

- **1.** Echelle: 1,00 [cm]: 10,0 [N]. Masse de la boule noire: m = 1,50 [kg].
- **1.a** $F_P = 1,50 \text{ [kg]} \cdot 9,81 \text{ [N/kg]} = 14,7 \text{ [N]}.$
- **1.b** $F_{fil} = F_P$, mais le sens de \vec{F}_{fil} est opposé à celui de \vec{F}_P .
- **1.c** $F_S = F_P$, mais le sens de \vec{F}_S est opposé à celui de \vec{F}_P . $F_S =$ la force de soutien exercée par le sol sur la boule.
- **1.d** La force dans le fil du plafond $\vec{F}_{fil\ plafond}$ plus la force de pesanteur \vec{F}_{p} doit être horizontale et doit être annulée par la force dans le fil du mur $\vec{F}_{fil\ mur}$.

- 2. La poulie change la direction de la force, sans changer son intensité, donc, à l'équilibre, la force de pesanteur des deux masses est la même, donc les deux masses sont de même grandeur. $m_2 = m_1 = 0.357$ kg.
- 4. Le nœud subit trois forces, celle de la pesanteur et les deux tensions des fils. Echelle : 1[cm] : 1 [N]. (pour g = 10 [N/kg])

 La masse du pendentif est de 0,200 [kg].

 Sa force de pesanteur est donc de $F_p = 0,200$ [kg] $\cdot 9,81$ [N/kg] = 19,6 [N] ($F_p = 20$ [N]) $F_1 = F_2 = 1,8$ [cm] $\cdot 1$ [N/cm] = 1,8 [N]

5.

Un plot de masse m = 3,00 [kg] est posé sur un plan incliné.

- a) La force de pesanteur subie par le plot vaut : $F_p = m \cdot g = 29, 4[N]$.
- b) c.f. dessin. L'opposée $-\vec{F}_P$ à la force de pesanteur est décomposée en deux forces : la force de soutien \vec{F}_S perpendiculaire au sol et la force de frottement $\vec{F}_{frot.}$ parallèle au sol.

d) La flèche correspondante à la force de soutien 2,5 [cm], donc $F_s=2,5$ [cm]·10 [N/cm]=25[N].

- **6.a** La boule subit trois forces, ce qui donne trois couples de forces action réaction.
 - i) La boule subit la force de pesanteur et la Terre subit la réaction. Elle est attirée verticalement vers le haut.
 - ii) La boule subit une force du mur et le mur subit la réaction. Il est repoussé horizontalement sur la gauche.
 - iii)La boule subit une force du fil et le fil subit la réaction. Il est tiré vers le bas, dans la direction du fil.
- **6.b** La force de pesanteur vaut :. $\vec{F}_p = m \cdot g = 7.50 [kg] \cdot 9,81 [N/kg] = 73,6[N]$. Avec l'échelle choisie, sa longueur est de 3,68 [cm].
- 6.c La longueur de la force exercée par le fil est de 4,1 [cm], ce qui représente une force de $F_{fil}=4.1 [cm]\cdot 20 [N/cm]=82 [N]$. La longueur de la force exercée par le mur est de 1,7 [cm], ce qui représente une force de $F_{mur}=1.7 [cm]\cdot 20 [N/cm]=34 [N]$.

7. <u>Le chaudron.</u>

- **7.a** La force résultante en A est nulle, car le chaudron est immobile au-dessus du feu.
- 7.b L'échelle du dessin est : 100 [N] 1 [cm]. Les trois forces qui agissent sur le point A sont : \vec{F}_1 et \vec{F}_2 qui correspondent aux tensions dans les cordes. $\vec{F}_P = \text{La}$ force de la pesanteur du chaudron. On sait que $\vec{F}_P + \vec{F}_1 + \vec{F}_2 = \vec{F}_{r\acute{e}s} = \vec{0}$, ce qui permet d'en déduire la force de la pesanteur :

$$\vec{F}_P = -(\vec{F}_1 + \vec{F}_2)$$
.

- 7.c La force de pesanteur est représentée par une flèche d'environ 3,7 [cm], donc elle est d'environ 370 Newtons. Donc elle vaut : $F_P = 3,7$ [cm] 100 [N/cm] = 370 [N].
- 7.d On sait que $F_p = m$ g, En prenant g = 9.81 [N/kg], on obtient: $m = \frac{F_p}{g} = \frac{370[N]}{9.81[N/kg]} = 37.7[kg]$ Le chaudron pèse environ 38 [kg].

