Resumen Inferencia Estadística

Introducción

Resumen de la materia de inferencia estadística de la Licenciatura en Tecnología Digital en la Universidad Torcuato Di Tella.

Contenido

- Resumen Inferencia Estadística
 - Introducción
 - Contenido
 - Esperanza
 - Varianza
 - Desvío Estándar
 - Covarianza
 - Correlación
 - Continuas
 - Distribución Normal
 - Función acumulada
 - Distribución Uniforme
 - Distribución Exponencial
 - Discretas
 - Distribución Bernoulli
 - Distribución Binomial
 - Distribución Poisson
 - o Convergencia en Probabilidad
 - Propiedades
 - Estimación por LGN
 - Estimación Esperanza
 - Estimación Varianza
 - Estimación Proporción
 - Estimación de Probabilidad
 - Formulas Consistencia
 - Sesgo

- Asintóticamente Insesgado
- Error Estándar
- Error Cuadrático Medio
- o Desigualdad de Chebyshev
- Desigualdad de Markov
- Momentos
 - Momentos de una variable aleatoria
 - Discreta
 - Continua
- Estimación por Máxima Verosimilitud (Likelihood)
 - Log-likelihood
- Intervalos de Confianza
 - ullet Intervalo de Confianza para μ
 - T-Student

Esperanza

$$E(X) = \sum_{i=1}^{n} x_i F_{\mathbf{x}}(x_i)$$

$$E(\overline{X}_n) = \frac{1}{n} \times \sum_{i=1}^{n} E(X_i)$$

Si X y Y son variables aleatorias con esperanza finita y $a,b,c\in\mathbb{R}$ son constantes entonces

- E[c] = c
- E[cX] = cE[X]
- E[X + Y] = E[X] + E[Y]
- ullet Si $X\geq 0$ entonces $\mathrm{E}[X]\geq 0$
- ullet Si $X \leq Y$ entonces $\mathrm{E}[X] \leq \mathrm{E}[Y]$
- ullet Si X está delimitada por dos números reales, a y b, esto es a < X < b entonces también lo está su media, es decir, $a < \mathrm{E}[X] < b$
- ullet Si Y=a+bX, entonces $\mathrm{E}[Y]=\mathrm{E}[a+bX]=a+b\,\mathrm{E}[X]$
- ullet Si X y Y son variables aleatorias independientes entonces $\mathrm{E}[XY] = \mathrm{E}[X]\,\mathrm{E}[Y]$

Varianza

$$\operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2 \Longrightarrow \operatorname{E}[X^2] = \operatorname{Var}[X] + \operatorname{E}[X]^2$$

Sean X y Y dos variables aleatorias con varianza finita y $a \in \mathbb{R}$

- $Var(X) \geq 0$
- Var(a) = 0
- $Var(aX) = a^2 Var(X)$
- ullet ${
 m Var}(X+Y)={
 m Var}(X)+{
 m Var}(Y)+2\,{
 m Cov}(X,Y)$, donde ${
 m Cov}(X,Y)$ denota la covarianza de X e Y
- $ullet {
 m Var}(X+Y)={
 m Var}(X)+{
 m Var}(Y)$ si X y Y son variables aleatorias independientes.
- ullet ${
 m Var}(Y)={
 m E}({
 m Var}(Y|X))+{
 m Var}({
 m E}(Y|X))$ cálculo de la Varianza por Pitágoras, dónde Y|X es la variable aleatoria condicional Y dado X .

Desvío Estándar

$$\mathrm{SD}(X) = \sigma = \sqrt{\mathrm{Var}(X)} \implies \sigma^2 = \mathrm{Var}(X)$$

Covarianza

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

Correlación

$$ho_{xy} = rac{\mathrm{cov}_{xy}}{\sigma_x \sigma_y} = rac{\mathrm{cov}_{xy}}{\mathrm{SD}(x) \, \mathrm{SD}(y)}$$

Continuas

$$egin{aligned} \mathrm{F_x}(x) &= \int_{-\infty}^x f_X(u) du \ f_X(x) &= rac{d}{dx} \mathrm{F_x}(x) \end{aligned} \ P(a < X < b) &= \int_a^b f(x) dx = \mathrm{F_x}(b) - \mathrm{F_x}(a) \ P(a < X < b) &= \mathrm{P}(a < X \le b) = \mathrm{P}(a \le X \le b) \end{aligned}$$

Distribución Normal

Si $X \sim N(\mu, \sigma^2)$ y $a,b \in \mathbb{R}$, entonces $aX + b \sim N(a\mu + b, a^2\sigma^2)$

Si $X \sim N(\mu, \sigma^2)$, entonces $Z = \frac{X - \mu}{\sigma}$ es una variable aleatoria normal estándar: $Z \sim N(0,1)$.

$$X \sim N(\mu, \sigma^2) \Longrightarrow Z = rac{X - \mu}{\sigma} \sim N(0, 1)$$
 $Z \sim N(0, 1) \Longrightarrow X = \sigma Z + \mu \sim N(\mu, \sigma^2)$
 $X \sim N(\mu, \sigma^2)$
 $X + b \sim N(\mu + b, \sigma^2)$
 $aX \sim N(a imes \mu, a^2 imes \sigma^2)$
 $rac{X - \mu}{\sigma} \sim N(0, 1)$
 $rac{\overline{X}_n \sim N(\mu, \sigma^2/n), ext{ si } X_i ext{ son i.i.d}}{\sigma/\sqrt{n}} \sim N(0, 1), ext{ si } X_i ext{ son i.i.d}$

Función acumulada

$$\mathrm{f}(x) = \mathrm{\phi}(x) = rac{1}{\sqrt{2 imes\pi imes\sigma^2}} imes e^{-rac{(x-\mu)^2}{2 imes\sigma^2}}$$

Distribución Uniforme

$$\mathrm{P}(a < X < b) = rac{1}{b-a}$$
 $\mathrm{E}(X) = rac{a+b}{2}$
 $\mathrm{Var}(X) = rac{(b-a)^2}{12}$

Distribución Exponencial

$$egin{aligned} &\mathrm{f_X}(X) = \lambda e^{-\lambda X},\, \mathrm{para}\ X \geq 0 \ &\mathrm{F_X}(x) = \mathrm{P}(X > x) = 1 - e^{-\lambda x} \ &\mathrm{E}(X) = rac{1}{\lambda} \ &\mathrm{Var}(X) = rac{1}{\lambda^2} \end{aligned}$$

Discretas

Distribución Bernoulli

$$P(X = 1) = p$$

 $P(X = 0) = 1 - p$
 $E(X) = p$
 $Var(X) = p(1 - p)$

Distribución Binomial

$$\mathrm{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 $\mathrm{E}(X) = np$
 $\mathrm{Var}(X) = np(1-p)$

Distribución Poisson

$$egin{aligned} \mathrm{P}(X=k) &= rac{\lambda^k e^{-\lambda}}{k!} \ \mathrm{E}(X) &= \lambda \ \mathrm{Var}(X) &= \lambda \end{aligned}$$

Convergencia en Probabilidad

Sean X_n una secuencia de variables aleatorias, $X_n \stackrel{p}{\longrightarrow} X$ si $orall \epsilon > 0$ $\lim_{n o\infty}\mathrm{P}\left(|\overline{X}_n-\mathrm{E}(X)|>\epsilon
ight)=0$, por Ley de los Grandes Números.

Propiedades

Si $X_n \stackrel{p}{\longrightarrow} a$ y $Y_n \stackrel{p}{\longrightarrow} b$, entonces:

- $X_n + Y_n \xrightarrow{p} a + b$

- $\begin{array}{ll} \bullet & X_n Y_n \stackrel{p}{\longrightarrow} a \cdot b \\ \bullet & \frac{X_n}{Y_n} \stackrel{p}{\longrightarrow} \frac{a}{b} \text{ si } b \neq 0 \\ \bullet & \mathrm{g}(X_n) \stackrel{p}{\longrightarrow} \mathrm{g}(a) \text{ si g es una función continua} \end{array}$

Estimación por LGN

Sean X_1, X_2, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas (i.i.d.) con esperanza μ y varianza σ^2 . Entonces, la media muestral $\overline{X}_n \stackrel{p}{\longrightarrow} \mu$ por LGN. El estimador $\hat{\mu}_n = \overline{X}_n$ es consistente.

Estimación Esperanza

parámetro de interés: $\mu = E(X)$ muestra aleatoria: $X_1, \ldots, X_n \sim f$, i.i.d estimador: $\hat{\mu}_n = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ estimador consistente: $\hat{\mu}_n = \overline{X}_n \xrightarrow{p} \mu$

Estimación Varianza

parámetro de interés: $\sigma^2 = \operatorname{Var}(X)$ muestra aleatoria: $X_1, \dots, X_n \sim f$, i.i.d estimador: $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ estimador: $\hat{s}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

Estimación Proporción

parámetro de interés: p = P(X = 1)muestra aleatoria: $X_1, \ldots, X_n \sim f$, i.i.d estimador: $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$ estimador consistente: $\overline{X}_n \stackrel{p}{\longrightarrow} p$, por LGN

Estimación de Probabilidad

parámetro de interés: $p = F(x) = P(X \le x)$ muestra aleatoria: $X_1, \ldots, X_n \sim f$, i.i.d definimos $Y_i \sim \text{Bernoulli}(p)$ $Y_i = X_i \le x = \{1 \text{ si } X_i \le x, 0 \text{ si } X_i > x$ estimador: $\hat{F}_n(x) = \overline{Y}_n = \frac{1}{n} \sum_{i=1}^n 1_{X_i \le x}$ estimador consistente: $\hat{F}_n(x) = \overline{Y}_n \stackrel{p}{\longrightarrow} F(x)$

Formulas Consistencia

Sesgo

 $\mathrm{Sesgo}(\hat{ heta}_n) = \mathrm{E}(\hat{ heta}_n) - heta$ Si $\mathrm{Sesgo}(\hat{ heta}_n) = 0 \implies \mathrm{E}(\hat{ heta}_n) = heta$ entonces $\hat{ heta}_n$ es insesgado.

Asintóticamente Insesgado

$$\operatorname{Sesgo}(\hat{\theta}_n) = \operatorname{E}(\hat{\theta}_n) - \theta \stackrel{p}{\longrightarrow} 0$$

Error Estándar

$$\mathrm{SE}(\hat{ heta}_n) = \sqrt{\mathrm{Var}(\hat{ heta}_n)}$$

$$\operatorname{Var}(\hat{\theta}_n) = \operatorname{E}[(\hat{\theta}_n - \operatorname{E}(\hat{\theta}_n))^2]$$

Error Cuadrático Medio

$$ECME(\hat{\theta}_n) = Sesgo(\hat{\theta}_n)^2 + Var(\hat{\theta}_n)$$
$$ECME(\hat{\theta}_n) = E[(\hat{\theta}_n - \theta)^2]$$

Desigualdad de Chebyshev

$$\mathrm{P}(|X - \mu| \ge \epsilon) \le \frac{\mathrm{Var}(X)}{\epsilon^2}$$

Desigualdad de Markov

$$P(X > \epsilon) \le \frac{E(X)}{\epsilon}$$

Momentos

Momentos de una variable aleatoria

Discreta

$$m_k = \mathrm{E}(X^k) = \sum_{i=1}^n \, (x_i - \overline{x})^k$$

Continua

$$m_k = \int_{\mathbb{R}} x^k f(x) dx$$

$$egin{aligned} \mathbf{E}(X) &= \mu \\ \mathbf{E}(X^2) &= \mu^2 + \sigma^2 \\ \mathbf{E}(X^3) &= \mu^3 + 3\mu\sigma^2 \\ \mathbf{E}(X^4) &= \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 \end{aligned}$$

Estimación por Máxima Verosimilitud (Likelihood)

$$\mathcal{L}(\theta; \underline{X}) = \prod_{i=1}^n f(\theta; x_i)$$

Log-likelihood

$$l(\theta; \underline{X}) = \ln(\mathcal{L}(\theta; \underline{X})) = \sum_{i=1}^{n} \ln(f(\theta; x_i))$$
$$\frac{dl(\theta; \underline{X})}{d\theta} = \frac{d \ln(\mathcal{L}(\theta; \underline{X}))}{d\theta} = \sum_{i=1}^{n} \frac{d \ln(f(\theta; x_i))}{d\theta} = 0$$

Intervalos de Confianza

Intervalo de Confianza para μ

Sea la Variable Aleatoria $X_i \sim \mathrm{N}(\mu, \sigma^2)$, nuestro parámetro de interés es μ .

$$rac{\mu}{X}_n \sim \mathrm{N}(\mu, \sigma^2/n)$$
 .

Si σ^2 es conocido, entonces \overline{X}_n es insesgado y su varianza es σ^2/n .

Sea
$$Z=rac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\sim \mathrm{N}(0,1)$$
, $\hat{\mu}_n=\overline{X}_n$

El intervalo de confianza 1-lpha es:

$$\begin{split} &\mathrm{P}(-z \leq Z \leq z) = 1 - \alpha \\ &\phi(z) = \mathrm{P}(Z \leq z) = 1 - \alpha/2 \\ &\mathrm{P}(-z_{\alpha/2} \leq \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}) = 1 - \alpha \\ &P(\hat{\mu}_n - z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \leq \mu \leq \hat{\mu}_n + z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}) = 1 - \alpha \\ &\mathrm{IC} = (\hat{\mu}_n - z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}_n + z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}}) \\ &\overline{X}_n \pm z_{\alpha/2} \frac{\hat{\sigma}}{\sqrt{n}} \end{split}$$

T-Student

Si σ^2 es desconocido, entonces \overline{X}_n es insesgado y su varianza es s^2/n

Sea
$$T=rac{\overline{X}_n-\mu}{\sqrt{rac{s^2}{n}}}=rac{\overline{X}_n-\mu}{s/\sqrt{n}}\sim \mathrm{t}_{n-1}$$
, $\hat{\mu}_n=\overline{X}_n$

El intervalo de confianza $1-\alpha$ es:

$$P(-t_{n-1,\alpha/2} \le T \le t_{n-1,\alpha/2}) = 1 - \alpha$$

$$P(\hat{\mu}_n - t_{n-1,\alpha/2} \sqrt{\frac{s^2}{n}} \le \mu \le \hat{\mu}_n + t_{n-1,\alpha/2} \sqrt{\frac{s^2}{n}}) = 1 - \alpha$$

$$P(\hat{\mu}_n - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \hat{\mu}_n + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}) = 1 - \alpha$$

$$IC = (\hat{\mu}_n - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \hat{\mu}_n + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}})$$

$$\overline{X}_n \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$