Класическа електронна теория за проводимостта на металите. Извод на законите на Ом и Джаул – Ленц на базата на класическата теория.

Експериментални доказателства за електронната проводимост на металите. Класическа електронна теория на Друде

За да се обясни добрата електропроводност на металите, трябва първо да се установи какви са носителите на тока в тях. Първите експерименти в тази насока са проведени в началото на 20 век. Установено е, че носителите на тока не са атомите на металите, а частици, които са едни и същи във всички метали. Това е резултатът от опита на Рике, проведен през 1901-1902 г. Той е направил съставен проводник от два медни и един алуминиев цилиндър (поставен между медните), през които е пропускал ток в течение на една година. Претеглянето на цилиндрите преди и след експеримента не е показало разлика в масите на цилиндрите, което значи, че не са пренесени атоми от единия метал в другия. Следващият етап е определяне на масата и заряда на преносителите на тока, за да се установи, дали това не са наскоро откритите от Томсън електрони. Идеята на експериментите е проста – ако в метала има заредени частици, които са слабо свързани (носителите на тока в проводника трябва да са почти свободни, тъй като и много малка потенциална разлика между краищата предизвиква протичане на ток), те трябва да се преместят вътре в метала, ако ние го подложим на движение с голямо ускорение (например при рязко спиране). Това ще създаде токов импулс, който може да се установи с галванометър (амперметър с голяма чувствителност, който може да отчита слаби токове и в двете посоки). От големината на тока можем да определим отношението на големината на заряда към масата (e/m), а от посоката на тока — знака на заряда. Оказало се, че зарядите са отрицателни, а e/m е много близко до съотношението за електрона. Така експериментално е доказано, че носителите на тока в металите са електроните.

На базата на резултатите от тези експерименти, Друде създава класическата теория за проводимостта на металите, която по-късно е усъвършенствана от Лоренц. Основното предположение в теорията на Друде е, че електроните в металите се държат като едноатомен идеален газ (16 въпрос). Между всеки два удара с йон от кристалната решетка те се движат свободно и изминават някакво средно разстояние I. Големината на скоростта им на движение е средната топлинна скорост u. Ако в проводника създадем електрично поле с постоянен интензитет E, електроните ще получат допълнителна кинетична енергия T и допълнителна скорост на насочено движение v. Тази скорост v се оказва много по-малка от топлинната u ($u \sim 10^5$ m/s, докато $v \sim 10^{-3}$ m/s, дори и при максималните токове, които можем да създадем). Допълнителната кинетична енергия, която получават електроните, зависи от максималната скорост на насочено движение v_{max} , която те получават в края на свободния си пробег:

(1)
$$T = \frac{1}{2} m v_{\text{max}}^2$$
.

Второто предположение на теорията е, че електроните предават цялата допълнителна енергия на йона при удар с него т.е. след удара скоростта v=0 и електрона започва да се ускорява в полето без начална скорост.

Третото предположение (приближение) е, че всички електрони се движат с една и съща топлинна скорост т.е. не се отчита разпределението на електроните по скорости. В такъв случай времето между два удара τ е едно и също за всеки електрон и между всеки два удара:

$$(2) \ \tau = \frac{l}{u+v} \approx \frac{l}{u},$$

тъй като $v \ll u$ и тогава $u + v \approx u$. За единица време всеки електрон изпитва средно z удара с йони от кристалната решетка:

(3)
$$z = \frac{1}{\tau} = \frac{u}{l}$$
.

От тези три основни предположение може да се изведат основните експериментално получени закони за електричния ток – законът на Ом и законът на Джаул-Ленц, както и други експериментално получени съотношения за основни характеристики на металите.

Извод на основните закони за електричния ток – закон на Ом и закон на Джаул – Ленц.

Нека в проводник да е създадено електрично поле с постоянен интензитет E. Под действие на полето електроните започват да се ускоряват без начална скорост. Тъй като интензитета на полето е постоянен, силата също ще бъде постоянна, а следователно и ускорението на електроните ще бъде постоянно (4 въпрос):

$$F = eE = ma ,$$

(4)
$$a = \frac{eE}{m}$$
.

В такъв случай електроните се движат праволинейно равноускорително без начална скорост и скоростта им v_{max} в края на пробега след време $t=\tau$ (в момента на удара с йон от кристалната решетка) ще бъде (3 въпрос):

(5)
$$v_{\text{max}} = at = \frac{eE}{m}\tau = \frac{eEl}{mu}$$
.

Използвахме получените съотношения (2) и (4). Скоростта на електрона се изменя линейно по време на свободния му пробег между два удара, затова средната скорост на насочено движение ν ще бъде половината от максималната:

$$v = \frac{el}{2mu}E = kE.$$

Получихме връзката между скоростта v и интензитета на полето E, за която казахме в 29 въпрос, че трябва да съществува. Виждаме и колко е стойността на коефициента k:

$$k = \frac{el}{2mu}$$
.

Като заместим v във формулата за плътността на тока (29 въпрос) ще получим закона на Ом в диференциална форма:

$$j = nev = \frac{ne^2l}{2mu}E = \sigma E$$
.

Виждаме, че специфичната проводимост σ (за метални проводници) е константа, която зависи само от веществото на проводника, а не от приложеното поле:

(6)
$$\sigma = \frac{ne^2l}{2mu}.$$

Според второто предположение, електроните отдават цялата допълнителна енергия (1), която са получили от полето на йоните от кристалната решетка. Това повишава вътрешната енергия на метала, а следователно и температурата му. За да се запази топлинното равновесие с околната среда, тази енергия трябва да се излъчи под формата на топлина. Количеството топлина Q, отделено за единица време в целия проводник (топлинната мощност P) ще се дава от произведението на броя на електроните в проводника N, броя на ударите на един електрон за единица време z (3) и енергията T, която отдава един електрон за един удар (1), като максималната му скорост се дава от (5):

$$\frac{dQ}{dt} = P = NzT = N\frac{u}{l}\frac{1}{2}\frac{me^{2}l^{2}}{m^{2}u^{2}}E^{2} = N\frac{e^{2}l}{2mu}E^{2}.$$

Тогава специфичната топлинна мощност p (мощността отделена в единица обем) ще бъде:

$$p = \frac{P}{V} = \frac{N}{V} \frac{e^2 l}{2mu} E^2 = \frac{ne^2 l}{2mu} E^2 = \sigma E^2$$
.

Концентрацията n=N/V (броят електрони в единица обем). Получихме закона на Джаул-Ленц в диференциална форма.

Недостатъци на класическата теория на Друде-Лоренц

Сериозни недостатъци на класическата електронна теория се появяват още при опита ѝ за усъвършенстване от Лоренц, който отчел факта, че не всички електрони се движат с еднакви скорости. Оказало се, че усъвъшенстваната теория по-лошо се съгласува с експерименталните факти.

Друг сериозен проблем възниква в самата теория, при обяснението на линейната зависимост на специфичното електрично съпротивление ρ от температурата. Според (6) и изводите, направени в 16 въпрос за зависимостта между скоростта на молекулите на идеалния газ и температурата на газа

$$\frac{1}{2}mu^2 = \frac{3}{2}kT:$$

$$u^2 \sim T \Rightarrow u \sim \sqrt{T}$$

$$\rho = \frac{1}{\sigma} \sim u \sim \sqrt{T}$$

Този резултат противоречи на експерименталния факт (29 въпрос), че зависимостта на електричното съпротивление R (а следователно и на ρ) от температурата е линейна (т.е. $\rho \sim T$).

Класическата електронна теория на Друде-Лоренц не може да даде задоволително количествено обяснение и на други експериментални факти — топлинните капацитети на металите, свободния пробег на електроните в метала и др. Все пак тя дава качествено обяснение на много важни закономерности т.е. тя може да се използва като основа на по-съвършена теория. По-точни количествени оценки на наблюдаваните експериментални факти са направени в квантовата теория за проводимостта на металите.