ASSIGNMENT 13

PAGE1

$$1(a)$$
 $f'(x) = \cos(2x) \cdot 2 + 2\cos x$

(b)
$$y' = 2\cos x(-\sin x) - \sin(x^2) \cdot 2x$$

(c)
$$f(x) = Sec^2(x^2 - 5x + 7) \cdot (2x - 5)$$

(e)
$$y' = 2x \cdot \sin \frac{1}{x} + x^2 \cdot \cos \frac{1}{x} \cdot (-\frac{1}{x^2})$$

2 (a)
$$z' = \frac{1}{1+x^2} + \frac{1}{1+(x^2)^2} \cdot 2x$$

(b)
$$z' = \frac{1}{\sqrt{1-x^2}} + 2 \arcsin x \cdot \frac{1}{\sqrt{1-x^2}}$$

(c)
$$z' = \frac{1}{\sqrt{1-(x^3-11x+4)^2}} \cdot (3x^2-11)$$

(d)
$$z' = \cos(\operatorname{arctam} x) \cdot \frac{1}{1+x^2}$$

+
$$Sec^2$$
 (arcsinx). $\frac{1}{\sqrt{1-x^2}}$

3.
$$y' = 1 - 2\cos x = 0$$

$$- \cos x = \frac{1}{2}$$

$$\cos \frac{\pi}{3} = \frac{1}{2}$$

$$\times_2 = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

answer:
$$X = \frac{\pi}{3} + 2\pi K, \frac{5\pi}{3} + 2\pi K$$

[note: you can use unit civile instead of a graph]

4. use quotient rule:

$$\left(\frac{\tan x}{\cos x}\right) = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{(\cos x)^2}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

5.
$$(\sec x)' = \left(\frac{1}{\cos x}\right)' = \left((\cos x)^{-1}\right)'$$

$$= (-1)(\cos x)^{-2}(-\sin x)$$

$$= \frac{\sin x}{\cos x \cdot \cos x} = \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$$

$$= \sec x \cdot \tan x$$

$$-\theta \left(\text{aucsin } x \right)' = \frac{1}{\cos(\text{aucsin} x)} = \sqrt{1-x^2}$$

7.
$$tom(anchom x) = x$$

So
$$\cos A = \frac{1}{\sqrt{1+x^2}}$$

$$\sec A = \sqrt{1+x^2}$$

PAGE 4

8.(a)
$$y' = -2.3 \sin t - 1.9 \cot t$$

 $y'' = -2.3 \cot + 1.9 \sin t$ } equal!
 $-y = -2.3 \cot + 1.9 \sin t$ }

- (b) for sint and cost, 4th derivative in the same as the nignical function! so if y = 2.3 cost -1.9 sint $y^{(4)} = 2.3$ cost -1.9 sint
- (c) $y' = -2\sin 2t 2\cos 2t$ $y'' = -4\cos 2t + 4\sin 2t$ } yes! $-4y = -4\cos 2t + 4\sin 2t$ }
- (d) $y = \sin(0.5x)$ $y' = 0.5 \cos(0.5x)$ $y'' = 0.5 (-\sin(0.5x)) \cdot 0.5$ $= -0.25 \sin(0.5x)$... y'' = -0.25y ie y'' + 0.25y = 0