ECN 7060, Cours 2

William McCausland

2019-09-11

Plan de route, Chapitre 2

- ▶ 2.1 Définition d'un espace de probabilité
- ▶ 2.2 Construction de (Ω, \mathcal{F}, P) pour Ω dénombrable, une spécification suffisante (un semi-algèbre \mathcal{J} et un $P \colon \mathcal{J} \to [0,1]$ avec superadditivité plus monotonicité dénombrable) pour $\Omega = [0,1]$
- ▶ 2.3 Théorème d'extension : un outil pour construire F, P
- ▶ 2.4 Application du théorème pour $\Omega = [0, 1]$.
- 2.5 Variations du théorème (conditions alternatives)
- 2.6 Application du théorème pour d'autres Ω

Théorème d'extension

Conditions sur Ω , \mathcal{J} et $P \colon \mathcal{J} \to [0,1]$:

- 1. \mathcal{J} est une semi-algèbre sur Ω .
- 2. P est finiement superadditive.
- 3. P est dénombrablement monotone.

Conclusion : il y a une tribu $\mathcal M$ sur Ω et une probabilité P^* sur $\mathcal M$ telles que

- 1. $\mathcal{J} \subseteq \mathcal{M}$,
- 2. $P^*(A) = P(A)$ pour chaque $A \in \mathcal{J}$.

Deux tribus pour $\Omega = \mathbb{R}$ (Exercise 2.4.5)

- J est une semi-algèbre si
 - \blacktriangleright $\emptyset \in \mathcal{J}$, $\Omega \in \mathcal{J}$,
 - lacksquare ${\cal J}$ est stable pour les intersections finies,
 - ▶ Si $A \in \mathcal{J}$, A^c est une réunion disjointe finie des éléments de \mathcal{J} .
- ▶ Un intervalle de \mathbb{R} est n'importe [a,b], [a,b), (a,b] ou (a,b), où $a=\infty$, $b=\infty$, a=b (auquel cas $[a,b]=\{a\}$) et a< b (auquel cas $(a,b)=\emptyset$) sont permis.
- ▶ Soit $A_2 = \{$ tous intervalles dans $\mathbb{R}\}$.
 - Un semi-algèbre?
 - $\mathcal{B} \equiv \sigma(\mathcal{A}_2)$, la tribu la plus petite qui contient \mathcal{A}_2 .
 - lacksquare Il ne suffit pas de mettre les réunions dénombrables dans ${\cal F}.$
 - ▶ Spécification de $P: A_2 \rightarrow [0,1]$?
- ▶ Soit $A_1 = \{(-\infty, x] : x \in \mathbb{R}\}.$
 - Un semi-algèbre?
 - Pourquoi utile?
- Montrez que $\sigma(A_1) = \mathcal{B}$.

Démonstration de $\sigma(A_1) = \mathcal{B} \equiv \sigma(A_2)$

- $A_1 \subset A_2$ alors $\sigma(A_1) \subseteq \sigma(A_2)$.
- ▶ L'autre direction, $\sigma(A_2) \subseteq \sigma(A_1)$:
 - $(a,b] = (-\infty,b] \cap (-\infty,a]^c$ doit être un élément de $\sigma(A_1)$.
 - $(a,b) = (\bigcup_n (-\infty, b-1/n]) \cap (-\infty, a]^c \in \sigma(A_1).$
 - $[a,b] = (-\infty,b] \cap (\cup_n(-\infty,a-1/n]^c) \in \sigma(\mathcal{A}_1).$
 - $[a,b) = (\cup_n(-\infty,b-1/n]) \cap (\cup_n(-\infty,a-1/n]^c) \in \sigma(\mathcal{A}_1).$
- Alors $\sigma(A_1) = \mathcal{B} \equiv \sigma(A_2)$.

Un semi-algèbre pour $\Omega = \{(r_1, r_2, \ldots) : r_i \in \{0, 1\}\}$

- $lacktriangleq \Omega$ est l'ensemble de séquences infinie des 'piles ou faces'.
- $\blacktriangleright A_{a_1a_2...a_n} \equiv \{(r_1,r_2,\ldots) \in \Omega \colon r_i = a_i, 1 \leq i \leq n\} \subseteq \Omega.$
- ▶ $A_{a_1 a_2 ... a_n}$ est l'ensembles de séquences infinies avec l'histoire initial $a_1 a_2 ... a_n$.
- $A_{a_1 a_2 \dots a_n}$ comme un interval de [0, 1).
- \blacktriangleright $A_{01011} \cap A_{0110000} = ?$, $A_{01} \cap A_{01101} = ?$, $A_{a_1 a_2 \dots a_n} \cap A_{b_1 b_2 \dots b_{n'}} = ?$
- $A_{010}^c = ?, A_{a_1 a_2 ... a_n}^c = ?$
- $ightharpoonup \mathcal{J}$ est-il un semi-algèbre?

Une proto-probabilité pour $\Omega = \{(r_1, r_2, \ldots) : r_i \in \{0, 1\}\}$

Une 'proto-probabilité' $P \colon \mathcal{J} \cup \{\emptyset, \Omega\} \to [0, 1]$:

$$P(A_{a_1 a_2 \dots a_n}) = 1/2^n, \quad P(\emptyset) = 0, \quad P(\Omega) = 1.$$

- ▶ Soit $D_1, ..., D_n \in \mathcal{J}$ tel que $D \equiv \bigcup_{i=1}^n D_i \in \mathcal{J}$.
- ▶ Vérification d'additivité fini de $P: \mathcal{J} \to \mathbb{R}$.
- ▶ II y a un $k \in \mathbb{N}$ tel que $D = A_{a_1 a_2 ... a_k}$ et $P(D) = 2^{-k}$.
- $P(A_{a_1a_2...a_n}) = 2^{-n} = P(A_{a_1a_2...a_n0}) + P(A_{a_1a_2...a_n1}) = 2 \cdot 2^{-n-1}$
- Traversez l'arborescence de bas en haut.
- Pourquoi le cas d'additivité dénombrable n'est pas trivial?

Un semialgèbre pour $\Omega_1 \times \Omega_2$

- ▶ Commençons avec deux espaces de probabilité : $(\Omega_1, \mathcal{F}_1, P_1)$ et $(\Omega_2, \mathcal{F}_2, P_2)$.
- ▶ Nous voulons construire un semi-algèbre pour $\Omega = \Omega_1 \times \Omega_2$.
- ▶ Soit $\mathcal{J} \equiv \{A \times B \colon A \in \mathcal{F}_1, B \in \mathcal{F}_2\}.$
- ▶ \emptyset , $\Omega \in \mathcal{J}$?
- $(A_1 \times B_1) \cap (A_2 \times B_2) = ?$
- $(A \times B)^c = ?$

Une proto-probabilité pour $\mathcal{J} = \Omega_1 \times \Omega_2$

Une 'proto-probabilité' $P \colon \mathcal{J} \to [0,1] \colon P(A \times B) \equiv P_1(A)P_2(B)$.

Vérification d'additivité finie (dénombrable plus tard) :

▶ Si
$$\cup_{i=1}^{n} (A_i \times B_i) \in \mathcal{J}$$
 alors il existe $\{\alpha_i : j \in J\} \subseteq \mathcal{F}_1$ et $\{\beta_k : k \in K\} \subseteq \mathcal{F}_2$ tels que

$$\cup_{i=1}^n (A_i \times B_i) = (\cup_{j \in J} \alpha_i) \times (\cup_{k \in K} \beta_i) \equiv A \times B.$$

$$P(A \times B) = P_1(A)P_2(B) = \left(\sum_{j \in J} P_1(\alpha_j)\right) \left(\sum_{k \in K} P_2(\beta_j)\right),$$

$$\sum_{i=1}^{n} P(A_i \times B_i) = \sum_{j \in J} \sum_{k \in K} P(\alpha_j \times \beta_k)$$

$$= \sum_{j \in J} \sum_{k \in K} P_1(\alpha_j) P_2(\beta_k)$$

$$= \left(\sum_{i \in J} P_1(\alpha_i)\right) \left(\sum_{k \in K} P_2(\beta_k)\right) = P(A \times B).$$

Aperçu du Chapitre 3, partie I

- ▶ Définition d'une variable aléatoire : $X : \Omega \to \mathbb{R}$ telle que $\{X \le x\} \in \mathcal{F}$ pour chaque $x \in \mathbb{R}$.
- ► Ce qu'on peut construire sans s'inquiéter si elle est une variable aléatoire ou non:
 - ▶ Les indicateurs $1_A(\omega)$, où $A \in \mathcal{F}$.
 - La somme de deux variables aléatoires, les multiples scalaires des variables aléatoires
 - Les limites des variables aléatoires ($Z(\omega) = \lim_{n \to \infty} Z_n(\omega)$ pour $\omega \in \Omega$))
- Indépendence
 - d'événements (du même espace de probabilité)
 - de collections d'évènements
 - de variables aléatoires

Aperçu du Chapitre 3, partie II

Convergence monotone d'événements :

- ▶ Pour $A_n \equiv [0, 1/n]$, $A_n \searrow \cap_n [0, 1/n] = \{0\}$.
- ▶ Pour $A_n \equiv [0, 1 1/n]$, $A_n \nearrow \cup_n [0, 1 1/n] = [0, 1)$.

Par convergence de probabilités (un théorème),

- ► $\lim_{n\to\infty} P([0,1/n]) = P(\{0\}),$
- ► $\lim_{n\to\infty} P([0,1-1/n]) = P([0,1)),$

Aperçu du Chapitre 3, partie III

Pour les séquences réels,

- $| \liminf_{n \to \infty} x_n \equiv \lim_{n \to \infty} (\inf_{m > n} x_m)$
- $| \lim \sup_{n \to \infty} x_n \equiv \lim_{n \to \infty} (\sup_{m > n} x_m)$

Exemple :
$$A_n \equiv (-1)^n (1 + 1/n) = 2, -3/2, 4/3, -5/3, \dots$$

Pour les suites d'événements, pas forcément monotone,

- $Iim \inf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_k$
- $\blacktriangleright \ \operatorname{lim} \sup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_k$

Exemple : $H_n \equiv \{(r_1, r_2, ...) \in \Omega : r_n = 1\}$. $\liminf_n H_n$ (H_n presque toujours) et $\limsup_n H_n$ (H_n infiniment souvent).