Phase Change Memory – An alternative for DRAM

What is the problem with DRAM?

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Problems with DRAM

Decreasing sizes of transistors → Affects the scalability

Problems with DRAM

Decreasing sizes of transistors → Affects the scalability

√ Storage

✓ Sensing Mechanisms

Became less Reliable!!

- Capacitor
- ✓ Manufacturing small CAPs → Store sufficient charges for reliable sensing

- Capacitor
- ✓ Manufacturing small CAPs → Store sufficient charges for reliable sensing

- Transistor
- ✓ Increases sub-threshold leakage → difficult to ensure DRAM retention time

- Capacitor
- ✓ Manufacturing small CAPs → Store sufficient charges for reliable sensing

- Transistor
- ✓ Increases sub-threshold leakage → difficult to ensure DRAM retention time

According to ITRS, "manufacturable solutions are not known" for DRAM beyond 40nm

So, what's next?

√ Storage element

- √ Storage element
- ✓ 2 metal electrodes

- ✓ Storage element
- ✓ 2 metal electrodes
- ✓ Resistive heater

- ✓ Storage element
- ✓ 2 metal electrodes
- ✓ Resistive heater
- √ Chalcogenide Phase changing material

Current Injection

Precharged to V_read

Precharged to V_read

Discharged by current via access transistor

Challenges faced by PCM to compete with DRAM

Energy Cost

Energy intensive current injection for writes

Challenges faced by PCM to compete with DRAM

Energy Cost

Energy intensive current injection for writes

Endurance

Writes induces thermal expansion and contraction → degrades injection contacts

Challenges faced by PCM to compete with DRAM

Energy Cost

Energy intensive current injection for writes

Endurance

Writes induces thermal expansion and contraction → degrades injection contacts

Latency

High as compared to DRAM

Energy cost mitigating technique

✓ Narrow buffers – reduce PCM write energy

- ✓ Narrow buffers reduce PCM write energy
- Affects spatial locality

- ✓ Narrow buffers reduce PCM write energy
- Affects spatial locality
- ✓ Additional buffer rows

- ✓ Narrow buffers reduce PCM write energy
- Affects spatial locality
- ✓ Additional buffer rows

Empirically → Reorganizing a single, wide buffer into multiple, narrow buffers reduce energy costs.

Improving memory lifetime

Partial writes

✓ Write the same data that is already stored ← Unnecessary !!

Partial writes

- ✓ Write the same data that is already stored ← Unnecessary !!
- ✓ Two granularities:
- 1. LLC line size (64B)
- 2. Word size (4B)

Partial writes

- ✓ Write the same data that is already stored ← Unnecessary !!
- ✓ Two granularities:
- 1. LLC line size (64B)
- 2. Word size (4B)
- √ Tracking using dirty bits

Latency

What can be done?

Fig: Timing components for the read operation

What can be done?

Fig: Timing components for the read operation

✓ Sensing time dominates the read latency

Probability of cell state

Try to decrease sensing time.

Early Read

Reduce target resistance

Early Read

Reduce target resistance

RC time constant↓

Early Read

Reduce target resistance

RC time constant↓

 $\mathsf{T}_{\mathsf{SENSE}}\, oldsymbol{\downarrow}$

Probability of cell state

✓ BER (Bit Error Rate)

- ✓ BER (Bit Error Rate)
- A 7k Ω \rightarrow BER 10⁻¹⁶ A* - 10k Ω \rightarrow BER – 10⁻⁵

- ✓ BER (Bit Error Rate)
- A $7k\Omega \rightarrow BER 10^{-16}$ A* - $10k\Omega \rightarrow BER - 10^{-5}$
- BER increases exponentially

- ✓ BER (Bit Error Rate)
- A 7k Ω \rightarrow BER 10⁻¹⁶ A* - 10k Ω \rightarrow BER – 10⁻⁵
- BER increases exponentially
- Unidirectional errors → Berger Code

Turbo read

Sensing Voltage 个

Turbo read

At the cost of some data errors

Probability of cell state

PCM

Energy Costs

Baseline $2.2x \rightarrow 1x$

PCM

Energy Costs

Baseline $2.2x \rightarrow 1x$

Lifetime

More than 10 years

PCM

Energy Costs

Baseline $2.2x \rightarrow 1x$

Lifetime

More than 10 years

Latency

Reduction of 30% on baseline

Thank You!

Questions?