第十章 优化基础

第 29 讲 凸集

黄定江

DaSE @ ECNU

djhuang@dase.ecnu.edu.cn

- 1 29.1 凸集
- 2 29.2 凸集的保凸运算
- 3 29.3 凸集的性质: 分离超平面定理

2 / 44

黄定江 (DaSE@ECNU) 第十章 优化基础

- 1 29.1 凸集
- ② 29.2 凸集的保凸运算
- ③ 29.3 凸集的性质: 分离超平面定理

29.1.1 直线与线段

定义 1

对于 R^n 中的两个点 $x_1 \neq x_2$, 形如

$$y = \theta x_1 + (1 - \theta) x_2, \ \theta \in \mathbb{R}$$

的点形成了过点 x_1 和 x_2 的直线。当 $0 \le \theta \le 1$ 时,这样的点构成了连接点 x_1 和 x_2 的线段。

直线与线段

y 的表示形式

$$\boldsymbol{y} = \boldsymbol{x}_2 + \theta(\boldsymbol{x}_1 - \boldsymbol{x}_2)$$

给出了另一种解释: 直线上的点 y 是基点 x_2 (对应 $\theta = 0$) 和方向 $x_1 - x_2$ (由 x_2 指向 x_1) 乘以参数 θ 的和。

当 θ 由 0 增加到 1,点 y 相应地由 x_2 移动到 x_1 。如果 $\theta > 1$,点 y 在超越了 x_1 的直线上。

29.1.2 仿射集

定义 2

如果通过集合 $\mathbb{C} \subset \mathbb{R}^n$ 中任意两点的直线仍然在集合 \mathbb{C} 中,则称 \mathbb{C} 为仿射集。即:

$$x_1, x_2 \in \mathbb{C} \Rightarrow \theta x_1 + (1 - \theta) x_2 \in \mathbb{C}, \ \forall \theta \in \mathbb{R}.$$
 (1)

可以归纳得出:

• 一个仿射集包含其中任意点的仿射组合.

6 / 44

仿射集

• 如果 \mathbb{C} 是一个仿射集并且 $x_0 \in \mathbb{C}$. 则集合

$$\mathbb{V}=\mathbb{C}-oldsymbol{x}_0=\{oldsymbol{x}-oldsymbol{x}_0|oldsymbol{x}\in\mathbb{C}\}$$

是一个子空间, 即关于加法和数乘是封闭的。

● 因此, 仿射集 C 可以表示为

$$\mathbb{C} = \mathbb{V} + \boldsymbol{x}_0 = \{ \boldsymbol{v} + \boldsymbol{x}_0 | \boldsymbol{v} \in \mathbb{V} \}$$

即一个子空间加上一个偏移。与仿射集 $\mathbb C$ 相关联的子空间 $\mathbb V$ 与 $\mathbf z_0$ 的选取无 关,所以 \mathbf{z}_0 可以是 \mathbb{C} 中的任意一点。我们定义仿射集 \mathbb{C} 的维数为子空间 $\mathbb{V} = \mathbb{C} - \mathbf{x}_0$ 的维数,其中 \mathbf{x}_0 是 \mathbb{C} 中的任意元素。

7 / 44

仿射包

定义 3

我们称由集合 $\mathbb{C} \subset \mathbb{R}^n$ 中的点的所有仿射组合组成的集合为 \mathbb{C} 的**仿射包**,记为 aff $\mathbb C$:

aff
$$\mathbb{C} = \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k | \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{C}, \theta_1 + \dots + \theta_k = 1\}$$

仿射包

仿射包是包含 \mathbb{C} 的最小的仿射集合,即 $\mathsf{aff}\mathbb{C} \subseteq \mathbb{S}$ 。下图展示了 \mathbb{R}^3 中圆盘 S 的仿射 包, 为一个平面。

定义 4

如果连接集合 ℂ 中任意两点的线段都在 ℂ 内,则称 ℂ 为凸集,即

$$\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C} \Rightarrow \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathbb{C}, \ \forall 0 \leq \theta \leq 1.$$

从仿射集的定义中可以看出仿射集是凸集。

凸集

例 1

下图显示了 \mathbb{R}^2 空间中一些简单的凸和非凸集合。

图 2: 左: 包含边界的六边形是凸的。中: 肾形集合不是凸的, 因为图中所示集合中两点间 的线段不为集合所包含。右:仅包含部分边界的正方形不是凸的。

黄定江 (DaSE@ECNU) 第十章 优化基础 11 / 44

凸组合和凸包

定义 5

形如

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k, \ 1 = \theta_1 + \theta_2 + \dots + \theta_k, \theta_i \ge 0, i = 1, 2, \dots, k$$

的点称为 x_1, \dots, x_k 的凸组合。集合 $\mathbb C$ 中点所有可能的凸组合构成的集合称作 $\mathbb C$ 的凸包、记作conv \mathbb{C} 。

凸组合和凸包

凸包是包含 \mathbb{C} 的最小的凸集。即 conv \mathbb{C} \subseteq \mathbb{B} 。下图显示了凸包的定义。

图 3

凸锥和锥组合

定义 6

如果对于任意 $x \in \mathbb{C}$ 和 $\theta > 0$ 都有 $\theta x \in \mathbb{C}$. 我们称集合 \mathbb{C} 是锥。 形如 $x = \theta_1 x_1 + \theta_2 x_2 \in \mathbb{C}, \theta_1 \geq 0, \theta_2 \geq 0$ 的点称为点 x_1, x_2 的**锥组合**。 若集合 ℂ 中任意点的锥组合都在 ℂ 中, 则称 ℂ 为凸锥。

在几何上,具有此类形式的点构成了二维的扇形,这个扇形以 0 为定点,边通过 x_1 和 x_2 , 如下图所示:

29.1.4 一些简单的仿射集与凸集

首先介绍一些简单的例子。

- 空集, 任意一个点 (即单点集) $\{x_0\}$ 、全空间 \mathbb{R}^n 都是 \mathbb{R}^n 的仿射 (自然也是凸 的) 子集。
- 任意直线是仿射的。如果直线通过零点,则是子空间,因此,也是凸锥。
- 一条线段是凸的,但不是仿射的(除非退化为一个点)。
- 一条射线,即具有形式 $\{x_0 + \theta v | \theta > 0\}, v \neq 0$ 的集合,是凸的,但不是仿射 的。如果射线的基点 x_0 是 0,则它是凸锥。
- 任意子空间是仿射的、凸锥 (自然是凸的)。

15 / 44

第十章 优化基础 黄定江 (DaSE@ECNU)

29.1.5 超平面与半空间

定义 7

任取非零向量 a, 形如 $\{x|a^Tx=b\}$ 的集合称为超平面, 形如 $\{x | a^T x < b\}$ 的集合称为**半空间**。 其中 $a \in \mathbb{R}^n, a \neq 0$ 是对应的超平面和半空间的法向量,且 $b \in \mathbb{R}$ 。

- 解析地,超平面是关于 x 的非平凡线性方程的解空间 (因此是一个仿射集合)。
- - n n
- 超平面是仿射集和凸集, 半空间是凸集但不是仿射集。

第十章 优化基础 16 / 44 黄定江 (DaSE@ECNU)

超平面与半空间

超平面和半空间的几何解释如下图所示:

图 4: \mathbb{R}^2 中由法向量 \boldsymbol{a} 和超平面上一点 \boldsymbol{x}_0 确定的超平面。对于超平面上任意一点 \boldsymbol{x}_0 $\boldsymbol{x} - \boldsymbol{x}_0$ (如深色箭头所示) 都垂直于 \boldsymbol{a} 。

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९○

超平面与半空间

图 5: \mathbb{R}^2 上由 $\mathbf{a}^T \mathbf{x} = b$ 定义的超平面决定了两个半空间,由 $\mathbf{a}^T \mathbf{x} > b$ 决定的半空间(无阴 影)是向 a 扩展的半空间,由 $a^Tx < b$ 确定的半空间(阴影所示)向 -a 方向扩展。 向量 a 是这个半空间向外的法向量。

黄定江 (DaSE@ECNU) 第十章 优化基础 18 / 44

29.1.6 Euclid 球

定义 8

球是空间中到某个点距离(或两者差的范数)小于某个常数的点的集合,并将

$$B(\mathbf{x}_c, r) = \{\mathbf{x} | \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\} = \{\mathbf{x}_c + r\mathbf{u} | \|\mathbf{u}\|_2 \le 1\}$$

称为中心为 x_c , 半径为 r 的 **Euclid** 球。

29.1.7 椭球

定义 9

形如

$$\{x|(x-x_c)^T P^{-1}(x-x_c) \le 1\}$$

的集合称为椭球, 其中 $P \in S_{++}^n$ (即 P 对称正定)。椭球的另一种表示为

$$\{x_c + Au | ||u||_2 \le 1\},$$

其中 A 为非奇异的方阵。

29.1.8 范数球与范数锥

定义 10

设 $\parallel . \parallel$ 是 \mathbb{R}^n 中的范数。称

$$\{\boldsymbol{x}|\|\boldsymbol{x}-\boldsymbol{x}_c\|\leq r\}$$

为以r为半径, x_c 为球心的范数球。

定义 11

关于范数 ||.|| 的范数锥是集合

$$C = \{(\boldsymbol{x}, t) | ||\boldsymbol{x}|| \le t\} \subseteq \mathbb{R}^{n+1}$$

顾名思义, 它是一个凸锥。

29.1.9 多面体

定义 12

我们将满足线性等式和不等式组的点的集合称为多面体。即

$$\{x|Ax \leq b, Cx = d\},\$$

其中 $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, x < y 表示向量 x 的每个分量均小于等于 y 的对应分 量。

- 易得出多面体是有限个半空间和超平面的交集。
- 仿射集合、射线、线段和半空间都是多面体。
- 有界的多面体有时也称为多胞形。

22 / 44

黄定江 (DaSE@ECNU) 第十章 优化基础

多面体

下图显示了一个由五个半空间的交集定义的多面体。

29.1.10 半正定锥

• 我们用 S^n 表示对称 $n \times n$ 矩阵的集合, 即

$$S^n = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} | \boldsymbol{X} = \boldsymbol{X}^T \}$$

这是一个维数为 n(n+1)/2 的向量空间。

• 我们用 S^n 表示对称半正定矩阵的集合:

$$S^n_+ = \{ \boldsymbol{X} \in S^n | \boldsymbol{X} \succeq 0 \}$$

• 用 S_{++}^n 表示对称正定矩阵集合:

$$S_{++}^n = \{ \boldsymbol{X} \in S_+^n | \boldsymbol{X} \succ 0 \}$$

半正定锥

容易证明集合 S^n_+ 是一个凸锥, 因此

定义 13

我们称

$$S^n_+ = \{ \boldsymbol{X} \in S^n | \boldsymbol{X} \succeq 0 \}$$

为半正定锥。

图 6: 二维半正定锥 S_{+}^{2}

- 1 29.1 凸集
- 2 29.2 凸集的保凸运算
- ③ 29.3 凸集的性质: 分离超平面定理

保凸运算

判定一个集合为凸集的方式:

1. 利用定义

$$\mathbf{x}_1, \mathbf{x}_2 \in C, 0 \le \theta \le 1 \Rightarrow \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in C$$

- 2. 说明集合 C 可以由简单的凸集经过保凸运算后得到。 本节下面将介绍一些常见的**保凸运算**:
 - 取交集
 - 仿射变换
 - 线性分式及透视函数

29.2.1 交集

定理1

任意多个凸集的交为凸集,即若 $C_i, i \in \mathcal{L}$ 是凸集,则

$$\cap_{i\in\mathcal{L}} C_i$$

为凸集。这里 L 是任意指标集 (不要求可列)。

例 2

• 半正定锥 S_{+}^{n} 可以表示为,

$$\cap_{z\neq 0} \{ \boldsymbol{X} \in S^n | \boldsymbol{z}^T \boldsymbol{X} \boldsymbol{z} \ge 0 \}.$$

对于任意 $z \neq 0$, $z^T X z$ 是关于 X 的 (不恒等于零的) 线性函数, 因此集合

$$\{ \boldsymbol{X} \in S^n | \boldsymbol{z}^T \boldsymbol{X} \boldsymbol{z} \ge 0 \}$$

实际上就是 S^n 的半空间。由此可见,半正定锥是无穷个半空间的交集,因此是凸的。

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ りへの

黄定江 (DaSE@ECNU) 第十章 优化基础 29 / 44

29.2.2 凸集的和

• 两个集合的和可以定义为:

$$S_1 + S_2 = \{ \boldsymbol{x} + \boldsymbol{y} | \boldsymbol{x} \in S_1, \, \boldsymbol{y} \in S_2 \}$$

如果 S_1 和 S_2 是凸集,那么, $S_1 + S_2$ 是凸的。

30 / 44

黄定江 (DaSE@ECNU) 第十章 优化基础

29.2.3 凸集的 Cartesian 乘积

• 可以看出,如果 S_1 和 S_2 是凸的,那么其直积或 Cartesian 乘积

$$S_1 \times S_2 = \{(\boldsymbol{x}_1, \boldsymbol{x}_2) | \boldsymbol{x}_1 \in S_1, \boldsymbol{x}_2 \in S_2\}$$

也是凸集。

29.2.4 仿射变换

定理2

设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射变换, 即 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, 则

(1) 凸集在 f 下的像是凸集:

$$S \subseteq \mathbb{R}^n$$
为凸集 $\Rightarrow f(S) \stackrel{def}{=} \{f(\mathbf{x}) | \mathbf{x} \in S\}$ 为凸集;

(2) 凸集在 f 下的原像是凸集:

$$C \subseteq \mathbb{R}^m$$
为凸集 $\Rightarrow f^{-1}(C) \stackrel{def}{=} \{x \in \mathbb{R}^n | f(x) \in C\}$ 为凸集.

仿射变换

• 两个简单的例子是伸缩和平移。如果 $S \subseteq \mathbb{R}^n$ 是凸集, $\alpha \in \mathbb{R}$ 并且 $a \in \mathbb{R}^n$,那么,集合 αS 和 S + a 是凸的,其中

$$\alpha S = {\alpha \boldsymbol{x} | \boldsymbol{x} \in S}, \qquad S + \boldsymbol{a} = {\boldsymbol{x} + \boldsymbol{a} | \boldsymbol{x} \in S}$$

• 一个凸集向它的某几个坐标的投影是凸的,即: 如果 $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ 是凸集,那 么

$$T = \{ \boldsymbol{x}_1 \in \mathbb{R}^m | (\boldsymbol{x}_1, \boldsymbol{x}_2) \in S$$
 对于某些 $\boldsymbol{x}_2 \in \mathbb{R}^n \}$

是凸集。

◆ロト ◆御 ト ◆差 ト ◆差 ト ・差 ・ 釣 へ ()

仿射变换

例 3

利用仿射变换保凸的性质, 可以证明:

线性矩阵不等式的解集

$$\{\boldsymbol{x}|x_1\boldsymbol{A}_1+x_2\boldsymbol{A}_2+\cdots+x_m\boldsymbol{A}_m \leq \boldsymbol{B}\}$$

是凸集,其中 $A_i, B \in S^n$ 。因为,它可以看作是一个仿射变换的原像 双曲锥

$$\{\boldsymbol{x}|\boldsymbol{x}^T\boldsymbol{P}\boldsymbol{x} \leq (\boldsymbol{c}^T\boldsymbol{x})^2, \ \boldsymbol{c}^T\boldsymbol{x} \geq 0\}$$

是凸集, 其中 $P \in S_+^n$ 。因为, 它可以看作是 $x \to (P^{1/2}x, c^Tx)$ 变换下的原像, 而值域是凸锥。

黄定江 (DaSE@ECNU) 第十章 优化基础 34 / 44

29.2.5 透视函数

定义 14

我们定义 $P: \mathbf{dom} P \to \mathbb{R}^n$, P(z,t) = z/t 为透视函数,其定义域为 $\mathbf{dom} P = \mathbb{R}^n \times \mathbb{R}_+$ 。透视函数对向量进行伸缩,或称为规范化,使得最后一维分量为 1 并舍弃之。

黄定江 (DaSE@ECNU) 第十章 优化基础 35 / 44

透视函数

• 如果 $C \subset \operatorname{dom} P$ 是凸集,那么它的像

$$P(C) = \{P(\boldsymbol{x}) | \boldsymbol{x} \in C\}$$

也是凸集。

• 一个凸集在透视函数下的原象也是凸的: 如果 $C \subseteq \mathbb{R}^n$ 为凸集,那么

$$P^{-1}(C) = \{ (\mathbf{x}, t) \in \mathbb{R}^{n+1} | \mathbf{x}/t \in C, t > 0 \}$$

是凸集。

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ○

29.2.6 线性分式函数

• **线性分式函数**由透视函数和仿射函数复合而成。设 $g: \mathbb{R}^n \to \mathbb{R}^{m+1}$ 是仿射的,即

$$g(oldsymbol{x}) = egin{bmatrix} oldsymbol{A} \ oldsymbol{c}^T \end{bmatrix} oldsymbol{x} + egin{bmatrix} oldsymbol{b} \ d \end{bmatrix}$$

其中 $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n$ 并且 $d \in \mathbb{R}$ 。则由 $f = P \circ g$ 给出的函数 $f : \mathbb{R}^n \to \mathbb{R}^m$

$$f(\mathbf{x}) = (\mathbf{A}\mathbf{x} + \mathbf{b})/(\mathbf{c}^T\mathbf{x} + d), \mathbf{dom} f = {\mathbf{x} | \mathbf{c}^T\mathbf{x} + d > 0}$$

称为线性分式 (或投射) 函数。如果 c = 0, d > 0。则 f 的定义域为 \mathbb{R}^n ,并且 f 是仿射函数。因此,我们可以将仿射和透视函数视为特殊的线性分式函数。

 黄定江 (DaSE@ECNU)
 第十章 优化基础

37 / 44

线性分式函数

• 类似于透视函数,线性分式函数也是保凸的。 如果 C 是凸集并且在 f 的定义域中 (即任意 $x \in C$ 满足 $c^T x + d > O$),那么 C 的象 f(C) 也是凸集。 根据前述的结果可以直接得到这个结论: C 在仿射映射下的象是凸的,并且在透

• 类似地,如果 $C \subseteq \mathbb{R}^m$ 是凸集,那么其原象 $f^{-1}(C)$ 也是凸的。

视函数 P 下的映射 (即 f(C)) 是凸的。

黄定江 (DaSE@ECNU) 第十章 优化基础 38 / 44

- 1 29.1 凸集
- ② 29.2 凸集的保凸运算
- 3 29.3 凸集的性质: 分离超平面定理

39 / 44

黄定江 (DaSE@ECNU) 第十章 优化基础

29.3.1 分离与支撑超平面

定理3

超平面分离定理: 假设 C 和 D 是两个不相交的凸集,则存在非零向量 a 和常数 b,使得

$$\boldsymbol{a}^T \boldsymbol{x} \leq b, \forall \boldsymbol{x} \in C \perp \boldsymbol{a}^T \boldsymbol{x} \geq b, \forall \boldsymbol{x} \in D,$$

即超平面 $\{x | a^T x = b\}$ 分离了 C 和 D。如下图所示:

29.3.2 分离超平面定理

严格分离(即上式成立严格不等号)需要更强的假设。例如当 C 是闭凸集,D 是单点集时,我们有如下严格分离定理:

定理4

严格分离定理: 设 C 是闭凸集,点 $x_0 \notin C$,则存在非零向量 a 和常数 b,使得

$$\boldsymbol{a}^T \boldsymbol{x} < b, \forall \boldsymbol{x} \in C \perp \boldsymbol{a}^T \boldsymbol{x}_0 > b.$$

29.3.3 支撑超平面

当点 x_0 恰好在凸集 C 的边界上时,可以构造支撑超平面。

定义 15

给定集合 C 及其边界上一点 x_0 , 如果 $a \neq 0$ 满足 $a^T x \leq a^T x_0, \forall x \in C$, 那么称集合

$$\{\boldsymbol{x}|\boldsymbol{a}^T\boldsymbol{x}=\boldsymbol{a}^T\boldsymbol{x}_0\}$$

为 C 在边界点 x_0 处的支撑超平面。

从几何上来说,超平面 $\{x | a^T x = a^T x_0\}$ 与集合 C 在点 x_0 处相切并且半空间 $\{x | a^T x < a^T x_0\}$ 包含 C。

支撑超平面

根据凸集的分离超平面定理,我们有如下支撑超平面定理:

定理5

如果 C 是凸集,则在 C 的任意边界点处都存在支撑超平面。

支撑超平面定理从几何上看,可以理解为:

给定一个平面后,可以把凸集边界上的任意一点当成支撑点将凸集放置在该平面上。

本讲小结

凸集

- 仿射集与仿射包
- 凸集与凸包
- 常见的凸集与仿射集

凸集的保凸运算

- 保凸运算:交集、和、 Cartesian 乘积、仿射变换、透 视函数、线性分式函数
- 凸集的性质: 分离超平面定理

凸集是凸优化中很重要的概念。通常很难从定义判定一个集合是否是凸集,可以借助保凸运算进行判断。