EAIiIB	Autor 1: Rafał Mazur		Rok II	Grupa 5	Zespół 3
EAIID	Autor 2: Jakub Ficoń				
Temat:			Numer ćwiczenia:		
Moduł Younga			11		
Data wykonania	Data oddania	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

2 Wstęp teoretyczny

W załącznikach na końcu sprawozdania

3 Aparatura pomiarowa

- 1. Przyrząd do pomiaru wydłużenia drutu pod wpływem stałej siły, zaopatrzone w czujnik mikrometryczny do pomiaru wydłużenia drutu.
- 2. Zestaw odważników.
- 3. Śruba mikrometryczna.
- 4. Przymiar milimetrowy.

4 Wykonanie ćwiczenia

- 1. Zmierzenie długości drutu używanego do wyznaczenia modułu Younga.
- 2. Zamocowanie drutu za pomocą nakrętek, obiążenie szalki dwoma odważnikami i zmierzenie średnicy drutu.
- 3. Opróżnienie szalki z odważników, zwolnienie blokady, regulacja mocowania drutu.
- 4. Sprawdzenie czy czujnik mikrometryczny reaguje.
- 5. Obciążanie szalki przez dokładanie odważników i notowanie odczytów.
- 6. Pomiary wykonać dlla dokładania i zabierania odważników

5 Opracowanie wyników

5.1 Wyznaczanie średnicy

Wyznaczenie średniej wartości średnicy i niepewności typu B:

```
\begin{split} d_{stal} &= 0.76[mm] = 7.6 \cdot 10^{-4}[m] \\ u(d_{stal}) &= 0.01[mm] = 1 \cdot 10^{-5}[m] \\ d_{mosiadz} &= 1.16[mm] = 1.16 \cdot 10^{-3}[m] \\ u(d_{mosiadz}) &= 0.01[mm] = 1 \cdot 10^{-5}[m] \end{split}
```

5.2 Tabela wyników po uzupełnienu o obliczenia z punktów 2,3:

Tabela 1: Zestawienie dla druta stalowego

Masa	Siła	Wskazanie czujnika $\uparrow [mm]$	Wskazanie czujnika $\downarrow [mm]$	Wydłużenie średnie $\Delta l[mm]$
1	9.78	0.29	0.35	0.160
2	19.56	0.73	0.78	0.378
3	29.34	1.07	1.13	0.550
4	39.12	1.34	1.40	0.685
5	48.90	1.61	1.72	0.833
6	58.68	1.91	1.94	0.963
7	68.46	2.17	2.24	1.103
8	78.24	2.36	2.48	1.210
9	88.02	2.71	2.75	1.365
10	97.80	2.91	2.91	1.455

Tabela 2: Zestawienie dla druta mosiężnego

Masa	Siła	Wskazanie czujnika $\uparrow [mm]$	Wskazanie czujnika $\downarrow [mm]$	Wydłużenie średnie $\Delta l[mm]$
1	9.78	0.59	0.61	0.300
2	19.56	1.06	1.08	0.535
3	29.34	1.38	1.43	0.702
4	39.12	1.66	1.68	0.835
5	48.90	1.92	1.98	0.975
6	58.68	2.18	2.18	1.090

5.3 Wykres zależności średniego wydłużenia w funkcji przyłożonej siły

5.4 Sprawdzenie czy istnieją punkty zbyt odległe od prostoliniowego przebiegu

Brak punktów bardzo odległych od prostoliniowego przebiegu.

5.5 Prosta regresji:

Korzystając z programu komputerowego:

$$a_{stal} = 1.44 \cdot 10^{-5}$$

 $u(a_{stal}) = 2.70 \cdot 10^{-7}$
 $a_{mosiadz} = 1.58 \cdot 10^{-5}$
 $u(a_{mosiadz}) = 1.00 \cdot 10^{-6}$

5.6 Obliczenie wartości modułu Younga:

Korzystając z wzoru roboczego:

$$E = \frac{4l}{\pi d^2 a}$$

Obliczam wartość modułu Younga:

$$\begin{split} E_{stal} &= \frac{4*\cdot 1.075}{3.1416\cdot 7.6\cdot 10^{-4}\cdot (1.44\cdot 10^{-5})^2} = 164.56[GPa] \\ E_{mosiadz} &= \frac{4*\cdot 1.066}{3.1416\cdot 1.16\cdot 10^{-3}\cdot (1.58\cdot 10^{-5})^2} = 63.91[GPa] \end{split}$$

5.7 Obliczenie wartości niepewności modułu Younga wykorzystując prawo przenoszenia niepewności względnej:

$$\begin{split} \frac{u(E)}{E} &= \sqrt{\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(d)}{d}\right]^2 + \left[-\frac{u(a)}{a}\right]^2} \\ u(E) &= E\sqrt{\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(d)}{d}\right]^2 + \left[-\frac{u(a)}{a}\right]^2} \\ u(E_{stali}) &= 164.56 \cdot \sqrt{\left[\frac{1}{1075}\right]^2 + \left[-2\frac{0.01}{0.76}\right]^2 + \left[-\frac{2.70 \cdot 10^{-7}}{1.44 \cdot 10^{-5}}\right]^2} = 5.42[GPa] \\ u(E_{mosiadz}) &= 63.91 \cdot \sqrt{\left[\frac{1}{1066}\right]^2 + \left[-2\frac{0.01}{1.16}\right]^2 + \left[-\frac{1.00 \cdot 10^{-6}}{3.84 \cdot 10^{-5}}\right]^2} = 4.23[GPa] \end{split}$$

5.8 Porównanie wartości obliczonych z wartościami tabelarycznymi:

	Wartość	Wartość	Niepewność	Równe
	obliczona	tabelaryczna	rozszerzona	w granicach
	[GPa]	[GPa]	[GPa]	niepewności?
E_{stal}	164.56	190 - 210	10.84	NIE
$E_{mosiadz}$	63.91	103 - 124	8.46	NIE

6 Wnioski

Otrzymane w wyniku przeprowadzenia doświadczenia wartości modułu Younga dla stalowego i mosiężnego drutu nie są równe wartościom tabelarycznym w granicach niepewności rozszerzonej. Może to być spowodowane nierównościami na drucie co mogło spowodować błąd w mierzeniu rzeczywistej długości druta. Rozbieżności mogą być również spowodowane tym że druty były wykonane z innych gatunków stali i stopów miedzi. Na podstawie otrzymanych wyników nie można wnioskować tego, że wyznaczanie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu jest metodą poprawną.