

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, நவம்பர் - 2016 Term Examination, November - 2016

தரம் :- 12 (2018)

இணைந்த கணிதம்

நேரம் :- 3 மணித்தியாலங்கள்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த	5 கணிதம்
பகுதி	ഖിனா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
A	5	W (%)
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
В	15	
	16	
	17	
	மொத்தம்	
	•	

	பகுதி – A
(1)	K இன் எல்லாப் பெறுமானங்களுள்ளும் $\frac{1}{1+x}+\frac{1}{x-1}=\frac{1}{k}$ என்ற சமன்பாட்டின் மூலங்கள்
	ு மெய்யானவையும் வேறுவேறானவையும் எனக் காட்டுக.
(2)	$rac{12}{x-3} < x+1$ என்னும் சமனிலையைத் திருப்திப்படுத்தும் x இன் மெய்ப்பெறுமானங்களைக்
	காண்க.

(3)	$\frac{x^2}{(2x-1)(x+1)}$ ஐப் பகுதிப் பின்னங்களாக்குக.
(-)	(2x-1)(x+1) $(2x-1)(x+1)$
(4)	பல்லுறுப்பி $f(x) \equiv 3x^3 - ax^3 + bx + 9$ ஐ $x^2 - 1$ இனால் வகுக்க வரும் மீதி $8x + 7$
,	
	எனின் a , b இன் பெறுமானங்களைக் காண்க.
	எனின் $a,\ b$ இன் பெறுமானங்களைக் காண்க.
	எனின் <i>a, b</i> இன் பெறுமானங்களைக் காண்க.
	எனின் $a,\ b$ இன் பெறுமானங்களைக் காண்க.

சமன்பாடு $\sqrt{x-1} = \sqrt{x+4} - 1$ ஐத் தீர்க்க.
$cos^2 10 + cos^2 50 + cos^2 70 = \frac{3}{2}$ எனக் காட்டுக.

(7)	முக்கோணி ABC இல் A,B,C இன் தானக்காவிகள் முறையே $oldsymbol{a}$, $oldsymbol{b}$, $oldsymbol{c}$ ஆகும்.
	BC , CA , AB இன் நடுப்புள்ளிகள் முறையே D , E , F ஆகும். \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CD} = $oldsymbol{0}$
	எனக் காட்டுக.
(8)	$m{a}$, $m{b}$ செங்குத்தானவை ஆகவும், $ m{a} =7$, $ m{b} =24$ ஆகவும் இருப்பின், $ m{a}+m{b} $ ஐக்
	காண்க.
	44(0)1102

(9)	60^0	கோண	த்தில்	ஒரு	புள்ளிய	ில் தா	ர க் கும்	P, Q	என்னும்	இ ரு	விசை	களின்	ഖിബെய്പள്
	$\sqrt{7} Q$	எனின்	$\frac{P}{Q}$ @	தன் ெ	பறுமானத்	தைக்	காண்க	5.					
		• • • • • • • • • • • • • • • • • • • •											
			•••••										
		•••••	•••••							•••••			
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
		• • • • • • • • • • • • • • • • • • • •											
			•••••										
		• • • • • • • • • • • • • • • • • • • •	•••••							•••••			
		• • • • • • • • • • • • • • • • • • • •	•••••							•••••		•••••	
							14.67						
		• • • • • • • • • • • • • • • • • • • •)					
		•••••											
													•••••
(10)													து தொங்க
													காணத்தில்
									ானது ே நு. ∝ இன்				க்குத்துடன் காண்க
				± €		9),0000			jj. ≪ ⊗ ₅₀₀		<u>o</u>	<u>.</u>	
		•••••											
		•••••	•••••										
		• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •				•••••		• • • • • • • • • • • • • • • • • • • •			
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
										•••••			
		• • • • • • • • • • • • • • • • • • • •	•••••										
		• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
		• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	•••••			•••••	•••••	•••••
			-				-						

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, நவம்பர் - 2016 Term Examination, November - 2016

தரம் :- 12 (2018)

இணைந்த கணிதம்

பகுதி – B

- (11) (a) (i) $(1-k)x^2 + 2(k+5)x + 8k + 25 = 0$ என்ற இருபடிச் சமன்பாட்டின் மூலகங்கள் மெய்யானவை எனின் k இன் பெறுமானங்களின் தொடையைக் காண்க.
 - (ii) $x^2 ax + b = 0$ என்னும் சமன்பாட்டின் மூலகங்கள் \propto , β எனின் $\frac{\alpha+1}{\beta+2}$, $\frac{\beta+1}{\alpha+2}$ என்பவற்றை மூலங்களாகவுடைய இருபடிச்சமன்பாட்டை a , b இன் உறுப்புகளில் காண்க.
 - (b) மீதித்தேற்றத்தைக் கூறி நிறுவுக. $f(x) \equiv x^4 + ax^3 + bx^2 + 12x + 5$ எனக் கொள்வோம் f(x) இன் ஒரு காரணி x+1 எனவும் f(x) ஐ x-1 இனால் வகுக்க வரும் மீதி 32 எனவும் தரப்படின் a,b இன் பெறுமானங்களைக் காண்க. a,b இன் இப்பெறுமானங்களுக்கு p,q,r ஒருமைகளாக இருக்கும் f(x) ஐ $(x+b)^2$ (x^2+qx+r) என்னும் வடிவத்தில் தருக. x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $f(x) \geq 0$ என்பதை உய்த்தறிக.
- (12) (a) a , b என்பன நேர் மெய் எண்கள் எனத் தரப்பட்டிருக்க $a^2+b^2\geq 2ab$ எனவும் $a+b\geq 2\sqrt{ab}$ எனவும் காட்டுக. மேலுள்ள முடிவுகளிலிருந்து $a^2+b^2+c^2\geq bc+ca+ab$ எனவும் $(a+b)(b+c)(c+a)\geq 8abc$ எனவும் காட்டுக. இங்கு c நேர்மெய் ஆகும்.
 - (b) p,q,rs என்பன மெய்யெண்களாக அமைய $p^4+q^4+r^4+s^4\geq 4~pqrs$ ஆகுமெனக் காட்டுக.
 - (c) $\log_b(x^3y)=p$, $\log_b\left(\frac{y}{x^2}\right)=q$ எனத் தரப்பட்டிருக்க $\log_b(xy)=\frac{1}{5}(3p+2q)$ எனக் காட்டுக.
- (13) (a) പിன்வருவனவற்றை நிறுவுக.

(i)
$$\frac{\tan \theta}{1-\cot \theta} + \frac{\cot \theta}{1-\tan \theta} = \sec \theta \csc \theta + 1$$

- (ii) $(\sec\theta + \tan\theta 1)(\sec\theta \tan\theta + 1) = 2\tan\theta$
- (iii) $\frac{\cos 3\theta + 2\cos 5\theta + \cos 7\theta}{\cos \theta + 2\cos 3\theta + \cos 5\theta} = \cos 2\theta \sin 2\theta \tan 3\theta$
- (iv) $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$
- (b) (i) $cos\theta sin\theta = b$ $cos3\theta + sin3\theta = a$ எனில் $a = 3b 2b^3$ எனக் காட்டுக.
 - (ii) $cos20 cos40 cos80 = \frac{1}{8}$ எனக் காட்டுக.

- (14) (a) $\frac{\sec^2\theta \tan\theta}{\sec^2\theta + \tan\theta}$ என்பது $\frac{1}{3}$ இல் இருந்து 3 வரையான பெறுமானங்களை எடுக்கும் எனக் காட்டுக.
 - (b) $2\sin 2x + \cos 2x = k$ எனில் $(1+k)\tan^2 x 4\tan x 1 + k = 0$ எனக் காட்டுக. $\tan x_1$, $\tan x_2$ என்பன இச்சமன்பாட்டின் மூலங்கள் எனில் $\tan(x_1+x_2)=2$ எனக் காட்டுக.
 - (c) பின்வரும் திரிகோண கணித சமன்பாடுகளைத் தீர்க்க.
 - (i) $2\cos^2\theta = 3(1 \sin\theta)$
 - (ii) $10\sin\frac{\pi x}{3} + 24\cos\frac{\pi x}{3} = 13$
- (15) (a) $\frac{\sec^2\theta \tan\theta}{\sec^2\theta + \tan\theta}$ என்பது $\frac{1}{3}$ இல் இருந்து 3 வரையான பெறுமானங்களை எடுக்கும் எனக் காட்டுக.
 - (b) 2sin2x + cos2x = k எனில் $(1+k) + an^2x 4tanx 1 + k = 0$ எனக்காட்டுக. $tanx_1$, $tanx_2$ என்பன இச்சமன்பாட்டின் மூலங்கள் எனில் $tan(x_1 + x_2) = 2$ எனக் காட்டுக.
 - (c) பின்வரும் திரிகோணகணித சமன்பாடுகளைத் தீர்க்க.
 - (i) $2\cos^2\theta = 3(1 \sin\theta)$
 - (ii) $10 \sin \frac{\pi x}{3} + 24 \cos \frac{\pi x}{3} = 13$
- (16) (a) $a=2i-\lambda j$, $b=18i+\lambda j$ ஆக இருக்க $a\perp b$ எனின், λ ஐக் காண்க.
 - (b) OACB ஓர் இணைகரம் ஆகும். AC இன் நடுப்புள்ளி D ஆகும். OD உம் AB உம் M இல் இடைவெட்டுகின்றன. $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ எனக் கொண்டும்,

$$OM = \times OD$$
, $AM = \mu AB$ எனக் கொண்டும்,

- (i) \overrightarrow{OD} ஐ $m{a}$, $m{b}$ இன் சார்பில் காண்க.
- (ii) \overrightarrow{BA} ஐ a , b இன் சார்பில் காண்க.
- (iii) \overrightarrow{OM} , \overrightarrow{AM} என்பவற்றை a , b இன் சார்பில் காண்க.
- (iv) $AM = \frac{1}{3}AB$ எனக் காட்டுக
- (17) (a) P, P-Q, P+Q என்னும் விசைகள் ஒரு புள்ளியில் தாக்குகின்றன. எந்த இரு விசைகளுக்கு இடையிலான கோணமும் 120^0 எனின், விளையுளைக் காண்க.
 - (b) $240\ kg$ திணிவு ஒன்று இரு கயிறுகளினால் கட்டித் தொங்கவிடப்படுகிறது. இரு கயிறுகளும் நிலைக்குத்துடன் முறையே 60^0 , 30^0 என்னும் கோணங்களில் சாய்ந்துள்ளன. கயிற்றில் உள்ள இழுவையைக் காண்க.
- (18) ABCDEF என்பது ஓர் ஒழுங்கான அறுகோணி ஆகும். AB, AC, AD, AE, AF என்னும் திசைகளில் முறையே 2, $4\sqrt{3}$, 8, $2\sqrt{3}$, 4N விசைகள் தாக்குகின்றன.
 - (i) விளையுளின் பருமனைக் காண்க.
 - (ii) விளையுள் AB உடன் அமைக்கும் கோணத்தைக் காண்க.
 - (iii) விளையுள் AD வழியே இருக்கும் எனக் காட்டுக.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

- C.Maths
- Physics
- Chemistry
 - + more