Electronics Semester 5

Ahmad Abu Zainab

Contents

Chapter 1	Amplifiers	Page 2
1.1	Gain of Amplifiers	2
1.2	Equivalent Circuit of an Amplifier	2
1.3	Cascade Amplifiers	3
Chapter 2	Diodes	Page 4
2.1	The Ideal Diode	4
	Simple Application: The Half-Wave Rectifier — 4	
2.2	Terminal Characteristics of Junction Diodes	5
2.3	The Forward Bias Region	5
Chapter 3	MOSFETs	Page 6
3.1	MOSFET Modes of Operation	6
	Cut-off — 6 • Triode — 6 • Saturation — 6	

Chapter 1

Amplifiers

1.1 Gain of Amplifiers

$$\begin{aligned} \text{Voltage Gain} &= \frac{v_{out}}{v_{in}} \\ \text{Current Gain} &= \frac{i_{out}}{i_{in}} \\ \text{Power Gain} &= \frac{P_{out}}{P_{in}} \end{aligned}$$

In decibels, the gain is given by

$$\begin{aligned} & \text{Voltage Gain} = 20 \log \left(\frac{v_{out}}{v_{in}} \right) \\ & \text{Current Gain} = 20 \log \left(\frac{i_{out}}{i_{in}} \right) \\ & \text{Power Gain} = 10 \log \left(\frac{P_{out}}{P_{in}} \right) \end{aligned}$$

1.2 Equivalent Circuit of an Amplifier

1.3 Cascade Amplifiers

In the above circuit, the output voltage is given by

$$\begin{split} v_L &= 10 \cdot \frac{1 \, \mathrm{M}\Omega}{1 \, \mathrm{M}\Omega + 100 \, \mathrm{k}\Omega} \cdot 100 \cdot \frac{100 \, \mathrm{k}\Omega}{100 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega} \cdot 1 \cdot \frac{10 \, \mathrm{k}\Omega}{10 \, \mathrm{k}\Omega + 1 \, \mathrm{k}\Omega} \cdot \frac{100 \, \Omega}{100 \, \Omega + 10 \, \Omega} \cdot v_i. \\ A_v &= \frac{v_L}{v_i} = 743.876 \, \mathrm{V/V}. \end{split}$$

Chapter 2

Diodes

2.1 The Ideal Diode

The ideal diode is a two terminal device that allows current to flow in one direction only.

2.1.1 Simple Application: The Half-Wave Rectifier

2.2 Terminal Characteristics of Junction Diodes

The characteristic curve of a diode consists of three regions:

- 1. The forward bias region, where the diode conducts current. $v_D > 0$.
- 2. The reverse bias region, where the diode blocks current. $v_D < 0$.
- 3. The breakdown region, where the diode conducts current in the reverse direction. $v_D < -V_{ZK}$.

2.3 The Forward Bias Region

In the forward bias region, the diode conducts current. The current is given by

$$i = I_S \left(e^{\frac{v}{V_T}} - 1 \right).$$

Where I_S is the reverse saturation current, and $V_T \approx 25\,\mathrm{mV}$ is the thermal voltage.

Chapter 3

MOSFETs

A MOSFET is a Metal Oxide Semiconductor Field Effect Transistor. It is a voltage controlled device. It has three terminals: the gate, the source, and the drain.

3.1 MOSFET Modes of Operation

3.1.1 Cut-off

In this mode, the MOSFET is off $(i_D = 0)$. The MOSFET is in cut-off when $v_{GS} \leq V_{th}$. Where V_{th} is the threshold voltage of the MOSFET.

3.1.2 Triode

In this mode, the MOSFET is on $(i_D \neq 0)$. The MOSFET conducts current from the drain to the source. The MOSFET is in triode when $v_{GS} > V_{th}$ and $v_{DS} < v_{GS} - V_{th}$.

$$i_D = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_{th}) v_{DS} - \frac{v_{DS}^2}{2} \right].$$

3.1.3 Saturation

In this mode, the MOSFET is on $(i_D \neq 0)$. The MOSFET conducts current from the drain to the source. The MOSFET is in saturation when $v_{GS} > V_{th}$ and $v_{DS} > v_{GS} - V_{th}$.

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{th})^2. \label{eq:ideal}$$

The large signal model of a MOSFET in saturation is as follows:

Accounting for the early effect.

$$r_o = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}.$$