Deep Learning to Improve Breast Cancer Detection on Screening Mammography - A summary

Jonas Wildberger University of Oxford Problem Description

Model

Results

Discussion

Problem Description

- ► Limited data at the beginning of the pandemic made it difficult to grasp the dynamic of the spread
 - ► How to account for the high uncertainty in model parameters?

- ► Limited data at the beginning of the pandemic made it difficult to grasp the dynamic of the spread
 - ► How to account for the high uncertainty in model parameters?
- ► How to analyse the efficacy of non-pharmaceutical interventions to minimise the spread of COVID-19?

- ► Limited data at the beginning of the pandemic made it difficult to grasp the dynamic of the spread
 - ► How to account for the high uncertainty in model parameters?
- ► How to analyse the efficacy of non-pharmaceutical interventions to minimise the spread of COVID-19?

Bayesian inference for the rescue!

Model

S(E)IR 6

Figure: SEIR model [MM20]

S(E)IR

Figure: SEIR model [MM20]

$$\begin{split} \frac{dS}{dt} &= -\frac{\lambda SI}{N} \\ \frac{dE}{dt} &= \frac{\lambda SI}{N} - \sigma E \\ \frac{dI}{dt} &= \sigma E - \mu I \\ \frac{dR}{dt} &= \mu I \end{split}$$

S(E)IR

Figure: SEIR model [MM20]

$$\frac{dS}{dt} = -\frac{\lambda SI}{N}$$

$$\frac{dE}{dt} = \frac{\lambda SI}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \mu I$$

$$\frac{dR}{dt} = \mu I$$

- ▶ Basic reproductive number $R_0 = \frac{\lambda}{\mu}$
- ▶ Delay D in becoming infected (I^{new}) and being reported
- $ightharpoonup \lambda$ time-varying with change points corresponding to NIPs

Parameter	Prior Distribution	
Spreading rate λ ₀	LogNormal(log(0.4),0.5)	
Spreading rate λ ₁	LogNormal(log(0.4),0.7)	
Spreading rate λ ₂	LogNormal(log(0.4),0.7)	
Incubation to infectious rate σ	LogNormal(log(1/5),0.5)	
Recovery rate μ	LogNormal(log(1/8),0.2)	
Reporting Delay D	LogNormal(log(8),0.2)	
Initial Infectious I ₀	Half-Cauchy(20)	
Initial Exposed E ₀	Half-Cauchy(20)	
Change Point t ₁	Normal(2020/03/18,1)	
Change Point t ₂	Normal(2020/03/28,1)	

Parameter	Prior Distribution	
Spreading rate λ ₀	LogNormal(log(0.4),0.5)	
Spreading rate λ_1	LogNormal(log(0.4),0.7)	
Spreading rate λ ₂	LogNormal(log(0.4),0.7)	
Incubation to infectious rate σ	LogNormal(log(1/5),0.5)	
Recovery rate µ	LogNormal(log(1/8),0.2)	
Reporting Delay D	LogNormal(log(8),0.2)	
Initial Infectious I ₀	Half-Cauchy(20)	
Initial Exposed E ₀	Half-Cauchy(20)	
Change Point t ₁	Normal(2020/03/18,1)	
Change Point t ₂	Normal(2020/03/28,1)	

► Likelihood function Student-T distribution

Parameter	Prior Distribution	
Spreading rate λ ₀	LogNormal(log(0.4),0.5)	
Spreading rate λ ₁	LogNormal(log(0.4),0.7)	
Spreading rate λ ₂	LogNormal(log(0.4),0.7)	
Incubation to infectious rate σ	LogNormal(log(1/5),0.5)	
Recovery rate µ	LogNormal(log(1/8),0.2)	
Reporting Delay D	LogNormal(log(8),0.2)	
Initial Infectious I ₀	Half-Cauchy(20)	
Initial Exposed E ₀	Half-Cauchy(20)	
Change Point t ₁	Normal(2020/03/18,1)	
Change Point t ₂	Normal(2020/03/28,1)	

- ▶ Likelihood function Student-T distribution
- ▶ Initial $R_0 = 3.278 \text{ (CI[}2.715, 3.73\text{])}$

Parameter	Prior Distribution	
Spreading rate λ ₀	LogNormal(log(0.4),0.5)	
Spreading rate λ ₁	LogNormal(log(0.4),0.7)	
Spreading rate λ ₂	LogNormal(log(0.4),0.7)	
Incubation to infectious rate σ	LogNormal(log(1/5),0.5)	
Recovery rate µ	LogNormal(log(1/8),0.2)	
Reporting Delay D	LogNormal(log(8),0.2)	
Initial Infectious I ₀	Half-Cauchy(20)	
Initial Exposed E ₀	Half-Cauchy(20)	
Change Point t ₁	Normal(2020/03/18,1)	
Change Point t ₂	Normal(2020/03/28,1)	

- ► Likelihood function Student-T distribution
- ▶ Initial $R_0 = 3.278$ (CI[2.715, 3.73])
- ► Hamiltonian Monte Carlo (HMC) method to sample from posterior distribution
 - ► No-U-Turn Sampling (NUTS)
 - ▶ 5000 samples with 1000 burn-in

Results I

Model	Change Points	LOO	Effective Parameters
SIR	2	448.00	10.27
SEIR	1	457.77	11.60
SEIR	2	459.94	12.00
SIR	1	463.03	8.51
SEIR	0	464.69	16.14
SIR	0	517.72	4.72

Model	Change Points	LOO	Effective Parameters
SIR	2	448.00	10.27
SEIR	1	457.77	11.60
SEIR	2	459.94	12.00
SIR	1	463.03	8.51
SEIR	0	464.69	16.14
SIR	0	517.72	4.72

https://doi.org/10.1371/journal.pone.0237126.t002

► SIR model with two change points yields lowest LOO cross entropy loss

► Change points peak on 18/03 (travel ban, social distancing) and 28/03 (mass testing)

- ► Change points peak on 18/03 (travel ban, social distancing) and 28/03 (mass testing)
- ▶ Drop of spreading rate by 80% $(R_0 = 0.655 \text{ (CI[0.430, 0.960])})$ and 60% $(R_0 = 1.304 \text{ (CI[0.887, 1.7748])})$ respectively

- ► Change points peak on 18/03 (travel ban, social distancing) and 28/03 (mass testing)
- ▶ Drop of spreading rate by 80% $(R_0 = 0.655 \text{ (CI[0.430, 0.960])})$ and 60% $(R_0 = 1.304 \text{ (CI[0.887, 1.7748])})$ respectively
- ▶ Delay $D \approx 6.848$ including incubation period of 4.537 days, laboratory delay of 2.311 days

- ► Change points peak on 18/03 (travel ban, social distancing) and 28/03 (mass testing)
- ▶ Drop of spreading rate by 80% $(R_0 = 0.655 \text{ (CI[0.430, 0.960])})$ and 60% $(R_0 = 1.304 \text{ (CI[0.887, 1.7748])})$ respectively
- ▶ Delay $D \approx 6.848$ including incubation period of 4.537 days, laboratory delay of 2.311 days
- ► Recovery rate $\mu \approx 0.151$ implies mean infectious period of 6.62 days

Discussion

▶ Results confirm the impact of governmental measures to reduce the spread of COVID-19 in South Africa

- ▶ Results confirm the impact of governmental measures to reduce the spread of COVID-19 in South Africa
- ► Parameter estimates help quantify the dynamic of the pandemic and account for uncertainty

Discussion

▶ Results confirm the impact of governmental measures to reduce the spread of COVID-19 in South Africa

- ► Parameter estimates help quantify the dynamic of the pandemic and account for uncertainty
- ► Assumptions on prior distributions?

- ▶ Results confirm the impact of governmental measures to reduce the spread of COVID-19 in South Africa
- ► Parameter estimates help quantify the dynamic of the pandemic and account for uncertainty
- ► Assumptions on prior distributions?
- ► Take into account local, provincial developments

Rendani Mbuvha and Tshilidzi Marwala.

Bayesian inference of covid-19 spreading rates in south africa.

04 2020.

