Introto Reural Networks

BA865 – Mohannad Elhamod

Auto-Encoders

Compression and Reconstruction

- Given an input (e.g., image), I may want to...
 - compress it and reconstruct it.
 - modify it as it is reconstructed.

Auto-Encoder

- Given an input, we need to learn a representation (i.e., code, embedding)
- This embedding is the compressed version of the data.
- The embedding should be sufficient to obtain the desired reconstruction.

Auto-Encoder

- Given an input, we need to learn a representation (i.e., code, embedding)
- This embedding is the compressed version of the data.
- The embedding should be sufficient to obtain the desired reconstruction.

Auto-Encoder

- It is a <u>non-linear</u> dimensionality reduction method.
- Demo

Linear vs nonlinear dimensionality reduction

Zhang et al.

The Error Function

- The error is the <u>"reconstruction loss"</u>
 - The MSE between the input and the output.

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

Joseph Rocca

The Auto-Encoder as a Generator

- Once the model is trained, we could use the decoder to generate new content!
- Demo

Variational Auto-Encoder

- What if I <u>"make"</u> the embedding to follow a nice Gaussian distribution
- Demo

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = ||\mathbf{x} - d(z)||^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

Joseph Rocca

Variational Auto-Encoder

 Consequently, a traversal of the latent space would lead to smoother transitions in the reconstructed data.

Variational Auto-Encoder

 Consequently, a traversal of the latent space would lead to smoother transitions in the reconstructed data.

Examples in Computer Vision

IMAGE COLORING

Before After

Sketch2pix

Semantic segmentation

Debugging Neural Nets

Results are bad?

- Check against a benchmark!
 - paperswithcode.com
 - kaggle.com
- Are you overfitting or underfitting?

How do I improve my results?

- Best way: Get more GOOD data
 - If not, clean-up existing data.
- Are you overfitting or underfitting?
 - Overfitting: get more data, use a less complex model, regularization, or transfer learning.
 - Underfitting: get a more complex model.
- Keep it simple!
 - Start with a simple model, simple data, simple code.
 - Test by component (e.g., loss, forward pass, etc.).
 - Test by example (e.g., outliers).

