# Importance-sampled regression imputation

David S. Rosenberg

NYU: CDS

January 23, 2021

#### Contents

Covariate shift in regression imputation

Covariate shift in regression imputation

# Recap: MAR normal nonlinear

#### Full data for n = 1000:



# Recap: MAR normal nonlinear

#### Complete cases for n = 1000:



# DS-GA 3001: Tools and Techniques for ML Covariate shift in regression imputation

Recap: MAR\_normal\_nonlinear



Note that the linear fit is completely off from the fit to the full data (preceding slide) because of the sample bias.

# Recap: Performance on MAR\_normal\_nonlinear

#### • True mean: 1.50

| estimator         | mean   | SD     | SE     | bias    | RMSE   |
|-------------------|--------|--------|--------|---------|--------|
| mean              | 2.4075 | 0.0476 | 0.0015 | 0.9063  | 0.9075 |
| ipw_mean          | 1.4985 | 0.0851 | 0.0027 | -0.0027 | 0.0852 |
| sn_ipw_mean       | 1.5070 | 0.1224 | 0.0039 | 0.0057  | 0.1225 |
| $impute_{linear}$ | 2.4060 | 0.0583 | 0.0018 | 0.9048  | 0.9066 |

# Importance-sampling imputation estimators

- Our linear model is fit to data from the complete case distribution
  - we need it to be fit to the incomplete case distribution
  - or the full data distribution (also common)
- Two new estimators:
  - impute\_IPW\_linear: examples weighted by  $\frac{1}{\pi(X_i)}$  so unbiased for full data
  - impute\_IS\_linear: examples weighted by  $\frac{1-\pi(X_i)}{\pi(X_i)}$  so unbiased for incomplete data

# Performance on MAR normal nonlinear

#### • True mean: 1.50

| estimator         | mean   | SD     | SE     | bias    | RMSE   |
|-------------------|--------|--------|--------|---------|--------|
| mean              | 2.4075 | 0.0476 | 0.0015 | 0.9063  | 0.9075 |
| ipw_mean          | 1.4985 | 0.0851 | 0.0027 | -0.0027 | 0.0852 |
| sn_ipw_mean       | 1.5070 | 0.1224 | 0.0039 | 0.0057  | 0.1225 |
| impute_linear     | 2.4060 | 0.0583 | 0.0018 | 0.9048  | 0.9066 |
| impute_ipw_linear | 1.9895 | 0.0777 | 0.0025 | 0.4883  | 0.4944 |
| impute_is_linear  | 1.5005 | 0.0466 | 0.0015 | -0.0007 | 0.0466 |

# Recap: SeaVan1 distribution illustrated

 $(X_i, Y_i)$  for which  $R_i = 1$ , i.e. the complete cases.



### Performance on SeaVan1

• Fit  $\hat{f}(x) = a + bx$  to the complete cases.

| estimator         | mean   | SD     | SE     | bias    | RMSE   |
|-------------------|--------|--------|--------|---------|--------|
| mean              | 0.3564 | 0.0515 | 0.0016 | -0.6431 | 0.6452 |
| ipw_mean          | 1.0127 | 0.2968 | 0.0094 | 0.0132  | 0.2971 |
| sn_ipw_mean       | 0.9906 | 0.1890 | 0.0060 | -0.0089 | 0.1892 |
| impute_linear     | 1.0022 | 0.0781 | 0.0025 | 0.0027  | 0.0782 |
| impute_ipw_linear | 1.0039 | 0.1439 | 0.0046 | 0.0044  | 0.1440 |
| impute_is_linear  | 1.0047 | 0.1529 | 0.0048 | 0.0052  | 0.1530 |

### MAR: "SeaVan2" distribution illustrated

• Complete cases in sample of size n = 1000



### Performance on SeaVan2

• Fit  $\hat{f}(x) = a + bx$  to the complete cases.

| estimator         | mean   | SD     | SE     | bias    | RMSE   |
|-------------------|--------|--------|--------|---------|--------|
| mean              | 0.3425 | 0.0493 | 0.0007 | -0.3244 | 0.3282 |
| ipw_mean          | 0.6655 | 0.1939 | 0.0027 | -0.0014 | 0.1939 |
| sn_ipw_mean       | 0.6594 | 0.1446 | 0.0020 | -0.0075 | 0.1448 |
| impute_linear     | 0.9364 | 0.0792 | 0.0011 | 0.2695  | 0.2809 |
| impute_ipw_linear | 0.6750 | 0.1503 | 0.0021 | 0.0081  | 0.1505 |
| impute_is_linear  | 0.6677 | 0.1561 | 0.0022 | 0.0008  | 0.1561 |

#### Caveat on results

- The importance-sampled regression imputation estimators seem promising.
- The estimators rely on knowing the importance weights p(x)/q(x).
- Performance may be significantly worse when we use estimates  $\hat{p}(x)/\hat{q}(x)$ .
- This is something we can explore in homeworks and projects.

# References

#### Resources

• Terminology was based on [CFV17].

#### References L

[CFV17] Victor Chernozhukov and Iván Fernández-Val, *Treatment effects*, Econometrics—MIT Course 14.382, Cambridge MA, 2017, MIT OpenCourseWare.