Модульные Системы Торнадо

Разработка управляющей программы для модели конвейерной ленты, подключенной к мобильному учебному комплексу №4 (Case 4)

Учебное пособие (предварительное издание)

СОДЕРЖАНИЕ

Bl	ВВЕДЕНИЕ			
1.	Учебное автоматизированное рабочее место разработчика	3		
2.	Модель конвейерной ленты	4		
3.	Подключение модели объекта к модулям УСО	5		
4.	Постановка задачи на разработку технологической программы	6		

ВВЕДЕНИЕ

В учебном пособии описаны технические и программные средства, входящие в состав учебного рабочего места разработчика технологических программ, описан порядок проверки работоспособности этих средств, поставлена задача по разработке управляющей программы, даны рекомендации по ее реализации и тестированию с использованием сред разработки ISaGRAF и InTouch.

1. Учебное автоматизированное рабочее место разработчика

Учебное автоматизированное рабочее место (APM-У) разработчика технологических программ состоит из персонального компьютера (ПК) и переносного кейса УСО (кейса с устройствами сопряжения с объектом), к которому могут подключаться реальные технологические объекты и/или их действующие модели.

В кейсе УСО смонтированы:

- кабель питания ~220B с вилкой (евростандарт);
- автомат включения питания;
- вторичный источник питания FPower (AC/DC: вход ~220B, выход =24B);
- коммутатор сети Ethernet;
- модули УСО серии MIRage-N;
- кабель для сопряжения модулей УСО с моделью технологического объекта.

В кейсе УСО также смонтирован кабель Ethernet, предназначенный для подключения коммутатора Ethernet или непосредственно к порту адаптера Ethernet персонального компьютера учебного APM, или к розетке локальной сети Ethernet, соединяющей все учебные APM.

Для проверки взаимодействия через сеть Ethernet между ПК и установленными в кейсе модулями УСО рекомендуется использовать команду «ping» в режиме «командной строки». IP-адреса ПК и модулей УСО приведены в Приложениях. Там же приведен пример применения команды «ping».

На ПК установлены и настроены следующие программные средства:

- программы тестирования модулей УСО;
- среда ISaGRAF для разработки технологических программ;
- среда исполнения технологических программ (ядро ISaGRAF);
- SCADA-система InTouch для разработки и исполнения программ визуализации, реализующих человеко-машинный интерфейс технологической программы с оператором-технологом.

2. Модель конвейерной ленты

Модель состоит из ленточного конвейера.

Внешний вид модели представлен на рисунке 2.1.

Рисунок 2.1. Внешний вид модели ленточного конвейера

Модель включает:

- 1 реверсивный двигатель для привода конвейерной ленты (Q1/Q2);
- 2 световых барьера (I1 и I2);
- 1 электромеханический переключатель для контроля оборотов двигателя конвейерной ленты (I3);

3. Подключение модели объекта к модулям УСО

В таблице 3.1 представлено подключение датчиков и исполнительных механизмов модели к каналам модулей УСО.

Таблица 3.1.

Разъем модели	Назначение	Клемма FPower	Канал NDIO-L	Код сигнала
1	питание 24V, +	20 (+)		
2	питание 24V, +	22 (+)		
3	питание 24V, –	21 (-)		
4	питание 24V, –	23 (-)		
5	Датчик I1 (деталь в начале конвейера)		1 (ввод)	CH001DI01XB01
6	Датчик I2 (деталь в конце конвейера)		2 (ввод)	CH001DI02XB01
7	Датчик I3 (обороты двигателя конвейера)		3 (ввод)	CH001DI03XB01
15	Мотор Q1 (включить конвейер вперед)		13 (вывод)	CH001DO01YB01
16	Мотор Q2 (включить конвейер назад)		14 (вывод)	CH001DO02YB01

Для проверки подключения рекомендуется использовать приложение «ndio24», предназначенное для поканальной проверки модуля MIRage-NDIO-L. С его помощью можно проверить срабатывание датчиков и исполнительных механизмов модели.

Пример окна приложения «ndio24» представлен на рисунке 3.1.

Рисунок 3.1. Пример окна приложения «ndio-24.

4. Постановка задачи на разработку технологической программы

В качестве лабораторной работы предлагается реализовать дистанционное и автоматическое управление конвейером с учетом технологических защит и блокировок на языках стандарта IEC 1131-3 в среде разработки ISaGRAF с визуализацией технологического пронесса в SCADA-системе InTouch.

Описание технологического процесса

Деталь движется по конвейеру слева направо.

Как только деталь достигает 1/3 и 2/3 длины ленты, деталь останавливается на 2 с.

Как только деталь достигнет крайнего правого положения, конвейер срабатывает, и деталь транспортируется в крайнее левое положение.

Для повторения цикла необходимо убрать и поставить деталь обратно.

Технологические защиты и блокировки (ТЗ и ТБ):

- Запрещается одновременно подавать сигнал на движение конвейерной ленты вправо и влево.
- Остановка конвейера при достижении крайних положений.
- Если после 15 с после того, как конвейер начал движение вправо/влево, не сработал датчик о крайнем правом/левом положении детали, то происходит аварийное отключение конвейера.
- Если после 3 с после того, как конвейер начал движение вправо/влево, не сработал соответствующий датчик крайнего положения детали, то происходит аварийное отключение конвейера.
- Если сработали оба датчик крайнего положения детали, то происходит аварийное отключение конвейера.
- Если количество импульсов при движении вправо/влево стало больше заданного, то происходит аварийное отключение конвейера (например, если не сработали датчики крайнего положения детали).

В ходе выполнения работы можно добавить собственные ТЗ и ТБ.

Алгоритм дистанционного управления и блокировок представлен на рисунке 4.1.

Алгоритм функционально-группового управления ($\Phi\Gamma Y$) — автоматического управления моделью — представлен на рисунке 4.2.

Рисунок 4.1. Алгоритм дистанционного управления и блокировок

Логика	Наименование	Команда Значение Состояние	Код
Алгоритм работы конвейерной ленты			
	Команда оператора «Автомат» Авария Дискретный датчик 1 Дискретный датчик 2 Двигатель конвейера вправо Двигатель конвейера влево	Есть Не сработала Сработал Не сработал Отключен Отключен	CH001DI01XB01 CH001DI02XB01 CH001DO01YB01 CH001DO02YB01
—	Двигатель конвейера вправо	Включить	CH001DO01YB01
8	Авария Дискретный датчик 1 Дискретный датчик 2 Дискретный датчик 3	Не сработала Не сработал Не сработал 5 шагов	CH001DI01XB01 CH001DI02XB01 CH001DI03XB01
	Двигатель конвейера вправо	Выключить	CH001DO01YB01
H 3 c J	Двигатель конвейера вправо Дискретный датчик 1 Дискретный датчик 2 Авария	Выключен Не сработал Не сработал Не сработала	CH001DI01XB01 CH001DI02XB01
*	Двигатель конвейера вправо	Включить	CH001DO01YB01
	Дискретный датчик 1 Дискретный датчик 2 Дискретный датчик 3	Не сработал Не сработал 10 шагов	CH001DI01XB01 CH001DI02XB01 CH001DI03XB01
*	Двигатель конвейера вправо	Выключить	CH001DO01YB01
₩ 3 c -	Двигатель конвейера вправо	Выключен	CH001DO01YB01
	Дискретный датчик 1 Дискретный датчик 2 Авария	Не сработал Не сработал Не сработала	CH001DI01XB01 CH001DI02XB01
*	Двигатель конвейера вправо	Включить	CH001DO01YB01
	Дискретный датчик 2 Авария	Сработал Не сработала	CH001DI02XB01
8	Двигатель конвейера вправо	Выключить	CH001DO01YB01
8	Двигатель конвейера влево Дискретный датчик 1 Авария	Включить Сработал Не сработала	CH001DO02YB01 CH001DI01XB01
	Двигатель конвейера влево	Выключить	CH001DO02YB01

Рисунок 4.2. Алгоритм ФГУ