

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Lesson 2 Relational Algebra

Learning points

- 1. Introduction to relational algebra
- 2. Set operators
- 3. Relational operators: Projection, Selection, Rename, Join
- 4. Common extensions

Learning objectives

- Upon completion of this lesson, students will be able to:
 - Understand relational algebra operators
 - Write relational algebraic expressions

Keywords and descriptions

Keyword	Description
Relational data model	Is data representation format as a table of values, each row in the table represents a collection of related data values
Set	Is collection of Object
Operator	Is a special token that represent computations such as union, minus, selection, join, etc
Expression	Is an expression built up from operators and operands

Database Schema

```
student(<u>student_id</u>, first_name, last_name, dob, gender, address, note, <u>clazz_id</u>)
clazz(<u>clazz_id</u>, name, <u>lecturer_id</u>, <u>monitor_id</u>)
subject(<u>subject_id</u>, name, credit, percentage_final_exam)
enrollment(<u>student_id</u>, <u>subject_id</u>, <u>semester</u>, midterm_score, final_score)
lecturer(<u>lecturer_id</u>, first_name, last_name, dob, gender, address, email)
teaching(<u>subject_id</u>, <u>lecturer_id</u>)
grade(<u>code</u>, from_score, to_score)
```


Database

student

student_id	first_name	last_name	dob	 clazz_id
20160001	Ngọc An	Bùi	3/18/1987	
20160002	Anh	Hoàng	5/20/1987	 20162101
20160003	Thu Hồng	Trần	6/6/1987	 20162101
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201

clazz

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

1. Introduction to relational algebra

- Relational algebra providing a theoretical foundation for relational databases, particularly query languages for relational databases.
- Relational algebra expression is composed of one or several relational algebraic operators:
 - Operator: represent computations
 - Input: one or two relations
 - Output: a relation
 - Unary operator (one input) vs. binary operator (two inputs)

2. Set operators

- 2.1. Union
- 2.2. Intersection
- 2.3. Difference
- 2.4. Cartesian product

2.1. Union

- Combining the tuples from two *union-compatible relation* inputs (having the same set of attributes).
 - · Warning: result does not contain duplicated records.

2.2. Intersection

 Keeping only common tuples from 2 input union-compatible relations.

2.3. Difference

 Containing tuples occurred in the first relation but not in the second.

2.4. Cartesian Product

• The concatenation of every tuple of one relation with every tuple of the other relation.

3. Relational algebra operators

- 3.1. Selection
- 3.2. Projection
- 3.3. Rename
- 3.4. Join
- 3.5. Division

3.1. Selection

Choose from R each tuple where the condition holds.

3.2. Projection

- Choose some attributes.
 - Warning: Result does not contain duplicated records.

3.3. Rename

 Result is identical to R except that the b attribute in all tuples is renamed to an a attribute.

$$\rho_{a|b}(R)$$

\sim	277	

clazz_id	name	lecturer_id	monitor_id
20162101	CNTT1.01-K61	02001	20160003
20162102	CNTT1.02-K61		
20172201	CNTT2.01-K62	02002	20170001
20172202	CNTT2.02-K62		

$\rho_{\text{name of class } | \text{ name}(\text{clazz})}$

clazz	•		
clazz_id	Name of class	lecturer_id	monitor_id
2016210	1 CNTT1.01-K61	02001	20160003
2016210	2 CNTT1.02-K61		
2017220	1 CNTT2.01-K62	02002	20170001
2017220	2 CNTT2.02-K62		

3.4. Join

Combine attributes from 2 tables.

$$R_1 \triangleright \triangleleft_{< join_condition>} R_2$$

a	r	۲	X
b	r	r	X

3.4. Join

student

student_id	first_name	last_name	clazz_id
20160001	Ngọc An	Bùi	
20160002	Anh	Hoàng	20162101
20160003	Thu Hồng	Trần	20162101
20160004	Minh Anh	Nguyễn	20162101
20170001	Nhật Ánh	Nguyễn	20172201

result

student_idfirst_name	last_name	clazz_id	name
20160002 Anh	Hoàng	20162101	CNTT1.01-K61
20160003 Thu Hồng	Trần	20162101	CNTT1.01-K61
20160004 Minh Anh	Nguyễn	20162101	CNTT1.01-K61
20170001 Nhật Ánh	Nguyễn	20172201	CNTT2.01-K62

clazz

clazz_id	name	lecturer_id	monitor_id	
20162101	CNTT1.01-K61	02001	20160003	
20162102	CNTT1.02-K61			
20172201	CNTT2.01-K62	02002	20170001	
20172202	CNTT2.02-K62			

3.5. Division

 Divides a dividend relation R₁ or degree m+n by a divisor relation R₂ of degree n, and produces a quotient relation of degree m.

An example

List student_id who enroll in all subjects.

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

An example

List student_id who enroll in all subjects.

е	r	1	r	0	ı	ľ	ĩ	1	е	r	1	

	student_id	subject_id	semester	midterm_ score	final_ score
/	20160001	IT1110	20171	9	8.5
	20160001	IT3080	20172	8	
	20160001	IT3090	20172	6	9
	20160001	IT4857	20172	7.5	9
\	20160001	IT4866	20172	7	9
	20160002	IT3080	20172	9	
	20160003	IT1110	20171	7	6
	20160004	IT1110	20171	6	5

 $\prod_{\text{Student_id, subject_id}}$ (enrollement)

subject

subject_id	name	credit	percentage_ final_exam
IT1110	Tin học đại cương	4	60
IT3080	Mạng máy tính	3	70
IT3090	Cơ sở dữ liệu	3	70
IT4857	Thị giác máy tính	3	60
IT4866	Học máy	2	70

 $\prod_{\text{Subject_id}}$ (subject)

An example

List student_id who enroll in all subjects.

 $(\Pi_{\text{student_id}, \text{subject_id}}(\text{enrollement}))$: $(\Pi_{\text{subject_id}}(\text{subject}))$

4. Common extension

- 4.1. Natural join
- 4.2. Outer join
- 4.3. Aggregation

4.1. Natural join

 Special join operation with equal join condition on their common attributes, noted *

4.2. Outer join

Left Outer join

Right Outer join

4.2. Outer join

 Example of left-outer join: List all students and class information if any

student					clazz			
student_id	first_name	last name	dob	 clazz_id	clazz_id	name	lecturer_id	monitor_id
20160001	Ngọc An	Bùi	3/18/1987		20162101	CNTT1.01-K61	02001	20160003
20160002	Anh	Hoàng	5/20/1987	 20162101	20162102	CNTT1.02-K61		
20160003	Thu Hồng	Trần	6/6/1987	 20162101	20172201	CNTT2.01-K62	02002	20170001
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101	20172202	CNTT2.02-K62		
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201				

	student_id	first_name	last_name	dob	 clazz_id	Name	lecturer_id	Monitor_id
	20160001	Ngọc An	Bùi	3/18/1987				
	20160002	Anh	Hoàng	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003
	20160003	Thu Hồng	Trần	6/6/1987	 20162101	CNTT1.01-K61	02001	20160003
	20160004	Minh Anh	Nguyễn	5/20/1987	 20162101	CNTT1.01-K61	02001	20160003
_	20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201	CNTT2.01-K62	02002	20170001

4.3. Aggregation

Aggregation

$$G_1, G_2, ... G_n G F_1(A_1), F_2(A_2), F_n(A_n) (\mathcal{R})$$

• G_1 , G_2 , ... G_n is a list of attributes on which to group F_1 (A_1), F_2 (A_2),... F_n (A_n) is a list of aggregation function on attribute A_1 , A_2 ,... A_n

4.3. Aggregation

Example of Aggregation

G_{student_id} Gcount(subject_id) (enrollment)

enrollment

student_id	subject_id	semester	midterm_ score	final_ score
20160001	IT1110	20171	9	8.5
20160001	IT3080	20172	8	
20160001	IT3090	20172	6	9
20160001	IT4857	20172	7.5	9
20160001	IT4866	20172	7	9
20160002	IT3080	20172	9	
20160003	IT1110	20171	7	6
20160004	IT1110	20171	6	5

results

4.3. Aggregation

Example of Aggregation

G count(student_id) (student)

student

student_id	first_name	last_name	dob	 clazz_id
20160001	Ngọc An	Bùi	3/18/1987	
20160002	Anh	Hoàng	5/20/1987	 20162101
20160003	Thu Hồng	Trần	6/6/1987	 20162101
20160004	Minh Anh	Nguyễn	5/20/1987	 20162101
20170001	Nhật Ánh	Nguyễn	5/15/1988	 20172201

value not a relation

5

Summary

- Introduction to relational algrebra
 - Procedural langue
- Set operators
 - Union, intersection, difference
- Relational operators
 - Projection, Selection, Rename, Join
- Common extensions
 - Natural join, Outer join, Aggregation

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

