ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Тема 1. Электрическое поле

Лекция 1.

ОСНОВЫ ЭЛЕКТРОСТАТИКИ

фундаментальные взаимодействия

В начале 19 века, когда механика казалась вполне завершенной наукой, мир представлялся гигантским механизмом, действующим в строгом соответствии с законами механики.

Малоисследованные в то время немеханические явления, такие как электричество, магнетизм, свет, пытались свести к простому механическому взаимодействию объектов.

К концу 19, началу 20 века стало очевидным, что электромагнитные взаимодействия не только не сводимы к механическим, но и наоборот - механические силы, такие как силы упругости, трения, давления, а также силы химического взаимодействия имеют в своей основе электромагнитную природу. Изучение строения атомов и открытие элементарных частиц, обладающих электрическим зарядом, окончательно утвердило представление о фундаментальности электромагнитных взаимодействий во вселенной

По современным представлениям электромагнитное взаимодействие является одним из четырех существующих в природе фундаментальных взаимодействий. К ним относят: сильные, электромагнитные, слабые и гравитационные. Интенсивности этих взаимодействий относятся как

 $1:10^{-2}:10^{-14}:10^{-39}$

(интенсивность сильного взаимодействия принята за 1)

Фундаментальные взаимодействия

Виды фундаментальных взаимодействий	Их роль во Вселенной	Радиус Действия
гравитационное	необходимо для возникновения звезд из газопылевых туманностей, для существования планетных систем	∞
электро-магнитное	необходимо для существования атомов	∞
сильное ядерное	обуславливает существование и стабильность ядер атомов	10 ⁻¹⁵
слабое ядерное	необходимо для термоядерного синтеза – источника звездной энергии	10 ⁻¹⁸

Электрические заряды

Еще в древности люди установили, что в результате натирания тела приобретают способность притягивать легкие предметы. Было установлено, что эта способность обусловлена наличием электрических зарядов. Понятие электрического заряда является **первичным** и не подлежит непосредственному определению. Возможно только перечисление его свойств.

Заряды бывают двух видов: положительные и отрицательные

Носителями зарядов в веществе являются элементарные частицы электрон и протон, входящие в состав атомов.

Заряд электрона е считают отрицательным, заряд протона - положительным. Заряд этих элементарных частиц является минимальной дискретной единицей заряда, поэтому заряд любого тела кратен величине заряда электрона. Каждый атом вещества электронейтрален, так как содержит в своем составе равное количество электронов и протонов, взаимно уравновешивающих заряды друг друга. Суммарный заряд атома равен нулю.

Закон сохранения заряда

Алгебраическая сумма электрических зарядов любой замкнутой системы (т.е. системы, не обменивающимися зарядами со внешними телами) остается неизменной независимо от физических процессов, происходящих в этой системе. Иными словами, до сих пор не обнаружены процессы, в которых превращения элементарных частиц происходят с изменением суммарного электрического заряда.

Величина заряда не зависит от системы отсчета и при переходе из одной инерциальной системы в другую не изменяется. Это свойство называют релятивистской

инвариантностью заряда.

В системе СИ единицей измерения электрического заряда служит Кулон (Кл). Элементарный электрический заряд электрона или протона составляет 1,6·10⁻¹⁹Кл.

Закон Кулона

Сила взаимодействия F двух точечных зарядов пропорциональна величинам q1 и q2 этих зарядов и обратно пропорциональна квадрату расстояния г между ними.

$$F = k \frac{|q_1| \cdot |q_2|}{r^2}$$

$$k = \frac{1}{4\pi\varepsilon_0}$$

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1 q_2|}{r^2}$$

Механизм взаимодействия электрических зарядов на расстоянии

Многие физики придерживались идеи непосредственного мгновенного действия зарядов друг на друга на расстоянии без какого-либо промежуточного объекта, передающего действие от одного заряда к другому (теория дальнодействия). Другие считали, что воздействие одного заряда на другой осуществляется через материальный носитель — гипотетическую промежуточную среду, называемую эфиром (теория близкодействия).

В дальнейшем были открыты электромагнитные волны и гипотеза о существовании промежуточной среды, передающей взаимодействие, была подтверждена. Эта среда является реальным материальным объектом, обладающим энергией и импульсом и передающим взаимодействие с конечной скоростью.

Электрическое поле

Материальный носитель кулоновского взаимодействия, заполняющий все пространство, называется электрического ким полем. В электростатике источником электрического поля считаются заряды. Любой электрический заряд меняет свойства окружающего пространства. Эту область пространства с измененными свойствами называют электрическим полем.

Когда заряды, являющиеся источниками поля, неподвижны и не изменяются по величине, поле называют электростатическим. На любой другой заряд, помещенный в электрическое поле, действует сила. Ее величина и направление зависит от количественной характеристики электрического поля, называемой напряженностью электрического поля.

Напряженность электрического поля

Рассмотрим простейший вид электрического поля - поле точечного заряда. Из закона Кулона

получим отношение силы, действующей на положительный пробный заряд к величине этого заряда.

$$\frac{F}{q_{npo\delta}} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2}$$

Оно не зависит от величины пробного заряда. Отношение $F/q_{проб}$ принимают в качестве силовой характеристики электрического поля и называют напряженностью

электрического поля и называют напря
электрического поля Е.
$$E = F/q_{проб}$$
 $E = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2}$

Напряженность электрического поля - векторная величина. Вектор Е направлен вдоль линии, соединяющей рассматриваемую точку поля с источником - зарядом q₁

Напряженность поля точечного заряда

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд

Если заряд q_0 отрицательный, то вектор E направлен в сторону q_0 , а если положительный - то в противоположную сторону.

В векторном виде выражение для напряженности электрического поля точечного заряда примет следующий вид

 $\boldsymbol{E} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \frac{\boldsymbol{r}}{r}$

На любой помещенный в электрическое поле заряд q действует сила F, равная

$$F = qE$$

Единицей напряженности электрического поля в системе СИ является вольт/метр (В/м), где вольт — единица потенциала электрического поля (потенциал будет рассмотрен ниже).

Принцип суперпозиции электрических полей

Рассмотрим случай, когда электрическое поле создается совокупностью произвольно расположенных точечных зарядов Q_1 , Q_2 , Q_3 ... Q_k . Поместим в это поле пробный заряд.

Сила, действующая со стороны зарядов Q_1 — Q_k на пробный заряд q равна

$$F_0 = F_1 + F_2 + F_3 + ... + F_k$$

Поскольку $\mathbf{E} = \frac{\mathbf{F}}{q}$, то общая напряженность электрического поля также может быть представлена суммой напряженностей, создаваемых в рассматриваемой точке каждым из зарядов $Q_1, Q_2, Q_3 \dots Q_k$ в отдельности.

$$E_0 = E_1 + E_2 + E_3 + ... + E_k$$

Это утверждение называют принципом суперпозиции (наложения) электрических полей. Принцип суперпозиции позволяет вычислить напряженность электрического поля любой системы зарядов.

Если заряды не точечные, а протяженные, то протяженное заряженное тело мысленно разбивают на множество малых объемов. На каждый из них приходится заряд dq, который можно считать точечным зарядом. При устремлении объемов разбиения к нулю сумма векторов напряженностей переходит в интеграл

$$\mathbf{E} = \int_{(q)} d\mathbf{E}$$

где dE — напряженность электрического поля, создаваемого элементарным зарядом dq. Интегрирование ведется по всей области (q) распространения заряда.

Поле электрического диполя

(пример применения принципа суперпозиции)

Электрическим диполем называется система из двух равных по величине разноименных точечных зарядов +q и -q, расположенных на небольшом расстоянии l друг от друга. Произведение p = ql называют электрическим моментом диполя, а линию, соединяющую заряды — осью диполя.

 Пример 1. Найдем Е_⊥ в точке А на прямой, проходящей через центр диполя и перпендикулярной к оси.

$$E_{+} = E_{-} = \frac{1}{4\pi\epsilon_{0}} \frac{q}{r^{2} + \left(\frac{l}{2}\right)^{2}} \approx \frac{q}{4\pi\epsilon_{0}r^{2}}$$
 T.K. $l << r$

• Из подобия заштрихованных треугольников можно записать:

$$\frac{E_{\perp}}{E_{+}} = \frac{l}{\left(r^2 + \frac{l^2}{4}\right)^{\frac{1}{2}}} \approx \frac{l}{r}$$

отсюда $E_{\perp} = E_{+} \frac{l}{r} = \frac{ql}{4\pi \varepsilon_{0} r}$

$$E_{1} = \frac{p}{4\pi\varepsilon_{0}r^{3}}$$

Теперь найдем поле в точке В на оси диполя. Оно будет представлять собой сумму полей E₊ и E₋, от точечных зарядов +q и –q

$$E_{,||} = \frac{1}{4\pi\varepsilon_0} \left[\frac{q}{(r-l/2)^2} - \frac{q}{(r+l/2)^2} \right] = \frac{q}{4\pi\varepsilon_0} \frac{(r+l/2)^2 - (r-l/2)^2}{(r-l/2)^2 (r+l/2)^2}$$

Видно, что напряженность поля электрического диполя зависит не от величины зарядов, а от электрического момента диполя p=ql. С расстоянием напряженность убывает как $1/r^3$, то есть быстрее, чем напряженность поля точечного заряда. Интересно отметить, что вектор E_{\bot} , направлен не вдоль линии, соединяющей точку наблюдения с центром диполя, а перпендикулярен ей.

$$E_{\parallel} = \frac{1}{4\pi\varepsilon_0} \frac{2ql}{r^3} = \frac{1}{4\pi\varepsilon_0} \frac{2p}{r^3} \qquad E_{\perp} = \frac{1}{4\pi\varepsilon_0} \frac{ql}{r^3} = \frac{1}{4\pi\varepsilon_0} \frac{p}{r^3}$$

Линии напряженности

Чтобы описать электрическое поле необходимо для каждой точки пространства указать величину и направление вектора напряженности поля.

Правила проведения линий напряженности

 Касательная к линии в любой точке совпадает с направлением вектора Е

модулю вектора E, то есть N = |E|

Картина линий напряженности точечных зарядов

Линии напряженности исходят из положительных зарядов и заканчиваются на отрицательных (или в бесконечности).

Картина линий напряженности электрического диполя

