

Biobased demonstrations to speed up market introduction

feed minerals

Sugar

Tibers energy

Ir. Kees W. Kwant

Contents

- Renewable Resources for a Low Carbon Economy
 - Biobased Economy
- Innovation system in the Netherlands
- Demonstrations of Biorefineries
- Results and Conclusion

CO₂ emissions from Land Use Change and fossil fuels

sustainable economy

- European countries
- Latin American and Caribbean countries
- North American countries
- Oceanian countries

© Global Footprint Network (2009). Data from Global Footprint Network National Footprint Accounts, 2009 Edition; UNDP Human Development Report, 2009

IEA: Renewables: Central to reach the

Renewables provide almost 30% of the cumulative reductions needed to reach the 2DS.

IEA: Key role of bioenergy in a low-carbon future

Bioenergy technologies	Emissions reduction in 2050
Bioenergy power	1.0 Gt CO _{2-eq}
Bio-power + CCS	0.3 Gt CO _{2-eq}
Bioenergy heat (industry)	0.5 Gt CO _{2-eq}
Bioenergy heat (buildings)	0.1 Gt CO _{2-eq}
Biofuels	2.1 Gt CO _{2-eq}
Total	4.1 Gt CO _{2-eq}

Source: Energy Technology Perspectives 2012

- Reaching the 2DS will require **42 Gt CO₂ annual emissions reduction** by 2050
- Biomass is the only renewable energy source that can make a contribution in all sectors, providing around 10% of total CO2 emissions reduction

Integrated Approach for Bioenergy: – The bio-based economy in context

- The bio-energy arena is a subset of the bio-based arena (non-food use of biological resources), itself a subset of the bio economy, and ultimately of the 'carbon economy'.
- Our society is to a significant extent based on the 'carbon economy', fed both by fossil and renewable (or biological) carbon.

Principles of the sustainable bio-based economy First: Sustainable biomass growth

(GBEP) -sustainability indicators for bioenergy:

- Improving yields in agriculture (with better crops, cultures, nursing, care)
- Nutrient recycling
- Optimal use of water (e.g. drip irrigation)
- Minimal pesticide (organic pest control)
- Minimal energy use in production chains

These elements are in line with the Good Agricultural Practices (GAP) codes, standards and regulations promoted by the FAO (2013).

Second: Resource Efficiency

Optimum use of bio-resources implies 'cascading'

- Cascading in time: expanding the utilization of harvested biomass by re-using (or even upgrading) waste streams
- Cascading in value: maximizing and optimizing the economic benefit of the bio resource life cycle.
- Cascading in function: benefiting from all potential functions, e.g. through bio-refinery

Circular & Biobased Economy

Third: Principles: 'trias biologica'

The 'Trias Biologica' is a popularized expansion of the 'Trias Energetica' – (1) reduce energy demand, (2) meet the demand as far as possible with renewable resources, and (3) minimize emissions and ecological impact from the remaining (fossil) supply.

Trias Biologica:

- 1. De carbonize the economy i.e. minimize the 'carbon need and footprint'
- 2. Supply the remaining carbon need from sustainably produced bio-resources
- 3. Minimize impact and maximize efficiency: use 'cascading' for all carbon resources and avoid all harmful emissions.

Economic opportunities

- Hardly any alternative renewable sources for
 - long distance shipping/aviation
 - chemicals and plastics
 - industrial heat
- Huge growth market for biochemicals and biomaterials

Innovation System

A major transition towards the biobased resources required

Rules and Actors:

Figure 2 Structure of the innovation system (based on (Kuhlmann and Arnold, 2001)

Innovation system, 7 determining functions, Hekkert, Univ. Utrecht

Figure 4 Overview of system function fulfillment

Research and Development

Research & Development

- Support through topsector approach
- Market driven Research in topsectors
- Regional Support for specific strength
- Budget about 240 M€/year
- Support from government ~~ 70 M€/year (subsidies, fiscal, loans etc.)

Development of Biobased Economy In the REGIONS

Flevoland

WUR/Accres, Prov. Flevoland en Eneco, HarvestaGG, CAH Vilentum, Ringg, OMFL

Focus:

- * Bio-energie
- * Cascaderina

* BBE experimenteren/testen/ demonstraties

Biobased Connections

ICL, Cargill, Greenmills, AEB, Haven Amsterdam, Orgaworld, AIM, Schiphol, HvA, UvA, Amsterdam Economic Board Waternet, Aalsmeer, Haarlemmermeer, Amstelveen, NPSP, Photonol, SADC, Ursapaint, Pharmafilter, Jagran, Hempflax etc.

Focus:

* Inzet organische reststromen voor bioenergie, biofuels en biomaterialen

Biobased Delta

Green Chemistry Campus, DOW, Cosun, Purac, Sabic, Bio Base Europe, Avans Hogeschool, Prov. Zeeland, Brabant en Zuid-Holland, Haven Rotterdam (BioPort), TUD, Leiden Univ., Plant One, RCI, BE-BASIC, DSM, Pilotplant, Biotechpark Delft Kenniscentrum Plantenstoffen, Growport, Greenport, BOM, REWIN, Impuls, InnovationOuarter etc.

Facus:

- * biobuilding blocks
- * biobased aromatics
- * Performance materials & chemicals
- * Agro functionals/hoogwaardige plantinhoudsstoffen
- * Aquatische biomassa
- * Coatings
- * Witte bio-technologie voor fuels en chemicaliën
- * Bioport

Biobased Business Brainport

Focus:

BOM, SRE etc.

* Verwaarden van mineralen uit dierlijke en plantaardige nevenstromen richting food, feed en pharma

Biobased Economy Noord Nederland

Avebe, FrieslandCampina, Cosun, Agrifirm, BioMCN, Grassa, DOC, PKI, API, Cumapol, Eemshaven, Stenden PRE, Wetsus, biobRUG, Biocab, Hanze Hogeschool, CCC, HANNN, Prov. Groningen, Drenthe en Friesland, NOM etc.

Facus:

- * Verwaarding organische reststromen
- * Eiwitten & Koolhydraten (food/feed/industrie)
- * Fybres en biopolymeren
- * Chemical buildingblocks
- * Biofuels

Biobased Economy OostNederland

Bio-energie Cluster Oost Nederland, BTG, Byosis, Ten Cate, AkzoNobel, Van Wijhe, Rolsma, ROVA, GTC, Utwente, WUR, BIC Oost-Nederland, Prov. Gelderland en Overijssel, Oost NV etc.

Facus:

- * Bio energie (pyrolyse/fermentatie)
- * biobased coatings
- * Biobased garens, textiel en biopolymeren
- * Verwaarden van cellulose houdende materialen, gebruik van mest en slib als biomassagrondstof en toepassing van nieuwe biomassastromen algen en kroos

Biobased Economy Limburg

Greenport & biotransitiehuis Venlo, Chemelot, DSM, Sabic, Lanxess, Avantium, Papier & Kartonindustrie, Univ. Maastricht, Zuyd Hogeschool, Prov.Limburg, Liof etc.

Focus

- * Biobased performance materials & chemicals
- * Biomedical materials
- * Processtechnolgy & biobased buildingblocks
- * biobased tuinbouw toepassingen & Agroraffinage
- * Neutraceuticals en cosmetica

Research and Development

From lab to Market

- Biorefinery Program
 - 2010 2014
- Topsector Approach
 - www.tki-bbe.nl
- Upscaling:
 - www.bpf.eu
- Demonstration
- Flagships / Financing

Bio Proces Facility Delft

Piloting with Biorefinery

Processes and Products

Bioprocess Pilot Facility

Experienced industrial scale up facility based in Delft, The Netherlands

Investing in your future.

The Bioprocess Pilot Facility is partly financed by the European Regional Development Fund of the European Union.

Ministerie van Economische Zaken, Landbouw en Innovatie

Biotechnology & bio-based economy

Towards a sustainable world now!

... (im)proving the process

of the client

Pilot Plant BPF facilities

Structure: 4 sections, modular operation Pretreatment **Fermentation Hydrolysis Separation Pilot Scale Pretreatment Experienced Crew** Stirred 10 L - 4 M³ **Bench Scale Pretreatment Bubble column 8 M³** Delivery of wet residue residue Storage for dry **Training** Food grade **Downstream Processing Fermentation Downstream Solid Liquid Processing Concentration** European European Union funding **Cell Disruption** Commission for Research & Innovation

Scale up approach

- Scale down targeted commercial scale plant
- Run pilot scale to confirm / modify proof of concept
- Data generation for commercial scale engineering & safety

BENEFITS

- → Reduce risks when scaling-up from lab-scale
- → Pre-marketing / application / tox trials product quantities
- → Test/validate new technical designs
- → Enhance bio-processing competence of customer

Customer base

- Young company
- Longstanding industrial experience
- Growing customer base

Result: New companies join and start demonstrating

Demonstrations of Biorefineries and lessons for innovation

source: CIBE and CEFS (after British Sugar

Biomass Cascading and Valorisation

- •Total concept, including a 50% increase in sugar beet yield per hectare, a 50% reduction in fertilizer use, and a 50% efficiency improvement in the sugar plant (all in about 20 years).
 •Further optimization includes export of waste heat, and site utilization for
- renewable energy production (solar and wind).

Lessons from Cosun, beet biorefinery

- Challenge -> Opportunity seen by cooperation of farmers
- Built on existing infrastructure
 - Sugar beet supply chain
- Start with simple demonstrations (Biogas) and move up in the chain

IEA Bioenergy

Empyro pyrolysis plant (2014)

Task 42 Biorefining

- Construction of pyrolysis plant started in February 2014
- Modules
- Feedstock e.g. wood chips
- Production of 20 million litres of pyrolysis oil per year
- Pyrolysis oil used for bioenergy (ST) and chemicals (LT)

Lessons Empyro (www.btg-btl.com)

- Persistance: result of 25 years research and pilots
- Phasing of applications
 - 1:burning -> 2:transportfuels -> 3: chemicals
- Take some years to Operationalise the Demonstration
 - Opening: May 2015, now at 50% capacity
- Find a take off client:
 - 20 mln. liter/jaar, used by Friesland Campina Borculo for steam

Biorefinery of grasses

Grass Refinery:

 Green fibres and juice for digestor

Product: Green Egg box

www.huthamaki.com

Result: 60% less water,

10 % less CO2

Future: Juice for proteins

Lesson:

Use Market opportunity

Work in the chain

IEA Bioenergy

Avantium YXY Technology

Task 42 Biorefining

- Chemical catalysis biorefinery
- Pilot plant in Geleen
- Feedstocks: cellulose, hemi-cellulose, starch, sucrose
- Outputs: furan based biofuels, monomers for polymers, fine and specialty chemicals, solid fuels

Plant based Feedstock

Lessons:

- Integrate Technology development with Market offtaker :(Avantium/CocaCola/Basf)
- Demonstration samples allow for market testing, touch, airtightness
- Market awareness about improved bottles
- Developing the Circular Chain (new recycling options)

Green chemicals from solar (www.photanol.com)

- CO2+light -> chemicals
 - Blue algae -> lactic acid
- Spinn-off Univ. AMS
- Collaboration AKZO
- Labscale -> pilot ->demo in greenhouse

Lessons:

- Partnering for market entry
- Use existing infrastructure

Results Recommendations and Conclusion

Projects from regions on the S-curve

Demo: Score on Innovation functions

Functions	Bio Process Facility	Sugar Beet	Em Pyro	New Foss / Grassa	Avan tium	Photanol
Entrepreneural						
Knowledge Development				<u>•</u>	•	
Knowledge Exchange		<u> </u>				
Guidance						
Market formation	<u>•</u>		•		•	•
Resource Mobilisation	F			•		
Counteract Resistance				•		

Role of Government in innovation system

- Gvt. Netherlands:
 - Green Deals:
 - to take away hurdles for companies
 - Strong:
 - > Counteract Resistance
 - (legislation)
 - > Resources

Markets Slow: Biobased Procurement

Sustainable Procurement

- Biobased <-> Biodegradable
- Biobased <-> Sustainable
- Complete Chain Evaluation

Required Policies in Society

- Steering on CO2 reduction
 - Poluter pays principle
 - Level playing field for energy and materials

 Innovation; biorefineries for integrated optimised conversion of biomass

Conclusion

- Biorefineries can create value out of biomass for both materials and energy
- Level playing field between energy and biomass is required
- Demonstrations in Biorefineries create experience in market introduction with all market actors
- Collaboration between all actors in the innovation system crucial for succes

Thank you for your attention

Questions?

Kees.Kwant@rvo.nl