Techniques of Differentiation

- 1. Find the differential coefficients of the following functions with respect to x (i.e. $\frac{dy}{dx}$).
 - $(i)y = \sin x \sin 2x \sin 3x$, $(ii)y = \cos ec^3 x$, $(iii)y = \cos 2x \cos 3x$, $(iv)y = \sin^{-1}(x^2)$,

$$(v)y = \tan(\sin^{-1} x), \quad (vi)\cot^{-1}\left(\frac{1+x}{1-x}\right), \quad (vii)\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), \quad (viii)\sin^{-1}\left(\frac{2x}{1+x^2}\right),$$

$$(ix) \tan^{-1} \left(\frac{2x}{1-x^2} \right), \qquad (x) \tan^{-1} \left(\frac{x}{\sqrt{1-x^2}} \right).$$

2. Find the differential coefficients of:

$$(i)(\sin x)^{\ln x}$$
, $(ii)(\sin x)^{\cos x} + (\cos x)^{\sin x}$.

- 3. Find the differential coefficients of $\sqrt{\left(\frac{1+x}{1-x}\right)}$.
- 4. Find $\frac{dy}{dx}$ in the following cases:

(i)
$$3x^4 - x^2y + 2y^3 = 0$$
, (ii) $x^3 + y^3 + 4x^2y - 25 = 0$, (iii) $x^y = y^x$.

5. Find $\frac{dy}{dx}$ when

$$(i)x = a\cos^3\theta, \ y = a\sin^3\theta, \quad (ii)x = \sin^2\theta, \ y = \tan\theta, \quad (iii)x = a\sec^2\theta, \ y = a\tan^2\theta.$$

6. Differentiate the left-side functions with respect to the right-side ones:

(i)
$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ (ii) $x^{\sin^{-1}(x)}$ with respect to $\sin^{-1}x$.

7. Find the differential coefficients of:

$$(i) \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}}, \quad (ii) \ln \sqrt{\frac{1 - \cos x}{1 + \cos x}}, \quad (iii) \tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}, \quad (iv) \tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x}\right)$$
$$(v) \sin \left(2 \tan^{-1} \sqrt{\frac{1 - x}{1 + x}}\right).$$