

Cluster analysis: Part - III

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Clustering analysis part III

Agenda

- Handling missing data
- Calculation of similarity and dissimilarity matrix

- It often happens that not all measurements are actually available, so there are some "holes" in the data matrix
- Such an absent measurement is called a missing value and it may have several causes
- The value of the measurement may have been lost or it may not have been recorded at all by oversight or lack of time

- Sometimes the information is simply not available, for example the birthdate of a foundling, or the patient may not remember whether he or she ever had the measles, or it may be impossible to measure the desired quantity due to the malfunctioning of some instrument
- In certain instances the question does not apply (such as the colour of hair of a bald person) or there may be more than one possible answer (when two experimenters obtain very different results)

- How can we handle a data set with missing values?
- In a matrix we indicate the absent measurements by means of some code
- If there exists an object in the data set for which all measurements are missing, there is really no information on this object so it has to be deleted
- Analogously, a variable consisting exclusively of missing values has to be removed too

- If the data are standardized, the mean value m, of the fth variable is calculated by making use of the present values only
- The same goes for s_f,

$$s_f = \frac{1}{n} \{ |x_{1f} - m_f| + |x_{2f} - m_f| + \cdots + |x_{nf} - m_f| \}$$

In the denominator, we must replace 'n' by the number of non missing values for that variable

But of course only when the corresponding x_i, is not missing itself

- In the computation of distances (based on either the x_i , or the z_i ,) similar precautions must be taken
- When calculating the distances d(i, j), only those variables are considered in the sum for which the measurements for both objects are present subsequently the sum is multiplied by p and divided by the actual number of terms (in the case of Euclidean distances this is done before taking the square root)
- Such a procedure only makes sense when the variables are thought of as having the same weight (for instance, this can be done after standardization)

- When computing these distances, one might come across a pair of objects that do not have any common measured variables, so their distance cannot be computed by means of the above mentioned approach.
- Several remedies are possible: One could remove either object or one could fill in some average distance value based on the rest of the data
- Or by replacing all missing x_{if} by the mean mf of that variable; then all distances can be computed
- Applying any of these methods, one finally possesses a "full" set of distances

- The entries of a n-by n matrix may be Euclidean or Manhattan distances
- However, there are many other possibilities, so we no longer speak of distances but of dissimilarities (or dissimilarity coefficients)
- Basically, dissimilarities are non-negative numbers d(i, j) that are small (close to zero) when i and j are "near" to each other and that become large when i and j are very different
- We shall usually assume that dissimilarities are symmetric and that the dissimilarity of an object to itself is zero, but in general the triangle inequality does not hold

- Dissimilarities can be obtained in several ways.
- Often they can be computed from variables that are binary, nominal, ordinal, interval, or a combination of these
- Also, dissimilarities can be simple subjective ratings of how much certain objects differ from each other, from the point of view of one or more observers
- This kind of data is typical in the social sciences and in marketing

Example

- Fourteen postgraduate economics students (coming from different parts of the world) were asked to indicate the subjective dissimilarities between 11 scientific disciplines.
- All of them had to fill in a matrix like Table 4, where the dissimilarities had to be given as integer numbers on a scale from 0 (identical) to 10 (very different)
- The actual entries of the Table in next slide, are the averages of the values given by the students

Example

• It appears that the smallest dissimilarity is perceived between mathematics and computer science (1.43), whereas the most remote fields were psychology and astronomy (9.36)

Astronomy	0.00										
Biology	7.86	0.00									
Chemistry	6.50	2.93	0.00								
Computer sci.	5.00	6.86	6.50	0.00							
Economics	8.00	8.14	8.21	4.79	0.00						
Geography	4.29	7.00	7.64	7.71	5.93	0.00					
History	8.07	8.14	8.71	8.57	5.86	3.86	0.00				
Mathematics	3.64	7.14	4.43	1.43	3.57	7.07	9.07	0.00			
Medicine	8.21	2.50	2.93	6.36	8.43	7.86	8.43	6.29	0.00		
Physics	2.71	5.21	4.57	4.21	8.36	7.29	8.64	2.21	5.07	0.00	
Psychology	9.36	5.57	7.29	7.21	6.86	8.29	7.64	8.71	3.79	8.64	0.00

- If one wants to perform a cluster analysis on a set of variables that have been observed in some population, there are other measures of dissimilarity
- For instance, one can compute the (parametric) Pearson product-moment between the variables f and g, or alternatively the (non-parametric) Spearman correlation

- Both coefficients lie between 1 and + 1 and do not depend on the choice of measurement units
- The main difference between them is that the Pearson coefficient looks for a linear relation between the variables f and g, whereas the Spearman coefficient searches for a monotone relation

$$R(f,g) = \frac{\sum_{i=1}^{n} (x_{if} - m_f)(x_{ig} - m_g)}{\sqrt{\sum_{i=1}^{n} (x_{if} - m_f)^2} \sqrt{\sum_{i=1}^{n} (x_{ig} - m_g)^2}} \qquad (2)$$

- Correlation coefficients are useful for clustering purposes because they measure the extent to which two variables are related
- Correlation coefficients, whether parametric or nonparametric, can be converted to dissimilarities d(f, g), for instance by setting

$$d(f,g) = (1 - R(f,g))/2$$

With this formula, variables with a high positive correlation receive a dissimilarity coefficient close to zero, whereas variables with a strongly negative correlation will be considered very dissimilar

- The more objects i and j are alike (or close), the larger s(i, j) becomes
- Such a similarity s(i, j) typically takes on values between 0 and 1, where 0 means that i and j are not similar at all and 1 reflects maximal similarity
- Values in between 0 and 1 indicate various degrees of resemblance
- Often it is assumed that the following conditions hold:

(S1)
$$0 \le s(i, j) \le 1$$

(S2) $s(i, i) = 1$
(S3) $s(i, j) = s(j, i)$

- For all objects i and j, the numbers s(i, j) can be arranged in an n-by-n matrix, which is then called a similarity matrix
- Both similarity and dissimilarity matrices are generally referred to as proximity matrices, or sometimes as resemblance
- In order to define similarities between variables, we can again resort to the Pearson or the Spearman correlation coefficient
- However, neither correlation measure can be used directly as a similarity coefficient because they also take on negative values

- Some transformation is in order to bring the coefficients into the zero-one range
- There are essentially two ways to do this, depending on the meaning of the data and the purpose of the application
- If variables with a strong negative correlation are considered to be very different because they are oriented in the opposite direction (like mileage and weight of a set of cars), then it is best to take something like the following:

$$s(f,g) = (1 + R(f,g))/2$$

which yields s(f, g) = 0 whenever R(f, g) = -1.

- There are situations in which variables with a strong negative correlation should be grouped, because they measure essentially the same thing
- For instance, this happens if one wants to reduce the number of variables in a regression data set by selecting one variable from each cluster
- In that case it is better to use a formula like

$$s(f,g) = |R(f,g)|$$

which yields s(f, g) = 1 when R(f, g) = -1

- Suppose the data consist of a similarity matrix but one wants to apply a clustering algorithm designed for dissimilarities
- Then it is necessary to transform the similarities into dissimilarities
- The larger the similarity s(i, j) between i and j, the smaller their dissimilarity d(i, j) should be
- Therefore, we need a decreasing transformation, such as

$$d(i,j) = 1 - s(i,j)$$

Binary Variables

A contingency table for binary variables.

		object j		
		1	0	sum
	1	9	r	q+r
object i	0	S	<u>t</u>	s+t
	sum	q+s	r+t	p

Dissimilarity between two binary variables

- $q \rightarrow$ is the number of variables that equal 1 for both objects i and j,
- $r \rightarrow$ is the number of variables that equal 1 for object i but that are 0 for object j,
- S → is the number of variables that equal 0 for object *i* but equal 1 for object *j*, and
- $t \rightarrow$ is the number of variables that equal 0 for both objects i and j.
- The total number of variables is p, where p = q+r+s+t.

Symmetric Binary Dissimilarity

$$d(i,j) = \frac{r+s}{q+r+s+t}.$$

Gendel 0-male 1-female

Asymmetric binary variable

- A binary variable is asymmetric if the outcomes of the states are not equally important, such as the *positive* and *negative* outcomes of a disease *test*.
- By convention, we shall code the most important outcome, which is usually the rarest one, by 1 (e.g., HIV positive) and the other by 0 (e.g., HIV negative).
- Given two asymmetric binary variables, the agreement of two 1s (a positive match) is then considered more significant than that of two 0s (a negative match).
- Therefore, such binary variables are often considered <u>"monary"</u> (as if having one state).

asymmetric binary dissimilarity

		object j		
		1	0	sum
	1		<u>*</u>	q+r
object i	0	(F	t	s+t
	sum	q+s	r+t	p

$$d(i,j) = \frac{r+s}{q+r+s}.$$

Jaccard coefficient

$$sim(i, j) = \frac{q}{q+r+s} = 1 - d(i, j).$$

Dissimilarity between binary variables

name	gender	fever	cough	test-l	test-2	test-3	test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	Y	N	N	N	N
:		:	:	:	:	:	:

Dissimilarity between Jack and Marry

Jack

name	gender	fever	cough	test-l	test-2	test-3	test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	Р	N
Jim	M	Y	Y	N	N	N	N
		•	•				

Marry

	1	0
1	2	<u>L</u> 1
0	(0)	3

$$d(Jack, Mary) = \frac{0+1}{2+0+1} = 0.33$$

Dissimilarity between Jack and Jim

$$d(Jack, Jim) = \frac{1+1}{1+1+1} = 0.67$$

Dissimilarity between Jim and Marry

Jim

name	gender	fever	cough	test-l	test-2	test-3	test-4
Jack	M	Y	N	P	N	N	N
Mary	F	7	N	P	Ń	P	N
Jim	M	Y	(Y)	N	N	N	N
•	:	:	·	:	:	:	:

Marry

	1	0
1	1-)	2
0	1	2

$$d(Mary, Jim) = \frac{1+2}{1+1+2} = 0.75$$

Thank you

