| Tempo di calcolo e co | omplessità |
|-----------------------|------------|
| asintotica            |            |

Algoritmi e strutture dati

Ugo de'Liguoro, Andras Horvath

1

### Sommario

- Objettiv
  - introdurre le nozioni di tempo di calcolo e di confronto asintotico delle funzioni
- Argomenti
  - caso peggiore e caso migliore
  - notazione asintotica
  - inclusioni tra classi asintoticamente limitate
  - complessità di un problema

2

### Complessità di un algoritmo

Quante risorse usa l'algoritmo?

- tempo = quanto tempo ci mette
- spazio = quanta memoria occorre per eseguire l'algoritmo
- *hardware* = numero di processori, numero dei componenti (porte) di un circuito, ecc...

### Complessità temporale

Ci interessa stabilirla per vari motivi

- per capire quanto tempo ci vuole per eseguire un programma che lo implementa
- per stimare la grandezza massima dell'ingresso di un'esecuzione ragionevole
- per confrontare l'efficienza di più algoritmi che risolvono lo stesso problema
- per sapere quale parte del codice sarà eseguita più volte ...

4

# Quanto tempo impiega? Dipende dall'ingresso. Algoritmo Dipende dall'ingresso.

5

### Definizione del tempo

Sotto certe condizioni queste misure differiscono di un fattore costante!

Possiamo seguire diversi approcci:

- il numero dei secondi (dipendente dalla macchina)
- il numero delle operazioni elementari, ciascuna con un proprio coefficiente
- il numero delle volte che una specifica operazione viene eseguita

### Esempio: minimo in un vettore

|                                                        | costo | volte        |
|--------------------------------------------------------|-------|--------------|
| Minimo(A, j, k)                                        | $c_1$ | 1            |
| Pre: A vettore di dimensione $> k \ge j$               |       |              |
| Post: ritorna il minimo in $A[jk]$                     |       |              |
| $min \leftarrow A[j]$                                  | $c_2$ | 1            |
| for $i \leftarrow j + 1$ to $k$ do                     | $c_3$ | k - j + 1    |
| if $A[i] \le min$ then                                 | $c_4$ | k-j          |
| $min \leftarrow A[i]$                                  | $c_5$ | $\leq k - j$ |
| return min                                             | $c_6$ | 1            |
| valori di i: j+1, j+2, j+3,<br>( $(k+1) - (j+1) + 1 =$ |       | )            |

7

### Esempio: minimo in un vettore

Posto n = k - j + 1, vale a dire il numero degli elementi tra i quali cerchiamo il minimo, si ha

$$T(n) \le c_1 + c_2 + nc_3 + (n-1)c_4 + (n-1)c_5 + c_6$$

$$= c_1 + c_2 + nc_3 + nc_4 - c_4 + nc_5 - c_5 + c_6$$

$$= n(c_3 + c_4 + c_5) + (c_1 + c_2 - c_4 - c_5 + c_6)$$

$$= an + b$$

$$T(n) \ge c_1 + c_2 + nc_3 + (n-1)c_4 + c_6$$

$$= c_1 + c_2 + nc_3 + nc_4 - c_4 + c_6$$

$$= n(c_3 + c_4) + (c_1 + c_2 - c_4 + c_6)$$

$$= cn + d$$

con a, b, c, d costanti.

Crescita lineare in funzione di n.

8

### Esempio: minimo in un vettore

Riassumendo, posto n = k - j + 1, si ha

 $cn+d \leq T(n) \leq an+b$ 

con

$$a = c_3 + c_4 + c_5, b = (c_1 + c_2 - c_4 - c_5 + c_6)$$
  

$$c = c_3 + c_4, d = (c_1 + c_2 - c_4 + c_6)$$

Crescita lineare in funzione di n.

### La dimensione dell'ingresso

- nel caso di Minimo(A, j, k), per quanto riguarda l'ingresso, ciò che conta è il numero degli elementi in A[j.k], non il loro valore (in ogni caso la crescita in funzione di n è lineare)
- in generale la dimensione dell'ingresso è una misura della sua rappresentazione (a meno di una costante moltiplicativa)

|m| = dimensione di m = num. bit per rappresentare  $m = \lfloor \log_2(m) + 1 \rfloor$ 

|A[0..n-1]|= dimensione di A[0..n-1] = n c

dove c = numero bit del generico elemento di A

 nel seguito useremo c = 1 perché moltiplicare per un costante (come vedremo) non conta dal punto di vista dell'analisi asintotica

10

### Quale ingresso di dimensione *n*?

Supponiamo di voler esprimere *T* in funzione della dimensione dell'istanza, invece che dell'istanza stessa:

|x| = |y| non implica T(x) = T(y)

Come definire *T* sulla dimensione?

11

### Quale ingresso di dimensione *n*?

Supponiamo di voler esprimere T in funzione della dimensione dell'istanza, invece che dell'istanza stessa:

Distinguiamo allora i casi.

 $T_{\text{migliore}}(n) = \min\{T(x) : |x| = n\}$ 

caso migliore: x t.c.  $T_{\text{migliore}}(|x|) = T(x)$ 

**Minimo** (A, j, k): quando il minimo è A[j]**Insert-Sort**: vettore non decrescente

### Quale ingresso di dimensione *n*?

Supponiamo di voler esprimere T in funzione della dimensione dell'istanza, invece che dell'istanza stessa:

Distinguiamo allora i casi.

$$T_{\text{peggiore}}(n) = \max\{T(x) : |x| = n\}$$

caso peggiore: x t.c.  $T_{\text{peggiore}}(|x|) = T(x)$ 

**Minimo** (A, j, k): quando A[j..k] è ordinato in senso decrescente

Insert-Sort: vettore decrescente

13

### Come confrontare funzioni

- sappiamo che il tempo di calcolo non è un numero ma una funzione
- per confrontare il tempo di calcolo di due algoritmi dobbiamo confrontare tra loro funzioni

Come è possibile confrontare tra loro funzioni che hanno infiniti valori?

14

# Come confrontare funzioni $g(x) = x^{2} / 75$ f(x) = 7x f(x) < g(x) quando x > 525

Trascuriamo un numero finito di casi



16

### Quanto contano le costanti?

- tempo di calcolo per un algoritmo implementato sul computer  $C_1$ :  $T(n) = 2^n$ • D: dimensione massima di un problema trattabile col computer

Costruiamo un computer  $C_2$  1000 volte più veloce!

Quanto vale 
$$D'$$
 se 
$$2^{D'} / 1000 = 2^{D} ?$$

$$\begin{split} \frac{2^{D'}}{1000} &= 2^D\\ 2^{D'} &= 1000 \cdot 2^D\\ D' &= \log_2 1000 \cdot 2^D =\\ D' &= \log_2 1000 + \log_2 2^D \approx 10 + D \end{split}$$

17

Quanto contano le costanti?



- l'algoritmo A è migliore dell'algoritmo B per n > 50
- rimpiazzare B con A è meglio che raddoppiare la velocità del computer:

$$\frac{T_B(100)}{T_A(100)} = 2$$

$$\frac{T_B(1000)}{T_A(1000)} = 20$$

### Le costanti contano poco perché

- moltiplicando per una costante il tempo di calcolo, la massima dimensione trattabile cambia poco
- il tipo di crescita di una funzione non dipende dalla costante moltiplicativa
- la stima esatta delle costanti è molto difficile in pratica

19



20

# O-grande, esempio I • $f(n) = \frac{1}{2} \cdot n$ , g(n) = n• $f(n) \in O(g(n))$ ? Si! • $f(n) \leq g(n)$ con qualunque $n \geq 0$ • con c = 1, con c = 1

### O-grande, esempio II



- $f(n) = \frac{1}{2} \cdot n + 2, g(n) = n$
- $f(n) \in O(g(n))$ ? Si!
- $f(n) \le g(n)$  con qualunque  $n \ge 4$
- con c=1,  $n_0=4$  abbiamo  $\forall n>n_0.$   $f(n)\leq cg(n)$

22

### O-grande, esempio III



- f(n) = 2n + 2, g(n) = n
- $f(n) \in \mathcal{O}(g(n))$ ?
- f(n) > g(n) con qualunque  $n \ge 0$
- "No." potrebbe sembrare la risposta giusta ma non è cosi

23

### O-grande, esempio III (cont.)



- f(n) = 2n + 2, g(n) = n,  $3 \cdot g(n) = 3n$
- $f(n) \in O(g(n))$ ? Si!
- $f(n) \le 3g(n)$  con qualunque  $n \ge 2$
- con c=3,  $n_0=2$  abbiamo  $\forall n>n_0. f(n)\leq cg(n)$

### O-grande, esempio IV



- $f(n) = n/10 \cdot \log(n+2), g(n) = n$
- $f(n) \in \mathcal{O}(g(n))$ ?
- la figura implica  $f(n) \leq g(n)$  con qualunque  $0 \leq n \leq 10$
- verrebbe da rispondere "Si." ma non è cosi

25

### O-grande, esempio IV (cont.)

- $f(n) = n/10 \cdot \log(n+2), g(n) = n$
- per dimostrare  $f(n)\in \mathcal{O}(g(n))$  servirebbe una costante c con la quale oltre qualche  $n_0$  (cioè  $\forall n>n_0$ )

$$n/10 \cdot \log (n+2) \le c \cdot n$$
$$1/10 \cdot \log (n+2) \le c$$

- tale costante c non esiste e quindi
- $f(n) \in O(g(n))$ ? No!

26

### O-grande, esempio IV (cont.)



- $f(n) = \frac{n}{10} \cdot \log(n+2), g(n) = n$
- si vede anche graficamente ma bisogna plottare per grandi valori di n
- (non a caso  $n \cdot \log n$  si chiama anche "quasi lineare")

### Ordine degli quantificatori conta! $\exists g, \forall b, loves(b, g)$ $\forall b, \exists g, loves(b, g)$ Mary Sam Sam Mary Bob Beth **≥** Beth Bob Marilyn Marilyn John John 4 Monroe Monroe Fred 4 Fred 4 - Ann — Ann

28



29

## Le costanti non contano Per ogni f, g, e per ogni costante c > 0 $f(n) \in O(g(n)) \iff c \cdot f(n) \in O(g(n))$ $\Rightarrow \text{ per def. della } O \text{ esistono } d > 0 \text{ e } n_0 \text{ tali che } f(n) \le d \cdot g(n)$ $\text{ per ogni } n > n_0$ $\text{ posto } b = c \cdot d > 0 \text{ abbiamo}$ $c \cdot f(n) \le c \cdot d \cdot g(n) = b \cdot g(n) \text{ per ogni } n > n_0$ $\text{ e quindi } c \cdot f(n) \in O(g(n))$ $\iff \text{ dimostrazione analoga}$

### Le costanti non contano

Per ogni f, g, e per ogni costante c > 0 $f(n) \in O(g(n)) \Leftrightarrow f(n) \in O(c \cdot g(n))$ 

(con dimostrazione analoga a quella sul lucido precedente)

O(1) = O(k) per ogni k e O(1) è l'insieme delle funzioni superiormente limitate

31

### Esempio pratico di O-grande

$$3n^2 + 7n + 8 \in O(n^2)$$

$$f(n) = O(g(n))$$

$$\exists c > 0, n_0 \forall n > n_0. f(n) \le cg(n)$$

$$\downarrow \qquad \qquad 3n^2 + 7n + 8 \le \mathbf{c} \cdot n^2$$

32

### Esempio pratico di O-grande

$$3n^2 + 7n + 8 \in O(n^2)$$

$$f(n) = O(g(n))$$

$$f(n) \in O(g(n))$$

### Esempio pratico di O-grande



34

### Esempio pratico di O-grande



35

### Esempio pratico di O-grande



### Esempio pratico di O-grande



•  $f(n) = 3n^2 + 7n + 8$ ,  $g(n) = n^2$ ,  $4 \cdot g(n) = 4n^2$ 

37

### Ordini di grandezza: O-grande

$$n \ge 8 \Longrightarrow 3n^2 + 7n + 8 \le 4n^2$$

La tesi equivale a  $7n+8 \le 4n^2-3n^2=n^2$ 

Dividendo per 
$$n$$
:  $7 + \frac{8}{n} \le n$   
Ma  $n \ge 8 \Rightarrow \frac{8}{n} \le \frac{8}{8} = 1$  e quindi  $7 + \frac{8}{n} \le 7 + 1 = 8 \le n$ 

38

### Ordini di grandezza di polinomi

Teorema: Se p(n) è un polinomio di grado k allora  $p(n) \in O(n^k)$ .

 $p(n) = \sum_{i=0}^k a_i n^i \text{ con } a = \max\{a_i : 0 \le i \le k\}:$  $p(n) \le \sum_{i=0}^{k} a n^{i} = a \cdot \sum_{i=0}^{k} n^{i} \le a(k+1)n^{k} \quad (\forall n > 1)$ 

dunque con c = a(k+1) e  $n_0 = 1$ 

segue  $p(n) \in O(n^k)$ 

I termini di grado inferiore si possono ignorare.

### Definizione equivalente

Teorema:

 $\begin{array}{c} f(n) \in \mathcal{O}\big(g(n)\big) \\ \Longleftrightarrow \\ \lim_{n \to \infty} \frac{f(n)}{g(n)} \, \text{esiste e} \, 0 \leq \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \end{array}$ 

La definizione equivalente fornita dal teorema precedente è spesso utile per dimostrare facilmente se  $f(n) \in O(g(n))$  date f(n) e g(n).

40

### Ancora limiti

Teorema:

ma:  $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$   $\Leftrightarrow$   $f(n) \in O(g(n)) \land g(n) \notin O(f(n))$ 

• per esempio, per le funzioni  $n^2$  e  $n^3$  si ha  $n^2 \in \mathcal{O}(n^3) \wedge n^3 \not\in \mathcal{O}(n^2)$ 

41

### Ordini di grandezza di polinomi

Teorema: Se p(n) è un polinomio di grado h > k e  $a_h > 0$ , allora  $p(n) \notin O(n^k)$ .

Con la def. equivalente precedente da

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{a_0+a_1n+\cdots+a_hn^h}{n^k}=\infty$$

dunque  $p(n) \notin O(n^k)$ 

Tutto ciò che conta in un polinomio è il grado.

### Ordini di grandezza di polinomi

Teorema: Se p(n) è un polinomio di grado h > k e  $a_h > 0$ , allora  $p(n) \notin O(n^k)$ .

Esempio:

$$p(n) = 3n^3 + 5n + 18 \quad (h = 3)$$

implica

$$p(n)$$
 non è  $O(n^2)$   $(k=2)$ 

Tutto ciò che conta in un polinomio è il grado.

43

### Base dei logaritmi

 $O(\log_a n) = O(\log_b n), \ a, b > 1$ 

$$\log_a n = \frac{\log_b n}{\log_b a} = \frac{1}{\log_b a} \log_b n$$

Quindi scriviamo semplicemente  $O(\log n)$ 

44

### Inclusioni

 $O(1) \subset O(\log n)$ 

 $\begin{array}{l} \log n \text{ è superiormente illimitata, mentre} \\ f(n) \in O(1) \Rightarrow \exists c > 0, n_0 \forall n > n_0. f(n) \leq c \end{array}$ 

 $O(\log n) \subset O(n)$ 

 $\log_2 n \le n \Leftrightarrow n = 2^{\log_2 n} \le 2^n \text{ perché } n < 2^n \text{ per ogni } n > 0.$ 

 $O(n) \subset O(n \log n)$   $n > 2 \Rightarrow \log_2 n > 1 \Rightarrow n \log_2 n > n$ 

(sul lucido si leggono ragionamenti informali, per avere una dimostrazione formale bisognerebbe trattare qualche dettaglio in più)

| Inclusioni                              |                                                                                                               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $O(n^p) \subset O(2^n)$                 |                                                                                                               |
| $\lim_{n\to\infty} \frac{n^p}{2^n} = 0$ |                                                                                                               |
| 2                                       |                                                                                                               |
| $\lim_{n \to \infty} f^{(n)} = 0$       |                                                                                                               |
| ⇔                                       |                                                                                                               |
|                                         | $O(n^p) \subset O(2^n)$ $\lim_{n \to \infty} \frac{n^p}{2^n} = 0$ $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ |

46

### Inclusioni $O(n^p) \subset O(2^n)$ Le funzioni esponenziali crescono più velocemente delle polinomiali.

47

### Base di una potenza $O(2^n) \neq O(3^n)$

Segue che

$$\lim_{n\to\infty} \frac{2^n}{3^n} = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n = 0 \quad \text{e} \quad \lim_{n\to\infty} \frac{3^n}{3^n} = 1$$

che  $3^n \notin O(2^n) \land 3^n \in O(3^n)$  che implica  $O(2^n) \neq O(3^n)$ 

Nel caso di una potenza la base conta!

(quindi anche  $O(2^n) \neq O(2^{2n})$  perché  $2^{2n} = 4^n$ ) (e cmq  $O(2^n) \subset O(3^n)$ )

Classificazione delle funzioni

Dopp. Esp

Policoponenziale

Polilogaritmica

U

Limite costante

5-5/n 6 log n (log n)<sup>2</sup> n<sup>2+2n-2</sup> 2<sup>3n</sup> 3<sup>n5</sup> 2<sup>3<sup>5n</sup></sup>

|       | Funzioni ordinate per velocità di crescita |       |       |         |                |                |                          |  |  |
|-------|--------------------------------------------|-------|-------|---------|----------------|----------------|--------------------------|--|--|
|       |                                            |       |       |         |                |                |                          |  |  |
| n     | log n                                      | √n    | n     | n log n | n <sup>2</sup> | n <sup>3</sup> | 2 <sup>n</sup>           |  |  |
| 2     | 1                                          | 1,41  | 2     | 2       | 4              | 8              | 4                        |  |  |
| 4     | 2                                          | 2     | 4     | 8       | 16             | 64             | 16                       |  |  |
| 8     | 3                                          | 2,83  | 8     | 24      | 64             | 512            | 256                      |  |  |
| 16    | 4                                          | 4     | 16    | 64      | 256            | 4.096          | 65.536                   |  |  |
| 32    | 5                                          | 5,66  | 32    | 160     | 1.024          | 32.768         | 4.294.967.296            |  |  |
| 64    | 6                                          | 8     | 64    | 384     | 4.096          | 262.144        | 1,84 x 10 <sup>19</sup>  |  |  |
| 128   | 7                                          | 11,31 | 128   | 896     | 16.384         | 2.097.152      | 3,40 x 10 <sup>38</sup>  |  |  |
| 256   | 8                                          | 16    | 256   | 2.048   | 65.536         | 16.777.216     | 1,15 x 10 <sup>77</sup>  |  |  |
| 512   | 9                                          | 22,63 | 512   | 4.608   | 262.144        | 134.217.728    | 1,34 x 10 <sup>154</sup> |  |  |
| 1.024 | 10                                         | 32    | 1.024 | 10.240  | 1.048.576      | 1.073.741.824  | 1,79 x 10 <sup>308</sup> |  |  |



### Algebra informale di O-grande

Spesso leggiamo eguaglianze del tipo

$$\frac{1}{4}n^2 = O(n^2) \qquad \qquad \frac{1}{2}n^2 + n = O(n^2) + O(n) = O(n^2)$$

Prese alla lettera conducono ad assurdità:  $\frac{1}{2}n^2 + n = \frac{1}{4}n^2$ 

f(n) = O(g(n)) si interpreta come un'equazione "a senso unico", con cui rimpiazziamo una funzione con il suo ordine di grandezza in senso O-grande

52

### Algebra informale di O-grande

Definiamo:

 $f(n) + O(g(n)) = \{h : \exists g' \in O(g(n)) : h(n) \in O(f(n) + g'(n))\}$  $f(n) \cdot O(g(n)) = \{h : \exists g' \in O(g(n)) : h(n) \in O(f(n) \cdot g'(n))\}$ 

Allora ne segue:

f(n) + O(g(n)) = O(f(n) + g(n)) $f(n) \cdot O(g(n)) = O(f(n) \cdot g(n)).$ 

Similmente definiamo:

O(f(n)) + O(g(n)) =

 $\{h: \exists f' \in O(f(n)) \exists g' \in O(g(n)) : h(n) \in O(f'(n) + g'(n))\},\$ 

ed  $O(f(n)) \cdot O(g(n))$  analogamente.

53

### Algebra informale di O-grande

Ne deriva:

$$f(n) = O(f(n))$$

$$c \cdot O(f(n)) = O(f(n))$$
 c costante

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$f(n)\in O(g(n))\Rightarrow O(f(n))+O(g(n))=O(g(n))$$

 $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$ 

Perciò ad esempio:

$$O(2) = O(1) + O(1) = O(1)$$
 ma

$$n \cdot O(1) = O(n)$$
 (n è una variabile!)

### Una semplice applicazione

55

### Confini "stretti"?

 $\sqrt{n}\in O(2^n)$ 

Naturalmente si tratta di un'asserzione vera, ma dice poco perché il confine superiore 2<sup>n</sup> non è stretto.

O è utilizzabile per fornire limiti asintotici superiori.

Come facciamo esprimere che un limite sia stretto?

Come facciamo esprimere limiti inferiori?

56

### Definizione di $O, \Omega, \Theta$

 ${\it O}$ , limite (o confine) asintotico superiore:

 $f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, n_0 \forall n > n_0. f(n) \le cg(n)$ 

 $\boldsymbol{\Omega},$  limite (o confine) asintotico inferiore:

 $f(n) \in \Omega(g(n)) \Leftrightarrow \exists c > 0, n_0 \forall n > n_0. cg(n) \le f(n)$ 

 $\boldsymbol{\Theta},$  limite (o confine) asintotico sia inferiore sia superiore (limite asintotico stretto):

$$\begin{split} f(n) &\in \Theta\big(g(n)\big) \\ &\iff \\ \exists c_1 > 0, c_2 > 0, n_0 \forall n > n_0. c_1 g(n) \leq f(n) \leq c_2 g(n) \end{split}$$



58

### $O, \Omega, \Theta \text{ a parole}$ $O: f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, n_0 \forall n > n_0. f(n) \leq cg(n)$ "f(n) cresce all più come g(n)" $\Omega: f(n) \in \Omega(g(n)) \Leftrightarrow \exists c > 0, n_0 \forall n > n_0. cg(n) \leq f(n)$ "f(n) cresce almeno come g(n)" $\Theta: f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1 > 0, c_2 > 0, n_0 \forall n > n_0.$ $c_1g(n) \leq f(n) \leq c_2g(n)$ "f(n) cresce come g(n)"(per tutti e tre "trascurando costanti moltiplicative e un numero finito di casi")

59

### O-grande ed o-piccolo O: $f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, n_0 \forall n > n_0. f(n) \leq cg(n)$ o: $f(n) \in o(g(n)) \Leftrightarrow \forall c > 0 \exists n_0 \forall n > n_0. f(n) \leq cg(n)$ Se $f(n) \in o(g(n))$ allora f è un infinitesimo di g, quindi g non è un confine superiore "stretto" di f.

### Definizione equivalente di $O, \Omega, \Theta$

ore that  $0 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Leftrightarrow f(n) \in O(g(n))$  $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} \le \infty \Leftrightarrow f(n) \in \Omega(g(n))$  $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \Leftrightarrow f(n) \in \Theta(g(n))$ 

La definizione equivalente fornita dal teorema è spesso utile per dimostrare facilmente la relazione fra f(n) e g(n).

61

### Esercizi

$$\begin{split} f_1(n) &= 3n^2 + 10n - 2 \\ f_2(n) &= \log_2 n + \frac{1}{4}n^{\frac{1}{2}} \\ f_3(n) &= \left(\frac{3}{2}\right)^n + n^3 + 10 \\ f_4(n) &= n\log_2 n + 5n + 2 \end{split}$$

$$\begin{split} f_k(n) &= n \log_2 n + 5n + 2 \\ &\quad \text{quali proposizioni sono vere e quali false?} \\ f_1(n) &\in O(n^3), f_1(n) \in O(n), f_1(n) \in \Omega(n^2), f_1(n) \in \Theta(n^3), f_1(n) \in \Theta(n^2) \\ f_2(n) &\in \Theta(\log n), f_2(n) \in \Theta(n^{1/2}), f_2(n) \in O(n), f_2(n) \in \Omega(n^{1/4}) \\ f_3(n) &\in O(10), f_3(n) \in \Omega(10), f_3(n) \in \Theta((3/2)^n + 10n^3), f_3(n) \in \Omega(n^3) \\ f_4(n) &\in \Omega(n), f_4(n) \in \Omega(n) \log n), f_4(n) \in O(n \log n) \end{split}$$
• stabilire per ciascuna funzione la sua ordine di grandezza, cioè la funzione più semplice  $g_i(n)$  tale che  $f_i(n) \in \Theta(g_i(n))$  con i=1,2,3,4

62

### Confronto asintotico tra funzioni





### Funzioni inconfrontabili

Ci sono funzioni inconfrontabili asintoticamente:

$$f(x) = \begin{cases} 1 & \text{se } x \text{ pari} \\ 0 & \text{se } x \text{ dispari} \end{cases} \qquad g(x) = \begin{cases} 0 & \text{se } x \text{ pari} \\ 1 & \text{se } x \text{ dispari} \end{cases}$$

Con O:

 $f(x) \notin O(g(x)) \land g(x) \notin O(f(x))$ 

e anche con la notazione introdotta prima:  $f(x) \le g(x) \land g(x) \le f(x)$ 

64

### Complessità di un problema

**Somma 17**. Dato un vettore di *n* interi positivi decidere se ne contiene due la cui somma sia 17.

65

### Complessità di un problema

Qual è un tempo di calcolo sufficiente alla risoluzione del problema "Somma 17"?

Confine superiore alla complessità di un problema: un confine superiore per il tempo di calcolo (nel caso peggiore) di un algoritmo che risolve il problema.

### Complessità di un problema



Se un algoritmo che risolve il problema ha tempo di calcolo T(n) e  $T(n) \in O(g(n))$  allora g(n) è un confine superiore per la complessità del problema (in senso O).

Confine superiore alla complessità di un problema: un confine superiore per il tempo di calcolo (nel caso peggiore) di un algoritmo che risolve il problema.

67

### Complessità di un problema

**Somma 17**. Dato un vettore di *n* interi positivi decidere se ne contiene due la cui somma sia 17.

```
\begin{array}{llll} \textbf{bool} & \text{Sommal7 (int v[], int n)} \\ \{ & \textbf{bool b = false;} \\ & \textbf{for (int i = 0; i < n; i++)} \\ & \textbf{for (int j = i+1; j < n; j++)} \\ & & \textbf{if (v[i] + v[j] == 17) b = true;} \\ & & \text{return b;} \\ \} & & & \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \Rightarrow T_{\text{Sommal7}}(n) \in \mathcal{O}(n^2) \end{array}
```

68

### Complessità di un problema

Qual è un tempo di calcolo necessario alla risoluzione del problema "Somma 17"?

Confine inferiore alla complessità di un problema: un confine inferiore per i tempi di calcolo (nel caso peggiore) di tutti gli algoritmi che risolvono il problema

### Complessità di un problema $T_1$ ... $T_k$ ... Se tutti gli algoritmi $T_i$ che risolvono il problema hanno tempo di calcolo $T_i(n) \in \Omega(f(n))$ allora $f(n) \in \Omega(f(n))$ all

70

### Confini banali

peggiore) di tutti gli algoritmi che risolvono il problema

- Dimensione del input: quando è necessario esaminare tutti i dati in ingresso.
- ingresso. Es. La moltiplicazione di due matrici quadrate di ordine n richiede l'ispezione di  $2n^2 \in \Omega(n^2)$  entrate.
- Dimensione del output: numero di elementi da produrre in output.
   Es. Se la soluzione è un vettore di n elementi allora tempo di calcolo richiesto è Ω(n).
- Eventi contabili: quando c'è un evento la cui ripetizione un numero di volte sia necessaria alla soluzione del problema

volte sia necessaria alla soluzione del problema. **Es.** La determinazione del massimo tra n elementi richiede  $n-1 \in \Omega(n)$  confronti, in cui altrettanti elementi non massimi risultino minori.

71

### Complessità di un problema

Contando il numero n degli elementi del vettore e poiché ognuno di essi deve essere considerato almeno una volta, un confine inferiore alla complessità del problema  $\mathbf{Somma17}$  è  $\Omega(n)$ .

Questo è un esempio del criterio della "dimensione dei dati".

### Una soluzione O(n) per Somma17

- 1. Dato il vettore v, calcoliamo l'insieme  $C = \{i \mid i \le 17 \text{ e } i \text{ è presente in } v\}$
- dato che v ha solo interi positivi, la risposta sarà true se e solo se esistono i, j ∈ C tali che i + j = 17

73

### Una soluzione O(n) per Somma17

```
bool Somma17_veloce (int v[], int n)
{    bool c[18]; int i, j;
    for (i = 0; i < 18; i++)
        c[i] = false;
    for (i = 0; i < n; i++)
        if (v[i] <= 17) c[v[i]] = true;
    for (i = 0, j = 17;
        i < j && !(c[i] && c[j]); i++, j--);
    return i < j;</pre>
```

74

### Una soluzione O(n) per Somma17

### Una soluzione O(n) per Somma17

76

### Complessità di un problema

Un algoritmo con tempo di calcolo  $T(n) \in O(g(n))$  è ottimo per un certo problema se g(n) è un confine inferiore alla complessità del problema in termini di  $\Omega$ .