Data Mining: Introduction

Lecture Notes for Chapter 1

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

1

1

Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

Cyber Security

Security E-Commerc

Traffic Patterns

ns Social Networking: Twitter

Sensor Networks

Computational Simulations

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Google has Peta Bytes of web data
 - ◆Facebook has billions of active users
 - purchases at department/ grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

3

3

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives over petabytes of earth science data / year
 - telescopes scanning the skies Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Google

YAHOO!

facebook

amazon.com

Gene Expression Data

Surface Temperature of Earth

Great opportunities to improve productivity in all walks of life

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

5

5

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Predicting the impact of climate change

Reducing hunger and poverty by increasing agriculture production

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

What is Data Mining?

- Many Definitions
 - Non-trivial extraction of implicit, previously unknown and potentially useful information from data
 - Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

7

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional techniques may be unsuitable due to data that is

- High dimensional
- Heterogeneous
- Complex
- Distributed

Database Technology, Parallel Computing, Distributed Computing

 A key component of the emerging field of data science and datadriven discovery

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Data Mining Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.
- Description Methods
 - Find human-interpretable patterns that describe the data.

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

9

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- (Business Antica A Friends)
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

13

Classification: Application 1

- Fraud Detection
 - Goal: Predict fraudulent cases in credit card transactions.
 - Approach:
 - Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Classification: Application 2

- Churn prediction for telephone customers
 - Goal: To predict whether a customer is likely to be lost to a competitor.
 - Approach:
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what timeof-the day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.

Tan, Steinbach, Karpatne, Kumar

Find a model for loyalty.

From [Berry & Linoff] Data Mining Techniques, 1997 Introduction to Data Mining, 2nd Edition

15

15

Classification: Application 3

- Sky Survey Cataloging
 - Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - -3000 images with 23,040 x 23,040 pixels per image.
 - Approach:
 - Segment the image.
 - Measure image attributes (features) 40 of them per object.
 - Model the class based on these features.
 - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

17

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Clustering: Application 1

- Market Segmentation:
 - Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
 - Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

21

21

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Enron email dataset

The second secon

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}
```

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

23

23

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Motivating Challenges

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar