Neutronics analysis of blankets for a hybrid fusion neutron source

Neutronics Analysis of Blankets for Hybrid Fusion Neutron Source

A.V.Zhirkin, B.V. Kuteev, M.I.Gurevich, B.K.Chukbar

National Research Centre "Kurchatov Institute" (NRC KI), Ac. Kurchatov Square 1, 123182 Moscow, Russia

E-mail: aleksej-zhirkin@yandex.ru

Abstract

Modern challenges of nuclear power are concerned a potential shortage of nuclear fuel for fission reactors in the case of intensive development of nuclear industry, insufficient development of economic and safe fast reactors, underutilization of the closed fuel cycle, spent nuclear fuel reprocessing, nuclear power safety, nonproliferation of weapon-grade materials. Expected progress in solving these problems is associated with development of a hybrid fusion neutron source (FNS) with a subcritical blanket, using the closed nuclear fuel cycle. In this work it is investigated capabilities of hybrid fusion neutron source blankets in generation of ²³³U, ²³⁹Pu, and ³H nuclides, reprocessing of spent nuclear fuel, electricity and heat production. The basic kinds of the blankets are considered. There are a uranium and thorium solid-state blanket, a blanket with the use of heavy water solutions of salts, and oxides of uranium and thorium, a molten lead and a molten salt blanket. The structure and geometrical parameters of the blankets, the moderators, and the fertile materials are optimized to obtain the ultimate nuclear fuel yield at the minimal accumulation of radiation toxic wastes. The neutronics comparative analysis of the different blanket models is presented. In the result, the optimal FNS blanket models have chosen.

Keywords: nuclear fuel generation, hybrid fusion neutron source, solid-state blanket, aqueous blanket, molten salt blanket, uranium-238, plutonium-239, thorium-242, uranium-233, tritium.

1. Introduction.

Nuclear fuel production, and reprocessing of spent nuclear fuel are related to the most actual modern problems. A fusion neuron source (FNS) has a special role in their solution.

Modern thermal reactors do not provide reproduction of burned fuel nuclides. Its conversion ratio is approximately equal to 0.6. The doubling time of fast reactors is 10-20 years. A number of fast reactor projects (for example, BREST) does not provide additional fuel production, and demands significant fuel nuclide stocks for an initial loading and maintenance of the closed fuel cycle. Breeder reactors are capable to produce effectively neutrons and fuel nuclides. However, for achievement of their criticality, an initial loading of fuel nuclides is required that demands either withdrawal of these nuclides from the uranium-plutonium fuel cycle, or their generation with the use of external neutrons. Electronuclear systems for power applications, and micro explosions for laser ignition of thermonuclear targets are technologically undeveloped.

For the nuclear power industry development, it is required an effective nuclear fuel manufacturer, which is safe from the viewpoint of severe accidents, negative impact on the environment, and proliferation of weapons-grade materials. Another key problem of nuclear power is utilization of spent nuclear fuel. A possible solution of these problems is development of a hybrid fusion neutron source with a subcritical blanket, using the closed nuclear fuel cycle.

Therefore, design of a hybrid FNS "fusion-fission" system for manufacture of artificial nuclear fuel, and nuclide transmutation is actual [1-11]. Also it is desirable to create FNS capable to

generate nuclear energy for electricity and heat production. To solve this problem, it is necessary to provide $k_{\rm eff}$ which is equal to 0.95.

2. Objectives

At a stage of the outline designing, a hybrid source of thermal neutrons with neutron multipliers on the basis of Be and Pb was considered as one of the basic variants of FNS realization. Additional multiplication of neutrons was performed by fission reactions induced by 14 MeV neutrons interacting with nuclei of ²³²Th or ²³⁸U, and by fission reactions induced by thermal neutrons interacting with nuclei of ²³³U or ²³⁹Pu.

To estimate FNS opportunities in production of fissile isotopes ²³³U and ²³⁹Pu, also in ²³⁹Pu reprocessing, the FNS neutronics analysis was performed for blankets with the use of heavy water solutions of salts, and oxides of uranium and thorium, solid-state and molten salt blankets.

The purpose of the calculations was optimization of a composition, quantity, and geometrical parameters of FNS materials generating and absorbing neutrons for effective production of ²³³U or ²³⁹Pu isotopes. Also simultaneous tritium production was assumed. Capabilities of spent fuel reprocessing, and criticality analysis to produce electricity were also taken into account. FNS nuclear synthesis power was from 1 to 10 MW.

In the result of the optimization, it is desirable to increase the yield of fissile isotopes up to 1 and more nuclide per 1 D-T neutron.

The MCNP-4 code [12] with the point cross-section libraries generated from the FENDL-2 [13] and ENDF/B-6 [14] files were used for the calculations.

3. Results of neutronics analysis

²³⁹Pu is produced from ²³⁸U in the result of the reactions (Figure 1) ²³⁸U(n,γ) ²³⁹U(β-decay, $T_{1/2}$ =23.45 min.) ²³⁹Np(β-decay, $T_{1/2}$ =2.356 days) ²³⁹Pu. The reaction chain for the production of ²³³U from ²³²Th is ²³²Th(n,γ) ²³³Th(β-decay, $T_{1/2}$ =23.5 min.) ²³³Pa(β-decay, $T_{1/2}$ =26.967 days) ²³³U. The reaction for the production of ³H from ⁶Li μ ⁶Li₂O is ⁶Li (n, ⁴He)³H.

Figure 1. 232 Th (n,γ) , 238 U (n,γ) and 6 Li (n,t) cross-sections.

3.1. Solid-state blankets

The FNS calculation model with a thorium-containing blanket is shown in Figure 2 and 3. The parameters of the model components are presented in Table 1.

Table 1. The components and parameters of the FNS model. R is a major radius, r is a minor radius, h is a height

Component	Parameters
FNS itself	Overall sizes: R = 200.8 cm, h = 301.6 cm
Source	14.1 MeV D-T neutrons, isotropic; R = 70 cm,
	r = 50 cm, h = 60 cm
Central rod	Be, $R = 20$ cm, $h = 201.6$ cm
Poloidal fieid coils (PFC)	Be, $R = 50$ cm, $h = 50$ cm
Vacuum chamber	R = 75 cm, r = 20.8 cm, h = 200 cm
First wall	3 mm W, 3 mm H ₂ O, 2 mm V92-Ti4-Cr4
Blanket	Be, R = 90.9 cm, r = 75.9 cm, h = 215.9 cm
Moderator	D_2O
Pipes	Cylindrical shell: $R = 2$ cm, $r = 1.7$ cm, $h = 1.7$
	231.6 cm.
⁶ Li ₂ O layer	R-r=1 mm
⁶ Li layer	R-r=1 cm
Detectors	25 detectors: $R - r = 5$ cm, $h = 10$ cm for every
	one.
	Central detector: $R = 5$ cm, $h = 10$ cm

The model includes two layers containing ⁶Li for tritium generation. Behind the first wall there is the ⁶Li₂O layer. Another one is consisted of pure ⁶Li. This layer is an external cover of the model.

There are one or two pipe rows in the model. Each row consists of 120 pipes, which distributed with regular intervals on a circle. The pipes are composed of metal ²³²Th or material containing ²³²Th. They can be placed inside the blanket or the moderator. The distances from the pipe rows to the first wall are changeable. The pipes can be filled by different materials. The total weight of 120 pipes from pure ²³²Th is 1136.2 kg.

Figure 2. Vertical (a) and horizontal (b) section view of the FNS model.

Figure 3. Vertical (a) and horizontal (b) section view of the FNS ²³²Th pipes in a D₂O moderator.

The calculation results of this model with different blankets and moderators are presented in Tables 2, 3, 4 and 5.

Table 2. Reaction rates and nuclear fuel production in the FNS model with ²³²Th pipe rows. The mass of 120 thorium pipes of each row is 1136.2 kg. h is a Be blanket thickness. After "Row N" a rod surrounding material and a distance from the rod row to the first wall are presented. Fusion power is 1n/s for the reaction rates and $1.775 \cdot 10^{18}$ n/s (5 MW) for the fuel production.

P 0 11 41 15 111 5 10	1 0110 1 000 010 11 1000	75 001101 1.17 70 10	11/0 (0 1/1 //) 101 01	TO TOO PLOGGETOR	
Variant	1	2	3	4	5
h Be, cm	15	15	15	10	15
Row 1	Be 5.5 cm	Be 10.5 cm	Be 10.5 cm	D ₂ O 10.5 cm	D ₂ O 15.5 cm
Row 2	Absent	Absent	$D_2O 15.5 \text{ cm}$	$D_2O 15.5 \text{ cm}$	$D_2O 20.5 \text{ cm}$
(n, γ) — ²³² Th	4.610^{-1}	$4.729^{\cdot}10^{-1}$	$6.358 \cdot 10^{-1}$	$5.835 \cdot 10^{-1}$	6.110^{-1}
(n, t)— ⁶ Li ₂ O	$7.073 \cdot 10^{-1}$	$7.970^{\cdot}10^{-1}$	$7.700^{\cdot}10^{-1}$	$6.690^{\cdot}10^{-1}$	$8.841 \cdot 10^{-1}$
(n, t) — 6 Li	$6.659 \cdot 10^{-1}$	$5.816^{\cdot}10^{-1}$	$4.759 \cdot 10^{-1}$	$5.075 \cdot 10^{-1}$	$4.326^{\cdot}10^{-1}$
(n, t)—total	1.373	1.379	1.246	1.176	1.317
(n, f) + (n, xn)	$3.8 \cdot 10^{-2}$	$2.0^{\cdot}10^{-2}$	$3.3 \cdot 10^{-2}$	$3.6 \cdot 10^{-2}$	$2.0^{-10^{-2}}$
(n, f) + (n, xn) $^{233}U, kg/year$	9.994	10.25	13.78	12.65	13.25
³ H, kg/year	$3.852 \cdot 10^{-1}$	$3.867 \cdot 10^{-1}$	$3.495 \cdot 10^{-1}$	$3.300^{\cdot}10^{-1}$	$3.693 \cdot 10^{-1}$

Table 3. Reaction rates and nuclear fuel production in the FNS model with two rows of pipes consisted of different materials. The pipes are placed in different moderators. The distance from the first wall to the 1-st pipe row is 15.5 cm and to the 2-nd is 20.5 cm. The blanket thickness is 15 cm.

Fusion power is 1n/s for the reaction rates and 1.775·10¹⁸ n/s (5 MW) for the fuel production.

T distoit po wet is this for the			3 11/15 (5 1)	it ii j tot tile t	der production	
Variant	1	2	3	4	5	6
Pipe material, vol. %	100%	ThF ₄₊	96%	96% ²³² Th	96% ²³² Th	100%
	²³² Th	FLiNaK ¹)	²³² Th	4% ²³³ U	$4\%^{233}$ U	²³² Th
		ŕ	4%			
			^{233}U			
Material in pipes, vol. %	D_2O	ThF_{4+}	D_2O	^{nat} Pb	96% ²³² Th	CO_2^2
		FLiNaK ¹)			$4\%^{233}$ U	

²³² Th total mass, kg	2272.4	1857.4	2181.5	2181.5	7861.5	2272.4
²³³ U total mass, kg	0.0000	0.0000	145.75	145.75	525.26	0.0000
Moderator material	D_2O	D_2O	D_2O	^{nat} Pb	^{nat} Pb	CO_2
Blanket material	Be	Be	Be	^{nat} Pb	^{nat} Pb	Be
(n, γ) — ²³² Th	6.110^{-1}	$8.792 \cdot 10^{-2}$	1.621	$3.260^{\cdot}10^{-1}$	$6.953 \cdot 10^{-1}$	$3.749^{\cdot}10^{-1}$
(n, t) — 6 Li ₂ O	$8.841 \cdot 10^{-1}$	$8.550 \cdot 10^{-1}$	1.905	$6.510^{\cdot}10^{-1}$	$6.130^{\cdot}10^{-1}$	$8.712 \cdot 10^{-1}$
(n, t)— ⁶ Li	$4.326 \cdot 10^{-1}$	$3.750^{\cdot}10^{-1}$	2.718	$1.873 \cdot 10^{-1}$	$1.659^{\cdot}10^{-1}$	$3.827 \cdot 10^{-1}$
(n, t)—total	1.317	1.230	4.623	$8.383 \cdot 10^{-1}$	$7.789 \cdot 10^{-1}$	1.254
(n, f) + (n, xn)	$2.0^{\cdot}10^{-2}$	$6.0^{\cdot}10^{-3}$	3.339	$2.227 \cdot 10^{-1}$	$4.798 \cdot 10^{-1}$	$2.2 \cdot 10^{-2}$
Spent ²³³ U, kg/year ³)	_		72.38	4.828	9.771	_
Spent ²³³ U with respect to	_	_	50	3	2	_
its initial mass, % ³)						
²³³ U without spent part,	13.25	1.906	35.14	7.068	15.07	8.128
kg/year						
²³³ U with spent part,			17.57	6.856	14.77	
kg/year						
³ H, kg/year	$3.693 \cdot 10^{-1}$	$3.450^{\circ}10^{-1}$	1.296	$2.351 \cdot 10^{-1}$	$2.185 \cdot 10^{-1}$	$3.518 \cdot 10^{-1}$

Table 4. Reaction rates and nuclear fuel production in the FNS model with two rows of pipes consisted from 232 Th enriched of 233 U. The pipes are placed in a D_2O moderator. The distance from the first wall to the 1-st pipe row is 15.5 cm and to the 2-nd is 20.5 cm. The blanket thickness is 15 cm. Fusion power is 1n/s for the reaction rates and $1.775 \cdot 10^{18}$ n/s (5 MW) for the fuel production.

Variant	1	2	3	4	5
Pipe material-, vol. %	96%	97% ²³² Th	98%	99%	100 %
	²³² Th	$3\%^{233}U$	²³² Th	²³² Th	²³² Th
	4% ²³³ U		2% 233 U	$1\%^{233}U$	
Material in pipes, vol. %	D_2O	D_2O	D_2O	D_2O	D_2O
²³² Th total mass, kg	2181.5	2204.2	2227.0	2249.7	2272.4
²³³ U total mass, kg	145.75	109.32	72.878	36.439	0.0000
Moderator material	D_2O	D_2O	D_2O	D_2O	D_2O
Blanket material	Be	Be	Be	Be	Be
(n, γ)— ²³² Th	1.621	1.440	1.062	$7.992 \cdot 10^{-1}$	6.110^{-1}
(n, t) — 6 Li ₂ O	1.905	1.500	1.229	1.038	$8.841^{\cdot}10^{-1}$
(n, t)— ⁶ Li	2.718	1.797	1.197	$7.641 \cdot 10^{-1}$	$4.326^{\cdot}10^{-1}$
(n, t)—total	4.623	3.293	2.426	1.802	1.317
(n, f) + (n, xn)	3.339	1.992	1.116	$4.940^{\cdot}10^{-1}$	$2.0^{\cdot}10^{-2}$
Spent ²³³ U, kg/year ¹)	72.38	43.18	24.19	10.71	_
Spent ²³³ U with respect to its	50	40	33	29	_
initial mass, % ¹)					
²³³ U without spent part,	35.14	31.22	23.02	17.33	13.25
kg/year					
²³³ U with spent part, kg/year	17.57	18.73	15.42	12.30	_
³ H, kg/year	1.296	$9.237 \cdot 10^{-1}$	$6.805^{\cdot}10^{-1}$	$5.055 \cdot 10^{-1}$	$3.693 \cdot 10^{-1}$

^{1) 30} mol. % of ²³²ThF₄ and 70 mol. % of FLiNaK.
2) Liquid CO₂ density is 1.0299 g/cm³ at temperature of –20° C and pressure of 2.033 MP.
3) Without ²³³U generated from ²³²Th.

¹)Without ²³³U generated from ²³²Th.

The analysis of the data in Tables 2 and 3 allows concluding that the best results for 233 U and 3 H generation were obtained for the FNS model with 15 cm Be blanket, a D_{2} O moderator, and two rows of 100% 232 Th pipes located in the moderator. An important feature of this model is a relatively low rate of the reactions (n, f) and (n, xn), which are responsible for generating radioactive toxic substances. The use of the FLiNaK salt instead of metal 232 Th decreases the 233 Ugeneration by a factor of 7, the use of CO_{2} instead of D_{2} O as a moderator decreases this value by a factor of 1.6.

The generation of 233 U can be increased by moving the pipes from a D_2O moderator to a Be blanket at the position where there is the maximum flux density of thermal neutrons. However, it is appeared problems of loss of the material which generates neutrons, and complexity of blanket manufacture.

Table 4 shows the accumulation of ²³³U, which was evaluated taking into account its burnup Exposure time of a material containing thorium was 1 year. The burnup of ²³³Pa was not considered due to the lack of information on the appropriate cross sections in the ENDF/B-6 files. The data of Table 4 indicate that the burnup of ²³³U accumulating in the material containing 100 % (vol.) of ²³²Th is not more than 30%. In the material containing 99% (vol.) of ²³²Th, and 1% (vol.) of ²³³U, the accumulation of ²³³U is dominated. When the initial content of ²³³U is increased to 2% (vol.) and more the burnup dominates. The ²³³U accumulation is achieved approximately 3 mass % in relation to the total fertile and fissile material mass. That is acceptable for a nuclear fuel used in reactors.

The absorption of neutrons in the useful reactions 232 Th(n, γ) and 6 Li(n, t) reaches 80% of the total neutron loss in the system.

The calculation results of FNS models with uranium-containing solid-state blankets are presented in Table 5. There are no pipes composed of fertile materials in these models. Fertile isotopes were part of the blanket and moderator materials.

Table 5. Reaction rates and nuclear fuel production in FNS solid-state blankets with ²³⁸U. The blanket thickness is 15 cm. Fusion power is 1n/s for the reaction rates and 1.775 10 18 n/s (5 MW) for the fuel production.

	e ruer productio						
	Variant	1	2	3	4	5	6
	Moderator material	²³⁸ U	²³⁸ U		²³⁸ UN+1%(vol.) ²³⁹ Pu	³⁸ UN+2%(vol.) ²³⁹ Pu	³⁸ UN+3%(vol.) ²³⁹ Pu
	Blanket material	Be	²³⁸ U	²³⁸ UN	³⁸ UN+1%(vol.) ²³⁹ Pu	³⁸ UN+2%(vol.) ²³⁹ Pu	³⁸ UN+3%(vol.) ²³⁹ Pu
Ī	$(n,\gamma)^{-238}U$	1.825	3.475	2.517	3.658	4.813	6.610
I	(n,f) - ^{238}U	$1.785^{\cdot}10^{-1}$	$7.555^{\cdot}10^{-1}$	$5.591 \cdot 10^{-1}$	1.252	1.984	3.140
	(n,2n)+(n,3n)- ²³⁸ U		4.371.10-1	$3.572 \cdot 10^{-1}$	$3.621 \cdot 10^{-1}$	$3.690 \cdot 10^{-1}$	$3.798\cdot10^{-1}$
	²³⁹ Pu, kg/year	40.41	76.94	55.73	80.99	106.6	146.3

The ²³⁹Pu production is significantly increased at presense of the fissile material. The models with uranium nitride show the most rates of the reactions producing ²³⁹Pu, which generation is from 56 to 150 kg/year for 5 MW (1.775·10¹⁸ n/s) fusion power, depending on fissile isotope percentage. It is satisfactory performance of the nuclear fuel for a low-power facility. But the burnup and accumulating of fission products are increased from 2 to 6 times also.

3.2. Aqueous homogeneous blankets

The calculation model of blankets with water, or heavy water solutions of salts or oxides, which includes fertile isotopes is shown in Figure 4. The calculation results are presented in Tables 6, 7 and 8.

Figure 4. Vertical (a) and horizontal (b) section view of the FNS model.

Table 6. Reaction rates and nuclear fuel production in the FNS blankets with uranium salt solutions in water and heavy water. The concentration is 61.18 g of uranium salt to 100 g of H_2O or D_2O . The blanket thickness is 15 cm. Fusion power is 1 n/s for reaction rates and 1.775 10^{18} n/s (5 MW) for fuel production.

Variant	1	2
		$^{238}UO_{2}SO_{4}^{-3}D_{2}O+D_{2}O$
Blanket material	$^{238}\text{UO}_2\text{SO}_4$:3H ₂ O+H ₂ O	$^{238}UO_2SO_4$ $^{\circ}3D_2O + D_2O$
$(n,\gamma)^{-238}U$	$7.812 \cdot 10^{-2}$	$3.892 \cdot 10^{-1}$
(n,f)- ²³⁸ U	$1.440^{\cdot}10^{-2}$	$1.723 \cdot 10^{-2}$
$(n,2n)+(n,3n)-^{238}U$	$1.384^{\cdot}10^{-2}$	$1.762 \cdot 10^{-1}$
²³³ Pu, kg/year	1.730	8.617

The data in Table 6 show that the use of D_2O instead of H_2O in the uranium salt solutions increases the ²³⁹Pu production by a factor of 5. The ²³⁸U(n,f) reaction rate isn't increased.

Table 7. Reaction rates and nuclear fuel production in the FNS blankets with uranium salt solutions in heavy water. The concentration is 61.18 g of uranium salt to 100 g of D_2O . The blanket thickness is 15 cm. Fusion power is 1 n/s for reaction rates and 1.775 10^{18} n/s (5 MW) for fuel production.

Variant	1	2	3
Moderator	$^{238}UO_{2}SO_{4}\cdot 3D_{2}O + D_{2}O$	$^{238}UO_{2}SO_{4}^{-3}D_{2}O+D_{2}O$	$^{\text{dep}}\text{UO}_2\text{SO}_4^{-3}\text{D}_2\text{O} + \text{D}_2\text{O}^{-1})$
material			
Blanket	Be 15 cm	Be 15 cm	Be 15 cm
material		²³⁸ U 3 cm	
$(n,\gamma)^{-238}U$	$4.190^{\cdot}10^{-1}$	$3.762 \cdot 10^{-1}$	$5.260^{\cdot}10^{-1}$
(n,f)- ²³⁸ U	$3.867 \cdot 10^{-3}$	$2.169 \cdot 10^{-3}$	$2.078^{\cdot}10^{-1}$
(n,2n)+(n,3n)-	$3.312 \cdot 10^{-2}$	$1.823 \cdot 10^{-2}$	$3.476^{\cdot}10^{-2}$
^{238}U			

(n,t) - 6 L i_2 O	$9.408^{\cdot}10^{-1}$	$7.921\cdot10^{-1}$	$9.684 \cdot 10^{-1}$
(n,t)- ⁶ Li	$5.067 \cdot 10^{-1}$	$4.536^{\cdot}10^{-1}$	$5.686 \cdot 10^{-1}$
(n,t)-total	1.448	1.246	1.537
³ H, kg/year	$4.062\cdot10^{-1}$	$3.495 \cdot 10^{-1}$	$4.311 \cdot 10^{-1}$
²³⁹ Pu, kg/year	9.277	8.329	11.64

¹) ^{dep}U is depleted uranium

Table 8. Reaction rates and nuclear fuel production in the FNS blanket with thorium dioxide solutions in heavy water. The concentration is 35.95 g of 232 ThO₂ to 100 g of D₂O. The blanket thickness is 15 cm. Fusion power is1 n/s for reaction rates and 1.775 10 n/s (5 MW) for fuel production.

Moderator material	232 ThO ₂ +D ₂ O
Blanket material	Be
$(n,\gamma)^{-232}$ Th	$6.264 \cdot 10^{-1}$
(n,f)- ²³² Th	$1.220^{\cdot}10^{-3}$
$(n,2n)+(n,3n)-^{232}Th$	$3.675 \cdot 10^{-2}$
(n,t) - 6 Li ₂ O	$9.245^{\cdot}10^{-1}$
(n,t)- ⁶ Li	$3.359 \cdot 10^{-1}$
(n,t)-total	1.260
³ H, kg/year	$3.534 \cdot 10^{-1}$
²³³ U, kg/year	13.58

According to the data of Table 7 the use of the 238 U shell around the Be blanket decreases the 239 Pu production by 10%, and the 3 H production by 14%. The use of depleted uranium dep U with 0.4% (mas.) of 235 U instead of 238 U increases the 239 Pu production by 25%, and the 3 H production by 6%.

The comparison of the calculated results in Tables 3 and 8 shows that the rates of the reactions (n, γ) , which generate the fuel isotopes, are not much different from each other in the solid-state blanket, and the blanket with the solution of thorium dioxide in heavy water.

The rate of the reaction 232 Th(n, γ) 233 Th is equal to $6.110 \cdot 10^{-1}$ for 1 D-T neutron in the solid-state blanket, and $6.264 \cdot 10^{-1}$ in the blanket with the solution of thorium dioxide in heavy water. The difference is not more than 3%.

The rate of the reaction ⁶Li (n, ⁴He)³H is equal to 1.317 for 1 D-T neutron in the solid-state blanket, and 1.260 in the blanket with the solution of thorium dioxide in heavy water. The difference is not more than 4-5%.

The rate of the reactions (n, f) + (n, 2n) + (n, 3n) is 2 times more in the blanket with the thorium dioxide solution.

3.3. Molten salt and molten lead blankets

The calculation model of a molten salt blanket for 233 U and 3 H production is shown in Figure 4. The moderator is composed of the molten salt 232 ThF₄ (30% mol.)–FLiNaK (70% mol.). The atomic weight of the salt is 121.313 g/mol and the density is 4.634 g/cm³. Its composition is presented in Table 9.

Table 9. The chemical composition of molten salt substances. ρ is the density of the substance, η is the molar fraction of chemical elements in the substance.

ThF_4+F $\rho = 4.63$	ThF ₄ +FLiNaK, $\rho = 4.634 \text{ g/cm}^3$		hium ^{nat} Li, 10 ⁻¹ g/cm ³
Elements	η,%	Elements	η,%
ThF ₄	30.00	⁷ Li	92.5
^{nat} LiF	32.55	⁶ Li	7.5
KF	29.40	_	_
NaF	8.05	_	_

The calculation results are shown in Table 10.

Table 10. Reaction rates and nuclear fuel production in the FNS molten salt blanket consisted of ²³²ThF₄ (30% mol.) and FLiNaK (70% mol.). The blanket thickness is 15 cm. Fusion power is1n/s for reaction rates and 1.775 10¹⁸ n/s (5 MW) for fuel production.

	1
Moderator material	²³² ThF ₄ +FLiNaK
Blanket material	Be
$(n,\gamma)^{-232}$ Th	$3.973 \cdot 10^{-1}$
(n,f)- ²³² Th	$1.034 \cdot 10^{-2}$
$(n,2n)+(n,3n)-^{232}Th$	$3.593 \cdot 10^{-2}$
(n,t) - 6 Li ₂ O	$8.516^{\cdot}10^{-1}$
(n,t)- ⁶ Li	$2.977 \cdot 10^{-2}$
(n,t)-total	$8.814^{\cdot}10^{-1}$
³ H, kg/year	$2.472 \cdot 10^{-1}$
²³³ U, kg/year	8.613

In the molten salt blanket ThF₄+FLiNaK, the rate of the reaction 232 Th(n, γ) 233 Th is equal to $3.973\cdot10^{-1}$ for 1 D-T neutron. The rate of the reaction 6 Li (n, 4 He) 3 H is equal to $8.814\cdot10^{-11}$ for 1 D-T neutron. The rate of the both reactions is by 30% less than in the solid-state blanket, and the blanket with the solution of thorium dioxide in heavy water.

So the molten salt blanket $ThF_4+FLiNaK$ shows the 30% decline in the nuclear fuel production in comparison with the solid-state blanket, and the blanket with the solution of thorium dioxide in heavy water.

Also two other kindes of blankets were considered. There were a molten lead and a molten FLiBe salt blanket. These blankets were used for reprocessing of ²³⁹Pu. A fuel production problem together with a capability to produce electricity and heat were considered also.

The calculation model of a molten lead blanket with ²³⁹Pu dissolved in natural lead ^{nat}Pb is shown in Figure 5. The model includes 5 cm ²³⁸U layer for ²³⁹Pu generation, using the leakage neutrons. The calculation results of this model are presented in Table 11.

Figure 5. Vertical (a) and horizontal (b) section view of the FNS model.

Table 11. Reaction rates and nuclear fuel production in the FNS blankets with ²³⁹Pu dissolved in natural lead ^{nat}Pb. The blankets are consisted of two or three layers from different materials. Fusion power is 1 n/s for reaction rates and 1.775 10¹⁸ n/s (5 MW) for fuel production.

power is1 n/s for reaction rates and 1.//510° n/s (5 MW) for fuel production.						
Variant	1	2	3	4		
²³⁹ Pu mass in	300.6	939.5	939.5	939.5		
blanket, kg						
Moderator	^{nat} Pb	^{nat} Pb	^{nat} Pb	^{12}C		
material						
Blanket	^{nat} Pb - 15 cm.	^{nat} Pb - 15 cm.	^{nat} Pb - 15 cm.	^{nat} Pb - 15 cm.		
material	FLiBe +	^{nat} Pb+2%(mas.) ²³⁹ Pu	^{nat} Pb+2%(mas.) ²³⁹ Pu	^{nat} Pb+2%(mas.) ²³⁹ Pu		
	4%(mas.) ²³⁹ Pu -	- 25 cm	- 25 cm	- 25 cm.		
	25 cm			^{nat} Pb - 20 cm.		
$(n,\gamma)^{-239}$ Pu	$3.92 \cdot 10^{-2}$	1.350	1.387	1.774		
(n,f)- ²³⁹ Pu	$5.80^{\circ}10^{-2}$	3.167	3.244	4.284		
(n,2n)+(n,3n)-	$6.33 \cdot 10^{-3}$	$9.304 \cdot 10^{-2}$	$9.269 \cdot 10^{-2}$	$9.744^{\cdot}10^{-2}$		
²³⁹ Pu						
(n,t) - 6 L i_2 O	$5.43 \cdot 10^{-1}$	1.822	1.861	2.020		
(n,t)- ⁶ Li	$1.92^{\cdot}10^{-1}$	$7.701\cdot10^{-1}$	$3.952 \cdot 10^{-1}$	$4.825^{\cdot}10^{-1}$		
(n,t)-FLiBe	$4.08^{\cdot}10^{-1}$	—	_	—		
(n,t)-total	1.14	2.592	2.257	2.503		
$(n,\gamma)^{-238}U$		No ²³⁸ U	1.213	1.744		
^{3}H	$3.20^{\cdot}10^{-1}$	$7.271^{\cdot}10^{-1}$	$6.331 \cdot 10^{-1}$	$7.021^{\cdot}10^{-1}$		
production,						
kg/year						
²³⁹ Pu		_	26.86	38.61		
production,						
kg/year ²³⁹ Pu						
²³⁹ Pu	1.42	102.2	104.6	136.3		
reprocessing,						
kg/year						

The FLiBe molten salt blanket with the natural lead moderator has no advantages with respect to the molten lead one with the same moderator. For the molten lead blanket the use of the graphite moderator gives the better results than the use of the natural lead one. The increase is 30% for the ²³⁹Pu reprocessing, 44% for the ²³⁹Pu production, and 11% for the ³H production. It means that in the lead blanket the fast neutron spectrum does not take an advantage over the thermal one for reprocessing of spent fuel and production of fissile elements, because the fission reaction rate is essentially decreased. The capture-to-fission ratio for ²³⁹Pu almost is not varied, and is equal to 0.428 for the thermal spectrum, and 0.407 for the fast one.

For the molten lead blanket with the graphite moderator k_{eff} reached the value of 0.95.

A high rate of spent nuclear fuel reprocessing, and nuclear fuel production can be obtained in a molten blanket, using natural lead in combination with a graphite moderator. This blanket can be used as a subcritical nuclear reactor for electricity and heat generation. But molten lead can't move inside pipes in the presence of an electromagnetic field, so a molten lead blanket design is extremely problematic.

The calculation model of a molten salt blanket with ²³⁹Pu dissolved in FLiBe is the same as shown in Figure 5. The calculation results are presented in Table 12.

Table 12. Reaction rates and nuclear fuel production in the FNS blankets with ²³⁹Pu dissolved in FLiBe. The blankets are consisted of two or three layers from different materials. Fusion power is 1 n/s for reaction rates and 1.775 10¹⁸ n/s (5 MW) for fuel production.

Variant	1	2	3
²³⁹ Pu mass in blanket, kg	939.5	939.5	704.6
Moderator material	¹² C	¹² C	¹² C
Blanket material	FLiBe - 15 cm. FLiBe+11.4%(mas.) ²³⁹ Pu - 25 cm.	Void - 15 cm. F ⁷ LiBe+11.4%(mas.) ²³⁹ Pu - 25 cm.	nat Pb - 15 cm. F ⁷ LiBe+8.55%(mas.) ²³⁹ Pu - 25 cm.
	FLiBe - 20 cm.	F^7 LiBe - 20 cm.	1 u 25 cm.
$(n,\gamma)^{-239}$ Pu	$2.372 \cdot 10^{-2}$	$3.774 \cdot 10^{-1}$	7.06
$(n,f)^{-239}$ Pu	$4.661^{\cdot}10^{-2}$	$8.047 \cdot 10^{-1}$	14.8
(n,2n)+(n,3n)- ²³⁹ Pu	$2.770 \cdot 10^{-2}$	$4.603 \cdot 10^{-2}$	$2.81 \cdot 10^{-1}$
(n,t) - 6 L i_2 O	$1.340^{\cdot}10^{-1}$	$4.784 \cdot 10^{-1}$	6.26
(n,t) - 6 Li	$6.664^{\cdot}10^{-2}$	$2.561 \cdot 10^{-1}$	1.94
(n,t)-FLiBe	$6.174^{\cdot}10^{-1}$	$4.298 \cdot 10^{-3}$	$4.20^{-10^{-4}}$
(n,t)-total	8.170^{-1}	$7.388 \cdot 10^{-1}$	8.20
$(n,\gamma)^{-238}U$	$2.192 \cdot 10^{-1}$	$8.225 \cdot 10^{-1}$	7.17
³ H production, kg/year ²³⁹ Pu	2.292 10 ⁻¹	2.072 10-1	2.300
production, kg/year	4.853	18.21	158.7
reprocessing, kg/year	2.171	18.83	490.2

If FLiBe includes natural lithium a high rate of the ²³⁹Pu reprocessing and fuel production can not be achieved due to the presence of 6Li in the natural lithium mix (~ 7.5 mol. %). The isotope ⁶Li is a strong absorber of thermal neutrons. The positive result is obtained only if the ⁶Li isotope is extracted. If ⁷Li is used instead of natural lithium the fission reaction rate has a considerable increase (by a factor of more than 10). The presence of 15 cm blanket layer from natural lead increases the rate of ²³⁹Pu reprocessing by a factor of 26, the ²³⁹Pu production by a factor of 9, the ³H production by a factor of 11.

In the ^{nat}Pb- F⁷LiBe blanket with the graphite moderator, k_{eff} is acquired a value more than 0.95.

In this blanket the ²³⁹Pu reprocessing rate is 980.4 kg/year, the ²³⁹Pu producing rate is 317.4 kg/year, and the ³H producing rate is 4.600 kg/year for fusion power of 10 MW (3.550 10¹⁸ n/s). These rates of nuclear fuel production and reprocessing reach the values corresponding to the requirements for commercial use of nuclear reactors.

Summary

The neutronics analysis shows that all kinds of the considered blankets have sufficient abilities as nuclear fuel producers.

But extracting generated ²³³U or ²³⁹Pu from a solid blanket creates significant challenges and is a little attractive. An accumulation of ²³⁹Pu and ²³³U in a solid-state blanket is accompanied with their burnup. The burnup of nuclear fuel causes a builup of radiotoxic fission nuclides.

Production of plutonium creates a problem of nuclear weapon material proliferation.

The application of the thorium nuclear fuel cycle has significant challenges also [15]. ²³³U is generated by β -decay of ²³³Pa. ²³³Pa resulting from β -decay of a ²³³Th isotope has great half-life (26.967 days), which causes its accumulation in a blanket material. ²³³Pa possesses a high neutron capture cross section. In the result of neutron capture, 235 U is generated, creating a competition to β -decay reactions with 233 U generation. The 235 U generation requires absorption of more than 2 neutrons, which increases their consumption. The interactions of ²³⁵U with neutrons result in generation of transuranium elements.

In addition, the burnup of 233 U leads to generation of 232 U ($T_{1/2}$ =68.9 years), in which decay chain there are isotopes producing high energy γ -radiation such as 210 Bi (E $_{\gamma}$ =1.6 MeV), 212 Po $(E_{\gamma}=1.6 \text{ MeV})$, and especially problematic ²⁰⁸Tl $(E_{\gamma}=2.6 \text{ MeV})$. This requires development of fuel remote reprocessing and refabrication technologies. The emergence of short-lived isotopes of thorium increases radiotoxicity, which may complicate thorium recycling. Also the strong highenergy radiation of thorium fuel damages electronics. It was one of the factors that have hampered the use of ²³³U for manufacture of nuclear weapons. Besides this, the isotope ²³²U cannot be extracted from the spent nuclear fuel by chemical methods.

Among the fast neutron reactions in thorium the most intense is the reaction (n, 2n). It leads to a significant accumulation of an isotope 231 Pa in the secondary products of the reactions 232 Th(n, 2n) 231 Th(β -, $T_{1/2} = 25.6$ h) 231 Pa.

²³¹Pa is a α -emitter with $T_{1/2} = 32\,480 \pm 260$ years, and is extremely toxic. The products of the (n, 3n) and fission reactions give an additional contribution to radiotoxic pollutions from thorium.

Interactions of ²³¹Pa with neutrons lead to generation of ²³³Pa and ²³²U.

To prevent the undesirable reactions, permanent removal of accumulated protactinium ²³³Pa from an area of neutron irradiation is required. This can be done in blankets with solutions of salts or oxides of thorium in heavy water, or molten-salt blankets, using fluoride of thorium.

The comparison of the calculated results shows that the rates of the reactions generating the nuclear fuel are similar to each other in the solid-state blanket and the blanket with the solution of thorium oxide in heavy water. The molten-salt blanket $ThF_4+FLiNaK$ is inferior to these two blankets from this viewpoint. However, it has significant advantages from the viewpoint of creating a save hybrid tokamak.

The interactions of neutrons with heavy water lead to radiolysis, which poses a serious threat of explosions and fires. The solutions circulating in the contours cause corrosion and erosion of reactor materials [16].

So today fluoride molten-salt blankets are the most suitable for nuclear fuel production. It is distinguished by fire safety, low accident probability, high radiation and thermal stability, chemical inertness with respect to water and air, easy fluidity in magnetic fields, a high boiling point and a low pressure at operating temperatures, the ability to protect surfaces of reactor components and systems from the negative impact of the molten substance and to ensure the self-healing of cracks, and so on [1, 17].

The molten salt blankets with the use of natural lead and FLiBe obtain a high rate of spent nuclear fuel reprocessing and nuclear fuel production. In these blankets it is possible to install an operating mode with $k_{\rm eff} \sim 0$, 95 if a thermal neutron spectrum is prevailed. It means that a hybrid tokamak can work like a reactor producing electricity and heat. However, due to high sensitivity of lead to influence of an electromagnetic field, probably, FLiBe blankets can be used only.

Natural lithium which is a part of FLiBe must be cleared from a ⁶Li isotope, which is a strong absorber of thermal neutrons.

For all kinds of blankets it is necessary to add fissile materials in fertile one to increase a yield of fissile isotopes to more than 1 nuclide per 1 D-T neutron.

The key problem of implementation of molten-salt systems is the lack of their operation experience that may result in unexpected intractable problems.

For solid-state blankets the key problem is an extraction of a considerable quantity of fission products. For blankets with heavy water solutions of salts, or oxides of uranium and thorium, the one is radiolysis, material corrosion, and sedimentation of radiotoxic elements on walls of vessels. The radiation safety problem, and vessel material resistance to corrosion are important for molten salt blankets also.

Acknowledgments

This work was partially funded by Rosatom Corporation in accordance with Contract No. N.4b.45.03.10.1011.

References

- [1] E. P. Velikhov, E. A. Azizov, P.N. Alekseev, M.I. Gurevich, S.A. Subbotin, A.L. Shimkevich, "Concept of «green» nuclear power engineering", VANT, Ser. Fusion, 2013, Vol. 1, p. 5-16.
- [2] E. P. Velikhov, V. A. Glukhikh, V. V. Guriev, et al., "Hybrid thermonuclear tokamak reactor for the production of fissile fuel and electricity", Atomic Energy, Vol. 45, No. 1, 3–9 (1978).
- [3] E. A. Azizov, G. G. Gladush, A. V. Lopatkin, and I. B. Lukasevich, "Tokamak based hybrid systems for fuel production and recovery from spent nuclear fuel", Atomic Energy, Vol. 110, No. 2, June, 2011 (Russian Original Vol. 110, No. 2, February, 2011).
- [4] E. P. Velikhov, E. A. Azizov (presented by B. V. Kuteev), "On Russion Strategy for Controlled Fusion", MFERW, Princeton, NJ, USA, September 7-10, 2011.

- [5] B. V. Kuteev, "Fusion for Neutrons as Necessary Step to Commercial Fusion", MFERW, Princeton, NJ, USA, September 7-10, 2011.
- [6] B. V. Kuteev, P. R. Goncharov, V. Yu. Sergeev, and V. I. Khripunov, "Intense Fusion Neutron Sources", ISSN 1063 780X, Plasma Physics Reports, 2010, Vol. 36, No. 4, pp. 281– 317
- [7] B.V. Kuteev, A.A. Borisov, A.A. Golikov et al., "Tokamak-based MW-Range Fusion Neutron Sources", DOE Workshop on Fusion-Fission Hybrid Reactors, Gaithersburg, Maryland, USA, September 30 October 2, 2009.
- [8] B.V. Kuteev, P.R. Goncharov, V.Yu. Sergeev, and V.I. Khripunov, "Intense Fusion Neutron Sources, Plasma Physics Reports", 2010, Vol.36, No 4, pp.281-317.
- [9] H.R. Wilson, G.M. Voss, R.J. Akers et al., "The Spherical Tokamak as a Components Test Facility", FT/3-1Ra, 20th IAEA Fusion Energy Conf., Vilamoura, Portugal, November 1 6, 2004.
- [10] Y.-K.M. Peng, C.A. Neumeyer, P.J. Fogarty et al., "Physics and Engineering Assessments of Spherical Torus Component Test Facility", FT/3-1Rb, 20th IAEA Fusion Energy Conf., Vilamoura, Portugal, November 1 6, 2004.
- [11] D. Steiner, E. Cheng, R. Miller, et al., "The ARIES Fusion Neutron Source Study", UCSD-ENG-0083 (University of California, San Diego, CA, 2000); http://aries.ucsd.edu/LIB/REPORT/ARIES1-MISC/FNS1-final.pdf.
- [12] MCNP-4B: Monte Carlo N-Particle Transport Code System. RSIC Computer Code Collection, CCC-200. Oak Ridge National Laboratory, 1997.
- [13] FENDL-2.1. Evaluated nuclear data library for fusion applications, INDC (NDS)-467, D.L. Aldama and Trkov, 2004.
- [14] BNL-NCS-44945 (ENDF-102). Revision 10/91. ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6, October 1991, Edited by R.F. Rose and C.L. Dunford.
- [15] Thorium Fuel Cycle potential benefits and challenges. IAEA-TECDOC-1450, IAEA, Vienna, 2005.
- [16] B. M. Adamson, S.E. Beall, W.E. Browning, et al, "Aqueous homogeneous reactors". Part I. Edited by J.A. Lane, moltensalt.org references/static/downloads/pdf/....
- [17] Le Brun, C.; L. Mathieu, D. Heuer and A. Nuttin. "Impact of the MSBR concept technology on long-lived radio-toxicity and proliferation resistance". Technical Meeting on Fissile Material Management Strategies for Sustainable Nuclear Energy, Vienna 2005. Retrieved 2010-06-20.