ST2131 Probability Help Sheet for Final Examinations

Given r experiments:	
Number of Outcomes (each experiment i has n_i possible outcomes)	$n_1 n_2 \cdots n_r$
Given n distinct objects:	
Number of Permutations	n!
Number of Combinations (of <i>r</i> items that we choose from the objects)	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$
Number of Divisions (of respective sizes n_1, n_2, \dots, n_r)	$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$
Given n objects, not necessarily distinct:	
Number of Permutations (if among the objects, n_1, n_2, \dots, n_r of them are alike)	$\frac{n!}{n_1! n_2! \cdots n_r!}$

Probability Formulae	
Null Event Ø	$P(\emptyset) = 0$
Union (of a finite sequence of mutually exclusive events)	$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$
Complement Event A ^c	$P(A^c) = 1 - P(A)$
Subset	$P(A) + P(BA^c) = P(B)$
A of an event B, ie. $A \subset B$	$P(A) \le P(B)$
Union (of any two events)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
For a sample space S =	$P(A) = \frac{Number\ of\ outcomes\ in\ A}{Number\ of\ outcomes\ in\ S}$
$\{s_1, s_2, \dots, s_n\}$ with a finite number of equally likely outcomes	$P(s_i) = \frac{1}{ S }$
Inclusion-Exclusion Principle	
$P(A_1 \cup A_2 \cup \cdots \cup A_n) =$	
$\sum_{i=1}^{r} P(A_i) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1} A_{i_2}) + \dots + (-1)^{r+1} \sum_{1 \le i_1 < \dots < i_r \le n} P(A_{i_1} \cdots A_{i_r}) + \dots + (-1)^{n+1} P(A_1 \cdots A_n)$	
The notation $\sum_{1 \le i_1 < \cdots < i_r \le n} P(A_{i_1} \cdots A_{i_r})$ represents the sum of the probabilities of all possible intersections of $A_{i_1} \cdots A_{i_r}$. For example, when $n=4$,	
$\sum_{\{i,j,k',k',k'',k'',k'',k'',k'',k'',k'',k''$	

Continuity of Probability		
For a sequence of events	$s\{E_n\}, n \ge 1,$	$\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$
Increasing Sequence	$E_1 \subset E_2 \subset \cdots \subset E_n \subset E_{n+1} \subset \cdots$	$\lim_{n\to\infty} E_n = \bigcup_{i=1}^{\infty} E_i$
Decreasing Sequence	$E_1\supset E_2\supset\cdots\supset E_n\supset E_{n+1}\supset\cdots$	$\lim_{n\to\infty} E_n = \bigcap_{i=1}^{\infty} E_i$

Partition of a Sample Sp	ace		
The events A_1, A_2, \dots, A_n are said to partition the sample space S if they are both:			
Mutually Exclusive,	$A_i A_j = \emptyset$ when $i \neq j$	and Collectively Exhaustive,	$\bigcup_{i=1}^{n} A_i = S$

Baye's Laws	
Conditional Probability	$P(B A) = \frac{P(BA)}{P(A)}$
Baye's First Law	$P(B) = P(B A_1)P(A_1) + \cdots + P(B A_n)P(A_n)$
Baye's Second Law	$P(A_i B) = \frac{P(B A_i)P(A_i)}{P(B A_1)P(A_1) + \dots + P(B A_n)P(A_n)}$
Independent Events	
Two Independent Events	P(AB) = P(A)P(B)
Conditional Probability	P(A B) = P(A)
If A and B are independent, then A^c and B, A and B^c , A^c and B^c are also independent.	
Events A_1, A_2, \dots, A_n are said to be independent if, for every sub-collection of events $A_{i_1}, A_{i_2}, \dots, A_{i_r}$,	
$P(A_{i_1}A_{i_2}\cdots A_{i_r}) = P(A_{i_1})\cdots P(A_{i_r})$	

Probability Mass Functions	(PMF)	
	$p_X(x) = \begin{cases} P(X = x), & x = x_1, x_2, \dots \\ 0, & \text{otherwise} \end{cases}$	
 p_x(x_i) ≥ 0 for i = 1,2, ··· p_x(x) ≥ 0 for all other values of x. ∑_{i=1}[∞] p_x(x_i) = 1 The values of x, for which the PMF is strictly positive corresponds with the support of X. 		
$P(a \le X \le b)$	For $B = [a, b], P(X \in B) = \sum_{x \in B} p_x(x)$	

Joint Probability Mass Fund	ctions	
$p_{X,Y}(x,y) = P(.$	X=x,Y=y)	$p(x_1, x_2, \dots, x_n) = P(X_1 = x_1, \dots, X_n = x_n)$
$P(a \le X \le b)$		$\sum_{a_1 < x \le a_2} \sum_{b_1 < y \le b_2} p_{X,Y}(x,y)$
$P(X \le a, Y \le b)$		$\sum_{x \le a} \sum_{y \le b} p_{x,y}(x,y)$
P(X>a,Y>b)		$\sum_{x>a}\sum_{y>b}p_{x,y}(x,y)$

Conditional Probability Mass Functions $p_{X|Y}(x|y):=P(X=x|Y=y)=\frac{p_{X,Y}(x,y)}{p_Y(y)}$

Probability Density Functions (PDF)		
X is a continuous random variable if there exists a non-negative function f_X defined for all real $x \in \mathbb{R}$, having the property that for any set B of real numbers,		
$P(X \in B) = \int_{B} f_{X}(x) \ dx$		
$P(a \le X \le b)$	For $B = [a, b], P(X \in B) = \int_a^b f_X(x) dx$	
$P(x - \frac{\epsilon}{2} \le X \le x + \frac{\epsilon}{2})$	Considering an interval of length ϵ , $\int_{x-\frac{\epsilon}{2}}^{x+\frac{\epsilon}{2}} f_x(x) dx \approx \epsilon f(x)$	

Joint Probability Density Functions		
$f_{X,Y}(x,y) = P(X = x, Y = y)$		
$P(a \le X \le b)$	$\int_{A} \int_{B} f_{X,Y}(x,y) dy dx = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x,y) dy dx$	
$P(X \le a, Y \le b)$	$F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$	
Transformations of Joint Random Variables		
Suppose that $U = g(X, Y)$ and $V = g(X, Y)$, we can assume that X and Y are continuously distributed, and		

Suppose that U=g(X,Y) and V=g(X,Y), we can assume that X and Y are continuously distributed, and that you can uniquely solve X and Y in terms of U and V. Let x=a(u,v), and y=b(u,v). Then the joint PDF of U and V is given by

$f_{U,V}(u,v) = f_{X,Y}(x,y) J(x,y) ^{-1} \text{ where } J(x,y) :=$	$= \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{vmatrix} = \frac{\partial g}{\partial x} \frac{\partial h}{\partial y} - \frac{\partial g}{\partial y} \frac{\partial h}{\partial x} \neq 0.$
---	--

Conditional Probability Density Functions		
$f_{X Y}(x y) := \frac{f_{XY}(x,y)}{f_Y(y)}$		
$P(X \in A \mid Y = y)$	$\int_A f_{X Y}(x y) dx$	

Joint Distribution Functions (DF) Discrete Random Variables	Continuous Random Variables
$F_{X,Y}(x,y) = P(X \le x, Y \le y)$	$F_{X,Y}(a,b) = P(X \le a, Y \le b)$
$F(x_1, x_2, \cdots, x_n) = P(X_1 \le x_1, \cdots, X_n \le x_n)$	$= \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) dy dx$

Conditional Distribution Functions (DF) Discrete Random Variables	Continuous Random Variables
$F_{X Y}(x y) = P(X \le x Y = y) = \sum_{a \le x} p_{X Y}(a y)$	$F_{X Y}(x y) = P(X \le x \mid Y = y) = \int_{-\infty}^{x} F_{X Y}(t y) dt$

Interconversions between Probability Fo	unctions	
PMF Summation CDF	$F_{x}(x) = \sum_{y \in x} p_{x}(y)$	
CDF Subtraction PMF	$p_{X}(x) = F_{X}(x) - F_{X}(x-1)$	
$PDF \xrightarrow{integrate} CDF$	$F_X(x) = \int_{-\infty}^{x} f_X(t) dt$	
CDF differentiate PDF	$F'_{x}(x) = f_{x}(x)$	
	$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$	
Joint CDF take limit Marginal CDF	$F_{Y}(y) = \lim_{x \to \infty} F_{X,Y}(x,y)$	
	$F(x_1, x_2) = \lim_{x_3 \to \infty} F(x_1, x_2, x_3)$	
$Joint\ PDF \xrightarrow{double\ integral} Joint\ CDF$	$F_{XY}(a,b) = \int_a^a \int_b^b f_{XY}(x,y) dy dx$	
Joint PMF	$p_X(x) = P(X = x) = \sum_{y \in \mathbb{R}} p_{X,Y}(x,y)$	
	$p_Y(y) = P(Y = y) = \sum_{x \in \mathbb{R}} p_{X,Y}(x,y)$	
Joint PDF	$p_X(x) = P(X = x) = \sum_{y \in \mathbb{R}} p_{X,Y}(x, y)$ $p_Y(y) = P(Y = y) = \sum_{x \in \mathbb{R}} p_{X,Y}(x, y)$ $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$ $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$ $f_{X,Y}(x, y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x, y)$	
Joint PDF	$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$	
Joint CDF 2nd derivative Joint PDF	$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$	
Condtional PMF → Joint PMF	$p_{X,Y}(x,y) = p_{X Y}(x y)p_Y(y) = p_{Y X}(y x)p_X(x)$	
Condtional PMF \rightarrow Marginal PMF	$p_{X Y}(x y) = p_X(x)$ if X and Y are independent	
Condtional PDF → Marginal PDF	$f_{X Y}(x y) = f_X(x)$ if X and Y are independent	

X and Y are independent	X_1, \cdots, X_n are independent
$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$	
$p_{X,Y}(x,y) = p_X(x)p_Y(y)$	$p(x_1, x_2, \dots, x_n) = p_{X_1}(x_1)p_{X_2}(x_2) \dots p_{X_n}(x_n)$
$F_{X,Y}(x,y) = F_X(x)F_Y(y)$	$F(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2) \dots F_{X_n}(x_n)$

Expectation	Discrete	Continuous	
E(X)	$\sum_{x} x \cdot p_{x}(x)$	$\int_{-\infty}^{\infty} x f_{x}(x) \ dx$	
E[g(X)]	$\sum_{i} g(x_i) \cdot p_x(x_i) = \sum_{x} g(x) \cdot p_x(x)$	$\int_{-\infty}^{\infty} g(x) f_x(x) \ dx$	
E(aX+b)	aE(X) +	- b	
Expectations of Jointly	Distributed Variables		
E(X+Y)	E(X) + E	(Y)	
$E(\sum_{i=1}^{n} X_i)$	$\sum_{i=1}^{n} E(X_i)$		
E[g(X,Y)]	$\sum_{y}\sum_{x}g(x,y)p_{X,Y}(x,y)$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy$	
$E[g(X_1, X_2, \cdots, X_n)]$	$\sum_{x_n} \cdots \sum_{x_2} \sum_{x_1} g(x_1, x_2, \cdots, x_n) p(x_1, x_2, \cdots, x_n)$		
E[g(X,Y) + h(X,Y)]	E[g(X,Y)] + E[h(X,Y)]		
E[g(X) + h(Y)]	E[g(X)] + E[h(Y)]		
Conditional Expectation			
E[X Y=y]	$\sum_{x} p_{X Y}(x y)$	$\int_{-\infty}^{\infty} x f_{X Y}(x y) dx$	

E[X Y]	A function of a random variable Y whose value at $Y = y$ is $E[X Y = y]$. Simply replace y in the formula for $E[X Y = y]$ with Y .		
E[g(X) Y=y]	$\sum_{x} g(x) p_{X Y}(x y)$	$\int_{-\infty}^{\infty} g(x) f_{X Y}(x y) dx$	
$E[\sum_{k=1}^{n} X_k Y = y]$	$\sum_{k=1}^{n} E[X_k Y$	= <i>y</i>]	
E[g(X)h(Y) Y=y]	h(y)E[g(X)	Y = y	
E[XY Y=y]	yE[X Y =	= y]	
Properties of Expected	Values		
Tail Sum Formula	For nonnegative integer-valued X, $E(X) = \sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=0}^{\infty} P(X > k)$	For nonnegative continuous X, $E(X) = \int_0^\infty P(X > x) dx$ $= \int_0^\infty P(X \ge x) dx$	
Monotone Property	If $X \le Y$, then $E(X) \le E(Y)$.		
Independence	For any function $g, h: \mathbb{R} \to \mathbb{R}$, we have: E[g(X)h(Y)] = E[g(X)h(Y)] = E[g(X)h(Y)] = E[g(X)h(Y)] = E[g(X)h(Y)]	g(X)]E[h(Y)]	
Nonnegative Condition	If $g(x,y) \ge 0$ whenever $p_{X,Y}(x,y) > 0$, then $E[g(X,Y)] \ge 0$.	If $g(x, y) \ge 0$ whenever $f_{X,Y}(x, y) > 0$, then $E[g(X, Y)] \ge 0$.	
Iterated Expectation Fo	rmula		
E[X] = E[E(X Y)]	$\sum_{y} E(X Y=y)P(Y=y) \text{ if Y is discrete}$	$\int_{-\infty}^{\infty} E(X Y=y) f_Y(y) dy$ if Y is continuous	
$P(A)$ $= E[I_A]$ $= E[E(I_A Y)]$	$\sum_{y} E(I_A Y = y)P(Y = y)$ $= \sum_{y} P(A Y = y)P(Y = y)$	$\int_{-\infty}^{\infty} E(I_A Y=y) f_Y(y) dy$ $= \int_{-\infty}^{\infty} P(A Y=y) f_Y(y) dy$	

Variance	Discrete	Continuous	
var(X)	$E(X - \mu)^2 = E(X^2) - [E(X)]^2$	$\int_{-\infty}^{\infty} (x - E(X))^2 f_X(x) dx$	
var(aX + b)	a ² var(X)	
Variance of Jointly Distr	buted Variables		
$var(\sum_{i=1}^{n} X_{i})$	If X_i s are not independent, $\sum_{i=1}^n var(X_i) + 2\sum_{i < i} var(X_i) + 2\sum_{i < i} var(X_i) + \sum_{i < i} var(X_i) = \sum_{i < i} var(X_$	27	
Properties of Variance			
Nonnegative	$var(X) \ge 0$		
Consequence	$E(X^2) \ge [E(X^2)]$	()] ² ≥ 0	
Degenerate Random Variables	var(X) = 0 if and only if X is a degenerate random variable, ie. takes only one value, its mean.		

Covariance	Discrete	Continuous
cov(X,Y)	$E(X - \mu_X)(Y - \mu_Y) =$	E(XY) - E(X)E(Y)
cov(X,X)	var((X)
cov(Y, X)	cov()	(,Y)
cov(aX, bY)	ab × cor	$\sigma(X,Y)$
$cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j)$	$\sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j$	$cov(X_i, Y_j)$
Independent Random Variables	cov(X,1	') = 0

Standard Deviation	Discrete	Continuous
σ_{x}	√-	var(X)
$\sigma(aX+b)$	$\sigma(aX + b) = a \sigma(X)$	

Dis	screte Random Variable	P(X = k)	E(X)	var(X)
Bernoulli $Be(p)$	$X = \begin{cases} 1, & if success \\ 0, & if failure \end{cases}$	P(X = 1) = p $P(X = 0) = 1 - p$	p	p(1-p)
Binomial $Bin(n, p)$	X is the number of successes in n Bernoulli(p) trials.	$\binom{n}{k} p^k q^{n-k}$	np	np(1-p)
Geometric	X is the number of Bernoulli(p) trials required to obtain the 1st success.	pq^{k-1}	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Geom(p)	X' is the number of failures in the Bernoulli(p) trials in order to obtain 1^{st} success, ie. $X = X' + 1$.	pq^k	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Negative Binomial NB(r,p)	X is the number of Bernoulli(p) trials required to obtain r successes. Note: $Geom(p) = NB(1, p)$.	$\binom{k-1}{r-1}p^rq^{k-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Poisson $Poisson(\lambda)$	Eg. Number of misprints on a page, number of car accidents in a day.	$\frac{e^{-\lambda}\lambda^k}{k!}$	λ	λ
Hyper- geometric H(n,N,m)	Eg. Set of N balls, m red, (N – m) blue. Choose n balls without replacement. X is the number of red balls in our sample.	$\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}$	nm N	$\frac{nm}{N} \begin{bmatrix} (n-1)(m-1) \\ N-1 \\ +1 - \frac{nm}{N} \end{bmatrix}$

Sum of Independent Discrete Random Variables X and Y		
X	Y	X+Y
$X \sim Poisson(\lambda)$	$Y \sim Poisson(\mu)$	$X + Y \sim Poisson(\lambda + \mu)$
$X \sim Bin(n, p)$	$Y \sim Bin(m, p)$	$X + Y \sim Bin(n + m, p)$
$X \sim Geom(p)$	$Y \sim Geom(p)$	$X + Y \sim NB(2, p)$

Continuous	$f_X(x)$	$F_X(x)$	E(X)	var(X)
Uniform $X \sim U(a, b)$	$ \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & otherwise \end{cases} $	$\begin{cases} 0, & \text{if } x < a \\ \frac{(x-a)}{(b-a)}, & \text{if } a \le x < b \\ 1, & \text{if } b \le x \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal $X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{(2\sigma^2)}}$		μ	σ^2
Standard Normal $Z \sim N(0,1)$		$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}u^2} du$	0	1
Exponential $X \sim Exp(\lambda)$	$\begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$	$\begin{cases} 0, & if \ x \le 0 \\ 1 - e^{-\lambda x}, & if \ x > 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma $X \sim \Gamma(\alpha, \beta)$	$\begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$ $\Gamma(\alpha) = \int_{0}^{\infty} e^{-y} y^{\alpha-1} dy$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$

Moment Generating Function	Discrete	Continuous
$M_X(t) = E[e^{tX}]$	$\sum_{x} e^{tX} \cdot p_{x}(x)$	$\int_{-\infty}^{\infty} e^{tX} f_x(x) \ dx$
$E[X^n]$	$M_X^n(0) := \frac{d^n}{dt^n} M_X(t) _{t=0}$	
Independent Random Variables	If X and Y are independent, then $M_{X+Y}(t) = M_X(t)M_Y(t)$	
Test for Same Distribution	Suppose there exists $h > 0$ such that $M_X(t) = M_Y(t)$, $\forall t \in (-h, h)$. Then X and Y have the same distribution, i.e. $F_x = F_x$: or $f_x = f_x$.	

Limit Theorems		
Let X_1, X_2, \cdots be a sequence of inde Strong Law of Large Numbers If each has a finite mean of $\mu = E(X_i)$,	ependent and identically distributed rank $\frac{X_1 + X_2 + \dots + X_n}{n} \to \mu \text{ as } n \to \infty$	$P(\{\lim_{n\to\infty} \frac{X_1 + X_2 + \dots + X_n}{n} = \mu\})$
Central Limit Theorem If each as a mean μ and variance σ^2 ,	$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma \sqrt{n}} \text{ tends to the standard normal } as n \to \infty$	
Normal Approximation $\frac{\ddot{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\lim_{n\to\infty} P(\frac{X_1+X_2+\dots+X_n-n\mu}{\sigma\sqrt{n}} \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}u^2} du$ $P(a \le \frac{X_1+X_2+\dots+X_n-n\mu}{\sigma\sqrt{n}} \le b) = P(\frac{a-\mu}{\sigma/\sqrt{n}} \le \frac{b-\mu}{\sigma/\sqrt{n}})$ $\approx \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{1}{2}u^2} du$	
Normal Approximation to Binomial	Given a binomial distribution $X \sim Bin(n,p)$, the CLT yields that $\frac{X - np}{\sqrt{npq}} \approx Z \sim (0,1), or \ Bin(n,p) \approx N(np,npq)$ The above approximation is generally good for $np(1-p) \geq 10$. It is further improved if we incorporate a continuity correction :	
Continuity Correction		
P(X = k)	$P(k - \frac{1}{2} < X < k + \frac{1}{2})$	
$P(X \ge k)$	$P(X \ge k - \frac{1}{2})$ $P(X \le k + \frac{1}{3})$	
$P(X \leq k)$	$P(X \le k + \frac{1}{2})$	
P(X > k)	$P(X \ge k + 1) = P(X \ge k + \frac{1}{2})$	
P(X < k)	$P(X \le k+1) = P(X \le k - \frac{1}{2})$	