Guided Tour of Machine Learning in Finance

Week 3: Unsupervised Learning

3-1-5-Autoencoder

Igor Halperin

NYU Tandon School of Engineering, 2017

Unsupervised learning diagram: Autoencoder

Autoencoder: replace Y with X!

PCA as a dimension reduction method

We had a linear transform (linear encoder) of the data $\mathbf{Z} = \mathbf{X}\mathbf{V}$ parametrized by a $p \times k$ orthogonal matrix \mathbf{V} with $\mathbf{V}\mathbf{V}^T = 1$

A decoded signal (inverse transform) is obtained as $\hat{\mathbf{X}} = \mathbf{Z}\mathbf{V}^T$

Unsupervised learning diagram: Autoencoder

Autoencoder:

Neural Encoder

• A Neural Encoder is composed of layers of artificial neurons (perceptrons), with a final layer providing a low-dimensional representation of data

- For linear activation functions in all layers, this is equivalent to a single linear layer, which is equivalent to the Linear Encoder of the PCA
- If we use non-linear activations, then the depth of the network matters.
 For complex data, many layers might be needed to build a good internal representation.

Neural Encoder-Decoder

• A Neural Encoder/Decoder pair implements an Autoencoder:

- If the inner-most layer has only two neurons, they activation can be plotted for visualization of data with the autoencoder.
- A Stacked (multi-level) autoencoder may have layers with gradually decreasing number of neurons per layer
- Tied weights in the Encoder and Decoder are often used in practice

Visualizing data with autoencoder

Autoencoder provides a way to visualize a high-dimensional input vector by a non-linear projection onto a 2D space of neuron activations for the inner-most layer with 2 neurons:

Autoencoder is trained by minimizing the reconstruction error between input state \mathbf{X}_t and reconstructed state \mathbf{X}_t

Control question

Select all correct answers

- 1. The PCA implements a Linear Encoder that converts correlated inputs $\bf X$ into uncorrelated features $\bf Z$ by a linear transform $\bf Z = \bf X \bf V$
- 2. If the orthogonal matrix V has dimension $p \times p$, i.e. it keeps all eigenvectors of correlation matrix of X, then Z preserves the total variation of X.
- 3. When the data is noisy or non-stationary, ${f Z}$ can have a higher variance than ${f X}$.
- 4. The PCA is a probabilistic method that enables simulating from data.

Correct answer: 1, 2