代数幾何

Fefr

目次

1	代数多様体	2
1.1	代数的集合	2

1 代数多様体

1.1 代数的集合

代数幾何学は代数方程式で定められる図形の幾何学である. 一番素朴な形では, 体kの元を係数とする連立方程式

$$f_{\alpha}(x_1, x_2, \cdots, x_n) = 0 \quad \alpha = 1, 2, \cdots, l \tag{1.1}$$

の解全体を幾何学的に考察することに他ならない.

しばらく、体kを代数的閉体と仮定して話を進める. 体kの元のn個の組 (a_1, a_2, \dots, a_n) の全体を k^n と記し、体k上のn次元**アフィン空間** (affine space) と呼ぶ、 k^n は体k上のn次元ベクトル空間の構造を持つ.

さて、連立方程式 (1.1) の体 k での解の全体を $V(f_1, f_2, \cdots, f_l)$ としるし、連立方程式 (1.1) が定める代数的集合 (algebraic set) またはアフィン代数的集合 (affine algebraic set) と呼ぶ、すなわち

$$V(f_1, f_2, \dots, f_l) = \{(a_1, a_2, \dots, a_n) \in k^n \mid f_\alpha(a_1, a_2, \dots, a_n) = 0, \ \alpha = 1, 2, \dots, l\}$$

一方, f_1, f_2, \dots, f_l より生成されるn変数多項式環 $k[x_1, x_2, \dots, x_n]$ のイデアル (f_1, f_2, \dots, f_l) の任意の元 $f(x_1, x_2, \dots, x_n)$ に対して, $(a_1, a_2, \dots, a_n) \in V(f_1, f_2, \dots, f_l)$ であれば,

$$f(a_1, a_2, \cdots, a_n) = 0$$

が成り立つ.

多項式環 $k[x_1, x_2, \cdots, x_n]$ のイデアル I に対して

$$V(I) = \{(a_1, a_2, \cdots, a_n) \in k^n \mid \forall f \in I : f(a_1, a_2, \cdots, a_n) = 0\}$$

と定義し,V(I) をイデアルI が定める代数的集合またはアフィン代数的集合という. すると, 次の補題が成り立つ.

補題 1.1

$$I = (f_1, f_2, \cdots, f_l)$$
 のとき

$$V(I) = V(f_1, f_2, \cdots, f_l)$$

証明

 $V(f_1,f_2,\cdots,f_l)\subset V(I)$ は上で示した. 逆に $(a_1,a_2,\cdots,a_n)\in V(I)$ であれば、 $f_{\alpha}\in I(\alpha=1,2,\cdots,l)$ より

$$f_{\alpha}(a_1, a_2, \cdots, a_n) = 0$$

が成り立ち, $V(I) \subset V(f_1, f_2, \dots, f_l)$ がわかる.