Algorytmy Macierzowe Sprawozdanie 2 Rekurencyjne mnożenie macierzy

Przemek Węglik Szymon Paszkiewicz

21 listopada 2022

Spis treści

1	\mathbf{Rek}	kurencyjne odwracanie macierzy	2
	1.1	Opis algorytmu	2
	1.2	Pseudo-kod	
	1.3	Benchmarki	
	1.4	Złożoność obliczeniowa	
	1.5	Porównanie rozwiązania	
2	Rek	kurencyjna faktoryzacja LU	4
	2.1	Opis algorytmu	4
	2.2	Pseudo-kod	
	2.3	Benchmarki	
	2.4		
	2.5	Porównanie rozwiązania	6
3	Rek	kurencyjne obliczanie wyznacznika	7
	3.1	Opis algorytmu	7
	3.2	Pseudo-kod	
	3.3	Benchmarki	
	3.4	Złożoność obliczeniowa	ç
	٠. ـ	Porównanie rozwiazania	0

1 Rekurencyjne odwracanie macierzy

1.1 Opis algorytmu

Algorytm dzieli macierz na 4 podmacierze, następnie wykonuje na każdej macierzy odpowiednie operacje:

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \tag{1}$$

$$A_{1,1}^{-1} = inverse(A_{1,1}) \tag{2}$$

$$S^{-1} = inverse(A_{2,2} - A_{2,1} * A_{1,1}^{-1} * A_{1,2})$$
(3)

$$A^{-1} = \begin{bmatrix} A_{1,1}^{-1}(I + A_{1,2}S^{-1} * A_{2,1} * A_{1,1}^{-1}) & -A_{1,1}^{-1} * A_{1,2} * S \\ -S * A_{2,1} * A_{1,1}^{-1} & S \end{bmatrix}$$
(4)

gdzie:

A - macierz, którą chcemy odwrócić,

inverse - funkcja rekurencyjna odwracająca macierz,

S - macierz pomocnicza.

1.2 Pseudo-kod

```
def inverse(A):
    if A.size > 1:
        split_at = A.shape[0] // 2
        A11, A12, A21, A22 = split(A, split_at)
        A11_{inv} = inverse(A11)
        S22 = A22 + A21 * A11_{inv} * A12
        S22_{inv} = inverse(S22)
        B11 = A11_{inv} * (I + A12 * S22_{inv} * A21 * A11_{inv})
        B12 = -A11_{inv} * A12 * S22_{inv}
        B21 = -S22_{inv} * A21 * A11_{inv}
        B22 = S22 inv
        return (
             [[B11, B12]
             [B21, B22]
    else:
        return 1/A
```

1.3 Benchmarki

Rysunek 1: Wykres czasu od rozmiaru macierzy.

Rysunek 2: Wykres libczby operacji od rozmiaru macierzy.

1.4 Złożoność obliczeniowa

Złożoność obliczeniowa algorytmu zależy od algorytmu mnożenia macierzy jaki został wykorzytany do obliczeń. W naszym przypadku był to algorytm Strassen'a, którego złożoność obliczeniowa wynosi: $O(n^{2.807})$.

1.5 Porównanie rozwiązania

Wyniki naszego algorytmu:

%% INPUT

```
A = np.array([[1, 8, 5], [2, 4, 6], [3, 5, 7]])
print(recursive_matrix_inverse(A, counter))
```

%% OUTPUT

$$\begin{array}{cccc} [[\,-0.1 & -1.55 & 1.4 \,\,] \\ [\,0.2 & -0.4 & 0.2 \,\,] \\ [\,-0.1 & 0.95 & -0.6 \,\,]\,] \end{array}$$

Wyniki uzyskane w numpy'u:

%% INPUT

```
A = np.array([[1, 8, 5], [2, 4, 6], [3, 5, 7]])
print(np.linalg.inv(A))
```

%% OUTPUT

$$\begin{bmatrix} [-0.1 & -1.55 & 1.4 \\ 0.2 & -0.4 & 0.2 \\ [-0.1 & 0.95 & -0.6 \end{bmatrix}]$$

2 Rekurencyjna faktoryzacja LU

2.1 Opis algorytmu

Algorytm dzieli macierz na 4 podmacierze, a następnie przy ich użyciu wykonuje poniższe operacje.

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \tag{5}$$

$$[L_{1,1}, U_{1,1}] = LU(A_{1,1}) (6)$$

$$[L_s, U_s] = LU(A_{2,2} - A_{2,1}U_{1,1}^{-1}L_{1,1}^{-1}A_{1,2})$$

$$(7)$$

$$L = \begin{pmatrix} L_{1,1} & 0 \\ A_{2,1}U_{1,1}^{-1} & L_s \end{pmatrix} \tag{8}$$

$$U = \begin{pmatrix} U_{1,1} & L_{1,1}^{-1} A_{1,2} \\ 0 & U_s \end{pmatrix} \tag{9}$$

2.2 Pseudo-kod

```
L11, U11 = LU(A11)
    U11_{inv} = inverse(U11)
    L21 = A21 *U11_{inv}
    L11_{inv} = inverse(L11)
    \mathrm{U}12 \ = \ \mathrm{L}11 \mathrm{\_inv} \ * \ \mathrm{A}12
    L22 = A22 + -A21 * U11_inv * L11_inv * A12
    Ls, Us = LU(L22)
    U22 = Us
    L22 = Ls
    return (
         [[L11, 0]
         [L21, L22]],
          [[U11, U12]
          [0, U22]]
else:
    return (1, A[0, 0])
```

2.3 Benchmarki

Rysunek 3: Wykres czasu od rozmiaru macierzy.

Rysunek 4: Wykres libczby operacji od rozmiaru macierzy.

2.4 Złożoność obliczeniowa

Złożoność obliczeniowa faktoryzacji LU to w przybliżeniu $O(n^{2.529})$.

2.5 Porównanie rozwiązania

```
Wyniki uzyskane przez nasze implementacje:
%% INPUT
A = np.array([[1, 8, 5], [2, 4, 6], [3, 5, 7]])
L, U = recursive_lu(A, counter)
print(L)
print (U)
\%\% OUTPUT
[1.
              , 0.
                           , 0.
              , 1. , 0.
, 1.583333333, 1.
 2.
             , 1.
    1.
                  -12.
    0.
    0.
                                   -1.66666667]]
```

Wyniki w Wolframie:

$$A = L.U$$

where

$$A = \begin{pmatrix} 1 & 8 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & \frac{19}{12} & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 8 & 5 \\ 0 & -12 & -4 \\ 0 & 0 & -\frac{5}{3} \end{pmatrix}$$

3 Rekurencyjne obliczanie wyznacznika

3.1 Opis algorytmu

Algorytm wykorzystuje faktoryzacja LU do obliczenia wyznacznika macierzy. Najpierw wykonujemy faktoryzacje, a następnie bierzemy wszystkie liczby z głównej przekątniej macierzy U i L, po czym mnożymi je wszystkie ze sobą.

$$[L_{n,n}, U_{n,n}] = LU(A_{n,n}) \tag{10}$$

$$U_{n,n} = \begin{pmatrix} u_{1,1} & u_{1,2} & \cdots & u_{1,n} \\ 0 & u_{2,2} & \cdots & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{n,n} \end{pmatrix}$$

$$(11)$$

$$L_{n,n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ l_{2,1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n,1} & l_{n,2} & \cdots & 1 \end{pmatrix}$$
(12)

$$det(A) = \prod_{i=0}^{n} u_{i,i} * l_{i,i}$$
(13)

3.2 Pseudo-kod

def determinant(A): L, U = LU(A)

U diag = diagonal(U)

```
\begin{array}{l} \det \ = \ 1 \\ \text{for u in $U$\_diag:} \\ \quad \det \ *= \ u \end{array}
```

return det

3.3 Benchmarki

Rysunek 5: Wykres czasu od rozmiaru macierzy.

Rysunek 6: Wykres libczby operacji od rozmiaru macierzy.

3.4 Złożoność obliczeniowa

Złożoność obliczeniowa algorytmu zależy od funkcji wyznaczającej LU oraz od rozmiaru macierzy. Wiemy także, że złożoność obliczeniowa funkcji faktoryzującej jest zależna od rozmiaru macierzy i nie jest ona liniowa. Ostatecznie więc uzyskujemy: $O(n^{2.529})$

3.5 Porównanie rozwiązania

Wyniki naszego algorytmu: $\,$

```
 \begin{array}{l} \text{\% INPUT} \\ A = np.\,\mathrm{array} \left( \left[ \left[ 1 \;,\; 8 \;,\; 5 \right] \;,\; \left[ 2 \;,\; 4 \;,\; 6 \right] \;,\; \left[ 3 \;,\; 5 \;,\; 7 \right] \right] \right) \\ print \left( recursive\_determinant \left( A \;,\; counter \; \right) \right) \\ \end{array}
```

%% OUTPUT

20.0000000000000004

Wyniki uzyskane w numpy'u:

```
 \begin{array}{l} \text{\%\% INPUT} \\ A = \text{np.array} \left( \left[ \left[ 1 \;,\; 8 \;,\; 5 \right] \;,\; \left[ 2 \;,\; 4 \;,\; 6 \right] \;,\; \left[ 3 \;,\; 5 \;,\; 7 \right] \right] \right) \\ \text{print} \left( \text{np.linalg.det} \left( A \right) \right) \\ \end{array}
```

%% OUTPUT

19.99999999999996

Natomiast według Wolframa wyznacznik wynosi równe 20.