Professorship for Computer Science Communication Services, Telecommunication Systems and Computer Networks

Towards Implementing a MQTT-SN Gateway for Semi-Constrained Devices

October 12, 2017

Gabriel Nikol

Content

- 1 Project Goal
- 2 Related Work
 - Messaging Standards
 - IoT Environments
 - Device Types
 - Target Hardware and Software Environment
 - MQTT-SN Architecture
 - Transmission Protocols
 - Overview MQTT-SN, Transmission Protocols, Device Types
- 3 MQTT-SN Gateway Implementation
 - Core Components
 - Gatway Class
 - Linux Gateway Implementation
 - Unit and Regression Testing
 - MQTT-SN & MQTT Test Clients
 - Test Results
 - BLESocket
- 4 Conclustion & Future Work

Project Goal

Related Work

MQTT-SN Gatewa Implementation

Project Goal

Project Goal

Related Work

MQTT-SN Gatewa Implementation

Conclustion & Futur Work

Implement a Prototype for a MQTT-SN gateway runnable on Semi-Constrained devices.

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

Project Goal

Related Wor

Messaging Standards

10 I Environi

Device Types

Target Hardware an

MQTT-SN Architectu

Overview - MQTT-SN

Transmission Protocols, Device Types

MQTT-SN Gateway Implementation

Eclipse IoT Developer Survey 2017

MESSAGING STANDARDS

What messaging protocol(s) do you use for your IoT solution?

Figure 1: Eclipse IoT Developer Survey 2017 - Messaging Standards

Project Goal

Related Worl

Messaging Standards

Device Types

Target Hardware and Software Environme

MQTT-SN Architector

Overview - MQTT-SN Transmission Protocol Device Types

MQTT-SN Gateway
Implementation

HTPP

- client-server paradigm
- addressable resource (URI)

Figure 2: publish subscribe example

Project Goa

Related Wo

Messaging Standards

Io I Environm

Device Types

Software Environmen

Transmission Protoco
Overview - MQTT-SI

Transmission Protocol Device Types

MQTT-SN Gatew Implementation

MQTT

- publish-subscribe
- data centrich approach

Figure 3: HTTP request response

Project Goa

Related Wo

Messaging Standards

10 I Environm

Device Types

Software Environmen

Transmission Protoco

Overview - MQTT-SN, Transmission Protocols Device Types

MQTT-SN Gatewa Implementation

MQTT QoS

- QoS 0 (at most once)
- QoS 1 (at least once)
- QoS 2 (exactly once)

Figure 4: MQTT QoS methods

Project Goa

Related Wo

Messaging Standards

TOT ENVIORE

Device Types

Target Hardware an Software Environme

MQTT-SN Architector

Overview - MQTT-SN Transmission Protocol Device Types

MQTT-SN Gatewa Implementation

MQTT-SN

- version of MQTT
- not connection oriented (no TCP)
- supports short & pre-defined topic names
- supports sleeping clients
- QoS -1 (QoS 0 publish without connect)

Project Goa

Related Wo

Messaging Standards

10 I Environn

Device Types

Target Hardware a

MQTT-SN Architec

Transmission Protocol Overview - MQTT-SN

Transmission Protocols, Device Types

MQTT-SN Gateway Implementation

Comparing HTTP, MQTT, MQTT-SN

- comparing minimal packet sizes in TCP/IP Model
- minimum valuable example: HTTP GET, MQTT publish QoS 0, MQTT-SN publish QoS 0
- result: MQTT + TCP + WiFi = 82 bytes vs MQTT-SN + BLE 21 bytes

TCP/IP Model Layer	Protocol including the minimial length				
Application Layer	HTTP (20) MQTT (8)		MQTT-SN (8)		
Transport Layer	TCP (20)		UDP (8)		
Network Layer	IP (20)			1	
Network Interface	Ethernet (20)	WiFi (20)		ZigBee (28)	BLE (13)

Figure 5: TCP/IP Model Layer with minimal protocol length

Project Goal

Related Work

Messaging Standards

Davies Types

Device Types

Target Hardware as

MQTT-SN Architectu

Overview - MQTT-SN Fransmission Protocols

MQTT-SN Gatework Implementation

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

IoT Environments

IoT Environments

Figure 6: IoT Environment from small hardware to the cloud

Project Goa

Related Wo

Messaging Standards

IoT Environments

Target Hardware and Software Environment

Transmission Protocol
Overview - MQTT-SN
Transmission Protocol

Device Types

MQTT-SN Gateway

Implementation

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

Project Goa

Related Work

Messaging Standards

Device Types

Target Hardware and Software Environment

Transmission Protocols
Overview - MQTT-SN,

Overview - MQTT-SN, Transmission Protocols, Device Types

MQTT-SN Gateway Implementation

Device Types

- Constrained Devices
 - Limited resources (FLASH, CPU, RAM, Energy)
- Semi-Constrained Devices
 - Limited resource (FLASH, CPU, RAM, not Energy)
- Unconstrained Devices
 - Nealy unlimited resources (HDD, CPU, RAM)

Device Types

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

Project Goa

Related Work

Messaging Standards

Device Type

Target Hardware and Software Environment

MQTT-SN Architecture

Overview - MQTT-SN, Transmission Protocols.

Transmission Protocols, Device Types

MQTT-SN Gateway Implementation

Target Hardware and Software Environment

Figure 7: NodeMCU v2 (ESP8266) + SDHC Card as Target Environment

Figure 8: Arduino as Software Environment

Project Goa

Related Work

Messaging Standard

Device Types

Target Hardware and Software Environment

MQTT-SN Architectur

Overview - MQTT-SN Transmission Protocols

MQTT-SN Gateway

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

MOTT-SN Architecture

MQTT-SN Architecture

■ three MQTT-SN components: client, gateway, forwarder

Figure 9: MQTT-SN Architecture

Project Goal

Related Wor

Messaging Standard

Device Types

Target Hardware and Software Environmen

MQTT-SN Architecture

Overview - MQTT-SN Transmission Protocols

MQTT-SN Gatewa Implementation

MQTT-SN Gateway Architecture

■ two kind of gateways: transparent and aggregating

Figure 10: MQTT-SN gateway architecture

Project Goal

Related Work

Messaging Standard

Device Types

Software Environmen

MQTT-SN Architecture

Overview - MQTT-SN, Transmission Protocols, Device Types

MQTT-SN Gatewa Implementation

MQTT-SN Client Lify Cycle

- MQTT-SN client as a constrained device:
 - find a MQTT-SN Gateway via advertisement or searching a gateway
 - connect to the MQTT-SN gateway with a will message
 - register topics
 - subscribe to topics
 - send and receive publishes
 - unsubscribe from topics
 - sleep
 - wake up and collect queued publishes
 - sleep and wake up frequently
 - power source is empty will message is published

MOTT-SN Architecture

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

Project Goa

Related Work

Messaging Standards

Device Types

Target Hardware and Software Environmen

MQTT-SN Archit

Transmission Protocols Overview - MQTT-SN,

Transmission Protocols Device Types

MQTT-SN Gateway Implementation

Transmission Protocols

Figure 11: example transmission protocols

Project Goa

Related Work

IoT Environments

Device Types

Target Hardware and Software Environment

MQTT-SN Architecture

Transmission Protocols
Overview - MQTT-SN,
Transmission Protocols

MQTT-SN Gateway

Implementation

2 Related Work

- Messaging Standards
- IoT Environments
- Device Types
- Target Hardware and Software Environment
- MQTT-SN Architecture
- Transmission Protocols
- Overview MQTT-SN, Transmission Protocols, Device Types

r roject doa

Related Work

Messaging Standards

Device Type:

Target Hardware an Software Environme

MQTT-SN Architectur

Overview - MQTT-SN

Transmission Protocols Device Types

MQTT-SN Gateway Implementation

Overviewy - MQTT-SN, Transmission Protocols, Device Types

Figure 12: MQTT-SN, Transmission Protocols, Device Types

Project Goal

Related Wor

Messaging Standards

Device Types

Target Hardware and Software Environmen

Transmission Protocols
Overview - MOTT-SN.

Transmission Protocols, Device Types

MQTT-SN Gateway Implementation

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Core Components

Unit and Regression Testin MOTT-SN & MOTT Test

Core Components

- environment independent implementation
- MqttSnMessageHandler + Core implemented rest interfaces

Figure 13: Core Component class diagram

Core Components

Unit and Regression Testin

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Project Goa

Related Work

Implementation

Core Component

Gatway Class

Linux Gateway

Unit and Regression Testin

Test Results

BLESocket

Core Components

- holds references to implementation single class to embed
- initializes components' references
- loop()s over components

Figure 14: Gateway class collaboration diagram

Project Goa

Related Wor

Implementation

Gatway Class

Linux Gateway

Unit and Regression Testin MQTT-SN & MQTT Test Clients

Test Results

BLESocket

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Linux Gateway

Implementation

Unit and Regression Testin MOTT-SN & MOTT Test

Linux Gateway Implementation

Figure 15: Linux Gateway implements Core Component's interfce. Using UDP and Paho embedded C/C++ MQTT Client

Project Goa

Related Work

Implementatio

Core Components Gatway Class

Linux Gateway

Unit and Regression Testin MQTT-SN & MQTT Test Clients

Test Results

BLESocket

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Project Goa

Related Work

MQTT-SN Gatewa Implementation

Core Component

Gutway Class

Implementation

Unit and Regression Testin

MQTT-SN & MQTT Test Clients

Test Results

BLESocket

BLESocket

Unit and Regression Testing

- using GoogleTest and GoogleMock
- starting tests inside IDE CLion
- using Docker for running MQTT broker (Mosquitto)
- writing a MqttSnTestClient + PahoMqttTestMessageHandler

Figure 16: Clion. GoogleTest. Docker. Mosquitto

Unit and Regression Testin

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Project Goa

Related Work

Implementation

Core Components

Gatway Class

Linux Gateway Implementation

Unit and Regression Testin

MQTT-SN & MQTT Test Clients

Test Results

BLESocket

ork

MQTT-SN & MQTT Test Client

Figure 17: MQTT-SN test client class diagram

Figure 18: MQTT test client class diagram

Project Goa

MQTT-SN G

Core Components

Linux Gateway Implementation

Unit and Regression Testin

MQTT-SN & MQTT Test Clients

Test Results BLESocket

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Project Goa

Related Work

MQTT-SN Gatewa Implementation

Core Components

Gatway Class

Linux Gateway Implementation

Unit and Regression Testin

MQTT-SN & MQTT Tes Clients

Test Results

BLESocket

Test Results

- compliance tests (well and ill-formed MQTT-SN packets)
- functional tests (behaviour correct)
- Total: 96 unit tests
- 90 pass + 6 fail (QoS 2 not implemented but tested)
- Not everyting is tested, but: Important functionality is tested and working

Unit and Regression Testin

Test Results

3 MQTT-SN Gateway Implementation

- Core Components
- Gatway Class
- Linux Gateway Implementation
- Unit and Regression Testing
- MQTT-SN & MQTT Test Clients
- Test Results
- BLESocket

Project Goa

Related Work

MQTT-SN Gatewa Implementation

Core Components

Gatway Class

Linux Gateway Implementation

Unit and Regression Testin MQTT-SN & MQTT Test Clients

Test Results

BLESocket

onclustion & Future Ork

BLESocket.

- drop in replacement for LinuxUdpSocket
- uses self written SimpleBluetoothLowEnergySocket

Figure 19: BLESocket class diagram

Unit and Regression Testin MOTT-SN & MOTT Test

BLESocket

Conclustion

OTTO DATE OF THE PART OF THE P

- tl;dr: project successful
- implemented a MQTT-SN gateway prototype on Linux
- runs partly tested on target hardware and software environment (ESP8266+SDCard)
- tested (reusable)
- designed to be easy adaptable to multiple environments

rroject Goar

.....

Implementation

Future work

- DASE NOT SERVICE OF SE
- Project Goal
- Related Wor
- MQTT-SN Gateward Implementation
- Conclustion & Future Work

- implement a MQTT-SN client for constrained devices
- more transmission protocols (WS17/18 LoRa)
- support more platforms: Mbed, RTOS
- implement: QoS 2 & will update
- enhance tests: more tests, stress tests, measure code coverage

Project Goa

Related Worl

MQTT-SN Gateway Implementation

Conclustion & Future Work

Gabriel Nikol github.com/S3ler

Questions?