Tail 687 Cruise Efficiency — Problem Statement

DATA 5100 — Fall 2025 — Group Project

Team: Duy Nguyen · Hemant Kumaar Aruljothi · Prithika Kandasamy

Executive Summary

We analyze NASA DASHlink flight-recorder data for Aircraft **Tail 687** to identify **actionable** levers that reduce **cruise fuel burn**. Focusing on altitude–speed choices under real winds and weight, we will produce interpretable, operations-ready recommendations (e.g., efficient altitude–Mach bands by weight and along-track wind) rather than generic correlations.

Research Question & Objectives

Primary question:

How do altitude and airspeed (Mach/TAS) combinations affect fuel efficiency during steady-state cruise for Tail 687, and what cruise profiles are optimal under varying wind and aircraft weight?

Objectives:

- 1. Quantify marginal effects on total fuel flow (FF_total) from altitude, Mach, along-track wind, angle of attack, and weight.
- 2. Map efficient operating bands (Altitude×Mach) across wind/weight regimes.
- 3. Screen engine-level dispersion (FF vs. N1/EGT) for potential maintenance/efficiency issues.

Data & Analytical Sample

- **Source:** NASA DASHlink (Tail 687), 2012: **652** flights, **186** parameters, mixed sampling rates.
- Cruise-capable flights: 312 flights reached > 25,000 ft; we include all 312 to leverage maximum statistical power.
- Sampling strategy: Restrict to 4 Hz signals to avoid interpolation and ensure perfect time alignment.

- Cruise definition: Altitude > 25,000 ft; |altitude rate| ≤ 500 ft/min; persistent windows (exclude transient level-offs meaning we remove short periods where the aircraft briefly levels off (stops climbing or descending for a moment) but does not remain in steady cruise).
 - We only include segments where the aircraft is consistently at cruise altitude and stable, not just passing through or pausing briefly before changing altitude again.
- Final analytical set: ~1,882,573 cruise records (~130 hr at 4 Hz).
- Outliers checks: Alt 25–35 kft; Mach 0.512–0.748 (typ. 0.69–0.72); mean N1 \approx 91% ($\sigma \approx 3\%$); EGT ≈ 557 °C ($\sigma \approx 22$ °C).
- Cleaning: Removed ~0.4% boundary points (FF outliers consistent with climb/descent bleed-through). No missingness in selected 4 Hz variables.

Variables & Feature Engineering

Target. FF_1 total (lbs/hr) = FF_1 + FF_2 + FF_3 + FF_4 . (We will check engine-level dispersion for asymmetries.)

Predictors (initial set):

- **Engine performance:** N1 (avg), N2 (avg), EGT (avg).
- **Flight conditions & controls:** Pressure altitude, Mach, TAS, corrected angle of attack (AOAC), PLA_{1...4}, N1T/N1C.
- Environment: Decompose winds into along-track (head/tail) and cross-track components.
- **Aircraft state (derived): Weight(t)** via initial fuel quantity minus integrated FF_total (synchronizes 1 Hz to 4 Hz).

Collinearity & interactions:

We will investigate to diagnose with correlations/VIF; prefer parsimonious sets (e.g., Mach over TAS if redundant). Include **Altitude**×**Mach**, **Weight**×**Mach**, **Along-wind**×**Mach** to capture regime dependence.

Methods & Inference Plan

Exploratory Data Analysis:

• Heatmaps/contours of FF total vs. (Altitude, Mach).

- Partial-residual diagnostics for AOAC, along-wind, weight.
- Per-engine FF vs. N1/EGT to flag asymmetric loads.

Modeling (inference-first):

- Multiple linear regression with interpretable coefficients (e.g., +0.01 Mach \rightarrow $+\Delta FF$ total at fixed Altitude/Wind/Weight).
- Sensitivity across alternative specifications (N1 vs. PLA vs. N2).
- Robust SEs for time correlation (cluster-robust/HAC); optional altitude-band fixed effects.

Interpretation:

Our plan is to report a **practical effect sizes** (lbs/hr, % change) and **decision charts** (efficient Altitude×Mach bands by wind/weight) with uncertainty. We will go through in detail in the notebook.

Scope note. We are aware that observational data are limited to causal claims (ATC constraints, comfort, fuel policies unobserved). We aim for physics-consistent associations and operationstestable guidance.

Expected Deliverables

- 1. Cruise efficiency maps: Altitude×Mach grids predicting FF_total, stratified by weight and along-track wind.
 - Stratified means the cruise efficiency maps (Altitude × Mach grids predicting total fuel flow) are separated into groups based on aircraft weight and along-track wind. This would allow us to identify how optimal cruise settings change depending on these factors.
- **2. Marginal-effects table** (95% CIs) for key levers (Altitude, Mach, AOAC, along-wind, Weight).
- **3.** Engine-health snapshot: per-engine FF vs. N1/EGT dispersion.
- **4. Operational playbook:** concrete targets (e.g., "At 29–31 kft and weight W, fly Mach 0.70-0.71 when headwind $\geq X$ kt").

Risks & Limitations

- **Endogeneity/confounding:** route/ATC/payload; partially mitigated by conditioning on weight/wind and steady-state cruise filter.
- **Generalizability:** Tail- and era-specific.
- **Sensors/rates:** 4 Hz restriction removes some high-rate dynamics but preserves core cruise physics.
- **Actionability:** Recommendations require operational validation.

Project Plan & Roles

Two meetings/week: (1) planning/strategy; (2) coding/QA. Minutes shared with instructor (fischer9@seattleu.edu). Day-to-day via GitHub (issues/PRs).

Initial sprint (3 tasks):

- Task 1 .mat data dictionary (Hemant & Duy): enumerate fields (data, Rate, Units, Description); export CSV dictionary.
- Task 2 4 Hz master table (Prithika & Duy): finalize variable list; extract aligned 4 Hz signals per flight; stack; add flight_id.
- Task 3 Cruise filter & QA (Collaborative; domain review by Prithika): apply filters; drop non-operational segments (e.g., N1<15%); fix impossibles; produce clean EDA outputs.

Tools & Reproducibility

- **Python:** pandas/NumPy (ETL), SciPy (utils), statsmodels & scikit-learn (models), matplotlib & seaborn (viz).
- **Repro:** requirements.txt, data dictionary CSV, deterministic ETL script; GitHub for code/reviews.
- **Compute:** In-memory pandas is sufficient for post-filter sizes.

References

• Boeing Commercial Airplanes. (2024). The Boeing ecoDemonstrator Program [Backgrounder]. Boeing.

- Boeing. (2024). ecoDemonstrator Program. Boeing Sustainability. [Link]
- Matthews, B. (2012). Flight Data for Tail 687 [Dataset]. NASA DASHlink (C3).

Appendix: Key Quantities

- 652 total flights; **312** with cruise > 25 kft.
- ~1.88 M 4 Hz cruise records (~130 hr).
- Cruise ranges: Alt 25–35 kft; Mach 0.512–0.748; mean N1 \approx 91%; mean EGT \approx 557 °C.
- Outlier removal: ~0.45% boundary points.