B Piso Flutuante

Limite de Tempo: 5s

Gustavo recebeu a tarefa de cobrir um corredor retangular, de dimensões $w \times h$ metros quadrados, com piso flutuante. O piso flutuante é composto por peças retangulares de dimensões $1 \times h$ metros quadrados.

Contudo, não foi especificado a maneira como as peças deveriam ser dispostas, e Gustavo percebeu que há várias maneiras de cobrir o corretor. Por exemplo, a figura abaixo ilustra as quatro formas de se ladrilhar um corredor de dimensões 5×3 .

Conhecidos os valores de w e h, determine a quantidade de maneiras distintas que as peças podem ser dispostas em um corredor de dimensões $w \times h$. Considere que todas as peças são idênticas e que elas se unem perfeitamente, sem deixar nenhum espaço entre elas após o encaixe.

Entrada

A entrada consiste em uma série de T ($1 \le T \le 100$) casos de teste, onde o valor de T é dado na primeira linha da entrada.

Cada caso de testes é composto pelos inteiros w e h ($1 \le w, h \le 10^6$), separados por um espaço em branco.

Saída

Para cada caso de teste a saída deve ser uma linha contendo a mensagem "Caso t: N", onde t é o número do caso de teste e N é a quantidade de maneiras distintas que as peças podem ser dispostas. Como este número pode ser muito grande, imprima o resto da divisão dele por $10^9 + 7$.

Exemplos de entradas	Exemplos de saídas
4	Caso 1: 4
5 3	Caso 2: 1
1 1	Caso 3: 2
2 2	Caso 4: 3
4 3	