Robot Motion Planning Configuration Space and Bug Algorithms

A. Narayanan¹

¹Department of Informatics

August 6, 2022

Overview of Concepts in Motion Planning

Classification

Mathematical Notations

Bug Algorithms

Assumptions

Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Overview of Concepts in Motion Planning Classification

Mathematical Notations

Bug Algorithms

Assumptions

Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Classification by concepts

Task	Robot	Algorithm
Navigate	Configuration space, degree of freedom	Optimal/nonoptimal motions
Мар	Kinematic/dynamic	Computational complexity
Cover	Omnidirectional or motion constraints	Completeness (resolution, probabilistic)
Localize		Online/offline Sensor- based/world model

- ► The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- ▶ Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- ▶ Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ▶ Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- ▶ Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- ▶ Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- ▶ Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- ▶ Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- ▶ Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

- The most important characterization of a motion planner is according to the problem it solves. The four major tasks are navigation, coverage, localization, and mapping.
- ▶ Navigation is the problem of finding a collision-free motion for the robot system from one configuration (or state) to another.
- Coverage is the problem of passing a sensor or tool over all points in a space, such as in demining or painting.
- ► Localization is the problem of using a map to interpret sensor data to determine the configuration of the robot.
- Mapping is the problem of exploring and sensing an unknown environment to construct a representation that is useful for navigation, coverage, or localization.
- Localization and mapping can be combined, as in SLAM.

Classification by Robot Properties

Todo...

Classification by Algorithm

Todo...

Overview of Concepts in Motion Planning

Classification

Mathematical Notations

Bug Algorithms

Assumptions

Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{\mathit{free}}$ Free Workspace
- Q Configuration Space
- ▶ QO_i the ith Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{free}$ Free Workspace
- ▶ Q Configuration Space
- ▶ QO_i the ith Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path.

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{\mathit{free}}$ Free Workspace
- ▶ Q Configuration Space
- \triangleright QO_i the i^{th} Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path.

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{\mathit{free}}$ Free Workspace
- ▶ Q Configuration Space
- \triangleright QO_i the i^{th} Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path.

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{\mathit{free}}$ Free Workspace
- ▶ *Q* Configuration Space
- \triangleright QO_i the i^{th} Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path.

- W Workspace
- $\triangleright \mathcal{WO}_i$ the i^{th} Obstacle
- $ightharpoonup \mathcal{W}_{free}$ Free Workspace
- ▶ Q Configuration Space
- \triangleright QO_i the i^{th} Obstacle in Config Space
- R(q) Set of points in ambient space occupied by the robot at config q

Figure: A path.

Overview of Concepts in Motion Planning Classification Mathematical Notations

Bug Algorithms Assumptions

Bug 0 Algorithm Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Assumptions

- ► Assume a point robot
- Assume a zero range sensor
- Assume the robot can measure d(x, y) between any $x \in \mathbb{R}^2$ and $y \in \mathbb{R}^2$ in a bounded workspace

Overview of Concepts in Motion Planning Classification Mathematical Notations

Bug Algorithms

Assumptions

Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Overview of Concepts in Motion Planning Classification Mathematical Notations

Bug Algorithms

Assumptions
Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm Tangential Bug Algorithm

Overview of Concepts in Motion Planning Classification Mathematical Notations

Bug Algorithms

Assumptions Bug 0 Algorithm Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Overview of Concepts in Motion Planning Classification Mathematical Notations

Bug Algorithms

Assumptions

Bug 0 Algorithm

Bug 1 Algorithm

Bug 2 Algorithm

Tangential Bug Algorithm

Summary

- ► The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.