

8.4 Unifying View

Machine Learning 1: Foundations

Marius Kloft (TUK)

Kaiserslautern, 9-16 June 2020

- 1 Linear Regression
- 2 LOOCV
- Non-linear Regression
 - Kernel Ridge Regression
 - Deep Regression
- Unifying Loss View of Regression and Classification

Unifying View

Recall our unifying view

$$\min_{[W,] b, \mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \ell(y_i(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b)) \left[+ \frac{1}{2} \sum_{l=1}^L \|W_l\|_{\text{Fro}}^2 \right],$$

which comprises (linear and kernelized) SVM and LR, as well as ANN in just one equation.

Wouldn't it be nice to add also regression into this equation? :)

In order to do so, we slightly change our notation of the loss:

$$I(t,y) := egin{cases} (t-y)^2 & ext{for regression} \\ \ell(yt) & ext{for classification} \end{cases}$$

We obtain...

Unifying View of Regression and Classification

Unifying formulation of linear, kernel, and neural classification and regression

$$\min_{[W,] \ b, \mathbf{w}} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{n} I(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b, y_i) \ \left[+ \frac{1}{2} \sum_{l=1}^{L} \|W_l\|_{Fro}^2 \right],$$

where

- $I(t, y) := \max(0, 1 yt)$ for SVM ("hinge loss")
- ► $I(t, y) := \ln(1 + \exp(-yt))$ for LR and ANN ("logistic loss")
- \blacktriangleright $I(t,y) := (t-y)^2$ for regression

and

- $ightharpoonup \phi := id for linear SVM, linear LR, and RR$
- \bullet $\phi := \phi_k$ for kernel SVM, kernel LR, and KRR
- $ightharpoonup \phi := \phi_W$ for ANN and DR.

The terms in brackets apply only to ANN and DR.

Unifying View Reveals:

Classification and Regression Differ only in the Loss

- ▶ Regression uses the squared loss: $I(t, y) = (t y)^2$
- ► E.g., the SVM uses the hinge loss: I(t, y) = max(0, 1 yt)

Can we derive a SVM-style regression method?

Support Vector Regression (SVR)

SVR uses the same regularizer as SVM, but the following loss:

Definition

The ϵ -insensitive loss is defined as

$$\ell(t,y) := \max(0,|y-t|-\epsilon)$$

Support Vector Regression (SVR)

$$\mathbf{w}_{SVR}^* := \operatorname*{arg\,min}_{\mathbf{w} \in \mathcal{H}} \ \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \sum_{i=1}^n \max \left(0, \left| y_i - \left\langle \mathbf{w}, \phi(\mathbf{x}_i) \right\rangle \right| - \epsilon \right)$$

Fit 'tube' with width ϵ to data.

Outlook: More Losses

Conclusion

(1/2)

Regression

▶ Given $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and $y_1, \dots y_n \in \mathbb{R}$, find f such that $f(\mathbf{x}) \approx y$ on new x and y

Important example: ridge regression and kernel ridge regression

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{w}\|^2 + C \|\mathbf{y} - X^\top \mathbf{w}\|^2$$
$$= \min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \|X\boldsymbol{\alpha}\|^2 + C \|\mathbf{y} - X^\top X\boldsymbol{\alpha}\|^2$$

With analytic solutions:

$$\mathbf{w}_{\mathrm{RR}} = \left(XX^{\top} + \frac{1}{2C}I\right)^{-1}Xy,$$

$$\alpha^* = \left(K + \frac{1}{2C}I_{n \times n}\right)^{-1}y$$

LOOCV (= amazingly accurate validation) of (K)RR:

comes (computationally) for free!

Deep regression:

$$\min_{\mathbf{w},W} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{l=1}^{L} \|W_l\|_{\text{Fro}}^2 + C \sum_{i=1}^{n} (\langle \mathbf{w}, \phi_W(\mathbf{x}_i) \rangle - y_i)^2$$

Unifying view:

$$\min_{[W,] \ b, \mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n I(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b, y_i) \left[+ \frac{1}{2} \sum_{l=1}^L \|W_l\|_{Fro}^2 \right],$$