WikiNER: Brute-force Named Entity Recognition leveraging Wikipedia dataset

Mario Mastrandrea, Yuting Yang

December 8, 2022

COM S 579X Natural Language Processing, Fall 2022

What is **Named Entity Recognition**?

Text

Iowa State University of Science and

Technology is a public land-grant

research university in Ames, Iowa.

Tags

- [Organization] Iowa State University of Science and Technology
- [Location] Ames
- [Location] lowa

What is **Named Entity Recognition**?

What is **Named Entity Recognition**?

IOWA STATE UNIVERSITY

Why WikiNER?

The entities in *Wikipedia* are a good source of tags to recognize WHO, WHERE, and WHAT in a sentence

- Massive in the number of entities of each type (i.e., organization, locations, persons)
- Being evolving and expanding
- Applicable to different domains

Use the **top ranked** *Wikipedia* **Named Entities** to label a sentence with a **brute-force approach**

How did we build WikiNER?

- Retrieve Wikipedia top ranked NEs from Wikidata API
- 2. Build a **brute-force model** to perform NER tagging
- 3. **Evaluate** the model using a tagged *corpus* as a benchmark

Retrieve Wikipedia top ranked NEs from Wikidata API

 download .csv file from <u>Wikidata QRank project</u> with ordered Wikipedia entities

Entity	QRank
Q178995	219893853
Q635	113674399
Q866	93345399

2. call *Wikidata* API for each entity to retrieve its **English label**https://www.wikidata.org/w/api.php?action=wbgetentities&ids=Q178995&languages=en&format=json&props=labels

create an output .csv file with the top k Named Entities labels

Entity	QRank	Label
Q178995	219893853	HTTP cookie
Q635	113674399	Cleopatra
Q866	93345399	YouTube

Retrieve Wikipedia top ranked NEs - with aliases

```
def top_N_NEs(
    input_csv_ranking_file_path: str,
    output_csv_file_path: str,
    top_N=1000,
    aliases=False
```

The function we implemented to extract the labels

• It is also possible to retrieve all the **aliases** of a Named Entity with the same API, **increasing** the **performances**!

https://www.wikidata.org/w/api.php?action=wbgetentities&ids=Q178995&languages=en&format=json&props=labels|aliases

Entity	QRank	Label
Q178995	219893853	HTTP cookie
Q178995	219893853	cookie
Q178995	219893853	web cookie
Q178995	219893853	browser cookie
Q178995	219893853	internet cookie
Q178995	219893853	cookies
Q635	113674399	Cleopatra
Q635	113674399	Cleopatra VII Philopator
Q635	113674399	Cleopatra VII
Q866	93345399	YouTube
Q866	93345399	YT

Build a brute-force model to perform NER tagging

```
def brutal_force_NER(
    sentence_tokens: list[str],
    NE_list: list[str],
    tokenizer,
    scheme="BIO"
):
```

The function we implemented to tag a sentence using the Wikipedia NEs with brute-force approach

- 1. Find all the **not-overlapping** *Matches** in the sentence using all the NEs (brute-force)
- 2. Represent this matches according to the specified tagging scheme (i.e., *BIO*, *BILOU*)

*A *Match* is an **occurrence** of a Named Entity in the sentence, represented as a tuple of **indexes** (*a*,*b*): *a* is the **start** index, *b* is the (exclusive) **ending** index

Example of **brute-force tagging**

sentence_tokens = ['I', 'went', 'to', 'school', 'at', 'lowa', 'State', 'University', 'in', 'Fall', '2022']

NE_list = ['Microsoft', 'Iowa State', 'Fall 2022', 'Deep Learning', 'Iowa State University', '2022', 'school']

Matches

BIO and **BILOU** representations

Challenge #1: Overlapping NEs

 We solved the problem of overlapping Named Entities prioritizing always the longest Named Entity

```
sentence_tokens = ['I', 'went', 'to', 'school', 'at', 'lowa', 'State', 'University', 'in', 'Fall', '2022']

NE_list = ['Microsoft', 'lowa State', 'Fall 2022', 'Deep Learning', 'lowa State University', '2022', 'school']
```


overlapping *Matches*

not-overlapping Matches

BIO representation

Supported tagging schemes

Our WikiNER model supports 2 different tagging schemes:

BIO:

B - Beginning

l – Inside

O – Outside

BILOU:

B - Beginning

l – Inside

L – Last

O – Outside

U – Unit

Challenge #2: Entity type (LOC, PER, ORG, MISC, etc.)

 NER problem also expects to find the type of each Named Entity (LOCation, PERson, ORGanization, etc.)

But this is impossible using just a the Wikidata API, since it does not
provide the type of an entity

Solution: using another model (like BERT) to also find the type of NEs

Evaluate the model using a tagged corpus as benchmark

- Use CoNLL2003 dataset as benchmark
 - It contains a corpus of sentences whose
 Named Entities have been tagged in their respective types using the BIO scheme
- Use the WikiNER model to tag its sentences
- Evaluate the performances comparing the predicted tags with the real tags in the corpus (ignoring the NE type)

token	POS tag	chunk tag	NER tag
EU	NNP	B-NP	B-ORG
rejects	VBZ	B-VP	0
German	JJ	B-NP	B-MISC
call	NN	I-NP	0
to	то	B-VP	0
boycott	VB	I-VP	0
British	JJ	B-NP	B-MISC
lamb	NN	I-NP	0
		0	0
Peter	NNP	B-NP	B-PER

Evaluation metrics

Precision

$$\frac{True\ Positives}{True\ Positives + False\ Positives}$$

Recall

$$\frac{\textit{True Positives}}{\textit{True Positives} + \textit{False Negatives}}$$

F1-score

$$2*\frac{Precision*Recall}{Precision+Recall}$$

Among all the predicted NEs, how many of them were true NEs

Among all the real NEs, how many of them we were able to **predict**

Harmonic mean between *precision* and *recall*

WikiNER performances on CoNLL2003 dataset

- We used seqeval library to compute precision, recall and F1-score
- Compare the results using different numbers of Wikipedia top NEs

#NEs	Precision	Recall	F1-score	
100	0.94	0.05	0.09	
1,000	0.89	0.14	0.24	
10,000	10,000 0.26		0.24	

#NEs	Precision	Recall	F1-score
100	0.82	0.06	0.11
1,000	0.49	0.18	0.26
10,000	0.15	0.29	0.20

with no aliases with aliases

Timing problems

- WikiNER is a very time-consuming approach!
 - extracting Wikipedia NEs
 - executing the brute-force model

#NEs	time		
100	~20s		
1,000	~3min		
10,000	~30min		

#NEs	no aliases	with aliases	
100	~5min	~20min	
1,000	~30min	~2h	
10,000	~3h	~12h	

estimated times to extract NEs

estimated times to execute WikiNER on CoNLL2003

Use a **BERT Model** to Perform the **NER Tagging**

- Due to the **disadvantages** of the brute-force model (i.e., lack of entity type and time-consuming), we used a **BERT** model to perform the task on *CoNLL2003*
- This task takes four steps:
 - 1. Create **tokenized** dataset based on *CoNLL2003* using a BERT tokenizer
 - Create input objects for Trainer, like an evaluation metrics function, a data collator and the tokenizer
 - 3. Define **BERT model** and the **training arguments**
 - **4. Train** and **evaluate** the BERT model on *CoNLL2003* dataset

Step 1: Create **Tokenized Dataset** based on *CoNLL2003*

- Issue 1: The BERT model needs a proper tokenized input, in the form of integer tokens, while CoNLL2003 has string tokens
- Solution: use a BERT tokenizer to properly preprocess input dataset CoNLL2003

```
Tokens: EU rejects German call to boycott British lamb.

NER tag no.: 3 0 7 0 0 0 7 0 0
```

```
str tokens: [CLS] EU rejects German call to boycott British la ##mb . [SEP]
int tokens: 101 7270 22961 1528 1840 1106 21423 1418 2495 12913 119 102
```

example of tokenization: 1st sentence of CoNLL2003 preprocessed using a BERT tokenizer

Step 1: Create Tokenized Dataset – align NER tag labels

- Issue 2: The Named Entities tags in CoNLL2003 need to be formatted in a way that fits the BERT tokenization
 - Some words are split in more tokens
 - Special tokens (ex: [CLS] start of a sample, [SEP] sentences separator, etc.)

- Solution:
 - Align NER tag labels to sentence tokens

example of **NER tag alignment**: 1st sentence of CoNLL2003 NER tags aligned

Step 1: Create **Tokenized Dataset - steps**

Taken together, the tokenized dataset was created in the following three steps

```
def align_labels_with_tokens(labels, word_ids):
   new_labels = []
   current word = None
   for word id in word ids:
       if word_id != current_word:
           current word = word id
           label = -100 if word_id is None else labels[word_id]
           new_labels.append(label)
       elif word id is None:
           new_labels.append(-100)
       else:
           label = labels[word_id]
           if label % 2 == 1:
               label += 1
           new_labels.append(label)
   return new_labels
```

```
def tokenize_and_align_labels(examples):
    tokenzied_inputs = tokenizer(
        examples['tokens'], truncation = True, is_split_into_words = True
    )
    all_labels = examples['ner_tags']
    new_labels = []
    for i, labels in enumerate(all_labels):
        word_ids = tokenzied_inputs.word_ids(i)
        new_labels.append(align_labels_with_tokens(labels, word_ids))
    tokenzied_inputs['labels'] = new_labels
    return tokenzied_inputs
```

```
tokenized_dataset = dataset.map(
   tokenize_and_align_labels,
   batched = True,
   remove_columns = dataset['train'].column_names
```

Step 2: Create **Input Objects for Trainer**

- Tokenizer
- Evaluation metrics function

Data collator

```
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
```

```
def compute_metrics(eval_preds):
    logits, labels = eval_preds
    predictions = np.argmax(logits, axis=2)

    true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
    true_predictions = [
        [label_names[p] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels)
]
    all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
    return {
        "precision": all_metrics["overall_precision"],
        "recall": all_metrics["overall_recall"],
        "f1": all_metrics["overall_accuracy"],
}
```

from transformers import DataCollatorForTokenClassification
data_collator = DataCollatorForTokenClassification(tokenizer = tokenizer)

Step 3: Define BERT Model and Training Arguments

Pre-trained BERT model

```
from transformers import AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained(
    'bert-base-cased',
    num_labels = 9,
)
```

Training arguments

```
# specify training arguments to pass to the trainer
training_args = TrainingArguments(
    output_dir="bert-conll2003-test-output",
    evaluation_strategy="epoch",
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    learning_rate=2e-5,
    weight_decay=0.01
)
```

Step 4: Train and evaluate the BERT Model on CoNLL2003

 Put the objects created in the previous three steps together and create the following trainer. Train and evaluate the BERT model

```
from transformers import Trainer
trainer = Trainer(
    model = model,
    args = args,
    train_dataset = tokenized_dataset['train'],
    eval_dataset = tokenized_dataset['validation'],
    data_collator = data_collator,
    compute_metrics = compute_metrics,
    tokenizer = tokenizer,
)
trainer.train()
```

Evaluate the Training Results of the BERT Model

- Final configuration
 - compute_metrics function: axis = 2
 - args: num_train_epochs = 3, per_device_train_batch_size = 16,
 per_device_eval_batch_size = 16, learning_rate = 2e-5, weight_decay=0.01

Epoch	Eval Loss	Eval Precision	Eval Recall	Eval F1	Eval Accuracy
1	0.0416	0.9287	0.9384	0.9335	0.9895
2	0.0392	0.9402	0.9473	0.9438	0.9907
3	0.0365	0.9444	0.9519	0.9481	0.9912

Conclusions

- WikiNER brutal force model is **ineffective** to perform a NER task
 - Low performances (max recall: 29% 10,000 NEs and aliases)
 - Time-consuming (it takes hours)
 - No NEs types
- Two issues in Wikipedia entities:
 - The presence of **more NEs** naturally **decreases precision** (although **increases recall**)
 - The Wikipedia entities are **not universal** enough to capture benchmark entities
- Given proper configurations in *TrainingArguments()*, BERT model performs notably
 better than the brute-force model, identifying NE type too
 - The greater the batch size, the greater the performances

Questions?

Thank You!