

USR-NB700 V2 说明书

文件版本: V1.0.2

NB-IoT 技术特点:

- 强链接:在同一基站的情况下,NB-IoT可以比现有无线技术提高 50-100 倍的接入数;
- 高覆盖: NB-IoT 室内覆盖能力强, 比 LTE 提升 20dB 增益, 相当于提升了 100 倍覆盖区域能力;
- 低功耗: 低功耗特性是物联网应用一项重要指标;
- 低成本:与LoRa相比,NB-IoT无需重新建网,射频和天线基本上都是复用的;

USR-NB700 V2 功能特点

- 针对电信,移动和联通的 NB-IoT 网络分别有对应型号的设备提供;
- 支持两路 UDP 透传模式
- 支持 CoAP 模式;
- 支持 UDC 模式;
- 支持发送注册包功能;
- 支持多路心跳包功能;
- 支持超低功耗模式;
- 支持基本指令集;

目录

USR-NB700 V2 说明书	1
1. 快速入门	4
1.1. 产品测试硬件环境	5
1.1.1. 硬件准备	5
1.2. 数据传输测试	5
1.2.1. 设备的初始参数	5
2. 产品概述	6
2.1. 产品简介	6
2.2. 设备基本参数	7
2.3. 接口说明	8
2.4. 尺寸描述	g
3. 产品功能	10
3.1. 工作模式	11
3.1.1. 网络透传模式	11
3.1.2. CoAP 模式	12
3.1.3. UDC 模式	
3.2. 串口	
3.2.1. 基本参数	15
3.2.2. 成帧机制	15
3.3. 特色功能	16
3.3.1. 低功耗模式	
3.3.2. 注册包功能	17
3.3.3. 心跳包机制	
3.3.4. 指示灯状态指示	18
3.3.5. 固件升级	
3.3.6. 硬件恢复默认设置	
4. 参数设置	
4.1. AT 指令配置	
4.1.1. 设置软件说明	19
4.1.2. AT 指令模式	
4.1.3. 串口 AT 指令	
5. AT 指令集	
6. 联系方式	
7. 免责声明	23
8 更新历史	29

1. 快速入门

USR-NB700 V2 是我们 NB700 V2 设备系列的一个总称,针对不同运营商网络有不同的设备型号对应。请在 选购设备时注意选择支持当地运营商的设备。

设备完整型号 频段信息 运营商 预计网络覆盖时间 销售情况 USR-NB700-B5 V2 电信 2017年6月底全国覆盖 在售 850MHz 移动, 联通 2018年初开始全面覆盖 敬请期待 USR-NB700-B8 V2 900MHz USR-NB700-B20 V2 800MHz 敬请期待 USR-NB700-B28 V2 700MHz 敬请期待

表1设备频段对照表

USR-NB700 V2 是为实现串口设备与网络服务器,通过运营商 NB-IoT 网络相互传输数据而开发的产品,通过简单的 AT 指令进行设置,即可轻松使用本产品实现串口到网络的双向数据透明传输。

本章是针对 USR-NB700 V2 产品的快速入门介绍,建议新用户仔细阅读本章并按照指示操作一遍,以对设备产品有一个系统的认识。熟悉此类产品用户可跳过本章节。针对特定的细节和说明,请参考后续章节。

本章主要测试 NB700 V2 的网络透传功能,即实现串口端与 UDP Server 端的数据透传。

涉及到的相关软件如下:

USR-NB700 V2 设置软件,下载地址: http://www.usr.cn/Download/533.html 与此设备相关的其他资料下载请参考: http://www.usr.cn/Product/194.html

NB-IoT DTU USR-NB700 V2

产品名称: NB-IOT DTU

发布时间: 2017-04-27 售后服务: 技术支持中心

概述	规格参数	订购方式	资料下载	知识问答
软件说明	资料			
[说明书]U	JSR-NB700V2_V	1.0.1		
[软件设计	手册]USR-NB70	0V2_software_\	/1.0.1 □	
[规格书]U	JSR-NB700V2_V	1.0.1		
开发资料				
[设置软件	:]USR-NB700V2	V1.0.1		

图 1 资料下载页面

如果在使用过程中有使用上的问题,可以提交到我们的客户支持中心:

http://h.usr.cn

1.1.产品测试硬件环境

1.1.1. 硬件准备

本章测试基于 USR-NB700 V2 及其配件进行的,如果您已购买,会有如下配件:

图 2 配件

测试数据流拓扑图:

图 3 测试数据流拓扑图

在测试之前,请进行硬件连接。电脑串口连接到 USR-NB700 V2 的串口上,有些电脑可能没有硬件串口,可以 USB 转 RS232 线进行连接。

1.2. 数据传输测试

1.2.1.设备的初始参数

表 2 测试初始参数

USR-NB700 V2 说明书

工作模式	网络数据透传
服务器地址	118.190.93.84
服务器端口	2317
串口参数	115200,8,1,None

- 注:测试前请确保当前网络环境已经覆盖 NB-IoT 网络,并有支持该网络的 NB 卡。
- 1. 向 NB700 V2 卡槽内放置 NB 卡,用上述的连接方式连接到电脑串口。打开串口转网络调试助手,首先选择 RS232 的串口号、波特率等参数,并打开串口,如下图。
- 注: 以 WIN7 系统为例, 串口号可在"控制面板→设备管理器→端口"中查询。

图 4 设置软件示意图

- 2. 用我司配置的电源适配器给 USR-NB700 V2 供电,NB700 V2 设备上面的红色 POWER 指示灯点亮,绿色的 WORK 指示灯闪烁,NET 灯稍后会常亮,说明已经注册到网络。然后进行下一步操作,关于指示灯的相关说明请参考下面章节有详细介绍。
- 3. 待 NET 灯常亮后,通过 RS232 串口,给设备发送数据,例如,发送"www.usr.cn",稍后,回到软件的接收窗口,收到"www.usr.cn",这是测试服务器返回的。
- 4. 到此为止,入门测试完成。其他相关操作请仔细阅读以下章节。 注:此测试过程中,请保持出厂参数。

2. 产品概述

2.1. 产品简介

USR-NB700 V2 是有人物联网 2017 年推出的 M2M 产品。支持移动,联通,电信 NB-IoT 网络接入。硬件接

口与我司 2G 产品 USR-GPRS232-730 一样,可实现无缝替换。软件功能完善,支持两路 UDP 连接,通过简单配置既可以实现串口到网络的双向数据透明传输,并支持自定义注册包和心跳包功能。支持 CoAP 协议和我司 UDC 协议,可以方便用户快速的搭建服务器平台。

2.2. 设备基本参数

表 3 设备基本参数

产品规格			
	项目	描述	
产品名称	USR-NB700 V2	实现串口到网络的双向数据透明传输	
电源	工作电压	DC5~36V	
电源	工作电流	0.14A(12V)	
串口波特率	TTL	4800~115200bps	
SIM 卡电压	电压值	3V	
天线接口	SMA 座	SMA 天线接口	
外形尺寸	尺寸(毫米)	长*宽*高=82.5mm×86mm×25mm(含侧耳宽度)	
917D/C 4	重量 (克)	120g	
工作温度范围 ①		-35° C∽+ 75° C	
温度范围	扩展工作温度范围 ②	-40° C⊶+ 85° C	
存储温度		-40°C +125°C	
湿度范围 工作湿度		5%~95%(无凝露)	
延/文18四	存储湿度	5%~95%(无凝露)	
功耗	叶耗 峰值功耗 0.14A/12V		
	休眠功耗	9mA/12V (优化中)	
可靠性	电源	电源防反接	
认证 申请中			
	USR-NB700-B5 V2	Band 5 (850MHz)	
标准频段	USR-NB700-B8 V2	Band 8 (900MHz)	
	USR-NB700-B20 V2	Band 20 (800MHz)	
	USR-NB700-B28 V2	Band 28 (700MHz)	
	工作模式	透明传输模式,CoAP 模式,UDC 模式	
	设置命令	AT+命令结构	
软件功能	网络协议	UDP/CoAP/UDC	
	UDP Client	2	
	用户配置	串口 AT 命令	

有人在认真做事!	USR-N	B700 V2 说明书	http://h.usr.cn
	客户应用软件	支持客户定制应用软件	
	简单透传方式	UDP Client	
	注册包数据	自定义注册包/IMEI 注册包/IMSI 注册包	
	心跳数据包	支持	
	低功耗模式	支持	
发货配件	12V 电源,公对母串口线,	,2G 吸盘天线	

2.3. 接口说明

下图中是 USR-NB700 V2 的接口示意图:

2.4.尺寸描述

下图是 USR-NB700 V2 的尺寸图:

图 6 尺寸描述

3. 产品功能

本章介绍一下 USR-NB700 V2 所具有的功能,下图是设备的功能的整体框图,可以帮助您对产品有一个总体的认识。

图 7 功能框图

3.1. 工作模式

3.1.1. 网络透传模式

3.1.1.1. 模式说明

在此模式下,用户的串口设备,可以通过本设备发送数据到网络上指定的服务器。设备也可以接收来自服务器的数据,并将信息转发至串口设备。

用户不需要关注串口数据与网络数据包之间的数据转换过程,只需通过简单的参数设置,即可实现串口设备与网络服务器之间的数据透明通信。

本设备支持两路 Socket 连接,分别为 Socket A,Socket B,它们是相互独立的。USR-NB700 V2 仅支持作为UDP Client。

<NOTE>

虽然支持双向数据透传,但是和传统 2G 网络有所不同,为节省电量,设备随时可以向服务器发送数据,但是服务器并不能在任何时候将数据发往串口,该说明仔细阅读低功耗模式章节,这也是 NB-loT 网络的所具有的特点。

表 4 参考 AT 指令集

指令名称	指令功能	默认参数
AT+WKMOD	查询/设置工作模式	NET
AT+SOCKA	查询/设置 Socket A 参数	UDP, 118.190.93.84,2317
AT+SOCKB	查询/设置 Socket B 参数	UDP, 118.190.93.84,2317
AT+SOCKAEN	查询/设置是否使能 Socket A	ON
AT+SOCKBEN	查询/设置是否使能 Socket B	OFF
AT+SOCKALK	查询 Socket A 监听状态	无
AT+SOCKBLK	查询 Socket B 监听状态	无

3.1.2.CoAP 模式

3.1.2.1. 模式说明

图 9 CoAP 模式

<NOTE>

什么是 CoAP:

CoAP 是受限制的应用协议(Constrained Application Protocol)的代名词。在当前由 PC 机组成的世界,信息交换是通过 TCP 和应用层协议 HTTP 实现的。但是对于小型设备而言,实现 TCP 和 HTTP 协议显然是一个过分的要求。为了让小设备可以接入互联网,CoAP 协议被设计出来。CoAP 是一种应用层协议,它运行于 UDP 协议之上而不是像 HTTP 那样运行于 TCP 之上。CoAP 协议非常小巧,最小的数据包仅为 4 字节。

在此模式下,用户的终端设备,可以通过本设备发送请求数据到指定的 CoAP 服务器,然后设备接收来自 CoAP 服务器的数据,对数据进行解析并将结果发至串口设备。

用户不需要关注串口数据与网络数据包之间的数据转换过程,只需通过简单的参数设置,即可实现串口设备向 CoAP 服务器的数据请求。

CoAP 一般用来接入一些物联网平台,目前仅支持华为的物联网云平台,可以将数据发送到云平台后,通过云平台提供的接口用户自己开发自己的应用程序。目前已接入我们的有人透传云服务当中。

表 5 参考 AT 指令集

指令名称	指令功能	默认参数
AT+NCDP	设置 COAP 服务器地址端口	106.15.229.157,5683
AT+COAPRPY	设置 COAP 发送确认功能使能	1

<NOTE>

在设置 CoAP 工作模式后,设置好 COAP 服务器地址端口即可自动连接到对应的服务器实现数据透传, COAP 模式支持注册包及心跳包功能。

3.1.3.UDC 模式

3.1.3.1. 模式说明

图 10 协议透传模式

此模式在网络透传模式上增加特定的注册包和心跳包,并且对数据进行组包。这种模式更方便用户使用和二次开发,用户可以理解成加入 UDC 协议的网络透传模式。此模式下,我们提供了服务器端二次开发包,用户在将链接库加入到自己的工程后,就可以通过调用我们提供的接口,快速开发自己的服务端,好处在于设备的上线情况和数据传输既能被用户所掌握,也可以由用户来控制,既方便了用户开发,也提高了服务器端的统一性,稳定性和可靠性。(目前 NB700 V2 仅支持 sockA 进行 UDC 协议传输)。

表 6 参考 AT 指令集

	70 - 2 0 0 H ()/C	
指令名称	指令功能	默认参数
AT+WKMOD	查询/设置工作模式	NET
AT+UDCID	设置/查询协议透传设备 ID	0000000001

3.2. 串口

3.2.1.基本参数

表7串口基本参数

项目	参数	
波特率	4800, 9600, 19200, 38400, 57600, 115200	
数据位	7,8	
停止位	1, 2	
	NONE (无校验位)	
校验位	EVEN (偶校验)	
	ODD (奇校验)	
流控	NFC: 无硬件流控	

3.2.2. 成帧机制

3.2.2.1. 时间触发模式

NB700 V2 在接收来自 UART 的数据时,会不断的检查相邻 2 个字节的间隔时间。如果间隔时间大于等于某一"时间阈值",则认为一帧结束,否则一直接收数据直到大于等于 460 字节。将这一帧数据作为一个 UDP 包发向网络端。这里的"时间阈值"即为打包间隔时间。可设置的范围是 50ms~60000ms。出厂默认 50ms。

这个参数可以根据 AT 命令来设置,AT+UARTFT=<time>。

图 11 时间触发模式

3.2.2.2. 长度触发模式

NB700 V2 在接收来自 UART 的数据时,会不断的检查已接收到的字节数。如果已接收到的字节数达到某一"长度阈值",则认为一帧结束。将这一帧数据作为一个 UDP 包发向网络端。这里的"长度阈值"即为打包长度。可设置的范围是 1~460。出厂默认 460。

这个参数可以根据 AT 命令来设置,AT+UARTFL=<length>。

图 12 长度触发模式

3.3. 特色功能

3.3.1. 低功耗模式

USR-NB700 V2 设备支持低功耗模式,该模式从设备启动后自动运行,不能关闭。该模式是保障能使用电池供电的关键。核心内容就是:在无数据交互时设备进入 PSM 状态,只有设备有数据发送时才会激活网络进行数据的传输,在低功耗模式当中一但设备进入 PSM 状态,这时候不能再接收来自基站的数据,但会定时激活网络去获取数据。如下图所示:

图 13 网络连接状态切换示意图

- 以上三种网络连接模式分别对应: CONNECT(Active),IDLE(Standby)和 PSM(Deep-Sleep);
- 以上三种连接状态下,均可以发送上行数据(UDP/CoAP/UDC), IDLE 状态下发送数据,设备会进入 CONNECT 状态; PSM 下发送数据会唤醒设备,进入 CONNECT 状态;

- IDLE 状态下,可以接收下行数据,设备会进入 CONNECT 状态; PSM 状态下不接收下行数据;
- TAU 的时长是指从进入 IDLE 状态开始一直到 PSM 模式结束, TAU 超时时, 设备唤醒进入 CONNECT 状态:
- 以上不同连接状态切换的时间间隔是由网络侧设定,由 NB-IoT 核心网配置,我们无权修改。
- 当 NB700 V2 处于 PSM 状态时将与服务器断开通讯连接,网络侧不能寻呼到设备,必须等待设备主动发起连接。

<NOTE>

目前低功耗模式受运营商网络控制,具体低功耗根据实际情况不同,后期还在进行深度优化。

3.3.2.注册包功能

图 14 注册包功能示意图

在网络透传模式和 COAP 模式下,用户可以选择让设备向服务器发送注册包。注册包是为了让服务器能够识别数据来源设备,或作为获取服务器功能授权的密码。注册包可以在设备与服务器建立连接时发送,也可以在每个数据包的最前端拼接入注册包数据,作为一个数据包。注册包的数据可以是 IMSI 码,IMEI 码,或自定义注册数据。

- IMSI, SIM 的唯一识别码,适用于基于 SIM 卡识别的应用。
- IMEI,NB700 设备唯一识别码,适用于基于设备识别的应用,与其内安装的 SIM 卡无关。
- USER,用户自定义数据,可应用于用户自定义的注册数据。

表 8 参考 AT 指令集

指令名称	指令功能	默认参数
AT+ REGEN	查询/设置是否使能注册包	OFF
AT+ REGTP	查询/设置注册包内容类型	USER
AT+ REGDT	查询/设置自定义注册信息	7777772E7573722E636E
AT+ REGSND	查询/设置注册包发送方式	DATA

3.3.3. 心跳包机制

图 15 心跳包功能示意图

在网络透传模式和 COAP 模式下,用户可以选择让 NB700 V2 设备发送心跳包。心跳包可以向网络服务器端 发送,也可以向串口设备端发送。

向网络端发送主要目的是为了与服务器保持同步,因为睡眠模式下服务器无法主动找到设备,所以利用网 络心跳包功能定时的去同步服务器的数据。

在服务器向设备发送固定查询指令的应用中,为了减少通信流量,用户可以选择,用向串口设备端发送心 跳包(查询指令),来代替从服务器发送查询指令。

表 9 参考 AT 指令集

指令名称	指令功能	默认参数
AT+ HEARTEN	查询/设置是否使能心跳包	ON
AT+ HEARTDT	查询/设置心跳包数据	7777772E7573722E636E
AT+ HEARSND	查询/设置心跳包的发送方式	NET
AT+ HEARTTM	查询/设置心跳包发送间隔	30

3.3.4.指示灯状态指示

USR-NB700 V2 设备上有三个指示灯,分别是 PWR,WORK 和 NET。指示灯代表的状态如下:

表 10 指示灯状态

指示灯名称	指示功能	状态
PWR	电源指示灯	电源工作正常常亮
WORK	系统运行工作指示灯	系统运行后闪烁
NET	网络状态指示灯	联网后常亮 无网络熄灭

3.3.5. 固件升级

USR-NB700 V2 支持串口进行升级,具体操作请参考软件设计手册 2.3.6 章节。

3.3.6. 硬件恢复默认设置

恢复出厂默认参数,上电后,按下 Reload 按键 3~15S,然后释放,即可将设备参数恢复至出厂默认参数。

4. 参数设置

4.1. AT 指令配置

4.1.1.设置软件说明

图 16 设置软件示意图

说明:

- 1. 首先选择通过串口方式配置参数,点击打开串口。
- 2. 点击进入配置状态,会自动通过串口进入 AT 指令模式。
- 3. 点击获取当前参数,可以获得当前模块配置信息。
- 4. 修改要配置的选项。
- 5. 设置完成后点击设置并保存所有参数,保存完成后会自动重启运行。

4.1.2.AT 指令模式

当设备工作在网络透传、CoAP 或者 UDC 三种工作模式的任何一种时,可以通过向设备的串口发送特定时序的数据,让设备切换至"指令模式"。当完成在"指令模式"下的操作后,通过发送特定指令让设备重新返回之

前的工作模式。

切换指令模式时序

在上图中,横轴为时间轴,时间轴上方的数据是串口设备发给设备的,时间轴下方的数据为设备发给串口的。

时间要求:

T1 > 当前串口打包间隔时间(参考 AT+UARTFT)

T2 < 50ms

T3 < 50ms

T5 < 3s

从网络透传、CoAP 或者 UDC 切换至临时指令模式的时序:

- 1. 串口设备给设备连续发送"+++",设备收到"+++"后,会给设备发送一个'a'。 在发送"+++"之前的 200ms 内不可发送任何数据。
- 2. 当设备接收'a'后,必须在 3 秒内给设备发送一个'a'。
- 3. 设备在接收到'a'后,给设备发送"+ok",并进入"临时指令模式"。
- 4. 设备接收到"+ok"后,知道设备已进入"临时指令模式",可以向其发送 AT 指令。

从临时指令模式切换至网络透传、CoAP或者 UDC的时序:

1. 串口设备给设备发送指令"AT+ENTM"后面跟回车。

- 2. 设备在接收到指令后,给设备发送"+OK",并回到之前的工作模式。
- 3. 设备接收到"+OK"后,知道设备已回到之前的工作模式。

4.1.3. 串口 AT 指令

串口 AT 指令是指工作在透传模式下,我们不需要切换到指令模式,可以使用密码加 AT 指令方法去查询和设置参数的方法。

一般应用在客户设备需要在设备运行时查询或者修改参数使用,可以不需要复杂的+++时序进入指令设备,从而快速的查询或者设置参数。

注: 具体使用方法请参考《软件设计手册》。

5. AT 指令集

表 11 AT 指令集

农II AI 頂豆果		
指令	功能描述	
管理指令		
AT	测试指令	
Н	帮助信息	
Z	软件重启	
E	查询/设置是否开启指令回显	
ENTM	退出命令模式	
WKMOD	查询/设置工作模式	
CMDPW	查询/设置命令密码	
STMSG	查询/设置设备启动信息	
配置参数指令		
S	保存用户参数	
CLEAR	恢复原始出厂设置	
信息查询指令		
VER	查询版本信息	
SN	查询 SN 码	
IMSI	查询 IMSI 码	
IMEI	查询 IMEI 码	
NPING	查询诊断网络连接	
CSQ	查询设备当前信号强度信息	
ICCID	查询 ICCID 码	
PDTIME	获取生产时间	
串口参数指令		
UART	查询/设置串口参数	
UARTFT	查询/设置串口打包间隔时间	
UARTFL	查询/设置串口打包数据长度	

网络指令		
APN	查询/设置 APN 信息	
SOCKA	查询/设置 Socket A 参数	
SOCKB	查询/设置 Socket B 参数	
SOCKAEN	查询/设置是否使能 Socket A	
SOCKBEN	查询/设置是否使能 Socket B	
SOCKALK	查询 Socket A 监听状态	
SOCKBLK	查询 Socket B 监听状态	
注册包指令		
REGEN	查询/设置是否使能注册包	
REGTP	查询/设置注册包内容类型	
REGDT	查询/设置自定义注册信息	
REGSND	查询/设置注册包发送方式	
心跳包指令		
HEARTEN	查询/设置是否使能心跳包	
HEARTDT	查询/设置心跳包数据	
HEARTSND	查询/设置心跳包的发送方式	
HEARTTM	查询/设置心跳包发送间隔	
	CoAP 模式指令	
NCDP	设置 COAP 服务器地址端口	
COAPRPY	设置 COAP 发送确认功能使能	
UDC 模式指令		
UDCID	查询/设置 UDC 设置识别 ID	

表 12 AT 指令错误码

取值	含义
Err1	不符合 AT 指令格式,不是 AT 开头
Err2	该 AT 指令未找到,不存在
Err3	该 AT 指令不符合查询或设置的格式
Err4	参数范围或者数量错误

注:详细的 AT 指令使用过程可以参照本设备的《软件设计手册》。

6. 联系方式

公 司:济南有人物联网技术有限公司

地 址: 山东省济南市高新区新泺大街 1166 号奥盛大厦 1号楼 11层

网 址: http://www.usr.cn

客户支持中心: http://h.usr.cn

邮 箱: sales@usr.cn

电 话: 4000-255-652 或者 0531-88826739

有人愿景:拥有自己的有人大厦

公司文化: 有人在认真做事!

产品理念: 简单 可靠 价格合理

有人信条: 天道酬勤 厚德载物 共同成长

7. 免责声明

本文档提供有关 USR-NB700 V2 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我公司概不承担任何其它责任。并且,我公司对本产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。

8. 更新历史

2018-03-15 版本 V1.0.0 创立。 2018-03-22 V1.0.1,修改部分描述错误。 2018-05-21V1.0.2,修改 COAP 功能说明。