САРІТИГО

O comportamento físico dos gases

100 °C

Na lista abaixo estão relacionados alguns termos e conceitos. Indique no seu caderno aqueles que você julga que estejam relacionados à imagem e justifique sua escolha. Discuta com seus colegas e apresente as conclusões ao professor.

- pressão
- temperatura
- gás
- absorção de calor
- volume
- densidade constante

O Pare e situe-se!

Texto introdutório ao capítulo

Neste capítulo vamos conhecer algumas propriedades do estado gasoso.

O estudo dos gases proporciona excelentes exemplos de aplicação do método científico, ilustrando como a observação das regularidades da natureza por meio de experiências de laboratório conduz às leis e como estas podem, por sua vez, ser explicadas por meio de teorias e de modelos microscópicos.

Você vai conhecer leis que permitem prever o comportamento dos gases diante das mudanças de pressão, de volume e de temperatura.

Entre essas leis está a **Lei do Gás Ideal**, que, por meio de um curto enunciado matemático, resume a relação entre a pressão, o volume, a temperatura e a quantidade, em mols, de uma amostra gasosa.

Você também conhecerá uma importante ideia desenvolvida pelo italiano Amedeo Avogadro, denominada **Princípio de Avogadro**, que abriu caminho para grandes progressos na Química e conduziu, entre outras coisas, à possibilidade de determinar a Constante de Avogadro (que, apesar de não ter sido determinada por esse cientista, tem esse nome em homenagem a ele).

Tendo estudado o capítulo, espera-se que você seja capaz de justificar alguns fatos interessantes envolvendo o estado gasoso da matéria, como por exemplo:

- por que em dias quentes é mais fácil um pneu velho e desgastado estourar do que em dias frios;
- o que mantém um balão no alto, seja ele um balão de ar quente ou um balão preenchido com hélio ou hidrogênio;
- por que a fumaça sobe;
- por que uma bexiga de gás pode estourar com maior facilidade quando sobe na atmosfera.

Considerações iniciais

Substâncias gasosas nas condições ambientes são moleculares

As substâncias podem ser fundamentalmente de três tipos: iônicas, moleculares ou metálicas, como vimos anteriormente. Nas condições ambientes, as substâncias iônicas e as metálicas (exceto o mercúrio) são sólidas. Porém, entre as substâncias moleculares, encontramos as que são sólidas, as que são líquidas e as que são gasosas nas condições ambientes.

Assim, se uma determinada substância é gasosa nas condições ambientes, podemos deduzir que ela é formada por moléculas (isso inclui os gases nobres, cujas moléculas são formadas por apenas um átomo).

No estado gasoso, as moléculas encontram-se muito mais separadas umas das outras do que nos estados líquido e sólido. Isso ocorre porque a coesão entre as moléculas no estado gasoso é muito pequena. Essa é a explicação científica para o fato de uma mesma massa de uma substância molecular ocupar um volume muitíssimo maior no estado gasoso do que nos estados líquido e sólido.

MOLÉCULAS A 350 m/s!

Considere o gás oxigênio, O₂, a 25 °C e pressão igual à da atmosfera ao nível do mar. Evidências científicas indicam que a distância média entre as moléculas é aproximadamente quinze vezes o tamanho da molécula. As moléculas movimentam-se com velocidades da ordem de 350 m/s e colidem com outras a cada 10^{-9} s, em média. Entre duas colisões sucessivas, uma molécula percorre, em linha reta, algo entre cem e mil vezes o seu tamanho.

▲ Apenas para comparar, se uma molécula do gás mencionado no texto deste quadro fosse do tamanho de uma bola de tênis com 6,5 cm de diâmetro, estaria em média a 1 m de distância das vizinhas e percorreria de 6,5 m a 65 m antes de colidir com outra.

1.2 A experiência de Torricelli e a unidade de pressão mmHg

Em 1643, o matemático e físico italiano Evangelista Torricelli realizou a seguinte experiência: encheu um tubo de vidro (com cerca de 1 m de comprimento) com mercúrio, tapou sua extremidade com o dedo (figura ⓐ) e a destapou dentro de uma tigela também contendo mercúrio. Notou que o mercúrio começou a descer, até se estabilizar, como mostra a figura ⓐ, que se refere ao experimento feito em local **ao nível do mar**.

O que fez o mercúrio descer? A resposta é simples: foi seu próprio peso. Por que ele chega a um ponto em que para de descer? No momento em que a coluna de mercúrio se estabiliza, atinge-se uma situação de equilíbrio entre a pressão decorrente do peso da coluna, que força o mercúrio a sair do tubo, e a **pressão atmosférica**, que o força a entrar, como ilustra a figura ©.

Por meio dessa experiência, Torricelli comprovou que a atmosfera exerce pressão e percebeu que a pressão atmosférica pode ser medida por meio da altura da coluna de mercúrio sustentada por ela. Estava criada a primeira unidade para medir pressão: a altura, em milímetros, de uma coluna de mercúrio, simbolizada por mmHg. A montagem mostrada na figura © é conhecida como barômetro de Torricelli.

A figura ® mostra que a pressão atmosférica ao nível do mar é 760 mmHg. Se a experiência de Torricelli for repetida no alto de uma montanha, a altura da coluna de mercúrio será menor que 760 mm, o que revela que a pressão atmosférica nesse local é menor que 760 mmHg.

De modo geral, verifica-se que, à medida que a altitude aumenta, a pressão atmosférica diminui, o que é evidenciado pela diminuição da altura da coluna de mercúrio no barômetro de Torricelli.

Na verdade, o valor da pressão atmosférica é uma decorrência da quantidade de ar que existe acima da localidade, o que aparece esquematizado no gráfico da página seguinte.

Em homenagem a Torricelli, o mmHg é também simbolizado por torr:

1 mmHg = 1 torr

1.3 A unidade de pressão atmosfera

Ao nível do mar, a pressão atmosférica média é de 760 mmHg. Esse valor serviu de base para a definição de uma outra unidade para expressar pressão, a atmosfera, simbolizada por atm. A pressão de uma atmosfera (1 atm) equivale à pressão de 760 mmHg. Assim:

1 atm = 760 mmHg

Os significados da palavra atmosfera

Você não deve confundir os significados da palavra atmosfera, quando usada em Ciência. Essa palavra pode referir-se ao meio gasoso que envolve um certo planeta (por exemplo, a atmosfera terrestre, a atmosfera do planeta Marte etc.), mas também é usada como o nome de uma unidade de pressão.

Fonte: Gráfico elaborado a partir de dados de WEINECK, J. Biologia do Esporte. 7. ed. Barueri: Manole, 2005. p. 663.

1.4 A unidade de pressão *pascal*

A pressão é uma grandeza conceituada em Física como sendo o resultado da divisão da força que atua perpendicularmente a uma superfície dividida pela área dessa superfície. Assim, por exemplo, seus pés exercem uma pressão sobre o solo, que pode ser calculada dividindo-se a força aplicada por seu corpo ao solo pela área de contato entre seus pés e o solo.

Surge, da definição de pressão, a unidade do SI para expressar essa grandeza: **newton por metro quadrado** (N/m^2) , que é chamada de **pascal** e simbolizada por **Pa**.

Na prática, é muito usado o quilopascal (kPa), que corresponde a 10³ Pa.

Verifica-se experimentalmente que 1 atm equivale a 101,3 kPa.

$$1 \text{ N/m}^2 = 1 \text{ pascal} = 1 \text{ Pa}$$

$$1 \text{ atm} = 760 \text{ mmHg} = 101,3 \text{ kPa}$$

1.5 Variáveis de estado

A expressão **estado de um gás** designa a situação em que esse gás se encontra, ou seja, como ele "está". Especificar o estado de um gás significa dizer qual é o valor:

- de sua pressão (P);
- de sua temperatura (T);
- de seu volume (V).

Dizemos que P, T e V são variáveis de estado.

Três unidades relevantes de pressão foram comentadas anteriormente.

Quanto à temperatura, estamos habituados a expressá-la em graus Celsius (símbolo: °C). Mais adiante conheceremos uma escala de temperatura mais útil para certos estudos científicos, a escala kelvin.

As unidades de volume mais relevantes (cm³, mL, dm³, L e m³), bem como a maneira de interconvertê-las, foram apresentadas no capítulo 2. Recordando:

$$1 \text{ dm}^3 = 1 \text{ L} = 10^3 \text{ mL} = 10^3 \text{ cm}^3$$

$$1 \text{ m}^3 = 10^3 \text{ L}$$

▲ Blaise Pascal (1623-1662), matemático e cientista francês, a quem a unidade de pressão pascal (Pa), do Sistema Internacional, homenageia. Óleo sobre tela de Philippe de Champaigne, século XVII. Coleção particular.

odução proibida. Art. 184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998.

Exercícios essenciais

A critério do(a) professor(a) esta lista de exercícios poderá ser realizada em classe ou em casa.

Exercício Resolvido

1. Expresse a pressão de 190 mmHg na unidade atm.

Resolução

Em mmHg Em atm

760 mmHg — 1 atm

190 mmHg — x \Rightarrow x = 0.25 atm

- O pneu de um automóvel foi calibrado com 1.520 mmHg. Expresse essa pressão em:
 - a) atm;
- b) kPa;
- c) torr.

- **3.** A pressão atmosférica no alto do Monte Kilimanjaro, o ponto mais alto da África, a 5.000 m de altitude, é cerca de 0,5 atm. Expresse essa pressão em:
 - a) kPa;
- c) torr.
- b) mmHg;
- **4.** Um balão publicitário, enchido com hélio, tem volume interno de 10 m³. Expresse esse volume em:
 - a) I ·
- c) mL
- **b)** dm³;
- d) cm^3 .
- **5.** O volume interno de um balão de festa é 5 L. Expresse esse volume em mL e em cm³.