## Processamento de Sinal (2015/16)

Teste 1 – 28 de outubro de 2015 – Duração: 1h45

|                                                                                                                                                                                                                                                                                     | Nome:Curso                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grupo I                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |
| Classifique, neste enunciado, as questões que se seguem indicando se são verdadeiras (V) ou falsas (F).  Duas respostas erradas anulam uma resposta correta. Atenção às siglas que se seguem:  SFTC - Série de Fourier em Tempo Contínuo  SFTD - Série de Fourier em Tempo Discreto |                                                                                                                                                                                                                                                |
| 1.                                                                                                                                                                                                                                                                                  | O degrau de <i>heaviside</i> é uma função própria dos sistemas LIT                                                                                                                                                                             |
| 2.                                                                                                                                                                                                                                                                                  | O impulso de Dirac, $\delta(t)$ , é definido como sendo nulo para $t \neq 0$ e tomando o valor 1 para $t = 0$ .                                                                                                                                |
| 3.                                                                                                                                                                                                                                                                                  | Caso o sinal seja real e observe uma simetria ímpar, então os coeficientes da sua SFTC terão sempre parte real nula                                                                                                                            |
| 4.                                                                                                                                                                                                                                                                                  | A potência de um sinal pode ser calculada pela sua evolução no tempo, ou usando o conteúdo espetral que resulta do cálculo dos coeficientes da SFTC                                                                                            |
| 5.                                                                                                                                                                                                                                                                                  | Um sistema causal não tem memória                                                                                                                                                                                                              |
| 6.                                                                                                                                                                                                                                                                                  | Num sistema LIT, se a sua entrada corresponder a um sinal triangular de frequência f <sub>0</sub> , então a sua saída será um sinal igualmente triangular de frequência f <sub>0</sub> , mas, possivelmente, com variação de amplitude e fase. |
| 7.                                                                                                                                                                                                                                                                                  | Num sistema LIT definido pela sua resposta impulsional $h(t)$ se a entrada é $\delta(t)$ então a saída é $h(t)$ .                                                                                                                              |
| 8.                                                                                                                                                                                                                                                                                  | A resposta impulsional corresponde à derivada da resposta ao degrau.                                                                                                                                                                           |
| 9.                                                                                                                                                                                                                                                                                  | Um sistema tem memória se, por exemplo, h[n]= $\delta$ [n+1]                                                                                                                                                                                   |
| 10.                                                                                                                                                                                                                                                                                 | A resposta impulsional $h(t)$ da série (ou cascata) de dois sistemas LIT ( $h_1(t)$ e $h_2(t)$ respetivamente) é definida como $h(t) = h_1(t) + h_2(t)$ .                                                                                      |
| 11.                                                                                                                                                                                                                                                                                 | A exponencial complexa em tempo discreto é sempre periódica                                                                                                                                                                                    |
| 12.                                                                                                                                                                                                                                                                                 | A convolução de um sinal com um impulso de Dirac resulta no próprio sinal, isto é: $x(t)*\delta(t)=x(t)$ .                                                                                                                                     |
|                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                     | Grupo II                                                                                                                                                                                                                                       |

Responda às seguintes questões numa folha separada. Todas as respostas carecem de uma justificação adequada.

1. Caracterize o sistema em tempo discreto definido por y[n] = x[n-1] + x[1-n] + 2, em que x[n] é a entrada e y[n] é a saída, relativamente às propriedade de: memória, causalidade, linearidade, invariância no tempo e estabilidade.

- 2. Considere um sistema LIT em tempo discreto caracterizado por  $h[n] = 2\delta[n] \delta[n-1]$ . Se o sinal de entrada for x[n] = u[n+1] u[n-1], qual será o sinal de saída y[n].
- 3. Um sistema LIT, de saída y(t) e entrada x(t), é caracterizado pela correspondente resposta impulsional h(t), que se representa na figura a seguir. Assumindo que a entrada deste sistema é definida por x(t) = u(t-3) responda às seguintes questões relativamente a este sistema:



- a) Calcule a resposta do sistema, y(t), quando a entrada é o x(t) definido anteriormente.
- b) Calcule a resposta do sistema quando a entrada é g(t) = 3x(t-2).
- c) Caracterize este sistema relativamente à existência de memória, à causalidade e à estabilidade.
- 4. Considere que um sinal em tempo discreto x[n] é real, ímpar e com período 5 e que os coeficientes da série de Fourier que o define são  $a_k$ . Sabendo que:  $a_{-3}=j2$ , que  $|a_1|=1$  e que a fase de  $a_6$  é 90°, calcule:
  - a) Os coeficientes  $a_{-2}$ ,  $a_{-1}$ ,  $a_0$ ,  $a_1$  e  $a_2$ .
  - b) A potência média do sinal ao longo de um período (caso não tenha respondido à questão anterior, considere que os coeficientes são definidos pela seguinte expressão:  $a_k = \frac{j}{5} \sin\left(\frac{k\pi}{4}\right)$
- 5. O sinal x(t) foi obtido pela retificação de meia onda de uma sinusoide (definida por  $2\cos(\pi t)$ ) e encontra-se representado na figura seguinte:



 a) Calcule a expressão que define os coeficientes da série de Fourier deste sinal para ordens diferentes de zero (Dica: a resolução fica simplificada se conseguir usar a propriedade da multiplicação).