Introduction to Statistical Machine Learning Problem set 6

Alan Joseph Bekker

Gaussian Mixture Model

Suppose that we are given a training set x_1, \ldots, x_m as usual. Since we are in the unsupervised learning setting, these points do not come with any labels. We wish to model the data by specifying a joint distribution $p(x_i, z_i) = p(x_i|z_i)p(z_i)$. Here z_i has a multinomial distribution .Were $p(z_i = j) = \phi_j$, $\sum_j \phi_j = 1$ and $x_i|z_i = j \sim \mathcal{N}(\mu_j, \sigma_j)$ let k denote the number of values that the z_i can take on. Thus, our model posits that each x_i was generated by randomly choosing z_i from $1, \ldots, k$, and then x_i was drawn from one of k Gaussians depending on z_i . This is called the mixture of Gaussians model. Also, note that the z_i are latent random variables, meaning that they are hidden/unobserved. This is what will make our estimation problem difficult. In order to solve this problem and find the z_i we apply the EM algorithm as following:

- E-step For each i, j, set: $w_i^j = p(z_i = j | x_i : \phi_j, \mu_j, \sigma_j) = \frac{p(x_i | \mu_j, \sigma_j) p(z_i = j)}{\sum_{l=1}^k p(x_i | \mu_l, \sigma_l) p(z_i = l)}$
- M-step

$$\begin{split} \phi_j &= \frac{\sum_{i=1}^m w_j^i}{m} \\ \mu_j &= \frac{\sum_{i=1}^m w_j^i x^i}{\sum_{i=1}^m w_j^i} \\ \sigma_j &= \frac{\sum_{i=1}^m w_j^i (x^i - \mu_j) (x^i - \mu_j)^T}{\sum_{i=1}^m w_j^i} \end{split}$$

The assignment

Generate 2D data sampled from K = 3 Gaussians.

- 1. Determine $\alpha_1, \alpha_2, \alpha_3$ such that $\sum_i \alpha_i = 1$
- 2. Determine the $\overrightarrow{\mu_i}$ and the covariance matrix $\sigma_i = \begin{pmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{pmatrix}$ for each Gaussian distribution in such a way the data points of each dis-

tribution are almost separated with a small overlap.

- 3. Generate 1000 2D data points as following a. For each data point i raffle a label $z_i=1,2,3$ according to $\alpha_1,\alpha_2,\alpha_3$ b. Based on the label $z_i=l$ generate the point (x_i,y_i) from the corresponding distribution.
- a. Apply K-means and GMM unsupervised algorithms in order to receive the labels of the data.
- b. Compare the received labels with the real labels, which algorithm performs a better success rate?