Towards the continuous analogue Karhdan-husztig correspondence Anton M. Leitlin Columbia University BANFF, February 2016

(Semi) Physical Motivation

Chern-Simons theory for compact group G (say, G=SU(2)) Correlation functions of Wilson loops WZW model Knot invariants (e.g. Jones polynomials) Moore Seiberg Karhdan-husrtig modules of the algebra af Finite-dimensional irreps of Ug (cy) W-algebra E (Vivazoro)

Verlinde SL(2,1R) Chern-Simons theory Quantum Teichmeeller theory. Widaier, Lieuwille theory DS model

Teschner Lieuwille theory DS model

reduction

Rodular double (12 three)

Waga (SC(2,1R))

Virasoro highest weight ??? > SL(2,R)

modules

reduction

Rodular double (2,1R)

Wirasoro highest weight ??? > SL(2,R)

continuous

series Rultimate goal In this talk: Construction of the analogue of the

continuous series for sl(2,1R).

Based on: I.B. Frenkel, A.M. Zeitlin, CMP 326 (2014) A.M. Zeitlin, JFA 263 (2012) A.M. Zeitlin, arXiv: 1509.06072

het
$$q = e^{2i\pi b^2}$$
, $\tilde{q} = e^{2i\pi b^{-2}}$, $0 < b^2 < 1$

U, V are unbounded self-adjoint operators on L(IR) defined by the formulas

defined by the formulas
$$U = e^{2\pi b \times} \qquad V = e^{2\pi b P} \qquad [P, X] = \frac{1}{2\pi i}$$

on
$$W = \int e^{-dx^2 + \beta x} P(x)$$
, Red>of
b $\rightarrow b^{-1}$ $U \rightarrow U$, $V \rightarrow V$

$$U_{q}(sl(2,1R)) : E = i \frac{V + U^{-1} ?}{q - q^{-1}}, F = i \frac{U + V^{-1} ?}{q - q^{-1}}$$

$$E = i \frac{V + U^{-1} ?}{q - q^{-1}}, F = i \frac{U + V^{-1} ?}{q - q^{-1}}$$

$$E = i \frac{V + U^{-1} ?}{q - q^{-1}}, F = i \frac{U + V^{-1} ?}{q - q^{-1}}$$

$$E = i \frac{V + U^{-1} ?}{q - q^{-1}}, F = i \frac{U + V^{-1} ?}{q - q^{-1}}$$

Modular double Ugg (sl (2,1R)): E, F, K
"commuting" families E, F, K Some "magic" formulas: $(u+v)^{1/2} = u^{1/2} + v^{1/2}$, $e^{1/2} = e^{1/2} + e^{1/2}$ (here $e = (2\sin \pi b)E$) representations are equivalent Denoting $P_d \cong L^2(IR)$, so that d = log 2, one observes that:
Pdz & Pds $\cong \int dd_3 Pd_3$, (Ponsot, Teschner, 2000) so that the corresponding 3j symbol: $(d_3|d_2,d_1):$ $f(x_2,x_1) \mapsto F(f)(d_3,x_3) = \int dx_2 dx_1 \begin{bmatrix} d_3 & d_2 & d_1 \\ x_3 & x_2 & x_1 \end{bmatrix} f(x_2,x_2)$ If

Highest weight representations of in and braided tensor structure ég = y[+,+1] & Cc a & + = an, a & y $[a_n, b_m] = [a,b]_{n+m} + \langle a,b \rangle \subset m \delta_{m+n,0}$ Highest weight modules: cy = cy od het dis be a highest weight module for cy a λ - dominant integral weight $V_{\lambda,\kappa} = \text{Ind}_{g}^{g} + \lambda_{\lambda}$ where dacts on $d_{\lambda} as -\Delta(\lambda) = \frac{\langle \lambda, \lambda + 2P \rangle}{2\kappa + h^{\nu}}$ (eq = \text{g} \in \Cap\Cd \C\) (cacts as \k) Braided tensor category structure:

an $\Phi_{\lambda\mu}(z) = \Phi_{\lambda\mu}(z) \Delta_{z,0}(a_n)$ $\Phi_{\lambda\mu}(z) = V_{\lambda,e} \otimes V_{\mu,e} \longrightarrow V_{\nu,e}[[z,z^{\perp}]] z^{\Delta\nu-\Delta\mu-\Delta\lambda}$ In the equivalent braided tensor cotegory for $U_{\rho}(q)$, $q=e^{\frac{\pi i}{k+k\nu}}$

Correlators and Frenkel-Zhu formula $a \rightarrow a(x) = \sum_{n=-\infty}^{\infty} a_n x^{-n-1}$ frigx... × y $\rightarrow C$ $\langle v', a'(2) - a'(2) v \rangle =$ 12/2 --- 17m1>0 $= \underbrace{\sum_{partitions} \frac{1}{(2_{1,1}-2_{1,2})...(2_{1,j_{1}}-2_{1,1})}}_{partitions} \underbrace{\frac{1}{(2_{1,1}-2_{1,2})...(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,1}-2_{1,2})...(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})} \underbrace{\frac{1}{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})}}_{(2_{1,j_{1}}-2_{1,1})}$ Cycle: $\begin{array}{c}
a^{k}(2k) \\
\downarrow \\
a^{k}(2k)
\end{array}$ $\begin{array}{c}
1 \\
2_{k}-2e \\
a^{k}(2e)
\end{array}$

This is a motivational example for us: correlator, described by Feynman-type graphs determine the bilinear form

Construction of the continuous series i) Start from ax+b algebra and its representations ii) Construct "regularited" currents of sl(2,1R) acting" oh Fp & Vr Fack module for Heisenberg algebra iii) True correlators diverge! We found a method to describe

regularized correlators via Feynman-like diagrams and to eliminate divergent graphs preserving algebraic structure.

se(2,1R) via x-algebras &, K

A: $[h, e^{\pm}] = \pm i e^{\pm}, e^{\pm} e^{\mp} = 1, h=h, e^{\pm} = e^{\pm}$ $K: [h, J^{\pm}] = \mp J^{\pm}, J^{\pm}J^{\mp} = 1, h^{*} = h, J^{\pm *} = J^{\mp}$ Representation: h=id et=etx on L(R) $h = i \frac{d}{d\phi}$ $L^{\pm} = e^{\pm i\phi}$ on $L^{2}(S^{\perp})$ Continuous series of sc(2,1R) via of and K algebras:

sl(2,R): [E,F]=H, [H,E]=2E, [H,F]=-2F, $E=-E^*$, $F=-F^*$, $H=-H^*$ $su(1,1): [Y^3,J^{\pm}]=\pm 2iJ^{\pm}$, $[J^{\dagger},J^{-}]=-iJ^{3}$, $J^{+*}=-J^{-}$, $J^{3*}=-J^{3}$

Using K: $J^{\pm} = \frac{i}{2} \left(d^{\pm}h + h d^{\pm} \right) \mp \lambda d^{\pm}, \quad \lambda \in \mathbb{R}$ $J^{3} = 2ih$

Similarly for of (exercise). Relation: $J^3 = E + F$

J=E-F=iH

Loop version: h_n, d_n^{\pm} $n \in \mathbb{Z}$ $h(u) = \sum_{n} h_{-n} e^{inu}$, $d^{\pm}(u) = \sum_{n} d_{-n}^{\pm} e^{inu}$ $[h(u), 2^{\pm}(v)] = \mp 2^{\pm}(v) \delta(u-v), 2^{\pm}(u) I(u) = 1,$ $h(u) = h(u)^*, \lambda^{\pm *}(u) = \lambda^{\mp}(u)$ Construction Consider $\lambda^2(S^1)$: $x(u) = \sum_{n=1}^{\infty} x_{-n}e^{inu}$ in L'space: $B_{K}(x,x) = \frac{1}{2} \sum_{n\geq 1} \xi_{n}^{-1} x_{n} x_{-n} \sum_{n=1}^{\infty} \xi_{n} < \infty$ The operator K, defined by 1\Engis trace-class Craussian measure: $dw_{k} = (\sqrt{\det 2\pi N_{k}})^{-1} e^{-B_{k}(x_{1}x)} d\phi \prod_{k=1}^{\infty} \left[\frac{i}{z} dx_{n} dx_{-k}\right]$ $b_{-n} = i \left(\partial_n - \overline{\xi}_n^{-1} X_{-n} \right) \qquad \alpha_{-n} = i \partial_n$ $a_n^* = b_{-n}$ $h_n = \frac{1}{2} (a_n + b_n)$ Realization of currents: $d^{\pm}(u) = e^{\pm i \times clu} = e^{\pm i + \sum_{n=1}^{\infty} x_{-n}} e^{inu}$ h(w) = 2 h, e ho=iDo

Correlators: $\langle T_1 ... T_n \rangle = \langle V_0, T_1 ... T_n V_0 \rangle$ an, bn - annihilation and creation operators Namely: < T_2 ... Tn a e) = 0, < b x T_2 ... Tn >= 0 $\mathcal{N}_{\mathbf{k}}(u,v) = 2 \sum_{n>0} \cos(n(u-v)) \xi_n$ Notice: arvo=0 1 bms Lns. Ltry sy span the representation In addition: $p(\omega) = \sum_{n} p_n e^{-inu}$, $[p_n, p_m] = 2 \times n \delta_{n,-m}$ Fx, p = 18-nx. . . S-nx. Vacp; n1. . . . nx>0, povacp=pvacp?

Regularized currents: 12/41 $\phi(u) \rightarrow \phi(7,\overline{2}) = \sum_{n\geq 0} \varphi_n \overline{2}^n + \sum_{n>0} \varphi_{-n} \overline{2}^n \quad (\varphi=a,b,x',g)$ $J^{\pm}(2,\bar{2}) = \frac{i}{2} \left(b(2,\bar{2}) J^{\pm}(2,\bar{2}) + J^{\pm}(2,\bar{2}) a(2,\bar{2}) \right)$ ± K Oud (7, 2) ± S(7, 2) d (7, 2) $J^{3}(7,\overline{2}) = -2ih(7,\overline{2}) + 2kd^{-}(7,\overline{2}) \partial_{u}d^{+}(7,\overline{2})$ $J^{3}(2,\overline{2}) = -J^{3}(2,\overline{2}) \qquad J^{\pm}(2,\overline{2}) = -J^{\mp}(2,\overline{2})$ Proposition: Correlators $\langle \phi_1(z_1,\overline{z}_1) \dots \phi_n(z_n,\overline{z}_n) \rangle =$ $=\langle V_0 \otimes Vac_p, \phi_1(Z_1, \overline{Z_1})...\phi_n(z_n, \overline{z_n}) V_0 \otimes Vac_p \rangle$ are well-defined when 0 < 17 il < 1. Moreover, they are well-defined when one of 17:1=1.

Commutator: $\lim_{r_1,r_2\to 1} \langle ... (\xi(w_1,\overline{w_1}) \eta(w_2,\overline{w_2}) - \eta(w_2,\overline{w_2}) \eta(w_2,\overline{w_2}) \rangle$ $= r_i e^{iu_i}$ $w_i = r_i e^{iu_i}$ $- \chi (\omega_{2}, \overline{\omega}_{2}) \xi (\omega_{1}, \overline{\omega}_{1}) ... \rangle$

Commutation relations: $[J^{s}(\omega), J^{t}(\omega)] = \pm 2i J^{t}(\omega) \delta(u-\omega)$ $[J^{\dagger}(u), J^{\dagger}(v)] = iJ^{\dagger}(v)\delta(u-v) + 4i\kappa\delta'(u-v)$ Now let us study correlators graphically. Arranging creation and annihilaton operators ω we obtain commutators $[a(2,\overline{4}), \lambda^{\pm}(\omega,\overline{\omega})] = \mp \lambda^{\pm}(\omega,\overline{\omega})\delta(2,\omega)$ propagator $\frac{\delta(z,\omega)}{\delta(z,\omega)} = \pm \lambda^{\pm}(\omega,\omega) \delta(z,\omega)$ Vertices: ± p(3) 5 (3) dt (7, 7) a (7, 2) The state of the s ± t K Oud (7,7) D(3/2) 2=(3/2)

"Neutral" vertices:	1/2 a(2,2)	1/2 b(+, 7)	2 K L (4, 7) Oud (4, 7)
Divergence prol	slem:	< J+	$(z_1, \overline{z}_1) \int (z_2, \overline{z}_2) \dots$
δ(u ₁ -u ₂) λοορ diagrams: δ(7 ₁ , 2 ₂)δ(7 ₂ , 2 ₃)δ(7 _k , 2 ₁) Renormalization: μκ δ(u ₁ -u ₂)δ(u ₂ -u ₃)δ(u _{k-1} -u _k)			
	$\left(2^{1}\right)$.	· · · • (7 n 7 n)	R, 1,4mg >p Hermitean form,
•			from the Fock meters 1 junh.

Open questions i) Which 4 Mih give unitary modules?

ii) Intertwiners/tensor product?

iii) Modular double structure? (Possibly on the level of intertwiners)

iv) Relations to physical WZW model?