Motion Control and Motor Interfacing

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

> IIT Bombay March 9, 2020

Agenda for Discussion

- Basic Movements of Robot
 - Motions of Robot
 - Understanding L293D IC
- Motor Interfacing on Firebird V
 - Pin connections
 - Logic Table
 - Algorithm
 - Example function

Forward

Forward

Backward

Forward

Backward

Forward

Backward

Forward

Backward

Forward

Left

Backward

Forward

Backward

Left

Forward

Backward

Left

Right

Forward

Backward

Left

Right

Soft-Right

Soft-Right

Soft-Right

Soft-Left

Soft-Right

Soft-Left

Soft-Right

Soft-Left

Soft-Right

Backward Left

Soft-Left

Soft-Right

Soft-Left

Backward Left

Soft-Right

Soft-Left

Backward Left

Backward Right

Soft-Right

Soft-Left

Backward Left

Backward Right

Anti-Clockwise Motion

Anti-Clockwise Motion

Anti-Clockwise Motion

Clockwise Motion

Maximum current that a port pin can source / sink is 20mA

- Maximum current that a port pin can source / sink is 20mA
- 2 These currents are too low for Motors to run.

- Maximum current that a port pin can source / sink is 20mA
- ② These currents are too low for Motors to run.
- OC Motor with the output load requires a current of up to 500mA to attain maximum speed.

- Maximum current that a port pin can source / sink is 20mA
- ② These currents are too low for Motors to run.
- OC Motor with the output load requires a current of up to 500mA to attain maximum speed.
- For this additional current, a Motor driver is required.

- Maximum current that a port pin can source / sink is 20mA
- ② These currents are too low for Motors to run.
- OC Motor with the output load requires a current of up to 500mA to attain maximum speed.
- 4 For this additional current, a Motor driver is required.
- 6 One such suitable driver is the L293D Motor driver.

Pin connections Logic Table Algorithm Example function

Motor Pin Connection

• Four Pins for Direction control is connected at PORT A

Four Pins for Direction control is connected at PORT A

- Four Pins for Direction control is connected at PORT A
 - PA0 Left Motor Control
 - PA1 Left Motor Control
 - PA2 Right Motor Control
 - O PA3 Right Motor Control

- Four Pins for Direction control is connected at PORT A
 - PA0 Left Motor Control
 - PA1 Left Motor Control
 - PA2 Right Motor Control
 - PA3 Right Motor Control
- 2 Two Pins for Enabling Motor Driver IC is connected at PORT L

- Four Pins for Direction control is connected at PORT A
 - PA0 Left Motor Control
 - PA1 Left Motor Control
 - PA2 Right Motor Control
 - PA3 Right Motor Control
- Two Pins for Enabling Motor Driver IC is connected at PORT L

- Four Pins for Direction control is connected at PORT A
 - PA0 Left Motor Control
 - PA1 Left Motor Control
 - PA2 Right Motor Control
 - PA3 Right Motor Control
- Wo Pins for Enabling Motor Driver IC is connected at PORT L
 - PL3 Left Channel Enable
 - DL4 Right Channel Enable

Direction	PA(3)	PA(2)	PA(1)	PA(0)
	RB	RF	LF	LB

Direction	PA(3)	PA(2)	PA(1)	PA(0)
	RB	RF	LF	LB
Forward				

Direction	PA(3)	PA(2)	PA(1)	PA(0)
	RB	RF	LF	LB
Forward	0	1	1	0

Direction	PA(3)	PA(2)	PA(1)	PA(0)
	RB	RF	LF	LB
Forward	0	1	1	0
-				

Backward

PA(3)	PA(2)	PA(1)	PA(0)
RB	RF	LF	LB
0	1	1	0
1	0	0	1
	\		(=) (=)

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left				

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right				

PA(3)	PA(2)	PA(1)	PA(0)
RB	RF	LF	LB
0	1	1	0
1	0	0	1
0	1	0	1
1	0	1	0
	PA(3) RB 0 1 0		PA(3) PA(2) PA(1) RB RF LF 0 1 1 1 0 0 0 1 0 1 0 1

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LÈ	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
C C I C				

Soft Left

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
Soft Left	0	1	0	0

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
Soft Left	0	1	0	0
C-tr D:l-r				

Soft Right

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
Soft Left	0	1	0	0
Soft Right	0	0	1	0

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
Soft Left	0	1	0	0
Soft Right	0	0 1		0
Stop				

Direction	PA(3)	PA(2)	PA(1)	PA(0)
Direction	RB	RF	LF	LB
Forward	0	1	1	0
Backward	1	0	0	1
Left	0	1	0	1
Right	1	0	1	0
Soft Left	0	1	0	0
Soft Right	0	0	1	0
Stop	0	0	0	0

Direction	PA(3)	PA(2)	PA(1)	PA(0)	Hex
Direction	RB	RF	LF	LB	value
Forward	0	1	1	0	6
Backward	1	0	0	1	9
Left	0	1	0	1	5
Right	1	0	1	0	А
Soft Left	0	1	0	0	4
Soft Right	0	0	1	0	2
Stop	0	0	0	0	0

Problem Statement: Move the robot Forward for 1000ms and Stop.

Problem Statement: Move the robot Forward for 1000ms and Stop.

Configure motor pins:

Problem Statement: Move the robot Forward for 1000ms and Stop.

Configure motor pins:

- Configure motor pins:
 - Configure direction pins as output. Keep the initial value for motor as logic 0

- Configure motor pins:
 - Configure direction pins as output. Keep the initial value for motor as logic 0
 - Configure enable pins as output. Enable the channels by setting these pins

- Configure motor pins:
 - Configure direction pins as output. Keep the initial value for motor as logic 0
 - Configure enable pins as output. Enable the channels by setting these pins
- Move the robot forward by giving appropriate value on direction pins

- Configure motor pins:
 - Configure direction pins as output. Keep the initial value for motor as logic 0
 - Configure enable pins as output. Enable the channels by setting these pins
- Move the robot forward by giving appropriate value on direction pins
- 3 Call the delay function with 1000ms delay

- Configure motor pins:
 - Configure direction pins as output. Keep the initial value for motor as logic 0
 - Configure enable pins as output. Enable the channels by setting these pins
- Move the robot forward by giving appropriate value on direction pins
- Call the delay function with 1000ms delay
- Stop the robot by giving appropriate value on direction pins

Pin connections Logic Table Algorithm Example function

Example function

Example function

```
Function to make Firebird-V move Right (Hex value - A)

void motors_move_right(void)
{
   motors_port_reg &=
```


Pin connections Logic Table Algorithm Example function

Thank You!

