LIÇÃO 2 - Para o professor

Na Lição anterior, as frações unitárias permitiram reconhecer e registrar quantidades menores que a unidade: meio, um terço, um quarto, etc. Nesta, serão abordadas as frações em geral: as que representam quantidades menores do que a unidade, quantidades maiores do que a unidade ou quantidades inteiras. Também serão introduzidas a notação simbólica de frações e a comparação entre frações de mesmo denominador.

As frações com numerador diferente de 1 são apresentadas **reunindo-se (por contagem ou por justaposição) cópias de uma mesma fração unitária.** Para isso, tem-se a representação pictórica como um apoio importante. Na Atividade 1, as imagens das pizzas amparam a compreensão das frações três quartos, cinco sextos e cinco oitavos como a reunião de cópias de frações unitárias correspondentes à quarta parte, à sexta parte e à oitava parte de uma pizza, respectivamente. Nesse sentido, nas primeiras atividades, há um esforço deliberado para que o estudante faça uso da linguagem de frações apresentada na Lição 1 para expressar frações não unitárias. Na Atividade 2, as imagens da barra de chocolate amparam a compreensão da fração dois terços como a reunião de duas partes correspondentes à terça parte (ou à fração um terço) de uma barra de chocolate. Na Atividade 3, sabendo que uma das cinco fatias iguais em que foi repartida uma torta é um quinto da torta, espera-se que o aluno use a linguagem "dois quintos" ou "dois um quintos" da torta para se referir às outras duas fatias. Dessa forma, "dois quintos" da torta são obtidos pela reunião de duas partes correspondentes a "um quinto" da torta. O objetivo é que esse processo se estenda para a compreensão das frações não unitárias. Assim, as frações "quatro quintos" e "seis quintos" são entendidas como a reunião de "quatro um quintos" e "seis um quintos" da mesma unidade, respectivamente. O processo de reunir frações unitárias pode ser observado como uma contagem (com justaposição ou não) em que a fração unitária tem o papel de unidade na contagem. A fração unitária é uma subunidade da unidade considerada.

Um cuidado especial recomendado ao professor é com as frações que representam uma quantidade maior que a unidade, introduzidas logo nas primeiras atividades ainda sem notação simbólica. Não é indicado atrasar muito a introdução deste tipo de fração porque o estudante pode fixar-se na ideia de que não há fração maior do que a unidade (por exemplo, a fração quatro terços pode não fazer sentido para o estudante porque, para ele, não faz sentido dividir uma torta em 3 pedaços e tomar 4). Decidiu-se omitir as terminologias "fração própria", "fração imprópria" e "fração aparente" por se acreditar que esta linguagem não só é desnecessária para a aprendizagem do assunto como também por poder desviar a atenção dos conceitos que realmente importam.

Apesar de esta lição introduzir a linguagem simbólica de frações, o estudante talvez ainda precise de uma unidade concreta explícita para dar um significado para a fração $\frac{a}{b}$: por exemplo, " $\frac{a}{b}$ de uma pizza" ou " $\frac{a}{b}$ de uma barra de chocolate". Apenas na próxima lição, a fração $\frac{a}{b}$ será tratada como número, requerendo a abstração que o conceito de número exige.

OBJETIVOS ESPECÍFICOS DA LIÇÃO 2:

O aluno deve ser capaz de:

- * Reconhecer frações não unitárias como a reunião de cópias de frações unitárias de uma mesma unidade.
- * Utilizar as linguagens verbal e simbólica para referir-se a uma fração $\frac{a}{h}$.
- * Reconhecer e nomear os termos de uma fração (numerador e denominador).
- * Comparar frações de mesmo denominador.
- * Reconhecer o papel da unidade na identificação da fração, tanto em situações em que uma mesma fração pode representar quantidades diferentes como em situações em que frações diferentes podem representar uma mesma quantidade.

Objetivos específicos: Levar o aluno a

- * Estender o conceito de frações para expressar quantidades que correspondam a mais do que uma fração unitária, a partir da junção de duas ou mais partes correspondentes às frações unitárias de mesmo denominador.
- * Reconhecer a necessidade de apresentar uma expressão verbal que identifique a quantidade correspondente à justaposição de duas ou mais partes correspondentes às frações unitárias de mesmo denominador.

Recomendações e sugestões para o desenvolvimento da atividade:

- * Recomenda-se que a atividade seja realizada individualmente e que os alunos compartilhem suas respostas.
- * É possível que os alunos utilizem expressões variadas para nomear as quantidades de pizza que cada amigo comeu. Por exemplo, "três de quatro fatias", "três fatias de um quarto de pizza", "três quartos de pizza", dentre outras. É importante que a discussão conduza os alunos ao uso de quartos, sextos e oitavos: "três quartos", "cinco sextos", "cinco oitavos", etc.
- * Após a resolução do item a) sugere-se que o professor pergunte: "Em cada caso, que fração representa uma fatia da pizza?"

Resposta da Atividade 1

- a)
- b)
- c)

Atividade 1

Objetivos específicos: Levar o aluno a

⋆ Compreender e usar as expressões "dois terços", "três terços" e "quatro terços" como forma de registrar as duas, três ou quatro partes de uma equipartição da unidade em três partes.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Recomenda-se que a atividade seja desenvolvida em grupos de 3 a 5 alunos.
- * Nesta atividade, é importante que os alunos possam ter cópias de figuras ilustrativas das barras de chocolate para dividir e poder avaliar e decidir as suas respostas. Faça cópias das páginas para reprodução.
- * A escolha de iniciar o assunto com um problema de divisão partitiva, no lugar do contexto parte-todo, se deve a dois motivos: (1) mantém-se a questão motivadora de equipartição iniciada na lição anterior (agora com múltiplas cópias da unidade) e (2) na divisão partitiva, frações cujo numerador é maior do que o denominador (frações impróprias) fazem sentido e aparecem naturalmente, algo que pode não ocorrer no contexto partetodo (não parece natural nomear uma parte "maior" do que o todo, mas é possível uma quantidade proveniente de frações ser maior do que a unidade).
- * As diversas soluções apresentadas pelos diferentes grupos devem ser discutidas com a turma inteira.

* É possível que os alunos utilizem expressões variadas para nomear as partes dos chocolates em cada divisão e para a quantidade de chocolate que cada irmão recebeu. Por exemplo, "dois dos seis pedaços", "dois pedaços de um terço de chocolate", dentre outras. É importante que a discussão conduza os alunos ao uso de terços: "dois terços", "quatro terços", "seis terços", etc. Observa-se que o uso de "sextos" para nomear as partes não é esperada para as perguntas que envolvem fração "de uma barra" e muito provavelmente indicam uma confusão do aluno em relação ao reconhecimento da unidade. Verifique.

- a) Um terço.
- b) Sim, pois a divisão foi justa no sentido de cada irmã ter recebido a mesma quantidade de chocolate.
- c) Sim, pois cada irmã recebeu dois pedaços que equivalem, cada um, a um terço de uma barra de chocolate
- d) Dois terços de uma barra.
- e) Três terços de uma barra, ou seja, uma barra inteira de chocolate.
- f) Quatro terços de uma barra, ou seja, uma barra inteira e um terço de chocolate.

Objetivos específicos: Levar o aluno a

- * Estender o uso de frações para expressar quantidades que correspondam a mais do que uma fração unitária a partir da justaposição de duas ou mais frações unitárias de mesmo denominador.
- * Reconhecer a necessidade de apresentar uma expressão verbal que identifique a quantidade correspondente à justaposição de duas ou mais partes correspondentes às frações unitárias de mesmo denominador.
- * Reconhecer e usar frações para expressar quantidades que correspondam a mais do que uma fração unitária em situação de equipartição de mais do que uma unidade (no caso, três).
- ★ Compreender e usar a expressão "n quintos de" como uma forma de identificar a quantidade equivalente a n partes da equipartição da unidade em quintos, incluindo os casos em que n é maior do que cinco (frações impróprias).
- * Analisar uma situação de comparação de frações de mesmo denominador.

Recomendações e sugestões para o desenvolvimento da atividade:

- * Recomenda-se que a atividade seja desenvolvida em grupos de 3 a 5 alunos.
- * As diversas soluções apresentadas pelos diferentes grupos devem ser discutidas com a turma inteira.
- * Em particular, no Item a), não se espera, nem se recomenda, que a representação feita pelos alunos seja amparada por medida. O objetivo é que façam a equipartição livremente e de forma coerente. Assim, por exemplo, pode ser aceita como resposta a solução indicada na figura a seguir.

- * Em suas respostas, é possível que os alunos utilizem expressões variadas para nomear as partes das tortas em cada divisão e para as quantidades de torta que cada irmão recebe. Por exemplo, "três dos quinze pedaços", "três pedaços de um quinto de torta", dentre outras. É importante que a discussão conduza os alunos ao uso de quintos: "três quintos", "seis quintos", "quinze quintos", etc.
- * Espera-se que, no final da atividade, o aluno tome conhecimento e reconheça o significado das expressões dois quintos e três quintos, mesmo que não o faça espontaneamente (usando, por exemplo, especificações como "dois pedaços" ou "duas fatias") e seja necessária a intervenção do professor. O professor deve fazer e incentivar o uso da terminologia de frações que se quer estabelecer nesta lição.
- Nesta atividade, é importante que os alunos possam ter cópias de figuras ilustrativas da torta para dividir e poder avaliar e decidir suas respostas. Faça cópias das páginas para reprodução.

⋆ Nos Itens c) e d), não basta uma resposta "Sim" ou "Não". É importante estimular os seus alunos a darem uma justificativa.

Resposta da Atividade 2

a) Uma resposta possível (entre várias): dividir cada uma das três tortas em 5 partes iguais e, então, com as 15 partes disponíveis, distribuir 3 partes para cada amigo, como mostra a figura a seguir

Amarildo Beto	Carlos Davi	Edison	Amarildo	Beto	Carlos	Davi	Edison	Amarildo	Beto	Carlos	Davi	Edison	
------------------	----------------	--------	----------	------	--------	------	--------	----------	------	--------	------	--------	--

- b) I) Três quintos.
 - II) Seis quintos (ou uma torta inteira e um quinto de torta).
 - III) Nove quintos.
 - IV) Doze quintos (ou duas tortas inteiras e dois quintos de torta).
 - V) Quinze quintos (ou três tortas inteiras).
- c) A quantidade de torta que cada amigo recebeu não pode ser menor do que um quinto de torta pois, se isto acontecesse, a quantidade total de torta recebida pelos cinco amigos seria menor do que cinco quintos de torta, isto é, seria menor do que uma torta inteira, o que não é o caso. Um argumento análogo mostra que a quantidade de torta que cada amigo recebeu não pode ser menor do que dois quintos de torta.
- d) A quantidade de torta que cada amigo recebeu não pode ser maior do que três quintos de torta pois, se isto acontecesse, a quantidade total de torta recebida pelos cinco amigos seria maior do que quinze quintos de torta, isto é, seria maior do que três tortas inteiras, o que não é o caso. Um argumento análogo mostra que a quantidade de torta que cada amigo recebeu não pode ser maior do que quatro quintos de torta.

Atividade 3

Objetivos específicos: Levar o aluno a

- * Estender o uso de frações para expressar quantidades que correspondam a mais do que uma fração unitária, a partir da justaposição de duas ou mais partes correspondentes às frações unitárias de mesmo denominador.
- * Reconhecer e usar frações para expressar quantidades que correspondam a mais do que uma fração unitária em situações que exijam a partição de mais do que uma unidade (no caso, oito).
- * Compreender e usar a expressão "n oitavos de" como forma de identificar a quantidade equivalente a n partes da equipartição da unidade em oito partes, incluindo os casos em que n é maior do que oito (frações impróprias).
- * Reconhecer que uma mesma quantidade pode ser expressa por frações equivalentes de uma mesma unidade (por exemplo, "meia torta" e "quatro oitavos de torta" representam a mesma quantidade de torta).

Manual do Professor

- * Recomenda-se que a atividade seja desenvolvida em grupos de 3 a 5 alunos.
- * As diversas soluções apresentadas pelos diferentes grupos devem ser discutidas com a turma inteira.
- * É importante que a discussão conduza os alunos ao uso de oitavos: "quatro oitavos", "dez oitavos" e "uma torta e dois oitavos".
- * No entanto, cabe ressaltar que não se objetiva o uso da notação de fração mista para representar, por exemplo, "uma torta e dois oitavos".
- \star As respostas esperadas para o Item c) podem surgir na resolução do Item b). Caso isso aconteça, recomendase que as frações corretas correspondentes a 4 fatias de torta ($\frac{1}{2}$ de torta, $\frac{2}{4}$ de torta, $\frac{3}{6}$ de torta, etc.) sejam reconhecidas como tal, mas que, conforme solicitado pelo enunciado, a resposta deve ser dada em termos de oitavos.
- * No Item c), é importante estimular o aluno a dar uma explicação para sua resposta: "por que você pensou em $\frac{1}{2}$ de torta?", "Por que você pensou em $\frac{3}{6}$ de torta?" Etc.

Resposta da Atividade 3

- a) Cada fatia é um oitavo de torta, pois cada torta está dividida em oito partes iguais.
- b) Havia para a sobremesa quatro oitavos de torta.
- c) Meia torta, pois quatro fatias de torta têm a mesma quantidade de torta que meia torta.

a) Algumas respostas possíveis: dez oitavos de torta; uma torta inteira e dois oitavos de torta; uma torta inteira e um quarto de torta.

Atividade 4

Objetivos específicos: Levar o aluno a

- ★ Identificar frações do tipo "n meios", "n terços", ..., "n décimos" em diferentes modelos visuais de frações em situações onde há uma indicação explícita da unidade.
- * Compreender frações do tipo "n meios", "n terços", ..., "n décimos" como forma de identificar a quantidade equivalente a "n" cópias da fração unitária " $\frac{1}{m}$ " (incluindo os casos em que $n \geq m$) em situações onde há uma indicação explícita da unidade.

- ★ Esta atividade pode ser resolvida individualmente, mas é essencial que seja discutida com toda a turma.
- * Observe que, enquanto que nas atividades anteriores cópias múltiplas da unidade já estavam naturalmente disponíveis (as duas barras de chocolate na Atividade 1, as três tortas salgadas na Atividade 2, as várias tortas divididas em oito partes na confeitaria da Atividade 3),

- nesta atividade, o aluno deve identificar frações a partir de uma única cópia da unidade, sem qualquer subdivisão registrada. Por exemplo, no item d), o aluno deve registrar nove meios de uma estrelinha, sem a subdivisão explicitada. Assim, a atividade oferece uma oportunidade para reforçar a compreensão de frações em um contexto diferente daquele em que a parte correspondente à fração é identificada e totalmente inserida em uma unidade, frequentemente já subdividida. Esse tipo de representação, muito associada ao significado parte/todo, pode limitar a compreensão de frações impróprias.
- \star Nesta atividade, espera-se que o aluno identifique uma equipartição adequada da unidade que defina a fração unitária $\frac{1}{m}$ da unidade para compor a parte colorida e que, então, tome a quantidade n correta desta fração unitária, mesmo no caso em que n>m.

Resposta da Atividade 4

- a) dois terços.
- b) dois meios.

- c) dois quintos.
- d) nove meios.
- e) oito sextos.

Sobre o Organizando as ideias

Nesta etapa, espera-se que os alunos compreendam as frações $\frac{a}{b}$ como adição por justaposição de a frações $\frac{1}{b}$ da unidade. Observe que esse entendimento é construído a partir de modelos contínuos e amparado por situações concretas. Assim, como explicado na introdução desta seção, por exemplo, "dois terços" de uma unidade dada são obtidos pela justaposição de duas partes correspondentes a "um terço" da mesma unidade.

Esse entendimento terá reflexos na forma como são lidas as frações $\frac{a}{b}$. Não se espera, nem se recomenda, que seja sugerida aos alunos a leitura de $\frac{a}{b}$ como "a sobre b" nem como "a dividido por b". Nesta etapa, espera-se que os alunos leiam essas frações, por exemplo, como "dois terços" ou "dois um terços" da unidade. As outras formas de leitura serão tratadas em seções posteriores.

Nesse contexto, é importante também discutir com os alunos as frações que representam números naturais. Por exemplo, na atividade 2, a fração $\frac{3}{3}$ da torta é uma torta inteira e a fração $\frac{6}{3}$ da torta são duas tortas.

Por fim, observa-se que a notação de fração pode não parecer natural para os alunos, porque é um símbolo composto por dois números de significados diferentes, um sobre o outro. Isso contraria a escrita usual dos números naturais. Alguns povos antigos tiveram representações diferentes para estes números. Contudo, é importante lembrar que hoje essa é a notação mundialmente aceita, devendo, portanto, ser bem compreendida.

Notas de Aula

Objetivos específicos: Levar o aluno a

- * Comparar diversas maneiras de se representar uma fração (por extenso, simbolicamente e graficamente).
- * Discutir aspectos dessas representações.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Essa é uma atividade que o aluno pode fazer individualmente.
- \star É possível que os alunos utilizem frações equivalentes como resposta para um mesmo item. Por exemplo, as frações $\frac{4}{12}$, $\frac{2}{6}$ e $\frac{1}{3}$ descrevem corretamente a quantidade de pizza consumida por Pedro. Nestes casos, dê oportunidade para que cada aluno explique como chegou à sua resposta pois, procedendo desta maneira, mesmo de forma pontual, os alunos perceberão que uma mesma quantidade pode ser descrita por frações com nomes diferentes, o que vai motivar o assunto "frações equivalentes" que será tratado na Lição 4.
- * Esta atividade procura mostrar uma das qualidades da notação simbólica matemática: expressar um conceito com economia de escrita. Ela permite encapsular detalhes, simplificar procedimentos, abstrair e generalizar conceitos. Assim, é muito importante fazer com que seus alunos se familiarizem com a notação simbólica matemática para frações: ela será fundamental nas lições sobre operações com frações, por exemplo.

- a) A que usa a notação simbólica matemática.
- b) As respostas podem variar de pessoa para pessoa. No entanto, a justificativa deve ser coerente com a resposta. Discuta com a turma as diferentes respostas.

Objetivo específico: Levar o aluno a

* Comparar frações com relação a uma fração de referência (no caso, a fração $\frac{1}{2}$) usando modelos contínuos (de área).

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Essa é uma atividade que o aluno pode fazer individualmente
- * Incentive seus alunos a darem justificativas para suas respostas, mesmo que informais.

Resposta da Atividade 6

- a) A parte pintada é igual a $\frac{1}{2}$ da figura.
- b) A parte pintada é igual a $\frac{4}{10}$ e é menor do que $\frac{1}{2}$ da figura.
- c) A parte pintada é igual a $\frac{6}{10}$ e é maior do que $\frac{1}{2}$ da figura.

Atividade 7

Objetivo específico: Levar o aluno a

- ⋆ Comparar frações unitárias a partir de representações usando modelos circulares.
- * Mais especificamente, comparar um quarto e um oitavo.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Esta atividade pode ser resolvida individualmente, mas é essencial que seja discutida com toda a turma.
- ★ Em particular, incentive os alunos a argumentar, justificando a sua resposta.
- Conduza a discussão de modo a conseguirem reconhecer a relação inversa entre denominador (número de partes) e o tamanho de cada parte: quanto maior o denominador, menor a fração.

Resposta da Atividade 7

- a) $\frac{1}{4}$.
- b) $\frac{1}{8}$.
- c) Uma fatia da primeira pizza é maior do que uma fatia da segunda pizza: precisamente, o dobro da quantidade. Isto acontece porque são necessárias duas fatias da segunda pizza para ter-se a mesma quantidade de pizza que uma fatia da primeira pizza, como mostra o desenho a seguir.

Atividade 8

Objetivos específicos: Levar o aluno a

* Representar frações não unitárias descritas com notação simbólica matemática em diversos modelos de área, incluindo casos em que as subdivisões apresentadas não coincidem com o denominador da fração dada.

- ★ Identificar a fração complementar de uma fração própria da unidade usando notação simbólica.
- * Reconhecer (e gerar) oitavos como metades de quartos, sextos como metades de terços e décimos como metades de quintos. Preparando-se assim para a discussão sobre equivalência de frações que será feita na Lição 4.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Essa é uma atividade que o aluno pode fazer individualmente.
- ★ Observe que os três últimos itens constituem uma extensão natural da Atividade 7 da Licão 1.
- * Não se espera, nem se recomenda, que, para os três últimos itens desta atividade, os alunos usem alguma medida para fazer, de forma precisa, a partição de quartos e quintos em oitavos e décimos, respectivamente. O objetivo é que façam a partição livremente e de forma coerente.
- ★ Alunos diferentes podem pintar as partes de formas diferentes: estas, por exemplo, não precisam ser contíguas.
- ★ Procure apresentar e discutir com a turma mais do que uma solução para cada item, reforçando assim as ideias propostas nas Atividades 7 e 8 da Lição 1.

Resposta da Atividade 8

pintada	figura	sem pintar		
$\frac{5}{6}$		$\frac{1}{6}$		
$\frac{3}{4}$		$\frac{1}{4}$		
$\frac{2}{5}$		$\frac{3}{5}$		
$\frac{2}{3}$		$\frac{1}{3}$		
$\frac{3}{8}$		$\frac{5}{8}$		
$\frac{9}{10}$		$\frac{1}{10}$		

Atividade 9

Objetivos específicos: Levar o aluno a

- ★ Representar com notação simbólica matemática frações não unitárias em modelos tridimensionais no contexto de volume.
- * Analisar e resolver um problema no contexto da justaposição e contagem de partes correspondentes a frações unitárias com mesmo denominador.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Essa é uma atividade que o aluno pode fazer individualmente.
- * As diversas soluções apresentadas pelos diferentes grupos devem ser discutidas com a turma inteira. É possível que os alunos utilizem frações equivalentes como resposta para um mesmo item. Por exemplo, para o copo (3), as frações $\frac{4}{8}$, $\frac{2}{4}$ e $\frac{1}{2}$ são respostas corretas. Nesses casos, dê a oportunidade para que cada aluno explique como chegou à sua resposta. Procedendo desta maneira, mesmo que de forma pontual, os alunos perceberão que uma mesma quantidade pode ser descrita por frações com nomes diferentes, um preparo para o assunto "frações equivalentes" que será tratado na Lição 4.

- a) (1): $\frac{3}{8}$. (2): $\frac{2}{8}$. (3): $\frac{4}{8}$.
- b) $\frac{9}{8}$.
- c) Não é possível armazenar a água dos três copos em um único copo sem que o mesmo transborde, pois se a água do primeiro copo ocupa 3 oitavos de sua capacidade, a água do segundo copo ocupa 2 oitavos de sua capacidade e a água do terceiro copo ocupa 4 oitavos de sua capacidade, a água dos três copos, juntos, ocupa 3+2+4=9 oitavos da capacidade do copo e qualquer copo só consegue armazenar no máximo 8 oitavos de sua capacidade.

Objetivos específicos: Levar o aluno a

- * Recompor a unidade a partir de uma fração dada em modelo contínuo e em linguagem simbólica, incluindo o caso de frações impróprias.
- * Relacionar a fração correspondente à parte apresentada à quantidade necessária dessas partes para compor a unidade. Assim, por exemplo, para compor a unidade a partir de $\frac{2}{3}$ da unidade, basta repartir esta fração em 2 partes iguais (para recuperar a fração unitária $\frac{1}{3}$) e, então, justapor 3 cópias de uma destas partes.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Recomenda-se que a atividade seja desenvolvida em grupos de 3 a 5 alunos.
- * A exemplo da Atividade 6 da Lição 1, é importante ter em mente que existem várias soluções para cada item.
- ★ Estimule os alunos a reconhecer (e a fazer) mais do que uma representação para a unidade em cada item.
- ★ Caso seja necessário fazer alguma partição, não se espera nem se recomenda que os alunos usem alguma medida. Uma partição feita de forma livre e coerente será suficiente.

Fração	Figura da fração	Uma unidade pos- sível
$\frac{1}{2}$		
$\frac{4}{2}$		
$\frac{3}{2}$		
$\frac{2}{3}$		
$\frac{1}{2}$		
$\frac{4}{2}$		
$\frac{3}{2}$		
$\frac{2}{3}$		
$\frac{1}{2}$		
$\frac{4}{2}$		
$\frac{3}{2}$		
$\frac{2}{3}$		
$\frac{1}{2}$		
$\frac{4}{2}$		
$\frac{3}{2}$		
$\frac{2}{3}$		

Objetivo específico: Levar o aluno a

* Marcar em uma semirreta pontos cujas distâncias até um ponto de referência são frações do comprimento de um segmento dado.

Recomendações e sugestões para o desenvolvimento da atividade:

- ⋆ Esta é uma atividade que pode ser realizada individualmente.
- ★ Esta é uma atividade preparatória para a representação de frações na reta numérica, assunto da próxima lição.
- Observe que, nesta atividade, as distâncias estão associadas aos segmentos determinados pelos percursos dos carrinhos na pista, e correspondem a frações da distância percorrida pelo carrinho de Lucas, que assume papel de unidade.
- * Não se espera, nem se recomenda, que as marcações feitas pelos alunos na pista sejam amparadas pela medida mas, sim, que sejam feitas de forma livre e coerente. Contudo, é preciso ficar atento para que as marcações dos carrinhos de Heitor e de Lorenzo coincidam (pois $\frac{3}{2} = \frac{6}{4}$). A mesma observação se aplica aos carrinhos de Rafael e de Samuel (pois $\frac{4}{2} = \frac{6}{3}$).
- * Aqui, a definição de frações não unitárias como justaposições de frações unitárias pode ser usada para justificar o porquê, por exemplo, de os carrinhos de Rafael e de Samuel terem parado na mesma posição.
- * Assim, espera-se que a distância percorrida pelo carrinho de Matheus (item a) seja associada à metade do segmento que identifica a distância percorrida pelo carrinho de Lucas, que corresponde à unidade e está destacado em vermelho na imagem. Já a distância percorrida pelo carrinho de Heitor (item b) deve ser associada à justaposição de 3 segmentos correspondentes à distância percorrida pelo carrinho de Matheus. Espera-se que as demais distâncias sejam obtidas de forma semelhante. Cabe destacar, no entanto, que para determinar as distâncias percorridas pelos carrinhos de Lorenzo e de Samuel, será necessário determinar $\frac{1}{4}$ e $\frac{1}{3}$ da unidade, respectivamente.
- ★ De forma geral, se d é a distância percorrida pelo carrinho de Lucas, então a partição em 2 partes iguais de um segmento u cujo comprimento é d determina dois segmentos congruentes s e s' que correspondem à $\frac{1}{2}$ de u e cujos comprimentos são, portanto, iguais a $\frac{1}{2}$ de d. A justaposição de 2 cópias de s ($\frac{2}{2}$ de u) tem comprimento d e, sendo assim, a justaposição de d cópias de d (d0 de d1) tem comprimento d2. Do mesmo modo, se d2 de d3 de d3 de d4 de d5 de d6 de d6 de d7 de d8 de d9 de

Resposta da Atividade 11

Observe que os carrinhos de Rafael e Samuel pararam no mesmo lugar!

Objetivos específicos: Levar o aluno a :

- * Reconhecer que uma mesma quantidade pode ser expressa por frações diferentes dependendo da unidade escolhida.
- * Utilizar linguagem simbólica para se referir a uma fração $\frac{a}{\hbar}$.

- * Recomenda-se que a atividade seja desenvolvida em grupos de 3 a 5 alunos.
- \star As diversas soluções apresentadas pelos diferentes grupos devem ser discutidas com a turma inteira. É possível que os alunos utilizem frações equivalentes como resposta para um mesmo item. Por exemplo, no item f), as frações $\frac{3}{6}$ e $\frac{1}{2}$ são respostas corretas. Nesses casos, dê a oportunidade para que cada aluno explique como chegou a sua resposta. Dessa maneira, mesmo que de forma pontual, os alunos perceberão que uma mesma quantidade pode ser descrita por frações com nomes diferentes, o que pode prepará-los para o assunto de frações equivalentes que será tratado na Lição 4.
- * No final da atividade, é importante enfatizar para os alunos a propriedade matemática que esta atividade quer destacar, ou seja, que uma mesma quantidade pode ser descrita por frações diferentes com unidades diferentes. Observe para eles que, no contexto "frações de", é fundamental saber a que o "de" se refere, isto é, qual é a unidade que está sendo considerada.

Resposta da Atividade 12

a) $\frac{1}{2}$. b) $\frac{1}{4}$. c) $\frac{1}{6}$. d) $\frac{3}{2}$.	e) $\frac{3}{4}$. f) $\frac{1}{2}$. g) $\frac{5}{2}$ 2. h) $\frac{5}{4}$.	i) $\frac{5}{6}$. j) 3. l) $\frac{3}{2}$. m) 1
b) $\frac{1}{4}$.	f) $\frac{1}{2}$.	j) 3̈́.
c) $\frac{1}{6}$.	g) $\frac{5}{2}$.	$) \frac{3}{2}.$
d) $\frac{3}{2}$.	h) $\frac{5}{4}$.	m) 1

Pizza de José Pizza de Ella

Atividade 13

Objetivos específicos: Levar o aluno a :

* Reconhecer que uma mesma quantidade pode ser expressa por frações diferentes dependendo da unidade escolhida

Recomendações e sugestões para o desenvolvimento da atividade:

* Uma resposta possível é que dois (ou até os três) estudantes tenham errado em suas afirmações. Muito provavelmente, nesse caso, os estudantes estão considerando a mesma unidade - bolos de mesmo tamanho. Como o objetivo da questão é levar os alunos a concluírem que unidades diferentes podem determinar a identificação de frações diferentes para uma mesma quantidade, cabe ao professor instigar essa discussão com os alunos. Espera-se que leve-os a considerar o caso de os bolos originais terem tamanhos diferentes. Isso pode ser feito com perguntas como, por exemplo: É possível uma tal situação acontecer estando os três amigos certos?

Será que os bolos eram iguais? Será que tinham o mesmo tamanho?

Resposta da Atividade 13 Se os bolos tivessem tamanhos

iguais, um quinto do bolo teria menor quantidade que um terço do bolo, que por sua vez corresponderia a menos bolo que metade. Como todos os estudantes tinham a mesma quantidade, os bolos eram diferentes.

Atividade 14

Objetivo específico: Levar o aluno a:

★ Perceber que uma mesma fração (no caso, ½) de unidades diferentes pode resultar em quantidades diferentes.

Recomendações e sugestões para o desenvolvimento da atividade:

- * Esta é uma atividade que o aluno pode fazer individualmente, mas é essencial que seja discutida com toda a turma.
- * No final da atividade, é importante enfatizar para seus alunos a propriedade matemática que esta atividade quer destacar, ou seja, que uma mesma fração de unidades diferentes pode resultar em quantidades diferentes. Observe para eles que, no contexto "frações de", é fundamental saber a que o "de" se refere, isto é, qual é a unidade que está sendo considerada. Neste sentido, esta atividade está fortemente relacionada com a Atividade 8.

Resposta da Atividade 14 José está certo se a pizza da

qual comeu metade for maior do que a pizza da qual Ella comeu metade, como ilustra a figura a seguir.

Atividade 15

Objetivo específico: Levar o aluno a

* Analisar uma situação envolvendo frações em representação por meio de figuras cujas repartição não identifica explicitamente o denominador da fração.

Recomendações e sugestões para o desenvolvimento da atividade:

- * Esta é uma atividade que o aluno pode fazer individualmente, mas é essencial que seja discutida com toda a turma.
- \star No final da atividade, é importante enfatizar para seus alunos a questão matemática que esta atividade quer destacar, ou seja, que o fato de uma figura estar divida em 5 partes e 3 delas estarem pintadas de vermelho, **não necessariamente implica** que a região pintada é $\frac{3}{5}$ da figura.
- * O tipo de situação descrita na atividade é um equívoco comum entre os alunos, isto é, eles equivocadamente contam partes sem o cuidado de verificar se as partes nas quais a unidade está dividida correspondem a uma mesma quantidade.

Resposta da Atividade 15

Miguel está equivocado: a região pintada da figura **não** corresponde a $\frac{3}{5}$ da figura porque a figura não está dividida em 5 partes iguais, ou seja, a figura não está equiparticionada em 5 partes para que as 3 partes pintadas correspondam a $\frac{3}{5}$ da mesma. Outra justificativa possível é: partindose a parte pintada em 3 partes iguais e justapondo-se 5 cópias de uma destas partes, pode-se recompor a figura apenas parcialmente.

Atividade 16

Objetivo específico: Levar o aluno a

 \star Perceber que, se uma unidade foi equiparticionada em n+m partes iguais, das quais n foram pintadas, então $\frac{n}{m}$ **não especifica** a fração da unidade que foi pintada.

- * Esta é uma atividade que o aluno pode fazer individualmente, mas é essencial que seja discutida com toda a turma.
- * O tipo de situação descrita na atividade destaca um equívoco comum entre os alunos. Assim, esta atividade é uma oportunidade para reforçar os papéis do denominador e do numerador na notação simbólica matemática para frações: o denominador especifica o número de partes iguais em que a unidade foi dividida e o numerador especifica o número de cópias que foram tomadas de uma destas partes.

Resposta da Atividade 16

A parte pintada de vermelho **não** corresponde a $\frac{3}{4}$ da figura. Ela corresponde a $\frac{3}{7}$ da figura. De fato: a figura foi dividida em 7 partes iguais das quais 3 foram pintadas.

Atividade 17

Objetivo específico: Levar o aluno a

* Perceber a importância da explicitação unidade na representação de quantidades.

Recomendações e sugestões para o desenvolvimento da atividade:

- * Esta é uma atividade que o aluno pode fazer individualmente, mas é essencial que seja discutida com toda a turma
- * Recomenda-se que os itens da atividade sejam feitos e corrigidos um a um, de forma a permitir que um aluno que tenha errado um item possa acertar o seguinte.
- * O fato de a unidade não estar explicitada, torna ambígua a questão. É importante que os alunos percebam que, por exemplo, no item a), se a unidade considerada for um dos hexágonos, a fração correspondente à região em vermelho é $\frac{1}{2}$. No entanto, se forem os dois hexágonos, é $\frac{1}{4}$.
- * No final de cada item da atividade, é importante enfatizar para seus alunos a propriedade matemática que esta atividade quer destacar, ou seja, que uma mesma quantidade pode ser expressa por frações diferentes dependendo da unidade escolhida. Observe para eles que, no contexto "frações de", é fundamental saber a que o "de" se refere, isto é, qual é a unidade que está sendo considerada. Neste sentido, esta atividade está fortemente relacionada com as Atividades 8 e 13. Ela também é uma preparação para a Atividade 17, em que a mesma questão é posta, mas agora com um modelo mais comumente usado e, portanto, mais resistente à reflexão que se deseja estabelecer.

Resposta da Atividade 17

a) A região em vermelho pode representar $\frac{1}{2}$ ou $\frac{1}{4}$ dependendo da unidade, que não foi explicitada no enunciado. Se, por exemplo, a unidade for então a região pintada de vermelho em $\frac{1}{2}$ desta unidade. Por outro lado, se a unidade for

então a região pintada de vermelho em

 $\oint \acute{e} \, \frac{1}{4} \, desta \, unidade.$

b) A região em vermelho pode representar $\frac{1}{2}$ ou $\frac{3}{2}$ dependendo da unidade, que não foi explicitada no enunciado. Se, por exemplo, a unidade for então a região pintada de vermelho

é $\frac{1}{2}$ desta unidade. Por outro lado,

Atividade 18

Objetivo específico: Levar o aluno a

⋆ Perceber a importância da unidade na representação de quantidades.

Recomendações e sugestões para o desenvolvimento da atividade:

- ★ Esta é uma atividade que o aluno pode fazer individualmente, mas é essencial que seja discutida com toda a turma.
- ★ No final da atividade, é importante enfatizar para seus alunos a propriedade matemática que esta atividade quer destacar, ou seja, que uma mesma quantidade pode ser expressa por frações diferentes dependendo da unidade escolhida. Observe para eles que, no contexto "frações de", é fundamental saber a que o "de" se refere, isto é, qual é a unidade que está sendo considerada. Neste sentido, esta atividade está fortemente relacionada com as Atividades 8 e 13.

Resposta da Atividade 18

As afirmações de Júlia, David e Laura estão incompletas, pois ao especificarem as frações $\frac{3}{5}$, $\frac{3}{2}$ e $\frac{3}{1}$, eles não informaram a **unidade** à qual estas frações se referem. Desta maneira, não é possível decidir quem está certo. De fato, dependendo da escolha da unidade, cada um deles pode estar certo e os demais errados. Por exemplo, se a unidade for

então a parte pintada de vermelho em

de fato corresponde a $\frac{3}{5}$ desta unidade, de modo que, nesta situação, Júlia está certa e David e Laura estão errados. Contudo, se a unidade for

então a parte pintada de vermelho em

Manual do Professor

corresponde a $\frac{3}{2}$ desta unidade, de modo que, nesta situação, David está certo e Júlia e Laura estão errados. Finalmente, se a unidade for

então a parte pintada de vermelho em

corresponde a 3 desta unidade e, neste caso, Laura está certa e David e Júlia estão errados.

Atividade 19

Objetivo específico: Levar o aluno a

- * Relembrar divisão com resto (ou divisão euclidiana).
- ★ Selecionar, dentro de uma situação plausível do dia a dia, dados relevantes para resolver um problema.

Recomendações e sugestões para o desenvolvimento da atividade:

- * A atividade deve ser conduzida de forma a chegar-se na divisão euclidiana. Ou seja, o aluno pode começar montando as pizzas. Recomenda-se que os alunos tenham à mão o material concreto: fatias de pizza cortadas em papel ou em E.V.A..
- * É possível que os alunos resolvam o item a) a partir da divisão euclidiana, efetuando a divisão de 38 por 8:

- $38=4\times8+6$. Se esse for o caso, recomenda-se que o professor, destaque a informação associada a cada um dos números na expressão. Em particular, o "resto", que identifica uma quantidade menor do que uma pizza (resto 6 indica 6 fatias, que é menor do que uma pizza, uma vez que cada pizza tem 8 fatias).
- \star Para responder ao item b), o aluno deve reconhecer que cada fatia é igual a $\frac{1}{8}$ da pizza. Portanto, a quantidade total de pizza consumida pelos amigos pode ser expressa como $\frac{38}{8}$ de uma pizza. Cabe destacar que essa fração corresponde a 4 pizzas mais $\frac{6}{8}$ de uma pizza.
- \star Observe que, neste contexto, o resto, que é um número inteiro e indica o número de fatias, também pode ser expresso por meio de uma fração da unidade pizza: $\frac{6}{8}$ de uma pizza.
- * Faz parte da atividade a tarefa de selecionar dados relevantes para o problema, o que a torna um tanto complexa, por isso é a última Atividade da Lição 2. Para os itens a) e b), a quantidade de amigos, 7, é irrelevante. No entanto, é relevante para o item c).
- * A atividade tem também o objetivo de evidenciar que, no cotidiano, nem toda partição é uma equipartição: 38 fatias de pizza para 7 amigos é um exemplo.

- a) A solução corresponde ao quociente da divisão euclidiana de 38 por 8, ou seja, 4
- b) Compreendendo que cada fatia é $\frac{1}{8}$ de uma pizza: 4 pizzas e $\frac{6}{8}$ ou $\frac{38}{8}$.
- c) A divisão euclidiana de 38 por 7 fornece um resto diferente de zero, o que indica que não é possível que todos os amigos tenham comido o mesmo número de fatias de pizza.