Задание N 18.

Оценка параметров электрической цепи.

Показать, что электрическая цепь, приведенная на рисунке, описывается системой дифференциальных уравнений:

$$\begin{split} &\frac{di_{_{1}}}{dt} = \frac{1}{L_{_{1}}} \Big(E_{_{1}} - E_{_{2}} - U_{_{c}} + i_{_{3}} R_{_{2}} - i_{_{1}} \Big(R_{_{1}} + R_{_{2}} \Big) \Big), \\ &\frac{di_{_{3}}}{dt} = \frac{1}{L_{_{3}}} \Big(E_{_{2}} + U_{_{c}} + i_{_{1}} R_{_{2}} - i_{_{3}} \Big(R_{_{2}} + R_{_{3}} \Big) \Big), \\ &\frac{dU_{_{c}}}{dt} = \frac{1}{C} \Big(i_{_{1}} - i_{_{3}} \Big). \end{split}$$

Размыкание ключа происходит в момент времени t=0.

При этом $L_1 = L_3 = L$ и $R_1 = R_3 = R$. Значения L, R, R_2 , E_1 , E_2 задаются преподавателем. По заданной таблице экспериментальных данных оценить емкость конденсатора C с точностью до 0.05. Воспользоваться подпрограммами FMIN и RKF45. Оценить точность результата и влияние на точность погрешности исходных данных. Значение C лежит в диапазоне от 0.5 до 2 микрофарад. В таблице напряжение U_c дано в вольтах, а время - в миллисекундах.

t	Uc (Вольт)
0	-1.000
0.1	7.777
0.2	12.017
0.3	10.701
0.4	5.407
0.5	-0.843
0.6	-5.159
0.7	-6.015
0.8	-3.668
0.9	0.283
1.0	3.829

Вариант N 18B.

Значения R, R_2, E_2 являются решением системы уравнений:

$$\begin{cases} 16R - 18R_2 + 24E_2 = 304 \\ -18R + 49R_2 - 42E_2 = 218 \\ 24R - 42R_2 + 46E_2 = 166. \end{cases}$$

$$L = 0.1469517 \cdot \int_{1}^{1} \frac{\ln(1+x)}{1+x^2} dx;$$

 $E_1 = 18.75217 \cdot x^*$, где x^* - корень уравнения: $e^X = 2(x-1)^2$.