

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26. VII. osztály

1. Feladat (10 pont)

Adottak az
$$x = 2 + 4 + 6 + ... + 4036$$
 és $y = 2018 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot ... \cdot \left(1 - \frac{1}{2019}\right)$ számok.

- a) Igazold, hogy $a = x 2019 \cdot y$ teljes négyzet.
- b) Igazold, hogy $a = 2019 \frac{1 + 2 + 3 + \dots + 2017}{\sqrt{1 + 3 + 5 + \dots + 2017}} \in N$.

2. Feladat (10 pont)

a) Oldd meg a természetes számok halmazán következő egyenletet:

$$|1-\sqrt{2}|+|\sqrt{2}-\sqrt{3}|+|\sqrt{3}-\sqrt{4}|+...+|\sqrt{n}-\sqrt{n+1}|=2$$
.

b) Oldd meg a valós számok halmazán következő egyenletet:

$$\left| 3\sqrt{2} - 2\sqrt{3} \right| - \left| 4\sqrt{3} - 5\sqrt{2} \right| = \frac{x + 4\sqrt{3} - 4\sqrt{2}}{2}$$

3. Feladat (10 pont)

Az ABCD négyzet oldalának hossza 7 cm. Legyen $M \in (BC)$ és $N \in (CD)$ két pont, amelyekre $m(MAN \not \prec) = 45^\circ$. Ha tudjuk, hogy a CMN háromszög területe 3 cm², határozd meg az AMN háromszög területét.

Matlap

4. Feladat (10 pont)

Matematikaórán négy tanuló felel egyszerre. A tanáruk így szól: - Itt van 20 darab kártyalap 1-től 20-ig megszámozva. Ki kell választanotok ezek közül 5-5 lapot, majd a kártyalapokon levő számokkal számpárokat képeznetek. (Jelöljük a számpárt (a,b)-vel, ahol a és b különböző természetes számok, valamint (a,b) és (b,a) alatt ugyanazt a számpárt értjük). Ezek olyan számpárok legyenek, melyek tagjainak különbsége, a nagyobbikból a kisebbik számot kivonva,

néggyel osztható szám. Minden ilyen számpár 1 pontot ér. A kapott jegyed a pontjaid összege. Ezzel szétterítette a kártyákat számokkal felfele, majd adott sorrendbe a tanulók húztak öt-öt lapot.

- a) Legtöbb hányast érdemel az a tanuló, akinek a kártyáin a 20,17,16,10,8 számok vannak?
- b) Kaphatott mind a négy tanuló 10-est? Válaszodat indokold!
- c) Peti 10 számpárt alkotott, de csak 6 pontot tudott szerezni. Legtöbb mennyi lehet a másik három tanuló által kapott jegyek összege?

MINISTERUL EDUCAȚIEI NAȚIONALE

Centrul Național De Evaluare și Examinare

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26.

Javítókulcs VII. osztály

1. Feladat (10 pont)

Adottak az x = 2 + 4 + 6 + ... + 4036 és $y = 2018 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot ... \cdot \left(1 - \frac{1}{2019}\right)$ számok.

- a) Igazold, hogy $a = x 2019 \cdot y$ teljes négyzet.
- b) Igazold, hogy $a = 2019 \frac{1+2+3+...+2017}{\sqrt{1+3+5+...+2017}} \in N$.

Faluvégi Melánia, Zilah

Megoldás:	
Hivatalból	1p
a)	
$x = 2 \cdot (1 + 2 + 3 + \dots + 2018) \dots$	1p
$x = 2018 \cdot 2019$	1p
$y = 2018 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2018}{2019}$	1p
$y = \frac{2018}{2019}$	1p
$a = 2018^2$	
b)	
$1+2+3++2017 = 2017 \cdot 1009$	1p
$\sqrt{1+3+5++2017} = 1009$	1 _F
$a = 2019 - 2017 = 2 \in \mathbb{N}$	

2. Feladat (10 pont)

a) Oldd meg a természetes számok halmazán következő egyenletet:

$$|1-\sqrt{2}|+|\sqrt{2}-\sqrt{3}|+|\sqrt{3}-\sqrt{4}|+...+|\sqrt{n}-\sqrt{n+1}|=2.$$

b) Oldd meg a valós számok halmazán következő egyenletet:

$$\left| 3\sqrt{2} - 2\sqrt{3} \right| - \left| 4\sqrt{3} - 5\sqrt{2} \right| = \frac{x + 4\sqrt{3} - 4\sqrt{2}}{2}$$

Császár Sándor, Csíkmadaras Hodgyai Edit, Micske Tóth Csongor, Szováta

Megoldás:

De Evaluare și

Examinare

a)	
$1 - \sqrt{2} < 0$, $\sqrt{2} - \sqrt{3} < 0$, stb	1p
Így	
$\left 1 - \sqrt{2}\right + \left \sqrt{2} - \sqrt{3}\right + \left \sqrt{3} - \sqrt{4}\right + \dots + \left \sqrt{n} - \sqrt{n+1}\right = 2 \Leftrightarrow \dots$	lp
$\Leftrightarrow \sqrt{2} - 1 + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \dots + \sqrt{n+1} - \sqrt{n} = 2 \Leftrightarrow$	1
$\Leftrightarrow \sqrt{n+1}-1=2 $	2p
$\Leftrightarrow \sqrt{n+1} = 3$ ahonnan $n = 8$	1p
b)	
$3\sqrt{2} - 2\sqrt{3} > 0$, $4\sqrt{3} - \sqrt{3} < 0$	1p
$3\sqrt{2} - 2\sqrt{3} + 4\sqrt{3} - 5\sqrt{2} = \frac{x + 4\sqrt{3} - 4\sqrt{2}}{2} $	1p
Az egyenlet egyszerűbb alakba való felírása:	
$-2\sqrt{2} + 2\sqrt{3} = \frac{x + 4\sqrt{3} - 4\sqrt{2}}{2} $	1p
$2 \cdot \left(-2\sqrt{2} + 2\sqrt{3}\right) = x + 4\sqrt{3} - 4\sqrt{2}$ ahonnan $x = 0$	1p
Z	

3. Feladat (10 pont)

Az ABCD négyzet oldalának hossza 7 cm. Legyen $M \in (BC)$ és $N \in (CD)$ két pont, amelyekre $m(MAN \ll) = 45^{\circ}$. Ha tudjuk, hogy a CMN háromszög területe 3 cm^2 , határozd meg az AMN háromszög területét.

Matlap 2018/10

Megoldás:

Hivatalból1p

A BC oldal meghosszabbításán felvesszük az E pontot úgy, hogy $m(EAM \lt t) = 45^{\circ}$2p

$$\operatorname{fgy} \left. \begin{array}{l} m(EAB \prec) = 90^{\circ} - 45^{\circ} - m(BAM \prec) \\ m(NAD \prec) = 90^{\circ} - 45^{\circ} - m(BAM \prec) \end{array} \right\} \Rightarrow EAB \prec \equiv NAD \prec \dots 2p$$

Examinare

MINISTERUL EDUCAȚIEI NAȚIONALE

$$[AE] = [AN]$$

$$[AM] = [AM] \Rightarrow MAN \triangle = EAM \triangle \Rightarrow T_{MAN} = T_{EAM} = T \dots 2p$$

$$MAN < = EAM <$$

$$ABE \triangle \equiv ADN \triangle \Rightarrow T_{ABCD} = T_{AECN}$$

$$T_{AECN} = 2T + T_{MNC} = 2T + 3$$

$$\Rightarrow 2T + 3 = 49 \Rightarrow T = 23 \text{cm}^2$$

$$\therefore 2p$$

4. Feladat (10 pont)

Matematikaórán négy tanuló felel egyszerre. A tanáruk így szól: - Itt van 20 darab kártyalap 1-től 20-ig megszámozva. Ki kell választanotok ezek közül 5-5 lapot, majd a kártyalapokon levő számokkal számpárokat képeznetek. (Jelöljük a számpárt (a,b)-vel, ahol a és b különböző természetes számok, valamint (a,b) és (b,a) alatt ugyanazt a számpárt értjük). Ezek olyan számpárok legyenek, melyek tagjainak különbsége, a nagyobbikból a kisebbik számot kivonva,néggyel osztható szám. Minden ilyen számpár 1 pontot ér. A kapott jegyed a pontjaid összege. Ezzel szétterítette a kártyákat számokkal felfele, majd adott sorrendbe a tanulók húztak öt-öt lapot.

- a) Legtöbb hányast érdemel az a tanuló, akinek a kártyáin a 20,17,16,10,8 számok vannak?
- b) Kaphatott mind a négy tanuló 10-est? Válaszodat indokold!
- c) Peti 10 számpárt alkotott, de csak 6 pontot tudott szerezni. Legtöbb mennyi lehet a másik három tanuló által kapott jegyek összege?

Császár Sándor, Csíkmadaras

Megoldás:

Hivatalból 1p a) A tanuló 3-ast éremel..... .1p A megfelelő számpárok: (20,16), (20,8), (16,8)..... 1p b) Tanulónként az 5 szám legtöbb 10 különböző számpárba rendezhető..... Kimutatja, hogy lehetséges a 20 kártyalapot olyan módon kihúzni, hogy mindenki 10-es jegyet kapjon: ha mindegyik tanuló 5 olyan lapot húzott, melyek 4-gyel való osztási maradéka azonos volt. 2p Ekkor mindegyikük kaphatott 10-est. 1p c) Mivel Peti 6 pontot tudott szerezni, ez azt jelenti, hogy a 4-gyel való azonos osztási maradékú számokból 4-et választott, az ötödik kártyalapon pedig más alakú szám szerepelt. 1 p Ennek megfelelően egy másik tanuló is Petihez hasonló helyzetbe került. 1 p Ekkor legtöbb 6+10+10 = 26 volt a másik három tanuló által kapott jegyek összege. ..1p