STRONG-WEAK DUALITY AND QUANTUM MODULARITY OF RESURGENT TOPOLOGICAL STRINGS

Claudia Rella

Department of Theoretical Physics, University of Geneva

Quantum Mathematics Research Seminar

Centre for Quantum Mathematics, SDU 30 November 2023

Based on arXiv:2212.10606 and work in progress with V. Fantini

Enumerative invariants from resurgence

Resurgent asymptotic series arise naturally as perturbative expansions in quantum theories.

The machinery of resurgence uniquely associates them with a non-trivial collection of complex numbers, known as **Stokes constants**, capturing information about the **non-perturbative sectors** of the theory.

In some remarkable cases, the Stokes constants can be (conjecturally) interpreted in terms of **enumerative invariants** based on the counting of BPS states.

- Seiberg–Witten curve of 4d $\mathcal{N}=2$ super Yang-Mills theory [Grassi, Gu, Mariño, 2019]
- Complex Chern–Simons theory on Seifert fibered homology spheres [Andersen, Mistegård, 2018]
- Complex Chern–Simons theory on complements of hyperbolic knots [Garoufalidis, Gu, Mariño, 2020]
- Standard topological string theory on (toric) Calabi—Yau 3-folds for $g_s \to 0$ [Gu, Mariño, 2021 2022 Rella, 2022 Gu, Kashani-Poor, Klemm, Mariño, 2023]
- Nekrasov–Shatashvili topological string theory on toric Calabi–Yau 3-folds for $\hbar \to 0$ [Gu, Mariño, 2022 Rella, 2022]

FROM TOPOLOGICAL STRINGS TO QUANTUM OPERATORS AND BACK

From topological strings to quantum operators

Let *X* be a toric Calabi-Yau (CY) 3-fold.

Local mirror symmetry pairs X with an algebraic curve $\Sigma \subset \mathbb{C}^* \times \mathbb{C}^*$ of genus g_{Σ} , whose Weyl quantization leads to **quantum-mechanical operators**

$$\rho_j, \quad j=1,\ldots,g_{\Sigma} \;,$$

acting on $L^2(\mathbb{R})$. They are conjectured to be positive-definite and of trace class, under some assumptions on the mass parameters $\vec{\xi}$.

[Grassi, Hatsuda, Mariño, 2014 - Codesido, Grassi, Mariño, 2015]

Their **generalized Fredholm determinant** $\Xi(\vec{\kappa}, \vec{\xi}, \hbar)$ is an entire function of the true complex deformation parameters κ_j . Its local expansion at the orbifold point $\vec{\kappa} = 0$ is

$$\Xi(\vec{\kappa}, \vec{\xi}, \hbar) = \sum_{N_1 \ge 0} \cdots \sum_{N_{g_{\Sigma}} \ge 0} \underbrace{Z(\vec{N}, \vec{\xi}, \hbar)}_{\text{analytic function}} \kappa_1^{N_1} \cdots \kappa_{g_{\Sigma}}^{N_{g_{\Sigma}}},$$
of $\hbar \in \mathbb{R}_{>0}$

where the coefficient functions $Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar)$ are the **fermionic spectral traces**. We will consider their analytic continuation to $\hbar \in \mathbb{C} \backslash \mathbb{R}_{\leq 0}$.

From quantum operators to topological strings

The conjectural **Topological Strings/Spectral Theory** (TS/ST) correspondence states that

$$Z(\vec{N}, \vec{\xi}, \hbar) = \frac{1}{(2\pi i)^{g_{\Sigma}}} \int_{-i\infty}^{i\infty} d\mu_1 \cdots \int_{-i\infty}^{i\infty} d\mu_{g_{\Sigma}} e^{J(\vec{\mu}, \vec{\xi}, \hbar) - \vec{N} \cdot \vec{\mu}},$$

where the chemical potentials μ_j are defined by $\kappa_j = e^{\mu_j}$. [Hatsuda, Moriyama, Okuyama, 2012 - Grassi, Hatsuda, Mariño, 2014 - Codesido, Grassi, Mariño, 2015]

The **total grand potential** of the A-model topological string theory on *X* can be written as

$$J(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) = J^{\text{WS}}(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) + J^{\text{WKB}}(\overrightarrow{\mu}, \overrightarrow{\xi}, \hbar) ,$$
 worldsheet grand potential WKB grand potential

where J^{WS} and J^{WKB} encode the contributions from the total free energies of the standard and Nekrasov-Shatashvili (NS) topological strings on X, respectively. [Hatsuda, Mariño, Moriyama, Okuyama, 2013]

The string coupling constant g_s is related to the quantum deformation parameter \hbar by the strong-weak coupling duality $g_s = \frac{4\pi^2}{\hbar}$.

Basic notions in resurgence — I

Let $\varphi(z)$ be a (simple) **resurgent Gevrey-1** asymptotic series of the form

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{C}[[z]], \quad a_n \sim A^{-n} n! \quad n \gg 1, \quad A \in \mathbb{R}.$$

Its **Borel–Laplace resummation** is the two-step process

$$\hat{\varphi}(z) \longrightarrow \hat{\varphi}(\zeta) = \sum_{k=0}^{\infty} \frac{a_k}{k!} \zeta^k \longrightarrow s_{\theta}(\varphi)(z) = \int_{\rho_{\theta}} e^{-\zeta} \hat{\varphi}(\zeta z) \, d\zeta$$
locally analytic at $\zeta = 0$ locally analytic in the complex z-plane with singularities at $\zeta = \zeta_{\omega}$ with discontinuities at $\arg(z) = \arg(\zeta_{\omega})$

where $\rho_{\theta} = e^{i\theta} \mathbb{R}_+$, $\theta = arg(\zeta)$. If ζ_{ω} is a logarithmic branch point, we have

$$\hat{\varphi}(\zeta) = -\frac{S_{\omega}}{2\pi \mathrm{i}} \log(\zeta - \zeta_{\omega}) \qquad \qquad \hat{\varphi}_{\omega}(\zeta - \zeta_{\omega}) \qquad \qquad + \dots \; ,$$
 locally analytic at $\zeta - \zeta_{\omega} = 0$

where $S_{\omega} \in \mathbb{C}$ is the **Stokes constant**. When $\theta = \arg(\zeta_{\omega})$, the line ρ_{θ} is a **Stokes ray**.

Basic notions in resurgence — II

The **discontinuity** across ρ_{θ} is

$$\operatorname{disc}_{\theta} \varphi(z) = s_{\theta_{+}}(\varphi)(z) - s_{\theta_{-}}(\varphi)(z) =$$

$$= \sum_{\omega} S_{\omega} e^{-\zeta_{\omega}/z} s_{\theta_{-}}(\varphi_{\omega})(z).$$

The **median resummation** across ρ_{θ} is

$$\mathcal{S}_{\theta}^{\text{med}}\varphi(z) = \frac{s_{\theta_{+}}(\varphi)(z) + s_{\theta_{-}}(\varphi)(z)}{2}.$$

The **Stokes automorphism** \mathfrak{S}_{θ} across ρ_{θ} is defined by $s_{\theta_{+}} = s_{\theta_{-}} \circ \mathfrak{S}_{\theta}$.

Schematically, $\varphi \longrightarrow \{\varphi_{\omega}, S_{\omega}\} \longrightarrow \{\varphi_{\omega'}, S_{\omega\omega'}\}$.

Each series in this process can be promoted to basic trans-series as

$$\Phi_{\omega}(z) = e^{-\zeta_{\omega}/z} \, \varphi_{\omega}(z) \,.$$

The **minimal resurgent structure** is the smallest subset of $\{\Phi_{\omega}(z)\}$ closed under \mathfrak{S} .

TOPOLOGICAL STRINGS BEYOND PERTURBATION THEORY

Resurgence in topological string theory — I

Consider the semiclassical perturbative expansion

$$\phi_{\overrightarrow{N}}(\hbar) = \log Z(\overrightarrow{N}, \overrightarrow{\xi}, \hbar \to 0), \quad \overrightarrow{N} \in \mathbb{N}^{g_{\Sigma}},$$

which is a (simple) resurgent Gevrey-1 asymptotic series.

We describe a conjectural proposal for the **minimal resurgent** structure of $\phi_{\overrightarrow{N}}(\hbar)$ at fixed \overrightarrow{N} :

$$\Phi_{\sigma,n;\overrightarrow{N}}(\hbar) = e^{-nA/\hbar} \, \phi_{\sigma;\overrightarrow{N}}(\hbar) \quad \text{(peacock patterns)},$$

where $n \in \mathbb{N}$, $\sigma \in \{0,...,l\}$, $l \in \mathbb{N}_+$, and $A \in \mathbb{C}$.

The corresponding **Stokes constants** satisfy

$$S_{\sigma,\sigma',n;\overrightarrow{N}} \in \mathbb{Q}$$
, $S_{\sigma,\sigma';\overrightarrow{N}}(q) = \sum_{n \in \mathbb{N}} S_{\sigma,\sigma',n;\overrightarrow{N}}q^n$ (q-series),

and they give non-trivial enumerative invariants of the geometry.

Peacock patterns are expected in theories controlled by quantum curves. [Grassi, Gu, Mariño, 2019 - Garoufalidis, Gu, Mariño, 2020 - 2022 - Gu, Mariño, 2021 - Rella, 2022]

Resurgence in topological string theory — II

Consider the dual weakly-coupled regime $g_s = 4\pi^2/\hbar \to 0$ of the topological string.

At fixed \overrightarrow{N} , the (simple) resurgent Gevrey-1 asymptotic series

$$\psi_{\overrightarrow{N}}(g_s) = \log Z(\overrightarrow{N}, \vec{\xi}, \hbar \to \infty), \quad \overrightarrow{N} \in \mathbb{N}^{g_{\Sigma}},$$

is conjectured to have the same resurgent structure described before:

Some remarks:

- 1. The asymptotic expansion $Z(\vec{N}, \vec{\xi}, \hbar \to \infty)$ has an exponential pre-factor of the form e^{-1/g_s} (conifold volume conjecture for toric CYs). Its Stokes constants are **integers**. [Gu, Mariño, 2021]
- 2. The asymptotic expansion $Z(\vec{N}, \vec{\xi}, \hbar \to 0)$ has no exponential pre-factor of the form $e^{-1/\hbar}$ (new analytic prediction of the TS/ST correspondence). Its Stokes constants are generally **complex numbers**. [Rella, 2022]

LOCAL \mathbb{P}^2 — A CASE STUDY

Introduction to the local \mathbb{P}^2 geometry

Local \mathbb{P}^2 is the total space of the canonical bundle over the projective surface \mathbb{P}^2 .

It is a **toric del Pezzo CY 3-fold** with one complex modulus κ and no mass parameters.

The Weyl quantization of its mirror curve gives

$$O_{\mathbb{P}^2}(x, y) = e^x + e^y + e^{-x-y}$$
, $[x, y] = i\hbar$ (x, y) self-adjoint Heisenberg operators,

acting on $L^2(\mathbb{R})$. The inverse operator $\rho_{\mathbb{P}^2} = O_{\mathbb{P}^2}^{-1}$ is positive-definite and of trace class. [Grassi, Hatsuda, Mariño, 2014 - Kashaev, Mariño, 2015]

The first spectral trace $Z_{\mathbb{P}^2}(1,\hbar) = \operatorname{Tr}(\rho_{\mathbb{P}^2})$ is known in closed form as

$$\operatorname{Tr}(\rho_{\mathbb{P}^2}) = \frac{1}{\sqrt{3b}} e^{-\frac{\pi i}{36}b^2 + \frac{\pi i}{12}b^{-2} + \frac{\pi i}{4}} \frac{(q^{2/3}; q)_{\infty}^2}{(q^{1/3}; q)_{\infty}} \frac{(w; \tilde{q})_{\infty}}{(w^{-1}; \tilde{q})_{\infty}^2}, \quad 2\pi b^2 = 3\hbar,$$

where $q = e^{2\pi i b^2}$, $\tilde{q} = e^{-2\pi i b^{-2}}$, and $w = e^{2\pi i/3}$, showing an explicit factorization into **holomorphic/anti-holomorphic blocks**.

[Kashaev, Mariño, 2015 - Mariño, Zakany, 2015 - Gu, Mariño, 2021]

Exact solution to the resurgent structure at weak coupling

We obtain an **all-orders perturbative expansion** for $\log Z_{\mathbb{P}^2}(1, \hbar \to 0)$, which gives a Gevrey-1 asymptotic series

$$\phi(\hbar) = \sum_{n=1}^{\infty} a_{2n} \hbar^{2n} \in \mathbb{Q}[\![\hbar]\!],$$

$$a_{2n} \sim (-1)^n (2n)! A_0^{-2n}, \quad n \gg 1, \quad A_0 = 4\pi^2/3.$$

We present a **fully analytic solution** to the resurgent structure of $\phi(\hbar)$. [Rella, 2022]

- 1. Exact, explicit resummation of $\hat{\phi}(\zeta)$ as a simple resurgent function.
- 2. Logarithmic branch points at $\zeta_n = nA_0 i$, $n \in \mathbb{Z}_{\neq 0}$.
- 3. Local expansion at $\zeta = \zeta_n$:

$$\hat{\phi}(\zeta) = -\frac{S_n}{2\pi i} \log(\zeta - \zeta_n) + \dots \longrightarrow \hat{\phi}_n(\zeta) = 1, \quad n \in \mathbb{Z}_{\neq 0},$$

Proposition:
$$S_1 = 3\sqrt{3}i$$
, $\frac{S_n}{S_1} = \frac{\alpha_n}{n} \in \mathbb{Q}_{>0}$ $n \in \mathbb{Z}_{\neq 0,1}$, $\alpha_n = -\alpha_{-n}$, $\alpha_n \in \mathbb{Z}_{>0}$ $n \in \mathbb{Z}_{>0}$.

Exact solution to the resurgent structure at strong coupling

We obtain an **all-orders perturbative expansion** for $\log Z_{\mathbb{P}^2}(1, \hbar \to \infty)$, which gives a Gevrey-1 asymptotic series

$$\psi(\tau) = \sum_{n=1}^{\infty} b_{2n} \tau^{2n-1} \in \mathbb{Q}[\pi, \sqrt{3}] [\![\tau]\!], \quad \tau = -\frac{A_{\infty}}{\hbar}.$$

$$b_{2n} \sim (-1)^n (2n)! A_{\infty}^{-2n}, \quad n \gg 1, \quad A_{\infty} = 2\pi/3 = A_0/2\pi.$$

We present a **fully analytic solution** to the resurgent structure of $\psi(\tau)$: [Rella, 2022]

- 1. Exact, explicit resummation of $\hat{\psi}(\zeta)$ as a simple resurgent function.
- 2. Logarithmic branch points at $\zeta_n = nA_{\infty}i$, $n \in \mathbb{Z}_{\neq 0}$.
- 3. Local expansion at $\zeta = \zeta_n$:

$$\hat{\psi}(\zeta) = -\frac{R_n}{2\pi i} \log(\zeta - \zeta_n) + \dots \longrightarrow \hat{\psi}_n(\zeta) = 1, \quad n \in \mathbb{Z}_{\neq 0}.$$

Proposition:
$$R_1 = 3$$
, $\frac{R_n}{R_1} = \frac{\beta_n}{n} \in \mathbb{Q}_{\neq 0}$ $n \in \mathbb{Z}_{\neq 0,1}$, $\beta_n = \beta_{-n}$, $\beta_n \in \mathbb{Z}_{\neq 0}$ $n \in \mathbb{Z}_{>0}$.

Analytic formulae for the Stokes constants

We present **exact number-theoretic statements** on the Stokes constants S_n , R_n , $n \in \mathbb{Z}_{>0}$. [Rella, 2022]

<u>Proposition 1:</u> The normalized Stokes constants are **divisor sum functions**:

$$\frac{S_n}{S_1} = \sum_{d \mid n} \frac{1}{d} \chi_{3,2}(d), \quad \frac{R_n}{R_1} = \sum_{d \mid n} \frac{d}{n} \chi_{3,2}(d),$$

where $\chi_{3,2}(n) = [n]_3$ is the unique non-principal Dirichlet character modulo 3. They are multiplicative arithmetic functions.

<u>Proposition 2:</u> The Stokes constants are **generated by the** q, \tilde{q} -series appearing in the **holomorphic and anti-holomorphic blocks** of the spectral trace:

$$\operatorname{disc}_{\frac{\pi}{2}} \phi(\hbar) = \sum_{n=1}^{\infty} S_n \tilde{q}^n = -i\pi - 3\log \frac{(w; \tilde{q})_{\infty}}{(w^{-1}; \tilde{q})_{\infty}}, \quad \tilde{q} = e^{-4\pi^2 i/3\hbar}, \quad w = e^{2\pi i/3},$$

$$\operatorname{disc}_{\frac{\pi}{2}} \psi(\tau) = \sum_{n=1}^{\infty} R_n q^{n/3} = 3\log \frac{(q^{2/3}; q)_{\infty}}{(q^{1/3}; q)_{\infty}}, \quad q = e^{-2\pi i/\tau},$$

giving exact expressions for the discontinuities of the series $\phi(\hbar)$, $\psi(\tau)$.

A bridge to analytic number theory — I

<u>Proposition 1:</u> The perturbative coefficients $a_{2n}, b_{2n}, n \in \mathbb{Z}_{>0}$, satisfy **exact large-order relations**:

$$a_{2n} = \frac{\Gamma(2n)}{\pi i (A_0 i)^{2n}} \sum_{m=1}^{\infty} \frac{S_m}{m^{2n}}$$
 (Dirichlet series evaluated at 2n),

$$b_{2n} = \frac{\Gamma(2n-1)}{\pi i (A_{\infty}i)^{2n-1}} \sum_{m=1}^{\infty} \frac{R_m}{m^{2n-1}}$$
 (Dirichlet series evaluated at 2*n*-1).

<u>Proposition 2:</u> The two Dirichlet series defined by the Stokes constants satisfy an **Euler product expansion** indexed by the set of prime numbers \mathbb{P} :

$$\sum_{m=1}^{\infty} \frac{S_m/S_1}{m^{2n}} = \prod_{p \in \mathbb{P}} \sum_{k=0}^{\infty} \frac{S_{p^k}/S_1}{p^{k(2n)}}, \quad \sum_{m=1}^{\infty} \frac{R_m/R_1}{m^{2n-1}} = \prod_{p \in \mathbb{P}} \sum_{k=0}^{\infty} \frac{R_{p^k}/R_1}{p^{k(2n-1)}}.$$

The Dirichlet series above are indeed **L-series**.

<u>Corollary:</u> Up to the simple prefactors above, the perturbative coefficients of the series $\phi(\hbar)$ and $\psi(\tau)$ are values of the L-series encoding the corresponding Stokes constants evaluated at integer points.

A bridge to analytic number theory — II

Recall that the multiplication of Dirichlet series is compatible with the **Dirichlet convolution** of arithmetic functions, that is,

$$f(m) = (f_1 * f_2)(m), m \in \mathbb{Z}_{>0} \longrightarrow \sum_{m=1}^{\infty} \frac{f(m)}{m^s} = \sum_{m=1}^{\infty} \frac{f_1(m)}{m^s} \sum_{m=1}^{\infty} \frac{f_2(m)}{m^s}, s \in \mathbb{C}, \Re(s) > 1.$$

<u>Theorem:</u> The weak and strong coupling L-series factorise according to the Dirichlet decomposition of the Stokes constants into the product of two well-known L-functions:

$$\frac{S_m}{S_1} = (\chi_{3,2} F_{-1} * F_0)(m) \longrightarrow L_0(s) = \sum_{m=1}^{\infty} \frac{S_m / S_1}{m^s} = L(s+1, \chi_{3,2}) \, \zeta(s) \qquad (\hbar \to 0),$$

$$\frac{R_m}{R_1} = (\chi_{3,2} F_0 * F_{-1})(m) \longrightarrow L_\infty(s) = \sum_{m=1}^{\infty} \frac{R_m / R_1}{m^s} = L(s, \chi_{3,2}) \, \zeta(s+1) \qquad (\hbar \to \infty),$$

where
$$F_{\alpha}(m) = m^{\alpha}$$
, $\chi_{3,2}(m) = [m]_3$.

<u>Corollary:</u> The weak and strong coupling L-functions are related by a symmetric **unitary shift** in the arguments of the factors.

A full-fledged analytic number-theoretic symmetry

The number-theoretic properties of the exact resurgent structures of the weak and strong coupling perturbative expansions fit together to compose a full-fledged symmetry.

<u>Corollary:</u> The perturbative coefficients of the series $\phi(\hbar)$ and $\psi(\tau)$ are given by the **Mellin** transform of the discontinuities:

$$a_{2n} = \frac{1}{\pi i} \int_0^\infty \hbar^{-2n-1} \mathrm{disc}_{\frac{\pi}{2}} \phi(\hbar) d\hbar, \quad b_{2n} = \frac{1}{\pi i} \int_0^\infty \tau^{-2n} \mathrm{disc}_{\frac{\pi}{2}} \psi(\tau) d\tau.$$

STRONG-WEAK DUALITY REFORMULATED

[Fantini, Rella, to appear]

From symmetry to unification — I

<u>Theorem 1:</u> The strong and weak coupling normalized Stokes constants are related by:

$$\frac{S_n}{S_1} = \frac{R_n}{R_1} \chi(n) , \quad \chi(n) = (f_3 * \chi_{3,2})(n) , \quad n \in \mathbb{Z}_{>0} ,$$

where
$$f_3(n) = \prod_{p \in \mathbb{P}} f_3(p)^{k_p}$$
 for $n = \prod_{p \in \mathbb{P}} p^{k_p}$ and $f_3(p) = \delta_{p,1} + 3\delta_{p,3}$.

The same **arithmetic twist** relates the strong and weak coupling L-functions $L_0(s)$, $L_\infty(s)$, $s \in \mathbb{C}$, $\Re(s) > 1$. We consider their meromorphic continuation to $s \in \mathbb{C}$ and upgrade them to the dual **completed L-functions**

$$\Lambda_0(s) = \frac{3^{s/2}}{4\pi^s} \Gamma\left(\frac{s}{2}\right)^2 L_0(s) \,, \quad \Lambda_{\infty}(s) = \frac{3^{s/2}}{4\pi^{s+1}} \Gamma\left(\frac{s+1}{2}\right)^2 L_{\infty}(s) \,.$$

<u>Theorem 2:</u> The strong and weak coupling completed L-functions are related by:

$$s\Lambda_0(s) = 2\pi i\Lambda_\infty(-s), \quad s \in \mathbb{C}.$$

This is a consequence of the remarkable factorisation of the L-functions $L_0(s)$ and $L_\infty(s)$ into the products of $L(s,\chi_{3,2})$ and $\zeta(s)$ with cross-shifted arguments.

From symmetry to unification — II

We introduce the unified completed L-function

$$\Lambda(s) = s\Lambda_0(s) + 2\pi i\Lambda_\infty(s-1), \quad s \in \mathbb{C}.$$

<u>Corollary:</u> The unified completed L-function satisfies the conventional **functional equation**:

$$\Lambda(s) = \Lambda(1-s), \quad s \in \mathbb{C}.$$

The same does <u>not</u> hold for the individual completed L-functions $\Lambda_0(s)$ and $\Lambda_{\infty}(s)$.

The resurgent behaviours in the weak and strong \hbar -regimes descend from a **unique global number-theoretic structure** with a peculiar symmetry.

The perturbative information content of one regime recovers the non-perturbative content of the other in a mathematically precise way. This is a notable **manifestation of the underlying physical dualities**.

TOWARDS A UNIVERSAL PICTURE

[Fantini, Rella, to appear]

Median resummation of the q, \tilde{q} -series

The holomorphic and anti-holomorphic blocks are different functions. Yet, the holomorphic block resurges from the perturbative expansion of the anti-holomorphic block and vice versa.

<u>Theorem:</u> The **median resummation** of the perturbative series $S_0(\hbar)$ and $S_\infty(\tau)$ obtained from the asymptotic expansions of the q, \tilde{q} -series generating the Stokes constants returns the same q, \tilde{q} -series:

$$\mathcal{S}_{\frac{\pi}{2}}^{\text{med}} S_0(\hbar) = 3 \log \frac{(q^{2/3}; q)_{\infty}}{(q^{1/3}; q)_{\infty}} = \text{disc}_{\frac{\pi}{2}} \psi(-2\pi/3\hbar),$$

$$\mathcal{S}_{\frac{\pi}{2}}^{\text{med}} S_{\infty}(\tau) = -\pi i - 3 \log \frac{(w; \tilde{q})_{\infty}}{(w^{-1}; \tilde{q})_{\infty}} = \text{disc}_{\frac{\pi}{2}} \phi(-2\pi/3\tau).$$

Resurgence and quantum modularity

<u>Proposition:</u> The function $f: \mathbb{C}\backslash\mathbb{R}_{<0} \to \mathbb{C}$ defined by

$$f(\hbar) = \operatorname{disc}_{\frac{\pi}{2}} \left[\psi(-2\pi/3\hbar) - \phi(\hbar) \right] = \mathcal{S}_{\frac{\pi}{2}}^{\text{med}} \left[S_0(\hbar) - S_{\infty}(-2\pi/3\hbar) \right]$$

is a weight-0 quantum modular form for $SL_2(\mathbb{Z})$.

Work in progress on an underlying quantum modularity for the congruence subgroup $\Gamma_1(3)$.

<u>Definition</u>: Let $\varphi(z), z \in \mathbb{C}$, be a (simple) resurgent Gevrey-1 asymptotic series. We say that φ has a **modular resurgent structure** when:

- 1. the Borel transform $\hat{\varphi}(\zeta)$ is singular at $\zeta = kA, k \in \Omega \subseteq \mathbb{Z}, A \in \mathbb{C}$;
- 2. the Stokes constants S_k , $k \in \Omega \subseteq \mathbb{Z}$, are the coefficients of an L-function.

<u>Conjecture:</u> Let $f(z) : \mathbb{H} \to \mathbb{C}$ be an analytic function which extends to \mathbb{Q} . If its asymptotic expansion $\varphi(z)$ has a modular resurgent structure, then (t.f.a.e.):

- 1. f(z) is a quantum modular form for some $\Gamma \subseteq SL_2(\mathbb{Z})$;
- 2. $\mathcal{S}_{\theta}^{\text{med}}\varphi(z) = f(z)$.

Further evidence from examples of q-series related to knot invariants.

Final remarks and open problems

The resurgence of the topological string on a toric CY 3-fold unveils a universal mathematical structure of **non-perturbative sectors** (*peacock patterns*) and **Stokes constants** (*enumerative invariants*).

Their geometric and physical meaning is yet to be understood. Evidence suggests a relation to the Donaldson–Thomas invariants.

[Alim, Saha, Teschner, Tulli, 2021 - Gu, Kashani-Poor, Klemm, Mariño, 2023]

The resurgence of the first spectral trace of local \mathbb{P}^2 displays a **global analytic number-theoretic structure** encompassing and intertwining the regimes of $\hbar \to 0$ and $\hbar \to \infty$.

The weak-strong duality between \hbar and g_s (TS/ST correspondence) translates it into a statement on the topological string theory. This is a **manifestation of the underlying physical dualities**. Work in progress on the precise formalisation of this intuition.

The interplay of *q*-series (*median resummation*) and *L*-functions (*discontinuity*) plays a central role in the cross-relations between the weak and strong resurgent structures.

Our results fit into a broader research program linking the resurgent properties of *q*-series and quantum modular forms. Work in progress on the **modular resurgent structures**. [Fantini, Rella, to appear - Fantini, Goswami, Kontsevich, Kumar, to appear]

