Introduccion a la Estadistica 2024

MW

Contents

Chapter 1 Guia 1 ______ Page 2 _____

Chapter 1

Guia 1

Ejercicio

1. Sea X_1, \ldots, X_n una muestra aleatoria de una población con distribución

- $\mathcal{B}(1, \theta)$, $0 < \theta < 1$.
- $\mathcal{P}(\theta)$, $\theta > 0$.
- $\mathcal{E}(\theta)$, $\theta > 0$.

En cada uno de estos casos, encontrar:

- (a) Un estimador de θ basado únicamente en el primer momento.
- (b) Un estimador de θ basado únicamente en el segundo momento.

Solucion ejercicio 1:

Estimadores basados en el primer y segundo momento. Denotamos al de primer momento con el subindice 1, y al de segundo momento con el subindice 2:

 $\mathcal{B}(1,\theta)$:

$$E[\overline{X_n}] = \theta \implies \hat{\theta}_1 = \overline{X_n}$$
$$E[\overline{X_n^2}] = \theta \implies \hat{\theta}_2 = \overline{X_n}$$

 $\mathcal{P}(\theta)$:

$$E[\overline{X_n}] = \theta \implies \hat{\theta}_1 = \overline{X_n}$$

$$E[\overline{X_n^2}] = \theta + \theta^2 \implies \hat{\theta}_2 = \frac{-1 + \sqrt{1 + 4\overline{X_n^2}}}{2}$$

 $\mathcal{E}(\theta)$:

$$E[\overline{X_n}] = \frac{1}{\theta} \implies \hat{\theta}_1 = \frac{1}{\overline{X_n}}$$

$$E[\overline{X_n^2}] = \frac{2}{\theta^2} \implies \hat{\theta}_2 = \sqrt{\frac{2}{\overline{X_n^2}}}$$

Ejercicio

2. Sea X_1, \ldots, X_n una muestra aleatoria, se busca un estimador basado en momentos para $q(\theta)$, donde θ es un parámetro desconocido de la distribución de la muestra y q es una función conocida. Se consideran dos estrategias:

(i) Estimar $q(\theta)$ con $q(\hat{\theta})$, con $\hat{\theta}$ un estimador de momentos para θ (estimador plug-in).

(ii) Buscar una función g tal que $\mathbb{E}[g(X_1)] = q(\theta)$ y luego estimar $\mathbb{E}[g(X_1)]$ con $\frac{1}{n} \sum_{i=1} g(X_i)$. Este procedimiento se conoce como el método generalizado de los momentos (MGM).

Aplicar las estrategias (i) y (ii) en los siguientes casos:

(a)
$$X_1, \ldots, X_n$$
 i.i.d $\sim \mathcal{E}(\theta)$ y $q(\theta) = P_{\theta}(X_1 \ge 1)$

(b)
$$X_1, \ldots, X_n$$
 i.i.d $\sim N(0, \sigma^2)$. Estimar σ .

Sugerencia: Calcular E(|X|).

Solucion ejercicio 2:

Aplico la primera estrategia.

Para el item (a), uso el estimador basado en el primer momento, sabiendo que $\hat{\theta}_1 = \frac{1}{X_*}$:

$$q(\theta) = 1 - (1 - e^{-\theta}) \implies q(\theta) = e^{-\theta} \implies q(\hat{\theta}) = e^{-\frac{1}{X_n}}$$

Para el item (b), uso el estimador basado en el segundo momento:

$$\sigma^2 + E^2[X_i] = E[X_i^2] \implies \hat{\sigma^2} = \overline{X_n^2} \implies \hat{\sigma} = \sqrt{\overline{X_n^2}}$$

Ahora aplico la segunda estrategia.

Para el item (a), uso $g(X_1) = \mathbf{1}_{\{X_1 \ge 1\}}$:

$$q(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{X_i \ge 1\}}$$

Para el item (b), uso la sugerencia y calculo E[|X|]:

$$E[|X|] = 2 \int_0^{+\infty} \frac{x}{\sqrt{2\pi}\sigma} e^{\frac{-x^2}{2\sigma^2}} dx = \frac{\sqrt{2}\sigma}{\sqrt{\pi}} \implies$$

$$\hat{\sigma} = |X_n| \sqrt{\frac{\pi}{2}}$$

Ejercicio

4. Una moneda tiene una probabilidad de cara $p, p \in \{2/5, 4/5\}$. En 10 lanzamientos de la moneda se observaron exactamente 3 caras. Estimar por máxima verosimilitud la probabilidad de cara en base a la muestra observada.

Solucion ejercicio 4:

Queremos hallar $p \in \Theta = \{\frac{2}{5}, \frac{4}{5}\}$ tal que

$$p := \operatorname*{argmin}_{\theta \in \Theta} L(\theta, X) = \operatorname*{argmin}_{\theta \in \Theta} \binom{10}{3} \theta^3 (1 - \theta)^7$$

☺

☺