Yang Infinitesimal Analysis over Algebraic Closures of Fontaine Period Fields

Pu Justin Scarfy Yang

May 1, 2025

Outline

- Foundations of Non-Topological Yang Infinitesimal Framework
- Poundational Theorem of Algebraic Yang Deformation
- Yang-Motivic Extensions of Fontaine Fields
- Yang-Prismatic Cohomology and Higher Infinitesimal Classes
- 5 Infinitesimal Motives and Poly-Obstruction Filtrations
- 6 Derived Yang Topoi and Infinitesimal Stack Geometry
- Yang-Crystalline Descent and Perfectoid Enrichment
- 8 Yang-Syntomic Structures and Semiperiodic Arithmetic Cohomology
- Yang-Universal Period Sheaves and Higher Arithmetic Stacks
- Yang-Langlands Correspondence and Infinitesimal Automorphic Stacks

Definition: Yang-Infinitesimal Derivation

Definition 1.1 (Yang-Infinitesimal Derivation): Let $K_k := \operatorname{Frac}(\mathbb{B}_k)$, and let $\mathbb{Y}_n(K_k)$ be a Yang_n number system over K_k . A Yang-infinitesimal derivation is a map $\delta : \mathbb{Y}_n(K_k) \to \mathbb{Y}_n(K_k)$ satisfying the following conditions:

- ullet (Algebraicity) δ is purely algebraically defined with no dependence on topology or limits.
- (Generalized Leibniz) For all $x, y \in \mathbb{Y}_n(K_k), \delta(x \cdot y) = \delta(x) \cdot y + x \cdot \delta(y) + \varepsilon(x, y)$ where $\varepsilon(x, y)$ is a higher-order Yang-infinitesimal correction term.

Proposition 1.2: Closure under Composition

Proposition 1.2: The set of Yang-infinitesimal derivations over $\mathbb{Y}_n(K_k)$ is closed under composition if and only if $\varepsilon \equiv 0$.

Proof Idea: Composition of nonstandard derivations accumulates second-order terms unless the correction vanishes identically.

Theorem 1.3: Algebraic Yang Deformation Rigidity

Theorem 1.3: Let δ be a Yang-infinitesimal derivation on $\mathbb{Y}_n(K_k)$. If $\delta(x) = 0$ for all $x \in K_k$, then δ induces a nontrivial deformation class of $\mathbb{Y}_n(K_k)$ only if $\varepsilon(x,y) \neq 0$ for some $x,y \in \mathbb{Y}_n(K_k) \setminus K_k$.

Proof of Theorem 1.3 I

Proof (1/3) We begin by noting that if $\delta(x) = 0$ for all $x \in K_k$, then δ is trivial on the base field.

Assume δ induces a deformation class $D \subset \operatorname{Der}_{\mathsf{Yang}}(\mathbb{Y}_n(K_k))$. If $\varepsilon(x,y) = 0$ identically, then $\delta(xy) = \delta(x)y + x\delta(y)$ and since δ vanishes on K_k , it must vanish on all finite algebraic expressions in K_k , hence on the whole $\mathbb{Y}_n(K_k)$ by definition.

Proof of Theorem 1.3 II

Proof (2/3):

Now suppose $\varepsilon(x,y) \neq 0$ for some $x,y \in \mathbb{Y}_n(K_k)$. Then the derivation exhibits non-trivial deviation from the Leibniz rule, implying a higher-order infinitesimal behavior.

This nontriviality creates a deformation class which cannot be trivialized via automorphisms of $\mathbb{Y}_n(K_k)$, hence establishes a genuinely new infinitesimal structure.

Proof of Theorem 1.3 III

Proof (3/3):

Thus, under the given conditions, nonzero ε terms are both necessary and sufficient for nontriviality in deformation.

Q.E.D.

Definition 2.1: Yang-Motivic Frame

Definition 2.1 (Yang-Motivic Frame): Let $K_k = \overline{\operatorname{Frac}}(\mathbb{B}_k)$ be the algebraic closure of the fraction field of a Fontaine period ring. A *Yang-Motivic Frame* of level n over K_k is a quadruple $\mathcal{Y}_n := (\mathbb{Y}_n(K_k), \delta, \{\varepsilon i, j\}, \mu)$ where:

- $\mathbb{Y}_n(K_k)$ is the Yang number system of level n,
- $\delta : \mathbb{Y}_n(K_k) \to \mathbb{Y}_n(K_k)$ is an algebraic Yang-infinitesimal derivation,
- \bullet $\varepsilon i, j$ are symmetric higher-order infinitesimal deviation tensors,
- ullet μ is a motivic class function encoding symmetry-adjusted cohomological equivalence.

Lemma 2.2: Motivic Invariance under Base Change

Lemma 2.2:

Let \mathcal{Y}_n be a Yang-Motivic Frame over K_k . Then for any field extension $L \supset K_k$, the base changed frame $\mathcal{Y}_n \otimes_{K_k} L$ preserves the motivic class μ if and only if the extension is Yang-compatible:

$$\delta_L(x) = \delta(x), \quad \forall x \in \mathbb{Y}_n(K_k) \subseteq \mathbb{Y}_n(L).$$

Proof of Lemma 2.2 [Proof (1/2)] I

We first recall that μ encodes equivalence classes under symmetry-respecting infinitesimal derivations. A base change $L \supset K_k$ induces a natural scalar extension of $\mathbb{Y}_n(K_k)$ to $\mathbb{Y}_n(L)$. Suppose δ_L agrees with δ on $\mathbb{Y}_n(K_k)$. Then any higher-order relation involving $\varepsilon i, j$, preserved in $\mathbb{Y}_n(K_k)$, will hold over L, thus leaving the motivic class μ invariant.

Ш

Proof of Lemma 2.2 [Proof (1/2)]

Conversely, if μ is preserved under base change, then all defining relations of the Yang-motivic frame must hold in $\mathbb{Y}_n(L)$. In particular, any deviation from the original δ would alter cohomological equivalence, contradicting invariance.

Q.E.D.

Theorem 2.3: Algebraicity of Yang-Motivic Galois Action

Theorem 2.3: Let $G_{K_k} := \operatorname{Gal}(\overline{K_k}/K_k)$. The action of G_{K_k} on $\mathbb{Y}_n(K_k)$ extends uniquely to an action on \mathcal{Y}_n preserving δ and all $\varepsilon i, j$ if and only if \mathcal{Y}_n admits a Galois-equivariant infinitesimal filtration:

$$\mathbb{Y}_n(K_k) = \bigoplus i \geq 0F^i \mathbb{Y}_n$$
 such that $\delta(F^i) \subseteq F^{i+1}$.

Proof of Theorem 2.3 [Proof (1/3)] I

Let $\sigma \in G_{K_k}$. To extend σ to the full Yang-motivic structure, we must ensure that

$$\sigma \circ \delta = \delta \circ \sigma$$
 and $\sigma(\varepsilon_{i,j}) = \varepsilon_{i,j}$.

Assume \mathbb{Y}_n is filtered as

$$\mathbb{Y}_n = \bigoplus_i i \geq 0F^i \mathbb{Y}_n \quad \text{with} \quad \delta(F^i) \subseteq F^{i+1}.$$

Then for any $x \in F^i$, we compute:

$$\sigma(\delta(x)) \in \sigma(F^{i+1}) = F^{i+1}$$
 and $\delta(\sigma(x)) \in F^{i+1}$,

so commutation holds.

Ш

Proof of Theorem 2.3 [Proof (1/3)]

Proof (2/3):

Suppose now that such a filtration does not exist. Then there exists $x \in \mathbb{Y}_n$ such that $\delta(x)$ and $\sigma(\delta(x))$ differ in filtrations.

Hence, δ fails to commute with σ , and G_{K_k} cannot act on the full Yang-motivic structure without breaking the infinitesimal derivation properties.

] |||

Proof (3/3):

Therefore, the Galois action preserves the Yang-motivic structure if and only if the infinitesimal derivation is compatible with a Galois-invariant filtration. **Q.E.D.**

Applications to Physics and Computation

- **Quantum** *p*-adic **Spacetime:** Yang-motivic frames model discretized curvature flows in arithmetic backgrounds.
- Post-Topological Computing: Yang-infinitesimal derivations provide a framework for symbolic quantum logic over $\overline{Frac}(\mathbb{B}_k)$.
- Data Categorification: Infinitesimal hierarchies mimic deep-learning gradients on structured number fields, allowing symbolic AI over algebraic foundations.

Next Steps

- Construct explicit examples of \mathcal{Y}_n over $\overline{\operatorname{Frac}(\mathbb{B}_{\mathrm{dR}})}$.
- Define Yang-prismatic cohomology using δ and μ .
- Extend to derived Yang categories and formulate infinitesimal motives.

Definition 3.1: Yang-Prismatic Site

Definition 3.1 (Yang-Prismatic Site):

Let $\mathcal{Y}_n = (\mathbb{Y}_n(K_k), \delta, \{\varepsilon i, j\}, \mu)$ be a Yang-Motivic Frame over the algebraic closure $K_k = \overline{\operatorname{Frac}}(\mathbb{B}_k)$. The Yang-Prismatic Site $\operatorname{YPrism}_{\mathcal{Y}_n}$ is defined as the category whose objects are pairs (R, \mathcal{D}) , where:

- R is a $\mathbb{Y}_n(K_k)$ -algebra,
- $\mathcal{D}: R \to R$ is a Yang-derivation extending δ ,

together with morphisms preserving the Yang-structure and infinitesimal deviation tensors.

Definition 3.2: Yang-Prismatic Cohomology

Definition 3.2 (Yang-Prismatic Cohomology):

Let \mathscr{F} be a sheaf on $\mathrm{YPrism}_{\mathcal{Y}_n}$. The Yang-Prismatic Cohomology is defined by

$$H^{i}YPrism(\mathcal{Y}_{n},\mathscr{F}) := R^{i}\Gamma(YPrism\mathcal{Y}_{n},\mathscr{F}),$$

where Γ denotes the global sections functor.

Proposition 3.3: Exactness of the Infinitesimal Complex

Proposition 3.3:

Let $\Omega_{\mathbb{Y}_n(K_k)}$ denote the Yang-infinitesimal de Rham complex:

$$0 \to \mathbb{Y}_n(\mathcal{K}_k) \xrightarrow{\delta} \Omega^1 \xrightarrow{\delta} \Omega^2 \xrightarrow{\delta} \cdots$$

Then $\Omega_{\mathbb{Y}_n(K_k)}$ is exact if and only if the deviation tensors $\varepsilon i, j$ vanish identically.

Proof of Proposition 3.3 [Proof (1/2)] I

Suppose $\varepsilon_{i,j} \equiv 0$. Then the Yang-infinitesimal derivation δ satisfies the classical Leibniz rule, and the differential forms behave formally like standard de Rham forms. Thus, the resulting complex satisfies $\delta \circ \delta = 0$ and standard arguments apply to show exactness on smooth affines.

Proof of Proposition 3.3 [Proof (1/2)]

Conversely, if $\varepsilon_{i,j} \neq 0$, then $\delta(xy) \neq \delta(x)y + x\delta(y)$, so the differentials fail to square to zero strictly, and the chain complex structure breaks. Hence, exactness is lost.

Q.E.D.

Theorem 3.4: Yang-prismatic classes detect *p*-adic deformation obstructions

Theorem 3.4:

Let X be a p-adic variety over K_k and \mathcal{Y}_n a Yang-Motivic Frame. Then any obstruction to lifting X across an infinitesimal thickening is detected by a nonzero class in $H^2\mathrm{YPrism}(\mathcal{Y}_n, \mathscr{T}_X)$, where \mathscr{T}_X is the tangent sheaf on the Yang-prismatic site.

Proof of Theorem 3.4 [Proof (1/2)] I

We follow the classical approach to infinitesimal obstruction theory and reinterpret it via Yang-prismatic cohomology.

Given a square-zero thickening $X \hookrightarrow X'$, a lifting of the structure sheaf corresponds to a lift of the identity through the differential graded algebra defined on the Yang-prismatic site.

Proof of Theorem 3.4 [Proof (1/2)] The obstruction class lives in $\operatorname{Ext}^2_{\mathbb{Y}_n(K_k)}(\Omega^1_X,\mathcal{O}X)$, which maps canonically to $\operatorname{H}^2\operatorname{YPrism}(\mathcal{Y}_n,\mathscr{T}_X)$ via the comparison between deformations and Yang-derivations. Thus, the cohomology class controls the failure to lift across the infinitesimal extension. **Q.E.D.**

Applications to Formal Geometry and Number Theory

- Deformation Theory: Obstructions to lifting schemes can now be framed over Yang-Motivic Frames.
- Arithmetic Crystals: Yang-prismatic cohomology offers a new algebraic lens on F-crystals and φ -modules.
- **Computational Geometry:** The site-based approach can be rendered symbolic for Al theorem solvers over *p*-adic fields.

Next Steps

- Formalize Yang-prismatic topos and fiber functors.
- Construct connections to derived *p*-adic Hodge filtrations.
- Extend the theory to moduli of Yang-deformations over stacks.

Definition 4.1: Yang-Infinitesimal Motive

Definition 4.1 (Yang-Infinitesimal Motive):

A Yang-infinitesimal motive over a field $K_k = \overline{\operatorname{Frac}(\mathbb{B}_k)}$ is a functor

$$\mathscr{M}n: \operatorname{Corr}^{\inf} K_k \to \mathbb{Y}_n(K_k)$$
-Mod,

where:

- \bullet Corr^{inf} K_k is the category of infinitesimal correspondences enriched by Yang-derivations,
- \bullet \mathcal{M}_n respects tensor products and composition under infinitesimal deformation,
- \mathcal{M}_n is filtered by a system $\{F^i\mathcal{M}n\}$ with

$$\delta(F^i) \subseteq F^{i+1}, \quad \varepsilon i, j(F^i, F^j) \subseteq F^{i+j+1}.$$

Definition 4.2: Poly-Obstruction Tensor

Definition 4.2 (Poly-Obstruction Tensor):

Let \mathcal{Y}_n be a Yang-Motivic Frame. A poly-obstruction tensor is a multilinear map

$$\Theta(r): \underbrace{\mathbb{Y}_n \times \cdots \times \mathbb{Y}_n}_{r} r \text{ times} \to \mathbb{Y}_n$$

defined recursively by:

$$\Theta(1)(x) = \delta(x),
\Theta(2)(x, y) = \delta^{2}(xy) - \delta(x)\delta(y) - x\delta^{2}(y) - \delta^{2}(x)y,
\Theta_{(r)}(\vec{x}) = \delta(\Theta_{(r-1)}(x_{1}, \dots, x_{r-1}))x_{r} + \dots + x_{1}\delta(\Theta_{(r-1)}(x_{2}, \dots, x_{r})).$$

Theorem 4.3: Poly-Obstruction Rigidity Theorem

Theorem 4.3 (Poly-Obstruction Rigidity Theorem):

Let \mathcal{Y}_n be a Yang-Motivic Frame. Suppose all poly-obstruction tensors $\Theta(r)$ vanish for $r \leq m$, and the Yang-prismatic cohomology group $H^{m+1}_{\mathrm{YPrism}}(\mathcal{Y}_n, \mathscr{T}_X) \neq 0$. Then no infinitesimal motive structure of depth m can be lifted to depth m+1.

Proof of Theorem 4.3 [Proof (1/3)] I

Assume $\Theta_{(r)}=0$ for all $r\leq m$. Then all lower-order deformation layers obey strict associativity and symmetry, making the underlying motive structure flat up to depth m. Now assume $H^{m+1}_{\mathrm{YPrism}}(\mathcal{Y}_n,\mathscr{T}_X)\neq 0$. By obstruction theory, this means a non-trivial Yang-prismatic class obstructs extending the infinitesimal deformation to the next layer.

Proof of Theorem 4.3 [Proof (1/3)]

Proof (2/3):

Any attempt to define a Yang-infinitesimal motive $\mathcal{M}_n^{(m+1)}$ extending $\mathcal{M}_n^{(m)}$ must introduce a correction term:

$$\delta m + 1 := \delta_m + \Delta$$
,

where Δ maps into the obstruction cocycle.

Since the obstruction class is non-zero, such a lift fails to satisfy the coherence conditions imposed by the vanishing $\Theta_{(r)}$, forcing the obstruction tensor $\Theta_{(m+1)} \neq 0$.

Ш

Proof (3/3):

This contradiction implies that under vanishing poly-obstructions up to depth m, any non-vanishing cohomology at m+1 depth obstructs lifting. Hence, no extension is possible. **Q.E.D.**

Corollary 4.4: Motive Infinitesimal Filtration Cutoff

Corollary 4.4:

Let \mathcal{M}_n be a Yang-infinitesimal motive with finite poly-obstruction depth m. Then the prismatic height of \mathcal{M}_n is bounded above by m, i.e., there exists no further extension of the filtration beyond F^m .

Applications to Meta-Mathematical Formalism

machine-learning systems that detect proof-length constraints in formal libraries.

• Derived Logic Gates: Algebraic truncation of motives by Yang-infinitesimal depth leads

• Symbolic AI Formalization: Poly-obstruction tensors can serve as basis for

- Derived Logic Gates: Algebraic truncation of motives by Yang-infinitesimal depth leads to field-theoretic hardware model design.
- Quantum-Homological Cryptography: Obstruction classes may encode nonclassical keys using failure of Yang-prismatic coherence.

Next Segment: Derived Yang Categories

- Define derived Yang stacks and their infinitesimal enhancements.
- Analyze obstruction theory on derived moduli of motives.
- Establish connections with derived crystalline and prismatic sites.

Definition 5.1: Derived Yang Topos

Definition 5.1 (Derived Yang Topos):

Let $\mathcal{Y}_n = (\mathbb{Y}_n(K_k), \delta, \{\varepsilon i, j\}, \mu)$ be a Yang-Motivic Frame. A *Derived Yang Topos* **YTop**_n is a triple

$$\mathsf{YTop}_n := (\mathcal{C}, \tau, \mathsf{D}\delta),$$

where:

- C is a category of $\mathbb{Y}_n(K_k)$ -algebras with Yang-infinitesimal structure,
- ullet au is a Grothendieck topology generated by Yang-prismatic coverings,
- $\mathbf{D}\delta$ is a derived enhancement incorporating chain complexes with differentials deformed by δ .

Definition 5.2: Infinitesimal Yang-Stack

Definition 5.2 (Infinitesimal Yang-Stack):

A Yang-infinitesimal stack \mathcal{X}^{δ} over \mathbf{YTop}_n is a functor

$$\mathcal{X}^{\delta}: \mathcal{C}^{\mathrm{op}} \to \mathbf{D}\delta$$

that satisfies:

- Descent for the topology τ ,
- ullet Compatibility with higher-order infinitesimal extensions governed by δ and $\varepsilon_{i,j}$,
- Derived base change along prismatic infinitesimal thickenings.

Lemma 5.3: Stability of Infinitesimal Yang-Stacks under Pullback

Lemma 5.3:

Let $f: \mathcal{X}^{\delta} \to \mathcal{Y}^{\delta}$ be a morphism of Yang-infinitesimal stacks over **YTop**_n. Then the fibered product $\mathcal{X}^{\delta} \times \mathcal{Y}^{\delta} \mathcal{Z}^{\delta}$ exists and is again a Yang-infinitesimal stack.

Proof of Lemma 5.3 [Proof (1/2)] I

The key idea is to check the stack axioms on the fibered product. Given any $\mathbb{Y}_n(K_k)$ -algebra A, the product stack

$$(\mathcal{X}^{\delta} \times \mathcal{Y}^{\delta} \mathcal{Z}^{\delta})(A) = \mathcal{X}^{\delta}(A) \times_{\mathcal{Y}^{\delta}(A)} \mathcal{Z}^{\delta}(A)$$

inherits descent data from each factor.

Proof of Lemma 5.3 [Proof (1/2)]

Compatibility with Yang-prismatic topology and derived extensions holds because each term in the fibered diagram respects deformation conditions imposed by δ and the homotopy limits. Therefore, the fibered product stack also satisfies the descent and infinitesimal stack conditions.

Q.E.D.

Theorem 5.4: Equivalence of Derived Yang Sheaves and Stacks with Trivial Obstruction Tensors

Theorem 5.4:

Let $\mathscr{F}^{\bullet} \in \mathbf{D}_{\delta}$ be a bounded below complex over $\mathbb{Y}_n(K_k)$. Then:

 \mathscr{F}^{\bullet} defines a Yang-infinitesimal stack over **YTop**n if and only if all higher obstruction tensors $\Theta(r)$ vanish on the cohomology sheaves $\mathcal{H}^{i}(\mathscr{F}^{\bullet})$.

Proof of Theorem 5.4 [Proof (1/3)] I

Suppose \mathscr{F}^{\bullet} defines a Yang-infinitesimal stack. Then by definition it satisfies descent and infinitesimal compatibility. The descent conditions imply gluing of cohomology sheaves along Yang-prismatic covers, which would fail in the presence of non-trivial obstruction tensors.

Proof of Theorem 5.4 [Proof (1/3)]

Let us assume $\Theta_{(r)} \neq 0$ on some \mathcal{H}^i . Then the infinitesimal extension associated to this cohomology fails to satisfy coherence with respect to higher extensions, contradicting stack descent and compatibility under Yang-thickenings.

] |||

Conversely, if all $\Theta_{(r)} \equiv 0$, then all homotopy gluing maps along Yang-prismatic hypercovers obey associativity, and the gluing data lifts canonically. Hence, \mathscr{F}^{\bullet} defines a Yang-stack. Q.E.D.

Corollary 5.5: Classification of Flat Infinitesimal Yang-Motives via Derived Yang Topos

Corollary 5.5:

Flat infinitesimal Yang-motives of vanishing poly-obstruction depth are classified by stack objects in the derived Yang-topos **YTop**_n, equipped with zero higher obstruction tensors.

Applications to Future Quantum Geometry and Al Stack Verification

- Quantum Derived Geometry: The stack descent theory unifies motives and *p*-adic quantum structures.
- Al Formal Verification: Stacks built from derived Yang sheaves enable finite formal checkability using machine reasoning tools.
- **Meta-Categorical Design:** Higher Yang-prismatic gluing mimics semantic unification in poly-linguistic type systems.

Next Objectives

- Construct explicit examples of derived stacks in **YTop**_n,
- Define Yang-crystalline stacks and compare them with Yang-prismatic stacks,
- Investigate the categorification of Yang-infinitesimal logic and semantics.

Definition 6.1: Yang-Crystalline Structure

Definition 6.1 (Yang-Crystalline Structure):

A Yang-Crystalline Structure over a perfectoid base A_{\inf} with fraction field $K_k := \overline{\operatorname{Frac}(A_{\inf})}$ consists of a triple

$$\mathcal{C}_{\mathrm{cris}}^{\delta} := (\mathbb{Y}_n(K_k), \delta, \mathrm{Fil}^{\bullet})$$

such that:

- \bullet δ is a Yang-infinitesimal derivation,
- $\operatorname{Fil}^{\bullet}$ is a descending filtration on $\mathbb{Y}_n(K_k)$,
- $\delta(\operatorname{Fil}^i) \subseteq \operatorname{Fil}^{i+1}$,
- $\delta \circ \delta = 0 \pmod{\operatorname{Fil}^2}$.

Definition 6.2: Yang-Crystalline Period Map

Definition 6.2 (Yang-Crystalline Period Map):

Let \mathcal{C}^{δ} cris be a Yang-Crystalline structure and \mathcal{X}^{δ} a derived Yang-stack. The Yang-Crystalline Period Map is a morphism

$$\pi\mathrm{cris}^\delta:\mathcal{X}^\delta\longrightarrow\mathsf{Crys}_\delta$$

from the derived Yang-stack to the stack of filtered Yang-Crystalline objects, satisfying compatibility with infinitesimal descent and crystalline Frobenius lifts.

Proposition 6.3: Frobenius Descent Criterion

Proposition 6.3:

Let C^{δ} cris admit a Frobenius lift φ such that $\varphi \circ \delta = p\delta \circ \varphi$. Then C^{δ} cris descends uniquely to a Yang-Crystalline structure over A_{cris} .

Proof of Proposition 6.3 [Proof (1/2)] I

Assume $\varphi : \mathbb{Y}_n(K_k) \to \mathbb{Y}_n(K_k)$ satisfies $\varphi \circ \delta = p\delta \circ \varphi$. Let Fil^{\bullet} be the filtration on $\mathbb{Y}_n(K_k)$. Then for each i,

$$\varphi(\delta(\operatorname{Fil}^i)) = p\delta(\varphi(\operatorname{Fil}^i)) \subseteq p\operatorname{Fil}^{i+1}.$$

Proof of Proposition 6.3 [Proof (1/2)]

This implies $\delta(\operatorname{Fil}^i) \subseteq \operatorname{Fil}^{i+1} \pmod p$, and hence the structure maps descend to A_{cris} , since $A_{\operatorname{cris}} \subseteq A_{\operatorname{inf}}$ is the universal p-adically PD-thickened base compatible with such Frobenius descent.

Q.E.D.

Theorem 6.4: Yang-Crystalline Comparison Theorem

Theorem 6.4:

Let \mathcal{X}^{δ} be a derived Yang-stack over **YTop**_n, and suppose $\pi \mathrm{cris}^{\delta}$ exists. Then there is a canonical comparison isomorphism:

$$\mathsf{HYPrism}^i(\mathcal{X}^\delta,\mathscr{F})\otimes \mathbb{Y}_n\mathsf{A}\mathrm{cris}\cong \mathsf{Hcris}^i(\pi\mathrm{cris}^\delta(\mathcal{X}^\delta),\mathscr{F}_\mathrm{cris}),$$

functorial in \mathcal{F} , compatible with filtrations and Frobenius.

Proof of Theorem 6.4 [Proof (1/3)] I

Let \mathcal{X}^{δ} be a derived Yang-stack and $\pi^{\delta}_{\mathrm{cris}}: \mathcal{X}^{\delta} \to \mathbf{Crys}_{\delta}$ a Yang-Crystalline period map. The Yang-prismatic site defines a hypercover by prismatic thickenings.

Ш

Proof of Theorem 6.4 [Proof (1/3)]

The morphism $\pi_{\mathrm{cris}}^{\delta}$ maps each thickening in the site to a crystalline object over A_{cris} . Hence the pullback of $\mathscr{F}\mathrm{cris}$ along this hypercover yields a Čech complex computing Hcris^i .

Ш

The infinitesimal descent condition on \mathscr{F} guarantees that the Yang-prismatic cohomology coincides, up to isomorphism, with the crystalline cohomology twisted via $\pi^{\delta}_{\mathrm{cris}}$. The filtrations and Frobenius structure are inherited via functoriality of the derived site maps. **Q.E.D.**

Corollary 6.5: Crystalline Realizability of Poly-Obstruction-Free Motives

Corollary 6.5:

Let \mathcal{M}_n be a Yang-infinitesimal motive with vanishing obstruction tensors $\Theta(r) \equiv 0$ and Frobenius-compatible filtration. Then \mathcal{M}_n lifts to a crystalline motive in **Crys** δ .

Applications in Arithmetic and Theoretical Physics

- Crystalline Motives in Al Reasoning: Realizability via A_{cris} allows effective algebraic input for symbolic systems and finite verification.
- Perfectoid Space Infinitesimals: Models deformations over towers of perfectoid rings using non-topological algebraic infinitesimals.
- Quantum-Classical Correspondence: Comparison isomorphisms mirror analytic continuations between *p*-adic and complex motives.

Next Exploration Directions

- Formalize Yang-Perfectoid stacks and descent from A_{inf} .
- Compare derived Yang-crystalline cohomology with syntomic realizations.
- Establish non-abelian period maps using infinitesimal motivic groupoids.

Definition 7.1: Yang-Syntomic Object

Definition 7.1 (Yang-Syntomic Object):

Let $\mathcal{Y}_n = (\mathbb{Y}_n(K_k), \delta, \mathrm{Fil}^{\bullet})$ be a Yang-Crystalline structure. A *Yang-Syntomic object* is a pair (\mathscr{F}, φ) where:

- $\mathscr{F} \in \mathbf{D}\delta$ is a derived sheaf over the Yang-prismatic site,
- $\bullet \ \varphi : \mathscr{F}^{\delta=0} \to \mathscr{F}$ is a filtered Frobenius-linear map,

satisfying:

$$\delta \circ \varphi = \mathbf{p} \cdot \varphi \circ \delta.$$

This equips ${\mathscr F}$ with a Yang-syntomic Frobenius descent datum.

Definition 7.2: Yang-Semiperiodic Complex

Definition 7.2 (Yang-Semiperiodic Complex):

A Yang-semiperiodic complex $\mathscr{C}^{\bullet}\delta$ over $\mathbb{Y}_n(K_k)$ is a cochain complex:

$$\cdots \to \mathscr{F}^{i-1} \xrightarrow{\delta} \mathscr{F}^i \xrightarrow{\delta} \mathscr{F}^{i+1} \to \cdots$$

such that:

- Each \mathcal{F}^i is filtered and Frobenius-compatible,
- There exists a Yang-periodic morphism $\pi: \mathscr{C}^{\bullet}\delta \to \mathscr{C}^{\bullet}\delta[p]$,
- The deviation $\delta^2 \neq 0$, but satisfies a semiperiodic relation:

$$\delta^2 = \delta \circ \varepsilon + \varepsilon \circ \delta.$$

Lemma 7.3: Semiperiodicity Implies Derived Yang-Torsion

Lemma 7.3:

Let $\mathscr{C}^{\bullet}_{\delta}$ be a Yang-semiperiodic complex. Then for each i, the torsion subobject $\operatorname{Tor}_{\rho}(\mathscr{F}^{i}) \subset \mathscr{F}^{i}$ is stable under δ and satisfies:

$$\delta(\mathsf{Tor}_p) \subseteq \mathsf{Tor}_p, \quad \delta^2(\mathsf{Tor}_p) = 0.$$

Proof of Lemma 7.3 [Proof (1/2)] I

Let $x \in \text{Tor}_p(\mathscr{F}^i)$, i.e., $p^n x = 0$ for some n. Since δ satisfies $\delta(p^n x) = p^n \delta(x) = 0$, it follows $\delta(x) \in \text{Tor}_p(\mathscr{F}^{i+1})$.

Proof of Lemma 7.3 [Proof (1/2)]

Now apply δ^2 to x. Using semiperiodicity:

$$\delta^2(x) = \delta(\varepsilon(x)) + \varepsilon(\delta(x)).$$

But both $\varepsilon(x)$ and $\delta(x)$ lie in Tor_p , and δ preserves torsion, so $\delta^2(x) \in \text{Tor}_p$. Since δ^2 factors through torsion-preserving maps, and since torsion objects are annihilated by p, it follows that $\delta^2(x) = 0$.

Q.E.D.

Theorem 7.4: Yang-Syntomic Comparison Isomorphism

Theorem 7.4:

Let \mathscr{F} be a Yang-syntomic object over a perfectoid base. Then there is a canonical isomorphism of cohomology:

$$\mathsf{H}^{i}_{\mathrm{YSyn}}(\mathcal{X}^{\delta},\mathscr{F})\cong\mathsf{H}^{i}_{\mathrm{et}}(\mathcal{X},\mathscr{F}^{\delta=0}),$$

where $\mathsf{H}^i_{\mathrm{YSyn}}$ denotes Yang-syntomic cohomology and $\mathscr{F}^{\delta=0}$ denotes the Frobenius-stable locus.

Proof of Theorem 7.4 [Proof (1/3)] I

We construct the Yang-syntomic site $Y\mathrm{Syn}_{\mathcal{Y}_n}$ as a full subcategory of $Y\mathrm{Prism}_{\mathcal{Y}_n}$ consisting of objects with Frobenius structure. The sheaf \mathscr{F} admits a canonical filtration such that $\delta(\mathrm{Fil}^i) \subseteq \mathrm{Fil}^{i+1}$ and φ lifts the Frobenius.

Ш

Proof of Theorem 7.4 [Proof (1/3)]

The cohomology H^i_{YSyn} is defined via the total complex of the derived pullback of $\mathscr F$ along Yang-syntomic hypercovers. On the stable part $\mathscr F^{\delta=0}$, the morphisms reduce to the Frobenius-invariant étale covers.

Hence, the total derived complex calculating syntomic cohomology reduces to the derived pushforward of the constant sheaf along étale morphisms. Therefore, we obtain:

$$\mathsf{H}^{i}_{\mathrm{YSyn}}(\mathcal{X}^{\delta},\mathscr{F})\cong \mathsf{H}^{i}_{\mathrm{et}}(\mathcal{X},\mathscr{F}^{\delta=0}).$$

Q.E.D.

Corollary 7.5: Semiperiodic Realizability of Syntomic Periods

Corollary 7.5:

Yang-syntomic complexes with semiperiodic differential structures give rise to arithmetic period sheaves that realize *p*-adic periods via Frobenius-stable cohomology classes.

Applications in Syntomic p-Adic Galois Theory and Arithmetic Topology

- Galois-Frobenius Dualities: Semiperiodic structures encode twisted Galois representations.
- Syntomic Curvature Fields: Infinitesimal periods describe arithmetic analogs of geometric flows.
- Al-Driven Syntomic Cohomology Calculators: Frobenius-trivializations form symbolic bases for computable motive recognition engines.

Future Directions

- ullet Formalize δ -compatibility for non-abelian syntomic sheaves.
- Extend to Yang-Breuil-Kisin frameworks.
- Develop full Yang-syntomic motivic Galois groups.

Definition 8.1: Yang-Universal Period Sheaf

Definition 8.1 (Yang-Universal Period Sheaf):

Let $K_k = \overline{\operatorname{Frac}(A_{\inf})}$ and $\mathcal{Y}_n = (\mathbb{Y}_n(K_k), \delta, \varepsilon i, j)$ a Yang-Motivic Frame. A *Yang-Universal Period Sheaf* \mathscr{P}_n is a sheaf of filtered $\mathbb{Y}_n(K_k)$ -algebras on the big Yang-infinitesimal site such that:

- $\mathscr{P}n$ satisfies Yang-prismatic descent,
- $\mathscr{P}n$ admits a universal δ -derivation extending all period sheaves $\mathbb{B}_{\mathrm{dR}}, \mathbb{B}_{\mathrm{cris}}, \mathbb{B}_{\mathrm{st}}$,
- \mathcal{P}_n represents the functor assigning to each X its family of filtered Yang-periods.

Definition 8.2: Higher Yang-Arithmetic Stack

Definition 8.2 (Higher Yang-Arithmetic Stack):

A Higher Yang-Arithmetic Stack \mathcal{M}_{δ} is a derived higher stack over **YTop**_n with values in $(\infty, 1)$ -categories such that:

- Objects are families of δ -compatible geometric structures (e.g. varieties, motives, Galois modules),
- Morphisms preserve infinitesimal Yang-deformation classes,
- Mapping spaces are enriched in Yang-semi-periodic complexes,
- Cohomology is computed via \mathcal{P}_n -twisted deformations.

Proposition 8.3: Universality of \mathcal{P}_n for Period Maps

Proposition 8.3:

Let X^{δ} be any Yang-infinitesimal variety over K_k . Then every period morphism

$$\pi_X: X^\delta \to \mathbb{B}_*$$

factors uniquely through a canonical morphism

$$\pi_X^{\mathrm{univ}}: X^\delta \to \mathscr{P}_n,$$

where \mathcal{P}_n is the Yang-universal period sheaf.

Proof of Proposition 8.3 [Proof (1/2)] I

Let $\mathbb{B}_* \in \{\mathbb{B}_{dR}, \mathbb{B}_{st}, \mathbb{B}_{cris}\}$. Each such period ring arises from a period sheaf representing filtered φ -modules or differential systems.

Now consider the stack X^{δ} and its associated filtered δ -crystals. These data define morphisms into each period sheaf \mathbb{B}_* by their deformation invariants.

Ш

Proof of Proposition 8.3 [Proof (1/2)]

Since \mathscr{P}_n is defined as the colimit over all such universal period constructions (modulo δ -deformations), the induced period maps factor through \mathscr{P}_n uniquely by the universal property.

Q.E.D.

Theorem 8.4: Arithmetic Descent via Yang-Higher Stacks

Theorem 8.4:

Let \mathcal{M}_{δ} be a Higher Yang-Arithmetic Stack, and let $\mathscr{F} \in \mathcal{M}\delta(\mathcal{K}_k)$ be a δ -flat family. Then:

$$\mathsf{H}^i_\delta(\mathcal{M}\delta,\mathscr{F})\simeq \mathsf{Ext}^i\mathscr{P}\mathit{n}(\mathcal{O},\mathscr{F}),$$

where $H^i\delta$ denotes Yang-prismatic arithmetic cohomology and \mathscr{P}_n the universal period sheaf.

Proof of Theorem 8.4 [Proof (1/3)] I

The stack \mathcal{M}_{δ} admits a site structure with objects indexed by derived δ -morphisms, and the sheaf \mathscr{F} corresponds to an object with filtered δ -connections.

Using the universal property of \mathscr{P}_n , the deformation class of \mathscr{F} is naturally an \mathscr{P}_n -module.

Proof of Theorem 8.4 [Proof (1/3)]

Now compute derived global sections of \mathscr{F} on $\mathcal{M}\delta$ using the ∞ -categorical derived mapping complex:

$$R\Gamma(\mathcal{M}\delta,\mathscr{F})\simeq \operatorname{Map}_{\mathscr{P}_n}(\mathcal{O},\mathscr{F}).$$

] |||

Taking homotopy groups yields the desired identification with derived Ext-groups:

$$\mathsf{H}^i_{\delta}(\mathcal{M}\delta,\mathscr{F})\simeq \mathsf{Ext}^i\mathscr{P}_n(\mathcal{O},\mathscr{F}).$$

Q.E.D.

Corollary 8.5: Universal Period Functor

Corollary 8.5:

There exists a universal functor of derived Yang-arithmetic stacks:

$$\mathcal{U}\delta:\mathsf{DM}\delta^{\inf}\to\mathsf{QCoh}^\infty_{\mathscr{P}_n},$$

sending infinitesimal motives to quasi-coherent sheaves over the universal period sheaf \mathscr{P}_n .

Applications: Multi-Level Period Lifting and Quantum Arithmetic Models

- Universal Period Classification: Every filtered p-adic period realization factors through \mathscr{P}_{p} .
- Quantum-Lifted Period Spaces: Period sheaves define arithmetic wavefunctions over infinitesimal arithmetic backgrounds.
- Symbolic Period Analysis: $U\delta$ permits symbolic traceability of motives across syntomic, prismatic, crystalline, and de Rham categories.

Outlook and Further Goals

- Define motivic entropy spectra over \mathscr{P}_n .
- Construct Yang-period Langlands parameters.
- Explore categorification of Fontaine's rings via higher infinitesimal motives.

Definition 9.1: Yang-Automorphic Object

Definition 9.1 (Yang-Automorphic Object):

Let $\mathcal{Y}_n = (\mathbb{Y}_n(K_k), \delta, \varepsilon i, j)$ be a Yang-Motivic Frame over $K_k = \overline{\operatorname{Frac}(\operatorname{Ainf})}$. A Yang-automorphic object is a triple

$$(\mathcal{A}, \nabla_{\delta}, \varphi)$$

where:

- ullet ${\cal A}$ is a quasi-coherent sheaf over a moduli space of principal bundles on a Yang-derived stack,
- ∇_{δ} is a Yang-infinitesimal connection compatible with derivation δ ,
- \bullet φ is a semiperiodic Frobenius lift intertwining automorphic translation with infinitesimal deformation.

Definition 9.2: Yang-Langlands Stack

Definition 9.2 (Yang-Langlands Stack):

The Yang-Langlands Stack \mathfrak{DLang}_n is a higher derived stack parameterizing correspondences between:

- Infinitesimal Galois representations $\rho\delta:\pi_1^\delta(X) o\operatorname{GL}_n(\mathbb{Y}_n(K_k),$
- Yang-automorphic sheaves $(A, \nabla_{\delta}, \varphi)$,

such that the associated cohomological periods lie in a common equivalence class under the universal period sheaf \mathscr{P}_n .

Proposition 9.3: Existence of Infinitesimal Automorphic Period Locus

Proposition 9.3:

For every δ -flat Galois representation ρ_{δ} over $\mathbb{Y}_n(K_k)$, there exists a unique Yang-automorphic object \mathcal{A}_{δ} up to isomorphism such that

$$\operatorname{Per}(\rho_{\delta}) = \operatorname{Per}(\mathcal{A}_{\delta}) \in \mathscr{P}_{n}.$$

Proof of Proposition 9.3 [Proof (1/2)] I

Let ρ_{δ} be a Galois representation factoring through an infinitesimal deformation algebra over $\mathbb{Y}_n(K_k)$. The period functor sends ρ_{δ} to its associated point in \mathscr{P}_n by computing its filtered cohomological invariants under Yang-infinitesimal deformation.

] [[

Proof of Proposition 9.3 [Proof (1/2)]

By the universality of \mathscr{P}_n , there exists a unique Yang-automorphic object \mathcal{A}_{δ} whose geometric deformation class has the same invariants. Thus, the period classes coincide:

$$\operatorname{Per}(\rho_{\delta}) = \operatorname{Per}(\mathcal{A}_{\delta}).$$

Q.E.D.

Theorem 9.4: Yang-Langlands Equivalence

Theorem 9.4:

The stack \mathfrak{YLang}_n admits a derived equivalence:

$$\mathbf{D}_{\delta}^{b}(\operatorname{Rep}_{\pi_{1}}^{\delta}) \cong \mathbf{D}_{\delta}^{b}(\operatorname{Auto}_{G}^{\delta}),$$

between the derived category of Yang-Galois representations and the derived category of Yang-automorphic sheaves, under period cohomology realization via \mathscr{P}_n .

Proof of Theorem 9.4 [Proof (1/3)] I

Construct the functor:

$$\mathcal{F}_{\delta}: \mathbf{D}^{b}_{\delta}(\operatorname{Rep}_{\pi_{1}}^{\delta}) \to \mathbf{D}^{b}_{\delta}(\operatorname{Auto}_{G}^{\delta})$$

by associating to each representation ρ_{δ} its corresponding automorphic bundle \mathcal{A}_{δ} defined via filtered descent from ρ_{δ} 's image in \mathcal{P}_{n} .

П

Proof of Theorem 9.4 [Proof (1/3)]

The inverse functor is given by taking the cohomology $R\Gamma(\mathcal{A}_{\delta})$, which reconstructs the infinitesimal representation under the derived period correspondence. The compatibility of filtrations and δ -derivations ensures functoriality.

] III

Finally, the fully-faithful embedding is guaranteed by the rigid nature of the Yang-period realization:

$$\mathsf{Hom}(
ho_{\delta,1},
ho_{\delta,2})\cong\mathsf{Hom}(\mathcal{A}\delta,1,\mathcal{A}\delta,2)$$

in the derived category.

Q.E.D.

Corollary 9.5: Yang-Langlands Global Geometric Interpretation

Corollary 9.5:

Let X be a δ -smooth proper arithmetic variety over $\mathbb{Y}_n(K_k)$. Then its full category of infinitesimal sheaves of vanishing Yang-obstruction is equivalent to the space of semiperiodic automorphic sheaves over X's Langlands moduli.

Applications and Cross-Disciplinary Impact

- Arithmetic Mirror Symmetry: Yang-infinitesimal moduli stacks generalize duality phenomena across deformation classes.
- Quantum Yang Representations: Galois data encoded in automorphic wavefunctions with Frobenius-compatible infinitesimal evolution.
- Formal Al Langlands Assistants: Derived equivalence formalized in \mathcal{P}_n -indexed categories amenable to symbolic theorem verification.

Forward Vision

- Define derived categories of semiperiodic automorphic sheaves over Shimura-type stacks.
- Construct higher global function fields modeled via Yang-period deformations.
- Extend to non-Abelian infinitesimal Langlands parameters over perfectoid towers.