Exercise 4b

Question 1.

Find the principal value of each of the following:

$$\sin^{-1}\left(\frac{-1}{2}\right)$$

Answer

$$\sin^{-1}\left(\frac{-1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right)$$
 [Formula: $\sin^{-1}(-x) = \sin^{-1}(x)$]

$$=-\frac{\pi}{6}$$

Question 2.

Find the principal value of each of the following:

$$\cos^{-1}\left(\frac{-1}{2}\right)$$

Answer

$$\cos^{-1}\left(\frac{-1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right)$$
 [Formula: $\cos^{-1}(-x) = -\cos^{-1}(x)$]

$$=\pi-\frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

Question 3.

Find the principal value of each of the following:

$$\tan^{-1}(-1)$$

Answer:

$$tan(-1) = -tan(1)$$
 [Formula: $tan^{-1}(-x) = -tan^{-1}(x)$]

[We know that
$$\tan\frac{\pi}{4}=1$$
, thus $\tan^{-1}\frac{\pi}{4}=1$]

$$=-\frac{\pi}{4}$$

Question 4.

Find the principal value of each of the following:

$$sec^{-1}(-2)$$

Answer:

$$\sec^{-1}(-2) = \pi - \sec^{-1}(2)$$
 [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

$$=\pi-\frac{\pi}{3}$$

$$=\frac{2\pi}{3}$$

Question 5.

Find the principal value of each of the following:

$$\csc^{-1}\left(-\sqrt{2}\right)$$

Answer:

$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = -\operatorname{cosec}^{-1}\left(\sqrt{2}\right) [\operatorname{Formula: cosec}^{-1}(-x) = -\operatorname{cosec}^{-1}(x)]$$

$$=-\frac{\pi}{4}$$

This can also be solved as

$$cosec^{-1}(-\sqrt{2})$$

Since cosec is negative in the third quadrant, the angle we are looking for will be in the third quadrant.

$$=\pi+\frac{\pi}{4}$$

$$=\frac{5\pi}{4}$$

Question 6.

Find the principal value of each of the following:

$$\cot^1(-1)$$

Answer:

$$\cot^{-1}(-1) = \pi - \cot^{-1}(1)$$
 [Formula: $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$]

$$=\pi-\frac{\pi}{4}$$

$$=\frac{3\pi}{4}$$

Question 7.

Find the principal value of each of the following:

$$\tan^{-1}\left(-\sqrt{3}\right)$$

Answer:

$$\tan^{-1}(-\sqrt{3}) = -\tan^{-1}(\sqrt{3})$$
 [Formula: $\tan^{-1}(-x) = -\tan^{-1}(x)$]

$$=-\frac{\pi}{3}$$

Question 8.

Find the principal value of each of the following:

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$$

Answer:

$$\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right) = \pi - \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 [Formula: $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$]

$$=\pi-\frac{\pi}{6}$$

$$=\frac{5\pi}{6}$$

Question 9.

Find the principal value of each of the following:

Answer:

$$cosec^{-1}(2)$$

Putting the value directly

$$=\frac{\pi}{6}$$

Question 10.

Find the principal value of each of the following:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$

Answer

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$$

[Formula: $sin(\pi - x) = sin x$)

$$=\sin^{-1}\left(\sin\frac{\pi}{3}\right)$$

[Formula: $sin^{-1}(sin x) = x$]

$$=\frac{\pi}{3}$$

Question 11.

Find the principal value of each of the following:

$$\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$$

Answer:

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right) = \tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right)$$

[Formula: $tan(\pi - x) = -tan(x)$, as tan is negative in the second quadrant.]

$$= \tan^{-1} \left(-\tan \frac{\pi}{4} \right)$$

[Formula: $tan^{-1}(tan x) = x$]

$$=-\frac{\pi}{4}$$

Question 12.

Find the principal value of each of the following:

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$$

Answer

$$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi - \frac{5\pi}{6}\right)\right)$$

[Formula: $cos(2\pi - x) = cos(x)$, as cos has a positive vaule in the fourth quadrant.]

$$=\cos^{-1}\left(\cos\frac{5\pi}{6}\right)$$
 [Formula: $\cos^{-1}(\cos x) = x$

$$=\frac{5\pi}{6}$$

Question 13.

Find the principal value of each of the following:

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

Answer:

$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi + \frac{\pi}{6}\right)\right)$$

[Formula: $cos(2\pi + x) = cos x$, cos is positive in the first quadrant.]

$$=\cos^{-1}\left(\cos\frac{\pi}{6}\right)$$
 [Formula: $\cos^{-1}(\cos x) = x$]

$$=\frac{\pi}{6}$$

Question 14.

Find the principal value of each of the following:

$$\tan^{-1} \left(\tan \frac{7\pi}{6} \right)$$

Answer

$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\left(\pi + \frac{\pi}{6}\right)\right)$$

[Formula: $tan(\pi + x) = tan x$, as tan is positive in the third quadrant.]

=
$$\tan^{-1}\left(\tan\frac{\pi}{6}\right)$$
 [Formula: $\tan^{-1}(\tan x) = x$]

$$=\frac{\pi}{6}$$

Question 15.

Find the principal value of each of the following:

$$\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$$
 3

Answer:

$$\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$$

Putting the value of $\tan^{-1}\sqrt{3}$ and using the formula

$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$

$$=\frac{\pi}{3}-\left(\pi-\cot^{-1}(\sqrt{3})\right)$$

Putting the value of $\cot^{-1}(\sqrt{3})$

$$=\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right)$$

$$=\frac{\pi}{3}-\frac{5\pi}{6}$$

$$=-\frac{3\pi}{6}$$

$$=-\frac{\pi}{2}$$

Question 16.

Find the principal value of each of the following:

$$\sin\left\{\frac{\pi}{3}-\sin^{-1}\left(\frac{-1}{2}\right)\right\}$$

Answer

$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(\frac{-1}{2}\right)\right\} [\text{Formula: } \sin^{-1}(-x) = -\sin^{-1}x]$$

$$=\sin\left\{\frac{\pi}{3}-\left(-\sin^{-1}\frac{1}{2}\right)\right\}$$

$$= \sin\left\{\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{2}\right)\right\}$$

Putting value of $\sin^{-1}\left(\frac{1}{2}\right)$

$$= \sin\left\{\frac{\pi}{3} + \frac{\pi}{6}\right\}$$

$$=\sin\frac{3\pi}{6}$$

$$=\sin\frac{\pi}{2}$$

= 1

Question 17.

Find the principal value of each of the following:

$$\cot\left(\tan^{-1}x + \cot^{-1}x\right)$$

Answer

$$\cot(\tan^{-1}x + \cot^{-1}x) = \cot(\frac{\pi}{2})$$
 [Formula: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$]

Putting value of $\cot\left(\frac{\pi}{2}\right)$

= 0

Question 18.

Find the principal value of each of the following:

$$\cos \operatorname{ec} \left(\sin^{-1} x + \cos^{-1} x \right)$$

Answer:

$$cosec (sin^{-1}x + cos^{-1}x) = cosec \frac{\pi}{2} [Formula: sin^{-1}x + cos^{-1}x = \frac{\pi}{2}]$$

Putting the value of cosec $\frac{\pi}{2}$

= 1

Question 19.

Find the principal value of each of the following:

$$\sin\left(\sec^{-1}x + \cos ec^{-1}x\right)$$

Answer:

$$\sin(\sec^{-1}x + \csc^{-1}x) = \sin(\frac{\pi}{2})$$
 [Formula: $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$]

Putting the value of $\sin\left(\frac{\pi}{2}\right)$

=1

Question 20.

Find the principal value of each of the following:

$$\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$$

Answer:

Putting the values of the inverse trigonometric terms

$$\frac{\pi}{3} + 2 \times \frac{\pi}{6}$$

$$=\frac{\pi}{3}+\frac{\pi}{3}$$

$$=\frac{2\pi}{2}$$

Question 21.

Find the principal value of each of the following:

$$\tan^{-1} 1 + \cos^{-1} \left(-\frac{1}{2} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$$

Answer

[Formula: $\cos^{-1}(-x) = \pi - \cos(x)$ and $\sin^{-1}(-x) = -\sin(x)$]

$$\tan^{-1} 1 + \left(\pi - \cos^{-1} \left(\frac{1}{2}\right)\right) + \left(-\sin^{-1} \left(\frac{1}{2}\right)\right)$$

Putting the values for each of the inverse trigonometric terms

$$=\frac{\pi}{4}+\left(\pi-\frac{\pi}{3}\right)-\frac{\pi}{6}$$

$$=\frac{\pi}{12}+\frac{2\pi}{3}$$

$$=\frac{9\pi}{12}$$

$$=\frac{3\pi}{4}$$

Question 22.

Find the principal value of each of the following:

$$\sin^{-1}\left\{\sin\frac{3\pi}{5}\right\}$$

Answer:

$$\sin^{-1}\left\{\sin\left(\frac{3\pi}{5}\right)\right\}$$

$$=\sin^{-1}\left\{\sin\left(\pi-\frac{2\pi}{5}\right)\right\}$$

[Formula: $sin(\pi - x) = sin x$, as sin is positive in the second quadrant.]

$$= \sin^{-1}\left\{\sin\frac{2\pi}{5}\right\} [\text{Formula: } \sin^{-1}(\sin x) = x]$$

$$=\frac{2\pi}{5}$$