IMPACT TECH

The Arrival of Quantum Computing

Will Zeng
Head of Quantum Cloud Services, Rigetti
Computing

Keeping up with the Quantashians

Will Zeng
Rigetti Computing

Impact.Tech April 19, 2018

awizeng

Quantum Computing

If there is a sense of reality, then there must also be a sense of possibility

Will Zeng
Rigetti Computing

Impact.Tech April 19, 2018

awizeng

Part 1. The Tech:

Why build a quantum computer at all? Why are we able to build them today? Upcoming Tech milestones to watch.

Part 1. The Tech:

Why build a quantum computer at all? Why are we able to build them today? Upcoming Tech milestones to watch.

Rampant discussion #1 **

^{**} hard limit of one question on the multiverse or whether we live in a simulation

Part 1. The Tech:

Why build a quantum computer at all? Why are we able to build them today? Upcoming Tech milestones to watch.

Rampant discussion #1 **

Part 2. The Industry:

What is the quantum industry and what is its trajectory?
What is the customer landscape?
How do I get involved as a
{scientist, programmer, entrepreneur, investor}?

Rampant discussion #2

^{**} hard limit of one question on the multiverse or whether we live in a simulation

Part 1. The Tech

Why build a quantum computer at all? Why are we able to build them today? Upcoming Tech milestones to watch.

Classical computers have fundamental limits

Transistor scaling

Economic limits with 10bn for next node fab

Ultimate single-atom limits

Returns to parallelization

Amdahl's law

Energy consumption

Exascale computing project has its own power plant

Power density can melt chips

And there's more we want to do

Simulation Driven Drug Design

Organic Batteries & Solar Cells

Artificial General Intelligence

New power | New opportunity | Fundamental curiosity

New power | New opportunity | Fundamental curiosity

Quantum computing power^{*} scales exponentially with qubits N bits can exactly simulate log N qubits

^{*} We will be more precise later in the talk

New power | New opportunity | Fundamental curiosity

Quantum computing power* scales exponentially with qubits N bits can exactly simulate log N qubits

This compute unit....

Commodore 64

can exactly simulate:

10 Qubits

^{*} We will be more precise later in the talk

New power | New opportunity | Fundamental curiosity

Quantum computing power^{*} scales exponentially with qubits N bits can exactly simulate log N qubits

This compute unit....

Commodore 64

AWS M4 Instance

1 Million x Commodore 64

can exactly simulate:

10 Qubits

30 Qubits

^{*} We will be more precise later in the talk

New power | New opportunity | Fundamental curiosity

Quantum computing power^{*} scales exponentially with qubits N bits can exactly simulate log N qubits

This compute unit....

Commodore 64

AWS M4 Instance

1 Million x Commodore 64

Entire Global Cloud

1 Billion x (1 Million x Commodore 64)

60 Qubits

can exactly simulate:

10 Qubits

30 Qubits

^{*} We will be more precise later in the talk

New power | New opportunity | Fundamental curiosity

Quantum computing power^{*} scales exponentially with qubits N bits can exactly simulate log N qubits

This compute unit....

Commodore 64

AWS M4 Instance

1 Million x Commodore 64

Entire Global Cloud

1 Billion x (1 Million x Commodore 64)

60 Qubits

can exactly simulate: 10 Qubits

30 Qubits

Rigetti 19 qubits available since Dec 2017

^{*} We will be more precise later in the talk

New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

Crucial details:

- limited number of multiplications (hundreds to thousands) due to noise

^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

Crucial details:

- limited number of multiplications (hundreds to thousands) due to noise
- not arbitrary matrices (need to be easily constructed on a QC)

^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

Crucial details:

- limited number of multiplications (hundreds to thousands) due to noise
- not arbitrary matrices (need to be easily constructed on a QC)
- small I/O, N-bits in and N-bits out

^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

Crucial details:

- limited number of multiplications (hundreds to thousands) due to noise
- not arbitrary matrices (need to be easily constructed on a QC)
- small I/O, N-bits in and N-bits out

The "big-memory small pipe" mental model for quantum computing

^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

Machine Learning

- > Development of new training sets and algorithms
- > Classification and sampling of large data sets

Supply Chain Optimization

- > Forecast and optimize for future inventory demand
- > NP-hard scheduling and logistics map into quantum applications

Robotic Manufacturing

- > Reduce manufacturing time and cost
- > Maps to a Traveling Salesman Problem addressable by quantum constrained optimization

Computational Materials Science

- > Design of better catalysts for batteries
- > Quantum algorithms for calculating electronic structure

Alternative Energy Research

- > Efficiently convert atmospheric CO₂ to methanol
- Powered by existing hybrid quantumclassical algorithms + machine learning

New power | New opportunity | Fundamental curiosity

Machine Learning

- > Development of new training sets and algorithms
- > Classification and sampling of large data sets

Supply Chain Optimization

- > Forecast and optimize for future inventory demand
- > NP-hard scheduling and logistics map into quantum applications

Robotic Manufacturing

- > Reduce manufacturing time and cost
- > Maps to a Traveling Salesman Problem addressable by quantum constrained optimization

Computational Materials Science

- > Design of better catalysts for batteries
- > Quantum algorithms for calculating electronic structure

Alternative Energy Research

- > Efficiently convert atmospheric CO₂ to methanol
- Powered by existing hybrid quantumclassical algorithms + machine learning

What isn't on here: breaking RSA with Shor's algorithm

New power | **New opportunity** | Fundamental curiosity

Quantum processors are scaling up quickly

New power | **New opportunity** | Fundamental curiosity

Investments across academia, government, and industry are global and growing

New power | New opportunity | Fundamental curiosity

Investments across academia, government, and industry are global and growing

Plus approximately \$300M in global VC investment

New power | New opportunity | **Fundamental curiosity**

New power | New opportunity | **Fundamental curiosity**

New power | New opportunity | Fundamental curiosity

Quantum computing reorients the relationship between physics and computer science.

Every "function which would **naturally** be regarded as computable" can be computed by the universal Turing machine. - **Turing**

"... nature isn't classical, dammit..." - Feynman

New power | New opportunity | Fundamental curiosity

Quantum computing reorients the relationship between physics and computer science.

Every "function which would **naturally** be regarded as computable" can be computed by the universal Turing machine. - **Turing**

"... nature isn't classical, dammit..." - Feynman

Physical phenomenon apply to information and computation as well.

> Superposition

> No-cloning

> Teleportation

Scalable hardware | Robust algorithms

Scalable hardware | Robust algorithms

Quantum

Computer

Isolated
Long-lived coherence
Not necessarily microscopic

Fundamentally controllable
Simple scalable building blocks
Programmable

Scalable hardware | Robust algorithms

Quantum

Computer

Isolated
Long-lived coherence
Not necessarily microscopic

Fundamentally controllable
Simple scalable building blocks
Programmable

[1994-2010]

Ion Traps

Photonic Networks

Scalable hardware | Robust algorithms

Superconducting qubit performance has increased by 10,000,000x in the last 15 years

Scalable hardware | **Robust algorithms**

Scalable hardware | Robust algorithms

First Quantum Algorithms w/ Exponential Speedup (Deutsch-Jozsa, Shor's Factoring, Discrete Log, ...)

1996

First Quantum Database Search Algorithm (Grover's)

Scalable hardware | Robust algorithms

Scalable hardware | Robust algorithms

Big proven speedups

- > Breaking RSA
- > Database search
- > Crypto
- > Classification
- > Linear systems
- > Recommender systems

Scalable hardware | Robust algorithms

Big proven speedups

- > Breaking RSA
- > Database search
- > Crypto
- > Classification
- > Linear systems
- > Recommender systems

These algorithms require Big, Perfect Quantum Computers TM

> 10,000,000 qubits for Shor's algorithms to factor a 2048 bit number

Scalable hardware | Robust algorithms

We have Small, Noisy Quantum Computers TM

Chance of hardware error in a classical computer:

0.000,000,000,000,000,000,000,1%

Chance of hardware error in a quantum computer:

0.1%

Scalable hardware | Robust algorithms

We have Small, Noisy Quantum Computers TM

Chance of hardware error in a classical computer:

0.000,000,000,000,000,000,000,1%

NISQ: Noisy, intermediate scale quantum computing

Chance of hardware error in a quantum computer:

0.1%

Scalable hardware | Robust algorithms

Scalable hardware | Robust HYBRID algorithms

Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd)

2008

Quantum Algorithms for SVM's & Principal Component Analysis

2013

Practical Quantum Chemistry Algorithms (VQE)

2016

Practical Quantum Optimization Algorithms (QAOA) Simulations on Near-term Quantum Supremacy **Hybrid** quantum/classical algs

- > Noise Robust
- > Empirical speedups

Quantum computers have quantum processor(s) and classical processors

Quantum processor

Full quantum computing system

Quantum computers have quantum processor(s) and classical processors

Quantum processor

Full quantum computing system

Forest is optimized for this with the Quil [01) instruction set.

Quantum programming is preparing and sampling from complicated distributions

By parameterizing quantum programs we can train them to be robust to noise

1. Send program e.g. $RX(\theta)$ 2 2. Prep 4. Optimize Distribution QPU choice of θ CPU against some objective qubits: bits: [0]...[N]O...M 3. Sample

Quantum Machine Learning

> Quantum neuron: an elementary building block for machine learning on quantum computers. (Cao et al. 2017)

- > Quantum circuit learning. (Mitarai et al. 2018)
- Quantum machine learning in feature Hilbert spaces. (Schuld and Killoran 2018)

A generative modeling approach for benchmarking and training shallow quantum circuits. (Benedetti et al. 2018)

The Variational Quantum Eigensolver

Used for the electronic structure problem in quantum chemistry

1. MOLECULAR DESCRIPTION

e.g. Electronic Structure Hamiltonian

$$H = \sum_{i,j < i}^{N_n} \frac{Z_i Z_j}{|R_i - R_j|} + \sum_{i = 1}^{N_e} \frac{-\nabla_{r_i}^2}{2} - \sum_{ij}^{N_n,N_e} \frac{Z_i}{|R_i - r_j|} + \sum_{i,j < i}^{N_e} \frac{1}{|r_i - r_j|},$$

2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform e.g. DI-HYDROGEN

$$\begin{split} H &= f_0 1\!\!1 + f_1 Z_0 + f_2 Z_1 + f_3 Z_2 + f_1 Z_0 Z_1 \\ &+ f_4 Z_0 Z_2 + f_5 Z_1 Z_3 + f_6 \cancel{X}_0 Z_1 \cancel{X}_2 + f_6 \cancel{Y}_0 Z_1 \cancel{Y}_2 \\ &+ f_7 Z_0 Z_1 Z_2 + f_4 Z_0 Z_2 Z_3 + f_3 Z_1 Z_2 Z_3 \\ &+ f_6 \cancel{X}_0 Z_1 \cancel{X}_2 Z_3 + f_6 \cancel{Y}_0 Z_1 \cancel{Y}_2 Z_3 + f_7 Z_0 Z_1 Z_2 Z_3 \end{split}$$

3. PARAMETERIZED ANSATZ

e.g. Unitary Coupled Cluster Variational Adiabatic Ansatz

$$\frac{\langle \varphi(\vec{\theta})|\,H\,|\varphi(\vec{\theta})\rangle}{\langle \varphi(\vec{\theta})|\varphi(\vec{\theta})\rangle} \geq E_0$$

4. RUN Q.V.E. QUANTUM-CLASSICAL HYBRID ALGORITHM

VQE Simulations on Quantum Hardware

Quantum Approximate Optimization Algorithm

[QAOA] Hybrid algorithm used for constraint satisfaction problems

Given binary constraints:

$$z \in \{0,1\}^n$$

$$C_a(z) = \begin{cases} 1 & \text{if } z \text{ satisfies the constraint } c \\ 0 & \text{if } z \text{ does not } . \end{cases}$$

MAXIMIZE

$$C(z) = \sum_{a=1}^m C_a(z)$$

<u>Traveling Salesperson</u>

Scheduling

Hadfield et al. 2017 (1709.03489)

K-means clustering

Otterbach et al. 2017 (1712.05771)

Boltzmann Machine Training

Verdon et al. 2017 (1712.05304)

QAOA in **Forest**

In **14** lines of code

```
from pyquil.quil import Program
from pyquil.gates import H
from pyquil.paulis import sI, sX, sZ, exponentiate commuting pauli sum
from pyquil.api import QPUConnection
graph = [(0, 1), (1, 2), (2, 3)]
nodes = range(4)
init state prog = sum([H(i) for i in nodes], Program())
h cost = -0.5 * sum(sI(nodes[\theta]) - sZ(i) * sZ(j) for i, j in graph)
h driver = -1. * sum(sX(i) for i in nodes)
def qaoa_ansatz(betas, gammas):
    return sum([exponentiate_commuting_pauli_sum(h_cost)(g) +
exponentiate commuting pauli sum(h driver)(b) \
        for g, b in zip(gammas, betas)], Program())
program = init state prog + qaoa ansatz([0., 0.5], [0.75, 1.])
qvm = QPUConnection()
qvm.run and measure(program, qubits=nodes, trials=10)
```

What do near term applications look like?

The "big-memory small pipe" mental model for quantum computing

What do near term applications look like?

The "big-memory small pipe" mental model for quantum computing

CRITERIA:

- Complex models (esp. If represented in a high dimensional vector space)
- Small data (QC has limited I/O)
- NOT real-time applications (again due to limited I/O)
- Approximate solutions are useful (indicates robustness to noise in early quantum processors)

Major Technology Challenges for Quantum Computing

- > Existence of valuable robust applications with hundreds to thousands of qubits
- > Reducing noise
- > Integrating chip design, fabrication, control systems, software
- > Implementing quantum error correction

Upcoming technology milestones

- 1. Quantum computers exist (Today)
- 1. Quantum supremacy (18-24 mos) not as big a deal as it sounds, but still a bit deal
- 1. Limited quantum advantage (3-5 years)
- 1. Broad quantum advantage (5+ years)

Rampant Discussion #1

Part 2. The Industry

```
What is the quantum industry and what is its trajectory?
```

What is the customer landscape?

How do I get involved as a

{scientist, programmer, entrepreneur,

investor}?

The emerging quantum landscape has a taxonomy

General-purpose ("Gate-based") quantum computing

Consulting / benchmarking

services

₩OCWARE

10Bit

A full supply and demand side industry is emerging

Lots of people have this unsophisticated and limited view:

The real picture is will eventually be a rich ecosystem

Rigetti has chosen to vertically integrate a lot in house

There are startups and companies in every niche today

The classical analogs of each of these are massive

Access to cryogenic systems is an exogenic risk to the field

There is undifferentiated abundance & fragmentation at this part of the market

There are low barriers to entry

While nobody is seriously tackling other areas

Industry Trajectory: The Chasm

Industry Trajectory: The Chasm

A combination of hardware, software, and applications are needed to cross this

Hardware is advancing but the

software & apps ecosystem is fragmented

Hardware is advancing but the software & apps ecosystem is fragmented

Will Quantum Software evolve analogously to AI? (acquisition heavy, no new great AI company)

The 3 waves of AI companies

Government investment for chasm-crossing

Foreign governments have led the way with direct funding

- Australia Center of Excellence at UNSW
- Funded at \$25M over 5yrs, 2016-2021

- Europe **€1B** over 5 years
- Individual countries also have initiatives,
 - Germany QUTEGA initiative likely €300M over 10yrs
 - UK made £270M investment in 2013

China has announced a **\$10B**, four million square foot national quantum laboratory in Heifi devoted to quantum information sciences

Government investment for chasm-crossing

The US has led basic research and is starting to catch up on industry support

2019 DOE budget allocates **\$105M** to quantum information science

- National Labs = primary recipients of this spend
- Exascale Computing Initiative \$1.8 billion, some small portion of which will go to quantum

NSF's "Quantum Leap" initiative allocates **\$30M** to quantum computing research initiatives, and another \$30M to innovative HPC research

■ Possible compute distribution to researchers via NSF grants

DARPA and the Army Research Lab have known spending of around **\$30M** in quantum initiatives

<u>Proposal</u> requiring legislative action by Congress

- **\$800M** over 5ys for civilian work + more on defense
- 3-6 QILabs to be built out, focused on hardware innovation
- QCAP (QC Access Program) is envisioned to allow gov't purchase of commercial quantum compute resources → at least \$100m over 5ys

How to get involved as a scientist or programmer?

> Join a company! Lots of roles for non-quantum non-PhD's! will@rigetti.com

How to get involved as a scientist or programmer?

> Join a company! Lots of roles for non-quantum non-PhD's! will@rigetti.com

> Do some programming and join the community!

github.com/rigetticomputing
[IBM] github.com/QISKit

http://forest.rigetti.com
http://www.qiskit.org

Bay Area Quantum Computing Meetup

Quantum programming discussions slack.rigetti.com

quantumcomputing.stackexchange.com

Entrepreneurs: Step 1: Understand your technology.

Entrepreneurs: Step 1: Understand your technology.

Step 2: Understand that technology is not enough.

For quantum to change the world we must cross a market chasm

Entrepreneurs:

Step 1: Understand your technology.

Step 2: Understand that technology is not enough.

For quantum to change the world we must cross a market chasm

Will Zeng's unsolicited call for quantum startups in:

- > Developer tools including optimizing compilers
- > Application specific algorithms and software
- > Other areas of the quantum industry stack

Entrepreneurs:

Step 1: Understand your technology.

Step 2: Understand that technology is not enough.

For quantum to change the world we must cross a market chasm

WZ's unsolicited call for startups in:

> Developer tools | Apps | Other stack areas

Investors:

Entrepreneurs: Step 1: Understand your technology.

Step 2: Understand that technology is not enough.

For quantum to change the world we must cross a market chasm

WZ's unsolicited call for startups in:

> Developer tools | Apps | Other stack areas

Investors: Challenges:

- fragmented teams with hard to diligence taxonomy of technologies
- need more algorithms and applications focus towards advantage

Entrepreneurs: Step 1: Understand your technology.

Step 2: Understand that technology is not enough.

For quantum to change the world we must cross a market chasm

WZ's unsolicited call for startups in:

> Developer tools | Apps | Other stack areas

Investors: Challenges:

- fragmented teams with hard to diligence taxonomy of technologies
- need more algorithms and applications focus towards advantage

How to find & get focused teams out of academia and other fields and in position to invent the technologies that will take quantum through the chasm?

Have an idea? Come talk to me. I want to help.

trends of the best results from nearly 20 years of SC qubits

