A. Exercise 37 on page 220

- 1. Let be $p, q \in \mathbb{Z}[X]$. (Let's assume that degree(p) \geq degree(q))
 - $\overline{\sigma_m}(1) = 1$
 - Proof that $\overline{\sigma_m}(p+q) = \overline{\sigma_m}(p) + \overline{\sigma_m}(q)$:

$$\overline{\sigma_m}(p+q) = \overline{\sigma_m}(a_nx^n + a_{n-1}x^{n-1} + \dots + a_0 + b_mx^m + b_{m-1}x^{m-1} + \dots + b_0)$$

$$= \overline{\sigma_m}(a_nx^n + \dots + (a_m + b_m)x^m + (a_{m-1} + b_{m-1})x^{m-1} + \dots + a_0 + b_0)$$

$$= \sigma_m(a_n)x^n + \dots + \sigma_m(a_m + b_m)x^m + \sigma_m(a_{m-1} + b_{m-1})x^{m-1}$$

$$+ \dots + \sigma_m(a_0 + b_0)$$

$$= \sigma_m(a_n)x^n + \dots + \sigma_m(a_m)x^m + \sigma_m(b_m)x^m + \sigma_m(a_{m-1})x^{m-1}$$

$$+ \sigma_m(b_{m-1})x^{m-1} + \dots + \sigma_m(a_0) + \sigma_m(b_0) \quad (\sigma_m \text{ is a ring homomorphism})$$

$$= \sigma_m(a_n)x^n + \dots + \sigma_m(a_m)x^m + \sigma_m(a_{m-1})x^{m-1} + \dots + \sigma_m(a_0)\sigma_m(b_m)x^m$$

$$+ \sigma_m(b_{m-1})x^{m-1} + \dots + \sigma_m(b_0)$$

$$= \overline{\sigma_m}(p) + \overline{\sigma_m}(q)$$

• Proof that $\overline{\sigma_m}(p \cdot q) = \overline{\sigma_m}(p) \cdot \overline{\sigma_m}(q)$:

$$\overline{\sigma_m}(p+q) = \overline{\sigma_m}((a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)(b_m x^m + b_{m-1} x^{m-1} + \dots + b_0))
= \overline{\sigma_m}(a_n b_m x^{n+m} + (a_{n-1} b_m + a_n b_{m-1}) x^{n+m-1} + \dots + a_0 b_0)
= \sigma_m(a_n b_m) x^{n+m} + \sigma_m(a_{n-1} b_m + a_n b_{m-1}) x^{n+m-1} + \dots + \sigma_m(a_0 b_0)
= \sigma_m(a_n) \sigma_m(b_m) x^{n+m} + \sigma_m(a_{n-1}) \sigma_m(b_m) x^{n+m-1} + \sigma_m(a_n) \sigma_m(b_{m-1}) x^{n+m-1}
+ \dots + \sigma_m(a_0) \sigma_m(b_0) \quad (\sigma_m \text{ is a ring homomorphism})
= (\sigma_m(a_n) x^n + \sigma_m(a_{n-1}) x^{n-1} + \dots + \sigma_m(a_0)) (\sigma_m(b_n) x^n + \sigma_m(b_{n-1}) x^{n-1}
+ \dots + \sigma_m(b_0))
= \overline{\sigma_m}(p) \overline{\sigma_m}(q)$$

Therefore $\overline{\sigma_m}$ is a ring homomorphism.

2. Let be $f(x) \in \mathbb{Z}[X]$.

We know that $deg(f) = deg(\overline{\sigma_m}(f(x))) = n$ and $\overline{\sigma_m}(f(x))$ is irreducible in \mathbb{Z}_m . Suppose that f(x) is reducible in $\mathbb{Q}[X]$.

We would have f(x) = g(x)h(x).

we would have f(x) = g(x)n(x)

 $\overline{\sigma_m}(f(x)) = \overline{\sigma_m}(g(x))\overline{\sigma_m}(h(x)).$

As $\overline{\sigma_m}(f(x))$ is irreducible, one of the two polynomials is a constant. (Assume it's $\overline{\sigma_m}(g(x))$).

As $deg(\overline{\sigma_m}(f(x))) = n$ then $deg(\overline{\sigma_m}(h(x))) = n$.

And therefore $deg(h(x)) \ge n$. And as we have f(x) = g(x)h(x), deg(h(x)) = n and g(x) is a constant. Therefore f(x) is not reducible in $\mathbb{Q}[X]$.

3. Let's take m=5.

The polynomial is now $f(X) = x^3 + 2x + 1$. It has no root in \mathbb{Z}_5 . (f(0)=1,f(1)=f(3)=4, f(2)=f(4)=3) It is therefore irreducible in $\mathbb{Z}_5[X]$. It follows that it is also irreducible in $\mathbb{Q}[X]$ either.