# RFinder: Pinpoint the Invisible RFID Tags in the Prefabricated Buildings

Jiacheng Zhang, Meng Jin, Yimiao Sun, Weiguo Wang, Jia Zhang, Xin Na, Xiuzhen Guo, **Yuan He**\*



http://tns.thss.tsinghua.edu.cn/sun/





### **Building Quality Control Is Important**



# 2021 Miami, 98 deaths



**Problem:** Poorly constructed buildings lead to life-threatening accidents, such as the collapse of buildings and bridges.

## **Building Quality Control Is Important**







# Monitoring structural health of a building is very important!





**Problem:** Poorly constructed buildings lead to life-threatening accidents, such as the collapse of buildings and bridges.

#### **RFID-based Prefabricated Components**



#### RFID tag in a prefabricated component





Different types of commercial prefabricated components with buried RFID tag

RFID tags can be embedded in prefabricated component (e.g., concrete) to monitor the structural health of the building.

#### **Prefabricated Component Localization**





Localizing the RFID tag helps workers to find the location of the prefabricated component, and help them to **trace the source of the component**.

#### **Prefabricated Component Localization**





# How to localize a tag in densely stacked prefabricated components?



**Problem:** When querying a tag embedded in a component, all the tags around respond their information. **It's difficult to distinguish these response.** 

## **Existing approaches**













Unavailable on portable devices and not easy convenient for workers to use Moving on well-defined trajectories and

Not suitable for construction sites where not suitable for handheld human mobility illumination and user motion may change

#### Our Approach





RFinder combines an IMU data and a COTS RFID reader to estimate the radial velocity  $v_{at}$ , and further estimate the AoA  $\alpha$  and the location of the tag.

#### 3D AoA Estimation



#### Searching the AoA of the tag



$$\pi_{tag}(\theta^*, \psi^*) \leftarrow argmin_{\theta, \psi} \left[ \sum_{j}^{N} \left( \frac{V_{at,j} \pi_{\theta, \psi}}{\left| \left| \pi_{\theta, \psi} \right| \right|} - \left| \left| V_{tag,j} \right| \right| \right)^2 \right]$$

#### Calculating the location of the tag



$$\begin{aligned} Loc_{tag}(x, y, z) &= \pi_{tag}(x = L) \\ &= [cos\psi_{a}cos\theta_{a}, -sin\theta_{a}, sin\psi_{a}cos\theta_{a}] \frac{L}{cos\psi_{a}cos\theta_{a}} \end{aligned}$$

RFinder estimates the yaw and pitch angle to achieve 3D AoA estimation by searching the optimal result of the projection of the radial velocity.

#### Challenge: How to Match IMU and RFID Data





- 1 Noise exists in the velocity data after differentiating RFID phase data.
- ② Sampling frequency of RFID reader is unstable, causing sample loss.
- 3 The clocks of RFID reader and IMU sensor are not synchronized.

#### Challenge: How to Match IMU and RFID Data





Reading traces of IMU sensor and RFID reader

The **sampling interval** of RFID reader and IMU sensor are quite **different**; The **sampling rates** of both the two devices are **highly unstable**.

### Our solution: TDTW (Time-weighted DTW)







$$D(V_a^i, V_b^j) = d(i, j) + min \begin{cases} D(V_a^{i-1}, V_b^{j-1}) \\ D(V_a^{i-1}, V_b^j) \\ D(V_a^i, V_b^{j-1}) \end{cases}$$

#### **TDTW**: Compensating Time offset

















TDTW matching result <



Exploiting TDTW can effectively reduce the wrong match between the data of IMU sensor and RFID reader.

## **System Overview of RFinder**





**System overview of RFinder** 

More details please refer to our paper...

#### **Implementation**









1 RFID Reader

2 Low-Cost IMU



③ The RFID tag is embedded in the concrete component



① RFID Reader: Impinj R420

② IMU: WHEELTEC N200

3 RFID Tag: Alien H3 9640

#### **Overall Performance**





Overall performance in different distance between the tag and the reader

The median location error is **0.2m**, **0.36m and 0.40m**, when we set the distance between the tag and the reader at 1m, 1.5m and 2m, respectively.

#### **Impacting Factors**



Slow: about 0.25 m/s

Fast: about 0.5 m/s



Impact of the moving speed

RFinder achieves a higher accuracy when the user moves the antenna at a fast speed, because **IMU** and phase signals achieve a higher SNR in this case.

#### **Impacting Factors**





Impact of the steel bar in the concrete

The difference between two types of concretes is small, because **signal reflected by the metal is very weak** and can't significantly affect reflected signals of the tag.

#### **Impacting Factors**





Impact of the burial depths of RFID tag

The depth where the tag is buried has a impact on the strength of the reflected signal. **Deeper burial depth will lead to higher location error.** 

#### Conclusion



- RFinder is **the first portable RFID localization system** that can estimate the AoA of a tag that is embedded in prefabricated buildings.
- RFinder overcomes a series of practical challenges including the drifting in the IMU sensor and the misalignment between IMU data and phase measurement.
- We envision that **RFinder can enable various applications**. For instance, locating misplaced items in retail stores and help medical personnel quickly scan and locate medications.

#### **RFinder**



# Thank You!

Jiacheng Zhang, Meng Jin, Yimiao Sun, Weiguo Wang, Jia Zhang, Xin Na, Xiuzhen Guo, **Yuan He**\*

#### Please find more details in:



http://tns.thss.tsinghua.edu.cn/sun/