» Using Training Data As Features

 We want to attach more weight to training data points that are close to input x and less weight to far away training points.

» *k*-Nearest Neighbour (*k*NN) Model

- * Training data $(x^{(i)}, y^{(i)}), i = 1, 2, \dots, m$
- * Given feature vector *x*:
 - 1. For each training data point i calculate the distance $d(x^{(i)}, x)$ between feature vector $x^{(i)}$ and x
 - 2. Select the k training data points that are closest to x ... the knearest neighbours
 - 3. Predict output y using the outputs $y^{(i)}$ for these k closest training points.
 - * Weighting of neighbour points. E.g. Gaussian $K(x^{(i)},x) = e^{-\gamma d(x^{(i)},x)^2}$ (attach less weight to training points that are further away from query point x).

Regression: weighted mean

$$\hat{\mathbf{y}} = \frac{\sum_{i \in N_k} K(\mathbf{x}^{(i)}, \mathbf{x}) \mathbf{y}^{(i)}}{\sum_{i \in N_k} K(\mathbf{x}^{(i)}, \mathbf{x})} = \sum_{i \in N_k} K(\mathbf{x}^{(i)}, \mathbf{x}) \mathbf{y}^{(i)} \alpha^{(i)}, \text{ with }$$

$$\alpha^{(i)} = 1 / \sum_{i \in N_k} K(\mathbf{x}^{(i)}, \mathbf{x})$$

* Classification:

$$\hat{y} = sign(\frac{\sum_{i \in N_k} K(x^{(i)}, x) y^{(i)}}{\sum_{i \in N_k} K(x^{(i)}, x)}) = sign(\sum_{i \in N_k} K(x^{(i)}, x) y^{(i)} \alpha^{(i)}).$$

» Kernalising Linear Models: Using Training Data As Features

kNN:

- * Regression: weighted mean $\hat{y} = \sum_{i \in N_L} K(x^{(i)}, x) y^{(i)} \alpha^{(i)}$
- * Classification: $\hat{y} = sign(\sum_{i \in N_b} K(x^{(i)}, x) y^{(i)} \alpha^{(i)})$.

Idea: (i) use all data points (choose k=m in kNN) and (ii) make coefficients $y^{(i)}\alpha^{(i)}$ into model parameters

* Model:

$$\hat{\mathbf{y}} = \textit{sign}\left(\theta_0 + \theta_1 \textit{K}(\mathbf{x}^{(1)}, \mathbf{x}) + \theta_2 \textit{K}(\mathbf{x}^{(2)}, \mathbf{x}) + \dots + \theta_m \textit{K}(\mathbf{x}^{(m)}, \mathbf{x})\right)$$

- * Now can learn parameters $\overline{\theta_0}$, θ_1,\ldots by selecting them to minimise a cost function e.g. logistic regression or SVM cost function.
- * Can do same thing for regression problems, model is then $\hat{y} = \theta_0 + \theta_1 K(x^{(1)}, x) + \theta_2 K(x^{(2)}, x) + \dots + \theta_m K(x^{(m)}, x)$
- * $K(x^{(i)}, x)$ is referred to as a *kernel*

» Kernalising Linear Models: Using Training Data As Features

Note:

- * Sometimes write model as
 - $\hat{y} = \theta_0 + \theta_1 y^{(1)} K(x^{(1)}, x) + \theta_2 y^{(2)} K(x^{(2)}, x) + \cdots + \theta_m y^{(m)} K(x^{(m)}, x)$ for consistency with original SVM formulation ... will come back to this later
- * Since we can freely choose the θ_i 's, this makes no difference.

» Classification example

- * Kernalised SVM: 1) $\gamma = 50$, L_2 penalty weight C = 1
- * kNN model: 1) Euclidean distance, 2) (i) k=m, 3) gaussian weights, 4) sign(weighted average)
- SVM and kNN predictions are not identical, but much the same.
- * Note: No kernalised version of logistic regression available in sklearn currently. Its easy to implement one e.g. see https://people.cs.umass.edu/~sheldon/teaching/cs335/lec/12-demo.html.

» Regression example

- * Kernalised Ridge Regression: 1) $\gamma=10$, \emph{L}_2 penalty weight $\emph{C}=10$
- * kNN model: 1) Euclidean distance, 2) k = m, 3) gaussian weights, 4) weighted average
- * kernel and *k*NN predictions are not identical, but much the same.

» Classification Example Python Code

```
weights = np.exp(-100*(distances**2))
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["kNN","SVM","train"])
```

» Regression Example Python Code

```
from sklearn.kernel ridge import KernelRidge
model2 = KNeighborsRegressor(n neighbors=m,weights=gaussian kernel).fit(Xtrain, ytrain)
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x"); plt.ylabel("output y")
plt.leaend(["Kernel Ridge Regression","kNN","train"])
```

» Another Classification example

When points from one class are clumped together then using training data as features can work nicely:

- * Kernalised SVM: 1) $\gamma = 1$, L_2 penalty weight C = 1
- * kNN model: 1) Euclidean distance, 2) (i) k = m, 3) gaussian weights, 4) sign(weighted average)

» Another Classification example (cont)

Impact of Gaussian kernel parameter γ :

* As γ increases the kernel decreases more quickly with distance. This makes the predictions tend to be less smooth and to just snap to the nearest training point

* Use γ to manage trade-off between under-fitting and over-fitting

» Circle Example Python Code

```
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x 1"); plt.ylabel("input x 2")
plt.show()
def gaussian kernel(distances):
model = KNeighborsClassifier(n_neighbors=m,weights=agussian_kernel).fit(Xtrain, vtrain)
plt.xlabel("input x 1"); plt.vlabel("input x 2")
```

» Kernel Logistic Regression

- * Hypothesis: $sign(\sum_{j=1}^{m} \theta_{j}K(x, x^{(j)}))$
- * Cost: $\frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \sum_{j=1}^{m} \theta_{j} K(x^{(i)}, x^{(j)})})$
- * Select θ to minimise cost function. Select γ (kernel parameter) using cross-validation.

» Kernalised Regression

- * Hypothesis: $\hat{y} = \sum_{j=1}^{m} \theta_j K(x, x^{(j)})$
- * Cost: $\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \sum_{j=1}^{m} \theta_{j} K(x^{(i)}, x^{(j)}))^{2}$
- * Select θ to minimise cost function. Select γ (kernel parameter) using cross-validation.

» How To Add L2 Regularisation?

For regression could use:

*
$$\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{m} \theta_{j} K(x^{(i)}, x^{(j)}))^{2} + \lambda \theta^{T} \theta_{j}$$

but that's not the normal way. Instead we use

*
$$\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \sum_{j=1}^{m} \theta_{j} K(x^{(i)}, x^{(j)}))^{2} + \lambda \sum_{i=1}^{m} \sum_{j=1}^{m} \theta_{i} K(x^{(i)}, x^{(j)}) \theta_{j}$$

This is called kernel ridge regression. Similarly for kernelised logistic regression with regularisation.

Notation: recall $\theta^T \theta = \sum_{i=1}^m \sum_{j=1}^m \theta_i \theta_j$ so all we've done is add a weighting $K(x^{(i)}, x^{(j)})$. In matrix notation this is

*
$$\frac{1}{m} \sum_{i=1}^{m} (\mathbf{y}^{(i)} - \sum_{j=1}^{m} \theta_{j} \mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}))^{2} + \lambda \theta^{T} \mathbf{M} \theta$$

where the i,j'th element of matrix M is $K(x^{(i)},x^{(j)})$.

» How To Add L2 Regularisation? [Optional]

Why use weighted regularisation? Here's one reason:

- * Start with linear model $\theta^T x$
- * Write $K(x, x^{(j)}) = \phi(x^{(j)})^T \phi(x) \rightarrow \text{can't do this for all weight}$ functions K, need to restrict ourselves to ones where we can.
- * Replace x by $\phi(x)$ and define $\theta = \sum_{i=1}^{m} \alpha_i \phi(x^{(i)})$
- * Then

$$\theta^{T}\phi(\mathbf{x}) = \sum_{j=1}^{m} \alpha_{j}\phi(\mathbf{x}^{(j)})^{T}\phi(\mathbf{x}) = \sum_{j=1}^{m} \alpha_{j}K(\mathbf{x}, \mathbf{x}^{(j)})$$
$$\theta^{T}\theta = \sum_{j=1}^{m} \alpha_{j}\phi(\mathbf{x}^{(j)})^{T}\sum_{i=1}^{m} \alpha_{i}\phi(\mathbf{x}^{(i)})$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{j}K(\mathbf{x}^{(j)}, \mathbf{x}^{(i)})\alpha_{i} = \alpha^{T}M\alpha$$

* Note: refer here to parameters in kernelised model as α_j rather than θ_i .

So can view kernel model as replacing features x by new features $\phi(x)$ and modifying the parameters.

» How To Add L2 Regularisation? [Optional]

Why use weighted regularisation? Here's another reason:

- * For weights that can be written as $K(x, x^{(j)}) = \phi(x^{(j)})^T \phi(x)$ then functions of the form $\sum_{j=1}^m \theta_j K(x^{(j)}, x)$ belong to a Reproducing Kernel Hilbert Space (RKHS)
- * The "size" of a function in an RKHS is measured the Hilbert norm $\theta^T M \theta$ and so this is a natural penalty to use for regularising
- * You'll see lots of mentioins of RKHS's if you search internet for kernel methods, but we won't go further into this here.

» Kernel SVMs¹

- * Write $K(x, x^{(j)}) = \phi(x^{(j)})^T \phi(x)$
- * Replace x by $\phi(x)$ and define $\theta = \sum_{j=1}^m \alpha_j y^{(j)} \phi(x^{(j)})$ (note use of $y^{(j)}$)
- * Hypothesis: $sign(\sum_{i=1}^{m} \alpha_{i} y^{(i)} K(x, x^{(i)}))$
- * Cost: $\frac{1}{m}\sum_{i=1}^{m}\max(0, 1 \mathbf{y}^{(i)}\sum_{j=1}^{m}\alpha_{j}\mathbf{y}^{(j)}\mathbf{K}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})) + \lambda\alpha^{T}\mathbf{M}\alpha$ where \mathbf{M} is matrix with $\mathbf{M}_{ii} = \mathbf{y}^{(j)}\mathbf{K}(\mathbf{x}^{(j)}, \mathbf{x}^{(i)})\mathbf{y}^{(i)}$

 $^{^{1}}$ Training a Support Vector Machine in the Primal. Olivier Chapelle, Neural Computation 2007

» Kernel Summary

- * Easy to use \rightarrow hyperparameters are kernel parameter γ and L_2 penalty weight C. Also need to choose kernel, but Gaussian usually works well.
- Essentially an enhanced form of kNN model, so shares many of the same characteristics
- * Small data only \to as training data increases kernel approaches tend to become expensive/slow.
- * SVMs:
 - Often online "SVM" is used to mean "kernel SVM", so can get confusing. Often you'll also be told that SVM is better than logistic regression etc without further explanation
 - * Its important to keep clearly in mind that *two* tools are usually being conflated here: (i) use of kernels and (ii) use of SVMs. Its use of kernels that's key its a powerful approach but kernels can be applied with any linear model not just SVMs. Kernel logistic regression and kernel SVMs typically have similar performance