

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

GUIA DE PRÁCTICAS LABORATORIO TALLER 5 MODELO DE REDES

CARRERA:	ASA	ASI X	EM	ET		
ASIGNATURA:	Investigación o	de Operacior	nes CÓDIGO :	TSI-434	GRUPO:	GR1
FECHA:	19/12/15					
APELLIDOS Y NOMBRES :	Sánchez Artea	iga Fredy Vic	ente			
CÉDULA DE IDENTIDAD:	1725634552					
1. PROPÓSITO DE LA PRÁC						
- Solucionar problemas qu	e involucren m	odelo de red	es.			
2. OBJETIVO GENERAL:- Aplicar los conocimientos	adquiridos on	cuanto a mo	ydolamionto y ro	solución haca	dos en model	amiento de
redes.	s auquiriuos eri	cuanto a me	delamento y re	solucion basa	uos en moder	amiento de
3. OBJETIVOS ESPECÍFICO						
- Determinar la solución ó	otima para prol	olema de tra	nsporte.			
4. DESCRIPCIÓN DE ACTIV	IDADES Y PROC	EDIMIENTO	DE LA PRÁCTIC	A:		
INSTRUCCIONES:Resolver los siguientes eNombre del archivo pdf:	-		asta el 20 de dici	iembre de 201	5.	

EJERCICIOS: [1]

1. Una compañía importa bienes de dos partes: Philadelphia y New Orleans. Los envíos de un producto son realizados para clientes en Atlanta, Dallas, Columbus y Boston. Para el siguiente periodo, los suministros en cada puerto, demandas de los clientes, y los costes de envío por caso de cada puerto a cada cliente son los siguientes:

PUERTO					
	Atlanta	Dallas	Columbus	Boston	Oferta en el Puerto
Philadelphia	2	6	6	2	5000
New Orleans	1	2	5	7	3000
Demanda	1400	3200	2000	1400	Ī,

Realice una representación de red para el sistema de distribución, y resuelva el problema

2. Considere la siguiente representación de red de un problema de transporte:

La oferta, demanda y costos por unidad de transporte se indican en la red.

- A. Desarrolle un modelo de programación lineal para este ejercicio (asegúrese de definir bien las variables)
- B. Resuelva el ejercicio y encuentre la solución óptima.

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

5. TÉCNICAS E INSTRUMENTOS APLICADOS:

-MS Excel

-Edraw Max

6. RESULTADOS

1. Una compañía importa bienes de dos partes: Philadelphia y New Orleans. Los envíos de un producto son realizados para clientes en Atlanta, Dallas, Columbus y Boston. Para el siguiente periodo, los suministros en cada puerto, demandas de los clientes, y los costes de envío por caso de cada puerto a cada cliente son los CHICATEC

siguientes:

8 5		K.			
PUERTO	Atlanta	Dallas	Columbus	Boston	Oferta en el Puerto
Philadelphia	2	6	6	2	5000
New Orleans	1	2	5	7	3000
Demanda	1400	3200	2000	1400	

Representación de red para el sistema de distribución.

Resolución del problema

Función Objetivo

Philadelphia
$$\rightarrow 2x_{11} + 6x_{12} + 6x_{13} + 2x_{14}$$

New Orleans $\rightarrow x_{21} + 2x_{22} + 5x_{23} + 7x_{24}$

$$Min z = 2x_{11} + 6x_{12} + 6x_{13} + 2x_{14} + x_{21} + 2x_{22} + 5x_{23} + 7x_{24}$$

Restricciones del origen (Oferta)

Philadelphia
$$\rightarrow x_{11} + x_{12} + x_{13} + x_{14} \le 5000$$

New Orleans $\rightarrow x_{21} + x_{22} + x_{23} + x_{24} \le 3000$

Restricciones del destino (Demanda)

Atlanta →
$$x_{11} + x_{21} = 1400$$

Dallas → $x_{12} + x_{22} = 3200$
Columbus → $x_{13} + x_{23} = 2000$
Boston → $x_{14} + x_{24} = 1400$

Planteamiento del problema

$$\begin{array}{c} \textit{Min } z = 2x_{11} + 6x_{12} + 6x_{13} + 2x_{14} + x_{21} + 2x_{22} + 5x_{23} + 7x_{24} \\ \textit{Sujeto } a \\ & x_{11} + x_{12} + x_{13} + x_{14} & \leq 5000 \\ & x_{21} + x_{22} + x_{23} + x_{24} \leq 3000 \\ & x_{11} & + x_{21} & = 1400 \\ & x_{12} & + x_{22} & = 3200 \\ & x_{13} & + x_{23} & = 2000 \\ & x_{14} & + x_{24} = 1400 \end{array}$$

 $x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24} \ge 0$

Solución Solver.

Datos del proble	ema											
	X11	X12	X13	X14	X21	X22	X23	X24	Total			
Objetivo z	2	6	6	2	1	2	5	7	37400		Limites	
Restriccion 1	1	1	1	1	0	0	0	0	5000	<=	5000	Oferta Philadelphia
Restriccion 2	0	0	0	0	1	1	1	1	3000	< =	3000	Oferta New Orlans
Restriccion 3	1	0	0	0	1	0	0	0	1400	511	1400	Demanda Atlanta
Restriccion 4	0	1	0	0	0	1	0	0	3200	::±::	3200	Demanda Dallas
Restriccion 5	0	0	1	0	0	0	1	0	2000	: - :	2000	Demanda Columbus
Restriccion 6	0	0	0	1	0	0	0	1	1400	18	1400	Demanda Boston
Solucion												
	X11	X12	X13	X14	X21	X22	X23	X24	1			
Solucion	1400	1600	2000	0	0	1600	0	1400	37400			
Fredy Vicente S	ánchez Arte	eaga		Quito, Dici	embre 19 d	e 2015						

Representación solución óptima.

$Origen \rightarrow Destino$	Unidades enviadas.	Costo por unidad	Costos totales.
Philadelphia → Atlanta	1400	2	2800
Philadelphia → Dallas	1600	6	9600
$Philadelphia \rightarrow Columbus$	2000	6	12000
New Orleans → Dallas	1600	2	3200
New Orleans → Boston	1400	7	9800
		TOTAL:	37400

2. Considere la siguiente representación de red de un problema de transporte:

La oferta, demanda y costos por unidad de transporte se indican en la red.

A. Desarrolle un modelo de programación lineal para este ejercicio (asegúrese de definir bien las variables)

Resolución del problema

Función Objetivo

Jefferson City →
$$14x_{11} + 9x_{12} + 7x_{13}$$

Omaha → $8x_{21} + 10x_{22} + 5x_{23}$

$$Min z = 14x_{11} + 9x_{12} + 7x_{13} + 8x_{21} + 10x_{22} + 5x_{23}$$

Restricciones del origen (Oferta)

Jefferson City →
$$x_{11} + x_{12} + x_{13} \le 30$$

Omaha → $x_{21} + x_{22} + x_{23} \le 20$

Restricciones del destino (Demanda)

Des Moines →
$$x_{11} + x_{21} = 25$$

Kansas City → $x_{12} + x_{22} = 15$
St. Louis → $x_{13} + x_{23} = 10$

Planteamiento del problema

$$\begin{array}{lll} \textit{Min } z = \ 14x_{11} + & 9x_{12} + 7x_{13} + \ 8x_{21} + 10x_{22} + 5x_{23} \\ \textit{Sujeto } a & & & & & & \\ & x_{11} + x_{12} + x_{13} & & \leq 30 \\ & & x_{21} + x_{22} + x_{23} & \leq 20 \\ & x_{11} & + x_{21} & & = 25 \\ & x_{12} & + x_{22} & & = 15 \\ & x_{13} & + x_{23} & & = 10 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

B. Resuelva el ejercicio y encuentre la solución óptima.

Solución Solver.

ema									
X11	X12	X13	X21	X22	X23	Total			
14	9	7	8	10	5	435		Limites	
1	1	1	0	0	0	30	<=	30	Oferta Jefferson City
0	0	0	1	1	1	20	<=	20	Oferta Omaha
1	0	0	1	0	0	25	=	25	Demanda Des Moines
0	1	0	0	1	0	15	=	15	Demanda Kansas City
0	0	1	0	0	1	10	=	10	Demanda St. Louis
X11	X12	X13	X21	X22	X23	Z			
5	15	10	20	0	0	435			
	X11 14 1 0 1 0 1 0 X11 5	X11 X12 14 9 1 1 0 0 1 0 0 1 0 0 X11 X12	X11 X12 X13 14 9 7 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 X11 X12 X13 5 15 10	X11 X12 X13 X21 14 9 7 8 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 X11 X12 X13 X21 5 15 10 20	X11 X12 X13 X21 X22 14 9 7 8 10 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 X11 X12 X13 X21 X22 5 15 10 20 0	X11 X12 X13 X21 X22 X23 14 9 7 8 10 5 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 X11 X12 X13 X21 X22 X23 5 15 10 20 0 0	X11 X12 X13 X21 X22 X23 Total 14 9 7 8 10 5 435 1 1 1 0 0 0 30 0 0 0 1 1 1 20 1 0 0 1 0 0 25 0 1 0 0 1 0 15 0 0 1 0 0 1 10 X11 X12 X13 X21 X22 X23 z 5 15 10 20 0 0 435	X11 X12 X13 X21 X22 X23 Total 14 9 7 8 10 5 435 1 1 1 0 0 0 30 <=	X11 X12 X13 X21 X22 X23 Total 14 9 7 8 10 5 435 Limites 1 1 1 0 0 0 30 <=

Representación solución óptima.

$Origen \rightarrow Destino$	Unidades enviadas.	Costo por unidad	Costos totales.
Jefferson City \rightarrow Des Moines	5	14	70
Jefferson City \rightarrow Kansas City	15	9	135
Jefferson City \rightarrow St. Louis	10	7	70
Omaha → Des Moines	20	8	160
		TOTAL:	435

7. CONCLUSIONES

- Mediante el análisis en la representación de una red podemos desarrollar y encontrar la solución óptima a un problema de Modelo de redes de transporte, siendo que se aprecia cada una de los orígenes (ofertas) y sus destinos (demanda) con los valores correspondientes.
- En la representación gráfica de un modelo de redes se aprecian cada uno de los caminos posibles de una determinada oferta para satisfacer la demanda tomando los costes en cada relación.

8. BIBLIOGRAFÍA REFERENCIAL:

[1] D. Anderson, D. Sweeney, T. Williams, J. Camm and K. Martin, An introduction to management science, quantitative approaches to decision making, 13th ed. Mason, USA: South-Western CENGAGE Learning, 2012.

Fredy Sánchez Arteaga

FIRMA DEL ESTUDIANTE