Wk1_W: Introduction

CSCI3170 24T1 Introduction to Database Systems

A Gentle Revision

- What do you notice?
- How many observations/ records are there?

sid [‡]	sname [‡]	asg1 [‡]	asg2 [‡]	asg3 [‡]	exam [‡]
1155100001	Rick	90	100	95	88
1155100002	Ryan	100	80	85	76
1155100003	Bruno	100	85	75	82
1155100004	Alice	70	55	80	64
1155100005	Bob	55	30	35	42

Tabular Formats

- (data table/ data frame) two dimensional structure
 - "Structured data is when data is in a standardized format, has a well-defined structure"

A Family of Structured Data

- "Structured data is highly specific and is stored in a predefined format"
 - Very easily used by machine learning (ML) algorithms

A Family of Structured Data

There are three type of data

Unstructured Data

The university has 5600 students. Shaun (ID Number: 160801), 18 years old Communication study. Linh with ID number 160802, majoring in Accounting and is 20 years old. Ahmed from Psychology study program, 19 years old, ID number 160803.

Semi-Structured Data

<University>
<ID Number="160801">
<Name="Shaun">
<Age="18">
<Program="Communication">
<ID Number="160802">
<Name="Linh">
<Age="20">
<Program="Accounting">
........</University>

Structured Data

ID	Name	Age	Program
160801	Shaun	18	Communication
160802	Linh	20	Accounting
160803	Ahmed	19	Psychology

Why Study Databases?

- Most significant modern computer application rely on huge quantities of data.
- Data will always have to be:
 - stored (typically on a disk device)
 - manipulated/accessed (efficiently, effectively)
 - o shared (by many users, concurrently)
 - transmitted (all around the Internet)
- Red points are handled by databases; brown by networks.

Big Data

- There are many different types of data: text data, image data, audio data, video data, etc.
- The amount of data grows very fast.

```
1,180,591,620,717,411,303,424 (2<sup>70</sup>) byte
Zettabyte
                         1,152,921,504,606,846,976 (2<sup>60</sup>) byte
Exabyte
                         1,125,899,906,842,624 (2<sup>50</sup>) byte
Petabyte
                         1,099,511,627,776 (2<sup>40</sup>) byte
Terabyte
                         1,073,741,824 (2<sup>30</sup>) byte
Gigabyte
                         1,048,576 (2<sup>20</sup>) byte
Megabyte
                         1,024 (2^{10}) byte
Kilobyte
Byte
                         1 byte
```

The Vs of Big Data

Volume:

The amount of data matters.

Variety:

The many types of data that are available.

• Velocity:

Desire for data to be received and acted on quickly.

Veracity:

Accuracy of your data, how well it conforms to facts.

Value:

Data is of no use until that value is discovered

Internet of Things

Web Graphs

Biological Networks

Social Networks

Types of Data (Revisited)

Data that is Unstructured

- No need to pre-define the data
- Requires expertise to prepare the data due to its non-formatted nature
- Can be a combination of various data

Data that is Structured

- Stored with a rigid and strict schema
- Can be organized into relational databases

Data Science Skills Employers Want

- Writing SQL Queries & Building Data Pipelines (KDnuggets 2022)
 - "Learning how to write robust SQL queries and scheduling them on a workflow management platform like Airflow will make you extremely desirable as a data scientist, hence why it's point #1."

Some Resources

- 1. https://www.coursera.org/articles/sql-skills
- 2. https://www.knowledgehut.com/blog/database/databasege-future
- 3. https://blogs.451research.com/information-managemen-t/?s=relational+database
- 4. https://db-engines.com/en/ranking

Files vs. DBMS

File based system:

- Contains various information on a storage device
- Files (such as txt files, object files, source files)

First issue:

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Lacking support for expressive queries
 - we need additional programs to answer different queries.

Why Database Systems (1)

Drawbacks of using file systems to store data:

- Integrity problems
 - Integrity constraints become "buried" in program code rather than being clearly kept and stated
 - Hard to add new constraints or change existing ones

Why Database Systems (2)

Drawbacks of using file systems to store data (cont.):

- Atomicity of updates
 - Failures may leave the data in an inconsistent state
- Hard to allow concurrent access by multiple users
 - Uncontrolled concurrent accesses can lead to inconsistencies

Why Database Systems (3)

Strength of DBMS to store data (cont.):

- Data Independence (to be covered later)
 - Application program should not be exposed to details of data representation and storage.
 - DBMS provides an abstract view of the data that hides such details.
- Moreover, database systems offer solutions to all the aforementioned problems

Other Adv. of a DBMS (1)

- Data Integrity and Security
 - DBMS can enforce access controls that govern what data is visible to different classes of users.

- Concurrent Access and Crash Recovery
 - DBMS schedules concurrent access such that users can think of the data as being accessed by only one user at a time.
 - Protects users from the effects of system failures.

What is a DBMS?

 A database management system (DBMS) is a software package designed to assist in maintaining and utilizing large collections of data.

Part 1: What is a Database?

- A collection of data.
 - Typically describing the activities of one or more related organizations.
- Models real-world enterprise
 - Entities
 - e.g. students, professors, courses, classroom
 - Relationships between entities
 - e.g. student's enrollment in courses, professor teaching courses, and use of room for courses.

Database System

• Component modules of a DBMS and their interactions.

People who deal with databases

- Database Administrator (DBA)
 - The ones with central control over the database(s)
 - Responsible for the following tasks:
 - Schema definition/modification
 - Storage structure definition/modification
 - Authorization of data access
 - Integrity constraints specification
 - Database Recovery

People who deal with databases

Sophisticated users

Those who form request in database query languages.

Naive users

 Those who invoke application programs that have been written previously e.g., transfer fund between accounts.

People who deal with databases

Application Programmers

- Those who write programs (Cobol, C, Java) with embed DML calls or develop packages with software tools provided by the DBMS vendor.
- Example: programs that generates payroll checks, transfer funds between accounts etc.

Systems Analyst

- Determine end users requirements
- Develop specs. for canned transactions and reports
- May also take part in database design

Revisit Adv. of a DBMS

- Data Administration
 - DBMS Provides facilities for
 - Organizing data representation to minimize redundancy
 - fine-tuning the storage of data to make retrieval efficient
- Reduced Application Development Time
 - DBMS supports important functions that are common to many applications
 - High-level interface

Architecture of a DBMS

Source: Database System Concept, 6th edition

In Conclusion

- Hopefully, you now know...
 - course structure
 - who to contact (where to seek help before emailing me)
 - how you're assessed and scored
 - the database applications around you
 - what goes on in databases (and is interested)
- Next Week: ER Diagram, (some) Data Modelling

Next Week

An example of an ER data model

Data Model

Data model:

 the concepts used to describe the allowed structure of a database. i.e., the structure of the data.

• 3 Levels of Data Models:

- 1. High-level or conceptual e.g., ER model concerns entities, attributes and relationships (Next Week)
- 2. Implementation or record-based *e.g., Relational, Network, Hierarchical*
- Low-level or physical

Data Model (cont) Concepts

Database Schema:

 a formalism of the data model, the structural description of what information will database holds

Database Instance (or State):

 any combination of actual information populated in the database at a particular time.

Checking understanding:

- 1. We define a database by specifying its schema.
- 2. The state is then an empty instance of the schema.
- 3. After this, each change in state is an update to the instance.

Semantic Data Model

- A semantic data model is a very abstract, high-level data model.
 - For a user to come up with a good initial description of the data in an enterprise.
- Entity-relationship (ER) model
 - A widely used semantic data model.
 - Allows us to pictorially denote entities and the relationships among them.

Relational Data Model

 Most DBMS today are based on the relational data model.

Relation

- the central data description construct in this model.
- It can be thought of as a set of records.
- A table with rows and columns.
 - Row a record
 - Column field, attribute.

sid	name	login	age	gpa
53666	Jones	Jones@cs	18	3.4
53688	Smith	Smith@ee	18	3.2
53650	Smith	Smith@math	19	3.8
53831	Madayan	Madayan@music	11	1.8
53832	Guldu	guldu@music	12	2.0

An example of a student relation

- A description of data in terms of a data model is called a schema.
- The schema of the above table is

Students(sid: string, name: string, login: string,

age: integer, gpa: real)

End

• Feedback is welcomed