K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Darlington Amplifier

Numerical 1

For each transistor shown in figure 1, the parameters are $\beta_1=\beta_2=100$ & $V_A=\infty$

- a) Determine Q point values
- b) Determine the overall small signal voltage gain
- c) Determine the input and output resistance R_{is} and R_o

Figure 1: Circuit for Numerical 1

Solution:

DC Anaylsis:

During DC analysis, capacitors become open circuit.

The given circuit is a Darlington pair.

The DC equivalent circuit is shown in figure 2

$$R_{th}=R_1\parallel R_2=420k\parallel 150k$$

$$R_{th}=110.50k\Omega$$

$$V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{150k}{150k + 420k} \times 10V$$

$$V_{\mathrm{th}} = 2.6 V$$

Figure 2: DC Equivalent Circuit

Applying KVL to the base loop for figure 2 we get,

$$V_{th} = I_B R_B + V_{BE} + I_E R_E = 0$$

$$V_{th} - I_{B_1} R_{th} - V_{BE} - (\beta_1 \beta_2) I_{B_1} R_E = 0$$

$$I_{B_1} = \frac{V_{th} - V_{BE}}{R_{th} + (\beta_D)R_E}$$

$$V_{BE} = V_{BE_1} + V_{BE_2}$$

$$V_{BE} = 2V_{BE_1} = 2 \times 0.7V$$

$$V_{BE} = 1.4 V\,$$

$$I_{B_1} = \frac{2.63 - 1.4}{110.523k + \beta_D \times 1.2k}$$

$$I_{B_1} = 1.016 \times 10^{-7} A$$

$$I_{C_1} = \beta_1 \times I_{B_1} = 100 \times 1.016 \times 10^{-7} A$$

$$\mathbf{I_{C_1}} = \mathbf{10.16} \mu \mathbf{A}$$

Now,
$$I_{E_1} = (\beta_1 + 1) \times I_{B_1} = 101 \times 1.016 \times 10^{-7} A$$

$$\mathbf{I_{E_1}} = \mathbf{10.2616} \mu \mathbf{A}$$

$$I_{E_2} = \beta_D \times I_{B_1} = 100 \times 100 \times 1.016 \times 10^{-7}$$

$I_{E_2}=1.016mA$

$$I_{C_2} = \beta_2 \times I_{B_2} = 100 \times 10.2616 \mu A$$

$I_{\mathbf{C_2}} = 1.026 mA$

$$V_{C_2} = V_{CC} - I_{C_2}R_C = 10 - 1.026mA \times 2.4k$$

$$V_{\mathbf{C_2}} = 7.53V$$

$$V_{E_2} = I_{E_2} R_{E_2} = 1.016 mA \times 1.2 k\Omega$$

$$V_{\mathbf{E_2}} = 1.2V$$

Calculation of small signal parameters:

$$g_{m_1} = \frac{I_{CQ_1}}{V_T} = \frac{10.16\mu A}{0.026V}$$

$$\mathbf{g_{m_1}} = \mathbf{390.769} \mu \mathbf{A}/\mathbf{V}$$

$$r_{\pi_1} = \frac{\beta_1 V_T}{I_{CQ_1}} = \frac{20 \times 26 mV}{10.16 \mu A}$$

$$r_{\pi_1}=225.905k\Omega$$

$$g_{m_2} = \frac{I_{CQ_2}}{V_T} = \frac{1.026mA}{0.026}$$

$$\mathbf{g_{m_2}} = \mathbf{39.461mA/V}$$

$$r_{\pi_2} = \frac{\beta_2 V_T}{I_{CQ_2}} = \frac{100 \times 26mV}{1.026mA}$$

$$\mathbf{r_{\pi_2}=2.534k}\Omega$$

AC Analysis:

Mid band small signal equivalent circuit is shown in figure 4

Figure 3: Small Signal Equivalent Circuit

$$Z_{i_1} = r_{\pi_1} + (1+\beta)r_{\pi_2}$$

 $Z_{i_1} = 225.905k + 101 \times 2.534k$

$$Z_{i_1}=481.839k\Omega$$

Input Impedance of first stage:

$$Z_i = R_B \parallel Z_{i_1}$$

$$Z_i = 110.5k \parallel 481.839k$$

$$Z_i=89.89 \mathrm{k}\Omega$$

$$Z_{o_1} = \frac{R_B + r_{\pi_1}}{1 + \beta_1}$$

$$Z_{o_1} = \frac{110.5k + 225.905k}{101}$$

$$Z_{o_1}=3.33k\Omega$$

$$Z_{o_2} = \frac{Z_{o_1} + r_{\pi_2}}{1 + \beta_2} = \frac{3.33k + 2.534k}{101}$$

$$Z_{o_2}=0.05k\Omega$$

Output Impedance of second stage:

$$Z_o = Z_{o_2} \parallel R_C$$

$$Z_o = 0.05k \parallel 2.4k$$

$$Z_o=0.048 k\Omega$$

Calculation of current gain of first stage:

$$A_{i_1} = \frac{I_{C_1}}{I_{B_1}} = \frac{\beta_1 I_{B_1}}{I_{B_1}}$$

$$A_{i_1} = \beta_1$$

$$A_{i_1}=100\,$$

Calculation of current gain of second stage:

$$A_{i_2} = \frac{I_{C_2}}{I_{B_2}} = \frac{\beta_2 I_{B_2}}{I_{B_2}}$$

$$A_{i_2} = \beta_2$$

$$A_{i_2} = 100$$

$$A_{it} = A_{i_1} \times A_{i_2} = 100 \times 100$$

$$\mathbf{A_{it}} = \mathbf{10000}$$

Overall current gain:

$$A_{i_s} = \frac{I_o}{I_i}$$

$$A_{i_s} = \frac{I_o}{I_{B_2}} \times \frac{I_{B_2}}{I_{B_1}} \times \frac{I_{B_1}}{I_i}$$

$$A_{i_s} = A_{i_2} \times A_{i_1} \times \frac{I_B}{I_i}$$
 $(I_{B_2} = I_{E_1} \& I_{E_1} = I_{C_1})$

$$(I_{B_2} = I_{E_1} \& I_{E_1} = I_{C_1})$$

$$A_{i_s} = A_{i_2} \times A_{i_1} \times \frac{R_{th}}{R_{th} + Z_{i_2}} = 100 \times 100 \times \frac{110.5k}{110.5k + 481.839k}$$

$$\mathbf{A_{i_s}} = 1865.485$$

Calculation of voltage gain:

For Stage-1:

$$A_{V_1} = \frac{I_{E_1}}{I_{B_1}} \times \frac{r_{\pi_2}}{Z_{i_1}}$$

$$A_{V_1} = 101 \times \frac{2.534k}{767.672k}$$

$$A_{V_1}=0.330\,$$

For Stage-2:

$$A_{V_2} = \frac{I_{C_2}}{I_{B_2}} \times \frac{R_C}{r_{\pi_2}}$$

$$A_{V_2} = A_{i_2} \times \frac{2.4k}{2.534k}$$

$$A_{V_2} = 94.713$$

The overall voltage gain A_{V_T} :

$$A_{V_T} = A_{V_1} \times A_{V_2} = 0.330 \times 94.713$$

$$A_{V_{\mathrm{T}}}=31.255$$

Calculation of output voltage:

$$V_o = A_{V_T} \times V_s = 31.255 \times 40 mV$$

$$V_o=1.250V$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 4: Circuit Schematics: Results

Output Waveforms:

Figure 5: Input and Output Waveforms for 1^{st} Stage

Figure 6: Input and Output Waveforms for 2^{nd} Stage

Figure 7: Current Waveforms for the 1^{st} Stage

Figure 8: Current Waveforms for the 2^{nd} Stage

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
Stage-1: I_{B_1}	$0.97 \times 10^{-7} A$	$1.016 \times 10^{-7} A$
Stage-1: I_{C_1}	$9.742 \mu A$	$10.2616 \mu A$
Stage-1: I_{E_1}	$9.742 \mu A$	$10.2616 \mu A$
Stage-2: I_{B_2}	$9.83\mu A$	$10.2616 \mu A$
Stage-2: I_{C_2}	0.98mA	1.026mA
Stage-2: I_{E_2}	0.98mA	1.016mA
Voltage gain for first stage A_{V_1}	0.41	0.330
Voltage gain for second stage A_{V_2}	92.18	94.712
Overall voltage gain A_{V_T}	37.7	31.255
Current gain for first stage A_{i_1}	99.9	100
Voltage gain for second stage A_{i_2}	99.88	100
Overall current gain A_{i_t}	9978.01	10000
Input Impedance	_	$89.89k\Omega$
Output Impedance	-	$0.048k\Omega$
Output voltage	1.36V	1.250V

Table 1: Numerical 1