

Contouring

Dual Marching Squares

Scientific Visualization Professor Eric Shaffer

Dual Methods

- Dual contouring places isosurface vertices inside mesh elements
- Isosurface vertices in adjacent elements are with edges
 - In 3D these edges connect to form facets (faces of a mesh)

edge Es verky

Dual Marching Cubes and Dual Marching Squares

- Allow more than one vertex per cube (squares)
- Dual MC generates quadrilaterals instead of triangles
 - …obviously you can triangulate the quadrilaterals

MC surface will be manifold

DMC surface unlikely to be manifold

Dual Marching Squares: Algorithm

Positioning Vertices

- Compute an intersection point along each bipolar edge
 - Use linear interpolation to estimate where isoline crosses the edge
- Find the midpoint between the intersection points
- Position vertex for isoline at the midpoint

For mesh edge [p, q] with $f(p) = s_p$ and $f(q) = s_q$ and isovalue f_0

Place intersection point at
$$(1-t)p + tq$$
 where $t = \frac{(f_0 - s_p)}{(s_q - s_p)}$

Cell Configurations

So Why Do This?

So...why do this when MS already exists?

Empirical evidence that DMS generates better approximations to curved isolines.

- Better at reproducing sharp features
- Simpler to implement

Juel

