1 - A velocidade v do paraquedista em queda livre é dada por $v=\frac{g\times m}{c}\times\left(1-e^{-\frac{c}{m}\times t}\right)$, onde g = 10 m/s². Para um paraquedista com um coeficiente de arrasto c = 15 Kg/s calcule a massa m para que a velocidade seja v = 35 m/s em t = 9 s. Compare o número de iterações necessárias para determinar a massa do paraquedista, recorrendo ao critério do erro absoluto com ε = 0.0001, e aplicando os métodos da a) bisseção [10,100] e b)newton [x0=1].

Sol: a) x=58.232 (20 it); b) 58.232 (5 it);

2 - Aplique o método de picard-peano para o seguinte sistema de equações. Utilize como ponto de partida o ponto 2x=y=1.2. Apresente o resultado ao fim de 6 iterações.

$$y = -x^2 + x + 0.75$$
$$y + 5xy = x^2$$

Sol: x=-0.18682 e y=0.52826

3 - Resolva o seguinte sistema de equações recorrendo aos métodos de gaussseidel e gauss-jacobi, utilizando com guess (0,0,0). Faça 3 iterações em cada método.

$$10x_1 + 2x_2 - x_3 = 27$$
$$-3x_1 - 6x_2 + 2x_3 = -61.5$$
$$x_1 + x_2 + 5x_3 = -21.5$$

Sol:

	(Gauss-jac	obi	Gauss-seidel			
it	x1	x2	х3	x1	x2	х3	
0	0.000	0.000	0.000	0.000	0.000	0.000	
1	2.700	10.250	-4.300	2.700	8.900	-6.620	
2	0.220	7.467	-6.890	0.258	7.914	-5.934	
3	0.518	7.843	-5.837	0.524	8.010	-6.007	

4 - A função $f(x)=2e^{-1.5x}$ pode ser usada para gerar a seguinte tabela de dados:

Х	0	0.05	0.1	0.2	0.25	0.3	0.4	0.5	0.55	0.60
f(x)	2	1.855	1.721	1.482	1.375	1.275	1.098	0.945	0.876	0.813

4.1 - Calcule o integral entre 0 e 0.6 recorrendo ao a) método analítico e de seguida aos métodos dos b) trapézios e de c) simpson (Utilize os valores fornecidos na tabela). Calcule o erro relativo das soluções obtidas em b e c.

4.2 - Implemente os métodos de simpson e trapézios. Calcule o integral entre 0 e 0.6 com h=0.15. Calcule o QC e o Erro estimado.

Sol: 4.1 a) 0.79124; b) S= 0.79275 | e= 0.1908%; c) S= 0.79123 | e= 0.0008%; 4.2 - Trapézios: S=0.79458 S'=0.79207 S''=0.79145 QC=3.99684 E=0.00021 | Simpson: S=0.79124 S'=0.79124 S''=0.79124 QC=15.98104 E=-2.75e-09