Билеты по курсу «Теория функций комплексного переменного»

Драчов Ярослав Факультет общей и прикладной физики МФТИ

7 января 2021 г.

Содержание

1	Комплексная дифференцируемость. Условия Коши-Римана.	3
2	Связность. Теорема о голоморфной в области функции с обращающейся в нуль производной.	3
3	Степенный ряды и элементарный функции.	3
4	Перообразная и полный дифференциал в области. Условия независимости интеграла от формы пути.	4
5	Лемма Гурса и теорема Коши для выпуклой области.	4
6	Интеграл Коши и его свойства.	4
7	Интегральная формула Коши для круга. Бесконечная дифференцируемость голоморфных функций. Теорема Морера.	4
8	Целые функции и теорема Лиувилля.	4
9	Ряд Тейлора и теорема единственности для голоморфных функций.	4
10	Приращение аргумента вдоль кривой. Индекс и его свойства.	4
11	Общая форма теоремы Коши и интегральной формулы Коши. Следствия для односвязной и многосвязной областей.	4
12	Разложение голоморфной функции в ряд Лорана. Теорема единственности ряда Лорана.	5
13	Изолированные особые точки. Связь классификации с видом ряда Лорана. Теорема Сохоцкого.	5
14	Вычеты и формулы для их вычисления. Теорема Коши о вычетах.	5

15	Вычисление несобственных интегралов с помощью вычетов. Лемма Жордана.	5	
16	Регулярные ветви логарифма и корней.	5	
17	Принцип аргумента. Теорема Руше. Основная теорема алгебры.	5	
18	Теорема о локальной структуре отображения. Принцип сохранения области. Однолистность и локальная однолистность	. !	5
19	Принцип максимума модуля и лемма Шварца.	5	
20	Локально равномерная схоодимость и теорема Вейерштрас- са. Теорема Гурвица и её следствие для однолистных функ- ций.	6	
2 1	Локально равномерная ограниченность и принцип компактности.	6	
22	Конформность и групповое свойство дробно-линейных преобразований. Ангармоническое отношение четырёх точек.	6	
23	Круговое свойство и принцип симметрии для дробно-линейны преобразований.	x 6	
24	Элементарные конформные отображения с использованием степенной и экспоненциальной функций. Функция Жуковского. Общий вид конформных отображений единичного круга на себя.	6	
25	Теорема Римана об отображении.	6	
26	Аналитическое продолжение. Теорема о монодромии.	6	
27	Теорема о стирании разреза. Принцип симметрии Римана- Шварца.	7	
28	Мероморфные функции. Теорема Миттаг-Леффлера.	7	
2 9	Гармонические функции и их связь с голоморфными функциями. Бесконечная дифференцируемость.	7	
30	Принцип экстремума и теорема единственности для гармонических функций. Конформная инвариантность.	7	
31	Теорема о среднем и интегральная формула Пуассона.	7	
32	Интеграл Пуассона и решение задачи Дирихле в круге.	7	
33	Бесконечные произведения голоморфных функций и их нули.	7	

- 34 Гамма-функция и её представления Гаусса и Эйлера.
- 35 Метод стационарной фазы и асимптотика функции Эйри в отрицательном направлении вещественной оси.

7

36 Метод перевала и асимптотика функции Эйри в положительном направлении вещественной оси.

1 Комплексная дифференцируемость. Условия Коши-Римана.

Под функцией комплексного переменного w=f(z) будем понимать отображение множества $D\subset \overline{\mathbb{C}}$ в комплексной z-плоскости в множество $f(D)=G\subset \overline{\mathbb{C}}$ комлексной w-плоскости. Если представить z=x+iy, w=u+iv, то задание функции f эквивалентно определению двух вещественных функций u(x,y) и v(x,y) вещественных переменных x и y, т. е. w=f(z)=(x,y)+iv(x,y).

Определение. Будем говорить, что функция f(z) имеет предел A при $z \to a$ и писать

$$\lim_{z \to a} f(z) = A,$$

если для каждого $\varepsilon>0$ найдётся такое $\delta>0$, что $|f(z)-A|<\varepsilon$ при всех $z\in \dot{\mathcal{O}}_{\delta}(a)$, т. е. при $0<|z-a|<\delta$.

Заметим, что условие

$$\lim_{z \to a} f(z) = A$$

эквивалентно

$$\lim_{z \to a} \overline{f(z)} = \overline{A}.$$

Откуда

$$u(z) \to \operatorname{Re} A, \quad v(z) \to \operatorname{Im} A.$$

Обратное утверждение также верно (модуль комплексного числа не превышает суммы модулей вещественной и мнимой части).

Определение. Будем говорить, что функция f(z) непрерывна в т. a, если

$$\lim_{z \to a} f(z) = f(a).$$

2 Связность. Теорема о голоморфной в области функции с обращающейся в нуль производной.

 hi

3 Степенный ряды и элементарный функции.

hi

4 Перообразная и полный дифференциал в области. Условия независимости интеграла от формы пути.

hi

5 Лемма Гурса и теорема Коши для выпуклой области.

hi

6 Интеграл Коши и его свойства.

hi

7 Интегральная формула Коши для круга. Бесконечная дифференцируемость голоморфных функций. Теорема Морера.

hi

8 Целые функции и теорема Лиувилля.

hi

9 Ряд Тейлора и теорема единственности для голоморфных функций.

 $_{
m hi}$

10 Приращение аргумента вдоль кривой. Индекс и его свойства.

hi

11 Общая форма теоремы Коши и интегральной формулы Коши. Следствия для односвязной и многосвязной областей.

hi

12 Разложение голоморфной функции в ряд Лорана. Теорема единственности ряда Лорана.

hi

13 Изолированные особые точки. Связь классификации с видом ряда Лорана. Теорема Сохоцкого.

hi

14 Вычеты и формулы для их вычисления. Teoрема Коши о вычетах.

hi

15 Вычисление несобственных интегралов с помощью вычетов. Лемма Жордана.

hi

16 Регулярные ветви логарифма и корней.

hi

17 Принцип аргумента. Теорема Руше. Основная теорема алгебры.

 hi

18 Теорема о локальной структуре отображения. Принцип сохранения области. Однолистность и локальная однолистность.

hi

19 Принцип максимума модуля и лемма Шварца.

 $_{
m hi}$

20 Локально равномерная схоодимость и теорема Вейерштрасса. Теорема Гурвица и её следствие для однолистных функций.

hi

21 Локально равномерная ограниченность и принцип компактности.

hi

22 Конформность и групповое свойство дробнолинейных преобразований. Ангармоническое отношение четырёх точек.

hi

23 Круговое свойство и принцип симметрии для дробно-линейных преобразований.

hi

24 Элементарные конформные отображения с использованием степенной и экспоненциальной функций. Функция Жуковского. Общий вид конформных отображений единичного круга на себя.

hi

25 Теорема Римана об отображении.

hi

26 Аналитическое продолжение. Теорема о монодромии.

 $_{
m hi}$

27 Теорема о стирании разреза. Принцип симметрии Римана-Шварца.

hi

28 Мероморфные функции. Теорема Миттаг-Леффлера.

hi

29 Гармонические функции и их связь с голоморфными функциями. Бесконечная дифференцируемость.

hi

30 Принцип экстремума и теорема единственности для гармонических функций. Конформная инвариантность.

hi

31 Теорема о среднем и интегральная формула Пуассона.

hi

32 Интеграл Пуассона и решение задачи Дирихле в круге.

hi

33 Бесконечные произведения голоморфных функций и их нули.

hi

34 Гамма-функция и её представления Гаусса и Эйлера.

hi

35 Метод стационарной фазы и асимптотика функции Эйри в отрицательном направлении вещественной оси.

hi

36 Метод перевала и асимптотика функции Эйри в положительном направлении вещественной оси.