1 Secvențe de grade

Materialul din această secțiune urmează cartea [1].

Fie $s_0 = \{d_1, \dots, d_n\}$ o secvență de numere naturale.

Problemă. Să se construiască, dacă se poate, un (multi)graf neorientat G cu $s(G) = s_0$.

Observație 1.1. Deoarece suma gradelor vârfurilor într-un (multi)graf este egală cu dublul numărului de muchii, o condiție necesară pentru existența unui (multi)graf G cu $s(G) = s_0$ este ca suma

$$d_1 + \ldots + d_n$$

să fie număr par.

(?) Este condiția din Observația 1.1 și suficientă?

1.1 Construcția unui multigraf neorientat cu secvența gradelor dată

Teorema 1.2. O secvență de $n \geq 2$ numere naturale $s_0 = \{d_1, \ldots, d_n\}$ este secvența gradelor unui multigraf neorientat dacă și numai dacă suma $d_1 + \ldots + d_n$ este număr par.

Demonstrație. " \Longrightarrow " Presupunem că există un multigraf neorientat G cu $s(G)=s_0$. Atunci

$$d_1 + \ldots + d_n = 2|E(G)|$$
 este număr par.

" \Leftarrow " Presupunem că $d_1 + \ldots + d_n$ este număr par.

Rezultă că există un număr par de numere impare în secvența (multisetul) s_0

Construim un multigraf G cu $V(G) = \{x_1, \ldots, x_n\}$ având $s(G) = s_0$ (mai exact cu $d_G(x_i) = d_i$) după următorul algoritm:

- 1. Adăugăm în fiecare vârf $x_i \in V(G) \mid \frac{d_i}{2} \mid$ bucle.
- Formăm perechi disjuncte cu vârfurile care trebuie să aibă gradul impar şi unim vârfurile din aceste perechi cu câte o muchie.

Formalizând, dacă renotăm numerele din secvenţa s_0 astfel încât primele 2k numere din secvenţă: d_1, \ldots, d_{2k} să fie impare şi celelalte pare, definim

$$E(G) = \left\{ x_i x_i^{\left\lfloor \frac{d_i}{2} \right\rfloor} | i \in \{1, \dots, n\}, d_i > 0 \right\} \cup \left\{ x_i x_{i+1} | i \in \{1, \dots, 2k-1\} \right\}.$$

Atunci, pentru i cu $1 \leq i \leq 2k$ avem d_i impar şi

$$d_G(x_i) = 2 \left| \frac{d_i}{2} \right| + 1 = 2 \frac{d_i - 1}{2} + 1 = d_i,$$

iar pentru $2k + 1 \le i \le n$ avem d_i par şi

$$d_G(x_i) = 2 \left| \frac{d_i}{2} \right| = d_i,$$

$$\operatorname{deci} s(G) = s_0.$$

1.2 Construcția unui graf neorientat cu secvența gradelor dată

Dat un graf neorientat G, pentru a obține grafuri neorientate cu aceeași secvență de grade ca și G se poate folosi următoarea transformare t (pe care o vom numi de interschimbare pe pătrat). Fie x,y,u,v patru vârfuri distincte ale lui G astfel încât $xy,uv \in E(G)$, dar $xu,yv \notin E(G)$. Considerăm graful notat t(G,xy,uv) definit astfel:

$$t(G, xy, uv) = G - \{xy, uv\} \cup \{xu, yv\}$$

Spunem că t(G, xy, uv) este graful obținut din G prin aplicarea transformării t de interschimbare pe pătratul xyvu - figura 1.

Figura 1: Transformarea t de interschimbare pe pătrat

Observație 1.3. *Graful* t(G, xy, uv) *are aceeași secvență de grade ca și* G.

Teorema 1.4. (Havel-Hakimi) O secvență de $n \geq 2$ numere naturale $s_0 = \{d_1 \geq \ldots \geq d_n\}$ cu $d_1 \leq n-1$ este secvența gradelor unui graf neorientat (cu n vârfuri) dacă și numai dacă secvența $s'_0 = \{d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n\}$ este secvența gradelor unui graf neorientat (cu n-1 vârfuri).

Demonstrație. " \Leftarrow " Presupunem că s'_0 este secvența gradelor unui graf neorientat. Fie G'=(V',E') un graf neorientat cu $V'=\{x_2,\ldots,x_n\}$ având secvența gradelor $s(G')=s'_0$, mai precis cu

$$d_{G'}(x_i) = \left\{ \begin{array}{ll} d_i - 1, & \text{dacă } i \in \{2, \dots, d_1 + 1\} \\ d_i, & \text{dacă } i \in \{d_1 + 2, \dots, n\}. \end{array} \right.$$

Construim pornind de la G' un nou graf G=(V,E) adăugând un vârf nou x_1 pe care îl unim cu vârfurile x_2,\ldots,x_{d_1+1} :

- $\bullet \ V = V' \cup \{x_1\}$
- $E = E' \cup \{x_1 x_i | i \in \{2, \dots, d_1 + 1\}\}.$

Pentru un $i \in \{1, \dots, n\}$ avem atunci

$$d_G(x_i) = \left\{ \begin{array}{ll} d_{G'}(x_i) + 1 = d_i - 1 + 1 = d_i, & \mbox{dacă } i \in \{2, \dots, d_1 + 1\} \\ d_{G'}(x_i) = d_i, & \mbox{dacă } i \in \{d_1 + 2, \dots, n\} \\ d_1, & \mbox{dacă } i = 1. \end{array} \right.$$

Rezultă că $s(G) = s_0$, deci s_0 este secvența gradelor unui graf neorientat.

[&]quot; \Longrightarrow " Presupunem că s_0 este secvența gradelor unui graf neorientat.

Fie G=(V,E) un graf neorientat cu $V=\{x_1,\ldots,x_n\}$ astfel încât $d_G(x_i)=d_i$ pentru orice $i\in\{1\ldots,n\}$. Vom construi un graf G' cu $s(G')=s'_0$ pornind de la G.

Pentru aceasta, construim întâi din G un graf G^* având secvența gradelor tot s_0 , dar în care vârful x_1 are mulțimea vecinilor $N_{G^*}(x_1) = \{x_2, \dots, x_{d_1+1}\}$.

Cazul 1. Dacă $N_G(x_1) = \{x_2, \dots, x_{d_1+1}\}$, atunci considerăm $G^* = G$.

Cazul 2. Există cel puțin un indice $i \in \{2, ..., d_1 + 1\}$ cu $x_1x_i \notin E$ (i.e $x_i \notin N_G(x_1)$). Fie i minim cu această proprietate.

Deoarece $d_G(x_1)=d_1$, rezultă că există $j\in\{d_1+2,\ldots,n\}$ cu $x_1x_j\in E$. Mai mult, deoarece $j>d_1+1\geq i$, avem $d_i=d_G(x_i)\geq d_G(x_j)=d_j$. În plus, x_1 este adiacent cu x_j , dar nu şi cu x_i . Rezultă că există un alt vârf x_k cu $k\in\{2,\ldots,n\}-\{i,j\}$ care este adiacent cu x_i ($x_ix_k\in E$), dar care nu este adiacent cu x_j ($x_jx_k\not\in E$) - figura 2.

Figura 2: Transformare din demonstrația teoremei Havel-Hakimi

Considerăm graful G_i obțiunt din G prin aplicarea transformării de interschimbare t pentru pătratul $x_i x_k x_j x_1$:

$$G_i = t(G, x_i x_k, x_1, x_j) = G - \{x_i x_k, x_1 x_j\} \cup \{x_1 x_i, x_k x_j\}$$

Avem $N_{G_i}(x_1) \cap \{x_2, \dots, x_{d_1+1}\} = (N_G(x_1) \cap \{x_2, \dots, x_{d_1+1}\}) \cup \{x_i\}$ (x_1 are un vecin în plus în $\{x_2, \dots, x_{d_1+1}\}$) și, conform Observației 1.3, $s(G_i) = s(G) = s_0$.

Aplicând succesiv transformări de tip t pentru fiecare indice $i \in \{2, 3, \dots, d_1 + 1\}$ pentru care x_1 şi x_i nu sunt adiacente obținem în final un graf G^* cu $s(G^*) = s_0$ şi $N_{G^*}(x_1) = \{x_2, \dots, x_{d_1+1}\}$.

Fie $G' = G^* - x_1$. Atunci $V(G') = \{x_2, \dots, x_n\}$ şi pentru orice $i \in \{2, \dots, n\}$:

$$d_{G'}(x_i) = \left\{ \begin{array}{ll} d_{G^*}(x_i) - 1 = d_i - 1, & \text{dacă } i \leq d_1 + 1 \\ d_{G^*}(x_i) = d_i, & \text{dacă } i \geq d_1 + 2, \end{array} \right.$$

deci $s(G') = s'_0$. Rezultă că $s'_0 = \{d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n\}$ este secvența gradelor unui graf neorientat.

Din Teorema Havel-Hakimi se obține următorul algoritm de determinare a unui graf neorientat cu secvența gradelor dată.

Algoritmul Havel-Hakimi

Intrare: o secvență de n numere naturale d_1, \ldots, d_n

Ieşire: un graf G cu $V(G) = \{x_1, \dots, x_n\}$ cu $s(G) = s_0$ dacă s_0 este secvența gradelor unui graf, sau mesajul NU altfel.

Idee: La un pas unim un vârf de grad maxim d din secvența s_0 cu vârfurile corespunzătoare următoarelor cele mai mari d elemente din s_0 diferite de d și actualizăm secvența s_0 ($s_0=s_0'$). Se repetă pasul până când secvența conține numai 0 sau conține elemente negative.

Pseudocod:

Pasul 1. Dacă $d_1 + \ldots + d_n$ este număr impar sau există în s_0 un număr $d_i > n-1$, atunci scrie NU, STOP.

Pasul 2.

```
cât timp s_0 conține valori nenule execută alege d_k cel mai mare număr din secvența s_0 elimină d_k din s_0 fie d_{i_1},\ldots,d_{i_{d_k}} cele mai mari d_k numere din s_0 pentru j\in\{i_1,\ldots,i_{d_k}\}: adaugă la G muchia x_kx_j înlocuiește d_j în secvență s_0 cu d_j-1 dacă d_j-1<0, atunci scrie NU, STOP.
```

Observație. Pentru a determina uşor care este cel mai mare număr din secvență și care sunt cele mai mari valori care îi urmează, este util ca pe parcursul algoritmului secvența s_0 să fie ordonată descrescător.

Exemplu. - vezi curs + laborator

Teorema 1.5. (Extindere a teoremei Havel-Hakimi) Fie $s_0 = \{d_1 \geq \ldots \geq d_n\}$, o secvență de $n \geq 2$ numere naturale cu $d_1 \leq n-1$ și fie $i \in \{1,\ldots,n\}$ fixat. Fie $s_0^{(i)}$ secvența obținută din s_0 prin următoarele operații:

- eliminăm elementul d_i
- scădem o unitate din primele d_i componente în ordine descrescătoare ale secvenței rămase.

Are loc echivalenţa:

```
s_0 este secvența gradelor unui graf neorientat \iff
```

 $s_0^{(i)}$ este secvența gradelor unui graf neorientat

Demonstrație. Demonstrația este similară cu cea a Teoremei Havel-Hakimi ([2] - exercițiul 2.11).

Exercițiu ([2] - exercițiul 2.12) Fie G_1 și G_2 două grafuri neorientate cu mulțimea vârfurilor $V = \{1, \ldots, n\}$. Atunci $s(G_1) = s(G_2)$ dacă și numai dacă există un șir de transformări t de interschimbare pe pătrat prin care se poate obține graful G_2 din G_1 .

2 Arbori

Definiție 2.1. Un arbore este un graf neorientat conex fară cicluri.

Lema 2.2. Orice arbore cu $n \ge 2$ vârfuri are cel puțin două vârfuri terminale (de grad 1).

Demonstrație. Fie T un arbore cu $n \geq 2$ vârfuri. Fie P cel mai lung lanț elementar în T. Extremitățile lui P sunt vârfuri terminale, altfel am putea extinde lanțul P cu o muchie sau se formează un ciclu elementar în T. Într-adevăr, fie x,y extremitățile lui P. Presupunem prin absurd că $d_T(x) \geq 2$. Atunci există un vârf v adiacent cu x astfel încât $xv \notin E(P)$.

- Dacă $v \in V(P)$, atunci există în T ciclul $[x \stackrel{P}{-} v, x]$, contradicție (T este aciclic).
- Dacă $v \notin V(P)$, atunci lanțul $P' = [v, x \stackrel{P}{-} y]$ este elementar și l(P') = l(P) + 1 contradicție (P este lanț elementar maxim în T).

Lema 2.3. Fie T un arbore cu $n \ge 2$ vârfuri și v un vârf terminal în T. Atunci T - v este arbore.

Demonstrație. Afirmația rezultă din faptul că un vârf terminal nu poate fi vârf intern al unui lanț elementar, deci pentru orice $x, y \neq v$ un xy-lanț elementar din T este lanț și în T - v.

Propozitia 2.4. *Un arbore cu n vârfuri are* n-1 *muchii.*

Demonstrație. Demonstrăm afirmația prin inducție.

Pentru n=1, un arbore cu n vârfuri are un vârf şi zero muchii. Pentru n=2, un arbore cu 2 vârfuri are o singură muchie (este izomorf cu P_2).

" $n-1 \Longrightarrow n$ " Presupunem afirmația adevărată pentru un arbore cu n-1 vârfuri.

Fie T un arbore cu n vârfuri. Conform Lemei 2.2, există un vârf terminal v în T. Atunci T' = T - v este arbore cu n-1 vârfuri (Lema 2.3) şi |E(T')| = |E(T)| - 1. Din ipoteza de inducție, T' are |E(T')| = |V(T')| - 1 = n-2 muchii. Rezultă |E(T)| = |E(T')| + 1 = n-1.

Lema 2.5. Fie G un graf neorientat conex şi C un ciclu in G. Fie $e \in E(C)$ o muchie din ciclul C. Atunci G - e este tot un graf conex.

Demonstrație. Afirmația rezultă din definiția unui graf conex și din următoarea observație: dintr-un xy-lanț care conține muchia e în G se poate obține un xy-lanț în G-e înlocuind muchia e cu C-e.

Propozitia 2.6. Fie T un graf neorientat cu $n \ge 1$ vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal (prin eliminarea unei muchii din T se obține un graf care nu mai este conex)
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n-1 muchii
- 5. T este aciclic și are n-1 muchii

6. Între oricare două vârfuri din T există un unic lanț elementar.

Demonstrație. "1 \iff 2": Pentru n=1 este evident. Presupunem $n \ge 2$.

 $1 \Longrightarrow 2$: Presupunem că T este arbore (conex și aciclic).

Fie $e=xy\in E(T)$. Arătăm că T-e nu este conex (deci T este conex muchie-minimal). Presupunem prin absurd că T-e este conex. Atunci există un lanţ elementar P în T-e de la x la y. Atunci P+xy=[x-y,x] este ciclu în T, contradicție.

 $2 \longleftarrow 1$: Presupunem că T este conex muchie-minimal. Demonstrăm că T este aciclic.

Presupunem prin absurd că T conține un ciclu C. Fie $e \in E(C)$. Din Lema 2.5 rezultă că T - e este conex, contradicție (T este conex muchie-minimal).

"1
$$\iff$$
 i" pentru $i \in \{3, 4, 5, 6\}$ - Exerciții ([3] - v. Secțiunea 2.1, [1] - v. Secțiunea 4.1)

Corolar 2.7. Orice graf conex conține un arbore parțial (un graf parțial care este arbore).

2.1 Construcția unui arbore cu secvența gradelor dată

Teorema 2.8. O secvență de $n \geq 2$ numere naturale **strict pozitive** $s_0 = \{d_1, \ldots, d_n\}$ este secvența gradelor unui arbore dacă și numai dacă $d_1 + \ldots + d_n = 2(n-1)$.

Demonstrație. " \Longrightarrow " Presupunem că există un arbore T cu $s(T) = s_0$. Atunci

$$d_1 + \ldots + d_n = 2|E(T)| = 2(n-1)$$
 (conform Propoziției 2.6)

"**Warianta** 1. Demonstrăm prin inducție după n că o secvență de n numere naturale (strict) pozitive $s_0 = \{d_1, \ldots, d_n\}$ cu proprietatea că $d_1 + \ldots + d_n = 2(n-1)$ este secvența gradelor unui arbore.

Pentru n=2 avem $d_1, d_2 > 0$ și $d_1 + d_2 = 2(2-1) = 2$, deci $d_1 = d_2 = 1$. Există un arbore cu secvența gradelor $s_0 = \{1, 1\}$, izomorf cu graful P_2 (lanț cu două vârfuri).

Presupunem afirmația adevărată pentru n-1. Fie $s_0=\{d_1,\ldots,d_n\}$ o secvență de $n\geq 3$ numere naturale (strict) pozitive cu proprietatea că $d_1+\ldots+d_n=2(n-1)$. Arătăm că există un arbore cu secvența gradelor s_0 .

Presupunem (fără a restrânge generalitatea) că $d_1 \ge ... \ge d_n$. Demonstrăm că $d_1 > 1$ și $d_n = 1$.

- Presupunem prin absurd că $d_1 = 1$. Atunci $d_1 = \ldots = d_n = 1$. Rezultă $d_1 + \ldots + d_n = n$, de unde 2(n-1) = n, deci n = 2, contradicție $(n \ge 3)$.
- Presupunem prin absurd că $d_n \ge 2$. Atunci $d_1 \ge \ldots \ge d_n \ge 2$. Rezultă $d_1 + \ldots + d_n \ge 2n$, de unde $2(n-1) \ge 2n$, contradicție.

Considerăm secvența $s_0' = \{d_1 - 1, d_2, \dots, d_{n-1}\}$. Numerele din secvență sunt pozitive și avem

$$d_1 - 1 + d_2 + \ldots + d_{n-1} = d_1 + \ldots + d_n - (1 + d_n) = 2(n-1) - (1+1) = 2((n-1)-1).$$

Atunci putem aplica ipoteza de inducție pentru secvența s'_0 . Rezultă că există un arbore T' cu mulțimea vârfurilor $V' = \{x_1, \dots, x_{n-1}\}$ având secvența gradelor $s(T') = s'_0$, mai exact cu:

$$d_{T'}(x_i) = \left\{ egin{array}{ll} d_i - 1, & ext{dacă } i = 1 \ d_i, & ext{dacă } i \in \{2, \dots, n-1\}. \end{array}
ight.$$

Construim pornind de la T' un nou arbore T=(V,E) adăugând un vârf nou x_n pe care îl unim cu vârful x_1 : $V = V' \cup \{x_n\}, E = E' \cup \{x_1x_n\}$. Pentru un $i \in \{1, \dots, n\}$ avem atunci

$$d_T(x_i) = \left\{ \begin{array}{ll} d_{T'}(x_i) + 1 = d_i - 1 + 1 = d_i, & \text{dacă } i = 1 \\ d_{T'}(x_i) = d_i, & \text{dacă } i \in \{2, \dots, n-1\} \\ 1 = d_n, & \text{dacă } i = n. \end{array} \right.$$

Rezultă că $s(T) = s_0$, deci s_0 este secvența gradelor unui arbore.

Varianta 2. Presupunem (fără a restrânge generalitatea) că $d_1 \ge ... \ge d_n$. Avem $d_1 \ge 1$ și $d_n = 1$ (ca în varianta 1). Fie k astfel încât $d_k > 1$ și $d_{k+1} = 1$.

Construim un arbore T de tip omidă cu mulțimea vârfurilor $\{x_1, \ldots, x_n\}$ având secvența gradelor s_0 astfel.

- 1. Unim printr-un lanţ vârfurile x_1, \ldots, x_k (care trebuie să fie neterminale formează corpul omizii), în această ordine
- 2. Considerăm mulțimea de vârfuri $\{x_{k+1}, \dots, x_n\}$ (care trebuie să fie terminale) și unim
 - x_1 cu primele $d_1 1$ vârfuri din această mulțime
 - x_2 cu următoarele $d_2 2$ vârfuri

 - x_{k-1} cu următoarele $d_{k-1}-2$ vârfuri

- x_k cu ultimele d_k-1 vârfuri din această mulțime. Deoarece $d_1-1+\sum_{i=2}^{k-1}(d_i-2)+d_k-1=\sum_{i=1}^nd_i-2k-(n-k)=n-k=|\{x_{k+1},\ldots,x_n\}|,$ construcția este corectă

Avem
$$s(T) = s_0$$
.

Din demonstrația Teoremei 2.8 se desprind următorii algoritmi de determinare a unui arbore cu secvența gradelor dată.

Algoritm de construție a unui arbore cu secvența de grade dată

Intrare: o secvență de n numere naturale pozitive d_1, \ldots, d_n

Ieșire: un arbore T cu $V(T) = \{x_1, \dots, x_n\}$ cu $s(T) = s_0$ dacă s_0 este secvența gradelor unui arbore, sau mesajul NU altfel.

Idee: La un pas unim un vârf de grad 1 cu un vârf de grad mai mare decât 1 şi actualizăm secvența s_0 . Se repetă de n-2 ori, în final rămânând în secvență două vârfuri de grad 1, care se unesc printr-o muchie.

Pseudocod:

Varianta 1.

Pasul 1. Dacă $d_1 + \ldots + d_n \neq 2(n-1)$, atunci scrie NU, STOP.

Pasul 2.

Cât timp s_0 conține valori mai mari decât 1 execută //sau pentru i = 1, n - 2

alege un număr $d_k > 1$ și un număr $d_t = 1$ din secvență s_0 și adaugă la T muchia $x_k x_t$.

fie d_k, d_t unicele elemente nenule (egale cu 1) din s_0 ; adaugă la T muchia $x_k x_t$.

Varianta 2. Corespunde variantei a doua de demonstrare a teoremei anterioare - construim un arbore de tip omidă.

Bibliografie

- [1] Drago-Radu Popescu, *Combinatorică și teoria grafurilor*. Editura Societatea de Științe Matematice din România, București, 2005.
- [2] Drago-Radu Popescu, R. Marinescu-Ghemeci, *Combinatorică și teoria grafurilor prin exerciții și probleme*. Editura Matrixrom, 2014.
- [3] Douglas B. West, Introduction to Graph Theory. Prentice Hall 1996, 2001.