《机器学习》课件

3.1贝叶斯学习

贝叶斯学习

- 贝叶斯 Thomas Bayes, 1702-1763 年,出生于伦敦,英国数学家,做过 神甫。1742年成为英国皇家学会会员。
- 首先将归纳推理法用于概率论基础理论, 创立了贝叶斯统计理论。
- 《机会的学说概论》,1758年
- 《论机会学说问题的求解》,1763年

贝叶斯学习

- ■贝叶斯理论
- MAP, ML假设
- ■MAP学习器
- 朴素贝叶斯分类器 (Naive Beyas Learner)
- HMM

贝叶斯方法的两个主要作用

■提供实用学习算法

朴素贝叶斯学习 贝叶斯置信网学习 先验知识与概率结合 后验概率计算

• 提供了有用的概念框架

提供了评估其他算法的"黄金标准" (Gold Standard)额外地提供了对"奥坎姆剃刀"意义的深刻洞察

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

■癌症诊察

已知:1)某项指标的化验数据,输出+,-

2) 先验知识

所有人口中患该病的概率0.08%; 患者中98%呈阳性反应 (+),正确; 患者中2%呈阴性反应 (-),漏警; 非患者97%呈阴性反应 (-),正确; 非患者3%呈阳性反应 (+),虚警。

$$P(cancer) = 0.008, P(\neg cancer) = 0.992$$

 $P(+/cancer) = 0.98, P(-/cancer) = 0.02$
 $P(+/\neg cancer) = 0.03, P(-/\neg cancer) = 0.97$

如果某人化验结果为+, 该病人患癌症的可能性:

$$P(+/cancer)P(cancer) = 0.98 \times 0.008 = 0.0078P+$$

 $P(+/\neg cancer)P(\neg cancer) = 0.03 \times 0.992 = 0.0298$ \timesP(+

■ 后验概率:

$$P(cancer/+) = \frac{0.0078}{0.0078 + 0.0298} = 0.21$$

$$P(\neg cancer/+) = \frac{0.0298}{0.0078 + 0.0298} = 0.79$$
Cancer
$$P(-cancer/+) = \frac{0.0078 + 0.0298}{0.0078 + 0.0298} = 0.79$$

■ 机器学习目标,给定训练数据D,确定假设空间H中的最佳假设。 P(h):与训练数据D无关

■贝叶斯公式

给定假设h下,训练数 据D的条件概率

假设h的先验概率

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)}$$

给定训练数据D下,假设h的 条件概率

训练数据D的先验概率

■ MAP---极大后验假设:

$$h_{MAP} \equiv \underset{h \in H}{\arg \max} P(h/D)$$

$$= \underset{h \in H}{\arg \max} \frac{P(D/h)P(h)}{P(D)}$$

$$= \underset{h \in H}{\arg \max} P(D/h)P(h)$$

■ ML---极大似然假设 (h的先验概率未知)

$$h_{ML} = \underset{h \in H}{\operatorname{arg\,max}} P(D/h)$$

$$P(h_i) = P(h_j), i \neq j$$

最大似然估计

- Maximum Likelihood (ML)估计

 - □概率密度函数的形式已知,参数未知,为了描述概率密度函数 $p(x/\omega_i)$ 与参数 θ 的依赖关系,用 $p(x/\omega_i,\theta)$ 表示。
- 独立地按概率密度 $p(x/\theta)$ 抽取样產集 $K=\{x_1,x_2,...,x_N\}$,用K估计未知参数 θ

■ 似然函数,存在就是有道理的

$$l(\mathbf{\theta}) = p(K | \mathbf{\theta}) = p(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N | \mathbf{\theta})$$
$$= \prod_{k=1}^{N} p(\mathbf{x}_k | \mathbf{\theta})$$

◆ 对数(loglarized)似然函数

$$H(\mathbf{\theta}) = \sum_{k=1}^{N} \ln p(\mathbf{x}_k \mid \mathbf{\theta}) \quad * \mathbf{x}_k \stackrel{}{} \Leftrightarrow \mathbf{x} \stackrel{}{} \stackrel{}{} \Leftrightarrow \mathbf{x} \stackrel{}{} \stackrel{}{} \stackrel{}{} \Leftrightarrow \mathbf{x} \stackrel{}{} \stackrel$$

$$\hat{\mathbf{\theta}}_{ML} = \underset{\mathbf{\theta}}{\operatorname{argmax}} l(\mathbf{\theta})$$

$$= \underset{\mathbf{\theta}}{\operatorname{argmax}} \sum_{k=1}^{n} \ln p(\mathbf{x}_{k} \mid \mathbf{\theta})$$

最大似然估计示意图

■最大似然估计量使似然函数梯度为○

$$\nabla_{\boldsymbol{\theta}} H(\boldsymbol{\theta}) |_{\hat{\theta}_{ML}} = \sum_{k=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) |_{\hat{\theta}_{ML}} = 0$$

$$\nabla_{\boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial}{\partial \theta_1} & \dots & \frac{\partial}{\partial \theta_s} \end{bmatrix}^T$$

贝叶斯估计-最大后验概率(理解

层面就可以)

- 用一组样牵集 $K=\{X_1, X_2, ..., X_N\}$ 估计未知参数 θ
- 未知参数 θ 视为随机变量,先验分布为 $p(\theta)$,而在已知样本集K出现的条件下的后验概率为 $p(\theta|K)$
- 最大后验概率估计-Maximum a posteriori (MAP)

$$\hat{\theta}_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta \mid K)$$

$$= \underset{\theta}{\operatorname{argmax}} \frac{p(K \mid \theta)p(\theta)}{p(K)}$$

$$= \underset{\theta}{\operatorname{argmax}} p(K \mid \theta)p(\theta)$$

正则,即常数的时候,极大似然是其的一个特例,或者工程实现

一元正态分布例解

$$p(x_k \mid \theta_1 = \mu, \theta_2 = \sigma^2) = \frac{1}{\sqrt{2\pi\theta_2}} \exp(-\frac{(x_k - \theta_1)^2}{2\theta_2})$$

$$\ln p(x_k \mid \theta_1, \theta_2) = -\frac{1}{2} \ln(2\pi\theta_2) - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

一元正态分布均值的估计

$$\nabla_{\boldsymbol{\theta}} H(\boldsymbol{\theta})|_{\hat{\theta}_{ML}} = \sum_{k=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(x_k \mid \boldsymbol{\theta})|_{\hat{\theta}_{ML}} = 0$$

$$\frac{\partial}{\partial \theta_1} \ln p(x_k \mid \theta_1, \theta_2) = \frac{1}{\theta_2} (x_k - \theta_1)$$

代入前式,得

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$$

一元正态分布方差的估计

$$\frac{\partial}{\partial \theta_2} \ln p(x_k \mid \theta_1, \theta_2) = -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2}$$

代入前式得

$$\hat{\sigma}_{ML}^{2} = \frac{1}{N} \sum_{k=1}^{N} (x_{k} - \hat{\mu})^{2}$$

多元正态分布参数最大似然估计

$$\hat{\boldsymbol{\mu}}_{ML} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}_{k} \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{k} - \hat{\boldsymbol{\mu}})^{T}$$

- ◆ 均值估计是无偏的,协方差矩阵估计是有偏的。
- ◆ 协方差矩阵的无偏估计是:

$$\hat{\Sigma} = \frac{1}{N-1} \sum_{k=1}^{N} (\mathbf{x}_k - \hat{\boldsymbol{\mu}}) (\mathbf{x}_k - \hat{\boldsymbol{\mu}})^T$$

总体均值向量 和协方差矩阵

$$\mathbf{\mu} = E(\mathbf{x}) = (\mu_1, \mu_2, ..., \mu_n)^T, \ \mu_i = E(x_i)$$

$$\Sigma = E\left\{ (\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^T \right\} = (\sigma_{ij}^2)_{n*n}, \sigma_{ij}^2 = E\left[(x_i - \mu_i)(x_j - \mu_j) \right]$$

蛮力

■ 对H中每介h, 计算

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

■ 输出

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{arg\,max}} P(h \mid D)$$

提供了判断一个学习算法学习性能的标准,针对不同的假设空间

■ 给定前提; 训练数据D无噪声 C∈H

假设概率未知

$$P(h) = \frac{1}{|H|}, h \in H$$

$$P(D | h) = \begin{cases} 1, d_i = h(x_i) \\ 0, d_i \neq h(x_i) \end{cases}$$

■考察后验概率

h与D不一致

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)} = \frac{0 \times P(h)}{P(D)} = 0$$

h与D一致

$$P(h \mid D) = \frac{1 \times \frac{1}{\mid H \mid}}{P(D)} = \frac{1 \times \frac{1}{\mid H \mid}}{\mid VS_{H,D} \mid} = \frac{1}{\mid VS_{H,D} \mid}$$

$$P(D) = \sum_{h_i \in H} P(D \mid h_i) P(h_i)$$

$$= \sum_{h_i \in VS_{H,S}} 1 \times \frac{1}{|H|} + \sum_{h_i \notin VS_{H,S}} 0 \times \frac{1}{|H|}$$

$$=\frac{|VS_{H,S}|}{|H|}$$

$$P(h|D) = \begin{cases} \frac{1}{|VS_{H,S}|}, h 与 D 一致\\ 0, 其他 \end{cases}$$

极大似然和最小平方误差假设

- ■连续值目标函数学习,神经网络、线性回归、多项式曲线拟合
- ■证明: 特定者提下,任一学习算法,必果使得输出假设的预测与训练数据之间的误差平方最小化,此时,该学习算法的输出就是一个建立在该训练数据上的极大化照假设。

朴素贝叶斯分类器

- ■决策树、神经网络、最近邻方法之外,最实用的学习方法
- ■适用性, 中等或大规模数据学习 实例属性有条件地独立于给定分类
- · 成功应用 故障诊断 女孝分类

朴素贝叶斯分类器

- 假定目标函数: $f:X \to V$
- 样例属性: $\langle a_1, a_2, a_3, ..., a_n \rangle$
- 最可能的分类值为:

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} P(v_{j}|a_{1}, a_{2} \dots a_{n})$$

$$v_{MAP} = \underset{v_{j} \in V}{\operatorname{argmax}} \frac{P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})}{P(a_{1}, a_{2} \dots a_{n})}$$

$$= \underset{v_{j} \in V}{\operatorname{argmax}} P(a_{1}, a_{2} \dots a_{n}|v_{j})P(v_{j})$$

朴素贝叶斯分类器

■ 朴素贝叶斯假定:

各属性分类结 果独立

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

• 得到贝叶斯分类器:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

朴素贝叶斯分类算法

■ 朴素贝叶斯学习 对于每个目标值Vj:

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

对于每个属性值:

$$\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

分类新样例:

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

朴素贝叶斯分类例

■考虑Playtennis

 $\langle Outlk = sun, Temp = cool, Humid = high, Wind = strong$

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

$$P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005$$

$$P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = 021$$

$$\rightarrow v_{NB} = n$$

■样牵集合

示例	天气	温度	湿度	风力	打网球
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

朴素贝叶斯:细节

■ 条件独立假设约束强

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j) \hat{P}(v_j | x)$$

不必估计后验概率,仅需要计算:

$$\underset{v_j \in V}{\operatorname{argmax}} \, \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \underset{v_j \in V}{\operatorname{argmax}} \, P(v_j) P(a_1 \dots, a_n | v_j)$$

EM算法

- 在许多实际的学习问题框架中,<u>相关实例特征中只有一部</u> <u>今可观察到</u>
- EM算法是存在隐含变量时广泛使用的一种学习方法,可用于变量的值从来没有被直接观察到的情形,只要这些变量所遵循的概率分布的一般形式已知
 - □ 用于贝叶斯网的训练
 - □ 用于马尔可夫摸型的训练

估计k个高斯分布的均值

- ■考虑D是一个实例集合,它由k个不同正态分布的混合所得分布生成
- 每个实例使用一个两步骤的过程形成:
 - □首先,随机选择K个正态分布中的一个
 - □其次,随机变量Xi按照此这样的分布生成
- ■考虑一个简单情形:
 - □单介正态分布的这择基于均匀的概率进行, 且k介正态分布有相同的方差
 - □学习任务:输出一个假设h=<μ1...μk>,描述k个分布中每个分布的均值,找到极大似然假设,即使得p(D|h)最大化的假设

估计k个高斯分布的均值(2)

■ 当给定从一个正态分布中抽取的数据实例X₁,...,X_m时,很容易计算该分布的均值的极大似然假设,表示此下

$$\mu_{ML} = \underset{\mu}{\operatorname{arg\,min}} \sum_{i=1}^{m} (x_i - \mu)^2 = \frac{1}{m} \sum_{i=1}^{m} x_i$$

- 然而,现在的问题涉及K个不同正态分布,而且不知道哪个实例是哪个分布产生的。这是一个涉及隐藏变量的典型例子
- 每个实例的完整描述是三元组<X_i,Z_{i1},Z_{i2}>,其中X_i是第i个实例的观测值,Z_{i1}和Z_{i2}表示哪个正态分布被用来产生X_i,是隐藏变量

估计k个高斯分布的均值(3)

- ぬ果Z_{i1}和Z_{i2}的值可知,就可用隐变量估计来解决, 否则使用EM算法
- EM算法根据当前假设<μ1...μk>, 不断地再估计隐藏变量Zij的期望值, 然后用这些隐藏变量的期望值值重新计算极大似然假设
- 先将假设初始化为h=<µ1, µ2>
 - \square 计算每个隐藏变量 Z_{ij} 的期望值 $E[Z_{ij}]$,假定当前假设 $h=<\mu_1,\,\mu_2>$ 成立
 - □ 计算一个新的极大似然假设h'=<μ'₁,μ'_k>,假定每个隐藏变量Z_{ij}所取值是第一步得到的期望值E[Z_{ij}]。将假设替换为h'=<μ'₁,μ'₂>,然后循环

两个步骤的计算式

■ E[Zii]正是实例Xi由第j个正态分布生成的概率

$$E[z_{ij}] = \frac{p(x = x_i \mid \mu = \mu_j)}{\sum_{n=1}^{2} p(x = x_i \mid \mu = \mu_n)}$$
$$= \frac{e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}}{\sum_{n=1}^{2} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2}}$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} E[z_{ij}] x_{i}}{\sum_{i=1}^{m} E[z_{ij}]}$$

两个步骤的计算式 (2)

■ EM算法的要点,当前的假设用于估计未知变量,而这些变量的期望值再被用于改进假设

■可以证明:算法的每一次循环中,EM算法能使似然P(D|h)增加,算法收敛到一个局部最大似然假设

K均值算法的推导

- ■问题框架
 - □要估计k介正态分布的均值 θ =< $\mu_1...\mu_k$ >
 - □观察到的数据是X={<X;>}
 - □隐藏变量Z={<Z_{i1},...,Z_{ik}>}表示k介正态分布中哪一个生成X_i
- ■用于K均值问题的表达式Q(h'|h)的推导
 - □单个实例的概率

$$p(y_i | h') = p(x_i, z_{i1}, ..., z_{ik} | h') = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} \sum_{j=1}^k z_{ij} (x_i - \mu'_j)^2}$$

K均值算法的推导 (2)

□所有实例的概率的对数

$$\ln P(Y | h') = \ln \prod_{i=1}^{m} p(y_i | h')$$

$$= \sum_{i=1}^{m} \ln p(y_i | h')$$

$$= \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} z_{ij} (x_i - \mu'_j)^2 \right)$$

□计算期望值

$$E[\ln P(Y \mid h')] = E \left[\sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2\sigma^{2}} \sum_{j=1}^{k} z_{ij} (x_{i} - \mu'_{j})^{2} \right) \right]$$

$$= \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^{2}}} - \frac{1}{2\sigma^{2}} \sum_{j=1}^{k} E[z_{ij}] (x_{i} - \mu'_{j})^{2} \right)$$

K均值算法的推导 (3)

□求使Q函数最大的假设

$$\arg\max_{h'} Q(h'|h) = \arg\max_{h'} \sum_{i=1}^{m} \left(\ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{j=1}^{k} E[z_{ij}](x_i - \mu_j')^2 \right)$$

$$= \arg \max_{h'} \sum_{i=1}^{m} \sum_{j=1}^{k} E[z_{ij}] (x_i - \mu_j')^2$$

□解上式得到

$$\mu_j \leftarrow \frac{\sum_{i=1}^m E[z_{ij}] x_i}{\sum_{i=1}^m E[z_{ij}]}$$

□另外

$$E[zij] \leftarrow \frac{e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu_{j})2}}{\sum_{n=1}^{k} e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu_{n})^{2}}}$$