GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 数据手册 DATASHEET V1.1

# UTouch\_04A

广州优硕 4 键触摸 IC

## GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 一、概述

UTouch04A 是是一款使用电容式感应原理设计的触摸 IC, 其稳定的感应方式可以应用到各种不同电子类产品,面板介质可以是完全绝缘的材料, 专为取代传统的机械结构开关或者普通按键而设计。提供4个触摸输入引脚及4个直接输出引脚。

该 IC 采用 CMOS 工艺制造,结构简单,性能稳定。该 IC 通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。

## 二、特点

- 1、工作电压: 2.0V~5.5V
- 2、工作电流@VDD=3V 无负载时,低功耗模式下典型值 5.5uA
- 3、提供同步输出模式,保持输出模式,开漏输出,CMOS 高电平有效或低电平有效输出,经由 AHLB/OD 引脚选择
- 4、上电后约有 0.5 Sec 的系统稳定时间,在此期间内不要触摸 Touch PAD,且触摸功能 无效
- 5、有自动校准功能, 当无按键被触摸时, 系统重新校准周期约为 4.0 Sec

## 三、应用范围:

- 1、家用电器
- 2、安防产品
- 3、数码产品
- 4、消费类电子产品
- 5、LED 照明
- 6、玩具

## 四、封装示意图

UTouch04A 采用 SOP14 封装, 原理封装示意图如下所示



图 1 封装示意图

GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 五、引脚描述

表 1 引脚功能描述

| 引脚编号 | 引脚名称            | I/0 类型 | 引脚功能              |  |  |  |  |  |
|------|-----------------|--------|-------------------|--|--|--|--|--|
| 1    | МОТО            | I/PL   | 最长输出时间选择,缺省值:0    |  |  |  |  |  |
| 2    | TCH1            | I      | 触摸输入引脚            |  |  |  |  |  |
| 3    | TCH2            | I      | 触摸输入引脚            |  |  |  |  |  |
| 4    | VDD             | Р      | 正电源               |  |  |  |  |  |
| 5    | ТСН3            | I      | 触摸输入引脚            |  |  |  |  |  |
| 6    | 6 TCH4 I 触摸输入引脚 |        |                   |  |  |  |  |  |
| 7    | AHLB            | I/PH   | 输出高/低有效电平选择,缺省值:1 |  |  |  |  |  |
| 8    | TOG             | I/PL   | 保持/同步模式选择,缺省值: 0  |  |  |  |  |  |
| 9    | OUT4            | 0      | 输出引脚              |  |  |  |  |  |
| 10   | OUT3            | 0      | 输出引脚              |  |  |  |  |  |
| 11   | GND             | Р      | 地                 |  |  |  |  |  |
| 12   | OUT2            | 0      | 输出引脚              |  |  |  |  |  |
| 13   | OUT1            | 0      | 输出引脚              |  |  |  |  |  |
| 14   | SM              | I/PL   | 单键/多键输出选择,缺省值:0   |  |  |  |  |  |

注: 引脚类型, I => CMOS 输入, I/PH => 带上拉电阻的 CMOS 输入, I/PL =>带下拉电阻的 CMOS 输入: 0=> CMOS 输出, P => 电源/地。

## 六、功能描述

## 6.1 灵敏度调节

PCB 板上感应焊盘尺寸大小及走线会直接影响灵敏度,因此灵敏度调节需要根据实际应用的 PCB 应进行调节,UTouch04A 提供一些外部调节灵敏度的方法。

#### 6.1.1 改变感应焊盘尺寸大小

若其他条件固定不变,使用一个较大的感应焊盘将会增大其灵敏度,反之灵敏度将下降,但是感应焊盘的尺寸大小也必须是在其有效范围值内。

#### 6.1.2 改变面板厚度

若其他条件固定不变,使用一个较薄的面板也会将灵敏度提高,反之灵敏度则下降,但是面板的厚度必须低于其最大值。

#### 6.1.3 通过调节外接电阻 R1~R4 (参见图 2)

若其他条件固定不变,可以根据各键的实际情况通过调节 Rx 电阻值使其达到最佳的灵敏度,同时以使各键的灵敏度达到一致。 $R1^{\sim}R4$  的阻值越大其灵敏度越高,Rx 可调节范围为:  $1M\Omega \leq R1^{\sim}R4 \leq 5M\Omega$ 。

GuangZhou U-tek Microelectronics Technology Co., Ltd.



图 2 调节外接电阻原理图

### 6.2 输出模式选择(AHLB、TOG引脚选择)

UTouch04A 其输出引脚(0UT1~0UT4)可由 AHLB 引脚来设定其输出高电平或低电平有效。

UTouch04A 可通过外部配置引脚设置为多种模式。外部配置引脚悬空时,配置位自动设置为默认值(Default)。

| 引脚名称 | 选项          | 功能描述    |
|------|-------------|---------|
| AHLB | =1(Default) | 输出低电平有效 |
| AILD | =0          | 输出高电平有效 |
| TOG  | =1          | 保持模式    |
| 100  | =0(Default) | 同步模式    |

表 2 功能描述表

### 6.2.1 输出电平 (AHLB 悬空时)

当有触摸事件发生时对应的输出口输出低电平,无触摸时间发生时,输出高电平。

## 6.2.2 输出模式选择 (AHLB)

UTouch04A 可设置多种输出模式,当 PIN 脚(AHLB)悬空时,默认上拉为高电平,置为低电平有效模式。

表 3 输出模式菜单

| AHLB        | OUT1~OUT3  |
|-------------|------------|
| 0           | 触摸响应后输出高电平 |
| 1 (Default) | 触摸响应后输出低电平 |

GuangZhou U-tek Microelectronics Technology Co., Ltd.

#### 6.2.3 有效键输出选择 (SM)

UTouch04A 可通过 SM 引脚来选择单键和多键输出模式。

表 4 有效键输出模式菜单

| SM          | 功能说明 |
|-------------|------|
| 0 (Default) | 多键模式 |
| 1           | 单键模式 |

多键模式:TCH1~TCH4可同时输出被触摸到的二个或二个以上的键。

单键模式: TCH1<sup>~</sup>TCH4 只能有一个键输出, 当某一个键被检测到并输出时, 另外 3 个键触 摸将无效。

#### 6.2.3 有效键输出时间设定 (MOTO)

因环境等其他因素碰撞而引起的误触发,会使其一直工作,为了防止此现象发生,UTouch04A 提供了有效键最长时间输出设定功能,当触摸时间超过所设定时间时,系统会返回上电初始 化状态,停止输出直到下次触摸事件发生

表 5 有效键输出时间设定

| MOTO        | 功能说明          |
|-------------|---------------|
| 0 (Default) | 无穷大(禁止输出时间设定) |
| 1           | 最长输出时间为(16)s  |

## 七、绝对最大值

表 5 工作条件规格表

|                | **・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | ***                   |                         |  |  |  |  |  |  |  |  |  |
|----------------|---------------------------------------|-----------------------|-------------------------|--|--|--|--|--|--|--|--|--|
| 项目             | 符号                                    | 范围                    | 单位                      |  |  |  |  |  |  |  |  |  |
| 工作电压           | VDD                                   | -0.3 <sup>~</sup> 5.5 | V                       |  |  |  |  |  |  |  |  |  |
| 输入/输出电压        | $V_{\rm i}/V_{\rm o}$                 | -0.5~VDD+0.5          | V                       |  |  |  |  |  |  |  |  |  |
| 工作温度           | TOPR                                  | $-20^{\sim}70$        | $^{\circ}$              |  |  |  |  |  |  |  |  |  |
| 储藏温度           | TSTG                                  | -40 <sup>~</sup> 125  | $^{\circ}\! \mathbb{C}$ |  |  |  |  |  |  |  |  |  |
| 所列电压均以 GND 为参考 |                                       |                       |                         |  |  |  |  |  |  |  |  |  |

## 八、电气参数

表 6 电气参数表

| 参数                                      | 符号                           | 条件                    | 最小值 | 典型值  | 最大值  | 单位 |  |  |  |  |  |
|-----------------------------------------|------------------------------|-----------------------|-----|------|------|----|--|--|--|--|--|
| 工作电压                                    | VDD                          | T0PR=-20~70°C         | 2.0 | 3. 0 | 5. 5 | V  |  |  |  |  |  |
| 工作电流                                    | $\mathrm{I}_{	ext{	iny DD}}$ | 10FN20 70 C           | 5.5 | 10.0 | 15.0 | uA |  |  |  |  |  |
| 输入 PIN 上拉电阻                             | $R_{\text{UP}}$              |                       | 50  | 100  | 200  | kΩ |  |  |  |  |  |
| 高电平输出电流(OUT)                            | $I_{	ext{OL}}$               | V <sub>0L</sub> =0.7V | 2   | 4    | _    | mA |  |  |  |  |  |
| 若无特别说明, VDD 为 3. 0V, 环境温度为 25℃, 芯片输出无负载 |                              |                       |     |      |      |    |  |  |  |  |  |

GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 九、应用电路图

#### 9.1 参考电路



图 3 参考电路图

以下说明可供应用时参考:

- 1、 $R1^R4$  指调节灵敏度的电阻,电阻值大小  $1\sim 5M\Omega$ ,其值越大,则灵敏度越高。灵敏度的选择需要根据 PCB 的实际应用进行调节。
- 2、VDD 与 GND 间需并联滤波电容 C1 以消除噪声,建议值 104 或更大。供电电源必须稳定,如果电源 电压漂移或者快速变化,可能引起灵敏度漂移或者检测错误。
- 3、TOUCH PAD 的形状与面积、以及与 TCH 引脚间导线长度,均会对触摸感应灵敏度产生影响。
- 4、从 TOUCH PAD 到 IC 触摸输入引脚不要与其他快速跳变的信号线并行或者与其他线交叉。TOUCH PAD 需用 GROUND 保护,请参考图 4。



图 4 TOUCH PAD 参考画法

- 5、触摸电极和触摸输入脚之间串联电阻,可提高触摸的抗干扰能力。如果使用环境干扰不 大,电阻可以不接。
- 6、以上功能选项脚若选择默认值,建议接到固定电平,如需选择输出同步模式,TOG 脚建议接到 GND。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 十、穿透力应用说明

## 10.1 穿透力与铺地、感应电极大小对应关系

| 感应电极面积    | PCB 顶层不铺地 | PCB 顶层铺实铜 |  |  |  |
|-----------|-----------|-----------|--|--|--|
| 恐 电 牧 闽 依 | 顶层不铺地     | 底层 35%铺地  |  |  |  |
| 6×6mm     | 8mm       | 1.7mm     |  |  |  |
| 7×7mm     | 10mm      | 2.8mm     |  |  |  |
| 8×8mm     | 14mm      | 2.8mm     |  |  |  |
| 10×10mm   | 16mm      | 4.9mm     |  |  |  |
| 12×12mm   | 18mm      | 6mm       |  |  |  |
| 15×15mm   | 22mm      | 8mm       |  |  |  |

#### 说明:

- 1、此表仅供参考,具体焊盘大小应根据实际模具外壳厚度来调整。
- 2、触摸焊盘面积越大,可穿透介质材料越厚。
- 3、PCB 铺地比例越小,PCB 点触焊盘与地之间的寄生电容越小,人体触摸后新生的手指电容相对 PCB 寄生电容变化越大,触摸灵敏度越高,可穿透介质越厚。
- 4、PCB 铺地比例越小,越易受到外界干扰。
- 5、 建议实际应用时兼顾灵敏度和抗干扰设计 PCB 的铺地形式。如对穿透介质厚度要求不高,建议增加铺地比例以提高抗干扰性能。

## 10.2 穿透力与触摸引脚并联电阻对应关系

| 电阻 (MΩ) | 亚克力材料穿透力 (mm) |  |  |  |  |  |
|---------|---------------|--|--|--|--|--|
| 4       | 4. 9          |  |  |  |  |  |
| 3       | 3             |  |  |  |  |  |
| 2       | 2             |  |  |  |  |  |
| 2       | 1             |  |  |  |  |  |
| 1       | 1             |  |  |  |  |  |

触摸引脚并联电阻到地,测试条件:感应电极(直径10mm),PCB 顶层铺实铜,PCB 底层35%铺地

说明:此表仅供参考,并联电阻越大,可穿透介质材料越厚。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

## 十一、封装信息

封装名称: SOP14 (150mil) 单位: mm





#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp             | с                | D <sup>(1)</sup> | E <sup>(1)</sup> | e    | HE             | L     | Lp             | v    | w    | у     | Z (1)          | θ  |
|--------|-----------|----------------|----------------|----------------|----------------|------------------|------------------|------------------|------|----------------|-------|----------------|------|------|-------|----------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.55<br>1.40   | 0.25           | 0.49<br>0.36   | 0.25<br>0.19     | 8.75<br>8.55     | 4.0<br>3.8       | 1.27 | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.25 | 0.25 | 0.1   | 0.7<br>0.3     | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.061<br>0.055 | 0.01           | 0.019<br>0.014 | 0.0100<br>0.0075 | 0.35<br>0.34     | 0.16<br>0.15     | 0.05 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 | 0.01 | 0.01 | 0.004 | 0.028<br>0.012 | 00 |

#### 注意:

- 1、以上规格如有更新,恕不另行通知。请在使用前更新该芯片规格书至最新版本。
- 2、对于错误或不恰当操作所导致的后果,我们将不承担责任。