矩阵代数

Matrix Algebra

钱锋*

2024年4月20日

目录

1	矩阵运算	1	4 分块矩阵	3
2	矩阵的逆	3	5 矩阵分解	3
3	可逆矩阵的特征	3	参考文献	3

摘要

现在还没有摘要

关键词.

1 矩阵运算

矩阵 (matrix) 是二维数组 (2 dimentional array), 它由 $m \times n$ 个元素 (element) 排列成 m 行 (row), n 列 (coloum) 组成. 矩阵通常用粗体的拉丁字母表示. 矩阵的行数与列数构成的二维向量 [m,n] 称为矩阵 A 的形状 (shape). 记作 A.shape, 形状为 [m,n], 且所有元素取自数域 \mathbb{K} 的矩阵称为数域 \mathbb{K} 上的 $m \times n$ 矩阵,这样的矩阵全体组成的集合记作 $\mathbb{K}^{m \times n}$, 称为 $m \times n$ 矩阵空间 (matrix space).

设矩阵 $\mathbf{A} \in \mathbb{K}^{m \times n}$, 则 \mathbf{A} 的第 i 行和第 j 列交叉

保密级别: public

位置处的元素用 a_{ij} 或 A[i,j] 来表示. 即

$$\mathbf{A} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m-1,0} & a_{m-1,0} & \cdots & a_{m-1,n-1} \end{bmatrix}.$$

为了方便将矩阵方程转变为高级程序设计语言代码,我们在设计数学符号时使用了面向对象风格¹,并规定矩阵中元素的行索引和列索引均从 0 开始,而不是从 1 开始.

矩阵 A 的各列是 \mathbb{R}^m 中的向量,我们用黑体字母 a_0, a_1, \dots, a_{n-1} 来表示,也可以采用高级程序设计语言中常见的记号,使用 $A[:,0], A[:,1], \dots, A[:,n-1]$

^{*}电子邮件: strik0r.qf@gmail.com

西北工业大学软件学院, School of Software, Northwestern Polytechnical University, 西安 710072

¹一般地,与具体的对象有关的属性和函数采用面向对象风格的记号,与具体的对象无关的属性和函数 (即静态的属性和函数) 和多元函数采用传统的函数记号.

来表示. 因此我们也可以写作

$$\boldsymbol{A} = [\boldsymbol{a}_0, \boldsymbol{a}_1, \cdots, \boldsymbol{a}_{n-1}].$$

其中, $\mathbf{A}[i,j] = \mathbf{A}[:,j][i]$,它表示元素 a_{ij} 是第 j 个列 向量 \mathbf{a}_{j} 的第 i 个元素. 在后续的行文中,除非形如 a_{ij} 的表示法不便于表示 (例如 i 或 j 的表达式特别复杂),或者需要将矩阵方程翻译为高级程序设计语言代码,否则我们一般不采用符号 $\mathbf{A}[i,j]$.

 $m \times n$ 矩阵 A 的对角线元素

- 2 矩阵的逆
- 3 可逆矩阵的特征
 - 4 分块矩阵
 - 5 矩阵分解

参考文献

[1] [美] David C. Lay, [美] Steven R. Lay, [美] Judi J. McDonald. 线性代数及其应用: 原书第 6 版 = Linear Algebra and Its Application, Sixth Edition [M]. 刘深泉等译. 北京: 机械工业出版社, 2023.