

# Chapter 5: The Relational Data Model and Relational Database Constraints

CS-6360 Database Design

Chris Irwin Davis, Ph.D.

Email: chrisirwindavis@utdallas.edu

**Phone:** (972) 883-3574 **Office:** ECSS 4.705

### **Chapter 3 Outline**



- 5.1 The Relational Data Model and Relational Database Constraints
- 5.2 Relational Model Constraints and Relational Database Schemas
- 5.3 Update Operations, Transactions, and Dealing with Constraint Violations



#### The Relational Data Model



#### **■** Relational model

- Based on Relational Algebra
- First commercial implementations available in early 1980s
- Has been implemented in a large number of commercial system

#### **Other Database Models**



- Physical Data Models
  - Flat File Model
  - Inverted Index Model
- Logical Data Models
  - Network Model
  - Hierarchical Model
  - Object-oriented Model
- Other Models
  - XML Database

### **Database Models**





### **Relational Model Concepts**



- Represents data as a collection of relations
  - i.e. Relational Algebra "relations" (Set Theory)
- Table of values
  - Row
    - Represents a collection of related data values
    - □ Fact that typically corresponds to a real-world entity or relationship
    - Tuple
  - Table name and Column names
  - □ Interpret the meaning of the values in each row attribute

# Relational Model Concepts (cont'd.)





**Figure 5.1**The attributes and tuples of a relation STUDENT.

### Relational Model Concepts (cont'd.)





**Figure 5.1**The attributes and tuples of a relation STUDENT.

#### **Database Implementation Names**

### Domains, Attributes, Tuples, and Relations



- Domain *D* 
  - Set of valid atomic values
- Atomic
  - Each value indivisible
- Specifying a domain
  - Data type specified for each domain

### **Examples of Domains**



- Usa\_phone\_numbers: The set of ten-digit phone numbers valid in the U.S.
- Social\_security\_numbers: The set of valid nine-digit Social Security numbers.
- Names: The set of character strings that represent names of persons.
- Grade\_point\_averages: The set of possible values of computed grade point averages; must be a real number 0 to 4.
- Employee\_ages: The set of possible ages of employees in a company; e.g. must be an integer between 15 and 80.



- Relation schema *R* 
  - Denoted by  $R(A_1, A_2, ..., A_n)$
  - Made up of a relation name R and a list of attributes,  $A_1, A_2, ..., A_n$
- $\blacksquare$  Attribute  $A_i$ 
  - $\blacksquare$  Name of a role played by some domain D in the relation schema R
- Degree (or arity) of a relation
  - Number of attributes *n* of its relation schema

### **Relation Schema Example**



- Relation with *arity* **degree** 7
  - STUDENT(Name, Ssn, Home\_phone, Address, Office\_phone, Age, Gpa)
- Using Data Types, Relations sometimes written as...
  - STUDENT(Name: string, Ssn: string, Home\_phone: string, Address: string, Office\_phone: string, Age: integer, Gpa: real)



- Relation (or relation state)
  - Set of *n*-tuples  $r = \{t_1, t_2, ..., t_m\}$
  - Each *n*-tuple *t* 
    - $\Box$  Ordered list of *n* values  $t = \langle v_1, v_2, \dots, v_n \rangle$
    - □ Each value  $v_i$ ,  $1 \le i \le n$ , is an element of  $dom(A_i)$  or is a special NULL value
  - Based on a Relation Schema



- Relation (or relation state) r(R)
  - Mathematical (i.e. Set Theory) relation of degree n on the domains  $dom(A_1)$ ,  $dom(A_2)$ , ...,  $dom(A_n)$
  - Subset of the Cartesian product of the domains that define R:
    - $\neg r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$



#### **■** Current relation state

- Relation state at a given time
- Reflects only the valid tuples that represent a particular state of the real world

#### Attribute names

Indicate different roles, or interpretations, for the domain

#### **Characteristics of Relations**



- Ordering of tuples in a relation... NOPE!
  - Indices have an order, relations do not
  - Relation defined as a set of tuples
  - Set elements (members) have no order among them
- Ordering of values within a tuple and an alternative definition of a relation
  - Order of attributes and values is not that important
  - As long as correspondence between attributes and values maintained
  - Default attribute order

## **Characteristics of Relations (cont'd.)**



#### Figure3522

The relation STUDENT from Figure 3.1 with a different order of tuples.

#### STUDENT

| Name           | Ssn         | Home_phone    | Address              | Office_phone  | Age | Gpa  |
|----------------|-------------|---------------|----------------------|---------------|-----|------|
| Dick Davidson  | 422-11-2320 | NULL          | 3452 Elgin Road      | (817)749-1253 | 25  | 3.53 |
| Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane    | NULL          | 19  | 3.25 |
| Rohan Panchal  | 489-22-1100 | (817)376-9821 | 265 Lark Lane        | (817)749-6492 | 28  | 3.93 |
| Chung-cha Kim  | 381-62-1245 | (817)375-4409 | 125 Kirby Road       | NULL          | 18  | 2.89 |
| Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane | NULL          | 19  | 3.21 |

### **Characteristics of Relations (cont'd.)**



- Alternative definition of a relation
  - Tuple considered as a set of (⟨attribute⟩, ⟨value⟩) pairs
  - Each pair gives the value of the mapping from an attribute  $A_i$  to a value  $v_i$  from  $dom(A_i)$
  - Order is explicitly not important
- However, we use the first definition of relation by convention
  - Attributes and the values within tuples are ordered
  - Simpler notation

#### **Attribute-Value Pairs**



#### Figure 5.3

Two identical tuples when the order of attributes and values is not part of relation definition.

t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home\_phone, NULL),(Address, 3452 Elgin Road), (Office\_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25), (Office\_phone, (817)749-1253),(Gpa, 3.53),(Home\_phone, NULL)>

### Characteristics of Relations (cont'd.)



- Each value in a tuple is atomic. This is called...
- Flat relational model
  - Composite and multivalued attributes not allowed
  - First normal form assumption
- Multivalued attributes
  - Must be represented by separate relations
- **■** Composite attributes
  - Represented only by simple component attributes in basic relational model

### Characteristics of Relations (cont'd.)



#### ■ NULL values

- Represent the values of attributes that may be unknown or may not apply to a tuple
- Meanings for NULL values
  - Value unknown
  - Value exists but is not available
  - Attribute does not apply to this tuple (also known as value undefined)

#### **Relational Model Notation**



- Relation schema *R* of degree n
  - Denoted by  $R(A_1, A_2, ..., A_n)$
- $\blacksquare$  Uppercase letters Q, R, S
  - Denote relation names
- $\blacksquare$  Lowercase letters q, r, s
  - Denote relation states
- $\blacksquare$  Letters t, u, v
  - Denote tuples

#### **Relational Model Notation**



- Name of a relation schema: STUDENT
  - Indicates the current set of tuples in that relation
- Notation: STUDENT(Name, Ssn, ...)
  - Refers only to relation schema
- Attribute A can be qualified with the relation name R to which it belongs
  - Using the dot notation R.A
  - e.g. STUDENT.Name, STUDENT.Ssn, etc.

#### **Relational Model Notation**



- $\blacksquare$  *n*-tuple *t* in a relation r(R)
  - Denoted by  $t = \langle v_1, v_2, \dots, v_n \rangle$
  - $\mathbf{v}_i$  is the value corresponding to attribute  $A_i$
- Component values of tuples:
  - $t[A_i]$  and  $t.A_i$  refer to the value  $v_i$  in n-tuple t for attribute  $A_i$
  - $t[A_u, A_w, ..., A_z]$  and  $t.(A_u, A_w, ..., A_z)$  refer to the sub-tuple of values  $\langle v_u, v_w, ..., v_z \rangle$  from t corresponding to the attributes specified in the list



### **Relational Model Constraints**



- What are "constraints"
  - Restrictions on the actual values in a database state
  - Derived from the rules in the mini-world that the database represents

### Relational Model Constraints (cont'd.)



- Inherent model-based constraints or implicit constraints
  - Inherent in the data model
- Schema-based constraints or explicit constraints
  - Can be directly expressed in schemas of the data model by specifying them in the DDL
- Application-based or semantic constraints or business rules
  - Cannot be directly expressed in schemas
  - Expressed and enforced by application program

#### **Domain Constraints**



- Typically include (but not limited to):
  - Numeric *data types* for integers and real numbers
  - Characters
  - Booleans
  - Fixed-length strings
  - Variable-length strings
  - Date, time, timestamp
  - Money
  - Other special data types



■ No two tuples can have the same combination of values for all their attributes.

### Superkey

- No two distinct tuples in any state r of R can have the same value for SK
- Each whole tuple is a superkey

### Key

- Superkey of R
- Removing any attribute A from key K leaves a set of attributes K' that is not a superkey of R any more



A Key satisfies two properties:

### Uniqueness

□ Two distinct tuples in any state of relation cannot have identical values for (all) attributes in key

#### Minimal superkey

 Cannot remove any attributes and still have uniqueness constraint in above condition hold



- Candidate key
  - Relation schema may have more than one key
- **Primary key** of the relation
  - Designated among candidate keys
  - Underline attribute
- Other candidate keys are designated as unique keys (even though keys are unique by definition)

### **Key Clarifications**



- A key uniquely identifies a single record. May be more than one key. Each key is...
- A candidate key. Each candidate key may be a different number of attributes (key arity).
- A superkey also uniquely identifies a single record, but may contain more information than necessary. For example, SSN is enough to identify a person, but a superkey may have gender, as well.
- A minimal superkey is the smallest key (that is, number of fields) that uniquely identifies a record



#### CAR

Figure 3.4
The CAR relation, with two candidate keys:
License\_number and
Engine\_serial\_number.

| License_number     | Engine_serial_number | Make       | Model   | Year |
|--------------------|----------------------|------------|---------|------|
| Texas ABC-739      | A69352               | Ford       | Mustang | 02   |
| Florida TVP-347    | B43696               | Oldsmobile | Cutlass | 05   |
| New York MPO-22    | X83554               | Oldsmobile | Delta   | 01   |
| California 432-TFY | C43742               | Mercedes   | 190-D   | 99   |
| California RSK-629 | Y82935               | Toyota     | Camry   | 04   |
| Texas RSK-629      | U028365              | Jaguar     | XJS     | 04   |

#### **Relational Databases and Relational Database**



- Relational database schema S
  - Set of relation schemas  $S = \{R_1, R_2, ..., R_m\}$
  - Set of integrity constraints IC

#### ■ Relational database state

- Set of relation states DB =  $\{r_1, r_2, ..., r_m\}$
- Each  $r_i$  is a state of  $R_i$  and such that the ri relation states satisfy all integrity constraints specified in the set IC

### **Relational Databases and Relational Database**



#### **■** Invalid state

- Does not obey all the integrity constraints
- i.e. violates at least one integrity constraint

#### ■ Valid state

Satisfies all the constraints in the defined set of Integrity Constraints (IC)



- **■** Entity integrity constraint
  - No primary key value can be NULL



- **■** Entity integrity constraint
  - No primary key value can be NULL
- Referential integrity constraint
  - Specified between two relations
  - Maintains consistency among tuples in two relations



- Foreign key rules to maintain referential integrity:
  - The attributes in FK have the same domain(s) as the primary key attributes PK
  - Value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for some tuple t2 in the current state r2(R2) or is NULL



- Managing Foreign Keys
  - Diagrammatically display referential integrity constraints
    - Directed arc from each foreign key to the relation it references
  - All integrity constraints should be specified on relational database schema

#### **Other Types of Constraints**



#### Semantic integrity constraints

- May have to be specified and enforced on a relational database
- Use triggers and assertions
- "More common to check for these types of constraints within the application programs" – Elmasri
  - □ Bad Idea<sup>TM</sup> to generalize Davis

### Other Types of Constraints (cont'd.)



#### **■** Functional dependency constraint

- Establishes a functional relationship among two sets of attributes X and Y
- Value of X determines a unique value of Y

#### Other Types of Constraints (cont'd.)



#### **■** Functional dependency constraint

- Establishes a functional relationship among two sets of attributes X and Y
- Value of X determines a unique value of Y

#### **■** State constraints

■ Define the constraints that a valid state of the database must satisfy

#### Other Types of Constraints (cont'd.)



#### **■** Functional dependency constraint

- Establishes a functional relationship among two sets of attributes X and Y
- Value of X determines a unique value of Y

#### State constraints

Define the constraints that a valid state of the database must satisfy

#### Transition constraints

Define to deal with state changes in the database

3.3 – Update Operations, Transactions, and **Dealing with Constraint Violations** 

# Update Operations, Transactions, and Dealing with Constraint Violations



- Operations of the relational model can be categorized into Retrievals and Modifications
- Retrieval
  - Query
- Basic modification operations that change the states of relations in the database:
  - Insert
  - Delete
  - Update

### **The Insert Operation**



lacktriangleright Provides a list of attribute values for a new tuple t that is to be inserted into a relation R

#### **The Insert Operation**



- Provides a list of attribute values for a new tuple *t* that is to be inserted into a relation *R*
- Can violate any of the four types of constraints
  - Domain Constraints
  - Key Constraints
  - Entity Integrity
  - Referential Integrity
- If an insertion violates one or more constraints
  - Default option is to reject the insertion
  - Other options?

#### **The Delete Operation**



- Can violate only Referential Integrity
- If tuple being deleted is referenced by foreign keys from other tuples
- Options
  - **Restrict** Reject the deletion
  - Cascade Propagate the deletion by deleting tuples that reference the tuple that is being deleted
  - **Set null** or **set default** Modify the referencing attribute values that cause the violation

#### **The Update Operation**



- Necessary to specify a condition on attributes of relation
  - Select the tuple (or tuples) to be modified
- If attribute not part of a primary key nor of a foreign key
  - Usually causes no problems
- Updating a primary/foreign key
  - Similar issues as with Insert/Delete

## **Example: COMPANY schema**





### **Example: COMPANY Referential Constraints**





# **Example: COMPANY Relations**



Figure 3.6

One possible database state for the COMPANY relational database schema.

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | ٧     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **DEPARTMENT**

| Dname          | Dnumber | Mgr_ssn   | Mgr_start_date |  |
|----------------|---------|-----------|----------------|--|
| Research       | 5       | 333445555 | 1988-05-22     |  |
| Administration | 4       | 987654321 | 1995-01-01     |  |
| Headquarters   | 1       | 888665555 | 1981-06-19     |  |

#### DEPT\_LOCATIONS

| Dnumber | Dlocation |  |  |
|---------|-----------|--|--|
| 1       | Houston   |  |  |
| 4       | Stafford  |  |  |
| 5       | Bellaire  |  |  |
| 5       | Sugarland |  |  |
| 5       | Houston   |  |  |

# **Example: COMPANY Relations (cont'd)**



#### WORKS\_ON

| Essn      | <u>Pno</u> | Hours |
|-----------|------------|-------|
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | M   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

#### **Chapter 3 Summary**



- Characteristics differentiate relations from ordinary tables or files
- Classify database constraints into:
  - Inherent model-based constraints,
  - Explicit schema-based constraints, and
  - Application-based constraints
- Modification operations on the relational model:
  - Insert, Delete, and Update