[FIN414 Machine Learning Algorithms]

Supervised Learning

Regression

Jae Yun JUN KIM and Yves RAKOTONDRATSIMBA

ECE Paris, Graduate School of Engineering 37, quai de Grenelle 75015 Paris, France.

September 21, 2016

Supervised Learning

Linear regression

Motivation

Notation

```
N = \text{number of training examples}

x = \text{input variables} / \text{features}

y = \text{output variable(s)} / \text{"target" variable(s)}

(x, y)- training example

For example, i^{th} example: (x^{(i)}, y^{(i)}).
```

Learning Scheme

Hypothesis function:

$$h(x) = h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

For conciseness, define $x_0 = 1$. Then

$$h_{\beta}(x) = \sum_{j=0}^{p} \beta_{j} x_{j} = \beta^{T} x$$

where p is the number of features, and β are the **model parameters**.

Goal of regression problems

The goal of regression problems is to find the parameter values (i.e., β) that minimize the error between y and $h_{\beta}(x)$ for all the training examples. One possible definition of error can be the following

$$J(\beta) = \frac{1}{2} \sum_{i=1}^{N} \left(h_{\beta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}.$$

Hence, a regression problem can be mathematically defined as

$$\min_{\beta} J(\beta) = \min_{\beta} \frac{1}{2} \sum_{i=1}^{N} \left(h_{\beta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}.$$

But, how can this problem be solved?

Method 1: Batch gradient descent

Method 2: Stochastic gradient descent

Method 3: Closed-form solution

6 / 17

Method 1: Batch Gradient Descent

The idea is

- 1. Initialize β with some values (say $\beta = \overrightarrow{0}$).
- 2. Keep changing β to reduce $J(\beta)$ with the following update rule:

$$\beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j} J(\beta)$$

But, what is $\frac{\partial}{\partial \beta_i} J(\beta)$?

For i fixed (i.e., for a given training example),

$$\frac{\partial}{\partial \beta_j} J(\beta) = \frac{\partial}{\partial \beta_j} \frac{1}{2} (h_{\beta}(x) - y)^2
= (h_{\beta}(x) - y) \frac{\partial}{\partial \beta_j} (h_{\beta}(x) - y)
= (h_{\beta}(x) - y) \frac{\partial}{\partial \beta_j} (\beta_0 x_0 + \dots + \beta_j x_j + \beta_p x_p - y)
= (h_{\beta}(x) - y) x_j$$

Method 1: Batch Gradient Descent

Hence, the update rule with a single training example is

$$\beta_j := \beta_j - \alpha \left(h_{\beta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

But, we need to do this taking into account for all the training examples,

$$\beta_j := \beta_j - \alpha \sum_{i=1}^N \left(h_{\beta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

This update rule is known as the **Batch Gradient Descent**.

Method 2: Stochastic Gradient Descent

But, when N >> 1, the *Batch Gradient Descent* method may be very inefficient.

Alternatively, one might be able to use the **Stochastic Gradient Descent**, which can be formulated as follows:

```
For i=1 to N {
For i=1 to p {
\beta_j:=\beta_j-\alpha\left(h_\beta(x^{(i)})-y^{(i)}\right)x_j^{(i)}
}
```

This method can allows us to approximately but more quickly find the parameters that minimize $J(\beta)$.

Hence, the choice between the two optimization methods depends on the preference between the *accuracy* and the *efficiency*, respectively.

Let us define the gradient of the function $J(\beta)$ as follows

$$\nabla_{\beta} J = \begin{bmatrix} \frac{\partial J}{\partial \beta_0} \\ \vdots \\ \frac{\partial J}{\partial \beta_p} \end{bmatrix} \in \mathbb{R}^{(p+1) \times 1} \tag{1}$$

Hence, the gradient descent method can be vectorially expressed as

$$\beta := \beta - \alpha \nabla_{\beta} J \tag{2}$$

where $\beta \in \mathbb{R}^{(p+1)\times 1}$.

In the sequel, some mathematical backgrounds are given to be able to find the closed-form solution for the linear regression problem.

Let
$$f: \mathbb{R}^{N \times (p+1)} \longrightarrow \mathbb{R}$$
 (i.e., $f(A) \in \mathbb{R}, A \in \mathbb{R}^{N \times (p+1)}$).

The gradient of f is defined as

$$\nabla_{A}f = \begin{bmatrix} \frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{1(p+1)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial A_{m1}} & \cdots & \frac{\partial f}{\partial A_{N(p+1)}} \end{bmatrix}$$

The *trace* of $A \in \mathbb{R}^{N \times (p+1)}$ is defined as

$$tr A = \sum_{i=1}^{p} A_{ii}$$

Some facts with respect to the gradient of f and the trace of A are given as follows (which will be used to obtain the closed-form solution)

$$tr AB = tr BA$$

$$tr ABC = tr CAB = tr BCA$$

If
$$f(A) = tr AB$$
, then $\nabla_A tr AB = B^T$

If
$$a \in \mathbb{R}$$
, then $tr a = a$

$$\nabla_A \operatorname{tr} ABA^T C = CAB + C^T AB^T$$

Let

$$X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(N)} \end{pmatrix}^T \end{bmatrix}, \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Then,

$$X\beta = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \beta \\ \vdots \\ \begin{pmatrix} x^{(N)} \end{pmatrix}^T \beta \end{bmatrix} = \begin{bmatrix} h_{\beta} \begin{pmatrix} x^{(i)} \end{pmatrix} \\ \vdots \\ h_{\beta} \begin{pmatrix} x^{(N)} \end{pmatrix} \end{bmatrix}$$

and,

$$X\beta - y = \begin{bmatrix} h_{\beta}\left(x^{(1)}\right) - y^{(1)} \\ \vdots \\ h_{\beta}\left(x^{(N)}\right) - y^{(N)} \end{bmatrix}$$

By recalling that $z^T z = \sum_i z_i^2$,

$$(X\beta - y)^T (X\beta - y) = \sum_{i=1}^N \left(h\left(x^{(i)}\right) - y\right)^2 \triangleq 2J(\beta)$$

Because the *regression problem* consists of finding the parameters (β) that minimize $J(\beta)$, let us impose that

$$abla_{eta}J(eta)=\overrightarrow{0}$$
 ,

and find an expression for β that satisfies this constraint.

Let us now develop the expression of $\nabla_{\beta} J(\beta)$.

$$\nabla_{\beta} J(\beta) = \nabla_{\beta} \frac{1}{2} (X\beta - y)^{T} (X\beta - y)$$

$$= \frac{1}{2} \nabla_{\beta} \left(\beta^{T} X^{T} X \beta - \beta^{T} X^{T} y - y^{T} X \beta + y^{T} y \right)$$

$$= \frac{1}{2} \nabla_{\beta} \operatorname{tr} \left(\beta^{T} X^{T} X \beta - \beta^{T} X^{T} y - y^{T} X \beta + y^{T} y \right)$$

$$= \frac{1}{2} \left[\nabla_{\beta} \operatorname{tr} \left(\beta \beta^{T} X^{T} X \right) - \nabla_{\beta} \operatorname{tr} \left(y \beta^{T} X^{T} \right) - \nabla_{\beta} \operatorname{tr} \left(y^{T} X \beta \right) \right]$$

Using the mathematical facts given on a previous slide, one can show that

$$\nabla_{\beta} \operatorname{tr} (\beta \beta^{T} X^{T} X) = X^{T} X \beta + X^{T} X \beta$$

$$\nabla_{\beta} \operatorname{tr} (y \beta^{T} X^{T}) = X^{T} y$$

$$\nabla_{\beta} \operatorname{tr} (y^{T} X \beta) = X^{T} y$$

Therefore,

$$\nabla_{\beta}J(\beta) = \frac{1}{2} \left(X^T X \beta + X^T X \beta - X^T y - X^T y \right) = X^T X \beta - X^T y$$

Now imposing the condition

$$\nabla_{\beta} J(\beta) = \overrightarrow{0}$$

we obtain

$$X^T X \beta = X^T y$$

which are known as the normal equations.

Finally, the expression of the parameters β that optimize $J(\beta)$ is

$$\beta = \left(X^T X\right)^{-1} X^T y$$

Further readings

Lecture Notes (available on campus.ece.fr)
Exercises (available on campus.ece.fr)