

1.° Semestre 2015/2016

Duração: 60 minutos

18 janeiro 2016

NOME NÚMERO

1. (3 valores) Considere o seguinte circuito, em que os sinais A, X, Y e Z são barramentos de 8 bits, C é o *clock* (tanto do trinco como da báscula) e S é o sinal de seleção do *multiplexer* (S=1 seleciona a entrada X). A negação é na realidade um conjunto de 8 negações (negam todos os 8 bits do barramento). Assumindo que os sinais A, C e S evoluem ao longo do tempo da forma indicada na tabela seguinte, acabe de preencher o resto da tabela (escreva todas as células, mesmo que o valor se mantenha).



| A | 27  | Ή   | 6B  | Н   | 54H |     | A1H |     | 4F  | Ή   |     | 8EH |     |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| С | 0   | 1   | 1   | 0   | 0   | 0   | 1   | 0   | 0   | 1   | 1   | 0   | 1   |
| S | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1   | 1   | 1   | 0   | 0   |
| X | 93H | 27H | 6BH | 6BH | 6BH | 6BH | A1H | A1H | A1H | 4FH | 8EH | 8EH | 8EH |
| Y | 89H | 76H | 76H | 76H | 76H | 6BH | A1H | A1H | A1H | 4FH | 8EH | 5EH | A1H |
| Z | 76H | 89H | 89H | 89H | 89H | 89H | 6BH | 6BH | 6BH | A1H | A1H | A1H | 5EH |

2. (2 valores) Considere o número decimal –2838. Represente-o em notação de complemento para 2, em hexadecimal com 16 e 32 bits.

|   |   |   |   | F | 4 | E | A | Н |
|---|---|---|---|---|---|---|---|---|
| F | F | F | F | F | 4 | E | A | Н |

- 3. (2 + 1 + 1 valores) Considere o número hexadecimal FC38H.
  - a) Converta este número para decimal, considerando que está representado em <u>notação de complemento para 2 com 16 bits</u>.

-968 decimal

b) Represente-o agora em binário, <u>com o número mínimo de bits</u> necessário na notação de complemento para 2 (deixe em branco as casas que não precisar).

|  |  |  |   |   |   |   |   |   |   |   |   |   |   | ı       |
|--|--|--|---|---|---|---|---|---|---|---|---|---|---|---------|
|  |  |  | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | binário |

c) Indique agora, em decimal, qual o <u>maior</u> número que consegue representar na notação de complemento para 2, com esse número de bits.

1023 decimal

4. (3 + 1 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.



a) Cada registo é formado por 8 básculas D ativas no flanco ascendente do relógio. Suponha que o processador está a executar o programa na tabela da esquerda e neste momento o relógio está a 0 e a instrução selecionada é a ADD 31H. Os sinais de controlo preparam todos os valores para serem memorizados nos registos quando o sinal de relógio passar de 0 para 1 (o que executa a instrução ADD). Preencha a tabela seguinte, com os valores (em <a href="hexadecimal">hexadecimal</a>) dos sinais referenciados com os números, <a href="mates">antes</a> e <a href="hexadecimal">depois</a> de o relógio mudar de 0 para 1. <a href="mates">Coloque X se um dado valor não puder ser determinado</a>.

| Endereço | Instrução | RTL                    |
|----------|-----------|------------------------|
| 59H      | LD 2EH    | A ← 2EH                |
| 5AH      | ADD 31H   | $A \leftarrow A + 31H$ |
| 5BH      | LD 45H    | A ← 45H                |

|         |   | Sinais |     |     |     |     |     |  |  |  |
|---------|---|--------|-----|-----|-----|-----|-----|--|--|--|
| Relógio | 1 | 2      | 3   | 4   | 5   | 6   | 7   |  |  |  |
| 0       | X | 31H    | 5AH | 5FH | 5FH | 31H | 2EH |  |  |  |
| 1       | X | 45H    | 5BH | A4H | 45H | 45H | 5FH |  |  |  |

b) Na tabela seguinte estão referidos os sinais usados para comandar quer a Unidade de Dados quer a Unidade de Controlo. Preencha esta tabela, especificando para cada sinal qual a indicação concreta que fornece no momento imediatamente anterior à execução da instrução ADD 31H (passagem do relógio de 0 para 1).

 $\rightarrow$ 

| Sinal     | Valor numérico, Ativo/inativo, ou qual indicação selecionada |
|-----------|--------------------------------------------------------------|
| Constante | 31H                                                          |
| WR        | Inativo (não escreve na memória)                             |
| SEL_B     | Esquerda                                                     |
| SEL_A     | Esquerda                                                     |
| ESCR_A    | Ativo (vai escrever no registo A)                            |
| SEL_ALU   | Soma                                                         |
| SEL_PC    | 0 (não salta)                                                |

- 5. (2 + 3 + 2 valores) Pretende-se fazer um programa que calcule o fatorial de um número N de forma recursiva (com uma rotina que se chama a ela própria). O objetivo é definir a rotina fatorial (N) como o produto de N por fatorial (N-1). Em *assembly* do PEPE-16, N é uma constante e o valor de N! deve ser guardado na variável "resultado".
  - a) O programador Chico Esperto implementou o programa da forma indicada a seguir. Preencha os endereços do lado esquerdo e a tabela do lado direito com informação sobre os primeiros acessos à memória realizados pelo programa. Preencha apenas os espaços que forem relevantes. <u>Considera-se que todos os MOVs</u> <u>ocupam apenas uma palavra</u>. Para facilitar, fornece-se a descrição interna das instruções CALL e RET.

| CALL Etiqueta | SP ← SP-2<br>M[SP]←PC<br>PC ← Endereço da Etiqueta |
|---------------|----------------------------------------------------|
|               | $PC \leftarrow M[SP]$ $SP \leftarrow SP+2$         |

## Enderecos

| Endereços | _              |            |                    |
|-----------|----------------|------------|--------------------|
|           | PLACE          | 1000H      |                    |
|           | N              | EQU        | 4                  |
| 1000H     | resultado:     | WORD       | 0                  |
| 1002H     | pilha:         | TABLE      | 100H               |
| 1202H     | fim_pilha:     |            |                    |
|           | PLACE          | 0          |                    |
| 0000H     |                | MOV        | SP, fim_pilha      |
| 0002H     |                | MOV        | R1, N              |
| 0004H     |                | MOV        | R2, resultado      |
| 0006H     |                | CALL       | fatorial           |
| 0008H     |                | MOV        | [R2],R1            |
| 000AH     | fim:           | JMP        | fim                |
|           | ; fatorial - C | alcula o f | atorial de N       |
|           | ; Entrada – l  | R1: N      |                    |
|           | ; Saída – R1   | : N!       |                    |
| 000CH     | fatorial:      | PUSH       | R2                 |
| 000EH     |                | MOV        | R2, R1             |
| 0010H     |                | SUB        | R1, 1              |
| 0012H     |                | CALL       | fatorial           |
| 0014H     |                | MUL        | R1, R2; (N-1)! * N |
| 0016H     |                | RET        |                    |
|           |                |            |                    |

| Endereço da instrução executada | Endereço acedido | L ou E | Valor lido<br>ou escrito |
|---------------------------------|------------------|--------|--------------------------|
| 0006Н                           | 1200H            | E      | 0008H                    |
| 000CH                           | 11FEH            | E      | 1000H                    |
| 0012H                           | 11FCH            | E      | 0014H                    |
| 000CH                           | 11FAH            | E      | 0004H                    |
| 0012H                           | 11F8H            | E      | 0014H                    |
| 000CH                           | 11F6H            | E      | 0003H                    |
| 0012H                           | 11F4H            | E      | 0014H                    |
| 000CH                           | 11F2H            | E      | 0002H                    |
| 0012H                           | 11F0H            | E      | 0014H                    |
| 000CH                           | 11EEH            | E      | 0001H                    |
| 0012H                           | 11ECH            | E      | 0014H                    |

b) O Chico Esperto ficou admirado por o seu programa não funcionar. Outro programador reescreveu o programa da forma indicada em baixo. Preencha de novo os endereços do lado esquerdo e a tabela do lado direito com informação sobre os acessos à memória realizados pelo programa. Preencha apenas os espaços que forem relevantes. Considera-se que todos os MOVs ocupam apenas uma palavra.

Endereços

| Litacicços | 1              |              |                    |
|------------|----------------|--------------|--------------------|
|            | PLACE          | 1000H        |                    |
|            | N              | EQU          | 4                  |
| 1000H      | resultado:     | WORD         | 0                  |
| 1002H      | pilha:         | <b>TABLE</b> | 100H               |
| 1200H      | fim_pilha:     |              |                    |
|            | PLACE          | 0            |                    |
| 0000H      |                | MOV          | SP, fim_pilha      |
| 0002H      |                | MOV          | R1, N              |
| 0004H      |                | MOV          | R2, resultado      |
| 0006Н      |                | CALL         | fatorial           |
| 0008H      |                | MOV          | [R2],R1            |
| 000AH      | fim:           | JMP          | fim                |
|            | ; fatorial - C | alcula o fat | orial de N         |
|            | ; Entrada – l  | R1: N        |                    |
|            | ; Saída – R1   | : N!         |                    |
| 000CH      | fatorial:      | PUSH         | R2                 |
| 000EH      |                | CMP          | R1, 1              |
| 0010H      |                | JLE          | acabou             |
| 0012H      |                | MOV          | R2, R1             |
| 0014H      |                | SUB          | R1, 1              |
| 0016H      |                | CALL         | fatorial           |
| 0018H      |                | MUL          | R1, R2; (N-1)! * N |
| 001AH      |                | JMP          | sai                |
| 001CH      | acabou:        | MOV          | R1, 1              |
| 001EH      | sai:           | POP          | R2                 |
| 0020H      |                | RET          |                    |
|            |                |              |                    |

| Endereço da instrução executada | Endereço acedido | L ou E | Valor lido<br>ou escrito |
|---------------------------------|------------------|--------|--------------------------|
| 0006Н                           | 1200H            | E      | 0008H                    |
| 000CH                           | 11FEH            | E      | 1000H                    |
| 0016Н                           | 11FCH            | E      | 0018H                    |
| 000CH                           | 11FAH            | E      | 0004H                    |
| 0016Н                           | 11F8H            | E      | 0018H                    |
| 000CH                           | 11F6H            | E      | 0003H                    |
| 0016Н                           | 11F4H            | E      | 0018H                    |
| 000CH                           | 11F2H            | E      | 0002H                    |
| 001EH                           | 11F2H            | L      | 0002H                    |
| 0020H                           | 11F4H            | L      | 0018H                    |
| 001EH                           | 11F6H            | L      | 0003H                    |
| 0020H                           | 11F8H            | L      | 0018H                    |
| 001EH                           | 11FAH            | L      | 0004H                    |
| 0020H                           | 11FCH            | L      | 0018H                    |
| 001EH                           | 11FEH            | L      | 1000H                    |
| 0020H                           | 1200H            | L      | 0008H                    |
| 0008H                           | 1000H            | E      | 24                       |
|                                 | _                |        |                          |
|                                 |                  |        |                          |
|                                 |                  |        |                          |
|                                 |                  |        |                          |

c) O novo programa já funciona? Compare os dois e/ou explique que erros o Chico Esperto cometeu.

O novo programa já funciona. O Chico Esperto cometeu dois erros básicos:

1 – A rotina fatorial, recursiva, não tem condição de paragem da recursividade. Assim, chama-se a ela própria de forma infinita e nunca termina (até que o programa deixe de funcionar, por utilização da pilha para além da sua área reservada. Chega mesmo a escrever nos endereços do programa!)

2 – O PUSH R2 não tem o correspondente POP R2 (embora neste caso o programa nunca lá chegue)

O novo programa já tem estes dois problemas resolvidos.