MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernandez

CLASE 26/01/2021

CAMPOS DIRECCIONALES

EISOCLINAS

El campo de direcciones indica el "patrón de flujo" de la familia de curvas solución.

ISÓCLINAS: Curvas sobre las cuales todos los puntos tienen una pendiente igual correspondiente a una Ecuación Diferencial

El CAMPO DE DIRECCIONES es la representación gráfica de todas las isóclinas en un plano xy en el cual se visualiza el trayecto de una solución

PROCEDIMIENTO PARA EL ANÁLISIS

Paso 1

Identificar la función f(x, y)

$$\frac{dy}{dx} = y' = f(x, y)$$

Paso 2

Se iguala la función f(x,y) a una contante "C" que representa el valor de la pendiente a lo largo de toda la isóclina

$$f(x,y) = C$$

Se deben graficar todas las isóclinas para formar el campo de direcciones.

Ejemplo 3

Trace el campo de direcciones para la siguiente ecuación diferencial y los valores de "C" dados, construya la tabla identificando las isoclinas y su respectiva pendiente e indique una posible curva solución en el campo direccional

$$C = \underbrace{-101}_{0.1}$$

Identificar la función f(x, y)

$$f(x,y) = \frac{y}{x}$$

Recordar que: y' = f(x, y)Además que: f(x, y) = c

Igualar la función f(x,y) a una constante que representa el valor de la pendiente a lo largo de toda la isoclina

$$\frac{y}{x} = c$$

La ecuación de la Isoclina es una <u>recta que pasa por</u> <u>el origen</u>

Las isoclinas son Rectas que pasan por el origen

$$y = cx$$

$\mathbf{m} = c$	Inclinación de la m	$Isoclina \\ y = cx$
<u>_1</u>		y = -x
_ 0		y = 0.
/ (1)		y = x

"Las pendientes de las tangentes a la curva solución mantiene el mismo valor constante a lo largo de la recta que pasa por el origen"

$\mathbf{m} = c$	Inclinación de la m	Isoclina y = cx
-1		y = -x
0	_	y = 0
1		y = x

La solución general es una familia infinita de soluciones, cada una correspondiente a una condición inicial.

El segmento de recta es la tangente en cada punto a la solución que pase por ese punto

Tarea:

Ver el siguiente vídeo:

video Campos Direccionales e isoclinas

https://www.youtube.com/watch?v=R8ONsluqRls

MÉTODOS DE SOLUCIÓN PARA ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Ecuaciones con variables separables

ECUACIONES DE VARIABLES SEPARABLES

Una ecuación de primer orden y primer grado también se puede escribir de la siguiente forma:

FORMA GENERAL

$$(M(x,y)dx + N(x,y)dy = 0)$$

$$N(x,y)dx + N(x,y)dy = 0$$

$$N(x,y)dx + N(x,y)dy = 0$$

donde M y N pueden ser funciones de x y de y.

Se dice que una ED de primer orden de la forma:

$$\frac{dy}{dx} = g(x)h(y)$$

Es separable o tiene variables separables.

$$\frac{dy}{dx} = g(x)h(y)$$

$$\frac{dy}{h(y)} = g(x)dx$$

$$\int \frac{dy}{h(y)} = \int g(x)dx$$

$$H(y) + c_1 = G(x) + c_2$$

$$C = c_2 - c_1$$

$$H(y) = G(x) + c_2$$

Ejemplo 1 Resuelva la siguiente ecuación diferencial

$$x' = x \cos \theta$$

$$\frac{d\hat{x}}{d\hat{\theta}} = x\cos\theta$$

$$\frac{dx}{x} = cos\theta d\theta$$

$$\int \frac{dx}{x} = \int \cos\theta \ d\theta$$

$$lnx = sen\theta + c_1$$

$$lnx = sen\theta + c_1$$

$$e^{\ln x} = e^{\sin \theta + c_1}$$

$$x = (e^{sen\theta})(e^{c_1})^{C}$$

$$x = \hat{c}e^{sen\theta}$$

Solución explícita

Solución de forma general

Familia uniparametrica de soluciones

Ejemplo 2 Resuelva la siguiente ecuación diferencial

$$dx + e^{3x}dy = 0$$

$$e^{3x}dy = -dx$$

$$dy = -\frac{dx}{e^{3x}}$$

$$\int dy = -\int e^{-3x}dx$$

$$u = -3x$$

$$\int dy = -\left(-\frac{1}{3}\right)\int e^{u}du$$

$$\int dy = -\left(-\frac{1}{3}\right) \int e^u \, du$$

$$\int dy = \frac{1}{3} \int e^u \, du$$

$$y = \frac{1}{3}e^{u} + c$$

$$y = \frac{1}{3}e^{-3x} + c$$

Solución explícita

Solución de forma general Familia uniparametrica de soluciones

Ejemplo 3 Resuelva la siguiente ecuación diferencial

$$y' = 1 + x + y + xy$$

$$\frac{dy}{dx} = 1 + x + y + xy$$

$$\frac{dy}{dx} = (1+x) + y(1+x)$$

$$\frac{dy}{dx} = (1+x)(1+y)$$

$$\frac{dy}{dx} = (1+x)(1+y)$$

$$\int \frac{dy}{1+y} = \int (1+x)dx$$

$$u = \underbrace{1 + y}_{du = dy}$$

$$\int \frac{dy}{1+y} = \int (1+x)dx$$

$$\int \frac{du}{u} = \int (1+x)dx$$

$$ln[u] = x + \frac{x^2}{2} + c_1$$

$$\ln|1+y| = x + \frac{x^2}{2} + c_1$$

$$\ln|1+y| = x + \frac{x^2}{2} + c_1$$

$$e^{in|1+y|} = e^{x+\frac{x^2}{2}+c_1}$$

$$1 + y = e^{x + \frac{x^2}{2} + c_1}$$

$$1 + y = e^{c_1} e^{x + \frac{x^2}{2}}$$

Solución explícita

$$y = ce^{x + \frac{x^2}{2}} - 1 \quad \longrightarrow$$

Solución de forma general Familia uniparametrica de soluciones

Ejemplo 4 Resuelva la siguiente ecuación diferencial

$$\frac{dy}{dx} = \underbrace{(xy + 2y) - x - 2}_{(xy - 3y) + (x - 3)}$$

$$\frac{dy}{dx} = \frac{y(x+2) - (x+2)}{y(x-3) + (x-3)}$$

$$\frac{dy}{dx} = \frac{(x+2)(y-1)}{(x-3)(y+1)}$$

$$\longrightarrow \int \frac{(y+1)}{(y-1)} dy = \frac{(x+2)}{(x-3)} dx$$

$$\frac{(y+1)}{(y-1)}dy = \frac{(x+2)}{(x-3)}dx$$

$$\int \frac{(y+1)}{(y-1)} dy = \int \frac{(x+2)}{(x-3)} dx$$

$$\int \left(1 + \frac{2}{y - 1}\right) dy = \int \left(1 + \frac{5}{x - 3}\right) dx$$

$$\int dy + 2 \int \frac{dy}{y - 1} = \int dx + 5 \int \frac{dx}{x - 3}$$

$$|y + 2ln|y - 1| = x + 5ln|x - 3| + c$$

Solución implícita 🛌

Solución de forma general Familia unipar<mark>ametrica de</mark> soluciones

M(x17) JX+N(x17) JY=0

Ejemplo 5 Resuelva la siguiente ecuación diferencial

$$x^2dy + y^2dx = x^2ydy - xy^2dx$$

$$xy^2dx + y^2dx + x^2dy - x^2ydy = 0$$

$$(xy^2 + y^2)dx + (x^2 - x^2y)dy = 0$$

$$y^{2}(x+1)dx + x^{2}(1-y)dy = 0$$

$$y^{2}(x+1)dx + x^{2}(1-y)dy = 0$$

$$x^{2}(1-y)dy = -y^{2}(x+1)dx$$

$$\frac{(1-y)}{y^2}dy = \frac{(x+1)}{x^2}dx$$

$$\int \left(\frac{1}{y^2} - \frac{1}{y}\right) dy = -\int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx$$

$$\int \frac{dy}{y^2} - \int \frac{dy}{y} = -\int \frac{dx}{x} - \int \frac{dx}{x^2}$$

$$\int y^{-2}dy - \int \frac{dy}{y} = -\int \frac{dx}{x} - \int x^{-2}dx$$

$$-\frac{1}{y} - lny = -lnx + \frac{1}{x} + c$$

Solución implícita

Solución de forma general

Familia uniparametrica de soluciones