FIS GAS SENSOR SP3S-AQ2

for AIR QUALITY CONTROLS (VOCs)

The SP3S-AQ2 series is a tin dioxide semi conductor gas sensor which has a high sensitivity to various air pollution sources (e.g. VOCs) with quick response speed. This series uses a compact plastic housing with 3 pins configuration achieving an excellent gas sensing performance with low cost. This model is ideal for various design of automatic air quality control systems; Ventilation Fans, air purifiers.

Gas sensitive semiconductor material is formed on the alumina substrate on which the gold electrodes are printed. A thick film heater of ruthenium oxide is printed on the reverse of the substrate and placed in the compact plastic housing (Fig 1).

Alumina substrate Sensing material Heater 2 mm Lead wires Electrodes

Fig 1a. Sensing element

Fig 1c. Pin Layout

Fig 1b. Configuration

Fig 1d. Equivalent circuit

Operating conditions

Fig 2 shows the standard operating circuit for this model. The change of the sensor resistance (R_S) is obtained as the change of the output voltage across the fixed or variable resistor (R_L). In order to obtain the best performance and specified characteristics, the values of the heater voltage (V_H) circuit voltage (V_C) and load resistance (R_L) must be within the range of values given in the standard operating conditions shown in the Specification table on the next page.

Sensitivity characteristics

Fig 3 shows the sensitivity characteristics curves of the SP3S-AQ2 (typical data). Sensitivity characteristics of the FIS gas sensors are expressed by the relationship between the sensor resistance and gas concentration. The sensor resistance decreases with an increase of gas concentration based on a logarithmic function.

The sensitivity characteristics of the SP3S-AQ2 are specified by the following parameters.

- Sensor resistance level: in air
- Sensor resistance change ratio: between hydrogen 10 ppm and in air

Please see the Specification table on the back page for further details.

Fig 2. Standard circuit Fig 3. Sensitivity characteristics

Specifications

A. Standard Operating conditions

Symbol	Parameter	Specification	Conditions etc.
V _H	Heater voltage	5.0 V ± 4%	AC or DC
V _C	Circuit voltage	5.0 V ± 4%	AC or DC
R_L	Load resistance	Variable	P _S < 15 mW
R _H	Heater resistance	86 Ω ± 5%	at room temperature
P _H	Heater power consumption	210mW (Typical value)	$P_H = V_H^2 / R_H$
P _S	Power dissipation of sensing element	Less than 15 mW	$P_S = \frac{(V_C - V_{RL})^2}{R_S}$

B. Environmental conditions

Symbol	Parameter	Specification	Conditions etc.
Tao	Operating temperature	0°C to 40°C	
Tas	Storage temp	-10 °C to 70 °C	Recommended range
RH	Relative humidity	Less than 95% RH	
(O ₂)	Oxygen concentration	21% (Typical value)	Absolute minimum level: more than 18%
		The sensitivity characteristics are influenced by the variation in oxygen concentration.	

C. Sensitivity characteristics

Model	SP3S-AQ2-01		
Symbol	Parameter	Specification	Conditions etc.
R _S	Sensor resistance	$5k\Omega$ to $20k\Omega$	in air
β	Sensitivity slope	0.15 to 0.45	R _S in 10ppm hydrogen
P	Sensitivity slope 0.13 to 0.43	0.13 (0 0.43	R _S in air
Standard Test Conditions:		Temp: $20 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ Humidity: $65\% \pm 5\%$ (in clean air)	V_C : 5.0 V \pm 1% V_H : 5.0 V \pm 1% R_L : 10 k Ω \pm 5%
Pre-heating time: more than 48 hours			

E. Mechanical characteristics

Items	Condition	ons	Specifications
Vibration	Frequency: Vertical amplitude: Duration:	100 cpm 4 mm 1 hour	Should satisfy the specifications shown in the sensitivity characteristics.
Shock	Acceleration: Number of impacts:	100 G 5 times	

Dimensions

Scale: mm

Weight : 0.6g

F. Parts and Materials

No.	Parts	Materials
1	Sensing element	Tin dioxide (SnO ₂)
2	Substrate	Alumina (Al ₂ O ₃)
3	Lead wire	Gold alloy (Au-Pd-Mo)
4	Heater	Ruthenium oxide (RuO ₂)
5	Electrode	Gold (Au)
6	Metal housing	Nickel plated brass
7	Plastic base	PBT (Poly butylene terephthalate)
8	Heater/electrode pins	Iron-nickel alloy

Please contact March 2010

FIS Inc. 3-36-3, Kitazono Itami, Hyogo 664-0891 Japan

Tel: +81-72-780-1800 Fax: +81-72-785-0073 http://www.fisinc.co.jp