Lucerne University of
Applied Sciences and Arts

HOCHSCHULE
LUZERN

Informatik

Identitätsdiebstahl

Prof. Dr. Marc Pouly

marc.pouly@hslu.ch

ISF Vorlesung, Frühling 2017

Haltbarkeit einer Hacking Vorlesungen

The average time to patch for Microsoft Windows is 128 days while Linux averages out at 95 days

Probability of Attack based on System Vulnerability Life Cycle, IEEE 2008

Give a man an exploit and you make him a hacker for a day; teach a man to exploit bugs and you make him a hacker for a lifetime.

Felix Lindner, Head of Recurity Labs

Ein Vorlesung kann nicht vor jeder dummen Idee warnen

Cablecom-Lücke: So schützen Sie sich

Cablecom-Kunden sollten ihr WLAN-Passwort ändern. Es lässt sich leicht knacken.

Wer bei Cablecom ein Internetabo abschliesst, erhält kostenlos ein Modem, einen Router oder eine Horizon-Box. Einige dieser Geräte verfügen über WLAN. Um drahtlos ins Internet zu gelangen, müssen Kunden auf ihrem Handy, Tablet oder Computer den entsprechenden WLAN-Namen und das Passwort eingeben. Diese Angaben sind auf der Unterseite des Cablecom-Geräts aufgedruckt.

Das Problem: Das Cablecom-WLAN-Passwort schützt angeschlossene Geräte nicht vor unbefugtem Zugriff. Auf einer frei zugänglichen Webseite lässt sich anhand des WLAN-Namens das entsprechende Passwort leicht herausfinden. Das hat der K-Tipp nachgeprüft. Folge: Für Übeltäter ist es ganz einfach, private Daten zu lesen.

Cablecom-Sprecher Bernhard Strapp bestätigt die Sicherheitslücke. Alle betroffenen Kunden würden informiert. Und das können Cablecom-Kunden tun: Wer das WLAN-Passwort bereits geändert hat, hat nichts zu befürchten. Alle anderen sollten es unbedingt auch ändern. Infos zum Vorgehen unter Cablecom.ch → Support → Suchwörter «WLAN Passwort regelmässig ändern». Im Zweifelsfall die Cablecom-Hotline, Tel. 0800 66 88 66, anrufen.

SSID = Passwort ???

Cablecom-Modern mit WLAN: Passwort sofort ändern

Zielsetzung Identitätsdiebstahl

- Wir verstehen Fachbegriffe & Hacker Jargon
 - → z.B. was ist Phishing, Pharming, Vishing
- Wir kennen grundsätzliche Angriffstechniken
 - → z.B. wie funktionieren Rainbow-Tabellen
- Wir können die Bedrohungslage einschätzen
 - → z.B. wie sicher ist E-Banking
- Wir kennen Abwehrmassnahmen und deren Mächtigkeit
 - → z.B. wie funktioniert & was bringt Passwörter salzen
- Wir hinterfragen kritisch
 - → z.B. Sinn von automatisch generierten Passwörtern / password policies

Wir verlieren manchmal den Blick fürs Wesentliche

IF SOMEONE STEALS MY LAPTOP WHILE I'M LOGGED IN, THEY CAN READ MY EMAIL, TAKE MY MONEY, AND IMPERSONATE ME TO MY FRIENDS,

BUT AT LEAST THEY CAN'T INSTALL DRIVERS WITHOUT MY PERMISSION.

Leitsatz dieser Vorlesung

Put yourself in the attacker's shoes!

Identitätsdiebstahl

- 1. Ein Hacker stielt das E-Mail Passwort seines Vorgesetzten.
- 1. Ein Hacker stielt das Login Passwort zum PC eines Mitarbeiters.
- 2. Ein Hacker stielt ein Facebook Passwort.

Was könnten Sie als Hacker mit diesen Informationen tun?

Weitere Konsequenzen von Informationsdiebstahl

In den USA ist Identitätsdiebstahl ein grosses Problem, weil es dort – anders als in der Schweiz – mit der Sozialversicherungsnummer ein personenbezogenes Merkmal gibt, das hinreichend ist, um Steuern zurückzufordern und Kreditkartenverträge abzuschliessen. [...] Allein 2011 belief sich der finanzielle Schaden infolge von Identitätsdiebstahl auf \$3.6 Mrd.

NZZ, 20.01.2014

[...] wenn Kriminelle ein E-Mail-Konto hackten und im Namen des Besitzers einen fiktiven Hilferuf an Freunde schickten, indem beispielsweise ein Überfall im Ausland vorgetäuscht werde, [...]. Erfahrungsgemäss würden 3% bis 8% der Empfänger tatsächlich mit Geldüberweisungen reagieren.

Martin Boess, Direktor der Schweizerischen Kriminalprävention, NZZ, 20.01.2014

Hinweis: Versicherungen sind ein guter Spiegel öffentlicher Wahrnehmung. Groupe Mutuel vertreibt eine weltweit gültige Rechtschutzversicherung namens <u>Legisdigit</u>, die die Versicherten gegen Risiken im Internet absichert. KPT und die Coop-Rechtschutzversicherung haben ähnliche Produkte.

Quelle: c't 2016, Heft 23

https://haveibeenpwned.com

Authentifizierung 1: Telnet & Remote Shell

Hacken Sie dieses System!

Angriffspunkt:
Diese Protokolle stammen aus einer Zeit als Kabelverbindungen als abhörsicher galten
Gegenmassnahme:

Authentifizierung 2: Mailinglist, Wikis & Foren

Hacken Sie dieses System!

Passwörter in Klartext - öfters als man denkt ...

Microsoft Store in Indien gehackt – Passwörter in Klartext gespeichert

Eine Hackergruppe mit dem Namen "Evil Shadow Team" hat sich nach eigenen Angaben Zugang zum indischen Microsoft Store verschafft. Die Hacker haben angeblich auch auf unverschlüsselte Nutzerdaten zugreifen können.

t3n.de am 13.02.12

http://elk-shield.el.eee.intern über Safari

January 6th, 2014, 15:47 GMT · By Eduard Kovacs

Clear Text Passwords of over 2,000 Users Leaked from the Directors Guild of Canada

July 13th, 2012, 11:20 GMT · By Eduard Kovacs

Billabong Hacked, Over 20,000 Clear Text Passwords Leaked

Ein konkretes Beispiel:

Der FTP Client FileZilla speichert Klartext-Passwörter in einer XML Datei

«This is by design. It's the task of the operating system to protect the user's files.»

FileZilla Forum Admin, 2007

Wer kennt das nicht ...

Tesco Customer Care Customer C

Betriebssystemschutz von Passwortdateien: Windows

Windows Betriebssysteme (seit NT) speichern Passwortinformationen in der Registry Datei *Security Account Manager* (SAM). Windows Kernel sichert SAM, so dass Datei nicht kopiert werden kann.

Kopierversuch einer SAM Datei

Wie klauen Sie die Passwortdatei mit Maschinenzugriff?

So geht es trotzdem ...

Dumping File Sectors directly from Disk using Logical Offsets → Cain

Wenn Syskey aktiviert ist, verschlüsselt Windows die SAM Datei partiell.

Ändert dies etwas?

Wenn Syskey aktiviert ist, holt bkhive den Schlüssel aus der Registry.

Betriebssystemschutz von Passwortdateien: Linux

Unix Betriebssysteme (seit 1990) speichern Passwortinformationen in Shadow Dateien. Nur Superuser können diese Dateien lesen.

Wie klauen Sie die Passwortdatei mit Maschinenzugriff?

John the Ripper beinhaltet unshadow Befehl

- > umask 077
- > unshadow /etc/passwd /etc/shadow > mypasswd

Speicherort von Passwortdateien:

Alte Unix Versionen (vor 1990)

Moderne Unix Versionen

BSD Unix

Mac OS (10.2 und früher)

Mac OS (10.3 – 10.6)

Mac OS (10.7 und später)

- → /etc/passwd
- → /etc/shadow
- → /etc/master.passwd
- → /private/var/db/netinfo/local.nidb/
- → /var/db/shadow/hash/
- → /var/db/dslocal/nodes/Default/users/

Passwortdateiklau mit Maschinenzugriff → Fazit

- In Klartext gespeicherte (z.B. FileZilla) oder gecachte (z.B. Windows-Domänen Anmeldung) Passwörter können mit Maschinenzugriff leicht geklaut werden.

Der Hacker bekommt die Passwörter direkt!

- Betriebssysteme schützen Passwortdateien, jedoch kann der Schutz leicht umgangen werden.
- Anwendungsprogramme und Betriebssysteme hashen Passwörter bevor sie in einer Passwortdatei abgelegt werden.

Der Hacker bekommt die Passwortdatei - Passwörter sind aber gehasht!

Passwortdateiklau ohne Maschinenzugriff

z.B. mittels SQL Injection oder ...

Authentifizierung 3: Windows Login

Passwörter werden mit einer Einwegfunktion (Hashfunktion) gehasht

Passwortdatei beinhalt nur gehashte Passwörter

Angriffspunkt:

Unsere Webshop Kontodaten

username	email	password	us
christopher.christensen	christoph.christensen@stud.hslu.ch	67a0faf2d32193abf3d062317051708f:	Re
CyrilleUlmi	cyrille.ulmi@stud.hslu.ch	bd41d90244e96fbc684829a5cb71467a:	Re
daniel	daniel.foehn@stud.hslu.ch	2145b2cf11f6be38f3d00c582364189a:	Re
valentin_buergler	valentin.buergler@stud.hslu.ch	164d5fdfd02634293161afac4cf47299:	Re
hasselmann	thomas.hasselmann@stud.hslu.ch	36c749510b2be036136a92a9c1408ac4:	Re
tavoney	andre.voney@stud.hslu.ch	7def8616a7670a07abb2a1229d9f0b97:	Re
muhamed.delic	muhamed.delic@stud.hslu.ch	238b5936a3ebce499d7dd5fb72af536d:	Re
fabmeyer	fabian.meyer@stud.hslu.ch	8cf63880e5d477e850046af7e8daabd0:	Re
Peter	pascal.stalder@stud.hslu.ch	624d8e6eb27881661fa58d8a1df9156c:	Re
joel.salzmann@stud.hslu.c	joel.salzmann@stud.hslu.ch	1adbb3178591fd5bb0c248518f39bf6d:	Re
TheDude	simon.beck@stud.hslu.ch	bfe3ac3ba3db12d9deebe81ce99e3d3a:	Re
tagabrie	severin.gabriel@stud.hslu.ch	d4e7f8a52dd276a4a25f7873bd5ff23b:	Re
mzzzz	michael.zurmuehle@stud.hslu.ch	2e8583df29a4c7b6c892e8144bccc75d:	Re
tabubalo	mario.bubalovic@stud.hslu.ch	16031ce9bd0a73b4a5860e5556dd7b6a:	Re
lari	larissa.schuler@stud.hslu.ch	df5ea29924d39c3be8785734f13169c6:	Re
tabay	hamide.bay@stud.hslu.ch	ef12f691c81f56b91e4c0be8a0f89541:	Re
tckueng	stefan.kueng@stud.hslu.ch	85402764bf469fa48e716a60a46fb42c:	Re
Morty	eric.brun@stud.hslu.ch	c4ca4238a0b923820dcc509a6f75849b:	Re
jonas.keiser	jonas.keiser.01@stud.hslu.ch	c8a011db5f24228011fd6956f9858053:	Re
Sascha	sascha.saegesser@stud.hslu.ch	5f2b910d2eec1102d8cf1756398061a5:	Re
xKev	kevin.huber@stud.hslu.ch	cb76013bffa977901d250af139744c08:	Re
markuskaufmann	markus.kaufmann@stud.hslu.ch	6c00b9cb4bd690de2eccc4f677389ccc:	R
melvin.werthmueller	melvin.werthmueller@stud.hslu.ch	8042c2ef76e94fb1b546ec621c46c769:	Re
tajoerim	christoph.joerimann@stud.hslu.ch	16d7a4fca7442dda3ad93c9a726597e4:	Re
iaarnold	lukas.arnold.01@stud.hslu.ch	afbd0822f9992dc450a42e15339c1b40:	Re
patrick.bucher	patrick.bucher@stud.hslu.ch	12e561114335b1d5f547a67cf85c4d08:	Re
PatrickF	patrick.forrer@stud.hslu.ch	39bb37cf36d3b29a9280d8a70a0eed42:	Re
tobiaskaufmann	tobias.kaufmann@stud.hslu.ch	19118e184f6ea8aebdf000d61521b03b:	R
alex	alexander.karlen@stud.hslu.ch	f30aa7a662c728b7407c54ae6bfd27d1:	R
StefanieVogel	stefanie.vogel@stud.hslu.ch	827ccb0eea8a706c4c34a16891f84e7b:	Re

Verwendete Hashfunktionen

Alte Unix Versionen → DFS → MD5

Red Hat Enterprise → SHA-512 (SHA2 Familie)

OpenBSD → Blowfish

Mac OSX → SHA1

Windows → LANMAN oder MD4 (genannt NT Hash, vgl. Cain & Abel

Screenshot)

Angriffsstrategien

Moderne Unix Versionen

- 1.Passwort-Hashfunktion knacken
- 2.Brute-Force Attacken
 - –Alle möglichen Kombinationen werden systematisch durchprobiert
 - -Jeder Kandidat wird gehasht und in der Passwortdatei gesucht
 - –Vorteil: knackt irgendwann jedes Passwort → vollständige Methode

Eine kleine Rechenaufgabe

Passwörter bestehen aus den Symbolen (A-Z, a-z, 0-9) und 8 zusätzlichen Sonderzeichen. Das Content Management System Joomla hasht Passwörter mit MD5. Wir verwendet die Software oclHashcat für einen Brute-Force Angriff mit folgendem PC: 2x AMD HD 6990, 880 MHz GPU, 1250 MHz RAM, Catalyst 12.1, Windows 7 x64. Benchmark Tests ergaben 23083.9 M/s also rund 23 * 109 Hashs / s.

- 1. Via Social-Engineering erfahren wir, dass der User ein Passwort der Länge 7 hat. Wie lange beträgt die maximale Wartezeit, bis das Passwort sicher gefunden worden ist?
- 1. Wie lange müsste man ein Passwort wählen, um ein akzeptables Mass an Sicherheit gegen Brute-Force-Angriffe zu erhalten?
- 1. Wie bewerten Sie folgende Schlagzeile im 20min?

Nein, «Jesus» ist kein gutes Passwort

Leichtes Spiel für Hacker: Noch immer benutzen viele User für ihre Web-Profile unsichere Passwörter - dabei wäre es doch so einfach. Hier die schlechtesten Logins und ein paar Tricks. ...

Lösungen

Maximale Wartezeit für Passwörter der Länge 7:

$$((70^7) s) / (23 * (10^9)) = 5,96 Minuten$$

Maximale Wartezeit für Passwörter der Länge 8:

$$((70^8) s) / (23 * (10^9)) = 6,96 Stunden$$

Maximale Wartezeit für Passwörter der Länge 9:

$$((70^9) s) / (23 * (10^9)) = 20,30 Tage$$

Maximale Wartezeit für Passwörter der Länge 10:

$$((70^10) s) / (23 * (10^9)) = 3,89$$
 Jahre

Maximale Wartezeit für Passwörter der Länge 11:

$$((70^11) s) / (23 * (10^9)) = 272,43$$
 Jahre

Weitere Angriffsstrategien

Brute-Force Angriffe werden bei Passwörtern ab Länge 9 uninteressant.

Vielen Menschen fällt es schwer, sich lange, kryptische Passwörter zu merken und greifen daher auf Merkhilfen zurück.

3. Wörterbuch Attacken

- Nur Wörter aus einem vorgegebenen Wörterbuch werden durchprobiert
- Beruht auf Annahme, dass sinnvolle Wörter als Passwort verwendet wurden oder dass beim Passwort ein Algorithmus hinterlegt ist (z.B. Palindrom)
- Knackt nur Passwörter im Wörterbuch (unvollständige Methode)

4.Lookup Tabellen

- Wörterbuch mit 1M Wörter verlangt 1M Hashberechnung
- Effizienter sind Wörterbücher mit (Wort / Hashwert) Einträgen
- Jetzt muss nur noch nach dem Hashwert gesucht werden
- Trade-off: man investiert mehr Memory um Rechenzeit zu sparen.
- Knackt nur Passwörter in der Tabelle (unvollständige Methode)

Wörterbücher gibt es zum Beispiel hier

Wörterbuch-Angriffe durch Regeln ergänzen

- Variationen mit Gross- / Kleinschreibung z.B. Osterhase → OsterHase, oStErHaSe, OSTERhase, ...
- Variationen mit Zahlen und Sonderzeichen 7.B. Osterhase → O1s2t3e4r5h6a7s8e
- Buchstaben durch Zahlen ersetzen:
 - z.B. *Osterhase* → 15st5rh1se
- Kombination mehrere Wörter aus dem Wörterbuch
 - z.B. <Wort><Leerzeichen><Wort> oder <Wort><Bindestrich><Wort>
 - z.B. Osterhase → OsterhaseesahretsO oder Zitate
- Kombination mit Brute-Force:

Für jeden Wörterbucheintrag (z.B. Adam) wird ein Brute-Force-Angriff (z.B. mit Längenbeschränkung 4) gestartet. Dies findet Adam1234, Adam&Eva, Adam%2;e

Nebst den eingebauten Regeln können eigene Regeln definiert werden, und die Software kann durch Analyse von geknackten Passwörtern eigene Regeln dazulernen. Der BruteForce++ Modus von Hashcat nutzt auch probabilistische Modelle (Markov-Ketten)

Terrible! Top 30 Worst Ashley Madison Passwords

PASSWORD	NUMBER OF USERS
123456	120511
12345	48452
password	39448
DEFAULT	34275
123456789	26620
qwerty	20778
12345678	14172
abc 123	10869
pussy	10683
1234567	9468

NUMBER OF USERS
8801
8793
7893
7872
7710
7458
7048
6572
6213
5959

PASSWORD	NUMBER OF USERS
madison	5219
asshole	5052
superman	5023
mustang	4865
harley	4815
654321	4729
123123	4612
hello	4425
monkey	4296
000000	4240

"123456" and "password" once again reign supreme as the most commonly used passwords

Some longer passwords are so simple as to make their extra length virtually worthless

Sports remain a popular password theme. While baseball may be America's pastime. 'football' has overtaken it as a popular password. "Football" climbed three spots to number 7 and "baseball" dropped two spots to number 10.

We have seen an effort by many people to be more secure by adding characters to passwords, but if these longer passwords are based on simple patterns they will put you in just as much risk of having your

Morgan Slain, CEO of SplashData

SPLASHDATA OFFERS THREE SIMPLE TIPS TO HELP PEOPLE PROTECT

Use passwords or passphrases of twelve characters or more with mixed types of characters

password

Avoid using the same password over and over again on different websites

Use a password manager such as TeamsID to organize and protect passwords, generate random passwords, and automatically log into websites

24

25

www.teamsid.com

Rainbow Tabellen: Motivation

Vorteile / Nachteile von Brute-Force

- Brute-Force knackt (irgendwann) jedes Passwort
- Brute-Force berechnet alle Hashs online
- Erneuter Brute-Force Angriff bedarf der wiederholten Berechnung aller Hashs

Vorteile / Nachteile von Lookup Tabellen

- Lookup Tabellen können offline berechnet und wiederverwendet werden
- Eine vollständige Lookup Tabelle knackt irgendwann jedes Passwort
- So eine Lookup Tabelle wäre zu gross → 1.4 TB für Passwörter mit 6 Stellen

Hashberechnungen vs. Speicherbedarf vs. Vollständigkeit

Rainbow Tabellen bieten einen Mittelweg / Kompromiss

Hashketten

Hashketten alternieren Hashberechnungen und Reduktionen

Bildquelle: Wikipedia

Eine Reduktion verwandelt einen Hashwert mittels eines Wörterbuchs wieder in ein mögliches Passwort. Zur Minimierung von Kollisionen sollten bei jedem Schritt eine andere Reduktion verwendet werden.

Rainbow Tabellen

Nur der erste und letzte Eintrag einer Hashkette wird gespeichert.

Quelle: Wikipedia

Beispiel: Knacken des Hashs re3xes mit der Rainbow Tabelle

Vorteile / Nachteile von Rainbow Tabellen

- Hybride Version von Lookup und Brute-Force
- Kompromiss bezüglich Hashberechnungen, Speicherplatz, Vollständigkeit
- Verschiedene Tabellen für verschiedene Hash-Algorithmen
- Knackt nur Passwörter im Wörterbuch (unvollständige Methode)
- Auf Passwörter einer fixen Länge spezialisiert

Rainbow Tabellen in der Praxis

NTLM Rainbow Tables

Table ID	Charset	Plaintext Length	Key Space	Success Rate	Table Size	Files	Performance
# ntlm_ascii-32-95#1-7	ascii-32-95	1 to 7	70,576,641,626,495	99.9 %	64 GB	<u>Files</u>	•••
# ntlm_ascii-32-95#1-8	ascii-32-95	1 to 8	6,704,780,954,517,120	96.8 %	576 GB	<u>Files</u>	•••
ntlm_mixalpha-numeric#1-8	mixalpha-numeric	1 to 8	221,919,451,578,090	99.9 %	160 GB	<u>Files</u>	
ntlm_mixalpha-numeric#1-9	mixalpha-numeric	1 to 9	13,759,005,997,841,642	96.8 %	864 GB	<u>Files</u>	•••
ntlm_loweralpha-numeric#1-9	loweralpha-numeric	1 to 9	104,461,669,716,084	99.9 %	80 GB	<u>Files</u>	•••
ntlm_loweralpha-numeric#1-10	loweralpha-numeric	1 to 10	3,760,620,109,779,060	96.8 %	396 GB	<u>Files</u>	il

MD5 Rainbow Tables

Table ID	Charset	Plaintext Length	Key Space	Success Rate	Table Size	Files	Performance
# md5_ascii-32-95#1-7	ascii-32-95	1 to 7	70,576,641,626,495	99.9 %	64 GB	<u>Files</u>	•••
# md5_ascii-32-95#1-8	ascii-32-95	1 to 8	6,704,780,954,517,120	96.8 %	576 GB	<u>Files</u>	41
md5_mixalpha-numeric#1-8	mixalpha-numeric	1 to 8	221,919,451,578,090	99.9 %	160 GB	<u>Files</u>	41
md5_mixalpha-numeric#1-9	mixalpha-numeric	1 to 9	13,759,005,997,841,642	96.8 %	864 GB	<u>Files</u>	41
md5_loweralpha-numeric#1-9	loweralpha-numeric	1 to 9	104,461,669,716,084	99.9 %	80 GB	<u>Files</u>	41
md5_loweralpha-numeric#1-10	loweralpha-numeric	1 to 10	3,760,620,109,779,060	96.8 %	396 GB	<u>Files</u>	1

Durch immer schnellere Computer für Brute-Force-Angriffe verlieren Rainbow Tabellen langsam an Bedeutung. Heute werden Rainbow Tabellen hauptsächlich für Passwörter der Länge 8 und 9 eingesetzt, oder bei nicht-sprechenden Passwörter, weil da Wörterbuch-Attacken nicht funktionieren.

Verteidigungsmassnahmen

- Massnahme gegen Brute-Force: Hashfunktion muss langsam sein
 - Mehrfach-Hash, z.B. sha1 (sha1 (sha1 (pwd)))
 - Hashfunktionen kombinieren, z.B. sha1 (blowfish (pwd))
- Passwörter salzen:
 - Salt ist eine zufällig generierte Zeichenkette
 - Berechne den Hash von Passwort und Salz → h (pwd . salt)
 - Salz und Hashwert werden zusammen in der Passwortdatei gespeichert

Beispiel: Passwortdatei Eintrag in Red Hat Enterprise Linux:

joeuser:\$6\$a1CD9VXvGYo8oScU\$0cXhIS3yGke63nr2LmV7eVwLyn97iEzPCSSmwkdytDxBbyLkuZSE8gTtwWIo601/mI2tiJnCpW5a1cDoI

```
6 = "Use SHA-512 hashing"
salt = alCD9VXvGYo8oScU
hash = 0cXhIS3yGke63nr2LmV7eVwLyn97iEzPCSSmwkdytDxBbyLkuZSE8gTtwWIo6Ol/mI2tiJnCpW5alcDoEUi2T/
```

Gegen welche Angriffe hilft Salz?

Don't eat your Password without Salt !?

Salts used by various operating systems							
Operating system	Salt bits	Number of possible salt values					
Windows Mac OS before OX X 10.4	0	That is, the one empty salt					
Unix (SunOS, Solaris 2.6 through 2.8, HP-UX, OpenBSD, etc)	12	4,096					
Mac OS X 10.4 and later	32	4,294,967,296					
Unix (Solaris 9 and later, Linux)	48	281,474,976,710,656					
Unix with Glibc crypt() supporting 96-bit salts (Linux)	96	79,228,162,514,264,337,593,543,950,336					

Sind Password Policies sinnvoll?

Bei Verwendung von Salz bleiben Wörterbuch und Brute-Force als Angriffe.

- Wörterbuch Attacken erschweren → strukturloses Passwort wählen
- Brute-Force Attacken erschweren → *langes* Passwort wählen
- 1.Was bedeutet strukturlos / lang?
- 2. Löst also ein langes und kompliziertes Passwort das Problem?
- 3.Das SAP Tool der HSLU zwingt mich dazu, alle 3 Monate ein neues Passwort mit Mindestlänge 9 zu setzen. Was halten Sie davon?

Authentifizierung 4: UNIX Login

Passwörter gesalzen und gehasht

Das klappt leider nicht ...

«Das Passwort wird über den verschlüsselten Kanal zum Server geschickt. Das heisst, der Server sieht das Passwort nach dem Entschlüsseln im Klartext. Man könnte doch bereits auf Client-Seite den Hashwert berechnen und diesen zum Server schicken. Dann erfährt ein potentiell mit Spyware infizierter Server das wahre Passwort nicht.»

Warum funktioniert das nicht	?	
	•	

Die aleighe Tales and her dieses week demoks desk

S/KEY Protokoll (vereinfacht)

Annahme: Server und Benutzer kennen ein Geheimnis, z.B. eine Zahl n > 1

Danach ersetzt Server $h^n(6\$az)$ durch $h^{n-1}(6\$az)$ in pwd_file n wird dekrementiert Bei n = 1 muss ein neues Passwort gesetzt werden

Welche Vor- und Nachteile sehen Sie?

......

Man-in-the-Middle: Keylogger

- Hardware Keylogger
- Skimming (Overlay Tastatur)
- Software Keylogger (Spyware)
- Akustische Keylogger (mit Richtmikrofon)
- Elektromagnetische Keylogger
- Optische Keylogger
- ...

Man-in-the-Middle: Phishing

static-71-97-100-231.dfw.dsl-w.verizon.net/postfinance.ch/index.php

Betreff: Betreff: 'Ihr'E+Banking+Zugang'mail.ridicaky+zpet.cz

Datum: Freitag, '11.' März' 2016' 10:06:55' Mi Deleuropäische' Normalzeit

Von: KantonalbankAn: Kantonalbank

de | fr | it | en

Home

Sehr geehrte Kundin, sehr geehrter Kunde!

Bitte beachten Sie, dass Ihr e-Banking Zugang bald abläuft, da dieser noch nicht unserem neuen e-Banking System angepasst wurde. Dies hätte automatisch erfolgen sollen, wurde aber bei einigen e-Banking Zugängen wegen Überlastung unseres Servers nicht abgeschlossen. Diese e-Banking Zugänge müssen nun manuell aktiviert werden, um einer automatischen Sicherheitssperrung vorzubeugen. Sollte Ihr Zugang aus Sicherheitsgründen gesperrt werden, müssen Sie bis zu 28 Tagen warten, bis Sie Zugangsdaten fur das neue e-Banking per Post erhalten und Ihr e-Banking wieder nutzen können. Bitte fuhren Sie daher die Aktualisierung so schnell wie möglich durch, um Probleme in Ihrem e-Banking zu vermeiden. Um Ihren e-Banking Zugang jetzt zu aktivieren, melden Sie Sich zunächst hier bei Ihrem e-Banking an, und füllen Sie das Online-Formular aus.

> Klicken Sie hier - >

Nach Ausfüllen des Formulars haben Sie den ersten Schritt zur Aktivierung des neuen e-Bankings beendet. Wir danken Ihnen für Ihre Mitarbeit und Ihr Verständnis.

Freundliche Grüße,

Ihr Kantonalbank Team

Aufgabe: Imaginärer Angriff auf die UBS

Diskutieren Sie einen Phishing Angriff auf die UBS.

Stellen Sie den Nachrichtenverkehr zwischen User, Bank und Hacker grafisch dar.

Die UBS Login Prozedur mit TAN Generator ist unten abgebildet.

E-Banking Authentifikation

1 R19Y	11 QVI8	21 ZURD	31 35AH	41 19GN	51 B68N	61 1U4F	71 9FB6	81 TSD8	91 J9L5
2 RENT	12 WNJD	22 RD1R	32 731W	42 S2RJ	52 CWI4	62 W3H2	72 KUPB	82 4YWY	92 PR8T
3 3DVI	13 EP7Y	23 NG8T	33 U7N2	43 ZS1J	53 46KK	63 TPLR	73 UFZ7	83 TENN	93 DBGY
4 7YD1	14 HWZ8	24 SHEJ	34 97MZ	44 WYSD	54 KLM6	64 12Z9	74 NY1E	84 L1QF	94 7K6B
5 DWVN	15 SL4X	25 5GLF	35 PQG8	45 MDV9	55 W6GI	65 GIC5	75 UFMT	85 SRFR	95 RE4Y
6 W1Y8	16 DLJ8	26 IJM5	36 C739	46 JLTD	56 AP2C	66 5HNU	76 LPNS	86 X9RH	96 HT7V
7 6P4Z	17 ARRS	27 3WKB	37 2AF4	47 S7FM	57 K3R3	67 KDVM	77 EWR6	87 EAIF	97 3LFB
8 I4KT	18 VFGL	28 C6IC	38 T1J9	48 3N4G	58 CMJE	68 29SF	78 GXF5	88 9QLK	98 RJNB
9 J83N	19 QPL4	29 QGNX	39 PM8A	49 DBCQ	59 TXRL	69 318B	79 UBP9	89 NB6M	99 94YL
10 L8IN	20 MUY2	30 YY8Q	40 CJI7	50 PT7P	60 16FA	70 LIL2	80 TEYF	90 Y1B5	100 THGF

Empfehlung: Überblick E-Banking Verfahren unserer Kollegen vom IWI

Phishing, Vishing und SMiShing

?#80#≫3!" #\$%#&'()* #\$,-.)/0)12'34'35#)657#\$&\8 !9:; <≠*''25&;:9#&5,7#\$

!'&1@3; 2&,<%)?@AB#C\$5<\$)?@D?)DEFGHF?I)J'3K#=7

A=\$3 12'34'35#)657#\$&

J#3\$)%##3\$,#)12'34'35#)657#\$&)L2&,2=&3<C#\$&

J#&P#&)N3I\$;#)*''25&;:N3(O2\$''<,=2&#&)=4,)5&,#\$F

9#85,7#\$8<" #F)/////////////////

Von: "CREDIT SUISSE GROUP AG" klualisieren@credit-suisse.com

Betreff: m-Tan Sicherheit und Datenschutz!

Datum: 6. Mai 2013 19:45:46 MESZ

An: Recipients aktualisieren@credit-suisse.com

SMS-Sicherheitsverfahren

Sehr geehrter Kunde,

Wir glauben, dass die Sicherheit und die Benutzerfreundlichkeit oberste Priorität sind, wenn wir Ihre Bankgeschäfte ausführen.

Das ist, warum wir die neuesten SMS Sicherheitsverfahren für unsere Online-& Mobile-Banking-Transaktionen verwenden.

Wir weisen darauf hin, Sie zu Ihrem E-Banking Details zu überprüfen, Sie auf der neuen SMS-Code (mTAN Plus) zu aktualisieren.

Um Ihre Angaben zu überprüfen Klicken Sie hier

Copyright @ 1997 - 2013 CREDIT SUISSE GROUP AG and/or its affiliates. All rights reserved.

Danke für Ihre Aufmerksamkeit

