

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных

ОТЧЕТ

	O I	4 E I	
	по домашне	ему заданию № 2	
Название: Мод	ели предсказания		
Дисциплина: <u>М</u>	Летоды машинного	<u>обучения</u>	
Студент	ИУ6-22М		Д.С. Каткова
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			С.Ю. Папулин
		(Подпись, дата)	(И.О. Фамилия)

Домашнее задание 2. Модели предсказания

Каткова Дарья, ИУ6-22М

Цель работы

Приобрести опыт решения практических задач по машинному обучению, таких как анализ и визуализация исходных данных, обучение, выбор и оценка качества моделей предсказания, посредством языка программирования Python.

При выполнении работы решаются следующие задачи:

- реализация собственных классов совместимых с библиотекой sklearn
- оценка влияния регуляризации в моделях предсказания
- преобразование исходных данных посредством транформаторов sklearn
- использование отложенной выборки и кросс-валидации
- выбор гиперпараметров и интерпретация кривых обучения
- оценка качества моделей предсказания
- выявление преимуществ и недостатков методов предсказания в зависимости от поставленной задачи

Вариант: 1-3

```
In [1]: surname = "Каткова" # Ваша фамилия

alph = 'абвгдеёжзийклмнопрстуфхцчшщьыьэюя'
w = [4, 42, 21, 21, 55, 1, 44, 26, 18, 3, 38, 26, 18, 12, 3, 49,
7, 42, 9, 4, 3, 36, 33, 31, 29, 5, 4, 4, 19, 21, 27, 33
d = dict(zip(alph, w))
variant = sum([d[el] for el in surname.lower()]) % 40 + 1

print("Задание № 2. Вариант: ", variant % 2 + 1)
print("Задание № 3. Вариант: ", variant % 3 + 1)
```

Задание № 2. Вариант: 1 Задание № 3. Вариант: 3

Задание 1. Реализация собственных классов и функций

Замечание

- 1. нельзя пользоваться готовыми реализациями sklearn;
- 2. чтобы избежать случая с вырожденной матрицей при оценке параметров добавьте незначительную регуляризацию по умолчанию или используйте lstsq из пакета numpy или др. способ;
- 3. используйте random_state=0.
- 1. Реализуйте класс, предназначенный для оценки параметров линейной регрессии с регуляризацией совместимый с sklearn.

Передаваемые параметры:

1. коэффициент регуляризации (alpha). Использовать метод наименьших квадратов с регуляризацией.

In [2]: # Подключаем библиотеки import numpy as np import pandas as pd import matplotlib.pyplot as plt # Создаем dataframe df = pd.read_csv("regularization.csv") # Выводим десять строк, начиная с головы df.head(10)

Out[2]:

	X1	X2	Х3	X4	X5	X6	Х7	
0	3.856603	14.873388	57.360757	221.217682	853.148822	3290.256492	1.268921e+04	4.89
1	0.103760	0.010766	0.001117	0.000116	0.000012	0.000001	1.294799e-07	1.3
2	3.168241	10.037752	31.802020	100.756468	319.220791	1011.368453	3.204259e+03	1.01
3	3.744019	14.017681	52.482471	196.495391	735.682558	2754.409777	1.031256e+04	3.86
4	2.492535	6.212731	15.485450	38.598027	96.206935	239.799159	5.977078e+02	1.48
5	1.123983	1.263338	1.419971	1.596024	1.793904	2.016318	2.266307e+00	2.54
6	0.990314	0.980722	0.971223	0.961817	0.952501	0.943275	9.341388e-01	9.2
7	3.802654	14.460174	54.987033	209.096635	795.122064	3023.573749	1.149760e+04	4.37
8	0.845554	0.714962	0.604539	0.511170	0.432222	0.365467	3.090225e-01	2.6
9	0.441699	0.195098	0.086175	0.038063	0.016813	0.007426	3.280087e-03	1.4

```
In [3]: # Класс для оценки параметров линейной регрессии
        class LinearRegression:
            def __init__(self, alpha):
                self.alpha = alpha
            # Функция обучения
            def fit(self, X, y):
                index = None
                # Проверка на наличие вектора единиц, если его нет, то доба
                for i in range(X.shape[1]):
                    if all(X[:, i] == 1): # Проверяем, что все элементы ст
                        index = i
                    else:
                        X = np.insert(X, 0, 1, axis=1)
                # Метод наименьших квадратов
                self.coef_ = np.linalg.inv(X.T @ X + (self.alpha + 1e-10) *
            # Функция предсказания
            def predict(self, X):
                index = None
                # Проверка на наличие вектора единиц, если его нет, то доба
                for i in range(X.shape[1]):
                    if all(X[:, i] == 1): # Проверяем, что все элементы ст
                        index = i
                    else:
                        X = np.insert(X, 0, 1, axis=1)
                return X @ self.coef_
```

2. Реализуйте класс для стандартизации признаков в виде трансформации совместимый с sklearn.

Передаваемые параметры:

- 1. has_bias (содержит ли матрица вектор единиц),
- 2. apply mean (производить ли центровку)

```
In [4]: # Класс для стандартизации признаков
        class Scaler:
            def __init__(self, has_bias, apply_mean):
                self.has_bias = has_bias # Содержит ли матрица вектор едини
                self.apply_mean = apply_mean # Производить ли центровку
                self.mean_ = None
                self.std_ = None
            def fit(self, X , y = None):
                if self.has_bias:
                    # Удаляем вектор единиц
                    X = np.delete(X, X.shape[1] - 1, 1)
                if self.apply mean:
                    self.mean_ = np.mean(X, axis=0)
                    X = X - self.mean_
                self.std_ = np.std(X, axis=0)
                return self
            # Функция преобразования
            def transform(self, X):
                if self.has_bias:
                    # Удаляем вектор единиц
                    X = np.delete(X, X.shape[1] - 1, 1)
                if self.apply_mean:
                    X = X - self.mean_
                # Если self.std = 0, то заменим на 1, чтобы избежать делен
                temp = self.std_
                temp[temp == 0] = 1
                X = X / temp
                # Добавляем вектор единиц
                X = np.insert(X, 0, 1, axis=1)
```

return X

3. Реализуйте функции для расчета MSE и R^2 при отложенной выборке (run_holdout) и кросс-валидации (run_cross_val). Для кросс-валидации используйте только класс KFold. Выходными значениями должны быть MSE и R^2 для обучающей и тестовой частей.

Параметры:

- train_size=0.75,
- n splits=4,
- shuffle=True,
- random_state=0

```
In [5]: # Mean squared error
        def override_mean_squared_error(y_true, y_pred):
            return np.mean((y_true - y_pred)**2)
        # R2 score
        def override_r2(y_true, y_pred):
            return 1 - (np.sum((y_true - y_pred)**2) / np.sum((y_true - np.
        # Train test split
        def override_train_test_split(X, y, train_size, random_state = None
            if random state != None:
                np.random.seed(random_state)
            indices = np.arange(len(X))
            np.random.shuffle(indices)
            train size = int(len(X) * train size)
            X_train, X_test = X[indices[-train_size:]], X[indices[:-train_s
            y_train, y_test = y[indices[-train_size:]], y[indices[:-train_s
            return X_train, X_test, y_train, y_test
```

```
"train": override_r2(y_train, y_train_pred),
         "test": override_r2(y_test, y_test_pred)
     }
 }
 return score
ункция для расчета MSE и R^2 при кросс-валидации
 run_cross_val(model, X, y, n_splits = 4, shuffle = True, random_st
 kf = KFold(n_splits=n_splits, shuffle=shuffle, random_state=random]
 mse train score = []
 r2_train_score = []
 mse_test_score = []
 r2_test_score = []
 for train_index, test_index in kf.split(X):
     X_train, X_test = X[train_index], X[test_index]
     y_train, y_test = y[train_index], y[test_index]
     model.fit(X_train, y_train)
     y_train_pred = model.predict(X_train)
     y_test_pred = model.predict(X_test)
     mse train score.append(override mean squared error(y train, y
     r2_train_score.append(override_r2(y_train, y_train_pred))
     mse_test_score.append(override_mean_squared_error(y_test, y_test)
     r2_test_score.append(override_r2(y_test, y_test_pred))
 # Формируем результат
 score = {
     "mse": {
         "train": np.mean(mse_train_score),
         "test": np.mean(mse_test_score)
     },
"r2": {
"+r
         "train": np.mean(r2_train_score),
         "test": np.mean(r2_test_score)
     }
 }
 return score
```

4. Используя класс Pipeline, выполнить обучение линейной регрессии с предварительной стандартизацией с коэффициентом регуляризации равным 0 и 0.01.

- Выведите значения параметров обученной модели.
- Выведите значения MSE и R^2, полученные посредством функций run_holdout и run cross val.
- Отобразите график предсказания (^y) действительно значение (у) для разных коэффициентов регуляризации для обучающего и тестового множества.

```
In [7]: X = df.drop('Y', axis = 1).values
        y = df['Y'].values
        # Создадим pipeline с коэффициеном регуляризации 0
        pipeline_0 = Pipeline([
            ("transform", Scaler(has_bias = False, apply_mean = True)),
            ("regression", LinearRegression(alpha=0))
        ])
        # Создадим pipeline с коэффициентом регуляризации 0.01
        pipeline 1 = Pipeline([
            ("transform", Scaler(has_bias = False, apply_mean = True)),
            ("regression", LinearRegression(alpha=0.01))
        ])
        # Обучение
        pipeline_0.fit(X, y)
        pipeline_1.fit(X, y)
Out [7]:
               Pipeline
               ▶ Scaler
          ▶ LinearRegression
In [8]: # Выведем значения параметров обученной модели с коэффиценом регуля
        pipeline 0.named steps['regression'].coef
Out[8]:
       array([ 5.68043097e-01, 5.68718937e-01, 5.65339739e-01,
                                                                   5.55877
        986e-01,
                5.60946782e-01,
                                 5.56891746e-01, 5.51822949e-01,
                                                                   5.57229
        665e-01,
                5.60608863e-01,
                                5.45740394e-01, 5.55540067e-01,
                                                                   5.47429
        993e-01,
                5.50471270e-01.
                                 5.59257184e-01, 5.54526307e-01,
                                                                   5.50471
        270e-01,
                5.56891746e-01,
                                 6.46121554e+00, -1.28008254e+02, 1.08337
        799e+03,
               -4.71771213e+03, 1.08406444e+04, -1.11470368e+04, -1.18042
        646e+03,
                9.49296930e+03,
                                 1.96805691e+03, -7.58183115e+03, -5.46024
```

3.93651470e+03, 7.73859963e+03, 1.87340544e+02, -9.20571

718e+03,

517e+03,

4.16689928e+03])

```
In [9]: # Выведем значения параметров обученной модели с коэффиценом регуля
        pipeline 1.named steps['regression'].coef
 Out[9]: array([ 0.55581779,  0.55581779,  0.55581779,  0.55581779,
                                                                   0.5558
         1779,
                0.55581779, 0.55581779, 0.55581779, 0.5558
         1779,
                0.55581779, 0.55581779, 0.55581779, 0.5558
         1779,
                0.55581779, 0.55581779, 0.73224081, -1.9371805, -2.0575
         8834,
                0.04016091, 1.50257223, 1.75576136, 1.24991695, 0.5048
         2578,
                -0.15904121, -0.60740752, -0.81643159, -0.80818521, -0.6114
         5388,
               -0.24338778, 0.29569117, 1.0206136 ])
In [10]: # Выведем значения MSE и R^2, полученные посредством функций run ho
         print("Отложенная выборка (коэф = 0): ", run_holdout(pipeline_0, X,
         print("Кросс-калидация (коэф = 0):", run_cross_val(pipeline_0, X, y
         print("Отложенная выборка (коэф = 0.01): ", run_holdout(pipeline_1,
         print("Кросс-валидация (коэф = 0.01):", run_cross_val(pipeline_1, X
         Отложенная выборка (коэф = 0): {'mse': {'train': 0.21970200784813
         95, 'test': 0.23679420252641398}, 'r2': {'train': 0.69146167704327
         07, 'test': 0.6841932214456428}}
         Кросс-калидация (коэф = 0): {'mse': {'train': 0.2165666234009419,
         'test': 0.24091194655302878}, 'r2': {'train': 0.6998859654760472,
         'test': 0.6642857802465483}}
         Отложенная выборка (коэф = 0.01): {'mse': {'train': 0.22703058043
         25429, 'test': 0.22622670822777474}, 'r2': {'train': 0.68116980253
         10384, 'test': 0.698286836476072}}
         Кросс-валидация (коэф = 0.01): {'mse': {'train': 0.223487775256749
         2, 'test': 0.236507962458303}, 'r2': {'train': 0.690314593285412,
         'test': 0.6706063531755282}}
```

```
In [11]: # Отобразим данные в виде графика (регуляризация = 0)
import matplotlib.pyplot as plt

plt.figure(figsize=(11, 6), dpi=100)

plt.scatter(y, pipeline_0.predict(X), label='Предсказания', color='
plt.plot(y, y, label='Действительные', color='green')
plt.legend(loc='lower right')
plt.title("График предсказания с регуляризацией 0")
plt.xlabel("Реальные значения")
plt.ylabel("Предсказанные значения")
plt.show()
```



```
In [12]: # Отобразим данные в виде графика (регуляризация = 0.01)
plt.figure(figsize=(11, 6), dpi=100)

plt.scatter(y, pipeline_1.predict(X), label='Предсказания', color='
plt.plot(y, y, label='Действительные', color='green')
plt.legend(loc='lower right')
plt.title("График предсказания с регуляризацией 0.01")
plt.xlabel("Реальные значения")
plt.ylabel("Предсказанные значения")
plt.show()
```



```
In [13]: plt.figure(figsize=(12, 6), dpi=100)

# Строим диаграмму разброса
plt.scatter(df['X1'], df['Y'], color='green', label='Исходные данны

# Строим кривую
X1_sorted = df.drop('Y', axis = 1).sort_values(by = ['X1'])
plt.plot(X1_sorted['X1'].values, pipeline_0.predict(X1_sorted), lab
plt.plot(X1_sorted['X1'].values, pipeline_1.predict(X1_sorted), lab

plt.legend(loc='lower right')
plt.title('Предсказания на диаграмме разброса')
plt.xlabel('X1')
plt.ylabel('Y')
plt.show()
```


Задача 2. Классификация и кросс-валидация (вариант №1)

Замечание:

Используйте класс логистической регрессии из sklearn со следующими параметрами:

- penalty='l2'
- fit_intercept=True
- max_iter=100
- C=1e5
- solver='liblinear'
- random_state=12345

Разбейте исходные данные на обучающее и тестовое подмножества в соотношении 70 на 30, random_state=0

Для выбора гиперпараметров используйте два подхода:

- 1. с отложенной выборкой,
- 2. с кросс-валидацией

Для кросс-валидации использовать функцию cross_validate из sklearn

Параметры разбиения для выбора гиперпараметров используйте те, что в п.4 задачи 1

Дано множество наблюдений (см. набор данных к заданию), классификатор - логистическая регрессия.

- Найти степень полинома с минимальной ошибкой на проверочном подмножестве.
- Для лучшего случая рассчитать ошибку на тестовом подмножестве.
- В качестве метрики использовать долю правильных классификаций.
- Сделать заключение о влиянии степени полинома на качество предсказания.

Построить:

- диаграмму разброса исходных данных
- зависимость доли правильных классификаций от степени полинома для обучающего и проверочного подмножеств (две кривые на одном графике)
- результат классификации для наилучшего случая (степень полинома) для обучающего и тестового подмножеств с указанием границы принятия решения

```
In [14]: # Подключаем библиотеки
from sklearn.model_selection import cross_validate
from sklearn.linear_model import LinearRegression, LogisticRegressi
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import PolynomialFeatures

import sys
sys.path.append("./lib")
from plot_utils import show_cplots

import warnings
warnings.filterwarnings("ignore")

# Создаем dataframe
df_v1 = pd.read_csv('Cl_A5_V1.csv')

# Выводим десять строк, начиная с головы
df_v1.head(10)
```

Out[14]:

	X1	X2	У
0	-0.192831	-0.489801	1.0
1	-0.776832	-0.221889	0.0
2	0.244302	0.309428	1.0
3	0.599050	-0.505053	1.0
4	1.124836	1.015005	0.0
5	0.998104	0.970673	0.0
6	0.485917	0.286275	1.0
7	2.089178	-0.069146	1.0
8	0.691908	-0.686868	1.0
9	0.476896	1.565351	0.0

Диаграмма разброса исходных данных

```
In [15]: X = df_v1.drop('y', axis = 1).values
y = df_v1['y'].values

df_v1_0 = df_v1.query('y == 0')
df_v1_1 = df_v1.query('y == 1')

# Строим диаграмму разброса исходных данных
ax = df_v1_0.plot.scatter(x = 'X1', y = 'X2', color = 'blue', label
df_v1_1.plot.scatter(x = 'X1', y = 'X2', color = 'red', label = "y
plt.title('Диаграмма разброса исходных данных')
plt.show()
```

Диаграмма разброса исходных данных

Зависимость доли правильных классификаций от степени полинома для обучающего и проверочного подмножеств (две кривые на одном графике)

```
In [18]: # Построим графики
# График точности обучения для выборки
plt.plot(degrees, holdout_train_accuracy, label='Отложенная выборка

# График точности проверки для выборки
plt.plot(degrees, holdout_test_accuracy, label='Отложенная выборка
plt.legend(loc='lower left')
plt.show()
```



```
In [20]: # Построим графики
# График точности для обучения для кросс-валидации
plt.plot(degrees, crossval_train_accuracy, label='Кросс-валидация (
# График точности проверки для кросс-валидации
plt.plot(degrees, crossval_test_accuracy, label='Кросс-валидация (t
plt.legend(loc='lower left')
plt.show()
```


Найдем степень полинома с минимальной ошибкой на проверочном подмножестве

```
In [21]: # Степень полинома с минимальной ошибкой на проверочном подмножеств
holdout_degree = degrees[np.argmax(holdout_test_accuracy)]
holdout_degree

Out[21]: 9
In [22]: # Степень полинома с минимальной ошибкой на проверочном подмножеств
crossval_degree = degrees[np.argmax(crossval_test_accuracy)]
```

Out[22]: 3

crossval_degree

Для лучшего случая рассчитаем ошибку на тестовом подмножестве. В качестве метрики используем долю правильных классификаций.

```
In [23]: # Обучим модель для лучшего случая степени полинома
pipeline.named_steps['poly'].degree = crossval_degree

# Создание объекта логической регрессии
pipeline.fit(X_train, y_train)

# Доля правильных классификаций
test_preds = pipeline.predict(X_test)
accuracy_score(y_test, test_preds)
```

Out [23]: 0.906666666666666

Результат классификации для наилучшего случая (степень полинома) для обучающего и тестового подмножеств с указанием границы принятия решения

```
In [24]: y_test_pred = pipeline.predict(X_test)

show_cplots(
    pipeline,
    X_train,
    y_train,
    X_test,
    y_test,
    title=None,
    cmap="coolwarm",
    proba=False)
```


Заключение о влиянии степени полинома на качество предсказания

Проанализировав графики можно сделать вывод, что чем больше степень полинома, тем меньше становится точность предсказания

Задача 3. Классификация текстовых документов (вариант №3)

Набор рецензий на фильмы (reviews)

- 1. Загрузите исходные данные
- 2. Разбейте исходные данные на обучающее (train, 80%) и тестовое подмножества (test, 20%)
- 3. Используя стратифицированную кросс-валидацию k-folds () для обучающего множество с метрикой Balanced-Accuracy, найдите лучшие гиперпараметры для следующих классификаторов:
- К-ближайших соседей: количество соседей () из диапазона np.arange(1, 150, 20)
- Логистическая регрессия: параметр регуляризации () из диапазона np.logspace(-2, 10, 8, base=10)
- Наивный Байес: сглаживающий параметр модели Бернулли () из диапазона np.logspace(-4, 1, 8, base=10)
- Наивный Байес: сглаживающий параметр полиномиальной модели () из диапазона np.logspace(-4, 1, 8, base=10)
- Отобразите кривые (параметры модели)-(Balanced-Accuracy) при обучении и проверке для каждой классификатора (две кривые на одном графике для каждого классификатора)
- 4. Если необходимо, выбранные модели обучите на всём обучающем подмножестве (train) и протестируйте на тестовом (test) по Balanced-Accuracy, R, P, F1. Определите время обучения и предсказания.
- 5. Выполните пункты 3-5 для n-gram=1, n-gram=2 и n-gram=(1,2)
- 6. Выведите в виде таблицы итоговые данные по всем методам для лучших моделей (метод, n-gram, значение параметра модели, время обучения, время предсказания, метрики (Balanced-Accuracy, R, P, F1))
- 7. Сделайте выводы по полученным результатам (преимущества и недостатки методов)

Замечание:

- Для всех объектов/методов/моделей random_state = 123
- Для выбора гиперпараметров можно использовать стандартные утилиты sklearn

```
In [25]: import warnings
warnings.filterwarnings("ignore")

# Создание dataframe на основе tsv-файла
df = pd.read_csv('reviews.tsv', sep='\t', names=['score', 'review']

# Выводим десять строк, начиная с головы
df.head(10)
```

Out[25]:

score	review
0	unless bob crane is someone of particular inte
1	finds a way to tell a simple story , perhaps t
0	ill-considered , unholy hokum .
0	nijinsky says, 'i know how to suffer' and if
1	the auteur's ear for the way fears and slights
0	the premise for this kegger comedy probably so
1	a distant, even sterile, yet compulsively wa
1	engrossing and affecting, if ultimately not q
0	the tuxedo wasn't just bad; it was, as my fr
0	nothing in waking up in reno ever inspired me
	0 1 0 0 1 0

```
In [26]: # Подключаем библиотеки
```

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import BernoulliNB
from sklearn.maive_bayes import MultinomialNB

from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import make_scorer
from sklearn.metrics import balanced_accuracy_score, precision_scor
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import GridSearchCV
import time
```

К-ближайших соседей: количество соседей (np.arange(1, 150, 20)) из диапазона np.arange(1, 150, 20)

```
In [27]: # Разбиваем исходные данные на обучающее (train, 80%) и тестовое по
         train, test = train_test_split(df, test_size=0.2, random_state=123)
         # Параметры классификатора
         knn_clf = KNeighborsClassifier()
         knn_param_grid = {'n_neighbors': np.arange(1, 150, 20)}
         # Метрика
         scorer = make_scorer(balanced_accuracy_score)
         \# k-folds (k=4)
         cv = StratifiedKFold(n_splits=4)
In [28]: vectorizer11 = TfidfVectorizer(ngram range=(1, 1))
         X_train11 = vectorizer11.fit_transform(train['review'])
         X_test11 = vectorizer11.transform(test['review'])
         vectorizer22 = TfidfVectorizer(ngram range=(2, 2))
         X_train22 = vectorizer22.fit_transform(train['review'])
         X_test22 = vectorizer22.transform(test['review'])
         vectorizer12 = TfidfVectorizer(ngram_range=(1, 2))
         X_train12 = vectorizer12.fit_transform(train['review'])
         X test12 = vectorizer12.transform(test['review'])
In [29]: def show_plot(grid_search):
             params = list(map(lambda param: str(param), grid_search.cv_resu
             X_train = grid_search.cv_results_['mean_train_score']
             X_test = grid_search.cv_results_['mean_test_score']
             plt.plot(params, X_train, label='train')
             plt.plot(params, X_test, label='test')
             plt.xticks(rotation='vertical')
             plt.xlabel("Parameters")
             plt.ylabel("Balanced-Accuracy")
             plt.legend()
             plt.show()
In [30]: def train time(model, X train, y train):
             start_time = time.time()
             model.fit(X_train, y_train)
             return time.time() - start_time
         def prediction_time(model, X_test):
             start time = time.time()
             predictions = model.predict(X_test)
             return time.time() - start_time
```

```
In [31]: def kn_classifier(X_train, X_test, value):
             # Лучшие гиперпараметры
             grid_search = GridSearchCV(knn_clf, knn_param_grid, scoring=sco
             grid_search.fit(X_train, train['score'])
             # Обучение и предсказание
             test_result_list = list()
             for i in knn_param_grid['n_neighbors']:
                 model = KNeighborsClassifier(n_neighbors=i)
                 model.fit(X_train, train['score'])
                 test preds = model.predict(X test)
                 test_result_list.append(balanced_accuracy_score(test['score
             # Лучшая модель
             best model = KNeighborsClassifier(n neighbors=grid search.best
             # Время обучения и предсказания
             train_time_result = train_time(best_model, X_train, train['scor
             prediction_time_result = prediction_time(best_model, X_test)
             model.fit(X_train, train['score'])
             predictions = best model.predict(X test)
             show_plot(grid_search)
             results = ["K-Nearest Neighbors",
                        value,
                        grid_search.best_params_['n_neighbors'],
                        balanced_accuracy_score(test['score'], predictions),
                        recall_score(test['score'], predictions),
                        precision_score(test['score'], predictions),
                        f1_score(test['score'], predictions),
                        train time result,
                        prediction time result
             return results
```

In [32]: result_0 = kn_classifier(X_train11, X_test11, "1")

In [33]: result_1 = kn_classifier(X_train22, X_test22, "2")

Логистическая регрессия: параметр регуляризации (C) из диапазона np.logspace(-2, 10, 8, base=10)

```
In [35]: lr_clf = LogisticRegression()
lr_param_grid = {'C': np.logspace(-2, 10, 8, base=10)}
```

```
In [36]: def lr_classifier(X_train, X_test, value):
             # Лучшие гиперпараметры
             grid_search = GridSearchCV(lr_clf, lr_param_grid, scoring=score
             grid_search.fit(X_train, train['score'])
             # Обучение и предсказание
             test_result_list = list()
             for i in lr_param_grid['C']:
                 model = LogisticRegression(C=i)
                 model.fit(X_train, train['score'])
                 test_preds = model.predict(X_test)
                 test_result_list.append(balanced_accuracy_score(test['score
             # Лучшая модель
             best model = LogisticRegression(C=grid search.best params ['C']
             # Время обучения и предсказания
             train_time_result = train_time(best_model, X_train, train['scor
             prediction_time_result = prediction_time(best_model, X_test)
             predictions = best_model.predict(X_test)
             show_plot(grid_search)
             results = ["Logistic Regression",
                        value,
                        grid_search.best_params_['C'],
                        balanced_accuracy_score(test['score'], predictions),
                        recall_score(test['score'], predictions),
                        precision_score(test['score'], predictions),
                        f1_score(test['score'], predictions),
                        train_time_result,
                        prediction_time_result
             return results
```

In [37]: result_4 = lr_classifier(X_train11, X_test11, "1")

In [38]: result_5 = lr_classifier(X_train22, X_test22, "2")

In [39]: result_6 = lr_classifier(X_train12, X_test12, "1, 2")

Наивный Байес: сглаживающий параметр модели Бернулли () из диапазона np.logspace(-4, 1, 8, base=10)

```
In [40]: bnb_clf = BernoulliNB()
bnb_param_grid = {'alpha': np.logspace(-4, 1, 8, base=10)}
```

```
In [41]: def bnb_classifier(X_train, X_test, value):
             # Лучшие гиперпараметры
             grid_search = GridSearchCV(bnb_clf, bnb_param_grid, scoring=sco
             grid_search.fit(X_train, train['score'])
             # Обучение и предсказание
             test_result_list = list()
             for i in bnb_param_grid['alpha']:
                 model = BernoulliNB(alpha=i)
                 model.fit(X_train, train['score'])
                 test_preds = model.predict(X_test)
                 test_result_list.append(balanced_accuracy_score(test['score
             # Лучшая модель
             best_model = BernoulliNB(alpha=grid_search.best_params_['alpha'
             # Время обучения и предсказания
             train_time_result = train_time(best_model, X_train, train['scor
             prediction_time_result = prediction_time(best_model, X_test)
             predictions = best_model.predict(X_test)
             show_plot(grid_search)
             results = ["BernoulliNB",
                        value,
                        grid_search.best_params_['alpha'],
                        balanced_accuracy_score(test['score'], predictions),
                        recall_score(test['score'], predictions),
                        precision_score(test['score'], predictions),
                        f1_score(test['score'], predictions),
                        train_time_result,
                        prediction_time_result
             return results
```


In [43]: result_8 = bnb_classifier(X_train22, X_test22, "2")

{ 'alpha': 0.0001}

{\alpha\: 0.0005179474679231213}

{\alpha\: 0.002682695795279}

Наивный Байес: сглаживающий параметр полиномиальной модели () из диапазона np.logspace(-4, 1, 8, base=10)

Parameters

{\alpha\: 0.013894954943731374}

{'alpha': 0.07196856730011521}

{'alpha': 10.0}

{ 'alpha': 0.3727593720314942}

{'alpha': 1.9306977288832496}

```
In [45]: mnb_clf = MultinomialNB()
mnb_param_grid = {'alpha': np.logspace(-4, 1, 8, base=10)}
```

```
In [46]: def mnb_classifier(X_train, X_test, value):
             # Лучшие гиперпараметры
             grid_search = GridSearchCV(mnb_clf, mnb_param_grid, scoring=sco
             grid_search.fit(X_train, train['score'])
             # Обучение и предсказание
             test_result_list = list()
             for i in mnb_param_grid['alpha']:
                 model = MultinomialNB(alpha=i)
                 model.fit(X_train, train['score'])
                 test_preds = model.predict(X_test)
                 test_result_list.append(balanced_accuracy_score(test['score
             # Лучшая модель
             best_model = MultinomialNB(alpha=grid_search.best_params_['alph
             # Время обучения и предсказания
             train_time_result = train_time(best_model, X_train, train['scor
             prediction_time_result = prediction_time(best_model, X_test)
             predictions = best_model.predict(X_test)
             show_plot(grid_search)
             results = ["MultinomialNB",
                        value, grid_search.best_params_['alpha'],
                        balanced_accuracy_score(test['score'], predictions),
                        recall_score(test['score'], predictions),
                        precision_score(test['score'], predictions),
                        f1_score(test['score'], predictions),
                        train_time_result,
                        prediction_time_result
             return results
```


Parameters

Результаты

Out [52]:

	Модель	n- gram	Параметры	Balanced Accuracy	Recall	Precision	F1- score	Время обучения
0	K-Nearest Neighbors	1	61.000000	0.757571	0.791199	0.741879	0.765745	0.000696
1	K-Nearest Neighbors	2	61.000000	0.668247	0.544944	0.723881	0.621795	0.000896
2	K-Nearest Neighbors	1, 2	81.000000	0.759496	0.757491	0.761054	0.759268	0.001005
3	Logistic Regression	1	26.826958	0.767923	0.774345	0.765032	0.769660	0.226758
4	Logistic Regression	2	26.826958	0.714932	0.731273	0.708711	0.719816	0.639284
5	Logistic Regression	1, 2	1389.495494	0.800241	0.828652	0.784574	0.806011	0.966716
6	BernoulliNB	1	1.930698	0.782942	0.778090	0.786187	0.782118	0.001869
7	BernoulliNB	2	1.930698	0.723872	0.717228	0.727445	0.722301	0.002753
8	BernoulliNB	1, 2	1.930698	0.791849	0.787453	0.794896	0.791157	0.003596
9	MultinomialNB	1	0.372759	0.776379	0.770599	0.780095	0.775318	0.001441
10	MultinomialNB	2	0.372759	0.728548	0.731273	0.727866	0.729566	0.002292
11	MultinomialNB	1, 2	0.372759	0.802156	0.802434	0.802434	0.802434	0.002997

Выводы по полученным результатам (преимущества и недостатки методов)

К-ближайших соседей:

- время обучения моделей меньше, чем у других методов
- время предсказания больше, чем у других методов

Т.е. быстрое обучение, но долгое предсказание

Логистическая регрессия:

- время обучения больше, чем у других методов
- время предсказания меньше, чем у других методов

Т.е. быстрое предсказание, но долгое обучение

Наивный Байес: сглаживающий параметр модели Бернулли и полиномиальной модели:

- время обучения меньше
- время предсказания меньше

Т.е. скорость обучения и предсказания быстрее в сравнении с другими методами

In []:[
----------	--