

Аксиоматизируемые классы

Определение 21.1.

Рассмотрим $K_{\sigma} = \{\mathfrak{A} \mid \mathfrak{A} - \text{модель сигнатуры } \sigma\}$. Пусть класс моделей $K \subseteq K_{\sigma}$. Тогда **теорией класса** называется множество предложений $Th(K) = \{\varphi \in S(\sigma) \mid \forall \mathfrak{A} \in K \colon \mathfrak{A} \models \varphi\}$. *теория - максимальное мн-во аксиом*

Определение 21.2.

Пусть $\Gamma \subseteq S(\sigma)$. Тогда $K(\Gamma) = \{ \mathfrak{A} \in K_{\sigma} \mid \forall \varphi \in \Gamma \colon \mathfrak{A} \models \varphi \}$.

Определение 21.3.

Пусть $K \subseteq K_{\sigma}$. Класс K называется **аксиоматизируемым**, если $\exists \Gamma \subseteq S(\sigma)$ такое, что $K = K(\Gamma)$. В нашем случае Γ есть множество аксиом.

Предложение 21.4.

Пусть $K \subseteq K_{\sigma}$. Тогда $K \subseteq K(Th(K))$.

Доказательство:

Пусть $\mathfrak{A} \in K$. Возьмем некоторую формулу $\psi \in Th(K) \Rightarrow \mathfrak{A} \models \psi \Rightarrow \Rightarrow \mathfrak{A} \models Th(K)$ (по определению теории). Раз так, то и по определению 21.2. получаем $\mathfrak{A} \in K(Th(K))$.

Предложение доказано.

теперь предположим мы нашли теорию по моделям

теперь по предложениямиз теории ищем модели, могут найтись ещё какие-т

$$K(Th(k)) = \{ Cd_2, Cd_3, Cl_n \}$$

 $ecnu K - akc. mo K = K(Th(K)) = K(\Gamma))$

Предложение 21.5.

Пусть $K = K(\Gamma)$. Тогда $\Gamma \subseteq Th(K(\Gamma))$.

Доказательство:

Рассмотрим $\varphi \in \Gamma \Rightarrow \forall \mathfrak{A} \in K(\Gamma) : \mathfrak{A} \models \varphi \Rightarrow \varphi \in Th(K(\Gamma)).$

Предложение доказано.

Предложение 21.6.

Пусть $K \subseteq K_{\sigma}$.

Класс K является аксиоматизируемым $\Leftrightarrow K = K(Th(K))$.

Доказательство:

 (\Rightarrow) Пусть K - аксиоматизируем $\Rightarrow \exists \Gamma \in S(\sigma) \colon K = K(\Gamma) \Rightarrow$

 $\Rightarrow K\subseteq K(Th(K)).$

Осталось доказать вложенность в обратную сторону.

Пусть $\mathfrak{A} \in K(Th(K)) \Rightarrow \mathfrak{A} \models Th(K)$. Соответственно, $\Gamma \subseteq Th(K) \Rightarrow$

 $\Rightarrow\mathfrak{A}\vDash\Gamma\Rightarrow\mathfrak{A}\in K(\Gamma)\Rightarrow\mathfrak{A}\in K$. Отсюда выходит, что $K(Th(K))\subseteq K\Rightarrow$

 $\Rightarrow K = K(Th(K)).$

Аксиоматизируемые классы

 (\Leftarrow) Пусть K = K(Th(K)), тогда берем $\Gamma := Th(K)$. $\Gamma \subseteq S(\sigma) \Rightarrow$

 $\Rightarrow K$ - аксиоматизируем.

Предложение доказано.

Следствие 21.7.

Для любого аксиоматизируемого класса K существует наибольшее по включению множество аксиом. Это множество совпадает с Th(K).

Предложение 21.8.

Пусть класс K - аксиоматизируем, и $\mathfrak{A} \in K$. Если $\mathfrak{A} \equiv \mathfrak{B}$, то $\mathfrak{B} \in K$, т.е. аксиоматизируемый класс замкнут относительно элементарной эквивалентности.

Доказательство:

Доказательство:
$$\mathcal{T} = \mathcal{L} = \mathcal{T} + \mathcal{L}$$
 Ти (см) = Th (\mathcal{L}) Т.к. $K = K(\Gamma)$, $\mathcal{A} \in K \Rightarrow \mathcal{A} \models \Gamma \Rightarrow \mathcal{B} \models \Gamma \Rightarrow \mathcal{B} \in K(\Gamma)$. Предложение доказано.
$$\forall \varphi \in \mathcal{S} \omega$$
 С $\mathcal{L} \models \varphi \in \mathcal{L} = \mathcal{L}$

ПРЕДЛОЖЕНИЕ 21.9.

соответствие Галуа (Гульнара сказала)

Пусть $\Gamma_1, \Gamma_2 \subseteq S(\sigma)$ и $K_1, K_2 \subseteq K_{\sigma}$. Тогда:

- (a) Если $\Gamma_1\subseteq\Gamma_2\Rightarrow K(\Gamma_2)\subseteq K(\Gamma_1);$
- б) Если $K_1 \subseteq K_2 \Rightarrow Th(K_2) \subseteq Th(K_1)$. при увеличении числа моделей число общих свойств уменьшается Доказательство:
- а) Пусть $\Gamma_1 \subseteq \Gamma_2$. Пусть $\mathfrak{A} \in K(\Gamma_2) \Rightarrow \mathfrak{A} \models \Gamma_2 \Rightarrow \mathfrak{A} \models \Gamma_1 \Rightarrow \mathfrak{A} \in K(\Gamma_1)$.
- б) Пусть $K_1 \subseteq K_2$. Пусть $\varphi \in Th(K_2) \Rightarrow K_2 \vDash \varphi \Rightarrow K_1 \vDash \varphi \Rightarrow$ $\Rightarrow \varphi \in Th(K_1).$ miro

Аксиоматизируемые классы

ПРЕДЛОЖЕНИЕ 21.10.

Множество предложений $\Gamma = Th(K(\Gamma)) \Leftrightarrow \Gamma$ является теорией.

Доказательство:

(⇒) Очевидно.

 (\Leftarrow) Пусть Γ - теория и $\Gamma \subseteq Th(K(\Gamma))$. Предположим, что $\Gamma \neq Th(K(\Gamma)) \Rightarrow \exists \varphi \colon \varphi \in Th(K(\Gamma))$ и $\varphi \notin \Gamma$. Т.к. $\varphi \notin \Gamma \Rightarrow \Gamma \nvdash \varphi \Rightarrow \Gamma \cup \{\neg \varphi\}$ - непротиворечиво $\Rightarrow \exists \mathfrak{A} \colon \mathfrak{A} \vDash \Gamma \cup \{\neg \varphi\}$. Следовательно, $\mathfrak{A} \vDash \Gamma \Rightarrow \mathfrak{A} \in K(\Gamma)$. Но так же $\mathfrak{A} \vDash \neg \varphi \Rightarrow \mathfrak{A} \nvDash \varphi \Rightarrow \varphi \notin Th(K(\Gamma))$, откуда получаем противоречие с предположением в начале. Предложение доказано.

Замечание 21.10. В общем случае не верно, что

- a) K = K(Th(K));
- b) $\Gamma = Th(K(\Gamma)).$

по теорме о нестандартной арифметике натуральных чисел

Доказательство. а) Пусть $\mathfrak{N} = \langle \mathbb{N}; \cdot, +, 0, 1 \rangle$ и пусть $K = \{\mathfrak{N}\}$. Существует модель \mathfrak{M} такая, что $\mathfrak{M} \models Th(\mathfrak{N})$ и $\|\mathfrak{M}\|$ более чем счетная. Следовательно, $\mathfrak{M} \ncong \mathfrak{N}$. А значит $\mathfrak{M} \not \in K$.

С другой стороны, так как $\mathfrak{M} \models Th(\mathfrak{N}) = Th(K)$, то $\mathfrak{M} \in K(Th(K))$. Следовательно, $\mathfrak{M} \in K(Th(K)\backslash K$, т.е. $K \neq K(Th(K))$.

b) Пусть $\Gamma = \emptyset$. Тогда $K(\Gamma) = K_{\sigma}$. Следовательно,

 $Thig(K(\Gamma)ig) = Th(K_\sigma) = \{\varphi \in S(\sigma) | \varphi - \text{тождествено истино}\} \neq \emptyset.$ Таким образом, мы получили, что $\Gamma \neq Thig(K(\Gamma)ig)$.

Следствие 21.11. Не каждый класс моделей аксиоматизируем.

пример - класс конечный групп, или конечных множеств Доказательство: упражнение.

$$K_{\infty} = \{U \in K(6) | U = \Gamma\}$$

$$\Gamma = \{ \Psi_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ X_{1} \dots \{ X_{n} \} \{ X_{i} \neq X_{i} \}$$

$$V_{n} = \{ X_{1} \dots \{ X_{n} \} \{ X_{i} \neq X_{i} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V_{n} = \{ Y_{n} | n \in \mathbb{N} \}$$

$$V$$

Предложение 21.12. $\Gamma = Th(K(\Gamma))$ тогда и только тогда, когда Γ является теорией.

Доказательство.

- (⇒) Очевидно.
- (\Leftarrow) Пусть Γ является теорией. Очевидно, что $\Gamma \subseteq Th(K(\Gamma))$. Допустим, что $\Gamma \neq Th(K(\Gamma))$. Тогда найдется такое предложение $\varphi \in S(\sigma)$, что $\varphi \in Th(K(\Gamma))$ и $\varphi \notin \Gamma$. Так как Γ теория, то $\Gamma \not\models \varphi$. Следовательно, множество предложений $\Gamma \cup \{\neg \varphi\}$ непротиворечиво. А значит, по Теореме о существовании модели, найдется такая модель $\mathfrak{A} \in K_{\sigma}$, что $\mathfrak{A} \models \Gamma \cup \{\neg \varphi\}$. Следовательно, с одной стороны, так как $\mathfrak{A} \models \Gamma$, то $\mathfrak{A} \in K(\Gamma)$. И, с другой стороны, так как $\mathfrak{A} \models \neg \varphi$, то $\mathfrak{A} \not\models \varphi$. Значит, $\varphi \notin Th(K(\Gamma))$. Таким образом, мы пришли к противоречию. Следовательно, $\Gamma = Th(K(\Gamma))$.

Предложение 21.12 доказано.

Следствие 21.13. Отображения $K \to Th(K)$ и $\Gamma \to K(\Gamma)$ — взаимно обратные, т.е. устанавливающие взаимно однозначное соответствие между аксиоматизируемыми классами и теориями. K = K(Th(K))

 $\Gamma = Th(K(\Gamma))$

Доказательство: упражнение.

Определение 21.14. Класс K называется конечно аксиоматизируемым, если существует конечное множество предложений Γ такое, что $K = K(\Gamma)$.

Замечание 21.15. Класс K является конечно аксиоматизируемым тогда и только тогда, когда существует предложение $\varphi \in S(\sigma)$ такое, что

$$K = K(\{\varphi\}).$$

Доказательство.

- (\Rightarrow) Пусть $\Gamma = \{\psi_1, ..., \psi_n\}$ и $K = K(\Gamma)$. Положим $\varphi = (\psi_1 \& ... \& \psi_n)$. Тогда $K = K(\{\varphi\})$.
 - (⇐) Очевидно.

Замечание 21.15 доказано.

Предложение 21.16. Если
$$K = K(\{\varphi\})$$
, то $\overline{K} = K_{\sigma} \setminus K = K(\{\neg \varphi\})$.

Доказательство.

$$\overline{K} = K_{\sigma} \backslash K = \{ \mathfrak{A} \in K_{\sigma} | \mathfrak{A} \notin K \} = \{ \mathfrak{A} \in K_{\sigma} | \mathfrak{A} \not\models \varphi \} = \{ \mathfrak{A} \in K_{\sigma} | \mathfrak{A} \not\models \neg \varphi \} = K(\{\neg \varphi\}).$$

Предложение 21.16 доказано.

Следствие 21.17. Класс моделей K конечно аксиоматизируем тогда и только тогда, когда класс моделей \overline{K} конечно аксиоматизируем.

Доказательство: упражнение.

TEOPEMA 21.14.

Класс K конечно аксиоматизируем $\Leftrightarrow K, \overline{K}$ просто аксиоматизируемы. ДОКАЗАТЕЛЬСТВО:

 (\Rightarrow) Если класс K конечно аксиоматизируем, то по 21.13 класс \overline{K} тоже конечно аксиоматизируем. Следовательно, классы K и \overline{K} аксиоматизируемы.

 (\Leftarrow) Пусть K и \overline{K} аксиоматизируемы $\Rightarrow \exists \Gamma, \triangle \subseteq S(\sigma) \colon K = K(\Gamma),$ $\overline{K} = K(\triangle)$. Рассмотрим объединение $\Gamma \cup \triangle$. Оно может быть противоречивым или непротиворечивым.

Случай 1: $\Gamma \cup \triangle$ непротиворечиво $\Rightarrow \exists \mathfrak{A} : \mathfrak{A} \models \Gamma \cup \triangle$.

T.K. $\mathfrak{A} \models \Gamma \Rightarrow \mathfrak{A} \in K$.

Но т.к. $\mathfrak{A} \vDash \triangle \Rightarrow \mathfrak{A} \in \overline{K}$. Получаем противоречие! $(K \cap \overline{K} = \varnothing)$

<u>Случай 2:</u> $\Gamma \cup \triangle$ противоречиво $\Rightarrow \exists \Gamma_0, \triangle_0$ - конечные, $\Gamma_0 \subseteq \Gamma, \triangle_0 \subseteq \triangle$ такие, что секвенция $\Gamma_0, \triangle_0 \vdash$ доказуема. Покажем, что $K = K(\Gamma_0)$.

Возьмём $\mathfrak{A} \in K = K(\Gamma) \Rightarrow \mathfrak{A} \models \Gamma \Rightarrow \mathfrak{A} \models \Gamma_0 \Rightarrow K \subseteq K(\Gamma_0)$.

Теперь возьмём $\mathfrak{A} \in K(\Gamma_0) \Rightarrow \mathfrak{A} \models \Gamma_0$. Допустим, что $\mathfrak{A} \notin K \Rightarrow$ т.к либо истинно, либо ложно

 $\Rightarrow \mathfrak{A} \in \overline{K} \Rightarrow \mathfrak{A} \models \triangle$ (т.к. $\overline{K} = K(\triangle)$) $\Rightarrow \mathfrak{A} \models \triangle_0 \Rightarrow \mathfrak{A} \models \triangle_0 \cup \Gamma_0$, чего быть не может (т.к. секвенция $\Gamma_0, \triangle_0 \vdash$ доказуема). Пришли к противоречию!

Отсюда выходит, что $\mathfrak{A} \in K \Rightarrow K(\Gamma_0) \subseteq K \Rightarrow K = K(\Gamma_0)$. Аналогично доказываем случай $K = K(\triangle_0)$.

Теорема доказана.

miro

7