EJERCICIOS IMPRESCINDIBLES

► Números combinatorios

(1) Usando la definición, indica cuánto valen los siguientes factoriales:

a) 2!

b) 3!

c) 4!

d) 10!

e) 20!

(2) Calcula, usando la calculadora, los siguientes factoriales:

a) 5!

b) 10!

c) 100!

d) 0!

e) -7! f) (-7)!

- (3) ¿Cuánto vale (-1)!? ¿Y (-35)!? ¿y -1!?
- (4) Calcula, sin usar la calculadora:

 $a) \frac{4!}{3!}$

 $d) \frac{3!}{3!}$

 $b) \frac{6!}{5!}$

 $e) \frac{7!}{5!}$

c) $\frac{n!}{(n-1)!}$

 $f) \frac{n!}{(n-2)!}$

(5) Escribe las primeras 7 filas del triángulo de Pascal.

(6) Usando la fórmula $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ calcula $a) \binom{0}{0}$ $b) \binom{5}{1}$ $c) \binom{5}{4}$ $d) \binom{7}{2}$

(7) Usando la calculadora calcula:

b) $\binom{8}{6}$

c) $\binom{10}{8}$

▶ Binomio de Newton

(8) Desarrolla, usando el binomio de Newton, las siguientes potencias:

a) $(a+b)^2$

c) $\left(x + \frac{1}{2}\right)^4$

b) $(1+x)^3$

 $(a+b)^5$

- (9) ¿Cuál es el término de quinto grado del polinomio $(x+2)^7$?
- (10) ¿Cuál es el término de grado 25 del polinomio $(2x+1)^{40}$?

▶ Binomio de Newton: $(a - b)^n$

(11) Desarrolla las siguientes potencias:

$$a) (a-b)^2$$

b)
$$(2-x)^3$$

$$c) (a-b)^6$$

- ▶ Binomio de Newton: $(1 + x^2)^n$
- (12) Desarrolla:

a)
$$(-2+x^3)^2$$

c)
$$(3x+5)^3$$

e)
$$(x - 2xy^3)^5$$

a)
$$(-2+x^3)^2$$
 c) $(3x+5)^3$ e) $(x-2xy^3)^5$
b) $(3x+y^2)^3$ d) $(a+a^2)^4$

d)
$$(a+a^2)^4$$