

PRASOON KARMACHARYA

BACKGROUND

Toxic behaviour is pervasive in every online environment

40%

internet users have faced harassment

73%

internet users have seen others get harassed

26%

women aged 18-24 years, have received obscene text

internet user chose not to post something online after seeing someone is harassed

PROBLEM STATEMENT

Online communication can often devolve into abuse and harassment due to the anonymity of users. Platforms often struggle to effectively facilitate conversation forcing many communities to shut down user comments. This discourages civil and productive discourse.

Can we leverage natural language processing and machine learning to construct a model that can accurately classify toxicity level in online conversations?

MODELING WORKFLOW

DATA

Source: Civil Comment Corpus (2017) from Jigsaw/Conversation Al [1] and WMF

Data Schema:

Data points: 159, 571 labeled samples of Wikipedia comments

Feature: Comment Text

Binary Labels: Toxic, Severe Toxic, Obscene, Threat, Insult and Identity Hate

DISTRIBUTION OF TOXIC COMMENTS

CORRELATION BETWEEN TOXIC LABELS

- 0.9 - 0.8 - 0.7 - 0.6 - 0.5 0.4 - 0.3 - 0.2

CLASSIFIERS

CLASSIFIERS

DATA

Comment containing at least one toxic class label is considered **neutral** for **binary classification**

BINARY

Toxic Vs. Neutral

MULTILABEL

Toxicity Classification

MODELING WORKFLOW

DATA CLEANING

Text cleaning procedure involved:

- Removing emails, urls, dates
- Removing html, xml tags
- Removing non-alphanumeric characters (@#\$%^&* etc.)
- Keeping only one instance of copy-pasted comment text

MODELING WORKFLOW

Effort to minimize class-imbalance

Language Translation

Original Text: "Essence of mathematics lies in its freedom."

Augmented Text: "Abstract mathematics lies in its independence."

Effort to minimize class-imbalance

Synonym Replacement

Original Text: "The Universe is under no obligation to make sense to you"

Augmented Text: "The Universe is under no obligation to make feel to you"

Effort to minimize class-imbalance

Random Insertion

Original Text: "Premature optimization is root of all evils."

Augmented Text: "Premature optimization is immorality of all evils."

Effort to minimize class-imbalance

Random Swap

Original Text: "The future belongs to those who believe in the beauty of their dreams."

Augmented Text: "The future belongs to those who believe in the dreams of their beauty."

Effort to minimize class-imbalance

Random Deletion

Original Text: "Life is really simple, but we insist on making it complicated."

Augmented Text: "Life is really simple, but _ insist _ making _ complicated."

Toxicity Category

Minimized Class Imbalance Problem

MODELING WORKFLOW

VECTORIZATION

Tokenization

The process of turning human language text input into numeric data (a numerical representation that the computer can understand.)

```
sentences = [
    'I love my dog',
    'I love my cat',
    'You love my dog!',
    'Do you think my dog is amazing?'
]
```

```
{'amazing': 10, 'dog': 3, 'you': 5, 'cat': 6,
  'think': 8, 'i': 4, 'is': 9, 'my': 1, 'do': 7,
  'love': 2}

[[4, 2, 1, 3], [4, 2, 1, 6], [5, 2, 1, 3], [7,
5, 8, 1, 3, 9, 10]]
```

Convert Natural Language to Numeric Representation

MODELING WORKFLOW

EMBEDDINGS

Embeddings are pretrained numerical representation of words and phrases in a corpus, that capture their meaning, semantic relationships and sentence morphology.

Pretrained Embeddings

2013

2014

2015

Word2vec

Mikolov et. al.^[2]

Word level n-gram model

GloVe

Pennington et. al. [3]

Global statistical information of words and characters

FastText

Bojanowski et. al.^[4]

Character level n-gram model

Used GloVe and FastText

MODELS

MODEL ARCHITECTURE: CNN (Binary)

MODEL ARCHITECTURE: CNN (Multi-label)

MODEL ARCHITECTURE: BiLSTM + Attention (Binary)

MODEL ARCHITECTURE: BiLSTM + Attention (Multi-label)

MODELING WORKFLOW

MODEL PERFORMANCE METRIC

Objectives: Minimize False Positives and Maximize True Positive Rate

Model performance metrics: Recall, Precision, and F1-score

MODEL PERFORMANCE METRIC

Objectives: Minimize False Positives and Maximize True Positive Rate

Model performance metrics: Recall, Precision, and F1-score

MODEL PERFORMANCE METRIC

Objectives: Minimize False Positives and Maximize True Positive Rate

Model performance metrics: Recall, Precision, and F1-score

$$F_1$$
 score = 2 Recall \times Precision Recall + Precision

BINARY CLASSIFICATION PERFORMANCE

N	Model Architecture	Accuracy	Recall	F1	Precision	AUC
	CNN - Glove	0.9239	0.9418	0.9353	0.9319	0.9781
	CNN - FT	0.9006	0.9553	0.9184	0.8879	0.9667
	BiLSTM - Glove	0.9237	0.9554	0.9361	0.9204	0.9652
	BiLSTM - FT	0.9012	0.9625	0.9192	0.8832	0.9687
	BiLSTM Att Glove	0.9207	0.9207	0.9344	0.9094	0.9776
	BiLSTM Att FT	0.9006	0.9737	0.9199	0.8749	0.9687

Worst

Best

BiLSTM + Attention with FastText embedding layer had the best Recall

MULTILABEL CLASSIFICATION PERFORMANCE

Model Architecture	Accuracy	Recall	F1	Precision	AUC
CNN - Glove	0.6186	0.8781	0.8323	0.7921	0.9423
CNN - FT	0.7005	0.8328	0.8252	0.8192	0.9312
BiLSTM - Glove	0.8083	0.8523	0.8278	0.8278	0.9437
BiLSTM - FT	0.8908	0.8523	0.8278	0.8061	0.9437
BiLSTM Att Glove	0.8967	0.8858	0.8391	0.7984	0.9509
BiLSTM Att FT	0.9354	0.8409	0.8304	0.8216	0.9455

Worst Best

BiLSTM + Attention with GloVe embedding layer had the best Recall

MODELING WORKFLOW

BEST MODEL SUMMARY

Binary Classifier

Model Architecture: BiLSTM + Attention with Fast Text Embedding Model Performance:

Accuracy	Recall	F1	Precision	AUC
0.9006	0.9737	0.9199	0.8749	0.9687

Multi-Label Classifier

Model Architecture: BiLSTM + Attention with GloVe Embedding Model Performance:

Accuracy	Recall	F1	Precision	AUC
0.8967	0.8858	0.8391	0.7984	0.9509

DISCLAIMER

WARNING

For the upcoming demo I will be using some of the text comment from the dataset that has offensive and profane language. I would like to give you this opportunity to turn off your video if you are inclined to do so.

Key Takeaways

Binary and multi-label classifier with Deep Neural Architecture were successful in classifying toxic text with reasonable recall

Problem of Imbalanced classes persists;
Balanced data will most likely help improve the model performance

Although binary classifier has reasonably high recall and AUC score, multi-label classifier has some room for improvement

FUTURE CONSIDERATIONS

Revisit the problem with robust dataset

Investigate ways to mitigate problem of inherent bias in both, dataset and pretrained embeddings

Train models using bigger pretrained embeddings like ELMO and BERT

Fine tune DNN models with varying hidden layers to improve training performance

Deploy a REST API to serve my trained model for others to use in their application

REFERENCES

- 1. Civil Comment Corpus, Jigsaw-Conversation Al Data Set
- Word2Vec Embedding
- 3. GloVe Embedding
- 4. FastText Embedding
- 5. GloVe: Global Vectors for Word Representation
- 6. Perspective API

THANK YOU

CONTACT

Email: prasoon.karma@gmail.com

Linkedin: in/karmacharya

Github: github.com/karma271

Twitter: @karma271