量子力学题

(一) 单项选择题

1.能量为 100ev 的自由电子的 De Broglie 波长是 A. $1.2\overset{0}{A}$. B. $1.5\overset{0}{A}$. C. $2.1\overset{0}{A}$. D. $2.5\overset{0}{A}$.

2. 能量为 0.1ev 的自由中子的 De Broglie 波长是 A.1.3 $\overset{0}{A}$. B. 0.9 $\overset{0}{A}$. C. 0.5 $\overset{0}{A}$. D. 1.8 $\overset{0}{A}$.

3. 能量为 0.1ev, 质量为 1g 的质点的 De Broglie 波长是

A.1.4
$$\overset{0}{A}$$
. B.1.9 × 10⁻¹² $\overset{0}{A}$.

C.1.17 × $10^{-12} \stackrel{0}{A}$. D. 2.0 $\stackrel{0}{A}$.

4.温度 T=1k 时,具有动能 $E = \frac{3}{2} k_B T (k_B)$ 为

Boltzeman 常数)的氦原子的 De Broglie 波长是

A.8
$$\overset{0}{A}$$
. B. 5.6 $\overset{0}{A}$. C. 10 $\overset{0}{A}$. D. 12.6 $\overset{0}{A}$.

5.用 Bohr-Sommerfeld 的量子化条件得到的一维 谐振子的能量为 $(n = 0,1,2,\dots)$

$${\rm A.}\,E_{\scriptscriptstyle n} = n\hbar\omega\;. \qquad {\rm B.}\,E_{\scriptscriptstyle n} = (n+\frac{1}{2})\hbar\omega\;. \label{eq:energy}$$

 $C. E_n = (n+1)\hbar\omega$. $D. E_n = 2n\hbar\omega$.

6.在 0k 附近, 钠的价电子的能量为 3ev, 其 De Broglie 波长是

A.5.2
$$\overset{\circ}{A}$$
. B. 7.1 $\overset{\circ}{A}$. C. 8.4 $\overset{\circ}{A}$. D. 9.4 $\overset{\circ}{A}$.

7.钾的脱出功是 2ev, 当波长为 3500 A 的紫外线 照射到钾金属表面时,光电子的最大能量为

A.
$$0.25 \times 10^{-18} \,\text{J}$$
. B. $1.25 \times 10^{-18} \,\text{J}$.

C.
$$0.25 \times 10^{-16}$$
 J.

D.
$$1.25 \times 10^{-16}$$
 J.

8.当氢原子放出一个具有频率 ω 的光子,反冲时 由于它把能量传递给原子而产生的频率改变为

A.
$$\frac{\hbar}{2\mu c}$$
. B. $\frac{\hbar}{2\mu c^2}$. C. $\frac{\hbar^2}{2\mu c^2}$. D. $\frac{\hbar^2}{2\mu c}$.

9.Compton 效应证实了

A.电子具有波动性. B. 光具有波动性.

C.光具有粒子性.

D. 电子具有粒子性.

10.Davisson 和 Germer 的实验证实了

A. 电子具有波动性. B. 光具有波动性.

C. 光具有粒子性. D. 电子具有粒子性.

11.粒子在一维无限深势阱
$$U(x) = \begin{cases} 0.0 < x < a \\ \infty, x \le 0, x \ge a \end{cases}$$

中运动,设粒子的状态由 $\psi(x) = C\sin\frac{\pi x}{a}$ 描写,

其归一化常数 C 为

A.
$$\sqrt{\frac{1}{a}}$$
. B. $\sqrt{\frac{2}{a}}$. C. $\sqrt{\frac{1}{2a}}$. D. $\sqrt{\frac{4}{a}}$.

12. 设 $\psi(x) = \delta(x)$,在x - x + dx范围内找到粒子 的几率为

A. $\delta(x)$. B. $\delta(x)dx$. C. $\delta^2(x)$. D. $\delta^2(x)dx$.

13. 设粒子的波函数为 $\psi(x,y,z)$, 在x-x+dx 范 围内找到粒子的几率为

 $A. |\psi(x, y, z)|^2 dx dy dz$. $B. |\psi(x, y, z)|^2 dx$.

C. $\left(\iint |\psi(x, y, z)|^2 dydz \right) dx$. D. $\int dx \int dy \int dz |\psi(x, yz)|^2$.

14.设 $\psi_1(x)$ 和 $\psi_2(x)$ 分别表示粒子的两个可能运 动状态,则它们线性迭加的态 $c_1\psi_1(x)+c_2\psi_2(x)$ 的几率分布为

$$A.|c_1\psi_1|^2+|c_2\psi_2|^2.$$

B.
$$|c_1\psi_1|^2 + |c_2\psi_2|^2 + c_1c_2\psi_1^*\psi_2$$
.

C.
$$|c_1\psi_1|^2 + |c_2\psi_2|^2 + 2c_1c_2\psi_1^*\psi_2$$
.

D. $|c_1\psi_1|^2 + |c_2\psi_2|^2 + c_1^*c_2\psi_1^*\psi_2 + c_1c_2^*\psi_1\psi_2^*$.

15.波函数应满足的标准条件是

A.单值、正交、连续. B.归一、正交、完全性. C.连续、有限、完全性. D.单值、连续、有限. 16.有关微观实物粒子的波粒二象性的正确表述 是

A.波动性是由于大量的微粒分布于空间而形成 的疏密波.

B.微粒被看成在三维空间连续分布的某种波包.

C.单个微观粒子具有波动性和粒子性.

D. A, B, C.

17.已知波函数

$$\psi_1 = u(x) \exp(-\frac{i}{\hbar}Et) + u(x) \exp(\frac{i}{\hbar}Et)$$
,

$$\psi_2 = u_1(x) \exp(-\frac{i}{\hbar} E_1 t) + u_2(x) \exp(\frac{i}{\hbar} E_2 t),$$

$$\psi_3 = u_1(x) \exp(-\frac{i}{\hbar}Et) + u_2(x) \exp(-\frac{i}{\hbar}Et) ,$$

$$\psi_4 = u_1(x) \exp(-\frac{i}{\hbar} E_1 t) + u_2(x) \exp(-\frac{i}{\hbar} E_2 t)$$
.

其中定态波函数是

A. ψ_2 . B. ψ_1 ψ_2 . C. ψ_3 . D. ψ_3 ψ_4 . 18.若波函数 $\Psi(x,t)$ 归一化,则

A. $\Psi(x,t)$ exp($i\theta$) 和 $\Psi(x,t)$ exp($-i\delta$) 都是归一化 的波函数.

B. $\Psi(x,t)$ exp($i\theta$) 是 归 一 化 的 波 函 数 , $\Psi(x,t)\exp(-i\delta)$ 不是归一化的波函数.

C. $\Psi(x,t)$ exp($i\theta$) 不是归一化的波函数,

 $\Psi(x,t)\exp(-i\delta)$ 是归一化的波函数.

D. $\Psi(x,t)$ exp($i\theta$) 和 $\Psi(x,t)$ exp($-i\delta$) 都不是归一化的波函数.(其中 θ , δ 为任意实数)

19.波函数 Ψ_1 、 $\Psi_2 = c\Psi_1(c)$ 为任意常数),

A. Ψ₁ 与 Ψ₂ = cΨ₁描写粒子的状态不同.

B. Ψ₁ 与 Ψ₂ = cΨ₁ 所描写的粒子在空间各点出现的几率的比是 1: c.

 $C. \Psi_1 与 \Psi_2 = c \Psi_1$ 所描写的粒子在空间各点出现的几率的比是 $1: |c|^2$.

D. Ψ₁ 与 Ψ₂ = cΨ₁描写粒子的状态相同.

20. 波函数 $\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int c(p,t) \exp(\frac{i}{\hbar} px) dp$ 的 傅里叶变换式是

A.
$$c(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x,t) \exp(\frac{i}{\hbar} px) dx$$
.

B.
$$c(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi^*(x,t) \exp(\frac{i}{\hbar} px) dx$$
.

C.
$$c(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x,t) \exp(-\frac{i}{\hbar} px) dx$$
.

D.
$$c(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi^*(x,t) \exp(-\frac{i}{\hbar} px) dx$$
.

21.量子力学运动方程的建立,需满足一定的条件: (1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4)方程中关于波函数对时间坐标的导数应为线性的.(5)方程中不能含有决定体系状态的具体参量. (6)方程中可以含有决定体系状态的能量.则方程应满足的条件是

A. (1)、(3)和(6).

B. (2)、(3)、(4)和(5).

C. (1)、(3)、(4)和(5). D.(2)、(3)、(4)、(5)和(6). 22.两个粒子的薛定谔方程是

A.
$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \vec{r}_2, t) = \sum_{i=1}^{2} \frac{\hbar^2}{2\mu} \nabla_i^2 \Psi(\vec{r}_1, \vec{r}_2, t) + U(\vec{r}_1, \vec{r}_2, t) \Psi(\vec{r}_1, \vec{r}_2, t)$$

B.
$$\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \vec{r}_2, t) = \sum_{i=1}^{2} \frac{\hbar^2}{2\mu} \nabla_i^2 \Psi(\vec{r}_1, \vec{r}_2, t) + U(\vec{r}_1, \vec{r}_2, t) \Psi(\vec{r}_1, \vec{r}_2, t)$$

C.
$$\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \vec{r}_2, t) = \sum_{i=1}^{2} \frac{\hbar^2}{2\mu_i} \nabla_i^2 \Psi(\vec{r}_1, \vec{r}_2, t) + U(\vec{r}_1, \vec{r}_2, t) \Psi(\vec{r}_1, \vec{r}_2, t)$$

D.
$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}_1, \vec{r}_2, t) = \sum_{i=1}^{2} \frac{\hbar^2}{2\mu_i} \nabla_i^2 \Psi(\vec{r}_1, \vec{r}_2, t) + U(\vec{r}_1, \vec{r}_2, t) \Psi(\vec{r}_1, \vec{r}_2, t)$$

23.几率流密度矢量的表达式为

$$A. \vec{J} = \frac{\hbar}{2\mu} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*).$$

$$\mathbf{B}.\,\vec{J} = \frac{i\hbar}{2\mu}(\boldsymbol{\Psi}^*\nabla\boldsymbol{\Psi} - \boldsymbol{\Psi}\nabla\boldsymbol{\Psi}^*)\,.$$

$$C. \vec{J} = \frac{i\hbar}{2\mu} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi).$$

$$D. \vec{J} = \frac{\hbar}{2\mu} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi).$$

24.质量流密度矢量的表达式为

$$A. \vec{J} = \frac{\hbar}{2} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*) .$$

B.
$$\vec{J} = \frac{i\hbar}{2} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$$
.

$$C. \vec{J} = \frac{i\hbar}{2} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) .$$

$$D. \vec{J} = \frac{\hbar}{2} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi).$$

25. 电流密度矢量的表达式为

A.
$$\vec{J} = \frac{q\hbar}{2\mu} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$$
.

B.
$$\vec{J} = \frac{iq\hbar}{2\mu} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$$
.

$$C. \vec{J} = \frac{iq\hbar}{2\mu} (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi).$$

$$\mathrm{D.}\,\vec{J} = \frac{q\hbar}{2\mu}(\Psi\nabla\Psi^* - \Psi^*\nabla\Psi)\,.$$

26.下列哪种论述不是定态的特点

A. 几率密度和几率流密度矢量都不随时间变化.

B.几率流密度矢量不随时间变化.

C.任何力学量的平均值都不随时间变化.

D.定态波函数描述的体系一定具有确定的能量.

27.在一维无限深势阱
$$U(x) = \begin{cases} 0, |x| < 2a \\ \infty, |x| \ge 2a \end{cases}$$
中运动

的质量为 μ 的粒子的能级为

A.
$$\frac{\pi^2\hbar^2n^2}{4\mu a^2}$$
, B. $\frac{\pi^2\hbar^2n^2}{8\mu a^2}$, C. $\frac{\pi^2\hbar^2n^2}{16\mu a^2}$, D. $\frac{\pi^2\hbar^2n^2}{32\mu a^2}$.

28. 在一维无限深势阱
$$U(x) = \begin{cases} 0, |x| < a \\ \infty, |x| \ge a \end{cases}$$
 中运动的

质量为μ的粒子的能级为

A.
$$\frac{\pi^2 \hbar^2 n^2}{2\mu a^2}$$
, B. $\frac{\pi^2 \hbar^2 n^2}{4\mu a^2}$, C. $\frac{\pi^2 \hbar^2 n^2}{8\mu a^2}$, D. $\frac{\pi^2 \hbar^2 n^2}{16\mu a^2}$.

29. 在一维无限深势阱 $U(x) = \begin{cases} 0, |x| < b/2 \\ \infty, |x| \ge b/2 \end{cases}$ 中运动

的质量为μ的粒子的能级为

A.
$$\frac{\pi^2 \hbar^2 n^2}{2 \mu b^2}$$
, B. $\frac{\pi^2 \hbar^2 n^2}{\mu b^2}$, C. $\frac{\pi^2 \hbar^2 n^2}{4 \mu b^2}$, D. $\frac{\pi^2 \hbar^2 n^2}{8 \mu b^2}$.

30. 在一维无限深势阱 $U(x) = \begin{cases} 0, |x| < a \\ \infty, |x| \ge a \end{cases}$ 中运动的

质量为μ的粒子处于基态,其位置几率分布最大 处是

A.
$$x = 0$$
, B. $x = a$, C. $x = -a$, D. $x = a^2$.

31. 在一维无限深势阱
$$U(x) = \begin{cases} 0, |x| < a \\ \infty, |x| \ge a \end{cases}$$
 中运动的

质量为μ的粒子处于第一激发态,其位置几率分 布最大处是

A. $x = \pm a / 2$, B. $x = \pm a$, C. x = 0, D. $x = \pm a / 4$.

- 32.在一维无限深势阱中运动的粒子,其体系的
 - A.能量是量子化的,而动量是连续变化的.
 - B.能量和动量都是量子化的.
 - C.能量和动量都是连续变化的.
 - D.能量连续变化而动量是量子化的.
- 33.线性谐振子的能级为

A.
$$(n + 1/2)\hbar\omega$$
, $(n = 1,2,3,...)$.

B.
$$(n+1)\hbar\omega$$
, $(n=0,1,2,...)$.

C.
$$(n+1/2)\hbar\omega$$
, $(n=0,1,2,...)$.

D.
$$(n+1)\hbar\omega$$
, $(n=1,2,3,...)$.

34. 线性谐振子的第一激发态的波函数为 $\psi(x) = N_1 \exp(-\frac{1}{2}\alpha^2 x^2)2\alpha x$,其位置几率分布最 大处为

A.
$$x = 0$$
 . B. $x = \pm \sqrt{\frac{\hbar}{\mu \omega}}$. C. $x = \sqrt{\frac{\mu \omega}{\hbar}}$. D.

$$x=\pm\frac{\hbar}{\mu\omega}\,.$$

35.线性谐振子的

- A.能量是量子化的,而动量是连续变化的.
- B.能量和动量都是量子化的.
- C.能量和动量都是连续变化的.
- D.能量连续变化而动量是量子化的.
- 36.线性谐振子的能量本征方程是

A.
$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + \frac{1}{2}\mu^2\omega^2x^2\right]\psi = E\psi$$
.

B.
$$\left[-\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} - \frac{1}{2} \mu \omega^2 x^2 \right] \psi = E \psi$$
.

C.
$$\left[\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} - \frac{1}{2}\mu\omega^2x^2\right]\psi = -E\psi$$
.

D.
$$\left[\frac{\hbar^2}{2\mu}\frac{d^2}{dx^2} + \frac{1}{2}\mu^2\omega^2x^2\right]\psi = -E\psi$$
.

37. 氢原子的能级为

A.
$$-\frac{\hbar^2 e_s^2}{2 \mu n^2}$$
.B. $-\frac{\mu^2 e_s^2}{2 \hbar^2 n^2}$.C. $-\frac{\hbar e_s^4}{2 \mu n^2}$.D. $-\frac{\mu e_s^4}{2 \hbar^2 n^2}$.

38.在极坐标系下,氢原子体系在不同球壳内找到 电子的几率为

$$A.R_{nl}^{2}(r)r$$
.

B.
$$R_{nl}^{2}(r)r^{2}$$
.

$$C_{\cdot}R_{ul}^{2}(r)rdr$$

$$C. R_{nl}^{2}(r) r dr$$
. $D. R_{nl}^{2}(r) r^{2} dr$.

39. 在极坐标系下. 氢原子体系在不同方向上找到 电子的几率为

$$A.Y_{lm}(\theta,\varphi)$$

$$A.Y_{lm}(\theta,\varphi).$$
 $B. |Y_{lm}(\theta,\varphi)|^2.$

C. $Y_{lm}(\theta, \varphi)d\Omega$. D. $|Y_{lm}(\theta, \varphi)|^2 d\Omega$.

40.波函数 ψ 和 φ 是平方可积函数,则力学量算符 \hat{F} 为厄密算符的定义是

$$A. \int \psi^* \hat{F} \phi d\tau = \int \phi^* \hat{F} \psi^* d\tau.$$

$$B. \int \psi^* \hat{F} \phi d\tau = \int (\hat{F} \phi)^* \psi d\tau.$$

$$C.\int (\hat{F}\psi)^* \phi d\tau = \int \psi^* \hat{F} \phi d\tau.$$

$$D. \int \hat{F}^* \psi^* \phi d\tau = \int \psi \hat{F} \phi^* d\tau.$$

41. \hat{F} 和 \hat{G} 是厄密算符.则

A. $\hat{F}\hat{G}$ 必为厄密算符. B. $\hat{F}\hat{G}$ – $\hat{G}\hat{F}$ 必为厄密算符.

$$C.i(\hat{F}\hat{G} + \hat{G}\hat{F})$$
 必为厄密算符.

D.
$$i(\hat{F}\hat{G} - \hat{G}\hat{F})$$
 必为厄密算符.

42.已知算符
$$\hat{x} = x$$
和 $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$,则

 $A.\hat{x}$ 和 \hat{p}_x 都是厄密算符. $B.\hat{x}\hat{p}_x$ 必是厄密算符.

$$C.\hat{x}\hat{p}_x + \hat{p}_x\hat{x}$$
 必是厄密算符.

 $D.\hat{x}\hat{p}_x - \hat{p}_x\hat{x}$ 必是厄密算符.

43.自由粒子的运动用平面波描写,则其能量的简 并度为

A.1. B. 2. C. 3. D. 4.

44.二维自由粒子波函数的归一化常数为(归到 δ 函数)

A.
$$1/(2\pi\hbar)^{1/2}$$
. B.

B.
$$1/(2\pi\hbar)$$
.

C.
$$1/(2\pi\hbar)^{3/2}$$
. D. $1/(2\pi\hbar)^2$

$$D.1/(2\pi\hbar)^2$$

45.角动量 Z 分量的归一化本征函数为

A.
$$\frac{1}{\sqrt{2\pi\hbar}} \exp(im\varphi)$$
. B. $\frac{1}{\sqrt{2\pi}} \exp(i\vec{k} \cdot \vec{r})$.

C.
$$\frac{1}{\sqrt{2\pi}} \exp(im\varphi)$$
. D. $\frac{1}{\sqrt{2\pi\hbar}} \exp(i\vec{k} \cdot \vec{r})$.

D.
$$\frac{1}{\sqrt{2\pi\hbar}} \exp(i\vec{k} \cdot \vec{r})$$

46.波函数 $Y_{lm}(\theta,\varphi) = (-1)^m N_{lm} P_l^m(\cos\theta) \exp(im\varphi)$

- A. 是 \hat{L}^2 的本征函数,不是 \hat{L}_z 的本征函数.
- B. 不是 \hat{L}^2 的本征函数,是 \hat{L}_z 的本征函数.
- C. 是 \hat{L}^2 、 \hat{L}_z 的共同本征函数.
- D. 即不是 \hat{L}^2 的本征函数,也不是 \hat{L}_z 的本征函数.
- 47.若不考虑电子的自旋,氢原子能级 n=3 的简并度为
 - A. 3. B. 6. C. 9. D. 12.
- 48.氢原子能级的特点是
 - A.相邻两能级间距随量子数的增大而增大.
 - B.能级的绝对值随量子数的增大而增大.
 - C.能级随量子数的增大而减小.
 - D.相邻两能级间距随量子数的增大而减小.
- 49 一粒子在中心力场中运动,其能级的简并度为 n^2 ,这种性质是
 - A. 库仑场特有的. B.中心力场特有的.
 - C.奏力场特有的. D.普遍具有的.
- 50.对于氢原子体系,其径向几率分布函数为 $W_{32}(r)dr = R_{32}^2r^2dr$,则其几率分布最大处对应于Bohr 原子模型中的圆轨道半径是

A.
$$a_0$$
. B. $4a_0$. C. $9a_0$. D. $16a_0$.

51.设体系处于 $\Psi = \frac{1}{2} R_{31} Y_{10} - \frac{\sqrt{3}}{2} R_{21} Y_{1-1}$ 状态,则该

体系的能量取值及取值几率分别为

A.
$$E_3, E_2; \frac{1}{4}, \frac{3}{4}$$
. B. $E_3, E_2; \frac{1}{2}, -\frac{\sqrt{3}}{2}$.

C.
$$E_3, E_2; \frac{1}{2}, \frac{\sqrt{3}}{2}$$
. D. $E_3, E_2; \frac{3}{4}, \frac{1}{4}$.

52.接 51 题,该体系的角动量的取值及相应几率分别为

A. $\sqrt{2}\hbar$,1. B. \hbar ,1. C. $2\hbar^2$,1. D. $\sqrt{2}\hbar^2$,1.

53. 接51 题,该体系的角动量 Z分量的取值及相应 几率分别为

A.
$$0,-\hbar;\frac{1}{4},\frac{3}{4}$$
. B. $0,\hbar;\frac{1}{4},\frac{3}{4}$.

C.
$$0,\hbar; \frac{1}{2}, -\frac{\sqrt{3}}{2}$$
. D. $0,-\hbar; \frac{1}{2}, -\frac{\sqrt{3}}{2}$.

54. 接 51 题,该体系的角动量 Z 分量的平均值为

A.
$$\frac{1}{4}\hbar$$
 . B. $-\frac{1}{4}\hbar$. C. $\frac{3}{4}\hbar$. D. $-\frac{3}{4}\hbar$.

55. 接51题,该体系的能量的平均值为

A.
$$-\frac{\mu e_s^4}{18\hbar^2}$$
.B. $-\frac{31\mu e_s^4}{288\hbar^2}$.C. $-\frac{29\mu e_s^4}{256\hbar^2}$.D. $-\frac{17\mu e_s^4}{72\hbar^2}$.

56.体系处于 $\psi = C\cos kx$ 状态,则体系的动量取值为

A.
$$\hbar k$$
, $-\hbar k$. B. $\hbar k$. C. $-\hbar k$. D. $\frac{1}{2}\hbar k$.

57.接上题,体系的动量取值几率分别为

A. 1,0. B. 1/2,1/2. C. 1/4,3/4/. D. 1/3,2/3.

58.接 56 题,体系的动量平均值为

A. 0. B.
$$\hbar k$$
 . C. $-\hbar k$. D. $\frac{1}{2}\hbar k$.

59.一振子处于 $\psi = c_1 \psi_1 + c_3 \psi_3$ 态中,则该振子能量取值分别为

A.
$$\frac{3}{2}\hbar\omega$$
, $\frac{5}{2}\hbar\omega$. B. $\frac{1}{2}\hbar\omega$, $\frac{5}{2}\hbar\omega$.

C.
$$\frac{3}{2}\hbar\omega, \frac{7}{2}\hbar\omega$$
. D. $\frac{1}{2}\hbar\omega, \frac{5}{2}\hbar\omega$.

60.接上题,该振子的能量取值 E_1, E_3 的几率分别为

A.
$$|c_1|^2$$
, $|c_3|^2$. B. $\frac{|c_1|^2}{|c_1|^2 + |c_3|^2}$, $\frac{|c_3|^2}{|c_1|^2 + |c_3|^2}$.

C.
$$\frac{c_1}{|c_1|^2 + |c_3|^2}$$
, $\frac{c_3}{|c_1|^2 + |c_3|^2}$. D. c_1, c_3 .

61.接 59 题,该振子的能量平均值为

A.
$$\frac{1}{2} \frac{3|c_1|^2 + 5|c_3|^2}{|c_1|^2 + |c_3|^2} \hbar \omega$$
. B. $5\hbar \omega$.

C.
$$\frac{9}{2}\hbar\omega$$
. D. $\frac{1}{2}\frac{3|c_1|^2+7|c_3|^2}{|c_1|^2+|c_3|^2}\hbar\omega$.

62.对易关系 $[\hat{p}_x, f(x)]$ 等于(f(x))为x的任意函数)

A. $i\hbar f'(x)$.B. $i\hbar f(x)$.C. $-i\hbar f'(x)$.D. $-i\hbar f(x)$.

63. 对易关系[\hat{p}_{y} ,exp(iy)]等于

A. $\hbar \exp(iy)$. B. $i\hbar \exp(iy)$.

 $C. -\hbar \exp(iy)$. $D. -i\hbar \exp(iy)$.

64.对易关系 $[x,\hat{p}_x]$ 等于

 $A.i\hbar$. $B. -i\hbar$. $C. \hbar$. $D. -\hbar$.

65. 对易关系[L_r , ŷ] 等于

A. $i\hbar\hat{z}$. B. $\hbar\hat{z}$. C. $-i\hbar\hat{z}$. D. $-\hbar\hat{z}$.

66. 对易关系[L,, 2]等于

 $A.-i\hbar\hat{x}$. B. $i\hbar\hat{x}$. $C.\hbar\hat{x}$. $D.-\hbar\hat{x}$.

67. 对易关系[L_z , \hat{z}]等于

A. $i\hbar\hat{x}$. B. $i\hbar\hat{y}$. C. $i\hbar$. D. 0.

68. 对易关系[x, \hat{p}_{v}]等于

 $A.\hbar$. B. 0. C. $i\hbar$. D. $-\hbar$.

69. 对易关系[\hat{p}_y , \hat{p}_z]等于

A.O. B. $i\hbar\hat{x}$. C. $i\hbar\hat{p}_x$. D. $\hbar\hat{p}_x$.

70. 对易关系[\hat{L}_x , \hat{L}_z]等于

 $A.i\hbar\hat{L}_y$. $B. -i\hbar\hat{L}_y$. $C. \hbar\hat{L}_y$. $D. -\hbar\hat{L}_y$. 71. 对易关系 $[\hat{L}_z,\hat{L}_y]$ 等于

A. $i\hbar\hat{L}_x$. B. $-i\hbar\hat{L}_x$. C. $\hbar\hat{L}_x$. D. $-\hbar\hat{L}_x$. 72. 对易关系[\hat{L}^2 , \hat{L}_x]等于

A. \hat{L}_x . B. $i\hbar\hat{L}_x$. C. $i\hbar(\hat{L}_z+\hat{L}_y)$. D. 0. 73. 对易关系[\hat{L}^2 , \hat{L}_z]等于

A. \hat{L}_z . B. $i\hbar\hat{L}_z$. C. $i\hbar(\hat{L}_x+\hat{L}_y)$. D. 0. 74. 对易关系 $[L_x,\hat{p}_y]$ 等于

A. $i\hbar\hat{L}_z$. B. $-i\hbar\hat{L}_z$. C. $i\hbar\hat{p}_z$. D. $-i\hbar\hat{p}_z$. 75. 对易关系 $[\hat{p}_z,\hat{L}_x]$ 等于

A. $-i\hbar\hat{p}_{y}$. B. $i\hbar\hat{p}_{y}$. C. $-i\hbar\hat{L}_{y}$. D. $i\hbar\hat{L}_{y}$. 76. 对易关系[\hat{L}_{z} , \hat{p}_{y}] 等于

 $A.-i\hbar\hat{p}_x$. B. $i\hbar\hat{p}_x$. C. $-i\hbar\hat{L}_x$. D. $i\hbar\hat{L}_x$. 77.对易式 $[\hat{L}_y,\hat{x}]$ 等于

A.O. B. $-i\hbar\hat{z}$. C. $i\hbar\hat{z}$. D. 1.

78. 对易式[\hat{F}^{n} , \hat{F}^{n}] 等于(m,n 为任意正整数)

A. \hat{F}^{m+n} . B. \hat{F}^{m-n} . C. 0. D. \hat{F} . 79.对易式[\hat{F} , \hat{G}] 等于

A. $\hat{F}\hat{G}$. B. $\hat{G}\hat{F}$. C. $\hat{F}\hat{G} - \hat{G}\hat{F}$. D. $\hat{F}\hat{G} + \hat{G}\hat{F}$. 80. .对易式[\hat{F} ,c] 等于(c 为任意常数)

 $A.c\hat{F}$. B. 0. C. c. D. \hat{F} .

81.算符 \hat{F} 和 \hat{G} 的对易关系为 $[\hat{F},\hat{G}] = i\hat{k}$,则 \hat{F} 、 \hat{G} 的测不准关系是

A.
$$\overline{(\Delta \hat{F})^2} (\Delta \hat{G})^2 \ge \frac{\overline{k^2}}{4}$$
. B. $\overline{(\Delta \hat{F})}^2 \overline{(\Delta \hat{G})}^2 \ge \frac{\overline{k^2}}{4}$.

C.
$$\overline{(\Delta \hat{F})^2} \overline{(\Delta \hat{G})^2} \ge \frac{\overline{k}^2}{4}$$
. D. $\overline{(\Delta \hat{F})}^2 \overline{(\Delta \hat{G})}^2 \ge \frac{\overline{k}^2}{4}$.

82.已知 $[\hat{x}, \hat{p}_x] = i\hbar$,则 \hat{x} 和 \hat{p}_x 的测不准关系是

A.
$$\overline{(\Delta \hat{x})^2} \overline{(\Delta \hat{p}_x)^2} \ge \hbar^2$$
. B. $\overline{(\Delta \hat{x})}^2 \overline{(\Delta \hat{p})}^2 \ge \frac{\hbar^2}{4}$.

C.
$$\overline{(\Delta \hat{x})}^2 \overline{(\Delta \hat{p}_x)}^2 \ge \hbar^2$$
. D. $\overline{(\Delta \hat{x})^2} \overline{(\Delta \hat{p}_x)}^2 \ge \frac{\hbar^2}{4}$.

83. 算符 \hat{L}_x 和 \hat{L}_y 的对易关系为 $[\hat{L}_x,\hat{L}_y]=i\hbar\hat{L}_z$,则 \hat{L}_x 、 \hat{L}_y 的测不准关系是

A.
$$\overline{(\Delta \hat{L}_x)^2}\overline{(\Delta \hat{L}_y)^2} \ge \frac{\hbar^2 \overline{\hat{L}_z}^2}{4}$$
.

$$B. \overline{(\Delta \hat{L}_x)}^2 \overline{(\Delta \hat{L}_y)}^2 \ge \frac{\hbar^2 \overline{\hat{L}}^2}{4}.$$

$$C. \overline{(\Delta \hat{F})^2} \overline{(\Delta \hat{G})^2} \ge \frac{\hbar^2 \overline{\hat{L}_z^2}}{4}.$$

D.
$$\overline{(\Delta \hat{F})}^2 \overline{(\Delta \hat{G})}^2 \ge \frac{\hbar^2 \overline{\hat{L}^2}}{4}$$
.

84.电子在库仑场中运动的能量本征方程是

$$A.\left[-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{ze_s^2}{r}\right]\psi = E\psi.$$

B.
$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + \frac{ze_s^2}{r^2}\right]\psi = E\psi$$
.

$$C.\left[-\frac{\hbar^2}{2\mu}\nabla^2 - \frac{ze_s^2}{r}\right]\psi = E\psi.$$

D.
$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 - \frac{ze_s^2}{r^2}\right]\psi = E\psi$$
.

85.类氢原子体系的能量是量子化的,其能量表达式为

A.
$$-\frac{\mu z^2 e_s^2}{2n^2 \hbar^2}$$
. B. $-\frac{\mu^2 z^2 e_s^4}{2\hbar^2 n^2}$.
C. $-\frac{\mu z e_s^2}{2n^2 \hbar^2}$. D. $-\frac{\mu z^2 e_s^4}{2\hbar^2 n^2}$.

86. 在一维无限深势阱 $U(x) = \begin{cases} 0.0 < x < a \\ \infty, x \le 0, x \ge a \end{cases}$ 中运动的质量 μ 为的粒子,其状态为

 $\psi = \frac{4}{\sqrt{a}} \sin \frac{\pi}{a} x \cos^2 \frac{\pi}{a} x$,则在此态中体系能量的可测值为

A.
$$\frac{\pi^{2}\hbar^{2}}{2\mu a^{2}}, \frac{9\pi^{2}\hbar^{2}}{2\mu a^{2}},$$
 B. $\frac{\pi^{2}\hbar^{2}}{\mu a^{2}}, \frac{2\pi^{2}\hbar^{2}}{\mu a^{2}},$ C. $\frac{3\pi^{2}\hbar^{2}}{2\mu a^{2}}, \frac{3\pi^{2}\hbar^{2}}{\mu a^{2}},$ D. $\frac{5\pi^{2}\hbar^{2}}{2\mu a^{2}}, \frac{4\pi^{2}\hbar^{2}}{\mu a^{2}}.$

87.接上题,能量可测值 E_1 、 E_3 出现的几率分别为 A.1/4,3/4. B. 3/4,1/4. C.1/2, 1/2. D. 0,1. 88.接 86 题,能量的平均值为

A.
$$\frac{5\pi^2\hbar^2}{2\mu a^2}$$
, B. $\frac{2\pi^2\hbar^2}{\mu a^2}$, C. $\frac{7\pi^2\hbar^2}{2\mu a^2}$, D. $\frac{5\pi^2\hbar^2}{\mu a^2}$.

89.若一算符 \hat{F} 的逆算符存在,则[\hat{F} , \hat{F}^{-1}]等于

A. 1. B. 0. C. -1. D. 2.

90. 如果力学量算符 \hat{F} 和 \hat{G} 满足对易关系 [\hat{F} , \hat{G}]=0,则

A. \hat{F} 和 \hat{G} 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值.

B. \hat{F} 和 \hat{G} 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.

C. \hat{F} 和 \hat{G} 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定

值.

D. \hat{F} 和 \hat{G} 不一定存在共同本征函数,但总有那 样态存在使得它们所代表的力学量可同时具有确 定值.

91.一维自由粒子的能量本征值

A. 可取一切实数值.

B. 只能取不为负的一切实数.

C.可取一切实数,但不能等于零.

D.只能取不为正的实数.

92.对易关系式[\hat{p}_x , $\hat{p}_x^2 f(x)$] 等于

A. $-i\hbar\hat{p}_x^2 f'(x)$. B. $i\hbar\hat{p}_x^2 f'(x)$.

 $C.-i\hbar\hat{p}_x^2 f(x)$. D. $i\hbar\hat{p}_x^2 f(x)$.

93.定义算符 $\hat{L}_{+} = \hat{L}_{x} \pm i\hat{L}_{v}$, 则 $[\hat{L}_{+},\hat{L}_{-}]$ 等于

 $A.\hbar\hat{L}_z$. $B.2\hbar\hat{L}_z$. $C.-2\hbar\hat{L}_z$. $D.-\hbar\hat{L}_z$.

94.接上题,则[\hat{L}_{+},\hat{L}_{z}]等于

 $A. \hbar \hat{L}_{\perp} . B. \hbar \hat{L}_{z} . C. -\hbar \hat{L}_{\perp} . D. -\hbar \hat{L}_{z}$

95. 接 93 题,则[*L̂_*,*L̂_*]等于

 $A. \hbar \hat{L}_{-}. B. \hbar \hat{L}_{z}. C. -\hbar \hat{L}_{-}. D. -\hbar \hat{L}_{z}.$ 96. 氡 原 子 的 能 量 本 征 $\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r)Y_{lm}(\theta,\varphi)$

A.只是体系能量算符、角动量平方算符的本征 函数,不是角动量 Z 分量算符的本征函数.

B.只是体系能量算符、角动量 Z 分量算符的本 征函数,不是角动量平方算符的本征函数.

C.只是体系能量算符的本征函数,不是角动量 平方算符、角动量 Z 分量算符的本征函数.

D.是体系能量算符、角动量平方算符、角动量 Z 分量算符的共同本征函数.

97.体系处于 $\psi = c_1 Y_{11} + c_2 Y_{10}$ 态中,则 ψ

A.是体系角动量平方算符、角动量 Z 分量算符 的共同本征函数.

B.是体系角动量平方算符的本征函数,不是角 动量 Z 分量算符的本征函数.

C.不是体系角动量平方算符的本征函数,是角 动量 Z 分量算符的本征函数.

D.即不是体系角动量平方算符的本征函数,也 不是角动量 Z 分量算符的本征函数.

99.动量为 p' 的自由粒子的波函数在坐标表象中

的表示是 $\psi_{p'}(x) = \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{i}{\hbar} p' x)$,它在动量表

象中的表示是

 $A. \delta(p-p') . B. \delta(p+p') . C. \delta(p) . D. \delta(p')$. 100.力学量算符 x 对应于本征值为 x' 的本征函数 在坐标表象中的表示是

A. $\delta(x-x')$. B. $\delta(x+x')$. C. $\delta(x)$. D. $\delta(x')$.

101.一粒子在一维无限深势阱中运动的状态为 $\psi(x) = \frac{\sqrt{2}}{2} \psi_1(x) - \frac{\sqrt{2}}{2} \psi_2(x)$,其中 $\psi_1(x)$ 、 $\psi_2(x)$ 是其能 量本征函数,则 $\psi(x)$ 在能量表象中的表示是

A.
$$\begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \\ \vdots \end{pmatrix}$$
.B. $\begin{pmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \\ 0 \\ \vdots \end{pmatrix}$.C. $\begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \\ 0 \end{pmatrix}$.D. $\begin{pmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \\ 0 \\ 0 \end{pmatrix}$.

102.线性谐振子的能量本征函数 $\psi_1(x)$ 在能量表象中的表示是

$$A. \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}. \quad B. \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}. \quad C. \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}. \quad D. \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

103. 线性谐振子的能量本征函数 $\psi = a\psi_0(x) + b\psi_1(x)$ 在能量表象中的表示是

A.
$$\begin{pmatrix} a/\sqrt{|a|^{2}+|b|^{2}} \\ b/\sqrt{|a|^{2}+|b|^{2}} \\ 0 \\ \vdots \end{pmatrix}$$
. B.
$$\begin{pmatrix} 0 \\ a/\sqrt{|a|^{2}+|b|^{2}} \\ b/\sqrt{|a|^{2}+|b|^{2}} \\ 0 \end{pmatrix}$$
.

C.
$$\begin{pmatrix} a \\ b \\ 0 \\ \vdots \end{pmatrix}$$
 D.
$$\begin{pmatrix} 0 \\ a \\ b \\ 0 \end{pmatrix}$$

104.在 (\hat{L}^2, \hat{L}_z) 的共同表象中,波函数 $\phi = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$,在该态中 \hat{L}_z 的平均值为

A. \hbar . B. $-\hbar$. C. $2\hbar$. D. 0.

105.算符 \hat{Q} 只有分立的本征值 $\{Q_n\}$,对应的本征函数是 $\{u_n(x)\}$,则算符 $\hat{F}(x,\frac{\hbar}{i}\frac{\partial}{\partial x})$ 在 \hat{Q} 表象中的矩阵元的表示是

A.
$$F_{mn} = \int u_n^*(x) F(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) u_m(x) dx$$
.

B.
$$F_{mn} = \int u_m^*(x) F(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) u_n(x) dx$$
.

C.
$$F_{mn} = \int u_n(x) F(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) u_m^*(x) dx$$
.

D.
$$F_{mn} = \int u_m(x) F(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) u_n^*(x) dx$$
.

106.力学量算符在自身表象中的矩阵表示是

A. 以本征值为对角元素的对角方阵.

B. 一个上三角方阵. C.一个下三角方阵.

D.一个主对角线上的元素等于零的方阵.

107.力学量算符 x 在动量表象中的微分形式是

$$A.-i\hbar\frac{\partial}{\partial p_{x}}.B.i\hbar\frac{\partial}{\partial p_{x}}.C.-i\hbar^{2}\frac{\partial}{\partial p_{x}}.D.i\hbar^{2}\frac{\partial}{\partial p_{x}}.$$

108.线性谐振子的哈密顿算符在动量表象中的微 分形式是

$$A.\frac{p^2}{2\mu} + \frac{1}{2}\mu\omega^2\hbar^2\frac{\partial^2}{\partial p^2}. \quad B.\frac{p^2}{2\mu} - \frac{1}{2}\mu\omega^2\frac{\partial^2}{\partial p^2}.$$

C.
$$\frac{p^2}{2\mu} - \frac{1}{2}\mu\omega^2\hbar^2\frac{\partial^2}{\partial p^2}$$
. D. $-\frac{p^2}{2\mu} - \frac{1}{2}\mu\omega^2\frac{\partial^2}{\partial p^2}$.

109.在 \hat{Q} 表象中 $F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,其本征值是

A. ± 1 . B. 0. C. $\pm i$. D. $1 \pm i$.

110.接上题, F 的归一化本征态分别为

A.
$$\frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
. B. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

C.
$$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
. D. $\frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \frac{\sqrt{2}}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

111.幺正矩阵的定义式为

 $A. S^{+} = S^{-}. B. S^{+} = S^{*}. C. S = S^{-}. D. S^{*} = S^{-}.$ 112. 幺正变换

A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢. C.改变算符的本征值,但不改变其本征矢.

D.即改变算符的本征值,也改变其本征矢.

113. 算符 $\hat{a} = (\frac{\mu\omega}{2\hbar})^{1/2} (\hat{x} + \frac{i}{\mu\omega} \hat{p})$,则对易关系式 $[\hat{a}, \hat{a}^+]$ 等于

A.
$$[\hat{a}, \hat{a}^+] = 0$$
. B. $[\hat{a}, \hat{a}^+] = 1$.

C.
$$[\hat{a}, \hat{a}^+] = -1$$
. D. $[\hat{a}, \hat{a}^+] = i$.

114.非简并定态微扰理论中第n个能级的表达式是(考虑二级近似)

A.
$$E_n^{(0)} + H'_{nn} + \sum_m \frac{\left|H'_{mn}\right|^2}{E_n^{(0)} - E_n^{(0)}}$$
.

B.
$$E_n^{(0)} + H'_{nn} + \sum_{m} \frac{\left|H'_{mn}\right|^2}{E_n^{(0)} - E_m^{(0)}}$$
.

C.
$$E_n^{(0)} + H'_{nn} + \sum_{m} \frac{|H'_{mn}|^2}{E_m^{(0)} - E_n^{(0)}}$$
.

D.
$$E_n^{(0)} + H'_{nn} + \sum_m \frac{\left|H'_{mn}\right|^2}{E_m^{(0)} - E_n^{(0)}}$$
.

115. 非简并定态微扰理论中第n个能级的一级修正项为

 $A. H'_{mn}$. $B. H'_{nn}$. $C. -H'_{nn}$. $D. H'_{nm}$.

116. 非简并定态微扰理论中第n个能级的二级修正项为

A.
$$\sum_{m} \frac{\left|H'_{mn}\right|^{2}}{E_{n}^{(0)} - E_{m}^{(0)}}$$
. B. $\sum_{m} \frac{\left|H'_{mn}\right|^{2}}{E_{n}^{(0)} - E_{m}^{(0)}}$.

C.
$$\sum_{m} \frac{|H'_{mn}|^2}{E_{m}^{(0)} - E_{m}^{(0)}}$$
. D. $\sum_{m} \frac{|H'_{mn}|^2}{E_{m}^{(0)} - E_{m}^{(0)}}$.

117. 非简并定态微扰理论中第n个波函数一级修 正项为

A.
$$\sum_{m} \frac{H'_{mn}}{E_{n}^{(0)} - E_{m}^{(0)}} \psi_{m}^{(0)}$$
.

B.
$$\sum_{m} \frac{H'_{mn}}{E_{n}^{(0)} - E_{m}^{(0)}} \psi_{m}^{(0)}$$
.

C.
$$\sum_{m} \frac{H'_{mn}}{E_{m}^{(0)} - E_{n}^{(0)}} \psi_{m}^{(0)}$$
.

D.
$$\sum_{m} \frac{H'_{mn}}{E_{m}^{(0)} - E_{n}^{(0)}} \psi_{m}^{(0)}$$
.

119.非简并定态微扰理论的适用条件是

A.
$$\left| \frac{H'_{mk}}{E_k^{(0)} - E_m^{(0)}} \right| << 1$$
. B. $\left| \frac{H'_{mk}}{E_k^{(0)} + E_m^{(0)}} \right| << 1$.

C.
$$|H'_{mk}| << 1$$
.

C.
$$|H'_{mk}| \ll 1$$
. D. $|E_k^{(0)} - E_m^{(0)}| \ll 1$.

121.非简并定态微扰理论中,波函数的一级近似公 式为

A.
$$\psi_n = \psi_n^{(0)} + \sum_m \frac{H'_{nm}}{E_n^{(0)} - E_m^{(0)}} \psi_m^{(0)}$$
.

B.
$$\psi_n = \psi_n^{(0)} + \sum_m \frac{H'_{mn}}{E_n^{(0)} - E_m^{(0)}} \psi_m^{(0)}$$
.

$$C. \psi_n = \psi_n^{(0)} + \sum_m \frac{H'_{mn}}{E_m^{(0)} - E_n^{(0)}} \psi_m^{(0)}.$$

$$D. \psi_n = \psi_n^{(0)} + \sum_m \frac{H'_{nm}}{E_m^{(0)} - E_n^{(0)}} \psi_m^{(0)}.$$

122.氢原子的一级斯塔克效应中,对于n=2的能 级由原来的一个能级分裂为

A. 五个子能级.

B. 四个子能级.

C. 三个子能级.

D. 两个子能级.

124.用变分法求量子体系的基态能量的关键是

A. 写出体系的哈密顿.

B. 选取合理的尝试波函数.

C. 计算体系的哈密顿的平均值.

D. 体系哈密顿的平均值对变分参数求变分.

125.Stern-Gerlach 实验证实了

A. 电子具有波动性.

B.光具有波动性.

C. 原子的能级是分立的. D. 电子具有自旋.

126. \vec{S} 为自旋角动量算符,则 $[\hat{S}_v,\hat{S}_x]$ 等于

A. 2i. B. $i\hbar$. C. 0 .D. $-i\hbar \hat{S}_z$.

127. $\hat{\sigma}$ 为 Pauli 算符,则[$\hat{\sigma}_{v}$, $\hat{\sigma}_{e}$]等于

A. $-i\hbar\hat{\sigma}_{v}$. B. $i\hbar\hat{\sigma}_{v}$. C. $2i\hbar\hat{\sigma}_{v}$. D. $-2i\hbar\hat{\sigma}_{v}$.

128.单电子的自旋角动量平方算符 \hat{S}^2 的本征值为

$$A.\frac{1}{4}\hbar^2$$
. $B.\frac{3}{4}\hbar^2$. $C.\frac{3}{2}\hbar^2$. $D.\frac{1}{2}\hbar^2$.

129.单电子的 Pauli 算符平方的本征值为

B. 1. C. 2. D. 3.

130.Pauli 算符的三个分量之积等于

A. 0. B. 1. C. i. D. 2i.

131.电子自旋角动量的x分量算符在 \hat{S} 。表象中矩 阵表示为

$$\mathbf{A}.\,\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \qquad \mathbf{B}. \quad \hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

C.
$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. D. $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

132. 电子自旋角动量的 y 分量算符在 \hat{S}_{i} 表象中 矩阵表示为

$$\mathbf{A}.\,\hat{S}_{y} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad \mathbf{B}. \quad \hat{S}_{y} = \frac{i\hbar}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

C.
$$\hat{S}_y = \frac{i\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
. D. $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

133. 电子自旋角动量的 z 分量算符在 \hat{S}_z 表象中 矩阵表示为

$$\mathbf{A}.\,\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad \mathbf{B}. \quad \hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

C.
$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
. D. $\hat{S}_z = \frac{i\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

137. 一电子处于自旋态 $\chi = a\chi_{1/2}(s_z) + b\chi_{-1/2}(s_z)$ 中,则 s, 的可测值分别为

A.
$$0, \hbar$$
. B. $0, -\hbar$.C. $\frac{\hbar}{2}, \frac{\hbar}{2}$. D. $\frac{\hbar}{2}, -\frac{\hbar}{2}$.

138.接上题,测得 s_z 为 $\frac{\hbar}{2}$,— $\frac{\hbar}{2}$ 的几率分别是

A.
$$a,b$$
. B. $|a|^2,|b|^2$. C. $|a|^2/2,|b|^2/2$.

D.
$$|a|^2 / (|a|^2 + |b|^2), |b|^2 / (|a|^2 + |b|^2)$$
.

139.接 137 题, s, 的平均值为

A. 0. B.
$$\frac{\hbar}{2}(|a|^2 - |b|^2)$$
.

C. $\hbar(|a|^2 - |b|^2)/(2|a|^2 + 2|b|^2)$. D. \hbar .

143.下列有关全同粒子体系论述正确的是

A. 氢原子中的电子与金属中的电子组成的体系 是全同粒子体系.

B.氢原子中的电子、质子、中子组成的体系是 全同粒子体系.

C.光子和电子组成的体系是全同粒子体系.

 $D.\alpha$ 粒子和电子组成的体系是全同粒子体系.

其体系的波函数	动量的量子数的取值是
A.是对称的. B .是反对称的.	A. 0, 1, 2, 3, 4. B. 1, 2, 3, 4.
C.具有确定的对称性. D.不具有对称性.	A. 0, 1, 2, 3, 4. B. 1, 2, 3, 4. C. 0, 1, 2, 3. D. 1, 2, 3.
(二) 填空题	
1.Compton 效应证实了光具有粒子性;。	
2.Bohr 提出轨道量子化条件的数学表达式是	o
3.Sommerfeld 提出的广义量子化条件是	0
4.一质量为μ的粒子的运动速度远小于光速,其	动能为 E_k ,其德布罗意波长为。
5.黑体辐射和光电效应揭示了	0
6.1924 年,法国物理学家 De Broglie 提出了微观实	
7.自由粒子的 De Broglie 波函数为	0
8.用 150 伏特电压加速的电子,其 De Broglie 波图	的波长是。
9.玻恩对波函数的统计解释是	0
10.一粒子用波函数 $\Phi(\vec{r},t)$ 描写,则在某个区域 dV	内找到粒子的几率为。
11. 描 写 粒 子 同 一	计 状 态 的 波 函 数 有
个。	
12.态迭加原理的内容是	0
	$c(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} c(p,t) \exp(\frac{i}{\hbar} px) dp$ 描写, 则
13. 一 粒 子 由 波 函 数 $\Psi(x)$	$E(t,t) = \frac{1}{\sqrt{2\pi\hbar}} \int c(p,t) \exp(\frac{t}{\hbar}px) dp$ 描 写 , 则
$c(p,t) = \underline{\hspace{1cm}}$	√ 2700 _{-∞}
) 2.1.
	述通过缝 1 和缝 2 的粒子的状态,则粒子在屏上一点 F
出现的几率密度为	0
15.一维自由粒子的薛定谔方程是	
16.N 个粒子体系的薛定谔方程是	
17.几率连续性方程是由导出的	J ∘
18.几率连续性方程的数学表达式为	
19.几率流密度矢量的定义式是	
20.空间 V 的边界曲面是 S, w 和 \vec{J} 分别是粒子的	几率密度和几率流密度矢量,则 $\int_V rac{\partial w}{\partial t} dV = -\oint_S ec{J} \cdot dec{S}$ 的
物理意义是。 21.量子力学中的质量守恒定律是。	
21.量子力学中的质量守恒定律是	0
22.量子力学中的电荷守恒定律是	0
23.波函数应满足的三个标准条件是	0
24.定态波函数的定义式是	0
$25.$ 粒子在势场 $U(\vec{r})$ 中运动,则粒子的哈密顿算征	符为。。
26.束缚态的定义是	0
27.线性谐振子的零点能为	0
28.线性谐振子的两相邻能级间距为	0
	F 有确定值,这个值就是相应该态的。
30.表示力学量的算符都是	
31.厄密算符的本征值必为	
$32. \int \psi_{\vec{p}}^{*}(\vec{r}) \psi_{\vec{p}}(\vec{r}) d\tau = \underline{\hspace{1cm}}$	
33.角动量平方算符的本征值为	
24 角勃县亚方管מ的木尔店的签并审告	0
34.角动量平方算符的本征值的简并度为35.氢原子能级 $n=5$ 的简并度为	0
	0

144.全同粒子体系中,其哈密顿具有交换对称性, 145.分别处于 p 态和 d 态的两个电子,它们的总角

36.氢原子的能级对角量子数 l 简并,这是场所特有的。
37.一般来说,碱金属原子的价电子的能级的简并度是。
38.氢原子基态的电离能为。 39.氢原子体系 $n=2$ 的能量是。
39.氢原子体系 <i>n</i> = 2 的能量是。
$40.$ 处于 $\psi_{200}(r,\theta,\varphi)$ 态的氢原子,其电子的角向几率分布是。
41.厄密算符本征函数的正交归一性的数学表达式是。
42.厄密算符属于不同本征值的本征函数。
43.力学量算符 \hat{F} 的本征函数系为 $\{\phi_n(x)\}$,则本征函数系 $\{\phi_n(x)\}$ 的完全性是。
44. 当体系处于 $\psi(x) = \sum_{n} c_n \phi_n(x)$ 态时,其中 $\{\phi_n(x)\}$ 为 \hat{F} 的本征函数系,在 $\psi(x)$ 态中测量力学量 F 为
其本征值 λ_n 的几率是。
45.一力学量算符 \hat{F} 既有分立谱又有连续谱,则 \hat{F} 在任意态 $\psi(x)$ 的平均值为。
46.如果两个力学量算符有组成完全系的共同本征函数,则这两个算符。
47.完全确定三维空间的自由粒子状态需要三个力学量,它们是。
48.测不准关系反映了微观粒子的。
49.若对易关系 $[\hat{A},\hat{B}]=i\hat{c}$ 成立,则 \hat{A},\hat{B} 的不确定关系是。
50.如果两个力学量算符对易,则在
中它们可同时具有确定值。
51.电子处于 $\frac{1}{2}Y_{10}(\theta,\varphi)-\frac{\sqrt{3}}{2}Y_{1-1}(\theta,\varphi)$ 态中,则电子角动量的 z 分量的平均值为。
52.角动量平方算符与角动量 x 分量算符的对易关系等于。
53. 角动量 x 分量算符与动量的 z 分量算符的对易关系等于。
54. 角动量 y 分量算符与坐标的 z 分量算符的对易关系等于。
$55.[\hat{y}, \hat{p}_y] = \underline{\hspace{1cm}}_{\circ}$
56.粒子的状态由 $\psi(x) = \cos kx$ 描写,则粒子动量的平均值是。
57.一维自由粒子的动量本征函数是。
58.角动量平方算符的本征值方程为。
59.若不考虑电子的自旋,描写氢原子状态所需要的力学量的完全集合是。
60.氢原子能量是考虑了得到的。
61.量子力学中, 称为表象。
62.动量算符在坐标表象的表达式是。
63.角动量算符在坐标表象中的表示是。
64.角动量 y 分量的算符在坐标表象中的表示是。 65.角动量 z 分量的算符在坐标表象中的表示是。
65.角动量 z 分量的算符在坐标表象中的表示是。
66.波函数Ψ(<i>x</i> , <i>t</i>) 在动量表象中的表示是。
67.在动量表象中,具有确定动量 p' 的粒子,其动量算符的本征方程是。
68.已知 \hat{Q} 具有分立的本征值 $\{Q_n\}$,其相应本征函数为 $\{u_n(x)\}$,则任意归一化波函数 $\Psi(x,t)$ 可写为
$\Psi(x,t) = \sum_{n} a_n(t)u_n(x)$, 则 $\Psi(x,t)$ 在 Q 表象中的表示是
69.量子力学中 \hat{Q} 的本征函数为 $\{u_n(x)\}$ (n=1,2,3,)有无限多,
70.接 68 题,力学量算符 $\hat{F}(x, \frac{\hbar}{i} \frac{\partial}{\partial x})$ 在 Q 表象中的矩阵元的数学表达式为。
71.量子力学中,表示力学量算符的矩阵是矩阵。
72.接 68 题,力学量算符 $\hat{Q}(x,\frac{\hbar}{i}\frac{\partial}{\partial x})$ 在自身表象中的表示是。

74.力学量算符 $\hat{F}(x,\frac{n}{i}\frac{\partial}{\partial x})$ 在坐标表象中的矩阵元为。
i Ch
75.幺正矩阵满足的条件是。 76.幺正变换不改变力学量算符的。
77.幺正变换不改变矩阵 F 的。
$78.$ 力学量算符 \hat{x} 在动量表象中的微分形式是 。
79. 坐标表象中的薛定谔方程是 $i\hbar \frac{\partial}{\partial} \Psi(\vec{r},t) = [-\frac{\hbar^2}{2\mu} \nabla^2 + U(\vec{r})] \Psi(\vec{r},t)$,它在动量表象中的表示
是。
80.线性谐振子的哈密顿算符在动量表象中的微分形式是。
81.非简并定态微扰理论中,能量二级近似值为。 82.非简并定态微扰理论中,波函数的一级近似表示为。
82.非简并定态微扰理论中,波函数的一级近似表示为。
83.非简并定态微扰理论的适用条件是。
84.Stark 效应是。
85.氢原子处于弱电场 ϵ 中,其体系的微扰哈密顿是。 86.在微扰作用下, t 时刻由 Φ_k 态到 Φ_m 态的跃迁几率是。
87.1925 年,Ulenbeck 和 Goudsmit 提出每个电子具有自旋角动量 \vec{S} ,它在空间任何方向的投影只能取两个数值,即是。 88.Stern-Gerlach 实验证实了。
88.Stern-Gerlach 实验证实了。
89.Pauli 算符 $\hat{\sigma}_x$, $\hat{\sigma}_z$ 的反对易关系式是。
90.自旋角动量算符的定义式为。
91.自旋角动量算符 \hat{S}_x 在 S_z 表象中的矩阵表示是。
92.自旋角动量算符 \hat{S}_{v} 在 S_{z} 表象中的矩阵表示是。
93.自旋角动量算符 \hat{S}_z 属于本征值 $-\frac{\hbar}{2}$ 的本征函数
在 S_z 表象中的矩阵表示是;。
94.Pauli 算符 $\hat{\sigma}_x$, $\hat{\sigma}_z$ 的积算符在 σ_z 表象中的矩阵表示是;。
A FILL FOR THE LOCAL FOR
95.全同性原理的内容是。 96.全同粒子体系的哈密顿具有对称性。
97.全同粒子体系的波函数具有确定对称性,这种对称性不随
98.如果全同粒子体系的波函数是反对称的,则组成该体系的全同粒子一定是。
99.Pauli 原理的内容是。 100.自旋算符无经典对应力学量,这纯属于。
100.自旋算符尤经典对应力学量,这纯属于。
(五)证明题
1.证明在定态中,几率流密度矢量与时间无关。
2.证明厄密算符的本征值为实数。
$3.证明坐标算符\hat{x}和动量算符\hat{p}_x为厄密算符。$
5.已知力学量算符 \hat{F} 的本征函数系 $\{\phi_n(x)\}$ 具有完全性,有一归一化的波函数 $\psi(x) = \sum c_n \phi_n(x)$,证明
$V_n = \sum_{i=1}^{n} C_n \psi_n(x) + \sum_{i=1}^{n} C$
$\sum_{n} \left c_{n} \right ^{2} = 1 \circ$
6.已知 $\hat{F}\phi_n(x) = \lambda_n\phi_n(x)$,则算符 \hat{F} 在归一化波函数 $\psi(x)$ 中的平均值为 $\overline{F} = \int \psi^*(x)\hat{F}\psi(x)dx$,证明
$\overline{F} = \int \psi^*(x) \hat{F} \psi(x) dx = \sum_n \lambda_n c_n ^2 , \sharp \psi$
$c_n = \int \phi_n^*(x)\psi(x)dx \circ$

- 8.证明如果两个算符有完全的共同本征函数系,则这两个算符必对易。
- 12.证明对易关系[\hat{L}^2 , \hat{L}_z]=0。
- 13.在 \hat{L}_z 的本征态下,证明 $\overline{L_x} = \overline{L_y} = 0$ 。
- 14.证明力学量算符的矩阵是厄密矩阵。
- 15.仿上题,并由此证明力学量算符在自身表象中的矩阵表示是对角阵,对角线上的元素依次按其本征值排列。
- 17.证明动量算符的属于本征值为 p'的本征函数在动量表象中的表示是 $\delta(p-p')$ 。
- 20.试证明线性谐振子的哈密顿算符在动量表象中的表示是 $H = -\frac{1}{2}m\hbar^2\omega^2\frac{d^2}{dp^2} + \frac{1}{2m}p^2$ 。
- 23.定义 $\hat{\sigma}_{\pm} = \frac{1}{2}(\hat{\sigma}_x \pm i\hat{\sigma}_y)$, 证明(1) $\hat{\sigma}_{\pm}^2 = \hat{\sigma}_{\pm}^2 = 0$, (2) $[\hat{\sigma}_{\pm}, \hat{\sigma}_{\pm}] = \hat{\sigma}_z$ 。
- 24.证明在 $\hat{\sigma}_z$ 表象中 $\hat{\sigma}_x\hat{\sigma}_v\hat{\sigma}_z = i$ 。

(四) 名词解释

- 1.量子现象
- 2.光的波粒二象性
- 3.德布罗意公式
- 4.光子
- 5.脱出功
- 6.黑体
- 7. 微观实物粒子的波粒二象性
- 8.Bohr 的原子量子论
- 9. 态迭加原理
- 10.波函数的标准条件

(六) 计算题

- 11.定态
- 12.束缚态
- 13.几率波
- 14.归一化波函数
- 15.几率流密度矢量
- 16.线性谐振子的零点能
- 17.厄密算符
- 18.简并度
- 19.力学量的完全集合
- 20.箱归一化

- 21.函数的正交性
- 22.角动量算符
- 23.力学量算符的本征函数的正交归一性
- 24.氢原子的赖曼线系
- 25.表象
- 26. 幺正变换
- 27.狄喇克符号
- 28.厄密矩阵及其特点
- 29.能量表象
- 1.氦原子的动能为 $E = \frac{3}{2}kT(k)$ Boltzman 常数),求T = 1K 时氦原子的波长。
- 2.利用 Bohr-Sommerfeld 量子化条件求一维线性谐振子的能量。
- 3.两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光 子的波长最大是多少?
- 4.线性谐振子处于
- $\psi(x) = \frac{1}{2}\psi_0(x) \frac{\sqrt{2}}{2}\psi_2(x) + \frac{1}{2}\psi_4(x)$,其中 $\psi_n(x)$ 为线性谐振子的能量本征函数,试求能量的可测及平均值。
- 5. 氢原子处于基态 $\psi(r,\theta,\varphi) = \sqrt{\frac{1}{\pi a_0^3}} \exp(-\frac{r}{a_0})$,求最可几半径和动能平均值。
- 6.求在 \hat{L}_z 的本征态下,角动量沿与z轴成 θ 角的方向上的分量的平均值。
- 7. 在 \hat{S}_z 表象中,试计算 \hat{S}_v 的矩阵表示。
- 8.求 $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 的本征值和所属本征函数。
- 9.求 $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ 的本征值和所属本征函数。