Practical Bioinformatics

Basic NGS Part 1

Stefan Wyder stefan.wyder@uzh.ch **URPP Evolution** www.evolution.uzh.ch

Goals for today

- to know the important file formats
- to be able to use samtools and know its functions
- to know quality control measures
- to be able to use an interactive genome browser (IGV)
- to know the frequency of sequencing errors and their distribution across the read
- to know how to inspect sequence variation

NGS Applications

DNA - Genetic variability (SNPs, CNV, Indels)

Amplicon sequencing exome re-sequencing whole genome re-sequencing de novo whole genome sequencing

RNA – Expression Levels and Alternative Splicing

RNA-seq (transcriptome sequencing) small RNA (miRNA,long ncRNA,...)

Epigenetics

ChIP-seq (Chromatin immunoprecipitation) DNA methylation

Others

Metagenomics (16S rRNA Sequencing) RIP-seq

. . . .

Revolution in genomics

Drawback: short reads 9x100 bp reads ≠ 1x900read

Available sequencing technology

Next Generation Sequencing

- Illumina HiSeq 2000
- Ion Torrent Proton
- Complete Genomics

Next Next Generation Sequencing

- Pacific Biosciences
- Oxford Nanotechnologies (soon)
-

Benchtop sequencers

- Illumina MiSeq
- Ion Torrent PGM
- GnuBIO
- QIAGEN GeneReader (soon)
-

Different niches

Single-end, Paired-end, Mate-pair?

paired-ends (PE)

mate-pair (MP)

increases the mapping accuracy RNA-seq

genome resequencing

de novo genome sequencing

Illumina sequencing

- Illumina HiSeq 2000 (2x100 bp, >400 Gb)
- Benchtop sequencer: MiSeq (2x250 bp, max. 8 Gb)

Illumina Sequencing

PCR template

Slide with lawn of primers

Sequencing-bysynthesis using 3'blocked labeled nucleotides

Illumina Sequencing

Animation

http://www.wellcome.ac.uk/Education-resources/ Education-and-learning/Resources/Animation/

NGS has some drawbacks

 Work/Equipment for Library prep

 Amplification Bias (bridge PCR)

Short reads (100 <<1000nt)
 inherently limited by your ability to
 keep all the nascent strands in sync

Biases

Simple counting - leaving behind all the problems with microarrays?

Published online 26 July 2008

Nucleic Acids Research, 2008, Vol. 36, No. 16 e105 doi:10.1093/nar/gkn425

Substantial biases in ultra-short read data sets from high-throughput DNA sequencing

Juliane C. Dohm¹, Claudio Lottaz², Tatiana Borodina¹ and Heinz Himmelbauer^{1,*}

Published online 14 April 2010

Nucleic Acids Research, 2010, Vol. 38, No. 12 e131 doi:10.1093/nar/gkq224

Biases in Illumina transcriptome sequencing caused by random hexamer priming

Kasper D. Hansen^{1,*}, Steven E. Brenner² and Sandrine Dudoit^{1,3}

Published online 16 May 2011

Nucleic Acids Research, 2011, Vol. 39, No. 13 e90 doi:10.1093/nar/gkr344

Sequence-specific error profile of Illumina sequencers

Kensuke Nakamura^{1,*}, Taku Oshima², Takuya Morimoto^{2,3}, Shun Ikeda¹, Hirofumi Yoshikawa^{4,5}, Yuh Shiwa⁵, Shu Ishikawa², Margaret C. Linak⁶, Aki Hirai¹, Hiroki Takahashi¹, Md. Altaf-Ul-Amin¹, Naotake Ogasawara² and Shigehiko Kanaya¹

Unequal read depth

dependent on GC-content, library protocol, ...

Read depth histograms

Good Bad

Sequencing errors

Error rate and error profile are technology-specific

Illumina Sequencing

- Error Rate: > 0.1%
 (i.e. > 1 in 1000)
- mainly substitutions errors
- errors mostly at read's start or end

FASTQ format & base qualities

@read1

TTGTGTTCAAAATATAATTTATTATAAGCTATAATCTTATGNNNNNNNCTCCTTCTTAGCTT

@C@DDDDDFHHHHJJDHIIIJI@HHGGIDGEBDEIEIIIIJJII######008BGGGHIIGGH>

0 A00H 1- 04	
@ = ASCII code 64	
BO = ASCII code - 33 = 3	1

Base Quality: Phred Score Q_{phred}

$$Q_{phred} = -10 * log_{10} (P_{error})$$

Base Quality	Perror
3	50 %
5	32 %
10	10 %
20	1 %
30	0.1 %
40	0.01 %

Workflow

Mapping Reads

Mapping / Alignment to genome or transcriptome: Find the genomic location the read originates from (by taking into account base call qualities)

How to deal with non-unique hits

- skip them
- place them randomly

Mapping programs use heuristics

Many alignment software

Speed

- SNAP (http://snap.cs.berkeley.edu/)
- iSAAC (http://www.illumina.com/)

Accuracy

- NovoAlign (http://www.novocraft.com)
- Razers3 (http://www.seqan.de/projects/razers/)

All-round

- bwa & bwa-mem (http://bio-bwa.sourceforge.net/)
- Bowtie (http://bowtie-bio.sourceforge.net)
- Functionality (e.g. de novo splice aligners)
 - STAR (https://code.google.com/p/rna-star/)
 - TopHat (http://tophat.cbcb.umd.edu/)

Output Formats: SAM & BAM

• SAM http://samtools.sourceforge.net/SAMv1.pdf

- BAM
 - binary version of SAM

Alignment Quality

The probability that an alignment has been misaligned:

$$AQ = -10 * log_{10} (P_{misaligned})$$

AQ=0 means multiple hits to genome

Alignment postprocessing

Depending on the application:

- Duplicate Removal (use samtools rmdup or Picard)
- Indel Cleaning / Realignment (GATK)
- Filtering reads based on flags (use samtools or Picard)

INDEL Cleaning

<-	TGGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGG
<-	TGGAAATTTATTTCTCAAAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGG
<-	GGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGGG
->	GGAAATTTATTTC <mark>A</mark> CAGAGTA <mark>A</mark> TGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAG <mark>C</mark> TTCTAAGTCTG <mark>C</mark> TG*****AGGG
->	CAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG*****AGGGTA <mark>GGGCG</mark> CACTCTCTGCTTCATAAATGGGTCTCTTGC
->	ATTTCTCAGAGTACTGGAAGCTGGGA <mark>C</mark> TCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG******AGGGTT***** <mark>AGGGTGC</mark>
<-	GTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGT</mark> AGGGT******GCACTCTCTGCT
<-	AATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGT</mark> AGGGT******GCACTCTCTGCTTCATAAATGGGTCTC
->	ATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGTAG</mark> GGT******GCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCA
<-	GTCTGGTGAGGGT******GCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCAAAAAAAA
TAAATA	AATGGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTG+++++AGGGTGCACTCTCTCTCTTCATAAATGGGTCTCTTGCCGCAAAAAAATCTGTTTGCTCCAGATTCATCAAA
<-	TGGAAATTTATTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GG</mark>
<-	TGGAAATTTATTTCTCA <mark>A</mark> AGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GG</mark>
<-	GGAAATTTATTTCTCAGAGTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGG</mark>
->	GGAAATTTATTTC <mark>A</mark> CAGAGTA <mark>A</mark> TGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAG <mark>C</mark> TTCTAAGTCTG <mark>C</mark> TGA <mark>GGG</mark>
->	CAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGTA</mark> GGG <mark>C</mark> GCACTCTCTGCTTCATAAATGGGTCTCTTGC
->	ATTTCTCAGAGTACTGGAAGCTGGGA <mark>C</mark> TCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGTA</mark> GGGTGC
<-	GTACTGGAAGCTGGGAATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGT</mark> AGGGTGCACTCTCTGCT
<-	AATCCAAGATCAAAATGCCAGCAGATTCTAAGTCTGGTGAGGGTAGGGTGCACTCTCTGCTTCATAAATGGGTCTC
->	ATCAAAATGCCAGCAGATTCTAAGTCTGGTGA <mark>GGGTA</mark> GGGTGCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCA
<-	GTCTGGTGAGGGTAGGGTGCACTCTCTGCTTCATAAATGGGTCTCTTGCCGCAAAAAAAA

Alignment visualization

Many Genome Browsers are available with different strength

today: IGV

SNP Discovery

GTTACTGTCGTTGTAATACTCCAC ATGTC

GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTAATACTCCACAATGTC GTTACTGTCGTTGTAATgCTCCACGATGTC GTTACTGTCGTTGTAATACTCCACAATGTC GTTACTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTGGTAATACTCCACaATGTC GTTACTGTCGTTGTAATACTCCACaATGTC GTTAaTGTCGTTGTAATACTCCACGATGTC GTTACTGTCGTTGTACTACTCCACGATGTC **GTTACTGTCGTTGTAATACTCCACaATGTC**

A word of caution

Good experiments start with good planning

Quality / quantity of DNA/RNA Choice of technology / protocol Enrichment / Capturing? Experimental Design

Statistical rules still apply!

Sufficient number of biological replicates Sufficient coverage

Sources & Links

Article Collections

- Review Articles from Nature Reviews Genetics
- PLoS Computational Biology: Education

Material

- SEQanswers NGS forum http://seqanswers.com/
- Biostar http://biostars.org/
- List of Applications http://seqanswers.com/wiki/Special:BrowseData/