Variables aléatoires continues

I – Rappels sur la fonction de répartition

Définition 8.1 – Soit X une variable aléatoire. On appelle **fonction de répartition** de la variable aléatoire X la fonction F_X définie par

$$\forall x \in \mathbb{R}, \quad F_X(x) = P(X \leq x).$$

Proposition 8.2

Soit X une variable aléatoire discrète définie sur Ω . On note $X(\Omega) = \{x_1, x_2, ...\}$ avec $x_1 < x_2 < ...$ Alors

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1, \\ P(X = x_1) + \dots + P(X = x_k) & \text{si } x_k \leqslant x < x_{k+1}, \\ 1 & \text{si } x \geqslant \max_{i \in \mathbb{N}} x_i. \end{cases}$$

En particulier, F_X est constante sur $[x_k, x_{k+1}]$.

Exemple 8.3 – Un sac contient cinq jetons numérotés de 1 à 5. Pour jouer une partie, on doit miser 1€. On tire au hasard un jeton. Si on tire le numéro 1 on gagne 4€, si on tire un numéro pair on reçoit 2€ et rien sinon. On note X le gain algébrique.

X est une variable aléatoire et $X(\Omega) = \{-1,1,3\}$. La loi de *X* est donnée par

$$P(X = -1) = \frac{2}{5}$$
, $P(X = 1) = \frac{2}{5}$ et $P(X = 3) = \frac{1}{5}$.

Je résume cela dans le tableau suivant :

X	-1	1	3
P(X=x)	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{1}{5}$

Alors

- lorsque x < -1, $F_X(x) = 0$,
- lorsque $-1 \le x < 1$, $F_X(x) = P(X = -1) = \frac{2}{5}$, lorsque $1 \le x < 3$, $F_X(x) = P(X = -1) + P(X = 1) = \frac{2}{5} + \frac{2}{5} = \frac{4}{5}$,
- lorsque $x \ge 3$, $F_X(x) = 1$.

Je résume ceci par

$$F_X(x) = \begin{cases} 0 & \text{si } x < -1, \\ \frac{2}{5} & \text{si } -1 \le x < 1, \\ \frac{4}{5} & \text{si } 1 \le x < 3, \\ 1 & \text{si } x \ge 3. \end{cases}$$

Et voici le tracé de la fonction de répartition :

II - Généralités

1 - Notion de variable aléatoire à densité

Définition 8.4 – Soient X une variable aléatoire et F_X sa fonction de répartition.

On dit que X est une **variable aléatoire à densité** si et seulement s'il existe une fonction f vérifiant les quatre conditions suivantes :

- Pour tout $x \in \mathbb{R}$, $f(x) \ge 0$.
- La fonction f est continue sur \mathbb{R} , sauf éventuellement en un nombre **fini** de réels.
- L'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et $\int_{-\infty}^{+\infty} f(t) dt = 1$.
- Pour tout $x \in \mathbb{R}$, $F_X(x) = \int_{-\infty}^x f(t) dt$.

Lorsque les conditions précédentes sont vérifiées, alors la fonction f est appelée **densité** de X.

Définition 8.5 – Une fonction f est une **densité de probabilité** (ou plus simplement **densité**) si et seulement si

- 1. Pour tout $x \in \mathbb{R}$, $f(x) \ge 0$.
- 2. f est continue par morceaux, avec un nombre fini de points de discontinuité.
- 3. L'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et $\int_{-\infty}^{+\infty} f(t) dt = 1$.

Exemple 8.6 – On considère la fonction f suivante

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ f: & & e^x \\ & & & \overline{(1+e^x)^2}. \end{array}$$

Montrer que la fonction f est une densité de probabilité.

- 1. Pour tout $x \text{ de } \mathbb{R}$, $e^x > 0 \text{ et } (1 + e^x)^2 > 0$. Donc f(x) > 0.
- 2. La fonction f est continue sur $\mathbb R$ comme quotient de fonctions continues sur $\mathbb R$.
- 3. Soit $M \ge 0$. Je calcule $\int_0^M \frac{e^x}{(1+e^x)^2} dx$. La fonction $f: x \mapsto \frac{e^x}{(1+e^x)^2}$ semble être de la forme $\frac{-u'}{u^2}$ avec $u(x) = 1 + e^x$. Alors

$$\frac{-u'(x)}{u(x)^2} = \frac{-e^x}{(1+e^x)^2} = -f(x).$$

Donc une primitive de f est donnée par

$$F(x) = -\frac{1}{u(x)} = \frac{-1}{1 + e^x}.$$

Ainsi

$$\int_0^M \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \left[\frac{-1}{1+e^x} \right]_0^M = \frac{1}{2} - \frac{1}{e^M}.$$

Comme

$$\lim_{M\to+\infty}\frac{1}{2}-\frac{1}{e^M}=1,$$

l'intégrale $\int_0^{+\infty} \frac{e^x}{(1+e^x)^2} dx$ converge et

$$\int_0^{+\infty} \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \frac{1}{2}.$$

De même, pour $m \leq 0$,

$$\int_{m}^{0} \frac{e^{x}}{(1+e^{x})^{2}} dx = \left[\frac{-1}{1+e^{x}}\right]_{m}^{0} = \frac{1}{1+e^{m}} - \frac{1}{2}.$$

Et comme

$$\lim_{m \to -\infty} \frac{1}{1 + e^m} - \frac{1}{2} = 1 - \frac{1}{2},$$

l'intégrale $\int_{-\infty}^{0} \frac{e^x}{(1+e^x)^2} dx$ converge et

$$\int_{-\infty}^{0} \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \frac{1}{2}.$$

En résumé, l'intégrale $\int_{-\infty}^{+\infty} \frac{e^x}{(1+e^x)^2} dx$ converge et

$$\int_{-\infty}^{+\infty} \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \int_{-\infty}^{0} \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x + \int_{0}^{+\infty} \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x = \frac{1}{2} + \frac{1}{2} = 1.$$

La fonction f vérifie donc bien les trois points de la définition ci-dessus. Donc f est bien une densité de probabilité.

Théorème 8.7

Si X est une variable aléatoire à densité, de fonction de répartition F_X et de densité f, alors en chaque réel x où f est continue, la fonction f vérifie $f(x) = F_X'(x)$.

Théorème 8.8

Si X est une variable aléatoire à densité, de fonction de répartition F_X , alors toute fonction f à valeurs positives qui vérifie $f(x) = F'_X(x)$, sauf éventuellement en un nombre fini de points, est une densité de X.

Exemple 8.9 – Soit X une variable aléatoire de fonction de répartition $F_X(x) = \begin{cases} 0 & \text{si } x < 1, \\ 1 - \frac{1}{x} & \text{si } x \geqslant 1. \end{cases}$ On admet que X est une variable aléatoire à densité. Déterminer une densité de X.

La fonction F_X est dérivable sur $\mathbb{R} \setminus \{1\}$ et pour tout $x \in \mathbb{R}$,

$$F_X'(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{x^2} & \text{si } x > 1. \end{cases}$$

Donc une densité de f est donnée par

$$f(x) = \begin{cases} 0 & \text{si } x < 1, \\ \frac{1}{x^2} & \text{si } x \geqslant 1. \end{cases}$$

Remarque 8.10 – Il n'y a pas unicité de la densité pour une variable à densité donnée. En effet, si f est une densité de X, alors toute fonction g positive, égale à f sauf en un nombre fini de points, est également une densité de X.

2 - Calculs de probabilités avec des variables aléatoires à densité

Proposition 8.11

Soient X une variable aléatoire à densité, F_X sa fonction de répartition et f_X une densité de X. Soient a et b deux réels avec a < b. On rappelle que $P(X \leqslant a) = F_X(a) = \int_{-a}^a f(t) \, dt$. Alors

•
$$P(X < a) = P(X \le a) = F_X(a) = \int_{-\infty}^{a} f_X(t) dt$$
,

- P(X = a) = 0,
- $P(X \ge a) = P(X > a) = 1 F_X(a) = \int_a^{+\infty} f_X(t) dt$
- $P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b) = F_X(b) F_X(a) = \int_a^b f_X(t) dt$.

Exemple 8.12 –

1. Soit *X* une variable aléatoire, de fonction de répartition

$$F_X(x) = \begin{cases} 0 & \text{si } x < 2, \\ 1 - \frac{8}{x^3} & \text{si } x \ge 2. \end{cases}$$

On admet que X est une variable aléatoire à densité. Calculer $P(X \ge 0)$, $P(-1 \le X < 3)$, P(X < 4). D'après la proposition ci-dessus,

•
$$P(X \ge 0) = 1 - F_X(0) = 1 - 0 = 1$$
,

•
$$P(-1 \le X < 3) = F_X(3) - F_X(-1) = 1 - \frac{8}{3^3} - 0 = 1 - \frac{8}{27} = \frac{19}{27}$$

•
$$P(X < 4) = F_X(4) = 1 - \frac{8}{4^3} = 1 - \frac{8}{64} = 1 - \frac{1}{8} = \frac{7}{8}$$
.

2. Soit *X* une variable aléatoire à densité, de densité

$$f_X(t) = \begin{cases} 0 & \text{si } t \leq 0, \\ e^{-t} & \text{si } t > 0. \end{cases}$$

Calculer $P(X \le 2)$, $P(2 < X \le 3)$ et $P(X \ge 1)$.

D'après la proposition ci-dessus,

•
$$P(X \le 2) = \int_{-\infty}^{2} f_X(t) dt = \int_{0}^{2} e^{-t} dt$$
, $\operatorname{car} f_X(t) = 0 \operatorname{si} t \le 0$,

•
$$P(2 < X \le 3) = \int_{2}^{3} f_X(t) dt = \int_{2}^{3} e^{-t} dt$$
,

•
$$P(X \ge 1) = \int_{1}^{+\infty} f_X(t) dt = \int_{1}^{+\infty} e^{-t} dt$$
.

Une primitive de e^{-t} est donnée par $-e^{-t}$, donc

$$P(X \leq 2) = \int_0^2 e^{-t} \, \mathrm{d}t = \left[-e^{-t} \right]_0^2 = 1 - e^{-2} \quad \text{ et } \quad P(2 < X \leq 3) = \int_2^3 e^{-t} \, \mathrm{d}t = \left[-e^{-t} \right]_2^3 = e^{-2} - e^{-3}.$$

Enfin pour $M \geqslant 1$,

$$\int_{1}^{M} e^{-t} dt = \left[-e^{-t} \right]_{1}^{M} = e^{-1} - e^{-M}.$$

Or $\lim_{M \to +\infty} e^{-1} - e^{-M} = e^{-1}$ donc

$$P(X \ge 1) = \int_{1}^{+\infty} e^{-t} dt = e^{-1}.$$

3 - Espérance d'une variable à densité

Définition 8.13 – Sous réserve de convergence de l'intégrale, l'espérance de X est le réel noté E(X) défini par

$$E(X) = \int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t.$$

Exemple 8.14 – Soit *X* une variable aléatoire de densité $f(t) = \begin{cases} 0 & \text{si } t \leq 0, \\ e^{-t} & \text{si } t > 0. \end{cases}$

X admet-elle une espérance? Si oui, la calculer.

Il faut étudier la convergence de l'intégrale généralisée

$$\int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t.$$

Comme f est nulle sur $]-\infty,0]$, l'intégrale sur $]-\infty,0]$ converge et vaut 0. Par ailleurs, soit $M\geqslant 0$.

Je calcule $\int_0^M te^{-t} dt$. Pour cela, j'effectue une intégration par parties. Je pose

$$u'(t) = e^{-t}$$

$$u(t) = -e^{-t}$$

$$v(t) = t$$

$$v'(t) = 1$$

Alors

$$\int_0^M t e^{-t} dt = \left[-t e^{-t} \right]_0^M + \int_0^M e^{-t} dt = -M e^{-M} + \left[-e^{-t} \right]_0^M = -M e^{-M} + 1 - e^{-M}.$$

Or $\lim_{M \to +\infty} -Me^{-M} + 1 - e^{-M} = 1$ donc l'intégrale $\int_0^{+\infty} te^{-t} dt$ converge et

$$\int_0^{+\infty} t e^{-t} \, \mathrm{d}t = 1.$$

En résumé, l'intégrale $\int_{-\infty}^{+\infty} t e^{-t} dt$ converge et vaut 1. Ainsi X admet une espérance et

$$E(X) = 1$$
.

Proposition 8.15

Soient X une variable aléatoire à densité admettant une espérance et a et b deux réels. Si $a \neq 0$, la variable aléatoire Y = aX + b admet une espérance et

$$E(aX + b) = aE(X) + b.$$

4 - Variance d'une variable aléatoire à densité

Définition 8.16 – Une variable aléatoire X de densité f admet un **moment d'ordre 2** lorsque X^2 admet une espérance. Dans ce cas, on appelle **moment d'ordre 2** de X le réel

$$E(X^2) = \int_{-\infty}^{+\infty} t^2 f(t) dt.$$

Définition 8.17 – Si une variable aléatoire X de densité f admet un moment d'ordre 2, alors on appelle **variance** de X et on note V(X) le réel défini par

$$V(X) = \int_{-\infty}^{+\infty} (t - E(X))^2 f(t) dt.$$

Définition 8.18 – Si X est une variable aléatoire à densité admettant une variance, on appelle **écart-type** de X, le réel positif noté σ_X défini par

$$\sigma_X = \sqrt{V(X)}$$
.

Théorème 8.19 - Formule de König-Huygens

Si X est une variable aléatoire à densité possédant une variance, alors

$$V(X) = E(X^2) - E(X)^2.$$

Méthode 8.20 – Montrer qu'une variable à densité possède une variance et la calculer.

- Si *X* n'admet pas d'espérance, alors elle n'admet pas de variance.
- Si X admet une espérance, il faut regarder si $E(X^2)$ existe.
 - \triangleright Si non, alors *X* n'admet pas de variance.
 - ⊳ Si oui, alors on la calcule en utilisant la formule de König-Huygens

$$V(X) = E(X^2) - E(X)^2.$$

Exemple 8.21 – Soit X une variable aléatoire de densité $f(t) = \begin{cases} 0 & \text{si } t \leq 0 \\ e^{-t} & \text{si } t > 0. \end{cases}$

X admet-elle une variance? Si oui, la calculer.

Je sais déjà que X admet une espérance et que E(X) = 1.

Je cherche à savoir si $E(X^2)$ existe, *i.e.* si l'intégrale $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge.

Comme f est nulle sur $]-\infty,0]$, l'intégrale $\int_{-\infty}^{0} f(t) dt$ converge et vaut 0. Soit maintenant $M \geqslant 0$.

Je calcule $\int_0^M t^2 f(t) dt = \int_0^M t^2 e^{-t} dt$. Pour cela, j'effectue une première intégration par parties.

Je pose

$$u'(t) = e^{-t}$$

$$u(t) = -e^{-t}$$

$$v(t) = t^2$$

$$v'(t) = 2t$$

Alors

$$\int_0^M t^2 e^{-t} \, \mathrm{d}t = \left[-t^2 e^{-t} \right]_0^M + 2 \int_0^M t e^{-t} \, \mathrm{d}t = -M^2 e^{-M} + 2 \int_0^M t e^{-t} \, \mathrm{d}t.$$

Or je sais déjà que $\int_0^M te^{-t} dt = -Me^{-M} + 1 - e^{-M}$, donc

$$\int_0^M t^2 e^{-t} dt = -M^2 e^{-M} - 2M e^{-M} + 2 - 2e^{-M}.$$

Et comme $\lim_{M \to +\infty} -M^2 e^{-M} - 2M e^{-M} + 2 - 2e^{-M} = 2$, l'intégrale $\int_0^{+\infty} f(t) dt$ converge et vaut 2.

Donc l'intégrale $\int_{-\infty}^{+\infty} f(t) dt$ converge et vaut 2. Autrement dit, $E(X^2)$ existe et vaut 2.

Ainsi X admet une variance que je peux obtenir par la formule de König-Huygens :

$$V(X) = E(X^2) - E(X)^2 = 2 - 1^2 = 1.$$

Proposition 8.22

Si X est une variable aléatoire possédant une variance, alors pour tous réels a et b, aX + b admet une variance et

$$V(aX + b) = a^2 V(X).$$

Exemple 8.23 – On reprend la variable aléatoire X de l'exemple précédent et on note Y = 3 - 2X. Y admet-elle une variance? Si oui, la calculer.

D'après la propriété ci-dessus, Y admet une variance et

$$V(Y) = V(3-2X) = (-2)^2 V(X) = 4 \times 1 = 4.$$

III - Lois usuelles à densité

1 - Loi uniforme sur un intervalle

Dans ce paragraphe, a et b sont des nombres réels avec a < b.

La loi uniforme sur [a, b] est la loi du tirage au hasard d'un nombre dans cet intervalle : la variable X a autant de chance de tomber n'importe où dans l'intervalle [a, b].

Définition 8.24 – On dit que X suit une **loi uniforme** sur [a,b] lorsque X est la variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \frac{1}{b-a} & \text{si } t \in [a,b], \\ 0 & \text{si } t \notin [a,b]. \end{cases}$$

On note $X \hookrightarrow \mathcal{U}([a,b])$.

Voici la représentation graphique de la densité f d'une loi uniforme sur [a,b]:

Remarque 8.25 – La fonction f définie sur [a,b] par $f(t) = \frac{1}{b-a}$ est bien une densité de probabilité sur l'intervalle [a,b] puisque

- f est positive et continue sur $\mathbb{R} \setminus \{a, b\}$,
- $\int_{-\infty}^{+\infty} f(t) dt = \int_{a}^{b} \frac{1}{b-a} dt = \left[\frac{t}{b-a} \right]_{a}^{b} = \frac{b}{b-a} \frac{a}{b-a} = 1.$

Proposition 8.26

Si X suit une loi uniforme sur [a, b], alors la fonction de répartition F_X de X est donnée par

$$F_X(x) = \begin{cases} 0 & \text{si } x < a, \\ \frac{x-a}{b-a} & \text{si } x \in [a,b], \\ 1 & \text{si } x > b. \end{cases}$$

Voici la représentation graphique de la fonction de répartition F_X d'une loi uniforme sur [a,b]:

Proposition 8.27

Si X suit une loi uniforme sur [a, b], alors X admet une espérance et une variance et

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)^2}{12}$.

Exemple 8.28 – Le temps d'attente T, en minutes, auprès du standard téléphonique du service aprèsvente d'une entreprise suit une loi uniforme sur l'intervalle [0.5, 9.5].

- 1. Quelle est la probabilité que le temps d'attente soit inférieur à 2 minutes?
- 2. Quelle est la probabilité que le temps d'attente soit supérieur à 3 minutes?
- 3. Quel est le temps d'attente moyen auprès du standard téléphonique?
- 1. La probabilité que le temps d'attente soit inférieur à 2 minutes est $P(T\leqslant 2)=F_T(2)=\frac{2-0.5}{9}=\frac{1}{6}.$
- 2. La probabilité que le temps d'attente soit supérieur à 3 minutes est $P(T \ge 3) = 1 F_T(3) = \frac{9.5 3}{9} = \frac{13}{18}$.
- 3. L'espérance mathématique de T est $E(T) = \frac{0.5 + 9.5}{2} = 5$. Le temps d'attente moyen auprès du standard téléphonique est de 5 minutes.

2 - Loi exponentielle

Dans ce paragraphe, λ désigne un nombre réel strictement positif.

Définition 8.29 – On dit que X suit une **loi exponentielle** de paramètre λ lorsque X est la variable aléatoire de densité f définie par

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t \geqslant 0, \\ 0 & \text{si } t < 0. \end{cases}$$

On note $X \hookrightarrow \mathcal{E}(\lambda)$.

Voici la représentation graphique de la densité f d'une loi exponentielle de paramètre λ :

Proposition 8.30

Si X suit une loi exponentielle de paramètre λ , alors la fonction de répartition F_X de X est donnée par

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0, \\ 0 & \text{si } x < 0. \end{cases}$$

Voici la représentation graphique de la fonction de répartition F_X d'une loi exponentielle de paramètre λ :

Proposition 8.31

Si X suit une loi exponentielle de paramètre λ , alors X admet une espérance et une variance et

$$E(X) = \frac{1}{\lambda}$$
 et $V(X) = \frac{1}{\lambda^2}$.

Remarque 8.32 - Les lois exponentielles sont utilisées pour modéliser des durées de vie.

3 - Loi normale

Dans ce paragraphe, m désigne un nombre réel et σ un réel strictement positif.

Définition 8.33 – On dit que X suit une **loi normale** de paramètres m et σ^2 lorsque X est la variable aléatoire de densité f définie par

$$\forall t \in \mathbb{R}, \quad f(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-m)^2}{2\sigma^2}}.$$

On note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$.

Proposition 8.34

Si X suit une loi normale de paramètres m et σ^2 , alors X admet une espérance et une variance et

$$E(X) = m$$
 et $V(X) = \sigma^2$.

4 - Loi normale centrée réduite

Définition 8.35 – On dit que X suit la **loi normale centrée réduite** lorsque X est la variable aléatoire de densité f définie par

$$\forall t \in \mathbb{R}, \quad f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}.$$

On note $X \hookrightarrow \mathcal{N}(0,1)$.

La courbe de la fonction de densité de la loi normale centrée réduite $\mathcal{N}(0,1)$ est symétrique par rapport à l'axe des ordonnées, donc les probabilités $P(X \leq 0)$ et $P(X \geq 0)$ sont égales.

Comme $P(X \le 0) + P(X > 0) = 1$, on en déduit que

Définition 8.36 – La fonction de répartition d'une variable aléatoire qui suit la loi $\mathcal{N}(0,1)$ est la fonction notée Φ définie par

$$\forall x \in \mathbb{R}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt.$$

Théorème 8.37

On sait déjà que $\Phi(0) = \frac{1}{2}$. Plus généralement, pour tout réel x, la fonction Φ vérifie

$$\Phi(-x) = 1 - \Phi(x).$$

Remarque 8.38 – On ne sait pas expliciter Φ à l'aide des fonctions usuelles.

Proposition 8.39

Si X est une variable aléatoire suivant la loi $\mathcal{N}(0,1)$, alors X admet une espérance et une variance et

$$E(X) = 0$$
 et $V(X) = 1$.

Théorème 8.40

Soit X une variable aléatoire. Alors

X suit une loi normale $\mathcal{N}(m, \sigma^2)$ \iff $\frac{X-m}{\sigma}$ suit la loi normale centrée réduite $\mathcal{N}(0, 1)$.

Fonction de répartition Φ d'une variable aléatoire X suivant la Loi Normale Centrée Réduite $\mathcal{N}(0,1)$.

$$\Phi(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 et $\Phi(-x) = 1 - \Phi(x)$.

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000