence, so a neural network will likely to learn different parameters to "I am" if it appears at different part of the sequence:

```
[0\ 1\ 0\ 0\ 0\ ...\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ ...\ ] 	o prediction?
I \qquad am \qquad ...
```

→ needs to share the same parameters across several time steps.

Sequence Modeling Criteria

To model sequence, we will need to:

- 1. Handle variable-length sequence while tracking long-term dependencies
- Maintain information about order
- 3. Share parameters across the sequence

Today, we will use **Recurrent Neural Networks (RNNs)** as an approach to *solve* sequence modeling problems.

Recurrent Neural Networks (RNNs)

Recurrent Neural Network

Want to predict y at some time step t

 $\mathbf{\hat{y}}_t$ \mathbf{V} \mathbf{h}_t \mathbf{U} \mathbf{x}_t

We can process a sequence of vector **x** by applying a **recurrence** formula at every time step:

Note that **the same** function and set of parameter are used at every time step.

The state consists of a single "hidden" vector **h**_t:

$$\mathbf{h}_t = anh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t)$$

$$\hat{\mathbf{y}}_t = \mathbf{V}\mathbf{h}_t$$

Recurrent Computational Graph

Unfolding the network and reuse the same weight matrix at every timestep

Training RNNs

Training RNN: Vanishing/exploding gradients

Computing the gradient w.r.t h_0 involves many factors of \mathbf{w} with repeated gradient computation which can be problematics:

- Many values > 1: exploding gradients (rarely happen, but damaging) → needs to scale big gradients using gradient clipping?
- Many values < 1: vanishing gradients (happen most of the time) → only capture short-term dependencies

DATA SCIENCE

Problem of Training RNN over long sequence

- A standard RNN can only capture short-term dependencies.
- Training a RNN on long sequences suffer from the vanishing gradients problem
- • further back time steps have smaller and smaller gradients
- ⇒ this training produces only parameters that can predict short-term dependencies.

"Watching lectures at home is _____"

"COVID-19 is originated from China, and ..., we should not call it the

Although RNN should theoretically be able to retain information about inputs seens many timesteps before, in practice, such long-term dependencies are very difficult to learn²

A solution is to use a more complex recurrent unit with gates to control how the information is passed through

⇒ Long Short-term Memory (LSTM)

Long Short-term Memory (LSTM)

In a standard RNN, repeating modules contain a simple computation node

$$\mathbf{h}_t = anh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t)$$

Long Short-Term Memory (LSTM)

Proposed by **Hochreiter** and **Schmidhuber** in 1997

LSTM repeating modules contain interacting layers that control information flow

LSTM Structure

- Introduce self-loops to produce paths where the gradient can flow for long duration and make the weight of this self-loop conditioned on the context.
- LSTM maintains a cell state C₊ where it's easy for information flow
- Information is added or removed to cell state through gates
- Gates let information through via a sigmoid neural layer and pointwise multiplication

LSTM Core Idea

An LSTM cell learns to:

- 1. **Forget** irrelevant parts of the previous state
- 2. **Store** relevant parts in a long-term cell state
- 3. **Update** selectively its cell state
- 4. **Output** its cell state whenever needed

Example: Bob and Alice are having lunch. Bob likes apples. Alice likes oranges. She is eating an orange.

1. Forget Gate: Forget irrelevant information

Bob and Alice are having lunch. Bob likes apples. Alice likes oranges. She is eating an orange.

$$\mathbf{f}_t = \sigma(\mathbf{W}_f(\mathbf{h}_{t-1}, \mathbf{x}_t))$$

- Use previous cell output and input
- Sigmoid layer: values either 0 or 1

 → "completely forget" or "completely keep"

Example: Forget the gender pronoun of previous subject (Bob)

2. Store Gate: Identify new info to be stored

$$egin{aligned} \mathbf{i}_t &= \sigma(\mathbf{W}_i(\mathbf{h}_{t-1}, \mathbf{x}_t)) \ \mathbf{ ilde{C}}_t &= anh(\mathbf{W}_C(\mathbf{h}_{t-1}, \mathbf{x}_t)) \end{aligned}$$

- Sigmoid: to decide what values to update
- Tanh: to generate new vector of values to be added to the cell state.

Example: Add gender of new subject (Alice) to replace that of old subject (Bob).

3. Update Gate: Update cell state

$$\mathbf{C}_t = \mathbf{f}_t * \mathbf{C}_{t-1} + \mathbf{i}_t * \mathbf{\tilde{C}}_t$$

- Apply forget operation to previous internal cell state
- Then, add new values, scaled by how much we decided to update

Example: Actually drop old info and add new info about subject's gender.

4. Output Gate: Output filtered cell state

$$\mathbf{o}_t = \sigma(\mathbf{W}_o(\mathbf{h}_{t-1}, \mathbf{x}_t))$$

$$\mathbf{h}_t = \mathbf{o}_t * anh(\mathbf{C}_t)$$

- Sigmoid: to decide what parts of cell state to output
- Tanh: squashes values between -1 and 1
- Multiplication: output filtered version of cell state

Example: Having seen a subject (Alice), may output info relating to a pronoun (She).

Uninterrupted gradient flow!

$$\mathbf{C}_t = \mathbf{f}_t * \mathbf{C}_{t-1} + \mathbf{i}_t * \mathbf{\tilde{C}}_t$$

Summary

- RNNs is used to solving sequence modeling problem.
- **LSTM** maintains a separate cell state and uses gates to control the information flow: forget, store, update, and output gates.
- Backpropagation can be done with uninterrupted gradient flow
- Better/simpler architectures are a hot topic of research → the rise of BERT in 2018 (will be discussed in the next video)

Bonus Slides

Toy Example: A Moody Chef

Apple pie

Burger

Chicken

Moods based on the weather

Sunny Same as yesterday

Rain

Next dish

Cooking Schedule

Recurrent Neural Network

Teacher Forcing Networks

RNN has recurrent connections from outputs leading back into hidden states

Exploding/vanishing gradients

the Jacobian of the tanh associated with the hidden unit at time t