, XING F WANG RECEIVED
CENTRAL FAX CENTER PAGE

APR 1 0 2008

Reply to Office action of April 5, 2008

Appl. No. 10/810,296 Dated April 10, 2008

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A multiparameter screening Method—of evaluating disease risk, disease cause, therapeutic target, and therapeutic efficiency of for atherosclerosis-related coronary heart disease (CHD) or stroke comprising;

defining the disease as atherosclerosis-related CHD or stroke or other cardiovascular disease;

defining the normal as free from said disease;

defining the following parameters as atherosclerotic parameters consisting of c = the Low-density lipoprotein (LDL) concentration parameter in mg/dL or <math>c = the C-reactive protein (CRP) concentration parameter in mg/L, p = the blood systolic pressure parameter in mmHg or <math>p = the blood diastolic pressure parameter in mmHg, f = the heart rate parameter in s^{-1} , a = the radius parameter along arterial

Reply to Office action of April 5, 2008

radius in cm, T = the temperature parameter of blood plasma in °C, α = the angle parameter between the gravity and mean velocity of blood fluid in arterial vessels in degree and z = the axial length parameter of diffusion flux along the inner wall in the axial direction of arterial vessels in cm, called the diffusion length parameter;

measuring, for an individual, having the disease,

values of said atherosclerotic parameters of

presented in the following expressions:

$$J = A c^{\frac{11}{9}} (v^3 D^{16})^{\frac{1}{27}} \left(\frac{g \cos \alpha + f u}{z} \right)^{\frac{2}{9}}$$
 (1.1)

or

$$J = Bc^{\frac{11}{9}} p^{\frac{1}{3}} T^{\frac{16}{27}} a^{\frac{2}{3}} f^{\frac{2}{9}} z^{-\frac{2}{9}}$$
 (1.2)

and

$$J = E c^{\frac{11}{9}} D^{\frac{16}{27}} z^{-\frac{2}{9}} (\cos \alpha)^{\frac{2}{9}}$$
 (1.3)

wherein J = the mass transfer flux in 10⁻⁵ g/(cm²s), A, B and E = the constants of conversion factors, v = the eddy velocity of blood fluid in arterial vessels in cm/s, u = the mean velocity of the blood fluid in cm/s, D = the diffusion coefficient in cm²/s, and g = the gravitational acceleration in cm/s²;

Reply to Office action of April 5, 2008

- measuring, for an individual not having the disease, the normal values of said atherosclerotic parameters;
- determining the disease risks yielded by the difference between said measured values and said normal values of said atherosclerotic parameters;
- adding all said disease risks containing a total risk of said disease;
- determining a disease risk level containing said total risk of said disease;
- selecting an atherosclerotic risk factor related to an atherosclerotic parameter that is having the greatest contribution to said total risk of said disease so as to result in said risk factor as a primary therapy target of said disease;
- selecting a greater flux between the LDL mass transfer flux and the monocyte mass transfer flux so as to result in said greater flux as a primary cause in said disease;

Reply to Office action of April 5, 2008

- selecting a greater concentration level between the LDL level in the serum and the CRP level in the blood plasma so as to result in said greater level as a secondary therapy target of said disease;
- determining calculating a relative ratio between currently said total risk and previously said total risk so as to yield said relative ratio as a therapeutic efficacy of said disease;
- repeating above-mentioned said methods until said disease risk levelis reduced to reduce to a normal level for the individual who requires the therapy to prevent or to treat atherosclerosis-related CHD or stroke;
- above-mentioned-said methods are written as an executable computer program named the MMA.exe, or another name, to be installed into a general purpose digital computer device to accomplish said methods; and
- outputting said total disease risk, said risk level, disease-said primary cause, said therapeutic target and said therapeutic efficiency to a display or a memory or another

Reply to Office action of April 5, 2008

computer on a network, or to a user or a display.

Claim 2 (Currently amended): A method as in claim 1, wherein the nine disease risks are yielded by the differences between the measured values and the normal values of the nine atherosclerotic parameters, wherein: said method comprising the steps of:

substituting a measured value, $[[c_m]]Cm_1$ in mg/dL, of the individual's LDL concentration in human serum, wherein said Cm_1 is determined using a medical technique for measuring the concentration of blood constituents or said $[[c_m]]Cm_1$ is determined by the physician, into eq. 1.1 yields $Jm_1 = HCm_1^{\frac{11}{9}}$ where

H =
$$A(v^3D^{16})^{\frac{1}{27}} \left(\frac{g\cos\alpha + fu}{z} \right)^{\frac{2}{9}} L$$

substituting a normal value, $[[c_n]]Cn_1$ in mg/dL, of said LDL concentration parameter, wherein said Cn_1 is determined by the physician or said $[[c_n]]Cn_1 = 100$ mg/dL for adult, into eq. 1.1 yields $Jn_1 = HCn_1^{\frac{11}{9}}$,

Reply to Office action of April 5, 2008

calculating [[$\frac{J_m-J_n}{J_n}$]] $\frac{Jm_1-Jn_1}{Jn_1}$, where J_m -yielded by

substituting said e_m into said-equation (1.1) and J_n yielded by substituting said e_n into said equation (1.1), yields:

$$[[R_1 = \left(\frac{c_m}{c_n}\right)^{\frac{11}{9}} - 1]]R_1 = \left(\frac{Cm_1}{Cn_1}\right)^{\frac{11}{9}} - 1$$
(1)

where $Cm_1 \ge Cn_1$, and

substituting said C_m and said C_n into (1) where C_m $\geq -c_n$ and

calculating (1) yields the disease risk R₁ caused by the LDL concentration parameter related to the atherosclerotic risk factors being an elevated LDL concentration in human serum, high-fat diet, hypercholesterolemia or other risk factors that increase said LDL concentration;

substituting a measured value, $[[c_m]]Cm_2$ in mg/L, of the individual's CRP concentration in human blood plasma, wherein said Cm_2 is determined using a medical technique for measuring the concentration of blood constituents or said $[[c_m]]Cm_2$ is determined by the physician, into

Reply to Office action of April 5, 2008

eq. 1.1 yields
$$Jm_2 = HCm_2^{\frac{11}{9}}$$
 where $H = A(v^3D^{16})^{\frac{1}{27}} \left(\frac{g\cos\alpha + fu}{z}\right)^{\frac{2}{9}}$

substituting a normal value, [[c_n]] $\underline{Cn_2}$ in mg/L, of said CRP concentration parameter, wherein said $\underline{Cn_2}$ and an equivalent factor, F, are is determined by the physician wherein $F = \begin{pmatrix} D_c \\ D_L \end{pmatrix}^{\frac{16}{27}}$, $D_c = \frac{16}{27}$, and $D_c = \frac{16}{27}$, $D_c = \frac{16}{2$

calculating $[\frac{J_m - J_n}{J_n}]$ $\frac{Jm_2 - Jn_2}{Jn_2}$, where J_m yielded by substituting said c_m into said equation (1.1) and J_n yielded by substituting said c_n into said equation (1.1) yields:

[[R₂ = F(
$$\left(\frac{c_m}{c_n}\right)^{\frac{11}{9}}$$
 - 1)]]R₂ = F($\left(\frac{Cm_2}{Cn_2}\right)^{\frac{11}{9}}$ - 1) (2)

where $Cm_2 \ge Cn_2$, the equivalent factor $F = \left(\frac{D_c}{D_L}\right)^{\frac{16}{27}}$.

 $\underline{D_c}$ = the CRP diffusion coefficient, $\underline{D_L}$ = the LDL diffusion coefficient, and

Reply to Office action of April 5, 2008

substituting said C_m , said C_n and said F-into-(2) where $-c_m \ge -c_n$ and

- calculating (2) yields the disease risk R₂
 caused by the CRP concentration parameter
 related to the atherosclerotic risk factors
 being an elevated CRP level in human blood
 plasma, systemic inflammation, infectious
 agents or other risk factors that increase said
 CRP level;
- substituting a measured value, $[P_m]Pm_3$ in mmHg, of the individual's blood systolic pressure, wherein said Pm_3 is determined using a medical technique for measuring the human blood pressure or said $[P_m]Pm_3$ is determined by the physician, into eq. 1.2 yields $Jm_3 = H_p Pm_3^{\frac{1}{3}}$ where $H_p = Bc^{\frac{11}{9}}T^{\frac{16}{27}}a^{\frac{2}{3}}f^{\frac{2}{9}}z^{\frac{2}{9}}$.
- substituting a normal value, $[P_n]P_{n_3}$ in mmHg, of said systolic pressure parameter, wherein said P_{n_3} is determined by the physician or said $[P_n]P_{n_3} = 120$ mmHg for adult, into eq. 1.2 yields $I_{n_3} = H_p P_{n_3}$.

Reply to Office action of April 5, 2008

calculating [[$\frac{J_m - J_n}{J_n}$]] $\frac{Jm_3 - Jn_3}{Jn_3}$ where J_m yielded by

substituting—said P_m into said—equation (1.2) and— J_n yielded by substituting—said— P_n into said—equation—(1.2) yields:

$$[[R_3 = \left(\frac{P_m}{P_n}\right)^{\frac{1}{3}} - 1]]R_3 = \left(\frac{Pm_3}{Pn_3}\right)^{\frac{1}{3}} - 1$$
(3)

where Pm₃ ≥ Pn₃, and

substituting said P_m and said P_n into (3) where P_m $\geq p_n$ and

calculating (3) yields the disease risk R₃

caused by the systolic pressure parameter
related to the atherosclerotic risk factors
being an elevated level of blood systolic
pressure, family history of hypertension or
other risk factors that increase said systolic
pressure;

substituting a measured value, $[P_m]Pm_4$ in mmHg, of the individual's blood diastolic pressure, wherein said Pm_4 is determined using a medical technique for measuring the human blood pressure or said $[P_m]Pm_4$ is determined by the physician, into eq. 1.2 yields $Jm_4 = H_p Pm_4^{\frac{1}{3}}$ where

Reply to Office action of April 5, 2008

$$H_{p} = B e^{\frac{11}{9}} T^{\frac{16}{27}} a^{\frac{2}{3}} f^{\frac{2}{9}} z^{-\frac{2}{9}} \underline{\prime}$$

substituting a normal value, $[P_n]Pn_4$ in mmHg, of said blood diastolic pressure parameter, wherein said Pn_4 is determined by the physician or said $[P_n]Pn_4 = 70$ mmHg for adult, into eq. 1.2 yields $In_4 = H_p Pn_4^{\frac{1}{3}}$,

calculating $\left[\left[\frac{J_{m}-J_{n}}{J_{n}}\right]\right] \frac{Jm_{4}-Jn_{4}}{Jn_{4}}$, where J_{m} yielded by substituting said P_{m} into said equation (1.2) and J_{n} yielded by substituting said P_{n} into said equation (1.2) yields: $\left[\left[R_{4}=\left(\frac{P_{m}}{P_{n}}\right)^{\frac{1}{3}}-1\right]\right]R_{4}=\left(\frac{Pm_{4}}{Pn_{4}}\right)^{\frac{1}{3}}-1 \tag{4}$

where $Pm_4 \ge Pn_4$, and

substituting said P_m and said P_n into (4) where p_m $\geq p_n$ and

calculating (4) yields the disease risk R₄
caused by the diastolic pressure parameter
related to the atherosclerotic risk factors
being an elevate level of blood diastolic

Reply to Office action of April 5, 2008

pressure, family history of hypertension or other risk factors that increase said diastolic pressure;

substituting a measured value, $[[f_m]] \underline{Fm_5}$ in s^{-1} , of the individual's heart rate, wherein said $\underline{Fm_5}$ is determined using a medical technique for measuring the human heart rate or said $[[f_m]] \underline{Fm_5}$ is determined by the physician, into eq. 1.2 $\underline{Yields} \underline{Jm_5} = H_f \underline{Fm_5}^{\frac{2}{9}} \underline{where} \underline{H_f} = \underline{Bc^{\frac{11}{9}}T^{\frac{16}{27}}a^{\frac{2}{3}}p^{\frac{1}{9}}z^{-\frac{2}{9}}},$

substituting a normal value, $[[f_n]]Fn_5$ in s^{-1} , of said heart rate parameter, wherein said Fn_5 is determined by the physician or said $[[f_n]]Fn_5 = 72$ per minute for adult, into eq. 1.2 yields $Jn_5 = H_f Fn_5^{\frac{2}{9}}$

calculating $[\frac{J_m - J_n}{J_n}]$ $\frac{Jm_s - Jn_s}{Jn_s}$, where J_m yielded by substituting said f_m into said equation (1.2) and J_n -yielded by substituting said f_n into said equation (1.2) yields:

[[
$$R_5 = \left(\frac{f_m}{f_n}\right)^{\frac{2}{9}} - 1$$
]] $R_5 = \left(\frac{Fm_5}{Fn_5}\right)^{\frac{2}{9}} - 1$ (5)

where $Fm_5 \ge Fn_5$, and

Reply to Office action of April 5, 2008

substituting said f_m and said f_m into (5) where f_m $\Rightarrow f_m$ and

- calculating (5) yields the disease risk R₅ caused by the heart rate parameter related to the atherosclerotic risk factors being an elevated level of heart rate, smoking cigarette, depression or other risk factors that increase said heart rate;
- substituting a measured radius value, $[a_m]Am_6$ in cm, of the individual's arterial vessel at the lesion-prone sites of arterial bifurcations, arterial branching, arterial curvatures or arterial tapering, wherein said Am_6 is determined using a medical technique for measuring the sizes of arterial vessels or said $[a_m]Am_6$ is determined by the physician, into eq. 1.2 yields $Jm = H_a Am_6^{\frac{2}{3}}$ where $H_a = Bc^{\frac{11}{9}}T^{\frac{16}{27}}f^{\frac{2}{9}}p^{\frac{1}{3}}z^{-\frac{2}{9}}$,
- substituting a normal value, $[[a_n]]An_6$ in cm, of said arterial radius parameter, wherein said An_6 is determined by the physician or said $[[a_n]]An_6 = a$ value between 0.2 cm and 2.2 cm for adult, into eq. 1.2 yields $Jn = H_a An_6^{\frac{2}{3}}$.

Reply to Office action of April 5, 2008

calculating
$$\left[\left[\frac{J_m-J_n}{J_n}\right]\right] \frac{Jm_6-Jn_6}{Jn_6}$$
, where J_m -yielded by

substituting said a_m -into-said equation—(1.2) and J_n -yielded-by substituting-said a_n -into-said equation (1.2) yields:

$$[R_6 = \left(\frac{a_m}{a_n}\right)^{\frac{2}{3}} - 1]R_6 = \left(\frac{Am_6}{An_6}\right)^{\frac{2}{3}} - 1$$
 (6)

where Am₆ ≥ An₆, and

substituting said a_m and said a_n into (6) where a_m $\geq a_n$ and

- calculating (6) yields the disease risk R₆ caused by the arterial radius parameter related to the atherosclerotic risk factors being an increased size of arterial radius at said lesion-prone sites or other risk factors that increase the size of said arterial radius;
- substituting a measured temperature value, [[T_m]] $\underline{Tm_7}$ in °C, of the individual's plasma fluid in the region at said lesion-prone sites, wherein said $\underline{Tm_7}$ is determined using a medical technique for measuring the temperature of human blood plasma or said [[T_m]] $\underline{Tm_7}$ is determined by the physician, into eq. 1.2

Reply to Office action of April 5, 2008

yields
$$Jm_7 = H_T Tm_7^{\frac{16}{27}}$$
 where $H_T = Bc^{\frac{11}{9}}a^{\frac{7}{3}}f^{\frac{2}{9}}p^{\frac{1}{3}}z^{\frac{-2}{9}}$,

substituting a normal value, $[[T_n]] \underline{Tn_7}$ in °C, of said plasma temperature <u>parameter</u>, wherein said $\underline{Tn_7}$ is determined by the physician or said $[[T_n]] \underline{Tn_7} = 37$ °C, into eq. 1.2 yields $Jn_7 = H_T Tn_7^{\frac{16}{27}}$,

calculating $\left[\left[\frac{J_m - J_n}{J_n}\right]\right] \frac{Jm_7 - Jn_7}{Jn_7}$, where T_m yielded by substituting said T_m into said equation (1.1) and J_n yielded by substituting said T_n into said equation (1.1) yields: $\left[\left[R - \left(\frac{T_m}{T_m}\right)^{\frac{16}{27}} - 1\right]\right]R_n = \left(\frac{Tm_7}{T_m}\right)^{\frac{16}{27}} - 1$ (7)

$$[[R_{7} = \left(\frac{T_{m}}{T_{n}}\right)^{\frac{16}{27}} - 1]]R_{7} = \left(\frac{Tm_{7}}{Tn_{7}}\right)^{\frac{16}{27}} - 1$$
(7)

where $Tm_7 \ge Tn_7$, and

substituting said T_m -and-said T_n -into (7) where T_m $\geq T_n$ -and

calculating (7) yields the disease risk R₇ caused by the plasma temperature parameter related to the atherosclerotic risk factors being an elevated temperature of said human blood plasma

Reply to Office action of April 5, 2008

at said lesion-prone sites, elevated body temperature-related diseases or other risk factors that increase said plasma temperature;

substituting a measured value, $[\alpha_m]\alpha_m$ in degree, of the angle between the gravity and average velocity of the blood fluid in the region at said lesion-prone sites, wherein said αm_8 is determined using a medical technique for measuring the human arterial geometries or said $[\alpha_m]\alpha m_8$ is determined by the physician, into eq. 1.3 yields $Jm = H_\alpha(\cos\alpha m_8)^{\frac{1}{9}} \text{ where } H_\alpha = Ec^{\frac{11}{9}}D^{\frac{16}{27}}z^{-\frac{2}{9}},$

substituting a normal value, $[[\alpha_n]]\alpha n_8$ in degree, of said angle parameter, wherein said αn_8 is determined by the physician or said $[[\alpha_n]]\alpha n_8 =$ a value between the 10° and 60° for adult, into eq. 1.3 yields $Jn = H_{\alpha}(\cos\alpha n_8)^{\frac{2}{9}}$,

calculating [$[\frac{J_m-J_n}{J_n}]$] $\frac{Jm_8-Jn_8}{Jn_8}$, where J_m yielded by substituting said α_m into said equation (1-1) and J_n yielded by substituting said α_n into said equation (1-3) yields:

Reply to Office action of April 5, 2008

$$[R_8 = \left(\frac{\cos\alpha_m}{\cos\alpha_n}\right)^{\frac{2}{9}} - 1]R_8 = \left(\frac{\cos\alpha m_8}{\cos\alpha n_8}\right)^{\frac{2}{9}} - 1$$
 (8)

where $\alpha n_8 \geq \alpha m_8$, and

substituting said α_n and said α_n into (8) where α_n $\geq \alpha_m$ and

- calculating (8) yields the disease risk R₈
 caused by the angle parameter related to the atherosclerotic risk factors being a reduced size of said angle or other risk factors that reduce said angle size; and
- substituting a measured value, $[Z_m]Z_{m_9}$ in cm, of the individual's axial length of diffusion flux along the inner arterial wall at said lesion-prone sites, wherein said Z_{m_9} is determined using a medical technique for measuring the human arterial geometries or said $[Z_m]Z_{m_9}$ is determined by the physician, into

eq. 1.1 yields
$$Jm = H_z Zm_0^{\frac{2}{9}}$$
 where $H_z = Ac^{\frac{11}{9}}(v^3D^{16})^{\frac{1}{27}}(g\cos\alpha + fu)^{\frac{2}{9}}$.

substituting a normal value, $[[Z_n]] \underline{Zn_9}$ in cm, of said axial length parameter, wherein said Zn_9

Reply to Office action of April 5, 2008

is determined by the physician or said $[[Z_n]] \underline{Zn_9} = \text{a value between 0.10 cm and 1.00 cm,}$ $\underline{\text{into eq. 1.1 yields}} \underline{Jn = H, Zn_9}^{\frac{2}{9}},$

calculating [$\left[\frac{J_m - J_n}{J_n}\right]$] $\frac{Jm_9 - Jn_9}{Jn_9}$, where J_m yielded by substituting said Z_m —into said equation (1.1) and J_n yielded by substituting said Z_n —into said equation (1.1) yields: $[[R_9 = \left(\frac{Z_n}{Z_m}\right)^{\frac{2}{9}} - 1]]R_9 = \left(\frac{Zn_9}{Zm_9}\right)^{\frac{2}{9}} - 1$ (9)

where $Zn_9 \ge Zm_9$, and

substituting said z_m -and said z_n -into (9) where z_m $\leq z_n$ -and

calculating (9) yields the disease risk R₉
caused by the axial diffusion length parameter
related to the atherosclerotic risk factors
being a decrease in said axial length of the
diffusion flux or other risk factors that
decrease said diffusion length.

Claim 3 (previously presented): The method of claim 2, further comprising: adding said all nine disease risks R_1 to R_9 containing a total risk of said

Reply to Office action of April 5, 2008

disease consisting;

- a current total risk of said disease related to the currently measured values of said atherosclerotic parameters; and
- a previous total risk of said disease related to the previously measured values of said atherosclerotic parameters.

Claim 4 (previously presented): The method of claim 3, further comprising: determining a disease risk level containing said total risk of said disease comprising:

dividing the disease risk level into the following seven risk sublevels: 0.84 ≥ first disease risk level ≥ 0.00, 1.75 ≥ second disease risk level > 0.84, 2.70 ≥ third disease risk level > 1.75, 3.70 ≥ fourth disease risk level > 2.70, 4.70 ≥ fifth disease risk level > 3.70, 5.80 ≥ sixth disease risk level > 4.70 and seventh disease risk level >5.80; and

selecting a disease risk level containing said total risk of said disease from among seven of

Reply to Office action of April 5, 2008

said disease risk sublevels.

Claim 5 (previously presented): The method of claim 3, further comprising: selecting an atherosclerotic risk factor related to the atherosclerotic parameter having the greatest contribution to said total risk of said disease so as to result in said risk factor as a primary therapy target of said disease.

Claim 6 (previously presented): The method of claim 2, further comprising: selecting a greater flux between the LDL mass transfer flux and the monocyte mass transfer flux so as to result in said greater flux as a primary cause in said disease comprising:

selecting the LDL mass transfer flux as a primary cause in said disease when said $R_1 \geq \text{said } R_2$; or

selecting the monocyte mass transfer flux as a primary cause in said disease when said $R_1 < \text{said } R_2$.

Claim 7 (previously presented): The method of claim 2, further comprising: selecting a greater concentration level between the LDL level in the

Reply to Office action of April 5, 2008

human serum and the CRP level in the human blood plasma so as to result in said greater level as a secondary therapy target comprising:

- selecting the LDL level in the serum as a secondary therapy target of said disease when said $R_1 \ge \text{said } R_2$; or
- selecting the CRP level in the plasma as a secondary therapy target of said disease when said R_1 < said R_2 .

Claim 8 (previously presented): The method of claim 3, further comprising: calculating a relative ratio between said current total risk of said disease and said previous total risk of said disease so as to yield said relative ratio as a therapeutic efficacy of said disease.

Claim 9 (currently amended): The method of claim 1, further comprising: said method containing the steps of:

the step 1 of determining the disease risk-R₁

yielded by the difference between the measured

value c_m and the normal value c_n of the LDL

concentration parameter wherein c_n ≥ c_n and

Reply to Office action of April 5, 2008

 $R_1 = \left(\frac{c_m}{c_n}\right)^{\frac{11}{9}} + \frac{calculating}{c_n} R_1 = \left(\frac{Cm_1}{Cn_1}\right)^{\frac{11}{9}} - 1 + \frac{vields}{c_n} + \frac{c_m}{c_n}$ disease risk R1 wherein Cm1 is a measured value of the indivdual's LDL concentration in human serum, Cn1 is a normal value of the LDL concentration parameter and Cm₁ ≥ Cn₁; determining the disease risk Rg yielded by the difference between the measured value em-and the normal value c, of the CRP concentration parameter wherein $c_m \ge c_n$ and $R_2 = F(\frac{c_m}{c})^{\frac{1}{9}} - 1)$ where $F = \begin{pmatrix} D_c \\ D \end{pmatrix}^{\frac{16}{27}}$, $D_c = -$ the CRP diffusion coefficient and D. - the LDL diffusion coefficient, calculating $R_2 = F\left(\frac{Cm_2}{Cn_1}\right)^{\frac{11}{2}} - 1$ yields the disease risk R2 wherein Cm2 is a measured value of the individual's CRP concentration in human blood plasma, Cn2 is a normal value of the CRP concentration parameter, $F = \left(\frac{D_c}{D}\right)^{\frac{10}{27}}$, $D_c =$ the CRP diffusion coefficient, D_L = the LDL diffusion coefficient and Cm2 ≥ Cn2; determining the disease risk Ra yielded by the difference between the measured value pm and the normal

value p, of the blood systolic pressure

XING F WANG

Appl. No. 10/810,296 Dated April 10, 2008 Reply to Office action of April 5, 2008

calculating
$$R_3 = \left(\frac{Pm_3}{Pn_3}\right)^{\frac{1}{3}} - 1$$
 yields the disease risk

 R_3 wherein Pm_3 is a measured value of the individual's blood systolic pressure, Pn_3 is a normal value of the blood systolic pressure parameter and $Pm_3 \ge Pn_3$; determining the disease risk R_4 yielded by the difference between the measured value P_m and the normal value P_n of the blood diastolic pressure parameter wherein

$$p_m \ge p_m$$
 and $R_4 = \left(\frac{P_m}{P_n}\right)^{\frac{1}{3}} + \frac{\text{calculating}}{P_n} R_4 = \left(\frac{Pm_4}{Pn_4}\right)^{\frac{1}{3}} - 1$

yields disease risk R_4 wherein Pm_4 is a measured value of the dividual's blood diastolic pressure, Pn_4 is a normal value of the blood diastolic pressure parameter and Pm_4 $\geq Pn_4$; determining the disease risk R_5 yielded by the difference between the measured value f_m and the normal value f_m of the heart rate parameter wherein $f_m \geq f_n$ and $R_5 = \left(\frac{f_m}{f_m}\right)^{\frac{2}{9}} - 1$,

calculating
$$R_s = \left(\frac{Fm_s}{Fn_s}\right)^{\frac{2}{9}} - 1$$
 yields disease risk R_5

wherein Fm₅ is a measured value of the individual's heart rate, Fn₅ is a normal value

Reply to Office action of April 5, 2008

of the heart rate parameter and Fm5 ≥ Fn5; determining the disease risk Rs yielded by the difference between the measured value am and the normal value a, of the arterial radius parameter wherein $a_m \ge a_n$ and $R_6 = \left(\frac{a_m}{a}\right)^{\frac{2}{3}} \frac{1}{r}$

calculating $R_6 = \left(\frac{Am_6}{An_6}\right)^{\frac{2}{3}} - 1$ yields disease risk R_6

wherein Ame is a measured radius value of the individual's arterial vessel at the lesionprone sites of arterial bifurcations, arterial branching, arterial curvatures or arterial tapering, An6 is a normal value of said arterial radius parameter and Am₆ ≥ An₆; determining the disease risk R, yielded by the difference-between the measured value Tm and the normal value Tn of the plasma temperature

parameter wherein $T_m \geq T_p$ and $R_r = \begin{pmatrix} T_m \\ T_r \end{pmatrix}^{\frac{16}{27}} + \frac{1}{r}$

calculating $R_7 = \left(\frac{Tm_7}{Tn_1}\right)^{\frac{16}{27}} - 1$ yields disease risk R_7

wherein Tm7 is a measured temperature value of the individual's plasma fluid in the region at said lesion-prone sites, Tn, is a normal value of said plasma temperature parameter and Tm₇ > In; determining the disease risk Re yielded by

Reply to Office action of April 5, 2008

the-difference between the measured-value α_n and the normal value α_n of the angle parameter

wherein $\alpha_n \ge \alpha_m$ and $R_8 = \left(\frac{\cos \alpha_m}{\cos \alpha_n}\right)^{\frac{2}{9}} - 1$, calculating

 $R_8 = \left(\frac{\cos\alpha \, m_8}{\cos\alpha \, n_8}\right)^{\frac{2}{9}} - 1 \quad \text{yields disease risk } R_8 \quad \text{wherein}$

the gravity and average velocity of the blood fluid in the region at said lesion-prone sites, αn_8 is a normal value of the angle parameter and $\alpha n_8 \geq \alpha m_8$; and determining the disease risk R_9 yielded by the difference between the measured value z_m and the normal value z_n of the diffusion length parameter wherein $z_n \geq z_m$

and $R_{\circ} = \left(\frac{z_{n}}{z_{m}}\right)^{\frac{2}{9}} + \frac{1}{1} \cdot \frac{\text{calculating}}{\text{calculating}} R_{\circ} = \left(\frac{Zn_{\circ}}{Zm_{\circ}}\right)^{\frac{2}{9}} - 1 \cdot \frac{\text{yields}}{2}$

disease risk R_9 wherein Zm_9 is a measured value of the individual's axial length of diffusion flux along the inner arterial wall at said lesion-prone sites, Zn_9 is a normal value of said axial diffusion length parameter and $Jn_9 \ge Jm_9$;

the step 2 of adding all nine disease risks R_1 to R_9 in the step 1 containing a total risk of said disease consisting of a current total risk

Reply to Office action of April 5, 2008

of said disease related to the currently measured values of the atherosclerotic parameters and a previous total risk of said disease related to the previously measured values of the atherosclerotic parameters;

the step 3 of selecting a disease risk level containing said total risk of said disease in the step 2 from following among seven of the disease risk sublevels: 0.84 ≥ first disease risk level ≥ 0.00, 1.75 ≥ second disease risk level > 0.84, 2.70 ≥ third disease risk level > 1.75, 3.70 ≥ fourth disease risk level > 2.70, 4.70 ≥ fifth disease risk level > 3.70, 5.80 ≥ sixth disease risk level > 4.70 and seventh disease risk level >5.80;

the step 4 of selecting an atherosclerotic risk factor related to an atherosclerotic parameter having the greatest contribution to said total risk of said disease in the step 2 so as to result in said risk factor as a primary therapy target of said disease;

the step 5 of selecting the LDL mass transfer flux as a primary cause in said disease when

Reply to Office action of April 5, 2008

said R_1 in the step 1 \geq said R_2 in the step 1 or selecting the monocyte mass transfer flux as a primary cause in said disease when said $R_1 <$ said R_2 ;

the step 6 of selecting the LDL level in human serum as a secondary therapy target of said disease when said R_1 in the step $1 \ge$ said R_2 in the step 1 or selecting the CRP level in human blood plasma as a secondary therapy target of said disease when said $R_1 <$ said R_2 ; and

the step 7 of calculating a relative ratio
between said current total risk of said disease
in the step 2 and said previous total risk of
said disease in the step 2 so as to yield said
relative ratio as a therapeutic efficacy of
said disease; and

wherein the step 1 through the step 7 are written as an executable computer program named the MMA.exe, or another name, to be installed into a general purpose digital computer device to accomplish said method and to output a result of said method to a display or—a memory—or another computer—on a network, or to a user comprising:

Reply to Office action of April 5, 2008

starting the MMA.exe program on said device;

- inputting the currently measured values, the previously measured values and the normal values of the individual's atherosclerosis parameters into the input screen of said MMA.exe by using the keyboard of said device;
- clicking the "update" button and the "calc. risk" button of said input screen;
- clicking the "evaluate" button of the MMA.exe output screen; and
- outputting said output screen to a display or a memory or another computer on a network, or to a user by using said computer device so as to produce a result of said method, called the screening report containing a total risk of said disease, a disease risk level, a primary cause in said disease, a primary therapy target of said disease, a secondary therapy target of said disease and a therapeutic efficiency, to the individual who requires the diagnosis, the prevention or the treatment of the therapy to prevent or to treat atherosclerosis-related CHD or stroke or other cardiovascular disease.

Reply to Office action of April 5, 2008

Claim 10 (previously presented): The method of claim 9, further comprising: repeating said method accomplished by using said device until the individual's disease risk level is reduced to a normal level for the individual who requires the therapy to prevent or to treat atherosclerosis-related CHD or stroke—or other cardiovascular disease.