Семинар по сложности доказательств Ограниченная арифметика: основные определения Золотов Б.

1.

Язык ограниченной арифметики — =, \leq ; 0, S, +, \cdot , $\lfloor \frac{x}{2} \rfloor$, |x|, #, \leq . $x \# y = 2^{|x| \cdot |y|}$.

Ограниченный квантор — вида $(Qx \le t)$. Остро ограниченный — вида $(Qx \le |t|)$. Ограниченная формула — логическая формула только с такими кванторами.

Иерархия ограниченных формул Σ_k^b , Π_k^b — определяется чередованием ограниченных кванторов, на строго ограниченные забиваем. Предикат лежит в классе Σ_k^p полиномиальной иерархии, если и только если определяется Σ_k^b —формулой.

2.

 T_2^i — первопорядковая теория в языке ограниченной арифметики, задающаяся аксиомами: (а) BASIC, описывающими свойства арифметических операций (б) аксиомой индукции для каждой формулы из Σ_i^b с одной свободной переменной.

 S_2^i — то же самое, но вместо аксиомы индукции для каждой формулы A включаем аксиому PIND, где переход от $\lfloor \frac{x}{2} \rfloor$ к x. $S_2^1 \subseteq T_2^1 \subseteq S_2^2 \subseteq T_2^2 \subseteq \dots$

 $f \colon \mathbb{N} \longrightarrow \mathbb{N} \longrightarrow \Sigma_i^b$ —определяется теорией R, если существует формула $A(\vec{x},y) \in \Sigma_i^b$ такая что

- (1) Всегда верно $A(\vec{n}, f(\vec{n}))$;
- (2) Из R можно вывести, что для любого \vec{n} существует ровно один y, такой что $A(\vec{n}, y)$.

Предикат $P \subseteq \mathbb{N}$ — Δ_i^b —определяется теорией R, если существуют Σ_i^b —формула A и Π_i^b формула B такие, что они обе задают P, и в R можно доказать их эквивалентность.

3.

Теорема: Пусть $A \in \Sigma_i^b$ — тогда существуют $B \in \Sigma_i^b, f \in \square_i^p$ и терм t такие, что:

- (1) $S_2^i \vdash B$ верна только если верна A;
- (2) Для всякого \vec{x} существует единственный y, т. ч. $B(\vec{x}, y)$,
- (3) И этот y не превосходит t;
- (4) Для всякого \vec{n} верно $\mathbb{N} \models B(\vec{n}, f(\vec{n}))$, то есть, формула B задаёт функцию f.

Теорема: Если $f \in \square_i^p$, то существует задающая её формула B, такая что (2)–(4).

Теорема: Функции, Σ_i^b —определяющиеся теорией S_2^i , — в точности \square_i^p .

Теорема: Предикаты, Δ_i^b —определяющиеся теорией S_2^i , — в точности Δ_i^p из полиномиальной иерархии.

4.

Cut:

$$\begin{array}{ccc} \Gamma \longrightarrow \Delta, A & A, \Pi \longrightarrow X \\ \hline \Gamma, \Pi & \longrightarrow & \Delta, X \end{array}$$

Обычно стараемся от них избавиться (хотя бы от некоторых), чтобы было *subformula property*.

5.

Definition Fix $i \geq 1$. Let $B(\vec{a})$ be a Σ_i^b -formula with all free variables indicated. Then $Witness_B^{i,\vec{a}}(w,\vec{a})$ is a formula defined inductively by:

- $(1) \ \ \text{If} \ \ B \in \Sigma_{i-1}^b \cup \Pi_{i-1}^b \ \ \text{then} \ \ \textit{Witness}_B^{i,\vec{a}}(w,\vec{a}) \ \Leftrightarrow \ B(\vec{a}).$
- (2) If $B = C \vee D$ then $Witness^{i,\vec{a}}_{B}(w,\vec{a}) \Leftrightarrow Witness^{i,\vec{a}}_{C}(\beta(1,w),\vec{a}) \vee Witness^{i,\vec{a}}_{D}(\beta(2,w),\vec{a}).$
- (3) If $B = C \wedge D$ then $Witness_{D}^{i,\vec{a}}(w,\vec{a}) \Leftrightarrow Witness_{C}^{i,\vec{a}}(\beta(1,w),\vec{a}) \wedge Witness_{D}^{i,\vec{a}}(\beta(2,w),\vec{a}).$
- (4) If $B = (\exists x \leq t)C(\vec{a}, x)$ then $Witness_B^{i,\vec{a}}(w, \vec{a}) \Leftrightarrow \beta(1, w) \leq t \wedge Witness_{C(\vec{a}, b)}^{i,\vec{a}, b}(\beta(2, w), \vec{a}, \beta(1, w)).$
- (5) If $B = (\forall x \leq |t|)C(\vec{a}, x)$ then $Witness_B^{i,\vec{a}}(w, \vec{a}) \Leftrightarrow (\forall x \leq |t|) Witness_{C(\vec{a},b)}^{i,\vec{a},b}(\beta(x+1,w), \vec{a}, x).$
- (6) If $B = \neg C$ use prenex operations to push the negation sign inside.

6.

- 1. По доказательству в теории S_2^1 можно построить extended Frege—доказательство полиномиального размера.
- 2. По доказательству в теории $S_2 = \bigcup S_2^i = T_2$ можно построить Frege-доказательство полиномиального размера и фиксированной глубины.