CLAIMS

1. A compound of formula (I):

$$R^{15}$$
 R^{16}
 R^{15}
 R^{16}
 R^{16}

5

10

15

25

wherein

R¹ is hydrogen, halogen, C₁-6alkyl, C₁-6alkoxy, fluoroC₁-6alkyl, fluoroC₁-6alkoxy, C₃-7cycloalkyl, C₃-7cycloalkylC₁-4alkyl, NO₂, CN, SRª, SORª, SO₂Rª, CO₂Rª, CONRªR♭, C₂-6alkenyl, C₂-6alkynyl or C₁-4alkyl substituted by C₁-4alkoxy, wherein Rª and R♭ each independently represent hydrogen or C₁-4alkyl;

R² is hydrogen, halogen, C₁₋₆alkyl, fluoroC₁₋₆alkyl or C₁₋₆alkoxy substituted by C₁₋₄alkoxy;

R³ is hydrogen, halogen or fluoroC1-6alkyl;

R⁴ is hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy, fluoroC₁₋₆alkyl, fluoroC₁₋₆alkoxy, hydroxy, NO₂, CN, SR^a, SOR^a, SO₂R^a, CO₂R^a, CONR^aR^b, C₂₋₆alkenyl, C₂₋₆alkynyl or C₁₋₄alkyl substituted by C₁₋₄alkoxy, wherein R^a and R^b are as previously defined;

20 R⁵ is hydrogen, halogen, C₁₋₆alkyl, fluoroC₁₋₆alkyl or C₁₋₆alkoxy substituted by C₁₋₄alkoxy;

R⁶ represents hydrogen or a C₁₋₄alkyl group optionally substituted by a hydroxy group;

 R^{j} represents a 5- or 6-membered carbonyl or sulfonyl containing cyclic group comprising from 0 to 3 nitrogen ring atoms, from 0 to 1 oxygen ring atom

5

10

15

20

25

30

and from 0 to 1 sulfur ring, wherein said ring is optionally substituted at any substitutable position by one or more substituents selected from =O, halogen, hydroxy, R¹¹, R¹², SR^f, SO₂R^g, COR^a, CO₂R^a, CONR^gR¹⁰, -ZNR^gR¹⁰, benzyl, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, fluoroC₁₋₄alkyl, chloroC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkoxy, C₃₋₇cycloalkoxyC₁₋₄alkyl, C₁₋₄alkoxy, fluoroC₁₋₄alkoxy, hydroxyC₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkoxy, aryl, arylC₁₋₄alkyl, heteroaryl, heteroarylC₁₋₄alkyl or a 5- or 6-membered ring containing in the ring one oxygen atom or N(C₁₋₆alkyl), wherein R^f is C₁₋₄alkyl or aralkyl or aryl and R^g is C₁₋₄alkyl, aryl, arylC₁₋₄alkyl or NR^gR¹⁰;

 R^8 represents hydrogen, $C_{1\text{-}6}$ alkyl, fluoro $C_{1\text{-}6}$ alkyl, hydroxy, $C_{1\text{-}6}$ alkyl, hydroxy, $C_{1\text{-}6}$ alkyl NR^9R^{10} , $CONR^9R^{10}$ or SO_2R^g ;

R⁹ is hydrogen, C₁₋₄alkyl, C₈₋₇cycloalkyl, C₈₋₇cycloalkylC₁₋₄alkyl, fluoroC₁₋₄alkyl, C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group, or R⁹ is a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined;

R¹⁰ is hydrogen or C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, fluoroC₁₋₄alkyl or C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group;

or R⁹, R¹⁰ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy, COR⁹, CO₂R⁹, C₁₋₄alkyl optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined, or said heteroaliphatic ring is substituted by a spiro-fused lactone ring, and said heteroaliphatic ring optionally containing a double bond, which heteroaliphatic ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^d moiety, where R^d is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy;

or R⁹, R¹⁰ and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms;

or R⁹, R¹⁰ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms to which is fused a benzene ring or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S;

15

20

25

R¹¹ and R¹² each independently represent hydrogen, hydroxy, COR^e, CO₂R^e, C₁₋₄alkyl optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group;

or, when they are attached to the same carbon atom, R¹¹ and R¹² may together represent =O, =CHCO₂R^a, -O(CH₂)_mO-, -CH₂O(CH₂)_k-, -CH₂OCH₂C(O)-, -CH₂OCH₂CH(OH)-, -CH₂OCH₂C(CH₃)₂-, -CH₂OC(CH₃)₂CH₂-, -C(CH₃)₂OCH₂CH₂-, -CH₂C(O)OCH₂-, -OC(O)CH₂CH₂-, -C(O)OCH₂CH₂-, -C(O)OC(CH₃)₂CH₂-, -C(O)OCH₂C(CH₃)₂-, -OCH₂CH₂CH₂-, -OC(CH₃)₂CH₂CH₂-, -OCH₂CH₂CH₂-, -OCH₂CH₂CH₂-, -OCH₂CH₂-, -OCH₂-, -OCH₂CH₂-, -OCH₂-, -OCH₂-,

-OCH₂CH(OH)CH₂CH₂-, -OCH₂CH₂CH(OH)CH₂-, -OCH₂C(O)CH₂CH₂-, -OCH₂CH₂C(O)CH₂-, or a group of the formula

or, where they are attached to adjacent carbon atoms, R^{11} and R^{12} may together represent -OCH₂CH₂- or -OCH₂CH(OH)-, or R^{11} and R^{12} may together form a fused benzene ring;

or, R¹¹ and R¹² together form a C₁₋₂alkylene bridge across the pyrrolidine, piperidine, morpholine or piperazine ring to which they are attached;

R¹³ represents hydrogen, phenyl, benzyl, pyridyl, tetrahydropyranyl, piperidinyl, N-substituted piperidinyl (where the N-substituent is C₁₋₆alkyl), C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, -SO₂C₁₋₄alkyl or C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group;

R¹⁴ represents hydrogen, halogen, hydroxy, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or fluoroC₁₋₄alkyl;

 R^{15} and R^{16} each independently represent hydrogen, halogen, $C_{1\text{-}6}$ alkyl, CH_2OR^c , oxo, CO_2R^a or $CONR^aR^b$ where R^a and R^b are as previously defined and R^c represents hydrogen, $C_{1\text{-}6}$ alkyl or phenyl;

Z represents a bond, C1-6alkylene or C3-6cycloalkylene;

30 k is 1, 2 or 3; m is 1 or 2; and n is zero, 1 or 2; with the proviso that when n is zero and R⁸ is hydrogen, R⁷ does not represent a C-linked nitrogen-containing ring of the formula

5

wherein

A represents NR¹³, and B represents a bond, CH₂, NR¹³ or O, wherein one or both hydrogen atoms in said CH₂ moiety may be replaced with one or both of R¹¹ and R¹², or alternatively, one of the hydrogen atoms in said CH₂ moiety together with a hydrogen atom from an adjacent carbon are replaced by a double bond; or A is O, and B is NR¹³; and R¹¹ and R¹² together represent =O; and pharmaceutically acceptable salts thereof.

- 2. A compound according to Claim 1 wherein R¹ is hydrogen, 15 C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.
 - 3. A compound according to Claim 1 or Claim 2 wherein R² is hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.
- 20 4. A compound according to any one of Claims 1 to 3 wherein R³ is hydrogen, fluorine, chlorine or CF₈.
 - 5. A compound according to any one of Claims 1 to 4 wherein R⁴ is hydrogen or fluorine.

25

- 6. A compound according to any one of Claims 1 to 5 wherein R⁵ is hydrogen, fluorine, chlorine or CF₃.
- 7. A compound according to any one of Claims 1 to 6 wherein R^6 is C_{1-4} alkyl optionally substituted by hydroxy.

X is NR¹³, O or SO₂

5

X is NR¹³ or CH₂

8. A compound according to any one of Claims 1 to 7 wherein \mathbb{R}^7 is a cyclic group selected from the group consisting of:

X is N or CH

5

110

wherein R¹³ is as defined in Claim 1, and further wherein any of said cyclic groups is optionally substituted by one or more groups as defined in Claim 1.

9. A compound according to any one of Claims 1 to 7 wherein R⁷ is a cyclic group selected from the group consisting of:

wherein R¹³ is as defined in Claim 1, and further wherein any of said cyclic groups is optionally substituted by one or more groups as defined in Claim 1.

- 10. A compound according to any one of Claims 1 to 9 wherein R⁸ is hydrogen or methyl.
- 11. A compound according to any one of Claims 1 to 10 wherein R¹² is hydrogen, hydroxy, C₁₋₂alkyl substituted by hydroxy, C₁₋₄alkoxy or CO₂R^e (where R^e is hydrogen, methyl ethyl or benzyl).

10

- 12. A compound according to any one of Claims 1 to 11 wherein R^{13} represents hydrogen, methyl or ethyl.
- 13. A compound according to any one of Claims 1 to 12 wherein R^{15} and R^{16} are both hydrogen atoms.
 - 14. A compound according to any one of Claims 1 to 13 wherein n is zero or 1.

15. A compound according to Claim 1 of the formula (Ia):

$$A^{5}$$
 A^{2}
 CH_{2}
 A^{3}
 A^{4}
(Ia)

15 wherein

A1 is fluorine or CF3;

A² is fluorine or CF₃;

A³ is fluorine or hydrogen;

A4 is fluorine or hydrogen;

20 A⁵ is methyl; and

R⁷ and n are as defined in Claim 1;

or a pharmaceutically acceptable salt thereof.

WO 2004/009573 PCT/GB2003/003098

- 50 -

- 16. A pharmaceutical composition comprising a compound according to any one of Claims 1 to 15, together with at least one pharmaceutically acceptable carrier or excipient.
- 5 17. A compound according to any of claims 1 to 15 for use in a method of treatment of the human body.
 - 18. A method for the treatment or prevention of physiological disorders associated with an excess of tachykinins, which method comprises administration to a patient in need thereof of a tachykinin reducing amount of a compound according to Claim 1.
 - 19. A method for the treatment or prevention of pain or inflammation, migraine, emesis, postherpetic neuralgia, depression or anxiety, which method comprises administration to a patient in need thereof of a therapeutically effective amount of a compound according to Claim 1.
 - 20. Use of a compound as claimed in any one of Claims 1 to 15 for the manufacture of a medicament for the treatment or prevention of physiological disorders associated with an excess of tachykinins.
 - 21. Use of a compound as claimed in any one of Claims 1 to 15 for the manufacture of a medicament for the treatment or prevention of pain or inflammation, migraine, emesis, postherpetic neuralgia, depression or anxiety.

20

10

15