EE101: Op Amp circuits (Part 5)

M. B. Patil mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

$$V_0 = A_{\mbox{\scriptsize V}}(V_+ - V_-) \mbox{ (1)} \label{eq:V0}$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{i} \, \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \mbox{(2)} \label{eq:V_problem}$$

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1}=\mathbf{i}_{R2}, \text{ and we get,}$

$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}} \eqno(2)$$

$$V_0 = A_V(V_+ - V_-) \quad \ (1)$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad \ (2)$$

$$\begin{array}{c} \mathsf{V_i}\uparrow \longrightarrow \boxed{\mathsf{V_-}\uparrow} \longrightarrow \mathsf{V_0}\downarrow \longrightarrow \boxed{\mathsf{V_-}\downarrow} \\ \mathsf{Eq.}\ 2 \qquad \mathsf{Eq.}\ 1 \qquad \mathsf{Eq.}\ 2 \end{array}$$

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}} \eqno(2)$$

$$\begin{array}{cccc} V_{i}\uparrow & \rightarrow & V_{-}\uparrow & \rightarrow & V_{o}\downarrow & \rightarrow & V_{-}\downarrow \\ & \text{Eq. 2} & \text{Eq. 1} & \text{Eq. 2} \end{array}$$

$$V_0 = A_{\mbox{\scriptsize V}}(V_+ - V_-) \mbox{ (1)} \label{eq:V0}$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad \ (2)$$

$$\begin{array}{ccc} V_{\textrm{i}}\uparrow & \rightarrow \boxed{V_{-}\uparrow} & \rightarrow & V_{\textrm{o}}\downarrow & \rightarrow \boxed{V_{-}\downarrow} \\ \text{Eq. 2} & \text{Eq. 1} & \text{Eq. 2} \end{array}$$

$$V_{+} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 (3)

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\label{eq:R1} i_{R1}=i_{R2}, \text{ and we get,}$

$$V_{-} = V_{\dot{1}} \frac{R_2}{R_1 + R_2} + V_{o} \frac{R_1}{R_1 + R_2} \eqno(2)$$

$$\begin{array}{ccc} V_{i}\uparrow & \rightarrow \boxed{V_{-}\uparrow} & \rightarrow V_{0}\downarrow & \rightarrow \boxed{V_{-}\downarrow} \\ \text{Eq. 2} & \text{Eq. 1} & \text{Eq. 2} \end{array}$$

$$V_{+} = V_{1} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad \mbox{(3)} \label{eq:V+}$$

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{\dot{1}} \frac{R_2}{R_1 + R_2} + V_{o} \frac{R_1}{R_1 + R_2} \eqno(2)$$

$$\begin{array}{ccc} V_{i}\uparrow & \rightarrow \boxed{V_{-}\uparrow} & \rightarrow & V_{o}\downarrow & \rightarrow \boxed{V_{-}\downarrow} \\ \text{Eq. 2} & \text{Eq. 1} & \text{Eq. 2} \end{array}$$

The circuit reaches a stable equilibrium.

$$V_{+} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{0} \frac{R_{1}}{R_{1} + R_{2}}$$
 (3)

$$\begin{array}{cccc} \mathsf{V_i} \uparrow & \rightarrow & \boxed{\mathsf{V_+} \uparrow} & \rightarrow & \mathsf{V_o} \uparrow & \rightarrow & \boxed{\mathsf{V_+} \uparrow} \\ \mathsf{Eq.} \ 3 & \mathsf{Eq.} \ 1 & \mathsf{Eq.} \ 3 \end{array}$$

We now have a positive feedback situation. As a result, V_O rises (or falls) indefinitely, limited finally by saturation.

$$V_0 = A_V(V_+ - V_-) \quad \ (1)$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1}=\mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \, (2)$$

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\label{eq:R1} i_{R1}=i_{R2}, \text{ and we get,}$

$$V_{-} = V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \, \text{(2)} \quad \,$$

$$V_0 = A_V(V_+ - V_-)$$
 (1)

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}, \text{ and we get,}$

$$V_{-} = V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \, \text{(2)} \quad \,$$

$$\begin{array}{ccc} \mathsf{V_i} \uparrow & \rightarrow \boxed{\mathsf{V_o} \uparrow} & \rightarrow \mathsf{V_-} \uparrow & \rightarrow \boxed{\mathsf{V_o} \downarrow} \\ \mathsf{Eq.} \ 1 & \mathsf{Eq.} \ 2 & \mathsf{Eq.} \ 1 \end{array}$$

$$V_0 = A_{\mbox{\scriptsize V}}(V_+ - V_-) \mbox{ (1)} \label{eq:V0}$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1}=\mathbf{i}_{R2}, \text{ and we get,}$

$$V_{-} = V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad (2)$$

$$\begin{array}{c|c} \mathsf{V_i} \uparrow & \rightarrow \boxed{\mathsf{V_o} \uparrow} & \rightarrow \mathsf{V_-} \uparrow & \rightarrow \boxed{\mathsf{V_o} \downarrow} \\ \mathsf{Eq.} \ 1 & \mathsf{Eq.} \ 2 & \mathsf{Eq.} \ 1 \end{array}$$

$$v_o = \mathsf{A}_V(v_+ - v_-) \quad \text{ (1)}$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1}=\mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \, (2)$$

$$\begin{array}{cccc} V_{\textrm{i}}\uparrow & \rightarrow \boxed{V_{\textrm{o}}\uparrow} & \rightarrow V_{\textrm{-}}\uparrow & \rightarrow \boxed{V_{\textrm{o}}\downarrow} \\ \text{Eq. 1} & \text{Eq. 2} & \text{Eq. 1} \end{array}$$

$$V_{+} = V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad (3)$$

$$V_0 = A_{\mbox{\scriptsize V}}(V_+ - V_-) \mbox{ (1)} \label{eq:V0}$$

Since the Op Amp has a high input resistance, $i_{R1}=i_{R2}, \mbox{ and we get,} \label{eq:R1}$

$$V_{-} = V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad (2)$$

$$\begin{array}{ccc} \mathsf{V_i} \uparrow & \rightarrow \boxed{\mathsf{V_o} \uparrow} & \rightarrow \mathsf{V_-} \uparrow & \rightarrow \boxed{\mathsf{V_o} \downarrow} \\ \mathsf{Eq.} \ 1 & \mathsf{Eq.} \ 2 & \mathsf{Eq.} \ 1 \end{array}$$

$$V_{+} = V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad (3)$$

$$V_0 = A_V(V_+ - V_-) \quad \ (1)$$

Since the Op Amp has a high input resistance, $\mathbf{i}_{R1} = \mathbf{i}_{R2}\text{, and we get,}$

$$V_{-} = V_{o} \, \frac{R_{1}}{R_{1} + R_{2}} \quad \, \text{(2)} \quad \,$$

$$\begin{array}{ccc} V_{i}\uparrow & \rightarrow \boxed{V_{o}\uparrow} \rightarrow V_{-}\uparrow & \rightarrow \boxed{V_{o}\downarrow} \\ \text{Eq. 1} & \text{Eq. 2} & \text{Eq. 1} \end{array}$$

The circuit reaches a stable equilibrium.

$$V_{+} = V_{0} \frac{R_{1}}{R_{1} + R_{2}} \quad (3)$$

$$\begin{array}{c} \mathsf{V_i} \uparrow & \rightarrow \boxed{\mathsf{V_o} \downarrow} \rightarrow \mathsf{V_+} \downarrow & \rightarrow \boxed{\mathsf{V_o} \downarrow} \\ \mathsf{Eq.} \ 1 & \mathsf{Eq.} \ 3 & \mathsf{Eq.} \ 1 \end{array}$$

We now have a positive feedback situation. As a result, V_0 rises (or falls) indefinitely, limited finally by saturation.

* Because of positive feedback, both these circuits are unstable.

Feedback

- * Because of positive feedback, both these circuits are unstable.
- * The output at any time is only limited by saturation of the Op Amp, i.e., $V_o = \pm V_{\rm sat}.$

Feedback

- * Because of positive feedback, both these circuits are unstable.
- * The output at any time is only limited by saturation of the Op Amp, i.e., $V_o = \pm V_{\rm sat}.$
- * Of what use is a circuit that is stuck at $V_o=\pm V_{\rm sat}$? It turns out that these circuits are actually useful! Let us see how.

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$).

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o = +V_{\rm sat} = +10 \ V \rightarrow V_+ = \frac{R_1}{R_1 + R_2} \ V_o = 1 \ V$$
.
$$(V_+ - V_-) = (1 - 5) = -4 \ V \rightarrow V_o = -V_{\rm sat} \ .$$

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o=+V_{\rm sat}=+10~V \rightarrow V_+=rac{R_1}{R_1+R_2}~V_o=1~V$$
 .
$$(V_+-V_-)=(1-5)=-4~V \rightarrow V_o=-V_{\rm sat}~.$$
 This is inconsistent with our assumption $(V_o=+V_{\rm sat})$.

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o = +V_{\text{sat}} = +10 \ V \rightarrow V_+ = \frac{R_1}{R_1 + R_2} \ V_o = 1 \ V$$
.
 $(V_+ - V_-) = (1 - 5) = -4 \ V \rightarrow V_o = -V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = +V_{\mathsf{sat}}$).

Case (ii):
$$V_o = -V_{\text{sat}} = -10 \ V \rightarrow V_+ = \frac{R_1}{R_1 + R_2} V_o = -1 \ V$$
.
$$(V_+ - V_-) = (-1 - 5) = -6 \ V \rightarrow V_o = -V_{\text{sat}} \text{ (consistent)}$$

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o = +V_{\text{sat}} = +10 \text{ V} \rightarrow V_+ = \frac{R_1}{R_1 + R_2} V_o = 1 \text{ V}$$
.

$$(V_+ - V_-) = (1 - 5) = -4 \text{ V} \rightarrow V_o = -V_{\text{sat}}.$$
This is a substant with a superstant of V_-

This is inconsistent with our assumption ($V_o = +V_{\mathsf{sat}}$).

Case (ii):
$$V_o = -V_{\rm sat} = -10 \ V \rightarrow V_+ = \frac{R_1}{R_1 + R_2} \ V_o = -1 \ V$$
.
$$(V_+ - V_-) = (-1 - 5) = -6 \ V \rightarrow V_o = -V_{\rm sat} \ ({\rm consistent})$$

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o=+V_{\rm sat}=+10~V \rightarrow V_+=\frac{R_1}{R_1+R_2}V_o=1~V$$
 .
$$(V_+-V_-)=(1-5)=-4~V \rightarrow V_o=-V_{\rm sat}~.$$
 This is inconsistent with our assumption $(V_o=+V_{\rm sat})$.

Case (ii):
$$V_o = -V_{\sf sat} = -10 \ V o V_+ = rac{R_1}{R_1 + R_2} \ V_o = -1 \ V$$
 .

$$(V_+ - V_-) = (-1 - 5) = -6 V \rightarrow V_o = -V_{\mathsf{sat}}$$
(consistent)

If we move to the right (increasing V_i), the same situation applies, i.e., $V_o = -V_{\text{sat}}$.

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Case (i):
$$V_o = +V_{\text{sat}} = +10 \ V \rightarrow V_+ = \frac{R_1}{R_1 + R_2} \ V_o = 1 \ V$$
.
 $(V_+ - V_-) = (1 - 5) = -4 \ V \rightarrow V_o = -V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = +V_{\mathsf{sat}}$).

Case (ii):
$$V_o = -V_{\text{sat}} = -10 \text{ V} \rightarrow V_+ = \frac{R_1}{R_1 + R_2} V_o = -1 \text{ V}$$
.
$$(V_+ - V_-) = (-1 - 5) = -6 \text{ V} \rightarrow V_o = -V_{\text{sat}} \text{ (consistent)}$$

If we move to the right (increasing V_i), the same situation applies, i.e., $V_o = -V_{\text{sat}}$.

Consider decreasing values of V_i .

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} \, V_o = rac{1 \, \mathrm{k}}{10 \, \mathrm{k}} (- \, V_{\mathsf{sat}}) = -1 \, V \, .$$

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{1 \text{ k}}{10 \text{ k}} (-V_{\text{sat}}) = -1 V.$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{1 \text{ k}}{10 \text{ k}} (-V_{\text{sat}}) = -1 V.$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} \, V_o = rac{1\, extsf{k}}{10\, extsf{k}} (-V_{ extsf{sat}}) = -1 \, V \, .$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}.$

When $V_i < V_+ = -1 \, V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} \, V_o = rac{1\, extsf{k}}{10\, extsf{k}} (-V_{ extsf{sat}}) = -1 \, V \, .$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}.$

When $V_i < V_+ = -1 \, V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} \, V_o = rac{1\, extsf{k}}{10\, extsf{k}} (-V_{ extsf{sat}}) = -1 \, V \, .$$

As long as $\mathit{V_i} = \mathit{V_-} > \mathit{V_+} = -1 \, \mathit{V}$, $\mathit{V_o}$ remains at $-\mathit{V_{sat}}$.

When $V_i < V_+ = -1 \ V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

$$V_+$$
 now becomes $rac{R_1}{R_1+R_2}(+V_{\mathsf{sat}})=+1\,V$.

Consider decreasing values of V_i .

$$V_{+} = rac{R_{1}}{R_{1} + R_{2}} V_{o} = rac{1 \, \mathrm{k}}{10 \, \mathrm{k}} (-V_{\mathsf{sat}}) = -1 \, V \, .$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

When $V_i < V_+ = -1 \, V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

$$V_+$$
 now becomes $rac{R_1}{R_1+R_2}(+V_{\mathsf{sat}})=+1\ V$.

Decreasing V_i further makes no difference to V_o (since $V_i = V_- < V_+ = +1 V$ holds).

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} V_o = rac{1\, ext{k}}{10\, ext{k}} (-V_{ ext{sat}}) = -1\,V\,.$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

When $V_i < V_+ = -1 \, V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

$$V_+$$
 now becomes $\frac{R_1}{R_1 + R_2} (+V_{\mathsf{sat}}) = +1 \ V$.

Decreasing V_i further makes no difference to V_o (since $V_i = V_- < V_+ = +1 V$ holds).

Consider decreasing values of V_i .

$$V_+ = rac{R_1}{R_1 + R_2} V_o = rac{1\, ext{k}}{10\, ext{k}} (-V_{ ext{sat}}) = -1\,V\,.$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

When $V_i < V_+ = -1 \, V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

$$V_+$$
 now becomes $rac{R_1}{R_1+R_2}(+V_{\mathsf{sat}})=+1\,V$.

Decreasing V_i further makes no difference to V_o (since $V_i = V_- < V_+ = +1 V$ holds).

Now, the threshold at which V_o flips is $V_i = +1 \ V$.

Consider decreasing values of V_i .

$$V_{+} = rac{R_{1}}{R_{1} + R_{2}} V_{o} = rac{1 \, \mathrm{k}}{10 \, \mathrm{k}} (-V_{\mathsf{sat}}) = -1 \, V \, .$$

As long as $V_i=V_->V_+=-1\,V$, V_o remains at $-V_{\mathsf{sat}}$.

When $V_i < V_+ = -1 \ V$, V_o changes sign, i.e., $V_o = + V_{\mathsf{sat}}$.

$$V_+$$
 now becomes $rac{R_1}{R_1+R_2}(+V_{\mathsf{sat}})=+1\,V$.

Decreasing V_i further makes no difference to V_o (since $V_i = V_- < V_+ = +1 V$ holds).

Now, the threshold at which V_o flips is $V_i = +1 V$.

* The threshold values (or "tripping points"), $V_{\rm TH}$ and $V_{\rm TL}$, are given by $\pm \left(\frac{R_1}{R_1+R_2}\right)V_{\rm sat}.$

- * The threshold values (or "tripping points"), $V_{\rm TH}$ and $V_{\rm TL}$, are given by $\pm \left(\frac{R_1}{R_1+R_2}\right)V_{\rm sat}.$
- * The tripping point (whether $V_{\rm TH}$ or $V_{\rm TL}$) depends on where we are on the V_o axis. In that sense, the circuit has a memory.

- * The threshold values (or "tripping points"), V_{TH} and V_{TL} , are given by $\pm \left(\frac{R_1}{R_1 + R_2}\right) V_{\text{sat}}$.
- * The tripping point (whether $V_{\rm TH}$ or $V_{\rm TL}$) depends on where we are on the V_o axis. In that sense, the circuit has a memory.
- * $\Delta V_T = V_{\mathsf{TH}} V_{\mathsf{TL}}$ is called the "hysterisis width."

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$).

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$). Consider $V_i=5~V$.

Because of positive feedback, V_o can only be $+V_{\mathsf{sat}}$ (for $V_+ > V_-$) or $-V_{\mathsf{sat}}$ (for $V_+ < V_-$).

Consider $V_i = 5 V$.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

Because of positive feedback, $V_{\rm o}$ can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$).

Consider $V_i = 5 V$.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = -V_{\rm sat}$).

Because of positive feedback, $V_{\rm o}$ can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$).

Consider
$$V_i = 5 V$$
.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = -V_{\rm sat}$).

Case (ii):
$$V_o = \frac{9 \text{ k}}{10 \text{ k}} \times 5 + \frac{1 \text{ k}}{10 \text{ k}} \times 10 = 5.5 \text{ V}$$
.
 $(V_+ - V_-) = (5.5 - 0) = 5.5 \text{ V} \rightarrow V_o = +V_{\text{sat}} \text{ (consistent)}$

Because of positive feedback, V_o can only be $+V_{\rm sat}$ (for $V_+>V_-$) or $-V_{\rm sat}$ (for $V_+< V_-$).

Consider $V_i = 5 V$.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = -V_{sat}$).

Case (ii):
$$V_o = \frac{9 \text{ k}}{10 \text{ k}} \times 5 + \frac{1 \text{ k}}{10 \text{ k}} \times 10 = 5.5 \text{ V}$$
.
 $(V_+ - V_-) = (5.5 - 0) = 5.5 \text{ V} \rightarrow V_o = +V_{\text{sat}} \text{ (consistent)}$

Because of positive feedback, V_o can only be $+V_{\mathsf{sat}}$ (for $V_+ > V_-$) or $-V_{\mathsf{sat}}$ (for $V_+ < V_-$).

Consider $V_i = 5 V$.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = -V_{sat}$).

Case (ii):
$$V_o = \frac{9 \text{ k}}{10 \text{ k}} \times 5 + \frac{1 \text{ k}}{10 \text{ k}} \times 10 = 5.5 \text{ V}$$
.
 $(V_+ - V_-) = (5.5 - 0) = 5.5 \text{ V} \rightarrow V_o = +V_{\text{sat}} \text{ (consistent)}$

If we move to the right (increasing V_i), the same situation applies, i.e., $V_o = +V_{\rm sat}$.

Because of positive feedback, V_o can only be $+V_{\mathsf{sat}}$ (for $V_+ > V_-$) or $-V_{\mathsf{sat}}$ (for $V_+ < V_-$).

Consider $V_i = 5 V$.

Case (i):
$$V_o = -V_{\text{sat}} = -10 \ V$$

 $\rightarrow V_+ = \frac{R_2}{R_1 + R_2} V_i + \frac{R_1}{R_1 + R_2} V_o = \frac{9 \ k}{10 \ k} \times 5 + \frac{1 \ k}{10 \ k} \times (-10) = 3.5 \ V$.
 $(V_+ - V_-) = (3.5 - 0) = 3.5 \ V \rightarrow V_o = +V_{\text{sat}}$.

This is inconsistent with our assumption ($V_o = -V_{sat}$).

Case (ii):
$$V_o = \frac{9 \text{ k}}{10 \text{ k}} \times 5 + \frac{1 \text{ k}}{10 \text{ k}} \times 10 = 5.5 \text{ V}$$
.
 $(V_+ - V_-) = (5.5 - 0) = 5.5 \text{ V} \rightarrow V_o = +V_{\text{sat}} \text{ (consistent)}$

If we move to the right (increasing V_i), the same situation applies, i.e., $V_o = +V_{\text{sat}}$.

Consider decreasing values of V_i .

Consider decreasing values of V_i .

$$V_+ = \frac{R_2}{R_1 + R_2} \, V_i + \frac{R_1}{R_1 + R_2} \, V_o = \frac{9 \, k}{10 \, k} \, V_i + \frac{1 \, k}{10 \, k} \, V_o \, .$$

Consider decreasing values of V_i .

$$V_+ = \frac{R_2}{R_1 + R_2} \, V_i + \frac{R_1}{R_1 + R_2} \, V_o = \frac{9 \, k}{10 \, k} \, V_i + \frac{1 \, k}{10 \, k} \, V_o \, .$$

As long as $V_+>0~V_{,}~V_{o}$ remains at $+V_{\rm sat}.$

Consider decreasing values of V_i .

$$V_+ = \frac{R_2}{R_1 + R_2} \, V_i + \frac{R_1}{R_1 + R_2} \, V_o = \frac{9 \, k}{10 \, k} \, V_i + \frac{1 \, k}{10 \, k} \, V_o \, .$$

As long as $V_+>0~V_{,}~V_{o}$ remains at $+V_{\rm sat}.$

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+>0~V_o$ remains at $+V_{\rm sat}.$

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}~V_{
m sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{
m sat}$.

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+>0~V_{,}~V_{o}$ remains at $+V_{\rm sat}.$

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}V_{\rm sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{\rm sat}$.

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+ > 0 V$, V_o remains at $+V_{sat}$.

When
$$V_+=0~V$$
, i.e., $V_i=-\frac{R_1}{R_2}V_{\rm sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{\rm sat}$.

$$V_+$$
 now follows the equation, $V_+ = \frac{9 \text{ k}}{10 \text{ k}} V_i - \frac{1 \text{ k}}{10 \text{ k}} V_{\text{sat}}$.

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+ > 0 V$, V_o remains at $+V_{sat}$.

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}V_{
m sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{
m sat}$.

$$V_+$$
 now follows the equation, $V_+=rac{9\, ext{k}}{10\, ext{k}}\,V_i-rac{1\, ext{k}}{10\, ext{k}}\,V_{ ext{sat}}\,.$

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+ > 0 V$, V_o remains at $+V_{sat}$.

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}V_{
m sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{
m sat}$.

$$V_+$$
 now follows the equation, $V_+=rac{9\, ext{k}}{10\, ext{k}}\,V_i-rac{1\, ext{k}}{10\, ext{k}}\,V_{ ext{sat}}\,.$

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+ > 0 V$, V_o remains at $+V_{sat}$.

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}V_{
m sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{
m sat}$.

$$V_+$$
 now follows the equation, $V_+=rac{9\, ext{k}}{10\, ext{k}}V_i-rac{1\, ext{k}}{10\, ext{k}}V_{ ext{sat}}\,.$

Now, the threshold at which
$$V_o$$
 flips is $V_+=0$, i.e., $V_i=+\frac{R_1}{R_2}\,V_{\rm sat}=+1.11\,V$

Consider decreasing values of V_i .

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9 \text{ k}}{10 \text{ k}} V_{i} + \frac{1 \text{ k}}{10 \text{ k}} V_{o}.$$

As long as $V_+ > 0 V$, V_o remains at $+V_{sat}$.

When
$$V_+=0~V$$
, i.e., $V_i=-rac{R_1}{R_2}V_{\rm sat}=-1.11~V$, V_o changes sign, i.e., $V_o=-V_{\rm sat}$.

$$V_+$$
 now follows the equation, $V_+=rac{9\, ext{k}}{10\, ext{k}}V_i-rac{1\, ext{k}}{10\, ext{k}}V_{ ext{sat}}\,.$

Now, the threshold at which
$$V_o$$
 flips is $V_+=0$, i.e., $V_i=+rac{R_1}{R_2}\,V_{\rm sat}=+1.11\,V$

* The threshold values $V_{
m TH}$ and $V_{
m TL}$ are given by $\pm \left(rac{R_1}{R_2}
ight) V_{
m sat}.$

- * The threshold values V_{TH} and V_{TL} are given by $\pm \left(rac{R_1}{R_2}
 ight) V_{\mathsf{sat}}.$
- * As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether V_{TH} or V_{TL}) depends on where we are on the V_o axis.

- * The threshold values V_{TH} and V_{TL} are given by $\pm \left(rac{R_1}{R_2}
 ight) V_{\mathsf{sat}}.$
- * As in the inverting Schmitt trigger, this circuit has a memory, i.e., the tripping point (whether V_{TH} or V_{TL}) depends on where we are on the V_o axis.
- * $\Delta V_T = V_{\mathsf{TH}} V_{\mathsf{TL}}$ is called the "hysterisis width."

Schmitt triggers

An Op Amp in the open-loop configuration serves as a comparator because of its high gain $(\sim 10^5)$ in the linear region.

An Op Amp in the open-loop configuration serves as a comparator because of its high gain $(\sim 10^5)$ in the linear region.

As seen earlier, the width of the linear region, $[V_{\rm sat}-(-V_{\rm sat})]/A_V$, is small $(\sim 0.1\,{\rm m\,V})$, and could be treated as 0.

An Op Amp in the open-loop configuration serves as a comparator because of its high gain $(\sim 10^5)$ in the linear region.

As seen earlier, the width of the linear region, $[V_{\rm sat}-(-V_{\rm sat})]/A_V$, is small $(\sim 0.1\,{\rm m\,V})$, and could be treated as 0.

i.e., if
$$V_+ > V_-$$
, $V_o = +V_{\rm sat}$, if $V_+ < V_-$, $V_o = -V_{\rm sat}$.

A comparator can be used to convert an analog signal into a digital (high/low) signal for further processing with digital circuits.

A comparator can be used to convert an analog signal into a digital (high/low) signal for further processing with digital circuits.

In practice, the input (analog) signal can have noise or electromagnetic pick-up superimposed on it. As a result, erroneous operation of the circuit may result \rightarrow next slide.

The comparator has produced multiple (spurious) transitions or "bounces," referred to as "comparator chatter."

The comparator has produced multiple (spurious) transitions or "bounces," referred to as "comparator chatter."

A Schmitt trigger can be used to eliminate the chatter \rightarrow next slide.

* While going from positive to negative values, V_i needs to cross V_{TL} (and not 0 V) to cause a change in V_o .

* While going from positive to negative values, V_i needs to cross V_{TL} (and not 0 V) to cause a change in V_o .

- * While going from positive to negative values, V_i needs to cross V_{TL} (and not 0 V) to cause a change in V_o .
- * In the reverse direction (negative to positive), V_i needs to cross V_{TH} .

- * While going from positive to negative values, V_i needs to cross V_{TL} (and not 0 V) to cause a change in V_o .
- * In the reverse direction (negative to positive), V_i needs to cross V_{TH} .
- $\boldsymbol{\ast}$ The circuit gets rid of spurious transitions, a major advantage over the simple comparator.

- * While going from positive to negative values, V_i needs to cross V_{TL} (and not 0 V) to cause a change in V_o .
- * In the reverse direction (negative to positive), V_i needs to cross V_{TH} .
- * The circuit gets rid of spurious transitions, a major advantage over the simple comparator.
- * The hysterisis width $(V_{TH} V_{TL})$ should be designed to be larger than the spurious excursions riding on V_i .

* A Schmitt trigger has two states, $V_o = L^+$ and $V_o = L^-$.

- * A Schmitt trigger has two states, $V_o = L^+$ and $V_o = L^-$.
- * With a suitable RC network, it can be made to freely oscillate between L⁺ and L⁻. Such a circuit is called an "astable multivibrator" or a "free-running multivibrator."

- * A Schmitt trigger has two states, $V_o = L^+$ and $V_o = L^-$.
- * With a suitable RC network, it can be made to freely oscillate between L⁺ and L⁻. Such a circuit is called an "astable multivibrator" or a "free-running multivibrator."
- * An astable multivibrator produces oscillations without an input signal, the frequency being controlled by the component values.

- * A Schmitt trigger has two states, $V_o = L^+$ and $V_o = L^-$.
- * With a suitable RC network, it can be made to freely oscillate between L⁺ and L⁻. Such a circuit is called an "astable multivibrator" or a "free-running multivibrator."
- An astable multivibrator produces oscillations without an input signal, the frequency being controlled by the component values.
- * The maximum operating frequency of these oscillators is typically $\sim 10\,\text{kHz},$ due to Op Amp speed limitations.

 $\mathsf{C} = 1\,\mu\mathsf{F} \qquad \quad \mathsf{V}_{\mathsf{TL}} = -1\,\mathsf{V}$

At
$$t = 0$$
, let $V_o = L^+$, and $V_c = 0 V$.

At
$$t = 0$$
, let $V_o = L^+$, and $V_c = 0 V$.

At t = 0, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

At t = 0, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

At t = 0, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

When V_c crosses V_{TH} , the output flips. Now, the capacitor starts discharging toward L^- .

At
$$t = 0$$
, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

When V_c crosses V_{TH} , the output flips. Now, the capacitor starts discharging toward L^- .

At t = 0, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

When V_c crosses V_{TH} , the output flips. Now, the capacitor starts discharging toward L^- .

When V_c crosses V_{TL} , the output flips again ightarrow oscillations.

At t = 0, let $V_o = L^+$, and $V_c = 0 V$.

The capacitor starts charging toward L^+ .

When V_c crosses V_{TH} , the output flips. Now, the capacitor starts discharging toward L^- .

When V_c crosses V_{TL} , the output flips again \rightarrow oscillations.

At t=0, let $V_o=L^+$, and $V_c=0$ V.

The capacitor starts charging toward L^+ .

When V_c crosses V_{TH} , the output flips. Now, the capacitor starts discharging toward L^- .

When V_c crosses V_{TL} , the output flips again \rightarrow oscillations.

Note that the circuit oscillates on its own, i.e., without any input.

Q: Where is the energy coming from?

Charging: Let $V_c(t) = A_1 \exp(-t/\tau) + B_1$, with $\tau = RC$.

Using $V_c(0) = V_{TL}$, $V_c(\infty) = L^+$, find A_1 and B_1 .

At $t=t_1$, $V_c=V_{TH}
ightarrow V_{TH}=A_1 \exp(-t_1/ au)+B_1
ightarrow {
m find}\ t_1.$

Charging: Let
$$V_c(t) = A_1 \exp(-t/\tau) + B_1$$
, with $\tau = RC$.

Using
$$V_c(0) = V_{TL}$$
, $V_c(\infty) = L^+$, find A_1 and B_1 .

At
$$t=t_1,~V_c=V_{TH}
ightarrow V_{TH}=A_1~ \exp(-t_1/ au)+B_1
ightarrow {
m find}~ t_1.$$

Discharging: Let
$$V_c(t) = A_2 \exp(-(t - t_1)/\tau) + B_2$$
.

Using
$$V_c(t_1) = V_{TH}$$
, $V_c(\infty) = L^-$, find A_2 and B_2 .

At
$$t = t_2$$
, $V_c = V_{TL} \rightarrow V_{TL} = A_2 \exp(-(t_2 - t_1)/\tau) + B_2 \rightarrow \text{find } (t_2 - t_1)$.

Charging: Let
$$V_c(t) = A_1 \exp(-t/\tau) + B_1$$
, with $\tau = RC$.

Using
$$V_c(0) = V_{TL}, \ V_c(\infty) = L^+$$
, find A_1 and B_1 .

At
$$t=t_1,~V_c=V_{TH}
ightarrow V_{TH}=A_1~ \exp(-t_1/ au)+B_1
ightarrow {
m find}~ t_1.$$

Discharging: Let
$$V_c(t) = A_2 \exp(-(t - t_1)/\tau) + B_2$$
.

Using
$$V_c(t_1) = V_{TH}$$
, $V_c(\infty) = L^-$, find A_2 and B_2 .

At
$$t = t_2$$
, $V_c = V_{TL} \to V_{TL} = A_2 \exp(-(t_2 - t_1)/\tau) + B_2 \to \text{find } (t_2 - t_1)$.

If
$$L^+ = L$$
, $L^- = -L$, $V_{TH} = V_T$, $V_{TL} = -V_T$, show that

$$T = 2 RC \ln \left(\frac{L + V_T}{L - V_T} \right).$$

Note that Op Amp 411 (slew rate: $10~V/\mu s$) gives sharper waveforms as compared to Op Amp 741 (slew rate: $0.5~V/\mu s$).

Note that Op Amp 411 (slew rate: $10~V/\mu s$) gives sharper waveforms as compared to Op Amp 741 (slew rate: $0.5~V/\mu s$).

SEQUEL files: schmitt_osc_741.sqproj, schmitt_osc_411.sqproj

(Ref: J. M. Fiore, "Op Amps and linear ICs")

For the integrator, $V_{o1}=-rac{1}{RC}\int V_{o2}dt$,

For the integrator, $V_{o1}=-rac{1}{RC}\int V_{o2}dt$,

 $V_{o2}=L^+
ightarrow V_{o2}$ decreases linearly.

 $V_{o2} = L^-
ightarrow V_{o2}$ increases linearly.

For the integrator, $V_{o1}=-rac{1}{RC}\int V_{o2}dt$,

 $V_{o2}=L^+
ightarrow V_{o2}$ decreases linearly.

 $V_{o2}=L^ightarrow V_{o2}$ increases linearly.

$$T_1 = \frac{V_{TH} - V_{TL}}{L^+/RC} = RC \; \frac{V_{TH} - V_{TL}}{L^+} \; . \label{eq:total_total_total_total}$$

For the integrator,
$$V_{o1}=-rac{1}{RC}\int V_{o2}dt$$
 ,

$$V_{o2} = L^+ o V_{o2}$$
 decreases linearly.

$$V_{o2}=L^-
ightarrow V_{o2}$$
 increases linearly.

$$T_1 = \frac{V_{TH} - V_{TL}}{L^+/RC} = RC \; \frac{V_{TH} - V_{TL}}{L^+} \; . \label{eq:total_total_total}$$

$$T_2 = \frac{V_{TH} - V_{TL}}{-L^-/RC} = RC \frac{V_{TH} - V_{TL}}{-L^-}$$
.

- * When $V_{o2}=+V_{\rm sat}$, D_1 is forward-biased (with a voltage drop of $V_{\rm on}$), and D_2 is reverse-biased. The Zener breakdown voltage (V_Z) is chosen so that D_2 operates under breakdown condition.
 - $\rightarrow \textit{V}_{o3} = \textit{V}_{on} + \textit{V}_{\textit{Z}}.$

- * When $V_{o2} = +V_{sat}$, D_1 is forward-biased (with a voltage drop of V_{on}), and D_2 is reverse-biased. The Zener breakdown voltage (V_Z) is chosen so that D_2 operates under breakdown condition.
 - $\rightarrow V_{o3} = V_{on} + V_Z$.
- * When $V_{o2} = -V_{sat}$, D_2 is forward-biased (with a voltage drop of V_{on}), and D_1 is reverse-biased.

$$\rightarrow V_{o3} = -V_{on} - V_Z$$
.

- * When $V_{o2}=+V_{\rm sat}$, D_1 is forward-biased (with a voltage drop of $V_{\rm on}$), and D_2 is reverse-biased. The Zener breakdown voltage (V_Z) is chosen so that D_2 operates under breakdown condition.
 - $\rightarrow V_{o3} = V_{on} + V_Z$.
- * When $V_{o2}=-V_{\rm sat},~D_2$ is forward-biased (with a voltage drop of $V_{\rm on}$), and D_1 is reverse-biased.
 - $\rightarrow V_{o3} = -V_{on} V_Z$.
- * R₃ serves to limit the output current for OA2.

- * When $V_{o2}=+V_{\rm sat},\ D_1$ is forward-biased (with a voltage drop of $V_{\rm on}$), and D_2 is reverse-biased. The Zener breakdown voltage (V_Z) is chosen so that D_2 operates under breakdown condition.
 - $\rightarrow V_{o3} = V_{on} + V_Z$.
- * When $V_{o2} = -V_{sat}$, D_2 is forward-biased (with a voltage drop of V_{on}), and D_1 is reverse-biased.
 - $\rightarrow V_{o3} = -V_{on} V_Z$.
- * R₃ serves to limit the output current for OA2.

SEQUEL file: opamp_osc_1.sqproj

