Introductory Applied Machine Learning

Nearest Neighbour Methods

Victor Lavrenko and Nigel Goddard School of Informatics

Overview

- Nearest neighbour method
 - classification and regression
 - practical issues: k, distance, ties, missing values
 - optimality and assumptions
- Making kNN fast:
 - K-D trees
 - inverted indices
 - fingerprinting
- References: W&F sections 4.7 and 6.4

Intuition for kNN

- set of points (x,y)
 - two classes
- is the box red or blue
- how did you do it
 - use Bayes rule?
 - a decision tree?
 - fit a hyperplane?
- nearby points are red
 - use this as a basis for a learning algorithm

Nearest-neighbor classification

- Use the intuition to classify a new point x:
 - find the most similar training example x'
 - predict its class y'
- Voronoi tesselation
 - partitions space into regions
 - boundary: points at same distance from two different training examples
- classification boundary
 - non-linear, reflects classes well
 - compare to NB, DT, logistic
 - impressive for simple method

Nearest neighbour: outliers

- Algorithm is sensitive to outliers
 - single mislabeled example dramatically changes boundary
- No confidence P(y|x)
- Insensitive to class prior
- Idea:
 - use more than one nearest neighbor to make decision
 - count class labels in k most similar training examples
 - many "triangles" will outweigh single "circle" outlier

kNN classification algorithm

• Given:

- training examples $\{x_i, y_i\}$
 - x_i ... attribute-value representation of examples
 - y_i ... class label: {ham,spam}, digit {0,1,...9} etc.
- testing point x that we want to classify

Algorithm:

- compute distance $D(x,x_i)$ to every training example x_i
- select k closest instances $x_{i1}...x_{ik}$ and their labels $y_{i1}...y_{ik}$
- output the class y^* which is most frequent in $y_{i1}...y_{ik}$

Example: handwritten digits

- 16x16 bitmaps
- 8-bit grayscale
- Euclidian distance
 - over raw pixels

$$D(A,B) = \sqrt{\sum_{r} \sum_{c} (\overline{A_{r,c}} - \overline{B_{r,c}})^2}$$

- Accuracy:
 - 7-NN ~ 95.2%
 - SVM ~ 95.8%
 - humans ~ 97.5%

kNN regression algorithm

Given:

- training examples $\{x_i, y_i\}$
 - x_i ... attribute-value representation of examples
 - y_i ... real-valued target (profit, rating on YouTube, etc)
- testing point x that we want to predict the target

Algorithm:

- compute distance $D(x,x_i)$ to every training example x_i
- select k closest instances $x_{i1}...x_{ik}$ and their labels $y_{i1}...y_{ik}$
- output the mean of $y_{i1}...y_{ik}$:

$$\hat{y} = f(x) = \frac{1}{k} \sum_{j=1}^{k} y_{i_j}$$

Example: kNN regression in 1-d

Choosing the value of k

- Value of k has strong effect on kNN performance
 - large value → everything classified as the most probable class: P(y)
 - small value → highly variable,
 unstable decision boundaries
 - small changes to training set →
 large changes in classification
 - affects "smoothness" of the boundary
- Selecting the value of k
 - set aside a portion of the training data (validation set)
 - vary k, observe training → validation error
 - pick k that gives best generalization performance

Distance measures

- Key component of the kNN algorithm
 - defines which examples are similar & which aren't
 - can have strong effect on performance
- Euclidian (numeric attributes): $D(x,x') = \sqrt{\sum_d |x_d x'_d|^2}$
 - symmetric, spherical, treats all dimensions equally
 - sensitive to extreme differences in single attribute
 - behaves like a "soft" logical OR
- Hamming (categorical attributes): $D(x,x') = \sum_{d} 1_{x_d \neq x'_d}$
 - number of attributes where x, x' differ

Distance measures (2)

- Minkowski distance (*p*-norm): $D(x,x') = \sqrt[p]{\sum_d |x_d x'_d|^p}$
 - *p*=2: Euclidian
 - p=1: Manhattan

- p=0: Hamming ... logical AND
- $p=\infty$: $\max_d |x_d-x'_d|$... logical OR

- Kullback-Leibler (KL) divergence:
 - for histograms $(x_d > 0, \Sigma_d x_d = 1)$: $D(x, x') = -\sum_d x_d \log \frac{x_d}{x'_d}$
 - asymmetric, excess bits to encode x with x'
- Custom distance measures (BM25 for text)

kNN: practical issues

Resolving ties:

- equal number of positive/negative neighbours
- use odd k (doesn't solve multi-class)
- breaking ties:
 - random: flip a coin to decide positive / negative
 - prior: pick class with greater prior
 - nearest: use 1-nn classifier to decide

Missing values

- have to "fill in", otherwise can't compute distance
- key concern: should affect distance as little as possible
- reasonable choice: average value across entire dataset

kNN, Parzen Windows and Kernels

kNN pros and cons

- Almost no assumptions about the data
 - smoothness: nearby regions of space → same class
 - assumptions implied by distance function (only locally!)
 - non-parametric approach: "let the data speak for itself"
 - nothing to infer from the data, except k and possibly D()
 - easy to update in online setting: just add new item to training set
- Need to handle missing data: fill-in or create a special distance
- Sensitive to class-outliers (mislabeled training instances)
- Sensitive to lots of irrelevant attributes (affect distance)
- Computationally expensive:
 - space: need to store all training examples
 - time: need to compute distance to all examples: O(nd)
 - *n* ... number of training examples, *d* ... cost of computing distance
 - $n \text{ grows } \rightarrow \text{ system will become slower and slower}$
 - expense is at testing, not training time (bad)

Summary: kNN

- - important to select good distance function
- Can be used for classification and regression
- Simple, non-linear, asymptotically optimal
 - does not make assumptions about the data
 - "let the data speak for itself"
- Select k by optimizing error on held-out set
- Naïve implementations slow for big datasets
 - use K-D trees (low-d) or inverted lists (high-d)

Why is kNN slow?

What you see

Find nearest neighbors of the testing point (red)

What algorithm sees

Training set:

Testing instance:

Nearest neighbors?

compare one-by-one to each training instance

- n comparisons
- each takes d operations

Making kNN fast

- Training: O(d), but testing: O(nd)
- Reduce d: dimensionality reduction
 - simple feature selection, other methods $O(d^3)$
- Reduce n: don't compare to all training examples
 - idea: quickly identify m<<n potential near neighbors</p>
 - compare only to those, pick k nearest neighbors \rightarrow O(md) time
 - K-D trees: low-dimensional, real-valued data
 - O $(d \log_2 n)$, only works when $d \ll n$, inexact: may miss neighbors
 - inverted lists: high-dimensional, discrete data
 - O (n'd') where d' << d, n' << n, only for sparse data (e.g. text), exact
 - locality-sensitive hashing: high-d, discrete or real-valued
 - O(n'd), n' << n ... bits in fingerprint, inexact: may miss near neighbors

K-D tree example

- Building a K-D tree from training data:
 - pick random dimension, find median, split data, repeat
- Find NNs for new point (7,4)
 - find region containing (7,4)
 - compare to all points in region

Locality-Sensitive Hashing (LSH)

- Random hyper-planes h₁...h_k
 - space sliced into 2^k regions (polytopes)
 - compare x only to training points in the same region R
- Complexity: O(kd + dn/2^k)
 - O(kd) to find region R, k << n
 - dot-product \mathbf{x} with $\mathbf{h}_1...\mathbf{h}_k$
 - compare to n/2^k points in R
- Inexact: missed neighbors
 - repeat with different $\mathbf{h}_1...\mathbf{h}_k$
- Why not K-D tree?

Inverted list example

- Data structure used by search engines (Google, etc)
 - list all training examples that contain particular attribute
 - assumption: most attribute values are zero (sparseness)
- Given a new testing example:
 - merge inverted lists for attributes present in new example
 - O(dn): d ... nonzero attributes, n ... avg. length of inverted list

```
D1: "send your password"
                          spam
                                              send -
D2: "send us review"
                          ham
D3: "send us password"
                          spam
D4: "send us details"
                           ham
                                             review
D5: "send your password"
                          spam
                                           account
D6: "review your account"
                           ham
                                          password →
new email: "account review"
```