In the claims:

1	1. (Original) A method of designing an integrated circuit, comprising:
2	identifying a programmable logic core;
3	identifying an application;
4	designing an application specific circuit for the application; and
5	integrating the programmable logic core into the designed application specific
6	circuit.
1	2. (Previously Presented) A method of designing an integrated circuit, comprising:
2	identifying a programmable logic core for the integrated circuit;
3	establishing a set of timing constraints associated with the programmable
4	logic core; and
5	controlling the design of application specific circuitry that interfaces with the
6	programmable logic core in the integrated circuit in accordance with the set of timing
7	constraints.
1	3. (Previously Presented) A method of designing an integrated circuit, comprising:
2	identifying a programmable logic core for the integrated circuit;
3	establishing a sign-off design associated with the programmable logic core;
4	and
5	controlling the design of application specific circuitry that interfaces with the
6	programmable logic core in the integrated circuit in accordance with the sign-off design.

1	4. (Original) An integrated circuit, comprising;
2	a programmable logic core; and
3	application specific circuitry, the application specific circuitry being designed
4	in accordance with a sign-off design.
1	5. (Previously Presented) An integrated circuit according to claim 4, wherein the
2	programmable logic core includes:
3	a programmable multi-scale array;
4	an application circuit interface for providing a signal interface between the
5	programmable multi-scale array and the application specific circuitry; and
6	a programmable logic core adapter that configures the programmable multi-
7	scale array.
1	6. (Previously Presented) The integrated circuit of claim 5, wherein the
2	programmable multi-scale array comprises an array of configurable arithmetic logic units
3	supporting at least:
4	register transfer level functions; and
5	random logic structures.
1	7. (Previously Presented) The integrated circuit according to claim 4, wherein the
2	programmable logic core comprises a programmable multi-scale array supporting functions
3	of different scales.

1 8. (Previously Presented) The integrated circuit according to claim 4, wherein the 2 programmable logic core includes at a programmable logic core control for loading 3 configuration data into the programmable logic core. 1 9. (Previously Presented) The integrated circuit according to claim 4, wherein the programmable logic core comprises: 2 3 an array of configurable logic structures having internal storage registers; and 4 a scratchpad memory to supplement the storage registers. 1 10. (Previously Presented) The integrated circuit according to claim 4, wherein the 2 programmable logic core includes at a configuration test interface for data and control flow 3 between the application specific circuit and the programmable logic core. 1 11. (Previously Presented) The integrated circuit according to claim 4 further 2 comprising a microprocessor core communicatively connected to the programmable logic 3 core. 1 12. (Previously Presented) The integrated circuit according to claim 4, wherein the 2 programmable logic core comprises blocks supporting: 3 configuration data control logic;

scan path logic; and

application circuit interface logic.

.4

5

- 1 13. (Previously Presented) The integrated circuit according to claim 4, wherein the
 2 programmable logic core comprises arithmetic logic units including:
 3 function cells; and
 4 an arithmetic logic unit controller.
- 1 14. (Previously Presented) The integrated circuit according to claim 4, wherein the 2 programmable logic comprises:
- an internet protocol core; and
- 4 arithmetic logic units communicatively connected to the internet protocol core.

1	15. (Currently Amended) An integrated circuit, comprising The integrated circuit
2	according to claim 4, wherein the programmable logic core supporting:
3	a programmable logic core that supports:
4	an idle state that is entered after an assertion of a signal that power is good;
5	a built in self test state for testing the programmable logic core, the built in
6	self test state is entered from the idle state upon receipt of a test
7	command;
8	a configuration state for implementing a configuration process, the
9	configuration state supports entry from the idle state and from the built
10	in self test state after receipt of a configuration clock signal; and
11	an operate state that controls operations of arithmetic logic units, and is
12	entered after completion of the configuration process; and
13	application specific circuitry, the application specific circuitry being designed in
14	accordance with a sign-off design.
1	16. (Previously Presented) An integrated circuit, comprising;
2	means for performing functions associated with a programmable logic core; and
3	means for performing functions associated with application specific circuitry that is
4	designed in accordance with a sign-off design.

1	17. (Currently Amended) An integrated circuit, comprising:
2	(I) application specific circuitry, the application specific circuitry being designed in
3	accordance with a sign-off design; and
4	(II) a first programmable logic core including at least
5	(A) a programmable multi-scale array having an array of configurable
6	arithmetic logic units supporting register transfer level functions, random
7	logic structures, and state machine structures,
8	(B) an application circuit interface for providing a signal interface between the
9	programmable multi-scale array and the application specific circuitry, the
10	application circuit interface having test registers for testing the
11	programmable logic core,
12	(C) scratchpad memories for supplementing storage of the programmable
13	multi-scale array,
14	(D) a configuration test interface for data and control flow between the
15	application specific circuit and the programmable multi-scale array,
16	(E) a programmable logic control for loading configuration data into the
17	multi-scale array, and
18	(F) a programmable logic core adapter that configures the programmable
19	multi-scale array through the configuration test interface.

1	18. (Cancelled) A portion of programmable logic program flow comprising:
2	synthesizing data associated with a multi-scalable array and a program logic core
3	design;
4	performing a programmable logic core mapping;
5	performing a programmable logic core placement;
6	performing a programmable logic core routing; and
7	performing a timing and netlist verification.
1	19. (New) The integrated circuit according to claim 15, wherein the first
2	programmable logic core comprises:
3	a programmable multi-scale array comprising a plurality of configurable
4	arithmetic logic units; and
5	a programmable logic core adapter that configures the programmable multi-
6	scale array.
1	20. (New) The integrated circuit according to claim 15, wherein the programmable
2	logic core adapter is configured to receive configuration data and load the configuration dat
3	into configuration memory of the programmable logic core adapter.
1	21. (New) The integrated circuit according to claim 15, wherein the first
2	programmable logic core comprises an application circuit interface that interfaces between

3

the programmable multi-scale array and the application specific circuitry.

1 22. (New) The integrated circuit according to claim 15, wherein the programmable 2 multi-scale array performs register transfer level functions. 1 23. (New) The integrated circuit according to claim 15, further comprising a plurality 2 of other programmable logic cores. 1 24. (New) The integrated circuit according to claim 15, wherein the first 2 programmable logic core includes a programmable logic core control for controlling the 3 programmable logic core. 1 25. (New) The integrated circuit according to claim 24, wherein the programmable 2 logic core control provides a control mechanism for testing the first programmable logic 3 core. 1 26. (New) The integrated circuit according to claim 15, further comprising 2 scratchpad memory. 1 27. (New) The integrated circuit according to claim 17, further comprising a 2 configuration data source that stores the configuration data. 1 28. (New) The integrated circuit according to claim 17, further comprising a plurality 2 of other programmable logic cores.

- 1 29. (New) The integrated circuit according to claim 17, wherein the programmable
- 2 logic core control provides a control mechanism for testing the first programmable logic
- 3 core.