Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

W	ebsite			vii
Ac	knowle	edgments		viii
No	otation			xi
1	Introd 1.1 1.2	luction Who Should Read This Book?	8 11	1
I	Applie	ed Math and Machine Learning Basics	29	
2	Linea 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	r Algebra Scalars, Vectors, Matrices and Tensors Multiplying Matrices and Vectors Identity and Inverse Matrices Linear Dependence and Span Norms 39 Special Kinds of Matrices and Vectors Eigendecomposition 42 Singular Value Decomposition The Moore-Penrose Pseudoinverse The Trace Operator 46 The Determinant 47 Example: Principal Components Analysis	34 36 37 40 44 45	31
3	Proba	bility and Information Theory Why Probability?	53	

	3.2	Random Variables 56		
	3.3	Probability Distributions		
	3.4	Marginal Probability		
	3.5	Conditional Probability 59		
	3.6	The Chain Rule of Conditional Probabilities	59	
	3.7	Independence and Conditional Independence	60	
	3.8	•	60	
	3.9	Common Probability Distributions	2	
	3.10	Useful Properties of Common Functions	67	
	3.11	Bayes' Rule 70		
	3.12	Technical Details of Continuous Variables	71	
	3.13	Information Theory		
	3.14	Structured Probabilistic Models	j	
4	Nume	erical Computation	8	0
	4.1	Overflow and Underflow 80		
	4.2	Poor Conditioning 82		
	4.3	Gradient-Based Optimization 82		
	4.4	Constrained Optimization		
	4.5	Example: Linear Least Squares 90	6	
5	Mach	ine Learning Basics	Ģ	98
	5.1	Learning Algorithms		
	5.2	Capacity, Overfitting and Underfitting	10	
	5.3	Hyperparameters and Validation Sets		
	5.4	Estimators, Bias and Variance		
	5.5	Maximum Likelihood Estimation 13	31	
	5.6	Bayesian Statistics		
	5.7	Supervised Learning Algorithms	9	
	5.8	Unsupervised Learning Algorithms	.5	
	5.9	Stochastic Gradient Descent		
	5.10	Building a Machine Learning Algorithm	152	
	5.11	Challenges Motivating Deep Learning	54	
II	Deep	Networks: Modern Practices	165	
6	Deep	Feedforward Networks	167	7
	6.1	Example: Learning XOR		
	6.2	Gradient-Based Learning		

	6.3	Hidden Units	190
	6.4	Architecture Design	. 196
	6.5	Back-Propagation and Other Differentiation Algorithm	ms 203
	6.6	Historical Notes	
_			•••
7	_	larization for Deep Learning	228
	7.1	Parameter Norm Penalties	
	7.2	Norm Penalties as Constrained Optimization	
	7.3	Regularization and Under-Constrained Problems	
	7.4	Dataset Augmentation	
	7.5	Noise Robustness	
	7.6	Semi-Supervised Learning	
	7.7	Multi-Task Learning	. 245
	7.8	Early Stopping	. 246
	7.9	Parameter Tying and Parameter Sharing	251
	7.10	Sparse Representations	253
	7.11	Bagging and Other Ensemble Methods	255
	7.12	Dropout	257
	7.13	Adversarial Training	. 267
	7.14	Tangent Distance, Tangent Prop, and Manifold Tange	ent Classifier 268
8	Ontin	nization for Training Deep Models	274
O	8.1	How Learning Differs from Pure Optimization	
	8.2	•	
		Challenges in Neural Network Optimization	
	8.3	Basic Algorithms	
	8.4	Parameter Initialization Strategies	
	8.5	Algorithms with Adaptive Learning Rates	
	8.6	Approximate Second-Order Methods	
	8.7	Optimization Strategies and Meta-Algorithms	318
9	Conv	olutional Networks	331
	9.1	The Convolution Operation	332
	9.2	Motivation	336
	9.3	Pooling	
	9.4	Convolution and Pooling as an Infinitely Strong Prior	
	9.5	Variants of the Basic Convolution Function	
	9.6	Structured Outputs	
	9.7	Data Types	
	9.8	Efficient Convolution Algorithms	
	9.9	Random or Unsupervised Features	304

	9.10	The Neuroscientific Basis for Convolutional Networks	365
	9.11	Convolutional Networks and the History of Deep Learning	372
10	Seque	nce Modeling: Recurrent and Recursive Nets 374	
	10.1	Unfolding Computational Graphs	
	10.2	Recurrent Neural Networks	
	10.3	Bidirectional RNNs	
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	397
	10.5	Deep Recurrent Networks 399	
	10.6	Recursive Neural Networks 401	
	10.7	The Challenge of Long-Term Dependencies 40	13
	10.8	Echo State Networks 406	
	10.9	Leaky Units and Other Strategies for Multiple Time Scales	. 409
	10.10	The Long Short-Term Memory and Other Gated RNNs	411
	10.11	Optimization for Long-Term Dependencies 415	5
	10.12	Explicit Memory	
11	Practic	cal methodology	424
	11.1	Performance Metrics	
	11.2	Default Baseline Models	
	11.3	Determining Whether to Gather More Data 429	
	11.4	Selecting Hyperparameters	
	11.5	Debugging Strategies	
	11.6	Example: Multi-Digit Number Recognition	3
12	Applic	eations	446
	12.1	Large Scale Deep Learning	
	12.2	Computer Vision	
	12.3	Speech Recognition	
	12.4	Natural Language Processing	
	12.5	Other Applications	
111	Dag	n Lagraina Dagagrah	490
III	Dee _]	p Learning Research	489
13	Linear	Factor Models	492
	13.1	Probabilistic PCA and Factor Analysis 493	
	13.2	Independent Component Analysis (ICA)	
	13.3	Slow Feature Analysis	
	13.4	Sparse Coding	

13.5	Manifold Interpretation of PCA	502	
14 Autoei	ncoders		505
14.1	Undercomplete Autoencoders	506	
14.2	Regularized Autoencoders 5		
14.3	Representational Power, Layer Size and Depth		1
14.4	Stochastic Encoders and Decoders		
14.5	Denoising Autoencoders		
14.6	Learning Manifolds with Autoencoders		
14.7	Contractive Autoencoders		
14.8	Predictive Sparse Decomposition	526	
14.9	Applications of Autoencoders	527	
15 Repres	sentation Learning	5:	29
15.1	Greedy Layer-Wise Unsupervised Pretraining	53	1
15.2	Transfer Learning and Domain Adaptation	. 539	
15.3	Semi-Supervised Disentangling of Causal Factors	5	44
15.4	Distributed Representation	19	
15.5	Exponential Gains from Depth	556	
15.6	Providing Clues to Discover Underlying Causes	55	57
16 Structu	ared Probabilistic Models for Deep Learning	561	
16.1	The Challenge of Unstructured Modeling	. 562	
16.2	Using Graphs to Describe Model Structure	566)
16.3	Sampling from Graphical Models	583	
16.4	Advantages of Structured Modeling	584	
16.5	Learning about Dependencies	585	
16.6	Inference and Approximate Inference	586	
16.7	The Deep Learning Approach to Structured Probabilistic M	Iodels	587
17 Monte	Carlo Methods	5	593
17.1	Sampling and Monte Carlo Methods	593	
17.2	Importance Sampling	5	
17.3	Markov Chain Monte Carlo Methods	598	
17.4	Gibbs Sampling 602		
17.5	The Challenge of Mixing between Separated Modes	6	502
18 Confro	onting the Partition Function	608	
18.1	The Log-Likelihood Gradient	609	
18.2	Stochastic Maximum Likelihood and Contrastive Divergen	ce	610

18.3	Pseudolikelihood	618
18.4	Score Matching and Ratio Matching	620
18.5	Denoising Score Matching	. 622
18.6	Noise-Contrastive Estimation	. 623
18.7	Estimating the Partition Function	. 626
19 Approx	ximate inference	634
19.1	Inference as Optimization	. 636
19.2	Expectation Maximization	. 637
19.3	MAP Inference and Sparse Coding	638
19.4	Variational Inference and Learning	641
19.5	Learned Approximate Inference	653
20 Deep	Generative Models	656
20.1	Boltzmann Machines	656
20.2	Restricted Boltzmann Machines	658
20.3	Deep Belief Networks	662
20.4	Deep Boltzmann Machines	. 665
20.5	Boltzmann Machines for Real-Valued Data	678
20.6	Convolutional Boltzmann Machines	. 685
20.7	Boltzmann Machines for Structured or Sequential Outp	uts 687
20.8	Other Boltzmann Machines	. 688
20.9	Back-Propagation through Random Operations	689
20.10	Directed Generative Nets	694
20.11	Drawing Samples from Autoencoders	712
20.12	Generative Stochastic Networks	. 716
20.13	Other Generation Schemes	717
20.14	Evaluating Generative Models	719
	Conclusion	
Bibliogra	phy	723
Index		780

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.