Data Mining

Logistic Regression

Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances

Class 2

Many approaches:
Regression,
Decision Trees,
Nearest Neighbor,
Support Vector
Machines, Neural
Networks,

. . .

Loan approval problem with a single variable

x₁: credit score (FICO score)

y: 1-approve, 0-deny

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem with a single variable

Credit Score	Loan Status
750	1
725	0
700	0
650	0
726	1
645	0
800	1

Loan approval problem

x₁: credit score (FICO score)

x₂: income

(may include other features)

y: 1-approve, 0-deny

Training Data

Credit Score	Income	Loan Status
750	113000	1
725	26000	0
700	54000	0
650	45000	0
726	89500	1
645	78500	0
800	87050	1

Test data:

for a new applicant with credit score 715 and income 68500, will the loan application be approved?

Binary Classification Data

Given:

Training data set:

$$\{ \{x^1, y^1\}, \\ \{x^2, y^2\}, \\ \{x^3, y^3\}, \\ \dots \\ \{x^m, y^m\} \}$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

$$x_0$$
=1, y∈ {0, 1}

m examples

Logistic Regression For Binary Classification (1)

10 features

Logistic Regression For Binary Classification (2)

10 features

Tanh()

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$f'(x) = 1 - f(x)^2$$

• Sigmoid/Logistic
$$f(x) = \frac{1}{1 + e^{(-x)}}$$

$$f'(x) = f(x)[1 - f(x)]$$

$$f(x) = \frac{2}{1 + e^{(-x)}} - 1$$

Bipolar Sigmoid
$$f'(x) = \frac{1}{2}[1 + f(x)][1 - f(x)]$$

Sigmoid Function for Classification

if $\sigma(\theta^T x) < 0.5$, predict class 0

 $(\theta^{T}x < 0,$ predict class 0)

if $\sigma(\theta^T x) > 0.5$, predict class 1

 $(\theta^{T}x \ge 0,$ predict class 1)

Logistic Regression Model

$$h_{\theta}(x) = \sigma(\theta^{T}x)$$
let $z = \theta^{T}x$, $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$h_{\theta}(x)$$
: estimated probablity that $y = 1$ on input x $p(y=1 \mid x, \theta)$ $p(y=0 \mid x, \theta) = 1 - p(y=1 \mid x, \theta)$

How to use it in credit assignment or medical diagnosis problems?

Estimate the Parameters θ

Given:

Training data set:

$$\{ \{x^1, y^1\}, \\ \{x^2, y^2\}, \\ \{x^3, y^3\}, \\ \dots \\ \{x^m, y^m\} \}$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \qquad x_0 = 1, \ \mathbf{y} \in \{0, 1\}$$

$$x_0$$
=1, y∈ {0, 1}

m examples

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to estimate the parameters θ from data?

Cost Function

Linear Regression:

loss function:
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• In logistic regression, $(h_{\theta}(x^{(i)}) - y^{(i)})^2$ is not a convex curve, not suitable for gradient descent approximation approach.

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y=1\\ -\log(1 - h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

Combine these two into one single cost function:

$$Cost(h_{\theta}(x), y) = -y * log(h_{\theta}(x)) - (1-y)* log(1 - h_{\theta}(x))$$

If y=1,
$$Cost(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

If y=0, $Cost(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$

Gradient Descent

To minimize the Cost function:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

- To minimizing the cost function over the entire data set
 - Generally, there is no closed form solution for this minimization problem, except for special cases
 - Approach: Gradient descent

Repeat for each iteration:

$$\theta_j := \theta_j - \lambda \, \frac{\partial}{\partial \theta_j} J(\theta)$$

where:

$$\frac{\partial}{\partial \theta_i} J(\theta) = \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Weight Updates with Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Want to minimize $J(\theta)$:

Repeat for each iteration:

$$\theta_j := \theta_j - \lambda \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Simultaneously update all θ_i

 λ : Learning Rate \rightarrow step size

Cross Entropy Error Cost Function

- Logistic Regression Error
 - 0 if correct, >0 if not correct, more wrong → bigger cost
- Cross-Entropy Error cost function

$$Cost(h_{\theta}(x), y) = -y * log(h_{\theta}(x)) - (1-y)* log(1 - h_{\theta}(x))$$

y is the target, $h_{\theta}(x)$ is the predicted value

у	$h_{\theta}(x)$	cost
1	1	0
0	0	0
1	0.9	0.11
1	0.5	0.69
1	0.1	2.3