Wstęp do bioinformatyki

Laboratorium 3

Dopasowanie lokalne par sekwencji

Magdalena Trędak

236712

1. Schemat blokowy algorytmu dopasowania lokalnego

Schematy blokowe algorytmów tworzenia macierzy punktowej oraz optymalnej ścieżki dopasowania ze względów dużych rozmiarów i umożliwienia poprawy ich czytelności zamieszczono w repozytorium jako pliki graficzne o nazwach: SchematBlokowyGenerowaniaMacierzyPunktów.jpg, SchematBlokowyGenerowaniaŚcieżkiDopasowania.jpg.

Do wygenerowania schematów użyto programu online znajdującego się na stronie: http://www.algorytm.org/narzedzia/edytor-schematow-blokowych.html (data dostępu 15.04.19)

2. Analiza złożoności obliczeniowej czasowej i pamięciowej

Oszacowanie złożoności czasowej scoringMatrix – 2 pętle for (m*n), 2 pętle for(g*f), gdzie g i f to rozmiary macierzy substytucji, znacznie mniejsze od długości sekwencji, 1 warunek if, 5 przypisań wartości w pętlach, 15 poza nimi O(mn) – złożoność czasowa co najwyżej rzędu mn tracBackMatrix – k-razy pętla for, k to ilość maksimów macierzy punktów > 0, pętla while – w skrajnym przypadku maksymalny element znajduje się w końcu macierzy punktów a ostatnie 0 na jej początku, wtedy wyszukanie ścieżki odbywa się po całej macierzy (n*m) – rząd co najwyżej O(n,m),6 porównań, 10 przypisań

O(mn)-złożoność czasowa co najwyżej rzędu mn createInfo – 3 pętle for. Maksymalnie rzędu m*n, ponieważ dopasowanie lokalne inne niż po przekątnej całej macierzy punktacji pozwala skrócić porównywane sekwencje

O(mn) – złożoność czasowa co najwyżej rzędu mn

Oszacowanie złożoności pamięciowej

Macierz punktów jest macierzą o wymiarach (n x m) i tyle też zajmuje miejsca w pamięci – rząd m*n. Pozostałe tworzone macierze są takich samych rozmiarów lub mniejsze. Przypisania poszczególnych zmiennych lub wektorów są znacznie mniejsze niż rozmiarów n*m. Pozwala to przyjąć założenie, że macierz punktów (scoringMatrix) i macierz ścieżki optymalnego dopasowania (tracBackMatrix) są największymi obiektami, dlatego złożoność pamięciowa programu O(mn)-co najwyżej rzędu mn

3. Porównanie przykładowych par sekwencji

Porównanie cytochromu c konia (Equus caballus) - NM_001164014.1 i szympansa zwyczajnego (Pan troglodytes) - NM_001071821.1 – porównanie nr 1

Porównanie cytochromu c orangutana (Pongo abelii) – NM_001131167 i konia

Porównanie cytochromu c szczura wędrownego (Rattus norvegicus) – K00750.1 i konia (Equus caballus) - NM_001164014.1 – porównanie nr 3

Porównanie cytochromu c muszki owocowej (Drosophila melanogaster) variant B - NM_001273580.1 i pszczoły miodnej (Apis mellifera) - NM_001177490.1 – porównanie nr 4

Wnioski:

Porównano ten sam gen dla organizmów powiązanych i niepowiązanych ewolucyjnie. Wszystkie wyniki otrzymano poprzez wykorzystanie algorytmu dopasowania lokalnego podobieństwa o parametrach: gap = -2 oraz parametrach zawartych w macierzy substytucji dołączonej jako plik sMatrix.txt

Tabela 1. Porównanie otrzymanych wyników dopasowań globalnych dla różnych par organizmów

Powiązanie ewolucyjne organizmów	Nr porównania	Score [-]	Length [-]	Gap [%]	Identity [%]
Tak	1	460	318	0,31	39,93
Tak	2	466	317	0,31	31,54
Nie	3	258	185	1,08	31,81

Na podstawie wyników zawartych w Tabeli [1] można zauważyć następujące zależności:

- Dla organizmów powiązanych ewolucyjnie score jest dwukrotnie większy niż dla niepowiązanych. Dopasowane sekwencje są dłuższe a odsetek gap jest mniejszy.
- Dla wykorzystanej do analizy macierzy substytucji podobieństwa dopasowanych sekwencji są tego samego rzędu (30 %)