AMS595 - Assignment-5

Machine Learning Project

Amol Arora

November 17, 2024

1 Github Link

All project files are uploaded here: https://github.com/amol1202/AMS595_Assignment5

2 Introduction

The purpose of this project is to explore and implement core machine learning techniques using Python. The tasks implemented are:

- PageRank Algorithm: Simulates the ranking mechanism used by search engines.
- Dimensionality Reduction via PCA: Projects high-dimensional data to a single dimension while preserving variance.
- Linear Regression: Predicts outcomes based on features using the least-squares method.
- Gradient Descent: Optimizes a matrix to minimize a mean squared error loss function.

Each task has been implemented independently, and the results have been saved for reproducibility.

3 Implementation

3.1 PageRank Algorithm

The PageRank algorithm computes the importance of web pages using a stochastic matrix. The steps include:

- 1. Represent the web network as a stochastic matrix.
- 2. Compute the dominant eigenvector using the power method.
- 3. Normalize the eigenvector to get PageRank scores.

The code is written in Python using the scipy.linalg.eig function to compute eigenvectors.

3.2 Dimensionality Reduction via PCA

Principal Component Analysis (PCA) is used to reduce a dataset of height and weight measurements to 1D:

- 1. Compute the covariance matrix of the data.
- 2. Perform eigen decomposition using the numpy.linalg.eigh function.
- 3. Project the data onto the principal component with the highest variance.

The results include a plot of the original data and the 1D projection.

3.3 Linear Regression via Least Squares

Linear regression predicts house prices based on features (square footage, bedrooms, and age):

- 1. Represent the system as $X\beta = y$.
- 2. Solve for β using scipy.linalg.lstsq.
- 3. Use the model to predict prices for new inputs.

The regression coefficients and predictions are saved for analysis.

3.4 Gradient Descent

Gradient Descent optimizes a matrix X to minimize the mean squared error loss:

- 1. Define the loss function: $f(X) = \frac{1}{2} \sum_{i,j} (X_{ij} A_{ij})^2$.
- 2. Compute the gradient of the loss function.
- 3. Use scipy.optimize.minimize to iteratively minimize the loss.

The final loss value is recorded.

4 Results

4.1 PageRank Algorithm

The PageRank scores for the web pages are shown in Table 1. The page with the highest score is ranked the most important.

Page	PageRank Score
1	0.22
2	0.27
3	0.31
4	0.20

Table 1: PageRank Scores

Figure 1: PCA: Dimensionality Reduction

4.2 PCA

Figure 2 shows the original data and the 1D projection onto the principal component.

4.3 Linear Regression

The regression coefficients and predictions are:

- Coefficients: [0.25, 0.10, -0.02]
- Predicted price for a house with 2400 square feet, 3 bedrooms, and 20 years old: \$490,500

4.4 Gradient Descent

The final loss value after optimization is:

Final Loss Value: 0.00123

Figure 2: Loss over iterations

5 Conclusion

This project demonstrates practical applications of machine learning techniques using Python. The results are stored for reproducibility and further analysis. These implementations provide a strong foundation for more advanced projects in machine learning and data science.

6 References

• Python Documentation: https://docs.python.org/3/

• SciPy Library: https://scipy.org/

• NumPy Library: https://numpy.org/

• Matplotlib Library: https://matplotlib.org/