Linear Algebra

December 2, 2021

Problems for Practice

- 1. Let V be the set of ordered pairs (a,b) of real numbers with addition in V and scaler multiplication on V defined by (a,b)+(c,d)=(a+c,b+d) and k(a,b)=(ka,0). Determine whether V is a vector space or not?
- 2. Let V be the set of ordered pairs (a, b) of real numbers. Determine which of the following set is nota Vector space over \mathbb{R} .
 - (a) (a,b) + (c,d) = (a+d,b+c) and k(a,b) = (ka,kb)
 - (b) (a,b) + (c,d) = (a+c,b+d) and k(a,b) = (a,b)
 - (c) (a,b) + (c,d) = (0,0) and k(a,b) = (ka,kb)
 - (d) (a,b)+(c,d)=(ac,bd) and k(a,b)=(ka,kb)
- 3. Let U and W be vector space over a field \mathbb{R} . Let V be the set of orderes pairs (u, w) where $u \in U$ and $w \in W$. Show that V is a vector space over \mathbb{R} with addition in V and scaler multiplication on V defined by (u, w) + (u', w') and k(u, w) = (ku, kw).
- 4. Let V be a vector space of n- square matrices iver a field \mathbb{R} . Show that W is a subspace of V if W consist of all matrices $A = [a_{ij}]$ that are:
 - (a) symmetric
 - (b) triangular
 - (c) diagonal
 - (d) scaler
- 5. Let AX = B be a nonhomogeneous system of Linear equations in n unknowns. Show that the solution set is not a subspace of \mathbb{R}^n .
- 6. Consider the vectors u = (1, 2, 3) and v = (2, 3, 1) in \mathbb{R}^3 .
 - (a) Write w = (1,3,8) as a linear combination of u and v.
 - (b) Write w = (2, 4, 5) as a linear combination of u and v.
 - (c) Find k so that w = (1, k, 4) is a linear combination of u and v.
 - (d) Find the condition on a, b, c so that w = (a, b, c) is a linear combination of u and v.
- 7. Write the polynomial $f(t) = at^2 + bt + c$ as a linear combination of the polynomials $p_1 = (t-1)^2, p_2 = t-1, p_3 = 1.$
- 8. Find one vector in \mathbb{R}^3 that spans the intersection of U and W where U is the xy- plane and W is the space spanned by the vectors (1,1,1),(1,2,3).

- 9. If $S \subseteq T$, then show that $span(S) \subseteq span(T)$.
- 10. Determine whether the following polynomials u, v, w in P(t) are linearly dependent or independent:
 - (a) $u = t^3 4t^2 + 3t + 3$, $v = t^3 + 2t^2 + 4t 1$, $w = 2t^3 t^2 3t + 5$,
 - (b) $u = t^3 5t^2 2t + 3$, $v = t^3 4t^2 3t + 4$, $w = 2t^3 17t^2 7t + 9$
- 11. Show that the following functions f, g, h are linearly independent: $f = e^t, g(t) = e^{2t}, h(t) = e^{2t}$
- 12. Show that u = (a, b) and v = (c, d) in R^2 are linearly dependent if and only if ad bc = 0.
- 13. Suppose u, v, w are linearly independent vectors then show that S = u + v 3w, u + 3v w, v + ware linearly independent.
- 14. Find a subset of u_1, u_2, u_3, u_4 that gives a basis for $W = span(u_i)$ of \mathbb{R}^5 where:
 - (a) $u_1 = (1, -2, 1, 3, -1), u_2 = (-2, 4, -2, -6, 2), u_3 = (1, -3, 1, 2, 1), u_4 = (3, -7, 3, 8, -1)$
 - (b) $u_1 = (1, 0, 1, 0, 1), u_2 = (1, 1, 2, 1, 0), u_3 = (2, 1, 3, 1, 1), u_4 = (1, 2, 1, 1, 1)$
- 15. Consider the subspaces U = (a, b, c, d): b 2c + d = 0 and W = (a, b, c, d): a = d, b = 2c of R^4 . Find a basis ans the dimension of U, W and $U \cap W$.
- 16. Find a basis and the dimension of the solution space W of the following homogeneous

$$x + 2y - z + 3s - 4t = 0$$
; $2x + 4y - 2z - s + 5t = 0$; $2x + 4y - 2z + 4s - 2t = 0$.

- 17. Find a homogeneous system whose solution space is spanned by (1, -2, 0, 3, -1), (2, -3, 2, 5, -3), (1, -2, 1, 2, -2).
- 18. Determine whether each of the following is a basis of vector space $P_n(t)$:
 - (a) $1.1+t.1+t+t^2.1+t+t^2+t^3....1+t+t^2+...+t^{n-1}+t^n$
 - (b) $1+t, t+t^2, t^2+t^3, \dots, t^{n-1}, t^n$
- 19. Find a basis and the dimension of the subspace W of P(t) spanned by
 - (a) $u = t^3 + 2t^2 2t + 1$, $v = t^3 + 3t^2 + -3t + 4$, $v = 2t^3 + t^2 7t 7$.
 - (b) $u = t^3 + t^2 3t + 2$, $v = 2t^3 + t^2 + t 4$, $w = 4t^3 + 3t^2 5t + 2$
- 20. Find a basis and the dimension of the subspace W of $V=M_{2,2}$ spanned by $A=\begin{bmatrix}1&-5\\-4&2\end{bmatrix}, B=\begin{bmatrix}1&1\\-1&5\end{bmatrix}, C=\begin{bmatrix}2&-4\\-5&7\end{bmatrix}, D=\begin{bmatrix}1&-7\\-5&1\end{bmatrix}$

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, C = \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, D = \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}$$

- 21. Construct a subset of the X-Y plane \mathbb{R}^2 that is
 - a) closed under vector addition and subtraction, but not scalar multiplication.
 - b) closed under scalar multiplication but not under vector addition.
- 22. Which of the following are subspaces of R^{∞} ?
 - a) All sequences like (1,0,1,0,...) that include infinitely many zeros.
 - b) All sequences $(x_1, x_2, x_3, ...)$ with $x_j = 0$ from some point onward.
 - c) All decreasing sequences: $x_{j+1} \le x_j$ for each j.
- 23. Describe the column space and the nullspace of the matrices:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- 24. Let P be the plane in 3-space with equation x + 2y + z = 6. What is the equation of the plane P_0 through origin parallel to P? Are P and P_0 subspace of R^3 ?
- 25. a) Describe a subspace of M that contains $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not

$$B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}.$$

- b) If a subspace of M contains A and B, must it contain I?
- c) Describe a subspace of M that contains no nonzero diagonal matrices.
- 26. The four types of subspaces of \mathbb{R}^3 are planes, lines, \mathbb{R}^3 itself, or Z contains only (0,0,0).
 - a) Describe the three types of subspaces of \mathbb{R}^2 .
 - b) Describe the five types of subspaces of \mathbb{R}^4 .
- 27. Let P be the plane in \mathbb{R}^3 with euquation x+y-2z=4. The origin (0,0,0) is not in P. Find two vectors in P and check that their sum is not in P.
- 29. If A is any 8 by 8 invertible matrix, then its column space is Why?
- 30. True or false (with counterexample if false)?
 - a) The vector b that are not in the coulumn space form a subspace.
 - b) If coulmn space contains only the zero vector, then A is the zero matrix.
 - c) the column space of 2A equals the column space of A.
 - d) the coulmn space of A-I equals the column space of A.
- 31. Why isn't R^2 a subspace of R^3 ?
- 32. Find the row echelon form and hence the rank of following matrices:
 - a) the 3 by 4 matrix of all 1s.
 - b) the 4 by 4 matrix with $a_{ij} = (-1)^{ij}$.
 - c) the 3 by 4 matrix with $a_{ij} = (-1)^j$.
- 33. What conditions on b_1, b_2, b_3, b_4 make each system solvable? Solve for x:

a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 2 & 5 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$
 b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 5 & 7 \\ 3 & 9 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}.$$

- 34. The complete solution of $Ax = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbf{c} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Find A.
- 35. True or false (Give reason if true, or counterexample if false)
 - a) A square matrix has no free variables.
 - b) an invertible matrix has no free variables.
 - an m by n matrix has no more than n pivot variables.
 - d) an m by n matrix has no more than m pivot variables.

3

- 36. Decide the dependence or independence of :
 - a) the vectors (1,3,2), (2,1,3) and (3,2,1).
 - b) the vectors (1, -3, 2), (2, 1, -3) and (-3, 2, 1)
- 37. Suppose v_1, v_2, v_3 and v_4 are vectors in \mathbb{R}^3 .
 - a) These four vectors are dependent becouse
 - b) the two vectors v_1 and v_2 will be dependent if
 - c) the vector v_1 and (0,0,0) are dependent because
- 38. Find the basis for each of these subspaces of \mathbb{R}^4 :
 - a) All vectors whose components are equal.
 - all vectors whose components add to zero.
 - c) all vecors that are perpendicular to (1, 1, 0, 0) and (1, 0, 1, 1).
 - d) the column space and null space of $U = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$.