

基础模型遵循"更多即是不同"的哲学,在视觉任务取得了惊人的效果

2012

12 layers

2014

<50 layers

2015

>1000 layers

2016 20-100 layers

2020 50-200 layers

AlexNet

深度学习的开创性工作。证明深度网络比 传统方法获得更高的 准确度。

卷积、激活

VGG/Inception/...

深度卷积模型开始在 计算机视觉领域占主 导地位。

卷积、激活,多路

ResNet

解决梯度消失问题, 利用残差模块训练多 达1000层的网络。

卷积、激活、残差块

Deep Nets Variants

新兴结构逐渐涌现: DenseNet, ResNeXt, EfficientNet, ConvNext等。

卷积、注意力、激活、 跳连

ViT and its Variants

将NLP中的 Transformer架构引 入CV中: DeiT, PVT, TNT, Swin等。

自注意力、激活、残 差块

极简架构的探索:不同方案但仍存在改进空间

在设计中拥抱优雅:反直觉的方式,构造简洁而强大的VanillaNet

解决非线性能力不足情况下的优化难题,大幅提升极简网络精度

解决方法: 并行而非串行堆叠激活函数

$$A_s(x) = \sum_{i=1}^n a_i A(x + b_i)$$

$$A_s(x_{h,w,c}) = \sum_{i,j \in \{-n,n\}} a_{i,j,c} A(x_{i+h,j+w,c}) + b_c$$

$$\mathcal{O}(\text{CONV}) = H \times W \times C_{in} \times C_{out} \times k^2$$

 $\mathcal{O}(\text{SA}) = H \times W \times C_{in} \times n^2$

$$\frac{\mathcal{O}(\text{CONV})}{\mathcal{O}(\text{SA})} = \frac{H \times W \times C_{in} \times C_{out} \times K^2}{H \times W \times C_{in} \times n^2} = \frac{C_{out} \times k^2}{n^2}$$

深入分析极简网络的能力和解决方案的效果,证明极简主义的力量

提出的级数激活函数和深度训练在不同网络的效果

Network	Deep train.	Series act.	Top-1 (%)	
	1		59.58	
VanillaNet-6	✓		60.53	
		✓	75.23	
	✓	✓	76.36	
AlexNet			57.52	
	✓		59.09	
		✓	61.12	
	✓	✓	63.59	
ResNet-50	5	3	76.13	
	✓		76.16	
		✓	76.30	
	✓	✓	76.27	

仅**对简单的浅网络有效**,对复杂网络无提升

残差模块对VanillaNet**并无帮助**

Туре	Top-1 (%)
no shortcut	76.36
shortcut before act	75.92
shortcut after act	75.72

极简网络仍然具有强大的特征提取能力

ResNet-50 特征可视化

VanillaNet-9 特征可视化

无需残差等复杂模块,13层网络在ImageNet上达到83%精度

深度-精度对比

速度-精度对比

6层VanillaNet性能超越34层ResNet,速度提升一倍以上13层VanillaNet性能超越近百层Swin-S,速度提升一倍以上

Model	Params (M)	FLOPs (B)	Depth	Latency (ms)	Acc (%)	Real Acc (%)
MobileNetV3-Small [21]	2.5	0.06	48	6.65	67.67	74.33
MobileNetV3-Large [21]	5.5	0.22	48	7.83	74.04	80.01
ShuffleNetV2x1.5 [39]	3.5	0.30	51	7.23	73.00	80.19
ShuffleNetV2x2 [21]	7.4	0.58	51	7.84	76.23	82.72
RepVGG-A0 [12]	8.1	1.36	23	3.22	72.41	79.33
RepVGG-A1 [12]	12.8	2.37	23	3.24	74.46	81.02
RepVGG-B0 [12]	14.3	3.1	29	3.88	75.14	81.74
RepVGG-B3 [12]	110.9	26.2	29	4.21	80.50	86.44
ViTAE-T [48]	4.8	1.5	67	13.37	75,3	82.9
ViTAE-S 48	23.6	5.6	116	22.13	82.0	87.0
ViTAEV2-S [55]	19.2	5.7	130	24,53	82.6	87.6
ConvNextV2-A [46]	3.7	0.55	41	6.07	76.2	82.79
ConvNextV2-F [46]	5.2	0.78	41	6.17	78.0	84.08
ConvNextV2-P [46]	9.1	1.37	41	6.29	79.7	85.60
ConvNextV2-N [46]	15.6	2.45	47	6.85	81.2	
ConvNextV2-T [46]	28.6	4.47	59	8.40	82.5	\$3
ConvNextV2-B [46]	88.7	15.4	113	15.41	84.3	
Swin-T [3]	28.3	4.5	48	10.51	81.18	86.64
Swin-S [31]	49.6	8.7	96	20,25	83.21	87.60
ResNet-18-TNR 45	11.7	1.8	18	3.12	70.6	79.4
ResNet-34-TNR [45]	21.8	3.7	34	5.57	75.5	83.4
ResNet-50-TNR [45]	25.6	4.1	50	7.64	79.8	85.7
VanillaNet-5	15.5	5.2	5	1.61	72,49	79.66
VanillaNet-6	32.5	6.0	6	2.01	76.36	82.86
VanillaNet-7	32.8	6.9	7	2.27	77.98	84.16
VanillaNet-8	37.1	7.7	8	2.56	79.13	85.14
VanillaNet-9	41.4	8.6	9	2.91	79.87	85.66
VanillaNet-10	45.7	9.4	10	3.24	80.57	86.25
VanillaNet-11	50.0	10.3	11	3.59	81.08	86.54
VanillaNet-12	54.3	11.1	12	3.82	81.55	86.81
VaniflaNet-13	58.6	11.9	13	4.26	82.05	87.15
VanillaNet-13-1.5×	127.8	26.5	13	7.83	82.53	87.48
VanillaNet-13-1.5× [†]	127.8	48.9	13	9.72	83.11	87.85

代码解读

$$A_s(x_{h,w,c}) = \sum_{i,j \in \{-n,n\}} a_{i,j,c} A(x_{i+h,j+w,c}) + b_c$$

```
class activation(nn.ReLU):
    def __init__(self, dim, act_num=3):
        super(activation, self).__init__()
        self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1))
        self.bn = nn.BatchNorm2d(dim, eps=1e-6)
        self.dim = dim
        self.act_num = act_num

def forward(self, x):
    return torch.nn.functional.conv2d(
        super(activation, self).forward(x),
        self.weight, self.bias, padding=(self.act_num*2 + 1)//2, groups=self.dim)
```

$$A'(x) = (1 - \lambda)A(x) + \lambda x$$

```
class Block(nn.Module):
    def __init__(self, dim, dim_out, act_num=3, stride=2, deploy=False):
       super(). init ()
       self.act learn = 1
       self.deploy = deploy
       if self.deploy:
            self.conv = nn.Conv2d(dim, dim out, kernel size=1)
       else:
            self.conv1 = nn.Sequential(
                nn.Conv2d(dim, dim, kernel_size=1),
               nn.BatchNorm2d(dim, eps=1e-6),
            self.conv2 = nn.Sequential(
                nn.Conv2d(dim, dim_out, kernel_size=1),
               nn.BatchNorm2d(dim out, eps=1e-6)
       self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)
       self.act = activation(dim_out, act_num)
    def forward(self, x):
       if self.deploy:
            x = self.conv(x)
       else:
            x = self.conv1(x)
           x = torch.nn.functional.leaky_relu(x,self.act_learn)
           x = self.conv2(x)
       x = self.pool(x)
       x = self.act(x)
       return x
```


代码解读

	Input	VanillaNet-5	VanillaNet-6	VanillaNet-7/8/9/10/11/12/13
stem	224×224	4×4, 512, stride 4		
stage1	56×56	[1×1, 1024]×1 MaxPool 2×2	[1×1, 1024]×1 MaxPool 2×2	[1×1, 1024]×2 MaxPool 2×2
stage2	28×28	[1×1, 2048]×1 MaxPool 2×2	[1×1, 2048]×1 MaxPool 2×2	[1×1, 2048]×1 MaxPool 2×2
stage3	14×14	[1×1, 4096]×1 MaxPool 2×2	[1×1, 4096]×1 MaxPool 2×2	[1×1, 4096]×1/2/3/4/5/6/7 MaxPool 2×2
stage4	7×7	5	[1×1, 4096]×1	[1×1, 4096]×1
classifier	7× 7		AvgPool 1×1, 10	

```
class VanillaNet(nn.Module):
   def __init__(self, in_chans=3, num_classes=1000, dims=[96, 192, 384, 768],
                drop_rate=0, act_num=3, strides=[2,2,2,1]):
       super().__init__()
       self.stem = nn.Sequential(
           nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            activation(dims[0], act_num)
       self.stages = nn.ModuleList()
       for i in range(len(strides)):
            stage = Block(dim=dims[i], dim_out=dims[i+1], act_num=act_num, stride=strides[i], deploy=deploy)
            self.stages.append(stage)
       self.depth = len(strides)
       self.cls = nn.Sequential(
            nn.AdaptiveAvgPool2d((1,1)),
            nn.Dropout(drop_rate),
           nn.Conv2d(dims[-1], num_classes, 1),
   def forward(self, x):
        x = self.stem(x)
       for i in range(self.depth):
            x = self.stages[i](x)
       x = self.cls(x)
       return x.view(x.size(0),-1)
```


代码解读

	Input	VanillaNet-5	VanillaNet-6	VanillaNet-7/8/9/10/11/12/13
stem	224×224	4×4, 512, stride 4		
stage1	56×56	[1×1, 1024]×1 MaxPool 2×2	[1×1, 1024]×1 MaxPool 2×2	[1×1, 1024]×2 MaxPool 2×2
stage2	28×28	[1×1, 2048]×1 MaxPool 2×2	[1×1, 2048]×1 MaxPool 2×2	[1×1, 2048]×1 MaxPool 2×2
stage3	14×14	[1×1, 4096]×1 MaxPool 2×2	[1×1, 4096]×1 MaxPool 2×2	[1×1, 4096]×1/2/3/4/5/6/7 MaxPool 2×2
stage4	7×7	5	[1×1, 4096]×1	[1×1, 4096]×1
classifier	7× 7	AvgPool 7×7 1×1, 1000		

```
@register_model
def vanillanet_5(pretrained=False,in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 256*4, 512*4, 1024*4], strides=[2,2,2], **kwargs)
    return model
@register_model
def vanillanet_6(pretrained=False,in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[2,2,2,1], **kwargs)
    return model
@register_model
def vanillanet_7(pretrained=False,in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,2,1], **kwargs)
    return model
@register_model
def vanillanet_8(pretrained=False, in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 1024*4], strides=[1,2,2,1,2,1], **kwargs)
    return model
@register_model
def vanillanet_9(pretrained=False, in_22k=False, **kwargs):
    model = \begin{tabular}{ll} word = Vanilla Net (dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,1,1,2,1], **kwargs) \\ \end{tabular}
    return model
@register_model
def vanillanet_10(pretrained=False, in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,2,1],
        **kwargs)
    return model
@register_model
def vanillanet_11(pretrained=False, in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,1,2,1],
        **kwargs)
    return model
```


谢谢! 请提问

论文地址: https://arxiv.org/abs/2305.12972

代码开源地址: https://github.com/huawei-noah/VanillaNet

