往年试卷

成贤游戏交流群:

QQ:2305201452

909188621

表白墙:2113294494

一、客观题(本题共 8 小题,每小题 4 分,满分 32 分)

$$1 \cdot \lim_{(x,y)\to(0,3)} \frac{\sin(xy)}{2x} = \underline{\hspace{1cm}} \circ$$

2、设
$$f(x,y) = \ln(\sqrt{x} + \sqrt{y})$$
,则 $\frac{\partial f}{\partial x}\Big|_{(1,1)} =$

3、设
$$z = x^y$$
,则 $dz|_{(2,1)} =$ 。

4、曲面
$$z = 2x^2 - 3y^2$$
 在点 $P(1,1,-1)$ 处的切平面方程为 。

5、微分方程
$$\frac{dy}{dx} = \frac{x}{y}$$
的通解为______。

6、幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (x-4)^n$$
 的收敛域为______。

7、交换积分次序:
$$\int_0^1 dy \int_y^{2y} f(x,y) dx =$$
________。

8、微分方程
$$y'' + 5y' + 6y = 0$$
 的通解为

- 二、计算题(本题共4小题,每小题8分,满分32分)
- 1、求微分方程 $xy' + y = e^x$ 满足 $y|_{y=1} = 0$ 的特解。

2、判断级数的敛散性: (1)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{2}{n^2}\right)$$
; (2) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3^n}{n!}$.

3、设
$$z = f(x, y)$$
 是由方程 $e^z + x + 2y + z = 3$ 确定的隐函数,求 $\frac{\partial z}{\partial x}$ 、 $\frac{\partial z}{\partial y}$ 。

- 4、求函数 $y = \frac{1}{r+3}$ 展开为(x-1) 的幂级数,并且写出收敛域。
- 三、计算题(本题共3小题,每小题8分,满分24分)

1、设
$$z = f(2x - 3y, xy^2)$$
, 其中 f 有二阶连续的偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2、求幂级数
$$\sum_{n=0}^{\infty} \frac{x^{2n+2}}{2n+1}$$
 的和函数 $s(x)$,并指出收敛域。

3、求函数
$$f(x, y, z) = x - y + z$$
 在条件 $x^2 + y^2 + z^2 = 3$ 下的最大值与最小值。

四、计算题(本题共2小题,每小题6分,满分12分)

1、计算二重积分
$$\iint_D (x+y)^2 dxdy$$
, 其中 D 是由曲线 $x^2+y^2=2x$ 所围成的平面闭区域。

2、设
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} &, x^2 + y^4 \neq 0 \\ 0 &, x^2 + y^4 = 0 \end{cases}$$
, 求 $f_x(0,0), f_y(0,0)$ 。

