Course Content

Inorganic and Physical Chemistry (IPC)

1.	Course Title	Inorganic and Physical Chemistry
2.	Course Code	CY121
3.	Contact Hrs. (L-T-P)	3-1-0
4.	Credits	11
5.	Instructor	Dr. Debashis Panda
		Associate Professor
		Department of Sciences & Humanities
6.	Email ID & Phone Number	dpanda@rgipt.ac.in 9455196041
7.	Web: https://sites.google.com/site/dpanda258/home	

1. **COURSE CONTENT** (Unit wise distribution of content and number of lectures)

Unit	Topics	Syllabus	No. of
			Lectures
Unit-I	Chemical	Molecular Orbital (MO) Theory, Symmetries in Molecular	06
	Bonding	Orbitals, MO Diagrams of diatomic molecules, NH ₃ , H ₂ O,	
		CH ₄ , and Metal Complexes.	
Unit-II	Transition Metals Chemistry:	Crystal Field Theory, Nature of Metal-Ligand Bonding,	05
		Stability, Electronic Spectra of Inorganic Complexes and	
		Measurement of Magnetic Properties of Complexes, ORGEL	
		diagram, Tanabe-Sugano diagram.	
Unit-III	Organometallic	Complexes with Metal-Carbon Sigma Bonds, Metal Carbonyl	06
	Chemistry	Complexes, Zeise's salt, Metal-Alkyl Complexes, Metal	
		Complexes with Pi Acceptor Ligands, Alkene Complexes,	
		Fischer carbenes & Schrock carbene, Catalysis and Reaction	
		Mechanisms of Metal Complexes	
Unit-IV	Quantum	Schrodinger equation, Wave functions, Probability density,	06
	Chemistry	Operator, Eigen function & Eigen Value Schrödinger	
		Equations, Many electron system Particle in a Box/Ring	
		problem, Hydrogen atom. Atomic orbitals, many electron	
		atoms and spin orbitals	
Unit-V	Atomic &	Implications of discrete energy levels, Population of States -	06
	Molecular Spectroscopy	Boltzman Distribution, Interaction of radiation with matter,	
		origin of linewidths in molecular spectra, Transition dipole	
		moment and Fermi's Golden Rule, Potential energy surfaces-	

		Rates of reactions; Steady state approximation and its	
		applications	
Unit-VI	Physical	Concept of pre-equilibrium; Equilibrium and related	05
	Transformation	thermodynamic quantities. Phase diagrams, The stabilities of	
	of Substances	phases, Phase boundaries, Three typical phase diagrams, The	
		location of phase boundaries, the thermodynamic criterion of	
		equilibrium, and the Ehrenfest classification of phase	
		transitions.	
Unit-VII	Electrochemistry	Nernst equation, Concentration and Formation cells,	06
		Equilibrium at Electrode Interface, Double layer, Concept of	
		Polarization, Over Potential, Butler-Volmer and Tafel' s	
		equation, Limiting Current Concept, Applications of	
		Electrochemical Kinetics to Fuel Cell, Water Electrolyzer,	
		Batteries and Corrosion	

2. READINGS

2.1 TEXT BOOKS:

Unit- I, II, III	Inorganic Chemistry: J. E. Huheey, E. A. Keiter, R. L. Keiter, 4th Ed. Prentice Hall Inorganic Chemistry: Shriver and Atkins, Oxford University Press
Unit- IV, V, VI	Physical Chemistry by Atkins, P. W. and de Paula, J., 7th Ed., Oxford University Press.
Unit-VII	Electrochemical Methods: Fundamentals and Applications by Allen J. Bard, Larry R. Faulkner

2.2 REFERENCE BOOKS:

- General Chemistry, McQuarrie, 4 th Ed., University Science Books.
- Chemistry: A Molecular Approach, Tro, 2nd Ed, Prentice Hall
- 2.3. **LECTURE SLIDES:** It will be made available to you by the instructor.

"It is very important for young people keep their sense of wonder and keep asking why."

- Stephen Hawking

HAPPY LEARNING