Práctica Uno

Movimiento en una, dos y tres dimensiones con $\vec{a} = 0$

Física Computacional

1 $\vec{a} = 0$, no hay aceleración

Las ecuaciones de movimiento son

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

1.1 Velocidad constante en una dimensión

la ecuación de movimiento es

$$v_x = \frac{dx}{dt}$$
 ó $v_y = \frac{dy}{dt}$ ó $v_z = \frac{dz}{dt}$

- 1. Sea una partícula, cuya posición inicial es $t_0 = 0$, $x_0 = -5$ m con $v_x = 2$ m/s. Determine la posición de la partícula para t = 10 s. Qué dirección toma?
- 2. Sea una partícula, cuya posición inicial es $t_{\circ} = 0$, $y_{\circ} = 7$ m con $v_{y} = 1$ m/s. A su vez se manifiesta una velocidad del viento v = -3 m/s en la dirección y. Determine la posición de la partícula para t = 10 s. Qué dirección toma?
- 3. La posición inicial de una partícula se ubica en $x_\circ=-5$ m para $t_\circ=0$ con velocidad $v_x=3$ m/s. Después de 3 s, se adiciona una velocidad $v_1=3$ m/s transcurriendo 5 s. Después nuevamente adquiere $v_x=3$ m/s por 2 s. Finalmente se adiciona una velocidad de $v_2=-5$ m/s y la particula avanza por 5 s. Encuentre la posición de la partícula.
- 4. Una partícula llega a una posición final $x_0 = 2$ m en 10 s con $v_x = 4$ m/s. Encuentre la posición inicial cuando $t_0 = 0$.
- 5. Un automóvil parte del reposo desde $x_{\circ}=0$ y pasa por x=300 m en 2 s. Determine la velocidad.

En todos los ejercicios haga los diagramas a - t, v - t, x - t y v - x.

1.2 Velocidad constante en dos dimensiones

las ecuaciones de movimiento son

$$\vec{r} = x\vec{i} + y\vec{j}$$
 y $\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j}$

donde

$$v_x = \frac{dx}{dt}$$
 y $v_y = \frac{dy}{dt}$

- 1. Una partícula parte del reposo desde $\vec{r} = (3\vec{i} + 4\vec{j})$ m con una velocidad $\vec{v} = -2\vec{i}$ m/s. Encuentre su posición final y el desplazamiento cuando transcurre t = 5 s.
- 2. Una partícula parte del reposo desde $\vec{r} = (-3\vec{i} 4\vec{j})$ m con una velocidad $\vec{v} = (2\vec{i} + 4\vec{j})$ m/s. Encuentre su posición final v el desplazamiento cuando t = 5 s.
- 3. Una partícula parte del reposo desde $\vec{r} = (3\vec{i} 4\vec{j})$ m con una velocidad $\vec{v} = (4\vec{i} 3\vec{j})$ m/s. Cuando inicia su movimiento se presenta una velocidad del viento $\vec{v}_v = (-3\vec{i} + 5\vec{j})$ m/s. Encuentre su posición final y el desplazamiento cuando t = 10 s.

1

Dibuje los vectores, $\vec{r_i}$, $\vec{r_f}$ y $\Delta \vec{r}$

1.3 Velocidad constante en tres dimensiones

las ecuaciones de movimiento son

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
 y $\vec{v} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$

donde

$$v_x = \frac{dx}{dt}$$
 y/o $v_y = \frac{dy}{dt}$ y/o $v_z = \frac{dz}{dt}$

- 1. Una partícula llega a una posición final $\vec{r} = (-3\vec{i} 4\vec{j} 5\vec{k})$ m en t = 5 s con una velocidad $\vec{v} = (2\vec{j} + 4\vec{k})$ m/s. Encuentre la posición inicial cuando $t_0 = 0$ s.
- 2. Una partícula parte del reposo desde $\vec{r} = (3\vec{i} 4\vec{j} + 5\vec{k})$ m con una velocidad $\vec{v} = (-2\vec{i} + 4\vec{j} + 6\vec{k})$ m/s. Cuando inicia su movimiento se presenta una velocidad del viento $\vec{v}_v = (-3\vec{j} + 5\vec{k})$ m/s. Encuentre su posición final y el desplazamiento cuando t = 10 s.

Dibuje los vectores, \vec{r}_i , \vec{r}_f y $\Delta \vec{r}$

2 Problema desafío

Sea un rectángulo cuyos vértices son (0,0), (0,20) m, (10,0) m, (20,10) m. Una partícula parte de la posición inicial ubicada en (0,0) con una velocidad $\vec{v} = (\vec{i} + 4\vec{j})$ m/s. Cuando llega la partícula a cualquier lado del rectángulo se efectúa una reflexión especular y dicha partícula continua moviéndose. Se requiere hacer la trayectoria de la partícula para tiempos largos.