Fondamenti di Elettronica – Ing. INFORMATICA - AA 2019/2020

Prova in itinere del 5 novembre 2019

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1

Dati: $R_1 = 150\Omega, R_L = 100\Omega, C = 100 \text{pF},$ $|V_{Z0}| = 15V.$

- a) Calcolare la potenza dissipata dal diodo Zener con $V_{in} = 60V$.
- b) Disegnare su grafico quotato la tensione V_{out} al variare della resistenza R_L tra 30Ω e 150Ω (con $V_{in} = 60V$).

Esercizio 2

Dati: $V_{DD}=3.3 \text{V}, \ V_{Tn}=|V_{Tp}|=0.6 \text{V}, \ k_n=0.5 \, \frac{\text{mA}}{\text{V}^2}, \ \left|k_p\right|=25 \, \frac{\mu \text{A}}{\text{V}^2}, \ C_L=100 \text{fF}.$

Siano A, B, \bar{A} , \bar{B} segnali digitali con livelli 0 e V_{DD} , dove \bar{A} , \bar{B} sono i segnali negati di A, B.

- a) Ricavare in una tabella i livelli di tensione dell'uscita V_{out} in funzione dei livelli digitali degli ingressi e descrivere la funzione logica svolta dal circuito.
- b) Calcolare il tempo di propagazione necessario a raggiungere un valore di tensione pari a metà della dinamica di uscita quando gli ingressi commutano istantaneamente da *AB* = "00" a "01".
- c) Calcolare la potenza media dissipata dal circuito (staticamente e dinamicamente) quando B = "1" ed A è un'onda quadra tra "0" e "1" con frequenza 10MHz e duty cycle 50%.

Esercizio 3

 $Dati: V_{DD}=3.3 \text{V}, V_{Tn}=0.6 \text{V}, k_n=0.5 \frac{\text{mA}}{\text{V}^2}, R=100 \Omega, C_L=0.5 \text{pF}.$ Siano A,B,C,\bar{C} segnali logici tra $0 \text{V} \in V_{DD} \in \bar{C}$ negato di C.

- a) Scrivere la tabella della verità del circuito e calcolare i livelli di tensione V_{out} in funzione dei livelli digitali degli ingressi.
- b) Considerando i MOS interruttori ideali, ovvero dei corto circuiti quando accesi, disegnare $V_{out}(t)$ quando gli ingressi commutano istantaneamente da ABC = "110" a "100" e calcolare il tempo necessario affinché l'uscita raggiunga il valore di $V_{DD}/2$.

- c) Calcolare la potenza dinamica dissipata quando A = "0", B = "1" e C è un'onda quadra tra "0" e "1" a frequenza 1MHz e duty cycle 50%.
- d) Avendo a disposizione i segnali logici *A*, *B*, *C* e i loro negati, realizzare la stessa funzione del circuito in figura con una porta logica CMOS.

TE 5/novembre/2019 (1a prova itinere)

Svolgimento piu' esteso rispetto alla traccia di soluzioni pubblicata (WeBeep/TemiEsame)

Esercizio 1

a) Vin=60V

Hp. diodo in BD (vedo che il valore di Vin > |Vz|).

Risolvendo il circuito si ottiene:

I1=(60-|Vz|)/R1=300mA, IL=|Vz|/RL=150mA

Quindi (LCK): $ID=(IL-I1)=(-150)mA < 0 \rightarrow diodo in BD ok$.

Vout=|Vz|=15 V

La potenza dissipata dal diodo e' quindi |Vz|*ID=15V*150mA=2.25W

b) RL= $\{30, 150\} \Omega$, disegnare Vout vs RL

Dobbiamo trovare lo stato del diodo quando RL varia nell'intervallo dato. Visto il punto precedente, ipotizzo il diodo in BD e verifico i valori limite di RL. Per fare questo, calcolo la ID e impongo la condizione di BD:

ID=(IL-I1)=|Vz|/RL - (Vin-|Vz|)/R1<0 da cui RL>50Ω. Finche' il diodo e' in BD, Vout=|Vz|=15V. Per RL<=50Ω il diodo e' spento e Vout=Vin*RL/(R1+RL). In particolare per RL=30Ω -> Vout=60V*(30/180)=10V.

[p.s. nell'intervallo [30Ω , 50Ω] gli estremi sono connessi in prima approssimazione con un tratto lineare]

Commento: quando il diodo e' in BD la corrente in R1 e' fissata a (Vin-|Vz|)/R1=45/150 Ω =300mA e non dipende da RL. Di conseguenza quando RL diminuisce, la IL=|Vz|/RL cresce e lo fa alle spese di |ID| che diminuisce. Per mantenere il diodo in conduzione (BD) e' necessario che IL=|Vz|/RL sia minore di (Vin-|Vz|)/R1. Se immaginiamo che questo circuito debba erogare la tensione costante |Vz| ad un carico che puo' assorbire fino ad un certo valore massimo di corrente ILmax, dobbiamo fare in modo che la corrente in R1 sia maggiore della ILmax richiesta dal carico.

c) RL= 100Ω , risposta al rettangolo

@t=0-:

Vin=0V, diodo off, Vout(0-)=0V.

@t=0+

Vin=60V, Vout(0+)=Vout(0-)=0V, quindi D rimane off. La corrente I1=60V/R1 va in C che si carica (->Vout cresce). Mantenendo l'hp diodo off, calcoliamo il valore finale Vout(inf)=60V*RL/(R1+RL)=24 V e la tauOFF=C*R1//RL=6ns

Tuttavia la Vout puo' crescere fino a |Vz|=15V quando il diodo da off va in BD e limita la tensione Vout a 15V. Il tempo necessario ad arrivare a 15V si calcola scrivendo l'espressione del transitorio e imponendo il passaggio per Vout=15 V:

24V*[1-exp(-t/tauOFF)]=15V -> t*=5.9 ns (Vout raggiunge 15V prima del termine del rettangolo T=30ns).

Fronte di discesa

@ t=T+ si ha Vin=0, Vout=15V (tiene il valore)

Dobbiamo stabilire lo stato del diodo. Se rimanesse in BD, Vout sarebbe bloccata a 15V quindi la corrente in C sarebbe nulla (dVout/dt=0). Allora avremmo ID=IR1 + IRL=|Vz|/R1 + |Vz|/RL > 0 che non soddisfa l'ipotesi BD. Quindi il diodo a t=T+ va subito off e la capacita' si scarica da 15V a zero con la stessa tauOFF=6ns.

d) resistenza serie al diodo Rz= 5Ω , RL= 100Ω . Vin(t)= $60V + 3V*\sin(2\pi ft)$

So gia' che il diodo e' in BD per Vin=60V e RL= 100Ω . Per verificare che sia in BD anche quando Vin varia nell'intervallo [57 V, 63 V], verifico quando va off. Risolvendo il circuito con diodo off, la condizione risulta Vin<37.5. Quindi nell'intervallo di valori di Vin=[57 V, 63 V], il diodo e' sempre BD.

A questo punto posso risolvere la Vout con il PSE. Noto che possiamo dividere le sorgenti in 3: Vin0=60V, $Vin1=3V*sin(2\pi ft)$, |Vz|=15V se sara' Vout=Vout|Vin0+Vout|Vin1+Vout|Vz.

La Vout avra' una componente costante, data dagli ingressi costanti Vin0 e |Vz|, pari a Vout=Vout|Vin0 + Vout|Vz = 60/31 + 15*60/65 = 15.8V

La risposta al temine di "segnale" Vin1=3V*sin($2\pi ft$) e':

Vout=Vin*(Rz//RL)/(R1+Rz//RL)=Vin/31

-> Vout1(t)=Vin1(t)/31=3V/31 * $\sin(2\pi ft)$ = 0.1V * $\sin(2\pi ft)$. Il ripple è quindi pari a 0.1V/15.8V= 0.6%.

Esercizio 2

a) tabella verita'

La porta logica realizza la funzione XOR.

Il livello logico alto è pari a VDD=3.3V. Succede quando AB=01 o 10 per cui la rete di PD e' OFF e il pmos fa il pull-up fino a VDD.

Quando A e B sono 00 o 11, uno dei 2 rami della rete di PD conduce (i due rami della rete di pull-down si accendono in mutua esclusione) ed e' contemporaneamente acceso il pMOS. La rete di PD la rappresentiamo con un mos equivalente avente Keq=Kn/2. Per risolvere il circuito (trovare Vout) ipotizzo che pMOS sia saturo e nMOS (equiv) sia triodo (dato che Kn,eq>>Kp).

 $IDp,sat=Kp*(VDD-|Vtp|)^2=0.182mA$

Ora per il nMOS posso:

- i) usare l'eq. triodo (per trovare la soluzione esatta): IDn=2Kn*[(VDD-Vtn)*Vout (1/2)*Vout^2] Uguagliando le correnti (IDp,sat=IDn) si ottiene 0.25*Vout^2-1.35*Vout+0.182=0, da cui Vout1=5.26V (non accettabile, Vout1>Vds,sat=(VDD-Vtn)=2.7V, non compatibile con ipotesi triodo), Vout2=0.138V (si', Vout2<Vds,sat=(VDD-Vtn)=2.7V ok triodo).
- ii) oppure, ipotizzando che Vout<<Vdsn,sat=(VDD-Vtn), avremmo potuto rappresentare il nMOS con la resistenza in zona ohmica (caso limite della regione triodo, equivale a trascurare il termine quadratico : $IDn^2Kn^*(VDD-Vtn)^*Vout)$, cioe' Rds,n= 1/2/(VDD-Vtn)=0.74 k Ω . Il valore di Vout sara' quindi pari a |IDp,sat| * Rds,n_eq = 135mV. Avendo trovato che Vout=0.135V e' effettivamente << Vdsn,sat=(VDD-Vtn)=2.7V, cio' indica che l'ipoesi triodo era corretta e che l'approssimazione ohmica e' appropriata. Si nta infatti che il valore trovato e' molto vicino al valore precedente (esatto)

b) commutazione AB=(00)->(01)

Dalla tabella di verita': Vout(00)=VOL=0.135V Vout(01)=VDD=3.3V

E' quindi una transizione di pullup attraverso il pMOS con valore inziale di Vout(0)=0.135V.

In assenza di indicazioni, come valore di soglia per calcolare tp prendiamo il valore medio tra VOH e VOL: Vx=(3.3+0.135)/2=1.72V

I grafici mostrano l'evoluzione della Vout(t) (a dx) e la traiettoria del punto di lavoro del pMOS nel piano (|Vdsp|, IDp) a sx.

i) Sottostima di tp

Assumo corrente costante nell'intervallo '<t<tp: IDp=IDp,sat=Kp*(VDD-|Vtp|)^2=0.182mA -->tp= C*[(VOH-VOL)/2]/IDp,sat=4.35 ns

ii) Sovrastima di tp

Tratto AB a corrente costante (esatto): deltat_AB= C*(VoutB-VOL)/IDp,sat=1.28 ns
Tratto BC con pMOS resistivo (ROB), approssimazione:
Vout(t)=VoutB + (VDD-VoutB)*[1-exp(-t/(ROB*C))], con ROB*C=7.42ns
Imponendo il passaggio per Vout(t)=Vx -> deltat_BC=3.97ns
--> tp=deltat AB+deltat BC=1.28+3.97=5.25ns

c) Potenza media (dinamica e statica)

Vout commuta da VOL=0.135V a VOH=3.3V con la stessa frequenza di A (10MHz).

Il contributo alla potenza media dato dalla potenza dinamica (qui consideriamo solo quella dovuta alla carica/scarica della capacita' di uscita) e':

Pdyn=fA*C*VDD*(VOH-VOL)=10MHz*0.5pF*3.3V*(3.3V-0.135V)=10.4µW

(p.s. questo contributo non dipende dal duty cycle, ma dalla frequenza di ripetizione e dal numero di cicli carica/scarica)

Per la potenza statica, sappiamo che nello stato alto (VOH) non c'e' corrente erogata da VDD e quindi non viene dissipata potenza. Mentre nello stato basso (VOL) la corrente vale IDp,sat=0.182mA e viene dissipata la potenza VDD*IDp,sat=601µW.

La potenza statica media complessiva vale Pstat=0.5*(VDD*IDp,sat)=301μW (dipende dal duty cycle!)

In totale la potenza media dissipata è Pstat+Pdyn=311 μW.

d) Modificare rete pull-up per minimizzare la potenza media dissipata

Per minimizzare la dissipazione della porta occorre agire sulla rete di pull-up sostituendo al pmos sempre acceso la rete di pull-up "fully-complementary CMOS", mostrata nella figura seguente:

In questo modo si annulla la potenza statica dissipata mentre quella dinamica cresce leggermente ed è pari a $100 fF*3.3V*3.3V*10 MHz=11 \mu W$.

Esercizio 3

a) tabella di verita'

Α	В	С	Vout, note
0	0	0	OV, nMOSA off, pulldown con nMOSB
0	0	1	OV, nMOSB off, pulldown con nMOSA
0	1	0	(VDD-Vt)=2.7V, nMOSA off, pullup (debole) con nMOSB
0	1	1	OV, nMOSB off, pulldown con nMOSA
1	0	0	0V, nMOSA off, pulldown con nMOSB
1	0	1	(VDD-Vt)=2.7V, nMOSB off, pullup (debole) con nMOSA
1	1	0	(VDD-Vt)=2.7V, nMOSA off, pullup (debole) con nMOSB
1	1	1	(VDD-Vt)=2.7V, nMOSB off, pullup (debole) con nMOSA

b) calcolo tp

Il condensatore, inizialmente carico a 2.7V, si scarica fino a 0V con costante di tempo $100\Omega*0.5pF$. L'andamento è mostrato in figura. Il tempo per raggiungere VDD/2 è pari a $100\Omega*0.5pF*ln(2.7/1.65) = 24.6ps$.

c) potenza dinamica

Il condensatore viene caricato e scaricato a 1MHz; i valori di tensione sono 2.7V e 0V. $Pdin=0.5pF*2.7V*3.3V*1MHz=4.455\mu W$.

d) sintesi porta CMOS

