Sapienza University of Rome

Master in Engineering in Computer Science

Artificial Intelligence & Machine Learning

A.Y. 2022/2023

Prof. Fabio Patrizi

2. Classification Evaluation

Fabio Patrizi

Overview

- Statistical evaluation
- Performance metrics

References

- Lecture notes and slides
- [AIMA] 19.4.1
- T. Mitchell. Machine Learning. Chapter 5.

Statistical Methods for Perfomance Evaluation

Performance evaluation in classification based on accuracy or error rate

Questions:

- How to estimate accuracy of a hypothesis h?
- Given accuracy of *h* over a limited sample of data, how well does this estimate its accuracy over new examples?
- Given that h outperforms h' over some samples, how probable is it that h is more accurate in general?
- When data is limited what is the best way to use data to both learn h and estimate accuracy?
- Is accuracy the unique performance metric to evaluate classification methods?

Example

Consider a classification problem (supervised, discrete X, Y):

- $f: X \to Y$
- d : probability distribution over X
- S: n samples $x \in X$ according to d (written $S \sim d$), known f(x)

Consider a hypothesis h returned by a learning algorithm on S

- What is the best estimate of h accuracy over future instances $x \sim d$?
- What is the probable error in this accuracy estimate?

True/Sample Error/Accuracy

• True Error of h wrt f and d:

$$error_d(h) = \Pr[f(x) \neq h(x)]$$

probability that h misclassifies random instance $x \sim d$

• Sample Error of h wrt f and S:

$$error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(x)$$
, with $\delta(x) = \begin{cases} 1, & \text{if } f(x) \neq h(x) \\ 0, & \text{otherwise} \end{cases}$

proportion of examples from S that h misclassifies

- True Accuracy: $accuracy_d(h) = 1 error_d(h)$
- Sample Accuracy: $accuracy_S(h) = 1 error_S(h)$

True/Sample Error

- True error $error_d(h)$ cannot be computed: need d and f
- Sample error $error_S(h)$ is computed on small data sample S

How well does $error_S(h)$ estimate $error_d(h)$?

Observe:

- Our goal is high accuracy of h over $X \setminus S$ (on S, we have f!)
- If $accuracy_S(h)$ is high but $accuracy_d(h)$ poor, h is not useful

Problems in Estimating the True Error

Estimation Bias: $bias = E[error_S(h)] - error_d(h)$

- If S used to compute h, $error_S(h)$ is optimistically biased
- ② For unbiased estimate, h and S must be chosen independently $E[error_S(h)] = error_d(h)$
- **1** $error_S(h) \neq error_d(h)$, even with unbiased S The smaller S, the greater the expected variance

Training Set, Test Set, Error Estimation

How to compute $error_S(h)$

- **1** Partition data set as $D = \{T, S\}$ $(T \cap S = \emptyset)$, where:
 - T is the Training Set
 - *S* is the *Test Set*
 - |T| = 2/3|D| (rule of thumb)
- Compute h using training set T
- **3** Evaluate error on test set *S*: $error_S(h) = \frac{1}{n} \sum_{x \in S} \delta(x)$

 $error_S(h)$ is a random variable (i.e., result of an experiment)

 $error_S(h)$ is an unbiased estimator for $error_d(h)$

Using $error_S(h)$, suitably computed, is the best we can do!

Training vs Testing Trade-off

- More training samples (and less for testing) improve performance: better model, but $error_S(h)$ does not approximate well $error_d(h)$
- More evaluation samples (and less for training) improves estimation: $error_S(h)$ approximates well $error_d(h)$, but may be unsatisfactory

Trade-off for medium-sized datasets: 2/3 for training, 1/3 for testing

Overfitting

Consider error of hypothesis h over

- training data: error_T(h)
- entire instance space: $error_d(h)$ (estimated by $error_S(h)$)

Hypothesis $h \in H$ overfits training data if for some alternative $h' \in H$:

$$error_T(h) < error_T(h')$$
 (h' performs worse than h on T)

but

$$error_d(h) > error_d(h')$$
 (estimated as: $error_S(h) > error_S(h')$)
(h' performs better than h on unseen instances)

Intuitively, h is (too much) tailored to training data

Hypothesis Comparison and Selection

Given two hypotheses h_1 , h_2 , the true comparison is

$$d = error_d(h_1) - error_d(h_2)$$

and its estimator is

$$\hat{d} = error_{S_1}(h_1) - error_{S_2}(h_2)$$

 \hat{d} is an *unbiased estimator* for d, iff h_1 , h_2 , S_1 and S_2 are independent from each other

$$E[\hat{d}] = d$$

Note: still valid if $S_1 = S_2 = S$.

Learning Algorithm (and Model Class) Evaluation

How to evaluate performance of a learning algorithm L wrt target f?

- $h = L(T) \in H$ learnt with algorithm L and training set $T \sim d$
- error_S(h): result of single experiment
 - may not approximate well $E_{T\sim d}[error_d(L(T))]$

K-Fold Cross Validation:

• Perform many experiments and compute $error_{S_i}(h)$ for different independent test sets S_i

K-Fold Cross Validation

K-Fold Cross Validation:

- Partition dataset $D = \{S_1, S_2, \dots, S_k\}$
- ② For i = 1, ..., k do use S_i as test set, and remaining data as training set T_i :
 - $T_i = \{D S_i\}$
 - $\bullet \ h_i = L(T_i)$
 - $\eta_i = error_{S_i}(h_i)$
- $\bullet \quad \text{Return } \eta = \frac{1}{k} \sum_{i=1}^{k} \eta_i$
 - $error_{L,D}$ is an unbiased estimator for $E_{T\sim d}[error_d(L(T))]$
 - Note: $accuracy_{L,D} = 1 error_{L,D}$

Comparing Learning Algorithms

Given:

- Learning algorithms L_A and L_B
- Target function f
- Dataset D

Which algorithm is better wrt f?

Need to estimate: $E_{T\sim d}[error_d(L_A(T)) - error_d(L_B(T))]$

(expected difference in true error between hypotheses output by L_A and L_B , when trained both on random training set \mathcal{T} , drawn according to d)

This measure can be again approximated by K-Fold Cross Validation

Comparing Learning Algorithms

K-Fold Cross Validation to compare algorithms L_A and L_B

- **1** Partition dataset $D = \{S_1, S_2, \dots, S_k\}$
- ② For i = 1, ..., k do use S_i as test set, and remaining data as training set T_i :
 - $T_i = \{D S_i\}$
 - $h_A = L_A(T_i)$
 - $h_B = L_B(T_i)$
 - $\eta_i = error_{S_i}(h_A) error_{S_i}(h_B)$

 η is an estimator for $E_{T\sim d}[error_d(L_A(T)) - error_d(L_B(T))]$

If $\eta < 0$, we expect L_A to perform better than L_B in approximating f

Performance Metrics in Classification

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

•
$$error_S(h) = \frac{\#errors}{\#instances} = \frac{FN+FP}{TP+TN+FP+FN}$$

• $accuracy_S(h) = 1 - error_S(h) = \frac{TP+TN}{TP+TN+FP+FN}$

•
$$accuracy_S(h) = 1 - error_S(h) = rac{TP + TN}{TP + TN + FP + FN}$$

Problems when datasets are unbalanced

Performance Metrics in Classification

Is accuracy always a good performance metric?

Example:

- Binary classification $f: X \to \{+, -\}$
- Test set S with 90% negative samples

Consider two hypotheses:

- $h_1(x)$ with $accuracy_S(h) = .9$
- $h_2(x)$ with $accuracy_S(h) = .85$

Which one is better?

Performance Metrics in Classification

- $h_1(x) = -$ (most common value of Y in training set T)
- $h_2(x)$: result of learning algorithm

Accuracy alone not always enough to assess performance of hypothesis

Unbalanced datasets very common in problems related to anomaly detection, e.g.:

• malware analysis, fraud detection, medical tests, etc.

Precision and Recall

	Predicted class			
True Class	Yes	No		
Yes	TP: True Positive	FN: False Negative		
No	FP: False Positive	TN: True Negative		

- $precision_S(h) = \frac{TP}{TP+FP} = \frac{\#true\ positives}{\#predicted\ positives}$ (ability to avoid false pos)
- $recall_S(h) = \frac{TP}{TP + FN} = \frac{\#true\ positives}{\#real\ positives}$ (ability to avoid false neg)
- $F1-score_S(h) = 2 \frac{precision_S(h) \cdot recall_S(h)}{precision_S(h) + recall_S(h)}$ (harmonic mean of $precision_S(h)$ and $precision_S(h)$)

Impact of false negatives and false positives depends on application

Other performance measures

- Recall, Sensitivity, True Positive Rate
 TPR = TP/P = TP/(TP + FN)
- Specificity, True Negative Rate TNR = TN/N = TN/(TN + FP)
- False Positive RateFPR = FP/N = TP/(TN + FP)
- False Negative Rate FNR = FN/P = FN/(TP + FN)
- ROC curve: plot TPR vs FPR varying classification threshold
- AUC (Area Under the Curve)

Confusion Matrix (Multi-Class)

	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C4	<i>C</i> 5
c_1					
<i>c</i> ₂					
<i>c</i> ₃					
<i>C</i> 4					
<i>C</i> ₅					

- Element (c_i, c_j) : # (or proportion) of c_i -instances classified as c_j
- Main diagonal contains accuracy for each class
- Errors are outside main diagonal

Confusion Matrix

Often represented with color-maps

Summary

- Performance metrics are critical in ML to evaluate and compare solutions and algorithms
- True metrics can only be estimated
- k-Fold Cross Validation allows to compute unbiased metric estimators
- Error/Accuracy not always reliable, need for additional metrics: precision, recall, confusion matrix (and other)