Statistik II - Sitzung 11

Lena Masch

Institut für Politikwissenschaft

16. Dezember 2024

Statistik II - Sitzung 11

1 Vertiefung der logistischen Regression

2 Die logistische Regression - ein Beispiel

Masch (IfPol)

- Der Unterschied zwischen OLS und logistischer Regression betrifft auch das Schätzverfahren
- Bei der OLS-Regression ging es um die Schätzung einer linearen Gerade, welche die verbleibenden Fehler(quadrate) minimiert
- Die logistische Regression hingegen basiert auf dem Maximum-Likelihood (ML)-Schätzverfahren

- Was bedeutet Maximum-Likelihood-Schätzung? (nach Wenzelburger et al. 2014)
- Vereinfacht: Im Gegensatz zur OLS-Regression wird im ML-Verfahren eine iterative (d.h., schrittweise annähernde) Schätzung vorgenommen
- Schritt I Grundsätzliche Sch"atzung des Modells aufgrund von Startwerten
- Schritt II Verbesserung der grundlegenden Sch"atzung durch Herantasten an die korrekte Vorhersage der Wahrscheinlichkeiten der tatsächlich beobachteten Stichprobenwerte

- Was bedeutet Maximum-Likelihood-Schätzung? (nach Wenzelburger et al. 2014)
- Vereinfacht: Im Gegensatz zur OLS-Regression wird im ML-Verfahren eine iterative (d.h., schrittweise annähernde) Schätzung vorgenommen
- "Mithilfe des Verfahrens werden die geschätzten Parameter (die Koeffizienten) so gewählt, dass die Wahrscheinlichkeit maximiert wird, die tatsächlich empirisch beobachteten Werte zu erhalten." (Wenzelburger et al. 2014: 64))

- Was bedeutet Maximum-Likelihood-Schätzung? (nach Wenzelburger et al. 2014)
- Vereinfacht: Im Gegensatz zur OLS-Regression wird im ML-Verfahren eine iterative (d.h., schrittweise annähernde) Schätzung vorgenommen
- Ende des Schätzungsprozesses, wenn keine Verbesserung der vorhergesagten Wahrscheinlichkeiten mehr erreicht werden kann
- Meistens Interpretation des Grads an Verbesserung über LogLikelihood-Wert

- Was bedeutet der LogLikelihood-Wert (LL)?
- Der LogLikelihood-Wert bezeichnet den Wert, an dem das Maximum der Schätzung erreicht wird (daher: Maximum-Likelihood)
- Meist wird der negative LogLikelihood-Wert verwendet -LL (bei SPSS: -2LL)
- Das bedeutet: Je geringer der absolute LL-Wert, desto besser die Schätzung
 - Je geringer der absolute LL-Wert, desto besser die Schätzung ODER
 - ▶ Je kleiner der LL-Betrag, desto besser ist das Erklärungsmodell

- Die Schätzung des ML-Modells wird so lange durch das Rechenprogramm vorangetrieben, bis sich der -LL-Wert nicht mehr verändert
- D.h. sehr vereinfacht: Das Programm berechnet nacheinander ahnliche Modelle und vergleicht anhand des -LL-Werts, welches " Modell die beste Annäherung an die beobachten Stichproben-Werte (Wahrscheinlichkeiten) ergibt
- Je komplexer das theoretische Modell (je mehr Variablen, je mehr Fall-Ebenen etc.), desto mehr Schätzungen mussen berechnet werden

- Grundlegend lassen sich dann über die -LL-Werte auch unterschiedlich theoretisch spezifizierte Modelle vergleichen
- Berechne ich ein Modell A mit wenigen unabhängigen Variablen und ein Modell B mit vielen unabhängigen Variablen, so kann ich anhand der Reduzierung des -LL-Werts zwischen A und B erkennen, ob sich durch die Hereinnahme mehrerer UVs in Modell B die Modellgüte des Erklärungsmodells verbessert hat
- nur möglich für Berechnungen mit dem selben Datensatz

- Der Pseudo-R2-Wert (oder McFadden's R2) ist ein weiteres Maß zur Beurteilung der Modellgüte
- Aber er ist nicht wie der R2-Wert in der OLS-Regression interpretierbar, sondern lässt nur die Interpretation eines Anstiegs der Erklärungskraft / der Modellgute relativ zu einem anderen Modell zu!

- Weitere Maße zur Beurteilung der (relativen) Modellgüte sind die AIC- und BIC-Werte. Je niedriger die AIC-/BIC-Werte, desto besser das Modell
 - ► AIC = Akaike Information Criterion
 - ▶ BIC = Bayes Information Criterion
- Grundlegend basieren aber alle diese Maße auf den (-)LL-Werten!

Zentrale Probleme der logistischen Regression

- Grundlegendes Problem, das auftauchen kann: Die ML-Sch"atzung konvergiert nicht.
- Vereinfacht gesagt bedeutet das, dass das Rechenprogramm keine eindeutig beste Schätzung ermitteln kann und damit kein Modell mit dem geringsten -LL-Wert ausgeben kann

Zentrale Probleme der logistischen Regression

- Mögliche Ursachen des Konvergenz-Problems (nach Wenzelburger et al. 2014)
 - Nicht korrekt spezifizierte Variablen
 - Zu geringe Fallzahlen
 - Zu ungleiche Skalierung der unabhängigen Variablen
 - AV-Ausprägungen zu ungleich verteilt
- Konvergiert das Schätzmodell nicht, ist daher immer zunächst Hinterfragung des theoretischen Erklärungsmodells bzw. der verwendeten Variablen und Fall-Verteilungen notwendig!

- Fragestellung(en)
 - ▶ Wie lässt sich eine Parteineigung zur AfD erklären?
 - ▶ Welche Faktoren beeinflussen das berichtete Neigung ?
 - ▶ Inwiefern beeinflussen populistische Einstellungen die Neigung?
- Analyse anhand von Sekundärdaten (ALLBUS 2018)

Operationalisierung der Variablen

- Die abhängige Variable (DV): Parteineigung AfD (0/1)
 - Populistische Einstellungen werden als Mittelwert aus mehreren Items gemessen (Index).
 - Der Index fasst Aussagen zur Unterstützung populistischer Ideologien zusammen (z. B. Anti-Establishment, einfacher Bürger*innen besser geeeignet).
- Die unabhängigen Variablen (UV):
 - ► **Geschlecht**: Binäre Variable (männlich = 0, weiblich = 1).
 - ▶ Alter: Metrische Variable, gemessen in Jahren.
 - Bildungsniveau: Kategorische Variable, die den höchsten Abschluss angibt in drei Kategorien (niedrig, mittel, hoch).
 - **Einkommen**: Einkommen als metrische Variable (monatliches Nettoeinkommen in €).

Modell 1 (ohne populistische Einstellungen)

```
call:
glm(formula = afd_vote ~ gender + education + income + age, family = binomial()
= "logit"),
   data = za
Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2697946 0.4307744 -2.948 0.0032 **
genderweiblich -0.5634167 0.2465879 -2.285 0.0223 *
educationmittel 1.3629068 0.2976573 4.579 0.00000468 ***
educationniedrig 1.4662111 0.3555805 4.123 0.00003733 ***
                -0.0003115 0.0001340 -2.325
income
                                                 0.0201 *
                -0.0325824 0.0073566 -4.429 0.00000947 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 664.29 on 1499 degrees of freedom
Residual deviance: 610.19 on 1494 degrees of freedom
  (1977 observations deleted due to missingness)
ATC: 622.19
```

Modell 2 (mit populistischen Einstellungen)

```
Call:
glm(formula = afd\_vote \sim gender + education + income + age +
   pop_index, family = binomial(link = "logit"), data = za)
Coefficients:
                  Estimate Std. Error z value
                                                       Pr(>|z|)
(Intercept) -7.07413013 0.82423290 -8.583 < 0.00000000000000002 ***
genderweiblich -0.52816926 0.26098482 -2.024
                                                        0.0430 *
educationmittel 0.57561762 0.32246534 1.785
                                                        0.0743 .
educationniedrig 0.41402869 0.38082897 1.087
                                                        0.2770
income
               -0.00008247 0.00014030 -0.588
                                                        0.5567
                                                    0.000000252 ***
               -0.04182117 0.00811138 -5.156
age
pop_index
                Signif. codes:
              0 '***' 0 001 '**' 0 01 '*' 0 05 '.' 0 1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 664.29 on 1499 degrees of freedom
Residual deviance: 507.77 on 1493 degrees of freedom
  (1977 observations deleted due to missingness)
```

Number of Fisher Scoring iterations: 7

AIC: 521.77

Modell 2 (mit populistischen Einstellungen)

Logistic Regression Results

Coefficients, Confidence Intervals, Z-Statistics, and P-Values

Term	Coefficient (Logit)	Conf. Interval (Low)	Conf. Interval (High)	Z- Value	P- Value
(Intercept)	-7.074	-8.748	-5.512	-8.583	0.000
genderweiblich	-0.528	-1.046	-0.021	-2.024	0.043
educationmittel	0.576	-0.047	1.223	1.785	0.074
educationniedrig	0.414	-0.329	1.169	1.087	0.277
income	0.000	0.000	0.000	-0.588	0.557
age	-0.042	-0.058	-0.026	-5.156	0.000

• Modell 2 (mit populistischen Einstellungen)

Logistic Regression Results Exponentiated Coefficients (Odds Ratios) and Confidence Intervals							
Term		Conf. Interval (Low)					
(Intercept)	0.001	0.000	0.004				
genderweiblich	0.590	0.351	0.979				
educationmittel	1.779	0.954	3.397				
educationniedrig	1.513	0.720	3.219				
income	1.000	1.000	1.000				
age	0.959	0.944	0.974				
pop_index	6.074	4.170	9.034				

Modell 2 (mit populistischen Einstellungen)

- Im Beispiel verbessert sich die Modellgüte durch die Hinzunahme einer weiteren Variable (Index populistischer Einstellungen)
- Sichtbar ist dies
 - an der Reduzierung des LogLikelihood-Wertes zwischen den Modellen: Modell 1 (ohne populistische Einstellungen) und Modell 2 (mit populistischen Einstellungen)
 - an der Reduzierung der Deviance
 - an der Reduzierung des AICs
 - ▶ an der Erhöhung des Pseudo-R²-Wertes

Model	Loglikelihood	Deviance	AIC	McFadden Pseudo R ²
Modell 1	-305.10	610.19	622.19	0.081
Modell 2	-253.88	507.77	521.77	0.236

Tabelle: Modellvergleich

Verwendete Literatur

 Wenzelburger G, Jäckle S, König P (2014). Weiterführende statistische Methoden fur Politikwissenschaftler. München: Oldenbourg.

Ausblick

- Tutorien vor Weihnachten: logistische Regression
- Klausurübungsaufgabe auf Learnweb (ab 20.12.2024 einsehbar)
- Klausurübungsaufgabe wird in den Tutorien in der ersten Januarwoche gemeinsam diskutiert und bearbeitet
- Blick in Literatur zur Nachbereitung (s. Learnweb und Bibliothek)