WELTORGANISATION FÜR GEISTIGES EIGENTU Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00 16/28, C12N 15/63, A61K 39/395, G01N 33/53

A3

(11) Internationale Veröffentlichungsnummer: WO 99/57150

(43) Internationales

Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):

DEUTSCHES KREBSFORSCHUNGSZENTRUM
STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neckargemünd (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AF, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 22. Juni 2000 (22.06.00)

(54) Title: MULTIVALENT ANTIBODY CONSTRUCTS

(54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_{ν} antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_{ν} antibody construct. In addition, the invention relates to a method for producing the F_{ν} antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes F_V-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches F_V-Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der F_V-Antikörper-Konstrukte sowie deren Verwendung.

A

THIS PAGE IS BLANK

WELTORGANISATION FUR GEISTIGES EIGENTUM

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) (51) Internationale Patentklassifikation 6:

C07K 16/00

A2

WO 99/57150 (11) Internationale Veröffentlichungsnummer:

(43) Internationales

Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für Bestimmungsstaaten ausser KREBSFORSCHUNGSZENTRUM **DEUTSCHES** STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neckargemund (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: MULTIVALENT ANTIBODY CONSTRUCTS

(54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_v antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an Fv antibody construct. In addition, the invention relates to a method for producing the F_{ν} antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes Fv-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches Fv-Antikorper-Konstrukt codieren, und ein Verfahren zur Herstellung der Fv-Antikörper-Konstrukte sowie deren Verwendung.

Α

В

Linker 2

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AΤ	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑÜ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ.	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
					- 0 -r -		

Multivalente Antikörper-Konstrukte

Die vorliegende Erfindung betrifft multivalente F_v -Antikörper-Konstrukte, sie kodierende Expressionsplasmide, und ein Verfahren zur Herstellung der F_v -Antikörper-Konstrukte sowie ihre Verwendung.

Natürliche Antikörper sind Dimere und werden daher als bivalent bezeichnet. Sie weisen vier variable Domänen, nämlich zwei V_{H^-} und zwei V_{L^-} Domänen, auf. Die variablen Domänen dienen als Bindungsstellen für ein Antigen, wobei eine Bindungsstelle aus einer V_{H^-} und einer V_{L^-} Domäne ausgebildet ist. Natürliche Antikörper erkennen jeweils ein Antigen, wodurch sie auch als monospezifisch bezeichnet werden. Ferner weisen sie auch konstante Domänen auf. Diese tragen zur Stabilität der natürlichen Antikörper bei. Andererseits sind sie auch für unerwünschte Immunreaktionen mitverantwortlich, die entstehen, wenn natürliche Antikörper verschiedener Tierarten wechselseitig verabreicht werden.

Zur Vermeidung solcher Immunreaktionen werden Antikörper konstruiert, denen die konstanten Domänen fehlen. Insbesondere sind dies Antikörper, die nur noch die variablen Domänen aufweisen. Solche Antikörper werden mit F_v-Antikörper-Konstruten bezeichnet. Diese liegen häufig in Form einzelkettiger, sich miteinander gepaarter Monomere vor.

Es hat sich allerdings gezeigt, daß F_v -Antikörper-Konstrukte nur eine geringe Stabilität aufweisen. Ihre Verwendbarkeit für therapeutische Zwecke ist daher stark eingeschränkt.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Antikörper bereitzustellen, mit dem unerwünschte Immunreaktionen vermieden werden können. Ferner soll er eine Stabilität aufweisen, die ihn für therapeutische Zwecke

einsetzbar macht.

Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.

Gegenstand der vorliegenden Erfindung ist somit ein multivalentes F_v -Antikörper-Konstrukt, das eine große Stabilität aufweist. Ein solches eignet sich für diagnostische und therapeutische Zwecke.

Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß die Stabilität eines F_v-Antikörper-Konstruktes erhöht werden kann, wenn dieses in Form eines einzelkettigen Dimeres vorliegt, bei dem die vier variablen Domänen über drei Peptidlinker miteinander verbunden sind. Ferner hat der Anmelder erkannt, daß sich das F_v-Antikörper-Konstrukt mit sich selbst faltet, wenn der mittlere Peptidlinker eine Länge von etwa 10 - 30 Aminosäuren aufweist. Des weiteren hat der Anmelder erkannt, daß sich das F_v-Antikörper-Konstrukt mit anderen F_v-Antikörper-Konstrukten zusammenfaltet, wenn der mittlere Peptidlinker eine Länge von etwa bis zu 10 Aminosäuren aufweist, wodurch ein multimeres, d.h. multivalentes, F_v-Antikörper-Konstrukt erhalten wird. Auch hat der Anmelder erkannt, daß das F_v-Antikörper-Konstrukt multispezifisch sein kann.

Erfindungsgemäß werden die Erkenntnisse des Anmelders genutzt, ein multivalentes F_v -Antikörper-Konstrukt bereitzustellen, das mindestens vier variable Domänen umfaßt, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.

Der Ausdruck "F_v-Antikörper-Konstrukt" weist auf einen Antikörper hin, der variable Domänen, nicht aber konstante Domänen aufweist.

Der Ausdruck "multivalentes F_v -Antikörper-Konstrukt" weist auf einen F_v -Antikörper hin, der mehrere variable Domänen, jedoch mindestens vier aufweist. Solches wird erreicht, wenn sich das einzelkettige F_v -Antikörper-Konstrukt mit sich selbst faltet, wodurch vier variable Domänen gegeben sind, oder sich mit anderen einzel-

kettigen F_v-Antikörper-Konstrukten zusammenfaltet. In letzterem Fall liegt ein F_v-Antikörper-Konstrukt vor, das 8, 12, 16, etc. variable Domänen aufweist. Günstig ist es, wenn das F_v-Antikörper-Konstrukt vier oder acht variable Domänen aufweist, d.h. es ist bi- oder tetravalent (vgl. Fig. 1). Ferner können die variablen Domänen gleich oder verschieden voneinander sein, wodurch das Antikörper-Konstrukt ein oder mehrere Antigene erkennt. Vorzugsweise erkennt das Antikörper-Konstrukt ein oder zwei Antigene, d.h. es ist mono- bzw. bispezifisch. Beispiele solcher Antigene sind die Proteine CD19 und CD3.

Der Ausdruck "Peptidlinker 1, 3" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v-Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Die Peptidlinker 1 und 3 können gleich oder verschieden voneinander sein. Ferner kann der Peptidlinker eine Länge von etwa 0 - 10 Aminosäuren aufweisen. In ersterem Fall ist der Peptidlinker lediglich eine Peptidbindung aus dem COOH-Rest einer der variablen Domänen und dem NH₂-Rest einer anderen der variablen Domänen. Vorzugsweise weist der Peptidlinker die Aminosäuresequenz GG auf.

Der Ausdruck "Peptidlinker 2" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v-Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Ferner kann der Peptidlinker eine Länge von etwa 3 -10 Aminosäuren, insbesondere 5 Aminosäuren, und ganz besonders die Aminosäuresequenz GGPGS, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v-Antikörper-Konstrukt mit anderen einzelkettigen F_v-Antikörper-Konstrukten zusammenfaltet. Des weiteren kann der Peptidlinker eine Länge von etwa 11 - 20 Aminosäuren, insbesondere 15 - 20 Aminosäuren, und ganz besonders die Aminosäuresequenz (G₄S)₄, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v-Antikörper-Konstrukt mit sich selbst faltet.

Ein erfindungsgemäßes F_v-Antikörper-Konstrukt kann durch übliche Verfahren hergestellt werden. Günstig ist ein Verfahren, bei dem für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird. Es wird auf die Beispiele 1 - 6 verwiesen. Hinsichtlich der Ausdrücke "F_v-Antikörper-Konstrukt" und "Peptidlinker" wird auf vorstehende Ausführungen verwiesen. Ergänzend wird auf Maniatis, T. et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory 1982, verwiesen.

DNAs, die für ein erfindungsgemäßes F_v -Antikörper-Konstrukt kodieren, sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Expressionsplasmide, die solche DNAs enthalten, auch Gegenstand der vorliegenden Erfindung. Bevorzugte Expressionsplasmide sind pDISC3x19-LL, pDISC3x19-SL, pPIC-DISC-LL, pPIC-DISC-SL, pDISC5-LL und pDISC6-SL. Die ersteren vier wurden bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) am 30. April 1998 unter DSM 12150, DSM 12149, DSM 12152 bzw. DSM 12151 hinterlegt.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit, umfassend:

- (a) ein erfindungsgemäßes F_v-Antikörper-Konstrukt, und/oder
- (b) ein erfindungsgemäßes Expressionsplasmid, sowie
- (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel und Kontrollen.

Von den einzelnen Komponenten können ein oder mehrere Vertreter vorliegen.

Die vorliegende Erfindung stellt ein multivalentes F_v -Antikörper-Konstrukt bereit, bei dem die variablen Domänen über Peptidlinker miteinander verbunden sind. Ein solches Antikörper-Konstrukt zeichnet sich dadurch aus, daß es keine Teile enthält, die zu unerwünschten Immunreaktionen führen können. Ferner weist es eine große Stabilität auf. Des weiteren ermöglicht es mehrere Antigene gleichzeitig zu binden. Das erfindungsgemäße F_v -Antikörper-Konstrukt eignet sich daher bestens nicht nur für diagnostische, sondern auch für therapeutische Zwecke verwendet zu werden.

Solche Zwecke können hinsichtlich jeder Erkrankung, insbesondere einer viralen, bakteriellen oder Tumor-Erkrankung, gesehen werden.

Kurze Beschreibung der Zeichnungen:

Fig. 1 zeigt die genetische Organisation eines erfindungsgemäßen F_v -Antikörper-Konstruktes (A) und Schemata zur Bildung eines bivalenten (B) bzw. tetravalenten F_v -Antikörper-Konstruktes (C). Ag: Antigen; His₈: sechs C-terminale Histidinreste; Stop: Stoppcodon (TAA); V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 2 zeigt das Schema zur Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL. c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E1 erkannt wird, His_e: Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB: Signalpeptidsequenz der bakteriellen Pectatlyase (PelB-Leader); rbs: Ribosomenbindungsstelle; Stop: Stoppcodon (TAA); V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 3 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; *c-myc*. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt *lao*-Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_H- und V_L-Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 4 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen, das für β --

Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; *c-myc.* Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt *lac-*Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid codiert, das die V_H- und V_L-Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid codiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 5 zeigt die Nukleotid- und die davon abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDIS3x19-LL kodierten bivalenten F_v-Antikörper-Konstruktes. *c-myo*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region; Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 6 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDISC3x19-SL kodierten tetravalenten F_v-Antikörper-Konstruktes. *c-myo*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region, Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 7 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das tetravalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-SL. Alpha-Faktor-Signal: Leaderpeptidsequenz des

Saccharomyces cerevisiae- α -Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

Fig. 8 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das bivalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-LL. Alpha-Faktor-Signal: Leaderpeptidsequenz des *Saccharomyces cerevisiae-α*-Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

Fig. 9 zeigt ein Diagramm des Expressionsplasmids pDISC5-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β -Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Repressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das α-Peptid von β-Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_{H^-} und V_L -Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tlPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 10 zeigt ein Diagramm des Expressionsplasmids pDISC6-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Re-

pressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das α -Peptid von β -Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_H - und V_L -Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tIPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Die Erfindung wird durch die nachfolgenden Beispiele erläutert.

Beispiel 1: Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v -Antikörper-Konstrukten in Bakterien

Die Plasmide pHOG-αCD19 und pHOG-dmOKT3, welche für die scFv-Fragmente kodieren, die von dem Hybridom HD37, das für menschliches CD19 (Kipriyanov *et al.*, 1996, *J. Immunol. Meth.* 196, 51-62) spezifisch ist, bzw. von dem Hybridom OKT3, das für menschliches CD3 (Kipriyanov *et al.*, 1997, *Protein Eng.* 10, 445-453) spezifisch ist, abgeleitet sind, wurde zur Konstruktion von Expressionsplasmiden für ein einzelkettiges F_v-Antikörper-Konstrukt verwendet. Ein PCR-Fragment 1 der V_H-Domäne von Anti-CD19, gefolgt von einem Segment, das für einen GlyGly-Linker codiert, wurde unter Verwendung der Primer DP1, 5'-TCA-CACAGAATTCTTAGATCTATTAAAGAGGAGAAATTAACC, und DP2, 5'-AGCACACGATATCACCGCCAAGCTTGGGTGTTGTTTTGGC, erzeugt (vgl. Fig. 2). Das PCR-Fragment 1 wurde mit *Eco*RI und *Eco*RV gespalten und mit dem mit *Eco*RI/*Eco*RV linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG19-3 erzeugt wurde. Das PCR-Fragment 2 der V_L-Domäne von Anti-CD19,

gefolgt von einem Segment, das für ein c-myc-Epitop und einen Hexahistidinylschwanz codiert, wurde unter Verwendung der Primer DP3, 5'-AGCACA-CAAGCTTGGCGGTGATATCTTGCTCACCCAAACTCCA, und DP4, 5'-AGCA-CACTCTAGAGACACACAGATCTTTAGTGATGGTGATGTGAGTTTAGG, erzeugt. Das PCR-Fragment 2 wurde mit HindII und Xbal gespalten und mit dem durch HindIII/Xbal linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG3-19 erhalten wurde (vgl. Fig. 2). Das für das hybride scFv-3-19 codierende Gen in dem Plasmid pHOG3-19 wurde mittels PCR mit den Primern Bi3sk, 5'-CAGCCGGCCATGGCGCAGGTGCAACTGCAGCAG und entweder Li-1, 5'-TATA-TACTG<u>CAGCTG</u>CACCTGGCTACCACCAC-AGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines langen flexiblen (Gly₄Ser)₄inter-scFv-Linkers (PCR-Fragment 3, vgl. Fig. 2) oder Li-2, 5'-TATA-TACTGCAGCTGCACCTGGGCCACCAGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines kurzen, starren GGPGS-Linkers (PCR-Fragment 4, vgl. Fig. 2) amplifiziert. Die Expressionsplasmide pDISC3x19-LL und pDISC3x19-SL wurden durch Ligierung des Ncd/Pvull-Restriktionsfragments aus pHOG19-3, umfassend das Vektorgerüst und die Ncol/Pvull-gespaltenen PCR-Fragmente 3 bzw. 4 konstruiert (vgl. Fig. 3, 4). Die vollständige Nukleotid- und Proteinsequenzen der bivalenten bzw. tetravalenten F_v-Antikörper-Konstrukte sind in den Figuren 5 bzw. 6 angegeben.

Beispiel 2: Konstruktion der Plasmide pPIC-DISC-LL und pPIC-DISC-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v-Antikörper-Konstrukten in Hefe

(A) Konstruktion von pPIC-DISC-SL

Der Vektor pPICZαA (Invitrogen BV, Leek, Niederlande) zur Expression und Sekretion von rekombinanten Proteinen in der Hefe *Pichia pastoris* wurde als Ausgangsmaterial verwendet. Er enthält ein Gen, das für das *Saccharomyces cerevi*- siae α-Faktor-Sekretionssignal codiert, gefolgt von einem Polylinker. Die Sekretion dieses Vektors beruht auf dem dominanten selektierbaren Marker, ZeocinTM, der sowohl in *Pichia* als auch in *E. coli* bifunktionell ist. Das Gen, das für das tetravalente F_v-Antikörper-Konstrukt (scDia-SL) codiert, wurde mittels PCR von der Matrize pDISC3x19-SL unter Verwendung der Primer 5-PIC, 5'-CCGTGAAT-TCCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGC, und pSEXBn 5'-GGTC-GACGTTAACCGACAAACAACAGATAAAACG amplifiziert. Das so erhaltene PCR-Produkt wurde mit *Eco*RI und *Xba*I gespalten und in mit *Eco*RI/*Xba*I linearisiertes pPICZαA ligiert. Es wurde das Expressionsplasmid pPIC-DISC-SL erhalten. Die Nukleotid- und Proteinsequenzen des tetravalenten F_v-Antikörper-Konstruktes sind in Fig. 7 gezeigt.

(B) Konstruktion von pPIC-DISC-LL

Die Konstruktion von pPIC-DISC-LL wurde auf der Grundlage von pPICZαA (Invitrogen BV, Leek, Niederlande) und pDISC3x19-LL (vgl. Fig. 3) durchgeführt. Die Plasmid-DNA pPICZαA wurde mit *Eco*RI gespalten. Die überstehenden 5'-Enden wurden unter Verwendung eines Klenow-Fragments der *E. coli*-DNA-Polymerase I aufgefüllt. Die so erhaltene DNA wurde mit *Xba*l gespalten, und das große Fragment, umfassend den pPIC-Vektor, wurde isoliert. Analog wurde die DNA von pDISC3x19-LL mit *Nco*l gespalten und mit einem Klenow-Fragment behandelt. Nach der Spaltung mit *Xba*l wurde ein kleines Fragment, umfassend ein für den bivalenten F_v-Antikörper kodierendes Gen, isoliert. Dessen Ligierung mit einer pPIC-abgeleiteten Vektor-DNA ergab das Plasmid pPIC-DISC-LL. Die Nukleotid-und Proteinsequenz des bivalenten F_v-Antikörper-Konstruktes sind in Fig. 8 gezeigt.

Beispiel 3: Expression des tetravalenten bzw. bivalenten F_v-Antikörper-Konstruktes in Bakterien

E. coli-XL1-Blue-Zellen (Stratagene, La Jolla, CA), die mit den Expressionsplasmiden pDISC3x19-LL bzw. pDISC3x19-SL transformiert worden waren, wurden

über Nacht in 2xYT-Medium mit 50 μ g/ml Ampicillin und 100 mM Glucose (2xYT_{Ge}) bei 37°C gezüchtet. 1:50-Verdünnungen der Übernachtkulturen in $2xYT_{GA}$ wurden als Kolbenkulturen bei 37°C unter Schütteln mit 200 UpM gezüchtet. Als die Kulturen einen OD₈₀₀-Wert von 0,8 erreicht hatten, wurden die Bakterien durch 10minütige Zentrifugation mit 1500 g bei 20°C pelletiert und in dem gleichen Volumen eines frischen 2xYT-Mediums, das 50 μ g/ml Ampicillin und 0,4 M Saccharose enthielt, resuspendiert. IPTG wurde bis zu einer Endkonzentration von 0,1 mM zugesetzt, und das Wachstum wurde bei Raumtemperatur (20-22°C) 18-20 h fortgesetzt. Die Zellen wurden durch 10minütige Zentrifugation mit 5000 g bei 4°C geerntet. Der Kulturüberstand wurde zurückgehalten und auf Eis gelagert. Um die löslichen periplasmatischen Proteine zu isolieren, wurden die pelletierten Bakterien in 5% des Anfangsvolumens an eiskalter 50 mM Tris-HCl, 20% Saccharose, 1 mM EDTA, pH 8,0, resuspendiert. Nach einer 1stündigen Inkubation auf Eis unter gelegentlichem Rühren wurden die Sphäroplasten mit 30.000 g 30 min bei 4°C zentrifugiert, wobei der lösliche periplasmatische Extrakt als Überstand und die Sphäroplasten mit dem unlöslichen periplasmatischen Material als Pellet erhalten wurden. Der Kulturüberstand und der lösliche periplasmatische Extrakt wurden vereinigt, durch weitere Zentrifugation (30.000 g, 4°C, 40 min) geklärt. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung (Endkonzentration 70% Sättigung) eingeengt. Das Proteinpräzipitat wurde durch Zentrifugation (10.000 g, 4°C, 40 min) gewonnen und in 10% des Anfangsvolumens an 50 mM Tris-HCl, 1 M NaCl, pH 7,0, aufgelöst. Eine immobilisierte Metallaffinitätschromatographie (IMAC) wurde bei 4°C unter Verwendung einer 5 ml Säule an chelatierender Sepharose (Pharmacia), die mit Cu2+ beladen war und mit 50 mM Tris-HCl, 1 M NaCl, pH 7,0 (Startpuffer) equilibriert worden war, durchgeführt. Die Probe wurde durch ihr Leiten über die Säule aufgeladen. Sie wurde dann mit zwanzig Säulenvolumina Startpuffer, gefolgt von Startpuffer mit 50 mM Imidazol, bis die Absorption bei 280 nm des Effluenten minimal war, gewaschen (etwa dreißig Säulenvolumina). Das absorbierte Material wurde mit 50 mM Tris-HCl, 1 M NaCl, 250 mM Imidazol, pH 7,0, eluiert.

Die Proteinkonzentrationen wurden mit dem Bradford-Farbstoffbindungstest (1976,

12

Anal. Biochem., <u>72</u>, 248-254) unter Verwendung des Bio-Rad(München, Deutschland)-Proteinassaykits bestimmt. Die Konzentrationen der gereinigten tetravalenten bzw. bivalenten F_v -Antikörper-Konstrukte wurden aus den A_{280} -Werten unter Verwendung der Extinktionskoeffizienten $\epsilon^{1mg/ml} = 1,96$ bzw. 1,93 bestimmt.

Beispiel 4: Expression des tetravalenten bzw. bivalenten Antikörper-Konstruktes in der Hefe *Pichia pastoris*

Kompetente *P. pastoris* GS155-Zellen (Invitrogen) wurden in Gegenwart von 10 μ g Plasmid-DNA von pPIC-DISC-LL bzw. pPIC-DISC-SL, die mit *Sad* linearisiert worden war, elektroporiert. Die Transformanten wurden 3 Tage bei 30°C auf YPD-Platten, die 100 μ g/ml ZeocinTM enthielten, selektiert. Die Klone, die bivalente bzw. tetravalente F_v -Antikörper-Konstrukte sezernierten, wurden durch Plattenscreening unter Verwendung eines anti-c-*myc*-mAk 9E10 (IC Chemikalien, Ismaning, Deutschland) selektiert.

Zur Expression der bivalenten bzw. tetravalenten F_v-Antikörper-Konstrukte wurden die Klone in YPD-Medium in Schüttelkolben 2 Tage bei 30°C unter Rühren gezüchtet. Die Zellen wurden zentrifugiert, in dem gleichen Volumen des Mediums, das Methanol enthielt, resuspendiert und weitere 3 Tage bei 30°C unter Rühren inkubiert. Die Überstände wurden nach der Zentrifugation gewonnen. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung, gefolgt von IMAC, wie vorstehend beschrieben, isoliert.

Beispiel 5: Charakterisierung des tetravalenten bzw. bivalenten F_v -Antikörper-Konstruktes

(A) Größenausschlußchromatographie

Eine analytische Gelfiltration der F_v -Antikörper-Konstrukte wurde in PBS unter Verwendung einer Superdex-200-HR10/30-Säule (Pharmacia) durchgeführt. Das

Probenvolumen und die Fließgeschwindigkeit betrugen 200 μ l/min bzw. 0,5 ml/min. Die Säule wurde mit hoch- und niedermolekularen Gelfiltrations-Kalibrationskits (Pharmacia) kalibriert.

(B) Durchflußzytometrie

Die menschliche CD3⁺/CD19⁻akute-T-Zell-Leukämielinie Jurkat und die CD19⁺/- CD3⁻B-Zellinie JOK-1 wurden für die Durchflußzytometrie verwendet. 5×10^5 Zellen in 50 μ l RPMI 1640-Medium (GIBCO BRL, Eggestein, Deutschland), das mit 10% FCS und 0,1% Natriumazid supplementiert war (als vollständiges Medium bezeichnet), wurden mit 100 μ l der F_v-Antikörper-Präparate 45 min auf Eis inkubiert. Nach Waschen mit dem vollständigen Medium wurden die Zellen mit 100 μ l 10 μ g/ml anti-c-myc-Mak 9E10 (IC Chemikalien) in dem gleichen Puffer 45 min auf Eis inkubiert. Nach einem zweiten Waschzyklus wurden die Zellen mit 100 μ l des FITC-markierten Ziege-anti-Maus-IgG (GIBCO BRL) unter den gleichen Bedingungen wie vorher inkubiert. Die Zellen wurden dann erneut gewaschen und in 100 μ l 1 μ g/ml-Propidiumiodid-Lösung (Sigma, Deisenhofen, Deutschland) in vollständigem Medium unter Ausschluß von toten Zellen resuspendiert. Die relative Fluoreszens der gefärbten Zellen wurde unter Verwendung eines FACScan-Durchflußzytometers (Becton Dickinson, Mountain View, CA) gemessen.

(C) Cytotoxizitätstest

Die CD19-exprimierende Burkitt-Lymphoma-Zellinie Raji und Namalwa wurden als Zielzellen verwendet. Die Zellen wurden in RPMI 1640 (GIBCO BRL), das mit 10% hitzeinaktiviertem FCS (GIBCO BRL), 2 mM Glutamin und 1 mM Pyruvat supplementiert war, bei 37°C in einer befeuchteten Atmosphäre mit 7,5% $\rm CO_2$ inkubiert. Die cytotoxischen T-Zell-Tests wurden in RPMI-1640-Medium, das mit 10% FCS, 10 mM HEPES, 2 mM Glutamin, 1 mM Pyruvat und 0,05 mM 2-ME supplementiert war, durchgeführt. Die cytotoxische Aktivität wurde unter Verwendung eines Standard[51 Cr]-Freisetzungstests bewertet; 2 x 10 6 Zielzellen wurden mit 200 μ Ci

Na[5 1Cr]O $_4$ (Amersham-Buchler, Braunschweig, Deutschland) markiert und 4mal gewaschen und anschließend in Medium in einer Konzentration von 2 x 10^5 /ml resuspendiert. Die Effektorzellen wurden auf eine Konzentration von 5 x 10^6 /ml eingestellt. Zunehmende Mengen an CTLs in 100 μ l wurden auf 10^4 Zielzellen/Vertiefung in 50 μ l titriert. 50 μ l Antikörper wurden jeder Vertiefung zugesetzt. Der gesamte Test wurde dreifach angesetzt und 4 h bei 37°C inkubiert. 100 μ l des Überstands wurden gewonnen und auf [5 1Cr]-Freisetzung in einem gamma-Zähler (Cobra Auto Gamma; Canberra Packard, Dreieich, Deutschland) getestet. Die maximale Freisetzung wurde durch Inkubation der Zielzellen in 10% SDS bestimmt, und die spontane Freisetzung wurde durch Inkubation der Zellen in Medium allein bestimmt. Die spezifische Lyse (%) wurde berechnet als: (experimentelle Freisetzung - spontane Freisetzung)/(maximale Freisetzung - spontane Freisetzung) x 100.

Beispiel 6: Konstruktion der Plasmide pDISC5-LL und pDISC6-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v -Antikörper-Konstrukten in Bakterien durch Hoch-Zelldichte-Fermentation

Es wurden Expressionsvektoren hergestellt, die das hok/sok Plasmid-freie Zell"suicide"-System und ein Gen enthielten, das für den Skp/OmpH periplasmatischen
Faktor für eine größere Herstellung rekombinanter Antikörper kodiert. Das skp Gen
wurde durch PCR mittels der Primer skp-1, 5'-CGA ATT CTT AAG ATA AGA AGG
AGT TTA TTG TGA AAA AGT GGT TAT TAG CTG CAG G und skp-2, 5'-CGA ATT
AAG CTT CAT TAT TTA ACC TGT TTC AGT ACG TCG G unter Verwendung des
Plasmids pGAH317 (Holck and Kleppe, 1988, Gene 67, 117-124) amplifiziert. Das
erhaltene PCR-Fragment wurde mit Aflil und Hindlil gespalten und in das mit
Aflil/Hindlil linearisierte Plasmid pHKK (Horn et al., 1996, Appl. Microbiol.
Biotechnol. 46, 524-532) inseriert, wodurch der Vektor pSKK erhalten wurde. Die in
den Plasmiden pDISC3x19-LL und pDISC3x19-SL enthaltenen und für die scFvAntikörper-Konstrukte kodierenden Gene wurden durch PCR mittels der Primer fe-

1, 5'-CGA ATT TCT AGA TAA GAA GGA GAA ATT AAC CAT GAA ATA CC und fe-2, 5'-CGA ATT CTT AAG CTA TTA GTG ATG GTG ATG GTG ATG TGA G amplifiziert. Die Xbal/AfIII gespaltenen PCR-Fragmente wurden in pSKK vor dem skp Insert inseriert, wodurch die Expressionsplasmide pDISC5-LL bzw. pDISC6-SL erhalten wurden, die tri-cistronische Operons unter der Kontrolle des lac Promotor/Operator-Systems enthalten (vgl. Fig. 9, 10).

K 2675

10

25

Patentansprüche

- Multivalentes F_v-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.
 - 2. F_v -Antikörper-Konstrukt nach Anspruch 1, wobei die Peptidlinker 1 und 3 0 10 Aminosäuren aufweisen.
 - F_v-Antikörper-Konstrukt nach Anspruch 2, wobei die Peptidlinker 1 und 3 die Aminosäuresequenz GG aufweisen.
- 4. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v-Anti 15 körper-Konstrukt bivalent ist.
 - 5. F_v -Antikörper-Konstrukt nach Anspruch 4, wobei der Peptidlinker 2 11-20 Aminosäuren aufweist.
- 20 6. F_v-Antikörper-Konstrukt nach Anspruch 4 oder 5, wobei der Peptidlinker 2 die Aminosäuresequenz (G₄S)₄ aufweist.
 - 7. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v-Antikörper-Konstrukt tetravalent ist.
 - 8. F_v-Antikörper-Konstrukt nach Anspruch 7, wobei der Peptidlinker 2 3-10 Aminosäuren aufweist.
- 9. F_v-Antikörper-Konstrukt nach Anspruch 7 oder 8, wobei der Peptidlinker 2
 30 die Aminosäuresequenz GGPGS aufweist.

5

- 10. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v -Antikörper-Konstrukt multispezifisch ist.
- 11. F_v-Antikörper-Konstrukt nach Anspruch 10, wobei das F_v-Antikörper-Konstrukt bispezifisch ist.
 - 12. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v-Antikörper-Konstrukt monospezifisch ist.
- 13. Verfahren zur Herstellung des multivalenten F_v-Antikörper-Konstruktes nach einem der Ansprüche 1-12, wobei für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird.
 - 14. Expressionsplasmid, kodierend für das multivalente F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-12.
- 20 15. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-LL.
 - 16. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-SL.
 - 17. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-LL.
 - 18. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-SL.
 - 19. Expressionsplasmid nach Anspruch 14, nämlich pDISC5-LL.
- 30 20. Expressionsplasmid nach Anspruch 14, nämlich pDISC6-SL.

- 21. Verwendung des multivalenten F_v -Antikörper-Konstruktes nach einem der Ansprüche 1-12 zur Diagnose und/oder Therapie von Erkrankungen.
- 22. Verwendung nach Anspruch 21, wobei die Erkrankungen virale, bakterielle oder Tumor-Erkrankungen sind.

Α

Linker 2

FIGUR 1

A Control of the Cont

THIS PAGE IS BLANK

Linkers:

L1 = GG

 $L2 = (G_4S)_4$

L3 = GGPGS

FIGUR 2

7.

FIGUR 4

CANTOLTOLANGE CANDAL ATTRICTS CONTROL OF THE A A A S
92 COCCASTOCALOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG
22
COR-HI
140 TAGETHACAGATGCATGCATTCACAGGCCTCCACCACCACTCACTC
267 TAATTACAATCAGAAGTACAAGGACACCCCCCCCCCCCC
267 TAATTACAATCAGAAGTTCAAGGACAAGCCCATTACTACAGCAAACTCCACACCCCACACCCCACACCCCCCCC
154 ARCHOROSACIONACIONATIVA CORPHS
109 S
Linker Frame-L1
440 CAGCCCCCASSICACIONECTIGGEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
COR-L: Frame-L2
\$30 GGGCCACCAMACTCAGGCCAGCCAAAGTGTTGATTATGATGTTATTGATCACCACCACCACCACCACCACCACCACCACCACCACCA
SUPPLY
SCH-12
CDR-L3 Frame-L4 TOZ CACCITCACATCCATCCATCCATCCATCCATCCATCCATC
COR-US Frame-L3 CACCOTTANACATOCATOCATOCATOCATOCATOCATOCATOCATOCAT
C VARIOR NOT LINKER 2 THE COLOR OF STREET OF WITFGE CONTROL C
C XACCA Note: Linker 2 Linker 2 255) G T X L E I X R A D A A A A G G G G S G G G S G G G G G G G
PVUII Frame-H1 VH anti-CD19 874 TCCGGTGGTGGTGGTGCLGCTGCLGCTGCGCAGCTGGCTGAGCTGGGCCTGGAGCTGCAGCTCCCAAGCTTGGGCGGGC
PVUIL Frame-H1 VH anti-CD19 283 S G G G G S Q V Q L Q Q S G A E L V R P G S S V K I S C K CDR-H1 Frame-H2 CDR- 962 CTTCTCCCTATCCATTCAGTAGCTACTGGATGAGCAGCAGCCTTGAGCCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
TCCGGTGGTGGTGGTAGCCACGTGCACCTGCAGCAGTGTGGGCTGAGCCTGAGCCTGGAGCATTCCAGGAGATTTCCGCAGCAGCTGGAGGAGTTGGAGGATTTCCGCAGCAGGGGGGGG
COR-HI FRAME-H2 COR-HI FRAME-H3 1049 CTGGAGATGGTGATCACTACAATGGAAAGTTCAAGGGTAAAGCCACCTCTCACTCA
962 CTTCTGCCTATCATTCAGTAGCTACTGGATGAACTGCGTCAAGCAGGCCTGGACAGGGTCTTGAGTGCATTGACAGAGATTTGGT 312 A S S Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PSUI Frame-H3 1049 CTGGAGATGGTGATACTAACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGACGAATCCTCCAGCACACCCTACA 341 P G D G D T N Y N S K F K G K A T L T A D E S S S T A Y COR-H3 1133 TGCAACTCAGCACCTTGAGGACTCTCAGGACTCTATTTCTGTGCAAGAGGGAGACTACGACGGTAGGCCGTTATTACTA 369 M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y Frame-H4
PSU Frame-H3 1049 CTGGAGATGGTGATACTACAATGGAAAGTTCAAGGGTAAAGCCACTTGACTGAGACGAATCCTCAGCACAGCCTACC 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y CDR-H3 1133 TGCAACTCAGCAGCCTAGCATCTCAGGGACTATTTCTGTGCAAGAGGGGAGACTACGAGGGTAGGCCGTTATTTACTA 369 M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y Frame-H4
1049 CTGGAGATGGTGATACTACATGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGACGAACCCCTACCCTACCCTACCCTACCCTACCCTACCCTACCCTACCTGAGAGATGGAGAGACGACGACGACGACCCTACCCTACCCTACCTGAGACGACGACGACGACGACGACGACGACGACGACGACGA
CDR-H3 1133 TGCAACTCAGCAGCCTTAGCACCTCTCAGGCACTCTATTTCTGTGCAACAGGGGAGACTTAGGACGGGAGAGGCGGTTATTTACTA 369 M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y Frame-H4 CH1 Linker 1 Frame-L1 1219 GCTATGGACTACTGGGGTCAACGAACGTCACCTCAGCCTAAAACAACACCCCAAGCTTGGGGGTGATATCGTGCTCACTC VL anti-CD3 CDR-L1 1307 AGTCTCAGCAATCATGTCTGCATCTCAGGGAGAAGGTCACCATGACCTGAGGTGCCAGGTCAAGGTGAAGGTTAACTTGAACTGAACTC 427 Q S P A I M S A S F G E K V T M T C S A S S S V S Y M N W Frame-L2 CDR-L2 Frame-L3 1393 TACCAGCAGAAGTCAGGCACCTCCCCCAAAAAGATGGATTTTATGACAACTCGAAACTGGCTTCTGGAGTTCTGGAGTCCACCTCCACCTCCAGGTGCCAGGTTCAGGTGCAAGTTTAACATGAACTCGACTTCAGGGGCAAGTTCAAGTTGAAGTTCAACTGAACTCGAAGTTCAAGTTGAACTCGACTTCAGGGGCAAGTTCAGGGGCAAGTCAAGATCAAGATGGAAGTTCAAGATGGAACTCGAACTTGACGGGCTCAAACTGGCTTCTCAGGGGCCAGCTCCACCTCCACCTCAAGATTCAACTGGATTTTATGACAACATCGAAACTTGGATTCTTCAGGGGCCAGCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCTCCACCCTCCACCTCCACCCTCCACCCTCCACCCTCCACCCTCCACCCTCCACCCTCACCCCCC
CDR-H3 1133 TGCAACTCAGCACCTAGCATCTGAGGACTCTGCGGTCTATTTCTGTGCAAGACGGGAGACTACGACGGTAGGCCGTTATTTACTA 369 M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y Frame-H4 1219 GCTATGGACTACTGGGGTCAAGGAACCTCAGCCTCCTCAGCCTAAACAACCTCGGGGGGGTGATATCSTGCTCACCTC 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 CDR-L1 1307 AGTCTCAGCAATCATGTCTGCATCTCCAGGGGAGAAGGTCACCATGACCTGAGTGCCAGGTGCAAGTTTAAGTTAACATGAACTGC 427 Q S P A I M S A S F G E K V T M T C S A S S S V S Y M N W Frame-L2 CDR-L2 Frame-L3 1393 TACCAGCAGAGTCAGGCACCTCCCCCAAAAGATGGATTTTATGACAACATCCAAACTTGGAGTTCTGGAGTCCCTCCACCTCCAGCGCTCAACTTGCAGTCCCTCCACCTCCACCCCCCCC
Frame-H4 CHI Linker 1 Frame-L1 1219 GCTATGGACTACTGGGGTCAAGGAAGGAAGGTCACGTCTCCTCAGGCGAAACAACACCCCAAGCTTGGGGGTGATATGGTGCTCACTC 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 CDR-L1 1307 AGTCTCCAGCAATCATCTCCAGGGAAAGATCACCATGACCTGCAGTGCAAGGTTAAGTTAAGTTAACTGGAACTGG 427 Q S P A I M S A S F G E K V T M T C S A S S S V S Y M N W Frame-L2 1393 TACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTTATGACACATCCAAACTGGCTTCTCGAGTGCTAGTTCCTCCCTC
Frame-H4 CH1 Linker 1 Frame-L1 1219 GCTATGGACTACTGGGGTCAAGGAACCACCTCAGTCACCGTCACCGCAAAACCACCCCAAGCTTGGGGGTGATATCGTGCTCACTC 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 CDR-L1 1307 AGTCTCCAGCAATCATCTCTGCATCTCCAGGGAAGGTCACCATCACCTGCAGTGCAAGGTTAAGTTAACATGAACTGG 427 Q S P A I M S A S F G E K V T M T C S A S S S V S Y M N W Frame-L2 CDR-L2 Frame-L3 1393 TACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAACTGGCTTCTGGAGTCCCTCCACCTTCAGGGGCAGCTCAAACTGGCTTCTCTCACGGGCCAGGCAAACTGGATTTATGACACATCCAAACTGGCTTCTCTCCCTCC
VL anti-CD3 CDR-L1 1307 AGTCTCCAGCAATCATCTCCAGCGAGAAGGTCACCATCACCTGCAGTGCCAGCTCAAGTGTAAGTTAACATGAACTCG 427 Q S P A I M S A S F G E X V T M T C S A S S S V S Y M N W Frame-L2 1393 TACCAGCAGAAGTCAGCCACCTCCCCCAAAAGATGGATTTTATGACACATTCCAACCTGCAAACTGGCTTCTTCAGCGGC 456 Y Q Q X S G T S F X R W I Y D T S X L A S G V P A H F R G
VL anti-CD3 CDR-L1 1307 ACTCTCCACCATCATCATCTCCACCGCACACCATCACCATCACCTCCAGTGCCAGCTCAAGTGTAAGTTAACATGAACTCG 427 Q S P A I M S A S P G E K V T M T C S A S S S V S V M N W Frame-L2 CDR-L2 Frame-L3 TACCAGCAGAAGTCAGCCACCTCCCCCAAAAGATGATTTTATGACACCATCCAAACTGGCTTCTGGAGTCCCTCCACCTTCAGGGGC 456 Y Q Q K S G T S P K R W I Y D T S K L A S G V P A H F R G
1307 AGTCTCCAGCATCATGTCTGCATCCCGGGGAGAAGGTCACCATGCAGTGCCAGTGCAAGTGAAGTTAAGTTACATGAACTGG 427 Q S P A I M S A S P G E K V T M T C S A S S S V S Y M N W Frame-L2 CDR-L2 Frame-L3 1393 TACCAGCAGAAGTCAGGCACCTCCCCCAAAGATGGATTTTATGACACATCCAAACTGGCTTCTGGAGTCCCTCCC
Frame-L2 CDR-L2 Frame-L3 1393 TACCAGCAGAGTCAGGCACCTCCCCCAAAAGATGGATTTTATGACAACATCGAAACTGGCTTCTGGAGTCCCTCCC
1393 TACCAGCAGAAGTCAGGCACCTCCCCCAAAAGATGGATTTATGACACATCCAAACTGGCTTCTGGAGTCCCTCCC
TOPES TO TERMIND TERMIND TERMIND TO THE ASSOCIATION OF A HERE
CDD 12
1481 GTGGGTCTGGGACCTCTTACTCTCTCACAATCAGCGGGATGGAGGCTGAAGATGCTGCCACTTATTACTCCCAGCAGTGGAGTAGTAA
485 S S S G T S Y S L T I S G M E A E D A A T Y Y C Q Q W S S N
Frame-i_4 Ckanna c-myc enitone
1569 CCCATTCACGTTCGGGGACAAGTTGGAAATAAACCGGGCTGATACTGCACCAACTGGATCCGAACAAAAGCTGATCTCAG 514) P F T F G S G T K L E I N R A D T A P T G S E Q K L I S
∺is6 tail Xbal
1655 AAGAAGACCTAAACTCA <u>CATCACCATCACCATCACTAA</u> TCTAGA
543 E E D L N S H H H H H H H .

EcoRI ABS PelB leader
Neol GAATTCACTBAAGEGGAGAAATTACCCATGAAATACCTACTGCCGCAGCCGCCGCCGCCGCCGCCGCCGCCAGCCCAGCCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCAGCCCAGCAG
1) M K Y L L P T A A A G L L L A A Q . P A M
to composite the forest the contraction of the cont
CORHI TO THE TENED OF THE TENED CORNER OF THE
133 TAGGTACACGATGCACTGGGAGGCCTTGGACGGGTCTGGAATGGATTAGATTAATCCTAGCCGTGTTATAC
52 R Y T M H W V K Q R P G Q G L E W I G Y I N P S R G Y T
267 TAATTACAATCAGAAGTTCAAGGACAAGAAG
30) N Y N Q K F K D K A T L T T D K S S S T A Y M Q L S S L T
354 ATCTGAGGACTCTGCAGTCTATTACTGTCCAAGATATTATGATGATGATTACAGCCTTTGACTACTGGGGCCAAGGCACCACTCTCAA 109
440 C-0:0:0:0:0-6001444601300001300000000000000000000000
138) T V S S A K T T F K L G G D I L T Q T F A S L A V S L G C
SOURCE CONTROL OF THE PROPERTY
доминать бруча бруча в раз и в и маббтве
514 AGCCACCCAAACTCCTCATCTATGATGCATCCAATCTAGTTTCTGGGATCCAACGACACGTCTGGGACAGACA
196 Q P P X L L I Y D A S N L V S G I P P R F S G S G S G I D F
105 CTCTCTCTTCTTCCTTCTTCTTCTTCTTCTTCTTCTTCT
C kappa Notl Linker 3 Pvull Frame-H1 790 GGCACCAAGCTGGAAATCAAACGGGTGATGCTGCGGCCGCTGGTGGCCGAGGGTGCAGCTGCAGCAGCTGCAGCTGAGCT
255) G T K L E I K R A D A A A A G G P G S Q V Q L Q Q S G A E L
ove considerational Control of the c
TO THE STANK TO THE STANK NAMAKO H
CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGACAGATTTGGCCTGGAGATGGTGATACTAACTA
314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A
Frame-H3
1051 ACTOTGACTGCAGACGAATCCTTCCAGCACAGCCTACATGCAACTCAGCAGCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGTGCAAGAC
342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R
1142 GGGAGACTACGACGGTAGGCCGTTATTACTATGCTATGGACTACTGGGCTCAAGGAACCTCAGTCACCGTCTCAGCCAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K
LINKER 1 Frame-1: VI anti-CD2
1226 CAACACCCAAGCTTGGCGGTGATATCGTGCTCACTCAGTATCAACAAATCATCTACTATCAACAACAACAACAACAAC
TOOL TENEGREE OF CLICS PAIMS AS POEKVIMIC
CUR-L1 Frame-1 2
1316 GTGCCAGCTCAAGTGTAAGTTACATGAACTGGTACCAGCAGAAGTCAGCACCTCCCCCAAAAGATGGATTTATGACACATCCAA 430 s A s s s v s y m n w y c q x s g t s p x R w i y D t s x
⊱(amo.1 ?
1401 ACTGGCTTCTGGAGTCCCTGCTCACTTCAGGGGCAGTGGGTTCTGGACCTTCTTAGACCTGATCAGACCTGACCTGACCTACCT
458 L A S G V P A H F R G S G S G T S Y S L T I S G M E A E D A
CDB-13
1491 TGCCACTTATTACTGCCAGCAGTGGAGTAGTAACCCATTCACGTTCGGGGCACAAAGTTGGAAATAAACCGGGCTGATACTGC
100 A 1 1 C Q Q W S S N F F T F G S G T K L E I N R A D T A
1578 ACCIACTGGATCCGAACAAAAGCTGATCTCAGAAGAAGACCTAAACTCACAGACCATAACCTCACCAGAAGAAGACCTAAACCTCACCAGAAGAAGACCTCACAGAAGAAGACCTCACAGAAGAAGACCTCACAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGACCTCACAGAAGAAGAAGAAGACCTCACAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAA
- "" FIGSEQKLISEEDLNKEEEEE

941 ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTAC

1 M R F P S I F T A V L F A A S S A L A A P V N T T

alpha-factor signal

1015 AACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGCATCACTCAGATTTAGAAGGGGATTTCGATG
25 T E D E T A Q I P A E A V I G Y S D L E G D F D

1089 TTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCT
50 V A V L P F S N S T N N G L L F I N T T I A S I A

EcoRI

XhoI

XhoI

AK E E G V S L E K R E A E A E F Q V Q L Q Q S

VH anti-CD3

1234 TGGGGCTGAACTGGCAAGACCTGGGGCCCTCAGTGAAGATGTCCTGCAAGGCTTCT
98 G A E L A R P G A S V K M S C K A S

FIGUR 7

THIS PAGE IS BLANK

FIGUR 9

FIGUR 10

1

SEQUENZPROTOKOLL

- (1) ALLGEMEINE ANGABEN:
 - (i) ANMELDER:
 - (A) NAME: Deutsches Krebsforschungszentrum
 - (B) STRASSE: Im Neuenheimer Feld $\bar{2}80$
 - (C) ORT: Heidelberg
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 69120
 - (ii) BEZEICHNUNG DER ERFINDUNG: Multivalente Antikoerper-Konstrukte
 - (iii) ANZAHL DER SEQUENZEN: 17
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1698 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 28..1689
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE:28..1689
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GAATTCATTA AAGAGGAGAA ATTAACC ATG AAA TAC CTA TTG CCT ACG GCA

Met Lys Tyr Leu Leu Pro Thr Ala 1

GCC Ala	GCT Ala 10	GIY	TTG Leu	CTG Leu	CTG Leu	CTG Leu 15	Ala	GCT Ala	CAG Glm	CCG Pro	GCC Ala 20	Met	GCG Ala	CAG Gln	GTG Val		99
CAA Gln 25	CTG Leu	CAG Gln	CAG Gln	TCT Ser	GGG Gly 30	Ala	GAA Glu	CTG Leu	GCA Ala	AGA Arg 35	Pro	GGG Gly	GCC Ala	TCA Ser	GTG Val 40	. 1	47
AAG Lys	ATG Met	TCC Ser	TGC Cys	AAG Lys 45	GCT Ala	TCT Ser	GGC Gly	TAC Tyr	ACC Thr 50	Phe	ACT Thr	AGG Arg	TAC Tyr	ACG Thr 55	ATG Met	19	95
CAC His	TGG Trp	GTA Val	AAA Lys 60	CAG Gln	AGG Arg	CCT Pro	GGA Gly	CAG Gln 65	GGT Gly	CTG Leu	GAA Glu	TGG Trp	ATT Ile 70	GGA Gly	TAC Tyr	24	13
ATT Ile	AAT Asn	CCT Pro 75	AGC Ser	CGT Arg	GGT Gly	TAT Tyr	ACT Thr 80	AAT Asn	TAC Tyr	AAT Asn	CAG Gln	AAG Lys 85	TTC Phe	AAG Lys	GAC Asp	29)1
AAG Lys	GCC Ala 90	ACA Thr	TTG Leu	ACT Thr	ACA Thr	GAC Asp 95	AAA Lys	TCC Ser	TCC Ser	AGC Ser	ACA Thr 100	GCC Ala	TAC Tyr	ATG Met	CAA Gln	33	19
CTG Leu 105	AGC Ser	AGC Ser	CTG Leu	ACA Thr	TCT Ser 110	GAG Glu	GAC Asp	TCT Ser	GCA Ala	GTC Val 115	TAT Tyr	TAC Tyr	TGT Cys	GCA Ala	AGA Arg 120	38	17
TAT Tyr	TAT Tyr	GAT Asp	GAT Asp	CAT His 125	TAC Tyr	AGC Ser	CTT Leu	GAC Asp	TAC Tyr 130	TGG Trp	GGC Gly	CAA Gln	GGC Gly	ACC Thr 135	ACT Thr	43	5
CTC Leu	ACA Thr	GTC Val	TCC Ser 140	TCA Ser	GCC Ala	AAA Lys	ACA Thr	ACA Thr 145	CCC Pro	AAG Lys	CTT Leu	GGC Gly	GGT Gly 150	GAT Asp	ATC Ile	48	3
TTG Leu	CTC Leu	ACC Thr 155	CAA Gln	ACT Thr	CCA Pro	GCT Ala	TCT Ser 160	TTG Leu	GCT Ala	GTG Val	TCT Ser	CTA Leu 165	GGG Gly	CAG Gln	AGG Arg	53	1
Ата	ACC Thr 170	ATC Ile	TCC Ser	TGC Cys	AAG Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	GTT Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp	57	9
AGT Ser 185	TAT Tyr	TTG. Leu	AAC Asn	Trp	TAC Tyr 190	CAA Gln	CAG Gln	ATT Ile	CCA Pro	GGA Gly 195	CAG Gln	CCA Pro	CCC Pro	AAA Lys	CTC Leu 200	62	7
CTC . Leu	ATC Ile	TAT Tyr	Asp	GCA Ala 205	TCC Ser	AAT Asn	CTA Leu	GTT Val	TCT Ser 210	GGG Gly	ATC Ile	CCA Pro	Pro	AGG Arg 215	TTT Phe	67	5
AGT (Ser (GGC . Gly	ser	GGG Gly 220	TCT Ser	GGG Gly	ACA Thr	GAC Asp	TTC Phe 225	ACC Thr	CTC Leu	AAC Asn	ATC Ile	CAT His 230	CCT Pro	GTG Val	72.	3

GAG Glu	AAG Lys	GTG Val 235	Asp	GCT Ala	'GCA Ala	ACC Thr	TAT Tyr 240	His	TGT Cys	CAG Gln	CAA Gln	AGT Ser 245	ACT Thr	GAG Glu	GAT Asp	771
CCG Pro	TGG Trp 250	Thr	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAG Lys	CTG Leu	GAA Glu	ATC Ile 260	Lys	CGG Arg	GCT Ala	GAT Asp	819
GCT Ala 265	Ala	GCC Ala	GCT Ala	GGT Gly	GGT Gly 270	Gly	GGT Gly	TCT Ser	GGC Gly	GGC Gly 275	GGT Gly	GGT Gly	AGC Ser	GGT Gly	GGT Gly 280	867
GGC Gly	GGC Gly	TCC Ser	GGT Gly	GGT Gly 285	GGT Gly	GGT Gly	AGC Ser	CAG Gln	GTG Val 290	CAG Gln	CTG Leu	CAG Gln	CAG Gln	TCT Ser 295	GGG Gly	915
GCT Ala	GAG Glu	CTG Leu	GTG Val 300	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 305	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys 310	AAG Lys	GCT Ala	963
TCT Ser	GGC Gly	TAT Tyr 315	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 320	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 325	AAG Lys	CAG Gln	AGG Arg	1011
CCT Pro	GGA Gly 330	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp 335	ATT Ile	GGA Gly	CAG Gln	ATT Ile	TGG Trp 340	CCT Pro	GGA Gly	GAT Asp	GGT Gly	1059
GAT Asp 345	ACT Thr	AAC Asn	TAC Tyr	AAT Asn	GGA Gly 350	AAG Lys	TTC Phe	AAG Lys	GGT Gly	AAA Lys 355	GCC Ala	ACT Thr	CTG Leu	ACT Thr	GCA Ala 360	1107
GAC Asp	GAA Glu	TCC Ser	TCC Ser	AGC Ser 365	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAA Gln 370	CTC Leu	AGC Ser	AGC Ser	CTA Leu	GCA Ala 375	TCT Ser	1155
GAG Glu	GAC Asp	TCT Ser	GCG Ala 380	GTC Val	TAT Tyr	TTC Phe	TGT Cys	GCA Ala 385	AGA Arg	CGG Arg	GAG Glu	ACT Thr	ACG Thr 390	ACG Thr	GTA Val	1203
GGC Gly	CGT Arg	TAT Tyr 395	TAC Tyr	TAT Tyr	GCT Ala	Met	GAC Asp 400	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 405	ACC Thr	TCA Ser	GTC Val	1251
ACC Thr	GTC Val 410	TCC Ser	TCA Ser	GCC Ala	AAA Lys	ACA Thr 415	ACA Thr	CCC Pro	AAG Lys	Leu	GGC Gly 420	GGT Gly	GAT Asp	ATC Ile	GTG Val	1299
CTC Leu 425	ACT Thr	CAG Gln	TCT Ser	Pro	GCA Ala 430	ATC Ile	ATG Met	TCT Ser	Ala	TCT Ser 435	Pro	GGG Gly	GAG Glu	Lys	GTC Val 440	1347
ACC Thr	ATG Met	ACC Thr	Cys	AGT Ser 445	GCC Ala	AGC Ser	TCA Ser	Ser	GTA Val 450	AGT Ser	TAC Tyr	ATG Met	Asn	TGG Trp 455	TAC Tyr	1395

4

CAG Gln	CAG Gln	AAG Lys	TCA Ser 460	GGC Gly	ACC Thr	TCC Ser	CCC Pro	AAA Lys 465	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 470	ACA Thr	TCC Ser	1443
AAA Lys	CTG Leu	GCT Ala 475	TCT Ser	GGA Gly	GTC Val	CCT Pro	GCT Ala 480	CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 485	GGG Gly	TCT Ser	GGG Gly	1491
ACC Thr	TCT Ser 490	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 495	AGC Ser	GGC Gly	ATG Met	GAG Glu	GCT Ala 500	GAA Glu	GAT Asp	GCT Ala	GCC Ala	1539
ACT Thr 505	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 510	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 515	TTC Phe	ACG Thr	TTC Phe	GGC Gly	TCG Ser 520	1587
GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 525	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 530	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 535	TCC Ser	1635
GAA Glu	CAA Gln	AAG Lys	CTG Leu 540	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 545	CTA Leu	AAC Asn	TCA Ser	CAT His	CAC His 550	CAT His	CAC His	1683
CAT His		TAAT	ĊTAG	A												1698

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 554 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Ala 1

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Ala Glu

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 35 40 45

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly 50 60

Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr 65 70 75 80

5

Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys 90 Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr 235 His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Ala Gly Gly Gly 260 265 270 Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser 290 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Thr Ala Tyr 355 360° 40° 60° 50° 365

6

 Met
 Gln
 Leu
 Ser
 Leu
 Ala
 Ser
 Glu
 Asp
 Ser
 Ala
 Tyr
 Phe
 Cys

 Ala
 Arg
 Arg
 Glu
 Thr
 Thr
 Thr
 Val
 Gly
 Arg
 Tyr
 Tyr
 Ala
 Met
 Asp

 Tyr
 Trp
 Gly
 Glu
 Thr
 Ser
 Val
 Thr
 Val
 Ser
 Ala
 Lys
 Thr
 Thr

 Pro
 Lys
 Leu
 Gly
 Gly
 Asp
 Ile
 Val
 Thr
 Met
 Thr
 Cys
 Ala
 Lys
 Ala
 Ala
 Ser
 Ala
 Ser
 Ala
 Ser
 Ala
 Ser
 Pro
 Ala
 Ala
 Ser
 Pro
 Ala
 Ala
 Ser
 Ala
 Ser
 Ala
 Ser
 Ala
 Ser
 Ala
 Ser
 Ala
 Ala

545 550

(2) ANGABEN ZU SEQ ID NO: 3:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1653 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Genom-DNA
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- (ix) MERKMAL:
 - ERKMAL:
 (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 28..1644

7

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:28..1644

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GAATTCATTA AAGA	AGGAGAA ATTA	ACC ATG A Met 1	AAA TAC CT Lys Tyr Le	A TTG CCT ACG G u Leu Pro Thr A 5	CA 51 la
GCC GCT GGC TTG Ala Ala Gly Leu 10	CTG CTG CTG Leu Leu Leu 15	i Ala Ala	F CAG CCG (a Gln Pro .	GCC ATG GCG CAG Ala Met Ala Gln 20	GTG 99 Val
25	30	i Glu Lev	1 Aia Arg 1 35	CCT GGG GCC TCA Pro Gly Ala Ser	Val 40
nys wet set cys	45	Giy Tyr	Thr Phe 1 50	ACT AGG TAC ACG Thr Arg Tyr Thr 55	Met
CAC TGG GTA AAA His Trp Val Lys 60	Gin Arg Pro	Gly Gln 65	. Gly Leu G	Hu Trp Ile Gly 70	Tyr
ATT AAT CCT AGC Ile Asn Pro Ser 75	ard GTA JAR	Thr Asn 80	Tyr Asn G	Eln Lys Phe Lys 85	gaA
AAG GCC ACA TTG Lys Ala Thr Leu 90	Thr Thr Asp 95	Lys Ser	Ser Ser T	hr Ala Tyr Met .00	Gln
CTG AGC AGC CTG Leu Ser Ser Leu 105	Thr Ser Glu 110	Asp Ser	Ala Val T	yr Tyr Cys Ala .	Arg 120
TAT TAT GAT GAT Tyr Tyr Asp Asp	nis Tyr Ser 125	Leu Asp	Tyr Trp G	lý Gln Gly Thr 135	Thr .
CTC ACA GTC TCC Leu Thr Val Ser 140	TCA GCC AAA Ser Ala Lys	ACA ACA Thr Thr 145	CCC AAG CT Pro Lys Le	TT GGC GGT GAT : eu Gly Gly Asp : 150	ATC 483 Ile
TTG CTC ACC CAA Leu Leu Thr Gln 155	ACT CCA GCT Thr Pro Ala	TCT TTG Ser Leu 160	GCT GTG TO Ala Val Se	CT CTA GGG CAG A er Leu Gly Gln A 165	AGG 531 Arg
GCC ACC ATC TCC Ala Thr Ile Ser	TGC AAG GCC Cys Lys Ala 175	AGC CAA Ser Gln	Ser Val As	AT TAT GAT GGT 0 sp Tyr Asp Gly A 30	SAT 579 Asp

AGT Ser 185	TAT	TTC Lev	AAC Asr	TGG Tr	TAC Tyr 190	GIn	CAG Gln	ATT Ile	CCA Pro	GGA Gly 195	Gln	CCA Pro	CCC Pro	AA/	CTC Leu 200		627
CTC Leu	ATC Ile	TAT	' GAT	GCA Ala 205	Ser	AAT Asn	CTA Leu	GTI Val	TCT Ser 210	Gly	ATC Ile	CCA Pro	CCC Pro	AGC Arg 215	TTT Phe		675
AGT Ser	GGC Gly	AGT Ser	GGG Gly 220	Ser	Gly Gly	ACA Thr	GAC Asp	TTC Phe 225	Thr	CTC Leu	AAC Asn	ATC	CAT His 230	CCT Pro	GTG Val		723
GAG Glu	AAG Lys	GTG Val 235	ASD	GCT Ala	GCA Ala	ACC Thr	TAT Tyr 240	CAC His	TGT Cys	CAG Gln	CAA Gln	AGT Ser 245	ACT Thr	GAG Glu	GAT Asp		771
CCG Pro	TGG Trp 250	ACG Thr	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAG Lys	CTG Leu	GAA Glu	ATC Ile 260	AAA Lys	CGG Arg	GCT Ala	GAT Asp		819
GCT Ala 265	GCG Ala	GCC Ala	GCT Ala	GGT Gly	GGC Gly 270	CCA Pro	GGG Gly	TCG Ser	CAG Gln	GTG Val 275	CAG Gln	CTG Leu	CAG Gln	CAG Gln	TCT Ser 280		867
GGG Gly	GCT Ala	GAG Glu	CTG Leu	GTG Val 285	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 290	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys 295	AAG Lys		915
GCT Ala	TCT Ser	GGC Gly	TAT Tyr 300	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 305	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 310	AAG Lys	CAG Gln	•	963
AGG Arg	CCT Pro	GGA Gly 315	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp 320	ATT Ile	GGA Gly	CAG Gln	ATT Ile	TGG Trp 325	CCT Pro	GGA Gly	GAT Asp	:	1011
GGT Gly	GAT Asp 330	ACT Thr	AAC Asn	TAC Tyr	AAT Asn	GGA Gly 335	AAG Lys	TTC Phe	AAG Lys	GGT Gly	AAA Lys 340	GCC Ala	ACT Thr	CTG Leu	ACT Thr	:	1059
GCA Ala 345	GAC Asp	GAA Glu	TCC Ser	TCC Ser	AGC Ser 350	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAA Gln 355	CTC Leu	AGC Ser	AGC Ser	CTA Leu	GCA Ala 360	1	1107
TCT Ser	GAG Glu	GAC. Asp	TCT Ser	GCG Ala 365	GTC Val	TAT Tyr	TTC Phe	TGT ; Cys	GCA Ala 370	AGA Arg	CGG Arg	GAG ⁽ Glu	ACT Thr	ACG Thr 375	ACG Thr	1	155
GTA Val	GGC Gly	Arg	TAT Tyr 380	TAC Tyr	TAT Tyr	GCT . Ala 1	Met.	GAC Asp 385	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 390	ACC Thr	TCA Ser	1	.203
GTC Val	THE	GTC Val 395	TCC Ser	TCA Ser	GCC . Ala :	Lys '	ACA A Thr 1	ACA Thr	CCC . Pro	AAG Lys	Leu	GGC Gly 405	GGT Gly	GAT Asp	ATC Ile	1	.251

9

GTG Val	CTC Leu 410	ACT Thr	CAG Gln	TCT Ser	CCA Pro	GCA Ala 415	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 420	CCA Pro	GGG Gly	GAG Glu	AAG Lys	1299
GTC Val 425	ACC Thr	ATG Met	ACC Thr	TGC Cys	AGT Ser 430	GCC Ala	AGC Ser	TCA Ser	AGT Ser	GTA Val 435	AGT Ser	TAC Tyr	ATG Met	AAC Asn	TGG Trp 440	1347
TAC Tyr	CAG Gln	CAG Gln	AAG Lys	TCA Ser 445	GGC Gly	ACC Thr	TCC Ser	CCC Pro	AAA Lys 450	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 455	ACA Thr	1395
TCC Ser	AAA Lys	CTG Leu	GCT Ala 460	TCT Ser	GGA Gly	GTC Val	CCT Pro	GCT Ala 465	CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 470	GGG Gly	TCT Ser	1443
GGG Gly	ACC Thr	TCT Ser 475	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 480	AGC Ser	GGC Gly	ATG Met	GAG Glu	GCT Ala 485	GAA Glu	GAT Asp	GCT Ala	1491
GCC Ala	ACT Thr 490	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 495	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 500	TTC Phe	ACG Thr	TTC Phe	GGC Gly	1539
TCG Ser 505	GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 510	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 515	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 520	1587
TCC Ser	GAA Glu	CAA Gln	AAG Lys	CTG Leu 525	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 530	CTA Leu	AAC Asn	TCA Ser	CAT His	CAC His 535	CAT His	1635
	CAT His		TAAT	CTAG	A											1653

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 539 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Ala Glu 20 25 30

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 35 40 45

10

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Ser Leu 120 Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Leu Leu Thr Gln Thr Pro Ala Ser 145 150 155 160 Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln 180 185 Ile Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu 200 Val Ser Gly Ile Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala Gly Gly Pro Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser 290 295 300 Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp 310 315 Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys 325 330

11

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala 345 Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 465 Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 57 Basenpaare

Glu Asp Leu Asn Ser His His His His His

- (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
TATATACTGC AGCTGCACCT GCGACCCTGG GCCACCAGCG GCCGCAGCAT CAGCCCG	57
(2) ANGABEN ZU SEQ ID NO: 6:	.,,
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 45 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
CCGTGAATTC CAGGTGCAAC TGCAGCAGTC TGGGGCTGAA CTGGC	45
(2) ANGABEN ZU SEQ ID NO: 7:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
GGTCGACGTT AACCGACAAA CAACAGATAA AACG	34
(2) ANGABEN ZU SEQ ID NO: 8:	•
(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 348 Basenpaare(B) ART: Nucleotid(C) STRANGFORM: Einzelstrang	

		((D)	OPOL	OGIE	E: li	.near	-								
	(ii) AR	T DE	S MC	LEKÜ	ILS :	Geno	m-DN	IA							
	(iii) HY	POTH	ETIS	CH:	NEIN	I									
	(iv) AN	TISE	NSE:	NEI	N										
	(ix	(ÜSSE 48	L: C	DS								
	(ix	(RKMA A) N B) L		SCHL 13	ÜSSE 48	L: m	at_p	epti	de						
	(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 8:						
ATG Met 1	AGA Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT Ile	TTT Phe	ACT Thr	GCT Ala	GTT Val 10	TTA Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	4.8
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	CAG Gln	GTG Val	CAA Gln	CTG Leu 95	CAG Gln	288
CAG Gln	TCT Ser	GGG Gly	GCT Ala 100	GAA Glu	CTG Leu	GCA Ala	AGA Arg	CCT Pro 105	GGG Gly	GCC Ala	TCA: Ser	GTG Val	AAG Lys 110	ATG Met	TCC Ser	336
	AAG Lys															348
(2)	ANGA	BEN	ZU S	EO I	D NO	. 9:										

14

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 116 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Aia Ser Ser 10

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Gln Val Gln Leu Gln

Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser 105

Cys Lys Ala Ser 115

- (2) ANGABEN ZU SEQ ID NO: 10:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 354 Basenpaare

 - (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:1..354
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE:1..354

15

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:															
ATG Met 1	AGA Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT	TTT Phe	ACT Thr	GCT Ala	GTT Val 10	TTA Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	48
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	ATG Met	GCG Ala	CAG Gln	GTG Val 95	CAA Gln	288
CTG Leu	CAG Gln	CAG Gln	TCT Ser 100	GGG Gly	GCT Ala	GAA Glu	CTG Leu	GCA Ala 105	AGA Arg	CCT Pro	GGG Gly	GCC Ala	TCA Ser 110	GTG Val	AAG Lys	336
				GCT Ala												354

(2) ANGABEN ZU SEQ ID NO: 11:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 118 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 1 5 10 15

Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln 20 25 30

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe 35 40 45

WO 99/57150 PCT/DE99/01350

16

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 50 55

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Met Ala Gln Val Gln

Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys

Met Ser Cys Lys Ala Ser

- (2) ANGABEN ZU SEQ ID NO: 12:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 42 Basenpaare

 - (B) ART: Nucleotid(C) STRANGFORM: Einzelstrang(D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

TCACACAGAA TTCTTAGATC TATTAAAGAG GAGAAATTAA CC

(2) ANGABEN ZU SEQ ID NO: 13:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 40 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN

THIS PAGE IS BLANK

WO 99/57150 PCT/DE99/01350

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:	
AGCACACGAT ATCACCGCCA AGCTTGGGTG TTGTTTTGGC	40
(2) ANGABEN ZU SEQ ID NO: 14:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 43 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:	
AGCACACAG CTTGGCGGTG ATATCTTGCT CACCCAAACT CCA	43
(2) ANGABEN ZU SEQ ID NO: 15:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 57 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	
AGCACACTCT AGAGACACAC AGATCTTTAG TGATGGTGAT GGTGATGTGA GTTTAGG	57
(2) ANGABEN ZU SEQ ID NO: 16:	57
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 33 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear	

THIS PAGE IS BLANK

WO 99/57150 PCT/DE99/01350

•

<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
CAGCCGGCCA TGGCGCAGGT GCAACTGCAG CAG	33
(2) ANGABEN ZU SEQ ID NO: 17:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 102 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
TATATACTGC AGCTGCACCT GGCTACCACC ACCACCGGAG CCGCCACCAC CGCTACCACC	60
GCCGCCAGAA CCACCACCAC CAGCGGCCGC AGCATCAGCC CG	102

THIS PAGE IS BLANK

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00 16/28, C12N 15/63, A61K 39/395, G01N 33/53

A3

- (11) Internationale Veröffentlichungsnummer: WO 99/57150
- (43) Internationales

Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
DEUTSCHES KREBSFORSCHUNGSZENTRUM
STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE];
Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neckargemund (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 22. Juni 2000 (22.06.00)

(54) Title: MULTIVALENT ANTIBODY CONSTRUCTS

(54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_{ν} antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_{ν} antibody construct. In addition, the invention relates to a method for producing the F_{ν} antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes F_{ν} -Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches F_{ν} -Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der F_{ν} -Antikörper-Konstrukte sowie deren Verwendung.

A

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

INTERNATIONAL SEARCH REPORT

Inter. Inal Application No PCT/DE 99/01350

	SOUR ISOT MATTER		
IPC 6	CO7K16/00 CO7K16/28 C12N15/	63 A61K39/395 G01N	33/53
	International Patent Classification (IPC) or to both national classification	ation and IPC	
B. FIELDS			
Minimum do	cumentation searched (classification system followed by classification	on symbols)	
IPC 6	A61K C07K G01N		
Documentati	ion searched other than minimum documentation to the extent that s	uch documents are included in the fields sea	urched
Electronic da	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
	TO DE DEL EVANT		
	NTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the rel	event passages	Relevant to claim No.
Category °	Citation of document, with inducation, where appropriate, or are re-		
V	GRUBER M ET AL: "Efficient tumo	r cell	1,4,
Х	lysis mediated by a bispecific s	ingle	10-14,
	chain antibody expressed in Esch	erichia	21,22
	coli."	1) 152	
	JOURNAL OF IMMUNOLOGY, (1994 JUN (11) 5368-74., XP000872832	1) 132	
	the whole document		
ļ			1 2 4
X	MACK M ET AL: "A small bispecif antibody construct expressed as	1C 2	1,2,4, 10-14,
	functional single-chain molecule	with high	21,22
	tumor cell cytotoxicity."		
	PROCEEDINGS OF THE NATIONAL ACAD	EMY OF	-
	SCIENCES OF THE UNITED STATES OF (1995 JUL 18) 92 (15) 7021-5.,	AMERICA,	
	(1995 50L 18) 92 (13) 7021-3., XP000566333		
1	the whole document		
ļ		,	
		-/	
X Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
° Special or	ategories of cited documents :	T later document published after the inte	rnational filing date
"A" docum	ent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or th	the application but
consi	dered to be of particular relevance document but published on or after the international	invention "X" document of particular relevance; the	plaimed invention
filing		cannot be considered novel or canno involve an inventive step when the de	t be considered to
which	ent which may throw doubts on planty summer or is cited to establish the publication date of another in or other special reason (as specified)	"Y" document of particular relevance; the connot be considered to involve an in	laimed invention ventive step when the
O docum	ment referring to an oral disclosure, use, exhibition or means	document is combined with one or ments, such combination being obvio	ore other such docu-
P' docum	ent published prior to the international filing date but	in the art. "&" document member of the same patent	
	than the priority date claimed	Date of mailing of the international sea	
Date of the	actual completion of the international search	1 7. OB.00	
	23 February 2000) t. on 00°	
	mailing address of the ISA	Authorized officer	
, and and	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk		
1	NL - 2280 ΠV Hijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo πί, Εων. (+31-70) 340-3016	Mennessier, T	

Inter anal Application No PCT/DE 99/01350

	A CONCIDENCE TO BE DELEVANT	
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KURUCZ I ET AL: "Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria." JOURNAL OF IMMUNOLOGY, (1995 MAY 1) 154 (9) 4576-82., XP000872833 the whole document	1,4,5, 10-14, 21,22
X	DE JONGE J ET AL: "Production and characterization of bispecific single-chain antibody fragments." MOLECULAR IMMUNOLOGY, (1995 DEC) 32 (17-18) 1405-12., XP000872314 the whole document	1,4,5, 10-14, 21,22
Α	COLOMA M J ET AL: "Design and production of novel tetravalent bispecific antibodie [see comments]." NATURE BIOTECHNOLOGY, (1997 FEB) 15 (2) 159-63., XP000647731 page 159 -page 160	1-22
T	KIPRIYANOV S M ET AL: "Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics." JOURNAL OF MOLECULAR BIOLOGY, (1999 OCT 15) 293 (1) 41-56., XP002131382 the whole document	1-22

International application No.

PCT/DE 99/01350

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
S	See supplemental sheet Additional Matter PCT/ISA/210
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
I his inte	emational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DE 99/01350

~	. •	0 771		-
Continu	เลยเดท	Of Fig	ald I	- 1

Although Claims Nos. 21 and 22 relate to a diagnostic method which is conducted on the human/animal body or to a method for treatment of the human/animal body, the search was carried out and was based on the cited effects of the multivalent Fv antibody construct.

Form PCT/ISA/210

Inte onales Aldenzeicher PCT/DE 99/01350

				
A KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07K16/00 C07K16/28 C12N15/6	63 A61K39/395 G01	N33/53	
and the state for	1000 aday mash dar malanalan Ma	الكال موراء المدر موافعة المدر		
	temationalen Patentidassifikation (IPK) oder nach der nationalen Kla RCHIERTE GEBIETE	SSIIIAZILORI ORIO GET EFA		
	rter Mindestpriifstoff (Klassifikationssystem und Klassifikationssymbo	e)		
	A61K C07K G01N			
Recherchie	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	welt diese unter die recherchierten Gebie	ato fallen	
Während de	er Internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und evtl. verwendet	e Suchbegifffe)	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorle®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Teile	Betr, Anspruch Nr.	
X	GRUBER M ET AL: "Efficient tumor lysis mediated by a bispecific si chain antibody expressed in Esche coli." JOURNAL OF IMMUNOLOGY, (1994 JUN	ngle erichia	1,4, 10-14, 21,22	
v	(11) 5368-74. , XP000872832 das ganze Dokument MACK M ET AL: "A small bispecifi		1 2 4	
X	antibody construct expressed as a functional single-chain molecule tumor cell cytotoxicity." PROCEEDINGS OF THE NATIONAL ACADE SCIENCES OF THE UNITED STATES OF (1995 JUL 18) 92 (15) 7021-5., XP000566333 das ganze Dokument	with high MY OF	1,2,4, 10-14, 21,22	
	<u>-</u>	-/		
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfamilie		
*Besondere Kategorien von angegebenen Veröffentlichungen: "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "E" "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung				
"L" Veröffentlichung, die geelgnet ist, einen Prioritätsenspruch zwelfelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht				
"P" Veröffe dern b	ntlichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	"&" Veröffentlichung, die Mitglied derselb	en Patentiamille ist	
	Abschlusses der Internationalen Recherche 3. Februar 2000	Absendedatum des Internationalen F	Recherchenberlahts	
	Postanschifft der Internationalen Recherchenbehörde	Bevollmächtigter Bedlensteter		
HOUNG WING	Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk	_		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Mennessier, T		

Ints ionales Aldenzeichen PCT/DE 99/01350

1 1017 51	99/01350
ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
KURUCZ I ET AL: "Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria." JOURNAL OF IMMUNOLOGY, (1995 MAY 1) 154 (9) 4576-82., XP000872833 das ganze Dokument	1,4,5, 10-14, 21,22
DE JONGE J ET AL: "Production and characterization of bispecific single-chain antibody fragments." MOLECULAR IMMUNOLOGY, (1995 DEC) 32 (17-18) 1405-12., XP000872314 das ganze Dokument	1,4,5, 10-14, 21,22
COLOMA M J ET AL: "Design and production of novel tetravalent bispecific antibodie 'see comments!." NATURE BIOTECHNOLOGY, (1997 FEB) 15 (2) 159-63., XP000647731 Seite 159 -Seite 160	1-22
KIPRIYANOV S M ET AL: "Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics." JOURNAL OF MOLECULAR BIOLOGY, (1999 OCT 15) 293 (1) 41-56., XP002131382 das ganze Dokument	1-22
	KURUCZ I ET AL: "Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria." JOURNAL OF IMMUNOLOGY, (1995 MAY 1) 154 (9) 4576-82., XP000872833 das ganze Dokument DE JONGE J ET AL: "Production and characterization of bispecific single-chain antibody fragments." MOLECULAR IMMUNOLOGY, (1995 DEC) 32 (17-18) 1405-12., XP000872314 das ganze Dokument COLOMA M J ET AL: "Design and production of novel tetravalent bispecific antibodie 'see comments!." NATURE BIOTECHNOLOGY, (1997 FEB) 15 (2) 159-63., XP000647731 Seite 159 -Seite 160 KIPRIYANOV S M ET AL: "Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics." JOURNAL OF MOLECULAR BIOLOGY, (1999 OCT 15) 293 (1) 41-56., XP002131382

Inc..nationales Aktenzeichen PCT/DE 99/01350

Feld I B	emerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)
Gemäß Art	ikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
~ ~	nsprüche Nr. eil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
	nsprüche Nr. reil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, aß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. A	unsprüche Nr. veil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II B	Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die interna	ationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthätt:
1. [] [i	Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser nternationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2	Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
<u> </u>	Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser nternationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
] _ ,	Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher- chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- laßt:
Bemerku	Ingen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Internationales Aktenzeichen PCT/DE 99 /01350

WED	TERE	ΔN	GΔ	BEN
AAEI	ERE	MIT	\sim	D L 11

PCT/ISA/ 210

Fortsetzung von Feld I.1

Obwohl die Ansprüche 21 und 22 sich auf ein Diagnostizierverfahren, das am menschlischen/tierischen Körpers vorgenommen wird, bzw auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen des multivalenten Fv-Antikörper-Konstruktes.

-