logic-summary

March 18, 2020

0.1 Propositional logic

• Interpretation

- given a propositional formula G, let {A1, ..., An} be the set of atoms which occurs in the formula, an **interpretation** I in G is an assignment of truth values to {A1, ..., An}
- given an interpretation I, a formula G is said to be true in I iff G is evaluated to True in the interpretation

• Valid / Invalid formula

- a formula F is **valid** iff it is True in all its interpretation
 - * a valid formula can be also called a Tautology
- a formula which is not valid is **invalid**. So a formula is invalid if there is at least an interpretation in which the formula is False

Inconsistent / consistent formula (satisfiable)

- a formula F is **inconsistent** iff it is False in all its interpretation
 - * an inconsistent formula is said to be unsatisfiable
- a formula which is not inconsistent is **consistent** or **satisfiable**

Decidability

- PL is decidable: there is a termining method to decide whether a formula is valid
- to decide whether a formula is valid:
 - \ast we can enumerate all possible interpretations and for each interpretation evaluate the formula
 - * the number of interpretations for a formula are finite (2^n)
- decidability is a very strong and desiderable property for a Logical System
- trade off between representional power and decidability

• Deduction Theorem

– given a set of formuls $\{F1, ..., Fn\}$ and a formula $G, (F1 \land ... \land Fn) \models G$ if and only if $\models (F1 \land ... \land Fn) \rightarrow G$

• Proof by refutation

– given a set of formula $\{F1, ..., Fn\}$ and a formula $G, (F1 \land ... \land Fn) \models G$ if and only if $F1 \land ... \land Fn \land \neg G$ is inconsistent

• Natural deduction

- natural deduction is a kind of proof calculus (using just syntax) in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning
- we consider only connectives \wedge , \rightarrow and \perp
- we present a set of rules (that can introduce or eliminate) which allow to deduce, or derive, conclusions from premises

• Axiom (postulate or assumption)

- an axiom it is a sentence taken to be True, to serve as a premise for reasoning / inference

• Theorem

- it is a sentence which has been proved: a logical consequence of axiom or of other theorems, proved by Natural Deduction
- more precisely: \vdash F indicates that F is a theorem which only premises are axioms
- in Natural Deduction, a theorem is something which all premises are discardable

Soundness

- an algorithm / theory is sound if, whenever if gives you an answer, that is correct
- all model checking algorithms are sound in PL
- for proof theory is useful the **Soundness Theorem** which says:
 - * $P \vdash Q \implies P \models Q$ which means that if I obtain the logical consequence between P and Q syntactically, the id is also an entilment (semantic consequence) which is what we mean with "correct"
- in general any answer must be an entilment

Correctness

- an algorithm / theory is complete if it is able to obtain any possible entilment
- it is more difficult to obtain. Sometimes completeness misses to obtain a faster algorithm
- for proof theory is useful the **Completeness Theorem** which says:
 - * $P \vdash Q \iff P \models Q$ which means that the algorithm can derive syntactically any entilment (= semantic consequence)

• Formalization

- given propositions A and B:
 - * if A then B: $A \rightarrow B$
 - * A only if B: $A \rightarrow B$
 - * B if $A : A \rightarrow B$
 - * A if and only if $B : A \iff B$

0.2 First Order Logic

Everything said until now for PL is true also in FOL. Here we just add things. In FOL there are **variables** and they can be quantified ("some of them", "all of them", "none of them", "at least one", ...) thanks to quantifiers \forall and \exists .

- In PL we only could treat sentences with a verb! Instead in FOL we can treat:
 - facts
 - objects
 - relations.

• Terms

- refers to objects
- they do not contain verbs
- example: mother(X), if this is a term (function) this object indicates the mother of X
- objects are any things, they come from a set (finite or infinite) called Universe (or domain of discourse)

• Sentence (Formula)

- sentence has predicates / verbs
- can have functions
- example: mother(X, Y), if this is a sentence it means that X is mother of Y
- note that predicates can have 0, ..., n inputs

- if a predicate has inputs, the output can be only True of False

Herbrand

- Herbrand Interpretation
 - * The formula A is valid in I, $I \models A$, if I , $\models A$ for every valuation . This requires to fix a universe U as both I and use U.
 - * Jacques Herbrand discovered that there is a universal domain together with a universal interpretation, s.t. that any universally valid formula is valid in any interpretation. Therefore, only interpretations in the Herbrand universe need to be checked, provided the Herbrand universe is infinite.
- Herbrand Theorem
 - * Let P be a set of universal sentences. The following are equivalent:
 - · P has an Herbrand model
 - · P has a model
 - · ground(P) is satisfiable

• Skolemization

- Skolemization is that process that allow us to remove \exists quantifiers
- what we obtain is called **skolemized form of F**
- F is satisfiable iff F skolemized is satisfiable
- $F \not\equiv F$ skolemized

• Unification

- is that procedure which finds substitutions that makes two literal look identical syntactically
- Most General Unifier (MGU)
 - \ast there could be many substitutions which makes unification possible, which one I am looking for? The MGU!
 - * considering the terms w1 and w2, g is their MGU iff for any other unifier s, does exist s' s.t. (w1)s = ((w1)g)s' and (w2)s = ((w2)g)s'

[]: