مهندسی فناوری اطلاعات - شبکههای کامپیوتری

شهریور ۱۳۹۸

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دکتر بهادر بخشی

يرهام الواني

فهرست

مقدمه

مقدمه

سابقهی کارها

تعريف مساله

فرمول بندی و مدل سازی ریاضی مساله

راهحل پیشنهادی

مقدمه

فرمول بندی و مدل سازی ریاضی مساله

تعريف مساله

سابقهی کارها

مقدمه

مقدمه

- ◄ عدم انعطافیذیری معماری فعلی شبکه
- ► در مجازیسازی کارکرد شبکه با استفاده از مجازیسازی منابح، میتوان کارکردها را بر روی سرورهای استاندارد اجرا کرد و بهرهوری منابح را فزایش داده و هزینههای انرژی را کاهش داد.
- ► زنجیره سازی کارکرد سرویس نیز امکان ایجاد زنجیرهای از کارکردها را به صورت پویا فراهم میکند.

- ◄ با توجه به جداسازی زیرساخت از نرمافزار کارکردهای شبکه، نیاز به هماهنگی میان آنها
 ایجاد شده است.
- ◄ به صورت کلی تفاوتهایی که با توجه به فرآیند مجازی سازی کارکردهای شبکه ایجاد شدهاند را می توان به ترتیب زیر دستهبندی نمود:
 - زیرساخت مجازیسازی شده
 - کارکردهای شبکهای مجازیسازی شده
 - سرویسهای شبکهای

مقدمه

شکل ۱: معماری سطح بالای مجازی سازی کارکردهای شبکه

- ▼ NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
- ▼ VNFM مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد.
- ◄ چرخهی زندگی هر کارکرد مجازی شامل عملیاتهایی همچون نمونهسازی،
 مقیاسکردن، بهروزرسانی و پایان دادن میباشد.
 - مرنبونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFM

جالشها

- ◄ مديريت و هماهنگي
- ◄ مصرف بهینهی انرژی
 - تخصيص منابع به کارکردهای محازی
- ◄ مسيريابي زنجيرههاي کارکرد سرویس
 - ◄ پذيرش زنجيرههاي کارکرد سرویس
- ◄ به روزرسانی و مقیاس کردن کارکردهای محازی سرويس

تعريف مساله

سابقهی کارها

مقدمه

سابقهی کارها

فرمول بندی و مدل سازی ریاضی مساله

سابقهی کارها

جدول ۱: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

_	تخصیه NFM		اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد و لینک		برخط یا برون خط		محدودی ظرفیت پردازشی نمونه			ں	منابع تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	کارکرد	برون خط	برخط	ندارد	دارد	CPU	BW	MEM	other	#
✓	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	Erar	no۲-1۶
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	Ghazna	aviY•1V
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	Hua	ngr•۱۷
	✓			_		✓			✓	✓	_	_	_		MoFilebot pacity	eh۲·۱۷
_	✓	✓		_	✓	✓	✓	✓	_	_	✓	✓	✓	✓	_	پژوهش حاضر

- ◄ این مفاله مسالهی جایگذاری VNFMها را مطرح می کند.
- ▶ این مقاله فرض میکند زنجیرههای جایگذاری شدهاند و هر در بازهی زمانی مى توانند بازنگاشت شوند.
- ◄ این مساله قصد دارد با در نظر گرفتن هزینههای عملیاتی مسالهی بازنشگات VNFMها در بازههای زمانی را حل کند.

AbuLebdeh2017

راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

تعريف مساله

تعريف مساله

سابقهی کارها

مقدمه

تعريف مساله

بیشینهسازی سود حاصل از پذیرش زنجیرههای کارکرد سرویس با در نظر گرفتن کارکرد سرویس با در نظر گرفتن نیاز برخی از نمونههای کارکرد مجازی شبکه به m VNFM.

- ▼ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها، موجود است.
- ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی، پنهای باند لینکهای مجازی و توپولوژی نمونههای مجازی میباشد.

- ▶ نمونهها بین زنجیرهها به اشتراک گذاشته نمیشوند.
 - ◄ محدوديت ظرفيت لينكها
- ◄ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد
 پردازندهها
- ▶ برخی از سرورهای فیزیکی نمیتوانند سرورهای فیزیکی مشخصی را مدیریت کنند.
 - ◄ برخی از سرورهای فیزیکی توانایی پشتیبانی از کارکردهای مجازی را ندارد.
 - ◄ تنها برخی از نمونههای کارکردهای مجازی نیاز به مدیریت دارند.

تعريف مساله

- ▶ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمع آوری راحتر خطاها، برای هر زنجیره یک VNFM تخصیص میدهیم.
 - ▼ VNFMها میتوانند بین زنجیره به اشتراک گذاشته شوند.
 - ▶ هر نمونه از VNFMها میتواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
 - ▶ برای ارتباط میان هر نمونه از VNFMها و VNFها پهنای باند مشخصی رزرو میگردد.
- ▶ در صورتی که NFVI-PoP بتواند از VNFM پشتیبانی نماید، می توان به هر تعداد که ظرفیت آن اجازه می دهد بر روی آن VNFM نصب نمود.

مقدمه

- ▼ در نظر گرفتن نیازمندی نمونههای کارکرد مجازی به یک VNFM
 - ◄ در نظر گرفتن نيازمندي تاخير براي لينکهاي مديريتي
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی
 - ◄ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس

معیار و نحوهی ارزیابی

- ▶ مدلسازی مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
 - ▶ پیادهسازی راهحل مکاشفهای
- ◄ معیار مقایسه این راه حل سود حاصل از پذیرش تقاضاهای زنجیرههای کارکرد سرویس میباشد.
 - ▼ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه

مقدمه

فرمول بندی و مدل سازی ریاضی مساله

پارامترهای مساله

memory(k)	required RAM of VNF in-
	stance with type k in GB
core(k)	required CPU cores of VNF
	instance with type k
memory	required RAM of VNFM in
	GB
côre	required CPU cores of VNFM
capacity	maximum number of VNF in-
	stances that VNFM can han-
	dle
len(h)	number of VNF instances in
	hth SFC request

پارامترهای مساله

type(v, k)	assuming the value 1 if the			
	VNF instance v has type k			
bandwidth(u, v)	required bandwidth in link			
	from VNF instance u to v			
bandwidth	required bandwidth in manag-			
	meent link			
radius	maximum neighborhood dis-			
	tance for instance manage-			
	ment			

فرمولبندي

پارامترهای مساله

licenseFee	VNFM license fee that must
	pay for each VNFM
vnfSupport(w)	assuming the value 1 if the
	physical server \boldsymbol{w} can support
	VNF instances
isManageable(k)	assuming the value 1 if the
	type k needs a manager
notManagableBy(w1, w2)	assuming the value 1 if the
	physical server w1 cannot
	manage by physical server $w2$

متغيرهاي تصميم گيري

binary variable assuming the value 1 if the hth SFC request X_h is accepted; otherwise its value is zero

تعريف مساله

- the number of VNF instances of type k that are used in y_{wk} server $w \in V_{\epsilon}^{PN}$
- binary variable assuming the value 1 if the VNF node $v \in$ $\bigcup_{i=1}^{T} V_{i,F}^{SFC}$ is served by the VNF instance of type k in the server $w \in V_{\epsilon}^{PN}$

فرموںبندی

متغیرهای تصمیمگیری

 \bar{y}_w the number of VNFMs that are used in server $w \in V_s^{PN}$ \bar{z}_{hw} binary variable assuming the value 1 if hth SFC is assigned to VNFM on server $w \in V_s^{PN}$

44/46

مقدمه

هدف اصلی مساله پذیریش بیشترین تعداد تقاضا میباشد. در اینجا فرض میکنیم پذیرش هر تقاضا سودی منحصر به فرد خواهد داشت. بنابراین تابع هدف به شکل زیر میباشد:

$$\max \sum_{h=1}^{T} x_h \tag{1}$$

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدوديت تعداد پردازندههای نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y}_{w} c\bar{o}re \leq N_{core}^{PN}(w) \quad \forall w \in V_{s}^{PN}$$
 (3)

VNF نوع k روی سرور w سرویس شود میبایست v ، VNF instance نوع k روی سرور k فعال شود. توجه شود که اشتراک گذاری kها پشتیبانی نمی گردد.

$$\sum_{v \in \cup_{i=1}^{T} V_{i,F}^{SFC}} z_{vw}^{k} \leq y_{wk} \quad \forall w \in V_{s}^{PN}, \forall k \in [1, \dots, F]$$
 (4)

اگر تقاضای hام پذیرفته شده باشد میبایست تمام $VNF\ node$ های آن سرویس شده باشند. یک $VNF\ column$ حداکثر یکبار سرویس داده شود.

$$x_h = \sum_{k=1}^{F} \sum_{w \in V_{\varepsilon}^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (5)

تعريف مساله

$$x_h = \sum_{w \in V_{\mathbb{P}^N}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (6)

 \mathbf{w} سرور \mathbf{w} سرور \mathbf{v} سرور \mathbf{v} سرور \mathbf{v} توسط \mathbf{v} توسط \mathbf{v} \mathbf{v} اگر \mathbf{v} توسط \mathbf{v} سرور \mathbf{v} سرو

$$\sum_{h=1}^{T} \bar{z}_{hw} \le \bar{y}_w \quad \forall w \in V_s^{PN} \tag{7}$$

محدودیت ظرفیت سرویسدهی VNFM

$$\sum_{i=1}^{I} \bar{z}_{iw} * len(i) \le capacity \quad \forall w \in V_s^{PN}$$
 (8)

kام باشد.

از نوع VNF از نوع VNF از نوع VNF از نوع VNF از نوع

$$z_{vw}^k \le type(v, k) \quad \forall w \in V_s^{PN}, \forall k \in [1, \dots, F], \forall v \in \bigcup_{i=1}^T V_{i,F}^{SFC}$$
 (9)

فرمونبندي

متغيرهاي تصميم گيري

 $\tau_{ij}^{(u,v)}$ binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

binary variable assuming the value 1 if the management traffic of VNF node v is routed on the physical network link (i, j)

 $\bar{\tau}_{ii}^{\nu}$

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1,\dots,T]$$
(10)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{v} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, \dots, T]$$

$$(11)$$

فرمول بندي

محدوديت ظرفيت لينكها

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} \bar{\tau}_{ij}^v * bandwidth + \sum_{(u,v) \in \cup_{i=1}^T E_i^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\forall (i,j) \in E^{PN}$$

$$(12)$$

تعريف مساله

شعاع همسایگی تضمین میکند که زمان سرویسدهی توسط VNFMها در یک بازه مشخص (از نظر تعداد گام) خواهد بود.

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} \le radius \quad \forall v \in \cup_{i=1}^{T} V_{i,F}^{SFC}$$
 (13)

زنجیرههای زیر را به عنوان تقاضاها در نظر میگیریم.

مسالهي نمونه

فرض میکنیم مرکز دادهای دارای توپولوژی زیر میباشد.

تعريف مساله

سابقەي كارھا

مقدمه

راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

- ◄ مسالهی اصلی یک مسالهی NP-Hard می باشد.
- ◄ براى حل مساله در زمان معقول براى ابعاد بزرگ نیاز به یک الگوریتم مکاشفهای
 می باشد.
 - ◄ از ایده ی الگوریتم Bari2015 برای جایگذاری زنجیرهها شروع می کنیم.

Joint Service Deployment - Manager Placement ◀

- ▼ زنجیرهها را با استفاده از الگوریتم Bari2015 جایگذاری میکنیم.
- ◄ در زمان انتخاب مجموعهی امکانپذیر محدودیتهای مساله را اعمال میکنیم.
 - ◄ بعد از جایگذاری هر زنجیره VNFM آن را انتخاب میکنیم.
- ◄ برای انتخاب VNFM اولویت با نمونههایی است که ظرفیت آنها کامل استفاده نشده است.
- در بین VNFMهایی که ظرفیت خالی دارند اولویت با نمونههایی است که منابع پردازشی بیشتری دارند.

داد.

◄ الگوریتم پیشنهادی JSD-MP زمان اجرای زیادی دارد که می توان آن را کاهش

- ▼ الگوريتم پيشنهادي eJSD-MP از برونخط بودن مساله استفاده نميكند.
- ◄ برای استفاده از ویژگی برونخط بودن مساله زنجیرهها را بر اساس قیمتشان مرتب
 - ◄ براى كاهش زمان اجراى الگوريتم نسب مشخصى از زنجيرهها را با الگوريتم first-fit

راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

ارزيابي

تعريف مساله

سابقهی کارها

مقدمه

فرمول بندی ارائه شده بر روی نرمافزار cplex که محصول شرکت IBM بوده و برای حل مسائل برنامهریزی خطی و ... استفاده می شود، به زبان جاوا پیاده سازی شده و تست گشت.

2010

تعريف مساله

سابقهی کارها

مقدمه

فرمول بندي و مدل سازي ریاضي مساله