

3D Stochastic Medium Photon Transport using Imp IMC and Maestro

Vincent Novellino^a, Patrick Brantley^b

Center for Exascale Monte-Carlo Neutron Transport (CEMeNT)

aNorth Carolina State University, bLawrence Livermore National Laboratory

Objective

Evaluate the accuracy of approximate methods modeling stochastic medium transport in 3D Monte Carlo simulations of Thermal Radiative Transfer problems.

Background

- Physical systems have stochastic distribution of materials [1]
- The standard approach is atomic mixing:
 - A volume fraction weighted average of material properties
- Another approach is Chord Length Sampling (CLS) [2]:
 - Sample the starting material
 - Sample distance to next material region from an exponential distribution
 - Perform standard Monte Carlo simulation:
 - If a particle crosses a material boundary, switch material properties and sample a new distance to material region
 - Rinse and repeat
- For a fair comparison of methods, we generated benchmark solutions:
 - We sampled a realization of the stochastic medium
 - Conducted the simulation, obtaining the quantity of interest
 - Sampled another realization and repeated until we ran "enough" realizations

Results

Figure 1

Geometry of the model we are simulating, based on the E3D problem from Olson, 2007 [1]

Figure 3

Transmission factor for a constant opacity Marshak model for the equation of state E3D

Figure 2

IMC energy density from the Shocktube3D model based on an experiment at NIF

Figure 4

Transmission factor for a constant specific heat temperature dependent opacity model E3D

Conclusions

CLS methods are able to accurately model 3D stochastic medium photon transport.

Future Work

- Write a conference paper to present these results, obtain feedback from others in the community
- Evaluate the standard deviation of the transmission factor
- Benchmark other quantities of interest

References

- 1. C. D. LEVERMORE, G. C. POMRANING, D. L.SANZO, and J. WONG, "Linear Transport Theory in a Random Medium," J. Math. Phys., 27, 2526–2536 (1986).
- 2. G. B. ZIMMERMAN and M. L. ADAMS, "Algorithms for Monte-Carlo Particle Transport in Binary Statistical Mixtures," Trans. Am. Nucl. Soc., 64, 287 (1991).
- 3. G.L. Olson, "Gray Radiation Transport in Multi-Dimensional Stochastic Binary Media with Material Temperature Coupling," JQSRT, 104, pp. 286-298 (2007).

Acknowledgements

This work was supported by the Center for Exascale Monte-Carlo Neutron Transport (CEMeNT) a PSAAP-III project funded by the Department of Energy, grant number DE-NA003967.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC