Optional lab Monday 1:00 to 2:00 in 344 Evans

More on characteristic functions 1

Recall from last lecture

Theorem 1.1 (Inversion formula). *If a PM* μ *has CF* ϕ *such that* $\int_{-\infty}^{\infty} |phi(t)| dt < \infty$, *then* μ has a bounded continuous density

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt$$
 (1.1)

Corollary 1.2. Given a PM μ with CF ϕ . Suppose $\phi(\cdot)$ is \mathbb{R} -valued, $\phi \geq 0$, and $\int_{-\infty}^{\infty} \phi(t) dt < \infty$. Then

$$g(x) := \frac{\phi(x)}{2\pi f(0)} \tag{1.2}$$

is a density function, with CF f(t)/f(0).

Here, f and g are called dual pairs.

Proof. By inversion formula

$$\frac{f(y)}{f(0)} = \int_{-\infty}^{\infty} e^{-ity} \underbrace{\frac{\phi(t)}{2\pi f(0)}}_{=g(t)} dt$$
(1.3)

holds for all y, so in particular for y = 0

$$1 = \int_{-\infty}^{\infty} \underbrace{\frac{\phi(t)}{2\pi f(0)}}_{=g(t)} dt \tag{1.4}$$

so g integrates to one. Since $\phi \ge 0$, $g \ge 0$, hence g is a density function.

Equation (1.3) also shows that the CF of g is f(y)/f(0).

Example 1.3 (Last class). If $f(x) = \frac{1}{2}e^{-|x|}$, then $\phi(t) = \frac{1}{1+t^2}$. The dual is $g(x) = \frac{\phi(x)}{\pi} = \frac{\phi(x)}{\pi}$ $\frac{1}{\pi(1+x^2)}$, the standard Cauchy distribution, and this has $CF \frac{f(t)}{f(0)} = e^{-|t|}$, $-\infty < t < \infty$.

Write W for a RV with standard Cauchy distribution. Take iid copies W_1, W_2, \ldots

$$\phi_{W_1 + W_2 + \dots + W_n}(t) = (e^{-|t|})^n = e^{-n|t|} = \phi_{nW}(t)$$
(1.5)

Uniqueness of CF implies $\sum_{i=1}^{n} \stackrel{d}{=} nW$, or $\frac{1}{n} \sum_{i=1}^{n} W_{i} \stackrel{d}{=} W$. LLN doesn't hold here, because $\mathbb{E}|W| = \infty$, so this is a good example of where calculations using CF ("in transform land") are easier.

General facts: $\phi_{aW}(t) = \phi_W(at)$ and $\phi_{X-x}(t) = e^{-itx}\phi_X(t)$

Exercise 1.4. If $Y_n \stackrel{d}{\rightarrow} c$, then $Y_n \stackrel{p}{\rightarrow} c$.

Exercise 1.5. If $Y_n \stackrel{d}{\to} c$, then $X_n + Y_n \stackrel{d}{\to} X + c$ for any X.

A second proof of the inversion formula:

Proof. Take X with $dist(X) = \mu$.

Take $Z_{\sigma} \stackrel{d}{=} N(0, \sigma^2)$ independent of X.

 $X + Z_{\sigma} \stackrel{d}{\rightarrow} X$ as $\sigma 0$.

Note $X + Z_{\sigma}$ has density defined by the convolution

$$f_{X+Z_{\sigma}}(0) = \int_{-\infty}^{\infty} f_{2\sigma}(-t)\mu(dt) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}}\mu(dt)$$
 (1.6)

By Parseval's identity for Normals

$$f_{X+Z_{\sigma}}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t^2 \sigma^2/2} \phi(t) dt$$
 (1.7)

Apply to X - x instead of X to get

$$f_{X+Z_{\sigma}}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-t^2\sigma^2/2} \phi(t) dt$$
 (1.8)

Let $\sigma \downarrow 0$ and appeal to bounded convergence to get

$$\lim_{\sigma \downarrow 0} f_{X+Z_{\sigma}}(x) = \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt}_{=:f(x)}$$
(1.9)

Final detail: $P(a \le X \le b) = \lim_{\sigma \downarrow 0} P(a \le X + Z_{\sigma} \le b) = \int_a^b f(x) dx$ at continuity points a, b of X, which is enough to prove f is the density of X (TODO: why?).

Theorem 1.6 (Continuity Theorem). Let X_n have $CF \phi_n$.

- (a) If $X_n \stackrel{d}{\to} X_\infty$, then $\phi_n(t) \to \phi_\infty(t)$ for each t.
- (b) Suppose $\lim_{n\to\infty} \phi_n(t)$ exists (say = $\phi(t)$) for each t. If any of the following are true:
 - (*i*) φ *is a CF*
 - (ii) $\phi(t) \rightarrow 1$ as $t \rightarrow 0$
 - (iii) $(X_n, n \ge 1)$ are tight

then $X_n \stackrel{d}{\to} X_{\infty}$ and X_{∞} has CF ϕ .

Proof. (a): $X_n \stackrel{d}{\to}_{\infty}$ implies $\mathbb{E}g(X_n) \to Eg(X_{\infty})$ for bounded continuous g. Take $g(x) = e^{itx}$ to get $\phi_n(t) \to \phi_{\infty}(t)$ as $n \to \infty$, t fixed.

(b): Suppose (iii). Helly's selection theorem implies there exists subsequence $X_{n_s} \stackrel{d}{\to} some \, \hat{X}$. Then (a) and hypothesis of (b), \hat{X} has CF ϕ . By previous lemma, because every convergent subsequence has same limiting distribution we have that the whole sequence $X_n \stackrel{d}{\to} \hat{X}$ with CF ϕ . This proves (b).

Claim: (i) \implies (ii), because a CF ϕ is continuous and $\phi(0) = 1$.

Need to prove (ii) and hypothesis of (b) imply (iii).

Fix *K*, put $c = \frac{2}{K}$. Trick: bound

$$P(|X_n| \ge K) \le \mathbb{E}\left[2\left(1 - \frac{1}{c|X_n|}\right) 1_{|X_n| \ge K}\right] \tag{1.10}$$

$$\leq 2\mathbb{E}\left[\left(1 - \frac{\sin(c|X_n|)}{c|X_n|}\right) 1_{|X_n| \geq K}\right] \tag{1.11}$$

$$\leq 2\mathbb{E}\left[1 - \frac{\sin(c|X_n|)}{c|X_n|}\right] \tag{1.12}$$

$$= 2\left(1 - \frac{1}{2c} \int_{-c}^{c} \phi_n(t)dt\right) = \frac{1}{c} \int_{-c}^{c} (1 - \phi_n(t))dt$$
 (1.13)

where the last line applies Parseval's identity for U[-c,c]. Bounded convergence as $n \to \infty$ implies

$$\limsup_{n} P(|X_{n}| \ge K) \le \frac{1}{c} \int_{-c}^{c} (1 - \phi(t)) dt$$
 (1.14)

$$\lim_{K\uparrow\infty} \limsup_{n} P(|X_n| \ge K) \le \lim_{c\downarrow 0} \frac{1}{c} \int_{-c}^{c} (1 - \phi(t)) dt = 0$$
 (1.15)

by (ii), which implies tightness.

2 CFs and moments

$$e^{itx} = \sum_{m=0}^{\infty} \frac{(itx)^m}{m!} \tag{2.1}$$

This suggests that CF ϕ of X is

$$\phi_X(t) = \sum_{m=0}^{\infty} \frac{\mathbb{E}(itX)^m}{m!} = 1 + it\mathbb{E}X - \frac{t^2}{2}\mathbb{E}X^2 \cdot \cdot \cdot$$
 (2.2)

Lemma 2.1 (Durrett 3.3.7).

$$\left| e^{iy} - \sum_{m=0}^{n} \frac{(iy)^m}{m!} \right| \le \min\left(\frac{|y|^{n+1}}{(n+1)!}, \frac{2|y|^n}{n!} \right)$$
 (2.3)

Applying the lemma to y = tX gives

$$\left|\phi_X(t) - \sum_{m=0}^n \frac{\mathbb{E}(itX)^m}{m!}\right| \le \mathbb{E}\min\left(\frac{|y|^{n+1}}{(n+1)!}, \frac{2|y|^n}{n!}\right) \tag{2.4}$$

$$= \frac{|t|^n}{n!} \mathbb{E} \min\left(\frac{|t||X|^{n+1}}{n+1}, 2|X|^n\right)$$
 (2.5)

Corollary 2.2. Suppose $\mathbb{E}|X|^n < \infty$. Then $\phi_X(t) = \sum_{m=0}^n \frac{\mathbb{E}(itX)^m}{m!} + o(|t|^n)$ as $t \to \infty$.

Proof. Define the RV $Z_t := \min\left(\frac{|t||X|^{n+1}}{n+1}, 2|X|^n\right)$. $Z_t \stackrel{\text{a.s.}}{\to} 0$ as $t \to \infty$, dominated by $2|X|^n$ integrable. This implies $\mathbb{E}Z_t \to 0$ as $t \to 0$.