RNAseq Analyses

POST-SEQUENCING STEPS

- ERNEST ALICHE

WHY RNAseq?

- Differential gene expression between conditions
- Alternative splice variants
- De Novo discovery of putative gene(s)
- Transcriptome-wide sampling of all genes
- Absence of house-keeping gene biases

THINGS TO TAKE INTO ACCOUNT

- Highly expressed genes could mask lowly expressed genes
 - Sufficient sequencing depth required to detect lowly expressed genes
 - Genome size and extent of sequence repeats (e.g. transposable elements) affect depth
- Batch effects
 - May affect different sequencing runs
 - May be factored in the analyses model
- Computing power challenge

HANDLING YOUR RNAseq BIG DATASET

- Knowledge of your data structure (variables, factors, covariables...)
 - Psychological control
 - Confidence to go deeper
- genseq-h0.science.uva.nl/download/MAD1249

THE RAW SEQUENCE DATA

Fastq_sequence

Adapter sequences

- Used in binding barcoding sequences and for immobilizing the fragments to the flow-cell
- Removal: Cutadapt, Flexible Adapter Remover (FAR), Adapterremoval, Trimmomatic, FASTQ
 Clipper, PRINSEQ, ea-utils

QUALITY CONTROL (QC)

401

PREPARING YOUR REFERENCE SEQUENCE

- Download reference genome (.fa and .gtf/.gff)
 - Confirm what genome version to download...
 - Ensembl plants, Gramene, etc.
- Build genome index files

READ ALIGNMENT TO REFERENCE

- Mapping reads to the reference genome
- Read mapping at exon-exon junctions

READS COUNT & DIFFERENTIAL EXPRESSION

Various approaches depending on package used: HISAT2, DESeq2, edgeR, ...

Normalization for sequencing depth

Normalization for Gene Length

- RPKM (single-end sequencing) $\rightarrow RPM = \frac{ReadCounts\ per\ sample}{1,000,000} \rightarrow RPKM = \frac{RPM}{GeneLenght\ in\ Kb}$
- FPKM (paired-end sequencing) $\rightarrow FPM = \frac{FragmentAbundance}{1,000,000} \rightarrow FPKM = \frac{FPM}{GeneLength in Kb}$

Normalization for Gene Length Normalization for sequencing depth

- TPM (transcripts per Kilobase million...) $\rightarrow RPK = \frac{ReadCounts}{GeneLength} \rightarrow TPM = \frac{RPK}{1,000,000}$
- Raw counts (from e.g. Rsubread)

DATA & RESULTS VISUALIZATION

- Heat maps & PCAs
- Volcano plots
- Venn diagrams

http://bioinformatics.psb.ugent.be/webtools/Venn/

Clustering of the distance between samples based on transformed counts can reveal sample errors.

WHAT NEXT???

- Depends on your research questions (curiosity), number of DEGs, available time...
 - Functional Annotation
 - agriGO http://bioinfo.cau.edu.cn/agriGO/analysis.php
 - PlantRegMap http://plantregmap.cbi.pku.edu.cn/go.php
 - Goseq https://bioconductor.org/packages/release/bioc/html/goseq.html
 - •

WHAT NEXT???

Co-Expression analyses

Regulatory network analyses

WORKFLOW SUMMARY

Preparatory step

Quality control

Read mapping

DEG computation

Arrange computing power
Get sequencing information
Master your data structure

Remove adapter sequence Check reads quality Trim poor quality reads

Download reference genome Build genome index files Align reads to reference

Count mapped reads
Compute differential expression
Visualize DEGs (e.g. Venn diagram, volcano plots...

GO Enrichment

Co-Expression analysis

Co-Regulation analysis

