Confiabilidade de Sistemas - EEE017

Prof. Eduardo Gontijo Carrano

	Nome:	
Qι	uestão 1	
	Considere o diagrama de blocos da Fig. 1. Sejam R_1 a confiabilidade do bloco tipo 1, R_2 a confiabilidade do bloco	
	tipo 2 e assim por diante. Encontre uma expressão para a confiabilidade do sistema.	

Figura 1: Diagrama de Blocos da Questão 1.

A respeito dos princípios do DfR (Design for Reliability):

- (a) (10%) Quais as seis etapas do princípio DfR? Descreva, em no máximo três linhas, cada uma dessas etapas.
- (b) (10%) Por que é mais barato descobrir uma falha de projeto nas etapas iniciais do DfR? Quais as consequências de só se descobrir essas falhas com o produto já no mercado?

Questão 3	
Escolha um sistema de sua preferência e, Falha e Efeito (FMEA).	para dois componentes deste sistema, faça uma Análise de Modo de

Questão 4	for Six Sigma). Liste as	principais semelhanças e d	

4	os eletromicos, disc	atta illodos de lai	ha relacionados	a conexoes e soie	ias.

Questão 6)%
A respeito de testes acelerados de produtos e sistemas, responda:	
(a) (10%) O que é um teste acelerado? Dê um exemplo de teste acelerado.	

(b) (10%) Como os testes acelerados podem ser utilizados para estimar o ciclo de vida de um produto/sistema?

Na Figura 2, é apresentado o esquema de uma fonte de tensão comercial, baseada em divisor de tensão. Essa fonte é utilizada para alimentar uma carga RL. Nesse circuito:

- a fonte E tem tensão nominal de 12V e tolerância de $\pm 10\%$;
- o resistor R1 tem resistência nominal de 30Ω e tolerância de $\pm 10\%$;
- o resistor R2 tem resistência nominal de 30Ω e tolerância de $\pm 10\%$.

Segundo o fabricante, a tensão de saída dessa fonte (VAB) é 6V, sendo admitida uma variação máxima de $\pm 5\%$. Considere que todos os componentes são testados antes da montagem da fonte e que todos os componentes utilizados não apresentam problemas de fabricação e se encontram dentro da tolerância especificada.

- (a) (10%) O fabricante pode garantir que todas as fontes fabricadas vão atender a especificação de $VAB = 6V \pm 5\%$? Justifique sua resposta com base em uma Análise de Tolerância de Pior Caso.
- (b) (10%) Repita a questão da letra (a), considerando agora:
 - $E = 12V \pm 2\%$;
 - $R1 = 30\Omega \pm 5\%$;
 - $R2 = 90\Omega \pm 5\%$;
 - $VAB = 9V \pm 10\%$.

Figura 2: Divisor da Questão 4.