2.1 Rate of Change and Limits

Use a table of values to state what you believe each limit is. Confirm graphically.

$$\lim_{x\to 0}\frac{\sin(5x)}{x} - \frac{\sin(0)}{0} = \frac{0}{5}$$

X	Y
-0.1	4,7947,554
-0.01	4,997 9167
-0.001	4,99997792
-0.001	4, 9999998

X	Y	
	942554	
0.01 4,	197916	7
0.001 4,	199979	~
0.001 4,	19999	8

$$\lim_{x\to 0} \frac{\sin(5x)}{x} = \lim_{x\to \infty} \frac{\sin(4x + x)}{x}$$

$$\lim_{x\to 0} \frac{\sin 2(2x)(\cos x + (1)(1)}{x}$$

$$(2)(2)(1)(1)(1)(1)+1$$

 $4+1=5$

Evaluate each limit algebraically. Confirm graphically.

$$\lim_{x \to 5} \frac{x - 5}{x^2 - 25} = \frac{5 - 5}{5^2 - 75} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x - 5}{x^2 - 25} = \frac{5 - 5}{5^2 - 75} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x - 5}{x^2 - 25} = \frac{1}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{1}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0}{0}$$

$$\lim_{x \to 5} \frac{x + 5}{x^2 - 25} = \frac{0$$

$$\lim_{x\to 0} \frac{\sin^3 x + \cos^2 x \sin x}{x} = \lim_{x\to 0} \frac{\sin x \left(\text{Sinxt}(\text{osx}) \right)}{x}$$

=
$$\lim_{x\to 0} \frac{\sin x}{x}$$
. $\left(\frac{\sin x}{\cos^2 x}\right)$
= $\lim_{x\to 0} \frac{\sin x}{x}$. $\left(1\right) = \left(\frac{1}{1}\right)$

$$\lim_{x\to 0} \frac{\sin x}{x^3 + 7x^2 + 12x}$$

$$= \frac{\sin x}{x + 3x + 12} = \frac{13}{\sin x}, \frac{\sin x}{x + 3x + 12} = \frac{13}{\sin x}$$

Homework

$$\lim_{x \to -14} \frac{(7+x)^2 - 49}{x + 14}$$

Page 66/67 #15-19, 21-36

$$\lim_{x \to -14} \frac{x^{2} + 14x + 49 - 49}{x + 14}$$

$$\lim_{x \to -14} \frac{x^{2} + 14x}{x + 14} = \lim_{x \to -14} \frac{x(x + x + 14)}{(x + 14)}$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$

$$= -14$$