CS/ECE 5710/6710

MOS Transistor Models
Electrical Effects
Propagation Delay

N-type Transistor Poly Gate Gate Oxide Diffusion Proper Source N+ N+ P-doped substrate Poly Gate Gate Oxide Diffusion Poly Gate Gate Oxide Diffusion Poly Gate Gate Oxide Diffusion Poly Gate Gate Oxide Diffusion

Another Cutaway View

Vgs Forms a Channel

Vt: The threshold voltage to turn on the transistor

MOS Capacitor

- Gate and body form MOS capacitor
- ▶ Operating modes
 - **▶** Accumulation
 - **▶** Depletion
 - **▶** Inversion

Transistor Characteristics

- ▶ Three conduction characteristics
 - ▶ Cutoff Region
 - ▶ No inversion layer in channel
 - ▶ Ids = 0
 - Nonsaturated, or linear region
 - ▶ Weak inversion of the channel
 - ▶ Ids depends on Vgs and Vds
 - Saturated region
 - Strong inversion of channel
 - ▶ Ids is independent of Vds
 - As an aside, at very high drain voltages:
 - "avalanche breakdown" or "punch through"
 - Gate has no control of Ids...

nMOS Cutoff: Vgs<Vt

- No channel
- $I_{ds} = 0$

nMOS Linear: Vgs>Vt, small Vd

- ▶ Channel forms
- Current flows from d to s
 - ▶e- from s to d
- ▶ I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation: Vds>Vgs-Vt

- Channel pinches off
 - Conduction by drift because of positive drain voltage
 - Electrons are injected into depletion region
- ▶ I_{ds} independent of V_{ds}
- We say that the current saturates
- ▶ Similar to current source

Basic N-Type MOS Transistor

- ▶ Conditions for the regions of operation
 - ► Cutoff: If $V_{os} < V_{t}$, then I_{ds} is essentially 0
 - ▶ V, is the "Threshold Voltage"
 - ▶ Linear: If V_{gs} > V_t and V_{ds} < $(V_{gs} V_t)$ then I_{ds} depends on both $V_{\rm qs}$ and $V_{\rm ds}$
 - ▶ Channel becomes deeper as V_{as} goes up
 - ► Saturated: If $V_{qs} > V_t$ and $V_{ds} > (V_{qs} V_t)$ then I_{ds} is essentially constant (Saturated)

Transistor Gain

- \triangleright β is the MOS transistor gain factor
- $\beta = (\mu \epsilon / t_{ox})(W/L) \leftarrow$

Layout dependent

Process-dependent

- ▶ µ = mobility of carriers
 - ▶ Note that N-type is ~3X as good as P-type
- \triangleright ϵ = permittivity of gate insulator (oxide)
 - ϵ = 3.9 ε₀ for SiO₂ (ε₀ = 8.85x10⁻¹⁴ F/cm)
- ightharpoonupt_{nx} = thickness of gate insulator (oxide)
- ► Also, $\varepsilon/t_{ox} = C_{ox}$ The oxide capacitance
- ▶ Increase W/L to increase gain

Example

- ▶ We will be using a 0.5 µm process for your project
 - From ON Semiconductor

$$t_{0x} = 100 \text{ Å}$$

$$\mu$$
 = 350 cm²/ V*s

- ▶ Plot I_{ds} vs. V_{ds}
 - $V_{gs} = 0, 1, 2, 3, 4, 5$
 - Use W/L = $4/2 \lambda$

$$\beta = \mu C_{\text{ox}} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A/V^2$$

"Saturated" Transistor

- ▶ In the $0 < (V_{gs} V_t) < V_{ds}$ case
 - ► I_{ds} Current is effectively constant
 - ▶ Channel is "pinched off" and conduction is accomplished by drift of carriers
 - ► Voltage across pinched off channel (I.e. V_{ds}) is fixed proportionally to $V_{qs} V_t$
 - This is why you don't use an N-type to pass 1's!
 - ► High voltage is degraded by V_t
 - ▶ Depletion layer lost at V_{gs} V_{t} ; no sat. current 5v \bigcirc 4.0v

Aside: N-type Pass Transistors

- If it weren't for the threshold drop, N-type pass transistors (without the P-type transmission gate) would be nice
 - ▶2-way Mux Example...

N-type Pass Transistors

Is this a good design for only using n-type gates as a pass transistor?

N-type Pass Transistors

- On one hand, the degraded high voltage from the pass transistor will be restored by the inverter
- On the other hand, the P-device may not turn off completely resulting in extra power being used

N-type Pass Transistors

- Another option is a "keeper" transistor fed back from the output
 - ▶ This pulls the internal node high when the output is 0
 - ▶ But is disconnected when output is high
- ▶ Make sure the size is right...(i.e. weak)

N-type Pass Transistors

- In practice, they are used fairly often, but be aware of what you're doing
 - ► For example, read/write circuits in a Register File

Back to the Saturated Transistor 💶

- ▶ What influences the constant I_{ds} in the saturated case?
 - ▶ Channel length
 - Channel width
 - ▶ Threshold voltage V_t
 - ▶ Thickness of gate oxide
 - Dielectric constant of gate oxide
 - Carrier mobility μ
 - ▶ Velocity Saturation

Back to the Saturated Transistor

- ▶ What influences the constant I_{ds} in the saturated case?
 - ▶ Channel length
 - ▶ Channel width
 - ▶ Threshold voltage V,
 - ▶ Thickness of gate oxide
 - Dielectric constant of gate oxide
 - Carrier mobility μ
 - ▶ Velocity Saturation

Threshold Voltage: V_t

- ▶ The V_{as} voltage at which I_{ds} is essentially 0
 - V_t = .67v for nmos and -.92v for pmos in our process
 - ▶ Tiny I_{ds} is exponentially related to V_{qs} , V_{ds}
 - ▶ Take 6770 & 6720 for "subthreshold" circuit ideas
- ▶ V, is affected by
 - ▶ Gate conductor material
 - Gate insulator material
 - Gate insulator thickness
 - Channel doping
 - ▶ Impurities at Si/insulator interface
 - ▶ Voltage between source and substrate (V_{sb})

Basic DC Equations for Ids

▶ Cutoff Region

$$V_{gs} < V_{t}$$
, $I_{ds} = 0$

▶ Linear Region

$$\blacktriangleright 0 < V_{ds} < (V_{gs} - V_t)$$

$$I_{ds} = \beta[(V_{ds} - V_t)V_{ds} - V_{ds}^2/2]$$

- ► Note that this is only "linear" if V_{ds}²/2 is very small, i.e. V_{ds} << V_{gs} -V_t
- Saturated Region

$$ho 0 < (V_{gs} - V_t) < V_{ds}$$

 $I_{ds} = \beta[(V_{gs} - V_t)^2/2]$

Ids Curves

$$\beta = \frac{\mu \varepsilon}{t_{ox}} (\frac{W}{L}) = \mu C_{ox} (\frac{W}{L})$$

Cutoff Region

$$V_{gs} < V_t$$
$$I_{ds} = 0$$

Triode (Linear) Region

$$V_{gs} - V_t > V_{ds} > 0$$

$$I_{ds} = \beta \left[(V_{gs} - V_t) V_{ds} - \frac{V_{ds}^2}{2} \right]$$

Saturation Region

$$V_{gs} - V_t > V_{ds} > 0$$

$$I_{ds} = \beta \frac{\left(V_{gs} - V_t\right)^2}{2}$$

P-type Transistor

P-type Transistor

P-type Transistors

- Source is Vdd instead of GND
 - ►V_{sg} = (Vdd Vin), V_{sd} = (Vdd -Vout), V, is negative
- ► Cutoff: (Vdd-Vin) < -V_t, I_{ds}=0

- ▶ Linear Region
 - ► (Vdd-Vout) < (Vdd Vin + V_t) $I_{ds} = \beta[(Vdd-Vin+V_t)(Vdd-Vout) - (Vdd-Vout)^2/2]$
- ▶ Saturated Region
 - ► ((Vdd Vin) + V_t) < (Vdd Vout) Ids = β[(Vdd -Vin + V_t)²/2]

Pass Transistor Ckts

Pass Transistor Ckts

Pass Transistor Ckts

Pass Transistor Ckts

Pass Transistor Ckts

$$V_{DD} \downarrow V_{DD} \downarrow V_{DD} \downarrow V_{DD}$$

$$V_{DD} \downarrow V_{DD} \downarrow V$$

$$V_s = |V_{tp}|$$

$$V_{DD}$$
 V_{DD}
 V_{DD}
 V_{DD}
 V_{DD}

2nd Order Effects

- Quick introduction to effects that invalidate the "digital" assumptions and models we have presented about our transistors so far.
 - This will be covered in more detail in Advanced VLSI 6770
 - You will learn how to relate them to designs
- ▶ Introductory information in this class

2nd Order Effect: Velocity Saturation 💶

- ▶ With weak fields, current increases linearly with lateral electric field
- At higher fields, carrier drift velocity rolls off and saturates
 - Due to carrier scattering
 - ▶ Result is less current than you think!
 - For a 2μ channel length, effects start around 4v for Vdd
 - For 180nm, effects start at 0.36v for Vdd!

2nd Order Effect: Velocity Saturation

- ▶ When the carriers reach their speed limit in silicon...
 - ▶ Channel lengths have been scaled so that vertical and horizontal EM fields are large and interact with each other

2nd Order Effect: Velocity Saturation --

- ▶ When the carriers reach their speed limit in silicon...
 - ► Means that relationship between I_{ds} and V_{gs} is closer to linear than quadratic
 - Also the saturation point is smaller than predicted
 - For example, 180nm process
 - ▶ 1st order model = 1.3v
 - ▶ Really is 0.6v

2nd Order Effect: Velocity Saturation

- ▶ This is a basic difference between longand short-channel devices
 - ▶ The strength of the horizontal EM field in a short channel device causes the carriers to reach their velocity limit early
 - ▶ Devices saturate faster and deliver less current than the quadratic model predicts

2nd Order Effect: Velocity Saturation

- ► Consider two devices with the same W/L ratio in our process (V_{qs}=5v, Vdd=5v)
 - ▶ 100/20 vs 4.6/1.2
 - ▶ They should have the same current...
 - Because of velocity saturation in the shortchannel device, it has 47% less current!

2nd Order Effect: Velocity Saturation

2nd Order Effect: Body Effect

- ▶ A second order effect that raises V,
- V_t is affected by V_{sb} (voltage between source and substrate)
 - Normally this is constant because of common substrate (base)
 - ▶ But, when transistors are in series, Vsb
 (V_s V_{base}) may be changed

2nd Order Effect: Body Effect

Body Effect Vt is a function of voltage between source and substract

$$\begin{split} V_t &= V_{to} + \gamma [\sqrt{(2\varphi_b + |V_{sb}|)} + 2\sqrt{\varphi_b}] \\ \varphi_b &= \frac{kT}{q} \ln \left(\frac{N_A}{N_i}\right) \\ \gamma &= \frac{t_{ox}}{\varepsilon_{ox}} \sqrt{2q\varepsilon_{si}N_A} = \frac{1}{C_{ox}} \sqrt{2q\varepsilon_{si}N_A} \end{split}$$

National Central Universit

2nd Order Effect: Body Effect

- Consider an nmos transistor in a 180nm process
 - ► Nominal V_t of 0.4v
 - ▶ Body is tied to ground

How much does the V_t increase if the source is at 1.1v instead of 0v?

- ▶ Because of the body effect, V_t increases by 0.28v to be 0.68v!
- Why do we care?
 - It slows down our transistors!

2nd Order Effect

Channel Length Modulation -

Channel length is a function of Vds. When Vds increase, the depletion region of the pinch off at drain shorten the channel length.

$$\begin{split} L_{eff} &= L = L_{short} \\ L_{short} &= \sqrt{2 \frac{\varepsilon_{si}}{q N_A} (V_{ds} - (V_{gs} - V_t))} \\ Ids &= \frac{kW}{2L} (V_{gs} - V_t)^2 (1 + \lambda V_{ds}) \end{split}$$

2nd Order Effect

2nd Order Effect

Mobility Variation -

The mobility of the carrier decreases when the carrier density increases. Therefore, when Vgs is large. The density of the carrier in the channel increases. As a result, the mobility decreases.

$$\mu = \frac{A \textit{verage} _ \textit{carrier} _ \textit{drift} _ \textit{velocity}(V)}{\textit{Electrical} _ \textit{Frield} (E)}$$

$$\mu_n = 600 \, cm^2 \, / \, V \cdot \sec$$

$$\mu_p = 250 \, cm^2 \, / \, V \cdot \sec$$

2nd Order Effect

Fowler-Nordheim Tunneling

When the gate oxide is very thin, a current can flow from gate to source by electron tunneling through the gate oxide.

$$I_{FN=} C_1 W L E_{ox}^2 e^{\frac{-E_o}{E_{ox}}}$$

$$E_{ox} = \frac{Vgs}{I_{ox}}$$

• Drain Punchthrough

When the drain voltage is high enough, the depletion region around the drain may extend to the source. Thus, causing current to flow irrespective of the gate voltage.

2nd Order Effect

Impact Ionization - Hot Electrons

When the source-drain electric field is too large, the electron speed will be high enough to break the electron-hole pair. Moreover, the electrons will penerate the gate oxide, causing a gate current.

Subthreshold Region

The cutoff region is also referred to as the subthreshold region, where Ids increase exponentially with Vds and Vgs.

Gate Sizes

- ► Assume minimum inverter is Wp/Wn = 2/1 (L = Lmin, Wn = Wmin, Wp = 2Wn)
 - ► Smallest Wn & Wp gives the "1x" inverter
- ▶ To drive larger capacitive loads, you need more gain, more Ids
 - Double Wn & Wp to get 2x inverter
 - ► Wp/Wn is still 2/1, but inverter has twice the gain (current drive)
 - ▶ Not always a linear relationship

Inverter Switching Point

- Inverter switching point is determined by ratio of βn/βp
 - If $\beta n/\beta p = 1$, then switching point is Vdd/2
- If W/L of both N and P transistors are equal
 - ► Then $\beta n/\beta p = \mu_n/\mu_p =$ electron mobility / hole mobility
 - This ratio is usually between 2 and 3
 - ► Means ratio of W_{ptree}/W_{ntree} needs to be between 2 and 3 for $\beta n/\beta p = 1$
 - ► For this class, we'll use W_{ptree}/W_{ntree} = 2

Inverter Switching Point

Inverter Operating Regions

Region	NMOS	PMOS
Α	Off	Linear
В	Sat	Linear
С	Sat	Sat
D	Linear	Sat
Е	Linear	Off

Inverter β Ratios

Inverter β Ratios

Inverter Noise Margin

How much noise can a gate see before it doesn't work right?

Inverter Noise Margin

- ▶ To maximize noise margins, select logic levels at:
 - unity gain point of DC transfer characteristic

Performance Estimation

- First we need to have a model for resistance and capacitance
 - Delays are caused (to first order) by RC delays charging and discharging capacitors
- All layers on the chip have R and C associated with them
- Low level SPICE simulations
 - ▶ Spectre or HSPICE
- ▶ High level PrimeTime simulations
 - ▶In 6770

Resistance

- $ightharpoonup R = (\rho/t)(L/W) = Rs(L/W)$
 - ▶ ρ = resistivity of the material
 - t = thickness
 - ▶ Rs = sheet resistance in Ω /square
- ▶ Typical values of Rs

	Min	Тур	Max
M3	0.04	0.05	0.08
M1, M2	0.07	0.08	0.1
Poly	20	25	40
Poly2	40	50	60
N(P)-active	60 (70)	90 (120)	120 (160)
Nwell	1k	2k	5k

Capacitance

- ▶ Three main forms:
 - Gate capacitance (gate of transistor)
 - ▶ Diffusion capacitance (drain regions)
 - ▶ Routing capacitance (metal, etc.)

Routing Capacitance

- ▶ First order effect is layer->substrate
 - ▶ Approximate using parallel plate model
 - $C = (\epsilon/t)A$
 - $\triangleright \varepsilon = \text{permittivity of insulator}$
 - ▶t = thickness of insulator
 - A = area
 - ▶ Fringing fields increase effective area
- ▶ Capacitance between layers becomes very complex to simulate!
 - Crosstalk issues...

Distributed RC on Wires

- ▶ Wires look like distributed RC delays
 - ▶ Long resistive wires can look like transmission lines
 - Inserting buffers can really help delay

- ▶ Tn = RCn(n+1)/2
- ► T = kRCL²/2 as the number of segments becomes large
 - ▶ k = constant (i.e. 0.7) (accounts for rise/fall times)
 - ▶ R = resistance per unit length
 - ▶ C = capacitance per unit length
 - L = length of wire

RC Wire Delay Example

- ▶R = 20Ω/sq
- $C = 4 \times 10^{-4} \text{ pF/um}$
- ▶ L = 2mm
- k = 0.7
- ▶ T = kRCL²/2
- $T = (0.7) (20) (4 \times 10^{-16})(2000)^2 / 2 \text{ s}$
 - delay = 11.2 ns

RC Wire/Buffer Delay Example

- Now split into 2 segments of 1mm with a buffer
- ► T = 2 x (0.7)(20)(4x10⁻¹⁶)(1000)²)/2+ T_{buf} = 5.6ns + T_{buf}
- Assuming Tbuf is less than 5.6ns (which it will be), the split wire is a win

Another Example: Clock

- ▶ 50pF clock load distributed across 10mm chip in 1um metal
 - ► Clock length = 20mm

 - T = $(0.7)(RC/2)L^2 = (6.25X10^{-17})(20,000)^2$ = 17.5ns

Different Distribution Scheme

- ▶ Put clock driver in the middle of the chip
- ▶ Widen clock line to 20um wires
 - ► Clock length = 10mm
 - $R = 0.05\Omega/\text{sq}$, C = 50pF/20mm
 - T = $(0.7)(RC/2)L^2 = (0.31X10^{-17})(10,000)^2$ = 0.22ns
 - ▶ Reduces R by a factor of 20, L by 2
 - Increases C a little bit

1um vs 20um

Capacitance Design Guide

- Get a table of typical capacitances per unit square for each layer
 - ▶ Capacitance to ground
 - Capacitance to another layer
- Add them up...
- ▶ See, for example, Figure 6.12 in your text

Capacitance Design Guide

FIGURE 6.12 Capacitance of metal2 line as a function of width and spacing

Wire Length Design Guide

Rules of thumb are helpful!

- ▶ How much wire can you use in a conducting layer before the RC delay approaches that of a unit inverter?
 - ▶ Metal3 = 2,500u
 - ▶ Metal2 = 2,000u
 - ► Metal1 = 1,250u
 - ▶ Poly = 50u
 - Active = 15u

Propagation Delay

- □ Recall that it takes time to charge capacitors
- □ Recall that the gate of a transistor looks like a capacitor
- ☐ Wires have resistance and capacitance also!

Inverting Propagation Delay

Non-Inverting Delay

Propagation Delay

Where to Measure Delay?

If use 50% point (input) to 50% point (output), can produce negative delays (slow input slope, fast output slope).

A better way is to use the 30% and 70% points on the signals.

Example Non-Inverting Gate

What Affects Gate Delay?

- **▶** Environment
 - Increasing Vdd improves delay
 - Decreasing temperature improves delay
 - ▶ Fabrication effects, fast/slow devices
- Usually measure delay for at least three cases:
 - ▶ Best high Vdd, low temp, fast N, Fast P
 - ▶ Worst low Vdd, high temp, slow N, Slow P
 - ► Typical typ Vdd, room temp (25C), typ N, typ P

Process Corners

When parts are specified, under what operating conditions?

Slow N

Fast P

Slow N

Slow P

Fast N

Fast P

Fast N

Slow P

- ▶ Temp: three ranges
 - Commercial: 0 C to 70 C
 - ▶ Industrial: -40 C to 85 C
 - ▶ Military: -55 C to 125 C
- ▶ Vdd: Should vary ± 10%
 - ▶ 4.5 to 5.5v for example
- Process variation:
 - Each transistor type can be slow or fast

What Else Affects Gate Delay?

Input slew and output load both effect timing. For a FIXED input slope, FIXED environment, a simple timing model is:

$$delay = Tnoload + K*Cload$$

Thoload is the delay of the gate with no external load.

K is different for TPLH, TPHL since it represents the channel resistance. Same equation is used for Slew values.

Inv Test Schematic

Closeup of Inv-Test

Note the sizes used for this example...

Analog Simulation Output

Note different waveforms for different sizes of transistors

Effective Resistance

- ▶ Shockley models have limited value
 - ▶ Not accurate enough for modern transistors
 - ▶ Too complicated for much hand analysis
- ▶ Simplification: treat transistor as resistor
 - ightharpoonup Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - ▶ R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - ▶ But good enough to predict RC delay

RC Delay Model

- Use equivalent circuits for MOS transistors
 - ▶ Ideal switch + capacitance and ON resistance
 - ▶ Unit nMOS has resistance R, capacitance C
 - ▶ Unit pMOS has resistance 2R, capacitance C
- ▶ Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

- ▶ Capacitance
 - $ightharpoonup C = C_a = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width
 - ▶ Values similar across many processes
- ▶ Resistance
 - ► R ≈ 6 K Ω *µm in 0.6um process
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - ► Or maybe 1 µm wide device
 - Doesn't matter as long as you are consistent

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

What's a Standard Load?

What About Gates in Series

- Basically we want every gate to have the delay of a "standard inverter"
 - Standard inverter starts with 2/1 P/N ratio
- ▶ Gates in series? Sum the conductance to get the series conductance
- ρ β n-eff = 1/(1/ β 1 + 1/ β 2 + 1/ β 3)
 - β n-eff = β n/3
- ► Effect is like increasing L by 3
 - Compensate by increasing W by 3

Power Dissipation

- Three main contributors:
 - 1. Static leakage current (Ps)
 - 2. Dynamic short-circuit current during switching (P_{sc})
 - 3. Dynamic switching current from charging and discharging capacitors (P_d)
- Becoming a HUGE problem as chips get bigger, clocks get faster, transistors get leakier!
 - Power typically gets dissipated as heat...

Static Leakage Power

- ▶ Small static leakage current due to:
 - ▶ Reverse bias diode leakage between diffusion and substrate (PN junctions)
 - ▶ Subthreshold conduction in the transistors
- Leakage current can be described by the diode current equation
 - $\blacktriangleright I_0 = i_s (e^{qV/kT} 1)$
 - ► Estimate at 0.1nA 0.5nA per device at room temperature

Static Leakage Power

- ▶ That's the leakage current
- ▶ For static power dissipation:
 - ▶ Ps = SUM of (I X Vdd) for all n devices
 - For example, inverter at 5v leaks about 1-2 nW in a .5u technology
 - Not much...
 - ...but, it gets MUCH worse as feature size shrinks!

Short-Circuit Dissipation

- When a static gate switches, both N and P devices are on for a short amount of time
 - ▶ Thus, current flows during that switching time

Short-Circuit Dissipation

- So, with short-circuit current on every transition of the output, integrate under that current curve to get the total current
 - It works out to be:
 - ▶ Psc = B/12(Vdd 2Vt)³ (Trf / Tp)
 - ► Assume that Tr = Tf, Vtn = -Vtp, and Bn = Bp
 - Note that Psc depends on B, and on input waveform rise and fall times

Dynamic Dissipation

- Charging and discharging all those capacitors!
 - ▶ By far the largest component of power dissipation
 - ►Pd = C_L Vdd² f
- Watch out for large capacitive nodes that switch at high frequency
 - Like clocks...

Total Power

- ▶ These are pretty rough estimates
- It's hard to be more precise without CAD tool support
 - It all depends on frequency, average switching activity, number of devices, etc.
 - There are programs out there that can help
- ▶ But, even a rough estimate can be a valuable design guide
- $P_{\text{total}} = P_{\text{s}} + P_{\text{sc}} + P_{\text{d}}$

Power Dissipation

□ Lead microprocessor power continues to increase

Power delivery and dissipation will be prohibitive

Source: Borkar, De Intel®

Heat Dissipation

- ▶ 60 W light bulb has surface area of 120 cm²
- ► Core2 Duo die dissipates 75 W over 1.4 cm²
 - ▶ Chips have enormous power densities
 - Cooling is a serious challenge
- Graphics chips even worse
 - NVIDIA GTX480 250 W in ~3 cm²
- ▶ Package spreads heat to larger surface area
 - ▶ Heat sinks may increase surface area further
 - Fans increase airflow rate over surface area
 - Liquid cooling used in extreme cases (\$\$\$)

Chip Power Density Sun's 10000 Rocket Power Density (W/cm2) 000 0001 Nuclear Reactor 8086 Hot Plate 10 1004 8008 8085 8080 1990 2000 1980 2010

Thermal Solutions

- ▶ Heat sink
 - Mounted on processor package
- Passive cooling
 - ▶ Remote system fan
- Active cooling
 - Fan mounted on sink
- ▶ Heat spreaders
 - Increase surface area
 - ► Example: Metal plate under laptop keyboard

Heat sink mounting for low-power chip
 Package design for high-power

"Thermal Challenges during Microprocessor Testing", Intel Technology Journal, Q3 2000

Alternative View of "Computing Power"

Environmental burden of CPUs!

- Total power consumption of CPUs in world's PCs:
 1992: 160 MWatts (87M CPUs)
 2001: 9,000 MWatts (500M CPUs)
- That's 4 Hoover Dams!

P=VI: 75W @ 1.5V = 50 A!

[Source: Dataquest (for installed base) + estimates for avg. installed CPU power) Projected with Pentium! Power

Andy's vision: 1 Billion Connected PCs!

Courtesy Avi Mendelson, Ii

Power Management on Pentium 4

- Over 400 power-saving features!
 - ▶ 20% of features = 75% of saved power
- Clock throttling
 - ▶ Thermal diode temperature sensor
 - ▶ Stop clock for a few microseconds
 - Output pin can be used by system to trigger other responses
- SpeedStep technology for mobile processors
 - ▶ Switch to lower frequency and voltage
 - Depends on whether power source is battery or AC
 - Can be manually overridden by Windows control panel

the Impact of Increasing Microprocessor Power Consumption", Intel Technology Journal,

Pentium 4 Multi-level

Powerdown

- ► Level 0 = Normal operation (includes thermal throttle)
- ► Level 1 = Halt instructions (less processor activity)
- ▶ Level 2 = Stop Clock (internal clocks turn off)
- ▶ Level 3 = Deep sleep (remove chip input clock)
- ▶ Level 4 = Deeper sleep (lower Vdd by 66%)
 - For "extended periods of processor inactivity"
 - QuickStart technology resume normal operation from Deeper Sleep
- ▶ Note: We haven't even talked about <u>system</u> powerdown modes, like removing power from processor, stopping hard disks, dimming or turning off the display...

Graphics Card Power

Impact of Increasing Microprocessor Power Consumption", Intel Technology Journal, Q