1

Section: 9

Question -1:

given, bigsed exponent is 6 bits and 18 bit IEEE754

So,

Sign bit baised expount Fraction

1 6 bits 111t

110.101 × 10-2

=> 1.10101 LELO & YESRA

Step: 1
now, 1 in Binary -> 0001

1. 90101 in Binary ?

0.10101 x 2 z 0.20202 z 0

0. 20202 x2 2 0.40404 = 0

0.40404 X 2 2 0.80808 20

0. 80808 × 2 2 1.61616 = 1

a.61616 x 2 2 1.23232 21

0.23232×2 = 0.46469 = 0

0.46 46 4×2 2 0.92928 20

0.92928×2 = 1.85856 = 1

0.85856x2 2 1.71712 21

0,71712 x 2 = 1. 43424 = 1

Step-2:1. 10101 in Binary = 0001. 0001100111

(normalized value) = 1.0001100111 × 2°

: baised enpount = 0 + 31

in Binary 2 011111

step-4:now signed bit 20

Fraction = @ 0001100 1110 in 11 bits

final step:IEEE-754 18 bit Floating point Reptre sentation.

- 0 011111 00011,001110

2 (0 011111 00011001110)2 in Binary

Question -2 !-	1. h:t	Arch tectu	le,
as hardware is	0 +	0010	in Binery (4 bit)
So, multiplicand	. 4 -	0100	in Binary (4 bit) in Binary (8 bit)
multiplier ; pro	=> 1 - 1 = 0	000 0100	in Binory (0 s.
how		1 19-13	o lect

thow, Staration	multiplicand 0010	Product 0000 0100 Right shift 1 bit
1	0010	00000 010
2	0010	Right shift 1 bit 00000001
3	0010	0000 + 0010 0010
	(10\$)SE . 17\$	new product -> 0010 0001
		Right shift 1 bit
4	0010	2) 00010000 Right shift 1 bit
	(1)	00001000

:. product = 00001000 (in Binary)
= 8 (in Decimal)

Question -3: $C \rightarrow 51 $A \rightarrow 52 $J \rightarrow $f2$ C[3] = A[5] - 9 + (floot) JMIPS code: $lw \Leftrightarrow to $f0, -20($52)$ addi \$f0, \$f0, -9

mfc1 \$f0, \$f3 cvt.s.w & \$f3, \$f3

add. s \$f4, \$f3, \$f2 swc1 \$f4, 12(\$61)