2023~2024 学年度上期高中 2021 级入学联考 化 学

考试时间 90 分钟, 满分 100 分

注意事项:

- 1. 答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用 0.5 毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的"贴条形码区"。
- 2. 选择题使用 2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案; 非选择题用 0.5 毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效; 在草稿纸上、试卷上答题无效。
 - 3. 考试结束后由监考老师将答题卡收回。

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Al 27 S 32 Cl 35.5 Ca 40 Ba 137

- 一、选择题:本题共20小题,每小题2分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 化学与生活密切相关,下列说法正确的是
 - A. 刚玉的主要成分是 Al₂O₃, 是一种耐高温的金属材料
 - B. 草木灰和铵态氮肥混合施用可增强肥效
 - C. "从沙滩到用户"是指将 SiO₂用作半导体材料
 - D. AI(OH)₃和小苏打均可用于治疗胃酸过多
- 2. 下列化学用语正确的是
 - H A. CHCl₃ 的电子式: Cl:Ċ:Cl
- B. HCIO 的结构式: H-CI-O

C. 氚的原子符号: T

- D. 乙烯的结构简式: C₂H₄
- 3. 下列有关物质分类正确的是

realize and realized and realized					
选项	A	В	С	D	
混合物	水玻璃	漂白粉	冰醋酸	石灰乳	
电解质	NaCl	干冰	氨水	HNO ₃	
碱性氧化物	Fe ₂ O ₃	Na ₂ O ₂	MgO	Al ₂ O ₃	

- 4. 布洛芬是家庭常备药之一,新冠疫情期间常用于退烧和止痛,其结构简式如图所示。 下列说法错误的是
 - A. 该物质的分子式为 C₁₃H₁₆O₂
 - B. 该物质不属于苯的同系物
 - C. 该物质可发生加成反应、取代反应、酯化反应
 - D. 该物质分子中有 8 种等效氢原子
- 5. N_A 为阿伏加德罗常数的值。下列说法错误的是
 - A. 标准状况下, 1.8 g H₂O 所含质子数为 N_A
 - B. $1 L_{pH} = 1$ 的稀硫酸中, H^{+} 的数目为 $0.1 N_{A}$
 - C. 常温常压下,22.4 L O_2 的分子数小于 N_A
 - D. 用足量烧碱溶液吸收 7.1 g Cl₂, 转移电子数目为 0.2 N_A

- 6. 下列说法正确的是
 - A. 己知 $C(g) + \frac{1}{2}O_2(g) = CO(g)$ ΔH_1 , $C(g) + O_2(g) = CO_2(g)$ ΔH_2 , 则 $\Delta H_1 < \Delta H_2$
 - B. 甲烷的燃烧热 $\Delta H = -890.3$ kJ·mol⁻¹,则甲烷燃烧的热化学方程式可表示为:

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$$
 $\Delta H = -890.3 \text{ kJ} \cdot \text{mol}^{-1}$

- C. 由反应 $H^+(aq) + OH^-(aq) = H_2O(l)$ $\Delta H = -57.3 \text{ kJ·mol}^{-1}$ 可知,醋酸溶液与 NaOH 溶液恰好反应生成 1 mol H₂O(1)时,放出的热量小于 57.3 kJ
- D. 反应过程中使用催化剂可降低反应热从而提高反应速率
- 7. 下列相关物质的性质及因果关系的说法错误的是
 - A. NaOH 溶液会与 SiO2 反应, 故保存 NaOH 溶液的试剂瓶不能用玻璃塞
 - B. Fe 可以从铜盐中置换出铜,故可用 FeCl3 溶液腐蚀印刷电路板
 - C. Na_2O_2 可与 CO_2 和 H_2O 反应产生 O_2 ,故 Na_2O_2 可用作潜水艇的供氧剂
 - D. SO₂具有还原性,且能杀菌,故 SO₂可用作葡萄酒的食品添加剂
- 8. 下列离子方程式书写正确的是
 - A. 将 Ba(OH)。溶液滴入明矾溶液中使沉淀质量最大: $2Ba^{2+} + 4OH^{-} + Al^{3+} + 2SO_4^{2-} = 2BaSO_4 \downarrow + AlO_2^{-} + 2H_2O$
 - B. 将少量铁粉溶于稀硝酸中: 3Fe + 8H+ + 2NO₃- = 3Fe²⁺ + 2NO↑ + 4H₂O
 - C. 用足量 NaOH 溶液吸收 SO₂尾气: OH-+SO₂=HSO₃-
 - D. 少量 NaHCO3 溶液与 Ca(OH)2 溶液反应:

$$2HCO_3^- + Ca^{2+} + 2OH^- = 2H_2O + CaCO_3 \downarrow + CO_3^{2-}$$

- 9. 三氯氢硅(SiHCl₃)是制备硅烷、多晶硅的重要原料。对于在恒容容器中进行的反应 $2SiHCl_3(g)$ \Longrightarrow $SiH_2Cl_2(g) + SiCl_4(g)$ $\Delta H > 0$,下列操作既能提高反应速率又能增大 SiHCl3转化率的是
 - A. 增加 SiHCl3 的浓度
- B. 升高温度

C. 及时分离出产物

- D. 充入稀有气体
- 10. 下列分离、提纯的方法不能达到实验目的的是

选项	实验目的	分离、提纯的方法		
A	海水淡化	蒸馏		
В	分离固体碘和沙子	升华		
С	除去铜粉中的铁粉	加入适量稀硫酸,过滤、洗涤、干燥		
D	除去 O ₂ 中的 HCl 气体	用饱和 NaHCO3 溶液洗气		

- 11. 常温下,向 0.1 mol·L⁻¹ NH₄Cl 溶液中加入少量 NH₄Cl 固体,下列数据一定变小的是

- A. $\frac{c(Cl^{-})+c(OH^{-})}{c(H^{+})+c(NH_{4}^{+})}$ B. $n(NH_{4}^{+})$ C. $c(OH^{-})$ D. $\frac{c(Cl^{-})}{c(NH_{3}\cdot H_{2}O)+c(NH_{4}^{+})}$
- 12. 在一定条件下,下列物质转化均能通过一步反应实现的是
 - A. $Na \rightarrow NaHCO_3 \rightarrow Na_2CO_3 \rightarrow NaOH$
 - B. $H_2S \rightarrow S \rightarrow SO_2 \rightarrow Na_2SO_4$
 - C. Fe \rightarrow FeCl₂ \rightarrow Fe₂O₃ \rightarrow Fe(OH)₃
 - D. $Si \rightarrow SiO_2 \rightarrow H_2SiO_3 \rightarrow Na_2SiO_3$

13. 下列实验操作正确的是

- A. 用图甲证明氧化性 KMnO₄ > Cl₂ > S
- B. 用图乙测定中和热

C. 用图丙制备 NH3

- D. 用图丁制备胆矾晶体
- 14. 短周期主族元素 $X \times Y \times Z \times M \times N \times Q$ 的原子序数依次增大,其中 X 的一种原子无中子, $Y \times N$ 同主族,Y 的最外层电子数是周期数的 3 倍,Z 与 Y 的核电荷数之差为
 - 3, M 是地壳中含量最多的金属元素。下列说法错误的是
 - A. Y、M、N的简单离子半径: N>Y>M
 - B. Z、M、Q的最高价氧化物的水化物两两之间均能反应
 - C. Y和N形成的化合物不满足8电子稳定结构
 - D. M 分别与 Y 和 Q 形成的化合物具有相同的化学键
- 15. 已知: NCl₃为黄色油状易水解的液体,熔点为-40℃,沸点为 70℃,95℃以上易爆炸。实验室可用 Cl₂和 NH₄Cl 溶液反应制取 NCl₃,装置如图所示,下列说法正确的是

- A. 仪器 a 的名称是蒸馏烧瓶
- B. 装置 B 需控制水浴温度为 70℃~95℃
- C. 应先对装置 B 进行加热, 再由仪器 b 的下口通入冷水
- D. 装置 D 的作用只是除去尾气
- 16. 钒电池具有特殊的电池结构,具有充电迅速、比能量高、价格低廉等优点,工作原理如图所示。酸性溶液中钒通常以 V²⁺、V³⁺、VO²⁺、VO₂⁺等形式存在,离子颜色依次为紫色、绿色、蓝色、黄色。放电过程中,a 极电解质溶液由紫色变为绿色。下列说法错误的是

- A. 该电池工作原理为: $VO_2^+ + V^{2+} + 2H^+ \rightarrow \frac{\dot{M}e}{\dot{n}e} VO^{2+} + V^{3+} + H_2C$
- B. 放电时, H+由质子交换膜左侧移向右侧
- C. 充电时, a 极发生还原反应, 应接电源正极
- D. 充电时, b 极附近溶液黄色加深

17. 下列实验操作和现象以及实验结论均正确的是

选项	实验操作和现象	实验结论
A	向浓硫酸和少量铜反应后的溶液中 加入适量蒸馏水,溶液呈蓝色	铜和浓硫酸反应生成了硫酸铜
В	向溴水中滴入适量苯,水层颜色变浅	溴水和苯发生了加成反应
С	向双氧水中滴加某溶液, 双氧水迅速 产生气泡	该溶液中一定含有催化剂
D	向淀粉水解液中滴入少量碘水,溶液 变蓝	淀粉未水解完全

- 18. 常温下,有关下列溶液的说法正确的是
 - A. pH 相同的 CH₃COONa 溶液和 NaHCO₃ 溶液, 前者的 c(Na⁺)更大
 - B. pH 相同的等体积的 HCl 溶液和 H2SO4溶液,后者中和 NaOH 的能力更强
 - C. pH 相同的 NH₄Cl 溶液和 CH₃COOH 溶液, 两者水的电离程度相同
 - D. 向 AgCl 悬浊液中滴入饱和 NaCl 溶液, 悬浊液中沉淀质量不变
- 19. 电芬顿法是利用电化学法产生 Fe²⁺和 H₂O₂,两者作用生成的具有高度活性的羟基自由基(•OH)能使有机污染物得到降解,从而达到高效的废水净化效果,其耦合系统原理示意图如图所示(甲、乙两池中电解质溶液为稀硫酸)。下列说法正确的是

- A. 工作时,将电能转化为化学能的装置是甲
- B. 该装置中电流方向是 a 电极 \rightarrow Y 电极,X 电极 \rightarrow b 电极
- C. 理论上当甲池消耗 1 mol CH₃OH 时, 乙池中产生的•OH 为 3 mol
- D. 一段时间后, 甲池中溶液的 pH 减小
- 20. 常温下,向二元弱酸 H_2Y 溶液中滴加 NaOH 溶液,所得混合溶液的 pH 与离子浓度 的变化关系如图所示,下列说法错误的是

- A. 曲线 N 代表 pH 与 $\lg \frac{c(HY^-)}{c(Y^{2-})}$ 的变化关系
- B. 由图可知, H₂Y 第二步电离平衡常数的数量级为 10⁻²
- C. 在交叉点 "b", $c(H_2Y) = c(Y^{2-})$
- D. 由图可知, NaHY 溶液显酸性

二、非选择题:本题共6小题,共60分。

21. (14分)

氮的价类二维图如下。回答下列问题:

- (1) 从氮元素的价态角度分析,物质 B 具有 性。
- (2) KNO₃ 是生产黑火药的原料之一, 其爆炸反应为:

$$2KNO_3 + 3C + S$$
 引燃 $K_2S + N_2\uparrow + 3CO_2\uparrow$

该反应中非金属元素的原子半径从小到大的顺序是_____,标准状况下,生成 33.6 L CO₂时,转移电子的数目为。

- (3) 在催化剂和加热的条件下,物质 $A \subseteq O_2$ 反应生成 NO 是工业制物质 C 的重要反应,其化学方程式为 。
 - (4) 下列事实能证明碳元素与氮元素非金属性相对强弱的有 (填标号)。
 - A. 单质熔点: C>N₂
- B. 酸性: HNO₃ > H₂CO₃
- C. 沸点: NH₃ > CH₄
- D. 分解温度: NH₃ > CH₄
- (5) 对工业尾气中 NO 和 NO₂ 脱除后产生的含 NO₃ 溶液可用下图装置在弱酸性条件下进行电化学环保处理。碳电极上的电极反应式为_____,若甲室处理 37.2 g NO₃ ,则 乙室可生成 ____ mol N₂。

22. (10分)

从物质结构的视角认识乙酸(CH₃COOH)。回答下列问题:

- (1)下列可用于区别乙酸和乙醇的试剂有 (填标号)。
 - A. 蒸馏水

B. 紫色石蕊试液

C. NaHCO₃溶液

- D. 酸性 KMnO4溶液
- (2) 乙酸中含有的官能团名称为_____; CH₃COOH 分子中,最多有______个原子共平面。
- (3)推测乙酸的熔点比十八酸(C₁₇H₃₅COOH)的_____(填"高"或"低"),其理由是___。

(4) 不同羧酸 25℃时的 pKa(即-lgKa) 如下表所示:

羧酸	pK_a	氯代羧酸	pK _a
甲酸(HCOOH)	3.75	氯乙酸(CH₂ClCOOH)	2.86
乙酸(CH₃COOH)	4.76	二氯乙酸(CHCl2COOH)	1.29
丙酸(C₂H₅COOH)	4.88	三氯乙酸(CCl ₃ COOH)	0.65

对比表中已知数据,从分子组成与结构角度,写出2条与酸性相关的结论:____、

_____。 (5) 写出乙酸的同分异构体中能发生水解反应的结构简式:_____。 23. (8分)

某化学兴趣小组对鸡蛋壳中 $CaCO_3$ 的质量分数进行了测定(假设蛋壳中的其他物质不与盐酸反应)。五个已知质量不同的 $CaCO_3$ 样品在相同的密封的刚性反应容器中与过量的 $2.0 \text{ mol·} L^{-1}$ HCl(aq) 反应,所产生的气体压强用附在反应容器上的压强传感器测量。实验数据被用来创建下面的校准线:

用蛋壳样品重复实验,实验数据记录如下表所示:

蛋壳样品质量	0.2 g	
反应前压强	0.800 atm	
反应后压强	0.870 atm	

回答下列问题:

A. 30%

- (1) 题干所述反应的离子方程式为。
- (2) 由于该反应是放热的,故在记录压强之前,反应系统需。
- (3) 实验用到的定量仪器有压强传感器和
- (4) 配制 2.0 mol·L⁻¹ 稀 HCl 时,其正确的操作顺序是(每个操作只用一次)_____(填标号)。
 - A. 将已冷却的溶液沿玻璃棒注入容量瓶中
 - B. 用量筒量取所需浓盐酸的体积,倒入烧杯中,再加入适量水,用玻璃棒慢慢 搅拌,使其混合均匀

C. 60%

D. 75%

- C. 用适量水洗涤烧杯 2~3 次,洗涤液均注入容量瓶中
- D. 改用胶头滴管加水, 使溶液凹液面恰好与刻度线相切
- E. 将容量瓶盖紧,振荡,摇匀
- F. 继续往容量瓶内小心加水,直到液面接近刻度线 1~2 cm 处
- (5) 蛋壳样品中 CaCO3 的质量分数最接近 (填标号)。
- (6) 下列措施可提高该反应速率的有 (填标号)。

B. 45%

- A. 用 2.0 mol·L⁻¹ CH₃COOH(aq)代替 2.0 mol·L⁻¹ HCl(aq)
- B. 将 HCl(aq)冷却到比原实验更低温度
- C. 选择体积更小的反应容器
- D. 将蛋壳研磨成更小的粉末

24. (9分)

现有一无色透明酸性溶液 120 mL,欲确定是否含有下列离子: K^+ 、 Mg^{2+} 、 Al^{3+} 、 Cu^{2+} 、 Ba^{2+} 、 NH_4^+ 、 Fe^{3+} 、 Cl^- 、 I^- 、 NO_3^- 、 SO_4^{2-} 、 HCO_3^- ,将溶液均分成三等份,分别进行如下实验:

第一份: i. 加入少量氯水后, 再加入 CCl4 溶液, 有机层为紫红色;

ii. 再向水层加 AgNO3 溶液有稳定的白色沉淀生成,且不溶于稀硝酸;

第二份:加入足量 BaCl₂ 溶液,有白色沉淀生成;

第三份: i.加入过量 NaOH 溶液并加热,生成白色沉淀、并有刺激性气味的气体和溶液 A 生成;

- ii. 向溶液 A 中通入过量 CO_2 , 加热、过滤、洗涤、灼烧,得到白色固体(1.02 g)。 回答下列问题:
- (1)不做任何实验便可确定不存在的离子有_____,通过以上实验可判断溶液中肯定存在的阴离子是 ,可能存在的阴离子是 。
- (2)为进一步确定其它阳离子的存在,应该补充的实验的名称为(不必写详细操作步骤)。
 - (3) 第三份中步骤 ii 加热的目的是____。
 - (4) 原溶液中 $c(Al^{3+}) = ____mol\cdot L^{-1}$ 。

25. (9分)

铂(Pt)是一种贵重金属,广泛用于化工领域。从某废催化剂(主要含有 Pt、C、Al₂O₃、MgO)中回收 Pt 的一种工艺流程如图所示。回答下列问题:

- (1) 步骤 I 焙烧的目的是 , 操作 X 的名称 。
- (2)实验人员采用三种不同的浸出试剂分别研究过程 II 中 Pt 的浸出率。所用的浸出试剂分别是 HCl-H₂SO₄-NaClO₃、HCl-NaClO₃和 HCl-H₂O₂。
 - ① 将下列浸出反应的离子方程式补充完整:

- ② 当 NaClO₃ 或 H₂O₂ 作为氧化剂浸出等量 Pt 时, n(NaClO₃): n(H₂O₂) =
- ③ $c(H^+)$ 相同、浸出时间相同时,三种浸出试剂对 Pt 的浸出率如下表所示:

种类	氧化剂浓度/ mol·L-1	0.1	0.2	0.3	0.4
甲	HCl-H ₂ SO ₄ -NaClO ₃ 对 Pt 的浸出率/%	72.7	78.2	77.5	75.4
乙	HCl-NaClO₃对 Pt 的浸出率/%	79.6	85.3	82.1	81.6
丙	HCl-H ₂ O ₂ 对 Pt 的浸出率/%	80.0	85.6	83.2	82.5

注: $c(NaClO_3)$ 按照②中的物质的量关系换算成 $c(H_2O_2)$ 计。

以 $HCl-NaClO_3$ 为例,说明当其中氧化剂浓度大于 $0.2 \text{ mol} \cdot L^{-1}$ 时,Pt 的浸出率降低的原因:随着 $c(NaClO_3)$ 增大,其氧化性增强,部分 ClO_3 被_____还原而消耗。

26. (10分)

天然气开采产生的废气普遍含有硫化氢,需要回收处理并加以利用。回答下列问题:

- (1) 已知下列反应的热化学方程式:
 - ① $4H_2S(g) \rightleftharpoons S_4(g) + 4H_2(g)$ $\Delta H_1 = +361 \text{ kJ} \cdot \text{mol}^{-1}$;
 - ② $2CS_2(g) + 4H_2(g) \Longrightarrow 2CH_4(g) + S_4(g) \quad \Delta H_2 = -160 \text{ kJ} \cdot \text{mol}^{-1}$.

则反应③ $CH_4(g) + 2H_2S(g) \longrightarrow CS_2(g) + 4H_2(g)$ 的 $\Delta H_3 = _____ kJ \cdot mol^{-1}$; 下列叙述 能说明反应③达到平衡状态的有 (填标号)。

- A. 断裂 4 mol C—H 的同时生成 4 mol H—H
- B. 恒容条件下, 体系压强不再变化
- C. 恒压条件下, 气体的密度不再变化
- D. 容器内 CH₄、H₂S、CS₂、H₂的物质的量之比为 1:2:1:4
- (2) 反应②在 (填"高温"或"低温") 能自发进行
- (3)反应①在不同温度、压强均为 100 kPa、进料中 H_2S 的物质的量分数为 0.1%~ 20%(其余为 Ar)的条件下, H_2S 的平衡转化率如图所示。 T_1 、 T_2 和 T_3 的大小关系为______; 进料中 H_2S 的物质的量分数越大, H_2S 的平衡转化率越小的原因是_____。

(4) 在 1000 K、100 kPa 条件下,向体积为 VL 的密闭容器中通入 $n(CH_4) = n(H_2S) = 3 \text{ mol}$,n(Ar) = 2 mol 的混合气发生反应③,当达到平衡时, CS_2 的分压与 H_2S 的分压相同,则反应③达到平衡时容器体积为开始体积的