

General Description

The MAX6061-MAX6068 are precision, low-dropout, micropower voltage references. These three-terminal devices are available with output voltage options of 1.25V, 1.8V, 2.048V, 2.5V, 3V, 4.096V, 4.5V, and 5V. They feature a proprietary curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low temperature coefficient of 20ppm/°C (max) and an initial accuracy of ±0.2% (max). Specifications apply to the extended temperature range (-40°C to +85°C).

The MAX6061-MAX6068 typically draw only 90µA of supply current and can source 5mA or sink 2mA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, these devices offer a supply current that is virtually independent of the supply voltage (8µA/V variation) and do not require an external resistor. Additionally, the internally compensated devices do not require an external compensation capacitor. Eliminating the external compensation capacitor saves valuable board area in space-critical applications. Low dropout voltage and supply independent, ultra-low supply current make these devices ideal for battery-operated, high-performance, low-voltage systems.

The MAX6061-MAX6068 are available in a 3-pin SOT23 package.

Applications

Analog-to-Digital Converters (ADCs) Portable Battery-Powered Systems **Notebook Computers** PDAs, GPSs, DMMs Cellular Phones Precision 3V/5V Systems

Typical Operating Circuit appears at end of data sheet.

Selector Guide

PART	OUTPUT VOLTAGE (V)	INPUT VOLTAGE (V)
MAX6061	1.248	2.5 to 12.6
MAX6068	1.800	2.5 to 12.6
MAX6062	2.048	2.5 to 12.6
MAX6066	2.500	(V _{OUT} + 200mV) to 12.6
MAX6063	3.000	(V _{OUT} + 200mV) to 12.6
MAX6064	4.096	(V _{OUT} + 200mV) to 12.6
MAX6067	4.500	(V _{OUT} + 200mV) to 12.6
MAX6065	5.000	(V _{OUT} + 200mV) to 12.6

Features

- ♦ Ultra-Small 3-Pin SOT23 Package
- ♦ ±0.2% (max) Initial Accuracy
- ◆ 20ppm/°C (max) Temperature Coefficient
- ♦ 5mA Source Current
- ♦ 2mA Sink Current
- ♦ No Output Capacitor Required
- **♦ Stable with Capacitive Loads**
- ♦ 90µA (typ) Quiescent Supply Current
- ◆ 200mV (max) Dropout at 1mA Load Current
- ♦ Output Voltage Options: 1.25V, 1.8V, 2.048V, 2.5V, 3V, 4.096V, 4.5V, 5V
- ♦ 13µVp-p Noise 0.1Hz to 10Hz (MAX6061)

Ordering Information

	_	
TEMP. RANGE	PIN- PACKAGE	TOP MARK
-40°C to +85°C	3 SOT23-3	FZFP
-40°C to +85°C	3 SOT23-3	FZFQ
-40°C to +85°C	3 SOT23-3	FZFY
-40°C to +85°C	3 SOT23-3	FZFZ
-40°C to +85°C	3 SOT23-3	FZFV
-40°C to +85°C	3 SOT23-3	FZFW
-40°C to +85°C	3 SOT23-3	FZGB
-40°C to +85°C	3 SOT23-3	FZGC
-40°C to +85°C	3 SOT23-3	FZGE
-40°C to +85°C	3 SOT23-3	FZGF
-40°C to +85°C	3 SOT23-3	FZFM
-40°C to +85°C	3 SOT23-3	FZFN
	-40°C to +85°C	TEMP. RANGE PACKAGE -40°C to +85°C 3 SOT23-3 -40°C to +85°C 3 SOT23-3

Note: There is a minimum order increment of 2500 pieces for SOT23 packages.

Ordering Information continued at end of data sheet.

Pin Configuration

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	Continuous Power Dissipation (T _A = +70°C)
IN0.3V to +13.5V	3-Pin SOT23 (derate 4.0mW/°C above +70°C)320mW
OUT0.3V to (V _{IN} + 0.3V)	Operating Temperature Range40°C to +85°C
Output Short-Circuit Duration to GND or IN (V _{IN} < 6V)Continuous	Storage Temperature Range65°C to +150°C
Output Short-Circuit Duration to GND or IN $(V_{IN} \ge 6V)$ 60s	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6061, Vout = 1.25V

(VIN = +5V, I_{OUT} = 0, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
Output Valtage	\/	T0500	MAX6061A (0.32%)	1.244	1.248	1.252	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6061B (0.48%)	1.242	1.248	1.254	V
Output Voltage Temperature	TOV	MAX6061A			6	20	100
Coefficient (Note 2)	TCV _{OUT}	MAX6061B			6	30	ppm/°C
Line Regulation	$\Delta V_{OUT}/$ ΔV_{IN}	2.5V ≤ V _{IN} ≥ 12.6V			10	90	μV/V
Lood Doculation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5m	nΑ		0.5	0.9	να\ //να Λ
Load Regulation	Δ l $_{ m OUT}$	Sinking: -2mA ≤ I _{OUT} ≤	0		1.3	3.0	mV/mA
OUT Short-Circuit Current	la a	Short to GND			25		mA
Short-Circuit Current	I _{SC}	Short to IN			25		MA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTICS							
Nicina Valtaga	00117	f = 0.1Hz to 10Hz			13		μVр-р
Noise Voltage	eout	f = 10Hz to 10kHz			15		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	$V_{IN} = 5V \pm 100 \text{mV}, f =$	V _{IN} = 5V ± 100mV, f = 120Hz		86		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			50		μs
INPUT CHARACTERISTICS							
Supply Voltage Range	VIN	Guaranteed by line reg	ulation test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	ΔI _{IN} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			3.4	8.0	μA/V

ELECTRICAL CHARACTERISTICS—MAX6068, VOUT = 1.80V

 $(V_{IN} = +5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
Outrout Voltage	\/	T0500	MAX6068A (0.17%)	1.797	1.800	1.803	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6068B (0.39%)	1.793	1.800	1.807]
Output Voltage Temperature	TOV	MAX6068A			6	20	
Coefficient (Note 2)	TCV _{OUT}	MAX6068B			6	30	ppm/°C
Line Regulation	$\Delta V_{OUT}/$ ΔV_{IN}	2.5V ≤ V _{IN} ≥ 12.6V			33	200	μV/V
Lood Doculation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5n	nA		0.5	0.9	100 \ //20 Λ
Load Regulation	Δ l $_{ m OUT}$	Sinking: -2mA ≤ I _{OUT} ≤	0		1.5	4	mV/mA
OLIT Chart Circuit Coursest	la a	Short to GND			25		A
OUT Short-Circuit Current	I _{SC}	Short to IN			25		mA mA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTICS							
Nicion Valtage		f = 0.1Hz to 10Hz			22		μVр-р
Noise Voltage	eout	f = 10Hz to 10kHz			25		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = 5V ±100mV, f = 120Hz			86		dB
Turn-On Settling Time	t _R	To Vout = 0.1% of final value, Cout = 50pF			115		μs
INPUT CHARACTERISTICS							
Supply Voltage Range	V _{IN}	Guaranteed by line reg	ulation test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				90	125	μА
Change in Supply Current	ΔI _{IN} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			3.3	8.0	μA/V

ELECTRICAL CHARACTERISTICS—MAX6062, VOUT = 2.048V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
Output Valtage	Vaur	T 25°C	AX6062A (0.24%)	2.043	2.048	2.053	V
Output Voltage	Vout	T _A = +25°C MAX6062B (0.39%)		2.040	2.048	2.056	V
Output Voltage Temperature	TC\/	MAX6062A			6	20	nnm/0C
Coefficient (Note 2)	TCV _{OUT}	MAX6062B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			33	200	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5mA			0.5	0.9	mV/mA
Load negulation	ΔI_{OUT}	Sinking: $-2mA \le I_{OUT} \le 0$			1.5	4	I IIIV/IIIA
OUT Short-Circuit Current	loo	Short to GND			25		mA
OUT Short-Circuit Current	Isc	Short to IN			25		I IIIA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTIC	S						l
Noise Voltage	0.0117	f = 0.1Hz to 10Hz			22		µVр-р
Noise voitage	eout	f = 10Hz to 10kHz			25		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f = 120Hz			86		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			115		μs
INPUT CHARACTERISTICS							
Supply Voltage Range	VIN	Guaranteed by line-regula	tion test	2.5		12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	2.5V ≤ V _{IN} ≤ 12.6V			3.3	8.0	μA/V

4 ______ /N/XI/N

ELECTRICAL CHARACTERISTICS—MAX6066, VOUT = 2.500V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDIT	TIONS	MIN	TYP	MAX	UNITS
Output Voltage	\/	T 25°C	MAX6066A (0.2%)	2.495	2.500	2.505	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6066B (0.4%)	2.490	2.500	2.510	V
Output Voltage Temperature	TCV _{OUT}	MAX6066A			6	20	22m/°C
Coefficient (Note 2)	10,0001	MAX6066B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12$	2.6V		60	300	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5m	ıΑ		0.5	0.9	m\//m /\
Load Regulation	Δlout	Sinking: -2mA ≤ I _{OUT} ≤ ()		1.6	5	mV/mA
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			50	200	mV
OUT Short-Circuit Current	loo	Short to GND			25		mA
OOT SHOIT-CITCUIT CUITEIIL	Isc	Short to IN			25		IIIA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTIC	S			-1			
Naina Valtaga	00117	f = 0.1Hz to 10Hz			27		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz			30		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f = 120Hz			86		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			115		μs
INPUT CHARACTERISTICS	1			1			1
Supply Voltage Range	VIN	Guaranteed by line-regulation test		Vout + 0	.2	12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			3.3	8.0	μA/V

ELECTRICAL CHARACTERISTICS—MAX6063, VOUT = 3.0V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNITS
Output Valtage	\/	T0500	IAX6063A (0.2%)	2.994	3.000	3.006	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	IAX6063B (0.4%)	2.988	3.000	3.012	V
Output Voltage Temperature	TOV	MAX6063A			6	20	10.00
Coefficient (Note 2)	TCV _{OUT}	MAX6063B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6$	5V		90	400	μV/V
Load Regulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5mA			0.5	0.9	mV/mA
Load Regulation	Δlout	Sinking: -2mA ≤ I _{OUT} ≤ 0			2.0	6.0	IIIV/IIIA
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			50	200	mV
OUT Short-Circuit Current	loo	Short to GND			25		mA
OUT SHOIL-CITCUIT CUITEIIL	Isc	Short to IN			25		IIIA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} /				130		ppm
DYNAMIC CHARACTERISTIC	S			1			
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz			35		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz			40		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f = 120Hz			76		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			115		μs
INPUT CHARACTERISTICS	1	1					
Supply Voltage Range	VIN	Guaranteed by line-regula	tion test	Vour + 0	.2	12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			3.4	8.0	μA/V

ELECTRICAL CHARACTERISTICS—MAX6064, VOUT = 4.096V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNITS
Outrant Waltana	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T .0500	MAX6064A (0.2%)	4.088	4.096	4.104	
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6064B (0.4%)	4.080	4.096	4.112	V
Output Voltage Temperature	TCV	MAX6064A			6	20	nnm/0C
Coefficient (Note 2)	TCV _{OUT}	MAX6064B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 1$	2.6V		130	430	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5m	nA		0.5	0.9	mV/mA
Load Regulation	Δ l $_{OUT}$	Sinking: -2mA ≤ I _{OUT} ≤	0		2.2	8	IIIV/IIIA
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			50	200	mV
OUT Short-Circuit Current	loo	Short to GND			25		mΛ
OUT Short-Circuit Current	Isc	Short to IN			25		mA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTICS	S						
Naise Valtage		f = 0.1Hz to 10Hz			50		µVр-р
Noise Voltage	eout	f = 10Hz to 10kHz			50		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f = 120Hz			72		dB
Turn-On Settling Time	t _R	To Vout = 0.1% of final value, Cout = 50pF			190		μs
INPUT CHARACTERISTICS	<u>'</u>			•			
Supply Voltage Range	VIN	Guaranteed by line-regulation test		Vour + 0	.2	12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			3.2	8.0	μA/V

ELECTRICAL CHARACTERISTICS—MAX6067, VOUT = 4.500V

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
Outout Valtage	\/-·-	T05°C	MAX6067A (0.2%)	4.491	4.500	4.509	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6067B (0.4%)	4.482	4.500	4.518	V
Output Voltage Temperature	TOV	MAX6067A			6	20	nnm/0C
Coefficient (Note 2)	TCV _{OUT}	MAX6067B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	(V _{OUT} + 0.2V) ≤ V _{IN} ≤	12.6V		170	550	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ §	5mA		0.5	0.9	mV/mA
Load Regulation	Δ l $_{ m OUT}$	Sinking: -2mA ≤ I _{OUT}	≤ 0		2.4	8	mv/ma
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			50	200	mV
OUT Short-Circuit Current	1	Short to GND			25		mA
OUT Short-Circuit Current	Isc	Short to IN	Short to IN		25		l IIIA
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} /				130		ppm
DYNAMIC CHARACTERISTIC	S			'			
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz			55		μVр-р
Noise voitage	eout	f = 10Hz to 10kHz			55		μV _{RMS}
Ripple Rejection	ΔV _{OUT} / ΔV _{IN}	V _{IN} = 5V ±100mV, f = 120Hz			70		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			230		μs
INPUT CHARACTERISTICS	<u>'</u>			•			•
Supply Voltage Range	VIN	Guaranteed by line-re	egulation test	Vout + 0	.2	12.6	V
Quiescent Supply Current	IIN				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			3.2	8.0	μΑ/V

__ /N/XI/VI

ELECTRICAL CHARACTERISTICS—MAX6065, VOUT = 5.000V

 $(V_{IN} = +5.2V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Output Valtage	\/o=	T05°C	MAX6065A (0.2%)	4.990	5.000	5.010	V
Output Voltage	Vout	T _A = +25°C	MAX6065B (0.4%)	4.980	5.000	5.020]
Output Voltage Temperature	TCV _{OUT}	MAX6065A			6	20	nnm/°C
Coefficient (Note 2)	100001	MAX6065B			6	30	ppm/°C
Line Regulation	ΔV _{OUT} / ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le$	12.6V		180	550	μV/V
Load Degulation	ΔV _{OUT} /	Sourcing: 0 ≤ I _{OUT} ≤ 5	mA		0.5	0.9	mV/mA
Load Regulation	Δlout	Sinking: -2mA ≤ I _{OUT} s	≦ 0		2.4	8.0	HIV/IIIA
Dropout Voltage (Note 4)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			50	200	mV
OUT Short-Circuit Current	loo	Short to GND			25		mA
OOT SHOIT-CITCUIT CUITEIIL	Isc	Short to IN			25		1 111/4
Long-Term Stability	ΔV _{OUT} / time	1000hr at +25°C			62		ppm/ 1000hr
Output Voltage Hysteresis (Note 3)	ΔV _{OUT} / cycle				130		ppm
DYNAMIC CHARACTERISTIC	S						
Noise Voltage	00117	f = 0.1Hz to 10Hz			60		μVр-р
Noise voitage	eout	f = 10Hz to 10kHz			60		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/$ ΔV_{IN}	V _{IN} = 5V ±100mV, f = 120Hz			65		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value, C _{OUT} = 50pF			300		μs
INPUT CHARACTERISTICS	•			•			•
Supply Voltage Range	VIN	Guaranteed by line-re	gulation test	Vout + 0	.2	12.6	V
Quiescent Supply Current	I _{IN}				90	125	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$			3.2	8.0	μA/V

Note 1: All devices are 100% production tested at $T_A = +25$ °C and are guaranteed by design for $T_A = T_{MIN}$ to T_{MAX} , as specified.

Note 2: Temperature Coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} is divided by the maximum ΔT .

Note 3: Temperature Hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MIN} to T_{MAX}.

Note 4: Dropout voltage is the minimum input voltage at which V_{OUT} changes \leq 0.2% from V_{OUT} at $V_{IN} = 5.0V$ ($V_{IN} = 5.5V$ for MAX6065).

Typical Operating Characteristics

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Typical Operating Characteristics (continued)

Note 5: Many of the MAX6061 family *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6061 (1.25V output) and the MAX6065 (5.0V output). The *Typical Operating Characteristics* of the remainder of the MAX6061 family, typically lie between these two extremes and can be estimated based on their output voltages.

Pin Description

PIN	NAME	FUNCTION
1	IN	Input Voltage
2	OUT	Reference Output
3	GND	Ground

_Applications Information

Input Bypassing

For the best line-transient performance, decouple the input with a $0.1\mu F$ ceramic capacitor as shown in the *Typical Operating Circuit*. Locate the capacitor as close to IN as possible. Where transient performance is less important, no capacitor is necessary.

Output/Load Capacitance

Devices in the MAX6061 family do not require an output capacitance for frequency stability. In applications where the load or the supply can experience step changes, an output capacitor of at least 0.1µF will reduce the amount of overshoot (undershoot) and improve the circuit's transient response. Many applications do not require an external capacitor, and the MAX6061 family can offer a significant advantage in these applications when board space is critical.

Supply Current

The quiescent supply current of the series-mode MAX6061 family is typically 90µA and is virtually independent of the supply voltage, with only an 8µA/V (max) variation with supply voltage. Unlike series references, shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present at the time. In the MAX6061 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life. When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 400µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

_Typical Operating Circuit

Ordering Information (continued)

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX6067AEUR-T	-40°C to +85°C	3 SOT23-3	FZFS
MAX6067BEUR-T	-40°C to +85°C	3 SOT23-3	FZFT
MAX6068AEUR-T	-40°C to +85°C	3 SOT23-3	FZIB
MAX6068BEUR-T	-40°C to +85°C	3 SOT23-3	FZIC

Output Voltage Hysteresis

Output voltage hysteresis is the change of output voltage at $T_A = +25^{\circ}\text{C}$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 130ppm.

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 50µs to 300µs, depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

Chip Information

TRANSISTOR COUNT: 117
PROCESS: BICMOS

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.