(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号 特期2000-159756

(P2000-159756A)

(43)公開日 平成12年6月13日(2000.6.13)

(51) Int.Cl.7	識別記号	FI	デーマコート*(参考)
C 0 7 D 2/1/10		C 0 7 D 271/10	
A 0 1 N 43/824		413/04	
C 0 7 D 285/12		A 0 1 N 43/82	1.01A
413/04	•	C 0 7 D 285/12	Λ

審査請求 未請求 請求項の数4 OL (全 29 頁)

(21)出顧番号 特願平11-324853 (71)出願人 591000791 アメリカン・サイアナミド・カンパニー (22)出顧日 AMERICAN CYANAMID C 平成11年11月16日(1999.11.16) OMPANY (31)優先権主張番号 09/197969 アメリカ合衆国ニュージャージイ州07940 (32)優先日 平成10年11月23日(1998.11.23) -0874 マディソン・フアイブジラルダフ アームス (番地なし) (33)優先権主張国 米国 (US) (72)発明者 ジエイムズ・ジヤン・タカスギ アメリカ合衆国ニユージヤージイ州08648 ローレンスピル・ペンプロークコート!! (74)代理人 100060782

弁理士 小田島 平吉 (外1名)

最終頁に続く

(54) 【発明の名称】 2-7リール $-\Delta 2-1$, 3, 4-(オキサおよびチア) ジアゾリン殺虫および殺ダニ剤

(57)【要約】

(修正有)

【課題】 昆虫類およびダニ類有害生物の新規な防除方 法を提供する。

【解決手段】 下記一般式

[式中、XはO又はS(O)m、Zは下記式の基など、

 R_1 および R_2 は、水素、 $C_3 \sim C_7$ シクロアルキル、 $C_1 \sim C_6 \cap C_1 \cap C_2 \cap C_1 \sim C_1$ 6 アルキル、 C_1 \sim C_6 ハロアルキルなど、nは0、 1、2又は3を示す]で示される2-アリール-Δ2-1.3,4-(オキサおよびチア)ジアゾリン化合物を 防除剤として使用する。

【特許請求の範囲】

【請求項1】 昆虫類もしくはダニ類有害生物の防除方法であって、構造式

【化1】

$$(R) = \begin{pmatrix} X & R_1 \\ N & N \end{pmatrix}$$

〔式中、

Xは、OもしくはS(O)。であり;Zは、 【化2】

 $C(X_1) R_5$, $C_1 - C_6 P \nu + \nu$, $C_1 - C_6 \wedge D \nu + \nu$.

フェニル環において、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているベンジル、またはハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェニル、であるが、但し、XがOである場合は、Zは、

【化3】

であるという条件がある;nおよびpは、各々独立し $T \setminus \{0, 1, 2\}$ であり; RおよびR₄は、各々独立して、ハロゲン、C₁ $-C_6 P N + N$, $C_1 - C_6 N D P N + N$, OR_6 , S $(O)_{\alpha}R_{7}$, $\triangle PU$, PV, $NR_{8}R_{9}$, $CO_{2}R_{10}$, $C(O)R_{11}$ またはハロゲン、 C_1-C_6 アルキル、 C_1 $-C_6 \cap C_7 \cap C_1 - C_6 \cap C_1$ ロアルコキシ、C1-C6アルキルチオもしくはC1-C6 ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているフェニルであ るか、あるいは2個の隣接するR基もしくはRa基は、 一緒になって、環を形成してもよく、この場合、RRも $L \leq LR_4R_4L: -OCH_2O-, -OCF_2O-6L \leq$ は-CH=CH-CH=CH-によって表される; R₆ およびR₇は、各々独立して、水素、C₁-C₆アルキ ル、 $C_1 - C_6$ ハロアルキルまたはハロゲン、 $C_1 - C_6$ ア ルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、

 $C_1 - C_6 \cap C_1 - C_6 \cap C_1 + C_6 \cap C_1 - C_6 \cap C_1 + C_6 \cap C_1$ はC₁-C₆ハロアルキルチオ基1~3個からのすべての 組み合わせによって、場合によっては置換されているフ ェニルであり; Ro、Ro、RisおよびRiaは、各々独立 して、水素、C₁-C₆アルキル、C₁-C₆アルキルカル ボニルまたはハロゲン、C₁-C₆アルキル、C₁-C₆ハ ロアルキル、C1-C6アルコキシ、C1-C6ハロアルコ キシ、C1-C6アルキルチオもしくはC1-C6ハロアル キルチオ基1~3個からのすべての組み合わせによっ て、場合によっては置換されているフェニルであり; R 10およびR11は、各々独立して、水素、C1-C6アルキ ルもしくは $C_1 - C_6$ ハロアルキルであり; R_1 および R_2 は、各々独立して、水素、C3-C7シクロアルキル、C $_1-C_6$ ハロアルキル、 C_3-C_6 アルケニル、 C_3-C_6 ハ ロアルケニル、C3-C6アルキニル、C3-C6ハロアル キニル、 C_2-C_6 アルコキシアルキル、(CH_2)。C $(0) R_{12}$

フェノキシもしくはフェニル基1個によって場合によっては置換されている C_1-C_6 アルキルで、この場合、各基のフェニル環は、独立に、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルカナオもしくは C_1-C_6 アルアルチルチオ基1~3個からによって、場合によっては置換されている、

ハロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6 P \mu$ 3 + 5, $C_1 - C_6 \Lambda D P \mu$ 3 + 5, $C_$ C₆アルキルチオもしくはC₁-C₆ハロアルキルチオ基 1~3個からによって、場合によっては置換されている フェニル、あるいはハロゲン、C1-C6アルキル、C1 ロアルコキシ、C₁-C₆アルキルチオもしくはC₁-C₆ ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されている5もしくは6 員のヘテロ芳香族環であり、そしてR₁およびR₂が、そ れらが結合している原子と一緒になっている場合には、 それらは、C3-C6シクロアルキル環を形成してもよ く、この場合R, R,は、tが2, 3, 4もしくは5であ る- (CH₂),-によって表される:m. qおよびv は、各々独立して、0,1もしくは2であり; R12は、 水素、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 C_1 $-C_6 P N J + D C_1 - C_6 N J P N J + D C_1 - C_6$ アルキルチオ、C1-C6ハロアルキルチオもしくはNR 13 R14であり; R3は、水素、C1-C6アルキル、C1- $_{15}$ は、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 C_1 -C₆アルコキシもしくはC₁-C₆ハロアルコキシであ り;そして R_5 は、 C_1 - C_6 アルキル、

ハロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基

 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェニル、またはフェニル環において、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているベンジルである]をもつ化合物、ならびにそれらの光学的異性体およびそれらの農学的に許容しうる塩の有害生物防除剤としての有効量を、該有害生物、またはそれらの食餌供給、生息もしくは繁殖地に接触させることを含む、方法。

【請求項2】 構造式

【化4】

[式中、n, R, R_1 , R_2 , XおよびZは、請求項1において定義されたとおりである]をもつ化合物の有害生物防除剤としての有効量を、植物の葉か、またはそれらが生育している土壌もしくは水に適用することを含む、昆虫類もしくはダニ類有害生物による侵襲もしくは寄生からの生育植物の保護方法。

【請求項3】 構造式

【化5】

$$(R)$$
 N N Z

[式中、

Xは、OもしくはS(O) であり; Zは、 【化6】

 $C(X_1)R_5$ 、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル、

フェニル環において、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているベンジル、またはハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェニル、であるが、

但し、XがOである場合は、Zは、

【化7】

であるという条件がある;nおよびpは、各々独立し T, 0, 1, 26 L< 1 L であり; RおよびR。は、各々独立して、ハロゲン、Ci $-C_6 P \nu + \nu$, $C_1 - C_6 \gamma \nu + \nu$, OR_6 , S $(O)_{9}R_{7}$, = PD, > PJ, $NR_{8}R_{9}$, $CO_{2}R_{10}$, $C(O)R_{11}$ またはハロゲン、 C_1-C_6 アルキル、 C_1 $-C_6 \cap C_1 - C_6 \cap C_1 - C_6$ ロアルコキシ、 $C_1 - C_6$ アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているフェニルであ るか、あるいは2個の隣接するR基もしくはR。基は、 一緒になって、環を形成してもよく、この場合、RRも $U \subset L \subset R_4$ R_4 $L : -OCH_2O - CCF_2O - 6U \subset R_4$ は-CH=CH-CH=CH-によって表される; R₆ およびR7は、各々独立して、水素、C1-C6アルキ ル、 $C_1 - C_6$ ハロアルキルまたはハロゲン、 $C_1 - C_6$ ア ルキル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 C₁-C₆ハロアルコキシ、C₁-C₆アルキルチオもしく はC₁-C₆ハロアルキルチオ基1~3個からのすべての 組み合わせによって、場合によっては置換されているフ ェニルであり; R₈、R₉、R₁₃およびR₁₄は、各々独立 して、水素、C₁-C₆アルキル、C₁-C₆アルキルカル ボニルまたはハロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハ ロアルキル、C1-C6アルコキシ、C1-C6ハロアルコ キシ、C1-C6アルキルチオもしくはC1-C6ハロアル キルチオ基1~3個からのすべての組み合わせによっ て、場合によっては置換されているフェニルであり: R 10およびR11は、各々独立して、水素、C1-C6アルキ ルもしくは $C_1 - C_6$ ハロアルキルであり; R_1 および R_2 は、各々独立して、水素、C3-C7シクロアルキル、C $_1-C_6$ $_1-C$ ロアルケニル、C3-C6アルキニル、C3-C6ハロアル キニル、 $C_2 - C_6$ アルコキシアルキル、 $(CH_2)_{\nu}C$ (O) R₁₂

フェノキシもしくはフェニル基1個によって場合によっては置換されている C_1-C_6 アルキルで、この場合、各基のフェニル環は、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキル、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からによって、場合によっては置換されている、

ハロゲン、 $C_1 - C_6 アルキル、<math>C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基 $1 \sim 3$ 個からによって、場合によっては置換されているフェニル、あるいはハロゲン、 $C_1 - C_6$ アルキル、 C_1

-C6ハロアルキル、C1-C6アルコキシ、C1-C6ハ ロアルコキシ、 $C_1 - C_6$ アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されている5もしくは6 員のヘテロ芳香族環であり、そしてR₁およびR₂が、そ れらが結合している原子と一緒になっている場合には、 それらは、C₃-C₆シクロアルキル環を形成してもよ く、この場合 R_1R_2 は、tが2、3、4もしくは5であ る-(CH₂)_t-によって表される; m, qおよび v は、各々独立して、0、1もしくは2であり; R12は、 水素、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 C_1 $-C_6$ P ν 1 + 2 +アルキルチオ、C1-C6ハロアルキルチオもしくはNR 13R₁₄であり; R₃は、水素、C₁-C₆アルキル、C₁- C_6 \cap C_6 \cap C_1 \cap C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_5 \cap C_6 \cap C_6 15は、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 C_1 $-C_6$ アルコキシもしくは C_1 $-C_6$ ハロアルコキシであ り;そして R_5 は、 C_1 - C_6 アルキル、

ハロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、 C_6 アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基 1~3個からのすべての組み合わせによって、場合によ っては置換されているフェニル、またはフェニル環にお いて、ハロゲン、C1-C6アルキル、C1-C6ハロアル キル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、 C1-C6アルキルチオもしくはC1-C6ハロアルキルチ オ基1~3個からのすべての組み合わせによって、場合 によっては置換されているベンジルである]をもつ化合 物、ならびにそれらの光学的異性体およびそれらの農学 的に許容しうる塩であって、(1) Rが、フェニル環の オルト位にある場合には、Rは、CO₂R₁₀以外のもの であり、そして(2)XがOであり、nおよびpがOで あり、そしてR1がメチルである場合には、R2は、エチ ルもしくは非置換フェニル以外のものであるという条件 における化合物。

【請求項4】 農学的に許容しうるキャリヤーおよび構造式

【化8】

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

[0002]

【従来の技術】昆虫類およびダニ類有害生物は、生育期および収穫期の作物を破滅させる。米国では、農作物は、何千ものこれらの有害生物と戦わねばならない。特に、タバコ・バッドウォーム(budworm)およびサザン・ヨトウムシ(armyworm)は、作物を特に荒廃する。

【0003】タバコ・バッドウォームは、農作物において甚大な経済的損失を惹起する。特に、バッドウォームは、グリーンボールを食害することによって、ワタ作物を荒らす。バッドウォームの防除は、有機リン酸類、カルバメート類およびピレトロイド類を含む、多くの通常の殺虫剤に対するそれらの耐性によって複雑である。

【0004】今日、市販の殺虫剤および殺ダニ剤が入手できるにもかかわらず、昆虫類およびダニ類有害生物によって引き起こされる両生育期および収穫期の作物に対する損害が、なお発生する。したがって、新規な、より有効な殺虫および殺ダニ剤を創出するための研究が進行中である。

【0005】除草剤として有用である、ある種のNーカルバモイルー3ーカルボキシアリールー複素環式およびヒドラジンカルボキシイミドアミドヒドラゾン化合物が、米国特許第5,670,456号に記述されている。しかしながら、その特許は、いかなる殺虫もしくは殺ダニ活性も記述していない。

【0006】ある種の環式1、3、4-オキサジアゾリン化合物が、D. Kochetov et alによって Ukrainskii K himicheskii Zhurnal、57(2)、pp. 215-217 (1991)に記述されている。しかしながら、D. Kochetovらは、それらの環式1、3、4-オキサジアゾリン化合物のいかなる応用も開示していない。

【0007】それ故、本発明の目的は、昆虫類およびダニ類有害生物を防除するために有用である化合物を提供することである。

【0008】また、本発明の目的は、昆虫類およびダニ 類有害生物を防除するための方法をを提供することであ る。

【0009】さらなる本発明の目的は、昆虫類およびダニ類の侵襲および寄生によって惹起される損傷から生育期および収穫期の作物を保護する方法を提供する。

【0010】本発明のこれらおよび他の目的は、以下に示されるその記述から一層明らかになるであろう。

[0011]

【発明の要旨】本発明は、昆虫類およびダニ類有害生物の防除のために有用である2-アリールーΔ²-1,3,4-(オキサおよびチア)ジアゾリン化合物を含む。また、これらの化合物は、昆虫類およびダニ類の侵襲および寄生によって惹起される損傷から植物を保護するために有用である。

【0012】本発明の有害生物防除性2-アリール $-\Delta$ $^2-1$, 3, 4-(オキサおよびチア)ジアゾリン化合

物は、構造式 I 【0013】 【化9】

$$(R)_{n} \xrightarrow{\begin{array}{c} X \\ N \end{array}} R_{2}$$

【0014】 [式中、Xは、OもしくはS(O)。であり;Zは、

[0015]

【化10】

$$\bigwedge_{R_3}^{1} \left(R_4 \right)_{\mu}$$

【化11】

 アルキル、C1-C6ハロアルキルまたはハロゲン、C1 $-C_6 P N + N$, $C_1 - C_6 N D P N + N$, $C_1 - C_6 P N$ コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からの すべての組み合わせによって、場合によっては置換され ているフェニルであり; R8、R9、R13およびR14は、 各々独立して、水素、C₁-C₆アルキル、C₁-C₆アル キルカルボニルまたはハロゲン、C₁-C₆アルキル、C $_1-C_6$ ハロアルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハ ロアルコキシ、C1-C6アルキルチオもしくはC1-C6 ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているフェニルであ り; R_{10} および R_{11} は、各々独立して、水素、 C_1-C_6 アルキルもしくは $C_1 - C_6$ ハロアルキルであり; R_1 お よびR2は、各々独立して、水素、C3-C2シクロアル キル、 $C_1 - C_6$ ハロアルキル、 $C_3 - C_6$ アルケニル、Cハロアルキニル、C2-C6アルコキシアルキル、(CH $_{2}$) $_{1}$ C(O) R_{12} 、フェノキシもしくはフェニル基1個 によって場合によっては置換されているC1-C6アルキ ルで、この場合、各基のフェニル環は、ハロゲン、Ci $-C_6 P N + N$, $C_1 - C_6 N D P N + N$, $C_1 - C_6 P N$ コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からに よって、場合によっては置換されている、ハロゲン、C $_1-C_6$ P ν + ν , C_1-C_6 γ 0P ν + ν , C_1-C_6 P ν コキシ、 $C_1 - C_6$ ハロアルコキシ、 $C_1 - C_6$ アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からに よって、場合によっては置換されているフェニル、ある いはハロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキ ル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、C $_1-C_6$ アルキルチオもしくは C_1-C_6 ハロアルキルチオ 基1~3個からのすべての組み合わせによって、場合に よっては置換されている5もしくは6員のヘテロ芳香族 環であり、そしてR₁およびR₂が、それらが結合してい る原子と一緒になっている場合には、それらは、C3- C_6 シクロアルキル環を形成してもよく、この場合 R_1 R $_2$ は、tが2、3、4もしくは5である $-(CH_2)_t-$ によって表される; m, qおよびvは、各々独立して、 0,1もしくは2であり;R₁₂は、水素、C₁-C₆アル キル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、C1-C6ハロアルコキシ、C1-C6アルキルチオ、C1- $C_6 \cap C_7 \cap C_8 \cap C_8$ 3は、水素、C1-C6アルキル、C1-C6ハロアルキル もしくはC(O) R_{15} であり; R_{15} は、 $C_1 - C_6$ アルキ ル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシもしく $dC_1 - C_6 \cap C_7 \cap C_8 \cap C_1 - C_8 \cap C_1 - C_8 \cap C_8$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアル コキシ、C1-C6アルキルチオもしくはC1-C6ハロア ルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェニル、またはフェニル環において、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 アルカナオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているベンジルである]、の化合物ならびにそれらの光学的異性体およびそれらの農学的に許容しうる塩を包含する。

[0019]

【発明の具体的説明】本発明は、昆虫類もしくはダニ類有害生物またはそれらの食餌供給、生息もしくは繁殖地に、式Iの2-アリールー Δ^2 -1, 3, 4-(オキサもしくはチア)ジアゾリン化合物の有害生物防除剤としての有効量を接触させることを含む、該有害生物の防除方法を提供する。

【0020】また、本発明は、植物の葉か、またはそれらが生育している土壌もしくは水に、式Iの2-アリールー Δ^2-1 、3、4-(オキサもしくはチア)ジアゾリン化合物の有害生物防除剤としての有効量を適用することを含む、昆虫類もしくはダニ類有害生物による侵襲もしくは寄生からの生育植物の保護方法を提供する。

【0021】本発明の有害生物防除性2-アリールーム 2-1,3,4-(オキサおよびチア)ジアゾリン化合 物は、構造式 I

[0022]

【化12】

$$(R)_{n} \xrightarrow{R_{1}} R_{2}$$

【0023】[式中、n, R, R_1 , R_2 , XおよびZは、式Iについて先に記述されたとおりである]をもつ。

【0024】本発明の好適な2-アリールーΔ2-1, 3,4-オキサジアゾリン化合物は、構造式 I I 【0025】

【化13】

(II)

【0026】 [式中、Rは、Nロゲン、 C_1 $-C_4$ NロアルコキシまたはNロゲン、 C_1 $-C_4$ NロアルコキシまたはNロゲン、 C_1 $-C_4$ Nロアルキル、 C_1 $-C_4$ Nロアルキル、 C_1 $-C_4$ N

コキシもしくは C_1-C_4 ハロアルコキシ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェノキシであり: R_4 は、 C_1-C_4 ハロアルキル、 C_1-C_4 ハロアルコキシもしくは C_1-C_4 ハロアルルキルチオであり: R_1 は、 C_1-C_4 アルキルであり: R_2 は、 C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルキル、 C_1-C_4 アルコキンもしくは C_1-C_4 ハロアルコキシもしくは C_1-C_4 ハロアルコキシ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されている 2-ピリジルであり:12 は、12 は、13 は、14 な 15 な 15 な 17 な 18 な 19 に 19

【0028】特に有効な殺虫剤である本発明の化合物 は、なかんずく、2-(p-クロロフェニル)-5,5 $-\widetilde{\nu}$ λ + ν - λ 1,3,4-オキサジアゾリン-4-カルボキシアニリ ド:2-(p-クロロフェニル)-5,5-ジメチルー キサジアゾリン-4-カルボキシアニリド;2-(p-プロモフェニル) -5, 5-ジメチル-4' - (トリフ ルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン -4-カルボキシアニリド; 2-(p-フルオロフェニ ル) -5, 5-ジメチル-4'-(トリフルオロメチ ν) $-\Delta^2-1$, 3, $4-\lambda^2+1$ ボキシアニリド;5,5-ジメチル-2-(p-フェノ キシフェニル) -4' -[(トリフルオロメチル) -チ 1 $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カル ボキシアニリド: 2-(p-クロロフェニル)-5-メ チルー4'-(トリフルオロメトキシ)-5-(トリフ ν オロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン -4-カルボキシアニリド;5-(クロロメチル)-2 - (p-クロロフェニル) -5-メチル-4' - (トリ フルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド;4,5-ピス(トリフル オロメチル)-2-(p-フルオロフェニル)-5-メ ボキシアニリド:5-(クロロメチル)-2-(p-フ ルオロフェニル) -5-メチル-4'-(トリフルオロ メチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド:5-(クロロメチル)-2-(p

ーフルオロフェニル) -5-メチル-4' - (トリフル オロメトキシ) $-\Delta^2-1$, 3, 4-オキサジアゾリン -4-カルボキシアニリド; 2-(p-プロモフェニ ν) -5-(200x4) -5-x4 ν -(1)リフルオロメトキシ) $-\Delta^2-1$, 3, 4-オキサジア ゾリン-4-カルボキシアニリド;2-(p-クロロフ ェニル) -5-メチル-5-(2,2,2-トリフルオ ロエチル)-4'-(トリフルオロメチル)-Δ2-1.3.4-オキサジアゾリン-4-カルボキシアニリ ド:2-(p-クロロフェニル)-5-メチルー5-(2, 2, 2-h)ルオロメトキシ) $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド;2-(p-クロロフェニ ル) -5-メチル-5-(2-ピリジル) -4'-(ト リフルオロメチル) $-\Delta^2 - 1$, 3, 4 - オキサジアゾ リンー4ーカルボキシアニリド:2-(p-クロロフェ ニル) -5-メチル-5-(2-ピリジル) -4' -ジアゾリン-4-カルボキシアニリド;メチル N-{[2-(p-クロロフェニル)-5,5-ジメチルー Δ^2-1 , 3, $4-\lambda^2+\nu^2$ ボニル - p - (トリフルオロメトキシ) - カルバニレ ン-4-イル] カルボニル - p-(トリフルオロメチ ル) -カルバニレート; およびメチル 2-(p-クロ ロフェニル) -5-メチル-4-{[p-(トリフルオ ロメトキシ) フェニル] カルバモイル $\} - \Delta^2 - 1$, 3, 4-オキサジアゾリン-5-アセテート、を包含す る。

【0029】上記式Iにおいて、5および6員のヘテロ 芳香族環は、限定されるものではないが、上記式Iにおいて記述されたように、各々、場合によっては置換されているピリジル、ピラゾリル、イミダゾリル、トリアゾリル、イソオキサゾリル、テトラゾリル、ピラジニル、ピリダジニル、トリアジニル、フラニル、チエニルおよびチアゾリル環を含む。

【0030】前記ハロゲンの例は、フッ素、塩素、臭素およびヨウ素である。用語「 C_1-C_6 ハロアルキル」、「 C_1-C_6 ハロアルコキシ」、「 C_1-C_6 ハロアルコキシ」、「 C_1-C_6 ハロアルコキシ」、「 C_1-C_6 ハロアルコキシ」、「 C_1-C_6 ハロアルカナオ」および「 C_1-C_4 ハロアルキルチオ」は、それぞれ、1個以上のハロゲン原子によって置換されている C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基および C_1-C_4 アルキルチオ基として定義される。

【0031】本発明の新規な2-アリール-Δ²-1, 3,4-(オキサおよびチア)ジアゾリン化合物は、構造式I 【0032】 【化14】

$$(R)_{n} \xrightarrow{X \longrightarrow R_{2}} R_{2}$$

【0033】[式中、n, R, R, R, R, X, XおよびZは、先に記述されたとおりである]をもつ化合物であるが、但し:(1) Rが、フェニル環のオルト位にある場合には、Rは、 CO_2R_{10} 以外のものであり、そして(2) XがOであり、nおよびpがOであり、そしてR1がメチルである場合には、 R_2 は、xチルもしくは非置換フェニル以外のものであるという条件がある。

【0034】XがOであり、そしてzが、 【0035】

【化15】

【0036】である式Iの化合物は、流れ図Iに具体的に説明されるように、式IIIのヒドラジンを式IVのケトンと、溶媒、例えばアセトン、エタノール、塩化メチレン、1、1ージエトキシエタンなどの存在下、好ましくは高温において反応させて、式Vのヒドラゾンを生成し、そして式Vのヒドラゾンを式VIのイソシアネートもしくはイソチオシアネートと、溶媒、例えば1、2ージクロロエタンおよび酢酸エチルの存在下、好ましくは高温において反応させることによって製造されてもよい

【0037】 【化16】

!(8) 000-159756 (P2000-159756A)

$$(R) = \begin{pmatrix} R_1 & & & \\$$

 $\{0038\}$ banklest, XMO can, R_1MX μ with $R_2MC_1-C_6$ μ can, R_2MC_1

【0039】 【化17】

【0040】である式Iの化合物は、流れ図IIに示されるように、式IIIのヒドラジンを式VIIの1-ハロアルキル-1-アセトキシエチレン化合物と、溶媒、例えばエタノールの存在下、好ましくは高温において反応させて、式VIIIのヒドラゾンを得て、そして式VIIIヒドラゾンを式VIのイソシアネートもしくはイソチオシアネートと、溶媒、例えば1、2-ジクロロエタンおよび酢酸エチルの存在下、好ましくは高温において反応させることによって製造されてもよい。

【0041】 【化18】

【0042】XがSであり、そしてzが、

[0043]

【化19】

【0044】である式Iの化合物は、流れ図IIIに具体的に説明されるように、式IXのヒドラジンを式IVのケトンと、溶媒、例えばアセトン、エタノール、塩化メチレン、1、1ージエトキシエタンなどの存在下で反応させて、式Xの2ーアリールーム2-1、3、4ーチアジアゾリンを生成し、そして式X化合物を式VIのイ

ソシアネートもしくはイソチオシアネートと、溶媒、例 えば1,2-ジクロロエタンおよび酢酸エチルの存在下 で反応させることによって製造されてもよい。

[0045]

【化20】

波れ図 四

$$(R)_{n} \xrightarrow{H} H$$

$$(IX)$$

$$(IX)$$

$$(R)_{n} \xrightarrow{H_{1}} R_{2}$$

$$(R)_{p} \xrightarrow{NCX_{1}} R_{2}$$

$$(R)_{n} \xrightarrow{R_{1}} R_{2}$$

$$(R)_{n} \xrightarrow{R_{1}} R_{2}$$

$$(R)_{n} \xrightarrow{R_{1}} R_{2}$$

Δ²-1,3,4-チアジアゾリンを式XIのハロゲン 化化合物および塩基と、溶媒の存在下で反応させること によって製造されてもよい。

[0047]

【化21】

速れ図 Ⅳ

(R)
$$R_1$$

(XI)

(Y = Br, Cl #felt ()

(R) R_1

(X)

【0048】さらに、式Iのある種の化合物は、当業者には既知の慣用操作を用いて、式Iの他の化合物に転化されてもよい。

【0049】本発明の2-アリールーム2-1,3,4 - (オキサおよびチア)ジアゾリン化合物は、昆虫類およびダニ類有害生物を防除するために有効である。また、それらの化合物は、昆虫類およびダニ類の侵襲および寄生によって惹起される損傷から、生育期もしくは収穫期の作物を保護するためにも有効である。

【0050】本発明の2-アリール $-\Delta^2-1$, 3, 4 - (オキサおよびチア)ジアゾリン化合物によって防除 される昆虫類は、鱗翅類 (Lepidoptera)、例えばタバ コ・バッドウォーム、キャベツ・シャクトリムシ、ワタ ・ボールウォーム(bollworm)、ビート・ヨト ウムシ、サザンヨトウムシおよびダイアモンドバックモ ス(diamondback moth);同翅類(Ho moptera)、例えばアブラムシ、ヒメヨコバイ、プラン トホッパー(plant hopper)およびホワイ トフライ (white fly); アザミウマ類 (Thys noptera)、例えばスリップス; 甲虫類 (Coleopter a)、例えばボールゾウムシ、コロラドポテト・ピート ル(beetle)、サザントウモロコシ・ネキリムシ (rootworm)、ウエスタントウモロコシ・ネキ リムシおよびカラシ・ビートル:および直翅類 (Orthop tera)、例えばイナゴ、コオロギ、バッタおよびゴキブ リを包含する。本発明の化合物によって防除されるダニ 類は、ハダニ類、例えばナミハダニ、カーマインハダニ (carmine spider mite)、バンク スグラスハダニ (banks grass mit e)、イチゴ・ハダニ、カンキツ・サビダニおよびレプ ロシスマイト (leprosis mite)を包含す

【0051】実施において、昆虫類およびダニ類の侵襲および寄生から植物を保護するために、植物または植物が生育している土壌に適用される場合には、一般に、水もしくはその他の液体キャリヤーに分散された式 I 化合物約10ppm~約10,000ppm、好ましくは約100ppm~約5,000ppmが、効果的である。【0052】また、本発明の2-アリールー Δ^2 -1,3,4-(オキサおよびチア)ジアゾリン化合物は、有効成分の割合約0.1kg/ha~4.0kg/haを提供するために十分な量において、植物の葉および/または該植物が生育している土壌もしくは水に適用される場合、昆虫類およびグニ類有害生物を防除するために効

果的である。

【0053】本発明の化合物は、単独で使用された場合に、昆虫類およびダニ類有害生物を防除するのに有効であるけれども、それらは、また、他の殺虫剤および殺ダニ剤を含む他の生物学的薬剤と組み合わせて使用されてもよい。例えば、本発明の式I化合物は、ピレトロイド、ホスフェート類、カルバメート類、シクロジエン、バチルス・チューリンジエンシス(Bacillus thuringiensis)(Bt)の内毒素、ホルムアミジン、フェノールスズ化合物、塩素化炭化水素、ベンゾイルフェニル尿素、ピロール等との結合物もしくは組み合わせ物において効果的に使用することができる。

【0054】本発明の化合物は、乳剤原液、フロアブル 原液もしくは水和剤として製剤化されてもよく、これら は、水もしくは他の適当な極性溶媒により、一般にイン ・サイチューで希釈され、次いで、希薄喧霧液として適 用される。また、該化合物は、乾式圧縮された粒剤、粒 状製剤、粉剤、粉剤濃厚物、懸濁剤原液、ミクロ乳剤お よびそれに類するものに製剤化されてもよく、これらす べては、それ自体、必要な植物保護を提供するために、 種子、土壌、水および/または葉に適用される。本発明 のそのような製剤もしくは組成物は、1種以上の農業的 に許容しうる不活性の、固形もしくは液状キャリヤーと 混合された本発明の化合物(またはその組み合わせ物) を含む。それらの組成物は、有害生物防除剤として有効 量の該化合物もしくは化合物類を含有し、この量は、特 定の化合物、標的有害生物および使用方法に応じて変え ることができる。当業者は、有害生物防除剤としての有 効量がどれだけであるか、過度の実験なしに容易に決定 することができる。

【0055】本発明のさらなる理解を容易にするために、先ず、次の実施例が、その特定の詳細をより具体的に説明する目的のために提示される。本発明の範囲は、実施例によって限定されると考えるられるべきでなく、請求の範囲に定義される全内容を包含している。

[0056]

【実施例】(例1)

 $2-(\alpha, \alpha, \alpha-h)$ フルオローm-hリル) -5, 5-ジメチル-4' -(h)フルオロメトキシ) $-\Delta^2$ -1, 3, 4-オキサジアゾリン-4-カルボキシアニ リドの製造

[0057]

【化22】

(11)100-159756 (P2000-159756A)

【0058】mートリフルオロメチルベンゾイルヒドラジン(1.84g)およびアセトン(40ml)の溶液を、48時間還流し、室温に冷却し、そして真空濃縮して、無色ヒドラゾン(1.48g,m.p.100-103℃)を得る。ヒドラゾン(0.74g)、pートリフルオロメトキシフェニルイソシアネート(0.62g)および1,2一ジクロロエタン(15ml)の溶液を、16時間還流し、室温に冷却し、そして真空濃縮し

て、表題の生成物を無色固体(1.28g, m.p.1 20-122℃)として得る。

【0059】例1の製造に関する記述と本質的に同じ操作を用いるが、適当に置換されたヒドラジン、ケトンおよびイソシアネートを使用して、次の化合物を得る: 【0060】

【表1】

ച	R	81	R ₂	84	ED °C
2	4-C1	CH3	CH ₃	4-OCF3	100-105
3	4-Cl	CH3	CH ₃	4-CF3	136-137
4	4-C1	CH ₃	CH3	4 - Y	168-169
5	4-C1	CH ₃	CH ₃	4-C1	169-170
6	4-CF ₃	CH3	CH3	4-OCF3	121-122
7	4-CF3	CK3	CH ₃	4-CF3	136-137
8	3-CF3	CH ₃	CH ₃	4-CF ₃	156-158
9	4-C1	. CH ₃	CH ₃	4-SCF3	142-143
10	4:-C1	CH3	CH ₃	4 ·Br	
11	4 -C1	CH.	CH ₃	3-I	
12	4 C1	CH ₃	CH ₃	4-I	
13	4-Cl	CH ₃	CH ₃	3-CF3	
3.4	4-C1	CH ₃	CH ₃	4-CN	
1.5	4-C1	CH ₃	CH ₃	3-CH ₃	

[0061]

【表2】

(12)100-159756 (P2000-159756A)

纽	Ŗ	81	R 2	<u>R</u> 4	mp °C
15	4-C1	CH3	CH ₃	4-CO2C2H5	
17	4-C1	CH ₃	CH ₃	4-C5H5	
18	4-C1	C:i3	CH3	2,5-ヴ-CH ₃	
19	4-c1	CH3	CH ₃	4-CH ₂ Cl	
20	4-C1	CH ₃	СН3	3,5-ダ - CF ₃	
21	4-C1	CH ₃	CH3	2,3~(CH=CHCH=CH)	
22	4-C1	CH ₃	CH ₃	2,4-5-Cl	
23	2,4-ジ-F	CH ₃	CH3	4:-C1	
24	4-C1	CH3	CH3	2 , 6~ジ~F	
25	4-C1	Cff3	CH3	3-C1-4-F	
26	4-¢1	CH3	CH3	3,4-ジ-F	
27	4-Br	CH ₃	CH ₃	4-cp ₃	
38	4-7	CH ₃	CH3	4-CF3	
29	4-CH ₃	CH3	CH3	3-CF ₃	
ĵ0	4-0¢H ₃	CH3	CH ₃	4-CF ₃	
31	4-C ₆ H ₅	CH3	СН₃	4 -CF3	
32	4-0C6H5	CH3	CH3	4 CP3	
33	4-N (CH3) 2	CH3	CH3 ·	4-CF3	
34	4-I	CH ₃	CH ₃	4 ·CF ₃	
. 35	4-Br	CH3	CH ₃	4-0CP3	
36	4-F	CH ₃	CH ₃	4-0C±3	
[0062]			【表3】		
ച	R	41	<u>il</u> 2	R4	iap °C
37	4-CH3	CH ₃	CH3	4-OCF ₃	
38	4-0CH ₃	CH3	CH3	4-OCF ₃	
39	4-C6H5	CH ₃	CH3	4-OCF3	
40	4-0C6H5	CH3	CH3	4-ocf3	
43	4-N (CH ₃) 2	CH ₃	CH ₃	4-OCF3	
42	4-t-ブチル	CH ₃	CH ₃	4-OCF3	
43	4-I	CH ₃	CH3	4-OCF3	
44	H	CH3	CH ₃	4-CF _J	
45	3,4 · (CH=CHCH=CH)	CH ₃	CH3	4-CF ₃	
46	3,4-ジ - Cl	CH ₃	CH ₃	4-CF ₃	•
47	4-NHC (0) CH ₃	CH3	CH ₃	4-CF ₃	
48	2,4-ジ - Cl	CH ₃	CH ₃	4-CF3	
49	Ħ	CH ₃	CH ₃	4 -OCF ₃	
50	3,4-ツ-Cl	CH ₃	CH ₃	4 -OCF3	
51	3,4-(OCH ₂ O)	CH3	CH ₃	4-OCF ₃	
52	4-NHC (O) CH ₃	CH ₃	CH ₃	4 -OCY3	
53	4-Cl	CH3	CH ₃	4-SCP3	
54	4-C1	CH ₃	CH ₃	ž-C1,	
55	4-C1	CH3	CH ₃	3-SCH ₃	
56	4-C1	CH ₃	CH ₃	2-OCF3	
57	4-Cl	CR ₃	CH3	2,4,6-+1-CH3	
[0063]			【表4】		

纽	R	21	82	B4	2° on
58	4-C1	CH3	CH3	2,4,5-HJ-Cl	
59	4-Br	CH ₃	CH3	4-1	
60	4-F	CH ₃	CH ₃	4-I	
61.	4-CH2	CH ₃	CH ₃	4-I	
62	4-0CH ₃	CH3	CH ₃	4-I	
63	4-C6H5	CH,	CH ₃	4-I	
64	4-OC6H5	CH ₃	CH3	4-I	
65	4-N(CH3)2	СН3	CH ₃	4-I	
65	4ーセーブチル	CH ₃	CH ₃	4-I	
67	4 ·I	CH3	CH ₃	4-X	
68	4-Br	CH ₃	.CH ₃	4-8r .	
69	4-P	CH ₃	CH ₃	4-Br	
. 70	4-CH ₃	СН₃	CH ₃	4-Br	
71	4-0CH ₃	CH ₃	CH3	4-Br	
72	4-NO ₂	CH ₃	CH3	4-8r	
73	4-C ₆ H ₅	CH ₃	CH ₃	4-Br	
74	4-0C6H5	CH ₃	CHJ	4-Br	
75	4-N(CH ₃) ₂	CH3	CH3	4-Br	
76	4 » セーブチル	CH ₃	CH ₃	4-Br	
77	4 - I	CH3	CH ₃	4-9r	
78	4-B₹	CE3	CE3	4-CN	
[0064]			【表5】		
<u>e</u>	R	R ₁	R ₂	Ř4	mp °C
	·=			77.0	<u> </u>
79	4~F	CR3	CH ₃	4-CN	BP C
79 80			=		<u> </u>
	4~F	CH3	CH ₃	4-CN	BPC
80	4~F 4~CH ₃	сн³ сн³	CH ₃	4 - CN 4 - CN	вр. с
80 81	4-P 4-CH ₃ 4-OCH ₃ 4-NO ₂	СН3 СН3	CH ₃ CH ₃	4 CN 4 CN 4 CN	ap c
80 81 82	4-P 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅	СН3 СН3 СН3	CH ₃ CH ₃ CH ₃	4 -CN 4 -CN 4 -CN 4 -CN	<u> </u>
80 81 82 83	4-P 4-CH ₃ 4-OCH ₃ 4-NO ₂	СН ³ СН ³ СН ³ СН ³	CH ₃ CH ₃ CH ₃ CH ₃	4 - CN 4 - CN 4 - CN 4 - CN 4 - CN	<u> </u>
80 81 82 83 84	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂	CH3 CH3 CH3 CH3	CH3 CH3 CH3 CH3	4 - CM 4 - CM 4 - CM 4 - CM 4 - CM 4 - CM	<u> </u>
80 81 82 83 84	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂ 4-I	CH3 CH3 CH3 CH3 CH3 CH3	CH3 CH3 CH3 CH3 CH3	4 - CN 4 - CN 4 - CN 4 - CN 4 - CN 4 - CN	<u> </u>
80 81 82 83 84 85	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂ 4-I 4-Br	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	CH3 CH3 CH3 CH3 CH3 CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-scf ₃	<u> </u>
80 81 82 83 84 85 86	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃	CH3	CH3 CH3 CH3 CH3 CH3 CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-scf ₃ 4-scp ₃	<u> </u>
80 81 82 83 84 85 86 87	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂ 4-I 4-Br 4-F	CH3	CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	<u> </u>
80 81 82 83 84 85 86 87 88	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂	CH3	CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	
80 81 82 83 84 85 86 87 88 89	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N (CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃	CH3	CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	<u> </u>
80 81 82 83 84 85 86 87 88 89 90	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅	CH3	CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	
80 81 82 83 84 85 86 87 88 89 90 91	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-C ₆ H ₅ 4-OC ₆ H ₅ 4-NO ₆ H ₅	CH3	CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	
80 81 82 83 84 85 86 87 88 89 90 91 92 93	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-NO ₂ 4-C ₆ H ₅ 4-OC ₆ H ₅ 4-OC ₆ H ₅ 4-NO ₆ H ₅ 4-NO ₆ H ₅ 4-NO ₆ H ₅	CH3	CH3	4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-CN 4-SCF3 4-SCF3 4-SCF3 4-SCF3 4-SCF3 4-SCF3 4-SCF3 4-SCF3 4-SCF3	
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-K ₆ H ₅ 4-C ₆ H ₅	CH3	CH ₃	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	52-62
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-C ₆ H ₅ 4-C ₆ H ₅ 4-CC ₆ H ₅	CH3	CH ₃ CE ₃ CH ₃	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	52-62 1,38-139
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-C ₆ H ₅ 4-C ₆ H ₅ 4-C(CH ₃) ₂ 4-I 4-C1 4-C1	CH3	CH ₃ CE ₃ CH ₄	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	52-62 1,38-139 123-152
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 95	4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-NO ₂ 4-C ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Cl 4-Cl 4-Cl	CH3	CH3	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	52-62 1,38-139 123-152 126-127
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	4-F 4-CH ₃ 4-OCH ₃ 4-OC ₆ H ₅ 4-N(CH ₃) ₂ 4-I 4-Br 4-F 4-CH ₃ 4-OCH ₃ 4-OCH ₃ 4-NO ₂ 4-C ₆ H ₅ 4-C ₆ H ₅ 4-C(CH ₃) ₂ 4-I 4-C1 4-C1	CH3	CH ₃ CE ₃ CH ₄	4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn 4-cn	52-62 1,38-139 123-152

(14)100-159756 (P2000-159756A)

•	趔	R	R ₁	R ₂	B 4	mp °C
	0 0	4-C1	C ₆ H ₅	C ₆ H ₅	4-0CF3	122-123
	90 01	4-C1	К	CH ₂ C ₆ H ₅	4-0CF3	106-108
	ŭ2	4-C1	H	CH ₃	4-0CF3	116-118
	03	4-C1		•	4-CF3	167-1.68
	04	4-C1	. н	CH ₃	4~CP3	132-133
	05	4-C1	H	C6H ₅	4-CF3	208-210
	06	4-C1	-(CH ₂	• •	4-0CF3	130-131
10	07	4-C1	н	CH2C6H5	4-CF3	137-138
10	08	4-C1	CH3	CO2CH3	4-CF ₃	162-163
10	09	4-C1	CH ₃	C ₂ H ₅	4-CF3	146-147
	10	4-C1	C ₂ H ₅	C ₂ H ₅	4-CP3	118-119
	11	4-C1	C ₂ H ₅	СНЗ	4-0CF3	119-120
	12	4-C1	C ₂ H ₅	C ₂ H ₅	4-0CF3	84-86
	13	4-C1	CH ₃	3- ピリジル	4-CF3	137-138
1:	14	4-C).	CH ₃	3 ピリジル	4-0CF3	66-67
1:	15	4-C]	CH ₃	4-C1-C6H4	4-CF3	219-220
1:	16	4-C).	CH ₃	4-C1-C6H4	4-0CP3	222-223
1:	17	4-C1	CH3	$\overline{}$	4-CP3	170-171
1:	18	4-C1	СН3	$\overline{}$	4-0CF3	141 142
[0066]				【表7】		
	纽	2	<u>B</u> 1	R ₂	R 4	2° qm
	119	4 ·C1	1~インダニリデン		4-CF3	76-77
	1.20	4 C1	CR3	CH ₂ C1	4-CF ₃	183-184
	121	4-Cl	CH ₃	CH2C1	4-0CF3	165-167
	122	4-C1	CH3	CH ₂ P	4-CF ₃	195-196
	123	4-C1	CH ₃	CH ₂ r	4-0CP3	176-177
	124	4-C)	CH2C1	CH ₂ Cl	4-CP3	197 (dec.)
	125	4-c1	CH ₃	CH2CO2CH3	4-CF ₃	145-147
	126	4-C1	CH ₃	CH2CO2CH3	4-0C/3	138-139
	127	4-Cl	CH ₃	CH ₂ OC ₆ H ₅	4-CF3	128-129
	128	4-C1	CH ₃	CH2OC6H5	4-0CF ₃	100-101
	129 130	4-F 4-Hr	CH3	CH ₂ C1	4-CF ₃	143-144
	131	4-nr 4-F	CH3	CH ₂ Cl CH ₂ Cl	4-CF3 4-OCF3	175-176 101-103
	132	4-Br	CH ₃	CH ₂ Cl	4-0CF3	155-156
	133	4-C1	CH ₃	CHCl ₂	4-CF3	175-176
	134	4-C1	CH ₃	CHCl ₂	4-0CF ₃	195-136
	135	4-C1	CH ₃	CH ₂ CF ₃	4-CP ₃	131-132
	136	4-C1	CH ₃	CH ₂ CF ₃	4-0CF ₃	106-107
	137	4-C1	CH ₃	CH-OCH 2	4-0CF ₃	11.2-113
	138	4-C1	• СН3	CH2OCH3	4-CF3	155-166
[0067]			-	【表8】	-	

質	B	R_1	R2	<u> 144</u>	EP C
139	4-Cl	CH3	CH2OC (O) CH3	4-CF3	147-148
140	4-C1	CH ₃	CH2OC (O) CH3	4-0CF3	117-11.8
141	4-C1	CH3	3ーチエニル	4-0CF3	223
142	4-Cl	CH ₃	2ーチオフエン	4-CF ₃	196
143	4-C1	CH ₃	2-フリル	4-CF3	172
144	4-C1	сн3	3-7 1- 1	4-CF ₃	201
145	4-C1	CH ₃	2-ビリジル	4-CF ₃	136
146	4-C1	CH ₃	2~ピリジル	4-OCF3	135
147	4-2r	CH ₃	2~ビリジル	4-CF ₃	151-153
148	4-Er	CH ₃	2ーピリジル	4-OCF3	135-136
149	4-C1	CH ₃	CH2C6H5	4-0CF3	125-126
150	4-C1	CH ₃	СН2−4−ОСН3− С _б Н4	4-CF3	145
151	4-C1	. СН3	CH ₂ -4-OCH ₃ - C ₅ H ₄	4-OCF ₃	124
152	4-·I	CH ₃	2-ピリジル	4-CF ₃	154
153	4~I	CH ₃	2-ピリジル	4-0CF3	151-152
154	4-Cl	СН₃	4-P-C6H4	4-CF3	202
155	4-C1	CH3	4-0CH3-C6H4	4-CF ₃	168-170
156	4-Cl	CH3	CH2C6H5	4-CF ₃	130
157	4-C1	CH ₃	4-F-C ₆ H ₄	4-OCF ₃	189-190
158	4-C1	CH3	4-Br-C ₆ H ₄	4-0CF3	218-219
[0068]			【表9】		•
23.	<u>R</u>	B 1	<u>R</u> 2	R 4	mp °C
159	4-C1	снэ	3,4-9-F-C6H3	4-OCF3	110 -111
160	4-Cl	CH3	3,4-ヴ~Cl~ C ₆ H ₃	4-CF3	220
161	4-C1	CH ₃	4-CH3-C6H4	4-ocf3	209
162	4-C1	CH ₃	3,4-3-F-C5H3	4-CF3	172-174
163	4-Cl	CH ₃	4-Br-C6H4	4-CF3	206~207
164	4-C1	CH 3	4-CF3-C5H4	4-CF3	73
165	4=C1	CH ₃	4-CF3-C6H4	4-0CF ₃	192193
		Car.		,,	
【0069】(例1	66)		ドの製造		

ドの製造 【0070】 【化23】

【0071】p-2ロロベンゾイルヒドラジン(1.77g)、1-トリフルオロメチル-1-アセトキシエチレン(1.78g)およびエタノール(35m1)の混合液を、17時間還流し、室温に冷却し、そして真空濃

縮して、対応するベンゾイルヒドラゾン(0.71g)を得る。ヒドラゾン(0.8g)および1,2ージクロロエタン(10ml)の混合液を、pートリフルオロメチルフェニルイソシアネート(0.67g)と処理し、

87時間還流温度で加熱し、そして真空濃縮して、無色 固形物 (1.48g)を得る。シリカゲルにおけるこの 固形物のフラッシュクロマトグラフィー (25% CH₂ Cl₂/ヘキサン〜50% CH₂ Cl₂/ヘキサン)により、表題の生成物を無色固体 (0.16g, m.p.157-158℃)として得る。

【0072】例166に関する記述と本質的に同じ操作を用いるが、適当に置換されたヒドラジンおよびイソシアネートを使用して、次の化合物を得る。

[0073]

【表10】

観	B	B4	mp °C
167	c1	ocf3	138-129
168	Br	CF ₃	156-157
169	F	CF ₃	141-142

【0074】(例170)

p-クロロベンゾイルチオヒドラジドの製造

[0075]

【化24】

【0079】p-クロロベンゾイルチオヒドラジン (1.02g)、アセトン(1.89g)およびエタノ ール(5ml)の溶液を、室温で4日間撹拌し、そして

【0076】二硫化炭素(4.5ml,75mmol) およびテトラヒドロフラン (50 m l) の溶液を、0℃ に冷却し、温度を10℃以下に維持する速度で、p-ク ロロフェニルマグネシウムブロミド溶液(1M溶液50 m1)を滴下し、室温まで加温し、2時間撹拌し、真空 濃縮し、そして水で希釈する。得られる混合水溶液を、 ケイソウ土を通して沪過する。沪液を、クロロ酢酸 (5.67g)、炭酸水素ナトリウム(3.82g)お よび水(24ml)の溶液で処理し、室温で3日間撹拌 し、50%硫酸水溶液でpH1に酸性化し、そして沪過 して、チオエステル(8.98g)を得る。チオエステ ル(3.5g)、水酸化ナトリウム(0.58g)およ び水 (35 m) の冷溶液 (0°C) に、ヒドラジン水和物 (1.4g)を添加する。添加の間、色は、赤から黄色 に変化し、そして固形物が沈殿する。固形物を回収し、 水で洗浄し、そして乾燥して、表題の生成物(1.92 g, m. p. 112-114℃)を得る。

【0077】(例171)

[0078]

【化25】

С₂н₅он

溶媒を蒸発して、褐色固形物を得る。シリカゲルにおけるこの固形物のフラッシュクロマトグラフィー(10% 酢酸エチル/ヘキサン)により、表題の生成物を黄色固 体(0.44g, m. p.51-53℃)として得る。 【0080】(例172)

[0081]

【化26】

[0083]

【化27】

9 173 mp 102-103°C

【0084】(例174)

1-オキシド-2-(p-クロロフェニル)-5,5-ジメチルー $4'-(トリフルオロメトキシ)-\Delta^2-$ 1,3,4-チアジアゾリン-4-カルボキシアニリドの製造

【0085】 【化28】

【0086】2-(p-クロロフェニル)-5,5-ジメチル-4'-(トリフルオロメトキシ)-△²-1,3,4-チアジアゾリン-4-カルボキシアニリド(0.50g)およびジクロロメタン(15ml)の溶液を、-5℃で撹拌し、3-クロロペルオキシ安息香酸(0.30g,70%)と処理し、室温で3.5時間撹拌し、そしてジクロロメタン(10ml)で希釈する。得られる混合液を、5%炭酸ナトリウム溶液で洗浄し、無水硫酸マグネシウム上で乾燥し、10ml容量まで濃縮し、そして冷蔵庫中で一夜冷却する。その白色沈殿物を沪過し、そして乾燥して、表題の生成物を無色固体(0.49g,m.p.214-215℃)として得る。

【0087】(例175)

1, 1-ジオキシドー2-(p-クロロフェニル) - 5, 5-ジメチルー4' - (トリフルオロメトキシ) - Δ^2 -1, 3, 4-チアジアゾリンー4-カルボキシアニリドの製造

[0088]

【化29】

【0089】2-(p-クロロフェニル)-5,5-ジメチル-4'-(トリフルオロメトキシ)-△²-1,3,4-チアジアゾリン-4-カルボキシアニリド(0.50g)およびジクロロメタン(15m1)の溶液を、-5℃で撹拌し、3-クロロペルオキシ安息香酸(1.79g,70%)と処理し、室温で18時間撹拌し、5%炭酸ナトリウム溶液で洗浄し、無水硫酸マグネシウム上で乾燥し、そして真空濃縮して固形物を得る。ヘキサン中10%酢酸エチル溶液を用いるシリカゲルにおけるこの固形物のフラッシュクロマトグラフィーにより、表題の生成物を無色固体(0.42g,m.p.181℃)として得る。

【0090】(例176)

試験化合物の殺虫性および殺ダニ性評価

試験溶液は、濃度10,000ppmにするため、水中35%アセトン混合液に試験化合物を溶解することによって製造される。連続希釈が、必要に応じて水で行われる。

【0091】スポドプテラ・エリダニア(Spodoptera e ridania)、二齢幼虫、サザン・ヨトウムシ(SAW)長さ7~8cmまで拡がったSievaリママメ葉を、試験溶液に3秒間撹拌しながら浸漬し、そしてフード内で乾燥させる。次いで、葉を、底に湿った沪紙を含有する100×10cmペトリ皿中に置き、そして二齢毛虫10匹を入れる。5日目に、死亡数、摂餌低下もしくは正常な脱皮の何らかの阻害について観察する。

【0092】 ヂアブロチカ・ビルギフェラ ビルギフェ ラ (Diabrotica virgifera virgifera) Lecont e、二齢ウエスタントウモロコシ・ネキリムシ (WC R)

微細タルク1ccを、30ml容広口のねじ蓋付きガラスジャー中に入れる。適当なアセトン試験溶液1ml

を、タルク上にピペットで滴下して、ジャー当たり有効成分1.25mgにする。ジャーを、アセトンが揮発するまで弱い気流下に置く。乾燥タルクを解し、モロコシ(millet)種子1ccを添加して、昆虫の餌として与え、そして湿潤土壌25mlを、各ジャーに添加する。ジャーのキャップを閉め、内容物を、徹底的に機械的に混合する。この後、二齢ネキリムシ10匹を各ジャーに添加し、そしてジャーを、幼虫のために空気交換できるようゆるく蓋をする。この処置は、死亡数が数えられる5日間維持される。幼虫が見られなくなることは、死んだと考えられる、何故なら幼虫は急速に分解し、そして発見できないからである。この試験で使用された有効成分の濃度は、大体50kg/haに対応する。

urticae) (OP耐性株)、ナミハダニ (TSM) 7~8 c mに拡がった第1葉をもつSievaリママメ植物を選択し、そして1ボット当たり1本の植物に刈り戻す。主コロニーから採取した寄生した葉から、小片を切り取り、試験植物の各葉の上に置く。これは、処理2時間前に実施され、ハダニが、産卵のために試験植物上を動き回るようにさせる。カットされる寄生葉の大きさを変えて、1葉当たりハダニ約100匹にする。試験処理の時点で、ハダニを移すために使用された葉片を除去し、廃棄する。新しく寄生された植物を、試験溶液に3秒間撹拌しながら浸漬し、そしてフード中で乾燥させる。2日後、1枚の葉を採取し、そして死亡数を数える。

【0093】テトラニクス・ウルチカエ(Tetranichus

【0094】アフィス・ゴシピイ (Aphis gossypii) 、 ワタ・アブラムシ (CA)

子葉段階のワタ植物を選らび、そして1ボット当たり1本の植物に刈り戻す。重い寄生葉を、主コロニーから採取し、そして各子葉の頂部に置く。アブラムシを、一夜、宿主植物に移動させる。試験処理の時点で、アブラムシを移すために使用された葉を除去し、廃棄する。子

(19)100-159756 (P2000-159756A)

葉を試験溶液に浸漬し、そして乾燥させる。5日後、死 亡数を数える。

【0095】 ギアプロチカ・ウンデシムプンクタータ ホワルギ (Diabrotica undecimpunctata howardi)、卵 ーサザントウモロコシ・ネキリムシ (SCR-Egg s)

人工飼料を含有しているウェルを、試験溶液で処理し、 そして乾燥する。次いで、サザントウモロコシ・ネキリムシの卵を、ウェル中に入れる。ウェルを、通気される 接着透明プラスチックカバーで覆う。7日後、死亡数を 数える。

【0096】ヘリオチス・ピレンセンス(Heliothis virenscens)、三齢タバコ・バッドウォーム(TEW)ワタ子葉を、試験溶液に浸漬し、そしてフード内で乾燥させる。乾燥時に、各々を4分の1にカットし、そして10切片を、それぞれ、湿った歯科用灯心の長さ5~7

c m片を含む30 m 1 容プラスチック医療カップ中に置く。三齢の毛虫1匹を、各カップに添加し、そして厚紙の蓋をカップの上に置く。この処置を3日間維持し、その後、死亡数を数え、そして摂餌による損傷の減少を評価する。

【0097】試験は、以下に示すスケールにしたがって評価され、そして得られたデータが、表 I に示される。 【0098】評価スケール

 0=効果なし
 5=56-65%死滅

 1=10-25%死滅
 6=66-75%死滅

 2=26-35%死滅
 7=76-85%死滅

 3=36-45%死滅
 8=86-99%死滅

 4=46-55%死滅
 9=100%死滅

 【0099】

五二、 表点社および数ダニ性評価

【表11】

	CA (300 ¹)	≈A₩ (300 ¹)	TBW (300 ¹)	(300 ¹)	scr Eggs (1,000 ¹)	WCR (50 ¹)
1	0	9	4	0	9	0
2		9	9	0	9	
3	0	9	9	0	9	4
4	0	4		0	0	0
5	0	9	3	2	. 9	0
6	0	9	9	0	9	1
7	0	9	8	0	.9	0
8	0	0		0	0	0
9	0	9	9	0	9	2
10	٥	9	3	0	9	0
11	0	0		9	0	Q
12	0	9	9	0	9	0
13	0	7	Ð	0	0	0
14	0	9	9	0	9	Ō
15	0	0		4	٥	0
16	0	š	0	0	9	0
17	0	9	0	0	0	0
18	0	0		0	0	1
19					٥	
20					o	
21					0	
22	0	1		0	0	0
23	0	8	0	0	0	1
24	0	2		0	0	0
25	0	2		3	0	0
26	0.	0		0	0	1
27	0	9	9	O	9	0
기술(원	ppm)			/# 1 O 1		

【表12】

[0100]

(20)100-159756 (P2000-159756A)

支 (集き)

					SCR	
SCER	(300 ¹)	(300 ¹)	(300 ¹)	(390 ¹)	Eggs (1000 ¹)	WCR (501)
28	7300 1	9	9 73887	0 13861	9	(30°)
29	0	9	o	ō	9	ō
30	0	9 .	3	o	9	0
31	o	9	0	o	9	0
32	0	9	8	ō	9	o
33	0	9	1	o	9	o
34	0.	9	9	0	9	0
35	0	9	9	0	و ٠	o
36	5	9	8	o	9	9
37	0	9	0	0	9	0
38	0	9	1	0	8	0
39	0	9	1	6	9	1
40	0	9	3	0	9	0
41	0	9	3	o	9	0
42	0	1	,	0	9	0
43	0	9	. 9	0	9	0
44	0	9	. ,	o	9	0
45	0	8	0	ō	0	0
46	. 0	8	0	0	ő	0
47	0	9	5	0	. 0	0
48	0	9	6	0	9	0
		9	1	0	9	7
49	. 0		0	0		
50	0	9	-	0	0	0
51	0	9	5		0	0
52	0	9	0.	0	0	0
53	0	9	0	0	9	4
54	0			0	0	4
55	0			0	8	0
56	0	_		. 0	8	0
57	8	0	_	0	7	0
58	D	8	0	0	0	0

【0101】 【表13】

(21))00-159756 (P2000-159756A)

<u>元 1(報念)</u>

					SCR	
ii ii	(300 ₇)	ида (¹ 00 <u>е)</u>	(300 ¹)	(300 ¹)	(1000 ¹)	(10) (10)
59	0	9	9	0	9	ر الاقتد
60	0	9	9	0	9	ō
61	0	9	0	0	9	0
62	0	9	1	0	0	o.
63	0	9	0	0	9	0
64	0	9	9	0	9	0
65	0	9	7	o ·	9	. 0
66	0	4		0	0	ō
67	0	9	9	0	9	ō
68	0	8	1	0	8	9
69	Ð	9	9 ·	0	9	2
70	0	3		0	0	1
71	0	1		0	0	3
72	0	1		0	0	2
73		6		0	9	2
74	0	9	6	0	7	1
75	0	1		0	7	9
76	0	0		0	0	4
77	0	9	0	0	8	0
78	0	9	0	0	8	0
79	0	9	0	0	9	1
80	0	3		0	0.	9
81	0	1		0	0	0
82	0	6		0	0	2
83	0	3		0	0	0
84	0	0		O	o	0,
85	0	0		. 0	0	3
86	0	9	9	O	•	4
87	0	9	8	0		9
88	0	9	0	0		0
89	0	9	1	0		0
				【表14]	

[0102]

(22))00-159756 (P2000-159756A)

会 1(協会)

					SCR	
Mak	(300 ¹)	(300 ¹)	(300 ¹)	TSM (\$90 ²)	Eggs (1000 ¹)	(50 ¹)
90	0	8	(<u>300</u>)	0 7346	11000-	130
91	0	9	7	ō		ō
92	0	9	0	ō		ō
93	0	9	0	o		ò
94	0	9	7	0		0
95	0	9	9	0	9	0
96	0	0	•	. 0	0	o
97	0	9	3	0	9	0
98	0	9	3	o	9	1
99	0	9	0	0	0	0
100	0	0	-	0	. 0	0
101	0	9	8	Ö	9	0
102	0	9	6	0	7	0
1.03	0	9	9	0	8	0
104	O	9	2	o ·	8	0
1.05	0	9	3	0	. О	o
106	0	9	ı	0	9	1
107	0	9	2	0	9	G
108	. 0	0		0		4
109	0	9	8	0	9	0
110	0	9	7	0	9	0
111	0	9	9	4	9	9
112	0	9	9	0	9	3
113	0	. 9	4	0	9	4
114	0	9	2	0	9	2
115	0	9	9	o	9	3
116	0	· 9	9	o	8	3
117	0	9	7	0	8	٥
118	0	7	0	0	8	٥
119	0	8	9	. 0	0	0
120	. 0	9	9	0	. 9	0

【0103】 【表15】

•

注 ((理)

					SCR	
#OR	(300 ₁)	5 3. (300 ¹)	(300 ₇)	TSK	4ggs	WCR
紀期 121	7300.1	1300-1	1300-)	(200 ₇)	11000 <u>7</u>)	(<u>201</u>)
122	0	9	8	. 0	0	
123	0	9	9	. 0		
124		-	9	=	0	0
	0	5	_	0	0	0
125	0	9	7	0	8	0
126	0	9	0	0	9	0
127	0	9	6	O	8	3
128	0	9	6	0	9	3
129	0	9	9	0		2
130	0	9	9	0		0
131	0	9	9	0		Ų
132	0	9	9	0		Ú
133	0	9	8	0		O
134	7	9	6	3		1
135	0	9		0		1
136	0	9		0		2
137	0 -	9		3		Q
138	0	6		0		9
139	0	8		o		2
140	0	9		ū		3
141	0	8	٥	o	9	0
142	0	2		0	0	1
143	0	0		0	0	ō
144	0	2		0	9	2
145	0	9	0	0	o	6
146	0	9	8	ō	9	0
147	Ö	9	•	0	o	6
148	0	6		o	. 0	7
149	0	9		0	9	ó
150	0	0				
151					0	0
	0	0		. 0	9	0

[0104]

【表16】

五___(統合)

					SCR	
	CA,	MAB	TBW	Ten	Eggs	∃CŖ
KM	(3003)	(300 ¹)	(3001)	(300 ¹)	(1000 ¹)	120,
152	٥	4	0	0	9	0
153 .	0	0		0	0	0
154	0	9	4	0	8	0
155	0	9	0	0	9	0
156	0	0		o	9	0
157	0	9	9	0	9	. 4
158	0	8	0	0	9	0
159	0	9	9	0	9	0
160	0	4		0	9	3
161	0	9	7	0	0	0
162	0	9 .	9	0	8	0
163	0	6		0	8	0
164	0	9	7	0		3
165	0	9		0		8
166	0	9	9	0	9	0
167	0	9	9	0	7	4
168	0	9	9 .	0	9	0
169	. 0	9	9	0	9	0
172	٥	9	9	0		0
173	0	9	9	0		0

【0105】本発明の特徴および態様は以下のとおりである。

【化30】

【0106】1. 昆虫類もしくはダニ類有害生物の防 除方法であって 構造者

除方法であって、構造式 【0107】

$$(R)$$
 (R) (R)

【0108】[式中、Xは、OもしくはS (O) _aであり; Zは、 【0109】 【化31】

【0110】C(X_1) R_5 、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル、フェニル環において、ハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルキル、 C_1-C_6 アルキル、 C_1-C_6 アルキル・ C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているベンジル、またはハロゲン、 C_1-C_6 アルキル、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 ハロアルコキシ、 C_1-C_6 アルコキシ、 C_1-C_6 カロアルコキシ、 C_1-C_6 アルカチオもしくは C_1-C_6 ハロアルキルチオ基 $1\sim3$ 個からのすべての組み合わせによって、場合によっては置換されているフェニル、であるが、但し、XがOである場合は、Zは、

【0111】 【化32】

【0112】であるという条件がある; nおよびpは、 各々独立して、0, 1, 2もしくは3であり; X_1 は0もしくはSであり;RおよびR。は、各々独立して、ハ ロゲン、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル、O $R_6 \setminus S(O)_{q}R_7 \setminus \Xi \vdash \Box \setminus \Sigma T / \setminus NR_8R_9 \setminus CO_2$ ル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 C_1 -C₆ハロアルコキシ、C₁-C₆アルキルチオもしくは C1-C6ハロアルキルチオ基1~3個からのすべての組 み合わせによって、場合によっては置換されているフェ ニルであるか、あるいは2個の隣接するR基もしくはR 。基は、一緒になって、環を形成してもよく、この場 合、RRもしくはR4R4は:-OCH2O-、-OCF2 O-もしくは-CH=CH-CH=CH-によって表さ れる; R_6 および R_7 は、各々独立して、水素、 C_1-C_6 アルキル、C1-C6ハロアルキルまたはハロゲン、C1 $-C_6$ P ν + ν , C_1 $-C_6$ γ 0 P ν + ν , C_1 $-C_6$ P ν コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からの すべての組み合わせによって、場合によっては置換され ているフェニルであり; R8、R9、R13およびR14は、 各々独立して、水素、C₁-C₆アルキル、C₁-C₆アル キルカルボニルまたはハロゲン、C₁-C₆アルキル、C $_1-C_6$ \cap DP ν + ν , C_1-C_6 P ν J+ ν , C_1-C_6 \cap ロアルコキシ、C1-C6アルキルチオもしくはC1-C6 ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているフェニルであ り; R_{10} および R_{11} は、各々独立して、水素、 C_1-C_6 アルキルもしくはC₁-C₆ハロアルキルであり: R₁お よびR2は、各々独立して、水素、C3-C1シクロアル キル、 C_1-C_6 ハロアルキル、 C_3-C_6 アルケニル、C $_3-C_6$ Λ $_0$ $_7$ $_1$ $_2$ $_2$ $_3$ $_3$ $_4$ $_5$ $_4$ $_5$ $_5$ $_4$ $_5$ $_5$ $_6$ $_7$ $_6$ $_7$ $_7$ $_7$ $_8$ $_$ ハロアルキニル、C2-C6アルコキシアルキル、(CH 2) vC(O) R12、フェノキシもしくはフェニル基1個 によって場合によっては置換されているC1-C6アルキ ルで、この場合、各基のフェニル環は、ハロゲン、Ci $-C_6$ P ν + ν , C_1 $-C_6$ γ 0P ν + ν , C_1 $-C_6$ P ν コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からに よって、場合によっては置換されている、ハロゲン、C $_1-C_6$ P ν + ν , C_1-C_6 γ 0P ν + ν , C_1-C_6 P ν コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC1-C6ハロアルキルチオ基1~3個からに よって、場合によっては置換されているフェニル、ある いはハロゲン、C1-C6アルキル、C1-C6ハロアルキ ル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、C1-C6アルキルチオもしくはC1-C6ハロアルキルチオ 基1~3個からのすべての組み合わせによって、場合に よっては置換されている5もしくは6員のヘテロ芳香族 環であり、そして R_1 および R_2 が、それらが結合してい る原子と一緒になっている場合には、それらは、C3-C₆シクロアルキル環を形成してもよく、この場合R₁R 2は、tが2, 3, 4もしくは5である-(CH₂),-によって表される:m, qおよびvは、各々独立して、 0,1もしくは2であり:R₁₂は、水素、C₁-C₆アル キル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 C_1 $_1-C_6$ ハロアルコキシ、 C_1-C_6 アルキルチオ、 $C_1 C_6$ ハロアルキルチオもしくは $NR_{13}R_{14}$ であり; R $_3$ は、水素、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ ハロアルキル もしくはC (O) R_{15} であり; R_{15} は、 C_1 - C_6 アルキ ル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシもしく は $C_1 - C_6$ ハロアルコキシであり;そして R_5 は、 C_1 - $C_6 P N + N$, N D F V, $C_1 - C_6 P N + N$, $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアル コキシ、C1-C6アルキルチオもしくはC1-C6ハロア ルキルチオ基1~3個からのすべての組み合わせによっ て、場合によっては置換されているフェニル、またはフ ェニル環において、ハロゲン、 $C_1 - C_6$ アルキル、 C_1 $-C_6 \cap C_1 \cap C_1 \cap C_2 \cap C_3 \cap C_4 \cap C_6 \cap C_6$ ロアルコキシ、 $C_1 - C_6$ アルキルチオもしくは $C_1 - C_6$ ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているベンジルであ る]をもつ化合物、ならびにそれらの光学的異性体およ びそれらの農学的に許容しうる塩の有害生物防除剤とし

ての有効量を、該有害生物、またはそれらの食餌供給、 生息もしくは繁殖地に接触させることを含む、方法。

【0113】2. 化合物が、2-(p-クロロフェニ ル) -5.5-ジメチル-4'-(トリフルオロメトキ (2) $(-\Delta^2 - 1)$ (3) $(4 - \lambda^2 + \lambda^2)$ ポキシアニリド; 2- (p-クロロフェニル) -5, 5 1.3,4-オキサジアゾリン-4-カルボキシアニリ ド;2-(p-ブロモフェニル)-5,5-ジメチルー キサジアゾリン-4-カルボキシアニリド;2-(p-フルオロフェニル)-5,5-ジメチル-4'-(トリ フルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド:5,5-ジメチル-2-(p-フェノキシフェニル)-4'-[(トリフルオロ メチル) ーチオ] ーΔ2-1,3,4-オキサジアゾリ ン-4-カルボキシアニリド;2-(p-クロロフェニ ル) -5-メチル-4'-(トリフルオロメトキシ) -サジアゾリンー4ーカルボキシアニリド;5-(クロロ メチル) -2-(p-クロロフェニル) -5-メチル-4' - (h) = (h) =キサジアゾリン-4-カルボキシアニリド;4,5-ビ ス (トリフルオロメチル) -2-(p-フルオロフェニ ν) $-5-メチル-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド;5-(クロロメチル)-2-(p-フルオロフェニル)-5-メチルー4'-(h) (h) (h)アゾリン-4-カルボキシアニリド;5-(クロロメチ ル) -2-(p-フルオロフェニル) -5-メチルー 4' - (hy) + (hオキサジアゾリン-4-カルボキシアニリド;2-(p ープロモフェニル) -5- (クロロメチル) -5-メチ $\nu-4'-(トリフルオロメトキシ)-\Delta^2-1,3,$ 4-オキサジアゾリン-4-カルボキシアニリド;2-(p-2007x-2) -5-x+v-5-(2, 2, 2, 2)2-トリフルオロエチル)-4'-(トリフルオロメチ (μ) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カル ボキシアニリド; 2-(p-クロロフェニル)-5-メ チルー5ー(2,2,2ートリフルオロエチル)-4' $-(トリフルオロメトキシ) - \Delta^2 - 1, 3, 4 - オキ$ サジアゾリン-4-カルボキシアニリド;2-(p-2 ロロフェニル) -5-メチル-5-(2-ピリジル) -キサジアゾリン-4-カルボキシアニリド;2-(p-クロロフェニル) -5-メチル-5-(2-ピリジル) -4' - (トリフルオロメトキシ $) - \Delta^2 - 1$, 3 , 4 ーオキサジアゾリン-4-カルボキシアニリド;メチル $N - \{[2 - (p - \rho u u z z z u) - 5, 5 - y z z z u \}$

ル] カルボニル $-p-(トリフルオロメトキシ) - カルバニレート ; メチル N- { [2-(p-クロロフェニル) -5 , 5-ジメチルー<math> \Delta^2-1$, 3 , 4-オキサジアゾリン-4-イル] カルボニル -p-(トリフルオロメチル) - カルバニレート ; およびメチル 2-(p-クロロフェニル) -5-メチル-<math>4- { [p-(トリフルオロメトキシ) フェニル] カルバモイル $-\Delta^2-1$, 3 , 4-オキサジアゾリン-5-アセテート、からなる群から選ばれる、第1項記載の方法。

【0114】3. 構造式

[0115]

【化33】

【0116】[式中、n、R、R1、R2、XおよびZは、第1項において定義されたとおりである]をもつ化合物の有害生物防除剤としての有効量を、植物の葉か、またはそれらが生育している土壌もしくは水に適用することを含む、昆虫類もしくはダニ類有害生物による侵襲もしくは寄生からの生育植物の保護方法。

【0117】4. 化合物が、2-(p-クロロフェニ ル) -5, 5-ジメチル-4'-(トリフルオロメトキ (2) $(-\Delta^2 - 1)$ (3) $(4 - \lambda^2 + 3)$ $(4 - \lambda^2 + 3)$ ボキシアニリド;2-(p-クロロフェニル)-5,5 ージメチルー4'ー(トリフルオロメチル)ーΔ²ー 1,3,4-オキサジアゾリン-4-カルボキシアニリ ド: 2-(p-ブロモフェニル)-5,5-ジメチルー 4' - (h) = (h) = (h) + (h) + (h) = (h) +キサジアゾリン-4-カルボキシアニリド;2-(p-フルオロフェニル) -5, 5-ジメチル-4' - (トリ フルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド:5,5-ジメチル-2-(p-フェノキシフェニル)-4'-[(トリフルオロ メチル)-チオ] $-\Delta^2-1$,3,4-オキサジアゾリ ン-4-カルボキシアニリド: 2-(p-クロロフェニ ル) -5-メチル-4' - (トリフルオロメトキシ) -サジアゾリン-4-カルボキシアニリド:5-(クロロ メチル) -2-(p-クロロフェニル) -5-メチルー 4' - (1) -キサジアゾリンー4ーカルボキシアニリド:4,5ービ ス (トリフルオロメチル) -2- (p-フルオロフェニ ν) $-5-x+\nu-\Delta^2-1$, 3, $4-x+\nu$ ン-4-カルボキシアニリド:5-(クロロメチル)-2-(p-フルオロフェニル)-5-メチル-4'-(トリフルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド;5-(クロロメチ ル) -2- (p-フルオロフェニル) -5-メチルー

オキサジアゾリン-4-カルボキシアニリド;2-(p ープロモフェニル) -5- (クロロメチル) -5-メチ ルー4' - (トリフルオロメトキシ) - Δ^2 - 1, 3, 4-オキサジアゾリン-4-カルボキシアニリド;2-(p-2007 = 2.0) = 5 - 3.0 = 3.02-トリフルオロエチル)-4'-(トリフルオロメチ μ) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カル ボキシアニリド; 2-(p-クロロフェニル)-5-メ $4\nu - 5 - (2, 2, 2 - 1) - 1$ $-(トリフルオロメトキシ) - \Delta^2 - 1, 3, 4 - オキ$ サジアゾリン-4-カルボキシアニリド;2-(p-ク ロロフェニル) -5-メチル-5-(2-ピリジル) - $4' - (h) \int \lambda dx dx + (h) \int \Delta^2 - 1$, 3, $4 - \lambda$ キサジアゾリン-4-カルボキシアニリド;2-(p-クロロフェニル) -5-メチル-5-(2-ピリジル) $-4' - (h) = (h) = \lambda^2 - 1, 3, 4$ ーオキサジアゾリンー4ーカルボキシアニリド;メチル ル] カルボニル - p - (トリフルオロメトキシ) - カ ´ルバニレート;メチル N-{[2-(p-クロロフェ (2π) - 5, 5 - ジメチル - Δ² - 1, 3, 4 - オキサジアゾリンー4ーイル] カルボニル}ーpー(トリフル オロメチル) ーカルバニレート: およびメチル 2-(p-クロロフェニル)-5-メチル-4-{[p-(トリフルオロメトキシ)フェニル]カルバモイル}ー ト、からなる群から選ばれる、第3項記載の方法。 【0118】5. 化合物が、約0.1kg/ha~ 4.0kg/haの割合で、植物か、またはそれらが生 育している土壌もしくは水に適用される、第3項記載の 方法。

【0119】6. 構造式 【0120】 【化34】

$$(R)_n$$
 X
 N
 Z

【0121】[式中、Xは、OもしくはS(O)。であり; Zは、

[0122]

【化35】

【0123】C (X_1) R_5 、 C_1 - C_6 アルキル、 C_1 - C_6 ハロアルキル、フェニル環において、ハロゲン、 C_1

 $-C_6$ アルキル、 C_1 - C_6 ハロアルキル、 C_1 - C_6 アルコキシ、 C_1 - C_6 ハロアルコキシ、 C_1 - C_6 アルキルチオもしくは C_1 - C_6 ハロアルキルチオ基1~3個からのすべての組み合わせによって、場合によっては置換されているベンジル、またはハロゲン、 C_1 - C_6 アルキル、 C_1 - C_6 アルコキシ、 C_1 - C_6 アルコキシ、 C_1 - C_6 アルコキシ、 C_1 - C_6 アルカナオもしくは C_1 - C_6 アルナルチオ基1~3個からのすべての組み合わせによって、場合によっては置換されているフェニル、であるが、但し、XがOである場合は、Zは、 $\{0124\}$

【化36】

【0125】であるという条件がある; nおよびpは、 各々独立して、0, 1, 2もしくは3であり; X, はO もしくはSであり;RおよびR4は、各々独立して、ハ ロゲン、C1-C6アルキル、C1-C6ハロアルキル、O ル、 $C_1 - C_6$ ハロアルキル、 $C_1 - C_6$ アルコキシ、 C_1 -C₆ハロアルコキシ、C₁-C₆アルキルチオもしくは C1-C6ハロアルキルチオ基1~3個からのすべての組 み合わせによって、場合によっては置換されているフェ ニルであるか、あるいは2個の隣接するR基もしくはR 4基は、一緒になって、環を形成してもよく、この場 合、RRもしくはR,R,は:-OCH2O-、-OCF2 O-もしくは-CH=CH-CH=CH-によって表さ れる; R_6 および R_7 は、各々独立して、水素、 $C_1 - C_6$ アルキル、C₁-C₆ハロアルキルまたはハロゲン、C₁ $-C_6 P \nu + \nu$, $C_1 - C_6 \gamma \nu + \nu$, $C_1 - C_6 P \nu$ コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からの すべての組み合わせによって、場合によっては置換され ているフェニルであり;R8、R9、R13およびR14は、 各々独立して、水素、 $C_1 - C_6$ アルキル、 $C_1 - C_6$ アル キルカルボニルまたはハロゲン、C1-C6アルキル、C ロアルコキシ、C1-C6アルキルチオもしくはC1-C6 ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているフェニルであ り; R_{10} および R_{11} は、各々独立して、水素、 C_1-C_6 アルキルもしくはC₁-C₆ハロアルキルであり:R₁お よびR,は、各々独立して、水素、C3-C1シクロアル キル、 $C_1 - C_6$ ハロアルキル、 $C_3 - C_6$ アルケニル、C $_3$ - C_6 \wedge D_7 \wedge D_7 \wedge D_7 \wedge D_8 \wedge D_8 ハロアルキニル、C2-C6アルコキシアルキル、(CH ,),C(O)R₁₂、フェノキシもしくはフェニル基1個 によって場合によっては置換されているC1-C6アルキ ルで、この場合、各基のフェニル環は、ハロゲン、C1 $-C_6$ P ν + ν , C_1 $-C_6$ γ ν コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC1-C6ハロアルキルチオ基1~3個からに よって、場合によっては置換されている、ハロゲン、C $_1-C_6$ P ν + ν , C_1-C_6 Λ ν コキシ、C1-C6ハロアルコキシ、C1-C6アルキルチ オもしくはC₁-C₆ハロアルキルチオ基1~3個からに よって、場合によっては置換されているフェニル、ある いはハロゲン、C1-C6アルキル、C1-C6ハロアルキ ル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアルコキシ、C,-CgアルキルチオもしくはC1-Cgハロアルキルチオ 基1~3個からのすべての組み合わせによって、場合に よっては置換されている5もしくは6員のヘテロ芳香族 環であり、そしてR1およびR2が、それらが結合してい る原子と一緒になっている場合には、それらは、C3-C₆シクロアルキル環を形成してもよく、この場合R₁R $_2$ は、 $_1$ が2、3、 $_4$ もしくは5である $_1$ ($_2$) $_1$ によって表される; m, qおよびvは、各々独立して、 0, 1もしくは2であり: R_{12} は、水素、 C_1-C_6 アル キル、C1-C6ハロアルキル、C1-C6アルコキシ、C $_1 - C_6 \cap C_1 \cap C_1 - C_6 \cap C_1 \cap$ C₆ハロアルキルチオもしくはNR₁₃R₁₄であり;R $_3$ は、水素、 C_1-C_6 アルキル、 C_1-C_6 ハロアルキル もしくはC(O) R_{15} であり; R_{15} は、 C_1 - C_6 アルキ ル、C1-C6ハロアルキル、C1-C6アルコキシもしく は $C_1 - C_6$ ハロアルコキシであり;そして R_5 は、 C_1 ー ハロアルキル、 $C_1 - C_6$ アルコキシ、 $C_1 - C_6$ ハロアル コキシ、C1-C6アルキルチオもしくはC1-C6ハロア ルキルチオ基1~3個からのすべての組み合わせによっ て、場合によっては置換されているフェニル、またはフ ェニル環において、ハロゲン、C1-C6アルキル、C1 $-C_6$ ハロアルキル、 C_1 $-C_6$ アルコキシ、 C_1 $-C_6$ ハ ロアルコキシ、 C_1-C_6 アルキルチオもしくは C_1-C_6 ハロアルキルチオ基1~3個からのすべての組み合わせ によって、場合によっては置換されているベンジルであ る]をもつ化合物、ならびにそれらの光学的異性体およ びそれらの農学的に許容しうる塩であって、(1)R が、フェニル環のオルト位にある場合には、Rは、CO 2R10以外のものであり、そして(2)XがOであり、 nおよびpがOであり、そしてR₁がメチルである場合 には、R2は、エチルもしくは非置換フェニル以外のも のであるという条件における化合物。

【0126】7. 構造式

[0127]

【化37】

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

【0128】[式中、Rは、Nロゲン、 C_1 - C_4 Nロア ルキル、 $C_1 - C_4$ ハロアルコキシまたはハロゲン、 C_1 コキシもしくはC1-C4ハロアルコキシ基1~3個から のすべての組み合わせによって、場合によっては置換さ れているフェノキシであり;R4は、C1-C4ハロアル キル、C1-C4ハロアルコキシもしくはC1-C4ハロア ルキルチオであり;R1は、C1-C4アルキルであり; R_2 は、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ ハロアルキル、 $(CH_2)_{\nu}C(O)R_{12}$ またはハロゲン、 C_1-C_4 アル キル、C1-C4ハロアルキル、C1-C4アルコキシもし くはC₁-C₄ハロアルコキシ基1~3個からのすべての 組み合わせによって、場合によっては置換されている2 ーピリジルであり; vは、0もしくは1であり; R 12は、C1-C4アルコキシもしくはC1-C4ハロアルコ キシであり; R_3 は、水素もしくは $C(O)R_{15}$ であ り;そしてR₁₅は、C₁-C₄アルコキシである]をも つ、第6項記載の化合物。

[0129]8. 2-(p-2)-1, 3, 4-オキサジアゾリン-4-カルボキシアニ リド: 2- (p-クロロフェニル) -5, 5-ジメチル $-4' - (hy) - \Lambda^2 - 1.3.4 -$ オキサジアゾリン-4-カルボキシアニリド;2-(p ーブロモフェニル) -5.5-ジメチル-4'-(トリ フルオロメチル) $-\Delta^2 - 1$, 3, 4 - オキサジアゾリ ン-4-カルボキシアニリド;2-(p-フルオロフェ ニル) -5, 5-ジメチル-4' - (トリフルオロメチ ν) $-\Delta^2-1$, 3, $4-\lambda^2+1$ ボキシアニリド:5,5-ジメチル-2-(p-フェノ キシフェニル) -4' - [(トリフルオロメチル) -チ オ] $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カル ボキシアニリド; 2- (p-クロロフェニル) -5-メ チルー4'ー(トリフルオロメトキシ)ー5ー(トリフ ルオロメチル) $-\Delta^2 - 1$, 3, 4 - オキサジアゾリン-4-カルボキシアニリド;5-(クロロメチル)-2 - (p-クロロフェニル) -5-メチル-4'-(トリ フルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド:4.5-ビス(トリフル オロメチル)-2-(p-フルオロフェニル)-5-メ チルー Δ^2 -1, 3, 4-オキサジアゾリン-4-カル ボキシアニリド:5-(クロロメチル)-2-(p-フ ルオロフェニル) -5-メチル-4'-(トリフルオロ メチル) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド;5-(クロロメチル)-2-(p

ーフルオロフェニル) ー5ーメチルー4'ー(トリフル オロメトキシ) $-\Delta^2-1$, 3, 4ーオキサジアゾリン -4-カルボキシアニリド: 2-(p-プロモフェニ ル) -5-(クロロメチル) -5-メチルー4' - (ト リフルオロメトキシ) $-\Delta^2-1$, 3, 4-オキサジア ゾリン-4-カルボキシアニリド;2-(p-クロロフ ェニル) -5-メチル-5-(2,2,2-トリフルオ ロエチル) $-4'-(トリフルオロメチル)-\Delta^2-$ 1, 3, 4-オキサジアゾリン-4-カルボキシアニリ ド:2-(p-クロロフェニル)-5-メチルー5-(2, 2, 2-トリフルオロエチル) -4'-(トリフ ルオロメトキシ) $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド;2-(p-クロロフェニ ル) -5-メチル-5-(2-ピリジル) -4'-(ト リフルオロメチル) $-\Delta^2-1$, 3, 4-オキサジアゾ リン-4-カルボキシアニリド;2-(p-クロロフェ ニル) -5-メチル-5-(2-ピリジル) -4'-(h) (h) (h)ジアゾリン-4-カルボキシアニリド:メチル N-([2-(p-クロロフェニル)-5,5-ジメチルー ボニル} -p-(トリフルオロメトキシ)-カルバニレ ート:メチル N- ([2-(p-クロロフェニル)-ン-4-イル] カルボニル} -p-(トリフルオロメチ ル) -カルバニレート;およびメチル 2-(p-クロ ロフェニル) -5-メチル-4-{[p-(トリフルオ ロメトキシ) フェニル] カルバモイル $\{-\Delta^2 - 1, \}$ 3, 4-オキサジアゾリン-5-アセテート、からなる 群から選ばれる、第6項記載の化合物。

【0130】9. 農学的に許容しうるキャリヤーおよび構造式

[0131]

【化38】

$$(R)$$
 N N Z

【0132】 [式中、n. R. R₁, R₂, XおよびZ は、第6項において記述されたとおりである]をもつ化 合物の有害生物防除剤としての有効量を含む、昆虫類も しくはダニ類有害生物の防除のための組成物。

【0133】10. 化合物が、2-(p-2)ロロフェニル)-5. 5-3ジメチル-4'-(トリフルオロメトキシ)- Δ^2 -1. 3. 4-3キサジアゾリン-4-3ルボキシアニリド;2-(p-2)ロロフェニル)-5. 5-3ジメチル-4'-(トリフルオロメチル)- Δ^2 -1. 3. 4-3キサジアゾリン-4-3ルボキシアニリド;2-(p-3)ロモフェニル)-5. 5-3ジメチル-4'-(トリフルオロメチル)- Δ^2 -1. 3. 4-3

キサジアゾリン-4-カルボキシアニリド;2-(p-フルオロフェニル) -5, 5-ジメチル-4′-(トリ フルオロメチル) $-\Delta^2-1$,3.4-オキサジアゾリ ンー4ーカルボキシアニリド;5,5ージメチルー2ー (p-フェノキシフェニル) -4' - [(トリフルオロ メチル) -チオ] $-\Delta^2-1$, 3, 4-オキサジアゾリ ン-4-カルボキシアニリド; 2-(p-クロロフェニ ル) -5-メチル-4' - (トリフルオロメトキシ) - $5-(トリフルオロメチル)-Δ^2-1, 3, 4-オキ$ サジアゾリン-4-カルボキシアニリド:5-(クロロ メチル)-2-(p-クロロフェニル)-5-メチル-キサジアゾリン-4-カルボキシアニリド;4,5-ビ ス (トリフルオロメチル) -2- (p-フルオロフェニ ν) $-5-メチル-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カルボキシアニリド:5-(クロロメチル)-2-(p-フルオロフェニル)-5-メチルー4'- $(| -1 \rangle | -1$ アゾリンー4ーカルボキシアニリド;5-(クロロメチ ル)-2-(p-フルオロフェニル)-5-メチルー 4' - (hy) + (hオキサジアゾリン-4-カルボキシアニリド;2-(p ーブロモフェニル) -5-(クロロメチル) -5-メチ $\nu-4'-(\nu-1)$ 4-オキサジアゾリン-4-カルボキシアニリド;2-(p-2pp) - 5 - x + y - 5 - (2, 2, 2, 2)2-トリフルオロエチル)-4'-(トリフルオロメチ ν) $-\Delta^2-1$, 3, 4-オキサジアゾリン-4-カル ボキシアニリド; 2- (p-クロロフェニル) -5-メ $4\nu - 5 - (2, 2, 2 - 1) - 1$ -(h)サジアゾリン-4-カルボキシアニリド:2-(p-2 ロロフェニル) -5-メチル-5-(2-ピリジル) - $4' - (FUJNTUXFN) - \Delta^2 - 1, 3, 4 - T$ キサジアゾリンー4ーカルボキシアニリド;2-(p-クロロフェニル) -5-メチル-5-(2-ピリジル) -4'-(h)ーオキサジアゾリンー 4 ーカルボキシアニリド : メチル N-{[2-(p-クロロフェニル)-5,5-ジメ ル] カルボニル > - p - (トリフルオロメトキシ) ーカ ルバニレート;メチル N-{[2-(p-クロロフェ (2π) -5, 5-ジメチル-(2π) -1, 3, 4-オキサ ジアゾリン-4-イル]カルボニル}-p-(トリフル オロメチル) ーカルバニレート; およびメチル 2-(p-クロロフェニル) -5-メチル-4- { [p-(トリフルオロメトキシ)フェニル]カルバモイル}ー Δ^2-1 , 3, 4-3ト、からなる群から選ばれる、第9項記載の組成物。

(29)100-159756 (P2000-159756A)

フロントページの続き

(72)発明者 ブライアン・リー・バツクウオルター アメリカ合衆国ペンシルベニア州19067ヤ ードレイ・オビントンロード102