Abdulah Abrahim Problem Set 1 Due: Feb. 18, 2025

(1) The Poisson distribution has probability mass function

$$p(y_i|\theta) = \frac{\theta^{y_i}e^{-\theta}}{y_i!}, \qquad \theta > 0, \qquad y_i = 0, 1, \dots$$
 (1)

and let y_1, \ldots, y_n be random sample from this distribution.

- 1. Show that the gamma distribution $\mathcal{G}(\alpha, \beta)$ is a conjugate prior distribution for the Poisson distribution.
- 2. Show that \bar{y} is the MLE for θ .
- 3. Write the mean of the posterior distribution as a weighted average of the mean of the prior distribution and the MLE.
- 4. What happens to the weight on the prior mean as *n* becomes large?

Solution to Problem 1

1. The Gamma distribution is conjugate to the Poisson likelihood. The prior $\theta \sim \mathcal{G}(\alpha, \beta)$ has function:

$$p(\theta) \propto \theta^{\alpha - 1} e^{-\beta \theta}$$

Given data y_1, \ldots, y_n , the posterior is:

$$p(\theta|y) \propto \theta^{\sum y_i + \alpha - 1} e^{-(n+\beta)\theta}$$

This is $G(\alpha + \sum y_i, \beta + n)$, confirming it is a conjugate prior.

2. \bar{y} is the MLE for θ , since log-likelihood is:

$$\ell(\theta) = \sum y_i \log \theta - n\theta - \sum \log(y_i!)$$

Taking derivative θ :

$$\frac{d\ell}{d\theta} = \frac{\sum y_i}{\theta} - n = 0 \implies \hat{\theta} = \bar{y}$$

3. Posterior mean $E[\theta|y] = \frac{\alpha + \sum y_i}{\beta + n}$. Let prior mean $\mu_0 = \alpha/\beta$. Then:

$$E[\theta|y] = \left(\frac{\beta}{\beta+n}\right)\mu_0 + \left(\frac{n}{\beta+n}\right)\bar{y}$$

SPRING 2025: ECON 3120

4. As $n \to \infty$, the weight on μ_0 ($\beta/(\beta+n)$) approaches 0. The posterior mean converges to the MLE.

(2) Consider the following two sets of data obtained after tossing a die 100 and 1000 times, respectively:

n	1	2	3	4	5	6
100	19	12	17	18	20	14
1000	190	120	170	180	200	140

Suppose you are interested in θ_1 , the probability of obtaining a one spot. Assume your prior for all the probabilities is a Dirichlet distribution, where each $\alpha_i = 2$. Compute the posterior distribution for θ_1 for each of the sample sizes in the table. Plot the resulting distribution and compare the results. Comment on the effect of having a larger sample.

Solution to Problem 2

The Dirichlet posterior for θ with prior $\alpha_i = 2$ and counts x_i is:

$$\theta | y \sim \text{Dirichlet}(\alpha_1 + x_1, \dots, \alpha_6 + x_6)$$

For θ_1 :

• **n=100**: Posterior
$$\alpha'_1 = 2 + 19 = 21$$
, total $\alpha'_0 = 12 + \sum (2 + x_i) = 12 + 100 + 6 * 2 = 112$

• **n=1000**:
$$\alpha'_1 = 2 + 190 = 192$$
, $\alpha'_0 = 12 + 1000 + 12 = 1012$

The marginal distribution of θ_1 is Beta(α'_1 , $\alpha'_0 - \alpha'_1$). For n=100: Beta(21, 91); for n=1000: Beta(192, 820).

As sample size increases:

• Posterior variance decreases, posterior concentrates around MLE ($\hat{\theta}_1 = 0.19$ for n=100; 0.19 for n=1000), and Prior influence diminishes (weights 12 vs 100 and 12 vs 1000)