SOLUTIONS FOR EQUILIBRIUM OF MODEL GALAXIES

Prescribe temperature T(R,Z) (Eq. (8)) and potential $\phi(R,Z)$ (Eqs. (9) & (10)) Solve for $v_{\phi}(R,Z)$ (Eq. (6)) assuming that $v_{\phi} \to 0$ at ∞

- ✓ Obtain $v_{\phi}(R)|_{z=0}$ from last step
- \checkmark Create a 1D interpolation table of $v_{\phi}(R)|_{z=0}$

Numerically integrate the integrands in the exponential terms in Eq. (5) using the analytical forms of
$$\frac{\partial \phi}{\partial R}$$
 and $\frac{\partial \phi}{\partial Z}$ and v_{ϕ} from interpolation table

forms of $\frac{1}{\partial R}$ and $\frac{1}{\partial Z}$ and v_{ϕ} from interpolation table \checkmark Obtain the density field $\rho(R,Z)$ as in Eq. (5), with the choice of value of $\rho(0,0)$.

Set the pressure
$$P(R,Z) = \rho(R,Z) \times c_s^2 (R,Z)$$
 where, $c_s^2(R,Z) = \frac{k_B T}{\mu m_p}$