Syntax natürlicher Sprachen Vorlesung 1: Intro

A. Wisiorek

Centrum für Informations- und Sprachverarbeitung, Ludwig-Maximilians-Universität München

19.10.2021

Themen der heutigen Vorlesung

Übersicht

2 Programmsysteme

Syntaxanalyse mit NLTK

Begleitende Literatur

Bird, Steven, Ewan Klein und Edward Loper (2009). *Natural language processing with Python: analyzing text with the natural language toolkit*. URL: http://www.nltk.org/book/.

Dürscheid, Christa (2010). Syntax: Grundlagen und Theorien. Bd. 3. Vandenhoeck & Ruprecht.

1. Übersicht

Übersicht

Programmsysteme

Syntaxanalyse mit NLTK

1. Übersicht

Inhalte

- Die Vorlesung behandelt Grundbegriffe der Grammatik und wesentliche syntaktische Konstruktionen des Deutschen im Hinblick auf eine Verwendung in der maschinellen Sprachverarbeitung
- Dazu werden die in neueren Grammatiktheorien verwendeten Klassifizierungen von Phrasen, deren innere Struktur sowie deren relationale Abhängigkeiten erklärt.
- Außerdem werden in der Computerlinguistik übliche Grammatikformalismen (wie Kontextfreie Grammatiken, Unifikationsgrammatiken, PCFGs, Datenbasierte Dependenzgrammatiken, Partielle Parsingmodelle)
- ebenso wie syntaktische Annotationsstandards (z.B. Penn Treebank, Universal Dependencies) vorgestellt und verwendet, um typische oder schwierige syntaktische Konstruktionen genau zu beschreiben.

1. Übersicht

Lernziele

- Kenntnis und Anwendung funktionaler und struktureller Begriffe der grammatischen Beschreibung:
 - Kongruenz
 - Rektion
 - Subkategorisierung
 - Valenz
- Kenntnis Grammatikformalismus und Anwendung für Analysen natürlichsprachlicher Sätze:
 - CFG (Kontextfreie Grammatik: Konstituentenstruktur)
 - FCFG (Feature-based CFG: Modellierung grammatischer Merkmale)
 - PCFG (Probabilistische CFG: Gewichtung von CFG-Regeln)
 - **DG** (Dependency Grammar: Dependenzstruktur)
 - Chunk-Parser (u.a. RegExpParser: partielles Parsing, 'Parsing as Tagging')

 Kenntnis und Bedienung eines Programmsystems, das einen Grammatikformalismus verwendet

1. Übersicht

6

2. Programmsysteme

Übersicht

2 Programmsysteme

Syntaxanalyse mit NLTK

Parsingsystem I: NLTK

NLTK: Anwendung regelbasierter Parsing-Grundlagen

- Schreiben von Grammatikregeln und Anwendung in Parsingalgorithmen
- konstituentenbasierte sowie dependenzbasierte Grammatiken
- 'Toy Grammar' für einzelne Beispielsätze

Informationen zum NLTK (Natural Language Toolkit)

- Bündel von Python-Bibliotheken und Programmen für computerlinguistische Anwendungen
- quelloffen, für Lehre entwickelt
- bietet auch Interfaces, z.B. für Stanford Parser
- Lehrbuch: http://www.nltk.org/book
- Dokumentation: http://www.nltk.org/howto
- Daten (Korpora, Grammatiken): http://www.nltk.org/data.html

Parsingsystem II: spaCy

spaCy: NLP-System mit Dependency-Parser

- modernes, deep-learning-basiertes NLP-System
- aus Korpora gelernte, umfangreiche Syntax-Modelle
- basierend auf Dependency-Treebanks
 - Beispiel einer Dependency-Treebank: https://github.com/UniversalDependencies/UD_German-GSD/ blob/master/de_gsd-ud-dev.conllu
- 'transition-based Dependency-Parsing': https://spacy.io/api/dependencyparser/

Parsingsystem III: Stanford Parser

Stanford-Parser: NLP-System mit induzierten PCFG-Modellen

- aus Korpus gelernte, kontextfreie Grammatikregeln mit Gewichtung
- Konstituentenbasiertes Modell, basierend auf CFG-Treebank
- Grundlage des englischen Modells ist die Penn-Treebank:
 - https://catalog.ldc.upenn.edu/docs/LDC95T7/c193.html
 - Sample der Penn-Treebank in NLTK-Data enthalten

Hinweis

DerStanford-Parser wird im Kurs nur für Beispielanalysen herangezogen, nicht aktiv in der Übung verwendet! (ist als Online-Demo verfügbar)

Dependenzanalysen mit Stanford-Parser

- von CFG-Syntaxbaum abgeleitete Dependenz-Analysen
- UD-Format ('Universal Dependencies'):
 https://universaldependencies.org/u/dep/

Demos Stanford-Parser

Demos

- http://nlp.stanford.edu:8080/parser/index.jsp
- https://corenlp.run/

3. Syntaxanalyse mit NLTK

Übersicht

- Programmsysteme
- Syntaxanalyse mit NLTK

Parsing als automatische Syntaxanalyse

Aufgaben eines Parsingalgorithmus

- Überprüfung der grammatischen Struktur einer Eingabe auf
 Wohlgeformtheit
 - ightarrow **Suche einer Ableitung** gemäß der Regeln einer formalen Grammatik
- Wiedergabe der gefundenen grammatischen Struktur
 - → **Ableitungsbaum** (auch: Parsebaum, Syntaxbaum)

Grammatik-Typen im NLTK

Haupttypen

- CFGs (kontextfreie Grammatiken)
 - Konstituentenstruktur (Phrasenstrukturgrammatik)
 - Strukturinformationen in den Knoten des Syntaxbaums
- Dependenzgrammatiken
 - Abhängigkeitsrelationen zwischen Wörtern
 - Strukturinformationen in den Kanten des Syntaxbaums (Relationslabel)
- 3 Chunk-Parser (u.a. reguläre Grammatiken)
 - partielle Syntaxanalyse (nur wichtigste Konstituenten: NPs, VPs, PPs)
 - flache, nicht-hierarchische Strukturanalyse

Erweiterungen von CFGs

- PCFGs (Probabilistische CFGs)
- FCFGs (Feature-based-CFGs)

Strukturelle Ambiguität

Problem

• mehr als eine Position im Syntaxbaum möglich

Lösung

Disambiguierung u.a. über Probabilistische CFGs (PCFGs)

Beispielsatz für PP-Attachment

One morning I shot an elephant in my pajamas.

How he got into my pajamas I don't know.

(Groucho Marx, Animal Crackers, 1930)

Übergenerierung (en. overgeneration / overproduction)

Problem

- CFG-Regeln einer Grammatik erzeugen (neben den zu erkennenden Beispielsätzen) auch nicht-wohlgeformte Sätze
- Grund: Nichtberücksichtigung morphologischer Constraints wie:
 - Kasusrektion
 - Kongruenz (Agreement)
 - Subkategorisierung (Art und Anzahl von Argumenten)

Lösung

 Modellierung morphologischer Constraints über Merkmalsstrukturen mit Feature-based-CFGs (FCFGs)

Beispiel für Übergenerierung

- CFG-Regeln für: I shoot, He shoots
- Übergenerierung: I shoots, He shoot

NLTK-Kapitel

NLTK-Kapitel zu den Parsing-Beispielen

- NLTK-Kapitel 8: https://www.nltk.org/book/ch08.html
 → Parsing mit CFGs, Dependenzgrammatiken, PCFGs
- NLTK-Kapitel 9: https://www.nltk.org/book/ch09.html
 → Parsing mit feature-based grammars
- NLTK-Kapitel 7: https://www.nltk.org/book/ch07.html
 → partielles Parsing mit RegexpParser

Rückblick auf heutige Themen

Übersicht

Programmsysteme

Syntaxanalyse mit NLTK