2. laboratorijska vježba

Opisna funkcija i vlastite oscilacije

JMBAG: Ime i prezime:

UVODNE NAPOMENE

Cilj vježbe

Upoznati se sa eksperimentalnim načinom određivanja opisne funkicije i shvatiti efekt vlastitih oscilacija koji se javlja u nelinearnim sustavima upravljanja.

Proučite poglavlja u knjizi i predavanjima o opisnoj funkciji i vlastitim oscilacijama.

Ova se vježba radi u Matlabu.

• Korisne Matlab funkcije:

ezplot, tf, nyquist, subplot

• Uputa o predaji izvještaja:

Popunjeni PDF obrazac potrebno je predati kroz sustav Moodle u kartici LV2 (NSU) - Opisna funkcija i vlastite oscilacije. PDF obrazac imenovati "Lab2" vlastite oscilacije PREZIME IME JMBAG.pdf". U isti PDF obrazac treba prilijepiti i tražene slike na prikladnim mjestima u dokumentu. Slike moraju biti u .bmp, .jpg ili .png formatu a prilijepiti ih možete tako da u Adobe Acrobat programu slijedite sljedeće poveznice: Tools o Comment & Markup o Attach a File as a Comment. Pitanja i nedoumice oko zadataka na laboratorijskoj vježbi možete uputiti na adresu luka.mandic@fer.hr

RAD NA VJEŽBI

ZADATAK 1 : Eksperimentalno određivanje opisne funkcije

Kvantizator, prikazan slikom 1, je nelinearni element koji se inherentno javlja u svim digitalnim sustavima upravljanja. Parametar D je razina kvantizacije kvantizatora.

Slika 1: Kvantizator.

Opisna funkcija kvantizatora ovisi o broju aktiviranih razina kvantizatora. Ako je aktivirana samo jedna razina, odnosno ako je amplituda oscilacija X_m , $\frac{D}{2} < X_m < \frac{3D}{2}$ opisna funkcija je oblika

$$G_{N1}(X_m) = \frac{4D}{\pi X_m} \sqrt{1 - \left(\frac{1}{2}\right)^2 \left(\frac{D}{X_m}\right)^2},$$
 (1)

u slučaju da su aktivirane dvije razine, $\frac{3D}{2} < X_m < \frac{5D}{2}$ opisna funkcija je oblika

$$G_{N2}(X_m) = \frac{4D}{\pi X_m} \left(\sqrt{1 - \left(\frac{1}{2}\right)^2 \left(\frac{D}{X_m}\right)^2} + \sqrt{1 - \left(\frac{3}{2}\right)^2 \left(\frac{D}{X_m}\right)^2} \right). \tag{2}$$

U općem obliku se opisna funkcija kvantizatora može zapisati kao

$$G_N(X_m) = \begin{cases} 0, & X_m < \frac{D}{2} \\ \frac{4D}{\pi X_m} \sum_{k=1}^n \sqrt{1 - \left(\frac{2k-1}{2} \frac{D}{X_m}\right)^2}, & \frac{2n-1}{2}D < X_m < \frac{2n+1}{2}D \end{cases}$$
(3)

Eksperimentalno određivanje opisne funkcije nelinearnog elementa svodi se na snimanje odziva nelinearnog elementa uz monoharmoničku pobudu. Drugim riječima, odabere se sinusni signal $x(t) = X_m \sin(\omega t)$ proizvoljne frekvencije ω i u svakom eksperimentu mu se mijenja amplituda X_m . Budući da se u svakom pojedinom eksperimentu na izlazu iz nelinearnosti generiraju viši harmonici (a opisna funkcija daje vezu između izlazne i ulazne amplitude osnovnog harmonika), potrebno je izlazni signal filtrirati tako da se zadrži samo osnovni harmonik, tj. da se dobije $u(t) = U_m \sin(\omega t + \varphi)$. Jedan od načina je iskoristiti filter oblika

$$G_f(s) = \frac{(\sqrt{2}\omega)^n}{(s+\omega)^n} \tag{4}$$

gdje je ω frekvencija osnovnog harmonika a n red filtra – što je viši red, viši harmonici će biti bolje prigušeni. No, što je red filtra viši, trebat će duže vremena da se postignu ustaljene oscilacije. Ovakav filter ima pojačanje 1 na frekvenciji osnovnog harmonika ω . Sada se na osnovu omjera amplitude ulaznog i izlaznog filtriranog sinusnog signala $\left(\frac{U_m}{X_m}\right)$ može odrediti pojačanje opisne funkcije $(|G_N(X_m)|)$, a na osnovu pomaka dvaju signala kut opisne funkcije $(\varphi = \angle G_N(X_m))$.

- a) Eksperimentalno odredite opisnu funkciju kvantizatora s razinom kvantizacije D=0.1. Pri tome koristite odgovarajući oblik filtra $G_f(s)$. Rezultate pojedinih eksperimenata upišite u Tablicu 1.
- b) Korištenjem naredbe ezplot nacrtajte krivulju koja analitički opisuje realni dio opisne funkcije kvantizatora u ovisnosti o $\frac{X_m}{D}$. Na apscisi neka područje prikaza bude $0 < \frac{X_m}{D} < \frac{7}{2}$. Na istoj slici označite križićima podatke koje ste dobili eksperimentalnim određivanjem opisne funkcije.
 - f X Dobivenu sliku priložite ovdje ightarrow
- c) Postoje li razlike u stvarnim i analitički dobivenim vrijednostima? Zašto?

X_m	U_m	$P_N(X_m)$	$Q_N(X_m)$
0.04			
0.06			
0.08			
0.1			
0.12			
0.14			
0.16			
0.18			
0.2			
0.22			
0.24			
0.26			

Tablica 1: Rezultati eksperimentalnog određivanja opisne funkcije

d) Odredite omjer $\frac{X_m}{D}$ za koji opisna funkcija poprima najveću vrijednost.

$$\frac{X_m}{D_{max}} =$$

Koje područje u Nyquistovoj ravnini zauzima inverzna negativna opisna funkcija kvantizatora $(-G_N^{-1})$?

0

Neka je amplitudno osiguranje označeno sa A_O . U Nyquistovom dijagramu $-\frac{1}{A_O}$ je presjecište Nyquistovog dijagrama procesa sa realnom osi. Korištenjem Goldfarbovog principa i prethodno određenog područja koje u Nyquistovom dijagramu zauzima inverzna negativna opisna funkcija kvantizatora, odredite koliko mora biti amplitudno osiguranje da ne dođe do pojave vlastitih oscilacija.

 $A_{O,min} =$

ZADATAK 2: Analiza vlastitih oscilacija

Zadan je proces opisan prijenosnom funkcijom oblika

$$G(s) = \frac{K}{(T_1 s + 1)(T s + 1)^2} \tag{5}$$

Sustavom se upravlja PI regulatorom koji ima kontinuiranu funkciju prijenosa

$$G_R(s) = K_R \left(1 + \frac{1}{T_R s} \right). \tag{6}$$

Budući da je regulator realiziran na računalu, njegovo djelovanje može se simulirati dodavanjem kvantizatora za izlaz. Integralna vremenska konstanta regulatora T_R je postavljena tako da poništava dominantnu vremensku konstantu procesa T_1 .

a) Analitički odredite područje iznos pojačanja regulatora K_R koji osigurava da ne dođe do pojave vlastitih oscilacija zbog kvantizatora. Naputak: Koristite Goldfarbov princip.

 $K_R \in$

- b) U Simulinku realizirajte simulacijsku shemu upravljanja zadanim procesom G(s) uz K=20, $T_1=3$, T=2. Koristite zadani kontinuirani oblik PI regulatora na izlazu kojega se nalazi kvantizator s razinom kvantizacije D=0.1.
- b) Podesite K_R tako da nema vlastitih oscilacija, narinite referencu iznosa $y_{ref} = 8$ i provedite simulaciju. Ulazni i izlazni signal u kvantizator spremite kao sliku i neka u slici piše iznos pojačanja regulatora K_R .
 - f A Dobivenu sliku priložite ovdje ightarrow f Q f Q
- c) Zadržite isto pojačanje K_R kao u prethodnom dijelu zadatka i narinite referencu iznosa $y_{ref} = 11$ i provedite simulaciju. Jesu li se pojavile vlastite oscilacije? Objasnite i navedite iznos pojačanja koje ste koristili.

- f st Dobivenu sliku priložite ovdje ightarrow
- d) Provođenjem simulacija, odredite graničnu vrijednost mjesta presjeka Nyquistove krivulje linearnog dijela otvorenog kruga (proces + regulator) pri kojoj dolazi do pojave vlastitih oscilacija. Zapišite tu vrijednost na dvije decimale u kućicu dolje.

Razlikuje li se od one dobivene analitički? Zašto?