Data Mining - Aufgabenblatt 1

Andra Herta, Tobias Dreher

07.11.2011

Aufgabe 1

Zahl	Absolute Häufigkeit	Relative Häufigkeit
0	2	0,04
1	6	0,12
2	5	0,10
3	9	0,18
4	13	0,26
5	7	0,14
6	5	0,10
7	3	0,06

Tabelle 1: Häufigkeitstabelle

Kreisdiagramm

Aufgabe 2

Modalwert: 4

Median: $\tilde{x}=4$

1/5-Quantil: $\tilde{x}_{\frac{1}{5}}=2$

Arithmetischer Mittelwert: $\bar{x}=3,653061$

Spannweite: R=7

Interquartilbereich: Q:=2

Varianz: $s^2 = 3.314626$

Standardabweichung: $s=1.820611\,$

Boxplot

Aufgabe 3

Korrelationskoeffizient $r_{xy} \colon$ -0.860932

Aufgabe 4.1

Beweis durch Causchy-Schwarzsche Ungleichung

$$|a b| \le |a| |b| \tag{1}$$

Aufgabe 4.2

Wenn $y_i = ax_i + b$ gilt, gilt auch $\bar{y} = a\bar{x} + b$

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(2)

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (ax_i + b - (a\bar{x} + b))}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (ax_i + b - (a\bar{x} + b))^2}}$$
(3)

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (ax_i - a\bar{x})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (ax_i - a\bar{x})^2}}$$
(4)

$$r_{XY} = \frac{a\sum_{i=1}^{n} (x_i - \bar{x}) (x_i - \bar{x})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{a^2 \sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
(5)

$$r_{XY} = \frac{a\sum_{i=1}^{n} (x_i - \bar{x})^2}{|a|\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(6)

$$r_{XY} = \frac{a}{|a|} \tag{7}$$

 $\Rightarrow r_{XY} = 1$, für a > 0

Aufgabe 4.3

Nach Beweisführung von Aufgabe 4.2:

$$\Rightarrow r_{XY} = \frac{a}{|a|}$$

 $\Rightarrow r_{XY} = -1$, für a < 0