Master Thesis

F3

Faculty of Electrical Engineering

Part localization for robotic manipulation

César Sinchiguano

Supervisor: Dr Gaël Pierre Écorchard.

May 2019

Acknowledgements

I would like to express my sincere gratitude to

Declaration

I hereby declare that the presented work was developed independently and that I have listed all sources of information used within it in accordance with methodical instructions for observing the ethical principles in the preparation of university theses. Prague, . May 2019

Abstract

The new generation of the collaborative robots allows the use of small robot arms working with human workers, e.g. the YuMi robot, a dual 7-DOF robot arms designed for precise manipulation of small objects. For further acceptance of such a robot in the industry, some methods and sensors systems have to be developed to allow them to perform a task such as grasping a specific object. If the robot wants to grasp an object, it has to localize the object relative to itself. This is a task of object recognition in computer vision, the art of localizing predefined objects in image sensor data. This master thesis presents a pipeline for object recognition of a single isolated model in point cloud. The system uses point cloud data rendered from a 3D CAD model and describes its characteristics using local feature descriptors. These are then matched with the descriptors of the point cloud data from the scene to find the 6-DoF pose of the model in the robot coordinate frame. This initial pose estimation is then refined by a registration method such as ICP. A robotcamera calibration is performed also. The contributions of this thesis are as followr: The syste uses FPFH (Fast Point Feature Histogram) for describing the local region and a hypothesize-and-test paradigm, e.g. RANSAC in the matching process. In contrast to several approaches those whose rely on Point Pair Features as feature descriptors and a geometry hashing, e.g. voting-scheme as matching process.

Keywords: Object Detection, Pose Estimation, Robotics, Point Cloud Data

Supervisor: Dr Gaël Pierre Écorchard. Czech Institute of Informatics, Robotics, and Cybernetics, Office B-323,Jugoslávských partyzánů 3, 160 00 Prague 6

Abstrakt

Nová generace spolupracujících robotů umožňuje použití malých robotických ramen pracujících s lidskými pracovníky, např. robota YuMi, dvojitá robotická ramena 7-DOF určená pro přesnou manipulaci s malými předměty. Pro další přijetí takového robota v průmyslu musí být vyvinuty některé metody a systémy senzorů, které jim umožní provádět úkol, například uchopení určitého objektu. Pokud chce robot uchopit objekt, musí objekt umístit relativně vůči sobě. To je úkol rozpoznávání objektů v počítačovém vidění, což je umění lokalizace předdefinovaných objektů v datech obrazového snímače. Tato diplomová práce představuje potrubí pro rozpoznávání objektů jednoho izolovaného modelu v bodovém mračnu. Systém využívá data z bodového mračna vykreslená z 3D CAD modelu a popisuje jeho charakteristiky pomocí lokálních deskriptorů funkcí. Ty jsou pak porovnány s deskriptory dat z bodového mračna ze scény, aby se 6-DoF pozice modelu v souřadném rámci robota. Tento počáteční odhad pozice je pak vylepšen metodou registrace, jako je ICP. Provádí se také kalibrace robotické kamery. Příspěvky této práce jsou následující: Systém používá FPFH (Fast Point Feature Histogram) pro popis lokální oblasti a hypotézu - a paradigma testu, např. RANSAC v procesu párování. Na rozdíl od několika přístupů k těm, které se spoléhají na vlastnosti Point Pair jako deskriptory vlastností a geometrické hašování, např. hlasovací systém jako proces shody.

Klíčová slova: Detekce objektů, Odhad Pozice, Robotika, Bodová Data

Contents

1 Introduction	1
1.1 Motivation	1
1.2 Goal	1
1.3 Thesis structure	2

Figures _ Tables

Chapter 1

Introduction

Within this chapter, the reader receives an outline of the general context which surrounds this thesis. Starting with the motivation section and the ultimate goal to be accomplished, and a summary of the thesis' structure follow.

1.1 Motivation

For years. The industrial robot has undergoes through enormous development. Robot nowadays not only receives command from the computer. But also has the ability to make decision itself. Such abilities are well known in the world of the computer vision as recognizing and determining 6D pose of a rigid body (3D translation and 3D rotation).

However, finding the object of interest or determining its pose in either 2D or 3D scenes is still a challenging task for computer vision. There are many researchers working on it with method that goes from state-of-the-art to deep learning means where the object is usually represented with a CAD model or object's 3D reconstruction and typical task is detection of this particular object in the scene captured with RBGD or depth camera. Detection consider determining the location of the object in the input image. This is typical in robotics and machine vision applications where the robot usually does task like pick and place objects. However, localization and pose estimation is much more challenging task due to the high dimensionality of the search in the workspace. In addition, the object of interest is usually sought in cluttered scenes under occlusion with requirement of real-time performance which make the the whole task even much more harder.

1.2 Goal

We attempt to provide a system or pipeline for pose estimation of a rigid object in point cloud design for random picking of an isolated object by using depth images acquired from an RGB-D sensor. In addition, the development of a system that can help with the extrinsic calibration of a camera-robot

The goal is just to develop a suitable pipeline for localizing an isolated

1. Introduction

object where it can be suitable for future work such as a bin-picking system which is out of the scope for this master thesis.

1.3 Thesis structure

The thesis consists of 5 chapters, ?? and ??. The current chapter briefly describes the motivation and the goal for the part localization which we refer from here on through the whole thesis as 6D pose estimation of a rigid body in order to fit to the nomenclature giving in the perception field. Chapter 2 gives a background to camera calibration, openCV, open3D, ROS, prepossessing algorithm for segmenting the 3D image and related work about 6D pose estimation of the rigid body on which this work is building on. Chapter 3 describes the algorithms and the implementation for creating and collective ground data. Chapter 4 metric pair with the ground truth data. Chapter 5 concludes the thesis and showcase possible future works.