



$$acc = \frac{TP + TN}{TP + FP + FN + TN}$$

Si hes un modelo constante | h | -> azul

accuracy = 98%



accuracy = tasa de predicciones correctas

$$acc = \frac{TP + TN}{TP + FP + FN + TN}$$

MATRIZ DE CONFUSION

reales

predictos FN TN



Sensitivity = 
$$\frac{TP}{TP+FN}$$
 Specificity =  $\frac{TN}{FP+TN}$ 

La paradoja de los falsos positivos...



Precision = 
$$\frac{TP}{TP + FP}$$

Combinándo(as:  $F = \frac{2 \cdot precision \cdot recall}{precision + recall}$ 

Figure 2:  $\frac{(1+\beta^2) \cdot precision \cdot recall}{p^2 precision + recall}$ 

Figure 4:  $\frac{(1+\beta^2) \cdot precision \cdot recall}{p^2 precision + recall}$ 

Figure 4:  $\frac{(1+\beta^2) \cdot precision \cdot recall}{p^2 precision + recall}$ 

Figure 4:  $\frac{(1+\beta^2) \cdot precision \cdot recall}{p^2 precision + recall}$ 

Cuando el clasificador predice una probabilidad de pertenecer a una clase



ROC (Receiver Operating Characteristic)

Gráfica que resume el comportamiento de un modelo al mostrar la tasa de falsos positivos y la tasa de verdaderos positivos Con respecto a diferentes umbrales

True positive rate 
$$(TPR) = vecall = sensitivity = \frac{TP}{TPFN}$$

Folse positive vate  $(FPR) = 1$ -specificity =  $\frac{FP}{FP+TN}$ 

reals

predictor  $\sqrt{PR} = \sqrt{PR} = \sqrt{PR$ 



AUC: Area under the (ROC) curve

