P2 de Álgebra Linear I – 2002.2

Data: 11 de outubro de 2002.

Questão	Valor	Nota	Revis.
1a	0.5		
1b	1.0		
1c	1.0		
1d	0.5		
1e	0.5		
1f	0.5		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
3a	1.0		
3b	1.0		
3c	0.5		
3d	1.5		
Total	10.0		

1) Considere a família de vetores de \mathbb{R}^3

$$\mathcal{E} = \{(1,2,3), (1,1,2), (2,2,4), (1,1,1), (2,2,2)\}.$$

- 1.a) Estude se os vetores da família ${\mathcal E}$ são linearmente independentes.
- **1.b)** Determine todas as bases de \mathbb{R}^3 formadas por vetores diferentes que podem ser obtidas usando os vetores de \mathcal{E} (isto é, bases formadas pelos mesmos vetores em ordem diferente contam como a mesma, ou seja, as bases $\{u, v, w\}$ e $\{v, w, u\}$ contam uma única vez).

Considere agora a família de vetores de \mathbb{R}^3

$$\beta = \{u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (0, 1, 1)\}.$$

- **1.c)** Veja que β é uma base de \mathbb{R}^3 .
- **1.d)** Determine as coordenadas do vetor (3,6,5) na base β .
- **1.e)** Considere agora o vetor w que na base β tem coordenadas $(1,1,1)_{\beta}$ (isto é, $w = 1u_1 + 1u_2 + 1u_3$). Determine as coordenadas de w na base canônica.
- **1.f)** Considere agora os vetores w_1, w_2 e w_3 que na base β têm coordenadas

$$w_1 = (1, 1, 0)_{\beta}, \quad w_2 = (1, 2, 2)_{\beta}, \quad w_3 = (0, -2, -1)_{\beta}.$$

Estude se os vetores w_1 , w_2 e w_3 formam uma base de \mathbb{R}^3 .

2) Considere o vetor u=(1,1,1) e a transformação linear definida como

$$T(v) = v \times u$$
.

- a) Determine a fórmula de T(x, y, z).
- b) Determine a matriz de T.
- c) Sem fazer cálculos, estude se $T^2 = T$.
- **d)** Existe v tal que $T^2(v) = 0$ e $T(v) \neq 0$?
- 3) Dados o plano π : x y + z = 0 e o vetor w = (1, 1, 1), considere a transformação linear M definida como segue. Dado um ponto P = (x, y, z) considere o vetor $\overline{OP} = (x, y, z)$ e defina

$$M(\overline{OP}) = \overline{OQ},$$

onde Q é o ponto de interseção do plano π e da reta r que contém P e é paralela a w. Veja a figura.

Considere também a transformação linear L definida como segue,

$$L(\overline{OP}) = \overline{OT},$$

onde T é o ponto da reta r tal que Q é equidistante de T e de P. Veja a figura.

- a) Determine a matriz da transformação linear M.
- b) Determine a matriz da transformação linear L.
- c) Dado um vetor v escreva v em função de L(v) e M(v).
- d) Estude se as transformações lineares M e L são inversíveis. Quando possível, calcule a matriz inversa.