Europäisches Patentamt **European Patent Office**

Office européen des brevets

EP 0 997 182 A1

(12)

FUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 03.05.2000 Bulletin 2000/18
- (21) Application number: 98919641.5
- (22) Date of filing: 18.05.1998

(51) Int. Cl.7: B01D 71/68

(11)

- (86) International application number: PCT/JP98/02181
- (87) International publication number: WO 98/52683 (26.11.1998 Gazette 1998/47)
- (84) Designated Contracting States: AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
- (30) Priority: 19.05.1997 JP 14296397 28.04.1998 JP 13259998
- (71) Applicant: ASAHI MEDICAL Co., Ltd. Tokyo 101-8482 (JP)
- (72) Inventors:
 - FUKE, Masava Nobeoka-shi Miyazaki 882-0834 (JP)

- KUROKI, Toshlaki
- Nobeoka-shi Miyazaki 882-0007 (JP)
- · TANAKA, Tsuyoshi Nobeoka-shi Miyazaki 882-0803 (JP)
- (74) Representative: von Kreisler, Alek, Dipl.-Chem, et al Patentanwälte. von Kreisler-Selting-Werner. Bahnhofsvorpiatz 1 (Delchmannhaus) 50667 Köln (DE)
- (54)POLYSULFONE-BASE HOLLOW-FIBER HEMOCATHARTIC MEMBRANE AND PROCESSES FOR THE PRODUCTION THEREOF
- (57)Purpose

Provided are a polysulfone type blood-purifying membrane which is improved in blood compatibility and separation properties and less in polyvinyl pyrrolidone eluting in the internal surface of the hollow fiber membrane, as well as a process for producing the same.

Constitution

- · A polysulfone type hollow fiber membrane for purlfying blood in which membrane a selective separation layer exists on the internal surface side of the hollow fiber membrane and which membrane contains polyvinyl pyrrolidone, wherein the polyvinyl pyrrolidone is contained in a proportion of 1 to 10% by weight, 5 to 50% of said polyvinyl pyrrolidone is soluble in water, and the concentration of the polyvinyl pyrrolidone on the internal surface of the hollow fiber membrane is in the range of 30% to 45%;
- A process for producing a polysulfone type hollowfiber membrane for purifying blood, which comprises subjecting a polymer solution comprising a polysulfone type polymer and polyvinyl pyrrolidone to extrusion at a viscosity of 1.500 to 6.000 mPa . s. and to spinning at a draft ratio of 1.1 to 1.9 and at a linear extrusion velocity of not more than 90 m/min.;

A process for producing a polysulfone type hollow fiber membrane for purifying blood, which comprises spinning a hollow fiber membrane using a polymer solution which comprises a polysulfone type polymer and polyvinyl pyrrolidone and thereafter insolubilizing a portion of the polyvlnyl pyrro-Ildone, if necessary, prior to the insolubilization of a portion of the polyvinyl pyrrolidone, it is extracted and removed by washing with a solvent.

FIG. 1A

Description

TECHNICAL FIELD

[0001] This invention relates to a polysulfone type hollow fiber membrane for purifying blood and a process for producing the same. More particularly, it relates to a polysulfone type blood-purifying membrane which is improved in blood compatibility and separation properties and a process for producing the same.

BACKGROUND ART

[0002] In recent years, ultrapurification methods, reverse osmosis methods, gas separation methods and the like which are separation techniques using a selectively permeable separation membrane have been put into practice in various fields, and separation membranes made from a material suitable to each of said various uses have been placed on the market. As a material for the selective, permeable separation membrane, there are used polymers of cellulose type, cellulose acetale type, polymethy expressively profinitely tope, polymyind alcohol type, polymethy methacytale type, polysulfone type, polygelorin type and the like. Among them, polysulfone type polymers are excellent in physicochemical properties, such as thermal resistance, acid resistance, alkali resistance, oxidation resistance and the like, and therefore, attention has been paid thereto as recent medical and industrial separation membrane materials.

[0003] However, the polysulfone type polymers are hydrophobic malerials, so that selectively permeable separation membranes made therefrom are inferior in water-vettability to selective, permeable separation membranes made from hydrophilic polymers. Therefore, such disadvantages have been pointed out that when the polysulfone type polymers are applied to medical uses, adsorption of plasma protein is easy to be caused, it is difficult for bubbles to go away, and hence, the bubbles left in the membranes would migrate into blood, activate platelets and cause coagulation of blood. [0004]
Therefore, an examination has been made for imparting hydrophilicity to a selective, permeable separation membrane made from a polysulfone type polymer to enhance its water-vettability. As one of the methods, there has been proposed a selectively permeable separation membrane prepared by incorporating a hydrophilic polymer into a polysulfone type polymer and a process for producing the same. However, it has such problems that when the amount of the hydrophilic polymer contained is large, the amount of the hydrophilic polymer contained is large, the amount of the hydrophilic polymer evited from the produced membrane becomes large.

[0005] JP-A-61-238,306 and JP-A-63-97,686 disclose a method for producing a polysulfone type separation membrane using, as a membrane-production polymer solution, a system formed by adding a polysulfone type polymer, a hydrophilic polymer and an additive which is a non-solvent or swelling agent for the polysulfone type polymer. However, they are silent to a method of decreasing the amount of the hydrophilic polymer eluted. In addition, JP-A-63-97,205, JP-A-63-97,634 and JP-A-43-07,038 (corresponding to European Patent Publication No. 509 693 disclose a method in which the polysulfone type separation membrane prepared by the above method is subjected to radiation treatment and/or thermal treatment to insolubilize the hydrophilic polymer, thereby decreasing the amount of the hydrophilic polymer eluted. However, since the hydrophilic polymer flexing the polysulfone type separation membrane is insolubilized by this cross-linking, the blood compatibility horomes deficienced.

(2006) JP-A-6-165,926 discloses a method for producing a hollow fiber membrane by subjecting a polysulfone type hollow fiber membrane, comprising a polyglycol and a vinylgyrrolidone type polymer, to water-washing and hollow fiber membrane and then to treatment with a solution having a poor solvent action on the above polysulfone type polymer. However, this method is a step for adjusting the amount of the PVP existing on the internal surface side of the hollow fiber membrane so as to become 1.1 times the existing ratio and is not suitable for the purpose of extracting the excess PVP.

[0007] With respect to the draft ratio in spinning, in JP-B-5-64,373 (corresponding to European Patent Publication No. 0 188783), a method is disclosed for producing a blood-treating, hollow fiber membrane which has been prepared by spinning a low-viscosity polymer solution consisting of a hydrophoic polymer, a hydrophic polymer and a common solvent for them, and which contains the hydrophilic polymer in a proportion of 1 to 10% by weight and has a water-absorbing capacity of 3 to 10%, and in this publication, it is stated to be preferable that the velocity of extrusion of the spinning composition from the spinnerer and the speed of taking off the resulting fibers are the same as each other, namely the draft ratio is 1. However, when the draft ratio is actually 1, it is difficult to increase the spinning velocity. When the amount of the polymer solution extruded is increased for increasing the spinning velocity, there are caused such problems that the pressure loss at the spinnerer becomes large; the linear velocity of extrusion of the spinning polymer solution is increased; extrusion unevenness of the spinning polymer solution is increased; extrusion unevenness of the spinning polymer solution is casily caused; spinning placement is increased; extrusion of the spinning polymer solution is increased; extrusion the spinning polymer is the contraction of the properties of the spinning polymer solution is easily caused; spinning becomes instate the membrane structures are discordered; and the fike. In addition, in JP-A-6-165,826, it is proposed that the draft ratio is usually in the range of 2 to 5 because when the draft ratio is extremely increased or conversely decreased, the structure becomes institute.

in which the internal surface of the hollow fiber membrane has beeen torn, thereby causing albumin, a useful protein, to leak out easily.

[0008] Recently, low-molecular weight proteins such as β-2-microglobulin and the like have been mentioned as causes of dialysis complication, and adulysis membrane having high performance, so that it can remove them from the blood with good efficiency is desired. In the above-mentioned prior art, no sufficient examination has been made on fractionating properties and the examination has not been necessarily satisfactory. That is to say, this is because when the permeability of a membrane is enhanced for the purpose of improving the removal of the low-molecular weight proteins, the leak of useful proteins such as albumin and the like becomes an issue.

10 DISCLOSURE OF INVENTION

[0009] This invention aims at solving the issues of the prior art; improving blood compatibility; providing a polysulfone type blood-purifying membrane whose separation characteristics have been improved; and providing a process for producing the same.

15 0019 The present inventors have diligently made an examination for achieving the above-mentioned purposes and have consequently found that a clean, hollow fiber membrane which is low in the amount of polyvinyl pyrrolidone (referred to hereinafter as PVP) eluted from the internal surface and excellent in blood compatibility, can be provided by water-insolubilizing a portion of the PVP of a PVP-containing polysulfines type hollow fiber membrane for purifying blood and adjusting the PVP concentration on the internal surface of the hollow fiber membrane to an appropriate value.
20 Moreover, they have found that a clean, hollow fiber membrane which is lower in the amount of PVP eluted from the internal surface can be provided by extracting the PVP with an adequate solvent, threby washing the hollow fiber membrane. In addition, they have found that by subjecting a polymer solution having an adequate viscosity to spinning at an appropriate draft ratio, there can be provided a polysulfione type hollow fiber membrane for purifying blood which membrane has sharp fractionating properties and in which membrane the thickness of selective separation layer having as an effect of substantially screening the eluting molecules in the membrane, can be appropriately controlled; simultaneously the internal surface of the hollow fiber membrane has not the removal of unnecessary matterias and recovery of useful materials can be conducted with good efficiency because the internal surface of the hollow fiber membrane has not not structure.

[0011] That is to say, this invention is a polysulfone type hollow filter membrane for purifying blood in which membrane brane a selective separation layer exists on the internal surface side of the hollow filter membrane and which membrane contains polyviniy pyrrolidone, wherein the polyviniy pyrrolidone is contained in a proportion of 1 to 10% by weight, 5% to 50% by weight of the polyviniy pyrrolidone is soluble in water, and the concentration of the polyviniy pyrrolidone on the internal surface is in the range of 30% to 45%.

[0012] This invention is also a process for producing a polysultone type hollow (fiber membrane for purifying blood, as which comprises subjecting a polymer solution comprising 15 to 20% by weight of a polysuitone type polymer in which solution the weight ratio of polyvinyl pyrrolidone to the polysuitone type polymer is from 0.25 to 0.5, to extrusion at a viscosity of 1,500 to 6,000 mPa *s, and to spinning at a draft ratio of 1.1 to 1.9 and at a linear extrusion velocity of not more than 90 m/min.

[0013] Moreover, this Invention is a process for producing a polysulfione type hollow fiber membrane for purifying oblood, which comprises spinning a hollow fiber membranes using a polymer solution which comprises 15 to 20% by weight of a polysulfione polymer in which solution the weight ratio of polyvinyl pyrrolidone to the polysulfione type objection of the polysulfione polymer is from 0.25 to 0.5, and thereafter insolubilizing a portion of the polyvinyl pyrrolidone in the hollow fiber membrane by a physiochemical method.

45 BRIEF DESCRIPTION OF DRAWINGS

[0014]

Figs. 1A and 1B are images obtained by observing the internal surface of the hollow fiber membrane of Example 1 through a scanning electron microscope (Fig. 1Az at magnification of 1,0000, Fig. 1Bz at magnification of 3,0000). It is observed that the internal surface is smooth and fibrils are arranged and assembled in the hollow fiber axial direction.

Figs. 2A and 2B are images obtained by observing the internal surface of the hollow fiber membrane of Comparative Example 3 through a scanning electron microscope (Fig. 2A: at magnification of 10,000, Fig. 2B: at magnification of 30,000). On the internal surface, there are interstices of about 2 µm that seem to have been torn.

Fig. 3A is an image obtained by observing the internal surface of the hollow fiber membrane of Comparative Example 4 through a scanning electron microscope at a magnification of 1,000. Structure unevenness is seen which seems to result from extrusion unevenness of the polymer solution. The portion where the fibrilis exist roughly is referred to as a, the portion where the fibrils exist densely is referred to as b, and images obtained by magnifying them 1,500 times are shown in Figs. 3B and 3C, respectively.

BEST MODE FOR CARRYING OUT THE INVENTION

[0015] The polysulfone type polymer referred to in this invention is a generic name for high-molecular weight compounds having sulfone bonds and is not particularly limited; however, as examples thereof, polysulfone type polymers having recurring units represented by:

Formula 1

10

15

20 Or

25

Formula 2

- 35 are widely put on the market, and they are preferably used because of easy availability. Polysulfone resins having the former structure are put on the market as a trademark "UDEL" from AMOCO PERFORMANCE PRODUCTS COMPAN and a trademark "Ultrason" from BASF, and several kinds exist depending upon the degree of polymerization and the like.
 - [0016] Moreover, the PVP of this invention is a water-soluble, high-molecular weight compound obtained by sub[seting N-vinyl pyrrolidone to vinyl-polymerization and is put on the market as a trademark "Plasdone" from ISP COMPANY and as a trademark "Kollidon" from BASF, and each of them includes polyvinyl pyrrolidone having several
 molecular weights.
 - [0017] When the PVP content of the hollow fiber membrane is low, the PVP concentration on the internal surface of the hollow fiber membrane which contacts with bodd in on thoreased and the hydrophilicity of the membrane of the hollow fiber membrane which contacts with blood, it easily causes coagulation of blood. Furthermore, as stated hereinfaire, to increase the PVP content of the hollow fiber membrane, it is sufficient to make the PVP concentration high in the polymer solution is used in the sprinning; however, the viscosity of the polymer solution is also increased and the sprinning becomes impossible. Therefore, in this invention, PVP is contained in the range of 1 to 10% by weight in the hollow fiber membrane. The PVP content is preferably in a range of 2.5 to 9%, by weight.
- 50 [0018] The PVP content of the hollow fiber membrane can be easily calculated from elementary analysis values of nitrogen and sulfur. It can be also easily determined by analyzing the hollow fiber membrane by a pyrolysis gas chromatography and analyzing the peak due to PVP.
 - [0019] PVP is a polymer easily dissolved in water and, in general, PVP is easily eluted with water or blood from a hollow fiber membrane obtained by subjecting a PVP-octuating polysulfone type polymer solution to spinning in a known manner. It is known that these PVPs are insolubilized by, for example, cross-inking by irrelation. However, when the PVP contained is completely insolubilized, the elution from the hollow fiber membrane is completely stopped, but the effect of making the membrane surface hydrophilic is also weakened. Therefore, in this invention, only a portion of PVP is insolubilized by cross-inking so that the amount of water-soluble PVP becomes 5 to 50% of the total amount.

of PVP contained in the hollow fiber membrane. In this range, the elution from the hollow fiber membrane is inhibited and the effect of making the membrane surface hydrophilic is also sufficiently maintained.

[0020] PVP is cross-linked by physicochemical means. The physicochemical method referred to herein means radiation, heat or the like, and the radiation referred to here includes *eral*, *Pi-ray*, *ry-ray*, *Xray*, ultraviolet *ray*, electron beam and the like. When cross-linking with a radiation is conducted, it is preferable to maintain the entire membrane in a sufficiently wet state and it is better to maintain the same in at least the saturated water content. The saturated water content state of the hollow fiber membrane in the irradiation with a radiation is the state in which the blood-purifying membrane would be used, namely as realized most simply by filling a module with water, after modularization, and immersing the hollow fiber membrane in water. However, it can also be achieved by filling, after the modularization, only to the internal side, namely the blood side, of the hollow fiber membrane with water or conversely only the external side, namely the so-called dialysate side, of the hollow fiber membrane with water. Alternatively, it is sufficient that both sides or one side of the hollow fiber membrane is sufficient, the water is thereafter discharged; the water adsorbed to the surface of the hollow fiber membrane is sufficient, the water-containing gel state of PVP in the membrane does not change and the hollow fiber membrane is in a state substantially equivalent to being immersed in membrane state and the control of the degree of ores-linking becomes impossible.

10021] In order to bring about the state of partial insolubilization referred to in this invention, it is necessary to control the degree of cross-linking is controlled by allowing a cross-linking controlled by allowing a cross-linking inhibitor to co-exist in an adequate amount during the cross-linking. As a cross-linking inhibitor, there are used, for example, giverin, propylene glycol, an aqueous solution in which sodium disuffile and sodium carbonate are dis-solved, and the like. However, these are not required to be used alone and may be used in admixture of two or more. For example, hollow fiber membranes are incorporated into a module, filled with an aqueous solution in which 100 to 1,000 ppm of sodium disuffile and 50 to 500 ppm sodium carbonate are dissolved, and tradiated with ryays. The dose of y-trays is set appropriately taking the objective degree of cross-linking into consideration; however, a range of 10 kGy to 100 kGy to referred.

[0022] The amount of the water-soluble PVP referred to in this invention is the amount of the PVP in the membrane which has not been insolubilized by cross-linking and is determined as follows. That is to say, the hollow fiber membrane is completely dissolved in N-methy-2-pyrrolidone. Subsequently, water is added to this polymer solution to precipitate the polysulfone type polymer. After allowing it to stand, the amount of the PVP in the resulting supernatant is determined by a liquid rhormatograph.

[0023] The important factor for the blood compatibility of the hollow fiber membrane is the hydrophilicity of the membrane surface which contacts with blood, and in the PVP-containing polysulfion by the hollow fiber membrane, the PVP concentration on the internal surface of the membrane is important. When the surface PVP concentration is too low, the membrane surface exhibits hydrophobicity and tends to adsorb plasma protein, and coagulation of blood is satily caused. That is to say, the blood compatibility of the membrane becomes deteriorated. Conversely, when the surface PVP concentration is too high, the amount of PVP eutled with blood or the like is increased to give a result undestrable for the object and use of this invention. Accordingly, the surface PVP concentration in this invention is in the range of 30% to 45%, berferably 33% to 40%.

[0024] The PVP concentration on the internal surface of the hollow fiber membrane is determined by an X-ray electron spectroscopy for chemical analysis (ESCA). That is to say, the ESCA measurement of the internal surface of hollow fiber membrane is as follows: Samples are arranged on a double-sided tape, then cut in the fiber axial direction ye a cutter, and opened so that the internal side of the hollow fiber membrane becomes the surface, after which the opened samples are arranged and then subjected to measurement in a conventional manner. That is, from the integrated intensities of C1s, O1s, N1s and S2p spectra, the surface concentration (A) of nitrogen and the surface concentration (B) of sulfur are determined using the relative sensitivity factor appendant to apparatus, and the surface PVP concentration is calculated from the equation:

Surface PVP conc. = $A \times 100/(A \times 111 + B \times 442)$.

90 0025] In this invention, by insolubilizing a portion of the PVP by cross-linking as mentioned above, elution from the hollow fiber membrane is inhibited. This invention is characterized particularly in that the elution of PVP in the interest side of the hollow fiber membrane is inhibited. In more preferable embodiments of this invention, the amount of eluted polyvinyl pyrrolicione, when the internal side of the hollow fiber membrane is subjected to a cyclic extraction with 40% aqueous alcohol solution, is not more than 0.5 mg per m² of membrane area. Specifically, when the hollow fiber membrane area. Specifically when the hollow fiber membrane area. Specifically when the hollow fiber membrane area is 37°C for 4 hours, the amount of PVP eluted is not more than 0.5 mg per m² of membrane area. As an extraction medium, blood at 37°C is suitable; however, since the amount of the hydrophilic, high polymer is too slight nat the amount of inhibiting materials is large, the quantitative determination of the extractions.

PVP is difficult. In addition, as an extracting medium, water is also weak in extraction capacity and hence the quantitative determination of the PVP extracted is difficult. A 40% aqueous ethanol solution is suitable as an extracting medium.

[0026] The polysulfone type hollow fiber membrane for purifying blood of this invention is prepared by a dry and wet type spinning method as stated hereinafter. In the membrane just after the spinning, it is inferred that there are present (a) PVP which exists among polysulfione type polymer particles and is easily removed by a treatment such as water-washing or not water-washing, (b) PVP which enters weakly the polysulfone type polymer particles and is hardly removed by a treatment such as water-washing but can be eluted, and (c) PVP which enters the polysulfone type polymer particles and is not removed by extraction. By the conventional technique, the (b) type PVP is not sufficiently removed even though the (a) type PVP could be washed off, and therefore, PVP which has not been insolubilized is considered to be gradually eluted from the membrane under use. In this invention, in order to reduce the amount of PVP eluted from the membrane, a method is proposed by which the (b) type PVP is washed off as much as possible.

[0027] In this invention, the first washing method for extracting and removing PVP is a method for washing the polysulfone type hollow fiber membrane which has been subjected to a membrane-production process, with a mixed 15 solvent of a good solvent and a poor solvent for the polysulfone type polymer. As a matter of course, this mixed solvent is such that the mixing ratio thereof is set in such a range that the polysulfone type polymer is not dissolved therein and the PVP which has not been insolubilized is dissolved therein. It is considered that such a mixed solvent can purify the interior of the membrane by drawing PVP out of the polysulfone type polymer particles and the interior of the dense layers by causing the polysulfone type polymer particles to swell, softening the polysulfone type polymers in the membrane 20 surface layer, enhancing the flow-diffusing properties of PVP, or the like, and can, as a result, greatly inhibit the elution. [0028] The good solvent for the polysulfone type polymer to be used in the first washing method can be exemplified by dimethylacetamide (referred to hereinafter as DMAC), N-methyl-2-pyrrolidone, dimethyl sulfoxide (referred to hereinafter as DMSO), dimethylformamide and the like, and these are used alone or in admixture. Among them, DMAC and/or DMSO is preferably used. Moreover, the poor solvent for the polysulfone type polymer can be exemplified by 25 water, isopropyl alcohol, ethanol, propylpropylene glycol, tetraethylene glycol and the like and among them, water is preferably used. The mixing ratio between the good solvent and the poor solvent for the polysulfone type polymer is not definitively determined because the conditions are varied depending upon the kinds of the solvents and the treating temperature; however, it is preferable to use the good solvent for the polysulfone type polymer in a proportion of 30 to 95% by weight. There are used, for example, 30 to 60% by weight aqueous DMAC solution, 30 to 60% by weight aque-30 ous N-methylpyrrolidone solution, 50 to 95% by weight aqueous DMSO solution and the like. Moreover, each of the good solvent and the poor solvent for the polysulfone type polymer need not always be used alone, and a mixed solution

[0029] The treating temperature may be any temperature; however, when an aqueous solution of the good solvent for the polysultone type polymer is used, a treating temperature not higher than the boiling point of water is preferable. The operation arrange of 10 to 98°C is preferable; a range of 30 to 98°C is more preferable and a range of 50 to 95°C is most desirable.

of a mixture of at least two good solvents with a mixture of at least two poor solvents may be used.

[0030] In this invention, the second washing method is a method of washing the polysulfone type holiow fiber membrane subjected to a membrane-production process with an alcoholic solvent. The polysulfone type polymer particles constituting the membrane are swollen, whereby the weakly incorporated PVP becomes easily released and simultaneously the diffusion velocity of PVP becomes large. Therefore, it is inferred that the PVP difficult to remove by the treatment of water-washing or hot water-washing or hot water-vashing or hot subject to the subject of the water vashing the subject of the water vashing the programment of the programment of the water vashing the water vashing the programment of the water vashing the water vashi

(5 [0031] The alcoholic solvent which can be used in this invention is a good solvent for PVP, and there are mentioned all those having a swelling action on the polysulfone type polymers; however, from the viewpoint of simplicity of operation and apparatus, alcoholic solvents having a boiling point or decomposition point of not less than 130°C are preferable. Among them, glycerin is preferably used. The smaller the water content of the alcoholic solvent, the better, and the water content is preferably 50°s or less. more overlearbly 0.5°s or less.

2 [0032] In both the first and second washing methods, it is not indispensable to previously remove a part of the easily removable PVP and the solvent for the polymer solution by water-washing or hot water-washing the polysulfone type hollow fiber membrane prior to the above washing methods. Rather, when the solvent for the polymer solution remains, such an effect can be expected that the membrane becomes a swollen state and the extraction of the PVP entered into the interstices among the polysulfone polymers is thereby accelerated.

55 [0033] The specific procedure for the first and second washing methods can be illustrated by the following procedures:

(1) Heating at any temperature the membrane as impregnated with the washing solution. (2) Immersing the membrane in the washing solution adjusted to the preset temperature. (3) Subjecting the membrane to a shower of the washing

solution adjusted to the preset temperature. (4) Allowing the membrane to travel in the washing solution adjusted to the preset temperature. By any of these methods, the washing is possible and in brief, it is sufficient that the polysulfone type hollow fiber membrane subjected to a membrane-production process is sufficiently contacted with the washing solution adjusted to the preset temperature.

- 5 [0034] The treating time is varied depending upon the treatment method, and in the methods (1) to (3) which are batchwise operations, it is preferably not less than 10 minutes. Moreover, in the method (4), which is a continuous operation, it is necessary that the residence time be not less than 15 seconds, and a residence time of not less than 20 seconds is more preferable. As a matter of course, it is preferable to wash off the solvent used by water-weshing and/or hot water-weshing or the like after the treatment.
- 10 [0035] Observing the internal surface of the polysulfone type hollow fiber membrane for purifying blood of this invention by a scanning electron microscope, it is seen that such a structure is formed that the fibrous polysulfone type polymers (called fibrils) are arranged and brought together in the hollow fiber axial direction and interstices exist sporadically between the fibrils.
- [0038] As stated hereinafter, under some conditions for membrane-production, the fibrils are separated by tearing and the interstces between the fibrils become too large. The hollow fiber membrane having such an internal surface losss its surface smoothness, whereby its blood compatibility becomes deteriorated and simultaneously the removability of solute molecules is also adversely affected. Therefore, it is preferable that the hollow fiber membrane of this invention has no tom interstices of 0.8 µm or more on its internal surface.
- 10037] The screening of the solute molecules is determined depending upon the sizes of the solute molecules and at the sizes of the pores of the membrane. That is to say, solute molecules smaller than the pore diameter of the membrane cannot permeate. By this principle, screening of solute molecules larger than the pore diameter of a membrane annot permeate. By this principle, screening of solute molecules is caused. However, in the case of a membrane whose structure is not uniform in the membrane cross section, the screening is caused in the place where the pore diameter is smallest in the membrane cross section, namely, the selective separation layer referred to in this invention, in general, the membrane pore diameter is small where the polymer portion has a dense structure, so that the selective separation layer referred to in this invention can be distinguished based on the transmission electron microscopic image of the membrane section. That is to say, the proportion occupied by the polymer portion (polymer region percentage) is determined by partitioning the transmission electron microscopic
- image of the membrane section in a constant width and subjecting the same to image analysis. This operation is conordered in the membrane thickness direction from the internal size of the hollow fiber membrane toward the external side
 of the hollow fiber membrane, whereby the distribution of the systemization percentage in the sectional direction of the
 hollow fiber membrane is clarified. Since a pore diameter distribution exists in the membrane wall, in this invention, a
 membrane wall portion in which the systemization percentages fall in a range of not more than 30% from the highest
 systemization percentage obtained when the membrane wall is subjected to image analysis in an image analysis width
 of 10.5 in July in the biblioper of identical the size of the siz
- systemization percentage obtained when the membrane wall is subjected to image analysis in an image analysis width so fl.0.5 to 1.0 µm in the thickness direction is defined as the selective separation layer and the thickness thereof is determined.

 To tractionating properties of the membrane are explained using a multilayer structure model. That is, sup-
- pose a structure in which many layers formed by slicing a membrane in parallel to the membrane surface (accordingly, pose as a membrane surface). The solide molecules are screened in each of the layers and it is 40 considered that a multistage filtration be effected by the membrane as a whole. The average pore diameter is filtrent between one layer and another; however, taking one of the layers, the pore diameters in the layer have a distribution, and hence, not only dose a layer having the ameliest average molecular weight have an effect of screening solutes, but also layers having a somewhat larger average pore diameter can trap larger solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers. In other words, solute molecules which have passed through other layers.
- though the average pore diameter of the layer is somewhat larger. Accordingly, selective separation layers having the average pore diameters from the smallest to somewhat larger, are effective. [0039] For the sharpness of fractionating properties, the thickness of the selective separation layer is important. In the case where the selective separation layer is thin, when it is intended to increase the average pore diameter in order
- the case where the selective separation layer is thin, when it is intended to increase the average pore diameter in order to allow a material to be removed to permeate well, the permeation of abunin which is a useful plasma protein becomes easy. This is interred to be because there is a pore cliameter distribution in a selective separation layer and when the average pore cliameter is increased, the number of pores through which abunin passes becomes large corresponding thereto. When the selective separation layer is thin, it follows that albumin which has once leaked from the portion in which the pore cliameter is large, permeates such a membrane because there is no other selective separation layer for trapping the leaked albumin. Also, when a structure defect is caused in the selective separation layer for trapping the leaked albumin. Also, when a structure defect is caused in the selective separation layer for trapping the leaked albumin, also, when a structure defect is caused in the selective separation layer for trapping the leaked albumin of spinning conditions or the life, a leak of a high molecular weight materials when the selective separation layer is thick, even if the membrane structure is relatively loose, the leak of albumin is little, namely, the molecular weight fractionating properties become sharps.

as the above thickness is large. This is because, since the selective separation layer of the membrane is thick, even if albumin has permeated one layer, it can be trapped in any other layer of the selective separation layer and consequently the probability of albumin permeating the membrane becomes low. However, when the selective separation layer is too thick, the permeation resistance becomes so large that it is necessary in this invention that the thickness of the selective separation layer is 2 µm to 15 µm. There, it is preferably 3 µm to 15 µm. more desirably 5 µm to 10 and 10 µm. There is the preferably 3 µm to 10 µm. There is the preferably 3 µm to 10 µm. There is the preferably 3 µm to 10 µm. There is the preferably 3 µm to 10 µm.

[0040] The position of the selective separation layer may be either the internal side of the hollow fiber membrane or the center portion of the section or both the internal side and the external side of the hollow fiber membrane from the viewpoint of screening effect. However, in general, blood is allowed to flow on the internal side of the hollow fiber membrane, and therefore in order to prevent the protein in the blood, which causes a blocking of the pores in the membrane, from penetrating into the membrane, it is preferable in this invention that the selective separation layer is on the internal side of the hollow fiber membrane.

[0041] In the membrane-production of the polysulfone type hollow fiber membrane for purifying blood in this invention, there can be utilized a dry and wet membrane-production technique which has heredoire been generally. That is to say, lirst of all, a uniform polymer solution is prepared by dissolving a polysulfine type polymer and PVP in a common solvent for the two. As the common solvent in which both the polysulfione type polymer and the PVP are dissolved, there are mentioned various kinds of solvents such as DMAC, DMSO, Phmetlyt-2-profilore, dimethyliformamide, sulfolare, dioxane and the like and a solvent consisting of a liquid mixture of two or more of them. In addition, for controlline the pore diameter, an additive such as water or the like may be added to the polymer solution.

[0042] When the viscosity of the polymer solution is too low, large macro voids come to appear remarkably in the of interior of the membrane. However, in the case of the hollow fiber membrane for purifying blood, the presence of many such macro voids facilitates the occurrence of coagulation of blood during the blood dialysis, so that it is preferable that no macro voids are present in the hollow fiber membrane to be used in the blood dialysis. The macro void referred to here means a space in which the polymer does not exist in the membrane and which has the maximum diameter for less than 5 µm. On the other hand, when the viscosity of the polymer solution becomes too high, the pressure before it the spinners becomes too high and the stable spinning becomes impossible. Accordingly, in this invention, the viscosity of the polymer solution is required to be 1,500 to 6,000 mPa · s, and a range of 2,000 to 4,000 mPa · s is preferred. The viscosity referred to in this invention is a value obtained by subjecting the polymer solution to measurement by a rotary viscometer at the same temperature as the spinneret temperature under the membrane-production conditions.

[0043] The viscosity of the polymer solution depends upon the molecular weight of PVP, the concentrations of polysulfone type polymer and PVP in the polymer solution, the temperature of the polymer solution and the like, and all the factors affect severely the formation of the membrane structure. In this invention, by adequately selecting the staring materials to be used and settling the concentration and temperature conditions, the viscosity of the polymer solution is controlled in the above-memtioned range.

[0044] When the amount of the polysulfone type polymer resin added is too small, the formation of membrane is becomes difficult and the membrane strength becomes weak, and conversely, when the amount is too large, such phenomena as the spinability being poor, the pore diameter becoming too small, and the like are caused; therefore the amount is preferably 15 to 10% by weight. However, it is not essential that the addition amount is in this range, and the amount can be made smaller or larger than this range depending upon the properties of the objective hollow fiber membrane. Moreover, since the membrane properties are also varied by varying the other spinning conditions, it is sufficient to appropriately select the optimum combination.

[0045] The purpose of adding PVP to the polymer solution is to impart hydrophilicity to the membrane by allowing the PVP to remain in the hollow fiber membrane. Accordingly, the molecular weight of the PVP to be used is important. That is, when the molecular weight of the PVP is too small, the PVP is easily eluted from the membrane during the coagulation of the polymer solution and during the washing of the hollow fiber membrane, to tremain in the hollow fiber membrane, to remain in the hollow fiber membrane, it becomes necessary to add a larger amount of PVP to the polymer solution. For this reason, a larger molecular weight is preferred in order to increase the residue of the PVP in the hollow fiber membrane, and the K value defined by the following equation is 88 to 95, prefeably 99 to 94.

50

$$K \text{ value} = \frac{\sqrt{300C \log Z + (C + 1.5C \log Z)^2} + 1.5C \log Z - C}{0.15C + 0.003C^2}$$
 Equation 1

wherein Z is the relative viscosity ratio of a solution of the concentration C and C is a weight/volume % concentration. [C046] The relative amounts between the polysuitone type polymer and PVP in the polymer solution is very important for determining the PVP concentration on the internal surface of the hollow fiber membrane, because on the internal surface of the hollow fiber membrane, sudden coagulation is caused by contact of the liquid in hollow with the polymer solution, so that the ratio of the absolute amounts of the polysuiflore byte polymer and the PVP present on

the coapulated surface is reflected in the internal surface concentration. When the weight ratio of the PVP to the polysultone type polymer in the polymer solution is too small, the surface PVP concentration does not increase. Moreover, when the weight ratio of the PVP to the polysultone type polymer is too large, the strangth of the membrane becomes low, and the amount of the PVP butled out of the membrane becomes impossible to neglect. Therefore, in order to keep a least the necessary strength and adjust the PVP concentration on the internal surface of the hollow fiber to 30% to 40%, it is necessary to adjust the weight ratio of the PVP to the polysultone type polymer in the polymer solution to from 0.25 to 0.5, preferably from 0.3 to 0.48 and more peterably from 0.3 to 3.5 to 4.58.

[0047] In this invention, water or a coagulating solution comprising water as the main component can be used as the liquid in hollow, and it is sufficient to determine its composition and the like depending upon the membrane performance of the objective hollow fiber membrane and, though not determined wholly, in general, a mixed solution of water with the solvent used in the polymer solution is preferably used. For example, 0 to 60% by weight aqueous DMAC solution or the like can be used, and particularly, 0 to 50% by weight aqueous DMAC solution is preferably used.

[0048] The hollow fiber membrane can be prepared by simultaneously extruding into air the above-mentioned polymer solution and the liquid in hollow for coagulating the polymer solution from a tube-in-orifice type double spinning rozzle, allowing the extrudate to travel in a length of air gap portion of 20 to 80 cm, then immersing the same in a coagulating bath comprising water as the main component placed under the spinning nozzle to coagulate the same and thereafter winding up the coagulated product.

The draft ratio referred to in this invention is the ratio between the speed of winding-up the hollow fiber membrane and the linear extrusion velocity when the polymer solution is extruded from the cyclic slit nozzle of the tube-inorifice type double spinning nozzle, and is a value obtained by dividing the winding-up speed by the linear velocity of extrusion of the polymer solution. In the case of a low draft ratio, it is necessary to narrow the slit width of the spinneret as much. In the case of a hollow fiber membrane for purifying blood, the range of the membrane thickness usually used is 20 to 60 µm. Therefore, in the case of a low draft ratio, the linear velocity of extrusion of the polymer solution is increased by increasing the spinning velocity and the pressure loss at the spinneret becomes large, so that the spinning 25 tends to become instable. In addition, extrusion unevenness of the polymer solution is caused, and hence, the membrane structure is disordered, and the variation of water-permeability and solute-permeability becomes large. Moreover, since the slit width is small, such problems as the alignment of spinneret becoming difficult, the preparation per se of spinneret becoming difficult, the cost therefor becoming high, and the like are pointed out. Conversely, when the spinning draft ratio is too high, that is, the winding-up speed is too high as compared with the linear velocity of extrusion of the polymer solution from the spinneret, it follows that directly under the spinneret, the internal surface of the hollow fiber membrane is strongly drawn with coagulation, whereby the dense layer of the internal surface of the membrane forms a tom pattern, and pores having a particularly large diameter tend to be formed, and a problem of leak of albumin, which is a useful protein, is caused. This problem can be improved to some extent by maintaining the viscosity of the polymer solution low by such a method as changing the composition of the polymer solution, elevating the temperature 35 of the polymer solution, or the like, but it is not sufficient. Accordingly, in this invention, it is necessary that the draft ratio be in the range of 1.1 to 1.9 and it is preferably in the range of 1.1 to 1.5.

[0050] Furthermore, the linear velocity of extrusion of the polymer solution referred to in this trivention is a linear velocity when the polymer solution is extruded from the spinnered during the spinning and is a value obtained by dividing the flow rate of the polymer solution extruded per unit time by the sectional area of the spinnerer from which the polymer solution is extruded. When the linear velocity of extrusion of the polymer solution is increased, the extrusion uneveness of the polymer solution becomes large and the structure uneveness of the membrane is caused, whereby poses having a large pore diameter are formed and a leak of albumin results, in this invention, it is necessary that the linear velocity of extrusion of the polymer solution be not more than 90 m/min, and it is preferably not more than 90 m/min, which is preferably not more than 90 m/min, and it is preferably not more than 90 m/min, which is preferably to the polymer solution becomes instable, and hence, it is preferably at least 10 m/min.

1,0051 In this invention, the thickness of the selective separation layer is governed by various conditions in the membrane-production as shown below. First of all, the kind and concentration of the liquid in hollow are important, and when the solvent concentration in the liquid in hollow is increased, the coagulation power becomes weak, so that the coagulation proceeds gently. As a result, no dense aggregation structure can be formed, and the selective separation layer becomes a rough structure. Secondly, the viscosity of the polymer solution is important, and when the viscosity is high, the movement of the polysuitone type polymer can be inhibited during the coagulation and the selective separation layer becomes thicker than when the viscosity of the polymer, the some conditions. The viscosity of the polymer solution depends upon the molecular weight of the hydrophilic polymer, the concentrations of the polysuition type polymer and hydrophilic polymer in the polymer in the polymer in the polymer solution, the temperature of the polymer solution, and the like, and any of the factors affects severely the formation of the selective separation layer. Moreover, the draft ratio is an important factor, too, and it is better to increase the draft ratio for keeping the selective separation layer thicks. The factor which affects the formation of the selectives exparation layer includes, in addition thereto, the distance of the length of air gas portion

between the spinneret and the coagulation bath, the spinneret size, the temperature and composition of the coagulation bath, the spinning velocity, the solvent used in the polymer solution, and the like, and it is necessary that these be appropriately set taking into consideration an even balance with solute permeability, the object and the like.

[0052] The hollow fiber membrane spun and wound up as mentioned above is post-treated in a known manner. 5 That is, the solvent and the excoss PVP are removed by weaking with dry heat or the like and, if necessary, glycerin is given to the hollow fiber membrane, after which drying with dry heat is conducted. In addition, such a method whereby the winding up is conducted after the washing with hot water or the like and the drying with dry heat, instead of conducting the post-treatment after winding up the hollow fiber membrane, is within the scope of this invention, and a particularly important embodiment of this invention is such that the viscosity of a polymer solution is adjusted to 1,500 for 8 and the draft ratio is adjusted to not more than 1.1 to 1.9 under the condition where the linear velocity

of extrusion from the spinneret is not more than 90 m/min.

[0053] This invention is explained in detail below using Examples and Comparative Examples; however, this invention is not limited thereto.

[0054] In this invention, the water permeability and the coefficient of screening are those determined as follows. That is to say, a minimodule (effective length: 25 cm) consisting of 100 dried polysulfone type, selectively permeable hollow fiber membranes is formed by assembling and then subjected to measurement of water permeability in a unit of mil/H/m²/mmHg by a flow method under the pressure condition of 200 mmHg. Subsequently, bovine plasma was used to measure the coefficients of screening of 82-Mg and albumin.

[0055] As to fiber strength, the hollow fiber membrane was stretched until torn using TENSILON from ORIENTEC COMPANY (RTC-1210) and the maximum load required at that time was used as the strength.

Example 1

[0056] A uniform polymer solution was prepared which was composed of 17 parts by weight of a polysulfone resin 25 (manufactured by AMOCO PERFORMANCE PRODUCTS COMPANY, P-1700), 7 parts by weight of polyvinyl pyrrolidone (manufactured by BASF COMPANY, K-92) and 76 parts by weight of DMAC. The viscosity of this polymer solution was 3,400 mPa •s at 65°C. This polymer solution was extruded, while maintained at 65°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight, from a cyclic nozzle having a slit width of 59.5 μm, immersed in water at 55°C that was provided 60 cm below the nozzle and then wound up at a speed of 70 m/min. Since the amount of the polymer solution extruded was adjusted so that the thickness of the dried hollow fiber membrane became 45 µm, the linear velocity of extrusion of the polymer solution became 49.3 m/mln and the draft ratio was 1.42. The hollow fiber membrane bundle obtained was hung and then subjected to a shower of 40% by weight aqueous DMAC solution heated to 85°C for 80 minutes. Thereafter, it was washed with hot water at 90°C and then immersed in 20% aqueous glycerin solution for the glycerin to adhere thereto. Subsequently, it was dried with hot 35 air at 75°C for 11 hours. Successively, the hollow fiber membrane was immersed in an aqueous solution in which 600 ppm of sodium disulfite and 300 ppm of sodium carbonate were dissolved, and then irradiated with y-rays of 25 kGy to obtain a polysulfone type blood-purifying membrane. The hollow fiber membrane obtained was dyed with an aqueous osmium tetroxide, subjected to dehydration, thereafter embedded in an epoxy resin and formed, after curing, into ultrathin slice of about 60 nm using an ultramicrotome, after which TEM (JEM 2000FX) observation was conducted. 40 Using the TEM image obtained, the systemization percentage was measured by use of an image-analyzing apparatus (IP-1000, manufactured by ASAHI CHEMICAL INDUSTRY CO., LTD.) at an interval of 0.7 µm in the direction from the internal surface side to the external surface side of the hollow fiber membrane. The measurement results and evaluation results of membrane are shown in Table 1. Moreover, the state of the internal surface of this membrane is shown In Figs. 1A and 1B. A torn structure was not found and a smooth surface was found.

Example 2

[0057] In the same manner as in Example 1, except that the extraction and washing of the hollow fiber membrane were conducted with a shower of glycerin at 130°C for 3 hours in place of the shower of 40% aqueous DMAC solution of at 85°C for 80 minutes, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1.

Example 3

5 [0058] In the same manner as in Example 1, except that the extraction and washing with a shower of 40% aqueous DMAC solution at 85°C for 80 minutes were not conducted, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1.

Example 4

[0059] A uniform polymer solution was prepared which was composed of 17 parts by weight of a polysulfone resin (manufactured by AMOCO PERFORMANCE PRODUCTS COM/PAY, P-1700), 7 parts by weight of polywinyl pyrrolidone (manufactured by BASF COM/PANY, K-89) and 76 parts by weight of DMAC. The viscosity of this polymer solution was extruded, while maintained at 80°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight, from a cyclic nozzle having a slit width of 59.5 µm, then immersed in water at 55°C that was provided 60 cm below the nozzle, and then wound up at a rate of 170 m/min. Thereafter, in the same manner as in Example 1, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1.

Example 5

[0069] A uniform polymer solution was prepared which was composed of 16 parts by weight of a polysulfone resin (manufactured by AMOCO PERFORMANCE PRODUCTS COMPANY, P-1700), 7.8 parts by weight of lopylvinyl pyrolidone (manufactured by BASF COMPANY, K-89) and 762 parts by weight of DMAC. The viscosity of this polymer solution was 2,500 mPa·s at 70°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight from a cyclic nozele having a slit width of 59.5 µm, immersed in water at 55°C that was provided 60 cm blow the nozzle and then wound up at a rate 20 of 70 m/min. Thereafter, in the same manner as in Example 1, a polysulfone type hollow fiber membrane for purifying blood was obtained. The resitues obtained are shown in Table 1.

Example 6

25 [0061] A uniform polymer solution was prepared which was composed of 17 parts by weight of a polysulfone resin (manufactured by AMOCO PERFORMANCE PRODUCTS COMPANY, P-1700), 5.5 parts by weight of polyvinyl pyrrolidone (manufactured by BASF COMPANY, K-92) and 78.5 parts by weight of DMAC. The viscosity of this polymer solution was 2.400 mPa·s at 50°C. This polymer solution was extruded, while maintained at 50°C, together with a liquid in hollow composed of an aqueuous DMAC solution having a concentration of 15% by weight, from a cyclic nozzie having as all twidth of 59.5 μm, immersed in water at 55°C that was provided 60 cm below the nozzie and then wound up at a rate of 70 m/mln. Thereafter, in the same manner as in Example 1, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1.

Example 7

35

[0062] A uniform polymer solution was prepared which was composed of 17 parts by weight of a polysulfone resin (manufactured by AMOCO PERFORMANCE PRODUCTS COMPANY, P-1700), 6.3 parts by weight of polywinyl prepolidone (manufactured by BASF COMPANY, K-89) and 76.7 parts by weight of MANC. The visosoity of this polymer prolution was 2,820 mPa·s at 55°C. This polymer solution was extruded, while maintained at 55°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight, from a cyclic nozzle having a slit width of 59.5 jm, immersed in water at 55°C that was provided 60 cm below the nozzle and then wound up at a rate of 70 m/min. Thereafter, in the same manner as in Example 1, a polysulfone type blood-purifying membrane was obtained. The results obtained are shown in Table 1.

45 Example 8

[0063] In the same manner as in Example 1, except that a shower of ethanol at 60°C for 60 minutes was substituted for the shower for 80 minutes of 40% yeeight aqueous DMAC solution heated to 85°C, a polysultone type hollow filter membrane for purifying blood was obtained. The results obtained are shown in Table 1.

Example 9

50

[0064] In the same manner as in Example 1, except that the polymer solution was extruded together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight from a cyclic nozzle having a slit width of 55.5 µm, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1. Moreover, at that time, the linear velocity of extrusion of the polymer solution was 3.59 m/min and the draft ratio was 1.90.

Comparative Example 1

[0065] In the same manner as in Example 6, except that the irradiation with γ-rays of 25 kGy was not conducted, a polysulfone type hollow fiber membrane for dialyzing blood was obtained. The results obtained are shown in Table 1.

Comparative Example 2

[0066] In the same manner as in Example 6, except that the hollow fiber membrane was immersed in water in place of the aqueous solution in which 600 ppm of sodium duffite and 300 ppm of sodium carbonate were dissolved, and of irradiation with y-rays of 50 kGy was conducted, apolysulfone type hollow fiber membrane for dialyzing blood was obtained. The results obtained are shown in Table 1.

Comparative Example 3

15 [0067] In the same manner as in Example 1, except that the polymer solution was extruded together with a liquid in hollow composed of an aqueous DIMAC solution having a concentration of 15% by weight, from a cyclic nozzle having all width of 50.5 µm, a polysulone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1. Moreover, at that time, the draft ratio was 3.2. The internal surface of this membrane had a structure greatly torn by an influence of the draft and the state thereof is shown in Filsz. 24 and 28.

Comparative Example 4

[9068] In the same manner as in Example 1, except that the polymer solution was extruded together with a liquid in hollow composed of an equeous DMAC solution having a concentration of 15% by weight from a cyclic nozzle having a slit width of 50.5 µm, a polysultions type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in Table 1. Moreover, at that time, the draft ratio was 1.0. The internal surface of this membrane did not have such a structure as one having been ton because the ray of the polymer slow; however, structure unevenness was found for an influence which seemed to be due to unevenness of extrusion of the polymer solution. The state thereof is shown in Fiss. 3 And 38

Comparative Example 5

[0069] A uniform polymer solution was prepared which was composed of 17 parts by weight of a polysulfone resin afformandational by AMCCO PERFORMANCE PRODUCTS COMPANY, P-1700), 3.5 parts by weight of polyminy prolidone (manufactured by BASF COMPANY, K-92) and 79.5 parts by weight of DMAC. The viscosity of this polymer abultion was at 250 mPa *s at 50°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight, from a cyclic nozzle having a slit width of 59.5 µm, immersed in water at 55°C that was provided 60 cm below the nozzle and then wound up at a rate of 70 m/min. Thereafter, in the same manner as in Example 1, a polysulfone type hollow fiber membrane for purifying blood was obtained. The results obtained are shown in 17able 1

Comparative Example 6

45 [0070] A uniform polymer solution was prepared which was composed of 16 parts by weight of a polysulfone resin (manufactured by AMCOS DEFRORMANCE PRODUCTS COMPANY, P-1700), 9 parts by weight of polywing pyrrolidone (manufactured by BASF COMPANY, K-92) and 75 parts by weight of DMAC. The viscosity of this polymer solution was 3,010 mPa -s at 70°C. This polymer solution was astructed, while maintained at 70°C, together with a liquid in hollow composed of an acqueus DMAC solution having a connentration of 15% by weight, from a cyclic nozzle and then wound up at a rate of 70 m/min. Thereafter, in the same manner as in Example 1, a polysultone byte hollow filter membrane for a rate of 70 m/s. Thereafter, in the same manner as in Example 1, a polysultone byte hollow filter membrane to profying blood was obtained. The membrane obtained was oft, low in strength and easy to break upon touching the same, so that it was impossible to measure the PVP eluted and evaluate performance.

55 Comparative Example 7

[0071] A uniform polymer solution was prepared which was composed of 18 parts by weight of a polysulfone resin (manufactured by AMOCO PERFORMANCE PRODUCTS COMPANY, P-1700), 6.9 parts by weight of polyvinyl pyrro-

lidone (manufactured by BASF COMPANY, K-92) and 75.1 parts by weight of DMAC. The viscosity of this polymer solution was 7,210 mPa * a t55°C. This polymer solution was extruded, while maintained at 55°C, together with a liquid in hollow composed of an aqueous DMAC solution having a concentration of 15% by weight, from a cyclic nozzle having a sit width of 59.5 µm, immersed in water at 55°C that was provided 60 cm below the nozzle and then wound up at a rate of 70 m/min. However, fiber cutting was caused many times during the spinning, though it might be due to high viscosity of the polymer solution, and as to the membrane per se, only a wavy membrane was formed owing to the pulsation due to extrusion failure, and an evaluation was impossible.

Comparative Example 8

[0072] In the same manner as in Example 1, except that the extrudate was wound up at a rate of 125 m/nm in place of the rate of 70 m/nm, a polysuitine by ge blood-purifying membrane was obtained. The results obtained are shown in Table 1. Incidentally, at that time, the linear velocity of extrusion of the polymer solution was 91.2 m/nm and the draft ratio was 1.37. This membrane was unable to be picked because the linear extrusion velocity was too high and fiberation was the second of the cause of the second of the

[0073] For the hollow fiber membranes of Examples 1 to 9 and Comparative Examples 1 to 5, an evaluation of the residual blood was carried out. That is, 120 hollow fiber membranes having a length of 18 cm were assembled into a module, washed with 20 ml of physiologic saline, and then blood taken out of dog carotid artery through a peristable pump was allowed to five at a flow rate of 2 ml/min inside the hollow fiber for 10 minutes. The blood was pushed out with 5 ml of physiological saline and thereafter the module was taken apart and the degree of residual blood was revaluated. As a result, in the hollow fibers of Comparative Examples 2, 3 and 5, residual blood was flow for only in a small amount.

25 INDUSTRIAL APPLICABILITY

35

40

45

50

[0074] In the case of the polysulfone type hollow (fiber membrane for purifying blood of this invention, the amount of polyviny) pyrmidione eluted from the Internal surface side of the hollow fiber membrane, namely on the blood side, is very small, the hollow fiber membrane is one which is excellent in blood compatibility and excellent in molecular weightfractionating properties. This invention provides an artificial kidney that will be very significant to future dialysis treatment.

Table 1

	PVP	Water-	Surface Eluted	Eluted	Torn	Selective			Water	Alb	B2−₩9
	content	soluble	EV.	PVP(*)	struo-	separa-	Residual	Strength	permea-	coeff1-	-tijjeoo
	-mem ut	DVP in	cond.		ture	tion layer	blood		tion(**)	cient of	cient of
	brane	membrane					_			screening	screening
	ε	3	ε	(mg/m3)		(u7/)		(g/hf)		(8)	3
Example 1	-	11.4	38	0.25	None	10.5	Found	17.1	210	0.003	0.64
Sxample 2	7.1	11.7	38	0.26		10.6	Found	17.2	205	0.003	99.0
Sxample 3	B.9	13.4	39	1.01		11.2	Found	17.1	175	0.002	0.55
Sxample 4	5	13.8	35	0.27		4.8	Found	19.2	287	0.004	9.0
Exemple 5	8.1	11.9	\$	0.25		8.2	Found	16.3	165	0.004	0.61
Example 6	5.5	17.3	30	0.41		9.5	Found	19.8	514	0.005	7.0
Example 7	5.5	14.2	33	6.0		7.5	Found	19	222	0.002	89.0
Example 8		12	37	6.0		10.2	Pound	17.4	188	0.002	0.57
Example 9	7.2	11.4	88	0.28		10.4	Found	17.2	222	0.003	0.65
Comp.Ex.1	8.	9.68	E	2.2		10.5	Found	17.3	229	0.003	0.63
Comp. Ex. 2	8:4	0.42	E	0.1		11.1	Found	17.2	209	0.003	19.0
Comp. Ex. 3	7.4	10.8	37	0.25	Found	11.5	Found	17.7	255	0.01	69.0
Comp. Ex. 4	7.3	111	38	0.28	None	9.5	None	17	245	600.0	89.0
Comp. Ex. 5	3.2	6.3	24	96.0		8.9	Found	21.2	702	0.011	0.85
Comp. Ex. 6	8.9	11	43	,			,	11.7	-		
Comp. Ex. 7	-	,	,		1	,			-		-
Comp. Ex. 8		,	,			-	•	,	,	,	1

(*) In Table, sluted PVP means an amount of PVP eluted when 40% ethanol was circulated inside the hollow fiber membrane.

(**) ml/Hr/m²/nmHg "-" means impossible to measure.

Claims

15

25

- 1. A polysulfone type hollow fiber membrane for purifying blood in which membrane a selective separation layer exists on the internal surface side of the hollow fiber membrane and which membrane contains a polyvinyl pyrrolidone, wherein the polyvinyl pyrrolidone is contained in a proportion of 1 to 10% by weight, 5 to 55% of sale polyvinyl pyrrolidone is soluble in water, and the concentration of the polyvinyl pyrrolidone on the internal surface of the hollow fiber membrane is in the rance of 30% to 45 to 100.
- The polysulfone type hollow fiber membrane for purifying blood according to Claim 1, wherein the concentration of the polyvinyl pyrrolidone on the internal surface of the hollow fiber membrane is 33% to 40%.
 - The polysulfone type hollow fiber membrane for purifying blood according to Claim 1, wherein the amount of the polyvinyl pyrrolidone eluted when the internal side of the hollow fiber membrane is subjected to a cyclic extraction with 40% aqueous alcohol solution is not more than 0.5 m gor m² of the membrane area.
 - The polysulfone type hollow fiber membrane for purifying blood according to Claim 1, wherein the internal surface
 of the hollow fiber membrane has no torn interstice of at least 0.8 µm in size.
- The polysulfone type hollow fiber membrane for purifying blood according to Claim 1, wherein the thickness of the selective separation layer is 2 to 15 µm.
 - 6. A process for producing a polysulfone type hollow fiber membrane for purifying blood, which comprises subjecting a polymer solution comprising 15 to 20% by weight of a polysulfone type polymer in which solution the weight ratio of polyvinyl pyrrolidone to the polysulfone type polymer is from 0.25 to 0.5, to extrusion at a viscosity of 1,500 to 6,000 mPa · s, and to spinning at a draft ratio of 1.1 to 1.9 and at a linear extrusion velocity of not more than 90 m/min.
- 7. A process for producing a polysuitione type hollow filter membrane for purifying blood, which comprises spinning a hollow fiber membrane using a polymer solution which comprises 15 to 20% by weight of a polysuitione type polymer in which solution the weight ratio of polyvinyl pyrrolidone to the polysuitione type polymer is from 0.25 to 0.5, and thereafter insolubilizing a portion of the polyvinyl pyrrolidone in the hollow fiber membrane by a physicochemical method.
 - 8. The process for producing a polysuifone type hollow fiber membrane for purifying blood according to Claim 7, wherein the hollow fiber membrane after the spinning is placed in a wet state of at least the saturated water content and thereafter irradiated with yrays to insubultize a portion of the polywing promitions.
 - 9. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 7, wherein prior to the insolubilization of a portion of the polyviryl pyrrolidone, the hollow fiber membrane after the spinning is washed with a solvent in which the polyviryl pyrolidone is dissolved and which is a mixed solvent of a good solvent and a poor solvent for the polysulfone type polymer, to extract and remove the polyviryl pyrrolidone.
 - 10. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 9, wherein the good solvent for the polysulfone type polymer is dimethylacetamide and/or dimethyl sulfoxide and the poor solvent for the polysulfone type polymer is water.
 - 11. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 7, wherein prior to the insolubilization of a portion of the polyvinyl pyrrolidone, the hollow fiber membrane after the spinning is washed with an actionalis osleven, to extract and remove the polyvinyl pyrrolidone.
 - 12. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 11, wherein the alcoholic solvent is glycerin at 130°C to 160°C.
- 13. The process for producing a polysuitone type hollow fiber membrane for purifying blood according to Claim 6, wherein the hollow fiber membrane obtained by the spinning is placed in a west sate of at least the saturated water content and thereafter irradiated with y-rays to insolubilize a portion of the polyvinyl pyrrolidone in the hollow fiber membrane.

- 14. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 13, wherein the hollow fiber membrane after the spinning but before the Irradiation with y-rays is washed with a solvent in which the polyvinyl pyrrolidone is dissolved and which is a mixed solvent of a good solvent and a poor solvent for the polysulfone type polymer, to extract and remove the polyvinyl pyrrolidone.
- 15. The process for producing a polysulfone type hollow fiber membrane for purifying blood according to Claim 13, wherein the hollow fiber membrane after the spinning but before the irradiation with γ-rays is washed with an alcoholic solvent to extract and remove the polyvinyl pyrrolidon.

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 2B

INTERNATIONAL SEARCH REPORT International application No. PCT/JP98/02181 CLASSIFICATION OF SUBJECT MATTER Int.C1' B01D71/68, 69/18, A61M1/18 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁶ B01D71/68, 69/18, A61M1/18 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-1998 Kokai Jitsuyo Shinan Koho 1971-1998 Jitsuyo Shinan Keisai Koho 1996-1998 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT. Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP, 6-339620, A (Toray Industries, Inc.), 7. 8 December 13, 1994 (13. 12. 94) (Family: none) 1-5 A Claims 1, 2; Par. Nos. [0015] to [0019] 6, 9-15 JP, 9-70524, A (Toray Industries, Inc.), March 18, 1997 (18. 03. 97) 1-5 A & EP, 750936, A & KR, 97-316, A 6, 8-15 JP, 7-289866, A (Asahi Medical Co., Ltd.), November 7, 1995 (07. 11. 95) (Family: none) Y 1-5 6-15 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: document defining the general state of the art which is not considered to be postricibar relevance earlier document but published on or after the instrustional filing date document which may flowed works or priority claimed or which is cited to ambiful the publication date of another citation or other special researce (as special periority). later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance, the chiamed invention cannot be ٠٨. *** when the document is taken alone "Y" document of particular relevance, the chained invention on Y document of particular celevanor, the chiqued invention cannot be considered to involve an inventive stay when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family °O* document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report August 4, 1998 (04, 08, 98) July 24, 1998 (24. 07. 98) Name and mailing address of the ISA Authorized officer Japanese Patent Office Facsimile No. Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)