Integers

Chapter 2 of B&O

Encoding Integers

Unsigned

Two's Complement

- C short 2 bytes long

	Decimal	Hex	Binary	
X	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

• Sign Bit

- ficant bit to called ign bit
- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	1521	13	-152	13
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum		15213		-15213

to to gne

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	– 7
1010	10	– 6
1011	11	– 5
1100	12	–4
1101	13	-3
1110	14	-2
1111	15	<u>–1</u>

Numeric Ranges

Unsigned Values

$$-UMin = 0$$

$$000...0$$

$$-UMax = 2^w - 1$$

$$111...1$$

Two's Complement Values

$$- TMin = -2^{w-1}$$

$$100...0$$

$$- TMax = 2^{w-1} - 1$$

$$011...1$$

- Other Values
 - Minus 1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W						
	8	16	32	64			
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615			
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807			
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808			

Observations

$$|TMin| = TMax + 1$$

Asymmetric range

$$UMax = 2 * TMax + 1$$

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG MAX
 - LONG_MIN
- Values platform-specific

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;
```

- Resulting Value
 - No change in bit representation
 - Nonnegative values unchanged
 - ux = 15213
 - Negative values change into (large) positive values
 - uy = 50323

Relation between Signed & Unsigned

Maintain Same Bit Pattern

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Illustration

2's Comp. → Unsigned

Relation Between Signed & Unsigned

Weight	-152	213	503	323
1	1	1	1	1
2	1	2	1	2
4	0	0	0	0
8	0	0	0	0
16	1	16	1	16
32	0	0	0	0
64	0	0	0	0
128	1	128	1	128
256	0	0	0	0
512	0	0	0	0
1024	1	1024	1	1024
2048	0	0	0	0
4096	0	0	0	0
8192	0	0	0	0
16384	1	16384	1	16384
32768	1	-32768	1	32768
Sum		-15213		50323

uy = y + 2 * 32768 = y + 65536

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

Add U while coding if you want it unsigned

convert 2s to unsigned

Constant₁ Constant₂ Relation **Evaluation** 011unsigned signed **-**1 comparing 11111 (UMax) to 0000s **-**1 unsigned 0Usigned 2147483647 -2147483648 unsigned 2147483647U -2147483648 < You don't compare the actual signed -1value, you compare the binary unsigned (unsigned) -1 -2unsigned 2147483647 2147483648U signed 2147483647 (int) 2147483648U >

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

• Rule:

– Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex		Decimal Hex Binary		
X	15213	3B	6D		00111011	01101101
ix	15213	00 00 3B	6D	00000000 00000000	00111011	01101101
У	-15213	C4	93		11000100	10010011
iy	-15213	FF FF C4	93	11111111 11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Justification For Sign Extension

- Prove Correctness by Induction on k
 - Induction Step: extending by single bit maintains value

– Key observation:

$$-2^{w-1} = -2^w + 2^{w-1}$$

– Look at weight of upper bits:

$$X -2^{w-1} X_{w-1}$$

 $X' -2^{w} X_{w-1} + 2^{w-1} X_{w-1} = -2^{w-1} X_{w-1}$

Beware When Using Unsigned

- Don't Use Just Because Number Nonzero
 - Easy to make mistakes

```
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

if cnt was -1 then it would result in a huge looping number than expected

Negating with Complement & Increment

Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

- Observation:
$$\sim x + x == 1111...11_2 == -1$$

$$+ \sim x 0 1 1 0 0 0 1 0$$

Increment

$$- \sim x + x + (-x + 1) == -1 + (-x + 1)$$

 $- \sim x + 1 == -x$

Comp. & Incr. Examples

x = 15213

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
~X	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 1001001 1
У	-15213	C4 93	11000100 10010011

C

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits $UAdd_w(u, v)$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

unsigned to truncate

Visualizing Integer Addition

Integer Addition

- -4-bit integers u, v
- -Compute true sum $Add_4(u, v)$
- Values increaselinearly with u andv
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum ≥ 2^w
- At most once

True Sum

Overflow

Mathematical Properties

Modular Addition

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$\mathsf{UAdd}_{w}(u\,,\,0)\,=\,u$$

Every element has additive inverse

• Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits $TAdd_w(u, v)$

u+ v u + v

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t

Characterizing TAdd

Functionality

- True sum requires w+1bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

True Sum

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Visualizing 2's Comp. Addition

Values

- 4-bit two's comp.
- Range from -8 to +7
- Wraps Around
 - If sum \geq 2w-1
 - Becomes negative
 - At most once
 - If sum < -2w-1
 - Becomes positive
 - At most once

PosOver

Detecting 2's Comp. Overflow

Task

- Given $s = TAdd_w(u, v)$
- Determine if $s = Add_w(u, v)$
- Example

int s, u,
$$v$$
;
 $s = u + v$;

Claim

– Overflow iff either:

```
u, v < 0, s \ge 0 (NegOver)

u, v \ge 0, s < 0 (PosOver)

ovf = (u < 0 == v < 0) && (u < 0 != s < 0);
```

Multiplication

- Computing Exact Product of w-bit numbers x, y
- Either signed or unsigned
- Ranges
 - Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
 - Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2w-1 bits
 - Two's complement max: $x * y ≤ (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (TMinw)²
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages (GMP, BigNum, etc.)

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

- Truncates product to w-bit number $up = UMult_w(ux, uy)$
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers x, y
- Truncate result to w-bit number $p = TMult_w(x, y)$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy
```

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

Relation

- Signed multiplication gives same bit-level result as unsigned
- up == (unsigned) p

Power-of-2 Multiply with Shift

Operation

- u << k gives u * **2**^k
- Both signed and unsigned

Operands: w bits

Examples

$$- u << 3 == u * 8$$

 $- u << 5 - u << 3 == u * 24$

- Most machines shift and add much faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

$$-u \gg k \text{ gives } \lfloor u / 2^k \rfloor$$

Uses logical shift

	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	0 0011101 10110110
x >> 4	950.8125	950	03 В6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $-x \gg k \text{ gives } \lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division Computed		Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil x / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0
- Case 1: No rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

0101110011011011

Want to count all the 1's and getting the sum essentially

You could iterate through everything & it with 1 and then adding it to the counter or

Break it up into chunks or 4, sum up each one in the quads, and create quad masks of 0001 0001 0000 0001 0001 = Sum of the first 4 on the right

-Move to the next quad

Shift it and compare 2, 6, 10 to the mask and you get the sum and you should get 4 independent sums you can add together

C Puzzles

Assume machine with 32 bit word size, two's complement integers

x < 0

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Give example where not true

```
• ux >= 0
                                            \Rightarrow (x<<30) < 0
              x \& 7 == 7
no, negative -1 will be converted to unsigned • ux > -1
to unsigned
no if x is 1000 \bullet \mathbf{x} > \mathbf{y}
                                            \Rightarrow -x < -v
no, overflow
             x * x >= 0
no, overflow •
              x > 0 \&\& y > 0 \Rightarrow x + y > 0
          • x >= 0
                                             \Rightarrow -x \le 0
true
   false
          • x <= 0
                                             \Rightarrow -x >= 0
```

 \Rightarrow ((x*2) < 0)

C Puzzle Answers

- Assume machine with 32 bit word size, two's comp.
 integers
- TMin makes a good counterexample in many cases

$$\square \times < 0$$
 \Rightarrow ((x*2) < 0) False: TMin

$$\Box$$
 ux >= 0 True: $0 = UMin$

$$\Box \times \& 7 == 7 \Rightarrow (x << 30) < 0 True: $X_1 = 1$$$

$$\Box$$
 ux > -1 False: 0

$$\square x > y$$
 $\Rightarrow -x < -y$ False: -1 , TMin

$$\Box x * x >= 0$$
 False: 30426

$$\square x > 0 \& y > 0 \Rightarrow x + y > 0$$
 False: TMax, TMax

$$\square \times >= 0$$
 $\Rightarrow -x <= 0$ True: $-TMax < 0$

$$\square x \le 0$$
 $\Rightarrow -x >= 0$ False: TMin