An empirical comparison of Bianry&Probit&Logit regression

Zhang Zhiyuan 15220162202517

April 11, 2019

1 Introduction

People smoke all over the world, and some working areas enforce a smoke ban to save nonsmokers from second-hand smoke. Some people think that smoking ban will not only bring health benefits, but also reduce the number of smokers in that it prevent smokers from smoke to a certain extent. And in this article I use three different regression methods to capture the effect of smoke ban on the number of smokers, and further compare their performances.

The data is a cross-sectional data set¹ with observations on 10,000 indoor workers, which is a subset of a 18,090-observation data set collected as part of the National Health Interview Survey in 1991. And I divide it into a 8000&2000 combination separately for testing and forcasting.

2 Regression²

For the regression, I use "smoker" as the dependent variable, "smkban", "age", "hsdrop", "hsgrad", "colsome", "colgrad", "black" and "female" as independent variable. And all the three regressions share the same variable set.

2.1 Binary regression³

For the binary regression:

##regress smoker sm
kban age hsdrop hsgrad colsome colgrad black female ##

¹see appendix 1 for detailed information of dataset

²see appendix 2 for detailed description of variables

³you can find the link to download all the codes and the dataset in the appendix 3

Source	SS	df	MS		Number of obs		8,000 50.01
Model	68.7484853	8	8.5935606		7991) > F	=	0.0000
Residual	1373.15539	7,991	.171837741	L R-sq	uared	=	0.0477
				- Adj	R-squared	=	0.0467
Total	1441.90388	7,999	.18026051	7 Root	MSE	=	.41453
smoker	Coef.	Std. Err.	t	P> t	[95% Coi	nf.	Interval]
smkban	0415469	.0097331	-4.27	0.000	060626	3	0224675
smkban age	0415469 0007811	.0097331	-4.27 -2.03	0.000 0.043	0606263 001535		0224675 0000263
						В	
age	0007811	.000385	-2.03	0.043	001535	8 5	0000263
age hsdrop	0007811 .2575922	.000385 .0206991	-2.03 12.44	0.043	0015358 .217016	8 5 4	0000263 .2981678
age hsdrop hsgrad	0007811 .2575922 .2157892	.000385 .0206991 .0163891	-2.03 12.44 13.17	0.043 0.000 0.000	0015358 .2170168 .1836624	8 5 4 4	0000263 .2981678 .2479161
age hsdrop hsgrad colsome	0007811 .2575922 .2157892 .1461983	.000385 .0206991 .0163891 .0166569	-2.03 12.44 13.17 8.78	0.043 0.000 0.000 0.000	0015356 .2170165 .1836624 .113546	8 5 4 4 3	0000263 .2981678 .2479161 .1788502
age hsdrop hsgrad colsome colgrad	0007811 .2575922 .2157892 .1461983 .0354787	.000385 .0206991 .0163891 .0166569	-2.03 12.44 13.17 8.78 2.02	0.043 0.000 0.000 0.000 0.043	0015356 .2170165 .1836624 .113546	8 5 4 4 3 7	0000263 .2981678 .2479161 .1788502 .0698722

Probit regression

probit smoker smkban age hsdrop hsgrad colsome colgrad black female

Probit regression	Number of obs	=	8,000
	LR chi2(8)	=	407.92
	Prob > chi2	=	0.0000
Log likelihood = -4166.2652	Pseudo R2	=	0.0467

smoker	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
smkban	1407694	.0325567	-4.32	0.000	2045793	0769595
age	0023167	.0013001	-1.78	0.075	0048648	.0002314
hsdrop	. 9417677	.0757855	12.43	0.000	.7932308	1.090305
hsgrad	.8312891	.0651962	12.75	0.000	.7035069	.9590712
colsome	. 6228782	.0664485	9.37	0.000	.4926415	.7531149
colgrad	.1973913	.0719083	2.75	0.006	.0564537	.338329
black	0576871	.0595988	-0.97	0.333	1744985	.0591244
female	1028728	.0322451	-3.19	0.001	166072	0396736
_cons	-1.089706	.0833228	-13.08	0.000	-1.253016	9263963

Logit regression

For the logit regression:

##logit smoker sm
kban age hsdrop hsgrad colsome colgrad black female ##

## lroc ##			
Logistic regression	Number of obs	=	8,000
	LR chi2(8)	=	407.74
	Prob > chi2	=	0.0000
Log likelihood = -4166.3542	Pseudo R2	=	0.0467

smoker	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
smkban	2325941	.0554123	-4.20	0.000	3412003	1239879
age	0041837	.0021994	-1.90	0.057	0084945	.0001272
hsdrop	1.66565	.1400377	11.89	0.000	1.391181	1.940119
hsgrad	1.487921	.1253793	11.87	0.000	1.242182	1.73366
colsome	1.13577	.1277366	8.89	0.000	.8854106	1.386129
colgrad	.3787724	.1395671	2.71	0.007	.105226	.6523188
black	1098985	.1022587	-1.07	0.283	3103219	.0905249
female	1784903	.0551325	-3.24	0.001	286548	0704327
_cons	-1.875903	.1530701	-12.26	0.000	-2.175915	-1.575891

3 Testing

After the regression, I use the left 2000-observation sample to do the fitting

test.

3.1 Binary

For the binary:

```
\#\#gen prediction_binary=-.0415469*smkban-.0007811*age+.2575922*hsdrop+.2157892*hsgrad+.1461983.0195565*black-.0308917*female+ .1694339 \#\#
```

```
## gen predictedsmoker_binary = 0 ##
```

replace predictedsmoker_binary = 1 if prediction_binary >= 0.5

gen error_binary = abs (smoker- predictedsmoker_binary)

sum error_binary

Variable	Obs	Mean	Std. Dev.	Min	Max
error_binary	2,000	. 268	. 4430284	0	1

3.2 Probit

For the probit:

```
\#\# \ gen \ prediction\_probit = -.1407694*smkban-.0023167*age+.9417677*hsdrop+.8312891*hsgrad+.6228782.0576871*black-.1028728*female-1.089706 \ \#\#
```

egen prediction_probit_pr=std(prediction_probit)

gen predictedsmoker_probit=0

replace predictedsmoker_probit_pr=1 if prediction_probit>=0.5

gen error_probit=abs(smoker - predictedsmoker_probit)

sum error_probit

Variable	Obs	Mean	Std. Dev.	Min	Max
error_probit	2,000	. 369	. 4826546	0	1

3.3 Logit

For the logit:

```
\#\#gen prediction_logit=-.2325941*smkban-.0041837*age+ 1.66565*hsdrop+1.487921*hsgrad+ 1.13577*colsome+.3787724*colgrad -.1098985*black -.1784903*female-1.875903 \#\#
```

```
## gen prediction_logit_pr=(1+\exp(-1*prediction_logit))^-1 ##
```

gen predictedsmoker_logit=0

replace predictedsmoker_logit=1 if prediction_logit_pr >=0.5

##gen error_logit=abs(smoker - predictedsmoker_logit) ##

sum error_logit

Variable	Obs	Mean	Std. Dev.	Min	Max
error logit	2.000	.268	.4430284	0	1

4 Comparison

From the above results we can see, in the regresson part, all the three regressions showed similiar significance and R-square, and they also demonstrate valid economic rules. Smoking ban does have its positive effect in reducing the number of smokers, and the education variables of higher level has smaller coefficient, which means highly educated employees are less likely to smoke. But in the testing part, we can see that both binary and logit regression model made 26.8% wrong predictions, while the probit regession model made 36.9% wrong predictions. But it does not mean binary and logit are better classification method than the probit, it simply means that the probit are less appropriate in this very specific empirical application. And when we do real classification tasks, we should also consider adequate candidate method, compare them to find the optimal solution.

5 Appedix

5.1 Information for dataset:

Smoking is a cross-sectional data set with observations on 10,000 indoor workers, which is a subset of a 18,090-observation data set collected as part of the National Health Interview Survey in 1991 and then again (with different respondents) in 1993. The data set contains information on whether individuals were, or were not, subject to a workplace smoking ban, whether or not the individuals smoked and other individual characteristics. These data were provided by Professor William Evans of the University of Maryland and were used in his paper with Matthew Farrelly and Edward Montgomery "Do Workplace Smoking Bans Reduce Smoking?" American Economic Review, September 1999, Vol. 89, No. 4, 728-747.

5.2 Description of variables

smoker: =1 if current smoker, =0 otherwise

smkban: =1 if there is a work area smoking ban, =0 otherwise

age: age in years

hsdrop: =1 if high school dropout, =0 otherwise hsgrad: =1 if high school graduate, =0 otherwise $\begin{array}{ll} {\rm colsome:} \ = \!\! 1 \ {\rm if \ some \ college}, \ = \!\! 0 \ {\rm otherwise} \\ {\rm colgrad:} \ = \!\! 1 \ {\rm if \ college \ graduate}, \ = \!\! 0 \ {\rm otherwise} \end{array}$

black: =1 if black, =0 otherwise female: =1 if female, =0 otherwise

5.3 link to the codes & dataset

codes:stata-do-file datasets:stata dataset_regression partstata dataset_testing part