Motor control: Arm, hand, and finger

- 특정 해상도 임계치 아래로는 인간의 운동제어 수행능력이 현저히 떨어짐
 - ~0.01 ~ 0.05 cm
- 실질적인 수행능력은 장비의 형태 요소 및 작동 방식에 의존적
 - 마우스는 dpi (1인치당 점의수)에서의 수천의 나열된 픽셀 공간적 해상도까지 작동
 - DPI, dots per inch: dip는 일반적으로 디스플레이나 프린터의 해상도 단위로써, 마우스에서의 dpi는 1인치를 이동했을 때 화면에서 움직이는 픽셀수를 나타낸 수치
 - 3D 스타일러스 펜도 수백까지 가능
 - DPI가 높을수록 사용자 의도대로 정교하게 작업이 가능하거나 그 궤적을 추적할
 수 있다는 것을 의미
 - 2D에서 연속적인 입력 방법들을 자주 사용할 뿐만 아니라 점차 3D로도 이용되고 있다 (e.g 햅틱, 위-모트)

Acuity: 10 arc min 4000 x 3000 pixels 27 inch diagonal (60 cm x 34 cm)

$$2 * tan (5/60) * 0.5 = 0.0015 m = 1.5 mm$$
 (I can see up to 1.5mm pixel)

$$x = 0.6m/4000 = 0.00015 \text{ m} = 0.15 \text{ mm}$$
(my display is 10 times better)

Motor capability: 0.5 mm

(fine enough for my vision, but less so than my display can support)

On touch screen?

Hand and finger might be different in terms of their dexterity

Fat finger problem (vs. stylus pen)

Control-display ratio

- C/D 비(Control-display ratio): 디스플레이에서의 커서(움직임) 변화 량과 제어장치의 움직임 변화 량의 비율
 - C/D 비가 낮다면 제어의 민감도는 높을 것이고,
 디스플레이를 가로지르는 이동시간은 (큰 움직임) 빠를 것이다.
 - C/D 비가 높다면 민감도는 낮을 것이고 따라서, 정밀한 조정
 시간은 (작은 움직임) 비교적 빠를 것이다

• 인간의 능력이 입력 방식의 달성 가능 정확도를 결정 하지만, 목적에 따라 C/D 비를 조정

Motor control: 장치 유형에 따른

Isotonic device

- 마우스와 3D 스타일러스펜
- 장치의 움직임을 직접적으로 디스플레이(혹은 가상공간) 움직임으로 변환

Isometric device

장치는 힘과 같이 다른 요소를 사용하여 디스플레이에서의 움직임을 제어 (장치에 입력 이동이 전혀 없이도 가능)

Trade-off between isotonic and isometric wrt. performance

- 햅틱 입력 성능: Both isometric and isotonic (complicated)
- Touch
 - 정밀한 운동 제어 수행능력 (4096 dpi)
 - 손가락에 접촉되는 크기는 0.3~0.7cm에 불과하다 (선택 자체의 어려움)
 - 두손이 필요 (한손이 기기를 받침, 불안정)

Fitt's Law

Target Width

$$ID = \log_2(2A/W)$$

- A is the distance or amplitude to move
- W is the width of the region within which the move terminates.
- The term within the parentheses in Equation 1 is without units. The unit "bits" emerges from the somewhat arbitrary choice of base 2.
- From Equation 1, the time to complete a movement task is predicted using a simple linear equation, where movement time (MT) is a linear function of ID (e.g. MT = A * ID + B)

- E.g. A = 1 inch, W = 1 inch, ID = 1 bit A = 16 inch, W = 0.25 inch, ID = 7 bit
- ID is just a measure of "difficulty" (in terms of motion time)
- Motion time = constant1 * ID + constant2
 - These constants are found by direct experiment or measurements for a particular task
 - Different task might have same ID but different constants

Data From an Experiment Using a Stylus in a Point-Select Task

		ID	MΤ	Error	IP
A^0	W	(bits)	(ms)	(윤)	(bits/s)
8	8	1	254	0.0	4.3
8	4	2	353	1.9	6.1
1.6	8:	2	344	0.8	6.4
8	2	3	481	1.7	6.4
1.6	4	3	472	2.1	6.6
32	8:	3	501	0.6	6.2
8	1.	4	649	8.8	6.3
1.6	2	4	603	2.1	6.8
32	4	4	605	2.7	6.7
64	8	4	694	2.5	5.9
1.6	1	5	778	7.0	6.6
32	2	5	763	3.4	6.6
64	4	5	804	2.3	6.3
32	1.	6	921	8.5	6.6
64	2	6	963	3.3	6.3
64	1	7	1137	9.9	6.3
		Mean	645	3.6	6.3
		SD	243	3.1	0.6

a experimental units; 1 unit = 8 pixels

$$MT = 53 + 148 \times ID$$

Fitt's Law in UI

Original Fitt's Law was formulated in the context of assembly line operation, but applicable to operations on the monitor

Fitt's Law in UI:

Extensions to 2D / Composite tasks

Figure 5. Fitts' law in two dimensions. The roles of width and height reverse as the approach angle changes from 0° to 90°.

Fitt's Law in UI

Fitts's law is e.g. used to model the act of pointing, both in the real world (e.g., with a hand or finger) and on computers (e.g., with a mouse)

