WHAT IS CLAIMED IS:

- 1 1. A high weather and chemical resistant, addition-crosslinkable, 2 epoxy-functional organopolysiloxane resin which contains at least one or more of the 3 repeating units having the formulae:
 - $E_a R_b^1 R_c^2 SiO_{\frac{1}{2}} \qquad \text{(M units)}$

$$E_a R_b^1 R_c^2 SiO_2 \over 2$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_3$$
 (T units)

$$SiO_{\frac{4}{2}}$$
 (Q units)

4	wherein	E is an epoxy-functional C_{1-18} hydrocarbon group containing one or
5		more oxygen atoms, provided that no oxygen atom is directly bonded
6		to a Si- atom; and
7		R^1 and R^2 are independently a $C_{1\text{-}20}$ hydrocarbon, optionally
8		interspersed with a heteroatom linking group;
9		a is an integer of 0, 1, or 2;
10		b is an integer of 0, 1, 2 or 3;
11		c is an integer of 0, 1, 2 or 3; and
12		in M units, $a+b+c=3$,
13		in D units, $a+b+c=2$,
14		in T units, $a+b+c=1$,

1

1

2

15	wherein	the M units are present in less than about 40 mole percent;
16		the D units are present in an amount of up to about 40 mole percent;
17	and	
18		the molecule, on average, contains at least two E components.

- 1 2. The resin of claim 1 wherein the hydrocarbon group of E comprises a C₃₋₁₂ hydrocarbon group.
- 1 3. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an alkoxy content of less than about 20 weight percent, based on the weight of the epoxy-functional organopolysiloxane resin.
- 1 4. The resin of claim 1 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 150-1000.
- 5. The resin of claim 2 wherein the epoxy-functional organopolysiloxane resin has an epoxy equivalent weight in the range of about 200-3 600.
- 1 6. The resin of claim 5 wherein the epoxy-functional organopolysiloxane resin has a viscosity in the range of about 200-70,000 cps at 25°C.
 - 7. The resin of claim 6 wherein the E is glycidoxypropyl

8. The resin of claim 6 wherein the epoxy-functional organopolysiloxane resin comprises T units and the T units include structures

- 3 selected from the group consisting of silsequioxane and polysilsesquioxane
- 4 structures.
- 1 9. The resin of claim 1 wherein the resin has a molecular weight
- 2 between about 750 and 25,000.
- 1 10. The resin of claim 1 wherein the epoxy-functional
- organopolysiloxane resin is prepared by reacting a silicone resin with a silane having
- at least one epoxy group per molecule.
- 1 The resin of claim 10 wherein the silane is represented by the
- 2 formula:

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

- wherein each R⁵ is individually selected from the group consisting of
- alkyl (C_{1-12}) , aryl (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18}
- 5 hydrocarbon group of the formula R^6 E^1 wherein E^1 comprises an epoxy group and
- R⁶ comprises a C₁₋₁₈ hydrocarbon group optionally interspersed with at least one
- heteroatom linking group, with the proviso that at least one R^5 comprises R^6 E^1 .
- 1 12. The resin of claim 11 wherein the heteroatom linking group,
- 2 if present, is not adjacent to the E^1 group.
- 1 13. The resin of claim 11 wherein the hydrocarbon group of the
- 2 R^6 comprises a C_{3-12} hydrocarbon group.
- 1 14. The resin of claim 11 wherein the silane has a molecular
- weight in the range of about 100 to about 750.

1

- 1 15. The resin of claim 14 wherein the silane has an epoxyfunctionality in the range of about 1 to about 4.
- 1 16. The resin of claim 15 wherein the silane has an alkoxy functionality in the range of about 1 to about 4.
 - 17. The resin of claim 13 wherein R⁶-E¹ is glycidoxypropyl

- 1 18. The resin of claim 11 wherein the silane a γ -glycidoxypropylsilane having $C_{1^{-}12}$ alkoxygroups.
- 1 19. The resin of claim 10 wherein the silicone has a molecular weight in the range of about 300 to about 15000.
- 1 20. The resin of claim 7 wherein the resin comprises about 70 mole percent T units and about 30 mole percent D Units.
- 1 21. The resin of claim 1 wherein the resin is a liquid and has a molecular weight of about 500-5,000.
- The resin of claim 21 wherein the resin has a molecular weight of about 1,200.
- 1 23. The resin of claim 22 wherein the molecule contains at least 2 three E components.

24. An epoxy-functional organopolysiloxane coating composition comprising:

a hardener;

an epoxy-functional organopolysiloxane resin which contains at least one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}}$$
 (M units)

$$E_a R_b^1 R_c^2 SiO_{\frac{2}{2}}$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}}$$
 (T units)

$$SiO_{\frac{4}{2}}$$
 (Q units)

6	wherein	E is an epoxy-functional C ₁₋₁₈ hydrocarbon group containing one or
7		more oxygen atoms, provided that no oxygen atom is directly bonded
8		to a Si- atom; and
9		R^1 and R^2 are independently a C_{1-20} hydrocarbon, optionally
10		interspersed with a heteroatom linking group;
11		a is an integer of 0, 1, or 2;
12		b is an integer of 0, 1, 2 or 3;
13		c is an integer of 0, 1, 2 or 3; and
14		in M units, $a+b+c=3$,
15		in D units, $a+b+c=2$,
16		in T units, $a+b+c=1$,
17	wherein	the M units are present in less than about 40 mole percent;
18		the D units are present in an amount of up to about 40 mole percent;

with the proviso that the molecule, on average, contains at least two
E components; and
an acrylic resin;
wherein the epoxy-functional organopolysiloxane resin is prepared by
reacting a silicone resin with a silane represented by the formula:

$$R^{5} \xrightarrow{\stackrel{}{\underset{\stackrel{}{\longrightarrow}}{S}} i} R^{5}$$

24 wherein R^5 are one of, or a combination of, the following groups alkyl (C_{1-12}) , aryl (C_{6-9}), vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group of the formula $R^6 - E^1$ wherein $R^6 - E^1$ comprises glycidoxypropyl

$$O$$
 $(CH_2-CHCH_2OCH_2CH_2H_2C-)$,

with the proviso that at least one R^5 comprises $R^6 - E^1$.

25. An epoxy-functional organopolysiloxane coating composition
comprising:
a hardener;
an epoxy-functional organopolysiloxane resin which contains at least
one or more of the repeating units having the formulae:

$$E_a R_b^1 R_c^2 SiO_{\frac{1}{2}}$$
 (M units)

$$E_{\alpha}R_{b}^{1}R_{c}^{2}SiO_{\frac{2}{2}}$$
 (D units)

$$E_a R_b^1 R_c^2 SiO_{\frac{3}{2}}$$
 (T units)

$SiO_{\frac{4}{2}}$ (Q units)

6	wherein	E is an epoxy-functional C ₁₋₁₈ hydrocarbon group containing one or
7		more oxygen atoms, provided that no oxygen atom is directly bonded
8		to a Si- atom; and
9		R^1 and R^2 are independently a C_{1-20} hydrocarbon, optionally
10		interspersed with a heteroatom linking group;
11		a is an integer of 0, 1, or 2;
12		b is an integer of 0, 1, 2 or 3;
13		c is an integer of 0, 1, 2 or 3, preferably 0, 1, or 2; and
14		in M units, $a+b+c=3$,
15		in D units, $a+b+c=2$,
16		in T units, $a+b+c=1$,
17	wherein	the M units are present in less than about 40 mole percent;
18		the D units are present in an amount up to about 40 mole percent; and
19		with the proviso that the molecule, on average, contains at least two
20		E components; and
21		a flow additive;
22		wherein the epoxy-functional organopolysiloxane resin is prepared by
23	reacting a s	ilicone resin with a silane represented by the formula:

- wherein R^5 are one of, or a combination of, the following groups alkyl (C_{1-12}) , aryl
- 25 (C_{6-9}) , vinyl, glycol, alkoxy (C_{1-12}) , and an epoxy functional C_{1-18} hydrocarbon group
- of the formula R^6 E^1 wherein R^6 E^1 comprises glycidoxypropyl

$$O$$
 $(CH_2-CHCH_2OCH_2CH_2CH_2--)$,

with the proviso that at least one R^5 comprises R^6 - E^1 .