Numerical bootstrap

Jinyuan Wu

Department of Physics, Fudan University

June 3, 2022

Numerical methods for strongly correlated systems

Strongly correlated systems

- Fermi liquid: interaction correction of Fermi gas
- Strongly correlated systems: something non-perturbative happens

Numerical approaches

- DQMC: discrete path integral and discrete Hubbard-Stratonovich transformation
- DMRG (MERA, PEPS): tensor network wave function ansatz
- Diagrammatic Monte-Carlo: stochastic summation of Feynman diagrams
- DMFT: self-energy correction + impurity model

What's in common: All with unobservable objects, be it the path integral or wave function or Feynman diagram or . . .

Introduction

What's bootstrap

- A model = expectations of all operators
 - Hamiltonian/Lagrangian ⇔ "probability distribution"
 - independent $\langle O \rangle$'s \Leftrightarrow parameters in the model ("data")
- Probability distribution \Rightarrow Equality constraint on $\{\langle O \rangle\}$ without carrying out substantial calculation
 - Trivial example: Wick theorem
 - Conformal symmetry
- Inequality constraint \Rightarrow allowed range of $\langle O \rangle$'s
 - Positivity of $\langle O^{\dagger}O \rangle$
 - Relaxed equational constraints
- Obtaining estimation of physical quantities without the wave function/path integral ("out of nothing"): hence the name bootstrap

Example: conformal bootstrap

- The most famous example: conformal bootstrap
- Constraints: (spinless) two-point function

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2\Delta_{\mathcal{O}}}},$$
 (1)

three-point function

$$\langle \mathcal{A}(x)\mathcal{B}(y)\mathcal{C}(z)\rangle = \frac{f_{\mathcal{A}\mathcal{B}\mathcal{C}}}{|x-y|^{\Delta_{\mathcal{A}}+\Delta_{\mathcal{B}}-\Delta_{\mathcal{C}}}|y-z|^{\Delta_{\mathcal{B}}+\Delta_{\mathcal{C}}-\Delta_{\mathcal{A}}}|z-x|^{\Delta_{\mathcal{C}}+\Delta_{\mathcal{A}}-\Delta_{\mathcal{B}}}}$$
(2)

Higher order correlation functions: OPEs.

- Independent parameters: $\{\Delta_{\mathcal{O}}, \mathit{I}_{\mathcal{O}}, \mathit{f}_{\mathcal{ABC}}\}$
- Self-consistent conditions: determining the range of parameters

How to perform bootstrap for a generic system?

• The data: Correlation functions cannot be reduced to countably infinite parameters: no $\{\Delta_{\mathcal{O}}, I_{\mathcal{O}}, f_{\mathcal{ABC}}\}$.

Solution Store the normal-ordered $\{\langle O_i \rangle\}$ set (a basis of the operator space) with a cutoff. This is the data. Using equational constraints to reduce the size of data.

Example:

$$\langle px^3 \rangle = \langle x^3p \rangle - 3i \langle x^2 \rangle.$$
 (3)

Data used: $\{\langle x^3p\rangle\,,\,\langle x^2\rangle\}\in\{\langle x^mp^n\rangle\}$

How to perform bootstrap for a generic system?

• The equality constraints Solution $\rho = e^{-\beta H}/Z$, $[\rho, H] = 0$, then for all operators O

$$\langle OH \rangle = \operatorname{tr}(\rho(H)OH) = \operatorname{tr}(H\rho(H)O) = \operatorname{tr}(\rho(H)HO) = \langle HO \rangle,$$

$$\langle [O, H] \rangle = 0 \tag{4}$$

Similarly, suppose C is a symmetry of the system, we have

$$\langle [O,C] \rangle = 0. \tag{5}$$

There are linear constraints w.r.t the operator basis $\{O_i\}$. For energy eigenstates (i.e with definite but unknown E), we have

$$\langle OH \rangle = E \langle O \rangle, \quad E = \langle H \rangle.$$
 (6)

This is a nonlinear constraint.

Example of equality constraint Suppose $H = x^2 + p^2 + x^4$, then

$$\langle [H, xp] \rangle = 0$$

gives linear constraint

$$\langle p^2 \rangle - \langle x^2 \rangle - 2 \langle x^4 \rangle = 0,$$
 (7)

and

$$\langle xp \cdot H \rangle = E \langle xp \rangle$$

gives nonlinear constraint

$$\langle xp^{3}\rangle + \langle x^{3}p\rangle - 2i\langle x^{2}\rangle + \langle x^{5}p\rangle - 4i\langle x^{4}\rangle - \langle xp\rangle\langle x^{2}\rangle - \langle xp\rangle\langle p^{2}\rangle - \langle xp\rangle\langle x^{4}\rangle = 0.$$
 (8)

- The equality constraints together with the positivity constraint $\langle O^{\dagger}O\rangle \geq 0$ for every O defines a feasible domain.
- This is an **semidefinite programming (SDP)** problem:

$$M_{ij} = \langle O_i^{\dagger} O_j \rangle = \sum_k c_{ij}^k \langle O_k \rangle, \quad M \ge 0.$$
 (9)

- ⟨[O, C]⟩ = 0: linear SDP, convex feasible domain, min ⟨H⟩ ⇔ ground state information
- \(\langle OH \rangle = \langle H \rangle \langle O \rangle:\) nonlinear
 SDP, nonconvex feasible domain; a connected component
 = an eigenstate (or a continuous spectrum)

Some technical aspects of the problem

Linear SDP

- $\langle [H, O] \rangle = 0$, thermal states allowed
- Convex optimization¹, Linear objective
 ⇒ minimum at the edge
- Mature solvers like SCS or CSDP²

Nonlinear SDP

- $\langle HO \rangle = E \langle O \rangle$, there are optimization variables in E, eigenstates only
- No solver mature enough³

¹See Wikipedia

²https://github.com/cvxgrp/scs, https://github.com/coin-or/Csdp

³See the discussion before Sec. 1.1 in arXiv 2108.04830. Also, no nonlinear solver supporting SDP is listed in the solver list of JuMP.jl.

The procedure of numerical bootstrap

Input data:

- N basis operators $\{O_i\}$, normal ordered with a length cutoff
- Commutation rules, normal ordering rules, etc. so that O_iO_j can be expanded in terms of $\{O_i\}$
- Data of equality constraints: Hamiltonian, symmetry, etc.

Building the optimization problem:

- **1** Declare N variables $\{X_i\}$, $X_i = \langle O_i \rangle$ after optimization
- ② Impose equality constraints on $\{X_i\}$ according to e.g. $\langle [H,O] \rangle = 0$
- **1** Imposing semidefinite constraint on $M_{ij} = \langle O_i^{\dagger} O_j \rangle$ (expanded into linear combination of $\{X_i\}$)

Why we need numerical bootstrap

- Because it doesn't fail with strong non-perturbative effects.⁴
- Because if done correctly, it gives the *lower* bound of ground state energy
 - ullet Density matrix = linear functional ${\cal F}$ from operators to numbers
 - Predicted $E_0 = \min_{\mathcal{F} constrained} \mathcal{F}[H]$
 - Real ground state also constrained \Rightarrow real $E_0 \ge$ predicted E_0
 - Upper and lower bounds for all physical quantities:

$$\min_{E_{lb} \le \langle H \rangle_{\rho} \le E_{ub}} \langle O \rangle_{\rho} \le \langle O \rangle_{\rho_0} \le \max_{E_{lb} \le \langle H \rangle_{\rho} \le E_{ub}} \langle O \rangle_{\rho} \tag{10}$$

11/27

Examples

Anharmonic oscillator and Hubbard model

Main topics of my thesis

Double-well potential⁵

- Non-perturbative: instanton effect
- Solved in a similar way of the anharmonic oscillator
- Dilute instanton approximation works with two wells well separated

Matrix model⁶

- Hard to solve otherwise
- (Inherent) nonlinear constraints
 - Relaxed bootstrap in Sec. 4 in arXiv 2108.04830
 - trust-region sequential SDP in Xizhi Han's code

12 / 27

⁵See arXiv 2108.11416

⁶See arXiv 2108.04830 and arXiv 2004.10212

The anharmonic oscillator⁷: famous failure of perturbation theory⁸

$$H = x^2 + p^2 + gx^4. (11)$$

- Equality constraints from symmetry: $x \to -x \Rightarrow \langle x^n \rangle = 0$ with odd n
- Equality constraints from Hamiltonian:
 - $\mathcal{O} = x^s$ and $\mathcal{O} = x^t p$ in $\langle [H, \mathcal{O}] \rangle = 0$
 - $\mathcal{O} = x^{t-1}$ in $\langle \mathcal{O}H \rangle = E \langle \mathcal{O} \rangle$
- So finally we have

$$E = 2 \langle x^{2} \rangle + 3g \langle x^{4} \rangle,$$

$$4tE \langle x^{t-1} \rangle + t(t-1)(t-2) \langle x^{t-3} \rangle - 4(t+1) \langle x^{t+1} \rangle$$

$$-4g(t+2) \langle x^{t+3} \rangle = 0$$
(12)

- Only independent variables: $\{\langle x^2 \rangle, E\}$, so nonlinear SDP is possible
- SDP constraint: $M_{ij} = \langle x^{i+j} \rangle$, $M \ge 0, 0 \le i, j \le K$

⁷The example is provided in arXiv 2004.10212

⁸Carl M. Bender and Tai Tsun Wu, Anharmonic Oscillator, Phys. Rev. 184, 1231.

- Reproduce Fig. 1 in arXiv 2004.10212 by brutal force searching
- Numerical bootstrap can be quite precise! (high resolution Mathematica plotting required to find the allowed region)

```
expectedX[0] := 1:
expectedX[2] := x2;
expected X[4] := 1/(3 \text{ g}) (E0 - 2 \times 2);
expectedX[u_?EvenQ] :=
1 / (4 g ((-3 + u) + 2)) *
(4 (-3 + u) E0 expectedX[(-3 + u) - 1]
+(-3+u)((-3+u)-1)((-3+u)-2)
    expectedX[(-3 + u) - 3]
-4((-3+u)+1) expectedX[(-3+u)+1]);
matPositive[K_{-}] :=
Table [expected X[i+j], {i, 0, K}, {j, 0, K}];
RegionPlot
AllTrue[Eigenvalues[matPositive[9] /. g -> 1] (8)
    \# >= 0 \& 1.
{E0, 1.35, 1.44}, {x2, 0.294, 0.311},
PlotPoints -> 1001
```


Benchmark

- Solving the Schrödinger equation with finite difference method with $\Delta x = 0.05$: $E_0 = 1.3919$
- Numerical bootstrap with K = 11: $E_0 = 1.3922$

Linear SDP

- Solver: JuMP and COSMO⁹
- Operator algebra: McCoy formula

$$[x^{n}, p^{m}] = \sum_{k=1}^{\min(m,n)} \frac{-(-i\hbar)^{k} n! m!}{k! (n-k)! (m-k)!} x^{n-k} p^{m-k}.$$
 (13)

- Operator basis and cutoff: $\{x^mp^n\}$, where $0 \le m, n \le 2L$
- Hence for $O_i = x^m p^n$ in $M_{ij} = \langle O_i^{\dagger} O_j \rangle$, $0 \leq m, n \leq L$
- COSMO only support real variables \Rightarrow Declare two JuMP variables for Re O and Im O (odd $m+n \Rightarrow$ zero expectation, odd $n \Rightarrow$ imaginary, even $n \Rightarrow$ real),

$$M_{ij}
ightarrow \mathsf{Re}(M_{ij}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mathsf{Im}(M_{ij}) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$
 (14)

⁹https://jump.dev/JuMP.jl/stable/, https://oxfordcontrol.github.io/COSMO.jl/stable/

Result of linear SDP

- Successful when L is small
- But when *L* is 4... Severe convergent problem!
- Both stationary Schrödinger equation and nonlinear SDP estimate $E \approx 1.392, \langle x^2 \rangle \approx 0.306$. Not sure whether L=4 converges.
- L = 5 takes 80000000 iterations and still doesn't converge.
- Only COSMO works for L = 4; SCS and CSDP report infeasibility
- False convergence when eps_rel is not small enough (1 \times 10⁻⁵ not enough; 1 \times 10⁻¹⁰ works for L=4)

L	Ε	$\langle x^2 \rangle$	time consumption
2	1.381	0.313	0.752s, 958 iterations
3	1.387	0.305	2.501s, 1194 iterations
4	1.394	0.306	172375s, 79461867 iterations

Possible reasons of the convergence problem

- Too much time is spent on tightening the constraints. Hints:
 - In the solver log of the L=4,5 cases, first energy goes down and residue goes up, then residue goes down and energy goes up, ...
 - False convergence
 - Solution: eliminate some variables in the optimization problem
- Float precision not enough, introducing fluctuation. Hints:
 - This is the case in conformal bootstrap.
 - Diagnosis: using less precise floats for L=2,3 and checking if the problem recurs.
 - Solution: same as conformal bootstrap
- The scheme

$$M_{ij} o \operatorname{Re}(M_{ij}) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \operatorname{Im}(M_{ij}) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (15)

is bad. Hints:

- No convergence problem in Hubbard model. (strange but true . . .)
- Solution: rephrasing the anharmonic oscillator in terms of the creation and annihilation operators

Hubbard model¹⁰

$$H = -t \sum_{\langle i,j \rangle,\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{j\downarrow}$$
 (16)

is probably the most important strongly correlated electronic model.

- Half filling: small $U \Rightarrow$ Fermi liquid, large $U \Rightarrow$ Heisenberg model (Mott transition, spin-charge separation)
- Doping: t-J model, superconductivity
- Problems of various numerical approaches:
 - DQMC: sign problem when doped away from half-filling, can be tackled in some case¹¹ but no generic solution¹²
 - DMRG: works well in 1D but slow in 2D

Jinyuan Wu (Department of Physics, Fudan I

19 / 27

¹⁰arXiv 2006.06002

¹¹arXiv 2204.08777

¹²arXiv cond-mat 0408370

Linear SDP

- Solver: JuMP and COSMO
- Operator algebra: QuantumAlgebra.jl¹³
- Operator basis and cutoff: normal ordered $\{c_{\pmb{i_1}\sigma_1}^{\dagger}c_{\pmb{i_2}\sigma_2}^{\dagger}\cdots c_{\pmb{i_n}\sigma_n}\}$, $n + \sum_{k=1}^{n} \| i_k \|_1 \le K$
- One JuMP variable for one operator

 ← the whole model is real
- Expectations of operators that do not keep particle number (e.g. $c_{1\uparrow}^\dagger c_{2\uparrow}^\dagger c_{1\uparrow}^\dagger c_{1\uparrow}$) and total spin (e.g. $c_{1\uparrow}^\dagger c_{1\downarrow}$) are zero
- Translational and inversion symmetry: $\langle c_{1\uparrow}^\dagger c_{1\uparrow} \rangle = \langle c_{2\uparrow}^\dagger c_{2\uparrow} \rangle$
- Electron filling: need to be explicitly imposed
 - half filling $\Rightarrow \langle n_1 \rangle = \langle n \rangle_2 = \cdots = 1$
 - doping $\Rightarrow \langle n_1 \rangle = \langle n \rangle_2 = \cdots = 0.75$, etc.
 - Not done by chemical potential (which is the case in DQMC but not in DMRG)

Jinyuan Wu (Department of Physics, Fudan I

20 / 27

¹³https://github.com/jfeist/QuantumAlgebra.jl

DMRG benchmark

- Using ITensor's fixed quantum number DMRG to find reference values
- The DMRG solution is in the feasible domain (so the implementation is correct)

1D square lattice

$n_i = 1$		U = 4	U = 6	<i>U</i> = 8	U = 10
K = 10	Ε	-0.6202	-0.4580	-0.3574	-0.2913
N = 10	$n_{i\uparrow}n_{i\downarrow}$	0.1071	0.0639	0.0406	0.0275
K = 12	E	-0.6049	-0.4466	-0.3486	-0.2842
$\kappa = 12$	$n_{i\uparrow}n_{i\downarrow}$	0.1027	0.0618	0.0394	0.0267
Exact	Ε	-0.5737	-0.4201	-0.3275	-0.2672
Exact	$n_{i\uparrow}n_{i\downarrow}$	0.1002	0.0582	0.0366	0.0248

- Approximately correct, but not as good as Xizhi Han's results
- Converges rather quickly: 20 minutes for K=12, 7×10^5 variables
- ullet Larger $U\Rightarrow$ smaller absolute error, larger relative error

1D square lattice

- Accuracy with various U
 - Expected: large $U \Rightarrow$ localized electrons, so with our local operators large U means higher accuracy
 - ullet Observed: Larger $U\Rightarrow$ smaller absolute error, larger relative error
 - What's the correct way to evaluate the accuracy of numerical bootstrap?
- Main performance bottleneck: before optimization, the step turning QuantumAlgebra.jl operators into JuMP variables

1D square lattice with doping

$n_i = 0.5$		<i>U</i> = 4	<i>U</i> = 6	<i>U</i> = 8	<i>U</i> = 10
K = 12		-0.7830 0.0168			
DMRG	$E \atop n_{i\uparrow}n_{i\downarrow}$		-0.7243 0.0114		

- Comparison of accuracy between half filling and hole doping
 - Errors larger than half filling
 - Expected: hole doping ⇒ iterant electrons, whose behavior can't be captured by local operators ⇒ poorer accuracy √
- U increase ⇒ relative and absolute errors increase??

2D square lattice

$n_i = 1$		<i>U</i> = 2	<i>U</i> = 4	<i>U</i> = 6	<i>U</i> = 8
K = 8	E $n_{i\uparrow}n_{i\downarrow}$	-1.3164 0.1602	-1.0491 0.1105	-0.8626 0.0784	-0.7276 0.0576
DMRG	E $n_{i\uparrow}n_{i\downarrow}$	-1.176(1) 0.188(1)	-0.8605(5) 0.126(1)	-0.6565(1) 0.0809(3)	-0.5241(1) 0.0539(1)

- Time consumption gets larger (no real large-scale results)
- Error analysis
 - The absolute error of E as U shows an increasing tendency (the relative error goes all the way higher)
 - The absolute error of the double occupation decreases, and the relative error shows a decreasing tendency
 - Expected: larger $U \Rightarrow$ smaller error
 - Possible reason: energy bound is not very tight

Conclusion

- Verify the result of nonlinear SDP bootstrap for anharmonic oscillator
- Linear SDP for anharmonic oscillator and convergence problem
- Linear SDP for Hubbard model, 1D, 1D doped and 2D, and error analysis

Future prospects

• Symmetry breaking: so the ground state ρ is not a function of H:

$$\lim_{\beta \to \infty} \frac{1}{Z} e^{-\beta H} = \frac{1}{2} (|\uparrow\rangle\langle\uparrow| + |\downarrow\rangle\langle\downarrow|) \neq \underbrace{|\uparrow\rangle\langle\uparrow|}_{\text{true ground state}}$$
 (17)

- Bootstrapping spin models: Heisenberg model, lattice frustration, next neighbor interaction induced frustration, spin liquids, etc.
- Bootstrapping a class of models (e.g. "all possible QM models")
 - Extending what is done in conformal bootstrap (e.g. "all possible CFTs made by σ and ϵ ") to all kind of models
- Extracting thermal information from $\langle [O, H] \rangle = 0$ bootstraps
 - What's the entropy?
 - What's the temperature in terms of operator expectations?
- What constraints are effective? (Important for scaling up and interpretation)
 - Can wave function ansatz (e.g. DMRG) provide some hints?
 - Constraints that are "almost" violated are the most important?
 - arXiv 2205.12325: bootstrap and perturbation theory