Lecture 14': Exceptions

Basic idea

```
try:
    try block
except ExceptionType1, e1:
...
except ExceptionType2, e2:
...
```

If try block does not raise an exception

except blocks are ignored

If try block raises an exception

- block of code for matching exception type executes
- if no matching type, exception is raised by the try block to the caller
 - statements after try block won't execute in this case

Examples

Try the two examples from class:

- http://bit.ly/10ziYvV
- http://bit.ly/Z4dMP0

We also have a challenge example

- http://bit.ly/YVbgxB
- illustrates how you can use your own classes as exceptions
- illustrates how expressions of different type can be handled selectively
- can you determine what the program will print?

Real Lecture 14: Monty Hall Problem, Distributions, [confidence intervals and levels, standard error](for next time)

Monty Hall Problem

Problem Statement

There are three doors

- two have goats, one has a car
- On the first stage, you pick a door In the second stage, Monty Hall opens a door with a goat
- a different door from the one you picked

What should you do next?

- you can stay with your original choice
- you can randomly pick one of the two remaining doors
- you can switch from the door you had picked to the other closed door

Trying it in Code

http://bit.ly/12lJiep

Something to remember:

- Mod operator a % b
 - computes the reminder of dividing a / b
 - allows you to 'wrap around'
 - -1%3=1
 - -2%3=2
 - -3%3=0
 - -4%3=1
 - -5%3=2
 - **...**
 - helpful when computing 'the other door'
 - an alternative approach is to use 'if' for the different cases

Distributions

Assign a probability to sets of possible outcomes of a random variable (or in our case an experiment)

- For experiments that produce integer or boolean values it's easier to talk about the probability of each discrete value
- For experiments that produce real numbers, the probability of any real number will usually be zero
 - You need to talk about the probability of a neighborhood around a value

Plotting Histograms

pylab.hist(vals, bins=x)
Example:

 plot of the outcome of the MontyHall Simulation for the random strategy for 150k simulations

TO BE CONTINUED...