Prove that the set of prime numbers is infinite Proof by Contradiction The set of primes can be written as $\{p_1 < p_2 < \ldots < p_n\}$ for some $n < \infty$ Define $q = \prod_{i=1}^{n} p_i + 1$ The remaineder from dividing q by p_i (for any $1 \leq i \leq n)$ is 1q has no prime dividers, therefor q is prime There is a prime outside the set $\{p_1, p_2, \dots, p_n\}$

QED