(19) НАРОДНА РЕПУБЛИКА БЪЛГАРИЯ

## ОПИСАНИЕ НА ИЗОБРЕТЕНИЕ

(II) 17385

DIKA

\_\_\_\_

. ..



(61)Доп. към 🔏

(62) Pasa, or M:

(21) Per. No 18962 (22) Заявена на 09.11.71

(51) C 07 d 51/64 51/70

Институт за изобретения и рационализации (46) Публикувано в бюлетия М

**EA 10.11.73** 

(5) Ornevarano aa 29.03.78.

(71) Зеявител:

(72) ABTODS:

NEME NAT HATHA.

Светлана Стоянова Зиколова Кирил Асенов Нинов Петър Николов Манолов Собия

## (54) ПРОИЗВОДНИ НА БИНВИХИДРИЛПИПЕРАЗИНА И МЕТОД ВА ПОЛУЧАВАНЕТО ИМ

Наобретението се отнаси до производии на бензихидрилинперазина о обна формуна I

CeHs CHICHR

в конто й коно да бъдо ежимись радиках с 2 до 8 въгмеродии атема, акионилов радиках с 8 мли 4 въгмеродии атема, фенинализись или дифе иниализись радиках б 8 мли 8 въгмеродии атема в аминловата верига, феноисистилов, инфтилистилова, нафтилетилова, бензовков, р-хлорбензовков, тримотокомбензовков, фенинацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, дифенилацетилов, димотилациотилов, пинломенсовков, пинломенсовков или морфениновтилов, димотиламиностилов, пинломенсовков или морфениностилов остатък, винломенно и техните фариалогичено ново-

сими соли с поорганичие мли органичие кисолими, кокто и до мотод за получаването им.

Невополучените съодинения могат да се разглеждат нато анамози на наложими се вече в прантината белгийски пренарав Пинаризии.



оз чилго отруктура о ваназона і беняхидримниперазиновата част.

Съединенията с обща формуна I се получават по два начина:

1. Като се надиза от бенанхидрижнинеразми (III) и съозвезнето халогенепроизводно (IV).



I = CI, RP.

2. При воидензация на оботнечно монованестен пинеражин (Ч) с бензавранкамогения (ЧІ)



I = CI man le.

Кахадинто моносуботнунрами пиноразмии (III и У) со алимират или анимрат в орода от помиром или меномиром разгворител (бекзок, томуол, конком, мотамом, озамом, онумоми от иморгом разгворитем и вода) при обимислеми темпоратура или при награжано в продажноние- на половии до нест часа, до базите на съединения. Г.

Като кондензационно оредство се изполява наливък от изходния амин или друго венество с базачик свойства, като например  $NaeCO_8$ ,  $Na_2CO_8$ , пиридии, триетиламии и др.

Получените бази I по обикновените нетоди, чрез разгвариве в подходиц разгворител и утанване с подходиц разгвор от евответната киселина или продужване с ханогеноводород дават деланите от нас соли.

Дво от съодинения и  $N^1$ -бензхидрии- $N^4$ -алиминеразии (съодинение 2.7 от приломения табинца, с условен инфър 3.5 - 2) и  $N^1$ -бензхидрии- $N^4$ -нафтикацетилинеразии (съодинение 2.2 от таблицата, с условен инфър 3.5 - 18) са поддожени на фармакологично процата, с условен инфър 3.5 - 18) са поддожени на фармакологично проучане, обхващаю тестеве за илиние върху сърдечно-съдовата систена, вегетативната нервия система, гладката мускуматура и остра токсичност. Данните от проучванията понавват, че съединенията са физирногично активни. Соебено подчертан е вазодинатиражит ефект върху
венечните съдове и увеличението на коронарния дебят ѝ епити
витром на съединението 3.5 - 2. Последного узеличина коронарния, дебит на препарат от изолирано теплокръвно сърце средно със 160 % при
контрола с превилании – 108 % и цинаривни – 104 % (сравненията са
направени с сптимално действуващите концентрации на последиите два
препарата). Спедователно 3.5 - 2 в сравнение с пренизания и цинаризних предиавиния с около 50 % не-голино узеличение на дебита.

u двете озединении упражинват известен опавмонитичен ефект, който при  $A_S - 2$  е прибливителию одижизи с тови на папаверния.

По отномене на вегетативната первия система ведествата ниат слабо изразена антивност. Върху урегамизирани котин отодинеинита оказват пратнотрайно хинотехнико действие.

Тененчисовка на венесината, изразена в 🗋 50° е оредно окодо 160 мг/иг за мини при интраноритокомию положение, определена же Катает: Резорбщика им е добра. Аз — 2 има индека на реворбщии около 2 и добра терановична инрина.

От тови макар и предварителии фармокологичим проучвания отала локо, че тола са блокорически активии ведоства, които могат да бъдат обект на не-мататънни проучвания с оглед озадаването на неви цении лекаротиеми средства:

Съединенията е обща формула I си нови, неописани в интературата вещества. Значенията на R и точките на топоно са дадени в таблина.

Спедацият пример непенива не-подробно изобретенного.

Пример: Получана на КІ<sup>1</sup>-стик-Кі<sup>4</sup>-бенахидрия-пинеразия.

Към разувор на 5,04 г (0,02 к) Кі-монобенахидрияниноразия

в 50 их сух бензол, в присъедию на 2 г (0,024 к) Кіансо<sub>3</sub>, при бър
кано в нагряване на водна бани се изканва за 80 имнути разувор на

8,1.(0,02 к) езиндения в 50 их сух бензол. Нагрява се и се бърна оде

4 чеса. Свед охнаждане се филурува и суми над Кіа<sub>2</sub> 5 0<sub>4</sub>. От бензон
ими разувор се узанва чрез продухване със сух хисроводерод или с

каситем разувор на импримена киселина съответно хидрохисран и имп-

Impersoper - v.v. 361-60 (p). Haunczer czeren p \$1064,55 H 7,87; N 7,98, CI 20,12; manopene C 64,70, H 7,80; N 7,77; CI 20,11.

Hanjan - 2.2. 282-30(p). Hausen orema n S: C 5642; H 4,67; N 15,12; manepeno C 50,60; H 8,86; N 15,45. Примор 2. Получаване на  $N^4$  — ( $\beta$  -фонку)-оска- $N^4$  — бонахидрия пиноразии.

нам разтвор на 4 г (0,021 м) моло-К-( В -фанка)-станпиперавия и 80 их сух бензох, в присъствие ил 4 г (0,086 п) изгразв
нарбонат при бържано и нагряване на водил байн, ел около 80 имиуне
се какапва разтвор на 4 г (0,021 м) бензиндельнорга в 20 мм сух
бензох. Нагрява се и се бържа обе 5 члса. След схладале и финерараме се буйн илд натриев сухфат и се отдејстилира бензойът. Члея
от остатъва се разтваря в алиском и с изсетен разтвор на околиста на
селина в етер се утанва сом на полученита база. След преврестанизапин се получана околит с т.т. 184 – 1880. Изчиской съдържанае:
С 64,93%, и 5,97%, и 5,22%. Немерейо при амайия: С 64,58%, и 6,80%,
К 4,99%.

При тови метод могат да се помучит и воздани се таблица съсди-

## TABRILIA

| <b>Е</b> по                         | B   | OOX                   |                          |
|-------------------------------------|-----|-----------------------|--------------------------|
| ред                                 |     | RAN                   | <b>1.1.</b>              |
|                                     |     | <u> </u>              |                          |
| 1                                   | . 2 | 8 .                   | 4                        |
| 1 сн <sub>8</sub> сн <sub>2</sub> - | •   | паврая<br>хазбохновай | 251~8° (p)<br>282~6° (p) |

| 1          | 2                                                                                 | 8                               | 4                                                                             |
|------------|-----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|
| 2          | CH3CH2CH2CH2 -                                                                    | Tappapar<br>Organar<br>Tappapar | 287-40°<br>128-80° (p)<br>300-208° (p)                                        |
| 8          | CH3CH2CH2CH2 -                                                                    | raproper<br>December<br>Persono | 105-8 <sup>0</sup> (p)<br>218-21 <sup>0</sup> (p)<br>198-200 <sup>0</sup> (p) |
| 4          | CH3CH2CH2CH2CH2 -                                                                 | Lediedel<br>Herber<br>Orosysi   | 124-6 <sup>8</sup> (p)<br>225-7° (p)<br>205-7° (p)                            |
| <b>5</b> . | CH3CH2CH2CH2CH2CH2CH2 -                                                           | orcanat<br>Taptapat             | 140-2 <sup>0</sup> (p)<br>202-4 <sup>0</sup> (p)                              |
| 6          | CH3CH2CH2CH2CH2CH2CH2CH2CH2                                                       | okoanat<br>Taprapar             | 180-8° (p)<br>205-8° (p)                                                      |
| 7          | CH2=CHCH2-                                                                        | хидрохнорид                     | 226–8 <sup>0</sup>                                                            |
| 8          | CH <sub>S</sub> CH=CH. CH <sub>2</sub> -                                          | okcarat<br>Medat                | 179–181° (p)<br>210–12° (p)                                                   |
| 9          | C6H5 CH2CH3-                                                                      | · TEREDHO                       | 184–6 <sup>0</sup> (p)                                                        |
| 10         | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -   | оксалат<br>пикрат               | 198–9° (p)<br>218–5°                                                          |
| 11         | (C8H5)2 CHCH2-                                                                    | Organes                         | 195–7 <sup>0</sup> (p)                                                        |
| 1.8        | (C <sup>2</sup> H <sup>2</sup> ) <sup>2</sup> CHCH <sup>2</sup> CH <sup>2</sup> - | оксалат<br>пикрат               | 280–38°(p)<br>288–90°(p)                                                      |
| 18         | d -С <sub>10</sub> Н <sub>7</sub> СН <sub>2</sub> -                               | TPERSONO                        | 200–201 <sup>0</sup> (p)                                                      |
| 14         | ∠ -c <sub>10</sub> e <sub>7</sub> ee <sub>2</sub> ce <sub>2</sub> -               | organa?                         | 192 <b>-4</b> ° (p)                                                           |
| 15         | с <sub>6</sub> н <sub>5</sub> о. сн <sub>2</sub> сн <sub>2</sub> -                | OKORNĄT .                       | 158-60 <sup>0</sup> (p)                                                       |
| 16         | C6H2CO-                                                                           | ORORNAS<br>Taptapas             | 140 <u>-42</u> 0<br>145-7                                                     |

|    | 1                                             | 2                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 4                                                                           |
|----|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 17 | p -CIC <sub>6</sub> H <sub>4</sub>            | 00-                                                   | индрохиорид<br>хидрохиорид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 287-40°<br>150-53° (p)                                                        |
| 18 | 9,4,5                                         | (сн <sub>8</sub> 0)8с <sup>8</sup> н <sup>2</sup> со- | . časa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 149–150 <sup>0</sup>                                                          |
| 19 | Ceneco-                                       |                                                       | <b>dasa</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 141-3 <sup>0</sup>                                                            |
| 20 | (c <sub>e</sub> H <sub>2</sub> ) <sub>2</sub> | CHCO :-                                               | пинра 🕏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188–190 <sup>0</sup> (p)                                                      |
| 21 | (0 <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> | CHCH <sub>2</sub> CO -                                | хадрохиорад<br>база                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113-5 <sup>0</sup><br>128-30°                                                 |
| 22 | . ol -C <sub>10</sub> H <sub>7</sub>          | CH <sub>2</sub> CO -                                  | - база<br>хидохлорид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166-70°<br>257 <b>-</b> 9                                                     |
| 23 | CH2 CH                                        | S - CH <sup>2</sup> CH -                              | orcanat<br>Taptapat<br>Urtpat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 198-5° (p)<br>160-2° (p)<br>184-6° (p)                                        |
| 24 |                                               | CH-                                                   | okcarat<br>Taptapat<br>Urtpat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 186-8 <sup>0</sup> (p)<br>180-82 <sup>0</sup> (p)<br>100-102 <sup>0</sup> (p) |
| 25 | (c <sup>S</sup> H <sup>2</sup> )              | SINCHSCHS-                                            | CHOANAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 167–169 <sup>0</sup> (p)                                                      |
| 26 | (CH <sub>8</sub> ) <sub>2</sub>               | Nch <sup>2</sup> ch <sup>2</sup> -                    | orcanar<br>Taptapar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 154-6° (p)<br>174-6° (p)                                                      |
| 27 |                                               | NCH2CH2                                               | okcalat<br>Taptapat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 182-5 <sup>0</sup> (p).<br>158-61 <sup>0</sup> (p).                           |
| 28 |                                               | NGH2 CH2-                                             | CECENTAL CONCENSION ORGANICAL CONCENSION OF | 160-2 <sup>0</sup> (p)<br>160-8 <sup>0</sup> (p)                              |

Ú

## Автороки протовини

1. Производни на бенахидринингеразина с обща формука!



в конто R е алкилов радинал с 2 до 8 въглеродии атома, адкенилов
радинал с три или четири въглеродии атома, феницаркинов, или дифеимпанилов радинал с 2 или 8 въглеродии атома в алкиловата верига
феноксистинов, нафтилистинонов, нафтилестинов, бензоилов, р-хпорбензоилов, тринетоксибензоилов, феницацетилов, дифенилацетилов, дифеинхирейнонидов, нафтилацетилов, пиклохексилов, пиклопентилов, дистилацииоетилов, диметилации придостилов или мерфолиностилов
сотатък, включетскио и техните физиологично понссиим соли с неорганили или органили иносиния.

- 2. М4- бенахидрик-М4-алик-ниперазии.
- 8. Метод за получаване на бенахидрининивразинови производии с соща формуна I, съгнасно претенция 1, карактеризиращ се с това, че бенахидринишеразии реагира оъс съответното халогено-производно съгнасно схемата

(C8H2)8 CHIN NH + XB I

4. Нетод за получаване на белянхидриминоразинови производии, озгласно протенция 1; карактеривирац се с това, че съответинат IV-монозаместем пинеразии реалира със съответното халогенепроизводие съгласно охената

в воято X е маор или бром, а R има дадените в претенции 1 значения, в присъствие на разтворитех и алианно кондензационно средство,
при обикновена температура или при нагряване, до съединения I,
след което последните но менание се превръщат в соми на неорганични или органични киселини.

Надание на Института за изобретения и рационализации Софии, бул. "Насър" № 52

Пор. № 5589. Офсетова печатия база на ИИР

THPAX 200