Les réseaux informatiques

I) Les types de réseaux

Un réseau informatique permet de connecter plusieurs machine entre elles.

Grâce au développement d'internet, cela a permis à un utilisateur de stocker ses données sur une machine à distance et de pouvoir accéder à ces données.

Le principale modèle utilisé est basé sur le modèle client-serveur. Les utilisateurs se connectent à un routeur qui redirige les demandes vers le serveur.

Un autre modèle de réseau existe appelé **poste à poste (peer to peer: P2P)**. Dans ce modèle les utilisateurs sont reliés entre eux et les données sont stockés sur l'ensemble des machines du réseau. Ainsi pour récupérer des données on peut faire des requêtes sur plusieurs ordinateurs. Le temps d'accès des données dépend donc des connections avec les membres du groupe ou de leurs disponibilités sur les machines des utilisateurs.

Activité 1:

Rechercher la définition des réseaux suivants.

Туре	Signification/Traduction	Utilisation
VPN :	Virtual personal networks Réseaux privés virtuels	Sert à relier les réseaux individuels de différents sites en un seul réseau étendu.
P2P		
Hotspots		
Bluetooth		
46		
G PS		

II) Caractéristiques physiques des réseaux

On distingue 2 types de technologie de transmission des données : la diffusion et le point-à-point.

Le point-à-point : (unicast)

Pour les liens point-à-point connectent des paires de machines individuelles. Pour aller de sa sources à sa destination un paquet de données passe par différentes machines (routeur, serveur, ordinateur). De ce fait pour atteindre sa destination il existe plusieurs chemins possibles. Il convient de trouver la meilleur route permettant d'acheminer les données.

La transition point-à-point entre exactement un émetteur et un destinataire est appelée envoie individuel ou diffusion individuel

La diffusion : (broadcast)

C'est un réseau constitué d'un unique canal de transition des données qui est partagé par l'ensemble des utilisateurs, les paquets de données sont reçus par l'ensemble des machines. Dans chaque paquet, un champ d'adresse permet d'identifier le destinataire réel. A la réception d'un paquet de données la machine lit ce champ et procède au traitement du paquet ou l'ignore si le champs n'est pas reconnu.

Le tableau suivant représente plusieurs système classés en fonction de leur taille.

Distances	Emplacement	Type de réseaux
1 m	A porter de main	Réseau personnel : PAN Personal Area Network
10 m	Une salle	
100 m	Un immeuble ou restaurant	Réseau local : LAN
1 km	Un établissement scolaire	Local Area Network
10 km	Une ville	Réseau métropolitain : MAN Metropolitan Area Network
100 km	Un pays	Réseau longue distance : WAN
1 000 km	Un continent	Wide Area Network
10 000 km	La planète	Internet

Activité 2:

Pour chaque élément de la liste de matériel, indiquer un réseau sur lequel il peut intervenir. Donner un exemple de son utilisation.

Matériel	Réseau	Utilisation
Téléphone bluetooth		
Imprimante d'entreprise		
Capteur de présence		
Mini station météo		

III) Les protocoles Internet

Pour la transmission de données, il y a 2 grands modèles que l'on peut considérer.

Protocole TCP / IP Transmission Control Protocol Internet Protocol

a) Le modèle OSI : Open Systèm Interconnection

Il est formé de 7 couches allant des applications vers la transmission physique des données sous la forme de bites.

- 1) La couche physique : converti les données en paquet de données sous la forme de bits
- 2) La couche de liaison de données : C'est elle qui gère les communications entre 2 machines directement connectées entre elles, ou connectées par un commutateur.
- 3) La couche réseau : Elle gère l'adressage et le routage des données, c'est-à-dire leur acheminement via le réseau.
- 4) La couche de transport : Elle est chargée du transport des données, c'est-à-dire de leur découpage en paquets. Elle gère aussi les erreurs de transmission.
- 5) La couche de session : C'est elle qui définit l'ouverture et la fermeture des sessions de communication entre les machines du réseau.
- 6) La couche présentation: Elle est chargée du codage des données applicatives.
- 7) La couche d'application : Elle qui assure l'interface avec les applications. Il s'agit du niveau le plus proche des utilisateurs.

b) Le modèle TCP/IP

L'architecture du modèle TCP/IP reprend en partie les couches du modèle OSI en regroupant ses dernière. Ce protocole est constitué de 4 couches.

- 1) La couche Link/Réseau: C'est équivalent de la couche physique et données du modèle OSI.
- 2) La couche Internet : Elle permet d'acheminer les données de la source vers la destination. C'est ici que le protocole IP fonctionne.
- 3) La couche Transport : Elle est équivalente à la couche transport du modèle OSI.
- 4) La couche Application : Elle fait l'interface entre l'application et le transport des données.

c) Encapsulation

Pour transmettre les données ces dernières suivent le chemin représenté par le schéma suivant.

En passant chaque couche on attribue une entête (**Header**) associée à la couche. Quand toute les couches ont été traversées, le message est transmis. Le récepteur retire un à un les différents **Headers** pour obtenir le message de départ.

Activité 3:

Pour chaque terme rechercher une définition puis indiquer dans quelle partie du système TCP/IP on peut l'y inclure : Réseau, Internet, Transport ou application.

Termes	Couche	Définition
Page Web		
TeamViewer		
Fibre optique		
ТСР		
Carte réseau		
Wifi		
НТТР		
UDP		
DNS		
Masque sous réseau		
ToIP		
Discord		