Principle Component Analysis Example Question

Question:

Given the following data, use PCA to reduce dimension from 2 to 1.

Feature	Example 1	Example2	Example3	Example4
x	4	8	13	7
Υ	11	4	5	14

Solution:

In the dataset above we have 2 dimensions x and y,our task is to reduce them to 1 using PCA.

Step 1: Dataset

Feature	Example 1	Example2	Example3	Example4
x	4	8	13	7
Υ	11	4	5	14

No of features, n = 2 (x, y)

No. of samples, N = 4 (Example1,Example2,Example3,Example4)

Step2: Computation of mean of variables.

$$\bar{\mathbf{x}} = (4 + 8 + 13 + 7) \div 4 = 8$$

mean of x is 8

$$\bar{\mathbf{y}} = (11 + 4 + 5 + 14) \div 4 = 8.5$$

mean of y is 8.5

Step3: Computation of Covariance matrix

1. Get the Ordered pairs:

Ordered pairs are all combinations of variables used to compute entries in the covariance matrix.

Formula for getting no. of ordered pairs is (n^2) , 'n' representing the number of variables. Since here we have 2 variables x, y so the ordered pairs will be 4.

2. Covariance of these ordered pairs:

Formula if the values are similar:

$$1/(N-1) \times \sum_{i=1}^{n} (x_i - \vec{x})^2$$

i) Cov(x, x) =
$$1/(4-1)$$
 [(4-8) 2 + (8-8) 2 + (13-8) 2 + (7-8) 2] = 14

Formula if the values are not similar:

$$1/(N-1) \times \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

ii)
$$Cov(x,y) = 1/(4-1) [(4-8)(11-8.5) + (8-8)(4-8.5) + (13-8)(5-8.5) + (7-8)(14-8.5)] = -11$$

iii)
$$Cov(y, x) = Cov(x, y) = -11$$

iv)
$$Cov(y, y) =$$

$$1/(4-1)$$
 [(11-8.5) 2 + (4-8.5) 2 + (5-8.5) 2 + (14-8.5) 2] =23

n*n

$$S = [cov(x, x) cov(x, y)]$$
$$[cov(y, x) cov(y, y)]$$

$$=$$
 [14 -11] [-11 23]

Step4: Eigen value, Eigen vector, Normalized eigen vector

i) Eigen value

Formula: determinant(
$$S - \lambda I$$
) = 0
det($S - \lambda I$) = 0

S = Covariance matrix

λ = Eigen value I = Identity matrix

$$I = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \end{bmatrix}$$

(λI)

$$\lambda^*[1 \quad 0] = [\lambda \quad 0] = \lambda I$$

$$[0 \quad 1] \qquad [0 \quad \lambda]$$

$$S - \lambda I$$
 $(S - \lambda I)$

$$[14 -11] - [\lambda 0] = [14-\lambda -11]$$

[-11 23] [0
$$\lambda$$
] [-11 23- λ]

det * ([14-
$$\lambda$$
 -11]) = 0
([-11 23- λ])

To find the determinant, we take 14- λ into 23- λ ,**minus** -11 into -11 . Meaning ;

$$(14-\lambda) *(23-\lambda) - (-11) * (-11) = 0$$

The output is a quadratic equation;

$$\lambda^2 - 37 \lambda + 201 = 0$$

We then find the root of this quadratic equation

Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 a=1,b=-37,c=201

$$\lambda = 30.3849, 6.6151$$

 $\lambda > \lambda 1$

 λ =30.3849 \rightarrow First principle component since it's the greatest value. λ 1= 6.6151

ii) Eigen vector of $\lambda 1$

Formula:
$$(S - \lambda I)u1 = 0$$
 U1=Eigen vector

[14-
$$\lambda$$
 -11] * [U1] = 0
[-11 23- λ] [U2]

$$(14-\lambda)U1 + (-11)U2$$
] = [0]
[(-11)U1 + (23- λ)U2] [0]

2 linear equations are formed:

$$(14 - \lambda)U1 - 11U2 = 0$$

 $(-11)U1 + (23 - \lambda)U2 = 0$

Next we find out the value of U1 and U2 from any of this linear equations; I will consider $(14 - \lambda)U1 - 11U2 = 0$ linear equation,

U1/11 = U2/(14-
$$\lambda$$
) = t When t is equal to 1 (which acts as a scaling factor), U1 = 11

Eigen vector u1 of
$$\lambda = [11]$$
[14- λ]
$$= [11]$$
[14 - 30.3849]
$$= [11]$$
[-16.3849]

 $U2 = 14-\lambda$

iii)Normalize the eigen vector u1

This means to scale it so that its length (magnitude) is 1. To compute the magnitude;

$$\sqrt{(11)^2 + (-16.3849)^2}$$

Divide each component by the magnitude

$$11/\sqrt{(11)2 + (-16.3849)2}$$

$$-16.3849/\sqrt{(11)2+(-16.3849)2}$$

$$\lambda 1$$
 e2 = [0.8303] [0.5574]

Step5: Derive new dataset

First principle	Example1	Example2	Example3	Example4
component PC1	P11	P12	P13	P14

= -4.3052

= 3.7361

P13 = 5.6028 **P14** = -5.1238

	Example1	Example2	Example3	Example4
PC1	-4.3052	3.7361	5.6028	5.1238

The table above is a one dimension dataset.

