UVOD

Ako su A i B neprazni skupovi i ako je svakom $x \in A$ dodeljen, po izvesnom zakonu, tačno jedan element $y \in B$, tada kažemo da je na skupu A definisana funkcija (preslikavanje) f sa vrednostima u skupu B.

Simbolički zapisano:

1.
$$(\forall x \in A) (\exists y \in B) (x, y) \in f$$
,

2.
$$(\forall x \in A) (\forall y_1, y_2 \in B)$$

 $(x, y_1) \in f \land (x, y_2) \in f \Rightarrow y_1 = y_2.$

Umesto $(x, y) \in f$ pišemo y=f(x).

Skup A nazivamo oblast definisanosti (ili domen) funkcije f, a skup $f(A) = \{f(x) : x \in A\} \subset B$ skup vrednosti (ili kodomen) funkcije f. Promenljivu x zovemo nezavisna promenljiva (argument, original), a y zavisna promenljiva (vrednost funkcije ili slika). Ako je $A \subset R$ i $B \subset R$ tada za funkciju $f: A \to B$ kažemo da je realna funkcija jedne realne promenljive.

Napomena: Umesto "funkcija f data sa f(x)=?" kraće pišemo samo funkcija y=f(x).

Funkcija može biti zadata:

- 1. Analitički:
 - Eksplicitno y=f(x),
 - Implicitno F(x,y)=0,
 - Parametarski y=f(t), x=g(t).
- 2. Grafički,
- 3. Tabelarno.

Funkcija može biti zadata i pomoću dve ili više formula

$$f(x) = \begin{cases} \sin x &, & x \le 0 \\ x &, & 0 < x \le 1 \\ \sqrt{x} &, & x > 1 \end{cases}.$$

Za preslikavanje $f: A \rightarrow B$ kažemo da je:

- Injektivno ("1 1") ako različitim originalima odgovaraju različite slike, tj. $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$,
- Sirjektivno ("na") ako za svako $y \in B$ postoji $x \in A$ takvo da je f(x)=y, tj. f(A)=B,
- *Bijektivno* ("1 − 1" i "na").

Oblast definisanosti

Oblast definisanosti je najširi podskup skupa R gde su izvodljive sve operacije date funkcijom.

 $\bullet \quad \text{Racionalna funkcija} \quad y = \frac{P_n(x)}{Q_m(x)} \,, \quad Q_m(x) \neq 0$

Primer:
$$y = \frac{x-3}{x-2}$$
, $x = 0$ $\Rightarrow D: x \in \mathbb{R} \setminus \{2\}$.

 $\bullet \qquad y = \sqrt[n]{f(x)}$

$$\begin{array}{ccc} n=2k\in N\,, & & f(x){\geq}0\\ n=2k+1\in N\,, & & \text{nema ograničenja za }f(x) \end{array}$$

$$\sqrt{x^2}=\left|\begin{array}{ccc} x\,\,,\,\,x\geq0\\ -\,x,\,\,x<0\,\,. \end{array}\right.$$

Nule funkcije

Nula funkcije y = f(x) je vrednost promenljive x za koju je y=0.

Parnost i neparnost funkcije

Ako je oblast definisanosti D funkcije y = f(x) simetričan skup (skup D je simetričan ako za svako $x \in D$ sledi da je i $-x \in D$) tada:

- 1. za funkciju f kažemo da je parna ako je f(-x) = f(x) za sve vrednosti $x \in D$,
- 2. za funkciju f kažemo da je *neparna* ako je f(-x) = -f(x), za sve vrednosti $x \in D$.

Funkcija ne mora da bude ni parna ni neparna.

Periodičnost

Funkcija je periodična ako postoji broj $\omega \neq 0$, takav da je $f(x+\omega) = f(x)$ za svako $x \in D$. Broj ω nazivamo *period*. Najmanji pozitivan broj ω , ako postoji, zove se *osnovni period* funkcije.

Monotonost funkcije

Za funkciju $f: D \to R$ kaže se da je nad intervalom $I \subset D$:

- monotono rastuća, ako za svake dve tačke $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$,
- monotono opadajuća, ako za svake dve tačke $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$,
- monotono nerastuća, ako za svake dve tačke $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$,
- monotono neopadajuća, ako za svake dve tačke $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$.

U svakom od navedenih slučajeva se kaže da je funkcija monotona nad intervalom I.

Konveksnost i konkavnost

Konveksnost i konkavnost funkcije se posmatra nad intervalom $I \subset D \subset R$.

Ako za svake dve tačke $x_1, x_2 \in I$, $x_1 < x_2$ i $x \in (x_1, x_2)$ sledi:

- f(x) < S(x) funkcija je konveksna nad intervalom I,
- f(x) > S(x) funkcija je konkavna nad intervalom I.

Ograničenost

Za funkciju y=f(x) kažemo da je *ograničena sa donje strane* ako postoji broj M_1 , takav da je za svako $x \in D$, $f(x) \ge M_1$.

Funkcija f je ograničena sa gornje strane ako postoji broj M_2 , takav da je za svako $x \in D$, $f(x) \le M_2$.

Funkcija je *ograničena* ako je ograničena i sa donje i sa gornje strane, tj. ako postoje brojevi M_1 i M_2 , takvi da je za svako $x \in D, M_1 \le f(x) \le M_2$, ili ako postoji pozitivan broj K, takav da je $|f(x)| \le K$ za svako $x \in D$.

Konstantna funkcija y = f(x) = c

Parabola
$$y = ax^2 + bx + c$$
, $a \ne 0$

 $- D: x \in R.$

U zavisnosti od znaka diskriminante D $(D = b^2 - 4ac)$ za rešenja (nule) funkcije se dobija:

- D>0 rešenja su realna i različita,
- D=0 rešenja su realna i jednaka,
- D<0 nema realnih nula (rešenja su konjugovano-kompleksna).

Eksponencijalna funkcija $y = a^{X}$, a > 0, $a \neq 1$

- D: $x \in R$,
- funkcija nema nula,
- $\ \ \text{specijalan slučaj za a=e} \ \ (y=e^x) \quad \text{ili} \quad y=\left(\frac{1}{e}\right)^x=e^{-x} \, .$

Logaritamska funkcija $y = f(x) = log_a x$, a > 0, $a \ne 1$

- $D: x \in R^+$.
- Simetrična je u odnosu na pravu y=x sa funkcijom $y = a^x$.
- Logaritamska funkcija je inverzna funkcija funkcije $y = a^x$.

monotono opada

monotono raste

- x=1 je nula funkcije,
- a=e=2,71828... y=lnx
- a=10 y=logx.

- D: $x \in R$,
- skup vrednosti [-1, 1],
- funkcija je periodična: osnovni period je $\omega = 2\pi$,
- $\sin(-x) = -\sin x$ (funkcija je neparna),
- $x=k\pi$, k ∈ Z su nule funkcije.

y=arcsinx

Funkcija y=sinx obostrano jednoznačno (zbog monotonosti) preslikava interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ na interval $\left[-1, 1\right]$.

Zato je moguće definisati inverznu funkciju sa domenom $\begin{bmatrix} -1,1 \end{bmatrix}$ i skupom vrednosti $\begin{bmatrix} -\frac{\pi}{2},\frac{\pi}{2} \end{bmatrix}$.

Restrikcija funkcije $f(x) = \sin x$ nad intervalom $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ ima inverznu funkciju, koja se označava sa $y = \arcsin x$.

Simetrična je u odnosu na pravu y=x sa y=sinx.

- D: $x \in [-1, 1]$,
- skup vrednosti $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,
- $y = \arcsin(-x) = -\arcsin x$ (funkcija je neparna),
- funkcija monotono raste.

- D: $x \in R$,
- skup vrednosti [-1, 1],
- funkcija je periodična: osnovni period je $\omega = 2\pi$,
- $-\cos(-x) = \cos x$ (funkcija je parna),
- $-x = \frac{\pi}{2} + k\pi$, $k \in Z$ su nule funkcije.

y=arccosx

Funkcija y=cosx obostrano jednoznačno (zbog monotonosti) preslikava interval $\left[0,\pi\right]$ na interval $\left[-1,1\right]$.

Zato je moguće definisati inverznu funkciju sa domenom [-1, 1] i skupom vrednosti $[0, \pi]$.

Restrikcija funkcije $f(x) = \cos x$ nad intervalom $[0, \pi]$ ima inverznu funkciju, koja se označava sa y=arccosx.

- D: $x \in [-1, 1]$,
- Skup vrednosti $[0, \pi]$,
- Funkcija monotono opada.

- $\ \ definisana \ za \ svako \ \ x \neq \frac{\pi}{2} + k\pi \ , \ \ k \in Z \ ,$
- skup vrednosti funkcije je $(-\infty,\infty)$,
- funkcija je periodična: osnovni period je $\omega = \pi$,
- tg(-x) = -tg(x) (funkcija je neparna),
- monotono je rastuća na svim intervalima oblika $(\frac{(2k+1)}{2}\pi, \frac{(2k+3)}{2}\pi), \ k \in \mathbb{Z}$
- $-x = k\pi$, $k \in Z$ su nule funkcije.

y=arctgx

Funkcija y=tgx obostrano jednoznačno (zbog monotonosti) preslikava interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ na interval $(-\infty, \infty)$. Zato je moguće definisati inverznu funkciju sa oblašću definisanosti $(-\infty, \infty)$ i skupom vrednosti $(-\frac{\pi}{2}, \frac{\pi}{2})$. Restrikcija funkcije y=tgx nad intervalom $(-\frac{\pi}{2}, \frac{\pi}{2})$ ima inverznu funkciju, koja se označava sa $y = \operatorname{arctgx}$.

- D: $x \in R$,
- Skup vrednosti $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,
- Monotono raste,
- arctg(-x) = -arctg(x) neparna.

y=ctgx

- definisana za svako $x \neq k\pi$, $k \in Z$,
- skup vrednosti funkcije je (-∞,∞),
- funkcija je periodična: osnovni period je $\omega = \pi$,
- ctg(-x) = -ctg(x) (funkcija je neparna,
- funkcija monotono opada na svim intervalima oblika $(k\pi,(k+1)\pi),\ k\in Z$
- $-x = \frac{\pi}{2} + k\pi$, $k \in Z$ su nule funkcije.

y=arcctgx

Funkcija y=ctgx obostrano jednoznačno (zbog monotonosti) preslikava interval $(0,\pi)$ na interval $(-\infty,\infty)$.

Zato je moguće definisati inverznu funkciju sa domenom $(-\infty,\infty)$ i skupom vrednosti $(0,\pi)$.

Restrikcija funkcije y=ctgx nad intervalom $(0,\pi)$ ima inverznu funkciju, koja se označava sa y = arcctgx.

- D: $x \in R$, skup vrednosti je $(0,\pi)$,
- monotono opada.