

WP 3.1 Application and DESTEST for district energy models

- Track 1: Demonstration of case studies → Free papers
- Track 2: Development of DESTEST (=main activity)

TRACK 2: Development of DESTEST

Aim is to:

- 1. Develop typical or representative DES configurations
 - that can be used for testing different DES models (intermodel comparison, validation?)
 - that can be used for testing different DES implementations and approaches (f.i. central vs decentral storage)
- 2. Develop a test framework for testing individual DES models (f.i. substations, pipes, heatpumps ...)

Activities and Participants

- Activities
 - 4 coordination meetings
 - different subgroup meetings

Activities and Participants

Participants	Affiliation
Krzysztof Arendt	University of Southern Denmark
Felix Bünning	EMPA
Ina De Jaeger	KU Leuven
Konstantin Filonenco	University of Southern Denmark
Enora Garreau	CSTB
Alessandro Maccarini	Aalborg University
Michael Mans	RWTH Aachen
Peter Remmen	RWTH Aachen
Dirk Saelens	KU Leuven
Artem Sortnikov	Hochschule Luzern
Christoph Stettler	Hochschule Luzern
Bram Van der Heijde	KU Leuven
Annelies Vandermeulen	KU Leuven
Ilaria Vigna	Politecnico di Milano

TRACK 2: Development of DESTEST

- Two tracks are working in parallel
 - Focus on building models: Ina De Jaeger
 - Focus on energy system models: Felix Bunning
- Start with description of (very) simple neighborhood of buildings
- Use this information to design thermal network(s)

BUILDINGS: Start simple

- 16 identical single-family dwellings of 1980
- Thermal properties based on TABULA project for Belgium
- Two-zone model (day zone and night zone)
- Standard occupant (ISO 13790)
- Only heat demand for space heating
- Documented in TEASER.xml format
- → Simulated with IDEAS and Buildings library

Results

Example from IDEAS library: Yearly energy demand for space heating: 20.17 MWh

Results

- Comparison between IDEAS and Buildings library showed some discrepancies.
- Analysis of cause is ongoing

Next steps

- Replace nodes with other loads
 - Automated model generation with TEASER
 - Other types of single-family dwellings
 - Apartment block
 - Office building
 - Further comparison of different calculation cores
 - Usage of different building standards and countries
 - Effect of Solar Radiation
- Change network layout + increase number of buildings

NETWORKS: From building load to district heating system

- Building loads stored on github
- Derive network from loads:
 - Fix topology
 - Python: Automatically generate pipe dimensions, write to csv file

Modelica model generation

- Modelica: automatic parametrization from csv file
- automated process from building energy loads to simulationready Modelica model

Comparison of different pipe models

First simulation results

- Fixed boundary conditions, e.g. $T_{ground} = 12^{\circ}C$
- Results heavily depend on solver tolerance

Model – tolerance	Heat injected (in J)
Plug flow – 1e-004	1.166e+12
Plug flow – 1e-006	1.215e+12
Plug flow – 1e-008	0.924e+12
Dynamic pipe – 1e-004	1.037e+12
Dynamic pipe – 1e-006	1.123e+12
Dynamic pipe – 1e-008	1.195e+12

• → Deviation from mean: up to 17%

Publications

- 2 papers submitted for BS2019
 - The influence of input data uncertainty on the district energy demand, Ina De Jaeger et al
 - Towards a DESTEST: a District Energy Simulation Test Developed in IBPSA Project 1, Dirk Saelens et al

Plan for breakout sessions

BS 1-1 Free papers
Centralized MPC of district heating and cooling networks modeled in Modelica:
TERMONET project ((Krzysztof Arendt, Konstantin Filonenko, Christian T. Veje))
Progress of PhD work Ina
Progress of PhD work Bram
Discussion
BS 1-2 Discussion on results of building modeling group
Presentation of first results (Ina)
Discussion
BS 2-1 Discussion on results of thermal network modeling group
Presentation of first results (Felix)
Discussion
BS 2-2 Definition of further steps and discussion on research plan
Definition of next common exercise
Definition and finalization of research plan
BS 2-3 Joint session with ST1 or ST2
BS 2-4 Wrap-up, discussion and commitments