poisson glm in R

Gavin Fay

2/7/2023

setup

```
library(tidyverse)
library(broom)
```

setup

```
#first read in the data & create richness variable
RIKZ <- read table(file = "../data/RIKZ.txt")</pre>
##
## -- Column specification
## cols(
     .default = col double()
##
## )
## i Use `spec()` for the full column specifications.
RTK7. <- RTK7. |>
  mutate(Richness = rowSums(RIKZ[,2:76]>0)) |>
  select(Richness, 77:89)
```

Generalized linear modeling

Recall from lecture:

$$\eta = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$f_Y(y; \mu, \varphi) = \exp\left[\frac{A}{\varphi} y \lambda(\mu) - \gamma(\lambda(\mu)) + \tau(y, \varphi)\right]$$

$$\mu = m(\eta), \ \eta = m^{-1}(\mu) = I(\mu)$$

The combination of a response distribution, a link function and other information needed to carry out the modeling exercise is called the *family* of the generalized linear model.

Family name	Link functions
binomial	logit, probit, log, cloglog
gaussian	identity, log, inverse
Gamma	identity, inverse, log
inverse.gaussian	1/mu^2, identity, inverse, log
poisson	identity, log, sqrt
quasi	<pre>logit, probit, cloglog, identity, inverse, log, 1/mu^2, sqrt</pre>

The glm() function

The R function to fit a generalized linear model is glm() which uses the form:

```
fitted.model <- glm(formula, family=family.generator,
data=data.frame)</pre>
```

Only new piece is the call to 'family.generator'

Although complex, its use is fairly simple.

Where there is a choice of link, link can be supplied with the family name as a parameter.

Simple (inefficient) use: The following are equivalent.

```
> RIKZ_lm1 <- lm(Richness ~ NAP, data = RIKZ)
> RIKZ_glm1 <- glm(Richness ~ NAP, family = gaussian,
+ data = RIKZ)</pre>
```

Most of the extraction functions that can be applied to lm() can also be used with glm().

The glm() function

```
> tidy(RIKZ lm1)
# A tibble: 2 x 5
 term estimate std.error statistic p.value
 <dbl>
                            <dbl>
                                    <dbl>
1 (Intercept) 6.69 0.658 10.2 5.25e-13
2 NAP
            -2.87 0.631 -4.55 4.42e- 5
> tidy(RIKZ_glm1)
# A tibble: 2 x 5
          estimate std.error statistic p.value
 term
 <chr>
             <dbl>
                     <dbl>
                            <dbl>
                                    <dbl>
1 (Intercept) 6.69 0.658 10.2 5.25e-13
2 NAP
            -2.87 0.631 -4.55 4.42e- 5
```

Poisson regression

$$P(X = x) = \frac{e^{-\mu}\mu^{x}}{x!}, \ \mu_{i} = e^{\alpha + \beta_{1}x_{1,i} + \dots + \beta_{j}x_{j,i}}$$

RIKZ example

```
> #fit the poisson regression model
> RIKZ_poisson <- glm(Richness ~ NAP, data = RIKZ,
+ family = poisson)</pre>
```

Note that the default link for the poisson is log so we don't have to specify here (see ?family).

summary(RIKZ_poisson)

```
Call:
glm(formula = Richness ~ NAP, family = poisson, data = RIKZ)
Deviance Residuals:
   Min 10 Median 30 Max
-2.2029 -1.2432 -0.9199 0.3943 4.3256
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.79100 0.06329 28.297 < 2e-16 ***
NAP -0.55597 0.07163 -7.762 8.39e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
```

AIC: 259.18

Null deviance: 179.75 on 44 degrees of freedom Residual deviance: 113.18 on 43 degrees of freedom

Number of Fisher Scoring iterations: 5

broom::augment()

As with lm(), the augment() function can be used to obtain the predictions from a fitted model object, and for a new data frame.

```
> newobject <- augment(oldobject, newdata,
+ type.predict = c("link","response",
+ se_fit = TRUE)</pre>
```

Note: default for type.predict is on the scale of the linear predictors. Set to "response" to obtain predictions on the scale of the response variable.

Observed and fitted values for Poisson RIKZ

```
> #create new values for beach height
> new_data <- tibble(NAP = seq(-1.5,2.5,length.out=100))
> #predict values for response based on new salinity
> RIKZ pois pred <- augment(RIKZ poisson,
                      newdata = new_data,
                      type.predict = "response",
                      se fit = "TRUE")
> #plot
> ggplot(RIKZ, aes(x=NAP, y= Richness)) +
           geom_point() +
+
           geom_line(data = RIKZ_pois_pred,
                     aes(x=NAP, y = .fitted),
                     col = "blue") +
           labs(y = "Richness", x = "NAP") +
           ylim(0,25) + xlim(-1.5,2.5)
```


fitting the GLM in the ggplot call

```
> ggplot(RIKZ,aes(NAP,Richness)) +
+    geom_point() +
+    geom_smooth(method = "glm",
+    method.args = list(family = poisson), se = TRUE)
`geom_smooth()` using formula 'y ~ x'
```


Quasi-Poisson

```
> RIKZ quasip 1 <- glm(Richness ~ NAP,
+
                     family = quasipoisson,
                     data = RIKZ)
+
> summary(RIKZ quasip 1)
Call:
glm(formula = Richness ~ NAP, family = quasipoisson, data =
Deviance Residuals:
   Min
            1Q Median
                             3Q
                                     Max
-2.2029 -1.2432 -0.9199 0.3943 4.3256
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.7910 0.1104 16.218 < 2e-16 ***
NAP -0.5560 0.1250 -4.448 6.02e-05 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
```

Full Poisson Model > RIKZ pois full <- glm(Richness ~ NAP + factor(week) +</pre>

+

NAP

```
data = RIKZ.
+
                        family = poisson)
+
> summary(RIKZ_pois_full)
Call:
glm(formula = Richness ~ NAP + factor(week) + factor(expose
   family = poisson, data = RIKZ)
Deviance Residuals:
   Min
              10 Median
                                3Q
                                        Max
-2.8946 -0.4821 -0.2555 0.3425 2.6203
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                    2.53136    0.12866    19.675    <2e-16 ***
```

factor(exposure),

-0.48950 0.07449 -6.571 5e-11 ***

Drop Exposure?

```
> drop1(RIKZ_pois_full, test = "Chisq")
Single term deletions
Model:
Richness ~ NAP + factor(week) + factor(exposure)
                Df Deviance ATC
                                     I.RT Pr(>Chi)
<none>
                     47.800 203.80
NAP
                     93.460 247.46 45.660 1.407e-11 ***
              3
factor(week)
                    58.372 208.37 10.572 0.01428 *
factor(exposure) 2 53.466 205.46 5.666 0.05885.
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
```