Optimisation Stochastique

Charles Vin

S1-2023

RATRAPER COURS 1 Nouveau cours du 16/11

CCL du cours de la dernière fois

$$R^{\phi}(\hat{h}^{\phi-\mathbb{E}R?}) - R^{\phi}(h^{\star}, \phi).$$

0.1 Relation between R^{ϕ} and $R^{0/1}$

In this section, no empirical proof, no n

- $R^{\phi}(h) = \mathbb{E}[\phi(-Yh(X))]$
- $R^{0/1}(h) = \mathbb{E}[\mathbb{1}_{Y \neq sign(h(X))}]$
- $\phi = \text{hinge} / \text{logistic} / \text{least square}$

Lemme 0.1.1. If ϕ is diff, convex, increasing, then $sign(h^{\star,\phi}) = f^{\star,Bayes}$ with $h^{\star,\phi} \in argmin_h R^{\phi}(h)$

Preuve: 1.

$$R^{\phi}(h) = \mathbb{E}[\phi(-Yh(X))(\mathbb{1}_{Y=1} + \mathbb{1}_{Y=-1})|X]$$

= $\mathbb{E}[\phi(-h(X))\eta(X) + \phi(h(X))(1 - \eta(X))]$

with
$$\eta(X) = P(Y = 1|X)$$

2. Define $H_{\phi}(p,\eta) := \eta \phi(-p) + (1-\eta)\phi(p)$ and $p^{\star,\phi}(\eta) = argminH_{\phi}(p,\eta)$ (assuming existence for now)

 $h^{\star,\phi}$ minimizes R^{ϕ} and is such that for any fixed x

$$h^{\star,\phi}(x) = p^{\star,\phi}(\eta(x)).$$

$$\forall h, R^{\phi}(h) - R^{\phi}(h^{\star,\phi}) = \mathbb{E}[H_{\phi}(h(X), \eta(X)) - H_{\phi}(h^{\star,\phi}(X), \eta(X))]$$

3. Example for Least Square:

$$H_{\phi}(p,\eta) = \eta(1-p)^{2} + (1-p)(1+p)^{2}$$
$$\frac{\partial H_{\phi}}{\partial p}(p,\eta) = 2(p-1)\eta + 2(1-\eta)(1+p)$$
$$= 0 \Leftrightarrow p = 2\eta - 1$$

Loss	$p^{\star,\phi}(\eta)$	$\min H_{\phi}(p,\eta)$
LS: $(1+v)^2$	$2\eta - 1$	$4\eta(1-\eta)$
Hinge	sign	a
Logistic	a	a

See table

In all cases,
$$sign(p^{\star,\phi}(\eta(X)) = sign(\eta(X) - 1/2)) = sign(h^{\star,\phi}(X)) = f^{\star,Bayes}$$

4. In general with ϕ strictly increasing, diff, convex, when $\phi(t) \to_{t \to +\infty} +\infty \ \forall \eta \in]0,1[,H_{\phi}(\eta,p) \to_{p \to \pm\infty} +\infty$. Thus $p^{\star,\phi}(\eta)$ exists. And $p \mapsto H_{\phi}(p,\eta)$ is diff

$$\frac{\partial H_{\phi}}{\partial p}(p,\eta) = 0 \Leftrightarrow \eta \phi'(-p^{\star,\phi}(\eta)) = (1-\eta)\phi(p^{\star,\phi}(\eta)).$$

(a) If
$$\eta < 1/2$$
, then $\eta < 1 - \eta \Rightarrow \phi'(p^{\star,\phi}(\eta)) > \phi'(p^{\star,\phi}(\eta)) \Rightarrow p^{\star,\phi}(\eta) \leq 0$

(b) If
$$\eta > 1/2 \dots \Rightarrow p^{\star,\phi} \geq 0$$

Finally, $sign(p^{\star,\phi}(\eta) = sign(\eta - 1/2))$ and thus $sign(h^{\star,\phi}(X)) = f^{\star,Bayes}(X)$

Lemme 0.1.2 (Zhang). Assume phi increasing, convex such that $\phi(0) = 1$. For $\gamma \geq 1$ we have $|\eta - 1/2|^{\gamma} \geq c \left| 1 - H_{\phi}(p^{\star,\phi}(\eta),\eta) \right|$. $\forall h \ classifier \ h : \mathcal{X} \to \mathbb{R}$

$$R^{0/1}(sign(h)) - R^{0/1}(f^{\star,Bayes}) \le 2c^{1/\gamma}(R^{\phi}(h) - R^{\phi}(h^{\star,\phi})).$$

When h approximately minimizes the relaxed excess risk its sign(h) behaves well in terms of the initial excess risk!!.

Note. Note that $\gamma = 2$ for the square loss and the logistic loss. And that $\gamma = 1$ for the hinge loss. (we do not care about c)

Preuve:

$$\begin{split} R^{0/1}(sign(h)) - R^{0/1}(f^{\star,Bayes}) &= \mathbb{E}[\mathbbm{1}_{sign(h(X)) \neq f^{\star,Bayes}(X)2|\eta(X)-1/2|}] \\ & \text{(jensen, (1))} \leq \mathbb{E}[\mathbbm{1}_{sign(h(X)) \neq f^{\star,Bayes}(X)2^{\gamma}|\eta(X)-1/2|^{\gamma}}]^{1/\gamma} \\ &\leq 2c^{1/\gamma}\mathbb{E}[\mathbbm{1}_{sign(h(X)) \neq f^{\star,Bayes}(X)}(1 - H_{\phi}(p_{\phi}^{\star}(\eta(X)), \eta(X))]^{1/\gamma}(\eta(X) = P(Y = 1|X)) \end{split}$$

Note. Note that when $sign(h(X)) \neq sign(\eta(X) - 1/2)$, then $H'_{\phi}(h(X), \eta(X)) > 1$. Indeed, $\eta\phi(-p) + (1 - \eta)\phi(p) \geq \phi(-\eta p + (1 - \eta)p) = \phi((1 - 2\eta)p)$ because ϕ convex. And now $\phi((1 - 2\eta)p) \geq \phi(0) = 1$ because ϕ increasing ≥ 0 when $sign(p) \neq sign(\eta - 1/2)$

$$(1) \le 2c^{1/\gamma} (\mathbb{E}[H(h(X), \eta(X)) - H(p^{\star, \phi}(\eta(X)), \eta(X))])^{1/\gamma}$$

= $2c^{1/\gamma} (R^{\phi}(h) - R^{\phi}(h^{\star, \phi}))^{1/\gamma}$

 $\mathrm{CCL}: \forall \hat{h}$

$$\begin{split} R^{0/1}(sign(\hat{h})) - R^{0/1}(f^{\star,Bayes}) &\leq c^{1/\gamma} (R^{\phi}(\hat{h}) - R^{\phi}(h^{\star,\phi}))^{1/\gamma} \\ R^{\phi}(\hat{h}) - R^{\phi}(h^{\star,\phi}) &= R^{\phi}(\hat{h}) - R^{\phi}(h^{\star,\phi}) + R^{\phi}(h^{\star,\phi}) - R^{\phi}(h^{\star,\phi}) \end{split}$$

where

- $h_{\mathcal{F}}^{\star,\phi} \in argminR^{\phi}(h)$
- $R^{\phi}(h_{\mathcal{F}}^{\star,\phi}) R^{\phi}(h^{\star,\phi})$ approx error

$$\begin{split} R^{p}hi(\hat{h}) - R^{\phi}(h_{\mathcal{F}}^{\star,\phi}) &= R^{\phi}(\hat{h}) - \hat{R}_{n}^{\phi}(\hat{h}) (\leq \sup_{\mathcal{F}} \hat{R}_{n} - R^{\phi}) \\ &+ \hat{R}_{n}^{\phi}(\hat{h}) - \hat{R}_{n}^{\phi}(\hat{h}^{\phi ERM}) (\text{"optim error"}) \\ &+ \hat{R}_{n}^{\phi}(\hat{h}^{\phi - ERM}) - \hat{R}_{n}^{\phi}(\hat{h}_{\mathcal{F}}^{\star,\phi}) (\leq 0) \\ &+ \hat{R}_{n}^{\phi}(h_{\mathcal{F}}^{\star,\phi}) - R^{\phi}(h_{\mathcal{F}}^{\star,\phi}) (\leq \sup_{\mathcal{F}} \hat{R}_{n}^{\phi} - R^{\phi}) \end{split}$$

Since the estimation error typically scales in $O(\frac{1}{\sqrt{n}})$, no need to reach the ERM using our optimization also !!.

Note. When using Lipschitz functions, we obtain slow rates $O(\frac{1}{\sqrt{n}})$. Is there a path towards fast rates? Let's take the example of the mean estimation.

1. Method 1:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i = argmin_{\theta} \frac{1}{2n} \sum_{i=1}^{n} (Z_i - \theta)^2$$
$$\theta^* = argmin_{\theta} \frac{1}{2} \mathbb{E}[(\theta - Z)^2] = \mathbb{E}[Z]$$

From the developpement before on the estimation error

$$R(\hat{\theta}) - R(\theta^*) = O(\frac{1}{\sqrt{n}}).$$

$2. \ \, \textbf{Method} \,\, 2: \, \textbf{Direct computation}$

$$\begin{split} R(\theta) &= \frac{1}{2}\mathbb{E}[(\theta - Z)^2] = \frac{1}{2}(\theta - \mathbb{E}[Z])^2 + \frac{1}{2}Var(Z) \\ &\Rightarrow R(\hat{\theta}) - R(\theta^\star) = R(\hat{\theta})(R(\mathbb{E}[Z])) = \frac{1}{2}(\hat{\theta} - \mathbb{E}(Z))^2 \text{(conditionallty to } \mathcal{D}_n) \\ \mathbb{E}_{D_n}[] &= \frac{1}{2}\mathbb{E}[(\frac{1}{n}\sum Z_i - \mathbb{E}[Z])^2] = \frac{1}{2\mathbf{n}}Var(Z)(\mathbf{n} \text{ is FAST RATE } O(\frac{1}{n})) \end{split}$$

Bound only for this specific $\hat{\theta}$ and because I also have stong convexity.

In supervised learning, fast rates can be established for strongly convex function (in our relaxed risks)

Chapter 1

Basics of deterministic optimisation

In ML, construct a predictor often boils down to minimize an empirical risk using iterative algorithms.

1.1 First order method

1.1.1 Basics of convex analysis

 $F: \mathbb{R}^d \to \mathbb{R}$ convex, diff, L-smooth (its gradient is L-Lipschitz).

- convexity (under chords): $F(\eta\theta + (1-\eta)\theta') \leq \eta F(\theta) + (1-\eta)F(\theta'), \forall \theta, \theta', \forall \eta in[0,1]$
- If we add diff (tangent lie below) we have $F(\theta') \ge F(\theta) + \langle \nabla F(\theta), \theta' \theta \rangle \forall \theta, \theta'$
- (increasing slopes) $<\nabla F(\theta) \nabla F(\theta'), \theta \theta'> \ge 0$ (∇F is said to be a monotone operator)
- if we add C^2 (curves upwards) $\forall \theta, Hess_F(\theta) \succeq 0$ (SDP) μ strongly convex, $\mu > 0$.
- $\bullet \ \, \text{convexity} \ \, (\text{"well" under chords}): \ \, F(\eta\theta + (1-\eta)\theta') \leq \eta F(\theta) + (1-\eta)F(\theta'), \forall \theta, \theta' \frac{\mu(1-\mu)}{2} \left\|\theta \theta'\right\|_2^2, \forall \eta in[0,1] \\$
- If we add diff (tangent lie "well" below) we have $F(\theta') \geq F(\theta) + \langle \nabla F(\theta), \theta' \theta \rangle \forall \theta, \theta' + \frac{\mu}{2} \|\theta \theta'\|_2^2$
- ("well"increasing slopes) $< \nabla F(\theta) \nabla F(\theta'), \theta \theta' > \ge 0 + \mu \|\theta \theta'\|$
- if we add C^2 (curves upwards) $\forall \theta, Hess_F(\theta) \succeq \mu Id$ (SDP)

F is μ-strongly convex $\forall \theta_0, \theta \mapsto F(\theta) - \frac{\mu}{2} \|\theta - \theta_0\|_2^2$ is convex. L-Smooth : $\forall \theta, \theta', \|\nabla F(\theta) - \nabla F(\theta')\| \le L \|\theta - \theta'\|$

Lemme 1.1.1 (Descent lemma). Assume that F is L-Smoot. Therefore $\forall \theta, \theta' \in dommain \ of f$

$$F(\theta') \le F(\theta) + \langle \nabla F(\theta), \theta' - \theta \rangle + \frac{L}{2} \|\theta' - \theta\|.$$

Preuve:

$$\begin{split} F(\theta') &= F(\theta) + \int_0^1 < \nabla F(\theta + t(\theta' - \theta)), \theta' - \theta > dt \\ &= F(\theta) + < \nabla F(\theta), \theta' - \theta > + \int_0^1 < \nabla F(\theta + t(\theta' - \theta)) - \nabla F(\theta), \theta' - \theta > dt \\ &\leq F(\theta) + < \nabla F(\theta), \theta' - \theta > + \int_0^1 \|\nabla F(\theta + t(\theta' - \theta)) - \nabla F(\theta)\| \|\theta' - \theta\| dt \\ &\leq F(\theta) + < \nabla F(\theta), \theta' - \theta > + \int_0^1 tL \|\theta' - \theta\|^2 dt \\ &\leq F(\theta) + < \nabla F(\theta), \theta' - \theta > + \frac{1}{2}L \|\theta' - \theta\|_2^2 \end{split}$$

Consequence of this quadratics upper bound

1.

$$F(\theta) \le F(\theta^*) + < \nabla F(\theta^*), \theta - \theta^* > + \frac{L}{2} \|\theta - \theta^*\|^2$$
$$F(\theta) - F(\theta^*) \le \frac{L}{2} \|\theta - \theta^*\|^2$$

2.

$$\begin{split} \min_{\theta} F(\theta) & \leq \min_{\theta} F(\theta) + < \nabla F(\theta), \theta' - \theta > + \frac{L}{2} \left\| \theta' - \theta \right\|^2. \\ \min_{\theta} F(\theta) + & < \nabla F(\theta), \theta' - \theta > + \frac{L}{2} \left\| \theta' - \theta \right\|^2 \text{ is reach for } \theta' = \theta - \frac{1}{L} \nabla F(\theta) \\ & \leq F(\theta) + < \nabla F(\theta), \theta - \frac{1}{L} \nabla F(\theta) - \theta > + \frac{L}{2} \left\| \theta - \frac{1}{L} \nabla F(\theta) - \theta \right\|^2 \\ & = F(\theta) - \frac{1}{2L} \left\| \nabla F(\theta) \right\|^2 \end{split}$$

All in all, $\forall \theta$

$$\frac{1}{2L} \left\| \nabla F(\theta) \right\|^2 \leq F(\theta) - F(\theta^\star) \leq \frac{L}{2} \left\| \theta - \theta^\star \right\|^2.$$

Note. In what follows, we could easily extend the study to non-diff function by involving **subgradients**. $F: \mathbb{R}^D \to \mathbb{R}$ A vector $\eta \in \mathbb{R}^d$ is a subgradient of F at θ if

$$\forall \theta', F(\theta') > F(\theta) + \langle \eta, \theta' - \theta \rangle$$
.

 $\partial F(\theta)$ is the subdifferential of F at θ a,d gathers all the subgradients of F at 0 i.e. the direction of hyperplanes passing through $(\theta, F(\theta))$ but remaining below the graph of F

Figure 1.1: subgradients

1.1.2 Gradient algorithms

 $\theta^{\star} = argminF$ assuming existence and uniqueness.

Gradient algo

- 1. Init $\theta_0 \in \mathbb{R}^d$
- 2. $\forall t \geq 0, \theta_{t+1} = \theta_t \gamma_{t+1} \nabla F(\theta_t)$ with γ_{t+1} gradient steps / learning rates

Choice of steps:

- Constant step sizes $\gamma_t = \gamma, \forall t$ it may depend on the time horizons $T : \forall t \in [0,1], \gamma_t = \gamma(T)$
- Line search: optimal step size at each iteration. $\gamma_t = argmin_{\gamma>0} F(\theta_{t-1} \gamma \nabla F(\theta_{t-1}))$. You can forget about that case in online algo!

Link with the gradient flow

The iterates of Gradient Descent (GD, Euler, XVIIIe)

$$\theta_{t+1} = \theta_t - \gamma_t \nabla F(\theta_t).$$

can be rewrittent as

$$\frac{\theta_{t+1} - \theta_t}{\gamma_t} = -\nabla F(\theta_t).$$

Make the step size γ_t shrink to 0, we obtain the ODE

$$\frac{\partial \theta}{\partial t}(t) = -\nabla F(\theta(t)).$$

This continuous version is called the Gradient Flow (GF). Thus GD is a discretization of GF (using finite differences).

 $\nabla F(\theta)$ is orthogonal to $\{\theta': F(\theta') = F(\theta)\}$ (level set) so that $\frac{\partial \theta}{\partial t}(t) = \theta(t)$ point inwards $\{\theta': F(\theta') \leq \theta(t)\}$ $F(\theta)$ } which guarantees that $F(\theta(t))$ is decreasing. Indeed $\frac{\partial (F \circ \theta)}{\partial t}(t) = <\nabla F(\theta(t)), \dot{\theta}(t)> = -\|\nabla F(\theta(t))\|^2$

Théorème 1.1.2. For F an L-Smooth. for $\gamma_t = \gamma, \forall t \text{ with } \gamma < 2/L$

$$F(\theta_t) - F(\theta^*) \le \frac{\|\theta_0 t j e t a^*\|}{2\gamma (1 - \frac{\gamma L}{2})T}.$$

For $\gamma = \frac{1}{L}$ we have

$$F(\theta_t) - F(\theta^*) \le \frac{\|\theta_0 t j e t a^*\|}{2\gamma (1 - \frac{\gamma L}{2})T} = \frac{L \|\theta_0 - \theta^*\|^2}{T}.$$

1. This is a sublinear rate O(1/T)Note.

2. Using a constant step size.

γ	0	1/L	2/L
the rate			—

3. Optimal "constant" step size = $\frac{1}{L}$

Note (Interpolation of GD with $\gamma = \frac{1}{L}$). Note that

$$\begin{split} \tilde{\theta}_t &= argminF(\tilde{\theta}_{t-1}) + \langle \nabla F(\tilde{\theta}_{t-1}), \theta - \tilde{\theta}_{t-1} \rangle + \frac{L}{2} \left\| \theta - \tilde{\theta}_{t-1} \right\|^2 \\ &= \tilde{\theta}_{t-1} - \frac{1}{L} \nabla F(\tilde{\theta}_{t-1}) \end{split}$$

Using GD with $\gamma = \frac{1}{L}$ amounts to minimizer a quadratic upper bound (provided by smoothness). This idea is a the heart of the Majorize-Minimize algo.

Preuve:

$$\begin{split} \|\theta_{t+1} - \theta^{\star}\|_{2}^{2} = & (\text{GD}) \|\theta_{t} - \gamma \nabla F(\theta_{t}) - \theta^{\star}\|_{2}^{2} \\ = & \|\theta_{t} - \theta^{\star}\|_{2}^{2} - 2\gamma < \nabla F(\theta_{t}), \theta_{t} - \theta^{\star} > + \gamma^{2} \|\nabla F(\theta_{t})\|_{2}^{2} \end{split}$$

Function convexe + L-Smooth : $\|\nabla F(\theta)\|^2 \leq L < \nabla F(\theta), \theta - \theta^* >$. This is a consequence of the co-coercivity of ∇F (with param 1/L)

Note (Co-coercivity). F convex, L-Smooth, then θ, θ'

$$<\nabla F(\theta) - \nabla F(\theta'), \theta - \theta' \ge_{\text{co-coercivity}} \frac{1}{L} \|\nabla F(\theta) - \nabla F(\theta')\|_{2}^{2}$$

Preuve: Define two function

$$G(\theta') = F(\theta') - \langle \nabla F(\theta), \theta' \rangle$$

$$H(\theta') = F(\theta) - \langle \nabla F(\theta'), \theta \rangle$$

G and H are smooth. $\theta' = \theta$ minimize $\theta' \mapsto G(\theta')$ and

$$\begin{split} F(\theta') - F(\theta) - &< \nabla F(\theta), \theta' - \theta > = G(\theta') - G(\theta) \\ &\geq \frac{1}{2L} \left\| \nabla G(\theta') \right\|^2 \text{(by LHS, 1) and where "all in all")} \\ &= \frac{1}{2L} \left\| \nabla F(\theta') - \nabla F(\theta) \right\|^2 \end{split}$$

Idem, $\theta = \theta'$ minimizes $\theta \mapsto H(\theta)$

$$\begin{split} F(\theta) - F(\theta') - &< \nabla F(\theta'), \theta - \theta' > = H(\theta) - H(\theta') \\ &\geq \frac{1}{2L} \left\| \nabla H(\theta) \right\|^2 \\ &= \frac{1}{2L} \left\| \nabla F(\theta') - \nabla F(\theta) \right\|^2 \end{split}$$

Sum the 2 inequalities to conclude

End of the co-coercivity note

$$\begin{split} \|\theta_{t+1} - \theta^{\star}\|^{2} &= \|\theta_{t} - \theta^{\star}\|^{2} - 2\gamma < \nabla F(\theta_{t}), \theta_{t} - \theta^{\star} > + \gamma^{2} \|\nabla F(\theta_{t})\|^{2} \\ &\geq \|\theta_{t} - \theta^{\star}\|^{2} - 2\gamma(1 - \frac{\gamma L}{2}) < \nabla F(\theta - t), \theta_{t} - \theta^{\star} > \\ &\Rightarrow 2\gamma(1 - \frac{\gamma L}{2}) < \nabla F(\theta_{t}), \theta_{t} - \theta^{\star} > \leq \|\theta_{t+1} - \theta^{\star}\|^{2} - \|\theta_{t} - \theta^{\star}\|^{2} \\ &\Rightarrow 2\gamma(1 - \frac{\gamma L}{2})(F(\theta_{t}) - F(\theta^{\star})) \leq \|\theta_{t+1} - \theta^{\star}\|^{2} - \|\theta_{t} - \theta^{\star}\|^{2} \\ F(\theta_{T}) - F^{\star} \leq \frac{1}{T} \sum_{t=1}^{T} F(\theta_{t}) - F(\theta^{\star}) \\ &\leq \frac{\|\theta_{0} - \theta^{\star}\|^{2}}{2\gamma(1 - \frac{\gamma L}{2})T} \end{split}$$