User Manual for AI_FINAL_CODE

This document provides a guide to the uploaded Jupyter Notebook, detailing its structure, purpose, and instructions for use.

Table of Contents

- 1. Overview
- 2. Prerequisites
- 3. Workflow Phases
 - Phase 1: Data Loading and Exploration
 - Phase 2: Data Preprocessing and Feature Engineering
 - Phase 3: Feature Selection and Dimensionality Reduction
 - Phase 4: Model Development
 - Phase 5: Model Evaluation
 - Phase 6: Model Summary and Deployment

4. Additional Notes

1. Overview

The notebook implements a machine learning pipeline for predictive modeling, combining classical algorithms and advanced neural networks. It is suited for tasks such as classification, anomaly detection, or similar predictive applications.

2. Prerequisites

Ensure the following tools and libraries are installed:

- Python 3.x
- Jupyter Notebook/Google Colab
- Libraries: `numpy`, `pandas`, `scikit-learn`, `matplotlib`, `seaborn`, `tensorflow`, `catboost`, `imblearn`

To install missing libraries, run:

"! pip install numpy pandas scikit-learn matplotlib seaborn tensorflow catboost imbalanced-learn"

Why these libraries are installed:

- numpy: For efficient numerical computations.
- pandas: For data manipulation and analysis.
- scikit-learn: For classical machine learning algorithms and preprocessing utilities.
- matplotlib and seaborn: For creating visualizations to analyze data and model performance.
- tensorflow: For building and training deep learning models such as ANN, CNN, and LSTM.
 - catboost: For leveraging gradient boosting with categorical features.
- imbalanced-learn ('imblearn'): For handling imbalanced datasets using techniques like SMOTE.

3. Workflow Phases

Phase 1: Data Loading and Exploration

Purpose: Upload and inspect the dataset.

- Code: Use `google.colab` for file uploads (specific to Google Colab) or `os` for local file management.
 - Steps:
 - 1. Upload the dataset using the `files.upload()` function.
 - 2. Use `os.listdir()` to confirm successful upload.
- 3. Explore the dataset structure using `pandas` methods (`head()`, `info()`, `describe()`).

Phase 2: Data Preprocessing and Feature Engineering

Purpose: Clean data and prepare features for modeling.

- Key Tasks:
- Handle missing values (`pandas.fillna()` or `dropna()`).
- Encode categorical variables using `LabelEncoder` or `OneHotEncoder`.
- Normalize features using `StandardScaler`.
- Address class imbalances with `SMOTE`.

Phase 3: Feature Selection and Dimensionality Reduction

Purpose: Improve model performance by reducing irrelevant or redundant features.

- Techniques Used:
 - Random Forest for feature importance.
 - Recursive Feature Elimination (RFE).
 - Dimensionality reduction (e.g., PCA).
- Outputs: A refined dataset (`X_selected`, `y_final`) for modeling.

Phase 4: Model Development

Purpose: Train various models, from classical to deep learning.

Classical Models

- Logistic Regression, Decision Trees, Random Forests, etc.
- Use scikit-learn functions for training and validation.

Deep Learning Models

- Artificial Neural Network (ANN): Constructed using `tensorflow.keras.Sequential` with dense layers and dropout.
- Convolutional Neural Network (CNN): Adapted for tabular data by reshaping input.
- Long Short-Term Memory (LSTM): Suitable for time-series or sequential data.

Transformer-Based Models

- Implements state-of-the-art architectures for real-time tasks.
- Includes additional preprocessing for transformer compatibility.

Phase 5: Model Evaluation

Purpose: Compare model performance using various metrics.

- Metrics Evaluated:
 - ROC-AUC and precision-recall curves.
 - Confusion matrices.
 - Accuracy, precision, recall, and F1-score.
- Visualization: Generate comparative plots using `matplotlib` and `seaborn`.

Phase 6: Model Summary and Deployment

Purpose: Summarize findings and prepare the best model for deployment.

- Steps:
 - 1. Consolidate results into a dataframe for comparison.
- 2. Highlight the best-performing model based on metrics.
- 3. Save the model for deployment using 'joblib' or 'pickle'.

4. Additional Notes

- Environment: The code includes Google Colab-specific commands. For local execution, replace these with equivalent local file handling functions.
- Customization: Modify preprocessing and model parameters to suit your dataset and objectives.
 - Troubleshooting:
 - Check library versions if you encounter compatibility issues.
 - Ensure sufficient computational resources for deep learning models.