Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 7

19.43 No to both; let $f(x) = x\chi_{[0,1)}$. Then $||f||_{\infty} = 1$, but $\{|f| = 1\} = \emptyset$.

50 Note that if $f \in L_{\infty}$ then f is a.e. equal to a bounded function, so the simple functions of the Basic Construction converge uniformly to f a.e. Hence, the simple functions are dense in L_{∞} . If E is of finite measure, all simple functions defined on E are integrable. If $m(E) = \infty$, then the integrable simple functions are not dense: take $f = \chi_E$. If $||\phi - f||_{\infty} < 1/2$, then $||\phi||_{\infty} > 1/2$, so $\int |\phi| = \infty$.

51 There's a typo in the problem statement: the exponent of m(E) should be 1/p, not (1-1/p). To see why the latter can't be right, let $f=\chi_E$, then $||f||_p=m(E)^{1/p}=m(E)^{1/p}||f||_{\infty}$. Take m(E)=2 and p=1 to see that the problem can't be correct as stated.

If $f \in L_{\infty}(E)$ with $m(E) < \infty$ and $1 \le p < \infty$, we have $||f||_p \le ||(||f||_{\infty})||_p = (m(E))^{1/p}||f||_{\infty}$. This implies $L_{\infty}(E) \subset L_p(\mathbb{R})$ with the convention that a function f defined on E is set to 0 outside of E.

If E=[0,1], this inequality reduces to $||f||_p \leq ||f||_\infty$. To see $||f||_1 \leq ||f||_p$, use Hölder's inequality: $||f||_1 = ||(1)f||_1 \leq ||1||_q ||f||_p = ||f||_p$

52 Let $f \in L_{\infty}[0,1]$. To see that $||f||_p$ is increasing as a function of p, let $1 \le r < s \le \infty$. By Hölder,

$$||f||_r = (\int |f|^r (1))^{1/r} \le ((\int |f|^{r(s/r)})^{r/s})^{1/r} = ||f||_s.$$

Since by (51) every $||f||_p$ is bounded above by $||f||_{\infty}$, we have $\lim_{p\to\infty} ||f||_p$ exists.

To show that $||f||_{\infty} \leq \lim_{p \to \infty} ||f||_p$, let $\epsilon > 0$. We have

$$||f||_{p} \ge \left(\int_{\{|f| > ||f||_{\infty} - \epsilon\}} |f|^{p} \right)^{1/p}$$

$$\ge \left((||f||_{\infty} - \epsilon)^{p} m\{|f| > ||f||_{\infty} - \epsilon\} \right)^{1/p}$$

$$= (||f||_{\infty} - \epsilon) (m\{|f| > ||f||_{\infty} - \epsilon\})^{1/p}$$

$$\to ||f||_{\infty} - \epsilon,$$

as $p \to \infty$, since $m\{|f| > ||f||_{\infty} - \epsilon\} > 0$. Thus, $||f||_{\infty} \le \lim_{p \to \infty} ||f||_p \le ||f||_{\infty}$, so $\lim_{p \to \infty} = ||f||_{\infty}$.

62 Pick a step function h such that $||f - h||_p < \epsilon/2$. If $m(A) < \delta := (\frac{\epsilon}{2||h||_{\infty}})^p$,

then

$$||f\chi_A||_p \le ||h\chi_A||_p + ||(f - h)\chi_A||_p$$

$$\le |||h||_{\infty}\chi_A||_p + (\epsilon/2)$$

$$\le ||h||_{\infty}m(A)^{1/p} + (\epsilon/2)$$

$$< \epsilon.$$

If $p = \infty$, this will not work. Take f(x) := 1. If m(A) > 0, then $||f\chi_A||_{\infty} = ||\chi_A||_{\infty} = 1$.

64(a) Case p > 1. For the boundedness, since 1 , we can use Hölder:

$$|h(x)| = |\int fT_x(g)| \le ||f||_p ||T_x(g)||_q = ||f||_p ||g||_q,$$

where the last equality follows from (63), which was proved in class. For continuity,

$$|h(x) - h(y)| = |\int f \cdot (T_x - T_y)g| \le ||f||_p ||(T_x - T_y)g||_q \to 0$$

as $y \to x$ by (63)(c).

Case p = 1. For the boundedness, note

$$|h(x)| \le \int |fT_x(g)| \le \int |f| \cdot ||g||_{\infty} = ||f||_1 ||g||_{\infty}.$$

For continuity, first note the previous estimate shows that $fT_x(g) \in L_1$, so by (63) we have

$$h(x) = \int fT_x(g)$$

$$= \int (fT_x(g))^+ - \int (fT_x(g))^-$$

$$= \int T_{-x}((fT_x(g))^+) - \int T_{-x}((fT_x(g))^-)$$

$$= \int (T_{-x}(f)g)^+ - \int (T_{-x}(f)g)^-$$

$$= \int T_{-x}(f)g,$$

where the penultimate equality is justified by the fact that for any function F, we have $T_x(F^+) = T_x(1/2(|F| + F)) = 1/2(|T_xF| + T_xF) = (T_xF)^+$ and similarly for F^- .

Thus, $|h(x) - h(y)| = |\int (T_{-x} - T_{-y})(f)g| \le ||g||_{\infty} \int |(T_{-x} - T_{-y})(f)| \to 0$ as $y \to x$ by (63)(c).

64(b) Suppose g is continuously differentiable.

Case $f = \chi_{[a,b]}$. We have $h(x) = \int_a^b g(x+t) \, dt$, so $(h(x+k) - h(x))/k = \int_a^b (g(x+k+t) - g(x+t))/k \, dt \to \int_a^b g'(x+t) \, dt \, (k \to 0)$ by the DCT, since $|(g(x+k+t) - g(x+t))/k| \le \sup_{t \in [a-1,b+1]} |g'(x+t)|$ for $t \in [a,b]$ and k < 1/2 by the MVT.

The step function case follows by linearity of the integral. Pick a step functions s_n such that $||f - s_n||_p \to 0$ and $s_n \to f$ a.e. Then

$$(h(x+k) - h(x))/k = \int f(t)(g(x+k+t) - g(x+t))/kdt$$