Hierarchical Solutions for the Stochastic Block Model

Aditi Nair and Akash Shah May 11, 2017

The Stochastic Block Model

- Let G be a graph with k communities of m nodes each
- For nodes (i, j) in the same community, let the p be the probability that they share an edge on G
- For nodes (i,j) not in the same community, let the q be the probability that they share an edge on G
- Edges are drawn independently, and p > q
- Goal: recover the original partition

The Semidefinite Program for k = 2

Let A be the adjacency matrix of G. Then we need to solve:

$$\max \sum_{i,j} A_{ij} x_i x_j$$
s.t. $x_i = \pm 1 \ \forall i$

$$\sum_i x_j = 0$$

The Semidefinite Program for k = 2

Let
$$B = 2A - (\mathbf{11}^T - I)$$
. Then the original problem is equivalent to

$$\max \sum_{i,j} B_{ij} x_i x_j$$

s.t. $x_i = \pm 1 \ \forall i$
 $\sum_i x_j = 0$

The Semidefinite Program for k = 2

By dropping the constraint $\sum_{j} x_{j} = 0$ and with a convex relaxation, we have the following semidefinite program:

$$\max Tr(BX)$$
s.t. $X_{ii} = 1 \ \forall i$

$$X \succeq 0$$

Under the right conditions, with high probability the solution coincides with $X = gg^T$ where g is the true partition. We obtain g by finding the leading eigenvector of X.

4

Conditions for Recovery

	Exact	Partial
Formula	$p = \frac{\alpha \log n}{n}, \ q = \frac{\beta \log n}{n}$	$p=\frac{a}{n}, q=\frac{b}{n}$
k = 2	$\sqrt{\alpha} - \sqrt{\beta} \ge \sqrt{2}$	$(a-b)^2 > 2(a+b)$
<i>k</i> > 2	$\sqrt{\alpha} - \sqrt{\beta} \ge \sqrt{k}$	$\frac{(a-b)^2}{k(a+(k-1)b)} > 1$

Hierarchical Approach for k > 2

Figure 1: Hierarchy for k = 3

Figure 2: Hierarchy for k = 4

Exact Recovery for k = 2

Exact Recovery for k = 3

Exact Recovery for k = 4

Partial Recovery for k = 2

Partial Recovery for k = 3

Partial Recovery for k = 4

