EEL 4930 Stats – Lecture 21

PROPERTIES OF DISTRIBUTION FUNCTIONS

1. $0 \le F_X(x) \le 1$

Pf: $F_X(x)$ is a prob. measure

2. $F_X(-\infty) = 0$ and $F_X(\infty) = 1$

Proof is technical.

Basically, $F_X(-\infty)$ and $F_X(\infty)$ are defined as limits, and the corresponding subsets of the samples space $\{s \in S : X \le x\}$ are either shrinking to \emptyset or S

3. $F_X(x)$ is monotonically nondecreasing, i.e., $F_X(a) \le F_X(b)$ iff $a \le b$

Pf:
$$P\{X \in (-\infty, b]\} = P(X \in (-\infty, a])$$

 $+P(X \in (a, b])$

$$\Rightarrow F_X(b) = F_X(a) + P(a < X \le b)$$
(1)

4. $P(a < X \le b) = F_X(b) - F_X(a)$

Pf: rewriting equation (1)

5. $F_X(x)$ is continuous on the right, i.e., $F_X(b) = \lim_{h\to 0} F_X(b+h) = F_X(b)$

(The value at a jump discontinuity is the value after the jump.)

Proof is rather technical and will be omitted.

6. $P(X > x) = 1 - F_X(x)$

Pf:
$$\{X > x\} = \{X \le x\}^c$$

 $\Rightarrow P(X > x) = 1 - P(X \le x) = 1 - F_X(x)$