Quantum Approximation Optimization Algorithm

Oriol Julián

23 de julio de 2023

1. Introducción

Notación: $p \equiv layers$

La profundidad crece linealmente con p
 veces el $\mathbf{n}^{\mathbb{Q}}$ de restricciones. (Es aumento lineal, obvio).

 $n = n^{Q}$ de bits $m = n^{Q}$ de cláusulas

1.1. Describir un problema de optimización combinatoria Función objetivo:

$$C(z) = \sum_{\alpha=1}^{m} C_{\alpha}(z)$$
dde $z = z_1 z_2 ... z_n$ y $z_i \in \{0, 1\}$
$$C_{\alpha}(z) = \begin{cases} 1 \text{ si z satisface } C_{\alpha} \\ 0 \text{ en otro caso} \end{cases}$$

1.2. Operadores unitarios y vector inicial

Se trabaja en un espacio de Hilbert de 2^n dimensiones. Base computacional: $|z\rangle$

Se define un operador:

$$U(C,\gamma) = e^{-i\gamma C} = \prod_{\alpha=1}^{m} e^{-i\gamma C_{\alpha}}$$

Page 2: "All of the terms in this product commute beacuse they are diagonal in the computational basis and each term's locality is the locality of the clause α "

Como C tiene autovalores enteros, se puede restringir $\gamma \in [0, 2\pi]$ Se define otro operador unitario $U(B, \beta)$ dde:

$$B = \sum_{j=1}^{n} \sigma_j^x$$

$$U(B, \beta) = e^{-i\beta B} = \prod_{j=1}^{n} e^{-i\beta \sigma_j^x}$$

Donde $\beta \in [0, \pi]$

El estado inicial se define como:

$$|s\rangle = \frac{1}{\sqrt{2^n}} \sum_{z} |z\rangle = (\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle))^{\otimes n} = H^{\otimes n} |0\rangle^{\otimes n}$$

1.3. Definir estado

Para cualquier $p \geq 1$ y $\gamma \equiv \gamma_1...\gamma_p$ y $\beta \equiv \beta_1...\beta_p$

$$|\gamma, \beta\rangle = U(B, \beta_p)U(C, \gamma_p)...U(B, \beta_1)U(C, \gamma_1)|s\rangle$$

Este estado se puede producir con un circuito de profundidad mp+p como mucho.

Sea F_p el valor esperado de C

$$F_p(\gamma, \beta) = \langle \gamma, \beta | C | \gamma, \beta \rangle$$

Sea M_p el máximo de ${\cal F}_p$ sobre los ángulos

$$M_p = \max_{\gamma,\beta} F_p(\gamma,\beta)$$

Nótese que la maximización en p-1 se puede ver como una restricción para p, por lo que

$$M_p \ge M_{p-1}$$

Luego se verá que

$$\lim_{p \to \infty} M_p = \max_z C(z)$$