EXERCICE 1:

La fonction f est définie sur $\mathbb{R}\setminus\{2/3\}$ par $f(x)=\frac{x^2-3x+2}{3x-2}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 1. Étudier le signe de f
- 2. Calculer la dérivée f'(x) de la fonction f .
- 3. Rédiger le tableau de variations de f . En déduire les maximums et les minimums.
- 4. Déterminer les coordonnées du ou des point(s) d'intersection de C_f et de l'axe des abscisses.
- 5. Déterminer les coordonnées du point d'intersection de C_f et de l'axe des ordonnées.
- 6. Donner une équation de la tangente T_3 à C_f au point d'abscisse 1.
- 7. Existe-t-il un (ou des) point(s) de C_f en lequel (ou lesquels) la tangente est parallèle à la droite d'équation y=2x+4?

EXERCICE 2:

La courbe $\it C$ de la figure ci-dessous est la représentation graphique d'une fonction $\it f$ définie et dérivable sur $\it IR$ dans un repère orthogonal.

- 1. Déterminer graphiquement :
 - a) f'(0) =
 - b) f'(1) =
 - c) f'(2) =
 - d) f'(-2) =
 - e) f' est négative sur :

EXERCICE 3:

Une fonction f définie sur IR a pour tableau de variations :

Χ	-∞	3		7	+∞
f'(x)	+	0	-	0	+
f(x)		8 —		-5 ~	70

- 1. Le nombre de solutions dans IR de l'équation f(x) = 5 est : a) 1 b) 2 c) 3
- 2. La tangente à la courbe représentative de f au point d'abscisse 3 est parallèle à la droite d'équation :
 - x=-1
- c) y=2x
- 3. Un antécédent de -5 est :
- c) 7

- 4. On a:

 - a) f(-2) > f(3) b) $f(\frac{10}{3}) < f(7)$ c) -5 < f(8)

EXERCICE 4:

La fonction f est définie sur $\mathbb{R} \setminus \{-5/4\}$ par $f(x) = \frac{2x^2 - 1}{4x + 5}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 8. Étudier le signe de f .
- 9. Calculer la dérivée f'(x) de la fonction f .
- 10. Rédiger le tableau de variations de f . En déduire les maximums et les minimums.
- 11. Donner une équation de la tangente T_3 à C_f au point d'abscisse 2.