

SUPERSERVER 7044A-82R

USER'S MANUAL

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

SUPERMICRO COMPUTER reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPERMICRO COMPUTER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, THE VENDOR SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Supermicro's total liability for all claims will not exceed the price paid for the hardware product.

Unless you request and receive written permission from SUPER MICRO COMPUTER, you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2004 by SUPER MICRO COMPUTER INC. All rights reserved.

Printed in the United States of America

Preface

About This Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 7044A-82R. Installation and maintainance should be performed by experienced technicians only.

The SuperServer 7044A-82R is a high-end, dual processor 4U tower/rackmount server based on the SC942i-R760 4U rackmount server chassis and the X6DA8-G2, a dual processor serverboard that supports single or dual Intel Nocona™ at a Front Side (System) Bus speed of 800 MHz and up to 16 GB of registered 400 MHz DDR2 SDRAM.

Manual Organization

Chapter 1: Introduction

The first chapter provides a checklist of the main components included with the server system and describes the main features of the SUPER X6DA8-G2 serverboard and the SC942i-R760 chassis, which comprise the SuperServer 7044A-82R.

Chapter 2: Server Installation

This chapter describes the steps necessary to install the SuperServer 7044A-82R into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

Chapter 4: System Safety

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the

SuperServer 7044A-82R.

Chapter 5: Advanced Serverboard Setup

Chapter 5 provides detailed information on the X6DA8-G2 serverboard, including the locations and functions of connections, headers and jumpers. Refer to this

chapter when adding or removing processors or main memory and when

reconfiguring the serverboard.

Chapter 6: Advanced Chassis Setup

Refer to Chapter 6 for detailed information on the SC942i-R760 server chassis.

You should follow the procedures given in this chapter when installing, removing or reconfiguring SCSI or peripheral drives and when replacing system power

supply units and cooling fans.

Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed infor-

mation on running the CMOS Setup Utility.

Appendix A: BIOS POST Codes

Appendix B: Software Installation

Appendix C: System Specifications

Notes

Table of Contents

Pre	face	
Abou	ut This Manual	ii
Man	ual Organization	ii
Cha	apter 1: Introduction	
1-1	Overview	1-1
1-2	Serverboard Features	1-2
1-3	Server Chassis Features	1-3
1-4	Contacting Supermicro	1-6
Cha	apter 2: Quick Setup	
2-1	Overview	2-1
2-2	Unpacking the SuperWorkstation 7044A-82R	2-
2-3	Preparing for Setup	2-′
2-4	Installing the SuperWorkstation 7044A-82R into a Rack	2-4
2-5	Checking the Serverboard Setup	2-8
2-6	Checking the Drive Bay Setup	2-10
Cha	apter 3: System Interface	
3-1	Overview	3-1
3-2	Control Panel Buttons	3-
	Power	3-1
	Reset	3-1
3-3	Control Panel LEDs	3-2
	Power	3-2
	HDD	3-2
	NIC1	3-2
	NIC2	3-2
	Overheat	3-2
	Power Fail	3-3
3-4	SCSI Drive Carrier LEDs	3-3
3-5	LAN (Ethernet) Port LEDs	3-3

Cha	apter 4: System Safety		
4-1	Electrical Safety Precautions	4-1	
4-2	General Safety Precautions	4-2	
4-3	·		
4-4	Operating Precautions	4-4	
Cha	apter 5: Advanced Serverboard Setup		
5-1	Handling the X6DA8-G2 Serverboard	5-1	
5-2	PGA Processor and Heatsink Installation	5-2	
5-3	Connecting Cables	5-2	
	Connecting Data Cables	5-2	
	Connecting Power Cables	5-2	
	Connecting the Control Panel	5-5	
5-4	I/O Ports	5-6	
5-5	Installing Memory	5-6	
5-6	Adding PCI Cards	5-8	
5-7	Serverboard Details	5-9	
	X6DA8-G2 Layout	5-10	
	X6DA8-G2 Quick Reference	5-10	
5-8	Connector Definitions	5-11	
	ATX Power Connector	5-11	
	Processor Power Connector	5-11	
	NMI Button	5-11	
	Power LED	5-11	
	HDD LED	5-12	
	NIC1/NIC2 LED	5-12	
	Overheat LED (OH)	5-12	
	Power Fail LED	5-12	
	Reset Button	5-13	
	Power Button	5-13	
	Chassis Intrusion	5-13	
	Universal Serial Bus (USB0/1)	5-13	
	Fan Headers	5-14	
	Serial Ports	5-14	
	GLAN 1/2 (Ethernet Ports)	5-14	
	ATX PS/2 Keyboard and Mouse Ports		
	Power LED/Speaker/NMI	5-15	
	Wake-On-Ring	5-15	
	Wake-On-LAN	5-15	

	SMB	5-15
	Power Fault	5-16
	Keylock Fault	5-16
5-9	Jumper Settings	5-17
	Explanation of Jumpers	5-17
	CMOS Clear	5-17
	GLAN Enable/Disable	5-18
	SCSI Controller Enable/Disable	5-18
	SCSI Termination Enable/Disable	5-18
	Watch Dog Enable/Disable	5-19
	AC'97 Audio Enable/Disable	5-19
	Third Power Supply Alarm Enable/Disable	5-20
	Alarm Reset	5-20
	Power Force On Enable/Disable	5-20
5-10	Onboard Indicators	5-21
	GLAN1/GLAN2 LEDs	5-21
5-11	Parallel Port, Floppy/Hard Disk Drive and SCSI Connections	5-21
	Parallel Port Connector	5-21
	Floppy Connector	5-22
	IDE Connectors	5-22
	Ultra320 SCSI Connectors	5-23
Cha	pter 6: Advanced Chassis Setup	
6-1	Static-Sensitive Devices	. 6-1
6-2	Front Control Panel	
6-3	System Fans	
	Fan Failure	
	Replacing System Fans	
6-4	Drive Bay Installation	
	SCSI Drives	
	Installing Components in the 5.25" Drive Bays	
6-5	Power Supply	
	Power Supply Failure	
	Replacing the Power Supply	
Cha	apter 7: BIOS	
7-1	•	7 4
7-1 7-2	Introduction	
7-2 7-3	Main BIOS Setup	
7-3 7-4	Advanced Setup	
1 -	/ ta various Juliup	1 - 1

7-5	Security	7-19
7-6	Boot	7-21
7-7	Exit	7-22
Apı	pendices:	
Арр	endix A: BIOS POST Codes	A-1
Арр	endix B: Software Installation	B-1
App	pendix C: System Specifications	C-1

Notes

Chapter 1

Introduction

1-1 Overview

The Supermicro SuperServer 7044A-82R is a high-end dual processor server that can be utilized either in a tower or in a rackmount configuration. The 7044A-82R is comprised of two main subsystems: the SC942i-R760 high-end server chassis and the X6DA8-G2 dual Nocona™ processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the SuperServer 7044A-82R.

In addition to the serverboard and chassis, various hardware components have been included with the SuperServer 7044A-82R, as listed below:

- One (1) 3.5" floppy drive [FPD-PNSC-02(1)]
- One (1) 12-cm exhaust fan (FAN-0054)
- Three (3) hot-swap 12-cm chassis fans (FAN-0053)
- Six (6) 5.25" dummy drive trays [CSE-PT36(B)]
- One (1) front side USB kit [CSE-PT29(B)]
- One (1) front control panel cable (CBL-0047)
- One (1) round floppy cable (CBL-0040)
- One (1) round CD-ROM cable (CBL-0039)
- One (1) I/O shield (CSE-PT53)
- SCSI Accessories
 - One (1) mobile rack unit [CSE-M35(B)] with SCSI backplanes [CSE-SCA-016]
 - One (1) 9" round SCSI cable (CBL-0043)
 - Five (5) SCA 1-inch high SCSI drive carriers [CSE-PT17(B)]

Optional: Two (2) Xeon active heatsinks (SNK-P0008A)

One (1) rackmount kit [CSE-PT26(B)]

1-2 Serverboard Features

At the heart of the SuperServer 7044A-82R lies the X6DA8-G2, a dual processor serverboard based on the Intel E7525 chipset and designed to provide maximum performance. Below are the main features of the X6DA8-G2. (See Figure 1-1 for a block diagram of the E7525 chipset).

Processors

The X6DA8-G2 supports single or dual 604-pin Intel Nocona[™] processors at a FSB speed of 800 MHz. Please refer to the serverboard description pages on our web site for a complete listing of supported processors (http://www.supermicro.com).

Memory

The X6DA8-G2 has eight 240-pin DIMM slots that can support up to 16 GB of registered ECC DDR2-400 (PC3200) SDRAM. The memory is an interleaved configuration, which requires modules of the same size and speed to be installed in pairs.

Onboard SCSI

Onboard SCSI is provided with an Adaptec AIC-7902 SCSI chip, which supports dual channel, Ultra320 SCSI at a throughput of 320 MB/sec for each channel. The X6DA8-G2 provides two LVD Ultra320 SCSI ports.

PCI Expansion Slots

The X6DA8-G2 has six PCI expansion slots, which includes one x16@4GB/sec PCI-Express slot, one x4@2GB/sec PCI-Express slot, three 64-bit PCI-X slots (one 64-bit PCI-X 133 slot, one PCI-X 100 slot, one PCI-X 100MHz ZCR slot) and one 32-bit 33MHz PCI slot (w/PCI graphics card support).

Onboard Controllers/Ports

One floppy drive controller and two onboard ATA/100 controllers are provided to support up to four hard drives or ATAPI devices. The color-coded I/O ports include two COM ports, a parallel port, four USB 2.0 ports, PS/2 mouse and keyboard ports two G-bit Ethernet ports and Line-in, Line-out and Mic jacks. Two front side USB ports are also included on the front of the chassis.

Other Features

Other onboard features that promote system health include onboard voltage monitors, a chassis intrusion header, auto-switching voltage regulators, chassis and CPU overheat sensors, virus protection and BIOS rescue.

1-3 Server Chassis Features

The SuperServer 7044A-82R is a high-end, scaleable server platform designed with today's most state-of-the-art features. The following is a general outline of the main features of the SC942i-R760 server chassis.

System Power

The 7044A-82R features a triple redundant 760W power supply that consists of three separate power supply modules. These modules all share the load and run continuously. If any of the three fail, the remaining two pick up the load and keep the system running without interruption. A failed power supply module will illuminate the power fail LED. The power supply modules are all hot-swappable, so you don't have to power down the system to replace a module.

SCSI Subsystem

The SCSI subsystem supports up to five* 80-pin SCA Ultra320 SCSI hard drives. (Five SCSI trays have been designed to fit into a mobile rack that is housed in the chassis. Any standard 1" drives are supported. SCA = Single Connection Attachment.) The SCSI drives are connected to a dual-channel SCA backplane with SAF-TE. The SCSI drives are also hot-swap units. A RAID controller card can be used with the SCA backplanes to provide data security.

* The system can support up to 10 hot-swappable Ultra320 SCSI drives if another mobile rack (CSE-M35S) is installed.

Note: The operating system you use must have RAID support to enable the hotswap capability of the SCSI drives.

Front Control Panel

The SuperServer 7044A-82R's control panel provides you with system monitoring and control. LEDs indicate system power, HDD activity, network activity, overheat condition and power supply failure. A main power button and a system reset button are also included.

I/O Backplane

The SC942i-R760 is an ATX form factor chassis that can be used as a tower or mounted in a 4U rackmount configuration. The I/O backplane provides seven motherboard expansion slots, two COM ports, a parallel port, four USB 2.0 ports, PS/2 mouse and keyboard ports two G-bit Ethernet ports and Line-in, Line-out and Mic jacks (see Figure 1-1).

Cooling System

The SC942i-R760 chassis has an innovative cooling design that includes three 12-cm hot-plug system cooling fans located in the middle section of the chassis and one heavy duty 12-cm exhaust fan. Each power supply module also includes a cooling fan. All chassis and power supply fans operate continuously.

Figure 1-1. Intel E7525 Chipset: System Block Diagram

Note: This is a general block diagram. Please see Chapter 5 for details.

1-4 Contacting Supermicro

Headquarters

Address: SuperMicro Computer, Inc.

980 Rock Ave.

San Jose, CA 95131 U.S.A.

Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008

Email: marketing@supermicro.com (General Information)

support@supermicro.com (Technical Support)

Web Site: www.supermicro.com

Europe

Address: SuperMicro Computer B.V.

Het Sterrenbeeld 28, 5215 ML

's-Hertogenbosch, The Netherlands

Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525

Email: sales@supermicro.nl (General Information)

support@supermicro.nl (Technical Support) rma@supermicro.nl (Customer Support)

Asia-Pacific

Address: SuperMicro, Taiwan

D5, 4F, No. 16 Chien-Ba Road

Chung-Ho 235, Taipei Hsien, Taiwan, R.O.C.

Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3991 Web Site: www.supermicro.com.tw

Technical Support:

Email: support@supermicro.com.tw
Tel: 886-2-8228-1366, ext.132 or 139

Chapter 2

Server Installation

2-1 Overview

This chapter provides a quick setup checklist to get your SuperServer 7044A-82R up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your SuperServer 7044A-82R system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components. The 7044A-82R may be employed either as a tower or mounted in a rack as a 4U rackmount chassis. If using it as a server, please read Server Precautions in the next section and then skip ahead to Section 2-5.

2-2 Unpacking the 7044A-82R

You should inspect the box the SuperServer 7044A-82R was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the SuperServer 7044A-82R. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

2-3 Preparing for Setup

The box the SuperServer 7044A-82R was shipped in may include two sets of rail assemblies, two rail mounting brackets and mounting screws needed for installing the system into a rack (optional kit). Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

Choosing a Setup Location:

- Leave enough clearance in front of the system to enable you to open the front door completely (~25 inches).
- Leave approximately 30 inches of clearance in the back of the system to allow for sufficient airflow and ease in servicing.

Warnings and Precautions!

Rack Precautions:

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack.
- In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable.

Server Precautions:

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack before you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow the hot plug SCSI drives and power supply units to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

Reduced Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

2-4 Installing the 7044A-82R into a Rack

This section provides information on installing the SuperServer 7044A-82R into a rack unit. Rack installation requires the use of the optional rackmount kit [CSE-PT26(B)]. If the 7044A-82R has already been mounted into a rack or if you are using it as a tower, you can skip ahead to Sections 2-5 and 2-6. There are a variety of rack units on the market, which may mean the assembly procedure will differ slightly. The following is a guideline for installing the 7044A-82R into a rack with the rack rails provided in the rackmount kit. You should also refer to the installation instructions that came with the rack unit you are using.

Identifying the Sections of the Rack Rails:

The optional 7044A-82R rackmount kit (CSE-PT26 or CSE-PT26B - black) includes two rack rail assemblies. Each of these assemblies consist of three sections: an inner fixed chassis rail that secures to the 7044A-82R (A), an outer fixed rack rail that secures directly to the rack itself (B) and a sliding rail guide sandwiched between the two, which should remain attached to the fixed rack rail (see Figure 2-1.) The A and B rails must be detached from each other to install. Two chassis handles are also included with the rail kit.

To remove the fixed chassis rail (A), pull it out as far as possible - you should hear a "click" sound as a locking tab emerges from inside the rail assembly and locks the inner rail. Depress the locking tab to pull the inner rail completely out. Do this for both assemblies.

B A A

Figure 2-1. Identifying the Sections of the Rack Rails

Installing the Chassis Rails:

You will need to remove the top bezel cover and the feet to add rack rails to the chassis. First, remove the top/left cover by pushing the release tab in the center of the cover lip (see Figure 2-2). Lift the cover off. Each chassis foot has a single screw. Remove the screw then depress the foot's locking tab from the inside of the chassis to slide the foot off. Next, remove the top cover. You should see a release tab at the middle of the lip. Push this tab toward the chassis edge while pushing the cover toward the front of the chassis. It should then lift right off. You can now attach rack rails to the top and bottom (now the sides) of the chassis. First add the rack handles. Then position the fixed chassis rail sections you just removed along the side of the 7044A-82R making sure the screw holes line up. Note that these two rails are left/right specific. Screw the rail securely to the side of the chassis (see Figure 2-3). Repeat this procedure for the other rail on the other side of the chassis. You will also need to attach the rail brackets when installing into a telco rack.

Locking Tabs: As mentioned, both chassis rails have a locking tab, which serves two functions. The first is to lock the server into place when installed and pushed fully into the rack, which is its normal position. Secondly, these tabs also lock the server in place when fully extended from the rack. This prevents the server from coming completely out of the rack when you pull it out for servicing.

Figure 2-2. Removing the Top Cover and Feet

Figure 2-3. Installing the Rails to the Chassis

Installing the Rack Rails:

Determine where you want to place the SuperServer 7044A-82R in the rack. (See Rack and Server Precautions in Section 2-3.)

Position the fixed rack rail/sliding rail guide assemblies at the desired location in the rack, keeping the sliding rail guide facing the inside of the rack. Screw the assembly securely to the rack using the brackets provided. Attach the other assembly to the other side of the rack, making both are at the exact same height and with the rail guides facing inward. Finish by attaching a handle to both sides of the chassis.

Installing the Server into the Rack:

You should now have rails attached to both the chassis and the rack unit. The next step is to install the server into the rack. You should have two brackets in the rack mount kit. Install these first keeping in mind that they are left/right specific (marked with "L" and "R"). Then, line up the rear of the chassis rails with the front of the rack rails. Slide the chassis rails into the rack rails, keeping the pressure even on both sides (you may have to depress the locking tabs when inserting).

When the server has been pushed completely into the rack, you should hear the locking tabs "click". Finish by inserting and tightening the thumbscrews that hold the front of the server to the rack (see Figure 2-4).

Figure 2-4. Installing the Server into a Rack

2-5 Checking the Serverboard Setup

After setting up the the 7044A-82R, you will need to open the unit to make sure the serverboard is properly installed and all the connections have been made.

1. Accessing the inside of the 7044A-82R (see Figure 2-5):

(If rack mounted, first release the retention screws that secure the unit to the rack. Grasp the two handles on either side and pull the unit straight out until it locks (you will hear a "click").) There are two screws that secure the cover to the chassis - remove these first. Depress the button on the top (side if tower) of the chassis to release the cover. You can then lift the cover from the chassis to gain full access to the inside of the server.

2. Check the CPUs (processors):

You should have one or two processors already installed into the serverboard. Each processor should have its own heatsink attached. See Chapter 5 for instructions on processor installation.

3. CPU clock ratio setting:

The CPU speed should be automatically detected. If not, you will need to set the correct speed with the BIOS Setup utility. See the Frequency Ratio setting in BIOS (Chapter 7) to set the processor speed.

4. Check the system memory:

Your 7044A-82R server system may have come with system memory already installed. Make sure all DIMMs are fully seated in their slots. For details on adding system memory, refer to Chapter 5.

5. Installing add-on cards:

If desired, you can install add-on cards to the system. See Chapter 5 for details on installing PCI add-on cards.

6. Check all cable connections and airflow:

Make sure all power and data cables are properly connected and not blocking the chassis airflow. See Chapter 5 for details on cable connections.

Figure 2-5. Accessing the Inside of the 7044A-82R

2-6 Checking the Drive Bay Setup

Next, you should check to make sure the peripheral drives and the SCSI drives and SCA backplane have been properly installed and all connections have been made.

1. Accessing the drive bays:

All drives can be accessed from the front of the server. For servicing the CD-ROM, IDE hard drives and floppy drives, you will need to remove the top/left chassis cover. The SCSI disk drives can be installed and removed from the front of the chassis without removing any chassis covers.

2. Installing components into the 5.25" drive bays:

To install components into the 5.25" drive bays, you must first remove the top/left chassis cover as described in the previous section. Refer to Chapter 6 for details.

3. Installing CD-ROM and floppy disk drives:

Refer to Chapter 6 if you need to reinstall a CD-ROM and/or floppy disk drive to the system.

4. Check the SCSI disk drives:

Depending upon your system's configuration, your system may have one or more drives already installed. If you need to install SCSI drives, please refer to Chapter 6.

5. Check the airflow:

Airflow is provided by one 12-cm exhaust fan and three hot-swap 12-cm chassis fans. The system component layout was carefully designed to promote sufficient airflow through the 4U rackmount space. Also note that all power and data cables have been routed in such a way that they do not block the airflow generated by the fans. Keep this in mind when you reroute them after working on the system.

6. Supplying power to the system:

The last thing you must do is to provide input power to the system. Plug the power cord from the power supply units into a high-quality power strip that offers protection from electrical noise and power surges. It is recommended that you use an uninterruptible power supply (UPS). Finally, depress the power on button on the front of the chassis.

Notes

Chapter 3

System Interface

3-1 Overview

There are several LEDs on the control panel as well as two for each SCSI drive carrier and each LAN (Ethernet) port. These LEDs are to keep you constantly informed of the overall status of the system and the activity and health of specific components. There are also two buttons on the chassis control panel.

3-2 Control Panel Buttons

There are two push-button buttons located on the front of the chassis. These are (in order from left to right) a power on/off button and a reset button.

• **POWER:** This is the main power button, which is used to apply or turn off the main system power. Turning off system power with this button removes the main power but keeps standby power supplied to the system.

RESET: Use the reset button to reboot the system.

3-3 Control Panel LEDs

The control panel located on the front of the SC942i-R760 chassis has six LEDs that provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take.

• **Power:** Indicates external power is being supplied to the system's power supply unit. This LED should normally be illuminated when the system is operating.

• **HDD:** Indicates IDE channel activity. On the SuperServer 7044A-82R, this LED indicates SCSI hard drive activity when flashing.

• NIC1: Indicates network activity on LAN1 when flashing.

• NIC2: Indicates network activity on LAN2 when flashing.

• Overheat/Fan Fail: When this LED blinks it indicates a possible fan failure. If the LED stays on, it indicates that a CPU Overheat condiditon has occured. Please make sure that the cables are not obstructing the air flow, the chassis covers and the heatsinks are properly installed. (see Chapter 5). This LED will remain on as long as the overheat condition exists.

• Power Fail: Indicates a power supply module has failed. The remaining two power supply modules will take the load to keep the system running continuously, but the failed module will need to be replaced. You do not need to shut down the system to replace the failed module. Refer to Chapter 6 for details on replacing the power supply module. This LED should be off when the system is operating normally.

3-4 SCSI Drive Carrier LEDs

Each SCSI drive carrier has two LEDs.

- Green: When illuminated, the green LED on the front of the SCSI drive carrier indicates drive activity. A connection to the SCSI SCA backplane enables this LED to blink on and off when that particular drive is being accessed.
- Red: A SAF-TE compliant backplane is needed to activate the red LEDs, which indicate a drive failure. Please refer to Chapter 6 for instructions on replacing failed SCSI drives.

3-5 LAN (Ethernet) Port LEDs

The two LAN Ethernet ports (located beside the VGA port) each have a yellow and a green LED. The yellow (left) LED indicates activity while the other (right) LED may be green, orange or off to indicate the speed of the connection. See the tables below for the functions associated with these LEDs.

Gb LAN Left LED Indicator

LED			
Color	Definition		
Off	Not Active		
Yellow	Active		

Gb LAN Right LED

maicator				
LED				
Color	Definition			
Off	No Connection			
Green	100 MHz			
Orange	1 GHz			

Notes

Chapter 4

System Safety

4-1 Electrical Safety Precautions

Basic electrical safety precautions should be followed to protect yourself from harm and the SuperServer 7044A-82R from damage:

- Be aware of the locations of the power on/off switch on the chassis as well as the room's emergency power-off switch, disconnection switch or electrical outlet. If an electrical accident occurs, you can then quickly remove power from the system.
- Do not work alone when working with high voltage components.
- Power should always be disconnected from the system when removing or installing main system components, such as the motherboard, memory modules and the CD-ROM and floppy drives. When disconnecting power, you should first power down the system with the operating system and then unplug the power cords of all the power supply units in the system.
- When working around exposed electrical circuits, another person who is familiar with the power-off controls should be nearby to switch off the power if necessary.
- Use only one hand when working with powered-on electrical equipment. This is to avoid making a complete circuit, which will cause electrical shock. Use extreme caution when using metal tools, which can easily damage any electrical components or circuit boards they come into contact with.
- Do not use mats designed to decrease electrostatic discharge as protection from electrical shock. Instead, use rubber mats that have been specifically designed as electrical insulators.

- The power supply power cord must include a grounding plug and must be plugged into grounded electrical outlets.
- Serverboard Battery: CAUTION There is a danger of explosion if the onboard battery is installed backwards, which will reverse its polarities. The positive side of the battery should be facing up and the negative side should facing the serverboard. This battery must be replaced only with the same or an equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.
- CD-ROM Laser: CAUTION this server may have come equipped with a CD-ROM drive. To prevent direct exposure to the laser beam and hazardous radiation exposure, do not open the enclosure or use the unit in any unconventional way.

4-2 General Safety Precautions

Follow these rules to ensure general safety:

- Keep the area around the SuperServer 7044A-82R clean and free of clutter.
- The SuperServer 7044A-82R weighs approximately 66.5 lbs. When lifting
 the system, two people at either end should lift slowly with their feet
 spread out to distribute the weight. Always keep your back straight
 and lift with your legs.
- Place the chassis top/side cover and any system components that have been removed away from the system or on a table so that they won't accidentally be stepped on.
- While working on the system, do not wear loose clothing such as neckties and unbuttoned shirt sleeves, which can come into contact with electrical circuits or be pulled into a cooling fan.
- Remove any jewelry or metal objects from your body, which are
 excellent metal conductors that can create short circuits and harm
 you if they come into contact with printed circuit boards or areas

where power is present.

 After accessing the inside of the system, close the system back up and (if rackmounted) secure it to the rack unit with the retention screws after ensuring that all connections have been made.

4-3 ESD Precautions

Electrostatic discharge (ESD) is generated by two objects with different electrical charges coming into contact with each other. An electrical discharge is created to neutralize this difference, which can damage electronic components and printed circuit boards. The following measures are generally sufficient to neutralize this difference before contact is made to protect your equipment from ESD:

- Use a grounded wrist strap designed to prevent static discharge.
- Keep all components and printed circuit boards (PCBs) in their antistatic bags until ready for use.
- Touch a grounded metal object before removing the board from the antistatic bag.
- Do not let components or PCBs come into contact with your clothing, which may retain a charge even if you are wearing a wrist strap.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard and peripherals back into their antistatic bags when not in use.

• For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

4-4 Operating Precautions

Care must be taken to assure that all chassis covers are in place when the 7044A-82R is operating to ensure proper cooling. Out of warranty damage to the 7044A-82R system can occur if this practice is not strictly followed.

Chapter 5

Advanced Serverboard Setup

This chapter covers the steps required to install processors and heatsinks to the X6DA8-G2 serverboard, connect the data and power cables and install add-on cards. All serverboard jumpers and connections are described and a layout and quick reference chart are included in this chapter. Remember to close the chassis completely when you have finished working on the serverboard to protect and cool the system sufficiently.

5-1 Handling the X6DA8-G2 Serverboard

Static electrical discharge can damage electronic components. To prevent damage to printed circuit boards, it is important to handle them very carefully (see Chapter 4). Also note that the size and weight of the serverboard can cause it to bend if handled improperly, which may result in damage. To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from static discharge.

Precautions

- · Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- · When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.

Unpacking

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

5-2 PGA Processor and Heatsink Installation

When handling the processor package, avoid placing direct pressure on the label area of the fan. Also, do not place the motherboard on a conductive surface, which can damage the BIOS battery and prevent the system from booting up.

IMPORTANT: Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket **before** you install the CPU heat sink.

CPU Installation

1. Lift the lever on the CPU socket: Lift the lever completely as shown on the picture on the right; otherwise, you will damage the CPU socket when power is applied. Install CPU1 first.

Socket lever

- 2. Insert the CPU in the socket, making sure that pin 1 of the CPU aligns with pin 1 of the socket (both corners are marked with a triangle). When using only one CPU, install it into CPU socket #1. (Socket #2 is automatically disabled if only one CPU is used.)
- Press the lever down until you hear a *click*, which means the CPU is securely installed in the CPU socket.

Pin 1

Socket lever in the locking Position

Heatsink Installation

- Do not apply any thermal compound to the heatsink or the CPU die; the required amount has already been applied.
- 2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the retention mechanism.
- 3. Screw in two diagonal screws (ie the #1 and the #2 screws) until just snug (-do not fully tighten the screws to avoid possible damage to the CPU.)
- 4. Finish the installation by fully tightening all four screws.

Figure 5-1. 604-pin PGA Socket: Empty and with Processor Installed

Warning! Make sure you lift the lever <u>completely</u> when installing the CPU. If the lever is only partly raised, damage to the socket or CPU may result.

With processor installed

5-3 Connecting Cables

Now that the processors are installed, the next step is to connect the cables to the serverboard. These include the data (ribbon) cables for the peripherals and control panel and the power cables.

Connecting Data Cables

The ribbon cables used to transfer data from the peripheral devices have been carefully routed in preconfigured systems to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to keep them routed as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). If you are configuring the system, keep the airflow in mind when routing the cables. The following data cables (with their motherboard connector locations noted) should be connected. See the serverboard layout figure in this chapter for connector locations.

- Ultra320 LVD SCSI Cables (JA1)
- Control Panel Cable (JF1, see next page)
- Front Side USB Cable (JD2)

Connecting Power Cables

The X6DA8-G2 has a 24-pin primary power supply connector designated "ATX Power" for connection to the ATX power supply. Connect the appropriate connector from the power supply to the "ATX Power" connector to supply power to the serverboard. The 12V 8-pin power connector at J1D1 and the 12V 4-pin power connector at J32 must also both be connected to your power supply. See the Connector Definitions section in this chapter for power connector pin definitions.

Connecting the Control Panel

JF1 contains header pins for various front control panel connectors. See Figure 5-2 for the pin locations of the various front control panel buttons and LED indicators. Please note that even and odd numbered pins are on opposite sides of each header.

All JF1 wires have been bundled into single ribbon cable to simplify their connection. Make sure the red wire plugs into pin 1 as marked on the board. The other end connects to the Control Panel printed circuit board, located just behind the system status LEDs in the chassis.

See the Connector Definitions section in this chapter for details and pin descriptions of JF1.

Figure 5-2. JF1 Header Pins

5-4 I/O Ports

KB/Mouse

The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-3 below for the colors and locations of the various I/O ports.

USB#0-3 Parallel Port
Line-out

COM₂

LAN1/2

Line-In

Figure 5-3. X6DA8-G2 Rear Panel I/O Ports

5-5 Installing Memory

Note: Check the Supermicro web site for recommended memory modules: http://www.supermicro.com/TECHSUPPORT/FAQs/Memory_vendors.htm

CAUTION

Exercise extreme care when installing or removing DIMM modules to prevent any possible damage. Also note that the memory is interleaved to improve performance (see step 1).

DIMM Installation (See Figures 5-4 and 5-5)

COM₁

- Insert the desired number of DIMMs into the memory slots, starting with Bank #1A. The memory scheme is interleaved so <u>you must install two</u> <u>modules at a time</u>, beginning with DIMM #1A, then DIMM #1B, and so on.
- Insert each DIMM module vertically into its slot. Pay attention to the notch along the bottom of the module to prevent inserting the DIMM module incorrectly.
- 3. Gently press down on the DIMM module until it snaps into place in the slot. Repeat for all modules (see step 1 above).

Memory Support

The X6DA8-G2 supports up to 16 GB of registered ECC DDR2-400 (PC3200) memory. The memory is an interleaved configuration, which requires modules of the same size and speed to be installed in pairs. You should not mix modules of different sizes and/or speeds.

Figure 5-4. Side View of DIMM Installation into Slot

To Install: Insert module vertically and press down until it snaps into place. Pay attention to the bottom notch.

To Remove: Use your thumbs to gently push each release tab outward to free the DIMM from the slot.

Figure 5-5. Top View of DIMM Slot

5-6 Adding PCI Cards

1. PCI slots:

The X6DA8-G2 has has six PCI expansion slots, which includes one x16@4GB/sec PCI-Express slot, one x4@2GB/sec PCI-Express slot, three 64-bit PCI-X slots (one 64-bit PCI-X 133 slot, one PCI-X 100 slot, one PCI-X 100MHz ZCR slot) and one 32-bit 33MHz PCI slot (w/PCI graphics card support).

2. PCI card installation:

Before installing a PCI add-on card, make sure you install it into a slot that supports the speed of the card (see step 1, above). Begin by removing the screw from the I/O backpanel shield that corresponds to the slot you wish to populate. Insert the PCI card into the correct slot on the serverboard, pushing down with your thumbs evenly on both sides of the card. Finish by securing the card to the chassis with the same screw you removed from the I/O shield. Follow this procedure when adding a card to other slots.

5-7 Serverboard Details

Figure 5-6. SUPER X6DA8-G2 Layout* (not drawn to scale)

*Notes:

Jumpers not noted are for test purposes only.

[&]quot; = " indicates the location of Pin 1.

X6DA8-G2 Quick Reference

<u>Jumper</u>	Description	Default Setting
JBT1	CMOS Clear	See Section 5-9
JP13	3rd Pwr Supply Alarm Enable/Disable	Open (Disabled)
JP14	Pwr Supply Fail Alarm Reset	Open (Disabled)
JPA1	SCSI Controller Enable/Disable	Pins 1-2 (Enabled)
JPA2/JPA3	SCSI Ch. A/B Term. Enable/Disable	Open(Enabled)
JPC1	Audio Enable/Disable	Pins 1-2 (Enabled)
JPF	Power Force On	Open (Disabled)
JPL1	Giga-bit LAN Enable/Disable	Pins 1-2 (Enabled)
JWD	Watch Dog Enable	Pins 1-2 (Reset)

Connector	<u>Description</u>
J1B4	Primary 24-pin ATX PWR Connector
J1D1	12V 8-pin PWR Connector
COM1, COM2	COM1 and COM2 Serial Port Connectors
DIMM1A-4B	Memory (SDRAM) Slots
FAN1-8	CPU FAN1/CPU FAN2/Chassis Fans Headers
J3/J4	IDE#1/#2 Disk Drive Connectors
J9	Keyboard/Mouse
J20	IPMI 2.0 Connector
J22	System Management Bus Connector
J23	Parallel (Printer) Port
J24	PWR System Management Bus
J32	12V 4-pin CPU PWR Connector
J40	Universal Serial Bus Ports 0-3 (backpanel ports)
JA1, JA2	Ultra320 SCSI Channel A, Channel B
JC1	Microphone Jack
JC2	Line In/Out Jacks
JD1	PWR LED (Pins1-3), Speaker (Pins 4-7)
JD2	Universal Serial Bus Ports 6/7 (front access ports)
JD3	Universal Serial Bus Ports 4/5 (front access ports)
JF1	Front Panel Control
JK1	Keylock
JL1	Chassis Intrusion Header
JOH1	Overheat LED
JP8	Floppy Disk Drive Connector
JP12	Power Fault Connector
JWOL	Wake-on-LAN Header
JWOR1	Wake-on-Ring Header
LAN1/2	Gigabit Ethernet Ports

5-8 Connector Definitions

ATX Power Connector

The X6DA8-G2 includes a 24-pin main power supply connector (J1B4) and a 4-pin CPU PWR connector (J32). These power connectors meet the SSI EPS 12V specification. You can use a 20-pin connector, but connecting J3 is also required to ensure sufficient power. See the table on the right for pin definitions. For CPU power, please see the item below.

Processor Power Connector

In addition to the Primary ATX power connector (above), the 12v 8-pin processor power connector at J1D1 must also be connected to your power supply. (If an 8-pin cable is not available, please use two 4-pin cables.) See the table on the right for pin definitions.

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

Power LED

The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions.

ATX Power Supply 24-pin Connector Pin Definitions (J1B4)

Pin Num	ber Definition	Pin Num	ber Definition
13	+3.3V	1	+3.3V
14	-12V	2	+3.3V
15	COM	3	COM
16	PS_ON#	4	+5V
17	COM	5	COM
18	COM	6	+5V
19	COM	7	COM
20	Res(NC)	8	PWR_OK
21	+5V	9	5VSB
22	+5V	10	+12V
23	+5V	11	+12V
24	COM	12	+3.3V

+12V 4-pin Connector (J32)

Pins #	Definition
1 & 2	Ground
3 & 4	+12 V
	1 & 2

NMI Button Pin Definitions (JF1)

Pin	
Number	Definition
19	Control
20	Ground

PWR_LED Pin Definitions (JF1)

	(0)
Pin	
Number	Definition
15	Vcc
16	Control

HDD LED

The HDD LED (for IDE and SCSI Disk Drives) connection is located on pins 13 and 14 of JF1. Attach the hard drive LED cable to these pins to display disk activity. Refer to the table on the right for pin definitions.

NIC1/NIC2 LED

The NIC1 (Network Interface Controller) LED connections for the GLAN port1 is located on pins 11 and 12 of JF1 and the NIC2 LED connectors are located on Pins 9 and 10 of JF1. Attach the NIC1 LED cable to display network activity. Refer to the table on the right for pin definitions.

Overheat/Fan Fail LED (OH)

Connect an LED to the OH connection on pins 7 and 8 of JF1 to provide warning of a processor overheating or a fan failure. The LED will blink as long as a fan failure condition exists. It will stay on when an overheat condition occurs. Refer to the table on the right for pin definitions.

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions.

HDD LED Pin Definitions

Pin Number Definition
13 Vcc
14 HD Active

NIC1/NIC2 LED Pin Definitions

(•	(JF1)		
Pin			
Number	Definition		
9/11	Vcc		
10/12	GND		

Overheat/ Fan Fail LED Pin Definitions (JF1)

Pin	
Number	Definition
7	Vcc
8	GND

Overheat/Fan Fail LED Pin Definitions (JF1)

State Indicator
Blinking Fan Failure
Solid Overheat

Power Fail LED Pin Definitions

(31-1)		
Pin		
Number	Definition	
5	Vcc	
6	GND	
1		

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to the hardware reset switch on the computer case. Refer to the table on the right for pin definitions.

Reset Pin Definitions (JF1)

Pin	
Number	Definition
3	Reset
4	Ground

Power Button

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (see the appropriate setting in BIOS). To turn off the power when set to suspend mode, depress the button for at least 4 seconds. Refer to the table on the right for pin definitions.

Power Button Connector Pin Definitions

(3	(JF1)		
Pin			
Number	Definition		
1	PW_ON		
2	Ground		

Chassis Intrusion

A Chassis Intrusion header is located at JL1. Attach the appropriate cable to inform you of a chassis intrusion.

Universal Serial Bus (USB0/1)

There are eight USB 2.0 (Universal Serial Bus) ports/headers on the motherboard. Four of them are back panel USB ports (USB0-3 at J40), and the other four are front panel USB headers (USB4/5:JD3 and USB6/7: JD2). See the tables on the right for pin definitions.

Chassis Intrusion Pin Definitions (JL1)

	Pin	
	Number	
ιt	1	
	2	

USB Pin Definitions

J40 (Back Panel USB)

Pin#	Definition
1	+5V
2	P0-
3	P0+
4	Ground

JD2 & JD3 (FP USB)

Pin		Pin	
Number	Definition	Number	Definition
1	+5V	2	+5V
3	PO-	4	PO-
5	PO+	6	PO+
7	Ground	8	Ground
	Oloulia	10	Ground

Fan Headers

There are eight fan headers (FAN1-FAN8) on the X6DA8-G2. See the table on the right for pin definitions. (Note: These fan headers are 4-pin fans. Pins 1-3 are backward compatible with traditional 3-pin fans.)

Fan Header Pin Definitions

Pin #	Definition
1	Ground (black)
2	+12V (red)
3	Tachometer
4	PWR_Control

Caution: These fan headers use DC power.

Serial Ports

The COM1 (J3) and COM2 (J4) serial ports are located under the parallel port (see Figure 2-3). See the table on the right for pin definitions.

Serial Port Pin Definitions (COM1, COM2)

		,	
Pin Number	Definition	Pin Number	Definition
1	CD	6	DSR
2	RD	7	RTS
3	TD	8	CTS
4	DTR	9	RI
5	Ground	10	NC

Note: Pin 10 is included on the header but not on the port.

GLAN1/2 (Ethernet Ports)

Two Gigabit Ethernet ports (designated LAN1 and LAN2) are located on the I/O backplane. These ports accept RJF1 type cables.

ATX PS/2 Keyboard and PS/2 Mouse Ports

The ATX PS/2 keyboard and PS/2 mouse are located on J9. See the table at right for pin definitions. (See Figure 5-4 for the locations of each.)

PS/2 Keyboard and Mouse Port Pin Definitions (J9)

Pin	5 (1) (1
Number	Definition
1	Data
2	NC
3	Ground
4	VCC
5	Clock
6	NC

Power LED/Speaker/NMI

On the JDI header, pins 1-3 are for a power LED and pins 4-7 are for the speaker. See the table on the right for speaker pin definitions.

Note: The speaker connector pins are for use with an external speaker. If you wish to use the onboard speaker, you should close pins 6-7 with a jumper.

Wake-On-Ring

The Wake-On-Ring header is designated JWOR1. This function allows your computer to receive and "wake-up" by an incoming call to the modem when in suspend state. See the table on the right for pin definitions. You must have a Wake-On-Ring card and cable to use this feature.

Wake-On-LAN

The Wake-On-LAN header is located at JWOL on the motherboard. See the table on the right for pin definitions. You must enable the LAN Wake-Up setting in BIOS to use this function. (You must also have a LAN card with a Wake-On-LAN connector and cable to use this feature.)

SMB

A System Management Bus header is located at J22. Connect the appropriate cable here to utilize SMB on your system.

Speaker Connector Pin Definitions (JD1)

Pin		
Number	Function	Definition
4	+	Red wire, Speaker data
5	Key	No connection
6		Key
7		Speaker data

Wake-on-Ring Pin Definitions (JWOR1)

Pin Number	Definition
1 2	Ground Wake-up

Wake-On-LAN Pin Definitions (JWOL)

Pin		
Number	Definition	
1	+5V Standby	
2	Ground	
3	Wake-up	

SMB Header Pin Definitions (J22)

Pin	
Number	Definition
1	Data
2	Ground
3	Clock
4	No Connection

Power Fault

Connect a cable from your power supply to the Power Fail header (JP12) to provide warning of power supply failure. This warning signal is passed through the PWR_LED pin to indicate of a power failure on the chassis. See the table on the right for pin definitions.

Keylock

The keyboard lock connection is located on JK1. Utilizing this header allows you to inhibit any actions made on the keyboard, effectively "locking" it.

Power Fail Pin Definitions (JP12)

Pin	
Number	Definition
1	P/S 1 Fail Signal
2	P/S 2 Fail Signal
3	P/S 3 Fail Signal
4	Reset (from MB)

Note: This feature is only available when using redundant Supermicro power supplies.

5-9 Jumper Settings

Explanation of Jumpers

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the serverboard layout pages for jumper locations.

Note: On two pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.

CMOS Clear

JBT1 is used to clear CMOS (which will also clear any passwords). Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To clear CMOS.

- 1) First unplug the power cord(s)
- 2) With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver
- 3) Remove the screwdriver (or shorting device)
- 4) Reconnect the power cord(s) and power on the system.

Note: Do not use the PW ON connector to clear CMOS.

GLAN Enable/Disable

Change the setting of jumper JPL1 to enable or disable the onboard GLAN ports (GLAN1 and GLAN2) on the serverboard. See the table on the right for jumper settings. The default setting is enabled

SCSI Controller Enable/ Disable

Jumper JPA1 allows you to enable or disable the SCSI headers. The default setting is pins 1-2 to enable all four headers. See the table on the right for jumper settings.

SCSI Termination Enable/ Disable

Jumpers JPA2 and JPA3 allow you to enable or disable termination for the SCSI connectors. Jumper JPA2 controls SCSI channel A and JPA3 is for channel B. The default setting is open to enable (terminate) both SCSI channels.

Note: In order for the SCSI drives to function properly, please do not change the default setting set by the manufacturer. See the table on the right for jumper settings.

GLAN Enable/Disable Jumper Settings (JPL1)

Jumper	
Position	Definition
Pins 1-2	
Pins 2-3	Disabled

SCSI Enable/Disable Jumper Settings (JPA1)

Jumper Position	Definition
Pins 1-2	Enabled
Pins 2-3	Disabled

SCSI Channel Termination Enable/Disable Jumper Settings (JPA2 JPA3)

(01 72, 01 70)			
Jumper			
Position	Definition		
Open	Enabled		
Closed	Disabled		

Watch Dog Enable/Disable

JWD enables the Watch Dog function. Watch Dog is a system monitor that can reboot the system when a software application is "hung up". Pins 1-2 will cause WD to reset the system if an application is hung up. Pins 2-3 will generate a nonmaskable interrupt signal for the application that is hung up. See the table on the right for jumper settings. Watch Dog can also be enabled via BIOS.

Note: When enabled, the user needs to write his own application software in order to disable the Watch Dog Timer.

AC'97 Audio Enable/Disable

AC'97 provides high quality onboard audio. The X6DA8-G2 features 6-channel sound for front L&R, rear L&R, center and subwoofer speakers. This feature is activated with the Advanced software on the CD-ROM included with your motherboard. The Line In, Line Out and MIC jacks (see at right) may then be used. Activate AC 97 with the "AC 97 Audio" setting in the Advanced Chipset Features section of BIOS. To activate the Onboard Audio, please enable the Jumper JPC1. See the table on right for pin definitions.

Watch Dog Jumper Settings (JWD)

Jumper	
Position	Definition
Pins 1-2	WD to Reset
Pins 2-3	WD to NMI
Open	Disabled

AC97 Enable/Disable Jumper Settings (JPC1)

Jumper	
Position	Definition
1-2	Enabled
2-3	Disabled

Blue: Line In (surround sound L/R)

Green: Line Out (front L/R)

Pink: MIC In (center/ subwoofer)

3rd Power Supply Alarm Enable/Disable

The system can notify you in the event of a power supply failure. This feature assumes that three power supply units are installed in the chassis with one acting as a backup. If you only have one or two power supply units installed, you should disable this (the default setting) with JP14 to prevent false alarms. See the table on right for pin definitions.

Alarm Reset

The system will notify you in the event of a power supply failure. This feature assumes that Supermicro redundant power supply units are installed in the chassis. If you only have a single power supply installed, you should disable this (the default setting) with (JP13) to prevent false alarms. See the table on the right for jumper settings.

Power Force On Enable/ Disable

Jumper JPF allows you to enable or disable the Power Force On function. If enabled, the power will always stay on automatically. If this function disabled, the user needs to press the power button to power on the system.

Power Supply Alarm Enable/Disable Jumper Settings (JP14)

Jumper Jettings (Ji 14)				
Jumper				
Position	Definition			
Open	Disabled			
Closed	Enabled			

Alarm Reset Jumper Settings (JP13)

	()	
Jumper		
Position	Definition	
Open	Enabled	
Closed	Disabled	

Force Power On

(JFF)		
Jumper		
Position	Definition	
Open	Normal	
Closed	Force On	

5-10 Onboard Indicators

GLAN1/GLAN2 LEDs

Each of the Ethernet ports (located beside the VGA port) have two LEDs. The yellow LED indicates activity while the other LED may be green, orange or off to indicate the speed of the connection. See the table on the right for the functions associated with this second LED.

1 Gb LAN Right LED Indicator

LED	
Color	Definition
Off	No Connection
Green	100 MHz
Orange	1 GHz

5-11 Parallel Port, Floppy/Hard Disk Drive and SCSI Connections

Note the following when connecting the floppy and hard disk drive cables:

- · The floppy disk drive cable has seven twisted wires.
- A red mark on a wire typically designates the location of pin 1.
- A single floppy disk drive ribbon cable has 34 wires and two connectors
 to provide for two floppy disk drives. The connector with twisted wires
 always connects to drive A, and the connector that does not have
 twisted wires always connects to drive B.

Parallel (Printer) Port Connector

The parallel (printer) port is located on J23. See the table on the right for pin definitions.

Parallel (Printer) Port Pin Definitions (J23)

(J23)					
Pin Number	Function	Pin Number	Function		
1	Strobe-	2	Auto Feed-		
3	Data Bit 0	4	Error-		
5	Data Bit 1	6	Init-		
7	Data Bit 2	8	SLCT IN-		
9	Data Bit 3	10	GND		
11	Data Bit 4	12	GND		
13	Data Bit 5	14	GND		
15	Data Bit 6	16	GND		
17	Data Bit 7	18	GND		
19	ACK	20	GND		
21	BUSY	22	GND		
23	PE	24	GND		
25	SLCT	26	NC		

Floppy Connector

The floppy connector is located on JP8. See the table below for pin definitions.

Floppy Connector Pin Definitions (JP8)

Pin Number	Function	Pin Number	Function
1	GND	2	FDHDIN
3	GND	4	Reserved
5	Key	6	FDEDIN
7	GND	8	Index-
9	GND	10	Motor Enable
11	GND	12	Drive Select B-
13	GND	14	Drive Select A-
15	GND	16	Motor Enable
17	GND	18	DIR-
19	GND	20	STEP-
21	GND	22	Write Data-
23	GND	24	Write Gate-
25	GND	26	Track 00-
27	GND	28	Write Protect-
29	GND	30	Read Data-
31	GND	32	Side 1 Select-
33	GND	34	Diskette

IDE Connectors

There are no jumpers to configure the onboard IDE#1 and #2 connectors. See the table on the right for pin definitions.

IDE Connector Pin Definitions (J3, J4)

Function	Pin Number	Function
Reset IDE	2	GND
Host Data 7	4	Host Data 8
Host Data 6	6	Host Data 9
Host Data 5	8	Host Data 10
Host Data 4	10	Host Data 11
Host Data 3	12	Host Data 12
Host Data 2	14	Host Data 13
Host Data 1	16	Host Data 14
Host Data 0	18	Host Data 15
GND	20	Key
DRQ3	22	GND
I/O Write-	24	GND
I/O Read-	26	GND
IOCHRDY	28	BALE
DACK3-	30	GND
IRQ14	32	IOCS16-
Addr 1	34	GND
Addr 0	36	Addr 2
Chip Select 0	38	Chip Select 1-
Activity	40	GND
	Reset IDE Host Data 7 Host Data 6 Host Data 5 Host Data 3 Host Data 3 Host Data 1 Host Data 1 Host Data 0 GND DRQ3 I/O Write- I/O Read- IOCHRDY DACK3- IRQ14 Addr 1 Addr 0 Chip Select 0	Reset IDE Host Data 7 Host Data 6 Host Data 5 Host Data 4 Host Data 3 Host Data 2 Host Data 2 Host Data 1 Host Data 1 Host Data 0 BRO BRO DRO DRO 20 DRO DRO 22 I/O Write- I/O Read- IOCHRDY 28 DACK3- IRQ14 Addr 1 Addr 0 36 Chip Select 0 38

Ultra320 SCSI Connectors

Refer to the table below for the pin definitions of the Ultra320 SCSI connectors located at JA1 and JA2.

	Ultra320 SCSI C	onr	nectors (JA1,	JA2)
Connector Contact			Connector Contact	
Number	Signal Names		Number	Signal Names
1	+DB(12)		35	-DB(12)
2	+DB(13)		36	-DB(13)
3	+DB(14)		37	-DB(14)
4	+DB(15)		38	-DB(15)
5	+DB(P1)		39	-DB(P1)
6	+DB(0)		40	-DB(0)
7	+DB(1)		41	-DB(1)
8	+DB(2)		42	-DB(2)
9	+DB(3)		43	-DB(3)
10	+DB(4)		44	-DB(4)
11	+DB(5)		45	-DB(5)
12	+DB(6)		46	-DB(6)
13	+DB(7)		47	-DB(7)
14	+DB(P)		48	-DB(P)
15	GROUND		49	GROUND
16	DIFFSENS		50	GROUND
17	TERMPWR		51	TERMPWR
18	TERMPWR		52	TERMPWR
19	RESERVED		53	RESERVED
20	GROUND		54	GROUND
21	+ATN		55	-ATN
22	GROUND		56	GROUND
23	+BSY		57	-BSY
24	+ACK		58	-ACK
25	+RST		59	-RST
26	+MSG		60	-MSG
27	+SEL		61	-SEL
28	+C/D		62	-C/D
29	+REQ		63	-REQ
30	+1/0		64	-I/O
31	+DB(8)		65	-DB(8)
32 33	+DB(9) +DB(10)		66 67	-DB(9) -DB(10)
33	+DB(10) +DB(11)		68	-DB(10) -DB(11)
54	+00(11)		00	-00(11)

Notes

Chapter 6

Advanced Chassis Setup

This chapter covers the steps required to install components and perform simple maintenance on the SC942i-R760 chassis. Following the component installation steps in the order given will eliminate most common problems. If some steps are unnecessary, skip ahead to the step that follows. Refer to Chapter 2 for instructions on installing the system as a 4U rackmount.

Tools Required

The only tool you will need is a Philips screwdriver.

6-1 Static-Sensitive Devices

Static electrical discharge can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from static discharge.

Precautions

- · Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging. When unpacking the board, make sure the person handling it is static protected.

Main Power System Reset System LEDs Floppy Drive 5.25" Drive Bays (5) SCSI Drive Bays (5)

Figure 6-1. Chassis Front View

SCSI Drive IDs: 4, 3, 2, 1, 0 (from left to right)

6-2 Front Control Panel

The front control panel must be connected to the JF1 connector on the serverboard to provide you with system status and alarm indications. A ribbon cable has bundled these wires together to simplify this connection. Connect the cable from JF1 on the serverboard (making sure the red wire plugs into pin 1) to the appropriate comnnector on the front control panel PCB (printed circuit board). Pull all excess cabling over to the control panel side of the chassis. The LEDs on the control panel inform you of system status - see Figure 6-2 for details. See Chapter 5 for details on JF1.

Figure 6-2. Front Control Panel LEDs

6-3 System Fans

Three 12-cm chassis cooling fans located between the serverboard and the drive bays provide cool air intake. (Devices other than hard drives may not need a cooling fan for that bay.) An additional heavy duty 12-cm exhaust fan at the rear of the chassis pulls the cooling air through the system and expels the hot air. These fans should all be connected to their proper headers on the serverboard (see Chapter 5). Each of the three power supply modules also has a cooling fan.

Fan Failure

Under normal operation, all three chassis fans, the exhaust fan and the power supply fans run continuously. If the power supply fan fails, the power fail LED on the control panel will illuminate. The system can operate with the reamining two power supply modules, but you should replace the failed power supply as soon as possible. The three chassis cooling fans (not the exhaust fan) are hot-swappable and can be replaced without powering down the system.

Replacing System Fans

1. Identifying the failed fan:

Inspect the back of the chassis to see if the 12-cm exhaust fan has failed. You must power down the system to replace this fan. The 12-cm exhaust fan is in a housing that can be removed from the chassis but it is not hot-swappable - see Figure 6-3. To replace a failed chassis cooling fan, first remove the top/left chassis cover by removing the two screws from the back lip of the top/left cover. Then push in the release tab on the cover and push it toward the rear of the chassis until it stops (after moving about ½ inch). Lift the cover up and off the chassis and see which fan has failed.

2. Removing a hot-plug fan housing:

Depress the locking tab on a chassis cooling fan and pull the unit straight out by the handle. The fan wiring for these fans has been designed to detach automatically.

Installing a new system fan:

Replace the failed fan with an identical one (available from Supermicro). Install and reassemble it in the fan housing then plug the housing back into its slot; it should *click* into place when fully inserted. Check that the fan is working properly and replace the top/left side chassis panel.

Figure 6-3. Removing the 12-cm Exhaust Fan

6-4 Drive Bay Installation

SCSI Drives

Five SCSI drives are housed in a mobile rack [CSE-M35(B)P]. The SCSI drive IDs are preconfigured as 0 through 4 in order from right to left (or from bottom to top if rackmounted).

Note: You must use standard 1" high, 80-pin SCA SCSI drives in the SuperServer 7044A-82R.

Use extreme caution when working around the SCSI backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the airflow.

1. Installing/removing hot-plug SCSI drives:

The five SCSI drive carriers are all easily accessible at the front of the chassis. The SCSI drives are hot-pluggable, meaning they can be removed and installed without powering down the system. To remove a carrier, first push the release button located beside the drive LEDs. Swing the colored handle fully out and use it to pull the unit straight out (see Figure 6-4).

Note: Your operating system must have RAID support to enable the hot-plug capability of the SCSI drives.

2. Mounting a SCSI drive in a drive carrier:

The SCSI drives are mounted in drive carriers to simplify their installation and removal from the chassis. These carriers also work to promote proper airflow for the system. For this reason, even carriers without SCSI drives must remain in the server. If you need to add a new SCSI drive, insert the drive into the carrier with the printed circuit board side facing down so that the mounting holes align with those in the carrier. Secure the drive to the carrier with four screws. (See Figure 6-5.)

Figure 6-4. Removing a SCSI Drive Carrier

Figure 6-5. Mounting a SCSI Drive in a Carrier

<u>Important:</u> Regardless of how many SCSI hard drives are installed, all SCSI drive carriers must remain in the drive bays to promote proper airflow.

3. SCSI backplane:

All five SCSI drives plug into a single SCSI backplane, which provides Ultra320 single channel operation for all five SCSI drives. A ribbon cable from JA1 on the serverboard should be connected to the IN connector on the SCSI backplane. There is also a power connector on the backplane that must be connected. See Figure 6-6 for the locations of backplane connectors - the reverse side of the backplane has five connectors that the SCSI drives plug into when inserted with a SCSI drive carrier or mobile rack.

Figure 6-6. SC942 SCSI Backplane

Jumper Settings

JP18: Buzzer Reset, Open: Enabled (default), Closed: Disabled

JP21: SCSI Termination, Closed: Terminated (default), Open: No termination

JP24: SCSI ID Select, Pins 1-2: ID = 0, 1, 2, 3, 4 (default)

Pins 2-3: ID = 9, 10, 11, 12, 13

JP29: Gem318 ID, Pins 1-2: ID = 6 (default), Pins 2-3: ID = 8

JP30: Fan Sense, Pins 1-2: Enabled (default), Pins 2-3: Disabled

LEDs

D3: Overheat/Drive Fail LED

D4: Fan Fail LED

D5, D6, D7, D8, D9: Drive Fail LEDs #1 through #5 D12, D13, D14, D15, D16: Activity LEDs #1 through #5

Installing Components in the 5.25" Drive Bays

1. Drive bay configuration

The 7044A-82R has five 5.25" drive bays located above the SCSI drive bays. Components such as an extra floppy drive, IDE hard drives, CD-ROM drives or additional SCSI drives (in an optional mobile rack unit) can be installed in these 5.25" drive bays. SCSI drives installed here should be connected to the JA4 (SCSI channel B) connector on the serverboard.

2. Mounting components in the drive bays

First power down the system and then remove the top/left chassis cover to access the drive components. With the cover off, remove the two or four screws that secure the drive carrier to the chassis (one side only) then push the entire empty drive carrier out from the back.

Adding a CD-ROM drive: remove the guide plate from right side of the empty drive carrier and screw it into the <u>right</u> side of the CD-ROM drive using the holes provided (see Figure 6-7). Then slide the CD-ROM into the bay and secure it to the chassis with the drive carrier screws you first removed. Attach the power and data cables to the drive. Replace the top/left chassis cover before restoring power to the system.

Adding an IDE, SCSI or floppy drive: to add one of these drives, install it into one of the removed empty drive carriers with the printed circuit board side toward the carrier so that the drive's mounting holes align with those in the carrier. Secure the drive to the carrier with four screws then slide the assembly into the bay and secure it to the chassis with the drive carrier screws you first removed. Attach the power and data cables to the drive. Replace the top/left chassis cover before restoring power to the system.

Note: A red wire typically designates the location of pin 1. You should keep the drive carriers inserted in any unused drive bays to reduce EMI and noise and to facilitate the airflow inside the chassis.

Figure 6-7. Adding a Component Without a Drive Carrier

6-5 Power Supply

The 7044A-82R has a triple redundant 760 watt redundant cooling power supply that consists of three 380W power modules. All three modules are active and share the load of the system (up to 760W max.). If any of the three modules fail, the other two will continue to provide up to 760W of power and allow the system to continue running without interruption.

The power supply modules have an auto-switching capability that enable them to automatically sense and operate with 100 or 220 volt inputs. The power modules are PFC (Power Factor Correction) compliant.

Power Supply Failure

If a power supply module fails, an LED in the control panel as well as one on the back of the failed power module will illuminate to notify you of a power failure.

Replacing the Power Supply

1. Accessing the power supply:

You do not need to power down the system to replace a power module on the 7044A-82R. Power supply modules can be removed from the back of the chassis; access to the inside is unnecessary.

2. Removing the power supply:

First, unplug the power cord from the failed power supply module. Then press the locking tab on the module and pull the unit completely out.

3. Installing a new power supply module:

Replace the failed unit with another unit having the exact same part number (PWS-0050M). Gently but firmly push the new unit all the way into the open bay. Secure it to the chassis using the locking tab. Finish by replacing the chassis left/top cover and then plugging the power cord back into the new module you just added.

Notes

Chapter 7 BIOS

7-1 Introduction

This chapter describes the Phoenix BIOS[™] Setup utility for the X6DA8-G2. The Phoenix ROM BIOS is stored in a flash chip and can be easily upgraded using a floppy disk-based program.

Note: Due to periodic changes to the BIOS, some settings may have been added or deleted and might not yet be recorded in this manual. Please refer to the Manual Download area of the Supermicro web site (http://www.supermicro.com) for any changes to the BIOS that may not be reflected in this manual.

System BIOS

The BIOS is the Basic Input Output System used in all IBM® PC, XTTM, AT®, and PS/2® compatible computers. The Phoenix BIOS flash chip stores the system parameters, such type of disk drives, video displays, etc. in the CMOS. The CMOS memory requires very little electrical power. When the computer is turned off, a back-up battery provides power to the BIOS flash chip, enabling it to retain system parameters. Each time the computer is powered-on the computer is configured with the values stored in the BIOS ROM by the system BIOS, which gains control at boot-up.

How To Change the Configuration Data

The CMOS information that determines the system parameters may be changed by entering the BIOS Setup utility. This Setup utility can be accessed by pressing the <Delete> key at the appropriate time during system boot, see below.

Starting the Setup Utility

Normally, the only visible POST (Power On Self Test) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the BIOS Setup utility. From the main menu, you can access the other setup screens, such as the Security and Power menus. Beginning with Section 4-3, detailed descriptions are given for each parameter setting in the Setup utility.

7-2 Running Setup

*Default settings are in bold text unless otherwise noted.

The BIOS setup options described in this section are selected by choosing the appropriate text from the main BIOS Setup screen. All displayed text is described in this section, although the screen display is often all you need to understand how to set the options (see on next page).

When you first power on the computer, the Phoenix BIOS™ is immediately activated.

While the BIOS is in control, the Setup program can be activated in one of two ways:

- 1. By pressing <Delete> immediately after turning the system on, or
- 2. When the message shown below appears briefly at the bottom of the screen during the POST (Power On Self-Test), press the <Delete> key to activate the main Setup menu:

Press the <Delete> key to enter Setup

7-3 Main BIOS Setup

All main Setup options are described in this section. The main BIOS Setup screen is displayed below.

Use the Up/Down arrow keys to move among the different settings in each menu. Use the Left/Right arrow keys to change the options for each setting.

Press the <Esc> key to exit the CMOS Setup Menu. The next section describes in detail how to navigate through the menus.

Items that use submenus are indicated with the icon. With the item highlighted, press the <Enter> key to access the submenu.

Main BIOS Setup Menu

Main Setup Features

System Time

To set the system date and time, key in the correct information in the appropriate fields. Then press the <Enter> key to save the data.

System Date

Using the arrow keys, highlight the month, day and year fields and enter the correct data. Press the <Enter> key to save the data.

BIOS Date

This feature allows the BIOS to automatically display the BIOS date.

Legacy Diskette A

This setting allows the user to set the type of floppy disk drive installed as diskette A. The options are Disabled, 360Kb 5.25 in, 1.2MB 5.25 in, 720Kb 3.5 in, 1.44/1.25MB, 3.5 in and 2.88MB 3.5 in.

Parallel ATA

This setting allows the user to enable or disable the function of Parallel ATA. The options are Disabled, Channel 0, Channel 1 and **Both.**

Serial ATA

This setting allows the user to enable or disable the function of Serial ATA. The options are Disabled and **Enabled.**

Serial ATA RAID Enable

Select Enable to enable Serial ATA RAID Functions. (*For the Windows OS environment, use the RAID driver if this feature is set to Enabled. If **Disabled**, use the "Non-RAID" driver.)

Native Mode Operation

This option allows the user to select the Native Mode for ATA. Some Operating Systems are not supported by the Native Mode. The options are: Serial ATA, Parallel ATA, **Auto**, and Both.

▶IDE Channel 0 Master/Slave, IDE Channel 1 Master/Slave, IDE Channel 2 Master, IDE Channel 3 Master

These settings allow the user to set the parameters of IDE Channel 0 Master/Slave, IDE Channel 1 Master/Slave, IDE Channel 2 Master, IDE Channel 3 Master slots. Hit <Enter> to activate the following sub-menu screen for detailed options of these items. Set the correct configurations accordingly. The items included in the sub-menu are:

Type

Selects the type of IDE hard drive. The options are **Auto** (allows the BIOS to automatically determine the hard drive's capacity, number of heads, etc.), a number from 1-39 to select a predetermined type of hard drive, CD-ROM and ATAPI Removable. The option- "User" will allow the user to enter the parameters of the HDD installed at this connection. The option-"Auto" will allow the BIOS to automatically configure the parameters of the HDD installed at the connection. Choose the option"1-39" to select a pre-determined HDD type. Select CD-ROM if a CD-ROM drive is installed. Select ATAPI if a removable disk drive is installed.

Multi-Sector Transfers

Select the number of transfer sectors. The options are Disabled, 2, 4, 6, 8 and 16 Sectors.

LBA Mode Control

This item determines whether The Phoenix BIOS will access the IDEChannel 0 Master Device via the LBA mode. The options are Disabled and **Enabled**.

32 Bit I/O

This option allows the user to enable or disable the function of 32-bit datea transfer. The options are Enabled and **Disabled**.

Transfer Mode

Selects the transfer mode. The options are **Standard**, Fast PIO1, Fast PIO2, Fast PIO3, Fast PIO4, FPIO3/DMA1 and FPIO4/DMA2.

Ultra DMA Mode

Selects Ultra DM A Mode. The options are **Disabled**, Mode 0, Mode 1, Mode 2, Mode 3, Mode 4 and Mode 5.

System Memory

This display informs you how much system memory is recognized as being present in the system.

Extended Memory

This display informs you how much extended memory is recognized as being present in the system.

7-4 Advanced Setup

Choose Advanced from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. The items with a triangle beside them have sub menus that can be accessed by highlighting the item and pressing <Enter>. Options for PIR settings are displayed by highlighting the setting option using the arrow keys and pressing <Enter>. All Advanced BIOS Setup options are described in this section.

▶Boot Features

Access the submenu to make changes to the following settings.

Quick Boot Mode

If enabled, this feature will speed up the POST (Power On Self Test) routine by skipping certain tests after the computer is turned on. The settings are **Enabled** and Disabled. If Disabled, the POST routine will run at normal speed.

Quiet Boot

This setting allows you to Enable or **Disable** the diagnostic screen during boot-up.

ACPI Mode

Use the setting to determine if you want to employ ACPI (Advanced Configuration and Power Interface) power management on your system. The options are **Yes** and No.

ACPI Sleep Mode

Selects the sleep mode for ACPI. The options are **S1(-Stanby)** and S3 (-Suspend to RAM).

Power Loss Control

This setting allows you to choose how the system will react when power returns after an unexpected loss of power. The options are Stay Off, Power On and Last State.

Watch Dog

This setting is for enabling the Watch Dog feature. The The options are Enabled and **Disabled**.

Summary Screen

This setting allows you to **Enable** or Disable the summary screen which displays the system configuration during bootup.

▶ Memory Cache

Cache System BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a System BIOS buffer to allow the BIOS write (cache) its data into this reserved memory area. Select "Write Protect" to enable this function, and this area will be reserved for the BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

Cache Video BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a Video BIOS buffer to allow the BIOS write (cache) its data into this reserved memory area. Select "Write Protect"

to enable the function and this area will be reserved for the BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

Cache Base 0-512K

If enabled, this feature will allow the data stored in the base memory area: block 0-512K to be cached (written) into a buffer, a storage area in the Static DRM (SDROM) or written into L1, L2, L3 cache inside the CPU to speed up CPU operations. Select "Uncached" to disable this funciton. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 0-512K. Select "Write Back" to allow CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are "Uncached", "Write Through", "Write Protect", and "Write Back".

Cache Base 512K-640K

If enabled, this feature will allow the data stored in the memory area: 512K-640K to be cached (written) into a buffer, a storage area in the Static DRM (SDROM) or written into L1, L2, L3 cache inside the CPU to speed up CPU operations . Select "Uncached" to disable this funciton. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 0-512K. Select "Write Back" to allow CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are "Uncached", "Write Through", "Write Protect", and "Write Back".

Cache Extended Memory

If enabled, this feature will allow the data stored in the extended memory area to be cached (written) into a buffer, a storage area in the Static DRM (SDROM) or written into L1, L2, L3 cache inside the CPU to speed up CPU operations. Select "Uncached" to disable this funciton. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 0-

512K. Select "Write Back" to allow CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are "Uncached", "Write Through", "Write Protect", and "Write Back".

▶PCI Configuration

Access the submenu to make changes to the following settings for PCI devices.

Onboard GLAN (Gigabit-LAN) OPROM Configure

Enabling this option provides the capability to boot from GLAN. The options are Enabled and **Disabled**.

Onboard SCSI OPROM Configure

Enabling this option provides the caability to boot from SCSI HDD. The options are Disabled and **Enabled**.

Reset Configuration Data

If set to Yes, this setting clears the Extended System Configuration Data-(ESCD) area. The options are Yes and **No**.

Frequency for PCIX#1-#2/SCSI

This option allows the user to change the bus frequency for the devices installed in the slot indicated. The options are **Auto**, PCI 66 MHz, PCI-X 66 MHz, PCI-X 100 MHz, and PCI-X 133 MHz.

Frequency for PCIX#1/G-LAN

This option allows the user to change the bus frequency of the devices installed in the slot indicated. The options are **Auto**, PCI 66 MHz, PCI-X 66 MHz, PCI-X 100 MHz, and PCI-X 133 MHz.

▶PCI Devices, Slot #1 - Slot#6

Access the submenu for each of the settings above to make changes to the following:

Option ROM Scan

When enabled, this setting will initialize the device expansion ROM. The options are **Enabled** and Disabled.

Enable Master

This setting allows you to enable the selected device as the PCI bus master. The options are **Enabled** and Disabled.

Latency Timer

This setting allows you to set the clock rate for Bus Master.A high-prioity, high-throughout device may benefit from a greater Clock rate. The options are **Default**, 0020h, 0040h, 0060h, 0080h, 00A0h, 00C0h, and 00E0h. For Unix, Novell and other Operating Systems, please select the option: "other". If a drive fails after the installation of a new software, you might want to change this settiing and try again. Different OS requires different Bus Master clock rate.

Large Disk Access Mode

This setting determines how large hard drives are to be accessed. The options are **DOS** or Other (for Unix, Novellle NetWare and other operating systems).

► Advanced Chipset Control

Access the submenu to make changes to the following settings.

Force Compliance Mode

If enabled, this feature sets the device specified to comply with the PCI-Express Compliance 1.0 Mode. The options are: **Disabled** and Enabled.

PCI-E Express Jitter Tolerance

This feature allows the user to set the PCI-E Jitter Tolerance Level. The options are: 4 to 12.

PCI-E Port A Device 2/PCI-E Port B Device 4

If enabled, the feature allows you to set the device selected to be compliant with the PCI-Express Compliance 1.0 Mode. The options are: Disabled, Enabled and **Auto**.

Clock Spectrum Feature

If "Enabled", the BIOS will sensor and attempt to reduce the Electromagnetic Interference caused by the components. The options are Enabled and **Disabled**.

DRAM Data Integrity Mode

If enabled, this feature allows the data stored in the DRMA memory to be integrated for faster data processing. The options are 72-bit ECC, 144-bit ECC, Auto, Algorithms and Disabled.

ECC Error Type

This setting lets you select which type of interrupt to be activated as a result of an ECC error. The options are **None**, NMI (Non-Maskable Interrupt), SMI (System Management Interrupt) and SCI (System Control Interrupt.)

SERR Signal Condition

This setting specifies the conditions required to be qualified as an ECC error. The options are None, **Single Bit**, Multiple Bit and Both.

USB Device 29, Function 0 & 1 & 2 & 3

This setting allows you to **Enable** or Disable all functions for the USB devices specified.

Legacy USB Support

This setting allows you to enable support for Legacy USB devices. The settings are **Enabled** and Disabled.

► Advanced Processor Options

Access the submenu to make changes to the following settings.

CPU Speed

This is a display that indicates the speed of the installed processor.

Hyper-threading

This setting allows you to **Enable** or Disable the function of hyper-threading. Enabling hyper-threading results in increased CPU performance. (Applicable for the XP systems.)

Thermal Manager 2 (*X6DA8-G2/X6DAE-G2 only)

If enabled, this feature allows you to select between Thermal Manager 1 and Thermal Manager 2. The options are **Disable** or Enable.

Set Maximum Extended CPUID=3

If enabled, this feature allows you to set the value of Maximum CPUID Extended function to 3. The options are **Disabled** or Enabled.

►I/O Device Configuration

Access the submenu to make changes to the following settings.

Serial Port A

This setting allows you to assign control of serial port A. The options are **Enabled** (user defined), Disabled, Auto (BIOS controlled) and OS Controlled.

Base I/O Address

Select the base I/O address for serial port A. The options are **3F8**, 2F8, 3E8 and 2E8.

Interrupt

Select the IRQ (interrupt request) for the parallel port. The options are IRQ3 and IRQ4.

Serial Port B

This setting allows you to assign control of serial port B. The options are **Enabled** (user defined), Disabled, Auto (BIOS controlled) and OS Controlled.

Mode

Specify the type of device that will be connected to serial port B. The options are **Normal**, IR (for an infrared device) and ASK-IR.

Base I/O Address

Select the base I/O address for serial port B. The options are 3F8, **2F8**, 3E8 and 2E8.

Interrupt

Select the IRQ (interrupt request) for the parallel port. The options are IRQ3 and IRQ4.

Parallel Port

This setting allows you to assign control of the parallel port. The options are **Enabled** (user defined), Disabled and Auto (BIOS controlled).

Base I/O Address

Select the base I/O address for the parallel port. The options are 378, 278 and 3BC.

Interrupt

Select the IRQ (interrupt request) for the parallel port. The options are IRQ5 and IRQ7.

Mode

Specify the parallel port mode. The options are Output, Bi-directional, **ECP** and EPP.

DMA Channel

Specify the DMA channel. The options are DMA1 and DMA3.

Floppy Disk Controller

This setting allows you to assign control of the floppy disk controller. The options are **Enabled** (user defined), Disabled, Auto (BIOS controlled) and OS Controlled.

Base I/O Address

Select the base I/O address for the Floppy port. The options are **Primary** and Secondary.

▶DMI Event Logging

Access the submenu to make changes to the following settings.

Event Log Validity

This is a display, not a setting, informing you of the event log validity.

Event Log Capacity

This is a display, not a setting, informing you of the event log capacity.

View DMI Event Log

Highlight this item and press <Enter> to view the contents of the event log.

Event Logging

This setting allows you to Enable or Disable event logging.

ECC Event Logging

This setting allows you to Enable or Disable ECC event logging.

Mark DMI Events as Read

Highlight this item and press <Enter> to mark the DMI events as read.

Clear All DMI Event Logs

Select Yes and press <Enter> to clear all DMI event logs.

▶Console Redirection

Access the submenu to make changes to the following settings.

COM Port Address

Specifies to redirect the console to On-board COM A or On-board COM B. This setting can also be **Disabled**.

BAUD Rate

Select the BAUD rate for console redirection. The options are 300, 1200, 2400, 9600, 19.2K, 38.4K, 57.6K and 115.2K.

Console Type

Choose from the available options to select the console type for console redirection. The options are VT100, VT100,8bit, PC-ANSI, 7bit, **PC ANSI**, VT100+, VT-UTF8.

Flow Control

Choose from the available options to select the flow control for console redirection. The options are: None, XON/XOFF, and CTS/RTS.

Console Connection

Select the console connection: either Direct or Via Modem.

Continue CR after POST

Choose whether to continue with console redirection after the POST routine. The options are On and Off.

► Hardware Monitor Logic

CPU Temperature Threshold

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature threshold. The options are 70°C, **75°C**, 80°C and 85°C.

Highlight this and hit <Enter> to see monitor data for the following items:

CPU1 Temperature: This item displays CPU1 Temperature.

CPU2 Temperature: This item displays CPU2 Temperature.

System Temperature: This item displays the system Temperature.

Auto Fan Control [4-wire, 3-wire]

Fan1=

Fan2=

Fan3=

Fan4=

Fan5=

Fan6=

Fan7 (CPU Fan1)=

Fan 8 (CPU Fan2)=

Vcore A

Vcore B

P3V3

P5V

N12V

P12V

VDD

P5Vsb

P3P3Vsb

7-5 Security

Choose Security from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. Security setting options are displayed by highlighting the setting using the arrow keys and pressing <Enter>. All Security BIOS settings are described in this section.

Supervisor Password Is:

This displays whether a supervisor password has been entered for the system. Clear means such a password has not been used and Set means a supervisor password has been entered for the system.

User Password Is:

This displays whether a user password has been entered for the system. Clear means such a password has not been used and Set means a user password has been entered for the system.

Set Supervisor Password

When the item "Set Supervisor Password" is highlighted, hit the <Enter> key. When prompted, type the Supervisor's password in the dialogue box to set or to change supervisor's password, which allows access to the BIOS.

Set User Password

When the item "Set User Password" is highlighted, hit the <Enter> key. When prompted, type the user's password in the dialogue box to set or to change the user's password, which allows access to the system at bootup.

Fixed Disk Boot Sector

This setting may offer some protection against viruses when set to Write Protect, which protects the boot sector on the hard drive from having a virus written to it. The other option is **Normal**.

Password on Boot

This setting allows you to require a password to be entered when the system boots up. The options are Enabled (password required) and Disabled (password not required).

7-6 Boot

Choose Boot from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. Highlighting a setting with a + or - will expand or collapse that entry. See details on how to change the order and specs of boot devices in the Item Specific Help window. All Boot BIOS settings are described in this section.

+Removable Devices

Highlight and press <Enter> to expand the field. See details on how to change the order and specs of devices in the Item Specific Help window.

CD-ROM Drive

See details on how to change the order and specs of the CD-ROM drive in the Item Specific Help window.

+Hard Drive

Highlight and press <Enter> to expand the field. See details on how to change the order and specs of hard drives in the Item Specific Help window.

7-7 Exit

Choose Exit from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. All Exit BIOS settings are described in this section.

Exit Saving Changes

Highlight this item and hit <Enter> to save any changes you made and to exit the BIOS Setup utility.

Exit Discarding Changes

Highlight this item and hit <Enter> to exit the BIOS Setup utility without saving any changes you may have made.

Load Setup Defaults

Highlight this item and hit <Enter> to load the default settings for all items in the BIOS Setup. These are the safest settings to use.

Discard Changes

Highlight this item and hit <Enter> to discard (cancel) any changes you made. You will remain in the Setup utility.

Save Changes

Highlight this item and hit <Enter> to save any changes you made. You will remain in the Setup utility.

Notes

Appendix A BIOS POST Codes

This section lists the POST (Power On Self Test) codes for the PhoenixBIOS. POST codes are divided into two categories: recoverable and terminal.

Recoverable POST Errors

When a recoverable type of error occurs during POST, the BIOS will display an POST code that describes the problem. BIOS may also issue one of the following beep codes:

- 1 long and two short beeps video configuration error
- 1 continuous long beep no memory detected

Terminal POST Errors

If a terminal type of error occurs, BIOS will shut down the system. Before doing so, BIOS will write the error to port 80h, attempt to initialize video and write the error in the top left corner of the screen.

The following is a list of codes that may be written to port 80h.

POST Code	Description
02h	Verify Real Mode
03h	Disable Non-Maskable Interrupt (NMI)
04h	Get CPU type
06h	Initialize system hardware
07h	Disable shadow and execute code from the ROM.
08h	Initialize chipset with initial POST values
09h	Set IN POST flag
0Ah	Initialize CPU registers
0Bh	Enable CPU cache
0Ch	Initialize caches to initial POST values
0Eh	Initialize I/O component
0Fh	Initialize the local bus IDE
10h	Initialize Power Management
11h	Load alternate registers with initial POST values
12h	Restore CPU control word during warm boot
13h	Initialize PCI Bus Mastering devices
14h	Initialize keyboard controller
16h	1-2-2-3 BIOS ROM checksum
17h	Initialize cache before memory Auto size

POST Code	Description
18h	8254 timer initialization
1Ah	8237 DMA controller initialization
1Ch	Reset Programmable Interrupt Controller
20h	1-3-1-1 Test DRAM refresh
22h	1-3-1-3 Test 8742 Keyboard Controller
24h	Set ES segment register to 4 GB
28h	Auto size DRAM
29h	Initialize POST Memory Manager
2Ah	Clear 512 kB base RAM
2Ch	1-3-4-1 RAM failure on address line xxxx*
2Eh	1-3-4-3 RAM failure on data bits xxxx* of low byte of memory bus
2Fh	Enable cache before system BIOS shadow
32h	Test CPU bus-clock frequency
33h	Initialize Phoenix Dispatch Manager
36h	Warm start shut down
38h	Shadow system BIOS ROM
3Ah	Auto size cache
3Ch	Advanced configuration of chipset registers
3Dh	Load alternate registers with CMOS values
41h	Initialize extended memory for RomPilot
42h	Initialize interrupt vectors
45h	POST device initialization
46h	2-1-2-3 Check ROM copyright notice
47h	Initialize I20 support
48h	Check video configuration against CMOS
49h	Initialize PCI bus and devices
4Ah	Initialize all video adapters in system
4Bh	QuietBoot start (optional)
4Ch	Shadow video BIOS ROM
4Eh	Display BIOS copyright notice
4Fh	Initialize MultiBoot
50h	Display CPU type and speed
51h	Initialize EISA board
52h	Test keyboard
54h	Set key click if enabled
55h	Enable USB devices
58h	2-2-3-1 Test for unexpected interrupts
59h	Initialize POST display service
5Ah	Display prompt "Press F2 to enter SETUP"
5Bh	Disable CPU cache

POST Code	Description
5Ch	Test RAM between 512 and 640 kB
60h	Test extended memory
62h	Test extended memory address lines
64h	Jump to UserPatch1
66h	Configure advanced cache registers
67h	Initialize Multi Processor APIC
68h	Enable external and CPU caches
69h	Setup System Management Mode (SMM) area
6Ah	Display external L2 cache size
6Bh	Load custom defaults (optional)
6Ch	Display shadow-area message
6Eh	Display possible high address for UMB recovery
70h	Display error messages
72h	Check for configuration errors
76h	Check for keyboard errors
7Ch	Set up hardware interrupt vectors
7Dh	Initialize Intelligent System Monitoring
7Eh	Initialize coprocessor if present
80h	Disable onboard Super I/O ports and IRQs
81h	Late POST device initialization
82h	Detect and install external RS232 ports
83h	Configure non-MCD IDE controllers
84h	Detect and install external parallel ports
85h	Initialize PC-compatible PnP ISA devices
86h	Re-initialize onboard I/O ports.
87h	Configure Motherboard Configurable Devices (optional)
88h	Initialize BIOS Data Area
89h	Enable Non-Maskable Interrupts (NMIs)
8Ah	Initialize Extended BIOS Data Area
8Bh	Test and initialize PS/2 mouse
8Ch	Initialize floppy controller
8Fh	Determine number of ATA drives (optional)
90h	Initialize hard-disk controllers
91h	Initialize local-bus hard-disk controllers
92h	Jump to UserPatch2
93h	Build MPTABLE for multi-processor boards
95h	Install CD ROM for boot
96h	Clear huge ES segment register
97h	Fix up Multi Processor table
98h	1-2 Search for option ROMs. One long, two short beeps on
	checksumfailure

D007.0 I	
POST Code	Description
99h	Checkfor SMART Drive (optional)
9Ah	Shadowoption ROMs
9Ch	Set up Power Management
9Dh	Initialize security engine (optional)
9Eh	Enable hardware interrupts
9Fh	Determine number of ATA and SCSI drives
A0h	Set time of day
A2h	Check key lock
A4h	Initialize typematic rate
A8h	Erase F2 prompt
AAh	Scan for F2 key stroke
ACh	Enter SETUP
AEh	Clear Boot flag
B0h	Check for errors
B1h	Inform RomPilot about the end of POST.
B2h	POST done - prepare to boot operating system
B4h	1 One short beep before boot
B5h	Terminate QuietBoot (optional)
B6h	Check password (optional)
B7h	Initialize ACPI BIOS
B9h	Prepare Boot
BAh	Initialize SMBIOS
BBh	Initialize PnP Option ROMs
BCh	Clear parity checkers
BDh	Display MultiBoot menu
BEh	Clear screen (optional)
BFh	Check virus and backup reminders
C0h	Try to boot with INT 19
C1h	Initialize POST Error Manager (PEM)
C2h	Initialize error logging
C3h	Initialize error display function
C4h	Initialize system error handler
C5h	PnPnd dual CMOS (optional)
C6h	Initialize note dock (optional)
C7h	Initialize note dock late
C8h	Force check (optional)
C9h	Extended checksum (optional)
CAh	Redirect Int 15h to enable remote keyboard
CBh	Redirect Int 13h to Memory Technologies
	Devices such as ROM, RAM, PCMCIA, and serial disk

Redirect Int 10h to enable remote serial video

CCh

POST Code	Description
-----------	-------------

CDh Re-map I/O and memory for PCMCIA
CEh Initialize digitizer and display message

D2h Unknown interrupt

The following are for boot block in Flash ROM

POST Code	Description
E0h	Initialize the chipset
E1h	Initialize the bridge
E2h	Initialize the CPU
E3h	Initialize system timer
E4h	Initialize system I/O
E5h	Check force recovery boot
E6h	Checksum BIOS ROM
E7h	Go to BIOS
E8h	Set Huge Segment
E9h	Initialize Multi Processor
EAh	Initialize OEM special code
EBh	Initialize PIC and DMA
ECh	Initialize Memory type
EDh	Initialize Memory size
EEh	Shadow Boot Block
EFh	System memory test
F0h	Initialize interrupt vectors
F1h	Initialize Run Time Clock
F2h	Initialize video
F3h	Initialize System Management Manager
F4h	Output one beep
F5h	Clear Huge Segment
F6h	Boot to Mini DOS
F7h	Boot to Full DOS

^{*} If the BIOS detects error 2C, 2E, or 30 (base 512K RAM error), it displays an additional word-bitmap (xxxx) indicating the address line or bits that failed. For example, "2C 0002" means address line 1 (bit one set) has failed. "2E 1020" means data bits 12 and 5 (bits 12 and 5 set) have failed in the lower 16 bits. The BIOS also sends the bitmap to the port-80 LED display. It first displays the checkpoint code, followed by a delay, the high-order byte, another delay, and then the loworder byte of the error. It repeats this sequence continuously.

Notes

Appendix B

Software Installation

After all the hardware has been installed, you must first configure the Adaptec Embedded Serial ATA RAID Driver before you install the Windows operating system. The necessary drivers are all included on the Supermicro bootable CDs that came packaged with your motherboard.

B-1 Adaptec Embedded SATA RAID Controller Driver

Serial ATA (SATA)

Serial ATA (SATA) is a physical storage interface. It uses a single cable with a minimum of four wires to create a point-to-point connection between devices. It is a serial link which supports SATA transfer rates from 150MBps. Because the serial cables used in SATA are thinner than the traditional cables used in Parallel ATA (PATA), SATA systems have better airflow and can be installed in smaller chassis than PATA. In addition, the cables used in PATA can only extend to 40cm long, while SATA cables can extend up to one meter. Overall, SATA provides better functionality than PATA.

Intel ICH5R Controller Hub

Located in the South Bridge of the Intel E7525 (Tumwater) Chipset, the ICH5R I/O Controller Hub provides the I/O subsystem with access to the rest of the system. It supports 2-channel Ultra ATA/100 Bus Master IDE controller (PATA) and two channel SATA Host Controllers, which support up to two Serial ATA ports and up to two RAID drives.

Configuring BIOS for SATA RAID Functions

1. Press the key during system bootup to enter the BIOS Setup Utility.

Note: If it is the first time to power on the system, we recommend that you load the Optimized Default Settings. If you have already done so, please skip to Step 3.

- 2. Use the arrow keys to select the "Exit" Menu. Once in the "Exit" Menu, scroll down the menu to select the item- "Load Optimized Default settings" and press the <Enter> key. Select "OK" to confirm the selection. Press the <Enter> key to load the default settings to the BIOS.
- 3. Use the arrow keys to select the "Main" Menu in the BIOS.
- Scroll down to the next item-"SATA RAID Enable", select "Enabled" and press <Enter>.
- 5. Tap the <Esc> key and scroll down to "Exit". Select "Save and Exit" from the "Exit" menu. Press the <Enter> key to save the changes and exit the BIOS.
- 6. Once you've exited the BIOS Utility, the system will re-boot.
- 7. During the system startup, press the <Ctrl> and the <A> keys simultaneously to run the Adaptec RAID Configuration Utility when prompted by the following message:

Press <Ctrl><A> for Adaptec RAID Configuration Utility

Adaptec Embedded SATA with HostRAID Controller Driver

Adaptec's Embedded Serial ATA RAID with HostRAID controller adds RAID functionality to the Serial ATA I/O controller by supporting RAID 0 (Striping) or RAID 1 (Mirroring) to enhance the industry's pioneer PCI-to-e host controller products. RAID striping (RAID 0) can greatly improve hard disk I/O performance because of its capability in striping data across multiple drives. RAID mirroring (RAID 1) allows the data to be simultaneously written to two drives, so critical data is always available even if a single hard disk fails. Due to the built-in functionality, the X6DA8-G2 is specially designed to keep pace with the increasing performance demands of computer systems by improving disk I/O throughput and providing data accessibility regardless of a single disk failure. By incorporating the Adaptec Embedded Serial ATA into the motherboard design, Supermicro's X6DA8-G2 offers the user with the benefits of SATARAID without the high costs associated with hardware RAID applications.

Note: For Adaptec's RAID Driver Installation Instructions, please refer to the Adaptec RAID Controller User's Guide: "Emb_SA_RAID_UG.pdf" in the CD that came with this motherboard. You can also download a copy of Adaptec's User's Guide from our web site at www.supermicro.com.

The Adaptec RAID Configuration Utility is an embedded BIOS Utility, including:

- *Array Configuration Utility: Use this utility when you want to create, configure and manage arrays.
- * Disk Utilities: Use this option to format or verify disks.

To run the Adaptec RAID Configuration Utility, you will need to enable the RAID function in the system BIOS (refer to Chapter 4 for System BIOS Configurations), and then, press the <Ctrl> and <A> keys simultaneously when prompted to do so during the system startup. (Refer to the previous page for detailed instructions.)

Note: To select an option, use the arrow keys to highlight the item and then press the <Enter> key to select it. To return to the previous menu, press the <ESC> key.

Using the Adaptec RAID Configuration Utility (ARC)

The Array Configuration Utility (ACU) enables you to create, manage, and delete arrays from the controller's BIOS, add and delete spare drives, and initialize drives. During the system startup, press <Ctrl> and <A> key simultaneously, and the main menu will appear.

Managing Arrays

Select this option to view array properties, and delete arrays. The following sections describe the operations Of "Managing Arrays".

To select this option, use the arrow keys and the <enter> key to select "Managing Arrays" from the main menu (as shown above).

Viewing Array Properties

To view the properties of an existing array:

- 1. At the BIOS prompt, press Ctrl+A.
- 2. From the ARC menu, select Array Configuration Utility (ACU).
- 3. From the ACU menu, select Manage Arrays (as shown on the previous screen.)
- **4.** From the List of Arrays dialog box, select the array you want to view and press **Enter**.

The Array Properties dialog box appears, showing detailed information on the array. The physical disks associated with the array are displayed here.

5. Press Esc to return to the previous menu.

Deleting Arrays

*Warning: Back up the data on an array before you delete it to prevent the loss of data. Deleted arrays cannot be restored.

To delete an existing array:

- 1. Turn on your computer and press Ctrl+A when prompted to access the ARC utility.
- 2. From the ARC main menu, select Array Configuration Utility (ACU).
- 3. From the ACU menu, select Manage Arrays.
- 4. Select the array you wish to delete and press Delete.
- **5.** In the Array Properties dialog box, select **Delete** and press **Enter**. The following prompt is displayed:

*Warning!! Deleting the array will render array unusable. Do you want to delete the array?(Yes/No):

RAID 1 only—the following prompt is also displayed:

Deleting the partition will result in data loss! Do you also want to delete the partition? (Yes/No):

- **6.** Press **Yes** to delete the array or partition or **No** to return to the previous menu.
- 7. Press Esc to return to the previous menu.

Creating Arrays

Before creating arrays, make sure the disks for the array are connected and installed in your system. Note that disks with no usable space, or disks that are un-initialized are shown in gray and cannot be used. See *Initializing Disk Drives*.

To create an array:

- 1 Turn on your computer and press Ctrl+A when prompted to access the ARC utility.
- 2 From the ARC menu, select Array Configuration Utility Main Menu (ACU) (as shown on the first screen on page B-5).
- 3 From the ACU menu, select Create Array.
- 4 Select the disks for the new array and press Insert (as the screen shown below).

(*Note: To deselect any disk, highlight the disk and press Delete.)

5 Press **Enter** when both disks for the new array are selected. The Array Properties menu displays (as the screen shown on the next page).

Assigning Array Properties

Once you've create a new array, you are ready to assign the properties to the array.

*Caution: Once the array is created and its properties are assigned, you cannot change the array properties using the ACU. You will need to use the Adaptec Storage Manager - Browser Edition. (Refer to Adaptec's User's Guide in the enclosed CD.)

To assign properties to the new array:

1. In the Array Properties menu (as shown in the following screen), select an array type and press **Enter**.

Note that only the available array types: RAID 0, and RAID1, are displayed on the screen. (*RAID 0 or RAID 1 requires two drives.)

- 2. Under the item "Arrays Label", type in an label and press Enter. (*Note: The label shall not be more than 15 characters.)
- **3.** For RAID 0, select the desired stripe size. (*Note: Available stripe sizes are 16, 32, and 64 KB-default. It is recommended that you *do not* change the default setting.)
- **4.** The item: "Create RAID via" allows you to select between the different creating methods for RAID 0 and RAID 1.

The following table gives examples of when each is appropriate.

Raid Level	Create Via	When Appropriate
RAID 0	No Init	Creating a RAID 0 on new drives
RAID 0	Migrate	Creating a RAID 0 from one new drive and
	(*Note)	one drive with data you wish to preserve
RAID 1	Build1	Any time you wish to create a RAID 1, but especially if
		you have data on one drive that you wish to preserve
RAID 1	Clear	Creating a RAID 1 on new drives, or when you want to
		ensure that the array contains no data after creation.
RAID 1	Quick	Fastest way to create a RAID 1.
		Appropriate when using new drives
RAID 1	Init	

(*Note: If you select Migrate for RAID 0, or Build for RAID 1, you will be asked to select the source drive. The contents of the source drive will be preserved. However, the data on the new drive will be lost.)

5. When you are finished, press Done (as the screen shown below).

Notes:

- 1. Before adding a new drive to an array, back up any data contained on the new drive. Otherwise, all data will be lost.
- 2. If you stop the Build or Clear process on a RAID 1 from ACU, you can restart it by pressing Ctrl+R.
- 3. A RAID 1 created using the Quick Init option may return some data miscompares if you later run a consistency check. This is normal and is not a cause for concern.
- 4. The ACU allows you to use drives of different sizes in a RAID . However, during a build operation, only the smaller drive can be selected as the source or first drive.
- 5. When migrating from single volume to RAID 0, migrating from a larger drive to a smaller drive is allowed. However, the destination drive must be at least half the capacity of the source drive.
- 6. Adaptec does not recommend that you migrate or build an array on Windows dynamic disks (volumes), as it will result in data loss.

Warning: Do not interrupt the creation of a RAID 0 using the Migrate option. If you do, you will not be able to restart, or to recover the data that was on the source drive.

Adding a Bootable Array

To make an array bootable:

- 1. From the Main menu, select Manage Arrays.
- 2. From the List of Arrays, select the array you want to make bootable, and press Ctrl+B.
- 3. Enter Y to create a bootable array when the following message is displayed: "This will make all other existing bootable array non-bootable. Do you want to make this array bootable? (Yes/No):" Then, a bootable array will be created. An asterisk will appear next to the bootable array (as shown in the picture below:)

Deleting a Bootable Array

To delete a bootable array:

- 1. From the Main menu, select Manage Arrays.
- 2. From the List of Arrays, select the bootable array (*) you want to delete, and press Ctrl+B. (* a bootable array is the array marked with an asterisk (as shown in the picture above.)
- **3.** Enter Y to delete a bootable array when the following message is displayed: "The array is already marked bootable. Do you want to make this array as not bootable? (Yes/No):" Then, the bootable array will be deleted and the asterisk will disappear.

(*Note: do not use the delete key to delete the bootable array.)

Adding/Deleting Hotspares

(*Note: In order to rebuild a RAID (RAID 0 or RAID 1), you would need to add a new HDD as a hotspare.)

- 1. Turn on your computer and press Ctrl+A as prompted to access the ARC Utility.
- 2. From the ARC menu, select Array Configuration Utility (ACU).
- 3. From the ACU menu, select Add/Delete Hotspares.
- 4. Use the up and down arrow keys to highlight and select the disk you want to designate as a hotspare, and press <Insert>, and then, press <Enter>.
- 5. Press yes when the following prompt is displayed:

"Do you want to create spare?" (Yes/No?)

The spare you have selected will appear in the Select Drive Menu.

Initializing Disk Drives

If an installed disk does not appear in the disk selection list for creating a new array, or if it appears grayed out, you may have to initialize it before you can use it as part of an array. Drives attached to the controller must be initialized before they can be used in an array.

Caution: Initializing a disk overwrites the partition table on the disk and makes any data on the disk inaccessible. If the drive is used in an array, you may not be able to use the array again. **Do not** initialize a disk that is part of a boot array. To determine which disks are associated with a particular array, please refer to *Viewing Array Properties*.

To initialize drives:

- 1. Turn on your computer and press Ctrl+A when prompted to access the ARC utility.
- 2. From the ARC menu, select Array Configuration Utility (ACU) (as shown in the screen below).

3. Select Initialize Drives (as shown in the screen below).

4. Use the up and down arrow keys to highlight the disk you wish to initialize and press **Insert** (as shown in the screen below).

5. Repeat Step 4 so that both drives to be initialized are selected (as shown in the screen below).

- 6. Press Enter.
- 7. Read the warning message as shown in the screen.

8. Make sure that you have selected the correct disk drives to initialize. If correct, type Y to continue.

Rebuilding Arrays

*Note 1: Rebuilding applies to Fault Tolerant array (RAID 1) only.

If an array Build process (or initialization) is interrupted or critical with one member missing, you must perform a Rebuild to optimized its functionality. For a critical array Rebuild operation, the optimal drive is the source drive.

*Note 2: If no spare array exists and a hard disk drive fails, you need to create a spare before you can rebuild an array.

To Rebuild an array:

- 1 From the Main Menu, select **Manage Arrays** (as shown in the screen below). From the List of Arrays, select the array you want to Rebuild.
- 2 Press Ctrl+R to Rebuild.

Using the Disk Utilities

The Disk Utilities enable you to format or verify the media of your Serial ATA hard disks.

To access the disk utilities:

1. Turn on your computer and press Ctrl+A when prompted to access the ARC utility (as shown in the screen below.)

2. From the ARC menu, select **Disk Utilities** as shown in the screen below.

3 Select the desired disk and press **Enter** (as shown in the screen below.)

You can choose from the following options:

1. Format Disk—Simulates a low-level format of the hard drive by writing zeros to the entire disk. Serial ATA drives are low-level formatted at the factory and do not need to be low-level formatted again.

(*Caution: Formatting destroys all data on the drive. Be sure to back up your data before performing this operation.)

2. Verify Disk Media—Scans the media of a disk drive for defects.

To Exit Adaptec RAID Configuration Utility

- 1. Once you have completed RAID array configurations, press ESC to exit. The following screen will appear.
- 2. Press Yes to exit the Utility.

(*For more information regarding Adaptec RAID Utility, please refer to Adaptec's User's Guide in the CD included in your shipping package. You can also download a copy of Adaptec User's Guide from our web site at: www. supermicro.com.)

B-2 Installing Intel's ICH5R Driver w/ Adaptec and Windows OS

- a. Insert Supermicro's bootable CD that came with the package into the CD Drive during the system reboot, and the screen: "Super Micro Driver Diskette Maker" will appear.
- b. Choose from the list the item: "Intel ICH5R Driver by 3rd Party (Adaptec)" and press <ENTER>.
- c. From the next screen displayed, choose the OS driver you want to install and press <Enter>.
- d. Insert a formatted diskette into drive A: and press <Enter> as prompted.
- e. Exit the program after the process is completed. Then, reboot the system.
- f. Insert Microsoft Windows OS Setup CD in the CD Driver, and the system will start to boot up from CD.
- g. Press the <F6> key when the message-"Press F6 if you need to install a third party SCSI or RAID driver" displays.
- h. When the Windows OS Setup screen appears, press "S" to specify additional device(s).
- i. Insert the driver diskette-"Adaptec Embedded Serial ATA Raid Controller Driver" into Drive A: and press the <Enter> key.
- j. Choose Adaptec Embedded Host Serial ATA Raid Controller from the list indicated in the Windows OS Setup Screen, and press the <Enter> key.
- k. Press the <Enter> key to continue the installation process. (If you need to specify any additional devices to be installed, do it at this time.) Once all devices are specified, press the <Enter> key to continue with the installation.
- I. From the Windows OS Setup screen, press the <Enter> key. The OS Setup will automatically load all device files, and, then, continue the Windows OS installation.
- m. After Windows OS Installation is completed, the system will automatically reboot.

B-3 Installing Other Software Programs and Drivers

A. Installing Drivers other than Adaptec Embedded Serial ATA RAID Controller Driver

After you've installed Windows Operating System, a screen as shown below will appear. You are ready to install software programs and drivers that have not yet been installed. To install these software programs and drivers, click the icons to the right of these items.

Driver/Tool Installation Display Screen

(*Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. After installing each item, you must re-boot the system before moving on to the next item on the list. You should install everything here except for the SUPER Doctor utility, Intel LDCM and the LAN/SCSI driver diskettes, which are optional. The bottom icon with a CD on it allows you to view the entire contents of the CD.)

(*Please refer to the Adaptec User's Guide for the installation of Adaptec's Serial ATA RAID Controller Driver. Adaptec's User's Guide is included in the CD. You can also download a copy of the user's guide from our web site.)

Supero Doctor III

The Supero Doctor III program is a Web base management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The Supero Doctor III program included on the CDROM that came with your motherboard allows you to monitor the environment and operations of your system. Supero Doctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the Figure below for a display of the Supero Doctor III interface.

Supero Doctor III Interface Display Screen-I (Health Information)

Supero Doctor III Interface Display Screen-II (Remote Control)

(*Note: SD III Software Revision 1.0 can be downloaded from our Web site at: ftp://ftp.supermicro.com/utility/Supero_Doctor_III/. You can also download SDIII User's Guide at: http://www.supermicro.com/PRODUCT/Manuals/SDIII/UserGuide.pdf. For Linux, we will still recommend Supero Doctor II.)

Appendix C

System Specifications

Processors

Single or dual 604-pin Intel® Nocona™ processors at a front side (system) bus speed of 800 MHz. (Please refer to the support section of our web site for a complete listing of supported processors: (http://www.supermicro.com).

Chipset

Intel E7525 chipset

BIOS

8 MB AMI® Flash ROM

Memory Capacity

Eight 240-pin DIMM sockets supporting up to 16 GB of registered ECC DDR2-400 (PC3200) SDRAM

Note: Interleaved memory - requires memory to be installed two at a time. See the memory section in Chapter 5 for details.

SCSI Controller

Adaptec AIC-7902 for dual channel Ultra320 onboard SCSI

SCSI Backplane Controller

CSE-SCA-016: SAF-TE compliant backplane supports five (5) SCA hotswap SCSI drives

Peripheral Drives/Bays

One (1) 3.5" floppy drive

Five (5) 5.25" drive bays

Five (5) SCSI drive bays in mobile rack unit [p/n CSE-M35(B)P]

Expansion Slots

Chassis: Seven (7) I/O chassis slots

Motherboard: total of six (6) PCI-Express/PCI-X slots

Motherboard

Model: X6DA8-G2 (Extended ATX)

Dimensions: 12 x 13.05 in (304.8 x 331.5 mm)

Chassis:

Model: SC942i-R760 (4U rackmount/tower)

Dimensions: (WxHxD as 4U) 6.94" x 17.125 x 24.125 in. (17.6 x 435 x

612.8 mm)

Weight

Gross (Bare Bone): 65.5 lbs. (29.8 kg.)

System Cooling

Three (3) 12-cm chassis cooling fans (hot-swappable)

One (1) 12-cm exhaust fan (not hot-swappable)

System Input Requirements

AC Input Voltage: 100-240 VAC

Rated Input Current: 14A (115V) to 8A (230V)

Rated Input Frequency: 50 to 60 Hz

Power Supply (3 units)

Rated Output Power: 760W (Model# SP762-TS, Part# PWS-0050)

Rated Output Voltages: +3.3V (36A), +5V (36A), +12Vtotal (50A), +5Vsb

(3.5A)

Operating Environment

Operating Temperature: 10° to 35° C (50° to 95° F)

Non-operating Temperature: -40° to 70° C (-40° to 158° F) Operating Relative Humidity: 8% to 90% (non-condensing) Non-operating Relative Humidity: 5 to 95% (non-condensing)

Regulatory Compliance

Electromagnetic Emissions:

FCC Class B, EN 55022 Class B, EN 61000-3-2/-3-3, CISPR 22 Class B

Electromagnetic Immunity:

EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4,

EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety:

EN 60950/IEC 60950-Compliant UL Listed (USA) CUL Listed (Canada) TUV Certified (Germany) CE Marking (Europe)

Notes