

Seminar 1 Stochastic Volatility Models

Vega Institute

Problem 1 🧠

Evaluate the following statements. Prove or provide a counterexample:

- 1. If X is an adapted processes, then X is predictable.
- 2. There is no predictable left-discontinuous process.
- 3^* . A predictable sigma algebra $\mathcal P$ is generated by continuous adapted processes.

Problem 2 💅

Let τ be a stopping time w.r.t. filtration \mathcal{F}_t . Let $\mathcal{F}_{\tau} := \{A \in \mathcal{F} : A \cap \{\tau \leq t\} \in \mathcal{F}_t \text{ for all } t\}$. Prove that \mathcal{F}_{τ} is a sigma-algebra.

Problem 3 🧠

Prove that for any stopping times τ, σ the following properties hold:

- 1. $\tau + \sigma, \tau \wedge \sigma, \tau \vee \sigma, \tau + t$ are stopping times.
- 2. τ is \mathcal{F}_{τ} measurable.
- 3. If stopping times $\tau_n \uparrow \tau$ a.s., then τ is also a stopping time.
- 4. If $\tau \leq \sigma$, then $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma}$.

Problem 4 🧠 🦠

Evaluate the following statements. Prove or provide a counterexample.

- 1. If X is continuous local martingale, then X is local squared-integrable martingale.
- 2. If X is a local martingale, then X is a supermartingale.
- 3^* . If X is a local martingale, then X is a martingale.

Problem 5 💖

Let $\Sigma = (\sigma_{ij})_{i,j=1}^n$ be a positive-definite symmetric matrix. Prove the existence of the *n*-dimensional Brownian motion with covariance matrix $cov(B_t, B_t) = t\Sigma$.

Problem 6 💅

Find the distribution of $\int_0^T f(t)dB_t$, where $f(t) \in L^2[0,T]$.

Problem 7 🧠

Apply Ito's formula

a)
$$Y_t = e^{B_t}$$

b)
$$\frac{X_t^2}{1 + X_t^2}$$
, $dX_t = -X_t dt + dB_t$

c)
$$Y_t = cos(te^{B_t})$$

d) $Y_t = B_t^4$

$$d) Y_t = B_t^4$$

Problem 8 🧠

Prove that the following stochastic processes are Brownian motions

a)
$$X_t = -B_t$$

c)
$$X_t = tB$$

a)
$$X_t = -B_t$$

b) $X_t = \sqrt{\alpha} B_{\frac{t}{\alpha}}$

c)
$$X_t = tB_{\frac{1}{t}}$$

d) $X_t = B_{t+a} - B_a, a \ge 0$

Problem 9 🧠

Find EX_t and DX_t of

a)
$$dX_t = -aX_tdt + dB_t$$

c)
$$dX_t = (aX_t + b)dt + dB_t$$

b)
$$dX_t = dt + adB_t$$

Problem 10 🧠

Show that the processes satisfy the differential equations:

a)
$$X_t = X_0 e^{(\mu - \frac{\sigma^2}{2})t + \sigma B_t}, dX_t = \mu X_t dt + \sigma X_t dB_t$$

b)
$$X_t=e^{-\mu t}X_0+\sigma e^{-\mu t}\int_0^t e^{\mu s}dB_s,\,dX_t=-\mu X_tdt+\sigma dB_t$$