MATO2014 - Planejamento de Experimentos II Introdução aos delineamentos fatoriais (cont.)

Rodrigo Citton P. dos Reis rodrigocpdosreis@gmail.com

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2018

Análise estatística do modelo de efeitos fixos

Relembrando

		Factor B			
		1	2		b
	1	$y_{111}, y_{112}, \dots, y_{11n}$	$y_{121}, y_{122}, \dots, y_{12n}$		$y_{1b1}, y_{1b2}, \dots, y_{1bn}$
Factor A	2	$y_{211}, y_{212}, \dots, y_{21n}$	$y_{221}, y_{222}, \dots, y_{22n}$		$y_{2b1}, y_{2b2}, \dots, y_{2bn}$
	:				
	а	$y_{a11}, y_{a12}, \dots, y_{a1n}$	$y_{a21}, y_{a22}, \dots, y_{a2n}$		$y_{ab1}, y_{ab2}, \dots, y_{abn}$

• O modelo de efeitos:

$$y_{ijk} = \mu + au_i + eta_j + (aueta)_{ij} + \epsilon_{ijk}, i = 1, \ldots, a, j = 1, \ldots,$$

Somas de quadrados

- $y_{i..}$ denota o total de todas as observações sob o i-ésimo nível do fator A;
- $y_{.j.}$ denota o total de todas as observações sob o j-ésimo nível do fator B;
- $y_{ij.}$ denota o total de todas as observações na ij-ésima célula;
- y_{\dots} denota o total global de todas as observações.

Somas de quadrados

• Defina $\bar{y}_{i..}$, $\bar{y}_{.j.}$, $\bar{y}_{ij.}$ e $\bar{y}_{...}$ como as correspondentes médias da linha, coluna, célula e global:

$$y_{i..} = \sum_{i=1}^{b} \sum_{k=1}^{n} y_{ijk} \quad ar{y}_{i..} = rac{y_{i..}}{bn}, i = 1, 2, \dots, a$$

$$y_{.j.} = \sum_{i=1}^{a} \sum_{l=1}^{n} y_{ijk} \quad ar{y}_{.j.} = rac{y_{i..}}{an}, j = 1, 2, \dots, b$$

$$y_{ij.} = \sum_{l=1}^n y_{ijk} \quad ar{y}_{ij.} = rac{y_{ij.}}{n}, i = 1, 2, \dots, a, j = 1, 2, \dots, b$$

$$y_{...} = \sum_{i=1}^{d} \sum_{j=1}^{d} \sum_{k=1}^{d} y_{ijk} \quad ar{y}_{...} = rac{y_{...}}{z_i k z_i}$$

$$i=1$$
 $j=1$ $k=1$ aon

Somas de quadrados

• A soma de quadrados total deve ser escrita como:

$$egin{align} \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n \left(y_{ijk} - ar{y}_{...}
ight)^2 &= bn \sum_{i=1}^a \left(ar{y}_{i..} - ar{y}_{...}
ight)^2 + an \sum_{j=1}^b \left(ar{y}_{ij..} - ar{y}_{i...} - ar{y}_{.j.} + ar{y}_{ij...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^n \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \sum_{k=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \sum_{j=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i=1}^a \left(y_{ijk} - ar{y}_{...}
ight)^2 \ &= \sum_{i$$

$$SS_T = SS_A + SS_B + SS_{AB} + SS_E$$
.

Graus de liberdade

Efeito	Graus de liberdade
Α	a - 1
В	b - 1
AB	(a - 1)(b - 1)
Erro	ab(n - 1)
Total	abn - 1

Quadrados médios

- Cada soma de quadrados dividida por seus graus de liberdade é um quadrado médio.
 - Os valores esperados dos quadrados médios são:

$$E[MS_A] = E\left[rac{SS_A}{a-1}
ight] = \sigma^2 + rac{bn\sum_{i=1}^a au_i^2}{a-1}$$

$$E[MS_B] = E\left[rac{SS_B}{b-1}
ight] = \sigma^2 + rac{an\sum_{j=1}^b eta_j^2}{b-1}$$

$$E[MS_{AB}] = E\left[rac{SS_{AB}}{(a-1)(b-1)}
ight] = \sigma^2 + rac{n\sum_{i=1}^a\sum_{j=1}^b (a-1)(b-1)}{(a-1)(b-1)}$$

$$E[MS_T] - E \left[\begin{array}{c|c} SS_E \\ \end{array} \right] - \sigma^2$$

$$\left| \frac{D[MDE] - D}{ab(n-1)} \right| = 0$$

Análise de variância

- Note que se a hipótese nula de nenhum efeito de tratamento de linha, nenhum efeito de tratamento de coluna e nenhuma interação, então MS_A, MS_B, MS_{AB} e MS_E todos estimam σ^2 .
 - No entanto, se existem diferenças entre os efeitos de tratamento de linha, então MS_A é maior que MS_E .
 - lacktriangle De maneira similar, se existem diferenças entre os efeitos de tratamento de coluna, então MS_B é maior que MS_E .
- Assim, para testar a significância dos efeitos principais e do efeito de interação, basta dividir o correspondente quadrado médio pelo quadrado médio do erro.
 - Grandes valores desta razão indicam indícios contra a hipótese nula.

Análise de variância

- Se assumimos que o modelo de efeitos é adequado e que os termos de erro ϵ_{ijk} são independentes com distribuição normal com variância constante σ^2 , então:
 - $lacksquare MS_A/MS_E \sim F_{a-1,ab(n-1)}$,
 - $lacksquare MS_B/MS_E \sim F_{b-1,ab(n-1)}$
 - $lacksquare MS_{AB}/MS_E \sim F_{b-1,ab(n-1)}$

Análise de variância

	TABLE	5.3						
T	he Analysis	of Variance	Table for the	Two-Factor	Factorial.	Fixed E	Effects I	Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_{0}
A treatments	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
B treatments	SS_B	b - 1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$
Error	SS_E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_T	abn - 1		


```
## MT T y
## 1 1 15 130
## 2 2 15 150
## 3 3 15 138
## 4 1 70 34
## 5 2 70 136
## 6 3 70 174
```

```
exbat.av <- aov(y ~ MT*T, data = D)
summary(exbat.av)</pre>
```

```
model.tables(exbat.av, type = "means", se = F)
```

```
## Tables of means
## Grand mean
##
## 105.5278
##
##
  MT
## MT
##
## 83.17 108.33 125.08
##
## T
## T
   15
         70 125
## 144.83 107.58 64.17
##
## MT:T
##
            70 125
## MT 15
```

```
with (D, (interaction.plot(T, MT, y, type = "b", pch = c(18, 24, 22), leg.b1
```



```
par(mfrow = c(2,2))
plot(exbat.av)
```


Comparações múltiplas

- Quando a análise de variância indica que as médias de linha ou coluna diferem, usualmente é de interesse fazer comparações entre médias individuais de linha ou coluna para descobrir diferenças específicas.
 - Métodos de comparações múltiplas.

Comparações múltiplas

- Suponha que estejamos interessados em detectar diferenças entre as médias dos três tipos de materiais.
 - Como a interação é significativa, faremos esta comparação em apenas um nível de temperatura (nível 2: 70°F).
- O teste de Tukey pode ser utilizado para comparar os níveis do fator "Tipo de material" mantendo fixa a temperatura.
- Assumiremos que a melhor estimativa para a variância do erro é o MS_E .
- Ao nível de significância de 5%

$$T_{0,05} = q_{0,05}(3,27)\sqrt{rac{MS_E}{n}},$$

em que $q_{0,05}(3,27)$ é o percentil 95% da distribuição q (distribuição da estatística da amplitude studentizada) com três comparações e 27 graus de liberdade (associados ao MS_E).

Comparações múltiplas

```
qtukey(0.95, 3, 27) * sqrt(sum(exbat.av$residuals^2)/(3*3*3)/4)
## [1] 45.557
model.tables(exbat.av, "means") $tables \ MT:T \ [,2][3] - model.tables(exbat
## 2 1
## 26.0 88.5
model.tables(exbat.av, "means") $tables \ MT:T \ [,2][2] - model.tables(exbat
## 2
## 62.5
```

Para casa (para aula)

- Realize o procedimento de comparações múltiplas para comparar as médias dos tipos de materiais nos outros níveis de temperatura.
- Realize o procedimento de comparações múltiplas para comparar as médias das temperaturas fixando os níveis de tipo de material.
- Pense de que outra forma você poderia avaliar a estatística de teste F_0 .
 - Implemente sua ideia.

