COMP9020 17s1 • Problem Set 4 • 24 March 2017 Solutions

Exercise 1.

- (a) Yes, since $a + 0.5 \ge a \ge a 0.5$ for all $a \in \mathbb{R}$
- (b) No; see (a)
- (c) Yes, since $(b + 0.5 \ge a) \land (a \ge b 0.5)$ implies $(b \ge a 0.5) \land (a + 0.5 \ge b)$.
- (d) No; e.g. $(0,0.1) \in \mathcal{R}$ and $(0.1,0) \in \mathcal{R}$.
- (e) No; e.g. $(1.1, 1.5) \in \mathcal{R}$ and $(1.5, 1.9) \in \mathcal{R}$ but $(1.1, 1.9) \notin \mathcal{R}$ since 1.9 0.5 > 1.1

Exercise 2.

- (a) If **A** is of size $m \times n$ then \mathbf{A}^T is of size $n \times m$, hence $(\mathbf{A}^T)^T$ is of size $m \times n$, the same as **A**. The (i,j)-th entry of \mathbf{A}^T is a_{ji} , hence the (i,j)-th entry of $(\mathbf{A}^T)^T$ is a_{ij} , the same as **A**.
- (b) The (j, i)-th entry of $\mathbf{A} + \mathbf{B}$ is $a_{ji} + b_{ji}$, hence the (i, j)-th entry of $(\mathbf{A} + \mathbf{B})^T$ is $a_{ji} + b_{ji}$. The (i, j)-th entry of \mathbf{A}^T is a_{ji} and the (i, j)-th entry of \mathbf{B}^T is b_{ji} , hence the (i, j)-th entry of $\mathbf{A}^T + \mathbf{B}^T$ is $a_{ji} + b_{ji}$. This proves the claim.
- (c) The (j,k)-th entry of $\mathbf{B} + \mathbf{C}$ is $b_{jk} + c_{jk}$, hence the (i,k)-th entry of $\mathbf{A}(\mathbf{B} + \mathbf{C})$ is

$$\sum_{j=1}^{n} a_{ij} (b_{jk} + c_{jk}) \tag{1}$$

The (i,k)-th entry of \mathbf{AB} is $\sum_{j=1}^{n} a_{ij}b_{jk}$ and the (i,k)-th entry of \mathbf{AC} is $\sum_{j=1}^{n} a_{ij}c_{jk}$, hence the (i,k)-th entry of $\mathbf{AB} + \mathbf{AC}$ is

$$\sum_{j=1}^{n} a_{ij}b_{jk} + \sum_{j=1}^{n} a_{ij}c_{jk} \tag{2}$$

This proves the claim since $(1) = \sum_{j=1}^{n} (a_{ij}b_{jk} + a_{ij}c_{jk}) = (2)$

Exercise 3. If |U| = 0, there is only one subset (empty) that is not related to itself so there is nothing to violate the transitivity (it holds vacuously). If |U| = 1, there is only one case when \mathcal{R} holds, which is $U\mathcal{R}U$ and again nothing violates transitivity. If $|U| \geq 2$, choose any two elements in U (say, a and b) and observe that $\{a\}\mathcal{R}\{a,b\}$ and $\{a,b\}\mathcal{R}\{b\}$, but $\{a\}$ is not in a relation with $\{b\}$, so \mathcal{R} is not transitive.