Ejercicios de Estadística

Temas: Regresión lineal y no lineal

Titulaciones: Medicina

Alfredo Sánchez Alberca asalber@ceu.es http://aprendeconalf.es

En un estudio se ha medido la reducción en el nivel de colesterol de un grupo de personas hipertensas tras un programa de ejercicios. Los resultados aparecen en la siguiente tabla.

Minutos de ejercicio	96	106	163	207	227	244	261	271	272	301
Reducción de colesterol (mg/dl)	4	5	8	13	15	17	22	39	31	45
1. ¿Qué modelo de regresión es	xplica	mejo	r la r	educc	ión de	cole	sterol	en fu	nción	de los

- minutos de ejercicio, el lineal o el exponencial? Justificar la respuesta.

 2. Según el modelo de regresión lineal, ¿cuánto disminuirá el colesterol por cada
- minuto más de ejercicio?

 3. Según el modelo logarítmico, ¿cuántos minutos de ejercicio se necesitan para
- reducir el colesterol 100 mg/dl? ¿Es fiable la predicción? Justificar la respuesta.

Utilizar las siguientes sumas (
$$X=$$
Minutos de ejercicio e $Y=$ Reducción de colesterol):
$$\sum x_i = 2148 \text{ min, } \sum x_i^2 = 507082 \text{ min}^2,$$

$$\sum \log(x_i) = 53.0559 \log(\text{min}), \sum \log(x_i)^2 = 282.9578 \log(\text{min})^2,$$

$$\sum y_i = 199 \text{ mg/dl}, \sum y_i^2 = 5779 \text{ (mg/dl)}^2,$$

$$\sum \log(y_j) = 27.1766 \log(\text{mg/dl}), \sum \log(y_j)^2 = 80.035 \log(\text{mg/dl})^2, \\ \sum x_i y_j = 50750 \min \cdot \text{mg/dl}, \sum x_i \log(y_j) = 6359.0468 \min \cdot \log(\text{mg/dl}), \\ \sum \log(x_i) y_i = 1097.978 \log(\text{min}) \text{mg/dl}, \sum \log(x_i) \log(y_i) = 147.0682.$$

log(min) log(mg/dl).

1. ¿Qué modelo de regresión explica mejor la reducción de colesterol en función de los minutos de ejercicio, el lineal o el exponencial?

Datos

 $X \equiv Minutos de ejercicio$ $Y \equiv \text{Reducción del colesterol}$ $\sum x_i = 2148 \text{ min}$ $\sum_{i} x_i^2 = 507082 \text{ min}^2$ $\sum \log(x_i) = 53.0559 \log(\min)$ $\sum \log(x_i)^2 = 282.9578 \log(\min)^2$ $\sum y_i = 199 \text{ mg/dl}$

 $\sum y_i^2 = 5779 \; (\text{mg/dl})^2$ $\sum \log(y_i) = 27.1766 \log(\text{mg/dl})$ $\sum \log(y_i)^2 = 80.035 \log(\text{mg/dl})^2$ $\sum x_i y_i = 50750 \text{ min} \cdot \text{mg/dl}$ $\sum x_i \log(y_i) = 6359.0468$ $min \cdot log(mg/dl)$ $\sum \log(x_i) y_i = 1097.978$ log(min)mg/dl $\sum \log(x_i) \log(y_i) = 147.0682$ $\log(\min)\log(mg/dl)$.

 Según el modelo de regresión lineal, ¿cuánto disminuirá el colesterol por cada minuto más de ejercicio?

Datos

 $X \equiv$ Minutos de ejercicio $Y \equiv$ Reducción del colesterol $\bar{x} = 214.8$ min $s_x^2 = 4569.16$ min² $\bar{y} = 19.9$ mmHg $s_y^2 = 181.89$ mmHg² $s_{yy} = 800.48$ min·mmHg 3. Según el modelo logarítmico, ¿cuántos minutos de ejercicio se necesitan para reducir el colesterol 100 mg/dl? ¿Es fiable la predicción?

Datos

 $X \equiv \text{Minutos de ejercicio}$ $Y \equiv \text{Reducción del colesterol}$ $\bar{x} = 214.8 \text{ min}$ $s_r^2 = 4569.16 \text{ min}^2$ $\overline{\log(y)} = 2.7177 \log(\text{mmHg})$ $s_{\log(y)}^2 = 0.6178 \log(\text{mmHg})^2$ $s_{x \log(y)} = 52.1504$

min log(mmHg)