1

ASSIGNMENT-1

Nwjwr Khungur Brahma(AI20BTECH11016)

Question: Calculate the ratio in which the line joining $\mathbf{A} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$ is divided by the point $\mathbf{P} = \begin{pmatrix} z \\ 3 \end{pmatrix}$. Also find

- 1) z
- 2) Length of \overrightarrow{AP}

Solution: Lets take the ratio in which the line is divided by the point to be 1:k.

Now lets use the section formula for the point P,

$$\mathbf{P} = \begin{pmatrix} z \\ 3 \end{pmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \frac{(1 \times \mathbf{B}) + (k \times \mathbf{A})}{1+3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1 \times \begin{pmatrix} 3 \\ 6 \end{pmatrix} + \begin{bmatrix} k \times \begin{pmatrix} -4 \\ 2 \end{pmatrix} \end{bmatrix}}{1+3} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{(1 \times 3) + [k \times (-4)]}{1+3}, \frac{(1 \times 6) + (k \times 2)}{1+3} \end{bmatrix}$$
(4)

$$=\left(\frac{3\text{-}4k}{4}, \frac{6+2k}{4}\right) \tag{5}$$

Taking the y-coordinates from (1) and (5) get,

$$\implies 3 = \frac{6+2k}{4} \tag{6}$$

$$\implies 6 = 2k \tag{7}$$

$$\implies k = 3 \tag{8}$$

 \therefore the ratio in which the line \overrightarrow{AP} is divided by P is 1:3.

1) Now lets find the point $P = \begin{pmatrix} z \\ 3 \end{pmatrix}$

Taking (5) and (8) we get

$$z = \frac{3 - 4k}{4} \tag{9}$$

$$=\frac{3-(4\times3)}{4}$$
 (10)

$$=\frac{-9}{4}$$
 (11)

$$= -2.25$$
 (12)

∴ the point
$$P = \begin{pmatrix} -2.25 \\ 3 \end{pmatrix}$$

2) The length of the line \overrightarrow{AP} can be measured by the distance formula.

Length of
$$\overrightarrow{AP} = \sqrt[2]{(-4 - (-2.25))^2 + (2 - 3)^2}$$
 (13)

$$=2.015$$
 (14)

The length of the line $\overrightarrow{AP} = 2.015(Approx)$.

Fig. 1. Graph showing the line 7y = 4x + 30.