Отчет о выполнении лабораторной работы 3.4.2 "Закон Кюри-Вейсса"

Алпатова Александра и Калашников Михаил, Б03-205

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются:

- катушка самоиндукции с образцом из гадолиния;
- термостат;
- частотомер;
- цифровой вольтметр;
- LC-автогенератор;
- термопара медь-константан.

1. Теоретические сведения

2. Экспериментальная установка

3. Подготовка приборов к работе

- 1. Перед началом работы термостат был предварительно охлажден до $14^{\circ}C$.
- 2. Включим в сеть автогенератор, частотометр GFC-8010 и вольтметр B7-78.
- 3. Для обеспечения требуемой точности измерений, рассчитаем при каком показании вольтметра температура термостата и образца отличаются на $\Delta T = 0.5^{\circ}C$:

$$U_0 = \frac{\Delta T}{\kappa} = \frac{0.5^{\circ} C}{24 \, rac{^{\circ} C}{^{\scriptscriptstyle{
m MB}}}} pprox 0.02 \, {
m MB}$$

При дальнейшем нагревании термостата будем дожидаться пока показания вольтметра снизятся до U_0 .

4. Проведение измерений

- 4. Начнем постепенно нагревать термостат до ${}^{\circ}C$, фиксируя показания приборов каждые 2 ${}^{\circ}C$ и занося их в таблицу 1. Период колебаний без образца равен $\tau_0 = 9.045$ мкс.
- 5. Закончив измерения, отключим все приборы.

5. Обработка данных

6. Рассчитаем температуру образца с учетом показаний термостата по формуле: $T=T_{exp}+\kappa U$. Построим графики $(\tau^2-\tau_0^2)=f(T)$ (рис. 1) и $1/(\tau^2-\tau_0^2)=f(T)$ (рис. 2). Аппроксимируем первый график гиперболой и найдем на нем точку Кюри гадолиния.

$$\Theta = 284.4 \pm 0.8~\mathrm{K}$$

На втором графике проведем прямую МНК через точки, начиная с пятой — c этого момента зависимость выходит на асимптоту. Найдем парамагнитную точку Кюри Θ_p как пересечение данной прямой и оси абсцисс.

$$\Theta_p = 291 \pm 9 \text{ K}$$

6. Приложения

Рис. 1: График зависимости $(\tau^2 - \tau_0^2) = f(T)$

Рис. 2: График зависимости $1/(\tau^2 - \tau_0^2) = f(T)$