PAC Learning

a discussion on the original paper by Valiant

Adrian Florea

13th Meetup of Papers We Love (Bucharest Chapter), 27 January 2017

Induction in an urn I

The urn

Consider an urn containing a very large number (millions) of marbles, possibly of different types. You are allowed to draw 100 marbles and asked what kinds of marbles the urn contains.

- no assumptions impossible task!
- assumption: all the marbles are of different types impossible task!
- assumption: all the marbles are identical a single draw gives complete knowledge about all the marbles. :-)
- assumption: 50% of the marbles are of one type the probability to miss that type is $(1/2)^{100} = 7.89 * 10^{-31}$

Induction in an urn II

• assumption: there are at most 5 different marble types - if any of the 5 types occurs with frequency > 5%, the probability to miss that type is $<(1-0.05)^{100}<0.6\%$ so the probability to miss any one of these frequent ones is <5*0.6%=3%. There can be at most 4 types with frequency <5% so the rare types are <20%.

Remark

Even if the distribution of marble types is unknown, we can predict with 97% confidence that after 100 picks (small sample) you will have seen representatives of $\geqslant 80\%$ urn content

We needed only two assumptions:

- The Invariance Assumption: the urn do not change.
- The Learnable Regularity Assumption: there are a fixed number of marble types represented in the urn.

Let *X* be a set called the *instance space*.

Definition

A concept c over X is a subset $c \subseteq X$ of the instance space.

A subset $c \subseteq X$ can be represented as $c \in 2^X$, with c as the inverse image of 1, i.e. $c: X \to \{0,1\}, c(x) = 1$ if x is a positive example of c and c(x) = 0 if x is a negative example of c.

Definition

A concept class C over X is a set of concepts over X, typically with an associated representation.

Definition

A target concept may be any concept $c^* \in C$.

An assignment is a function that maps a truth value to all of its variables.

Definition

A *satisfying assignment* is when, after applying the assignment, the underlying formula simplifies to *true*.

For the sake of simplicity we can consider concepts c over $\{0,1\}^n$ whose positive examples are the satisfying assignments of Boolean formulae f_c over $\{0,1\}^n$. We can then define a concept class C by considering only f_c fulfilling certain syntactic constraints (its representation).

Definition

A *learning protocol* specifies the manner in which information is obtained from the outside.

Valiant considered two routines as part of a learning protocol:

- EXAMPLES routine: has no input, it returns as output a positive example x ($c^*(x) = 1$) based on a fixed and perhaps unknown probabilistic distribution determined arbitrarily by nature;
- ORACLE() routine: on x as input it returns 1 if $c^*(x) = 1$, or 0 if $c^*(x) = 0$.

In a real system the ORACLE() may be a human expert, a data set of past observations, etc.

Definition

A *learning algorithm* (called also *learner*) tries to infer an unknown concept (called *hypothesis*), chosen from a known concept class.

What it means for a learner to be successful?

- e.g. the learner must output a hypothesis *identical* to the target concept, or
- e.g. the hypotheses agrees with the target concept most of the time.

Adrian Florea PAC Learning PWLB13 6 / 19

The learner can call the EXAMPLES and the ORACLE() routines. The learner calls the ORACLE() routine over the instances received in a distribution D from the external information supply.

Definition

A set of random variables is *independent and identically distributed* (i.i.d.) if each random variable has the same *identical* probability distribution as the others and all are mutually *independent*.

The instances the learner receives from D, are independently and identically distributed (i.i.d.).

Remark

The assumption of a *fixed* distribution helps us to hope that what the learner learned from the training data will carry over to new, unseen yet, test data.

A *learning machine* consists of a learning protocol together with a learning algorithm.

After observing the sequence S of i.i.d. *training examples* of the target concept c^* , the learner L outputs the hypothesis h (its estimate of c^*) from the set H of possible hypotheses:

$$D \xrightarrow{(x_1,...,x_m)} ORACLE() \xrightarrow{S \equiv ((x_1,c^*(x_1)),...,(x_m,c^*(x_m)))} L \xrightarrow{h \in H} H$$

The success of L is determined by the performance of h over new i.i.d. instances drawn from X according to D.

Definition

The *true error* of h with respect to c^* and D is the probability that h will misclassify an instance drawn randomly according to D:

$$error_D(h) \equiv \Pr_{x \in D}[c^*(x) \neq h(x)]$$

- The true error is defined over D and not over S because it's about the error of using the learned hypothesis h on subsequent instances drawn from D.
- The true error depends strongly on *D*.

The true error cannot be observed by L. The learner can only observe the performance of h over S.

Definition

The *training error* is the fraction of training examples misclassified by h: $error_S(h) \equiv \Pr_{x \in S}[c^*(x) \neq h(x)] = \frac{1}{m} \sum_{i=1}^m I[c^*(x_i) \neq h(x_i)]$

As the true error depends on D, the training error depends on S.

How many training examples a learner needs to learn to output a hypothesis *h*?

If $error_D(h) = 0$, the learner needs |S| = |X| training examples - that means no learning!

Remark

We can only require that the learner probably learn a hypothesis that is approximately correct!

Adrian Florea PAC Learning PWLB13 10 / 19

A concept class C is PAC-learnable by L using H if:

- for all $c^* \in C$
- for any D over X
- $0 < \varepsilon < \frac{1}{2}$ arbitrarily small
- $0 < \delta < \frac{1}{2}$ arbitrarily small

the learner L will, with the probability of at least $(1 - \delta)$, output a hypothesis $h \in H$ such that $error_D(h) \leq \varepsilon$, in a polynomial time in $\frac{1}{\varepsilon}$, $\frac{1}{\delta}$, $size(x \in X)$, size(c).

Implicit assumption: $\forall c^* \in C, \exists h \in H \text{ s.t. } error_D(h) \text{ arbitrarily small}$

Definition

 $VS_{H,D} = \{h \in H | \forall x \in D, c^*(x) = h(x)\}$ is called a *version space*

A version space $VS_{H,D}$ is called ε -exhausted with respect to c^* and D, if: $\forall h \in VS_{H,D}, error_D(h) < \varepsilon$

Definition

A *consistent hypothesis* is a concept that perfectly fit the training examples.

The Theorem of ε -exhausting the version space (Haussler, 1988)

If the hypothesis space H is finite, and D is a sequence of m i.i.d. drawn examples of the target concept c^* , then for any $0 \le \varepsilon \le 1$, the probability that $VS_{H,D}$ is not ε -exhausted with respect to c^* is at least $|H|e^{-\varepsilon m}$

Proof: Let $h_1, h_2, ..., h_k$ be all hypotheses in H with $error_D(h_i) \geq \varepsilon, i = \overline{1, k}$. The probability that any single hypothesis h_i with $error_D(h_i) \geq \varepsilon$ is consistent with a randomly drawn example is at most $(1 - \varepsilon)$, so the probability for h_i to be consistent with all m i.i.d. examples

is $(1-\varepsilon)^m$. We fail to ε -exhaust the version space iff there is such a hypothesis consistent with all m i.i.d. examples. Since $P(A \cup B) \leq P(A) + P(B)$, we have that the probability that all m examples are consistent with any of the k hypotheses is at most $k(1-\varepsilon)^m$. But $k \leq |H|$ and $1-x \leq e^{-x}$ for $0 \leq x \leq 1$, so the probability is at most $|H|e^{-\varepsilon m}$

Corollary

$$m \geq \frac{1}{\varepsilon}(\ln|H| + \ln(\frac{1}{\delta}))$$

The number of i.i.d. examples needed to ε -exhaust a version space is logarithmic in the size of the underlying hypothesis space, independently of the target concept or the distribution over the instance space.

Adrian Florea PAC Learning PWLB13 14 / 19

 Let's consider the concept class C of target concepts described by conjunctions of Boolean literals (Boolean variables or their negation). Is C PAC-learnable?

If we have an algorithm that uses a polynomial time per training example, the answer is *yes* if we can show that any consistent learner requires a polynomial number of training examples.

We have $|H| = 3^n$ because there are 3 values for a Boolean literal: the variable, its negation, and the situation when it's missing in the concept formula. So:

$$m \geq \frac{1}{\varepsilon}(n \cdot \ln 3 + \ln(\frac{1}{\delta}))$$

Example: A consistent learner trying to learn with errors less than 0.1 with a probability of 95% a target concept described by a conjunction of up to 10 Boolean literals, requires:

$$\frac{1}{0.1}(10 \cdot ln3 + ln(\frac{1}{0.05})) = 139.8 \approx 140$$
 training samples.

 Let's consider now the concept class C of all learnable concepts over X, where X is defined by n Boolean features. We have:

$$|C| = 2^{|X|}$$

 $|X| = 2^n$ so $|C| = 2^{2^n}$

To learn such a concept class, the learner must use the hypothesis space $H=\mathcal{C}$:

$$m \geq \frac{1}{\varepsilon}(2^n \cdot ln(2) + ln(\frac{1}{\delta}))$$
 exponential in n .

Bibliography I

- M.J. Kearns The Computational Complexity of Machine Learning MIT Press. 1990
- M.J. Kearns, U.V. Vazirani An Introduction to Computational Learning Theory MIT Press, 1994
- T.M. Mitchell Machine Learning McGraw-Hill, 1997
- B.K. Natarajan Machine Learning. A Theoretical Approach Morgan Kaufmann Publishers, 1991

Bibliography II

Probably Approximately Correct. Nature's Algorithms for Learning and Prospering in a Complex World
Basic Books. 2013

J. Amsterdam

Some Philosophical Problems with Formal Learning Theory *AAAI-88 Proceedings*, 580-584, 1988

D. Angluin
Learning From Noisy Examples
Machine Learning, 2:343370, 1988

C. Le Goues

A Theory of the Learnable (L.G. Valiant) Theory Lunch Presentation, 20 May 2010

Bibliography III

Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework

Artificial Intelligence, 36(2):177-221,1988

L.G. Valiant

A Theory of the Learnable *Comm. ACM*, 27(11):1134–1142, 1984

L.G. Valiant

Deductive Learning

Phil. Trans. R. Soc. Lond, A 312: 441-446, 1984