Parking Slot Sensor

PROJECT IIOTCA

CHIS HORIA & BADILA TIMOTEI GR. 1.1 GR. THURSDAY 16:00

Project Idea & Main Features

We created a "Parking Slot Sensor" using a web camera[5], which detects what parking slot is free.

Using our code and our camera, this sensor recognise letters using Al Identification.

If the sensor recognises the letter, it shows a notification that this parking slot is empty. Example: "A3 parking slot is empty."

The final example/result is a notification, using a cloud database, with a list with all the empty parking slots.

"Empty parking slots: A3, A5, B2, B4, B5 are empty."

Code

System architecture

Connecting our sensor to Firebase cloud database

```
config = {
    'apiKey': 'AIzaSyAbXlaAYcsovACZIAygJEo9nGEue3d4Hyw',
    'authDomain': 'parking-iiotca.firebase.com',
    'databaseURL': 'https://parking-iiotca-default-rtdb.firebaseio.com/',
    'storageBucket': 'parking-iiotca.appspot.com'
}
firebase = pyrebase.initialize_app(config)
db = firebase.database()
```

Initialising the web camera

```
# initialize camera
print('Initializing camera')
camera=cv2.VideoCapture(1)

# initialize text-detector
print('Initializing cv algorithms')
reader = easyocr.Reader(['en'], gpu = False)

park_score = {}
frames_running = 0
```

The whole process

```
while True:
       ,image=camera.read()
     cv2.imshow('Text detection', image)
      frames_running = frames_running + 1
      if cv2.waitKey(2):
           results = reader.readtext(image)
           # get parking codes
           park_codes = [x[1] for x in results]
           # divide mixed parking codes
           park_codes_corr = []
for code in park_codes:
                 code.replace(' ','')
code.replace('5','5')
codes = re.split(r'[|I() l\\/]', code)
park_codes_corr = park_codes_corr + codes
           # keep only valid parking codes
park_codes_checked = []
            for code in park_codes_corr:
    if len(code) == 2 and code[0].isalpha() and code[1].isdigit():
        park_codes_checked.append(code)
           print(park_codes)
           print(park_codes_corr)
print(park_codes_checked)
            # add free score to parking slot
           for code in park_codes_checked:
    if code not in park_score.keys():
        park_score[code] = 1
                       park_score[code] = park_score[code] + 1
            # update firebase <mark>database</mark>
                 'Free parking spaces' : park_codes_checked,
'Frames free' : park_score,
'Frames on' : frames_running
           db.update(data)
           print('Sent to Firebase')
      if keyboard.is_pressed('a'):
```

What is our camera seeing?

Our Firebase database

The app

Technology Used

We wrote our program and compiled it in Spider by Anaconda using Python language. To be able to use Python on Raspberry Pi[1] we installed and used OpenCV. As the sensor we used a Logitech C920 1080p Web Camera.

We connect our database with Firebase Cloud[2] which we use as our "notification center". We also created an app[4] where you can see which parking slot is empty and also a statistic with every parking slot how many times it was empty.

Future Work

In the future we can create a process where the Al can identify where is the car and which parking empty parking slot is closer.

Our GitHub Repository

https://github.com/Horiutu/ProiectIIOTCA

References

- [1] https://shorturl.at/ivwD2
- [2] https://shorturl.at/joQV4
- [3] https://shorturl.at/gFMOP
- [4] https://shorturl.at/nvOV0
- [5] https://shorturl.at/byAT3

Thank You!