Eichfeldtheorie 1

Tim Jaschik

June 4, 2025

Abstract. – Kurze Beschreibung ...

Contents

1 1 Faserbündel

Soweit nichts anderes gesagt ist, sind in dieser Vorlesung Mannigfaltigkeiten und Abbildungen stets als differenzierbar vorausgesetzt.

1.1 Definition

Definition BÜN-K25a-02-01 (Lokale triviale Faserung mit typischen Fasern auf Mfk). Seien E, M und F differenzierbare Mannigfaltikeiten und $\pi : E \to M$ eine differenzierbare Abbildung. Dann heißt (E, π, M) eine lokal triviale Faserung mit typischer Faser F, wenn es zu jedem $x \in M$ eine offene Umgebung U gibt und einen Diffeomorphismus $\varphi : \pi^{-1}(U) := E \mid U \to U \times F$, sodass

$$\begin{array}{ccc}
E \mid U & \xrightarrow{\varphi} & U \times F \\
\pi \searrow & \swarrow pr_1 \\
U
\end{array}$$

kommutiert. Man spricht auch von der lokal trivialen Faserung $E \to M$ oder E.

Definition BÜN-K25a-02-02 (Vektorraumbündel). Ist $F = \mathbb{R}^k$ und ist $\pi^{-1}(x)$ ein k-dimensionaler Vektorraum und $pr_2 \circ \varphi|_{\pi^{-1}(x)} : \pi^{-1}(x) \to \mathbb{R}^k$ ein Isomorphismus, so heißt E ein Vektorraumbündel der Dimension k.

1.2 Beispiele

Example BÜN-K25a-02-03 (Projektion von Kreuzprodukt ist eine lokal triviale Faserung). $pr_1: U \times F \to U$ ist eine lokal triviale Faserung.

Example BÜN-K25a-02-04 (Tangentialbündel mit differenzierbarer Struktur ist Vektorraumbündel). $TM := \bigcup_{x \in M} T_x M \to M$ mit der üblichen differenzierbaren Struktur ist ein dim M-dimensionales Vektorraumbündel. Denn ist (U, h) eine Karte für M und $\left(\partial_1^{(h)}, \dots, \partial_n^{(h)}\right)$ Koordinatenbasis auf U, so ist

$$\bigcup_{x \in U} T_x U \to U \times \mathbb{R}^n, \sim \sum_{i=1}^n a_i(x) \partial_i^{(h)}(x) \mapsto (x, a_1(x), \dots, a_n(x)).$$

eine Bündelkarte.

Example BÜN-K25a-02-05 (Vektorraumbündel zu S^1). Sei $U := [0,1]/0 \sim 1 \cong S^1$. $E := [0,1] \times \mathbb{R}/(0,t) \sim (1,-t) \neq S^1 \times \mathbb{R}$. Dann ist $\pi : E \to U, [(x,t)] \mapsto [x]$ ein Vektorraumbündel: Ist $x \neq [0]$, so wähle $U = (0,1) \subset M$. Dann ist

$$\pi^{-1}(U) = \{(x,t) \mid x \in (0,1), t \in \mathbb{R}\} \underset{\varphi}{\cong} U \times \mathbb{R}$$

Ist x = [0], so wähle $U = M \setminus \left\{\frac{1}{2}\right\}$ und

$$\varphi: \pi^{-1}(U) \to U \times \mathbb{R}, \left\{ [(x,t)] \mid x \neq \frac{1}{2}, t \in \mathbb{R} \right\} \mapsto \left\{ \begin{matrix} ([x],t), & 0 \leq x < \frac{1}{2} \\ ([x],-t) & \frac{1}{2} < x \leq 1 \end{matrix} \right\}$$

Example BÜN-K25a-02-06 (Lokale triviale Faserung über S^1). $S^1 \to S^1, z \mapsto z^2$ ist eine lokal triviale Faserung mit $F = \mathbb{Z}_2$. (Übungsaufgabe: Was ist φ ?)

1.3 Definition

Definition BÜN-K25a-02-07 (Lokale triviale Faserung als Tripel von Totalraum, Basisraum, Bündelprojektion mit typischen Fasern). Sei (E, π, M) eine lokal triviale Faserung wie in 1.1. Dann heißt E Totalraum, M Basis, π Bündelprojektion und F typische Faser.

Definition BÜN-K25a-02-08 (Reale Fasern in lokal trivialen Faserungen). Für jedes $x \in M$ heißt $E_x = \pi^{-1}(x)$ reale Faser an der Stelle x.

Definition BÜN-K25a-02-09 (Bündelkarten für offene Teilmengen der Basis). Für $U \subset M$ offen heißt $\varphi: E \mid U \to U \times F$ Bündelkarte

Definition BÜN-K25a-02-10 (Bündelatlas für lokale triviale Faserungen).

$$\left\{ (U_{\lambda}, \varphi_{\lambda}) \mid (U_{\lambda}, \varphi_{\lambda}) \text{ Bündelkarte }, \bigcup_{\lambda \in \Lambda} U_{\lambda} = M \right\}$$

heißt Bündelatlas.

Definition BÜN-K25a-02-11 (Faserkarte am Punkt x im Basisraum). Die Abbildung φ_x : $E_x \to F, \varphi_x := pr_2 \circ \varphi \mid E_x$ heißt Faserkarte.

Definition BÜN-K25a-02-12 (Bündelkartenwechsel zwischen Bündelkarten). Sind (U, φ) und (V, ψ) Bündelkarten, so heißt die Abbildung

$$\omega: U \cap V \to \text{Diffeo}(F), x \mapsto \psi_x \circ \varphi_x^{-1}$$

der Bündelkartenwechsel zwischen φ und ψ .

Definition BÜN-K25a-02-13 (G-Faserbündel mit Liegruppen als Strukturgruppen). Ist G eine Liegruppe und $G \times F \to F$ eine G-Aktion, und gibt es zu jedem Bündelkartenwechsel ω eine differenzierbare Abbildung

$$g: U \cap V \to G \text{ mit } \omega(x)(f) = g(x)f$$

so heißt (E,π,M) ein G-Faserbündel mit Strukturgruppe G.

Definition BÜN-K25a-02-14 (Prinzipalbüdel / Hauptfaserbündel). Ist (E, π, M) ein G-Faserbündel mit typischer Faser G und der durch die Linksmultiplikation mit G gegebenen G-Aktion, so heißt (E, π, M) ein Prinzipalbündel oder Hauptfaserbündel.

1.4 Bemerkung

Remark BÜN-K25a-02-15 (Beziehung zwischen Vektorraumbündeln und GL-Faserbündeln). Ist $E \xrightarrow{\pi} M$ ein k-dimensionales Vektorraumbündel, so ist der Bündelkartenwechsel zwischen zwei Bündelkarten stets eine differenzierbare Abbildung

$$\omega: U \cap V \to GL(k,\mathbb{R})$$
 bzw. $GL(k,\mathbb{C})$.

d.h., E ist ein $GL(k,\mathbb{R})$ - bzw. $GL(k,\mathbb{C})$ -Faserbündel. Umgekehrt ist jedes $GL(k,\mathbb{R})$ -Faserbündel mit typischer Faser \mathbb{R}^k ein Vektorraumbündel.

1.5 Definition

Definition BÜN-K25a-02-16 ((Differenzierbare) (Lokale) Schnitte in lokal trivialen Faserungen). Ist $E \xrightarrow{\pi} M$ eine lokal triviale Faserung, $U \subseteq M$, so heißt eine differenzierbare Abbildung $\sigma: U \to E$ (differenzierbarer) lokaler Schnitt, falls $\pi \circ \sigma = \mathrm{id}_U$. σ heißt Schnitt, falls zusätzlich U = M gilt. Den Raum der differenzierbaren Schnitte bezeichnet man mit ΓE .

1.6 Beispiele

Definition BÜN-K25a-02-17 (Raum der differenzierbaren lokalen Schnitte). $\Gamma(M \times F) = \{\sigma: M \to M \times F \mid \sigma(x) = (x, f(x)), f \in C^{\infty}(M, F)\} \cong C^{\infty}(M, F).$

Example BÜN-K25a-02-18 (Raum der diff. lokalen Schnitte in Kreuzprodukten). $\Gamma TM = \{$ differenzierbare Vektorfelder auf $M\}$.

Example BÜN-K25a-02-19 (Raum der diff. Lokalen Schnitte im Tangentialbündel). Jedes Vektorraumbündel hat einen Schnitt $\sigma: M \to E, x \mapsto O_x \in E_x$.

TM hat im Allgemeinen keinen Schnitt, der nirgends verschwindet, z.B. hat jedes Vektorfeld auf

 $M=S^2$ eine Nullstelle. Aber in TT^2 existieren zwei an jeder Stelle linear unabhängige Schnitte.

Example BÜN-K25a-02-21 (Im Tangentialbündel existiert kein diff. Schnitt, der nirgends verschwindet). Für $S^1 \to S^1, z \mapsto z^2$ gibt es keinen Schnitt.

1.7 Bemerkungen

Remark BÜN-K25a-02-23 (Raum der diff Schnitte in Vektorraumbündeln ist der Vektorraum von glatten Abbildungen auf M). Ist $E \to M$ ein Vektorraumbündel, so ist ΓE ein $C^{\infty}(M)$ Vektorraum.

Remark BÜN-K25a-02-24 (Für Bündelkarten in Vektorraumbündeln existieren k lokale Schnitte, die an jeder Stelle eine Basis der realen Faser bilden). Ist $E \to M$ ein k-dimensionales Vektorraumbündel und $\varphi : E \mid U \to U \times \mathbb{R}^k$ eine Bündelkarte, so gibt es k lokale Schnitte auf U, die an jeder Stelle $x \in U$ eine Basis von E_x bilden, nämlich $\sigma_i(x') = \varphi^{-1}(x', e_i)$ für $x' \in U$.

Remark BÜN-K25a-02-25 (k lokale Schnitte, die bei Punkt eine Basis der Faser bilden, induzieren eine Bündelkarte). Umgekehrt: Sind auf $U \in Mk$ Schnitte gegeben, die an der Stelle eine Basis bilden, so ist auf U eine Bündelkarte durch

$$E \mid U \to U \times \mathbb{R}^k, e = \Sigma a_i(x) \sigma_i(x) \mapsto (x, a_i(x), \dots, a_k(x))$$

definiert.

Remark BÜN-K25a-02-26 (Bündelkarten in G-Prinzipalbündeln induzieren lokale Schnitte). Sind $P \to M$ ein G-Prinzipalbündel und $\varphi : P \mid U \to U \times G$ eine Bündelkarte, so ist $\sigma : U \to P, x \mapsto \varphi^{-1}(x,1)$ ein lokaler Schnitt.

1.8 Definition

Definition BÜN-K25a-02-27 (Präbündel mit Strukturgruppe G zu Liegruppe G, Mfk, (disj) Vereinigung von punktweise Mfk und Projektion). Seien G eine Liegruppe, M eine Mannigfaltigkeit, F eine G-Mannigfaltigkeit und sei für jedes $x \in M$ eine Mannigfaltigkeit $E_x \cong F$ gegeben. Sei $E := \bigcup_{x \in M} E_x$ und $\pi : E \to M$ die kanonische Projektion. Dann heißt (E, π, M) ein Präbündel mit Strukturgruppe G, falls es um jedes $x \in M$ eine offene Umgebung G gibt und eine bijektive Abbildung

$$\varphi: E \mid U = \pi^{-1}(U) \to U \times F$$

sodass

$$\begin{array}{cccc} \varphi: E \mid U & \longrightarrow & U \times F & \text{kommutiert} \\ \pi \searrow & & \swarrow pr & \\ & & U & \end{array}$$

für je zwei solcher Abbildungen φ, ψ eine differenzierbare Abbildung $g_{\varphi, \psi}: U \cap V \to G$ existiert mit

$$\varphi \circ \psi^{-1}(x,v) = (x, g_{\varphi,\psi}(x)v)$$

Die Definitionen aus 1.3 werden entsprechend übertragen, z.B. heißt φ dann Präbündelkarte.

1.9 Satz

Proposition BÜN-K25a-02-28 (Für Präbündel (E,π,M) existiert auf E genau einem Topologie und differenzierbare Struktur, sodass (E,π,M) ein Faserbündel mit Strukturgruppe G wird und Präbündelkarten Bündelkarten werden). Ist (E,π,M) ein Präbündel, dann existiert auf E genau eine Topologie und differenzierbare Struktur, sodass (E,π,M) ein Faserbündel mit Strukturgruppe G wird und die Präbündelkarten Bündelkarten werden.

Beweisidee: Man definiert $\Omega \subseteq E$ offen: \Leftrightarrow für jede Präbündelkarte $\varphi: E \mid U \to U \times F$ ist $\varphi(\Omega \cap E \mid U) \subseteq U \times F$ offen.

Ist (U,φ) Präbündelkarte von E und o.B.d.A. (U,h) Mannigfaltigkeitskarte für M, so definiert man

$$\Phi: E \mid U \xrightarrow{\varphi} U \times F \xrightarrow{h} U' \times F.$$

Zusammen mit Karten für F erhält man dann eine differenzierbare Struktur auf E.

1.10 Beispiele

Example BÜN-K25a-02-29 (Bündelstruktur von Tangentialbündel als Ergebnis der Konstruktion von Präbündeln). Die Bündelstruktur TM wurde wie in Satz 1.9 definiert.

Example BÜN-K25a-02-30 (Präbündel zum GL-Prinzipalbündel). Sei $E_x := \{(v_1, \ldots, v_n) \mid (v_1, \ldots, v_n) \text{ Basis von } T_x M\}, P_{GL} := \bigcup_{x \in M} E_x$. Dann ist P_{GL} ein Präbündel und wird in kanonischer Weise ein $GL(n, \mathbb{R})$ Prinzipalbündel (Beweis in den Übungen).

Example BÜN-K25a-02-31 (Präbündel zum O(n)-Prinzipalbündel für Riemannische Mfk). Analog, falls (M, g) Riemannsch ist und $E_x := \{(v_1, \ldots, v_n) \mid (v_1, \ldots, v_n) \text{ ist Orthonormalbasis von } T_x M\}$, so ist $P_{O(n)} := \bigcup_{x \in M} E_x$ in kanonischer Weise ein O(n)-Prinzipalbündel.

1.11 Korollar

Corollar BÜN-K25a-02-32 (Direkte Summe von Vektorraumbündeln ergeben Prävektorraumbündel). Sind $E \to M$ und $F \to M$ zwei Vektorraumbündel der Dimension k und ℓ , so ist

$$E \oplus F := \bigcup_{x \in M} E_x \oplus F_x$$

ein $k + \ell$ -dimensionales Prävektorraumbündel, also in kanonischer Weise ein Vektorraumbündel.

Beweis:

Seien (U, φ) und (U, ψ) Bündelkarten für E und F. Dann ist durch

$$\phi: \bigcup_{x \in U} E_x \oplus F_x \to U \times (\mathbb{R}^k \oplus \mathbb{R}^\ell)$$
$$(e, f) \mapsto (\pi_E(e) = \pi_F(f) =: x, \varphi_x(e), \psi_x(f))$$

eine Präbündelkarte gegeben.

Sind $(U, \tilde{\varphi})$ und $(U, \tilde{\varphi})$ weitere Bündelkarten mit Bündelkartenwechsel $\omega : U \to GL(k), \eta : U \to GL(\ell),$ so ist der Bündelkartenwechsel zwischen φ und $\tilde{\varphi}$ durch

$$U \to GL(k+\ell), x \mapsto \begin{pmatrix} \omega(x) & 0 \\ 0 & \eta(x) \end{pmatrix}$$

gegeben, also differenzierbar.

1.12 Beispiele

Example BÜN-K25a-02-33 (Hom-Raum für Homomorphismen zwischen Vektorraumbündeln sind Vektorraumbündel). Sind E, F Vektorraumbündel, so auch

$$\operatorname{Hom}(E, F) = \bigcup_{x \in M} \operatorname{Hom}(E_x, F_x).$$

Example BÜN-K25a-02-34 (Mult). $\operatorname{Mult}^k(E, F)$.

Example BÜN-K25a-02-35 (Sym). Sym^k(E).

Example BÜN-K25a-02-36 (Alt). Alt^k(E) usw.

Die Präbündelkartenwechsel können als Übungsaufgabe konstruiert werden.

1.13 Definition

Definition BÜN-K25a-02-37 (Bündelmetrik auf Totalraum ist ein Schnitt in $Sym^2(E)$, sodass g pw. positiv definit). Eine Bündelmetrik auf E ist ein Schnitt g in $Sym^2(E)$, sodass g(x) positiv definit ist für jedes $x \in M$.

1.14 Bemerkungen

Example BÜN-K25a-02-38 (Riemannische Metrik als Bündelmetrik im Tangentialbündel). Eine Riemannsche Metrik auf M ist eine Bündelmetrik auf TM.

Example BÜN-K25a-02-39 $(\Gamma(Alt^k(TM)))$. $\Omega^k M = \Gamma \operatorname{Alt}^k(TM)$.

1.15 Definition

Definition BÜN-K25a-02-40 (Vektorraumbündel vom endlichen Typ). Ein Vektorraumbündel $E \to M$ heißt von endlichem Typ, wenn es ein Vektorraumbündel $F \to M$ gibt und ein $N \in \mathbb{N}$, sodass $E \oplus F = M \times \mathbb{R}^N$ ist.

1.16 Beispiel

Example BÜN-K25a-02-41 (Tangentialbündel von S^n ist von endlichem Typ). TS^n ist von endlichem Typ, denn

$$TS^n \oplus (S^n \times \mathbb{R}) = S^n \times \mathbb{R}^{n-1}, (v, (x, \lambda)) \mapsto v + \lambda x.$$

1.17 Definition

Definition BÜN-K25a-02-43 (Bündelisomorphismus). Seien $\pi_i: E_i \to B_i, i=1,2$ Faserbündel mit Strukturgruppe G und typischer Faser $F, f_0: B_1 \to B_2$ eine differenzierbare Abbildung, dann heißt eine differenzierbare Abbildung $f: E_1 \to E_2$ eine Bündelabbildung über f_0 , falls $f_0 \circ \pi_1 = \pi_2 \circ f$ gilt und f bezüglich Bündelkarten durch differenzierbare Abbildungen $\gamma: U \to G$, genauer durch

$$U \times F \to V \times F, (x, v) \mapsto (f_0(x), \gamma(x)v)$$

gegeben ist.

Ist zusätzlich $f_0 = id$, so heißt f ein Bündelisomorphismus.

Definition BÜN-K25a-02-44 (Trivialisierung von Totalraum). Ein Bündelisomorphismus $f: E \to B \times F$ heißt eine Trivialisierung von E.

Definition BÜN-K25a-02-45 (Vektorraumbündelabbildung über diff. Abbildungen zwischen Vektorraumbündeln). Seien jetzt $E_i \to B_i$ zwei Vektorraumbündel $f_0: B_1 \to B_2$ eine differenzierbare Abbildung und $f: E_1 \to E_2$ eine differenzierbare Abbildung über f_0 , so heißt f eine Vektorraumbündelabbildung über f, falls $f_x := f \mid E_{1,x}$ linear ist für jedes $x \in M$.

Definition BÜN-K25a-02-46 (Vektorraumbündelisomorphismus). Ist $f_0 = \mathrm{id}$, so heißt f ein

Vektorraumbündelhomomorphismus, es ist dann $f \in \Gamma$ Hom (E_1, E_2) .

1.18 Beispiel

Example BÜN-K25a-02-47 (Differential von glatten Abbildungen zw. Tangentialbündel von Mfk ist eine Vektorraumbündelabbildung über glatte Abbildung f). Ist $f: M \to N$ eine differenzierbare Abbildung, so ist $df: TM \to TN$ eine Vektorraumbündelabbildung über f.

1.19 Definition und Satz

Definition BÜN-K25a-02-48 (Induzierte Bündel durch Abbildungen). Ist $f: N \to M$ eine differenzierbare Abbildung, $E \to M$ ein Faserbündel mit Strukturgruppe G, so ist

$$pr_1: f^*E = \{(x, e) \mid x \in N, e \in E_{f(x)}\} \to N$$

ein Faserbündel mit Strukturgruppe G über N, das von f induzierte Bündel. Schnitte in f^*E heißen Schnitte in E längs f.

Proposition BÜN-K25a-02-49 (Schnitte in induzierten Bündeln längs f). Ist $f: N \to M$ eine differenzierbare Abbildung, $E \to M$ ein Faserbündel mit Strukturgruppe G, so ist

$$pr_1: f^*E = \{(x, e) \mid x \in N, e \in E_{f(x)}\} \to N$$

ein Faserbündel mit Strukturgruppe G über N, das von f induzierte Bündel. Schnitte in f^*E heißen Schnitte in E längs f.

Beweis:

Sei $x \in N$ und (U, φ) Bündelkarte um f(x) für E. Dann ist $(f^{-1}(U), \tilde{\varphi})$ mit

$$\tilde{\varphi}: \left\{ (x, e) \mid x \in f^{-1}(U), e \in E_{f(x)} \right\} = pr_1^{-1} \left(f^{-1}(U) \right) \longrightarrow f^{-1}(U) \times F$$
$$(x, e) \mapsto \left(x, \varphi_{f(x)}(e) \right)$$

eine Präbündelkarte gegeben. Die Kartenwechsel sind dieselben wie die für $E \xrightarrow{\pi} M$, also differenzierbar.

1.20 Beispiel

Example BÜN-K25a-02-50 (Menge der Vektorfelder längs Kurven). Ist $\gamma: I \to M$ differenzierbar, so ist $\Gamma(\gamma^*TM)$ die Menge der Vektorfelder längs γ .

1.21 Beispiel

Example BÜN-K25a-02-51 (Vektorraumbündel bzgl Grassmann-Mfk). Sei $G_{k,N} =$

 $O(N)/(O(k) \times O(N-k))$ die Grassmann-Mannigfaltigkeit und

$$\gamma_{k,N} = \{(E, v) \in G_{k,N} \times \mathbb{R}^N \mid v \in E\}$$

dann ist $\gamma_{k,N} \to G_{k,N}$ ein k-dimensionales Vektorraumbündel. $\gamma_{k,N}$ ist offenbar von endlichem Typ und ein Vektorraumbündel $E \to M$ ist genau dann von endlichem Typ, wenn es ein N gibt und eine Abbildung $f: M \to G_{k,N}$, sodass $E = f^*\gamma_{k,N}$ ist.

1.22 Bemerkung

Remark BÜN-K25a-02-52 (Bündelabbildungen bzgl induzierte Bündel). Die Abbildung \hat{f} : $f^*E \to E, (x, e) \mapsto e$ ist eine Bündelabbildung über f, sodass $\hat{f} \mid (f^*E)_x : (f^*E)_x \to E_{f(x)}$ ein Isomorphismus ist für jedes x. Ist $g: \widetilde{E} \to E$ eine weitere Bündelabbildung über f, so ist

$$\tilde{g}: \tilde{E} \to f^*E, \tilde{e} \mapsto (\pi(\tilde{e}), g(\tilde{e}))$$

ein Bündelisomorphismus mit $\hat{f} \circ \tilde{g} = g$.

1.23 Satz

Proposition BÜN-K25a-02-67 (Pullback-Faserbündel längs homotopen Abbildungen sind isomorph). Sei $E \to B$ ein Faserbündel, seien $f_0, f_1 : X \to B$ homotope Abbildungen, dann ist $f_0^*E \cong f_1^*E$.

1.24 Korollar

Corollar BÜN-K25a-02-68 (Faserbündel über kontrahierbarer Basis sind trivial). Ist B zusammenziehbar, also die Identität homotop zur konstanten Abbildung $c: B \to B, x \mapsto p$, so ist $E \to B$ trivial, denn $E = \mathrm{id}^* E \cong c^* E = B \times E_p$.

Beweis des Satzes:

Proof BÜN-K25a-02-69 (P: Faserbündel über kontrahierbarer Basis sind trivial). Seien ξ, ξ' Faserbündel mit Strukturgruppe G und typischer Faser F. Sei

$$\operatorname{Iso}_G\left(\xi_x,\xi_x'\right):=\left\{f:\xi_x\to \xi_x'\mid \psi_x\circ f\circ \varphi_x^{-1}(v)=g\cdot v \text{ für ein } g\in G\right\}$$

Dann ist $\bigcup_{x \in B} \operatorname{Iso}_G(\xi_x, \xi_x')$ in kanonischer Weise ein Faserbündel mit typischer Faser G und Strukturgruppe $G \times G$, die Schnitte in $\operatorname{Iso}_G(\xi_x, \xi_x')$ sind gerade die Bündelisomorphismen.

Benutze nun die Homotopiehochhebungseigenschaft: Ist (X,A) ein CW-Paar, $(z.B. (M, \partial M))$, $Y \to [0,1] \times X$ eine lokal triviale Faserung, σ_0 ein Schnitt in $Y \mid ((0 \times X) \cup ([0,1] \times A))$, dann ist σ zu einem Schnitt in Y fortsetzbar, vgl. z.B. Husemoller Fiber Bundles oder Hatcher Algebraic Geometry.

Wende dies an auf das Bündel $\operatorname{Iso}_G([0,1]\times f_0^*E,h^*E)$, wobei $h:[0,1]\times X\to B$ die Homotopie zwiswchen f_0 und f_1 ist. Dann ist $\sigma(0,x)=\operatorname{id}_{E_{f_0(x)}}$ fortsetzbar zu einem Schnitt σ , und σ und $\sigma(1,\cdot)$ ist der gesuchte Bündelisomorphismus.

1.25 Definition

Definition BÜN-K25a-02-54 (Induzierte Bündel bei Einbettungen von UnterMfk). Ist $i: M_0 \to M$ die Einbettung einer Untermannigfaltigkeit M_0 in M, so schreibt man statt i^*E auch $E|_{M_0}$.

1.26 Definition

Definition BÜN-K25a-02-55 (Untervektorraumbündel). Sei (E, π, M) ein k-dimensionales Vektorraumbündel. Eine Teilmenge $E_0 \subseteq E$ heißt ein m-dimensionales Untervektorraumbündel, falls es um jedes $x \in M$ eine Bündelkarte (U, φ) gibt, sodass $\varphi(\pi^{-1}(U) \cap E_0) = U \times \mathbb{R}^m \times 0$ ist.

1.27 Bemerkungen

Remark BÜN-K25a-02-56 (Untervektorraumbündel sind Vektorraumbündel). Ein m-dimensionales Untervektorraumbündel ist offenbar ein m-dimensionales Vektorraumbündel.

Remark BÜN-K25a-02-57 (Quotienten-Räume bzgl Untervektorraumbündel sind Vektorraumbündel). Ist $E_0 \subset E$ ein Untervektorraumbündel, so ist E/E_0 ein Vektorraumbündel.

Remark BÜN-K25a-02-58 (Untervektorraumbündel bzgl Bündelmetrik). Ist M mit einer Bündelmetrik g versehen, so ist

$$E_0^{\perp} := \bigcup_{x \in M} E_{0,x}^{\perp} = \{ e \in E_x : g(\tilde{e}, e) = 0 \text{ für alle } \tilde{e} \in E_{0,x} \}$$

ein Untervektorraumbündel und es gilt: $E_0^{\perp} \cong E/E_0$.

Remark BÜN-K25a-02-59 (Tangentialbündel von UnterMfk sind Untervektorraumbündel). Ist M_0 eine Untermannigfaltigkeit, dann ist $TM_0 \subset TM|_{M_0} := \bigcup_{x \in M_0} T_xM$ ein dim M_0 -dimensionales Untervektorraumbündel von $TM|_{M_0}$.

Remark BÜN-K25a-02-60 (Normalenbündel von UnterMfk). $NM_0 := TM|_{M_0}/TM_0$ heißt das Normalenbündel von M_0 . Ist M eine Riemannsche Mannigfaltigkeit, so ist $NM_0 \cong TM_0^{\perp}$.

1.28 Satz

Proposition BÜN-K25a-02-61 (Rang-Satz für Vektorraumhomomorphismen: Konstanter Rang impliziert ker und im sind Untervektorraumbündel). Ist $f: E \to F$ ein Vektorraumhomo-

morphismus von einem Vektorraumbündel der Dimension k und m und ist $\operatorname{rg} f_x = \operatorname{const.}$ Dann ist $\ker f := \bigcup_{x \in M} \ker f_x \subset E$ ein Untervektorraumbündel von E und Bild $f := \bigcup_{x \in M}$ Bild $f_x \subset F$ ein Untervektorraumbündel von F.

Beweis:

Ohne Einschränkung sei $E=X\times\mathbb{R}^k, F=X\times\mathbb{R}^m.$ Sei $rgf_x=r.$

1. Fall: $k \geq m$. Wir zeigen: ker f ist ein Untervektorraumbündel. OBdA k = m, sonst ersetze F durch $F \oplus (X \times \mathbb{R}^{k-m})$ und f durch (f,0). Sei $x \in X$. Nach Wahl geeigneter Karten ist

$$f_x = \left(\begin{array}{cccc} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{array}\right)$$

Setze

$$P = \begin{pmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Also ist $f_x + P \in GL(k, \mathbb{R})$. Definiere für $x' \in X : (f+P)_{x'} = f_{x'} + P$. Dann existiert eine Umgebung U von x so, dass $(f+P)_{x'} \in GL(k, \mathbb{R})$ für alle $x' \in U$. Für $x' \in U$ ist $(f+P)_{x'}$ (ker $f_{x'}$) = $0 \times \mathbb{R}^{k-r}$. " \subseteq " folgt, da $f_{x'}$ (ker $f_{x'}$) = 0 und die Gleichheit folgt dann aus Dimensionsgründen. 2. Fall: $k \leq m$. Wir zeigen: Bild f ist ein Untervektorraumbündel.

OBdA k=m, sonst ersetze E durch $E \oplus (X \times \mathbb{R}^{m-k})$ und f durch $f \circ pr_k$. Seien f_x und P wie im ersten Fall. Dann ist $(f_{x'} + P) (\mathbb{R}^r \times 0) \subseteq \text{Bild } f_{x'}$. Da $(f_{x'} + P) : \mathbb{R}^m \to \mathbb{R}^m$ ein Isomorphismus ist, folgt die Gleichheit aus Dimensionsgründen. Folglich ist $(f_{x'} + P)^{-1}$ die gesuchte Bündelkarte. 3. Fall: $k \leq m$. Wir zeigen: $\ker f \subset E$ ist ein Untervektorraumbündel.

Wende den 1. Fall auf $f: E \to \text{Bild } f$ an.

4. Fall: $k \geq m$: Wir zeigen: Bild $f \subset F$ ist ein Untervektorraumbündel. Wende den 2. Fall auf $E|_{\text{kerf}}$ an.

1.29 Korollar

Corollar BÜN-K25a-02-62 (Charakterisierung von Vektorraumbündeln von endlichem Typ). Ein Vektorraumbündel $E \to M$ ist genau dann von endlichem Typ, wenn eine der beiden äquivalenten Bedingungen erfüllt ist:

- 1. Es existiert ein surjektiver Vektorraumbündelhomomorphismus $M \times \mathbb{R}^N \to E$.
- 2. Es existieren N Schnitte $s_1, \ldots, s_n \in \Gamma E$, sodass $(s_1(x), \ldots, s_n(x))$ für jedes $x \in M$ die

1.30 Definition

Definition BÜN-K25a-02-63 (Reduktionen von Faserbündeln mit Strukturgruppe bzgl abgeschlossener Untergruppe). Ist $E \to M$ ein Faserbündel mit Strukturgruppe G und $G_0 \subseteq G$ eine abgeschlossene Untergruppe. Dann sagt man: E besitzt eine Reduktion auf G_0 oder eine G_0 -Bündelstruktur, falls es einen Bündelatlas gibt, dessen Bündelkartenwechsel Werte in G_0 annehmen.

1.31 Beispiel

Example BÜN-K25a-02-64 (Charakterisierung von orientierten Mfk). M ist genau dann orientierbar, wenn TM eine $GL^+(n,\mathbb{R})$ -Bündelstruktur hat. (Übungsaufgabe)

Die folgenden beiden Sätze geben oft eine einfache Möglichkeit zu entscheiden, wann eine Bündelstruktur vorliegt.

1.32 Satz (Ehresmannscher Faserungssatz)

Proposition BÜN-K25a-02-65 (Ehresmannscher Faserungssatz: Totalräume mit eigentlich regulären Abbildungen in zusammenhängenden Basisraum implizieren eine lokale triviale Faserung). Ist X zusammenhängend, $p:E\to X$ eine eigentliche reguläre Abbildung, so ist E eine lokal triviale Faserung.

1.33 Satz (von Hermann)

Proposition BÜN-K25a-02-66 (Satz von Hermann für vollständige zusammenhängende Riemannische Mannigfaltigkeiten). Ist (M,g) vollständig und \tilde{M} zusammenhängend, dann ist jede Riemannsche Submersion $\pi: M \to \tilde{M}$ ein Faserbündel.

1.34 Übungsaufgaben

- 1. Auf $S^1\subset \mathbb{C}$ betrachte man die durch $z\sim \bar{z}$ und $1\sim -1$ definierte Äquivalenzrelation. Zeigen Sie:
 - a) S^1/\sim ist homö
omorph zu S^1 .
 - b) Die kanonische Projektion $S^1 \to S^1/\sim$ ist keine lokal triviale Faserung.
- 2. Es sei $E:=\left\{(x,v)\in\mathbb{RP}^n\times\mathbb{R}^{n+1}\mid v\in x\right\}$. Geben Sie einen Bündelatlas für die lokal triviale Faserung $E\to\mathbb{RP}^n$ an.
- 3. Es sei M eine n-dimensionale differenzierbare Mannigfaltigkeit mit differenzierbarer Struktur D. Beschreiben Sie den kanonischen Prä-Bündelatlas für Alt^KTM , d.h. für die Familie $\left\{\mathrm{Alt}^KT_pM\right\}_{n\in M}$.
- 4. $\pi_1: E_1 \to M$ und $\pi_2: E_2 \to M$ seien lokal triviale Faserungen mit typischen Fasern F_1 und F_2 . Dann heißt $E_1 \times_M E_2 := \{(e_1, e_2) \in E_1 \times E_2 \mid \pi_1(e_1) = \pi_2(e_2)\}$ mit der kanonischen Abildung $\pi: E_1 \times_M E_2 \to M$ das gefaserte Produkt oder das Faserprodukt oder das Produkt über M

der beiden Faserungen. Konstruieren Sie aus Bündelatlanten \mathcal{A}_1 und \mathcal{A}_2 für die Faktoren einen Bündelatlas \mathcal{A} für das gefaserte Produkt.

- 5. a) Es sei (M, \langle,\rangle) einepseudo Riemannschen-dimensionale differenzierbare Mannigfaltigkeit, der Index des Skalarproduktes sei n-k. Zeigen Sie, dass diejenigen Bündelkarten des Tangentialbündels, deren Faserkarten Isometrien sind, zusammen eine O(k, n-k)-Bündelstruktur für $TM \to M$ bilden.
 - b) Zeigen Sie: Eine differenzierbare Mannigfaltigkeit besitzt genau dann eine Metrik vom Index n-k, wenn TM eine O(k,n-k)-Bündelstruktur hat.
- 6. Eine differenzierbare Mannigfaltigkeit heißt parallelisierbar, wenn ihr Tangentialbündel trivial ist. Zeigen Sie, dass jede Lie-Gruppe parallelisierbar ist, S^{2k} für k>1 aber nicht. Beweisen Sie ferner, dass ($S^n \times \mathbb{R}$) $\oplus TS^n$ für alle n trivial ist.
- 7. Es sei $E \to B$ ein *n*-dimensionales Vektorraumbündel. Bestimmen Sie die Übergangsfunktionen für AltⁿE aus denen für E.
- 8. Für Vektorraumbündel über einer Mannigfaltigkeit zeigen Sie: Ist

$$0 \to E' \to E \to E'' \to 0$$

eine exakte Sequenz von Bündelhomomorphismen, so ist $E\cong E'\oplus E''.$

- 9) Für Bündelhomomorphismen $f: E \to E$ folgere man aus dem Ranglemma:
- a) Ist $f \circ f = f$, so sind Kern f und Bild f Teilbündel von E.
- b) Ist $f \circ f = \text{Id}$, so ist $\text{Fix}(f) := \{e \in E \mid f(e) = e\}$ ein Teilbündel von E.

2 Prinzipalbündel

2.1 Definition

Eine G-Aktion $G \times M \to M$ heißt frei, falls aus gx = x für ein $x \in M$ folgt g = 1. Eine G-Aktion $G \times M \to M$ heißt effektiv, falls gilt: wirkt g als Identität, so ist g = 1. Eine G-Aktion $G \times M \to M$ heißt transitiv, falls gilt: Zu jedem Paar $(x,y) \in M \times M$ existiert ein $g \in G$ mit gx = y.

2.2 Notiz

Ist $\phi: G \times M \to M$ eine freie transitive G-Aktion, so ist $G \cong M$.

Beweis:

Sei $x \in M$. Die Abbildung $o_x : G \to M, g \mapsto gx$ ist bijektiv und differenzierbar und $do_x|_1$ ist injektiv, also ist $do_x|_g$ bijektiv für jedes $g \in G$, also ist o_x ein Diffeomorphismus (vgl. Lee 7.15: differenzierbare Abbildung von konstantem Rang!).

2.3 Satz

Auf dem Totalraum eines G-Prinzipalbündels gibt es eine G-Rechtsaktion, die auf den Fasern frei und transitiv ist. Die Faserkarten φ_x sind bezüglich dieser Aktion G-rechtsäquivariant, d.h., $\varphi_x(pg) = \varphi_x(p)g$.

Beweis:

Sei $p \in P_x$. Setze $pg = \varphi_x^{-1}(\varphi_x(p)g)$. Dies ist wohldefiniert, denn ist ψ eine weitere Karte, so ist $\psi_x(p) = \omega(x)\varphi_x(p)$ für ein $\omega(x) \in G$, also $\psi^{-1}(x,\psi_x(p)g) = \psi^{-1}(x,\omega(x)\varphi_x(p)g) = \varphi^{-1}(x,\varphi_x(p)g)$. Offenbar ist φ_x rechtsäquivariant und die Operation auf der realen Faser frei und transitiv, weil die G-Aktion auf G dies ist.

Für Prinzipalbündel sind Schnitte Bündelkarten, genauer:

2.4 Lemma

Ein Prinzipalbündel ist genau dann trivial, wenn es einen Schnitt besitzt.

Beweis:

Ist σ ein Schnitt, so setze $P \to M \times G$, $\sigma(x)g \mapsto (x,g)$. Umgekehrt: Setze $\sigma(x) = \varphi^{-1}(x,1)$.

2.5 Bemerkung

Ist $P \to M$ ein G-Prinzipalbündel, und ist φ die durch σ defnierte Bündelkarte und $s(x) = \sigma(x)g(x)$, dann wird s bezüglich φ durch g beschrieben.

Ist $\tilde{\sigma}(x) = \sigma(x)a(x)$ ein weiterer Schnitt und $\tilde{\varphi}$ die durch $\tilde{\sigma}$ gegebene Bündelkarte, so ist $s(x) = \tilde{\sigma}(x)a^{-1}(x)g(x)$, wird also bezüglich $\tilde{\sigma}$ durch $a^{-1}g$ beschrieben.

2.6 Bemerkung

Die rechtsäquivarianten Abbildungen $f: G \to G$ sind genau die Linksmultiplikationen mit $f(1) \in G$, denn f(g) = f(1g) = f(1)g.

2.7 Lemma

Sei G eine Liegruppe, $P \to M$ ein Faserbündel mit Strukturgruppe G. Dann ist äquivalent:

- a) $P \to M$ ist ein G-Prinzipalbündel.
- b) Auf dem Totalraum von P ist eine G-Rechtsaktion gegeben, die auf den Fasern frei und transitiv operiert.

Beweis:

- $a) \Rightarrow b) \checkmark$
- b) \Rightarrow a) Nach 2.2 ist die typische Faser G, wie in 2.5 sind rechtsinvariante Faserkarten gegeben, und rechtsäquivariante Bündelkartenwechsel sind nach 2.6. durch Linksmultiplikation mit $g \in G$ gegeben.

2.8 Satz

Sei G eine Liegruppe, $P \to M$ eine differenzierbare Abbildung. Dann ist äquivalent:

- a) $P \to M$ ist ein G-Prinzipalbündel.
- b) P ist eine Rechts-G-Mannigfaltigkeit der Dimension dim G + dim M. Die G-Wirkung ist fasertreu und auf den Fasern frei und transitiv. Ferner existiert eine Überdeckung $(U_{\lambda})_{\lambda \in \Lambda}$ von M und lokale Schnitte $s_{\lambda}: U_{\lambda} \to P$.

Beweis:

- $a) \Rightarrow b) \checkmark$
- b) \Rightarrow a) Da lokale Schnitte existieren, ist $\pi: P \to M$ eine surjektive Submersion, also ist $\pi^{-1}(x) \subseteq P$ eine dim G-dimensionale Untermannigfaltigkeit von P,

also ist nach $2.2P_x\cong G$. Defniere $\psi:U\times G\to P\mid U,(x,g)\mapsto s(x)g$. Dies definiert eine Bündelkarte $\varphi=\psi^{-1}$. Die Abbildung ψ ist bijektiv, differenzierbar und rechts- G-äquivariant. Das Differential

$$d\psi_{(x,q)}(X,v) = dR_q(X) + dL_{s(x)q}(v)$$

ist injektiv, denn ist $d\psi_{(x,g)}(X,v)=0$, so ist

$$X = d\pi_{s(x)q} \circ d\psi_{(x,q)}(X,v) = 0$$

da $(\pi \circ \psi)(x,g) = x$, also ist auch $dL_{s(x)}(v) = 0$, also v = 0 (da G frei operiert).

2.9 Beispiel

Die Hopffaserung $S^3 \to \mathbb{C}P^1$, $(z_1, z_2) \mapsto [z_1 : z_2]$ ist ein S^1 -Prinzipalfaserbündel. Insbesondere für kompakte Gruppen ist folgender Satz auch nützlich:

2.10 Satz

Operiert G frei und eigentlich auf M, so ist M/G eine differenzierbare Mannigfaltigkeit und $M \to M/G$ ein G-Prinzipalbündel.

Beweis:

Lee, 9.16 (Quotient manifold theorem).

2.11 Definition

- a) Sei $\pi_1: P \to M$ ein G-Prinzipalbündel, $\pi_2: Q \to N$ ein H-Prinzipalbündel, $\alpha: G \to H$ ein Homomorphismus von Liegruppen, $f_0: M \to N$ differenzierbar. Dann heißt $f: P \to Q$ ein α -Prinzipalbündelhomomorphismus über f_0 , falls $\pi_2 \circ f = f_0 \circ \pi_1$ gilt und $f(pg) = f(p)\alpha(g)$ ist.
- c) Ist $f_0 = \mathrm{id}$, so heißt (P, f) eine α -Version von Q. Ist zusätzlich G = H und $\alpha = \mathrm{id}$, so spricht man von einem Prinzipalbündelisomorphismus.
- d) Zwei α -Versionen heißen äquivalent, falls es einen G-Prinzipalbündelisomorphismus g über id gibt, sodass $\tilde{f} = g \circ f$ ist.

Eine Äquivalenzklasse von α -Versionen heißt α -Struktur. Ist $G \subseteq H$ eine Untergruppe, $\alpha : G \to H$ die Inklusion, so heißt eine α -Struktur auch eine Reduktion von Q auf G.

2.12 Beispiel

Sei (M,g) eine Riemannsche Mannigfaltigkeit. Dann beschreibt $P_{O(n)}(M) \xrightarrow{i} P_{GL}(M)$ eine O(n)-Reduktion von $P_{GL}(M)$.

2.13 Lemma

- a) Ist Q ein H-Prinzipalbündel, $G \subseteq H$ eine abgeschlossene Untergruppe und $P \subseteq Q$ eine Teilmenge, sodass gilt:
 - 1. Die G-Rechtsaktion ist aus $P_x := Q_x \cap P$ frei und transitiv.
 - 2. Es existieren eine offene Überdeckung $(U_{\lambda})_{{\lambda}\in\Lambda}$ von M und lokale Schnitte $\sigma_{\lambda}:U_{\lambda}\to Q$ mit $\sigma(U_{\lambda})\subseteq P$.

Dann ist (P, i) eine G-Reduktion von M.

Umgekehrt: Besitzt Q eine G-Reduktion (P, f), so erfüllt $f(P) \subseteq Q$ die Bedingungen 1. und 2.

b) Ein H-Prinzipalbündel Q besitzt genau dann eine Reduktion auf eine abgeschlossene Untergruppe $G\subseteq H$, falls es einen Bündelatlas von Q gibt, dessen Übergangsfunktionen Bilder in G annehmen.

Beweis von b):

" \Leftarrow " Ist $A = \{U_{\lambda}, \varphi_{\lambda} \mid \lambda \in \Gamma\}$ ein Bündelatlas wie gefordert, dann setze

$$P = \bigcup_{\lambda \in \Lambda} \varphi_{\lambda}^{-1} \left(U_{\lambda} \times G \right)$$

Dies ist eine Teilmenge von Q wie in 1 .

" \Rightarrow " Ist $f: P \to Q$ eine Reduktion auf G, so existieren nach a) lokale Schnitte $\sigma_{\lambda}: U_{\lambda} \to Q$ mit $\sigma_{\lambda}(U_{\lambda}) \subseteq f(P)$. Diese definieren Bündelkarten für P. Ist σ_{μ} ein weiterer solcher Schnitt, so gilt für $x \in U_{\lambda} \cap U_{\mu}$:

$$\sigma_{\mu}(x) = \sigma_{\lambda}(x)g_{\lambda\mu}(x)$$

für $g_{\lambda\mu}: U_{\lambda} \cap U_{\mu} \to G$. Damit ist der entsprechende Bündelkartenwechsel durch $g_{\lambda\mu}^{-1}: U_{\lambda} \cap U_{\mu} \to G, x \mapsto (g_{\lambda\mu}(x))^{-1}$ gegeben.

2.14 Satz

Seien $\pi:Q\to M$ ein H-Prinzipalbündel und $G\subseteq H$ eine abgeschlossene Untergruppe. Dann hat man eine kanonische Bijektion zwischen der Menge aller Reduktionen auf G und der Menge aller Schnitte in $Q/G\to M$.

Beweis:

" \Rightarrow "Da $H \to H/G$ ein G-Prinzipalbündel ist (Beweis später), ist $\pi_1: Q/G \to M$ ein Faserbündel mit typischer Faser H/G und $Q \to Q/G$ ein G-Prinzipalbündel. Sei σ ein Schnitt in Q/G. Dann ist σ^*Q ein G-Prinzipalbündel über M, und die gesuchte Reduktion ist durch ($\sigma^*Q, \hat{\sigma}$) gegeben. Dabei ist $\hat{\sigma}: \sigma^*Q \to Q$ als Bündelhomomorphismus über M aufzufassen, denn $\hat{\sigma}(x,q) = q$ für $q \in \pi_1^{-1}(\sigma(x)) \subseteq \pi^{-1}(x)$.

" \Leftarrow "Sei $f: P \to Q$ ein Repräsentant einer G-Reduktion, also f(pg) = f(p)g für $g \in G$. Dann ist durch $\sigma(x) = [f(p)]_G$ für ein $p \in P_x$ ein Schnitt in Q/G wohldefiniert. Ist $\tilde{f}: \tilde{P} \to Q$ ein weiterer Repräsentant, also $\tilde{f} = f \circ F$ für einen Bündelisomorphismus $F: \tilde{P} \to P$, so existiert für $\tilde{p} \in \tilde{P}_x$ und $p \in P_x$ ein $g \in G$ mit

$$\tilde{f}(\tilde{p}) = f(F(\tilde{p})) = f(pg) = f(p)\alpha(g)$$

für ein $g \in G$ also

$$[\tilde{f}(p)] = [f(p)]$$

2.15 Korollar

Ist $G \subseteq H$ eine abgeschlossene Untergruppe einer Liegruppe mit $H/G \cong \mathbb{R}^n$ für ein $n \in \mathbb{N}$, so besitzt jedes H-Prinzipalbündel eine G-Reduktion

2.16 Beispiel

- a) $GL(n,\mathbb{R})/O(n) \cong \mathbb{R}^{\frac{1}{2}n(n+1)}$.
- b) $O(k, n-k)/O(k) \times O(n-k) \cong \mathbb{R}^m$ für $1 \le k \le n-1$ und m = k(n-k).

2.17 Übungsaufgabe

Verallgemeinern Sie die Hopf-Faserung $S^3 \to \mathbb{CP}^1$ zu $S^{2n+1} \to \mathbb{CP}^n$, (Bündelatlas angeben).

3 An- und Abmontieren der Faser

3.1 Bemerkung und Definition

Sind G eine Liegruppe, X eine Rechts-G-Mannigfaltigkeit und F eine Links-G-Mannigfaltigkeit, dann ist auf $X \times F$ eine G-Aktion durch $G \times (X \times F) \to X \times F, (g, (x, v)) \mapsto (xg, g^{-1}v)$ gegeben. Wir schreiben $(X \times F)/\sim =: X \times_G F$. Auf $X \times_G F$ existieren zwei kanonische Projektionen:

$$X \times_G F \to G \backslash F$$
 und $X \times_G F \to X/G$.

Schreiben wir $X \times_G F$ und reden von der Projektion, so meinen wir $X \times_G F \to X/G$.

3.2 Beispiel

- a) $G \times_G F \to F, [g, v] \mapsto gv$ ist ein Homöomorphismus und $G \times_a F$ trägt eine eindeutig bestimmte differenzierbare Struktur, sodass dies ein Diffeomorphismus ist.
- b) Ist X eine freie transitive Rechts- G-Mannigfaltigkeit, dann ist für jedes $x_0 \in X$

$$X \times_G F \to F, [x_0g, v] \mapsto gv$$

ebenfalls ein Diffeomorphismus.

c) Ist X eine freie transitive Rechts-G-Mannigfaltigkeit, so ist $U \times X$ kanonisch ebenfalls eine Rechts-G-Mannigfaltigkeit und $(U \times X) \times_G F \to U \times F$ ein Diffeomorphismus.

3.3 Satz und Definition

Sei $P \to M$ ein G-Prinzipalbündel und F eine G-Mannigfaltigkeit. Dann ist $P \times_G F$ in kanonischer Weise ein Faserbündel über M mit Strukturgruppe G und typischer Faser F. Ein Atlas von P induziert einen Atlas von $P \times_G F$, dessen Kartenwechsel durch die selben Übergangsfunktionen gegeben sind. Wir nennen den Funktor $P \leadsto P \times_G F$ das Anmontieren oder Assoziieren der Faser F an P. Ist die G-Aktion auf F mit α bezeichnet, $\alpha: G \times F \to F$, dann schreibt man auch $P \times_G F \equiv P \times_\alpha F$.

Beweis:

Ist (U,φ) eine Bündelkarte für P, so definiere eine Präbündelkarte durch:

$$\tilde{\varphi}: \bigcup_{x \in U} P_x \times_G F =: P \times_G F \mid U \xrightarrow{\varphi} (U \times G) \times_G F \to U \times F$$

$$[p, v] \mapsto [\varphi(p), v] = [(\pi(p), \varphi_x(p)), v] \mapsto (\pi(p), \varphi_x(p)v).$$
(3.1)

3.4 Beispiel

a)
$$P_{GL} \times_{GL} \mathbb{R}^n \stackrel{\cong}{\to} TM, [(v_1, \dots, v_n), (a_1, \dots, a_n)] \mapsto \sum_{i=1}^n a_i v_i$$

b) Ist M Riemannsch, so ist ebenso ein Isomorphismus der O(n)-Reduktion definiert: $P_{O(n)} \times_{O(n)} \mathbb{R}^n \xrightarrow{\cong} TM$

3.5 Bemerkung und Notation

- a) Ist $f: P \to Q$ ein G-Prinzipalbündelhomomorphismus, so ist durch $f_*: P \times_G F \to Q \times_G F, [p, v] \mapsto [f(p), v]$ eine G-Bündelabbildung gegeben.
- b) Ist $\alpha:G\to H$ ein Homomorphismus, $f:P\to Q$ eine α -Version und F eine H-Mannigfaltigkeit, so ist $f_*:P\times_{\alpha}F\to Q\times_H F, [p,v]\mapsto [f(p),v]$ ein Isomorphismus von lokal trivialen Faserungen. und bezüglich geeigneten Bündelkarten durch id gegeben. Fassen wir auch $P\times_{\alpha}F$ als Faserbündel mit Strukturgruppe H auf, so ist f_* ein H-Faserbündelisomorphismus.
- c) Ist insbesondere ist $f: P_0 \to P$ eine G_0 -Reduktion von P, so ist $P_0 \times G_0 F \to P \times_G F$ ein G-Bündelisomorphismus.

Beweis:

Ist σ ein lokaler Schnitt von P, so ist $f \circ \sigma$ ein lokaler Schnitt in Q. Für die durch σ und $f \circ \sigma$ induzierten Karten φ und $f_*\varphi$ wie in (3.1) gilt:

$$\widetilde{f_*\varphi} \circ f \circ \widetilde{\varphi}^{-1} : \varphi(P \times_G F \mid U) \to f_*\varphi(Q \times_G F \mid U), (x, v) \mapsto (x, v).$$

3.6 Erinnerung

Sei $E \to M$ ein Faserbündel mit Strukturgruppe G, so sagt man, E besitzt eine Reduktion auf G_0 , wenn E einen Bündelatlas besitzt, dessen Bündelabbildungen durch Abbildungen nach G_0 gegeben sind.

3.7 Bemerkung

Ist $E = P \times_G F$ und $P_0 \to P$ eine Reduktion von P, so besitzt E eine Reduktion auf G_0 (nämlich $P_0 \times_{G_0} F$).

Betrachten wir jetzt den Spezialfall, dass wir als typische Faser wieder eine Liegruppe anmontieren.

3.8 Lemma

Ist $\alpha:G\to H$ ein Liegruppenhomomorphismus, so ist $Q=P\times_{\alpha}H$ in kanonischer Weise ein H-Prinzipalbündel, und P ist eine α -Version von Q.

Umgekehrt: Ist $P \to Q$ eine α -Version, so ist $Q \cong P \times_{\alpha} H$.

Beweis:

Q ist ein H-Prinzipalbündel nach Lemma 2.8, denn H operiert auf den Fasern von $P \times_{\alpha} H$ frei und transitiv von rechts. Ein α -Prinzipalbündelhomomorphismus $P \to Q$ ist durch $f: P \to Q, p \mapsto [p, 1]$ gegeben, denn $f(pg) = [pg, 1] = [p, \alpha(g)] = [p, 1]\alpha(g)$.

Ist $P \xrightarrow{f} Q$ eine α -Version, so ist durch $\tilde{f}: P \times_{\alpha} H \to Q, [p, h] \mapsto f(p)h$ der gesuchte Bündelisomorphismus wohldefiniert, denn $\tilde{f}([p, h]\tilde{h}) = \tilde{f}([p, h\tilde{h}]) = f(p)h\tilde{h} = \tilde{f}([p, h])\tilde{h}$.

3.9 Bemerkung

a) Ist σ ein lokaler Schnitt in P, so definiert σ eine Bündelkarte für $P \times_G F \mid U \cong U \times F$. Also wird ein Schnitt s in $P \times_G F \mid U$ nach Wahl von σ durch eine Abbildung $U \to F$ beschrieben.

Genauer: Ist $s(x) = [\sigma(x), v(x)]$, so wird s bezüglich σ durch v beschrieben. Ist $\tilde{\sigma}$ ein anderer Schnitt von $P, \tilde{\sigma} = \sigma g$, so wird s bezüglich $\tilde{\sigma}$ durch $g^{-1}v$ beschrieben:

$$s(x) = [\sigma(x), v(x)] = [\tilde{\sigma}g^{-1}, v(x)]$$

b) Ein Schnitt s in $P \times_G F$ definiert eine Abbildung $\bar{s}: P \to F$ mit $\bar{s}(pg) = g^{-1}s(p)$ durch

$$s(x) = [p(x), \bar{s}(p(x))] = [p(x)g(x), g^{-1}(x)s(p(x))]$$

Umgekehrt: Ist $f: P \to F$ eine Funktion mit $f(pg) = g^{-1}f(p)$, so definiert f einen Schnitt in $P \times_G F$ durch $x \mapsto [p(x), f(p(x))]$ mit $p(x) \in P_x$ beliebig.

Jetzt betrachten wir die umgekehrte Konstruktion, die Faserbündeln Prinzipalbündel zuordnet.

3.10 Definition und Satz

Sei F eine effektive G-Mannigfaltigkeit, $E \to M$ ein Faserbündel mit typischer Faser F und Strukturgruppe G. Sei

$$\operatorname{Iso}_{G}(F, E_{x}) := \{ f_{x} : F \to E_{x} \mid \varphi_{x} \circ f_{x} = g_{\varphi, f}$$
 für ein $g_{\varphi, f} \in G$ für (eine und dann) jede Bündelkarte $\varphi \}$ (*)

Dann ist $\text{Iso}_G(F, E) = \bigcup_{x \in M} \text{Iso}_G(F, E_x)$ in kanonischer Weise ein G-Prinzipalbündel, das E zugrundeliegende Prinzipalbündel. Die Bündelkartenwechsel sind genau die selben, wie die von E.

Beweis:

Sei (U, φ) eine Bündelkarte von E. Setze

$$\bigcup_{x \in U} \operatorname{Iso}_{G}(F, E_{x}) \to U \times G, f_{x} \mapsto (x, g_{\varphi, f})$$

mit $g_{\varphi,f}$ wie in (*). Ist $\psi_x = \omega(x) \cdot \varphi_x$, so ist $g_{\psi,f} = \omega(x)g_{\varphi,f}$.

3.11 Satz

Ist P ein G-Prinzipalbündel, F eine effektive G-Mannigfaltigkeit, so ist

$$\operatorname{Iso}_G(F, P \times_G F) \cong P.$$

Ist E ein Faserbündel mit typischer Faser F und Strukturgruppe G, wobei G effektiv auf F operiert, so ist

$$\operatorname{Iso}_G(F, E) \times_G F \cong E.$$

Bezüglich geeigneter Bündelkarten sind die Abbildungen durch id gegeben.

Beweis:

Definiere

$$\alpha: P \to \operatorname{Iso}_G(F, P \times_G F), p \mapsto (v \mapsto [p, v])$$

und

$$\beta: \operatorname{Iso}_G(F, E) \times_G F \to E, [f, v] \mapsto f(v).$$

3.12 Beispiel

Ist M eine n-dimensionale Mannigfaltigkeit, so ist $TM = P_{GL}(M) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$ und $P_{GL}(M) \cong \operatorname{Iso}_{GL}(\mathbb{R}^n, TM)$

$$(v_1,\ldots,v_n)\mapsto \left((a_1,\ldots,a_n)\mapsto \sum_{i=1}^n a_iv_i\right)$$

3.13 Bemerkung

Besitzt $E \to M$ eine G_{0^-} -Reduktion, so ist $\mathrm{Iso}_{G_0}(F, E) \subseteq \mathrm{Iso}_G(F, E)$ eine G_{0^-} Reduktion von $\mathrm{Iso}_G(F, E)$.

3.14 Beispiel

Ist auf M eine Riemannsche Metrik gegeben, so ist

$$\operatorname{Iso}_{O(n)}(\mathbb{R}^n, TM) = P_{O(n)}(M)$$

3.15 Lemma

Ist $f: E \to \tilde{E}$ ein G-Bündelisomorphismus, so ist

$$f_*: \mathrm{Iso}_G(F, E) \to \mathrm{Iso}_G(F, \tilde{E}), \alpha \mapsto f \circ \alpha$$

ein G-Prinzipalbündelisomorphismus.

3.16 Sprechweise

Der Vorgang $E \leadsto \mathrm{Iso}_G(F, E)$ heißt Abmontieren der Faser. Anmontieren von Fasern ist auch für nicht effektive Aktionen wichtig:

3.17 Beispiel und Definition

Ist P ein G-Prinzipalbündel, so heißt $\operatorname{Aut}(P) := P \times_{konj} G, [p,g] = [p\tilde{g}, \tilde{g}^{-1}g\tilde{g}]$ das Bündel der Eichtransformationen. Dies ist ein Bündel mit typischer Faser G und Strukturgruppe G, aber kein Prinzipalbündel!

Ist $f \in \Gamma \operatorname{Aut}(P)$, so ist f ein Bündelautomorphismus, denn für $[p,g] \in \operatorname{Aut}_x(P)$ und $\tilde{p} \in P_x$ definiert

$$[p,g](\tilde{p})=:[\tilde{p}\tilde{g},g](\tilde{p})=\left[\tilde{p},\tilde{g}g\tilde{g}^{-1}\right](\tilde{p})=\tilde{p}\tilde{g}g\tilde{g}^{-1}$$

einen Bündelautomorphismus, denn

$$[p,g](\tilde{p}a) = [\tilde{p}\tilde{g},g](\tilde{p}a) = [\tilde{p},\tilde{g}g\tilde{g}^{-1}](\tilde{p}a) = [\tilde{p}a,a^{-1}\tilde{g}g\tilde{g}^{-1}a](\tilde{p}a) = \tilde{p}\tilde{g}g\tilde{g}^{-1}a.$$

Umgekehrt: Ist $f: P \to P$ ein Bündelautomorphismus, so ist ein Schnitt s in Aut (P) auf folgende Weise gegeben: Es ist für jedes $p \in P$ ist f(p) = pg für ein eindeutig definiertes g. Setze s(x) = [p, g]. Dies ist wohldefiniert, denn für $\tilde{p} = pa$ ist

$$f(\tilde{p}) = f(pa) = pga = \tilde{p}a^{-1}ga \text{ und } [\tilde{p}, a^{-1}ga] = [p, g].$$

3.18 Übungsaufgaben

1. Es sei $P \to B$ ein G-Prinzipalfaserbündel und F ein G-Raum. Was ist

$$\operatorname{Iso}_G(F, P \times_G F) \to B$$

für ein Bündel, wenn die Aktion $G \to \text{Hom\"oo}(F)$ nicht effektiv ist, sondern einen nichttrivialen Kern G_0 hat?

- 2) Auf \mathbb{R}^n operiere \mathbb{Z}_2 durch die Involution $x \mapsto -x$. Dann ist $E_n := S^1 \times \mathbb{Z}_2 \mathbb{R}^n$ für $n \geq 1$ als Faserbündel mit Strukturgruppe \mathbb{Z}_2 natürlich nicht trivial (weshalb nämlich?). Wir betrachten E_n jetzt aber als Vektorraumbündel über S^1 . Zeigen Sie: E_2 ist trivial, E_1 aber nicht. Verallgemeinerung für E_n mit $n \geq 3$?
- 3) Es sei $\alpha: H \to G$ ein Liegruppenepimorphismus, K sein Kern und P ein H-Prinzipalfaserbündel. Zeigen Sie: Das G-Prinzipalfaserbündel $P \times_{\alpha} G$ ist genau dann trivial, wenn sich die Strukturgruppe von P auf K reduzieren läßt.
- 4) Bestimmen Sie eine Untergruppe $H \subset GL(n,\mathbb{R})$, sodass gilt: Ein n dimensionales Vektorraumbündel E besitzt genau dann ein eindimensionales Untervektorraumbündel, wenn seine Strukturgruppe auf H reduzierbar ist.
- 5) Zeigen Sie: Eine differenzierbare n-dimensionale Mannigfaltigkeit besitzt genau dann eine Metrik vom Index k, wenn das Tangentialbündel TM als Summe $TM = \xi \oplus \eta$ eines k-dimensionalen Vektorraumbündels ξ und eines (n-k)-dimensionalen Vektorraumbündels η geschrieben werden kann.

Die Parallelverschiebung

4.1 Definition

Sei $E \xrightarrow{\pi} M$ eine lokal triviale Faserung. Eine Zuordnung τ , die jedem Weg $\gamma: [a,b] \to M$ einen Diffeomorphismus $\tau_{\gamma}: E_{\gamma(a)} \to E_{\gamma(b)}$ zuordnet, heißt Paralleltransport oder Parallelverschiebung, falls

1. Die Abbildung τ hängt differenzierbar von γ ab, d.h. sind $U \subseteq \mathbb{R}^n$ offen, $a, b: U \to \mathbb{R}$ differenzierbar mit $a(u) \leq b(u)$ und ist $\gamma: \bigcup_{u \in U} \{u\} \times [a(u), b(u)] \to M$ differenzierbar, so ist

$$\gamma_{\rm Anf}^* E \to \gamma_{\rm End}^* E,$$

$$(u, e) \mapsto (u, \tau_{\gamma_u}(e))$$

differenzierbar. Dabei sind die Anfangs- und Endkurven $\gamma_{\text{Anf,End}}: U \to M$ durch $\gamma_{\text{Anf}}(u) = \gamma(u, a(u))$ und $\gamma_{\text{End}}(u) = \gamma(u, b(u))$ gegeben und $\gamma_u(t) = \gamma(u, t)$.

2. Für a < c < b ist $\tau_{\gamma|_{[c,b]}} \circ \tau_{\gamma|_{[a,c]}} = \tau_{\gamma}$ (Unterteilbarkeit). 3. Ist $\varphi : [c,d] \to [a,b]$ differenzierbar, $\varphi(c) = a, \varphi(d) = b$, so ist $\tau_{\gamma} = \tau_{\gamma \circ \varphi}$. (Invarianz unter Umparametrisierungen)

4. Für $e \in E_x$ hängt $\frac{d}{dt}\Big|_{t=0} \tau_{\gamma|_{[a,t]}}(e)$ nur von $\dot{\gamma}(0)$ ab. (Erstes Ordnungsaxiom)

4.2 Notiz

Ist $\gamma:[a,b]\to M$ konstant, so ist $\tau_{\gamma}=\mathrm{id}_{E_{\gamma(a)}}$ nach 2. und 3.

4.3 Definition

Ist $\gamma:[a,b]\to M$ eine Kurve, $a\leq s_i\leq b$, so schreiben wir:

$$\gamma_{[s_1,s_2]}(t) = \gamma((1-t)s_1 + ts_2), t \in [0,1]$$

4.4 Notiz

Für s>a ist $\tau_{\gamma_{[a,s]}}=\tau_{\gamma|_{[a,s]}}$ und $\tau_{\gamma_{[a,a]}}=\mathrm{id}_{E_{\gamma(a)}}$

4.5 Notation

Ist $\gamma:[a,b]\to M$ differenzierbar, $e\in E_{\gamma(a)}$, so heißt $\gamma_e(t)=\tau_{\gamma_{[a,t]}}(e)$ die (zu e) hochgehobene Kurve.

4.6 Bemerkung

Ist $f: M \to N$ eine differenzierbare Abbildung, $E \to N$ eine lokal triviale Faserung mit Paralleltransport τ , so ist ein Paralleltransport in $f^*E \to M$ durch

$$(f^*\tau_{\gamma})(x,e) = (\gamma(b), \tau_{f\circ\gamma}(e))$$

für $\gamma:[a,b]\to M$ mit $\gamma(a)=x$ und $e\in E_{f(x)}$ wohldefiniert.

4.7 Definition und Satz

Ist τ eine Parallelverschiebung auf E und $\gamma: I \to M$ eine Kurve in M, so ist für jedes $e \in E_p$

$$\dot{\tau}_e: T_pM \to T_eE, v \mapsto \dot{\gamma}_e(0)$$

wobei $\dot{\gamma}(0) = v$ wohldefiniert (1. Ordnungsaxiom). Der dadurch definierte Vektorraumbündelhomomorphismus

$$\pi^*TM \to TE, (e, v) \mapsto \dot{\tau}_e(v)$$

heißt infinitesimaler Parallelismus. Es gilt $(d\pi)_e \circ \dot{\tau}_e = \mathrm{id}_{T_{\pi(e)}M}$, insbesondere ist $\dot{\tau}_e$ injektiv.

Beweis:

Zu zeigen: $\dot{\tau}_e$ ist linear. Wir konstruieren durch radialen Paralleltransport einen Schnitt s in E und zeigen, dass $ds = \tau_e$ gilt, genauer:

Sei $p \in M$, (U, h) eine Karte um p mit h(p) = 0 und $\bar{U}_1(0) = h(U)$.

Sei $\gamma: U \times [0,1] \to M; \gamma(x,t) := h^{-1}(\operatorname{th}(x))$. Dann ist

$$\gamma_{\text{Anf}}(x) = \gamma(x,0) = p$$
, also $\gamma_{\text{Anf}}^* E = U \times E_p$
 $\gamma_{\text{End}}(x) = \gamma(x,1) = x$ also $\gamma_{\text{End}}^* E = E \mid U$

Die Abbildung $\tau: U \times E_p \to E \mid U, (x, e) \mapsto \tau_{\gamma_x}(e)$ ist differenzierbar. Sei $s_e \in \Gamma(E \mid U)$ durch $s_e(x) = \tau_{\gamma_x}(e)$ definiert. Wir zeigen jetzt, dass $ds_e(v) = \dot{\tau}_e(v)$ gilt, dann folgt sofort: $\dot{\tau}_e$ ist linear und $d\pi_e \circ \dot{\tau}_e = \text{id}$. Es ist $\tau_{\gamma_{[0,t]}}(e) = \tau(\gamma(x,t),e) = s_e(\gamma_x(t))$. Sei $\dot{\gamma}_x(0) = v$. Dann ist

$$ds_e(v) = \frac{d}{dt} \bigg|_{t=0} (s_e \circ \gamma_x) = \frac{d}{dt} \bigg|_{t=0} \tau_{\gamma_{[0,t]}}(e) = \frac{d}{dt} \bigg|_{t=0} (\gamma_{x_{[0,t]}})_e = \dot{\tau}_e(v)$$

4.8 Definition

Der Untervektorraum $H_e = \dot{\tau}_e \left(T_{\pi(e)} M \right) \subseteq T_e E$ heißt der Horizontalraum an der Stelle e des Parallelismus τ . Ein Schnitt $s \in \Gamma E$ heißt horizontal an der Stelle x, wenn $ds(v) \in H_{s(x)}$ für alle $v \in T_x M$ gilt.

4.9 Notiz

Die Vereinigung $H = \bigcup_{e \in E} H_e \subseteq TE$ ist in kanonischer Weise ein Untervektorraumbündel mit $H \oplus \ker d\pi = TE$. Es ist $\ker d\pi_e = T'_e E := T_e E_{\pi(e)}$.

Wir verallgemeinern jetzt den Begriff des Horizontalraums eines Parallelismus, ohne das Vorliegen einer Parallelverschiebung zu fordern.

4.10 Definition

Wir bezeichnen das Fasertangentialbündel mit $\bigcup T_e E_{\pi(e)} = T'E$. Ein Zusammenhang ist ein Untervektorraumbündel $H \subseteq TE$, sodass gilt:

$$H \oplus T'E = TE$$

Ist H ein Zusammenhang auf E, so heißt H_e auch Horizontalraum an der Stelle e, ein Schnitt $s \in \Gamma E$ horizontal and der Stelle x, falls $ds_x(T_xM) \subseteq H_{s(x)}$ und horizontal, falls $ds_x(T_xM) \subseteq H_{s(x)}$ für alle $x \in M$ gilt. Eine Kurve $\gamma: I \to E$ heißt horizontal and der Stelle t, falls $\dot{\gamma}(t) \in H_{\gamma(t)}$ und horizontal, falls $\dot{\gamma}(t) \in H_{\gamma(t)}$ für alle $t \in I$.

4.11 Bemerkung

In jeder lokal trivialen Faserung gibt es einen Zusammenhang. Man erhält einen Zusammenhang auf E, wenn man eine Riemannsche Metrik auf E wählt und $H_e := (T'_e E)^{\perp}$ setzt.

4.12 Lemma

Ist τ eine Parallelverschiebung in E, so ist durch den zugehörigen infinitesimalen Parallelismus ein Zusammenhang gegeben und die Hochhebungen von Kurven sind Horizontalkurven.

Beweis:

Zu zeigen: Für $\gamma:[0,L]\to M$ ist stets $\gamma_e(t)\in H_{\gamma_e(t)}$ für $t\geq 0$. Dies gilt, denn $\gamma_e\mid [t,L]$ ist die Hochhebung von $\gamma\mid [t,L]$ zum Anfangspunkt $\gamma_e(t)$, also ist $\dot{\gamma}_e(t)\in H_{\gamma_e(t)}$ (Axiom 2).

4.13 Satz und Definition

Sei $E \xrightarrow{\pi} M$ eine lokal triviale Faserung mit Zusammenhang $H \subseteq TE, f : B \to M$ eine differenzierbare Abbildung. Dann ist auf f^*E ein Zusammenhang f^*H durch $(f^*H)_{(b,e)} := \left(d\hat{f}_{(b,e)}\right)^{-1}(H_e)$ definiert. Dabei ist $f^*E \xrightarrow{\hat{f}} E$ die kanonische Vektorraumbündelabbildung über f.

Beweis:

Durch $f^*H \subseteq T(f^*E)$ ist ein Untervektorraumbündel definiert, da f^*H der Kern der Vektorraumbündelabbildung $Tf^*E \to TE \xrightarrow{pr} T'E$ ist. Das Faserdifferenzial $d\hat{f}_{(b,e)} \mid T'_{(b,e)}(f^*E) : T'_{(b,e)}(f^*E) = T_{(b,e)}\left(\{b\} \times E_{f(b)}\right) \cong T_eE_{f(b)} \to T_eE_{f(b)} = T'_eE$ ist ein Isomorphismus, denn $\hat{f}(b,e) = e$, also $\hat{f} \mid (f^*E)_b = \operatorname{pr}_2$. Es ist

$$(f^*H)_{(b,e)} + T'_{(b,e)}f^*E = T_{(b,e)}f^*E$$

denn ist $v \in T_{(b,e)}$ (f^*E) , so ist $d\hat{f}(v) \in T_{f(b)}E = T_eE_{f(p)} \oplus H_e$, also ist $v \in d\hat{f}^{-1}\left(T_eE_{f(p)}\right) + d\hat{f}^{-1}\left(H_e\right)$. Die Summe ist direkt: Sei $v \in (f^*H)_{(b,e)} \cap T'_{(b,e)}\left(f^*E\right)$. Dann ist $d\hat{f}(v) = 0$, also ist v = 0, da $d\hat{f}\Big|_{T'f^*E}$ ein Isomorphismus ist. Also ist $T(f^*E) = (f^*H) \oplus T'(f^*E)$.

4.14 Notiz

Eine differenzierbare Kurve $\alpha: I \to f^*E$ ist genau dann horizontal bezüglich f^*H , falls $\hat{f} \circ \alpha$ horizontal bezüglich H ist.

4.15 Lemma

Sei $E \to M$ eine lokal triviale Faserung mit Zusammenhang $H, \beta: (t_1, t_2) \to M$ eine differenzierbare Kurve, v das auf β^*E eindeutig definierte horizontale Vektorfeld über ∂_t . Dann entsprechen die Horizontalkurven über β genau den Flusslinien von v.

Genauer: Ist $\gamma:(c_1,c_2)\to \beta^*E$ die eindeutig definierte maximale Integralkurve von v mit $\gamma(t_0)=(t_0,e),e\in E_{\beta(t_0)}$, so ist $\hat{\beta}(\gamma(t))=\operatorname{pr}_2(\gamma(t))$ eine Horizontalkurve in E über β . Umgekehrt ist jede Horizontalkurve von dieser Form.

Beweis:

Sei γ eine maximale Integralkurve von v mit

$$\gamma(t_0) = (t_0, e_0), e_0 \in E_{\beta(t_0)} \tag{4.2}$$

Wegen $d\pi(v) = \partial_t$ ist $\gamma(t) = (t + c, \tilde{\gamma}(t))$ mit $\tilde{\gamma}(t) \in E_{\beta(t+c)}$. Wegen 4.2) ist also $\gamma(t) = (t, \tilde{\gamma}(t))$. Da $d\hat{\beta}(\beta^*H) \subseteq H$ ist γ genau dann horizontal, wenn $\hat{\beta} \circ \gamma$ horizontal ist. Umgekehrt: Jede Kurve γ in E über β (d.h. mit $\pi \circ \gamma = \beta$) definiert eine Kurve in β^*E durch $\beta^*\gamma(t) = (t, \tilde{\gamma}(t))$

Umgekenrt: Jede Kurve γ in E uber β (d.n. mit $\pi \circ \gamma = \beta$) definiert eine Kurve in β E durch β $\gamma(t) = (t, \gamma(t))$ die genau dann horizontal bezüglich f^*H ist, wenn γ horizontal bezüglich H ist.

4.16 Definition

Ein Zusammenhang $H \subseteq TE$ heißt vollständig, wenn für jede Kurve $\gamma: (t_1, t_2) \to M$ gilt: Jede Horizontalkurve über γ ist auf (t_1, t_2) definiert.

4.17 Korollar

- 1. Sei $\beta:(t_1,t_2)\to M, t_0\in(t_1,t_2)$. Dann gibt es genau eine maximale Horizontalkurve $\beta_e:(c_1,c_2)\to E$ zu jedem $e\in E_{\beta(t_0)}$.
- 2. Der Zusammenhang einer Parallelverschiebung ist vollständig. Sei nämlich $\gamma:(t_1,t_2)\to M, t_0\in (t_1,t_2), e\in E_{\gamma(t_0)}$. Setze $\gamma_e(t)=\tau_{\gamma[t_0,t]}(e)(*)$ wie in 4.5.
- 3. Jeder vollständige Zusammenhang ist ein Zusammenhang einer Parallelverschiebung, definiere nämlich τ_{γ} durch (*). Dann ist 4.3.1 erfüllt nach dem Satz von Picard-Lindelöff, 4.2.2,3 entsprechen den Flussaxiomen, denn für Lösungskurve eines Flusses gilt $\alpha_x(t) = \alpha_{\alpha_x(t_0)} (t t_0)$. 4.3.4 (Erstes Ordnungsaxiom) folgt, da $d\pi_e: H_e \to T_{\pi(e)}M$ ein Isomorphismus ist.

4.18 Lemma

Ist $E \to M$ eine lokal triviale Faserung mit kompakter typischer Faser F, so ist jeder Zusammenhang in E vollständig.

Beweis:

Sei $E \to M$ eine lokal triviale Faserung mit Zusammenhang $H, \beta: (t_1, t_2) \to M$ eine Kurve und v das horizontale Vektorfeld über ∂_t in β^*E . Sei $\gamma: (\tilde{t}_1, \tilde{t}_2) \to \beta^*E$ eine maximale Lösungskurve zu v, also o.B.d.A. $\gamma(t) = (t, \tilde{\gamma}(t))$. Wir benutzen, dass Flusslinien endlicher Lebensdauer schließlich jedes Kompaktum verlassen (d.h. ist $\alpha: (t_1, t_2) \to X$ eine Integralkurve eines Vektorfeldes, $t_2 < \infty$, dann gibt es zu jeder kompakten Teilmenge $K \subseteq X$ ein $T \in (t_1, t_2)$ mit $\alpha(t) \notin K$ für t > T). Angenommen $t_1 < c_1 \le \tilde{t}_1 < \tilde{t}_2 \le c_2 < t_2$. Dann wäre Bild $\gamma \subseteq [c_1, c_2] \times F$ (kompakt), also wäre γ auf ganz $\mathbb R$ definiert. Widerspruch!

4.19 Aufgabe

Es sei $E \to M$ eine differenzierbare lokal triviale Faserung mit einem Zusammenhang $H \subset TE$ und $\beta: (t_1, t_2) \to M$ eine differenzierbare Kurve. Man schreibe das Differentialgleichungssystem für die Horizontalkurven α über β in lokalen Koordinaten nieder.

4.20 Aufgabe

Für die triviale Faserung $S^1 \times \mathbb{R} \to S^1$ gebe man einen nicht vollständigen Zusammenhang an.

5 Kovariante Ableitung und Zusammenhangsform

5.1 Vorbemerkung

Sei V ein Vektorraum, $V' \subseteq V$ ein Untervektorraum. Die Wahl folgender Objekte ist gleichbedeutend:

- 1. Ein Komplement $W \subseteq V$ von $V', V' \oplus W = V$
- 2. Eine Projektion $V \to V'$
- 3. Ein Rechtsinverses von $V \to V/V'$
- 4. Eine Spaltung der exakten Sequenz $O \to V' \to V \to V/V' \to O$

Entsprechend können Zusammenhänge auf $E \to M$ auf verschiedene äquivalente Weisen definiert werden.

5.2 Satz und Definition

Ist H ein Zusammenhang, so heißt die durch H gegebene T'E-wertige 1-Form $\omega' \in \Gamma$ Hom $(TE, T'E) = \Omega^1(E, T'E)$ mit $\omega'(v+w) = v$ für $(v,w) \in T'_eE \oplus H_e$ die Zusammenhangsform zu H. Umgekehrt: Ist $\omega' \in \Omega^1(E, T'E)$, sodass $\omega'_e : E_e \to T'_eE$ eine Projektion ist, so ist ω die Zusammenhangsform des Zusammenhangs $H = \ker \omega'$.

5.3 Definition

Ist H ein Zusammenhang auf E mit Zusammenhangsform ω' , so ist die kovariante Ableitung (zu H) in Richtung $v \in T_xM$ durch

$$\nabla_v s = \omega'_{s(x)}(ds(v)) \in T'_e E$$

für alle $s \in \Gamma(E \mid U)$ mit $x \in U$ definiert.

5.4 Bemerkung

Ist $E \to M$ ein Vektorraumbündel, so ist $T'_e E = E_{\pi(e)}$, also $\nabla_v s \in E_{\pi(v)}$. Insbesondere definiert ∇ dann eine Abbildung

$$\Gamma TM \times \Gamma E \to \Gamma E, (v, s) \mapsto (\nabla_v s)$$

5.5 Definition und Satz

Sei $R(d\pi) \subseteq \text{Hom}(\pi^*TM, TE)$ das Bündel der Rechtsinversen von $d\pi$, also $R(d\pi) = d\pi^{-1}(id_{\pi^*TM})$ also

$$\alpha_e \in R(d\pi)_e \Leftrightarrow d\pi_e \circ \alpha_e = \mathrm{id}_{T_{\pi(e)}M}$$

 $R(d\pi)$ ist ein affines Bündel, also ein Bündel mit typischer Faser \mathbb{R}^{mn} und Strukturgruppe Aff (mn, \mathbb{R}) , wobei n die Dimension von E und m die Dimension von M ist. Das zugehörige Vektorraumbündel ist $\operatorname{Hom}(\pi^*TM; T'E)$, d.h., jedes $\gamma \operatorname{Hom}(\pi^*TM, T'E)$ operiert frei und transitiv auf $\Gamma R(d\pi)$. Die Schnitte in $R(d\pi)$ entsprechen genau den Zusammenhängen H in E.

5.6 Definition

Seien X und Y differenzierbare Mannigfaltigkeiten. Zwei lokal um $x_0 \in X$ definierte Abbildungen f und $g: U \to Y$ heißen k-äquivalent bei x_0 , wenn gilt:

- 1. $f(x_0) = g(x_0)$
- 2. Für eine und dann jede Wahl von Karten um x_0 und $f(x_0)$ stimmen alle partiellen Ableitungen bis zur Ordnung k von f und g überein.

Man schreibt $[f]_{x_0}^k$ für die k-Äquivalenzklassen bei x_0 . Die Menge dieser Äquivalenzklassen bildet in kanonischer Weise ein differenzierbare Mannigfaltigkeit

$$J^k(X;Y) = \{ [f]_x^k \mid x \in X; f \text{ lokal um } x \text{ definiert } \}$$

Insbesondere ist $J^0(X;Y) = X \times Y$. Ist $E \to M$ eine lokal triviale Faserung, so bezeichnet

$$J^k E := J^k(\pi) = \{ [f]_x^k \in J^k(M; E) \mid \pi \circ f = \mathrm{id} \}$$

5.7 Bemerkung

Für jedes $v \in T_{\pi(e)}M$ sei $E \xrightarrow{E} M$ eine lokal triviale Faserung mit Zusammenhang H. Dann ist

$$\nabla_v: J_e^1 E \to T_e' E, [s]_x^1 \mapsto \nabla_v s$$

eine wohldefinierte Abbildung.

5.8 Lemma

- 1. Kanonisch ist $J^0(\pi) = E, [s]_x^0 \mapsto s(x)$
- 2. $J^1(\pi) \to R(d\pi), [s]_x^1 \mapsto ds_x$ ist ein wohldefinierter Diffeomorphismus über E der $\operatorname{Hom}(\pi^*TM, T'E)$ -äquivariant ist. Damit ist $J^1(E) \to E$ mit $[s]_x^1 \mapsto s(x)$ ein affnes Bündel über E mit Vektorraumbündel $\operatorname{Hom}(\pi^*TM, T'E)$. Die Aktion $\operatorname{Hom}(\pi^*TM, T'E) \times J^1(\pi) \to J^1(\pi)$ ist dabei durch $(\alpha, [s]) \mapsto [s + \alpha]$) bezüglich Bündelkarten gegeben. Ein Zusammenhang kann damit gelesen werden als Schnitt in $J^1(\pi) \to E$.

Beweis:

Seien [s] und $[\tilde{s}] \in J^1(\pi)$ mit $s(x) = \tilde{s}(x)$. Dann gilt $[s]_x^1 = [\tilde{s}]_x^1 \Leftrightarrow ds_x = d\tilde{s}_x$. Folglich ist die Abbildung wohldefiniert und injektiv. Um die Surjektivität zu zeigen, benutzen wir lokale Karten (Details: Übungsaufgabe).

Zusammenfassend ist ein Zusammenhang also eine Spaltung der Sequenz

$$0 \to T'E \xrightarrow{i} TE \xrightarrow{d\pi} \pi^*TM \to 0$$

5.9 Lemma

Sei ∇ die kovariante Ableitung eines Zusammenhangs auf $E \to M$, dann ist

$$\nabla: J^1E \to \operatorname{Hom}(\pi^*TM; T'E)$$

eine Vektorisierung des affinen Bündels $J^1E \to E$, d.h. ein translationäquivarianter Diffeomorphismus über E. Der Zusammenhang ist dann durch $\nabla^{-1}(0)$ definiert.

Beweis:

Sei $\sigma_e: T_xM \to T_eE$ das durch den Zusammenhang definierte Rechtsinverse von $d\pi_e$ (also $\sigma_e(T_xM) = H_e$). Dann ist

$$J^{1}(\pi)_{e} = R(d\pi)_{e} \xrightarrow{\nabla} \operatorname{Hom}(T_{x}M, T'_{e}E)$$
$$[s]_{x}^{1} =: [\sigma + \varphi] \mapsto \nabla(\sigma + \varphi) = \varphi$$

und für $\psi \in \text{Hom}(T_xM; T'_eE)$ ist $[s + \psi] = [\sigma + \varphi + \psi]$ also $\nabla(s + \psi) = \varphi + \psi = \nabla s + \psi$.

5.10 Korollar

 $\nabla[s] = [s] - \sigma(s(x))$, wobei σ wie im Beweis von 5.9.

5.11 Definition

Unter einer kovarianten Ableitung auf einer lokal trivialen Faserung versteht man eine Vektorisierung des affinen Bündels $J^1E \to E$.

5.12 Korollar

Durch $\nabla \to \nabla^{-1}(0)$ ist eine Bijektion zwischen kovarianten Ableitungen und dem Raum der Zusammenhänge (gelesen als Schnitt in $J^1(\pi)$) gegeben.

5.13 Definition

Ist ∇ eine kovariante Ableitung in E und ω' die zugehörige Zusammenhangsform, so ist für $\alpha:I\to E$

$$\frac{\nabla}{dt}\alpha:=\omega'(\dot{\alpha}(t))$$

die kovariante Ableitung von α .

5.14 Notiz

Ist $v \in T_x M$ und β eine repräsentierende Kurve, also $\beta(0) = v$, dann ist $\frac{\nabla}{dt} s \circ \beta = \nabla_v s$, denn $ds_x(v) = \frac{d}{dt}\big|_{t=0} s \circ \beta$.

5.15 Notation

Sei τ ein Paralleltransport eines Zusammenhangs, und sind $\beta:(t_1,t_2)\to M$ und $\alpha:(t_1,t_2)\to E$ Kurven mit $\pi\circ\alpha=\beta$. Sei $t_0\in(t_1,t_2)$, dann nennen wir

$$\alpha_{(t_0)}: (t_1, t_2) \to E_{\beta(t_0)}, \alpha_{(t_0)}(t) := \tau_{\beta_{[t,t_0]}}(\alpha(t))$$

mit $\beta_{[t,t_0]}(s) = \beta (st_0 + (1-s)t)$ den t_0 -Monitor von α .

5.16 Lemma

$$\left. \frac{\nabla}{dt} \right|_{t=t_0} \alpha = \dot{\alpha}_{(t_o)} \left(t_0 \right)$$

Beweis:

Sei $f:(t_1,t_2)\times E_{\beta(t_0)}\to E, (t,e)\mapsto \tau_{\beta_{[t_0,t]}}(e).$ Dann gilt

- 1. $f\left(t, \alpha_{(t_0)}(t)\right) = \alpha(t)$
- 2. $f \mid \{t_0\} \times E_{\beta(t_0)} = id$
- 3. f führt horizontale Kurven im Produkt in horizontale Kurven über.

Also ist $df_{(t,e)}\left(1,\dot{\alpha}_{(t_0)}\left(t_0\right)\right) = df\left(\left(1,0\right) + \left(0,\dot{\alpha}_{(t_0)}\left(t_0\right)\right) = v + \dot{\alpha}_{(t_0)}\left(t_0\right)$, wobei v horizontal ist, also ist $\frac{\nabla}{dt}\Big|_{t=t_0}\alpha(t) = \dot{\alpha}_{(t_0)}\left(t_0\right)$.

5.17 Notation

Wir bezeichnen den affinen Raum der Zusammenhänge über $E \to M$ mit $\mathcal{C}(E) = \Gamma R(d\pi) = \Gamma J^1 E$.

5.18 Aufgabe

Es sei G eine Liegruppe mit einer gegenüber (Rechts- und Links-) Translation invarianten Riemannschen Metrik und $G_0 \subset G$ eine kompakte Untergruppe. Man zeige: Die Parallelverschiebung des zu den Fasern orthogonalen Zusammenhangs von $G \to G/G_0$ ist isometrisch.

5.19 Aufgabe

Eine Liegruppe sei durch Links- oder Rechtstranslation parallelisiert. Man zeige, dass bezüglich des dadurch kanonisch gegebenen Zusammenhangs für $TG \to G$ die einparametrigen Untergruppen geodätisch sind.

6 G-Zusammenhänge

6.1 Definition

Sei $E \to M$ ein Faserbündel mit Strukturgruppe G. Dann heißt eine Parallelverschiebung in E eine G-Parallelverschiebung, falls sie bezüglich Karten durch eine G-Linksaktion gegeben ist.

6.2 Beispiel

- 1. Ist $P \to M$ ein Prinzipalbündel, dann ist eine Parallelverschiebung genau dann eine G-Parallelverschiebung, wenn für alle γ gilt: $\tau_{\gamma}(pg) = \tau_{\gamma}(p)g$
- 2. Ist $E \to M$ ein Vektorraumbündel, so ist eine Parallelverschiebung genau dann eine $GL(n, \mathbb{R})$ Parallelverschiebung, falls τ_{γ} für alle γ linear ist.
- 3. Ist (M, g) eine Riemannsche Mannigfaltigkeit, so ist eine Parallelverschiebung auf TM genau dann eine O(n)-Parallelverschiebung, falls τ_{γ} eine Isometrie ist für jedes γ .

6.3 Satz

Ist τ eine G-Parallelverschiebung auf P durch

$$\hat{\tau}_{\gamma}: P_x \times_G F \to P_y \times_G F, [p, v] \mapsto [\tau_{\gamma}(p), v], \quad \gamma(0) = x; \gamma(1) = y$$

eine G-Parallelverschiebung auf $P \times_G V$ gegeben. Ist τ eine G-Parallelverschiebung auf E, so ist durch

$$\tilde{\tau}_{\gamma}: \operatorname{Iso}_{\gamma}\left(F, E_{x}\right) \to \operatorname{Iso}_{G}\left(F, E_{y}\right), \varphi \mapsto \tau_{\gamma} \circ \varphi$$

eine Parallelverschiebung auf $\operatorname{Iso}_G(F,E)$ gegeben und es gilt $\tilde{\hat{\tau}} = \tau, \hat{\tilde{\tau}} = \tau$. (Beweis: Übung).

Erinnere: Ist τ eine Parallelverschiebung, so ist der zugehörige infinitesimale Parallelismus durch

$$H_e = \left\{ \dot{\gamma}_e(0) \mid \gamma_e(t) = \tau_{\gamma_{[0:t]}}(e), \gamma : (-\varepsilon, \varepsilon) \to M, \gamma(0) = \pi(e) \right\}$$

definiert.

6.4 Satz

Ein infinitesimaler Parallelismus auf einem G-Prinzipalbündel kommt genau dann von einer G-Parallelverschiebung, falls gilt $H_{pg} = dR_g|_p H_p(*)$.

Beweis:

Für die Horizontalkurven gilt

$$\gamma_{pq}(t) = \gamma_p(t) \cdot g$$

(vgl. 6.2.1), also

$$\dot{\gamma}_{pg}(0) = dR_g|_{n} \dot{\gamma}_{p}(0)$$

Andererseits: Gilt (*), so ist für horizontales γ_p auch γ_{pg} horizontal, also $\tau_{\gamma}(pg) = \tau_{\gamma}(p)g$.

6.5 Definition

Sei $P \to M$ ein G-Prinzipalbündel, so heißt ein Zusammenhang $H \subseteq TP$ ein G-Zusammenhang, falls für alle $p \in P$ und $g \in G$ gilt $dR_gH_p = H_{pq}$.

6.6 Satz

Jeder G-Zusammenhang auf einem G-Prinzipalbündel $P \to M$ ist vollständig, d.h., er ist ein infinitesimaler Parallelismus einer G-Parallelverschiebung.

Beweis:

Sei $\beta:(t_1,t_2)\to M$ eine differenzierbare Kurve. Es ist zu zeigen: Jede Horizontalkurve über β ist auf ganz (t_1,t_2) definiert.

Die Horizontalkurven über β entsprechen genau den Lösungskurven des Horizontalvektorfeldes über $\partial_t \in \beta^* P \cong (t_1, t_2) \times G$.

Genauer: Ist $\gamma_{(t_0,p)}(t) =: (t+t_0,\hat{\gamma}(t))$ eine Lösungskurve des horizontalen Vektorfeldes mit $\gamma_{(t_0,p)}(0) = (t_0,p)$ für $p \in P_{\beta(t_0)}$, so ist $\hat{\gamma}(t-t_0)$ eine Horizontalkurve über β und umgekehrt. Sei $(a_{(t_0,p)},b_{(t_0,p)})$ der maximale Definitionsbereich von $\gamma_{(t_0,p)}$. Dann ist $(a_{(t_0,pg)},b_{(t_0,pg)}) = (a_{(t_0,p)},b_{(t_0,p)})$ für alle $g \in G$, also hängt $a_{(t_0,p)}$ und $b_{(t_0,p)}$ nicht von p ab. Ist $[T_1,T_2] \subseteq (t_1,t_2)$, so gibt es also ein $\varepsilon > 0$, sodass $b_{(t,p)} > \varepsilon$ für alle $t \in [T_1,T_2]$ und $a_{(t,p)} < -\varepsilon$ für alle $t \in [T_1,T_2]$ und alle $p \in P$.

Angenommen, der maximale Definitionsbereich von $\gamma_{(t_0,p)}$ ist (T_1,T_2) mit $T_2 < t_2$. Dann wäre $b_{\left(T_2-\frac{\varepsilon}{2},p\right)} = \frac{\varepsilon}{2}$ für alle $p \in P_{\beta\left(T_2-\frac{\varepsilon}{2}\right)}$.

6.7 Definition und Satz

Ist H ein Zusammenhang auf einem Faserbündel mit Strukturgruppe G, so heißt H ein G-Zusammenhang, falls er infinitesimaler Parallelismus einer G Parallelverschiebung ist. Ist $E = P \times_G F$ mit einem G-Zusammenhang $H \subseteq TE$ und $\tilde{H} \subseteq TP$ der zugehörige G-Zusammenhang in P, so ist $H_{[p,v]} = df_v \left(\tilde{H}_p\right)$, wobei $f_v : P \to P \times_G F, p \mapsto [p,v]$.

Wir schreiben $C^G(E)$ für den Raum der G-Zusammenhänge auf E.

6.8 Bemerkung

Ist P ein G-Prinzipalfaserbündel und $L_p: G \to P, g \mapsto pg$, so ist

$$T'P = P \times \mathfrak{g}, (p, X) \mapsto dL_p|_{\mathfrak{g}}(X)$$

ein Vektorraumbündelisomorphismus.

Das Vektorraumbündel $\pi: T'P \to P$ ist kanonisch ein Rechts- G-Bündel, denn ist $R_g: P \to P, p \mapsto pg$ die Rechtsmultiplikation, so ist

$$dR_g: T_p'P \to T_{pq}'P$$

wohldefiniert und $\pi(dR_q(v)) = \pi(v)g$.

Damit wird auch $P \times \mathfrak{g} \to P$ zu einem Rechts-Vektorraumbündel mit der Rechts-G-Aktion

$$G \times (P \times \mathfrak{g}) \to (P \times \mathfrak{g}), (g, (p, X)) \mapsto (pg, \operatorname{Ad}(g^{-1})X),$$

denn
$$dL_{pg|_1}\left(\operatorname{Ad}\left(g^{-1}\right)X\right) = dR_g|_p \circ dL_p|_1(X)$$
, da

$$L_{pq} \circ \operatorname{konj}(g^{-1}) (\gamma(t) = pgg^{-1}\gamma(t)g = p\gamma(t)g = R_q \circ L_p(\gamma(t)).$$

Insbesondere ist also für $v \in T_p P$

$$dR_g(v) = dL_{pg}|_1 \left(\text{Ad} \left(g^{-1} \right) (dL_p)^{-1} (v). \right)$$
 (*)

6.9 Definition

Ist ω' eine Zusammenhangsform eines G-Zusammenhangs H auf einem Prinzipalbündel $P \to M$, so heißt die durch

$$dL_p|_1^{-1} \circ \omega_p' =: \omega_p$$

definierte 1-Form $\omega \in \Omega^1(P,\mathfrak{g})$ die (G-)Zusammenhangsform des G-Zusammenhangs.

6.10 Satz

Eine 1-Form $\omega \in \Omega^1(P, \mathfrak{g})$ ist genau dann eine G-Zusammenhangsform eines G-Zusammenhangs, falls gilt:

1.
$$\omega \mid T_p'P = dL_p^{-1}$$

2.
$$R_g^*\omega = \operatorname{Ad}(g^{-1})\omega$$

Beweis:

Sei $\omega \in \Omega^1(P, \mathfrak{g})$ eine G-Zusammenhangsform, dann gilt 1) offenbar und ist $v = v_H + v'$ mit $v_H \in H_p, v' \in T_p'P$, so ist $dR_g(v_H)$ horizontal und $dR_g(v')$ vertikal, also folgt mit (*):

$$(R_g^*\omega)_p(v) = \omega_{pg} (dR_g(v_H) + dR_g(v')) = \omega_{pg} (dR_g(v') = dL_{pg}^{-1} \circ dR_g(v'))$$
$$= \operatorname{Ad} (g^{-1}) \circ (dL_p)^{-1}(v') = \operatorname{Ad} (g^{-1}) \omega_p(v)$$

Umgekehrt: Erfüllt ω die Bedingungen 1) und 2), so definiert $H = \ker \omega$ einen G-Zusammenhang, denn es ist $H \cap T'P = \{0\}$ und $dR_g(H_p) = H_{pg}$.

6.11 Definition

Das Vektorraumbündel $P \times_{\text{Ad}} \mathfrak{g} =: \hat{\mathfrak{g}} \to M$ heißt das Bündel der infinitesimalen Eichtransformationen.

6.12 Bemerkung

Ist σ ein (lokaler) Schnitt in $P \times_{Ad} \mathfrak{g}, \sigma(x) = [s(x), v(x)],$ so ist durch

$$(\exp \sigma)(x) = [s(x), \exp(v(x))]$$

ein (lokaler) Schnitt im Bündel der Eichtransformationen $P \times_{\text{konj}} G$ wohldefiniert.

6.13 Definition

Ist $P \to M$ ein G-Prinzipalbündel und ρ eine Darstellung von G auf V. Dann heißt $\alpha \in \Omega^k(P,V)$

- 1. horizontal, $\alpha \in \Omega^k_{\text{hor}}(P, V)$, falls für $v \in T'P$ gilt: $i_v \alpha = 0$,
- 2. ρ -invariant, $\alpha \in \Omega_{\text{inv}}^k(P, V)$, falls gilt $R_q^* \alpha = \rho (g^{-1}) \alpha$.

Ist $\omega \in \Omega^k_{\text{inv},\text{hor}}(P,V) := \Omega^k_{\text{inv}}(P,V) \cap \Omega^k_{\text{hor}}(P,V)$, so heißt ω auch tensoriell.

6.14 Satz

Es gilt:
$$\Omega_{\text{inv,hor}}^{k}(P, V) = \Omega^{k}(M, P \times_{\rho} V).$$

Beweis:

Seien $\alpha \in \Omega_{\mathrm{inv}, \text{ hor }}^k(P, V)$ und $v_1, \ldots, v_k \in T_x M$. Dann ist $\tilde{\alpha} \in \Omega^k(M, P \times_{\rho} V)$ durch $\tilde{\alpha}_x \left(v_1, \ldots, v_k\right) = [p, \alpha_p \left(\tilde{v}_1, \ldots, \tilde{v}_k\right)]$, wobei $\tilde{v}_j \in T_p P$ mit $d\pi \left(\tilde{v}_j\right) = v_j$ wohldefiniert. Umgekehrt sind $\alpha \in \Omega^k(M, P \times_{\rho} V)$ und $v_1, \ldots, v_k \in T_p P$, so ist $\hat{\alpha} \in \Omega_{\mathrm{inv}, \text{ hor }}^k(P, V)$ durch $\alpha_x \left(d\pi \left(v_1\right), \ldots, d\pi \left(v_k\right)\right) =: [p, \hat{\alpha}_p \left(v_1, \ldots, v_k\right)]$ wohldefiniert. Mithilfe eines Zusammenhangs können wir jetzt eine Horizontalableitung definieren.

6.15 Definition

Sei H ein G-Zusammenhang auf P. Dann ist die Horizontalableitung auf P durch

$$D^{H}: \Omega^{k}(P, V) \to \Omega^{k+1}_{\mathrm{hor}}(P, V), \omega \mapsto ((v_{1}, \dots, v_{k+1}) \mapsto (d\omega)(\bar{v}_{1}, \dots, \bar{v}_{k+1}))$$

wobei \bar{v}_i der Horizontalanteil von v_i ist, definiert.

6.16 Definition und Bemerkung

Das kovariante Differential $d^H: \Omega^k\left(M, P \times_{\rho} V\right) \to \Omega^{k+1}\left(M, P \times_{\rho} V\right)$ ist durch D^H und die Identifizierung $\Omega\left(M, P \times_{\rho} V\right) = \Omega_{\text{inv,hor}}\left(P, V\right)$ wohldefiniert.

Beweis:

Es genügt zu zeigen: Für $\eta \in \Omega^k_{\text{inv,hor}}(P, V)$ ist $D^H \eta \in \Omega^{k+1}_{\text{inv}}(P, V)$. Sei \bar{v}_j der Horizontalanteil von v_j . Dann ist

$$\begin{split} \left(R_{g}^{*}D^{H}\eta_{p}\right)\left(v_{1},\ldots,v_{k+1}\right) &= \left(D^{H}\eta\right)_{pg}\left(dR_{g}\left(v_{1}\right),\ldots,dR_{g}\left(v_{k+1}\right)\right) \\ &= (d\eta)_{pg}\left(dR_{g}\left(\bar{v}_{1}\right),\ldots,dR_{g}\left(\bar{v}_{k+1}\right)\right) \\ &= d\left(R_{g}^{*}\eta\right)_{p}\left(\bar{v}_{1},\ldots,\bar{v}_{k+1}\right) = d\left(\rho\left(g^{-1}\right)\eta\right)_{p}\left(\bar{v}_{1},\ldots,\bar{v}_{k+1}\right) \\ &= \rho\left(g^{-1}\right)D^{H}\eta\left(v_{1},\ldots,v_{k+1}\right) \end{split}$$

6.17 Korollar

Ist $\hat{\eta} \in \Omega_{\text{inv, hor}}^k (P, V)$ die durch $\eta \in \Omega^k (M, P \times_{\rho} V)$ gegebene Differenzialform, so ist

$$\left(d^{H}\eta\right)_{x}\left(v_{1},\ldots,v_{k}\right)=\left[p,d\hat{\eta}\left(\bar{v}_{0},\ldots,\bar{v}_{k}\right)\right]=\left[p,D^{H}\hat{\eta}\left(\tilde{v}_{0},\ldots,\tilde{v}_{k}\right)\right]$$

wobei $\bar{v}_j \in T_p P$ horizontal ist mit $d\pi\left(\bar{v}_j\right) = v_j$ und $\tilde{v}_j \in T_p P$ mit $d\pi\left(\tilde{v}_j\right) = v_j$.

6.18 Satz

Ist $\omega \in \Omega^1_{\text{inv}}(P, \mathfrak{g})$ die Zusammenhangsform eines G-Zusammenhangs in $P, \eta \in \Omega^k_{\text{inv}, \text{hor}}(P, V)$, so ist

$$D^H \eta = d\eta + \rho_* \omega \wedge \eta$$

wobei

$$(\rho_*\omega \wedge \eta)(v_0, \dots, v_k) = \sum_{i=0}^k (-1)^i d\rho \bigg|_{1} \omega(v_i) \cdot \eta(v_0, \dots, \hat{v}_i, \dots, v_k)$$

Beweis:

- 1. Fall: (v_0, \ldots, v_k) sind alle horizontal. Dann ist $(\rho_* \omega \wedge \eta) (v_0, \ldots, v_k) = 0$.
- Fall: Mindestens zwei Vektoren sind vertikal. Dann verschwindet die linke Seite und der zweite Summand auf der rechten Seite. Es ist

$$d\eta (v_0, \dots, v_k) = \sum_{i=0}^{k} (-1)^i v_i (\eta (v_0, \dots, \hat{v}_i, \dots, v_k)) + \sum_{i < j} (-1)^{i+j} \eta ([V_i, V_j], V_0, \dots, \hat{V}_i, \dots, \hat{V}_j, \dots V_k)$$

wobei auf der rechten Seit die Vektoren v_i zu Vektorfeldern V_i ergänzt sind und zwar so, dass die vertikalen Vektoren zu vertikalen Vektorfeldern ergänzt sind. Dann ist $[V_i, V_j]$ vertikal, falls V_i, V_j vertikal sind. Also ist in diesem Fall $d\eta (v_0, \ldots, v_k) = 0$.

3. Fall: Genau ein Vektor ist vertikal, alle anderen horizontal. Sei oBdA v_0 vertikal und alle anderen Vektoren horizontal. Die linke Seite verschwindet. Der zweite Summand auf der rechten Seite ergibt: $d\rho_1(\omega(v_0)) \eta(v_1, \ldots, v_k)$. Sei $v_0 = dL_p|_1(X), X \in \mathfrak{g}$. Wir setzen v_0 auf die Faser zu $X_G(\tilde{p}) = dL_{\tilde{p}}(X)$ und v_i als horizontale Vektorfelder v_i fort. Dann ist $[X_G, v_i] = 0$, also $d\eta(v_0, \ldots, v_k) = X_G\eta(v_1, \ldots, v_k)$.

Zu zeigen bleibt: $d\rho|_1(X)\eta(v_1,\ldots,v_k) = -X_G\eta(v_1,\ldots,v_k)$. Es ist

$$X_{G}\eta(v_{1},\ldots,v_{k}) = \frac{d}{dt}\Big|_{t=0} \eta_{p\exp(tX)} \left(v_{1}(p\exp tX),\ldots,v_{k}(p\exp tX)\right)$$

$$\stackrel{\text{Inv.}}{=} \frac{d}{dt}\Big|_{t=0} \rho(\exp(-tX))\eta_{p}\left(v_{1}(p),\ldots,v_{k}(p)\right)$$

6.19 Bemerkung

Für die triviale Darstellung ρ ist $P \times_{\rho} V = M \times V, [p,v] \mapsto (\pi(p),v)$, also $\Omega^k(M,P \times_{\rho} V) = \Omega^k(M,V)$ und $d^H \eta = d\eta$.

Was das kovariante Differential mit der kovarianten Ableitung zu tun hat, werden wir im nächsten Abschnitt sehen. Wir wenden uns zuerst noch einmal den Zusammenhangsformen in P zu.

6.20 Korollar

Sind ω und $\tilde{\omega}$ zwei G-Zusammenhangsformen zweier G-Zusammenhänge H und \tilde{H} auf P, dann ist $\omega - \tilde{\omega} \in \Omega^1(M, P \times_{\operatorname{Ad}} \mathfrak{g}) = \Gamma(\operatorname{Hom}(TM, P \times_{\operatorname{Ad}} \mathfrak{g}))$ und umgekehrt: Ist $A \in \Omega^1(M, P \times_{\operatorname{Ad}} \mathfrak{g})$ und ω eine G-Zusammenhangsform, so ist auch $\omega + A$ eine Zusammenhangsform auf P.

Der Raum der G-Zusammenhänge auf P ist also ein affner Raum mit Vektorraum $\Omega^1(M, P \times_{\mathrm{Ad}} \mathfrak{g}).$

Beweis:

Nach Satz 6.14 und 6.10 ist $\omega - \tilde{\omega} \in \Omega^1_{\text{inv,hor}}(P, \mathfrak{g}) = \Omega^1(M, \hat{\mathfrak{g}})$

Umgekehrt: Ist $\alpha \in \Omega^1(M, P \times_{Ad} \mathfrak{g})$, so ist durch $(\omega + \alpha)_p(v) := \omega_p(v) + dL_p\hat{\alpha}_p(v)$ für $v \in T_pP$ mit $\alpha(d\pi_n(v)) =: [p, \hat{\alpha}_n(v)]$ eine G-Zusammenhangsform wohldefiniert und es gilt:

1.
$$(\omega + \alpha)(v) = \omega(v) = dL_p^{-1}v$$
 für $v \in T_p'P$

2.
$$\hat{\alpha}_{pg}(dR_g(v)) = \operatorname{Ad}(g^{-1})\hat{\alpha}_p(v)$$
, also $R_g^*(\omega + \alpha) = \operatorname{Ad}(g^{-1})(\omega + \alpha)$

6.21 Beispiel

1. Sei M = G/K ein reduktiver homogener Raum, also $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ mit $\mathrm{Ad}(K)\mathfrak{m} \subseteq \mathfrak{m}$ und TM = $G\times_{\mathrm{Ad}(\mathrm{K})}\mathfrak{m},$ dann ist in dem K-Prinzipalbünde
l $G\to G/K$ ein K-ZusammenhnagHdurch

$$H_q = dL_q(\mathfrak{m})$$

wohldefiniert.

2. Wir betrachten $SU(2)=S^3\to S^2, (z_1,z_2)\mapsto [z_1:z_2]$. Dies ist ein S^1 -Prinzipalbündel mit S^1 -Rechtsaktion

$$S^{3}\times S^{1}\rightarrow S^{3},\left(\left(z_{1},z_{2}\right),e^{i\theta}\right)\mapsto\left(z_{1}e^{i\theta},z_{2}e^{i\theta}\right)$$

Wir identifizieren $\mathbb{R}^4 \cong \mathbb{C}^2$, also $i(p_1, p_2, p_3, p_4)^T = (-p_2, p_1, -p_4, p_3)^T$ und definieren $\omega \in \Omega^1(S^3, i\mathbb{R})$ durch

$$\omega_p(Y) = i < Y, ip > \in i\mathbb{R}$$

Behauptung: Dies ist eine Zusammenhangsform eines S^1 -Zusammenhangs, denn

- (a) Für $Y \in T'_p S^3$ ist $\omega_p(y) = dL_p^{-1}(y)$.
- (b) $R_q^*\omega = \operatorname{Ad}(g^{-1})\omega$ für alle $g \in S^1$.

Beweis:

(a) Es ist $T'_p S^3 = \mathbb{R}ip \text{ und } \omega_p(ip) = i < ip, ip >= i = dL_p^{-1}(ip)$. (b) $R^*_{e^{it}}\omega_p(Y) = \omega_{pe^{it}} (dR_{e^{it}}Y) = i < e^{it}Y, ie^{it}p >= i < Y, \text{ ip } >= \omega_p(Y) = \text{Ad } (e^{it}) \omega_p(Y)$.

Also ist ω eine Zusammenhangsform eines S^1 -Zusammenhangs. Es ist

$$H_{e_1} = \{ y \in 0 \times \mathbb{R}^3 \mid < y, e_2 >= 0 \} = 0 \times \mathbb{R}^2$$

6.22 Definition

Sei $\omega \in \Omega^1(P, \mathfrak{g})$ die G-Zusammenhangsform eines G-Zusammenhangs, $s \in \Gamma(P \mid U)$, so heißt $s^*\omega$ Beschreibung des Zusammenhangs mittels s oder lokale Zusammenhangsform bezüglich s.

6.23 Lemma

Sind $s, \tilde{s} \in \Gamma(P \mid U)$ lokale Schnitte, $\tilde{s}(x) = s(x)g(x)$ für $g: U \to G$, dann ist

$$\tilde{s}^*\omega = \operatorname{Ad}(g^{-1}) s^*\omega + g^{-1}dg$$

Beweis:

Sei $v \in T_xM$ und γ repräsentierende Kurve, also $\gamma(0) = x, \dot{\gamma}(0) = v$. Sei $g(\gamma(0)) = g_0$, also $\tilde{s}(x) = s(x)g_0$. Dann ist

$$d\tilde{s}(v) = \left. \frac{d}{dt} \right|_{t=0} \left(s(\gamma(t)) \circ g(\gamma(t)) \right) = \left. dR_g \right|_{s(x)} \circ ds \right|_x + dL_{s(x)g_0} \left(dg_0^{-1} g \right)_x$$

Sei $s^*\omega =: A$ und $\tilde{s}^*\omega =: \tilde{A}$. Dann ist

$$\tilde{A}_{x} = \omega \circ d\tilde{s}_{x} = \left(s^{*} R_{g}^{*} \omega \right)_{x} + \omega_{\tilde{s}(x_{0})} \circ dL_{\tilde{s}(x_{0})} d\left(g_{0}^{-1} g \right) \Big|_{x_{0}}$$

$$= \operatorname{Ad}\left(g^{-1} \right) A_{x} + g^{-1}\left(x_{0} \right) dg \Big|_{x_{0}}$$

da

$$dL_{\tilde{s}(x)}d\left(g_0^{-1}g\right)_x(v)\in T'_{\tilde{s}(x)}P$$
 für $v\in T_xM$

6.24 Bemerkung

Sei $\{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in \Lambda\}$ ein Bündelatlas für P. Seien s_{α} die durch φ_{α} gegebenen Schnitte mit $s_{\beta} =: s_{\alpha}g_{\alpha\beta}$ auf $U_{\alpha} \cap U_{\beta}$ und ist für jedes $\alpha \in \Lambda$ eine 1-Form $A_{\alpha} \in \Omega^{1}(U_{\alpha}, \mathfrak{g})$ gegeben, sodass auf $U_{\alpha} \cap U_{\beta}$ gilt:

$$A_{\beta} = \operatorname{Ad}(g_{\alpha\beta})^{-1} A_{\alpha} + g_{\alpha\beta}^{-1} dg_{\alpha\beta}^{-1}$$

so beschreiben die A_{α} einen G-Zusammenhang auf P.

Beweis:

Sei $X \in T_{s_{\alpha}(x)}P$ Definiere

$$\omega_{s_{\alpha}(x)}(X) = dL_{s_{\alpha}(x)}^{-1} \left(X - ds_{\alpha}|_{x} \circ d\pi_{s_{\alpha}(x)}(X) \right) + A_{\alpha} \left(d\pi_{s_{\alpha}(x)}(X) \right)$$

Für $X \in T_{s_{\alpha}(x)g}P$ setze $\omega_{s_{\alpha}(x)g}(X) = \operatorname{Ad}\left(g^{-1}\right)\omega_{s_{\alpha}(x)}\left(dR_{g^{-1}}(X)\right)$. Dann ist $s_{\alpha}^{*}\omega = A_{\alpha}$ und ω_{α} eine G-Zusammenhangsform. Wegen Lemma 6.23 ist $\omega \mid \pi^{-1}\left(U_{\alpha}\right)$ unabhängig von der Wahl der Karte ($U_{\alpha}, \varphi_{\alpha}$).

6.25 Aufgabe

Es sei $P \xrightarrow{\pi} M$ ein G-Prinzipalfaserbündel mit einem G-Zusammenhang. Für $u \in P$ bezeichne $P(u) \subset P$ die Menge der Punkte, die man mit u durch eine (stückweise differenzierbare) Horizontalkurve verbinden kann, und es sei

$$Hol(u) := \{ g \in Gug \in P(u) \}$$

Man zeige, dass Hol(u) eine Untergruppe von G ist.

6.26 Aufgabe

Es werde vorausgesetzt, dass $\operatorname{Hol}(u) \subset G$ abgeschlossen ist (in der Tat ist das immer der Fall). Man zeige, dass $P(u) \subset P$ eine Reduktion der Strukturgruppe von P auf $\operatorname{Hol}(u)$ definiert.