Explanations on the input and output data

For training of neural network for perovskite solar cells

Figure 1: Schematics of (a) a p-i-n perovskite solar cell; (b) the five layers without glass in the perovskite solar cell; and (c) the corresponding energy band diagram.

Table 1: Table headers in the data for training, their corresponding symbols, meanings and units.

Table headers in	Symbols	Explanations	Units
data (.txt) file			
*Inputs			
LH	l^{H}	H layer thickness	nm
LP	l^{P}	P layer thickness	nm
LE	$l^{ m E}$	E layer thickness	nm
muHh	$\mu_h^{ m H}$	Hole mobility in H	$m^2 V^{-1} s^{-1}$
muPh	$\mu_h^{\rm P}$	Hole mobility in P	$m^2 V^{-1} s^{-1}$
muPe	$\mu_h^{ ext{P}} \ \mu_e^{ ext{P}} \ \mu_e^{ ext{E}}$	Electron mobility in P	$m^2 V^{-1} s^{-1}$
muEe	$\mu_e^{ m E}$	Electron mobility in E	$m^2 V^{-1} s^{-1}$
NvH	$N_v^{\rm H}$	Valance band density of state in H	m^{-3}
NcH	$N_c^{\rm H}$	Conduction band density of state in H	m^{-3}
NvE	$N_v^{\rm E}$	Valance band density of state in E	m^{-3}
NcE	$N_c^{\rm E}$	Conduction band density of state in E	m^{-3}
NvP	$N_v^{\rm P}$	Valance band density of state in P	m^{-3}
NcP	$N_c^{\rm P}$	Conduction band density of state in P	m^{-3}
chiHh	$\chi_h^{\rm H}$	Hole ionization potential in H	eV
chiHe	$\chi_e^{ m H}$	Electron affinity in H	eV
chiPh	χ_h^{P}	Hole ionization potential in P	eV

chiPe	ν_{-}^{P}	Electron affinity in P	eV
chiEh	$\chi_e^{ m P} \ \chi_h^{ m E}$	Hole ionization potential in E	eV
chiEe	$\chi_e^{\rm E}$	Electron affinity in E	eV
Wlm	$W_{\rm B}$	Work function of B	eV
Whm	$W_{\rm F}$	Work function of F	eV
epsH	ε^{H}	Relative permittivity in H	_
epsP	$arepsilon^{ ext{P}}$	Relative permittivity in P	_
epsE	$arepsilon^{ ext{E}}$	Relative permittivity in E	-
Gavg	G_{avg}	Average charge carrier generation rate in P	$m^{-3} s^{-1}$
Aug	$A_{(e,h)}$	Auger recombination coefficient in P	$m^6 s^{-1}$
Brad	B_{rad}	Radiative recombination coefficient in P	$m^{3} s^{-1}$
Taue	$ au_e$	Electron lifetime in P	S
Tauh	$ au_h$	Hole lifetime in P	S
vII	$v_{ m II}$	Interface recombination velocity at II	$m^4 s^{-1}$
vIII	$v_{ m III}$	Interface recombination velocity at III	$m^4 s^{-1}$
*Outputs			
isc	i_{sc}	Short-circuit current density	$A m^{-1}$
Voc	V_{oc}	Open-circuit voltage	V
FF	\mathfrak{F}	Fill factor	-
PCE	η	Power conversion efficiency	-
i_Rrad_MPP	i _{MPP} i _{rad} i ^{MPP} srh	Loss due to radiative recombination at maximum power point	$A m^{-1}$
i_Rsrh_MPP	i_{srh}^{MPP}	Loss due to Shockley-Read-Hall recombination at maximum power	${\rm A~m^{-1}}$
	MDD	point	. 4
i_Raug_MPP	i_{aug}^{MPP}	Loss due to Auger recombination at maximum power point	$A m^{-1}$
i_RII_MPP	$i_{ m II}^{MPP}$	Loss due to interface recombination at II at maximum power point	$A m^{-1}$
i_RIII_MPP	$i_{ m III}^{MPP}$	Loss due to interface recombination at III at maximum power point	${\rm A~m^{-1}}$
i_Rrad_OC	i_{rad}^{OC}	Loss due to radiative recombination at open circuit	${\rm A~m^{-1}}$
i_Rsrh_OC	i_{srh}^{OC}	Loss due to Shockley-Read-Hall recombination at open circuit	${\rm A~m^{-1}}$
i_Raug_OC	i_{rad}^{OC} i_{srh}^{OC} i_{aug}^{OC}	Loss due to Auger recombination at open circuit	${\rm A~m^{-1}}$
i_RII_OC	$i_{\rm II}^{OC}$	Loss due to interface recombination at II at open circuit	${\rm A~m^{-1}}$
i_RIII_OC	$i_{ m III}^{OC}$	Loss due to interface recombination at III at open circuit	${\rm A~m^{-1}}$
i_Rrad_SC	i_{rad}^{SC}	Loss due to radiative recombination at short circuit	${\rm A~m^{-1}}$
i_Rsrh_SC	i_{srh}^{SC}	Loss due to Shockley-Read-Hall recombination at short circuit	${\rm A~m^{-1}}$
i_Raug_SC	i_{aug}^{SC}	Loss due to Auger recombination at short circuit	${\rm A~m^{-1}}$
i_RII_SC	i_{II}^{SC}	Loss due to interface recombination at II at short circuit	${\rm A~m^{-1}}$
i_RIII_SC	i_{III}^{SC}	Loss due to interface recombination at III at short circuit	${\rm A~m^{-1}}$
		e selective. They are also not fixed: for examples:	

^{*}The inputs and outputs can be selective. They are also not fixed; for examples:

¹⁾ Outputs can be either the cell performances, namely the isc, Voc, FF and PCE, or the recombination losses

²⁾ Information from i-V curves can be the inputs as well?