Содержание

 1 Метод Фурье для уравнения свободных колебаний струны
 1

 1.1 Теорема
 4

Метод Фурье для уравнения свободных колебаний струны

Рассмотрим решение задачи о колебании однородной струны, закреплённой на концах. Эта задача сводится к решению уравнения

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{1}$$

при граничных условиях

$$u|_{x=0} = 0, \, u|_{x=l} = 0 \tag{2}$$

и начальных условиях

$$u|_{t=0} = f(x), \left. \frac{\partial u}{\partial t} \right|_{t=0} = F(x) \ (0 \le x \le l)$$

$$(3)$$

Будем искать частные решения (1), не равные тождественно нулю, (т.е. **нетривиальные**) в виде

$$u(x,t) = X(x)T(t) \tag{4}$$

удовлетворяющим (2).

Подставив (4) в (1), получим

$$T''(t)X(x) = a^2T(t)X''(x)$$

или

$$\frac{T''(t)}{a^2T(t)} = \frac{X''(x)}{X(x)}\tag{5}$$

Т.к. левая часть (5) зависит только от t, а правая - только от x, то равенство возможно только когда $\frac{T''(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda,\ \lambda-const.$

Из (5) получим тогда:

$$T''(t) + a^2 \lambda T(t) = 0 \tag{6}$$

$$X''(x) + \lambda X(x) = 0 \tag{7}$$

Чтобы найти нетривиальные решения вида (4), удовлетворяющие (2), необходимо найти решения уравнения (7), удовлетворяющие

$$X(0) = 0, X(l) = 0 (8)$$

Те λ , при которых (7)-(8) имеет нетривиальные решения, называются собственными числами (значениями), а сами эти решения - собственными функциями

Найдем собственные функции и значения (7)-(8). Рассмотрим три случая $\lambda < 0, \lambda = 0, \lambda > 0.$

1. $\lambda < 0$. Общее решение (7) имеет вид

$$X(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$$

Удовлетворяя граничным условиям (8), получим

$$C_1 + C_2 = 0, C_1 e^{\sqrt{-\lambda l}} + C_2 e^{-\sqrt{-\lambda l}} = 0$$
 (9)

Так как определитель системы (9) отличен от нуля, то $C_1=0$ и $C_2=0 \implies X(x)\equiv 0.$

2. При $\lambda = 0$ общее решение (7) имеет вид

$$X(x) = C_1 + C_2 x$$

Граничные условия (8) дают

$$C_1 = 0, C_1 + C_2 l = 0,$$

поэтому $C_1 = C_2 = 0 \implies X(x) \equiv 0.$

3. При $\lambda > 0$ общее решение (7) имеет вид

$$X(x) = C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x.$$

Удовлетворяя (8), получим

$$C_1 \cdot 1 + C_2 \cdot 0 = 0, \ C_1 \cos \sqrt{\lambda} l + C_2 \sin \sqrt{\lambda} l = 0.$$

Из первого уравнения $C_1=0$, из второго $C_2\sin\sqrt{\lambda}l=0$. Мы должны считать $C_2\neq 0$, ибо в противном случае $X(x)\equiv 0$. Поэтому $\sin\sqrt{\lambda}l=0$, то есть $\sqrt{\lambda}=\frac{k\pi}{l}, k\in\mathbb{Z}$.

Нетривиальные решения (7)-(8) возможны при

$$\lambda_k = \left(\frac{k\pi}{l}\right)^2 \ (k \in \mathbb{N})$$

Этим λ_k соответствуют собственные функции

$$X_k(x) = \sin \frac{k\pi x}{l},$$

определяемые с точностью до постоянного множителя C. Положим C=1.

Разные k, отличающиеся только знаком, дают собственные функции, отличающиеся лишь постоянным множителем. Поэтому достаточно рассматривать $k \in \mathbb{N}$.

При $\lambda = \lambda_k$ общее решение уравнения (6) имеет вид

$$T_k(t) = a_k \cos \frac{k\pi at}{l} + b_k \sin \frac{k\pi at}{l}$$

 $a_k, b_k - \text{const.}$

Таким образом, функции

$$u_k(x,t) = X_k(x)T_k(t) = \left(a_k \cos \frac{k\pi at}{l} + b_k \sin \frac{k\pi at}{l}\right) \sin \frac{k\pi x}{l}$$

удовлетворяют (1) и граничным условиям (2) $\forall a_k, b_k$.

(1) линейно и однородно, поэтому конечная сумма таких решений также будет решением. Аналогично для ряда

$$u(x,t) = \sum_{k=1}^{\infty} \left(a_k \cos \frac{k\pi at}{l} + b_k \sin \frac{k\pi at}{l} \right) \sin \frac{k\pi x}{l}, \tag{10}$$

если он сходится и его можно дважды почленно дифференцировать по x и t. Т.к. каждое слагаемое в (10) удовлетворяет граничным условиям (2), то (2) будет удовлетворять и суммя ряда u(x,t). Остается определить a_k, b_k так, чтобы удовлетворить условиям (3).

Продифференцируем (10) по t:

$$\frac{\partial u}{\partial t} = \sum_{k=1}^{\infty} \frac{k\pi a}{l} \left(-a_k \sin \frac{k\pi at}{l} + b_k \cos \frac{k\pi at}{l} \right) \sin \frac{k\pi x}{l} \tag{11}$$

Полагая в (10) и (11) t = 0, в силу (3), получим:

$$f(x) = \sum_{k=1}^{\infty} a_k \sin \frac{k\pi x}{l}$$

$$F(x) = \sum_{k=1}^{\infty} \frac{k\pi a}{l} b_k \sin \frac{k\pi x}{l}$$
(12)

Формулы (12) представляют разложение f(x), F(x) в ряд Фурье по синусам в интервале (0,l). Коэффициенты разложений (12) выписываются по известным формулам:

$$a_k = \frac{2}{l} \int_0^l f(x) \sin \frac{k\pi x}{l} dx$$

$$b_k = \frac{2}{k\pi a} \int_0^l F(x) \sin \frac{k\pi x}{l} dx$$
(13)

Таким образом, решение задачи (1)-(3) даётся рядом (10), где a_k, b_k определяются формулами (13).

1.1 Теорема

Если f(x) на отрезке [0,l] дважды непрерывно дифференцируема, имеет кусочно-непрерывную третью производную и удовлетворяет условиям

$$f(0) = f(l) = 0, \ f''(0) = f''(l) = 0,$$
 (14)

а F(x) непрерывно дифференцируема, имеет кусочно-непрерывную вторую производную и удовлетворяет условиям

$$F(0) = F(l) = 0, (15)$$

то функция u(x,t), определяемая рядом (10), имеет непрерывные производные второго порядка и удовлетворяет (1)-(3). При этом возможно почленное дифференцирование (10) по x и t два раза, а полученные ряды будут абсолютно и равномерно сходящимися при $0 \le x \le l$ и $\forall t$.

Доказательство

Интегрируя по частям (13) и принимая во внимание (14)-(15), получим

$$a_{k} = -\left(\frac{l}{\pi}\right)^{3} \frac{b_{k}^{(3)}}{k^{3}}$$

$$b_{k} = -\left(\frac{l}{\pi}\right)^{3} \frac{a_{k}^{(2)}}{k^{3}}$$
(16)

где

$$b_k^{(3)} = \frac{2}{l} \int_0^l f'''(x) \cos \frac{k\pi x}{l} dx$$

$$a_k^{(2)} = \frac{2}{l} \int_0^l \frac{F''(x)}{a} \sin \frac{k\pi x}{l} dx$$
(17)

Из теории тригонометрических рядов известно, что ряды

$$\sum_{k=1}^{\infty} \frac{\left| a_k^{(2)} \right|}{k}, \sum_{k=1}^{\infty} \frac{\left| b_k^{(3)} \right|}{k} \tag{18}$$

сходятся. Подставив (16) в (10), получим

$$u(x,t) = -\left(\frac{l}{\pi}\right)^3 \sum_{k=1}^{\infty} \frac{1}{k^3} \left(b_k^{(3)} \cos \frac{k\pi at}{l} + a_k^{(2)} \sin \frac{k\pi at}{l}\right) \sin \frac{k\pi x}{l}$$
(19)

Этот ряд мажорируется рядом

$$\left(\frac{l}{\pi}\right)^3 \sum_{k=1}^{\infty} \frac{1}{k^3} \left(\left|b_k^{(3)}\right| + \left|a_k^{(2)}\right|\right),\,$$

который сходится. Следовательно, (10) сходится абсолютно и равномерно. Из (18), (10) можно дважды почленно дифференцировать по x и t. \square .

Если f(x) и F(x) не удовлетворяют условиям теоремы, то может не существовать дважды непрерывно дифференцируемого решения смешанной задачи (1)-(3). Однако, если f(x) - непрерывно дифференцируемая функция, для которой f(0)=f(l)=0, а F(x) - непрерывная функция, для которой F(0)=F(l)=0, то (10) равномерно сходится при $0\leq x\leq l$ и любом t и определяет непрерывную u(x,t).

Будем называть обобщённым решением уравнения (1) при условиях (2)-(3) функцию u(x,t), являющуюся пределом равномерно сходящейся последовательности $u_n(x,t)$ решений уравнения (1), удовлетворяющих (2)-(3), где $f_n(x), F_n(x)$ - последовательности функций, удовлетворяющих условиям теоремы выше и таких, что

$$\lim_{n \to \infty} \int_{0}^{l} [f(x) - f_n(x)]^2 dx = \lim_{n \to +\infty} \int_{0}^{l} [F(x) - F_n(x)]^2 dx = 0.$$

При этих предположениях на f(x), F(x), частные суммы ряда (10) образуют последовательность $u_n(x,t)$, удовлетворяющую условиям, следовательно обобщенное решение существует и ряд (10) является таким решением.

Нетрудно показать, что обобщённое решение смешанной задачи (1)-(3) единственно.

Возвратимся к найденному решению (10) задачи (1)-(3).

Ввведём обозначения

$$a_k = A_k \sin \varphi_k, \ b_k = A_k \cos \varphi_k$$

и запишем это решение в виде

$$u(x,t) = \sum_{k=1}^{\infty} A_k \sin \frac{k\pi x}{l} \sin \left(\frac{k\pi at}{l} + \varphi_k\right)$$
 (20)

Каждый член этого ряда представляет собой стоячую волну, при которой точки x струны совершают гармоническое колебательной движение с амплитудой $A_k \sin \frac{k\pi x}{l}$, частотой $\omega_k = \frac{k\pi a}{l}$ и фазой φ_k .

уфф

Звуки можно классифицировать на музыкальные и немузыкальные - первые называются **нотами**, вторые **шумами**. Музыкальные звуки естественным образом располагаются в определённом порядке соответственно высоте – качеству, которое до известной степени может оценивать каждый. Те ноты, которые ухо не может различать по высоте, далее называются тонами.

При колебании струна издаёт звук, высота которого зависит от частоты колебаний; частота основного (самого низкого) тона выражается формулой $\omega_1=\frac{\pi}{l}\sqrt{\frac{T_0}{\rho}}$. Тона, соответствующие более высоким частотам, чем основная, называются **обертонами**. Обертоны, частоты которых являются кратными основной частоте, называются **гармониками**. Первой гармоникой будем считать основной тон, второй гармоникой - тон с частотой $\omega_2=2\omega_1$ и т.д.

 $Bpode\ T_0$ - натяжение струны, ρ - линейная плотность

Решение (20) складывается из отдельных гармоник. Амплитуды их, а потому и влияния их на звук, издаваемый струной, обыкновенно быстро убывают при увеличении номера гармоники и всё их действие сводится к созданию тембра звука, различного для разных музыкальных инструментов и объясняемого именно наличием этих гармоник.

Существует очень мало колебательных систем с гармоническими обертонами, но эти немногие системы являются основными для построения почти всех музыкальных инструментов. Это следует из того, что звук с гармоническими обертонами кажется особенно приятным в музыкальном отношении.

В точках

$$x = 0, \frac{l}{k}, \frac{2l}{k}, \dots, \frac{k-1}{k}l, l$$

амплитуда колебаний k-й гармоники обращается в нуль, ибо в этих точках $\sin\frac{k\pi x}{l}=0$. Эти точки называются **узлами** k-й гармоники. Напротив, в точках

$$x = \frac{l}{2k}, \frac{3l}{2k}, \dots, \frac{(2k-1)}{2k}l,$$

называемых пучностями, амплитуда k-й гармоники достигает наибольшей величины, т.к. $\sin\frac{k\pi x}{l}$ там имет максимальное абсолютное значение.

Если мы прижмём колеблющуюся струну точно в середине, то есть в пучности её основного тона, то обратятся в нуль амплитуды не только этого тона, но и всех других, имеющих пучность в этой точке, то есть нечетнх

гармоник. Напротив, на чётные гармоники, которые имеют узел в прижатой точке, это влиять не будет. Таким образом, остаются только четыре гармоники. Самой низкой частотой будет $\omega_2=\frac{2\pi}{l}\sqrt{\frac{T_0}{\rho}},$ и струна будет издавать не своё основной звук, а его октаву, то есть звук с числом колебаний в секунду вдвое большим.