- 3. Hermitian matrices ($\epsilon = 1$)
- 4. Skew-Hermitian matrices ($\epsilon = -1$).

Going back to a sesquilinear form $\varphi \colon E \times F \to K$, for any subspace U of E, it is easy to check that

$$U \subseteq (U^{\perp})^{\perp},$$

and that for any subspace V of F, we have

$$V \subseteq (V^{\perp})^{\perp}$$
.

For simplicity of notation, we write $U^{\perp\perp}$ instead of $(U^{\perp})^{\perp}$ (and $V^{\perp\perp}$ instead of $(V^{\perp})^{\perp}$).

Given any two subspaces U_1 and U_2 of E, if $U_1 \subseteq U_2$, then $U_2^{\perp} \subseteq U_1^{\perp}$. Indeed, if $v \in U_2^{\perp}$ then $\varphi(u_2, v) = 0$ for all $u_2 \in U_2$, and since $U_1 \subseteq U_2$ this implies that $\varphi(u_1, v) = 0$ for all $u_1 \in U_1$, which shows that $v \in U_1^{\perp}$. Similarly for any two subspaces V_1, V_2 of F, if $V_1 \subseteq V_2$, then $V_2^{\perp} \subseteq V_1^{\perp}$. As a consequence,

$$U^{\perp} = U^{\perp \perp \perp}, \quad V^{\perp} = V^{\perp \perp \perp}.$$

First, we have $U^{\perp} \subseteq U^{\perp \perp \perp}$. Second, from $U \subseteq U^{\perp \perp}$, we get $U^{\perp \perp \perp} \subseteq U^{\perp}$, so $U^{\perp} = U^{\perp \perp \perp}$. The other equation is proved is a similar way.

Observe that φ is nondegenerate iff $E^{\perp} = \{0\}$ and $F^{\perp} = \{0\}$. Furthermore, since

$$\varphi(u+x,v) = \varphi(u,v)$$

 $\varphi(u,v+y) = \varphi(u,v)$

for any $x \in F^{\perp}$ and any $y \in E^{\perp}$, we see that we obtain by passing to the quotient a sesquilinear form

$$[\varphi] \colon (E/F^{\perp}) \times (F/E^{\perp}) \to K$$

which is nondegenerate.

Proposition 29.12. For any sesquilinear form $\varphi \colon E \times F \to K$, the space E/F^{\perp} is finite-dimensional iff the space F/E^{\perp} is finite-dimensional; if so, $\dim(E/F^{\perp}) = \dim(F/E^{\perp})$.

Proof. Since the sesquilinear form $[\varphi]: (E/F^{\perp}) \times (F/E^{\perp}) \to K$ is nondegenerate, the maps $l_{[\varphi]}: \overline{(E/F^{\perp})} \to (F/E^{\perp})^*$ and $r_{[\varphi]}: \overline{(F/E^{\perp})} \to (E/F^{\perp})^*$ are injective. If $\dim(E/F^{\perp}) = m$, then $\dim(E/F^{\perp}) = \dim((E/F^{\perp})^*)$, so by injectivity of $r_{[\varphi]}$, we have $\dim(F/E^{\perp}) = \dim(\overline{(F/E^{\perp})}) \le m$. A similar reasoning using the injectivity of $l_{[\varphi]}$ applies if $\dim(F/E^{\perp}) = n$, and we get $\dim(E/F^{\perp}) = \dim(\overline{(E/F^{\perp})}) \le n$. Therefore, $\dim(E/F^{\perp}) = m$ is finite iff $\dim(F/E^{\perp}) = n$ is finite, in which case m = n by Proposition 29.1(d).