Chapitre 2 : Suites arithmético-géométriques

Théorème

Théorème des gendarmes

Soient trois suites (u_n) , (v_n) et (w_n) telles que, à partir d'un certain rang, $u_n \leq v_n \leq w_n$.

Si $\lim_{n\to +\infty} u_n = \ell$ et si $\lim_{n\to +\infty} w_n = \ell$ alors $\lim_{n\to +\infty} v_n = \ell$

Exemple: Etudier la limite de la suite (u_n) définie sur \mathbb{N}^* par $u_n = 3 + \frac{(-1)^n}{n}$

Pour tout $n \in \mathbb{N}^*$, $-1 \le (-1)^n \le 1$ $\Leftrightarrow \frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}$

$$\Leftrightarrow \frac{-1}{n} \leq \frac{(-1)^n}{n} \leq \frac{1}{n}$$

$$\Leftrightarrow 3 - \frac{1}{n} \le 3 + \frac{(-1)^n}{n} \le \frac{1}{n} + 3$$

Or,
$$\lim_{n\to+\infty} \frac{1}{n} = 0$$
 Donc $\lim_{n\to+\infty} 3 - \frac{1}{n} = 3$ et $\lim_{n\to+\infty} \frac{1}{n} + 3 = 3$

D'après le théorème des gendarmes, $\lim_{n \to +\infty} 3 + \frac{(-1)^n}{n} = 3$

Comportement des suites géométriques

Revenons un instant sur les suites géométriques.

Théorème

Soit la suite de terme général q^n , où q est un réel positif.

- Si q>1 alors la suite a pour limite $+\infty$. On note alors $\lim_{n\to +\infty}q^n=+\infty$ et on dit que la suite est divergente.
- Si q = 1 alors la suite est constante égale à 1.
- Si 0 < q < 1 alors la suite a pour limite 0. On note $\lim_{n \to +\infty} q^n = 0$. On dit, dans ce cas, que la suite converge vers 0.

Propriété

Soit
$$a \in \mathbb{R}$$
.
- Si $\lim_{n \to +\infty} q^n = 0$ alors $\lim_{n \to +\infty} aq^n = 0$
- Si $\lim_{n \to +\infty} q^n = +\infty$ alors $\lim_{n \to +\infty} aq^n = +\infty$ si $a > 0$.
 $\lim_{n \to +\infty} aq^n = -\infty$ si $a < 0$.

Exemples:

1) Soit (u_n) une suite géométrique de raison 0,5 et de premier terme $u_0 = -3$. Déterminer l'expression de u_n en fonction de n, puis la limite de (u_n) .

Pour tout
$$n \in \mathbb{N}$$
, $u_n = u_0 \times q^n = -3 \times 0, 5^n$
On a $u_0 < 0$ et $q = 0, 5$ soit $0 < q < 1$ donc $\lim_{n \to +\infty} q^n = 0$
Donc $\lim_{n \to +\infty} u_n = 0$

2) Soit (v_n) une suite géométrique de raison $\frac{\sqrt{2}}{2}$ et de premier terme $v_0 = 5$. Déterminer l'expression de v_n en fonction de n. Exprimer S_n , la somme des n+1 premiers termes de cette suite puis la limite de cette somme .

Pour tout
$$n \in \mathbb{N}$$
, $v_n = v_0 \times q^n = 5 \times \left(\frac{\sqrt{2}}{2}\right)^n$

$$S_n = v_0 + v_1 + v_2 + \dots + v_n$$

$$S_n = v_0 \times \frac{1 - q^{n+1}}{1 - q} = 5 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \frac{\sqrt{2}}{2}} = 5 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{\frac{2 - \sqrt{2}}{2}}$$

$$S_n = 5 \times \frac{2}{2 - \sqrt{2}} \times \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right) = \frac{10}{2 - \sqrt{2}} \times \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$
On a $q = \frac{\sqrt{2}}{2}$ soit $0 < q < 1$ donc $\lim_{n \to +\infty} \left(\frac{\sqrt{2}}{2}\right)^{n+1} = 0$
Donc $\lim_{n \to +\infty} S_n = \frac{10}{2 - \sqrt{2}}$