Data Analytics CS301 Plotting and Basic Data Transformations

Week 4
Fall 2018
Oliver Bonham-Carter

Ask: What classes of cars (i.e,. suv's, trucks, etc.) get the best city and highway mileage?

I know! I will use some MPG data from the Tidyverse library and see what the data says!!


```
library(tidyverse)
# check the data
View(mpg)
# run simple plot
ggplot(data = mpg) +
geom_point(mapping = aes(x = mpg$displ, y = mpg$hwy ))
```


- ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy))
- Establish the canvas (where the plot is shown)
- Ggplot()
- Link to the data (set is called, 'mpg')
 - ggplot(data = mpg)
- Compute the geometery of point placement on canvas
 - geom_point(mapping = ...)
- Compute the aesthetics of the plot (titles, color, point type, etc)
 - -aes(x = displ, y = hwy)


```
ggplot(data = mpg) + geom_point(mapping = aes(x = mpg$displ, y = mpg$hwy ))
```

Displacement (Car Weight) by MPG on the Highway

Is there more to learn from this data?

What is *wrong* with this the previous plot?

New Blue Plot?

ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy), color = "blue")

ggplot(data = mpg) + geom_point(mapping = aes(x = mpg\$displ, y = mpg\$hwy, size = class))

Try Coloring for Dimension

 $ggplot(data = mpg) + geom_point(mapping = aes(x = mpg$displ, y = mpg$hwy, color = class))$

Combine Color, Sized Points and Cycle

 $ggplot(data = mpg) + geom_point(mapping = aes(x = mpg$displ, y = mpg$hwy, color = class, size = cyl))$

Comparing Hwy and City Mileage


```
# hwy mileage
ggplot(data = mpg) + geom_point(mapping = aes(x = mpg$displ, y
= mpg$hwy ))

# city mileage
ggplot(data = mpg) + geom_point(mapping = aes(x = mpg$displ, y
= mpg$cty ))
```


#incorporate **hwy and cty** mileage together in same plot ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy), color = "blue") + geom_point(mapping = aes(x = displ, y = cty), color="Red")

Add Sized Points

ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, size = cyl), color = "blue") + geom_point(mapping = aes(x = displ, y = cty, size = cyl), color="Red")

ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, size = cyl), color = "blue") + geom_point(mapping = aes(x = displ, y = cty, size = cyl), color="Red") + geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv), color = "blue") + geom_smooth(mapping = aes(x = displ, y = cty, linetype = drv), color = "red")

Where in the Web? Where in the Book?

- Note the chapter differences!
- Book:
 - Chap 3: Data
 Transformation with dplyr
 - Pages 43 73
- Web:

Chap 5: Data
Transformation with dplyr

 http://r4ds.had.co.nz/ transform.html

- What you want to show is in the data
- Unfortunately: To begin to show this is complicated.
 - Too much noise
 - Clutter
 - Unrelated pieces of data in the way

Filters

 Filters allow us to keep part of the whole while removing what we do not want

Filters to Transform Data?

Dictionary

transformation

trans-for-ma-tion

/ tran(t)sfər māSH(ə)n/ ◆)

noun

a thorough or dramatic change in form or appearance.

"its landscape has undergone a radical transformation"

synonyms: change, alteration, mutation, conversion, metamorphosis, transfiguration, transmutation,

sea change; More

- a metamorphosis during the life cycle of an animal.
- PHYSICS
 the induced or spontaneous change of one element into another by a nuclear process.

Data Transformation

- Filter out the unwanted stuff to leave the "good" stuff
- Easier to work with and visualize
- Data transformation:
 the process of converting data or information from one format to another,
- Usually from the format of a source system into the required format of a new destination system.

Let the Transformation Begin!!

 # Install the library containing the data (if necessary)

install.packages("nycflights13")

library(nycflights13)

library(tidyverse)

 # check that the data is found in the library nycflights13::flights

- # assign this data to an object.
 flights <- nycflights13::flights
- # View the table's columns names(nycflights13::flights)
- #Or, run, names(flights)

What do you see?

Flight Data

1	\$ €	J. 7	Filter															Q,	
	year	month	daŷ	dep_time	sched_dep_time	dep_delaŷ	arr_time	sched_arr_time	arr_delaŷ	carrier	flight	tailnum [‡]	origin	dest	air_time	distance	hour	minute	time_hour
1	2013	1	1	517	515	2	830	819	11	UA	1545	N14228	EWR	IAH	227	1400	5	15	2013-01-01 05:0
2	2013	1	1	533	529	4	850	830	20	UA	1714	N24211	LGA	IAH	227	1416	5	29	2013-01-01 05:0
3	2013	1	1	542	540	2	923	850	33	AA	1141	N619AA	JFK	MIA	160	1089	5	40	2013-01-01 05:
4	2013	1	1	544	545	-1	1004	1022	-18	В6	725	N804JB	JFK	BQN	183	1576	5	45	2013-01-01 05:
5	2013	1	1	554	600	-6	812	837	-25	DL	461	N668DN	LGA	ATL	116	762	6	0	2013-01-01 06:
6	2013	1	1	554	558	-4	740	728	12	UA	1696	N39463	EWR	ORD	150	719	5	58	2013-01-01 05:
7	2013	1	1	555	600	-5	913	854	19	B6	507	N516JB	EWR	FLL	158	1065	6	0	2013-01-01 06:
8	2013	1	1	557	600	-3	709	723	-14	EV	5708	N829AS	LGA	IAD	53	229	6	0	2013-01-01 06:
9	2013	1	1	557	600	-3	838	846	-8	B6	79	N593JB	JFK	мсо	140	944	6	0	2013-01-01 06:
10	2013	1	1	558	600	-2	753	745	8	AA	301	N3ALAA	LGA	ORD	138	733	6	0	2013-01-01 06:
11	2013	1	1	558	600	-2	849	851	-2	B6	49	N793JB	JFK	PBI	149	1028	6	0	2013-01-01 06:
12	2013	1	1	558	600	-2	853	856	-3	В6	71	N657JB	JFK	TPA	158	1005	6	0	2013-01-01 06:
13	2013	1	1	558	600	-2	924	917	7	UA	194	N29129	JFK	LAX	345	2475	6	0	2013-01-01 06:

> View(flights)

> names(nycflights13::flights)

[1] "year" "month" "day" "dep_time" "sched_dep_time" "dep_delay" "sched_arr_time" "arr_delay" "carrier" "flight" "tailnum" [7] "arr_time" [13] "origin" "dest" "air_time" "distance" "hour" "minute" [19] "time_hour"

Upon A Closer Inspection...

- This data frame contains all 336,776 flights that departed from New York City in 2013. The data comes from the US Bureau of Transportation Statistics, and is documented in ? flights.
- Flight numbers,
- Date, takeoff time and duration of flight
- Scheduled departure and arrival times
- Actual departure and arrival times (delays)
- Carrier
- Airports (origin and destination for a flight)
- Distance flown
- And more...

What are the Elements?

#show whole dataset
 View(flights)

- # show first and second row of data table flights[1:2,]
- # show first and second cols
- flights[,1:2]
- # show cols 1 and 5 (using a vector)
- flights[,c(1,5)]

Data Types?

#show the data types flights[1,]

```
> flights[1,]
# A tibble: 1 x 19
   year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
 <int> <int> <int>
                       <int>
                                      <int>
                                                <dbl>
                                                          <int>
                                                                         <int>
                                                                                   <dbl>
                                        515
                                                                           819
   2013
                         517
                                                            830
# ... with 10 more variables: carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
```

Why should we care about the data type?

- int stands for integers.
- **dbl** stands for doubles, or real numbers.
- chr stands for character vectors, or strings.
- dttm stands for date-times (a date + a time).
- #others
- **IgI** stands for logical, vectors that contain only TRUE or FALSE.
- fctr stands for factors, which R uses to represent categorical variables with fixed possible values.
- date stands for dates.

dplyr Basics

- Five key dplyr functions
 - Pick observations by their values (filter()).
 - Reorder the rows (arrange()).
 - Pick variables by their names (**select()**).
 - Create new variables with functions of existing variables (mutate()).
 - Collapse many values down to a single summary (summarise()).
- Find help for each: ?keyword

Filter()

#filter(object, column_header to consider)
 filter(flights, month == 1, day == 1)
 filter(flights, month == 1, dep_time == 554)

- #Assign a variable to this particular object dep_timeFlights554 <- filter(flights, month == 1, dep_time == 554)
- View(dep_timeFlights554)

Comparisons with Filter()

R provides the standard suite: >, >=, <, <=, != (not equal), and == (equal).

- # select * from flights where month == 1;
 filter(flights, month == 1)
- #What happens here?

```
filter(flights, month >=11)
filter(flights, month <=11)
```

De Morgan's Law with Filter()

- #De Morgan's law: !(x & y) is the same as !x | !y, !
 (x | y) is the same as !x & !y.
- #For example, if you wanted to find flights that weren't delayed (on arrival or departure) by more than two hours, you could use either of the following two filters:

```
filter(flights, !(arr_delay > 120 | dep_delay > 120))
```

filter(flights, arr delay <= 120, dep delay <= 120)

ALLEGHENY COLLEGE

Arrange()

- arrange() works similarly to filter() except that instead of selecting rows, it changes their order.
- #Show rows and cols as ordered by a particular column.
- #arrange(object, column_header)
- #What happens here?

```
arrange(flights, minute)
```

filter(flights, day == 30, dep_time == 554)

Arrange()

- #If you provide more than one column name, each additional column will be used to break ties in the values of preceding columns.
 - arrange(flights, year, month, day)
- #Use desc() to re-order by a column in descending order.
 - arrange(flights, desc(arr_delay))
 arrange(flights, arr delay)

Select()

- #select() allows you to rapidly zoom in on a useful subset using operations based on the names of the variables.
 select(flights, year, month, day)
- # Select all columns going across the headers found between year and day (inclusive)
 select(flights, year:day)
- # Select all columns except those from year to day (inclusive)

select(flights, -(year:day))

Selecting(data, A:F)

A
B
C
D
F
G
F

Mutate()

- #add new columns that are functions of existing columns
- #create a new object from flights having new cols.
- # xx and yy could be equations using existing data.
- xy <- mutate(flights,xx = day, yy = month)
- View(xy)

Summarise()

- Collapse your data into a single subset
- Use with group_by()
 to organize data into
 groups to help you
 see results from that
 time.

```
# A tibble: 365 x 4

# Groups: year, month [?]
year month day mean
<int> <int> <int> <int> <int> <dbl>
1 2013 1 111.5
2 2013 1 2 13.9
3 2013 1 3 11.0
4 2013 1 4 8.95
5 2013 1 5 5.73
6 2013 1 6 7.15
7 2013 1 7 5.42
8 2013 1 8 2.55
```

```
by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
# or, another way to enter the command using pipes...
flights %>%
  group_by(year, month, day) %>%
  summarise(mean = mean(dep_delay, na.rm = TRUE))
```

Practice Datasets

- **iris** data set gives the measurements in centimeters of the variables sepal length, sepal width, petal length and petal width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
- **ToothGrowth** data set contains the result from an experiment studying the effect of vitamin C on tooth growth in 60 Guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, (orange juice or ascorbic acid (a form of vitamin C and coded as VC).
- **PlantGrowth**: Results obtained from an experiment to compare yields (as measured by dried weight of plants) obtained under a control and two different treatment condition.
- **USArrests**: This data set contains statistics about violent crime rates by us state.
- Data() # to see more sets in R