Impact Analysis of Botnet Infection on Networked Systems using Timed Automata

SYSC 5500 Group 8 Alvi Jawad Luke Newton

Outline

Brief Overview

Previous Work

Extending the Botnet

- Major Changes
- Extension Efforts
- Hardware and OS limitations

Rebooting as a Solution

- Device Type 2 Reboot Capable
- Why Rebooting?

Results

- Reboot Frequency
- "Active" vs "Stealthy" bots
- Network Speed Variation
- Next steps!

Previous Work

Modeling

 Modeling the Mirai botnet infrastructure and individual device behavior

Modeling Formalism

Timed Automata

Modeling Tool

UPPAAL 4.1.24

Objective

- Observing the behavior of individual entities in the botnet
- Perform experiments to examine the infection rate and generated network traffic

Major Changes

Extended Dictionary

- Bots now make use of the full dictionary of the original Mirai codebase
- Each device has a pseudo-randomly generated ID (IP, credentials) at the start

Modeling Workarounds

- Extreme state-space reduction
- Compact data structure
- Removal of a few secondary committed states

Target

Extend the network to simulate thousands of devices simultaneously

Extension Efforts

Extending the Botnet

Initial efforts focused on extending the size of the botnet by a small margin

20 Devices

- Simulations were extremely fast
 - Simulation time (10 runs): ~2 seconds
- Very low resource consumption
 - Verification memory: ~17 MB/29 MB
- Very small network; not representative of the IoT

100 Devices

- Simulations were relatively fast
 - Simulation time (10 runs): ~3 minutes
- Very low resource consumption
 - Verification memory: ~157 MB/188 MB
- Small network; still not representative of the IoT

Extension Efforts

Extending the Botnet

Subsequent efforts emphasized creating networks of over a hundred devices

500 Devices

250 Devices

- Simulation times were infeasible
 - Simulation time (10 runs): ~ 11 hours
- Highest resource consumption
 - Verification memory: ~ 3500 MB/3700 MB
- A good representation of a small IoT network

- Simulations were still rather slow
 - Simulation time (10 runs): 75 minutes
- Moderate resource consumption
 - Verification memory: ~580 MB/650 MB
- The best overall compromise in terms of simulation speed and network size

We chose to use networks of 250 and 100 devices for most simulations

Limitations

Extending the Botnet

 Extending the network beyond 500 devices would never work

Hardware Limitations

- Verification memory: ~ 3500 MB/3800 MB -> 40%
- Graphical simulator: ~ 3600 MB/4072 MB -> 44%

OS Restrictions

- Only 32-bit version of UPPAAL available for MS Windows
- The verifier can only access at most 4 GB of memory

We decided to leave extending the network further as part of our future work

Device type 2 – Reboot Capable

Why Rebooting?

Extending the Botnet

- Mirai lives in the dynamic memory; cleared when the device is rebooted
- Device credentials must be changed to prevent secondary infection

Target Clusters

- Devices that reboot either periodically or manually by the user
- Class E1 Devices with a periodic battery (primary) replacement interval
- Class P0 Devices that are normally off and only reattached to the network when needed

New Objective

- Can rebooting prevent the accumulation of a large-enough botnet?
- If so, what rate of frequency is needed to achieve such results?
- Is the rate feasible?

Simulation Parameters

Parameter	Default Value	Other values used
Number of devices	100	250, 500
Round Trip Delay	100ms	1s
Simulation time	1 day	1 week
Dictionary length	62	-
Percentage of devices with weak credentials	100%	-
Reboot frequency	Hourly	Daily, every 30 minutes, every 10 minutes, every 5 minutes
Duration of device reboot	60s	-
Percentage of time bots propagate malware	100%	50%, 10%, 1%
Proportion of "always connected" devices to rebooting devices	0:100	100:0

"Always-Connected" vs "Reboot Capable"

How does period affect botnet size?

- 100 device network
- 1 minute to reboot a device
- Once a device is infected, it only propagates malware

Reboot Frequency	Uptime	Average botnet size
Daily	99.93%	99.9%
Hourly	98.33%	97.8%
Every 30 minutes	96.67%	96.0%
Every 10 minutes	90%	89.6%
Every 5 minutes	80%	80.7%

"Active" vs "Stealthy" bots

- 100 device network
- 1 minute to reboot a device
- Vary the percentage of time a bot propagates malware

Percentage of time propagating malware	Percentage of time stealthing	Reboot Frequency	Average botnet size
100%	0%	Hourly	97.8%
50%	50%	Hourly	97.7%
10%	90%	Hourly	95.8%
1%	99%	Hourly	71.5%
100%	0%	Daily	99.9%
50%	50%	Daily	99.7%
10%	90%	Daily	99.4%
1%	99%	Daily	97.4%

How does network speed affect botnet size?

Reboot Frequency	Uptime	Average botnet size (100ms RTT)	Average botnet size (1s RTT)
Daily	99.93%	99.9%	99.0%
Hourly	98.33%	97.8%	95.6%
Every 30 minutes	96.67%	96.0%	92.1%
Every 10 minutes	90%	89.6%	76.3%
Every 5 minutes	80%	80.7%	46.9%

How does network speed affect botnet size?

Percentage of time propagating malware	Percentage of time stealthing	Reboot Frequency	Average botnet size (100ms RTT)	Average botnet size (1s RTT)
100%	0%	Hourly	97.8%	95.6%
50%	50%	Hourly	97.7%	93.2%
10%	90%	Hourly	95.8%	69.6%
1%	99%	Hourly	71.5%	0.0067%
100%	0%	Daily	99.9%	99.0%
50%	50%	Daily	99.7%	98.7%
10%	90%	Daily	99.4%	97.8%
1%	99%	Daily	97.4%	86.0%

Conclusion

- Rebooting and slowing the network down can reduce botnet size, but are only effective at levels that would deteriorate functionality
- The most effective strategy is to change default credentials
- A botnet's level of stealthing can be very high before it's ability to grow is severely impacted
- Even a botnet of relatively small size can still send
 10 000s of messages over a network hourly

Thank You!

Questions?