

Sprint 2 Presentation

Ahmed Kaddah, Shao Jie Hu Chen, Marlon Müller Edge Computing and the Internet of Things Technische Universität München München, 08.12.2023

Functional Prototype Pipeline

Sprint 1

Sprint 2: Integration of ESC50

Sprint 2: Integration of ESC50

- Dataset for Environmental Sound Classification
- E.g., dog, insects, rain, thunderstorm, wind, siren, chainsaw

Sprint 2: Integration of ESC50

Sprint 2: Resolve MFCC discrepancies

Sprint 2: Resolve MFCC discrepancies

- Custom ESP implementation using ESP-DSP functionality matches Librosa
- Additionally ported implementation to PC

[https://de.mathworks.com/help/audio/ref/mfcc.html]

Sprint 2: Resolve MFCC discrepancies

Sprint 2: PyTorch to C++ Template

[Sprint 2] PyTorch to C++ Template

- ESP-DL Quantization generates weights but not model itself
- Jinja templates for automatic model.hpp generation

```
void call(Tensor<int8_t>& input) {
this->conv1.call(input);
input.free element();
this->pool1.call(this->conv1.get_output());
this->conv1.get_output().free_element();
this->conv2.call(this->pool1.get_output());
this->pool1.get_output().free_element();
this->pool2.call(this->conv2.get_output());
this->conv2.get_output().free_element();
```

Sprint 2: PyTorch to C++ Template

Sprint 2: Microphone

Sprint 2: Inference (Microphone – MFCC - DL)

Sprint 2: Dashboard

Sprint 2: Objectives

In general, assemble a functional prototype

- Integrate auxiliary data (e.g., ESC-50), resample (and split) audio files
- Build, train, and evaluate a first complete dataset
- Interconnect devices and enable sensor functionality
- Resolve MFCC discrepancies and execute the trained model on the ESP32
- (Optional) Start the development of a website/dashboard for visualization

Sprint 2: Objectives

In general, assemble a functional prototype

- Integrate auxiliary data (e.g., ESC-50), resample (and split) audio files
- Build, train, and evaluate a first complete dataset
- Interconnect devices and enable sensor functionality
- Resolve MFCC discrepancies and execute the trained model on the ESP32
- (Optional) Start the development of a website/dashboard for visualization

Interim Demo: Objectives

In general, run a functional prototype

- Execute the trained model on the ESP32
- Interconnect devices (LoRa)
- (Optional) GPS
- (Optional) Improve website / visualization
- (Optional) Distinguish salient audio segments

Interim Demo: Objectives

