Total Synthesis of (±)-Ginkgolide B

Crimmins, M. T.; Pace, J. M.; Nantermet, P. G.; Kim-Meade, A. S.; Thomas, J. B.; Watterson, S. H.; Wagman, A. S. *J. Am. Chem. Soc.* **1999**, *121*, 10249–10250.

'*'t*-Bu

C

- 1) t-Bu₂CuCNLi₂
- 2) i-Bu₂AlH
- 3) MgBr—==
- 4) TESCI
- 5) n-BuLi, CICO₂Et

- 6) **D**, THF/HMPA
- 7) hv, 366 nm
- 8) aq. HF, then MsCl, NEt₃
- 9) EtOH, reflux, then benzene PPTS
- 10) PhSeCl, HCl, then NalO₄

Step 3: Only the syn alcohol is used. How would you recycle the *anti*-diasteromer?

$$\mathbf{D} = \left(EtO_2 C \right)_2^{\mathsf{ZnCu}}$$

How can **D** be prepared?

Step 8: Hint: the benzene, PPTS step is needed to complete conversion

- 11) DMDO, then H₂O, *p*-TsOH
- 12) MeOH, p-TsOH, CH(OMe)₃
- 13) CS₂, DBU, then Mel
- 14) AIBN, Bu₃SnH, 60 °C
- 15) HNEt2, t-BuLi, Davis oxaziridine;
- 16) (EtCO)₂O, Et₃N

- 17) LDA, -78 °C
- 18) CSA, MeOH
- 19) PPTS, pyridine, C₆H₅Cl, reflux
- 20) VO(acac)₂, t-BuOOH, then *p*-TsOH
- 21) DMDO
- 22) HOAc, NaOAc, Br₂

Step 17: Diastereomeric mixture obtained. Only the syn is used in the further steps