US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication
Kind Code
Publication Date
Inventor(s)

20250262451 A1 August 21, 2025 OSTERHOUT; Ralph F. et al.

HEAD-WORN THERAPY DEVICE

Abstract

Embodiments of the present disclosure relate to a head-worn apparatus, comprising: a frame adapted to be mounted to a head of a user; a light emitting system positioned within the frame to provide light to an eye of the user; a sound system adapted to provide audio to the user; a haptic system positioned within the frame to provide haptic feedback to the user; and a processor adapted to control the lighting system, audio system and haptic system in a coordinated pattern of light, sound and haptics that causes a mental-health therapeutic stimulus provided to the user, whereby the user experiences an improvement in mental performance based on the coordinated pattern.

Inventors: OSTERHOUT; Ralph F. (San Francisco, CA), RIEHLE; Ed (San Francisco, CA),

LOHSE; Robert Michael (Palo Alto, CA)

Applicant: Mentor Acquisition One, LLC (Plantation, FL)

Family ID: 1000008576769

Appl. No.: 19/187918

Filed: April 23, 2025

Related U.S. Application Data

parent US continuation 18450344 20230815 parent-grant-document US 12337189 child US 19187918

parent US continuation 17066359 20201008 parent-grant-document US 11771915 child US 18450344

parent US continuation 15395690 20161230 parent-grant-document US 10850116 child US 17066359

Publication Classification

Int. Cl.: A61N5/06 (20060101); **A61H23/00** (20060101)

U.S. Cl.:

CPC

A61N5/0618 (20130101); **A61H23/00** (20130101); A61H2201/10 (20130101); A61H2205/02 (20130101); A61N2005/0626 (20130101); A61N2005/0665 (20130101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATION [0001] This application is a continuation of U.S. application Ser. No. 18/450,344, filed on Aug. 15, 2023, which is a continuation of U.S. application Ser. No. 17/066,359, filed Oct. 8, 2020, now U.S. Pat. No. 11,771,915, issued on Oct. 3, 2023, which is a continuation of U.S. application Ser. No. 15/395,690, filed on Dec. 30, 2016, now U.S. Pat. No. 10,850,116, issued on Dec. 1, 2020, the contents of which is incorporated by reference herein in their entirety.

BACKGROUND

Field of the Invention

[0002] This invention relates to head-worn computer systems for use as a therapeutic system.

Description of Related Art

[0003] Head mounted displays (HMDs) and particularly HMDs that provide a see-through view of the environment are valuable instruments. The presentation of content in the see-through display can be a complicated operation when attempting to ensure that the user experience is optimized. Improved systems and methods for presenting content in the see-through display are required to improve the user experience.

SUMMARY

[0004] Aspects of the present invention relate to methods and systems for using head-worn computer systems for therapy.

[0005] These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:

[0007] FIG. **1** illustrates a head worn computing system in accordance with the principles of the present invention.

[0008] FIG. **2** illustrates a head worn computing system with optical system in accordance with the principles of the present invention.

[0009] FIG. **3***a* illustrates a large prior art optical arrangement.

[0010] FIG. **3***b* illustrates an upper optical module in accordance with the principles of the present invention.

[0011] FIG. **4** illustrates an upper optical module in accordance with the principles of the present invention.

[0012] FIG. **4***a* illustrates an upper optical module in accordance with the principles of the present invention.

[0013] FIG. 4b illustrates an upper optical module in accordance with the principles of the present

- invention.
- [0014] FIG. **5** illustrates an upper optical module in accordance with the principles of the present invention.
- [0015] FIG. **5***a* illustrates an upper optical module in accordance with the principles of the present invention.
- [0016] FIG. **5***b* illustrates an upper optical module and dark light trap according to the principles of the present invention.
- [0017] FIG. 5*c* illustrates an upper optical module and dark light trap according to the principles of the present invention.
- [0018] FIG. 5*d* illustrates an upper optical module and dark light trap according to the principles of the present invention.
- [0019] FIG. 5*e* illustrates an upper optical module and dark light trap according to the principles of the present invention.
- [0020] FIG. **6** illustrates upper and lower optical modules in accordance with the principles of the present invention.
- [0021] FIG. **7** illustrates angles of combiner elements in accordance with the principles of the present invention.
- [0022] FIG. **8** illustrates upper and lower optical modules in accordance with the principles of the present invention.
- [0023] FIG. **8***a* illustrates upper and lower optical modules in accordance with the principles of the present invention.
- [0024] FIG. **8***b* illustrates upper and lower optical modules in accordance with the principles of the present invention.
- [0025] FIG. **8***c* illustrates upper and lower optical modules in accordance with the principles of the present invention.
- [0026] FIG. **9** illustrates an eye imaging system in accordance with the principles of the present invention.
- [0027] FIG. **10** illustrates a light source in accordance with the principles of the present invention.
- [0028] FIG. **10***a* illustrates a back lighting system in accordance with the principles of the present invention.
- [0029] FIG. **10***b* illustrates a back lighting system in accordance with the principles of the present invention.
- [0030] FIGS. **11***a* to **11***d* illustrate light source and filters in accordance with the principles of the present invention.
- [0031] FIGS. **12***a* to **12***c* illustrate light source and quantum dot systems in accordance with the principles of the present invention.
- [0032] FIGS. **13***a* to **13***c* illustrate peripheral lighting systems in accordance with the principles of the present invention.
- [0033] FIGS. **14***a* to **14***h* illustrate light suppression systems in accordance with the principles of the present invention.
- [0034] FIG. **14***i* illustrates a head-worn computer with scene cameras in accordance with the principles of the present invention.
- [0035] FIG. **14***j* illustrates a head-worn computer with an internal speaker in accordance with the principles of the present invention.
- [0036] FIG. **14***k* illustrates a configuration for an internal speaker in accordance with the principles of the present invention.
- [0037] FIG. **14***l* illustrates a removable electrochromic lens in accordance with the principles of the present invention.
- [0038] FIG. **14***m* illustrates electrochromic lens connection systems in accordance with the principles of the present invention.

- [0039] FIG. **15** illustrates an external user interface in accordance with the principles of the present invention.
- [0040] FIGS. **16***a* to **16***c* illustrate distance control systems in accordance with the principles of the present invention.
- [0041] FIGS. **17***a* to **17***c* illustrate force interpretation systems in accordance with the principles of the present invention.
- [0042] FIGS. **18***a* to **18***c* illustrate user interface mode selection systems in accordance with the principles of the present invention.
- [0043] FIG. **19** illustrates interaction systems in accordance with the principles of the present invention.
- [0044] FIG. **20** illustrates external user interfaces in accordance with the principles of the present invention.
- [0045] FIG. **21** illustrates mD trace representations presented in accordance with the principles of the present invention.
- [0046] FIG. **22** illustrates mD trace representations presented in accordance with the principles of the present invention.
- [0047] FIG. **23** illustrates an mD scanned environment in accordance with the principles of the present invention.
- [0048] FIG. **23***a* illustrates mD trace representations presented in accordance with the principles of the present invention.
- [0049] FIG. **24** illustrates a stray light suppression technology in accordance with the principles of the present invention.
- [0050] FIG. **25** illustrates a stray light suppression technology in accordance with the principles of the present invention.
- [0051] FIG. **26** illustrates a stray light suppression technology in accordance with the principles of the present invention.
- [0052] FIG. **27** illustrates a stray light suppression technology in accordance with the principles of the present invention.
- [0053] FIGS. **28***a* to **28***c* illustrate DLP mirror angles.
- [0054] FIGS. **29** to **33** illustrate eye imaging systems according to the principles of the present invention.
- [0055] FIGS. **34** and **34***a* illustrate structured eye lighting systems according to the principles of the present invention.
- [0056] FIG. **35** illustrates eye glint in the prediction of eye direction analysis in accordance with the principles of the present invention.
- [0057] FIG. **36***a* illustrates eye characteristics that may be used in personal identification through analysis of a system according to the principles of the present invention.
- [0058] FIG. **36***b* illustrates a digital content presentation reflection off of the wearer's eye that may be analyzed in accordance with the principles of the present invention.
- [0059] FIG. **37** illustrates eye imaging along various virtual target lines and various focal planes in accordance with the principles of the present invention.
- [0060] FIG. **38** illustrates content control with respect to eye movement based on eye imaging in accordance with the principles of the present invention.
- [0061] FIG. **39** illustrates eye imaging and eye convergence in accordance with the principles of the present invention.
- [0062] FIG. **40** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.
- [0063] FIG. **41** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.
- [0064] FIG. 42 illustrates content position dependent on sensor feedback in accordance with the

principles of the present invention.

[0065] FIG. **43** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0066] FIG. **44** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0067] FIG. **45** illustrates various headings over time in an example.

[0068] FIG. **46** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0069] FIG. **47** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0070] FIG. **48** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0071] FIG. **49** illustrates content position dependent on sensor feedback in accordance with the principles of the present invention.

[0072] FIG. **50** illustrates light impinging an eye in accordance with the principles of the present invention.

[0073] FIG. **51** illustrates a view of an eye in accordance with the principles of the present invention.

[0074] FIGS. **52***a* and **52***b* illustrate views of an eye with a structured light pattern in accordance with the principles of the present invention.

[0075] FIG. **53** illustrates an optics module in accordance with the principles of the present invention.

[0076] FIG. **54** illustrates an optics module in accordance with the principles of the present invention.

[0077] FIG. **55** shows a series of example spectrum for a variety of controlled substances as measured using a form of infrared spectroscopy.

[0078] FIG. **56** shows an infrared absorbance spectrum for glucose.

[0079] While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

[0080] Aspects of the present invention relate to head-worn computing ("HWC") systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality ("AR").

[0081] HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of emersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware

HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.

[0082] Referring to FIG. 1, an overview of the HWC system 100 is presented. As shown, the HWC system **100** comprises a HWC **102**, which in this instance is configured as glasses to be worn on the head with sensors such that the HWC **102** is aware of the objects and conditions in the environment **114**. In this instance, the HWC **102** also receives and interprets control inputs such as gestures and movements **116**. The HWC **102** may communicate with external user interfaces **104**. The external user interfaces **104** may provide a physical user interface to take control instructions from a user of the HWC **102** and the external user interfaces **104** and the HWC **102** may communicate bi-directionally to affect the user's command and provide feedback to the external device **108**. The HWC **102** may also communicate bi-directionally with externally controlled or coordinated local devices **108**. For example, an external user interface **104** may be used in connection with the HWC **102** to control an externally controlled or coordinated local device **108**. The externally controlled or coordinated local device **108** may provide feedback to the HWC **102** and a customized GUI may be presented in the HWC **102** based on the type of device or specifically identified device **108**. The HWC **102** may also interact with remote devices and information sources 112 through a network connection 110. A gain, the external user interface 104 may be used in connection with the HWC **102** to control or otherwise interact with any of the remote devices 108 and information sources 112 in a similar way as when the external user interfaces **104** are used to control or otherwise interact with the externally controlled or coordinated local devices **108**. Similarly, HWC **102** may interpret gestures **116** (e.g. captured from forward, downward, upward, rearward facing sensors such as camera(s), range finders, IR sensors, etc.) or environmental conditions sensed in the environment 114 to control either local or remote devices 108 or 112.

[0083] We will now describe each of the main elements depicted on FIG. **1** in more detail; however, these descriptions are intended to provide general guidance and should not be construed as limiting. Additional description of each element may also be further described herein. [0084] The HWC **102** is a computing platform intended to be worn on a person's head. The HWC **102** may take many different forms to fit many different functional requirements. In some situations, the HWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where the HWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment **114**. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, the HWC **102** may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like. [0085] The HWC **102** may also have a number of integrated computing facilities, such as an

integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)),

and the like. The HWC **102** may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.

[0086] The HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102. In another example, the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. The HWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment the HWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly. For example, the HWC 102 may have a button(s), touch capacitive interface, and the like.

[0087] As described herein, the HWC **102** may be in communication with external user interfaces **104**. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of the HWC **102**. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, the external user interface **104** may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD **104**.

[0088] As described herein, the HWC **102** may control or coordinate with other local devices **108**. The external devices **108** may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the local external device **108** may be another HWC **102**, where information may then be exchanged between the separate HWCs **108**.

[0089] Similar to the way the HWC **102** may control or coordinate with local devices **106**, the HWC **102** may control or coordinate with remote devices **112**, such as the HWC **102** communicating with the remote devices **112** through a network **110**. A gain, the form of the remote device **112** may have many forms. Included in these forms is another HWC **102**. For example, each HWC **102** may communicate its GPS position such that all the HWCs **102** know where all of HWC **102** are located.

[0090] FIG. 2 illustrates a HWC 102 with an optical system that includes an upper optical module 202 and a lower optical module 204. While the upper and lower optical modules 202 and 204 will generally be described as separate modules, it should be understood that this is illustrative only and the present invention includes other physical configurations, such as that when the two modules are combined into a single module or where the elements making up the two modules are configured into more than two modules. In embodiments, the upper module 202 includes a computer controlled display (e.g. LCoS, DLP, OLED, etc.) and image light delivery optics. In embodiments, the lower module includes eye delivery optics that are configured to receive the upper module's image light and deliver the image light to the eye of a wearer of the HWC. In FIG. 2, it should be noted that while the upper and lower optical modules 202 and 204 are illustrated in one side of the HWC such that image light can be delivered to one eye of the wearer, that it is envisioned by the present invention that embodiments will contain two image light delivery systems, one for each eye.

[0091] FIG. **3***b* illustrates an upper optical module **202** in accordance with the principles of the

present invention. In this embodiment, the upper optical module **202** includes a DLP (also known as DM D or digital micromirror device) computer operated display **304** which includes pixels comprised of rotatable mirrors (such as, for example, the DLP3000 available from Texas Instruments), polarized light source **302**, ½ wave retarder film **308**, reflective polarizer **310** and a field lens **312**. The polarized light source **302** provides substantially uniform polarized light that is generally directed towards the reflective polarizer **310**. The reflective polarizer reflects light of one polarization state (e.g. S polarized light) and transmits light of the other polarization state (e.g. P polarized light). The polarized light source **302** and the reflective polarizer **310** are oriented so that the polarized light from the polarized light source **302** is reflected generally towards the DLP **304**. The light then passes through the ¼ wave film **308** once before illuminating the pixels of the DLP **304** and then again after being reflected by the pixels of the DLP **304**. In passing through the $\frac{1}{4}$ wave film **308** twice, the light is converted from one polarization state to the other polarization state (e.g. the light is converted from S to P polarized light). The light then passes through the reflective polarizer **310**. In the event that the DLP pixel(s) are in the "on" state (i.e. the mirrors are positioned to reflect light towards the field lens 312, the "on" pixels reflect the light generally along the optical axis and into the field lens **312**. This light that is reflected by "on" pixels and which is directed generally along the optical axis of the field lens **312** will be referred to as image light **316**. The image light **316** then passes through the field lens to be used by a lower optical module **204**.

[0092] The light that is provided by the polarized light source **302**, which is subsequently reflected by the reflective polarizer **310** before it reflects from the DLP **304**, will generally be referred to as illumination light. The light that is reflected by the "off" pixels of the DLP **304** is reflected at a different angle than the light reflected by the "on" pixels, so that the light from the "off" pixels is generally directed away from the optical axis of the field lens **312** and toward the side of the upper optical module **202** as shown in FIG. **3** The light that is reflected by the "off" pixels of the DLP **304** will be referred to as dark state light **314**.

[0093] The DLP **304** operates as a computer controlled display and is generally thought of as a MEMs device. The DLP pixels are comprised of small mirrors that can be directed. The mirrors generally flip from one angle to another angle. The two angles are generally referred to as states. When light is used to illuminate the DLP the mirrors will reflect the light in a direction depending on the state. In embodiments herein, we generally refer to the two states as "on" and "off," which is intended to depict the condition of a display pixel. "On" pixels will be seen by a viewer of the display as emitting light because the light is directed along the optical axis and into the field lens and the associated remainder of the display system. "Off" pixels will be seen by a viewer of the display as not emitting light because the light from these pixels is directed to the side of the optical housing and into a light trap or light dump where the light is absorbed. The pattern of "on" and "off" pixels produces image light that is perceived by a viewer of the display as a computer generated image. Full color images can be presented to a user by sequentially providing illumination light with complimentary colors such as red, green and blue. Where the sequence is presented in a recurring cycle that is faster than the user can perceive as separate images and as a result the user perceives a full color image comprised of the sum of the sequential images. Bright pixels in the image are provided by pixels that remain in the "on" state for the entire time of the cycle, while dimmer pixels in the image are provided by pixels that switch between the "on" state and "off" state within the time of the cycle, or frame time when in a video sequence of images. [0094] FIG. **3***a* shows an illustration of a system for a DLP **304** in which the unpolarized light source **350** is pointed directly at the DLP **304**. In this case, the angle required for the illumination light is such that the field lens **352** must be positioned substantially distant from the DLP **304** to avoid the illumination light from being clipped by the field lens **352**. The large distance between the field lens **352** and the DLP **304** along with the straight path of the dark state light **354**, means that the light trap for the dark state light **354** is also located at a substantial distance from the DLP.

For these reasons, this configuration is larger in size compared to the upper optics module **202** of the preferred embodiments.

[0095] The configuration illustrated in FIG. **3***b* can be lightweight and compact such that it fits into a small portion of a HWC. For example, the upper modules **202** illustrated herein can be physically adapted to mount in an upper frame of a HWC such that the image light can be directed into a lower optical module **204** for presentation of digital content to a wearer's eye. The package of components that combine to generate the image light (i.e. the polarized light source **302**, DLP **304**, reflective polarizer **310** and ¼ wave film **308**) is very light and is compact. The height of the system, excluding the field lens, may be less than 8 mm. The width (i.e. from front to back) may be less than 8 mm. The weight may be less than 2 grams. The compactness of this upper optical module **202** allows for a compact mechanical design of the HWC and the light weight nature of these embodiments help make the HWC lightweight to provide for a HWC that is comfortable for a wearer of the HWC.

[0096] The configuration illustrated in FIG. **3***b* can produce sharp contrast, high brightness and deep blacks, especially when compared to LCD or LCoS displays used in HWC. The "on" and "off" states of the DLP provide for a strong differentiator in the light reflection path representing an "on" pixel and an "off" pixel. As will be discussed in more detail below, the dark state light from the "off" pixel reflections can be managed to reduce stray light in the display system to produce images with high contrast.

[0097] FIG. **4** illustrates another embodiment of an upper optical module **202** in accordance with the principles of the present invention. This embodiment includes a light source **404**, but in this case, the light source can provide unpolarized illumination light. The illumination light from the light source **404** is directed into a TIR wedge **418** such that the illumination light is incident on an internal surface of the TIR wedge **418** (shown as the angled lower surface of the TIR wedge **418** in FIG. **4**) at an angle that is beyond the critical angle as defined by Eqn 1.

[00001] Critical angle = arc - $\sin(1/n)$ Eqn1

[0098] Where the critical angle is the angle beyond which the illumination light is reflected from the internal surface when the internal surface comprises an interface from a solid with a higher refractive index (n) to air with a refractive index of 1 (e.g. for an interface of acrylic, with a refractive index of n=1.5, to air, the critical angle is 41.8 degrees; for an interface of polycarbonate, with a refractive index of n=1.59, to air the critical angle is 38.9 degrees). Consequently, the TIR wedge **418** is associated with a thin air gap **408** along the internal surface to create an interface between a solid with a higher refractive index and air. By choosing the angle of the light source **404** relative to the DLP 402 in correspondence to the angle of the internal surface of the TIR wedge **418**, illumination light is turned toward the DLP **402** at an angle suitable for providing image light **414** as reflected from "on" pixels. Wherein, the illumination light is provided to the DLP **402** at approximately twice the angle of the pixel mirrors in the DLP **402** that are in the "on" state, such that after reflecting from the pixel mirrors, the image light **414** is directed generally along the optical axis of the field lens. Depending on the state of the DLP pixels, the illumination light from "on" pixels may be reflected as image light 414 which is directed towards a field lens and a lower optical module **204**, while illumination light reflected from "off" pixels (generally referred to herein as "dark" state light, "off" pixel light or "off" state light) **410** is directed in a separate direction, which may be trapped and not used for the image that is ultimately presented to the wearer's eve.

[0099] The light trap for the dark state light **410** may be located along the optical axis defined by the direction of the dark state light **410** and in the side of the housing, with the function of absorbing the dark state light. To this end, the light trap may be comprised of an area outside of the cone of image light **414** from the "on" pixels. The light trap is typically made up of materials that absorb light including coatings of black paints or other light absorbing materials to prevent light

scattering from the dark state light degrading the image perceived by the user. In addition, the light trap may be recessed into the wall of the housing or include masks or guards to block scattered light and prevent the light trap from being viewed adjacent to the displayed image. [0100] The embodiment of FIG. 4 also includes a corrective wedge 420 to correct the effect of refraction of the image light 414 as it exits the TIR wedge 418. By including the corrective wedge 420 and providing a thin air gap 408 (e.g. 25 micron), the image light from the "on" pixels can be maintained generally in a direction along the optical axis of the field lens (i.e. the same direction as that defined by the image light 414) so it passes into the field lens and the lower optical module 204. As shown in FIG. 4, the image light 414 from the "on" pixels exits the corrective wedge 420 generally perpendicular to the surface of the corrective wedge 420 while the dark state light exits at an oblique angle. As a result, the direction of the image light 414 from the "on" pixels is largely unaffected by refraction as it exits from the surface of the corrective wedge 420. In contrast, the dark state light 410 is substantially changed in direction by refraction when the dark state light 410 exits the corrective wedge 420.

[0101] The embodiment illustrated in FIG. 4 has the similar advantages of those discussed in connection with the embodiment of FIG. 3b. The dimensions and weight of the upper module 202 depicted in FIG. 4 may be approximately 8×8 mm with a weight of less than 3 grams. A difference in overall performance between the configuration illustrated in FIG. 3b and the configuration illustrated in FIG. 4 is that the embodiment of FIG. 4 doesn't require the use of polarized light as supplied by the light source **404**. This can be an advantage in some situations as will be discussed in more detail below (e.g. increased see-through transparency of the HWC optics from the user's perspective). Polarized light may be used in connection with the embodiment depicted in FIG. 4, in embodiments. An additional advantage of the embodiment of FIG. **4** compared to the embodiment shown in FIG. 3b is that the dark state light (shown as DLP off light 410) is directed at a steeper angle away from the optical axis of the image light 414 due to the added refraction encountered when the dark state light **410** exits the corrective wedge **420**. This steeper angle of the dark state light **410** allows for the light trap to be positioned closer to the DLP **402** so that the overall size of the upper module **202** can be reduced. The light trap can also be made larger since the light trap doesn't interfere with the field lens, thereby the efficiency of the light trap can be increased and as a result, stray light can be reduced and the contrast of the image perceived by the user can be increased. FIG. 4a illustrates the embodiment described in connection with FIG. 4 with an example set of corresponding angles at the various surfaces with the reflected angles of a ray of light passing through the upper optical module **202**. In this example, the DLP mirrors are provided at 17 degrees to the surface of the DLP device. The angles of the TIR wedge are selected in correspondence to one another to provide TIR reflected illumination light at the correct angle for the DLP mirrors while allowing the image light and dark state light to pass through the thin air gap, various combinations of angles are possible to achieve this.

[0102] FIG. 5 illustrates yet another embodiment of an upper optical module **202** in accordance with the principles of the present invention. As with the embodiment shown in FIG. **4**, the embodiment shown in FIG. 5 does not require the use of polarized light. Polarized light may be used in connection with this embodiment, but it is not required. The optical module **202** depicted in FIG. **5** is similar to that presented in connection with FIG. **4**; however, the embodiment of FIG. **5** includes an off light redirection wedge **502**. As can be seen from the illustration, the off light redirection wedge **502** allows the image light **414** to continue generally along the optical axis toward the field lens and into the lower optical module **204** (as illustrated). However, the off light **504** is redirected substantially toward the side of the corrective wedge **420** where it passes into the light trap. This configuration may allow further height compactness in the HWC because the light trap (not illustrated) that is intended to absorb the off light **504** can be positioned laterally adjacent the upper optical module **202** as opposed to below it. In the embodiment depicted in FIG. **5** there is a thin air gap between the TIR wedge **418** and the corrective wedge **420** (similar to the embodiment

of FIG. **4**). There is also a thin air gap between the corrective wedge **420** and the off light redirection wedge **502**. There may be HWC mechanical configurations that warrant the positioning of a light trap for the dark state light elsewhere and the illustration depicted in FIG. **5** should be considered illustrative of the concept that the off light can be redirected to create compactness of the overall HWC. FIG. **5***a* illustrates an example of the embodiment described in connection with FIG. **5** with the addition of more details on the relative angles at the various surfaces and a light ray trace for image light and a light ray trace for dark light are shown as it passes through the upper optical module **202**. A gain, various combinations of angles are possible.

[0103] FIG. **4***b* shows an illustration of a further embodiment in which a solid transparent matched set of wedges **456** is provided with a reflective polarizer **450** at the interface between the wedges. Wherein the interface between the wedges in the wedge set **456** is provided at an angle so that illumination light **452** from the polarized light source **458** is reflected at the proper angle (e.g. 34 degrees for a 17 degree DLP mirror) for the DLP mirror "on" state so that the reflected image light **414** is provided along the optical axis of the field lens. The general geometry of the wedges in the wedge set **456** is similar to that shown in FIGS. **4** and **4***a*. A quarter wave film **454** is provided on the DLP **402** surface so that the illumination light **452** is one polarization state (e.g. S polarization state) while in passing through the quarter wave film **454**, reflecting from the DLP mirror and passing back through the quarter wave film **454**, the image light **414** is converted to the other polarization state (e.g. P polarization state). The reflective polarizer is oriented such that the illumination light **452** with its polarization state is reflected and the image light **414** with its other polarization state is transmitted. Since the dark state light from the "off" pixels **410** also passes through the quarter wave film **454** twice, it is also the other polarization state (e.g. P polarization state) so that it is transmitted by the reflective polarizer **450**.

[0104] The angles of the faces of the wedge set **450** correspond to the needed angles to provide illumination light **452** at the angle needed by the DLP mirrors when in the "on" state so that the reflected image light **414** is reflected from the DLP along the optical axis of the field lens. The wedge set **456** provides an interior interface where a reflective polarizer film can be located to redirect the illumination light **452** toward the mirrors of the DLP **402**. The wedge set also provides a matched wedge on the opposite side of the reflective polarizer **450** so that the image light **414** from the "on" pixels exits the wedge set **450** substantially perpendicular to the exit surface, while the dark state light from the "off" pixels **410** exits at an oblique angle to the exit surface. As a result, the image light **414** is substantially unrefracted upon exiting the wedge set **456**, while the dark state light from the "off" pixels **410** is substantially refracted upon exiting the wedge set **456** as shown in FIG. **4b**.

[0105] By providing a solid transparent matched wedge set, the flatness of the interface is reduced, because variations in the flatness have a negligible effect as long as they are within the cone angle of the illuminating light **452**. Which can be f #2.2 with a 26 degree cone angle. In a preferred embodiment, the reflective polarizer is bonded between the matched internal surfaces of the wedge set **456** using an optical adhesive so that Fresnel reflections at the interfaces on either side of the reflective polarizer **450** are reduced. The optical adhesive can be matched in refractive index to the material of the wedge set **456** and the pieces of the wedge set **456** can be all made from the same material such as BK 7 glass or cast acrylic. Wherein the wedge material can be selected to have low birefringence as well to reduce non-uniformities in brightness. The wedge set **456** and the quarter wave film **454** can also be bonded to the DLP **402** to further reduce Fresnel reflections at the DLP interface losses. In addition, since the image light **414** is substantially normal to the exit surface of the wedge set **456**, the flatness of the surface is not critical to maintain the wavefront of the image light **414** so that high image quality can be obtained in the displayed image without requiring very tightly toleranced flatness on the exit surface.

[0106] A yet further embodiment of the invention that is not illustrated, combines the embodiments illustrated in FIG. **4***b* and FIG. **5**. In this embodiment, the wedge set **456** is comprised of three

wedges with the general geometry of the wedges in the wedge set corresponding to that shown in FIGS. **5** and **5***a*. A reflective polarizer is bonded between the first and second wedges similar to that shown in FIG. **4***b*, however, a third wedge is provided similar to the embodiment of FIG. **5**. Wherein there is an angled thin air gap between the second and third wedges so that the dark state light is reflected by TIR toward the side of the second wedge where it is absorbed in a light trap. This embodiment, like the embodiment shown in FIG. **4***b*, uses a polarized light source as has been previously described. The difference in this embodiment is that the image light is transmitted through the reflective polarizer and is transmitted through the angled thin air gap so that it exits normal to the exit surface of the third wedge.

[0107] FIG. 5*b* illustrates an upper optical module **202** with a dark light trap **514***a*. As described in connection with FIGS. **4** and **4***a*, image light can be generated from a DLP when using a TIR and corrective lens configuration. The upper module may be mounted in a HWC housing **510** and the housing **510** may include a dark light trap **514***a*. The dark light trap **514***a* is generally positioned/constructed/formed in a position that is optically aligned with the dark light optical axis **512**. As illustrated, the dark light trap may have depth such that the trap internally reflects dark light in an attempt to further absorb the light and prevent the dark light from combining with the image light that passes through the field lens. The dark light trap may be of a shape and depth such that it absorbs the dark light. In addition, the dark light trap **514***b*, in embodiments, may be made of light absorbing materials or coated with light absorbing materials. In embodiments, the recessed light trap **514***a* may include baffles to block a view of the dark state light. This may be combined with black surfaces and textured or fibrous surfaces to help absorb the light. The baffles can be part of the light trap, associated with the housing, or field lens, etc.

[0108] FIG. **5***c* illustrates another embodiment with a light trap **514***b*. As can be seen in the illustration, the shape of the trap is configured to enhance internal reflections within the light trap **514***b* to increase the absorption of the dark light **512**. FIG. **5***d* illustrates another embodiment with a light trap **514***c*. As can be seen in the illustration, the shape of the trap **514***c* is configured to enhance internal reflections to increase the absorption of the dark light **512**.

[0109] FIG. 5*e* illustrates another embodiment of an upper optical module **202** with a dark light trap **514***d*. This embodiment of upper module **202** includes an off light reflection wedge **502**, as illustrated and described in connection with the embodiment of FIGS. **5** and **5***a*. As can be seen in FIG. **5***e*, the light trap **514***d* is positioned along the optical path of the dark light **512**. The dark light trap **514***d* may be configured as described in other embodiments herein. The embodiment of the light trap **514***d* illustrated in FIG. **5***e* includes a black area on the side wall of the wedge, wherein the side wall is located substantially away from the optical axis of the image light **414**. In addition, baffles **5252** may be added to one or more edges of the field lens **312** to block the view of the light trap **514***d* adjacent to the displayed image seen by the user.

[0110] FIG. **6** illustrates a combination of an upper optical module **202** with a lower optical module **204**. In this embodiment, the image light projected from the upper optical module **202** may or may not be polarized. The image light is reflected off a flat combiner element **602** such that it is directed towards the user's eye. Wherein, the combiner element **602** is a partial mirror that reflects image light while transmitting a substantial portion of light from the environment so the user can look through the combiner element and see the environment surrounding the HWC.

[0111] The combiner **602** may include a holographic pattern, to form a holographic mirror. If a monochrome image is desired, there may be a single wavelength reflection design for the holographic pattern on the surface of the combiner **602**. If the intention is to have multiple colors reflected from the surface of the combiner **602**, a multiple wavelength holographic mirror may be included on the combiner surface. For example, in a three-color embodiment, where red, green and blue pixels are generated in the image light, the holographic mirror may be reflective to wavelengths substantially matching the wavelengths of the red, green and blue light provided by the light source. This configuration can be used as a wavelength specific mirror where pre-

determined wavelengths of light from the image light are reflected to the user's eye. This configuration may also be made such that substantially all other wavelengths in the visible pass through the combiner element **602** so the user has a substantially clear view of the surroundings when looking through the combiner element **602**. The transparency between the user's eye and the surrounding may be approximately 80% when using a combiner that is a holographic mirror. Wherein holographic mirrors can be made using lasers to produce interference patterns in the holographic material of the combiner where the wavelengths of the lasers correspond to the wavelengths of light that are subsequently reflected by the holographic mirror. [0112] In another embodiment, the combiner element **602** may include a notch mirror comprised of a multilayer coated substrate wherein the coating is designed to substantially reflect the wavelengths of light provided by the light source and substantially transmit the remaining wavelengths in the visible spectrum. For example, in the case where red, green and blue light is provided by the light source to enable full color images to be provided to the user, the notch mirror is a tristimulus notch mirror wherein the multilayer coating is designed to reflect narrow bands of red, green and blue light that are matched to the what is provided by the light source and the remaining visible wavelengths are transmitted through the coating to enable a view of the environment through the combiner. In another example where monochrome images are provided to the user, the notch mirror is designed to reflect a single narrow band of light that is matched to the wavelength range of the light provided by the light source while transmitting the remaining visible wavelengths to enable a see-thru view of the environment. The combiner **602** with the notch mirror would operate, from the user's perspective, in a manner similar to the combiner that includes a holographic pattern on the combiner element **602**. The combiner, with the tristimulus notch mirror, would reflect the "on" pixels to the eye because of the match between the reflective wavelengths of the notch mirror and the color of the image light, and the wearer would be able to see with high clarity the surroundings. The transparency between the user's eye and the surrounding may be approximately 80% when using the tristimulus notch mirror. In addition, the image provided by the upper optical module **202** with the notch mirror combiner can provide higher contrast images than the holographic mirror combiner due to less scattering of the imaging light by the combiner. [0113] Light can escape through the combiner **602** and may produce face glow as the light is generally directed downward onto the cheek of the user. When using a holographic mirror combiner or a tristimulus notch mirror combiner, the escaping light can be trapped to avoid face glow. In embodiments, if the image light is polarized before the combiner, a linear polarizer can be laminated, or otherwise associated, to the combiner, with the transmission axis of the polarizer oriented relative to the polarized image light so that any escaping image light is absorbed by the polarizer. In embodiments, the image light would be polarized to provide S polarized light to the combiner for better reflection. As a result, the linear polarizer on the combiner would be oriented to absorb S polarized light and pass P polarized light. This provides the preferred orientation of polarized sunglasses as well.

[0114] If the image light is unpolarized, a microlouvered film such as a privacy filter can be used to absorb the escaping image light while providing the user with a see-thru view of the environment. In this case, the absorbance or transmittance of the microlouvered film is dependent on the angle of the light. Where steep angle light is absorbed and light at less of an angle is transmitted. For this reason, in an embodiment, the combiner with the microlouver film is angled at greater than 45 degrees to the optical axis of the image light (e.g. the combiner can be oriented at 50 degrees so the image light from the file lens is incident on the combiner at an oblique angle.

[0115] FIG. **7** illustrates an embodiment of a combiner element **602** at various angles when the combiner element **602** includes a holographic mirror. Normally, a mirrored surface reflects light at an angle equal to the angle that the light is incident to the mirrored surface. Typically, this necessitates that the combiner element be at 45 degrees, **602***a*, if the light is presented vertically to the combiner so the light can be reflected horizontally towards the wearer's eye. In embodiments,

the incident light can be presented at angles other than vertical to enable the mirror surface to be oriented at other than 45 degrees, but in all cases wherein a mirrored surface is employed (including the tristimulus notch mirror described previously), the incident angle equals the reflected angle. As a result, increasing the angle of the combiner **602***a* requires that the incident image light be presented to the combiner **602***a* at a different angle which positions the upper optical module **202** to the left of the combiner as shown in FIG. **7**. In contrast, a holographic mirror combiner, included in embodiments, can be made such that light is reflected at a different angle from the angle that the light is incident onto the holographic mirrored surface. This allows freedom to select the angle of the combiner element **602***b* independent of the angle of the incident image light and the angle of the light reflected into the wearer's eye. In embodiments, the angle of the combiner element **602***b* is greater than 45 degrees (shown in FIG. **7**) as this allows a more laterally compact HWC design. The increased angle of the combiner element **602***b* decreases the front to back width of the lower optical module **204** and may allow for a thinner HWC display (i.e. the furthest element from the wearer's eye can be closer to the wearer's face).

[0116] FIG. **8** illustrates another embodiment of a lower optical module **204**. In this embodiment, polarized image light provided by the upper optical module **202**, is directed into the lower optical module **204**. The image light reflects off a polarized mirror **804** and is directed to a focusing partially reflective mirror **802**, which is adapted to reflect the polarized light. An optical element such as a ¼ wave film located between the polarized mirror **804** and the partially reflective mirror **802**, is used to change the polarization state of the image light such that the light reflected by the partially reflective mirror **802** is transmitted by the polarized mirror **804** to present image light to the eye of the wearer. The user can also see through the polarized mirror **804** and the partially reflective mirror **802** to see the surrounding environment. As a result, the user perceives a combined image comprised of the displayed image light overlaid onto the see-thru view of the environment.

[0117] While many of the embodiments of the present invention have been referred to as upper and lower modules containing certain optical components, it should be understood that the image light and dark light production and management functions described in connection with the upper module may be arranged to direct light in other directions (e.g. upward, sideward, etc.). In embodiments, it may be preferred to mount the upper module **202** above the wearer's eye, in which case the image light would be directed downward. In other embodiments it may be preferred to produce light from the side of the wearer's eye, or from below the wearer's eye. In addition, the lower optical module is generally configured to deliver the image light to the wearer's eye and allow the wearer to see through the lower optical module, which may be accomplished through a variety of optical components.

[0118] FIG. **8***a* illustrates an embodiment of the present invention where the upper optical module **202** is arranged to direct image light into a TIR waveguide **810**. In this embodiment, the upper optical module **202** is positioned above the wearer's eye **812** and the light is directed horizontally into the TIR waveguide **810**. The TIR waveguide is designed to internally reflect the image light in a series of downward TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of the TIR waveguide **812** into the wearer's eye. In this embodiment, an outer shield **814** is positioned in front of the TIR waveguide **810**.

[0119] FIG. **8***b* illustrates an embodiment of the present invention where the upper optical module **202** is arranged to direct image light into a TIR waveguide **818**. In this embodiment, the upper optical module **202** is arranged on the side of the TIR waveguide **818**. For example, the upper optical module may be positioned in the arm or near the arm of the HWC when configured as a pair of head worn glasses. The TIR waveguide **818** is designed to internally reflect the image light in a series of TIR reflections until it reaches the portion in front of the wearer's eye, where the light passes out of the TIR waveguide **812** into the wearer's eye.

[0120] FIG. **8***c* illustrates yet further embodiments of the present invention where an upper optical

module **202** is directing polarized image light into an optical guide **828** where the image light passes through a polarized reflector **824**, changes polarization state upon reflection of the optical element **822** which includes a ¼ wave film for example and then is reflected by the polarized reflector **824** towards the wearer's eye, due to the change in polarization of the image light. The upper optical module **202** may be positioned to direct light to a mirror **820**, to position the upper optical module 202 laterally, in other embodiments, the upper optical module 202 may direct the image light directly towards the polarized reflector **824**. It should be understood that the present invention comprises other optical arrangements intended to direct image light into the wearer's eye. [0121] Another aspect of the present invention relates to eye imaging. In embodiments, a camera is used in connection with an upper optical module 202 such that the wearer's eye can be imaged using pixels in the "off" state on the DLP. FIG. 9 illustrates a system where the eye imaging camera **802** is mounted and angled such that the field of view of the eye imaging camera **802** is redirected toward the wearer's eye by the mirror pixels of the DLP **402** that are in the "off" state. In this way, the eye imaging camera **802** can be used to image the wearer's eye along the same optical axis as the displayed image that is presented to the wearer. Wherein, image light that is presented to the wearer's eye illuminates the wearer's eye so that the eye can be imaged by the eye imaging camera **802**. In the process, the light reflected by the eye passes back though the optical train of the lower optical module **204** and a portion of the upper optical module to where the light is reflected by the "off" pixels of the DLP **402** toward the eye imaging camera **802**.

[0122] In embodiments, the eye imaging camera may image the wearer's eye at a moment in time where there are enough "off" pixels to achieve the required eye image resolution. In another embodiment, the eye imaging camera collects eye image information from "off" pixels over time and forms a time lapsed image. In another embodiment, a modified image is presented to the user wherein enough "off" state pixels are included that the camera can obtain the desired resolution and brightness for imaging the wearer's eye and the eye image capture is synchronized with the presentation of the modified image.

[0123] The eye imaging system may be used for security systems. The HWC may not allow access to the HWC or other system if the eye is not recognized (e.g. through eye characteristics including retina or iris characteristics, etc.). The HWC may be used to provide constant security access in some embodiments. For example, the eye security confirmation may be a continuous, near-continuous, real-time, quasi real-time, periodic, etc. process so the wearer is effectively constantly being verified as known. In embodiments, the HWC may be worn and eye security tracked for access to other computer systems.

[0124] The eye imaging system may be used for control of the HWC. For example, a blink, wink, or particular eye movement may be used as a control mechanism for a software application operating on the HWC or associated device.

[0125] The eye imaging system may be used in a process that determines how or when the HWC 102 delivers digitally displayed content to the wearer. For example, the eye imaging system may determine that the user is looking in a direction and then HWC may change the resolution in an area of the display or provide some content that is associated with something in the environment that the user may be looking at. Alternatively, the eye imaging system may identify different users and change the displayed content or enabled features provided to the user. Users may be identified from a database of users' eye characteristics either located on the HWC 102 or remotely located on the network 110 or on a server 112. In addition, the HWC may identify a primary user or a group of primary users from eye characteristics wherein the primary user(s) are provided with an enhanced set of features and all other users are provided with a different set of features. Thus in this use case, the HWC 102 uses identified eye characteristics to either enable features or not and eye characteristics need only be analyzed in comparison to a relatively small database of individual eye characteristics.

[0126] FIG. **10** illustrates a light source that may be used in association with the upper optics

module **202** (e.g. polarized light source if the light from the solid state light source is polarized such as polarized light source **302** and **458**), and light source **404**. In embodiments, to provide a uniform surface of light **1008** to be directed into the upper optical module **202** and towards the DLP of the upper optical module, either directly or indirectly, the solid state light source **1002** may be projected into a backlighting optical system **1004**. The solid state light source **1002** may be one or more LEDs, laser diodes, OLEDs. In embodiments, the backlighting optical system **1004** includes an extended section with a length/distance ratio of greater than 3, wherein the light undergoes multiple reflections from the sidewalls to mix of homogenize the light as supplied by the solid state light source **1002**. The backlighting optical system **1004** can also include structures on the surface opposite (on the left side as shown in FIG. 10) to where the uniform light 1008 exits the backlight **1004** to change the direction of the light toward the DLP **302** and the reflective polarizer **310** or the DLP **402** and the TIR wedge **418**. The backlighting optical system **1004** may also include structures to collimate the uniform light **1008** to provide light to the DLP with a smaller angular distribution or narrower cone angle. Diffusers or polarizers can be used on the entrance or exit surface of the backlighting optical system. Diffusers can be used to spread or uniformize the exiting light from the backlight to improve the uniformity or increase the angular spread of the uniform light **1008**. Elliptical diffusers that diffuse the light more in some directions and less in others can be used to improve the uniformity or spread of the uniform light **1008** in directions orthogonal to the optical axis of the uniform light **1008**. Linear polarizers can be used to convert unpolarized light as supplied by the solid state light source **1002** to polarized light so the uniform light **1008** is polarized with a desired polarization state. A reflective polarizer can be used on the exit surface of the backlight **1004** to polarize the uniform light **1008** to the desired polarization state, while reflecting the other polarization state back into the backlight where it is recycled by multiple reflections within the backlight **1004** and at the solid state light source **1002**. Therefore by including a reflective polarizer at the exit surface of the backlight 1004, the efficiency of the polarized light source is improved.

[0127] FIGS. **10***a* and **10***b* show illustrations of structures in backlight optical systems **1004** that can be used to change the direction of the light provided to the entrance face **1045** by the light source and then collimates the light in a direction lateral to the optical axis of the exiting uniform light **1008**. Structure **1060** includes an angled sawtooth pattern in a transparent waveguide wherein the left edge of each sawtooth clips the steep angle rays of light thereby limiting the angle of the light being redirected. The steep surface at the right (as shown) of each sawtooth then redirects the light so that it reflects off the left angled surface of each sawtooth and is directed toward the exit surface **1040**. The sawtooth surfaces shown on the lower surface in FIGS. **10***a* and **10***b*, can be smooth and coated (e.g. with an aluminum coating or a dielectric mirror coating) to provide a high level of reflectivity without scattering. Structure 1050 includes a curved face on the left side (as shown) to focus the rays after they pass through the exit surface **1040**, thereby providing a mechanism for collimating the uniform light 1008. In a further embodiment, a diffuser can be provided between the solid state light source 1002 and the entrance face 1045 to homogenize the light provided by the solid state light source **1002**. In yet a further embodiment, a polarizer can be used between the diffuser and the entrance face **1045** of the backlight **1004** to provide a polarized light source. Because the sawtooth pattern provides smooth reflective surfaces, the polarization state of the light can be preserved from the entrance face **1045** to the exit face **1040**. In this embodiment, the light entering the backlight from the solid state light source **1002** passes through the polarizer so that it is polarized with the desired polarization state. If the polarizer is an absorptive linear polarizer, the light of the desired polarization state is transmitted while the light of the other polarization state is absorbed. If the polarizer is a reflective polarizer, the light of the desired polarization state is transmitted into the backlight 1004 while the light of the other polarization state is reflected back into the solid state light source **1002** where it can be recycled as previously described, to increase the efficiency of the polarized light source.

[0128] FIG. **11***a* illustrates a light source **1100** that may be used in association with the upper optics module **202**. In embodiments, the light source **1100** may provide light to a backlighting optical system **1004** as described above in connection with FIG. **10**. In embodiments, the light source **1100** includes a tristimulus notch filter **1102**. The tristimulus notch filter **1102** has narrow band pass filters for three wavelengths, as indicated in FIG. **11***c* in a transmission graph **1108**. The graph shown in FIG. **11***b*, as **1104** illustrates an output of three different colored LEDs. One can see that the bandwidths of emission are narrow, but they have long tails. The tristimulus notch filter **1102** can be used in connection with such LEDs to provide a light source **1100** that emits narrow filtered wavelengths of light as shown in FIG. **11***d* as the transmission graph **1110**. Wherein the clipping effects of the tristimulus notch filter **1102** can be seen to have cut the tails from the LED emission graph **1104** to provide narrower wavelength bands of light to the upper optical module **202**. The light source **1100** can be used in connection with a combiner **602** with a holographic mirror or tristimulus notch mirror to provide narrow bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected by the combiner, thereby improving efficiency and reducing escaping light that can cause faceglow.

[0129] FIG. **12***a* illustrates another light source **1200** that may be used in association with the upper optics module **202**. In embodiments, the light source **1200** may provide light to a backlighting optical system **1004** as described above in connection with FIG. **10**. In embodiments, the light source **1200** includes a quantum dot cover glass **1202**. Where the quantum dots absorb light of a shorter wavelength and emit light of a longer wavelength (FIG. 12b shows an example wherein a UV spectrum **1202** applied to a quantum dot results in the quantum dot emitting a narrow band shown as a PL spectrum **1204**) that is dependent on the material makeup and size of the quantum dot. As a result, quantum dots in the quantum dot cover glass **1202** can be tailored to provide one or more bands of narrow bandwidth light (e.g. red, green and blue emissions dependent on the different quantum dots included as illustrated in the graph shown in FIG. **12**c where three different quantum dots are used. In embodiments, the LED driver light emits UV light, deep blue or blue light. For sequential illumination of different colors, multiple light sources 1200 would be used where each light source **1200** would include a quantum dot cover glass **1202** with a quantum dot selected to emit at one of the desired colors. The light source **1100** can be used in connection with a combiner **602** with a holographic mirror or tristimulus notch mirror to provide narrow transmission bands of light that are reflected toward the wearer's eye with less waste light that does not get reflected.

[0130] Another aspect of the present invention relates to the generation of peripheral image lighting effects for a person wearing a HWC. In embodiments, a solid state lighting system (e.g. LED, OLED, etc), or other lighting system, may be included inside the optical elements of an lower optical module **204**. The solid state lighting system may be arranged such that lighting effects outside of a field of view (FOV) of the presented digital content is presented to create an immersive effect for the person wearing the HWC. To this end, the lighting effects may be presented to any portion of the HWC that is visible to the wearer. The solid state lighting system may be digitally controlled by an integrated processor on the HWC. In embodiments, the integrated processor will control the lighting effects in coordination with digital content that is presented within the FOV of the HWC. For example, a movie, picture, game, or other content, may be displayed or playing within the FOV of the HWC. The content may show a bomb blast on the right side of the FOV and at the same moment, the solid state lighting system inside of the upper module optics may flash quickly in concert with the FOV image effect. The effect may not be fast, it may be more persistent to indicate, for example, a general glow or color on one side of the user. The solid state lighting system may be color controlled, with red, green and blue LEDs, for example, such that color control can be coordinated with the digitally presented content within the field of view. [0131] FIG. **13***a* illustrates optical components of a lower optical module **204** together with an outer lens **1302**. FIG. **13***a* also shows an embodiment including effects LED's **1308***a* and **1308***b*.

FIG. **13***a* illustrates image light **1312**, as described herein elsewhere, directed into the upper optical module where it will reflect off of the combiner element **1304**, as described herein elsewhere. The combiner element **1304** in this embodiment is angled towards the wearer's eye at the top of the module and away from the wearer's eye at the bottom of the module, as also illustrated and described in connection with FIG. **8** (e.g. at a 45 degree angle). The image light **1312** provided by an upper optical module **202** (not shown in FIG. **13***a*) reflects off of the combiner element **1304** towards the collimating mirror **1310**, away from the wearer's eye, as described herein elsewhere. The image light **1312** then reflects and focuses off of the collimating mirror **1304**, passes back through the combiner element **1304**, and is directed into the wearer's eye. The wearer can also view the surrounding environment through the transparency of the combiner element **1304**, collimating mirror **1310**, and outer lens **1302** (if it is included). As described herein elsewhere, various surfaces are polarized to create the optical path for the image light and to provide transparency of the elements such that the wearer can view the surrounding environment. The wearer will generally perceive that the image light forms an image in the FOV 1305. In embodiments, the outer lens 1302 may be included. The outer lens 1302 is an outer lens that may or may not be corrective and it may be designed to conceal the lower optical module components in an effort to make the HWC appear to be in a form similar to standard glasses or sunglasses.

[0132] In the embodiment illustrated in FIG. 13a, the effects LEDs 1308a and 1308b are positioned at the sides of the combiner element 1304 and the outer lens 1302 and/or the collimating mirror 1310. In embodiments, the effects LEDs 1308a are positioned within the confines defined by the combiner element 1304 and the outer lens 1302 and/or the collimating mirror. The effects LEDs 1308a and 1308b are also positioned outside of the FOV 1305. In this arrangement, the effects LEDs 1308a and 1308b can provide lighting effects within the lower optical module outside of the FOV 1305. In embodiments the light emitted from the effects LEDs 1308a and 1308b may be polarized such that the light passes through the combiner element 1304 toward the wearer's eye and does not pass through the outer lens 1302 and/or the collimating mirror 1310. This arrangement provides peripheral lighting effects to the wearer in a more private setting by not transmitting the lighting effects through the front of the HWC into the surrounding environment. However, in other embodiments, the effects LEDs 1308a and 1308b may be unpolarized so the lighting effects provided are made to be purposefully viewable by others in the environment for entertainment such as giving the effect of the wearer's eye glowing in correspondence to the image content being viewed by the wearer.

[0133] FIG. **13***b* illustrates a cross section of the embodiment described in connection with FIG. **13***a*. As illustrated, the effects LED **1308***a* is located in the upper-front area inside of the optical components of the lower optical module. It should be understood that the effects LED **1308***a* position in the described embodiments is only illustrative and alternate placements are encompassed by the present invention. Additionally, in embodiments, there may be one or more effects LEDs **1308***a* in each of the two sides of HWC to provide peripheral lighting effects near one or both eyes of the wearer.

[0134] FIG. **13***c* illustrates an embodiment where the combiner element **1304** is angled away from the eye at the top and towards the eye at the bottom (e.g. in accordance with the holographic or notch filter embodiments described herein). In this embodiment, the effects LED **1308***a* is located on the outer lens **1302** side of the combiner element **1304** to provide a concealed appearance of the lighting effects. As with other embodiments, the effects LED **1308***a* of FIG. **13***c* may include a polarizer such that the emitted light can pass through a polarized element associated with the combiner element **1304** and be blocked by a polarized element associated with the outer lens **1302**. [0135] Another aspect of the present invention relates to the mitigation of light escaping from the space between the wearer's face and the HWC itself. Another aspect of the present invention relates to maintaining a controlled lighting environment in proximity to the wearer's eyes. In embodiments, both the maintenance of the lighting environment and the mitigation of light escape

are accomplished by including a removable and replaceable flexible shield for the HWC. Wherein the removable and replaceable shield can be provided for one eye or both eyes in correspondence to the use of the displays for each eye. For example, in a night vision application, the display to only one eye could be used for night vision while the display to the other eye is turned off to provide good see-thru when moving between areas where visible light is available and dark areas where night vision enhancement is needed.

[0136] FIG. **14***a* illustrates a removable and replaceable flexible eye cover **1402** with an opening **1408** that can be attached and removed quickly from the HWC **102** through the use of magnets **1404**. Other attachment methods may be used, but for illustration of the present invention we will focus on a magnet implementation. In embodiments, magnets may be included in the eye cover **1402** and magnets of an opposite polarity may be included (e.g. embedded) in the frame of the HWC **102**. The magnets of the two elements would attract quite strongly with the opposite polarity configuration. In another embodiment, one of the elements may have a magnet and the other side may have metal for the attraction. In embodiments, the eye cover **1402** is a flexible elastomeric shield. In embodiments, the eye cover 1402 may be an elastomeric bellows design to accommodate flexibility and more closely align with the wearer's face. FIG. 14b illustrates a removable and replaceable flexible eye cover **1402** that is adapted as a single eye cover. In embodiments, a single eye cover may be used for each side of the HWC to cover both eyes of the wearer. In embodiments, the single eye cover may be used in connection with a HWC that includes only one computer display for one eye. These configurations prevent light that is generated and directed generally towards the wearer's face by covering the space between the wearer's face and the HWC. The opening **1408** allows the wearer to look through the opening **1408** to view the displayed content and the surrounding environment through the front of the HWC. The image light in the lower optical module **204** can be prevented from emitting from the front of the HWC through internal optics polarization schemes, as described herein, for example.

[0137] FIG. **14***c* illustrates another embodiment of a light suppression system. In this embodiment, the eye cover **1410** may be similar to the eye cover **1402**, but eye cover **1410** includes a front light shield **1412**. The front light shield **1412** may be opaque to prevent light from escaping the front lens of the HWC. In other embodiments, the front light shield **1412** is polarized to prevent light from escaping the front lens. In a polarized arrangement, in embodiments, the internal optical elements of the HWC (e.g. of the lower optical module **204**) may polarize light transmitted towards the front of the HWC and the front light shield **1412** may be polarized to prevent the light from transmitting through the front light shield **1412**.

[0138] In embodiments, an opaque front light shield **1412** may be included and the digital content may include images of the surrounding environment such that the wearer can visualize the surrounding environment. One eye may be presented with night vision environmental imagery and this eye's surrounding environment optical path may be covered using an opaque front light shield **1412**. In other embodiments, this arrangement may be associated with both eyes.

[0139] Another aspect of the present invention relates to automatically configuring the lighting system(s) used in the HWC 102. In embodiments, the display lighting and/or effects lighting, as described herein, may be controlled in a manner suitable for when an eye cover 1402 is attached or removed from the HWC 102. For example, at night, when the light in the environment is low, the lighting system(s) in the HWC may go into a low light mode to further control any amounts of stray light escaping from the HWC and the areas around the HWC. Covert operations at night, while using night vision or standard vision, may require a solution which prevents as much escaping light as possible so a user may clip on the eye cover(s) 1402 and then the HWC may go into a low light mode. The low light mode may, in some embodiments, only go into a low light mode when the eye cover 1402 is attached if the HWC identifies that the environment is in low light conditions (e.g. through environment light level sensor detection). In embodiments, the low light level may be determined to be at an intermediate point between full and low light dependent

on environmental conditions.

[0140] Another aspect of the present invention relates to automatically controlling the type of content displayed in the HWC when eye covers **1402** are attached or removed from the HWC. In embodiments, when the eye cover(s) **1402** is attached to the HWC, the displayed content may be restricted in amount or in color amounts. For example, the display(s) may go into a simple content delivery mode to restrict the amount of information displayed. This may be done to reduce the amount of light produced by the display(s). In an embodiment, the display(s) may change from color displays to monochrome displays to reduce the amount of light produced. In an embodiment, the monochrome lighting may be red to limit the impact on the wearer's eyes to maintain an ability to see better in the dark.

[0141] Another aspect of the present invention relates to a system adapted to quickly convert from a see-through system to a non-see-through or very low transmission see-through system for a more immersive user experience. The conversion system may include replaceable lenses, an eye cover, and optics adapted to provide user experiences in both modes. The lenses, for example, may be 'blacked-out' to provide an experience where all of the user's attention is dedicated to the digital content and then the lenses may be switched out for high see-through lenses so the digital content is augmenting the user's view of the surrounding environment. Another aspect of the invention relates to low transmission lenses that permit the user to see through the lenses but remain dark enough to maintain most of the user's attention on the digital content. The slight see-through can provide the user with a visual connection to the surrounding environment and this can reduce or eliminate nausea and other problems associated with total removal of the surrounding view when viewing digital content.

[0142] FIG. **14***d* illustrates a head-worn computer system **102** with a see-through digital content display **204** adapted to include a removable outer lens **1414** and a removable eye cover **1402**. The eye cover **1402** may be attached to the head-worn computer **102** with magnets **1404** or other attachment systems (e.g. mechanical attachments, a snug friction fit between the arms of the headworn computer **102**, etc.). The eye cover **1402** may be attached when the user wants to cut stray light from escaping the confines of the head-worn computer, create a more immersive experience by removing the otherwise viewable peripheral view of the surrounding environment, etc. The removable outer lens may be of several varieties for various experiences. It may have no transmission or a very low transmission to create a dark background for the digital content, creating an immersive experience for the digital content. It may have a high transmission so the user can see through the see-through display and the lens to view the surrounding environment, creating a system for a heads-up display, augmented reality display, assisted reality display, etc. The lens **1414** may be dark in a middle portion to provide a dark background for the digital content (i.e. dark backdrop behind the see-through field of view from the user's perspective) and a higher transmission area elsewhere. The lenses **1414** may have a transmission in the range of 2 to 5%, 5 to 10%, 10 to 20% for the immersion effect and above 10% or 20% for the augmented reality effect, for example. The lenses **1414** may also have an adjustable transmission to facilitate the change in system effect. For example, the lenses **1414** may be electronically adjustable tint lenses (e.g. liquid crystal or have crossed polarizers with an adjustment for the level of cross).

[0143] In embodiments, the eye cover may have areas of transparency or partial transparency to provide some visual connection with the user's surrounding environment. This may also reduce or eliminate nausea or other feelings associated with the complete removal of the view of the surrounding environment.

[0144] FIG. **14***e* illustrates a head-worn computer **102** assembled with an eye cover **1402** without lenses in place. The lenses, in embodiments, may be held in place with magnets **1418** for ease of removal and replacement. In embodiments, the lenses may be held in place with other systems, such as mechanical systems.

[0145] Another aspect of the present invention relates to an effects system that generates effects

outside of the field of view in the see-through display of the head-worn computer. The effects may be, for example, lighting effects, sound effects, tactile effects (e.g. through vibration), air movement effects, etc. In embodiments, the effect generation system is mounted on the eye cover **1402**. For example, a lighting system (e.g. LED(s), OLEDs, etc.) may be mounted on an inside surface **1420**, or exposed through the inside surface **1420**, as illustrated in FIG. **14***f*, such that they can create a lighting effect (e.g. a bright light, colored light, subtle color effect) in coordination with content being displayed in the field of view of the see-through display. The content may be a movie or a game, for example, and an explosion may happen on the right side of the content, as scripted, and matching the content, a bright flash may be generated by the effects lighting system to create a stronger effect. As another example, the effects system may include a vibratory system mounted near the sides or temples, or otherwise, and when the same explosion occurs, the vibratory system may generate a vibration on the right side to increase the user experience indicating that the explosion had a real sound wave creating the vibration. As yet a further example, the effects system may have an air system where the effect is a puff of air blown onto the user's face. This may create a feeling of closeness with some fast moving object in the content. The effects system may also have speakers directed towards the user's ears or an attachment for ear buds, etc.

[0146] In embodiments, the effects generated by the effects system may be scripted by an author to coordinate with the content. In embodiments, sensors may be placed inside of the eye cover to monitor content effects (e.g. a light sensor to measure strong lighting effects or peripheral lighting effects) that would than cause an effect(s) to be generated.

[0147] The effects system in the eye cover may be powered by an internal battery and the battery, in embodiments, may also provide additional power to the head-worn computer **102** as a back-up system. In embodiments, the effects system is powered by the batteries in the head-worn computer. Power may be delivered through the attachment system (e.g. magnets, mechanical system) or a dedicated power system.

[0148] The effects system may receive data and/or commands from the head-worn computer through a data connection that is wired or wireless. The data may come through the attachment system, a separate line, or through Bluetooth or other short range communication protocol, for example.

[0149] In embodiments, the eye cover is made of reticulated foam, which is very light and can contour to the user's face. The reticulated foam also allows air to circulate because of the opencelled nature of the material, which can reduce user fatigue and increase user comfort. The eye cover may be made of other materials, soft, stiff, pliable, etc. and may have another material on the periphery that contacts the face for comfort. In embodiments, the eye cover may include a fan to exchange air between an external environment and an internal space, where the internal space is defined in part by the face of the user. The fan may operate very slowly and at low power to exchange the air to keep the face of the user cool. In embodiments the fan may have a variable speed controller and/or a temperature sensor may be positioned to measure temperature in the internal space to control the temperature in the internal space to a specified range, temperature, etc. The internal space is generally characterized by the space confined space in front of the user's eyes and upper cheeks where the eye cover encloses the area.

[0150] Another aspect of the present invention relates to flexibly mounting an audio headset on the head-worn computer **102** and/or the eye cover **1402**. In embodiments, the audio headset is mounted with a relatively rigid system that has flexible joint(s) (e.g. a rotational joint at the connection with the eye cover, a rotational joint in the middle of a rigid arm, etc.) and extension(s) (e.g. a telescopic arm) to provide the user with adjustability to allow for a comfortable fit over, in or around the user's ear. In embodiments, the audio headset is mounted with a flexible system that is more flexible throughout, such as with a wire-based connection.

[0151] FIG. **14***g* illustrates a head-worn computer **102** with removable lenses **1414** along with a mounted eye cover **1402**. The head-worn computer, in embodiments, includes a see-through

display (as disclosed herein). The eye cover **1402** also includes a mounted audio headset **1422**. The mounted audio headset **1422** in this embodiment is mounted to the eye cover **1402** and has audio wire connections (not shown). In embodiments, the audio wires' connections may connect to an internal wireless communication system (e.g. Bluetooth, NFC, WiFi) to make connection to the processor in the head-worn computer. In embodiments, the audio wires may connect to a magnetic connector, mechanical connector or the like to make the connection.

[0152] FIG. **14***h* illustrates an unmounted eye cover **1402** with a mounted audio headset **1422**. As illustrated, the mechanical design of the eye cover is adapted to fit onto the head-worn computer to provide visual isolation or partial isolation and the audio headset.

[0153] In embodiments, the eye cover **1402** may be adapted to be removably mounted on a headworn computer **102** with a see-through computer display. An audio headset **1422** with an adjustable mount may be connected to the eye cover, wherein the adjustable mount may provide extension and rotation to provide a user of the head-worn computer with a mechanism to align the audio headset with an ear of the user. In embodiments, the audio headset includes an audio wire connected to a connector on the eye cover and the eye cover connector may be adapted to removably mate with a connector on the head-worn computer. In embodiments, the audio headset may be adapted to receive audio signals from the head-worn computer through a wireless connection (e.g. Bluetooth, WiFi). As described elsewhere herein, the head-worn computer may have a removable and replaceable front lens. The eye cover may include a battery to power systems internal to the eye cover. The eye cover may have a battery to power systems internal to the head-worn computer.

[0154] In embodiments, the eye cover may include a fan adapted to exchange air between an internal space, defined in part by the user's face, and an external environment to cool the air in the internal space and the user's face. In embodiments, the audio headset may include a vibratory system (e.g. a vibration motor, piezo motor, etc. in the armature and/or in the section over the ear) adapted to provide the user with a haptic feedback coordinated with digital content presented in the see-through computer display. In embodiments, the head-worn computer includes a vibratory system adapted to provide the user with a haptic feedback coordinated with digital content presented in the see-through computer display.

[0155] In embodiments, the eye cover **1402** is adapted to be removably mounted on a head-worn computer with a see-through computer display. The eye cover may also include a flexible audio headset mounted to the eye cover, wherein the flexibility provides the user of the head-worn computer with a mechanism to align the audio headset with an ear of the user. In embodiments, the flexible audio headset is mounted to the eye cover with a magnetic connection. In embodiments, the flexible audio headset may be mounted to the eye cover with a mechanical connection. [0156] In embodiments, the audio head set may be spring or otherwise loaded such that the head set presses inward towards the user's ears for a more secure fit.

[0157] Another aspect of the present invention involves a head-worn computer with stereo scene cameras. In embodiments, two or more cameras and/or sensors are mounted behind the outer lens(es) of the head-worn computer. In embodiments, the lens(es) is tinted to conceal the cameras. In embodiments, the lens(es) has a more transparent area in front of the camera(s) to allow for high transparency scene image capture.

[0158] FIG. **14***i* illustrates a head-worn computer **102** with see-through computer displays, where two cameras **1424***a* and **1424***b* are mounted on a frame front surface **1428** such that they are concealed by lenses (not shown in FIG. **14***i*). The front surface **1428** further conceals the image engine, or upper optics. The see-through displays, in this illustration, are mounted below the frame front surface **1428**. The user's view is through the portion of the optics that is mounted below the front surface **1428**.

[0159] In embodiments, a head-worn computer, comprising an optical system with at least two portions, a first optical portion that generates an image and a second optical portion that provides

the image to a user's eye and through which the user views a surrounding environment; wherein the first portion is substantially concealed from view by a frame above the user's eye; the frame having a front surface concealing a portion of the first optical portion, the front surface further positioned to be at least partially concealed from view by a removable lens; and a scene camera positioned to view the surrounding environment through the frame front surface. In embodiments, the head-worn computer may have a removable lens, when mounted on the head-worn computer, that conceals the scene camera. In embodiments, the head-worn computer may further comprise a second scene camera, wherein the scene camera and the second scene camera are mounted with the scene camera over a first see-through display and the second scene camera over a second see-through display. [0160] Another aspect of the present invention relates to concealing a speaker system within a frame of a head-worn computer. Such a system can create a head-worn computer that provides audio to the user without requiring the user to attach or manipulate ear buds or other speaker systems into or onto the ear. The head-worn computer may have an optional jack, magnetic connector or the like for the attachment of a separate speaker system that can be put into, onto or otherwise proximate the user's ear. In embodiments, the internal speaker system is arranged to output audio proximate the ear once the head-worn computer is mounted on the user's head. [0161] FIG. **14**J illustrates a head-worn computer that includes an internal speaker system **1438**. The internal speaker **1438**, in embodiments, is mounted internal to an arm of the head-worn computer. The arm may be described as having a temple portion **1432** and ear-horn **1434**, where the arm is attached to a front frame **1430**. In embodiments, the internal speaker system **1438** is positioned in the temple portion **1432** proximate the user's ear **1440** (e.g. in front of the user's ear with the output from the internal audio system pointing at the ear or above the ear with the output from the internal audio system pointing at the ear).

[0162] FIG. 14J illustrates components of an example internal speaker system 1438. In this embodiment, the internal speaker system is positioned within the temple portion 1432. The components of the internal speaker system, in embodiments, includes a speaker 1448 that generates the audio with several cavities to provide enhanced sound for the user. A back cavity 1444 is positioned behind the speaker 1448 and an extended back cavity 1444 is positioned in air communication with the back cavity 1444. The extended back cavity 1442 is vented out of the temple portion 1432 to outside atmosphere to provide the speaker with a back vent with back cavities. In embodiments, there may only be a single back cavity or two or more back cavities. The internal speaker system 1438 may also include a front cavity 1450 in front of the speaker 1448. The front cavity 1450 may have a vent to outside atmosphere to provide the speaker with an outlet for the audio provided to the user's ear. The front cavity may be a single cavity, or multiple cavity configuration.

[0163] While the embodiment in FIG. 14J illustrates particular geometries with respect to the speaker 1448, cavities, and vents, it should be understood that the inventors appreciate that the various elements of the internal speaker system 1438 may be otherwise configured. For example, the configuration of the embodiment illustrated in FIG. 14J is determined to some extent by the fact that there is a battery compartment 1454 in the temple portion 1432. Without a battery, with a smaller battery, larger battery, etc., the configuration of the speaker 1448, cavities and vents may be differently configured. In embodiments, the temple portion 1432 is tubular in design, which may include a round battery, and the cavities may be elongated to traverse the length of the tubular design.

[0164] FIG. **14**K illustrates a head-worn computer with internal speaker systems **1438** mounted in a front frame **1430**. In this configuration the sound emanating from the internal speaker systems **1438** is projected rearward **1458** towards the user's ears.

[0165] Another aspect of the present invention relates to electrical systems for making connections to removable electrochromic lenses. Electrochromic lenses can be quite useful on a head-worn computer with a see-through computer display. The electrochromic layer has the ability to switch

from a relatively clear mode to a tinted or dark mode, which can help a user see through the lens easily or darken the background for the digital content presented in the computer display. The inventors have appreciated that, while electrochromic lenses are good in certain circumstances they may not be ideal for all scenarios. A head-worn computer with removable and replaceable lenses (e.g. as described herein elsewhere) provides a flexible platform that the user can customize. In embodiments, the head-worn computer has removable electrochromic lenses with electrical connections adapted to make solid electrical contact when the lens is mounted onto the head-worn computer.

[0166] In embodiments, the electrochromic layer of a lens is a film or other material coating one side of the lens. The electrochromic layer includes multiple surfaces, two of which are electrically conductive and meant to generate the necessary charge to change the state of the electrochromic layer. In embodiments, electrodes are provided in the head-worn computer that mate with the electrically conductive layers to provide variable power. The power may be controlled between two states (e.g. on and off), multiple states (e.g. multiple power levels, pulse width modulated power levels), continuous control, discrete control, etc. The power delivered to the electrochromic layer may be controlled by a processor in the head-worn computer. In embodiments, the power is user controlled, automatically controlled based on external conditions (e.g. bright environment, dark environment), automatically controlled based on application settings, etc.

[0167] FIG. 14L illustrates a head-worn computer 102 with removable electrochromic lenses 1461. In this embodiment, the removable electrochromic lens is mechanically held in place with lens magnets 1418 (e.g. as described herein elsewhere). The head-worn computer further includes electrochromic connections 1460. The two electrochromic connections 1460 are positioned such

electrochromic connections **1460**. The two electrochromic connections **1460***a* are positioned such that they will make contact with two separate electrically conductive layers within the electrochromatic layer that is on the inside of the lens **1461**. In embodiments, the electrochromic connections **1460** may be magnetic and the two pairs **1460***a* and **1460***b* may be positioned to attract one another such that the electrically conductive layers are squeezed between the magnetic elements to ensure good electrical contact with the connections **1460***a*, which provide the power to the electrochromic layer for the tint control thereof. While this embodiment illustrates the removable lens **1461** as being held in place with lens magnets **1418**, the inventors appreciate that the lens may be held in place with mechanical systems (e.g. tabs, notches, etc.) or other systems. Further, embodiments may use a dual purpose lens attachment and power systems. For example, the head-worn computer **102** may have a pair of connectors that provide mechanical strength to hold the lens in place and a power connection to provide power to the electrochromic lens. In embodiments, the electrochromic layer is on the outside of the lens **1461** and the electrochromic connections **1460** mate to create an electrical connection between them. The electrochromic connections **1460***b* may then be in electrical contact with the electrochromic layer to provide the requisite power.

[0168] FIG. **14***m* illustrates two embodiments of electrochromic lens connections. Each embodiment is illustrating the lens and head-worn computer portion in a cross section to provide description of how the connectors may operate. Lens **1414***a* includes an electrochromatic layer **1462**, lens magnet **1418***b* and an electrochromic connector magnet **1460***b*. The portion of the head-worn computer **102** shown illustrates a lens magnet **1418***a*, electrochromic connector magnet **1460***a* to provide power to the electrochromic layer. As can be seen, the lens magnets **1418***a* and **1418***b* are positioned opposite one another to attract one another to hold the lens in place. Similarly, electrochromic connector magnets **1460***a* and **1460***b* are positioned opposite one another such that they attract and squeeze the powered connector, electrochromic connector magnet **1460***a*, against an electrically conductive layer of the electrochromic layer **1462**. The electrochromic layer **1462** is arranged such that the appropriate electrically conductive layer is exposed for the connection to the powered connector **1460***a*. In another embodiment, the head-worn computer **102***b* has an

electrochromic connector pressure pin (e.g. a pogo pin with a spring loaded tip to apply pressure on the electrochromic layer as it gets compressed to make good electrical contact). In this embodiment, the lens is mounted and the pin provides the power **1468** to the appropriate electrically conductive layer of the electrochromic layer.

[0169] Referring to FIG. **15**, we now turn to describe a particular external user interface **104**, referred to generally as a pen **1500**. The pen **1500** is a specially designed external user interface **104** and can operate as a user interface, such as to many different styles of HWC **102**. The pen **1500** generally follows the form of a conventional pen, which is a familiar user handled device and creates an intuitive physical interface for many of the operations to be carried out in the HWC system **100**. The pen **1500** may be one of several user interfaces **104** used in connection with controlling operations within the HWC system **100**. For example, the HWC **102** may watch for and interpret hand gestures 116 as control signals, where the pen 1500 may also be used as a user interface with the same HWC **102**. Similarly, a remote keyboard may be used as an external user interface **104** in concert with the pen **1500**. The combination of user interfaces or the use of just one control system generally depends on the operation(s) being executed in the HWC's system **100**. [0170] While the pen **1500** may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as an external user interface **104**. FIG. **15** illustrates technologies comprised in the pen **1500**. As can be seen, the pen **1500** may include a camera **1508**, which is arranged to view through lens **1502**. The camera may then be focused, such as through lens **1502**, to image a surface upon which a user is writing or making other movements to interact with the HWC **102**. There are situations where the pen **1500** will also have an ink, graphite, or other system such that what is being written can be seen on the writing surface. There are other situations where the pen **1500** does not have such a physical writing system so there is no deposit on the writing surface, where the pen would only be communicating data or commands to the HWC **102**. The lens configuration is described in greater detail herein. The function of the camera is to capture information from an unstructured writing surface such that pen strokes can be interpreted as intended by the user. To assist in the predication of the intended stroke path, the pen **1500** may include a sensor, such as an IMU **1512**. Of course, the IMU could be included in the pen 1500 in its separate parts (e.g. gyro, accelerometer, etc.) or an IMU could be included as a single unit. In this instance, the IMU **1512** is used to measure and predict the motion of the pen **1500**. In turn, the integrated microprocessor **1510** would take the IMU information and camera information as inputs and process the information to form a prediction of the pen tip movement. [0171] The pen **1500** may also include a pressure monitoring system **1504**, such as to measure the pressure exerted on the lens **1502**. As will be described in greater detail herein, the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like. In embodiments, the pressure sensor may be constructed using any force or pressure measurement sensor located behind the lens 1502, including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like.

[0172] The pen **1500** may also include a communications module **1518**, such as for bi-directional communication with the HWC **102**. In embodiments, the communications module **1518** may be a short distance communication module (e.g. Bluetooth). The communications module **1518** may be security matched to the HWC **102**. The communications module **1518** may be arranged to communicate data and commands to and from the microprocessor **1510** of the pen **1500**. The microprocessor **1510** may be programmed to interpret data generated from the camera **1508**, IMU **1512**, and pressure sensor **1504**, and the like, and then pass a command onto the HWC **102** through the communications module **1518**, for example. In another embodiment, the data collected from any of the input sources (e.g. camera **1508**, IMU **1512**, pressure sensor **1504**) by the microprocessor may be communicated by the communication module **1518** to the HWC **102**, and the HWC **102** may perform data processing and prediction of the user's intention when using the

pen **1500**. In yet another embodiment, the data may be further passed on through a network **110** to a remote device **112**, such as a server, for the data processing and prediction. The commands may then be communicated back to the HWC **102** for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remote external device **112**, control a local external device **108**), and the like. The pen may also include memory **1514** for long or short term uses.

[0173] The pen **1500** may also include a number of physical user interfaces, such as quick launch buttons **1522**, a touch sensor **1520**, and the like. The quick launch buttons **1522** may be adapted to provide the user with a fast way of jumping to a software application in the HWC system **100**. For example, the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program a quick launch button **1522** to command the HWC **102** to launch an application. The pen **1500** may be provided with several quick launch buttons **1522**, which may be user programmable or factory programmable. The quick launch button **1522** may be programmed to perform an operation. For example, one of the buttons may be programmed to clear the digital display of the HWC **102**. This would create a fast way for the user to clear the screens on the HWC **102** for any reason, such as for example to better view the environment. The quick launch button functionality will be discussed in further detail below. The touch sensor **1520** may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across the touch sensor **1520** to affect a page scroll.

[0174] The pen **1500** may also include a laser pointer **1524**. The laser pointer **1524** may be coordinated with the IMU **1512** to coordinate gestures and laser pointing. For example, a user may use the laser **1524** in a presentation to help with guiding the audience with the interpretation of graphics and the IMU **1512** may, either simultaneously or when the laser **1524** is off, interpret the user's gestures as commands or data input.

[0175] FIGS. **16**A-C illustrate several embodiments of lens and camera arrangements **1600** for the pen **1500**. One aspect relates to maintaining a constant distance between the camera and the writing surface to enable the writing surface to be kept in focus for better tracking of movements of the pen **1500** over the writing surface. Another aspect relates to maintaining an angled surface following the circumference of the writing tip of the pen **1500** such that the pen **1500** can be rolled or partially rolled in the user's hand to create the feel and freedom of a conventional writing instrument.

[0176] FIG. **16**A illustrates an embodiment of the writing lens end of the pen **1500**. The configuration includes a ball lens **1604**, a camera or image capture surface **1602**, and a domed cover lens **1608**. In this arrangement, the camera views the writing surface through the ball lens **1604** and dome cover lens **1608**. The ball lens **1604** causes the camera to focus such that the camera views the writing surface when the pen **1500** is held in the hand in a natural writing position, such as with the pen **1500** in contact with a writing surface. In embodiments, the ball lens **1604** should be separated from the writing surface to obtain the highest resolution of the writing surface at the camera **1602**. In embodiments, the ball lens **1604** is separated by approximately 1 to 3 mm. In this configuration, the domed cover lens **1608** provides a surface that can keep the ball lens **1604** separated from the writing surface at a constant distance, such as substantially independent of the angle used to write on the writing surface. For instance, in embodiments the field of view of the camera in this arrangement would be approximately 60 degrees. [0177] The domed cover lens, or other lens **1608** used to physically interact with the writing surface, will be transparent or transmissive within the active bandwidth of the camera **1602**. In embodiments, the domed cover lens **1608** may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable. The pen **1500** can omit the domed cover lens **1608** and the ball lens **1604** can be in direct contact with the surface.

[0178] FIG. **16**B illustrates another structure where the construction is somewhat similar to that described in connection with FIG. **16**A; however this embodiment does not use a dome cover lens **1608**, but instead uses a spacer **1610** to maintain a predictable distance between the ball lens **1604** and the writing surface, wherein the spacer may be spherical, cylindrical, tubular or other shape that provides spacing while allowing for an image to be obtained by the camera **1602** through the lens **1604**. In a preferred embodiment, the spacer **1610** is transparent. In addition, while the spacer **1610** is shown as spherical, other shapes such as an oval, doughnut shape, half sphere, cone, cylinder or other form may be used.

[0179] FIG. 16C illustrates yet another embodiment, where the structure includes a post 1614, such as running through the center of the lensed end of the pen 1500. The post 1614 may be an ink deposition system (e.g. ink cartridge), graphite deposition system (e.g. graphite holder), or a dummy post whose purpose is mainly only that of alignment. The selection of the post type is dependent on the pen's use. For instance, in the event the user wants to use the pen 1500 as a conventional ink depositing pen as well as a fully functional external user interface 104, the ink system post would be the best selection. If there is no need for the 'writing' to be visible on the writing surface, the selection would be the dummy post. The embodiment of FIG. 16C includes camera(s) 1602 and an associated lens 1612, where the camera 1602 and lens 1612 are positioned to capture the writing surface without substantial interference from the post 1614. In embodiments, the pen 1500 may include multiple cameras 1602 and lenses 1612 such that more or all of the circumference of the tip 1614 can be used as an input system. In an embodiment, the pen 1500 includes a contoured grip that keeps the pen aligned in the user's hand so that the camera 1602 and lens 1612 remains pointed at the surface.

[0180] Another aspect of the pen **1500** relates to sensing the force applied by the user to the writing surface with the pen **1500**. The force measurement may be used in a number of ways. For example, the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent. The user may want the force interpreted as a 'click' in the selection of an object, for instance. The user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds the pen **1500** in a certain position or holds a certain portion of the pen 1500 (e.g. a button or touch pad) While clicking to affect a certain operation (e.g. a 'right click'). In embodiments, the force measurement may be used to track force and force trends. The force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like. For example, when the force measurement indicates a fairly constant force that generally falls within a range of related threshold values, the microprocessor **1510** may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like. In the event that the force trend appears to have gone outside of a set of threshold values intentionally, the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like. Once the microprocessor has made a determination of the user's intent, a change in the current writing style, writing tip type, line weight, brush type, and the like may be executed. In embodiments, the change may be noted to the user (e.g. in a display of the HWC **102**), and the user may be presented with an opportunity to accept the change. [0181] FIG. **17**A illustrates an embodiment of a force sensing surface tip **1700** of a pen **1500**. The force sensing surface tip **1700** comprises a surface connection tip **1702** (e.g. a lens as described herein elsewhere) in connection with a force or pressure monitoring system **1504**. As a user uses the pen **1500** to write on a surface or simulate writing on a surface the force monitoring system **1504** measures the force or pressure the user applies to the writing surface and the force monitoring

system communicates data to the microprocessor **1510** for processing. In this configuration, the microprocessor **1510** receives force data from the force monitoring system **1504** and processes the data to make predictions of the user's intent in applying the particular force that is currently being

applied. In embodiments, the processing may be provided at a location other than on the pen (e.g. at a server in the HWC system 100, on the HWC 102). For clarity, when reference is made herein to processing information on the microprocessor 1510, the processing of information contemplates processing the information at a location other than on the pen. The microprocessor 1510 may be programmed with force threshold(s), force signature(s), force signature library and/or other characteristics intended to guide an inference program in determining the user's intentions based on the measured force or pressure. The microprocessor 1510 may be further programmed to make inferences from the force measurements as to whether the user has attempted to initiate a discrete action (e.g. a user interface selection 'click') or is performing a constant action (e.g. writing within a particular writing style). The inferencing process is important as it causes the pen 1500 to act as an intuitive external user interface 104.

[0182] FIG. 17B illustrates a force 1708 versus time 1710 trend chart with a single threshold 1718. The threshold 1718 may be set at a level that indicates a discrete force exertion indicative of a user's desire to cause an action (e.g. select an object in a GUI). Event 1712, for example, may be interpreted as a click or selection command because the force quickly increased from below the threshold 1718 to above the threshold 1718. The event 1714 may be interpreted as a double click because the force quickly increased above the threshold 1718, decreased below the threshold 1718 and then essentially repeated quickly. The user may also cause the force to go above the threshold 1718 and hold for a period indicating that the user is intending to select an object in the GUI (e.g. a GUI presented in the display of the HWC 102) and 'hold' for a further operation (e.g. moving the object).

[0183] While a threshold value may be used to assist in the interpretation of the user's intention, a signature force event trend may also be used. The threshold and signature may be used in combination or either method may be used alone. For example, a single-click signature may be represented by a certain force trend signature or set of signatures. The single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example. Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc. The microprocessor **1510** may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI. [0184] FIG. **17**C illustrates a force **1708** versus time **1710** trend chart with multiple thresholds **1718**. By way of example, the force trend is plotted on the chart with several pen force or pressure events. As noted, there are both presumably intentional events **1720** and presumably nonintentional events **1722**. The two thresholds **1718** of FIG. **4**C create three zones of force: a lower, middle and higher range. The beginning of the trend indicates that the user is placing a lower zone amount of force. This may mean that the user is writing with a given line weight and does not intend to change the weight, the user is writing. Then the trend shows a significant increase 1720 in force into the middle force range. This force change appears, from the trend to have been sudden and thereafter it is sustained. The microprocessor **1510** may interpret this as an intentional change and as a result change the operation in accordance with preset rules (e.g. change line width, increase line weight, etc.). The trend then continues with a second apparently intentional event **1720** into the higher-force range. During the performance in the higher-force range, the force dips below the upper threshold **1718**. This may indicate an unintentional force change and the microprocessor may detect the change in range however not affect a change in the operations being coordinated by the pen **1500**. As indicated above, the trend analysis may be done with thresholds and/or signatures.

[0185] Generally, in the present disclosure, instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.

[0186] Another aspect of the pen **1500** relates to selecting an operating mode for the pen **1500**

dependent on contextual information and/or selection interface(s). The pen 1500 may have several operating modes. For instance, the pen 1500 may have a writing mode where the user interface(s) of the pen 1500 (e.g. the writing surface end, quick launch buttons 1522, touch sensor 1520, motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, the pen 1500 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. the HWC 102, external local device, remote device 112, and the like). The pen 1500, by way of another example, may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with the laser pointer 1524 while using the button(s) 1522 and/or gestures to control the presentation or applications relating to the presentation). The pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control. The pen 1500 may have a number of other modes and an aspect of the present invention relates to selecting such modes.

[0187] FIG. 18A illustrates an automatic user interface(s) mode selection based on contextual information. The microprocessor 1510 may be programmed with IMU thresholds 1814 and 1812. The thresholds 1814 and 1812 may be used as indications of upper and lower bounds of an angle 1804 and 1802 of the pen 1500 for certain expected positions during certain predicted modes. When the microprocessor 1510 determines that the pen 1500 is being held or otherwise positioned within angles 1802 corresponding to writing thresholds 1814, for example, the microprocessor 1510 may then institute a writing mode for the pen's user interfaces. Similarly, if the microprocessor 1510 determines (e.g. through the IMU 1512) that the pen is being held at an angle 1804 that falls between the predetermined wand thresholds 1812, the microprocessor may institute a wand mode for the pen's user interface. Both of these examples may be referred to as context based user interface mode selection as the mode selection is based on contextual information (e.g. position) collected automatically and then used through an automatic evaluation process to automatically select the pen's user interface(s) mode.

[0188] As with other examples presented herein, the microprocessor **1510** may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.

[0189] FIG. **18**B illustrates an automatic user interface(s) mode selection based on contextual information. In this example, the pen **1500** is monitoring (e.g. through its microprocessor) whether or not the camera at the writing surface end **1508** is imaging a writing surface in close proximity to the writing surface end of the pen **1500**. If the pen **1500** determines that a writing surface is within a predetermined relatively short distance, the pen **1500** may decide that a writing surface is present **1820** and the pen may go into a writing mode user interface(s) mode. In the event that the pen **1500** does not detect a relatively close writing surface **1822**, the pen may predict that the pen is not currently being used to as a writing instrument and the pen may go into a non-writing user interface(s) mode.

[0190] FIG. **18**C illustrates a manual user interface(s) mode selection. The user interface(s) mode may be selected based on a twist of a section **1824** of the pen **1500** housing, clicking an end button **1828**, pressing a quick launch button **1522**, interacting with touch sensor **1520**, detecting a predetermined action at the pressure monitoring system (e.g. a click), detecting a gesture (e.g. detected by the IMU), etc. The manual mode selection may involve selecting an item in a GUI associated with the pen **1500** (e.g. an image presented in the display of HWC **102**).

is going to change. The presentation may be physical (e.g. a vibration in the pen **1500**), through a GUI, through a light indicator, etc.

[0192] FIG. 19 illustrates a couple pen use-scenarios 1900 and 1901. There are many use scenarios

and we have presented a couple in connection with FIG. **19** as a way of illustrating use scenarios to further the understanding of the reader. As such, the use-scenarios should be considered illustrative and non-limiting.

[0193] Use scenario **1900** is a writing scenario where the pen **1500** is used as a writing instrument. In this example, quick launch button **122**A is pressed to launch a note application **1910** in the GUI **1908** of the HWC **102** display **1904**. Once the quick launch button **122**A is pressed, the HWC **102** launches the note program **1910** and puts the pen into a writing mode. The user uses the pen **1500** to scribe symbols **1902** on a writing surface, the pen records the scribing and transmits the scribing to the HWC **102** where symbols representing the scribing are displayed **1912** within the note application **1910**.

[0194] Use scenario **1901** is a gesture scenario where the pen **1500** is used as a gesture capture and command device. In this example, the quick launch button **122**B is activated and the pen **1500** activates a wand mode such that an application launched on the HWC **102** can be controlled. Here, the user sees an application chooser **1918** in the display(s) of the HWC **102** where different software applications can be chosen by the user. The user gestures (e.g. swipes, spins, turns, etc.) with the pen to cause the application chooser **1918** to move from application to application. Once the correct application is identified (e.g. highlighted) in the chooser **1918**, the user may gesture or click or otherwise interact with the pen **1500** such that the identified application is selected and launched. Once an application is launched, the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example.

[0195] In an embodiment, the quick launch button **122**A may be activated and the HWC **102** may launch an application chooser presenting to the user a set of applications. For example, the quick launch button may launch a chooser to show all communication programs (e.g. SM S, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode. By way of further example, the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like)

[0196] FIG. **20** illustrates yet another embodiment of the present invention. FIG. **2000** illustrates a watchband clip on controller **2000**. The watchband clip on controller may be a controller used to control the HWC **102** or devices in the HWC system **100**. The watchband clip on controller **2000** has a fastener **2018** (e.g. rotatable clip) that is mechanically adapted to attach to a watchband, as illustrated at **2004**.

[0197] The watchband controller **2000** may have quick launch interfaces **2008** (e.g. to launch applications and choosers as described herein), a touch pad **2014** (e.g. to be used as a touch style mouse for GUI control in a HWC **102** display) and a display **2012**. The clip **2018** may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function. The clip, in embodiments, is rotatable such that a user can position it in a desirable manner. In embodiments the clip may be a flexible strap. In embodiments, the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like. [0198] In embodiments, the watchband controller may be configured as a removable and replaceable watchband. For example, the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body. The attachment, in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates. In embodiments, the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.

[0199] The watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.

[0200] In embodiments, the watchband controller may comprise fitness sensors and a fitness computer. The sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback. [0201] Another aspect of the present invention relates to visual display techniques relating to micro Doppler ("mD") target tracking signatures ("mD signatures"). mD is a radar technique that uses a series of angle dependent electromagnetic pulses that are broadcast into an environment and return pulses are captured. Changes between the broadcast pulse and return pulse are indicative of changes in the shape, distance and angular location of objects or targets in the environment. These changes provide signals that can be used to track a target and identify the target through the mD signature. Each target or target type has a unique mD signature. Shifts in the radar pattern can be analyzed in the time domain and frequency domain based on mD techniques to derive information about the types of targets present (e.g. whether people are present), the motion of the targets and the relative angular location of the targets and the distance to the targets. By selecting a frequency used for the mD pulse relative to known objects in the environment, the pulse can penetrate the known objects to enable information about targets to be gathered even when the targets are visually blocked by the known objects. For example, pulse frequencies can be used that will penetrate concrete buildings to enable people to be identified inside the building. Multiple pulse frequencies can be used as well in the mD radar to enable different types of information to be gathered about the objects in the environment. In addition, the mD radar information can be combined with other information such as distance measurements or images captured of the environment that are analyzed jointly to provide improved object identification and improved target identification and tracking. In embodiments, the analysis can be performed on the HWC or the information can be transmitted to a remote network for analysis and results transmitted back to the HWC. Distance measurements can be provided by laser range finding, structured lighting, stereoscopic depth maps or sonar measurements. Images of the environment can be captured using one or more cameras capable of capturing images from visible, ultraviolet or infrared light. The mD radar can be attached to the HWC, located adjacently (e.g. in a vehicle) and associated wirelessly with the HWC or located remotely. M aps or other previously determined information about the environment can also be used in the analysis of the mD radar information. Embodiments of the present invention relate to visualizing the mD signatures in useful ways.

[0202] FIG. 21 illustrates a FOV 2102 of a HWC 102 from a wearer's perspective. The wearer, as described herein elsewhere, has a see-through FOV 2102 wherein the wearer views adjacent surroundings, such as the buildings illustrated in FIG. 21. The wearer, as described herein elsewhere, can also see displayed digital content presented within a portion of the FOV 2102. The embodiment illustrated in FIG. 21 is indicating that the wearer can see the buildings and other surrounding elements in the environment and digital content representing traces, or travel paths, of bullets being fired by different people in the area. The surroundings are viewed through the transparency of the FOV 2102. The traces are presented via the digital computer display, as described herein elsewhere. In embodiments, the trace presented is based on a mD signature that is collected and communicated to the HWC in real time. The mD radar itself may be on or near the wearer of the HWC 102 or it may be located remote from the wearer. In embodiments, the mD radar scans the area, tracks and identifies targets, such as bullets, and communicates traces, based on locations, to the HWC 102.

[0203] There are several traces **2108** and **2104** presented to the wearer in the embodiment illustrated in FIG. **21**. The traces communicated from the mD radar may be associated with GPS locations and the GPS locations may be associated with objects in the environment, such as people, buildings, vehicles, etc, both in latitude and longitude perspective and an elevation perspective. The locations may be used as markers for the HWC such that the traces, as presented in the FOV, can be associated, or fixed in space relative to the markers. For example, if the friendly fire trace **2108** is determined, by the mD radar, to have originated from the upper right window of the building on the

left, as illustrated in FIG. **21**, then a virtual marker may be set on or near the window. When the HWC views, through its camera or other sensor, for example, the building's window, the trace may then virtually anchor with the virtual marker on the window. Similarly, a marker may be set near the termination position or other flight position of the friendly fire trace **2108**, such as the upper left window of the center building on the right, as illustrated in FIG. **21**. This technique fixes in space the trace such that the trace appears fixed to the environmental positions independent of where the wearer is looking. So, for example, as the wearer's head turns, the trace appears fixed to the marked locations.

[0204] In embodiments, certain user positions may be known and thus identified in the FOV. For example, the shooter of the friendly fire trace **2108** may be from a known friendly combatant and as such his location may be known. The position may be known based on his GPS location based on a mobile communication system on him, such as another HWC **102**. In other embodiments, the friendly combatant may be marked by another friendly. For example, if the friendly position in the environment is known through visual contact or communicated information, a wearer of the HWC **102** may use a gesture or external user interface **104** to mark the location. If a friendly combatant location is known the originating position of the friendly fire trace **2108** may be color coded or otherwise distinguished from unidentified traces on the displayed digital content. Similarly, enemy fire traces **2104** may be color coded or otherwise distinguished on the displayed digital content. In embodiments, there may be an additional distinguished appearance on the displayed digital content for unknown traces.

[0205] In addition to situationally associated trace appearance, the trace colors or appearance may be different from the originating position to the terminating position. This path appearance change may be based on the mD signature. The mD signature may indicate that the bullet, for example, is slowing as it propagates and this slowing pattern may be reflected in the FOV **2102** as a color or pattern change. This can create an intuitive understanding of wear the shooter is located. For example, the originating color may be red, indicative of high speed, and it may change over the course of the trace to yellow, indicative of a slowing trace. This pattern changing may also be different for a friendly, enemy and unknown combatant. The enemy may go blue to green for a friendly trace, for example.

[0206] FIG. **21** illustrates an embodiment where the user sees the environment through the FOV and may also see color coded traces, which are dependent on bullet speed and combatant type, where the traces are fixed in environmental positions independent on the wearer's perspective. Other information, such as distance, range, range rings, time of day, date, engagement type (e.g. hold, stop firing, back away, etc.) may also be displayed in the FOV.

[0207] Another aspect of the present invention relates to mD radar techniques that trace and identify targets through other objects, such as walls (referred to generally as through wall mD), and visualization techniques related therewith. FIG. 22 illustrates a through wall mD visualization technique according to the principles of the present invention. As described herein elsewhere, the mD radar scanning the environment may be local or remote from the wearer of a HWC **102**. The mD radar may identify a target (e.g. a person) that is visible **2204** and then track the target as he goes behind a wall **2208**. The tracking may then be presented to the wearer of a HWC **102** such that digital content reflective of the target and the target's movement, even behind the wall, is presented in the FOV **2202** of the HWC **102**. In embodiments, the target, when out of visible sight, may be represented by an avatar in the FOV to provide the wearer with imagery representing the target. [0208] mD target recognition methods can identify the identity of a target based on the vibrations and other small movements of the target. This can provide a personal signature for the target. In the case of humans, this may result in a personal identification of a target that has been previously characterized. The cardio, heart beat, lung expansion and other small movements within the body may be unique to a person and if those attributes are pre-identified they may be matched in real time to provide a personal identification of a person in the FOV **2202**. The person's mD signatures

may be determined based on the position of the person. For example, the database of personal mD signature attributes may include mD signatures for a person standing, sitting, laying down, running, walking, jumping, etc. This may improve the accuracy of the personal data match when a target is tracked through mD signature techniques in the field. In the event a person is personally identified, a specific indication of the person's identity may be presented in the FOV **2202**. The indication may be a color, shape, shade, name, indication of the type of person (e.g. enemy, friendly, etc.), etc. to provide the wearer with intuitive real time information about the person being tracked. This may be very useful in a situation where there is more than one person in an area of the person being tracked. If just one person in the area is personally identified, that person or the avatar of that person can be presented differently than other people in the area.

[0209] FIG. **23** illustrates an mD scanned environment **2300**. An mD radar may scan an environment in an attempt to identify objects in the environment. In this embodiment, the mD scanned environment reveals two vehicles **2302***a* and **2302***b*, an enemy combatant **2309**, two friendly combatants **2308***a* and **2308***b* and a shot trace **2318**. Each of these objects may be personally identified or type identified. For example, the vehicles **2302***a* and **2302***b* may be identified through the mD signatures as a tank and heavy truck. The enemy combatant **2309** may be identified as a type (e.g. enemy combatant) or more personally (e.g. by name). The friendly combatants may be identified as a type (e.g. friendly combatant) or more personally (e.g. by name). The shot trace **2318** may be characterized by type of projectile or weapon type for the projectile, for example.

[0210] FIG. **23***a* illustrates two separate HWC **102** FOV display techniques according to the principles of the present invention. FOV 2312 illustrates a map view 2310 where the mD scanned environment is presented. Here, the wearer has a perspective on the mapped area so he can understand all tracked targets in the area. This allows the wearer to traverse the area with knowledge of the targets. FOV 2312 illustrates a heads-up view to provide the wearer with an augmented reality style view of the environment that is in proximity of the wearer. [0211] An aspect of the present invention relates to suppression of extraneous or stray light. As discussed herein elsewhere, eyeglow and faceglow are two such artifacts that develop from such light. Eyeglow and faceglow can be caused by image light escaping from the optics module. The escaping light is then visible, particularly in dark environments when the user is viewing bright displayed images with the HWC. Light that escapes through the front of the HWC is visible as eyeglow as it that light that is visible in the region of the user's eyes. Eyeglow can appear in the form of a small version of the displayed image that the user is viewing. Light that escapes from the bottom of the HWC shines onto the user's face, cheek or chest so that these portions of the user appear to glow. Eyeglow and faceglow can both increase the visibility of the user and highlight the use of the HWC, which may be viewed negatively by the user. As such, reducing eyeglow and faceglow is advantageous. In combat situations (e.g. the mD trace presentation scenarios described herein) and certain gaming situations, the suppression of extraneous or stray light is very important. [0212] The disclosure relating to FIG. **6** shows an example where a portion of the image light passes through the combiner **602** such that the light shines onto the user's face, thereby illuminating a portion of the user's face in what is generally referred to herein as faceglow. Faceglow be caused by any portion of light from the HWC that illuminates the user's face. [0213] An example of the source for the faceglow light can come from wide cone angle light

associated with the image light incident onto the combiner **602**. Where the combiner can include a holographic mirror or a notch mirror in which the narrow bands of high reflectivity are matched to wavelengths of light by the light source. The wide cone angle associated with the image light corresponds with the field of view provided by the HWC. Typically the reflectivity of holographic mirrors and notch mirrors is reduced as the cone angle of the incident light is increased above 8 degrees. As a result, for a a field of view of 30 degrees, substantial image light can pass through the combiner and cause faceglow.

[0214] FIG. **24** shows an illustration of a light trap **2410** for the faceglow light. In this embodiment, an extension of the outer shield lens of the HWC is coated with a light absorbing material in the region where the converging light responsible for faceglow is absorbed in a light trap **2410**. The light absorbing material can be black or it can be a filter designed to absorb only the specific wavelengths of light provided by the light source(s) in the HWC. In addition, the surface of the light trap **2410** may be textured or fibrous to further improve the absorption.

[0215] FIG. **25** illustrates an optical system for a HWC that includes an outer absorptive polarizer **2520** to block the faceglow light. In this embodiment, the image light is polarized and as a result the light responsible for faceglow is similarly polarized. The absorptive polarizer is oriented with a transmission axis such that the faceglow light is absorbed and not transmitted. In this case, the rest of the imaging system in the HWC may not require polarized image light and the image light may be polarized at any point before the combiner. In embodiments, the transmission axis of the absorptive polarizer **2520** is oriented vertically so that external glare from water (S polarized light) is absorbed and correspondingly, the polarization of the image light is selected to be horizontal (S polarization). Consequently, image light that passes through the combiner **602** and is then incident onto the absorptive polarizer **2520**, is absorbed. In FIG. **25** the absorptive polarizer **2520** is shown outside the shield lens, alternatively the absorptive polarizer **2520** can be located inside the shield lens.

[0216] FIG. **26** illustrates an optical system for a HWC that includes a film with an absorptive notch filter **2620**. In this case, the absorptive notch filter absorbs narrow bands of light that are selected to match the light provided by the optical system's light source. As a result, the absorptive notch filter is opaque with respect to the faceglow light and is transparent to the remainder of the wavelengths included in the visible spectrum so that the user has a clear view of the surrounding environment. A triple notch filter suitable for this approach is available from Iridian Spectral Technologies, Ottawa, ON: http://www.ilphotonics.com/cdv2/Iridian-Interference%20Filters/New%20filters/Triple%20Notch%20Filter.pdf

[0217] In embodiments, the combiner **602** may include a notch mirror coating to reflect the wavelengths of light in the image light and a notch filter **2620** can be selected in correspondence to the wavelengths of light provided by the light source and the narrow bands of high reflectivity provided by the notch mirror. In this way, image light that is not reflected by the notch mirror is absorbed by the notch filter **2620**. In embodiments of the invention the light source can provide one narrow band of light for a monochrome imaging or three narrow bands of light for full color imaging. The notch mirror and associated notch filter would then each provide one narrow band or three narrow bands of high reflectivity and absorption respectively.

[0218] FIG. **27** includes a microlouver film **2750** to block the faceglow light. Microlouver film is sold by 3M as ALCF-P, for example and is typically used as a privacy filter for computer. See http://multimedia.3m.com/mws/mediawebserver?

 $mwsId = SSSSSuH8gc7nZxtUoY_xIY_eevUqe17zHVTSevTSeSSSSSS--\&fn = ALCF-thermore and the state of the state of$

P_ABR2_Control_Film_DS.pdf The microlouver film transmits light within a somewhat narrow angle (e.g. 30 degrees of normal and absorbs light beyond 30 degrees of normal). In FIG. 27, the microlouver film 2750 is positioned such that the faceglow light 2758 is incident beyond 30 degrees from normal while the see-through light 2755 is incident within 30 degrees of normal to the microlouver film 2750. As such, the faceglow light 2758 is absorbed by the microlouver film and the see-through light 2755 is transmitted so that the user has a bright see-thru view of the surrounding environment.

[0219] We now turn back to a description of eye imaging technologies. Aspects of the present invention relate to various methods of imaging the eye of a person wearing the HWC **102**. In embodiments, technologies for imaging the eye using an optical path involving the "off" state and "no power" state, which is described in detail below, are described. In embodiments, technologies for imaging the eye with optical configurations that do not involve reflecting the eye image off of

DLP mirrors is described. In embodiments, unstructured light, structured light, or controlled lighting conditions, are used to predict the eye's position based on the light reflected off of the front of the wearer's eye. In embodiments, a reflection of a presented digital content image is captured as it reflects off of the wearer's eye and the reflected image may be processed to determine the quality (e.g. sharpness) of the image presented. In embodiments, the image may then be adjusted (e.g. focused differently) to increase the quality of the image presented based on the image reflection. [0220] FIGS. **28***a*, **28***b* and **28***c* show illustrations of the various positions of the DLP mirrors. FIG. **28***a* shows the DLP mirrors in the "on" state **2815**. With the mirror in the "on" state **2815**, illumination light **2810** is reflected along an optical axis **2820** that extends into the lower optical module **204**. FIG. **28**b shows the DLP mirrors in the "off" state **2825**. With the mirror in the "off" state **2825**, illumination light **2810** is reflected along an optical axis **2830** that is substantially to the side of optical axis **2820** so that the "off" state light is directed toward a dark light trap as has been described herein elsewhere. FIG. **28***c* shows the DLP mirrors in a third position, which occurs when no power is applied to the DLP. This "no power" state differs from the "on" and "off" states in that the mirror edges are not in contact with the substrate and as such are less accurately positioned. FIG. **28***c* shows all of the DLP mirrors in the "no power" state **2835**. The "no power" state is achieved by simultaneously setting the voltage to zero for the "on" contact and "off" contact for a DLP mirror, as a result, the mirror returns to a no stress position where the DLP mirror is in the plane of the DLP platform as shown in FIG. 28c. Although not normally done, it is also possible to apply the "no power" state to individual DLP mirrors. When the DLP mirrors are in the "no power" state they do not contribute image content. Instead, as shown in FIG. 28c, when the DLP mirrors are in the "no power" state, the illumination light **2810** is reflected along an optical axis **2840** that is between the optical axes **2820** and **2830** that are respectively associated with the "on" and "off" states and as such this light doesn't contribute to the displayed image as a bright or dark pixel. This light can however contribute scattered light into the lower optical module **204** and as a result the displayed image contrast can be reduced or artifacts can be created in the image that detract from the image content. Consequently, it is generally desirable, in embodiments, to limit the time associated with the "no power" state to times when images are not displayed or to reduce the time associated with having DLP mirrors in the "no power" state so that the effect of the scattered light is reduced.

[0221] FIG. **29** shows an embodiment of the invention that can be used for displaying digital content images to a wearer of the HWC **102** and capturing images of the wearer's eye. In this embodiment, light from the eye **2971** passes back through the optics in the lower module **204**, the solid corrective wedge **2966**, at least a portion of the light passes through the partially reflective layer **2960**, the solid illumination wedge **2964** and is reflected by a plurality of DLP mirrors on the DLP **2955** that are in the "no power" state. The reflected light then passes back through the illumination wedge **2964** and at least a portion of the light is reflected by the partially reflective layer **2960** and the light is captured by the camera **2980**.

[0222] For comparison, illuminating light rays 2973 from the light source 2958 are also shown being reflected by the partially reflective layer 2960. Where the angle of the illuminating light 2973 is such that the DLP mirrors, when in the "on" state, reflect the illuminating light 2973 to form image light 2969 that substantially shares the same optical axis as the light from the wearer's eye 2971. In this way, images of the wearer's eye are captured in a field of view that overlaps the field of view for the displayed image content. In contrast, light reflected by DLP mirrors in the "off" state form dark light 2975 which is directed substantially to the side of the image light 2969 and the light from eye 2971. Dark light 2975 is directed toward a light trap 2962 that absorbs the dark light to improve the contrast of the displayed image as has been described above in this specification. [0223] In an embodiment, partially reflective layer 2960 is a reflective polarizer. The light that is reflected from the eye 2971 can then be polarized prior to entering the corrective wedge 2966 (e.g. with an absorptive polarizer between the upper module 202 and the lower module 204), with a

polarization orientation relative to the reflective polarizer that enables the light reflected from the eye **2971** to substantially be transmitted by the reflective polarizer. A quarter wave retarder layer **2957** is then included adjacent to the DLP **2955** (as previously disclosed in FIG. **3***b*) so that the light reflected from the eye **2971** passes through the quarter wave retarder layer **2957** once before being reflected by the plurality of DLP mirrors in the "no power" state and then passes through a second time after being reflected. By passing through the quarter wave retarder layer **2957** twice, the polarization state of the light from the eye **2971** is reversed, such that when it is incident upon the reflective polarizer, the light from the eye **2971** is then substantially reflected toward the camera **2980**. By using a partially reflective layer **2960** that is a reflective polarizer and polarizing the light from the eye **2971** prior to entering the corrective wedge **2964**, losses attributed to the partially reflective layer **2960** are reduced.

[0224] FIG. **28***c* shows the case wherein the DLP mirrors are simultaneously in the "no power" state, this mode of operation can be particularly useful when the HWC **102** is first put onto the head of the wearer. When the HWC **102** is first put onto the head of the wearer, it is not necessary to display an image yet. As a result, the DLP can be in a "no power" state for all the DLP mirrors and an image of the wearer's eyes can be captured. The captured image of the wearer's eye can then be compared to a database, using iris identification techniques, or other eye pattern identification techniques to determine, for example, the identity of the wearer.

[0225] In a further embodiment illustrated by FIG. **29** all of the DLP mirrors are put into the "no power" state for a portion of a frame time (e.g. 50% of a frame time for the displayed digital content image) and the capture of the eye image is synchronized to occur at the same time and for the same duration. By reducing the time that the DLP mirrors are in the "no power" state, the time where light is scattered by the DLP mirrors being in the "no power" state is reduced such that the wearer doesn't perceive a change in the displayed image quality. This is possible because the DLP mirrors have a response time on the order of microseconds while typical frame times for a displayed image are on the order of 0.016 seconds. This method of capturing images of the wearer's eye can be used periodically to capture repetitive images of the wearer's eye. For example, eye images could be captured for 50% of the frame time of every 10th frame displayed to the wearer. In another example, eye images could be captured for 10% of the frame time of every frame displayed to the wearer.

[0226] Alternately, the "no power" state can be applied to a subset of the DLP mirrors (e.g. 10% of the DLP mirrors) within while another subset is in busy generating image light for content to be displayed. This enables the capture of an eye image(s) during the display of digital content to the wearer. The DLP mirrors used for eye imaging can, for example, be distributed randomly across the area of the DLP to minimize the impact on the quality of the digital content being displayed to the wearer. To improve the displayed image perceived by the wearer, the individual DLP mirrors put into the "no power" state for capturing each eye image, can be varied over time such as in a random pattern, for example. In yet a further embodiment, the DLP mirrors put into the "no power" state for eye imaging may be coordinated with the digital content in such a way that the "no power" mirrors are taken from a portion of the image that requires less resolution.

[0227] In the embodiments of the invention as illustrated in FIGS. **9** and **29**, in both cases the reflective surfaces provided by the DLP mirrors do not preserve the wavefront of the light from the wearer's eye so that the image quality of captured image of the eye is somewhat limited. It may still be useful in certain embodiments, but it is somewhat limited. This is due to the DLP mirrors not being constrained to be on the same plane. In the embodiment illustrated in FIG. **9**, the DLP mirrors are tilted so that they form rows of DLP mirrors that share common planes. In the embodiment illustrated in FIG. **29**, the individual DLP mirrors are not accurately positioned to be in the same plane since they are not in contact with the substrate. Examples of advantages of the embodiments associated with FIG. **29** are: first, the camera **2980** can be located between the DLP **2955** and the illumination light source **2958** to provide a more compact upper module **202**. Second,

the polarization state of the light reflected from the eye **2971** can be the same as that of the image light **2969** so that the optical path of the light reflected from the eye and the image light can be the same in the lower module **204**.

[0228] FIG. **30** shows an illustration of an embodiment for displaying images to the wearer and simultaneously capturing images of the wearer's eye, wherein light from the eye **2971** is reflected towards a camera **3080** by the partially reflective layer **2960**. The partially reflective layer **2960** can be an optically flat layer such that the wavefront of the light from the eye **2971** is preserved and as a result, higher quality images of the wearer's eye can be captured. In addition, since the DLP **2955** is not included in the optical path for the light from the eye **2971**, and the eye imaging process shown in FIG. **30** does not interfere with the displayed image, images of the wearer's eye can be captured independently (e.g. with independent of timing, impact on resolution, or pixel count used in the image light) from the displayed images.

[0229] In the embodiment illustrated in FIG. **30**, the partially reflective layer **2960** is a reflective polarizer, the illuminating light **2973** is polarized, the light from the eye **2971** is polarized and the camera **3080** is located behind a polarizer **3085**. The polarization axis of the illuminating light **2973** and the polarization axis of the light from the eye are oriented perpendicular to the transmission axis of the reflective polarizer so that they are both substantially reflected by the reflective polarizer. The illumination light **2973** passes through a quarter wave layer **2957** before being reflected by the DLP mirrors in the DLP **2955**. The reflected light passes back through the quarter wave layer 2957 so that the polarization states of the image light 2969 and dark light 2975 are reversed in comparison to the illumination light **2973**. As such, the image light **2969** and dark light **2975** are substantially transmitted by the reflective polarizer. Where the DLP mirrors in the "on" state provide the image light **2969** along an optical axis that extends into the lower optical module **204** to display an image to the wearer. At the same time, DLP mirrors in the "off" state provide the dark light **2975** along an optical axis that extends to the side of the upper optics module **202**. In the region of the corrective wedge **2966** where the dark light **2975** is incident on the side of the upper optics module **202**, an absorptive polarizer **3085** is positioned with its transmission axis perpendicular to the polarization axis of the dark light and parallel to the polarization axis of the light from the eye so that the dark light **2975** is absorbed and the light from the eye **2971** is transmitted to the camera **3080**.

[0230] FIG. **31** shows an illustration of another embodiment of a system for displaying images and simultaneously capturing image of the wearer's eye that is similar to the one shown in FIG. 30. The difference in the system shown in FIG. **31** is that the light from the eye **2971** is subjected to multiple reflections before being captured by the camera **3180**. To enable the multiple reflections, a mirror **3187** is provided behind the absorptive polarizer **3185**. Therefore, the light from the eye **2971** is polarized prior to entering the corrective wedge **2966** with a polarization axis that is perpendicular to the transmission axis of the reflective polarizer that comprises the partially reflective layer **2960**. In this way, the light from the eye **2971** is reflected first by the reflective polarizer, reflected second by the mirror **3187** and reflected third by the reflective polarizer before being captured by the camera **3180**. While the light from the eye **2971** passes through the absorptive polarizer **3185** twice, since the polarization axis of the light from the eye **2971** is oriented parallel to the polarization axis of the light from the eye **2971**, it is substantially transmitted by the absorptive polarizer **3185**. As with the system described in connection with FIG. **30**, the system shown in FIG. **31** includes an optically flat partially reflective layer **2960** that preserves the wavefront of the light from the eye **2971** so that higher quality images of the wearer's eye can be captured. Also, since the DLP 2955 is not included in the optical path for the light reflected from the eye **2971** and the eye imaging process shown in FIG. **31** does not interfere with the displayed image, images of the wearer's eye can be captured independently from the displayed images.

[0231] FIG. 32 shows an illustration of a system for displaying images and simultaneously

capturing images of the wearer's eye that includes a beam splitter plate **3212** comprised of a reflective polarizer, which is held in air between the light source **2958**, the DLP **2955** and the camera **3280**. The illumination light **2973** and the light from the eye **2971** are both polarized with polarization axes that are perpendicular to the transmission axis of the reflective polarizer. As a result, both the illumination light **2973** and the light from the eye **2971** are substantially reflected by the reflective polarizer. The illumination light 2873 is reflected toward the DLP 2955 by the reflective polarizer and split into image light 2969 and dark light 3275 depending on whether the individual DLP mirrors are respectively in the "on" state or the "off" state. By passing through the guarter wave layer **2957** twice, the polarization state of the illumination light **2973** is reversed in comparison to the polarization state of the image light **2969** and the dark light **3275**. As a result, the image light **2969** and the dark light **3275** are then substantially transmitted by the reflective polarizer. The absorptive polarizer **3285** at the side of the beam splitter plate **3212** has a transmission axis that is perpendicular to the polarization axis of the dark light 3275 and parallel to the polarization axis of the light from the eye **2971** so that the dark light **3275** is absorbed and the light from the eye **2971** is transmitted to the camera **3280**. As in the system shown in FIG. **30**, the system shown in FIG. 31 includes an optically flat beam splitter plate 3212 that preserves the wavefront of the light from the eye **2971** so that higher quality images of the wearer's eye can be captured. Also, since the DLP **2955** is not included in the optical path for the light from the eye **2971** and the eye imaging process shown in FIG. **31** does not interfere with the displayed image, images of the wearer's eye can be captured independently from the displayed images. [0232] Eye imaging systems where the polarization state of the light from the eye **2971** needs to be opposite to that of the image light 2969 (as shown in FIGS. 30, 31 and 32), need to be used with lower modules **204** that include combiners that will reflect both polarization states. As such, these upper modules **202** are best suited for use with the lower modules **204** that include combiners that are reflective regardless of polarization state, examples of these lower modules are shown in FIGS. **6**, **8***a*, **8***b*, **8***c* and **24-27**.

[0233] In a further embodiment shown in FIG. **33**, the partially reflective layer **3360** is comprised of a reflective polarizer on the side facing the illumination light **2973** and a short pass dichroic mirror on the side facing the light from the eye **3371** and the camera **3080**. Where the short pass dichroic mirror is a dielectric mirror coating that transmits visible light and reflects infrared light. The partially reflective layer **3360** can be comprised of a reflective polarizer bonded to the inner surface of the illumination wedge **2964** and a short pass dielectric mirror coating on the opposing inner surface of the corrective wedge **2966**, wherein the illumination wedge **2964** and the corrective wedge **2966** are then optically bonded together. Alternatively, the partially reflective layer **3360** can be comprised of a thin substrate that has a reflective polarizer bonded to one side and a short pass dichroic mirror coating on the other side, where the partially reflective layer 3360 is then bonded between the illumination wedge **2964** and the corrective wedge **2966**. In this embodiment, an infrared light is included to illuminate the eye so that the light from the eye and the images captured of the eye are substantially comprised of infrared light. The wavelength of the infrared light is then matched to the reflecting wavelength of the shortpass dichroic mirror and the wavelength that the camera can capture images, for example an 800 nm wavelength can be used. In this way, the short pass dichroic mirror transmits the image light and reflects the light from the eye. The camera **3080** is then positioned at the side of the corrective wedge **2966** in the area of the absorbing light trap **3382**, which is provided to absorb the dark light **2975**. By positioning the camera **3080** in a depression in the absorbing light trap **3382**, scattering of the dark light **2975** by the camera **3080** can be reduced so that higher contrast images can be displayed to the wearer. An advantage of this embodiment is that the light from the eye need not be polarized, which can simplify the optical system and increase efficiency for the eye imaging system. [0234] In yet another embodiment shown in FIG. **32***a* a beam splitter plate **3222** is comprised of a reflective polarizer on the side facing the illumination light 2973 and a short pass dichroic mirror

on the side facing the light from the eye **3271** and the camera **3280**. An absorbing surface **3295** is provided to trap the dark light **3275** and the camera **3280** is positioned in an opening in the absorbing surface **3295**. In this way the system of FIG. **32** can be made to function with unpolarized light from the eye **3271**.

[0235] In embodiments directed to capturing images of the wearer's eye, light to illuminate the wearer's eye can be provided by several different sources including: light from the displayed image (i.e. image light); light from the environment that passes through the combiner or other optics; light provided by a dedicated eye light, etc. FIGS. 34 and 34a show illustrations of dedicated eye illumination lights **3420**. FIG. **34** shows an illustration from a side view in which the dedicated illumination eye light **3420** is positioned at a corner of the combiner **3410** so that it doesn't interfere with the image light **3415**. The dedicated eye illumination light **3420** is pointed so that the eye illumination light **3425** illuminates the eyebox **3427** where the eye **3430** is located when the wearer is viewing displayed images provided by the image light **3415**. FIG. **34***a* shows an illustration from the perspective of the eye of the wearer to show how the dedicated eye illumination light **3420** is positioned at the corner of the combiner **3410**. While the dedicated eye illumination light **3420** is shown at the upper left corner of the combiner **3410**, other positions along one of the edges of the combiner **3410**, or other optical or mechanical components, are possible as well. In other embodiments, more than one dedicated eye light **3420** with different positions can be used. In an embodiment, the dedicated eye light **3420** is an infrared light that is not visible by the wearer (e.g. 800 nm) so that the eye illumination light **3425** doesn't interfere with the displayed image perceived by the wearer.

[0236] FIG. **35** shows a series of illustrations of captured eye images that show the eye glint (i.e. light that reflects off the front of the eye) produced by a dedicated eye light. In this embodiment of the invention, captured images of the wearer's eye are analyzed to determine the relative positions of the iris **3550**, pupil, or other portion of the eye, and the eye glint **3560**. The eye glint is a reflected image of the dedicated eye light **3420** when the dedicated light is used. FIG. **35** illustrates the relative positions of the iris **3550** and the eye glint **3560** for a variety of eye positions. By providing a dedicated eye light **3420** in a fixed position, combined with the fact that the human eye is essentially spherical, or at least a reliably repeatable shape, the eye glint provides a fixed reference point against which the determined position of the iris can be compared to determine where the wearer is looking, either within the displayed image or within the see-through view of the surrounding environment. By positioning the dedicated eye light **3420** at a corner of the combiner **3410**, the eye glint **3560** is formed away from the iris **3550** in the captured images. As a result, the positions of the iris and the eye glint can be determined more easily and more accurately during the analysis of the captured images, since they do not interfere with one another. In a further embodiment, the combiner includes an associated cut filter that prevents infrared light from the environment from entering the HWC and the camera is an infrared camera, so that the eye glint is only provided by light from the dedicated eye light. For example, the combiner can include a low pass filter that passes visible light while absorbing infrared light and the camera can include a high pass filter that absorbs visible light while passing infrared light.

[0237] In an embodiment of the eye imaging system, the lens for the camera is designed to take into account the optics associated with the upper module **202** and the lower module **204**. This is accomplished by designing the camera to include the optics in the upper module **202** and optics in the lower module **204**, so that a high MTF image is produced, at the image sensor in the camera, of the wearer's eye. In yet a further embodiment, the camera lens is provided with a large depth of field to eliminate the need for focusing the camera to enable sharp image of the eye to be captured. Where a large depth of field is typically provided by a high f/#lens (e.g. f/#>5). In this case, the reduced light gathering associated with high f/#lenses is compensated by the inclusion of a dedicated eye light to enable a bright image of the eye to be captured. Further, the brightness of the dedicated eye light can be modulated and synchronized with the capture of eye images so that the

dedicated eye light has a reduced duty cycle and the brightness of infrared light on the wearer's eye is reduced.

[0238] In a further embodiment, FIG. **36***a* shows an illustration of an eye image that is used to identify the wearer of the HWC. In this case, an image of the wearer's eye **3611** is captured and analyzed for patterns of identifiable features **3612**. The patterns are then compared to a database of eye images to determine the identity of the wearer. After the identity of the wearer has been verified, the operating mode of the HWC and the types of images, applications, and information to be displayed can be adjusted and controlled in correspondence to the determined identity of the wearer. Examples of adjustments to the operating mode depending on who the wearer is determined to be or not be include: making different operating modes or feature sets available, shutting down or sending a message to an external network, allowing guest features and applications to run, etc.

[0239] FIG. **36***b* is an illustration of another embodiment using eye imaging, in which the sharpness of the displayed image is determined based on the eye glint produced by the reflection of the displayed image from the wearer's eye surface. By capturing images of the wearer's eye **3611**, an eye glint **3622**, which is a small version of the displayed image can be captured and analyzed for sharpness. If the displayed image is determined to not be sharp, then an automated adjustment to the focus of the HWC optics can be performed to improve the sharpness. This ability to perform a measurement of the sharpness of a displayed image at the surface of the wearer's eye can provide a very accurate measurement of image quality. Having the ability to measure and automatically adjust the focus of displayed images can be very useful in augmented reality imaging where the focus distance of the displayed image can be varied in response to changes in the environment or changes in the method of use by the wearer.

[0240] An aspect of the present invention relates to controlling the HWC **102** through interpretations of eye imagery. In embodiments, eye-imaging technologies, such as those described herein, are used to capture an eye image or series of eye images for processing. The image(s) may be process to determine a user intended action, an HWC predetermined reaction, or other action. For example, the imagery may be interpreted as an affirmative user control action for an application on the HWC 102. Or, the imagery may cause, for example, the HWC 102 to react in a pre-determined way such that the HWC **102** is operating safely, intuitively, etc. [0241] FIG. **37** illustrates a eye imagery process that involves imaging the HWC **102** wearer's eye(s) and processing the images (e.g. through eye imaging technologies described herein) to determine in what position **3702** the eye is relative to it's neutral or forward looking position and/or the FOV **3708**. The process may involve a calibration step where the user is instructed, through guidance provided in the FOV of the HWC 102, to look in certain directions such that a more accurate prediction of the eye position relative to areas of the FOV can be made. In the event the wearer's eye is determined to be looking towards the right side of the FOV 3708 (as illustrated in FIG. **37**, the eye is looking out of the page) a virtual target line may be established to project what in the environment the wearer may be looking towards or at. The virtual target line may be used in connection with an image captured by camera on the HWC **102** that images the surrounding environment in front of the wearer. In embodiments, the field of view of the camera capturing the surrounding environment matches, or can be matched (e.g. digitally), to the FOV **3708** such that making the comparison is made more clear. For example, with the camera capturing the image of the surroundings in an angle that matches the FOV **3708** the virtual line can be processed (e.g. in 2d or 3d, depending on the camera images capabilities and/or the processing of the images) by projecting what surrounding environment objects align with the virtual target line. In the event there are multiple objects along the virtual target line, focal planes may be established corresponding to each of the objects such that digital content may be placed in an area in the FOV **3708** that aligns with the virtual target line and falls at a focal plane of an intersecting object. The user then may see the digital content when he focuses on the object in the environment, which is at

the same focal plane. In embodiments, objects in line with the virtual target line may be established by comparison to mapped information of the surroundings.

[0242] In embodiments, the digital content that is in line with the virtual target line may not be displayed in the FOV until the eye position is in the right position. This may be a predetermined process. For example, the system may be set up such that a particular piece of digital content (e.g. an advertisement, guidance information, object information, etc.) will appear in the event that the wearer looks at a certain object(s) in the environment. A virtual target line(s) may be developed that virtually connects the wearer's eye with an object(s) in the environment (e.g. a building, portion of a building, mark on a building, gps location, etc.) and the virtual target line may be continually updated depending on the position and viewing direction of the wearer (e.g. as determined through GPS, e-compass, IMU, etc.) and the position of the object. When the virtual target line suggests that the wearer's pupil is substantially aligned with the virtual target line or about to be aligned with the virtual target line, the digital content may be displayed in the FOV **3704**.

[0243] In embodiments, the time spent looking along the virtual target line and/or a particular portion of the FOV **3708** may indicate that the wearer is interested in an object in the environment and/or digital content being displayed. In the event there is no digital content being displayed at the time a predetermined period of time is spent looking at a direction, digital content may be presented in the area of the FOV **3708**. The time spent looking at an object may be interpreted as a command to display information about the object, for example. In other embodiments, the content may not relate to the object and may be presented because of the indication that the person is relatively inactive. In embodiments, the digital content may be positioned in proximity to the virtual target line, but not in-line with it such that the wearer's view of the surroundings are not obstructed but information can augment the wearer's view of the surroundings. In embodiments, the time spent looking along a target line in the direction of displayed digital content may be an indication of interest in the digital content. This may be used as a conversion event in advertising. For example, an advertiser may pay more for an add placement if the wearer of the HWC **102** looks at a displayed advertisement for a certain period of time. As such, in embodiments, the time spent looking at the advertisement, as assessed by comparing eye position with the content placement, target line or other appropriate position may be used to determine a rate of conversion or other compensation amount due for the presentation.

[0244] An aspect of the invention relates to removing content from the FOV of the HWC **102** when the wearer of the HWC **102** apparently wants to view the surrounding environments clearly. FIG. **38** illustrates a situation where eye imagery suggests that the eye has or is moving quickly so the digital content **3804** in the FOV **3808** is removed from the FOV **3808**. In this example, the wearer may be looking quickly to the side indicating that there is something on the side in the environment that has grabbed the wearer's attention. This eye movement 3802 may be captured through eye imaging techniques (e.g. as described herein) and if the movement matches a predetermined movement (e.g. speed, rate, pattern, etc.) the content may be removed from view. In embodiments, the eye movement is used as one input and HWC movements indicated by other sensors (e.g. IMU in the HWC) may be used as another indication. These various sensor movements may be used together to project an event that should cause a change in the content being displayed in the FOV. [0245] Another aspect of the present invention relates to determining a focal plane based on the wearer's eye convergence. Eyes are generally converged slightly and converge more when the person focuses on something very close. This is generally referred to as convergence. In embodiments, convergence is calibrated for the wearer. That is, the wearer may be guided through certain focal plane exercises to determine how much the wearer's eyes converge at various focal planes and at various viewing angles. The convergence information may then be stored in a database for later reference. In embodiments, a general table may be used in the event there is no calibration step or the person skips the calibration step. The two eyes may then be imaged periodically to determine the convergence in an attempt to understand what focal plane the wearer

is focused on. In embodiments, the eyes may be imaged to determine a virtual target line and then the eye's convergence may be determined to establish the wearer's focus, and the digital content may be displayed or altered based thereon.

[0246] FIG. **39** illustrates a situation where digital content is moved **3902** within one or both of the FOVs **3908** and **3910** to align with the convergence of the eyes as determined by the pupil movement **3904**. By moving the digital content to maintain alignment, in embodiments, the overlapping nature of the content is maintained so the object appears properly to the wearer. This can be important in situations where 3D content is displayed.

[0247] An aspect of the present invention relates to controlling the HWC **102** based on events detected through eye imaging. A wearer winking, blinking, moving his eyes in a certain pattern, etc. may, for example, control an application of the HWC **102**. Eye imaging (e.g. as described herein) may be used to monitor the eye(s) of the wearer and once a pre-determined pattern is detected an application control command may be initiated.

[0248] An aspect of the invention relates to monitoring the health of a person wearing a HWC **102** by monitoring the wearer's eye(s). Calibrations may be made such that the normal performance, under various conditions (e.g. lighting conditions, image light conditions, etc.) of a wearer's eyes may be documented. The wearer's eyes may then be monitored through eye imaging (e.g. as described herein) for changes in their performance. Changes in performance may be indicative of a health concern (e.g. concussion, brain injury, stroke, loss of blood, etc.). If detected the data indicative of the change or event may be communicated from the HWC **102**.

[0249] Aspects of the present invention relate to security and access of computer assets (e.g. the HWC itself and related computer systems) as determined through eye image verification. As discussed herein elsewhere, eye imagery may be compared to known person eye imagery to confirm a person's identity. Eye imagery may also be used to confirm the identity of people wearing the HWCs **102** before allowing them to link together or share files, streams, information, etc.

[0250] A variety of use cases for eye imaging are possible based on technologies described herein. An aspect of the present invention relates to the timing of eye image capture. The timing of the capture of the eye image and the frequency of the capture of multiple images of the eye can vary dependent on the use case for the information gathered from the eye image. For example, capturing an eye image to identify the user of the HWC may be required only when the HWC has been turned ON or when the HWC determines that the HWC has been put onto a wearer's head, to control the security of the HWC and the associated information that is displayed to the user. Wherein, the orientation, movement pattern, stress or position of the earhorns (or other portions of the HWC) of the HWC can be used to determine that a person has put the HWC onto their head with the intention to use the HWC. Those same parameters may be monitored in an effort to understand when the HWC is dismounted from the user's head. This may enable a situation where the capture of an eye image for identifying the wearer may be completed only when a change in the wearing status is identified. In a contrasting example, capturing eye images to monitor the health of the wearer may require images to be captured periodically (e.g. every few seconds, minutes, hours, days, etc.). For example, the eye images may be taken in minute intervals when the images are being used to monitor the health of the wearer when detected movements indicate that the wearer is exercising. In a further contrasting example, capturing eye images to monitor the health of the wearer for long-term effects may only require that eye images be captured monthly. Embodiments of the invention relate to selection of the timing and rate of capture of eye images to be in correspondence with the selected use scenario associated with the eye images. These selections may be done automatically, as with the exercise example above where movements indicate exercise, or these selections may be set manually. In a further embodiment, the selection of the timing and rate of eye image capture is adjusted automatically depending on the mode of operation of the HWC. The selection of the timing and rate of eye image capture can further be selected in

correspondence with input characteristics associated with the wearer including age and health status, or sensed physical conditions of the wearer including heart rate, chemical makeup of the blood and eye blink rate.

[0251] FIG. **40** illustrates an embodiment in which digital content presented in a see-through FOV is positioned based on the speed in which the wearer is moving. When the person is not moving, as measured by sensor(s) in the HWC **102** (e.g. IMU, GPS based tracking, etc.), digital content may be presented at the stationary person content position **4004**. The content position **4004** is indicated as being in the middle of the see-through FOV 4002; however, this is meant to illustrate that the digital content is positioned within the see-through FOV at a place that is generally desirable knowing that the wearer is not moving and as such the wearer's surrounding see through view can be somewhat obstructed. So, the stationary person content position, or neutral position, may not be centered in the see-through FOV; it may be positioned somewhere in the see-through FOV deemed desirable and the sensor feedback may shift the digital content from the neutral position. The movement of the digital content for a quickly moving person is also shown in FIG. **40** wherein as the person turns their head to the side, the digital content moves out of the see-through FOV to content position **4008** and then moves back as the person turns their head back. For a slowly moving person, the head movement can be more complex and as such the movement of the digital content in an out of the see-through FOV can follow a path such as that shown by content position **4010**.

[0252] In embodiments, the sensor that assesses the wearer's movements may be a GPS sensor, IMU, accelerometer, etc. The content position may be shifted from a neutral position to a position towards a side edge of the field of view as the forward motion increases. The content position may be shifted from a neutral position to a position towards a top or bottom edge of the field of view as the forward motion increases. The content position may shift based on a threshold speed of the assessed motion. The content position may shift linearly based on the speed of the forward motion. The content position may shift non-linearly based on the speed of the forward motion. The content position may shift outside of the field of view. In embodiments, the content is no longer displayed if the speed of movement exceeds a predetermined threshold and will be displayed again once the forward motion slows.

[0253] In embodiments, the content position may generally be referred to as shifting; it should be understood that the term shifting encompasses a process where the movement from one position to another within the see-through FOV or out of the FOV is visible to the wearer (e.g. the content appears to slowly or quickly move and the user perceives the movement itself) or the movement from one position to another may not be visible to the wearer (e.g. the content appears to jump in a discontinuous fashion or the content disappears and then reappears in the new position). [0254] Another aspect of the present invention relates to removing the content from the field of view or shifting it to a position within the field of view that increases the wearer's view of the surrounding environment when a sensor causes an alert command to be issued. In embodiments, the alert may be due to a sensor or combination of sensors that sense a condition above a threshold value. For example, if an audio sensor detects a loud sound of a certain pitch, content in the field of view may be removed or shifted to provide a clear view of the surrounding environment for the wearer. In addition to the shifting of the content, in embodiments, an indication of why the content was shifted may be presented in the field of view or provided through audio feedback to the wearer. For instance, if a carbon monoxide sensor detects a high concentration in the area, content in the field of view may be shifted to the side of the field of view or removed from the field of view and an indication may be provided to the wearer that there is a high concentration of carbon monoxide in the area. This new information, when presented in the field of view, may similarly be shifted within or outside of the field of view depending on the movement speed of the wearer. [0255] FIG. **41** illustrates how content may be shifted from a neutral position **4104** to an alert position **4108**. In this embodiment, the content is shifted outside of the see-through FOV **4102**. In

other embodiments, the content may be shifted as described herein.

[0256] Another aspect of the present invention relates to identification of various vectors or headings related to the HWC **102**, along with sensor inputs, to determine how to position content in the field of view. In embodiments, the speed of movement of the wearer is detected and used as an input for position of the content and, depending on the speed, the content may be positioned with respect to a movement vector or heading (i.e. the direction of the movement), or a sight vector or heading (i.e. the direction of the wearer's sight direction). For example, if the wearer is moving very fast the content may be positioned within the field of view with respect to the movement vector because the wearer is only going to be looking towards the sides of himself periodically and for short periods of time. As another example, if the wearer is moving slowly, the content may be positioned with respect to the sight heading because the user may more freely be shifting his view from side to side.

[0257] FIG. **42** illustrates two examples where the movement vector may effect content positioning. Movement vector A **4202** is shorter than movement vector B **4210** indicating that the forward speed and/or acceleration of movement of the person associated with movement vector A **4202** is lower than the person associated with movement vector B **4210**. Each person is also indicated as having a sight vector or heading 4208 and 4212. The sight vectors A 4208 and B 4210 are the same from a relative perspective. The white area inside of the black triangle in front of each person is indicative of how much time each person likely spends looking at a direction that is not in line with the movement vector. The time spent looking off angle A **4204** is indicated as being more than that of the time spent looking off angle B **4214**. This may be because the movement vector speed A is lower than movement vector speed B. The faster the person moves forward the more the person tends to look in the forward direction, typically. The FOVs A 4218 and B 4222 illustrate how content may be aligned depending on the movement vectors 4202 and 4210 and sight vectors **4208** and **4212**. FOV A **4218** is illustrated as presenting content in-line with the sight vector **4220**. This may be due to the lower speed of the movement vector A **4202**. This may also be due to the prediction of a larger amount of time spent looking off angle A **4204**. FOV B **4222** is illustrated as presenting content in line with the movement vector **4224**. This may be due to the higher speed of movement vector B **4210**. This may also be due to the prediction of a shorter amount of time spent looking off angle B **4214**.

[0258] Another aspect of the present invention relates to damping a rate of content position change within the field of view. As illustrated in FIG. **43**, the sight vector may undergo a rapid change **4304**. This rapid change may be an isolated event or it may be made at or near a time when other sight vector changes are occurring. The wearer's head may be turning back and forth for some reason. In embodiments, the rapid successive changes in sight vector may cause a damped rate of content position change **4308** within the FOV **4302**. For example, the content may be positioned with respect to the sight vector, as described herein, and the rapid change in sight vector may normally cause a rapid content position change; however, since the sight vector is successively changing, the rate of position change with respect to the sight vector may be damped, slowed, or stopped. The position rate change may be altered based on the rate of change of the sight vector, average of the sight vector changes, or otherwise altered.

[0259] Another aspect of the present invention relates to simultaneously presenting more than one content in the field of view of a see-through optical system of a HWC **102** and positioning one content with the sight heading and one content with the movement heading. FIG. **44** illustrates two FOV's A **4414** and B **4420**, which correspond respectively to the two identified sight vectors A **4402** and B **4404**. FIG. **44** also illustrates an object in the environment **4408** at a position relative to the sight vectors A **4402** and B **4404**. When the person is looking along sight vector A **4402**, the environment object **4408** can be seen through the field of view A **4414** at position **4412**. As illustrated, sight heading aligned content is presented as TEXT in proximity with the environment object **4412**. At the same time, other content **4418** is presented in the field of view A **4414** at a

position aligned in correspondence with the movement vector. As the movement speed increases, the content **4418** may shift as described herein. When the sight vector of the person is sight vector B **4404** the environmental object **4408** is not seen in the field of view B **4420**. As a result, the sight aligned content **4410** is not presented in field of view B **4420**; however, the movement aligned content **4418** is presented and is still dependent on the speed of the motion.

[0260] FIG. **45** shows an example set of data for a person moving through an environment over a path that starts with a movement heading of 0 degrees and ends with a movement heading of 114 degrees during which time the speed of movement varies from 0 m/sec to 20 m/sec. The sight heading can be seen to vary on either side of the movement heading while moving as the person looks from side to side. Large changes in sight heading occur when the movement speed is 0 m/sec when the person is standing still, followed by step changes in movement heading.

[0261] Embodiments provide a process for determining the display heading that takes into account the way a user moves through an environment and provides a display heading that makes it easy for the user to find the displayed information while also providing unencumbered see-through views of the environment in response to different movements, speed of movement or different types of information being displayed.

[0262] FIG. **46** illustrates a see-through view as may be seen when using a HWC wherein information is overlaid onto a see-through view of the environment. The tree and the building are actually in the environment and the text is displayed in the see-through display such that it appears overlaid on the environment. In addition to text information such as, for example, instructions and weather information, some augmented reality information is shown that relates to nearby objects in the environment.

[0263] In an embodiment, the display heading is determined based on speed of movement. At low speeds, the display heading may be substantially the same as the sight heading while at high speed the display heading may be substantially the same as the movement heading. In embodiments, as long as the user remains stationary, the displayed information is presented directly in front of the user and HWC. However, as the movement speed increases (e.g. above a threshold or continually, etc.) the display heading becomes substantially the same as the movement heading regardless of the direction the user is looking, so that when the user looks in the direction of movement, the displayed information is directly in front of the user and HMD and when the user looks to the side the displayed information is not visible.

[0264] Rapid changes in sight heading can be followed by a slower change in the display heading to provide a damped response to head rotation. Alternatively, the display heading can be substantially the time averaged sight heading so that the displayed information is presented at a heading that is in the middle of a series of sight headings over a period of time. In this embodiment, if the user stops moving their head, the display heading gradually becomes the same as the sight heading and the displayed information moves into the display field of view in front of the user and HMD. In embodiments, when there is a high rate of sight heading change, the process delays the effect of the time averaged sight heading on the display heading. In this way, the effect of rapid head movements on display heading is reduced and the positioning of the displayed information within the display field of view is stabilized laterally.

[0265] In another embodiment, display heading is determined based on speed of movement where at high-speed, the display heading is substantially the same as the movement heading. At mid-speed the display heading is substantially the same as a time averaged sight heading so that rapid head rotations are damped out and the display heading is in the middle of back and forth head movements.

[0266] In yet another embodiment, the type of information being displayed is included in determining how the information should be displayed. Augmented reality information that is connected to objects in the environment is given a display heading that substantially matches the sight heading. In this way, as the user rotates their head, augmented reality information comes into

view that is related to objects that are in the see-through view of the environment. At the same time, information that is not connected to objects in the environment is given a display heading that is determined based on the type of movements and speed of movements as previously described in this specification.

[0267] In yet a further embodiment, when the speed of movement is determined to be above a threshold, the information displayed is moved downward in the display field of view so that the upper portion of the display field of view has less information or no information displayed to provide the user with an unencumbered see-through view of the environment.

[0268] FIGS. **47** and **48** show illustrations of a see-through view including overlaid displayed information. FIG. **47** shows the see-through view immediately after a rapid change in sight heading from the sight heading associated with the see-through view shown in FIG. **46** wherein the change in sight heading comes from a head rotation. In this case, the display heading is delayed. FIG. **48** shows how at a later time, the display heading catches up to the sight heading. The augmented reality information remains in positions within the display field of view where the association with objects in the environment can be readily made by the user.

[0269] FIG. **49** shows an illustration of a see-through view example including overlaid displayed information that has been shifted downward in the display field of view to provide an unencumbered see-through view in the upper portion of the see-through view. At the same time, augmented reality labels have been maintained in locations within the display field of view so they can be readily associated with objects in the environment.

[0270] In a further embodiment, in an operating mode such as when the user is moving in an environment, digital content is presented at the side of the user's see-through FOV so that the user can only view the digital content by turning their head. In this case, when the user is looking straight ahead, such as when the movement heading matches the sight heading, the see-through view FOV does not include digital content. The user then accesses the digital content by turning their head to the side whereupon the digital content moves laterally into the user's see-through FOV. In another embodiment, the digital content is ready for presentation and will be presented if an indication for it's presentation is received. For example, the information may be ready for presentation and if the sight heading or predetermined position of the HWC 102 is achieved the content may then be presented. The wearer may look to the side and the content may be presented. In another embodiment, the user may cause the content to move into an area in the field of view by looking in a direction for a predetermined period of time, blinking, winking, or displaying some other pattern that can be captured through eye imaging technologies (e.g. as described herein elsewhere).

[0271] In yet another embodiment, an operating mode is provided wherein the user can define sight headings wherein the associated see-through FOV includes digital content or does not include digital content. In an example, this operating mode can be used in an office environment where when the user is looking at a wall digital content is provided within the FOV, whereas when the user is looking toward a hallway, the FOV is unencumbered by digital content. In another example, when the user is looking horizontally digital content is provided within the FOV, but when the user looks down (e.g. to look at a desktop or a cellphone) the digital content is removed from the FOV. [0272] Another aspect of the present invention relates to collecting and using eye position and sight heading information. Head worn computing with motion heading, sight heading, and/or eye position prediction (sometimes referred to as "eye heading" herein) may be used to identify what a wearer of the HWC **102** is apparently interested in and the information may be captured and used. In embodiments, the information may be characterized as viewing information because the information apparently relates to what the wearer is looking at. The viewing information may be used to develop a personal profile for the wearer, which may indicate what the wearer tends to look at. The viewing information from several or many HWC's **102** may be captured such that group or crowd viewing trends may be established. For example, if the movement heading and sight heading

are known, a prediction of what the wearer is looking at may be made and used to generate a personal profile or portion of a crowd profile. In another embodiment, if the eye heading and location, sight heading and/or movement heading are known, a prediction of what is being looked at may be predicted. The prediction may involve understanding what is in proximity of the wearer and this may be understood by establishing the position of the wearer (e.g. through GPS or other location technology) and establishing what mapped objects are known in the area. The prediction may involve interpreting images captured by the camera or other sensors associated with the HWC **102**. For example, if the camera captures an image of a sign and the camera is in-line with the sight heading, the prediction may involve assessing the likelihood that the wearer is viewing the sign. The prediction may involve capturing an image or other sensory information and then performing object recognition analysis to determine what is being viewed. For example, the wearer may be walking down a street and the camera that is in the HWC **102** may capture an image and a processor, either on-board or remote from the HWC 102, may recognize a face, object, marker, image, etc. and it may be determined that the wearer may have been looking at it or towards it. [0273] FIG. **50** illustrates a cross section of an eyeball of a wearer of an HWC with focus points that can be associated with the eye imaging system of the invention. The eyeball **5010** includes an iris **5012** and a retina **5014**. Because the eye imaging system of the invention provides coaxial eye imaging with a display system, images of the eye can be captured from a perspective directly in front of the eye and inline with where the wearer is looking. In embodiments of the invention, the eye imaging system can be focused at the iris **5012** and/or the retina **5014** of the wearer, to capture images of the external surface of the iris **5012** or the internal portions of the eye, which includes the retina **5014**. FIG. **50** shows light rays **5020** and **5025** that are respectively associated with capturing images of the iris **5012** or the retina **5014** wherein the optics associated with the eye imaging system are respectively focused at the iris **5012** or the retina **5014**. Illuminating light can also be provided in the eye imaging system to illuminate the iris 5012 or the retina 5014. FIG. 51 shows an illustration of an eye including an iris **5130** and a sclera **5125**. In embodiments, the eye imaging system can be used to capture images that include the iris **5130** and portions the sclera **5125**. The images can then be analyzed to determine color, shapes and patterns that are associated with the user. In further embodiments, the focus of the eye imaging system is adjusted to enable images to be captured of the iris **5012** or the retina **5014**. Illuminating light can also be adjusted to illuminate the iris **5012** or to pass through the pupil of the eye to illuminate the retina **5014**. The illuminating light can be visible light to enable capture of colors of the iris **5012** or the retina **5014**, or the illuminating light can be ultraviolet (e.g. 340 nm), near infrared (e.g. 850 nm) or mid-wave infrared (e.g. 5000 nm) light to enable capture of hyperspectral characteristics of the eye. [0274] FIG. **53** illustrates a display system that includes an eye imaging system. The display system includes a polarized light source **2958**, a DLP **2955**, a quarter wave film **2957** and a beam splitter plate **5345**. The eye imaging system includes a camera **3280**, illuminating lights **5355** and beam splitter plate **5345**. Where the beam splitter plate **5345** can be a reflective polarizer on the side facing the polarized light source **2958** and a hot mirror on the side facing the camera **3280**. Wherein the hot mirror reflects infrared light (e.g. wavelengths 700 to 2000 nm) and transmits visible light (e.g. wavelengths 400 to 670 nm). The beam splitter plate **5345** can be comprised of multiple laminated films, a substrate film with coatings or a rigid transparent substrate with films on either side. By providing a reflective polarizer on the one side, the light from the polarized light source **2958** is reflected toward the DLP **2955** where it passes through the quarter wave film **2957** once, is reflected by the DLP mirrors in correspondence with the image content being displayed by the DLP 2955 and then passes back through the quarter wave film 2957. In so doing, the polarization state of the light from the polarized light source is changed, so that it is transmitted by the reflective polarizer on the beam splitter plate **5345** and the image light **2971** passes into the lower optics module **204** where the image is displayed to the user. At the same time, infrared light **5357** from the illuminating lights **5355** is reflected by the hot mirror so that it passes into the lower

reflected by the user's eye and this light passes back through the lower optics module **204**, is reflected by the hot mirror on the beam splitter plate **5345** and is captured by the camera **3280**. In this embodiment, the image light **2971** is polarized while the infrared light **5357** and **2969** can be unpolarized. In an embodiment, the illuminating lights 5355 provide two different infrared wavelengths and eye images are captured in pairs, wherein the pairs of eye images are analyzed together to improve the accuracy of identification of the user based on iris analysis. [0275] FIG. **54** shows an illustration of a further embodiment of a display system with an eye imaging system. In addition to the features of FIG. 53, this system includes a second camera 5460. Wherein the second camera **5460** is provided to capture eye images in the visible wavelengths. Illumination of the eye can be provided by the displayed image or by see-through light from the environment. Portions of the displayed image can be modified to provide improved illumination of the user's eye when images of the eye are to be captured such as by increasing the brightness of the displayed image or increasing the white areas within the displayed image. Further, modified displayed images can be presented briefly for the purpose of capturing eye images and the display of the modified images can be synchronized with the capture of the eye images. As shown in FIG. **54**, visible light **5467** is polarized when it is captured by the second camera **5460** since it passes through the beam splitter **5445** and the beam splitter **5445** is a reflective polarizer on the side facing the second camera **5460**. In this eye imaging system, visible eye images can be captured by the second camera **5460** at the same time that infrared eye images are captured by the camera **3280**. Wherein, the characteristics of the camera 3280 and the second camera 5460 and the associated respective images captured can be different in terms of resolution and capture rate. [0276] FIGS. **52***a* and **52***b* illustrate captured images of eyes where the eyes are illuminated with structured light patterns. In FIG. **52***a*, an eye **5220** is shown with a projected structured light pattern **5230**, where the light pattern is a grid of lines. A light pattern of such as **5230** can be provided by the light source **5355** show in FIG. **53** by including a diffractive or a refractive device to modify the light **5357** as are known by those skilled in the art. A visible light source can also be included for the second camera **5460** shown in FIG. **54** which can include a diffractive or refractive to modify the light **5467** to provide a light pattern. FIG. **52***b* illustrates how the structured light pattern of **5230** becomes distorted to **5235** when the user's eye **5225** looks to the side. This distortion comes from the fact that the human eye is not spherical in shape, instead the iris sticks out slightly from the eyeball to form a bump in the area of the iris. As a result, the shape of the eye and the associated shape of the reflected structured light pattern is different depending on which direction the eye is pointed, when images of the eye are captured from a fixed position. Changes in the structured light pattern can subsequently be analyzed in captured eye images to determine the direction that the eye is looking.

optics module **204** where it illuminates the user's eye. Portions of the infrared light **2969** are

[0277] The eye imaging system can also be used for the assessment of aspects of health of the user. In this case, information gained from analyzing captured images of the iris 5012 is different from information gained from analyzing captured images of the retina 5014. Where images of the retina 5014 are captured using light 5357 that illuminates the inner portions of the eye including the retina 5014. The light 5357 can be visible light, but in an embodiment, the light 5357 is infrared light (e.g. wavelength 1 to 5 microns) and the camera 3280 is an infrared light sensor (e.g. an InGaAs sensor) or a low resolution infrared image sensor that is used to determine the relative amount of light 5357 that is absorbed, reflected or scattered by the inner portions of the eye. Wherein the majority of the light that is absorbed, reflected or scattered can be attributed to materials in the inner portion of the eye including the retina where there are densely packed blood vessels with thin walls so that the absorption, reflection and scattering are caused by the material makeup of the blood. These measurements can be conducted automatically when the user is wearing the HWC, either at regular intervals, after identified events or when prompted by an external communication. In a preferred embodiment, the illuminating light is near infrared or mid infrared (e.g. 0.7 to 5

microns wavelength) to reduce the chance for thermal damage to the wearer's eye. In another embodiment, the polarizer **3285** is antireflection coated to reduce any reflections from this surface from the light **5357**, the light **2969** or the light **3275** and thereby increase the sensitivity of the camera **3280**. In a further embodiment, the light source **5355** and the camera **3280** together comprise a spectrometer wherein the relative intensity of the light reflected by the eye is analyzed over a series of narrow wavelengths within the range of wavelengths provided by the light source **5355** to determine a characteristic spectrum of the light that is absorbed, reflected or scattered by the eye. For example, the light source **5355** can provide a broad range of infrared light to illuminate the eye and the camera **3280** can include: a grating to laterally disperse the reflected light from the eye into a series of narrow wavelength bands that are captured by a linear photodetector so that the relative intensity by wavelength can be measured and a characteristic absorbance spectrum for the eye can be determined over the broad range of infrared. In a further example, the light source **5355** can provide a series of narrow wavelengths of light (ultraviolet, visible or infrared) to sequentially illuminate the eye and camera **3280** includes a photodetector that is selected to measure the relative intensity of the series of narrow wavelengths in a series of sequential measurements that together can be used to determine a characteristic spectrum of the eye. The determined characteristic spectrum is then compared to known characteristic spectra for different materials to determine the material makeup of the eye. In yet another embodiment, the illuminating light **5357** is focused on the retina **5014** and a characteristic spectrum of the retina **5014** is determined and the spectrum is compared to known spectra for materials that may be present in the user's blood. For example, in the visible wavelengths 540 nm is useful for detecting hemoglobin and 660 nm is useful for differentiating oxygenated hemoglobin. In a further example, in the infrared, a wide variety of materials can be identified as is known by those skilled in the art, including: glucose, urea, alcohol and controlled substances. FIG. 55 shows a series of example spectrum for a variety of controlled substances as measured using a form of infrared spectroscopy (ThermoScientific Application Note **51242**, by C. Petty, B. Garland and the Mesa Police Department Forensic Laboratory, which is hereby incorporated by reference herein). FIG. 56 shows an infrared absorbance spectrum for glucose (Hewlett Packard Company 1999, G. Hopkins, G. Mauze; "In-vivo NIR Diffusereflectance Tissue Spectroscopy of Human Subjects," which is hereby incorporated by reference herein). U.S. Pat. No. 6,675,030, which is hereby incorporated by reference herein, provides a near infrared blood glucose monitoring system that includes infrared scans of a body part such as a foot. United States Patent publication 2006/0183986, which is hereby incorporated by reference herein, provides a blood glucose monitoring system including a light measurement of the retina. Embodiments of the present invention provide methods for automatic measurements of specific materials in the user's blood by illuminating at one or more narrow wavelengths into the iris of the wearer's eye and measuring the relative intensity of the light reflected by the eye to identify the relative absorbance spectrum and comparing the measured absorbance spectrum with known absorbance spectra for the specific material, such as illuminating at 540 and 660 nm to determine the level of hemoglobin present in the user's blood.

[0278] Another aspect of the present invention involves using a head-worn computer as a therapeutic device. The head-worn computer can provide light, content, sound, haptic feedback, etc. all in a coordinated and regulated fashion to effect a user. It has been shown that each of the several effects that can be generated by a head-worn computer can effect how a user is affected. For instance, certain studies suggest that the brain communicates within itself at a frequency of 40 Hz and that changes in the brain can be affected by reinforcing the 40 Hz with external stimulus. This has been shown to effect people with Alzheimer's. As another example, Seasonal Affect Disorder ("SAD") is a disorder that effects people when they do not have enough light during the shorter winter months. It has been shown that high brightness lighting at the right time of day (e.g. early morning) can improve a person's SAD induced disorder. By way of a further example, the head-worn computer may operate in a time-zone adjustment mode where the presentation of light,

content, sound, etc. can be tailored and coordinated to help a traveler adjust to a new time-zone. The traveler may be traveling by plane, for example, crossing several time-zones, and the headcomputer may cause a stimulus to be presented such that the person makes a transition. [0279] In addition to delivering therapy, the head-worn computer may keep track of when therapy sessions take place, are due, have been missed, etc. The head-worn computer may also be used to provide the user with feedback on therapy sessions (e.g. how long each one was, which stimuli was applied and how it was applied), etc. In embodiments, the head-worn computer may be used to conduct an evaluation or test of the person's performance based on the provided therapy. The evaluation may be completed by providing content in a display of the head-worn computer (e.g. a see-through display, a non-see-through display). The evaluation may involve the user answering questions or providing other direct response. The evaluation may involve eye imaging, motion detection, or other automatic systems for interpreting a test. For example, with eye tracking, the user's eye can be evaluated to understand pupil response, blink rate, eye movement patters, etc. and an inertial measurement unit ("IMU") may be used to evaluate head, body, body part, etc. movement. Each of the measured responses may be compared to prior responses, a standard, etc., in an effort to understand the effectiveness of the therapy and/or to adjust future therapy sessions. This type of therapy/evaluation/feedback can be used to treat any disorder that is affected by one of the provided stimulus.

[0280] A head-worn computer with see-through ability may further be used during normal activities in life such that the stimuli can be in the 'background' such that the person is not generally aware of the stimuli and can continue daily activities while getting therapy. In embodiments, the headworn computer may provide therapy in a subtle fashion such that the therapy can be provided while the user is performing ordinary life tasks. For example, the head-worn computer may have a seethrough display such that the user can see the surrounding environment through the display while light, content, sound, haptic feedback, etc. are provided to the user. In embodiments, a 40 Hz dominate frequency may be used to provide one or more stimulus (e.g. light, sound, vibration, etc.) through the head-worn computer while the user is doing otherwise normal life activities (e.g. walking, driving, watching TV, or otherwise doing what is a usual life task). [0281] A head-worn computer according to the principles disclosed herein may be used to treat a disease affecting the brain (e.g. Alzheimers, Dementia, memory loss, depression, anxiety, PTSD, etc.). In certain situations, the brain can be affected by being exposed to stimuli at a specific frequency (e.g. 40 Hz). The head-worn computer may operate by causing its internal lighting system to produce light (e.g. high brightness light or content, low brightness light or content) that essentially pulses at 40 Hz. The pulsing light at 40 Hz, or other effective frequency or pattern, can be applied for a prescribed period of time to help the brain find its internal communication rhythm once again. In embodiments, more than one stimulus may be applied at the same time. For example, light, sound and vibration may all be pulsed at 40 Hz to cause a change in the user's behavior. The more than one stimuli may be coordinated such that they all occur in sync or out of sync, depending on the therapy, person and situation.

[0282] In embodiments, the lenses of the head-worn computer may be changed to cause either a brighter scene for the user or a darker scene for the user. A darker scene may be more desirable when the therapy is being applied when the person is stationary, for example. A lighter (e.g. more transparency in the see-through display) may be more desirable for a situation where the person is wearing the head-worn computer while moving around. To make the stimuli more immersive, a shroud (e.g. as described herein) may be mounted on the head-worn computer to shut out more of the surrounding environmental light. In a further embodiment, the user may be provided with a user interface to change the intensity of each stimulus. In embodiments, the intensity may be changed, regulated or modulated automatically depending on the therapy or responses to the therapy.

[0283] In embodiments, the therapeutic stimuli may be provided while providing content (e.g. entertainment content) to make the therapy session more enjoyable and possibly more effective.

For example, a movie with audio and haptics may be provided to the user and simultaneously with a 40 Hz dominate frequency. The movie content, or other entertainment content (e.g. music, images, a game, etc.), may 'pulse' at 40 Hz at an intensity that is sufficient to affect the brain. In embodiments, the content is provided with a highlighted element to keep the user's attention. For example, a relatively large ball may be provided as the content and the ball may pulse at 40 Hz. In embodiments, the color of the content may be adjusted depending on the therapy or the user. For example, some patients become less sensitive to particular colors as the eyes change with age or are affected by disease or injury. If a person has become desensitized to green, for example, the content or light may be caused to be more blue or red. In embodiments, a color may be selected or changed based on testing that suggests the user is more sensitive to certain colors or that certain colors provide more effective therapy. In embodiments, the colors may change during the therapy. For example, the light may modulate between red, green and blue, or other colors, at the 40 Hz rate or some multiple of the 40 Hz rate. In embodiments, the color more slowly changes during the therapy (e.g. over a period of second, minutes, or hours).

[0284] As another example, the head-worn computer may be used to effect a user with SAD. The user may be prompted to use the head-worn computer at a certain time of day (e.g. in the morning). In embodiments, the stimulus (e.g. color(s) of the light, timing of therapy reminders, sounds, haptics) may be selected, regulated and modulated based on the person, geographic location, time of year, time of day, weather, etc. For example, the user may be prompted to use the head-worn computer first thing in the morning and the light produced may be relatively high intensity with a redish or orange hue to simulate the morning sky. In other embodiments, the light first thing in the morning may be bluish to simulate a mid-day sky if it is more effective. The color may change over the course of the therapy to simulate time changes in the day light color. In embodiments, the headworn computer automatically changes the timing and the stimulus based on the geographic location of the user. If the user is up north, he may be more susceptible to SAD so the therapy routine may be different for him (e.g. more intense, more time, more sessions in the day) as compared to when he is in a southern location. Time of year and weather predictions or current weather may also affect how and when the stimulus is applied. If it is winter time in the northern hemisphere and the user is in the north with thick cloudy whether, the head-worn computer may be adapted to provide altered stimulus (e.g. more intense, more time, more sessions in the day) as compared to a sunny day in the south.

[0285] As yet another example, the head-worn computer may be used to ease the negative effects of traveling across time zones. In embodiments, the user may be prompted to wear the head-worn computer at one or more times during travel such that stimulus can be applied to affect the user's mood, alertness, anxiety, mental state, etc. For example, the user may be prompted to wear the head-worn computer an hour before landing in a different time zone, mid-way through the flight, or at other times. The routine and stimulus applied may be effected by the number of time zones, time of year, time of day, time of day at leaving, time of arrival, country changes, duration of travel, etc. The head-worn computer may automatically configure itself as a travel companion based on it knowing the user's flight information and conditions at the place of leaving and the place of arriving. For example, if the person is flying at night and arriving in the morning, the head-worn computer may only alert the user for a therapy session before landing to cause the person to become alert and awake. If the person is flying through the day, the head-worn computer may cause 'daylight' to be simulated at several points during the flight. In embodiments, the head-worn computer may continue to provide the stimulus while allowing the person to see-through to the environment.

[0286] While many of the embodiments herein involve a computer display, it should be understood that a therapy session according to the principles of the present disclosure may be provided with a lighting system that does not necessarily provide content. The lighting system may be a LED(s), OLED, LCD, etc. to provide the desired light without the need for content.

[0287] Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC. All documents referenced herein are hereby incorporated by reference.

Claims

- 1. A wearable device, comprising: one or more sensors; a lighting system adapted to provide a light signal to a user; an audio system adapted to provide an audio signal to the user; a haptic system adapted to provide a haptic signal to the user; and one or more processors adapted to perform a method comprising: presenting a stimulus, wherein the presenting the stimulus comprises one or more of: presenting, to the user via the lighting system, a light signal comprising a component at a first frequency; presenting, to the user via the audio system, an audio signal comprising a component at the first frequency; and presenting, to the user via the haptic system, a haptic signal comprising a component at the first frequency, wherein the stimulus is configured to cause changes in the user's brain by reinforcing a brain communication frequency; determining, via the one or more sensors, a response of the user to the stimulus; and adjusting a level of one or more of the light signal, the audio signal, and the haptic signal based on the response.
- **2**. The wearable device of claim 1, wherein the method further comprises determining, via the one or more sensors, an activity of the user.
- **3.** The wearable device of claim 2, wherein the determining the activity of the user comprises determining whether the user is moving.
- **4.** The wearable device of claim 2, further comprising a display, wherein: the determining the activity of the user comprises determining that the user is stationary, and the method further comprises in accordance with the determination that the user is stationary, reducing a brightness of the display.
- **5.** The wearable device of claim 2, further comprising a display, wherein: the determining the activity of the user comprises determining that the user is moving, and the method further comprises in accordance with the determination that the user is moving, increasing a brightness of the display.
- **6.** The wearable device of claim 1, wherein levels of one or more of the light signal, the audio signal, and the haptic signal are determined based on an input from the user.
- 7. The wearable device of claim 6, further comprising a display, wherein the display is further adapted to present a user interface associated with the input.
- **8**. The wearable device of claim 1, wherein the stimulus is presented based on a time of a user's environment.
- **9.** The wearable device of claim 1, further comprising a display, wherein the display is further adapted to present digital content concurrently with the stimulus presentation.
- **10.** The wearable device of claim 9, wherein the digital content comprises a component at the first frequency.
- **11**. The wearable device of claim 1, wherein the brain communication frequency includes 40 Hz.
- **12**. The wearable device of claim 1, wherein the response is determined via an image of a user's eye, the image captured via the one or more sensors.
- **13**. The wearable device of claim 1, wherein the response is determined via user movements, the user movements determined via the one or more sensors.
- **14.** The wearable device of claim 1, further comprising a display, wherein a brightness of the display is adjusted based on one or more outputs of the one or more sensors.
- **15**. The wearable device of claim 1, wherein the stimulus is presented based on a location of the user, the location determined via the one or more sensors.

- **16**. A method comprising: presenting a stimulus, wherein the presenting the stimulus comprises one or more of: presenting, to the user via a lighting system of a wearable device, a light signal comprising a component at a first frequency; presenting, to the user via an audio system of the wearable device, an audio signal comprising a component at the first frequency; and presenting, to the user via a haptic system of the wearable device, a haptic signal comprising a component at the first frequency, wherein the stimulus is configured to cause changes in the user's brain by reinforcing a brain communication frequency; determining, via one or more sensors of the wearable device, a response of the user to the stimulus; and adjusting a level of one or more of the light signal, the audio signal, and the haptic signal based on the response.
- **17**. The method of claim 16, further comprising determining, via the one or more sensors, an activity of the user.
- **18**. The method of claim 16, wherein the response is determined via an image of a user's eye, the image captured via the one or more sensors.
- **19**. The method of claim 16, wherein the response is determined via user movements, the user movements determined via the one or more sensors.
- **20**. The method of claim 16, further comprising adjusting, based on one or more outputs of the one or more sensors, a brightness of a display of the wearable device.