Содержание

1	Инт	егралы, зависящие от параметра	2
	$1.1 \\ 1.2$	Интегралы, зависящие от параметра. Принцип равномерной сходимости	4
	1.3	Теорема о непрерывности интеграла, зависящего от параметра	
	1.4	Дифференцирование под знаком интеграла. Правило Лейбница	,
	1.5	Интегрирование под знаком интеграла	۷
	1.6	Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования	4
	1.7	Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости	4
	1.8	Предельный переход в несобственном интеграле, зависящем от параметра	Ę
	1.9	Дифференцирование по параметру несобственного интеграла	(
	1.10	Интегрирование по параметру несобственного интеграла	(
2	_	тные интегралы	7
	2.1	Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства двоичных инервалов,	
		кубов	7
	2.2	Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определе-	
	2.0	ния). Теорема о совпадении определений	,
	2.3	Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка ин-	1 /
	0.4	теграла)	10
	2.4	Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к	1/
	0.5	нулю	10
	2.5	Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно сходящейся к нулю	1 -
	o <i>c</i>		11
	2.6	Системы с интегрированием. Основной пример. Свойства систем с интегрированием	11
	2.7	2.6.1 Пример системы с интегрированием	$\frac{12}{13}$
	2.8	Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и т.д.)	$\frac{13}{13}$
	$\frac{2.8}{2.9}$	Своиства 11 нормы ("линеиность норма функции равнои нулю почти всюду и т.д.)	
	$\frac{2.9}{2.10}$	Суоаддитивность L1-нормы	$\frac{1}{4}$
	$\frac{2.10}{2.11}$	Определение понятие интеграла и интегрируемой функции	14
	$\frac{2.11}{2.12}$	Свойства интеграла и интегрируемых функций	15
	2.12	Множества меры ноль. Свойства функций совпадающих почти всюду	16
	$\frac{2.13}{2.14}$	Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах	17
	2.14 2.15	Теоремы Леви для функциональных рядов и последовательностей	18
		Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последова-	10
	2.10	тельности	18
	2 17	Теорема Фату о предельном переходе. Следствие из теоремы Фату	21
		Теорема Лебега о предельном переходе	21
	2.19	Лемма о приближении стуенчатой функции с помощью непрерывных финитных	21
	2.20	Теорема о приближении интегрируемой функции с помощью непрерывных финитных	21
	2.21	Измеримые функции. Свойства пространства измеримых функций. Измеримые множества	21
	2.22	Теорема об интегрируемости измеримой функции	21
	2.23	Теорема об измеримости предела измеримых функций	21
	2.24	Теорема об интегрируемости предела возрастающей последовательности положительных измеримых	
		функций	21
	2.25	Обобщенно измеримые функции. Измеримые множества, мера множества. Теорема об измеримости	
		объединения и пересечения измеримых множеств	21
	2.26	Счетная аддитивность интеграла и меры	2
	2.27	Измеримые множества в Rn. Внешняя мера множества. Лемма о представлении открытого множе-	
		ства как объединения кубов. Теорема об измеримости открытых и замкнутых множеств в Rn	21
	2.28	Теорема о внешней мере множества	21
	2.29	Лемма о приближении неотрицательной вещественной функции ступенчатыми функциями. След-	
		ствие об измеримости непрерывной почти всюду функции	21
	2.30	Теорема о совпадении интералов Римана и Лебега	21
	2.31	Теорема Фубини и следствия из нее	21
	2.32	Теорема Тонелли и следствия из нее	21
	2.33	Диффеоморфизмы и их свойства. Теорема о замене переменной в кратном интеграле (формулировка)	21

2.34	Лемма о замене переменной при композиции диффеоморфизмов	21
2.35	Лемма о сведении замены переменной в общем случае к случаю индикатора двоичного куба	21
2.36	Лемма о представлении диффеоморфизма в виде композиции диффеоморфизмов специального вида	21
2.37	Теорема о замене переменной в кратном интеграле	21

1 Интегралы, зависящие от параметра

1.1 Интегралы, зависящие от параметра. Принцип равномерной сходимости

Определение. $X \times Y \subset \mathbb{R}^2, f(x,y)$ определена на $X \times Y,$ пусть y_0 - предельная точка Y

- 1. пусть $\forall x \in X \quad \exists \lim_{y \to y_0} f(x, y) := \phi(x)$
- 2. пусть $\forall \epsilon > 0 \exists \delta(\epsilon)$ такая что $|y-y_0| < \delta |f(x,y)-\phi(x)| < \epsilon$ для $\forall x \implies$ тогда говорят, что f(x,y) равномерно сходится к $\phi(x)$

Теорема 1.1 (Свойства равномерной сходимости). $f: X \times Y \longrightarrow \mathbb{R}, y_0$ - предельная точка Y

- 1. f(x,y) равномерно на X сходится κ $\phi(x)$ тогда и только тогда, если $\forall \epsilon > 0$ $\exists \delta(\epsilon): \forall x \in X \forall y', y'' \in Y$ $|f(x,y') f(x,y'')| < \epsilon$ [Критерий Коши]
- 2. f(x,y) равномерно по X стремится κ $\phi(x)$ тогда и только тогда, если для $\forall \{y_n\}$ так что $y_n \longrightarrow y_0$ последовательность $\{f(x,y_n)\}$ равномерно сходится κ $\phi(x)$ [сходимость по Гейне]
- 3. Если при $\forall y$ функция f(x,y) непрерывна по x (интегрируема) и f(x,y) равномерно сходится κ $\phi(x)$, то $\phi(x)$ непрерывна и интегрируема
- 4. $\exists x_0, y_0$ предельные точки X и Y, f(x,y) равномерно по x сходится κ $\phi(x)$, $\exists \forall y \in Y \exists \lim_{x \to x_0} f(x,y) =: \psi(y)$, тогда $\exists \lim_{x \to x_0} \phi(x) = \lim_{y \to y_0} \psi(y) [= \lim_{x \to x_0} \lim_{y \to y_0} f(x,y)]$

Доказатель ство. 1.
$$\triangleleft \Rightarrow \lim_{y \to y_0} f(x,y) =: \phi(y)$$

$$|f(x,y') - f(x,y'')| = |f(x,y') - \phi(x) - f(x,y'') + \phi(x)| \le |f(x,y') - \phi(x)| + |f(x,y'') - \phi(x)|$$

$$\iff x \in X |f(x,y') - f(x,y'')| < \epsilon \text{ при } |y_0 - y''| < \delta \iff |y_0 - y''| < \delta \iff |y_0 - y''| < \delta$$

$$|f(x, y') - f(x, y'')| < \epsilon, y'' \to y_0$$

$$|f(x, y') - \phi(x)| \le \epsilon, f(x, y) \Rightarrow \phi(x)$$

2. Необходимость очевидна

Достаточность:
$$\{y_n\} \to y_0$$

 $\{f(x,y_n)\} \to \phi(x)$, пусть $|y_0-y_n| < \delta = \frac{1}{n} \implies y_n \to y_0$
и $|f(x,y_n) - \phi(x)| > \epsilon$; $f(x,y_n) \nrightarrow \phi(x)$ противоречие

3. $\exists \{y_n\} \to y_0, f_n(x) = f(x, y_n)$

 $f_n(x)$ равномерно сходится к $\phi(x)$ по 2

Далее $\phi(x)$ равномерный предел хороших функий $\implies \phi(x)$ хорошая

Попа дробнее... (для последовательности функций от одной переменной)

$$|s(x_0 + h) - s(x_0)| = |s(x_0 + h) + s_n(x_0 + h) - s_n(x_0) - s_n(x_0 + h) + s_n(x_0) - s(x_0)|$$

$$\leq |s(x_0 + h) - s_n(x_0 + h)| + |s_n(x_0 + h) - s_n(x_0)| + |s_n(x_0) - s(x_0)|$$

Каждое из этих слагаемых меньше $\epsilon/3$ (среднее по причине непрерывности $s_n(x)$, остальные по причине равномерной сходимости)

4. $f(x,y) \Rightarrow \phi(x), \exists \epsilon > 0$, выберем $\delta > 0$ такое что: $|y_0 - y'| < \delta$ и $|y_0 - y''| < \delta \Longrightarrow$ $|f(x,y')-f(x,y'')|<\epsilon$ по к. Коши $x \to x_0 : |\psi(y') - \psi(y'')| \le \epsilon \implies$ для $\psi(y)$ верен критерий Коши \Longrightarrow $\exists \lim_{y \to y_0} \psi(y) = A = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$ $|f(x,y)-\phi(x)|<\epsilon, |\psi(y)-A|<\epsilon$ если $|y-y_0|<\delta$ $|\phi(x)-A| \leq |\phi(x)-f(x,y)|_{<\epsilon} + |f(x,y)-\psi(y)|_{<\epsilon,\text{t.K дельты}} + |\psi(y)-A|_{<\epsilon} \leq 3\epsilon$ при $x \to x_0 \implies \lim_{x \to x_0} \phi(x) = A$

1.2Теорема о коммутировании двух предельных переходов. Предельный переход под знаком интеграла

 $f(x,y):[a,b] imes Y o \mathbb{R},y_0$ - предельная точка Y и $f_y(x)=f(x,y)$ - интегрируема на [a,b] $F(y)=\int_a^b f(x,y)dx$

Теорема 1.2 (О предельном переходе). Если кроме того, что f(x,y) равномерно на [a,b] стремится κ $\phi(x)$ при $y \to y_0, \ mo \ \lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx$

Доказательство. $\triangleleft \phi(x)$ - равномерный предел, непрерывен

 $f_y(x) \Longrightarrow \phi(x)$ - интегрируема, $\exists \epsilon > 0$ $\delta(\epsilon) > 0$ выбрано из определения равномерной сходимости $|\int_a^b f(x,y) dx - \int_a^b \phi(x) dx| = |\int_a^b (f(x,y) - \phi(x)) dx| \le \int_a^b |f(x,y) - \phi(x)| dx \le \epsilon (b-a)$ если $|y-y_0| < \epsilon$ $\lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx$

1.3 Теорема о непрерывности интеграла, зависящего от параметра

Теорема 1.3 (Непрерывность). f(x,y)-непрерывна, $f:[a,b]\times[c,d]\to\mathbb{R}$ $f(y) = \int_a^b f(x,y) dx$ непрерывна на [c,d]

Доказатель ство.
$$\lhd[a,b] \times [c,d]$$
 компакт $\Longrightarrow f(x,y)$ равномерно непрерывна на компакте $\forall \epsilon > 0: \begin{array}{c} |x-x'| < \delta \\ |y-y'| < \delta \end{array} \Longrightarrow |f(x,y) - f(x',y')| < \epsilon \end{array}$

 $x' = x, y' = y_0$

 $|f(x,y)-f(x,y_0)|<\epsilon$ при $|y-y_0|<\delta(\epsilon)$

 $f(x,y) \rightrightarrows f(x,y_0) = \phi(x)$ равномерный предел не зависит от х

по теореме о предельном переходе: $\lim_{y\to y_0} F(y) = \lim_{y\to y_0} \int_a^b f(x,y) dx = \int_a^b \phi(x) dx = \int_a^b f(x,y_0) dx = F(y_0) \implies F \text{ непрерывна в } y_0 \in [c,d] \implies F$ непрерывна на [c,d]

Дифференцирование под знаком интеграла. Правило Лейбница 1.4

Теорема 1.4 (О дифференцируемости интеграла, зависящего от параметра). f(x,y) - определена в $[a,b] \times [c,d]$ при $\forall y \in [c,d]$ функция $f_y(x) = f(x,y)$ непрерывна по $x, \exists f_v'(x,y) \exists u$ непрерывна в прямоугольнике, тогда

$$F(y)=\int_a^b f(x,y)dx$$
u $F'(y)=\int_a^b f_y'(x,y)dx$

Доказатель ство. \triangleleft в силу непрерывности f(x,y) по x, определена $F(y)=\int_a^b f(x,y)dx$

$$y_0 \in [c, d], F(y_0) = \int_a^b f(x, y_0) dx$$

$$F(y_0 + \triangle) = \int_a^b f(x, y_0 + \triangle) dx$$

$$g_0 \in [c, a], F(y_0) - J_a f(x, y_0) dx$$

$$F(y_0 + \triangle) = \int_a^b f(x, y_0 + \triangle) dx$$

$$\frac{F(y_0 + \triangle) - F(y_0)}{\triangle} = \int_a^b \frac{f(x, y_0 + \triangle) - f(x, y_0)}{\triangle} dx$$

По теореме Лагранжа, $\exists \theta \in (0,1)$ т.ч $\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} = f_y'(x,y_0+\theta\triangle)$

$$\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} = f'_y(x,y_0+\theta\triangle)$$

т.к F непрерывна \Longrightarrow равномерно непрерывна \Longrightarrow для $\epsilon>0$ $\exists \delta>0 \ \ \begin{vmatrix} x'-x''|<\delta \\ |y'-y''|<\delta \end{vmatrix} \Longrightarrow |f_y'(x',y')-f_y'(x'',y'')|$

```
x'=x''=x, y'=y_0+\triangle\theta, y''=y_0, \text{если}\ \triangle<\delta |\frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle}-f_y'(x,y_0)|=|f_y'(x,y_0+\theta\triangle)-f_y'(x,y_0)|<\epsilon\text{ т.к }\delta(\epsilon) неравенство не зависит от точек, т.е \frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} \rightrightarrows f_y'(x,y_0) \text{ равномерно по x} В силу теоремы о предельном переходе, получаем что \int_a^b \frac{f(x,y_0+\triangle)-f(x,y_0)}{\triangle} dx \to \int_a^b f_y'(x,y_0) dx \frac{F(y_0+\triangle)-F(y_0)}{\triangle} \to F_y'(y_0)
```

1.5 Интегрирование под знаком интеграла

Теорема 1.5 (О интегрируемости F(y)). $\Box f(x,y)$ непрерывна в [a,b]x[c,d], тогда имеет место равенство $\int_c^d (\int_a^b f(x,y)dx)dy = \int_a^b (\int_c^d f(x,y)dy)dx$

По предыдущей теореме $(\int_a^b \phi(x,\eta) dx)'_{\eta} = \int_a^b \phi'_{\eta}(x,\eta) dx = \int_a^b f(x,\eta) dx = F(\eta) \implies$ левая и правая часть могут отличаться лишь на const, но при $\eta = c$ обе части равны $0 \implies C = 0$

1.6 Непрерывность и дифференцируемость интеграла с переменными пределами интегрирования

Теорема 1.6. $\Box f(x,y)$ определена и непрерывна в прямоугольнике $[a,b] \times [c,d]$ $x = \alpha(y); x = \beta(y)$ непрерывны и не выходят за пределы прямоугольника Тогда $F(y) = \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ непрерывен

Доказатель ство. $\forall y_0 \in [c,d]$ $F(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx - \int_{\alpha(y_0)}^{\alpha(y)} f(x,y) dx$ т.к $\beta(y_0), \alpha(y_0) = C$, to $\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx \stackrel{\text{def}}{=} \widetilde{F}(y) \to \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y_0) dx = \widetilde{F}(y_0)$ $|\int_{\beta(y_0)}^{\beta(y)} f(x,y) dx| \leq \int_{\beta(y_0)}^{\beta(y)} |f(x,y)| dx \leq M|\beta(y) - \beta(y_0)| \to 0, \text{ где } M \leq |f(x,y)|, \text{ при } y \to y_0$ при $y \to y_0$ $F(y) \to \widetilde{F}(y)$ $F(y) \to \widetilde{F}(y) \to \widetilde{F}(y_0)$

Теорема 1.7. $\Box f(x,y)$ определена в $[a,b] \times [c,d]$ имеет в ней непрерывную производную $f'_y(x,y)$ $\alpha'(y)$ и $\beta'(y)$ - непрерывны, тогда $F'_y(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f'_y(x,y) dx + \beta'(y) f(\beta(y),y) - \alpha'(y) f(\alpha(y),y)$

Доказатель ство.
$$F(y) = \int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx + \int_{\beta(y_0)}^{\beta(y)} f(x,y) dx - \int_{\alpha(y_0)}^{\alpha(y)} f(x,y) dx$$
 ($\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx$), $f(x,y) dx$ т.к пределы постоянные
$$\frac{\int_{\beta(y_0)}^{\beta(y_0)} f(x,y) dx - 0}{y - y_0} = \frac{f(\widetilde{x},y)(\beta(y) - \beta(y_0))}{y - y_0} [\widetilde{x} \text{ между } \beta(y) \text{ и } \beta(y_0)]$$
 при $y \to y_0 \frac{\int_{\beta(y_0)}^{\beta(y)} f(x,y) dx}{y - y_0} \to f(\beta(y_0),y_0)\beta'(y_0)$, т.е ($\int_{\alpha(y_0)}^{\beta(y_0)} f(x,y) dx$), $f(x,y) dx$), $f(x,y) dx$, аналогично со вторым интегралом

1.7 Равномерная сходимость интегралов. Достаточные признаки равномерной сходимости

 $\int_a^\omega F(x)dx$ - несобственный, если $\omega=\pm\infty$ или f(x) не ограничена в окрестности ω $\Box f(x,y)$ определена на множестве $[a,\omega)\times Y$ Для всех $y\in Y$ функция $f_y(x)=f(x,y)$ несобственно интегрируема на $[a,\omega)$, тогда $F(y)=\int_a^\omega f(x,y)dx=\lim_{b\to\omega}\int_a^b f(x,y)$

Определение. $f(b,y)=\int_a^b f(x,y)dx$, тогда сходимость F(y) равносильна существованию предела $\lim_{b\to\infty}F(b,y)=$ $F(y) = F(\omega, y)$

Определение. $\mathrm{F}(\mathrm{y})$ называется равномерно сходящейся относительно у на Y, если $\forall \epsilon \ \exists \delta(\epsilon): \forall y \in Y \ \forall b \in \mathcal{S}$ $(a,\omega)|b-\omega| < \delta \implies |F(b,y)-F(y)| < \epsilon$ $F(b,y) \rightrightarrows_{b\to\omega} F(y)$

 $\it 3ameuanue. \ \ \, \supset \, - \{b_n\}$ - последовательность сходится к ω согласно свойствам равномерной сходимости

$$F(b,y) \rightrightarrows F(y) \leftrightarrow F(b_n,y) \rightrightarrows F(y)$$

$$a_n y \stackrel{\mathrm{def}}{=} \int_{b_n}^{b_{n+1}} f(x,y) dx, b_1 = a, b_j \geq a$$
 Тогда $F(y) = \sum_{n=1}^{\infty} a_n(y)$

Равномерная сходимость F(y) равносильна равномерной сходимости ряда

Теорема 1.8 (Признаки равномерной сходимости интеграла). 1. (Вейерштрасса) f(x,y) определена на $[a,\omega) \times$ Y,ω - особая точка f(x,y) и f(x,y) интегрируема на $[a,b]\subset [a,\omega)$ Если $\exists \phi(x)|f(x,y)|\leq \phi(x)$ $\forall x\in [a,\omega) \forall y\in Y$ $u \int_a^\omega \phi(x) dx$ сходится, то $\int_a^\omega f(x,y) dx = F(y)$

- 2. (Дирихле) $F(y) = \int_a^\omega f(x,y)g(x,y)dx, g(x,y)$ монотонно по $x \to \omega$ равномерно по y стремится κ 0 u для \forall отрезка $[a,b] \subset [a,\omega)$
 - $|\int_a^b f(x,y)dx| \leq L$, тогда F(y) сходится равномерно
- 3. (Абель) $F(y) = \int_a^\omega f(x,y)g(x,y)dx$

Если $\int_{a}^{\omega} f(x,y)dx$ сходится равномерно g(x,y) монотонно по x равномерно по y сходится κ своему пределу

Доказательство. 1. очевидно Для F(y) используем критерий Коши

- 2. $\int_{b'}^{b''} f(x,y)g(x,y)dx = g(b',y) \int_{b'}^{\xi} f(x,y)dx + g(b'',y) \int_{\xi}^{b''} f(x,y)dx, \xi \in (b',b'')$ $g(b,y) \to 0$ равномерно по у $\implies \exists B$ такое что $\forall b',b'' > B$ $|g(b',y)|<rac{\epsilon}{2L}$ $|g(b'',y)|<rac{\epsilon}{2L}$ $\Longrightarrow F(y)$ сходится равномерно
- 3. $\int_a^\omega f(x,y)dx$ сходится равномерно $\forall \epsilon > 0 \exists \delta \quad \forall b',b'' > B | \int_{b'}^{b''} f(x,y)dx | \widetilde{\epsilon}$ т.к g(x, y) равномерно сходится к G(y)

|q(x,y)| < M при х близком к ω

 $\widetilde{\epsilon} = \frac{\epsilon}{2M}, |\int_{b'}^{b''} f(x,y)g(x,y)dx| \leq M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \epsilon \implies F(y)$ сходится равномерно

1.8 Предельный переход в несобственном интеграле, зависящем от параметра

Теорема 1.9 (О предельном переходе). $\Box f(x,y)$ определена на $[a,\omega) \times Y$ для $\forall y \in Y$, интегрируема на $[a,b] \subset [a,\omega]$ равномерно относительно у сходится к функции $\phi(x)$ при $y \to y_0$ если $F(y) = \int_a^\omega f(x,y) dx$ сходится равномерно относительно $y \in Y \lim_{y \to y_0} \int_a^\omega f(x,y) dx = \int_a^\omega \phi(x) dx = \int_a^\omega \lim_{y \to y_0} f(x,y) dx$

 \mathcal{A} оказательство. $F(b,y)=\int_a^b f(x,y)dx$ это несобственный интеграл и для него верна теорема о о предельном

 $\lim_{y\to y_0} F(b,y) = \int_a^b \phi(x)\,dx$ $\lim_{b\to\omega} F(b,y) = \int_a^\omega f(x,y)dx$ - равномерно F(b,y) - для этой функции верны условии о перемене предельных переходов \Longrightarrow

 $\lim_{y\to y_0} \lim_{b\to\omega} \int_a^b f(x,y)dx = \lim_{y\to y_0} \int_a^\omega f(x,y)dx$

Следствие: Если f(x,y) монотонно по у $\lim_{y\to y_0} f(x,y) = \phi(x)$ - непрерывны, тогда $\int_a^\omega \phi(x) dx \rightrightarrows \int_a^\omega f(x,y) dx$ сходится равномерно $\lim_{y \to y_0} F(y) = \int_a^\omega \phi(x) dx$

Доказательство. $f(x,y) \to \phi(x)$ $y \to y_0$ $\forall \epsilon > 0 \exists \delta: |y-y_0| < \delta \Longrightarrow |f(x,y)-\phi(x)| < \epsilon$ $\exists f(x,y)$ возрастает по у, тогда $F(b,y) = \int_a^b f(x,y) dx$ возрастает по у но $f(x,y) \le \phi(x) \Longrightarrow F(b,y) \le \int_a^b \phi(x) dx \le \int_a^\omega \phi(x) dx \Longrightarrow \lim_{b \to \omega} F(b,y) = \int_a^\omega f(x,y) dy$ - сходится Равномерность по Вейерштрассу

1.9 Дифференцирование по параметру несобственного интеграла

 $F(y) = \int_a^\omega f(x,y) dx$ сходится равномерно относительно у на [c,d]

Теорема 1.10 (О непрерывности интеграла). $\exists f(x,y)$ - определена на $[a,\omega) \times [c,d]$ и непрерывна

Тогда F(y) - непрерывная функция на [c,d]Доказательство. \lhd Пусть $y_0 \in [c,d]$ $F(x,y) \to_{y \to y_0} \phi(x), [a,b] \subset [a,\omega)$ $[a,b] \times [c,d]$ - компакт $\Longrightarrow f(x,y)$ равномерно сходится на $[a,b] \times [c,d]$ $f(x,y) \rightrightarrows_{y \to y_0} \phi(x)$ равномерно по х $\forall \epsilon > 0 \exists \delta > 0 : |y - y_0| < \delta \forall x \in [a,b] | f(x,y) - \phi(x)| < \epsilon$ $\forall \epsilon > 0 \exists \delta_1 > 0 : \begin{vmatrix} x' - x'' | < \delta_1 \\ |y' - y''| < \delta_1 \end{vmatrix} | f(x',y') - f(x'',y'')| < \epsilon$ Фиксируем $x_0, \delta_1 = \delta_2(x_0)$ $\forall x \in [a,b] : |x - x_0| < \delta_1 \Longrightarrow \text{если } |y - y_0| < \delta_2 \Longrightarrow |f(x,y) - \phi(x)| \le |f(x,y) - f(x_0,y)| + |f(x_0,y) - \phi(x_0)| \le \epsilon$ Выбираем конечное подпокрытие [a,b] такими окрестностями $x_0 \pm \delta(x_0)$, выбираем наименьшее δ_2 Тогда если $|x' - x''| < \delta_2 \Longrightarrow \exists x_0 : |x' - x_0| < \delta_2$ и $|x'' - x_0| < \delta_2$

Тогда $|f(x',y) - \phi(x')| \le |f(x',y) - f(x_0,y)| + |f(x_0,y) - \phi(x_0)| + |\phi(x') - \phi(x_0)| < \epsilon + \epsilon + \epsilon$ Тогда $F(y,b) = \int_a^b f(x,y) dx$ - непрерывна по у $\lim_{b\to\omega} F(y,b) = \int_a^\omega f(x,y) dx = F(y)$

 $\lim_{b \to \omega} F(y, b) = \int_{a}^{\omega} f(x, y) dx = F(y)$ $\lim_{y \to y_0} \int_{a}^{\omega} f(x, y) dx = \int_{a}^{\omega} \lim_{y \to y_0} f(x, y) dx = \int_{a}^{\omega} \phi(x) dx = F(y_0)$ $\phi(x) = f(x, y_0) = \lim_{y \to y_0} f(x, y)$

Следствие: Если f(x,y) > =0, то из непрерывности F(y) следует равномерная сходимость $\int_a^{\omega} f(x,y) dx$

Доказательство. $F(b,y) = \int_a^b f(x,y) dx$ неубывает с ростом b Предельная функция - F(b,y) это F(y) $\forall \epsilon > 0 \exists B \quad b',b'' \in (\omega-B,\omega) \forall y | \int_{b'}^{b''} f(x,y) dx | \leq \epsilon$ $F(b,y) \to F(y)$ $\forall \epsilon \exists B : \forall b' \in (\omega-B,\omega) | \int_{b'}^{\omega} f(x,y) dx | < \epsilon$ $| \int_{b'}^{b''} f(x,y) dx | \leq | \int_{b'}^{\omega} f(x,y) dx | < \epsilon$

Теорема 1.11 (О дифференцируемости несобственных интегралов). Пусть f(x,y) непрерывна по x на $[a,b] \times [c,d]$, ее производная по y непрерывна на этом множестве

Пусть $\forall y F(y) = \int_a^\omega f(x,y) dx$ сходится, и сходится равномерно $\int_a^\omega f_y'(x,y) dx$ по у Тогда F(y) дифференцируемо на [c,d] и $F'(y) = \int_a^\omega f_y'(x,y) dx$

Доказательство. $\frac{F(y_0+\Delta)-F(y_0)}{\Delta} = \int_a^\omega \frac{f(x,y_0+\Delta)-f(x,y_0)}{\Delta} dx$ на $[a,b] \subset [a,\omega) \frac{f(x,y_0+\Delta)-f(x,y_0)}{\Delta} \rightrightarrows_{\Delta \to 0} f_y'(x,y_0)$ $\int_a^\omega f_y'(x,y) dx$ по у сходится равномерно по условию $\forall \epsilon > 0 \exists \delta > 0 \quad \begin{vmatrix} b-\omega | < \delta \\ |b''\omega| < \delta \end{vmatrix} \Longrightarrow |\int_{b'}^{b''} f_y'(x,y) dx| < \epsilon$ Пусть $\Phi(y) = \int_{b'}^{b''} f(x,y) dx$, тогда $\Phi'(y) = \int_{b'}^{b''} f_y'(x,y) dx \Longrightarrow |\Phi'(y)| < \epsilon$ $\frac{\Phi(y+\Delta)-\Phi(y)}{\Delta} = \Phi'(\eta), \eta \in (y,y+\Delta)$ $|\int_{b'}^{b''} \frac{f(x,y+\Delta)-f(x,y)}{\Delta} dx| < \epsilon$ сходится равномерно Тогда имеем право перейти к пределу $\Delta \to 0$ $\lim_{\Delta \to 0} \frac{F(y+\Delta)-F(y)}{\Delta} = \lim_{\Delta \to 0} \int_a^\omega \frac{f(x,y+\Delta)-f(x,y)}{\Delta} dx = \int_a^\omega f_y'(x,y) dx = F'(y)$

1.10 Интегрирование по параметру несобственного интеграла

Теорема 1.12. пусть f(x,y) определена и непрерывна на $[a,\omega) \times [c,d]$ и $F(y) = \int)a^{\omega}f(x,y)dx$ - сходится равномерно, тогда

$$\int_{c}^{d} F(y)dy = \int_{a}^{\omega} dx \left(\int_{c}^{d} f(x, y) dy \right)$$

Доказательство. $\Box b \in (a,\omega)$ тогда $\int_c^d dy \int_a^b f(x,y) dx = \int_a^b dx (\int_c^d f(x,y) dy)$ по теореме о интегрировании собственного интеграла

F(b, y) =
$$\int_a^b f(x, y) dx \Rightarrow_{b \to \omega} F(y)$$

$$\int_c^d F(b, y) dy = \int_c^d F(y) dy \text{ no } b \to \omega$$

$$\int_c^d F(y) dy = \lim_{b \to \omega} \int_c^d dx \int_a^b f(x, y) dx = \lim_{b \to \omega} \int_a^b dx (\int_c^d f(x, y) dy)$$

$$\int_c^d F(y) dy = \int_a^\omega dx (\int_c^d f(x, y) dy)$$

Теорема 1.13 (о несобственном интегрировании несобственного интеграла). f(x,y)- определена и непрерывна на $[a,\omega')\times[b,\omega'']$

Пусть $\int_a^{\omega'} f(x,y) dx$ и $\int_b^{\omega''} f(x,y) dy$ сходится равномерно относительно у и x в любом промежутке

Доказательство. $\Box \exists \int_a^{\omega'} dx \int_c^{\omega''} |f(x,y)| dy$ Для $\forall d \in (c,\omega'')[c,d]F(y)$ интегрируема $\int_c^d \int_a^{\omega} f(x,y) = \int_a^{\omega} dx \int_c^d f(x,y) dy$ (Предыдущая теорема)

 $G(d,x)=\int_c^d f(x,y)dx$ - непрерывна и при $d o\omega''$ стремится к $\int_c^{\omega''}|f(x,y)|dx$ равномерно относительно х $|\int_a^{\omega'}dx\int_c^d|f(x,y)|dy|$ сходится $\Longrightarrow\int_a^{\omega'}dx\int_c^d|f(x,y)|dy$ сходится равномерно по d

 $\int_c^d dy \int_a^{\omega'} dx |f(x,y)|$ сходится равномерно по d Тогда $b\to\omega'$ и применяем теорему о предельном переходе

$$\int_{c}^{\omega''} \int_{a}^{\omega'} |f(x,y)| dx = \int_{a}^{\omega'} dx \int_{c}^{\omega} dy$$

Следствие: Если f(x,y) интегрируема и неотрицательна и $\int_a^{\omega'} f(x,y) dx$ и $\int_c^{\omega''} f(x,y) dy$ сходится равномерно

Тогда из \exists одного из интегралов следует существование второго и их равенство

Доказательство. $\int_a^{\omega'} dx \int_c^{\omega} f(x,y) dy$, $\int_c^{\omega} dy \int_a^{\omega'} f(x,y) dx$ следует существование второго и их равенства $\int_a^{\omega'} f(x,y)$ - непрерывна и f>= 0, то по следствию теоремы о непрерывности интегралов $\int_a^{\omega'} f(x,y) dx$ сходится

$\mathbf{2}$ Кратные интегралы

Двоичные разбиения. Двоичные интервалы, полуинтревалы, кубы. Свойства 2.1двоичных инервалов, кубов

Определение. $f(x): \mathbb{R}^n \to \mathbb{R}$ называется ступенчатой, если можно указать конечный набор n-мерных непересекающихся кубов так, что на \forall кубе f(x) = c

Определение. Мера(Объем) п-мерного куба Q, обозн. $\mu_n(Q)$ Если ребро куба равно а, то $\mu_n(Q) = a^n$

Определение. Интегралом $f: \mathbb{R}^n \to \mathbb{R}$ из пространства R^n н-ся число $\int_{\mathbb{R}^n} f(x) dx = \sum_{i=1}^{\infty} f_i \mu_n(Q_i)$, f_i постоянное значение f на кубе Q_i

Пример. $\exists M \subset \mathbb{R}^n, M \neq \emptyset, f, g: M \to \widehat{\mathbb{R}}$ и $A \subset M$

Определение. Будем говорить, что $f \leq g$ на A, если $\forall x \in A \quad f(x) \leq g(x)$ $f \leq g \implies f \leq g$ на М

3амечание. $f \leq g$ отношение порядка

Определение. $\{f_n\}$ последовательность неубывает $\Leftrightarrow f_{n+1} > f_n$ невозрастает

Замечание. Если $|f| = \sup_{x \in M} |f(x)|, \{f_n\} \to f$

Определение. Если $\{f_n\}$ не возрастает и сходится к f, то $f_n \searrow f$ сходится сверху $\{f_n\}$ не убывает и сходится к f $\implies f_n \nearrow f$ (снизу)

Определение. $f:M\to\mathbb{R}$

$$f^{+} = \max 0, f(x), f^{+}, f^{-} \le 0$$

$$f^{-} = \max 0, -f(x), f^{+}, f^{-} \le 0$$

$$f = f^{+} - f^{-}$$

$$\exists x \in M, \text{если } f(x) \leq 0 \\ f^+(x) = f(x), f^-(x) = 0 \implies f^+(x) - f^-(x) = f(x) \\ \text{Если } f(x) < 0 \\ f^+(x) = 0, f^-(x) = -f(x) \implies f^+(x) - f^-(x) = f(x) \\ |f|(x) = |f(x)| = f^+(x) + f^-(x)$$

Определение. $\exists A \subset \mathbb{R}^n,$, функция

$$X_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Индикатор множества А, характеристическое изложение

Замечание.
$$X_A(x) \equiv 0 \Leftrightarrow A = \emptyset$$

 $X_A(x) \equiv 1 \Leftrightarrow A = \mathbb{R}^n$

Лемма 2.1. $A, B \subset M$

 $A \subset B \Leftrightarrow X_A \leq X_B$

Если $\{A_n\}\subset M$ и $A=\cup_{n=1}A_n$, то $X_A\leq \sum_{n=1}^\infty X_{A_n}$, если $\{A_n\}$ попарно не пересекаются, то равенство

Доказательство. очевидно

Определение. $\alpha = < a_i, b_i > \times < a_n, b_n > \mathbb{R}^n, b_j > a_j, l_j = b_j - a_j$ -длина ребра

$$\mu(\alpha)=\Pi_{j=1}^n(b_j-a_j)$$
—мера, объем $\alpha=[a_1,b_1) imes[a_n,b_n)$ - полуоткрытый прямоугольнике

Определение. Двоичный полуинтервал - полуинтервал вида [a, b), где $a=\frac{s}{2^r}, b=\frac{s+1}{2^r}, r$ - ранг полуинтервала $\mu([a,b))=\frac{1}{2^r}$

Определение. Двоичный брус - это произведение двоичных интервалов одного ранга г - ранг бруса

Замечание. Если f - ступенчатая, то существуют числа $f_1, \dots f_n$ и прямоугольники $\alpha_1, \dots \alpha_n$ т.ч $f(x) = \sum_{n=1}^n f_k \chi_{\alpha_k}(x)$

Замечание. Любой полуинтервал - объединение двоичных полуинтервалов

Предложение (Свойства двоичных полуинтервалов)

1. α и β - двоичные полуинтервалы ранга r и s соответственно

Доказательство. $r \leq s$,тогда если они пересекаются $=> (\alpha \cap \beta \neq \emptyset)$, то $\beta \in \alpha$ $\alpha = [\frac{n}{2^r}, \frac{n+1}{2^r}), \ \beta = [\frac{m}{2^s}, \frac{m+1}{2^s}))$

пусть они пересекаются => х общая точка

$$\begin{split} &\frac{n}{2^r} \leq x < \frac{n+1}{2^r} \quad \frac{m}{2^s} \leq x < \frac{m+1}{2^s} | 2^s \\ &n2^{s-r} \leq x2^r < (n+1)2^{s-r} \quad m \leq x2^s < m+1 \\ &n2^{s-r} < m+1 \implies n2^{s-r} \leq m \implies \frac{n}{2^r} \leq \frac{m}{2^s} \\ &(n+1)2^{s-r} > m \implies (n+1)2^{s-r} \geq n+1 \quad \frac{n+1}{2^r} \leq \frac{m+1}{2^s} \end{split}$$

2. Если α и β двойные полуинтервалы и их ранги равны, то они либо не пересекаются, либо совпадают

 $oldsymbol{\mathcal{J}}$ оказательство.

3. Если $n \in \mathbb{N}$ то каждая точка из \mathbb{R} принадлежит ровно одному полуинтервалу ранга г

Доказательство. $\forall x \in \mathbb{R} \exists m \in \mathbb{N} : x\tau^r \in [m, m+1)$

4. Если [a,b) - двоичный полуинтервал ранга $r, c = \frac{a+b}{2}$, то [a,c), [c,b) двоичные полуинтервалы ранга r+1 Доказательство.

Замечание. все свойства двоичных полуинтервалов переносятся на брусы

Замечание. $\exists \alpha = [a_1, b_1) \times \cdots \times [a_n, b_n)$ - некоторый прямоугольник, причем каждые из чисел a_i, b_i имеют вид $\frac{p}{2^q}, p \in \mathbb{Z}, q \in \mathbb{N}$, тогда α конечное объединение брусов фиксированного ранга

Доказательство. г - макс q т.ч $a_ib_i = \frac{p}{2q}$ $\Box[a_i,b_i)$ прямоуг $= \left[\frac{p_1}{2^{q_1}},\frac{p_2}{2^{q_2}}\right),q_1,q_2 \leq r$ очевидно можно $[a_i,b_i)$ записать в виде $\left[\frac{m}{2^r},\frac{k}{2^r}\right)$ $\left[\frac{m}{2^r},\frac{k}{2^r}\right) = \left[\frac{m}{2^r},\frac{m+1}{2^r}\right) \cup \dots \cup \left[\frac{k-1}{2^r},\frac{k}{2^r}\right)$ α -конечное произведение конечных объединений (конечное объединение брусов)

Пемма 2.2. A - компактное множество в $\mathbb{R}^n \implies \exists$ конечное множество брусов ранга r, покрывающих A

Доказательство. А - ограничено $\Longrightarrow M\subset N, A\subset [-M,M]^n$ [-M,M] подходит под условия предыдущей леммы $M=\frac{M}{2^0}=\frac{2M}{2^1}\Longrightarrow [-M,M]^n$ -конечное объединение брусов ранга г

2.2 Ступенчатые функции. Интеграл от ступенчатой функции (естественное и индуктивное определения). Теорема о совпадении определений

Определение. $f:\mathbb{R}^n \to \mathbb{R}$ ступенчатая функция, если f - лин. комбинация конечного числа двоичных брусов

 $\mathit{Замечаниe}.$ f образуют линейное пространство ступенчатых функций $\mathcal{L}(\mathbb{R}^n)$

Замечание. Если $f \in \mathcal{L}(\mathbb{R}^n)$, то f можно представить в виде линейной комбинации конечного числа брусов одного ранга

Доказательство. очевидно

Лемма 2.3. f - cmynенчаmaя ϕ yн κ uuя, $f \in \mathcal{L}(\mathbb{R}^n)$

 $\sum_{k=1}^m f_k \chi_{\alpha_k}$, α_k - не пересекающиеся кубы, тогда $|f|=\sum_{k=1}^m f_k \chi_{\alpha_k}$, α_k

Доказательство. $\alpha = \bigcup \alpha_k$

Если $x \notin \alpha \Longrightarrow \forall k, x \in \alpha_k \Longrightarrow f(x) = 0$ $|f|(x) = |f(x)| = 0 = \sum_{k=1}^{m} |f_k| \chi_{\alpha_k}, \alpha_k$ Если $x \in \alpha \Longrightarrow \exists !\alpha_j : x \in \alpha_j$ $f(x) = f_j, |f|(x) = |f(x)| = |f_j|$ $\sum_{j=1}^{m} |f_j| \chi_{\alpha_j} = |f_j| \Longrightarrow |f| = \sum |f_j| \chi_{\alpha_j}$

Для всякой $f \in \mathcal{L}(\mathbb{R}^n)$ можно указать число, которое будем называть интегралом от f по \mathbb{R}^n и обозначать $\int_{\mathbb{R}^n} f(x) dx$

 $\it 3ame vanue. \ n=1\ f\in \mathcal{L}(\mathbb{R})$ все функции оттуда ограничены и имеют лишь конечное число точек разрыва => определен интеграл Римана

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{+\infty} \sum_{k=1}^{m} f_k \chi_{\alpha_k}(x) dx = \sum_{k=1}^{m} f_k \int_{-\infty}^{+\infty} \chi_{\alpha_k}(x) dx = \sum_{k=1}^{m} f_k \int_{a_k}^{b_k} 1 dx = \sum_{k=1}^{m} f_k \mu(\alpha_k)$$
 r = 1 разумно считать, что $\int_{\mathbb{R}^n} f(x) dx = \int_{-\infty}^{+\infty} f(x) dx = \sum_{k=1}^{m} f_k \mu(\alpha_k)$

Определение. $f\in\mathcal{L}(\mathbb{R}^n)$ и $f=\sum_{k=1}^m f_j\chi_{\alpha_j}$ α_j - попарно не пересекаются, тогда $\int_{\mathbb{R}^n} f(x)dx=\sum_{k=1}^n f_k\mu_n(\alpha_k)$

Замечание. Вообще говоря, нужно доказывать независимость интеграла от представления функции в виде линейных компонент индикатора

Мы не будем доказывать корректность, по-другому определим интеграл, а затем покажем, что новое определение совпадет со старым

Доказатель ство. 1. $n=1, \int_{\mathbb{R}} f(x)dx = \int_{-\infty}^{+\infty} f(x)dx = \sum_{k=1}^{n} f_k \mu_n(\alpha_k)$

2.
$$f \in \mathcal{L}(\mathbb{R}^{\kappa+l})$$
 $x \in \mathbb{R}^{\kappa} \times \mathbb{R} = (y,z)$ и $f(x) = \sum_{k=1}^m f_k \chi_{\alpha_k}(x), \ \alpha_k$ - куб в \mathbb{R}^{n+1} $\alpha_k = [a_1,b_1) \times \cdots \times [a_{n+1},b_{n+1}) = \beta_k \times \gamma_k$ $\mu_{n+1}(\alpha_k) = \mu_n(\beta_k)\mu_k(\gamma_k)$ $y \in \beta$ тогда $f_y(z) = f(y,z) : \mathbb{R} \to \mathbb{R}$ $f_y(z) = \sum_{k=1}^m f_k \chi_{\beta_k}(y) \chi_{\gamma_k}(z) \in \mathcal{L}(\mathbb{R})$ $\int_{\mathbb{R}} f_y(z) dz = \sum_{k=1}^m f_k \chi_{\beta_k}(y) \mu_1(\gamma_k)$ $F(y) = \int_{\mathbb{R}} f_y(z) dx$ - ступенчатая из $\mathcal{L}(\mathbb{R}) \Longrightarrow \int_{\mathbb{R}} F(y) dy = \sum_{k=1}^n f_k \mu_1(\gamma_k) \mu_n(\beta_k) = \sum_{k=1}^n f_k \mu_{n+1}(\alpha_k)$ положим что $\int_{\mathbb{R}^{n+1}} f(x) dx = \int_{\mathbb{R}} F(y) dy = \int_{\mathbb{R}^n} dy (\int_{\mathbb{R}} f_y(z) dz) = \int_{\mathbb{R}^n} (\int_{\mathbb{R}} f(y,z) dz) dy$ т.о мы определим интеграл для $\forall n$

2.3 Свойства интеграла от ступенчатой функции (линейность интеграла, положительность, оценка интеграла)

Замечание. $\Box f(x) \in \mathcal{L}(\mathbb{R}^n)$ тогда для любого хорошего отрезка [a, b] верно равенство $\int_a^b f(x) dx = \int_{\mathbb{R}} f(x) \chi_{[a,b]}(x) dx$ [a, b] - объединение конечных приращений

Теорема 2.1.
$$\exists f,g \in \mathcal{L}(\mathbb{R}^n), \lambda, \mu \in \mathbb{R} \mod a$$
 $\int_{\mathbb{R}^n} (\lambda f + \mu g)(x) dx = \lambda \int_{\mathbb{R}^n} f(x) dx + \mu \int_{\mathbb{R}^n} g(x) dx$

Доказатель ство.
$$f = \sum_{i=1}^m f_k \chi_{\alpha_i}, g = \sum_{i=1}^k f_j \chi_{\beta_j}$$
 $(\lambda f + \mu g) = \sum_{n=1}^m \mu f_i \chi_{\alpha_i} + \sum_{j=m+1}^{m+k} \mu g_{j-k} \chi_{\beta_{j-k}}$ $\int_{\mathbb{R}^n} (\lambda f + \mu g)(x) dx = \sum_{i=1}^m \mu f_i \mu(\alpha_i) + \sum_{j=m+1}^{m+k} \mu g_{j-k} \mu(\beta_{j-k}) = \lambda \int_{\mathbb{R}^n} f(x) dx + \mu \int_{\mathbb{R}^n} g(x) dx$

Теорема 2.2. Если $f\in\mathcal{L}(\mathbb{R}^n)$ и f(x)>0 для $\forall x\in\mathbb{R}^n$, то $\int_{\mathbb{R}^n}f(x)dx\leq 0$

 $oldsymbol{\mathcal{A}}$ оказательcтво.

Лемма 2.4. $\exists f \in \mathcal{L}(\mathbb{R}^n)$ $u \mid f(x) \mid \leq L$ на \mathbb{R}^n , Пусть $P = [a_1, b_1) \times \cdots \times [a_n, b_n)$ такой, что $\forall x \notin P \implies f(x) = 0$, тогда

$$\left| \int_{\mathbb{R}^n} \right| \le L\mu_n(P) = L \prod_{k=1}^n (b_k - a_k)$$

Доказатель ство. База n =1,
$$|\int_{\mathbb{R}} f(x)dx| = |\int_{a_1}^{b_1} f(x)dx| \le L(b_1 - a_1)$$
 Переход $P_{n+1} = P_n \times P_1$ Проводя те же рассуждения, что и для определения интеграла $|\int_{\mathbb{R}^{n+1}} | = |\int_{\mathbb{R}} dz \int_{\mathbb{R}^b} f(y,z)dy| \le |\int_{\mathbb{R}^n} f(y,z)dy| |b_{n+1} - a_{n+1}| \le L \prod_{k=1}^n (b_k - a_k)(b_{n+1} - a_{n+1})$

2.4 Теорема о пределе интегралов убывающей последовательности функций, поточечно сходящейся к нулю

Теорема 2.3. $\{f_n\}$ убывающая последовательность функций определена на $[a,b]\subset\mathbb{R}$ если каждая $f_n(x)$ интегрируема на [a,b] и $f_n(x)\to 0, n\to\infty$ в основном, тогда $\int_a^b f_n(x)dx\to 0, n\to\infty$

Доказатель ство. $\Box, \Delta = [\alpha, \beta] \subset (a, b)$ $F_n(\Delta) = \int_{\alpha}^{\beta} f_n(x) dx$ функции отрезка так как $\{f_n\}^{\alpha}$ убывает и $f_n \to 0, f_n \le 0$ в основном, тогда $F_n(\Delta) \le 0$ $F_{n+1}(\Delta) \le F_n(\Delta) \quad \forall n \forall \Delta$ $\{f_n(\Delta)\}$ убывает, ограничена снизу $\Longrightarrow \exists \lim_{n \to \infty} F_n(\Delta) = F(\Delta) \ge 0$ Если Δ_1, Δ_2 - два отрезка, $\Delta_1 \cap \Delta_2$ состоит не более чем из 1 точки это верно для F_n $F_n(\Delta_1 \cup \Delta_2) = F_n(\Delta_1) + F_n(\Delta_2)$ $F_n(\Delta)$ непрерывные функции и $0 \le F(\Delta) \le F_n(\Delta)$ $F(\Delta)$ тоже непрерывна

 M_0 —множество $x \in (a,b)$, что $f_n(x) \nrightarrow 0$ не более чем счетно

 $\Delta F_n(x) = \lim_{\Delta \to x} \frac{F_n(\Delta)}{|\Delta|}$

```
\Delta F_n в основном равно \delta_n, \quad t \in (0,1) \frac{F_n(\Delta)}{|\Delta|} = \frac{\int_{\alpha}^{\beta} f_n(x) dx}{\beta - \alpha} = \frac{(\beta - \alpha) f_n(\alpha + t(\beta - \alpha))}{\beta - \alpha} \to f_n(x) M_n - \{x \in (a,b) : \lim_{\Delta \to x} \frac{F_n(\Delta)}{|\Delta|}\} \neq f_n(x) не более чем счетно M = M_0 \cup M_1 \cup \ldots не более чем счетно x \in (a,b) \setminus M \quad f_n(x) \to 0 \\ m \to \infty \quad \epsilon > 0 \quad \exists n_0 \forall n > n_0 \implies f_n \leq \frac{\epsilon}{2} x \in M \implies \Delta F_n(x) = f_n(x) \leq \frac{\epsilon}{2} начиная с n_0 найдем |\frac{F_n(\Delta)}{|\Delta|} - f_n(x)| < \frac{\epsilon}{2} начиная с n_0 [\delta > 0, |\Delta| < \delta] \frac{F_n(\Delta)}{|\Delta|} \leq f_n(x) + \frac{\epsilon}{2} < \epsilon, то F_n(\Delta) \geq F(\Delta) \implies 0 \leq \frac{F(\Delta)}{|\Delta|} < \epsilon, если |\Delta| < \delta \implies \Delta F(x) = 0 \quad \forall x \notin M F(x) почти везде постоянна F(\Delta) = 0 иначе \frac{F(\Delta)}{|\Delta|} < \epsilon не верно F(\Delta) = 0 \implies F([a,b]) = 0 F([a,b]) = \lim_{n \to \infty} \int_a^b f_n(x) dx = 0
```

2.5 Теорема о пределе интегралов убывающей последовательности ступенчатых функций, поточечно сходящейся к нулю

Теорема 2.4 (О пределе интегралов убывающей последовательности функций поточечно сходящейся к 0). $\Box \{f_m\}$ убывающая последовательность функций из $\mathcal{L}(\mathbb{R}^n)$ поточечно сходится к 0, тогда $\int_{\mathbb{R}^m} f_m(x) \to 0$ $n \to \infty$

Доказательство. Индукция по п

```
Ваза m = 1 => применяем предыдущую теорему Переход \square это верно для m: \{f_n\} \subset \mathcal{L}(\mathbb{R}^{m+1}), x = (y,z), \ x \in \mathbb{R}^{n+1}, y \in \mathbb{R}^n, z \in \mathbb{R} при фиксированном у определена ступенчатая функция F_m(y) = \int_{\mathbb{R}} f_m(y,z) dz F_m(y) = \int_{\mathbb{R}} f_m(y,z) dz \geq \int_{\mathbb{R}} f_{m+1}(y,z) dz = F_{m+1}(y) F_m(y) \geq 0 \lim_{m \to \infty} F_m(y) = \lim_{m \to \infty} \int_{\mathbb{R}} f_n(y,z) dz = 0 \{F_m\} к ним применить индукционное предположение \lim_{m \to \infty} \int_{\mathbb{R}^n} f_m(x) dx = \int_{\mathbb{R}^n} dy \int_{\mathbb{R}} f_m(y,z) dz \to 0, m \to \infty
```

2.6 Системы с интегрированием. Основной пример. Свойства систем с интегрированием

```
\Box M- некоторое подмножество \mathbb{R}^n, M \neq \emptyset \mathcal{F}-множество функций из M в \mathbb{R} dom \mathcal{F}=M I:\mathcal{F} \to \mathbb{R} функционал, т.е для \forall f \in \mathcal{F}определено число \mathrm{I}(\mathrm{f})
```

Определение. (M, \mathcal{F}, I) система с интегрированием, если

- 1. R1 \mathcal{F} лин пространство
- 2. R2 $f \in \mathcal{F}$, to $|f| \in \mathcal{F}$
- 3. R3 Функционал I линеен: $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$
- 4. R4 Если $f \in \mathcal{F}$ и $f \leq 0$ на M, то $I(f) \geq 0$
- 5. R5 Если $\{f_n\}$ послед. убывает $f_n(x) \to 0$ $n \to \infty, \forall x \in M$, то $\lim_{n \to \infty} I(f_n) = 0$

3амечание. (M, \mathcal{F}, I) , система с интегрированием, тогда M - базисное, $\mathcal{F}-$ множество основных или простых функций

```
I(f) - интеграл от f по M I интеграл системы R1-R5 аксиомы
```

Пример. $M=\mathbb{R}^n, \mathcal{F}-$ ступенчатая на \mathbb{R}^n интеграл от f $I=\int_{\mathbb{R}^n}f(x)dx$ Очевидно, что (M,\mathcal{F},I) - система с интегрированием

3амечание. Если (M, \mathcal{F}, I) - система с интегрированием $\forall f \in \mathcal{F}, f^+, f^- \in \mathcal{F}$

$$f^{+} = \frac{f + |f|}{2} = \begin{cases} f(x) & f(x) \le 0\\ 0 & f(x) < 0 \end{cases}$$

$$f^- = \frac{-f + |f|}{2} \in \mathcal{F}$$

$$\max\{f,g\} = \begin{cases} f(x) & f(x) \le g(x) \\ g(x) & g(x) \le f(x) \end{cases}$$

$$\begin{array}{l} f,g\in\mathcal{F} \implies \max\{f,g\},\min\{f,g\}\in\mathcal{F}\\ \min\{f,g\}(x) = (f-(f-g)^+)(x)\\ \max\{f,g\}(x) = (g+(f-g)^+)(x) \end{array}$$

Лемма 2.5. Если f u g - простые функции u $f \leq g$, тогда $I(f) \leq I(g)$

Доказатель ство.
$$h=f-g\leq 0 \implies R4 \implies I(h)\leq 0$$
 $I(h)=I(f)-I(g)\leq 0$

Лемма 2.6. Если $f \in \mathcal{F}$, то $|I(f)| \leq I(|f|)$

Доказатель ство.
$$|I(f)| = |I(f^+ - f^-)| = |I(f^+) - I(f^-)| \le |I(f^+)| + |I(f^-)| = I(f^+) + I(f^-) = I(f^+ + f^-) = I(|f|)$$
 \blacktriangleright

Лемма 2.7. $f u \{f_n\} \in \mathcal{F}, f_n$ возрастает если для любых x из $M f(x) \leq \lim_{n \to \infty} f_n(x)$, то $I(f) \leq \lim_{n \to \infty} I(f_n)$

Доказательство. Т.к f_n возрастает, то $I(f_n)$ тоже возрастает, имеет предел (возможно ∞)

 $\lim_{n\to\infty} I(f_n) = \sup_n I(f_n), V(x) = \lim_{n\to\infty} f_n(x)$

 $\{f - f_n\}$ убывает, $u_n = (f - f_n)^+, u_n$ тоже убывает

Если $u_n(x) = 0 \implies (f - f_n)(x) < 0 \implies$

 $\forall m > n(f - f_m)(x) < 0 \implies u_m(t) = 0$

Если $u_n(x) > 0 \implies (f - f_n)(x) > 0$

 $\forall m > n(f - f_m)(x) \le (f - f_n)(x) \implies u_m = (f - f_m)^+ \le u_n$ $f - f_n \le u_n, \quad I(f - f_n) \le I(u_n)$

 $I(f) \le I(f_n) + I(u_n)$

 $V(x) = \lim_{n \to \infty} f_n(x) \ge f(x) \implies f - v \le 0$

 $\lim_{n\to\infty} u_n(x) = \lim_{n\to\infty} (f - f_n)^+(x) = (f - v)^+(x) = 0$

 $\{u_n\} \to 0, n \to \infty$ применяем аксиому R5 $\Longrightarrow \lim I(u_n) = 0$

 $\lim I(f) \le \lim I(f_n) + \lim I(u_n)$

 $I(f) \le \lim_{n \to \infty} I(f_n)$

2.6.1 Пример системы с интегрированием

Пусть $[a,b] \in \bar{R}, \omega : [a,b] \to R, \omega$ положительна и интегрируема на (a,b), M = [a,b]

 $f:M\to \bar R$ - финитная, если $\exists [c,d]\subset M$ т.ч $\forall x\notin [c,d]f(x)=0$

 \mathcal{F} - множество всех непрерывных, финитных функций, это линейное пространство $\Longrightarrow R1,R2$ верна Положим, $I(f)=\int_a^b f(x)\omega(x)dx$ Очевидно, что I - линейный и $I(f)\geq 0$ если $f\geq 0 \implies R3,R4$ верны

Пусть $\{f_n\}$ убывающая последовательность функции

 $0 \le f_n \le f_1$ все f_n равны 0 все отрезка [c,d], все которых $f_1 = 0$

тк $f_n(x) \to 0$ и [c,d] конечен $\Longrightarrow f_n \rightrightarrows 0$ $\int_a^b f_n(x)\omega(x)dx = \int_c^d f_n(x)\omega(x)dx \le \int_c^d \omega(x)dx = \sup_{x \in [c,d]} f_n \to 0 \text{ т.к } f_n \rightrightarrows 0 \Longrightarrow$

 $0 \le \int_a^b f_n(x)\omega(x)dx \le 0 \implies R$ 5 верно

 (M, \mathcal{F}, I) - система с интегрированием

Интеграл в этой системе называется интегралом Лебега относительно веса ω (Лебега-Стилтьеса)

В частности, можно взять вместо $[a,b]=\bar{R},\,\omega=1$

3амечание. В этой системе функция Дирихле интегрируема и I(D) = 0

2.7 L1 норма. Множество L1*(Σ). L1-норма как интеграл от модуля функции

```
(M, f, I)-система с интегрированием
   f: M \to \bar{R}, положим 0*\infty = 0
   \exists f: M 	o R\{f_n\} последовательность функций из М в R
   Будем говорить, что \{f_n\} - мажорирует f если
```

- 1. $f_n \leq 0$
- 2. $\{f_n\}$ возрастает
- 3. $|f(x)| = \lim_{n \to \infty} f_n(x) \forall x \in M$

Замечание. Если $f_n \in \mathcal{F}$ и $\{f_n\}$ возрастает, то $\{I(f_n)\} \implies \lim_{n \to \infty} I(f_n) - \exists$

Определение. $f: M \to \bar{R}, h \in \bar{R}$, будем говорить, что h - верхнее число функции f, если $\exists \{f_n\} \subset \mathcal{F}$, кот. мажорирует f т.ч $h = \lim_{n \to \infty} I(f_n)$

W(f)-множество всех верхних чисел для f

Определение. L_1 нормой f будем называть $\inf W(f)$ и обозначать

$$||f||_{L_1(M,F,I)}, ||f||_{L_1(\Sigma)}, ||f||_{L_1}$$

Замечание. Если W(f) пусто, т.е нет посл. мажорирующих f, то $||f||_{L_1} = \infty$

Замечание. $||f||_{L_1} \leq 0$

Определение. $L_1^*(\Sigma)$ множество всех функций т.ч $||f||_{L_1} \in \mathbb{R}$

Лемма 2.8. Если $f \in \mathcal{F}$, то $||f||_{L_1} = I(|f|)$

Доказательство. $\exists \{f_n\}$ произвольная мажорирующая последовательность $f \mid f(x) \mid \leq \lim_{n \to \infty} f_n(x) \implies I(f) \leq \lim_{n \to \infty} f_n(x)$ $\lim_{n\to\infty} I(f_n)$

 $I(|f|) > ||f||_{L1} = \inf(\lim I(f_n))$

Рассмотрим $f_n = |f|$ и $\forall n$ мажорирует функцию f

 $|f(x)| \le f_n(x) = |f(x)|$

 $\lim I(f_n) = \lim I(|f|) = I(|f|)$ -верхнее число f $||f||_{L1} \le I(|f|)$

Следствие. Если $f(x) \equiv 0$, то $||f||_{L_1} = 0$

Доказатель ство. $I(f) = I(0 * f) = 0I(f) = 0 [f(x) \in \mathcal{F}]$ $I(f) = I(|f|) = ||f||_{L_1}$

2.8Свойства L1 нормы ("линейность норма функции равной нулю почти всюду и

Лемма 2.9. $\exists f - \phi y н \kappa u u s \ f \in L_1^*(\Sigma), \alpha \in R, \ mor \partial a \ ||\alpha f||_{L_1} = |\alpha|||f||_{L_1}$

Доказательство. $\alpha \neq 0$

Норма конечна $=> \exists \{f_n\}$ который мажорирует f

 $\{|\alpha|f_n\}$ мажорирует αf

 $|\alpha f| \le |\alpha| \lim_{n \to \infty} f_n \implies$

 $||\alpha f||_{L_1} \le |\alpha| \lim_{n \to \infty} I(f_n) \implies ||\alpha f||_{L_1} \le |\alpha|$

 $||f||_{L_1}, g = \alpha f, \beta = 1\alpha$

 $||\beta g||_{L1} \le |\beta|||g||_{L1}$

 $||f||_{L1} \le \frac{1}{|\alpha|}, \quad ||\alpha f||_{L1} \ge |\alpha|||f||_{L1}$ Если $\alpha = 0$, тогда $\alpha f \equiv 0 \implies ||\alpha f||_{L} = 0$

 $\alpha||f||_{L1} = 0$

Следствие. Для $\forall f$ функции $||f||_{L_1} = ||-f||_{L_1}$

Следствие. $||v - u||_{L_1} = ||u - v||_{L_1}$

2.9 Субаддитивность L1-нормы

```
Лемма 2.10 (Субаддитивность нормы L1). \exists f, \{f_n\}-функции M \to \bar{R} для \forall x \in M верно
      |f(x)| \leq \sum_{n=1}^{\infty} |f_n(x)|
Torda ||f||_{L1} = \sum_{n=1}^{\infty} ||f_n||_{L1}
Доказатель ство. Будем считать, что ||f_n||_{L1} < +\infty
       \sqsupset\{f_n\}_m - последовательность функций из {\mathcal F} мажорирующих f_n
       \lim_{x \to \infty} I(f_{n_m}) < ||f_n||_{L1} + \frac{\epsilon}{2^n m}   g_m = \sum_{j=1}^m f_{j_m} 
      g_{m+1} = \sum_{j=1}^{m+1} f_{j_{m+1}} \ge \sum_{j=1}^{m} f_{j_{m+1}} \ge \sum_{j=1}^{m} f_{j_m} = g_m
      f_{j_{m+1}} \ge f_{j_m}
g_m(x) = \sum_{j=1}^m f_{j_m} \to \Longrightarrow верно при m \le 0
\lim_{n \to \infty} g_m(x) \le \sum_{j=1}^n |f_j(x)| \quad (|f_j| \le \lim_{m \to \infty} f_{j_m})
      предел по n \to \infty
      \lim_{n\to\infty} (g_m(x)) \ge \sum_{j=1}^{\infty} |f_j(x)| \ge |f(x)|
      g_m мажорирует f
       \{g_m\} \subset \mathcal{F}, \quad ||f|| \le \lim_{n \to \infty} I(g_m)
      I(f_{n_m}) \leq \lim_{n \to \infty} I(f_m) < \|f_n\|_{L1} + \frac{\epsilon}{2^n}
I(g_m) = \sum_{j=1}^n I(f_{j_m}) < \sum_{j=1}^m \|f_j\|_{L1} + \epsilon(1 - \frac{1}{2^m})
\lim_{m} (g_m) \leq \sum_{j=1}^\infty \|f_j\|_{L1} + \epsilon
\|f\|_{L1} \leq \sum_{j=1}^\infty \|f_j\|_{L1}
\|f\|_{L1} \leq \sum_{j=1}^\infty \|f_j\|_{L1}
       Следствие. f_1, \dots f_n, f: M \to \mathbb{R} и |f(x)| \leq \sum_{j=1}^n |f_j(x)|
      \forall x \in M то ||f||_{L_1} \leq \sum_{j=1}^n ||f_j||_{L_1} Следствие. Если |f(x)| \leq |g(x)| \forall x \in M, то ||f||_{L_1} \leq ||g||_{L_1}
       Следствие. Для \forall f, g
      ||f+g||_{L_1} \le ||f||_{L_1} + ||g||_{L_1} (неравенство для L1 нормы)
      ||f||_{L1} \le ||f - g||_{L1} + ||g||_{L1} 
 ||g||_{L1} \le ||f - g||_{L1} + ||f||_{L1}
       Следствие. ||f||_{L_1} = |||f|||_{L_1}
Доказатель ство. f \leq |f| \implies ||f|| \leq |||f|||_{L_1}
      ||f|| \le |f| \ |||f|||_{L1} \le ||f||_{L1}
       Следствие. |||f|||_{L_1} - |||g|||_{L_1} \le ||f - g||_{L_1}
Доказатель ство. ||f-g||_{L1} \ge ||f||_{L1} - ||g||_{L1}
      ||f - g||_{L_1} \ge ||g||_{L_1} - ||f||_{L_1}
```

2.10 Сходимость в смысле L1

 $\Sigma = (M, \mathcal{F}, I)$ — система с интегралом

 $||f - g||_{L_1} \ge |||f||_{L_1} - ||g||_{L_1}|$

Определение. $\{f_n\}$ последовательность всюду определенных функций на M, $f_n: M \to \mathbb{R}$ f_n сходится к f в смысле L1 нормы, Если

- 1. $\forall n || f_n = f ||_{L_1} < +\infty$
- 2. $\lim_{n\to\infty} ||f_n f||_{L_1} = 0$

2.11 Определение понятие интеграла и интегрируемой функции

Определение.
$$f: M \to \mathbb{R}$$
 интегрируема, если $\exists \{f_n\} \subset \mathcal{F}$ $f_n \to_{L1} f$

Определение. Множество всех интегрируемых функций: $L_1(\Sigma)$ или L_1

3амечание. f, g, h - функции на M, причем g, h всюду конечна $\Longrightarrow \forall x |g(x) - h(x)| \leq |g(x) - f(x)| + |f(x) - h(x)|$

```
2. f(x) = \infty \implies ||g - h||_{L_1} \le ||g - f||_{l_1} + ||f - h||_{L_1}
```

2.12 Свойства интеграла и интегрируемых функций

Лемма 2.11. $f \in L_1(\Sigma) \implies \exists \lim_{g:||f-g||_{L_1} \to 0} I(g) < +\infty$

Доказатель ство. 1. $g,h \in \mathcal{F} \implies |I(g) - I(h)| = |I(g-h)| \le I(|g-h|) = ||g-h||_{L1} \le ||g-f||_{L1} + ||f-h||_{L1}$

 $2. \ \, \forall \epsilon > 0 \exists \delta (|g-f| < \delta \implies ||f-g||_L 1 < \tfrac{\epsilon}{2}) \implies |I(g)-I(h)| < \epsilon \implies \text{по критерию Коши I(g) имеет предел}$

$$I^*(f) = \lim_{g:||g-f||_{L_1} \to 0} I(g)$$
 Если $f \in \mathcal{F} \implies |I(g) - I(f)| \le ||f - g||_{L_1} \to 0 \implies \lim_{g:||g-f||_{L_1} \to 0} I^*(f) = I(f) = I^*(f)$ $\forall f \in \mathcal{F}(I_\ell^*f) = I(f))$

Замечание. $\forall f_n \in \mathcal{F}(||f_n - f||_{L1} \to 0 (n \to \infty))$ и $f \in L1(\Sigma) \implies I(f) = \lim_{n \to \infty} I(f_n)$

Лемма 2.12. $f_n, f_n: M \to R$ $u \exists c > 0: |f_n| \le C$ $u f_n \to f[n \to \infty, L1], f: M \to \bar{R} \implies$

- 1. $||f||_{L1} = +\infty \implies \forall n ||f_n||_{L1} = +\infty$
- 2. $||f||_{L_1} < +\infty \implies ||f||_{L_1} = \lim_{n \to \infty} ||f_n||_{L_1}$
- 3. $\forall \alpha \in \mathbb{R} \alpha f_n \to^{L1} \alpha f$
- 4. $|f_n \rightarrow^{L1} |f|$

Доказатель ство. $||f||_{L1} \le ||f - f_n||_{L1} + ||f_n||_{L1} \implies ||f_n||_{L1} = +\infty$ $||f||_{L1} - ||f_n||_{L1}| \le ||f - f_n||_{L1} \to_{n \to \infty} 0 \implies ||f|| \to_{L1, n \to \infty} ||f||_{L1}$ $||\alpha f_n - \alpha f||_{L1} = |\alpha|||f_n - f||_{L1} \to 0 \implies \alpha f_n \to_{L1, n \to \infty} \alpha f$ $||f_n(x)| - |f(x)|| \le ||f_n(x) - f(x)|| \implies ||f_n| - |f||| \le ||f_n - f||_{L1} \to_{n \to \infty} 0 \implies |f_n| \to^{L1} |f|$

Лемма 2.13. $f_n, f_n \to^{L1} f, g_n, g_n \to^{L1} g \implies \{f_n + g_n\} : f_n + g_n \to^{L1} f + g$

Доказательство. $\forall x \in M|f_n(x)g_n(x) - f(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| \implies ||f_n + g_n - f - g||_{L_1} \le ||f_n - f||_{L_1} + ||g_n - g||_{L_1}$

Теорема 2.5. 1. $\forall (f \in L1(\Sigma) \implies \alpha f \in L1(\Sigma) : I(\alpha f) = \alpha I(f))$

2. $(f, g \in L1(\Sigma) \implies f + g \in L1(\Sigma) : I(f+g) = I(f) + I(g))$

Доказательство. $f \in \mathcal{F} \implies I^*(f) = I(f)$ применяем лемму

Следствие. $(f, g \in L1(\Sigma) and f \geq g) \implies (I(f) \geq I(g))$

Резюме:

 $\Sigma = (M, \mathcal{F}, I)$

определена L1 норма на всех функциях из М

 $f_n \subset \mathcal{F}and \lim_{n \to \infty} f_n = ^{L1} f$

 $I^*(f) = \lim I(f_n)$ (если есть пробел)

Замечание. $\Sigma = (M, \mathcal{F}, I)$ -система с интегрированием

Определение. $\phi(x)$ мажорирует f(x), если $\phi(x) \ge |f(x)|$

Определение. $||f||_{\mathbb{R}} = \inf_{\phi \in \mathcal{F}, \phi > |f|}(I(\phi))$ есть норма Римана

Определение. f интегрируема в смысле Римана, если $\exists f_n \subset \mathcal{F}$ т.ч $f_n \to^{||\cdot||_{\mathbb{R}}} f$, $I^*(f) = \lim I(f_n)$

Замечание. для нормы Римана не выполнено свойство субаддитивности

2.13 Множества меры ноль. Свойства функций совпадающих почти всюду

Определение. $f: M \to \bar{R}$ называется пренебрежимой, если $||f||_{L1} = 0$

Определение. $E \subset M$ называется пренебрежимым (множеством меры 0), если χ_E суть пренебрежимая функция

Замечание. Ø-множество меры 0, так как индикатор тождественно равен нулю, как и мера L1

 $\mathit{Замечаниe.}\ (R^n.\mathcal{L}(\mathbb{R}^n),\int_{\mathbb{R}^n})$ в любое одноточечное множество пренебрежимо.

Доказательство. $E = \{p\}$

$$E_r$$
—двоичный куб, содержащий p, ребро - r $||\chi_E||_{L1} \le ||\chi_{E_r}||_{L1} = \int_{\mathbb{R}^n} \chi_{E_r}(x) dx = \frac{1}{(2^r)^n} \to 0, n \to \infty$

Теорема 2.6. $||f||_{L_1} < +\infty \implies \mu(\{x|f(x) = \infty\}) = 0$

Доказатель ство. 1. $E = \{x | f(x) = +\infty\}$

2. $\forall n \in \mathbb{N} (0 \le n\chi_E(x) \le |f(x)|) \implies \forall n ||n\chi_E||_{L_1} \le ||f||_{L_1} \implies \forall n ||\chi_E||_{L_1} \le \frac{1}{n} ||f||_{L_1} < +\infty \implies ||\chi_E||_{L_1} = 0$

Лемма 2.14. $f: M \to \bar{\mathbb{R}}, S(f) = \{x | f(x) \neq 0\}$

f - пренебрежима тогда и только тогда, когда S(f) меры θ

Доказательство. 1.
$$f_n = |f| \implies |\chi_{S(f)}(x)| = \chi_{S(t)}(x) \le \sum_{n=1}^{\infty} f_n(x)$$

$$x \notin S(f) \implies 0 \le 0, ok$$

$$x \in S(f) \implies \chi_{S(t)}(x) = 0 \lor \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} |f| = +\infty \implies$$
 по свойству субаддитивности $||\chi_{S(f)}|| \le ||f_n||_{L^1}$ f - пренебрежима $\implies ||f||_{L^1} = 0 \implies ||f||_{L^1} = ||f|| = 0 \implies ||\chi_{S(f)}|| = 0$, т.е S(f) имеет меру 0

2. S(f) имеет меру 0

$$f_n(x) = \chi_{S(f)}(x) \implies ||f(x)|| \le \sum_{n=1}^{\infty} f_n(x)$$

 $||f||_{L_1} \le \sum_{n=1}^{\infty} ||f_n||_{L_1} = 0 \implies ||f||_{L_1} = 0$

3амечание. $f,g:M o ar{R}(\mathbf{f}=\mathbf{g}$ почти всюду) $\Longrightarrow ||f||_{L1}=||g||_{L1}\wedge ||f-g||_{L1}=0 \land f\in \mathcal{L}_1(\Sigma) \implies g\in \mathcal{L}(\Sigma):I(f)=I(g)$

Доказательство.

$$h(x) = \begin{cases} 0 & f(x) = g(x) \\ +\infty & f(x) \neq g(x) \end{cases}$$

 $||h||_{L1} = 0$

$$|f(x)| \leq |g(x) + h(x)| \wedge |g(x)| \leq |f(x) + h(x)|, \quad |f(x)| \leq |g(x)| + |h(x)|$$
 $\Longrightarrow ||f||_{L_1} \leq ||g||_{L_1} + ||h||_{L_1} = ||g||_{L_1}, \quad \text{аналогично} \ ||g||_{L_1} \leq ||f||_{L_1} \Longrightarrow ||f||_{L_1} = ||g||_{L_1}$ $\{f_n\} \subset \mathcal{F}: f_n \to_{n \to \infty}^{L_1} f$ $f_n - f$ и $f - g$ совпадают почти всюду $\Longrightarrow ||f - f_n||_{L_1} = ||g - f_n||_{l_1} \Longrightarrow f_n \to_{n \to \infty}^{L_1} g \Longrightarrow g \in \mathcal{L}_1 \Sigma \wedge I(f) = I(g)$

Замечание. Если f интегрируемая функция, то при изменении значения функции f на множестве меры 0, то $||f||_{l1}$ на I(f) не изменяется

Лемма 2.15. Если A - множество меры 0, $u E \subset A$ то E - множество меры 0 Пусть $E_1...E_n$ - множества меры 0, тогда ux объединение - множество меры 0.

Доказательство.
$$||\chi_A||_{L1} = 0$$
, $E \subset A \Longrightarrow |\chi_E| \le |\chi_A| \Longrightarrow ||\chi_E||_{L1} \le ||\chi_A||_{L1} = 0$ $|\chi_E| = \sum_{n=1}^{\infty} \chi_{E_n}$, $||\chi_E||_{L1} \le \sum_{n=1}^{\infty} ||\chi_{E_n}||_{L1} = 0$

3амечание. любое не более чем счетное подмножество $\mathbb R$ имеет меру $\mathbb R$

Пример. $D(x) = 1, x \in Q; 0, x \notin Q, ||D||_{L_1} = 0$, тк мера Q равна 0

Следствие. Если $\{P_n(X)\}$ - семейство условий, верных почти всюду, тогда почти всюду выполняются все $\{P_n\}$

Доказательство. $E_n = \text{множество тех x: } P(x)$ верно.

объединение E_n - множество тех x, что кто-то из P_n не выполнен. Мера E_n равна $0 \Longrightarrow$ мера объединения E_n равна 0

Теорема 2.7. Если f почти всюду определена и интегрируема, то f^+, f^- тоже всюду интегрируемы. Eсли еще и g почти всюду определена и интегрируема, то $\max f, g$ и $\min f, g$ также интегрируемы

Доказательство.

$$\widetilde{f}(x) = \begin{cases} f(x) & \text{если f(x) определена} \\ 0 & \text{иначе} \end{cases}$$

 $f=\widetilde{f}$ почти всюду $\implies \widetilde{f}$ интегрируема и $I(f)=I(\widetilde{f})$ $f^+=\widetilde f^+$ почти всюду, аналогично с минусом Но $\widetilde f^+$ и $\widetilde f^-\Longrightarrow f^+$ и f^- интегрируемы $max\{f,g\}(x) = (g + (f - g)^{+})(x)$ - интегрируема

Теорема о предельном переходе над знаком интеграла

 (M,\mathcal{F},I) - система с интегрированием

Замечание. Если f совпадает с g почти всюду и существуют их L1 нормы, то они равны.

Это позволяет определить L1-норму для функций, определенных почти всюду.

Лемма 2.16. Пусть $f: M \to R$ определена почти всюду

 $\{f_n\}$ последовательность интегрируемых функций, такая, что $||f-f_n||_{L1} o 0$ (сходится в смысле нормы $l1)n \to \infty$

Тогда f интегрируема и $I(f) = \lim_{n \to \infty} I(f_n)$

Доказательство. Можно считать, что f и f_n всюду определены и конечны.

Для любого п $\exists g_n \in \mathcal{F} : ||f_n - g_n||_{L1} \leq \frac{1}{n}$ $||f - g_n||_{L1} \leq ||f - f_n||_{L1} + ||f_n - g_n||_{L1} \leq ||f - f_n||_{L1} + \frac{1}{n}(||f - f_n|||_{L1} \to 0)$

 $\implies g_n$ сходится к $f \implies$

f - интегрируема и $I(f) = \lim I(g_n) = \lim I(f_n)$

2.14Нормально сходящиеся ряды. Теорема о нормально сходящихся рядах

Определение. Пусть $\sum_{n=1}^{\infty} f_n = ф$ ункциональный ряд. Будем говорить, что ряд сходится нормально, если сходится ряд $\sum_{n=1}^{\infty} ||f_n||_{L1}$

Теорема 2.8. $nycmb \sum_{n=1}^{\infty} f_n$ - нормально сходящийся ряд определенных почти всюду функций,

для почти всех x из M $f_n(x)$ определены для каждого n

Kроме того, числовой ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится

Проте того, часто в и $I = \sum_{n=1}^{n} f_n(x)$, того а E сли $F(x) = \sum_{n=1}^{\infty} f_n(x)$, того а $||F - \sum_{k=1}^{n} f_k||_{L_1} \le \sum_{k=n+1}^{\infty} ||f_k||_{L_1}$ E сли все f_n интегрируемы, то F - интегрируема и $I(f) = \sum_{n=1}^{\infty} I(f_n)$

Доказательство. Пусть $E_n = \{x \in M : f_n \text{ не определено}\}$

 E_n имеет меру ноль, их объединение имеет меру 0

Тогда для любого x не из E все $f_n(x)$ определены $\Phi(x) = \sum_{n=1}^{\infty} |f_n(x)| \implies ||\Phi(x)||_{L^1} \le \sum_{n=1}^{\infty} ||f_n|| < \infty$ Множество всех x: $\Phi(x) = \infty$ имеет меру $0 \implies \sum_{n=1}^{\infty} |f_n(x)|$ сходится почти всюду $\implies \sum_{n=1}^{\infty} f_n(x)$ сходится почти всюду

Положим $F = \sum_{n=1}^{\infty} f_n(x)$ если сходится, 0, иначе. $R_n(x) = F(x) - \sum_{k=1}^n f_k(x) = \sum_{r=n+1}^\infty f_k(x) = \sum_{r=n+1}^\infty f_k(x) = |R_n(x)| \le \sum_{n=1}^\infty |f_n(x)| \Longrightarrow ||R_n||_{L1} \le \sum_{k=1}^\infty ||f_k||_{L1} \to 0 \Longrightarrow ||R_n||_{L1} \to 0$ пусть все f_n интегрируемы, $F_n = \sum_{k=1}^n f_k$, F_n интегрируемы И по первой части $||F - F_n||_{L1} \to 0$

F - интегрируема

 $I(F) = \lim_{n \to \infty} I(F_n) = \lim_{n \to \infty} \sum_{i=1}^n I(f_k) = \sum_{k=1}^\infty I(f_k) \quad (|I(f_k)| \le ||f_k||_{L_1})$

Теоремы Леви для функциональных рядов и последовательностей 2.15

Следствие. Теорема Леви для функциональных рядов

Если $\sum_{n=1}^{\infty} f_n$ функциональный ряд, и все f_n неотрицательные и интегрируемые, тогда если сходится $\sum_{n=1}^{\infty} I(f_n)$, то для почти всех х определена $F(x) = \sum_{n=1}^{\infty} f_n(x)$ и F - интегрируема, $I(F) = \sum_{n=1}^{\infty} I(f_n)$

Доказательство. т.к f_n неотрицательна, то $f_n=|f_n|$ и $||f_n||_{L1}=|||f_k|||_{L1}=I(|f_n|)=I(f_n)$ $\Longrightarrow \sum_{n=1}^\infty f_n$ сходится нормально, применяем теорему, все хорошо

Следствие. (Теорема Леви для последовательностей)

Пусть $\{f_n\}$ последовательность функций, интегрируемых и определенных почти всюду (за исключением множества Е меры 0)

 $f_n(x)$ монотонна для всех х, кроме х из Е

Тогда если $I(f_n)$ ограничена, то почти для всех х из М определена $f(x) = \lim_{n \to \infty} f_n(x)$, причем f - интегрируема и $I(f) = \lim_{n \to \infty} I(f_n)$

Доказательство. пусть f_n возрастает, тогда $\sum_{n=1}^{\infty} f_{n+1}(x) - f_n(x)$ состоит из положительных функций

 $\forall n \sum_{k=1}^{n} (f_{k+1}(x) - f_k(x)) = f_{n+1}(x) - f_n(x)$

 $\sum_{k=1}^{n} I(f_{k+1} - f_k) = I(f_{n+1}) - I(f_n)$ - ограничена $|I(f_n)| < A \implies \sum_{k=1}^{n} I(f_{n+1} - f_n)$ - ограничена и возрастает по $n \implies \sum_{k=1}^{n} I(f_{k+1}) - I(f_k)$

Применяем теорему Леви для рядов

Примением Теорему Viebn дли рядов $f_{n+1}(x) - f_n(x) - \text{определена почти для всех x и}$ $G(x) = \sum_{n=1}^{\infty} f_{n+1}(x) - f_n(x)$ $G(x) = \lim \sum_{k=1}^{n} (f_{k+1} - f_k(x) = \lim (f_{n+1}(x) - f_n(x)) = \lim f_n(x) - f_1(x) \implies f(x) = \lim f_n(x) = G(x) + f_1(x)$ $I(G) = \lim \sum_{k=1}^{n} I(f_{k+1} - f_k) = \lim I(f_{n+1}) - I(f_1)$ $\lim I(f_n) = I(G) + I(f_1) = I(f)$

2.16 Огибающие для последовательности интегрируемых функций. Нижний и верхний предел последовательности

Определение. Пусть дана последовательность $(f_{\nu})_{\nu \in \mathbb{N}}$ вещественных функций, каждая из которых определена почти всюду в М. Найдем множество $E \subset M$, состоящее из всех $x \in M$, для которых $f_{\nu}(x)$ не определено хотя бы для одного значения $v \in N$. Для всякого $x \notin E$ определены величины

 $g(x) = \inf_{\nu \in N} f_{\nu}(x), h(x) = \sup_{\nu \in N} f_{\nu}(x).$

Определенную таким образом функцию g будем называть нижней огибающей последовательности $(f_
u)_{
u\in\mathbb{N}}.$ Функция f называется верхней огибающей последовательности. Будем писать

$$g = \inf_{\nu \in N} f_{\nu}, h = \sup_{\nu \in N} f_{\nu}.$$

Лемма 2.17. Пусть E - произвольное множество. Тогда для всякой функции $F:E o \mathbb{R}$ имеют место равенства $\inf_{\xi \in E}(F(\xi)) = -\sup_{\xi \in E}(-F(\xi))$ (4.2)

$$\sup_{\xi \in E} (F(\xi)) = -\sup_{\xi \in E} (-F(\xi)) \quad (4.2)$$

$$\sup_{\xi \in E} (F(\xi)) = -\inf_{\xi \in E} (-F(\xi)) \quad (4.3)$$

Доказательство. Пусть $p = -\sup_{\xi \in E} (-F(\xi)) \implies \forall \xi \in E : -F(\xi) \le -p$. и, значит, $\forall \xi \in E : F(\xi) \ge p$, т. е. р является нижней границей функции F.

Пусть p' - другая нижн. гран. функции $F. \implies \xi \in E: \quad F(\xi) \geq p' \implies \forall \xi \in E: \quad -F(\xi) \leq -p'$

 $\implies -p'$ есть верх.гран. функции -F. Так как -p есть точная верх.гран. функции -F на \to

Таким образом, р есть нижн. гран. функции F, и для любой другой ее нижней границы выполняется неравенство выше. По определению, это и означает, что $p = \inf_{\xi \in E} F(\xi)$. Этим доказано равенство.

Функция F в равенстве совершенно произвольна. Заменяя в нем F на - F, получим

$$\inf_{\xi \in E} -F(\xi) = -\sup_{\xi \in E} F(\xi)$$
 откуда, очевидно, следует (4.3).

Лемма 2.18. Пусть дана последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$. Определим последовательности $(p_{\nu})_{\nu \in \mathbb{N}}$ и $(q_{\nu})_{\nu \in \mathbb{N}}$ полагая $p_1 = q_1 = x_1$. Если для некоторого ninN p_n и q_n определены, то $p_{n+1} = \min p_n, x_{n+1}, q_{n+1} = \max q_n, x_{n+1}$ Tогда, $(q_{\nu})_{\nu\in N}$ есть возрастающая последовательность, $(p_{\nu})_{\nu\in N}$ — убывающая последовательность $u\lim_{n\to\infty}$ $\inf_{n\in\mathbb{N}} x_n, \lim_{n\to\infty} q_n = \sup_{n\in\mathbb{N}} x_n$

Доказательство. Из определения следует, что $\forall n: p_{n+i} \leq p_n, q_{n+1} \geq q_n \implies (q_\nu)_{\nu \in N}$ есть возрастающая последовательность, а $(p_{\nu})_{\nu \in N}$ — убывающая.

Пусть $L = \lim_{n \to \infty} q_n$. $\forall n : x_n \le q_n \le L \implies L$ есть верх.гран. $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$.

Пусть L' — произвольная другая верх.гран. $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$. Докажем, что $\forall n : q_n \leq L'$. Для n = 1 это, очевидно,

Предположим, что $\exists n: q_n \leq L'$ выполняется. Так как $x_{n+1} \leq L' \implies q_{n+1} = \max\{q_n, x_{n+1}\} \leq L'$. Из доказанного $\implies \forall n \quad q_n \leq L' \implies L = \lim_{n \to \infty} q_n \leq L'$. Таким образом, L есть верх.гран. последовательности $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ и для \forall ее верхней границы L' $L \leq L'$. По определению, это и означает, что $L = \sup_{n \in \mathbb{N}} x_n$. Для последовательности $(p_{\nu})_{\nu \in N}$ соответствующее утверждение доказывается аналогично.

(Формально можно получить его как следствие доказанного, используя результат предыдущей леммы)

Теорема 2.9. Пусть $(f_{\nu})_{\nu \in \mathbb{N}}$ есть произвольная последовательность интегрируемых функций.

 $f_{\nu}(x) \geq \phi(x)$ для почти всех Предположим, что \exists интегрируемая функция ϕ такая, что при $\forall \nu \quad \nu \in N$: $x \in M$. Тогда нижняя огибающая последовательности функций $(f_{\nu})_{\nu \in \mathbb{N}}$ интегрируема.

Eсли \exists функция ψ такая, что orall
u u \in N $f_
u(x)$ \le $\psi(x)$ для почти всех x \in M, то верхняя огибающая последовательности функций $(f_{\nu})_{\nu \in \mathbb{N}}$ есть интегрируемая функция.

Доказательство. Предположим, $\forall \nu \quad \nu \in N \ f_{\nu}(x) \geq \phi(x)$ для почти всех $x \in M$, где $\phi \in L_1(\Sigma)$. Пусть g есть нижняя огибающая последовательности $(f_{\nu})_{\nu\in\mathbb{N}}$. Пусть E_{ν} есть множество меры нуль, состоящее из $\forall x\in M$, для которых либо одна из величин $f_{\nu}(x), \phi(x)$ не определена, либо они обе определены, но неравенство $f_{\nu}(x) \geq \phi(x)$ не

Положим $E = \bigcup_{\nu=1}^{\infty} E_{\nu}$. Множество E является пренебрежимым.

Построим некоторую последовательность функций $(u_{\nu})_{\nu\in\mathbb{N}}$, полагая $u_{\nu}(x)=\infty\ \forall\ x\in E\ \forall \nu\quad \nu\in N$. Для $x\notin E$ последовательность $u_{\nu}(x)_{\nu\in\mathbb{N}}$ определим из условий $u_1(x)=f_1(x)$, и если значение $u_{\nu}(x)$ определено для некоторого νinN , to $u_{\nu+1}(x) = \min\{u_{\nu}(x), f_{\nu+1}(x)\}.$

Из определения последовательности $(u_{\nu})_{\nu\in\mathbb{N}}$ видно, что она является убывающей. Функция u_1 интегрируема, и $u_1(x) \geq \phi(x)$ для всех $x \notin E$. Пусть $\nu \in N$ таково, что функция u_{ν} для данного ν интегрируема, причем $u_{\nu}(x) \geq \phi(x) \ \forall x \notin E$. В силу свойств интегрируемых функций, из определения функции $u_{\nu+1}$ следует, что тогда функция $u_{\nu+i} = \min\{u_v, f_{v+i}\}$ также интегрируема.

Так как, по условию, $f_{v+1}(x) \ge \phi(x), u_{\nu}(x) \ge \phi(x) \ \forall \ x \notin E$, то также и $u_{v+1}(x) \ge \phi(x)$ для любого $x \notin E$. В силу предыдущей леммы $\forall x \notin E$ имеем $g(x) = \lim_{\nu \to \infty} u_{\nu}(x)$, так что функции u_{ν} сходятся к функции g почти всюду в М. При каждом $\nu \in N$ имеем $\phi \le u_v \le u_1$ почти всюду в М и, значит,

 $I(\phi) \le I(u_{\nu}) \le I(u_1)$

Последовательность интегралов $I(u_{\nu})_{\nu\in\mathbb{N}}$ таким образом, является ограниченной. В силу теоремы Леви для последовательностей отсюда вытекает, что функция д интегрируема, что и требовалось доказать.

Утверждение, касающееся верхней огибающей последовательности функций $(f_{
u})_{
u\in\mathbb{N}}$ может быть доказано аналогичными рассуждениями. Формально это следует из доказанного. Именно, пусть h есть верхняя огибающая последовательности $(f_{\nu})_{\nu \in \mathbb{N}}$. Тогда в силу леммы -h является нижней огибающей последовательности $(-f_{\nu})_{\nu \in \mathbb{N}}$. Если при каждом νinN для почти всех $x\in M$ выполняется $f_{\nu}(x)\leq \psi(x)$, где $\psi\in L_1$, то $-f_{\nu}(x)\geq -\psi(x)$ для почти всех х.

Функция $-\psi$ интегрируема, и, значит, по доказанному, также интегрируема функция -h, т. е. имеет место равенство $-\sup_{\nu \in N} f_{\nu} = -h = \inf_{\nu \in N} -f_{\nu}$

Отсюда следует интегрируемость h. Теорема доказана.

Определение (Нижнее число). Число $H \in \mathbb{R}$ называется нижним числом последовательности $(x_{\nu} \in \mathbb{R})_{\nu \in N}$, если существует номер $\bar{\nu}$ такой, что для всех $\nu \geq \bar{\nu}$ выполняется неравенство $x_v \geq H$.

Множество нижних чисел непусто, так как $-\infty$ является нижним числом любой последовательности рассматриваемого вида.

Определение (Нижний предел). Точная верхняя граница множества всех нижних чисел последовательности называется ее нижним пределом и обозначается символом $\lim_{\nu\to\infty} x_{\nu}$.

Определение (Верхнее число). Число $H \in \mathbb{R}$ называется нижним числом последовательности $(x_{\nu} \in \mathbb{R})_{\nu \in N}$, если существует номер $\bar{\nu}$ такой, что для всех $\nu \geq \bar{\nu}$ выполняется неравенство $x_v \leq H$.

Множество верхних чисел непусто, так как ∞ является верхним числом любой последовательности рассматриваемого вида.

Определение (Верхний предел). Точная верхняя граница множества всех нижних чисел последовательности называется ее нижним пределом и обозначается символом $\lim_{\nu\to\infty}x_{\nu}$.

Определение (Предел последовательности). $L \in \mathbb{R}$ - предел последовательности $x_{\nu} \in \mathbb{R}$, если $L = \underline{\lim}_{\nu \to \infty} x_{\nu} = \overline{\lim}_{\nu \to \infty} x_{\nu}$

Лемма 2.19. $X_{
u} \in \mathbb{R}$ - последовательность.

$$\forall
u \in N: \quad N_{
u} = \inf_{\mu \geq \nu} X_{\mu}, V_{
u} = \sup_{\mu \geq \nu} X_{\mu}.$$
 Тогда последовательности $N_{
u}$ - возрастающая, $V_{
u}$ - убывающая u

$$\lim_{\nu \to \infty} N_{\nu} = \underline{\lim}_{\nu \to \infty} X_{\nu}, \quad \lim_{\nu \to \infty} V_{\nu} = \overline{\lim}_{\nu \to \infty} X_{\nu}$$

Доказательство. Пусть $G_{\nu} = \{\mu \in N | \mu \geq \nu\}$. Тогда

$$N_{\nu} = \inf_{\mu \in G_{\nu}} X_{\mu}, V_{\nu} = \sup_{\mu \in G_{\nu}} X_{\mu}$$

 $N_{\nu} = \inf_{\mu \in G_{\nu}} X_{\mu}, V_{\nu} = \sup_{\mu \in G_{\nu}} X_{\mu}$ $\forall \nu \in N: \quad G_{\nu} \supset G_{\nu+1} \implies \text{по свойствам sup inf функции } N_{\nu} \leq N_{\nu+1}, V_{\nu} \geq V_{\nu+1} \text{ (осталось доказать равенства,}$ пределы существуют)

$$P' = \lim_{\nu \to \infty} N_{\nu}, P = \lim_{\nu \to \infty} X_{\nu} \qquad Q' = \lim_{\nu \to \infty} V_{\nu}, Q = \overline{\lim}_{\nu \to \infty} X_{\nu}$$

 $P' = \lim_{\nu \to \infty} N_{\nu}, P = \underbrace{\lim_{\nu \to \infty}}_{\nu \to \infty} X_{\nu} \qquad Q' = \lim_{\nu \to \infty} V_{\nu}, Q = \overline{\lim_{\nu \to \infty}} X_{\nu}$ $\forall \nu \in N: \quad X_{\mu} \geq N_{\nu} \quad \forall \mu \geq \nu \implies N_{\nu} \text{ - нижнее число } X_{\nu} \implies \forall \nu \in \mathbb{N} \quad N_{\nu} \leq P \implies P' \leq P = \sup \{ \text{ множество всех нижних чисел } X_{\nu}, \text{ обозначим } N(X) \} = N(X)$

$$\exists l \in N(X) \implies \exists a_l \in \mathbb{N} : \forall \nu \ge a \qquad X_{\nu} \ge l \implies$$

 $P' \geq N_a \geq l \implies$ из произвольности $l P' = \sup N(X) \implies P' \geq P \implies P = P'.$

Аналогично Q = Q'.

- 2.17 Теорема Фату о предельном переходе. Следствие из теоремы Фату
- 2.18 Теорема Лебега о предельном переходе
- 2.19 Лемма о приближении стуенчатой функции с помощью непрерывных финитных
- 2.20 Теорема о приближении интегрируемой функции с помощью непрерывных финитных
- 2.21 Измеримые функции. Свойства пространства измеримых функций. Измеримые множества
- 2.22 Теорема об интегрируемости измеримой функции
- 2.23 Теорема об измеримости предела измеримых функций
- 2.24 Теорема об интегрируемости предела возрастающей последовательности положительных измеримых функций
- 2.25 Обобщенно измеримые функции. Измеримые множества, мера множества. Теорема об измеримости объединения и пересечения измеримых множеств
- 2.26 Счетная аддитивность интеграла и меры
- 2.27 Измеримые множества в Rn. Внешняя мера множества. Лемма о представлении открытого множества как объединения кубов. Теорема об измеримости открытых и замкнутых множеств в Rn
- 2.28 Теорема о внешней мере множества
- 2.29 Лемма о приближении неотрицательной вещественной функции ступенчатыми функциями. Следствие об измеримости непрерывной почти всюду функции
- 2.30 Теорема о совпадении интералов Римана и Лебега
- 2.31 Теорема Фубини и следствия из нее
- 2.32 Теорема Тонелли и следствия из нее
- 2.33 Диффеоморфизмы и их свойства. Теорема о замене переменной в кратном интеграле (формулировка)
- 2.34 Лемма о замене переменной при композиции диффеоморфизмов
- 2.35 Лемма о сведении замены переменной в общем случае к случаю индикатора двоичного куба
- 2.36 Лемма о представлении диффеоморфизма в виде композиции диффеоморфизмов специального вида
- 2.37 Теорема о замене переменной в кратном интеграле