NOTES ON BYPASSES

ABSTRACT. Here we take notes on [HH18] and translate some of the key terminology into the language of double positive factorizations (DPFs).

Throughout Σ is a Weinstein convex hypersurface with decomposition R^{\pm} , Γ . We'll take dim $\Gamma = 2n - 1$, dim $\Sigma = 2n$.

Here is our convention for building Lefschetz fibrations: Start with a Lefschetz fibration for $W \times \mathbb{D} \to \mathbb{D}$ inducing an open book on the boundary whose page is W and whose monodromy is trivial. Say that the whose mapping torus portion of the open book is $W \times S^1$. If we attach a Weinstein handle at some $\Lambda \subset W \times \{0\}$ then the Lefschetz fibration extends over the surgered Weinstein manifold so that the core of the handle becomes a Lefschetz thimble. The surgery locus in the boundary is $N_W(\Lambda) \times [0, 3\epsilon]$ and the boundary of the cocore is $\Lambda \times \{0\} \simeq \Lambda \times \{3\epsilon\}$. Here $N_W(\Lambda_k)$ is a standard Weinstein neighborhood of Λ in W. The \cong is a Legendrian isotopy coming from our ability to slide boundary of the cocore through the handle.

To build up to a general Lefschetz fibration, we attach k Weinstein handles to the neighborhoods

$$N_W(\Lambda_k) \times \left[\frac{i-1}{k}, \frac{i-1}{k} + 3\epsilon\right] \subset W \times S^1, \quad S^1 = \mathbb{R}/\mathbb{Z}$$

using the 4ϵ neighborhoods with ϵ small. With this ordering convention the monodromy of the open book on the boundary is

$$\tau_{\Lambda_k} \circ \cdots \circ \tau_{\Lambda_1} : W \to W.$$

For a double positive factorization (DPF), we have R^\pm determined by Lefschetz fibrations with fiber W and ordered collections of (framed) Legendrian spheres $\mathbf{\Lambda}^\pm = (\Lambda_i^\pm)_{i=1}^{k^\pm}, \Lambda_i^\pm \subset W$. We identify with boundaries when we have an identifications of the fibers of the Lefschetz fibrations on the R^\pm with a fixed W and

$$\tau_{\mathbf{\Lambda}^+} := \tau_{\Lambda_{k^+}^+} \circ \cdots \circ \tau_{\Lambda_1^+} = \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_1^-} =: \tau_{\mathbf{\Lambda}^-}.$$

Specifically the identification of the monodromies allows us identify the mapping tori

$$[0,1] \times W/\sim^{\pm}, \quad (1,x) \sim^{\pm} (0,\tau_{\mathbf{\Lambda}^{\pm}}).$$

From the open book picture, the mapping tori make up all of the ∂R^{\pm} except for the binding. The identification trivially extends over the binding since it is ∂W .

1. LEGENDRIAN SUM AND BYPASSES

1.1. **Legendrian sum.** Given a pair Λ^{\pm} of Legendrians in a contact manifold Γ intersecting ξ -transversely at a single point, we'll define the Legendrian sum using the Lagrangian projection formulation from [HH18].

Let $N_{\Gamma}(\Lambda^- \cup \Lambda^+)$ be a neighborhood in Γ inside of a subset of the $[0, 4\epsilon]_t \times W$ where W is a Weinstein manifold containing a plumbing of two copies of $\mathbb{D}^*\mathbb{S}^{n-1}$. The Λ^\pm are given by the 0-sections of the $\mathbb{D}^*\mathbb{S}^{n-1}$ inside $\{0\} \times W$ and our contact structure is determined by $dt + \beta$ for β a Liouville form on W. Then define

$$\Lambda^- \uplus \Lambda^+ \subset [\epsilon, 2\epsilon] \times W$$

to be the Legendrian lift of the Lagrangian sphere

$$\tau_{\Lambda^+}\Lambda^- = \tau_{\Lambda^-}^{-1}\Lambda^+ \subset W$$

where τ is a Dehn twist. Then

$$F^{\pm\epsilon}(\Lambda^- \uplus \Lambda^+) := \operatorname{Flow}_{\partial_t}^{\pm\epsilon}(\Lambda^- \uplus \Lambda^+) \subset ([0,\epsilon] \cup [2\epsilon, 3\epsilon]) \times W.$$

1.1.1. Translation. We'll always think of Λ^{\pm} as being Legendrian spheres sitting on a single page W of an open book for Γ . We'll always work far from the binding so that we can assume that each $t=t_0$ slice of $[-2\epsilon, 2\epsilon] \times W$ also sits in a page. After a slight perturbation of the open book the $(\Lambda^- \uplus \Lambda^+)^{\pm\epsilon}$ can be assumed to sit on pages as well.

One key observation is that we have conjugacy relations and a braid relation when Λ^{\pm} intersect at a single point in W,

$$\tau_{\tau_{\Lambda}+\Lambda^-} = \tau_{\Lambda^+} \circ \tau_{\Lambda^-} \circ \tau_{\Lambda^+}^{-1}, \quad \tau_{\Lambda^+}\tau_{\Lambda^-}\tau_{\Lambda^+} \simeq \tau_{\Lambda^-}\tau_{\Lambda^+}\tau_{\Lambda^-}.$$

Another observation is that if Λ^+ is an unknot, then $\Lambda^- \uplus \Lambda^+$ will be loose in the ambient contact manifold. In the low dimensional case, dim $\Gamma=3$, this will be Λ^- both positively and negatively stabilized.

1.2. Bypass.

Definition 1.1. Bypass attachment data consists of a tuple (Λ^{\pm}, L^{\pm}) for which Λ^{\pm} is a pair of Legendrians intersecting in a single point and L^{\pm} are Lagrangian slice disks in the R^{\pm} for the Λ^{\pm} .

If we attach a bypass to $[-\epsilon,0] \times \Sigma$ at $\{0\} \times \Sigma$ using the data of (Λ^{\pm},L^{\pm}) then we get a contact structure on $[-\epsilon,1] \times \Sigma$ with $\Sigma_1 = \{1\} \times \Sigma$ described as in [HH18, Theorem 5.1.3]:

- (1) R_1^{\pm} is obtained by attaching a Weinstein handle to $\Lambda^- \uplus \Lambda^+$ and cutting out standard neighborhoods of the $F^{\mp\epsilon}L^{\pm}$.
- (2) Γ_1 is obtained by performing a contact +1 surgery on $F^{\mp \epsilon} \Lambda^{\pm}$ and a contact -1 surgery along $(\Lambda^- \uplus \Lambda^+)$.
- (3) The boundaries of the R_1^\pm are identified by the contactomorphism $\partial R_1^+ \to \partial R_1^-$ obtained by sliding $F^{-\epsilon}\Lambda^+$ up over $(\Lambda^- \uplus \Lambda^+)$ to $F^\epsilon\Lambda^-$.
- 1.2.1. Translation. In the DPF picture, we assume that the Λ^{\pm} are the $\Lambda_1^{\pm} \in \mathbf{\Lambda}^{\pm}$ so that

$$\Lambda^- \uplus \Lambda^+ = \tau_{\Lambda_1^+} \Lambda_1^-.$$

If we are given a Lefschetz fibration determined by a Λ , then cutting out the disk L_1 whose boundary is Λ_1 amounts to replacing $\Lambda = (\Lambda_1, \dots, \Lambda_k)$ with $(\Lambda_2, \dots, \Lambda_k)$.

Let's assume that the surgery loci for the Λ_1^{\pm} are within $[\epsilon, 2\epsilon] \times W$. Since we use the $\{0\} \times W$ to identify the fibers of the fibration, let's say that $\Lambda_1^- \uplus \Lambda_1^+$ sits on $\{\epsilon\} \times W$ and that there are no surgery loci in $[0, \epsilon] \times W$.

From the positive region description of Γ , we perform add a negative Dehn twist for the contact +1 surgery at $\{0\} \times W$, and have the Weinstein handle attachment locus at $\{\epsilon\} \times W$. As in step (3) of the definition, we slide the +1 surgery locus up through the $\{\epsilon\} \times W$. Now the +1 surgery occurs along $\tau_{\Lambda^- \bowtie \Lambda^+} \Lambda^+$ and we compute

$$\left(\tau_{\tau_{\Lambda^- \uplus \Lambda^+} \Lambda^+}\right)^{-1} = \left(\tau_{\Lambda^- \uplus \Lambda^+} \circ \tau_{\Lambda^+} \circ \tau_{\Lambda^+}^{-1}\right)^{-1} = \left(\tau_{\Lambda^+} \tau_{\Lambda^-} \tau_{\Lambda^+}^{-1} \tau_{\Lambda^+} \tau_{\Lambda^-}^{-1} \tau_{\Lambda^+}\right)^{-1}$$

We use the pushoff directions (F^{\pm}) to determine the order in which twists are added to the modnodromies. To follow step (2) in the definition the monodromies become modified as

$$\begin{split} &\tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\Lambda_1^+} \mapsto \tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\tau_{\Lambda_1^+} \Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \circ \tau_{\Lambda_1^+} \\ &\tau_{\Lambda_k^-} \circ \cdots \circ \tau_{\Lambda_1^-} \mapsto \tau_{\Lambda_k^-} \circ \cdots \circ \tau_{\Lambda_1^-}^{-1} \circ \tau_{\tau_{\Lambda_1^+} \Lambda_1^-} \circ \tau_{\Lambda_1^-}. \end{split}$$

In the first row the $\tau_{\Lambda_1^+}^{-1}$ is added below the new surgery locus and in the second row the $\tau_{\Lambda_1^-}^{-1}$ is added above. These simplify to

$$\begin{split} &\tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\Lambda_1^+} \mapsto \tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\tau_{\Lambda_1^+} \Lambda_1^-} \\ &\tau_{\Lambda_k^-} \circ \cdots \circ \tau_{\Lambda_1^-} \mapsto \tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\Lambda_1^+}^{-1} \circ \tau_{\tau_{\Lambda_1^+} \Lambda_1^-} \circ \tau_{\Lambda_1^+}. \end{split}$$

REFERENCES

[BEM15] M. S. Borman, Y. Eliashberg, and E. Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215, p.281–361, 2015.

[BHH] J. Breen, K. Honda, and Y. Huang, The Giroux correspondence in arbitrary dimensions, arXiv:2307.02317, 2023.

[GP17] E. Giroux and J. Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol., 21, no. 2, 963–997, 2017.

[HH18] K. Honda and H. Huang, *Bypass attachments in higher-dimensional contact topology*, preprint, arXiv:1803.09142, 2018. 1, 2

[HH19] K. Honda and H. Huang, Convex hypersurface theory in contact topology, preprint, arXiv:1907.06025, 2019.

[HT22] Ko Honda and Yin Tian, Contact categories of disks, J. Symp. Geom., Vol. 20, 2022.