Feasibility Evidence Description (FED)

Cash Doctor 3.0

Team 12

Name	Roles
Alisha Parvez	Life Cycle Planner, Feasibility Analyst
Ekasit Jarussinvichai	Requirements Engineer, Prototyper
Kenneth Anguka	IV&V Requirement Engineer
Kshama Krishnan	Prototyper System/Software Architect
Le Zhuang	Feasibility Analyst, System/Software Architect
Shreya Sharma	System/Software Architect, Requirements Engineer
Steven Helferich	Project Manager, Operational Concept Engineer
Xichao Wang	Operational Concept Engineer, Life Cycle Planner

Version History

Date Author Version		Version	Changes made	Rationale	
09/28/14	LZ	1.0	• Create the draft of FED based on NDI template.	For Valuation Commitment Package	
10/12/14	LZ	1.1	• Update draft of FED	• For Foundation Commitment Package	

Table of Contents

Feasibility Evidence Description (FED)	i
Version History	ii
Table of Contents	iii
Table of Tables	iv
Table of Figures	V
1. Introduction	1
1.1 Purpose of the FED Document	1
1.2 Status of the FED Document	1
2. Process Feasibility	2
3. Risk Assessment	4
4. NDI/NCS Feasibility Analysis	6
4.1 Assessment Approach	6
4.2 Assessment Results	6
4.3 Feasibility Evidence	7
5. Business Case Analysis	10
5.1 Market Trend and Product Line Analysis	11
5.2 Cost Analysis	11
5.3 Benefit Analysis	12
5.4 ROI Analysis	12
6 Conclusion and Recommendations	14

Table of Tables

Table 1: Rationales for Selecting NDI/NCS Model	
Table 2: Risk Assessment	
Table 3: NDI/NCS Products Listing	
Table 4: Evaluation Criteria – NDI /NCS Attributes	
Table 5: Evaluation Criteria - NDI/NCS features	7
Table 6: Evaluation Results Screen Matrix	
Table 7: Level of Service Satisfiability Evidence	8
Table 8: Level of Service Implementation Strategy	8
Table 9: Capability Feasibility Evidence	8
Table 10: Evolutionary Feasibility Evidence	9
Table 11: Market Trend and Product Line Analysis	11
Table 12: Personnel Costs	1
Table 13: Hardware and Software Costs	12
Table 14: Benefits of xxx System	12
Table 15: ROI Analysis	13

Table of Figures

т.		7	$D \cap I$	1 1	. ,	\sim 1	7 /
HI	$\sigma n r \rho$	<i>1</i> · <i>1</i>	RII	Analy	212	tranh	1 -
ıι	zuic.		α	ziriai y	sis	$J \iota u \rho \iota \iota \dots$	

FED v Version Date: 10/12/2014

1. Introduction

1.1 Purpose of the FED Document

The Feasibility Evidence Description (FED) is maintained to provide the Success-Critical Stakeholders of CashDoctor 3.0 project with business case analysis, risk assessment and other feasibility evidence. It identifies business case, risks, costs, benefits and issues that may occur in the development life cycle. In particular, it reveals the business case of CashDoctor and the mitigation plans for risks. The FED also contains feasibility analysis of NDI/NCSs that may be applied on CashDoctor 3.0.

1.2 Status of the FED Document

- The risk of the incapability of OCR component has been eliminated.
- Risk identification and assessment has been finished in evaluation phase.

2. Process Feasibility

The following form indicates the process selection criteria with which we chose the NDI-intensive model as our process model.

In the "Importance", the level of importance of the criteria to the project is from 1 to 3, representing Low, Medium and High. In the "Project Status", the level of how the criteria fits the project is measured by 0 to 4, representing Very Low, Low, Medium, High and Very High.

Table 1: Rationales for Selecting NDI/NCS Model

Criteria	Importance	Project Status	Rationales
30 % of NDI/NCS features	2	4	The CashDoctor uses proprietary Ke Solution as its back-end CMS engine. The free-source javascript libraries jQuery.js and backbone.js provide front-end animation and the communication with back-end. The hybrid app also can utilize the fully characterized functionalities of bootstrap as its UI. Furthermore, Tesseract OCR provides the core capability of converting images to texts.
Single NDI/NCS	1	1	Single NDI/NCS cannot accommodate the requirements of CashDoctor like OCR and CMS.
Unique/ inflexible business process	1	1	The business process is neither unique, nor inflexible.
Need control over upgrade / maintenance	1	1	CashDoctor 3.0 is a web application with low requirement of upgrade and maintenance after release.
Rapid deployment	2	3	The client is eager to take the market before its rivals. So the speed of development would count into its success.
Critical on compatibility	1	2	The app needs only to be compatible with Ke the CMS of client's website.
Internet connection independence	1	1	The independence of Internet connection is not important. Connection through other services is acceptable.
Need high level of services / performance	2	2	The client wants the product to support 1000 simultaneous connection.

Need high security	3	2	High security is critical because the information of users are either highly private or confidential.
Asynchronous communication	2	2	Asynchronous communication is wanted to support more users.
Be accessed from anywhere	2	3	Accessibility is critical to mobile apps. If the users cannot connect to our service, they will give up the app.
Critical on mass schedule constraints	1	2	The schedule is strict.
Lack of personnel capability	1	3	Most developers have little experience in mobile development at beginning.
Require little upfront costs	1	3	No upfront costs.
Require low total cost of ownership	1	3	Very low cost of ownership. The server is prepared already.
Not-so-powerful local machines	1	2	We have good local machines.

3. Risk Assessment

Table 2: Risk Assessment

	I	Risk Exposure			
Risks	Potential Probability Risk		Risk	Risk Mitigations	
	Magnitude	Loss	Exposure		
OCR failure on mobile platform:	4	10	40	- Test the component and try to make	
The OCR module we use is built on				a prototype.	
Windows/Unix and not yet tested					
on Android/iOS. The module may					
fail on mobile OS.					
Back-end incompatibility:	7	9	63	- Communicate with the client's co-	
Our system architecture and data				worker to make sure the standards	
flow may be incompatible with the				and interfaces of his CMS	
existing back-end CMS Ke.				- Make the architecture flexible	
Platform inconsistency:	7	8	56	- Do incremental development after	
The hybrid app should be designed				the first product with basic features is	
with HTML/CSS and distributed on				released and accepted.	
both Android and iOS. However,				•	
the UI of two platforms have very					
different design criteria. So the					
"one design for two platforms" may					
cause problems once the product is					
released. For example, the iOS app					
store may reject the app for it does					
not obey Apple's design rules.					
Performance limitation:	6	9	54	- Communicate with the client's co-	
The capability of the client's server				worker to understand the capability	
is unknown and the performance of				of the server	
the product relies on the response					
time of the server. Therefore, the					
deficiency of the server may					
compromise the mobile app					
product.					
Scalability uncertainty:	6	8	48	- Try to learn scalability issues and	
The product is designed for 1000				build scalable architecture at the first	
simultaneous users. However, the				stage	
requirement may easily be lifted to					
more users. The scalability of the					
product is still unknown.					
Personal time constraints:	7	8	56	- Talk with teammates to arrange	
Developers may be as well				meetings and work at time slots	
committed to other courses and				available for everyone.	
activities, which may reduce the					
time spent on this project.					
Client time constrains:	6	6	36	- Try to get used to video meetings.	
The client is an enthusiastic busy				- Arrange meetings as early as	
businessman who flied to India and				possible.	
Thailand investigating the market.					
He may not possible have time to					
set up meetings with us as the					

project is going on.				
Team cohesion failure:	4	9	36	- Try to spend more time with
The team is composed of seven				teammates even after work and be
developers and one client from				good friends
different backgrounds and cultures.				- Seek assistance from the CS577
It is possible that the difference				faculty
may cause misunderstandings and				
unhappiness, which will damage				
the cohesion.				

4. NDI/NCS Feasibility Analysis

4.1 Assessment Approach

- In exploration phase, the client suggested product as a hybrid mobile application built with HTML5, jQuery Mobile, Bootstrap.
- At the first meeting with client's co-worker Lorin Morar, he introduced his Ke Solution CMS and suggested backbone.js for front-end javascript interaction library.
- The team discussed the implementation of backbone and bootstrap and decided to adopt those technologies in our project.
- Ekasit Jarussinvichai built the prototype of OCR, using the tools of Java OCR and Tesserate OCR. Comparing the functionalities of those two tools he decided to use Java OCR.

4.2 Assessment Results

4.2.1 NDI/NCS Candidate Components (Combinations)

Table 3: NDI/NCS Products Listing

NDI/NCS Products	Purposes
Google Map	Provides the locations and
	friendly interface for
	users to choose their
	search zones / interest
	zones.
bootstrap, jQuery, Backbone.js (BJB)	Connects the app to the
	existing APIs over a
	restful JSON interface.
	Builds the user interface
	more responsive,
	beautiful and stable.
	Minimize the cost of
	developing the user
	interface.
Java OCR	Provide local optical
	character recognition with
	minimum overhead.

4.2.2 Evaluation Criteria

Table 4: Evaluation Criteria - NDI /NCS Attributes

No.	Evaluation Criteria – NDI/NCS attributes	Weight
1	Functionality	20
2	Maturity of product	25
3	Flexibility	15
4	Ease of use	25
5	Inter-component Compatibility	15
	Total	100

Table 5: Evaluation Criteria - NDI/NCS features

No.	NDI/NCS Features/ sub features	Weight			
1	Networking	15			
2	2 Price Comparison				
3	Price Posting	35			
4	Rating And Review	20			
	Total	100			

4.2.3 Evaluation Results Screen Matrix

Table 6: Evaluation Results Screen Matrix

No	No W		Google Map		AVG Total		BJB			AVG	AVG Total	Tesseract OCR				AVG	Total		
110	VV	R1	R2	R3	R4	AVU	Total	R1	R2	R3	R4	AVU	Total	R1	R2	R3	R4	AVO	Total
A1	20	18	20	20	18	19	76	18	19	20	17	18.5	74	14	18	16	16	16	64
A2	25	22	24	23	22	22.75	91	19	22	22	20	20.75	83	11	16	15	12	13.5	54
A3	15	11	13	11	10	11.25	45	12	13	14	12	12.75	51	8	12	12	9	10.25	41
A4	25	20	23	22	23	22	88	18	20	24	19	20.25	81	17	18	17	22	18.5	74
A5	15	14	15	15	15	14.75	59	14	13	15	14	14	56	11	13	12	11	11.75	47
Total	100	85	95	91	88	89.75	359	81	87	95	82	86.25	345	61	77	72	70	70	280

No	No W		Google Map		AVG Total	BJB			AVG Total	Tesseract OCR				AVG	Total				
140	**	R1	R2	R3	R4	AVG	1 Otal	R1	R2	R3	R4	AVG	Total	R1	R2	R3	R4	AVG	1 Otal
F1	15	13	14	14	12	13.25	53	13	15	15	14	14.25	57	0	0	0	0	0	0
F2	30	28	29	28	28	28.25	113	28	29	25	28	27.5	110	20	16	25	10	17.75	71
F3	35	30	35	35	33	33.25	133	30	34	35	31	32.5	130	33	35	35	34	34.25	137
F4	20	10	12	12	12	11.5	46	16	18	19	19	18	72	15	8	19	10	13	52
Total	100	81	90	89	85	86.25	345	87	96	94	92	92.25	369	68	59	79	54	65	260

4.3 Feasibility Evidence

4.3.1 Level of Service Feasibility

Table 7: Level of Service Satisfiability Evidence

Level of Service Win Condition	Rationale
LOS-1: The app's snapshot feature should be	This requirement is due to the product's
effective to recognize most well printed	functionality. The Java OCR or Tesserate OCR
medical documents.	component is responsible for the recognition.
	Since the open-source technology is not
	mature, the objects of recognitions are limited
	to well printed documents.
LOS-2: System response should have minor	The responsive delay is a killer of user
delay.	experience. CashDoctor's response should be
	optimized to reduce the delay as much as
	possible. The jQuery and Backbone tools can
	contribute to this.

Table 8: Level of Service Implementation Strategy

Level of Service Win Condition	Product Satisfaction
LOS-1: The app's snapshot	Product Strategies: Error-reducing, Monitoring & Control
feature should be effective to	Process Strategies: Test Plans & Tools
recognize most well printed	Analysis: Revising the recognition errors and monitoring
medical documents.	allows the app to avoid sending nonsense to back-end.
LOS-2: System response should	Product Strategies: Optimization
have minor delay.	Process Strategies: User Involvement
	Analysis: Adjust the front-end data flow to satisfy the Ke
	CMS's capability. For example, reduce the length of content
	sending to the server to optimize the response speed.

4.3.2 Capability Feasibility

Table 9: Capability Feasibility Evidence

Capability Requirement	Product Satisfaction			
CR-1: Acquire	Software/Technology used: Google Map			
Geographic Location	Feasibility Evidence: Google Map has functional APIs for both			
	Adroid and iOS			
	Referred use case diagram:			
CR-2: Display Price	Software/Technology used: HTML5, bootstrap, jQuery, intellXDK			
	Feasibility Evidence: The technologies are mature for hybrid			
	applications to manage contents.			

	Referred use case diagram:
CR-3: OCR	Software/Technology used: Java OCR
	Feasibility Evidence: A working prototype.
	Referred use case diagram:
CR-4: Post Price	Software/Technology used: backbone.js, AJAX, JSON
	Feasibility Evidence: The technologies are already used in web and
	mobile applications with similar functionalities.
	Referred use case diagram:
CR-5: Input Price	Software/Technology used: HTML5, backbone.js
Manually	Feasibility Evidence: The technologies are already used in web and
	mobile applications with similar functionalities.
	Referred use case diagram:

4.3.3 Evolutionary Feasibility

No evolutionary requirements were specified in win-win session.

Table 10: Evolutionary Feasibility Evidence

Evolutionary Win Condition	Rationale

5. Business Case Analysis

ASSUMPTIONS-1) Adoption of the technology by consumers. 2) Corporations will push their employees to use it via incentives. 3) People will move away from insurance providers if it saves them money. What? Why? For whom? Who? 1) Functional and attractive 1) Consumers 1) Developers develop a 1) Consumers 2) Corporations mobile app. mobile app. 2) Corporations 3) Cash Doctor 2) Acquirers start and 2) Ability to search and share 3) Cash Doctor 4) Student team support mobile app healthcare information. 4) Student team 5) Healthcare 3) To create user motivation to 5) Healthcare project Providers 3) All healthcare share healthcare information **Providers** information should be 4) To have abundant shared through this app availability of information by customers/users 5) Healthcare Transparency and 4) Corporations incentivize ease of access. employees to share 6) Saving people money and healthcare information time by allowing them to 5) Providers provide choose from various options healthcare information. for medical treatment. 6) Customers/users search 7) Empowering the customer for healthcare by lowering the cost of information. medical treatment. Cost **Benefits** 1) Development time (in person-hours) 1) Consumers and corporations save money 2) Hardware 2) Consumers have access to healthcare, information, 3) Software and networks(intangible) 4) Network 3) Doctors make more money

4) Usage

4a) registered users4b) downloads4c) rate of access4d) rate of sharing

5) Time saved in finding coverage

Version Date: 08/17/12

5) Maintenance

6) miscellaneous

5.1 Market Trend and Product Line Analysis

Table 11: Market Trend and Product Line Analysis

	Google Map	Bootstrap, jQuery, Backbone	Java OCR
Market Trend	It has dominant power both on iOS and Android. It is very popular. Every cell-phone users are used to it. It will remain mainstream for long time.	They are very popular with strong influence on front-end technologies. The front end developers are used to them. And they will remain mainstream for long time.	It is not popular. And it remains idle for a few years. It cannot be replaced because it is almost the only OCR solution that is open sourced.
Product Line	Google	Twitter, Open-source Community	Google

5.2 Cost Analysis

The cost is measured in terms of personal effort devoted to the project. For stakeholders except developers, their personal efforts are estimated in the following table.

5.2.1 Personnel Costs

Table 12: Personnel Costs

Activities	Time Spent (Hours)
Development Period (24 weeks)	
Exploration, Valuation and Foundation Phase (12 weeks)	
Client meetings [2 hrs/week * 12 weeks * 1 person]	24
Client Win-win sessions [2 hrs/session * 2 sessions * 1 person]	4
Prototyping Presentation [1 hr * 1 person]	1
Architecture Review Boards [2hrs * 1 person]	2
Subtotal	31
Development and Operation Phase (12 weeks)	
Client meetings [4 hrs/week * 12 weeks * 1 person]	48
Client training seed users [2 hrs/week * 12 weeks * 1 person]	24
Architecture Review Boards [2 hrs * 1 person]	2
Performing core capabilities drive-through [2 hrs * 1 person]	2
Subtotal	76
Maintenance Period (Annual)	
Promoting the app [2 hrs/week * 52 weeks]	104

Subtotal	104
TOTAL	211

5.2.2 Hardware and Software Costs

Table 13: Hardware and Software Costs

Туре	Cost(\$/year)
Development Cost	
Java OCR	0
COCOMO II	0
IntellXDK	0
Android SDK	0
Xcode	0
Winbook	0
Test Cell Phones	1200
iOS developer license	99
Operational Cost	
App Store on iOS Storage	0
Google Play on Android	0
Web hosting	1000
Transition Cost	
Total	2299

5.3 Benefit Analysis

Table 14: Benefits of CashDoctor 3.0

Current activities & resources used	% Reduce	Money Saved (\$/Year)					
US enterprises spend \$610 billion dollars annually on health care							
	0.001	\$61,000,000					
Total	\$61,000,000						

5.4 ROI Analysis

Assume 50% per year increase in operation cost for the first three years.

Table 15: ROI Analysis

Year	Cost	Benefit (Money Saved)	Cumulative Cost	Cumulative Benefit	ROI
2014	2299	0	2299	0	-1
2015	1500	61,000,000	3799	61,000,000	16056
2016	2250	61,000,000	6049	122,000,000	20167
2017	3375	61,000,000	9424	183,000,000	19417

Figure 1: ROI Analysis Graph

ROI Analysis

6. Conclusion and Recommendations

- << In general, it is best to organize these into (conclusion-recommendation) pairs, for example: C1. Component 1 has by far the best performance, but runs only on Windows, failing the acceptable portability criterion. Component 2 is fully portable, and has acceptable performance. R1. Use Component 2 for the oversize image viewer function.
- C2. The DBMS assessment is still underway, and **Component 2**'s interoperability is still uncertain.
- R2. Perform an interoperability assessment between **Component 2** and the two DBMS finalists.