Current Listing of Claims

Claim 1 (currently amended): A compound of formula (I):

$$Ar^1$$
 R^1
 R^2
 R^3
 R^3

wherein

- R¹ and R² each independently represent a hydrogen atom, or a C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, -NH₂, -NH(C₁-C₆-alkyl), -N(C₁-C₆-alkyl)₂, aryl or aryl-C₁-C₆-alkyl group, wherein any of these groups may optionally be substituted by one or more substituents selected from the group consisting of halogen, OR⁶, SR⁶, cyano, COOR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, SOR⁶, SO₂R⁶ and C₁-C₆-haloalkyl,
- R¹ and R² together with the interjacent carbon atom form a 3- to 8-membered cycloalkyl ring, which may be substituted by one or more substituents selected from the group consisting of halogen, C₁-C₆-alkyl, OR⁶, SR⁶, cyano and C₁-C₆-haloalkyl or R¹ and R² form together a group ⇒NR⁴.
- R³ represents a hydrogen atom or a C₁-C₁₈-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkyl-C₁-C₆-alkyl, aryl, or aryl-C₁-C₆-alkyl, COOR⁵, CR⁶R⁷OH or CONR⁶R⁷ group, wherein any of these groups may optionally be substituted by one or more substituents selected from the group consisting of halogen, OR⁶, SR⁶, CN, COOR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, SOR⁶, SO₂R⁶ and C₁-C₆-haloalkyl:
- R⁴ represents a hydrogen atom or a COOR⁵, COR⁵, OR⁶, cyano or nitro group; or a C₁-C₆-alkyl group, which, may optionally be substituted by one or more substituents selected from the group consisting of halogen, OR⁶, SR⁶, CN, COOR⁶, CONR⁶R⁷, NR⁶COR⁵, SOR⁶, SO₂R⁶ and C₁-C₆-haloalkyl; or

R² and R³ together with the interjacent group –CR¹-N-CH- form a 5- to 8-membered ring; or R³ and R⁴ together with the interjacent group -N=C-N-CH- form a 5- to 8-membered ring; R⁵ represents a hydrogen atom or a C₁-C₁₈-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₃-C₈-cvcloalkyl, C₃-C

any of these groups may optionally be substituted by one or more substituents selected from the group consisting of halogen, OR⁶, SR⁶, CN, COOR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, SOR⁶, SO₂R⁶ and C₁-C₆-haloalkyl;

R⁶ and R⁷ each independently represent a hydrogen atom, or a C₁-C₁₈-alkyl, C₃-C₈-cycloalkyl arvl or arvl-C₁-C₆-alkyl group; or

 R^6 and R^7 together with the interjacent nitrogen atom form a 3-8-membered heterocyclic ring; E^1 and E^2 each represent a hydrogen atom or taken together form a double bond;

 $\label{eq:controller} X \ represents a \ hydrogen \ or \ halogen \ atom, or \ a \ C_1-C_6-alkyl, \ C_2-C_6-alkenyl, \ C_2-C_6-alkinyl, \ C_3-C_8-cycloalkyl, \ C_3-C_8-cycloalkyl-C_1-C_6-alkyl, \ OR^6, SR^6, NR^6R^7 \ or \ aryl;$

the ring A may be substituted by one or more group R6;

Aryl, Ar¹ and Ar² each independently represent a 6- to 10-membered homoaromatic group or a 5- to 10-membered heteroaromatic group containing up to three heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur; wherein each of these groups may be substituted by one or more substituents selected from the group consisting of C₁-C₆-alkyl, phenyl, halogen, OR⁶, SR⁶, cyano, nitro, COOR⁶, COR⁶, CONR⁶R⁷, NR⁶COR⁵, NR⁶SO₂R⁵, SOR⁶, SO₂R⁶, SO₂NR⁶R⁷, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy and C₃-C₈-cycloalkyl; and

n represents an integer from 1 to 4,

or the pharmaceutically acceptable salts thereof.

Claim 2 (original): The compound of formula I according to claim I, wherein Aryl, Ar¹ and Ar² each independently are selected from the group consisting of phenyl, thienyl, furanyl, pyrrolyl, pyridyl, pyrimidyl, naphthyl, benzothiophenyl, indolyl, thiazolyl, oxazolyl and imidazolyl, wherein each of these groups may be substituted by one two or three substituents selected from the group consisting of C₁-C₆-alkyl, halogen, OR⁶, SR⁶, cyano, nitro, COOR⁶, COR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, NR⁶SO₂R⁵, SOR⁶, SO₂R⁶, SO₂NR⁶R⁷, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy and C₃-C₈-cycloalkyl.

Claim 3 (currently amended): The compound of formula I according to claim 2, wherein

wherein

R1 and R2 each independently represent a hydrogen atom, or a C1-C6-alkyl group,

R1 and R2 form together a group =NR4;

R3 represents a hydrogen atom or a C1-C18-alkyl group,

R4 represents a hydrogen atom, or a C₁-C₆-alkyl or cyano group,

E1 and E2 taken together form a double bond:

- Ar¹ represents a phenyl, thiophene or furane group, which may be substituted by one or more substituents selected from the group consisting of C₁-C₆-alkyl, halogen, OR⁶, SR⁶, cyano, nitro, COOR⁶, COR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, NR⁶SO₂R⁵, SOR⁶, SO₂R⁶, SO₂NR⁶R⁷, C₁-C₆-haloalkyl and C₃-C₈-cycloalkyl.
- Ar² represents a phenyl, thienyl or furanyl group, which may be substituted by one or more substituents selected from the group consisting of C₁-C₆-alkyl, halogen, OR⁶, SR⁶, cyano, nitro, COOR⁶, COR⁶, CONR⁶R⁷, NR⁶R⁷, NR⁶COR⁵, NR⁶SO₂R⁵, SO₂R⁶, SO₂NR⁶R⁷, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy and C₃-C₈-cycloalkyl ⁷

n represents 1 or 2.

Claim 4 (currently amended): The compound of formula I according to claim 3, wherein

R¹ and R² represent a hydrogen atom, or

 R^1 and R^2 form together a group =NR⁴;

R3 and R4 each independently represent a hydrogen atom or a C1-C6-alkyl group,

E1 and E2 taken together form a double bond;

- Ar¹ represents a phenyl, thiophene or furane group, which may be substituted by one or more substituents selected from the group consisting of C₁-C₆-alkyl, halogen, C₁-C₆haloalkyl and C₃-C₆-cycloalkyl,
- Ar² represents a phenyl, thienyl or furanyl group, which may be substituted by a halogen atom

n represents 1; and

X represents a hydrogen atom.

Claim 5 (original): The compound of formula I according to claim 4, wherein

Ar² represents a phenyl, thienyl or furanyl group, which is substituted by a halogen atom, in the ortho position. Claim 6 (withdrawn): A method of treating a disease or condition chosen from: asthma, allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic cellulitis, eosinophilic pneumonias, eosinophilic fasciitis, delayed-type hypersensitivity, idiopathic pulmonary fibrosis, interstitial lung disease associated with rheumatoid arthritis, systemic lupus crythematosus, ankylosing spondylitis, systemic selerosis, Sjogren's syndrome, polymyositis, dermatomyositis, systemic anaphylaxis, hypersensitivity responses, drug allergies, eosinophilia-myalgia syndrome due to the ingestion of contaminated tryptophan and insect sting allergies, comprising administering to a patient a pharmaceutically effective amount of a compound according to claim 1.

Claim 7 (withdrawn): A method of treating a disease or condition chosen from: rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, systemic lupus crythematosus, myasthenia gravis, juvenile onset diabetes, glomerulonephritis, autoimmune thyroiditis, Behcet's disease, graft rejection, Crohn's disease, ulcerative colitis, spondyloarthropathies, scleroderma, psoriasis, dermatitis, ezzema, atopic dermatitis, allergic contact dermatitis, urticaria, vasculitis, cosinophilic myositis, eosinophilic fasciitis, cancers with leukocyte infiltration of the skin or organs, reperfusion injury, atherosclerosis, hematologic malignancies, septic shock, endotoxic shock, polymyositis and dermatomyositis, comprising administering to a patient a pharmaceutically effective amount of a compound according to claim 1.

Claim 8 (withdrawn): A method of treating a disease or condition chosen from: immunodeficiency syndromes, immunosuppression resulting from therapy chosen from radiation therapy, chemotherapy, therapy for autoimmune disease and drug therapy, and immunosuppression due to congenital deficiency in receptor function, comprising administering to a patient a pharmaceutically effective amount of a compound according to claim 1.

Claim 9 (withdrawn): A method of treating a disease or condition chosen from:

infections from helminth, filariasis, trematodes, cestodes or visceral worms, visceral larva migraines, cosinophilic gastroenteritis and cutaneous larva migraines comprising administering to a patient a pharmaceutically effective amount of a compound according to claim 1.

Claim 10 (original): A Pharmaceutical composition comprising a pharmaceutically effective amount of a compound of formula (I) according to claim 1.

Claim 11 (withdrawn): A Process of preparing a compound of formula (1) according to claim 1, comprising:

reacting under suitable conditions in a suitable solvent a compound of formula (II)

$$Ar^1$$
 R^1
 R^2
 R^3
 $A(r)$

wherein Ar¹, A, R¹, R², R³ and n have the meaning given in claim 1, with a compound of formula (III)

wherein Ar^2 and X have the meaning given in claim 1 and wherein if E^1 and E^2 are hydrogen atoms then optionally hydrogenating; and

subsequently isolating the product compound.