

Visual-Inertial-Aided Online MAV System Identification

Chuchu Chen*, Yulin Yang*, Patrick Geneva, Woosik Lee, and Guoquan Huang

Robot Perception and Navigation Group (RPNG)
University of Delaware, USA

Introduction

- Online system parameters identification for micro aerial vehicles (MAV)
- Crucial:
 - Model-based control tasks require accurate system parameters
 - Online estimate platform reconfiguration (e.g. payload and environmental effects)

Challenging:

- High-dynamic motion and under-actuation exacerbate state estimation
- Efficient, light-weight, resource-constrained estimator for online system identification

Contributions:

- Numerical **analysis** for MAV dynamics and online system identification
 - EKF-based fusion hurt the motion estimation and parameter identification performance due to the model imperfection
- Novel tightly-coupled Schmidt Kalman filter (SKF)-based visual inertial estimator
 - Online estimate MAV-IMU extrinsic, MAV aerodynamic (e.g. thrust coef.), and geometrical parameters (e.g. mass) accurately
- Validated in simulation and real-world experiments

MAV Dynamics

• Rotor speed input $r_i = r_{m,i} - n_{r,i}$

Single Force
$$A_i \mathbf{F}_i = \mathbf{c}_t r_i^2 \mathbf{e}_z$$

Single Moment $A_i \mathbf{M}_i = \mathbf{c}_m r_i^2 \lambda_i \mathbf{e}_z$

Total
$$M \mathbf{F} = \sum_{i=1}^{N_r} {}_{A_i}^M \mathbf{R}^{A_i} \mathbf{F}_i$$

$$M \mathbf{M} = \sum_{i=1}^{N_r} \left({}_{A_i}^M \mathbf{R}^{A_i} \mathbf{M} + \lfloor {}_{B}^M \mathbf{R}^B \mathbf{p}_{A_i} + {}^{M} \mathbf{p}_{B}} \rfloor^M \mathbf{F}_i \right)$$

MAV Newton-Euler equations

$$\begin{array}{c} \text{Rotation} \\ \text{Position} \\ \text{Angular velocity} \\ \text{Linear velocity} \end{array} \begin{bmatrix} \begin{smallmatrix} M & \dot{q} \\ G & \dot{\mathbf{p}}_M \\ M & \dot{\boldsymbol{\omega}} \\ G & \dot{\mathbf{v}}_M \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \boldsymbol{\Omega} \begin{pmatrix} M \boldsymbol{\omega} \end{pmatrix}_G^M \bar{q} \\ G_{\mathbf{V}M} \\ M_{\mathbf{J}^{-1}} \begin{pmatrix} M \mathbf{M} - \lfloor M \boldsymbol{\omega} \rfloor^M \mathbf{J}^M \boldsymbol{\omega} \end{pmatrix} \\ \frac{1}{m} {}_M^M \mathbf{R}^{\top M} \mathbf{F} - {}_G^M \mathbf{g} \end{bmatrix}$$

- Dynamic model is widely-used but does not capture full force on platform (inaccurate)
 - o Force model can not represent the **true** force
 - Online parameter identification becomes <u>challenging</u>
 - \circ Rotor speed measurement noise $n_{r,i}$
 - \circ Model imperfection noise $\mathbf{n}_{f,i} \ \mathbf{n}_{m,i}$

System Overview

Goal:

- Online MAV visual inertial navigation and system parameter identification
- **Efficiently** incorporate (inaccurate) MAV dynamics to accurately recover parameters

Light-weight filter-based solution:

State vector

$$\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_A \\ \mathbf{x}_\theta \end{bmatrix} \text{ Active VIO} \quad \mathbf{x}_A = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU Inertial}$$

$$\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ Feature}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU pose}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU pose}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU pose}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU pose}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ IMU pose}$$

$$\mathbf{x}_{I_k} = \begin{bmatrix} \mathbf{x}_{I_k} \\ \mathbf{x}_f \\ \mathbf{x}_C \end{bmatrix} \text{ Impuritial}$$

- Measurement Processing
 - IMU inertial propagation
 - Visual features MSCKF update[1]
 - MAV dynamics update

IMU readings **fully** measure the trajectory Outlier gating test to reject MAV measurements

MAV Dynamic Measurements

Dynamic model integration

$$\mathbf{x}_{M_{k+1}} = \mathbf{g}_{M}(\mathbf{x}_{M_k}, \mathbf{x}_{ heta}, \mathbf{n}_{M})$$

MAV-IMU rigid body transformation

$$\mathbf{x}_{M_k} = \mathbf{h}_{t,k}(\mathbf{x}_A, \mathbf{x}_\theta)$$

Linearized measurement equation

$$\tilde{\mathbf{z}}_{M_k} = \begin{bmatrix} \mathbf{H}_A & \mathbf{H}_{\theta} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{x}}_A \\ \tilde{\mathbf{x}}_{\theta} \end{bmatrix} - \mathbf{G}_n \mathbf{n}_M$$

SKF-based Parameter Identification

A: VIO states

 θ : parameter states

Standard EKF Update

$$\begin{bmatrix} \mathbf{x}_A^+ \\ \mathbf{x}_\theta^+ \end{bmatrix} = \begin{bmatrix} \mathbf{x}_A^- \\ \mathbf{x}_\theta^- \end{bmatrix} + \begin{bmatrix} \mathbf{L}_A^- \\ \mathbf{L}_\theta^- \end{bmatrix} \mathbf{S}^{-1} \mathbf{r}$$

$$\begin{bmatrix} \mathbf{P}_{AA}^{+} & \mathbf{P}_{A\theta}^{+} \\ \mathbf{P}_{\theta A}^{+} & \mathbf{P}_{\theta \theta}^{+} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{AA}^{-} & \mathbf{P}_{A\theta}^{-} \\ \mathbf{P}_{\theta A}^{-} & \mathbf{P}_{\theta \theta}^{-} \end{bmatrix} - \begin{bmatrix} \mathbf{L}_{A}\mathbf{S}^{-1}\mathbf{L}_{A}^{\top} & \mathbf{L}_{A}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \\ \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{A}^{\top} & \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \end{bmatrix} - \begin{bmatrix} \mathbf{P}_{AA}^{+} & \mathbf{P}_{A\theta}^{+} \\ \mathbf{P}_{\theta A}^{+} & \mathbf{P}_{\theta \theta}^{+} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{AA}^{-} & \mathbf{P}_{A\theta}^{-} \\ \mathbf{P}_{\theta A}^{-} & \mathbf{P}_{\theta \theta}^{-} \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{L}_{A}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \\ \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{A}^{\top} & \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \end{bmatrix}$$

Schmidt-EKF (SKF) Update

$$\begin{bmatrix} \mathbf{x}_A^+ \\ \mathbf{x}_\theta^+ \end{bmatrix} = \begin{bmatrix} \mathbf{x}_A^- \\ \mathbf{x}_\theta^- \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{L}_\theta^- \end{bmatrix} \mathbf{S}^{-1} \mathbf{r}$$

$$\begin{bmatrix} \mathbf{P}_{AA}^{+} & \mathbf{P}_{A\theta}^{+} \\ \mathbf{P}_{\theta A}^{+} & \mathbf{P}_{\theta \theta}^{+} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{AA}^{-} & \mathbf{P}_{A\theta}^{-} \\ \mathbf{P}_{\theta A}^{-} & \mathbf{P}_{\theta \theta}^{-} \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{L}_{A}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \\ \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{A}^{\top} & \mathbf{L}_{\theta}\mathbf{S}^{-1}\mathbf{L}_{\theta}^{\top} \end{bmatrix}$$

- Numerical analysis shows the dynamic is inaccurate
- **MAV dynamic noise** parameters are crucial
- Over-confident dynamic model hurts both VIO and parameter identification

σ	RMSE deg / cm	NEES Ori. / Pos.
0.05	2.81 / 525.9	1543.21 / 65.68
0.50	1.14 / 1.9	31.49 / 4.37
1.00	0.74 / 1.9	2.40 / 3.15
1.50	0.71 / 1.9	2.28 / 3.30

Hurt VIO

- Protecting VIO, MAV measurements only update MAV related parameters
- Visual meas. applied with standard EKF
- Track **correlations** refine parameters

σ	RMSE deg / cm	NEES Ori. / Pos.	$ ilde{c}_t$	\tilde{c}_m	${}^{M} ilde{\mathbf{p}}_{B}$	$_{M}^{I}\delta\boldsymbol{\theta}$	${}^I{ ilde{f p}}_M$
0.05	0.75 / 1.84	2.20 / 2.69	2.3e-08	1.3e-08	3.2e-05	0.1	1.4e-03
0.50	0.75 / 1.84	2.20 / 2.69	2.8e-08	7.9e-08	5.2e-05	0.4	1.3e-03
1.00	0.75 / 1.84	2.20 / 2.69	3.2e-08	2.5e-07	1.5e-04	1.0	1.3e-03
1.50	0.75 / 1.84	2.20 / 2.69	3.7e-08	4.0e-07	3.2e-04	1.3	1.4e-03

Protect VIO

Accurate Calibration

Monte-Carlo Simulations

• IMU, camera, rotor readings, MAV configurations simulated with OpenVINS_[1], trajectories generated with RotorS_[2]

Parameter	Value	Parameter	Value	Parameter	Value
IMU Freq. (hz)	200	$^{B}\mathbf{p}_{A_{1}}$ (m)	0.21, 0.00, 0.05	$I_{M}\bar{q}$	0, 0, 0, 1
Cam Freq. (hz)	10	$^{B}\mathbf{p}_{A_{2}}$ (m)	0.00, 0.21, 0.05	$I_{\mathbf{p}_{M}}$ (m)	0, 0, 0
Rotor Freq. (hz)	300	$^{B}\mathbf{p}_{A_{3}}$ (m)	-0.21, 0.00, 0.05	$^{M}\mathbf{p}_{B}$ (m)	0, 0, 0
Pixel Noise (pix)	1	$^{B}\mathbf{p}_{A_{4}}$ (m)	0.00, -0.21, 0.05	$c_t (\mathrm{N s^2/rad^2})$	9.9865e-06
Rotor White Noise (rad/s)	0.043	$\lambda_1, \lambda_2, \lambda_3, \lambda_4$	1, -1, 1, -1	$c_m (\mathrm{N s^2/rad^2})$	1.455784e-7
Gyro. White Noise	1.6968e-4	Accel. Rand. Walk	3.0000e-2	$M_{\mathbf{j}}$	0.01, 0.01, 0.02
Accel. White Noise	2.0000e-2	Gyro. Rand. Walk	1.9393e-4	Mass (kg)	1

c t Error

Mass Error

Real-world: Blackbird Dataset

More dynamic motion!

- Proposed SKF trajectory has same accuracy as OpenVINS (as expected)
- EKF parameter identification can perform after tuning of noise parameters
- SKF is robust to model errors and ensures accurate parameter identification

Algorithm	RMSE (1 m/s)	RMSE (2 m/s)	RMSE (3 m/s)
Proposed EKF	1.463 / 0.067	1.696 / 0.119	4.195 / 0.703
Proposed SKF	1.571 / 0.069	1.703 / 0.120	3.881 / 0.720
OpenVINS [1]	1.571 / 0.069	1.703 / 0.120	3.881 / 0.720
VINS-Mono [2]	1.281 / 0.075	2.851 / 0.515	4.598 / 0.965

Parameters quickly converge!

Summary & Thanks!

Conclusion:

- Investigated MAV dynamic model, EKF-based fusion, shown to degrade performance
- Tightly-coupled real-time SKF-based estimator
 - Protects consistent motion estimation (VIO)
 - Ensures accurate and robust online parameter identification
- Demonstrate the performance with simulations and real-world datasets

Where next?

- Integrate and evaluate the proposed estimator with fully autonomous system
- Degenerate motion analysis and observability-aware motion planning

Thank you!

Chuchu Chen ccchu@udel.edu chuchuchen.net

