MBA5011 Multivariate Analysis: Model-Based Statistics

assignment 7

In 2014, a paper was published that was entitled "Female hurricanes are deadlier than male hurricanes." 153 As the title suggests, the paper claimed that hurricanes with female names have caused greater loss of life, and the explanation given is that people unconsciously rate female hurricanes as less dangerous and so are less likely to evacuate. Statisticians severely criticized the paper after publication. Here, you'll explore the complete data used in the paper and consider the hypothesis that hurricanes with female names are deadlier. Load the data with:

library(rethinking)
data(Hurricanes)

Question1(20%)

In this question, you'll focus on predicting deaths using femininity of each hurricane's name. Fit and interpret the simplest possible model, a Poisson model of deaths using femininity as a predictor. You must use rstan. Compare the model to an intercept-only Poisson model of deaths. How strong is the association between femininity of name and deaths? Which storms does the model fit (retrodict) well? Which storms does it fit poorly?

Question2(20%)

Counts are nearly always over-dispersed relative to Poisson. So fit a gamma-Poisson (aka negative-binomial) model to predict deaths using femininity. Show that the over-dispersed model no longer shows as precise a positive association between femininity and deaths, with an 89% interval that overlaps zero. Can you explain why the association diminished in strength?

Question 3 (20%)

In order to infer a strong association between deaths and femininity, it's necessary to include an interaction effect. In the data, there are two measures of a hurricane's potential to cause death: damage_norm and min_pressure. Consult ?Hurricanes for their meanings. It makes some sense to imagine that femininity of a name matters more when the hurricane is itself deadly. This implies an interaction between femininity and either or both of damage_norm and min_pressure.

Fit a series of models evaluating these interactions. Interpret and compare the models. In interpreting the estimates, it may help to generate counterfactual predictions contrasting hurricanes with masculine and feminine names. Are the effect sizes plausible?

Question4(20%)

In the original hurricanes paper, storm damage (damage_norm) was used directly. This assumption implies that mortality increases exponentially with a linear increase in storm strength, because a Poisson regression

uses a log link. So it's worth exploring an alternative hypothesis: that the logarithm of storm strength is what matters. Explore this by using the logarithm of damage_norm as a predictor. Using the best model structure from the previous problem, compare a model that uses log(damage_norm) to a model that uses damage_norm directly. Compare their DIC/WAIC values as well as their implied predictions. What do you conclude?

Question5(20%)

In 1980, a typical Bengali woman could have 5 or more children in her lifetime. By the year 200, a typical Bengali woman had only 2 or 3. You're going to look at a historical set of data, when contraception was widely available but many families chose not to use it. These data reside in data(bangladesh) and come from the 1988 Bangladesh Fertility Survey. Each row is one of 1934 women. There are six variables, but you can focus on three of them for this practice problem:

- (1) district: ID number of administrative district each woman resided in
- (2) use.contraception: An indicator (0/1) of whether the woman was using contraception
- (3) urban: An indicator (0/1) of whether the woman lived in a city, as opposed to living in a rural area.

The first thing to do is ensure that the cluster variable, district, is a contiguous set of integers. Recall that these values will be index values inside the model. If there are gaps, you'll have parameters for which there is no data to inform them. Worse, the model probably won't run. Look at the unique values of the district variable:

```
sort(unique(d$district))
```

District 54 is absent. So district isn't yet a good index variable, because it's not contiguous. This is easy to fix. Just make a new variable that is contiguous. This is enough to do it:

```
d$district_id <- as.integer(as.factor(d$district))
sort(unique(d$district_id))</pre>
```

Now, focus on predicting use contraception, clustered by district_id. Do not include urban just yet. Fit both (1) a traditional fixed-effects model that uses dummy variables for district and (2) a multilevel model with varying intercepts for district. Plot the predicted proportions of women in each district using contraception, for both the fixed-effects model and the varying-effects model. That is, make a plot in which district ID is on the horizontal axis and expected proportion using contraception is on the vertical. Make one plot for each model, or layer them on the same plot, as you prefer. How do the models disagree? Can you explain the pattern of disagreement? In particular, can you explain the most extreme cases of disagreement, both why they happen where they do and why the models reach different inferences?