Solutions to "Introduction to Algorithms, 3rd edition"

Jian Li (yinyanghu)

June 7, 2014

© 2014 Jian Li (yinyanghu) All rights reserved.

This work is **FREE** and may be distributed and/or modified under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (© § § ②).

${\bf Acknowledgements}$

Contents

Ι	Foundations	1
1	The Role of Algorithms in Computing 1.1 Comparison of running times	3
II	Sorting and Order Statistics	5
ΙΙ	I Data Structures	7

iv CONTENTS

Part I Foundations

Chapter 1

The Role of Algorithms in Computing

4 CHAPTER 1. THE ROLE OF ALGORITHMS IN COMPUTING

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
$\log(n)$	2^{10^6}	$2^{10^6 \cdot 60}$	2 ¹⁰⁶ ·60·60	$2^{10^6 \cdot 60 \cdot 60 \cdot 24}$	2106-60-60-24-30	2 ¹⁰⁶ ·60·60·24·365	2 ¹⁰⁶ ·60·60·24·365·100
\sqrt{N}	$(10^6)^2$	$(10^6 \cdot 60)^2$	$(10^6 \cdot 60 \cdot 60)^2$	$(10^6 \cdot 60 \cdot 60 \cdot 24)^2$	$(10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 30)^2$	$(10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 365)^2$	$(10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 365 \cdot 100)^2$
n	10^{6}	$10^{6} \cdot 60$	$10^6 \cdot 60 \cdot 60$	$10^6 \cdot 60 \cdot 60 \cdot 24$	$10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 30$	$10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 365$	$10^6 \cdot 60 \cdot 60 \cdot 24 \cdot 365 \cdot 100$
$n \log(n)$	62,746	$2.8 \cdot 10^{6}$	$1.33 \cdot 10^{8}$	$2.75 \cdot 10^{9}$	$7.18 \cdot 10^{10}$	$7.97 \cdot 10^{11}$	$6.86 \cdot 10^{13}$
n^2	1,000	7,746	60,000	293, 939	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{6}$	$5.6 \cdot 10^{7}$
n^3	100	391	1,533	4, 421	13,737	31,594	146,646
2^n	20	26	32	36	41	45	51
n!	(9, 10)	(11, 12)	(12, 13)	(13, 14)	(15, 16)	(16, 17)	(17, 18)

Table 1.1: Solution to Problem 1.1

1.1 Comparison of running times

Table 1.1 shows the solution. We assume the base of log(n) is 2. And we also assume that there are 30 days in a month and 365 days in a year.

Note Thanks to Valery Cherepanov(Qumeric) who reported an error in the previous edition of solution.

Part II Sorting and Order Statistics

Part III Data Structures

List of Figures

List of Tables

1 1	Solution	to Problem	1.1																4
	Dorumon		1.1		•	•	•	•	•	 		•	•	•	•	•	•		