Open-Shell Random Phase Approximation : Application to Atomisation Energies and Energy Barrier Heights

B. Mussard^{a,b}, J. Toulouse^b, E. Luppi^b, P. Reinhardt^b

^a Institut du Calcul et de la Simulation, Université Pierre et Marie Curie, CNRS, 75005 Paris, France ^b Laboratoire de Chimie Theorique, Université Pierre et Marie Curie, CNRS, 75005 Paris, France

bastien.mussard@upmc.fr

srLDA,srPBE,..

RSH+RPA formulation

 $rac{ ext{erf}\left(\mu r_{ij}
ight)}{r_{ij}}$

Range separation^[1] with the range-separation parameter μ :

$$E_{\text{exact}} = \min_{\Psi} \left\{ \langle \Psi | \hat{T} + \hat{V}_{ne} + \hat{W}_{ee}^{\text{lr}} | \Psi \rangle + E_{Hxc}^{\text{sr}} [n_{\Psi}] \right\}$$

Single determinant approximation:

 $E_0 = \min_{\Phi} \left\{ \langle \Phi | \hat{T} + \hat{V}_{ne} + \hat{W}_{ee}^{lr} | \Phi \rangle + E_{Hxc}^{sr}[n_{\Phi}] \right\}$

Adding long-range correlation:

lrMP2,lrRPA,...

$$E_{\text{exact}} = E_0 + E_c^{\text{lr}}$$

There is a wide variety of RPA formulations and variants^[2], focus is here brought to : $dRPA-I^{[2]}$ and $Szabo-Ostlund\ 2\ (SO2)^{[3]}$.

(dRPA-I includes in no way exchange effects; SO2 is a variant of RPA that fully includes exchange effects.)

Performance on energies

Study on the S22 set of weakly-interacting molecular systems^[3] ($\mu = 0.5 \text{ bohr}^{-1}$, srPBE functional, aug-cc-pVDZ).

It is seen that SO2 is better for the description of van der Vaals interactions[3].

All data shown are \mathbf{MAD} in $\mathbf{kcal.mol}^{-1}$ of atomization energies of the $\mathbf{AE6}$ dataset and of barrier heights of reactions of the $\mathbf{BH6}$ dataset.

Dependence on the basis set

 $(\mu = 0.5 \text{ bohr}^{-1}, \text{ srPBE functional, spin unrestricted}^{[4]})$

- > As expected, the use of range separation facilitates
 the convergence with respect to the basis set.
- > All range-separated methods give about the same accuracy.

Dependence on μ

(cc-pVQZ, srPBE functional, spin unrestricted^[4])

(lr)SO2(lr)SOSEX

 \triangleright The canonical value of $\mu = 0.5 \text{ bohr}^{-1}$ is here again a sound choice.

RSH+SO2 is a good method

 $(\mu = 0.5 \text{ bohr}^{-1}, \text{ cc-pVQZ}, \text{ srPBE functional, spin unrestricted}^{[4]})$

▶ Range-separation generally improves the results.

40 HF RSH 20

MP2 dRPA-I SO2

Szabo-Ostlund 2 confirms it's position of leader in the RSH+RPA categories of methods.

CONCLUSION AND OUTLOOK

- ▶ Most RPA formulations and variants have been **generalized toopen-shell** expressions.
- ⊳ Working implementation as been done in **MOLPRO**[5].
- ▷ Open-shell (RSH+)RPA calculations have successfully been applied to the **AE6 and BH6 dataset**.
- ⊳Results confirm that **RSH+SO2** is a good method to calculate: interaction energies
 - atomization energies
 - barrier heights
- ▶ Future developments could include a way to estimate spin-contamination in these RPA calculations and a spin-adapted open-shell RPA formulation.

References

- 1. Toulouse, Gerber, Jansen, Savin, Ángyán, PRL, 2009
- 2. Ángyán, Liu, Toulouse, Jansen, JCTC, 2011
- 3. Toulouse, Zhu, Savin, Jansen, Ángyán, JCP, 2011
- 4. Mussard, Toulouse, Luppi, Reinhardt, to be published
- 5. MOLPRO 2012.1, Werner, Knowles, Knizia, Manby, Schütz