CS5330: Optional problems on Martingales

April 7, 2020

I strongly encourage you to think about these problems and to discuss with me, your TA, or your peers if you need help. I will post solution hints in a few days.

1. (Exercise 13.3 of MU) Let $X_0 = 0$ and for $j \ge 0$, let X_{j+1} be chosen uniformly over the real interval $[X_j, 1]$. Show that for $k \ge 0$, the sequence:

$$Y_k = 2^k (1 - X_k)$$

is a martingale.

- 2. Suppose X_0, X_1, \ldots, X_n are independent, identically distributed, real-valued random variables with mean 0 and variance σ^2 . For any $i \geq 0$, let $S_i = \sum_{j=0}^i X_j$, and let $M_i = S_i^2 i\sigma^2$. Show that M_0, \ldots, M_n form a martingale with respect to X_0, \ldots, X_n .
- 3. Let G be a random d-regular graph on n vertices, that is, a graph drawn uniformly from the family of all n-vertex graph in which each vertex has exactly d neighbors. Color the vertices of G red or blue independently at random.
 - (a) What is the expected number of monochromatic edges in G?
 - (b) Show that the actual number of monochromatic edges is tightly concentrated around its expectation.
- 4. Consider an n by n square grid $\{0, 1, ..., n\}^2$, where each point is connected to each of its (at most) four neighbors. Within each inner square of the grid, we draw a diagonal from bottom left to the top right with probability 1/2.

Let Z be the length of the shortest path from (0,0) to (n,n). Show that:

$$\Pr[|Z - \mathbb{E}[Z]| \ge t] \le \exp(-\Omega(t^2/n))$$

Hint: Consider Z as a function of X_1, \ldots, X_n where X_i denotes the state of the i'th column.

5. Consider a random graph $G_{n,p}$ on n vertices where each edge appears with probability p independently. Let C denote the size of the largest clique in $G_{n,p}$. Show that:

$$\Pr[|C - \mathbb{E}[C]| \ge t] \le 2e^{-2t^2/n}.$$

- 6. (Exercise 13.16 of MU) Let x and y be two bit strings of length n, where each character is independently 0 with probability 1/2 and 1 with probability 1/2. Show that the length of the longest common subsequence is highly concentrated around its mean.
- 7. (Exercise 13.9 of MU) Consider an *n*-cube with $N = 2^n$ nodes. Let S be a nonempty set of vertices on the cube, and let x be a vertex chosen uniformly at random among all vertices of the cube. Let D(x,S) be the minimum number of coordinates in which x and y differ over all points $y \in S$. Give a bound on:

$$\Pr[|D(x,S) - \mathbb{E}[D(x,S)]| > \lambda]$$