Tree-backup and $Q(\sigma)$

Sutton & Barto - 7.5, 7.6, 12.10

Overview

- n-step Tree-backup
- n-step $Q(\sigma)$
- n-step to Traces
- TB(λ) and Q(σ , λ)

One-step Expected Sarsa

Computes expectation under target policy directly, can do off-policy learning without importance sampling

TD Target:

$$\hat{G}_t = R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)$$

Tree-backup is a multi-step generalization of Expected Sarsa which computes this expectation under the target policy at **every step**

$$\hat{G}_t = R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)$$

Expected Sarsa

$$\widehat{G}_{t} = R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})Q(S_{t+1}, a)$$

Except we know the outcome of the action we took!

$$\hat{G}_{t} = R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1}, a) + \gamma \pi(A_{t+1}|S_{t+1})Q(S_{t+1}, A_{t+1})$$

$$\hat{G}_{t} = R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1}, a) + \gamma \pi(A_{t+1}|S_{t+1})\hat{Q}(S_{t+1}, A_{t+1})$$

$$\hat{Q}(S_{t+1}, A_{t+1}) = R_{t+2} + \gamma \sum_{a'} \pi(a'|S_{t+2}) Q(S_{t+2}, a')$$

2-step Tree-backup

$$\hat{G}_{t:h} = R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1}, a) + \gamma \pi(A_{t+1}|S_{t+1})\hat{G}_{t+1:h}$$

$$\widehat{G}_{h:h} = Q(S_h, A_h)$$

Allows for **multi-step** off-policy learning **without** importance sampling

Can be seen as bootstrapping off of what **didn't happen** to reduce the variance of sampled information

 $\pi(A_{t+1}|S_{t+1})\pi(A_{t+2}|S_{t+2})$

$$\pi(A_{t+1}|S_{t+1})\pi(A_{t+2}|S_{t+2})$$

n-step $Q(\sigma)$

Decide on a per-decision basis whether to:

- Use sampled information ($\sigma = 1$)
- Compute an expectation ($\sigma = 0$)
- A mix of the two $(0 < \sigma < 1)$

Unifies several existing action-value multi-step TD methods:

- n-step Sarsa
- n-step Expected Sarsa
- n-step Tree-backup

n-step $Q(\sigma)$

Constant values of σ :

But σ doesn't have to be constant!

n-step $Q(\sigma)$'s Target

$$\widehat{G}_{t:h} = R_{t+1} + \gamma(\sigma_{t+1}(Sarsa) + (1 - \sigma_{t+1})(TB))$$

$$\rho_{t+1}G_{t+1:h}$$

$$\pi(A_{t+1}|S_{t+1})G_{t+1:h} + \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1}, a)$$

$$\widehat{G}_{h:h} = Q(S_h, A_h)$$

In the one-step case, Expected Sarsa generally outperforms Sarsa

How does n-step Tree-backup compare to n-step Sarsa?

Reward	Weight
R_{t+1}	1
R_{t+2}	$\pi(A_{t+1} S_{t+1})$
R_{t+3}	$\pi(A_{t+1} S_{t+1})\pi(A_{t+2} S_{t+2})$
R_{t+4}	$\pi(A_{t+1} S_{t+1})\pi(A_{t+2} S_{t+2})\pi(A_{t+3} S_{t+3})$
:	:

Expectations

Reality

n-step Tree-backup has considerably low variance, but is more biased than n-step Sarsa (for the same n)

It gives less weight to the sampled rewards, and compensates by giving additional weight to bootstrapping (in the direction of actions not taken)

n-step $Q(\sigma)$ can be viewed as a way to address this bias by adjusting the weighting given to sampled information

Dynamic σ

When value estimates are poor, it's better to use more sampled information

As estimates get better, can leverage bootstrapping to get targets with lower variance

Simple heuristic- start with $\sigma = 1$ (full sampling) and decay towards $\sigma = 0$ (no sampling- increased bootstrapping through computing expectations)

19-state Random Walk

A 1×19 grid world with deterministic 2-directional movement

Terminal transitions on each end with rewards -1 and +1, all other transitions have a reward of 0.

On-policy policy evaluation with an equiprobable random policy

19-state Random Walk

3-step $Q(\sigma)$

Showing best constant step size in terms of RMS error after 50 episodes

Decaying σ after each episode from 1 to 0

n-step $Q(\sigma)$

 σ controls a trade-off between initial and final performance- more sampling results in quicker learning but larger variance, and vice versa

n (or λ) tunes the degree of bootstrapping in the direction of actions taken, σ tunes the degree of bootstrapping in the direction of actions not taken

From n-step to traces

 λ is often referred to as a **degree of bootstrapping**, but can also be viewed as the **probability of (not) bootstrapping** in a stochastic process

With probability $1 - \lambda$, we bootstrap off of current estimates. With probability λ , we continue to the next reward in the return

From n-step to traces

On-policy Sarsa(λ):

$$\widehat{G}_{t}^{\lambda} = (1 - \lambda) \sum_{n=1}^{S} \lambda^{n-1} \widehat{G}_{t:t+n}$$

$$\widehat{G}_{t}^{\lambda} =$$

$$(1 - \lambda) (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}))$$

$$\lambda (R_{t+1} + \gamma G_{t+1}^{\lambda})$$

From n-step to traces

On-policy Sarsa(λ):

$$\widehat{G}_{t}^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} \widehat{G}_{t:t+n}$$

$$\widehat{G}_{t}^{\lambda} = R_{t+1} + \gamma(\dots)$$

$$(1 - \lambda)Q(S_{t+1}, A_{t+1}) + \lambda G_{t+1}^{\lambda}$$

$$\widehat{G}_{t:h} = R_{t+1} + \gamma \left(\pi(A_{t+1}|S_{t+1})\widehat{G}_{t+1:h} + \sum_{a \neq A_{t+1}} \pi(a|S_{t+1})Q(S_{t+1},a) \right)$$

$$\widehat{G}_{h:h} = Q(S_h, A_h)$$

$$\hat{G}_{t:h} = R_{t+1} + \gamma \left(\pi(A_{t+1}|S_{t+1})\hat{G}_{t+1:h} + \mathbb{E}_{\pi}[Q(S_{t+1},\cdot)] - \pi(A_{t+1}|S_{t+1})Q(S_{t+1},A_{t+1}) \right)$$

$$\hat{G}_{h:h} = Q(S_h, A_h)$$

$$\begin{split} \hat{G}_{t:h} &= R_{t+1} + \gamma \left(\pi_{t+1} \hat{G}_{t+1:h} + \mathbb{E}_{\pi} [Q_{t+1}] - \pi_{t+1} Q_{t+1} \right) \\ \hat{G}_{h:h} &= Q_{h} \end{split}$$

 $Q_t = Q(S_t, A_t)$ $\pi_t = \pi(A_t|S_t)$

Expectation correctionlike a control variate!

 $\hat{G}_{t:h}$ with $\hat{G}_{t+1:h}$ outlines the continuation condition in the recursive λ -return

 $\hat{G}_{t:h}$ with $\hat{G}_{h:h}$ substituted into $\hat{G}_{t+1:h}$ outlines the bootstrapping condition

$$\begin{aligned} \widehat{G}_{t:h} &= R_{t+1} + \gamma \left(\pi_{t+1} \widehat{G}_{t+1:h} + \mathbb{E}_{\pi} [Q_{t+1}] - \pi_{t+1} Q_{t+1} \right) \\ \widehat{G}_{h:h} &= Q_h \end{aligned}$$

$$\hat{G}_t^{\lambda} =$$

$$(1 - \lambda) \left(R_{t+1} + \gamma (\pi_{t+1} Q_{t+1} + \mathbb{E}[Q_{t+1}] - \pi_{t+1} Q_{t+1}) \right) + \lambda \left(R_{t+1} + \gamma (\pi_{t+1} \hat{G}_{t+1}^{\lambda} + \mathbb{E}[Q_{t+1}] - \pi_{t+1} Q_{t+1}) \right)$$

Easier to work with than:

$$\widehat{G}_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} \widehat{G}_{t:t+n}$$

$$\widehat{G}_{t}^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) \mathbb{E}_{\pi}[Q_{t+1}] + \lambda \left(\pi_{t+1} G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \pi_{t+1} Q_{t+1} \right) \right)$$

$$\widehat{G}_t^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma \mathbb{E}_{\pi}[Q_{k+1}] - Q_k) \prod_{i=t+1}^{k} \gamma \lambda \pi_i$$
 One-step TD error Trace-decay rate

$$\widehat{G}_{t}^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) \mathbb{E}_{\pi}[Q_{t+1}] + \lambda \left(\pi_{t+1} G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \pi_{t+1} Q_{t+1} \right) \right)$$

$$\widehat{G}_t^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma \mathbb{E}_{\pi}[Q_{k+1}] - Q_k) \prod_{i=t+1}^{k} \gamma \lambda \pi_i \quad \longleftarrow \quad \pi_t \le \rho_t = \frac{\pi_t}{\mu_t}$$

$$\widehat{G}_t^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma \rho_{k+1} Q_{k+1} - Q_k) \prod_{i=t+1}^{k} \gamma \lambda \rho_i$$

For the same *λ*, Tree-backup's traces decay quicker- performs "shorter" backups

 $Sarsa(\lambda)$

$Q(\sigma, \lambda)$

$$\widehat{G}_{t}^{\lambda} = R_{t+1} + \gamma \left(\sigma_{t+1}(Sarsa) + (1 - \sigma_{t+1})(TB) \right)$$

$$(1 - \lambda)\rho_{t+1}Q_{t+1} + \lambda\rho_{t+1}G_{t+1}^{\lambda} \qquad (1 - \lambda)\mathbb{E}_{\pi}[Q_{t+1}] + \lambda(\pi_{t+1}G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \pi_{t+1}Q_{t+1})$$

$$\widehat{G}_{t}^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma(\sigma_{k+1}\rho_{k+1}Q_{k+1} + (1 - \sigma_{k+1})\mathbb{E}_{\pi}[Q_{k+1}]) - Q_{k}) \prod_{i=t+1}^{k} \gamma \lambda(\sigma_{i}\rho_{i} + (1 - \sigma_{i})\pi_{i})$$

One-step TD error

Trace-decay rate

$Q(\sigma, \lambda)$

$$\widehat{G}_{t}^{\lambda} = R_{t+1} + \gamma \left(\sigma_{t+1}(Sarsa) + (1 - \sigma_{t+1})(TB) \right)$$

$$(1 - \lambda)\rho_{t+1}Q_{t+1} + \lambda\rho_{t+1}G_{t+1}^{\lambda} \qquad (1 - \lambda)\mathbb{E}_{\pi}[Q_{t+1}] + \lambda \left(\pi_{t+1}G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \pi_{t+1}Q_{t+1} \right)$$

$$\widehat{G}_t^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma(\sigma_{k+1}\rho_{k+1}Q_{k+1} + (1 - \sigma_{k+1})\mathbb{E}_{\pi}[Q_{k+1}]) - Q_k) \prod_{i=t+1}^{k} \gamma \lambda(\sigma_i \rho_i + (1 - \sigma_i)\pi_i)$$

Adjustable action-dependent trace decay rate through σ

CV Q(σ , λ)

$$\hat{G}_{t}^{\lambda} = R_{t+1} + \gamma \left(\sigma_{t+1}(ACV Sarsa) + (1 - \sigma_{t+1})(TB) \right)$$

$$(1 - \lambda) \mathbb{E}_{\pi}[Q_{t+1}] + \lambda \left(\pi_{t+1} G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \pi_{t+1} Q_{t+1} \right)$$

$$(1-\lambda)\mathbb{E}_{\pi}[Q_{t+1}] + \lambda(\rho_{t+1}G_{t+1}^{\lambda} + \mathbb{E}_{\pi}[Q_{t+1}] - \rho_{t+1}Q_{t+1})$$

$$\widehat{G}_t^{\lambda} = \sum_{k=t}^{\infty} (R_{k+1} + \gamma \mathbb{E}_{\pi}[Q_{k+1}] - Q_k) \prod_{i=t+1}^{k} \gamma \lambda (\sigma_i \rho_i + (1 - \sigma_i) \pi_i)$$
One-step TD error Trace-decay rate

19-State Random Walk

Questions?

- De Asis, K.*, Hernandez-Garcia, J. F.*, Holland G. Z.*, Sutton, R. S. (2018). Multi-step Reinforcement Learning: A Unifying Algorithm. *AAAI 2018*.

