SEMIDEFINITE OPTIMIZATION (MA 591) — HW 4

Path-following IPM (in lieu of the October 23 class)

- **1.** (A toy LP.) Consider the convex polyhedron $P = \{(x,y) \in \mathbb{R}^2 \mid 2x + y \le 8, x \ge 0, y \ge 0\}.$
 - (a) Find the analytic center of P.
 - (b) Describe (in closed form) the (primal) central path corresponding to the LP in which we minimize -2x y over P.
- 2. (Every point is on a central path.) Consider a polytope in standard form and a point $\bar{\mathbf{x}}$ in its interior. Show that there exists a linear objective for which $\bar{\mathbf{x}}$ is the point on the central path corresponding to $\mu=1$. (Motivation: this can be used to initialize the primal-only path following method, without the homogeneous self-dual embedding. Just follow this central path towards the analytic center, then switch to the path corresponding to the actual objective we wish to optimize.)
- 3. (We have stated this in class, but did not prove it.) Let $B : \operatorname{int}(S) \to \mathbb{R}$ be a nonnegative continuous barrier function for the closed and bounded set S, and $f : S \to \mathbb{R}$ be a continuous function. Finally, let \mathbf{x}^* be a minimizer of f over S, and for every $\mu > 0$, let \mathbf{x}_{μ} be a minimizer of the function $f + \mu B$ over S. (These minimizers exist under the above assumptions. It should also be clear that $f(\mathbf{x}_{\mu}) + \mu B(\mathbf{x}_{\mu})$ is nondecreasing in μ .)
 - (a) Prove that $f(\mathbf{x}_{\mu})$ is nondecreasing and $B(\mathbf{x}_{\mu})$ is nonincreasing in μ .
 - (b) Prove that $\lim_{\mu\to 0+} f(\mathbf{x}_{\mu}) + \mu B(\mathbf{x}_{\mu}) = \lim_{\mu\to 0+} f(\mathbf{x}_{\mu}) = f(\mathbf{x}^*)$.

Due on November 1 (Wednesday), by the start of the class. (You may turn in typeset solutions by email.)