Algorithmen und Datenstrukturen

Kapitel 7: Komplexitätsklassen & NP-Vollständigkeit

Prof. Dr. Peter Kling Wintersemester 2020/21

Übersicht

1 Formalisierung von Problemen

- 2 Standard-Komplexitätsklassen
- 3 NP-vollständige Probleme
- 4 The End?

Effiziente Algorithmen vs Komplexität

XKCD Webcomic; klickt hier für das Original

Algorithmen sind die Geheimwaffe des Informatikers!

- · haben gelernt, Probleme zu formalisieren...
- · ...und für sie Algorithmen zu entwickeln & zu analysieren

Wer soll uns jetzt noch stoppen?

Algorithmen und Datenstrukturen

└─Effiziente Algorithmen vs Komplexität

 Wer die Referenz nicht kennt: Pinky and the Brain (definitiv Klausurrelevant!)

Wie zeigt man, dass Problem X komplex ist?

Variante 1

- · unbedingter mathematischer Beweis der Komplexität
- \underline{z} . B.: Problem X nicht oder nicht in Zeit $o(2^n)$ lösbar ist
- w manchmal machbar, aber typischerweise extrem schwer

Variante 2

- · bedingter mathematischer Beweis der Kommplexität
- · angenommen Problem Y ist "bekanntermaßen" schwer
- · zeige: X effizient lösbar ⇒ Y effizient lösbar
- → oft machbar, gar nicht mal soooo schwer

Wie können wir so eine bedingte Komplexität formalisieren?

Algorithmen und Datenstrukturen

└─Wie zeigt man, dass Problem X komplex ist?

Wie zeigt man, dass Problem X komplex ist?
Variante 1 - unbedingter mathematischer Beweis der Komplexität - <u>z.B.</u> Problem X nicht oder nicht in Zeit o(2º) lösbar ist manchmal machbar, aber typischerweise extrem schwer
Variante 2 - bedrigter mathematischer Beweis der Kommplexität - angsnommen Problem // ist "bekanntermaßen" schwer - zeige: X effizient lösbar Y effizient lösbar oft machbar, gar nicht mal soooo schwer

- Acomptextus (Onital Section
- "unbedingt": keine Voraussetzungen außer typischer mathematische Axiome
- wir reduzieren Problem Y auf Problem X ("Wenn wir X effizient lösen könnten, dann könnten wir auch Y effizient lösen.")

Was sind einfache Probleme? Was sind schwere Probleme?

Einfach

- finde kürzesten Pfad in Graph
- · finde Euler-Kreis
 - · Kreis, der alle Kanten enthält
- · 2-Färbbarkeit von Graphen
 - adjazente Knoten benötigen untersch. Farben

Schwer

- finde längsten Pfad in Graph
- finde Hamilton-Kreis
 - · Kreis, der alle Knoten enthält
- · 3-Färbbarkeit von Graphen
 - adjazente Knoten benötigen untersch. Farben
- k-Clique
 - vollständiger Teilgraph mit k Knoten
- *k*-Independent-Set
 - \cdot Teilgraph mit k Knoten ohne Kanten
- Partition
 - · Teile eine Menge ganzer Zahlen...
 - · ...in zwei Mengen gleicher Summe

Algorithmen und Datenstrukturen

-Was sind einfache Probleme? Was sind schwere Probleme?

Schwer finde kürzesten Pfad in Graph
 finde längsten Pfad in Graph - finde Euler-Kreis · finde Hamilton-Kreis 2-Färbbarkeit von Graphen
 3-Färbbarkeit von Graphen · adjazente Knoten benötigen un- · adjazente Knoten benötigen untersch. Farben tersch. Farben

Was sind einfache Probleme? Was sind schwere Probleme?

Finfach

 vollständiger Teileraph mit & Knoten · h-Independent-Set - Teileraph mit & Knoten ohne Kanten

- Teile eine Menge ganzer Zahlen... · _in zwei Mengen gleicher Summe

LZ kürzester Pfad: O(|E|)

• LZ Euler-Kreis: O(|E|)

LZ 2-Färbbarkeit: O(|E|)

1) Formalisierung von Problemen

Optimierungsprobleme & Entscheidungsprobleme

Optimierungsproblem

Finde gültige Lösung mit optimalem Wert.

Entscheidungsproblem

Entscheide, ob eine gültige Lösung existiert.

SHORTESTPATH:

Kürzester Pfad von s nach *t*?

k-PATH:

Pfad der Länge $\leq k$ von s nach t?

Wir beschränken uns im Folgenden auf Entscheidungsprobleme!

Warum?

Reduktion: ShortestPath $\rightarrow k$ -Path

- Existiert Pfad der Länge $\leq n/2$?
 - ja \rightsquigarrow Existiert Pfad der Länge $\leq n/4$? ...
 - nein \rightsquigarrow Existiert Pfad der Länge $\leq 3n/4$? ...
- · also: Binäre Suche!

Algorithmen und Datenstrukturen LFormalisierung von Problemen

Optimierungsprobleme & Entscheidungsprobleme

- Optimierungsprobleme definieren immer eine zu optimierende Zielfunktion
- Optimierung kann entweder Maximierung oder Minimierung bedeuten
- Generell betrachtet man zu einem gegebenen Optimierungsproblem typischerweise ein entsprechendes k-Threshold Problem, welches nach der Existenz einer Lösung mit Kosten ≤ k (bei Minimierungsproblem) bzw. nach der Existenz einer Lösung mit Wert ≥ k (bei Maximierungsproblem) fragt.
- Aus einem Algorithmus für diese Entscheidungsvariante des Optimierungsproblems kann dann typischerweise das Optimierungsproblem mittels binärer Suche gelöst werden (auf Kosten eines zusätlichen logarithmischen Faktors in der Laufzeit).

Von abstrakten Problemen...

Abstraktes Entscheidungsproblem Q = (I, f)

- · Menge I von möglichen Instanzen
- Funktion $f: I \rightarrow \{0,1\}$
- $\underline{\text{für } i \in I:}$ $f(i) = 1 \iff \text{Instanz } i \text{ hat gültige Lösung}$

Beispiel: k-PATH

- Menge $I = \{ (G, s, t, k) \mid G = (V, E) \text{ ist unger. Graph } \land s, t \in V \land k \in \mathbb{N} \}$
- Funktionswert von f für Instanz i = (G, s, t, k) ist

$$f(i) = \begin{cases} 1 & \text{, falls in } G \text{ existiert Pfad } p \text{ von s nach } t \text{ mit } |p| \le k \\ 0 & \text{, sonst} \end{cases}$$

...zur Kodierung von Problemen

- stellen Menge / als Menge aller möglichen Binärstrings { 0,1}* dar
- damit wird f zu einer Funktion $f: \{0,1\}^* \to \{0,1\}$
- <u>beachte</u>: nicht alle Binärstrings müssen einer Instanz entsprechen! \rightarrow für solche $s \in \{0,1\}^*$ setzen wir f(s) = 0

Beispiel: Mögliche Kodierung eine Graphen

- <u>00:</u> binär 0
- <u>01:</u> binär 1
- · 10: nächstes Listenelement
- · 11: nächste Liste

11 0000 10 0001 10 0100 11 0001 11 0100 10 0001

· Strings ungerader Länge entsprechen keinem Graphen!

Einfluss der Kodierung

Würden gerne die konkrete Kodierung ignorieren...

· ...dürfen wir aber nicht!

Beispiel: Algorithmus mit einziger Eingabe $k \in \mathbb{N}$

- · die Laufzeit des Algorithmus sei $\Theta(k)$
- für unäre Kodierung: (z. B. k = 5 als 11111)
 - kodierte Eingabelänge n = k
 - also Laufzeit $\Theta(k) = \Theta(n)$ linear in n
- Für binäre Kodierung: (z. B. k = 5 als 101)
 - kodierte Eingabelänge $n = \lfloor \log k \rfloor + 1$
 - also Laufzeit $\Theta(k) = \Theta(2^n)$ exponentiell in n

ABER

Zwei Kodierungen heißen polynomialzeit-äquivalent, wenn sie sich in polynomieller Zeit ineinander umrechnen lassen.

Algorithmen und Datenstrukturen Formalisierung von Problemen

└─Einfluss der Kodierung

- <u>beachte:</u> Polynome sind abgeschlossene unter Verkettung. Das heißt sind f und g Polynome, so ist auch $h: x \mapsto f(g(x))$ ein Polynom
- · wir gehen im Folgenden immer von einer passenden, binären Standard-Kodierung aus
- insbesondere sei Kodierung einer natürlichen Zahl polynomialzeitäquivalent zu binärer Kodierung...
- ...und Mengen/Listen z. B. polynomialzeit-äquivalent zu Kodierung wie Adjazenzlisten im Beispiel der vorherigen Folie

2) Standard-Komplexitätsklassen

Komplexitätsklasse P

Definition 7.1

Eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$ heißt polynomialzeitberechenbar, wenn es einen Algorithmus A und ein $c \in \mathbb{N}$ gibt, so dass A unter Eingabe $x \in \{0,1\}^*$ den Wert f(x) in Zeit $O(|x|^c)$ berechnet.

Definition 7.2

Die Komplexitätsklasse P ist die Menge aller (konkret encodierten) Entscheidungsprobleme $f\colon\{0,1\}^*\to\{0,1\}$, so dass f polynomialzeit-berechenbar ist.

- für solche Probleme können wir also effizient (in Polynomialzeit)...
- · ...selbst entscheiden, ob eine Lösung existiert

Algorithmen und Datenstrukturen —Standard-Komplexitätsklassen

└─Komplexitätsklasse P

Komplexitätsklasse P
Definition 21
Eine Funktion $f \colon \{0,1\}^* \longrightarrow \{0,1\}^*$ heißt polynomialzeit- berechenbar, wenn es einen Algorithmus A und ein $c \in \mathbb{N}$ gibt, so dass A unter Eingabe $x \in \{0,1\}^*$ den Wert $f(x)$ in Zeit $O(x ^c)$ berechnet.
Definition 72
Die Komplexitätsklasse P ist die Menre aller (konkret encodier-
ten) Entscheidungsprobleme $f: \{0,1\}^n \rightarrow \{0,1\}$, so dass f polynomialzeit-berechenbar ist.
für solche Probleme können wir also efficient (in Polynomialzeit). selbst entscheiden, ob eine Lösung existiert

- in Definition 7.1 bezeichnet |x| die Länge des Bitstrings x
- einfacher ausgedrückt: f ist polynomialzeit-berechenbar, wenn es einen Algorithmus mit polynomieller Laufzeit gibt, der f(x) für jedes x berechnet

Komplexitätsklasse NP

Definition 7.3

Eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$ heißt polynomialzeit-verifizierbar, wenn:

- Für jede Eingabe $x \in \{0,1\}^*$ existiert Zertifikat $y \in \{0,1\}^*$ mit $|y| = O(|x|^k)$.
- Es gibt einen Polynomialzeit-Algorithmus V mit $V(x,y)=1 \iff f(x)=1$.

Definition 7.4

Die Komplexitätsklasse NP ist die Menge aller (konkret encodierten) Entscheidungsprobleme $f \colon \{0,1\}^* \to \{0,1\}$, so dass f polynomialzeit-verifizierbar ist.

- für solche Probleme können wir also effizient (in Polynomialzeit)...
- · ...ein Zertifikat ("Beweis") über die Existenz einer Lösung <mark>überprüfen</mark>

Algorithmen und Datenstrukturen LStandard-Komplexitätsklassen

└─Komplexitätsklasse NP

V steht hier für Verifier

Komplexitätsklasse NP

Definition X: Eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$ helift polynomialzeit-verifiziertar, went: • Für jede Eingabo $x \in \{0,1\}^*$ existient Zertrikat $y \in \{0,1\}^*$ mit $|y| = O(|x|^p)$, • Es gibt einen Polynomialzeit-Algorithmus V mit $V(x,y) = 1 \iff f(x) = 1$.

Definition 24. Die Komplexhacklasse NP ist die Menge aller (konkret enco dierten) Entscheidungsprobleme $f: \{0,1\}^* \rightarrow \{0,1\}$, so dass f polynomialbeit-verifizierbar ist.

- _ein Zertifikat ("Beweis") über die Existenz einer Lösung überprüfen

P vs NP

- · betrachte Menge NP
- offensichtlich gilt P ⊆ NP
- gilt $NP \subseteq P$?
 - · unklar, viele Forscher (nicht alle!) tendieren zu nein
 - · dahinterstehende Frage:

"Ist das Finden einer Lösung schwerer als das Überprüfen einer Lösung?"

> Was sind die schwierigsten Probleme in NP?

∟P vs NP

- <u>intuitiv:</u> Wenn ich etwas lösen kann, muss ich die Lösung auch überprüfen können.
- <u>formal:</u> Wähle Zertifikat beliebig (z.B. Nullstring) und V(x,y) = A(x), wobei A der Polynomialzeit-Algorithmus ist der f berechnet.
- Wikipedia ist wie (fast) immer ein guter Ausgangspunkt, um weiterführende Literatur zu finden!

Wie zeigt man, dass X mindestens so schwer wie Y ist?

Polynomialzeit-Reduktion

- $f_X, f_Y : \{0,1\}^* \to \{0,1\}$ zu Entscheidungsproblemen X und Y
- such eine Reduktionsfunktion $r: \{0,1\}^* \to \{0,1\}^*$ so dass:
 - r ist polynomialzeit-berechenbar
 - $f_{Y}(y) = 1 \iff f_{X}(r(y)) = 1$
- gibt es solch ein r, so heißt Y polynomialzeit-reduzierbar auf X ($Y \leq_p X$)
- · Intuition:
 - r erlaubt es Eingaben von Y mit Algorithmus für X zu lösen

NP-Vollständigkeit

Definition 7.5

Ein Entscheidungsproblem X heißt NP-vollständig, falls:

- (a) $X \in NP$ und
- (b) für alle $Y \in NP$ gilt: $Y \leq_p X$.

Gilt die zweite Bedingungen (aber nicht notwendigerweise die erste), so heißt X NP-schwer.

bezeichnen Menge solcher Entscheidungsprobleme als NPC

Theorem 7.1

Falls X NP-vollständig ist und $X \in P$, dann gilt P = NP.

Beweis.

- falls $A \in P$, kann jedes $Y \in P$ über Reduktionsfunktion r...
- · ...in Polynomialzeit gelöst werden (vorherige Folie)

· NPC: steht für NP-complete

Die Frage der Komplexitätstheorie

3) NP-vollständige Probleme

Wie zeigt man, dass Problem X in NPC liegt?

Referenzproblem + Reduktion

- 1. suche "passendes" Problem Y, das erwiesenermaßen in NPC liegt
- 2. beweise, dass X mindestens so schwer wie Y ist

Zum 1. Schritt:

- · erfordert Erfahrung, Übung, Suche, gute Quellen
- <u>aber:</u> Welches war das <u>erste</u> NP-vollständige Problem?

Satisfiability-Problem (SAT)

- Eingabe: logischer Ausdruck in konjunktiver Normalform
- Ausgabe: 1 ←⇒ existiert erfüllende Belegung
- Beispiel: $(x_1 \lor x_2 \lor x_3) \land (x_3 \lor \neg x_1 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_4)$
- Satz von Cook und Levin: SAT ∈ NPC

Algorithmen und <mark>D</mark>atenstrukturer └─NP-vollständige Probleme

└─Wie zeigt man, dass Problem X in NPC liegt?

bei der Beispiel SAT-Formel wäre die Ausgabe 1, da $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$ eine erfüllende Belegung ist

- gute Quellen für NP-vollständige Probleme: Complexity Zoo, Buch Computers and Intractability: A Guide to the Theory of NP-Completeness von Michael R. Garey und David S. Johnson, Wikipedia, Karp's 21 Problems
- weitere Informationen zum Satz von Cook und Levin gibt es zum Beispiel auf Wikipedia

Warum ist SAT ein gutes "erstes" NPC-Problem?

Zu zeigen:

- 1. SAT \in NP
 - · Zertifikat: erfüllende Belegung
 - · Überprüfung: durch Einsetzen der Belegung
- 2. für alle $Y \in NP$ gilt: $Y \leq_p SAT$
 - · Beweis recht technisch
 - <u>Grundidee:</u> Algorithmen laufen auf einer RAM...
 ...eine RAM kann als <u>logischer Schaltkreis</u> beschrieben werden!
 - → simuliere Algorithmus auf RAM durch Boole'sche Formel

2021-02-17

-- simuliere Algorithmus auf RAM durch Boole'sche Formel

Warum ist SAT ein gutes _erstes" NPC-Problem?

└─Warum ist SAT ein gutes <u>"erstes"</u> NPC-Problem?

• weitere Details zur Simulation einer RAM findet man z.B. im Cormen (3rd) Ch. 34.3

Wie sieht eine konkrete Reduktion aus?

CLIQUE-Problem

- Gegeben: $\langle G, k \rangle$ (unger. Graph G = (V, E), Zahl $k \in \mathbb{N}$)
- · Ausgabe: Enthält *G* eine *k*-Clique?

Theorem 7.2

Das CLIQUE-Problem ist NP-vollständig.

Beweis Teil 1/3: zeige CLIQUE ∈ NP

- Zertifikat: $V' \subseteq V$
 - · hat polynomielle Größe, da $|V'| \leq |V|$
- · <u>Verifizierer:</u>
 - Überprüfe ob |V'| = k und...
 - ...ob für alle $u, v \in V'$ mit $u \neq v$ gilt, dass $\{u, v\} \in E$

Reduktion auf das CLIQUE-Problem

- · zeigen nun, dass CLIQUE NP-schwer ist
- · wir benutzen nicht direkt SAT, sondern 3-SAT
- bekannt: SAT \leq_p 3-SAT

Beweis Teil 2/3: zeige 3-SAT \leq_p CLIQUE

(Konstruktion der Reduktionsfunktion)

- Ziel:
 - gegeben Eingabe x für 3-SAT, Umwandlung in Eingabe r(x) für CLIQUE
 - so, dass $x \in 3$ -SAT $\iff r(x) \in CLIQUE$
- Eingabe von 3-SAT: $C_1 \wedge C_2 \wedge \cdots \wedge C_n$
 - wobei $C_i = I_i^1 \vee I_i^2 \vee I_i^3$ (I_i^s ist s-tes Literal der *i*-ten Klausel)
- Funktion r konstruiert x die Eingabe $\langle G = (V, E), n \rangle$
 - Knoten V: einen Knoten v^s_i pro Literal
 - Kanten E: $\{v_i^s, v_j^t\} \in E$ falls:
 - $i \neq j$ (Kanten nur zwischen unterschiedlichen Klauseln)
 - $I_i^s \neq \neg I_j^t$ (zugehörige Literale sind kompatibel)

polynomielle Laufzeit

Illustration der Reduktionsfunktion

$$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Reduktion auf das CLIQUE-Problem

Beweis Teil 3/3: zeige 3-SAT \leq_p CLIQUE

(Eigenschaft der Reduktionsfunktion)

- 1. $x \in 3$ -SAT $\implies r(x) \in CLIQUE$
 - x erfüllbar \implies für alle i existiert s mit $I_i^s = 1$
 - erstelle V': sei $V'' = \{ v_i^s \in V \mid I_i^s = 1 \}$
 - $V' \subseteq V''$: wähle pro Klausel genau ein Literal
 - |V'| und V' ist eine Clique:
 - Kante zwischen je zwei $v_i^s, v_i^t \in V'$ (da $i \neq j$ und gültige Belegung)
- 2. $r(x) \in CLIQUE \implies x \in 3-SAT$
 - betrachte k-Clique V' in r(x) und L' zugehörige Menge an Literalen
 - L' enthält je Klausel ein Literal
 - $\cdot |L'| = |V'| = k$ und Knoten innerhalb Klausel nicht adjazent
 - · können Belegung wählen, die alle Literale in L' erfüllt
 - Knoten zu inkonsistenten Literalen sind nicht adjazent
 - wähle $x_i = 1$ falls $x_i \in L'$ und $x_i = 0$ falls $\neg x_i \in L'$
 - erhalten erfüllende Belegung für x

Eine Übersicht an Standard-Reduktionen

4) The End?

Natürlich nicht!

Algorithmik

- · logische Fortsetzung von AD
- amortisierte Analyse, Fibonacci-Heaps, Netzwerkfluss, ...
- ...Matching, Matrixoperationen, (integrale) lineare Programmierung...
- · ...Schnittprobleme, konvexe Hüllen, Voronoi-Diagramme, ...

Methods of Algorithm Design

- · Spezialvorlesung zu Algorithmen
- Schwerpunkt: Uncertainty
- Algorithmenentwurf für Probleme mit unvollständiger Eingabe
- Listen-Management, Caching, k-Server, Scheduling, ...