СТРОИТЕЛЬНЫЕ НОРМЫ ИНСТРУКЦИЯ ПО ПРОЕКТИРОВАНИЮ МОНОЛИТНЫХ ЗДАНИЙ ИЗ ПЕНОБЕТОНОВ

CH PK 5.03-05-2001

DESIGN GUIDELINES TO CAST-IN-PLACE FOAM CONCRETE BUILDINGS

Дата введения - 01.03.2002 г.

ПРЕДИСЛОВИЕ

1. РАЗРАБОТАНЫ: КазНИИССА.

2. СОГЛАСОВАНЫ: Управлением инженерных систем, науки и новых технологий

Комитета по жилищной и строительной политике Министерства

энергетики, индустрии и торговли РК.

3. ПОДГОТОВЛЕНЫ: Проектной академией "KAZGOR" в связи с переработкой

государственных нормативов в области архитектуры, градостроительства и строительства и переводом на

государственный язык.

4. ПРЕДСТАВЛЕНЫ: Управлением технического нормирования и новых технологий

Комитета по делам строительства Министерства экономики и

торговли Республики Казахстан (МЭиТ РК).

5. ПРИНЯТЫ И ВВЕДЕНЫ Приказом Комитета по делам строительства МЭиТ РК от 28

февраля 2002 г.

ДЕЙСТВИЕ: № 44 с 1 марта 2002 г.

6. Настоящие СН РК представляют собой аутентичный текст СН РК В.2.6-5-

98. «Инструкция по проектированию монолитных зданий из пенобетонов» на русском языке, введенные в действие на территории Республики Казахстан с 01.07.1998 года постановлением НТС Комитета по жилищной и строительной политике Министерства энергетики, индустрии и торговли РК от 28 мая 1998 г. № 5-5 и перевод на государственный язык.

7. B3AMEH: CH PK B. 2.6-5-98.

Настоящий государственный норматив не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Уполномоченного органа по делам архитектуры, градостроительства и строительства РК.

СОДЕРЖАНИЕ

- 1. Общие положения
- 2. Материалы для бетонных и железобетонных конструкций
- 3. Расчет железобетонных элементов по прочности
- 4. Расчет железобетонных элементов по предельным состояниям второй группы
- 5. Конструктивные требования
- 6. Перечень нормативных документов, на которые даны ссылки

1. ОБЩИЕ ПОЛОЖЕНИЯ

- **1.1.** Настоящая Инструкция распространяется на проектирование бетонных и железобетонных конструкций из пенобетона для монолитных зданий ІІ и ІІІ классов ответственности, возводимых в обычных и сейсмических районах строительства.
- 1.2. Для возведения конструкций должен применяться пенобетон, представляющий собой искусственный камень пористой структуры, получаемый в результате твердения смеси цементно-песчаного раствора со строительной пеной. Для получения пены используются пеноконцентраты органического происхождения, типа пеорог германской фирмы «NEOPOR SYSTEM GmbH» [5], edama германской фирмы «EDAMA», ниет отечественного ТОО НПК «НИЕТ».

По средней плотности пенобетоны делятся на следующие виды:

- ячеистые пенобетоны, средняя плотность которых 1200 кг/м³ и ниже;
- легкие пенобетоны, средняя плотность которых находится в пределах $1300 \div 1800 \text{ кг/м}^3$.
- **1.3.** Проектирование конструкций для применения в агрессивных средах следует вести с учетом дополнительных требований, предъявляемых СНиП 2.03.11-85 [9].
 - 1.4. Из пенобетона могут изготавливаться следующие конструкции:
 - а) однослойные конструкции:
 - монолитные стены и перекрытия;
 - сборные многопустотные плиты перекрытия;
 - перегородки;
 - б) многослойные конструкции:
 - навесные стеновые панели;
 - ребристые панели перекрытий.
- **1.5.** Однослойные конструкции из пенобетона следует предусматривать в зданиях с относительной влажностью воздуха внутри помещений до 60%, а при наличии пароизоляции на внутренней поверхности стен и перекрытий для зданий с влажностью воздуха внутри помещений до 75%.

Двухслойные конструкции с внутренним слоем из тяжелого бетона допускаются к применению без специальных мер защиты при влажности воздуха внутри помещений до 75%.

- **1.6.** Двухслойные плиты покрытий и перекрытий рекомендуется проектировать с несущим слоем:
- из бетона классом по прочности на сжатие не ниже B15 при отсутствии предварительного напряжения;
 - не ниже В20 с предварительным напряжением.

- **1.7.** При проектировании конструкций из пенобетона плотностью менее Д1800 следует предусматривать защиту арматуры и закладных деталей от коррозии в соответствии с СН 277-80 [10].
- **1.8.** Общие положения по объемно-планировочному решению зданий, возводимых в сейсмических районах, должны соответствовать п.1.1-1.10 СН РК 2.03-12-2001 [13]. Размеры здания или его отсеков, разделенных швами, а также их высота не должны превышать размеров, указанных в таблице 1.

Таблица 1

Размеры здания	Расчетная сейсмичность, баллы							
т азмеры здания	несейсмические районы	7	8	9 и 10				
Длина (ширина)	51 м	51 м	41 м	31 м				
Высота	<u>5 этажей</u> (20 м)	<u>4 этажа</u> (16 м)	<u>3 этажа</u> (12 м)	<u>2 этажа</u> (8 м)				

Примечание. Для зданий с внутренними несущими стенами из тяжелого бетона высота зданий может быть увеличена на 2 этажа.

- **1.9.** Основные требования по расчету монолитных зданий, возводимых в сейсмических районах, должны соответствовать требованиям п.3.1-3.9 СН РК 2.03-12-2001.
- **1.10.** Основные расчетные требования к проектированию бетонных и железобетонных конструкций из пенобетона принимаются в соответствии с п.п.1.10-1.13 и 1.19-1.22 СНиП 2.03.01-84*, а двухслойных предварительно напряженных конструкций с учетом п.п. 1.17-1.18, 1.23-1.30 СНиП 2.03.01-84*.
- **1.11.** К трещиностойкости предварительно напряженных конструкций из пенобетона предъявляются требования только 3-й категории, т.е. допускается ограниченное по ширине кратковременное и длительное раскрытие трещин. Предельно допустимая ширина раскрытия трещин для таких конструкций принимается: кратковременная $a_{crc.1}$ =0,4 мм, длительная $a_{crc.1}$ =0,3 мм.

При расчете ширины раскрытия трещин коэффициент надежности γ_f (постоянной, длительной и кратковременной) по нагрузке принимается равным единице.

Для конструкций, в которых арматура покрывается антикоррозионным составом, допускается ширина раскрытия трещин $a_{crc,2}$ до 0.5 мм.

- **1.12.** Прогибы элементов железобетонных конструкций из пенобетона не должны превышать предельно допустимых значений, указанных в π .1.20 СНи Π 2.03.01-84* и СНи Π 2.01.07-85* [11].
- **1.13.** При статических и теплотехнических расчетах конструкций из пенобетона следует учитывать установившуюся влажность бетона, принимаемую по табл. 2.

Таблица 2

Расчетная средняя установившаяся влажность								
	пенобетона,							
	% по массе							
для стен	для стен для покрытий							
И	вентилируемых	невентилируемых						
междуэтажных								
перекрытий								
10	12	15						

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

- **2.1.** В качестве вяжущих для изготовления пенобетонов используют портландцемент или шлакопортландцемент марок 400 и 500, удовлетворяющие требованиям ГОСТ 10178-85* [17] либо другие виды цементов после подтверждения их эффективности.
- **2.2.** В качестве заполнителя пенобетонов применяется кварцевый песок, отвечающий требованиям ГОСТ 8736-93 [16].

Модуль крупности песка не должен превышать для пенобетонов плотностью:

```
1000-1800 κγ/M^3 - M_{\text{kp}} = 2.5,

700-900 κγ/M^3 - M_{\text{kp}} = 2.0,

500-600 κγ/M^3 - M_{\text{kp}} = 1.5.
```

- **2.3.** При проектировании бетонных и железобетонных конструкций из пенобетона устанавливаются следующие основные показатели:
 - класс пенобетона по прочности на сжатие «В» (табл. 3);
- марка пенобетона по морозостойкости «F» (F15, F25, F35, F50, F75, F100, F150, F200);
 - марка пенобетона по средней плотности «D» (табл. 3).

Классы пенобетона по прочности на сжатие соответствуют значениям гарантированной прочности бетона, МПа, контролируемой согласно государственных стандартов в установленные сроки на базовых образцах кубов с размерами граней 150 мм с обеспеченностью 0,95 при средней установившейся влажности 10±2% (по массе).

2.4. Класс пенобетона по прочности на сжатие для монолитных стен должен приниматься не ниже указанного в таблице 4.

Для железобетонных конструкций не допускается применять пенобетон класса по прочности на сжатие ниже B7,5. Для напрягаемого слоя двухслойных предварительно-напряженных железобетонных конструкций допускается применять пенобетон класса по прочности на сжатие не ниже B20.

- **2.5.** Марка пенобетона по морозостойкости принимается по таблице 9 СНиП 2.03.01-84*.
- **2.6.** Для замоноличивания стыков и швов сборных конструкций из пенобетона следует применять строительные растворы проектной марки по прочности на сжатие не менее M75 и марки по плотности не ниже D1500.

Таблица 3

Марка по		Класс пенобетона по прочности на сжатие								
средней плотности D, кг/м ³	B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
D800	+	+	+							
D900		+	+	+						
D1000			+	+	+					
D1100				+	+	+				
D1200					+	+	+			
D1400							+	+		
D1600							+	+	+	
D1800								+	+	+

Вид стены	Этажность здания	D •		Класс бетона по прочности на сжатие при расчетной сейсмичности в баллах 7 и ниже 8 9 и 10				
Внутренние несущие	1-2 этажа	тяжелый пенобетон	B5 B3,5	B7,5 B5	B7,5 B5			
пссущис	3-5 этажа	тяжелый пенобетон	B7,5 B5	B7,5 B7,5	B7,5 B7,5			
	6 этажей и более	тяжелый пенобетон	B12,5 B7,5	B12,5 B10	B15 B12,5			
Наружные несущие однослойные	1-2 этажа более 2 этажей	пенобетон пенобетон	B3,5 B5	B5 B5	B5 B7,5			
Несущий слой	1-2 этажа		B5	B7,5	B7,5			
многослойных ж/б стен	3-5 этажа	тяжелый и	B7,5	B7,5	B7,5			
CICH	6 этажей и более	пенобетон	B12,5	B12,5	B15			

- **2.7.** Нормативные сопротивления пенобетона R_{bn} , R_{btn} и расчетные сопротивления для предельных состояний второй группы $R_{b,ser}$ и $R_{bt,ser}$ принимаются в зависимости от класса пенобетона по прочности на сжатие по таблице 5.
- **2.8.** Расчетные сопротивления пенобетона для предельных состояний первой и второй группы определяются путем деления нормативных сопротивлений на соответствующие коэффициенты надежности по пенобетону при сжатии γ_{bc} или при растяжении γ_{bt} , принимаемые по таблице 6.

Расчетные сопротивления пенобетона R_b , R_{bt} для предельных состояний первой группы приведены в табл. 7.

Расчетные сопротивления пенобетона для предельных состояний второй группы $R_{b,ser}$ и $R_{bt,ser}$ вводят в расчет с коэффициентами условий работы γ_{bc} и γ_{btn} , равными единице.

2.9. Расчетные сопротивления пенобетона для предельных состояний первой группы R_b и R_{bt} , приведенные в табл. 7, снижаются (или повышаются) путем умножения на коэффициенты условий работы бетона γ_{bi} , учитывающие длительность действия нагрузки, условия и стадии работы конструкций и т.п. согласно табл. 8.

Коэффициенты условий работы пенобетона вводятся независимо друг от друга, но их произведение принимается не менее 0,45.

- **2.10.** Значения начального модуля упругости пенобетона при сжатии и растяжении Е_ь принимаются по таблице 9.
- **2.11.** Коэффициент линейной температурной деформации пенобетона α_{bt} при изменении температуры от минус 40°C до плюс 50°C принимается равным $\alpha_{bt} = 8 \cdot 10^{-6} \text{C}^{-1}$.
- **2.12.** Начальный коэффициент поперечной деформации (коэффициент Пуассона) ν пенобетона принимается равным 0,2, а модуль сдвига G равным 0,4 от соответствующих значений E_b , указанных в табл. 9.
- **2.13.** Для армирования железобетонных конструкций из пенобетона должна применяться арматура, отвечающая требованиям соответствующих стандартов либо утвержденных в установленном порядке технических норм и принадлежащая к одному из следующих видов:
 - 1. Стержневая арматурная сталь:
 - а) горячекатанная гладкая класса А-І;
 - б) горячекатанная периодического профиля классов A-II, Ac-II, A-III, A-IV;

- в) термохимически и термически упрочненная периодического профиля классов Aт-IIIc, At-IVc и AT- IVк.
 - 2. Проволочная арматурная сталь:
 - обыкновенная периодического профиля класса Вр-І.

Допускается применять стержневую упрочненную вытяжкой арматуру класса А-IIIв, а также в качестве конструктивной арматуры сварных каркасов и сеток - обыкновенную гладкую проволоку класса В-I.

Таблица 5

Вид сопротивления	Вид пенобетона	pac	-	е сопр	отивл	ения R	ь,ser и I	енобето R _{bt,ser} , N на сжат	ИПа, п		
		B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
Сжатие осевое (призменная прочность) R_{bsn} , $R_{b,ser}$	ячеистый легкий	1,9	2,4	3,3	4,6	6,9	9,0 9,5	10,0 11,0	12,0	15	18,5
Растяжение осевое R _{btn} , R _{bt,ser}	ячеистый легкий	0,26	0,31	0,41	0,55	0,73	0,89	0,95 1,0	1,05	1,2	1,3

Примечание: Величины нормативных характеристик даны для средней влажности пенобетона 10% (по массе).

Таблица 6

Коэффициенты надежности по пенобетону при сжатии γ_{bc} и растяжении γ_{bt} для расчета конструкций по предельным состояниям									
первый группы второй группы									
γbc	γbt	γbc	γbt						
1,5	1,5 2,3 1,0 1,0								

Таблица 7

										Taom	пци
Вид сопротивления	Вид пенобетона		Расчетные сопротивления пенобетона для предельных состояний первой группы R_b и R_{bt} , МПа при классе бетона по прочности на сжатие								
		B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
Сжатие осевое (призменная	ячеистый	1,3	1,6	2,2	3,1	4,6	6,0	6,8			
прочность) R _b	легкий						6,2	7,0	7,7	10	12,3
Растяжение осевое R _{bt}	ячеистый	0,12	0,14	0,18	0,24	0,28	0,39	0,43			
	легкий						0,40	0,44	0,46	0,52	0,57

Примечание: Значения расчетных сопротивлений даны для средней влажности пенобетона 10% (по массе).

- **2.14.** Наибольший диаметр стержневой арматуры для монолитных стен не должен превышать:
 - для тяжелого и легкого бетона классов:

В12,5 и ниже - 16мм,

В15 и выше - 25 мм,

- для пенобетона 12 мм.
- **2.15.** Нормативные сопротивления арматуры принимаются по табл. 19*, 20 СНиП 2.03.01-84*.

Расчетные сопротивления арматуры при расчете конструкций по предельным состояниям первой группы при растяжении приведены в таблице 10, а для поперечной и сжатой арматуры - принимаются не больше значений, указанных в табл. 10 и 11.

Кроме того, расчетные сопротивления R_S , R_{SC} , R_{SW} в соответствующих случаях следует умножать на коэффициенты условий работы арматуры согласно табл. 12 и 13.

При расчете железобетонных конструкций из пенобетона на особые сочетания нагрузок с учетом сейсмического воздействия вводится дополнительный коэффициент условий работы арматуры γ_{SS} , учитывающий сейсмический характер нагрузки, который принимается по табл. 13.

3. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

- **3.1.** Расчет прочности стеновых элементов из пенобетона следует производить по π .4.1-4.9 CH PK 2.03-12-2001.
- **3.2.** Расчет прочности перемычек и плит перекрытий следует производить по п.4.10 СН РК 2.03-12-2001.

4. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

4.1. Расчет стержневых и стеновых железобетонных элементов из пенобетона по предельным состояниям второй группы следует производить по п.5.1-5.4 СН РК 2.03-12-2001.

5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

5.1. Конструктивные требования назначаются по п.6.1-6.9 CH PK 2.03-12-2001.

Таблица 8

		таолица о
Факторы, обеспечивающие введение коэффициента условий	Коэффициен работы пен	-
работы пенобетона	условное	числовое
	обозначение	значение
1. Длительность действия нагрузки:	γ _{b2}	0,85
а) при учете постоянных, длительных и кратковременных нагрузок,		
кроме нагрузок непродолжительного действия, суммарная		
длительность действия которых за период эксплуатации мала		
(например, крановые нагрузки; ветровые нагрузки; нагрузки,		
возникающие при изготовлении, транспортировании и возведении		
и т.п.), а также кроме особых нагрузок, вызванных сейсмическими		
воздействиями, деформациями просадочных, набухающих и тому		
подобных грунтов		

б) при учете сейсмических нагрузок для неопорбетона класса по прочности на сжатие: В3,5 и менее В15 и более	γbs γbs	1,0 0,9
в) при учете в рассматриваемом сочетании кратковременных нагрузок непродолжительного действия, не указанных в поз. 16	γ _{b2}	1,0
2. Бетонирование в вертикальном положении при высоте слоя бетонирования более 1,5 м	γ _{b3}	0,8
3. Эксплуатация не защищенных от солнечной радиации конструкций в климатическом подрайоне IVA согласно СНиП РК 2.04-01-2001 [15]	γ ь7	0,85
4. Бетонные конструкции	γь9	0,9
5. Влажность пенобетона: 10% и менее 25% и более	γь11 γь11	1,0 0,85

Таблица 9

Марка по средней	Начальные модули пенобетона при сжатии и растяжении $E_b 10^3$, МПа, при классе пенобетона по прочности на сжатие							МПа,		
плотности D, кг/м ³	B2	B2,5	B3,5	В5	B7,5	B10	B12,5	B15	B20	B25
D800	3,1	3,5	3,9							
D900			4,4	5,0	5,5					
D1000				5,6	6,2	7,0				
D1100					6,6	7,6	8,5			
D1200						8,4	8,8	9,2		
D1400							10,2	11,0		
D1600							11,0	13,0	14,1	
D1800								15,9	16,6	17,5

Таблица 10

Класс арматуры	Расчетные сопротивления арматуры для предельных состояний первой группы, МПа					
	раст	тяжению	сжатию			
	продольной, R_s	продольной, R_s поперечной, R_{sw}				
A-I	225	175	225			
A-II	280	225	280			
A-III диаметром:						
6-8 мм	355	$285^{1)}$	355			
10-40 мм	365	$290^{1)}$	365			
A-IV	510	405	450			
A-IIIв с контролем:						
- удлинения	490	200				
и напряжения	450	200				
- только удлинения						

Вр-І диаметром:			
3 MM	375	$270;300^{2)}$	375
4 mm	365	265; 295 ²⁾	365
5 мм	360	260; 290 ²⁾	360

Примечания: 1. Принимается в сварных каркасах для хомутов из арматуры класса А-III, диаметр которых меньше 1/3 диаметра продольной арматуры, значение R_{SW} принимается равным 255 МПа.

2. Принимаются для вязанных каркасов.

Таблица 11

Арматура		Расчетные сопротивления растяжению поперечной арматуры R_{sw} и сжатой продольной арматуры R_{sc} , Мпа, при классе пенобетона по прочности на сжатие								
	B2	B2 B2,5 B3,5 B5 B7,5 B10 B12,5 B15 B20 B25								
Поперечная	50	62,5	88	125	188	250	310	375	460	460
Сжатая продольная	190	195	200	215	235	256	278	300	330	360

Таблица 12

Zannaznog Hoven uzno	Коэффициент условий работы γ_{s9} при арматуре				
Защитное покрытие	гладкой	периодического профиля			
1. Цементно-полистирольное					
латексно-минеральное	1,0	1,0			
2. Цементно-битумное (холодное) при					
диаметре арматуры:					
5 мм и менее	0,7	0,7			
6 мм и более	0,7	1,0			
3. Битумно-силикатное (горячее)	0,7	0,7			
4. Битумно-глиняное	0,5	0,7			
5. Сланце-битумное, цементное	0,5	0,5			

Таблица 13

	Коэффициент условий работы γ_{s9} , учитывающий сейсмический							
		характер нагрузки						
Класс арматуры	pact	гянутый	сжатый					
	продольной, R_s поперечной, R_{sw}							
A-I	1,2	0,9	1,0					
A-II	1,15	0,9	1,0					
A-III, Bp-I,	1,1	0,9	1,0					
B-1	1,05	0,9	1,0					
A-IIIB, A-IV								

6. ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ, НА КОТОРЫЕ ДАНЫ ССЫЛКИ

- 1. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. М., С. 1989.
- 2. СНиП РК 2.03-04-2001. Строительство в сейсмических районах. Астана. 2002.
- 3. СНиП II-3-79**. Строительная теплотехника. Нормы проектирования. М.,С. 1986.
- 4. CH PK 2.03-07-2001. Застройка города Алматы и прилегающих территорий с учетом сейсмического

микрорайонирования. Астана. 2002.

- 5. CH PK B.2.7.5-95. Инструкция по изготовлению изделий из неопорбетона. Алматы. 1995.
- 6. ГОСТ 8829-94. Изделия строительные железобетонные и бетонные заводского изготовления.

Методы испытаний нагружением. Правила оценки прочности,

жесткости и

трещиностойкости. Взамен ГОСТ 8829-85.

- 7. ГОСТ 27005-86. Бетоны легкие и ячеистые. Правила контроля средней плотности. М., С. 1986.
- 8. ГОСТ 10060.0-95. Бетоны. Методы определения морозостойкости. Общие требования. Взамен ГОСТ10060-87.
- 9. СНиП 2.03.11-85. Защита строительных конструкций от коррозии. М., С. 1985. 10. СН 277-80. Инструкция по технологии изготовления изделий из ячеистых бетонов. М., С. 1980.
- 11. СНиП 2.01.07-85*. Нагрузки и воздействия. М., 2001.
- 12. СНиП РК 2.04-01-2001. Строительная климатология. Астана. 2002.
- 13. CH PK 2.03-12-2001. Указания по проектированию монолитных зданий для сейсмических районов. Астана. 2002.
- 14. Инструктивное письмо Минстроя РК об экономии ТЭР. ФГ-2-8 от 24 декабря 1994 года.
- 15. СНиП РК 2.04-01-2001. Строительная климатология. Астана, 2002.
- 16. ГОСТ 8736-93. Песок для строительных работ. Технические условия.
- 17. ГОСТ 10178-85*. Портландцемент и шлакопортландцемент. Технические условия.

ҚҰРЫЛЫСТЫҢ НОРМАЛАРЫ КӨБІКБЕТОНДАРДАН ЖАСАЛҒАН ТҰТАСҚҰЙМАЛЫ ҒИМАРАТТАРДЫ ЖОБАЛАУ ЖӨНІНДЕГІ НҰСҚАУ

ИНСТРУКЦИЯ ПО ПРОЕКТИРОВАНИЮ МОНОЛИТНЫХ ЗДАНИЙ ИЗ ПЕНОБЕТОНОВ

Енгізілген күні - 01.03.2002 ж.

КІРІСПЕ 1. ЖАСАҒАН: КАЗСКСҒЗИ. 2. КЕЛІСІЛГЕН: КР Энергетика, индустрия және сауда министрлігінің Тұрғын үй және құрылыс саясаты жөніндегі комитетінің Инженерлік жүйе, ғылым және жаңа технологиялар басқармасымен. ӘЗІРЛЕГЕН: "KAZGOR" Жобалау академиясы сәулет, 3. кала құрылысы және құрылыс саласындағы мемлекеттік нормативтердін кайта өнделіп, жасалуына мемлекеттік тілге аударылуына байланысты әзірледі. Қазақстан Республикасы Экономика және сауда 4. ҰСЫНҒАН: министрлігінің (ҚР ЭжСМ) Құрылыс істері жөніндегі комитетінің Техникалық нормалау және жаңа технологиялар басқармасы. ҚР ЭжСМ Құрылыс істері жөніндегі комитетінің 2002 5. ҚАБЫЛДАНҒАН ЖӘНЕ жылғы 28 ақпандағы ІСКЕ ЕНГІЗІЛГЕН МЕРЗІМІ: № 44 бұйрығымен 2002 жылдың 1 наурызынан бастап енгізілді. 6. Осы ҚР ҚН Қазақстан Республикасының аумағында ҚР Энергетика, индустрия және сауда министрлігінің Тұрғын үй және құрылыс саясаты комитетінің ҒТК-нің 1998 жылғы жөніндегі мамырдағы № 5-5 қаулысымен 01.07.1998 жылдан бастап іске енгізілген орыс тіліндегі «Көбікбетондардан жасалған тұтасқұймалы ғимараттарды жобалау жөніндегі нұсқау» ҚР ҚН В. 2.6-5-98-дің теңтүпнұсқалық мәтіні және мемлекеттік тілдегі аудармасы болып табылады. 7. ОРНЫНА: KP KH B. 2.6-5-98.

МАЗМҰНЫ

1.	Жалпы ережелер
2.	Бетонды және темірбетонды құрылымдарға арналған
	материалдар
3.	Темірбетон элементтерінің беріктігі бойынша есебі
1.	Екінші топтың шекті күйі бойынша темірбетон
	элементтерінің есебі
5.	Құрылымдық талаптар
5.	Сілтеме берілген нормативтік құжаттардың тізімі

1. ЖАЛПЫ ЕРЕЖЕЛЕР

- **1.1.** Осы Нұсқау кәдімгі және сейсмикалық құрылыс аудандарында құрылатын ІІ және ІІІ кластық жауапты тұтасқұймалы ғимараттарына арналған көбікбетоннан бетонды және темірбетонды құрастырмаларды жобалауға таралады.
- **1.2.** Құрастырманы көтеру үшін цемент-құм ерітіндісі құрылыс көбігімен қоспасы қатаюы нәтижесінде алынатын, кеуекті құрылымды жасанды тас болып табылатын көбікбетон пайдаланылуы тиіс. Көбікті алу үшін герман "NEOPOR SYSTEM GmbH" [5] фирмасының пеорог, герман "EDAMA" фирмасының еdama, отандық "НИЕТ" ДӨК ЖШС типті органикалық көбік шоғырлануы пайдаланылады.

Орташа тығыздығы бойынша көбік бетондар мынадай түрлерге бөлінеді:

- кеуекті көбікбетондар, бұлардың орташа тығыздығы 1200 кг/м³ және төмен;
- жеңіл көбікбетондар, бұлардың орташа тығыздығы $1300 \div 1800$ кг/м 3 шегінде болалы.
- **1.3.** Қолайсыз ортада қолдануға арналған құрылымдарды ҚНжЕ 2.03.11-85 [9] ұсынатын қосымша талаптарды ескере отырып жобалаған жөн.
 - 1.4. Көбікбетоннан мынадай құрылымдар даярлануы мүмкін:
 - а) бір қабатты құрылым:
 - тұтасқұймалы қабырғалар мен аражабындар;
 - жиналмалы көп қуысты аражабын тақталары;
 - арақабырғалар;
 - б) көп қабатты құрылым:
 - аспалы қабырға панелі;
 - қырлы аражабын панелі.
- **1.5.** Көбікбетоннан бір қабатты құрылымдарды бөлме ішінде салыстырмалы 60%-ке дейін ауа ылғалдылығы бар ғимараттарда, қабырғаның және аражабынның ішкі бетінде буоқшаулағыш бар болған кезде бөлме ішіндегі ауа ылғалдылығы 75%-ке дейінгі ғимараттар үшін қарастырған жөн.

Ауыр бетоннан жасалған ішкі қабаты бар екі қабатты құрылымдарды бөлме ішіндегі ауа ылғалдылығы 75%-ке дейінгі кезде арнайы қорғау шараларынсыз қолдануға жол беріледі.

- **1.6.** Екі қабатты жабын тақтасы мен аражабын тақтасын негізгі қабатпен жобалаған жөн:
- алдын ала кернеудің болмауы кезінде В 15-тен төмен емес беріктілігі бойынша қысу класты бетоннан;
 - В 20-дан төмен емес алдын ала кернеумен.
- **1.7.** Тығыздығы кем дегенде Д1800 көбікбетонынан құрылымдарды жобалау кезінде арматураны және ҚН 277-80 [10] сәйкес тоттанудан сақтайтын құралдарды қорғауды қарастырған жөн.
- **1.8.** Сейсмикалық аудандарда құрылатын ғимараттардың көлемдік-жоспарлау шешімі бойынша жалпы ережелер, ҚР ҚН 2.03.12-2001 [13] 1.1-1.10 т.-ға сәйкес болуы тиіс. Жіктермен бөлінген ғимараттардың немесе оның бөліктерінің көлемі, сонымен қатар олардың биіктігі 1-кестеде көрсетілген көлемдерден аспауы тиіс.

	Есептік сейсмикалық, балдар								
Гимараттың көлемі	сейсмикалық емес аудандар	7	8	9 және 10					
Ұзындығы (ені)	51 м	51 м	41 м	31 м					
Биіктігі	<u>5 қабат</u> (20 м)	<u>4 қабат</u> (16 м)	<u>3 қабат</u> (12 м)	<u>2 қабат</u> (8 м)					

Ескерту. Ауыр бетоннан жасалған ішкі негізгі қабырғалары бар ғимараттардың биіктігі 2 қабаттан артық болуы мүмкін.

- **1.9.** Сейсмикалық аудандарда құрылатын тұтасқұймалы ғимараттардың есебі бойынша негізгі талаптар ҚР ҚН 2.03.12-2001 3.1-3.9 т. талаптарына сәйкес болуы тиіс.
- **1.10.** Көбікбетоннан жасалатын бетонды және темірбетонды құрылымдарға негізгі есептік талаптар ҚНжЕ 2.03.01-84* 1.10-1.13 және 1.19-1.22 т.т. сәйкес, ал екі қабатты алдын ала қатайтылған құрылым ҚНжЕ 2.03.01-84* 1.17-1.18, 1.23-1.30 т.т. ескеріле отырып қабылданады.
- **1.11.** Көбікбетоннан жасалған алдын ала қатайтылған құрылымдардың сызаты тұрақтылығына тек 3-санатты талаптар қойылады, яғни шектелген сызатты ені бойынша қысқа мерзімді және ұзақ мерзімді ашуға жол беріледі. Мұндай құрылымдар үшін сызаттарды ені бойынша ашу шегі былайша қабылданады: қысқа мерзімді $a_{crc.1}$ = 0,4 мм, ұзақ мерзімді $a_{crc.2}$ = 0,3 мм.

Сызаттарды ашу енін есептеу кезінде жүктеме бойынша (тұрақты, ұзақты және қысқа мерзімді) коэффицент сенімділігі ү $_{\rm f}$ бірлігіне тең қабылданады.

Тоттанудан қорғайтын құраммен қабаттанатын арматура пайдаланылатын құрылымдар үшін, сызатты ашу ені $a_{crc.2} = 0.5$ мм рұқсат етіледі.

- **1.12.** Көбікбетоннан жасалған темірбетон элементтерінің иілімі ҚНжЕ 2.03.01-84* 1.20 т. және ҚНЖЕ 2.01.07-85* [11] көрсетілген шекті мәнінен аспауы тиіс.
- **1.13.** Көбікбетоннан жасалған құрылымдарды статикалық және жылутехникалық есептеу кезінде 2-кесте бойынша қабылданатын бетонның белгіленген ылғалдылығын ескерген жөн.

2-кесте

Көбікбетонның белгіленген ылғалдылығының орташа есебі, салмағы бойынша %							
қабырғалар мен қабатаралық төбежабын үшін							
аражабындар үшін	желденетін желденбейтін						
10 12 15							

2. БЕТОНДЫ ЖӘНЕ ТЕМІРБЕТОНДЫ ҚҰРЫЛЫМДАРҒА АРНАЛҒАН МАТЕРИАЛДАР

- **2.1.** Көбікбетондарын дайындау үшін тұтқырғыш ретінде МСТ 10178-85* [17] талаптарын қанағаттандыратын 400 және 500 маркілі портландцемент немесе қожды портландцемент не болмаса цементтердің басқа да түрлері олардың тиімділігі расталғаннан кейін пайдаланылады.
- **2.2.** Көбікбетондарын толтырғыш ретінде МСТ 8736-93 [16] талаптарына жауап беретін кварцты құм пайдаланылады.

Көбікбетондар үшін құм ірілігі модулінің тығыздығы мыналардан аспауы тиіс:

$$\begin{array}{c} 1000\text{-}1800~\text{kg/m}^3\text{-}~M_{\text{kp}}\!\!=2,\!5,\\ 700\text{-}900~\text{kg/m}^3\text{-}~M_{\text{kp}}\!\!=2,\!0,\\ 500\text{-}600~\text{kg/m}^3\text{-}~M_{\text{kp}}\!\!=1,\!5. \end{array}$$

- **2.3.** Көбікбетоннан жасалған бетонды және темірбетонды құрылымдарды жобалау кезінде мынадай негізгі көрсеткіштер бекітіледі:
 - "В" сығуға беріктігі бойынша көбікбетонның класы (3-кесте);
- "F" аязға төзімділігі бойынша көбікбетонның маркасы (F15, F25, F35, F50, F75, F100, F150, F200);
 - "D" орташа тығыздығы бойынша көбікбетонның маркасы (3-кесте).

Қысуға беріктігі бойынша көбікбетонның класы кепілденген бетон беріктігі, МПа мәніне, бекітілген орташа ылғалдылығы (салмағы бойынша) 10±2% кезінде 0,95

қамтамасыз етілген қырының өлшемі 150 мм үлгілі кубтың негізінде белгіленген мерзімде мемлекеттік стандарттарға сәйкес бақыланатын мәнге сәйкес келеді.

2.4. Тұтасқұймалы қабырғалар үшін қысуға беріктігі бойынша көбікбетонның класы 4-кестеде көрсетілгеннен төмен қабылданбауы тиіс.

Темірбетон құрылымдары үшін қысуға беріктігі бойынша В7,5 төмен көбікбетон класын қолдануға жол берілмейді. Екі қабатты алдын ала-қатайтылған темірбетон құрылымдарының қабаты үшін қысуға беріктігі бойынша В20 төмен емес көбікбетон қолдануға жол беріледі.

- **2.5.** Суыққа төзімділігі бойынша көбікбетонның маркасы ҚНжЕ 2.03.01-84*-тің 9-кестесі бойынша қабылданады.
- **2.6.** Көбікбетоннан жасалған жиналмалы құрылымдардың жапсарлары мен жіктерін жамау үшін қысуға беріктілігі бойынша кем дегенде М75 маркілі және тығыздығы бойынша кем дегенде D1500 маркілі құрылыс қоспаларын пайдаланған жөн.
- **2.7.** R_{bn} , R_{btn} көбікбетонының нормативті кедергілері және екінші топты $R_{b,ser}$ және $R_{bt,ser}$ шекті күй үшін есептік кедергілер 5-кесте бойынша қысуға беріктігі бойынша көбікбетонның класына байланысты қабылданады.

3-кесте

орташа D тығыздығы		Қысуға беріктігі бойынша көбікбетон класы								
бойынша марка, кг/м ³	B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
D800	+	+	+							
D900		+	+	+						
D1000			+	+	+					
D1100				+	+	+				
D1200					+	+	+			
D1400							+	+		
D1600							+	+	+	
D1800								+	+	+

Қабырғаның түрі	Ғимараттың қабаттылығы	Бетонның түрі	Есептік сейсмикалық балда кезде қысуға беріктігі бойынша бетонның класы			
	қабаттылығы		7 және төмен	8	9 және 10	
	1-2 қабат	ауыр көбікбетон	B5 B3,5	B7,5 B5	B7,5 B5	
Ішкі негізгі қабырғалар	3-5 қабат	ауыр көбікбетон	B7,5 B5	B7,5 B7,5	B7,5 B7,5	
	6 қабат және жоғары	ауыр көбікбетон	B12,5 B7,5	B12,5 B10	B15 B12,5	
Сыртқы бір қабатты негізгі қабырға	1-2 қабат 2 қабаттан жоғары	көбікбетон көбікбетон	B3,5 B5	B5 B5	B5 B7,5	
Von racommy r m/6	1-2 қабат		B5	B7,5	B7,5	
Көп қабатты т/б қабырға-ларының	3-5 қабат	ауыр және	B7,5	B7,5	B7,5	
негізгі қабаты	6 қабат және жоғары	көбікбетон	B12,5	B12,5	B15	

			Қысуға беріктігі бойынша бетонның класы кезінде, R _{bn} ,								
Кедергінің	Көбікбетон-	R_{btn}	көбікб	етоны	ның но	рмати	вті кед	ергілері	і және	$R_{b,ser}$ a	кәне
түрі	ның түрі			R_{b}	ot,ser, M	Па есе	птік ке	дергіле	pi		
		B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
Осьті қысу	кеуекті	1,9	2,4	3,3	4,6	6,9	9,0	10,0			
(призмалық беріктік)	жеңіл						9,5	11,0	12,0	15	18,5
R_{bsn} , $R_{b,ser}$											
Осьті созу	кеуекті	0,26	0,31	0,41	0,55	0,73	0,89	0,95			
R _{btn} , R _{bt,ser}	жеңіл						0,95	1,0	1,05	1,2	1,3

Ескерту: Нормативті сипаттамалардың көлемі көбікбетонның орташа ылғалдылығы (сал мағы бойынша) 10% үшін берілген.

2.8. Бірінші және екінші топтың шекті күйі үшін көбікбетонның есептік кедергілер 6-кесте бойынша қабылданатын γ_{bc} қысу кезінде немесе γ_{bt} созу кезінде бетонның сенімділігі коэффицентіне сәйкес нормативті кедергілерді бөлу арқылы анықталады.

Көбікбетонның бірінші топтық шекті күйіне арналған есептік кедергілер R_b , R_{bt} 7-кестеде келтірілген.

 $R_{b,ser}$ және $R_{bt,ser}$ екінші топтың шекті күйі үшін көбікбетонның есептік кедергілері γ_{bc} және γ_{btn} бірлігіне тең жұмыс шартының коэффицентімен есепке кіргізіледі.

2.9. R_b және R_{bt} бірінші тобының 7-кестеде келтірілген шекті күйі үшін көбікбетонның есептік кедергілері жүктеме әсерінің ұзақтығы, құрылым жұмысының шарты мен деңгейі және 8-кестеге сәйкес т.с.с. ескеріле отырып, γ_{bi} бетонның жұмыс шарты коэффициентіне көбейту арқылы төмендейді (немесе жоғарылайды).

Көбікбетон жұмысы шартының коэффициенттері бір-бірінен дербес енгізіледі, бірақ оларды жүзеге асыру кем дегенде 0,45 қабылданады.

- **2.10.** Е_b қысу және созу кезінде көбікбетонның бастапқы беріктігі модулінің мәні 9-кесте бойынша қабылданады.
- **2.11.** α_{bt} көбікбетонның сызықтық температура деформациясының коэффициенті температурасы минус 40 0 С-тан плюс 50 0 С-қа дейін өзгеру кезінде $\alpha_{bt} = 8 \cdot 10^{-6}$ С тең қабылданады.
- **2.12.** ν көбікбетонның көлденең деформациясының бастапқы коэффициенті (Пуассон коэфициенті) 0,2-ге тең, ал G жылжыту модулі 9-кестеде көрсетілген E_b мәніне сәйкес 0,4-ке тең қабылданады.
- **2.13.** Көбікбетоннан жасалған темірбетон құрылымдарын күшейту үшін сәйкес стандарт талаптарына не болмаса бекітілген техникалық норма тәртібіне жауап беретін және мынадай түрлердің біреуіне жататын арматура пайдаланылады:

Шыбықты арматура болаты:

- а) А-І класты тегіс ыстық тапталған;
- б) А-ІІ, Ас- ІІ, А-ІІІ, А-ІV класты кезеңді пішінде ыстық тапталған;
- в) Aт-IIIc, Aт-IV, Aт-IVc және Aт-IVк класты кезеңді пішінді термохимиялық және термиялық беріктелінген.
 - 2. Сымды арматура болаты:
 - Вр-І класты кәдімгі кезеңді пішін.

А-Шв класты шыбықты нығайтылған арматураны, сонымен қатар жапсарланған қаңқа және торлардың құрылымды арматуралары ретінде – кәдімгі В-І класты тегіс сымды қолдануға жол беріледі.

- 2.14. Тұтасқұймалы қабырғалар үшін шыбықты арматураның ең үлкен диаметрі:
- ауыр және жеңіл бетон үшін:

B12,5 және төмен - 16 мм, B15 және жоғары - 25 мм,

- көбікбетон үшін

- 12 мм-ден аспауы тиіс.

2.15. Арматураның нормативті кедергілері ҚНжЕ 2.03.01-84*-тің 19*, 20 кестелері бойынша қабылданады.

Созу кезінде бірінші топтың шекті күйі бойынша құрылымды есептеу кезінде арматураның есептік кедергілері 10-кестеде келтірілген, ал көлденең және қысылған арматуралар үшін – 10 және 11-кестелерде көрсетілген мәннен жоғары қабылданбайды.

Бұдан басқа, сәйкес жағдайларда R_s , R_{sc} , R_{sw} есептік кедергілерді 12 және 13-кестелерге сәйкес арматура жұмысы шартының коэффициентіне көбейткен жөн.

Жүктеменің айрықша үйлесімдеріне көбікбетоннан жасалған темірбетон құрылымдарын есептеу кезінде сейсмикалық әсер ету ескеріле отырып, 13- кесте бойынша қабылданатын жүктеменің сейсмикалық сипатын ескеретін γ_{ss} арматура жұмысы шартының қосымша коэффициенті енгізіледі.

6-кесте

Құрылымдардың шекті күйі бойынша есептеу үшін γ_{bc} қысу кезінде немесе γ_{bt} созу кезінде							
бетон бойынша сенімділік коэффиценті							
бірінші топ екінші топ							
Ybc Ybt Ybc Ybt							
1,5 2,3 1,0 1,0							

7-кесте

Кедергінің түрі	Көбікбетон-		Қысуға беріктігі бойынша бетонның класы кезінде,								
	ның түрі		R _b жа	эне R _{bt,}	МПа (бірінш	і топть	ың шект	і күйле	еріне	
			арі	налған	көбік	бетонн	ың есе	ептік кед	дергіле	epi	
		B2	B2,5	B3,5	B5	B7,5	B10	B12,5	B15	B20	B25
Осьті қысу	кеуекті	1,3	1,6	2,2	3,1	4,6	6,0	6,8			
(призмалық	жеңіл						6,2	7,0	7,7	10	12,3
беріктік)											
R_b											
Осьті R _{bt} созу	кеуекті	0,12	0,14	0,18	0,24	0,28	0,39	0,43			
	жеңіл						0,40	0,44	0,46	0,52	0,57

Ескерту: Есептік кедергілердің мәні көбікбетонның орташа ылғалдылығы (салмағы бойынша) 10% үшін берілген.

Көбікбетон жұмыс шартының коэффициентін енгізуді қамтамасыз ететін факторлар	Көбікбетон жұмыс шартының коэффициенті				
қамтамасыз ететін факторлар	шартты белгі	сандық мән			
1. Жүктеме әсерінің ұзақтығы:					
а) тұрақты, ұзақты және қысқа мерзімді жүктемені	γ_{b2}	0,85			
ескеру кезінде, пайдалану кезеңінде әсер етуі сомалық					
ұзақтығы аз болатын әсері жалғаспайтын жүктемені					
(мысалы кранды жүктемелер; желді жүктемелер;					
дайындау, тасымалдау және көтеру және т.с.с. кезінде					
жүктемелер), сонымен қатар сейсмикалық әсер					
етулермен, шөкпе, ісіну және осындай топырақ					
деформацияларымен туындайтын айрықша					
жүктемелерді қоспағанда					
б) қысуға беріктігі бойынша тірек бетон					
емес класс үшін сейсмикалық жүктемелерді ескеру					
кезінде:	$\gamma_{ m bs}$	1,0			
В3,5 және төмен	$\gamma_{ m bs}$	0,9			
В15 және жоғары	, 00				

в) 16 бағ. көрсетілмеген жалғасымды емес қысқа мерзімді жүктемелердің үйлесімін қарастыруды ескеру кезінде	γь2	1,0
2. биіктігі 1,5 м-ден жоғары қабатты бетондау кезінде тігінен бетондау	У ьз	0,8
3. ҚНжЕ 2.04-01-2001 [15] сәйкес 1VA климаттық ауданда құрылымдарды күн радиациясынан қорғалмағандарды пайдалану	γь7	0,85
4. Бетонды құрылымдар	γ _{b9}	0,9
5. Көбікбетонның ылғалдылығы: 10% және төмен 25% және жоғары	γ _{b11} γ ₁₁	1,0 0,85

9-кесте

Орташа D тығыздығы	Κı	Қысуға беріктігі бойынша көбікбетон класы кезінде E _b 10 ³ , МПа, қысу және созу кезінде көбікбетонның бастапқы модулдері								
бойынша марка, кг/м ³	B2	B2,5	B3,5	В5	B7,5	B10	B12,5	B15	B20	B25
D800	3,1	3,5	3,9							
D900			4,4	5,0	5,5					
D1000				5,6	6,2	7,0				
D1100					6,6	7,6	8,5			
D1200						8,4	8,8	9,2		
D1400							10,2	11,0		
D1600							11,0	13,0	14,1	
D1800								15,9	16,6	17,5

Арматураның	Бірініші топтың шекті күйі үшін арматураның есептік кедергілері, МПа					
класы	co	қысылған				
	бойлы, R _s	көлденең, R _{sw}	R_{sc}			
A-I	225	175	225			
A-II	280	225	280			
A-III диаметрі:						
6-8 мм	355	285 ¹⁾	355			
10-40 мм	365	$290^{1)}$	365			
A-IV	510	405	450			
A-IIIв - ұзарту						
және кернеу	490	390	200			
бақылаушысымен	450	360	200			
- тек ұзарту						
Вр-І диаметрі:						
3 мм	375	270;300 ²⁾ 265; 295 ²⁾	375			
4 мм	365	265; 295 ²⁾	365			
5 мм	360	260; 290 ²⁾	360			

Ескерту: 1. А-III класты арматурадан жасалған қамыттар үшін жапсар қаңқаларында қабылданады, бұлардың диаметрі көлденең арматураның 1/3 диаметрінен кем, R_{sw} мәні 255 МПа-ға тең қабылданады.

2. Тұтқырғыш қаңқалар үшін қабылданады.

11-кесте

Арматура	Қысуға беріктігі бойынша көбікбетонның класы кезінде көлденең арматураны R_{sw} және қысылған бойлы арматураны R_{sc} , МПа созу кедергілерінің есебі									
	B2	B2,5	B3,5	В5	B7,5	B10	B12,5	B15	B20	B25
Көлденең	50	62,5	88	125	188	250	310	375	460	460
Қысылған бойлықты	190	195	200	215	235	256	278	300	330	360

12-кесте

		12 Recit	
Қорғаныс	ы жұмыс шартының		
жабыны	коэффициенті, γ_{s9}		
	тегіс	пішін кезеңді	
1. Цементті-полистиролді латексті-	1,0	1,0	
минералды			
2. Цементті-битумды (суық) арматураның	0,7	0,7	
диаметрі:	0,7	1,0	
5 мм және төмен	0,7	0,7	
6 мм және жоғары	0,5	0,7	
3. Битумды-силикатты (ыстық)	0,5	0,5	
4. Битумды-балшықты			
5. Тақтатасты-битумды, цементті			

13-кесте

Amaronymovy	Жүктеменің сейсмикалық сипатын ескеретін арматурадағы жұмы шартының коэффициенті, ү _{ss}					
Арматураның класы	созылған қысылған					
КЛАСЫ	бойлы, $R_{ m s}$	көлденең, R_{sw}	R_{sc}			
A-I	1,2	0,9	1,0			
A-II	1,15	0,9	1,0			
A-III, Bp-I, B-1	1,1	0,9	1,0			
A-IIIB, A-IV	1,05	0,9	1,0			

3. ТЕМІРБЕТОН ЭЛЕМЕНТТЕРІНІҢ БЕРІКТІГІ БОЙЫНША ЕСЕБІ

- **3.1.** Көбікбетоннан жасалған қабырға элементтерінің беріктігін есептеуді ҚР ҚН 2.03-12-2001-дің 4.1-4.9 т. бойынша жүзеге асырған жөн.
- **3.2.** Маңдайша мен аражабын тақтайшасының беріктігін есептеуді ҚР ҚН 2.03-12-2001-дің 4.10 т. бойынша жүзеге асырған жөн.

4. ЕКІНШІ ТОПТЫҢ ШЕКТІ КҮЙІ БОЙЫНША ТЕМІРБЕТОН ЭЛЕМЕНТТЕРІНІҢ ЕСЕБІ

4.1. Екінші топтың шекті күйі бойынша көбікбетоннан жасалған шыбықты және қабырғалы темірбетон элементтерін есептеуді ҚР ҚН 2.03-12-2001-дің 5.1-5.4 тармақтары бойынша жүзеге асырған жөн.

5. ҚҰРЫЛЫМДЫҚ ТАЛАПТАР

5.1. Құрылыстық талаптар ҚР ҚН 2.03-12-2001-дің 6.1-6.9 тармақтары бойынша белгіленеді.

6. СІЛТЕМЕ БЕРІЛГЕН НОРМАТИВТІК ҚҰЖАТТАРДЫҢ ТІЗІМІ

- 1. ҚНжЕ 2.03.01-84*. Бетонды және темірбетонды құрылымдар. М., С. 1989.
- 2. ҚР ҚНжЕ 2.03-04-2001 Сейсмикалық аудандардағы құрылыс. Астана. 2002.
- 3. ҚНжЕ ІІ -3-79**. Құрылыстық жылыту техникасы. Жобалау нормалары. М., С. 1986.
- 4. ҚР ҚН 2.03-07-2001 Алматы қаласы және іргелес аумақтардың сейсмикалық ықшамаудандастыру ескерілген құрылысы. Астана. 2002.
- 5. ҚР ҚН В.2.7.5-95. Тірек емес бетоннан жасалған бұйымдарды
 - дайындау жөніндегі нұсқау.

Алматы. 1995.

6. МСТ 8829-94. Зауытта дайындалған темірбетондық және бетондық құрылыстық

бұйымдар.

Жүктемелерді сынаудың әдістері. Жарықшақты төзімділікті және

беріктікті, қаттылықты бағалау ережесі. МСТ 8829-85-тің

орнына.

7. МСТ 27005-86. Жеңіл және кеуекті бетондар. Орташа толықтықты қадағалау

ережесі. М., С. 1986.

8. МСТ 10060.0-95. Бетондар. Суыққатөзімділікті анықтаудың әдістері. Жалпы

талаптар.

МСТ 10060-87-нің орнына.

- 9. ҚНжЕ 2.03.11-85*. Тоттан құрылыс құрылымдарын қорғау. М., С. 1985.
- 10. ҚН 277-80. Кеуекті бетондардан жасалған бұйымдарды дайындау
 - технологиясы жөніндегі нұсқау. М., С. 1980.
- 11. ҚНжЕ 2.01.07-85*. Жүктеме және әсер ету. М., 2001.
- 12. ҚР ҚНжЕ 2.04-01-2001 Құрылыстық климатология. Астана. 2002.
- 13. ҚР ҚН 2.03-12-2001 Сейсмикалық аудандарға арналған тұтасқұймалы ғимараттарды жобалау жөніндегі нұсқаулар. Астана. 2002.
- 14. ОЭР үнемдеу туралы ҚР Құрылыс министрлігінің нұсқау хаты. 1994 жылғы 24 желтоқсан ФГ-2-8.
- 15. КР ҚНжЕ 2.04-01-2001. Құрылыстық климатология. Астана. 2002.
- 16. МСТ 8736-93. Құрылыс жұмыстарына арналған құм. Техникалық шарттар.
- 17. МСТ 10178-85*. Портландцемент және қожпортландцемент. Техникалық шарттар.