МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа по физической химии

Адсорбция и мицеллообразование в растворах ПАВ: определение ККМ по измерению электропроводности и поверхностного натяжения

Выполнила студентка группы Б06-103: Фитэль Алена

1 Введение

Цели работы:

- Освоение методик определения критической концентрации мицеллообразования ионогенных и неионогенных ПАВ по измерениям электропроводности и поверхностного натяжения растворов.
- Оценка степени ионизации мицелл ионогенных ПАВ по результатам кондуктометрических измерений.
- Построение изотермы поверхностного натяжения и адсорбции ПАВ на поверхности раствор/воздух. Определение площади, занимаемой молекулой ПАВ в насыщенном адсорбнионном слое.
- Исследование влияния температуры и электролитов на мицеллообразование в растворах ПАВ

2 Теоретические сведения

2.1 Кондуктометрический метод

Рассмотрим зависимость удельной электропроводности \varkappa от концентрации ионогенного ПАВ на примере SDS (анионный ПАВ):

• При С<ККМ мицеллы не образуются:

$$\varkappa = \lambda_{Na}[Na^{+}] + \lambda_{DS}[DS^{-}] = (\lambda_{Na} + \lambda_{DS})[SDS]$$
(1)

где $\lambda_{Na}, \lambda_{DS}$ - соответствующие эквивалентные электропроводности.

• При С > ККМ начинают образовываться мицеллы.

$$\varkappa = \lambda_{Na}[Na^{+}] + \lambda_{DS}[DS^{-}] + \lambda_{mic}[mic^{-}]$$
(2)

где: $[Na^+]$, $[DS^-]$ - концентрации свободных ионов (не в мицелле), $[mic^-]$ - концентрация мицелл. Пусть:

- N число агреаций (количество молекул, из которых образуется 1 мицелла ПАВ)
- М число $Na^+,$ связанных с мицеллой. Тогда заряд мицеллы -(N-M)
- $\alpha = \frac{N-M}{N}$ степень ионизации мицеллы

Тогда:

- $[DS^-] = KKM$
- $[Na^+]={\rm KKM}+\alpha N[mic^-],$ где $\alpha N[mic^-]$ число $[Na^+],$ не связанных с мицеллами
- $-\lambda_{mic}=\alpha N\lambda_{DS}$, так как αN число DS^- в мицелле, не связанных с Na^+
- $-\ [mic^-]=\frac{[SDS]-{\rm KKM}}{N},$ так как [SDS] полная концентрация молекул ПАВ, ККМ концентрация сводобных молекул ПАВ. На N делим потому, что в 1 мицелле N молекул ПАВ

Подставляя полученные выражения в (2) получаем:

$$\varkappa = \lambda_{Na} (KKM + \alpha N \frac{[SDS] - KKM}{N}) + \lambda_{DS} KKM + \alpha N \lambda_{DS} \frac{[SDS] - KKM}{N} =$$

$$= [SDS] \alpha (\lambda_{Na} + \lambda_{DS}) + KKM (\lambda_{Na} - \alpha \lambda_{Na} + \lambda_{DS} - \alpha \lambda_{DS}) =$$

$$= [SDS] \alpha (\lambda_{Na} + \lambda_{DS}) + (1 - \alpha) KKM (\lambda_{Na} + \lambda_{DS})$$

B итоге при C > KKM

$$\varkappa = [SDS]\alpha(\lambda_{Na} + \lambda_{DS}) + (1 - \alpha)KKM(\lambda_{Na} + \lambda_{DS})$$
(3)

Значит, график зависимости $\varkappa(C)$ выглядит следующим образом (уравнение (1) при C<KKM и (3) при C>KKM)

Рисунок 1: График зависимости удельной электропроводности W от концентрации ПАВ (уравнение (1) при C > KKM и уравнение (3) при C > KKM)

Таким образом, измерив удельную электропроводность ПАВ от концентрации, мы сможем найти ККМ по излому получившегося графика

2.2 Метод измерения поверхностного натяжения раствора ПАВ

Рассмотрим зависимость поверхностного натяжения ПАВ (ионогенного или неионогенного) от концентрации. Вспомогательные сведения:

- Адсорбция это изменение концентрации вещества в растворе вблизи поверхности
- Поверхностный избыток $\Gamma = \frac{N_d N}{S}$, где N_d число молекул вещества вблизи поверхности раздела фаз, N число молекул вещества в глубине раствора, S площадь поверхности раздела фаз
- Изотерма адсорбции Ленгмюра. В данной теории используются следующие приближения:
 - молекулы растворенного вещества взаимодействуют с активными центрами на поверхности раздела фаз
 - адсорбированные молекулы образуют монослой на поверхности раздела фаз
 - нет взаимодействия между соседями в монослое

Уравнение адсорбции Ленгмюра

$$\Gamma = \Gamma_{\infty} \frac{KC}{KC + 1} \tag{4}$$

где Γ_{∞} - предельное значение адсорбции (когда все активные центры заняты), C - концентрация адсорбирующегося вещества в глубине раствора, K - константа

- Поверхностное натяжение это работа образования единицы площади поверхности (границы раздела фаз)
- Коэффициент поверхностного натяжения сила, действующая на единицу длины линии, ограничивающей поверхность жидкости

$$\sigma = \frac{F_{\text{nob}}}{l} \tag{5}$$

• Уравнение Гиббса:

$$\Gamma = -\frac{C}{RT}\frac{d\sigma}{dC} = -\frac{1}{RT}\frac{d\sigma}{dlnC} \tag{6}$$

• Поверхностная активность (при $C \to 0$)

$$g = -\frac{d\sigma}{dC} \tag{7}$$

У ПАВ g > 0.

Подставим в (6) уравнение (4):

$$d\sigma = -\Gamma RTdC = -\frac{KC}{KC+1}\Gamma_{\infty}RTdlnC = -\Gamma_{\infty}RT\frac{d(1+KC)}{(1+KC)}$$

Получим уравнение Шишковского:

$$\sigma = \sigma_0 - \Gamma_\infty RT \ln(KC + 1) \tag{8}$$

Построим уравнение (6) в полулогарифмических координатах

Рисунок 2: График зависимости коэффициента поверхностного натяжения от логарифма концентрации ΠAB

 C_m - пороговая концентрация, выше которой $\Gamma = \Gamma_\infty$ (адсорбционный слой становится насыщенным) Все вышесказанное работает при концентрациях ниже ККМ, так как при C>ККМ концентрация свободных частиц в растворе перестает меняться и $\sigma = const$ Таким образом, измерив поверхностное натяжение ПАВ от концентрации, мы сможем найти ККМ по излому получившегося графика.

2.2.1 Метод пластины Вильгельма

Для определения коэффициента поверхностного натяжения в данной работе используется метод пластины Вильгельма. Методика эксперимента:

- опускаем небольшую пластинку, подвешенную к весам, в раствор заданной концентрации
- ullet измеряем Δm пластинки в жидкости и свободно подвешенной
- для измерения массы пластинки в жидкости пластинка с помощью специального механизма медленно опускается к краю жидкости до касания

Рисунок 3: Схема установки по методу пластины Вильмельма

Распишем силы, действующие на пластинку вне жидкости (F_1) и в жидкости (F_2)

$$y: F_1 - mg = 0$$

$$y: F_2 - mg + F_{\text{apx}} - F_{\text{пов y}} = 0$$

$$F_2 - F_1 = \Delta F = F_{\text{пов y}} - F_{\text{apx}}$$

Сила Архимеда

$$F_{\text{арх}} = \rho V_{\text{погр в жидк}} g = \rho x l dg$$

где ρ - плотность жидкости.

Считаем, что при аккуратном проведении опыта $x \approx 0$, поэтому силой Архимеда можно пренебречь.

Сила поверхностного натяжения (из (5)):

$$F_{\text{пов y}} = F_{\text{пов}} cos(\theta) = 2\sigma(d+l)cos(\theta)$$

где θ - угол смачивания

Для того, чтобы не рассчитывать угол смачивания, возьмем поверхность пластинки с полным смачиванием (стекло), т.е $\theta = 0, cos(\theta) = 1$

C учетом $d \ll l$ получим

$$F_{\text{HOB V}} = 2\sigma$$

Тогда

$$\Delta F = 2\sigma l$$

$$\sigma = \frac{9.8\Delta m}{2l}, \qquad [\sigma] = \frac{\text{MH}}{\text{M}}, \qquad [\Delta m] = \Gamma, \qquad [l] = \text{M}. \tag{9}$$

3 Ход работы и обработка данных

3.1 Используемое ПАВ в работе

В данной работе был использован катионный ПАВ ТТАВ (тетрадецилтриметиламмоний бромид).

Рисунок 4: ТТАВ (тетрадецилтриметиламмоний бромид)

Ожидаемое значение ККМ ТТАВ [1]:

$$KKM = 3.5 \text{ MM} \tag{10}$$

Ожидаемое значение числа агрегаций ТТАВ [1]:

$$N = 75 \tag{11}$$

3.2 Определение KKM в растворе ПАВ кондуктометрическим методом

Для выполнения работы использовались растворы катионного ПАВ тетрадецилтриметиламмония бромида (TTAB) в различных концентрациях. После измерения удельной электропроводности чистой воды и всех приготовленных растворов были получены данные, которые представлены в Таблице 1 (погрешности). По полученным данным был построен график зависимости удельной электропроводности от концентрации раствора (Рисунок 5).

No	С, мМ	$\varkappa_{down}, \text{ MKCM/cm}$	С, мМ	$\varkappa_{up}, \text{ MKCM/cM}$
1	10.5	517	0.35	42.8
2	9.275	489	0.98	112
3	8.05	461	1.61	183
4	6.825	433	2.24	252
5	5.6	403	2.87	323
6	4.375	371	3.5	378
7	3.5	333	4.375	419
8	2.87	286	5.6	458
9	2.24	227	6.825	492
10	1.61	165.1	8.05	524
11	0.98	103.7	9.275	555
12	0.35	38	10.5	588

 Таблица 1: Результаты измерения удельной электропроводности кондуктометрическим методом.

Излом графика соответствует критической концентрации мицелообразования - 3.67 мМ. Степень ионизации мицелл определяется отношением наклонов зависимостей κ от полной концентрации TTAB и численно равна: $\alpha = \frac{k_2}{k_1} = \frac{25.47}{101.2} = 0.090$.

Рисунок 5: График зависимости удельной электропроводности от концентрации ПАВ.

3.3 Определение ККМ методом измерения поверхностного натяжения

В данной части работы измерено поверхностное натяжение 12 растворов, используя метод пластины Вильгельми с помощью весов.

1. Снимем показания весов при различный концентрациях раствора TTAB, а затем рассчитаем поверхностное натяжение, занесем результаты в Таблицу 2. Построим график зависимости поверхностного натяжения от концентрации раствора (Рисунок 6, Рисунок 7).

Nº	с, мМ	$\ln c$	σ , м $H/$ м
1	8.751	2.16916798	36.09618815
2	6.563	1.881447815	35.56208919
3	4.375	1.47590652	33.38118509
4	3.508	1.255046075	31.91241295
5	3.126	1.139754232	31.02224801
6	2.744	1.00941671	30.44364081
7	2.362	0.8595087178	30.88872327
8	1.98	0.6830968447	34.84995724
9	1.216	0.1955667835	41.659719
10	0.834	-0.1815218766	46.37759316
11	0.452	-0.7940730991	55.19022602
12	0.07	-2.659260037	65.69417227

Таблица 2: Поверхностное натяжение в зависимости от концентрации ПАВ

2. В отличие от теоретического графика(Рисунок 2) на полученной зависимости (Рисунок 7) есть минимум. Его появление можно объяснить тем, что в растворе были примеси, обладающие большей поверхностной активностью, чем ТТАВ. Так как примеси более поверхностно активны, то они лучше адсорбируются на поверхности, и, следовательно, поверхностное натяжение уменьшается.

Рисунок 6: Зависимость поверхностного натяжения от концентрации ПАВ.

Рисунок 7: Зависимость поверхностного натяжения от концентрации ПАВ в полулогарифмических координатах.

3. Для приблизительной оценки значения ККМ проведем 2 прямые, на пересечении которых должна получиться ККМ (согласно теории)(Рисунок 8)

Прямые пересекаются при:

$$ln(KKM) = 0.678 \Rightarrow KKM = 1.97 \text{mM}$$

Полученное значение ККМ слабо согласуется с теоретическим.

Рисунок 8: Зависимость поверхностного натяжения от концентрации ПАВ в полулогарифмических координатах, аппроксимация предельных точек прямыми.

4. Определим предельное значение адсорбции Γ_{∞} по наклону прямолинейного участка графика перед предельным участком. Из уравнения Гиббса (6):

$$\Gamma_{\infty} = -\frac{1}{RT} \frac{d\sigma}{dlnC}$$

Из полученного графика в полулогарифмических координатах():

$$\frac{d\sigma}{dlnC} = -13.36 \cdot 10^{-3} \frac{H}{M}$$

Температура в лаборатории: T = 298K, тогда:

$$\Gamma_{\infty} = -\frac{1}{8.31 \cdot 298} \cdot (-13.36 \cdot 10^{-3}) \frac{\text{MOJIb}}{\text{M}^2} = 5.39 \cdot 10^{-6} \frac{\text{MOJIb}}{\text{M}^2}$$

5. Определим площадь, приходящуюся на одну молекулу в монослое $(N_a = 6.02 \cdot 10^{23} \text{моль}^{-1})$

$$S_0 = \frac{1}{N_a \Gamma_\infty} = \frac{1}{6.02 \cdot 10^{23} \cdot 5.39 \cdot 10^{-6}} \text{m}^2 = 3.08 \cdot 10^{-19} \text{m}^2$$

6. Оценим длину молекулы в монослое l. Рассмотрим объем ν молей монослоя

$$V = NS_0 l$$

С другой стороны, если d - плотность монослоя ($d=1\frac{\Gamma}{\text{см}^3}$, M - молярная масса ТТАВ ($M=256.5\frac{\Gamma}{\text{моль}}$)

$$V = \frac{m}{d} = \frac{\nu M}{d} = \frac{NM}{N_0 d}$$

Тогда:

$$S_0 l = \frac{M}{N_o d} \Rightarrow l = \frac{M}{N_o S_0 d} = \frac{M \Gamma_{\infty}}{d}$$

$$l = \frac{256.5 \frac{\Gamma}{\text{моль}} \cdot 5.39 \cdot 10^{-6} \frac{\text{моль}}{\text{м}^2}}{\frac{1\Gamma}{10^{-6} \text{M}^3}} = 1.38 \cdot 10^{-9} \text{M}$$

Сравним полученное значение l с геометрической оценкой [2]:

Рисунок 9: Геометрическая оценка длины ТТАВ.

Найденное из предельной адсорбции значение l сопоставимо по порядку с оценкой, но оно немного меньше. Это произошло потому, что в оценке размеры углов взяты приближенными, не было учета того, как именно (какое конкретно расположение групп головы при этом) идет адсорбция, а так же из-за неточности нахождения Γ_{∞} , связанных с появлением поверхностно активных примесей.

7. Построим зависимость $\Gamma(C)$. Нас интересуют точки при C < KKM и до мимимума, вызванного примесями. Из уравнения Γ иббса:

$$\Gamma = -\frac{1}{RT} \frac{d\sigma}{dlnC} \qquad \frac{d\sigma}{dlnC} = \frac{\sigma_i - \sigma_{i-1}}{lnC_i - lnC_{i-1}}$$

No॒	c, MM	Γ , 10^{-5} моль/м ²
1	1.26	0.4118
2	0.974	0.4010
3	0.754	0.4217
4	0.584	0.3413
5	0.452	0.2090
6	0.07	0.1290

Таблица 3: Избыток Гиббса в зависимости от концентрации ПАВ

Рисунок 10: Зависимость поверхностного избытка Гиббса от концентрации.

В предположении адсорбции Ленгмюра (4)

$$\Gamma = \Gamma_{\infty} \frac{KC}{KC + 1}$$

Тогда

$$\frac{1}{\Gamma} = \frac{1}{\Gamma_{\infty}} (1 + \frac{1}{KC})$$

$$\frac{C}{\Gamma} = \frac{C}{\Gamma_{\infty}} + \frac{1}{K\Gamma_{\infty}}$$
(12)

Построим изотерму адсорбции в линеаризующих координатах $\frac{1}{\Gamma}=f(\frac{1}{C})$ и найдем из графика Γ_{∞} и K

Nº	c, MM	$\frac{c}{G}, \frac{10^6}{}$
1	0.584	0.2414
2	0.452	0.2090
3	0.07	0.1290

Таблица 4: Избыток Гиббса в зависимости от концентрации ПАВ в линеаризующих координатах.

Рисунок 11: Зависимость адсорбции от концентрации в линеаризующих координатах

С учетом формулы (12) и МНК

$$\Gamma_{\infty} = \frac{1}{0.2452} \frac{10^{-6} \text{моль}}{\text{м}^2} = 4.07 \cdot 10^{-6} \frac{\text{моль}}{\text{м}^2}$$

$$\frac{1}{K} = \frac{0.2452}{0.0982} \cdot 10^3 \text{M}$$
 $K \approx 2498 \text{M}^{-1}$

Предельная адсорбция сравнима с получившейся при апроксимации пределльного участка, однако они не совпадают. Различия могли возникнуть из-за того, что в данном расчете брались дискретные производные, не равные обычным (т.е. было недостаточно данных для более точного расчета), а также аппроксимация проводилась лишь по двум точкам в силу быстрого заполнения монослоя адсорбирующемся веществом (линейный участок на кривой зависимости поверхностного натяжения от концентрации в полулогарифмических координатах). В первом методе определения предельной адсорбции точек было достаточно, так как там уже сформировался насыщенный монослой и кривая адсорбции стала прямой. Исходя из этих рассуждений можно сделать вывод о том, что значение Γ_{∞} , полученное в первом случае, более достоверно, чем во втором.

8. Расчитаем стандартную свободную энергию адсорбции

$$\Delta G^{\circ} = -RT lnK = -8.31 \cdot 298 \cdot ln(2498) = -19.4$$
кДж/моль

Для оценки полученного результата воспользуемся правилом Дюкло-Траубе для ионогенных ПАВ

$$\frac{g_{n+1}}{g_n} = 2.1$$

где $g_n = -\frac{d\sigma}{dC}$ при $C \to 0$ для n-го гомолога ПАВ Из уравнения Гиббса при $C \to 0$

$$\Gamma = -\frac{C}{RT}\frac{d\sigma}{dC} = \frac{C}{RT}g$$

Значит,

$$\frac{\Gamma_{n+1}}{\Gamma_n} = \frac{g_{n+1}}{g_n} = 2.1$$

При $C \to 0$ уравнение адсорбции Ленгмюра переходит в уравнение адсорбции Генри

$$\Gamma = KC$$

Тогда

$$\frac{K_{n+1}}{K_n} = 2.1$$

Найдем разность стандартных энергий адсорбции для соседних гомологов ПАВ

$$\delta = \Delta G_{n+1}^{\circ} - \Delta G_{n}^{\circ} = -RT \ln K_{n+1} + RT \ln K_{n} = RT \ln \frac{K_{n}}{K_{n+1}} \approx -1.84 \frac{\text{кДж}}{\text{моль}}$$

Считаем, что $\Delta G_0^\circ=0$, тогда $\Delta G_n^\circ=n\delta$. Тогда для ТТАВ с n=14

$$\Delta G_{14}^{\circ} = n\delta = 14 \cdot (-1.84) = -25.72 \frac{\text{кДж}}{\text{моль}} \approx -26 \frac{\text{кДж}}{\text{моль}}$$

Таким образом, экспериментальный результат и теоретическая оценка согласуются друг с другом(погрешность расхождения результата - 27 %). Разница могла возникнуть из-за того, что оценка производится при $c \to 0$, в то время как экспериментальный расчет - при конечных небольших концентрациях.

4 Обсуждение результатов и выводы

- Определение ККМ в растворе ПАВ кондуктометрическим методом показало довольно точные результаты, практически совпадающие с табличными. При измерениях наибольший вклад в погрешность могло внести приготовление растворов.
- Определение ККМ в растворе ПАВ методом определения поверхностного натяжения существенно менее точен, так как очень сложно избавиться от примесей в растворе ПАВ, которые из-за лучшей адсорбции уменьшают поверхностное натяжение, что приводит к минимуму на изотерме поверхностного натяжения. В результате мы не имеем чёткого излома, по которому можно точно определить ККМ и можем лишь очень приблизительно оценивать это значение.
- В процессе работы были произведены: оценка длины молекулы ПАВ в монослое $l_{scaled}=2.186$ нм, $l_{exp}=1.38$ нм, оценка стандартной свободной энергии адсорбции $\Delta G_{scaled}^{\circ}=-26$ кДж/моль, $\Delta G_{exp}^{\circ}=-19.4$ кДж/моль. Были полученны значения для константы адсорбции: $K\approx 2498\mathrm{M}^{-1}$, предельного избытка Гиббса: $\Gamma_{\infty 1}=5.39\cdot 10^{-6}\frac{\mathrm{моль}}{\mathrm{M}^2}$, $\Gamma_{\infty 2}=4.075.39\cdot 10^{-6}\frac{\mathrm{моль}}{\mathrm{M}^2}$, площадь, приходящуюся на одну молекулу: $S_0=3.08\cdot 10^{-19}\mathrm{M}^2$.

5 Список используемой литературы

- [1] Департамент химии МФТИ "Адсорбция и мицеллообразование в растворах ПАВ: определение ККМ по измерению электропроводности и поверхностного натяжения"
- [2] Лекции по теории элементарного акта химических реакций в конденсированной фазе, Москва 2000 https://www.chem.msu.su/rus/teaching/vorob'ev/pril.html