Predictive Analytics for Water Potability: A Comparative Study of SDG 6 Indicators Across Nations

Overview

This project aims to predict water potability using advanced machine learning techniques while conducting a comparative analysis of **Sustainable Development Goal (SDG) 6** indicators across regions. The research highlights regional disparities in water quality and provides data-driven insights to policymakers for enhancing global water sustainability efforts.

Key Features

- Machine Learning Models for Predicting Water Potability.
- Comparative Analysis of SDG 6 Indicators.
- Data Visualizations for Regional Disparities in Water Quality.
- Tools to Identify Key Predictors Influencing Water Potability.

Table of Contents

- Project Objectives
- <u>Dataset Description</u>
- Methodology
- Results
- Technologies Used
- How to Run
- Contributors
- License

Project Objectives

1. Predictive Modeling

Build machine learning models such as Gradient Boosting, SVM, Decision Tree, and Random Forest to predict water potability based on parameters like pH, turbidity, and hardness.

2. Comparative Analysis

Evaluate **SDG 6 Indicators** to analyze regional disparities and progress in clean water accessibility.

3. Policy Insights

Provide actionable insights and recommendations for targeted interventions and sustainable water resource management.

Dataset Description

The dataset includes the following water quality parameters:

- pH
- Hardness
- Solids
- Chloramines
- Sulfate
- Conductivity
- Organic Carbon
- Trihalomethanes
- Turbidity

Target variable: Potable (1 for drinkable, 0 for non-drinkable)

Methodology

1. Data Preprocessing

- Cleaning missing values and outliers.
- Feature scaling using normalization/standardization.
- Splitting the dataset into **training** and **testing** sets.

2. Model Development

- Algorithms used:
 - Support Vector Machine (SVM)
 - o Decision Tree
 - o Gradient Boosting
 - o Random Forest
- Evaluation metrics: Accuracy, Precision, Recall, Sensitivity, and Specificity.

3. Visualization & Analysis

- Correlation Heatmaps for SDG Goals.
- World Maps for Safely Managed Services.
- Comparative plots for algorithm performance.

4. Deployment

 Best-performing model integrated as a web-based tool for real-time water quality monitoring.

Results

- Gradient Boosting achieved the highest accuracy: 91.67%.
- Key predictors: Sulfate, Chloramines, and pH.

• Significant disparities in water quality noted between **developed** and **developing** regions.

Metric	Accuracy	Kappa	Sensitivity	Specificity	F1-Score
Random Forest	0.875	0.7333	0.9	0.8333	0.9
Gradient Boosting	0.9167	0.8182	0.9667	0.8333	0.9355
Decision Tree	0.7083	0.44	0.6	0.8889	0.72
SVM	0.8958	0.7701	0.9667	0.7778	0.9206

Technologies Used

- Programming Language: Python
- Libraries:
 - o scikit-learn (for ML models)
 - o matplotlib & seaborn (for visualizations)
 - o pandas & numpy (for data processing)

How to Run

1. Clone the repository:

```
bash
Copy code
git clone https://github.com/Yuthish3/CSE-3505-J-Component.git
cd CSE-3505-J-Component
```

2. Install dependencies:

```
bash
Copy code
pip install -r requirements.txt
```

3. Run the main script:

bash
Copy code
python main.py

4. View results:

- o Predictions in the console.
- o Visualizations saved in the outputs/ folder.

Contributors

- Yuthish Kumar V (21MIA1023)
- **Goutham S** (21MIA1014)
- Harish A S (21MIA1021)
- Visva R (21MIA1064)

License

This project is licensed under the MIT License.

For more details, check the full report here.