STAT 3006: Statistical Computing Lecture 7*

26 February

When we want to sample from a distribution f(x), if f(x) is univariate, we can make use of inverse method or accept-reject method; if f(x) is multivariate and it is easy to sample from $f(x_i|x_1,\ldots,x_{i-1})$, we select sequential sampling; if f(x) is multivariate and hard to be directly sampled, our idea is constructing a sequence of $\{X_n\}_{n=1}^{\infty}$ such that X_n 's limiting distribution is f(x). Give an initial value X_0 , we iteratively obtain X_{n+1} ($n=0,1,\ldots$). When n is large enough (X_n) 's distribution is very close to f(x), we treat X_n as a sample from f(x). This kind of approximation sampling method is called Markov chain Monte Carlo method. In this lecture, we will first review the Markov chain.

6 Review of Markov Chain

Definition 6.1. A Markov chain is a sequence of random variables X_n ($n \ge 0$), where each X_n takes value at a discrete (finite or countable) set S, s.t. $P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(X_{n+1} = j | X_n = i) \ \forall n \ge 0$. S is state space. If S is finite, the Markov chain is finite state Markov chain. If $P(X_{n+1} = j | X_n = i)$ is nothing to do with n, the Markov chain is time-homogeneous. For time-homogeneous Markov chain, $P = (p_{ij})_{i,j \in S}$ is transition matrix satisfying $p_{ij} \ge 0$ and $\sum_{j \in S} p_{ij} = 1$.

Throughout this course, for simplicity, we use Markov chain to represent time-homogeneous Markov chain.

(Example) In the simple symmetric random walk, $P(Y_n = 1) = P(Y_n = -1) = \frac{1}{2}$. Let $X_n = \sum_{i=1}^n Y_i$, then $\{X_n\}_{n=1}^{\infty}$ construct a Markov chain. Given the state i of the current step, the state of the next step is either i+1 or i-1. It is independent of the states of the past.

6.1 Chapman-Kolmogorov Equation

Now we investigate the transition matrix P. Noteworthy, (i, j) entry of P denotes the probability that the state of the chain changes from i to j by one step. What is the probability that the

^{*}If you have any question about the note, please send an email to xyluo@link.cuhk.edu.hk

state of the chain changes from i to j by two steps?

$$p_{ij}^{(2)} := P(X_{n+2} = j | X_n = i) = \sum_{k \in S} P(X_{n+2} = j, X_{n+1} = k | X_n = i)$$

$$= \sum_{k \in S} P(X_{n+2} = j | X_{n+1} = k, X_n = i) P(X_{n+1} = k | X_n = i)$$

$$= \sum_{k \in S} P(X_{n+2} = j | X_{n+1} = k) P(X_{n+1} = k | X_n = i)$$

$$= \sum_{k \in S} p_{ik} p_{kj}.$$

$$(6.1)$$

If we put all $p_{ij}^{(2)}$ $(i, j \in S)$ into a matrix denoted by $P^{(2)}$, then $P^{(2)}$ is $P \cdot P = P^2$ based on Equation 6.1. Generally, for a n-step transition matrix $P^{(n)} = \{p_{ij}^{(n)}\}_{i,j\in S}, P^{(n)} = P^n$, the matrix product of n the same transition matrices. The Chapman-Kolmogorov equation provides a more general representation of $P^{(n)}$

Theorem 6.1. For a n+m-step transition probability $p_{ij}^{(n+m)}$, we have $p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}$.

Proof.
$$P^{(n+m)} = P^{n+m} = P^n \cdot P^m = P^{(n)} \cdot P^{(m)}$$
.

The theorem tells us the probability from i to j by n+m steps is the sum of probabilities that the chain jumps from i to k by n steps and then from k to j by m steps across all $k \in S$.

6.2 Classification of States

Definition 6.2. A state j is accessible from state i if $\exists n \geq 0$ s.t. $p_{ij}^{(n)} > 0$. In this case, we write it as $i \to j$. If $i \to j$ and $j \to i$, then states i and j communicate with each other, denoted by $i \leftrightarrow j$.

Proposition 6.2. The relation " \leftrightarrow " is equivalent relation which satisfies the three following conditions: 1)(reflexivity) $i \leftrightarrow i$; 2) (symmetric) $i \leftrightarrow j \Rightarrow j \leftrightarrow i$; 3) transitivity: $i \leftrightarrow j, j \leftrightarrow i \Rightarrow i \leftrightarrow k$.

If two states communicate, then we say they belong to the same equivalent class. Therefore, we can divide state set S into several equivalent classes.

Definition 6.3. Markov Chain is said to be irreducible if there is only one equivalent class.

Definition 6.4. A state *i* is absorbing if $p_{ii} = 1$.

Definition 6.5. A state *i* is periodic with period *d* if *d* is the greatest common divisor of $T(i) = \{t \ge 1 : p_{ii}^{(t)} > 0\}$. If d = 1, the state is aperiodic.

Definition 6.6. Let $f_i := P(\exists t > 0 s.t. X_t = i | X_0 = i)$ denote the probability to return to state i when starting from state i. If $f_i < 1$, state i is transient. If $f_i = 1$, state i is recurrent.

Definition 6.7. When $f_i = 1$, denote the first return time to state i by T_i $(T_i > 0)$. If $E(T_i|X_0 = i) < \infty$, state i is positive recurrent. If $E(T_i|X_0 = i) = \infty$, state i is null recurrent.

Theorem 6.3. All states in an equivalent class have the same period and are either all recurrent or all transient.

Theorem 6.4. In finite state Markov chain, all recurrent states are positive recurrent.

6.3 Stationary and Limiting Distribution

Definition 6.8. $\pi^* = (\pi_1^*, \pi_2^*, \ldots)$ is a stationary distribution for Markov chain $\{X_n\}_{n\geq 0}$ if $\pi^* = \pi^* P$.

Remark 1. π^* does not necessarily exist, nor is it necessarily unique.

Definition 6.9. π^* is the limiting distribution for Markov chain $\{X_n\}$ if for any initial distribution, $\lim_{n\to\infty} P(X_n=i) = \pi_i^*$.

Remark 2. If π^* is a limiting distribution, it is also stationary. Limiting distribution does not necessarily exist, but if it exists then it is unique.

Theorem 6.5. Let $(X_n; n \ge 0)$ be an irreducible, aperiodic Markov chain. Assuming it admits a stationary distribution π^* , then π^* is also the limiting distribution.

Definition 6.10. If π^* satisfies $\pi_i^* p_{ij} = \pi_j^* p_{ji} \ \forall i, j$, then we say π^* satisfies the detailed balance condition.

Proposition 6.6. If π^* satisfies detailed balance condition, then π^* is a stationary distribution.

Proof.
$$\sum_{i \in S} \pi_i^* p_{ij} = \sum_{i \in S} \pi_i^* p_{ji} = \pi_j^*$$
.

Example, consider a two-state Markov chain $\{X_n\}$, $P(X_{n+1}=1|X_n=0)=p$, $P(X_{n+1}=0|X_n=0)=1-p$, $P(X_{n+1}=0|X_n=1)=q$ and $P(X_{n+1}=1|X_n=1)=1-q$ (p>0,q>0). We can prove that the Markov chain is irreducible. $P(\text{the chain does not return to }0|X_0=0)=\lim_{n\to\infty}p(1-q)^n=0$, so the Markov chain is also recurrent. By solving $\pi^*=\pi^*P$, we have $\pi_1^*=\frac{q}{p+q}$ and $\pi_2^*=\frac{p}{p+q}$. When p+q<2, the Markov chain is aperiodic. In this case, π^* is also the limiting distribution by theorem. When $p=1,q=1,\pi^*=(1/2,1/2)$, the Markov chain has period 2, so π^* is not the limiting distribution any more. There is no limiting distribution, as $P(X_n=0|X_0=0)=1$ if n is even; $P(X_n=0|X_0=0)=0$ if n is odd. The limit of $P(X_n=0)$ does not exist.