2022-2023 MP2I

À chercher pour lundi 12/06/2023, corrigé

Exercice 7. Soient (e_1, \ldots, e_n) des vecteurs unitaires d'un espace euclidien E. On suppose que pour tout x de E, $||x||^2 = \sum_{i=1}^n (x|e_i)^2$.

1) Commençons par appliquer la relation proposée en e_j où $j \in [1, n]$. On a alors $||e_j||^2 = \sum_{i=1}^n (e_j|e_i)^2$. Ceci entraine, puisque e_j est unitaire que :

$$1 = 1 + \sum_{i \neq j} (e_j | e_i)^2.$$

On en déduit, puisqu'une somme de termes positifs est nulle si et seulement si chacun des termes est nul, que pour tout $i \neq j$, $(e_i|e_j) = 0$. Puisque les e_j sont tous unitaires, on en déduit que la famille (e_1, \ldots, e_n) est orthonormée.

2) Une famille orthonormée est automatiquement libre. En effet, si on suppose que $\sum_{k=1}^{n} \lambda_k e_k = 0$. Fixons $j \in [1, n]$ et effectuons le produit scalaire de l'expression précédente avec e_j . On a alors (par bilinéarité du produit scalaire) :

$$\sum_{k=1}^{n} \lambda_k(e_k|e_j) = 0.$$

Ceci entraine, d'après l'expression précédente que $\lambda_j ||e_j||^2 = 0$, et puisque e_j est unitaire, on a donc $\lambda_j = 0$. Puisque j est quelconque dans [1, n], on en déduit que la famille (e_1, \ldots, e_n) est libre.

Il reste donc à montrer que la famille (e_1, \ldots, e_n) est génératrice. Par l'absurde, si elle ne l'est pas, on peut poser $F = \text{Vect}(e_1, \ldots, e_n)$ l'espace vectoriel engendré par e_1, \ldots, e_n . Puisque la famille n'est pas génératrice, on a donc $F \neq E$ et donc $F^{\perp} \neq \{0\}$. Il existe donc $y \in F^{\perp}$ non nul. En appliquant la relation de l'énoncé en y, on obtient alors (puisque y est orthogonal à tous les e_i):

$$||y||^2 = 0,$$

ce qui est absurde. On en déduit que la famille (e_1, \ldots, e_n) est une base orthonormée de E.

Exercice 10. Notons r la réflexion par rapport au plan P: ax + by + cz = 0. Un vecteur normal à ce plan est le vecteur $e = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ (qui est unitaire par hypothèse). Si $x \in \mathbb{R}^3$, alors la projection sur P^{\perp} est $p: x \mapsto (e|x)e$. Or, on a (faire un dessin pour retrouver cette relation):

$$r = \mathrm{Id} - 2p$$
.

On peut alors déterminer les images des vecteurs de la base canonique par cette réflexion. Si on note e_1, e_2, e_3 ces vecteurs, on trouve :

$$r(e_1) = \begin{pmatrix} 1 - 2a^2 \\ -2ab \\ -2ac \end{pmatrix}, \ r(e_2) = \begin{pmatrix} -2ab \\ 1 - 2b^2 \\ -2bc \end{pmatrix} \ \text{et} \ r(e_3) = \begin{pmatrix} -2ac \\ -2bc \\ 1 - 2c^2 \end{pmatrix}.$$

On en déduit que la matrice dans la base canonique de la réflexion par rapport au plan P est :

$$\begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}.$$

Exercice 16.

1) On sait déjà que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires, autrement dit que $S_n(\mathbb{R}) \oplus A_n(\mathbb{R}) = \mathcal{M}_n(\mathbb{R})$. En effet, si une matrice est symétrique et antisymétrique, alors on a $M = M^T = -M$ donc $M = 0_n$ ce qui prouve que la somme est directe et si $M \in \mathcal{M}_n(\mathbb{R})$, on a M = S + A avec

$$S = \frac{M + M^T}{2} \text{ et } A = \frac{M - M^T}{2}$$

où S et A sont symétrique et antisymétrique. On a donc bien la décomposition voulue.

Il reste à montrer l'orthogonalité entre $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$. Pour $S \in S_n(\mathbb{R})$ et $A \in A_n(\mathbb{R})$, on a :

$$\langle S, A \rangle = \operatorname{Tr}(S^T A)$$

$$= \operatorname{Tr}(SA)$$

$$= \operatorname{Tr}(AS)$$

$$= -\operatorname{Tr}(A^T S)$$

$$= -\langle A, S \rangle$$

$$= -\langle S, A \rangle.$$

On en déduit que $\langle S, A \rangle = 0$, ce qui prouve que l'on a $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ orthogonaux. Puisqu'ils sont supplémentaires, on a donc $S_n(\mathbb{R})^{\perp} = A_n(\mathbb{R})$ (et $A_n(\mathbb{R})^{\perp} = S_n(\mathbb{R})$).

On a par théorème du cours que $d(M, S_3(\mathbb{R})) = ||M - p_{S_3(\mathbb{R})}^{\perp}(M)|| = ||p_{A_3(\mathbb{R})}^{\perp}(M)||$. Or, on a (en utilisant la décomposition démontrée en début d'exercice) :

$$M = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

On en déduit que $p_{S_3(\mathbb{R})}^{\perp}(M)=\begin{pmatrix} 1 & 1 & 2\\ 1 & 1 & 2\\ 2 & 2 & 3 \end{pmatrix}=S$ et $p_{A_3(\mathbb{R})}^{\perp}(M)=\begin{pmatrix} 0 & 1 & 1\\ -1 & 0 & 0\\ -1 & 0 & 0 \end{pmatrix}=A.$ On en déduit que :

$$d(M, S_3(\mathbb{R})) = \sqrt{\langle A, A \rangle} = \sqrt{-\text{Tr}(A^2)} = \sqrt{4} = 2.$$

2) On a $H = \{M \in \mathcal{M}_n(\mathbb{R}) \ / \ \text{Tr}(M) = 0\} = \{M \in \mathcal{M}_n(\mathbb{R}) \ / \ \langle I_n, M \rangle = 0\}$. On en déduit que $H = \text{Vect}(I_n)^{\perp}$. Ceci entraine que H est un hyperplan de $\mathcal{M}_n(\mathbb{R})$ et qu'il est donc de dimension $n^2 - 1$. On aurait pu avoir ceci directement en disant que H = ker(Tr) et que la trace est une forme linéaire non nulle donc on a un hyperplan). Ce qui compte ici est que l'on a aussi trouvé un vecteur normal à l'hyperplan $(\vec{n} = I_n)$.

On a alors (puisque l'orthogonal de H est une droite de vecteur directeur unitaire $\frac{I_n}{||I_n||}$):

$$d(J,H) = ||J - p_H^{\perp}(J)|| = ||p_{H^{\perp}}^{\perp}(J)|| = \frac{|\langle I_n, J \rangle|}{||I_n||}.$$

On a $\langle I_n, J \rangle = \operatorname{Tr}(J) = n$ et $||I_n|| = \sqrt{\operatorname{Tr}(I_n^2)} = \sqrt{n}$. On en déduit que :

$$d(J,H) = \sqrt{n}.$$