Funciones uniformemente continuas

Definición 1. Sea $X \subseteq \mathbb{R}^n$ y $f \colon X \to \mathbb{R}^m$. Decimos que f es uniformemente continua si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que para todos $x, y \in X$, si $||x - y|| < \delta$, entonces $||f(x) - f(y)|| < \varepsilon$.

Ejemplo 2. Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Entonces, T es uniformemente continua.

Demostración. Sea $(e_j)_{j=1}^n$ la base canónica de \mathbb{R}^n . Entonces, para cada $x \in \mathbb{R}^n$, tenemos $x = \sum_{j=1}^n x_j e_j$. Hagamos $M := \max\{\|Te_1\|, \dots, \|Te_n\|\}$. Luego, para cada $x \in \mathbb{R}^n$,

$$||Tx|| = \left\| T\left(\sum_{j=1}^{n} x_j e_j\right) \right\| = \left\| \sum_{j=1}^{n} x_j T\left(e_j\right) \right\| \le \sum_{j=1}^{n} |x_j| \, ||T\left(e_j\right)|| \le n^2 ||x|| M.$$

Sea $\varepsilon > 0$. Hacemos $\delta = \frac{\varepsilon}{n^2 M}$. Sean $x, y \in \mathbb{R}^n$, tales que $||x - y|| < \delta$. Entonces,

$$||Tx - Ty|| = ||T(x - y)|| \le n^2 M ||x - y|| < \varepsilon.$$

Por lo tanto, T es uniformemente continua en \mathbb{R}^n .

Proposición 3. Sea $K \subseteq \mathbb{R}^n$ y $f: X \to \mathbb{R}^m$ uniformemente continua en X. Entonces, f es continua en X.

Demostración. Sea $a \in X$, y $\varepsilon > 0$. Como f es uniformemente continua, existe $\delta > 0$ tal que si $||x - a|| < \delta$ entonces, $||f(x) - f(a)|| < \varepsilon$. Sin embargo, esta es la definición de continuidad en a. Por lo tanto, f es continua en a.

Proposición 4. Sea $K \subseteq \mathbb{R}^n$ compacto $y \ f \colon K \to \mathbb{R}^m$ continua en K. Entonces, f es uniformemente continua.