High Energy Analysis at KamLAND and Application to Dark Matter Search

Michinari Sakai

University of Hawaii, Manoa

July 17, 2015

Overview

Track Reconstruction and Particle ID

Hellgartner's algorithm

$$h(\vec{x},t) = \sum_{i=1}^{N_{\text{PMT}}} \Theta(q_i - q_{\text{threshold}}) \sum_{j=1}^{N_{\gamma}} f(t_{ij} - t_i^{\text{TOF}}, t)$$

where N_{PMT} : number of PMTs

 N_{γ} : number of photon hits to count per PMT

 q_i : charge on i-th PMT, $q_{\text{threshold}}$: minimum charge for analysis

 t_{ij} : j-th hit time on i-th PMT

 t_i^{TOF} : expected time-of-flight between *i*-th PMT and \vec{x}

$$f(\Delta t, t) \propto (t - \Delta t) \exp \left[-\frac{(\Delta t - t)^2}{2\sigma_{\mathsf{tts}}} \right]$$

Figure of merit for each test point in space $= \int_{-\infty}^{\infty} |h(\vec{x},t)|^2 dt$

Test Hellgartner on double 1 GeV muons (MC)

Dominikus Hellgartner

Test Hellgartner on 2 GeV $\nu_{\rm e}$ (MC)

Test Hellgartner on T2K events (Data)

Lepton flavor discrimination

Reconstructed Ellipticity

