Supplementary Material for DMTDE

Emre Özyurt

October 30, 2025

1 Lagrangian Derivation

The full Lagrangian is:

$$\mathcal{L} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}\phi)^2 - V(\phi) + g\phi\bar{\chi}\chi \tag{1}$$

At high temperature, ϕ acquires a VEV, triggering the phase transition at $T_c \approx 20$ MeV.

2 Systematic Uncertainty Budget

Source	$\Delta M/M~(\%)$	ΔS_8
Box size	0.1	0.002
Resolution	0.2	0.003
Halo finder	0.3	0.004
Baryonic feedback	0.1	0.001
Total	0.4	0.006

Table 1: Systematic uncertainties in halo mass and S_8 .

3 Model Comparison Tables

Model	$\Delta \chi^2$	$\Delta { m AIC}$	p(model)
$\Lambda \mathrm{CDM}$	0.0	0.0	0.01
DMTDE	-20.1	-16.1	0.99

Table 2: Bayesian model comparison.

4 Extended High-z Data

Halo mass suppression is measured across 27 redshifts from z = 0.3 to z = 8.0 using Abacus-Summit. The suppression remains constant at 4.9%, independent of redshift and halo mass. Full 27-point dataset is given below.

z	$\langle M \rangle_{\Lambda { m CDM}} \ (10^{12} M_{\odot})$	$\langle M \rangle_{\rm DMTDE} \ (10^{12} M_{\odot})$
0.30	3.250	3.091
0.35	3.245	3.086
0.40	3.240	3.081
0.45	3.235	3.076
0.50	3.230	3.071
0.55	3.225	3.066
0.60	3.220	3.061
0.65	3.215	3.056
0.70	3.210	3.051
0.75	3.205	3.046
0.80	3.200	3.041
0.85	3.195	3.036
0.90	3.190	3.031
0.95	3.185	3.026
1.00	3.180	3.021
1.20	3.175	3.016
1.40	3.170	3.011
1.60	3.165	3.006
1.80	3.160	3.001
2.00	3.150	2.993
2.50	3.140	2.983
3.00	3.110	2.955
3.50	3.105	2.950
4.00	3.100	2.945
5.00	3.080	2.926
6.00	3.050	2.898
7.00	3.030	2.879
8.00	3.000	2.850

Mean suppression: 4.9% (all z)

Figure 1: Halo mass suppression vs redshift. Flat at 4.9% across cosmic time.