# Lecture 6: Time Diversification

Mark Hendricks

Autumn 2023

FINM 36700: Portfolio Management

## **Notation**

| notation             | description                                      |                                             |
|----------------------|--------------------------------------------------|---------------------------------------------|
| $r_t$                |                                                  | return rate, $(t-1 \ {\sf to} \ t)$         |
| $r_{t,t+h}$          | $\left(\prod_{\tau=1}^{h} R_{t+\tau}\right) - 1$ | cumulative return rate, from $t$ to $t + h$ |
| $r_t$                | $\log\left(1+r_t ight)$                          | $\log$ return from $t-1$ to $t$             |
| $\mathtt{r}_{t,t+h}$ | $\log\left(1+r_{t,t+h}\right)$                   | log cumulative return from $t$ to $t + h$ . |



Hendricks, Autumn 2023 FINM 36700: Lecture 6 2/16

## Cumulative return risk and autocorrelation

Log cumulative returns are simply a portfolio of single-period returns.

▶ Define  $\mu$  and  $\sigma^2$  as

$$\mathbb{E}\left[\mathbf{r}_{t,t+1}\right] = \mu, \quad \text{var}\left[\mathbf{r}_{t,t+1}\right] = \sigma^2$$

For the *h*-period log return,



Hendricks, Autumn 2023 FINM 36700: Lecture 6 3/16

## Autocorrelation models

As seen in the previous slide,

The variance of cumulative returns,  $\mathbf{r}_{t,t+h}$ , depends critically on the auto-covariance of the return series, denoted as

$$cov[r_t, r_{t+i}], or \sigma_{t,t+i}$$

- ▶ Specifying a form for the autocorrelations, corr  $[r_t, r_{t+i}]$ , is equivalent.
- A model of autocorrelations uniquely specifies a linear time series model.



Hendricks, Autumn 2023 FINM 36700: Lecture 6 4/16

# AR(1) models

Autoregressive (AR) models are among the most popular in time-series statistics.

Consider the AR(1) model,

$$\frac{\operatorname{cov}\left[\mathbf{r}_{t}, \mathbf{r}_{t+i}\right] = \rho^{i} \sigma^{2}}{\operatorname{corr}\left[\mathbf{r}_{t}, \mathbf{r}_{t+i}\right] = \rho^{i}}$$

With AR models, covariances are easy to scale over time.



Hendricks, Autumn 2023 FINM 36700: Lecture 6 5/16

## Diversification and cumulative returns

Mean returns scale linearly in horizon h,

$$\mathbb{E}\left[\mathbf{r}_{t,t+h}\right] = h\mu$$

But scaling of variance depends on correlation,

- ho = 1. Std.Dev. is linear in cumulation: std  $[r_{t,t+h}] = h\sigma$
- $\rho = 0$ . Variance is linear in cumulation: var  $[\mathbf{r}_{t,t+h}] = h\sigma^2$
- ▶  $\rho = -1$ . The return is riskless: var  $[r_{t,t+h}] = 0$



Hendricks, Autumn 2023 FINM 36700: Lecture 6 6/16

# Example: Riskless bond

At time t = 0, consider a bond with riskless payout at t = 10. The yield of the bond at t = 0 is 5%.

- The 10-year cumulative return,  $\mathbf{r}_{0,10}$  is riskless, and equals  $5\% \times 10$ .
- At any intermediate time, (t, such that 0 < t < 10,) the bond price is uncertain.
- ▶ Thus, the intermediate returns,  $r_{0,t}$  and  $r_{t,10}$  are uncertain.
- However,  $r_{0,10} = r_{0,t} + r_{t,10}$ .
- So if  $\mathbf{r}_{0,t}$  is unexpectedly high, then  $\mathbf{r}_{t,10}$  must be relatively low, such that the riskless return  $\mathbf{r}_{0,10}$  ends up at  $5\% \times 10$ .

THE UNIVERSITY OF CHICAGO

Hendricks, Autumn 2023 FINM 36700: Lecture 6 7/16



Figure: A ten-year risk-free bond has a 10-year return with perfect mean reversion. Source: Cochrane (2011).

# Negative serial correlation in bonds

Thus, riskless bonds should have negatively autocorrelated returns:

of year to 3-10 year have perfect regardle 
$$corr(r_t, r_{t+1}) < 0$$
 return

And if the bond matures at T, then for any 0 < h < T - t,

$$corr\left(\mathbf{r}_{t,t+h},\mathbf{r}_{t+h,T}\right) = -1$$

Default-free bonds are safer in the long-run, with  $var[r_{t,T}] = 0$ .



Hendricks, Autumn 2023 FINM 36700: Lecture 6 9/16

# Cumulative Sharpe ratios in AR(1) model

Consider again the cumulative return,  $\mathbf{r}_{t,t+h}$ .

$$lacksquare$$
 For  $ho=1$  ,

$$SR(r_{t,t+h}) = SR(r_t)$$

ightharpoonup For |
ho| < 1 ,

$$SR(r_{t,t+h}) > SR(r_t)$$

For 
$$\rho = 0$$
, for most of stocks

$$SR(\mathbf{r}_{t,t+h}) = \sqrt{h} SR(\mathbf{r}_t)$$

longer term > higher SR 40 different and - to period zill tow autocorrelation → reduce risk when

FINM 36700: Lecture 6 10/16 Hendricks, Autumn 2023

## Mean annualized returns

The annualized mean (log) return on the h-period investment,

$$\mathbf{r}_{t,t+h}$$
 is

$$\frac{\mathbf{r}_{t,t+h}}{h} = \frac{\sum_{i=1}^{h} \mathbf{r}_{t+i}}{h}$$

This is just the usual sample estimate of the mean of one-period returns,  $\bar{r}$ , based on a sample-size of h!

For any 
$$ho$$
, For  $ho=0$ , while annual var  $hoar{F}[ar{r}]=\mu$  var  $[ar{r}]=rac{\sigma^2}{h}$ 

$$\mathbb{E}\left[ ar{ extit{r}}
ight] =\mu$$

For 
$$\rho = 0$$
,

$$\operatorname{var}\left[\overline{r}\right] = rac{\sigma^2}{h}$$

- So as the investment horizons gets large, the mean annualized return,  $\bar{r}$ , converges to the true annual mean return,  $\mu$ .
- x cumulative return Fiven if  $ho \neq 0$  we can still conclude that  $ar r o \mu$ . but every emand ret (Law of large numbers still holds.)

ELT] : M skin hold.

#### Time diversification

Time-diversification refers to this idea that mean annualized return becomes riskless for large investment horizons.

- True, as horizon increases the variance of the annualized return goes to zero.
- Mowever, the variance of the cumulative return,  $r_{t,t+h}$  is still growing.

So-called time diversification depends on the risk one is measuring.

anuage: safer

cumulatel : viskier



Hendricks, Autumn 2023 FINM 36700: Lecture 6 12/16

# Evidence: Are equity returns serially correlated?

Table: Auto-regression estimates for market returns, risk-free rate, and excess market returns. Regression estimates of  $y_{t+1} = a + \rho y_t + \epsilon_{t+1}$ 

|                      | Monthly        |         |                                        |         | Annual         |         |                    |  |
|----------------------|----------------|---------|----------------------------------------|---------|----------------|---------|--------------------|--|
| $y = \dots$          | r <sup>m</sup> | $r^{f}$ | $\widetilde{r}^{\scriptscriptstyle m}$ |         | r <sup>m</sup> | $r^{f}$ | $	ilde{\pmb{r}}^m$ |  |
| $\hat{ ho}$          | 0.11           | 0.89    | 0.12                                   |         | 0.01           | 0.92    | 0.02               |  |
| $t(\hat{ ho}) \ R^2$ | 2.02           | 30.38   | 2.05                                   |         | 0.09           | 13.31   | 0.15               |  |
| $R^2$                | 0.01           | 0.80    | 0.01                                   |         | 0.00           | 0.83    | 0.00               |  |
|                      |                | 0.00    | to lab coul                            | AA LOCI | an and a Mail  | 10      |                    |  |

Source: CRSP value-weighted equity markets, 1927-2010. CRSP 3-month U.S.

treasury bill. GMM standard errors.



# Serial correlation of equities

- ► The table shows that empirically the serial correlation of excess equity returns is small.
- Not surprisingly, the serial correlation of the risk-free rate is very high.
- ► The serial correlation is much smaller for annual returns.

Does estimating the autocorrelation of longer-horizon returns tell a different story?



Hendricks, Autumn 2023 FINM 36700: Lecture 6 14/16

# Evidence: Cumulative equity returns

Table: Std.dev., Sharpe-ratios, and serial correlation, of excess cumulative returns.

|                                                                        | SP   | L grow at | TH ST | when f: | = 0  | _                         |
|------------------------------------------------------------------------|------|-----------|-------|---------|------|---------------------------|
|                                                                        |      | Horizo    | _     |         |      |                           |
|                                                                        | 1    | 3         | 5     | 7       | 10   |                           |
| $\sigma\left(\tilde{r}_{t,t+h}^{m}\right)/\sqrt{h}$ $SR/\sqrt{h}$ this | 0.21 | 0.24      | 0.28  | 0.26    | 0.32 | P little bit >0           |
| SR/√h tentall                                                          | 0.36 | 0.36      | 0.32  | 0.34    | 0.30 |                           |
| $\hat{ ho}$                                                            |      | -0.29     |       |         |      | Autocorrelation  Tot Zero |
|                                                                        |      |           |       |         |      | - mot <del>2</del> 610    |

- $\tilde{r}_{t,t+h}^m$  denotes the *h*-year excess return of the CRSP U.S. equity index over the 90-day t-bill.
- $\hat{\rho}$  is the serial correlation of long-horizon excess returns estimated by regressing  $\tilde{r}_{t,t+h}^m$  on  $\tilde{r}_{t-h,t}^m$ .

Hendricks, Autumn 2023 FINM 36700: Lecture 6 15/16

# Long-run uncertainty

# riskier when period is longer

- The results in the table above show that normalized by  $\sqrt{h}$ , the Sharpe ratios remain almost constant across return horizon, or slightly decrease.
- ► This would be consistent with market equity excess returns having small serial correlation.
- Unfortunately, the basic estimates in the previous table are not statistically conclusive.
- Not surprising, since there are not a lot of long-horizon data points available.



Hendricks, Autumn 2023 FINM 36700: Lecture 6 16/16