

P&R Best Practice Sharing Award

Improve Third Transmission Pipeline And On-Shore Compressor Station Unit3 Reliability

ชื่อโครงการ: เพิ่มเสถียรภาพทางไฟฟ้าของท่อส่งก๊าซธรรมชาติเส้นที่ 3

<u>และสถานีเพิ่มแรงดันก๊าซบนบกหน่วยที่3</u>

บริษัท ปตท. จำกัด (มหาชน) โรงแยกก๊าซธรรมชาติ จ.ระยอง

คณะทำงาน

- 1. ชื่อนายวรทัต บรรลือเขตร์
- 2. ชื่อ<u>เอกชัย มงคลสักวานนท์</u>
- 3. ชื่อฐีระ ประยูรพิทักษ์
- 4. ชื่อ<u>นิเวศ พุ่มพวง</u>

1. Key Word

		Туре	
□ Energy	☐ Maintenand	e Operational Im	prov. Personnel
□ Other (โปร	กระบุ)		
		Process	
☐ <u>Aromatics</u>			
□ <u>Lube</u>			
	Solvent Deasphalting	Solvent Extraction	□ Propane Dewaxing
	Lube Hydrotreating	Solvent Dewaxing	
	Asphalt and Bitumen Manufa	acturing	ุ Other (โปรดระบุ)
□ Refinery			
☐ Distilla	ation		
	Atmospheric Crude Distillation	on CO2 Liquefaction	Desalinization
	Vacuum Crude Distillation	☐ Fractionation	🔲 Other (โปรดระบุ)
☐ Conve	ersion		
	Coke Calciner	Deep Catalytic Cracking	Fluid Catalytic Cracking
	Hydrocracking	Hydro dealkylation	∇isbreaking
	Cracking Feed or Vacuum G	Sas Oil Desulfurization	☐ Other (โปรดระบุ)
☐ Treati	ng		
Г	Amine Regeneration	Hydrogen Purification	□ LPG sweetening
Γ	Naphtha Hydrotreating	Residual Desulfurization	Selective Hydrotreating
Г	Sour water stripping	☐ Distillate/Light Gas Oil Desu	Ifurization and Treating
Г	Sulfur Recovery	Kerosene Desulfurization an	d Treating
Γ	Tail Gas Recovery	□ Naphtha/Gasoline Desulfuriz	zation and Treating
Г	Vacuum Gas Oil Hydrotreati	ng U18 - Isosiv (mole sieve for	C5/C6 Isomerization)
Г	🧻 Other (โปรดระบุ)		
☐ Reform	ming		
	C5/C6 Isomerization	Catalytic Reforming	Cumene
	Hydrogen Generation	Isomerization	🗖 Other (โปรดระบุ)
☐ <u>Olefins</u>			
☐ Upstre	eam		
	Ethylene	Propylene	Other (โปรดระบุ)
☐ Interm			
	โปรดระบุ		

☐ Polymers			
☐ ABS		HDPE	□ PP
☐ PS	Г	ี Other (โปรดระบุ)	
☐ EO Based			
☐ Ethyl	ene Oxide/ Ethylene Glycol	(EO/EG)	Ethanolamines
☐ Ethox	xylate	ี Other (โปรดระบุ)	
☐ Supporting			
☐ Logis	stics	Power	☐ Steam
☐ Stora	nge	Fired Turbine Cogeneration	ุ ☐ Other (โปรดระบุ)
		Equipment	
☐ Bagging machine	☐ Boiler	☐ Blower	☐ Chiller
Columns	□ Compressors	Control & Monite	or De-aerator
☐ Electrical Apparate	us Extruder	☐ Fan	☐ Flare
Furnaces	Heat Exchange	r Instrument	☐ Meter
Misc. & Other		Piping	Pump
Reactor	Regenerator	☐ Safety Equip. &	Sys. Silo
□ Tank	Telecommunica	ation Tower	Turbine
☐ Valves	☐ Vessel	☐ Wires & Cables	
Other (โปรดระบุ) P	ower System		

2 รายละเอียดโครงการ

1. ชื่อโครงการ (ไทย) เพิ่มเสถียรภาพทางไฟฟ้าของท่อส่งก๊าซธรรมชาติเส้นที่3 และสถานีเพิ่มแรงดัน ก๊าซบนบกหน่วยที่3

> (อังกฤษ) Improve Third Transmission Pipeline And On-Shore Compressor Station Unit3 Reliability

- 2. ลักษณะโครงการ เชื่อมต่อระบบไฟฟ้าเพื่อเพิ่มเสถียรภาพทางไฟฟ้าของท่อส่งก๊าซธรรมชาติเส้นที่3 และสถานีเพิ่มแรงดันก๊าซบนบกหน่วยที่3
- 3. ผู้นำเสนอโครงการ นายเอกชัย มงคลสักวานนท์ หน่วยงาน บฟ.วบก. สังกัด ผยก. เบอร์โทรศัพท์ 038-676429 e-mail ekkachai.m@pttplc.com สถานที่ติดต่อ โรงแยกก๊าซธรรมชาติ จ.ระยอง
- 4. รายชื่อคณะทำงาน/ โทรศัพท์/e-mail

1. นายวรทัต บรรลือเขตร์

โทร 038-676420 Email: woratat.b@pttplc.com

2. นายฐีระ ประยูรพิทักษ์

โทร 038-676464 Email: teera.p@pttplc.com

3. นายนิเวศ พุ่มพวง

โทร 038-676463 Email: niwet.p@pttplc.com

- 5. งบประมาณที่ใช้ 19,500,000 บาท
- 6. ระยะเวลาดำเนินการ 6 เดือน
- 7. อายุโครงการ มากกว่า 5ปี่
- 8. Cost saving or Benefit value เพิ่มเสถียรภาพทางไฟฟ้าให้กับท่อส่งก๊าซเส้นที่3และสถานีเพิ่มแรงดัน ก๊าซบนบกหน่วยที่3 ซึ่งสามารถลดการสูญเสียโอกาสการขายก๊าซได้ 34,980,000บาท และลด ค่าใช้จ่ายในการซื้อไฟจากการไฟฟ้าส่วนภูมิภาค คิดเป็นมูลค่า 9,600,000 บาท/ปี
- 9. ทฤษฎี ความรู้ หลักการและเหตุผลในการทำโครงการ

ท่อส่งก๊าซธรรมชาติเส้นที่3 (TTP) เป็นท่อส่งผลิตภัณฑ์ขนาด 42นิ้ว ส่งก๊าซเข้าโรงแยกก๊าซ ธรรมชาติ เพื่อแยกเพิ่มมูลค่าของก๊าซธรรมชาติ มีFlow Rate อยู่ที่ประมาณ 1200MMSCFD

สถานีเพิ่มแรงดันก๊าซบนบกหน่วยที่3 (OCS#3) มีหน้าที่ในการเพิ่มแรงดันก๊าซ เพื่อส่งก๊าซ ผลิตภัณฑ์ของโรงแยกก๊าซธรรมชาติให้กับลูกค้าจำพวกโรงไฟฟ้า มีกำลังการส่งก๊าซอยู่ที่ประมาณ 1300MMSCFD ซึ่งหาก Unit Shutdown ลงไป จะทำให้โรงไฟฟ้าไม่มีเชื้อเพลิงในการผลิตกระแสไฟฟ้า และโรงแยกก๊าซธรรมชาติสูญเสียโอกาสในการขายก๊าซ

เดิมระบบไฟฟ้าของท่อส่งก๊าซธรรมชาติเส้นที่3 (TTP) และสถานีเพิ่มแรงดันก๊าซบนบกหน่วยที่ 3 (OCS#3) นั้นเป็นระบบเดียวกัน รับไฟฟ้ามาจากระบบไฟฟ้าแรงสูง 22 กิโลโวลต์ของการไฟฟ้าส่วน ภูมิภาค (กฟภ.) เพียง1แหล่งจ่าย และใช้เครื่องกำเนิดไฟฟ้าพลังงานดีเซล (Emergency Desel Generator) เป็นระบบไฟฟ้าสำรองฉุกเฉิน ซึ่งมีความเสี่ยงที่จะเกิดความผิดพร่องบนระบบส่งจ่าย ไฟฟ้าแรงสูง 22 กิโลโวลต์ของ กฟภ. ขึ้นได้ ซึ่งเป็นUncontrolable Factor ของทางโรงแยกก๊าซ

ธรรมชาติ ดังนั้นจึงจำเป็นต้องมีการบริหารความเสี่ยงที่เกิดขึ้นโดยทางทีมงานได้พิจารณาหาแหล่งจ่าย ไฟฟ้าอื่นๆ เพื่อเพิ่มเสถียรภาพทางไฟฟ้าให้กับระบบ

ระบบไฟฟ้าของโรงแยกก๊าซธรรมชาติรับไฟจากระบบไฟฟ้าแรงสูง 22 กิโลโวลต์ของการไฟฟ้า ส่วนภูมิภาค (กฟภ.) จำนวน 3 แหล่งจ่าย และมีหน่วยผลิตไฟฟ้า(Generator) อีกจำนวน 5 หน่วย เรา จึงเชื่อมต่อระบบไฟฟ้าทั้งสองระบบเข้าด้วยกัน ทำให้ทั้งระบบมีแหล่งจ่ายไฟฟ้าถึง 9 แหล่งจ่าย ซึ่ง ทำงาน Back up ซึ่งกันและกัน อีกทั้งยังทำให้เกิด Power optimization ในแง่ของค่าไฟฟ้าอีกด้วย เนื่องจากหน่วยผลิตไฟฟ้าของโรงแยกก๊าซธรรมชาติสามารถผลิตกระแสไฟฟ้าได้ในราคาที่ถูกกว่า การ ไฟฟ้า และยังมี กำลังการผลิตสำรอง (Spinning Reserve)เพียงพอที่จะจ่ายให้กับท่อส่งก๊าซเส้นที่3 และสถานีเพิ่มแรงดันก๊าซบนบกหน่วยที่3ได้ จึงสามารถลดการ Import ไฟจากการไฟฟ้าลงได้อีกด้วย 10. ขั้นตอนการดำเนินงาน (ระบุเป็นลำดับขั้นการดำเนินการ)

- 1. เก็บข้อมูลเพื่อนำมาวิเคราะห์ความเสี่ยงเพื่อปรับปรุงระบบ
- 2. วิเคราะห์ข้อมูลเพื่อทราบปัญหาและหาทางดำเนินการปรับปรุง
- 3. ศึกษาความเป็นได้ของโครงการทั้งระยะเวลาในการเตรียมงาน, จุดคุ้มทุน
- 4. คคกแบบทางวิศวกรรม
- 5. ดำเนินการแก้ไข
- 6. Comissioning and Testing
- 7. ติดตามผลการแก้ไขอย่างต่อเนื่อง
- 8. วัดผลการดำเนินงาน
- 11. ปัญหา/อุปสรรค (จากการทำโครงการ-ถ้ามี) ใน่นี

12. แนวทางการแก้ไข

13.	การประยุกต์ใช้งาน
	y
14.	โครงการที่นำมาเป็นต้นแบบ
	จากบริษัท

ลงชื่อ....เอกชัย มงคลสักวานนท์...ผู้นำเสนอโครงการ

ลงชื่อ....นายโชคชัย ธนเมธี ...กรรมการ P&R Best Practice Sharing

3.เอกสารสนับสนุนต่างๆ

Benefit Calculation

- Save Electricity Charge from PEA

C

CONDITION	PEA	GTG
ต้นทุนค่าไฟ (บาท/หน่วย)	2.6316	1.75
โหลดรวมของ TTP & OCS 3	1.25 MW	1.25 MW
Kw-H ของ TTP & OCS 3	898,140	898,140
ค่าไฟฟ้า	2,363,536 บาท	1,571,745 บาท

o Save Electricity Charge form PEA about 800,000 Baht/Month or <u>9,600,000 Baht/Year</u>

o มูลค่าลงทุน (อายุโครงการเกิน 5 ปี): 19,500,000/5 = <u>3,900,000 Baht/Year</u>

o Net Benefit: 9,600,000 -3,900,000 = 5,700,000 Bath/Year

Extra Benefit

- Save Equipment Failure Loss

0	Fuel Price	0.21Baht /SCF or 210000Baht/MMSCF
0	OCS#3 Capacity	1300MMSCFD or 54.16MMSCF/Hr
0	Start up time when unit shutdown	3.1 Hr
0	Equipment Failure Loss	$(1) \times (2) \times (3) = 34,980,000Baht/Time$

เอกสาร Presentation โครงการ

"Power Optimization By Utilize GSP&TTP Power Network"

POWER (MW)	
5.5 MW (Design) 1.25 MW (Actual)	Load Shedding
54.5 MW	
60 MW	
73.5 MW Gen trip 1 unit (73.5-12.5=61)	No
	ocs2
	5.5 MW (Design) 1.25 MW (Actual) 54.5 MW 60 MW 73.5 MW Gen trip 1 unit (73.5-12.5-61)

