PARTE 1

INTRODUZIONE A RETI E PROTOCOLLI

Parte 1

Modulo 0: Motivazioni per un corso di reti di calcolatori

I volumi di dati delle applicazioni

Requisiti

- Algoritmi per processare i dati
- Sistemi di calcolo
 - Cloud computing (LM)
- Infrastrutture per trasmissione dati
 - Reti di calcolatori (Questo corso)
- Personale
 - Capacità di gestire reti complesse
 - Competenze di sicurezza

Basta un piccolo errore...

Massive Microsoft 365 outage caused by WAN router IP change

By Sergiu Gatlan January 27, 2023 💆 03:32 PM 📮 0

Microsoft says this week's five-hour-long Microsoft 365 worldwide outage was caused by a router IP address change that led to packet forwarding issues between all other routers in its Wide Area Network (WAN).

Parte 1

Modulo 1: Introduzione alle reti

Componenti fondamentali di una rete

NODI

- Host (termine più generico di computer)
- Switch

LINK

- Wired: Cavi coassiali, fibra ottica, ecc.
- Wireless

Perché le reti tra computer?

- Collegamenti remoti a mainframe
 - < anni '70
- Informatica distribuita vs. informatica monolitica dei mainframe

anni '70

Comunicazioni tra utenti

anni '80

"The network is the computer"

anni '90

- "The network/computer is everywhere"
 - oggi

Evoluzione delle architetture

Architettura centralizzata basata su mainframe

Evoluzione delle architetture (2)

Architettura gerarchico-distribuita

Evoluzione delle architetture (3)

Architettura distribuita client-server

Corsi e ricorsi della storia

- Il trade-off tra centralizzato e distribuito non ha una unica soluzione
- Approcci diversi nel tempo
- Buzzword di pochi anni fa:
 - P2P
 - Ubiquitous/pervasive computing
 - Cloud Computing
- Buzzword di oggi:
 - Multi-Cloud/Fog Computing
 - Internet of Things
- Buzzword di domani:
 - Internet of Everything
- ... e l'entropia aumenta

Modalità di connessione

Collegamenti diretti

- Point-to-point
- Accesso multiplo

Collegamenti indiretti

Rete commutata (switched)

Reti (def.)

· Una rete può essere definita ricorsivamente come

Due o più nodi connessi da un link

Due o più reti connesse da due o più nodi

Esempio (rete aziendale geografica)

Classificazione delle reti

- Reti locali: Local Area Network (LAN)
 - Stanza (10 m)
 - Edificio (100 m)
 - Campus (~1 Km)

Cablaggio "privato"

- Reti metropolitane: Metropolitan Area Network (MAN)
 - Città (~10 Km)

Poco diffuse, Cablaggio tipicamente "pubblico"

- Reti geografiche: Wide Area Network (WAN)
 - Regione, Stato, Continente, Pianeta

Cablaggio su terreno "pubblico": tramite operatore TLC

Tecnologie per realizzare WAN

- Circuit switching
- Packet switching
- Frame relay
- Asynchronous Transfer Mode (ATM)

Tecnologie LAN

Wired

- Ethernet (varie versioni)
- (Token ring)
- (Apple talk)

Wireless

- Wi-Fi
- (Wi-Max)
- UMTS
- 5G
- **–** ...

Parte 1

Modulo 2 Introduzione ai protocolli

Comunicazione tra due host

OBIETTIVO → Trasferire un Messaggio (*insieme di bit*) da un host all'altro

Sembra banale. DOV'E' IL PROBLEMA?

Estrema eterogeneità

- Quali caratteristiche hw/sw ha il computer?
- Come è interconnesso il computer?
- Quale mezzo trasmissivo utilizza?
- Quale modalità di trasmissione del messaggio (=insieme di bit)?
- Come si gestisce il transito dei messaggi attraverso i nodi intermedi?
- Di quali servizi può usufruire l'utente?

•

Cosa può non funzionare?

- Interferenze elettriche (errori a livello di bit)
- Congestioni (errori a livello di messaggi)
- Guasti di link e di nodi intermedi
- Problemi software di nodi mittente/destinazione
- •
- Ritardi nei messaggi
- Consegna dei messaggi fuori ordine
- "Ascolto" dei messaggi da parte di terzi
- ...

Veri obiettivi

- Trasferimento di un messaggio (insieme di bit) da un host all'altro, ma garantendo anche:
 - massima velocità possibile (PRESTAZIONI)
 - che si possano superare guasti o malfunzionamenti (AFFIDABILITA')
 - OGGI la SICUREZZA della trasmissione

Questi obiettivi relativamente ad un contesto estremamente eterogeneo rendono il problema "meno" banale da risolvere

Che fare quando la complessità è molto elevata?

Metodologia

- Dividere il problema in sottoproblemi
- Risolvere i sottoproblemi
- "Collegare" le soluzioni parziali
- → Dal punto di vista informatico
- Il layering è il tipico "modo informatico" per far fronte alla complessità di un problema:
 - Usare astrazioni per mascherare la complessità
 - L'astrazione porta naturalmente al layering
- Primo esempio: HW OS applicazioni

Architettura di rete: basata su livelli

 Nelle architetture di rete vi possono essere diverse astrazioni ed anche diverse alternative per ciascun livello

Programmi applicativi (servizi di rete)

Canale
richiesta/risposta

Connessione host-to-host

Mezzo fisico di trasmissione

Corso di "Reti di Calcolatori"

Un'analisi informatica delle reti

Programmi applicativi (servizi di rete)

Canale richiesta/risposta

Canale flusso di messaggi

Connessione host-to-host

Mezzo fisico di trasmissione

Informatica

Telecomunicazioni

Le connessioni sono importanti, ma ...

- "Le Reti di Calcolatori acquistano un senso ed un valore per le applicazioni che vi vengono eseguite"
- L' <u>utilizzatore</u> di servizi di rete può addirittura limitarsi a conoscere solo l'interfaccia dei servizi (email, WWW, ...)
- Lo <u>sviluppatore</u> di nuovi servizi di rete può evitare di conoscere molti (non tutti) i dettagli sottostanti
- L' <u>informatico</u>, in un corso di laurea, deve conoscere tutto, ma nel limite di tempo che ci è concesso è meglio orientarsi ad approfondire i livelli superiori piuttosto che tutti i dettagli di interconnessioni e segnali

"Computer Networking: A Top-Down Approach Featuring the Internet"

- Testi di riferimento: dagli applicativi alle interconnessioni
- Lezioni (al contrario): dalle interconnessioni ai dettagli sui protocolli Internet e servizi di rete
 - Elementi di interconnessione host-to-network (richiami)
 - Protocolli, Client/server
 - Livello IP
 - Algoritmi di routing
 - Livello di trasporto: TCP/UDP
 - Naming (DNS)
 - Funzionamento applicativi di rete (Web, posta elettronica)
 - Server di rete: Livello kernel e socket
 - Elementi di sicurezza

Protocollo

- La comunicazione tra entità richiede cooperazione, ossia collaborazione per il conseguimento di uno scopo comune. Tutte le comunicazioni sono regolate mediante protocolli.
- Protocollo: insieme di regole e convenzioni seguite da entità, dislocate su nodi distinti, che intendono comunicare per svolgere un compito comune
- Tali regole hanno l'obiettivo di assicurare una cooperazione efficiente ed affidabile per la comunicazione tra nodi e per la realizzazione di servizi di rete, tenendo conto delle caratteristiche tipiche di un sistema distribuito (banda di trasmissione limitata, ritardi variabili, errori nella comunicazione, ...)

Elementi di un protocollo di comunicazione

- <u>Sintassi</u>: insieme e struttura dei comandi e delle risposte, formato dei messaggi
- <u>Semantica</u>: significato dei comandi, delle azioni, delle risposte da effettuare al momento della trasmissione e ricezione dei messaggi
- <u>Temporizzazione</u>: specifica delle possibili sequenze temporali di emissione dei comandi e dei messaggi, nonché delle eventuali risposte

Esempio di protocollo tipico

Stack di protocolli

- In realtà, come già evidenziato, un sistema di comunicazione complesso non può usare un solo protocollo per gestire le comunicazioni tra nodi, ma necessita di un insieme di protocolli tra loro cooperanti
- I protocolli costituiscono i blocchi fondamentali del modello architetturale di rete basato su livelli (layering)
 - → protocol suite o protocol stack

Modello "a livelli" dei protocolli

Ciascun protocollo, ad un <u>certo livello</u>, ha due interfacce "interne" (verso il livello superiore ed inferiore) ed una interfaccia "esterna" verso il <u>livello equivalente</u> di un altro nodo

Interfacce e servizi del protocollo

- Le interfacce di ciascun protocollo vengono dette:
 - Service interface ("interna"): operazioni e servizi offerti al protocollo superiore
 - Peer-to-peer interface ("esterna"): messaggi scambiati con un livello equivalente (peer) sull'altro nodo

Attenzione!

- Il termine "protocollo" è abusato e inflazionato.
- Lo si utilizza per indicare:
 - Le <u>specifiche</u> delle interfacce
 - Le <u>regole</u> di comunicazione
 - I <u>moduli software</u> che implementano le interfacce e I servizi

Esempio

- Servizio ssh
- Protocollo ssh
- Comando ssh

Comunicazione concettuale

 La comunicazione avviene logicamente tra peer entity (entità logiche che si trovano allo stesso livello)

Comunicazione effettiva

- In realtà, la comunicazione tra peer entity avviene in modo diretto solo a livello hardware
- Per gli altri livelli, la comunicazione è indiretta

Mezzi per realizzarla (1): PDU

- A ciascun livello, il messaggio si compone di due parti:
 - Protocol Control Information (PCI) → header
 - Service Data Unit (<u>SDU</u>) → informazione (<u>payload</u>=il carico di valore; vale per gli aerei, per i missili, per i camion, ecc.)

PCI + SDU = PDU (Protocol Data Unit)

Mezzi per realizzarla (2): Incapsulamento del messaggio

Come avviene la comunicazione

(STEP 1)

Come avviene la comunicazione

(STEP 2)

Come avviene la comunicazione

(STEP 3)

Sintesi

- Il sistema di comunicazione richiede un insieme di protocolli tra loro cooperanti (detti <u>protocol suite</u> o <u>protocol stack</u>)
- Si identifica una relazione gerarchica nelle funzioni che compongono un processo di comunicazione: <u>Architettura a livelli</u> (<u>layer</u>)
- Vi è <u>indipendenza funzionale tra i vari</u> <u>livelli</u>: il servizio fornito da un livello è definito in modo indipendente dalle procedure con cui è implementato

Sintesi

- Il livello n, sfruttando anche il servizio offerto dal livello n-1, fornisce un servizio al livello n+1
- La comunicazione avviene logicamente tra peer, ma in realtà attraversa tutti i livelli sottostanti, mediante <u>incapsulamento del</u> <u>messaggio</u> a ciascun livello