

Complexity Analysis of Polynomial Algorithms

Final Degree Project - Double Degree in Mathematics and Computer Science, Complutense University of Madrid (UCM).

Ignacio Iker Prado Rujas

Tutors: Juan R. Delgado, José F. Fernando & José M. Gamboa - Department of Algebra, Faculty of Mathematics.

Abstract

In this work we gather three different proofs appearing in [FG], [FGU] and [FU1] of the following result: let R be a real closed field and consider the open quadrant $\mathcal{Q} := \{x > 0, y > 0\} \subset R^2$. Then, there exists a polynomial map $f: R^2 \to R^2$ such that $f(R^2) = \mathcal{Q}$. In addition, we compare the computational complexity of the three maps f satisfying the equality $f(R^2) = \mathcal{Q}$ looking for the most efficient one, and we present 3 new candidates to solve this problem.

Introduction

Let R be a real closed field. A very famous theorem by Tarski and Seidenberg (1951) states the following:

Theorem 1. The image of every polynomial map $f: \mathbb{R}^m \to \mathbb{R}^n$ is a semialgebraic subset of \mathbb{R}^n .

In this work we study a sort of converse of this statement proposed by J.M. Gamboa in the 1990 *Oberwolfach Reelle algebraische Geometrie* week:

'Inverse problem'. Characterize the semialgebraic subsets of \mathbb{R}^n that are polynomial images of some \mathbb{R}^m .

This problem has its origin in examples such as that $(0, +\infty)$ is not the image of any polynomial map $\mathbb{R} \to \mathbb{R}$, although there exists a certain polynomial map $\mathbb{R}^2 \to \mathbb{R}^2$ having $\mathcal{H} := \{y > 0\} \subset \mathbb{R}^2$ as its image.

Main results

The main results that we prove are:

Theorem 2. Let $n \ge 2$. For every finite set $F \subset \mathbb{R}^n$, the semialgebraic set $\mathbb{R}^n \setminus F$ is a polynomial image of \mathbb{R}^n .

Theorem 3. Let $n \ge 2$. Given independent linear forms h_1, \ldots, h_r of R^n , the open semialgebraic set $\{h_1 > 0, \ldots, h_r > 0\}$ is a polynomial image of R^n .

Theorem 4 (Open quadrant \mathcal{Q} problem). The open quadrant $\mathcal{Q} := \{x > 0, y > 0\}$ is a polynomial image of \mathbb{R}^2 .

About the first proof

On the topic of finding a polynomial map $f: \mathbb{R}^2 \to \mathbb{R}^2$ verifying Theorem 4, a "major difficulty" is that **the closure of its image must contain the positive half-axes**. Aiming at this, we approach the positive half-axes with certain families of curves: $\alpha_{\lambda}, \beta_{\mu}: \mathbb{R} \to \mathbb{R}^2$. The map $g:=(\mathcal{F}, \mathcal{G})$ defined as:

$$\mathcal{F}(x,y) = (1 - x^3y + y - xy^2)^2 + (x^2y)^2,$$

$$\mathcal{G}(x,y) = (1 - xy + x - x^4y)^2 + (x^2y)^2,$$

behaves well along those curves, namely:

 $\lim_{s \to 0} \mathcal{P}(\alpha_{\lambda}(s)) = (\lambda^2, 0) \text{ and } \lim_{s \to 0} \mathcal{P}(\beta_{\mu}(s)) = (0, \mu^2).$

About the third proof

The map $\mathscr{F} := (\mathscr{F}_1, \mathscr{F}_2) : \mathbb{R}^2 \to \mathbb{R}^2$ defined as: $\mathscr{F}_1(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^2 \mathbf{y}^4 + \mathbf{x}^4 \mathbf{y}^2 - \mathbf{y}^2 - 1)^2 + \mathbf{x}^6 \mathbf{y}^4,$ $\mathscr{F}_2(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^6 \mathbf{y}^2 + \mathbf{x}^2 \mathbf{y}^2 - \mathbf{x}^2 - 1)^2 + \mathbf{x}^6 \mathbf{y}^4,$

can be expressed as $\mathscr{F} = f_2 \circ f_1$, with $f_1(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^2, \mathbf{y}^2)$. This map verifies $f_1(\mathbb{R}^2) = \overline{\mathcal{Q}}$, so given a, b > 0, we must provide $x, y \geq 0$ such that:

$$\begin{cases} f_{2,1}(x,y) = a, \\ f_{2,2}(x,y) = b. \end{cases}$$

The proof is reduced to check that the boundaries of two certain topological subspaces of \mathbb{R}^3 homeomorphic to a closed disc meet $g(\overline{\mathcal{Q}})$, where $f_2 = h \circ g$.

In the analysis we start with some grids of points contained in a square, like a set of 4 million points denoted as \mathscr{P}_6 . We also use the families of curves that we mentioned before (and some others) in order to approach the positive half-axes.

Conclusions

Among the first 3 maps, the better one in terms of filling \mathcal{Q} seems to be g, but if we look at computation time \mathscr{F} is better. Although Theorem 4 hasn't been proved for the new maps, they outstrip g, f and \mathscr{F} on the tests. It is remarkable that for instance for \mathcal{N}_1 , even when looking at $[0,0.1]^2$ the images of the curves stay really close to the positive half-axes (as we see on Figure 1e), whereas we don't see this behavior for g and g (Figures 1d and 1f).

Some important graphs regarding the computational analysis

About the second proof

Let $f := \mathcal{H} \circ \mathcal{G} \circ \mathcal{F} : \mathbb{R}^2 \to \mathbb{R}^2$, where: $\begin{aligned} \mathcal{F}(\mathbf{x}, \mathbf{y}) &= \left((\mathbf{x}\mathbf{y} - 1)^2 + \mathbf{x}^2, \ (\mathbf{x}\mathbf{y} - 1)^2 + \mathbf{y}^2 \right), \\ \mathcal{G}(\mathbf{x}, \mathbf{y}) &= \left(\mathbf{x}, \ \mathbf{y}(\mathbf{x}\mathbf{y} - 2)^2 + \mathbf{x}(\mathbf{x}\mathbf{y} - 1)^2 \right), \\ \mathcal{H}(\mathbf{x}, \mathbf{y}) &= \left(\mathbf{x}(\mathbf{x}\mathbf{y} - 2)^2 + \frac{1}{2}\mathbf{x}\mathbf{y}^2, \ \mathbf{y} \right). \end{aligned}$

In this case the proof is conducted by inspecting at the images of the aforementioned polynomials.

Complexity analysis

In this work we also present some new candidates whose images "should be" \mathcal{Q} : $\mathcal{N}_1, \mathcal{N}_2$ and \mathcal{N}_3 . For the analysis, given a set of points we study how much time each map takes to compute the set of image points. We also examine which of the maps "covers more area of \mathcal{Q} " given the same set of points.

Some bibliography

- [BCR] J. Bochnak, M. Coste, M.-F. Roy: Géométrie algébrique réelle. *Ergeb. Math.* **12**, Springer-Verlag, Berlin, Heidelberg, New York (1987).
- [FG] J.F. Fernando, J.M. Gamboa: Polynomial images of \mathbb{R}^n . J. Pure Appl. Algebra, **179** (2003), 241–254.
- [FGU] J.F. Fernando, J.M. Gamboa, C. Ueno: The open quadrant problem: A topological proof. A mathematical tribute to Professor José María Montesinos. Departamento de Geometría y Topología. Facultad de CC. Matemáticas UCM, (2016), 337–350.
- [FU1] J.F. Fernando, C. Ueno: On the open quadrant as a polynomial image of \mathbb{R}^2 (revisited).
- [U] C. Ueno: Imágenes polinómicas y regulares de espacios euclídeos. Ph.D. Thesis UCM, (2012).

Further reading

Full text and code can be found at https://github.com/iipr/Final-Degree-Project.