

Course Handout (Part II)

Date: 07/01/2016

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : EEE F433

Course Title : Electromagnetic Fields and Waves

Instructor-in-charge: Dr. NAVNEET GUPTA (chamber No. 2210-H)

(email: ngupta@pilani.bits-pilani.ac.in)

1. Scope and objective of the course:

Electromagnetics is one of the most fundamental topics in Electrical Engineering. Maxwell's four simple equations form the basis for almost all phenomena in Electrical and Communication Engineering. Thorough understanding of many areas such as VLSI, PCBs operating at GHz clocks, rotating machines, microwaves and antennas depends upon electromagnetics. EM is also important in biomedical engineering, nondestructive testing, electromagnetic compatibility and interference analysis, microelectromechanical systems (MEMS) and many more areas. This course is an advanced course on electromagnetics. Students opting for this course must have thorough electromagnetic theory. The objective of this course is to provide the students the in-depth knowledge of electromagnetic fields and waves and various applications utilizing EM waves.

John D. Kraus and Daniel A. Fleisch, "Electromagnetics", 5th ed., McGraw-Hill, New York, 1999.

3. Reference Books:

- (i) N.N.Rao, "Fundamental of Electromagnetics for Engineering" 6th impression, Pearson Education, New Delhi, 2009. **(R1)**(ii) Matthew N.O.Sadiku, "Principles of Electromagnetics" 4th ed. Oxford University Press, New
- Delhi, 2009. (**R2**)
 (iii) R.K.Shevgaonkar, "Electromagnetic Waves", Tata McGraw-Hill Publishing Company Ltd.,
- 2006.(**R3**)

4. Course Plan:

Lec. No.	Topic to be covered	Learning Objective	Reference
1	Course handout discussion	Introduction and the importance of the course	Lecture class
2-5	Maxwell's Equations in integral and differential form	Ch.2	
6-7	Relation between field and circuit theory	Understand how the two approaches are related to each other	3.2, 3.3 (TB)
8-10	Transmission lines analysis	Analysis of transmission lines and their circuit behaviour	3.4 (TB)
11-16	Terminated Transmission lines Smith Chart and impedance matching	To solve transmission line problems, to provide the matching network and calculate bandwidth using Smith Chart,	Lecture Class, 3.4-3.5 (TB)

17-21	Wave propagation in free space, conducting and dielectric media and at interfaces	Understand the propagation of waves through space and various kinds of media, Boundary conditions, poynting vector, Wave polarization	4.2-4.12 (TB) Ch 4 and 5 (R1)
22-23	Reflection & refraction of plane waves	Oblique incidence with perpendicular and parallel polarization case	4.14 (TB)
24-28	Waveguides and Cavity Resonator	To understand the general Wave behaviour along uniform guiding structures, TEM waves, TM waves, TE waves, different types of wave guides and cavity resonator	8.1-8.4 (TB) and R1
29-34	Basics of Antennas and Radiating Elements	Antenna parameters, basic antenna elements, Antenna Equivalent circuit, Retarded Potential, Hertzian dipole Half wave dipole, Antenna arrays	5.2-5.3(TB), 5.5, 5.8
34-37	Antenna Types	Small loop antenna, Slot antenna, Helical antenna and Log periodic antenna, frequency selective surfaces (FSS)	Lecture Class and 5.4-5.9 (TB), 5.10, 5.12(part) (TB)
38-40	Supplementary Topics	Wave propagation in ionized medium, Electromagnetic Compatibility and shielding, EM Waves hazards	10.5 (TB), Ch 10 (R1) and Lecture Class

5. Evaluation Scheme:

Component	Duration	Marks (200)	Weightage	Date & Time	Evaluation type
Mid-Sem Test	90 min	70	35%	14/3 9:00 - 10:30 AM	Closed Book
Quiz	10 min	30	15%	Surprise	Closed Book
Assignment	Take Home	15	7 %		Open Book
Compre. Exam.	3 hours	85	43%	3/5 FN	Closed + Open Book

- 6. Chamber Consultation Hour:. To be announced in the class
- 7. Notices: EEE Notice Board (in FD-II) and on NALANDA
- 8. Make-up Examination:

Make-up will be given **ONLY** in cases of <u>sickness (hospitalization)</u> or <u>urgency</u> for going out of station. (no make-up will be given for assignments and surprise quizzes).

Instructor-in-charge EEE F433

