1. Consider the function $f(x) = 4*x^3-2$. Create a vector 'x' bounded by [2,6] with an increment 1. Compute the function values at each discrete 'x' point and plot the f(x)-x diagram.

Point	Х	f
f_1	2	30
f_2	3	106
f ₃	4	254
f ₄	5	498
f_5	6	862

In this figure, the area under each line is a trapezoid. Using a 'for loop' compute the areas and store them in a vector 'A' such that $A = [A1 \ A2 \ A3 \ A4]$.

Answer: A = [68 180 376 680]

Hint: The area of the first trapezoid can be computed with the following command line: A(1) = h*(f(1)+f(2))/2 where h = 1.

2. Woodall numbers has the following form (For further information about the Wodall numbers you can check: http://mathworld.wolfram.com/WoodallNumber.html).

$$W_n = 2^n * n - 1$$

Using a 'while loop' and an 'if condition' create an array 'W' for $n \ge 1$. The largest number of the array should not exceed 10^4 .

Then, using a 'for loop' compute the sum of all elements of W.

$$WS = 8185$$

Furthermore, compute the average of all elements of W.

$$WA = 909.4444$$

3. The projectile motion is illustrated in the figure below.

The position of the projectile at any time 't' is given with the following formulas:

$$y = y_0 + V_0 * sin\theta * t - \frac{1}{2} * g * t^2$$

$$x = x_0 + V_0 * cos\theta * t$$

Create a time domain t which is bounded by [0:4] with an increment 0.2 seconds. Take initial velocity $V_0 = 20$ m/s, initial height $y_0 = 20$ m, the slope $\Theta = 47$ degrees and gravitational acceleration g = 9.81 m/s². Using the given inputs, compute the position of the projectile at each 't' value. Plot the trajectory.

Hint: For degrees use sind(x) function.

Answer:

4. Create an array 'F' of Fibonacci numbers using a 'for loop'. Use the first 10 elements of the Fibonacci numbers. These numbers start with 1,1.. and previous two terms are added to give the third term such that F(1) = 1, F(2) = 1, F(3) = F(1) + F(2) = 2, F(4) = F(2) + F(3) = 3, F(5) = F(3) + F(4) = 5 and so on. (For further information about the Fibonacci numbers you can check: http://mathworld.wolfram.com/FibonacciNumber.html).

Answer: F = [1 1 2 3 5 8 13 21 34 55]

5. Consider the function $f(x) = 1/x^2$. For an approximation with Taylor Series Expansion, we need the derivatives of function f(x). The first three derivatives of this function are $f^{(1)} = -(2)/x^3$, $f^{(2)} = (2)*(3)/x^4$ and $f^{(3)} = -(2)*(3)*(4)/x^5$. First, express the n^{th} derivative of this function using the provided pattern (Not with MATLAB). Then, write a script that takes 'n' and 'x' as inputs to compute the n^{th} derivative of f(x) at point x. Check the validity of your script with the provided answers.

n	X	$f^{(n)}$
3	1	-24
5	2	-5.625
4	2	1.875

6. In the figure above, the dimensions of an I-section are given. Create a vector 'b' bounded by [400,600] with an increment 20. Compute the distance of the neutral axis from the base and the moment of inertia of the section for each element of 'b'.

Hint: Separate the section into 3 pieces as shown in the figure.

b (mm)	yn (mm)	I (mm ⁴)
400	200.0000	1.150E+09
420	196.8421	1.176E+09
440	193.7931	1.201E+09
460	190.8475	1.224E+09
480	188.0000	1.247E+09
500	185.2459	1.270E+09
520	182.5806	1.291E+09
540	180.0000	1.312E+09
560	177.5000	1.333E+09
580	175.0769	1.352E+09
600	172.7273	1.371E+09

7. $\sqrt{2}$ can be approximated with the following iterative way.

$$a_{k+1} = \frac{a_k}{2} + \frac{1}{a_k}$$

Take the initial value $a_0 = 1$, take tolerance 10^{-5} , use approximate absolute relative error and iteratively compute $\sqrt{2}$.

$$\varepsilon_R = \left| \frac{a_{k+1} - a_k}{a_{k+1}} \right|$$

Answer:

1 1115 11 011		
n	$a \approx \sqrt{2}$	err
0	1.000000	<u></u>
1	1.500000	3.333E-01
2	1.416667	5.882E-02
3	1.414216	1.733E-03
4	1.414214	1.502E-06

8. Following formula relates the annual payment (A) and the present value (P) of an equipment or a service.

$$A = P * \frac{i * (1+i)^t}{(1+i)^t - 1}$$

In this notation i represents the interest rate and t represents the payment duration in years. Assume someone borrows 40000 TL and pays 12000 TL annually for 5 years. Compute the interest rate using the bisection method. The rate is bounded with [0.05,0.2]. Take tolerance 10^{-2} and use approximate absolute relative error.

Answer: i = 0.15%

MEIU CIVILIENGINEERING DER ARTHURING ARTHURING