Minimum Wages and Informal Self-Employment: Evidence from Peru

Paúl J. Corcuera García Universidad de Piura

September 26th, 2024

Motivation

- 1. Minimum wage can reduce monopsony power and improve efficiency
 - (i) Raise wages and employment (Manning, 2003; Autor et al., 2016; Azar et al., 2023)
 - (ii) Firms respond to wage increases of competitors (Engborn & Moser, 2023)
 - (iii) Reallocation from low to high productivity firms (Dustmann et al., 2022)
- 2. Minimum wage can *redistribute* resources from firm owners to low-wage individuals (Cengiz et al., 2019; Giupponi et al., 2024; Berger et al., 2024)
- 3. Developing countries are characterized by a large informal sector
 - "Not only formal and informal firms produce in the same industry but there is also a sizable interval in the productivity support where one can find both types of firms." (Ulyssea, 2018)

How should we think about minimum wages in developing countries?

This paper

Study the impacts of the minimum wage on firms & workers in Peru and the salience of the informal sector

- 1. How do firms respond to minimum wage increases?
- 2. What is the impact on workers employment and wage prospects?
- 3. Does low vs high presence of the informal sector matter?
- 4. Redistribution: Winners & Losers

- 1. Exploit firm exposure to minimum wage increases and workers' location on the wage distribution
 - Combine novel employer-employee data with household survey data and firm balance sheet data
 - Firm and worker-level empirical approaches
- 2. Effect of minimum wage on formal firms
- 3. Effect of minimum wage on formal workers
- 4. Redistribution: Winners & Losers

- 1. Exploit firm exposure to minimum wage increases and workers' location on the wage distribution
- 2. Effect of minimum wage on formal firms
 - Avg. firm reduced employment. Implied own-wage elast. = -0.85.
 - Surviving firms pass-through increased labor costs. Consumers bear 98% of it.
 - Effects concentrated on firms exposed to closer competition with informal sector.
- 3. Effect of minimum wage on formal workers
- 4. Redistribution: Winners & Losers

- Exploit firm exposure to minimum wage increases and workers' location on the wage distribution
- 2. Effect of minimum wage on formal firms
- 3. Effect of minimum wage on formal workers
 - Conditional on formal employment, workers' wage increases up to the 80th percentile of earnings distribution
 - Low wage workers are 1.5 pp less likely to remain formally employed
 - Effects concentrated on occupations with large formal vs informal competition.
 - Size of formal sector decreased by 6.6%.
- Redistribution: Winners & Losers

- Exploit firm exposure to minimum wage increases and workers' location on the wage distribution
- 2. Effect of minimum wage on formal firms
- 3. Effect of minimum wage on formal workers
- 4. Redistribution: Winners & Losers
 - Estimate effects on income and expenses.
 - Low-wage formal workers are better off at the expense of high-wage workers
 - Redistribution towards low-income households is limited, as these households are largely composed of informal worker

Contribution

1. Minimum Wage

- Minimum wage impacts on labor market outcomes (Dustmann et al., 2022; Engbom & Moser, 2022; Azar et al., 2024)
- Minimum wage and firms margins of response (Harastozi & Lindner, 2019)
- Minimum wage and redistribution (Cengiz et al., 2019; Berger et al., 2024)

Contribution: Bridge these literatures into a comprehensive analysis of a minimum wage increase

2. Informality in Labor Markets

- Theories of informality (Meghir et al., 2015; Ulyssea, 2019; Haanwinckel, 2024)
- Informality and concentration in labor markets (Amodio et al., 2023)

Contribution: Propose a framework that combines oligopsony and involuntary exits from formal employment

Today's Talk

1. Conceptual Framework

- 2. Setting & Data
- 3. Effects of minimum wage on formal firms
- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners & Losers

Firms not facing informal self-employment

Firms facing informal self-employment

How does the informal sector shape effects of the min wage?

Conceptual Framework

- 1. Wage posting model with firm specific labor supply with sorting between formal and informal sector (Haanwinckel, 2024). Min wage = y.
- 2. Firms choose threshold of lowest productivity worker willing to hire $= \underline{\varepsilon}_j$ and create involuntary non-employment
- 3. In standard wage posting model (Card et al., 2018) labor supply elast. = β
- 4. Oligopsonistic competition within firm sector (θ) and across formal and informal (σ)
- 5. In this model, labor supply elast. $= \beta \theta \sigma$. With more competition $\to \beta$.
- Raise in the minimum wage ($\uparrow \underline{y}$)
 - Increase min worker productivity willing to accept († ε_j)
 - Stronger effect on less concentrated markets w.r.t informal sector (↑ labor supply elast.)

Workers

- ▶ Heterogeneity worker productivity $\varepsilon \sim G(\cdot)$
- ► Problem
 - 1. Draw preferences for $j \in \{1, \dots, J\}$ firms $\{\eta_j\}_{j=1}^J$ and self-employment η_0 s.t.

CDF
$$(\{\eta_{i,j}\}_{j=0}^{J}) = \exp\left\{-\exp(\eta_{i,0}) - \left[\sum_{j=1}^{J} \exp\left(-\eta_{i,j} \cdot \frac{\beta}{\lambda}\right)\right]^{\frac{\beta}{\lambda}}\right\}$$

2. Choose employment option given w_S , $(w_k, \underline{\varepsilon}_k)_{k=1}^J$ and min earnings \underline{y} $\max\{\exp(\lambda \log(\varepsilon w_S) + \eta_{i,0})^{\frac{1}{\lambda}}, \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_j\} \exp(\lambda \log(\max\{\varepsilon w_j, \underline{y}\}) + \eta_{i,j})^{\frac{1}{\lambda}} \ j \geq 1\}$

Sorting

$$\mathbf{Pr}_{\mathsf{informal}}(\varepsilon, \mathbf{w}) = \frac{(\varepsilon w_S)^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \quad , \quad \mathbf{Pr}_{\mathsf{formal}, j}(\varepsilon, \mathbf{w}) = \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{\mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_j\} \max\{\underline{y}, \varepsilon w_j\}^{\beta}}{\Omega_{\varepsilon}^{\beta}}$$

where
$$\Omega_{\varepsilon} = \left(\sum_{k=1}^{J} \mathbf{1}\{\varepsilon \geq \underline{\varepsilon}_{k}\} \max\{\underline{y}, \varepsilon w_{k}\}^{\beta}\right)^{1/\beta}$$

Workers - Elasticities

Elasticity of labor supply is given by

$$\frac{\partial \log \ell(w_j,\underline{\varepsilon}_j,w_{-j})}{\partial \log w_j} = \beta$$

$$- (\beta - \lambda) \int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \lambda \int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \sum_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \sum_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \sum_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \sum_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{2\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{2\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

$$- \sum_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{[(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}]^2} \frac{(\varepsilon w_j)^{2\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \left[\int\limits_{\underline{\varepsilon}_j}^{\infty} \frac{\Omega_{\varepsilon}^{\lambda}}{(\varepsilon w_S)^{\lambda} + \Omega_{\varepsilon}^{\lambda}} \frac{(\varepsilon w_j)^{\beta}}{\Omega_{\varepsilon}^{\beta}} \ \varepsilon \ dG(\varepsilon) \right]^{-1}$$

Then \uparrow concentration means $\partial \log \ell / \partial \log w_j \to 0$, and \downarrow concentration means $\partial \log \ell / \partial \log w_j \to \beta$

Firms

- ▶ Heterogeneity productivity $z \sim F(\cdot)$
- ► Problem
 - 1. Firms observe productivity (ε) of workers who applied and maximize profits

$$\max_{w_j,\underline{\varepsilon}_j} \ p_j \ z \ f\left(\ell(w_j,\underline{\varepsilon}_j,w_{-j})\right) - w_j \ell(w_j,\underline{\varepsilon}_j,w_{-j})$$

2. It yields

$$z p_j f'(\ell) = \left(1 + \frac{1}{\frac{\partial \log \ell}{\partial \log w_j}}\right) w_j$$
$$z p_j f'(\ell) \underline{\varepsilon}_j = \underline{y}$$

Comparative Statics

Comparative Statics

Higher competition makes \rightarrow larger than \rightarrow

Today's Talk

1. Conceptual Framework ✓

2. Setting & Data

3. Effects of minimum wage on formal firms

4. Effects of minimum wage on formal workers

5. Redistribution analysis: Winners & Losers

Minimum Wage in Peru

Peru offers a unique setting to study minimum wages in developing countries

- ▶ Minimum wage has large bite, not indexed to inflation and no fixed periodicity.
- Large presence of informal employment (more than 70% of total employment!).

Minimum Wage in Peru

Figure 1: Minimum wage to median ratio

Data Sources

- Employer-Employee Dataset (Planilla Electrónica) 2015-2019
 - ✓ Universe of formal sector firms
 - ✓ Allows to follow worker labor market outcomes (wages, occupation, sector, hours) and firms over time
- Firm-level Census (Encuesta Económica Anual) 2014-2018
 - ✓ Census of medium and large formal firms
 - ✓ Contains detailed information on firms' balance sheet
 - √ Fuzzy matched to employer-employee data
 ► Construction
- ► Household Survey (Encuesta Nacional de Hogares) 2014-2018
 - ✓ Annual survey of households, representative at national/state level (cross-sec & panel)
 - ✓ Detailed information on working status (employed/self-emp/formal/informal), industry, occ, hh-level consumption

Summary Stats: Who are the min wage workers?

	Earnings bin in 2016 (PEN)			
	$650 < y_{t-1} \le 850$	$850 < y_{t-1} \le 1250$	$1,250 < y_{t-1} \le 3,250$	
Lima	0.14	0.18	0.18	
Female	0.42	0.38	0.27	
By education				
Share low skilled	0.05	0.05	0.03	
Share medium skilled	0.48	0.50	0.44	
Share high skilled	0.47	0.45	0.53	
By age				
Share less than 24	0.09	0.08	0.02	
Share 24-44	0.63	0.72	0.76	
Share 45-65	0.27	0.19	0.22	
By contract				
Permanent	0.36	0.22	0.30	
Part-time	0.02	0.01	0.01	

Today's Talk

1. Conceptual Framework ✓

- 2. Setting & Data ✓
- 3. Effects of minimum wage on formal firms

- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners & Losers

Research Design

Empirical Strategy

Firm approach (Harasztosi & Lindner, 2019):

- ▶ Compute fraction of workers earning below the new minimum wage in Feb 2016.
- Estimate the following model:

$$\frac{y_{jt}-y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{\text{t}} + \gamma_t X_{jt} + u_{jt}$$
 Fraction below MW in 2016

▶ ID Assumption: low versus high exposed firms would have trended similarly in abscence of minimum wage increase.

Diff-in-diff Estimates

Effect on Employment and Average Wage

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{t} + \gamma_t X_{jt} + u_{jt}$$
Fraction below MW in 2016

▶ Linearity of FA (employment)

► Linearity of FA (wage)

Employment effects

Wage effects

Effect on Employment and Average Wage

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t + \beta_t \underbrace{\text{FA}_j}_{jt} + \gamma_t X_{jt} + u_{jt} \quad \Rightarrow \text{own-wage elast.} = -0.85!$$

► Linearity of FA (employment)

► Linearity of FA (wage)

Employment effects

Wage effects

Effects by Informality

- 1. Compute share of individuals in occupation o that are classified as informally employed in ENAHO
- 2. Classify an occupation o as informal if this share belongs to the top quartile of this measure
 - Occupations at highest quartile: textile workers, security guards, cooks, etc.
 - Occupations at lowest quartile: lawyers, doctors, financial analysts, etc.
- 3. Estimate the interacted model

$$\frac{y_{jt}-y_{j2016}}{y_{j2016}} = \alpha_t^0 + \alpha_t^1 \mathsf{FA}_j + \beta_t^0 \mathsf{FA}_j + \beta_t^1 \underbrace{\mathsf{FI}_j}_{j} + \beta_t \mathsf{FA}_j \mathsf{FI}_j + \gamma_t X_{jt} + \epsilon_{jt}$$
 Fraction informal occupation in 2016

Effects by Informality

$$\frac{y_{jt} - y_{j2016}}{y_{j2016}} = \alpha_t^0 + \alpha_t^1 \mathsf{FA}_j + \beta_t^0 \mathsf{FA}_j + \beta_t^1 \underbrace{\mathsf{FI}_j}_{j} + \beta_t \mathsf{FA}_j \mathsf{FI}_j + \gamma_t X_{jt} + \epsilon_{jt}$$
 Fraction informal occupation in 2016

Effect on other firms' margins

		٠	Effect	by	Inforr	malit
--	--	---	--------	----	--------	-------

	2015 and 2016	2015 and 2017	2015 and 2014
Panel A. Change in total lab	or cost		
Fraction affected	0.123	0.219	0.031
	(0.039)	(0.051)	(0.022)
Panel B. Change in revenue			
Fraction affected	0.074	0.051	0.011
	(0.036)	(0.046)	(0.027)
Panel C. Change in materia	Is		
Fraction affected	0.079	-0.140	-0.147
	(0.152)	(0.176)	(0.151)
Panel D. Change in capital			
Fraction affected	0.135	0.165	0.006
	(0.068)	(0.087)	(0.055)
Panel E. Change in profits (relative to revenue in	2015)	
Fraction affected	-0.002	-0.006	-0.008
	(0.010)	(0.012)	(800.0)
Observations	3,440	3,185	4,343
Controls	Yes	Yes	Yes

Incidence of the minimum wage

Incidence of the minimum wage

We can estimate the incidence of the minimum wage on consumers and firm owners by using the following decomposition

$$\frac{\Delta LaborCost}{Revenue2016} = \underbrace{\frac{\Delta Revenue}{Revenue2016} - \frac{\Delta Material}{Revenue2016} - \frac{\Delta MiscItems}{Revenue2016} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{Firm \ Owners \ Pay}.$$

Estimate the previous model on each of these terms as outcomes.

Incidence of the minimum wage

Fraction paid by firm owners (percent)

Change in total labor cost relative to revenue in 2015	0.0243	0.0327	-
Ch in revenue rel to revenue in 2015 ($\Delta Revenue$)	0.0757	0.0614	
Ch in materials rel to revenue in 2015 ($\Delta Material$)	0.0065	-0.0028	
Ch in miscitems rel to revenue in 2015 ($\Delta MiscItems$)	0.0453	0.0442	
Incidence on consumers ($\Delta Rev - \Delta Mat - \Delta MiscItems$)	0.0239	0.02	
Ch in profits rel to revenue in 2015 ($\Delta Profit$)	-0.0007	-0.0095	
Ch in depreciation rel to revenue in 2015 ($\Delta Depr$)	0.0004	-0.0032	
Incidence on firm owners (- $\Delta Profit$ - $\Delta Depr$)	0.004	0.0127	
Fraction paid by consumers (percent)	98.35	61.12	

Changes 2016 Changes 2017

38.88

165

Taking Stock

- 1. Highly exposed firms reduce employment \Rightarrow own-wage elast. = -0.85.
- 2. Firms who compete more closely with informal sector exhibit stronger effects
- 3. Labor costs increase on average by $\approx 12\%$ but so do revenues.
- 4. Decomposition shows that consumers bear up to 98% of these increases!

Today's Talk

1. Conceptual Framework ✓

- 2. Setting & Data ✓
- 3. Effects of minimum wage on formal firms \checkmark

- 4. Effects of minimum wage on formal workers
- 5. Redistribution analysis: Winners & Losers

Research Design

Empirical Strategy

Worker approach (Dustmann et al., 2022):

- ▶ Split workers into 15 earnings bins (100 PEN width)
- ► Compare changes before minimum wage (2015 vs 2016) to changes after minimum wage (2016 vs 2017)
- ► Estimate the following model:

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{earnings_{i,t-1} \in bin_b\}$$

$$+ \sum_{b=1}^{15} \frac{\delta_b \mathbf{1} \{earnings_{i,t-1} \in bin_b\} \times POST_t + \beta X_{i,t-1} + \epsilon_{i,t}}{\delta_b \mathbf{1} \{earnings_{i,t-1} \in bin_b\} \times POST_t + \beta X_{i,t-1} + \epsilon_{i,t}}$$

▶ **ID Assumption:** macroeconomic time effects and mean reversion are stable over time.

Main Estimates

Effects on Employment and Wage

$$y_{i,t} - y_{i,t-1} = \sum_{b=1}^{15} \gamma_{2016,b} \mathbf{1} \{ earnings_{i,t-1} \in bin_b \}$$

$$+ \sum_{b=1}^{15} \delta_b \mathbf{1} \{ earnings_{i,t-1} \in bin_b \} \times POST_t + \beta X_{i,t-1} + \epsilon_{i,t}$$

Wage Effects (conditional on employment)

Employment Effects

Effects by Informality

Compare workers who were working at occupations classified as informal versus those who are not

Do workers exit the formal sector or switch towards off-the-books arrangements?

Aggregate employment effects at formal sector (Giuponni et al., 2024)

- 1. Obtain place effects: $\ln w_{it} = \frac{\ln \lambda_{r(i,t)}}{\ln w_{it}} + \theta_t + X'_{it}\beta + u_{it}$
- 2. Obtain skill levels $w_{it}^* = \exp(\ln w_{it} \ln \lambda_{r(i,t)})$
- 3. $\Delta\%$ Employment in low-wage regions compared to those of same *skill level* at high-wage regions

Today's Talk

1. Conceptual Framework ✓

- 2. Setting & Data ✓
- 3. Effects of minimum wage on formal firms \checkmark

4. Effects of minimum wage on formal workers \checkmark

5. Redistribution analysis: Winners & Losers

Redistribution Analysis: Expenses

Change in Expenses

$$\Delta E = Change in Labor Cost \times Pass-through$$
 \times Sh. consumption in MW-produced Goods \times Total Expenses

- ► Change in Labor Cost: use firm approach on firm balance sheet data (\approx 0.123) Table
- ► Pass-through: use firm approach on the decomposition Table

$$\frac{\Delta LaborCost}{Revenue2016} = \underbrace{\frac{\Delta Revenue}{Revenue2016} - \frac{\Delta Material}{Revenue2016} - \frac{\Delta MiscItems}{Revenue2016} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{Consumers Pay (\approx 98 \%)} - \underbrace{\frac{\Delta Depr}{Revenue2016} - \frac{\Delta Profit}{Revenue2016}}_{Firm Owners Pay (\approx 2 \%)}$$

➤ Sh. consumption in MW-produced Goods: follow Macurdy (2015) to estimate at household level using Peruvian Input-Output Table

Who pays for the MW? (Macurdy, 2015)

Compute how much is industry s exposed to the MW

$$e_s = (I - BU)^{-1} B \frac{\text{wagebill}_s^{MW}}{\text{wagebill}_s} \times \frac{2}{3}$$

- lacksquare B(i,j): share of commodity j produced by industry s
- U(i,j): share of commodity j used by industry s
- Using budget information in ENAHO, I match every product to a particular industry that produces it
- Compute the following measure

Sh. cons produced by MW workers $=\sum_{s}$ share of expenses in s \times e_{s}

Who pays for the MW? (Macurdy, 2015)

Figure 8: Share of consumption produced by min wage workers

Redistribution Analysis: Income

Changes in Income

The change in expected income at bin b is given by

$$\frac{\Delta I_b}{w_b} := \underbrace{\frac{\Delta w_b}{w_b}}_{\text{Worker approach}} + \underbrace{\frac{(w_b^{\mathsf{inf}} - w_b)}{w_b}}_{\text{Estimate from ENAHO}} \underbrace{\Delta \mathbf{P}_b(\mathsf{leave})}_{\text{Worker approach}}$$

Income increase for a low-wage worker $\sum_{b=1}^{5} \frac{1}{5} \frac{\Delta I_b}{w_b}$ Alternative Approach

Main results

Redistribution analysis

The reduced form estimates are sufficient to estimate changes in purchasing power to the extent that

- ▶ No income changes in the informal sector
 - Empirically: no income changes on individuals who were informal prior to the minimum wage increase ◆ Evidence
- No substitution away from consumption produced by min wage workers
 - Empirically: no changes in consumption patterns after the min wage increase ◆ Evidence

Redistribution analysis by worker earnings bins

$$rac{\Delta I_b}{w_b}$$
 $w_b - rac{\Delta p_{MW}}{p_{MW,0}}$ $s^e_{MW,b} E_b$ • Prices enamo • Prices enamo

Baseline bin $t-1$	[650, 750)	[750, 850)	[950, 1050)	[1050, 1150)	[1150, 2050)	[2050, max)
Panel A. Income Change						
Mean MW formal wage $(ar{w}_b)$	746	818	903	1,001	1,479	2,630
Effect exp. income $(\Delta I_b/w_b)$	0.11	0.08	0.05	0.04	0.02	0.00
$\Delta I_b/w_b imes ar{w}_b$	82.06	65.44	45.15	40.04	29.58	0.00
Panel B. Expenses Change						
Share cons by MW workers (s^e_{MW})	0.23	0.23	0.24	0.24	0.24	0.26
Mean per cap. expenses (E_b)	590	643	700	613	792	1379
$\Delta~E_b$ (labor cost): $0.98 \times 0.123 \times s_{MW}^e E_b$	16.35	17.82	20.25	17.73	22.91	43.22
$\Delta~E_b$ (manuf. price): $0.40 \times s_{MW}^e E_b$	54.28	59.15	67.20	58.85	76.03	143.42
$\Delta~E_b$ (food price): $0.08 \times s_{MW}^e E_b$	10.85	11.83	13.44	11.77	15.21	28.68

Redistribution analysis by household income deciles

$rac{\Delta I_{MW}}{I_{MW}}$	I_{λ}^{l}	IW,d	$-\frac{\Delta p_{M}}{p_{M}}$		s^e_{MV}	$_{V}E_{d}$				
HH income decile	1	2	3	4	5	6	7	8	9	10
Panel A. Income Change										
Share formal emp	0.01	0.03	0.11	0.19	0.26	0.34	0.46	0.60	0.72	0.82
Share MW formal emp (s_{MW}^l)	0.00	0.02	0.05	0.1	0.13	0.15	0.19	0.21	0.22	0.15
Mean MW formal income (I_{MW}^l)	1	7	40	128	242	316	462	570	705	586
$rac{\Delta I_{MW}}{I_{MW}} imes I_{MW}^l$	0.00	0.42	2.40	7.68	14.52	18.96	27.72	34.20	42.30	35.16
Panel B. Expenses Change										
Share cons by MW workers (s_{MW}^e)	0.16	0.19	0.2	0.21	0.22	0.22	0.23	0.23	0.24	0.27
Mean expenses (E)	639	732	991	1,206	1,485	1,786	2,069	2,466	2,964	4,801
Δ E (labor cost): $0.98 \times 0.123 \times s^e_{MW} E$	12.32	16.76	23.89	30.52	39.38	47.36	57.36	68.36	85.74	156.25
Δ E (manuf. price): $0.40 \times s_{MW}^e E$	40.90	55.63	79.28	101.3	130.7	157.2	190.3	226.8	284.5	518.5
Δ E (food price): $0.08 \times s^e_{MW} E$	8.18	11.13	15.85	20.26	26.14	31.43	38.07	45.37	56.91	103.7

Conclusion

- 1. Informal sector shapes the response to the minimum wage:
 - Its presence reduces labor market power to some formal firms.
 - Induces more involuntary exits from formality all together.
- 2. Surviving firms passthrough costs onto richer households, consistent with inflation inequality (Jaravel, 2021).
- 3. Low-wage formal workers are better off, although resources do not redistribute towards low-income households due to their composition.
- 4. Avenue of future research: non-pecuniary consequences such as job ladder implications, temporary employment, etc.

Thank you!

paulj.corcuera@udep.edu.pe

rriarinty

Increase in the Minimum Wage in Perú Pack

Who are the most affected firms?

	Quartiles of FA_j in 2016					
	Q1	Q2	Q3	Q4		
Lima	0.47	0.41	0.38	0.39		
Avg Wage (PEN)	2480.81	1693.09	1170.64	888.55		
Number of Workers	129.60	157.78	127.36	16.20		
Firm Age	16.03	14.44	11.53	9.39		
Manufacture	0.18	0.21	0.19	0.22		
Commerce	0.35	0.31	0.30	0.31		
Services	0.04	0.06	0.12	0.15		
Observations	5,875	5,908	5,849	5,845		

Who are the MW workers?

	Earnings bin in 2016 (PEN)				
	$650 < y_{t-1} \le 850$	$850 < y_{t-1} \le 1250$	$1,250 < y_{t-1} \le 3,250$		
Lima	0.14	0.18	0.18		
Female	0.42	0.38	0.27		
By education					
Share low skilled	0.05	0.05	0.03		
Share medium skilled	0.48	0.50	0.44		
Share high skilled	0.47	0.45	0.53		
By age					
Share less than 24	0.09	0.08	0.02		
Share 24-44	0.63	0.72	0.76		
Share 45-65	0.27	0.19	0.22		
By contract					
Permanent	0.36	0.22	0.30		
Part-time	0.02	0.01	0.01		

Is the relationship approx. linear?

Figure 9: Linearity of FA measure

Is the relationship approx. linear?

Figure 10: Linearity of FA measure

Own-wage elasticity in recent literature

Small gains from reallocation

Figure 11: Wage and reallocation effects of the minimum wage

Imputation of Earnings

To address censoring at the 95th percentile of each year, I impute upper tail earnings following CCK(2016).

- ► I create 10-year age cells (20 to 29, 30 to 39, ..., 50 to 59), and 6 education cells (missing, no qualifications, secondary, some post sec, univ graduate, post graduate).
- I construct the mean log-earnings of individual i in all other periods, and for all their coworkers. For singleton workers or singleton firms I use the sample mean of gender g(i).

Imputation of Earnings

- ▶ I fit a series of Tobit models separately by year, gender, educ, and age range cells that include the following variables: age, mean log earnings, in other years, fraction of censored earnings in other years, number of full-time employees of gender *g* and its square, dummy for 11 or more employees, fraction of univ graduates at the firm, mean log wage co-workers and fraction of coworkers with censored earnings, dummy for singleton individuals, and a dummy for employees of 1-worker firms.
- ▶ If $y \sim N(X'\beta, \sigma)$ and censoring is such that $y \geq c$ is censored. Let $k = \Phi\left[(c X'\beta)/\sigma\right]$, where $\Phi(\cdot)$ is the standard normal CDF. Let $u \sim U[0,1]$, then

$$y^{u} = X'\beta + \sigma\Phi^{-1}[k + u(1-k)]$$

Firm design on balance sheet data (1806)

- Cannot directly compute fraction affected in firm-level census
- ► Share common variables with employer-employee data: employment counts (by gender, contracts) and average wage cost per worker
- Regression forest using random 75% sample of employer-employee obs as training data to predict FA_i on firm-level census

Expenses - Firms' margins of adjustment (excl. closures)

 		()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	2015 and 2016	2015 and 2017	2015 and 2014					
Panel A. Change in total labor cost								
Fraction affected	0.123	0.219	0.031					
	(0.039)	(0.051)	(0.022)					
Panel B. Change in revenue								
Fraction affected	0.074	0.051	0.011					
	(0.036)	(0.046)	(0.027)					
Panel C. Change in materials								
Fraction affected	0.079	-0.140	-0.147					
	(0.152)	(0.176)	(0.151)					
Panel D. Change in capital								
Fraction affected	0.135	0.165	0.006					
	(0.068)	(0.087)	(0.055)					
Panel E. Change in profits (relative to revenue in 2015)								
Fraction affected	-0.002	-0.006	-0.008					
	(0.010)	(0.012)	(800.0)					
Observations	3,440	3,185	4,343					
Controls	Yes	Yes	Yes					

Expenses - Incidence of the MW (Back)

Fraction paid by consumers (percent)

Fraction paid by firm owners (percent)

	Changes 2016	Changes 2017
Change in total labor cost relative to revenue in 2015	0.0243	0.0327
Ch in revenue rel to revenue in 2015 ($\Delta Revenue$)	0.0757	0.0614
Ch in materials rel to revenue in 2015 (Δ Material)	0.0065	-0.0028
Ch in miscitems rel to revenue in 2015 ($\Delta MiscItems$)	0.0453	0.0442
Incidence on consumers ($\Delta Rev - \Delta Mat - \Delta MiscItems$)	0.0239	0.02
Ch in profits rel to revenue in 2015 ($\Delta Profit$)	-0.0007	-0.0095
Ch in depreciation rel to revenue in 2015 ($\Delta Depr$)	0.0004	-0.0032
Incidence on firm owners (- $\Delta Profit$ - $\Delta Depr$)	0.004	0.0127

98.35

1.65

61.12

38.88

Alternative Income Change

- 1. Fit a model that predicts how much a formal employee at t-1 would earn in the informal sector at t
- 2. Impute observations that correspond to non-employment in EE data
- 3. Re-run the worker approach

Income in the Informal Sector

Figure 12: Changes in Income for Informal Workers

MW Consumption Post-Policy

MW Consumption Post

Laspeyre Prices from Survey Data

Figure 14: Change in food price index

Laspeyre Prices from Balance Sheet Data

Compare provinces with high vs low presence of informality

Effects on Output Price (Manufacture)

Transportation & Communication

