

#### **Quantum Information**

Winter Semester 2024 Eduardo Martín-Martínez, Bindiya Arora and Eirini Telali

# Homework 1: Entanglement measures and POVMs

Deadline I: March 22, 2024, Dropbox link Deadline II: April 04, 2024 Dropbox link

Kindly acknowledge the individuals or references that contributed to your successful completion of the assignment.

To help us structure the course in a better way, please submit anonymous feedback for the course here.

## 1 Concurrence and negativity

In this question we will study several entanglement measures and how to work with them.

(a) The concurrence is a faithful entanglement monotone for arbitrary mixed states of bipartite qubits  $\rho \in \mathcal{D}(\mathcal{H} \otimes \mathcal{H})$ , with  $\mathcal{H} \cong \mathbb{C}^2$ . It is defined by

$$C[\rho] := \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}, \tag{1}$$

where  $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$  are the eigenvalues of the Hermitian operator

$$R := \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}\,,\tag{2}$$

$$\tilde{\rho} := (\sigma_y \otimes \sigma_y) \rho^* (\sigma_y \otimes \sigma_y). \tag{3}$$

The complex conjugation is taken with respect to eigenbasis of  $\sigma_z$ , i.e., write  $\rho$  as a  $4 \times 4$  matrix in the  $|0\rangle$ ,  $|1\rangle$  basis and then take complex conjugate of the matrix elements.

Calculate the concurrence for the Bell state  $|\Phi_{AB}^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$  and product state  $|00\rangle$ .

*Hint:* if you like, you can use *Mathematica* to calculate this, but show your working anyway (as snapshot, or written out).

**Remark:** Note that this definition looks very *ad hoc* as a trade-off for being easier to compute; the original definition is an optimization over all ensembles of pure states: that is, if we write  $\rho = \sum_j p_j |\psi_{AB}^j\rangle\langle\psi_{AB}^j|$ , then the concurrence is given by

$$C[\rho] = \inf_{\{p_j, |\psi_{AB}^j\rangle\}} \sum_{j} p_j C(|\psi_{AB}^j\rangle\langle\psi_{AB}^j|)$$
(4)

where  $C(|\psi_{AB}\rangle\langle\psi_{AB}|) = \sqrt{2(1 - \operatorname{tr}(\rho_A^2))}$  with  $\rho_A = \operatorname{tr}_B(|\psi_{AB}\rangle\langle\psi_{AB}|)$ .

(b) If you tried to calculate concurrence by hand, hopefully it is clear that it is not very easy to calculate. An easier entanglement monotone for bipartite system is *negativity*, defined by

$$\mathcal{N}[\rho] = \frac{||\rho^{\Gamma}||_1 - 1}{2},\tag{5}$$

where  $\rho^{\Gamma}$  is the *partial transpose* of  $\rho$ . It can be checked that it does not matter if you take partial transpose with respect to system A or system B. Here the trace norm is defined by

$$||X||_1 = \operatorname{tr}|X| = \operatorname{tr}\sqrt{X^{\dagger}X}, \tag{6}$$

that is, it is the sum of absolute values of the  $singular\ values$  of X (if X is positive-semidefinite operators, then these will be the eigenvalues).

Calculate the negativity for the Bell state  $|\Phi_{AB}^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$  and product state  $|00\rangle$ .

(c) Consider the bipartite state

$$\rho_{AB} = \frac{1}{4} \mathbb{1}_A \otimes \mathbb{1}_B \,. \tag{7}$$

Calculate the negativity and show that this entanglement measure does say it is separable, unlike the von Neumann entropy of the reduced state (which is only a measure of entanglement if  $\rho_{AB}$  is pure).

#### 2 POVM accounts for errors

In reality, our measurements are never perfect. For example, a photodetector may have "dark counts": it clicks even when no photons hit the detector. The POVM framework can account for such measurements, as you will demonstrate below.

(a) Suppose that a source emits spin-1/2 particles (let's call them qubits) in some state given by a density operator  $\rho$ . Any qubit state can be written in terms of Bloch vector  $\mathbf{r} = (r_x, r_y, r_z)$  by

$$\rho = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \boldsymbol{\sigma}) \tag{8}$$

where  $\mathbf{r} \cdot \mathbf{\sigma} = r_x \sigma_x + r_y \sigma_y + r_z \sigma_z$  and  $0 \le |\mathbf{r}| \le 1$ . Clearly, the state is fully determined if you measure  $\mathbf{r}$ .

Show that

$$r_j = \operatorname{tr}(\rho \sigma_j), \quad j = x, y, z.$$
 (9)

That is, to measure  $r_j$  you just need to do (in principle) projective measurement in the eigenbasis of  $\sigma_j$  and repeat many times (to take expectation values).

(b) Now suppose that your  $\sigma_z$  measurement is faulty with some small error  $\epsilon$ : instead of performing a perfect measurement along the eigenbasis of  $\sigma_z$ , namely  $|0\rangle, |1\rangle, 50\%$  of the time you are measuring in the eigenbasis of  $\sigma'_z := |1'\rangle\langle 1'| - |0'\rangle\langle 0'|$ , where

$$\begin{aligned} |0'\rangle &= \sqrt{1-\epsilon} \, |0\rangle + \sqrt{\epsilon} \, |1\rangle \; , \\ |1'\rangle &= -\sqrt{1-\epsilon} \, |1\rangle + \sqrt{\epsilon} \, |0\rangle \; , \end{aligned}$$

and  $0 \le \epsilon \ll 1$ . If we did not have this error, we would simply do a projective measurement with projectors  $P_0 = |0\rangle\langle 0|$  and  $P_1 = |1\rangle\langle 1|$ .

Write down the POVM that describes this imperfect measurement: that is, construct two POVM elements  $E_0, E_1$  so that  $E_0 + E_1 = 1$  and  $E_0, E_1 \ge 0$  (i.e.,

they are positive semidefinite operators). If the prepared state is  $\rho = |0\rangle\langle 0|$ , what is the probability of getting outcome "1" with this faulty measurement?

*Hint*: your POVM should reflect the fact that this error only occurs 50% of the time.

(c) As before suppose the prepared state is  $\rho = |0\rangle\langle 0|$ , i.e., r = (0,0,1). Suppose that in your state tomography, you are performing an imperfect measurement of  $\sigma_z$  as in part (b), while the other two measurements  $\sigma_x$  and  $\sigma_y$  are still perfect. On other words, instead of performing a perfect projective measurement in the z-basis, you are instead measuring the POVM you found in part b). This procedure will lead you to infer a "wrong" z-component for the r vector. Use the result in part (a) to calculate the z-component of the "wrong" Bloch vector  $r'_z$ .

## 3 Entanglement-breaking channel

Recall that a quantum channel is a completely-positive trace-preserving (CPTP) linear map between density matrices, i.e.,  $\Phi: \mathcal{D}(\mathcal{H}) \to \mathcal{D}(\mathcal{H}')$ , that gives us a very general way of describing physically allowed operations on quantum systems. For example, in Tutorial 2 we studied some examples of quantum channels and also analyzed how LOCC cannot be used to create entanglement (but it can create classical correlations).

Suppose we have a channel  $\Phi : \mathcal{D}(\mathcal{H}_A) \to \mathcal{D}(\mathcal{H}_{A'})$ . We say that  $\Phi$  is *entanglement-breaking* if for any auxiliary environment B with Hilbert space  $\mathcal{H}_B$ , we have that

$$\hat{\rho}_{A'B} := (\Phi \otimes \mathbb{1})(\hat{\rho}_{AB}) \text{ is separable.}$$
 (10)

The identity operator acting on B is the *identity channel*<sup>1</sup> that does nothing:  $\mathbb{1}(\hat{\rho}) = \hat{\rho}$  for all  $\hat{\rho}_B \in \mathcal{D}(\mathcal{H}_B)$ . Eq. (10) even if we prepare a state that is entangled across the system and the environment, acting on the system A with channel  $\Phi$  always breaks entanglement with any degrees of freedom external to the output system A'.

<sup>&</sup>lt;sup>1</sup>In quantum information literature, sometimes this is written as  $\mathbb{1}_{\mathcal{D}(\mathcal{H}_B)}$  to denote that it is a identity channel rather than just the identity matrix for conceptual clarity, since quantum channels do not in general act by "multiplication".

(a) Suppose we have a system S and an environment E which are both qubits and they undergo a joint unitary operation of the form

$$\hat{U} = e^{i\theta\hat{\sigma}_z \otimes \hat{\sigma}_z} \,, \tag{11}$$

We are interested in what happens to the *environment state* after the interaction. Let the initial state of the system and the environment be  $\hat{\rho}_S$  and  $\hat{\rho}_E$  respectively. Compute the channel  $\Phi$ , defined by

$$\hat{\rho}_E' := \Phi(\hat{\rho}_S) = \operatorname{tr}_S(\hat{U}\hat{\rho}_S \otimes \hat{\rho}_E \hat{U}^{\dagger}). \tag{12}$$

(b) Suppose the environment is in the ground state  $\hat{\rho}_E = |0\rangle\langle 0|$  (for simplicity). Show that if we have another system S' such that the joint system  $\hat{\rho}_{SS'}$  is prepared in the Bell state  $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$  then the final state

$$\hat{\rho}'_{ES'} := (\Phi \otimes \mathbb{1})(\hat{\rho}_{SS'}) \tag{13}$$

is separable.

(c) A classical-quantum (QC) channel is defined by

$$\Phi_{qc}(\hat{\rho}) := \sum_{j} \operatorname{tr}(\hat{E}_{j}\hat{\rho})\hat{\sigma}_{j}, \qquad (14)$$

where  $\hat{\sigma}_j$  are density operators and  $\{\hat{E}_j\}$  defines a POVM. Roughly speaking, the channel takes in the input state and outputs a statistical mixture of different states whose probability distribution is determined by the input state with respect to some measurement (in this case, the POVM elements). Ruskai proved that *all* CQ channels are entanglement-breaking.

Now consider more general unitary of the form

$$\hat{U} = e^{i\theta \hat{A} \otimes \hat{B}} \tag{15}$$

where  $\hat{A}$ ,  $\hat{B}$  are arbitrary Hermitian operators acting on the system and environment respectively. Show that the channel

$$\Phi(\hat{\rho}_S) = \operatorname{tr}_S(\hat{U}\hat{\rho}_S \otimes \rho_E \hat{U}^{\dagger}) \tag{16}$$

can be recast into the QC form, hence the joint unitary between the system and the environment defines a subclass of entanglement-breaking channels.

**Hint:** use the spectral decomposition of  $\hat{A}$  and use the fact that

$$e^{\sum_{j} \hat{P}_{j} \otimes c_{j} \hat{X}} = \sum_{j} \hat{P}_{j} \otimes e^{c_{j} \hat{X}}. \tag{17}$$

if  $\hat{P}_j$  are orthogonal projectors.