
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2007; month=11; day=28; hr=14; min=25; sec=1; ms=587;]

Validated By CRFValidator v 1.0.3

Application No: 10658752 Version No: 2.0

Input Set:

Output Set:

Started: 2007-11-08 19:13:23.798

Finished: 2007-11-08 19:13:25.945

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 147 ms

Total Warnings: 41

No. of SeqIDs Defined: 41

Actual SeqID Count: 41

Total Errors:

Error code		Error Description										
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)	
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)	

Input Set:

Output Set:

Started: 2007-11-08 19:13:23.798

Finished: 2007-11-08 19:13:25.945

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 147 ms

Total Warnings: 41
Total Errors: 0

No. of SeqIDs Defined: 41

Actual SeqID Count: 41

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

```
<110> LOHNING, CORINNA
<120> NOVEL METHODS FOR DISPLAYING (POLY) PEPTIDES/PROTEINS ON
      BACTERIOPHAGE PARTICLES VIA DISULFIDE BONDS
<130> 49981-002D
<140> 10658752
<141> 2003-09-10
<150> 09/809,517
<151> 2001-03-15
<150> PCT/EP00/06968
<151> 2000-07-20
<150> EP 99 11 4072.4
<151> 1999-07-20
<150> EP 00 10 3551.8
<151> 2000-02-18
<160> 41
<170> PatentIn Ver. 3.3
<210> 1
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 1
Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser His His His
                5
                                   10
His His
<210> 2
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 2
```

Ile Glu Gly Arg His His His His His

```
1 5 10
```

```
<210> 3
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 3
Asp Tyr Cys Asp Ile Glu Phe
<210> 4
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 4
Cys Gly Arg Asp Tyr Lys Asp Asp Lys His His His His His His
 1
                  5
                                     10
<210> 5
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 5
Glu Phe Ser His His His His His
 1
<210> 6
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 6
Ser Ala Trp Ser His Pro Gln Phe Glu Lys
```

1

5

10

```
<210> 7
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 7
Thr Met Ala Cys Asp Ile Glu Phe
<210> 8
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 8
Asp Tyr Lys Asp Asp Asp Lys
 1
<210> 9
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 9
Trp Ser His Pro Gln Phe Glu Lys
 1
                 5
<210> 10
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 10
Pro Gly Gly Ser Gly
 1
```

```
<210> 11
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      6xHis tag
<400> 11
His His His His His
 1
<210> 12
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 12
Cys His His His His His
 1
<210> 13
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 13
His His His His His Cys
<210> 14
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 14
Cys Ala Gly Pro Tyr Asp Val Pro Asp Tyr Ala Ser Leu Arg Ser His
                                     10
 1
                                                         15
```

```
<210> 15
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 15
Arg Ser Gly Ala Tyr Asp Tyr
<210> 16
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 16
Gln Gln Tyr Ser Ser Phe Pro Leu
 1
<210> 17
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 17
Phe Asp Pro Phe Phe Asp Ser Phe Phe Asp Tyr
                                      10
<210> 18
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 18
Gln Ser Tyr Asp Gln Asn Ala Leu Val Glu
 1
                  5
                                      10
```

```
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 19
His Gly Tyr Arg Lys Tyr Tyr Thr Asp Met Phe Asp Val
<210> 20
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 20
His Gln Val Tyr Ser Thr Ser Pro
 1
<210> 21
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 21
Phe Pro Tyr Thr Tyr His Gly Phe Met Asp Asn
 1
                 5
                                     10
<210> 22
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 22
Gln Ser Tyr Asp Ser Gly Asn Leu
                  5
```

<210> 19

```
<210> 23
<211> 434
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     protein sequence
<400> 23
Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala
Thr Val Ala Gln Ala Asp Tyr Cys Asp Ile Glu Phe Ala Glu Thr Val
                               25
            2.0
Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe Thr Asn Val
                            40
Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys
                        55
Leu Trp Asn Ala Thr Gly Val Val Cys Thr Gly Asp Glu Thr Gln
                    70
                                        75
Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu
                            90
                85
Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ser Glu Gly
           100
                              105
Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp Thr Pro Ile Pro Gly Tyr
                          120
       115
Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr Pro Pro Gly Thr Glu Gln
   130
                       135
                                           140
Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu Glu Ser Gln Pro Leu Asn
                   150
                                       155
Thr Phe Met Phe Gln Asn Asn Arg Phe Arg Asn Arg Gln Gly Ala Leu
               165
                                  170
Thr Val Tyr Thr Gly Thr Val Thr Gln Gly Thr Asp Pro Val Lys Thr
Tyr Tyr Gln Tyr Thr Pro Val Ser Ser Lys Ala Met Tyr Asp Ala Tyr
       195
                          200
                                              205
Trp Asn Gly Lys Phe Arg Asp Cys Ala Phe His Ser Gly Phe Asn Glu
    210
                       215
Asp Pro Phe Val Cys Glu Tyr Gln Gly Gln Ser Ser Asp Leu Pro Gln
225
                   230
                                       235
```

Pro Pro Val Asn Ala Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly

245 250 255

Ser Glu Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ser 260 265 270

Glu Gly Gly Ser Gly Gly Gly Ser Gly Ser Gly Asp Phe Asp Tyr
275 280 285

Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp 290 295 300

Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala 305 310 315 320

Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly 325 330 335

Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser 340 345 350

Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn 355 360 365

Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro 370 375 380

Tyr Val Phe Gly Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp 385 390 395 400

Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala 405 410 415

Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys 420 425 430

Glu Ser

<210> 24

<211> 219

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic protein sequence

<400> 24

Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15

Thr Val Ala Gln Ala Asp Tyr Cys Asp Ile Glu Phe Asn Ala Gly Gly
20 25 30

Gly Ser Gly Gly Gly Gly Gly Ser Glu Gly Gly Ser Glu

35 40 45

Gly Gly Ser Glu Gly Gly Ser Glu Gly Gly Ser Gly Gly 50 Gly Ser Gly Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn 75 70 Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile 100 105 Asp Gly Phe Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala 120 Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp 130 135 140 Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser 145 150 155 Leu Pro Gln Ser Val Glu Cys Arg Pro Phe Val Phe Gly Ala Gly Lys 165 170 Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly 180 185 Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser 200 Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 210 215 <210> 25 <211> 432 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic protein sequence <400> 25 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 10 His Ser Thr Met Ala Cys Asp Ile Glu Phe Ala Glu Thr Val Glu Ser 25 20 Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys 40

Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp

60

55

50

Asn 65	Ala	Thr	Gly	Val	Val 70	Val	Cys	Thr	Gly	Asp 75	Glu	Thr	Gln	Cys	Tyr 80
Gly	Thr	Trp	Val	Pro 85	Ile	Gly	Leu	Ala	Ile 90	Pro	Glu	Asn	Glu	Gly 95	Gly
Gly	Ser	Glu	Gly 100	Gly	Gly	Ser	Glu	Gly 105	Gly	Gly	Ser	Glu	Gly 110	Gly	Gly
Thr	Lys	Pro 115	Pro	Glu	Tyr	Gly	Asp 120	Thr	Pro	Ile	Pro	Gly 125	Tyr	Thr	Tyr
Ile	Asn 130	Pro	Leu	Asp	Gly	Thr 135	Tyr	Pro	Pro	Gly	Thr 140	Glu	Gln	Asn	Pro
Ala 145	Asn	Pro	Asn	Pro	Ser 150	Leu	Glu	Glu	Ser	Gln 155	Pro	Leu	Asn	Thr	Phe 160
Met	Phe	Gln	Asn	Asn 165	Arg	Phe	Arg	Asn	Arg 170	Gln	Gly	Ala	Leu	Thr 175	Val
Tyr	Thr	Gly	Thr 180	Val	Thr	Gln	Gly	Thr 185	Asp	Pro	Val	Lys	Thr 190	Tyr	Tyr
Gln	Tyr	Thr 195	Pro	Val	Ser	Ser	Lys 200	Ala	Met	Tyr	Asp	Ala 205	Tyr	Trp	Asn
Gly	Lys 210	Phe	Arg	Asp	Cys	Ala 215	Phe	His	Ser	Gly	Phe 220	Asn	Glu	Asp	Pro
Phe 225	Val	Cys	Glu	Tyr	Gln 230	Gly	Gln	Ser	Ser	Asp 235	Leu	Pro	Gln	Pro	Pro 240
Val	Asn	Ala	Gly	Gly 245	Gly	Ser	Gly	Gly	Gly 250	Ser	Gly	Gly	Gly	Ser 255	Glu
Gly	Gly	Gly	Ser 260	Glu	Gly	Gly	Gly	Ser 265	Glu	Gly	Gly	Gly	Ser 270	Glu	Gly
Gly	Gly	Ser 275	Gly	Gly	Gly	Ser	Gly 280	Ser	Gly	Asp	Phe	Asp 285	Tyr	Glu	Lys
Met	Ala 290	Asn	Ala	Asn	Lys	Gly 295	Ala	Met	Thr	Glu	Asn 300	Ala	Asp	Glu	Asn
Ala 305	Leu	Gln	Ser	Asp	Ala 310	Lys	Gly	Lys	Leu	Asp 315	Ser	Val	Ala	Thr	Asp 320
Tyr	Gly	Ala	Ala	Ile 325	Asp	Gly	Phe	Ile	Gly 330	Asp	Val	Ser	Gly	Leu 335	Ala
Asn	Gly	Asn	Gly 340	Ala	Thr	Gly	Asp	Phe 345	Ala	Gly	Ser	Asn	Ser 350	Gln	Met
Ala	Gln	Val 355	Gly	Asp	Gly	Asp	Asn 360	Ser	Pro	Leu	Met	Asn 365	Asn	Phe	Arg

Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro Tyr Val 375 Phe Gly Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile 390 395 Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe 405 410 Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 420 425 <210> 26 <211> 434 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic protein sequence <400> 26 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Asp Tyr Cys Asp Ile Glu Phe Ala Glu Thr Val 25 Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe Thr Asn Val 35 40 Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys 50 55 Leu Trp Asn Ala Thr Gly Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu 85 90 Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ser Glu Gly 100 Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp Thr Pro Ile Pro Gly Tyr 120 115 Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr Pro Pro Gly Thr Glu Gln 130 135

Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu Glu Ser Gln Pro Leu Asn

Thr Phe Met Phe Gln Asn Asn Arg Phe Arg Asn Arg Gln Gly Ala Leu

155

150

165 170 175

Thr Val Tyr Thr Gly Thr Val Thr Gln Gly Thr Asp Pro Val Lys Thr 180 185 190

Tyr Tyr Gln Tyr Thr Pro Val Ser Ser Lys Ala Met Tyr Asp Ala Tyr 195 200 205