Number Representation

Real world data is **analog** and must be converted to a **digital** format to transmit via **sampling**. Data may also be born digital.

Bits

 ${\bf N}$ bits can represent at most ${\bf 2}^{{\bf N}}$ things.

Binary, Decimal, Hex

- Decimal: base10 (great for humans, especially when doing arithmitic)
- Binary: base2
 - 4 bit = 1 nibble = 1 hex digit = 2^4 things
 - 8 bits = 1 byte = 2 hex digits = 2^8 things
- Hex: base16 (a simpler way of looking at a string of bit)

• Hex. baselo (a simple)		
Binary	Decimal	Hex
0b0000	0×0	0
0b0001	0x1	1
0b0010	0x2	2
0b0011	0x3	3
0b0100	0×4	4
0b0101	0x5	5
0b0110	0×6	6
0b0111	0×7	7
0b1000	0×8	8
0b1001	0×9	9
0b1010	0xA	10
0b1011	0×B	11
0b1100	0×C	12
0b1101	0×D	13
0b1110	0×E	14
0b1111	0×F	15

Representing Numbers

Unsigned Numbers

Unsigned integers lack a sign and range from $[0, 2^N-1]$.

Sign and Magnitude

If we let the leftmost bit represent the sign, we can now represent negative integers. However, this has several shortcomings:

- 1. Complicated arithmetic circuit: the binary odometer does not wrap around.
- 2. 2 zeros: both 10...0 and 00...0 represent 0.

Two's Complement

We define the left most bit as -2^{N-1} . For example, 1101_2 in two's complement is converted as follows:

```
0b1101 = 1*-2^3 + 1*2^2 + 0*2^1 + 1*2^0
= -8 + 4 + 0 + 1
= -3_{10}
```

Bias Encoding

A number can be represented as an unsigned integer added to a bias term. Generally, a bias is chosen as $-2^{N-1}-1$. For example,

Number Conversions

credit: JennoMai

Binary to Hexadecimal

Given a base-2 number x, we can convert to base-16 as follows:

- 1. Group x into 4-bit numbers, padding the left side with 0s as needed.
- 2. Evaluate each group to a (base-10) number between 0 and 15.
- 3. Substitute each group with the base-16 equivalent.

Hexadecimal to Binary

Similarly to the reverse, we can simply replace each base-16 digit with its 4-bit equivalent and remove leading 0s.