# APERIOL

Cameron Douglas

Nick Knorz

Mary Rahjes

Kunal Shinde



### **User Point of View**

#### **Background**

- 40 million: Physically disabled in the USA
- \$2.19 billion: Automatic Door market in the US (2015) at CAGR of 7.9%
- < 1%: U.S housing is wheelchair accessible
- 35.2%: People over 65 with a disability



#### **Doorway Challenges**

- Weight & self-closing
- Use of hands
- Momentum & traction
- Costs of automation



#### **Customer Surveys**

- Removable (76%)
  - Moving/renting
- Price valued highest (41%)
  - Installation ease (29%)
- ~2% current access



#### **Need Statement:**

Physically disabled persons need an easy and affordable method for opening doors.

# Design Evolution

#### Hand Tools (Manual Assistance)

Door handle grabber

Reach extender

Portable/ extending doorstop

Door jamb jammert

Hand-held "slingshot" door launching

Lasso-like door puller

Key insertion & turning extender

Suction-cup handle extension

Straight up grappling hook

Shower curtain/ door reach extender

Air cannon to blow door open

Use wheelchair wheels as pulley system

#### **Door Modifications**

Closing handle on door

Lighter doors

Doors that swing both ways

"Star Trek" sliding doors

Saloon door stiles

Two-level pantry-like door

Giant torsion springs in hinges

Audio/visual cues during motion

Longer door handles/knobs

Rubber door bumpers

Variable resistance doors

Capacitive door knobs for auto open

Non-newtonion fluid damper

"Heavy Door" sticker

"Push" or "Pull" labels required

Retractable subway gap cover Magnetic door holders

"Automatically open" doors

#### Wheelchair Modifications

Lighter wheelchair

Smaller wheelchair

Wheelchair that can narrow

Robotic leg kicks open door

Foot-stand rubber bumpers

Auto-braking wheels for leverage

Electric bike-like motors

Copenhagen wheel attachment

Proximity alert sensors

Telescoping spokes instead of wheels

Electro-magnetic breaks

Hydraulic breaks

Pliable trades instead of wheels Shock absorbers/ active damping

#### Automated Asssitance

Power-wheel opener

Door-opening robot

Geared track for door

Kickplate button for opening

Bluetooth/ RF capable remote

Pressure mat for triggering

IR sensor for triggering

Larger/ more visible handicap buttons

App-based opening

Signal when in use/ non-operational

Automated doorstops (little kick ones)

Voice-operated door opener (Alexa?)

Campus app w/handicap entrances label Periodic wheelchair spot on escalator Remote control/ RFID residential lock Moving rooms/ closet orientation

#### **Attachment Mechanisms**

- Suction cups
- Under-door sleeve
- Double-sided tape
- Screws & fasteners







#### **Activation Mechanisms**

- Activation upon opening
- Button/remote activation
- Voice activation





### **Pretotyping**





# Final Design

MCEN-5055



#### **Final Prototype**

- Sleeve w/ compressive foam
- Contained package
- Battery powered
- Opens on door movement



#### Final Prototype

- Sleeve w/ compressive foam
- Contained package
- Battery powered
- Opens on door movement



#### **Future Iterations**

- Sleeve & screw options
- Adjustable attachment
- Fire alarm integration
- Voice Command
- Smart lock integration



## **Business Plan**

MCEN-5055

#### Overview

- SBIR, NIH Grants R&D
- VC Funding Manufacturing
- \$50 to produce
- \$150-\$200 price point
- Target in-home & hospitality



"I'm currently handicapped and having automated doors is so much easier. It makes being independent a lot easier — lots of people take it for granted"

### Questions?

