Department of Mathematics, IIT Madras

MA1102 Series & Matrices

Assignment-1 (Series of Numbers)

1. Show the following:

(a)
$$\lim_{n\to\infty} \frac{\ln n}{n} = 0$$
.

(b)
$$\lim_{n \to \infty} n^{1/n} = 1$$

(a)
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$
. (b) $\lim_{n \to \infty} n^{1/n} = 1$. (c) $\lim_{n \to \infty} x^n = 0$ for $|x| < 1$.

(d)
$$\lim_{n \to \infty} \frac{n^p}{x^n} = 0$$
 for $x > 1$. (e) $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ (f) $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$

(e)
$$\lim_{n\to\infty} \frac{x^n}{n!} = 0$$

(f)
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$

2. Prove the following:

- (a) It is not possible that a series converges to a real number ℓ and also diverges to $-\infty$.
- (b) It is not possible that a series diverges to ∞ and also to $-\infty$.

3. Prove the following:

- (a) If both the series $\sum a_n$ and $\sum b_n$ converge, then the series $\sum (a_n + b_n)$, $\sum (a_n b_n)$ and $\sum ka_n$ converge; where k is any real number.
- (b) If $\sum a_n$ converges and $\sum b_n$ diverges to $\pm \infty$, then $\sum (a_n + b_n)$ diverges to $\pm \infty$, and $\sum (a_n - b_n)$ diverges to $\mp \infty$.
- (c) If $\sum a_n$ diverges to $\pm \infty$, and k > 0, then $\sum ka_n$ diverges to $\pm \infty$.
- (d) If $\sum a_n$ diverges to $\pm \infty$, and k < 0, then $\sum ka_n$ diverges to $\pm \infty$.

4. Give examples for the following:

- (a) $\sum a_n$ and $\sum b_n$ both diverge, but $\sum (a_n + b_n)$ converges to a nonzero number.
- (b) $\sum a_n$ and $\sum b_n$ both diverge, and $\sum (a_n + b_n)$ diverges to ∞ .
- (c) $\sum a_n$ and $\sum b_n$ both diverge, and $\sum (a_n + b_n)$ diverges to $-\infty$.
- 5. Show that the sequence 1, 1.1, 1.1011, 1.10110111, ... converges.
- 6. Determine whether the following series converge:

$$(a) \sum_{n=1}^{\infty} \frac{-n}{3n+1}$$

$$\text{(b) } \sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{-n}{3n+1}$$
 (b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ (c) $\sum_{n=1}^{\infty} \frac{1+n\ln n}{1+n^2}$

- 7. Test for convergence the series $\frac{1}{3} + (\frac{2}{3})^2 + (\frac{3}{7})^3 + \cdots + (\frac{n}{2n+1})^n + \cdots$
- 8. Is the integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ convergent?
- 9. Is the area under the curve $y = (\ln x)/x^2$ for $1 \le x < \infty$ finite?

10. Evaluate (a)
$$\int_0^3 \frac{dx}{(x-1)^{2/3}}$$
 (b) $\int_0^3 \frac{dx}{x-1}$

(b)
$$\int_0^3 \frac{dx}{x-1}$$

1

11. Show that
$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$$
 converges for all $p > 0$.

12. Show that
$$\int_0^\infty \frac{\sin x}{x^p} dx$$
 converges for $0 .$

- 13. Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}}$ converges for $\alpha > 1$ and diverges to ∞ for $\alpha \le 1$.
- 14. Does the series $\sum_{n=1}^{\infty} \frac{4^n (n!)^2}{(2n)!}$ converge?
- 15. Does the series $1 \frac{1}{4} \frac{1}{16} + \frac{1}{9} + \frac{1}{25} + \frac{1}{49} \cdots$ converge?
- 16. Let (a_n) be a sequence of positive terms. Show that if $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 17. Let (a_n) be a sequence of positive non-increasing terms. Show that if $\sum_{n=1}^{\infty} a_n$ converges, then the sequence (na_n) converges to 0.