Министерство науки и высшего образования Российской Федерации Санкт-Петербургский Политехнический Университет Петра Великого

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта

КУРСОВАЯ РАБОТА

по дисциплине «Машинное обучение, часть1»

Выполнил: студент группы

5140201/30301 В.А. Ефременко

<подпись>

Проверил: Л.В. Уткин

д.т.н., профессор

<подпись>

1. Цель работы

Курсовой проект заключается в разработке классификаторов для реальной базы данных, визуализации данных, исследовании и настройки классификаторов.

2. Формулировка задания

Для выбранной базы данных необходимо:

- 1. Разработать 3 классификатора и осуществить настройку их параметров для минимизации ошибки классификации на тестовых данных. Выполнить визуализацию данных при помощи метода t-SNE.
- 2. Сравнить классификаторы (по критерию вероятность ошибки классификации для тестовых данных) и обосновать выбор наилучшего из них.
- 3. Удалить их базы метки классов и осуществить кластеризацию данных. Построить дендограмму. Сравнить полученные результаты с реальными метками данных. Определить долю ошибочно кластеризованных данных.
- 4. Используя логистическую регрессию в рамках метода Лассо, определить наиболее значимые признаки, влияющие на отнесение объектов к определенному классу.
- 5. Использовать автокодер для сокращения размерности или для реализации разреженного скрытого слоя нейронной сети. Преобразовать обучающую выборку при помощи автокодера и осуществить классификацию новых данных с оценкой ошибки классификации. Выполнить визуализацию новых обучающих данных при помощи метода t-SNE. Определить, когда качество классификации лучше, если использовать сокращение размерности или разреженность скрытого слоя. Выполнить классификацию с использованием зашумленного автокодера (denoising autoencoder). Сравнить полученные результаты с пп.1 и 2.

6. Подготовить пояснительную записку по курсовому проекту и листинги программ.

3. Используемые данные и методы

В качестве датасета была выбрана база данных — Wisconsin Diagnostic Breast Cancer. Набор данных представляет собой результаты анализа биопсийных образцов молочных желез. Задача анализа заключается в диагностике рака молочной железы на основе характеристик ядер клеток, выделенных из дигитализированных изображений тонких игл. Основная информация о датасете:

	Предсказание: В – доброкачественная (benign), М – злокачественная
	(malignant).
	Множества линейно разделимы с использованием всех 30 входных
	признаков.
	Признаки вычисляются на основе цифрового изображения тонкой иглы
	аспирата молочной железы (FNA) и описывают характеристики ядер
	клеток, присутствующих на изображении.
	Число экземпляров: 569.
	Число атрибутов: 32 (ID, диагноз, вещественнозначные признаки).
	В датасете отсутствуют пропущенные значения.
	Распределение классов: 357 – benign, 212 – malignant.
Для в	классификации данных были выбраны следующие классификаторы:
	Наивный байесовский классификатор
	Метод ближайших соседей
	Бустинг

Метод кластеризации: метод k-средних.

4. Ход работы

Задание 1

Разработать 3 классификатора и осуществить настройку их параметров для минимизации ошибки классификации на тестовых данных. Выполнить визуализацию данных при помощи метода t-SNE.

Выполним визуализацию данных при помощи метода t-SNE:

Видим, что классы имеют некоторые пересечения, но при этом визуально они хорошо разделимы.

Наивный байесовский классификатор

Для оценки работы байесовского классификатора брались разные доли обучающей выборки от общего объема данных. Была получена следующая зависимость ошибки классификации от размера обучающей выборки:

Соответственно, видим, что с увеличением обучающей выборки, ошибка классификации уменьшается и повышается точность классификации.

Наименьшая полученная ошибка классификации: 0.0195.

Метод ближайших соседей

Для подбора лучшей модели k-ближайших соседей был проведен эксперимент с разными настройками параметров: k — количества соседей, kernel — ядра, metric — метрики расстояния и distance — расстояния.

Таким образом, наибольшую точность достигла модель с параметрами:

{'k': 3, 'kernel': 'uniform', 'distance': 1, 'metric': 'euclidean'}

Точность лучшей модели: 0.9211.

Бустинг

Для подбора лучшей модели алгоритма бустинга оценивалась ошибка для разного числа деревьев, которое менялось от 1 до 101 с шагом 5. Средняя ошибка моделей была 0.0388.

Наименьшая ошибка была получена для моделей с числом деревьев 31, 36, 41, 46, 66, 71, 86, 91, 96, 101. Наилучшей будем считать модель с числом деревьев 31. Наименьшая полученная ошибка: 0.0263

Зависимость ошибки от числа деревьев

Задание 2

Сравнить классификаторы (по критерию вероятность ошибки классификации для тестовых данных) и обосновать выбор наилучшего из них.

Ошибки наилучших моделей:

- □ Наивный байесовский классификатор: 0.0195
- □ Метод ближайших соседей: 0.0789
- □ Бустинг: 0.0263

Наилучшим оказался наивный байесовский классификатор, показав наименьшую ошибку классификации на тестовых данных.

Задание 3

Удалить из базы метки классов и осуществить кластеризацию данных. Построить дендограмму. Сравнить полученные результаты с реальными метками данных. Определить долю ошибочно кластеризованных данных.

После удаления меток классов была построена дендрограмма:

Затем была проведена кластеризация данных методом k-средних. Ошибка, полученная с помощью данного метода, составила 17.75%. Ниже представлены графики сравнения данных с исходными метками классов и предсказанными.

Видим, что результат довольно неплохой, но модель плохо справляется с пересекающимися участками классов.

Задание 4

Используя логистическую регрессию в рамках метода Лассо, определить наиболее значимые признаки, влияющие на отнесение объектов к определенному классу.

Определим наиболее значимые признаки и выявим неинформативные, которые лишь мешают работе модели. Сначала используем метод LassoCV для нахождения оптимального параметра alpha = 0.20182966045941297. Затем методом Лассо получим информацию о значимости признаков. Отсортировав признаки по значениям коэффициентов β , получили следующую градацию: признаки 24, 23, 5, 25 (именно в таком порядке) наиболее важные, все же остальные признаки не вносят значительного вклада в модель.

Задание 5

Использовать автокодер для сокращения размерности или для реализации разреженного скрытого слоя нейронной сети. Преобразовать обучающую выборку при помощи автокодера и осуществить классификацию новых данных с оценкой ошибки классификации. Выполнить визуализацию новых обучающих данных при помощи метода t-SNE. Определить, когда качество классификации лучше, если использовать сокращение размерности или разреженность скрытого слоя. Выполнить классификацию с использованием зашумленного автокодера (denoising autoencoder). Сравнить полученные результаты с пп.1 и 2.

Использование автокодера для сокращения размерности

Создадим модель автокодера с помощью функции H20DeepLearningEstimator из библиотеки h2o. Чтобы извлечь данные уменьшенной размерности, воспользуемся функцией deepfeatures().

Визуализация данных сокращенной размерности представлена на рисунке ниже:

Видим, что данные неплохо различимы, но всё еще присутствуют пересечения классов, что повлияет на точность классификации.

С помощью алгоритма бустинга были получены следующие результаты классификации – ошибка составила 0.0216, что немногим меньше, чем ошибка до уменьшения размерности.

Использование автокодера для реализации разреженного скрытого слоя

Автокодер с разреженным скрытым слоем используется для извлечения более информативных и компактных представлений данных. Разреженный скрытый слой в автокодере означает, что только небольшое количество нейронов в этом слое активированы для каждого входного примера, что делает его представление более разреженным.

Разреженные представления позволяют автокодеру извлекать только наиболее важные признаки из данных.

Ниже представлена визуализация данных:

С помощью алгоритма бустинга были получены следующие результаты классификации – ошибка составила 0.01075. С использованием разреженности скрытого слоя получили лучшее качество классификации, чем с использованием сокращения размерности.

Использование зашумленного автокодера

Шумоподавляющий автокодер (Denoising Autoencoder) — это тип автокодера, который обучается удалять шум из входных данных. Основная цель шумоподавляющего автокодера - изучение более устойчивых и информативных представлений данных путем выделения существенных признаков и подавления влияния шумовых компонентов, поэтому для изучения его влияния предварительно зашумляем исходные данные путем добавления случайного шума.

Ниже представлена визуализация данных после прохождения зашумленным автокодером:

С помощью алгоритма бустинга были получены следующие результаты классификации – ошибка составила 0.0526. Шумоподавляющий автокодер дает самый низкий результат.

Сравнивая полученные результаты, можно сделать вывод, что на данном наборе данных лучше работать с разряженным автокодером.

5. Выводы

В данной работе для базы данных «Wisconsin Diagnostic Breast Cancer»:

- 1. Реализованы 3 классификатора, такие как наивный байесовский классификатор, k-ближайших соседей и бустинг. Для данных классификаторов были подобраны параметры для получения наименьшей ошибки классификации. Наилучшим классификатором оказался наивный байесовский.
- 2. Реализован метод кластеризации k-средних. Точность кластеризации составляет 82.25%, что является неплохим результатом.
- 3. Осуществлена градация признаков, влияющих на отнесение объектов к определенному классу, с помощью логистической регрессии в рамках метода Лассо.
- 4. Исследовано применение разных автокодеров. В качестве метода классификации новых данных был использован алгоритм бустинга с выявленными ранее оптимальными параметрами. Использование разреженного автокодера дало наименьшую ошибку классификации 0.01075. Худшую ошибку классификации показало использование шумоподавляющего автокодера.

5. Листинг кода

Задание 1

```
######## Наивный байесовский классификатор
def train and evaluate(test size):
  X train, X test, y train, y test = train test split(X, y, test size=test size,
random state=42)
  nb classifier = GaussianNB()
  nb classifier.fit(X train, y train)
  y pred = nb classifier.predict(X test)
  error rate = np.mean(y pred != y test)
  return error rate, nb classifier, X test, y test, y pred
test sizes = np.arange(0.1, 1.0, 0.05)
error rates = []
best model = None
best error rate = float('inf')
for test size in test sizes:
  error rate, model, X test, y test, y pred = train and evaluate(test size)
  error rates.append(error rate)
  if error rate < best error rate:
     best error rate = error rate
    best model = model
    best X test = X test
    best y test = y test
    best y pred = y pred
```

######## Метод ближайших соседей

```
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42, stratify=y)
k values = list(range(1, 11))
kernel values = ["uniform", "distance"]
distance values = list(range(1, 11))
metric values = ["euclidean", "manhattan", "chebyshev"]
best accuracy = 0
best params = \{\}
for k, kernel, distance, metric in product(k values, kernel values, distance values,
metric_values):
  model = KNeighborsClassifier(n neighbors=k, weights=kernel, p=distance,
metric=metric)
  model.fit(X train, y train)
  pred = model.predict(X test)
  accuracy = (pred == y test).mean()
  if accuracy > best accuracy:
    best accuracy = accuracy
    best params = {'k': k, 'kernel': kernel, 'distance': distance, 'metric': metric}
best model = KNeighborsClassifier(n neighbors=best params['k'],
                     weights=best params['kernel'],
                     p=best params['distance'],
                     metric=best params['metric'])
best model.fit(X train, y train)
pred = best model.predict(X test)
final accuracy = (pred == y test).mean()
```

```
print(f"Точность лучшей модели: {final accuracy:.4f}")
print("Лучшие параметры:")
print(best params)
######## Бустинг
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42, stratify=y)
y train = y train.astype('category')
y test = y test.astype('category')
tree_num = np.arange(1, 102, 5)
error boost = []
for t in tree num:
  err boost = []
  for i in range(5):
    clf = AdaBoostClassifier(n estimators=t, random state=i)
    clf.fit(X train, y train)
    pred = clf.predict(X test)
    err boost.append(1 - accuracy score(y test, pred))
  error boost.append(np.mean(err boost))
print("Средняя ошибка:", np.mean(error boost))
print("Ошибки для каждого числа деревьев:", error boost)
Задание 3
######## Дендрограмма
distance matrix = hierarchy.distance.pdist(X emb)
linkage matrix = hierarchy.linkage(distance matrix, method='single')
```

```
plt.figure(figsize=(10, 6))
dendrogram = hierarchy.dendrogram(linkage matrix, labels=y.values)
plt.show()
######## k-средних
file path data = 'wdbc.data'
df = pd.read csv(file path data, header=None, delimiter=',')
df.columns = ['ID', 'Diagnosis'] + list(df.columns[2:])
df['Diagnosis'] = df['Diagnosis'].replace({'M': 0, 'B': 1})
X = df.drop(columns=['ID', 'Diagnosis'])
y = df['Diagnosis']
X = mb = TSNE(n components=2).fit transform(X)
kmeans = KMeans(n clusters=2, random state=42)
predict kmeans = kmeans.fit predict(X emb)
errors kmeans = (predict kmeans != y).sum() / len(y)
print(f'Error (k-means): {errors kmeans * 100:.2f}%')
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
sns.scatterplot(ax=ax[0], x=X emb[:, 0], y=X emb[:, 1], hue=y, alpha=0.7)
ax[0].set title('Real')
sns.scatterplot(ax=ax[1], x=X emb[:, 0], y=X emb[:, 1], hue=predict kmeans,
alpha=0.7)
ax[1].set title('Predicted (k-means)')
fig.tight layout()
plt.show()
Задание 4
```

```
######## Лассо
lasso cv = LassoCV(cv=100, random state=25)
lasso \text{cv.fit}(X, y)
optimal alpha = lasso cv.alpha
print(optimal alpha)
x train, x test, y train, y test = train test split(X, y, test size=0.2, stratify=y,
random state=25)
lasso model = Lasso(alpha=optimal alpha, random state=25)
lasso model.fit(x train, y train)
sorted features = sorted(zip(lasso model.coef, X.columns), key=lambda x:
abs(x[0]), reverse=True)
for coef, feature name in sorted features:
  print(f'{feature name}: {coef}')
Задание 5
######## Сокращение размерности автокодером
data = h2o.H2OFrame(df)
data['Diagnosis'] = data['Diagnosis'].asfactor()
train, val = data.split frame([0.8])
predictors = [f''\{i\}''] for i in range(2, 32)]
response = "Diagnosis"
mdl = H2ODeepLearningEstimator(activation='tanh', autoencoder=True)
mdl.train(predictors, response, training frame=train)
features = mdl.deepfeatures(train, layer=1)
x new = features.as data frame()
```

```
y new = train[response].as data frame().values.reshape(1, -1)
emb = TSNE(n components=2).fit transform(x new)
x_train, x_test, y_train, y_test = train_test_split(x_new, y_new[0], test_size=0.8,
stratify=y new[0], random state=25)
Ada model = AdaBoostClassifier(n estimators=31).fit(x train, y train)
y pred = Ada model.predict(x test)
print(f'Oшибка: {(y pred != y test).sum()/len(y test)}')
####### разряж автокодер
             H2ODeepLearningEstimator(activation='tanh',
                                                             autoencoder=True,
mdl
hidden=[500,500])
mdl.train(predictors, response, training frame=train)
features = mdl1.deepfeatures(train, layer=1)
x new = features.as data frame()
emb = TSNE(n components=2).fit transform(x new)
sns.scatterplot(x=emb[:,0], y=emb[:,1], hue=y new[0], alpha=0.7)
x train, x test, y train, y test = train test split(x new, y new[0], test size=0.2,
stratify=y new[0], random state=25)
Ada model = AdaBoostClassifier(n estimators=31).fit(x train, y train)
y pred = Ada model.predict(x test)
print(f'Error: {(y pred != y test).sum()/len(y test)}')
######## зашумленный автокодер
# Часть данных которая будет зашумлена
subset size = 100
subset indices = np.random.choice(df.shape[0], size=subset size, replace=False)
```

```
X = df.drop(columns=['ID', 'Diagnosis'])
y = df['Diagnosis'].tolist()
X subset = X.iloc[subset indices]
y subset = [y[i]] for i in subset indices
noise subset = np.random.normal(0, 1, size=(subset size, X.shape[1]))
X subset with noise = X subset + noise subset
X with noise = X.copy()
X with noise.iloc[subset indices] = X subset with noise
train = h2o.H2OFrame(pd.concat([X with noise, pd.Series(y, name='Diagnosis')],
axis=1)
md11 = H2ODeepLearningEstimator(activation='tanh', autoencoder=True)
mdl1.train(predictors, response, training frame=train, validation frame=val)
features = mdl1.deepfeatures(train, layer=1)
a = train['Diagnosis'].as data frame().values.reshape(1, -1)
data new = features.as data frame()
emb = TSNE(n components=2).fit transform(data new)
sns.scatterplot(x=emb[:, 0], y=emb[:, 1], hue=a[0], alpha=0.7)
plt.show()
x train, x test, y train, y test = train test split(data new, a[0], test size=0.2,
stratify=a[0], random state=25)
bag model = AdaBoostClassifier(n estimators=31).fit(x train, y train)
predict2 = bag model.predict(x test)
print(f'Error: {(predict2 != y test).sum()/len(y test)}')
```