BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

Course Handout (Part II)

Date: 2.8.2016

Course No. : PHY F213
Course Title : OPTICS

Instructor-in-charge: DEBASHIS BANDYOPADHYAY

Course Description:

The course will cover Geometrical optics, Crystal optics, Diffraction, Fiber optics and the recent trends of research in the optical physics.

Scope and objective of the course:

The objective of the course is to give an introduction to basic phenomena in optics and the techniques used to deal with them. The recent development of the subject and its application in the research level will be discussed. Course will assume a basic knowledge of optics at the level of the core Physics courses. The course will also provide theoretical background for the optics experiments done in ELECTROMAGNETISM & OPTICS LAB. (PHYF214).

Text Book (TB):

Optics: Ajoy Ghatak, 5th Edition, Tata McGraw Hill (2012)

Reference Books (RB):

- 1. **RB1**: Introduction to Electrodynamics, David J. Griffiths, 3rd Ed., Pearson, 1999.
- 2. **RB2**: Fundamentals of Optics by F.A. Jenkins & H. E. White: 4th Edition, Mc-Graw Hill Book Co.

1. Course Plan:

Lecture Learning Objectives		Topics to be covered	Reference	
No.			Chap./ Sec. #	
1	Introduction	Wave model & corpuscular models of light (self-studies).	2.1-2.6	
2-3	Fermat's Principle and its applications in ray optics	Fermat's Principle and its applications in laws of reflection and refraction, Ray paths and ray equations.	3.1-3.4	
4-7	Matrix methods in paraxial optics	Matrix methods in paraxial optics, Unit planes, Nodal planes etc.	5.1-5.5	
8-9	Aberrations	perrations Chromatic & monochromatic aberrations, Distortions.		
10-13	Maxwell's equations and Propagation of EM waves in linear medium, Reflection a			
	Electromagnetic waves,	transmission, Absorption and dispersion, Origin of refractive	and 9.4); 7.6	
	Electromagnetic waves in	index, Rayleigh Scattering, Normal & anomalous dispersion,		
	matter	Cauchy's formula.		
14-15	Group velocity and pulse Phase velocity and group velocity, Group velocity of a way		10.1-10.3	
	dispersion	packet, Propagation in a Non-dispersive and dispersive medium,		
16	Huygens' principle and	Huygens' theory to study refraction & reflection, Huygens'	12.1-12.5	
	Applications	principle in inhomogeneous media		
17-18	Superposition of sinusoidal	General representation, Graphical method, Complex	13.5-13.7	
	waves	representation		
19-20	Interference by division of	Double slits interference, Fresnel's two mirror arrangement,	14.5-14.8,	
	wavefront	Fresnel bi-prism, Lloyd's mirror, Phase change on reflection	14.11-14.12	
21-22	Interference by division of Interference by a plane film of constant thickness, cosine		15.7, 15.8,	
	amplitude	law, Non-reflecting film, Interference due to a film with	15.10	
	-	variable thickness, Newton's ring,		

23-24	Multiple beam interferometry	Effect of multiple reflections from a plane film, Fabry-Perot etalon	16.3-16.5
25-26	Fraunhofer diffraction	Single and double slit diffraction, Grating, Resolving power of grating and prism	18.2, 18.6-18.8
27-28	Fresnel diffraction	Fresnel's half-period zones, diffraction by a circular aperture	20.2-20.3, 20.4.1
29-30	Polarization & Double refraction	Malus' law, Double refraction, Optical activity	22.1-22.8
31-33	Fiber Optics I	Basic concepts and ray optics considerations	27.1,27.3-27.4, 27.5,27.7
34-37	Fiber Optics II	Basic waveguide theory and concept of modes	28.1-28.5
38-40	Fiber Optics III	Single mode fiber	29.1-29.3

Evaluation scheme:

Component	Duration	Weightage (%)	Date, Time & Venue	Remarks
Mid Semester Exam.	90 mins.	30	7/10 2:00 - 3:30 PM	Closed Book
Tutorials/Assignments		30	***	Closed Book
Comprehensive Exam.	3 hrs.	40	12/12 FN	Closed book (20%) and Open book (20%)

- 3. Chamber Consultation hour: To be announced in class.
- 4.
- Notices: All notices concerning this course will be displayed on the Physics Dept. notice board only.

 Make-up policy: Very strict! Only for genuine reasons such as hospitalization or being out of station with prior permission. 5.

Instructor-in-charge PHY F213