MATH 416 Abstract Linear Algebra

Midterm 2 – Practice Exam 2

Exam Instructions: This is a **closed-book** exam and you have **50 minutes** to complete it. Show all work clearly; **partial credit** will be awarded for reasoning that demonstrates useful thinking even if the final answer is incorrect. When proving statements, always start from the **basic definitions** and clearly indicate on each line which definitions, properties, or theorems you are using.

"Chance favors the prepared mind."	
	— Louis Pasteur

Question 1 (10 points): Null Spaces and Ranges

For this entire problem, let V, W be finite dimensional vector spaces and assume $T \in \mathcal{L}(V, W)$.

(i) (2 points) What is the definition of the range of *T*?

Solution. The range of *T* is the set of all vectors in *W* that can be reached by acting *T* on some vector in *V*. Formally,

$$range T = \{ Tv : v \in V \}. \tag{1}$$

(ii) (2 points) Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is the differentiation map defined as Dp = p'. What is range D?

Solution. All polynomials can be reached by applying the differentiation operator to a polynomial of a higher degree. Because D is defined here from all polynomials to all polynomials, the range is simply $\mathcal{P}(\mathbb{R})$.

(iii) (6 points) Prove that range *T* is a subspace of *W*.

Proof. We must show that $0 \in \text{range } T$ and that it is closed under scalar multiplication and addition. For the zero vector, note that T0 = 0, thus $0 \in \text{range } T$. Now, let $u, v \in \text{range } T$ and $a, b \in \mathbb{F}$. Then, there exists $u' \in V$ such that u = Tu' and $v' \in V$ such that v = Tv'. It follows that

$$au + bv = aTu' + bTv', (2)$$

$$=T(au'+bv'), (3)$$

and $au' + bv' \in V$ because it is a vector space (and thus closed under linear combinations of elements). Thus, $au + bv \in \text{range } T$, as desired. Thus, range T is a subspace of W.

Question 2 (10 points): Matrices, Invertibility, and Change of Basis

Let $T \in \mathcal{L}(\mathbb{R}^2)$ be defined by

$$T(x,y) = (3x + y, x + 2y).$$

Let the *standard basis* of \mathbb{R}^2 be

$$E = \{e_1 = (1,0), e_2 = (0,1)\},\$$

and let

$$B = \{b_1 = (1,1), b_2 = (1,-1)\}$$

be another basis of \mathbb{R}^2 .

(i) (3 points) Find $\mathcal{M}(T)_E$, the matrix of T in the standard basis E.

Solution. In the standard basis we can usually just eye-ball the matrix; however, to be formal, we should consider the action of *T* on the standard basis

$$T(1,0) = (3,1), (4)$$

$$T(0,1) = (1,2). (5)$$

These become the columns of the matrix in the standard basis

$$\mathcal{M}(T)_E = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}. \tag{6}$$

(ii) (4 points) Express each vector in *B* in terms of the standard basis, and compute the *change-of-basis matrix*

$$P_{B\rightarrow E}$$

(from *B*-coordinates to *E*-coordinates). Then find its inverse $P_{E\to B}$.

Solution. To change from B to E, we need to consider acting I on the elements of B and then expressing them in terms of the standard basis vectors as follows

$$I(1,1) = (1,1) = 1(1,0) + 1(0,1),$$
 (7)

$$I(1,-1) = (1,-1) = 1(1,0) + (-1)(0,1).$$
(8)

Taking these coefficients as the columns of the change-of-basis matrix, we obtain

$$P_{B\to E} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \tag{9}$$

To find the inverse, we may work in the opposite direction. We have

$$I(1,0) = (1,0) = \frac{1}{2}(1,1) + \frac{1}{2}(1,-1), \tag{10}$$

$$I(0,1) = (0,1) = \frac{1}{2}(1,1) + \left(-\frac{1}{2}\right)(1,-1) \tag{11}$$

from which we may form

$$P_{E \to B} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}. \tag{12}$$

To check that we did not make any algebra mistakes, observe

$$P_{B\to E}P_{E\to B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{13}$$

(iii) (3 points) Compute the matrix of T in the basis B, denoted $\mathcal{M}(T)_B$, using your result from (ii). In words, does the invertibility of T depend on the choice of basis?

Solution. To obtain $\mathcal{M}(T)_B$, we recall that $\mathcal{M}(T)_B = P_{E \to B} \mathcal{M}(T)_E P_{B \to E}$. Thus, we obtain

$$\mathcal{M}(T)_B = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 7/2 & 1/2 \\ 1/2 & 3/2. \end{pmatrix}$$
(14)

Invertibility can be determined without ever choosing a basis. Because the matrix of a product of maps is simply the product of the matrices (regardless of bases) we know that if T is invertible, $\mathcal{M}(T)$ is invertible regardless of the chosen basis.

Above would be sufficient justification. However, we can go a step further and show that if T is invertible, then there exists a T^{-1} such that $TT^{-1} = I$. This implies

$$\mathcal{M}(I) = \mathcal{M}(TT^{-1}) = \mathcal{M}(T)\mathcal{M}(T^{-1}),\tag{15}$$

which, by the uniqueness of the inverse, implies $\mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$. This holds for all bases and we are done.

Question 3 (10 points): Invariant Subspaces, Eigenvalues, and Eigenvectors

(i) (3 points) Suppose $T \in \mathcal{L}(V)$ and V_1, \ldots, V_m are subspaces of V invariant under T. Prove that $V_1 + \cdots + V_m$ is invariant under T.

Proof. Let $v_i \in V_i$ for all i. Then, any $v \in V_1 + \cdots + V_m$ may be written as

$$v = v_1 + \dots + v_m \tag{16}$$

for some $v_i \in V_i$. Since each V_i is a T-invariant subspace, we know that $Tv_i \in V_i$. Thus,

$$Tv = T\left(v_1 + \dots + v_m\right),\tag{17}$$

$$=Tv_1+\cdots Tv_m, \tag{18}$$

but each $Tv_i \in V_i$, thus $Tv \in V_1 + \cdots + V_m$ and we conclude that $V_1 + \cdots + V_m$ is T-invariant, as desired.

(ii) (3 points) Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is defined by T(x,y) = (-3y,x). Find the eigenvalues of T.

Solution. From the definition of an eigenvalue, we have $T(x,y) = (\lambda x, \lambda y)$. Expanding the definition of the map, we obtain

$$(-3y, x) = (\lambda x, \lambda y). \tag{19}$$

This yields the simultaneous equations $-3y = \lambda x$ and $x = \lambda y$. Clearly, neither x nor y can be zero because it would imply the other component is zero. Plugging the second into the first, we see

$$-3y = \lambda^2 y \implies (\lambda^2 + 3)y = 0. \tag{20}$$

We see that the only way this is true is if $\lambda^2 + 3 = 0$, which has no solutions over the reals. Thus, as defined, the operator does not have any eigenvalues. If instead, it was defined over complex numbers, the eigenvalues would clearly be $\pm \sqrt{3}i$.

(iii) (4 points) Suppose $P \in \mathcal{L}(V)$ such that $P^2 = P$. Prove that if λ is an eigenvalue of P, then $\lambda = 0$ or $\lambda = 1$.

Proof. If λ is an eigenvalue of P, then for some non-zero $v \in V$, we have

$$Pv = \lambda v. (21)$$

We may then write $P^2v=P(\lambda v)=\lambda(Pv)=\lambda^2v$. However, $P^2=P$, thus we have

$$\lambda v = \lambda^2 v \implies (\lambda - \lambda^2)v = 0.$$
 (22)

Finally, because $v \neq 0$ by the assumption that λ is an eigenvalue, we may conclude $(\lambda - \lambda^2) = 0$ or, equivalently, $\lambda(1 - \lambda) = 0$. Thus, $\lambda = 0$ or $\lambda = 1$.