MATH 104 TUTORIAL 6

1. Use L'Hopital's Rule to evaluate the limits.

a.
$$\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$$

$$\lim_{x \to \infty} \frac{5x^2 - 3x}{7x^2 + 1}$$
 b.
$$\lim_{x \to \infty} \frac{2x^2 + 3x}{x^3 + x + 1}$$

c.
$$\lim_{x \to \infty} \frac{5x^3 - 2x}{7x^3 + 3}$$

c.
$$\lim_{x \to \infty} \frac{5x^3 - 2x}{7x^3 + 3}$$
 d. $\lim_{x \to 0} \frac{\sin x - x}{x^3}$

e.
$$\lim_{x \to 0^+} x^x$$

f.
$$\lim_{x \to \infty} (1 + 2x)^{1/(2 \ln x)}$$

2. Find the value.

$$\sin\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$

3. Find the derivative of y.

a.
$$y = \sin^{-1}(1 - t)$$
 b. $y = \tan^{-1}(\ln x)$

b.
$$y = \tan^{-1}(\ln x)$$

4. Evaluate the integrals.

a.
$$\int \frac{dx}{\sqrt{9-x^2}}$$

b.
$$\int_0^1 \frac{4 \, ds}{\sqrt{4 - s^2}}$$

$$\int \frac{dx}{9+3x^2}$$