#### CHEATSHEET FOR

# **Xpath**



"Thanks to @papertrailapp for making it easy to see attacks in progress" -@KarlLHughes

ads via Carbon

#### **Descendant selectors**

| h1                         | //h1      | ?        |
|----------------------------|-----------|----------|
| div p                      | //div//p  | ?        |
| ul > li                    | //ul/li   | <u>?</u> |
| ul > li > a                | //ul/li/a |          |
| div > *                    | //div/*   |          |
| :root                      | /         | ?        |
| <pre>:root &gt; body</pre> | /body     |          |

#### **Attribute selectors**

| #id                             | //[@id="id"]                    | ? |
|---------------------------------|---------------------------------|---|
| .class                          | //[@class="class"] <i>kinda</i> |   |
| <pre>input[type="submit"]</pre> | //input[@type="submit"]         |   |
| a#abc[for="xyz"]                | //a[@id="abc"][@for="xyz"]      | ? |
| a[rel]                          | //a[@rel]                       |   |
| a[href^='/']                    | //a[starts-with(@href, '/')]    | ? |

| a[href\$='pdf'] | //a[ends-with(@href, '.pdf')]            |
|-----------------|------------------------------------------|
| a[href~='://']  | //a[contains(@href, '://')] <i>kinda</i> |

## **Order selectors**

| ul > li:first-child  | //ul/li[1]        | ? |
|----------------------|-------------------|---|
| ul > li:nth-child(2) | //ul/li[2]        |   |
| ul > li:last-child   | //ul/li[last()]   |   |
| li#id:first-child    | //li[@id="id"][1] |   |
| a:first-child        | //a[1]            |   |
| a:last-child         | //a[last()]       |   |

# **Siblings**

| h1 ~ ul  | //h1/following-sibling::ul               | ? |
|----------|------------------------------------------|---|
| h1 + ul  | <pre>//h1/following-sibling::ul[1]</pre> |   |
| h1 ~ #id | //h1/following-sibling::[@id="id"]       |   |

# jQuery

| <pre>\$('ul &gt; li').parent()</pre>   | //ul/li/                       | ? |
|----------------------------------------|--------------------------------|---|
| <pre>\$('li').closest('section')</pre> | //li/ancestor-or-self::section |   |
| <pre>\$('a').attr('href')</pre>        | //a/@href                      | ? |
| <pre>\$('span').text()</pre>           | //span/text()                  |   |

# Other things

h1:not([id]) //h1[not(@id)] ?

| Text match (substring) //button[contains(text(), "Go")] |
|---------------------------------------------------------|
| Arithmetic //product[@price > 2.50]                     |
| Has children //ul[*]                                    |
| Has children (specific) //ul[li]                        |
| Or logic //a[@name or @href] ?                          |
| Union (joins results) //a   //div ?                     |

#### **Class check**

Xpath doesn't have the "check if part of space-separated list" operator, so this is the workaround (source):

```
//div[contains(concat(' ',normalize-space(@class),' '),' foobar ')]
```

# Expressions

#### **Prefixes**

Begin your expression with any of these.

| // anywhere | //hr[@class='edge'] |
|-------------|---------------------|
| ./ relative | ./a                 |
| / root      | /html/body/div      |

#### **Axes**

Separate your steps with /. Use two (//) if you don't want to select direct children.

| / child       | //ul/li/a         |
|---------------|-------------------|
| // descendant | //[@id="list"]//a |

#### **Steps**

A step may have an element name (div) and predicates ([...]). Both are optional.

```
//div
//div[@name='box']
//[@id='link']
```

They can also be these other things.

# **Predicates**

### Predicates ([...])

Restricts a nodeset only if some condition is true. They can be chained.

```
//div[true()]
//div[@class="head"]
//div[@class="head"][@id="top"]
```

## **Operators**

Use comparison and logic operators to make conditionals.

```
# Comparison
//a[@id = "xyz"]
//a[@id != "xyz"]
//a[@price > 25]

# Logic (and/or)
//div[@id="head" and position()=2]
//div[(x and y) or not(z)]
```

#### **Using nodes**

You can use nodes inside predicates.

```
# Use them inside functions
//ul[count(li) > 2]
//ul[count(li[@class='hide']) > 0]

# This returns `` that has a `` child
//ul[li]
```

### **Indexing**

Use [] with a number, or last() or position().

```
//a[1]  # first <a>
//a[last()]  # last <a>
//ol/li[2]  # second 
//ol/li[position()=2]  # same as above
//ol/li[position()>1]  # :not(:first-child)
```

### **Chaining order**

Order is significant, these two are different.

```
a[1][@href='/']
```

```
a[@href='/'][1]
```

## **Nesting predicates**

This returns <section> if it has an <h1> descendant with id='hi'.

```
//section[//h1[@id='hi']]
```

# Functions

#### **Node functions**

```
name()  # //[starts-with(name(), 'h')]
text()  # //button[text()="Submit"]
  # //button/text()

lang(str)
namespace-uri()

count()  # //table[count(tr)=1]
position()  # //ol/li[position()=2]
```

### **Boolean functions**

```
not(expr) # button[not(starts-with(text(), "Submit"))]
```

### **String functions**

```
contains() # font[contains(@class,"head")]
starts-with() # font[starts-with(@class,"head")]
ends-with() # font[ends-with(@class,"head")]
```

```
concat(x,y)
substring(str, start, len)
substring-before("01/02", "/") #=> 01
substring-after("01/02", "/") #=> 02
translate()
normalize-space()
string-length()
```

## **Type conversion**

```
string()
number()
boolean()
```

# Axes

#### **Using axes**

Steps of an expression are separated by /, usually used to pick child nodes. That's not always true: you can specify a different "axis" with ::.

```
//ul/li # ul > li
//ul/child::li # ul > li (same)
//ul/following-sibling::li # ul ~ li
//ul/descendant-or-self::li # ul li
//ul/ancestor-or-self::li # $('ul').closest('li')
```

#### **Child axis**

This is the default axis. This makes //a/b/c work.

```
# both the same
//ul/li/a
```

```
//child::ul/child::li/child::a

# both the same
# this works because `child::li` is truthy, so the predicate succeeds
//ul[li]
//ul[child::li]

# both the same
//ul[count(li) > 2]
//ul[count(child::li) > 2]

Descendant-or-self axis
// is short for the descendant-or-self:: axis.

# both the same
//div//h4
//div/descendant-or-self::h4
```

```
# both the same
//ul//[last()]
//ul/descendant-or-self::[last()]
```

#### Other axes

There are other axes you can use.

| Axis             | Abbrev | Description                        |
|------------------|--------|------------------------------------|
| ancestor         |        |                                    |
| ancestor-or-self |        |                                    |
| attribute        | а      | എhref is short for attribute::href |
| child            |        | div is short for child::div        |

| Axis               | Abbrev | Description                                             |
|--------------------|--------|---------------------------------------------------------|
| descendant         |        |                                                         |
| descendant-or-self | //     | <pre>// is short for /descendant-or-self::node()/</pre> |
| namespace          |        |                                                         |
| self               | •      | . is short for self::node()                             |
| parent             | ••     | is short for parent::node()                             |
| following          |        |                                                         |
| following-sibling  |        |                                                         |
| preceding          |        |                                                         |
| preceding-sibling  |        |                                                         |

#### **Unions**

Use | to join two expressions.

```
//a | //span
```

# More examples

```
# Find a <section> that directly contains h1#section-name
   //section[h1[@id='section-name']]

# Find a <section> that contains h1#section-name
# (Same as above, but use descendant-or-self instead of child)
   //section[//*[@id='section-name']]

# like jQuery's $().closest('.box')
   ./ancestor-or-self::[@class="box"]

# Find <item> and check its attributes
   //item[@price > 2*@discount]
```

# References

Xpath test bed (whitebeam.org)