

Molecular generative model (2)

Seongok Ryu

Department of Chemistry, KAIST

Why does deep learning work so well?

Sufficient statistics

Autoencoder

Can we extract the feature without given labels?

Autoencoder

Can we extract the feature without given labels?

latent vector / variables

: contains the essential information of given input

ChemicalVAE

Gómez-Bombarelli, Rafael, et al. "Automatic chemical design using a data-driven continuous representation of molecules." *ACS central science* 4.2 (2018): 268-276.

ChemicalVAE

$$\mathcal{L} = \mathcal{L}_{reconstr} = \sum_{i} ||x_i - \hat{x}_i||^2$$

ChemicalVAE

Interest of this practice

Principal Component Analysis

original data space

Principal Component Analysis

Jointly training makes latent vectors of molecules having similar property closer in the latent space.

Latent space searching

 $\sigma = 0.1$

Latent space searching

VAE

VAE + jointly training

 $\sigma = 0.3$

Latent space searching

VAE

VAE + jointly training

