Методы оптимизации. Отчет по лабораторной работе №1

Работа выполнена группой:

Дзюба Мария M3235 Карасева Екатерина M3235 Рындина Валерия M3235

1. Задача оптимизации. Вариант 1:

а) Постановка задания.

Реализовать алгоритмы одномерной минимизации функции:

- метод дихотомии
- метод золотого сечения
- метод Фибоначчи
- метод парабол
- комбинированный метод Брента

Протестировать реализованные алгоритмы на следующей задаче оптимизации:

$$f(x) = x^2 + e^{-0.35x} \rightarrow min$$
 интервале [-2; 3]

График исследуемой функции:

b) Аналитическое решение

Поиск критических точек:

$$f'(x) = 2x - 0.35e^{-0.35x}$$

Уравнение $2x - 0.35e^{-0.35x} = 0$ имеет единственное решение при $x_0 = 0.1652 \in [-2; 3]$, $f(x_0) = 0.9711$

Значение функции на границах исследуемого отрезка:

$$f(-2) = 6.014$$

$$f(3) = 9.35$$

Минимум достигается в критической точке $x_0 = 0.1652$

2. Таблицы с результатами исследований.

а) Метод дихотомии

	левая граница	правая граница	длина интервала	соотношение	точка минимума	значение минимума
0	-2,0000000000000000	3,000000000000000	5,000000000000000			
1	-2,0000000000000000	0,500005000000000	2,500005000000000	1,999996000008000	-0,749997500000000	1,862671580520820
2	-0,750002500000000	0,500005000000000	1,250007500000000	1,999992000048000	-0,124998749999999	1,060345372388860
3	-0,125003750000000	0,500005000000000	0,625008750000000	1,999984000224000	0,187500625000000	0,971638258715638
4	-0,125003750000000	0,187505625000000	0,312509375000000	1,999968000959970	0,031250937500000	0,990098393513584
5	0,031245937500000	0,187505625000000	0,156259687500000	1,999936003967750	0,109375781250000	0,974405014305343
6	0,109370781250000	0,187505625000000	0,078134843750000	1,999872016125970	0,148438203125000	0,971407034188658
7	0,148433203125000	0,187505625000000	0,039072421875000	1,999744065007490	0,167969414062500	0,971119147249015
8	0,148433203125000	0,167974414062500	0,019541210937500	1,999488260986900	0,158203808593750	0,971162197076704
9	0,158198808593750	0,167974414062500	0,009775605468750	1,998977045459540	0,163086611328125	0,971115451112527
10	0,163081611328125	0,167974414062500	0,004892802734375	1,997956181652340	0,165528012695312	0,971110994212772
11	0,163081611328125	0,165533012695312	0,002451401367187	1,995920700651920	0,164307312011718	0,971111646383846
12	0,164302312011718	0,165533012695312	0,001230700683594	1,991874547455510	0,164917662353515	0,971110926233210
13	0,164912662353515	0,165533012695312	0,000620350341797	1,983880076585410	0,165222837524414	0,971110861707291
14	0,164912662353515	0,165227837524414	0,000315175170899	1,968271612346690	0,165070249938964	0,971110869341254
15	0,165065249938964	0,165227837524414	0,000162587585450	1,938494689041860	0,165146543731689	0,971110859367032
16	0,165141543731689	0,165227837524414	0,000086293792725	1,884116809746950	0,165184690628051	0,971110858997853
17	0,165141543731689	0,165189690628051	0,000048146896362	1,792302292471320	0,165165617179870	0,971110858797615
18	0,165160617179870	0,165189690628051	0,000029073448181	1,656043550880160	0,165175153903961	0,971110858801527
19	0,165160617179870	0,165180153903961	0,000019536724091	1,488143459750680	0,165170385541915	0,971110858775519

b) Метод золотого сечения

0	левая граница -2,0000000000000000	правая граница	длина интервала			
1	-2,0000000000000000		дина интервала	соотношение	точка минимума	значение минимума
		3,000000000000000	5,000000000000000			
-	-2,0000000000000000	1,090169943749470	3,090169943749470	1,618033988749900	-0,454915028125263	1,379543876907710
2	-0,819660112501051	1,090169943749470	1,909830056250520	1,618033988749900	0,135254915624211	0,972057698704370
3	-0,090169943749475	1,090169943749470	1,180339887498940	1,618033988749900	0,500000000000000	1,089457020769200
4	-0,090169943749475	0,639320225002103	0,729490168751577	1,618033988749890	0,274575140626314	0,983763501884117
5	-0,090169943749475	0,360679774997897	0,450849718747372	1,618033988749890	0,135254915624211	0,972057698704370
6	0,082039324993691	0,360679774997897	0,278640450004206	1,618033988749890	0,221359549995793	0,974449431045716
7	0,082039324993691	0,254248593736856	0,172209268743165	1,618033988749890	0,168143959365273	0,971120213119613
8	0,082039324993691	0,188470506254731	0,106431181261040	1,618033988749910	0,135254915624211	0,972057698704370
9	0,122692418772607	0,188470506254731	0,065778087482124	1,618033988749890	0,155581462513669	0,971208123679989
10	0,147817412475815	0,188470506254731	0,040653093778916	1,618033988749920	0,168143959365273	0,971120213119613
11	0,147817412475815	0,172942406179022	0,025124993703207	1,618033988749890	0,160379909327418	0,971135132866719
12	0,157414306103313	0,172942406179022	0,015528100075709	1,618033988749900	0,165178356141167	0,971110858845992
13	0,157414306103313	0,167011199730811	0,009596893627498	1,618033988749890	0,162212752917062	0,971120111021970
14	0,161079993282600	0,167011199730811	0,005931206448211	1,618033988749910	0,164045596506705	0,971112196611890
15	0,163345512551524	0,167011199730811	0,003665687179287	1,618033988749860	0,165178356141167	0,971110858845992
16	0,163345512551524	0,165611031820448	0,002265519268924	1,618033988749950	0,164478272185986	0,971111365206734
17	0,164210863910085	0,165611031820448	0,001400167910363	1,618033988749710	0,164910947865266	0,971110929868164
18	0,164745680461887	0,165611031820448	0,000865351358561	1,618033988750380	0,165178356141167	0,971110858845992
19	0,164745680461887	0,165280497013688	0,000534816551801	1,618033988751740	0,165013088737788	0,971110884883647
20	0,164949962206929	0,165280497013688	0,000330534806759	1,618033988750100	0,165115229610309	0,971110861970939
21	0,165076215268646	0,165280497013688	0,000204281745042	1,618033988749350	0,165178356141167	0,971110858845992
22	0,165076215268646	0,165202468330363	0,000126253061717	1,618033988750970	0,165139341799505	0,971110859782211
23	0,165124439647038	0,165202468330363	0,000078028683325	1,618033988746510	0,165163453988701	0,971110858823500
24	0,165154243951971	0,165202468330363	0,000048224378392	1,618033988758750	0,165178356141167	0,971110858845992
25	0,165154243951971	0,165184048256904	0,000029804304933	1,618033988728220	0,165169146104438	0,971110858776636
26	0,165165628183444	0,165184048256904	0,000018420073460	1,618033988718870	0,165174838220174	0,971110858798318
27	0,165165628183444	0,165177012414918	0,000011384231474	1,618033988685150	0,165171320299181	0,971110858776827
28	0,165165628183444	0,165172664025431	0,000007035841987	1,618033988689620	0,165169146104438	0,971110858776636

с) Метод Фибоначчи

	левая граница	правая граница	длина интервала	соотношение	точка минимума	значение минимума
0	-2,0000000000000000	3,000000000000000	5,000000000000000			
1	-2,0000000000000000	1,090169943691510	3,090169943691510	1,618033988780250	-0,454915028154242	1,379543876945970
2	-0,819660112616970	1,090169943691510	1,909830056308480	1,618033988670440	0,135254915537272	0,972057698709874
3	-0,090169943691515	1,090169943691510	1,180339887383020	1,618033988957910	0,49999999999999	1,089457020769200
4	-0,090169943691515	0,639320225233939	0,729490168925454	1,618033988205320	0,274575140771212	0,983763501917620
5	-0,090169943691515	0,360679774766059	0,450849718457574	1,618033990175600	0,135254915537272	0,972057698709874
6	0,082039324298181	0,360679774766059	0,278640450467878	1,618033985017360	0,221359549532120	0,974449430990626
7	0,082039324298181	0,254248592287875	0,172209267989694	1,618033998521810	0,168143958293028	0,971120213112868
8	0,082039324298181	0,188470506776364	0,106431182478184	1,618033963166710	0,135254915537272	0,972057698709874
9	0,122692421264853	0,188470506776364	0,065778085511511	1,618034055727550	0,155581464020609	0,971208123649417
10	0,147817409809691	0,188470506776364	0,040653096966673	1,618033813400130	0,168143958293028	0,971120213112868
11	0,147817409809691	0,172942398354529	0,025124988544838	1,618034447821680	0,160379904082110	0,971135132919880
12	0,157414289932694	0,172942398354529	0,015528108421835	1,618032786885250	0,165178344143612	0,971110858845785
13	0,157414289932694	0,167011170055697	0,009596880123003	1,618037135278500	0,162212729994196	0,971120111165399
14	0,161079941756865	0,167011170055697	0,005931228298832	1,618025751072990	0,164045555906281	0,971112196708490
15	0,163345518231526	0,167011170055697	0,003665651824171	1,618055555555490	0,165178344143612	0,971110858845785
16	0,163345518231526	0,165611094706187	0,002265576474661	1,617977528090040	0,164478306468857	0,971111365156551
17	0,164211019356678	0,165611094706187	0,001400075349509	1,618181818182530	0,164911057031433	0,971110929808303
18	0,164745593581036	0,165611094706187	0,000865501125151	1,617647058823530	0,165178344143612	0,971110858845785
19	0,164745593581036	0,165280167805394	0,000534574224358	1,619047619047520	0,165012880693215	0,971110884952841
20	0,164949240904601	0,165280167805394	0,000330926900793	1,615384615384870	0,165114704354998	0,971110862032307
21	0,165076520481829	0,165280167805394	0,000203647323565	1,62499999999340	0,165178344143612	0,971110858845785
22	0,165076520481829	0,165203800059057	0,000127279577228	1,60000000001700	0,165140160270443	0,971110859729501
23	0,165127432312720	0,165203800059057	0,000076367746337	1,666666666662550	0,165165616185889	0,971110858797625
24	0,165152888228166	0,165203800059057	0,000050911830891	1,500000000010090	0,165178344143612	0,971110858845785

d) Метод парабол

	левая граница	правая граница	длина интервала	соотношение	точка минимума	значение минимума
0	-2,0000000000000000	3,000000000000000	5,0000000000000000			
1	-2,0000000000000000	0,500000000000000	2,5000000000000000	2,000000000000000	-0,7500000000000000	1,862676468168490
2	-2,0000000000000000	0,183708606746428	2,183708606746430	1,144841391510030	-0,908145696626785	2,198900092228650
3	-2,0000000000000000	0,168005402786858	2,168005402786860	1,007243157207720	-0,915997298606570	2,217004037143450
4	-2,0000000000000000	0,165347060893842	2,165347060893840	1,001227674741400	-0,917326469553078	2,220082024239350
5	-2,0000000000000000	0,165195173546257	2,165195173546260	1,000070149494810	-0,917402413226871	2,220258004205270
6	-2,0000000000000000	0,165171866233179	2,165171866233180	1,000010764648040	-0,917414066883410	2,220285009669320
7	-2,0000000000000000	0,165170412799676	2,165170412799680	1,000000671279030	-0,917414793600161	2,220286693727600
8	-2,0000000000000000	0,165170207357491	2,165170207357490	1,000000094885000	-0,917414896321254	2,220286931768590
9	-2,0000000000000000	0,165170193522608	2,165170193522610	1,000000006389740	-0,917414903238695	2,220286947798740
10	0,165170192979674	0,165170193522608	0,000000000542934	3987906781,150280000000	0,165170193251141	0,971110858775480

е) Комбинированный метод Брента

	левая граница	правая граница	длина интервала	соотношение	точка минимума	значение минимума
0	-2,0000000000000000	3,000000000000000	5,0000000000000000			
1	-2,0000000000000000	1,454915028125260	3,454915028125260	1,447213595499960	0,5000000000000000	1,089457020769200
2	-2,0000000000000000	0,864745084375788	2,864745084375790	1,206011329583300	0,5000000000000000	1,089457020769200
3	-2,0000000000000000	0,500000000000000	2,5000000000000000	1,145898033750320	0,160952952221914	0,971129672539329
4	0,160952952221914	0,500000000000000	0,339047047778086	7,373607929588300	0,164495969969558	0,971111339631196
5	0,164495969969558	0,500000000000000	0,335504030030442	1,010560283723930	0,165175266899814	0,971110858802727
6	0,164495969969558	0,165175266899814	0,000679296930256	493,898934452735000	0,165170182660146	0,971110858775480

3. Зависимость количества вычислений от задаваемой точности є а) Метод дихотомии

3	$log_2(\epsilon)$	кол-во итераций	кол-во вычислений ф-ции	точка минимума	значение минимума
0,1	-3,321928	6	12	0,155468750000000	0,971210423828107
0,01	-6,643856	9	18	0,163759765625000	0,971112963096637
0,001	-9,965784	13	26	0,165289123535156	0,971110873737966
0,0001	-13,287712	16	32	0,165190717315673	0,971110859221138
0,00001	-16,609640	19	38	0,165170385541915	0,971110858775519

b) Метод золотого сечения

3	$log_2(\epsilon)$	кол-во итераций	кол-во вычислений ф-ции	точка минимума	значение минимума
0,1	-3,321928	9	11	0,155581462513669	0,971208123679989
0,01	-6,643856	13	15	0,162212752917062	0,971120111021970
0,001	-9,965784	18	20	0,165178356141167	0,971110858845992
0,0001	-13,287712	23	25	0,165163453988701	0,971110858823500
0,00001	-16,609640	28	30	0,165169146104438	0,971110858776636

с) Метод Фибоначчи

3	$log_2(\epsilon)$	кол-во итераций	кол-во вычислений ф-ции	точка минимума	значение минимума
0,100000	-3,321928	5	6	0,142857142857142	0,971637587766020
0,010000	-6,643856	10	11	0,167381974248926	0,971116033488165
0,001000	-9,965784	15	16	0,165247678018575	0,971110865126710
0,000100	-13,287712	20	21	0,165090553791394	0,971110865484310
0,000010	-16,609640	24	25	0,165178344143612	0,971110858845785

d) Метод парабол

3	$log_2(\epsilon)$	кол-во итераций	кол-во вычислений ф-ции	точка минимума	значение минимума
0,1	-3,321928	3	6	0,165170193251141	0,971110858775480
0,01	-6,643856	11	14	0,165170193251141	0,971110858775480
0,001	-9,965784	7	10	0,165170193251141	0,971110858775480
0,0001	-13,287712	6	9	0,165170193251141	0,971110858775480
0,00001	-16,609640	10	13	0,165170193251141	0,971110858775480

е) Комбинированный метод Брента

3	$log_2(\epsilon)$	кол-во итераций	кол-во вычислений ф-ции	точка минимума	значение минимума
0,1	-3,321928	4	5	0,164495969969558	0,971111339631196
0,01	-6,643856	4	5	0,164495969969558	0,971111339631196
0,001	-9,965784	5	6	0,165175266899814	0,971110858802727
0,0001	-13,287712	6	7	0,165170182660146	0,971110858775480
0,00001	-16,609640	6	7	0,165170182660146	0,971110858775480

общий график

4. Выводы и сравнения итак, проанализировав полученные данные, можем сделать следующее умозаключение:

Наибольшее количество шагов для достижения результата понадобилось методу золотого сечения – 28, чуть меньший результат показывает метод Фибоначчи – 24, далее следует метод дихотомии – 19, затем метод парабол – 10, а наименьшее количество шагов сделал комбинированный метод Брента – 6.

Однако, если ранжировать методы по количеству вычислений функции, то ситуация несколько другая, а именно: наибольшее количество вычислений функции производит метод дихотомии – 38, далее следует метод золотого сечения – 30, следом метод Фибоначчи – 25, затем метод парабол – 13, а наименьший результат снова у комбинированного метода Брента - 7.

5. Минимизация многомодальной функции $f(x) = x^4 - 5x^3 + 4x^2 + 3x - 5$.

Будем искать минимум этой функции.

Заметим, что результат работы алгоритмов здесь во многом будет зависеть от изначального интервала поиска минимума.

[-7; 4]

Метод	точка минимума	значение минимума
Дихотомии	2,999999485366	-13,999999999997
Золотого сечения	-0,249998844832	-5,417968749989
Фибоначчи	-0,249991735200	-5,417968749445
Парабол	2,999999988674	-14,0000000000000
Брента	3,000000047649	-14,0000000000000

[-11; 4]

Метод	точка минимума	значение минимума
Дихотомии	-0,249998113554	-5,417968749971
Золотого сечения	2,999999779720	-13,999999999999
Фибоначчи	3,000006009326	-13,999999999531
Парабол	2,999999976520	-14,0000000000000
Брента	-0,250000025296	-5,417968750000

[-10; 3.2]

Метод	точка минимума	значение минимума
Дихотомии	-0,249997522628	-5,417968749950
Золотого сечения	-0,249998145658	-5,417968749972
Фибоначчи	-0,249999985319	-5,417968750000
Парабол	-0,250006125676	-5,417968749695
Брента	-0,250000013849	-5,417968750000

алгоритмы иногда получают неверный ответ на многомодальных функциях из-за того, что они сокращают интервал поиска минимума, не рассчитывая, что на уже не рассматриваемом ими интервале тоже мог быть минимум

6. Ссылка на код