Módulo 3: Aprendizaje Supervisado

3.4. Árboles de decisión

Rafael Zambrano

rafazamb@gmail.com

Clasificación

Regresión

Cliente	Edad	Trabaja	Hipoteca	Ingresos
А	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
С	48	NO	NO	Bajos
D	67	NO	SÍ	Bajos
Е	18	SÍ	NO	Bajos

- Pueden utilizarse en regresión y clasificación
- ¿Qué variable utilizar para segmentar en cada nodo?

Cliente	Edad	Trabaja	Hipoteca	Ingresos
А	32	SÍ	SÍ	Altos
В	25	SÍ	SÍ	Altos
С	48	NO	NO	Bajos
D	67	NO	SÍ	Bajos
E	18	SÍ	NO	Bajos

 Hay que medir cómo de bien separan las variables candidatas a la variable objetivo

 Imaginemos que para un dataset completo obtenemos los siguientes resultados

Hipoteca Sí No				
Ingresos		Ingr	Ingresos	
Altos	Bajos	Altos	Bajos	
105	39	34	125	

- Normalmente, ninguna de las variables consigue separar perfectamente a la variable objetivo (existe impureza)
- La métrica más común para medir impurezas se conoce como "Gini"

- Impureza de Gini, para cada nodo hoja:
 - 1- (probabilidad de la clase $1)^2$ (probabilidad de la clase $2)^2$

Impureza de Gini total de la variable "Trabaja":

$$0.35 \cdot \left(\frac{164}{164 + 133}\right) + 0.37 \cdot \left(\frac{133}{164 + 133}\right) = \mathbf{0.36}$$

- Impureza de Gini total de la variable "Trabaja": 0.360
- Impureza de Gini total de la variable "Hipoteca": 0.364
- La variable "trabaja" tiene menos impureza, por lo que funciona mejor a la hora de separar la variable objetivo, utilizándose como nodo raíz
- Este proceso se repite en los nodos intermedios con las variables distintas a la del nodo raíz
- Un nodo se convierte en hoja cuando ninguna variable separa mejor el resultado de ese nodo

 Gini (nodo): 1 -

Pasos para construir un árbol de decisión:

- Calcular el índice de Gini para cada variable
- 2. Si el nodo en sí tiene el menor Gini, se convierte en hoja
- Si utilizar una variable para separar mejora el resultado, se utilizará la variable con el menor Gini

Árboles y variables numéricas

Edad	Ingresos
32	Altos
25	Altos
48	Bajos
67	Bajos
18	Bajos

¿Cómo determinar cuál es el mejor corte para dividir el target?

- 1) Ordenar de menor a mayor
- 2) Calcular la media para pares adyacentes
- 3) Calcular el índice Gini para cada media
- 4) Escoger el corte que tenga el menor Gini

Árboles y variables categóricas

Estado civil	Ingresos
Soltero	Altos
Casado	Altos
Viudo	Bajos
Casado	Bajos
Soltero	Bajos

Se calcula el índice Gini para todas las combinaciones y se escoge el menor

Árboles de decisión en R

En R, podemos crear árboles de decisión con la librería rpart

```
library("rpart")
library("rpart.plot")
tree <- rpart(Species ~ ., data = iris, method = "class")</pre>
rpart.plot(tree)
                                                      setosa
                                                     .33 .33 .33
                                                                           virginica
                                                      100%
                                               yes -Petal.Length < 2.5 - no
                                                                 versicolor
                                                                 .00 .50 .50
                                                               Petal.Width < 1.8
                                                         versicolor
                                                                         virginica
                                        1.00 .00 .00
                                                         .00 .91 .09
                                                                         .00 .02 .98
```

¡Gracias!

Contacto: Rafael Zambrano

rafazamb@gmail.com