主成分分析

基本的な考え方

村田 昇

講義概要

・ 第1日: 主成分分析の考え方

・ 第2日: 分析の評価と視覚化

主成分分析の例

県毎の生活環境の違いの分析

県名	地方名	昼夜人口比	年少人口比	老年人口比	人口増減率	粗出生率	粗死亡率	婚姻率	離婚率
北海道	北海道	100.0	11.7	26.0	-0.47	7.09	10.63	4.86	2.12
青森県	東北	100.0	12.1	27.0	-0.47	6.79	12.81	4.33	1.78
岩手県	東北	99.7	12.1	27.9	-0.93	7.12	12.33	4.32	1.73
宮城県	東北	100.2	13.0	22.9	-0.09	8.05	9.51	5.30	1.70
秋田県	東北	99.9	11.1	30.7	-1.12	6.16	13.98	3.78	1.70
山形県	東北	99.8	12.6	28.3	-0.78	7.13	12.81	4.24	1.46
福島県	東北	99.6	12.9	26.1	-1.41	7.13	11.94	4.73	1.40
茨城県	関東	97.2	13.2	23.8	-0.51	7.78	10.20	4.92	1.79
栃木県	関東	99.1	13.2	23.2	-0.40	8.02	10.20	5.13	1.85
群馬県	関東	99.9	13.4	24.9	-0.45	7.49	10.43	4.64	1.77
埼玉県	関東	88.6	13.0	22.0	0.07	7.90	8.20	5.10	1.86
千葉県	関東	89.5	12.8	23.2	-0.31	7.89	8.59	5.19	1.86
東京都	関東	118.4	11.3	21.3	0.26	8.12	8.25	6.75	1.91
神奈川県	関東	91.2	13.0	21.5	0.10	8.32	7.94	5.68	1.85
新潟県	中部	100.0	12.5	27.2	-0.64	7.45	11.97	4.35	1.37
富山県	中部	99.8	12.7	27.6	-0.55	7.13	11.79	4.50	1.43
石川県	中部	100.2	13.4	25.0	-0.26	8.21	10.51	4.91	1.52
福井県	中部	100.2	13.7	26.0	-0.50	8.40	11.01	4.55	1.55
山梨県	中部	99.0	12.9	25.6	-0.58	7.44	11.21	4.60	1.87
長野県	中部	99.9	13.5	27.4	-0.47	7.81	11.48	4.67	1.66
岐阜県	中部	96.0	13.7	25.2	-0.48	8.00	10.45	4.62	1.60
静岡県	中部	99.9	13.4	24.9	-0.37	8.25	10.23	5.17	1.84
愛知県	中部	101.5	14.2	21.4	0.15	9.14	8.26	5.75	1.82
三重県	関西	98.1	13.5	25.3	-0.38	8.00	10.44	4.89	1.76
滋賀県	関西	96.6	14.8	21.6	0.07	9.35	8.64	5.22	1.66
京都府	関西	101.2	12.6	24.7	-0.27	7.66	9.68	5.02	1.77
大阪府	関西	104.7	13.0	23.7	-0.06	8.24	9.09	5.43	2.12
兵庫県	関西	95.7	13.5	24.3	-0.20	8.34	9.63	5.07	1.84
奈良県	関西	89.9	12.9	25.5	-0.43	7.60	9.82	4.48	1.72
和歌山県	関西	98.1	12.5	28.4	-0.70	7.51	12.59	4.72	1.98
鳥取県	中国	100.0	13.2	27.2	-0.51	8.20	12.15	4.74	1.83
島根県	中国	100.0	12.7	30.0	-0.70	7.90	13.46	4.40	1.43
岡山県	中国	99.9	13.5	26.2	-0.26	8.41	10.94	4.94	1.82
広島県	中国	100.3	13.5	25.3	-0.25	8.72	10.28	5.15	1.78
山口県	中国	99.5	12.6	29.2	-0.76	7.55	12.74	4.58	1.67
徳島県	四国	99.7	12.2	28.0	-0.51	7.40	12.60	4.34	1.62

香川県	四国	100.2	13.2	27.1	-0.30	8.25	11.50	4.84	1.91
愛媛県	四国	100.1	12.8	27.8	-0.56	7.87	12.17	4.51	1.79
高知県	四国	99.9	11.9	30.1	-0.79	7.00	13.49	4.33	1.87
福岡県	九州	100.1	13.5	23.3	0.12	9.01	9.63	5.50	2.07
佐賀県	九州	100.2	14.4	25.3	-0.47	8.83	11.48	4.75	1.74
長崎県	九州	99.8	13.4	27.0	-0.64	8.33	11.92	4.50	1.74
熊本県	九州	99.6	13.7	26.5	-0.33	8.85	11.38	4.96	1.87
大分県	九州	100.0	12.9	27.6	-0.50	8.14	11.86	4.77	1.85
宮崎県	九州	100.0	13.8	26.7	-0.44	8.75	11.59	5.03	2.15
鹿児島県	九州	99.9	13.6	27.0	-0.53	8.78	12.59	4.78	1.84
沖縄県	九州	100.0	17.6	17.7	0.57	12.12	7.54	6.28	2.58

Figure 1: 県別の生活環境(教育・労働などに関連する項目)

主成分分析の考え方

主成分分析

- 多数の変量のもつ情報の分析・視覚化
 - 変量を効率的に縮約して少数の特徴量を構成する
 - 特徴量に関与する変量間の関係を明らかにする
- PCA (Principal Component Analysis)
 - 構成する特徴量: **主成分** (princial component)

分析の枠組み

- x_1, \ldots, x_p :変数
- z₁,...,z_d:特徴量(d≤p)
- 変数と特徴量の関係 (線形結合)

Figure 2: 県別の生活環境 (教育・労働などに関連する項目)

Figure 3: 県別の生活環境 (教育・労働などに関連する項目)

Figure 4: 県別の生活環境の主成分分析

$$z_k = a_{1k}x_1 + \dots + a_{pk}x_p \quad (k = 1, \dots, d)$$

- 特徴量は定数倍の任意性があるので以下を仮定

$$\|\boldsymbol{a}_k\|^2 = \sum_{j=1}^p a_{jk}^2 = 1$$

主成分分析の用語

- 特徴量 zk
 - 第 k 主成分得点 (principal component score)
 - 第 k **主成分**
- 係数ベクトル a_k
 - 第 k 主成分負荷量 (principal component loading)
 - 第 k 主成分方向 (principal component direction)

分析の目的

目的

主成分得点 z_1,\ldots,z_d が変数 x_1,\ldots,x_p の情報を効率よく反映するように主成分負荷量 a_1,\ldots,a_d を観測データから決定する

- 分析の方針 (以下は同値)
 - データの情報を最も保持する変量の **線形結合を構成**
 - データの情報を最も反映する 座標軸を探索

- 教師なし学習 の代表的手法の1つ
 - 特徴抽出:情報処理に重要な特性を変数に凝集
 - 次元縮約:入力をできるだけ少ない変数で表現

実習

R:主成分分析を実行する関数

- R の標準的な関数
 - stats::prcomp()
 - stats::princomp()
- 計算法に若干の違いがある
 - 数値計算の観点からみると prcomp() が優位
 - princomp() はS言語(商用)との互換性を重視した実装
- 本講義では prcomp() を利用

R: 関数 prcomp() の使い方

• データフレームの全ての列を用いる場合

```
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, rank. = NULL, ...)
#' x: 必要な変数のみからなるデータフレーム
#' center: 中心化 (平均 0) を行って処理するか否か
#' scale.: 規格化 (分散 1) を行って処理するか否か
```

• 列名を指定する (formula を用いる) 場合

```
prcomp(formula, data = NULL, subset, na.action, ...)
#' formula: ~ 変数名 (解析の対象を + で並べる) 左辺はないので注意
#' data: 必要な変数を含むデータフレーム
#' 詳細は '?stats::prcomp' を参照
```

R: 関数 predict() の使い方

• 主成分得点を計算する関数

```
predict(object, newdata, ...)
#' object: prcomp が出力したオブジェクト
#' newdata: 主成分得点を計算するデータフレーム
#' 詳細は '?stats::prcomp' または '?stats::predict.prcomp' を参照
```

- 'newdata' を省略すると分析に用いたデータフレームの得点が計算される
- 主成分分析の結果を取得する関数

```
tidy(x, matrix = "u", ...)
#' x: prcomp が出力したオブジェクト
#' matrix: 結果として取り出す行列 u:scores, v:loadings, d:eigenvalues
#' 詳細は '?broom::tidy.prcomp' を参照
```

• 主成分得点を計算する関数

```
augment(x, data = NULL, newdata, ...)
#' x: prcomp が出力したオブジェクト
#' data: 元のデータ (通常不要)
```

```
#' newdata: 主成分得点を計算するデータフレーム
#' 詳細は '?broom::augment.prcomp' を参照
```

練習問題

- 数値実験により主成分分析の考え方を確認しなさい
 - 以下のモデルに従う人工データを生成する

```
#' 観測データ (2次元) の作成 (aのスカラー倍に正規乱数を重畳)
a <- c(1, 2)/sqrt(5) # 主成分負荷量 (単位ベクトル)
n <- 100 # データ数
toy_data <- tibble(runif(n, -1, 1) %% a + rnorm(2*n, sd = 0.3))
```

- 観測データの散布図を作成
- 観測データから第1主成分負荷量を推定

```
prcomp(toy_data) # 全ての主成分を計算する
a_hat <- prcomp(toy_data)$rotation[,1] # 負荷量 (rotation)の 1 列目が第 1 主成分</pre>
```

- 散布図上に主成分負荷量を描画

```
geom_abline(slope = 傾き, intercept = 切片) # 指定の直線を追加できる
```

第1主成分の計算

記号の準備

- 変数: x₁,...,x_p (p 次元)
- 観測データ: n 個の $(x_1, ..., x_p)$ の組

$$\{(x_{i1},\ldots,x_{ip})\}_{i=1}^n$$

- ベクトル表現
 - $x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}} : i$ 番目の観測データ (p 次元空間内の 1 点)
 - $a = (a_1, ..., a_p)^\mathsf{T}$: 長さ 1 の p 次元ベクトル

係数ベクトルによる射影

• データ x_i のa方向成分の長さ

$$a^{\mathsf{T}}x_i$$
 (スカラー)

• 方向ベクトル a をもつ直線上への点 x_i の直交射影

$$(a^{\mathsf{T}}x_i)a$$
 $(\lambda \lambda) - \times \langle \lambda \rangle$

Figure 5: 観測データの直交射影 (p = 2, n = 2) の場合)

幾何学的描像

ベクトル a の選択の指針

• 射影による特徴量の構成

ベクトル a を **うまく** 選んで観測データ x_1, \dots, x_n の情報を最も保持する 1 変量データ z_1, \dots, z_n を構成

$$z_1 = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_1, z_2 = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_2, \dots, z_n = \boldsymbol{a}^\mathsf{T} \boldsymbol{x}_n$$

• 特徴量のばらつきの最大化

観測データの ばらつきを最も反映するベクトル a を選択

$$\arg\max_{\boldsymbol{a}} \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i},$$

ベクトル a の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$

- この最大化問題は必ず解をもつ
 - f(a) は連続関数
 - 集合 $\{a \in \mathbb{R}^p : ||a|| = 1\}$ はコンパクト (有界閉集合)

第1主成分の解

行列による表現

• 中心化したデータ行列

$$X = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \\ \vdots \\ \boldsymbol{x}_n^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_1 & \cdots & x_{1p} - \bar{x}_p \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_1 & \cdots & x_{np} - \bar{x}_p \end{pmatrix}$$

• 評価関数 f(a) は行列 X^TX の二次形式

$$f(\boldsymbol{a}) = \boldsymbol{a}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{a}$$

ベクトル a の解

• 最適化問題

maximize
$$f(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{a}$$
 s.t. $\mathbf{a}^{\mathsf{T}} \mathbf{a} = 1$

• 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a}, \lambda) = f(\boldsymbol{a}) + \lambda(1 - \boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$

の鞍点

$$\frac{\partial}{\partial \boldsymbol{a}} L(\boldsymbol{a}, \lambda) = 0$$

を求めればよいので

$$2X^{\mathsf{T}}Xa - 2\lambda a = 0$$
$$X^{\mathsf{T}}Xa = \lambda a \quad \text{(固有値問題)}$$

解の条件

f(a) の極大値を与える a は X^TX の固有ベクトルとなる $X^TXa = \lambda a$

第1主成分

• 固有ベクトル a に対する f(a) は行列 X^TX の固有値

$$f(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{a} = \mathbf{a}^{\mathsf{T}} \lambda \mathbf{a} = \lambda$$

- 求める a は行列 X^TX の最大固有ベクトル (長さ 1)
- 第1主成分負荷量: 最大(第一) 固有ベクトル a
- 第1主成分得点

$$z_{i1} = a_1 x_{i1} + \dots + a_p x_{ip} = \mathbf{a}^{\mathsf{T}} \mathbf{x}_i, \quad (i = 1, \dots, n)$$

実習

練習問題

- 第1主成分と Gram 行列の固有ベクトルの関係を調べなさい
 - 人工データを生成する
 - 主成分分析を実行する
 - Gram 行列を計算し固有値・固有ベクトルを求める

#' 中心化を行う
X <- scale(toy_data, scale = FALSE)
#' 詳細は '?base::scale' を参照
#' Gram 行列を計算する
G <- crossprod(X)
#' 固有値・固有ベクトルを求める
eigen(G) # 返り値 'values, vectors' を確認
#' 詳細は '?base::eigen' を参照

Gram 行列の性質

Gram 行列の固有値

- X^TX は非負定値対称行列
- X^TX の固有値は 0 以上の実数
 - 固有値を重複を許して降順に並べる

$$\lambda_1 \ge \dots \ge \lambda_p \quad (\ge 0)$$

- 固有値 λ_k に対する固有ベクトルを a_k (長さ 1) とする

$$\|a_k\| = 1, \quad (k = 1, \dots, p)$$

Gram 行列のスペクトル分解

• a_1, \ldots, a_p は **互いに直交** するようとることができる

$$j \neq k \quad \Rightarrow \quad \boldsymbol{a}_j^\mathsf{T} \boldsymbol{a}_k = 0$$

• 行列 X^TX (非負定値対称行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 固有値と固有ベクトルによる行列の表現

第2主成分以降の計算

第2主成分の考え方

- 第1主成分
 - 主成分負荷量:ベクトル a₁
 - 主成分得点: $a_1^T x_i$ (i = 1, ..., n)
- ・ 第1主成分負荷量に関してデータが有する情報

$$(\boldsymbol{a}_1^\mathsf{T}\boldsymbol{x}_i)\,\boldsymbol{a}_1 \quad (i=1,\ldots,n)$$

・ 第1主成分を取り除いた観測データ (分析対象)

$$\tilde{\mathbf{x}}_i = \mathbf{x}_i - (\mathbf{a}_1^\mathsf{T} \mathbf{x}_i) \mathbf{a}_1 \quad (i = 1, \dots, n)$$

第2主成分の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$\tilde{f}(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \tilde{\boldsymbol{x}}_{i} - \boldsymbol{a}^{\mathsf{T}} \tilde{\bar{\boldsymbol{x}}})^{2} \quad \text{ttt} \quad \bar{\tilde{\boldsymbol{x}}} = \frac{1}{n} \sum_{i=1}^{n} \tilde{\boldsymbol{x}}_{i}$$

第2主成分以降の解

行列による表現

• 中心化したデータ行列

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^{\mathsf{T}} - \tilde{x}^{\mathsf{T}} \\ \vdots \\ \tilde{x}_n^{\mathsf{T}} - \tilde{x}^{\mathsf{T}} \end{pmatrix} = X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}}$$

• Gram 行列

$$\begin{split} \tilde{X}^{\mathsf{T}} \tilde{X} &= (X - X a_1 a_1^{\mathsf{T}})^{\mathsf{T}} (X - X a_1 a_1^{\mathsf{T}}) \\ &= X^{\mathsf{T}} X - X^{\mathsf{T}} X a_1 a_1^{\mathsf{T}} - a_1 a_1^{\mathsf{T}} X^{\mathsf{T}} X + a_1 a_1^{\mathsf{T}} X^{\mathsf{T}} X a_1 a_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 a_1 a_1^{\mathsf{T}} - \lambda_1 a_1 a_1^{\mathsf{T}} + \lambda_1 a_1 a_1^{\mathsf{T}} a_1 a_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 a_1 a_1^{\mathsf{T}} \\ &= \sum_{k=2}^{p} \lambda_k a_k a_k^{\mathsf{T}} \end{split}$$

第2主成分

• Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の固有ベクトル a_1 の固有値は 0

$$\tilde{X}^{\mathsf{T}}\tilde{X}\boldsymbol{a}_{1}=0$$

- Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の最大固有値は λ_2
- 解は第 2 固有値 λ₂ に対応する固有ベクトル **a**₂
- 以下同様に第 k 主成分負荷量は $X^\mathsf{T} X$ の第 k 固有値 λ_k に対応する固有ベクトル \boldsymbol{a}_k

実習

データセットの準備

- 主成分分析では以下のデータセットを使用する
 - japan_social.csv(配付)

総務省統計局より取得した都道府県別の社会生活統計指標の一部

* Pref: 都道府県名

* Forest: 森林面積割合(%) 2014年

- * Agri: 就業者1人当たり農業産出額(販売農家)(万円)2014年
- * Ratio: 全国総人口に占める人口割合(%) 2015年
- * Land: 土地生産性(耕地面積1ヘクタール当たり)(万円)2014年
- * Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年
- * Area: 地方区分
- * 参考: https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0

練習問題

- 前掲のデータを用いて主成分分析を行いなさい
 - 都道府県名を行名としてデータを読み込む

js_data <- read_csv("data/japan_social.csv")</pre>

- データの散布図行列を描く
- 各データの箱ひげ図を描き、変数の大きさを確認する
- 主成分負荷量を計算する

js_pca <- prcomp(js_data[-c(1,7)], scale. = TRUE)
#' '-c(1,7)' は都道府県名・地方区分を除く. 関数 select() を利用することもできる
#' 'scale.=TRUE' とすると変数を正規化してから解析する

次回の予定

- 第1日: 主成分分析の考え方
- ・第2日:分析の評価と視覚化