第二章 同余 2015 年03月31 日

信息安全数学基础

陈恭亮 教授 博士生导师

上海交通大学信息安全工程学院

chengl@sjtu.edu.cn

标题页

目 录 页

第1页共27页

返回

全屏显示

关 闭

SHALL TONG

- 什么是欧拉函数?
- 如何计算欧拉函数?
- 什么是简化剩余? 为什么说是从乘法角度来看待它?
- 简化剩余系在什么变换下仍未简化剩余系?
- 如何构造更大模的简化剩余?

标 题 页

目 录 页

第 2 页 共 27 页

返回

全屏显示

关 闭

2.3 简化剩余系与欧拉函数

2.3.1 欧拉函数

在讨论中, 常常假定两个整数 a, m 互素的条件, 即 (a, m) = 1. 现在我们讨论剩余与 m 互素的剩余类的性质.

定义2.3.1 设 m 是一个正整数. 则 m 个整数 0, 1, ..., m-1 中与 m 互素的整数的个数, 记作 $\varphi(m)$, 通常叫做**欧拉** (Euler) **函数**.

例2.3.1 设 m=10. 则 10 个整数 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 中与 10 互素的整数为 1, 3, 7, 9, 所以 $\varphi(10)=4$.

例2.3.2 设m = p 为素数. 则p 个整数1, 2, ..., p-1, p 中与p 互素的整数为1, 2, ..., p-1, 所以 $\varphi(p) = p-1$.

访问主页

标 题 页

目 录 页

第3页共27页

返回

全屏显示

关 闭

定理2.3.1 对于素数幂 $m = p^{\alpha}$,有

$$\varphi(m) = p^{\alpha} - p^{\alpha - 1} = m \prod_{p|m} (1 - \frac{1}{p}).$$
 (1)

证 对于素数幂 $m = p^{\alpha}$,从1 到m 的m 个整数的形式为

1, ...,
$$p-1$$
, $1 \cdot p$
 $p+1$, ..., $p+p-1$, $2 \cdot p$
 $2 \cdot p+1$, ..., $2 \cdot p+p-1$, $3 \cdot p$ (2)

$$(p^{\alpha-1}-1)\cdot p+1, \quad \dots, \quad (p^{\alpha-1}-1)\cdot p+p-1, \quad p^{\alpha-1}\cdot p$$

其中与m 不互素的整数为

$$1 \cdot p, \ 2 \cdot p, \ \dots, \ (p^{\alpha - 1} - 1) \cdot p, \ p^{\alpha - 1} \cdot p,$$
 (3)

共有 $p^{\alpha-1}$ 个整数. 故m 个整数中与m 互素的整数个数为 $p^{\alpha}-p^{\alpha-1}$. 即有(1) 证毕

例2.3.1 设
$$m=7^2$$
.则 $\varphi(7^2)=7^2(1-\frac{1}{7})=42$.

访问主页

标 题 页

目 录 页

第 4 页 共 27 页

饭 回

全屏显示

关 闭

2.3.2 简化剩余类与简化剩余系

前面我们讨论了模同余,以及模m 剩余类和完全剩余系. 在讨论中,常常假定两个整数a, m 互素的条件, 即(a,m)=1.

现在我们讨论剩余与m 互素的剩余类的性质.

定义2.3.2 一个模m 的剩余类叫做简化剩余类,如果该类中存在一个与m 互素的剩余. 这时,简化剩余类中的剩余叫做简化剩余.

注:

- 1) 简化剩余类的这个定义与剩余的选取无关.
- 2) 两个简化剩余的乘积仍是简化剩余.

定理2.3.2 设 r_1 , r_2 是同一模m 剩余类的两个剩余, 则 r_1 与m 互素的充分必要条件是 r_2 与m 互素.

证 依题设, 存在整数q, 使得

$$r_1 = r_2 + q \cdot m.$$

所以, $(r_1, m) = (r_2, m)$. 故 $(r_1, m) = 1$ 的充要条件是 $(r_2, m) = 1$. 证毕

访问主页

标 题 页

目 录 页

第5页共27页

返回

全屏显示

关 闭

简化剩余系

模加 的简化剩余类的全体所组成的集合通常写成

$$(\mathbf{Z}/m\mathbf{Z})^* = \{C_a \mid 0 \le a \le m - 1, \ (a, m) = 1\}. \tag{4}$$

特别地, 当m = p 为素数时, 我们也写成

$$\mathbf{F}_{p}^{*} = (\mathbf{Z}/p\mathbf{Z})^{*} = \{C_{1}, \ldots, C_{p-1}\} = \mathbf{F}_{p} \setminus \{C_{0}\}.$$
 (5)

定义2.3.3 设m 是一个正整数. 在模m 的所有不同简化剩余类中, 从每个类任取一个数组成的整数的集合, 叫做模m 的一个**简化剩**余系.

因为模m 的最小正完全剩余系 $\{1, 2, ..., m-1, m\}$ 中,与m 互素的整数 全体构成模m 的简化剩余系,所以模m 的简化剩余系的元素个数为 $\varphi(m)$. 因此, $|(\mathbf{Z}/m\mathbf{Z})^*| = \varphi(m)$.

性质2.3.1 设m > 1 是整数, a, b 是模m 的两个简化剩余. 则它们的乘积也是简化剩余. 证 直接由定理?? 得到. 证

访问主页

标 题 页

目 录 页

第6页共27页

返回

全屏显示

关 闭

例2.3.4 设m 是一个正整数. 则

- i) m 个整数0, 1, ..., m-1 中与m 互素的整数全体组成模m 的一个简化剩余系, 叫做模m的最小非负简化剩余系;
- ii) m 个整数 $1, \ldots, m-1, m$ 中与m 互素的整数全体组成模m 的一个简化剩余系, 叫做模m的最小正简化剩余系;
- iii) m 个整数-(m-1), ..., -1, 0 中与m 互素的整数全体组成模m 的一个简化剩余系, 叫做模m的最大非正简化剩余系;
- iv) m 个整数-m, -(m-1), ..., -1 中与m 互素的整数全体组成模m 的一个简化剩余系, 叫做模m的最大负简化剩余系;
- v) m 个整数 $1, \ldots, m-1, m$ 中与m 互素的整数全体组成模m 的一个简化剩余系, 叫做模m的最小正简化剩余系;

访问主页

标 题 页

目 录 页

第7页共27页

返回

全屏显示

关 闭

例2.3.4(续) 设m 是一个正整数. 则

vi) 当m 分别为偶数时, m 个整数

$$-\frac{m}{2}$$
, $-\frac{m-2}{2}$, ..., -1 , 0, 1, ..., $\frac{m-2}{2}$,

或m 个整数

$$-\frac{m-2}{2}$$
, ..., -1, 0, 1, ..., $\frac{m-2}{2}$, $\frac{m}{2}$,

中与m 互素的整数全体组成模m 的一个简化剩余系,当m 分别为奇数时,m 个整数

$$-\frac{m-1}{2}$$
, ..., -1 , 0, 1, ..., $\frac{m-1}{2}$

中与m 互素的整数全体组成模m 的一个简化剩余系, 上述两个简化剩余系统称为模m 的一个绝对值最小简化剩余系.

访问主页

标 题 页

目 录 页

第8页共27页

返回

全屏显示

关 闭

例2.3.5 1, 3, 7, 9 是模 10 的简化剩余系, $\varphi(10) = 4$.

例2.3.6 1, 7, 11, 13, 17, 19, 23, 29 是模 30 的简化剩余系, $\varphi(30) = 8$.

例2.3.7 1, 2, 3, 4, 5, 6 是模 7 的简化剩余系, $\varphi(7) = 6$.

例2.3.8 当 m = p 为素数时, 1, 2, ..., p-1 是模 p 的简化剩余系, 所以 $\varphi(p) = p-1$.

定理2.3.3 若 $r_1, \ldots, r_{\varphi(m)}$ 是 $\varphi(m)$ 个与 m 互素的整数, 并且两两 模 m 不同余, 则 $r_1, \ldots, r_{\varphi(m)}$ 是模 m 的一个简化剩余系.

证 依定理假设, 知 $\varphi(m)$ 个整数 $r_1, \ldots, r_{\varphi(m)}$ 是模 m 的所有不同简化剩余类的剩余. 故 $r_1, \ldots, r_{\varphi(m)}$ 是模 m 的一个简化剩余系.

访问主页

标 题 页

目 录 页

第9页共27页

返回

全屏显示

关 闭

定理2.3.4 设 (a, m) = 1. 如果 x 遍历模 m 的一个简化剩余系,则 ax 也遍历模 m 的一个简化剩余系.

证 因为 (a, m) = 1, (x, m) = 1, 所以 (ax, m) = 1. 这说明 ax 是简 化剩余类的剩余. 又 $ax_1 \equiv ax_2 \pmod{m}$ 时, 有 $x_1 \equiv x_2 \pmod{m}$. 因此, x 遍历模 m 的一个简化剩余系时, ax 遍历 $\varphi(m)$ 个数, 且它们 两两模 m 不同余. 根据定理 2, ax 遍历模 m 的一个简化剩余系.

例2.3.9 已知 1, 7, 11, 13, 17, 19, 23, 29 是模 30 的简化剩余系, (7,30) = 1. 所以

$$7 \cdot 1 \equiv 7$$
, $7 \cdot 7 = 49 \equiv 19$, $7 \cdot 11 = 77 \equiv 17$, $7 \cdot 13 = 91 \equiv 1$, $7 \cdot 17 = 119 \equiv 29$, $7 \cdot 19 = 133 \equiv 13$, $7 \cdot 23 = 161 \equiv 11$, $7 \cdot 29 = 203 \equiv 23 \pmod{30}$.

因此, $7 \cdot 1$, $7 \cdot 7$, $7 \cdot 11$, $7 \cdot 13$, $7 \cdot 17$, $7 \cdot 19$, $7 \cdot 23$, $7 \cdot 29$ 是模 30 的简 化剩余系.

访问主页

标 题 页

目 录 页

第 10 页 共 27 页

返回

全屏显示

关 闭

例2.3.10 设 m = 7. 设 a 表示第一列数, 为与 m 互素的给定数. 设 x 表示第一行数, 遍历模 m 的简化剩余系. 设 a 所在行与 x 所在列的交叉位置表示 ax 模 m 最小非负剩余. 则我们得到如下的列表,

$a \setminus x$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

其中 a 所在行的数表示 ax 随 x 遍历模 m 的简化剩余系.

访问主页

标 题 页

目 录 页

第11页共27页

返回

全屏显示

关 闭

例2.3.11 设m = 15. 设a 表示第一列数, 为与m互素的给定数. 设k 表示第一行数, 遍历模m 的简化剩余系. 设a 所在行与k 所在列的交叉位置表示 $a \cdot k$ 模m 最小非负剩余. 则我们得到如下的列表,

$a \setminus k$	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

其中a 所在行的数表示 $a \cdot k$ 随k 遍历模m 的简化剩余系.

访问主页

标 题 页

目 录 页

第 12 页 共 27 页

返回

全屏显示

关 闭

$a \setminus k$	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	1

$a \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	<u> </u>														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1

访问主页

标 题 页

目 录 页

第 13 页 共 27 页

返回

全屏显示

关 闭

定理2.3.5 设 (a, m) = 1. 则存在整数 $a', 1 \le a' < m$ 使得

$$aa' \equiv 1 \pmod{m}$$
.

证一 (存在性证明). 因为 (a, m) = 1, 根据定理 3, x 遍历模 m 的一个最小简化剩余系时, ax 也遍历模 m 的一个简化剩余系. 因此, 存在整数 x = a', $1 \le a' < m$ 使得 aa' 属于 1 的剩余类, 即 $aa' \equiv 1 \pmod{m}$. 证毕.

因为在实际运用中,我们常常需要具体地求出整数,所以我们运用 广义欧几里得除法给出定理2.3.5 的构造性证明.

证二 (构造性证明). 因为 (a, m) = 1, 根据定理1.3.7, 运用广义欧几里得除法, 可找到整数 s, t 使得

$$sa + tm = (a, m) = 1.$$

因此, 整数 $a' = s \pmod{m}$ 满足 $aa' \equiv 1 \pmod{m}$.

访问主页

标 题 页

目 录 页

第 14 页 共 27 页

返回

全屏显示

关 闭

例2.3.12 设 m = 7, a 表示与 m 互素的整数. 根据定理2.3.5, 我们得到相应的同余式:

$$1 \cdot 1 \equiv 1, \ 2 \cdot 4 \equiv 1, \ 3 \cdot 5 \equiv 1, \pmod{7}$$

$$4 \cdot 2 \equiv 1, \ 5 \cdot 3 \equiv 1, \ 6 \cdot 6 \equiv 1, \pmod{7}.$$

例2.3.13 设 m = 737, a = 635. 根据例1.3.19, 由广义欧几里得除法, 可找到整数 s = -224, t = 193 使得

$$(-224) \cdot 635 + 193 \cdot 737 = 1.$$

因此, $a' = -224 \equiv 513 \pmod{737}$ 使得

$$635 \cdot 513 \equiv 1 \pmod{737}.$$

访问主页

标 题 页

目 录 页

第 15 页 共 27 页

返回

全屏显示

关 闭

2.3.3 两个模的简化剩余系

定理2.3.6 设 m_1 , m_2 是互素的两个正整数. 如果 k_1 , k_2 分别遍历 模 m_1 和模 m_2 的简化剩余系, 则

$$m_2 \cdot k_1 + m_1 \cdot k_2 \tag{6}$$

证 首先证明: $(k_1, m_1) = 1$, $(k_2, m_2) = 1$ 时,

$$(m_2 \cdot k_1 + m_1 \cdot k_2, m_1 \cdot m_2) = 1.$$

事实上, 因为 $(m_1, m_2) = 1$, 根据定理1.3.3 和定理1.3.11, 我们有

$$(m_2 \cdot k_1 + m_1 \cdot k_2, m_1) = (m_2 \cdot k_1, m_1) = (k_1, m_1) = 1,$$

$$(m_2 \cdot k_1 + m_1 \cdot k_2, m_2) = (m_1 \cdot k_2, m_2) = (k_2, m_2) = 1,$$

因此,再根据定理1.3.12,我们得到

$$(m_2 \cdot k_1 + m_1 \cdot k_2, m_1 \cdot m_2) = 1.$$

访问主页

标题页

目 录 页

第 16 页 共 27 页

返回

全屏显示

关 闭

其次, 证明模 $m_1 \cdot m_2$ 的任一简化剩余可表示为(6), 其中(k_1 , m_1) = 1, (k_2 , m_2) = 1. 事实上, 根据定理2.2.4, 模 $m_1 \cdot m_2$ 的任一剩余可以表示为:

$$m_2 \cdot k_1 + m_1 \cdot k_2$$
.

因此, 当 $(m_2 \cdot k_1 + m_1 \cdot k_2, m_1 \cdot m_2) = 1$ 时, 根据定理1.3.11 和定理1.3.3, 我们有

$$(k_1, m_1) = (m_2 \cdot k_1, m_1) = (m_2 \cdot k_1 + m_1 \cdot k_2, m_1) = 1.$$

同理, $(k_2, m_2) = 1$. 结论成立.

证毕

访问主页

标 题 页

目 录 页

第 17 页 共 27 页

返回

全屏显示

关 闭

例2.3.14 设 $m_1 = 14$, $m_2 = 15$. 则当 k_1 , k_2 分别遍历模 m_1 , m_2 的简化剩余系, $k_3 = m_2 \cdot k_1 + m_1 \cdot k_2$ 遍历模 $m_1 \cdot m_2 = 210$ 的简化剩余系.

$k_1 \setminus k_3 \setminus k_2$	1	2	4	7	8	11	13	14
1	29	43	71	113	127	169	197	1
3	59	73	101	143	157	199	17	31
5	89	103	131	173	187	19	47	61
9	149	163	191	23	37	79	107	121
11	179	193	11	53	67	109	137	151
13	209	13	41	83	97	139	167	181

访问主页

标 题 页

目 录 页

第 18 页 共 27 页

返回

全屏显示

关 闭

2.3.4 欧拉函数的性质

从定理2.3.6 可推出欧拉函数 φ 的性质 (即 φ 是所谓的乘性函数). **定理2.3.7** 设 m, n 是互素的两个正整数. 则

$$\varphi(mn) = \varphi(m)\varphi(n).$$

证 考虑形为

$$ym + xn$$

的整数. 根据定理2.3.6, 当 x 遍历模 m 的简化剩余系, 共 $\varphi(m)$ 个整数以及 y 遍历模 n 的简化剩余系, 共 $\varphi(m)$ 个整数时, ym + xn 遍历模 mn 的简化剩余系, 其整数个数为 $\varphi(m)\varphi(n)$. 但模 mn 的简化剩余系的元素个数又为 $\varphi(mn)$. 因此, 所以 $\varphi(mn) = \varphi(m)\varphi(n)$.

例2.3.15
$$\varphi(77) = \varphi(7)\varphi(11) = 6 \cdot 10 = 60.$$

例2.3.16
$$\varphi(30) = \varphi(2)\varphi(3)\varphi(5) = 1 \cdot 2 \cdot 4 = 8.$$

访问主页

标 题 页

目 录 页

第 19 页 共 27 页

返回

全屏显示

关 闭

定理2.3.8 设 n 有标准因数分解式为

$$n = \prod_{p|n} p^{\alpha} = p_1^{\alpha_1} \cdots p_k^{\alpha_s}.$$

则
$$\varphi(n) = n \prod_{n|n} (1 - \frac{1}{p}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}).$$

证 当 $n = p^{\alpha}$ 为素数幂时, 模 n 的完全剩余系为

$$0, 1, \ldots, p-1, \ldots$$
 $p(p^{\alpha-1}-1), p(p^{\alpha-1}-1)+1, \ldots, p^{\alpha}-1,$

共有 $n = p^{\alpha}$ 个整数, 其中与 n 不互素的整数为

$$p \cdot 0, p \cdot 1, \dots, p(p^{\alpha - 1} - 1),$$

共有 $p^{\alpha-1}$ 个整数. 因此, 模 $n=p^{\alpha}$ 的简化剩余系元素个数为 $p^{\alpha}-p^{\alpha-1}$. 即 $\varphi(p^{\alpha})=p^{\alpha}-p^{\alpha-1}$. 根据定理2.3.7, 有

$$\varphi(n) = \prod_{p|n} \varphi(p^{\alpha}) = \prod_{p|n} (p^{\alpha} - p^{\alpha - 1}) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_k}).$$

访问主页

标 题 页

目 录 页

第 20 页 共 27 页

饭 回

全屏显示

关 闭

推论 设 $p,\ q$ 是不同的素数. 则 $\varphi(pq)=pq-p-q+1.$ 证明 由定理2.3.8, 有 $\varphi(pq)=\varphi(p)\varphi(q)=(p-1)(q-1)=pq-p-q+1.$

注 当 n 为合数, 且不知道 n 的因数分解式时, 通常很难求出 n 的欧拉函数值 $\varphi(n)$.

例2.3.17 设正整数 n 是两个不同素数的乘积. 如果知道 n 和欧拉函数值 $\varphi(n)$,则可求出 n 的因数分解式.

证 考虑未知数 p, q 的方程组:

$$\begin{cases} p+q = n+1-\varphi(n) \\ p\cdot q = n. \end{cases}$$

根据多项式的根与系数之间的关系, 我们可以从二次方程

$$z^{2} - (n+1 - \varphi(n))z + n = 0$$

求出 n 的因数 p,q.

访问主页

标 题 页

目 录 页

第 21 页 共 27 页

返回

全屏显示

关 闭

下面进一步考虑欧拉函数的性质,该性质将用于原根的构造. **定理2.3.9** 设m 是一个正整数. 则

$$\sum_{d \mid m} \varphi(d) = m. \tag{7}$$

证 我们对m 个整数集 $C = \{1, \ldots, m\}$ 按照与m 的最大公因数进行分类. 对于正整数 $d \mid m$, 记 $C_d = \{n \mid 1 \le n \le m, (n, m) = d\}$. 因为(n, m) = d的充要条件是 $\left(\frac{n}{d}, \frac{m}{d}\right) = 1$, 所以 C_d 中元素n 的形式为

$$C_d = \{ n = k \cdot d \mid 1 \le k \le \frac{m}{d}, \quad (k, \frac{m}{d}) = 1 \}.$$

因此, C_d 中的元素个数# (C_d) 为 $\varphi\left(\frac{m}{d}\right)$. 因为整数 $1,\ldots,m$ 中的每个整数属于且仅属于一个类 C_d , 所以

$$\#(C) = \sum_{d \mid m} \#(C_d)$$
 或 $m = \sum_{d \mid m} \varphi\left(\frac{m}{d}\right)$.

又d 遍历整数m 的所有正因数时, $\frac{m}{d}$ 也遍历整数m 的所有正因数. 故

$$m = \sum_{d \mid , m} \varphi\left(\frac{m}{d}\right) = \sum_{d \mid m} \varphi(d).$$

访问主页

标 题 页

目 录 页

第 <u>22</u> 页 共 <u>27</u> 页

返回

全屏显示

关 闭

例2.3.18 设整数 n = 50. 则 n 的正因数为 d = 1, 2, 5, 10, 25, 50. 这时, 定理2.3.9 的分类为:

$$C_1 = \{1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 49\};$$

$$C_2 = \{2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48\};$$

$$C_5 = \{5, 15, 35, 45\}; c_{10} = \{10, 20, 30, 40\};$$

 $C_{25} = \{25, \}; C_{50} = \{50\}.$

这六类的元素个数分别为:

$$\#(C_1) = \varphi(50) = 20, \ \#(C_2) = \varphi(25) = 20,$$

 $\#(C_5) = \varphi(10) = 4, \ \#(C_{10}) = \varphi(5) = 4,$
 $\#(C_{25}) = \varphi(2) = 1, \ \#(C_{50}) = \varphi(1) = 1.$

验算,有

$$50 = \varphi(50) + \varphi(25) + \varphi(10) + \varphi(5) + \varphi(2) + \varphi(1) = \sum_{d|50} \varphi(d).$$

访问主页

标 题 页

目 录 页

第 23 页 共 27 页

返回

全屏显示

关 闭

例2.3.19 设整数 n = 30. 则 n 的正因数为 d = 1, 2, 3, 5, 6, 10, 15, 30. 这时, 定理2.3.9 的分类为:

$$C_1 = \{1, 7, 11, 13, 17, 19, 23, 29\};$$
 $c_2 = \{2, 4, 8, 14, 16, 22, 26, 28\};$ $C_3 = \{3, 9, 21, 27\};$ $c_5 = \{5, 25\};$ $c_{10} = \{10, 20\};$ $c_{10} = \{15, \};$ $c_{20} = \{30\}.$

$$\#(C_1) = \varphi(30) = 8, \ \#(C_2) = \varphi(15) = 8,$$

 $\#(C_3) = \varphi(10) = 4, \ \#(C_5) = \varphi(6) = 2,$
 $\#(C_6) = \varphi(5) = 4, \ \#(C_{10}) = \varphi(3) = 2.$
 $\#(C_{15}) = \varphi(2) = 1, \ \#(C_{30}) = \varphi(1) = 1.$

验算,有

$$30 = \varphi(30) + \varphi(15) + \varphi(10) + \varphi(6) + \varphi(5) + \varphi(3) + \varphi(2) + \varphi(1) = \sum_{d \mid 30} \varphi(d).$$

访问主页

标 题 页

目 录 页

第 24 页 共 27 页

返回

全屏显示

关 闭

