MSRI Soergel bimodule workshop

June/July 2017

Week 2 Day 3 Morning: Basic Exercises

Jones and HOMFLY polynomials

- **1.** Compute the trace of $s_1 s_2 \dots s_{n-1}$ acting on $V^{\otimes n}$, where $V = \mathbb{C}^2$, in two ways: directly, and using the Temperley-Lieb algebra.
- 2. Compute the Jones polynomial and the HOMFLY polynomial of the trefoil. The trefoil is the closure of σ^3 in the braid group on two strands.

Cell theory

- **3.** This question explores the cell theory of various algebras with fixed basis. For each algebra, find the left cells, right cells, and two-sided cells. What do the cell modules look like?
 - a) A matrix algebra, with its basis of matrix entries.
 - b) A product of matrix algebras, with its basis of matrix entries for each term in the product.
 - c) A polynomial ring $\mathbb{C}[x]$, with the basis $\{x^k\}$.
 - d) A polynomial ring $\mathbb{C}[x]$, with the basis $\{1, x, x^2 1, x^3 2x, \ldots\}$. To interpret this basis, consider the ring $\mathbb{C}[q, q^{-1}]$, and the subring of invariants under $q \mapsto q^{-1}$. This subring is a polynomial ring generated by x = [2], and the basis described is $\{[n]\}$.
- **4.** Compute the left cells, right cells, and two-sided cells for the Hecke algebra $\mathbf{H}(S_4)$ with its Kazhdan-Lusztig basis. Do the same for every dihedral group.

Robinson-Schensted

5. Pick a few random elements of S_{10} and apply the Schensted algorithm to find the corresponding triple (P, Q, λ) .

Schur-Weyl duality

- **6.** a) Why does $(1 s_i s_{i+1} + s_i s_{i+1} + s_{i+1} s_i s_i s_{i+1} s_i)$ act trivially on $V^{\otimes n}$, for $V = \mathbb{C}^2$?
 - b) What is the kernel of the action of $\mathbb{C}[S_4]$ on $V^{\otimes 4}$, when $V = \mathbb{C}^3$?

 Jucys-Murphy elements

7.

Clearly $H_{s_i}j_iH_{s_i}=j_{i+1}$, by definition. Deduce that

$$H_{s_i} j_i = j_{i+1} H_{s_i} + X \tag{1}$$

for some X. Find X.

- 8. Let A denote the subalgebra of $\mathbf{H}(S_n)$ generated by j_i , j_{i+1} , and $H = H_{s_i}$. Let x be an eigenvector for both j_i and j_{i+1} in some \mathbf{H} module, with eigenvalues λ_i and λ_{i+1} respectively. The relation (1) implies that the subspace $A \cdot x$ is at most 2-dimensional, spanned by x and Hx.
 - a) Suppose that x and Hx are colinear. What does this imply about the eigenvalues $(\lambda_i, \lambda_{i+1})$? (There are two cases.)
 - b) Suppose that x and Hx are not colinear. Find another eigenvector y for j_i and j_{i+1} (linearly independent from v), and compute its eigenvalues.
 - c) (Optional) Find the matrix for H in the basis $\{x, y\}$, assuming that $\lambda_i = v^a$ and $\lambda_j = v^b$. This is called Young seminormal form.