pytorch 分布式计算 坑/bug 梳理篇

来自: AiGC面试宝典

2024年01月27日 19:44

扫码

- pytorch 分布式计算 坑/bug 梳理篇
 - 动机
 - 一、使用 DistributedDataParallel (分布式并行) 时,显存分布不均衡问题
 - •二、如果是用pytorch实现同步梯度更新,自研数据接口,出现第一个epoch结尾处程序卡死问题
 - 三、在微调大模型的时候,单机2卡的时候正常训练,但是采用4卡及其以上,就会卡住,卡在读完数据和开始训练之间?

动机

pytorch用的人越来越多,大的模型都需要用gpu或者多张gpu甚至多节点多卡进行分布式计算,但是坑也很多,本文主要 介绍 读者 在 进行 pytorch 分布式计算 所遇到的 坑/bug 的 梳理 及 填坑记录。

一、使用 DistributedDataParallel(分布式并行)时,显存分布不均衡问题

• 问题描述:

如果用 DistributedDataParallel (分布式并行)的时候,每个进程单独跑在一个 GPU 上,多个卡的显存占用用该是均匀的,比如像这样的:

Tue Oc	t 22 23:34:40	0 2019					
NVID	IA-SMI 430.40	9 D	river	Version: 430.	40 (CUDA Versio	n: 10.1
GPU Fan	Name Temp Perf			Bus-Id Memo	Disp.A ry-Usage		Uncorr. ECC Compute M.
0 56%	GeForce RTX 66C P2	208 225W /	Off 250W	00000000:04: 7171MiB /		 95%	N/A Default
1	GeForce RTX 68C P2		Off 250W	00000000:05: 7167MiB /		94%	N/A Default
2	GeForce RTX 59C P2	208 240W /	0ff 250W	00000000:81: 7153MiB /		94%	N/A Default
3 62%	GeForce RTX 70C P2		0ff 250W	00000000:85: 7161MiB /		 94%	N/A Default
Proc	esses: PID	Type P	rocess	name			GPU Memory Usage
0 1 2 3	30918 30919	C /	usr/bi usr/bi	in/python in/python in/python in/python			7161MiB 7157MiB 7157MiB 7143MiB 7151MiB

注:在 Distributed 模式下,相当于你的代码分别在多个 GPU 上独立的运行,代码都是设备无关的。比如你写 t = torch.zeros(100, 100).cuda(),在4个进程上运行的程序会分别在4个 GPUs 上初始化 t。所以显存的占用会是均匀的。

然而,有时会发现另外几个进程会在0卡上占一部分显存,导致0卡显存出现瓶颈,可能会导致cuda-out-of-memory 错误。比如这样的:

NVID:	IA-SMI 430.4	Θ	Driver	Version: 430.40	CUDA Version: 10.1	
GPU Fan	Name Temp Perf		tence-M age/Cap	Bus-Id Disp.A Memory-Usage		Uncorr. ECC Compute M.
0 76%	GeForce RTX 77C P2		Off / 250W	000000000:04:00.0 Off		N/A Default
1 69%	GeForce RTX 74C P2		Off / 250W	00000000:05:00.0 Off 7169MiB / 11019MiE		N/A Default
2 47%	GeForce RTX 60C P2		Off / 250W	000000000:81:00.0 Off 7157MiB / 11019MiE		N/A Default
3 64%	GeForce RTX 71C P2		0ff / 250W	000000000:85:00.0 Off 7159MiB / 11019MiE		N/A Default
Proce GPU	esses:	Туре	Process	s name		GPU Memory Usage
0	31570	С	/usr/bi	in/python		7235MiB
Θ		С		in/python		1199MiB 1199MiB
				usr/bin/python		
0		С		in/python		1199MiB
	21571	С	/usr/b:	in/python		7159MiB
1 2	020,2	č		in/python		7147MiB

• 问题定位:

该问题主要由 以下代码导致:

```
checkpoint = torch.load("checkpoint.pth")
model.load_state_dict(checkpoint["state_dict"])
```

注:上述代码运行后,程序 load 一个 pretrained model 的时候,torch.load() 会默认把load进来的数据放到0卡上,这样4个进程全部会在0卡占用一部分显存。

• 解决方法:

把load进来的数据map到cpu上:

```
checkpoint = torch.load("checkpoint.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["state_dict"])
```

二、如果是用pytorch实现同步梯度更新,自研 数据接口,出现 第一个epoch结尾处程序卡死问题

如果是用pytorch实现同步梯度更新,然后数据接口是自己写的话一定要注意保证每张卡分配的batch数是一样的。因为如果某张卡少了一个batch的话,其他卡就会等待,从而程序卡在torch.all_reduce()上。最后的情况就会出现在第一个epoch结尾处程序卡住,而且没有报错信息。

三、在微调大模型的时候,单机2卡的时候正常训练,但是采用4卡及其以上,就会卡住,卡在读完数据和开始训练之间?

先确认几张卡都能正常使用和通信,然后看看是不是batchsize分配之类的问题导致无限等待某一张卡了。再就是只留4条数据,每张卡只跑一条数据试试看。