1 Matching

1.1 Matching-Lemma

G Graph, $w: E \to \mathbb{R}$, $v \in V$, M' maximales Matching für G' = G - v; dann kann mit einer Berechnung eines erhöhenden Weges Matching M maximalen Gewichts von G berechnet werden.

1.2 Matching-Algorithmus für planaren Graphen G

- 1. Zerlege G in G_1, G_2 dank Separator S entsprechend Planar-Separator-Theorem und berechne rekursiv in G_1 und G_2 Matching M_1, M_2 maximalen Gewichts; definiere $M := M_1 \cup M_2$, $G' = G_1 \cup G_2$
- 2. Solange $S \neq \emptyset$:
 - wähle $v \in S, S := S v$, und berechne mit Lemma aus M' Matching maximalen Gewichts in G' + v

Laufzeit t Laufzeit von Matching, t' von Lemma, $c_1, c_2 \leq \frac{2}{3}, c_3 \in \mathbb{N}, c_1 + c_2 \leq 1$

$$t(n) = t(c_1 \cdot n) + t(c_2 \cdot n) + c_3 \sqrt{n} t'(n)$$

Mit Mastertheorem kann t(n) abgeschätzt werden durch

$$t(n) \in \mathcal{O}\left(n^{\frac{3}{2}}\right)$$
, falls $t'(n) \in \mathcal{O}\left(n\right)$, falls ungewichtet

$$t(n) \in \mathcal{O}\left(n^{\frac{3}{2}}\log n\right)$$
, falls $t'(n) \in \mathcal{O}\left(n\log n\right)$, falls gewichtet

2 Mixed-Max-Cut in planaren Graphen

2.1 Definition: Schnitt

G=(V,E) Graph, $S\subset E$ heißt **Schnitt** von G, falls der durch E-S induzierter Subgraph unzusammenhängend ist und für alle $(u,v)\in S,$ u und v in verschiedenen Zusammenhangkomponenten liegen.

2.2 Definition: Mixed-Max Cut

Kantengewichte $w: E \to \mathbb{R}$

Mixed-Max Cut: Finde Schnitt S mit $w(S) = \sum_{s \in S} w(S)$ maximal.

ist in bel. Graphen NP-Schwer.

Beobachtung: MIXED-MAX CUT und MIXED-MIN CUT sind äquivalent. (Vorzeichen der Gewichte umdrehen.)

Spezialfall: MIN CUT Problem mit $w: E \to \mathbb{R}_{\geq 0}$ ist auch für beliebige Graphen in P.

2.3 Definition:

Matching M in G mit |V| gerade heißt perfekt, falls 2|M| = |V|

2.4 Polynomialer Algorithmus für Mixed-Max Cut in planaren Graphen

Verwende

- Dualität von Schnitten und Kreisen
- maximales Matching bzw. Planar Separator Theorem

Laufzeit in $\mathcal{O}\left(n^{3/2}\log n\right)$

Es gilt: G enthält Euler-Kreis g.d.w. E kandendisjunkte Vereinigung einfacher Kreise g.d.w. $\forall v \in V$ ist $d(v) \in 2\mathbb{Z}$

Dualität von Schnitt in G und Menge von einfachen Kreisen in Dualgraph G^* (bzgl. bel. pl. Einbettung) Menge von einfachen Kreisen = Kantenmenge, in der für alle Knoten der Knotengrad gerade ist =: gerade Menge

(maximaler Schnitt in G induziert maximalen Kreis in G^* und umgekehrt)

- 1. Trianguliere G in $\mathcal{O}(n)$; zusätzliche Kanten erhalten Gewicht 0
- 2. berechne in $\mathcal{O}(n)$ Dualgraph G^* bzgl. bel. pl. Einbettung; G^* ist dann 3-regulär, d.h. $\forall v \in V^*: d(v) = 3$
- 3. Konstruiere zu G^* Graph G', so dass perfektes Matching min. Gewichts in G' eine gerade Menge (bzw. Menge von Kreisen) max. Gewichts in G^* induziert
- 4. berechne in $\mathcal{O}(n^{3/2}\log n)$ solch ein Matching bzw. gerade Menge
- 5. falls diese gerade Menge nichtleer, berechne daraus den entsprechenden Schnitt, ansonsten Sonderfall

2.4.1 Schritt 3

beachte, dass G^* 3-regulär; ersetze jeden Punkt in G^* durch ein Dreieck, erhalte G'; Matching ergibt zwei Fälle: (1)

Sei m die Anzahl der Kanten in G^* und n die Anzahl der Knoten

$$\Rightarrow 3n = 2m \Rightarrow n$$
 gerade

ergo hat G' eine gerade Anzahl an Knoten. Wir sehen, dass mindestens ein perfektes Matching für G' existiert.

2.4.2 Schritt 4

Konstruiere perfektes Matching minimalen Gewichts in G'

Beobachtung M perfektes Matching minimalen Gewichts in G = (V, E) mit $w : E \to \mathbb{R}$, g.d.w. M perfektes Matching max. Gewichts in G bzgl. y(e) = W - w(e), für W geeignet erzwinge, dass Matching max. Gewichts perfekt ist:

- zu M perfekt, betrachte $y(M) = \sum_{e \in M} y(e) = nW/2 \sum_{e \in M} w(e) \ge n/2(W w_{max})$
- Zu N nicht perfekt, gilt $v(N) \leq (n/2 1)(W w_{min})$
- \bullet Wähle W so, dass

$$v(N) \le (n/2 - 1)(W - w_{min}) < n/2(W - w_{max}) \le y(M)$$

in $\mathcal{O}\left(n^{\frac{3}{2}}\log n\right)$

2.4.3 Schritt 5

Komplementmenge von perfektem Matching min. Gewichts in G' induziert gerade Menge max. Gewichts in G^* und damit max. Schnitt in G.

Es kann sein, dass resultierende Menge leer ist. Passiert, wenn max. Schnitt negatives Gewicht hat.

→ Sonderfall: Wollen nichttrivialen Schnitt erzwingen;

betrachte wieder Schritt 3, erzwinge, dass in perfektem Matching minimalen Gewichts für mindestens einen Knoten $v \in G^*$, Fall 2 eintritt.

Vorgehensweise betrachte alle Knoten $v \in G^*$ und $G^* - v$ sowie durch perfektes Matching in G' induziertes Matching in $G^* - v$ und berechne mit Matching-Lemma ein Matching in G^* . Wähle M mit $w(M) = \min_{v \in V^*} w(M_v)$

Frage Wie kann man dabei Fall 2 bei v erzwingen? (2)

Folien: Maximale s-t-Flüsse in Planaren Graphen

2.5 Lemma

Für jeden Kozykel C gilt: $\pi(C) \in \{-1, 0, 1\}$. Ferner: $\pi(C) = 1 \iff C$ ist (s, t)-Schnitt

Beweis

Fall 1: s, t liegen auf derselben Seite von C^*

$$\iff$$
 P kreuzt C^* gleich oft in jeder Richtung \iff C enthält dieselbe Zahl von Kanten in P und \overline{P} \iff $\pi(C)=0$

Fall 2: s liegt innen und t außen von C^*

$$\iff$$
 P kreuzt C^* einmal mehr in die Richtung von $s \to t$ \iff C enthält eine Kante mehr in P als in \overline{P} \iff $\pi(C)=1$

Fall 2: s liegt innen und t außen von C^* analog wie Fall 2

2.6 Lemma

G besitzt einen gültigen s-t-Fluss mit Wert λ genau dann, wenn G_{λ}^* keinen negativen Kreis enthält.

$$\begin{array}{ll} \textbf{Beweis} & \text{Zeige '} \Longrightarrow \text{': Annahme: } G_{\lambda}^* \text{ enthält negativen Kreis } C^*, \text{ d.h. } 0 > c(\lambda, C^*) = \sum_{e \in C} c(\lambda, e) = \\ \sum_{e \in C} c(e) - \lambda \sum_{e \in C} \pi(e) = c(C) - \lambda \pi(C) \Longrightarrow \pi(C) > c(C) / \lambda \leq 0 \Longrightarrow \pi(C) = 1 \\ & \Longrightarrow C \text{ ist } s - t - \text{Schnitt} \\ \end{array}$$

Außerdem $c(C) < \lambda$, d.h. es existiert ein Schnitt mit Kapazität $< \lambda$, das ist ein Widerspruch Zeige ' \Longrightarrow ': G_{λ}^* enthält keinen negativen Kreis.

 \implies kürzeste Wege wohldefiniert; sei x in G_{λ}^* beliebiger Ursprung, $dist(p,\lambda) :=$ Distanz von x zu p

Definition

$$\phi(\lambda, e) := dist(\lambda, head(e^*)) - dist(\lambda, tail(e^*)) + \lambda \pi(e)$$

Zeige ϕ ist gütliger st-Fluss

- 1. Für $v \in V$ gilt: $\sum_{w} \phi(v \to w) = \sum_{w} \lambda \pi(v \to w)$ es folgt: $\phi(\lambda, \cdot)$ ist Fluss mit Wert λ
- 2. $slack(\lambda, e^*) := dist(\lambda, tail(e^*)) + c(\lambda, e) dist(\lambda, head(e^*))$ es gilt: $slack(\lambda, e) = c(e) \phi(\lambda, e)$ $\phi(\lambda, e) \le c(e) \iff slack(\lambda, e) \ge 0$ Wäre $slack(\lambda, e) < 0$, dann folgt: $dist(\lambda, head(e^*)) > dist(\lambda, tail(e^*)) + c(\lambda, e^*)$, das wäre ein Widerspruch

2.7 Satz

Ein maximaler st-Fluss in einem st-planaren Graph kann in $\mathcal{O}(n \log n)$ Zeit berechnet werden. Max λ , s.d. kein neg. Kreis in G_{λ}^* ist Länge des kürzesten ts-Weges in G_{λ}^*

3 Das Menger-Problem

3.1 Zur Erinnerung

 $S \subset V$ heißt Separator in G, falls G-Sunzusammenhängend.

 $S \subset E$ heißt Schnitt in G, falls G - S unzusammenhängend.

3.2 Definitionen

Zu $u, v \in V$ definiere den Knotenzusammenhang

$$\kappa_G(u,v) := \left\{ \begin{aligned} |V|-1, \text{ falls } \{u,v\} \in E \\ \min_{S \subset V} |S|, \text{ für } S \text{ Separator, der u und v trennt} \end{aligned} \right.$$

und $\kappa_G := \min_{u,v \in V} \kappa_G(u,v)$

$$\lambda_G(u,v) := \min_{S \subset E, \text{ S Schnitt und trennt u und v}} |S|$$

und

$$\lambda(G) := \min_{u,v \in V} \lambda_G(u,v)$$

Zwei Wege heißen kantendisjunkt, wenn sie keine gemeinsame Kante enthalten, und (intern) knotendisjunkt, wenn sie außer Anfangs- und Endknoten keinen gemeinsamen Knoten enthalten.

3.3 Satz von Menger

Seien s und t Knoten in G = (V, E) ($\{s, t\} \notin E$ bei knotendisjunkter Version)

- $\kappa_G(s,t) \geq k \Longleftrightarrow \exists_{\geq k}$ paarweise knotendisjunkte st-Wege
- $\lambda_G(s,t) \geq k \Longleftrightarrow \exists_{\geq k}$ paarweise kantendisjunkte st-Wege

3.4 Menger-Problem

Finde zu G, s, t maximale Anzahl knotendisjunkter bzw. kantendisjunkter st-Wege.

3.5 Menger-Problem in planaren Graphen: kantendisjunkte Variante

Linearzeitalgorithmus basierend auf RIGHT-FIRST-DFS.

Spezialfall s und t liegen auf derselben Facette:

RIGHT-FIRST = im Gegenuhrzeigersinn nächste freie Kante in Adjazenzliste (relativ zur aktuellen eingehenden Kante).

Algorithmus G planar eingebetteter Graph, OE t auf äußerer Facette

- 1. Ersetze G durch den gerichteten Graphen \overrightarrow{G} , indem $\{u,v\} \in E$ durch (u,v) und (v,u) ersetzt wird. (in $\mathcal{O}(n)$)
- 2. Berechne in $\mathcal{O}(n)$ Menge gerichteter einfacher kantendisjunkter Kreise $\overrightarrow{C_1}, \dots, \overrightarrow{C_l}$ und konstruiere aus \overrightarrow{G} den Graphen \overrightarrow{G}_C , indem die Richtung aller Kanten auf den $\overrightarrow{C_i}$ umgedreht wird.
- 3. Berechne in \overrightarrow{G}_C in $\mathcal{O}(n)$ mittels RIGHT-FIRST-DFS eine maximale Anzahl kantendisjunkter gerichteter st-Wege.
- 4. Berechne aus den in Schritt 3 gefundenen st-Wegen in \overrightarrow{G}_C gleiche Anzahl kantendisjunkter st-Wege in G in $\mathcal{O}(n)$.

Schritt 1

3.6 Lemma

Seien P_1, \ldots, P_r kantendisjunkte, gerichtete st-Wege in \overrightarrow{G} . Dann enthält

$$P = \{\{u,v\} \in E \mid \text{Genau eine der Kanten (u,v) und (v,u) liegt auf einem der } P_i\}$$

gerade r kantendisjunkte st-Wege in G.

Beweis Zwei Fälle: Wir konstruieren in beiden Fällen aus gegebenen st-Wegen unproblematische st-Wege

- 1. $(u,v) \in P_i \land (v,u) \in P_i$: Entferne (u,v,\ldots,v,u) bzw. (v,u,\ldots,u,v) aus P_i
- 2. $(u,v) \in P_i \land (v,u) \in P_j$: $P_i = (A,u,v,B), P_j = (C,v,u,D)$; konstruiere $\widetilde{P}_i = (A,D)$ und $\widetilde{P}_j = (C,B)$

Schritt 2 C_1, \ldots, C_l in \overrightarrow{G} , sodass

- 1. \overrightarrow{G}_C enthält keine Rechtskreise, d.h. keine Kreise, deren Inneres rechts liegt (aus Sicht einer Kante).
- 2. Sei $\overrightarrow{P}_C \subset \overrightarrow{E}_C$ Menge der Kanten auf kantendisj. s-t Wegen in \overrightarrow{G}_C und $\overrightarrow{P} \subset \overrightarrow{E}$, wobei $\overrightarrow{P} := (\overrightarrow{P}_C \cap \overrightarrow{E}) \cup \{(u,v) \in \overrightarrow{E} : (u,v) \text{ auf einem der } \overrightarrow{C}_i \text{ und } (v,u)' \notin \overrightarrow{P}_C\}$

Dann induziert \overrightarrow{P} k kantendisjunkte gerichtete st-Wege in \overrightarrow{G} g.d.w \overrightarrow{P}_C induziert k kantendisjunkte gerichtete st-Wege in \overrightarrow{G}_C .

Konstruktion der Kreise C_1, \ldots, C_l Sei f Facette in G bzw. \overrightarrow{G} ; definiere Abstand von f zur äußerer Facette f_0 als

dist(f) := Länge eines kürzesten Weges des Dualknotens f^* zum Dualknoten der äußeren Facette f_0^* in G^*

Definiere C_i als Vereinigung der einfachen Kreise in G für die alle Facetten f im Inneren die Bedingung $dist(f) \geq i$ erfüllen. \overrightarrow{C}_i sei entsprechender Rechtskreis in \overrightarrow{G} . Drehe alle diese C_i um, erhalte \overrightarrow{G}_C .

 \overrightarrow{G}_C enthält keine Rechtskreise, da für jeden Rechtskreis in \overrightarrow{G} beim Übergang zu \overrightarrow{G}_C mindestens eine Kante des Kreises umgedreht wird.

Sei $\overrightarrow{P}_C \subset \overrightarrow{E}_C$ Kantenmenge zu k st-Wegen in \overrightarrow{G}_C . Konstruiere dazu Kantenmenge \overrightarrow{P} in \overrightarrow{G} .

$$\overrightarrow{P} := (\overrightarrow{P}_C \cap \overrightarrow{E}) \cup \{(u,v) \in \overrightarrow{E} : (u,v) \text{ auf einem } \overrightarrow{C}_j \text{ und } (v,u)' \notin \overrightarrow{P}_C\}$$

Schritt 3 Berechnung einer maximalen Anzahl kantendisjunkter st-Wege in \overrightarrow{G}_{C} (in $\mathcal{O}(n)$) Schleife über ausgehende Kanten aus s

RIGHTFIRSTDEPTHSEARCH:

Suchschritt: rechteste nicht markierte auslaufende Kante in Bezug auf Referenzkante

Zwei Variationen, wie die Referenzkante zu wählen ist

- 1. Weihe: aktuell einlaufende Kante
- 2. Coupry: erste einlaufende Kante

Korrektheitsbeweis zu Schritt 3 Beh.: \overrightarrow{P}_C enthält maximale Anzahl kantendisjunkter st-Wegen.

Benutze dazu gewichtete Variante des Satz v. Menger, d.h. konstruiere st-Schnitt der entsprechenden Kapazität.

Schnitt A wird induziert durch geeigneten Kreis $\overrightarrow{K} \subset \overbrace{G}$ mit:

- 1. $s \in Innen(\overrightarrow{K})$ oder auf \overrightarrow{K}
- 2. $t \in Aussen(\overrightarrow{K})$
- $3. \ A:=\left\{(u,v)\in \overrightarrow{E}_C \mid u \text{ liegt auf } \overrightarrow{K},v\in Aussen(\overrightarrow{K})\right\}, \ |A|=\# \ st\text{-Wegen in } \overrightarrow{P}_C$

 \overrightarrow{K} wird mittels Leftfirst-Rückwärtssuche von s aus in \overrightarrow{P}_C konstruiert. Wie sieht \overrightarrow{K} aus:

Variante 1 \overrightarrow{K} geht von s nach s

Variante 2 \overrightarrow{K} geht von $s \neq v_0$ nach v_0 und s In diesem Fall den Kreis, der von v_0 nach v_0 beschrieben wird.

3.7 Lemma

Betrachte $\overrightarrow{G}_C = (V, \overrightarrow{E}_C)$ und \overrightarrow{K} , dann ist jede Kante $(u, v) \in \overrightarrow{E}_C$ mit u auf \overrightarrow{K} und $v \in Aussen(\overrightarrow{K})$ durch einen st-Weg aus \overrightarrow{P}_C besetzt.

Beweis

- 1. Wenn P_1, \ldots, P_l st-Wege sind und \overrightarrow{K} ein Linkskreis von s nach s, dann gehört keine der Kanten $(x,y), x \in Aussen(\overrightarrow{K}), y \in \overrightarrow{K}$ zu einem der p_i . Wegen LeftFirst in Graph indziert durch p_1, \ldots, p_l $(x,y) \in p_i$, für alle $1 \leq i \leq l$. Deswegen: Kante (u,v) mit u auf $\overrightarrow{K}, v \in Aussen(\overrightarrow{K})$ kann nicht auf einem Linkskreis aus p_1, \ldots, P_l liegen.
- 2. betrachte (u, v) mit u auf \overrightarrow{K} , $v \in Aussen(\overrightarrow{K})$ und (u, w) mit w auf \overrightarrow{K} .