

MARWADI UNIVERSITY

Faculty of Engineering

[B.Tech] [Computer]

SEM: 4 **MU FINAL EXAM** May: 2023

Subject: - (DM) (01CE0409) Date:-09/05/2023

Total Marks:-100 Time: 3 hour

Instructions:

- 1. All Questions are Compulsory.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Do not write/sign/indication/tick mark anything other than Enroll No. at a specific place on the question paper.

Question: 1.

MCQ [10] (a)

- 1. Which of the following statements is/are TRUE for graphs?
 - P: Degree of all vertexes in Euler graph is Odd.
 - Q: Petersen graph is Euler graph.
 - (a) P only
- (b) Q only
- (c) Both P and Q (d) Neither P nor Q
- 2. Which of the following statement is true?
 - (a) A tree with n vertices has n-3 edges.
 - (b) A single vertex in graph G is a sub-graph of G.
 - (c) Every graph is not its own sub graph.
 - (d) The pendent vertices of a graph are always of degree 5.
- 3. Degree of Pendent vertex is _____?
 - (a) 1
- (b) 2
- (c) 0
- (d)5
- 4. For the given graph G, which of the following statement is true?

(a) it is complete graph

- (b) it is disconnected graph
- (c) Its edge connectivity is One.
- (d) Its vertex connectivity is two.
- 5. A connected planar graph having 6 vertices, 7 edges contains _____ faces.
 - (a) 5
- (b) 3
- (c) 6
- (d) 7
- 6. For the two statement **X** and Y, $X \equiv Y$ if
 - (a) $Y \rightarrow X$ is tautology
- (b) $(Y \leftrightarrow X)$ is tautology.
- (c) $X \rightarrow Y$ is tautology
- (d) $X \leftrightarrow X$ is tautology

1 | MARWADI UNIVERSITY

7. Which of the following is a Bounded lattice?

- (a) (N, D)
- (b) (R, \leq)
- (c) (Z, D)
- (d) (S_{45}, D)

8. Which of the following is a Chain?

- (a) (Z,D)
- (b) (R, \leq)
- (c) (S_{10}, D)
- (d) None of these

9. Relation "is brother of" on the set of all males in universe is

- (a) Reflexive
- (b) Antisymmetric (c) transitive
- (d) symmetric

10. The relation $\{(1,1),(2,1),(1,2)\}$ for set $A = \{1,2,3\}$ is _____.

- (a) Reflexive
- (b) Transitive
- (c) Symmetric (d) Anti-symmetric

(b) Answer in Short. [10]

- 1. Define Complete Graph.
- 2. Define Null graph.
- 3. What is edge connectivity of K_5 ?
- 4. Write formula of circuit rank.
- 5. Define regular graph.
- 6. What is chromatic number of $K_{3,5}$?
- 7. What is vertex connectivity of Petersen graph?
- 8. Define Trivial Graph.
- 9. Define Simple graph.
- 10. Define Separable graph.

Question: 2.

Apply Kruskal's algorithm to find minimal spanning tree of following graph. (a) [80]

(b) Prove that (N, Min, Max) is lattice as algebraic system [08]

OR

(b) Prove Associative laws using truth table. [80]

(i) $p \land (q \land r) \equiv (p \land q) \land r$ (ii) $p \lor (q \lor r) \equiv (p \lor q) \lor r$

2 | MARWADI UNIVERSITY

Question: 3.

(a) Define tree and Prove that tree has n vertices has n-1 edges

[08]

(b) Derive Adjacency matrix and Incidence matrix for following graph

[04]

(c) Write Definition of cut-sets and derive six different cut-sets of following graph. [04]

OR

(a) Prove that complete graph with five vertices is Non-planar.

[08]

(b) Define Adjacency and incidence matrix. Derive both matrix for K_4

[04]

(c) Explain following and derive it for graph K_{3,5}
(i) Edge connectivity (ii) vertex connectivity

[04]

Question: 4.

(a) State and Prove Euler 's Formula for Planar Graph.

[08]

(b) Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$ [08]

OR

(a) Explain Fundamental Cut sets and Derive all possible fundamental cut sets of following graph as per your spanning tree for this graph. [08]

Enroll. I	No.	
	10.	

(b) Prove that in a graph the number of the vertices with odd degree is even in quantity [08]

Question: 5.

(a) Check the validity of the following argument.

$$p \vee q$$

$$p \rightarrow r$$

$$q \rightarrow r$$

(b) Check that statements are tautology or not.

[06]

[06]

[06]

$$(1) (p \lor q) \leftrightarrow (q \rightarrow p)$$

(2)
$$(p \land q) \rightarrow r$$

- (c) Find the value of $\forall x \ p(x)$ and $\exists x \ p(x)$ for the following cases where the domain of discourse is the set of all real numbers [04]
 - (1) p(x): (x+1) is an odd integer.
 - (2) p(x): $2x \le x^2$

OR

(a) Prove the following laws using truth table.

$$(1) p \wedge (p \vee q) \equiv p \qquad (2) p \vee (p \wedge q) \equiv p$$

- (b) State and prove De Morgan Low using truth table. [06]
- (c) Find the value of $\forall x \ p(x)$ and $\exists x \ p(x)$ for the following cases where the domain of discourse is the set of all real numbers [04]
 - (1) p(x): 2x+1=1
 - (2) p(x): $x^2 + 2x + 5 \le 100$

Question: 6.

(a) Show that set of all positive rational numbers forms an abelian group under the

Composition * defined as
$$a * b = \frac{ab}{2}$$
 [08]

- (b) Check whether $\langle Z, R \rangle$ is Poset or not where aRb if and only if a = nb for positive integer n. [04]
- (c) For the permutation $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$ [04] Find 1] $A \cdot B$ 2] $B \cdot A$ 3] A^{-1} 4] $A \cdot B^{-1}$

OR

- (a) Prove that $(P(A), \cap, \bigcup)$ is a lattice as poset. Where $A = \{1, 2, 3\}$
- (b) Find the covers of all elements and draw the Hasse diagram of (S_{30}, D) [04]
- (c) The set $G = \{1,2,3,4,5,6\}$ is a group with respect to multiplication modulo 7 [04]

---Best of Luck---

MARWADI UNIVERSITY 4 |

- Bloom'S Taxonomy Report -

Sub: DM Sem.4

Branch: CE

Que. Paper weightage as per Bloom's Taxonomy

LEVEL	% of weightage	Question No.	Marks of
			Que.
Remember/Knowledge	20%	Q. 1(a), Q. 1b)	20
Understand	40%	Q. 2 (a), Q.2 (b), Q. 3 (a), Q.3 (b), Q. 3(c), Q. 4(a)	40
Apply	40%	Q. 4(b), Q. 5 (a), Q.5 (b), Q. 5(c), Q. 6 (a), Q.6 (b), Q. 6(c)	40
Analyze			
Evaluate			
Higher order Thinking/ Creative			

Chart/Graph of Bloom's Taxonomy

MARWADI UNIVERSITY 5 |