Greatest Common Divisor

Definition

The greatest common divisor (gcd) of two or more non-zero integers is the largest positive integer that divides the numbers without a remainder

Example

The common divisors of 36 and 60 are 1_{α} 2_{α} 3_{α} 4_{α} 6_{α} 12 The greatest common divisor gcd(36,60) = 12

The greatest common divisor exists always because of the set of common divisors of the given integers is non-empty and finite

The Euclidean algorithm

The algorithm to compute gcd(a,b) for positive integers a and b

Input: Positive integers a and b_a assume that a > b **Output:** gcd(a,b)

- while *b* > 0do
 - 1 $r := a \mod b$
 - 2 a := b
 - 3 b := r

od

■ return(a)

Example: compute gcd(2322,654)

а	b
2322	654
654	360
360	294
294	66
66	30
30	6
6	0

Correctness of the Euclidean algorithm

Theorem

If r is a remainder of division of a by b_n then

$$gcd(a,b) = gcd(b,r)$$

Proof. It follows from the equality a = bq + r that

- 1 if d|a and d|b, then d|r
- 2 if d|b and $d|r_{i}$ then d|a

In other words, the set of common divisors of a and b equals to the set of common divisors of b and r, recomputing of (b, r) does not change the greatest common divisor of the pair

The number returned r = gcd(r, 0)

QED

Complexity of the Euclidean algorithm

Theorem

The number of steps of the Euclidean algorithm applied to two positive integers a and b is at most

$$1 + \log_2 a + \log_2 b.$$

Proof. Let consider the step where the pair (a,b) is replaced by (b,r) Then we have r < b and $b+r \leqslant a$ Hence $2r < r+b \leqslant a$ or br < ab/2 This is that the product of the elements of the pair decreases at least 2 times If after k cycles the product is still positive, then $ab/2^k > 1$, that gives

$$k \leqslant \log_2(ab) = \log_2 a + \log_2 b$$

GCD as a linear combination

Theorem (Bézout's identity)

Let d = gcd(a, b) Then d can be written in the form

$$d = as + bt$$

where s and t are integers. In addition,

$$gcd(a,b) = min\{n \ge 1 \mid \exists s, t \in \mathbb{Z} : n = as + bt\}.$$

For example: a = 360 and b = 294

$$gcd(a,b) = 294 \cdot (-11) + 360 \cdot 9 = -11a + 9b$$

Application of EA: solving of linear Diophantine Equations

Corollary

Let a, b and c be positive integers. The equation

$$ax + by = c$$

has integer solutions if and only if c is a multiple of gcd(a,b)

The method: Making use of Euclidean algorithm, compute such coefficients s and t that sa + tb = gcd(a, b) Then

$$x = \frac{cs}{\gcd(a, b)}$$
$$y = \frac{ct}{\gcd(a, b)}$$

Linear Diophantine Equations (2)

Example: 92x + 17y = 3

From EA:			
	a	b	Seos
Ī	92	17	
	17	7	$92 = 5 \cdot 17 + 7$
Ī	7	3	$17 = 2 \cdot 7 + 3$
Ī	3	1	$7 = 2 \cdot 3 + 1$
	1	0	

Transformations:

$$1 = 7 - 2 \cdot 3$$

$$= 7 - 2 \cdot (17 - 7 \cdot 2) = (-2) \cdot 17 + 5 \cdot 7 =$$

$$= (-2) \cdot 17 + 5 \cdot (92 - 5 \cdot 17) = 5 \cdot 92 + (-27) \cdot 17$$

gcd(92,7)|3 yields a solution

$$x = \frac{3 \cdot 5}{\gcd(92,17)} = 3 \cdot 5 = 15$$
$$y = \frac{3 \cdot (-27)}{\gcd(92,17)} = -3 \cdot 27 = -81$$

Linear Diophantine Equations (3)

Example: 5x + 3y = 2

\rightarrow many solutions

$$gcd(5,3) = 1$$

As
$$1 = 2 \cdot 5 + 3 \cdot 3$$
, then one solution is:

$$y = -3 \cdot 2 = -6$$

 $x = 2 \cdot 2 = 4$

As $1 = (-10) \cdot 5 + 17 \cdot 3$, then another solution is:

$$x = -10 \cdot 2 = -20$$

$$y = 17 \cdot 2 = 34$$

Example: $15x + 9y = 8 \rightarrow \text{no solutions}$

Whereas, gcd(15,9) = 3, then the equation can be expressed as

$$3\cdot (5x+3y)=8.$$

The left-hand side of the equation is divisible by 3, but the right-hand side is not, therefore the equality cannot be valid for any integer x and y.

More about Linear Diophantine Equations (1)

• General solution of a Diophantine equation ax + by = c is

$$\begin{cases} x = x_0 + \frac{kb}{\gcd(a,b)} \\ y = y_0 - \frac{ka}{\gcd(a,b)} \end{cases}$$

where x_0 and y_0 are particular solutions and k is an integer.

Particular solutions can be found by means of Euclidean algorithm:

$$\begin{cases} x_0 = \frac{cs}{\gcd(a,b)} \\ y_0 = \frac{ct}{\gcd(a,b)} \end{cases}$$

- This equation has a solution (where x and y are integers) if and only if gcd(a,b)|c
- The general solution above provides all integer solutions of the equation (see proof in http://en.wikipedia.org/wiki/Diophantine_equation)

More about Linear Diophantine Equations (2)

Example: 5x + 3y = 2

We have found, that gcd(5,3) = 1 and its particular solutions are $x_0 = 4$ and $y_0 = -6$.

Thus, for any $k \in \mathbb{Z}$:

$$\begin{cases} x = 4+3k \\ y = -6-5k \end{cases}$$

Solutions of the equation for k = ..., -3, -2, -1, 0, 1, 2, 3, ... are infinite sequences of numbers:

$$x = \dots, -5, -2, 1, 4, 7, 10, 13, \dots$$

 $y = \dots, 9, 4, -1, -6, -11, -16, -21, \dots$

Among others, if k = -8, then we get the solution x = -20 ja y = 34.

Prime and composite numbers

Every integer greater than 1 is either prime or composite, but not both:

A positive integer p is called prime if it has just two divisors, namely 1 and p By convention, 1 is not prime

Prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41,...

An integer that has three or more divisors is called composite

Composite numbers: 4,6,8,9,10,12,14,15,16,18,20,21,22,...

Another application of EA

The Fundamental Theorem of Arithmetic

Every positive integer n can be written uniquely as a product of primes:

$$n=p_1\ldots p_m=\prod_{k=1}^m p_k, \qquad p_1\leqslant \cdots\leqslant p_m$$

Proof. Suppose we have two factorizations into primes

$$n = p_1 \dots p_m = q_1 \dots q_k,$$
 $p_1 \leqslant \dots \leqslant p_m \text{ and } q_1 \leqslant \dots \leqslant q_k$

Assume that $p_1 < q_1$. Since p_1 and q_1 are primes, $gcd(p_1, q_1) = 1$. That means that EA defines integers s and t that $sp_1 + tq_1 = 1$. Therefore

$$sp_1q_2...q_k + tq_1q_2...q_k = q_2...q_k$$

Now p_1 divides both terms on the left, thus $q_2 \dots q_k/p_1$ is integer that contradicts with $p_1 < q_1$. This means that $p_1 = q_1$.

Similarly, using induction we can prove that $p_2 = q_2$, $p_3 = q_3$, etc

Canonical form of integers

Every positive integer *n* can be represented uniquely as a product

$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = \prod_p p^{n_p},$$
 where each $n_p \geqslant 0$

For example:

$$600 = 2^{3} \cdot 3^{1} \cdot 5^{2} \cdot 7^{0} \cdot 11^{0} \cdots$$

$$35 = 2^{0} \cdot 3^{0} \cdot 5^{1} \cdot 7^{1} \cdot 11^{0} \cdots$$

$$5 \ 251 \ 400 = 2^{3} \cdot 3^{0} \cdot 5^{2} \cdot 7^{1} \cdot 11^{2} \cdot 13^{0} \cdot \cdots \cdot 29^{0} \cdot 31^{1} \cdot 37^{0} \cdots$$

Prime-exponent representation of integers

■ Canonical form of an integer $n = \prod_p p^{n_p}$ provides a sequence of powers $\langle n_1, n_2, \ldots \rangle$ as another representation

For example:

$$600 = \langle 3,1,2,0,0,0,\ldots\rangle$$

$$35 = \langle 0,0,1,1,0,0,0,\ldots\rangle$$

$$5 \ 251 \ 400 = \langle 3,0,2,1,2,0,0,0,0,1,0,0,\ldots\rangle$$

Prime-exponent representation and arithmetic operations

Multiplication

Let

$$m = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} = \prod_p p^{m_p}$$
$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = \prod_p p^{n_p}$$

Then

$$mn = p_1^{m_1 + n_1} p_2^{m_2 + n_2} \cdots p_k^{m_k + n_k} = \prod_p p^{m_p + n_p}$$

Using prime-exponent representation:

$$mn = \langle m_1 + n_1, m_2 + n_2, m_3 + n_3, \ldots \rangle$$

For example

$$600 \cdot 35 = \langle 3, 1, 2, 0, 0, 0, \ldots \rangle \cdot \langle 0, 0, 1, 1, 0, 0, 0, \ldots \rangle$$
$$= \langle 3 + 0, 1 + 0, 2 + 1, 0 + 1, 0 + 0, 0 + 0, \ldots \rangle$$
$$= \langle 3, 1, 3, 1, 0, 0, \ldots \rangle = 21 \ 000$$

Some other operations

The greatest common divisor and the least common multiple (Icm)

$$gcd(m,n) = \langle \min(m_1,n_1), \min(m_2,n_2), \min(m_3,n_3), \ldots \rangle$$

$$lcm(m,n) = \langle max(m_1,n_1), max(m_2,n_2), max(m_3,n_3), \ldots \rangle$$

Example

$$120 = 2^{3} \cdot 3^{1} \cdot 5^{1} = \langle 3, 1, 1, 0, 0, \dots \rangle$$
$$36 = 2^{2} \cdot 3^{2} = \langle 2, 2, 0, 0, \dots \rangle$$

$$\begin{split} & \textit{gcd}(120, 36) = 2^{\text{min}(3,2)} \cdot 3^{\text{min}(1,2)} \cdot 5^{\text{min}(1,0)} = 2^2 \cdot 3^1 = \langle 2, 1, 0, 0, \ldots \rangle = 12 \\ & \textit{lcm}(120, 36) = 2^{\text{max}(3,2)} \cdot 3^{\text{max}(1,2)} \cdot 5^{\text{max}(1,0)} = 2^3 \cdot 3^2 \cdot 5^1 = \langle 3, 2, 1, 0, 0, \ldots \rangle = 360 \end{split}$$

Properties of the GCD

Homogeneity

 $gcd(na, nb) = n \cdot gcd(a, b)$ for every positive integer n.

Proof.

Let $a = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $b = p_1^{\beta_1} \cdots p_k^{\beta_k}$, and $gcd(a,b) = p_1^{\gamma_1} \cdots p_k^{\gamma_k}$, where $\gamma_i = min(\alpha_i, \beta_i)$. If $n = p_1^{n_1} \cdots p_k^{n_k}$, then

$$gcd(na, nb) = p_{\mathbf{1}}^{min(\alpha_{\mathbf{1}} + n_{\mathbf{1}}, \beta_{\mathbf{1}} + n_{\mathbf{1}})} \cdots p_{k}^{min(\alpha_{k} + n_{k}, \beta_{k} + n_{k})} =$$

$$= p_{\mathbf{1}}^{min(\alpha_{\mathbf{1}}, \beta_{\mathbf{1}})} p_{\mathbf{1}}^{n_{\mathbf{1}}} \cdots p_{k}^{min(\alpha_{k}, \beta_{k})} p_{k}^{n_{k}} =$$

$$= p_{\mathbf{1}}^{n_{\mathbf{1}}} \cdots p_{k}^{n_{k}} p_{\mathbf{1}}^{\gamma_{\mathbf{1}}} \cdots p_{k}^{\gamma_{k}} = n \cdot gcd(a, b)$$

Q.E.D.

Properties of the GCD

GCD and LCM

 $gcd(a,b) \cdot lcm(a,b) = ab$ for every two positive integers a and b

Proof.

$$\begin{aligned} \gcd(a,b) \cdot lcm(a,b) &= p_{\mathbf{1}}^{\min(\alpha_{\mathbf{1}},\beta_{\mathbf{1}})} \cdots p_{k}^{\min(\alpha_{k},\beta_{k})} \cdot p_{\mathbf{1}}^{\max(\alpha_{\mathbf{1}},\beta_{\mathbf{1}})} \cdots p_{k}^{\max(\alpha_{k},\beta_{k})} &= \\ &= p_{\mathbf{1}}^{\min(\alpha_{\mathbf{1}},\beta_{\mathbf{1}}) + \max(\alpha_{\mathbf{1}},\beta_{\mathbf{1}})} \cdots p_{k}^{\min(\alpha_{k},\beta_{k}) + \max(\alpha_{k},\beta_{k})} &= \\ &= p_{\mathbf{1}}^{\alpha_{\mathbf{1}} + \beta_{\mathbf{1}}} \cdots p_{k}^{\alpha_{k} + \beta_{k}} &= ab \end{aligned}$$

Q.E.D.

Relatively prime numbers

Definition

Two integers a and b are said to be relatively prime (or co-prime) if the only positive integer that evenly divides both of them is 1.

Notations used:

- lacksquare gcd(a,b)=1
- a ⊥ b

For example

 16 ± 25 and 99 ± 100

Some simple properties:

■ Dividing a and b by their greatest common divisor yields relatively primes:

$$gcd\left(\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)}\right)=1$$

• Any two positive integers a and b can be represented as a = a'd and b = b'd, where $d = \gcd(a, b)$ and $a' \perp b'$

Properties of relatively prime numbers

Theorem

If $a \perp b$, then gcd(ac, b) = gcd(c, b) for every positive integer c.

Proof.

Assuming canonic representation of $a = \prod_p p^{\alpha_p}$, $b = \prod_p p^{\beta_p}$ and $c = \prod_p p^{\gamma_p}$, one can conclude that for any prime p:

- The premise $a \perp b$ implies that $p^{\min(\alpha_p,\beta_p)} = 1$, it is that either $\alpha_p = 0$ or $\beta_p = 0$.
- If $\alpha_p = 0$, then $p^{\min(\alpha_p + \gamma_p, \beta_p)} = p^{\min(\gamma_p, \beta_p)}$.
- If $\beta_p = 0$, then $p^{\min(\alpha_p + \gamma_p, \beta_p)} = p^{\min(\alpha_p + \gamma_p, 0)} = 1 = p^{\min(\gamma_p, 0)} = p^{\min(\gamma_p, \beta_p)}.$

Hence, the set of common divisors of ac and b is equal to the set of common divisors of c and b.

Q.E.D.

Consequences from the theorems above

- If $a \perp c$ and $b \perp c$, then $ab \perp c$
- 2 If a|bc and $a \perp b$, then a|c
- If $a|c_{i}|b|c$ and $a\perp b_{i}$ then ab|c

Example: compute gcd(560,315)

$$gcd(560,315) = gcd(5 \cdot 112, 5 \cdot 63) =$$

$$= 5 \cdot gcd(112,63) =$$

$$= 5 \cdot gcd(2^{4} \cdot 7,63) =$$

$$= 5 \cdot gcd(7,63)$$

$$= 5 \cdot 7 = 35$$

The number of divisors

- Canonic form of a positive integer permits to compute the number of its factors without factorization:
- If

$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k},$$

then any divisor of n can be constructed by multiplying $0, 1, \dots, n_1$ times the prime divisor p_1 , then $0, 1, \dots, n_2$ times the prime divisor p_2 etc

■ Then the number of divisors of *n* should be

$$(n_1+1)(n_2+1)\cdots(n_k+1).$$

Example

Integer 694 575 has 694 575 = $3^4 \cdot 5^2 \cdot 7^3$ on (4+1)(2+1)(3+1) = 60 factors

Number of primes

Euclid's theorem

There are infinitely many prime numbers.

Proof. Let's assume that there is finite number of primes:

$$p_1, p_2, p_3, \ldots, p_k$$
.

Consider

$$n=p_1p_2p_3\cdots p_k+1.$$

Like any other natural number, n is divisible at least by 1 and itself, i.e. it can be prime. Dividing n by p_1, p_2, p_3, \ldots or p_k yields the remainder 1. So, n should be prime that differs from any of numbers $p_1, p_2, p_3, \ldots, p_k$, that leads to a contradiction with the assumption that the set of primes is finite.

Q.E.D.

Distribution diagrams for primes

The prime counting function $\pi(n)$

Definition:

$$\pi(n)$$
 = number of primes in the set $\{1, 2, ..., n\}$

■ The first values:

$$\pi(1) = 0$$
 $\pi(2) = 1$ $\pi(3) = 2$ $\pi(4) = 2$ $\pi(5) = 3$ $\pi(6) = 3$ $\pi(7) = 4$ $\pi(8) = 4$

The Prime Number Theorem

Theorem

The quotient of division of $\pi(n)$ by $n/\ln n$ will be arbitrarily close to 1 as n gets large. It is also denoted as

$$\pi(n) \sim \frac{n}{\ln n}$$

- Studying prime tables C. F. Gauss come up with the formula in ~ 1791 .
- J. Hadamard and C. de la Vallée Poussin proved the theorem independently from each other in 1896.

The Prime Number Theorem (2)

Example: How many primes are with 200 digits?

■ The total number of positive integers with 200 digits:

$$10^{200} - 10^{199} = 9 \cdot 10^{199}$$

Approximate number of primes with 200 digits

$$\pi(10^{200}) - \pi(10^{199}) pprox rac{10^{200}}{200 \ln 10} - rac{10^{199}}{199 \ln 10} pprox 1,95 \cdot 10^{197}$$

Percentage of primes

$$\frac{1,95 \cdot 10^{197}}{9 \cdot 10^{199}} \approx \frac{1}{460} = 0.22\%$$

Warmup: Extending $\pi(x)$ to positive reals

Problem

Let $\pi(x)$ be the number of primes which are not larger than $x \in \mathbb{R}$.

Prove or disprove: $\pi(x) - \pi(x-1) = [x \text{ is prime}].$

Solution

The formula is true if x is integer: but x is real . . .

But clearly $\pi(x) = \pi(\lfloor x \rfloor)$: then

$$\pi(x) - \pi(x-1) = \pi(\lfloor x \rfloor) - \pi(\lfloor x - 1 \rfloor)$$

$$= \pi(\lfloor x \rfloor) - \pi(\lfloor x \rfloor - 1)$$

$$= [|x| \text{ is prime}],$$

which is true.

