

M³ a closed hyp. mfd
We'll get a fibration >>
TI, M \(\rightarrow \) \(\rightarrow

$$\Sigma$$
 genus ≥ 2 , φ Σ

$$M_{\varphi} = \sum_{i} \times I / (\varrho(0) = \varrho(1))$$

Universal cover

There is a pseudo-Anisov flow - has expanding and contracting flows (look at singular foliations, stable & unstable) transverse to the fibration. Note: Since Σ is hyperbolic, $\widetilde{\Sigma} = H^3$

Blue & Red Red Leaves

With some work, we can extend (a lift of the flow to int H) to all due to quasideocity.

Thm: Φ pseudo-Anisov on M^3 closed $\Rightarrow \pi_i \Rightarrow S'_{\upsilon}$ (Universal circle)

• Φ quasi-geodesic on M^3 closed hyperbolic $\Rightarrow \pi_1 \sim S_U \xrightarrow{F} S_{\infty}^2 \circ \pi_{1,M}$

Not all groups can act on S', yields a way to show manifolds don't have p.A/QG flows.

Let $PSL(2, R) \rightarrow S'$, then fixed points have attracting/repelling behavior.

Convergence group: every sequence g_1g_2 ... distinct $\epsilon\Gamma$, \exists a subsequence converging to an attractor.

Thm: Convergence \Rightarrow conj to some $\Gamma \leq PSL(2, \mathbb{R})$ Conjecture: $\Gamma \neq S^2$ + uniform convergence?

 $\Rightarrow \Gamma = \pi_1 (Some closed hyp. M)^3$

Conjectures

- 1) QG flows have closed orbits
- 2) QG Flow >> p.A. flow

Would like analogs of above theorems in the presence of these S'actions.

Conjectured corollaries

- · Canon true if I a Canon-Thurston curve
 - Every Γ hyperbolic with $2\Gamma = S^2$ is virtually cyclically orderable