

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Disciplina: INFERÊNCIA ESTATÍSTICA

Curso: Graduação em Estatística

Código: EST0035 Semestre: 2024.2

Professor: Frederico Machado Almeida

LISTA DE EXERCÍCIOS #02

Observações:

• Questões para entregar: 1, 2, 5, 8 e 10

• Demais questões são apenas para estudar.

• Prazo de entrega: 30/04/2025

Q1. Considere a distribuição de Pareto com função densidade de probabilidade (fdp) dada por:

$$f(x, \theta, \alpha) = \frac{\theta \alpha^{\theta}}{x^{(\theta+1)}}, \text{ para } x \ge \alpha, \theta > 1,$$

onde α e θ são parâmetros da distribuição. Assuma $\alpha=2$ e que X_1,X_2,\cdots,X_n é uma amostra aleatória de tamanho n. A média para a distribuição de Pareto é dada por $E(X)=\frac{\theta\alpha}{\theta-1}$.

- (a) Encontre o estimador dos momentos para a média.
- (b) Encontre o EMV para θ . Este estimador é diferente daquele obtido no item (a)?
- (c) Considere os dados observados para a amostra aleatória: 3, 5, 2, 3, 4, 1, 4, 3, 3, 3. Obtenha a estimativa para θ usando os estimadores obtidos nos itens (a) e (b).
- **Q2.** Seja X_1, \dots, X_n uma amostra aleatória da variável aleatória X com distribuição exponencial com parâmetro θ . Encontre o estimador de máxima verossimilhança para a função $g(\theta) = P(X > 1)$ e sua distribuição aproximada quando n for grande.
- Q3. Suponha que em um experimento de Bernoulli, envolvendo 24 repetições independentes resultou em 25 sucessos. Encontre a estimativa de máxima verossimilhança para a probabilidade de sucesso θ , se é do conhecimento do pesquisador que $\theta \leq 1/2$.
- **Q4.** Seja X_1, \dots, X_n uma amostra aleatória de tamanho n da variável aleatória X com função de densidade de probabilidade,

$$f(x|\theta) = \frac{\theta}{(1+x)^{1+\theta}}, \ x > 0, \ \theta > 0.$$

(a) Encontre, caso exista, uma forma analítica para o estimador de máxima verossimilhança de θ .

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (b) Obtenha a informação de Fisher e sua distribuição aproximada em grandes amostras.
- **Q5.** Seja X_1, X_2, \dots, X_n cópias iid's de uma va $X \sim \mathcal{U}(a, b)$, com $a \in b$ denotando parâmetros desconhecidos e a < b.
 - (a) Encontre o estimador dos momentos para $a \in b$.
 - (b) Encontre o EMV para a e b.
 - (c) Usando a propriedade de invariância dos EMV, encontre o EMV para $g\left(a,b\right)=E\left(X^{2}\right).$
 - (d) Os EMV obtidos em (b) são consistentes para a e b? Justifique a sua resposta.
- **Q6.** Seja X_1, \dots, X_n uma amostra aleatória de tamanho n da variável aleatória X com função de densidade de probabilidade dada por,

$$f(x|\theta) = \theta(\theta+1) x^{\theta-1} (1-x), \ 0 \le x \le 1, \ \theta > 0.$$

- (a) Encontre, usando o método dos momentos, um estimador para θ .
- (b) Encontre o estimador de máxima verossimilhança de θ e sua distribuição aproximada em grandes amostras.
- (c) É correto afirmar que $\hat{\theta}_n$ é um estimador eficiente?
- (d) Obtenha o estimador de máxima verossimilhança para θ , supondo que uma restrição do suporte de θ , isto é, se $0 \le \theta \le 3$.
- Q7. Seja X_1, X_2, \dots, X_n uma aa retirada de uma população com média β e variância σ^2 . Seja $\hat{\beta}$ um estimador para β dado por $\hat{\beta} = \frac{\sum\limits_{i=1}^n iX_i}{\sum\limits_{i=1}^n i}$.
 - (a) Verifique se $\hat{\beta}$ é um estimador não-viesado para β .
 - (b) Mostre que $\hat{\beta}$ é um estimador consistente para β (dica: assuma que, $\sum_{i=1}^{n} i = \frac{n(n-1)}{2}$ e $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$).
- **Q8.** Se X_1, X_2, \dots, X_n uma amostra aleatória proveniente de uma distribuição com função densidade de probabilidade,

$$f\left(x|\theta\right) = \left\{ \begin{array}{ll} \frac{3\theta^3}{\left(x+\theta\right)^4} & x > 0, \; \theta > 0 \\ 0 & \mathrm{caso \; contr\'{a}rio.} \end{array} \right.$$

Mostre que $T_n = 2\bar{X}_n$ é um estimador não-viesado para θ , e obtenha a sua eficiência.

- **Q9.** Seja X uma variável aleatória, tal que, $X \sim \mathcal{N}(0, \theta)$, com $\theta > 0$.
 - (a) Se X_1, \dots, X_n é uma amostra aleatória extraída da população supracitada, mostre que o estimador de máxima verossimilhança $\hat{\theta}_n$ é eficiente para θ .
 - (b) Qual é a distribuição assintótica de $\sqrt{n} (\hat{\theta}_n \theta)$?
 - (c) Obtenha o estimador de máxima verossimilhança para a função $g(\theta) = \sqrt{\theta}$.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (d) Supondo que o suporte de θ está restrito no intervalo de $0 < \theta \le 5$, obtenha o EMV para θ .
- **Q10.** Assuma que X_1, X_2, \dots, X_n denotam cópias iid's de uma v.a. X proveniente de uma população caracterizada por uma função densidade de probabilidade dada por:

$$f(x|\theta) = \frac{2x}{\theta^2}, \quad 0 \le x \le \theta, \quad \theta \ge 0.$$
 (1)

- (a) Construa o intervalo de máxima verossimilhança para θ .
- (b) É correto afirmar que o estimador construído em (a) é não-viesado para θ ? Justifique a sua resposta.