

Тест начат	Вторник, 26 Март 2024, 14:18
Состояние	Завершенные
Завершен	Вторник, 26 Март 2024, 14:52
Прошло	33 мин. 37 сек.
времени	
Баллы	10,75/13,00
Оценка	8,27 из 10,00 (83 %)

Вопрос **1** Неверно Баллов: 0,00 из

1,00

Две частицы прошли *одинаковую* ускоряющую разность потенциалов. Заряд 1-й частицы *в 2 раза*, а масса *в 4 раза больше*, чем второй.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- $\frac{1}{2}$
- $\frac{1}{\sqrt{2}}$
- \bigcirc $\frac{1}{4}$ \times
- $\frac{1}{2\sqrt{2}}$

Ваш ответ неправильный.

Вопрос **2** Неверно Баллов: 0,00 из

1,00

Оцените ширину одномерного потенциального ящика, в котором находится частица, имеющая импульс порядка 10⁻²⁸ *кз·м/с*.

Ответ выразите в м.

Выберите один ответ:

6,6·10⁻²⁶

6,6·10⁻⁶

O «

0 x

Ваш ответ неправильный.

Ŋ

44

•••

 \Box

0 0 0

Сопоставьте формулу и вид уравнения Шредингера:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{kx^2}{2} \right) \Psi = 0$$
Стационарное уравнение для одномерного гармо
$$-\frac{\hbar^2}{2m} \Delta \Psi + U \Psi = i \hbar \frac{\partial \Psi}{\partial t}$$
Нестационарное трехмерное уравнение
$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} E \Psi = 0$$
Стационарное уравнение для одномерного ящик

Ваш ответ верный.

Вопрос **4** Верно

Вопрос 3

Баллов: 1,00 из

Верно

1,00

Баллов: 1,00 из 1,00 Частица в очень глубоком потенциальном ящике шириной \boldsymbol{L} находится **на 3-м энергетическом уровне**.

Укажите, вблизи каких точек ящика плотность вероятности нахождения частицы **максимальна**.

Выберите один или несколько ответов:

- ✓ L/2 ✓
- L/3
- **SL/6** ✓
- 0
- ✓ L/6 ✓
- 2L/3

Ваш ответ верный.

Вопрос **5** Верно Баллов: 1,00 из

1,00

Частица с энергией *Е* может находиться в области *I* и *II* (см. рисунок)

Укажите вид волнового числа в соответствующей области:

Волновое число вида

$$k = \frac{i\sqrt{2m(U-E)}}{\hbar}$$

соответствует нахождению частицы в области...

Волновое число вида

$$k = \frac{p}{\hbar} = \frac{\sqrt{2m(E-U)}}{\hbar}$$

соответствует нахождению частицы в области...

Ваш ответ верный.

Сформируйте верные утверждения:

Ваш ответ верный.

