

Appendix B. Maximum Permissible Exposure

FCC ID: XU8THA103AC Page No. : B1 of B3

Report No.: FR4D0314-02

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	• • • • • • • • • • • • • • • • • • • •	
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: XU8THA103AC Page No. : B2 of B3

Report No.: FR4D0314-02

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz UNII Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11a: 22.28 dBm

Distance (m)	Antenna Gain (dBi)	Antenna Gain	Average Output Power		Power Density (S)	Limit of Power Density (S)	Test Result	
•	(111)	Gain (abi)	(numeric)	(dBm)	(mW)	(mW/cm²)	(mW/cm²)	
(0.2	3.50	2.2387	22.2800	169.0441	0.075327	1	Complies

For 2.4GHz Band:

Antenna Type: Dipole Antenna

Conducted Power for IEEE 802.11b: 17.76 dBm

Distance (m)	Antenna Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
			(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	1001 1100411
0.2	4.10	2.5704	17.7571	59.6637	0.030525	1	Complies

Conclusion:

Both of the WLAN 2.4GHz Repeater function with 2.4GHz + 5GHz AP function can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.030525 / 1 + 0.030525 / 1 + 0.075327 / 1 = 0.136377, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Both of the WLAN 5GHz Repeater function with 2.4GHz + 5GHz AP function can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.075327 / 1 + 0.030525 / 1 + 0.075327 / 1 = 0.181179, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

FCC ID: XU8THA103AC Page No. : B3 of B3