Appello – 9 Settembre 2022

Cognome	BRAVO				
Nome	STUDEN	TE			
Matricola					
Docente	Capone,	Cesana,	Maier,	Musumeci	(cerchia il tuo)

Tempo complessivo a disposizione per lo svolgimento: 2 ore

Si usi lo spazio bianco dopo ogni esercizio per la risoluzione

E1	E2	H"/ H'3		Lab	

1 - Esercizio (6 punti)

Si consideri la rete in figura dove le velocità dei link sono indicate con C_x (x = 1, ..., 8) e dove il ritardo di propagazione su ciascun link sia pari a $\tau = 1$ ms.

Siano H, A, B, C, dei client HTTP, P un Proxy HTTP e S un server HTTP.

Al tempo t=0 H vuole scaricare una pagina web dal server S composta da un documento base della lunghezza di $L_{html} = 10 \ kB$ e 16 oggetti della lunghezza di $L_{obj} = 500 \ kB$.

I pacchetti usati per l'apertura delle connessioni e per i messaggi di GET sono di lunghezza trascurabile.

Sono attivi i seguenti flussi interferenti di lunga durata:

- a) 1 tra A e P
- b) 3 tra A e C
- c) 1 tra B e C

Esprimere simbolicamente e indicare il valore numerico del tempo di download della pagina web (da inizio apertura connessione a termine download di tutti gli oggetti) nei seguenti casi:

- a) H non usa il proxy e attiva connessioni HTTP non persistenti e in parallelo.
- b) H usa il proxy e attiva una connessione persistente (senza pipelining). Si assume che P ed S abbiano già attiva una connessione HTTP persistente (senza pipelining) e che P abbia nella sua *cache* solo il documento base e 10 oggetti (**Suggerimento**: si applichi il principio di condivisione equa di risorse "fair sharing" considerando che ciascuna connessione TCP <u>aperta e attiva</u> utilizzi le stesse risorse indipendentemente dal fatto che stia trasmettendo pacchetti o meno).

SOLUZIONE

$$RTT_{H-P} = 6\tau = 6 ms$$

 $RTT_{P-S} = 6\tau = 6 ms$

a)

Per HTML: collo di bottiglia C2 (5 flussi)

$$r_{html} = \frac{C_2}{5} = 5 \frac{Mb}{s}$$
 $T_{html} = \frac{L_{html}}{r_{html}} = 16 \text{ ms}$

Per oggetti: collo di bottiglia C2 (20 flussi)

$$r_{ogg} = \frac{C_2}{20} = 1.25 \frac{Mb}{s}$$
 $T_{ogg} = \frac{L_{ogg}}{r_{ogg}} = 3200 \text{ ms} = 3.2 \text{ s (per il trasferimento di tutti i 16 oggetti in parallelo)}$

$$T_{tot,a} = 2RTT_{H-S} + T_{html} + 2RTT_{H-S} + T_{ogg} = 3248 \text{ ms}$$

b

Essendoci connessioni persistenti, il collo di bottiglia non cambia tra HTML e oggetti, ma cambia tra le connessioni H-P e P-S.

Tra H-P: collo di bottiglia C2 (5 flussi)

$$r_{html,H-P} = r_{ogg,H-P} = r_{H-P} = \frac{c_2}{5} = 5 \frac{Mb}{s}$$

$$T_{html,H-P} = \frac{L_{html}}{r_{H-P}} = 16 \text{ ms}$$

$$T_{ogg,H-P} = \frac{L_{ogg}}{r_{H-P}} = 800 \text{ ms (per il trasferimento di un singolo oggetto)}$$

Tra P-S: bisogna tenere conto che i 3 flussi A-C hanno collo di bottiglia in C2 (5 Mb/s ciascuno, quindi 15 Mb/s in totale). Ciò fa sì che il flusso interferente B-C abbia come collo di bottiglia il link C8, con capacità C8'=C8-15Mb/s=15 Mb/s.

(N.B. Non è corretto considerare C3 collo di bottiglia per P-S e B-C in quanto avremmo C3'=(C3-15)/2=17.5 Mb/s che è maggiore di 15 Mb/s.)

Quindi per P-S si ha:

$$r_{ogg,P-S} = r_{P-S} = C_3 - 15 \frac{Mb}{s} (3 flussi A - C) - 15 \frac{Mb}{s} (flusso B - C) = 20 Mb/s$$
 $T_{ogg,P-S} = \frac{L_{ogg}}{r_{P-S}} = 200 ms$ (per il trasferimento di un singolo oggetto)

In definitiva (N.B. connessione P-S già aperta):

$$T_{tot,b} = 2RTT_{H-P} + T_{html,H-P} + 16(RTT_{H-P} + T_{ogg,H-P}) + 6(RTT_{P-S} + T_{ogg,P-S}) = 14160 \text{ ms}$$

2 - Esercizio (6 punti)

a) Nella figura sotto è mostrata la intranet di un'azienda. Indicare le sottoreti IP graficamente nella figura, mettendo in evidenza i confini tra le reti IP ed assegnando una lettera identificativa a ciascuna rete. Assegnare le lettere in ordine alfabetico iniziando dalla rete più grande e procedendo per dimensione decrescente (# indirizzi rete A ≥ # indirizzi rete B ≥ ...), facendo attenzione alla presenza di reti IP "punto-punto". Per ciascuna sottorete individuata, si riporti a fianco al nome della rete anche la netmask (in notazione /n) che consente il minor spreco di indirizzi IP.

b) Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi includendo solo i router (nodi) e i link, ma non esplicitamente le reti IP. Per farlo, si usi la figura sottostante dove sono riportati i router/nodi, e si aggiungano i link ed il relativo costo, ottenuto con la relazione

costo link = 32 - n

dove n è la lunghezza della netmask della rete IP che collega i due router (v. esempio qui sotto).

c) Usando il grafo ottenuto, si applichi l'algoritmo di Dijkstra con radice il nodo R1 e ad ogni passo dell'algoritmo si riporti nella tabella sottostante il vettore (costo, predecessore) per ciascun nodo.

	R1	R2	R3	R4	R5	R6	R7	R8
Step 1								
Step 2								
Step 3								
Step 4								
Step 5								
Step 6								
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8								
Step 8								

d) Si disegni di seguito il MST finale ottenuto:

e) Sulla base del MST calcolato, si scriva la tabella di routing del nodo R1 in cui le destinazioni sono gli altri nodi del grafo e si indichi il contenuto dei Distance Vector (DV) inviati dal router R1 nel caso si usi la modalità *Split Horizon* senza *Poisonous Reverse*. Per ciascun DV, indicare chiaramente il destinatario e il contenuto del DV.

SOLUZIONE

1 \		4.	
h	0	1 A 1	
υ.	J-C I	1-u 1	

	R1	R2	R3	R4	R5	R6	R7	R8
Step 1	(0,-)	(4, R1)	(4, R1)	(inf, R1)	(inf, R1)	(inf, R1)	(4, R1)	(inf, R1)
Step 2	//	(4, R1)	(4, R1)	(inf, R1)	(inf, R1)	(inf, R1)	(4, R1)	(inf, R1)
Step 3	//	//	(4, R1)	(inf, R1)	(inf, R1)	(inf, R1)	(4, R1)	(inf, R1)
Step 4	//	//	//	(6, R3)	(inf, R1)	(inf, R1)	(4, R1)	(6, R7)
Step 5	//	//	//	(6, R3)	(9, R7)	(6, R7)	//	(6, R7)
Step 6	//	//	//	//	(9, R7)	(6, R7)	//	(6, R7)
Step 7	//	//	//	//	(9, R7)	//	//	(6, R7)
Step 8	//	//	//	//	(9, R7)	//	//	

e) Tab. di routing R1:

Dest.	Costo	N.H.		
R2	4	R2		
R3	4	R3		
R4	6	R3		
R5	9	R7		
R6	6	R7		
R7	4	R7		
R8	6	R7		

DV R1→R2

Dest.	Costo
R3	4
R4	6
R5	9
R6	6
R7	4
R8	6

DV R1→R3

Costo

DV R1→R7

? K/
Costo
4
4
6

Esercizio 3 (6 punti)

Si consideri la rete in figura, dove sono indicate le capacità e i ritardi di propagazione di ciascun link. Al tempo t=0, l'host A apre una connessione TCP per trasferire a B un file di dimensione F=1.5 MB.

Si considerino i seguenti parametri:

- MSS = 12 kB
- SSTHRESH = 16 MSS
- RCWND = 12 MSS
- Time-out $T_{out} = 500 \text{ ms}$
- Header, ACK e messaggi SYN/ACK di apertura connessione TCP di dimensione trascurabile
- a) Determinare se la trasmissione diventerà mai continua ed eventualmente su quale link, motivando la risposta. In caso affermativo, calcolare il valore della finestra di trasmissione W_{cont} che garantirebbe la trasmissione continua, e l'istante di tempo T_{cont} a partire dal quale la trasmissione potrebbe diventare continua.
- b) Si calcoli il tempo di trasferimento del file T_{tot} (fino alla ricezione dell'ultimo ACK) in assenza di errori.
- c) Ripetere il punto b) nel caso in cui venga perso il segmento numero 16.

SOLUZIONE

F = 125 MSS

a)
$$T_1 = 19.2 \, ms$$
, $T_2 = 4.8 \, ms$, $T_3 = 9.6 \, ms$, $RTT = T_1 + T_2 + T_3 + 2(\tau_1 + \tau_2 + \tau_3) = 163.6 \, ms$ $T_{open} = 2(\tau_1 + \tau_2 + \tau_3) = 130 \, ms$ $W_{cont} = \left\lceil \frac{RTT}{T_1} \right\rceil = 9 \, MSS \Rightarrow \text{trasmissione continua perché } W_{cont} < \text{RCWND}$ $T_{cont} = T_{open} + 4RTT = 784.4 \, ms$

b) Stream di trasmissione: (OPEN)-(1)-(2)-(4)-(8)-(110 MSS IN CONTINUA)

$$T_{tot} = T_{onen} + 4RTT + 109T_1 + RTT = 3040.8 \text{ ms}$$

c) Stream di trasmissione: (OPEN)-(1)-(2)-(4)-(8)-(timeout con 15 accettati, SSTHRESH \rightarrow 8)-(1)-(2)-(4)-(8)-(80 MSS IN CONTINUA) $T_{tot} = T_{open} + 4RTT + T_{out} + 4RTT + 79T_1 + RTT = T_{open} + 9RTT + T_{out} + 79T_1 = 3619.2 \ ms$

4-Domande (9 punti)

Q1

Nella rete in figura sono presenti gli host A, B, C, ..., J, gli switch S_1 , S_2 , ..., S_5 e gli hub H_1 e H_2 . Per switch e hub è anche riportata la numerazione delle porte utilizzate per l'interconnessione con gli altri dispositivi.

Le tabelle ARP di tutti i dispositivi sono inizialmente vuote e vengono trasmesse le seguenti trame:

- F1: A→J
- F2: F→A
- F3: ARP request $H \rightarrow F$
- F4: ARP reply $F \rightarrow H$
- a) Per ciascuna delle quattro trame, si indichi di seguito quali host la ricevono:

F1 ricevuta da:

F2 ricevuta da:

F3 ricevuta da:

F4 ricevuta da:

G-A

A-B-C-D-E-F-G-I-J

G-H

b) Riportare di seguito il contenuto delle tabelle ARP degli switch dopo l'invio delle 4 trame sopra, avendo cura di inserire le informazioni nelle tabelle secondo l'ordine con cui esse vengono inserite dagli switch.

	S1 S2		S3			S4			S5		
MAC	Porta	MAC	Porta	MAC	Porta		MAC	Porta		MAC	Porta
A	1	A	3	A	4		A	3		A	1
F	4	F	3				F	1		F	2
Н	4	Н	3	Н	1		Н	2		Н	2
				F	4						
					4	-					

Q2

Un segnale musicale avente banda 15 kHz viene campionato a frequenza di Nyquist e quantizzato con 32 bit per campione. Il flusso ottenuto viene immesso in pacchetti di lunghezza pari a L=1000 Byte a cui sono aggiunti h=60 Byte di header. a) Qual è la velocità del segnale digitale in kb/s?
b) Qual è la velocità media del flusso di pacchetti in kb/s?
SOLUZIONE
a) $Rb = 15*2*32 = 960 \text{ kb/s}$
b) Rp = Rb/L = 120 pacchetti/s Rb' = Rp*(L+H) = 1017600 b/s = 1.0176 Mb/s
Q3 Spiegare brevemente, utilizzando lo spazio sottostante, quali sono i vantaggi del NAPT rispetto al
NAT semplice

NAT semplice.

SOLUZIONE – v. teoria	

6 -Laboratorio (6 punti)

Si vedano fogli separati.