Г	
Ί	
V]	
E	
N	
J/	
1	
V]	
[(
1	
\	
Γ	
I(
$\mathbf{)}$	
N	
A	
Ι	
(
7	
\mathbf{O}	
R	
\mathbf{I}	
ΓI	
I	
VI	
I	
₹(
)]	
R	
A	
U	
T	
\mathbf{O}	
N	
1(
М	
J	
JS	
5]	
\mathbb{F}	
0	
\mathbf{O}	
R	
(
CI	
J	
ΞA	
1	
NI	
N	
G	
F	
{(
-	

ADAPTIVE NAVIGATION ALGORITHM FOR

PROPRIETARY & CONFIDENTIAL

NaviFloor Robotics, Inc.

Document Version: 3.2

Last Updated: January 11, 2024

1. OVERVIEW AND SCOPE

1. This document describes the proprietary adaptive navigation algorithm ("A

1-
2. The Algorithm incorporates machine learning models, sensor fusion techniques.
2. TECHNICAL SPECIFICATIONS
-
1. Core Components
-
Multi-layer terrain mapping system utilizing LiDAR point cloud data
-
Dynamic obstacle avoidance with predictive modeling
-
Surface-type classification neural network
-
Real-time trajectory optimization engine

- -2 Adaptive cleaning pattern generator

2. Key Features
Simultaneous Localization and Mapping (SLAM) with accuracy of ±2cm
Multi-surface adaptation for up to 12 distinct surface types
Real-time path recalculation at 60Hz
-

Energy optimization through intelligent route planning

Fleet coordination capabilities for up to 50 simultaneous units

3. INTELLECTUAL PROPERTY PROTECTION

1. Patent Protection

The Algorithm is protected under the following patent applications:

U.S. Patent Application No. 16/789,432 (filed March 18, 2022)

PCT Application No. PCT/US2022/028976

European Patent Application No. EP22786543.2

Japanese Patent Application No. 2022-157893

_

2.	Trade	Secret	Protect	ion
----	-------	--------	---------	-----

Critical components of the Algorithm, including specific parameter tuning methodologies and machine learning model architectures, are maintained as secrets under Company's Trade Secret Protection Program (Document ID: TSP-2022-003).

4. LICENSING AND USAGE RIGHTS

- 1. The Algorithm is exclusively owned by NaviFloor Robotics, Inc. and may
- 2. Current licensing structure:

Internal use license for Company products

- - 5 -

Limited evaluation license for approved partners

_

Commercial deployment license for authorized OEMs

5. TECHNICAL IMPLEMENTATION

_

1. Software Architecture

-

Core algorithm implemented in C++ with CUDA acceleration

_

ROS2 integration layer for robot control

-

Python-based configuration and testing framework

- -6-

Proprietary sensor fusion middleware

-

2. Hardware Requirements

-

Minimum computing specifications:

-

ARM64 or x86_64 processor at 2.5GHz

_

8GB RAM

-

Dedicated GPU with 4GB VRAM

-

Required sensors:

- - 7 -

360° LiDAR scanner (minimum 16 channels)

_

Depth cameras (minimum 2)

-

IMU with 9-axis sensing

6. PERFORMANCE METRICS

-

1. Validated Performance

_

99.8% surface coverage accuracy

-

95% first-pass cleaning effectiveness

- - - 8
Mean time between failures (MTBF): 2,000 hours

- Average path optimization improvement: 23% vs. baseline

- 2. Environmental Parameters

- Operating temperature range: -10°C to 45°C

- Humidity tolerance: 10% to 90% non-condensing

7. CONFIDENTIALITY AND SECURITY

Maximum slope capability: 15 degrees

9 -
1. All aspects of the Algorithm are classified as Tier 1 Confidential Informat
-
2. Access to Algorithm documentation and source code requires:
-
Signed NDA (Form NDA-2023-R2)
<u>-</u>
Security clearance level Alpha or higher
Two footon outhoutication for divital access
Two-factor authentication for digital access
-
Physical access restrictions to development environments
8. CERTIFICATION AND COMPLIANCE

- - 10
1. The Algorithm has been certified for:

- ISO/IEC 27001:2013 compliance

- CE marking requirements

- UL 1740 Safety Standard for Robots and Robotic Equipment

RoHS compliance for embedded systems

9. VERSION CONTROL

This document is maintained under version control in the Company's secure document management system. All modifications must be approved by the C

Technology Officer and Chief Legal Officer.

10. AUTHORIZATION

APPROVED AND ADOPTED by NaviFloor Robotics, Inc.

By:

Dr. Marcus Depth

Chief Technology Officer

Date: January 11, 2024

By:

Elena Kovacs, Ph.D.

Chief Research Officer

Date: January 11, 2024

