Community Christmas Competition

Simulation of the drag coefficient of a monkey head with OpenFOAM

Name: Lau Yau Fu, Eddy

Affiliation: N/A

Email: lyfhome@me.com

General

General

- OpenFOAM v4.1
- Solver: interFoam
- Mesh: blockMesh, snappyHexMesh
- Mesh size: 10m(l) x 6m(w) x 6m(h)
- Boundary conditions: Velocity inlet, total pressure outlet
- Smooth surface is assumed
- Filled holes at monkey eyes by MeshLab

Specific Parameters

- Fluid: Air, density = 1.2kg/m³
- Freestream turbulence = 0.1%
- Frontal area of monkey head = 2.55281 m²
- Length for calculating Reynolds
 Number = 1.6m (length of monkey head along flow dir & diameter of sphere for validation cases)
- Simulated Reynolds Number = 106,667, 213,333, 533,333 & 1,066,667 (for v=1 to 10m/s)

Validation by Sphere (1 of 2)

Validation by 1.6m Diameter Sphere

 To validate applicability of the two approaches for calculating drag coefficients of sphere

Approach 1: Resolve boundary layer at sphere surface (y+ ≈ 1) with transition turbulence model (kkLOmega)

Approach 2: Wall function approach at sphere surface (y+ ≈ 30) with kOmegaSST turbulence model

Sphere Drag Coefficients

Reynolds Numbers	106,667 (v = 1m/s)	213,333 (v = 2m/s)	533,333 (v = 5m/s)	1,066,667 (v = 10m/s)
Theoretical	0.428	0.396	0.095	0.133
Approach 1	0.508	0.377	0.088	0.244
Approach 2	0.188	0.187	0.261	0.163

- Approach 1: Reasonably accurate, point of separation and flow pattern match with literature
- Approach 2: Unable to capture changes in drag coefficients

Validation by Sphere (2 of 2)

Approach 1

v = 1m/s (Re=106,667)

v = 5m/s (Re=533,333)

v = 2m/s (Re=213,333)

v = 10m/s (Re=1,066,667)

Approach 2

v = 1m/s

v = 5m/s

v = 2m/s

v = 10 m/s

Methodology Adopted for Monkey Head

Wall Function Approach

- Due to time constraint, wall function approach (Approach 2) is still adopted despite its lower accuracy
- 1st cell $y+\approx 30$
- Wall layer ratio = 1.2
- Total cells = 4.0M to 6.1M
- Turbulence model: komegaSST

Limitations

- Boundary layer is assumed fully turbulent which is not true because:
- (i) At low Re, say below 100,000, boundary layer at monkey head is laminar; and
- (ii) At high Re, there is transition of laminar to turbulent boundary layer. Thus, modeling of flow separation point and pressure behind monkey head are not accurate

Results

Drag Coefficients

Reynolds	106,667	213,333	533,333	1,066,667
Numbers	(v = 1m/s)	(v = 2m/s)	(v = 5m/s)	(v = 10m/s)
Drag Coef.	0.852	0.877	0.794	0.792

Streamlines (velocity) and monkey head pressure distribution at v = 1m/s

