Week 3 Homework - Jon Workman

```
In [319]: from datetime import date import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from matplotlib import pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import roc_curve %matplotlib inline
```

```
In [320]: df = pd.read_csv('seattleWeather_1948-2017.csv').dropna()
```

Clean data and add feature

```
In [321]: df.RAIN = df.RAIN.astype(int)
    df['DATE'] = pd.to_datetime(df['DATE'], format='%Y-%m-%d')
    df['MONTH'] = pd.DatetimeIndex(df['DATE']).month
#df['MONTH'] = df['DATE'].apply(date.isoweekday)
```

In [322]: df.head()

Out[322]:

	DATE	PRCP	TMAX	TMIN	RAIN	MONTH
0	1948-01-01	0.47	51	42	1	1
1	1948-01-02	0.59	45	36	1	1
2	1948-01-03	0.42	45	35	1	1
3	1948-01-04	0.31	45	34	1	1
4	1948-01-05	0.17	45	32	1	1

Visualisation


```
In [325]: g = sns.lmplot(x='TMAX', y= 'PRCP', data=df, fit_reg=False, hue='RAIN', size=6)
```


Split dataset

Train and test

```
In [335]: print(confusion_matrix(y_test,logpredictions))
    sns.heatmap(confusion_matrix(y_test, logpredictions) / len(y_test), cmap='Blues', annot=True)

[[3769 21]
    [ 467 2317]]
```

Out[335]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2a54fef0>


```
In [336]: fpr, tpr, thresholds = roc_curve(y_test, logpredictions)

fig, ax = plt.subplots(1, figsize=(10, 5))
plt.plot(fpr, tpr, color='darkorange', label='Model Performace')
plt.plot([0, 1], [0, 1], color='gray', label='Random Performace')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Rain ROC Curve')
plt.legend(loc="lower right")
```

Out[336]: <matplotlib.legend.Legend at 0x1a28797b70>

In [337]: print(classification_report(y_test,logpredictions))

	precision	recall	f1-score	support
0	0.89	0.99	0.94	3790
1	0.99	0.83	0.90	2784
avg / total	0.93	0.93	0.92	6574

Validate


```
In [344]: fpr, tpr, thresholds = roc_curve(y_test2, logpredictions2)

fig, ax = plt.subplots(1, figsize=(10, 5))
  plt.plot(fpr, tpr, color='darkorange', label='Model Performace')
  plt.plot([0, 1], [0, 1], color='gray', label='Random Performace')
  plt.xlabel('False Positive Rate')
  plt.ylabel('True Positive Rate')
  plt.title('Rain ROC Curve')
  plt.legend(loc="lower right")
```

Out[344]: <matplotlib.legend.Legend at 0x1a29f9eac8>

In [345]: print(classification_report(y_test2,logpredictions2))

support	f1-score	precision recall		
461	0.86	0.90	0.84	0
411	0.84	0.80	0.87	1
872	0.85	0.85	0.85	avg / total