STATS310A - Lecture 6

Persi Diaconis Scribed by Michael Howes

10/07/21

Contents

1	An IOU	1
2	Semi-rings	2
3	Distribution functions 3.1 Distribution functions in higher dimensions	3
4	The basic problem in probability	4
5	Random variables	5

1 An IOU

All lot of what we have done has been done assuming that length is countably subadditive. That is if $(a,b] \subseteq \bigcup_{i=1}^{\infty} (a_i,b_i]$, then $b-a \le \sum_{i=1}^{\infty} b_i - a_i$. Today we prove this fact.

Proof. First we will show that if $(a,b] \subseteq \bigcup_{i=1}^n (a_i,b_i]$, then $b-a \le \sum_{i=1}^n b_i - a_i$. We will proceed by induction, if $(a,b] \subseteq (a_1,b_1]$, then $b-a \le b_1 - a \le b_1 - a_1$ and we are done.

Thus suppose the result holds for n-1 and that $(a,b] \subseteq \bigcup_{i=1}^n (a_i,b_i]$. Then we must have $b \in (a_i,b_i]$ for some i. By relabelling we can assume without loss of generality that $b \in (a_n,b_n]$. If $a_n \le a$, then we are done since then $(a,b] \subseteq (a_n,b_n]$. Now suppose $a_n > a$. We thus have $(a,a_n] \subseteq \bigcup_{i=1}^{n-1} (a_i,b_i]$ and by the inductive hypothesis $a-a_n \le \sum_{i=1}^{n-1} b_i - a_i$. Thus

$$b-a \le b_n - a = b_n - a_n + a_n - a \le \sum_{i=1}^n b_i - a_i,$$

as required. Now consider the infinite case when $(a,b] \subseteq \bigcup_{i=1}^{\infty} (a_i,b_i]$. Let $\varepsilon > 0$ and note that

$$[a+\varepsilon,b]\subseteq\bigcup_{i=1}^{\infty}(a_i,b_i+2^{-i}\varepsilon).$$

Since the set $[a + \varepsilon, b]$ is compact, the open cover $\{(a_i, b_i + 2^{-i}\varepsilon)\}_{i=1}^{\infty}$ must contain a finite subcover. Thus

$$(a+\varepsilon,b]\subseteq [a+\varepsilon,b]\subseteq \bigcup_{i=1}^n (a_i,b_i+2^{-i}\varepsilon)\subseteq \bigcup_{i=1}^n (a_i,b_i+2^{-i}\varepsilon].$$

Thus by the finite case we have

$$b-a-\varepsilon \le \sum_{i=1}^n b_i - a_i + 2^{-i}\varepsilon \le \varepsilon + \sum_{i=1}^\infty b_i - a_i.$$

Thus, by letting ε go to zero we are done and Persi has paid up.

2 Semi-rings

Definition 1. A class, A, of subsets of a set Ω , is a *semi-ring* if

- (a) $\emptyset \in \mathcal{A}$.
- (b) \mathcal{A} is closed under finite intersections.
- (c) If $A, B \in \mathcal{A}$ and $A \subseteq B$, then there exist disjoint sets $C_1, \ldots, C_k \in \mathcal{A}$, such that

$$B \setminus A = \bigcup_{i=1}^k C_i.$$

Some examples are

- Intervals in \mathbb{R} .
- Rectangles in \mathbb{R}^2 .
- Rectangular prisms in \mathbb{R}^3 .
- Hypercubes in \mathbb{R}^k .

Note that semi-rings are not necessarily closed under complements and need not contain Ω . Semi-rings are π -systems.

Theorem 1. Let Ω be a set and \mathcal{A} a semi-ring of subsets of \mathcal{A} . Let $\mu: \mathcal{A} \to \mathbb{R} \cup \{\infty\}$ be a function such that

- (a) $\mu(A) \geq 0$ for all $A \in \mathcal{A}$.
- (b) μ is finitely additive on A.
- (c) μ is countably subadditive on A.

Then μ has an extension to $\sigma(A)$ and the extension is unique if μ is σ -finite with respect to A.

Proof. If $A \subseteq B$ are both in \mathcal{A} , then

$$\mu(B) = \mu(A) + \sum_{i=1}^{k} \mu(C_i) \ge \mu(A).$$

Thus μ is monotone on \mathcal{A} . Define

$$\mu^*(B) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : B \subseteq \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\}.$$

We know that μ^* is a measure on the σ -algebra $\mathcal{M}(\mu^*)$. We need to show that

- (a) $\mathcal{A} \subseteq \mathcal{M}(\mu^*)$, and
- (b) $\mu^*(A) = \mu(A)$ if $A \in \mathcal{A}$.

For (a), suppose that $A \in \mathcal{A}$ and $E \subseteq \Omega$. If $\mu^*(E) = \infty$, then $\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E)$ and we are done.

Thus suppose $\mu^*(E) < \infty$ and fix $\varepsilon > 0$. There exists $A_n \in \mathcal{A}$ such that $E \subseteq \bigcup_{n=1}^{\infty} A_n$ and

$$\sum_{n=1}^{\infty} \mu(A_n) \le \mu^*(E) + \varepsilon.$$

Define $B_n = A \cap A_n$. Since \mathcal{A} is closed under intersections we have $B_n \in \mathcal{A}$. For each n we have $B_n \subseteq A_n$ and hence by the third semi-ring property there exist disjoint sets $C_{n,i} \in \mathcal{A}$ for $i = 1, \ldots, k_n$ such that

$$A^c \cap A_n = A_n \setminus B_n = \bigcup_{i=1}^{k_n} C_{n,i}.$$

We know that $\bigcup_{n=1}^{\infty} B_n$ covers $A \cap E$ and that $\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{k_n} C_i$ covers $A^c \cap E$. Thus, since μ is finitely additive on A we have

$$\mu^*(A \cap E) + \mu^{\ell}(A^c \cap E) \leq \sum_{n=1}^{\infty} \mu(B_n) + \sum_{n=1}^{\infty} \sum_{i=1}^{k_n} \mu(C_{n,i})$$
$$= \sum_{n=1}^{\infty} \left(\mu(B_n) + \sum_{i=1}^{k_n} \mu(C_{n,i}) \right)$$
$$= \sum_{n=1}^{\infty} \mu(A_n)$$
$$\leq \mu^*(E) + \varepsilon.$$

Thus we can conclude that $\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E)$ and so $A \in \mathcal{M}(\mu^*)$.

Now we will prove (b). Since $A \subseteq A$ for all $A \in \mathcal{A}$, we immediately have $\mu^*(A) \leq \mu(A)$. Also if $A \subseteq \bigcup_{i=1}^{\infty} A_i$, then $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$ by countable subadditivity so $\mu(A) \leq \mu^*(A)$.

3 Distribution functions

Let μ be a probability on \mathbb{R} equipped with the Borel σ -algebra \mathcal{B} . Define

$$F(x) = \mu((-\infty, x]),$$

then F satisfies

- (a) $\lim_{x \to \infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$.
- (b) $x \le y$ implies $F(x) \le F(y)$.
- (c) If $x_n \searrow x$, then $F(x_n) \searrow F(x)$. Since $\bigcap_{n=1}^{\infty} (-\infty, x_n] = (-\infty, x]$.

Conversely if F satisfies (a)-(c), then $\mu((a,b]) = F(b) - F(a)$ extends to a measure on (\mathbb{R},\mathcal{B}) and $\mu((-\infty,x]) = F(x)$ for all x.

For example

• The normal distribution: $F(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \exp\left(-\frac{1}{2}t^2\right) dt$.

• The exponential distribution:

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 - e^{-x} & \text{if } x \ge 0. \end{cases}$$

• A point mass at x_0

$$F(x) = \begin{cases} 0 & \text{if } x < x_0, \\ 1 & \text{if } x \ge x_0. \end{cases}$$

3.1 Distribution functions in higher dimensions

If $x \in \mathbb{R}^k$, let $A_x = \{y \in \mathbb{R}^k : y_i \le x_i, 1 \le i \le k\}$. If μ is a probability on \mathbb{R}^k , define

$$F(x) := \mu(A_x).$$

The function F satisfies (a)-(c) from before we also have the following extra condition! Suppose A is a rectangle

$$A = \{ y \in \mathbb{R}^k : a_i < x \le b_i, i = 1, \dots, k \},\$$

for some $a, b \in \mathbb{R}^k$. Then define

$$\Delta_F(A) = \sum_{v \text{ a vertex of } A} \operatorname{sgn}(v) F(v).$$

where

$$\operatorname{sgn}(v) = \begin{cases} 1 & \text{if } v_i = a_i \text{ for an even number of } i's, \\ -1 & \text{if } v_i = a_i \text{ for an odd number of } i's. \end{cases}$$

For example if k = 1, then A = (a, b] and $\Delta_F(A) = F(b) - F(a)$. If k = 2, then

$$\Delta_F(A) = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2).$$

Note that by the inclusion exclusion principle

$$\Delta_F(A) = \mu(A) > 0$$
,

if
$$F(x) = \mu(A_x)$$
.

Theorem 2. If F satisfies (a)-(c) and $\Delta_F(A) \geq 0$ for all rectangles A, then there exists a unique probability μ on \mathbb{R}^k such that $\mu(A_x) = F(x)$ for all $x \in \mathbb{R}^k$

Proof. The set of all rectangles is a semi-ring and $\mu(A) := \Delta_F(A)$ is a non-negative, finitely additive, countably subadditive function.

4 The basic problem in probability

We can now restate our "basic problem in probability". Let Ω be a set, \mathcal{A} a class of subsets of Ω and μ a probability measure on $\sigma(\mathcal{A})$ which we can compute on \mathcal{A} . Given $B \in \sigma(\mathcal{A})$, can we compute/approximate $\mu(B)$?

10/07/21 STATS310A - Lecture 6

5 Random variables

Definition 2. Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces (that is, $\mathcal{F}, \mathcal{F}'$ are σ -algebras). A function $T: \Omega \to \Omega'$ is measurable if for all $A' \in \mathcal{F}'$, $T^{-1}(A') \in \mathcal{F}$.

For example suppose $\Omega = S_n$ the set of all permutations of $\{1, \ldots, n\}$ and \mathcal{F} is the set of all subsets of Ω . Suppose also that $\Omega' = \{1, \ldots, n\}$ and again \mathcal{F}' is the collection of all subset of Ω' . Define $T(\pi) = \pi(i)$. Then $T^{-1}(\{j\}) = \{\pi \in \Omega : \pi(i) = j\}$ and $T^{-1}(A) = \{\pi \in \Omega : \pi(i) \in A\}$. The function T is thus measurable.

Lemma 1. Let $T: \Omega \to \Omega'$ be a function and let $\{A_i\}_{i\in I}$ be a collection of subsets of Ω' , then

- (a) $T^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} T^{-1}(A_i)$.
- (b) $T^{-1}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} T^{-1}(A_i)$.
- (c) For all $A \subseteq \Omega$, $T^{-1}(A^c) = T^{-1}(A)^c$.

Proposition 1. Suppose $\mathcal{F}' = \sigma(\mathcal{A}')$ for some collection of subsets \mathcal{A}' . Let $T : (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ be a function such that $T^{-1}(A') \in \mathcal{F}$ for all $A' \in \mathcal{A}'$, then T is a measurable function.

Proof. Define $\mathcal{G}' = \{A' \in \mathcal{F}' : T^{-1}(A') \in \mathcal{F}\}$, by assumption \mathcal{G}' contains \mathcal{A}' and by the above lemma \mathcal{G}' is a σ -algebra. Thus $\mathcal{F}' = \sigma(\mathcal{A}') \subseteq \mathcal{G}'$, as required.

Proposition 2. Suppose that $T:(\Omega,\mathcal{F})\to(\Omega',\mathcal{F}')$ and $S:(\Omega',\mathcal{F}')\to(\Omega'',\mathcal{F}'')$ are both measurable functions, then $S\circ T:(\Omega,\mathcal{F})\to(\Omega'',\mathcal{F}'')$ is also a measurable function.

Definition 3. A random variable is a measurable function $X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B})$.