AUTOMATIZACIÓN DEL PROCESO DE ANOTACIÓN DE SEÑALES EEG DE PACIENTES CON EPILEPSIA POR MEDIO DE TÉCNICAS DE APRENDIZAJE AUTOMÁTICO

RESUMEN

- Se tiene de objetivo el diseñar y crear una herramienta que emplee aprendizaje automático para identificar y anotar registros EEG.
- Se empleó Matlab 2019a y los conocimientos de los doctores de HUMANA para su desarrollo.
- Se obtuvo una interfaz validada con los doctores, que cuenta con la capacidad de crear algoritmos y de generar las anotaciones automáticamente.

[1]

- OBJETIVOS

OBJETIVO GENERAL

Desarrollar y validar un proceso de reconocimiento y anotación de posibles episodios ictales en señales electroencefalográficas (EEG) de pacientes con epilepsia, por medio de técnicas de aprendizaje automático.

OBJETIVOS ESPECÍFICOS

- 1. Adaptar la herramienta de software desarrollada en la fase previa para el reconocimiento de señales EEG con registros ictales de pacientes de HUMANA.
- 2. Identificar automáticamente segmentos de interés dentro de las señales, de acuerdo a parámetros utilizados por el personal de HUMANA.

OBJETIVOS ESPECÍFICOS

- 3. Generar automáticamente archivos con anotaciones relevantes para los segmentos de interés identificados.
- 4. Validar los segmentos de interés y las anotaciones con especialistas de HUMANA.

- INTRODUCCIÓN

INTRODUCCIÓN

EPILEPSIA

¿Qué es la epilepsia y cuál es su relevancia en Guatemala?

EEG

¿Qué son los EEG y para qué sirven en el diagnóstico de la epilepsia?

ANOTACIONES

¿Qué son las anotaciones dentro del contexto de un registro de EEG?

PROCESAMIENTO DE UN EEG

Actualmente, ¿cómo se procesan los EEG con computadoras?

APRENDIZAJE AUTOMÁTICO

¿Qué puede hacer el aprendizaje automático para el procesamiento de los EEG?

EEG Y LA EPILEPSIA

- Enfermedad que afecta el sistema nervioso.
- Se presenta de distintas formas y su diagnóstico se realiza con estudios clínicos.
- En Guatemala, se estiman 325,000 casos (HUMANA, 2015).

[3]

EEG Y LA EPILEPSIA

- Un EEG es un registro de la actividad eléctrica del cerebro.
- Este se obtiene por medio de la colocación de electrodos en la cabeza.
- Relación entre ambos: herramienta de apoyo de diagnóstico.

[5]

ANOTACIONES EN UN EEG

ANOTACIONES EN UN EEG

- Son registros escritos relevantes en el diagnóstico.
- Se centran en segmentos relevantes del registro.
- Realizadas manualmente por un especialista.
- Las anotaciones pueden ser de registros de 24 horas.

ANOTACIONES EN UN EEG

- Es crucial que un especialista realice la revisión.
- Se pueden anotar distintos elementos de interés.

PROCESAMIENTO
DE EEG Y
APRENDIZAJE
AUTOMÁTICO

PROCESAMIENTO DE UN EEG

- Los EEG son de origen bioeléctrico, se requieren filtrar.
- Es posible segmentar un EEG en ventanas de menor tiempo.
- Su naturaleza no estacionaria hace que métodos como la transformada de Fourier no sean recomendados (Blanco et al. 1996)
- Se recomienda usar datos extraídos en tiempo continuo o de la señal transformada en tiempo-frecuencia (Wavelet).

APRENDIZAJE AUTOMÁTICO

- Es el proceso por el cuál un algoritmo desarrolla la capacidad de aprender un patrón.
- Se divide en tres ramas significativas: supervisado, no supervisado y reforzado.
- Para los algoritmos se requiere tener las características distintivas de las clases a discernir.
- Lo anterior permite el uso de estas técnicas para procesar un EEG.

[9]

APRENDIZAJE AUTOMÁTICO

- Las RNA son algoritmos que toman de base el principio de funcionamiento del cerebro: las neuronas.
- Los SVM emplean hiperplanos para realizar clasificaciones binarias.

[11]

DISEÑO - EXPERIMENTAL

DISEÑO EXPERIMENTAL

FILTRO INICIAL A EMPLEAR

- Filtrar en exceso un EEG hace que este pierda información.
- Se contrastaron tres filtros: Wiener, Butterworth y Chebyshev (Gonzales, 2014).
- Se empleó un segmento de 10 segundos de un EEG y una señal sinusoidal de 100Hz como ruido.

[12]

OBTENCIÓN DE LAS SEÑALES

- Para el entrenamiento, se requieren registros con etiquetas conocidas.
- Los conjuntos de la Universidad de Bonn y del concurso de predicción de epilepsia de la American Epilepsy Society Seizure Prediction completan los tipos de señales requeridos.

[14]

CARACTERÍSTICAS A EXTRAER

- La delimitación de las características relevantes se hace en base a trabajos previos.
- Las características en tiempo continuo y en el dominio tiempofrecuencia son útiles para discernir entre señales.
- Se realizó una segmentación en ventanas de un segundo.

[15]

ALGORITMOS DE APRENDIZAJE SUPERVISADO

- Para la clasificación se emplearon las redes neuronales (RNA) y la máquina de vectores de soporte (SVM).
- Se adaptó la programación para poder trabajar con una cantidad variable de clases.
- Para la RNA se realiza el entrenamiento con sets de entrenamiento, validación y prueba, para la SVM se realiza con validación cruzada.

[16]

DISEÑO NUEVA INTERFAZ

- Se requiere una interfaz visual para los usuarios.
- La nueva sección se creó con la herramienta de App Designer de Matlab 2019a.
- Dentro de esta interfaz se permite la creación del algoritmo de aprendizaje supervisado y la revisión de la señal con anotaciones visuales.

[17]

ALGORITMOS DE APRENDIZAJE NO SUPERVISADO

 Se creó el apartado dentro de la interfaz para poder cargar un vector de etiquetas generado con un algoritmo de aprendizaje no supervisado.

[18]

Matriz de confusión: SVM con características en tiempo continuo y kernel gaussiano								
Clase predicha	Ictal	25.0%	0.4%	0.0%	0.0%	98.4% 1.6%		
	Cana	0.0%	24.2%	0.0%	0.4%	98.3%		
	Sano	0.070	21,270	0.070	0.170	1.7%		
	Preictal	0.0%	0.4%	20.0%	2.5%	87.3% 12.7%		
	Interictal	0.0%	0.0%	5.0%	22.1%	81.5%		
	Interictal	31373	0.070	3,373		18.5%		
		100%	96.7%	80.0%	88.3%	91.3%		
		0.0%	3.3%	20.2%	11.7%	8.8%		
		Ictal	Sano	Preictal	Interictal	Exactitud		
		Clase Objetivo						

Características	Tiempo Continuo			Wavelet			
Modelo	RNA	SVM		RNA	SVM		
Kernel	-	Gaussiano	Lineal	-	Gaussiano	Lineal	
2 Clases	100.0%	99.8%	100.0%	97.7%	98.7%	97.9%	
3 Clases	97.9%	98.9%	97.2%	98.2%	98.3%	97.2%	
4 Clases	88.0%	91.3%	88.3%	81.2%	83.3%	77.1%	
Promedio	95.3%	96.7%	95.2%	92.4%	93.4%	90.7%	
Desv. Estándar	5.23%	3.81%	4.99%	7.90%	7.17%	9.64%	

HERRAMIENTA PARA ANOTACIONES AUTOMÁTICAS

CREACIÓN DEL ALGORITMO DE APRENDIZAJE SUPERVISADO

CARGA SEÑALES A EMPLEAR

SELECCIÓN CARACTERÍSTICAS A EXTRAER

CREACIÓN DEL ALGORITMO CLASIFICADOR

APARTADO DE ANOTACIONES AUTOMÁTICAS

CARGA DE LA SEÑAL DE INTERÉS

VISUALIZACIÓN DEL REGISTRO

GUARDADO DEL SEGMENTO DE INTERÉS

- CONCLUSIONES

CONCLUSIONES

- 1. El clasificador con el mejor desempeño fue la máquina de vectores de soporte con características en tiempo continuo y kernel gaussiano, obteniendo un promedio de exactitud del 96.7% y una desviación estándar de los datos de 3.81%
- 2. El uso de características de Wavelet demuestra el intercambio entre exactitud y velocidad: no presentan los mejores resultados pero se extraen con menor tiempo.
- 3. Se extendió la capacidad de la herramienta previa, contando con hasta cuatro clases, la posibilidad de visualizar las señales y los resultados de los algoritmos de forma personalizable.
- 4. Se realizó una primera validación con los doctores de HUMANA para la funcionalidad del nuevo segmento generado para la herramienta.

- RECOMENDACIONES

RECOMENDACIONES

- 1. Obtener una mayor cantidad de datos etiquetados por médico, con señales provenientes directamente de HUMANA.
- 2. Validar el etiquetado de la morfología por medio de aprendizaje automático no supervisado con los especialistas de HUMANA.
- 3. Integrar la nueva herramienta de bases de datos con la aplicación resultante de este trabajo.
- 4. Incluir más información de utilidad para los médicos dentro de los archivos generados.

- 1. Shabir, O. (2019). ¿Qué podemos aprender de EEG del paciente con epilepsia?. Extraído de: https://www.news-medical.net/health/What-Can-We-Learn-from-EEGs-of-Patients-with-Epilepsy-(Spanish).aspx. Accedido: 28-12-2021.
- 2. Mayo Foundation. (2021). *Epilepsy*. Mayo Clinic. Extraído de: https://www.mayoclinic.org/diseases-conditions/epilepsy/diagnosis-treatment/drc-20350098. Accedido: 15-12-2021.
- 3. Makati Medical Center. (2020). *What Does It Mean to Have Epilepsy?*. Extraído de: https://www.makatimed.net.ph/news-and-exhibits/news/what-does-it-mean-to-have-epilepsy. Accedido: 29-12-2021.
- 4. HUMANA. (2015). *Epilepsia*. Extraído de: https://humanagt.org/epilepsia/. Accedido: 02-05-2021.
- 5. Mayo Foundation. (2021). https://www.mayoclinic.org/es-es/tests-procedures/eeg/about/pac-20393875. Accedido: 30-12-2021.

- 6. Fármaco Salud. (2018). *Nueva herramienta para el diagnóstico del dolor neuropático localizado*. Extraído de: https://farmacosalud.com/presentada-diagnostico-tool-una-nueva-herramienta-para-el-diagnostico-del-dolor-neuropatico-localizado/. Accedido: 29-12-2021.
- 7. Blanco, et al. (1996). Time-frecuency analysis of electroencephalogram series. II. Gabor and wavelet transforms. Physical ReviewE, Vol 54, No. 6, páginas 6661-6672
- 8. Stanford Online. (2013). *Digital Signal Processing*. Extraído de: https://online.stanford.edu/courses/ee264-digital-signal-processing. Accedido: 28-12-2021.
- 9. Signals IoT. (2018). *La diferencia entre Inteligencia Artificial, Aprendizaje Automático y Aprendizaje Profundo*. Extraído de: https://signalsiot.com/la-diferencia-entre-inteligencia-artificial-aprendizaje-automatico-y-aprendizaje-profundo/. Accedido: 17-12-2021.
- 10. Darlington, K. (2017). *La era de la inteligencia artificial (IA): Parte 2- Aprendizaje áutomático*. Extraído de: https://www.bbvaopenmind.com/tecnologia/inteligencia-artificial/la-era-de-la-inteligencia-artificial-ia-parte-2-aprendizaje-automatico/. Accedido: 23-12-2021.

- 11. Gonzáles, S. (2014). *Detección de Anomalías Cardíacas con Aprendizaje Automático (Machine Learning*). Extraído de: http://samuelabad1991.blogspot.com/2014/02/analisis-con-maquinas-de-vectores.html. Accedido: 02-01-2022.
- 12. Teach Engineering. (2018). *Filtering: Extracting What We Want From What We Have*. Extraído de: https://www.teachengineering.org/lessons/view/csm_filtering_lesson01. Accedido: 28-12-2021.
- 13. González J. (2014). *Filtrado Básico de Señales Biomédicas*. Extraído de: https://www.researchgate.net/publication/271273652_Filtrado_Basico_de_Senales_Biomedicas. Accedido: 25-05-2021.
- 14. Kirkland, E. (2019). *Increasing Kaggle Revenue: Analyzing user data to recommend the best new product*. https://towardsdatascience.com/increasing-kaggle-revenue-analyzing-user-data-to-recommend-the-best-new-product-f93fddbb4e0f. Accedido: 29-12-2021.

- 15. Quichimbo, N. (2018). *Estadística Descriptiva*. Extraído de: https://www.oas.org/ext/es/desarrollo/recursos-educacion-docente/Planes-de-Clase/Detalles/ArtMID/2250/ArticleID/663/-Estad-stica-Descriptiva. Accedido: 04-01-2022.
- 16. Azteca Noticias. (2019). *Machine learning, la herramienta predictiva de hoy*. Extraído de: https://www.tvazteca.com/aztecanoticias/salud-educacion-y-bienestar/ciencia-y-salud/notas/machine-learning-la-herramienta-predictiva-de-hoy. Accedido: 02-01-2022.
- 17. Workana. (2020). ¿Qué es User Interface (UI)?. Extraído de: https://i.workana.com/glosario/que-es-user-interface-ui/. Accedido: 02-01-2022.
- 18. Farias, A. (2020). *Data Mining and Machine Learning in Earth Observation An Application for Tracking Historical Algal Blooms*. Extraído de: https://www.researchgate.net/figure/An-example-of-clustering_fig1_343212147. Accedido: 04-01-2022.