UNIVERSITÉ DE SHERBROOKE DÉPARTEMENT D'INFORMATIQUE

IFT 870 BIN 710 - Forage de données

TP#4: Fonctions descriptives
Hiver 2020

Le but de ce devoir est de pratiquer la comparaison et l'évaluation de méthodes de clustering.

Ce devoir est à faire individuellement. Il devra être complété avant le jeudi 9 avril 2020 à 23h59. Vous devez remettre, sur opus dinf.usherbrooke.ca, un fichier Ipython notebook (nommé tp4.ipynb) contenant votre rapport et vos scripts Python pour ce devoir.

Description des tâches à réaliser : Ensemble de données d'images de visages de personnages connus

On vous fournit un fichier de départ tp4_debut.ipynb dans lequel on récupère un ensemble de données d'images de visages de personnages connus. Les détails de cet ensemble de données sont disponibles à l'adresse http://vis-www.cs.umass.edu/lfw/.

Vous devez appliquer des méthodes d'évaluation extrinsèques et intrinsèques pour comparer deux algorithmes de clustering sur ce jeu de données : K-Means et DBSCAN.

- 1. Pour commencer, les données ne sont pas équilibrées car certains personnages sont beaucoup plus représentés que d'autres. Pour pallier à cela, filter les données pour ne conserver que 40 visages au maximum par personne.
- 2. Ensuite, appliquer une réduction de la dimension à 100 composantes et une normalisation en utilisant le modèle PCA() de sklearn avec les options whiten=True et random_state=0.
- 3. Analyse avec K-Means
 - (a) Implémenter la méthode du coude (Elbow method) pour essayer de déterminer un nombre de clusters optimals dans l'ensemble suivant [40, 45, 50, 55, 60, ..., 80] sans utiliser les données réelles (noms associés aux images). La mesure de score à utiliser pour tout nombre de clusters k est la suivante : moyenne des distances euclidiennes des données à leur plus proche centre de cluster pour le modèle à k clusters. Analyser le résultat et donner vos conclusions.
 - (b) Appliquer une approche de validation croisée en divisant les données en 10 parties et en utilisant les données réelles et le score Adjusted_Rand_Index (ARI) pour déterminer un nombre de clusters optimal dans l'ensemble [40, 45, 50, 55, 60, ..., 80]. Analyser le résultat et donner vos conclusions.

4. Analyse avec DBSCAN

- (a) Utiliser le coéfficient de silhouette pour déterminer les meilleurs valeurs de paramètres (nombre minimum d'éléments dans un cluster min_samples, et rayon du voisinage autour de chaque donnée eps) pour la méthode DBSCAN avec min_samples dans l'intervalle [1, ..., 10] et eps dans l'intervalle [5, ..., 15];
- (b) En fixant le paramètre min_samples = 3, appliquer DBSCAN en faisant varier le paramètre eps dans l'intervalle [5, ..., 15]. Observer des échantillons d'images des clusters pour chaque rayon dans l'intervalle [5, ..., 15], et tenter de déterminer la signification sémantique des clusterings estimés. Elle peut correspondre à un clustering suivant les personnages, ou suivant d'autres caractéristiques commune comme l'orientation du visage, l'arrière plan, le port de lunette, etc. Lister vos conclusions pour chaque valeur de eps.

Remise du travail

Pour soumettre votre travail, connectez-vous, dans un fureteur, au serveur http://opus.dinf.usherbrooke.ca en utilisant votre CIP, puis choisissez le cours IFT870 (BIN710) et le projet TP4. Chargez votre fichier tp4.ipynb et soumettez-le. Le nom de votre fichier de remise doit être exactement tp4.ipynb. Indiquez bien votre nom dans le fichier. Ne remettez pas d'autre fichier.