Problematyka

Celem zadania jest znalezienie oraz wykreślenie wielomianów interpolacyjnych stopnia $n, W_n(x)$, na przedziale $x \in [-1,1]$ dla funkcji $f_1(x) = \frac{1}{1+25x^2}$ oraz $f_2(x) = \frac{1}{1+x^2}$ dla

a) Jednorodnych węzłów interpolacji: $x_i = -1 + 2\frac{i}{n}$

b)
$$x_i = cos\left(\frac{2i+1}{2(n+1)}\pi\right)$$

Sposób rozwiązania

Do rozwiązania wykorzystuję wzór interpolacyjny Lagrange'a: $f(X) = \sum_{j=1}^n l_j(x) f_j$, gdzie $l_j(x) = \frac{(x-x_1)...(x-x_{j-1})(x-x_{j+1})...(x-x_n)}{(x_j-x_1)...(x_j-x_{j-1})(x_j-x_{j+1})...(x_j-x_n)}$

Wyniki

Wielomiany interpolacyjne dla funkcji: $y(x) = 1/(1+25x^2)$ i węzłów interpolacji: xi = -1+2i/n

Wielomiany interpolacyjne dla funkcji: $y(x) = 1/(1+25x^2)$ i węzłów interpolacji: xi = cos((2i+1)/(2(n+1))pi)

Wielomiany interpolacyjne dla funkcji: $y(x) = 1/(1+x^2)$ i węzłów interpolacji: xi = -1+2i/n

Wnioski

Na pierwszym wykresie możemy zauważyć, że przy zwiększaniu n w pewnym momencie nie dostaniemy lepszego przybliżenia ponieważ na krańcach przedziału powstaną oscylacje Rungego. Ponieważ siatka dla podpunktu b) jest gęstsza na końcach, minimalizujemy problem oscylacji.

Dla $f_2(x)$ dostajemy dużo lepsze przybliżenia niż dla $f_1(x)$ nawet dla mniejszych wartości n. Ponieważ ta funkcja dla przedziału [-1,1] jest raczej wklęsła, dlatego łatwiej jest dopasować odpowiedni wielomian.