Geomtería Diferencial

Hugo Del Castillo Mola

16 de octubre de 2022

Índice general

1.	Curv	vas 2
	1.1.	Curvas Parametrizadas
	1.2.	Curvas Regulares
	1.3.	Producto Vectorial
	1.4.	Fórmulas de Frenet
	1.5.	Curvas Arbitrarias
2.	Sup	erficies 10
	2.1.	Definición de Superficie
	2.2.	Cambio de Parámetros
	2.3.	Funciones Diferenciables
	2.4.	Plano Tangente
		Diferencial de una Aplicación Diferenciable

Capítulo 1

Curvas

1.1. Curvas Parametrizadas

Definición 1.1 (Curva). Una curva en \mathbb{R}^3 es una función diferenciarle $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3.$

Definición 1.2 (Vector tangente). Sea $\alpha:I\to\mathbb{R}^3$ una curva en \mathbb{R}^3 con $\alpha=(\alpha_1,\alpha^2,\alpha^3)$. Entonces, $\forall t\in I$

$$\alpha'(t) = \left(\frac{d\alpha_1}{dt}(t), \frac{d\alpha_2}{dt}(t), \frac{d\alpha_3}{dt}(t)\right).$$
$$= \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h}$$

Observación. El vector tangente también se llama vector velocidad

Definición 1.3 (Reparametrización). Sea $\alpha:I\to\mathbb{R}^3$ una curva, $h:J\to I$ una función diferenciable. Entonces, la función $\beta:J\to\mathbb{R}^3$

$$\beta(t) = \alpha(h(t))$$

es una reparametrización de α por h.

Ejemplo. Sea $\alpha(t)=\left(t,t\sqrt{t},1-t\right)$ en I=(0,4), $h(s)=s^2$ en J=(0,2). Entonces, la curva reparametrizada es $\beta(s)=\alpha(h(s))=\alpha(s^2)=(s,s^3,1-s^2)$.

Lema 1.0.1. Si β es una reparametrización de α por h, entonces

$$\beta'(t) = h'(t) \cdot \alpha'(h(t))$$

1.2. Curvas Regulares

Definición 1.4 (Curva Regular). Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada. Entonces, si $\alpha'(t) \neq 0. \forall t \in I$ decimos que es regular.

Definición 1.5 (Longitud de Arco). Sea $\alpha:I\to\mathbb{R}^3, t_0\in I$. Definimos la función longitud de arco desde t_0 como $s:I\to\mathbb{R}$ donde

$$s(t) = \int_{t_0}^t ||\alpha'(u)|| du.$$

Definición 1.6 (Curva Parametriza por Longitud de Arco). Sea $\alpha: I \to \mathbb{R}^3$ una curva diferenciable. Entonces, si $||\alpha'(t)|| = 1, \forall t \in I$ decimos que la curva está parametrizada por longitud de arco.

Teorema 1.1. Sea $\alpha: I \to \mathbb{R}^3$ una curva regular. Entonces, $\exists \beta: J \to \mathbb{R}^3$ tal que $||\beta'(s)|| = 1, \forall s \in J$, es decir, β tiene velocidad unitaria.

Observación. Una reparametrización $\alpha(h)$ preserva la orientación si $h' \geq 0$ y la invierte si $h' \leq 0$.

Observación. Por definición, una curva regular parametrizada por arco siempre conserva la orientación.

1.3. Producto Vectorial

Definición 1.7 (Producto Vectorial). Sean $u, v \in \mathbb{R}^3$. El producto vectorial de u, v es

$$u \times v = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

Proposición 1.1 (Propiedades Producto vectorial). Sean $u, v \in \mathbb{R}^3$. Entonces,

- (I) $u \times v = -v \times u$.
- (II) $u \times v$ es lineal respecto de u y v, es decir, para $w \in \mathbb{R}^3$ y $a, b \in \mathbb{R}$, $(au + bw) \times v = au \times v + bw \times v$.
- (III) $u \times v = 0 \Leftrightarrow u, v$ son linealmente dependientes.
- (IV) $(u \times v) \cdot u = 0, (u \times v) \cdot v = 0.$

1.4. Fórmulas de Frenet

Definición 1.8 (Curvatura). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a., $s\in I$. Entonces, $||\alpha''(s)||=k(s)$ se llama curvatura de α en s.

Observación. k(s) describe el cambio en la dirección de la curva en un instante.

Proposición 1.2. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces, $\alpha''(s)\perp\alpha'(s), \forall s\in I$.

Demostración. $||\alpha'(s)|| = 1, \forall s \in I \Rightarrow \alpha'(s) \cdot \alpha'(s) = 1 \Rightarrow 2\alpha''(s) \cdot \alpha'(s) = 0 \Rightarrow \alpha''(s) \perp \alpha'(s), \forall s \in I.$

Proposición 1.3. La curvatura se mantiene invariante ante un cambio de orientación.

Demostración. $\beta(-s) = \alpha(s) \Rightarrow \beta'(s) = -\alpha'(s) \Rightarrow \beta''(-s) = \alpha''(s) = k(s)$.

Definición 1.9 (Vector Tangente Unitario). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces,

$$T(s) = \alpha'(s)$$

se llama vector tangente unitario a α en s.

Observación. k(s) = ||T'(s)||.

Nota. Observamos que $\forall s \in I : k(s) > 0$, $k(s) = ||\alpha''(s)|| \Rightarrow \alpha''(s) = k(s)N(s)$ donde N(s) es un vector unitario en la dirección de $\alpha''(s)$. Además, $\alpha''(s) \perp \alpha'(s) \Rightarrow N(s)$ es normal a $\alpha(s)$.

Definición 1.10 (Vector Normal). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regular p.p.a.. Entonces,

$$N(s) = \frac{T'(s)}{k(s)}$$

se llama vector normal a α en s.

Observación. El vector normal N es perpendicular al vector tangente unitario T y normal a la curva α en s. Esto es, $\alpha'(s) \cdot \alpha''(s) = T(s) \cdot k(s)N(s) = 0$

Definición 1.11 (Plano Oscilador). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$. Entonces, T(s),N(s) determinan un plano en \mathbb{R}^3 y lo llamamos plano oscilador.

Observación. También se llama Referencia móvil de Frenet para curvas planas.

Definición 1.12 (Vector Binormal). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a.. Entonces, $B(s)=T(s)\times N(s)$ es el vector normal al plano oscilador en s y se dice vector binormal en s.

Observación. ||B'(s)|| mide la tasa de cambio del plano oscilador, es deicr, la rapidez con la que la curva se aleja del plano oscilador en s.

Nota. $B' = T' \times N' + T \times N' = T \times N' \Rightarrow B'$ es normal a T y B' es paralelo a N. Entonces, escribimos $B' = \tau N$ para alguna función τ .

Definición 1.13 (Torsión). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva p.p.a. tal que $\alpha''(s)\neq 0, s\in I$. Entonces, decimos que

$$\tau(s) = \frac{B'(s)}{N(s)}$$

es la torsión de α en s.

Observación. Si cambia la orientación entonces el signo del vector binormal cambia dado que $B=T\times N$. Por tanto, B'(s) y la torsión se mantienen invariantes.

Definición 1.14 (Tiedro de Frenet). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a. tal que k>0. Entonces, para cada valor $s\in I$, $\exists T(s),N(s),B(s)$ vectores unitarios mutuamente ortogonales y los llamamos el tiedro de Frenet en α . Estos vectores vienen dados de la siguiente forma

$$T(s) = \alpha'(s) \quad \text{vector tangente} \; ,$$

$$k(s) = ||T'(s)|| \; \text{curvatura} \; ,$$

$$N(s) = \frac{1}{k(s)}T'(s) \; \text{vector normal} \; ,$$

$$B = T \times N \; \text{vector binormal} \; ,$$

$$\tau(s) = \frac{B'(s)}{N(s)} \; \text{torsión}$$

donde $T \cdot T = N \cdot N = B \cdot B = 1$ y cualquier otro producto escalar es 0.

DIBUJO

Definición 1.15 (Fórmulas de Frenet). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regualar p.p.a con k>0 y torsión τ . Entonces,

$$T' = kN,$$

$$N' = -kT + \tau B,$$

$$B' = -\tau N,$$

Proposición 1.4. $\tau = 0$ si y solo si α es una curva en el plano.

Demostración. (\Rightarrow) Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva plana p.p.a.. Entonces, $\exists p\in\mathbb{R}, q\in\mathbb{R}^3$ tal que $(\alpha(s)-p)\cdot q=0, \forall s\in I$. Derivando,

$$\alpha'(s) \cdot q = \alpha''(s) \cdot q = 0, \ \forall s \in I.$$

Por tanto, q es ortogonal a T y $N\Rightarrow B=\frac{q}{||q||}\Rightarrow B'=0\Rightarrow \tau=0.$

(\Leftarrow) Sea $\tau=0\Rightarrow B'=0\Rightarrow B'\mid\mid B.$ Queremos ver que α es ortogonal a B en 0. Sea

$$f(s) = (\alpha(s) - \alpha(0)) \cdot B, \forall s \in I.$$

Entonces,

$$\frac{\partial f}{\partial s} = \alpha' \cdot B = T \cdot B = 0$$

donde $f(0) = 0 \Rightarrow (\alpha(s) - \alpha(0)) \cdot B = 0, \ s \in I$. Por tanto, α permanece en el plano ortogonal a B.

Proposición 1.5. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular p.p.a. con curvatura constante k>0 y $\tau=0$. Entonces α es parte de un circulo de radio $\frac{1}{k}$.

Demostración. $\tau=0\Rightarrow \alpha$ es una curva en plano. Sea $\gamma=\alpha+\frac{1}{k}N$ entonces,

$$\gamma' = \alpha' + \frac{1}{k_{\alpha}} N_{\alpha}' = T_{\alpha} - \frac{1}{k_{\alpha}} k_{\alpha} T_{\alpha} = 0.$$

Como $T_{\gamma}=0 \Rightarrow k_{\gamma}=0 \Rightarrow \gamma$ es una recta horizontal. Sea $\gamma=c\in\mathbb{R}$

$$\gamma(s) = \alpha(s) + \frac{1}{k_{\alpha}(s)}N(s) = c, \ \forall s \in I$$

$$\Rightarrow d(c,\alpha(s)) = ||c - \alpha(s)|| = ||\frac{1}{k}N(s)|| = \frac{1}{k}.$$

Luego, α es una curva que en todo punto se mantiene a distancia $\frac{1}{k}$ de un punto fijo c, el centro de la circunferencia.

1.5. Curvas Arbitrarias

Proposición 1.6. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular con k>0 y $\beta:J\to\mathbb{R}^3$ su reparametrización por arco tal que $\beta(t)=\alpha(s(t))$ donde s(t) es la longitud de arco. Entonces,

$$T' = kvN$$

$$N' = -kvT + \tau vB$$

$$B' = -\tau vN$$

Demostración.
$$\frac{dT(s(t))}{dt} = T'(s(t)) \cdot s'(t) = k(s(t))N(s(t))v(t) = k(s)N(s)v.$$

Proposición 1.7. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular con k>0 y $\beta:J\to\mathbb{R}^3$ su reparametrización por arco tal que $\beta(t)=\alpha(s(t))$ donde s(t) es la longitud de arco. Entonces,

$$\frac{d\alpha}{dt} = \alpha'(s)\frac{ds}{dt} = vT(s),$$

$$\frac{d\alpha'}{dt} = \frac{dv}{dt}T + vT' = v'T(s) + kv^2N$$

son la velocidad y aceleración de α en s(t).

DIBUJO

Teorema 1.2. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular. Entonces,

$$T = \frac{\alpha'}{||\alpha'||}, \ k = \frac{||\alpha' \times \alpha''||}{||\alpha'||^3},$$

$$N = B \times T, \ B = \frac{\alpha' \times \alpha''}{||\alpha' \times \alpha''||},$$

$$\tau = (\alpha' \times \alpha'') \cdot \frac{\alpha'''}{||\alpha' \times \alpha'''||^2}.$$

Definición 1.16 (Hélice Cilíndrica). Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ una curva regular tal que $T(t)\cdot u=\cos(\varphi), \forall t\in I$. Entonces, α es una hélice cilíndrica.

Teorema 1.3. Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regula con k>0. Entonces, α es una hélice cilíndrica si y solo si $\frac{\tau}{k}$ es constante.

Demostración.

(\Rightarrow) Sea $\alpha:I\subset\mathbb{R}\to\mathbb{R}^3$ curva regular p.p.a con k>0. Entonces, si α es una hélice cilíndrica $T(t)\cdot u=\cos(\varphi),\ \forall t\in I\Rightarrow$

$$0 = (T \cdot u)' = T' \cdot u = kN \cdot u$$

donde $k > 0 \Rightarrow N \cdot u = 0$. Por tanto, $\forall t \in I, u$ está en el plano

determinado por T(t) y B(t). Es decir,

$$u = \cos(\varphi)T + \sin(\varphi)B$$
.

Usando las fórmulas de Frenet

$$0 = (k\cos(\varphi) + \tau\sin(\varphi))N$$
$$\Rightarrow \frac{\tau}{k} = \frac{\cos(\varphi)}{\sin(\varphi)}.$$

(\Leftarrow) Si $\frac{\tau(t)}{k(t)} = \cos(\varphi), \forall t \in I$. Entonces, eligiendo $\cot(\varphi) = \frac{\tau}{k}$, si

$$U = \cos(\varphi)T + \sin(\varphi)B$$

tenemos que

$$U' = (k\cos(\varphi) - \tau \sin(\varphi))N = 0$$

determina un vector unitario u tal que $T \cdot u = \cos(\varphi) \Rightarrow \alpha$ es una hélice cilíndrica.

Teorema 1.4 (Fundamental de la Teoría Local de Curvas). Sean $k, \tau: I \subset \mathbb{R} \to \mathbb{R}$ funciones diferenciables con $k(s) > 0, \tau(s)$. Entonces, $\exists \alpha: I \subset \mathbb{R} \to \mathbb{R}^3$ curva tal que s es la longitud de arco, k(s) es la curvatura, y $\tau(s)$ es la torsión de α .

Además, cualquier otra curva $\overline{\alpha}$ difiere de α por un movimiento rígido, es decir, $\exists \gamma: I \to \mathbb{R}$ aplicación lineal ortogonal con $\det \gamma > 0$ y $c \in \mathbb{R}^3$: $\overline{\alpha} = (\overline{\alpha} \circ \gamma) + c$.

Demostración. content

Capítulo 2

Superficies

2.1. Definición de Superficie

Definición 2.1 (Superficies). Sea $S \subset \mathbb{R}^3$. Entonces, decimos que S es una superficie si $\forall p \in S, \exists V \subset \mathbb{R}^3$ entorno de p en S y $\exists X: U \to V \cap S$ aplicación con $U \subset \mathbb{R}^2$ abierto tal que

- (I) X es diferenciable,
- (II) $X:U\to V$ es homeomorfismo,
- (III) $(dX)_q: \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva $\forall q \in U$.

donde $U \subset \mathbb{R}^2$ abierto y V entorno de p en S.

Observación. En I) si X(u,v)=(x(u,v),y(u,v),z(u,v)) entonces, x(u,v),y(u,v),z(u,v) tienen derivadas parciales continuas en U.

Observación. En II) dado que X es continua por I) solo faltaría ver que X tiene inversa $X^{-1}:V\cap S\to U$ continua.

Observación. $(dX)_q$ inyectiva $\forall q \in U \Leftrightarrow \frac{\partial X}{\partial u}(q), \frac{\partial X}{\partial v}(q)$ l.i.

Notación.

- X se llama parametrización de S.
- u, v se llaman coordenadas locales de S.
- Las curvas obtenidas al fijar una de las variables, $X(u_0, v), X(u, v_0)$ se llaman curvas coordenadas.

■ La imagén de X se llama entorno coordenado.

Definición 2.2 (Valor Regular). Sea $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ una función diferenciable, $a \in \mathbb{R}$. Entonces, decimos que a es un valor regular de f si $\forall p \in U: f(p) = a, (df)_p \neq 0$.

Teorema 2.1 (de la Función Implícita). Sea $U \subset \mathbb{R}^3$ abierto, $p = (x_0, y_0, z_0) \in U, a \in \mathbb{R}$ y $f: U \to \mathbb{R}$ una función diferenciable. Si f(p) = a y $\frac{\partial f}{\partial z}(p) \neq 0$, entonces $\exists U^{(x_0,y_0)} \subset \mathbb{R}^2, V^{z_0} \subset \mathbb{R}, g: U \to V$ tal que $U \times V \subset U, g(x_0, y_0) = z_0$ y

$${p \in U \times V | f(p) = a} = {(x, y, g(x, y)) \in \mathbb{R}^3 : (x, y \in U)},$$

es decir, f(x, y, z) = a se puede resolver para z cerca de p.

Proposición 2.1 (Gráfica es Superficie). Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Entonces, la gráfica de f es una superficie regular.

Demostración. Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ aplicación diferenciable, $S = \{(x,y,z) \in \mathbb{R}^3 : (x,y) \in U, z = f(x,y)\}$ su gráfica, $X: U \to S: X(u,v) \mapsto (u,v,f(u,v))$ parametrización con X(U) = S. Entonces, X es diferenciable dado que f es diferenciable, X_u, X_v son linealmente independientes y x^{-1} es continua. Por tanto, S es una superficie.

Proposición 2.2 (Imagen Inversa de Valor Regular). Sea $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ función diferenciable, $a \in f(U) \subset \mathbb{R}$ un valor regular de f. Entonces, $S = f^{-1}(\{a\}) \neq \emptyset \Rightarrow S$ es superficie.

Demostración. Sea $p \in f^{-1}(\{a\})$. Entonces, a valor regular $\Rightarrow \exists i \in \{x,y,z\}: f_i(p) \neq 0$. Supongamos que $f_z(p) \neq 0$ y sea $F: U \subset \mathbb{R}^3 \to \mathbb{R}^3: (x,y,z) \mapsto (x,y,f(x,y,z))$. Entonces,

$$(dF)_p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ f_x & f_y & f_z \end{pmatrix}$$

 $\Rightarrow \det((dF)_p) = f_z(p)
eq 0$. Por tanto, podemos aplicar el Teorema de la

Función Inversa. Entonces, $\exists V$ entorno de p y W entorno de f(p) tal que $F:V\to W$ es invertible y $F^{-1}:W\to V$ es diferenciable. Por tanto, las funciones coordenada de F^{-1}

$$x = u$$
, $y = v$, $z = g(u, v, t)$, $(u, v, t) \in W$

son diferenciables. En particular, z=g(u,v,a)=h(x,y) es una función diferenciable definida en la proyección de V al plano XY. Como

$$F(f^{-1}(a) \cap V) = W \cap \{(u, v, t) : t = a\}$$

tenemos que $f^{-1}(a)\cap V$ es la gráfica de $h\Rightarrow$ es un entorno coordenado de $p\Rightarrow \forall p\in f^{-1}(a)$ se puede cubrir con un entorno coordenado $\Rightarrow f^{-1}(a)$ es una superficie regular. REVISAR

Proposición 2.3. Sea $S \subset \mathbb{R}^3$ superficie, $p \in S$, $X : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ aplicación con $p \in X(U) \subset S$ tal que X es diferenciable y $(dX)_q$ es inyectiva $\forall q \in U$. Entonces, si X es inyectiva, X^{-1} es continua.

Demostración. Similar a la siguiente prop

2.2. Cambio de Parámetros

Definición 2.3 (Difeomorfismo). Un difeomorfismo es un homeomorfismo diferenciable con inversa diferenciable, es decir, una función biyectiva continua diferenciable con inversa continua diferenciable.

Observación. Un homeomorfismo es una aplicación biyectiva continua con inversa continua. Como f diferenciable $\Rightarrow f$ continua, para ver que f es difeomorfismo solo es necesario f biyectiva diferenciable con f^{-1} diferenciable.

Proposición 2.4. Sea $S \subset \mathbb{R}^3$ superficie, $X: U \to S$ parametrización tal que $p \in X(U)$. Sea $p_0 \in U: X(p_0) = p$. Entonces, $\exists V$ entorno de p_0 y $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ proyección ortogonal tal que $W = (\pi \circ X)(V) \subset \mathbb{R}^2$ abierto y $\pi \circ X: V \to W$ es un difeomorfismo.

Demostración. Sea X(u,v) = (x(u,v),y(u,v),z(u,v)). Entonces,

$$(dX)_{p_0} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{pmatrix}_{(p_0)}$$

Sea $\pi:\mathbb{R}^3\to\mathbb{R}^2:(x,y,z)\mapsto\pi(x,y,z)=(x,y)$, entonces $\pi\circ X:U\to\mathbb{R}^2$ es diferenciable y

$$d(\pi \circ X)_{p_0} = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}_{(p_0)}$$

donde $\det(d(\pi \circ X)_{p_0}) \neq 0 \Rightarrow$ por el teorema de la función inversa, $\exists V \subset U$ entorno de p_0 en U y V_1 entorno de $\pi \circ X(p_0)$ en \mathbb{R}^2 tal que $\pi \circ X$ es biyectiva y diferenciable con $(\pi \circ X)^{-1}$ diferenciable \Rightarrow difeomorfismo, tal que $d(\pi \circ X)_{p_0}^{-1} = d(\pi \circ X^{-1})_{p_0}$.

Observación. Un difeomorfismo es un homeomorfismo diferenciable con inversas diferenciable.

Observación. $Y = X \circ (\pi \circ X)^{-1} : W \to S$ es parametrización del abierto $\pi^{-1}(W) \cap U \cap S$ como grafo sobre alguno de los planos coordenados.

Proposición 2.5. Sea $S \subset \mathbb{R}^3$ superfice, $p \in S$. Entonces, $\exists V$ entorno de p en S tal que V es la gráfica de una función diferenciable definida en uno de los planos coordenados.

Demostración. Sea $X:U\subset\mathbb{R}^2\to S$ parametrización de S en p tal que

$$X(u, v) = (x(u, v), y(u, v), z(u, v), (u, v) \in U.$$

Dado que X_u, X_v son linealmente independientes $\Rightarrow \det((dX)_q) \neq 0$ donde $q = X^{-1}(p)$, suponemos que

$$\begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}_a \neq 0$$

Sea $\pi: \mathbb{R}^3 \to \mathbb{R}^2: (x,y,z) \mapsto \pi(x,y,z) = (x,y)$, entonces $\pi \circ X: U \to \mathbb{R}^2$ y $\det(d(\pi \circ X)_q) \neq 0$. Entonces, podemos aplicar el teorema de la función inversa $\Rightarrow \exists V_1$ entorno de q, V_2 entorno de $(\pi \circ X)(q)$ tal que $(\pi \circ X)|_{V_1}: V_1 \to V_2$ difeomorfismo con inversa $(\pi \circ X)^{-1}: V_2 \to V_1$.

Además, como X es homemorfismo, $X(V_1) = V$ es entorno de p en

S. Ahora, sea z(u(x,y),v(x,y))=f(x,y). Entonces, V es la gráfica de la función f.

Proposición 2.6 (Cambio de Parámetros). Sea $S \subset \mathbb{R}^3$ superfice, $p \in S$, $X: U \subset \mathbb{R}^2 \to S$, $Y: V \subset \mathbb{R}^2 \to S$ dos parametrizaciones de S tal que $p \in X(U) \cap Y(V) = W$. Entonces, $h = X^{-1} \circ Y: Y^{-1}(W) \to X^{-1}(W)$ es un difeomorfismo. Se dice que h es un cambio de parámetros.

Observación. Si X, Y vienen dados por

$$X(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in U$$

$$Y(\xi,\omega) = (x(\xi,\omega), y(\xi,\omega), z(\xi,\omega)), \quad (\xi,\omega) \in V$$

entonces h viene dado por

$$u = u(\xi, \omega), v = v(\xi, \omega), \quad (\xi, \omega) \in Y^{-1}(W)$$

Además, h se puede invertir tal que h^{-1} viene dado por

$$\xi = \xi(u, v), \omega = \omega(u, v), \quad (u, v) \in X^{-1}(W)$$

Demostración. Sea $S \subset \mathbb{R}^3$ superficie, $p \in S$,

$$X: U \subset \mathbb{R}^2 \to S$$
, $Y: V \subset \mathbb{R}^3 \to S$

parametrizaciones de S tal que $p \in X(U) \cap Y(V) = W$ y

$$h = X^{-1} \circ Y : Y^{-1}(W) \to X^{-1}(W)$$

cambio de parámetros. Entonces, X parametrización $\Rightarrow X$ diferenciable y X_u, X_v son l.i. $\Rightarrow \det((dX)_p) \neq 0, \forall p \in U$. Entonces, por el teorema de la función inversa X es difeomorfismo. De la misma manera, Y es difeomorfismo. Por tanto, $h = X^{-1} \circ Y$ también lo es.

Observación. X, Y son difeomorfismos $\Rightarrow h$ es difeomorfismo.

Definición 2.4 (Caracterización Superficie). Sea $S \subset \mathbb{R}^3$ superficie. Entonces, $\forall p \in S, \exists V \subset S: p \in V$ entorno, $U \subset \mathbb{R}^2$ abierto y $X: U \to V$ difeomorfismo.

Observación. Una superfice regular $S \subset \mathbb{R}^3$ es difeomorfica a \mathbb{R}^2

2.3. Funciones Diferenciables

Nota. La idea es reducir la difereciabilidad de una superficiea a diferenciabilidad en \mathbb{R}^2 .

Definición 2.5 (Función Diferenciable en \mathbb{R}). Sea $S \subset \mathbb{R}^3$ superficie, $f: V \subset S \to \mathbb{R}$ función. Entonces, f es diferenciable en $p \in V$ si $\exists X: U \subset \mathbb{R}^2 \to S$ parametrización con $p \in x(U) \subset V$ tal que $f \circ X: U \subset \mathbb{R}^2 \to \mathbb{R}$ es diferenciable en $q = X^{-1}(p)$.

Observación. f es diferenciable en V si f es diferenciable $\forall p \in V$.

Observación. La diferenciabilidad no depende de la elección de parametrización. Si $Y: V \subset \mathbb{R}^2 \to S$ es otra parametrización con $p \in Y(V)$ y $h = X^{-1} \circ Y$ entonces $f \circ Y = f \circ X \circ h$ también es diferenciable.

Definición 2.6 (Función Diferenciable en \mathbb{R}^k). Sea $S \subset \mathbb{R}^3$ superficie, $f: S \to \mathbb{R}^k$. Si $f_j: S \to \mathbb{R}$ es diferenciable $\forall j \in \{1, \dots, k\}$ con $f(p) = (f_1(p), \dots, f_k(p))$, entonces f es diferenciable.

Definición 2.7 (Función Diferenciable entre Superficies). Sea $S_1 \subset \mathbb{R}^3$, $S_2 \subset \mathbb{R}^3$ superficies,

$$\varphi: V_1 \subset S_1 \to S_2$$

una aplicación continua. Dadas

$$X_1: U_1 \subset \mathbb{R}^2 \to S_1, \quad X_2: U_2 \subset \mathbb{R}^2 \to S_2$$

con $p \in X_1(U)$ y $\varphi(X_1(U_1)) \subset X_2(U_2)$ tal que

$$X_2^{-1}\circ\varphi\circ X_1:U_1\to U_2$$

es diferenciable en $q=X_1^{-1}(p)$, entonces, φ es diferenciable en $p\in V_1$.

Proposición 2.7 (Composición de Funciones Diferenciables). Sea $S_1, S_2, S_3 \subset \mathbb{R}^3$ superficies, $f: S_1 \to S_2, g: S_2 \to S_3$ diferenciables. Entonces, $f \circ g$ es diferenciable.

Demostración. content

2.4. Plano Tangente

Definición 2.8 (Vector Tangente). Sea $S \subset \mathbb{R}^3$ superficie, $p \in S$. Decimos que $v \in \mathbb{R}^3$ es un vector tangente a S en p si $\exists \alpha : (-\epsilon, \epsilon) \to S, \epsilon > 0$ tal que $\alpha(0) = p$ y $\alpha'(0) = v$

Notación. El conjunto de vectores tangentes a S en p se llama Plano Tangente en p y se representa T_pS .

Proposición 2.8 (Caracterización Plano Tangente). Sea $S \subset \mathbb{R}^3$ una superfice, $X:U\subset \mathbb{R}^2\to S$ parametrización, $q\in U$. Entonces,

$$T_{X(q)}(S) = (dX)_q(\mathbb{R}^2)$$

Demostración.

- (\Rightarrow) Sea $w \in T_{X(q)}(S)$. Entonces, para $\epsilon > 0$, $\exists \alpha : (-\epsilon, \epsilon) \to X(U) \subset S$ diferenciable tal que $\alpha(0) = X(q)$ y $\alpha'(0) = w$. Entonces, $\beta = X^{-1} \circ \alpha : (-\epsilon, \epsilon) \to U$ es diferenciable. Por tanto, para $X \circ \beta = \alpha$, la definición de diferencial $\Rightarrow (dX)_{g}(\beta'(0)) = \alpha'(0) = w \Rightarrow w \in (dX)_{g}$.
- $(\Leftarrow) \ \textit{Sea} \ w = (dX)_q(v), v \in \mathbb{R}^2, \ \textit{donde} \ v \in \mathbb{R}^2 \ \textit{es la pendiente de} \ \gamma : \\ (-\epsilon, \epsilon) \to U \ \textit{tal que} \ \gamma(t) = vt + q, \quad t \in (-\epsilon, \epsilon). \ \textit{Entonces, por definición de diferencial,} \ w = \alpha'(0) \ \textit{para} \ \alpha = X \circ \gamma \Rightarrow w \in T_q(S)$

Observación. El plano tangente a S en p $T_pS=(dX)_{X^{-1}(p)}(\mathbb{R}^2)$ no depende de la elección de X parametrización. Pero si que determina una base $\{\frac{\partial X}{\partial u}(q), \frac{\partial X}{\partial v}(q)\}$ que genera $T_{X(q)}S$.

Ejemplo. Sea $S \subset \mathbb{R}^3$ superficie, $X: U \subset \mathbb{R}^2 \to S$ parametrización de S, $T_p(S)$ plano tangente en p generado por X, $w \in T_p(S)$ vector tangente. Entonces, las coordenadas de w en la base asociada a X se determina de la siguiente manera.

El vector tangente $w=\alpha'(0)$ donde $\alpha=X\circ\beta$ donde $\beta:(-\epsilon,\epsilon)\to U$ es una curva diferenciable dada por $\beta(t)=(X^{-1}\circ\alpha)(t)=(u(t),v(t))$ con $\beta(0)=q=X^{-1}(p).$ Entonces,

$$\alpha'(0) = \frac{d}{dt}(X \circ \beta)(0) = \frac{d}{dt}X(u(t), v(t))(0)$$
$$= X_u(q)u'(0) + X_v(q)v'(0) = w$$

Por tanto en la base $\{X_u(q), X_v(q)\}$, w tiene coordenadas (u'(0), v'(0)).

Observación. Sea $S_1, S_2 \subset \mathbb{R}^3$ superficies, $\varphi: V \subset S_1 \to S_2$ aplicación diferenciable. $\forall p \in V, \exists w \in T_p(S_1)$ tal que $\alpha: (-\epsilon, \epsilon) \to V$ curva diferenciable con $\alpha'(0) = w, \alpha(0) = p$. Entonces, $\beta = \varphi \circ \alpha$ curva con $\beta(0) = \varphi(p) \Rightarrow \beta'(0) \in T_{\varphi(p)}(S_2)$.

Además, $\beta'(0)$ no depende de la elección de α . La apliación $(d\varphi)_p: T_p(S_1) \to T_{\varphi(p)}(S_2)$ definida por $(d\varphi)_p(w) = \beta'(0)$ es lineal.

Definición 2.9 (Normal). content

2.5. Diferencial de una Aplicación Diferenciable

Definición 2.10 (Diferencial). Sea $F:U\subset\mathbb{R}^n\to\mathbb{R}^m$ una aplicación diferenciable. Sea $w\in\mathbb{R}^n$ y $\alpha:(-\epsilon,\epsilon)\to U$ curva diferenciable tal que $\alpha(0)=p$ y $\alpha'(0)=w$. Entonces, la curva $\beta=F\circ\alpha:(-\epsilon,\epsilon)\to\mathbb{R}^m$ es diferenciable y $(dF)_p(w)=\beta'(0)$ es la diferencial de F en p, donde $(dF)_p:\mathbb{R}^n\to\mathbb{R}^m$ es aplicación lineal.

Observación. Forma para tangente

Proposición 2.9. La aplicación $(df)_p: T_pS \to \mathbb{R}^m$ está bien definida, es decir, $(df)_p(v)$ no depende de α . Además, es una aplicación lineal.

Demostración. Sea $S \subset \mathbb{R}^3$ superficie, $X: U \subset \mathbb{R}^2 \to S$ parametrización con $p \in X(U)$. Entonces, $T_pS = (dX)_q(\mathbb{R}^2)$ con $q = X^{-1}(p) \Rightarrow (dX)_q: \mathbb{R}^2 \to T_pS$ es un isomorfismo lineal (definición).

Tomando $\epsilon>0$ suficientemente pequeño, $\alpha(-\epsilon,\epsilon)\subset X(U)$. Ahora, la curva $X^{-1}\circ\alpha:(-\epsilon,\epsilon)\to U$ es tal que $(X^{-1}\circ\alpha)(0)=q$. Como

 $X \circ (X^{-1} \circ \alpha) = \alpha$ derivando en t = 0 tenemos que

$$(dX)_q [(X^{-1} \circ \alpha)'(0)] = \alpha'(0) = w,$$

es decir,

$$(X^{-1} \circ \alpha)'(0) = (dX)_q^{-1}(w).$$

Por la regla de la cadena,

$$(f \circ \alpha)'(0) = \frac{d}{dy}(f \circ X) \circ (X^{-1} \circ \alpha)$$

$$= d(f \circ X)_q((X^{-1} \circ \alpha)'(0)) = d(f \circ X)_q \circ (dX)_q^{-1}(w)$$

Por tanto,

$$(df)_p = d(f \circ X)_q \circ (dX)_q^{-1}$$

Teorema 2.2 (Regla de la Cadena). Sean $S_1, S_2, S_3 \subset \mathbb{R}^3$ superficies, $f: S_1 \to S_2, g: S_2 \to S_3$ aplicaiones diferenciables. Entonces, dado $p \in S_1$ tenemos que

$$d(g \circ f)_p = (dg)_{f(p)} \circ (df)_p$$

(También para F:rnm -¿rnn, G:rnn -¿rnk)

Demostración. Si $v \in T_pS_1$, elegimos

$$\alpha: (-\epsilon, \epsilon) \to S_1$$

tal que $\alpha(0) = p$ y $\alpha'(0) = v$. Entonces,

$$f \circ \alpha : (-\epsilon, \epsilon) \to S_2$$

tal que $(f \circ \alpha)(0) = f(p)$ y $(f \circ \alpha)'(0) = (df)_p(v)$. Por tanto,

$$d(g \circ f)_p(v) = [(g \circ f) \circ \alpha]'(0)$$

$$= [g \circ (f \circ \alpha)'](0)$$

$$= (dg)_{f(p)}((df)_p(v)).$$

Teorema 2.3 (de la Función Inversa). Sea $F:U\subset\mathbb{R}^n\to\mathbb{R}^n$ difereciable, $p\in U:(dF)_p:\mathbb{R}^n\to\mathbb{R}^n$ es isomorfismo. Entonces, $\exists V\subset U:p\in V$ entorno y $\exists W\subset\mathbb{R}^n:F(p)\in W$ entorno tal que $F:V\to W$ tiene inversa difereciable $F^{-1}:W\to V$. $F|_V$ es difeomorfismo.

Observación. Un isomorfismo es una función biyectiva.

Proposición 2.10. *Sea* $S \subset \mathbb{R}^3$ *superficie. Entonces,*

- (I) $f:S\to\mathbb{R}^m$ differenciable, S conexo y $(df)_p=0, \forall p\in S\Rightarrow f$ es constante.
- (II) $f: S \to \mathbb{R}$ diferenciable y $p \in S$ es un extremo local de $f \Rightarrow p$ es un punto crítico de f.

Demostración.

- (1) Sea $a \in f(S)$. Entonces, $A = \{p \in S : f(p) = a\} \neq \emptyset, A \subset S$ cerrado. Veamos que A es abierto. Si $p \in A$, $X : U \to S$ parametrización tal que $p \in X(U)$ con U conexo, entonces $\forall q \in U, d(f \circ X)_q = (dX)_{X(p)} \circ (dX)_q = 0$. Entonces, $f \circ X$ es constante en $U \Rightarrow f = (f \circ X) \circ X^{-1}$ es constante en X(U). Como $\forall p \in A, f(p) = a \Rightarrow p \in X(U) \subset A \Rightarrow A$ es abierto. Luego, S conexo $\Rightarrow A = S$, es decir, f es constante.
- (II) Sea $p \in S$ extremo local de f. Si $v \in T_pS$ y $\alpha : (-\epsilon, \epsilon) \to S$ tal que $\alpha(0) = p$ y $\alpha'(0) = v$, entonces $(f \circ \alpha)$ tiene un extremo local en $t = 0 \Rightarrow (df)_p(v) = (f \circ \alpha)'(0) = 0 \Rightarrow p$ es punto crítico de f.

Teorema 2.4 (de la Función Implícita para Superficies). Sea $S \subset \mathbb{R}^3$ superficie, $f: S \to \mathbb{R}$ diferenciable, $p \in S$, $a \in \mathbb{R}$. Si f(p) = a y $(df)_p \neq 0$ (p no es punto crítico de f). Entoces, $\exists V \subset S$ entorno de p en S y $\alpha: (-\epsilon, \epsilon) \to \mathbb{R}^3$ curva regular inyectiva homeomorfa a su imagen con $\epsilon > 0$ tal que

$$\alpha(0) = p \quad \text{ y } \quad f^{-1}(\{a\}) \cap V = \alpha(-\epsilon, \epsilon)$$

Por tanto, si $a \in f(S)$ entonces $f^{-1}(\{a\})$ es una curva simple.

Demostración. Sea $U\subset \mathbb{R}^2:(0,0)\in U$, $X:U\to S$ parametrización con X(0,0)=p. Definimos

$$q:U\to\mathbb{R}$$

tal que $g = f \circ X$, entonces

$$g(0,0) = f(X(0,0)) = f(p) = a$$

y, por la regla de la cadena,

$$(df)_{(0,0)} = (df)_p \circ (dX)_{(0,0)}.$$

Dado que $(dX)_{(0,0)}$ es inyectiva y $(df)_p \neq 0$, tenemos que

$$(dg)_{(0,0)} \neq 0,$$

es decir, $(g_u, g_v)(0, 0) \neq (0, 0)$. Supongamos que $g_v(0, 0) \neq 0$. Por el toerema de la aplicación implícita, $\exists \epsilon, \delta > 0$ y

$$h: (-\epsilon, \epsilon) \to (-\delta, \delta)$$

 $\mathit{tal que}\; (-\epsilon, \epsilon) \times (-\delta, \delta) \subset U \; \mathit{y}\; h(0) = 0 \; \mathit{ACABAR}$

Nota.

Definición 2.11 (Superficies Transversales). Sea $S_1, S_2 \subset \mathbb{R}^3$ superficies, $p \in S_1 \cap S_2$ es un punto de intersección. Si

$$T_p(S_1) = T_p(S_2),$$

entonces S_1 y S_2 son tangentes en p. En el caso contrario, si

$$T_p(S_1) \neq T_p(S_2),$$

entonces S_1 y S_2 se cortan transversalmente en p y, de forma local, la intersección es la traza de la curva.

Observación. S_1 y S_2 son transversales si lo son $\forall p \in S_1 \cap S_2$.

Proposición 2.11. Sea $S_1, S_2 \subset \mathbb{R}^3$ superficies que se cortan transversal-

mente en p. Entonces, $\exists V \subset \mathbb{R}^3$ entorno de p, $I \subset \mathbb{R}$ abierto, $\alpha: I \to \mathbb{R}^3$ homeomorfa a $\alpha(I)$ tal que $\alpha(I) = V \cap S_1 \cap S_2$.

Demostración. Sea $O \subset \mathbb{R}^3$ entorno de p y $g: O \to \mathbb{R}$ tal que 0 es un valor regular y $S_2 \cap O = g^{-1}(\{0\})$. Definimos

$$f: S_1 \cap O \to \mathbb{R}$$

por $f=g|_{S_1\cap O}$ diferenciable tal que $p\in f(S_1\cap O)$. Ademaś, f(p)=g(p)=0 y $(df)_p=(dg)_{p|_{T_pS_1}}$. Si p fuera punto crítico de f, tendríamos que $T_pS_1\subset\ker(dg)_p=T_pS_2$. Pero esto es imposible ya que S_1 y S_2 se cortan transversalmente. Aplicando el teorema de la función implícita tenemos el resultado.

Teorema 2.5. La intersección transversal de dos superficies es vacía o es un curva simple.

Teorema 2.6 (Función Inversa). Sean $S_1, S_2 \subset \mathbb{R}^3$, $f: S_1 \to S_2$ aplicación difereciable, $p \in S_1$. Si $(df)_p: T_p(S_1) \to T_{f(p)}(S_2)$ es un isomorfismo lineal, entonces $\exists V_1$ entorno de p en S_1 y $\exists V_2$ entorno de f(p) en S_2 tal que $f(V_1) = V_2$ y $f|_{V_1}: V_1 \to V_2$ es un difeomorfismo.

Demostración. Sea

$$X_i: U_i \to S_i, i \in \{1, 2\}$$

parametrizaciones tal que $p\in X_1(U_1), f(p)\in X_2(U_2)$ y $f(X_1(U_1))\subset X_2(U_2)$. Sea $q_i\in U_i, i\in\{1,2\}$ tal que $X_1(q_1)=p$ y $X_2(q_2)=f(p)$. La aplicación

$$X_2^{-1} \circ f \circ X_1 : U_1 \to U_2$$

es diferenciable y

$$d(X_2^{-1} \circ f \circ X_1)_{q_1} = (dX_2)_{q_2}^{-1} \circ (df)_p \circ (dX_1)_{q_1}$$

es un isomorfismo lineal por ser composición de isomorfismos. Ahora, podemos aplicar el teorema de la función inversa. Entonces, $\exists W_i \subset U_i$ entornos de $q_i, i \in \{1,2\}$ tal que

$$(X_2^{-1} \circ f \circ X_1)(W_1) = W_2$$

y tal que

$$X_2^{-1} \circ f \circ X_1 : W_1 \to W_2$$

es un difeomorfismo. Para $V_i=X_i(W_i)\subset S_i, i\in\{1,2\}$, tenemos que $V_1\subset S_1$ es un entorno de p y $V_2\subset S_2$ es un entorno de f(p). Además, $f(V_1)=V_2$ y

$$f|_{V_1} = X_2 \circ (X_2^{-1} \circ f \circ X_1) \circ X_1^{-1} : V_1 \to V_2$$

es un difeomorfismo, ya que es composición de difeomorfismos.

Proposición 2.12. Sean $S_1, S_2 \subset \mathbb{R}^3$ superficies, $\phi: S_1 \to S_2$ difeomorfismo, $p \in S_1$. Entonces, $(d\phi)_p: T_p(S_1) \to T_{f(p)(S_2)}$ es isomorfismo lineal y $(d\phi)_p^{-1} = (d\phi^{-1})_p$.

Demostración. Sea $w \in T_{\phi(p)}S_2$ y $\beta: (-\epsilon, \epsilon) \to S_2$ tal que $\beta(0) = \phi(p), \beta'(0) = w$. Entonces, $\alpha = \phi^{-1} \circ \beta: (-\epsilon, \epsilon) \to S_1$ diferenciable tal que $\alpha(0) = p, \alpha'(0) = w$ y $(d\phi)_p(\alpha(0)) = (\phi \circ \alpha)'(0) = \beta'(0) = w$