

Calcul de primitives

n , new 1/1/9	12 × 0 × 2 ×	N + - 1 (n-1) N n-1
$n_1 - \frac{1}{2\sqrt{n}}$]0,+0	n , Jn
$x \mapsto \sqrt{n}$	[0,+0[$n \mapsto \frac{2}{3} \pi \sqrt{n}$
n po Sinn	R	n - com
n 1 - Co, n	IR	n - Sinn

Jans Le Tableau qui Svit; u et V Jésignent Jeux Lonctiono Jésivables sur un intervalle I. Une primitive sef Fonction -山'+V' 11 A U U'V + V'U **山.** √

U' (U(n) \$ > \text{YNEI})	_ 1_
	μ
U'V - V' U (V(n) + > \ xe]	<u>U</u>
١٠٠٠	U 041
	n+\
اب اب	1
47	(n-1) U n-1
2/4	√u
ロリゾロ	2 3 U VU
V'(n) x U'(V(n))	U → V(n) ·

on q:
$$\forall u \in]-\frac{1}{2}, +\infty[\frac{1}{2}]$$
 $(n) = \frac{1}{(2n+1)^{2}}$ $= \frac{1}{2}$ $\frac{2}{(2n+1)}$

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

$$= -\frac{1}{2} \frac{1}{-\frac{1}{3}(2n+1)^{-\frac{1}{3}}} + k$$

$$=\frac{3}{2}(2m+1)^{\frac{1}{3}}+k$$

Tous droits réservés © TakiAcademy.com