Offenlegungsschrift 23 61 551

② Aktenzeichen:

P 23 61 551.2

Anmeldetag:

11. 12. 73

Offenlegungstag:

19. 6.75

30 Unionspriorität:

43

30 33 31

Bezeichnung: Wasserlösliche Azofarbstoffe

(7) Anmelder: BASF AG, 6700 Ludwigshafen

Dehnert, Johannes, Dipl.-Chem. Dr.; Juenemann, Werner, Dipl.-Chem. Dr.;

6700 Ludwigshafen

Wasserlösliche Azofarbstoffe

Die Erfindung betrifft Farbstoffe, die in Form der freien Säuren und in einer der möglichen tautomeren Formen der Formel I

$$\begin{array}{c}
\text{NHR}^{1} \\
\text{NHR}^{1} \\
\text{N-R}^{2}
\end{array}$$

$$\begin{array}{c}
\text{(SO_3H)}_{n} \\
\text{R}^{1}
\end{array}$$

entsprechen, in der

- D den Rest einer Diazokomponente,
- X Cyan oder Carbamoyl,
- n die Zahlen 1 bis 4,
- R¹ gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aralkyl und
- R² Wasserstoff oder gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl bedeuten.

690/73

-2-

ORIGINAL INSPECTED

Die Reste D der Diazokomponenten leiten sich insbesondere von Anilin-, Aminophthalimid- und Aminoazobenzolderivaten ab, die Hydroxy, z. B. durch Hydroxysulfonyl, Halogen,/Alkyl, Alkoxy, Acylamino, Cyan, Alkylsulfon, Phenylsulfon, Nitro, Carboxyl, Carbalkoxy, Carbonamid, N-substituiertes Carbonamid, Sulfonamid, N-substituiertes Sulfonamid oder Benzthiazolyl substituiert sein können.

Einzelne Substituenten sind außer den bereits genannten beispielsweise: Chlor, Brom, Methyl, Äthyl, Trifluormethyl, Methoxy, Äthoxy, Methylsulfonyl, Äthylsulfonyl, Carbomethoxy, -äthoxy, -β-äthoxy, -β-methoxyäthoxy, -butoxy, -β-butoxyäthoxy, N-Methyl-, N-Äthyl-, N-Propyl-, N-Butyl-, N-Hexyl-, N-β-Äthyl-hexyl-, N-β-Hydroxyäthyl-, N-β-Methoxyäthyl-, N-γ-Methoxypropyl-carbonamid, N,N-Dimethyl-, N,N-Diäthyl-, N-Methyl-N-β-hydroxyäthyl-, N-Phenylcarbonamid, Carbonsäure-piperidid, -morpholid oder -pyrrolidid sowie die entsprechenden Sulfonamide, Acetylamino, Propionylamino, Butyrylamino, Methansulfonylamino, Benzolsulfonyl-amino, Hydroxyacetylamino, Benzoylamino, p-Chlorbenzoylamino,
Phenacetylamino sowie die Reste der Formeln -N-CO-CH₃, -N-CO-CH₂Cl, -N-CO-CH₃, -N-CHO oder -N-CO-CH₃, -N-CO-CH₂Cl, -N-CO-CH₃, -N-CHO oder -N-CO-CH₃, -N-CO-CH₂Cl,

-3-

Reste R¹ der Kupplungskomponenten sind z. B. Alkyl mit 1 bis 8 C-Atomen, das noch durch Chlor, Brom oder Alkoxy mit 1 bis 4 C-Atomen substituiert sein kann, Cyclohexyl, Norbornyl, Benzyl, Phenyläthyl oder Phenylpropyl.

Bevorzugte Reste R¹ sind Alkylgruppen mit 1 bis 4 C-Atomen und insbesondere Äthyl, Propyl, Methoxyäthyl oder Methoxypropyl.

Reste R² sind neben Wasserstoff z. B. Alkyl mit 1 bis 8 C-Atomen, das durch Sauerstoffatome unterbrochen und durch Hydroxy, Acyloxy, Alkoxy, Cyan, Cycloalkoxy, Aralkoxy oder Aroxy substituiert sein kann, gegebenenfalls durch Hydroxy, Chlor, Hydroxyalkyl, Chloralkyl oder Alkyl substituierte Cycloalkyl- oder Polycycloalkylreste mit 5 bis 15 C-Atomen, Aralkylreste mit 7 bis 15 C-Atomen oder gegebenenfalls durch Chlor, Hydroxy, Alkoxy, Alkyl, Hydroxyalkyl oder Hydroxyalkoxy substituierte Phenylreste sowie Alkenyl-, Pyrrolidonylalkyl- und Carboxyalkylreste.

Als Reste R² kommen im einzelnen außer den schon genannten z. B. in Betracht:

1) gegebenenfalls substituierte Alkylreste:

$$cH_2cH_2oH$$
, $(cH_2)_3oH$, cH_2cHoH , $cH-cH_2oH$, $(cH_2)_4oH$, cH_3

$$(cH_2)_6$$
он, $cH_2(cH_2)_3$ $(cH_2)_2$ $(cH_2)_2$ он, $(cH_2)_3$ $(cH_2)_4$ он, cH_3 $(cH_2)_4$ $(cH_2)_5$ $(cH_2)_5$

die entsprechenden Reste bei denen die Gruppierungen

zwei-, drei- oder viermal vorhanden sind,

$$cH_2cH_2ocH_3$$
, $cH_2cH_2oc_2H_5$, $cH_2cH_2oc_3H_7$, $cH_2cH_2oc_4H_9$, $cH_2cH_2oc_6H_5$,

$$(cH_2)_3 ccH_3$$
, $(cH_2)_3 cc_2 H_5$, $(cH_2)_3 cc_3 H_7$, $(cH_2)_3 cc_4 H_9$,

$$(\text{CH}_2)_3^{0\text{CH}_2} + \text{CH}_2^{0\text{CH}_2} = (\text{CH}_2)_3^{0\text{C}_6} + \text{CH}_2^{0\text{C}_3} = (\text{CH}_2)_3^{0\text{C}_6} = (\text{CH}_2)_3^{0$$

$$(cH_2)_3^{OCH_2}c_6^{H_5}$$
, $(cH_2)_3^{OC_2}H_4^{C_6}H_5$, $(cH_2)_3^{OC_6}H_5$, $-cH_2^{OCH_3}$, cH_2

0.2. 30 263

2) gegebenenfalls substituierte Cyclo- und Polycycloalkylreste:

3) Aralkylreste

4) gegebenenfalls substituierte Phenylreste:

^{С6H₅}, ^{С6H₄CH₃}, ^{С6H₃(CH₃)₂}, ^{С6H₄OCH₃}, ^{С6H₄OCH₂H₅}, ^{С6H₄OH}, ^{С6H₄NH}, ^{С6H₄OCH₂CH₂OH oder ^{С6H₄Cl}.} 5) $CH_2CH=CH_2$, $(CH_2)_2COOH$, $(CH_2)_5COOH$ und $(CH_2)_n-N$, wobei

 $\begin{array}{l} {\rm n = 2, 3, 4 \ oder \ 6 \ ist, \ C_2H_4OCOCH_3, \ C_2H_4OCHO, \ C_2H_4OCOCH_2COCH_3,} \\ {\rm (C_2H_4O)_2COCH_3, \quad (C_2H_4O)_2CHO, \quad (CH_2)_3OCOCH_3, \quad (CH_2)_3OCHO,} \\ {\rm C_2H_4OCOC_2H_4COOH.} \end{array}$

 $(cH_2)_4$ oso_3H , $(cH_2)_6$ oso_3H , $cH_2(cH_2)_3$ oso_3H $(cH_2)_4$ oso_3H

$$-\bigcirc$$
 $\cos c_3 H$, $-\bigcirc$ $c_2 H_4 \cos c_3 H$, $-\bigcirc$ $c_2 H_4 \cos c_3 H$,

$$= \sum_{\text{SO}_3^{\text{H}}}^{\text{OC}_2^{\text{H}_5}}, \quad = \sum_{\text{SO}_3^{\text{H}}}^{\text{OH}}, \quad = C_6^{\text{H}_4^{\text{OCH}_2^{\text{CH}_2^{\text{OSO}_3^{\text{H}}}}}, \quad = \sum_{\text{SO}_3^{\text{H}}}^{\text{OCH}_2^{\text{CH}_2^{\text{OH}}}}$$

oder C1

Als Substituenten R sind bevorzugt beispielsweise: Wasserstoff, c_{13} , $c_{2}^{H_{5}}$, n- oder i- $c_{3}^{H_{7}}$, n- oder i- $c_{4}^{H_{9}}$, $c_{6}^{H_{13}}$, $c_{12}^{C_{12}}$ OH, cH_2 снон, $(cH_2)_4$ он, $(cH_2)_6$ он, $cH(cH_2)_3$ с $(cH_3)_2$, (сн₂)₃он, $(\text{CH}_2)_2 \text{O}(\text{CH}_2)_2 \text{OH}, \quad (\text{CH}_2)_3 \text{O}(\text{CH}_2)_2 \text{OH}, \quad (\text{CH}_2)_3 \text{O}(\text{CH}_2)_4 \text{OH}, \quad (\text{CH}_2)_3 \text{O}(\text{CH}_2)_6 \text{OH},$ H-OH, H-O-CH₂CH₂OH, CH_2 CH CH_2 OH, $CH(CH_2)_3$ CH(CH₂)₃ () OH , $\text{CH}_2\text{CH}_2\text{OCH}_3$, $\text{CH}_2\text{CH}_2\text{OC}_2\text{H}_5$, $\text{CH}_2\text{CH}_2\text{OC}_4\text{H}_9$, $\text{(CH}_2)_3\text{OCH}_3$, $\text{(CH}_2)_3\text{OC}_2\text{H}_5$, $(CH_2)_3 OC_3 H_7$, $(CH_2)_3 OC_4 H_9$, $(CH_2)_3 OC_6 H_{13}$, $(CH_2)_3 OC_8 H_{17}$, $(CH_2)_3 - 0 - H$, $(CH_2)_3 OCH_2 \sim$, $(CH_2)_3 OC_2 H_4 \sim$, $(CH_2)_3 O- \sim$, $(CH_2)_2O \leftarrow (CH_2)_3OC_2H_4OCH_3, (CH_2)_3OC_2H_4OC_4H_9, (CH_2)_3OC_2H_4OC_6H_5,$ $\stackrel{\text{H}}{\longrightarrow}$, $\stackrel{\text{CH}_2^{\text{C}}}{\bigcirc}_{6}^{\text{H}}_{5}$, $\stackrel{\text{C}_2^{\text{H}}}{\bigcirc}_{4}^{\text{C}}_{6}^{\text{H}}_{5}$, $c_{H_2}c_{H_5}c_{H_5}$, $c_{H_2}c_{H_2}c_{H_5}c_{H_5}$, $c_{H_5}c_{H_5}$, $c_{H_4}c_{H_3}$, $c_{H_3}c_{H_3}c_{H_3}$, $c_{H_4}c_{H_3}$, $c_{6}H_{4}oc_{2}H_{5}$, $c_{6}H_{4}oc_{2}H_{4}oH$, $c_{6}H_{4}c1$, $cH_{2}cH_{2}so_{3}H$, $cH_{2}cH_{2}oso_{3}H$, $(cH_2)_3^{0S0}_3^{H}$, $cH_2^{cH0S0}_3^{H}$, $(cH_2)_4^{0S0}_3^{H}$, $(cH_2)_6^{0S0}_3^{H}$, $(\text{CH}_2)_2 \circ (\text{CH}_2)_2 \circ \text{SO}_3 \text{H}, \quad (\text{CH}_2)_3 \circ (\text{CH}_2)_2 \circ \text{SO}_3 \text{H}, \quad (\text{CH}_2)_3 \circ (\text{CH}_2)_4 \circ \text{SO}_3 \text{H},$ $(CH_2)_3O(CH_2)_6OSO_3H$, $(CH_2)_3OC_6H_4SO_3H$, $(CH_2)_3C_6H_4SO_3H$. $(cH_2)_3 oc_2 H_4 c_6 H_4 so_3 H$, $cH_2 c_6 H_4 so_3 H$, $c_2 H_4 c_6 H_4 so_3 H$, $cH_2 cH c_6 H_4 so_3 H$, OCH₃ oder C1
SO₃H

509825/0994

Die Farbstoffe der Formel I können in Form der freien Säuren oder auch zweckmäßigerweise als wasserlösliche Salze, z. B. als Alkali-, Ammonium- oder substituierte Ammoniumsalze, hergestellt oder verwendet werden. Substituierte Ammoniumkationen in den Salzen sind beispielsweise Trimethylammonium, Methoxyäthyl-ammonium, Hexoxypropyl-ammonium eder. Dimethyl-phenyl-benzyl-ammonium. Mono; Di- oder Triäthanol-ammonium.

Zur Herstellung der Farbstoffe der Formel I kann man Diazoverbindungen von Aminen der Formel II

mit Kupplungskomponenten der Formel III

umsetzen, wobei normalerweise entweder D und/oder die Reste R¹ und vorzugsweise R² mindestens eine Sulfonsäuregruppe enthalten. Diazotierung und Kupplung erfolgen nach an sich bekannten Methoden. Man kann die neuen Farbstoffe, insbesondere solche mit Schwefelsäurehalbestergruppen, auch dadurch erhalten, daß man zunächst die SO₃H-Gruppen-freien Verbindungen durch Diazotierung und Kupplung herstellt und diese dann mit Sulfoniermitteln wie konzentrierter Schwefelsäure, Schwefelsäuremonohydrat oder Oleum in die Farbstoffe der Formel I überführt. Bezüglich der Einzelheiten wird

auf die Beispiele verweisen. Kupplungskomponenten der Formel III und ihre Herstellung sind aus dem Patent (Patentanmeldung P 23 49 373.4) sowie aus der Angew. Chemie 84, 1184-1185 (1972) bekannt.

Verbindungen der Formel II sind beispielsweise: Anilin, 2-, 3- und 4-Chlor-anilin, 2-, 3- und 4-Bromanilin, 2-, 3- und 4-Nitroanilin, 2-, 3- und 4-Toluidin, 2-, 3- und 4-Cyananilin, 2,4-Dicyan-anilin, 3,4- oder 2,5-Dichlor-anilin, 2,4,5-Trichloranilin, 2,4,6-Trichloranilin, 2-Chlor-4-nitroanilin, 2-Brom-4-nitroanilin, 2-Cyan-4-nitroanilin, 2-Methylsulfonyl-4-nitroanilin, 4-Chlor-2-nitroanilin, 4-Methyl-2-nitroanilin, 2-Methoxy-4-nitroanilin, 1-Amino-2-trifluormethyl-4-chlorbenzol, 2-Chlor-5-amino-benzonitril, 2-Amino-5-chlorbenzonitril, 1-Amino-2-nitrobenzol-4-sulfonsäure-(n)-butylamid oder -B-methoxy-äthylamid, 1-Aminobenzol-4-methylsulfon, 1-Amino-2,6-dibrombenzol-4-methylsulfon, 1-Amino-2,6-dichlorbenzol-4-methylsulfon, 3.5-Dichloranthranilsäure-methylester, -propylester, -B-methoxyäthylester, -butylester, 3,5-Dibromanthranilsäure-methylester, -äthylester, -(n)- oder -(i)-propylester, -(n)- oder (i)-butylester, -B-methoxy-äthylester, N-Acetyl-p-phenylendiamin, N-Acetyl-m-phenylendiamin, N-Benzolsulfonyl-p-phenylendiamin, 4-Amino-acetophenon, 4oder 2-Aminobenzophenon, 2- und 4-Amino-diphenylsulfon, 2-, 3- oder 4-Aminobenzoesäure-methylester, -äthylester, -propylester, -butylester, -isobutylester, -B-methoxyäthylester, -B-äthoxyäthylester,

-methyldiglykolester, -äthyldiglykolester, -methyl-triglykolester, 3- oder 4-Aminophthalsäure, 5-Amino-isophthalsäure- oder Aminoterephthalsäuredimethylester, -diäthylester, -dipropylester, -dibutylester, 3- oder 4-Aminobenzoesäureamid, -methylamid, -propylamid, -butylamid, -isobutylamid, -cyclohexylamid, B-äthyl-hexylamid, -γ-methoxy-propylamid, 2-, 3- oder 4-Aminobenzoesäure-dimethylamid, -diathylamid, -pyrrolidid, -morpholid, 5-Amino-isophthalsäurediamid, 3- oder 4-Amino-phthalsäure-imid, -8-hydroxyäthylimid, -methylimid, -äthylimid, -tolylimid, 4-Aminobenzolsulfonsäure-dimethylamid, -diäthylamid, -pyrrolidid, -morpholid, 3- oder 4-Aminophthalsäure-hydrazid, 4-Amino-naphthalsäure-äthylimid, -butylimid, -methoxyäthylimid, 1-Amino-anthrachinon, 4-Aminodiphenylenoxid, 2-Amino-benzthiazol, 4- und 5-Nitronaphthylamin, 4-Amino-azobenzol, 2',3-Dimethyl-4-amino-azobenzol, 3',2-Dimethyl-4-amino-azobenzol, 2,5-Dimethyl-4-amino-azobenzol, 2-Methyl-5methoxy-4-amino-azobenzol, 2-Methyl-4',5-dimethoxy-4-amino-azobenzol, 4'-Chlor-2-methyl-5-methoxy-4-amino-azobenzol, 4'-Nitro-2-methyl-5-methoxy-4-aminoazobenzol, 4'-Chlor-2-methyl-4-amino-azobenzol, 2,5-Dimethoxy-4-amino-azobenzol, 4'-Chlor-2,5-dimethoxy-4-amino-azobenzol, 4'-Nitro-2,5-dimethoxy-4-aminoazobenzol, 4'-Chlor-2,5-dimethyl-4-amino-azobenzol, 4'-Methoxy-2,5-dimethyl-4-aminoazobenzol, 4'-Nitro-4-amino-azobenzol, 3,5-Dibrom-4-amino-azobenzol, 2,3'-Dichlor-4-amino-azobenzol, 3-Methoxy-4-amino-azobenzol, 1-Aminobenzol-2-, -3- oder -4-sulfonsäure, 1-Aminobenzol-2,4- oder -2,5disulfonsäure, 1-Amino-2-methylbenzol-4-sulfonsäure, 1-Amino-3-methylbenzol-4-sulfonsäure, 1-Amino-4-methylbenzol-2- oder -3-sulfonsäure, 2-Nitranilin-4-sulfonsäure, 4-Nitranilin-2-sulfonsäure, 2-Chloranilin-4- oder -5-sulfonsäure, 3-Chloranilin-6-sulfon-4-Chloranilin-2-sulfonsäure, 1-Amino-3,4-dichlorbenzol-6-sulfonsäure, säure, 1-Amino-2,5-dichlorbenzol-4-sulfonsäure, 1-Amino-4-methyl-5-chlorbenzol-2-sulfonsäure, 1-Amino-3-methyl-4-chlorbenzol-6-sulfonsäure, 2-Amino-4-sulfobenzoesäure, 1-Amino-4-acetaminobenzol-2-sulfonsäure, 1-Amino-5-acetaminobenzol-2-sulfonsäure, 1-Amino-2-sulfonsäure, 1-Amino-2-sulfonsäure, 1-Amino-2-sulfonsäure, 1-Amino-2-sulfonsäure, 1-Aminonaphthalin-2- oder -4-sulfonsäure, 2-Aminonaphthalin-1-sulfonsäure, sowie die Diazokomponenten der Formeln

$$_{\text{HO}_3}$$
S $_{\text{N=N}}$ $_{\text{N=N}_2}$, $_{\text{NH}_2}$, $_{\text{NH}_2}$ $_{\text{NH}_2}$ $_{\text{NH}_2}$ $_{\text{NH}_2}$ $_{\text{NH}_2}$ $_{\text{NH}_2}$ $_{\text{NH}_2}$

$$OCH_3$$
 OCH_3
 OCH_3

$$HO_3S$$
 $-N=N$ $N=N$ N

$$H_5C_2O$$
 \sim $N=N$ \sim NH_2 , H_3CO \sim $N=N$ \sim NH_2 , HO \sim $N=N$ \sim NH_2 , $NH_$

$$H_{5}C_{2}O - N=N-N=N-N+2$$
, $HO - N=N-N=N-N+2$, $H_{3}CO - N=N-N=N-N+2$, $H_{3}CO - N=N-N+2$, $H_{3}CO - N=N+2$, $H_{$

$$n-H_7C_3O$$
 $N=N-C_2$, H_3CO $N=N-C_3$ NH_2 , SO_3H

$$H_3CO \stackrel{}{\swarrow} N=N \stackrel{}{\swarrow} NH_2$$
, $H_3CO \stackrel{}{\swarrow} NH_2$, $H_3CO \stackrel{}{\searrow} NH_2$

$$H_3C-OC-N$$
 $N=N$ $N=N$

$$H_3^{C-OC-N} \longrightarrow N=N \longrightarrow NH_2$$
, $H_3^{C-OC-N} \longrightarrow N=N \longrightarrow NH_2$, SO_3^H

$$H_3C-OC-N$$
 $N=N$
 SO_3H
 H_3CO
 $N=N$
 $N=N$

$$_{10_{3}}^$$

$$_{3}^{\text{CH}_{3}}$$
 $_{4}^{\text{C}_{2}^{-0}}$ $_{2}^{\text{CH}_{3}}$ $_{3}^{\text{CH}_{3}}$ $_{3}^{\text{CH}_{3}}$ $_{3}^{\text{CH}_{3}}$ $_{4}^{\text{C}_{2}^{-0}}$ $_{4}^{\text{C}_{2}^{-0}}$ $_{2}^{\text{CH}_{3}}$ $_{3}^{\text{CH}_{3}}$ $_{3}^{\text{CH}_{3}}$ $_{4}^{\text{C}_{2}^{-0}}$ $_{4}^{$

Von besonderer technischer Bedeutung sind Farbstoffe der Formel I a

in der D¹ einen Rest der Formel

- X4 Wasserstoff oder SO3H,
- X Cyan oder Carbamoyl,
- Y Wasserstoff, Cyan, Chlor, Brom, Methylsulfon, Äthylsulfon, Phenylsulfon, Carbalkoxy oder SO3H,
- Y Wasserstoff, Chlor, Brom oder SO3H,
- Y² Wasserstoff, Chlor, Brom, Methyl, Carbalkoxy, 2-Benzthiazolyl oder SO₃H,
- X3 Wasserstoff, Methyl, Hydroxy, Methoxy oder SO3H,
- X¹ Wasserstoff, Methyl, Methoxy oder SO₃H,
- X² Wasserstoff, Methyl oder Methoxy und
- T Wasserstoff oder einen Substituenten bedeuten und
- R¹ und R² die angegebene Bedeutung haben.

Bevorzugte Reste für T sind Alkylreste mit 2 bis 8 C-Atomen, die durch Sauerstoff unterbrochen und durch Hydroxy, Phenoxy oder OSO₃H substituiert sein können, Benzyl, durch SO₃H substituiertes Benzyl, Phenyläthyl, durch SO₃H substituiertes Phenyläthyl oder gegebenenfalls durch SO₃H und/oder andere Reste substituiertes Phenyl.

Reste T sind beispielsweise: $_{\text{CH}_3}$, $_{\text{C}_2\text{H}_5}$, $_{\text{C}_3\text{H}_7}$, $_{\text{C}_4\text{H}_9}$, $_{\text{C}_6\text{H}_{13}}$, $_{\text{CH}_2\text{CH}_2\text{CH}_2}$, $_{\text{CH}_2\text{CH}_2}$, $_{\text{CH}_2\text{CH}_2}$, $_{\text{CH}_2}$, $_{\text{$

Bevorzugte Reste für R² sind Alkylreste mit 1 bis 8 C-Atomen, die durch Sauerstoff unterbrochen und durch Hydroxy, Phenoxy, Benzoyloxy oder OSO₃H substituiert sein können, Benzyl, Phenäthyl, durch SO₃H substituiertes Benzyl oder Phenäthyl, gegebenenfalls substituierte Phenyloder Hydroxysulfonylreste oder Wasserstoff. Die neuen Farbstoffe enthalten vorzugsweise 1 oder 2 Sulfonsäuregruppen, X ist vorzugsweise Cyan.

Bevorzugte Diazokomponenten sind beispielsweise:

2-, 3- und 4-Amino-benzoesäure-methylester, -äthylester, -(n) und
-(i)-propylester, -ß-methoxyäthylester, 2-Amino-3,5-dichlor-benzoesäure-methylester, -äthylester, -(i)-propylester, 2-Amino-3,5-dibrombenzoesäure-methylester, -äthylester, -ß-methoxy-äthylester, 3-Brom4-amino-benzoesäure-äthylester, Aminoterephthalsäurediäthylester,

2-Amino-benzonitril, 2,4-Dicyan-anilin, 2-Amino-5-chlor-benzonitril, 2-Amino-5-brom-benzonitril, 2-Amino-3-brom-5-chlor-benzonitril, 2-Amino-3,5-dibrom-benzonitril, 2-Amino-3,5-diculor-benzonitril, 2-Amino-1-trifluormethyl-benzol, 2-Amino-5-chlor-trifluormethylbenzol, 4-Aminobenzol-1-methylsulfon, 3-Chlor-4-aminobenzol-1-methylsulfon, 2-Amino-diphenylsulfon, 4-Amino-diphenylsulfon, 3- und 4-Aminophthalsaure-B-hydroxyathylimid, 3- und 4-Aminophthalsaure-B-methoxyäthylimid, 3- und 4-Aminophthalsäure-butylimid, -tolylimid, 1-Amino-4-nitrobenzol, 1-Amino-4-acetylamino-benzol, 1-Amino-3-acetylaminobenzol, 4-Amino-benzoesäure-amid, 4-Amino-benzoesäure-N-methylamid, -N-butylamid, -N-B-äthylhexylamid, 4-Amino-benzoesäure-K,N-diäthylanid, 3- und 4-Amino-benzolsulfonsereamid, 3- und 4-Aminobenzolsulfonsäure-N-butylamid, 3- und -4-Amino-benzolsulfonsäure-morpholid, 2-Chlor-anilin-4- oder -5-sulfonsäure, 3-Chlor-anilin-6-sulfonsäure, 4-Chlor-anilin-2-sulfonsäure, 1-Amino-3,4-dichlorbenzol-6-sulfonsäure, 1-Amino-2,5-dichlorbenzol-4-sulfonsäure, 1-Amino-2,5-dibrombenzol-4-sulfonsäure, 1-Amino-4-methyl-5-chlorbenzol-2-sulfonsäure, 1-Amino-3-methyl-4-chlorbenzol-6-sulfonsäure und die Amine der Formeln

$$HO_3S - N=N - NH_2$$
, $HO_3S - N=N - NH_2$,

$$_{3}^{\text{C}}$$
 $_{10_{3}}^{\text{CH}_{3}}$ $_{10_{3}}^{\text{CH}_{3}}^{\text{CH}_{3}}$ $_{10_{3}}^{\text{CH}_{3}}^{\text{CH}_{3}}^{\text{CH}_{3}}^{\text{CH}_{3}}^{\text{CH}_{3}}^{\text{C$

$$SO_3H$$
 $N=N$
 $N=$

$$H_3^{C}$$
 H_3^{C}
 H_3^{C}

$$_{3}^{S}$$
 $_{N=N}$ $_{NH_{2}}$, $_{NH_{2}}$ $_{NH_{2}}$, $_{NH_{2}}$ $_{NH_{2}}$, $_{NH_{2}}$ $_{NH_{2}}$, $_{NH_{2}}$

$$H_3^{C}$$
 SO_3^{H} NH_2

$$0 = \bigvee_{\substack{N \\ R^4}}^{NH} 0$$

$$R' = -CH_3$$

$$EO-(-)-N=N-(-)-NH_2$$

 SO_3H
 $E = H, CH_3, C_2H_5$

Die neuen Farbstoffe sind gelb bis violett und eignen sich zum Färben von natürlichen und synthetischen Polyamiden, wie Wolle, Seide, Nylon 6 oder Nylon 6,6. Man erhält damit brillante Färbungen mit vorzüglichen Echtheiten.

In den folgenden Beispielen beziehen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht.

Beispiel 1

40 Teile der Diazokomponente der Formel

werden in 750 Teilen Wasser heiß gelöst, filtriert, mit 30 Teilen einer 23 %igen Natriumnitritlösung, 500 Teilen Eis und anschließend mit 40 Teilen konzentrierter Salzsäure versetzt. Man rührt 2 Stunden bei 0 - 5 °C nach und gibt dann bei der gleichen Temperatur eine Lösung von ungefähr 38 Teilen 6-Amino-3-cyan-4-äthylamino-2-(2-phenyl)-äthylamino-1-äthylpyridiniumchlorid (50 %ig) in 300 Teilen N-Methylpyrrolidon-(2) und 75 Teilen Salzsäure zu. Das Kupplungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von 4 abgestumpft und der ausgefallene Farbstoff der Formel

abgesaugt. Das getrocknete rote Pulver färbt Polycaprolactamgewebe orangefarben mit sehr guten Echtheiten.

Beispiel 2

36,9 Teile 6-Amino-2-chlor-3-cyan-4-cyclohexylamino-1-cyclohexyl-pyridiniumchlorid werden mit 50 Teilen 2-Hydroxyäthylamin 5 Stunden auf 130 °C erhitzt. Man läßt abkühlen und rührt in 200 Teile Eiswasser ein. Das halbkristallin anfallende Produkt wird abgetrennt und getrocknet. Man erhält ungefähr 40 Teile einer klebrigen Substanz der Formel

43,1 Teile des so gewonnenen Produktes werden in 300 Teilen N-Methylpyrrolidon-(2), 60 Teilen Salzsäure und 150 Teilen Wasser gelöst und bei 0 - 5 °C zu einer auf übliche Weise in salzsaurer, wäßriger Lösung dargestellte Diazoniumsalzlösung ausgehend von 24,2 Teilen 4-Amino-2,5-dichlorbenzolsulfonsäure gegeben. Nach beendeter Kupplung stellt man mit 50 %iger Natriumacetatlösung den pH-Wert auf etwa 4 ein und saugt den ausgefallenen Farbstoff der Formel

ab. Nach dem Trocknen erhält man etwa 66 Teile eines orangefarbenen Pulvers, das Polycaprolactamgewebe gelb mit vorzüglichen Echtheiten anfärbt.

Beispiel 3

32,1 Teile 6-Amino-2-chlor-3-cyan-4-(2-methoxy)-äthylamino-1-(2-methoxy)äthyl-pyridiniumchlorid werden in 400 Teilen mit
Ammoniak bei etwa 20 °C gesättigtem Alkohol 10 Stunden bei 160 170 °C im Autoklaven erhitzt. Man läßt abkühlen und evaporiert
die Suspension. Der Rückstand wird aus Xylol umkristallisiert.
Man erhält ungefähr 15 Teile einer farbosen Substanz vom Schmelzpunkt 130 °C mit der Formel

35,7 Teile der Diazokomponente der Formel

509825/0994

werden in 100 Teilen Wasser gelöst, filtriert, mit 30 Teilen einer 23 %igen Natriumnitritlösung versetzt und bei 0 - 5 °C auf ein Gemisch von 30 Teilen konzentrierter Salzsäure und 150 Teilen Eis gegeben. Man rührt 2 Stunden nach bei 0 - 5 °C und zerstört anschließend einen etwa vorhandenen Überschuß an salpetriger Säure auf übliche Weise. Dann setzt man bei 0 - 5 °C eine Lösung von 33,2 Teilen der oben angebenen Kupplungskomponente in 300 Teilen N,N-Dimethylformamid zu. Das Kupplungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von etwa 4 abgestumpft. Nach beendeter Kupplung wird der entstandene Farbstoff der Formel

$$NaO_3S$$
 $NH-C2H_4OCH_3$ NaO_3S $NH-C2H_4OCH_3$ NaO_3S $N=N-C2H_4OCH_3$

abfiltriert. Nach dem Trocknen erhält man ungefähr 65 Teile eines dunklen Pulvers, das sich in Wasser mit rotvioletter Farbe löst und bei der Ausfärbung auf Polycaprolactamgewebe rote Färbungen mit sehr guten Echtheiten liefert.

Beispiel 4

11,2 Teile Cyanessigsäureäthylamid werden in 16,8 Teilen Chloroform mit 15,3 Teilen Phosphoroxytrichlorid 2 Stunden zum Sieden erhitzt. Danach destilliert man unter vermindertem Druck ungefähr 11,2 Teile Chloroform ab und versetzt das zurückgebliebene Gemisch mit 8 Teilen Methanol. Das ausgefallene Produkt der Formel

wird abgesaugt, mit wenig Methanol gewaschen und bei 60 °C getrocknet. Ausbeute ungefähr 7,7 Teile. Die farblosen Kristalle schmelzen bei 207 °C (Zers.). Eine Reinigung ist durch Umkristallisieren aus n-Butanol möglich; Fp. 228 bis 230 °C (Zers.)

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 36,5 Teile B-Phenyläthylamin werden 5 Stunden auf 150 °C erhitzt. Nach dem Abkühlen wird das Gemisch in 100 Teile Methanol gegeben und das überschüssige Amin durch Einleiten von Chlorwasserstoff als Hydrochlorid gefällt. Der Niederschlag wird

abgesaugt und die Mutterlauge evaporiert. Es bleibt ein zäher Brei zurück, der beim Trocknen erstarrt (32 Teile). Das Produkt hat die wahrscheinliche Formel

und besitzt keinen scharfen Schmelzpunkt (100 - 157 °C).

34,6 Teile 6-Amino-3-cyan-1-äthyl-4-äthylamino-2-(2-phenyl)-äthyl-aminopyridiniumchlorid werden mit wenig Chloroform angepastet und bei 30 °C in 90 g 23 %iges Oleum eingerührt. Man rührt 3 - 4 Stunden bei 30 - 40 °C, gießt dann das Reaktionsgemisch auf ca. 500 Teile Eis und saugt das überwiegend entstandene Produkt der Formel

$$\begin{array}{c} \text{H}_5^{\text{C}_2}\text{-HN} & \text{CN} \\ & & \\ & & \\ \text{H}_2^{\text{N}} & \text{C}_2^{\text{H}_5} \end{array} \\ \end{array} \\ \begin{array}{c} \text{SO}_3^{\Theta} \end{array}$$

ab. Zu der auf 0 - 5 °C abgekühlten Lösung oder Suspension der beschriebenen sulfierten Kupplungskomponente in etwa 400 Teilen Wasser und 10 Teilen 30 %iger Salzsäure gibt man unter Rühren das Diazoniumsalzgemisch zu, welches man auf übliche Weise aus

13,6 Teilen Anthranilsäuremethylester in 270 Teilen Wasser und
23 Teilen konzentrierter Salzsäure durch Zugabe von 27 Teilen
einer 23 %igen Natriumnitritlösung bei 0 - 5 °C gewinnt. Man
läßt das Gemisch 30 Minuten bei 0 - 5 °C rühren und setzt dann
at
Natriumacetlösung zu, bis der pH-Wert des Kupplungsgemisches
etwa 3 beträgt. Nach beendeter Kupplung setzt man noch etwa
100 Teile Kochsalz zu, rührt das Gemisch 2 Stunden und filtriert
den ausgefallenen Farbstoff der Formel

$$H_3^{CO_2C} H_2^{C_2HN} CN$$
 $N=N-C_2H_4$
 SO_3^{Na}

ab.

Man erhält nach dem Trocknen ein orangerotes Pulver, das sich in Wasser mit gelber Farbe löst und auf Polycaprolactamfasern klare und echte Gelbtöne ergibt.

Beispiel 5

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 47,4 Teile β-Phenyläthylamin werden 5 Stunden auf 150 °C erhitzt. Man gießt das Gemisch dann heiß in eine Schale, wo es beim Abkühlen erstarrt. Das Gemisch enthält zu etwa 50 % das Produkt der Formel

und wird in dieser Form als Kupplungskomponente verwendet.

Die aus 19,7 Teilen p-Aminoazobenzol auf übliche Weise erhaltene Lösung des Diazoniumsalzes gibt man bei 0 - 5 $^{\circ}$ C zu einer Lösung oder Suspension von etwa 80 Teilen des obigen Rohproduktes in 300 Teilen N-Methylpyrrolidon-(2), 300 Teilen Eis und 25 Teilen konzentrierter Salzsäure. Nach dem Abpuffern des Kupplungsgemisches auf pH = 3 - 4 rührt man noch einige Stunden nach und isoliert dann den erhaltenen Farbstoff der Formel

$$\begin{array}{c|c}
 & \text{H}_5^{\text{C}}_2 \text{-HN} & \text{CN} \\
 & \text{N=N} & \text{N=N} & \text{N=C}_2^{\text{H}}_4 & \text{N=C}_2^{\text{H}}_4
\end{array}$$

der nach dem Trocknen als rotes Pulver anfällt (etwa 50 Teile).

51,7 Teile des getrockneten Farbstoffes werden bei Raumtemperatur in 240 Teile 23 %igen Oleums eingetragen. Es wird 3 - 4 Stunden bei 30 - 40 °C gerührt, dann auf 500 Teile Eiswasser gegossen und

die Fällung abgesaugt. Diese wird in etwa 800 Teile Eiswasser gegeben, und mit halbkonzentrierter Kaliumacetatlösung wird auf einen pH-Wert von 4 - 5 eingestellt. Nach Filtration wird der Farbstoff der wahrscheinlichen Formel

durch Zugabe von festem Kaliumchlorid gefällt. Das getrocknete rotbraune Pulver färbt Polycaprolactamgewebe und Wolle in roten Tönen mit sehr guten Echtheiten.

Beispiel 6

20,7 Teile 6-Amino-2-chlor-3-cyan-1-(2-phenyl-)äthyl-4-(2-phenyl)äthylaminopyridiniumchlorid werden in 20 Teilen 3-Methoxypropylamin 15 Stunden auf 116 °C erhitzt. Man läßt abkühlen und rührt
in 100 Teile Eiswasser ein. Dabei scheidet sich ein Öl ab, das
man in etwa 10 Teilen Methanol löst. Es kristallisiert das Reaktionsprodukt der wahrscheinlichen Formel

aus. Durch Absaugen und Trocknen erhält man etwa 10 Teile eines nahezu farblosen Pulvers vom Schmelzpunkt 78 °C.

23,3 Teile des obigen Reaktionsproduktes werden bei Raumtemperatur in 65 Teile 23 %igen Oleums eingerührt. Man rührt 3 - 4 Stunden bei 30 - 40 °C, gibt dann die Lösung in 500 Teile Eiswasser und stellt unter Kühlung durch Eintropfen von etwa 85 Teilen 50 %iger Natronlauge den pH-Wert auf etwa 3 ein. Die Lösung enthält als Hauptprodukt das Anion der Disulfosäure.

Nach Zurückstellen des pH-Wertes der erhaltenen Lösung auf etwa 1 durch Zugabe von konzentrierter Salzsäure gibt man bei 0 - 5 °C eine aus 7,9 Teilen p-Aminoazobenzol auf übliche Weise erhaltene Lösung des Diazoniumsalzes hinzu. Das Diazotierungsgemisch wird mit 120 Teilen Alkohol versetzt, sein pH-Wert mit 50 %iger Natriumacetatlösung auf 3 - 4 eingestellt und nach dem Filtrieren eingedampft und getrocknet. Es fallen ungefähr 150 Teile eines etwa 17 %igen Farbstoffes der Formel

an. Auf Polycaprolactamgewebe erhält man mit dem getrockneten braunroten Pulver rote Färbungen mit ausgezeichneten Echtheiten.

Beispiel 7

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 105 Teile 2-Hydroxyäthylamin werden 5 Stunden auf 120 - 130 °C erhitzt. Das Gemisch wird dann abgekühlt und in 500 Teile Eiswasser eingerührt. Man erhält 13,2 Teile eines kristallinen farblosen Pulvers der wahrscheinlichen Formel

das bei 93 - 100 oc schmilzt und ohne Reinigung als Kupplungskomponente verwendet wird.

31,5 Teile der angegebenen Kupplungskomponente werden in 100 Teilen N,N-Dimethylformamid gelöst und bei 0 - 5 °C zu einer auf übliche Weise ausgehend von 19,7 Teilen p-Aminoazobenzol hergestellten salzsauren, wäßrigen Diazoniumsalzlösung getropft. Das Lösungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von 3 - 4 abgestumpft, und nach beendeter Kupplung wird der ausgefallene Farbstoff der Formel

abgesaugt und getrocknet. Es fallen 40 Teile eines roten Pulvers an.

Etwa 46 Teile des gewonnenen Farbstoffes werden bei 20 - 30 °C unter Rühren in 260 Tle 100 %ige Schwefelsäure eingetragen, und das Gemisch wird 14 Stunden bei Raumtemperatur gerührt. Danach gießt man auf 1000 Teile Eis und 300 Teile 50 %ige Natronlauge und stellt durch Zufügen von gesättigter Natriumacetatlösung einen pH-Wert von 4 - 5 ein. Der ausgefallene Säurefarbstoff der Formel

$$\begin{array}{c|c}
 & \text{H}_5^{\text{C}}_2 - \text{HN} & \text{CN} \\
 & \text{N} - \text{N} - \text{N} - \text{N} - \text{C}_2^{\text{H}}_4 - \text{OSO}_3^{\text{Na}} \\
 & \text{H}_2^{\text{N}} & \text{C}_2^{\text{H}}_5
\end{array}$$

wird abgesaugt und getrocknet. Es fallen 51,4 Teile eines braunroten Pulvers an, das sich in Wasser mit roter Farbe löst und Polycaprolactangewebe in rotem Ton mit sehr guten Echtheiten färbt.

Beispiel 8

27,7 Teile der Diazokomponente der Formel

werden auf übliche Weise in wäßriger, salzsaurer Lösung diazotiert.

Zu der entstandenen Suspension des Diazoniumsalzes gibt man bei 0 5 °C eine Lösung von 31,5 Teilen 6-Amino-3-cyan-4-äthylamino-2(2-hydroxy)-äthylamino-1-äthylpyridiniumchlorid in 100 Teilen

N,N-Dimethylformamid zu, stumpft mit 50 %iger Natriumacetatlösung
auf pH 2 - 3 ab und saugt nach beendeter Kupplung den ausgefallenen

Farbstoff der Formel

$$\text{NaO}_{3} \text{S} - \text{N=N} - \text{N=N$$

ab.

Nach dem Trocknen bei 70 °C erhält man ein braunrotes Pulver. Dieses löst sich in Wasser mit roter Farbe und färbt Polycaprolactamfasern mit ausgezeichneten Echtheiten rot an.

Beispiel 9

55,9 Teile des nach Beispiel 8 dargestellten Farbstoffes werden bei 20 - 30 °C in etwa 260 Teile 100 %ige Schwefelsäure eingetragen und 14 Stunden bei Raumtemperatur gerührt. Dann gießt man auf 1000 Teile Eis und etwa 300 Teile 50 %iger Natronlauge, stellt mit gesättigter Natriumacetatlösung auf pH= 4 - 5 ein und saugt den ausgefallenen Farbstoff der Formel

$$NaO_3S - N=N - N$$

ab. Das getrocknete braunrote Pulver löst sich in Wasser mit roter Farbe. Mit sehr guten Echtheiten färbt es Polycaprolactamgewebe in klaren, roten Tönen.

Analog den in den Beispielen 1 bis 9 angegebenen Methoden erhält man auch die im folgenden durch Angabe der Substituenten gekennzeichneten Farbstoffe.

R^1 -HN CN $D-N=N \longrightarrow N-R^2$	
H ₂ N R 1	

Bap.	D-NH ₂	R ¹	R ²	Farbbon der Fär- bung auf Polycapro- lactam
10	NaO ₃ s-()-N=N-() NH ₂	с ₂ н ₅	Н	rot
11	n	11	^С 2 ^Н 5	blaustichig rot
12	tt .	"	C ₃ H ₇ (n)	н
13	11	и	^C 4 ^H 9 ⁽ⁿ⁾	11
14	11	11	(сн ₂) ₂ он	!!
15	ti	11	(сн ₂) ₂ осн ₃	11
16	11	tt	(сн ₂) ₂ о(сн ₂) ₂ он	n
17	; u	11	(сн ₂) ₂ -с _б н ₅	11
18	. 11	н .	- ^C 6 ^H 5	ti'
19	tt	. 11	(сн ₂) ₂ ососн ₃	11
20	· : 11	n	(сн ₂) ₃ он	tt

Bsp.	D-NH ₂	r ¹	R ²	Farbton der Fär- bung auf Poly- caprolactam
21	NaO ₃ S - N=N - NH ₂	^С 2 ^Н 5	-CDOCH3	blaustichig rot
22	n .	1)	c ₆ H ₁₃ (n)	· !!
23	11	11	c ₈ H ₁₇ (i)	11
24	11	11	- (H)	: n
25	n	11	-(CH ₂) ₅ -CN	11
26	11.	11	сн ₂ сн(с ₂ н ₅)с ₄ н ₉	Ħ
27	11	n	- ()-01	n _
28	n	с ₂ н ₄ осн ₃	с ₂ н ₅	и
29	п	11	(сн ₂) ₂ он	ti .
30	II.	11	(сн ⁵) ³ осн ³	11
31	n	u	(CH ₂) ₂ -	
			Ĭ	

Bsp.	D-NH ₂	R ¹	·R ²	Farbton
32	NaO ₃ S — N=N — NH ₂	с ₂ н ₄ осн ₃	-С->- осн ₃	blaustichig rot
33	11	п	-(сн ₂) ₃ осн ₂ -(н	 -сн ₂ он ".
34	11	11	H	i
35	.	11	O	11
<u>.</u> 36	NaO ₃ S - N=N - NH ₂	с ₂ н ₅	с ₂ н ₅	rot
37	li li	11	(сн ₂) ₂ он	п .
38	n	11	(сн ₂) ₃ он	. 11
39	п	11	(сн ₂) ₂ о(сн ₂) ₂ он	11
40		11	(сн ₂) ₃ о(сн ₂) ₄ он	n
41	11	11	(сн ₂) ₂ осн ₃	11
42	. " "		(сн ₂) ₃ ососн ₃	n
43	a	11	CH ₂ - GHOH-GH C ₄ H ₉ (n) ³	n

Bsp.	D-NH ₂	R ¹	R ²	Farbton
44	NaO ₃ s - N=N - NH ₂	^с 2 ^н 5	сн ₂ -снон-сн ₃	rot
45	1 7	11	(сн ₂) ₃ о(сн ₂) ₂ о	rot
46	"	п	H	scharlach
47	11	11	-сн ₂ -сн=сн ₂	rot
48	et	11	-€_>-ос ₂ н ₄ он	rot
49	11	с ₂ н ₄ осн ₃	H	scharlach
50		11	C ₃ H ₇ (n)	rot
51	11		(сн ₂) ₂ он	tt
52	11	11	(сн ₂) ₃ он	
53	11	"	сн(сн ₃)-сн ₂ он	ıı
54	11	. "	c ₃ H ₇ (i)	
			1	T.

Bap.	D-NH ₂	R ¹	R ²	Farbton
55	NaO ₃ S-(N=N-(NH ₂) NH ₂	^с 2 ^н 5	с ₂ н ₅	rot
56	11 .	11	(сн ₂) ₂ он	11
57	tt	II .	(сн ₂) ₂ о(сн ₂) ₂ он	11
58	21	11	(сн ₂) ₃ осн ₃	# #
59	ti	11	(сн ₂) ₂ ососн ₃	 11
60	11	t1	(сн ₂) ₃ он	H
61	11	11	сн ₂ снон-сн ₃	11
62	11	ęt	н	scharlach
63	11	89	(сн ₂) ₄ он	rot
64	н	с ₂ н ₄ осн ₃	н	scharlach
65 ·	H	11 ,	(сн ₂) ₂ он	rot
66 ·	н	11	(сн ₂) ₃ осн ₃	11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
67	NaO ₃ S -\(\bigce_1\)-N=N-\(\bigce_1\)-NH ₂ CH ₃	с ₂ н ₄ осн ₃	сн(сн ₃)(сн ₂) ₃ с(он	CH ₃) ₂ rot
68	Ħ	11	(сн ₂) ₃ 0(сн ₂) ₂ он	rot
69	SO ₃ Na CH ₃ N=N-V-NH ₂ CH ₃	^с 2 ^н 5	н	scharlach
70		11	C3H7(n)	rot
71	इच	11	(сн ₂) ₂ он	11
72	' n	"	(сн ₂) ₂ о(сн ₂) ₂ он	11
73		11.	(сн ₂) ₂ осн ₃	#
74	11	n .	(сн ₂) ₃ он	. 11
75	H.	· n ,	(сн ₂) ₃ ос ₂ н ₄ осн ₃	"
74	11	11	(CH ₂) ₃ OC ₂ H ₄ OC ₂ H	 ¹ 5
75	11	C2H4OCH3	H	scharlach
76	ti .	tt .	C ₂ H ₅	rot

509825/0994.

- 41 -

Bsp.	D-NH ₂	R ¹	R ²	Farbton
77	SO ₃ Na CH ₃ CH ₃	с ₂ н ₄ осн ₃	(сн ₂) ₂ он	rot
78	**	11	(сн ₂) ₂ осн ₃	11
79	11	11	(сн ₂) ₃ ос ₂ н ₄ осн(CH ₃) ₂ rot
80	$NaO_3S - N=N - NH_2$ OCH_3 OCH_3	с ₂ н ₅	Ħ	rotviolett
81		с ₂ н ₅	с ₂ н ₅	violett
82	11	11	(сн ₂) ₂ он	
83	11	11	(сн ₂) ₃ он	
84	11	**	(сн ₂) ₂ о(сн ₂) ₂ он	11
85	n ·	ıı .	-(CH ₂) ₂	
86	11	11	(сн ₂) ³ ососн ³	II.
87	it .	н	(CH ₂) ₂ OCH ₃	11

Bap.	D-NH ₂	R ¹	R ²	Farbton
88	NaO ₃ S - N=N - NH ₂ OCH ₃	с ₂ н ₅	(сн ₂) ₃ ос ₂ н ₄ ос ₄ н ₉	violett
89	11	11	н	11
90	и	с ₂ н ₄ осн ₃	н	rotviolett
91	tt	с ₂ н ₄ осн ₃	с ₂ н ₅	violett
92	n	11	(сн ₂) ₂ он	12
93	11	tf	(сн ₂) ₂ осн ₃	17
94	II	11	(сн ₂) ₃ ос ₂ н ₄ осн ₂ с ₆ н ₅	11
95	ıı ı	с ₂ н ₅	H	rotviolett
96	***	11	с ₂ н ₅	violett
97	11	11	(сн ₂) ₂ он	".
9 8	. 11	и .	(сн ₂) ₃ он	H
				· .

Bap.	D-NH ₂	R ¹	R ²	Farbton
99	SO ₃ Na OCH ₃ OCH ₃	. c ₂ H ₅	(сн ₂) ² (сн ₂) ₂ он	v iolett
100	rr	u	(CH ₂) ₂ -	11
101	u .		(сн ₂) ₂ ососн ₃	ti .
102	II	tt	(сн ₂) ₃ осн ₃	tt
103	11	11	(сн ₂) ₃ ос ₂ н ₄ ос ₂ н ₄ с ₆ н	
104	11	11	-(H)	H
105	11	11	-(н)-ос ₂ н ₄ он	11
106	п	с2н4осн3	н	rotviolett
107	11	11 .	C3H7(n)	violett
108	·	11	(сн ₂) ₂ он	ш
109	11	11 .	(сн ₂) ₃ осн ₃	11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
110	SO ₃ Na OCH ₃ OCH ₃	с ₂ н ₄ осн ₃	(сн ₂) ₃ ос ₂ н ₄ о-{н	violett
111	II	11	(CH ₂)7CN	11
112	NaO ₃ S - N=N - NH ₂ SO ₃ Na	с ₂ н ₅	E	bordo
113	11	"	с ₂ н ₅	gotviolett
114	п	11	(CH ₂) ₂ OH	It
115	n	11	(CH ₂) ₂ OCH ₃	11
116	11	18	C ₄ H ₉ (n)	11
117	11	n		tf
118	11	"	c ₆ H ₁₃ (n)	11
119	11	11	(CH ₂) ₂ 0(CH ₂) ₂ 0H	11
120	11	u	(cH ₂) ₃ oc ₂ H ₄ oc ₆ H ₅	n

Bsp.	D-NH ₂	·R ¹	R ²	Farbton
121	NaO3S-\(\)- N=N-\(\)- NH2	^С 2 ^Н 5	н - он	rotviolett
	SO ₃ Na			
122	11	ti .	-сн ₂ -сн-	u ·
123	11	11	CH ₃	tt
124	11	с2н4осн3	H	bordo
125	11	11	c ₈ H ₁₇ (i)	rotviolett
126	n	11	(сн ₂) ₂ он	11
127		11	(сн ₂) ₂ осн ₃	
128	tt	"	(сн ₂) ₃ о-сн(сн ₃)сн ₂ о	сн ₃ "
129	NaO ₃ S-(_)-N=N-(_)-NH ₂	с ₂ н ₅	H	bordo
	SO ₃ Na			
130	. "	с2н4осн3	н	"
131		n	(сн ₂) ₂ осн ₃	rotviolett

Bsp.	D-NH ₂	R ¹	R ²	Farbton
132	NaO ₃ S - N=N - NH ₂ SO ₃ Na	с ₂ н ₄ осн ₃	- (H)	rotviolett
133	11	tt :	(сн ₂) ₃ ососн ₃	II
134	11	11	(сн ₂) ₂ он	11
135	11	11	(сн ₂) ₃ осн(сн ₃)сн ₂ ос	 4 ^H 9
136	n	н .	(сн ⁵) ⁶ си	HI .
137	n	°2 [±] 5	с ₂ н ₅	ı,
138	н	.11	c ₄ H ₉ (n)	u u
.139	11	. 11	(сн ₂) ² он	. 11
140	11	11	(сн ₂) ₂ осн ₃	u
141		11	(сн ₂) ₂ о(сн ₂) ₂ он	n
142	11	u .	(CH ₂) ₂ -C ₆ H ₅	n
	1	•		F 350

Bsp.	D-NH ₂	R ¹	R ²	Farbton
143	NaO ₃ S - N=N-NH ₂ SO ₃ Na	с ₂ н ₅	С ₆ Н ₁₃ (n)	rot- violett
144		II	(сн ₂) ₃ осн ₂ сн(сн ₃)ос	ш ₃ "
145	žē.	11	сн(сн ₃)(сн ₂)3-	он "
146	H ₃ C NH ₂ NH ₂ SO ₃ Na	с ₂ н ₄ осн ₃	H	gelhstichig orange
147	11	с ₂ н ₅	Н	11
148	11	tt	с ₂ н ₄ он	orange
149	11	11	(сн ₂) ₂ о(сн ₂) ₂ он	11
150	. 11	tt	(сн ₂) ₃ о(сн ₂) ₄ он	11
151	11		с ₂ н ₅	. 11
152	. 11	11	с ₈ н ₁₇ (і)	п
153	11	. 11	-	11 .
	•			

Bsp.	D-NH ₂	R ¹	R ²	Farbton
154	H ₃ C NNS NH ₂ SO ₃ Na	с ₂ н ₅	CH ₃	orange
155	н	"	сн ₂ -снон-сн	n .
156	n	n :	-(H)	11
157	31	11	(сн ₂) ₃ осн(сн ₃)сн ₂ ос	; ;2 ^H 5 "
158	11	C ₂ H ₄ OCH ₃	с ₂ н ₅	п
159	11		(CH ₂) ₂ -()	n .
160	п	n	(сн ₂) ₂ он	. п
161	" (CH ₂)20SO3Na	11	(CH ₂) ₂ OC ₃ H ₇	n
. 162	$0 = 0$ NH_2	11	H	gelb
163	tt .	с ₂ н ₅	н	п
164	ıt.	ıı	C4H9(n)	n
165	п	ii	(сн ₂) ₂ он	11
	5.03	825/09	94	

- 19 -

Bsp.	D-NH ₂	R ¹	.R ²	Farbton
166	$(CH_2)_2OSO_3Na$ $O \longrightarrow O$ NH_2	^с 2 ^н 5	сн ₂ -сн(сн ₃)-	gelb
167	п	11	(сн ⁵) ⁵ осн ³ .	ti
168	11	11	(CH ₂) ₃ -0-CH ₂	u
169	11	11	(сн ₂) ₂ ос ₄ н ₉	11
170	. 11	11	(сн ₂) ₃ ос ₂ н ₅	
171	11	11		n (
172	n .	с ₂ н ₄ осн ₃	С ₃ Н ₇ (n)	Ħ
173	n	с ₂ н ₄ осн ₃	(сн ₂) ₂ он	in
174		11	(сн ₂) ₂ осн ₃	11
175		lt .	(сн ₂) ₃ ос ₃ н ₇	
		į.		

Bsp.	D-NH ₂	R ¹	R ²	Farbton
176	CH ₃ SO ₃ Na O = N O NH ₂	с ₂ н ₄ осн ₃	H	gelb
177	II .	с ₂ н ₅ .	н	п
178	n	n	c ₆ H ₁₃ (n)	orange
179	п	Н	(сн ₂) ₂ он	11
180	ti	"	(сн ₂) ₃ ососн ₃	п
181		u	(сн ₂) ₂ осн ₃	tt
182 [.]	. · . ·	n :	(CH ₂) ₃ OC ₄ H ₉	11
183	11	п .		
184		с ₂ н ₄ осн ₃	(сн ₂) ₂ он	
185	·	II .	(сн ₂) ₂ осн ₃	**
186		11	(сн ₂) ₃ осн ₂ сн(с ₂ н ₅)	 C ₄ ^H 9
187	n	ıı	сн ₂ -с ₆ н ₅	n

Bap.	D-NH ₂	R ¹	R ²	Farbton
188	NaO ₃ S — NH ₂	с ₂ н ₄ осн ₃	H	gelb
189		^С 2 ^Н 5 .	н	11
190		11	(CH ₂) ₂ -	n ·
191	. 11	11	•	16
192	II .		C ₄ H ₉ -(n) C ₄ H ₉ -(n) C ₄ H ₉ -(n)	II.
193	11	11	сн ₂ -сн(сн ₃)-	ft.
194	ıı	11	c ₆ H ₁₃ (n)	. 11
195	11	11	(сн ₂) ₂ он	11
196	. 11	Ħ	C ₃ H ₇ (n)	п
197	II .	tt	(сн ₂) ₃ осн ₃	n
198	11	u	(сн ₂)3ососн ³	11
199	11	11		. 11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
200	NaO ₃ S - NH ₂	^C 2 ^H 5	(сн ₂)3 ^{0С6Н} 13	gelb
201	11	с ₂ н ₄ осн ₃	(CH ₂) ₂ -()	"
202	: 11	11	(сн ₂) ₂ он	n
203	11	11	C6H13(n)	н
204	n	11	(CH ₂) ₃ OC ₈ H ₁₇	п
205	NH-CO-(с ₂ н ₄ осн ₃	H	H .
206	SO ₃ Na	C ₂ H ₅	E	п
207	nt .	. 11	с ₂ н ₅	н
208	11	n	(CH ₂) ₂ OH	n
209	η	II.	(CH ₂) ₃ OCH ₃	"
210	п	11	(CH ₂) ₃ 0(CH ₂) ₂ 0-(-	> "
			!	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
211	SO Na.	^С 2 ^Н 5	(сн ₂) ₂ о(сн ₂) ₂ он	gelb
212	11 :	ıı	(сн ₂) ₃ ос _в н ₁₇	11
213	11	с ₂ н ₄ осн ₃	(сн ₂) ₂ он	п
214	11	II	(сн ₂) ₃ осн ₃	#
215	SO ₃ Na C1-\(\sum_2\) NH ₂	11	H	11
216		^С 2 ^Н 5	H .	H
217	28	14	(CH ²) ² -	tt .
218	H	ti	c ₆ H ₁₃ -(n)	n
219	11	11	-(H)	н
220		11	(сн ₂) ₃ осн ₃	11 .
221	. 11	ļi .	(CH ₂) ₃ 0 (H)	11
		l	'	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
222	SO ₃ Na C1—NH ₂	^С 2 ^Н 5	(сн ₂) ₃ осн ₂ с ₆ н ₅	gelb
223	Ef	11	(сн ₂) ₃ ос ₂ н ₄ с ₆ н _{5.}	ti
224		с2н4осн3	сн ₂ -сн(сн ₃)-	
225	n	11 -	(сн ₂) ₃ осн ₃	11
226	et .	ii ii	(сн ₂) ₃ ос ₆ н ₅	u
227	et	11	-сн(сн ₃)сн ₂ осн ₃	ıı
228	n	11	-сн(сн ₃)сн ₂ ос ₄ н ₉	n.
229	n ,	31	-сн(сн ₂)сн ₂ ос ₆ н ₅	
230	11	. 11	-сн(сн ₃)сн ₂ осн ₂ с ₆ н	5 "
231	C1 NH ₂ SO Na	11	н	11
232	S0 ₃ Na	с ₂ н ₅	н	11
233	11	11	(CH ₂) ₂ -	tt

Bsp.	D-NH ₂	R ¹	R ²	Farbton
234	SO ₃ Na	с ₂ н ₅	(сн ₂) ₂ он	gelb
235		' 11	(сн ₂) ₃ он	н
236	11	11	(сн ₂) ₃ осн ₃	11
237	tt	11	-СН ₃	11
238	11	11	(сн ₂) ₃ ососн ₃	11
239	ti	tt	c ₆ H ₁₃ (n)	11
240	11	11	-сн ₂ сн(сн ₃)осн ₃	11
241	11	11	-сн ₂ сн(сн ₃)ос ₂ н ₅	11
242			-сн ₂ сн(сн ₃)ос ₄ н ₉	11
243	11	с2н4осн3	(CH ₂) ₂ -(_)	. 11
244	ti o		(сн ₂) ₂ он	11
245	11	n	сн ₂ сн(сн ₃)ос ₂ н ₄ с ₆ н ₅	. #
246	**	u	-(сн ₂) ₅ си	11

2	2	6	1			1
Z	J	Q	- 1	Ų	Ų	Į

Bsp.	D-NH ₂	R ¹	R ²	Farbton
247	SO ₃ Na C1—NH ₂	с ₂ н ₄ осн ₃	H	gelb
248	u	с ₂ н ₅	н	11
249	11	11	°2 ^н 5	11
250	п	n	(сн ₂) ₂ он	
251	n	11	сн ₂ -сн(сн ₃)-	11
252	tt	11	\(\O\)	п.
253 .	H .	tt	(сн ₂) ₃ ососн ₃	11
254	11	11	сн ₂ сн(сн ₃)ос ₆ н ₅	11
255	n	с2н4осн3	(CH ₂) ₂ -()	II .
256	11	Et	─ (H)	tt
257	,,	н	(CH ₂) ₂ OCH ₃	n
258	11	ıı	-CH ₂ -CH ₂ OH	ıı

Bsp.	D-NH ₂	R ¹	R ²	Farbton
259	NaO ₃ S — N=N — NH ₂	с ₂ н ₅	(сн ₂) ₂ он	rotstichig blau
260	SO ₃ Na	1 11	(CH ₂) ₂ CN	8 3
261	NaO ₃ S-\(\sigma\) N=N \(\sigma\) NH ₂	11	"	blau
262	C1 SO ₃ Na C1 NaO ₃ S-(_)-NH ₂	с ₄ н ₉ -п	(сн ₂) ₂ он	gelb
	NaO ₃ S-\(\sum_2\) C1			II Set o
263		с ₂ н ₄ -с ₆ н ₅ (сн ₂) ₃ осн		"
265	C1 NH ₂	-(H)	(CH ₂) ₂ OH	11
266	SO ₃ K	^с 2 ^н 4 ^{-с} 6 ^н 5		tt
267	H ₃ C SO ₃ Na NH ₂ SO ₃ Na	c ₃ H ₇ -(n)	(сн ₂) ₃ он	orange
268		-(H)	(сн ₂) ₂ он	

Bap.	D-NH ₂	R ¹	R ²	Farbton
269	NaO ₃ S-()-N=N-()-NH ₂	-(H)	(сн ₂) ₂ он	rot
270	n .	с ₂ н ₄ с ₆ н ₅	n	11
271	NaO ₃ s — N=N — NH ₂	C2H4C6H5	(сн ₂) ₂ он	blaustichig rot
272	11	(CH ₂) ₃ 001	 н ₃ (сн ₂) ₃ он 	. H
273	Ko ₃ s — N=N — NH ₂	с ₂ н ₅	(сн ₂) ₂ он	rot
274	NaO ₃ S - N=N - NH ₂	ıı	· ·	n .
275	SO ₃ Na	11	-(CH ₂) ₂ OCH ₃	tt
276	SO ₃ Na CH ₃	n	-(CH ₂) ₂ OH	11
277	SO ₃ Na CH ₃ N=N-V_N=NH ₂	n	··	п
278	SO ₂ Na CH ₃ N=N - NH ₂	n	11	11
279	SO ₃ Na OCH ₃ N=N-V-NH ₂ CH ₄	11	(сн ₂) ₃ осн ₃	ıı
280	HO N=N NH ₂	ıı	(CH ₂) ₂ OH	11

Bsp.	D-NH ₂	. _R 1	R ²	Farbton
281	N=N-(_)-NH ₂	с ₂ н ₅	(СН ₂) ₃ 0(СН ₂) ₂ 0SO ₃ Na	scharlach
282		11	(CH ₂) ₃ 0(CH ₂) ₄ 0SO ₃ Na	11
283	" C2H5	11	(CH ₂) ₃ 0(CH ₂) ₆ 0S0 ₃ Na	is
284	O=C-NH-CH ₂ -CH-C ₄ H ₉ (n)	11	-c ₂ H ₄ -(gelb
285	0=C-N-C ₂ H ₄	1t	11	n
286	C1 C1 NH ₂	C ₃ H ₇ (n)	tt	orange
287	C ₁₂ H ₄ OCH ₃ 0= N = 0 NH ₂	18	ti	gelb
288	0=\(\frac{C_2H_4^{OCH_3}}{N}\) 0=\(\frac{N}{N}=0\) NH ₂	27	11	tt
289	$ \begin{array}{c} C_4 H_9(n) \\ 0 = 0 \\ N H_2 \end{array} $	^с 2 ^н 5	n '	JI

2	3	R	1	5	5	1
4	J	v	- 1	J	J	- 1

Bsp.	D-NH ₂	R ¹	R ²	Farbton
290	C4H9(n) 0=NH2	с ₂ н ₅	-c ₂ H ₄ -(_) SO ₃ Na	gelb
291	CH ₃ CH ₃ N=N-\(\sum_{N}\) NH ₂	СН ₂) 2 (Na (CH ₂) ₂ OCH ₃	scharlach
292	CH ₃ CH ₃ NH ₂	tt	H	II
293	C1 — N=N — NH ₂	11	tt	n
294	Br N=N - NH ₂ Br	11	11	n
295	CN C1—()—NH ₂	—(H)	(CH ₂) ₂ 0SO ₃ Na	goldgelb
296	SO ₃ K NH ₂	.c ₂ H ₅	(сн ₂) ₂ оѕо ₃ к	orange
297	NaO ₃ S — N=N — N	H ₂ "	(CH ₂) ₂ -N	blaustichig

Bsp.	D-NH ₂	R ¹	R ² .	Farbton
295	CO ₂ CH ₃	с ₂ н ₅	(сн ₂) ₃ оѕо ₃ иа	gelb
299	n ·	"	сн ₂ сн(сн ₃)оѕо ₃ на	в
300	NaO ₃ S — N=N — NH ₂	n	сн ₂ сн(сн ₃)оѕо ₃ йа	rot
301	NaO3S-CD-H=E-CD-ME2	11	(CH ₂) ₆ OSO ₃ Na	11
302	~ N=N -√ NH ²	11	(CH ₂) ₄ 0s0 ₃ K	scharlach
303	. 11	11	(СН ₂) ₂ 0(СН ₂) ₂ 0SO ₃ На	11
304	CI NH ₂	it	C ₂ H ₄ -SO ₃ Na	goldgelb
305	— H=if ———ifH ₂	с ₂ н ₄ осн ₃	(CH ₂) ₂ OSO ₃ K	scharlach
306	CI— WH ₂	^с 2 ^п 5	-S ⁰ 3 ^{Na}	orange
• 307	н -	n	-(CH ₂) ₂ -(SO ₃ Na	goldgelb
308	CO ₂ CH ₃	11	(сн ₂) ₃ 0s0 ₃ к	gelb

Bsv.	D-NE ₂	R ¹	R.2	Faroton
309	CII CII	с ₂ н ₄ осн ₃	-CH ₂ -CH(CH ₃)-SO ₃ Na	gelb
310	u	С2 ^Н 5	SO ₃ Na	goldgelb
		·		
311	Br-CN NH ₂	с ₂ н ₅	(CH ₂) ₂ 0 - SO ₃ Na	orange
	Br	·		
312	C1——NH ₂	11	SO ₃ Na OCH ₃	scharlach
313	CN Br — NH ₂ Br	II.	(CH ₂) ₂ OSO ₃ Na	orange
314	CO ₂ C ₂ H ₅	-(H)	(CH ₂) ₃ OSO ₃ Na	gelb
315	NaO ₃ S - N=N - NH ₂	^С 2 ^Н 5	(CH ₂) ₂ —————————————————————————————————	rot
316	Br NH ₂	ti.	(CH ₂) ₂ OSO ₃ K	goldgelb
317	CF ₃	ti	. 11	11
		•		- 63 -

Bsņ.	D-7/H2	R ¹ ,	R ²	Farbton
318	(CH ₂) ₂ -OH 0 0 0	^C 2 ^E 5	(сн ₂) ₂ oso ₃ к	goldgelb
31 <u>9</u>	SO ₂	11	(CH ₂) ₂ -ZSO ₃ Na	11
320		11	-(CH ₂ -CN ₃ Na	H .
321	CO ₂ C ₂ H ₅ NH ₂	tt	SO ₃ Na	rotstichig gelb
	co ₂ c ₂ H ₅	·		
322	11	11	(CH ₂) ₂ -(_) SO ₃ Na	. 11
323	11	и .	(CH ₂) ₃ 0-(11
324	CH ₃ -CO-NH - NH ₂	11	11	gelb
325	O ₂ N-()-NH ₂	^{C2H4^{OCH}3}	(сн ₂) ₂ oso ₃ к	scharlach

Bsp.	D-NH ₂	R ¹ .	R ²	Farbton
326	CH ₃ -NH-S NH ₂	^с 2 ^н 5	SO ₃ Na -CI	gelb
327	11	н	(CH ₂) ₃ OCH ₂ SO ₃ Na	11
328	(n)C4H9-CHCH2NHCO-(1)-NH2 C2H5	11	(CH ₂) ₂ -(_) SO ₃ Na	
329	(n)C ₄ H ₉ -NH-\$ - NH ₂	11	"	11
330	11		(CH ₂) ₃ OC ₂ H ₄ SO ₃ Na	11
331	(n)C4H9-NH-CO	n	сн ₂ сн(сн ₃)-(11
332	(C ₂ H ₅) ₂ N-C -__NH ₂	t1	(CH ₂) ₂ SO ₃ Na	. 11
333	CH ₃ -CO-NH NH ₂	"	11	11
334	C1		n	
•	1	1	t	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
335	CH ₃	с ₂ н ₅	-C2H4-ZNa	gelb
336	O NH ₂ CH ₃ NH ₂ NH ₂	II .	11	

$$\begin{array}{ccc}
R^{1}-HN & CONH_{2} \\
D-N=N-N-N-R^{2} \\
H_{2}N & R^{1}
\end{array}$$

Bsp.	D-NH ₂	R ¹	R ²	Farbton
337	NaO ₃ S-{} N=N-{} NH ₂	с ₂ н ₅	(сн ₂) ₂ осн ₃	violett
338	W	11	(CH ₂) ₂	n
339	C1—CN NH ₂	с ₂ н ₅	(CH ₂) ₂	orange
340	CO ₂ CH ₃	11	SO ₃ Na	11
341	CN CN	11-	tt	12
342	KO3S - N=N - NH ²	с ₃ н ₇ (n)	-c ₂ H ₄ -oso ₃ K	rot

$$Z \xrightarrow{R^1-NH} CN$$

$$Z \xrightarrow{N=N-N-1} NH-R^2$$

$$H_2 \xrightarrow{N-1} 1$$

Nr.	Z	Y	¥ ¹	R ¹	R ²	Farbton
343	Ħ	SO ₃ Na	инсосн ₃	^C 2 ^H 5	н	gelb
344	19	ti	11	11	(сн ₂) ₂ -он	11
345	11	11	11	11	(сн ₂) ₃ он	"
346	11	11 [.]	- 11	u	(сн ₂) ₂ о(сн ₂) ₂ он	н
347	. H	11	11	с ₂ н ₄ осн ₃	H	II
348		11	n	n	(сн ₂) ₂ он	It
349	SO ₃ Na	H	11	^с 2 ^н 5	(сн ₂) ₂ он	: ::
350	ch ₃ 0-()- n=n-	11	S0 ₃ Na		11	rot
351	tt	SO ₃ Na	н	11	11	H
352	NaO3S- N=N-	сн ₃	CH ₃	с ₂ н ₅	(сн ₂) ₃ он	11
353	SO ₃ Na N=N SO ₃ Na	 H	11		**	ŧ1
354	11	" ~ 509	" 8 2 5 / 0 !	 " 994	(CH ₂) ₂ OH	" -68-

Bsp.	Z	Y	y ¹ .	R ¹	R ²	Farbton
355	SO ₃ Na SO ₃ Na	CH ₃	CH ³	с ₂ н ₅	^С 2 ^Н 5	rot
356	11	осн ₃	11	"	n	. "
357	SO ₃ Na SO ₃ Na	сн ₃	u	с ₂ н ₅	(сн ₂) ₂ он	11
358	NaO3S(CH2)2NHS-	Cl	C1	с ₂ н ₅	(сн ₂) ₂ он	gelb
359	tt	11	11	11	(сн ₂) ₃ он	11
360 [°]	HO -{	SO ₃ Na	H	. 11	(сн ₂) ₂ он	rot
361	C1 NaO ₃ S — N=N- C1	. ^{cπ} 3	сн ₃	"	H .	11
362	CH ₃ O - N=N-	SO ₃ Na	H	11	11	H.
363	н	co ₂ c ₃ H ₇	 (n) " 	.,,	C2H4 SO3Na	gelb
364	n n	n	(i) "	11	in .	11
365	ı	co ₂ c ₂ H ₄	осн ₃ "	11	сн ₂ сн(сн ₃)	3 ^{Na} "

Bsp.	Z	Y	Y ¹	R ¹	R ²	Farbton
366	H	H	co ₂ cn ₃	с ₂ н ₅	сн ₂ сн(сн ₃)-(3 ^{Na} gelb
367	11	11	co ₂ c ₂ H ₅	11	C2H4 SO3Na	u .
368,	n .	11	со ₂ с ₃ н ₇	(n) " 	п .	и .
369	п	11	, n ((i) " 	11	11
370	11	11	со ₂ с ₂ н ₄ с	осн ₃ "	SO3Na	11
371	со ₂ сн ₃	11	H	с ₂ н ₅	-c ₂ H ₄ SO ₃ Na	n
372	со ₂ с ₂ н ₅	11	n .	ii	11	н .
373	co ₂ c ₃ H ₇ (i)	11	11	11	11	11
374	CO2C3H7(n)	11	10	11	. н	n
375	co_c ₂ H ₄ ocH ₃	"	11	11	n	tt *
376	CO2C2H5	Br	H	C ₃ H ₇ (n)	11	goldgelb
377	Н	CF ₃	н	C ₄ H ₉ (n)		gelb -70-

						•
Bsp.	2	Y .	Y ¹	R ¹ ·	R ² .	Farbton
378	сн ₃ so ₂ -	H	н	с ₂ н ₅	-C2H4 - S03Na	gelb
379	11	Cl	"	11	н	goldgelb
380 ·	H ₂ N-SO ₂ -	н	н	с ₃ н ₇ (n)	SO ₃ Na -CH ₃	gelb
381	0_n-so ₂ -	tt	11	-с ₂ н ₅	-C ₂ H ₄ SO ₃ Na	u ,
382	H	H	H ₂ NSO ₂ -	п	11	. "
383	п	H	n-c ₄ H ₉ sc	 	-сн ₂ сн(сн ₃)	3Na
384	11	11 -	0_3-s0 ₂	2 "	· tt	
385	-co-NH ₂	11	H	u	-c ₂ H ₄ -(11
386	-co-nh-ch ₃	tt .	Tf.	11		ti .
387	-co-NH-C ₄ H ₉ (n)	. 11		n	SO ₃ Na	"
388	н	11	-co-NH ₂	п	-C2H4 \S03Na	11
389	li li	ır .	-CO-NH-	СН ₃ "	п	-71-

Bsp.	Z	Y	Y ¹	R ¹	R ²	Farbton
390	H	со ₂ с ₃ н ₇	(n) H	с ₂ н ₅	C2H4- SO3Na	gelb
391	-CN	-cn	H	11	n' ·	orange
392	-so ₃ k	C1	11	н	C2H4-SO3K	gelb
393	H	80 ₃ K	Cl	tı	u ·	gelb
394	-50 ₃ Na	Br	Br	с ₃ н ₇ (n)	C2H4-SO3Na	goldgelb
395	-сн ₃	SO ₃ Na	Cl	с ₂ н ₅	n	gelb
396	Cl	so ₃ Na	сн ₃	tt .	H .	u u

Patentansprüche

2361551

1. Wasserlösliche Azofarbstoffe, die in Form der freien Säuren und in einer der möglichen tautomeren Formen der Formel I

$$\begin{array}{c|c}
\text{D-N=N} & \text{NHR}^1 \\
\text{N-N-R}^2 & \text{SO}_3^{\text{H}})_{\text{n}}
\end{array}$$

entsprechen, in der

- D den Rest einer Diazokomponente,
- X Cyan oder Carbamoyl,
- n die Zahlen 1 bis 4,
- R^1 gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aralkyl und
- R² Wasserstoff oder gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl bedeuten.
- 2. Farbstoffe gemäß Anspruch 1 der Formel

in der D¹ einen Rest der Formel

x⁴ Wasserstoff oder SO₃H,

- X Cyan oder Carbamoyl,
- Y Wasserstoff, Cyan, Chlor, Brom, Methylsulfon, Äthylsulfon, Phenylsulfon, Carbalkoxy oder SO3H,
- Y¹ Wasserstoff, Chlor, Brom oder SO₃H,
- Wasserstoff, Chlor, Brom, Methyl, Carbalkoxy, 2-Benzthiazolyl oder SO3H,
- χ^3 Wasserstoff, Methyl, Hydroxy, Methoxy oder SO_3H ,
- x1 Wasserstoff, Methyl, Methoxy oder SO3H,
- x² Wasserstoff, Methyl oder Methoxy und
- T Wasserstoff oder einen Substituenten bedeuten und
- R^1 und R^2 die angegebene Bedeutung haben.
- 3. Verfahren zur Herstellung von Farbstoffen gemäß Anspruch 1 oder
 - 2, dadurch gekennzeichnet, daß man
 - a) eine Diazoverbindung von Aminen der Formel

DNH

mit einer Kupplungskomponente der Formel

umsetzt, oder

b) Farbstoffe der Formel

sulfiert, D, R¹ und R² haben dabei die angegebenen Bedeutungen.

4. Farbstoffzubereitungen zum Färben stickstoffhaltiger Fasern, enthaltend neben üblichen Bestandteilen Farbstoffe gemäß Anspruch 1 oder 2.

BASF Aktiengesellschaft

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.