## CS 4110 – Programming Languages and Logics Lecture #11: Hoare Logic: Decorated Programs



## 1 Decorated Programs

Doing a complete proof in Hoare Logic can feel overly verbose. The "core" of a proof consists of the preconditions and postconditions surrounding every command; with those, it's usually possible to infer the complete shape of the proof tree.

*Decorating* programs is a way to informally write down a Hoare logic proof of correctness. The idea is to insert assertion decorations between every "line" of the program. Using this informal evidence, you can reconstruct the full formal proof.

## 1.1 Informal Rules

We'll set out a few rules to check whether a decorated program represents a valid proof using *local consistency* checks. The rules, as you'll see, are informal reflections of the formal inference rules for Hoare logic.

**Skip.** For **skip**, the precondition and postcondition should be the same, like this:

 $\{P\}$  skip  $\{P\}$ 

**Sequence.** For sequences, a new assertion R appears between the two commands. The two halves  $\{P\}$   $c_1$   $\{R\}$  and  $\{R\}$   $c_2$   $\{Q\}$  must be (recursively) locally consistent:

 $\begin{cases}
 P \\
 c_1; \\
 R \\
 c_2 \\
 \{Q\}
 \end{cases}$ 

**Assignment.** Assignments are locally consistent when the precondition is the same as the post-condition except that it substitutes the assigned expression in for the variable:

$$\begin{cases}
P[a/x] \\
x := a \\
\{P\}
\end{cases}$$

**Conditions.** An **if** is locally consistent when both branches are locally consistent after adding the branch condition to each:

$$\begin{aligned} &\{P\} \\ & \text{if } b \text{ then} \\ &\{P \wedge b\} \\ & c_1 \\ &\{Q\} \\ & \text{else} \\ &\{P \wedge \neg b\} \\ & c_2 \\ &\{Q\} \\ &\{Q\} \end{aligned}$$

**Loops.** A **while** command should be decorated with a loop invariant:

$$\begin{cases} P \\ \textbf{while } b \textbf{ do} \\ \{P \wedge b\} \end{cases}$$
 
$$c \\ \{P\} \\ \{P \wedge \neg b\}$$

**Implication.** To capture the Consequence rule, you can always write a (valid) implication to connect two commands:

$$\begin{array}{l} \{P\} \Rightarrow \\ \{Q\} \end{array}$$

## 1.2 Decorating a Program

These informal rules tell you how to *verify* whether a decorated program is correct, but they don't by themselves tell you how to *construct* those decorations (and thereby a proof). You can do this almost mechanically—except for loop invariants, which still require some creativity to concoct.

Here's an example program:

while 
$$(0 < y)$$
 do  $(x := x + 1; y := y - 1)$ 

The first step is to decide what we want to prove about this program. So we write a precondition and postcondition for the whole program. Intuitively, the program adds y onto the initial value of the variable x, so we'll assert that:

This program is a **while** command, so the next step is to come up with a loop invariant. We'll set up the structure first. We need an assertion I where we can "connect" the loop's precondition and postcondition to our overall precondition and postcondition using implications, like this:

```
 \begin{aligned} & \{\mathsf{x} = m \ \land \ \mathsf{y} = n \ \land \ 0 \leq n \} \Rightarrow \\ & \{I\} \\ & \textbf{while} \ (0 < \mathsf{y}) \ \textbf{do} \ (\\ & \{I \land 0 < y\} \\ & \mathsf{x} := \mathsf{x} + 1; \\ & \mathsf{y} := \mathsf{y} - 1 \\ & \{I\} \end{aligned}   \begin{cases} I \land 0 \not< \mathsf{y} \} \Rightarrow \\ & \{\mathsf{x} = m + n\}
```

On every iteration of the loop, the variable x is the sum we want, m + n, less the current value of y, which is the number of iterations remaining. So we'll define the invariant I like this:

$$I ::= (x = m + n - y) \land 0 \le y$$

The top implication follows because n - y = 0, and the bottom implication is valid because  $0 \not< y$  and  $0 \le y$  together imply y = 0.

To finish decorating the program, we need an assertion between the two lines in the body of the loop. By the rule for assignments, we know that this must be I[y - 1/y], or:

$$P_1 ::= (x = m + n - (y - 1)) \land (0 \le y - 1)$$

To make the assignment to x locally consistent, then, its precondition must be  $P_1[x + 1/x]$ , or:

$$P_2 ::= (x + 1 = m + n - (y - 1)) \land (0 \le y - 1)$$

It's straightforward to see that the precondition at the top of the loop,  $I \land 0 < y$ , implies this new assertion  $P_2$ . Now we can write our complete decorated program using these definitions:

```
 \begin{aligned} & \{\mathsf{x} = m \ \land \ \mathsf{y} = n \ \land \ 0 \leq n \} \Rightarrow \\ & \{I\} \\ & \textbf{while} \ (0 < \mathsf{y}) \ \textbf{do} \ (\\ & \{I \land 0 < y\} \Rightarrow \\ & \{P_2\} \\ & \mathsf{x} := \mathsf{x} + 1; \\ & \{P_1\} \\ & \mathsf{y} := \mathsf{y} - 1 \\ & \{I\} \end{aligned}   ) \\ & \{I \land 0 \not< \mathsf{y}\} \Rightarrow \\ & \{\mathsf{x} = m + n\}
```