Exercícios - 8

Amplificadores operacionais

1- Para os três circuitos da fig. 1 obtenha as respectivas expressões do ganho em tensão, $A_{\nu} = v_{out}/v_{in}$.

2- Determine o ganho em tensão, $A_v = v_{out}/v_{in}$, do circuito da fig. 2.

Sugestão: Utilize o Princípio da Sobreposição, considerando, primeiro, v_{in} aplicado só em R_1 e depois só aplicado em R_3 .

Fig. 2

3- Para o circuito da fig. 3 obtenha v_{out} em função das quatro tensões nas entradas.

4- Para o circuito da fig. 4 obtenha v_{out} em função das duas tensões nas entradas. Considere $R_1 = 25k\Omega$, $R_2 = 50k\Omega$, $R_3 = 5k\Omega$ e $R_4 = 70k\Omega$.

5- Para o circuito da fig. 5 calcule v_O sabendo que $v_{II} = 5mV$ e $v_{I2} = (50 - 50\cos\omega t) \ mV$.

6- Para o circuito da fig. 6 calcule, $A_{vI} = v_{OI}/v_I$, e $A_{v2} = v_{O2}/v_I$. Qual é a relação de fase entre v_{OI} e v_{O2} .

Fig. 6

7- Para o circuito da fig. 7 considere $R_1 = 22k\Omega$, $C_2 = 100nF$ e $v_1 = -5V$. Supondo o condensador inicialmente descarregado, determine o tempo necessário para v_0 chegar a +5V.

Fig. 7

- **8-** No comparador da fig. 8, $V_{ref} = 2V$. Calcule:
- a) A tensão de comparação, V_T .
- **b**) O valor médio de v_{out} supondo que em v_{in} é aplicada uma onda triangular de $\pm 5V$ e frequência 50Hz, e a saída do OpAmp satura a $\pm 10V$.

Fig. 8

9- Considere o comparador com histerese da fig. 9 onde $R_1 = 5k\Omega$, $R_2 = 20k\Omega$, $R_A = 10k\Omega$, $R_B = 20k\Omega$ e $V_{REF} = 3V$. A saída do OpAmp satura a $\pm 10V$. Calcule as tensões de comparação, V_{TL} e V_{TH} .

Fig. 9

Respostas

1-a)
$$-\frac{R_2}{R_1}$$
; **b**) $1 + \frac{R_2}{R_1}$; **c**) $\frac{R_2}{R_1}$

2-
$$\frac{v_{out}}{v_{in}} = 0$$
; Ou seja, o circuito é inútil! ©

3-
$$v_{out} = -\left(v_{in4} + \frac{1}{2}v_{in3} + \frac{1}{4}v_{in2} + \frac{1}{8}v_{in1}\right)$$

4-
$$v_{out} = \left(1 + \frac{R_4}{R_3}\right) \left(\frac{R_2}{R_1 + R_2} v_{in1} + \frac{R_1}{R_1 + R_2} v_{in2}\right)$$

$$v_{out} = 10v_{in1} + 5v_{in2}$$

5-
$$v_o = \cos(\omega t)[V]$$
;

6-
$$A_{v1} \equiv \frac{v_{O1}}{v_I} = \left(1 + \frac{R_2}{R_1}\right) e A_{v2} \equiv \frac{v_{O2}}{v_I} = -\left(1 + \frac{R_2}{R_1}\right)$$

Portanto, v_{O1} e v_{O2} estão desfasados de 180° .

7-
$$t_{(5V)} = 2.2ms$$

8- a)
$$V_T = -2V$$
; **b)** $\overline{v_{out}} = 4V$

9-
$$V_{TI} = -4.5V$$
, $V_{TH} = 1.5V$