REDES DE COMPUTADORES – AULA 2 CONCEITOS GERAIS

- Comparação do trabalho de antigamente sem rede e hoje com rede,
- Motivações para o uso de rede por pessoas e por organizações,
- História da evolução das redes,
- Computação centralizada e computação distribuída,
- Componentes de uma rede, Servidor, Cliente,
- Recurso e protocolo,
- Meio de Transmissão, Interface de rede,
- Hardware de rede,
- Dispositivos que acessam a rede,
- Sistemas operacionais de rede (cliente/servidor),
- Classificação de redes: pela distância e pela arquitetura/serviço,
- Protocolos de acesso, Topologia física,
- Transmissão de dados.
- Vídeo aulas externas no YouTube
- Por fim, o aluno será avaliado com exercícios de fixação, que podem ser feitos em grupo, e com o apoio do professor.

REDES DE COMPUTADORES

Definições:

"Um conjunto de computadores autônomos interconectados por uma única tecnologia. Dois computadores estão interconectados quando podem trocar informações." (Tanenbaum, 2004)

"Conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, interconectados por um sistema de comunicação" (Soares, 1995).

REDES DE COMPUTADORES

A rede de computadores oferece as ferramentas de comunicação necessárias para possibilitar que um grande número de computadores possam ser interconectados entre si por um ou mais meios físicos de transmissão.

Resumindo:

Interligação de dois ou mais dispositivos para o compartilhamento de recursos e informações.

Sem Rede

- Não existia compartilhamento de recursos e aplicações.
- Partilha de dados através de dispositivos de armazenamento.
- Cada vez que um arquivo era modificado, tinha de ser novamente distribuído.
- Torna-se difícil a gestão de versões.
- Pouco eficiente.

Com Rede

- Compartilhamento de recursos (hardware e software);
- Computadores distribuídos geograficamente são disponíveis e trocam dados entre si;
- Duplicação e segurança dos dados;
- Ambiente de trabalho flexível;

MOTIVAÇÕES PARA USO DE REDES DE COMPUTADORES EM ORGANIZAÇÕES

- Compartilhamento de recursos: significa a disponibilidade para qualquer usuário de recursos como programas, dados, dispositivos físicos, independentemente de sua localização geográfica
- Confiabilidade: é o grau no qual um sistema pode tolerar:
 - Defeitos: físicos ou algorítmicos que podem gerar erros,
 - Erros: itens de informação que, quando processados por algoritmos normais do sistema, produzem falhas, e
 - Falhas: eventos para os quais as especificações do sistema são violadas

MOTIVAÇÕES PARA USO DE REDES DE COMPUTADORES EM ORGANIZAÇÕES

- Disponibilidade: é a probabilidade de, em qualquer instante, um sistema estar em funcionamento, mesmo que degradado.
- Extensibilidade: também chamado de crescimento incremental. É a capacidade de sistemas serem facilmente adaptados a novos ambientes e necessidades, e terem o porte alterado sem interrupção do seu funcionamento

MOTIVAÇÕES PARA USO DE REDES DE COMPUTADORES EM ORGANIZAÇÕES

Motivações econômicas e tecnológicas

- Desempenho: definido mais frequentemente em termos de vazão e tempo de resposta.
- Meio de comunicação: é usado no lugar de telefonemas, cartas, documentos, fax, etc.
- Treinamento a distância
- Custo do hardware: estações de trabalho, PCs x Servidores.

MOTIVAÇÕES PARA USO DE REDES DE COMPUTADORES POR PESSOAS

- Acesso a informação remota
 - Instituições financeiras, home shopping, jornais e outros periódicos, bibliotecas, Web
- Educação à distância
- Comunicação entre pessoas
 - E-mail, videoconferência, newsgroups, mensagem instantânea
- Entretenimento interativo
 - Vídeo/áudio sob demanda, televisão interativa, jogos.

EVOLUÇÃO DAS REDES

- As redes foram criadas quando os mainframes foram interligados uns aos outros ponto-a-ponto.
- As novas tecnologias foram criadas de acordo com os requisitos dos seguintes modelos:
 - Computação Centralizada;
 - Rede Distribuída;
 - Rede Colaborativa.

COMPUTAÇÃO CENTRALIZADA

- Utilização de Mainframes (computadores de grande porte responsável por todo armazenamento e processamento das informações) e terminais burros (dispositivo apenas para entrada/saída de dados).
- Conexões a longa distância entre eles não envolviam uma rede (não há compartilhamento de recursos e informações).
- Redes surgem com a necessidade de compartilhamento de informações entre mainframes.

REDE DISTRIBUÍDA

- Não utiliza Mainframes para armazenamento e processamento e recursos são distribuídos em vários computadores menores.
- Utiliza a rede de computadores para compartilhar a imensa quantidade de informações e serviços.
- Modelo atual com muitas vantagens
 - Custo
 - Flexibilidade de tecnologia
 - Disponibilidade de recursos, etc.

REDE COLABORATIVA

- Também chamado Processamento cooperativo. Importante tendência.
- Os computadores da rede realmente compartilham os recursos de processamento e não simplesmente comunicam os dados entre eles.
- Dois ou mais computadores realizam a mesma tarefa de processamento.

COMPONENTES DE UMA REDE

- No processo de comunicação, os componentes básicos de uma rede são:
 - Um emissor;
 - O meio através da qual a informação trafega;
 - Um receptor; e
 - A mensagem, que nada mais é do que a informação propriamente dita.
- Exemplo: um telefonema.
 - O emissor é a pessoa que está falando, o canal é a linha telefônica, o receptor é a pessoa que está ouvindo e a mensagem é o que está sendo dito.

COMPONENTES DE UMA REDE

- No decorrer dos anos, as ferramentas para comunicação de dados foram evoluindo gradualmente, de forma que a troca de informações ficou cada vez mais rápida, fácil e eficiente.
- Hoje, os quatro elementos básicos de uma rede pode ser subdivididos em :
 - Servidor;
 - Cliente;
 - Recurso;
 - Protocolo;
 - Cabeamento ou meio de transmissão;
 - Interface de rede;
 - Hardware de rede;

SERVIDOR

- É um computador (ou mais de um computador) especializado em uma ou mais tarefas disponibilizando recursos em uma rede, não sendo utilizado para outra finalidade.
- Um servidor dedicado oferece melhor desempenho para executar uma determinada tarefa, pois, além de ser especializado em uma tarefa, ele não se ocupa executando as outras.
- Equipamento, normalmente, com grande capacidade de armazenamento e maior quantidade de memória que os demais computadores da rede.
- Capacidade de transferir dados rapidamente para os outros computadores.
- Apresentam tolerância a falhas: possuem meios para detectar e corrigir falhas que venham a ocorrer na sua operação, como redundância de dispositivos (HD, fontes de alimentação, processadores, etc.)

CLIENTE

- Qualquer dispositivo que acessa os recursos oferecidos pela rede.
- Também conhecidos por estações de trabalho ou hosts, servem de interface para os usuários acessarem as informações no servidor e rodarem aplicações locais.
- O hardware pode variar bastante, dependerá apenas do tipo de informação que o usuário irá processar.
- Devem ter componentes que permitam a sua conexão à rede.

RECURSO E PROTOCOLO

 Recurso: qualquer item que possa ser oferecido e utilizado pelos clientes de uma rede durante suas atividades. Por exemplo: arquivos, impressoras, drives de CD-ROM, etc.

 Protocolo: utilizados para que todos os dispositivos de uma rede possam se entender independentemente do programa utilizado ou do fabricante dos componentes.

MEIO DE TRANSMISSÃO

- Também conhecidos como meios de comunicação.
- São responsáveis pelo transporte dos sinais que levam os dados transmitidos em uma rede.
- Os meios de comunicação podem ser:
 - Físicos e guiados (cabeamento)
 - Não físicos (ondas)

INTERFACE DE REDE

- Serve de interface entre os dispositivos e o meio físico de transmissão de dados.
 - Tipo dos dados no computador é diferente dos dados no meio físico.
 - Possuem saídas específicas para conectar o barramento do computador e o meio de comunicação.
 - A escolha da placa de rede adequada deve levar em consideração: topologias física e lógica, meios de comunicação e taxas de transmissão.
 - Endereço MAC: identificador único de 48 bits

HARDWARE DE REDE

- São necessários para efetuar ou melhorar a interconexão dos computadores (ou dispositivos) em uma rede.
- A escolha dos hardwares de uma rede irá variar de acordo com as características desejadas e da topologia escolhida.
- Exemplos: switchs, hubs, roteadores, repetidores, bridges, etc.

DISPOSITIVOS DE REDE

DISPOSITIVOS DE REDE

Dispositivos de Rede	
Repetidor	Bridge
Hub de 10BASE-T	Workgroup Switch
Hub de 100BASE-T	Roteador
Hub	Nuvem da Rede

SISTEMAS OPERACIONAIS DE REDES

- Podem ser classificados como:
 - Sistema Operacional Cliente: aquele que é executado nas estações de trabalho da rede; é otimizado para que apresente o melhor desempenho possível na execução da aplicação em que o usuário está trabalhando.
 - Sistema Operacional Servidor: aquele que controla o funcionamento da rede; deve equilibrar as necessidades de todos os clientes, sem priorizar nenhum deles.

O AVANÇO DAS REDES

- Atualmente, as redes de computadores incluem computadores e sistemas operacionais associados a todos os modelos de computação.
- Uma rede típica inclui servidores, computadores pessoais e vários outros dispositivos de comunicação.
- As redes são normalmente classificadas por tamanho/distância ou estrutura/serviços.

Classificação segundo a Cobertura Geográfica

- Rede Pessoal (PAN)
- Rede Local (LAN)
- Rede Metropolitana (MAN)
- Rede Geograficamente Distribuída (WAN)
- Rede Global (GAN)

Ambiente de rede resultante de uma combinação de hardware, software e mídia de transmissão que conecta pontos em distancia restrita, permitindo o compartilhamento de recursos e troca de informações.

Principais características de uma LAN:

Fatec

Jundiaí

Deputado Ary Fossen

- Perímetros bem definidos;
- Taxas de erros extremante baixas;
- Compartilhamento de recursos de hardware e software;
- Compartilhamento do meio físico de grande largura de banda;
- Fornece conectividade em tempo integral aos serviços locais;
- Conectam dispositivos fisicamente adjacentes;

MAN (METROPOLITAN AREA NETWORK)

Uma MAN é uma rede que abrange toda a área metropolitana como uma cidade ou área suburbana. Uma MAN geralmente consiste em duas ou mais redes locais em uma mesma área geográfica.

Uma topologia de MAN envolve a utilização de alguns serviços oferecidos por empresas de telecomunicações.

MAN (METROPOLITAN AREA NETWORK)

WAN (WIDE AREA NETWORK)

Uma WAN é uma rede que conecta redes de diferentes localidades com enormes distâncias entre si, promovendo conectividade em âmbito nacional ou internacional.

Principais características das WANs são:

- Operam além do escopo geográfico das LANs e MANs;
- Usam serviços de concessionárias regionais (Embratel, Intelig, Telemar, Brasil Telecom, Telefônica, etc.) para promover a conectividade.

STORAGE-AREA NETWORKS (SANS)

Fatec
Jundiaí
Deputado Ary Fossen

- Uma SAN é uma rede dedicada, de alto desempenho, usada para transportar dados entre servidores e recursos de armazenamento (storage).
- Por ser uma rede separada e dedicada, ela evita qualquer conflito de tráfego entre clientes e servidores.

SANS OFERECEM OS SEGUINTES RECURSOS:

- Desempenho: SANs permitem um acesso simultâneo por dois ou mais servidores em alta velocidade, oferecendo um melhor desempenho do sistema.
- Disponibilidade: SANs já incorporam uma tolerância contra desastres, já que permitem o espelhamento de dados usando uma SAN a longas distâncias
- Escalabilidade: Como uma LAN/WAN, ela pode usar uma variedade de tecnologias, permitindo uma transferência fácil de dados de backup, operações, migração de arquivos, replicação de dados entre sistemas e crescimento incremental.

VIRTUAL PRIVATE NETWORK (VPN)

- Uma VPN é uma rede particular que é construída dentro de uma infra-estrutura de rede pública como a Internet global.
- Ao usar uma VPN, um usuário pode acessar a rede da matriz da empresa através da Internet criando um túnel seguro entre o seu PC e um roteador da VPN na matriz.

VIRTUAL PRIVATE NETWORK (VPN)

Vantagens das VPNs

- Uma VPN é um serviço que oferece conectividade segura e confiável através de uma infraestrutura compartilhada e pública, como a Internet.
- Mantêm as Diretivas da Rede Particular.
- Método econômico de implementação.

INTRANETS

- É uma configuração comum de uma rede local.
- Intranets são projetadas para permitir o acesso somente de usuários que tenham privilégios de acesso à rede local interna da organização.
- Dentro de uma Intranet, servidores Web são instalados na rede. A tecnologia do navegador Web é usada como uma interface comum para acessar informações tais como dados ou gráficos financeiros armazenadas nesses servidores.

EXTRANETS

- Extranets se referem aos aplicativos e serviços desenvolvidos para a Intranet, e através de acesso seguro têm seu uso estendido a usuários ou empresas externas.
- Geralmente este acesso é realizado através de senhas, IDs dos usuários e outros meios de segurança ao nível do aplicativo.

INTRANET X EXTRANET

- Topologias de rede definem a estrutura da rede.
 - Topologia lógica: é a forma como os hosts se comunicam através dos meios. Os dois tipos mais comuns são broadcast e passagem de token.
 - Topologia física: é o layout efetivo dos fios ou meios físicos.

Topologias física e lógica podem diferir para a mesma rede (usando o mesmo endereço IP).

Passagem de Token:

- Controla o acesso à rede, passando um token eletrônico sequencialmente para cada host.
- Quando um host recebe o token, significa que esse host pode enviar dados na rede.
- Se o host não tiver dados a serem enviados, ele vai passar o token para o próximo host e o processo será repetido.
- Dois exemplos de redes que usam passagem de token são: Token Ring e Fiber Distributed Data Interface (FDDI).

Topologia de Broadcast:

- Simplesmente significa que cada host envia seus dados a todos os outros hosts conectados ao meio físico da rede.
- Não existe uma ordem que deve ser seguida pelas estações para usar a rede.
- A ordem é: primeiro a chegar, primeiro a usar.
- Exemplo: A Ethernet.

TOPOLOGIA LÓGICA

- Topologia de Broadcast:
 - Algoritmo para recebimento de msgs executado por cada máquina:
 - Computador verifica endereço de destino;
 - se endereço no quadro = meu endereço
 - então processa o quadro
 - senão descarta o quadro
 - fim se;
 - É possível enviar mensagem para todos computadores da rede (msg difusão)

TOPOLOGIA LÓGICA

Topologia de Broadcast:

As formas de alocação do canal de comunicação podem ser:

- Estática: O Tempo dividido em intervalos (slots). É executado um algoritmo tipo "ciranda" (round robin) onde cada máquina transmite somente no seu slot. A desvantagem é que o canal fica vazio se uma estação não tem nada a transmitir.
- Dinâmica: (sob demanda):
 - centralizada
 - descentralizada

Redes difusão: Alocação dinâmica

- Centralizada:
 - existe uma entidade que arbitra qual é a próxima estação a ter acesso ao meio;
 - por exemplo, a entidade recebe requisições e faz uma escolha de acordo com um algoritmo;

- Descentralizada:
 - cada máquina decide se transmite num determinado momento ou não;

TOPOLOGIA LÓGICA

Broadcast

As topologias físicas mais comumente usadas são as seguintes:

Topologia de Barramento (bus): usa um único cabo backbone que é terminado em ambas as extremidades. Todos os hosts são diretamente conectados a este backbone.

 Topologia em Anel (ring): conecta um host ao próximo e o último host ao primeiro. Isto cria um anel físico utilizando o cabo.

As topologias físicas mais comumente usadas são as seguintes:

Topologia em Estrela (star):
 conecta todos os cabos a um
 ponto central de concentração,
 como um hub ou switch, por
 exemplo.

ao conectar os hubs ou switches. Esta topologia pode estender o escopo e a cobertura da rede.

Topologia em Estrela

Estrela Estendida (extended

star): une estrelas individuais

TOPOLOGIA FÍSICA

As topologias físicas mais comumente usadas são as seguintes:

Topologia Hierárquica: é semelhante a uma estrela estendida. Porém, ao invés de unir os hubs ou switches, o sistema é vinculado a um equipamento que controla o tráfego na topologia.

Topologia em Malha (mesh): é implementada para prover a maior proteção possível contra interrupções de serviço. Cada dispositivo tem a suas próprias ligações a todos os outros dispositivos.

TECNOLOGIA DE TRANSMISSÃO

- Conexão física com a rede
 - Ponto-a-ponto
 - Multiponto ou difusão
- Utilização do meio de transmissão
 - Simplex
 - Half-duplex
 - Full-duplex

CONEXÃO FÍSICA COM A REDE

- Redes ponto-a-ponto (point-to-point):
 - Conexões são entre pares de computadores;
 - Pacotes são enviados na modalidade store-and-forward;
 - Algoritmos de roteamento são muito importantes

CONEXÃO FÍSICA COM A REDE

- Redes multiponto/difusão (broadcasting)
 - Canal de comunicação é compartilhado entre os computadores da rede;
 - Em geral, mensagens são curtas (chamadas de pacotes);
 - Mensagens são enviadas por uma das máquinas e recebidas por todas as outras;
 - É necessário um algoritmo para controlar o acesso ao meio;
 - Toda mensagem possui um campo de endereço;

UTILIZAÇÃO DO MEIO DE TRANSMISSÃO

- Modos de transferência dos dados:
 - Simplex Unidirecional, dados transmitidos em uma direção;
 - Half-duplex Bidirecional não-simultâneo, transmissão nas duas direções mas não ao mesmo tempo;
 - Full-duplex Bidirecional simultâneo, transmissão nas duas direções simultaneamente;

ARQUITETURAS DE REDE

Definem a forma como as informações são compartilhadas em uma rede

- Rede Cliente-Servidor: possui uma arquitetura distribuída com um sistema de alta performace, o servidor, e vários clientes, de menor performace.
- O servidor é uma unidade central de registro e também o único provedor de serviço e conteúdo. Um cliente somente faz requisições de conteúdo ou execução de serviços ao servidor, sem compartilhar nenhum de seus próprios recursos

ARQUITETURAS DE REDE

- Redes Peer-to-Peer (P2P): os participantes compartilharem parte de seus próprios recursos de hardware (poder de processamento, capacidade de armazenamento, banda de rede, impressoras, ...).
- Os serviços e recursos são acessíveis por todos os pares sem necessidade de passar por nenhuma entidade intermediária.

ESTUDO COMPLEMENTAR - VÍDEO AULAS EXTERNAS NO YOUTUBE

- Redes WiFi e WiMAX (13min): https://www.youtube.com/watch?v=myAUjNplQL8 Conceitos sobre comunicação sem fio. Detalhes sobre as redes padrão IEEE 802.11 (Wi-Fi) e sobre as redes 802.16 (Wi-MAX).
- Cabos de par trançado e fibra óptica (11min): https://www.youtube.com/watch?v=fYJI-7jRzuw Infra estrutura dos meios físicos de transmissão entre os provedores de serviços (Vivo, Oi, Claro) e os usuários finais.
- O núcleo da internet (20min): https://www.youtube.com/watch?v=JhJEz7mYu8w esta vídeo aula descreve toda a hierarquia da rede das redes: a internet global. Qual é o caminho percorrido pelos pacotes de dados, desde seu computador até o computador servidor remoto que você acessa?
- Comutação de pacotes x comutação de circuitos (23min): https://www.youtube.com/watch?v=QuvZo75X018 Temos dois modelos de redes de telecomunicações: A comutação de pacotes mais moderna usada por computadores e roteadores. E comutação de circuitos, rede mais antiga usada pelos telefones fixos, com centrais telefônicas de comutação de circuitos.

EXERCÍCIOS PARA FIXAÇÃO (RESPOSTAS NESTES SLIDES):

- 1. Qual é a topologia representada por um hub central ao qual se conectam quatro hubs, sendo que em cada hub se conectam quatro estações de trabalho?
- 2. Qual a topologia física, lógica e o tipo de conexão física de uma rede em que cinco estações estão interligados através de um hub?
- 3. É possível haver comunicação de entre dois dispositivos sem protocolos? Por que?
- 4. É possível haver comunicação de entre dois dispositivos sem serviços? Por que?
- 5. Relacione as topologias físicas de redes e a principal característica de cada uma.
- 6. Diferencie a topologia lógica de broadcast e token.
- 7. Podemos afirmar que a internet é uma rede de computadores? Justifique.
- 8. Temos motivações diferentes para o uso de rede por pessoas e organizações. Cite as três que você considera mais importante para cada um deles.
- 9. Quais são os tipos de redes de acordo com sua classificação? Cite três características de cada.
- 10. Quais são os elementos básicos de uma rede? Explique a função/papel de cada um deles.

EXERCÍCIOS PARA FIXAÇÃO (RESPOSTAS NAS VÍDEO AULAS):

- 11. Correlacione as arquiteturas de rede sem fio IEEE-802.11 (Wi-Fi) e IEEE-802.16 (Wi-MAX) com WLAN e WMAN.
- 12. Qual é o alcance máximo em distância, de uma conexão numa rede Wi-MAX?
- 13. Em quais situações você instalaria uma rede WiMAX? Por que?
- 14. Compare os cabos metálicos com os cabos ópticos em uma rede externa urbana.
- 15. Conceitualmente, qual é o caminho percorrido pelos pacotes de dados, desde seu computador até o computador servidor remoto que você acessa? Considere que o servidor está nos EUA. Dica, descreva toda a hierarquia na internet, de uma rede para outra, genericamente.
- 16. Dê um exemplo de rede com arquitetura de comutação por circuitos. Agora dê um exemplo de uma rede com arquitetura de comutação por pacotes.
- 17. Quais as vantagens de uma rede de comutação por pacotes? E de uma rede com comutação de circuitos?