Seminar aus maschinellem Lernen: A General Framework for Mining Frequent Subgraphs from Labeled Graphs

Timo Schneider

17. Dezember 2008

Übersicht

- Graph Mining Allgemein
- Probleme und Lösungsansätze
- Das General Framework
- Experimentelle Ergebnisse
- Zusammenfassung

Graph Mining Allgemein

- Gegeben: Ein beschrifteter Graph $G = (V, E, L_V, L_E)$
- Gesucht: Frequente Muster
- Bisher: Unterschiedliche Algorithmen für unterschiedliche Muster

Graph Mining Allgemein

- B-AGM kann mit unterschiedlichen Suchkriterien parametrisiert werden
- Hat somit mehrere Einsatzgebiete
- Getestet auf chemischen Datensätzen und Webseiten-Logdateien

Probleme und Lösungsansätze

- Wie neue Kandidaten erzeugen?
 - Zwei Graphen mit gleichem Kern zusammenfügen
 - Nur einen Subgraph mit einem Knoten erweitern
- Wie die Vorkommen überprüfen?
 - Bereits erkannte Teilgraphen merken...
 - ... Obergraphen davon können nur an diesen Stellen liegen

Probleme und Lösungsansätze

- AGM kennen wir schon
- Kandidatenerzeugung per Join-Operation
- Dann abzählen: Recht speicherintensiv

Das Framework soll durch Austauschen einiger Funktionen andere Strukturen erkennen.

- AGM: Teilgraphen
- Verbundene Teilgraphen
- geordnete Teilbäume
- Pfade

Figure 11. B-AGM Framework.

Damit zwei Graphen X_k und Y_k zusammengefügt werden, müssen folgende Bedingungen eingehalten werden:

- 1.) X_k und Y_k besitzen die gleiche Erzeugermatrix X_{k-1}
- 2.) X_k ist die kanonische Form von $G(X_k)$

Bei AGM kam als dritte Bedingung hinzu:

- 3.) $CODE(X_k) >= CODE(Y_k)$
- Damit werden ganz allgemein Teilgraphen erzeugt
- CODE ist hier: $num(lb(v_1))...num(lb(v_k))code(X_k)$

Beispiel einer Join-Operation bei AGM

Figure 6. Example of Join Operation.

Erzeugung verbundener Teilgraphen

- 3.) $G(X_k)$ ist ein verbundener Graph
- 4.) $CODE(X_k) >= CODE(Y_k)$ oder $G(Y_k)$ ist nicht verbunden

Join-Operation für verbundene Teilgraphen

Erzeugung von geordneten Teilbäumen

- 3.) $code(X_k) \le code(Y_k)$ oder $G(Y_k)$ ist nicht verbunden
- 4.) $G(X_k)$ ist verbunden

Join-Operation für geordnete Teilbäume

Pfade erzeugen:

- 3.) $G(X_k)$ ist verbunden
- 4.) CODE(X_k) <= CODE(Y_k) oder G(Y_k) ist nicht verbunden
- 5.) Bei Join verbiete neue Verbindungen

- Im Prinzip das gleiche wie Bäume erzeugen
- Aber: Hier werden die Label der Knoten beachtet
- Und wir lassen keine Verbindungen zu, um Verzweigungen zu unterbinden

- Somit lassen sich mit einem Algorithmus unterschiedliche Strukturen minen
- Die Autoren beweisen im Artikel auch die Vollständigkeit in Hinsicht auf die jeweilige Struktur

Experimentelle Ergebnisse

Experimentelle Ergebnisse

Experimentelle Ergebnisse

Zusammenfassung

- Trotz höherer Abstraktionsebene schlägt sich B-AGM nicht schlecht
- Der Speicherbedarf liegt in $O(n^2)$ (bei anderen Algorithmen meist O(n))
- Wir speichern ja eine Matrix, wo andere nur eine Knotenmenge speichern

Zusammenfassung

- B-AGM kann unterschiedliche Strukturen ableiten:
 - (verbundene) Teilgraphen
 - geordnete Teilbäume
 - Pfade
- Die Autoren schlagen ebenfalls eine Erweiterung vor, um ungeordnete Teilbäume zu finden
- Wurde jedoch im Dokument nicht näher untersucht

- Ingrid Fischer and Thorsten Meinl.
 Graph based molecular data mining an overview.
- Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda.

 An apriori-based algorithm for mining frequent substructures from graph data.
- Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda.

 Complete mining of frequent patterns from graphs: Mining graph data.
- Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. A general framework for mining frequent subgraphs from labeled graphs.

Fragen?

Vielen Dank für Ihre Aufmerksamkeit.