Mathematical Proof: Problem Set 5

Koichiro Takahashi

March 25, 2024

We know the triangle inequality from the textbook(or our class):

Theorem 4.17: Let $a, b \in \mathbb{R}$. $|a + b| \le |a| + |b|$.

Problem.1

Proof: Let $a, b, c, d \in \mathbb{R}$. Here,

$$(ac + bd)^2 = a^2c^2 + b^2d^2 + 2abcd$$

$$(ab - cd)^2 = a^2b^2 + c^2d^2 - 2abcd$$

Since the square of any real number is non-negative, observe

$$(ab - cd)^2 \ge 0$$

 \Leftrightarrow

$$a^2b^2 + c^2d^2 - 2abcd > 0$$

 \Leftrightarrow

$$2abcd \le a^2b^2 + c^2d^2$$

By adding the same terms on both hand sides,

$$a^2c^2 + b^2d^2 + 2abcd \le a^2b^2 + a^2c^2 + b^2d^2 + c^2d^2$$

 \Leftrightarrow

$$(ac + bd)^2 \le (a^2 + c^2)(b^2 + d^2)$$

 \Rightarrow

$$|ac + bd| \le |ac + bd| \le \sqrt{(a^2 + c^2)(b^2 + d^2)} = \sqrt{(a^2 + c^2)} \cdot \sqrt{(b^2 + d^2)}$$

From the above, the statement is true.

Problem.2

<u>Proof</u>: Let $x, y, z \in \mathbb{Z}$. Here, (x - y) + (y - z) = x - z, also $x - z, x - y, y - z \in \mathbb{R}$. By applying the triangle inequality above as a = x - y, b = y - z, we get

$$|x-z| \leq |x-y| + |y-z|$$
.

Problem.3

Proof: Let $a, b \in \mathbb{R}$ s.t. a > 0, b > 0.

Since the square of any real number is non-negative, observe

$$(a-b)^2 = a^2 + b^2 - 2ab \ge 0$$

 \Leftrightarrow

$$a^2 + b^2 > 2ab$$

 \Leftrightarrow

$$\frac{a^2 + b^2}{ab} \ge 2 \quad (\because ab > 0)$$

 \Leftrightarrow

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

From the above, the statement is true.

By following the proof above backwards as a equation, immediately we see that

$$\frac{a}{b} + \frac{b}{a} = 2 \Leftrightarrow (a-b)^2 = 0 \Leftrightarrow a = b$$

Therefore, the complete solution set $U = \{(a,b) \mid \forall (a,b) \in \mathbb{R}^2 \text{ s.t. } a > 0, \ b > 0, \ a = b\}.$

Problem.4

Proof: Let A and B be sets.

 (\Leftarrow)

Suppose A = B, by definition, $\forall x \in A, x \in B \text{ and } \forall x \in B, x \in A$. We prove $(A \cup B) \subseteq (A \cap B)$ and $(A \cup B) \supseteq (A \cap B)$. (\subseteq) Let $x \in (A \cup B)$.

<u>Case 1</u>: $x \in A$. Then $x \in B$ (: A = B). Therefore, $x \in (A \cap B)$.

<u>Case 2</u>: $x \in B$. Then $x \in A$ (: A = B). Therefore, $x \in (A \cap B)$.

Thus, $(A \cup B) \subseteq (A \cap B)$.

 (\supseteq) Let $x \in (A \cap B)$. By definition, $x \in A$ and $x \in B$. Therefore, $x \in (A \cup B)$. Thus, $(A \cup B) \supseteq (A \cap B)$.

So,
$$(A \cup B) = (A \cap B)$$
.

 (\Rightarrow)

Suppose $(A \cup B) = (A \cap B)$. We prove $A \subseteq B$ and $A \supseteq B$.

- $(\subseteq) \ \forall x \in A \subseteq (A \cup B) = (A \cap B)$. Therefore, $x \in B$, $A \subseteq B$.
- $(\supseteq) \ \forall x \in B \subseteq (A \cup B) = (A \cap B)$. Therefore, $x \in A, A \supseteq B$.

So, A = B.

From the above, the statement is true.

Problem.5

We prove that

$$(A \times B) \cap (B \times A) = \emptyset \Leftrightarrow A \cap B = \emptyset$$

Proof: Let A and B be sets.

 (\Leftarrow)

Suppose $A \cap B = \emptyset$, by definition, $\forall x \in A, x \notin B$, and $\forall y \in B, y \notin A$.

Let $a \in (A \times B)$, then $\exists x \in A, \exists y \in B, s.t. \ a = (x, y), \text{ but } a \notin (B \times A), \text{ since } x \notin B, \text{ and } y \notin A.$

Similarly, let $b \in (B \times A)$, then $\exists y \in B, \exists x \in A, s.t. b = (y, x)$, but $b \notin (A \times B)$, since $y \notin A$, and $x \notin B$.

Therefore, $(A \times B) \cap (B \times A) = \emptyset$.

 (\Rightarrow)

Suppose $(A \times B) \cap (B \times A) = \emptyset$. Let $x \in A, y \in B$, then $\exists a \in (A \times B) \text{ s.t. } a = (x, y)$, and also, $\exists b \in (B \times A) \text{ s.t. } b = (y, x)$. However, since $(A \times B) \cap (B \times A) = \emptyset$, $a \neq b \Rightarrow x \neq y$. So $x \notin B, y \notin A, A \cap B = \emptyset$.

From the above, the statement is true.

Problem.6

Proof: Let A, B, C and D be sets.

We prove $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$ and $(A \times B) \cap (C \times D) \supseteq (A \cap C) \times (B \cap D)$.

 (\subseteq)

Let $w \in (A \times B) \cap (C \times D)$, by definition, $w \in (A \times B)$, and $w \in (C \times D)$. By definition, $\exists x \in A, \exists y \in B \text{ s.t. } w = (x, y)$, but also $x \in C, y \in D \ (\because w \in (C \times D))$. Therefore, $x \in A$ and $x \in C$, also $y \in B$ and $y \in D$. Thus, $w = (x, y) \in (A \cap C) \times (B \cap D)$, $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$.

 (\supseteq)

Let $w \in (A \cap C) \times (B \cap D)$, by definition, $\exists x \in (A \cap C), \exists y \in (B \cap D)$ s.t. w = (x, y). By definition, $x \in A$ and $x \in C$, also $y \in B$ and $y \in D$. Therefore, $w = (x, y) \in (A \times B)$ and $w = (x, y) \in (C \times D)$. Thus, $w \in (A \times B) \cap (C \times D), (A \times B) \cap (C \times D) \supseteq (A \cap C) \times (B \cap D)$.

From the above, the statement is true.