Introduction to Computer for Engineers

Lecture 3 Vector & Matrix in MATLAB

Dr. Vo Tan Phuoc School of Electrical Engineer — International University

Introduction to Vector

Vector vs. scalar

Row vector

$$\vec{v}=(1,2,3)$$

Column vector

$$ec{v} = egin{bmatrix} oldsymbol{1} \ 2 \ 3 \end{bmatrix}$$

Introduction to Vector

Recall arithmetic operators using with scalar

Operator	Definition
+	Addition
_	Subtraction
X	Multiplication
	Division
^	Power

Introduction to Vector

Which operators are still "valid" with vector?

Division?

Multiplication:

Scalar - Vector

Vector – Vector

Transpose

Store in array (row/column/indexing/ref. ele.)

All operators + introduce new operands

Element-wise multiplication .*

Element-wise power .^

Element-wise left & right division ./ .\

Vector dot product

$$ec{u} = (u_1, u_2, u_3) \ ec{v} = (v_1, v_2, v_3) \ ec{u} \cdot ec{v} = |u| |v| cos lpha = u_1 v_1 + u_2 v_2 + u_3 v_3$$

In MATLAB dot(u,v)

Numerical example

Vector cross product

$$ec{u} = (u_1, u_2, u_3) \ ec{v} = (v_1, v_2, v_3) \ ec{u} imes ec{v} = egin{vmatrix} i & j & k \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{bmatrix} \ = egin{vmatrix} u_2 & u_3 \ v_2 & v_3 \ \end{vmatrix} ec{i} + egin{vmatrix} u_3 & u_1 \ v_2 & v_3 \ \end{vmatrix} ec{j} + egin{vmatrix} u_1 & u_2 \ v_1 & v_2 \ \end{vmatrix} ec{k} \ \end{pmatrix}$$

In MATLAB cross(u,v)
Numerical example

Vector – Element-wise multiplication

Element-wise Multiplication .*

Vector – Element-wise power

Element-wise Multiplication .^

```
ans
            32
                   729
```

Vector – Element-wise left & right division

```
u = [1,2,3]
v = [4,5,6]
% right division - right direction
u./v
%left division - inverse direction
u.\v

Element-wise
division
```

```
ans =
   0.2500 0.4000
                    0.5000
ans =
   4.0000 2.5000
                    2.0000
```

Vector – Special Functions

Vector one, zero

Vector length, dimension, modulus

Sum of all elements in a vector

Factorial

Vector & Private function

Input & Output of a private function could be in vector

Demo a function with vector in/scalar out vector in / vector out, scalar in /vector out

Vector & anonymous function

The same concerns in the case of anonymous function

<u>Vectorization</u>:(Vector + Function + Element-wise)

Application of vector computation in expression and function evaluation. An optimization in

Resource allocation

Computational time

Code size (more compact, no loop ...)

Vector & Plotting

Concept of plot function in MATLAB

Plot a line

Plot options : marker, line style, line width colors

Vector & Plotting – Demo

End of Lecture 3