

The Maths of Predators and Preys Don't get Eaten by the Wolf

Dr John Butler
TU Dublin (Lecturer in Mathematics and Statistics)

MATHEMATICS

Published: 24 December 2021 doi: 10.3389/frym.2021.651131

THE CIRCLE OF LIFE: THE MATHEMATICS OF PREDATOR-PREY RELATIONSHIPS

Rebecca M. Brady 1,2t and John S. Butler 1,2tf

¹School of Mathematical Sciences, Technological University Dublin, Dublin, Ireland

²ESHI (Environmental Sustainability and Health Institute), Technological University Dublin, Dublin, Ireland

Predator Prey

Hares and Lynx

Prey Hares

Predator

Mathematics

· How to we make a model for a Hare population

Year	Hare Population
0	60
1	
2	
3	

Year	Hare Population
0	60
1	60+0.2(60)=72
2	
3	

Year	Hare Population
0	60
1	72
2	86
3	103

Hare Population

Ho: current hare population Ho: Future hare population

$$r_{growth} = Births - Deaths$$

Change in hare Population = $r_{growth} \times H_o$
 $H_{\mp} = H_o \xrightarrow{\bullet} hare Population$

How to we make a model for a Lynx population

Year	Lynx Population
0	30
1	
2	
3	

Year	Lynx Population
0	30
1	
2	
3	

Year	Lynx Population
0	30
1	30-0.1*30=27
2	
3	

Year	Lynx Population
0	30
1	27
2	24
3	22

B Lynk Population

 L_c : current lynx population L_{\mp} : Future lynx population

 r_{death} = Deaths - Births

change in = r_{death} × L_{ϵ} lynx population = dhange in lynx population

$$H_{Future} = H + 0.2(H) - 0.005(H)(L)$$

$$L_{Future} = L-0.1(L)+0.002(L)(H)$$

$$H_{Future} = H + 0.2(H) - 0.005(H)(L)$$

$$L_{Future} = L-0.1(L)+0.002(L)(H)$$

Year	Hare Population	Lynx Population
0	60	30
1		
2		
3		

$$H_{Future} = H + 0.2(H) - 0.005(H)(L)$$

$$L_{Future} = L-0.1(L)+0.002(L)(H)$$

Year	Hare Population	Lynx Population
0	60	30
1	60+0.2(60)-0.005(60)(30)=63	30-0.1(30)+0.002(30)(60)=30.6
2	63+0.2(63)-0.005(63)(30.6)= 65.9	30.6-0.1(30.6)+0.002(30.6)(63)=31.3
3	65.9+0.2(65.9)-0.005(65.9)(31.3)=68.8	31.3-0.1(31.3)+0.002(31.3)(65.9)=32.4

Year	Hare Population	Lynx Population
0	60	30
1	63	30.6
2	65.9	31.3
3	68.8	32.4

Year	Hare Population	Lynx Population
0	60	30
1		
2		
3		

Year	Hare Population	Lynx Population
0	60	30
1	63	30.6
2	65.9	31.3
3	68.8	32.4

The figure below plots the numerical approximation of the Hare population (green) and the Lynx poulation (red) as a function of time in years between 1895 and 1935.

Predator Prey

Deer, Plants and Wolves

Thank you for Listening

