2021考研高等数学0基础课

高等数学精讲

主讲:武忠祥教授

老师简介

主讲人

武忠祥老师

- 李永乐考研团队
- 核心成员
- 原西安交通大学数学系教授
- 美国爱荷华大学访问学者
- 面向二十一世纪国家级重点教材 《工科数学分析基础》主编
- 曾获国家优秀教材等奖《考研数学复习全书》《高等数学辅导讲义》等畅销书主编
- 拥有十余年考研辅导经验

老师简介

@武忠祥考研

公众号: 武忠祥考研

第一章 函数与极限

第三节 函数的极限

一、函数极限的定义

二、函数极限的性质

一、函数极限的定义

1.自变量趋于有限值时函数的极限

定义1 设函数 f(x) 在点 x_0 的某个去心邻域有定义

若
$$\forall \varepsilon > 0, \exists \delta > 0$$
, 当 $0 < |x - x_0| < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$,

则称 A为 $x \to x_0$ 时 f(x) 的极限. 记作 $\lim_{x \to x_0} f(x) = A$

【注】1) ε 的任意性, ε 与 δ 的作用;

2)
$$x \rightarrow x_0$$
,但 $x \neq x_0$; y

几何意义

【例1】用定义证明 $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$

若 $\forall \varepsilon > 0, \exists \delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$,

极限
$$\lim_{x \to x_0} f(x) = A$$

若
$$\forall \varepsilon > 0, \exists \delta > 0$$
, 当 $0 < |x - x_0| < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$,

左极限
$$\lim_{x \to x_0^-} f(x) = f(x_0^-) = f(x_0^-)$$

若 $\forall \varepsilon > 0, \exists \delta > 0$, 当 $0 < x_0 - x < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$,

右极限
$$\lim_{x \to x_0^+} f(x) = f(x_0^+) = f(x_0^+)$$

若 $\forall \varepsilon > 0, \exists \delta > 0$, 当 $0 < x - x_0 < \delta$ 时, 恒有 $|f(x) - A| < \varepsilon$,

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$

2.自变量趋于无穷大时函数的极限

定义 2

$$\lim_{x\to +\infty} f(x) = A$$

$$\forall \varepsilon > 0, \exists X > 0,$$
 当 $x > X$ 时, 恒有 $|f(x) - A| < \varepsilon$

$$\lim_{x\to -\infty} f(x) = A$$

$$\forall \varepsilon > 0, \exists X > 0,$$
 当 $x < -X$ 时, 恒有 $|f(x) - A| < \varepsilon$

$$\lim_{x\to\infty}f(x)=A$$

$$\forall \varepsilon > 0, \exists X > 0,$$
 当 $|x| > X$ 时, 恒有 $|f(x) - A| < \varepsilon$

几何意义

直线 y = A 为曲线 y = f(x) 的水平渐近线.

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$$

【例2】用定义证明
$$\lim_{x\to\infty} \frac{\sin x}{x} = 0$$

$$\lim_{x\to\infty}f(x)=A$$

$$\forall \varepsilon > 0, \exists X > 0,$$
 当 $|x| > X$ 时, 恒有 $|f(x) - A| < \varepsilon$

【例3】
$$\lim_{x\to\infty}e^x$$
; $\lim_{x\to\infty}\arctan x$; $\lim_{x\to\infty}\frac{\sqrt{x^2+1}}{x}$.

二,函数极限的性质 $\lim_{x\to x_0} f(x) = A$

1) 唯一性:

2) 局部有界性:

 $\exists M > 0$ 与 $\delta > 0$,使得 $\forall x \in U(x_0, \delta)$ 有 $|f(x)| \leq M$

3) 局部保号性:

如果 A > 0 (或 A < 0), 则存在 $\delta > 0$, 当 $x \in U(x_0, \delta)$ 时, f(x) > 0 (或 f(x) < 0).

推论1 如果存在 $\delta > 0$, 当 $x \in U(x_0, \delta)$ 时, $f(x) \ge 0$ (或 $f(x) \le 0$), 那么 $A \ge 0$ (或 $A \le 0$).

推论1 如果 $A \neq 0$, 则存在 $\delta > 0$, 当 $x \in U(x_0, \delta)$ 时, $|f(x)| > \frac{|A|}{2}$.

4) 函数极限与数列极限的关系:

若
$$\lim_{x\to x_0} f(x) = A$$
, 且 $\lim_{n\to\infty} x_n = x_0, x_n \neq x_0$, 则 $\lim_{n\to\infty} f(x_n) = A$;

内容小结

1. 极限的统一定义

$$\lim_{n \to \infty} f(n) = A;$$

$$\lim_{x \to \infty} f(x) = A; \quad \lim_{x \to +\infty} f(x) = A; \quad \lim_{x \to -\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A.$$

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists$$
 財刻,从此时刻以后,

恒有 $|f(x)-A|<\varepsilon$. (见下表)

过 程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$	
时 刻	N				
从此时刻以后	n > N	x > N	x > N	x < -N	
f(x)	$ f(x)-A <\varepsilon$				

过	程	$x \rightarrow x_0$	$x \rightarrow x_0^+$	$x \rightarrow x_0^-$		
时	刻	δ				
从此时刻以后 $0 < x - x_0 < \delta$ $0 < x - x_0 < \delta$ $-\delta < x - \delta$				$-\delta < x - x_0 < 0$		
f(<i>x</i>)	$ f(x)-A <\varepsilon$				

2. 极限的性质

唯一性; 有界性; 保号性;

作业

P33 4; 11; 12.