

Fundamentals of Security in Ethical Hacking

DCS22104

Lesson 3: Malware

Department of Computing

Course outline

Week	Topic
1	Introduction to ethical hacking and reconnaissance
2	Network enumerators and system vulnerabilities
3	Malware
4	Social engineering attacks
5	Hacking web servers and web applications
6	Session hijacking
7	Script injections
8	Hacking wireless network
9	Buffer overflow attacks
10	Cryptography
11	Evading IDS, firewall, and honeypot
12	Penetration testing

Assessments

#	Components	Marks(%)	Week
1	Test 1 (Topics 1 to 5)	10	6
2	Midterm examination	20	7
3	Test 2 (Topics 1 to 11)	20	12
4	Final examination	50	Exam week

Reviews on Lesson 2

- 1. Internet protocol (IP) addresss is a numerical identifier for a device in a network.
- 2. IPv4 and IPv6 are the protocol formats used to transmit from one IP to another.
- 3. Host is a device that is connected to a network.
- 4. A host with IPv4 can have up to 2^16 = 65,536 or 16 bits port numbers. Since IPv4 has address size of 32 bits = 16 bits network IP + 16 bits device IP.
- 5. A host with IPv6 can host $2^64 = 18,446,744,073,709,551,616$ or 64 bits port numbers. Since IPv6 has address size of 128 bits = 64 bits network IP + 64 bits device IP.
- 6. A network service is an application programming interface (API).
- 7. Network enumerator is a tool to scan a computer network. E.g. NMAP.
- 8. Basic search parameters that can be found using a network enumerator are service name (Services that is available), port number, ping sweep (network connectivity), domain name & traceroute table.

Topic learning outcomes

1. Identify the type of a malware based on its behaviours.

2. Explain the strategy on how to detect malicious code.

Lesson 3: Lecture and lab sessions

Start time	End time	Topics
1:00pm	1:30pm	Reviews on Lesson 2
1:30pm	2:00pm	Lecture 1: Malware
2:00pm	2:15pm	Break time
2:15pm	2:45pm	Lecture 2: Malware detection
2:45pm	2:50pm	References

Lecture 1: Malware

Malware I

- It is a shortened form for malicious software.
- Sometimes it refers to computer virus.
- It is a malicious file which contains an executable file.
- The file will not be executed unless it is opened by a user.
- Virus behaviours consisted of Trojan, worm, time bomb, zombie, rabbit, ransomware, and spyware.

Malware II

- It can infect any hardware and software platform.
- It modifies hidden and read-only files.
- It appears anywhere in a system.
- It spread anywhere where sharing occurs.
- It cannot remain in volatile memory after a completed reboot.
- It can be malevolent, benign or benevolent.
- Firmware viruses exist.

Behaviour I: Trojan

- It appears to be unharmed to a computer.
- Main purpose is to create backdoors for malicious party.
- i.e. TR/Crypt.XPACK.Gen2 found in the Arduino software.

Behaviour II: Worm

- It spread virus across a network or the Internet.
- It needs a protocol to propagate the virus either via email, messenger, or SMS.
- i.e. Worm/Brontok.C spread via email.

Behaviour III: Time Bomb

- Also called logic bomb.
- The virus executes at a specific event/ time.
- It automatically reset system settings, such as reset system clock.
- Worse of all, it could erase data in the hard drives.

Behaviour IV: Slave/ Zombie

- A computer or a host that become a carrier for a virus.
- May be used to generate backdoors from a Trojan file.
- May be used to launch distributed denial-of-service (DDOS) attacks.

Behaviour V: Rabbit

- Also called computer backteria.
- A virus that replicate itself to form buffer overflow attacks.
- Slow down the performance of a computer.
- i.e. plant viruses in every folder in an operating system.

- Lock user access, need to follow certain instructions to unlock.
- Demand either for questionnaire, spread the virus or even money.
- i.e. Locky.

Behaviour VII: Spyware

- Sometimes refer to keylogger.
- Monitor and collect user information without consent from the user.
- i.e. TR/Spy.Gen found in a DVD ripper software.

Exercise 1 - Malware behaviours (10 minutes)

- 1. What is malware?
- 2. List seven behaviours of a malware.
- 3. Explain a Trojan.
- 4. Explain a spyware.
- 5. Explain a worm malware.
- 6. Explain a rabbit malware.
- 7. Explain a ransomware.

Break time

Duration: 15 minutes.

Lecture 2: Malware detection

I. Cryptographic checksum

- Bit comparison using a checksums calculator.
- Checksums calculator in Ubuntu Linux.

II. Real Time Antivirus Protection

- Scan files in the current opened folder.
- If a malware is found, the antivirus should be able to intercept, provoke from user access and wait for user action.
- User able to choose to either do nothing, quarantine or remove.

III. Firewall

- Install a firewall to prevent unauthorized access.
- Discard suspicious TCP and UDP packets.
- Prevent flooding and port scanning.

IV. Cryptographic Protocols

- Encrypt file before sending over to the Internet.
- Secure Socket Layer (SSL)/ Transport Layer Security (TLS) protocols can be used to encrypt email, fax, instant messaging and voice-over IP (VoIP).

Exercise 2 - Detect a malware (10 minutes)

List four approaches to detect a malware.

Malware information

- Avira Virus Lab
- Kaspersky Lab
- <u>Symantec</u>

References

- CEH course materials
- Goodrich, M (2010) Introduction to Computer Security, Addison Wesley, 1st Ed
- Purpura, P (2010) Security: An Introduction, CRC Press, 1st Ed
- Stallings, W (2007) Computer Security: Principles and Practices, Prentice Hall, 1st Ed
- Jacobson, D (2008) Introduction to Network Security, Chapman and Hall, 1st Ed
- Fischer, R (2008) Introduction to Security, Butterworth-Heinemann, 8th Ed