openGauss AI 特性创新实践课

华为技术有限公司

关卡一、openGauss 数据安装及基本操作

openGauss 数据安装及基本操作,作业提交任务如下:

任务一:数据库状态验证

1. 查询数据库状态成功截图

```
[omm@opengauss01 openGauss-server]$ gs_ctl status
[2021-11-28 11:42:40.790][3308][][gs_ctl]: gs_ctl status,datadir is /opt/software/openGauss/d
gs_ctl: server is running (PID: 3243)
/opt/software/openGauss/bin/gaussdb "-D" "/opt/software/openGauss/data"
```

任务二:数据库服务进程验证

查看数据库服务进程截图(包含数据库服务器的主机名)

实验思考题: 为什么需要通过源码编译, 安装数据库?

- (1) 数据库安装时需要统一的路径
- (2) 编译安装可以灵活地定制软件。
- (3) 通过源码编译安装可以针对数据库的硬件进行优化,以提升性能。
- (4) 数据库在编译期间需要进行配置

关卡二、openGauss 数据导入及基本操作

任务一:数据初始化验证

1. 查询 supplier 表的行数,并将结果进行图:

select count(*) from supplier;;

```
tpch=# select count(*) from supplier;
count
-----
10000
(1 row)
```

任务二: 行存表与列存表执行效率对比

1. 2020 年上半年 litemall_orders 行存表与 litemall_orders_col 列存表中的 order_price 的总和查询,并对比执行效率截图

select sum (order_price) from litemall_orders where add_date between '20200101' and '20200701';

```
sum
310586483.00
(1 row)
Time: 256.420 ms
```

select sum (order_price) from litemall_orders_col where add_date between '20200101' and '20200701';

```
sum
------310586483.00
(1 row)
Time: 90.165 ms
```

2. 2020 年上半年 litemall_orders 行存表与 litemall_orders_col 列存表中的 order price 的平均值查询,并对比执行效率截图

select avg (order_price) from litemall_orders where add_date between '20200101' and '20200701';

```
avg
3105.86483000000000000
(1 row)
Time: 364.721 ms
```


select avg (order_price) from litemall_orders_col where add_date between '20200101' and '20200701';

3. 查询 litemall_orders 行存表与 litemall_orders_col 列存表中 order_id 为 6 的 order_price 的值,并对比执行效率截图。

select order_price from litemall_orders where order_id=6;

```
order_price
------
2469.00
(1 row)
Time: 2<u>.</u>679 ms
```

select order_price from litemall_orders_col where order_id=6;

```
order_price
-----2469.00
(1 row)
Time: 5.507 ms
```

4. 将 litemall_orders 行存表与 litemall_orders_col 列存表中 order_id 为 6 的 order_price 修改为 2468, 并对比执行效率截图。

update litemall_orders set order_price=2468 where order_id=6;

UPDATE 1 Time: 4<u>.</u>233 ms

update litemall_orders_col set order_price=2468 where order_id=6;

UPDATE 1 Time: 35.608 ms

任务三: 物化视图的使用

1. 创建物化视图所需要的表后,对表内容进行查询,对查询结果截图:

SELECT * FROM test_view;

username	gender	totalspend					
	+	+					
杨兰娟	2	119391.00					
柳高梅	2	116155.00					
韦小全	1	114072.00					
贲艳梅	2	112565.00					
强兰丽	2	111925.00					
滑小刚	1	110089.00					
席长梅	2	108247.00					
翁晓婷	2	107988.00					
娄高伟	1	107323.00					
苏长刚	0	104640.00					
喻高伟	1	102536.00					
袁晓轩	1	101835.00					
伏成峰	1	101725.00					
毕晓刚	1	101057.00					
金高芳	2	100322.00					
(15 rows)							
,							
Time: 3.001 ms							

2. 使用物化视图统计人数,查询物化视图结果,将执行结果截图。

SELECT * FROM v_order;

3. 对表进行操作后,刷新物化视图,查询物化视图结果,将执行结果截图。

SELECT * FROM v_order;

```
count
-----
14
(1 row)
Time: 2.839 ms
```


4. 创建增量物化视图,查询物化视图结果,将执行结果截图。

SELECT * FROM vi_order;

	_					
username	totalspend					
	+					
柳髙梅	116155.00					
韦小全	114072.00					
贲艳梅	112565.00					
强兰丽	111925.00					
滑小刚	110089.00					
席长梅	108247.00					
翁晓婷	107988.00					
娄高伟	107323.00					
苏长刚	104640.00					
喻高伟	102536.00					
袁晓轩	101835.00					
伏成峰	101725.00					
毕晓刚	101057.00					
金高芳	100322.00					
(14 rows)						
Time: 3.379 ms						

5. 对表进行操作后,刷新增量物化视图,查询物化视图结果,将执行结果截图。

SELECT * FROM vi_order;

username	totalspend
 柳高梅	+ 116155.00
韦小全	114072.00
贲艳梅	112565.00
强兰丽	111925.00
滑小刚	111923.00
席长梅	108247.00
翁晓婷	107988.00
娄高伟	107323.00
苏长刚	104640.00
喻高伟	102536.00
袁晓轩	101835.00
伏成峰	101725.00
毕晓刚	101057.00
金高芳	100322.00
杨兰娟	119391.00
(15 rows)	
(23 10113)	
Time: 2.535	5 ms
Time: 0.756	b MS

实践思考题 1: 行存表与列存表在执行相同的 SQL 语句时,为何执行的时间不同? 在执行哪些类型 SQL 时,行存表效率更高? 在执行哪些类型 SQL 时,列存表效率更高?

- (1) 在进行数据读取时,行存储通常需要将一行数据完全读出,但如果只需要其中几列数据,就会产生冗余列,而消除冗余列的过程通常是在内存中进行的,导致效率较低。
 - (2) 列存储每次读取的数据是集合的一段或者全部,不存在冗余性问题。
- (3) 两种存储的数据分布不同。由于列存储的每一列数据类型是相同的,不存在二义性问题,这种情况使数据解析变得十分容易。而相比之下,行存储会复杂一些,在一行记录中可能保存了多种类型的数据,那么数据解析就需要在多种数据类型之间频繁转换,增加了很多解析时间,同时消耗了 CPU 资源。因此,列存储更有利于分析大数据。

由以上实验结果,发现在进行修改和选择语句时,行存储的数据库效率更高;然而在进行求和,求平均值等类似操作时,列存储数据库速度更快。

实践思考题 2:全量物化视图与增量物化视图有哪些差别?全量物化视图只能对创建好的物化视图做全量更新,而不能做增量更新。

创建全量物化视图语法和 CREATE TABLE AS 语法一致。

增量物化视图可以对物化视图增量刷新,同时需要用户手动执行语句对物化视图进行刷新。但是目前增量物化视图所支持场景较小,目前物化视图创建语句仅支持基表扫描语句或者 UNION ALL 语句。

关卡三、openGauss 的 AI4DB 特性应用

任务一: 使用 X-Tuner 进行参数优化

1. 执行 TPCH 脚本,获得测试时间,将执行结果截图:

gsql -d tpch -p 5432 -r -f /opt/software/tpch-kit/dbgen/queries/queries.sql > /opt/software/tpch-kit/dbgen/queries/querieso1.log

```
urnflag | l linestatus
     sum charge
                                                        avg price
                                 avg qty
                                                                                   avg di
110367043872.497010 | 25.5022267695849915 | 38249.117988908270 | .04999658605
 | F | 37719753.00 | 56568041380.90 | 53741292684.6040
55889619119.831932 | 25.5057936126907707 | 38250.854626099657 | .05000940583
               13
                                     888
                                             6737713.99
                                             6460573.72
                                     861
               18
                                     964
                                             7236687.40
                                     892
                                             6701457.95
               29
                                     948
                                             7158866.63
```

13 | 888 | 6/3//13.99 17 | 861 | 6460573.72 18 | 964 | 7236687.40 23 | 892 | 6701457.95 29 | 948 | 7158866.63 30 | 909 | 6808436.13 31 | 922 | 6806670.18 (7 rows) total time: 1192928 ms

2. 使用 root 用户,执行 X-Tuner 进行参数建议优化,将执行结果截图

gs_xtuner recommend --db-name tpch --db-user omm --port 5432 --host 127.0.0.1 --host-user omm

*******			****	****			

name	recommend	 min 	max	restart			
default_statistics_target	1000	100	1000	False			
<pre>effective_cache_size</pre>	21602940	187192	21602940	False			
effective_io_concurrency	200	150	250	False			
enable_mergejoin	off	0	1	False			
enable_nestloop	off	0	1	False			
max_connections	370	50	741	True			
max_prepared_transactions	370	50	741	True			
max_process_memory	28803920	22403048	28803920	True			
random_page_cost	1.0	1.0	2.0	False			
shared_buffers	187192	187196	215272	True			
wal_buffers	5849	2048	5849	True			
+	+	+	+	++			

3. 重启完成后, 获取参数值:

cd /opt/software/openGauss/data
cat postgresql.conf|grep -E
'shared_buffers|max_connections|effective_cache_size|effective_io_concurrency|wal_buffers|rand
om_page_cost|default_statistics_target'

任务二:使用 Index-advisor 对 select 查询语句进行优化,并通过对比执行计划,得到优化前后的不同。

1. 使用 explain,对查询 2020年3月订单表收入并进行排序的 SQL 加以分析,将结果截图。

```
EXPLAIN

SELECT ad.province AS province, SUM(o.actual_price) AS GMV

FROM litemall_orders o,
    address_dimension ad,
    date_dimension dd

WHERE o.address_key = ad.address_key
    AND o.add_date = dd.date_key
    AND dd.year = 2020

AND dd.month = 3

GROUP BY ad.province

ORDER BY SUM(o.actual_price) DESC;
```



```
(cost=4593.80..4593.88 rows=31 width=47)
   Sort Key: (sum(o.actual_price)) DESC
   -> HashAggregate (cost=4592.72..4593.03 rows=31 width=47)
        Group By Key: ad.province
         -> Hash Join (cost=4354.43..4585.97 rows=1351 width=15)
              Hash Cond: (ad.address_key = o.address_key)
               -> Seq Scan on address_dimension ad (cost=0.00..188.02 rows
=8002 width=14)
                 Hash (cost=4337.54..4337.54 rows=1351 width=9)
                        Hash Join (cost=1031.78..4337.54 rows=1351 width=9
                          Hash Cond: (o.add_date = dd.date_key)
                              Seq Scan on litemall_orders o (cost=0.00..30
41.00 rows=100000 width=13)
                              Hash (cost=1031.76..1031.76 rows=2 width=4)
                                    Seq Scan on date_dimension dd (cost=0.
00..1031.76 rows=2 width=4)
                                       Filter: ((year = 2020) AND ((month)::
bigint = 3))
(14 rows)
```

2. 使用索引推荐功能,对查询语句进行推荐,将执行结果截图。

```
select * from gs_index_advise('

SELECT ad.province AS province, SUM(o.actual_price) AS GMV

FROM litemall_orders o,
    address_dimension ad,
    date_dimension dd

WHERE o.address_key = ad.address_key

AND o.add_date = dd.date_key

AND dd.year = 2020

AND dd.month = 3

GROUP BY ad.province

ORDER BY SUM(o.actual_price) DESC');
```

```
schema | table | column

------

public | litemall_orders | (address_key,add_date)

public | address_dimension |

public | date_dimension | (year)

(3 rows)
```

3. 查看创建的虚拟索引列,将执行结果截图。

select * from hypopg_display_index();

4. 获取索引虚拟列大小结果(单位为:字节),将执行结果截图。

```
select * from hypopg_estimate_size(16715);
select * from hypopg_estimate_size(16716);
```

5.再次使用 explain,对该 SQL 加以分析,将执行结果截图。

```
EXPLAIN

SELECT ad.province AS province, SUM(o.actual_price) AS GMV

FROM litemall_orders o,
    address_dimension ad,
    date_dimension dd

WHERE o.address_key = ad.address_key
    AND o.add_date = dd.date_key
    AND dd.year = 2020
    AND dd.month = 3

GROUP BY ad.province

ORDER BY SUM(o.actual_price) DESC;
```



```
(cost=3579.58..3579.65 rows=31 width=47)
   Sort Key: (sum(o.actual_price)) DESC
   -> HashAggregate (cost=3578.50..3578.81 rows=31 width=47)
         Group By Key: ad.province
             Hash Join (cost=3340.21..3571.74 rows=1351 width=15)
                Hash Cond: (ad.address_key = o.address_key)
-> Seq Scan on address_dimension ad (cost=0.00..188.02 rows
=8002 width=14)
                   Hash (cost=3323.32..3323.32 rows=1351 width=9)
                           Hash Join (cost=17.56..3323.32 rows=1351 width=9)
Hash Cond: (o.add_date = dd.date_key)
                              -> Seq Scan on litemall_orders o (cost=0.00..30
41.00 rows=100000 width=13)
                                  Hash (cost=17.53..17.53 rows=2 width=4)
                                       Index Scan using <24577>btree_date_dime
                                    (cost=0.00..17.53 rows=2 width=4)
nsion_year on date_dimension dd
                                           Index Cond: (year = 2020)
                                           Filter: ((month)::bigint = 3)
(15 rows)
```

6. 删除某一个索引虚拟列,将执行结果截图。

select * from hypopg_drop_index(16715);

```
hypopg_drop_index
-----t
(1 row)
```

7. 删除所有索引虚拟列,将执行结果截图。

select * from hypopg_reset_index();

```
hypopg_reset_index
-----
(1 row)
```

8. 查看索引虚拟列,将执行结果截图。

select * from hypopg_display_index();

```
indexname | indexrelid | table | column
-----(0 rows)
```

任务三:通过创建索引,对 queries. sql 中的 SQL 语句进行优化,并对比优化前后 queries. sql 执行的时间。

1. 重新执行 queries. sql 查询,将执行结果截图:

gsql -d tpch -p 5432 -r -f /opt/software/tpch-kit/dbgen/queries/queries.sql > /opt/software/tpch-kit/dbgen/queries/querieso2.log

挑战一: 进一步优化 queries. sql 中的查询语句,使得前后执行时间出现倍数级的提升。

1. 重新执行 queries. sql 查询,将执行结果截图:

gsql -d tpch -p 5432 -r -f /opt/software/tpch-kit/dbgen/queries/queries.sql > /opt/software/tpch-kit/dbgen/queries/queries03.log

13	888	6737713.99					
17	861	6460573.72					
18	964	7236687.40					
23	892	6701457.95					
29	948	7158866.63					
30	909	6808436.13					
31	922	6806670.18					
(7 rows)							
total time: 331855 ms							

实践思考题 1: 根据 X-Tuner 给出的参数优化,在哪些参数上进行了优化,为何要对这些参数进行优化?

对 name 栏中的 effective_cache_size, effective_io_concurrency、shared_buffers、max_connections、wal_buffers、random_page_cost、default_statistics_target,进行了优化。

优化参数可以提高数据库运行效率,减少资源消耗。

实践思考题 2: 索引的使用,对于执行 SQL 有什么好处?除了使用索引和参数外,还有哪些方面可以对数据库进行优化?

好处:加快数据库查询速度,当 DB 执行一条 Sq1 语句时,默认是根据搜索条件进行全表扫描,遇到匹配条件的就加入搜索结果集合。如果对某一字段增加索引,查询时就会先去索引列表中一次定位到特定值的行数,大大减少遍历匹配的行数,能明显增加查询的速度。

可以改变数据库结构: 行存储和列存储在不同操作时可以显著增加运行速度。 数据库表的范式化。提高硬件水平等。

关卡四、openGauss 的 DB4AI 特性应用

任务一:在 gs_model_warehouse 系统表中查看训练后的模型信息,将执行结果截图:

postgres=# SELECT * FROM gs_model_warehouse WHERE modelname = 'house_binary_classifier';

```
| modelowner |
                                                 createtime
        modelname
  processedtuples | discardedtuples | pre_process_time | exec_time
                                modeltype
 iterations | outputtype |
                                      query
                                  | modeldata |
                                                                weig
ht
                                                              hyperp
arametersnames
    hyperparametersvalues
                                                   hyperparameterso
                                            | coefoids |
                coefnames
                              coefvalues
iningscoresname
                                    trainingscoresvalue
modeldescribe
 house_binary_classifier |
                                   10 | 2021-11-28 14:24:35.274386
                                                           .002665
                       16 | svm_classification | CREATE MODEL house
 binary_classifier USING svm_classification FEATURES tax,bath,size
TARGET price<100000 FROM houses;
                                             | {-.0623524,.00094606
7,.037792,.0225448} | {batch_size,decay,lambda,learning_rate,max_it
erations,max_seconds,optimizer,tolerance,seed,verbose} | {1000,.95,
.01,.8,100,0,gd,.0005,1638080675,false} | {23,701,701,701,23,23,104
3,701,23,16} | {categories} | {false,true} |
                                                       | {accuracy,f
1,precision,recall,loss} | {.666667,.666667,.625,.714286,7.10655} |
(1 row)
```

任务二:观察新模型的信息,将执行结果截图。

postgres=# SELECT * FROM qs_model_warehouse WHERE modelname = 'house_binary_classifier';

	delname	modelowner	createtime	processedtuples	discardedtuples	pre_process_tim	me exec_time	iterations	outputtype
odeltype					query				
	modeldata		weight			hyr	perparametersnar	nes	
		hyperparametersva	lues	l hyperpara	metersoids	l coefnames '	l coefvalues	coefoids	l traini
resname		trainingscoresva		eldescribe					
						+		+	-++,
	+								
	+	-+							
house bir	ary classifier	10 202	1-11-28 14:27:25.	591 15		l	0 .011667	100	16
lassificat	ion CREATE M	ODEL house binary c	lassifier USING s	vm classification FEA⊺	URES tax, bath, si	ze TARGET price «	(100000 FROM h	ouses WITH b	atch size=1, lea
rate=0.00				,.000433053} {batch					
d.verbose				{23,701,701,701,2					{accuracy,f1,r
		769231,.833333,.714							
(1 row)									

任务三:利用训练好的逻辑回归模型预测数据,并与 SVM 算法进行比较,将执行结果截图。

postgres=# SELECT tax, bath, size, price, price < 100000 AS price_actual, PREDICT BY house_binary_classifier (FEATURES tax, bath, size) AS price_svm_pred, PREDICT BY house_logistic_classifier (FEATURES tax, bath, size) AS price_logistic_pred FROM houses;

tax	bath	size	price	price_actual	price_svm_pred	price_logistic_pre
	4	770	F0000	+		+
590	1	770	50000	l t	L .	L
1050	2	1410	85000	t	ļ t	ļ t
20	1	1060	22500	t	t	t
870	2	1300	90000	t	t	t
1320	2	1500	133000	f	f	t
1350	1	820	90500	t	f	f
2790	2.5	2130	260000	f	f	f
680	1	1170	142500	f	l t	t
1840	2	1500	160000	f	f	f
3680	2	2790	240000	f	f	f
1660	1	1030	87000	t	f	f
1620	2	1250	118600	f	f	f
3100	2	1760	140000	f	f	f
2070	3	1550	148000	f	f	f
650	1.5	1450	65000	t	t	l t
(15 rov	vs)					

实践思考题 1: 分类模型与回归模型有何不同?

回归是定量输出,是连续变量预测;

分类是定性输出,是离散变量预测。

分类是关于标签的预测,而回归是关于数量的预测。

实践思考题 2: 什么是 SVM 算法?

SVM 是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以"最好地"区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。

实践思考题 3: 分类问题有哪些评价指标,请分别说明他们的含义? 准确率 = 算法分类正确的数据个数/输入算法的数据的个数 A=(TP+TN)/(T+F)

精确率 = 预测为正的样本占所有正样本的比重 P=TP/(TP+FP)

召回率 = 正确预测的数据在总样本中的比重 R=TP/(TP+FN)=TP/T

F1 值 = 精确率和召回率的兼顾指标,是精确率和召回率的调和平均数。调和平均数的性质,只有当精确率和召回率二者都非常高的时候,它们的调和平均才会高。如果其中之一很低,调和平均就会被拉得接近于那个很低的数

实践思考题 4: 回归问题有哪些评价指标,请分别说明他们的含义?

RMSE: 均方根误差衡量观测值与真实值之间的偏差。常用来作为机器学习模型 预测结果衡量的标准。

MSE: 均方误差 MSE 是真实值与预测值的差值的平方然后求和平均。

通过平方的形式便于求导, 所以常被用作线性回归的损失函数。

MAE: 平均绝对误差是绝对误差的平均值。可以更好地反映预测值误差的实际情况。

SD: 标准差方差的算术平均根。用于衡量一组数值的离散程度。