Python For Data Science Cheat Sheet

Keras

Learn Python for data science Interactively at www.DataCamp.com

Keras

Keras is a powerful and easy-to-use deep learning library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models.

A Basic Example

```
>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>> data = np.random.random((1000,100))
>>> labels = np.random.randint(2, size=(1000,1))
>>> model = Sequential()
>>> model.add(Dense(32,
                    activation='relu',
                    input dim=100))
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile(optimizer='rmsprop',
                  loss='binary crossentropy',
                  metrics=['accuracy'])
>>> model.fit(data,labels,epochs=10,batch size=32)
>>> predictions = model.predict(data)
```

Data

Also see NumPy, Pandas & Scikit-Learn

Your data needs to be stored as NumPy arrays or as a list of NumPy arrays. Ideally, you split the data in training and test sets, for which you can also resort to the train test split module of sklearn.cross validation.

Keras Data Sets

```
>>> from keras.datasets import boston_housing,
                                   cifar10,
                                   imdb
>>> (x_train,y_train),(x_test,y_test) = mnist.load data()
>>> (x train2,y train2), (x test2,y test2) = boston housing.load data()
>>> (x_train3,y_train3),(x_test3,y_test3) = cifar10.load_data()
>>> (x train4,y train4), (x test4,y test4) = imdb.load data(num words=20000)
>>> num classes = 10
```

Other

```
>>> from urllib.request import urlopen
>>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/
ml/machine-learning-databases/pima-indians-diabetes/
pima-indians-diabetes.data"),delimiter=",")
>>> X = data[:,0:8]
>>> y = data [:,8]
```

Model Architecture

Sequential Model

```
>>> from keras.models import Sequential
>>> model = Sequential()
>>> model2 = Sequential()
>>> model3 = Sequential()
```

Multilayer Perceptron (MLP)

Binary Classification

```
>>> from keras.layers import Dense
>>> model.add(Dense(12,
                     input dim=8,
                     kernel initializer='uniform',
                     activation='relu'))
>>> model.add(Dense(8,kernel initializer='uniform',activation='relu'))
>>> model.add(Dense(1, kernel initializer='uniform', activation='sigmoid'))
```

Multi-Class Classification

```
>>> from keras.layers import Dropout
>>> model.add(Dense(512,activation='relu',input shape=(784,)))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(512,activation='relu'))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(10,activation='softmax'))
```

>>> model.add(Dense(64,activation='relu',input dim=train data.shape[1])) >>> model.add(Dense(1))

>>> from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten

Convolutional Neural Network (CNN)

```
>>> model2.add(Conv2D(32,(3,3),padding='same',input shape=x train.shape[1:]))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(32,(3,3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool size=(2,2)))
>>> mode12.add(Dropout(0.25))
>>> model2.add(Conv2D(64,(3,3), padding='same'))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(64,(3, 3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool size=(2,2)))
>>> mode12.add(Dropout(0.25))
>>> model2.add(Flatten())
>>> model2.add(Dense(512))
>>> model2.add(Activation('relu'))
>>> model2.add(Dropout(0.5))
>>> model2.add(Dense(num classes))
>>> model2.add(Activation('softmax'))
```

Recurrent Neural Network (RNN)

```
>>> from keras.klayers import Embedding,LSTM
>>> model3.add(Embedding(20000,128))
>>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))
>>> model3.add(Dense(1,activation='sigmoid'))
```

Preprocessing

Sequence Padding

```
>>> from keras.preprocessing import sequence
>>> x train4 = sequence.pad sequences(x train4, maxlen=80)
>>> x test4 = sequence.pad sequences(x test4, maxlen=80)
```

One-Hot Encoding

```
>>> from keras.utils import to categorical
>>> Y train = to categorical(y train, num classes)
>>> Y test = to categorical(y test, num classes)
>>> Y_train3 = to_categorical(y_train3, num_classes)
>>> Y_test3 = to_categorical(y_test3, num_classes)
```

Train and Test Sets

```
>>> from sklearn.model selection import train test split
>>> X train5, X test5, y train5, y test5 = train test split(X,
                                                       test size=0 33.
                                                       random state=42)
```

Also see NumPy & Scikit-Learn

Standardization/Normalization

```
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(x train2)
>>> standardized X = scaler.transform(x train2)
>>> standardized X test = scaler.transform(x test2)
```

Inspect Model

```
Model output shape
>>> model.output shape
>>> model.summary()
                                      Model summary representation
>>> model.get config()
                                      Model configuration
>>> model.get weights()
                                     List all weight tensors in the model
```

Compile Model

```
MLP: Binary Classification
>>> model.compile(optimizer='adam',
                   loss='binary crossentropy',
                   metrics=['accuracy'])
MLP: Multi-Class Classification
>>> model.compile(optimizer='rmsprop',
                   loss='categorical crossentropy',
                   metrics=['accuracy'])
MLP: Regression
>>> model.compile(optimizer='rmsprop',
                   loss='mse',
                   metrics=['mae'])
```

Recurrent Neural Network

```
>>> model3.compile(loss='binary crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
```

Model Training

```
>>> model3.fit(x train4.
             y Train4,
             batch size=32,
             epochs=15,
             verbose=1,
             validation data=(x test4, y test4))
```

Evaluate Your Model's Performance

```
>>> score = model3.evaluate(x test,
                                 y_test,
batch size=32)
```

Prediction

```
>>> model3.predict(x test4, batch size=32)
>>> model3.predict classes(x test4,batch size=32)
```

Save/Reload Models

```
>>> from keras.models import load model
>>> model3.save('model file.h5')
>>> my model = load model('my model.h5')
```

Model Fine-tuning

Optimization Parameters

```
>>> from keras.optimizers import RMSprop
>>> opt = RMSprop(lr=0.0001, decay=1e-6)
>>> model2.compile(loss='categorical crossentropy',
                   optimizer=opt,
                   metrics=['accuracy'])
```

Early Stopping

```
>>> from keras.callbacks import EarlyStopping
>>> early stopping monitor = EarlyStopping(patience=2)
>>> model3.fit(x train4,
             y train4,
             batch size=32,
             epochs=15,
             validation data=(x test4, y test4),
             callbacks=[early_stopping_monitor])
```

DataCamp Learn Python for Data Science Interactively

Deep Learning with Keras:: CHEAT SHEET

Intro

Keras is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple backends, including TensorFlow, CNTK and Theano.

TensorFlow is a lower level mathematical library for building deep neural network architectures. The keras R package makes it easy to use Keras and TensorFlow in R.

https://keras.rstudio.com

https://www.manning.com/books/deep-learning-with-r

The "Hello, World!"
of deep learning

INSTALLATION

The keras R package uses the Python keras library. You can install all the prerequisites directly from R.

https://keras.rstudio.com/reference/install keras.html

library(keras)
install_keras()

See ?install_keras
for GPU instructions

This installs the required libraries in an Anaconda environment or virtual environment 'r-tensorflow'.

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

Working with keras models

DEFINE A MODEL

keras_model() Keras Model

keras_model_sequential() Keras Model composed of a linear stack of layers

multi_gpu_model() Replicates a model on different GPUs

COMPILE A MODEL

compile(object, optimizer, loss, metrics = NULL)
Configure a Keras model for training

FIT A MODEL

fit(object, x = NULL, y = NULL, batch_size = NULL, epochs = 10, verbose = 1, callbacks = NULL, ...)

Train a Keras model for a fixed number of epochs (iterations)

fit_generator() Fits the model on data yielded batch-by-batch by a generator

train_on_batch() test_on_batch() Single gradient update or model evaluation over one batch of samples

EVALUATE A MODEL

evaluate(object, x = NULL, y = NULL, batch_size = NULL) Evaluate a Keras model

evaluate_generator() Evaluates the model on a data generator

PREDICT

predict() Generate predictions from a Keras model

predict proba() and predict classes()

Generates probability or class probability predictions for the input samples

predict_on_batch() Returns predictions for a single batch of samples

predict_generator() Generates predictions for the
input samples from a data generator

OTHER MODEL OPERATIONS

summary() Print a summary of a Keras model

export_savedmodel() Export a saved model

get_layer() Retrieves a layer based on either its name (unique) or index

pop_layer() Remove the last layer in a model

save_model_hdf5(); load_model_hdf5() Save/ Load models using HDF5 files

serialize_model(); unserialize_model() Serialize a model to an R object

clone_model() Clone a model instance

freeze_weights(); unfreeze_weights()
Freeze and unfreeze weights

CORE LAYERS

layer_input() Input layer

layer_dense() Add a denselyconnected NN layer to an output

layer_activation() Apply an activation function to an output

layer_dropout() Applies Dropout to the input

layer_reshape() Reshapes an output to a certain shape

layer_permute() Permute the dimensions of an input according to a given pattern

layer_repeat_vector() Repeats the input n times

layer_lambda(object, f) Wraps arbitrary expression as a layer

layer_activity_regularization() Layer that applies an update to the cost function based input activity

layer_masking() Masks a sequence by using a mask value to skip timesteps

layer_flatten() Flattens an input

input layer: use MNIST images

mnist <- dataset_mnist()

x_train <- mnist\$train\$x; y_train <- mnist\$train\$y x_test <- mnist\$test\$x; y_test <- mnist\$test\$y</pre>

reshape and rescale

x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
x_train <- x_train / 255; x_test <- x_test / 255</pre>

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)</pre>

defining the model and layers

compile (define loss and optimizer)

model %>% compile(
 loss = 'categorical_crossentropy',
 optimizer = optimizer_rmsprop(),
 metrics = c('accuracy')
)

train (fit)

model %>% fit(
 x_train, y_train,
 epochs = 30, batch_size = 128,
 validation_split = 0.2
)
model %>% evaluate(x_test, y_test)
model %>% predict_classes(x_test)

More layers

CONVOLUTIONAL LAYERS

layer_conv_1d() 1D, e.g. temporal convolution

layer_conv_2d_transpose() Transposed 2D (deconvolution)

layer_conv_2d() 2D, e.g. spatial convolution over images

layer_conv_3d_transpose() Transposed 3D (deconvolution)

layer_conv_3d() 3D, e.g. spatial convolution over volumes

layer_conv_lstm_2d() Convolutional LSTM

layer upsampling 1d() layer upsampling 2d() laver_upsampling_3d() Upsampling layer

layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() Zero-padding layer

layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() Cropping layer

POOLING LAYERS

layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() Maximum pooling for 1D to 3D

layer_average_pooling_1d() layer average pooling 2d() layer_average_pooling_3d() Average pooling for 1D to 3D

layer global max pooling 1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() Global maximum pooling

layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() Global average pooling

ACTIVATION LAYERS

layer_activation(object, activation) Apply an activation function to an output

layer_activation_leaky_relu() Leaky version of a rectified linear unit

laver activation parametric relu() Parametric rectified linear unit

layer_activation_thresholded_relu() Thresholded rectified linear unit

layer_activation_elu() Exponential linear unit

DROPOUT LAYERS

layer_dropout() Applies dropout to the input

layer spatial dropout 1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() Spatial 1D to 3D version of dropout

RECURRENT LAYERS

layer simple rnn()

Fully-connected RNN where the output is to be fed back to input

layer gru()

Gated recurrent unit - Cho et al

layer_cudnn_gru()

Fast GRU implementation backed by CuDNN

layer lstm()

Long-Short Term Memory unit -Hochreiter 1997

layer_cudnn_lstm()

Fast LSTM implementation backed by CuDNN

LOCALLY CONNECTED LAYERS

layer_locally_connected_1d() layer_locally_connected_2d()

Similar to convolution, but weights are not shared, i.e. different filters for each patch

Preprocessing

SEOUENCE PREPROCESSING

pad_sequences()

Pads each sequence to the same length (length of the longest sequence)

skipgrams()

Generates skipgram word pairs

make sampling table()

Generates word rank-based probabilistic sampling table

TEXT PREPROCESSING

text tokenizer() Text tokenization utility

fit text tokenizer() Update tokenizer internal vocabulary

save_text_tokenizer(); load_text_tokenizer() Save a text tokenizer to an external file

texts to sequences(); texts_to_sequences_generator()

Transforms each text in texts to sequence of integers

texts_to_matrix(); sequences_to_matrix()

Convert a list of sequences into a matrix

text_one_hot() One-hot encode text to word indices

text_hashing_trick()

Converts a text to a sequence of indexes in a fixedsize hashing space

text_to_word_sequence()

Convert text to a sequence of words (or tokens)

IMAGE PREPROCESSING

image_load() Loads an image into PIL format.

flow images from data() flow images from directory()

Generates batches of augmented/normalized data from images and labels, or a directory

image_data_generator() Generate minibatches of image data with real-time data augmentation.

fit_image_data_generator() Fit image data generator internal statistics to some sample data

generator_next() Retrieve the next item

image_to_array(); image_array_resize() image_array_save() 3D array representation

Pre-trained models

Keras applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

application xception() xception preprocess input() Xception v1 model

application_inception_v3() inception v3 preprocess input()

Inception v3 model, with weights pre-trained on ImageNet

application inception resnet v2() inception_resnet_v2_preprocess_input() Inception-ResNet v2 model, with weights

application_vgg16(); application_vgg19() VGG16 and VGG19 models

application_resnet50() ResNet50 model

application mobilenet() mobilenet preprocess input() mobilenet decode predictions() mobilenet_load_model_hdf5() MobileNet model architecture

IM ... GENET

trained on ImageNet

ImageNet is a large database of images with labels, extensively used for deep learning

imagenet_preprocess_input() imagenet_decode_predictions()

Preprocesses a tensor encoding a batch of images for ImageNet, and decodes predictions

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

callback_early_stopping() Stop training when a monitored quantity has stopped improving callback learning rate scheduler() Learning rate scheduler

callback_tensorboard() TensorBoard basic visualizations