Music Emotion Recognition

Group 12

E/17/040 Chandrasena M.M.D.

E/17/356 Upekha H.P.S.

E/17/407 Wijesooriya H.D.

Supervisors

Prof. Roshan Ragel Mrs . Dhanushki Mapitigama

Introduction

→ What is MER

A process of using computers to extract and analyze music features, form the mapping relations between music features and emotion space, and recognize the emotion that music expresses

→ Importance of MER

MER has an enormous significance in real world applications such as,

- Music recommendation
- Music therapy
- Music data management

Research Background

- Song level MER
- Assign overall emotion label

- Music emotion variation detection (MEVD)
- Consider emotion in music as a changing process

MER framework

Emotion Models

Model name	Application Domain	Emotion conceptualization	Number of classes /dimensions
Hevner affective ring	Music	Categorical	67
Russell's model	General	Dimensional	2
Thayer's model	General	Dimensional	2

Thayer's arousal-valence emotion plane

Objective

❖ To review the current state of research in Music Emotion Recognition and identify methodologies, techniques, and challenges associated with developing effective MER systems with a focus on improving system performance using efficient algorithms.

Summary of the Literature Review

[4] San Diego, La Jolla University of California, "Comparison and Analysis of Deep Audio Embeddings for Music Emotion Recognition", 13 - April - 2021

[7] Ye Ma, XinXing Li, Mingxing Xu, Jia Jia and , Lianhong Cai, "Multi-scale Context Based Attention for Dynamic Music Emotion Prediction", October 2017.

[9] Xinxing Li, Jiashen Tian, Mingxing Xu, Yishuang Ning, and Lianhong Cai, "DBLSTM - Based Multi-scale Fusion for Dynamic

Emotion Prediction in Music".

[11] Yu Xia and Fumei Xu, "Study on Music Emotion Recognition Based on the Machine Learning Model Clustering Algorithm", October 2022.

[12] Na He, Sam Ferguson "Music emotion recognition based on segment-level two-stage learning", 25 -April - 2022

[13] Xinxing Li, Jiashen Tian, Mingxing Xu, Yishuang Ning, and Lianhong Cai, " DBLSTM - Based Multi-scale Fusion for Dynamic Emotion Prediction in Music".6 June 2022

[22] Serhat Hizlisoy, Serdar Yildirim, Zekeriya Tufekci "Music emotion recognition using convolutional long short term memory deep neural networks", 2020

Reference	Training Models	Result Measures	Result	Dynamic MER	Hybrid Models	DL in FS	DL in OP	
[4] 2021	VGGish, SVM, MLP, CNN, RNN	F - Score R2 - Score	Classification Results of Each Quadrant	7	*	*	/	
[7] 2017	LSTM	RMSE	Outperformed most of the models (MLR, SVR, GPR)	/	*	*	V	
[9]	DBLSTM, MLR, SVR, ELM, ANN	RMSE	Identified the effect of sequence length Post-processing after fusion gave the best result	*	\	*	V	
[11] 2022	SVR , RBRF	MAE R2 score	Outperformed traditional methods (SVR, SVM)	*	•	*	*	9

Reference	Training Models	Result Measures	Result	Dynamic MER	Hybrid Models	DL in FS	DL in OP
[12] 2022	CNN-based autoencoder model, BiLSTM model	F1-score	PMEmo dataset, 1-s segment shows the best valence results	V	*	~	7
[13] 2022	LSTM, CNN, HMM, MCMM, RL-RNN	Recall Rate	The algorithm in this paper has a better effect, with higher generalization, stability	V	*	*	V
[22] 2021	LSTM, DNN	Accuracy precision recall, F-measure	Performance increased with the proposed model compared to SVM, KNN, and RF after applying CFS.	*	V	•	V

Initial Results and Findings

Data Set - DEAM

- MediaEval Database for Emotional Analysis in Music
- □ Obtained From Kaggle https://www.kaggle.com/datasets/imsparsh/deam-mediaeval-data set-emotional-analysis-in-music
- 1802 songs annotated with valence and arousal values both continuously (per-second) and over the whole song
- A and V values Target variables
- Music Features of the songs Feature variables

Data Pre-processing

- → Handling Missing Values
- → Dealing with Outliers
- → Checking the Balance and Skewness of Data
- → Feature Selection
- → Splitting the Dataset
- → Handling Time-Series Data

Arousal Distribution Arousal Density 1.2 2500 1.0 2000 0.8 Density 90 1500 Original 1000 0.4 500 0.2 0.0 0.2 -0.75-0.25 0.25 0.50 -0.20.0 0.4 0.6 0.8 -0.500.00 0.75 1.00 -0.4

Work Plan for the 7th Semester

Work Plan for the 8th Semester

Expected Main Outcomes

Recognition System

Web Application

Thank You!

Q&A