Capítulo 1

Introducción

Este capítulo es una introducción al formalismo. Recordemos que el curso se basó fuertemente en el libro de Jon Jun Sakurai [bien escrito?]. La mecánica cuántica relativista desemboca en la teoría de campos. Decir quizás que hay que, de alguna manera, olvidar todo lo anterior de la física clásica (hasta nuevo aviso) porque esto conviene pensarlo de otra manera, será más abstracto. Los sistemas, que serán muy sencillos, tendrán propiedades muy particulares, que luego se conectarán con la física clásica en el límite apropiado. La mecánica cuántica relativista añade más información además de corregir la clásica.

1.1 El experimento de Stern-Gerlach

Un horno emite átomos de plata (Ag) neutros con un electrón e en la última órbita que le da el spín al átomo como un todo. Al salir del horno los átomos tienen su spín orientado en cualquier dirección. Ver figura. El momento magnético del átomo que sale del horno es

$$\boldsymbol{\mu} = \frac{e}{m_e c} \boldsymbol{S}$$

donde acá está metido el magnetón de Bohr

$$\mu_B = -\frac{e\hbar}{2m_ec}.$$

La fuerza f_z que le ejerce el campo \boldsymbol{B} a estos átomos es

$$f_z \propto -\mu_z$$

Figura 1.1

de modo que el dispositivo SG mide y filtra por $S_z(\mu_z)$. Si el spín es un ente clásico es de esperar un patrón como el sombreado en azul, pero se obtienen dos manchas; con la correspondencia mostrada bajo estas líneas

Uso átomos de plata que son neutros eléctricamente así no tengo efecto Hall.

Figura 1.2

Entonces el spín no es un ente *continuo*: está cuantizado y sólo puede tomar dos valores. Llamamos a estos estados

$$(S_z, +) \qquad (S_z, -)$$

Luego, un aparato de SG filtra o selecciona ciertos átomos. Podemos combinarlos.

Con el dispositivo segundo orientado en \hat{x} obtenemos mitad de átomos en $(S_z,+)$ y mitad en $(S_z,-)$. La única es que en realidad lo que sucede es que $(S_z,+)$ se compone de $(S_x,+)$ y $(S_x,-)$.

Acá abajo sale $(S_z,-)$ pero para que ello sea posible $(S_x,+)$ se debe componer de $(S_z,+)$ y $(S_z,-)$. Pero esto no es posible porque al segundo aparato no entró jamás $(S_z,-)$. Se filtró antes.

Los spines en S_x, S_z son incompatibles entre sí. Al seleccionar $(S_z, +)$ en el segundo SG se destruye la información previa sobre S_z . No podemos ya garantizar que S_z sea nula. El tercer experimento da al traste con

Al medir uno la información cuántica del otro se pierde.

Figura 1.3

la idea de que podamos pensar en spín como un ente vectorial en 3D. Mediante una analogía con polarización de luz vemos que es necesario meter al spín es un espacio vectorial de dimensión 2 pero con coeficientes complejos.

Figura 1.4

Estos esquemas de las últimas figuras operan como polarizadores; permiten separar las partículas seleccionando por spin.

1.1.1 Polarización de luz

Consideremos una onda electromagnética en la dirección de \hat{z} , polarización en \hat{x} ,

$$\boldsymbol{E} = E_0 \; \hat{\boldsymbol{x}} \; \mathrm{e}^{i(kz - \omega t)} \qquad \qquad \boldsymbol{E} = E_0 \; \hat{\boldsymbol{y}} \; \mathrm{e}^{i(kz - \omega t)}$$

y la polarización en $\,\hat{y}.$ Si incidimos en un cristal birrefringente con luz polarizada

se tienen dos estados. Este sistema es similar a lo que se vio previamente. A la salida tengo dos estados. Lo que entrará será

$$\mathbf{E} = E_0(\hat{x} + \hat{y}) e^{i(kz - \omega t)}$$

y la analogía me lleva a que polarización de luz en \hat{x} y \hat{y} equivalen a S_z^+ y S_z^- , respectivamente. Repetimos los experimentos, pero ahora con luz.

Matemáticamente el filtro en \hat{x} es un ente que lo que hace es proyectar la luz entrante en \hat{x} .

Los tres casos entonces corresponden a:

No hay efecto neto. Opera como un filtro en $~\hat{x}$ del modo $(\pmb{E}\cdot~\hat{x})~\hat{x}$ y lo que sale es $E_0~\hat{x}~{\rm e}^{i(kz-\omega t)}$

2

En este caso el filtro a $\pi/4$ lo que hace es proyectar en \hat{x}' , \hat{y}'

Se tienen a la salida $E_0(\hat{x} \cdot \hat{x}')\hat{x}$ donde

$$\hat{x}' = \frac{1}{\sqrt{2}} \, \hat{x} + \frac{1}{\sqrt{2}} \, \hat{y}$$
 $\hat{y}' = -\frac{1}{\sqrt{2}} \, \hat{x} + \frac{1}{\sqrt{2}},$

de manera que S_x^+ equivale a \hat{x}' y S_x^i equivale a \hat{y}' .

3

Aquí se ve que filtrar dos veces es incompatible con el electromagnetismo. A la salida se tiene $E_0(\hat{x}'\cdot\hat{x})\hat{x}$, de modo que aparece una componente que no estaba presente.

Entonces

$$\boldsymbol{E} = E_0 \left(\frac{1}{\sqrt{2}} \ \hat{x} \cos((kz - \omega t)) + \frac{1}{\sqrt{2}} \ \hat{y} \cos((kz - \omega t)) \right) = E_0 \left(\frac{\hat{x} \pm i \ \hat{y}}{\sqrt{2}} \right) \mathrm{e}^{i(kz - \omega t)}$$

de manera que con un cristal birrefringente que separe izquierda-derecha en luz polarizada circular puedeo continuar la equivalencia $S_y^+ \equiv {\rm right} \ {\rm y}$ $S_y^- \equiv {\rm left} \ {\rm y}$ tenemos seis estados pero son solo dos los independientes.

Hacen falta vectores complejos para describir sistemas cuánticos. Ya en este sencillo caso de analogía luz-spin vemos que la descripción completa del problema no puede hacerse en términos de vectores con coeficientes reales. Necesitamos un espacio complejo.

El problema del spin es sencillo porque es discreto y de dos estados. La amplitud de probabilidad será algo como

$$A \sim \hat{i} \cdot \hat{j}$$

donde j es el filtro. Luetgo la probabilidad es

$$P = |A|^2 = (\hat{i} \cdot \hat{j})(\hat{i} \cdot \hat{j})^*.$$

Para operar construiremos un formalismo.

1.1.2 El formalismos

El formalismo para la mecánica cuántica incluirá

- Estados
- Productos entre estados (propiedades matemáticas)
- Operadores, que llevan a observables
- Postulados de la mecánica cuántica

Para el caso del spin se definen

$$S = \frac{1}{2} \qquad \qquad S_z^+, S_z^-$$

y se definen los kets $| \rangle$ que tendrán toda la información. Inventados por P.A.M. Dirac. No son otra cosa que vectores con coeficientes complejos. La base de polarización (estados) será

$$|S_z;+\rangle \qquad |S_z;-\rangle$$

y entonces $|S_x;+\rangle$ es una combinación lineal de 1,2 anteriores. Así

$$\begin{split} |S_x;+\rangle &= \frac{1}{\sqrt{2}} \, |S_z;+\rangle + \frac{1}{\sqrt{2}} \, |S_z;+\rangle \\ |S_x;-\rangle &= -\frac{1}{\sqrt{2}} \, |S_z;+\rangle + \frac{1}{\sqrt{2}} \, |S_z;-\rangle \\ |S_y;+\rangle &= \frac{1}{\sqrt{2}} \, |S_z;+\rangle + \frac{i}{\sqrt{2}} \, |S_z;-\rangle \\ |S_y;-\rangle &= \frac{1}{\sqrt{2}} \, |S_z;+\rangle - \frac{i}{\sqrt{2}} \, |S_z;-\rangle \end{split}$$

aunque probar esto no es ninguna boludez.

1.2 Algebra?

El ket contiene toda la información cuántica del estado. Da el estado físico del sistema. Cumplen las siguientes propiedades

- $|\alpha\rangle + |\beta\rangle$ la suma de kets es un ket
- $c |\alpha\rangle = |\alpha\rangle c \operatorname{con} c \in \mathbb{C}$
- $c_1 |\alpha\rangle + c_2 |\beta\rangle = |\gamma\rangle \text{ con } c_1, c_2 \in \mathbb{C}$
- $c |\alpha\rangle, |\alpha\rangle$ representan el mismo estado cuántico

Se define un espacio de Bra dual al de "kets" al que se va mediante "dual conjugado"

$$\begin{split} \left|a\right\rangle, \left|a'\right\rangle &\Leftrightarrow \left\langle a\right|, \left\langle a'\right| \\ \left|a\right\rangle + \left|b\right\rangle &\leftrightarrow \left\langle a\right| + \left\langle b\right| \qquad c \left|a\right\rangle \leftrightarrow c^* \left\langle a\right| \\ c_a \left|a\right\rangle + c_b \left|b\right\rangle &\leftrightarrow c_a^* \left\langle a\right| + c_b^* \left\langle b\right| \end{split}$$

Se define también un producto interno según

$$(\langle \alpha |)(|\beta \rangle) \equiv \langle \alpha \, | \, \beta \rangle$$

que no es otra cosa que un número complejo. Se puede hacer entonces una equivalencia con los vectores estándard del álgebra del siguiente modo

$$ket \sim vector columna \qquad |x\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

bra
$$\sim$$
 vector fila $\langle x| = (1\ 0)$

y habiendo definido esta base escribimos, por ejemplo

$$|a\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} |x\rangle + \frac{1}{\sqrt{2}} |y\rangle$$
$$\langle a \mid x\rangle = \frac{1}{\sqrt{2}} (1\ 1) \begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}}$$

y del mismo modo

$$\left(\frac{1}{\sqrt{2}} \left\langle x \right| + \frac{1}{\sqrt{2}} \left\langle y \right| \right) (\left| x \right\rangle) = \frac{1}{\sqrt{2}}.$$

La trasposición opera como en álgebra, transmutando de ket a bra y viceversa.

$$\hat{x}' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad (\hat{x}')^\dagger = \frac{1}{\sqrt{2}} (1 \ 0)$$

El producto interno tiene las siguientes propiedades:

- 1. $\langle \beta \mid \alpha \rangle = \langle \beta \mid \alpha \rangle^*$ luego $\langle \alpha \mid \alpha \rangle \in \mathbb{R}$
- 2. $\langle \alpha \mid \alpha \rangle \geq 0$ métrica definida positiva
- 3. $\langle \alpha | \beta \rangle = \langle \beta | \alpha \rangle = 0 \Leftrightarrow |\alpha \rangle \perp |\beta \rangle$
- 4. $\langle \tilde{\alpha} | \tilde{\alpha} \rangle = 1$ con $|\tilde{\alpha}\rangle = \frac{1}{\sqrt{\langle \alpha | \alpha \rangle}} |\alpha\rangle$ todo ket no nulo es normalizable

La primera propiedad busca que podamos darle significado probabilístico. El producto $\langle \alpha \, | \, \alpha \rangle$ da la norma al cuadrado.

EJEMPLO 2.1 Veamos que el estado de spin S_x^+ está normalizado

Para ello escribimos su expresión en términos de los estados S_z y aplicamos dual conjugado. Luego,

$$\begin{split} \left\langle S_x; + \mid S_x; + \right\rangle &= \left(\frac{1}{\sqrt{2}} \left\langle S_z; + \right| + \frac{1}{\sqrt{2}} \left\langle S_z; - \right| \right) \left(\frac{1}{\sqrt{2}} \left| S_z; + \right\rangle + \frac{1}{\sqrt{2}} \left| S_z; - \right\rangle \right) \\ \left\langle S_x, + \mid S_x, + \right\rangle &= \frac{1}{\sqrt{2}} \left\langle S_z; + \mid S_z; + \right\rangle + \frac{1}{\sqrt{2}} \left\langle S_z; + \mid S_z; - \right\rangle + \frac{1}{\sqrt{2}} \left\langle S_z; - \mid S_z; + \right\rangle + \frac{1}{\sqrt{2}} \left\langle S_z; - \mid S_z; - \right\rangle = 1 \end{split}$$

Recordemos que en la formulación de mecánica cuántica que se utilizó en anteriores cursos, F4, se tenían funciones de onda que se pueden ver como una notación relacionada con kets y bras a través del producto interno.

$$\langle \beta \, | \, \alpha \rangle = \int d^3 x \, \phi_{\beta}^*(\boldsymbol{x}) \, \phi_{\alpha}(\boldsymbol{x})$$

1.2.1 Operadores

A cada observable lo representaremos por un operador. Hay operaradores que no vienen de observables.

$$\hat{A} |\alpha\rangle = |\gamma\rangle$$
 $\langle \alpha | \hat{A} = \langle \gamma |$

un operador sobre un ket da otro ket y sobre un bra da otro bra. Notemos que en este último caso opera a izquierda. Por el momento se trabajará con operadores lineales.

La transformación entre operadores se da con

$$\hat{X} \left| a \right\rangle \Leftrightarrow \left\langle a \right| \hat{X}^{\dagger}$$

donde † (daga) significa el traspuesto conjugado; cambia el sentido hacia donde actúa el operador y conjuga. Se da que si

$$\hat{X} = \hat{X}^{\dagger} \quad \Rightarrow \quad \hat{X} \text{ es hermítico}$$

En mecánica cuántica todos los observables serán representados por operadores hermíticos.

Se dan

- $\hat{X}\hat{Y} \neq \hat{Y}\hat{X}$ no conmutativo
- $\hat{X}(\hat{Y}\hat{Z}) = (\hat{X}\hat{Y})\hat{Z} = \hat{X}\hat{Y}\hat{Z}$ asociativo
- $(XY)^{\dagger} = Y^{\dagger}X^{\dagger}$
- $\hat{0} |\alpha\rangle = 0$ $\forall |\alpha\rangle$; $\hat{0} \equiv \text{operador nulo}$
- $\bullet \ \hat{X}(c_1\left|\alpha\right>+c_2\left|\beta\right>)=c_1\hat{X}\left|\alpha\right>+c_2\hat{X}\left|\beta\right>$

de modo que en cuántica los observables se representan mediante operadores hermíticos.

1.2.2 Sandwichs

Coloquialmente encerrar un operador operando sobre un ket (bra) con un bra (ket). Se obtiene un escalar

$$\langle \beta \, | \, X \, | \, \alpha \rangle = (\langle \beta |)(X \, | \alpha \rangle) = \langle \beta \, | \, \gamma \rangle = \langle \gamma \, | \, \beta \rangle^* = (\langle \alpha \, | \, X \, | \, \beta \rangle)^*$$

donde usamos que $|\gamma\rangle$ es un ket y por dual conjugado $\langle\gamma|=\langle\alpha|\,\hat{X}^\dagger$ y extraemos como conclusión

$$\langle \beta \mid X \mid \alpha \rangle = (\langle \alpha \mid X \mid \beta \rangle)^*,$$

y de manera equivalente

$$\langle \beta \, | \, X \, | \, \alpha \rangle = (\langle \beta | \, X^{\dagger})(|\alpha \rangle) = \langle \Gamma \, | \, \alpha \rangle = \langle \alpha \, | \, \Gamma \rangle^* = (\langle \alpha \, | \, X^{\dagger} \, | \, \beta \rangle)^*$$

donde usamos que $\langle \Gamma |$ es un bra y por dual conjugado $|\Gamma \rangle = \hat{X} |\beta \rangle$. El formalismo parece ser consistente. El operador opera sobre un ket/bra y multiplica al otro.

Las mediciones se pensarán como proyectar sobre autoestados.

1.2.3 Producto externo

Es un nuevo tipo de producto entre vectores.

$$|\beta\rangle \langle \alpha| \equiv (|\beta\rangle)(\langle \alpha|)$$
$$(|\beta\rangle \langle \alpha|) |\gamma\rangle = |\beta\rangle \langle \alpha| |\gamma\rangle = \langle \alpha| |\gamma\rangle |\beta\rangle,$$

de modo que es un operador pues al aplicar sobre un ket obtengo otro ket (notemos que $\langle \alpha | \gamma \rangle$ es un escalar). Podemos pensar que

$$\Lambda_{\alpha} \equiv |\alpha\rangle \langle \alpha|$$

es un nuevo operador, el proyector, que actúa rotando un $|\gamma\rangle$ en la dirección de $|\beta\rangle.$ Notemos

$$\Lambda_{\alpha}^{2} = |\alpha\rangle \langle \alpha| |\alpha\rangle \langle \alpha| = |\alpha\rangle \langle \alpha| = \Lambda_{\alpha}$$

puesto que $\langle \alpha | \alpha \rangle = 1$, de manera que aplicar dos veces un proyector no cambia nada. El proyector Λ_{α} sobre un ket $|\beta\rangle$ selecciona la parte de $|\beta\rangle$ en la dirección de $|\alpha\rangle$. Nos dice cuanto de $|\beta\rangle$ está en la dirección de $|\alpha\rangle$. Luego,

$$\sum_{i}^{N} \Lambda_{i} = \sum_{i}^{N} |i\rangle\langle i| = 1$$

la suma de todos los proyectores del espacio en el que estamos es la identidad de ese espacio. Decimos que $\{|i\rangle\}$ es un conjunto completo.

EJEMPLO 2.2 Traspuesto de un producto externo

Queremos ver que si $X=|\beta\rangle\langle\alpha|$, entonces $X^{\dagger}=|\alpha\rangle\langle\beta|$. Hacemos operar sobre estados arbitrarios, y sabiendo que valen

$$\left\langle a\,|\,X\,|\,b\right\rangle = \left\langle b\,|\,X^{\dagger}\,|\,a\right\rangle^{*} \qquad \qquad \left\langle a\,|\,X\,|\,b\right\rangle^{*} = \left\langle b\,|\,X^{\dagger}\,|\,a\right\rangle$$

se tiene, reemplazando la definición de X,

$$\left\langle a\left|\left(\left|eta
ight
angle \left\langle lpha
ight|
ight)\left|b
ight
angle ^{st}=\left\langle b\left|\left(\left|eta
ight
angle \left\langle lpha
ight|
ight)^{\dagger}\left|a
ight
angle$$

$$\left\langle a \mid \beta \right\rangle^* \left\langle \alpha \mid b \right\rangle^* = \left\langle \beta \mid a \right\rangle \left\langle b \mid \alpha \right\rangle = \left\langle b \mid \alpha \right\rangle \left\langle \beta \mid a \right\rangle = \left\langle b \mid (|\beta\rangle \left\langle \alpha |) \mid a \right\rangle$$

y comparando este último resultado con el de la línea anterior, vemos que se verifica

$$|\alpha\rangle\langle\beta|=(|\beta\rangle\langle\alpha|)^{\dagger}.$$

EJEMPLO 2.3 Ejemplo sencillo 2D

Consideramos versores en el plano, vectores columna,

$$\hat{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad \hat{Y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

que en sus versiones dagueadas pasan a ser vectores fila

$$\hat{X}^\dagger = (1\ 0) \qquad \qquad \hat{Y}^\dagger = (0\ 1)$$

Luego, los productos que podemos hacer corresponden a las operaciones matriciales de vector por vector, resultando en número o matriz dependiendo del orden

$$\hat{X}^\dagger \hat{X} = (1\ 0) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \qquad \hat{X} \hat{X}^\dagger = \begin{pmatrix} 1 \\ 0 \end{pmatrix} (1\ 0) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

donde instamos al lector a que note la diferencia de dimensión en los resultados. En la notación de Dirac estos versores serían $|x\rangle$, $|y\rangle$ y sus correspondientes bras. Luego,

$$\langle x | x \rangle = \langle y | y \rangle = 1,$$
 $\langle x | y \rangle = \langle y | x \rangle = 0$

y las matrices serían los provectores

$$P_x \equiv \left| x \right\rangle \left\langle x \right|, \qquad \qquad P_y \equiv \left| y \right\rangle \left\langle y \right|.$$

Para un estado arbitrario $|\alpha\rangle = \alpha_x |x\rangle + \alpha_y |y\rangle$, si uso el proyector P_x se tendrá

$$P_x |\alpha\rangle = (|x\rangle \langle x|)(\alpha_x |x\rangle + \alpha_y |y\rangle)$$

$$P_{x}\left|\alpha\right\rangle = \alpha_{x}\left|x\right\rangle\left\langle x\left|\,x\right\rangle + \alpha_{y}\left|x\right\rangle\left\langle x\left|\,y\right\rangle = \alpha_{x}\left|x\right\rangle.$$

Del mismo modo se obtiene $P_y | \alpha \rangle = \alpha_y | y \rangle$. Si sumo ambos proyectores obtengo la identidad

$$\left(P_x+P_y\right)|\alpha\rangle\equiv I\left|\alpha\right\rangle=|\alpha\rangle\,,$$

y vemos que la identidad no hace nada.

Los kets $|\alpha\rangle$ viven en un espacio vectorial de Hilbert con dimensión N, donde N lo dicta el número de posibles estados de cada sistema físico. Una partícula de spín 1/2 sólo tiene dos estados: up y down.

Hay otro producto más, entre dos bras o dos kets, que se llama producto tensorial y se representa como

$$|\alpha\rangle\otimes|\beta\rangle$$
 $\langle\alpha|\otimes\langle\beta|$

que es un producto entre kets de espacios de Hilbert diferentes; el resultado no es ni un bra ni un ket. Digamos que es una notación.

$$\langle \alpha \mid \beta \rangle^* \equiv DC\{|\beta\rangle\}DC\{\langle \alpha |\}$$

1.3 Bases

Dado un sistema físico representado por un espacio vectorial \mathcal{H} de dimensión N existirá una base (también de dimensión N) que será un conjunto de estados tal que cualquier estado de ese sistema físico puede representarse como combinación lineal de ese conjunto,

$$\{|i\rangle\}$$
 base $\Rightarrow |\alpha\rangle = \sum_{i}^{N} c_i |i\rangle$

siendo $|\alpha\rangle$ un estado cualquiera. Es práctico utilizar bases ortonormales,

$$\langle i \, | \, j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

que es la delta de Kronecker.

Así, los kets se definen normalizados, dado un ket

$$|\phi\rangle = a|1\rangle + b|2\rangle + c|3\rangle$$

se lo normaliza con

$$|\psi\rangle = \frac{1}{\langle \phi \, | \, \phi \rangle} \, |\phi\rangle$$

lo que significa que

$$|\psi\rangle = a'|1\rangle + b'|2\rangle + c'|3\rangle$$
 $|a'|^2 + |b'|^2 + |c'|^2 = 1$

Si tenemos un ket normalizados, $|\phi\rangle=a\,|1\rangle+b\,|2\rangle$ y su bra $\langle\phi|=a^*\,\langle1|+b^*\,\langle2|,$ entonces

$$\langle \phi \mid \phi \rangle = (a^* \langle 1 \mid + b^* \langle 2 \mid) (a \mid 1) + b \mid 2 \rangle) =$$

$$a^* a \langle 1 \mid 1 \rangle + b^* a \langle 2 \mid 1 \rangle + a^* b \langle 1 \mid 2 \rangle + b^* b \langle 2 \mid 2 \rangle = |a|^2 + |b|^2 = 1$$

1.3.1 Autokets y autovalores

Si $\hat{A}|a\rangle = c|a\rangle$ entonces $|a\rangle$ es autoket de \hat{A} con autovalor c. Se suelen etiquetar los autoestados $|a'\rangle$, $|a''\rangle$ de modo que

$$\hat{A} |a'\rangle = a' |a'\rangle$$

lo cual lleva al problema espectral

$$\left(\hat{A} - a'\mathbb{1}\right)|a'\rangle = 0$$

entonces los operadores tendrán representación matricial, que cambiará según la base utilizada. Vamos viendo que en general sólo se sabe cómo opera un operador sobre kets. La operación sobre los bras la obtenemos usando dual conjugado.

Lo siguiente debiera ser amparado por un título como "propiedades de operadores hermíticos".

Deducimos entonces que

- 1. Los autovalores de un operador hermítico son reales y los autokets correspondientes a diferentes autovalores son ortogonales.
- 2. Los autokets de un operador son base completa del espacio de kets.

Como ejemplo de A citemos

$$A | a' \rangle = a' | a' \rangle$$
 DC $\langle a' | A^{\dagger} = \langle a' | A = \langle a' | a'^* \rangle$

de manera que

$$\begin{split} \langle a' \mid A \mid a' \rangle &= \langle a' \mid (A \mid a' \rangle) = a' \\ (\langle a' \mid A \mid a' \rangle)^* &= (\langle a' \mid) (A \mid \mid a' \rangle)^* = (\langle \mid a' \mid A^{\dagger}) (\mid a' \rangle) \\ &= \langle a' \mid A \mid a' \rangle = a' \qquad \Rightarrow \quad a' = a'^*. \end{split}$$

Me gusta más la otra forma, que es meter otro a'' así

$$\langle a'' \mid A \mid a' \rangle = a' \langle a'' \mid a' \rangle \qquad \qquad \langle a'' \mid A^{\dagger} \mid a' \rangle = a''^* \langle a'' \mid a' \rangle$$

de manera que como

$$(a' - a''^*) \langle a'' \mid a' \rangle = 0,$$

si $|a'\rangle = |a\rangle$ entonces $a' = a'^*$ y los autovalores son reales. En cambio si $|a'\rangle \neq |a''\rangle$ se tiene $a'\neq a''$ entonces $\langle a''|a'\rangle = 0$ y los autoestados del operador son perpendiculares. Ya está abajo esto.

Para el caso de B se postula así. Si esto vale entonces

$$\left|\alpha\right\rangle = \sum_{i}^{N}\left|a_{i}\right\rangle\left\langle a_{i}\right|\left|\alpha\right\rangle = \sum_{i}^{N}c_{i}\left|a_{i}\right\rangle = \mathbb{1}\left|\alpha\right\rangle$$

pues

$$\langle \alpha \, | \, \alpha \rangle = \sum_{i,j}^N \left\langle a_j \, | \, c_j^* c_i \, | \, a_i \right\rangle = \sum_i^N |c_i|^2 = 1$$

y además

$$A\left|a'\right\rangle = a'\left|a'\right\rangle \qquad A\left|a''\right\rangle = a''\left|a''\right\rangle \Rightarrow A(\left|a'\right\rangle - \left|a''\right\rangle) = a'\left|a'\right\rangle - a''\left|a''\right\rangle$$

$$\langle a'' \mid A \mid a' \rangle = a' \langle a'' \mid a' \rangle$$
 $\langle a' \mid A \mid a'' \rangle = a'' \langle a' \mid a'' \rangle$

y ahora conjugando

$$\langle a'' \mid A \mid a' \rangle^* = a' \langle a'' \mid a' \rangle^* \qquad \langle a'' \mid A \mid a' \rangle = a'' \langle a'' \mid a' \rangle$$

donde usamos que $a''^* = a''$ y restando

$$(a' - a'') \langle a'' | a' \rangle = 0$$
 $\Rightarrow \langle a'' | a' \rangle = 0$ si $a' \neq a''$

O sea, hemos probado que los autovectores correspondientes a diferentes autovalores son ortogonales.

1.3.2 Combinación lineal de autoestados

Podemos escribir

$$\langle a'' \mid a' \rangle = \delta_{a'a''}$$

que es la delta de Kronecker. Postulo que forman una base completa, y que un estado $|\alpha\rangle$ se puede escribir en función de la base $|a_i\rangle$ de esta forma

$$|\alpha\rangle = \sum_{a'} C_{a'} |a'\rangle$$
.

Ahora quisiéramos ver quién es el coeficiente $C_{a'}$. Para ello multiplicamos por un bra arbitrario

$$\langle a_j | \alpha \rangle = \sum_{i=1}^{N} C_i \underbrace{\langle a_j | a_i \rangle}_{\delta_{ij}} = C_j,$$

de modo que es

$$|\alpha\rangle = \sum_{i=1}^{N} |a_i\rangle \langle a_i \,|\, \alpha\rangle = \sum_{i=1}^{N} \langle a_i \,|\, \alpha\rangle \ |a_i\rangle$$

o bien, en términos del operador Λ [?],

$$|\alpha\rangle = \left(\sum_{i=1}^{N} |a_i\rangle \left\langle a_i|\right) |\alpha\rangle$$

de modo que si la base es completa debe ser

$$\sum_{i=1}^{N} |a_i\rangle \left\langle a_i | \equiv \mathbb{1}.\right.$$

Todos estos resultados surgen de suponer que los autoestados son una base completa. Es análogo a la proyección de un vector en un sistema coordenado: $V = \sum_i (V \cdot \hat{e}_i) \hat{e}_i$.

Asimismo, considerando la normalización de estados

$$\left\langle \alpha \,|\, \alpha \right\rangle = 1 = \left\langle \alpha |\sum_{a'} |a'\rangle \left\langle a' \,|\, \alpha \right\rangle = \sum_{a'} \left\langle \alpha \,|\, a'\right\rangle \left\langle a' \,|\, \alpha \right\rangle$$

o bien

$$\langle \alpha \, | \, \alpha \rangle = 1 = \sum_{a'} C_{a'}^* C_{a'} = \sum_{a'} |C_{a'}|^2.$$

1.3.3 Operadores y matrices

Un operador se puede representar matricialmente como

$$X = \sum_{a'}^{N} \sum_{a''}^{N} \left| a'' \right\rangle \left\langle a'' \right| X \left| a' \right\rangle \left\langle a' \right| = \sum_{a'}^{N} \sum_{a''}^{N} (\left\langle a'' \mid X \mid a' \right\rangle) \left| a'' \right\rangle \left\langle a' \right|$$

donde hemos explotado el hecho de que en el medio aparece un escalar (?), siendo

$$X_{ij} = \left\langle a_i \, \middle| \, X \, \middle| \, a_j \right\rangle$$

un elemento de matriz. Y notemos que $|a''\rangle\langle a'|$ es un ente de $N\times N$. Si la base es de dimensión 3 se tendrá por ejemplo,

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

de manera que existe una identificación entre cosas del álgebra básica y este mundo de operadores y estados. Si X es hermítico por ejemplo, entonces su matriz es simétrica conjugada.

$$\left\langle a_{i}\left|X\right|a_{j}\right\rangle ^{*}=\left(\left\langle a_{j}\right|X^{\dagger}\right)\left(\left|a_{i}\right\rangle \right)=\left\langle a_{j}\left|X\right|a_{i}\right\rangle$$

y entonces

$$\langle a_j | X | a_i \rangle^* = \langle a_i | X | a_j \rangle$$

de modo que

$$X_{ji}^* = X_{ij} \qquad X_{ij}^{t*} = X_{ij} \qquad X_{ij}^\dagger = X_{ij}$$

y vemos bien el significado de daguear. En este caso la matriz tiene traza real y seis elementos independientes

$$X = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{12}^* & X_{22} & X_{23} \\ X_{13}^* & X_{23}^* & X_{33} \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix} = \begin{pmatrix} X_{11}^* & X_{21}^* & X_{31}^* \\ X_{12}^* & X_{22}^* & X_{32}^* \\ X_{13}^* & X_{12}^* & X_{33}^* \end{pmatrix}$$

La traza será

$$\operatorname{tr} (A) = \sum_{i=1}^{N} \langle a_i | A | a_i \rangle.$$

1.3.4 Cambio de base

Para cambiar de base metemos un uno (1) escrito como suma de proyectores,

$$X\left|b_{j}\right\rangle = \mathbb{1}\left|X\left|b_{j}\right\rangle = \sum_{i=1}^{N}\left|a_{i}\right\rangle\left\langle a_{i}\left|X\right|b_{j}\right\rangle = \sum_{i=1}^{N}C_{ij}\left|a_{i}\right\rangle$$

siendo C_{ij} la matriz del cambio de base. Se puede escribir

$$\left|b_{j}\right\rangle = \sum_{i=1}^{N} \left|a_{i}\right\rangle \left\langle a_{i} \left|b_{j}\right\rangle \right|$$

y se ve que $\langle a_i | b_j \rangle$ son los elementos de la matriz que cambia de base.

EJEMPLO 3.1 Ejercicio 2

Tenemos la base $\{|+\rangle\,, |-\rangle\},$ o sea un espacio de Hilbert de dimensión 2. Se considera ortonormal de manera que

$$\langle + | + \rangle = \langle - | - \rangle = 1$$
 $\langle + | - \rangle = 0$

Luego, se tiene

$$S_{x}=\frac{\hbar}{2}(\left.\left|+\right\rangle \left\langle -\right|+\left|-\right\rangle \left\langle +\right|\right.)$$

Los elementos de matriz serán

$$(S_x)_{11} = \left\langle + | \left(S_x \right) | + \right\rangle = \frac{\hbar}{2} \left\langle + | \left(\left| + \right\rangle \left\langle - \right| + \left| - \right\rangle \left\langle + \right| \right) | + \right\rangle = 0,$$

dado que ambos miembros dan $\langle + | - \rangle$. Asimismo,

$$S_x\left|+\right\rangle = \frac{\hbar}{2}(\left|+\right\rangle\left\langle-\right|+\left|-\right\rangle\left\langle+\right|)\left|+\right\rangle = \frac{\hbar}{2}\left|-\right\rangle$$

у

$$S_x \left| - \right\rangle = rac{\hbar}{2} \left| + \right\rangle.$$

Matricialmente

$$S_x = \frac{\hbar}{2} \, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

de manera que

$$S_x \left| + \right\rangle = \frac{\hbar}{2} \, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\hbar}{2} \, \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

EJEMPLO 3.2 Ejercicio 6

Tenemos un espacio de kets generado por $\{|a'\rangle\}$ ortogonales, siendo Ahermítico, de manera que los ason reales.

i) Queremos probar que $\Pi_{a'}(A-a'\mathbb{1})$ es el operador nulo. Luego, supongamos que

$$\Pi_{a'}(A - a'\mathbb{1}) \equiv O$$

y entonces verificará

$$\langle a' \mid O \mid a'' \rangle = O_{a'a''} = 0.$$

Tomemos

$$\Pi_{a'}(A-a'\mathbb{1})\left|a''\right\rangle = \Pi_{a'}A\left|a''\right\rangle - a\mathbb{1}\left|a''\right\rangle = \Pi_{a'}(\left|a''\right\rangle + a')\left|a''\right\rangle$$

pero lo que opera sobre el ket es nulo.

Por otra parte, como $(A - a_n \mathbb{1}) |a''\rangle$ se puede escribir

$$(A-a_{n_2}\mathbb{1})(A-a_{n_1}\mathbb{1})\left|a''\right\rangle(a''-a_n)$$

y sigue pasadno de modo que al final se obtiene

$$|a''\rangle \prod_{a'} (a''-a').$$

ii) Y ahora, qué significa el siguiente operador

$$\Pi_{a' \neq a''} \frac{(A - a'' \mathbb{1})}{(a' - a'')}$$

Aplicamos a un ket $|a\rangle$,

$$\Pi_{a'\neq a''}\frac{(A-a''\mathbb{1})}{(a'-a'')}\left|a\right\rangle = \Pi_{a'\neq a''}\frac{(a-a'')}{(a'-a'')}\left|a\right\rangle$$

y será nulo sí y sólo si $a \neq a''$, de manera que es una construcción de la delta de Kronecker,

$$\Pi_{a'\neq a''}\frac{(A-a''\mathbb{1})}{(a'-a'')}=\delta_{aa'}|a'\rangle$$

Es un proyector de todos los elementos en $|a'\rangle$ lo que siempre da cero para los de la base salvo cuando es a'=a.

EJEMPLO 3.3 Ejercicio 8

Consideramos $\mathbf{S} \cdot \hat{n}$ donde $\mathbf{S} = (S_x, S_y, S_z)$ o sea un vector de operadores y el versor es el usual de esféricas en términos de los ángulos.

$$\hat{n} = (\sin \beta \cos \alpha, \sin \beta \sin \alpha, \cos \beta).$$

EJEMPLO 3.4 Ejercicio 11

Consideremos la matriz M hermítica y la base $\{|1\rangle, |2\rangle, |3\rangle\}$ que tendrá por ello autovalores relaes y autovectores ortogonales.

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Los autovalores saldrán de

$$\left|\frac{1}{\sqrt{2}}\begin{pmatrix} -\lambda & 1 & 0\\ 1 & -\lambda & 1\\ 0 & 1 & -\lambda \end{pmatrix}\right| = -\lambda(\lambda^2 - 1) = 0$$

que dará $\lambda = 0, 1, -1$. Los autovectores salen de resolver

$$\begin{pmatrix} 0 & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} v_1^{(1)} \\ v_2^{(1)} \\ v_3^{(1)} \end{pmatrix} = 0$$

y haciendo $v_2^{(1)}=0$ se tiene $v_1^{(1)}=-v_3^{(1)}$ y luego

$$v^{(1)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

con $\left\langle v^{(1)} \left| \, v^{(1)} \right\rangle = 1$ y así siguiendo con los otros vectorcillos, resulta

$$A = \left[v^{(1)}v^{(2)}v^{(3)}\right] = \begin{pmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

1.3.5 Representación diagonal

Un operador tiene representación diagonal cuando está representado en la base de sus autokets

$$A = \sum_{i}^{N} \sum_{j}^{N} |a_{i}\rangle \langle a_{i} | A | a_{j}\rangle \langle a_{j} | = \sum_{i}^{N} \sum_{j}^{N} a_{j} |a_{i}\rangle \langle a_{i} | a_{j}\rangle \langle a_{j} | = \sum_{i}^{N} \delta_{ij} a_{j} |a_{i}\rangle \langle a_{j} | = \sum_{i}^{N} a_{i} \mathbb{1}$$

$$\langle a_{1} \quad 0 \quad \dots \quad 0 \rangle$$

$$A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & a_n \end{pmatrix}$$

y $a_1, a_2, ..., a_n$ son sus autovalores. Es destacable que es conveniente utilizar como bases los autoestados de ciertos operadores.

1.3.6 Representaciones canónicas

Podemos representar una base como vectores canónicos

$$|a_1\rangle = \begin{pmatrix} 1 \\ 0 \\ . \\ . \\ N \end{pmatrix} \qquad |a_1\rangle = \begin{pmatrix} 0 \\ 1 \\ . \\ . \\ N \end{pmatrix} \qquad |a_n\rangle = \begin{pmatrix} 0 \\ 0 \\ . \\ . \\ 1 \end{pmatrix}$$

luego

$$\begin{split} |\alpha\rangle = \sum_{i} |a_{i}\rangle \, \langle a_{i} \, | \, \alpha\rangle = \langle a_{1} \, | \, \alpha\rangle \begin{pmatrix} 1 \\ 0 \\ . \\ . \\ N \end{pmatrix} + \langle a_{2} \, | \, \alpha\rangle \begin{pmatrix} 0 \\ 1 \\ . \\ . \\ N \end{pmatrix} + ... + \langle a_{n} \, | \, \alpha\rangle \begin{pmatrix} 0 \\ 0 \\ . \\ . \\ 1 \end{pmatrix} = \begin{pmatrix} \langle a_{1} \, | \, \alpha \rangle \\ \langle a_{2} \, | \, \alpha \rangle \\ ... \\ \langle a_{n} \, | \, \alpha \rangle \end{pmatrix} \end{split}$$

y por DC se tiene

$$\langle \alpha | = (\langle \alpha | a_1 \rangle \quad \langle \alpha | a_2 \rangle \quad \dots \quad \langle \alpha | a_n \rangle)$$

У

$$\langle \alpha \, | \, \alpha \rangle = 1 = \overbrace{\hspace{1cm}}^{1 \times N} \overbrace{\hspace{1cm}}^{N \times 1} = \square$$

que es un escalar. El producto entre otros dos estados arbitrarios

$$\langle \beta \mid \alpha \rangle = \langle \beta \mid a_i \rangle \langle a_i \mid \alpha \rangle = \sum_{i}^{N} \langle \beta \mid \underbrace{|a_i \rangle \langle a_i|}_{\Lambda_{a_i}} |\alpha \rangle = \square$$

otra vez un escalar.

Para un operador X se tiene la siguiente representación

$$X = \sum_{i}^{N} \sum_{j}^{N} \left| a_{i} \right\rangle \left\langle a_{i} \left| X \right| a_{j} \right\rangle \left\langle a_{j} \right| = \sum_{i}^{N} \sum_{j}^{N} \left\langle a_{i} \left| X \right| a_{j} \right\rangle \left| a_{i} \right\rangle \left\langle a_{j} \right|$$

y esto último es una matriz. Aquí el \hat{X} es una matriz y $\left\langle a_i \left| \hat{X} \right| a_j \right\rangle \equiv X_{ij}$ son sus elementillos (escalares). En conclusión,

$$X = \sum_{i}^{N} \sum_{j}^{N} X_{ij} |a_{i}\rangle \langle a_{j}|,$$

donde

$$\left|a_{i}\right\rangle \left\langle a_{j}\right|=\begin{pmatrix}0\\ \dots\\1\\ \dots\\0\end{pmatrix}\left(\begin{array}{c}0....1....0\end{array}\right).$$

Para un operador que actúa sobre un estado, dando otro estado, se tiene

$$\langle a_i \mid \gamma \rangle = \langle a_i \mid X \mid \alpha \rangle = \sum_{a_i} \langle a_i \mid X \mid a_j \rangle \langle a_j \mid \alpha \rangle$$

que es el producto de una matriz por un vector

$$\begin{pmatrix} \langle a_1 \, | \, \gamma \rangle \\ \dots \\ \dots \\ \dots \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} & \dots \\ X_{21} & X_{22} & \dots \\ \dots \\ \dots \end{pmatrix} \begin{pmatrix} \langle a_1 \, | \, \alpha \rangle \\ \dots \\ \dots \end{pmatrix}$$

Para el producto externo será

$$|\beta\rangle\langle\alpha| = \sum_{a',a''} |a''\rangle\langle a'' |\beta\rangle\langle\alpha|a'\rangle\langle a'|$$

y este producto de brakets es la versión matricial del operador

$$\begin{pmatrix} \langle a_1 \mid \beta \rangle \, \langle a_1 \mid \alpha \rangle^* & \langle a_1 \mid \beta \rangle \, \langle a_2 \mid \alpha \rangle^* & \dots \\ \langle a_2 \mid \beta \rangle \, \langle a_1 \mid \alpha \rangle^* & \langle a_2 \mid \beta \rangle \, \langle a_2 \mid \alpha \rangle^* & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

En la base en la cual un operador es diagonalizable resulta sencilla su matriz:

$$A = \sum_{a',a''} \left| a'' \right\rangle \left\langle a'' \left| A \right| a' \right\rangle \left\langle a' \right| = \sum_{a'} a' \left| a' \right\rangle \left\langle a' \right| = \sum_{a'} a' \Lambda_{a'},$$

en términos del proyector.

Los elementos usados en el formalismo (bras, kets, etc.) pueden pensarse como vectores (fila o columna) y matrices.

1.4 Sistemas de spín 1/2

Hay dos estados posibles de spin,

$$|S_z;+\rangle = |S_z = \hbar/2\rangle \equiv |+\rangle \qquad \qquad |S_z;-\rangle = |S_z = -\hbar/2\rangle \equiv |-\rangle$$

de manera que la dimensión del espacio vectorial es 2. Entonces, la identidad será

$$\mathbb{1} = \left| + \right\rangle \left\langle + \right| \; + \; \left| - \right\rangle \left\langle - \right|$$

Luego, en la representación de S_z se tiene

$$S_z\left|+\right\rangle = \frac{\hbar}{2}\left|+\right\rangle \qquad \qquad S_z\left|-\right\rangle = \frac{\hbar}{2}\left|-\right\rangle,$$

Acá hay que diseñar unos +,- que habiten dentro de los brakets pues estos se ven feo. que viene de que el operador es

$$S_z = \frac{\hbar}{2} \left(\; |+\rangle \left< +| \; - \; |-\rangle \left< -| \; \right>. \right.$$

Luego,

$$S_{+} \equiv \hbar \left| + \right\rangle \left\langle + \right| \qquad S_{-} \equiv \hbar \left| - \right\rangle \left\langle - \right|$$

donde $S_{-}=S_{+}^{\dagger}$ son operadores de subida y de bajada. que actuarán subiendo/bajando el spin o dando el ket nulo. Así,

$$S_{+}\left|-\right\rangle = \hbar\left|+\right\rangle \qquad \qquad S_{-}\left|+\right\rangle = \hbar\left|-\right\rangle \qquad \qquad S_{+}\left|+\right\rangle = S_{-}\left|-\right\rangle = 0$$

En la representación vectorial serán

$$|+\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} \qquad \qquad |-\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix}$$

de manera que los proyectores

$$\Lambda_{+} = \left| + \right\rangle \left\langle + \right| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Lambda_- = \left| - \right\rangle \left\langle - \right| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

luego

$$\Lambda_+ + \Lambda_- = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Los operadores \pm serán

$$S_+ = \hbar \begin{pmatrix} 1 \\ 0 \end{pmatrix} (0 \ 1) = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \qquad S_- = \hbar \begin{pmatrix} 0 \\ 1 \end{pmatrix} (1 \ 0) = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

de modo que

$$S_+ \left| - \right\rangle = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \hbar \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hbar \left| + \right\rangle.$$

Finalmente,

$$|S_x;\pm\rangle = \frac{1}{\sqrt{2}} \left(|S_x;+\rangle \pm |S_x;-\rangle \right).$$

1.4.1 Cambio de base

Dados dos conjuntos $\{|a'\rangle\}, \{|b'\rangle\}$ base ortonormales y completos existe un \widehat{U} unitario tal que :

$$U^+U = UU^+ = 1$$
 con $|b_i\rangle = U|a_i\rangle$

Este operador de cambio de base será

$$U = \sum_{\ell} |b_{\ell}\rangle \left\langle a_{\ell} \right|$$

y actuando sobre un elemento de la base a,

$$U\left|a_{i}\right\rangle = \sum_{\ell}\left|b_{\ell}\right\rangle\left\langle a_{\ell}\left|\right.a_{i}\right\rangle = \left|b_{i}\right\rangle$$

Este operador U cumple la función de pasar entre bases

$$\underline{\underline{|a_\ell\rangle}}$$
 \longrightarrow $\underline{\underline{|b_\ell\rangle}}$ vieja base nueva base

o bien

$$|\text{nueva base}\rangle = U |\text{vieja base}\rangle$$
.

Notemos que

$$UU^{\dagger} = \sum_{k,\,\ell} \left| a^k \right\rangle \left\langle b^k \, \right| b^\ell \right\rangle \left\langle a^\ell \right| = \sum_k \left| a^k \right\rangle \left\langle a^k \right| = \mathbb{1}$$

donde del segundo al tercer miembro se pasa por la ortogonalidad de la base b.

Veamos cómo transforma un ket genérico, usando que

$$\langle a^k | U | a^\ell \rangle = \langle a^k | \sum_j | b^j \rangle \langle a^j | a^\ell \rangle = \langle a^k | b^\ell \rangle.$$

Un ket arbitrario se escribirá como una combinación lineal de la base a, es decir,

$$|\alpha\rangle = \sum_{\alpha'} |a'\rangle \langle a' | \alpha\rangle$$

de modo que

$$\left\langle b_k \,|\, \alpha \right\rangle = \sum_{\ell} \left\langle b_k \,|\, a_\ell \right\rangle \left\langle a_\ell \,|\, \alpha \right\rangle = \sum_{\ell} \left\langle a_k \,|\, U^+ \,|\, a_\ell \right\rangle \left\langle a_\ell \,|\, \alpha \right\rangle = \left\langle a_k \,|\, U^+ \,|\, \alpha \right\rangle$$

e identificamos

$$\left\langle b^{k}\,\middle|\,a^{\ell}\right\rangle =\left\langle a_{k}\,\middle|\,U^{+}\,\middle|\,a_{\ell}\right\rangle$$

que nos convierte de

$$|\text{nueva base}\rangle = U^{\dagger} |\text{vieja base}\rangle.$$

Esta es la relación consistente con la anterior en términos de U [?].

Por otra parte, considerando otro operador X

$$\left\langle b_{i} \, \big| \, X \, \big| \, b_{j} \right\rangle = \sum_{\ell \, m} \left\langle b_{i} \, \big| \, a_{\ell} \right\rangle \left\langle a_{\ell} \, \big| \, X \, \big| \, a_{m} \right\rangle \left\langle a_{m} \, \big| \, b_{j} \right\rangle,$$

o bien,

$$\left\langle b_{i} \left| X \right| b_{j} \right\rangle = \sum_{\ell,m} \left\langle a_{i} \left| U^{+} \right| a_{\ell} \right\rangle \left\langle a_{\ell} \left| X \right| a_{m} \right\rangle \left\langle a_{m} \left| U \right| a_{j} \right\rangle$$

lo cual implica que

$$X_{|b\rangle}=U^{+}X_{|a\rangle}U,$$

que es una transformación de similaridad.

En matrices se puede poner como:

$$X'_{kl} = U^{\dagger}_{km} X_{mn} U_{nl}.$$

1.4.2 Mediciones y probabilidades

En mecánica cuántica medir es filtrar; de todos los autoestados posibles se selecciona uno de ellos. La medición perturba al sistema. Se miden variables dinámicas asociadas a observables. Como los autoestados de un observable \hat{A} son una base completa $\{|a_i\rangle\}$ entonces un sistema se hallará en una combinación lineal de autoestados de \hat{A} , o al menos eso puede pensarse.

antes de medir	Medición de \hat{A}	luego de medir
sistema en CL de autestados de \hat{A}		Salta a un autoestado de \hat{A}
sistema en autoestado de \hat{A}		Continúa en autoestado de \hat{A}

Puede verse pictóricamente la medición así:

$$|\alpha\rangle \longrightarrow |a'\rangle$$

el proceso de medición hace saltar $|\alpha\rangle$ hacia $|a'\rangle$, siendo el resultado de la medida el autovalor a'. Antes de medir no puedo saber a qué estado saltará y tampoco en qué estado se hallaba. Si antes de medir se hallaba en un autoestado, continúa manteniéndose allí

$$|a'\rangle \longrightarrow |a'\rangle$$

Lo que se puede determinar es la probabilidad de que se halle en cierto autoestado a' de acuerdo con

$$\operatorname{Prob}_{|a'\rangle} \equiv |\left\langle a' \,|\, \alpha\right\rangle|^2.$$

Si P=1 se halla en $|a'\rangle$ antes de saltar, si P=0 no se halla en $|a'\rangle$ antes de saltar. Este valor de Prob es mayor igual a cero y se verifica

$$\sum_{a'} \text{Prob}_{a'} = 1$$

si la probabilidad está correctamente normalizada.

Notamos que se puede escribir

$$P = \langle a' \mid \alpha \rangle \langle \alpha \mid a' \rangle = \langle \alpha \mid \Lambda_{a'} \mid \alpha \rangle$$

La base que diagonaliza a un operador es la de sus autoestados.

1.4.3 Valor de expectación

$$\langle \widehat{A} \rangle \equiv \langle \alpha \, | \, A \, | \, \alpha \rangle$$

c el valor de expectación siempre se refiere a un estado en particular.

$$\begin{split} \langle A \rangle &= \sum_{a',a''} \langle \alpha \, | \, a' \rangle \, \langle a' \, | \, A \, | \, a'' \rangle \, \langle a'' \, | \, \alpha \rangle \\ \langle A \rangle &= \sum_{a',a''} \langle \alpha \, | \, a' \rangle \, a'' \delta_{a'a''} \, \langle a'' \, | \, \alpha \rangle = \sum_{a''} a'' | \, \langle \alpha \, | \, a'' \rangle \, |^2 \\ \langle A \rangle &= \sum_{a',a''} = a'' \mathrm{Prob}_{|a''\rangle} \end{split}$$

Esto último tiene el sentido de una especie de promedio ponderado. Hasta repetir el cansancio el experimento el resultado tenderá a este valor de expectación.

1.4.4 Conmutadores

Dados dos operadores A, B, se definen, el conmutador

$$[A, B] \equiv AB - BA,$$

y el anticonmutador

$${A,B} \equiv AB + BA,$$

y se dice que dos observables conmutan si [A, B] = 0. Se dice que son compatibles si [A, B] = 0 y anticompatibles si se da la contrario, $[A, B] \neq 0$.

TEOREMA:

Sean dos observables compatibles y no degenerados, entonces los autoestados $\{|a'\rangle\}$ de A lo son también de B. Es decir que A y B tienen base de autoestados en común.

demostración:

$$\langle a' \mid AB - BA \mid a'' \rangle = 0$$

$$a' \langle a' \mid B \mid a'' \rangle - \langle a' \mid B \mid a'' \rangle \, a'' = (a' - a'') \, \langle a' \mid B \mid a'' \rangle = 0$$

entonces

$$\langle a' \mid B \mid a'' \rangle = 0$$

y B es diagonal en $\{|a'\rangle\}$. Luego, se ve que escribiendo B en términos de esta base y aplicando sobre un estado de la misma

$$B\left|a''\right\rangle = \sum \left|a'\right\rangle \left\langle a'\right| B\left|\left.a'\right\rangle \left\langle a'\right| a''\right\rangle = \left\langle a''\right| B\left|\left.a''\right\rangle \left|a''\right\rangle$$

por lo tanto la base de A diagonaliza a B, pero los autoestados tienen todos sus autovalores diferentes.

Los autoestados son iguales pero no los autovalores; con lo cual se utilizará la notación $|a',b'\rangle$ donde

$$A | a', b' \rangle = a' | a', b' \rangle$$
 $B | a', b' \rangle = b' | a', b' \rangle$

1.4.5 Degeneración

Puede darse que haya varios g autoestados correspondientes a un mismo autovalor a'; entonces se dice que hay degeneración de orden g para el autoestado $|a'\rangle$

$$A |a'\rangle = a' |a'\rangle$$
 ; $i = 1, 2, ..., g$

y A tendrá una matriz de $m \times n$ bloques. En este caso no se puede decir que la base de A diagonalice a B.

Mejorar la matriz que está un asco

$$A = \begin{pmatrix} a'\mathbb{1} & 0 & & \\ 0 & a''\mathbb{1} & & & \\ & & a''' & & \\ & & & a^I V \end{pmatrix}$$

Los $|a_i'\rangle$ no dan información sobre los bloques correspondientes en la matriz de B. Necesito un conjunto de operadores que haga romper la degeneración para expresar unívocamente el estado del sistema. Se llama CCOC. Necesito que conmuten entre sí para que las mediciones tengan sentido. Un Conjunto Completo de Observables que Conmutan.

Si no conmutan entonces son incompatibles; la medición de uno hace saltar al sistema a un autoestado del otro y como no son comunes pierde sentido el concepto de medir. No tiene sentido la medición de algo si por el hecho de medir cambiamos lo que queremos medir. Al ser incompatibles sus mediciones de afectan mutuamente.

Los autovalores de algunos operadores podrán tener degeneración pero una combinación de los autovalores del CCOC, $|a'b'c'...\rangle$, determina el estado de forma única.

Dado un set CCOC, $\{A,B,C,D\}$, se etiquetarán $|K'\rangle \equiv |a'b'c'd'\rangle$ los autoestados, que es una variable colectiva. Se cumplirán

$$\begin{split} \langle K \, | \, K' \rangle &= \delta_{KK'} = \delta_{aa'} \delta_{bb'} ... \\ \sum_{K'} | K' \rangle \, \langle K' | &= \mathbb{1} \end{split}$$

Las únicas cosas que tiene sentido medir en MC son las variables asociadas a operadores en un CCOC.

Sean A,B compatibles sin degeneración, y consideremos la siguiente notación pictórica donde arriba digo qué mido y abajo qué obtengo. Entonces

$$|\alpha\rangle \overset{\text{Mido A}}{\underset{a'}{\longrightarrow}} |a'b'\rangle \overset{\text{Mido B}}{\underset{b'}{\longrightarrow}} |a'b'\rangle \overset{\text{Mido A}}{\underset{a'}{\longrightarrow}} |a'b'\rangle$$

Veo que midiendo alternadamente uno y otro no salgo del autoestado $|K'\rangle$.

En cambio si A,B son compatibles pero con degeneración en el autoestado a' [?] se tiene

$$|\alpha\rangle \overset{\text{Mido A}}{\underset{a'}{\bigoplus}} \sum_{i=1}^g C_{a'}^{(i)} \, |a'b'(i)\rangle \overset{\text{Mido B}}{\underset{b'(j)}{\bigoplus}} C_{a'}^{(j)} \, |a'b'(j)\rangle \overset{\text{Mido A}}{\underset{a'(j)}{\bigoplus}} C_{a'}^{(j)} \, |a'b'(j)\rangle$$

Al medir A y obtener a' no tengo determinado el estado del sistema. Me hallaré en una CL de autoestados correspondientes al autovalor degenerado a'. Al medir luego B selecciono uno de los $|a'b'\rangle$ degenerados, el correspondiente a b'(j) pues B no está degenerado. Puedo volver a medir A pues el autoestado en que ha caído el sistema permanece incólume.

1.4.6 Postulados de la mecánica cuántica

- 1. El estado de un sistema lo definimos con un ket $|\alpha\rangle\in\mathcal{H}$ y con $\langle\alpha\,|\,\alpha\rangle=1$
- 2. Asociamos a propiedades físicas (observables) operadores hermíticos \widehat{A} que operan sobre los ketes. Los autokets $|a\rangle$ verifican :

$$\widehat{A} |a\rangle = a |a\rangle,$$

y $\{|a\rangle\}$ es base del espacio de kets.

3. Al medir una cantidad física representada por el observable \widehat{A} obtenemos un autovalor a'. Luego de medir, el estado del sistema es $|a'\rangle$.

$$\left|\Psi\right\rangle \overset{\text{Mido A}}{\underset{a'}{\longleftrightarrow}} \left|\Psi'\right\rangle = \left|a\right\rangle \left\langle a\right| \left|\Psi\right\rangle = \left(\left\langle a\left|\Psi\right\rangle\right) \left|a\right\rangle$$

hecho al sistema a un autoestado de \widehat{A} . Quizás deba ahora normalizar. $\langle \Psi | \Psi \rangle = 1$ El esquema de arriba representa la frase "proyectar sobre la base de autoestados".

4. Las transformaciones espaciales se generan por \boldsymbol{p}

$$[x_i,p_j]=i\hbar\delta_{ij}$$

5. La evolución temporal la realiza H (el hamiltoniano).

Extrañamente el punto 4 estaba vacío. Raro.

1.4.7 Operador de dispersión

$$\Delta \widehat{A} \equiv \widehat{A} - \langle A \rangle \, \mathbb{1}$$

la dispersión será nula en un autoestados del operador \widehat{A} . Luego la dispersión cualitativamente nos dice "qué tan lejos" del autoestado nos hallamos.

$$\left\langle (\Delta A)^2 \right\rangle = \left\langle (\widehat{A} - \left\langle A \right\rangle \mathbb{1})^2 \right\rangle = \left\langle A^2 - 2A \left\langle A \right\rangle + \left\langle A \right\rangle^2 \right\rangle = \left\langle A^2 \right\rangle - 2A \left\langle A \right\rangle^2 + \left\langle A \right\rangle^2 = \left\langle A^2 \right\rangle - \left\langle A \right\rangle^2$$

y la relación de dispersión generalizada

$$\left\langle (\Delta A)^2 \right\rangle \left\langle (\Delta B)^2 \right\rangle \geq \frac{1}{4} |\left\langle [A,B] \right\rangle|^2$$

1.4.8 Espectro continuo

Hay observables con espectro de autovalores continuo. Nos podemos construir la siguiente tabla para comparar ambos escenarios.

Espectro discreto	Espectro continuo
$A a'\rangle = a' a'\rangle$	$Y\ket{y'}=y'\ket{y'}$
$\mathbb{1} = \sum_{a'}^{N} a'\rangle \left\langle a' \right $	$\mathbb{1} = \int_{-\infty}^{\infty} y'\rangle \langle y' dy'$
$\langle a' a'' \rangle = \delta_{a'a''}$	$\langle y' y'' \rangle = \delta(y' - y'')$
$\sum_{a'}^{N} \langle a' \mid a'' \rangle \langle a'' = \langle a' $	$\int_{-\infty}^{\infty} dy'' \langle y' y'' \rangle \langle y'' = \langle y' $
$\sum_{a'}^{N} a'\rangle \langle a' \alpha \rangle = \alpha\rangle$	$\int_{-\infty}^{\infty} dy' y'\rangle \langle y' \alpha \rangle = \alpha\rangle$
$\sum_{a'}^{N} \langle a' \alpha \rangle ^2 = 1$	$\int_{-\infty}^{\infty} dy' \langle y' \alpha \rangle ^2 = 1$
$ \langle \beta \alpha \rangle = \sum_{a'}^{N} \langle \beta a' \rangle \langle a' \alpha \rangle $	$ \left \langle \beta \alpha \rangle = \int_{-\infty}^{\infty} dy' \langle \beta y' \rangle \langle y' \alpha \rangle \right $

1.4.9 La función de onda

$$|\alpha\rangle = \int_{\infty}^{\infty} dx' |x'\rangle \langle x' | \alpha\rangle$$

donde

$$\langle x' \mid \alpha \rangle dx'$$

es la densidad de probabilidad y

$$|\langle x' | \alpha \rangle|^2$$

es la amplitud de probabilidad. La densidad de probabilidad, en el formalismo de Schrödinger, es la función de onda

$$\Psi_{\alpha}(x) = \langle x \, | \, \alpha \rangle$$

siendo este el vínculo entre la representación de Dirac y la función de onda,

$$\begin{split} \left\langle \beta \mid \alpha \right\rangle &= \int dx' \left\langle \beta \mid x' \right\rangle \left\langle x' \mid \alpha \right\rangle = \int dx' \Psi_{\beta}^*(x) \Psi_{\alpha}(x) \\ \left\langle \beta \mid A \mid \alpha \right\rangle &= \int \int dx' dx'' \left\langle \beta \mid x'' \right\rangle \left\langle x'' \mid A \mid x' \right\rangle \left\langle x' \mid \alpha \right\rangle \\ \left\langle \beta \mid A \mid \alpha \right\rangle &= \int \int dx' dx'' \Psi_{\beta}^*(x'') \left\langle x'' \mid A \mid x' \right\rangle \Psi_{\alpha}(x') \end{split}$$

y si $A = f(\hat{x})$ entonces $f(\hat{x}) |x'\rangle = f(x') |x'\rangle$ y

$$\langle\beta\,|\,A\,|\,\alpha\rangle = \int\int dx' dx'' \Psi_\beta^*(x'') f(x') \delta(x''-x') \Psi_\alpha(x')$$

y entonces

$$\langle \beta \, | \, A \, | \, \alpha \rangle = \int dx' \Psi_\beta^*(x') f(x') \Psi_\alpha(x').$$

En forma análoga tenemos la representación de momento;

$$\begin{split} \hat{p} \left| p' \right\rangle = p' \left| p' \right\rangle & \qquad \left\langle p' \left| p'' \right\rangle = \delta(p' - p'') \\ & \qquad \left| \alpha \right\rangle = \int dp' \left| p' \right\rangle \left\langle p' \left| \alpha \right\rangle \\ & \qquad \Phi_{\alpha}(p') = \left\langle p' \left| \alpha \right\rangle . \end{split}$$

1.4.10 Operador de traslación

Se le pedirá

$$T_{(dx')}|x'\rangle = |x' + dx'\rangle$$

siendo este requerimiento intuitivamente adecuado para una traslación. Nótese que dx' no es un operador, es el parámetro de la traslación.

Cumplirá las propiedades

• Unitariedad:

$$T^{\dagger}T = TT^{\dagger} = 1$$

para que no varíe la probabilidad ante un cambio de coordenadas.

• Aditividad:

$$T_{(dx')}T_{(dx'')} = T_{(dx'+dx'')}$$

porque vale en mecánica clásica.

• Existencia de inverso:

$${\bf T}_{(dx')}^{-1}={\bf T}_{(-dx'')}$$

• Límite a 1

$$T_{(dx')} \to 1$$
 si $dx' \to 0$

Se propone un

$$T_{(dx')} = 1 - i\boldsymbol{K} \cdot d\boldsymbol{x}'$$

con K hermítico (notemos que τ no es hermítico). Comparando con mecánica clásica vemos que p origina las traslaciones, entonces identificamos K con p.

Hay que ver el carácter vectorial de estas cosas.

Entonces pedimos que p cuántico origine las traslaciones

$$oldsymbol{K} = rac{oldsymbol{p}}{\hbar} \qquad \mathrm{T}_{(dx')} = \mathbb{1} - rac{i}{\hbar} oldsymbol{P} \cdot doldsymbol{x}'$$

y así

$$\mathcal{T}_{(dx')}\left|p'\right\rangle = \left(\mathbb{1} - \frac{i}{\hbar} \boldsymbol{P} \cdot d\boldsymbol{x}'\right) \left|p'\right\rangle = \left(1 - \frac{i}{\hbar} p' dx\right) \left|p'\right\rangle$$

el autovalor no es real, pues T no es hermítico.

Partiendo del conmutador

$$x \mathcal{T}_{(dx')} - \mathcal{T}_{(dx')} x = dx \mathcal{T}_{(dx')}$$

entonces

$$[x, T_{(dx')}] = dxT$$

y con $dx \sim 0$ a orden uno (esto significa que tiramos los términos cuadráticos en dx)

$$[x, p_x] = i\hbar$$

se llega a la incompatibilidad de posición y momento, generalizando

$$[x_i, p_i] = i\hbar \delta_{ij}$$

Pero las traslaciones en diferentes direcciones conmutan

$$[\mathbf{T}_{(dx')}, \mathbf{T}_{(dx'')}] = 0$$
 $[p_i, p_i] = 0$

Sumando infinitas traslaciones infinitesimales tenemos una traslación finita,

$$\mathbf{T}_{(\Delta x')} = \lim_{N \to \infty} \left(1 - \frac{i}{\hbar} p \frac{\Delta x'}{N}\right)^N = \, \mathrm{e}^{-i/\hbar \, p \Delta x'}$$

y entonces

$$T_{(\Delta x')} = e^{-i/\hbar \, \boldsymbol{p} \cdot \Delta \boldsymbol{x}'}$$

1.4.11 p en la representación x

$$\mathbf{T}_{(\Delta x)}\left|\alpha\right\rangle = \int dt' \mathbf{T} \left|x'\right\rangle \left\langle x'\right|\alpha\right\rangle = \int dt' \left|x' + \Delta x\right\rangle \left\langle x'\right|\alpha\right\rangle = \int dt' \left|x'\right\rangle \left\langle x' - \Delta x\right|\alpha\right\rangle$$

pero

$$\frac{\partial}{\partial x'} \left\langle x' \mid \alpha \right\rangle \approx \frac{-\left\langle x' - \Delta x \mid \alpha \right\rangle + \left\langle x' \mid \alpha \right\rangle}{\Delta x}$$

y entonces

$$-\frac{\partial}{\partial x'} \langle x' \mid \alpha \rangle \, \Delta x + \langle x' \mid \alpha \rangle = \langle x' - \Delta x \mid \alpha \rangle$$

$$\begin{split} \operatorname{T} \left| \alpha \right\rangle &= \int dx' \left| x' \right\rangle \left(\left\langle x' \right| \alpha \right\rangle - \frac{\partial}{\partial x'} \left\langle x' \right| \alpha \right\rangle \Delta x \right) = \int dx' \left| x' \right\rangle \left\langle x' \right| \alpha \right\rangle - \int dx' \left| x' \right\rangle \frac{\partial}{\partial x'} \left\langle x' \right| \alpha \right\rangle \Delta x \\ &\left(1 - \frac{i}{\hbar} p \Delta x \right) \left| \alpha \right\rangle = \left| \alpha \right\rangle - \int dx' \left| x' \right\rangle \frac{\partial}{\partial x'} \left\langle x' \right| \alpha \right\rangle \Delta x \\ &\frac{i}{\hbar} p \Delta x \left| \alpha \right\rangle = \int dx' \left| x' \right\rangle \frac{\partial}{\partial x'} \left\langle x' \right| \alpha \right\rangle \Delta x \end{split}$$

y así

$$p\left|\alpha\right\rangle = -i\hbar\int dx'\left|x'\right\rangle \frac{\partial}{\partial x'}\left\langle x'\left|\alpha\right\rangle \right.$$

de modo que usándo este resultado se tienen

$$\begin{split} \langle x'' \, | \, p \, | \, \alpha \rangle &= -i\hbar \int dx' \, \langle x'' \, | \, x' \rangle \, \frac{\partial}{\partial x'} \, \langle x' \, | \, \alpha \rangle \\ \langle x'' \, | \, p \, | \, \alpha \rangle &= -i\hbar \frac{\partial}{\partial x'} \, \langle x'' \, | \, \alpha \rangle \\ \langle \beta \, | \, p \, | \, \alpha \rangle &= \int dx' \, \langle \beta \, | \, x' \rangle \, (-i\hbar) \frac{\partial}{\partial x'} \, \langle x' \, | \, \alpha \rangle \\ \langle \beta \, | \, p \, | \, \alpha \rangle &= \int dx' \Psi_{\beta}^*(x') (-i\hbar) \frac{\partial}{\partial x'} \Psi_{\alpha}(x') \end{split}$$

de lo que se deduce

$$\hat{p} \equiv -i\hbar \frac{\partial}{\partial x},$$

que es el resultado más importante de la sección.

1.4.12 Cambio entre representaciones x y p

$$\left\langle x'\,|\,\hat{p}\,|\,p'\right\rangle = -i\hbar\int dx'\,\left\langle x'\,|\,x'\right\rangle \frac{\partial}{\partial x'}\,\left\langle x'\,|\,p'\right\rangle = -i\hbar\frac{\partial}{\partial x'}\,\left\langle x'\,|\,p'\right\rangle$$

y entonces,

$$p'\langle x' | p' \rangle = -i\hbar \frac{\partial}{\partial x'} \langle x' | p' \rangle,$$

que es una ecuación diferencial para $\langle x' | p' \rangle$. Luego

$$\int \frac{1}{\langle x' | p' \rangle} \partial \langle x' | p' \rangle = \int \frac{ip'}{\hbar} \partial x'$$

$$\log \langle x' | p' \rangle = \frac{ip'x'}{\hbar} + Cte.$$

$$\int dp' \langle x' | p' \rangle \langle p' | x'' \rangle = \langle x' | x'' \rangle = \delta(x - x')$$

$$\int dp' e^{ip'/\hbar(x' - x'')} |N|^2 = \delta(x - x')$$

$$|N| = \frac{1}{\sqrt{2\pi\hbar}}.$$

$$\langle x' | p' \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{ip'x'/\hbar}$$

Con este escalar podemos cambiar entre representaciones. Usando esto podemos ver que $\Psi_{\alpha}(x')$ y $\Phi_{\alpha}(p')$ son transformadas de Fourier la una de la otra.

$$\int_{-\infty}^{\infty} dp \, e^{iap(x-x')} = \frac{2\pi}{a} \delta(x-x')$$

1.4.13 Corchetes de Poisson versus conmutadores

Hay una equivalencia entre corchetes de Poisson y conmutadores, a saber:

$$[A,B]_{\mathrm{classic}} \longrightarrow \frac{1}{i\hbar}[A,B]$$

o

$$[A,B]_{\rm classic} = \sum_i \left(\frac{\partial A}{\partial q_i} \frac{\partial B}{\partial p_i} - \frac{\partial A}{\partial p_i} \frac{\partial B}{\partial q_i} \right)$$