Previously.

This Section.

- Ring Homomorphisms

- Polynomial Rings
- First Isomorphism Theorem for Rings

Exercise 1. We encountered $\mathbb{R}[x] = \{a_0 + a_1x + \cdots + a_nx^n \mid n \geq 0, \ a_i \in \mathbb{R}\}$ briefly before. It is a ring under polynomial addition and multiplication.

- (a) Give some example elements of $\mathbb{R}[x]$.
- (b) What's the additive identity of $\mathbb{R}[x]$?
- (c) What's the multiplicative identity of $\mathbb{R}[x]$?
- (d) How would you define $\mathbb{Z}[x]$? $\mathbb{Q}[x]$?
- (e) What do elements of $\mathbb{Z}_3[x]$ look like?

Definition. Let R be a ring. We denote the set of polynomials over R by R[x] where

$$R[x] := \{r_0 + r_1 x + r_2 x^2 + \dots + r_n x^n \mid n \in \mathbb{Z}_{\geq 0} \text{ and } r_i \in R \ \forall \ 0 \leq i \leq n\}.$$

Any particular element $f = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ in R[x] is called a <u>polynomial</u>, the elements $a_i \in R$ are called the <u>coefficients</u> of f.

Note. The variable x is called an <u>indeterminate</u> it is a symbol representing a position in the list.

Theorem. Let R be a ring with unity. For $f, g \in R[x]$ such that

$$f = a_0 + a_1 x + a_2 x^2 + \cdots$$
 and $g = b_0 + b_1 x + b_2 x^2 + \cdots$

define the operations

- $f + g = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \cdots$
- $f \cdot g = c_0 + c_1 x + c_2 x^2 + \cdots$ where

$$c_i = a_0b_i + a_1b_{i-1} + \dots + a_{i-1}b_1 + a_ib_0 = \sum_{k=0}^{i} a_kb_{i-k}.$$

Then $(R[x], +, \cdot)$ is a ring with unity.

Exercise 2. Let $f = 3 + 2x + 4x^2$ and $g = x - 3x^2 + 2x^3$. Compute the coefficient of x^4 in $f \cdot g$ using the formula for c_4 .

Exercise 3. In $\mathbb{Z}_3[x]$ compute $(x+2)^4$.

Definition. Let R be a ring with unity. For $f, g \in R[x]$ such that

$$f = a_0 + a_1 x + a_2 x^2 + \cdots$$
 and $q = b_0 + b_1 x + b_2 x^2 + \cdots$

define the items:

- We call two polynomials <u>equal</u> if the corresponding coefficients are equal. That is, f = g means that $a_0 = b_0$, $a_1 = b_1$, $a_2 = b_2$,
- We call a_0 the constant term or constant coefficient.
- A polynomial of the form $f = a_0$ is a constant polynomial.
- The $\underline{\mathtt{zero}}$ of R[x] is _____ and the unity is _____.
- The negative of $f = a_0 + a_1x + a_2x^2 + \cdots$ is $-f = -a_0 a_1x a_2x^2 \cdots$

Definition. Let R be a ring with unity. For $f \in R[x]$ such that

$$f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad a_n \neq 0,$$

define the following:

- Since $a_n \neq 0$, we say that the **degree** of f is n and write $\deg(f) = n$.
- We call a_n the leading coefficient of f.
- If the leading coefficient of f is 1, we call f monic.

Theorem 4.1.1. Let R be a ring and let x be an indeterminate over R. Then

- 1. R[x] is a ring.
- **2.** R is the subring of all constant polynomials in R[x].
- **3.** If Z = Z(R) denotes the center of R, then the center of R[x] is Z[x].
- **4.** In fact, x is in the center of R[x].
- **5.** If R is commutative, then R[x] is commutative.

Definition. • If deg(f) = 1, we call f a <u>linear</u> polynomial.

- If deg(f) = 2, we call f a _____ polynomial.
- If deg(f) = 3, we call f a _____ polynomial.
- If deg(f) = 4, we call f a _____ polynomial.
- If deg(f) = 5, we call f a _____ polynomial.

Mckenzie West

Section 4.1: Polynomials

Exercise 4. Consider $S = \{ f \in \mathbb{Z}[x] : f(1) = 0 \}$. Is S a subring or an ideal of $\mathbb{Z}[x]$?

Exercise 5. Show that $(x) = \{xf \mid f \in \mathbb{Z}[x]\}$ is an ideal of $\mathbb{Z}[x]$ and that $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$.

Theorem 4.1.2. Let R be a domain. Then

- 1. R[x] is a domain.
- **2.** If $f \neq 0$ and $g \neq 0$ in R[x], then $\deg(fg) = \deg(f) + \deg(g)$.
- **3.** The units in R[x] are the units in R.

Exercise 6. As a non-example to the previous theorem, consider f = 1 + 2x in $\mathbb{Z}_4[x]$.

(a) Verify that \mathbb{Z}_4 is not a domain.

(b) Compute f^2 to see $deg(f^2) \neq 2 deg(f)$.

(c) Find some zero divisors in $\mathbb{Z}_4[x]$.

Division Algorithm (Theorem 4.1.4). Let R be any ring and let f and g be polynomials in R[x]. Assume $f \neq 0$ and that the leading coefficient of f is a unit in R. Then there exist unique $q, r \in R[x]$ such that

- 1. g = qf + r.
- **2.** Either r = 0 or $\deg r < \deg f$.

Exercise 7. Use long division to find q and r given $f = x^2 + 1$ and $g = x^4 + 3x^3 + x + 1$ in $\mathbb{Z}[x]$.

Factor Theorem (Theorem 4.1.6(1). Let R be a commutative ring, $a \in R$, and $f \in R[x]$. Then f(a) = 0 if and only if f = (x - a)g for some $g \in R[x]$.

(Remainder Theorem) Moreover, in general, when dividing f by x - a, we get f = (x - a)q + f(a). That is, the remainder when dividing f by x - a is $f(a) \in R$.

Exercise 8. Consider $R = \mathbb{Z}_6$ and $f = x^3 - x$. Notice f(0) = f(1) = f(2) = f(3) = f(4) = f(5) = 0. Thus

- $f = (x 0)(\underline{\hspace{1cm}})$
- $f = (x 1)(\underline{\hspace{1cm}})$
- $f = (x-2)(\underline{\hspace{1cm}})$
- $f = (x 3)(\underline{\hspace{1cm}})$
- $f = (x 4)(\underline{\hspace{1cm}})$
- $f = (x 5)(\underline{\hspace{1cm}})$

Question 9. Does this mean f = x(x-1)(x-2)(x-3)(x-4)(x-5)?

Corollary. Let R be a commutative ring, $a \in R$, and $\phi_a : R[x] \to R$ the evaluation map at a. Then

$$\ker(\phi_a) = (x - a) = \{(x - a)g \mid g \in R[x]\}$$

and $R[x]/(x-a) \cong R$.

Definition. Let $f \in R[x]$ and $a \in R$. We call a a <u>root</u> or f if the following conditions (which are all equivalent) are true:

- **1.** f(a) = 0.
- **2.** f = (x a)g for some $g \in R[x]$.
- **3.** f is in the principal ideal (x-a).

If $a \in R$ is a root of f, we say it has multiplicity $m \in \mathbb{Z}_{>0}$ if $f = (x-a)^m q$ and $q(a) \neq 0$.

Example. What's the multiplicity of a = -1 as a root of $f = t^4 + t^3 + t + 1 \in \mathbb{Z}_7[t]$?

Theorem 4.1.8. Let R be an integral domain and let f be a nonzero polynomial of degree n in R[x]. Then f has at most n roots in R.

Rational Roots Theorem (Theorem 4.1.9). Let $f = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$ with $a_0, a_n \neq 0$. Then every root of f in \mathbb{Q} is of the form $\frac{c}{d}$ where $c \mid a_0$ and $d \mid a_n$.

Example. Factor the following as much as possible in $\mathbb{Q}[x]$.

- (a) $2x^3 7x^2 7x + 12$
- (b) $x^4 + 5x^3 4x^2 + 3x$
- (c) $12x^4 44x^3 + 39x^2 + 8x 12$