[Title Here]

Tamás Regan, Henry Tejada Deras

ENGX2006-01.25SP

Table of Contents

Introduction	1
Methods	1
Unconstrained Optimization	1
Constrained Optimization.	
Results	
Interpretation	
The production	-

Introduction

What were the goals of this project?

- Use Gradient Descent to predict the shape of a bridge based on
- K-Values of rubber bands
- · Masses at joints
- •
- What did you do?
 - Created line of best fit from data of rubber bands that allows us to relate gravitational force and length stretched
 - · Gave us K and I0 for every rubber band
 - Created cost function for bridge given mass at vertices and locations of vertices and k values of segments
 - Used gradient descent optimization to find minimize potential energy and find theoretical positions of vertices by masses
 - Compare gradient descent function output vs measured data
- What were the approaches or methods you used?

Methods

Unconstrained Optimization

Jungle Bridge Physical Model Characteristics [Table 1; Table 2; Table 3; Table 4; Figure 3]

Rubber Band Model [Figure 1, Figure 2]

- Numerical Optimization Process (Gradient Descent)
- First Order Approximation 17.7
- Backtracking line search
- Cost Function Derivation
- (Gravitational Potential Energy Function + Spring Pot Energy)

Constrained Optimization

Results

Linear Regression of Rubberband - Line of best fir for rubber bands (provides k and I0 values)

Ideal Bridge Config Results - Output of Generate Shape (most stable bridge)

Interpretation

Physics Rationale (Bridge wants to be at rest (least amt of pot energy))