Task 05

(Index of arrays starts from 1 as is given by the problem.)

We need an intermediate array C for this task, where

$$C[k] := \sum_{i=1}^{k} A[i].$$

As A[] is a boolean array consisting of 0s and 1s, it is easy to notice, if A[k] == 1, B[C[k]] should be k.

Note that the LHS of the formula above is in a form of prefix sum, the main task becomes computing the prefix sum in $O(\log n)$.

Prefix Sum Steps:

- 1. Fill *B* with undefined;
- 2. Split A into $\log n$ parts. $A_k := A[k \log n + 1, ..., (k+1) \log n]$; Denote B_k, C_k in the same way;
- 3. Do in parallel $C_k \leftarrow \text{sequential_prefix_sum}(A_k); (O(\log n))$
- 4. Let $last(C_k) := the last element of <math>C_k$, offset $_k := \sum_{i=1}^k last(C_k)$;
- 5. Do in parallel $C_k \leftarrow C_k + \text{offset}_{k-1}$; $(O(\log n))$

The total time complexity of Prefix Sum Steps is $O(\log n)$.

Compute Final Solution:

Do in parallel $B[C[j]] \leftarrow j$, if A[j] == 1. $(O(\log n))$

All in all, the overall time complexity is $O(\log n)$.

An Example of How It Works:

$$A = \{0, 1, 1, 1, 0, 1\}, n = 6, p = n/(\log n) \approx 3.$$

- 1. $A_1 = \{0, 1\}, A_2 = \{1, 1\}, A_3 = \{0, 1\};$
- 2. $C_1 = \{0,1\}, C_2 = \{1,2\}, C_3 = \{0,1\};$
- 3. offset₁ = 1, offset₂ = 1 + 2 = 3;
- 4. $C_2 \leftarrow C_2 + \text{offset}_1 = \{2, 3\};$
- 5. $C_3 \leftarrow C_3 + \text{offset}_2 = \{3, 4\};$
- 6. The complete C is $\{0, 1, 2, 3, 3, 4\}$;
- 7. Compute the final solution $B \leftarrow \{2, 3, 4, 6, \text{ undefined...}\}.$