Capítulo 1

Gas de Bose

Para Bose debe cumplirse $\mu < \text{ todo } e \text{ y como } e \geq 0$ eso dice que

$$\mu < 0$$

Pero si en un sistema tiene e_0 como mínimo y $e_0 > 0$ entonces, ¿puede ser $\mu > 0$? Aparentemente sí (al menos recordando que la restricción sale de la serie).

Ya lo entendí esto: pero no para partícula libre.

$$N = \sum_{e} \langle n_e \rangle = \sum_{e} \frac{1}{z^{-1} e^{\beta e} - 1}$$

Además $\langle n_e \rangle \geq 0$, el número de partículas debe ser positivo, lo que lleva a $|z|e^{-\beta e}| < 1$ para todo e de manera que con $e \geq 0$ se tiene 0 < z < 1 (esto depende de que los niveles de energía sean mayores a cero).

$$\beta pV = \log(\Xi) = \sum_{e} -\log(1-\,\mathrm{e}^{-\beta(e-\mu)})$$

$$\beta p = \sum_{e \neq 0} \frac{-\log(1 - e^{-\beta(e-\mu)})}{V} - \frac{\log(1 - z)}{V}$$

La densidad es

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z)$$

donde la expresión general de las g_{ν} es

$$g_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{z^{-1} e^{x} - 1} dx$$

El paso al continuo para $N,V\to\infty$ con N/V constante y la relación $e=p^2/(2m)$ resulta en

$$g(e) = \left(\frac{2\pi V}{h^3}\right) (2N)^{3/2} e^{1/2}$$

y con ello las dos ecuaciones continuas para el gran canónico resultan en

$$\begin{split} \frac{pV}{kT} &= -\frac{2\pi V}{h^3} (2m)^{3/2} \int_0^\infty e^{1/2} \log(1-z\,\mathrm{e}^{-\beta e}) de \\ &N = \frac{2\pi}{h^3} (2m)^{3/2} \int_0^\infty \frac{e^{1/2}}{z^{-1}\,\mathrm{e}^{\beta e} - 1} \,de \end{split}$$

Recordemos que la longitud de onda térmica es $\lambda = \lambda(T)$.

Al final la energía

$$U = -\frac{\partial}{\partial \beta} \log Q = \frac{3}{2} kT \frac{V}{\lambda^3} g_{5/2}(z)$$

y se ve que pV = 2/3U que usó la dispersión no relativista y el factor 3 es por la dimensión.

Para la ecuación de estado hay que expresar z=z(N) e introducirlo en p/(kT).

El último término será negligible para todo z, incluso con $z\to 1$ pues en ese caso $V\to\infty$ mucho más rápido

$$\langle n_0 \rangle = \frac{1}{z^{-1} - 1} = \frac{z}{1 - z}$$

y $\left\langle n_{0}\right\rangle /V$ es finito incluso con $z\rightarrow1,$ entonces

$$\begin{split} \langle n_0 \rangle - z \, \langle n_0 \rangle - z &= 0 \qquad z = \frac{\langle n_0 \rangle}{1 + \langle n_0 \rangle} \\ 1 - z &= \frac{1}{1 + \langle n_0 \rangle} \\ - \frac{\log(1 - z)}{V} &= \frac{\log(1 + \langle n_0 \rangle)}{V} \end{split}$$

y dado que $\log(\langle n_0 \rangle) \ll \langle n_0 \rangle$ despreciamos $\log(1-z)/V.$

Como $0 > \mu$ entonces $e^{\beta \mu} \equiv z < 1$

En Bose la fugacidad está acotada

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V} \left(\frac{z}{1-z} \right)$$

y entonces el nivel de ocupación del fundamental debo sumarlo aparte; vemos que en el segundo término con $z \to 1$ revienta. El primer término es la densidad de partículas en los niveles excitados

$$\frac{\lambda^3}{v} = g_{3/2}(z) + \frac{\lambda^3}{V} n_0$$

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V} \left(\frac{z}{1-z}\right)$$
 residud total densidad en les excitados densidad en el fundamental

EJEMPLO 0.1 Comentario raro

En relación a lo del condensado anoté que: "aparentemente habría un error es esta ecuación" (con respecto a la ecuación de λ^3/v) pués

$$\sum_e \longrightarrow \int_0^\infty g(e) de$$

si he pesado el nivel energético cero con el cero y la borré de la integral. Veamos que $e^{1/2}$ y q(0)=0.

Si z está lejos de 1 el nivel fundamental no está muy poblado y las partículas se distribuyen en los otros excitados.

Por otro lado como 0 < z < 1 entonces $g_{3/2}(z)$ está acotada

$$g_{3/2}(1) = \sum_{j=1}^{\infty} \frac{1}{j^{3/2}} = 2.612$$

Con $z \approx 1$ da

$$\frac{\lambda^3}{v} = g_{3/2}(1) + \lambda^3 \frac{n_0}{V}$$

cuando se aumenta N necesariamente las partículas se apilan en el fundamental; es una fracción macroscópica pués $V \to \infty$ y entonces $n_0 \to \infty$.

Se da con

$$\frac{\lambda^3}{v} = \frac{\lambda^3}{V} N = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{N}{V} > 2.612$$

El condensado de Bose surge cuando se saturan los excitados; ello pasa con T baja, N/V alta y $\mu \to 0$. Se tiene en estos casos que N_0 es comparable a N.

GRAFIQUETE

En la carpeta hablo de un N_max dado por $V(2\pi mkT)^{3/2}/h^3g_{3/2}(1)$ y se da $N_e \geq N_max(T)$, que imagino que implica lo del acotamiento en g y causa que no "entren más" en los excitados (supongo).

Destaco en esta expresión T baja dividiendo y n alta multiplicando.

El condensado de Bose podemos pensarlo como la coexistencia de dos fluidos $(e=0 \text{ y } e \neq 0)$. Podemos definir un T_c, v_c desde

$$\frac{\lambda^3}{v} = g_{3/2}(1) = 2.612 = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{1}{v}$$

que lleva a que para un dado v tenemos una cierta T_c y para una cierta T tenemos un dado v_c dados ambos por

$$T_c^{3/2} = \frac{h^3}{(2\pi m k T)^{3/2}} \frac{1}{v} \frac{1}{g_{3/2}(1)} \qquad v_c = \frac{\lambda^3(T)}{g_{3/2}(1)}$$

De esta forma si $T < T_c$ y $v < v_c$ se tiene la condensación de Bose

$$\lambda^3 \frac{N}{V} = g_{3/2}(1) + \lambda^3 \frac{N_0}{V}$$

que es válida a partir de la condensación $(T < T_c)$

$$N = \frac{(2\pi mk)^{3/2}}{h^3} T^{3/2} g_{3/2}(1) V + N_0 = N \left(\frac{T}{T_c}\right)^{3/2} + N_0$$

 $N_e = N \left(\frac{T}{T_-}\right)^{3/2}$

$$N_o = N \left(1 - \left(\frac{T}{T_c} \right)^{3/2} \right),$$

que es válida por supuesto con $T < T_c$. A partir de haber alcanzado la condensación z=1, añadir partículas (N++) o reducir el volumen (V--) hace que $N_e/V \to 0$ pues $V \to \infty$

DIBUJO con observaciones

Cuando v/λ^3 es chico se saturan los N_e y entonces $z \to 1$.

Cuando v/λ^3 es grande no hay condensado y entonces $\lambda^3/v\approx z$ o bien $1/(v/\lambda^3)\approx z$.

Para la presión tendremos

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(z)$$

 $con z = 1(T < T_c)$

$$\frac{p}{kT} = \frac{(2\pi mkT)^{3/2}}{h^3} g_{5/2}(1) = \frac{1}{v(T_c/T)^{3/2} g_{3/2}(1)} g_{5/2}(1)$$

$$p = 1.34 \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} \qquad \frac{pV}{NkT} = 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

$$\mathrm{con}\ z = 1(T = T_c)$$

$$\beta p = \frac{g_{5/2}(1)}{g_{3/2}(1)v} = \frac{0.513}{v}$$

$$p=0.513\frac{NkT}{V}$$
es aprox. 1/2 p gas ideal clásico

con $z \lesssim 1(T > T_c)$

$$\beta p = \frac{1}{v} \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

pero no podemos expandir en el virial porque λ^3/v no es chico.

Con $z \approx 0 \ (T \gg T_C)$

$$\beta pv = \frac{pV}{NkT} = \sum_{l=0}^{\infty} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

usando toda la serie y procediendo en modo análogo a Fermi se obtienen

Los a_ℓ son los coeficientes del virial -que son los mismos para Fermi-.

$$\begin{cases} a_1 = 1 \\ a_2 = -0.17678 \\ a_3 = -0.00330 \end{cases}$$

$$\frac{pV}{NkT} = 1 - 0.17678 \left(\frac{\lambda^3}{v}\right) - 0.00330 \left(\frac{\lambda^3}{v}\right)^2$$

DIBUJO

El virial vale en $\lambda^3/v \ll 1$ (alta Ty baja N/V)

A bajas Tse comportan de modo muy diferente, p $_{\rm Fermi}~>0$ y p $_{\rm Bose}~\approx~0$

1.0.1 Análisis del gas ideal de Bose

• $\lambda^3/v\ll 1$ y entonces $z\ll 1$ $[T\gg T_c]$ (o sea T alta y N/V baja) tenemos un desarrollo del virial porque $z\ll 1$

$$\frac{\beta pV}{N} = \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{v}\right)^{l-1} = \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

$$\beta pV \approx 1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}} \qquad \qquad U = \frac{3}{2} pV = \frac{3}{2} NkT \left(1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}}\right) \label{eq:deltapv}$$

Como $a_2<0$ se tiene que la presión para Bose Einstein es menor a la presión clásica. Siguiendo podemos trabajar una expresión para el calor específico

$$\frac{C_V}{kT} = \frac{3}{2} \left(1 + 0.0884 \left(\frac{\lambda^3}{v} \right) + 0.0066 \left(\frac{\lambda^3}{v} \right)^2 + \dots \right)$$

• $\lambda^3/v \approx 1$ y entonces z < 1 $[T > T_c]$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

• $\lambda^3/v = 2.612$ y entonces z = 1 $[T = T_c]$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)} \approx \frac{1.34}{2.612} \approx 0.513$$

• $\lambda^3/v \gg 1$ y entonces z=1 [$T < T_c$] (baja temperatura T y alta densidad N/V) y hay que considerar el fundamental

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(1) \qquad \qquad \lambda^3 \left(\frac{N-N_0}{V}\right) = g_{3/2}(1) \label{eq:betapp}$$

que lleva a

$$\left(1 - \frac{N_0}{N}\right) = \left(\frac{T}{T_c}\right)^{3/2}$$

puesto que T_c es tal que

$$\begin{split} \frac{h^3}{(2\pi mkT_c)^{3/2}} \frac{N}{V} &= g_{3/2}(1) = \frac{\lambda^3}{v} \left(\frac{T}{T_c}\right)^{3/2} \\ \beta pV &= \frac{g_{5/2}(z)}{g_{3/2}(z)} \left(\frac{T}{T_c}\right)^{3/2} = 0.513 \left(\frac{T}{T_c}\right)^{3/2} \\ \frac{\lambda^3}{v} \left(\frac{T}{T_c}\right)^{3/2} &= g_{3/2}(1) \quad \Rightarrow \quad \frac{1}{\lambda^3} = \frac{1}{v} \left(\frac{T}{T_c}\right)^{3/2} \frac{1}{g_{3/2}(1)} \end{split}$$

Con el aumento de la temperatura aumentan ambos miembros en la ecuación

$$\frac{\lambda^3}{v} = g_{3/2}(z)$$

pero como $g_{3/2}$ está acotada esto lleva a la condensación de Bose.

Desde la expresión de la energía U=3/2pV y $C_V=\frac{\partial}{\partial T}(3/2pV)$ y entonces

Con z = 1 y $T < T_c$ expresamos todo en términos de (T/T_c) .

•
$$T < T_c$$

$$C_V = \frac{\partial}{\partial T} \left(\frac{3}{2} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \right) = \frac{15}{4} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \qquad C_V \propto T^{3/2}$$

•
$$T = T_c$$

$$C_V = Nk \ 0.513 \frac{15}{4} = Nk1.92375$$

•
$$T > T_c$$

$$C_V = \left(\frac{15}{4} \frac{g_{5/2}(z)}{g_{3/2}(z)} - \frac{9}{4} \underbrace{\frac{g_{3/2}(z)}{g_{1/2}(z)}}_{\to \infty \text{ en } z=1}\right)$$

 C_V es continuo.

•
$$T \gg T_c$$

$$C_V = Nk \frac{3}{2} \frac{\partial}{\partial T} \left(T \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{v} \right)^{l-1} \right)$$

$$C_V = Nk\frac{3}{2}\left(1 + 0.0884\left(\frac{\lambda^3}{v}\right) + \ldots\right)$$

DIBUJO

1.0.2 Condensado de Bose como transición de fase

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$

$$\frac{N_0}{N} = 1 - \frac{v}{v}$$

que se obtiene desde las siguientes

$$\frac{\lambda^3(T_c)}{v} = g_{3/2}(1) \qquad \qquad \frac{\lambda^3(T)}{v_c} = g_{3/2}(1)$$

para llegar a la relación útil:

$$\left(\frac{T}{T_c}\right)^{3/2} = \frac{v}{v_c}$$

 $\lambda^3 = h^3/(2\pi mkT)^{3/2} \mathbf{y}$ $\frac{\lambda^3}{r} = g_{3/2}(1) = \frac{\lambda^3}{r} \frac{v}{r}$

En
$$\frac{\lambda^3}{v} \leq g_{3/2}(1)$$
 vale

$$\frac{\lambda^3}{v}=g_{3/2}(z)$$
 no tengo en cuenta N_0

$$\frac{v_c}{v} = \frac{g_{3/2}(z)}{g_{3/2}(1)} \quad \Rightarrow \quad \left(\frac{T}{T_c}\right)^{3/2} = \frac{g_{3/2}(z)}{g_{3/2}(1)}$$

Se vio que con $V \to \infty$

$$\frac{1}{V}\log(1-z)\to 0$$

y entonces

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(z) \qquad v > v_c$$

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(1) \qquad v \le v_c$$

$$\beta p = \frac{g_{5/2}(1)}{v_c g_{3/2}(1)}$$

es decir que la presión p no depende del v

Con $v > v_c$

$$p = \frac{kTg_{5/2}(z)}{\lambda^3} = \left(\frac{h^2}{2\pi m}\right)\frac{1}{\lambda^3}g_{5/2}(z)$$

que conlleva a

$$kT = \left(\frac{h^2}{2\pi m}\right)\frac{1}{\lambda^2} \qquad p = \left(\frac{h^2}{2\pi m}\right)\frac{g_{5/2}(z)}{v^{5/3}[g_{3/2}(z)]^{5/3}}$$

y con $v > v_c$

$$pv^{5/3} = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{[g_{3/2}(z)]^{5/3}}$$

 $\mathrm{con}\ v \leq v_c$

$$p = \frac{kT}{v_c} \frac{g_{5/2}(1)}{g_{3/2}(1)}$$

Vemos que en $v=v_c$ es

$$pv^{5/3} = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(1)}{[g_{3/2}(1)]^{5/3}}$$

$$p = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(1)}{v_c g_{3/2}(1)} \frac{1}{\lambda^2} = \frac{kT}{v_c} \frac{g_{5/2}(1)}{g_{3/2}(1)}$$

y entonces se ve que es continua.

$$\begin{split} \beta p &= \frac{1}{\lambda^3} g_{5/2}(z) \quad v \geq v_c \\ &\qquad \qquad \beta p = \frac{1}{\lambda^3} g_{5/2}(1) \quad v \leq v_c \\ &\qquad \qquad \frac{\lambda^3}{v} = g_{3/2}(z) \quad v > v_c \\ &\qquad \qquad \frac{\lambda^3}{v} = g_{3/2}(1) \quad v = v_c \end{split}$$

•
$$v \ge v_c$$

$$\begin{split} p &= \frac{kT}{v_c} g_{5/2}(z) = \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} g_{5/2}(z) \\ p &= \left(\frac{h^2}{2\pi m}\right) \frac{1}{\lambda^5} g_{5/2}(z) = \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{v_c^{5/3} [g_{3/2}(z)]^{5/3}} \\ \hline pv^{5/3} &= \left(\frac{h^2}{2\pi m}\right) \frac{g_{5/2}(z)}{g_{3/2}(z)^{5/3}} \end{split}$$

• $v \leq v_c$

$$p = \frac{kT}{v_c} g_{5/2}(1) = \boxed{ \left(\frac{kT}{v_c} \right) \frac{g_{5/2}(1)}{g_{3/2}(1)} }$$

Las isotermas del gas ideal de Bose serán algo como DIBUJO

Una dada T_1 determina un v_{c_1} pués

$$\frac{\lambda^3(T_1)}{v_{C_1}} = g_{3/2}(1) \quad \to \quad v_{C_1} = \frac{\lambda^3(T_1)}{g_{3/2}(1)}$$

y en la zona condensada p no depende del v.

Si ponemos todo en función de T resulta

$$v \le v_c \qquad p = \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} g_{5/2}(1)$$

$$\frac{dp}{dT} = \frac{5}{2} \frac{(2\pi m)^{3/2}}{h^3} (k)^{5/2} T^{3/2} g_{5/2}(1) = \frac{5}{2} \frac{k}{\lambda^3} g_{5/2}(1) = \frac{5}{2} \frac{k}{v} \frac{g_{5/2}(1)}{g_{3/2}(1)}$$

 $\lambda^3(T) \propto T^{-3/2}$ A medida que T sube el v_c es más pequeño.

DIBUJO

$$\frac{dp}{dT} = \frac{(5/2)kTg_{5/2}(1)}{Tv_cg_{3/2}(1)}$$

pero Clapeyron era

$$\frac{dp}{dT} = \frac{L}{T\Delta V} \qquad \Rightarrow \qquad \boxed{\frac{dp}{dT} = \frac{(5/2)kTg_{5/2}(1)/g_{3/2}(1)}{Tv_c}}$$

$$\frac{dp}{dT} = \frac{L}{T\Delta V} = \frac{T\Delta S}{T\Delta V} = \frac{\Delta S}{\Delta V}$$

Es una transición de fase de primer orden

$$S = \frac{U + pV - \mu N}{T} = \frac{5/2pV - \mu N}{T}$$
$$\frac{S}{kN} = \frac{5}{2} \frac{pV}{NkT} - \frac{\mu}{kT}$$

y entonces

$$T > T_c \qquad \frac{S}{kN} = \frac{5}{2} \frac{g_{5/2}(z)}{g_{3/2}(z)} - \log z$$

$$T < T_c \qquad \frac{S}{kN} = \frac{5}{2} 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

$$\left(\frac{T_c}{T}\right)^{3/2} = \frac{\lambda^3}{g_{3/2}(1)v}$$

$$\operatorname{Con} T \to 0 \qquad \frac{S}{kN} \propto T^{3/2}$$

y por lo tanto vale la tercer de la termodinámica. Para $T < T_c$ es

$$S = Nk \frac{5}{2} \frac{g_{5/2}(1)}{g_{3/2}(1)} \left(\frac{v}{v_c}\right) \quad \rightarrow \quad \frac{\partial S}{\partial V} = \frac{\partial S/N}{\partial V/N} = \frac{\partial s}{\partial v}$$

siendo s entropía por unidad y v volumen específico.

$$\frac{\partial s}{\partial v} = \frac{(5/2)kg_{5/2}(1)/g_{3/2}(1)}{v_c} = \frac{dp}{dT}$$

y acá es donde vemos que es una transición de fase de primer orden.

1.1 Cuánticos IV –reubicar–

algunos temitas sueltos:

números de ocupación

gas de Fermi $p y c_v$

gas de Fermi $p y c_n$

Condensado de Bose

El coeficiente lineal del virial $1/2^{5/2} = 0.1767767$ sale considerando las $f_{\nu}(z)$ hasta orden uno y tirando términos más allá.

El requerimiento $\mu < 0$ viene de que el fundamental n_0 no puede tener población negativa

$$n_0 = \frac{1}{e^{\beta(e_0 - \mu)} - 1} = \frac{1}{e^{-\beta\mu} - 1} \ge 0$$
$$e^{-\beta\mu} - 1 > 0 \implies \mu < 0$$

Con $\mu \to 0^-$ tenemos $n \to \infty$

En el caso del condensado establecemos desde

$$\frac{\lambda^3(T)}{v} = g_{3/2}(1)$$

que lleva para T_c (para vfijo) o v_c (para Tfija) versiones evaluadas de la anterior ecuación.

Para la población de los estados excitados

$$\begin{split} p_x &= \frac{h}{V^{1/3}} n_x \Rightarrow \boldsymbol{p} = \frac{h}{V^{1/3}} \boldsymbol{n} \\ \frac{n_{e_i}}{V} &= \frac{1}{V} \frac{1}{z^{-1} \operatorname{e}^{\beta e_i} - 1} \leq \frac{1}{V(\operatorname{e}^{\beta e_i} - 1)} = \frac{1}{V(\sum_{l=1}^{\infty} (\beta e_i)^l / l!)} \end{split}$$

pués $z^{-1} = 1/z \le 1$

$$\beta e = \frac{\beta p^2}{2m} = \frac{\beta}{2m} \frac{h^2}{V^{2/3}} (n_x^2 + n_y^2 + n_z^2)$$

$$\frac{2m}{V^{1/3} \beta h^2(\sum_{l=1} \dots)} \to 0 \quad \text{si} \quad V \to \infty$$

y entonces

$$\frac{n_e}{V} \to 0$$
 si $V \to \infty$

Esto significa que si V es muy grande, en el condensado se tenderá a que todas las partículas se hallen en e=0 pues

$$\frac{N_e}{N} \to 0 \qquad \qquad \frac{N_0}{N} \to 1$$

¿El condensado BE requiere población de los niveles o V total de algún tipo; unas consultas agarradas con clip: ¿porqué hay una cúspide en C_v ? ¿transiciones?

Véamoslo en la ecuación de N,

$$\frac{\lambda^3 N}{V} = g_{3/2}(1) + \frac{\lambda^3}{V} \frac{z}{1-z}$$

y si $z \to 1$ de forma que $z/(1-z) \gg 1$ entonces $g_{3/2}(1)$ es despreciable de modo que

$$\frac{\lambda^3 N}{V} \approx \frac{\lambda^3}{V} \frac{z}{1-z} = \frac{\lambda^3 N_0}{V}$$

y se da que $N \sim N_0$.

En Bose se da 0 < z < 1

DIBUJITOS

Con $z\ll 1$ es $\lambda^3/v\approx z$ y entonces $z\approx 1/(v/\lambda^3)$. Con z=1 es $\lambda^3/v=2.612$ n pero si $\lambda^3/v>2.612$ entonces z no se mueve y sigue en su valor 1.

1.1.1 Cuánticos 5 - Cuánticos 5b - reubicar -

presión gas de Bose

 C_V gas de Bose

El condensado de Bose es una transición de fase de primer orden. Crece la población del fundamental de modo espectacular. El parámetro λ^3/V se encarga de adjustar la población del fundamental.

límite clásico función de partición cálculo de $Tr(e^{-\beta A})=Q_N(V,T)$ diferencia con el caso clásico

potencial efectivo

Podemos comparar presión con el gas ideal para reconoder si es Fermi o Bose.

Ver la transición de fase con el tema del calor latente. ¿Cómo era lo de Clayperon?

El C_V es continuo. Veamos que da

$$T < T_C \qquad \frac{C_V}{Nk} \propto T^{3/2}$$

$$T = T_C \qquad \frac{C_V}{Nk} \approx 1.925 > \frac{3}{2}$$

$$T > T_C \qquad \frac{\partial}{\partial T} \left(\frac{3}{2} T \frac{g_{5/2}(z)}{g_{3/2}(z)} \right) \frac{C_V}{Nk}$$

La flecha de abajo señala una región de coexistencia. Entonces el fundamental se empieza a poblar mucho. Cuando tengo todos en el condensado es $S \to 0, T \to 0$ y se ve que satisface la tercer ley. Los boltzmanniones no cumplen esto (no están pensados para satisfacer la tercer ley).

Tiene calor latente $\Delta H,$ entonces tenemos una transición de fase de primer orden.

1.1.2 Límite clásico de la función de partición

Cuando se overlapean las funciones de onda en las partículas hay que realizar las perturbaciones correspondientes. El límite clásico es la no permutación. La simetría hace surgir términos efectivos de interacción (atractivos o repulsivos)

