## Le Gohebel Lorys, Mechineau Alexandre

## **Sommaire**

| Etude de l'équation de transport par la méthode des différer finies        |    |
|----------------------------------------------------------------------------|----|
| Etude des graphes de la solution approchée Uh(x,T) pour x (<br>[0,1] à t=T |    |
| C=2 et T=0.1 :                                                             | 4  |
| N=100 et Dt=0.01 :                                                         | 4  |
| N=100 et Dt=0.005 :                                                        | 4  |
| N=100 et Dt=0.001 :                                                        | 4  |
| N=50 et Dt=0.005 :                                                         | 5  |
| N=200 et Dt=0.005 :                                                        | 5  |
| C=-2 et T=0.1 :                                                            | 6  |
| N=100 et Dt=0.01 :                                                         | 6  |
| N=100 et Dt=0.005 :                                                        | 6  |
| N=100 et Dt=0.001 :                                                        | 6  |
| N=50 et Dt=0.005 :                                                         | 7  |
| N=200 et Dt=0.005 :                                                        | 7  |
| Conclusion                                                                 | 8  |
| Etude de l'erreur max des deux schémas                                     | 9  |
| Erreur du schéma explicite :                                               | 9  |
| Erreur du schéma implicite :                                               | 10 |
| Conclusion : Convergence                                                   | 11 |
| Annexe :                                                                   | 11 |

# **Etude de l'équation de transport par la méthode des différences finies**

On rappel l'équation de transport :

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) + c \frac{\partial u}{\partial x}(x,t) = 0, \ \forall x \in ]0,1[, \ \forall t \in ]0,T] \\ u(0,t) = 0, \ \forall t \in [0,T] \\ u(1,t) = 0, \ \forall t \in [0,T] \\ u(x,0) = u_0(x), \ \forall x \in [0,1] \end{cases}$$

Et on étudie cette équation avec la condition suivante :

$$u_0(x) = \begin{cases} 10(x - 0, 4) & \text{si } 0, 4 \le x \le 0, 5 \\ 10(0, 6 - x) & \text{si } 0, 5 \le x \le 0, 6 \\ 0 & \text{sinon.} \end{cases}$$

Pour étudier cette équation on utilisera 3 schémas :

-le schéma décentré à gauche :

$$u_i^{(j+1)} = u_i^{(j)} - c \frac{\Delta t}{h} (u_i^{(j)} - u_{i-1}^{(j)}), \ i = 1, \dots, N, \ j = 0, \dots, M$$

-le schéma décentré à droite :

$$u_i^{(j+1)} = u_i^{(j)} - c \frac{\Delta t}{h} (u_{i+1}^{(j)} - u_i^{(j)}), \ i = 1, \dots, N, \ j = 0, \dots, M$$

-le schéma de Lax-Friedrichs :

$$u_i^{(j+1)} = \frac{u_{i-1}^{(j)} + u_{i+1}^{(j)}}{2} - c\frac{\Delta t}{2h}(u_{i+1}^{(j)} - u_{i-1}^{(j)}), \ i = 1, \dots, N, \ j = 0, \dots, M$$

# Etude des graphes de la solution approchée Uh(x,T) pour x dans [0,1] à t=T

Pour cette étude on prend T=0.1 et on étudie en deux cas :

-le cas où c=2

-le cas où c=-2

Pour chacun de ces 2 cas on fera varier  $\Delta t$  et N.

#### C=2 et T=0.1:

Dans un premier temps on fixe N et on fait varier  $\Delta t$ .

#### $N=100 \text{ et } \Delta t=0.01 :$



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

#### $N=100 \text{ et } \Delta t=0.005$ :



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

#### $N=100 \text{ et } \Delta t=0.001$ :



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

## Dans un second temps on fixe $\Delta t$ et on fait varier N.

## $N=50 \text{ et } \Delta t=0.005 :$



Schéma décentré à gauche

Schéma décentré à droite

Schéma Lax-Friedrichs

## $N=200 \text{ et } \Delta t=0.005$ :



Schéma décentré à gauche

Schéma décentré à droite

Schéma Lax-Friedrichs

#### C=-2 et T=0.1:

On fixe à nouveau N et on fait varier  $\Delta t$ .

#### $N=100 \text{ et } \Delta t=0.01 :$



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

#### $N=100 \text{ et } \Delta t=0.005$ :



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

#### $N=100 \text{ et } \Delta t=0.001$ :



Schéma décentré à gauche Schéma décentré à droite Schéma Lax-Friedrichs

## Et on fixe $\Delta t$ et on fait varier N.

#### $N=50 \text{ et } \Delta t=0.005$ :



Schéma décentré à gauche

Schéma décentré à droite

Schéma Lax-Friedrichs

## $N=200 \text{ et } \Delta t=0.005$ :



Schéma décentré à gauche

Schéma décentré à droite

Schéma Lax-Friedrichs

## Conclusion

Les deux schémas sembles converger vers la solution exacte avec N et  $\Delta t$  bien choisis, ces conditions seront étudiés dans la deuxième partie.

### Etude de l'erreur max des deux schémas

Soit T=0.016, on fait varier h et  $\Delta t$  et regarde l'évolution de l'erreur max.

## Erreur du schéma explicite :

## On fixe $\Delta t = 0.0001$ et on fait varier h :

| h      | 0.1        | 0.05       | 0.015      | 0.013       | 0.01        |
|--------|------------|------------|------------|-------------|-------------|
| erreur | 1.03507e-3 | 1.55059e-2 | 2.58991e-2 | 1.94493e+17 | 4.55092e+59 |

## On fixe maintenant h=0.01 et on fait varier $\Delta t$ :

| Δt     | 0.00001    | 0.00004    | 0.00005    | 0.00006     | 0.0001      |
|--------|------------|------------|------------|-------------|-------------|
| erreur | 3.05385e-4 | 1.07464e-3 | 1.54246e-3 | 1.34328e+22 | 4.55092e+59 |

On voit d'après ces 2 tableaux que l'erreur max du schéma explicite dépend de h et de  $\Delta t$ .

En effet à  $\Delta t$  fixé l'erreur est stable pour un h aux alentour de  $h \ge \sqrt{2} \Delta t$ .

On fait la même observation en fixant cette fois h et en faisant varier  $\Delta t$ , l'erreur est stable lorsque  $\Delta t \leq (h^2/2)$ .

On reconnaît la condition CFL  $(\Delta t/h^2) \le (1/2)$ .

Et on peut supposer que le schéma converge sous cette condition.

## Erreur du schéma implicite :

## On fixe $\Delta t = 0.0001$ et on fait varier h :

| h      | 0.1        | 0.05       | 0.015      | 0.013      | 0.01       |
|--------|------------|------------|------------|------------|------------|
| erreur | 1.16546e-3 | 2.28277e-2 | 2.58545e-2 | 3.15007e-2 | 5.08564e-3 |

## On fixe maintenant h=0.01 et on fait varier $\Delta t$ :

| Δt     | 0.00001    | 0.00004    | 0.00005    | 0.00006    | 0.0001     |
|--------|------------|------------|------------|------------|------------|
| erreur | 1.20663e-3 | 2.53140e-3 | 2.96574e-3 | 3.39728e-3 | 5.08564e-3 |

Pour le schéma implicite on observe que l'erreur ne semble pas dépendre de h et de  $\Delta t$ .

En effet que se soit en fixant h et en faisant varier  $\Delta t$  ou l'inverse, l'erreur reste stable.

On peut donc supposer que le schéma implicite converge sans condition.

## **Conclusion: Convergence**

D'après les tableaux et en accord avec les résultats vu en cour disant que si la solution u de l'équation est  $C^4$  relativement à x et  $C^2$  relativement à t alors sous la condition CFL ( $\Delta t/h^2$ )  $\leq$  (1/2) le schéma explicite est convergent d'ordre 2 en espace et 1 en temps.

Ici ont a bien la solution exacte qui est  $C^4$  relativement à x car somme de fonctions sin qui sont  $C^*$  et  $C^2$  relativement à t car somme de fonctions exp qui sont  $C^*$ .

De plus, d'après les tableaux et en accord avec les résultats vu en cour, le schéma implicite est également convergent d'ordre 2 en espace et 1 en temps car la solution est  $C^4$  relativement à x et  $C^2$  relativement à t mais sans condition sur h et sur  $\Delta t$ .

## **Annexe:**