GNU/LINUX TUTORIAL PART II: USERS, PERMISSIONS, PROCESSES, FILE TREE

§5: USERS

- Commands are executed by users.
- Each user may belong to groups.
- root is the most powerful user.
- sudo command allows to execute other commands as root.
- Special users and groups may exist to run software.

WHO AM I? 😦

```
user@cosmos:~$ whoami
user

user@cosmos:~$ id
uid=1000(user) gid=1000(user) groups=1000(user),27(sudo)

user@cosmos:~$ id root
uid=0(root) gid=0(root) groups=0(root)
```

- Each user has
 - numeric User ID (UID),
 - home directory, e.g. /home/user,
 - login shell, e.g. /bin/bash or /usr/sbin/nologin if disabled.
- root has UID 0.

- Each group has numeric Group ID (GID).
- sudo group: those who can run sudo.

MANAGING PASSWORDS 🔑

user@cosmos:~\$ passwd

Changing password for user.

Current password:

New password:

Retype new password:

passwd: password updated successfully

CHANGING ROOT PASSWORD


```
user@cosmos:~$ sudo passwd root
New password:
Retype new password:
passwd: password updated successfully
user@cosmos:~$ su
Password:
root@cosmos:/home/user# exit
exit
user@cosmos:~$
```

MANAGING USERS

Command	Action
useraddcreate-homeshell /bin/bash	add user
newuser	
groupadd newgroup	add group
passwd newuser	set password
sudo usermod -aG sudo newuser	add to sudo
	group
su newuser	login as
	newuser
userdel newuser	delete newuser

WHERE USERS AND PASSWORDS ARE?

- /etc/passwd : list of users.

 Can be accessed by everyone.
- /etc/group : list of groups.
 Can be accessed by everyone.
- /etc/shadow : list of users and hashes of their passwords.
 - Can be accessed by root.

PRACTICE 6

- Check /etc/passwd, /etc/group, and /etc/shadow.
- Create a new user with home directory and setup their password.
- Add user to the sudo group.
- Check /etc/passwd, /etc/group, and /etc/shadow again.
- Login as that user with su.
- Exit shell with exit.
- Delete the new user.

§6: PERMISSIONS

- Permissions are important
 - for security reasons,
 - not to touch data you're not supposed to.
- Managed on three levels:
 - file owner,
 - file group,
 - everyone.

MANAGING OWNER AND GROUP

- chown <owner> <file>
- chgrp <group> <file>

```
user@cosmos:~$ touch test.txt
user@cosmos:~$ stat test.txt
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
user@cosmos:~$ sudo chown root test.txt
user@cosmos:~$ stat test.txt
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: (1000/ user)
user@cosmos:~$ sudo chgrp root test.txt
user@cosmos:~$ stat test.txt
Access: (0644/-rw-r--r--) Uid: ( 0/ root) Gid: ( 0/ root)
```

PERMISSIONS V

	Permission	Regular files	Directories
r	read	read contents	list files inside
W	write	modify contents	create, rename, delete files
X	execute	execute	enter with cd

(binaries, scripts) and directories.

REPRESENTED BY A NUMBER

Number	Binary	Permissions
0	0b000	
1	0b001	x
2	0b010	- w -
3	0b011	-wx
4	0b100	r
5	0b101	r-x
6	0b110	rw-
7	0b111	rwx

FORMAT 📩

FILE TYPES

Character	Туре
-	regular file
d	directory
l	symbolic link
С	character special device
b	block special device
p	FIF0
S	socket

EXAMPLES

- 777 = rwxrwxrwx : everything is permitted to everyone.
- 666 = rw-rw-rw- : permission of the beast, anyone can read and modify the file.
- 644 = rw-r--r-- : owner can read and modify; others can read.
- 755 = rwxr-xr-x : directory is readonly, except for the owner.

REAL EXAMPLES 📂

File	Permissions	
/etc/passwd	0644 -rw-rr	
/bin/bash	0755 -rwxr-xr-x	
/tmp	1777 drwxrwxrwt	
/home	0755 drwxr-xr-x	
/home/user	0755 drwxr-xr-x	

CHANGING PERMISSIONS 🥒


```
user@cosmos:~$ touch test.txt
user@cosmos:~$ stat test.txt
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
user@cosmos:~$ chmod +x test.txt
user@cosmos:~$ stat test.txt
Access: (0755/-rwxr-xr-x) Uid: (1000/ user) Gid: (1000/ user)
user@cosmos:~$ chmod 666 test.txt
user@cosmos:~$ stat test.txt
Access: (0666/-rw-rw-rw-) Uid: (1000/ user) Gid: (1000/ user)
```

WHAT IS THE DEFAULT? 🤔

- umask : print file mode mask.
- umask 022 : set file mode mask.
- Default permissions:
 - 666 umask for regular files,
 - 777 umask for directories.

```
user@cosmos:~$ umask
0022
user@cosmos:~$ touch test.txt
user@cosmos:~$ mkdir test
user@cosmos:~$ ls -11
drwxr-xr-x 1 user user 0 Aug 8 20:11 test
-rw-r--r-- 1 user user 0 Aug 8 20:11 test.txt
```

Remember: chmod, chown, chgrp.

§7: PROCESSES

- Each process has its unique Process ID (PID).
- pidof {name} (e.g. pidof bash) finds PIDs by name.

PS: PROCESS INFO

sudo apt install procps : Utilities for working with processes.

Command	Action
ps	list current processes
ps -e	list all processes
ps -C bash	processes with command bash
ps -U root	processes run by root user
pstree	process tree

MONITORING PROCESSES •

top

```
top - 19:57:02 up 4:24, 0 users, load average: 3.86, 1.34, 0.61
Tasks: 120 total, 1 running, 118 sleeping, 1 stopped, 0 zombie
%Cpu(s): 70.3 us, 11.7 sy, 0.0 ni, 6.4 id, 0.8 wa, 0.0 hi, 0.1
MiB Mem : 6603.6 total, 6592.3 free, 5.1 used, 6.2 but
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 6598.5 ava
 PID USER PR
                 NI VIRT RES SHR S %CPU
                                               %MEM TIME-
                  0 7894004 2.2g 297812 S 305.7 34.0
20995 abeshen+ 20
                                                     2:44.67
21501 abeshen+ 20
                  0 2475216
                           55784 26788 S 23.0 0.8
                                                     0:00.69
21495 abeshen+ 20
                           52100 26660 S 22.0 0.8
                  0 2475216
                                                     0:00.66
 499 abeshen+ 20
                           28936 8140 S 1.7 0.4
                  0 72268
                                                     2:16.5
```

KILL 🔪

Command	Action
kill {pid}	sends SIGTERM
killall {name}	sends SIGTERM
kill -KILL {pid}	sends SIGKILL
killall -KILL {name}	sends sigkill

- SIGTERM asks process politely to terminate.
- SIGKILL kills the process (e.g. when not responding)

EXAMPLE

- Run less /etc/passwd.
- Press C-z.
- Check top.
- Try killall less.
- Check top again.
- Try killall -KILL less.

§8: FILE SYSTEM

WHAT'S IN THE ROOT /? 🤨

```
user@cosmos:~$ ls -p /
bin/ dev/ home/ lib64/ mnt/ proc/ run/
srv/ tmp/ var/ boot/ etc/ lib/ media/
opt/ root/ sbin/ sys/ usr/
```

 Linux distributions more or less follow the Filesystem Hierarchy Standard.

Dir	Contents	Dir	Contents
/bin	basic bins	/proc	process info
/boot	bootloader	/root	root home
/dev	devices	/run	run-time data
/etc	configuration	/sbin	system binaries
/home	home dirs	/srv	data served
/lib(64)	libs	/sys	system info
/media	removable media	/tmp	temporary files
/mnt	mounted fs	/usr	user shareable, read-only data
/opt	addon pkgs	/var	variable data

BINARIES 🔆

```
├─ 🌞 bash ← some basic commands
├─ 🌞 date
├─ ☆ m∨
├─ 🔅 tar
sbin ← system binaries available to root
       (boot, recovery, etc.)
```

LIBRARIES 📚

HOME DIRECTORIES 🏡


```
bome ← user home directories
   user (user's data, installations, configurations)
root ← root's home
```

DEVICES **

DEVFS MANAGED BY KERNEL

INFO MANAGED BY KERNEL


```
proc ← processes

    cpuinfo ← CPU info
    meminfo ← memory info

y version ← kernel version
  cmdline ← command that started the process
        cws ← symlink to the current working dir
        environ ← environment variables
        exe ← symbolic link to the executable
                ← directory with file descriptors
```

TEMPORARY DATA Z


```
run ← run-time variable data; cleared on boot
tmp ← temporary files,
       may be created by everyone,
       don't persist
```

/USR 👥

```
bin
   = include \leftarrow C header files
   lib
\vdash local \leftarrow locally installed software
 ├─ 📁 bin
 ├─ 📁 include
     – 📁 lib
      share
     – 📁 src
```

OTHER STUFF

```
i etc ← 'etcetera'; host-specific configuration files

📁 opt 🕒 additional software packages

otin \mathsf{srv} \quad \leftarrow \mathsf{data} \; \mathsf{served} \; \mathsf{by} \; \mathsf{the} \; \mathsf{system} 
📂 var ← variable data
        cache
         lock
         log
        mail
```

BOOT AND FILE SYSTEMS

EXPLORE IT YOURSELF! 6

- Read cpuinfo, meminfo, version inside /proc as regular files.
- For a process with some ID, explore /proc/{pid}.
- What's the difference between /bin and /usr/bin?
- Check out /var/log/apt/history.log.

NEXT TIME

- IO redirection and pipelines.
- Pattern matching, alisases,
 variables, \$PATH.
- Anatomy of scripts: shebang.