4.1 Vertical and Horizontal Translations

1. Vertical and Hori...

1. Vertical and Hori...

Vertical and Horizontal Translations

Learning Intention

To be able to sketch graphs that have been translated from a parent function.

Success Criteria:

I can:

- \square Shift the graph of a function vertically.
- Shift the graph of a function horizontally.
- ☐ Combine horizontal and vertical translations.

Textbook Reference

4A

Translating a function is:

Shifting it vertically or horizontally to produce a further graph (finction/relation). This changes the domain and or range.

Shifting up and down

 $y = x^2$

 $y = x^2 + 2$; $y = x^2 - 3$

Table of values

Г	x	-3	-2	-1	0	1	2	3	
	x²	9	4		0		4	9	1
	$x^{2} + 2$	11	6	3	2	3	6		2 + 4) -3
	$x^2 - 3$	6	T i	-2	-2	-2	Ĭ	6	

 \rightarrow To shift a graph hunits up add h to f(x), the new function is f(x) + h

Shifting left and right

$$y = x^2$$

$$y = (x+3)^2$$
; $y = (x-2)^2$

Table of values

x	-3	-2	-1	0	1	2	3
x²	9	4	1	0	t	4	9
(x+3) ²	0		14	9	16	25	36
$(x-2)^2$	25	16	9	4	1	0	1

- To shift a graph h units to the ______ replace x by x-h.

If the graph is a function f(x), the new function is _____

- To shift a graph h units to the _____, replace x by x+h.

The new function is ______

Some familiar functions

- Quadratic

- Reciprocal $y = \frac{1}{x}$ $(y = \frac{k}{x})$ x : denominator• Exponential $y = 2^x$ $(y = a^x)$ x : is in the exponent
- Both x & y are squared. • Circle $2^2 + y^2 = r^2$

Combining horizontal and vertical translations

Example 1 (no sketching)

How is the graph of $y = (x+2)^3 - 1$ obtained using translations?

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

$$y = x^{3} \xrightarrow{\text{Translation}} y = (x+2)^{3} - 1$$

Example 2 (no sketching)

How is the graph of $y = \frac{4}{x-1} + 2$ obtained using translations?

Think Pair Share

Does the order of the translations matter?

Example 3 – Translating hyperbolas

Sketch the graph of $y = \frac{1}{x}$. Then sketch the graph of $y = \frac{1}{x+1}$, and state the asymptotes of each graph. Vertical Asymptote : x = 0

VA 20-0

Asymptotes of $y = \frac{1}{2}$:

Hoizontal Asymptote: y=0

· Table of values:

Example 4 - Translating circles

- a. Complete the squares in x and in y of the relation $x^2 + y^2 6x + 8y = 0$.
- b. Identify the circle with centre the origin that can be translated to it, and state the translations.
- c. Sketch both circles on the same diagram, and explain why each circle passes through the centre of the other

 $x^2+y^2=5^2$

 $(\chi -3)^2 + (y+4)^2 = 25$

Example 5

The graph of $y = 2^x$ is shifted down 2 units.

- a. Write down the equation of the shifted graph.
- b. Construct tables of values, and sketch the two graphs.
- c. State the asymptotes of the two graphs.

A Summary

SHIFTING (OR TRANSLATING) RIGHT AND LEFT

- To shift a graph h units to the right, replace x by x − h.
- Alternatively, if the graph is a function, the new function rule is y = f(x h).

SHIFTING (OR TRANSLATING) UP AND DOWN

- To shift a graph k units *upwards*, replace y by y k.
- Alternatively, if the graph is a function, the new function rule is y = f(x) + k.

THE COMPLETED SQUARE AND THE VERTEX OF A PARABOLA

The completed square form of a quadratic

$$y = a(x - h)^2 + k$$
 or $y - k = a(x - h)^2$

displays its graph as the parabola $y=ax^2$ shifted right h units and up k units.