Транспортная задача

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 03.10.2024

Транспортная задача

a,b — пункты производства, d,e,f — пункты потребления.

Перевозить товар можно только в направлении стрелок. \sum производств = \sum потреблений (пока что). На дугах указаны стоимости перевозки единицы товара.

Задача: перевезти весь товар из пунктов производства в пункты потребления с минимальными затратами.

Матрица инциденции графа

	ab	ae	da	be	bf	ef	ed
a	-1	-1	+1	0	0	0	0
b	+1	0	0	-1	-1	0	0
d	0	0	-1	0	0	0	+1
e	0	+1	0	+1	0	-1	-1
f	0	0	0	0	+1	+1	0

индексация по дугам

-1 — начало дуги. +1 — конец дуги.

$$x=egin{pmatrix} x_{ab} \ x_{ae} \ x_{da} \ \dots \ x_{ed} \end{pmatrix}$$
 , $x_{ab} \geq 0 \ \text{сколько везём}$, $B=egin{pmatrix} -30 \ -40 \ 25 \ 25 \ 20 \end{pmatrix}$, $\sum_i B_i=0.$

индексация по вершинам

Тогда решаем задачу $\langle c,x \rangle \to \inf$ при $Ax=B, x \geq \mathbb{O}$, где $c=(c_{ab},c_{ae},\ldots,c_{ed})$ – цены перевозки.

Алгоритм решения задачи

Утверждение

Pанг матрицы инциденции связного графа = число строк -1.

Доказывается через остовное дерево.

Утверждение

Pанг матрицы инциденции = число строк -# компонент связности.

Предположение о невырожденности: не существует допустимых перевозок по разрывным графам.

Базисный план: Связный подграф (столбцы, соответствующие дугам, – линейно независимы) \Rightarrow это дерево – связный граф без циклов. Не все деревья пригодны для перевозки, т.к. есть направления. Т.к. дуги линейно независимы, \exists не больше одной перевозки по дереву.

Проверить, есть ли допустимые перевозки;

Алгоритм:

- Выбрать дерево;
- Проверка на оптимальность;
- Если нет, то перестраиваем в другое дерево.

Нахождение начальной перевозки

Вспомогательная задача: Дополнительная вершина "склад". В ней ничего не производится и не потребляется. Старые дуги становятся бесплатными, новые — платными (любые числа >0).

План – всё увезти, потом всё привезти.

производство

Решаем вспомогательную задачу ...

 1° : Значение ЦФ на решении $=0 \Rightarrow$ удалось провезти по старым дорогам.

 2° : Значение ЦФ на решении >0 \Rightarrow перевозки по старым дорогам \nexists и нет допустимых планов перевозки в исходной задаче.

Замечание

Невыгодно, если вершин много.

Транспортная задача в матричной форме

Транспортная задача в матричной форме: \exists дуги из любого пункта производства в \forall пункт потребления.

Метод северо-западного угла: Добавляются фиктивные дуги. Старые дуги бесплатные, новые – платные. Для новой задачи находим допустимый план.

Строим таблицу								
	d 25	e 25	f 20					
a 30								
b 40								

Проверка на оптимальность

Пусть x^0 – план перевозок по дереву. $Ax^0=B, x^0\geq \mathbb{O}, \langle c,x\rangle \rightarrow \inf.$

Двойственная задача: $\langle u, B \rangle \to \sup, uA \le c.$

Если x^0 — оптимальный план, то по II-ой теореме двойственности $\exists u^0: u^0 A \leq c$ и для пары (x^0, u^0) вып. условия дополнительности:

$$\begin{cases} u_i^0(\sum_j a_{ij}x_j^0 - b_i) = 0 \ \forall i \leftarrow \text{всегда выполняется} \\ x_j^0(\sum_i u_i^0 a_{ij} - c_j) = 0 \ \forall j \leftarrow \left(\Rightarrow (x_j^0 > 0 \Rightarrow \sum_i u_i^0 a_{ij} = c_j) \right) \end{cases}$$

Пусть j соответствует дуге $\alpha\beta\colon x^0_{\alpha\beta}>0\Rightarrow\sum_{i-\text{вершины графа}}u^0_ia_{i,\alpha\beta}=c_{\alpha\beta}$

$$\sum_i u_i^0 a_{i,\alpha\beta} = u_\beta^0 - u_\alpha^0 = c_{\alpha\beta}$$
 (из вида матрицы инциденции). Таких уравнений столько, сколько положительных дуг в графе перевозки. Однознач-

ности нет. Интересуют только разности.

$$x_{\gamma\delta}^0=0\Rightarrow u_\delta^0-u_\gamma^0\leq c_{\gamma\delta}\leftarrow$$
 допустимость в двойственной задаче.

Как найти вектор u^0 ?

7/13

Нахождение плана двойственной

В дереве перевозок выполняем процедуру:

- ▶ Отмечаем любую вершину 0,
- Отмечаем любую инцидентную ей 1. Дугу между ними тоже отмечаем 1,
- ightharpoonup Затем делаем то же самое из помеченных в непомеченные (отмечаем дугу и вершину числом n).

Расставляем потенциалы: в 0 поставим [0], остальное расставляем по значениям на дугах. Т.е. если потенциалы \exists , то с точностью до const они такие.

Теперь надо проверить допустимость (до $1^{\text{ой}}$ ошибки).

На дугах вне дерева проверяется, что разность потенциалов \leq стоимости перевозки. Для дуги ed должно быть $u_d-u_e\leq 0$. Но 1-0>0.

Значит план не оптимальный. Нужно перестроить план.

8/13

Перестройка плана

Допустим, что существует дуга (α,β) , для которой $u_{\beta}-u_{\alpha}>c_{\alpha,\beta}$.

Перестройка: Добавляем дугу (α, β) .

Пусть α имеет номер i, β — номер j. Пусть i>0. Тогда \exists дуга из вершины i с номером i. Другой конец имеет номер i_1 , причём $i_1 < i$. Аналогично для $i_1 \dots$ и $i>i_1>i_2>\dots>0$.

Если у β номер 0, то всё хорошо. Если нет, то идём от β до 0. Берём объединение путей $(\alpha,0)$ и $(\beta,0)$ дугу (α,β) . Из этих путей получается цикл. Ставим на новой дуге + и обходим цикл в её направлении, проставляя + и -. В цикле обязательно будет -.

Если всё состоит из +: при проходе по циклу потенциалы возрастают. Получается $u_{\alpha}>u_{\beta}\Rightarrow u_{\beta}-u_{\alpha}<0$. Но $u_{\beta}-u_{\alpha}>c_{\alpha,\beta}$.

Перестройка плана – 2

- На дугах, не вошедших в цикл, перевозки остаются.
- ightharpoonup Выбираем минимальную перевозку из дуг, помеченных —. Отнимаем это число из дуг с —, прибавляем к дугам с +.
- lacktriangle Получили перевозку по (lpha,eta), дуга с минимальной перевозкой исчезает. Снова перевозка по дереву.

Надо проверить, что значение ЦФ строго уменьшилось. Тогда метод завершит работу за конечное число шагов.

Изменение

Было:

Изменение стоимости = новая — старая = $\delta c_{\alpha,\beta} + \delta c_{\beta,\gamma} + \ldots - \delta c_{\alpha,\psi} < \delta(u_{\beta} - u_{\alpha} + u_{\gamma} - u_{\beta} + \ldots - (u_{\psi} - u_{\alpha})) = 0.$

Пример

Проверка плана на оптимальность:

Перевозки:

- Отмечаем дуги, по которым везём
- Наносим цены
- Размечаем вершины

Цены:

 Определяем потенциалы. В 0 ставим любой (0). Проставляем потенциалы как "потенциал конца – начала = цена"

- ▶ Отмечаем дуги, по которым везём
- ▶ Наносим цены
- Размечаем вершины
- Определяем потенциалы. В 0 ставим любой (0). Проставляем потенциалы как "потенциал начала - конца = цена"
- Дуги вне дерева: проверяем неравенства для потенциалов
- Если не выполняется неравенство, то перестраиваем.

$$(a,b)\mapsto u_b-u_a \le c_{a,b}=2$$
, ho $u_b-u_a=6-0=6>2$.

Добавляем дугу (a,b) к перевозке. Образуется цикл ((a,b,d,a)). Проставляем "+" на ребро (a,b) и "+" на ребра, совпадающие с направлением движения по циклу, и "-" на ребра, противоположные движению. Находим минимальную стоимость на ребрах с "-".

Замечание

Если входные данные целочисленные, то и ответ тоже целочисленный.

проверяем неравенства и т.д.