Styczeń 2023

REV	DATA	ZMIANY	
0.1	15.01.2023	Adam Andrzej Keków (kekow@student.agh.edu.pl)	
0.11	20.01.2023	Całkowita zmiana koncepcji przechowywania wielomianów	
0.5	22.01.2023	Aktualizacja rozpoznanych błędów	

SYMBOLICZNE OBLICZENIE POCHODNYCH WYRAŻENIA

Autor: Adam Andrzej Keków Akademia Górniczo-Hutnicza

Technical Report

Rev. 0.5

AGH University of Science and Technology

Styczeń 2023

Spis treści

Lista oznaczeń:	
Wstęp:	
Wymagania systemowe:	
Funkcjonalność:	
Analiza Problemu:	
Projekt Techniczny:	
Opis realizacji:	
Opis wykonanych testów (testing report) - lista buggów, uzupełnień, itd	
Podręcznik użytkowania:	8
Metodologia rozwoju i utrzymania systemu	8
Bibliografia	8

Technical Report	Rev. 0.5	
AGH University of Science and Technology	Styczeń 2023	

Lista oznaczeń:

sin()	Sinus
cos()	Cosinus
ln()	Logarytm naturalny (o podstawie z liczby e)
x^n	Potęgowanie "x" do potęgi "n"
*	znak mnożenia
/	znak dzielenia
mapa	słownik przekształcający jeden typ zmiennej w drugą
Sdk	System Development Kit

Tabela 1. Lista oznaczeń

Styczeń 2023

Wstęp:

Projekt zakłada obliczanie pochodnych metodą symboliczną z interfejsem w postaci wiersza poleceń.

Wymagania systemowe:

Podstawowym założeniem projektu:

Przygotowanie bazy pod obliczanie pochodnej dowolnej funkcji.

Analiza matematyczna problemu w celu znalezienia rozwiązania jak najbliższego optimum.

Funkcjonalność:

Wejście oraz wyjście jako ciąg znaków w konsoli. Obliczanie pochodnych metodą symboliczną. Upraszczanie wyrażeń. Prosty interfejs teksowy.

Analiza Problemu:

Równanie matematyczne możemy zdefiniować jako drzewo, gdzie każde działanie matematyczne tworzy jedną lub dwie gałęzie dla przykładu x^2+2 można zapisać jako:

Uwzględniając kolejność działań, można zbudować drzewo które przy zachowaniu kilku zasad da poprawną odpowiedź.

Obliczenia pochodnej zawsze zaczynają się od najdalszej gałęzi drzewa, przy czym lewa gałąź jest wcześniejsza.

Korzystając z stablicowanych wzorów łatwo zauważyć że metoda rekurencyjna jest możliwa.

Tak więc każde obliczenie pochodnej może oznaczać tylko i wyłącznie obliczenie algebraicznego wyrażenia lub pochodnej.

Przechowywanie wyniku, c plus plus nie posiada typu zdolnego przechowywać wielomiany lub funkcje matematyczne. Stworzono strukturę mogącą przechowywać wielomiany jako parę potęgi oraz lidzby, resztę funkcji

Technical Report	Rev. 0.5
AGH University of Science and Technology	Styczeń 2023

jako ciąg liter. Możliwość w przyszłości zastosowania vectora stringów do znajdowania identycznych zapisów i zamiany w mnożenie, dzielenie i potengowanie.

Projekt Techniczny:

Rys.2.1

Diagram przetstawia przepływ programu. W nieskończonej pętli czeka na nowe informacje od użytkownika by po zatwierdzeniu przygotować odpowiedź.

Program zaczyna od pozbycia się niechcianych znaków z wprowadzonego tekstu. Dzielenie na drzewo polega na rekurencyjnym sprawdzaniu czy znajdują się znaki działania i jeżeli się znajdują to sprawdza czy podział nie przeciął by granicy nawiasów co zaburzyło by kolejność działań.

Styczeń 2023

Rys 2.2 Hierarchia klas

Sporym problemem jest przechowywanie zapisu matematycznego, na rys.2.2 widzimy klasę polynomials posiada ona jak nazwa wskazuje wielomian, ale także tekst reprezentujący inne wyrażenia matematyczne. Wielomian jest tworzony z wektora par lidzb reprezentujących potęgę oraz wartość lidzby. Na strukturze polynomials można wykonywać podstawowe operacje dzięki przeciążeniu operatorów.

TreePart jako struktura cechuje się posiadaniem "content" i jest to zawartość tekstowa którą wykorzystujemy przy dzieleniu na mniejsze kawałki. W action zaisywany jest znalezione działanie które ma być wykonane na gałęziach.

Funkcja Cut rekurencyjnie dzieli drzewo i zapisuje w gałęziach(branch) coraz to mniejsze fragmenty wyrażenia.

Funkcja diriv() składa pochodną odnosząc się do gałęzi(branch) i operacji(action). Korzystając z struktury switch(action) możliwe jest zaprogramowanie dowolnego zachowania dla każdej operacji. Wykorzytano tablicę najpopularniejszych funkcji.

Opis realizacji:

Plataforma testowa:

Processor x86, amd c70, Visual Studio wersja 17.3.6, wersja zestawu Sdk windows 10.0.19041.0, kompilator Microsoft (R) C/C++ wersja kompilatora optymalizującego 19.33.31630 dla x64. System operacyjny windows server 2012 r2.

Procesor Ryzen 5 3500, system operacyjny: Linux Ubuntu 19.04 oraz Windows 11.

System kontroli źródeł: git z kopią online w github, cmake jako system budowy projektu.

Styczeń 2023

Opis wykonanych testów (testing report) - lista buggów, uzupełnień, itd.

Sprawdzono działanie programu pod systemem linux.

Kod usterki	Data	Autor	Opis	Stan
0x0		Adam Keków	Nazwisko się nie wyświetla	Naprawione
0x01	21.01.23	Wiktor Pantak	Automatyczne usuwanie nawiasów nie uwględnia specjalnych przypadków	Naprawiono
0x02	21.01.23	Szymon Szczerbik	Logarytm nie przyjmuje funkcji złożenia	Naprawione
0x03	21.01.23	Szymon Szczerbik	Czasem kolejność działań jest błędna	Naprawione
0x04		Adam Keków	Poprawne działanie tylko przy zaimplementowanych funkcjach matematycznych	Nie dokończone
0x05	22.01.	Szymon Szczerbik	Znaki +/- znajdują się wewnątrz nawiasu na samym początku	

Tabela 2. Negatywne wyniki testów.

Styczeń 2023

Podręcznik użytkowania:

Użytkownik wprowadza wyrażenie które chce zróżniczkować i po zatwierdzeniu enterem otrzymuje wynik w następnej

Niektóre funkcje, takie jak np.: tangens, można zapisać jako sinus przez cosinus.

Ważne jest by wprowadzać tylko zaimplementowane funkcje, ponieważ w przeciwnym wypadku wynik nie będzie poprawny, różniczkowanie zawsze jest po zmiennej "x". Nazwy funkcji znajdują się w Lista oznaczeń:

Zapis "sinx" jest równoważny "sin(x)", tak samo "2x" jest równoznaczne z "(2*x)". Oznacza to że "2x^2" nie jest równe ,,2*x^2".

Metodologia rozwoju i utrzymania systemu

Nowe funkcje matematyczne mogą być uzupełniane wraz z upływem czasu poprzez uzupełnianie słownika mapy. Program może być rozszerzony o interfejs graficzny zawierający symbole bardziej zbliżone do prawidłowego matematycznego opisu. Metoda wprowadzania może zostać rozszerzona o klawiature z widocznymi symbolami. Możliwe jest też wprowadzenie oznaczenia stałej i zmiennej do różniczkowania innej niż "x".

Bibliografia:

- M. Gewert, Z. Skoczylas, Analiza matematyczna 1, Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław, 2009
- Bogusław Cyganek, introduction-to-programming-with-c-for-engineers, Wiley, 2021