CHEM103 General Chemistry

Chapter 19: Chemical Thermodynamics

Dr. (O₆S₄C₄Ar) Lung Wa CHUNG(钟龙华)

(oscarchung@sustech.edu.cn)

Department of Chemistry

Homework 16-17 & Exam

Homework 16

Due date: 14th Dec. (Wed)

Homework 17

Due date: 19th Dec. (Mon)

Final EXAM (Chapters 11, 13-17, 19-20)

10:30-12:30, 10th Jan. (Tue)

Review on Chapter 17

The common-ion effect

Buffer solution, Henderson-Hasselbalch equation

Solubility equilibria, solubility-product constant (K_{sp}) , complex ion formation, amphoterism

Outline of Chapter 19

Spontaneous/Non-spontaneous process, reversible/irreversible process, entropy

The Second law of thermodynamics (ΔS_{univ}), The Third law of thermodynamics

Isothermal, statistical thermodynamics, microstate, Boltzmann's equation

Gribbs free energy, standard free energy change & equilibrium

First Law of Thermodynamics

- From Chapter 5: energy cannot be created or destroyed.
- Therefore, the total energy of the universe is a constant.
- Energy can, however, be converted from one form to another form or transferred from a system to the surroundings or vice versa.

Enthalpy/Entropy

- Enthalpy (H): the heat absorbed by a system during a constant-pressure process.
- Entropy (S, 熵): a measure of the randomness in a system.
- Both play a role in determining whether a process is spontaneous (自发性).

Spontaneous Processes

- Spontaneous processes can proceed without any outside intervention or assistance.
- The gas in vessel **A** spontaneously diffuse into vessel **B**. However, once the gas is in both vessels, it will not spontaneously return to vessel **A**.

• Processes that are spontaneous in one direction are non-spontaneous in the reverse direction (at the same conditions).

Does the potential energy of the eggs change during this process?

- Processes that are spontaneous at one temperature may be non-spontaneous at other temperatures.
- Above 0 °C, it is spontaneous for ice to melt.
- Below 0 °C, the reverse process is spontaneous.

- Early chemists proposed that spontaneous chemical reactions should occur in the direction of decreasing energy.
- It is true that many **exothermic** processes are spontaneous and that many **endothermic** reactions are nonspontaneous.
- However, enthalpy change is NOT a sufficient criterion for predicting spontaneous change. E.g. the dissolving of NH₄NO₃, are endothermic.

Reversible Processes

• If the flow of heat into or out of the system is to be reversible, what must be true of δT (a very small difference in temperature)?

 The system changes so that the system & surroundings can be returned to the original state by exactly reversing the process.

Irreversible Processes

- Irreversible processes cannot be undone by exactly reversing the change to the system or cannot have the process exactly followed in reverse.
- Spontaneous processes are irreversible.

Entropy

- A term coined by Rudolph Clausius in the 19th century.
- A measure of the randomness of a system.
- Related to various modes of motion in molecules.
- The significance of the ratio of heat delivered and the temperature at which it is delivered, <u>9</u>.

T

- Like total energy (E), and enthalpy (H), entropy (S) is a state function.
- So, the change in entropy:

$$\Delta S = S_{\text{final}} - S_{\text{initial}}$$

• For a process occurring at constant temperature (an isothermal process), the change in entropy is equal to the heat that would be transferred if the process were reversible divided by the temperature:

$$\Delta S = q/T$$

Second Law of Thermodynamics

 The entropy of the universe does not change for reversible processes:

$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} = 0$$

 The entropy of the universe increases in any spontaneous (irreversible) processes:

$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} > 0$$

- All spontaneous change leads to an increase in the entropy of the world (universe).
- There are many common instances in which there is a clear decrease in entropy, such as the freezing of a liquid, the formation of a precipitate, or the growth of an organism.
- but it's the entropy of the system plus surroundings that counts!

If a process is nonspontaneous, does that mean the process cannot occur under any circumstances?

- A. Yes. Nonspontaneous processes can never occur under any circumstances.
- B. No. Nonspontaneous processes can occur with some continuous external assistance.

All spontaneous processes are

- a. reversible.
- b. irreversible.
- c. isothermal.
- d. exothermic.

How do we reconcile the fact that S is a state function but ΔS depends on q, which is not a state function?

- A. The value of ΔS is a state function because q is constant for a specified T irrespective of the path chosen.
- B. ΔS depends not merely on q but on q_{rev} . There is only one reversible isothermal path between two states regardless of the number of possible paths.
- C. ΔS has negligible dependence on q and thus q does not affect the state function properties of S or ΔS .
- D. $\Delta H = q_p$. ΔH is directly related to q. ΔH is a state function; thus, ΔS is also a state function.

Which process is spontaneous, spontaneous in the reverse direction, or in equilibrium: **(a)** Water at 40°C gets hotter when a piece of metal heated to 150°C is added. **(b)** Water at room temperature decomposes into $H_2(g)$ and $O_2(g)$. **(c)** Benzene vapor, $C_6H_6(g)$, at a pressure of 1 atm condenses to liquid benzene at the normal boiling point of benzene, 80.1°C.

- (a) This process is spontaneous (heat is transferred from the hotter object to the colder one).
- **(b)** Not spontaneous. The *reverse* process—the reaction of H_2 and O_2 to form H_2O —is spontaneous.
- (c) This is an equilibrium situation.

Entropy is a measurement of the _____ of a system.

- a. randomness
- b. internal energy
- c. temperature
- d. polarity

Entropy (S) is a state function, so the change in entropy is given by S_{final} _____ $S_{initial}$.

Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 °C, and its molar enthalpy of fusion is $\Delta H_{\rm fusion} = 2.29$ kJ/mol. What is the entropy change of the system when 50.0 g of Hg(I) freezes at the normal freezing point?

$$-38.9$$
 °C = $-38.9 + 273.152$ K = 234.3 K

$$q = (50.0 \text{ g Hg}) \left(\frac{1 \text{ mol Hg}}{200.59 \text{ g Hg}}\right) \left(\frac{-2.29 \text{ kJ}}{1 \text{ mol Hg}}\right) \left(\frac{1000 \text{ J}}{1 \text{ kJ}}\right) = -571$$

$$\Delta S_{\text{sys}} = \frac{q_{\text{rev}}}{T} = \frac{-571 \text{ J}}{234.3 \text{ K}} = -2.44 \text{ J/K}$$

The rusting of iron is spontaneous and is accompanied by a decrease in the entropy of the system (the iron and oxygen). What can we conclude about the entropy change of the surroundings?

- A. We need to know if the change involves a closed or open system to make a conclusion.
- B. The entropy of the surroundings must increase by the same amount as the entropy decrease of the system.
- C. The entropy of the surroundings must increase by a greater amount than the entropy decrease of the system.
- D. The entropy of the surroundings must decrease by a smaller amount than the entropy decrease of the system.

Entropy on the Molecular Scale

- Ludwig Boltzmann described the concept of entropy on the molecular level.
- Temperature: a measure of the average kinetic energy of the molecules in a sample.

The two molecules are colored red and blue to keep track of them.

Four possible arrangements (microstates) once the stopcock is opened.

- Gas molecule expansion: two molecules are in the apparatus above; both start in one side.
- What is the **likelihood** they both will end up there? $(1/2)^2$
- If one mole is used? $(1/2)^{6.02 \times 10^{23}}!$ (No chance!)

- Gases spontaneously expand to fill the volume given.
- Most probable arrangement of molecules: approximately equal molecules in each side.

Statistical Thermodynamics

- Thermodynamics looks at bulk properties of substances (the big picture).
- We have seen what happens on the molecular (small) scale. How do they relate?
- We use statistics (probability) to relate them. The field is called statistical thermodynamics.
- Microstate: a single possible arrangement of position and kinetic energy of molecules

- Because there are so many possible microstates, we can't look at every picture generally.
- W represents the number of microstates.
- Entropy: a measure of a specific number of microstates are associated with a particular macroscopic state. The connection between the number of microstates and the entropy of the system (Boltzmann's equation):

$$S = k \ln W$$

where k is the Boltzmann constant, 1.38×10^{-23} J/K.

Entropy Change

The change in entropy for a process:

$$\Delta S = k \ln W_{\text{final}} - k \ln W_{\text{initial}} = k \ln \frac{W_{\text{final}}}{W_{\text{initial}}}$$

 Entropy increases with the number of microstates in the system (more disorder).

- The number of microstates and, therefore, the entropy, tends to increase with increases in
 - Temperature
 - Volume
 - The number of independently moving molecules.

Effect of Volume and Temperature Change on the System

• If we increase volume, there are more positions possible for the molecules. This results in more microstates, so increased entropy.

• If we increase temperature, the average kinetic energy increases. This results in a greater

distribution of molecular speeds.

Therefore, there are more possible kinetic energy values, resulting in more microstates, increasing entropy.

Molecular Motions

- Molecules exhibit several types of motion (more atoms: more microstates & more possible molecular motions):
 - ❖ Translational: Movement of the entire molecule from one place to another.
 - **Rotational**: Rotation of the molecule about an axis or rotation about σ bonds.
 - Vibrational: Periodic motion of atoms within a molecule.

• Generally, molecules have 3N-6 vibrational modes except 3N-5 for linear molecules.

Translational (3) + Rotational (2) + Vibrational (3*3-5

= 4) modes for linear CO₂:

Translational (3) + Rotational (3) + Vibrational (3*3-6 = 3) modes for bent SO_2 :

Entropy and Physical States

 Entropy increases with the freedom of motion of molecules.

$$S(g) > S(I) > S(s)$$
Increasing entropy

Rigid, crystalline structure

Motion restricted to **vibration** only

Smallest number of microstates

Liquid water

Increased freedom with respect to translation

Free to **vibrate** and **rotate**Larger number of microstates

Water vapor

Molecules spread out, essentially independent of one another

Complete freedom for translation, vibration, and rotation

Largest number of microstates

Solutions

- The dissolving of a salt involves both a disordering process (the ions become less confined) & an ordering process (some water molecules become more confined hydrated ions).
- Generally, when a solid is dissolved in a solvent, entropy increases.

Chemical Reaction

- In general, entropy increases,
- 1) when gases are formed from liquids and solids;
- 2) when liquids or solutions are formed from solids;
- 3) when the number of gas molecules (or moles) increases.

What major factor leads to a decrease in entropy as the reaction shown takes place?

Third Law of Thermodynamics

- The entropy of a pure crystalline substance at absolute zero (0 K) is 0.
- Consider all atoms or molecules in the perfect lattice at 0 K; there will only be one microstate.

•
$$S = k \ln W = k \ln 1$$

= 0

Why does the plot show vertical jumps at the melting and boiling points?

Standard Molar Entropies Table 19.1 Standard Molar

- As reference for entropy is 0 K (vs. H & G at 298.15 K), the
- values for elements are not 0 J/mol K at 298.15 K.
- Molar entropy values substances in their standard states.
- Generally, standard molar entropy: gases > liquids & solids.
- Standard molar entropies increase with molar mass.

Substance	S°(J/mol-K)		
$H_2(g)$	130.6		
$N_2(g)$	191.5		
$O_2(g)$	205.0		
$H_2O(g)$	188.8		
$NH_3(g)$	192.5		

 $CH_3OH(g)$ $C_6H_6(g)$

Li(s)

Na(s)

K(s)

Fe(s)

 $FeCl_3(s)$

NaCl(s)

269.2 $H_2O(l)$ 69.9 $CH_3OH(l)$ 126.8 $C_6H_6(l)$ 172.8 29.1 51.4 64.7 27.23

237.6

142.3

72.3

Methane, CH_4 $S^{\circ} = 186.3 \text{ J/mol-K}$

Ethane, C_2H_6 $S^{\circ} = 229.6 \text{ J/mol-K}$

Propane, C_3H_8 $S^{\circ} = 270.3 \text{ J/mol-K}$

• Standard molar entropies increase with number of atoms in a formula of a substance.

Entropy Changes of a Reaction

Entropy changes for a reaction:

$$\Delta S^{\circ} = \Sigma n S^{\circ}$$
 (products) $-\Sigma m S^{\circ}$ (reactants)

where n and m are the coefficients in the balanced chemical equation.

Entropy Changes in Surroundings

- Heat that flows into or out of the system changes the entropy of the surroundings.
- For an isothermal process:

$$\Delta S_{\text{surr}} = \frac{-q_{\text{sys}}}{T}$$

• At constant pressure, $q_{\rm sys}$ is simply ΔH° for the system.

$$\Delta S_{\text{surr}} = \frac{-\Delta H_{\text{sys}}}{T} \quad [\text{at constant P}]$$

Entropy Change in the Universe

 The universe is composed of the system and the surroundings. So,

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

- For spontaneous processes: $\Delta S_{\text{universe}} > 0$
- Multiplying (-T) on both sides:

$$-T\Delta S_{universe} = -T\Delta S_{system} - T\Delta S_{surroundings}$$

An isothermal process & constant pressure:

$$-T\Delta S_{\text{universe}} = -T\Delta S_{\text{system}} + \Delta H_{\text{system}}$$

Gibbs Free Energy (G)

For isothermal process at the constant pressure:

$$-T\Delta S_{\text{universe}} = \Delta H_{\text{system}} - T\Delta S_{\text{system}}$$

$$\Delta G = \Delta H - T \Delta S$$
$$G = H - T S$$

• When $\Delta S_{\text{universe}} > 0$, $\Delta G < 0$. Therefore, when $\Delta G < 0$, a process is spontaneous.

- 1. If $\Delta G < 0$, the **forward** reaction is **spontaneous**.
- 2. If $\Delta G = 0$, the system is at equilibrium.
- 3. If $\Delta G > 0$, the reverse reaction is spontaneous.

Standard Free Energy Change (ΔG°)

• ΔG° of a reaction: the free energy change when reactants and products are in their standard states at 298.15 K.

$$\Delta G^{\circ} = \Sigma G^{\circ}_{\text{(products)}} - \Sigma G^{\circ}_{\text{(reactants)}}$$

• The standard free energy of formation, ΔG_f° : the free energy change for the formation of 1 mol of a substance in its standard state from the elements in their standard states at 298.15 K.

Table 19.2 Conventions Used in Establishing Standard Free Energies

State of Matter	Standard State
Solid	Pure solid
Liquid	Pure liquid
Gas	1 atm pressure
Solution	1 M concentration
Element	$\Delta G_f^{\circ} = 0$ for element in standard state

Analogous to standard enthalpies of formation, standard free energies of formation, ΔG° :

$$\Delta G^{\circ} = \Sigma nG_{f}^{\circ}$$
 (products) $-\Sigma mG_{f}^{\circ}$ (reactants)

where *n* and *m* are the stoichiometric coefficients.

Free Energy Changes and Temperature

There are two parts to the free energy equation:

the enthalpy term: ΔH°

the entropy term: $-T\Delta S^{\circ}$

- The temperature dependence of free energy then comes from the entropy term.
- Since reactions are spontaneous if $\Delta G < 0$, the sign of enthalpy and entropy and the magnitude of the temperature matters to spontaneity

$\Delta G = \Delta H - T \Delta S$

Case	ΔΗ	Δ5	Δ G	Result	Example
1	_	+	_	Spontaneous at all <i>T</i>	$2 O_3(g) \longrightarrow 3 O_2(g)$
2	{ -	_	- + }	Spontaneous at low T	$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$
	(–	_	,	Nonspontaneous at high <i>T</i>	
3 {	{ +	$\left\{ \begin{array}{cccc} + & + & + \\ + & + & - \end{array} \right\}$	Nonspontaneous at low T	$2 H_2O(g) \longrightarrow 2 H_2(g) + O_2(g)$	
	(+ + − ∫	Spontaneous at high <i>T</i>	211 ₂ O(g)		
4	+	_	+	Nonspontaneous at all T	$2 \text{ C(graphite)} + 2 \text{ H}_2(g) \longrightarrow \text{C}_2\text{H}_4(g)$
,	ase 3 i Δ <i>H</i> is (more consta	(+) and -or-les	d is	$\Delta G = 0$ ΔH	At high T , the size of $T\Delta S$ is large, & $-T\Delta S$ predominates.
	the	e ΔS i slope also (s (+), <i>Τ</i> Δ <i>S</i>	$\Delta G > 0$ $T\Delta S$	At low T , the size of $T\Delta S$ is small, & ΔH (+) predominates.
Temperature, K					

Free Energy (G) and Equilibrium (K)

 Under any conditions, standard or nonstandard, the free energy change can be found this way:

$$\Delta G = \Delta G^{\circ} + RT^{*} \ln Q$$

(Under standard conditions, all concentrations are 1 M, so Q = 1 and In Q = 0; the last term drops out.)

- At equilibrium, Q = K, and $\Delta G = 0$.
- The equation becomes

$$0 = \Delta G^{\circ} + RT^* \ln K$$

$$\Delta G^{\circ} = -RT^* \ln K$$

or

$$-\Delta G^{\circ}/RT$$
 $K = \mathbf{e}$

- $\Delta G = 0$ is a criterion for equilibrium at any temperature.
- $\Delta G^{\circ} = 0$ is a criterion for equilibrium at a **single temperature** (298.15 K), that temperature at which the equilibrium state has all reactants and products in **their** standard states.
- ΔG and ΔG° are related through the reaction quotient, Q (chapter 15):

$$\Delta G = \Delta G^{\circ} + RT^{*} \ln Q$$

$$a A + b B \Longrightarrow d D + e E$$

$$Q_{c} = \frac{[D]^{d} [E]^{e}}{[A]^{a} [B]^{b}}$$

$$Q = \frac{\text{activities of products}}{\text{activities of reactants}}$$

$$Q = \prod_{J} a_{J}^{\nu_{J}}$$

$$K = e^{-\Delta G^{\circ}/RT}$$

Arrhenius Equation (Chapter 14)

$$k = Ae^{-E_a/RT}$$

$$\ln(k) = -E_d/RT + \ln(A)$$

(extra info.)

Eyring Equation

$$k = (k_B T/h)e^{-G_a/RT}$$

$$k = (k_B T/h)e^{S_a/R} *e^{-H_a/RT}$$

$$\ln(k/T) = -H_a/RT + \{\ln(k_B/h) + S_a/R\}$$

Coupled Reactions

• A nonspontaneous reaction may be *coupled* with a **spontaneous** reaction. E.g. the decomposition of copper(I) oxide is quite nonspontaneous at room temperature:

$$Cu_2O(s) \leftrightarrow 2Cu(s) + \frac{1}{2}O_2(g)$$
 $\Delta G^{o}_{298} = +149.9 \text{ kJ}$

By coupling this with the formation of CO from carbon,

C(graphite) +
$$\frac{1}{2}O_2(g) \longleftrightarrow CO(g)$$
 $\Delta G^{\circ}_{298} = -137.2 \text{ kJ}$

reduce the nonspontaneity of Cu₂O and make the overall reaction occur slightly above room temperature:

Cu₂O(s) + C(graphite)
$$\longleftrightarrow$$
 2Cu(s) + CO(g)

$$\Delta G^{\circ}_{298} = +12.7 \text{ kJ}$$

• Biological systems employ the same way to drive nonspontaneous ones.

$$C_6H_{12}O_6(s) + 6O_2(g) \longleftrightarrow 6CO_2(g) + 6H_2O(g)$$

The Second Law of Thermodynamics says that the entropy of the universe _____ whenever a spontaneous process occurs.

- a. increases
- b. decreases
- c. remains unchanged
- d. reaches equilibrium

An automobile being driven from west to east is experiencing _____ motion.

- a. kinetic
- b. translational
- c. vibrational
- d. rotational

What kinds of motion can a molecule undergo that a single atom cannot?

- A. Molecules and single atoms experience the same types of motion.
- B. A molecule can vibrate and rotate; a single atom undergoes neither.
- C. A molecule can undergo translational motion and rotate; a single atom undergoes neither.
- D. A molecule can vibrate and undergo translational motion; a single atom undergoes neither.

Changes in a molecule's bond lengths or bond angles are examples of _____ motion.

- a. kinetic
- b. translational
- c. vibrational
- d. rotational

When a molecule spins, it is undergoing ______motion.

- a. translational
- b. vibrational
- c. rotational
- d. the loco-

Predict whether is positive or negative for each process, assuming each occurs at constant ΔS temperature:

- (a) $H_2O(I) \rightarrow H_2O(g)$
- (b) $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$
- (c) 4 Fe(s) + 3 $O_2(g) \rightarrow 2 \text{ Fe}_2O_3(s)$
- (d) $N_2(g) + O_2(g) \to 2 NO(g)$

- (a) positive.
- (b) negative.
- (c) negative.
- (d) Close to zero.

k = Boltzmann's constant. W = the number of microstates. S = entropy. Which is true?

- a. $S = k \times W$
- b. S = k / W
- c. S = k ln Wd. $S = k^W$

Entropy decreases when

- a. a liquid becomes a gas.
- b. a solid becomes a liquid.
- c. a gas becomes a solid.
- d. the number of moles of gas increases.

What is the entropy of a system that has only a single microstate?

A.
$$S = 0$$

B.
$$S = 1$$

C.
$$S > 0$$

D.
$$S < 0$$

$$S = k \ln W$$

$$W = 1$$

Which process does **not** illustrate a decrease in entropy?

- a. Na(s) + Br₂(I) \rightarrow 2 NaBr(s)
- b. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- c. $NH_3(aq) + H_2S(g) \rightarrow (NH_4)_2S(aq)$
- d. $AgNO_3(aq) + KCI(aq) \rightarrow AgCI(s) + KNO_3(aq)$

Calculate the change in the standard entropy of the system, ΔS° , for the synthesis of ammonia from $N_2(g)$ S° (J/mol-K) Substance

130.6

191.5

205.0

188.8

192.5

237.6

269.2

69.9

126.8

172.8

29.1

51.4

64.7

27.23

142.3

72.3

$$\Delta S^{\circ} = \sum nS^{\circ}(\text{products}) - \sum mS^{\circ}(\text{reactants})^{\text{CH}_{3}\text{OH}(g)}_{;\text{H}_{6}(g)}$$

$$\underset{\text{CH}_{3}\text{OH}(l)}{\overset{\text{H}_{2}\text{O}(l)}{\text{CH}_{3}\text{OH}(l)}}_{;\text{C}_{6}\text{H}_{6}(l)}$$

$$\underset{\text{Na(s)}}{\overset{\text{Li}(s)}{\text{Na(s)}}}$$

K(s)Fe(s) $FeCl_3(s)$ NaCl(s) $\Delta S^{\circ} = 2S^{\circ}(NH_3) - [S^{\circ}(N_2) + 3S^{\circ}(H_2)]$

= (2 mol)(192.5 J/mol-K) - [(1 mol)(191.5 J/mol-K) +(3 mol)(130.6 J/mol-K)] = -198.3 J/K

If a process is exothermic, does the entropy of the surroundings (1) always increase, (2) always decrease, or (3) sometimes increase and sometimes decrease, depending on the process?

A. Always increase $\Delta S_{\text{surroundings}} = \frac{-q_{\text{system}}}{\tau}$

A. Always increase
$$T$$
B. Always decrease $q_{\text{system}} = \Delta H_{\text{system}}$
C. Sometimes increases and sometimes decreases,

The notation, pressure, temperature, and units for reporting *Standard Molar Entropies* are a. S_{std}; 1 atm; 0°C; kJ/mol-°C.

b. S°; 1 atm; 298 K; J/mol-K.

depending on the process

c. ΔS°; 0 atm; 298 K; J/mol-K.

d. ΔS_f° ; 1 atm; 0°C; kJ/°C.

- What are the criteria for spontaneity
- a. in terms of entropy andb. in terms of free energy?
- A. (a) The entropy of the universe increases and (b) the free energy of a system decreases at constant temperature.
- B. (a) The entropy of the system decreases and (b) the free energy of the universe increases at constant temperature.
- C. (a) The entropy of the system increases and (b) the free energy of the universe decreases at constant temperature.
- D. (a) The entropy of the universe decreases and (b) the free energy of a system increases at constant temperature.

Calculate the standard free–energy change for the formation of NO(g) from $N_2(g)$ and $O_2(g)$ at 298 K:

$$N_2(g) + O_2(g) \rightarrow 2 NO(g)$$

given that $\Delta H^{\circ} = 180.7$ kJ and $\Delta S^{\circ} = 24.7$ J/K. Is the reaction spontaneous under these conditions?

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= 180.7 \text{ kJ} - (298 \text{ K})(24.7 \text{ J/K}) \left(\frac{1 \text{ kJ}}{10^{3} \text{ J}}\right)$$

$$= 180.7 \text{ kJ} - 7.4 \text{ kJ}$$

$$= 173.3 \text{ kJ}$$

Because is positive, the reaction is not spontaneous under standard conditions at 298 K.

The normal boiling point of benzene is 80 °C. At 100 °C and 1 atm, which term is greater in magnitude for the vaporization of benzene, ΔH or $T\Delta S$?

- A. $\Delta H = T \Delta S$
- B. $\Delta H < T \Delta S$
- C. $\Delta H > T \Delta S$
- D. Cannot determine without additional information

At equilibrium, the value of the free energy change (ΔG) is

- a. positive.
- b. negative.
- டு fluctuating.
- d. zero.

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$
 Assume that ΔH^0 and ΔS^0 for this reaction do not

change with temperature. (a) Predict the direction in which ΔG° for the reaction changes with increasing temperature. (b) Calculate ΔG° at 25 °C and 500 °C, given that $\Delta H^{\circ} = -92.38$ kJ and $\Delta S^{\circ} = -198.3$ J/K.

(a) We expect ΔS° for this reaction to be negative. As $-T\Delta S^{\circ}$ is positive and increases with increasing temperature, ΔG° becomes less negative (or more positive). Thus, the driving force becomes smaller.

(b)
$$\Delta G^{\circ} = -92.38 \text{ kJ} - (298 \text{ K})(-198.3 \text{ J/K}) \left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$$

$$= -92.38 \text{ kJ} + 59.1 \text{ kJ} = -33.3 \text{ kJ}$$

$$\Delta G^{\circ} = -92.38 \text{ kJ} - (773 \text{ K}) \left(-198.3 \frac{\text{J}}{\text{K}}\right) \left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$$

$$= -92.38 \text{ kJ} + 153 \text{ kJ} = 61 \text{ kJ}$$

The Third Law of Thermodynamics says that the entropy of a pure, perfect crystal is _____ at absolute zero (zero Kelvins).

a. increasingb. decreasingc. infinited. zero

G = the Gibbs free energy. H = enthalpy. S = entropy. T = the Kelvin temperature. Which is true?

If the enthalpy change is positive and the entropy change is negative, the reaction is

- a. spontaneous at all temperatures.
- b. non-spontaneous at all temperatures.
- c. spontaneous at low temperatures.
- d. spontaneous at high temperatures.

If the enthalpy change is negative and the entropy change is positive, the reaction is

- a. spontaneous at all temperatures.
- b. non-spontaneous at all temperatures.
- c. spontaneous at low temperatures.
- d. spontaneous at high temperatures.

What does the superscript $^{\circ}$ indicate when associated with a thermodynamic quantity, as in $\Delta H^{\circ}, \Delta S^{\circ}$, or ΔG° ?

- A. It indicates the process is spontaneous under standard conditions.
- B. It indicates the process has taken place under standard conditions.
- C. It indicates the process has taken place at 273 K and 1 torr.
- D. It indicates the process has taken place at 1 atm and 0 K.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$
 $\Delta G^{\circ} = -33.3 \text{ kJ/mol}$

Use this value of ΔG° to calculate the equilibrium constant for the process at 25 °C.

$$K = e^{-\Delta G^{\circ}/RT} = e^{-(-33,300 \text{ J/mol})/(8.314 \text{ J/mol-K})(298 \text{ K})}$$

$$=e^{13.4}=7\times10^5$$

Calculate ΔG at 298 K for a mixture of 1.0 atm N₂, 3.0 atm H₂, and 0.50 atm NH₃ being used in the Haber process:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$Q = \frac{P_{\text{NH}_3}^2}{P_{\text{N}_2} P_{\text{H}_2}^3} = \frac{(0.50)^2}{(1.0)(3.0)^3} = 9.3 \times 10^{-3}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

= $(-33.3 \text{ kJ/mol}) + (8.314 \text{ J/mol-K})(298 \text{ K})(1 \text{kJ/1000 J}) \ln(9.3 \times 10^{-3})$
= $(-33.3 \text{ kJ/mol}) + (-11.6 \text{ kJ/mol}) = -44.9 \text{ kJ/mol}$

Key Summary

Spontaneous/Non-spontaneous process, reversible/irreversible process, entropy

The Second law of thermodynamics (ΔS_{univ}), The Third law of thermodynamics

Isothermal, statistical thermodynamics, microstate, Boltzmann's equation

Gribbs free energy, standard free energy change & equilibrium

Thank You for Your Attention! Any Questions?