

Discriminant Analysis Part-2

LECTURE 60

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Statistical technique
 - Used for classification and profiling tasks
 - Model-based approach
 - Idea is
 - To find a separating line or hyperplane equidistant from centroids of different classes

Or

- To find a separating line or hyperplane that is best at discriminating the records into different classes
- Classification procedure is based on distance based metrics
 - Based on the distance of a record from each class

Classification

- Best separation between items is found by measuring their distance from each class
- An item is classified to the closest class
- Euclidean distance metric
 - Distance of a record $(x_1, ..., x_p)$ from centroid $(\overline{x}_1, ..., \overline{x}_p)$ of a class is computed

$$D_{eu}(x,\bar{x}) = \sqrt{(x_1 - \bar{x}_1)^2 + \dots + (x_p - \bar{x}_p)^2}$$

Where centroid \overline{x} is a vector of means of p predictors

- Issues with Euclidean distance metric
 - Distance values depend on the unit of a measurement
 - Based on mean and doesn't account for variance
 - Variability plays an important role in determining the closeness of a record to a particular class
 - Distance should be computed using std. dev. (z-scores) instead of unit of measurement
 - Correlation between variables is ignored

 "Statistical distance" (or Mahalanobis distance) can be used to overcome issues with Euclidean distance metric

$$D_{ml}(x,\bar{x}) = [x - \bar{x}]' S^{-1} [x - \bar{x}]$$

Where $[x - \bar{x}]'$ is transpose matrix of $[x - \bar{x}]$

- Column vectors are turned into row vectors and $\,S^{-1}$ is inverse matrix of S (covariance matrix between p predictors)
- Can be considered as p-dimensional extension of division operation

- Linear Classification Functions
 - Used as basis for separation of records into classes
 - Compute classification score measuring closeness of a record to each class
 - Highest classification score is equivalent of smallest statistical distance
 - Main idea is
 - To find linear functions of predictors that maximize ratio of between-class variability to within-class variability
- Open RStudio

- Assumptions and other issues
 - Predictors follow multivariate normal distribution for all classes
 - Given adequate sample points for all classes, relatively robust to violations of normality assumption
 - Correlation structure between predictors for each class should be same
 - Sensitive to outliers

- Further Comments on discriminant analysis
 - Application and performance aspects are similar to multiple linear regression
 - In discriminant analysis, coefficients of linear discriminant are optimized w.r.t class separation
 - In linear regression, coefficients are optimized w.r.t outcome variable
 - Estimation technique is least squares
 - Same as linear regression

Key References

- Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data by EMC Education Services (2015)
- Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner by Shmueli, G., Patel, N. R., & Bruce, P. C. (2010)

Thanks...