CLIPPEDIMAGE= JP405343500A

PAT-NO: JP405343500A

DOCUMENT-IDENTIFIER: JP 05343500 A

TITLE: WAFER TRANSFERRING APPARATUS AND PROBE DEVICE

PUBN-DATE: December 24, 1993

INVENTOR-INFORMATION:

NAME

ITOYAMA, TAKETOSHI

ASSIGNEE-INFORMATION:

NAME

TOKYO ELECTRON LTD

COUNTRY

N/A

APPL-N(): JP05026276

APPL-DATE: January 20, 1993

INT-CL (IPC): H01L021/68; B65G049/07; H01L021/66

ABSTRACT:

PURPOSE: To surely transfer a wafer inside a wafer cassette to a prescribed

position, e.g. to a wafer holding stand in a probe device, and to make the

space of the apparatus small while the apparatus is provided with the alignment

function of the wafer.

CONSTITUTION: A pair of tweezers 2 which can be advaced and retreated freely

and which can be moved freely to the row of wafer cassettes 1 is arranged so as

to face the row of the. wafer cassettes 1. A wafer 14 inside each cassette 1 $\,$

is taken out. An ascending and descending member 3 which can be passed up and

down through an opening part 21 in the pair of tweezers 2 and which can be

turned freely around the Z-axis is installed. The wafer on the pair of

tweezers 2 is pushed up by means of the ascending and descending member 3; it

is delivered. The ascending and descending member 2 is turned; the wafer W is.

aligned. In addition, a rotary arm 4 which can be turned freely in the

horizontal direction is made on standby between the pair of tweezers 2 and the

wafer W. The ascending and descending member 2 is lowered through the inside of a cutout part 41 in the rotary arm 4. The wafer W is delivered to the rotary arm 4. The wafer W is delivered to a wafer holding stand 5 by means of the rotary arm 4.

COPYRIGHT: (C) 1993, JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FI

(11)特許出願公開番号

特開平5-343500

(43)公開日 平成5年(1993)12月24日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

H 0 1 L 21/68

A 8418-4M

B 6 5 G 49/07

F 9244-3F

H 0 1 L 21/66

B 7352-4M

G 7352-4M

審査請求 有 発明の数2(全 8 頁)

(21)出願番号

特願平5-26276

(62)分割の表示

特顧昭61-10738の分割

(22)出顧日

昭和61年(1986) 1月21日

(71)出願人 000219967

東京エレクトロン株式会社

東京都新宿区西新宿2丁目3番1号

(72)発明者 糸山 武敏

東京都新宿区西新宿1丁目26番2号 東京

エレクトロン株式会社内

(74)代理人 弁理士 井上 俊夫

(54)【発明の名称】 ウェハ移載装置及びブローブ装置

(57)【要約】

【目的】 ウエハカセット内のウエハを所定の位置例えばプローブ装置のウエハ保持台に確実に移載し、またウエハの位置合わせ機能を備えながらスペースを狭くすること。

【構成】 ウエハカセット1の並びに対向するように進退自在でかつカ・セット1の並び方向に移動自在なピンセット2を配置してカセット1内のウエハWを取り出すと共に、ピンセット2の開口部21を上下に通過でき、また2軸のまわりに回転自在な昇降部材3を設け、ピンセット2上のウエハを昇降部材3により突き上げてこれに受け渡すと共に、昇降部材2を回転させてウエハWの位置合わせを行う。更に水平方向に回転自在な回転腕4をピンセット2とワエハWとの間に待機させ、回転腕4の切り欠き部41円を通って昇降部材2を降下させ、回転腕4にウエハWを受け渡し、回転腕4によりウェハ保持台5にウエハWを受け渡す。

【特許請求の範囲】

(1)ウエハを上下に間隔をおいて収納するウエハ収納 部と、

ウエハ保持面に開口部が形成されると共に、進退自在で かつ前記ウエハ収納部に対して相対的に昇降自在に構成 され、ウエハ収納部内に進入してウエハを受け取る撤送 部材と、

との搬送部材の開口部を通って昇降し、当該搬送部材上 のウエハを受け取って真空吸着する昇降部材と、

切り欠き部を備えると共に、前記昇降部材上のウェハと 10 搬送部材との間に進入し、昇降部材が切り欠き部内を降 下して昇降部材からウエハを受け取った後、水平方向に 回転してこのウェハを所定位置に搬送する回転腕と、 を具備してなることを特徴とするウエハ移載装置。

(2) 昇降部材は、鉛直軸のまわりに回転自在に構成さ れ、

前記昇降部材によりウエハを回転させてウエハの位置を 検出するためのウエハ位置検出装置を更に設けたことを 特徴とする特許請求の範囲第1項記載のウェハ移載装 置。

(3)ウエハを上下に間隔をおいて収納するウエハ収納 部と、

ウエハ保持面に閉口部が形成されると共に、進退自在で かつ前記ウエハ収納部に対して相対的に昇降自在に構成 され、ウエハ収納部内に進入してウエハを受け取る撤送 部材と、

との搬送部材の開口部を通って昇降し、当該搬送部材上 のウエハを受け取って真空吸着する昇降部材と、

切り欠き部を備えると共に、前記昇降部材上のウェハと 搬送部材との間に進入し、昇降部材が切り欠き部内を降 30 下して昇降部材からウエハを受け取った後、水平方向に 回転してとのウニハを所定位置に搬送する回転腕と、

この回転腕により搬送されたウエハを受け取るために当 該回転腕の切り欠き部を通って昇降自在な支持ビンを備 え、X、Y方向に移動自在なウエハ保持台と、

とのウエハ保持台の所定の静止位置に対向して設けられ たウエハのテスト用のプローブカードと、

を具備してなるととを特徴とするプローブ装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ウエハ移載装置及びブ ローブ装置に関する。

[0002]

【従来の技術】ウエハ内のチップを測定するプローブ装 置は、ウエハブロセス工程での最終工程にて、ウエハ内 に形成された数多くのチップに対して各々の電気的特性 を測定し、不良チップを区分するための機械的装置であ り、ウエハ内のチップとテスタとの媒体となる装置であ る。ウエハ状態で測定を行うことにより、不良チップを アッセンブリ工程の手前で排除し、コストダウン、及び 50 【0008】

生産性の向上に寄与させることができる。

【0003】プローブ装置の基本的機能は、チップ上の 電極 (パッドと称されている) にプローブカードに付さ れているプローブ針を接触させることである。テスタか らの測定信号は、プローブカードを経て、測定されるチ ップに伝えられ、その出力信号もプローブカードを経て テスタに返送され、テスタにより測定結果の判定が行わ れる。

【0004】最近の半導体製造工程は、半導体産業の飛 躍的な伸長により、生産性の向上、歩留りの向上及び品 質の向上が求められ、ウェハの大口径化と製造装置の自 動化が急激に進められている。プローブ装置についても 同様で、単にプローブカードのプローブ針を接触させる 機能だけのものから、ウエハが収納されたウエハカセッ トをセットするだけで、すべてのウエハを自動的にテス トできるフルオートプローブ装置に発展改良された現在 に至っている。

【0005】フルオートプローブ装置は、セミオートプ ローブ装置の省力化を更に発展させたプローブ装置で、 20 初期条件の設定とカセットの供給のみオペレータが行え ば、アライメントも含めて全自動でプロービング (チッ プにプローブカードのプローブ針を圧接して順番に測定 する行為)が可能となる。ウエハカセット1個につき2 5枚のウエハが収納できるので、一枚当りのテスト時間 を例えば30分とすれば実に約12時間以上の無人運転 が可能であり、カセット数を増設すれば、更に長時間運 転ができる。現在の生産ラインでは、ほとんどこのプロ ーブ装置が利用されている。

【0006】とのようなプローブ装置では、ウエハ保持 台の回転角が小さい場合には、ウエハカセットとウエハ 保持台との間でウエハのブリアライメント(最終的な位 置合わせの前の概略の位置合わせ)を行わなければなら ず、こうした機能を備えながらできるだけ簡単でかつ確 実な、プローブ装置に適した移載装置を用いることが重 要である。

【0007】従来プローブ装置に用いられている移載装 置装置としては、例えば特開昭57-66649号公報 に記載されている技術が知られている。との技術は、ウ エハカセットをエレベータ上に配置すると共に、ウェハ 40 カセットの昇降路上に搬送用のベルトを設け、ウエハカ セットを降下させてウエハがベルトに接触したときにエ レベータを停止して当該ベルトにウエハを受け渡し、と のベルトにより所定位置まで搬送した後X、Y、Z、 θ 方向に移動自在なベルヌーイチャックによりベルト上の ウエハの表面を吸引し、ベルヌーイチャックを回転させ てウエハ保持台にウエハを受け渡すものである。ベルヌ ーイチャックは、円錐型の吸引室の側壁に沿って空気を 通流して中央部を負圧にし、これによりウエハを上から 保持するものである。

3

【発明が解託しようとする課題】しかしながら上述の移 載装置ではベルトを用いてカセット内からウェハを取り 出しているため、ベルトからゴミが発生し、ウエハが汚 染されるという問題がある。とのような汚染はデバイス の集積度がそれ程高くない場合には大きな問題とはなら ないが、今後デバイスの高集積化が進められていく現状 では歩留りの低下の一因になる。

【0009】またベルヌーイチャックは、空気を噴射す るノズルに水滴やチリが付着すると噴出気流が乱れ、ウ エハを搬送中に落下させて破損することがあり、搬送の 10 確実性に欠けるという問題がある。

【0010】本発明は、このような事情のもとになされ たものであり、その目的は、ウエハ収納部からウェハを 取り出して所定位置まで移載するにあたり、確実に搬送 することができ、特にウエハ収納部が横に複数並んで配 列されている:場合に、簡単でかつ占有スペースも狭くて 済むウエハ移ば装置を提供することにある。

【0011】本発明の他の目的は、ウエハ収納部とプロ ーブカードの下に位置するウエハ保持台との間のウェハ の移載を確実に行うことができ、しかも占有スペースの 20 狭いプローブ装置を提供することにある。

[0012]

【課題を解決するための手段】第1の発明は、ウエハを 上下に間隔をおいて収納するウエハ収納部と、ウエハ保 持面に開口部が形成されると共に、進退自在でかつ前記 ウエハ収納部に対して相対的に昇降自在に構成され、ウ エハ収納部内に進入してウエハを受け取る搬送部材と、 との搬送部材の開口部を通って昇降し、当該搬送部材上 のウエハを受け取って真空吸着する昇降部材と、切り欠 き部を備えると共に、前記昇降部材上のウェハと搬送部 30 材との間に進入し、昇降部材が切り欠き部内を降下して 昇降部材からウエハを受け取った後、水平方向に回転し てとのウエハを所定位置に搬送する回転腕と、を具備し てなることを特徴とするウエハ移載装置。

【0013】第2の発明は、ウエハを上下に間隔をおい て収納するウエハ収納部と、ウエハ保持面に開口部が形 成されると共に、進退自在でかつ前記ウエハ収納部に対 して相対的に昇降自在に構成され、ウエハ収納部内に進 入してウエハを受け取る搬送部材と、この搬送部材の開 口部を通って昇降し、当該搬送部材上のウェハを受け取 40 って真空吸着する昇降部材と、切り欠き部を備えると共 に、前記昇降部材上のウエハと搬送部材との間に進入 し、昇降部材が切り欠き部内を降下して昇降部材からウ エハを受け取った後、水平方向に回転してこのウェハを 所定位置に搬送する回転腕と、との回転腕により搬送さ れたウエハを受け取るために当該回転腕の切り欠き部を 通って昇降自在な支持ピンを備え、X、Y方向に移動自 在なウエハ保持台と、とのウエハ保持台の所定の静止位 置に対向して設いられたウエハのテスト用のプローブカ ードと、を具備してなることを特徴とする。

[0014]

【作用】搬送部材をウエハ収納部内に進入させてウエハ をすくい上げ、その後後退させてウエハを取り出す。次 いで搬送部材上のウエハを昇降部材により突き上げ、例 えばとの昇降部材を回転させてウエハの位置合わせを行 う。そして所定のタイミングで回転腕をウエハの下方側 に位置させておき、昇降部材を降下させてウェハを回転 腕に受け渡し、この回転腕により所定位置まで移載す る。

【0015】従ってウエハの受け渡しを確実に行うこと ができ、またウエハを収納部から取り出した後、搬送部 材を移動させて目的とする位置まで搬送するのではな く、回転腕により搬送しているので、例えばウエハ収納 部が横に複数並んでいて横方向(X方向)に搬送部材が 移動するものであってもX方向と交差する方向に沿って 大きく移動させなくて済むため、移載装置の構成が簡単 でそのスペースも狭くて済む。従ってこのような構成 は、プローブ装置に好適に用いることができる。

【0016】またウエハの位置合わせをする場合には、 別途位置合わせステージを設けなくて済むので、スペー スが狭くて済む上、移載の時間も短くて済む。

[0017]

【実施例】以下に本発明のウエハ移載装置をプローブ装 置に適用した実施例について説明する。先ず図1を参照 してとのプローブ装置の全体の概要について述べると、 とのプローブ装置は、カセットステージ11上に横に一 列に配列されたウエハ収納部例えば4つのウエハカセッ ト(以下「カセット」という。)1と、このカセット1 内に進入してウエハWを受け取る搬送部材例えばピンセ ット2と、このピンセット2に形成された開口部21を 通ってピンセット2上のウエハ♥を突き上げる昇降部材 3と、この昇降部材3上のウエハ₩を受け取って所定位 置までウエハWを搬送するための、切欠部41を備えた 回転腕4と、この回転腕4からウエハ♥を受け取ってウ エハWの測定領域まで移動するウエハ保持台5とを備え ている。

【0018】またウエハ♥の測定領域には、図1では見 えない後述のプローブカードを取り付けるための、ヘッ ドプレート51にサポートリング52を介して保持され たインサートリング53などが設けられ、その上方には プローブカードのプローブ針とウエハW上のチップの電 極との位置を観察する光学系ユニット54が設けられて いる。

【0019】なお上述の各移載に関する部分は、カセッ ト1からウエハ保持台5までウエハ₩を移載するものと して説明しているが、これらはウエハ保持台5からカセ ット1までの移載も行うものである。

【0020】次に上述の各部分について詳述する。先ず 前記ピンセット2に関連する機構について図2を参照し 50 ながら説明する。4つのカセット1がX方向に配列され

5

ているとすると、これらカセット1に対向する位置にX方向に並列して伸びる一対のカイドレール61に沿って、例えば図示しない車輪により滑動してガイドされるX軸板62が記置されており、このX軸板62は、X方向に離れて配置されたプーリ63a、63bの間に掛けられたベルト63に取り付けられ、モータM1を駆動する(正逆転する)ことによりX方向に移動するように構成される。なお12aに支台12に形成された開口部である。

【0021】前記X軸板62を挟んで上下に対向するようにピンセット受台64及びモータ取付台65が配設され、これらの間にはボールネジ66及び2本のガイド棒67が立設されている。前記X軸板62は、ボールネジ66に図示しないメネジ部を介して螺合すると共にガイド棒67が図示しないガイド溝を介して貫通されており、従ってモータM2を駆動して(正逆転して)ボールネジ66を回転させることにより、ピンセット受台64がX軸板62に対して昇降することになる。

【0022】前記ピンセット受台64の上面側にはピンセット基台71が取り付けられており、このピンセット 20基台71の上には、レール基台72からY方向に並行に伸びる一対のオイドレール73が配設されている。ピンセット2はこのガイドレール73にガイドされるように前記基台71上に滑動自在に取り付けられると共に、Y方向に沿ってブーリ74a、74b間に掛けられたベルト74に取り付けられ、モータM3を駆動(正逆転)することによりY方向に移動自在に即ちカセット1に対して進退自在となるように構成されている。

【0023】前記ピンセット2の進入最終部の位置(前端位置)と、後退しているときの最後部の位置(後端位置)とに対応して、図示しないが夫々光電子スイッチ、例えばピンセット2の通過領域面を介して上下に対向する発光部及び受光部よりなる光電子スイッチを設け、ピンセット2の本体通過に伴い、受光部で受光しない場合にはモータM3を停止するように構成すれば、ピンセット2を予め設定した前端位置及び後端位置にて確実に停止させることができる。

【0024】前記ピンセット基台71の下方側には、当該ピンセット基台71に取り付けられたソレノイド31によりピンセット基台71側にガイド棒32にガイドさ 40れながら引き寄せられる(上昇する)昇降板33が配設されている。一方前記ピンセット2のウエハ保持面には、例えば長穴よりなる開口部21が形成されており、前記昇降板32における前記開口部21と対向する位置には、当該開口部21内を上下に通過する図1にて既述した昇降部材3:ジモータM4によりベルト34を介して鉛直軸(Z軸)のまわりに回転自在に設けられている。この昇降部材3は、上面にウエハWの保持面部30が形成され、この保持面部30にはバキューム吸着機能が付設されており、ナブチャックとも呼ばれる。なおこの例 たり

では昇降部材3の上限位置は前記ソレノイド31のストローク長で決まるが、保持面部30とピンセット2との間に前記回転腕4が位置することができるように設定される。

【0025】CCでピンセット2のX方向(カセット1の配列方向)の停止位置を設定する部分に関して述べると、図3に示すように装置本体側において4個のカセット11に対応する位置A~Dに失々光電子スイッチ13を配置すると共に、X軸板62に装置本体側の光源140を光電子スイッチ13側に反射するようにミラー15を取付け、光源14からミラー15を介して反射された光を光電子スイッチ13が受光したときに、該当する位置A~Dに停止して、ピンセット2がカセット1の前面に対向するように構成される。

【0026】またとの実施例では、前記昇降部材3上のウエハWをプリアライメントと呼ばれるウエハ保持台5による最終的な位置合わせの前の前段の位置合わせを行うための位置検出装置が昇降部材3に関連して設けられている。との位置検出装置に関して述べると、図4

(a) に示すように昇降部材3上のウエハを挟んで上下に対向するように、上側に受光センサ81、下側に発光ダイオード82が夫々配設されており、図5に示すように受光センサ81には、当該受光センサ81より出力電流を電圧に変換するオペアンプ83が接続されている。このオペアンプ83の後段側には低域通過フィルタ84、サンプルホールド回路85及びA/Dコンバータ84よりの電圧信号がCPUに取り込まれることとなる。

【0023】前記ピンセット2の進入最終部の位置(前端位置)と、後退しているときの最後部の位置(後端位 30 おり、昇降部材3を上昇させてピンセット2上のウェハ置)とに対応して、図示しないが夫々光電子スイッチ、 Wを突き上げた後当該昇降部材3によりウェハWを1回例えばピンセット2の通過領域面を介して上下に対向す 転させ、これにより得た出力波形にもとづいて図4

(b)に示すようにウエハWの中心Pと昇降部材3の中心Qとの偏心量を求める。なお図6はこの出力波形の一例を示す図である。その後昇降部材3を降下させてピンセット2上に載せ、当該ピンセット2及びX軸板62の移動により前記偏心量を補正し、再び昇降部材3を上昇させてウエハWを突き上げて受け取り、ウエハWを1回転させて得た出力波形にもとづいてウエハWのオリフラ(オリエンテーションフラット)Fの位置を演算し、その結果にもとづいて昇降部材3によりウエハWの向きを補正し、こうしてウエハWのプリアライメントが行われる。なおウエハWの受け渡し動作については後で詳述するが、昇降部材3の上に(詳しくは保持面部3の上)にウエハWを保持するときにはバキューム吸着する。

した昇降部材3:55モータM4によりベルト34を介して 鉛直軸(Z軸)のまわりに回転自在に設けられている。 この昇降部材3は、上面にウエハWの保持面部30が形成され、この保持面部30にはバキューム吸着機能が付 設されており、ナブチャックとも呼ばれる。なおこの例 50 と固定板44との間に、下端側のモータM5により駆動

されるボールネジ45を軸着し、更にとのボールネジ4 5に螺合しかつガイド棒43に嵌合する昇降基台46を 設けて、回転腕4の昇降機構が構成される。

【0029】前記昇降基台46には、モータM6により 回転されるウオーム47及びギア48を介して2軸のま わりに回転する回転軸49が設けられており、この回転 軸49の上端に 前記回転腕4の基端部が取り付けら れ、とうして回底腕4は水平方向に回動しかつ昇降動作 ができるとととなる。また前記回転腕4の先端部の切り との間でウエハ™の受け渡しが可能となるように形成さ れたものである。

【0030】そして図1に戻ってウエハ保持台5につい て述べると、とのウエハ保持台5は、例えば特開昭60 -22605号公報に記載されているX-Yステージ上 に設置される。このようなX-Yステージ90は、ボー ルネジや、ガイドレールを含むX軸機構91、及びボー ルネジや、ガイドレールを含むY軸機構92などからな り、更にウエハ保持台5を例えば後述の図10に示す偏 わりに回転させる機構が組み合わせられている。

【0031】まルウエハ保持台5には、前記回転腕4の 切り欠き部41内を通って昇降し、回転腕4との間でウ エハの受け渡した行うための例えば正三角形の頂点位置 に失々配置された3本の支持ピン50が突出、埋没自在 に設けられている。

【0032】前記ウエハ保持台5の所定の静止位置(ウ エハWの測定領域)には、ウエハ保持台5と対向するよ うにプローブカードが設けられており、図8に示すよう にとのプローブ:カード55は、プローブ針56を備え、 例えばネジ57によりインサートリング53に取り付け られている。この例では、インサートリング53を保持 しているヘッドプレート51はプローブ装置本体に開閉 自在に取り付けられている。

【0033】次に上述実施例の装置により、ウエハWを カセット1からウエハ保持台5に移載し、測定終了後再 びカセット1まで戻る動作について述べる。 先ず複数個 のカセット 1をカセットステージ 11の所定の位置に配 置し、オペレータがこれらカセット1の測定順序をRO Mに記憶させる。これによりROM内の情報と既述した 40 光電スイッチ13からの出力信号とにもとづいて、ピン セット2の下方側のX軸板62がポジションA~Dのう ちの一つの位置を選択して移動し、これによりピンセッ ト2が所定のカセット1の前に停止する。

【0034】続いて当該カセット1からROMに記憶さ れている順番に従ってウエハWが取り出されることにな るが、この動作を図9を参照しながら説明する。先す図 9(a)に示すようにモータM2を駆動してボールネシ 66を回転させてピンセット2を所定位置まで上昇(あ が上下に間隔をおいて25枚収納されるが、ウエハ♥間 の間隔は予め規定された値であるから、ウェハWの段数 がわかればウエハWの収納位置、及びウエハW間の中間 位置が把握でき、従ってウエハ♥間の中間位置にピンセ ット2が位置するようにモータM2が制御される。

【0035】そして図9(b)に示すように既述した如 くモータM3を駆動してベルト74を移動させることに より(図2参照)ピンセット2を前進させてカセット1 内に進入させ、ピンセット基台71に取り付けた光電ス 欠き部41は、昇降部材3が上下に通過して昇降部材3 10 イッチなどの進入確認センサ(図示せず)にて確認信号 を得た後に図9(c)に示すようにモータM2を駆動し てピンセット2を上昇させ、ウエハWを保持する。ウェ ハ♥はピンセット2のバキューム吸着機能により吸着さ れ、バキュームセンサ(図示せず)からの吸着完了の出 力後、図9(d)に示すようにピンセット2は元の位置 まで後退する。

【0036】更に既述した如くソレノイド31に空気を 注入して昇降板3をピンセット基台71に引き寄せ(図 **2参照)これにより昇降部材3は図9(e)に示すよう** 心カム58などにより 2軸方向に移動させ、かつ 2軸ま 20 にピンセット2の開口部21を通って上昇し、ピンセッ ト2上のウエハWを突き上げて保持する。ピンセット2 上のバキューム吸着は、昇降部材3がウエハWを突き上 げる前に解除され、これに代ってウエハ♥は昇降部材3 によりバキューム吸着される。その後昇降部材3を回転 させて図4~図6にて詳述したように、ウエハWの中心 と向きとについて位置合わせ(プリアライメント)が行 われる。

> 【0037】一方回転腕4は、昇降部材3の上昇時には これよりも図1中時計まわり方向に寄った位置に待機! 30 し、昇降部材3がウエハを受け取った後は図10(a) に示すようにピンセット2と昇降部材3との中間位置で あって、回転腕4の切り欠き部41が昇降部材3を囲む 位置まで回転し、ウエハWのほぼ真下に待機している。 この状態で昇降部材3は、図10(b)に示すように前 記切り欠き部41及びピンセット2の開口部21を通っ て降下し、これによりウエハ♥は回転腕4に受け渡され る。との受け渡しの際昇降部材3のバキューム吸着は解 除され、とれに代ってウエハWは回転腕4にパキューム 吸着される。

【0038】しかる後図10(c)に示すように回転腕 4は、ウエハ保持台5の上方位置まで水平方向に回転。 し、更に回転腕4のバキューム吸着を解除した後ウエハ 保持台5の支持ピン50が回転腕4の切り欠き部41内 を通って突出する。これによりウエハWは支持ピン50 に一旦支持され、回転腕4が退避した後支持ピン50が 降下してウエハ保持台5上に受け渡され、バキューム吸 着される。

【0039】その後ウエハ保持台5は、図10(d)に 示すようにX-Yステージ90により測定領域であるプ るいは降下) させる。カセット1内には例えばウエハ♥ 50 ローブカード5の下方位置まで移動され、図1に示す光

9

学系ユニット5.4によりプローブカード5.5の穴を通じてウエハW表面を観察しながらウエハWの位置合わせを正確に行った役例えば偏心カム5.8により上昇して、ブローブカード5.5のプローブ針5.6とウエハW上のチップの電極(パッド)とを圧接する。圧接後外部のテスタによりチップの電気的測定が行われる。

【0040】全でのチップの測定が終了した後図10 (c)に示すようにウエハ保持台5はもとの高さまで降下すると共に矢印と反対方向に移動し、支持ピン50を突出させてウェハWを上昇させて回転腕4に受け渡し、先述の移載動作と逆の動作で回転腕4→昇降部材3→ピンセット2→カセット1の順にウエハWがもとの位置まで移載される。以上のような動作を繰り返すことによりすべてのウエハWが測定される。

【0041】なおウエハのプリアライメントは、ウエハ保持台5上で行ってもよい。また本発明のウエハ移載装置は、プローブ装置に限らず他の装置、例えばウエハに対して所定の処理を行う処理装置の入出力ポート部分に適用してもよい。

[0042]

【発明の効果】本発明によれば、ウエハWの下面側を保持して移載するようにしているため、ウエハを確実に移載することができ、また進退自在な搬送部材と回転腕とを組み合わせているため、搬送部材を広い領域に亘って移動させなくてよいので、装置が簡単でかつそのスペースも狭くて済む、そしてウエハの位置合わせを行う場合には、搬送部材と回転腕との間の受け渡しを行うための昇降部材により行うことができるので、この効果は非常に大きい。

【図面の簡単な説明】

【図1】本発明の実施例の全体の概略を示す斜視図であま

* る。

【図2】本発明の実施例の一部であるピンセット(搬送部材に相当する)に関連する部分を示す斜視図である。

10

【図3】ピンセットをX方向に動かすX軸板の停止位置の設定を示す説明図である。

【図4】ウエハの位置合わせ装置及び位置合わせの一例 を示す説明図である。

【図5】ウエハの位置合わせ装置の一部を示すブロック 図である。

10 【図6】ウエハの位置合わせ装置の出力電流の一例を示す特性図である。

【図7】回転腕及びこれを駆動する機構を示す斜視図である。

【図8】プローブカードの取り付けの様子を示す斜視図である。

【図9】本発明の実施例の動作説明図である。

【図10】本発明の実施例の動作説明図である。 【符号の説明】

1 ウエハカセット

20 2 ピンセット

2 1 開口部

3 昇降部材

33 昇降台

4 回転腕

4 1 切欠部

5 ウエハ保持台

50 支持ピン

55 プローブカード

62 X軸板

30 71 ピンセット基台

90 X-Yステージ

【図1】

[図2]

【図9】

【図10】

