Lecture 12 Matrices

Topics:

- 1. Matrices
- 2. Matrix Operations

Matrices

Definition: A *matrix* is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. The plural of matrix is matrices. A matrix with the same number of rows as columns is called square. Two matrices are equal if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.

Example: The matrix
$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$$
 is a 3 \times 2 matrix.

Matrices

Let m and n be positive integers and let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

The ith row of A is the 1 \times n matrix [a_{i1} , a_{i2} , ..., a_{in}].

Matrices

The ith column of A is the $m \times 1$ matrix

The (i, j)th element or entry of A is the element a_{ij} , that is, the number in the ith row and jth column of A. A convenient shorthand notation for expressing the matrix A is to write $A = [a_{ij}]$, which indicates that A is the matrix with its (i, j)th element equal to a_{ij} .

Matrix Arithmetic

Definition: Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. The sum of A and B, denoted by A + B, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i, j)th element. In other words, $A + B = [a_{ii} + b_{ij}]$.

The sum of two matrices of the same size is obtained by adding elements in the corresponding positions. Matrices of different sizes cannot be added, because such matrices will not both have entries in some of their positions.

Example:

We have
$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}.$$

Matrix Product

Definition: Let A be an $m \times k$ matrix and B be a $k \times n$ matrix. The product of A and B, denoted by AB, is the $m \times n$ matrix with its (i, j)th entry equal to the sum of the products of the corresponding elements from the ith row of A and the jth column of B. In other words, if AB = $[c_{ii}]$, then

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj}.$$

Example:

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix}.$$

Find **AB** if it is defined.

Matrix Product

The product of two matrices is not defined when the number of columns in the first matrix and the number of rows in the second matrix are not the same.

Matrix Product

Example: Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Does AB = BA?

Solution: We find that

$$\mathbf{AB} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{BA} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}.$$

Hence, $AB \neq BA$.

Identity Matrix

The *identity matrix of order n* is the $n \times n$ matrix $\mathbf{I}_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. Hence

$$\mathbf{I}_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Multiplying a matrix by an appropriately sized identity matrix does not change this matrix. In other words, when A is an $m \times n$ matrix, we have

$$AI_n = I_m A = A$$
.

Powers of square matrices can be defined because matrix multiplication is associative. When A is an $n \times n$ matrix, we have

$$\mathbf{A}^0 = \mathbf{I}_n, \qquad \mathbf{A}^r = \underbrace{\mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{r \text{ times}}.$$

Transpose

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The transpose of A, denoted by A^t , is the $n \times m$ matrix obtained by interchanging the rows and columns of A. In other words, if $A^t = [b_{ij}]$, then $b_{ij} = a_{ij}$ for i = 1, 2, ..., n and j = 1, 2, ..., m.

Example:

The transpose of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 is the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Symmetric Matrix

Definition: A square matrix A is called symmetric if $A = A^t$. Thus, $A = [a_{ij}]$ is symmetric if $a_{ij} = a_{ji}$ for all i and j with $1 \le i \le n$ and $1 \le j \le n$.

Note that a matrix is symmetric if and only if it is square and it is symmetric with respect to its main diagonal (which consists of entries that are in the ith row and ith column for some i).

Example:

The matrix
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 is symmetric.

Zero-One Matrices

A matrix all of whose entries are either 0 or 1 is called a zero—one matrix. Zero—one matrices are often used to represent discrete structures. Algorithms using these structures are based on Boolean arithmetic with zero—one matrices. This arithmetic is based on the Boolean operations \land and \lor , which operate on pairs of bits, defined by

$$b_1 \wedge b_2 = \begin{cases} 1 & \text{if } b_1 = b_2 = 1 \\ 0 & \text{otherwise,} \end{cases}$$
$$b_1 \vee b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Join and Meet

Definition: Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be m×n zero—one matrices. Then the join of A and B is the zero—one matrix with (i,j)th entry $a_{ij} \lor b_{ij}$. The join of A and B is denoted by A \lor B. The meet of A and B is the zero—one matrix with (i,j)th entry $a_{ij} \land b_{ij}$. The meet of A and B is denoted by A \land B.

Join and Meet

Example: Find the join and meet of the zero–one matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Solution: We find that the join of **A** and **B** is

$$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

The meet of A and B is

$$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$