Seoul Bike Sharing Demand

Machine Learning - Progetto

Autori Kristian Kovacev - matricola 885839 Paolo Mascheroni - matricola: 886220

Introduzione

- Dataset: Seoul Bike Sharing Demand
- Piattaforma: UCI Machine Learning Repository
- 8760 istanze
- 13 features, 1 target

Analisi esplorativa del dataset

Nome Attributo	Tipo	Descrizione	
Date	Date	Data in cui è stata effettuata la rilevazione	
Hour	Integer	Ora della giornata in cui è stata effettuata la rilevazione	
Rented Bike Count	Integer	Numero di bici noleggiate in quell'ora	
Temperature	Continuous	Temperatura dell'aria in C°	
Humidity	Integer	Umidità dell'aria in percentuale	
Wind Speed	Continuous	Velocità del vento in m/s	
Visibility	Integer	Indice di visibilità ai 10 metri	

Nome Attributo	Tipo	Descrizione	
Dew point temperature	Continuous	Punto di rugiada dell'aria (in C°)	
Solar Radiation	Continuous	Radiazione solare in Mj/m2	
Rainfall	Integer	Quantità di pioggia in mm	
Snowfall	Integer	Quantità di neve in cm	
Seasons	Categorical	stagione tra [Primavera, Estate, Autunno, Inverno]	
Holiday	Binary	'No Holiday' se il giorno non è festivo 'Holiday' se il giorno è festivo	

Variabile target

Distribution of Rented Bike Count

Nuova variabile target: Rented Bike Count

Quindi la nuova variabile target **Rented_Bike_Count_Class** è così definita:

- 1 se Rented Bike Count è in [0,214)
- 2 se Rented Bike Count è in [214, 542)
- 3 se Rented Bike Count è in [542, 1084)
- 4 se Rented Bike Count è in [1084, 3556]

	Rented	Bike	Count
count		8465.	000000
mean		729.	156999
std		642.	351166
min		2.	000000
25%		214.	000000
50%		542.	000000
75%		1084.	000000
max		3556.	000000

Distribuzione nuova variabile target

Eliminazione della data

Encoding delle feature categoriche e intere

- Holiday → 0 se il valore è 'No Holiday'
 1 se il valore è 'Holiday'
- Day, Month, Hour, Seasons → Encoding ciclico
 Utilizziamo un encoding ciclico sostituendo ognuna delle feature sopracitate
 con due nuove feature, una componente seno e una coseno, secondo la formula:

$$x_{sin} = sin(\frac{2\pi x}{P})$$
$$x_{cos} = cos(\frac{2\pi x}{P})$$

Dove P è il periodo di oscillazione (24 per le ore, 12 per i mesi, 7 per i giorni della settimana, 4 per le stagioni).

Holiday - -0.06 -0.05 0.03 0.02 -0.07 -0.00 -0.01 1.00 0.06 -0.00 0.00 0.07 0.00 0.00 -0.03 0.11

Seasons cos - 0.86 -0.27 0.11 -0.03 -0.84 -0.19 -0.07 0.20 0.11 0.01 0.01 0.46 0.80 -0.00 -0.00 0.00 1.00

Snowfall

Radiatio

point temperatur

Month_sin

Humidity Wind speed - 0.00

- -0.25

- -0.50

- -0.75

Dataset dopo preprocessing

Nome Attributo	Tipo	Descrizione
Humidity	Continuous	Umidità dell'aria in percentuale
Wind Speed	Continuous	Velocità del vento in m/s
Visibility	Continuous	Indice di visibilità ai 10 metri
Dew point temperature	Continuous	Punto di rugiada dell'aria (in C°)
Solar Radiation	Continuous	Radiazione solare in Mj/m2
Rainfall	Continuous	Quantità di pioggia in mm
Snowfall	Continuous	Quantità di neve in cm

Nome Attributo	Tipo	Descrizione	
Holiday	Binary	0 se il giorno non è festivo 1 se il giorno è festivo	
Day_sin	Continuous	Componente seno della variabile Day	
Day_cos	Continuous	Componente coseno della variabile Day	
Hour_sin	Continuous	Componente seno della variabile Hour	
Hour_cos	Continuous	Componente coseno della variabile Hour	
Month_sin	Continuous	Componente seno della variabile Month	
Month_cos	Continuous	Componente coseno della variabile Month	

Split del dataset

60% 20% 20% TRAIN VALIDATION TEST

SVM - Ottimizzazione iperparametri

Grid search per trovare migliore combinazione di iperparametri sul validation set

Kernel

Ricerca kernel tra Linear, RBF e Poly.

Il miglior kernel selezionato in base alla validazione è stato **RBF**.

C e Gamma

Scelto il kernel RBF abbiamo fatto una ricerca tra:

- C: 10, 25, 50, 75, 100, 120
- Gamma: 0.2, 0.1, 0.05, 0.01, 0.005, 0.001

Ottenendo come valori ottimali: C = 100 e gamma = 0.05

Infine, **k-fold cross validation** su pochi valori vicini ai migliori trovati \rightarrow C = 105 e gamma = 0.05

Reti Neurali

- Early stopping con validation set → Evita overfitting
- Dropout sui layer → migliora generalizzazione del modello

Ottimizzazione dei parametri:

- Costo computazionale alto → impossibile provare una grid search
- Diversi valori provati per gli iperparametri:

```
(funzione di attivazione, numero layers, dropout, batch_size...)
```

media delle metriche su 3 addestramenti per confrontare i modelli

Miglior modello → 3 layer nascosti, funzione Relu, dropout 0.2, learning rate 0.001. batch_size 64

Risultati dei modelli

Modello	Accuracy	Precision	Recall	F1-Score
SVM	0.8240	0.8227	0.8212	0.8221
Reti Neurali	0.8406	0.8400	0.8406	0.8400

Classe	Precision	Recall	F1-Score
1	0.8832	0.8421	0.8641
2	0.75223	0.8232	0.7817
3	0.81179	0.7736	0.7918
4	0.8614	0.8719	0.8711

Classe	Precision	Recall	F1-Score
1	0.8906	0.8805	0.8853
2	0.7855	0.7926	0.7889
3	0.8145	0.7876	0.8008
4	0.8695	0.9017	0.8851

SVM

RETE NEURALE

Confusion Matrix

SVM

RETE NEURALE