Cálculo Numérico: Lista de Exercícios 1 Polinômio de Taylor

Nos exercícios abaixo, considere $x_0 = a$ o ponto para expansão do polinômio de Taylor.

- 1. Encontre o polinômio de Taylor linear e quadrático em torno do ponto a para as seguintes funções:
 - (a) $f(x) = \sqrt{x}, a = 1$
- (c) $f(x) = e^{\cos(x)}, a = 0$
- (b) $f(x) = sen(x), a = \pi/4$ (d) $f(x) = log(1 + e^x), a = 0$
- 2. Produza uma fórmula geral para o polinômio de Taylor expandido em torno de a=0 de grau npara as seguintes funções:

 - (a) 1/(1-x) (c) $(1+x)^{1/3}$ (e) cos(x)
 - (b) $\sqrt{1+x}$
- (d) sen(x)
- 3. Encontre o polinômio de Taylor de grau 1, 3, e 5 da função f(x) = sen(x) expandido em torno de a=0. Desenhe o gráfico da função f(x) e dos polinômios de Taylor e compare os resultados.
- (a) Encontre o polinômio de Taylor de grau 1, 2, 3, e 4 para a função $f(x) = e^{-x}$, expandido em torno de a = 0.
 - (b) Usando o polinômio de Taylor para e^t , substitua t = -x para obter uma aproximação para e^{-x} . Compare o resultado com (a).
- 5. (a) Encontre o polinômio de Taylor de grau 1, 2, 3, e 4 para a função $f(x) = e^{x^2}$, expandido em torno de a = 0.
 - (b) Usando o polinômio de Taylor para e^t , substitua $t=x^2$ para obter uma aproximação para e^{x^2} . Compare o resultado com (a).
- 6. Aplique a fórmula de Taylor para expressar o polinômio $p(x) = x^4 x^3 + 2x^2 3x + 1$ como um polinômio em potências de (x-1).
- 7. Use o polinômio de Taylor para mostrar que

$$(1+t)^n = \sum_{j=0}^n \binom{n}{j} t^j,$$

para n inteiro e onde $\binom{n}{j} = \frac{n!}{(n-j)!j!}$ é o coeficiente binomial.

- 8. Encontre um limitante superior para o erro ao aproximar $f(x) = e^x$, para $x \in [-1, 1]$, pelo polinômio de Taylor de grau 3 expandido em torno de a=0.
- 9. Encontre o polinômio de Taylor de grau 2 para a função $f(x) = e^x sen(x)$ em torno do ponto a = 0. Determine um limitante superior do erro para essa aproximação quando $x \in [-\pi/4, \pi/4]$.
- 10. Determine um valor de n suficiente para que $|e^x p_n(x)| \le 10^{-5}$, para $-1 \le x \le 1$, onde $p_n(x)$ é o polinômio de Taylor expandido em torno de a = 0.
- 11. (opcional) Para $f(x) = e^x$, encontre a aproximação por polinômio de Taylor que garante um erro menor do que 10^{-7} para todo $x \in [-1,1]$. Usando esta aproximação, escreva um programa que calcule e^x . Compare o resultado de sua função com o resultado da função exp() da linguagem de programação que você utiliza.
- 12. (opcional) Responda as questões abaixo:
 - (a) Obtenha uma expansão usando polinômios de Taylor para $f(t) = 1/(1+t^2)$, em torno do ponto a=0. (Dica: Use a expansão em polinômio de Taylor para 1/(1-x) desenvolvida no exercício acima aplicada no ponto $x=-t^2$.)

(b) Obtenha uma aproximação para $g(x) = tan^{-1}(x)$. Faça isso integrando o resultado do item (a), já que:

$$tan^{-1}(x) = \int_0^x f(t)dt = \int_0^x \frac{1}{1+t^2}dt$$

(c) Sabendo que $\tan^{-1}(1) = \pi/4$, use a aproximação acima para estabelecer que

$$\pi \approx 4 \sum_{k=1}^{n} \frac{(-1)^{k+1}}{2k-1},$$

para n "grande".

(d) Determine quantos termos da fórmula do item (c) seria suficiente para obter uma aproximação de π com erro inferior a 10^{-10} . Esta é uma boa forma de determinar o número π ?

Referências

- [1] Franco, N. B., Cálculo Numérico, Prentice Hall, 2006.
- [2] Atkinson, K., Elementary Numerical Analysis, Second Edition, John Wiley & Sons, 1993.
- [3] Ruggiero, M., e Lopes, V., Cálculo Numérico: Aspectos Teóricos e Computacionais, Segunda Edição, Makron, Books, 1998.