ORF526 - Problem Set 3

Bachir EL KHADIR

October 7, 2015

Question 1

- a) $\cap_{n\in\mathbb{N}}A_n^c$
- b) ω is in the event means it is in infinitely many A_n , which quivalent to saying if we take finitely many A_m , ω is still a subset of the union of the rest of the A_n : $\bigcap_{m\in\mathbb{N}} \bigcup_{m\leq n} A_n$
- c) That's the opposite of b), $(\bigcap_{m\in\mathbb{N}} \bigcup_{m\leq n} A_n)^c = \bigcup_{m\in\mathbb{N}} \bigcap_{m\leq n} A_n^c$
- d) ω in the event means that it has to be in exactly two of the A_i , ie $\bigcap_{i,j\in\mathbb{N},i\neq j} (A_i\cap A_j\cap (\bigcup_{n\neq i,n\neq j} A_n^c))$
- e) This event can be expressed as " Φ never occurs at even times", ie $\cap_{n\in\mathbb{N}}A^c_{2n}$

Question 2

- $\varepsilon \subseteq \sigma(\varepsilon)$, so $\{f^{-1}(A) : A \in \varepsilon\} \subseteq \{f^{-1}(A) : A \in \sigma(\varepsilon)\}$. since the RHS is already a σ -algebra (showed in class), $\sigma\{f^{-1}(A) : A \in \varepsilon\} \subseteq \{f^{-1}(A) : A \in \sigma(\varepsilon)\}$
- Let's note $B := \sigma\{f^{-1}(A) : A \in \varepsilon\}$, and $C := \{A : f^{-1}(A) \in B\}$.
 - C is a σ-algebra containing ε , so $\sigma(\varepsilon)$ ⊆ C
 - As a consequence, for every $A \in \sigma(\varepsilon)$, $A \in C$, ie $f^{-1}(A) \in B$.

We have just proved that $\{f^{-1}(A): A \in \sigma(\varepsilon)\} \subseteq B$

Question 3

- $X = \lim_n X_n = \lim_n \sup_{k \ge n} X_k$
- For $x \in \mathbb{R} \cup \{\infty\}$, $X \leq x$ is quivalent to $\exists n \, \forall k \geq n \, X_k \leq x$
- $\{X \leq x\} = \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} \{X_k \leq x\}$ is then measuable.

Question 4

• Let's call $Q = P(\{1, .., n\})$. For i = 1..n:

$$A_i = \bigcup_{I \subseteq Q, i \in I} (\bigcap_{k \in I} A_k) \cap (\bigcap_{k \in I^c} A_k^c)$$

This is true because every $\omega \in A_i$ is in some of the other A_k $(k \in I)$, and in the complement of the others $(k \notin I)$.

Note that this is a union of disjoint sets (because in the intersection of two of those sets there will be a A_k and its complement).

Let's call $I_i := \{I \in Q : \sum_{i \in I} a_i = x_i\}$, ie the different possible combinations for the A_i where $\omega \in \Omega$ can be so that its image by f equals x_i . Note that ω can not be in any other set A_i , for $i \notin I_i$ because $a_i > 0$.

Written differently, $\{f = x_i\} = \bigcup_{I \in I_i} \bigcap_{k \in I_i} A_k \cap \bigcap_{k \in I_i^c} A_k^c$. And as a result of the sets being disjoint:

$$\mu(f = x_i) = \sum_{I \in I_i} \mu(\bigcap_{k \in I_i} A_k \cap \bigcap_{k \in I_i^c} A_k^c)$$

Note that any sum index by some $I \in Q$ in finite because $|I| \le n$, and this we can rearrange the sums in any order.

$$\sum_{i=1}^{m} x_{i}\mu(f = x_{i}) = \sum_{i=1}^{m} x_{i} \sum_{I \in I_{i}} \mu(\bigcap_{k \in I} A_{k} \cap \bigcap_{k \in I^{c}} A_{k}^{c})$$

$$= \sum_{i=1}^{m} \left(\sum_{I \in I_{i}} (\sum_{k \in I} a_{k}) \mu(\bigcap_{k \in I} A_{k} \cap \bigcap_{k \in I^{c}} A_{k}^{c}) \right)$$

$$= \sum_{I \in Q} (\sum_{k \in I} a_{k}) \mu(\bigcap_{k \in I} A_{k} \cap \bigcap_{k \in I^{c}} A_{k}^{c})$$
because $Q = \bigcup_{k=1..m} I_{i}$

$$= \sum_{i=1..n} \sum_{I \in Q, i \in I} a_{i} \mu(\bigcap_{k \in I} A_{k} \cap \bigcap_{k \in I^{c}} A_{k}^{c})$$
By rearranging the sum
$$= \sum_{i=1..n} a_{i} \sum_{I \in Q, i \in I} \mu(\bigcap_{k \in I} A_{k} \cap \bigcap_{k \in I^{c}} A_{k}^{c})$$

$$= \sum_{i=1..n} a_{i} \mu(A_{i})$$

• Let's first prove that if a set A has measure 1, for all measurable sets B, $\mu(A \cap B) = \mu(B)$. This holds because

$$\mu(B) \ge \mu(A \cap B) = 1 - \mu(A^c \cup B^c) \ge 1 - \mu(B^c) = \mu(B)$$

Let $x \in \Omega$

 $\mu(\{g=x\}) \ge \mu(\{g=x\} \cap \{f=x\}) = \mu(\{f=x\} \cap \{f=g\}) = \mu(\{f=x\})$ Symmetrically, we prove that $\mu(\{f=x\}) \ge \mu(\{g=x\})$, and thus this two quantities are equal.

This proves that $\sum_{x \in f(\Omega)} x \mu(f = x) = \sum_{x \in g(\Omega)} x \mu(g = x)$ by noting that $\mu(f = x) = 0$ for $x \notin f(\Omega)$. And by the last question:

$$\sum_{i=1..n} a_i \mu(A_i) = \sum_{i=1..k} b_i \mu(B_i)$$

Question 5

If h = gof, for $A \in B(\mathbb{R})$, $h^{-1}(A) = f^{-1}(g^{-1}(A)) \in \sigma(f)$ because $g^{-1}(A) \in F$ For the other direction:

• Let's first suppose that $h := \sum_{i=1..n} a_i 1_{A_i}$ for $a_i > 0$ and $A_i \in \sigma(f)$. Let $h(\Omega_1) = \{x_1, ..., x_m\}$.

We can write
$$h = \sum_{j=1...m} x_j 1_{\{h=x_j\}}$$

$${h = x_j} = f^{-1}(A_j)$$

 A_j are disjoint because for $i \neq j$, $f^{-1}(A_i) \cap f^{-1}(A_j) = f^{-1}(A_i \cap A_j) \subseteq \{h = x_i\} \cap \{h = x_j\} = \emptyset$

We define $g(x) = x_i$ on A_i , and any other value outside.

Let
$$\omega \in \Omega_1$$
, and $x_i = h(\omega)$, then $\omega \in f^{-1}(A_i)$, so $f(\omega) \in A_i$ and $gof(\omega) = x_i = h(\omega)$. So $h = gof$.

• Let h be now just non negative.

We can approximate h point wise by a sequence of non negative simple functions h_n measurable w.r.t the σ -algebra generated by f. We know now that h_n can be written as $g_n \circ f$.

.By convergence of h_n , the sequence g_n converges point wise in a set C containing the image of f. With $C := \{x | \lim_n g_n(x) \text{ exists}\} = \{x | \lim_n g_n(x) \leq \lim_n g_n(x)\}$ is measurable.

Let call g the limit, and set g to 0 outside C, then h = gof. and $g = (\limsup_n g_n)1_C$ is measurable as the product of two measurable functions.

• Let h be just measurable, $h = h^+ - h^- = g^+ o f - g^- o f = (g^+ - g^-) o f$ with g^+, g^- the corresponding g for h^+, h^-

If we consider the trivial σ -algebra $\{\mathbb{R},\emptyset\}$ instead of Borel, and f constant equal to 0, then any h is measurable w.r.t the σ algebra generated by f. If now h is not constant, it cannot be written as $g\circ f=g(0)$