Deep Learning

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition

Three Steps for Deep Learning

Deep Learning is so simple

Different connection leads to different network structures

Network parameter θ : all the weights and biases in the "neurons"

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Given network structure, define *a function set*

Fully Connect Feedforward

Network

Value 由後往前傳

Matrix Operation

一層運算:(一個 Matrix * 一個 Vector) + 一個 Vector => 通過 Activation Function

$$\sigma\left(\begin{array}{ccc} 1 & -2 \\ -1 & 1 \end{array}\right) \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.12 \end{bmatrix}$$
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer

Feature extractor replacing feature engineering

Example Application

Ink \rightarrow 1 No ink \rightarrow 0

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

 Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} C^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u> <u>parameters</u> θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Descent

Gradient Descent

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20b ackprop.ecm.mp4/index.html

Concluding Remarks

Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

(next lecture)