#### HIT HAN LAIS

# EfficientML.ai Lecture 02: Basics of Neural Networks



Song Han

Associate Professor, MIT
Distinguished Scientist, NVIDIA





### Deep Learning Continues to Scale

The demand of computation grows exponentially



### Problem: DL Models Outgrow Hardware

Moore's Law: 2x every 2 years; DL models: 4x every 2 years



### Efficient Deep Learning Techniques are Essential

Bridges the Gap between the Supply and Demand of Computation



Model compression bridges the gap.

### EfficientViT: Speeds up High-Resolution Computer Vision



EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction [Cai et al., ICCV 2023]

### EfficientViT: Speeds up High-Resolution Computer Vision

#### EfficientViT enables real-time street scene segmentation on edge

SegFormer 1.6FPS, 82.4mloU EfficientViT 21.8FPS, 82.7mloU





Speed is measured on Nvidia Jetson AGX Orin with TensorRT, fp16, batch size 1.

Performance is measured on the Cityscapes dataset.

### Efficient Prompt Segmentation

EfficientViT accelerates Segment Anything by 70 times on GPU

SAM VIT-Huge
12 image/s



















### Efficient Prompt Segmentation

EfficientViT accelerates Segment Anything by 70 times on GPU

SAM ViT-Huge

1 2 image/s















### Lecture Plan

#### Today we will:

- 1. Review the terminology of neural networks
  - Neuron, Synapses, Activation, Feature, Weight, Parameter, etc.
- 2. Review popular building blocks in a neural network
  - Fully-Connected, Convolution, Grouped Convolution, Depthwise Convolution
  - Pooling, Normalization, Transformer
- 3. Review convolutional neural networks' architecture
  - AlexNet, VGG-16, ResNet-50, MobileNetV2
- Introduce popular efficiency metrics for neural networks
  - #Parameters, Model Size, Peak #Activations, MAC, FLOP, FLOPS, OP, OPS, Latency, Throughput
- 5. Lab 0: Tutorial on PyTorch and lab exercises

### Neuron and Synapse





### Deep Neural Network

**3-Layer Neural Network** With 2 Hidden Layers



## Popular Neural Network Layers

### Fully-Connected Layer (Linear Layer)

The output neuron is connected to all input neurons.

- Input Features  $\mathbf{X}: (1, c_i)$
- Output Features  $\mathbf{Y}:(1,c_o)$
- Weights  $\mathbf{W}:\left(c_{o},\,c_{i}\right)$
- Bias  $\mathbf{b}:(c_o,)$

| Notations |                 |
|-----------|-----------------|
|           |                 |
| $C_i$     | Input Channels  |
| $C_o$     | Output Channels |



$$y_i = \sum_j w_{ij} x_j + b_i$$



### Fully-Connected Layer (Linear Layer)

The output neuron is connected to all input neurons.

- Input Features  $\mathbf{X}$ :  $(n, c_i)$
- Output Features  $\mathbf{Y}:(n,c_o)$
- Weights  $\mathbf{W}:(c_o,c_i)$
- Bias  $\mathbf{b}:(c_o,)$

| Notations |                 |
|-----------|-----------------|
| n         | Batch Size      |
| $C_i$     | Input Channels  |
| $C_o$     | Output Channels |



$$y_i = \sum_j w_{ij} x_j + b_i$$



### Fully-Connected Layer (Linear Layer)

The output neuron is connected to all input neurons.

#### Shape of Tensors:

- Input Features  $\mathbf{X}:(n,c_i)$
- Output Features  $\mathbf{Y}:(n,c_o)$
- Weights  $\mathbf{W}:(c_o,c_i)$
- Bias  $\mathbf{b}:(c_o,)$

| Notations |                 |
|-----------|-----------------|
| n         | Batch Size      |
| $c_i$     | Input Channels  |
| $C_{o}$   | Output Channels |



#### Multilayer Perceptron (MLP)



The output neuron is connected to input neurons in the receptive field.

#### Shape of Tensors:

- Input Features  $\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$
- Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$
- Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i)}$
- Bias  $\mathbf{b}:(c_o,)$

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $C_o$      | Output Channels    |
| $W_i, W_o$ | Input/Output Width |



The output neuron is connected to input neurons in the receptive field.

#### **Shape of Tensors:**

- Input Features  $\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$
- Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$
- Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i)}$
- Bias **b** :  $(c_o, )$

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $c_o$      | Output Channels    |
| $W_i, W_o$ | Input/Output Width |
| $k_w$      | Kernel Width       |



The output neuron is connected to input neurons in the receptive field.

- Shape of Tensors:
  - Input Features  $\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$
  - Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i)}$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $C_{O}$    | Output Channels    |
| $W_i, W_o$ | Input/Output Width |
| $k_w$      | Kernel Width       |



The output neuron is connected to input neurons in the receptive field.

- 1D Conv
- Input Features  $\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$
- Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$
- Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i)}$
- Bias  $\mathbf{b}:(c_o,)$

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $C_{O}$    | Output Channels    |
| $W_i, W_o$ | Input/Output Width |
| $k_w$      | Kernel Width       |



The output neuron is connected to input neurons in the receptive field.

#### **Shape of Tensors:**

1D Conv

• Input Features 
$$\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$$

• Output Features 
$$\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$$

• Weights 
$$\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$$

• Bias **b** :  $(c_0, )$ 

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $C_{O}$    | Output Channels    |
| $W_i, W_o$ | Input/Output Width |
| $k_w$      | Kernel Width       |



**Weight Sharing** 

#### The output neuron is connected to input neurons in the receptive field.

**Shape of Tensors:** 

- 1D Conv
- Input Features  $\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$
- Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)}$
- Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$
- Bias **b** :  $(c_0, )$

| Notations  |                    |
|------------|--------------------|
| n          | Batch Size         |
| $C_i$      | Input Channels     |
| $C_o$      | Output Channels    |
| $W_i, W_o$ | Input/Output Width |
| $k_w$      | Kernel Width       |



**Weight Sharing** 

#### The output neuron is connected to input neurons in the receptive field.

1D Conv

- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}: \frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W} : \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations  |                     |
|------------|---------------------|
| n          | Batch Size          |
| $C_i$      | Input Channels      |
| $C_o$      | Output Channels     |
| $h_i, h_o$ | Input/Output Height |
| $W_i, W_o$ | Input/Output Width  |



2D Conv

**Activation Map / Feature Map** 

 $h \times w$ 

#### The output neuron is connected to input neurons in the receptive field.

1D Conv

- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}: \frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$

$$(n, c_i, w_i)$$
  $(n, c_i, h_i, w_i)$ 

- Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
- Weights  $\mathbf{W} : \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$
- Bias  $\mathbf{b}:(c_o,)$

|            | Notations           |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $C_i$      | Input Channels      |  |
| $C_{O}$    | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h$      | Kernel Height       |  |
| $k_w$      | Kernel Width        |  |



#### The output neuron is connected to input neurons in the receptive field.

1D Conv

- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}: \frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$

2D Conv

channel dimension

- Weights  $\mathbf{W} : \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$
- Bias  $\mathbf{b}:(c_o,)$

|            | Notations           |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $c_i$      | Input Channels      |  |
| $C_{O}$    | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h$      | Kernel Height       |  |
| $k_w$      | Kernel Width        |  |



#### The output neuron is connected to input neurons in the receptive field.

2D Conv

- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}: \frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W} : \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations    |                     |  |  |
|--------------|---------------------|--|--|
| n Batch Size |                     |  |  |
| $C_i$        | Input Channels      |  |  |
| $C_o$        | Output Channels     |  |  |
| $h_i, h_o$   | Input/Output Height |  |  |
| $W_i, W_o$   | Input/Output Width  |  |  |
| $k_h$        | Kernel Height       |  |  |
| $k_w$        | Kernel Width        |  |  |



- **Shape of Tensors:** 
  - Input Features  $X : \frac{(n, c_i)}{}$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_h, k_w)$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations    |                     |  |  |
|--------------|---------------------|--|--|
| n Batch Size |                     |  |  |
| $C_i$        | Input Channels      |  |  |
| $C_o$        | Output Channels     |  |  |
| $h_i, h_o$   | Input/Output Height |  |  |
| $W_i, W_o$   | Input/Output Width  |  |  |
| $k_h$        | Kernel Height       |  |  |
| $k_w$        | Kernel Width        |  |  |

| 1D Conv         | 2D Conv              |
|-----------------|----------------------|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |



$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





#### The output neuron is connected to input neurons in the receptive field.

• Input Features 
$$\mathbf{X}$$
:  $\frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$ 

• Output Features 
$$\mathbf{Y}: \frac{(n, c_o)}{(n, c_o)}$$

• Weights 
$$\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$$
  $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$ 

• Bias 
$$\mathbf{b}:(c_o,)$$

|              | Notations           |  |  |  |
|--------------|---------------------|--|--|--|
| n Batch Size |                     |  |  |  |
| $C_i$        | Input Channels      |  |  |  |
| $C_{O}$      | Output Channels     |  |  |  |
| $h_i, h_o$   | Input/Output Height |  |  |  |
| $W_i, W_o$   | Input/Output Width  |  |  |  |
| $k_h$        | Kernel Height       |  |  |  |
| $k_w$        | Kernel Width        |  |  |  |

| 1D Conv         | 2D Conv              |
|-----------------|----------------------|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |

| (n, | $C_{o}$ , | $W_o$ | (n, | $C_o$ , | $h_o$ , | $W_o$ |  |
|-----|-----------|-------|-----|---------|---------|-------|--|
|     |           |       |     |         |         |       |  |

$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





#### The output neuron is connected to input neurons in the receptive field.

• Input Features 
$$\mathbf{X} : \frac{(n, c_i)}{(n, c_i, w_i)}$$
  $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$ 

• Output Features 
$$\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$$

• Weights 
$$\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$$
  $(c_o, c_i, k_w)$   $(c_o, c_i, k_h, k_w)$ 

• Bias 
$$\mathbf{b}$$
:  $(c_o,)$ 

|            | Notations           |  |  |  |
|------------|---------------------|--|--|--|
| n          | Batch Size          |  |  |  |
| $c_i$      | Input Channels      |  |  |  |
| $C_{O}$    | Output Channels     |  |  |  |
| $h_i, h_o$ | Input/Output Height |  |  |  |
| $W_i, W_o$ | Input/Output Width  |  |  |  |
| $k_h$      | Kernel Height       |  |  |  |
| $k_w$      | Kernel Width        |  |  |  |

| 1D Conv |   |     |   | 2D Conv |   |   |     |   |
|---------|---|-----|---|---------|---|---|-----|---|
| (10     | 0 | 147 | 1 | 10      | 0 | h | 149 | \ |



$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





#### The output neuron is connected to input neurons in the receptive field.

• Input Features 
$$\mathbf{X}$$
:  $\frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$ 

• Output Features 
$$\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$$

• Weights 
$$\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$$
  $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$ 

• Bias 
$$\mathbf{b}$$
:  $(c_o,)$ 

| Notations    |                     |  |  |
|--------------|---------------------|--|--|
| n Batch Size |                     |  |  |
| $c_i$        | Input Channels      |  |  |
| $C_o$        | Output Channels     |  |  |
| $h_i, h_o$   | Input/Output Height |  |  |
| $W_i, W_o$   | Input/Output Width  |  |  |
| $k_h$        | Kernel Height       |  |  |
| $k_w$        | Kernel Width        |  |  |

| 1D Conv   | 2D Conv      |  |
|-----------|--------------|--|
| (n c. w.) | (n, c, h, w) |  |

| , , | ι) | ( /       |   | ι)             |
|-----|----|-----------|---|----------------|
|     | w  | $(n \ a)$ | h | $(w_{\alpha})$ |

$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





#### The output neuron is connected to input neurons in the receptive field.

• Input Features 
$$\mathbf{X} := \frac{(n, c_i)}{(n, c_i, w_i)}$$
  $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$ 

• Output Features 
$$\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w)}$$

• Weights 
$$\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$$
  $(c_o, c_i, k_w)$   $(c_o, c_i, k_w)$ 

• Bias 
$$\mathbf{b}:(c_o,)$$

|              | Notations           |  |  |  |
|--------------|---------------------|--|--|--|
| n Batch Size |                     |  |  |  |
| $C_i$        | Input Channels      |  |  |  |
| $C_o$        | Output Channels     |  |  |  |
| $h_i, h_o$   | Input/Output Height |  |  |  |
| $W_i, W_o$   | Input/Output Width  |  |  |  |
| $k_h$        | Kernel Height       |  |  |  |
| $k_w$        | Kernel Width        |  |  |  |

| 1D Conv         | 2D Conv              |  |  |
|-----------------|----------------------|--|--|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |  |  |

| $(n, c_o, w_o)$ | ) ( | (n, | $C_{\alpha}$ | $h_{o}$ | $(w_0)$ |
|-----------------|-----|-----|--------------|---------|---------|
| (0,0,0)         |     |     | 0,           | 0,      | 0)      |

$$(c_o, c_i, k_w) \quad (c_o, c_i, k_h, k_w)$$





- **Shape of Tensors:** 
  - Input Features  $X : \frac{(n, c_i)}{(n, c_i)}$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$

  - Bias  $\mathbf{b}:(c_o,)$

| Notations                                        |              |  |  |  |  |
|--------------------------------------------------|--------------|--|--|--|--|
| n                                                | Batch Size   |  |  |  |  |
| C <sub>i</sub> Input Channels                    |              |  |  |  |  |
| <sup>c</sup> <sub>o</sub> Output Channels        |              |  |  |  |  |
| $h_i, h_o$ Input/Output Heig                     |              |  |  |  |  |
| W <sub>i</sub> , W <sub>o</sub> Input/Output Wid |              |  |  |  |  |
| k <sub>h</sub> Kernel Height                     |              |  |  |  |  |
| $k_w$                                            | Kernel Width |  |  |  |  |

| 1D Conv         | 2D Conv              |  |  |  |
|-----------------|----------------------|--|--|--|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |  |  |  |







- **Shape of Tensors:** 
  - Input Features  $X : \frac{(n, c_i)}{n}$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_h, k_w)$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations                      |                    |  |  |  |  |
|--------------------------------|--------------------|--|--|--|--|
| n                              | Batch Size         |  |  |  |  |
| C <sub>i</sub> Input Channels  |                    |  |  |  |  |
| c <sub>o</sub> Output Channels |                    |  |  |  |  |
| $h_i, h_o$ Input/Output Heigh  |                    |  |  |  |  |
| $W_i, W_o$                     | Input/Output Width |  |  |  |  |
| k <sub>h</sub> Kernel Height   |                    |  |  |  |  |
| $k_w$                          | Kernel Width       |  |  |  |  |

| 1D Conv         | 2D Conv              |
|-----------------|----------------------|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |



$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}$ :  $\frac{(n, c_i)}{(n, c_i, w_i)}$   $(n, c_i, w_i)$   $(n, c_i, h_i, w_i)$
  - Output Features  $\mathbf{Y}: \frac{(n, c_o)}{(n, c_o, w_o)} (n, c_o, w_o) (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W}: \frac{(c_o, c_i)}{(c_o, c_i, k_w)}$   $(c_o, c_i, k_w)$   $(c_o, c_i, k_h, k_w)$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations                      |                    |  |  |  |  |
|--------------------------------|--------------------|--|--|--|--|
| n                              | Batch Size         |  |  |  |  |
| C <sub>i</sub> Input Channels  |                    |  |  |  |  |
| c <sub>o</sub> Output Channels |                    |  |  |  |  |
| $h_i, h_o$ Input/Output Heigh  |                    |  |  |  |  |
| $W_i, W_o$                     | Input/Output Width |  |  |  |  |
| k <sub>h</sub> Kernel Height   |                    |  |  |  |  |
| $k_w$                          | Kernel Width       |  |  |  |  |

| 1D Conv         | 2D Conv              |
|-----------------|----------------------|
| $(n, c_i, w_i)$ | $(n, c_i, h_i, w_i)$ |



$$(c_o, c_i, k_w)$$
  $(c_o, c_i, k_h, k_w)$ 





The output neuron is connected to input neurons in the receptive field.

#### **Shape of Tensors:**

- Input Features  $\mathbf{X}$ :  $(n, c_i, h_i, w_i)$
- Output Features  $\mathbf{Y}: (n, c_o, h_o, w_o)$
- Weights  $\mathbf{W}: (c_o, c_i, k_h, k_w)$
- Bias **b** :  $(c_o, )$

| Notations                                        |              |  |  |  |  |
|--------------------------------------------------|--------------|--|--|--|--|
| n                                                | Batch Size   |  |  |  |  |
| C <sub>i</sub> Input Channels                    |              |  |  |  |  |
| <sup>c</sup> <sub>o</sub> Output Channels        |              |  |  |  |  |
| $h_i, h_o$ Input/Output Heig                     |              |  |  |  |  |
| W <sub>i</sub> , W <sub>o</sub> Input/Output Wid |              |  |  |  |  |
| k <sub>h</sub> Kernel Height                     |              |  |  |  |  |
| $k_w$                                            | Kernel Width |  |  |  |  |

Feature map size becomes smaller.



$$h_o = h_i - k_h + 1$$

$$h_i = w_i = 4$$

$$k_h = k_w = 3$$

$$h_o = w_o$$

$$= 4 - 3 + 1$$

$$= 2$$





Image source: 1

### Convolution Layer: Padding

- Padding can be used to keep the output feature map size is the same as input feature map size
  - Zero Padding pads the input boundaries with zero. (Default in PyTorch)
  - Other Paddings: Reflection Padding, Replication Padding, Constant Padding

| Notations                                          |                |  |  |  |
|----------------------------------------------------|----------------|--|--|--|
| n Batch Size                                       |                |  |  |  |
| $C_i$                                              | Input Channels |  |  |  |
| c <sub>o</sub> Output Channels                     |                |  |  |  |
| $h_i, h_o$ Input/Output Heigh                      |                |  |  |  |
| W <sub>i</sub> , W <sub>o</sub> Input/Output Widtl |                |  |  |  |
| $k_h$                                              | Kernel Height  |  |  |  |
| $k_w$                                              | Kernel Width   |  |  |  |

#### **Zero Padding**

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 2 | 3 | 0 | 0 |
| 0 | 0 | 4 | 5 | 6 | 0 | 0 |
| 0 | 0 | 7 | 8 | 9 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 9 | 8 | 7 | 8 | 9 | 8 | 7 |
|---|---|---|---|---|---|---|
| 6 | 5 | 4 | 5 | 6 | 4 | 5 |
| 3 | 2 | 1 | 2 | 3 | 2 | 1 |
| 6 | 5 | 4 | 5 | 6 | 5 | 4 |
| 9 | 8 | 7 | 8 | 9 | 8 | 7 |
| 6 | 5 | 4 | 5 | 6 | 5 | 4 |
| 3 | 2 | 1 | 2 | 3 | 2 | 1 |

**Reflection Padding** 

### $h_o = h_i + 2p - k_h + 1$

p is padding

$$h_i = w_i = 5$$
 $k_h = k_w = 3$ 
 $h_o = w_o$ 
 $= 5 + 2 \times 1 - 3 + 1$ 
 $= 5$ 

#### **Replication Padding**

| 1 | 1 | 1 | 2 | 3 | 3 | 3 |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 2 | 3 | 3 | 3 |
| 1 | 1 | 1 | 2 | 3 | 3 | 3 |
| 4 | 4 | 4 | 5 | 6 | 6 | 6 |
| 7 | 7 | 7 | 8 | 9 | 9 | 9 |
| 7 | 7 | 7 | 8 | 9 | 9 | 9 |
| 7 | 7 | 7 | 8 | 9 | 9 | 9 |

Image source: 1

### Convolution Layer: Receptive Field

- In convolution, each output element depends on  $k_h \times k_w$  receptive field in the input.
- Each successive convolution adds k-1 to the receptive field size
- With L layers, the receptive field size is  $L \cdot (k-1) + 1$



For L=2 and k=3, the receptive field size is 5

For L=3 and k=3, the receptive field size is **7** 

Problem: For large images, we need many layers for each output to "see" the whole image

Solution: Downsample inside the neural network

Slide Inspiration: Ruohan Gao

# Strided Convolution Layer



## Grouped Convolution Layer

### A group of narrower convolutions

- **Shape of Tensors:** 
  - Input Features  $\mathbf{X}$ :  $(n, c_i, h_i, w_i)$
  - Output Features  $\mathbf{Y}: (n, c_o, h_o, w_o)$
  - Weights  $\mathbf{W}: \frac{(c_o, c_i, k_h, k_w)}{(g \cdot c_o/g, c_i/g, k_h, k_w)}$
  - Bias  $\mathbf{b}:(c_o,)$

| Notations  |                     |
|------------|---------------------|
| n          | Batch Size          |
| $C_i$      | Input Channels      |
| $C_o$      | Output Channels     |
| $h_i, h_o$ | Input/Output Height |
| $W_i, W_o$ | Input/Output Width  |
| $k_h$      | Kernel Height       |
| $k_w$      | Kernel Width        |
| g          | Groups              |



Image source: 1

## Depthwise Convolution Layer

Independent filter for each channel:  $g = c_i = c_o$  in grouped convolution

### **Shape of Tensors:**

- Input Features  $\mathbf{X}$ :  $(n, c_i, h_i, w_i)$
- Output Features  $\mathbf{Y}: (n, c_o, h_o, w_o)$
- Weights  $\mathbf{W}: \frac{(c_o, c_i, k_h, k_w)}{(c, k_h, k_w)}$
- Bias **b** :  $(c_o, )$

| Notations  |                     |
|------------|---------------------|
| n          | Batch Size          |
| $C_i$      | Input Channels      |
| $C_{o}$    | Output Channels     |
| $h_i, h_o$ | Input/Output Height |
| $W_i, W_o$ | Input/Output Width  |
| $k_h$      | Kernel Height       |
| $k_w$      | Kernel Width        |
| g          | Groups              |





## Pooling Layer

### Downsample the feature map to a smaller size

- The output neuron pools the features in the receptive field, similar to convolution.
  - Usually, the stride is the same as the kernel size: s = k
- Pooling operates over each channel independently.
  - No learnable parameters





Output Feature Map

Image source: 1

### Normalization Layer

### Normalizing the features makes optimization faster.

Normalization layer normalizes the features as follows,

$$\hat{x}_i = \frac{1}{\sigma} \left( x_i - \mu_i \right)$$

$$\mu_{i} = \frac{1}{m} \sum_{k \in \mathcal{S}_{i}} x_{k}$$

$$\sigma_{i} = \sqrt{\frac{1}{m} \sum_{k \in \mathcal{S}_{i}} (x_{k} - \mu_{i})^{2} + \epsilon}$$

- $\mu_i$  is the mean, and  $\sigma_i$  is the standard deviation (std) over the set of pixels  $\mathcal{S}_i$ .
- Then learns a per-channel linear transform (trainable scale  $\gamma$  and shift  $\beta$ ) to compensate for the possible lost of representational ability.

$$y = \gamma_{i_c} \hat{x}_i + \beta_{i_c}$$



Group Normalization [Wu et al., ECCV 2018]

**Different normalizations** use different definitions of the set  $S_i$ (colored in blue)

### **Activation Function**

### Activation functions are typically non-linear functions















Other Activation Functions: Tanh, GELU, ELU, Mish...

### **Activation Function**

### Activation functions are typically non-linear functions









**Hard Swish** 









Other Activation Functions: Tanh, GELU, ELU, Mish...

### Transformer



Attention is All You Need [Vaswani et al., NeurlPS 2017]

# Popular CNN Architectures

### AlexNet

#### **AlexNet**

$$C \times H \times W$$

H, W

#### Alexitet

#### **Convolution Layer / Pooling Layer**

$$\frac{224 + 2 \times 2 - 11}{4} + 1 = 55$$

#### 3×3 MaxPool, stride 2

11×11 Conv, channel 96, stride 4, pad 2

$$\frac{55+0-3}{2}+1=27$$

$$\frac{27 + 2 \times 2 - 5}{1} + 1 = 27$$

$$\frac{27+0-3}{2}+1=13$$

$$384 \times 13 \times 13 \qquad \frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

$$384 \times 13 \times 13$$
  $\frac{13 + 25}{1}$ 

$$\frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

256×13×13 
$$\frac{13 + 2 \times 1 - 3}{1} + 1 = 13$$

$$\frac{13 + 0 - 3}{2} + 1 = 6$$

#### Linear, channel 4096



 $h_o = \frac{h_i + 2p - k_h}{s} + \frac{p}{s}$  is padding s is stride

#### **Linear Layer**



ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky et al., NeurIPS 2012]

### VGG-16

#### **AlexNet**

Image (3×224×224)

11×11 Conv, channel 96, stride 4, pad 2

3×3 MaxPool, stride 2

5×5 Conv, channel 256, pad 2, groups 2

3×3 MaxPool, stride 2

3×3 Conv, channel 384, pad 1

3×3 Conv, channel 384, pad 1, groups 2

3×3 Conv, channel 256, pad 1, groups 2

3×3 MaxPool, stride 2

Linear, channel 4096

Linear, channel 4096

Linear, channel 1000

#### **VGG-16**

Image (3×224×224) 3×3 Conv, channel 64, pad 1 3×3 Conv, channel 64, pad 1 2×2 MaxPool, stride 2 3×3 Conv, channel 128, pad 1 3×3 Conv, channel 128, pad 1 2×2 MaxPool, stride 2 3×3 Conv, channel 256, pad 1 3×3 Conv, channel 256, pad 1 3×3 Conv, channel 256, pad 1 2×2 MaxPool, stride 2 3×3 Conv, channel 512, pad 1 3×3 Conv, channel 512, pad 1 3×3 Conv, channel 512, pad 1 2×2 MaxPool, stride 2 3×3 Conv, channel 512, pad 1 3×3 Conv, channel 512, pad 1

3×3 Conv, channel 512, pad 1

2×2 MaxPool, stride 2

Linear, channel 4096

Linear, channel 4096

Linear, channel 1000

14

16

#### **Convolution Layer / Pooling Layer**



#### **Linear Layer**



Very Deep Convolutional Networks for Large-Scale Image Recognition [Simonyan et al., ICLR 2015]

### ResNet-50



### MobileNetV2

#### MobileNetV2

Image (3×224×224) 3×3 Conv, channel 32, stride 2, pad 1

3x3 DW-Conv, channel 32, pad 1 1×1 Conv, channel 16

InvertedBottleneckBlock, channel 24, stride 2 InvertedBottleneckBlock, channel 24

InvertedBottleneckBlock, channel 32, stride 2 InvertedBottleneckBlock, channel 32 InvertedBottleneckBlock, channel 32

InvertedBottleneckBlock, channel 64, stride 2 InvertedBottleneckBlock, channel 64

InvertedBottleneckBlock, channel 64

InvertedBottleneckBlock, channel 64

InvertedBottleneckBlock, channel 96

InvertedBottleneckBlock, channel 96 InvertedBottleneckBlock, channel 96

InvertedBottleneckBlock, channel 160, stride 2

InvertedBottleneckBlock, channel 160

InvertedBottleneckBlock, channel 160

InvertedBottleneckBlock, channel 320

1×1 Conv, channel 1280

AveragePool Linear, channel 1000









MobileNetV2: Inverted Residuals and Linear Bottlenecks [Sandler et al., CVPR 2018]

# Efficiency Metrics

How should we measure the efficiency of neural networks?

## Efficiency of Neural Networks



## Efficiency of Neural Networks



### Latency

### Measures the delay for a specific task





**High Latency** 638ms

**Low Latency** 46ms

Speed is measured on Nvidia Jetson AGX Orin with TensorRT, fp16, batch size 1.

## Throughput

### Measures the rate at which data is processed



Low Throughput = 6.1 video/s



**High Throughput = 77.4 video/s** 

## Latency vs. Throughput

- Does higher throughput translate to lower latency? Why?
- Does lower latency translate to higher throughput? Why?



Design 1

Latency: 50 ms

Throughput: 20 image/s



Design 2

Latency: 100 ms

Throughput: 40 image/s

### Latency



Latency 
$$\approx \max \left( T_{computation}, T_{memory} \right)$$

Number of Operations in Neural Network Model

 $T_{\text{computation}} \approx \frac{1}{\text{Number of Operations that Processor can Process Per Second}}$ 

**Hardware Specification** 

The mory  $\approx T$  data movement of activations  $^+$   $^T$  data movement of weights

 $^T$ data movement of weights  $^pprox$  Memory Bandwidth of Processor

Neural Network Model Size

**NN Specification** 

**NN Specification** 

**Hardware Specification** 

 $^{I}$ data movement of activations  $\approx$ 

Input Activation Size + Output Activation Size

**NN Specification** 

Memory Bandwidth of Processor Hardware Specification

## **Energy Consumption**

### Data movement → more memory reference → more energy

| Operation                       | Energy [pJ]             | Relative Energy Cost |
|---------------------------------|-------------------------|----------------------|
| 32 bit int ADD                  | 0.1                     |                      |
| 32 bit float ADD                | 0.9                     |                      |
| 32 bit Register File            | 1                       |                      |
| 32 bit int MULT                 | 3.1                     | 4 200 X              |
| 32 bit float MULT               | 3.7                     |                      |
| 32 bit SRAM Cache               | 5                       |                      |
| 32 bit DRAM Memory              | 640                     |                      |
| Rough Energy Cost For Various ( | Operations in 45nm 0.9V | 1 10 100 1000 10000  |



This image is in the public domain

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

## **Energy Consumption**

### Data movement → more memory reference → more energy

| Operation                     | Energy [pJ]             | Relative Energy Cost |
|-------------------------------|-------------------------|----------------------|
| 32 bit int ADD                | 0.1                     |                      |
| 32 bit float ADD              | 0.9                     |                      |
| 32 bit Register File          | 1                       |                      |
| 32 bit int MULT               | 3.1                     | 4 200 X              |
| 32 bit float MULT             | 3.7                     |                      |
| 32 bit SRAM Cache             | 5                       |                      |
| 32 bit DRAM Memory            | 640                     |                      |
| Rough Energy Cost For Various | Operations in 45nm 0.9V | 1 10 100 1000 10000  |



Battery images are in the public domain Image 1, image 2, image 4

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

### Efficiency of Neural Networks



#### **Efficiency Metrics**

**Memory-Related** 

#parameters

model size

total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS

OP, OPS

### Efficiency of Neural Networks



#### **Efficiency Metrics**

**Memory-Related** 

#parameters

model size

total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS

OP, OPS

• #Parameters is the parameter (synapse/weight) count of the given neural network, *i.e.*, the number of elements in the weight tensors.

| Layer                      | #Parameters<br>(bias is ignored) |
|----------------------------|----------------------------------|
| Linear Layer               | $c_o \cdot c_i$                  |
| Convolution                |                                  |
| <b>Grouped Convolution</b> |                                  |
| Depthwise<br>Convolution   |                                  |



| Notations  |                     |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $c_i$      | Input Channels      |  |
| $C_O$      | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h, k_w$ | Kernel Height/Width |  |
| g          | Groups              |  |

| Layer                      | #Parameters<br>(bias is ignored)    |
|----------------------------|-------------------------------------|
| Linear Layer               | $c_o \cdot c_i$                     |
| Convolution                | $c_o \cdot c_i \cdot k_h \cdot k_w$ |
| <b>Grouped Convolution</b> |                                     |
| Depthwise<br>Convolution   |                                     |









| Notations  |                     |
|------------|---------------------|
| n          | Batch Size          |
| $c_i$      | Input Channels      |
| $c_o$      | Output Channels     |
| $h_i,h_o$  | Input/Output Height |
| $W_i, W_o$ | Input/Output Width  |
| $k_h, k_w$ | Kernel Height/Width |
| g          | Groups              |

| Layer                    | #Parameters<br>(bias is ignored)                                                        |
|--------------------------|-----------------------------------------------------------------------------------------|
| Linear Layer             | $c_o \cdot c_i$                                                                         |
| Convolution              | $c_o \cdot c_i \cdot k_h \cdot k_w$                                                     |
| Grouped Convolution      | $c_o/g \cdot c_i/g \cdot k_h \cdot k_w \cdot g$ $= c_o \cdot c_i \cdot k_h \cdot k_w/g$ |
| Depthwise<br>Convolution |                                                                                         |



Image source: 1



| Notations  |                     |
|------------|---------------------|
| n          | Batch Size          |
| $c_i$      | Input Channels      |
| $c_o$      | Output Channels     |
| $h_i, h_o$ | Input/Output Height |
| $W_i, W_o$ | Input/Output Width  |
| $k_h, k_w$ | Kernel Height/Width |
| 8          | Groups              |

| Layer                    | #Parameters<br>(bias is ignored)                                                        |
|--------------------------|-----------------------------------------------------------------------------------------|
| Linear Layer             | $c_o \cdot c_i$                                                                         |
| Convolution              | $c_o \cdot c_i \cdot k_h \cdot k_w$                                                     |
| Grouped Convolution      | $c_o/g \cdot c_i/g \cdot k_h \cdot k_w \cdot g$ $= c_o \cdot c_i \cdot k_h \cdot k_w/g$ |
| Depthwise<br>Convolution | $c_o \cdot k_h \cdot k_w$                                                               |





Image source: 1



| Notations        |                     |  |
|------------------|---------------------|--|
| n                | Batch Size          |  |
| $c_i$            | Input Channels      |  |
| $C_{O}$          | Output Channels     |  |
| $h_i, h_o$       | Input/Output Height |  |
| $W_i, W_o$       | Input/Output Width  |  |
| $k_h, k_w$       | Kernel Height/Width |  |
| $\boldsymbol{g}$ | Groups              |  |

### AlexNet: #Parameters

| AlexNet                                 | $C \times H \times W$ | #Parameters<br>(bias is ignored) |
|-----------------------------------------|-----------------------|----------------------------------|
| Image (3×224×224)                       | 3×224×224             |                                  |
| 11×11 Conv, channel 96, stride 4, pad 2 | 96×55×55              | 96×3×11×11<br>= 24, 848          |
| 3×3 MaxPool, stride 2                   | 96×27×27              |                                  |
| 5×5 Conv, channel 256, pad 2, groups 2  | 256×27×27             | 256×96×5×5 / 2<br>= 307, 200     |
| 3×3 MaxPool, stride 2                   | 256×13×13             |                                  |
| 3×3 Conv, channel 384, pad 1            | 384×13×13             | 384×256×3×3<br>= 884, 736        |
| 3×3 Conv, channel 384, pad 1, groups 2  | 384×13×13             | 384×384×3×3 / 2<br>= 663, 552    |
| 3×3 Conv, channel 256, pad 1, groups 2  | 256×13×13             | 256; 3×3 / 2<br>= 442, 368       |
| 3×3 MaxPool, stride 2                   | 256×6×6               |                                  |
| Linear, channel 4096                    | 4096                  | 4096×(256×6×6)<br>= 37, 748, 736 |
| Linear, channel 4096                    | 4096                  | 4096×4096<br>= 16, 777, 216      |
| Linear, channel 1000                    | 1000                  | 1000×4096<br>= 4, 096, 000       |

| Layer                 | #Parameters                             |  |
|-----------------------|-----------------------------------------|--|
| Linear Layer          | $c_o \cdot c_i$                         |  |
| Convolution           | $c_o \cdot c_i \cdot k_h \cdot k_w$     |  |
| Grouped Convolution   | $c_o \cdot c_i \cdot k_h \cdot k_w / g$ |  |
| Depthwise Convolution | $c_o \cdot k_h \cdot k_w$               |  |

#### 61M in total

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky et al., NeurIPS 2012]

### Efficiency of Neural Networks



#### **Efficiency Metrics**

**Memory-Related** 

#parameters

model size

total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS

OP, OPS

### Model Size

- Model size measures the storage for the weights of the given neural network.
  - The common units for model size are: MB (megabyte), KB (kilobyte), bits.
- In general, if the whole neural network uses the same data type (e.g., floating-point),
  - Model Size =  $\#Parameters \cdot Bit Width$
  - Example: AlexNet has 61M parameters.
    - If all weights are stored with 32-bit numbers, total storage will be about
      - $61M \times 4$  Bytes (32 bits) = 224 MB (224 × 10<sup>6</sup> Bytes)
    - If all weights are stored with 8-bit numbers, total storage will be about
      - 61M × 1 Byte (8 bits) = 61 MB

### Efficiency of Neural Networks



### **Efficiency Metrics**

**Memory-Related** 

#parameters model size

total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS

OP, OPS

# Number of Activations (#Activations)

#Activation is the memory bottleneck in inference on IoT, not #Parameters.



<sup>\*</sup> All parameters and activations are Integer numbers (8 bits).

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

# Number of Activations (#Activations)

#Activation didn't improve from ResNet to MobileNet-v2



<sup>\*</sup> All parameters and activations are Integer numbers (8 bits).

MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

# Number of Activations (#Activations)

### Imbalanced memory distribution of MobileNetV2



## Number of Activations (#Activations)

#Activation is the memory bottleneck in training, not #Parameters.



<sup>\*</sup> All parameters and activations are Floating-Point numbers (32 bits).

TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [Cai et al., NeurIPS 2020]

## Number of Activations (#Activations)

Activation and weight memory distribution of MCUNet



### AlexNet: #Activations

| Δ | lex | N  | Δt |
|---|-----|----|----|
| A |     | IV | CL |

Image (3×224×224)

11×11 Conv, channel 96, stride 4, pad 2

3×3 MaxPool, stride 2

5×5 Conv, channel 256, pad 2, groups 2

3×3 MaxPool, stride 2

3×3 Conv, channel 384, pad 1

3×3 Conv, channel 384, pad 1, groups 2

3×3 Conv, channel 256, pad 1, groups 2

3×3 MaxPool, stride 2

Linear, channel 4096

Linear, channel 4096

Linear, channel 1000

| $C \times H \times W$ |          |
|-----------------------|----------|
| 3×224×224             | =150,528 |
| 96×55×55              | =290,400 |
| 96×27×27              | =69,984  |
| 256×27×27             | =186,624 |
| 256×13×13             | =43,264  |
| 384×13×13             | =64,896  |
| 384×13×13             | =64,896  |
| 256×13×13             | =43,264  |
| 256×6×6               | =9,216   |
| 4096                  | =4,096   |
| 4096                  | =4,096   |
| 1000                  | =1,000   |

**Total #Activation: 932,264** 

Peak #Activation:

≈ #input activation + #output activation

= 150,528 + 290,400 = 440,928

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky et al., NeurIPS 2012]

## Efficiency of Neural Networks



### **Efficiency Metrics**

**Memory-Related** #parameters model size total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS OP, OPS

#### MAC

- Multiply-Accumulate operation (MAC)
  - $a \leftarrow a + b \cdot c$
- Matrix-Vector Multiplication (MV)
  - $MACs = m \cdot n$
- General Matrix-Matrix Multiplication (GEMM)
  - $MACs = m \cdot n \cdot k$





### MAC

| Layer                      | MACs<br>(batch size n=1) |
|----------------------------|--------------------------|
| Linear Layer               | $c_o \cdot c_i$          |
| Convolution                |                          |
| <b>Grouped Convolution</b> |                          |
| Depthwise<br>Convolution   |                          |

<sup>\*</sup> bias is ignored



| Notations  |                     |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $c_i$      | Input Channels      |  |
| $c_o$      | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h, k_w$ | Kernel Height/Width |  |
| 8          | Groups              |  |

### MAC

| Layer                      | MACs<br>(batch size n=1)                                |
|----------------------------|---------------------------------------------------------|
| Linear Layer               | $c_o \cdot c_i$                                         |
| Convolution                | $c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$ |
| <b>Grouped Convolution</b> |                                                         |
| Depthwise<br>Convolution   |                                                         |

<sup>\*</sup> bias is ignored









| Notations                  |                     |  |
|----------------------------|---------------------|--|
| n                          | Batch Size          |  |
| $c_i$                      | Input Channels      |  |
| $C_{O}$                    | Output Channels     |  |
| $h_i, h_o$                 | Input/Output Height |  |
| $W_i, W_o$                 | Input/Output Width  |  |
| $k_h, k_w$                 | Kernel Height/Width |  |
| $\boldsymbol{\mathcal{g}}$ | Groups              |  |

### MAC

| Layer                      | MACs<br>(batch size n=1)                                  |
|----------------------------|-----------------------------------------------------------|
| Linear Layer               | $c_o \cdot c_i$                                           |
| Convolution                | $c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$   |
| <b>Grouped Convolution</b> | $c_i/g \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$ |
| Depthwise<br>Convolution   |                                                           |

<sup>\*</sup> bias is ignored



Image source: 1



| Notations  |                     |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $c_i$      | Input Channels      |  |
| $C_{O}$    | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h, k_w$ | Kernel Height/Width |  |
| g          | Groups              |  |

#### MAC

| Layer                      | MACs<br>(batch size n=1)                                  |
|----------------------------|-----------------------------------------------------------|
| Linear Layer               | $c_o \cdot c_i$                                           |
| Convolution                | $c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$   |
| <b>Grouped Convolution</b> | $c_i/g \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$ |
| Depthwise<br>Convolution   | $k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$             |

<sup>\*</sup> bias is ignored





Image source: 1



| Notations  |                     |  |
|------------|---------------------|--|
| n          | Batch Size          |  |
| $c_i$      | Input Channels      |  |
| $c_o$      | Output Channels     |  |
| $h_i, h_o$ | Input/Output Height |  |
| $W_i, W_o$ | Input/Output Width  |  |
| $k_h, k_w$ | Kernel Height/Width |  |
| g          | Groups              |  |

### AlexNet: #MACs

| AlexNet                                 | $C \times H \times W$ | MACs                                   |
|-----------------------------------------|-----------------------|----------------------------------------|
| Image (3×224×224)                       | 3×224×224             |                                        |
| 11×11 Conv, channel 96, stride 4, pad 2 | 96×55×55              | 96×3×11×11×55×55<br>= 105,415,200      |
| 3×3 MaxPool, stride 2                   | 96×27×27              |                                        |
| 5×5 Conv, channel 256, pad 2, groups 2  | 256×27×27             | 256×96×5×5×27×27 / 2<br>= 223,948,800  |
| 3×3 MaxPool, stride 2                   | 256×13×13             |                                        |
| 3×3 Conv, channel 384, pad 1            | 384×13×13             | 384×256×3×3×13×13<br>= 149,520,384     |
| 3×3 Conv, channel 384, pad 1, groups 2  | 384×13×13             | 384×384×3×3×13×13 / 2<br>= 112,140,288 |
| 3×3 Conv, channel 256, pad 1, groups 2  | 256×13×13             | 2567                                   |
| 3×3 MaxPool, stride 2                   | 256×6×6               |                                        |
| Linear, channel 4096                    | 4096                  | 4096×(256×6×6)<br>= 37,748,736         |
| Linear, channel 4096                    | 4096                  | 4096×4096<br>= 16,777,216              |
| Linear, channel 1000                    | 1000                  | 1000×4096<br>= 4,096,000               |

| Layer                    | MACs<br>(batch size n=1)                                  |  |  |
|--------------------------|-----------------------------------------------------------|--|--|
| Linear Layer             | $c_o \cdot c_i$                                           |  |  |
| Convolution              | $c_o \cdot c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o$   |  |  |
| Grouped Convolution      | $c_o \cdot c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o/g$ |  |  |
| Depthwise<br>Convolution | $c_o \cdot k_h \cdot k_w \cdot h_o \cdot w_o$             |  |  |

#### **724M** in total!

ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky et al., NeurIPS 2012]

## Efficiency of Neural Networks



### **Efficiency Metrics**

**Memory-Related** #parameters model size total/peak #activations

**Computation-Related** 

MAC

FLOP, FLOPS OP, OPS

## Number of Floating Point Operations (FLOP)

- A multiply is a floating point operation
- An add is a floating point operation
- One multiply-accumulate operation is two floating point operations (FLOP)
  - Example: AlexNet has 724M MACs, total number of floating point operations will be
    - $724M \times 2 = 1.4G FLOPs$

Floating Point Operation Per Second (FLOPS)

$$FLOPS = \frac{FLOPs}{second}$$

## Number of Operations (OP)

- Activations/weights in neural network computing are not always floating point.
- To generalize, number of operations is used to measure the computation amount.
  - Example: AlexNet has 724M MACs, total number of floating point operations will be
    - $724M \times 2 = 1.4G OPs$
- Similarly, Operation Per Second (OPS)

$$OPS = \frac{OPs}{second}$$

## Today's Al is too BIG!



## Today's Al is too BIG!



Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

## Today's Al is too BIG!



### How should we make deep learning more efficient?



Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]

## Summary of Today's Lecture

### In this lecture, we

- Reviewed the basics of neural networks
  - terminology: neuron output → activation, synapses → weight
  - popular layers: fully-connected, convolution, depthwise convolution, pooling, normalization
  - classic neural networks: AlexNet, VGG-16, ResNet-50, MobileNetV2
- Introduced popular efficiency metrics for neural networks
  - memory cost: #Parameters, Model Size, #Activations
  - computation cost: MACs, FLOP, FLOPS, OP, OPS







| Layer                 | MACs<br>(batch size n=1)                                  |
|-----------------------|-----------------------------------------------------------|
| Linear Layer          | $c_o \cdot c_i$                                           |
| Convolution           | $c_i \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$   |
| Grouped Convolution   | $c_i/g \cdot k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$ |
| Depthwise Convolution | $k_h \cdot k_w \cdot h_o \cdot w_o \cdot c_o$             |

Image source: 1

# Lab 0: Getting Started

**Tutorial on PyTorch and Laboratory Exercises** 

### References

- Convolution arithmetic [Github Repo]
- Image Classification with CNNs [Stanford CS231n Lecture 5]
- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe et al., ICML 2015]
- Group Normalization [Wu et al., ECCV 2018]
- ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky et al., NeurIPS 2012]
- Very Deep Convolutional Networks for Large-Scale Image Recognition [Simonyan et al., ICLR 2015]
- Deep Residual Learning for Image Recognition [He et al., CVPR 2016]
- MobileNetV2: Inverted Residuals and Linear Bottlenecks [Sandler et al., CVPR 2018]
- Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEEE 2020]