変圧器の設計および運転に関する次の各間に答えよ。

(1) 図 1 のように、変圧器の 2 次側を開放し、巻数  $n_1$  の一次巻線に下記の電圧を印加した。

$$v_1(t) = \sqrt{2} V_1 \sin \omega t$$

ただし、 $V_1$  は印加電圧の実効値 [V]、 $\omega$ は印加電圧の角周波数 [rad/s]、t は時間 [s]とする。このとき、鉄心中に生じる磁束 $\phi(t)$  [Wb]を表す式を導出せよ。また、磁束の最大値 $\phi_m$ を答えよ。ただし、簡単のため、巻線抵抗、漏れリアクタンス、鉄心の飽和および鉄損は考慮しない。

- (2) 周波数 f = 60 [Hz], 一次側電圧  $V_1 = 600$  [V], 二次側電圧  $V_2 = 200$  [V]の変圧器を設計する。 鉄心の断面積 S = 0.03 [ $m^2$ ]のとき,問(1)で導出した式を用いて,鉄心中の磁束密度の最大値 $B_m$ を 0.8 [T]以下にするための一次側および二次側の巻数  $n_1$  および  $n_2$  は整数となることに注意せよ。
- (3) この様に設計した変圧器には、実際には巻線抵抗(一次側 $r_1$ 、二次側 $r_2$ )、漏れリアクタンス(一次側 $x_1$ 、二次側 $x_2$ )および励磁アドミタンス( $Y_0=g_0$ - $jb_0$ )が存在する。これらを考慮して、変圧器の二次側を一次側に換算した T 形等価回路を図示せよ。なお、一次側電流を $I_1$ 、二次側電流を $I_2$ および励磁電流を $I_0$ とし、上述の各素子および電圧を含めて、与えられた記号を等価回路中に記せ。その際、 $n_1$ および  $n_2$ を用いて巻数比 a を定義して用いよ。
- (4) この変圧器の鉄損をW, 銅損をW。と表したとき、W およびW。を用いて、変圧器の効率  $\eta$ を最大とするための条件を導出せよ。
- (5) 間(2)で設計した変圧器において、二次側電圧  $V_2$  = 200 [V]、二次側電流  $I_2$  = 180 [A]で運転したとき、 $W_i$  = 0.5 [kW]および  $W_c$  = 1 [kW]となった。 $V_2$  = 200 [V]においてこの変圧器を図 2 のように運転した場合について、次式で表される全日効率 $\eta_d$  を求めよ。ただし、負荷の力率は時間帯に関係なく常に 100 [%]とする。





以下の間に答えよ。

(1) 関数 u(t), v(t), w(t)をラプラス変換せよ。

$$u(t) = \begin{cases} 1 & (t \ge 0) \\ 0 & (t < 0) \end{cases}, \quad v(t) = \begin{cases} e^{-t} & (t \ge 0) \\ 0 & (t < 0) \end{cases}, \quad w(t) = \begin{cases} t^n & (t \ge 0) \\ 0 & (t < 0) \end{cases}$$

ただし、tは時刻、nは正の整数とする。

- (2) インダクタンス L,抵抗 R,スイッチ  $S_1$ , $S_2$ ,直流電源 E より構成されている図 1 の回路において, $S_1$ , $S_2$ が開いた状態で十分に時間が経過した後に,時刻 t=0で  $S_1$ を閉じた。インダクタンス L に流れる電流  $i_L(t)$  の時間変化  $\frac{di_L(t)}{dt}$  を  $i_L(t)$ ,L,R,E を用いて表現せよ。
- (3) 電流 $i_L(t)$ のラプラス変換を $I_L(s)$ とする。問(2)で導出した微分方程式をラプラス変換せよ。また、ラプラス逆変換を用いて電流 $i_r(t)$ を求めよ。
- (4) 間(2)において、インダクタンス Lと並列に接続されている抵抗 Rに流れる電流  $i_R(t)$ と電流  $i_L(t)$ の大きさが同じになる時刻  $t_L$ を求めよ。
- (5) 時刻  $t_1$ においてスイッチ $S_1$ を開くとともにスイッチ $S_2$ を閉じた。 $t \ge 0$ における点 a,b 間の電圧 e(t)の時間変化を問(1)の u(t)を用いて表し、それを用いて電流  $i_L(t)$ (ただし  $t \ge 0$ )を求めよ。
- (6)  $t \ge t$ , において、二つの抵抗で消費されるエネルギーの合計を求めよ。



下図の npn トランジスタを用いたダーリントン接続回路について,以下の問に答えよ。図中の  $V_{cc}$ , $V_{lb}$  は直流バイアス電圧で2つのトランジスタが線形動作領域(エミッタ接合が順バイアス、コレクタ接合が逆バイアス)にあるように設定されているものとする。R は負荷抵抗であり,信号源  $v_i$  の内部抵抗は0として無視せよ。また,2つのトランジスタのエミッタ接地 h パラメータは等しく, $h_{re}$  , $h_{oe}$  は十分小さいとして無視できるものとする。

なお、エミッタ接地回路の入力電圧  $v_1$  、入力電流  $i_1$  、出力電圧  $v_2$  、出力電流  $i_2$  は、エミッタ接地 h パラメータを用いて次のように表わされる。

$$v_1 = h_{ie} i_1 + h_{re} v_2$$
  
 $i_2 = h_{fe} i_1 + h_{oo} v_2$ 

- (1) この回路の小信号等価回路を、エミッタ接地 hパラメータを用いて示せ。
- (2) (1) で求めた等価回路を用いて,この回路の電圧増幅率  $v_{\rm e}/v_{\rm i}$  および電流増幅率  $i_{\rm e}/i_{\rm i}$  を求めよ。
- (3) (1)で求めた等価回路を用いて、この回路の入力抵抗 ri を求めよ。



ダーリントン接続回路

x 軸上で一次元ポテンシャルの影響を受けて運動する粒子を考える。この粒子には-αの 力(k は正の定数)が働き、原点付近で運動しているものとする。粒子の質量は m とする。 この粒子の定常状態のふるまいについて以下の間に答えよ。

- (1) この粒子の波動関数を $\varphi(x)$ , エネルギーをEとし、この粒子に対する、時間を含まないシ ュレーディンガー方程式を示せ。ただし、粒子の角振動数を $\omega$ とすると、kと $\omega$ の間には  $k = m\omega^2$ の関係がある。
- (2) (1)のシュレーディンガー方程式を解いて得られたn番目の励起状態に対応する波動関数を  $\varphi_n(x)$ とする。この粒子の基底状態 $\varphi_0(x)$ および第一励起状態 $\varphi_1(x)$ は次のように表される。

$$\varphi_0(x) = A_0 \exp\left(-\frac{\alpha^2}{2}x^2\right), \quad \varphi_1(x) = A_1 x \exp\left(-\frac{\alpha^2}{2}x^2\right)$$
ただし、 $\alpha = \sqrt{\frac{m\omega}{\hbar}}$  であり、 $A_0$  および  $A_1$  は定数。

このとき、波動関数 $\varphi_0(x)$ 、 $\varphi_1(x)$ およびそれぞれの確率密度 $\rho_0(x)$ 、 $\rho_1(x)$ の概略を図示せよ。

(3) 運動量を  $p=-i\hbar\frac{d}{ds}$  とし、演算子  $b^+$ および b を次のように定義する。

$$b^{+} = \sqrt{\frac{m\omega}{2\hbar}} \left( x - \frac{i}{m\omega} p \right), \quad b = \sqrt{\frac{m\omega}{2\hbar}} \left( x + \frac{i}{m\omega} p \right)$$

このとき、この演算子とこの粒子の波動関数との間に

$$b^+ \varphi_n(x) = \sqrt{n+1} \varphi_{n+1}(x), \quad b\varphi_n(x) = \sqrt{n} \varphi_{n-1}(x)$$

 $b^+\varphi_n(x)=\sqrt{n+1}\,\varphi_{n+1}(x),\quad b\varphi_n(x)=\sqrt{n}\,\varphi_{n-1}(x)$  の関係がある。これを用いてこの粒子の位置の期待値<x>を求めよ。なお,波動関数は次 の性質を持っているとする。

$$\langle \varphi_m(x) | \varphi_n(x) \rangle = \int_{-\infty}^{\infty} \varphi_m(x)^* \varphi_n(x) dx = \delta_{mn}$$

(4) ハミルトニアンを  $b^{\dagger}b$  を用いて表し、これを利用して $\varphi_n(x)$ のエネルギー固有値  $E_n$  を求め、 この粒子が基底状態においてもゼロでないエネルギーを持つことを示せ。また、その物 理的意味を述べよ。

加算する 2つのn ビット入力をそれぞれ $a_{n-1}a_{n-2}...a_0$ ,  $b_{n-1}b_{n-2}...b_0$  とし,各桁の桁上げ入力をそれぞれ $C_{n-1}$ ,  $C_{n-2}$ ,  $\cdots$ ,  $C_0$  とするn ビット加算器 (図 1) について考える。次の間に答えよ。なお,論理式は主加法標準形で記述せよ。

- (1) 図1に示す加算器の出力 $S_0$ ,  $C_1$ の論理式を示せ。
- (2) n ビット加算器の j けた目において加算する 2 つの 1 ビット入力  $a_j$ ,  $b_j$  の論理積  $g_j \equiv a_j b_j$ , 論理和  $p_j \equiv a_j + b_j$  (j=0,  $1,\cdots$ , i) と,最下位桁上げ入力  $C_0$  を用いて,桁上げ入力  $C_{i+1}$  を示せ。
- (3) n ビットの二進数 N の 2 の補数を求める場合,全てのビットを反転させて 1 を加えればよい.このことを証明せよ。
- (4) 間 (3) の 結 果 を 用 い て , 2 の 補 数 表 現 に よ る n ビ ッ ト の 二 進 数  $M,N(0 \le N \le M \le 2^{n-1}-1)$ の減算M-Nが加算を用いて行えることを示せ。
- (5) 問(3),問(4)の結果にもとづき,図1に示す加算器を利用して,加減算が可能な回路を構成する方法について述べよ。



図 1

離散時間線形時不変回路の入力 x[n] と出力 y[n] の関係が次式で与えられるとき、以下の間に答えよ。

$$y[n] = x[n] - \frac{1}{2}y[n-1] + \frac{1}{2}y[n-2]$$

- (1) この回路の伝達関数 F(z) を求めよ。
- (2) F(z) の回路図を描け。
- (3) F(z) に次式の伝達関数 G(z) を持つ回路を縦列接続し、その縦列接続回路の伝達関数をH(z) とする。

$$G(z) = \sum_{k=0}^{K} z^{-k} \tag{1}$$

ここで、Kは有限であり、 $K \neq 0$ である。

縦列接続回路の遅延素子数が最小になる K を求め,そのインパルス応答 h[n] を求めよ。

- (4) 問 3 で求めた K を持つ縦列接続回路の単位ステップ応答 s[n] を求めよ。
- (5) 式 (1) で  $K \to \infty$  のとき、F(z) と G(z) の縦列接続回路を最小の遅延素子数で構成することを考える。伝達関数 H(z) を求め、回路図を描け。

ある街には A 社,B 社という 2 つのインターネット・プロバイダがあり,その街の住民は毎年いずれか 1 つのプロバイダを選んで一年ごとに契約している。ある年,その契約について調べたところ,前年に A 社と契約していた住民が引き続き A 社と契約する確率は 60%で,前年に B 社と契約していた住民が引き続き B 社と契約する確率は 70%であった。以下の間に答えよ。ただし,住民の総数は不変であり,プロバイダとの契約は毎年一斉かつ同時に行われるものとする。

(1) 調べた年に A 社と B 社それぞれと契約している住民の数を  $a_0$  と  $b_0$  とで表す。その一年後に A 社と B 社それぞれと契約している数  $a_1,b_1$  を表す式を

$$\left(\begin{array}{c} a_1 \\ b_1 \end{array}\right) = \boldsymbol{M} \left(\begin{array}{c} a_0 \\ b_0 \end{array}\right)$$

とおくとき, 遷移確率行列 M を具体的に示せ。

- (2) A 社と B 社のシェアは最終的にそれぞれある値に収束する。これらの値を求めよ。
- (3) 遷移確率行列 M の固有値と固有ベクトルを求めよ。
- (4) n 年後に A 社と B 社それぞれと契約している住民の数

$$\left(\begin{array}{c}a_n\\b_n\end{array}\right)$$

を表す一般式を求めよ。

連続情報源を標本化して得た標本値 X の確率密度関数が p(x) で与えられるとき、そのエントロピーを



と定義することにする。このとき,以下の問に答えよ。



- (1) 互いに独立でいずれも右図のような確率密度関数 p(x) を 持つ N 個の確率変数  $X_1, X_2, \cdots, X_N$  を考える。これらの和  $Y_N = k_N(X_1 + X_2 + \cdots + X_N)$  の分散は1 であるとする。このとき  $k_N$  の値を求めよ。
- (2) エントロピー  $H(Y_1)$  を求めよ。
- (3)  $Y_2$  の確率密度関数  $p_2(y)$  の概形を描き、  $Y_2$  のエントロピー  $H(Y_2)$  を求めよ。
- (4)  $Y_N$  の確率密度関数  $p_N(y)$  は、 N を限りなく大きくしたとき、どのような形に近づくか。そのときの確率密度関数  $p_\infty(y)$  を示せ(導出過程は不要)。また、このときのエントロピー  $H(Y_\infty)$  を求めよ。