Kolegji UBT - Studimet bachelor

Rrjetet kompjuterike dhe komunikimi

Prof.Asoc.Dr. techn. Salem Lepaja
Nëntor 2019

Rrjetet kompjuterike dhe komunikimi

Kapitulli 3

Shtresa e datalinkut dhe rrjeti ETHERNET

Shtresa e datalinkut

Terminologji:

- Hostat dhe ruterat janë nyja
- Nyjat fqinje lidhen përmes linjave
 - linjat me tela
 - linjat pa tela
- Paketa e shtresës së dytë quhet kornizë ose frejm
- Enkapsulimi i datagramit (paketës së shtresës së tretë) brenda frejmit

Shtresa e datalinkut bën bartjen e datagrameve prej një nyje te nyja fqinje nëpër linjën lidhëse

Shtresa e datalinkut

- Një datagram mund të bartet nëpër linja të ndryshme duke përdorur protokolle të ndryshme në shtresën e datalinkut:
 - P.sh., protokollin IEEE802.3 Ethernet në linjën e parë, frame relay në linjat e ndërmjeme, protokollin IEEE802.11 në linjën e fundit
- Protokollet e ndryshme të datalinkut ofrojnë shërbime të ndryshme
 - P.sh. mund të ofrojnë ose mos të ofrojnë shërbimin e transmetimit të sigurt (reliable data transfer)

Shërbimet në shtresën e datalinkut

Krijimi i frejmit dhe qasja në linjë:

- Enkapsulimin e datagramit në frejm duke ia shtuar ballinen (hederin) dhe bishtin (trailer)
- Qasje në kanal nëse mediumi transmeues është i përbashkët
- Transmetimi i sigurt në mes të nyjave fqinje
 - Ky shërbim përdoret shumë rrallë në linjat me shkallë të ulët të gabimeve (bit-error rate) si fija optike, kablloja koaksiale
 - Përsoret te linjat pa tela, sepse e kanë shkallën e lartë të gabimeve

Shërbimet në shtresën e datalinkut

- Kontrollimi i rrjedhës së paketave (flow control):
 - Hosti destinues e kontrollon hostin burimor
- Detektimi i gabimeve:
 - Gabimet për shkak të dobësimit të sinjalit dhe zhurmës
 - Marrësi i detekton gabimet:
 - E dërgon kërkesën (sinjalin) për përsëritjen e transmetimit ose e hedh poshtë frejmin
- Korrigjimi i gabimeve:
 - Marrësi i detekton dhe i korrigjon gabimet, nuk ka ritransmetim
- Transmetimi gjysmë-dupleks (half duplex) dhe dupleks i plotë (full-duplex)
 - Te transmetimi gjysmë-dupleks, të dy nyjat në komunikim mund të transmetojnë por jo njëkohësisht
 - Dupleks i plotë, të dy nyjat në komunikim mund të transmetojnë njëkohësisht

Implementimi i shtresës së datalinkut

- Shtresa e datalinkut implementohet në adapter (NIC - network interface card)
 - Kartela IEEE802.3 (Ethernet),
 - Kartela IEEE802.11 (adapteri për komunikim pa tela)
 - Shtresa e datalinkut dhe shtresa fizike
 - Lidhet në sistemin bus të hostit
 - Kombinim i harduerit, softuerit, firmuerit

Komunikimi i adapterëve

- Ana transmetuese:
 - Bën enkapsulimin e datagramit në frejm
 - I shton bitët për kontrollim të gabimeve, për *rdt*, për *flow* control, etj.

- Ana marrëse
 - Shikon a ka gabime, rdt, flow control, etj
 - E nxjerr datagramin nga frejmi dhe e përcjell te shtresa e mësipërme

Adresa MAC

- Adresa MAC (adresa fizike ose adresa Ethernet):
 - Është 48 bitshe (6 bajta) dhe shkruhet në kodin heksadecimal
 - P.sh. 1A-2F-BB-76-09-AD
 - Është e shkruar harduerikisht në ROM të karteles së rrjetit (NIC ROM)
 - Mund të ndërrohet softuerikisht në raste të veçanta
 - Përdoret për transmetimin e frejmit në mes të dy interfejsave të lidhur fizikisht (rrjeti i njëjtë)
 - Adresat MAC destinuese dhe burimore shkruhen në fushat përkatëse të frejmit (ETHERNET ose WLAN) për ta identifikuar destinimin dhe burimin e frejmit

Adresa MAC

Çdo adapter në Ethernet e ka adresën e veçantë (unikate) MAC

Alokimi i adresës MAC

- Caktimi i adresave MAC administrohet nga IEEE
- Prodhuesit e karteleve e blejnë një pjesë të adresës nga hapësira e adresave MAC (për të siguruar veçantinë)
- Analogji:
 - a) adresa MAC: e ngjashme me numrin personal (ose numrin e sigurimit social)
 - b) adresa IP: e ngjashme me adresën postare
- Adresimi MAC është i "rrafshtë" → portabil
 - Kartela Ethernet mund të lëvizë prej një rrjeti Ethernet në tjetrin, adresa MAC mbetet e njëjtë
- Adresimi IP është "hierarkik" → joportabil
 - Adresa IP varet nga nënrrjeti IP në të cilin është e lidhur nyja (hosti)

Suiçi

- Pajisje e shtresës së dytë
 - I regjistron frejmat Ethernet
 - I shqyrton adresat MAC të frejmave dhe pastaj i forvardon në mënyrë selektive në një ose më shumë linja (interfejsë) dalës
- Është transparent
 - Hostat nuk e shohin pranin e suiçave
- Veçoritë "plug-and-play" dhe "self-learning"
 - Suiçat e thjeshtë nuk konfigurohen

Suiçi

Suiçi: mundëson transmetime të shumëfishta njëkohësisht

- Hostat kanë lidhje të drejtpërdrejt (dedikuar) me suiç
- Suiçat i vendosin frejmat në bufera
- Protokolli Ethernet IEEE802.3
 përdoret në çdo linjë ardhëse, por
 nuk ka ndeshje sepse hostat kanë
 lidhje të drejtpërdrejt (dedikuar) me
 suiç; lidhja full-duplex
 - Çdo port (linjë) i suiçit paraqet një domen të pavarur të ndeshjeve
 - Sa domene të ndeshjeve janë në figuren e treguar?
- Komutimi: prej A-te-A' dhe prej Bte-B' njëkohësisht, nuk ka ndeshje

Suiçi me gjashtë interfejsa (1,2,3,4,5,6)

Tabela e suiçit

- Pyetje: Si e din suiçi se A-ja është e arritshme nëpërmes interfejsit 1, B-ja përmes interfejsit 2?
- Përgjigja: Çdo suiç e përmban tabelën MAC (tabelën e komutimit), çdo rresht i tabelës MAC përmban:
 - Adresën MAC të hostit, interfejsin ku është i lidhur hosti, kohën e regjistrimit
- Pyetje: Si krijohet përmbajtja e tabelës?
 - Vetëmësimi ("self-learning")

Suiçi me gjashtë interfejsa (1,2,3,4,5,6)

Të vetëmësuarit – "self-learning"

- Suiçi mëson se nëpërmes cilit interfejs arrihet host i caktuar
 - Kur një frejm vjen në suiç, suiçi e mëson se në cilin interfejs është i lidhur dërguesit
 - Në tabelën e komutimit e regjistron çiftin: dërguesiinterfejsi

Adr. MAC	interfejsi	TTL
Α	1	60

Tabela e suiçit (fillimisht e zbrazët) Të vetëmësuarit dhe forvardimi

 Destinimi i frejmit i panjohur: flood

 Destinimi i frejmit i njohur: dërgimi selektiv

•

MAC addr	interface	TTL
Α	1	60
A'	4	60

Tabela e suiçit (fillimisht e zbrazët)

Filtrimi dhe forvardimi

Kur një frejm vjen në suiç, suiçi i kryen këto veprime:

- E regjistron linjën ku është i lidhur hosti që e ka dërguar frejmin
- 2. E kërkon në tabelen e komutimit adresen destinuese MAC

```
3. if entry found for destination then {
if dest on segment from which frame arrived then drop the frame
else forward the frame on interface indicated
forward on all but the interface on which the frame arrived
```

Ndërlidhja e Suiçave (1)

Në praktikë suiçat rëndom lidhen në mes veti

Pyetje: Dërgimi i frejmit prej hostit A te hosti G, si e din S_1 ta forvardojë frejmin e destinuar te G nëpërmes S_4 dhe S_3 ?

Pergigjja: Vetëmësimi (funksionon plotësish njësoj si në rastin kur e patëm vetëm një suiç)

Ndërlidhja e Suiçave (2)

- Rrjeti i treguar është rrjet tipik me tre nivele (shtresa) i përbërë vetëm nga suiçat e shtresë së dytë
- Gjithsej 12 suiça: 2 në rrjetin qendror, 4 në shtresën e shpërndarjes (distribution layer) dhe 6 në shtresën e qasjes

Shembull: Intraneti

Etherneti

- Teknologjia e parë LAN me përdorim të gjerë
- Teknologjia dominuese LAN me tela
- Më e thjeshtë dhe më e lirë se sa teknologjitë token LAN dhe ATM
- Shpejtësia e transmetimit: 10 Mbps 10 Gbps

Skica e Ethernetit nga projektuesi Metcalf

<u>Topologjia</u>

- Topoplogjia bus
 - Mediumi transmetues i përbashkët
 - Të gjitha nyjat janë në domenin e njëjtë të ndeshjeve (collision domain)
 d.m.th. frejmat mund të ndeshen në mes vete
 - Kjo topologji ka qenë e popullarizuar kah gjysma e viteve të 90-ta
- Topologjia yll (star)
 - Mediumi transmetues i dedikuar
 - Çdo kompjuter (nyjë) lidhet në suiç drejtpërdrejt (frejmat nuk ndeshen në mes vete)
 - Kjo topologji përdoret sot

Struktura e frejmit të Ethernetit (1)

Kartela ose adapteri NIC (Network Interface Card) i stacionit burimor bën enkapsulimin e datagramit IP (ose të ndonjë protokolli tjetër të shtresës së rrjetit) në frejmin Ethernet.

- Ekzistojnë 5 lloje të frejmave Ethernet
- DIX (DEC, Intel, dhe Xerox) ose ETHERNET II, më i rëndomti

Struktura e frejmit DIX ose Ethernetit II

Fusha Type

0x0800 - IPv4; 0x8100 - 802.1Q tagged frame; 0x0806 - ARP; 0x86DD - IPv6

Struktura e frejmit të Ethernetit (2)

Fushat e frejmit

- Preambula:
 - 7 bajta me përmbajtje10101010 të pasuar me një bajt me përmbajtje 10101011
 - përdoret për sinkronizim të shpejtësive (clock rates) të dhënësit dhe marrësit.
- Address: 6 bajta
 - Nëse adapteri e merr frejmin me adresë destinuese të tij ose me adresë broadkast (p.sh. paketa ARP), të dhënat (paylodin) në frejm i percjell te shtresa e rrjetit.
 - Nëse adresa destinuese në frejm nuk përputhet me adresën e adapterit, atëherë adapteri e hedh frejmin
- Type: 2 bajta
 - Tregon llojin e protokollit të shtresës së sipërme (kryesisht protokolli IP, mirëpo edhe protokollet e tjera janë të mundshme, p.sh. Novell IPX, AppleTalk, ose ARP).
 - 0x0800 IP; 0x8100 802.1Q tagged frame; 0x0806 ARP; 0x86DD IPv6
- FCS: 4 bajta
 - Përdoret në marrës, nëse detektohet ndonjë gabim frejmi hedhet poshtë

Standarded 802.3: Shtresa fizike dhe e datalinkut

- Ekzistojnë shumë standarde të Ethernetit në shtresën fizike
 - Protokolli MAC dhe formati i frejmit është i njëjtë
 - Mediumet transmetuese të ndyshme: çiftorja e përçuesve të përdredhur, fiber
 - Shpejtësi (kapacitet) të ndryshme: 10Mb/s, 100Mb/s, 1Gb/s, 10Gb/s

Struktura e frejmit IEEE 802.11 (1)

Address 2: fusha e adresës burimore MAC, e hostit pa tela ose AP-ës që e transmeton frejmin

Struktura e frejmit IEEE 802.11 (2)

28

Lidhja end-to-end Laptop - server web

Ruter

Akses Point

Protokolli ARP (1)

ARP – Address Resolution Protocol

Si të caktohet adresa MAC e hostit B kur i dihet adresa IP?

- Çdo host dhe ruter i lidhur në Ethernet e ka një tabelë ARP
- Tabela ARP përmban çiftin e adresave IP-MAC për nyjat e lidhura në Ethernet
 - < adresa IP; adresa MAC; TTL>
 - TTL (Time To Live): koha e validitetit të çiftit të adresave IP-MAC (vlera tipike është 20 min)

Protokolli ARP (2)

Hostat A dhe B janë të lidhur në Ethernetin e njëjtë

- Hosti A dëshiron t'i dërgojë datagrame
 B-së, në tabelën ARP të A-së nuk ekziston adresa MAC e B-së
- A-ja transmeton me adresë broadkast frejmin, i cili në fushën data e përmban paketen ARP query
 - Adresa destinuese MAC e frejmit =FF-FF-FF-FF-FF
- Paketa ARP query e përmban adresën IP të A-së, të B-së, adresën MAC te A-së dhe fushën e adreses destinuese MAC me përmbajtje 00-00-00-00-00
 - Të gjitha nyjat e lidhura në Ethernet e marrin paketen ARP query
 - B-ja e sheh adresën e vet IP dhe i përgjigjet
 A-së me adresën e vet MAC (adresën MAC të B-së)
 - Frejmi dërgohet në adresën MAC të **A**-së (unikast)

- A-ja e regjistron çiftin e adresave IP-MAC në tabelën ARP dhe kohën e valilidetit të lidhjes së adresave IP-MAC
 - Soft state: me kalimin e kohës së validitetit të lidhjes IP-MAC, ky informacion humb, nëse nuk vazhdohet para kalimit të kohës së validitetit
- ARP bazohet në veçorinë "plugand-play":
 - Hostat (edhe ruterat) i krijojnë tabelat e veta ARP pa intervenimin e administratorit të rrjetit

Protokolli ARP (3)

	6 bytes	Ethernet		2 bytes		28 bytes (for IP)	4 bytes	
	Ethernet destination address			frame type		ARP Request / Reply		
0	7 8		15 16		16	31		
	Hardware Type				Protocol Type			
	Hardware len Pr			otocol len ARP operation).		
	Sender MAC address (bytes 0-3)							
	Sender MAC address (bytes 4-5)				4-5)	Sender IP address (bytes 0-1)		
	Sender IP address (bytes 2-3)				2-3)	Dest MAC address (bytes 0-1)		
		ress (bytes 2-5)						
	Dest IP address (bytes 0-3)							

Hardware type: 1 për Ethernet Protocol type: 0x0800 për IP

Hardware len: gjatësis në bajta e adresës harduerike (6 bajt për Ethernet)

Protocol len: gjatësia në bajta e adresës logjike (4 bajt për IPv4)

ARP operation: 1 = request; 2 = reply; 3/4 RARP req/reply

Protokolli ARP (4)

Hostat A dhe B janë të lidhur në Ethernete të ndryshme

- Dërgimi i datagramit prej hostit A te hosti B nëpërmes ruterit R
 - Të supozojmë se hosti A e din adresën IP të hostit B

Protokolli ARP (5)

- Hosti A e krijon datagramin IP me adresë burimore A dhe adresë destinuese B
- Hosti A e përdor ARP-në për ta gjetur adresën MAC të ruterit R me adresën
 IP 111.111 .111.110
- Hosti A e krijon frejmin në të cilin në fushën e adresës destinuese e vendos adresën MAC të ruterit, ndërsa në fushën data vendoset datagrami IP prej A-te-B
- Kartela NIC e hostit A e dërgon frejmin
- Kartela NIC e ruterit R e pranon frejmin
- R-ja e nxjerr datagramin prej frejmit dhe e sheh se është i destinuar për hostin B
- R-ja e përdor ARP-në për ta gjetur adresën MAC të hostit B
- R-ja e krijon frejmin që e përmban datagramin IP prej A-te-B, dhe e dërgon te B

Protokollet MAC (1)

Dy lloje te linjave:

- Point-to-point (prej pike në pikë d.m.th. drejtpërdrejt)
 - PPP për qasje dial-up
 - Linja point-to-point në mes të suiçit Ethernet dhe hostit
- Broadkast (mediumi transmetues i përbashkët)
 - Etherneti klasik
 - WLAN 802.11

Kablloja e përbashkët Ethernet

Frekuencat e përbashkëta (e.g., 802.11 WiFi)

Frekuencat e përbashkëta (satelitet)

Njerëzit në ndeje (ambienti i përbashkët)

Protokollet MAC (2)

- Kanali i përbashkët brodkast
- Transmetimi i njëkohësishëm i dy e më shumë nyjave:
 - Nëse nyja pranon dy e më shumë frejma njëkohësisht d.m.th. ndeshje e frejmave

<u>Multiple access protocol – MAC protocols</u>

- Algoritma të distribuar ose të centralizuar që përcaktojnë sesi nyjet e shfrytëzojnë mediumin (kanalin) e përbashkët transmetues d.m.th. kur munden nyjet të transmetojnë
- Komunikimi për shfrytëzimin e kanalit të përbashkët kryhet nëpër të njëjtin kanal

Protokollet MAC (3)

Tri klasa të gjera të shfrytëzimit të përbashkët të mediumit transmetues (kanaleve):

- Ndarja e kanaleve multipleksimi
 - Kapaciteti i mediumit transmetues ndahet në njësi më të vogla (intervale kohore, segmente frekuencore ose kode)
 - Një njësi e tillë i ndahet në mënyrë të dedikuar secilës nyje
 - Nuk ka ndeshje
- Qasja e rastësishme
 - Nuk ka ndarje të kanaleve, lejohen ndeshjet
 - Nevojitet rimëkambja nga ndeshjet
- Shfrytëzimi i radhës (taking turns)
 - Nyjat transmetojnë me radhë

Protokollet MAC me ndarje të kanaleve (1)

TDMA: Time Division Multiple Access

- Qasja në kanal në cikle
- Çdo stacioni i ndahet në mënyrë të dedikuar një interval kohor
 sllot (me gjatësi sa gjatësia e paketes) në çdo cikël
- Një sllot paraqet një kanal të shfrytëzuesve
- Nëse stacioni (shfrytëzuesi) nuk e shfrytëzon sllotin e tij, slloti mbetet i zbrazët
- Shembull: LAN me 6-stacione; stacionet 1,3,4 kanë pakete për të transmetuar, sllotat 2,5,6 mbeten të zbrazët

Protokollet MAC me ndarje të kanaleve (2)

FDMA: Frequency Division Multiple Access

- Brezi frekuencor i kanalit ndahet në breze më të ngushta (nënbreze) - kanale të shfrytëzuesve (stacioneve)
- Çdo stacioni i ndahet një kanal frekuencor i caktuar
- Nëse stacioni nuk e shfrytëzon kanalin frekuencor që i është ndar, kanali mbetet i pashfrytëzuar
- Shembull: LAN me 6-stacione; stacionet 1, 3, 4 kanë pakete për tranmetim, kanalet frekuencore 2,5, 6 mbeten të pashfrytëzuara

Protokolli CSMA (1)

CSMA (Carrier Sense Multiple Access) - Qasja e shumëfishtë me dëgjim të bartësit

- NIC e merr datagramin nga shtresa e rrjetit dhe e krijon frejmin
- Dëgjon para se të transmetojë
- Nëse kanali është dëgjuar i lirë e transmeton tërë frejmin
- Nëse kanali është dëgjuar i zënë, stacioni e shtynë transmetimin për më vonë

Analogji me komunikimet në mes të njerëzve: mos i ndërprej të tjerët kur janë duke folur!

Protokolli CSMA (2)

Ndeshja (kolisioni) e frejmave

- Vonesat në udhëtimin e frejmave (përhapjen e sinjalit) mund të ndikojnë që dy nyje mos ta dëgjojnë transmetimin e njëra tjetrës
- Largësia dhe vonesa në përhapjen e sinjalit ndikojnë në gjasën e ndeshjeve
- E tërë koha e transmetimit të frejmit humb

Protokolli CSMA/CD (1)

CSMA/CD - CSMA me detektim të ndeshjeve Dëgjimi i bartësit sikurse te CSMA

- 1. NIC e pranon datagramin prej shtresës së rrjetit dhe e krijon frejmin
- 2. Nëse NIC e detekton se kanali është i lirë, e fillon transmetimin e frejmit
- 3. Nëse NIC e detekton se kanali është i zënë, pret derisa kanali të lirohet, pastaj transmeton
- 3. Nëse NIC e transmeton krejt fejmin pa detektuar ndonjë transmetim tjetër, transmetimi përfundon me sukses
- 4. Nëse NIC gjatë transmetimit e detekton edhe ndonjë transmetim tjetër, e ndërpren transmetimin dhe dërgon zhurmë (jam signal)
- 5. Pas ndërprerjes së transmetimit, NIC pret për transmetim të serishëm sipas ligjit eksponencial (exponential backoff):
 - Pas m ndeshjeve, NIC e zgjedh numrin K në mënyrë të rastësishme prej intervalit {0,1,2,...,2^m-1}
 - NIC pret për kohën K.512 herë kohëzgjatja e një biti dhe kthehet te hapi 2

Protokolli CSMA/CD (2)

Protokollet MAC me shfrytëzim të radhës (1)

Polling:

- Merren veçoritë pozitive të dy klasave të mësipërme të protokolleve MAC
- Nyja kryesore (master) i "fton" nyjet dytësore (slave) të transmetojnë me radhë
- Zbatimi tipik me pajisje dytësore jo intelegjente (rrjeti i terminaleve)
- Të metat:
 - Overhedi për shkak të ftesës
 - Vonesat
 - Nëse nyja kryesore dështon, bie rrjeti

slaves

Protokollet MAC me shfrytëzim të radhës (2)

Token passing:

- Paketa (informacioni)
 token përcjellet prej një nyje te nyja tjetër në mënyrë sekuenciale
- Nyja mund të transmetojë vetëm kur e posedon token
- Të metat:
 - Overhedi për shkak të token
 - Vonesat
 - Nëse token humbet, rrjeti del prej funksionit

Përmbledhje e protokolleve MAC (1)

- Ndarja e kanaleve sipas kohës ose frekuencës
 - TDMA, FDMA
- Qasje të rastësishme
 - ALOHA, S-ALOHA, CSMA, CSMA/CD, CSMA/CA
 - Dëgjimi i bartësit: i lehtë te teknologjitë me tela, i vështirë te teknologjitë pa tela
 - S-Aloha përdoret në GSM
 - CSMA/CD përdoret në Ethernet
 - CSMA/CA përdoret në WLAN (IEEE 802.11)
- Shfrytëzim të radhës
 - Polling, stacioni kryesor i fton me radhë stacionet dytësore për transmetim
 - Token passing (përcjellja e shifrës)
 - Bluetooth, FDDI, IBM Token Ring

Përmbledhje e protokolleve MAC (2)

- Protokollet MAC me ndarje të kanaleve:
 - Kanali bashkëshfrytëzohet në mënyrë efikase dhe të barabartë kur ngarkesa me komunikacion është e madhe
 - Joefikase për ngarkesa të vogla: vonesa në qasjen e kanalit; alokohet vetëm 1/N pjesë e brezit frekuencor edhe në rastet kur vetëm një nyje është aktive
- Protokollet MAC me qasje të rastësishme
 - Efikase për ngarkesa të vogëla: një nyje e vetme mund ta shfrytëzoi krejt kapacitetin e kanalit
 - Në rast të ngarkesave të mëdha: overhed për shkak të ndeshjeve
- Protokollet MAC me shfrytëzim të radhës
 - Të merren veçoritë pozitive të dy klasave të mësipërme të protokolleve MAC

- 1. Cila nga pohimet e dhëna më poshtë për potokollin ARP është e saktë?
 - a. Përdoret për ta caktuar adresën IP të hostit kur i dihet adresa MAC
 - b. Mundëson që kur një host lidhet në rrjet në mënyrë automatike t'i jepet një adresë IP
 - c. Paketa ARP enkapsulohet në datagramin UDP
 - d. Çdo host e përmban një tabelë ARP
- 2. Cili nga pohimet e dhëna më poshtë për protokollin DHCP është i saktë?
 - a. Është protokoll i shtresës së rrjetit
 - b. Mundëson që t'i jepet në mënyrë automatike një adresë IP një hosti kur ai lidhet në rrjet
 - c. Është protokoll i shtresës së datalinkut.
 - d. Mundëson që t'i jepet në mënyrë manuale një adresë IP një hosti kur ai lidhet në rrjet

- 1. Protokollet e dhëna më poshtë hynë në klasën e protokolleve të rastësishm MAC, e saktë ose e pasaktë?
 - a. CSMA/CD
 - b. FDMA
 - c. Slotted ALOHA
 - d. CSMA/CA
- 2. Cilat nga pohimet e dhëna më poshtë janë të sakta ose të pasakta?
 - a. Protokolli ARP përdoret për ta caktuar adresen IP të hostit kur i dihet adresa MAC
 - b. Çdo host e përmban një tabelë ARP
 - c. Çdo suiç e përmban një tabelë ARP
 - d. Çdo ruter e përmban një tabelë ARP
- 3. Cilat nga pohimet e dhëna më poshtë janë të sakta ose të pasakta?
 - a. Protokolli DHCP është protokoll i shtresës së rrjetit
 - b. Protokolli ICMP përdoret për ta dërguar mesazhin (paketen) ping
 - c. Adresa IPv6 është 4 bajta
 - d. Protokolli DHCP mundëson që një hosti t'i jepet në mënyrë automatike një adresë IP kur ai lidhet në rrjet

- 4. Në figurën e treguar më poshtë, në portin Fa0/3 të suiçit vjen frejmi me adresë destinuese MAC 000a.f467.63b1. Suiçi do të veproj si vijon, e **s**aktë ose e **p**asaktë?
 - a. E dërgon frejmin në interfejsin Fa0/3
 - b. E dërgon frejmin në interfejsin Fa0/5
 - c. E dërgon frejmin në interfejsin Fa0/6
 - d. E hedhë poshtë frejmin.

Switch# show mac address-table

VLAN	Mac Address	Ports Fa0/4	
1	0005.dccb.d74b		
1	000a.f467.9e80	Fa0/5	
1	000a.f467.9e8b	Fa0/6	

- 5. Cilat nga pohimet e dhëna më poshtë janë të **s**akta ose të **p**asakta?
 - a. Suiçat janë pajisje të shtresës së datalinkut
 - b. Ruterat janë pajisje të shtresës së transportit
 - c. Adresa MAC është 64 bitshe e shënuar harduerikisht në kartelen e rrjetit (NIC)
 - d. Suiçat bëjnë forvardimin e datagrameve prej linjave (portave) hyrëse në linjat dalëse, në bazë të adresës burimore MAC të frejmit dhe tabelës së forvardimit
- 6. Cilat nga pohimet e dhëna më poshtë për adresat MAC janë të **s**akta ose të **p**asakta?
 - a. Kartelat NIC të prodhuesve të ndryshëm mund të kenë adresa MAC të njëjta
 - b. Çdo ruter ka aq adresa MAC sa ka interfejsa
 - c. Adresa MAC FF FF FF FF FF FF FF është adresë valide
 - d. Adresat MAC përdoren për komunikim në mes të dy aplikacioneve (end-to-end)
- 7. Cilat nga pohimet e dhëna më poshtë janë të sakta ose të pasakta?
 - a. Paketa ARP enkapsulohet në segementin TCP
 - b. Paketa ARP enkapsulohet në datagramin IP
 - c. Paketa ARP enkapsulohet në frejmin
 - d. Paketa ARP enkapsulohet në shtresen e aplikacionit

- 8. Cili nga pohimet e dhëna më poshtë janë të sakta ose të pasakta?
 - a. Protokolli DHCP është protokoll i shtresës së rrjetit
 - b. Protokolli ICMP përdoret për ta dërguar mesathin (paketen) ping
 - c. Potokolli ARP përdoret për ta dërguar mesazhin traceroute
 - d. Protokolli DHCP mundëson që një hosti t'i jepet në mënyrë automatike një adresë IP kur ai lidhet në rrjet

Potokolli ICMP

ICMP - Internet Control Message Protocol

- Përdoret nga hostat dhe ruterat për komunikim të informacioneve në shtresën e rrjetit
 - Raportimi i gabimeve: hosti, rrjeti,
 porti, ose protokolli janë të paarritshëm
 - Kërkesë/përgjigjje për eho (përdoret urdhërin ping)
- Mesazhi ICMP bartet në datagramin IP
- Mesazhet ICMP përmbajnë:
 - tipin
 - kodin
 - 8 bajtat e parë të datagramit, i cili e ka shkaktuar gabimin

<u>Type</u>	Code	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute

- Hosti burimor e dërgon një seri të paketave UDP (Cisco IOS, Linux, Mac OS X) ose ICMP (Windows) te destinimi
 - Segmentin e parë me TTL =1
 - Segmentin e dytë me TTL=2
 - Segmentin e tretë me TTL=3, etj.
 - Numër jo i rëndomtë (i papritur) i portit
- Kur datagrami i n-të arrin në ruterin e n-të:
 - Routeri e hedh poshtë datagramin
 - E dërgon te hosti mesazhin ICMP: koha TTL ka kaluar (TTL expired, tipi 11, kodi 0)
 - Mesazhi përmban emrin dhe adresën
 IP të ruterit

- Kur mesazhi ICMP (tipi 11, kodi 0) mbërrin te hosti burimor, hosti e llogaritë kohën RTT
- Traceroute e dërgon paketen e njëjtë UDP (ICMP) 3 herë

Kriteri i përfundimit te segmenteve

- Paketa UDP (ICMP) ma në fund arrin te hosti destinues
- Hosti destinues e kthen mesazhin ICMP: porti i paarritshëm (port unreachable), tipi 3, kodi 3, për paketen UDP (Linux)
- Hosti destinues e kthen mesazhin ICMP: echo replay tipi 0, kodi 0, për paketen ICMP (Windows)
- Kur hosti burimor e merr këtë mesazh e ndal transmetimin e paketeve UDP (ICMP)

Struktura e hederit IPv4 (1)

0 4	8	16	5 19	9 24	31		
Vers	HLEN	Type of Service	Total Length				
Identification			Flags	Fragment Offset			
Time to Live		Protocol	Header Checksum				
Source IP Address							
Destination IP Address							
IP Options					Padding		
Data							