Initial data exploration

Load

import pandas

data = pandas.read_csv('../data/raw/weatherAUS.csv')

Data shape and head

Response variable to predict: RainTomorrow (Yes, No)

```
print('Dimensions of data: {0}'.format(data.shape))
data.head(n=10)
```

Dimensions of data: (145460, 23)

W

W

WNW

4

5

6

7

	Location	MinTemp	${\sf MaxTemp}$	Rainfall	Evaporation
Sunshine \					
0 2008-12-01	Albury	13.4	22.9	0.6	NaN
NaN					
1 2008-12-02	Albury	7.4	25.1	0.0	NaN
NaN					
2 2008-12-03	Albury	12.9	25.7	0.0	NaN
NaN	,				
3 2008-12-04	Albury	9.2	28.0	0.0	NaN
NaN	,	-			
4 2008-12-05	Albury	17.5	32.3	1.0	NaN
NaN	resury	17.13	32.13	1.0	nan
5 2008-12-06	Albury	14.6	29.7	0.2	NaN
NaN	Acoury	14.0	23.7	0.2	IVAIN
6 2008-12-07	Albury	14.3	25.0	0.0	NaN
NaN	Acbury	14.5	23.0	0.0	IVAIN
7 2008-12-08	Albury	7.7	26.7	0.0	NaN
	Albury	7.7	20.7	0.0	IValv
NaN	A.7. In	0.7	21.0	0.0	M - M
8 2008-12-09	Albury	9.7	31.9	0.0	NaN
NaN					
9 2008-12-10	Albury	13.1	30.1	1.4	NaN
NaN					
WindGustDir	WindGust	Speed Win	dDir9am		Humidity9am
0 W		44.0	W		71.0
1 WNW		44.0	NNW		44.0
2 WSW		46.0	W		38.0
2 WSW3 NE		24.0	SE		45.0
		-	- -	= = =	· = • •

W

SW

SSE

ENE

41.0

56.0

50.0

35.0

\

82.0

55.0

49.0

48.0

8 9	NNW W	80.0 28.0				42.0 58.0
`	Humidity3pm	Pressure9am	Pressure3pm	Cloud9am	Cloud3pm	Temp9am
0	22.0	1007.7	1007.1	8.0	NaN	16.9
1	25.0	1010.6	1007.8	NaN	NaN	17.2
2	30.0	1007.6	1008.7	NaN	2.0	21.0
3	16.0	1017.6	1012.8	NaN	NaN	18.1
4	33.0	1010.8	1006.0	7.0	8.0	17.8
5	23.0	1009.2	1005.4	NaN	NaN	20.6
6	19.0	1009.6	1008.2	1.0	NaN	18.1
7	19.0	1013.4	1010.1	NaN	NaN	16.3
8	9.0	1008.9	1003.6	NaN	NaN	18.3
9	27.0	1007.0	1005.7	NaN	NaN	20.1

	Temp3pm	RainToday	RainTomorrow
0	21.8	No	No
1	24.3	No	No
2	23.2	No	No
3	26.5	No	No
4	29.7	No	No
5	28.9	No	No
6	24.6	No	No
7	25.5	No	No
8	30.2	No	Yes
9	28.2	Yes	No

[10 rows x 23 columns]

Data summaries

Many rows have missing data, and it's not clear whether they are missing at random or not at random. These will need to be handled. Sunshine, Evaporation, Cloud9am, and Cloud3pm have a lot of missing data.

```
print('Total number of rows: {0}'.format(data.shape[0]))
print('Rows if rows with missing data were dropped:
```

{0}'.format(len(data.dropna())))
data.describe()

Total number of rows: 145460

Rows if rows with missing data were dropped: 56420

count mean std min 25% 50% 75% max	MinTemp 143975.000000 12.194034 6.398495 -8.500000 7.600000 12.000000 16.900000 33.900000	MaxTemp 144199.000000 23.221348 7.119049 -4.800000 17.900000 22.600000 28.200000 48.100000	142199.000000 2.360918 8.478060 0.000000 0.000000 0.000000 0.800000	82670.000000 5.468232 4.193704 0.000000 2.600000 4.800000 7.400000	\
count mean std min 25% 50% 75% max	Sunshine 75625.000000 7.611178 3.785483 0.000000 4.800000 8.400000 10.600000 14.500000	WindGustSpeed 135197.000000 40.035230 13.607062 6.000000 31.000000 39.000000 48.000000 135.000000	WindSpeed9am 143693.000000 14.043426 8.915375 0.000000 7.000000 13.000000 19.000000 130.000000	WindSpeed3pm 142398.000000 18.662657 8.809800 0.000000 13.000000 19.000000 24.000000 87.000000	\
count mean std min 25% 50% 75% max	Humidity9am 142806.000000 68.880831 19.029164 0.000000 57.000000 70.000000 83.000000 100.000000	Humidity3pm 140953.000000 51.539116 20.795902 0.000000 37.000000 52.000000 66.000000	130395.00000 1017.64994 7.10653 980.50000 1012.90000 1017.60000 1022.40000	Pressure3pm 130432.000000 1015.255889 7.037414 977.100000 1010.400000 1015.200000 1020.000000 1039.600000	\
count mean std min 25% 50% 75% max	Cloud9am 89572.000000 4.447461 2.887159 0.000000 1.000000 5.000000 7.000000 9.000000	Cloud3pm 86102.000000 4.509930 2.720357 0.000000 2.000000 5.000000 7.000000 9.000000	Temp9am 143693.000000 16.990631 6.488753 -7.200000 12.300000 16.700000 21.600000 40.200000	Temp3pm 141851.00000 21.68339 6.93665 -5.40000 16.60000 21.10000 26.40000 46.70000	

Categorical variables:

data.describe(include=['0'])

	Date	Location	WindGustDir	WindDir9am	WindDir3pm
RainTod count 142199 unique	ay \ 145460	145460	135134	134894	141232
	3436	49	16	16	16
top No	2015-06-18	Canberra	W	N	SE
freq 110319	49	3436	9915	11758	10838

RainTomorrow count 142193 unique 2 top No freq 110316

Some plots

import matplotlib.pyplot as pyplot

%matplotlib inline

Temperature

```
fig, axs = pyplot.subplots(2,2)
axs[0,0].set title('MinTemp histogram')
axs[0,0].hist(data['MinTemp'])
axs[0,1].set_title('MaxTemp histogram')
axs[0,1].hist(data['MaxTemp'])
axs[1,0].set_title('Temp9am histogram')
axs[1,0].hist(data['Temp9am'])
axs[1,1].set_title('Temp3pm histogram')
axs[1,1].hist(data['Temp3pm'])
(array([
         172.,
                 634., 3112., 23341., 40168., 35761., 24036.,
11314.,
         3030.,
                 283.]),
array([-5.4 , -0.19, 5.02, 10.23, 15.44, 20.65, 25.86, 31.07, 36.28,
       41.49, 46.7 ]),
 <a list of 10 Patch objects>)
```


Rainfall, Evaporation

The data for these features are very skewed. Can apply a log transformation on Evaporation to make it less skewed. It may be more suitable to use RainToday in place of Rainfall.

```
import numpy as np
def log transformation(data):
    return data.apply(np.log1p)
fig, axs = pyplot.subplots(3,1)
axs[0].set title('Evaporation histogram')
axs[0].hist(data['Evaporation'])
axs[1].set title('Rainfall histogram')
axs[1].hist(data['Rainfall'])
axs[2].set title('Evaporation histogram (log)')
axs[2].hist(log transformation(data['Evaporation']))
(array([2.6450e+03, 8.4680e+03, 1.8182e+04, 2.5154e+04, 2.2130e+04,
        5.3470e+03, 5.5600e+02, 1.4200e+02, 4.5000e+01, 1.0000e+00]),
                  , 0.49836066, 0.99672132, 1.49508199, 1.99344265,
 array([0.
        2.49180331, 2.99016397, 3.48852464, 3.9868853, 4.48524596,
        4.983606621),
 <a list of 10 Patch objects>)
```


Sunshine

Wind
WindGustSpeed WindSpeed9am WindSpeed3pm

Humidity # Humidity9am Humidity3pm

Pressure # Pressure9am Pressure3pm

Clouds

Cloud9am and Cloud3pm appear to be bimodal.

```
# Cloud9am Cloud3pm
```

