Name: Samruddhi Kalsekar

UIN: 678393073

CS 412- Introduction to Machine Learning Assignment 08

						•
91)	Example	A	A ₂	A3	Output y	
9.7	×	1	0	0	0	d
	2,	1	0	= 1	0	
	23	0		0	0	
	χ _μ	99	b d :	510	-396.0	
	x ₅	1	1	0		
				1		

Information Gain: IG (A) Entropy of = E (A) attribute A of attribute A

$$\begin{array}{c} \bullet & \text{Iq}(y), \quad \boxed{3} \quad \log_{3}, \quad \boxed{3} \quad -\left(\frac{2}{5}\right) \log_{2}, \quad \boxed{2} \\ \hline 5 \end{array}$$

IG(y) = 0.966

$$E(A_1) = \frac{4}{5} \left(-0.5(-1) - 0.5(-1)\right) + \frac{1}{5}(0)$$

$$\frac{2}{5}$$
 $\frac{2}{5}$ $\frac{(0)}{3}$ $\frac{3}{3}$ $\frac{(-0.5)}{3}$

$$=\frac{3(0.5+1/3)}{5}=0.5$$

$$\Rightarrow E(A_3) = 3 \left(-\frac{2 \log_{,2} - 1 \log_{,1}}{3 3 3} \right) +$$

$$\frac{2 \left(-\frac{1}{109}, \frac{1}{109}, \frac{1}{109}, \frac{1}{109}, \frac{1}{109}\right)}{5 \left(2 + \frac{1}{2}, \frac$$

$$E(A_3) = 3(0.389 + 0.52) + 2(0.5 + 0.5)$$

As has the highest gain, .: Az is the root node

5 E (A) = 4-2

$$A_2$$

$$= 0$$

$$y = 0$$

→ IG (A,-1) =
$$\left(-\frac{1}{3}\log_{2}\frac{1}{3}\right) - \left(\frac{2}{3}\log_{2}\frac{2}{3}\right)$$

$$\rightarrow E(A_1) = \frac{1}{3} \left(-1\log 1\right) + \frac{2}{3} \left(-2\log_2 \frac{2}{2}\right)$$

From (iv) \$ (v)

Attribute As has the highest gain

(0 a2 a) x6 = (A1 - 1, A2 = ?, A3 - 1) not observed Weighted average = wopo + wipi attribute As due to unobserved data. Po = P(A2 = 0 | A1=1, A3=1) = 1/2 out me P1 = P(A2 = 1 | A1=1, A3 = 1) = 1/2 (0 = A) 9 Weighted average = (1/2)(0)+ (1/2)(1) Carculating information quin for each = 1/2 = 0.5 .. (i)

77799

700

if $A_2 = 0$, weighted average < 0.5 and $A_2 = 1$, weighted average > 0.5

from (i) as weighted average = 0.5

A2 = 1

02 b)
$$x_4 = (A_1 = 1, A_2 = ?, A_3 = 1)$$
; its A2 attribute is not observed

We connot calculate the information gain of attribute Az due to unobserved data.

.. There are two cases last last last of P(A2 = 0) = 1/2 1 = (1 = A = 1 = A | 1 = A | 9 = 9

p (A1=0) = 1/2

Entropy on splitting A

Entropy on splitting
$$\frac{4}{5}\left(-2\log_2\left(\frac{2}{4}\right) - \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right)$$

$$(\frac{2}{4})^{109}(\frac{1}{4})^{14} = 0.8$$

$$=\frac{3}{5}\left(-\frac{2}{3}\log_{\bullet}\left(\frac{2}{3}\right)-\frac{1}{3}\log_{\bullet}\left(\frac{1}{3}\right)\right)$$

$$\frac{2}{5} \left(\frac{-1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right)$$

Entropy on splitting A3 = 0.951

Similarly,

Entropy on splitting A1 = 0.8

Entropy on splitting
$$A_3 = \frac{2}{5} \left(\frac{-2 \log_2 1}{5} \right) + \frac{3}{5} \left(\frac{-1 \log_2 1}{3} \right)$$

= 2/3 log2 2/3 = 0.551

Entropy on splitting A3 = 0.951

$$E_1 = \frac{1}{2} (0.8) + \frac{1}{2} (0.8) = 0.8$$

$$E_2 = \frac{1}{2}(0.951) + \frac{1}{2}(0.551) = 0.751$$

Information Gain on splitting by

: information gain is highest for attribute A2,

Root (decision tree will be split at) Az