Chain rule

Demonstration

Abdelwahid Benslimane

wahid.benslimane@gmail.com

The derivative of a compound function $g \circ f(x) = g(f(x))$ is obtained by the following formula: $(g \circ f)'(x) = g'(f(x))$. This is what we call the chain rule

This is something we see and manipulate from a very young age, and it is on the same principle that the mechanism of the backpropagation of the gradient in an artificial neural network is based. I propose to demonstrate this formula.

We assume that the respective definition sets of f and g are I and J. It is also assumed that $f(I) \subset J$.

We suppose that the conditions are met so that the derivative of $g \circ f$ exists at the point x which belongs to I.

Demonstration

$$(g\circ f)'(x) = \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{h}$$
 $= \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{h} imes rac{f(x+h) - f(x)}{f(x+h) - f(x)}$
 $= \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} imes rac{f(x+h) - f(x)}{h}$
 $= \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} imes \lim_{h o 0} rac{f(x+h) - f(x)}{h}$
 $= \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} imes f'(x).$

If we write k = f(x + h) - f(x), it is obvious that as h tends to 0. So studying the limit when h tends to h, is the same as studying the limit when h tends to h tends to h tends to h. Therefore, it comes that:

$$\lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} = \lim_{k o 0} f(x) rac{g(f(x) + k) - g(f(x))}{k} = g'(f(x)).$$

We then obtain:

$$(g\circ f)'(x) = \lim_{h o 0} f(x) rac{g(f(x+h)) - g(f(x))}{f(x+h) - f(x)} imes f'(x) = g'(f(x)). \ f'(x).$$

We have just demonstrated that $(g \circ f)'(x) = g'(f(x)). f'(x)$.