

Automation of Generating Registry Reports

Hendrik von Kentzinsky¹, Laura A. Machlab¹, Karim Rizwan Nathani¹, Sufyan Ibrahim¹, Sarah E. Johnson¹, Mohamad Bydon¹ - ¹Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN

BACKGROUND

QOD TUMOR REGISTRY

- ➤ NeuroPoint Alliance¹ collects surgical outcome data of various US clinics
- ➤ The QOD Tumor registry is managed by Mayo Clinic and hosted by REDCap²

QOD TUMOR SITE REPORTS

- Individualized site reports summarize surgical outcomes and provide benchmarks
- > Each report currently comprises
 - 115 pages
 - 25 figures
 - 26 tables
 - 100+ variables

OPERATIONAL FLOW

PREVIOUS PROCEDURE

OBJECTIVE

To reduce the time spent on repetitive tasks, while not compromising on quality

METHODS

- ➤ Developed Python scripts⁴ for generating statistics, tables, figures, and reports altogether.
- Used libraries/packages:
 - Reportlab³ (pdf generation)
 - Sklearn & Statsmodels (statistics)
 - Numpy & Pandas (data handling)
 - Matplotlib & Seaborn (figures)

RESULTS

UPDATED PROCEDUREWORKLOAD: 2-3 MINUTES

DATA FLOW

CONCLUSIONS

After an initial time investment, the automation of generating reports

- > saves time ongoingly every quarter year the report is due
- > reduces human-made error by streamlining statistics generation
- eases implementation of adding more sites to the registry
- > is being scaled up to other registry reports
- > is generalizable to other report types

REFERENCES

- 1. https://www.neuropoint.org
- 2. https://redcap2.mayo.edu/redcap
- 3. https://docs.reportlab.com

