RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2012

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

- Q.1 Define a topology on the set \mathbb{R} of real numbers by the condition that $U \subseteq \mathbb{R}$ is open if and only if it is either empty or contains the interval [0,1). Then
 - (a) What is the interior of the set [0,1]? And its closure?
 - (b) Does this topology on \mathbb{R} satisfy the T_0 condition?
 - (c) Is \mathbb{R} connected in this topology?
 - (d) Is \mathbb{R} compact in this topology?
- Q.2 Consider the 2-torus $\mathbb{T}^2 = \mathbb{T} \times \mathbb{T}$, where $\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$ is the unit circle.
 - (a) What is the universal cover of \mathbb{T}^2 ?
 - (b) Describe the one-point compactification of \mathbb{T}^2 minus two distinct points. What is the fundamental group of the one-point compactification of \mathbb{T}^2 minus two distinct points?
- Q.3 Prove that the singular homology $H_t(X)$ of the space X = pt consisting of a single point is equal to

$$H_t(X) = \begin{cases} \mathbb{Z} & \text{if } t = 0\\ 0 & \text{if } t > 0 \end{cases}$$

Q.4 Let M be the subset of Euclidean \mathbb{R}^3 defined by the zeros of the function

$$f(x, y, z) = xy - z.$$

- (a) Prove that M is a submanifold of \mathbb{R}^3 .
- (b) Define a local coordinate system on M and compute the Riemannian metric induced on M by its embedding into Euclidean \mathbb{R}^3 in terms of these local coordinates.

Q.5 Let G be a Lie group. A vector field **v** on G is *left-invariant* if, for all $g, h \in G$,

$$(L_g)_*(\mathbf{v}|_h) = \mathbf{v}|_{gh},$$

where L_g denotes left multiplication by g.

- (a) Show that the space of left-invariant vector fields on G is isomorphic to the tangent space of G at the identity.
- (b) Use part (a) to prove that the tangent bundle of a Lie group is trivial. (A one-sentence description of how to construct a trivialization of the tangent bundle of G is sufficient.)
- (c) Show that the vector field

$$\mathbf{v} = x \frac{\partial}{\partial x}$$

on the (abelian) Lie group $(\mathbb{R}_{>0}, \times)$ (i.e., the group of positive real numbers under multiplication) is left-invariant, and compute its flow from an arbitrary point.

- Q.6 (a) State Stokes' Theorem.
 - (b) Let M be a smooth manifold, and $\omega \in \Omega^r(M)$ an r-form on M. Suppose that $\int_{\Sigma} \omega = 0$ for every r-dimensional submanifold Σ of M which is diffeomorphic to an r-sphere. Prove that $d\omega = 0$.

Top/Diff Geo Prelim Exam January 2012
100 1011 5100
1) (a) The inferior of a set A is defined to be the largest
apen set completely contained in It. for It [01) which
the given popology, the largest open set confuired in it
[0,1), so inf ([0,1]) = [0,1).) initarly, the closure of 1+
1 In III I and a shall be the control
toto fopology we have el(A) = The because any other closed
the smallest closed set confaining is the spooling we have a (A) = IL because any other closed of confaining [0,1] would have a compliment that was neither empty nor confained [0,1).
neither empty nor confained (0,1).
(b) The To condition states that for every pair of distinct points x, y there is some open set I wound one of them that
X y here is some open set I wound one of from that
does not include the other. Our topology is not To since
does not include the other. Our topology is not to since any open set confaining 0 or 0.5 confains the whole interval [0,1) and hence contains the other point.
inferral (0,1) and hence contains the other point.
open sets U, V we have [0,1) = U nV.
open sets U, V we have [0,1) = U nV.
(d) No It is not compact. Consider the open cover
2 = 2 [0,1) U & 13 : reR3
This clearly has no finite subcover.

	T 1011 C 0 1 E 1 2017
	Top/Diff Geo Prelim Exam January 2012
4)	(a)M = {(x,y,2): xy-7=03. We have that
	df= (y x -1)
	which always has full rank, so every point p GR is
	which always has full rank, so every point p GR is a regular point. Thus $M = f'(o)$ is a smooth submanifold.
	b) Not done. This question Concern Riemannian Germetry.

Top/Diff Geo Prelim Exam January 2012
5) (a) The space of left-invariant vector fields of G is called the Lie Group of G. which we will denote by Lie (G).
the Lie Group of G. which we will denote by Lie (G).
We want to show Lie(q) = Te q. Consider the map ev: Lie (q) -> Te (q: X +> Xe;
all we need to show is that this is an isomorphism of
vector spaces.
It is fairly clear that ev is linear over to, so we now want
It is fairly clear that ev is linear over R, so we now want to show ev is surjective Lef v & Te G be an arbifrary vector and define a vector field v by
Vector and define a vector field v by
$y^{L} = d(L_{g})_{e}(v)$
Then if there was such a verfor field v' & Lic (G), if would have to be given by this formula. Thus we just need for v' to be a smooth verfor field. Well, for any g & G
have to be given by this formula. Thus we just need for
v to be a smooth vertor field. Well, for any g EG
$ (v^{\perp}f)(g) = v^{\perp} _{q}f = d(L_{q})_{e}(v)(f) = v(fd_{q}) $
= v'6) (toLq)
<u>4</u> / / 1
= dt leo (folgor) (t).
(b) 1) 0 / 4 / 1 · (() = + (: l · / 1 · · · · ·)
(b) We have that fie (G) = Te G is finise dimensional, so we can describe a basis for Te G and use this to frictive Lie (G)
under the previously given isomorphism ex.
1 1 1
(c) We have that
(Lg) * (V/n) = gx = V/gn, So X is left-invariant. Now if perkso we have that the
So X is left-invariant. Now if person we have that the
flow of X from p is given by
$\theta_{\varepsilon}(\rho) = \rho \varepsilon^{\varepsilon}$

	Top / Diff Geo Prelim Exam January 20/2
()	(1) I t M be a smooth wiented n-manifold and let w
رف	(a) Let M be a smooth oriented n-manifold and let w be a compactly supported (n-1)-form on M. Then
	pe a compacted soften for
	$\int_{M} d\omega = \int_{M} \omega$
¥	(b) Suppose that M is smooth manifold, we I (M), and that for every r-dimensional submanifold I = M we have
	for every r-dimensional submanifold I & M we have
	J _E ω =0.
	We know that I is difference phic to a surface in R flut
	safisfics the equation
	x2++x,2 = k2 KER,
	safisfics the equation $x^2 + \cdots + x_r^2 = k^2$ $k \in \mathbb{R}$ so if appears as the boundary of some manifold the diffeomorphic f_s the $r+1$ dimensional dish
	to the rtl dimensional dish
	$x^2 + + x^2 \leq k^2$
	which ifself is diffeomorphic to A Theorem we get that
	we get that
	ldw 2 lw 2 lw 2 0
	S DS Z
	so des =0.