CH 4.2 2/24/13 3:10 PM

Web**Assign**CH 4.2 (Homework)

Yinglai Wang MA 265 Spring 2013, section 132, Spring 2013 Instructor: Alexandre Eremenko

Current Score: 20 / 20 Due: Thursday, February 14 2013 11:40 PM EST

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

Important! Before you view the answer key, decide whether or not you plan to request an extension. Your Instructor may *not* grant you an extension if you have viewed the answer key. Automatic extensions are not granted if you have viewed the answer key.

Request Extension View Key

1. 6.66/6.66 points | Previous Answers

KolmanLinAlg9 4.2.002.

Let *V* be the set of all 2 × 2 matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that the product abcd = 0. Let the operation

- ⊕ be standard addition of matrices and the operation

 be standard scalar multiplication of matrices.
 - (a) Is V closed under addition?

(b) Is V closed under scalar multiplication?

(c) What is the zero vector O in the set V?

	0	0
0 =	0	0
	,	

(d) Does every matrix A in V have a negative that is in V?

(e) Is V a vector space?

CH 4.2 2/24/13 3:10 PM

2. 6.66/6.66 points | Previous Answers

KolmanLinAlg9 4.2.008.

The given set together with the given operations is not a vector space. List the properties of <u>the definition</u> that fail to hold. (Select all that apply.)

The set of all ordered pairs of real numbers with the operations

$$(x, y) \oplus (x', y') = (x + x', y + y')$$

and

None of the above

$$r\odot(x,y)=(x,ry).$$

(a) If u and v are any elements in V , then u \oplus v is in V . (We say that V is closed under the operation \oplus .)	
(1) $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ for all \mathbf{u} , \mathbf{v} in V .	
$(2) \mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$ for all \mathbf{u} , \mathbf{v} , \mathbf{w} in V .	
(3) There exists an element 0 in V such that $\mathbf{u} \oplus 0 = 0 \oplus \mathbf{u} = \mathbf{u}$ for any \mathbf{u} in V .	
(4) For each \mathbf{u} in V there exists an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus -\mathbf{u} = -\mathbf{u} \oplus \mathbf{u} = 0$.	
(b) If u is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V (i.e., V is closed under the operation \odot).	
(5) $c \odot (\mathbf{u} \oplus \mathbf{v}) = c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for any \mathbf{u} , \mathbf{v} in V and any real number c .	
(7) $c \odot (d \odot \mathbf{u}) = (cd) \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c and d .	
\Box (8) 1 \odot μ = μ for any μ in V	

CH 4.2 2/24/13 3:10 PM

3. 6.68/6.68 points | Previous Answers

KolmanLinAlg9 4.2.010.

The given set together with the given operations is not a vector space. List the properties of <u>the definition</u> that fail to hold. (Select all that apply.)

The set of all 2 × 1 matrices $\begin{bmatrix} x \\ y \end{bmatrix}$, where $x \le 0$, with the usual operations in R^2

- (a) If **u** and **v** are any elements in V, then **u** \oplus **v** is in V. (We say that V is **closed** under the operation \oplus .)
- (1) $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ for all \mathbf{u} , \mathbf{v} in V.
- (2) $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$ for all \mathbf{u} , \mathbf{v} , \mathbf{w} in V.
- (3) There exists an element **0** in V such that $\mathbf{u} \oplus \mathbf{0} = \mathbf{0} \oplus \mathbf{u} = \mathbf{u}$ for any \mathbf{u} in V.
- \checkmark (4) For each **u** in *V* there exists an element $-\mathbf{u}$ in *V* such that $\mathbf{u} \oplus -\mathbf{u} = -\mathbf{u} \oplus \mathbf{u} = \mathbf{0}$.
- **☑** (b) If **u** is any element in V and c is any real number, then c \bigcirc **u** is in V (i.e., V is closed under the operation \bigcirc).
- (5) $c \odot (\mathbf{u} \oplus \mathbf{v}) = c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for any \mathbf{u} , \mathbf{v} in V and any real number c.
- (6) $(c + d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c and d.
- (7) $c \odot (d \odot \mathbf{u}) = (cd) \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c and d.
- None of the above

