Практическая работа по теме: «Java Core(Types, NIO, Collections, Threads)»

выполнил: Бузов Артур

1. Особенности реализации.

Для умножения матриц использовал стандартный алгоритм умножения со сложностью $O(n^3)$.

Протестировал умножение матриц размерностью 1000х1000, используя для хранения чисел массивы double [][] и ArrayList<ArrayList<Double>> (табл. 1).

Таблица 1 – Временя умножения при использовании разных типов массивов

Размер матрицы 1000x1000				
	Тип массива			
Количество потоков	double [][]	ArrayList <arraylist<double>></arraylist<double>		
1	46c.	99c.		
2	21c.	45c.		

Как видно из таблицы умножение матриц с использованием ArrayList значительно медленнее, поэтому в дальнейшем все остальные тесты я проводил с double [][].

Многопоточное умножение реализовал по следующей схеме:

- создается группа потоков, им передается умножаемые матрицы (A, B) и матрица (C), в которую будет записываться результат;
- каждый поток берет одну строку матрицы C через синхронизированный метод и увеличивает общее число строк (rowForTpread) взятых в работу на 1;
- потоки перед тем, как взять новую строку матрицы C в работку получают значение переменной rowForTpread, если она равна числу строк матрицы C то прекращают свою работу.

Провел эксперимент для потоков с количеством строк, которые они берут для себя в работу (табл. 2). Проводил по три замера для каждого случая.

Как видно из таблицы 2, изменение количества отдаваемых одновременно строк (*stepRow*) потоку не особо влияет на быстродействие, для упрощения алгоритма управления потоками в дальнейшем использовал шаг 1.

Таблица 2 – Изменение шага потоков

Размер матрицы 1000х1000					
Количество потоков	Шаг строк 1	Шаг строк 50	Шаг строк 100		
2	21,2 c.	21,5 c.	21,9 c.		
4	21,1 c.	22,3 c.	22,9 c.		
6	20,7 c.	21,0 c.	20,5 c.		
8	20,9 c.	21,2 c.	21,0 c.		
10	20,3 c.	20,5 c.	20,4 c.		

Проверку результатов умножения матриц на Java провел в системе Matlab.

Листинг программы указан на рисунках 1-3.

Рисунок 1 – Листинг программы в Matlab

```
Editor - D: \Diploma\Practice3\MultiplicationOfMatrixesuniversal.m*
File Edit Text Go Cell Tools Debug Desktop Window Help
× × × 0
*= - 1.0
            + + 1.1
20 -
       C = roundn(A*B, -3);
21
       %Чтение данных, которые получены при умножениии матриц средствами Java,
22
       %из файла в матрицу CforJava
23 -
       CforJava = importdata(fileNameOfMatrixforJavaC, ' ');
2.4
       %Нахождение разницы между матрицами по модулю
25 -
       Comparison = abs(C-CforJava);
26
       %Нахождение максимального элемента, характеризующего погрешность
27
       %вычислений.
28 -
       MaxElevent = max(max(Comparison));
29 -
       disp(MaxElevent);
30 -
       CforSave = C';
31
       %Запись результатов умножения матриц средствами Matlab в файл
32 -
       formatSpec = "";
33 -
     for i=1:rowsA;
34 -
       formatSpec = strcat(formatSpec, '%6.3f');
35 -
36 -
       formatSpec = strrep(formatSpec, '%', ' %');
37 -
      format = strcat(formatSpec, '\n');
38 -
       fileID = fopen(fileNameOfMatrixforMatlaC, 'w');
39 -
       fprintf(fileID, format, CforSave);
40 -
       fclose(fileID);
41 -
       fileNameOfMatrixTreadArr = strcat('C', num2str(rowsA), 'x',...
42
           num2str(colsB), 'forJavaTreadArr', '.txt');
43 -
       fileNameOfMatrixTreadDouble = strcat('C', num2str(rowsA), 'x',...
44
           num2str(colsB), 'forJavaTreadDouble', '.txt');
45 -
       CforJavaTreadArr = importdata(fileNameOfMatrixforJavaC, ' ');
46 -
       CforJavaTreadDouble = importdata(fileNameOfMatrixforJavaC, ' ');
47
       %Нахождение разницы между матрицами по модулю
48 -
       ComparisonTreadDouble = abs(C-CforJavaTreadDouble);
49
       %Нахождение разницы между матрицами по модулю
50 -
       ComparisonTreadArr = abs(C-CforJavaTreadArr);
```

Рисунок 2 – Листинг программы в Matlab

Рисунок 3 – Окно программы в Matlab

При умножении матриц размером меньше 100x100 использование многопоточности показывало худший результат по времени в сравнении с однопоточным умножением. Эту логику отразил в коде, при вызове многопоточного умножения проверяется размер матрицы, если он меньше 100, то вызывается один поток, количество вызываемых потоков зависит от количества ядер процессора на компьютере:

quantityOfStreams = Runtime.getRuntime().availableProcessors();

На моем компьютере двухядерный процессор, я пробовал создать потоков больше количества ядер, эксперимент провел на умножении матриц размерностью 2000х2000 и 5000х5000 (табл. 3).

Таблица 3 – Использование различного количества потоков

размер матрицы 2000x2000		размер матрицы 5000х5000		
кол-во потоков	время, с	кол-во потоков	время, с	
1	385	1	6415 (~1 час 47 мин.)	
2	192	2	3446 (~57 мин.)	
4	194	4	3440 (~57 мин.)	
8	185	8	3485 (~58 мин.)	

Умножение матриц 10000x10000 на моем компьютере провести не удалось из-за нехватки памяти (рис. 4).

RMN1	Тип	Размер	Дата
- u		<Папка>	05.11.2014 16:59
git		<Папка>	05,11,2014 16;19
build build		<Папка>	05.11.2014 14:11
dist dist	<Папка>05.11,2014 14:11		
nbproject		<Папка>	30.10.2014 13:44
src	<Папка>05.11.2014 11:48		
gitignore gitignore		6	05.11.2014 14:07
A50x20	txt	6 107	05.11.2014 14:48
A2000x2000	t×t	24 004 791	05.11.2014 14:54
A5000x5000	txt	150 011 297	04.11.2014 00;50
A10000×10000	t×t	600 025 183	04.11.2014 02:03
B20x50	txt	6 047	05.11.2014 14:48
B2000x2000	t×t	24 004 788	05.11.2014 14:54
₿ 85000×5000	t×t	150 011 287	04.11.2014 00;51
B10000×10000	t×t	600 024 872	04.11.2014 02:03
build	×ml	3 612	30,10,2014 13:44
C50x50forJavaDouble	txt	15 107	05.11.2014 14:48
C50x50forJavaThreadDouble	txt	20 107	05.11.2014 14:48
C2000x2000forJavaDouble	t×t	24 004 011	05.11.2014 15:03
C2000x2000forJavaThreadDouble	txt	40 004 011	05.11.2014 15:16
C5000x5000forJavaDouble	txt	150 011 287	04.11.2014 00:51
C5000x5000forJavaThreadDouble	txt	150 011 287	04.11.2014 00:51
manifest manifest	mf	85	30.10.2014 13:45

Рисунок 4 – Результаты создания и умножения матриц