

What is claimed is:

1 1. A field effect transistor comprising, in
2 combination:
3 a) a substrate having a substantially-planar
4 upper substrate surface;

5 b) an elongated channel of semiconductor
6 material, said elongated channel being inclined with
7 respect to said upper substrate surface;

8 c) said channel including a top and a bottom
9 with the bottom of the channel contacting said upper
10 substrate surface;

11 d) said substrate being substantially
12 conductive in the region contacting said bottom of said
13 elongated channel;

14 e) said channel including a heavily doped
15 region adjacent the top thereof; and

16 f) a gate comprising a planar layer of
17 conductive material arranged substantially parallel to
18 said upper substrate surface.

1 2. A field effect transistor as defined in
Claim 1 further including a gate insulator layer
substantially surrounding the length of said elongated
channel.

1 3. A field effect transistor as defined in
Claim 1 further including a first substantially-planar
insulating layer between said gate and said upper
substrate surface.

1 4. A field effect transistor as defined in
Claim 3 further including a second substantially-planar
insulating layer overlying said gate.

1 5. A field effect transistor as defined in
2 Claim 2 further including a layer of conductive
3 material in contact with said gate and substantially
4 surrounding the length of said elongated channel.

1 6. A field effect transistor as defined in
2 Claim 1 wherein said substrate is of semiconductor
3 material.

1 7. A field effect transistor as defined in
2 Claim 6 wherein said semiconductor material is globally
3 moderately-doped and includes a locally highly-doped
4 region adjacent the bottom of said elongated channel.

1 8. A field effect transistor as defined in
2 Claim 6 wherein said semiconductor material is globally
3 heavily-doped.

1 9. A field effect transistor as defined in
2 Claim 1 wherein said elongated channel comprises
3 silicon.

1 10. A field effect transistor as defined in
2 Claim 1 further characterized in that:

3 a) said substrate comprises single crystal
4 silicon; and

5 b) said elongated channel comprises silicon
6 epitaxially grown from said substrate.

1 11. A field effect transistor as defined in
2 Claim 1 wherein said elongated channel is substantially
3 orthogonal to said upper substrate surface.

1 12. A method for forming a field effect
2 transistor comprising the steps of:
3 a) providing a conductive substrate; then
4 b) etching said substrate to form an
5 upstanding pillar adjacent a substantially-planar upper
6 surface of said etched substrate; then
7 c) forming a stack of substantially-planar
8 layers of material adjacent said pillar, said stack of
9 material comprising a first insulator layer adjacent
10 said upper surface of said etched substrate, a gate
11 layer of conductive material overlying said first
12 insulator layer and a second insulator layer overlying
13 said gate layer; then
14 d) etching said pillar to the level of said
15 substantially-planar upper surface of said etched
16 substrate to form a upstanding pore within said stack;
17 then
18 e) forming a gate insulator layer at the
19 interior of said upstanding pore; then
20 f) forming an upstanding channel of
21 semiconductor material having a top region and a bottom
22 region interior of said gate insulator layer; and then
23 g) heavily doping said top region of said
24 upstanding channel of semiconductor material.

1 13. A method as defined in Claim 12 wherein
2 the step of etching said substrate further includes the
3 steps of:
4 a) masking said substrate with a
5 nanoparticle; and then
6 b) directionally etching said masked
7 substrate whereby whereby said pillar is a nanopillar
8 and said pore is a nanopore.

1 14. A method as defined in Claim 13 further
2 including the step of depositing a layer of conductive
3 material in contact with said gate layer at the
4 interior of said nanopore.

1 15. A method as defined in Claim 13 further
2 characterized in that the step of forming an upstanding
3 channel of semiconductor material further includes the
4 step of epitaxially growing said channel from said
5 substrate.

1 16. A method as defined in Claim 15 wherein
2 said substrate comprises single crystal silicon.

1 17. A method as defined in Claim 13 wherein
2 said substrate comprises a highly-doped semiconductor
3 material.

1 18. A method as defined in Claim 17 wherein
2 said substrate comprises highly-doped silicon.

1 19. A method as defined in Claim 12 wherein
2 said gate layer comprises a metal.

1 20. A method as defined in Claim 12 wherein
2 said gate layer comprises a highly-doped semiconductor.

1 21. A method for forming a field effect
2 transistor comprising the steps of:
3 a) providing a substrate of semiconductor
4 material; then
5 b) etching said substrate to form an
6 upstanding pillar, adjacent a substantially-planar upper
7 surface of said etched substrate; then
8 c) creating a conductively-doped region
9 within said etched substrate substantially and
10 immediately beneath said pillar; then
11 d) forming a stack of substantially-planar
12 layers of material adjacent said pillar, said stack of
13 materials comprising a first insulator layer adjacent
14 said upper surface of said etched substrate, a gate
15 layer of conductive material overlying said first
16 insulator layer and a second insulator layer overlying
17 said gate layer; then
18 e) etching said pillar to the level of said
19 substantially-planar upper surface of said etched
20 substrate to form an upstanding pore within said stack;
21 then
22 f) forming a gate insulator layer interior to
23 said upstanding pore; then
24 g) forming an upstanding channel of
25 semiconductor material having a top region and a bottom
26 region interior of said gate insulator layer; and then
27 h) heavily doping said top region of said
28 upstanding channel.

1 22. A method as defined in Claim 21 wherein
2 the step of etching said substrate further includes the
3 steps of:

4 a) masking said substrate with a
5 nanoparticle; and then

6 b) directionally etching said masked
7 substrate whereby whereby said pillar is a nanopillar
8 and said pore is a nanopore.

1 23. A method as defined in Claim 22 further
2 including the step of depositing a layer of conductive
3 material in contact with said gate layer at the
4 interior of said nanopore.

1 24. A method as defined in Claim 22 further
2 characterized in that the step of forming an upstanding
3 channel of semiconductor material further includes the
4 step of epitaxially growing said channel from said
5 substrate.

1 25. A method as defined in Claim 24 wherein
2 said substrate comprises single crystal silicon.

1 26. A method as defined in Claim 21 wherein
2 said gate layer comprises a metal.

1 27. A method as defined in Claim 21 wherein
2 said gate layer comprises a highly-doped semiconductor.

1 28. A method for forming a field effect
2 transistor comprising the steps of:
3 a) providing a substrate having an upper
4 surface; then
5 b) forming a stack of substantially-planar
6 layers of material on said substrate, said stack
7 comprising a first insulator layer adjacent said upper
8 surface of said substrate, a gate layer of conductive
9 material overlying said first insulator layer and a
10 second insulator layer overlying said gate layer; then
11 c) forming an overlayer on top of said second
12 insulator layer; then
13 d) masking said overlayer with a
14 nanoparticle; then
15 e) directionally etching said overlayer to
16 form an upstanding nanopillar on top of said second
17 insulator layer; then
18 f) depositing a second overlayer on top of
19 said second insulator layer and said upstanding
20 nanopillar; then
21 g) removing said second overlayer to the top
22 of said upstanding nanopillar; then
23 h) removing said nanopillar to leave an upper
24 nanopore within said second overlayer defining an etch
25 mask; then
26 i) directionally etching a lower nanopore to
27 said upper surface of said substrate; then
28 j) removing said second overlayer; then
29 k) forming a gate insulator layer at the
30 interior of said upstanding nanopore; then
31 l) forming an upstanding channel of
32 semiconductor material having a top region and a bottom
33 region interior of said gate insulator layer; and then
34 m) heavily doping said top region of said

35 upstanding channel of semiconductor material.

36 29. A method as defined in Claim 28 further
37 including the step of depositing a layer of conductive
38 material in contact with said gate layer at the
39 interior of said nanopore.

1 30. A method as defined in Claim 28 further
2 characterized in that the step of forming an upstanding
3 channel of semiconductor material further includes the
4 step of epitaxially growing said channel from said
5 substrate.

1 31. A method as defined in Claim 30 wherein
2 said substrate comprises single crystal silicon.

1 32. A method as defined in Claim 28 wherein
2 said gate layer comprises a metal.

1 33. A method as defined in Claim 28 wherein
2 said gate layer comprises a highly-doped semiconductor.