Zhenghao Zeng

323, 5000 Forbes Ave, Pittsburgh, PA 15213

EDUCATION

Carnegie Mellon University

PhD in Statistics; GPA: 4.14/4.30; Advisor: Edward H. Kennedy Aug 2020 - May 2025

Carnegie Mellon University

Pittsburgh, PA Master in Statistics Aug 2020 - May 2021

University of Science and Technology of China

Hefei, Anhui Bachelor of Statistics; GPA: 4.18/4.30; summa cum laude (Guo Moruo Scholarship 1/76) Aug 2016 - June 2020

SKILLS SUMMARY

• Languages: 5+ Years of programming experience, familiar with Python, R, MATLAB

• Experience: 5+ Years of research experience in statistics and machine learning

Work Experience

Research Scientist/Engineer Intern, Data Science Lab, Adobe

Joint work with Prof. Avi Feller (Berkeley) and David Arbour (Adobe Research) May 2023 - Aug 2023

o Goal: Propose a doubly robust estimator for continuous treatment effects/ dose response function with the help of surrogate outcomes.

- Identification: Provided sufficient conditions to identify continuous treatment effects and formalized the problem as a nonparametric regression problem via doubly robust mapping.
- Estimation Guarantee: Established theoretical results, including oracle estimation theory and asymptotic normality, for the estimator proposed.
- Real Application (ongoing): Applied proposed method to real data.

Research Experience

Causal Inference with High-dimensional Discrete Covariates

Pittsburgh, PA

Research Assistant - Prof. Edward H. Kennedy and Prof. Sivaraman Balakrishnan

Nov 2022 - Current

Email: zhenghaz@andrew.cmu.edu

Mobile: +1-412-209-5971

Pittsburgh, PA

San Jose, CA

- o Upper Bounds: Characterized sufficient and necessary conditions for conventional plug-in style causal effect estimators to be consistent in high-dimensional discrete setting. Proposed additional structures under which the estimators enjoy faster rate and can be consistent in non-classic high-dimensional regime.
- Lower Bounds (ongoing): Examined minimax lower bound in high-dimensional regime and obtained partial answer. Working on tightening the bounds.

Covariate-assisted Bounds on Causal Effects with Instrumental Variables

Pittsburgh, PA

Research Assistant - Prof. Edward H. Kennedy; Manuscript

Aug 2022 - Apr 2023

- o Derived Bounds: Applied linear programming to obtain bounds on average treatment effects under a valid instrument design given covariates.
- Methods to Estimate the Bounds: Developed two methods to efficiently estimate the bounds as non-smooth functionals: Either approximated the bounds with smooth functionals and evaluated approximation error or assumed a margin condition and applied standard doubly robust estimation based on influence functions.
- Extension: Extended the bounds to continuous response case.

Efficient Generalization and Transportation

Pittsburgh, PA

Research Assistant - Prof. Edward H. Kennedy; Manuscript

May 2021 - July 2022

- o Goal: Develop methods to generalize/transport the causal effects from a randomized trial/observational study to the target population.
- Efficiency Theory: Formalized the problem as estimating statistical functionals. Derived the first-order influence functions and doubly robust estimators. Established the asymptotical normality of doubly robust estimator under additional assumptions.
- o Minimax Optimality: Derived the minimax lower bounds of the target functionals. Further proposed a high-order estimator that can achieve the minimax rate in a broad regime.
- Applications: Applied the doubly robust estimator to transport the causal effects of dietary intake on adverse pregnancy outcomes from an observational study to the whole U.S. female population.
- Award: 2023 ENAR Distinguished Student Paper Award

A Tensor-EM Method for Large-Scale Latent Class Analysis with Binary Responses

Ann Arbor, MI

Research Assistant - Prof. Gongjun Xu; Published on Psychometrika

July 2019 - March 2021

o Tensor-EM Algorithm: Derived the tensor structure of cross-moments in latent class model. Applied tensor power method to the cross-moments and obtained an moment-based initial estimator for EM algorithm.

- Consistency: Established the clustering consistency (i.e. consistency of estimating each individual's latent class membership) and consistency of item parameters for joint Maximum Likelihood Estimator (MLE).
- Applications: Applied Tensor-EM method to an educational assessment dataset. Clustered the students into three classes and evaluated the performance of students in each class.

On the Phase Transition of Wilks' Phenomenon

Ann Arbor, MI

Research Assistant - Prof. Gongjun Xu; Published on Biometrika

July 2019 - May 2020

- Chi-square Approximation: Developed sufficient and necessary conditions for Wilks' phenomenon (i.e. twice the negative loglikelihood ratio asymptotically approaches a Chi-square distribution) under popular tests on multivariate mean and covariance structures in high dimensional setting.
- Asymptotic Bias: Analyzed the accuracy of chi-squared approximations by deriving the asymptotic biases when the dimension is large and Wilks' theorem fails to hold. Provided helpful insights into the use of chi-squared approximations in scientific practices.

Coursework

- Mathematics and Probability: Mathematical Analysis(A+), Linear Algebra(A+), Real Analysis(A+), Functional Analysis(A+), Advanced Probability Theory(A+), Stochastic Process(A+), Probability Limiting Theory(A+)
- Statistics: Mathematical Statistics(A+), Regression Analysis(A+), Multivariate Analysis(A+), Bayesian Analysis(A+), Nonparametric Statistics(A+), Advanced Statistical Theory(A)
- Machine Learning: Advanced Machine Learning(A+), Convex Optimization(A+), Probabilistic Graphical Models(A+), Deep Learning(A+)
- Programming: Statistical Computing(A+), Deep Learning System(A), Foundations of Algorithms(A+)