Lab Assignment 6 Prakhar Gupta B21AI027

Question 1:

Preprocessing-

- Downloaded dataset using wget command called using os.system
- Loaded glass.data in df using pd.read_csv
- Gave column names as column_names=["Id","RI","Na","Mg","AI","Si","K","Ca","Ba","Fe"," Type of glass"]
- Dropped "Id" column from df
- Checked for not filled rows using df.isnull().sum()
- Applied MinMaxScalar() to each column
- Checked df.describe()
- Plotted df using pairplot
- Converted df to X,y
- Applied MinMaxScalar()

Part A -

- Applied KMeans with n_clusters=3
- Fitted the dataset
- Plotted ScatterPlot

Part B-

- Found best value of k using Silhouette Score
- Plotted the k vs Silhouette Score
- ullet Optimal value of k is 3 ,with silhouette score as

Part C-

- Found optimal method of k using Elbow Method
- We used KElbowVisualizer

We got the elbow at k=4

Part D-

 Applied bagging with KNeighbourClassifier as base model for n_neighbours=1,2,3

```
Accuracy score for bagging (k=1) on train: 0.9590643274853801

Accuracy score for bagging (k=1) on test: 0.7674418604651163

Accuracy score for kneighbor (k=1) on train: 1.0

Accuracy score for kneighbor (k=1) on test: 0.7906976744186046

Accuracy score for bagging (k=2) on train: 0.8947368421052632

Accuracy score for bagging (k=2) on test: 0.6976744186046512

Accuracy score for kneighbor (k=2) on train: 0.8245614035087719

Accuracy score for kneighbor (k=2) on test: 0.6744186046511628

Accuracy score for bagging (k=3) on train: 0.8304093567251462

Accuracy score for bagging (k=3) on test: 0.6976744186046512

Accuracy score for kneighbor (k=3) on train: 0.7953216374269005

Accuracy score for kneighbor (k=3) on test: 0.7209302325581395
```

- We can see that knn is somewhat overfitting, i.e. Giving high variance, so when we applied Bagging we reduce the overfitting as Bagging reduces overfitting, but due to this only it slightly increases the bias
- With increase in k the model tends to have decrease high_variance and and increase low_bias, which is why on the test set the Bagging score is almost similar or little less than the knn

Question 2:

Initials-

- Loaded dataset into data
- Converted data to X,y
- Printed shape of X,y
- Plotted some images for visualisation

Part A&B-

- Made a scratch built KMeans class
- The class contains fit,assign_clusters,closest_centroid,get_centroids, is_converge,SSE functions

Part C-

- Initialize random 40 points with 4096 dimension
- Fitted KMeans_Scratch on above randomly initialised centroid points
- Printed points per cluster
- Points_per_class=[1, 17, 33, 9, 5, 21, 3, 13, 12, 10, 10, 4, 7, 14, 14, 2, 1, 10, 15, 10, 31, 9, 1, 1, 11, 3, 11, 11, 6, 2, 4, 4, 3, 1, 4, 26, 12, 13, 3, 33]

Part D-

- Defined a function array_to_img to convert 1-D array to 2-D array so it can be plotted as a image
- Plotted the images considering the centroids predicted from the KMeans Scratch

Part E-

 Plotted one image of each class as predicted by the KMeans_Scratch on the randomly initialised centroid

Part F-

- Initialized centroid as random 40 points from the dataset
- Printed points per cluster
- Points_per_cluster=[9, 11, 6, 16, 20, 10, 3, 6, 14, 6, 12, 5, 17, 6, 14, 5, 5, 10, 5, 4, 11, 9, 8, 13, 16, 13, 10, 6, 5, 19, 9, 13, 10, 10, 4, 11, 5, 14, 16, 14]

 Plotted the images considering the centroids predicted from the KMeans Scratch

Part G-

 Plotted one image of each class as predicted by the KMeans_Scratch on centroid initialisation as image per class

Part H-

- **Printed** Sum of Squared Error (SSE) for random_intialised points model and per cluster intialised points model
- Sum of Squared Error (SSE) for random_initialised points model: 3.321594695205111
 Sum of Squared Error (SSE) for per_cluster_initialised points model: 2.9923013387031974
- When we initialised centroid to be points per class, it is the best
 case as can be seen using SSE, this thing can also be seen where we
 can see that points per cluster for per_cluster_initialised are all nearby
 10, whereas it is spread out in random initialised

Question 3:

Part A-

- Downloaded dataset using wget command called using os.system
- Loaded Wholesalecustomersdata.csv in df using pd.read_csv
- Checked for not filled rows using df.isnull().sum()
- Checked df.dtypes()
- Applied MinMaxScalar() to each column
- For insights about data we used df.describe()

Part B-

- For getting covariance matrix we used df.cov()
- Plotted heatmap of covariance matrix

- Using for loop over each 2 feature, find the features which has highest covariance(As if an outlier is present in one then due to high covariance it should also be present in the other feature)
- Max cov matrix=[[0.21907227 0.03476772]
- [0.03476772 0.01364002]]
- Features with max cov : ['Channel', 'Detergents Paper']
- So we get max_cov for ['Channel','Detergents_Paper'], the same result can also be seen from the heatmap
- Visualising best Feature with highest covariance using scatter plot

Visualising best Feature with highest covariance using boxplot

Part C-

- Applied DBSCAN
- Fitted the dataset
- Plotted pairplot

Part D-

- Applied KMeans
- Fitted the dataset
- Plotted pairplot

```
DBSCAN Silhouette score: 0.6360287841835186
KMeans Silhouette score: 0.5928657922516165
```

 We can see that DBScan is performing better than KMeans, the same can be evident from the graph, where DBScan scatter plots has more segregated points than that of the plot of KMeans. DBScan is able to see the outliers because of which its Silhouette score is high where as KMeans is not able to see the outliers

Part E-

- Made X,y using make_moons function of scikit learn
- Created 2000 samples and also added 20% noise to the dataset
- Visualised the dataset using scatter plot

Made DBScan and KMeans Clustering model

DBSCAN(eps=0.2, min_samples=5)
KMeans(n clusters=2)

- Fitting these two model on the dataset
- Predicted the dataset value from these models and plotted the prediction using scatter plot

 Clearly the KMeans is better than DBScan as evident from the plots, the reason for DBScan to perform this much poor is that it considers the

- surrounding atom counts and their distance, and our dataset has noise due to which it consider almost whole dataset as one cluster.
- We can try to tune DBScan by changing the min_samples and epsilon, then we can get a good result, where we get 3 classes where one is predicted as outlier

 In the tuned version although it suggests 3 classes but its predictions are better than that of KMeans because KMeans is not suitable for non-linear data