Exercise "Optoelectronic Devices"

1) A symmetric slab waveguide, which is shown in the figure below, is made of a polymer core layer of thickness d = 1.0 μ m and is sandwiched between silica as a cladding. Find the propagation constant, effective refractive index and plot the TE mode profiles (E_y) for each existing mode by analytical calculations for 1.0 μ m wavelength. Please use \bar{n}_2 =1.77 for the polymer guiding layer and \bar{n}_1 =1.45 for silica.

Hint: To solve the 1-D Helmholtz equation, please make an Ansatz for your core and cladding region. Apply the boundary condition that the tangential components of \overline{E} and \overline{H} are continuous. Draw the effective refractive index solutions (eigenvalues) in to the $\overline{n}(x)$ profile and draw the Eigen functions in x-direction. Also solve the transcendental equation graphically.

Fig: Cross sectional view of a dielectric slab waveguide