Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа № 2

по дисциплине "информатика"

Вариант 88

Выполнил: Студент группы Р3114 Кешишян Давид Артурович Преподаватель: Машина Екатерина Алексеевна

г. Санкт-Петербург 2022

Оглавление

Л	абораторная работа № 2	. 1
	о дисциплине " информатика"	
Задан	ıue:	3
α δοχ	аботы	3
	поим схему декодирования кода Хэмминга (7, 4)	
-		
1.	0110110	3
2.	0010000	3
3.	0001011	3
4.	1111001	4
Пост	роим схему декодирования кода Хэмминга (15, 11)	4
1.	011000111100001	5
	۵	

Задание:

Проверить полученные сообщения на ошибки

Ход работы

Простоим схему декодирования кода Хэмминга (7, 4)

1. 0110110

	r1	r2	i1	r3	i2	i3	i4	Синдром	
	0	1	1	0	1	1	0		
1	Χ		Χ		Χ		Χ	S1	0
2		Χ	Х			Х	Χ	S2	1
4				Χ	Χ	Χ	Χ	S4	0

 $1: 0 \oplus 1 \oplus 1 \oplus 0 = 0$

2: $1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $4: 0 \oplus 1 \oplus 1 \oplus 0 = 0$

Ошибка в бите r2; Правильное сообщение: 0010110

2. 0010000

	r1	r2	i1	r3	i2	i3	i4	Синдром	
	0	0	1	0	0	0	0		
1	Х		Χ		Χ		Χ	S1	1
2		Х	Χ			Χ	Χ	S2	1
4				Χ	Χ	Χ	Χ	S4	0

1: $0 \oplus 1 \oplus 0 \oplus 0 = 1$

2: $0 \oplus 1 \oplus 0 \oplus 0 = 1$

4: $0 \oplus 0 \oplus 0 \oplus 0 = 0$

Ошибка в бите 1 + 2 = 3, і1; Правильно сообщение: 000000

3. 0001011

	r1	r2	i1	r3	i2	i3	i4	Синдром	
	0	0	0	1	0	1	1		
1	Х		Х		Х		Χ	S1	1
2		Х	Χ			Х	Χ	S2	0

4		Χ	Χ	Χ	Χ	S4	1

 $1: 0 \oplus 0 \oplus 0 \oplus 1 = 1$

 $2: 0 \oplus 0 \oplus 1 \oplus 1 = 0$

 $4: 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Ошибка в бите 1 + 4 = 5, і2; Правильное сообщение: 0001111

4. 1111001

	r1	r2	i1	r3	i2	i3	i4	Синдром	
	1	1	1	1	0	0	1		
1	Х		Х		Χ		Х	S1	1
2		Х	Х			Х	Х	S2	1
4				Χ	Χ	Χ	Χ	S4	0

1: $1 \oplus 1 \oplus 0 \oplus 1 = 1$

2: $1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $4: 1 \oplus 0 \oplus 0 \oplus 1 = 0$

Ошибка в бите 1 + 2 = 3, i1; Правильно сообщение: 1101001

Построим схему декодирования кода Хэмминга (15, 11)

1. 011000111100001

	r1	r2	i1	r3	i2	i3	i4	i5	r4	i6	i7	i8	i9	i10	i11	Синдром	
	0	1	1	0	0	0	1	1	1	1	0	0	0	0	1		
1	Χ		Χ		Χ		Χ		Χ		Х		Χ		Χ	S1	0
2		Χ	Х			Х	Х			Χ	Χ			Χ	Χ	S2	1
4				Χ	Χ	Χ	Χ					Χ	Χ	Χ	Χ	S4	0
8								Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	S8	0

 $1: 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$

2: $1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$

 $4: 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$

8: $1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$

Ошибка во втором бите г2; Правильное сообщение: 001000111100001

Вычисление избыточности и количества проверочных битов для числа 776

Число проверочных битов равно 10 т. к. $2^{10} > 776 + 10 + 1$

Коэффициент избыточности равен $10 / 786 \approx 0.01272$

Вывод

В ходе лабораторной работы я ознакомился кодом Хэмминга, научился распознавать ошибку в коде Хэмминга