

Respuesta en Frecuencia, Estabilidad y Capacidades MOS

Leandro Fuentes

<u>lfuentes@fi.uba.ar</u>

Calendario

Capítulo 1: Introducción

- Clase 1: Transistores Bipolar y MOS. Pequeña señal. Circuitos monoetapas
- Clase 2: Cadence Introducción y Circuitos monoetapas
- · Clase 3: Par diferencial. Amplificador diferencial. Implementación básica

Capítulo 2: Respuesta en Frecuencia y Estabilización

- Clase 4: Amplificador operacional: Respuesta en frecuencia, estabilidad.
 Capacidades asociadas al transistor MOS
- Clase 5: Cadence Amplificador operacional. Operación en DC, offset sistemático, ganancia
- · Clase 6: Estabilización, Miller, cero asociado, compensaciones avanzadas
- · Clase 7: Cadence Amplificador operacional. Respuesta en frecuencia, estabilidad

Calendario

Capítulo 3: Amplificadores Avanzados

- Clase 8: Amplificadores avanzados. Current mirror opamp, cascode, folded amplifier, folded cascode.
- Clase 9: Amplificadores avanzados. Push-pull output, Diff-diff, CMFB
- Clase 10: Cadence Amplificadores avanzados

Capítulo 4: Ruido y Offset

- Clase 11: Offset
- Clase 12: Ruido
- Clase 13: Cadence Diseño con offset y ruido

Capítulo 5: Circuitos Auxiliares

- Clase 14: Circuitos auxiliares. Referencias, bandgap, osciladores
- Clases 15 y 16: Extra Introducción al diseño físico de semiconductores (layout)

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

• Estructura MOS - presenta diferentes tipos de capacidades:

• C_2 : Gate-Channel (MOS cap)

• C_4 : Channel-Sub (Depletion cap)

• C_{1-3} : Gate-diffusion (Overlap cap)

• C_{BS-BD} : Diffusion-bulk (Junction cap)

Sus valores dependen de:

• Tecnología: C_{ox} , C_I , M_I

• Dimensión del dipositivo: W, L

· Polarización: Triodo, Saturación, Off

 Para cálculo, se modelan como cinco capacitores concentrados:

• C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}

 El modelo para simulación describe las cargas, y luego:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_i}$$

BSIM4 Manual, Cap. 7

https://cmosedu.com/cmos1/BSIM4_manual.pdf

Figure 3.2-4 Large-signal, charge-storage capacitors of the MOS device.

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

- Estructura MOS presenta diferentes tipos de capacidades:
 - C_2 : Gate-Channel (MOS cap)
 - C₄: Channel-Sub (Depletion cap)
 - C_{1-3} : Gate-diffusion (Overlap cap)
 - C_{BS-BD} : Diffusion-bulk (Junction cap)
- Sus valores dependen de:
 - Tecnología: C_{ox} , C_I , M_I
 - Dimensión del dipositivo: W, L
 - · Polarización: Triodo, Saturación, Off
- Para cálculo, se modelan como cinco capacitores concentrados:
 - C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}
- El modelo para simulación describe las cargas, y luego:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_i}$$

BSIM4 Manual, Cap. 7
https://cmosedu.com/cmos1/BSIM4 manual.pdf

Figure 3.2-4 Large-signal, charge-storage capacitors of the MOS device.

Triode

$$C_{1-3} = C_{ox} \cdot W \cdot L_{ov} = C_{GxO} \cdot W$$

$$C_2 = C_{ox} \cdot W \cdot L$$

$$C_{GS} = \frac{C_2}{2} + C_1$$

$$C_{GD} = \frac{C_2}{2} + C_3$$

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

• Estructura MOS - presenta diferentes tipos de capacidades:

• C_2 : Gate-Channel (MOS cap)

• C_4 : Channel-Sub (Depletion cap)

• C_{1-3} : Gate-diffusion (Overlap cap)

• C_{BS-BD} : Diffusion-bulk (Junction cap)

- Sus valores dependen de:
 - Tecnología: C_{ox} , C_I , M_I
 - Dimensión del dipositivo: W, L
 - · Polarización: Triodo, Saturación, Off
- Para cálculo, se modelan como cinco capacitores concentrados:
 - C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}
- El modelo para simulación describe las cargas, y luego:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_j}$$

BSIM4 Manual, Cap. 7
https://cmosedu.com/cmos1/BSIM4_manual.pdf

Figure 3.2-4 Large-signal, charge-storage capacitors of the MOS device.

Saturation (strong inversion)

$$C_{1-3} = C_{ox} \cdot W \cdot L_{ov} = C_{GxO} \cdot W$$
$$C_2 = C_{ox} \cdot W \cdot L$$

$$C_{GS} = \frac{2}{3}C_2 + C_1$$

$$C_{GD} = C_3$$

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

• Estructura MOS - presenta diferentes tipos de capacidades:

• C_2 : Gate-Channel (MOS cap)

• C_4 : Channel-Sub (Depletion cap)

• C_{1-3} : Gate-diffusion (Overlap cap)

• C_{BS-BD} : Diffusion-bulk (Junction cap)

- Sus valores dependen de:
 - Tecnología: C_{ox} , C_I , M_I
 - Dimensión del dipositivo: W, L
 - · Polarización: Triodo, Saturación, Off
- Para cálculo, se modelan como cinco capacitores concentrados:
 - C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}
- El modelo para simulación describe las cargas, y luego:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_j}$$

BSIM4 Manual, Cap. 7 https://cmosedu.com/cmos1/BSIM4_manual.pdf

Figure 3.2-4 Large-signal, charge-storage capacitors of the MOS device.

Off (weak inversion)

Channel-Bulk

Capacitance (C_4)

Bulk

Gate-Channel

Capacitance (C_2)

$$C_{1-3} = C_{ox} \cdot W \cdot L_{ov} = C_{GxO} \cdot W$$

$$C_{GD} = C_3$$

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

• Estructura MOS - presenta diferentes tipos de capacidades:

• C_2 : Gate-Channel (MOS cap)

• C_4 : Channel-Sub (Depletion cap)

• C_{1-3} : Gate-diffusion (Overlap cap)

• C_{BS-BD} : Diffusion-bulk (Junction cap)

- Sus valores dependen de:
 - Tecnología: C_{ox} , C_I , M_I
 - Dimensión del dipositivo: W, L
 - · Polarización: Triodo, Saturación, Off
- Para cálculo, se modelan como cinco capacitores concentrados:
 - C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}
- El modelo para simulación describe las cargas, y luego:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_j}$$

BSIM4 Manual, Cap. 7
https://cmosedu.com/cmos1/BSIM4_manual.pdf

		V_{GS}	
		$< V_{TH}$	$>V_{TH}$
V_{DS}	$< V_{SAT}$	OFF	TRIODE
	$>V_{SAT}$	OFF	SAT

Variation of gate-source and gate-drain capacitances versus V_{GS} .

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

- Estructura MOS presenta diferentes tipos de capacidades:
 - C_2 : Gate-Channel (MOS cap)
 - C_4 : Channel-Sub (Depletion cap)
 - C_{1-3} : Gate-diffusion (Overlap cap)
 - C_{BS-BD} : Diffusion-bulk (Junction cap)
- Sus valores dependen de:
 - Tecnología: C_{ox} , C_I , M_I
 - Dimensión del dipositivo: W, L
 - · Polarización: Triodo, Saturación, Off
- Para cálculo, se modelan como cinco capacitores concentrados:
 - C_{GS} , C_{GD} , C_{SB} , C_{DB} , C_{GB}
- El modelo para simulación describe las cargas, y luego sus derivadas parciales:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_i}$$

BSIM4 Manual, Cap. 7 https://cmosedu.com/cmos1/BSIM4_manual.pdf

Figure 3.2-4 Large-signal, charge-storage capacitors of the MOS device.

More accurate

calculation

Figure 1.3 Behavior of pn junction depletion-layer capacitance C_j as a function of bias voltage V_D .

Chengming Hu – CH5: MOS Capacitor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch5-1.pdf

•	Estructura MOS - presenta diferentes
	tipos de capacidades:

• C_2 : Gate-Channel (MO	S cap)
----------------------------	--------

•
$$C_4$$
: Channel-Sub (Depletion cap)

•
$$C_{1-3}$$
: Gate-diffusion (Overlap cap)

•
$$C_{BS-BD}$$
: Diffusion-bulk (Junction cap)

• Sus valores dependen de:

• Tecnología:
$$C_{ox}$$
, C_I , M_I

 Para cálculo, se modelan como cinco capacitores concentrados:

•
$$C_{GS}$$
, C_{GD} , C_{SB} , C_{DB} , C_{GB}

 El modelo para simulación describe las cargas, y luego sus derivadas parciales:

•
$$C_{ij} = \frac{\partial Q_i}{\partial V_i}$$

BSIM4 Manual, Cap. 7

https://cmosedu.com/cmos1/BSIM4_manual.pdf

		V_{GS}	
		$< V_{TH}$	$>V_{TH}$
V_{DS}	$< V_{SAT}$	OFF	TRIODE
	$>V_{SAT}$	OFF	SAT

	OFF/W.I.	SAT/S.I.	TRIODE	
C_{GS}	$C_{GSO}W$	$C_{GSO}W + \frac{2}{3}C_{ox}WL$	$C_{GSO}W + \frac{1}{2}C_{ox}WL$	
C_{GD}	$C_{GDO}W$	$C_{GDO}W$	$C_{GDO}W + \frac{1}{2}C_{ox}WL$	
C_{GB}	$+\frac{C_{GBO} \cdot L}{C_{ox}C_{dep}}WL$	$C_{GBO} \cdot L$		
C_{SB}	$C_{j} \cdot WL_{diff} + C_{jSW} \cdot (W + L_{diff})$			
C_{DB}	$C_j \cdot WL_{diff} + C_{jSW} \cdot (W + L_{diff})$			

• Complete los siguientes cálculos:

•
$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{F}{m}$$

•
$$\varepsilon_r^{S_i O_2} = 3.9$$

•
$$t_{ox} = 10 \ nm = 100 \ \text{Å}$$

•
$$C_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_r^{S_i O_2}}{t_{ox}} = ?$$

•
$$L_{ov} = 10 nm$$

•
$$C_{GxO} = C_{ox} \cdot L_{ov} = ?$$

•
$$C_{jO}=0.5\frac{fF}{\mu m^2}$$

•
$$C_{jSW0} = 0.2 \frac{fF}{\mu m}$$

•
$$\psi_0 = 1V$$

•
$$M_J = 0.5$$

•
$$W/_L = {}^{10 \, \mu m}/_{1 \, \mu m}$$

•
$$L_{diff} = 0.5 \, \mu m$$

•
$$V_{SB} = 0V$$

•
$$V_{DB} = 3V$$

•
$$C_{GS} = C_{GSO}W + \frac{2}{3}C_{ox}WL = ?$$

•
$$C_{GD} = C_{GDO}W = ?$$

•
$$C_j = \frac{C_{j0}}{\left(1 + \frac{V_R}{\psi_0}\right)^{M_J}}$$
, $C_{jSW} = \frac{C_{jSW0}}{\left(1 + \frac{V_R}{\psi_0}\right)^{M_J}}$

•
$$C_{SB} = C_j \cdot WL_{diff} + C_{jSW} \cdot (W + L_{diff}) = ?$$

•
$$C_{DB} = C_j \cdot WL_{diff} + C_{jSW} \cdot (W + L_{diff}) = ?$$

- Variación de C_{GS} y C_{GD} con W y L: ¿cuánto varían C_{GD} y C_{GS} respecto del caso base?
 - Assuma, por simplicidad: $C_{GS} \approx \frac{2}{3} \cdot C_{ox} \cdot W \cdot L y C_{GD} = C_{GDO} \cdot W$

Frecuencia de transición

• Frecuencia de transición: la ganancia de <u>corriente</u> entre G y D es unitaria:

$$A_i = \frac{I_{out}}{I_{in}} \longrightarrow [|A_i|(\omega_{\rm T}) = 1]$$

$$I_{out} = -g_m \cdot V_{in}$$

$$I_{in} = sC_{GS} \cdot V_{in}$$

$$|A_i| = \frac{g_m \cdot V_{in}}{\omega C_{GS} \cdot V_{in}} \longrightarrow |A_i|(\omega_T) = 1 = \frac{g_m}{\omega_T \cdot C_{GS}} \longrightarrow \omega_T \approx \frac{g_m}{C_{gs}}$$

Frecuencia de transición

- Frecuencia de transición: la ganancia de <u>corriente</u> entre G y D es unitaria:
 - · Es una métrica de la performance del dispositivo y la tecnología

$$\omega_T \approx \frac{g_m}{C_{gs}} = \frac{\mu_N C_{ox} W/L V_{ov}}{2/2 C_{ox} WL} \longrightarrow \omega_T = 2\pi f_T \approx \frac{3}{2} \frac{V_{ov}}{L^2}$$

<u>Para mayor velocidad:</u>

- NMOS es mejor que PMOS
- L bajo
- Overdrive alto: antes de que sature el gm por degradación de movilidad

Frecuencia de transición

- Se busca comparar la respuesta en alta frecuencia de los siguientes dos circuitos en donde el Caso 2 corresponde al Caso 1 con el agregado de una etapa common-source.
 - Nótese que $\omega_T=g_m/\mathcal{C}_{gs}$ del caso 2
 - 1. Evalúe la transimpedancia de ambos casos en $\omega = \omega_T \to \left| \frac{v_o}{i_i} \right| (\omega_T)$: ¿Cuál caso presenta mayor transimpedancia en esta frecuencia?
 - 2. Bocete el diagrama Bode de ambos circuitos, en el entorno de ω_T
 - 3. ¿Qué puede decir sobre la utilidad de la etapa extra agregada en el Caso 2?

Nomograma

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

Respuesta en frecuencia

- Etapa common-source: obtenga la transferencia de tensión
 - ¿Cuántos nodos tiene este circuito?
 - · ¿Cuántos polos esperamos encontrar en la transferencia?
 - ¿Esperamos encontrar ceros en la transferencia?

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

2C-2024

24

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

Respuesta en frecuencia

• Etapa common-source: obtenga la transferencia de tensión

$$G_m = -g_m^{M1} + sC_{gd}^{M1}$$

$$R_{out} = r_o^{M1} || r_o^{M2} \frac{1}{1 + s(r_o^{M1} || r_o^{M2}) C_{out}}$$

$$A_{v} = -g_{m}^{M1}(r_{o}^{M1}||r_{o}^{M2}) \frac{1 - s\frac{C_{gd}^{M1}}{g_{m}^{M1}}}{1 + s(r_{o}^{M1}||r_{o}^{M2})C_{out}}$$

$$A_{vo} = -g_m^{M1}(r_o^{M1}||r_o^{M2})$$

$$\tau_p = (r_o^{M1}||r_o^{M2})C_{out}$$

$$\tau_z = C_{gd}^{M1}/g_m^{M1}$$

$$UGF = GBW = g_m^{M1}/C_{out}$$

Respuesta en frecuencia

- Calcule:
 - \cdot Los valores de la transferencia pedidos en la tabla para el caso base con $L=0.1~\mu m$
 - <u>A partir del caso base</u>: si se incrementan las longitudes de ambos MOS mateniendo sus relaciones de aspecto, ¿cómo varían los resultados?
 - A partir del caso base: si se cuadruplica el ancho de M1, ¿cómo varían los resultados?
 - Grafique el Bode de la transferencia en cada caso

	G_m	R_{out}	A_{vo}	UGF	BW	g_m/I_D
L x 10						
Base						
W×4						

Respuesta en frecuencia

- Calcule:
 - Los valores de la transferencia pedidos en la tabla para el caso base con $L=0.1~\mu m$
 - <u>A partir del caso base</u>: si se incrementan las longitudes de ambos MOS mateniendo sus relaciones de aspecto, ¿cómo varían los resultados?
 - A partir del caso base: si se cuadruplica el ancho de M1, ¿cómo varían los resultados?
 - Grafique el Bode de la transferencia en cada caso

Respuesta en frecuencia

Calcule:

- ullet Los valores de la transferencia pedidos en la tabla para el caso base con $L=0.1~\mu m$
- <u>A partir del caso base</u>: si se incrementan las longitudes de ambos MOS mateniendo sus relaciones de aspecto, ¿cómo varían los resultados?
- A partir del caso base: si se cuadruplica el ancho de M1, ¿cómo varían los resultados?
- Grafique el Bode de la transferencia en cada caso

Respuesta en frecuencia

Cheat-sheet del modelo de pequeña señal

En strong inversion

$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 = \frac{1}{2} \mu C_{ox} \frac{W}{L} V_{ov}^2$$

$$\left. g_{ds} = \frac{\partial I_D}{\partial V_{DS}} \right|_O \approx \lambda I_D$$

$$r_o = \frac{1}{g_{ds}} \approx \frac{1}{\lambda I_D} \propto \frac{L}{I_D}$$

Chengming Hu – CH6: MOS Transistor

https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch6-1.pdf

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

Respuesta en frecuencia

- Analizamos el par diferencial con carga activa
 - · Similar al análisis de la clase anterior, pero agregando capacitores en cada nodo relevante
 - ¿Qué capacidades se concentran en C_L , C_g , y C_{Tail} ?

Respuesta en frecuencia

Analizamos el par diferencial con carga activa

• Caso 1: ignoramos el polo del espejo. $\omega \ll \omega_T^{M3-4}$

Respuesta en frecuencia

Analizamos el par diferencial con carga activa

• Caso 1: ignoramos el polo del espejo. $\omega \ll \omega_T^{M3-4}$

$$G_m \approx +g_m^{M1}$$

$$\begin{split} R_{out} &\approx r_o^{M2} ||r_o^{M4}|| \frac{1}{sC_L} = r_o^{M2} ||r_o^{M4} \cdot \frac{1}{1 + sC_L \cdot r_o^{M2} ||r_o^{M4}} \\ A_{vd} &\approx + g_m^{M1} \cdot r_o^{M2} ||r_o^{M4} \cdot \frac{1}{1 + sC_L \cdot r_o^{M2} ||r_o^{M4}} \end{split}$$

Respuesta en frecuencia

Analizamos el par diferencial con carga activa

• Caso 1: ignoramos el polo del espejo. $\omega \ll \omega_T^{M3-4}$

Respuesta en frecuencia

· Analizamos el par diferencial con carga activa

• Caso 2: incluyendo el efecto de C_g (mirror-pole)

Respuesta en frecuencia

Analizamos el par diferencial con carga activa

• Caso 2: incluyendo el efecto de C_g (mirror-pole)

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

2C-2024

Respuesta en frecuencia

- Amplificador 2-stage OTA:
 - · Cada etapa de ganancia agrega al menos un polo a la transferencia
 - · ¿Por qué esto es relevante?

$$C_1 = C_{GS}^{M6} + C_{GD}^{M6} + C_{DB}^{M4} + C_{DG}^{M4} + C_{DB}^{M2} + C_{DG}^{M2}$$

$$C_2 = C_L + C_{DB}^{M6} + C_{DG}^{M6} + C_{DB}^{M7} + C_{DG}^{M7}$$

2C-2024

$$A_{v1} = \frac{V_{o1}}{V_{id}} = -g_m^{M1} \cdot r_{o2} || r_{o4} \cdot \frac{1}{1 + sC_1(r_{o2}||r_{o4})}$$

$$A_{v2} = \frac{V_{out}}{V_{o1}} = -g_m^{M6} \cdot r_{o6} ||r_{o7}|| R_L \cdot \frac{1}{1 + sC_2(r_{o6}||r_{o7}||R_L)}$$

$$\frac{C_2}{1} A_v = \frac{V_{out}}{V_{id}} = \frac{g_m^{M1} \cdot g_m^{M6} \cdot r_{o2} || r_{o4} \cdot r_{o6} || r_{o7} || R_L}{[1 + sC_1(r_{o2} || r_{o4})] \cdot [1 + sC_2(r_{o6} || r_{o7} || R_L)]}$$

Respuesta en frecuencia

- Amplificador 2-stage OTA:
 - Análisis en mediana frecuencia: $\omega \gg p_x$
 - · Simplificamos las transferencias útil para analizar estabilidad

$$C_1 = C_{GS}^{M6} + C_{GD}^{M6} + C_{DB}^{M4} + C_{DG}^{M4} + C_{DB}^{M2} + C_{DG}^{M2}$$

$$C_2 = C_L + C_{DB}^{M6} + C_{DG}^{M6} + C_{DB}^{M7} + C_{DG}^{M7}$$

 $A_{v1} = \frac{V_{o1}}{V_{id}} = -\frac{g_m^{M1}}{sC_1}$

 $A_{v2} = \frac{V_{out}}{V_{o1}} = -\frac{g_m^{M6}}{sC_2}$

$$UGF \approx \sqrt{\frac{g_m^{M1}g_m^{M6}}{C_1C_2}}$$

$$\approx \sqrt{\frac{g_m^{M1}g_m^{M6}}{C_{GS}^{M6}C_L}}$$

$$\approx \sqrt{\omega_T^{M6} \cdot \frac{g_m^{M1}}{C_L}}$$

Respuesta en frecuencia

Amplificadores de múltiples etapas:

$$A_{v} = \frac{A_{vo}}{1 + \frac{s}{p}} \begin{cases} BW = p \\ UGF = GBW = A_{vo} \cdot p \end{cases}$$

$$A_{v} = \frac{A_{vo}^{2}}{\left(1 + \frac{s}{p}\right)^{2}} \begin{cases} BW = \sqrt{\sqrt{2} - 1} \cdot p \approx 0.64 \cdot p \\ GBW = \sqrt{\sqrt{2} - 1} \cdot A_{vo}^{2} \cdot p \end{cases}$$

$$UGF = A_{vo} \cdot p$$

$$A_{v} = \frac{A_{vo}^{N}}{\left(1 + \frac{s}{p}\right)^{N}} \begin{cases} BW = \sqrt{\sqrt[N]{2} - 1} \cdot p \\ GBW = \sqrt{\sqrt[N]{2} - 1} \cdot A_{vo}^{N} \cdot p \end{cases}$$

$$UGF = A_{vo} \cdot p$$

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - · Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

2C-2024

Realimentación

- ¿Por qué usamos realimentación?
- \cdot ¿Cómo comparan las dos etapas amplificadoras mostradas? Ambas con ganancia nominal $A_v=-2$
 - Considere:
 - · Precisión de la ganancia
 - Estabilidad en temperatura
 - Velocidad
 - Linealidad
 - Consumo
 - •

Estabilidad y capacidades Realimentación

- Ejemplo: Buffer de tensión
- Calcule la transferencia en baja frecuencia $A_{vCL} = V_{out}/V_{in}$ para los casos siguientes:
 - 1. Realimentación ideal (ganancia infinita)
 - 2. Ganancia diferencial de 40 dB

Amplificador no-inversor de ganancia unitaria

Realimentación

- · Ejemplo: Buffer de tensión
- Calcule la transferencia en baja frecuencia $A_{vcl} = V_{out}/V_{in}$ para los casos siguientes:
 - 1. Realimentación ideal (ganancia infinita)
 - 2. Ganancia diferencial de 40 dB

Caso 1 $V_- = V_+ \rightarrow V_{out} = V_{in} \rightarrow A_{vcl} = \frac{V_{out}}{V_{col}} = 1$

 V_{in}

Amplificador no-inversor de ganancia unitaria

Para $A_{vd}=40dB=100\ V/V$ la ganancia tiene un error de 1% respecto del caso anterior:

$$A_{vCL} = \frac{A_{vd}}{1 + A_{vd}} = \frac{100 \, V/V}{1 + 100 \, V/V} = 0.990$$

Realimentación

• Obtener la transferencia de lazo cerrado $A_{vCL} = V_{out}/V_{in}$ del siguiente sistema realimentado:

• OpAmp con 1 polo:
$$A_{vd} = \frac{V_{out}}{V_{+} - V_{-}} = \frac{A_{vo}}{1 + \frac{S}{p_{1}}}$$

• Demuestre que:
$$A_{vCL} = \frac{V_{out}}{V_{in}} = \frac{A_{vo}}{1 + A_{vo}} \cdot \frac{1}{1 + \frac{S}{(1 + A_{vo}) \cdot p_1}}$$

· ¿Cómo compara el ancho de banda a lazo cerrado con el del amplificador de 1 polo a lazo abierto?

Amplificador no-inversor de ganancia unitaria

Estabilidad y capacidades Realimentación

• Obtener la transferencia de lazo cerrado $A_{vCL} = V_{out}/V_{in}$ del siguiente sistema realimentado:

• OpAmp con 1 polo:
$$A_{vd} = \frac{V_{out}}{V_+ - V_-} = \frac{A_{vo}}{1 + \frac{S}{p_1}}$$

$$UGF_{OL} = GBW_{OL} = A_{vo} \cdot p_1$$

• Demuestre que:
$$A_{vCL} = \frac{V_{out}}{V_{in}} = \frac{A_{vo}}{1 + A_{vo}} \cdot \frac{1}{1 + \frac{S}{(1 + A_{vo}) \cdot p_1}} \longrightarrow \frac{BW_{CL} = (1 + A_{vo}) \cdot p_1 \approx UGF_{OL}}{GBW_{CL} = A_{vo} \cdot p_1 = GBW_{OL}}$$

· ¿Cómo compara el ancho de banda a lazo cerrado con el del amplificador de 1 polo a lazo abierto?

Amplificador no-inversor de ganancia unitaria

Estabilidad

- · Análisis de estabilidad: en base a abrir el lazo y estudiar la respuesta a lazo abierto
 - Amplificador no-inversor como ejemplo
 - Identificamos dos bloques unidireccionales:
 - Realimentación: $\beta = \frac{R_{F1}}{R_{F1} + R_{F2}}$
 - Transferencia directa: A_{vd}
 - Definimos la ganancia de lazo como: $LG = -A_{vd} \cdot \beta$

$$V_{out} = A_{vd} \cdot V_e = A_{vd} \cdot (V_{in} - \beta V_{out})$$

$$A_v^{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{vd}}{1 + A_{vd}\beta} = \frac{1}{\beta} \cdot \frac{A_{vd}\beta}{1 + A_{vd}\beta}$$

$$A_{v}^{CL} = \frac{1}{\beta} \cdot \frac{LG}{LG - 1} = \frac{R_{F1} + R_{F2}}{R_{F1}} \cdot \frac{LG}{LG - 1}$$

Modelo con bloques unilaterales

Estabilidad

- Análisis de estabilidad: en base a abrir el lazo y estudiar la respuesta a lazo abierto
 - Definimos la ganancia de lazo como: $LG = -A_{vd} \cdot \beta$
 - Test de estabilidad:
 - Inyectamos una señal de prueba V_X a una frecuencia ω_X y evaluamos la señal de retorno $V_e(\omega_X) = LG \cdot V_X$
 - Si la señal de retorno V_e tiene igual amplitud y fase que la señal inyectada V_X el sistema es potencialmente inestable
 - Criterio de estabilidad:

$$\begin{cases} |LG(\omega_{x})| = 0dB = 1 V/V \\ Arg\{LG(\omega_{x})\} = 0 deg \end{cases}$$

Estabilidad

Márgenes de estabilidad

$$\begin{cases} |LG(\omega_x)| = 0dB = 1 V/V \\ Arg\{LG(\omega_x)\} = 0 deg \end{cases}$$

Margen de Ganancia

Hallar ω_{GM} tal que:

$$Arg\{LG(\omega_{GM})\} = 0 deg$$

Pretendemos que:

$$|LG(\omega_{GM})| < 0 dB$$

Definimos el GM como:

$$GM = \frac{1}{|LG(\omega_{GM})|} > 0 \ dB$$

Margen de Fase

Hallar ω_{PM} tal que:

$$|LG(\omega_{PM})| = 0 dB$$

Pretendemos que:

$$Arg\{LG(\omega_{PM})\} > 0 deg$$

Definimos el PM como:

$$PM = Arg\{LG(\omega_{PM})\} > 0 \ deg$$

Estabilidad

Márgenes de estabilidad

$$\begin{cases} |LG(\omega_x)| = 0dB = 1 V/V \\ Arg\{LG(\omega_x)\} = 0 deg \end{cases}$$

Estabilidad y capacidades Estabilidad

- Márgenes de estabilidad
- Para el siguiente Bode de ganancia de lazo, obtenga:
 - La ganancia de lazo a bajas frecuencias
 - La frecuencia de ganancia unitaria: $UGF = \omega_{PM}$
 - El margen de fase: PM
 - La frecuencia de cruce por o grados: ω_{GM}
 - El margen de ganancia: *GM*

Estabilidad

- Márgenes de estabilidad
- Sistema de 2^{do} orden compensado: se comporta como 1^{er} orden hasta su UGF

$\underline{\text{Si}} p_2 > \omega_{PM} \underline{\text{entonces}}$:

$$GBW \approx UGF = \omega_{PM}$$

 $GBW = A_v(DC) \cdot p_1$

El PM puede obtenerse como:

$$PM = 180 - \operatorname{atan}\left(\frac{GBW}{p_1}\right) - \operatorname{atan}\left(\frac{GBW}{p_2}\right)$$

$$PM \approx \operatorname{atan}\left(\frac{p_2}{GBW}\right) \blacktriangleleft$$

$rac{p_2}{GBW}$	PM	
1	45	
1.2	50	
1.4	54	
1.6	58	
$\sqrt{3}$	60	
1.8	61	
2	63	
2.2	66	
2.4	67	
2.6	69	
2.8	70	
3	72	
A		

Estabilidad

- Márgenes de estabilidad
- Analizar la ganancia de lazo LG nos permite:
 - 1. Evaluar la estabilidad del sistema
 - 2. Conocer la respuesta esperada a lazo cerrado
 - La ganancia de continua se vincula con la precisión de la transferencia a lazo cerrado

•
$$LG \gg 1 \rightarrow A_v^{CL} \approx \frac{1}{\beta}$$

- Margen de fase adecuado se vincula con la respuesta transitoria:
 - $PM[deg] + OV[\%] \approx 72$
- La frecuencia de ganancia unitaria $UGF = \omega_{PM}$ se vincula con la velocidad de la respuesta tansitoria y con el ancho de banda BW_{CL} del sistema a lazo cerrado

$$A_v^{CL} = \frac{1}{\beta} \cdot \frac{LG}{LG - 1}$$

Figure 6.2-3 Response of a second-order system with various phase margins.

P. E. Allen and D. R. Holberg, *CMOS analog circuit design*. Oxford University Press, 2016.

Respuesta al escalón del sistema a lazo cerrado, para distintos PM

Estabilidad

- Relación entre lazo abierto y cerrado
 - · Sistema de segundo orden con polo en el origen

$$LG = -A\beta = -\frac{GBW}{s} \cdot \frac{1}{1 + \frac{s}{p_2}} \quad \boxed{>} \quad PM = \operatorname{atan}\left(\frac{p_2}{GBW}\right)$$

$$A_{vCL} = \frac{A}{1 + A\beta} = \frac{1}{\beta} \cdot \frac{\omega_0^2}{s^2 + 2\xi\omega_0 s + \omega_0^2} = \frac{1}{\beta} \cdot \frac{p_2 \cdot GBW}{s^2 + p_2 s + p_2 \cdot GBW}$$

$$Q = \frac{1}{\sqrt{\operatorname{tg}(PM)}}$$

	1.60	Г
p_2	1.40	H
1 2	1.20	H
PM)	1.00	
1.1	0.80	H
	0.60	H
PM)	0.40	H
	0.20	H
	0.00	L
	3	30
\overline{M}		

Contenido Clase 4

- Capacidades en Transistores MOS
 - Modos de operación del MOS y capacidades
 - Frecuencia de transición
- Respuesta en Frecuencia de Etapas Amplificadoras
 - Etapa SE
 - Etapa Diff con carga activa
 - Amplificador two-stage sin compensación
- Estabilidad de Sistemas Realimentados
 - Realimentación
 - · Márgenes de estabilidad
 - Relación entre estabilidad, respuesta en frecuencia y respuesta transitoria

2C-2024 **56**