The DIALOG Project

Tutorial Dialog with a Mathematical Assistant System

The DIALOG Group

Overview

Architecture for DIALOG

Domain: Naive Set Theory

- Is domain well chosen?
 - What advantages has the domain?
 - Representative also for other domains?
 - Suitable for empirical studies?
 - Manageable by OMEGA?
 - Enough interesting structure?

Some aspects will be addressed later ...

Method: Increasing Refinement

Method: Increasing Refinement

DiaWoZ

System that supports the design and execution of *Wizard-of-Oz* experiments

- Combination of finite-state automata and information-state based dialog model (TRINDI)
- Global and local variables (for subdialogs)
- Dialog Authoring and Dialog Execution components

Armin Fiedler, Malte Gabsdil, Christian Korthals, Elsa Pecourt

Architecture of DiaWoZ

Dialog Specification

Information State:

NEUTRAL: open

INVERSE: open

ASSOCIATIVE: open

An Example Dialog

(U1) **Tutor:** To show that (Z, +) is a group, we

have to show that it has a neutral ele-

ment, that each element in Z has an

inverse, and that + is associative in

Z.

(U2) **Tutor:** What is the neutral element of Z with

respect to +?

(U3) **Student:** 0 is the neutral element, and for each

n in Z, -n is the corresponding in-

verse.

(U4) **Tutor:** That leaves us to show associativity.

DiaWoZ Interface

DIALOG and ACTIVE MATH

Mathematical Knowledge

Theorem

$$(A \subseteq B) \Rightarrow (B^c \subseteq A^c)$$

Tactic

$$\frac{B\subseteq A}{A^c\subset B^c}\subseteq^{c-1}$$

Diagram:

Venn-Diagrams for Counterexamples

Further Mathematical Knowledge

$$\in \text{-U-IL}: e \in A \Rightarrow (e \in A \cup B)$$

$$\frac{e \in A}{e \in A \cup B} \in -\cup -IL$$

$$\subseteq -\cup -\mathrm{IL} : A \subseteq B \Rightarrow (A \subseteq B \cup C) \qquad \frac{A \subseteq B}{A \subseteq B \cup C} \subseteq -\cup -\mathrm{IL}$$

$$\frac{A \subseteq B}{A \subset B \cup C} \subseteq -\cup -\mathsf{IL}$$

$$\subseteq -\cap -\mathrm{IL} : (A \subseteq C) \Rightarrow (A \cap B \subseteq C) \qquad \frac{A \subseteq C}{A \cap B \subseteq C} \subseteq -\cap -\mathrm{IL}$$

$$\frac{A\subseteq C}{A\cap B\subseteq C}\subseteq -\text{-IL}$$

$$\wp\text{-I}:(A\subseteq B)\Rightarrow (A\in\wp(B))$$

$$\frac{A \subseteq B}{A \in \wp(B)} \ \wp^{-1}$$

User Knowledge

Student A:

- Novice in Set Theory
- Has studied the following concepts:
 - Definitions: \in , \cap , \cup , \subseteq , \wp , set-complement
 - Theorems: $\subseteq -\cap -IL : (A \subseteq C) \Rightarrow (A \cap B \subseteq C)$
 - etc.

Student B: ...

Tutorial Knowledge

Novice student should solve exercises with mathematical knowledge that have been taught in the ACTIVEMATH tutorial.

```
\textbf{Chapter1,Ex1} \qquad \rightarrow R = \{ \subseteq \text{-REF}, \in \text{-}\cup \text{-}\text{IL}, \subseteq \text{-}\cup \text{-}\text{IR}, \subseteq \text{-}\cap \text{-}\text{IL}, \text{-}\wp \text{-}\text{I} \}
```

- If novice student does not understand an application of $r \in R$ then employ one of the following
 - 1. show/explain the Venn-Diagram for r
 - 2. \blacksquare explain instantiation of r
 - choose theorem r as exercise (recursion!)
 - 3. refer to ACTIVEMATH text for r
 - 4. ...

Architecture for DIALOG

Challenge for OMEGA & Ω -Ants

Proof Planning in OMEGA & Ω -Ants with resources:

- inference rules
- control knowledge to structure the search space

```
Teacher model \rightarrow T = (inf-rules-1, control-1)
User model \rightarrow U = (inf-rules-2, control-2)
```

CONSTRUCT-PROOF(T) → Teacher proof vs.

CONSTRUCT-PROOF(U) → Predictable steps of user

Example Proof

$$A \cap B \in \wp((A \cup C) \cap (B \cup C))$$

OMEGA(

ND \cup { \subseteq -REF, \subseteq - \cap -I, \subseteq - \cap -IR, \subseteq - \cup -IR, \subseteq -\(\text{\

$$\frac{\frac{\top}{A \subseteq A} \subseteq \text{-REF}}{\frac{A \subseteq A \cup C}{A \cap B \subseteq A \cup C} \subseteq \text{-U-IL}} \qquad \frac{\frac{\top}{B \subseteq B} \subseteq \text{-REF}}{\frac{B \subseteq B \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL}} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq A \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B \cup C} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B} \subseteq \text{-U-IL} \\ \frac{A \cap B \subseteq A \cup C}{A \cap B \subseteq B}$$

Example Proof

To show:

By \wp -I enough to show:

By $\subseteq -\cap -1$ we have to show (1) and (2):

By ⊆-∩-IL enough to show

By ⊆-∪-IL enough to show

Follows by ⊆-REF

2.

By ⊆-∪-IL enough to show

By ⊆-∩-IR enough to show

Follows by ⊆-REF

q.e.d.

$$A \cap B \in \wp((A \cup C) \cap (B \cup C))$$
$$A \cap B \subseteq (A \cup C) \cap (B \cup C)$$

$$A\cap B\subseteq A\cup C$$

$$A \subseteq A \cup C$$

$$A \subseteq A$$

$$A \cap B \subseteq B \cup C$$

$$A \cap B \subseteq B$$

$$B \subseteq B$$

⇒ Note multiplicities in proof: proof abstraction is needed

Enough structure in Naive Set Theory

Problem:

 $(A \cup B)^c \subseteq A^c$

By \subseteq^c enough to show:

 $A \subseteq A \cup B$

By $\subseteq -\cup -IL$ enough to show:

 $A \subseteq A$

Follows by ⊆-REF

q.e.d.

Assume: Student does not understand application of \subseteq^c According to our tutorial knowledge we would

- 1. show/explain Venn diagram for \subseteq^c
- 2. \blacksquare explain instantiation of \subseteq^c
 - \blacksquare choose theorem \subseteq^c as exercise (recursion!)
- 3. refer to ACTIVEMATHtext for \subseteq^c

Enough structure in Naive Set Theory

(2b) Proof of \subseteq^c :

$$X\subseteq Y\Rightarrow Y^c\subseteq X^c$$

By \Rightarrow -I we assume $[X \subseteq Y]$ and show

By Defn-I(c) enough to show

By $\subseteq -\setminus$ enough to show

 $Y^c \subseteq X^c$

 $\mathcal{U} \setminus Y \subseteq \mathcal{U} \setminus X$

 $\mathcal{U} \subseteq \mathcal{U}$ and $X \subseteq Y$

The former follows by ⊆-REF and the latter from the assumption.

q.e.d.

⇒ Update of User Model

Assume: Student does not understand $\subseteq -\setminus$ step.

. . .

(2b) Subdialog on proof problem: $A \subseteq B \land C \subseteq D \Rightarrow A \setminus D \subseteq \mathbf{B} \setminus C$

. . .

Further steps in the project

Empirical Studies

- 1. Set up a set theory tutorial, fix the set of exercises
- 2. Analyze the proof information available from OMEGAfor DIALOG
- 3. First model of system architecture
- 4. Choose tutorial strategies/pedagogical rules
- 5. First coarse specification of dialog session with DiaWOZ
- 6. Perform empirical study and evaluate
- 7. . . .

Further steps in the project

Implementation in ACTIVEMATH

- Provide section on Naive Set Theory together with examples
- 2. Analyze and probably adapt features of ACTIVEMATH, e.g. user modeling, according to our needs
- 3. Perform empirical studies already with ACTIVEMATH?

Further steps in the project

Conception/Realization of Modules

- 1. Tutor model interface
- 2. Student model interface
- 3. Partial realization of single aspects of the proof manager
- 4. Proof abstraction (e.g. with outline proof search)