

Inhalt

Basics

Th $(\mathbb{N},+)$ – A Decidable Theory

Th $(\mathbb{N}, +, \times)$ – An Undecidable Theory

Gödel's Incompleteness Theorem

Conclusion

References

$$\forall q \exists p \forall x \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

• Quantifiers: ∀, ∃

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

$$\forall q \exists p \forall x \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .
- Boolean operators: ∧, ∨, ¬

◆ロ → ◆問 → ◆ き → ◆ き め へ で

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots
- Special characters: [,],(,)

$$\forall q \exists p \ \forall x \ \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: p, q, x, y, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots
- Special characters: [,],(,)

Simplified here:

mostly "sentences"

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \wedge \left(\neg (R_1(x,1) \wedge R_1(y,1)) \vee R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: p, q, x, y, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots
- Special characters: [,],(,)

Simplified here:

- mostly "sentences"
- only prenex normal form

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \wedge \left(\neg (R_1(x,1) \wedge R_1(y,1)) \vee R_2(x,y,p) \right) \right]$$

$$\forall q \exists p \ \forall x \ \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$\stackrel{!}{=} \text{"There are infinitely many prime numbers."}$$

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \wedge \left(\neg (R_1(x,1) \wedge R_1(y,1)) \vee R_2(x,y,p) \right) \right]$$

- universe 11
 - possible values for variables

Decidability of Logical Theories

Dresden, May 13, 2020

here N

$$\forall q \exists p \forall x \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$= \forall q \exists p \forall x, y \ [p > q \land (x,y > 1 \to xy \neq p)]$$

- universe U
 - possible values for variables
 - here ℕ

- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$
vs. $[(x + x = y) \lor (x \ge y)]$

- universe U
 - possible values for variables
 - here ℕ
- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\mathcal M}$
 - here L($\mathbb{N}, >_2, (\times \neq)_3$)

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$
vs. $\forall y \; \exists x \; [\neg(xx \neq y)]$

- universe U
 - possible values for variables
 - here ℕ
- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\cal M}$
 - here L($\mathbb{N}, >_2, (\times \neq)_3$)
- theory Th (M)
 - true sentences formed with ${\cal M}$
 - here Th $(\mathbb{N}, >_2, (\times \neq)_3)$

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

- universe U
 - possible values for variables
 - here N
- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\mathcal M}$
 - here L($\mathbb{N}, >_2, (\times \neq)_3$)
- theory Th (M)
 - true sentences formed with ${\cal M}$
 - here Th $(\mathbb{N}, >_2, (\times \neq)_3)$

What Is Decidability?

- here: for logic (there is a more general definition)
- let \mathcal{M} be a model, $\varphi \in L(\mathcal{M})$

$$\mathsf{Th}\left(\mathcal{M}\right)\;\mathsf{decidable}\;\coloneqq\;$$

there is an algorithm that decides whether φ is true in ${\mathcal M}$

Theorem 1

Theorem

Th $(\mathbb{N}, +)$ *is decidable.*

Theorem 1

Theorem

Th $(\mathbb{N}, +)$ *is decidable.*

i.e., there is an algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.

Review: Automata

Example automaton that accepts all correct binary additions

Idea: Construct an automaton that accepts an (almost) empty input iff the given sentence is true.

Let $i \in \mathbb{N} \setminus \{0\}$ and define $\Sigma_i := \{0,1\}^i$ and $\Sigma_0 := \{()\}$. An example for a word in Σ_3 :

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \sim \quad \begin{pmatrix} 1 \\ 5 \\ 6 \end{pmatrix}$$

Now, let

- $i \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in \mathsf{L}(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$

Now, let

- $i \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_i := Q_{i+1} x_{i+1} \dots Q_l x_l \left[\psi(x_1, \dots, x_l) \right]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_l := \psi$

◆ロ > ◆昼 > ◆ き > ・ き ・ り へ ()

Now, let

- $i \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_i := Q_{i+1} x_{i+1} \dots Q_l x_l \left[\psi(x_1, \dots, x_l) \right]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_l := \psi$
- $\varphi_i(a_1,\ldots,a_i) := Q_{i+1}x_{i+1}\ldots Q_ix_i \left[\psi(a_1,\ldots,a_i,x_{i+1},\ldots,x_l)\right]$

Now, let

- $i \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_i := Q_{i+1} X_{i+1} \dots Q_i X_i [\psi(X_1, \dots, X_i)]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_I := \psi$
- $\varphi_i(\alpha_1,\ldots,\alpha_i) := Q_{i+1}X_{i+1}\ldots Q_iX_i \left[\psi(\alpha_1,\ldots,\alpha_i,X_{i+1},\ldots,X_i)\right]$

Decidability of Logical Theories

 φ_{l} is only a Boolean expression.

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \dots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \dots, a_l)$ is true:

- Take one addition automaton for each addition term in φ_I
- Combine them:
 - automaton product for \wedge
 - automaton union for \lor
 - automaton complement for ¬

in a way that they behave like φ_l .

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \dots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \dots, a_l)$ is true:

- Take one addition automaton for each addition term in φ_I
- Combine them:
 - automaton product for \wedge
 - automaton union for \lor
 - automaton complement for ¬

in a way that they behave like φ_l .

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \dots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \dots, a_l)$ is true:

- Take one addition automaton for each addition term in φ_l
- Combine them:
 - automaton product for \wedge
 - automaton union for ∨
 - automaton complement for \neg

in a way that they behave like φ_I .

Important: There is an algorithm that constructs A_I from φ_I

◆ロ > ◆母 > ◆ 量 > ◆ 量 > ■ の Q @

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying A_{i+1}
- adding a new start state and one state for each character in Σ_i
- making A_i guess the right a_{i+1} non-deterministically

Example construction of non-deterministic guessing

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying A_{i+1}
- adding a new start state and one state for each character in Σ_i
- making A_i guess the right a_{i+1} non-deterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying A_{i+1}
- adding a new start state and one state for each character in Σ_i
- making A_i guess the right a_{i+1} non-deterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\implies$$
 A_i accepts input $(a_1,\ldots,a_i)\in\mathbb{N}^i$ \Leftrightarrow φ_i is true

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying A_{i+1}
- adding a new start state and one state for each character in Σ_i
- making A_i guess the right a_{i+1} non-deterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\implies$$
 A_i accepts input $(a_1, \ldots, a_i) \in \mathbb{N}^i \Leftrightarrow \varphi_i$ is true

$$\implies$$
 A_0 accepts input () \Leftrightarrow $\varphi_0 = \varphi$ is true

◆ロト→御ト→草ト→草 りゅ@

Proof of Theorem 1

If $Q_i = \exists$, construct automaton A_i from A_{i+1} by

- copying A_{i+1}
- adding a new start state and one state for each character in Σ_i
- making A_i guess the right a_{i+1} non-deterministically

If else $Q_i = \forall$, use complementation twice $(\forall x_i \varphi_{i+1} = \neg \exists x_i \neg \varphi_{i+1})$

$$\Longrightarrow$$
 A_i accepts input $(a_1,\ldots,a_i)\in\mathbb{N}^i$ \Leftrightarrow φ_i is true

$$\implies$$
 A_0 accepts input () \Leftrightarrow $\varphi_0=\varphi$ is true

Let the algorithm return " $\varphi \in \text{Th}(\mathbb{N},+)$ " \Leftrightarrow A_0 accepts input ()

◆ロト→御ト→草ト→草 りの@

Theorem 2

Th $(\mathbb{N}, +, \times)$ is undecidable

Theorem 2

Th $(\mathbb{N}, +, \times)$ is undecidable

i.e., there is no algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N},+)$ is true or false.

Turing Machines

Example turing machine source: [2]

• The word problem for Turing machines is undecidable.

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

 \implies The formulas $\exists x \varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ are decidable.

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w} \in \mathsf{Th}\,(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x \varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ are decidable.
- ⇒ The word problem for Turing machines is decidable.

- The word problem for Turing machines is undecidable.
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w} \in \text{Th}(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}$ is true $\Leftrightarrow x$ is a (suitably encoded) computation history of M with which M accepts w

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x \varphi_{M,w} \in \mathsf{Th}\left(\mathbb{N},+,\times\right)$ are decidable.
- → The word problem for Turing machines is decidable.
- \implies 2

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

1. The provable statements of Th $(\mathbb{N}, +, \times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.

Thinking further...

Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

- 1. The provable statements of Th $(\mathbb{N}, +, \times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.
- 2. There is a true statement in Th $(\mathbb{N}, +, \times)$ that is not provable. **Proof idea:** Contradiction to Theorem 2 by using 1.

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Construction: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\neg \exists x [\varphi_{M,0}] \in \mathsf{Th}\,(\mathbb{N},+,\times)$
- Accept on proof, reject if no proof can be found

A True, Unprovable Statement

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Construction: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\neg \exists x [\varphi_{M,0}] \in \mathsf{Th}\,(\mathbb{N},+,\times)$
- Accept on proof, reject if no proof can be found
- $\implies \neg \exists x [\varphi_{M,0}]$ is the wanted statement.

Gödel's Method

• Construct the statement "This statement cannot be proved by the axioms."

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.

Incompleteness ©

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

Conclusion

⇒ There are (very simple) indecidable logical theories.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- → Mathematics cannot be mechanized.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- → Mathematics cannot be mechanized.
- \implies No sound logical system can be complete.

References

- [1] Martin Alessandro Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75082873
- [2] https://www.inf-schule.de/grenzen/berechenbarkeit/turingmaschine/station_turingmaschine
- [3] Michael Sipser: Introduction to the Theory of Computation. Thomson Course Technology, 2006
- [4] https://www.youtube.com/watch?v=04ndIDcDSGc
- [5] Prof. Dr. Franz Baader: Skript Theoretische Informatik und Logik (Sommersemester 2020), TU Dresden

