Capítulo 2

Sucesiones de números reales

2.1. Introducción

Definición 2.1.1. Llamamos sucesión de números reales a una función $f: \mathbb{N} \longrightarrow \mathbb{R}$,

$$n \to f(n) = x_n$$
.

Habitualmente denotaremos la sucesión como $\{x_1, x_2, \ldots, x_n, \ldots\}$ o simplemente por $\{x_n\}$.

A los valores $x_1, x_2, \ldots, x_n, \ldots$, se les llama términos de la sucesión, siendo x_n el término enésimo o término general de la sucesión.

Ejemplo 2.1.1. A continuación presentamos varios ejemplos de sucesiones

•
$$\{(-1)^n\} = \{-1, 1, -1, 1, \ldots\}$$

No es necesario expresar $\{x_n\}$ en función de n mediante una fórmula. Por ejemplo el conjunto de los números primos forma una sucesión

$${p_n} = {2, 3, 5, 7, 11, \ldots},$$

a pesar de que no se conoce ninguna fórmula explícita que genere $\{p_n\}$.

Observación 2.1.1. La mejor fuente de información existente sobre sucesiones de números enteros es "The On-Line Encyclopedia of Integer Sequences", disponible en http://oeis.org/. Un extraordinario trabajo de recopilación iniciado por el matemático N. J. A. Sloane en 1964 cuando era todavía un estudiante.

2.2. Límite de una sucesión

DEFINICIÓN 2.2.1. Una sucesión $\{x_n\}$ converge a $x \in \mathbb{R}$ (escribimos $\lim_{n \to \infty} x_n = x$ o $\{x_n\} \to x$) si para cada $\varepsilon > 0$ existe un número natural $n_0 = n_0(\varepsilon) \in \mathbb{N}$ tal que si $n \in \mathbb{N}, n \ge n_0$ entonces

$$|x_n - x| < \varepsilon.$$

En tal caso decimos que x es el límite de la sucesión $\{x_n\}$. Si una sucesión $\{x_n\}$ tiene límite se llama convergente.

3

Intuitivamente, " $\{x_n\}$ converge $a \ x \in \mathbb{R}$ " significa que el término x_n está tan próximo "como queramos" del número real x siempre que n sea "suficientemente grande".

Como $|x_n - x| < \varepsilon$ es equivalente a $x - \varepsilon < x_n < x + \varepsilon$, podemos afirmar que una sucesión de números reales $\{x_n\}$ converge a x si en cualquier entorno de x se encuentran todos los términos de la sucesión $\{x_n\}$, salvo quizás un número finito.

Definición 2.2.2. Sea $\{x_n\}$ una sucesión de números reales.

1) Decimos que $\{x_n\} \to +\infty$ (o $\lim_{n \to \infty} x_n = +\infty$), si

$$\forall M > 0 \,\exists n_0 = n_0(M) \in \mathbb{N} : \forall n \in \mathbb{N}, \, n \ge n_0 \Rightarrow x_n > M.$$

2) Decimos que $\{x_n\} \to -\infty$ (o $\lim_{n \to \infty} x_n = -\infty$), si

$$\forall M > 0 \,\exists n_0 = n_0(M) \in \mathbb{N} : \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow x_n < -M.$$

Si $\lim_{n\to\infty} x_n = \pm \infty$ decimos que la sucesión es divergente.

Proposición 2.2.1. Dada una sucesión $\{x_n\}$ se cumplen las siguientes propiedades:

- 1. $\{x_n\} \to x \Leftrightarrow \{x_n x\} \to 0$
- 2. $\{x_n\} \to 0 \Leftrightarrow \{|x_n|\} \to 0$.
- 3. La sucesión $\{y_n\} = \{x_{n+p}\}, p \in \mathbb{N}$ fijado, es convergente si y sólo si $\{x_n\}$ es convergente, en cuyo caso el límite de ambas coincide.

Una propiedad importante del límite de una sucesión es que si existe es único.

TEOREMA 2.2.1 (Unicidad del límite). Sea $\{x_n\}$ una sucesión de números reales y supongamos que existen dos números reales, x e y, tales que $\{x_n\} \to x$ y también $\{x_n\} \to y$. Entonces x = y.

DEFINICIÓN 2.2.3. Sea $\{x_n\}$ una sucesión de números reales y $n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$ una sucesión estrictamente creciente de números naturales.

Llamamos subsucesión o sucesión parcial de la sucesión $\{x_n\}$ a la sucesión $\{x_{n_k}\}$.

Proposición 2.2.2. $Si\{x_n\}$ es una sucesión convergente, entonces cualquier subsucesión de $\{x_{n_k}\}$ también es convergente y tiene el mismo límite.

La proposición anterior resulta muy útil para demostrar que una sucesión no es convergente usándola de la siguiente forma: si una sucesión admite dos subsucesiones con límites distintos o una subsucesión no convergente entonces la sucesión de partida no es convergente.

EJEMPLO 2.2.1. 1. Usar la definición de límite para probar que $\lim_{n\to\infty} \frac{1}{n} = 0$.

- 2. ¿La sucesión $\{(-1)^n\} = \{-1, 1, -1, 1, ...\}$ es convergente?
- 3. Probar que la sucesión constante $\{c, c, c, \ldots\}$ converge a c.

EJEMPLO 2.2.2. El límite de la sucesión $\{r^n\}$, con $r \in \mathbb{R}$, se comporta de la siguiente manera

$$\lim_{n \to \infty} r^n = \left\{ \begin{array}{ll} \textit{No existe el límite}, & \textit{si } r \leq -1, \\ 0, & \textit{si } -1 < r < 1 \Longleftrightarrow |r| < 1, \\ 1, & \textit{si } r = 1, \\ +\infty, & \textit{si } r > 1. \end{array} \right.$$

DEFINICIÓN 2.2.4. Sea $\{x_n\}$ una sucesión de números reales.

1) Se dice que $\{x_n\}$ está acotada superiormente si existe $K \in \mathbb{R}$ tal que

$$x_n \le K, \qquad \forall n \in \mathbb{N}.$$
 (2.2.1)

Los números reales K que verifican (2.2.1) se llaman cotas superiores de la sucesión $\{x_n\}$.

2) Se dice que $\{x_n\}$ está acotada inferiormente si existe $k \in \mathbb{R}$ tal que $x_n \ge k$, $\forall n \in \mathbb{N}$. (2.2.2)

Los números reales k que verifican (2.2.2) se llaman cotas inferiores de la sucesión $\{x_n\}$.

3) Se dice que la sucesión $\{x_n\}$ está acotada si existen valores $k, K \in \mathbb{R}$ tales que

$$k \le x_n \le K, \quad \forall n \in \mathbb{N}.$$
 (2.2.3)

De la definición de límite se sigue sin demasiada dificultad el siguiente resultado.

5

Teorema 2.2.2. Toda sucesión de números reales convergente está acotada.

El recíproco del teorema anterior no es cierto (por ejemplo $\{(-1)^n\}$ es una sucesión acotada no convergente). Un recíproco parcial lo proporciona el siguiente resultado.

PROPOSICIÓN 2.2.3. Sean $\{x_n\}$ e $\{y_n\}$ dos sucesiones de números reales. Se cumplen las siguientes propiedades:

- 1) Si $\{x_n\} \to x$, $\{y_n\} \to y$, entonces $\{x_n + y_n\} \to x + y$.
- 2) Si $\{x_n\} \to 0$ e $\{y_n\}$ está acotada, entonces $\{x_n y_n\} \to 0$.
- 3) Si $\{x_n\} \to x$ e $\{y_n\} \to y$, entonces $\{x_n y_n\} \to x y$.
- 4) $Si\{x_n\} \to x \ e\{y_n\} \to y \neq 0, \ con \ y_n \neq 0, \ \forall n \in \mathbb{N}, \ entonces\{x_n/y_n\} \to x/y.$
- 5) (Regla del encaje o del sandwich). Si $\{x_n\}$ e $\{y_n\}$ tienen por límite l y existe $n_0 \in \mathbb{N}$ tal que

$$x_n \le z_n \le y_n, \quad \forall n \in \mathbb{N}, \ n \ge n_0,$$

entonces la sucesión $\{z_n\}$ también es convergente a l.

- 6) Si $\{x_n\} \to +\infty$ e $\{y_n\} \to +\infty$, entonces $\{x_n y_n\} \to +\infty$.
- 7) $Si \{x_n\} \to +\infty \ e \{y_n\} \to -\infty, \ entonces \{x_n y_n\} \to -\infty.$
- 8) $Si \{x_n\} \to +\infty \{y_n\} \to y \neq 0$, entonces $\{x_n y_n\} \to +\infty$ si y > 0 ó $\{x_n y_n\} \to -\infty$ si y < 0.
- 9) Si $x_n \neq 0$, $\forall n \in \mathbb{N}$, entonces $\{x_n\} \to 0 \Leftrightarrow \{1/|x_n|\} \to +\infty$.

Hay otras operaciones que no tienen un valor definido, dependen del ejemplo concreto y se llaman "indeterminaciones". Por ejemplo: " $+\infty - \infty$ ", " $0 \cdot \infty$ ", " ∞ / ∞ ", " $0 / \infty$ ",

2.3. El número e

La sucesión de números reales dada por

$$\{x_n\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\},\,$$

es monótona creciente y acotada, por lo que $\{x_n\}$ es una sucesión convergente. Se define el número e, en honor de Euler, como el límite de la sucesión $\{x_n\}$, es decir,

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2,718281 \cdots$$

TEOREMA 2.3.1 (Criterio para la indeterminación "1°"). $Si \lim_{n\to\infty} x_n = 1$, $\lim_{n\to\infty} y_n = +\infty$ $y \lim_{n\to\infty} (x_n - 1) \cdot y_n = h$ entonces

$$\lim_{n \to \infty} x_n^{y_n} = e^h.$$

Figura 2.3.1: Doodle conmemorando el 306 aniversario del nacimiento de Euler

Ejercicio 2.3.1. En 2004 apareció el siguiente anuncio en diversos carteles de Silicon Valley:

Figura 2.3.2: Anuncio aparecido en Silicon Valley

Una vez resuelto el desafío y visitando la página correspondiente se accedía a un formulario para solicitar trabajo en Google. Resuelve el problema con la ayuda de un ordenador.

2.4. Sucesiones recurrentes

DEFINICIÓN 2.4.1. Una sucesión $\{x_n\}$ se dice que es una sucesión recurrente de orden p si cada término viene dado en función de los p términos anteriores, es decir

$$x_{n+p} = g(x_n, x_{n+1}, \dots, x_{n+p-1}), \qquad n \ge 1,$$
 (2.4.1)

siendo p un valor fijo.

La igualdad (2.4.1) se denomina ley de recurrencia. Para generar los términos de una sucesión recurrente de orden p es preciso conocer los p-primeros términos de la sucesión. Los valores, x_1, x_2, \ldots, x_p , se denominan valores iniciales de la sucesión. Si partimos de una misma ley de recurrencia (2.4.1) pero con distintos valores iniciales, se generan sucesiones distintas.

- Observación 2.4.1. i) La mayoría de los métodos numéricos que estudiaremos generan una sucesión recurrente con el objetivo de aproximar la solución del problema estudiado.
 - ii) Para estudiar la convergencia de sucesiones recurrentes es muy útil el Principio de Inducción. En determinados casos el estudio de la convergencia se reduce a probar que la sucesión es monótona y acotada.

Definición 2.4.2. Sea $\{x_n\}$ una sucesión de números reales. Diremos que

- 1) $\{x_n\}$ es monótona creciente si $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$.
- 2) $\{x_n\}$ es monótona decreciente si $x_n \ge x_{n+1}, \forall n \in \mathbb{N}.$

En ambos casos se dice que $\{x_n\}$ es una sucesión monótona. Si en las definiciones anteriores se da la desigualdad estricta diremos que la sucesión es estrictamente creciente o estrictamente decreciente.

TEOREMA 2.4.1. Toda sucesión de números reales monótona y acotada es convergente.

EJEMPLO 2.4.1. Demostrar que la sucesión definida como $x_1 := 2$, $x_{n+1} = \sqrt{2 + x_n}$ para todo $n \in \mathbb{N}$, $n \geq 2$, es convergente y calcular su límite.