This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat (c) 2004 EPO. All rts. reserv. 11479352 Basic Patent (No, Kind, Date): JP 5299011 A2 19931112 <No. of Patents: 002> Patent Family: Patent No Kind Date Applic No Kind Date JP 5299011 A2 19931112 JP 9299420 Α 19920420 (BASIC) JP 2636630 B2 19970730 JP 9299420 Α 19920420 Priority Data (No, Kind, Date): JP 9299420 A 19920420 PATENT FAMILY: JAPAN (JP) Patent (No, Kind, Date): JP 5299011 A2 19931112 FIELD EMISSION COMPONENT AND ITS MANUFACTURE (English) Patent Assignee: FUTABA DENSHI KOGYO KK Author (Inventor): WATANABE TERUO; ITO SHIGEO; OTSU KAZUYOSHI; TANIGUCHI MASATERU; NISHIMURA NORIO; OCHIAI HISATAKA; YAMAGUCHI MANABU Priority (No, Kind, Date): JP 9299420 A Applic (No, Kind, Date): JP 9299420 A 19920420 IPC: * H01J-001/30; H01J-009/02; H01L-021/027 CA Abstract No: ; 121(12)147007H Derwent WPI Acc No: ; G 93-398304 JAPIO Reference No: ; 180091E000013 Language of Document: Japanese Patent (No, Kind, Date): JP 2636630 B2 19970730 DENKAIHOSHUTSUSOSHIOYOBISONOSEIZOHOHO (English) Priority (No, Kind, Date): JP 9299420 A 19920420 Applic (No, Kind, Date): JP 9299420 A 19920420 IPC: * H01J-001/30; H01J-009/02 CA Abstract No: * 121(12)147007H Derwent WPI Acc No: * G 93-398304 JAPIO Reference No: * 180091E000013 Language of Document: Japanese

₹ (19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2636630号

(45)発行日 平成9年(1997)7月30日

(24) 登録日 平成 9年(1997) 4月25日

(51) Int.CL*		識別記号	庁内整理番号	FΙ			技術表示箇所
H01J	1/30			H01J	1/30	В	
	9/02				9/02	В	

請求項の数3(全 4 頁)

(21)出願番号	特顧平4-99420	(73)特許権者	000201814
			双葉電子工業株式会社
(22)出顧日	平成4年(1992)4月20日		千葉県茂原市大芝629
		(72)発明者	建辽 照男
(65)公開番号	特別平5-299011		千葉県茂原市大芝629 双葉電子工業株
(43)公開日	平成5年(1993)11月12日		式会社
		(72)発明者	伊藤 茂生
			千葉県茂原市大芝629 双葉電子工業株
			式会社
		(72)発明者	大津 和佳
			千葉県茂原市大芝629 双葉電子工業株
			式会社
		(74)代理人	弁理士 西村 教光
		審査官	田村育
			最終頁に続く

(54) 【発明の名称】 電界放出業子及びその製造方法

(57)【特許請求の範囲】

【請求項1】 絶縁基板上に形成されたカソード導体 と、前記カソード導体上に形成されて多数の空孔を有す る絶縁層と、前記各空孔内の前記カソード導体上に互い に独立して設けられた抵抗層と、前記各抵抗層上に形成 されたコーン形状のエミッタと、前記絶縁層上に形成さ れたゲートを有する電界放出素子。

【請求項2】 前記抵抗層が、1×10°~1×10° Q·cmの抵抗率を有するP又はBをドープしたSiで ある請求項1記載の電界放出素子。

【請求項3】 絶縁基板上に所定パターンのカソード導 体を形成する工程と、前記カソード導体上に絶縁層と金 属薄膜を順次積層させる工程と、前記金属薄膜及び絶縁 層をエッチングしてゲート及び多数の空孔を形成する工 程と、前記ゲートと前記各空孔内の前記カソード導体に

正蒸着法によってSi層を形成する工程と、前記ゲート 上のSi薄膜を隔極酸化法で酸化してSiO、剥離層を 形成する工程と、前記絶縁基板に真上からエミッタ材料 を正蒸着させて前記各空孔内の各S i 薄膜上にコーン形 状のエミッタを形成する工程と、前記SiO、剥離層上 のエミッタ材料をSiO、剥離層とともに除去する工程 からなる電界放出案子の製造方法。

【発明の詳細な説明】

[0001]

10 【産業上の利用分野】本発明は、電界放出素子(Field Emission Cathodes,以下FECと呼ぶ。)と、その製造 方法に関するものである。本発明のFECは、蛍光表示 装置、CRT、電子顕微鏡、電子ピーム露光装置等の各 種電子ビーム応用装置の電子源として有用である。

[0002]

Å.

【従来の技術】図2は、特開平1-154426号で開 示されたFECである。基板100の上にはカソード導 体101が形成され、その上には抵抗層102が形成さ れている。抵抗層102の上には絶縁層103とゲート 104が順に積層されている。絶縁層103とゲート1 04にはホールが形成され、ホール内の抵抗層102上 にはコーン形状のエミッタ105が形成されている。

【0003】上記の構造において、前記抵抗層102は 多数形成されたエミッタ105について共通に設けられ るものであり、カソード導体101上に連続して形成さ 10 有している。 れている。また該抵抗層102は、In.O., Fe, O, , ZnO, Ni - Cr合金、または不純物をドープ したSiであり、抵抗率が1×10°Ω・cm~1×1 0° Q・cmとなっている。

【0004】図3は、前記FECの製造工程を示してい る。まず、基板100上に、カソード導体101と抵抗 層102と絶縁層103とゲート104を、順次積層さ せる。次に、同図(a)に示すように、エッチングによ ってゲート104と絶縁層103にホール106を形成

【0005】図3(b)に示すように、基板100に対 して所定角度hetaをなす斜め上方の位置から、ゲート104の表面にNi又はAlを斜め蒸着させ、剥離層107 を形成する。Ni又はAlはゲート104の表面のみに 蒸着し、絶縁層103のホール106内には入らない。 【0006】そして、図3 (c) に示すように、上方か らエミッタ材料を蒸着してホール106内にコーン形状 のエミッタ105を形成し、その後、図3(d)に示す ように剥離層107とともに剥離層107上のエミッタ 材料を除去する。

[0007]

【発明が解決しようとする課題】前述した従来のFEC によれば、抵抗層102が共通であるために各エミッタ 105が電気的に独立しておらず、あるエミッタがゲー トに接触して破壊すると損傷が抵抗層102にも及び、 すべてのエミッタが作用しなくなってしまうことがあっ tc.

【0008】前述したFECの従来の製造方法によれ ば、ゲート104上に剥離層107を形成するためにN i 又はA l の斜め蒸着を行なっていた。この方法による 40 と、基板が大きい場合には、蒸着源と基板の各部との距 離が異なってくるため、基板上の位置によって形成され る剥離層の厚さにばらつきが生じる。このような剥離層 の厚さのばらつきは開口径のばらつきにつながり、ホー ル内に形成されるエミッタの高さにばらつきを生じさせ るという問題があった。また、このような斜め蒸着法に よる製造方法は非常に煩雑で量産性がないという問題も あった。

【0009】本発明は、エミッタどとに独立した抵抗層 を有するFECと、このようなFECを斜め蒸着法を用 50 【0018】図1(b)に示すように、P又はBをドー

いずに効率よく製造できる方法を提供することを目的と している。

[00101

【課題を解決するための手段】本発明の電界放出素子 は、絶縁基板上に形成されたカソード導体と、前記カソ ード導体上に形成されて多数の空孔を有する絶縁層と、 前記各空孔内の前記カソード導体上に互いに独立して設 けられた抵抗層と、前記各抵抗層上に形成されたコーン 形状のエミッタと、前記絶縁層上に形成されたゲートを

【0011】また本発明によれば、前記電界放出素子に おいて、P又はBをドープして1×10'~1×10' Q·cmの抵抗率を有するSiで前記抵抗層を形成して もよい。

【0012】本発明に係る電界放出素子の製造方法は、 絶縁基板上に所定パターンのカソード導体を形成する工 程と、前記カソード導体上に絶縁層と金属薄膜を順次積 層させる工程と、前記金属薄膜及び絶縁層をエッチング してゲート及び多数の空孔を形成する工程と、前記ゲー 20 トと前記各空孔内の前記カソード導体に正蒸着によって Si層を形成する工程と、前記ゲートのSi薄膜を陽極 酸化法で酸化してSiO、剥離層を形成する工程と、前 記絶緑基板に真上からエミッタ材料を正蒸着させて前記 各空孔内の各S i 薄膜上にコーン形状のエミッタを形成 する工程と、前記SiO、剥離層上のエミッタ材料をS iO. 剥離層とともに除去する工程を有している。 [0013]

【実施例】本発明の一実施例を図1によって説明する。 図1(a)に示すように、ガラス等の絶縁基板1上にN 30 b. Mo, Al等の金属薄膜をベタに形成し、フォトリ ソグラフィーの手法で所望のパターンに加工し、カソー ド導体2を得る。

【0014】前記カソード導体2を覆って前記絶縁基板 1上にSiO. からなる絶縁層3を形成する。該絶縁層 3の形成はスパッタ法やCVD法で行ない、膜厚は約 1. 0 μmとする。

【0015】前記絶縁層3の表面に、ゲートの材料であ るNb又はMoをスパッタ法によって約0.4μmの厚 さに成膜し、ゲート層を形成する。

【0016】リアクティブイオンエッチング (R I E) 法で前記ゲート層に直径約1.0μmの多数の孔4aを 形成し、図1(a)に示すようなゲート4を形成する。 【0017】前記カソード導体2があらわれるまで前記 絶縁層3を前記ゲート4の孔4aからエッチングし、空 孔5を形成する。エッチングは、バッファード弗酸(B HF)等を用いたウェットエッチングでもよいし、CH F」等のガスを用いてRIE法で行うドライエッチング でもよい。この工程の後、レジストを剥離すれば、図1 (a) に示す構造が得られる。

プしたSiを、エレクトロビーム蒸着(EB蒸着)法に よって上方から絶縁基板1に正蒸着させる。ことで正蒸 着とは、絶縁基板1の真上に蒸着源を配置し、ゲート4 に対して垂直にSiを蒸着させることを指す。この正蒸 着法によれば、従来行われていた斜め蒸着と異なり、絶 縁基板1が比較的大きくても、蒸着源と絶縁基板1の各 部との距離には大きなばらつきは生じない。

【0019】前記Siの正蒸着により、図1(b)に示 すように、ゲート4の上面及び空孔5内のカソード電極 る。その厚さは抵抗率が1×10°Q·cm~1×10 'Ω·cmとなる寸法に設定する。

【0020】陽極酸化法を用い、ゲート4上のSi層の みを酸化してSiO,とし、剥離層8を形成する。即 ち、0.04NのKNO,溶液中にエチレングリコール を添加した溶液を用い、前記絶縁基板1のゲート4を陽 極とし、Pt又はSUSの不動態電極を陰極として、1 ~25mA/cm²の電流密度で陽極酸化を行なう。

【0021】図1(c) に示すように、ゲート4のSi 層6はSiO, に酸化し、剥離層8が形成される。Cの 20 場合、ゲート4上のSi層6のみに通電し、カソード電 極2上の抵抗層7には通電しない。従って、Si抵抗層 7は変化しない。

【0022】次に、図1(c)に示すように、空孔5の 真上から、エミッタ材料のMoを正蒸着させる。空孔5 内の抵抗層7上にはコーン形状のエミッタ9が形成さ れ、剥離層8上にはMoの蒸着層10が形成される。 【0023】次に、バッファード弗酸(BHF)を用い て剥離層8を除去し、不要なMoの蒸着層10を除去す る。この時、BHFが空孔5内にも入り、絶縁層3を再 30 8 剥離層 びエッチングするので、空孔5はさらに広げられて図1*

* (d) に示すような断面形状のスピント形のFECが得 られる.

[0024]

【発明の効果】本発明の電界放出素子によれば、エミッ タの1個どとにそれぞれ独立した抵抗層があるので、シ. ョートによって過電流が流れても、ショートした部分の みが破壊するだけで、他のエミッタに損傷が波及すると とがない。従って寿命の長い電界放出素子が得られる。 【0025】また、本発明に係る電界放出素子の製造方 2上にはSi層 8及びSiからなる抵抗層 7が形成され 10 法によれば、剥離層の成膜を正蒸着で行なうことができ るので、膜厚を均一にすることができ、ゲート開口の孔 径も均一になる。従って、多数のエミッタを均一な高さ に形成できるという効果がある。

> 【0026】また、上述したように正蒸着法を応用して いるので、基板面積が大きくても均一な電界放出素子を 形成できる。

> 【0027】また、抵抗層と剥離層を同時に形成できる ので、製造工程が簡略化される。

【図面の簡単な説明】

【図1】一実施例の製造工程図である。

【図2】従来のFECの断面図である。

【図3】従来のFECの製造工程図である。

【符号の説明】

1 絶縁基板

2 カソード導体

絶縁層

ゲート

5 空孔

7 抵抗層

9 エミッタ

(図2)

[図3]

[図1]

フロントページの続き

(72)発明者 谷口 昌照

千葉県茂原市大芝629 双葉電子工業株

ポーン

(72)発明者 西村 則雄

千葉県茂原市大芝629 双葉電子工業株

式会社

(72)発明者 落合 久隆

千葉県茂原市大芝629 双葉電子工業株

式会社

(72)発明者 山口 学

千葉県茂原市大芝629 双葉電子工業株

式会社

(56)参考文献 特開 平5-47296 (JP, A)

特開 平5-36345 (JP, A)