V46

Der Faraday-Effekt

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 15. April 2024 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie 2.1 Bandstruktur 2.2 Dotierung 2.3 Faraday-Effekt 2.3 Faraday-Effekt	2
3	Aufbau	4
4	Durchführung	5
5	Auswertung 5.1 Magnetfeld 5.2 Faraday-Rotation 5.2.1 Dotierte Proben 5.2.2 Reine Probe 5.3 Effektive Masse	5 5 5
6	Diskussion	5
Literatur		5
Anhang		6

1 Zielsetzung

Im diesem Versuch soll die Faraday-Rotation ausgenutzt werden, um die effektive Masse der Leitungselektronen in negativ dotiertem Galliumarsenid (n-GaAs) zu bestimmen.

2 Theorie [1]

2.1 Bandstruktur

Abbildung 1: Bandstrukturen verschiedener Materialklassen im Vergleich. [3]

2.2 Dotierung

2.3 Faraday-Effekt

$$\boldsymbol{E}(z) = \frac{1}{2} \left(\boldsymbol{E}_R(z) + \boldsymbol{E}_L(z) \right) \tag{1}$$

$$\boldsymbol{E}_{R}(z) = E_{0} \left(\hat{\boldsymbol{x}} - i \hat{\boldsymbol{y}} \right) e^{i k_{R} z} \tag{2}$$

$$\boldsymbol{E}_L(z) = E_0 \left(\hat{\boldsymbol{x}} + i \hat{\boldsymbol{y}} \right) e^{i k_L z} \tag{3}$$

$$\boldsymbol{E}(0) = E_0 \hat{\boldsymbol{x}} \tag{4}$$

Abbildung 2: Berechnete Bandstruktur von GaAs um die Bandlücke. [2]

 ${\bf Abbildung~3:}~{\bf Drehung~der~Polarisationsebene~einer~Lichtwelle~beim~Durchgang~durch~einen~Kristall.~[1]$

$$\boldsymbol{E}(L) = \frac{1}{2} E_0 \left(\left(e^{ik_R L} + e^{ik_L L} \right) \hat{\boldsymbol{x}} + \left(e^{ik_R L} - e^{ik_L L} \right) \hat{\boldsymbol{y}} \right) \tag{5}$$

$$\psi \equiv \frac{L}{2}(k_R + k_L) \tag{6}$$

$$\theta \equiv \frac{\bar{L}}{2}(k_R - k_L) \tag{7}$$

$$\boldsymbol{E}(L) = \frac{1}{2} E_0 \left(\left(e^{i\psi} e^{i\theta} + e^{i\psi} e^{-i\theta} \right) \hat{\boldsymbol{x}} + \left(e^{i\psi} e^{i\theta} - e^{i\psi} e^{-i\theta} \right) \hat{\boldsymbol{y}} \right)$$
(8)

$$\mathbf{E}(L) = E_0 e^{i\psi} (\cos\theta \,\hat{\mathbf{x}} + \sin\theta \,\hat{\mathbf{y}}) \tag{9}$$

3 Aufbau

Abbildung 4: Schematische Darstellung der Messapparatur. [1]

4 Durchführung

5 Auswertung

- 5.1 Magnetfeld
- 5.2 Faraday-Rotation
- 5.2.1 Dotierte Proben
- 5.2.2 Reine Probe
- 5.3 Effektive Masse

6 Diskussion

Literatur

- [1] Anleitung zu Versuch 46, Der Faraday-Effekt. TU Dortmund, Fakultät Physik. 2024.
- [2] "Band Structure of Gallium Arsenide". In: Marvin L. Cohen und James R. Chelikowsky. *Electronic Structure and Optical Properties of Semiconductors*. Springer Berlin, Heidelberg, 1988, S. 103. ISBN: 978-3-642-97080-1. DOI: https://doi.org/10.1007/978-3-642-97080-1.
- [3] Valence and Conduction Bands. 2013. URL: https://en.wikipedia.org/wiki/file:band_filling_diagram.svg.

Anhang