Изучение кинетики образования коллоидных квантовых точек ZnO

Гарина Ольга Аксенова Светлана Б04-901

31 октября 2021 г.

Содержание

1	Теоретическое введение	3
2	Экспериментальная часть	5
3	Вывод	6
4	Литература	13

Рисунок 1-(a)Квантовая точка, покрыта лигандной "шубой", (б) зонная структура полупроводника.

Цель работы: ознакомление с понятием квантовые точки, вычисление диаметров точек.

1 Теоретическое введение

Коллоидные квантовые точки — полупроводниковые нанокристаллы с размерами от 2 до 20 нанометров, состоящие из 10^3-10^5 атомов, созданные на основе неорганических полупроводниковых материалов CdSe, InP, PbS, PbSe, HgTe и т.д. Многие коллоидные квантовые точки для придания долговременной коллоидной стабильности покрыты монослоем стабилизатора («шубой» из органических молекул, рис.1). Квантовые точки по своим размерам больше традиционных для химии молекулярных кластеров (1 нм при содержании не больше 100 атомов). Коллоидные квантовые точки объединяют физические и химические свойства молекул с оптоэлектронными свойствами полупроводников.

Энергетический спектр квантовой точки принципиально отличается от объемного полупроводника. Электрон в нанокристалле ведет себя как в трехмерной потенциальной "яме". энергетический спектр квантовой точки зависит от ее размера. Аналогично переходу между уровнями энергии в атоме, при переходе носителей заряда между энергетическими уровнями в квантовой точке может излучаться или поглощаться фотон. Частотами переходов, т.е. длиной волны поглощения или люминесценции, легко управлять, меняя размеры квантовой точки (рис.2). Поэтому квантовые точки иногда называют «искусственными атомами». В терминах полупроводниковых материалов это можно назвать возможностью контроля эффективной ширины запрещенной зоны.

Зависимость энергетического спектра от размера дает огромный потенци-

Рисунок 2 — Спектры поглощения и люминесценции ККТ селенида кадмия размером от 3 до $5.5~\mathrm{hm}$.

ал для практического применения квантовых точек. Квантовые точки могут найти применения в оптоэлектрических системах, таких как светоизлучающие диоды и плоские светоизлучающие панели, лазеры, ячейки солнечных батарей и фотоэлектрических преобразователей, как биологические маркеры, т.е. везде, где требуются варьируемые, перестраиваемые по длине волны оптические свойства.

В полупроводниковых наночастицах (таких как оксиды Zn и Ni) одно из проявлений квантово-размерного эффекта заключается в увеличении эффективной ширины запрещенной зоны E_g^* точки зрения квантовой механики поведение электрон-дырочной пары в наночастице сводится к задаче частицы в потенциальной яме и изменение ширины запрещенной зоны наночастицы описывается формулой Брюса: Это позволяет рассчитать размер наночастиц. Таким

$$E_{g}^{*} \cong E_{g}^{\text{bulk}} + \frac{\hbar^{2}\pi^{2}}{2r^{2}} \left(\frac{1}{m_{e}^{*} m_{e}} + \frac{1}{m_{h}^{*} m_{e}} \right) - \frac{1.8e^{2}}{4\pi \epsilon \epsilon_{0} r} - \frac{0.124e^{4}}{\hbar^{2} (4\pi \epsilon \epsilon_{0})^{2}} \left(\frac{1}{m_{e}^{*} m_{e}} + \frac{1}{m_{h}^{*} m_{e}} \right)^{-1}$$

$$(1)$$

образом мы получаем размеры частиц из ширины запрещенной зоны, которая в свою очередь определяется по спектру поглощения. Ширина запрещенной зоны наночастиц определяется из пороговой длины волны (Eg = $hc/\lambda c$).

2 Экспериментальная часть

Необходимое оборудование и материалы:

- Гидроксид натрия
- Ацетат цинка двухводный
- Изопропанол (хч)
- Колба на 50 мл 2 шт
- Колба на 100 мл 1 шт
- автоматические пипетки на 0,1-1,0 и 1,0-5,0 мл;
- аналитические весы, секундомер;
- ёмкость с мокрым снегом или тающим мелким льдом.
- спектрофотометр, кювета толщиной 1 см;

Проведение эксперимента

Рисунок 3 - Спектр поглощения

- 1. Приготовить раствор 0.2 ммоль $[Zn(CH_3CO_2)_2 \cdot 2H_2O]$ в 16 мл изопропанола в 50 мл конической колбе при перемешивании при 65 °C.
- 2. 8 мл этого раствора ацетата цинка перенести в коническую колбу на 100 мл и развести 84 мл изопропанола. Полученную смесь охладить до 0 °C в ледяной бане..
- 3. Приготовить 30 мл раствора 0.02M NaOH в изопропаноле, растворив NaOH в изопропаноле при 65 °C.
- 4. Добавить 8 мл раствора 0.02M NaOH к раствору ацетата цинка при 0 °C при интенсивном перемешивании.
- 5. Полученную смесь греть на водяной бане при 65 °C в течении 1.5 часов.
- 6. В течении нагрева взять пробы по 2 мл. в 0, 1, 3, 5, 10, 15, 30, 60, 90 минут и померить их спектры поглощения

Коэффициент наклона прямой на рис.13:

$$k = 0.297733$$
 нм/мин.

3 Вывод

В данной работе удалось познакомиться с понятием "квантовые точки снять спектры раствора, содержащего наночастицыв разные момоменты времени, по

Рисунок 4 – Спектр до перемешивания

Рисунок 5 – Спектр через 1 мин

Рисунок 6 – Спектр через 3 мин

Рисунок 7 – Спектр через 5 мин

Рисунок 8 – Спектр через 10 мин

Рисунок 9 – Спектр через 15 мин

Рисунок 10 – Спектр через 30 мин

Рисунок 11 – Спектр через 60 мин

Рисунок 12 – Спектр через 90 мин

λ , hm	Диаметр d, нм
345.625	4.0974
350.03125	4.352
358.	4.9769
361.72727273	5.3910
368.34375	6.57534
373.20689655	8.7564
378.88461	12.93656
383.84	21.86857
385.6296	30.80058

Таблица 1 – Таблица результатов

Рисунок 13 – График зависимости диаметра частицы от времени

полученным данным определить размеры этих наночастиц.

4 Литература

1. Методичка "Изучение кинетики образования коллоидных квантовых точек ${\rm ZnO}$ "