ICHHARA 9 09/534,563 Darryl Mexic 202-293-7060 2 of 2

日 围 丌

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2000年 3月 8日

出額 Application Number:

特願2000-063463

額 人 Applicant (s):

セイコーエプソン株式会社

出

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年 4月21日

符 許 庁 長 官 Commissioner, Patent Office

出証特2000-3030046 出証番号

【書類名】

特許願

【整理番号】

SE000232

【提出日】

平成12年 3月 8日

【あて先】

特許庁長官 殿

【国際特許分類】

H04N 1/00

【発明の名称】

画像データ処理システム

【請求項の数】

8

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

市原 信太郎

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

【識別番号】

100093779

【弁理士】

【氏名又は名称】

服部 雅紀

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第 83568号

【出願日】

平成11年 3月26日

【手数料の表示】

CC

【予納台帳番号】

007744

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 99

9901019

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 画像データ処理システム

【特許請求の範囲】

【請求項1】 撮影対象からの光を画像データに変換する変換手段、および 記憶媒体を有するデジタルカメラと、

前記画像データを記憶可能な記憶部を有する画像データ記憶装置と、

前記画像データに基づく縮小画像データを作成する縮小画像データ作成手段と

前記画像データおよび前記縮小画像データを前記デジタルカメラと前記画像データ記憶装置との間で送信および受信可能な通信装置と、前記通信装置を接続する通信経路とを有する通信手段とを備え、

前記画像データは前記記憶部に記憶し、前記縮小画像データは前記記憶媒体に記憶することを特徴とする画像データ処理システム。

【請求項2】 前記デジタルカメラは、前記画像データまたは前記縮小画像 データに基づく画像を表示可能な画像表示手段を備えることを特徴とする請求項 1に記載の画像データ処理システム。

【請求項3】 前記縮小画像データ作成手段は、前記画像データ記憶装置に備えられることを特徴とする請求項1または2のいずれかに記載の画像データ処理システム。

【請求項4】 前記縮小画像データ作成手段は、前記デジタルカメラから受信した画像データを含み前記記憶部に記憶されている画像データに基づく縮小画像データを作成することを特徴とする請求項1~3のいずれか一項に記載の画像データ処理方法。

【請求項5】 前記デジタルカメラは、前記縮小画像データを受信し、前記記憶媒体に記憶する手段を備えることを特徴とする請求項4に記載の画像データ処理システム。

【請求項 6 】 前記デジタルカメラは、通信装置を内蔵していることを特徴とする請求項 1 ~ 5 のいずれか一項に記載の画像データ処理システム。

【請求項7】 前記画像データ記憶装置の前記記憶部は、必要に応じて記憶

されている画像データを消去し新たな画像データを記憶するキャッシュ領域と、 画像データを蓄積する保存領域とを有することを特徴とする請求項 1 ~ 6 のいず れか一項に記載の画像データ処理システム。

【請求項8】 外部のデジタルカメラで撮影された画像データを受信し記憶可能な記憶部と、

前記画像データに基づく縮小画像データを作成する縮小画像データ作成手段と

前記縮小画像データを前記デジタルカメラに送信する送信手段と、

を備えることを特徴とする画像データ記憶装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、デジタルカメラで撮影した画像データを処理する画像データ処理システムに関する。

[0002]

【従来の技術】

従来より、CCD等の光センサにより光を電気信号に変換し、その電気信号を デジタルデータに変換してフラッシュメモリ等の記憶媒体に記憶するデジタルカ メラが知られている。デジタルカメラを用いると、パーソナルコンピュータ(パ ソコン)等を用いて画像データの保存や様々な加工を個人で手軽に行えるほか、 パソコンに接続されているプリンタ、あるいはデジタルカメラに直接接続可能な プリンタで画像を出力することによりフィルムの現像なしに写真を印刷すること ができる。プリンタの印刷品質の向上により、銀塩写真とほとんど区別がつかな いほど品質の高い写真も印刷できるようになっている。

[0003]

デジタルカメラは、撮影した画像データを記憶するためにデジタルカメラに内 蔵のフラッシュメモリや、デジタルカメラから着脱自在なメモリーカードなどの 記憶媒体を利用していた。撮影対象からCCDなどの光センサに入力された光は 、A/D変換器などによりデジタルデータに変換され、露出補正およびデータの

圧縮などの処理を行った後、画像データとしてフラッシュメモリやメモリーカードなどの記憶媒体に記憶されていた。デジタルカメラに利用されるフラッシュメモリやメモリーカードなどが記憶可能な画像の枚数は、画像データの圧縮の度合い、すなわち画質によって変化するが数枚から数十枚程度であった。そのため、多くの画像データを記憶するにはフラッシュメモリやメモリーカードを何枚も用意する必要があった。

ところが、フラッシュメモリやメモリーカードの価格は比較的高価であるため 、何枚ものメモリーカードを所有するとデジタルカメラの購入コストが高いもの になってしまうという問題があった。

[0004]

【発明が解決しようとする課題】

近年では、ノートパソコンなどの携帯端末機器の急激な普及、およびインターネットなど通信環境の充実などにより、電話回線などの通信回線を利用してデジタルカメラで撮影した画像データをサーバコンピュータのディスクなど大容量の記憶装置に転送して記憶させることにより、デジタルカメラが搭載するメモリーカードの容量を最小限に抑えるシステムが提案されている。

[0005]

しかしながら、ユーザが撮影した大量の画像データを大容量の記憶装置を利用して保存する場合、撮影を終了した画像のデータが多くなるほどユーザが希望する画像の画像データを検索することは困難という問題があった。また、サーバコンピュータの記憶部が大容量であっても、ユーザ個人に割り当てられる記憶容量には限りがあり、不要になった古い画像データが記憶部に記憶されているために、新しく撮影した画像データを記憶することができないという問題があった。さらに、サーバコンピュータの記憶部内に記憶された画像データを検索するには、サーバコンピュータに接続するためにパソコン等の端末機器を利用しなければならないため、デジタルカメラだけを利用する場合でも画像データを得るためにはユーザは必然的にパソコン等を所有しなければならなった。

[0006]

そこで、本発明の目的は、画像データ記憶装置に記憶されている大量の画像デ

ータの中から希望の画像データを容易に検索することができる画像データ処理シ ステムを提供することにある。

また、本発明の別の目的は、画像データ記憶装置に記憶されている画像データをデジタルカメラを利用して検索することができる画像データ処理システムを提供することにある。

[0007]

【課題を解決するための手段】

本発明の請求項1に記載の画像データ処理システムによると、デジタルカメラと画像データを記憶する画像データ記憶装置は、通信装置とそれらを結ぶ通信経路から構成される通信手段を介して接続されている。デジタルカメラで撮影された撮影対象からの光は画像データに変換され、通信手段を介して画像データ記憶装置に記憶される。また、画像データに基づいて縮小画像データが作成され、縮小画像データはデジタルカメラの記憶媒体に記憶される。したがって、デジタルカメラに記憶される画像データは縮小画像データのみであるため、デジタルカメラに記憶される画像データは縮小画像データのみであるため、デジタルカメラに大容量の記憶媒体を搭載する必要がない。

[0008]

本発明の請求項2に記載の画像データ処理システムによると、デジタルカメラは画像データおよび縮小画像データに基づく画像を表示可能な画像表示手段を備えており、ユーザはデジタルカメラの画像表示手段に表示される縮小画像データに基づく画像を利用して画像データ記憶サーバに記憶されている画像データを検索することができるので、画像データ記憶サーバに大量の画像データが記憶されていても希望の画像を容易に検索することができる。

[0009]

本発明の請求項3に記載の画像データ処理システムによると、縮小画像データ 作成手段は画像データ記憶サーバに備えられているので、デジタルカメラに複雑 な処理装置を搭載する必要がない。

本発明の請求項4に記載の画像データ処理システムによると、撮影が行なわれ 送信された画像データを含む縮小画像データが作成されるので、ユーザはデジタ ルカメラで撮影を行なうごとに最新の縮小画像データを入手することができる。

[0010]

本発明の請求項5に記載の画像データ処理システムによると、デジタルカメラは作成された縮小画像データを受信し記憶するので、ユーザは画像データ記憶装置に記憶されている画像データに対応している縮小画像をデジタルカメラで参照することができる。

本発明の請求項6に記載の画像データ処理システムによると、デジタルカメラの通信装置はデジタルカメラの内部に内蔵されているので、ユーザはデジタルカメラとは別に通信装置を携帯する必要がなく、携帯性が向上する。

[0011]

本発明の請求項7に記載の画像データ処理システムによると、デジタルカメラで撮影した画像データを記憶する画像データ記憶装置の記憶領域は、最新の画像データを記憶するための記憶容量が不足すると、例えば最古の画像データが記憶されている領域を上書き可能な状態にして最新の画像データを記憶する記憶容量を確保し、確保した記憶領域に最新の画像データを上書きして記憶するキャッシュ領域と、撮影した画像データを記憶し蓄積する保存領域とを有している。したがって、ユーザは一時的に保管しておきたい画像データをキャッシュ領域に記憶させることができ、消去したくない重要な画像データは保存領域に記憶させることができるので、記憶部の記憶領域を効率的に利用することができる。

[0012]

本発明の請求項8に記載の画像データ記憶装置によると、縮小画像データ作成 手段を有している。縮小画像データ作成手段は、デジタルカメラで撮影された画 像データに基づいて縮小画像データを作成する。そのため、デジタルカメラで撮 影された画像データは画像データ記憶装置に出力され、画像データ記憶装置において縮小画像が作成される。そして、画像データはそのまま画像データ記憶装置 に記憶され、縮小画像データのみがデジタルカメラへ出力される。したがって、 デジタルカメラは縮小画像データのみを記憶するので、大容量の記憶媒体を必要 としない。また、縮小画像データは画像データ記憶装置で作成されるので、デジ タルカメラに複雑な処理装置を搭載する必要がない。

[0013]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて詳細に説明する。

本発明の一実施例である画像データ処理システムを図1~図5に示す。

図1に示すように、画像データ処理システム1は、撮影対象を撮影するデジタルカメラ3と、デジタルカメラ3で撮影した撮影対象の画像データを記憶する大容量の記憶部を備えた画像データ記憶装置としてのサーバコンピュータ4とから構成されている。また、図2に示すようにサーバコンピュータ4にプリンタ5を接続し、記憶部に記憶されている画像データに基づく画像を印刷することもできる。

[0014]

図3に示すように、サーバコンピュータ4は画像処理や各種の制御を実行可能なコンピュータ本体であるCPU40、記憶部としてのハードディスク41、デジタルカメラ3やプリンタ5と結ばれる通信経路2に接続するための通信装置42を備えている。ハードディスク41は、デジタルカメラ3から送られてくる大量の画像データを蓄積保管し、デジタルカメラ3との間で高速にデータの通信を行なうために大容量、かつ高速アクセスが可能である。サムネイル6(図6に示す。)は、CPU40によって作成される。

[0015]

本実施例においては、デジタルカメラ3のユーザにサーバコンピュータ4のハードディスク41の記憶領域の一部がユーザ領域として提供されている。ユーザ領域は、記憶された画像データを消去しない保存領域と、画像データを記憶可能な領域がなくなると最古の画像データを消去し最新の画像データを上書きし更新していくキャッシュ領域との2つの領域が設定されている。

[0016]

図3に示すように、デジタルカメラ3は制御装置30と、集光レンズ31、CCD (Charge Coupled Device) 32およびA/D変換器33などを有する撮像手段と、画像を表示する画像表示手段としてのLCD (Liquid Crystal Display) 38、画像データを一時的に記憶するRAM (Random Access Memory) 34、サーバコンピュータ4で作成された縮小画像(サムネイル)6を記憶するフラッ

シュメモリ36、LCD38に表示する画像のためのデータが格納されるVRAM37、デジタルカメラ3とサーバコンピュータ4とを結ぶ通信経路2に接続するための通信装置35から構成される。撮像手段に設けられる撮像素子は、本実施例のようにCCDに限らず例えばCMOSセンサーなどを利用することができる。また、画像表示手段もLCDに限るものではない。

[0017]

通信手段は、デジタルカメラに内蔵して設けられる通信装置35とサーバコンピュータ4に設けられる通信装置42とを接続する通信経路2から構成されている。通信経路2として、例えば電話回線などを利用した有線転送方式、携帯電話や赤外線を利用した無線転送方式、イーサネットなどを利用したネットワーク方式などを利用することができる。電話回線を用いる場合、モデムなどの通信装置35をデジタルカメラ3に内蔵することができる。

[0018]

CCD32として、例えば図7に示すようにC(Cyan)、M(Magenta)、Y(Yellow)、G(Green)の補色フィルタを有する複数の画素がマトリックス状に配置されたCCDを用いることにより、カラー画像を撮影することができる。R(Red)、G(Green)、B(Blue)の原色フィルタを有するCCDを用いる場合もある。

[0019]

プリンタ5はサーバコンピュータ4に接続され、ユーザがデジタルカメラ3に行なう指示に応じてハードディスク41に記憶された画像データに基づく画像を印刷することができる。プリンタ5は、サーバコンピュータ4と結ぶ通信経路2に接続するための通信装置51、サーバコンピュータ4から受信した画像データを一時記憶するキャッシュメモリ52、印刷を行なうヘッドや印字部が設けられた印刷部53、プリンタ5の機能を制御するCPU50を備えている。また、本実施例のようにプリンタ5に印刷を終了した画像データを記憶可能なローカルディスク54を備えることにより、一旦印刷した画像データを再度印刷する場合サーバコンピュータ4から再度画像データを送信する必要がない。

[0020]

個人ユーザの場合、プリンタ5を自宅に設置して、自宅と離れた場所から通信 経路2を介してデジタルカメラ3からプリンタ5を制御しハードディスク41に 記憶された画像データの印刷を行なうことが可能である。また、プリンタ5を写 真店やミニラボ、コンビニエンスストアなどに設置し多数のユーザが利用できる ようにすることも可能である。プリンタ5としては、インクジェットプリンタ、 昇華型プリンタおよびレーザープリンタなどを用いることができる。

[0021]

次に、図4のフローチャートに沿って撮影した画像の処理について説明する。 デジタルカメラ3を用いて撮影を行なうと(ステップS401、以下S401 と略記)、CCD32から出力された電気信号はA/D変換器33によりデジタ ル信号に変換され、A/D変換器33から出力されたデジタルデータは、高速化 のためDMA (Direct Memory Access) により制御装置30を介さずに直接RA M34のアドレスを指定して記憶される(S402)。デジタルデータはデジタ ルカメラ3の制御装置30によりホワイトバランスの調整、補間処理、色補正な どの各種の画像補正などが行なわれ、JPEG (Joint Photographic Experts G roup) などの方式により圧縮され、容量の小さな画像データとして作成される(S403)。JPEGはR、G、Bの各色256階調の約1670万色の画像を 扱うことができる一般に用いられている不可逆画像圧縮方法であり、圧縮率を変 更することにより保存画質を調整することができる。また、圧縮を完了した画像 データを一時的にフラッシュメモリ36に格納することも可能である。

[0022]

作成した圧縮済みの画像データは通信経路2を介してデジタルカメラ3外部のサーバコンピュータ4に送信され(S404)、サーバコンピュータ4は画像データを受信する。ここで、デジタルデータをデジタルカメラ3で処理せずにサーバコンピュータ4に送信し、サーバコンピュータ4がデジタルデータに対し各種の画像補正および圧縮を行なってもよい。圧縮を完了した画像データを一時的にフラッシュメモリ36に格納した場合、フラッシュメモリ36に格納されていた画像データはサーバコンピュータ4に送信された後に自動的に削除されることが望ましい。

[0023]

圧縮が完了した画像データは、ユーザからの指示に従いハードディスク41の保存領域またはキャッシュ領域のいずれかに記憶される。ユーザはデジタルカメラ3に対し画像データの記憶領域を指示する(S405)。デジタルカメラ3に行なわれた指示はサーバコンピュータ4で受信され、保存領域またはキャッシュ領域のどちらに記憶するか判断する(S412)。画像データをキャッシュ領域に記憶する場合、最新の画像データを記憶するために必要な記憶容量がキャッシュ領域に残っていないと、ハードディスク41に記憶されている最古の画像データを消去し(S413)、領域を確保した後に最新の画像データを記憶する(S414)。一方、保存領域に画像データを記憶する場合、他の画像データを消去することなく、最新の画像データがハードディスク41に記憶される(S415)。

[0024]

画像データの記憶が完了すると、サーバコンピュータ4はハードディスク41 に記憶した最新の画像データを含む画像データに基づくサムネイル6を作成する (S416)。サムネイル6はハードディスク41に記憶されているすべての画像データを縮小してインデックス的に表示する縮小画像であり、画像データの記憶が完了した後、キャッシュ領域および保存領域において新たに記憶された画像データを含む最新の画像データに基づいて作成される。

[0025]

作成された最新の画像データを含むサムネイル 6 は、通信経路 2 を利用してデジタルカメラ 3 に送信され、デジタルカメラ 3 のフラッシュメモリ 3 6 に記憶される (S406)。フラッシュメモリ 3 6 に記憶されたサムネイル 6 は、ユーザがデジタルカメラ 3 を用いて撮影を行なうごとに最新の縮小画像データがサーバコンピュータ 4 から送信され更新される。したがって、ユーザはサーバコンピュータ 4 に記憶されている画像データの最新情報を常にサムネイル 6 で確認することができる。また、フラッシュメモリ 3 6 に記憶しているのはサムネイル 6 だけであるため、必要とするメモリの容量を小さくすることができ、ユーザは数多くの撮影を行なう場合であってもフラッシュメモリ 3 6 を何枚も用意する必要がな

410

[0026]

ハードディスク41に記憶されている画像データとサムネイル6とは、以下のようにして関連づけされている。ハードディスク41のキャッシュ領域および保存領域に記憶されている画像データにはそれぞれファイル名が付されている。例えば、撮影順に「001.JPG」、「002.JPG」、「00n.JPG(nは整数)」のように付されている。サムネイル6のそれぞれの画像には、この画像データのファイル名に対応するファイル名が付されている。例えば、上記の画像データに対応して「001s.JPG」、「002s.JPG」、「00n.JPG(nは整数)」のように付されている。これにより、例えばデジタルカメラ3からサムネイル6に含まれる画像データ「001s.JPG」を選択すると、ハードディスク41に記憶された「001.JPG」が選択される。

[0027]

次に、図5のフローチャートに沿ってハードディスク41に記憶された画像データをデジタルカメラ3で再生、およびプリンタ5で印刷するための処理について説明する。

ハードディスク41に記憶されている画像データに基づく画像をプリンタ5から印刷、およびデジタルカメラ3のLCD38で再生する場合、印刷および再生の実行の指示をデジタルカメラ3から行なうことができる。

[0028]

ユーザは図6に示すように、デジタルカメラ3のLCD38に表示されたサムネイル6を見ながら印刷または再生を実行したい画像を検索する(S501)。検索はサムネイル6を利用することにより、ハードディスク41に大量の画像データが記憶されている場合でも、ユーザは希望の画像を容易に検索し選択することができる。ユーザがサムネイル6を見て希望する画像を選択し指示すると(S502)、サーバコンピュータ4はデジタルカメラ3から指示を受信し(S511)、ユーザが選択した画像の画像データをハードディスク41から検索する(S512)。本実施例において、図6に示すように縦3列×横3列の9枚のサムネイルを表示する形態としているが、縦、横ともに2列の4枚の画像を表示する

形態としたり、縦、横ともに4列の16枚のサムネイルを表示する形態とすることもできる。

[0029]

検索された画像データは、ハードディスク41から通信経路2を介してデジタルカメラ3に送信される(S513)。デジタルカメラ3はサーバコンピュータ4から送信された画像データを受信し(S503)、受信した画像データに基づく画像をデジタルカメラ3のLCD38に表示することができる(S504)。ユーザはLCD38に表示された画像を確認し、その画像を印刷するかどうかを判断する(S505)。ユーザがLCD38に表示されている画像の印刷をデジタルカメラ3に指示すると(S506)、指示がサーバコンピュータに送信されサーバコンピュータ4はLCD38に表示されている画像と同一の画像データをハードディスク41からプリンタ5へダウンロードする(S514)。

[0030]

プリンタ5はダウンロードされた画像データを受信し(S521)、画像データを一旦プリンタ5に備えられているキャッシュメモリ52に記憶する(S522)。キャッシュメモリ52に記憶された画像データは、印刷を実行するごとにプリンタ5に備えられているCPU50により印刷データが作成され(S523)、印刷データに基づいて印刷部53で印刷が実行される(S524)。前述のようにキャッシュメモリ52に画像データを記憶することで、同一の画像データに基づく画像を複数枚連続して印刷する場合、迅速に印刷を実行することができる。これは、例えばサーバコンピュータ4のハードディスク41に記憶されている画像データがJPEGなどの方式で圧縮することで100kバイト程度のデータであっても、プリンタ5で印刷するための印刷データに変換すると印刷する画像の大きさによるが数メガ〜数十メガバイト程度の大きなデータになり、サーバコンピュータ4で印刷データを作成しプリンタ5にダウンロードして印刷するよりも、一旦画像データをハードディスク41からプリンタ5のキャッシュメモリ52にダウンロードして記憶し、印刷を行なうごとにプリンタで画像データを印刷データに変換する方が迅速な印刷が可能になるためである。

[0031]

印刷を終了すると、キャッシュメモリ52に記録されている画像データはプリンタ5に備えられたローカルディスク54に保存される(S525)。したがって、一度印刷を行った画像と同じ画像を焼き増しする場合、画像データはローカルディスク54に保存されているので、再度サーバコンピュータ4のハードディスク41へ接続し、画像データをダウンロードする必要がない。

[0032]

また、再生または印刷するために利用した画像データがハードディスク41のキャッシュ領域に記憶されていた場合、再生または印刷した画像データはハードディスク41の保存領域へ書き替えられる(S515)。したがって、ユーザが再生または印刷する必要があるような利用頻度の高い画像データは消去されることがない。

[0033]

以上、実施例を用いて説明したように、本発明の画像データ処理システムによると、デジタルカメラが記憶するのは縮小画像データだけであり、実際の画像データは画像データ記憶サーバに記憶されるため、デジタルカメラに搭載する記憶 媒体の容量を小さくすることができ、撮影可能な画像の枚数を増加させることが できる。

また、ユーザはデジタルカメラに記録されている縮小画像を利用して希望の画像を検索することができるので、ユーザが画像データを検索するために必要な作業を簡素化することができる。

[0034]

さらに、デジタルカメラに記憶される縮小画像データと画像データ記憶サーバ に記憶されている画像データとは同期しているので、ユーザはデジタルカメラを 利用して常に最新の画像データを確認することができる。

さらに、ユーザはデジタルカメラを利用して画像データ記憶サーバに記憶されている画像データを検索、および印刷や再生の指示を行なうことができるので、 パソコン等を所有する必要がない。

[0035]

以上、本実施例においてはサーバコンピュータの記憶部としてハードディスク

を利用した形態について説明したが、本発明においては磁気ディスクや光ディスクなど大容量、随時読み書き可能かつ高速な記憶部であればハードディスクに限らない。

また、本実施例においてはデジタルカメラに縮小画像の画像データを記憶する 記憶手段としてフラッシュメモリを利用しているが、画像データを記憶可能かつ 書き替え可能な媒体であればフラッシュメモリに限らない。

さらに、本実施例においてはデジタルカメラで撮影した静止画像の処理について説明したが、静止画に限らず動画であってもよい。動画を用いるときは、その動画の最初の1コマがサムネイルとしてデジタルカメラに記憶される。

【図面の簡単な説明】

【図1】

本発明の実施例による画像データ処理システムを示す構成図である

【図2】

本発明の実施例による画像データ処理システムに印刷装置を付加した構成を示す構成図である。

【図3】

本発明の実施例による画像データ処理システムを示すブロック図である。

【図4】

本発明の実施例による画像データ処理システムの撮影操作を示す流れ図である

【図5】

本発明の実施例による画像データ処理システムの印刷および再生操作を示す流れ図である。

【図6】

本発明の実施例による画像データ処理システムにおけるデジタルカメラを示す概略背面図である。

【図7】

本発明の実施例による画像データ処理システムにおけるデジタルカメラのCC Dを示す模式図である。

【符号の説明】

- 1 画像データ処理システム
- 2 通信経路(通信手段)
- 3 デジタルカメラ
- 4 サーバコンピュータ(画像データ記憶装置)
- 5 プリンタ
- 6 サムネイル(縮小画像)
- 30 制御装置(通信手段)
- 31 集光レンズ (撮像手段)
- 32 CCD (撮像手段)
- 33 A/D変換器(撮像手段)
- 34 RAM
- 35 通信装置(通信手段)
- 36 フラッシュメモリ (記憶媒体)
- 37 VRAM
- 38 LCD (画像表示手段)
- 40 CPU(縮小画像データ作成手段)
- 41 ハードディスク (記憶部)
- 42 通信装置(通信手段)
- 50 CPU
- 51 通信装置
- 52 キャッシュメモリ
- 53 印刷部
- 54 ローカルディスク

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

G	Y	G	Y	G	Y	
M	C	M	C	Μ	C	
G	Y	G	Y	G	Y	32
M	С	Μ	C	M	C	
G	Y	G		G	Y	
M	C	Δ	C	Μ	C	

【書類名】 要約書

【要約】

【課題】 記憶装置に記憶されている大量の画像データの中から希望の画像データを容易に検索することができる画像データ処理システムを提供する。

【解決手段】 画像データ処理システム1は、撮影対象を撮影するデジタルカメラ3と、デジタルカメラ3で撮影した撮影対象の画像データを記憶する大容量の記憶装置を備えたサーバコンピュータ4とから構成されている。デジタルカメラ3とサーバコンピュータ4とは通信経路2を介して接続される。デジタルカメラ3で撮影した撮影対象の画像データはサーバコンピュータ4の記憶装置に記憶される。サーバコンピュータ4は画像データに基づく縮小画像データ(サムネイル)を作成し、デジタルカメラ3に送信する。縮小画像データは、デジタルカメラ3のフラッシュメモリに記憶され、ユーザはサムネイルを見ながら希望の画像データを検索することができる。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2000-063463

受付番号

50000273283

書類名

特許願

担当官

第三担当上席

0092

作成日

平成12年 3月13日

<認定情報・付加情報>

【特許出願人】

【識別番号】

000002369

【住所又は居所】

東京都新宿区西新宿2丁目4番1号

【氏名又は名称】

セイコーエプソン株式会社

【代理人】

申請人

【識別番号】

100093779

【住所又は居所】

愛知県名古屋市中区丸の内一丁目4番12号 ア

レックスビル8階 服部国際特許事務所

【氏名又は名称】

服部 雅紀

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.