Espectro de un anillo

Levia MN

December 18, 2023

1 Topología

Definición 1. Sea A un anillo denotamos

$$Spec(A) = \{ \mathfrak{p} \subset A; \mathfrak{p} \text{ es un ideal primo} \}$$

 $Si\ M \subset A\ entonces\ denotamos$

$$V(M) = \{ \mathfrak{p} \in A; M \subset \mathfrak{p} \}$$

 $Si\ M = \{f\}\ entonces\ escribimos\ V(f).$

Observacion 1. Si \mathfrak{a} es el ideal generado por $M \subset A$ entonces

$$V(M) = V(\mathfrak{a})$$

Proof. Si $M \subset \mathfrak{p}$ como \mathfrak{a} es el minimo ideal que contiene a M entonces $\mathfrak{a} \subset \mathfrak{p}$ por lo que $V(M) \subset V(\mathfrak{a})$.

Por otro lado si $\mathfrak{a} \subset \mathfrak{p}$ como $M \subset \mathfrak{a}$ entonces $M \subset \mathfrak{p}$ por lo que $V(\mathfrak{a}) \subset V(M)$ $\therefore V(M) = V(\mathfrak{a})$

Lema 1. 1. Si $\mathfrak{a} \subset \mathfrak{b}$ entonces $V(\mathfrak{b}) \subset V(\mathfrak{a})$

- 2. $V(0) = Spec(A) \ y \ V(1) = \emptyset$
- 3. Si $\{a_i \subset A; i \in I\}$ es una familia de ideales de A, entonces

$$V(\bigcup_{i\in I}\mathfrak{a}_i)=V(\sum_{i\in I}\mathfrak{a}_i)=\bigcap_{i\in I}V(\mathfrak{a}_i)$$

4. Si $\mathfrak a$ y $\mathfrak b$ son ideales de A, entonces

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Proof. 1. Si $\mathfrak{b} \subset \mathfrak{p}$ entonces $\mathfrak{a} \subset \mathfrak{p}$

2. Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $0 \in \mathfrak{p}$

$$V(0) = Spec(A)$$

Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $1 \notin \mathfrak{p}$

$$V(1) = \emptyset$$

3. Por la observación se sigue la primer igualdad, para la segunda Dado $j \in I$

$$\mathfrak{a}_j \subset \bigcup_{i \in I} \mathfrak{a}_i$$

así que por 1. $V(\bigcup_{i\in I} \mathfrak{a}_i) \subset V(\mathfrak{a}_j)$

$$\therefore V(\bigcup_{i\in I}\mathfrak{a}_i)\subset \bigcap_{i\in I}V(\mathfrak{a}_i)$$

Por otro lado si $\mathfrak{p} \in \bigcap_{i \in I} V(\mathfrak{a}_i)$ entonces para todo $i \in I$ ocurre que $\mathfrak{a}_i \subset \mathfrak{p}$ por lo que $\bigcup_{i \in I} \mathfrak{a}_i \subset \mathfrak{p}$

$$\therefore \bigcap_{i \in I} V(\mathfrak{a}_i) \subset V(\bigcup_{i \in I} \mathfrak{a}_i)$$

4. Como $\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{a}, \mathfrak{b}$ entonces por 1.

$$V(\mathfrak{a}) \cup V(\mathbf{b}) \subset V(\mathfrak{a} \cap \mathfrak{b}) \subset V(\mathfrak{a}\mathfrak{b})$$

Si $\mathfrak{p} \in V(\mathfrak{ab})$ y $\mathfrak{p} \notin V(\mathfrak{a})$ entonces $\mathfrak{a} \not\subset \mathfrak{p}$, es decir, existe $a \in \mathfrak{a} \setminus \mathfrak{p}$ pero para toda $b \in \mathfrak{b}$ ocurre que $ab \in \mathfrak{ab} \subset \mathfrak{p}$ y como \mathfrak{p} es in ideal primo $b \in \mathfrak{p}$

$$\therefore \mathfrak{b} \subset \mathfrak{p}$$

i.e. $\mathfrak{p} \in V(\mathfrak{b})$

$$\therefore V(\mathfrak{ab}) \subset V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Lo que prueba la igualdad entre los tres términos.