Conjuntos y Números, UAM

Enero de 2021

Apellidos y Nombre:					Grupo:	

Tiempo disponible: 3 horas

EXAMEN FINAL

Se pide razonar y justificar todas las respuestas.

Estas 6 hojas grapadas son lo único que debe entregarse al final del examen. Hay espacio en blanco al final, si fuera necesario.

1. (2 puntos) Sea $\mathbb{N} = \{1, 2, 3, \ldots\}$ y $a \in \mathbb{N}$ impar. Demostrar que $a^{2^n} - 1$ es divisible por 2^{n+2} para todo $n \in \mathbb{N}$.

2. (2 puntos) Se define en $\mathbb R$ la siguiente relación binaria:

$$a\mathcal{R}b \Leftrightarrow b = (\sqrt{3})^n a$$
, para algún $n \in \mathbb{N} \cup \{0\}$.

- (a) Demostrar que \mathcal{R} es una relación de orden. ¿Es un orden total?
- (b) Dado el conjunto $A=\{1,\sqrt{3},9,-3,-\frac{1}{3}\}$, se pide determinar los elementos maximales del conjunto. ¿Es alguno de ellos un máximo?

3. **(2 puntos)**

- (a) Determinar razonadamente el cardinal del conjunto $[1,2] \cap \mathbb{Q}$.
- (b) Se pide establecer una función biyectiva entre los subconjuntos [0,3) y $[0,2)\cup[3,4)$ de \mathbb{R} , dando una fórmula explícita para ello y justificando brevemente que es una biyección.

4. (**2 puntos**)

a) Encontrar todos los enteros x e y que son soluciones de la ecuación diofántica

$$86 x + 49 y = 123.$$

b) Encontrar los enteros x tales que

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \\ x \equiv 3 \pmod{7} \end{cases}$$

5. (2 puntos) Descomponer el polinomio $p(X) = X^5 - 2X^4 + X - 2$ en sus factores irreducibles en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.