Teoria Sygnałów w zadaniach

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath \omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POLITECHNIKA POZNAŃSKA Wydział Informatyki i Telekomunikacji Instytut Telekomunikacji Multimedialnej

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Podstawowe własności sygnałów

Zadanie 1.

Wyznacz okres syngału $f(t) = \sin\left(\frac{2}{5} \cdot t\right) - \sin\left(\frac{3}{4} \cdot t\right) - \cos\left(\frac{t}{4}\right)$

Rozważana funkcja składa się z (jest liniową kombinacją) trzech następujących funkcji trygonometrycznych:

1.
$$g_1(t) = \sin\left(\frac{2}{5} \cdot t\right)$$

2.
$$g_2(t) = \sin\left(\frac{3}{4} \cdot t\right)$$

3.
$$g_3(t) = \cos\left(\frac{t}{4}\right)$$

tak że
$$f(t) = g_1(t) - g_2(t) - g_3(t)$$
.

Wyznaczmy dla każdej z funkcji składowych okres tej funkcji. Zacznijmy od $g_1(t)$ porównajmy wzór funkcji z domyślną postacią funkcji trygonometrycznej, możemy wyznaczyć okres funkcji $g_1(t)$.

$$\frac{\sin\left(\frac{2}{5} \cdot t\right)}{\sin\left(\frac{2 \cdot \pi}{T_1} \cdot t\right)} \Rightarrow \frac{2}{5} = \frac{2 \cdot \pi}{T_1} \Rightarrow T_1 = 5 \cdot \pi$$

Nastepnie porównajmy wzór funkcji $g_2(t)$ z domyślną postacią funkcji trygonometrycznej, możemy wyznaczyć okres funkcji $g_2(t)$.

$$\left. \begin{array}{l} \sin\left(\frac{3}{4} \cdot t\right) \\ \sin\left(\frac{2 \cdot \pi}{T_1} \cdot t\right) \end{array} \right\} \Rightarrow \frac{3}{4} = \frac{2 \cdot \pi}{T_1} \Rightarrow T_1 = \frac{2}{3} \cdot \pi$$

I na koniec porównajmy wzór funkcji $g_3(t)$ z domyślną postacią funkcji trygonometrycznej, możemy wyznaczyć okres funkcji $g_3(t)$.

$$\frac{\cos\left(\frac{1}{4} \cdot t\right)}{\cos\left(\frac{2 \cdot \pi}{T_1} \cdot t\right)} \Rightarrow \frac{1}{4} = \frac{2 \cdot \pi}{T_1} \Rightarrow T_1 = 2 \cdot \pi$$

Okresem rozważanej funkcji f(t) jest najmniejsza wspólna wielokrotnośc okresów funkcji składowych.

$$T = NWW (T_1, T_2, T_3)$$

Rozważmy kolejne wielokrotności poszczególnych okresów

T_1	5π	10π	15π	20π	25π				
T_2	$\frac{2}{3}\pi$	$\frac{4}{3}\pi$	$\frac{6}{3}\pi = 2\pi$	$\frac{8}{3}\pi$	$\frac{10}{3}\pi$	 $\frac{24}{3}\pi = 8\pi$	$\frac{26}{3}\pi$	$\frac{28}{3}\pi$	$\frac{30}{3}\pi = 10\pi$
T_3	2π	4π	6π	8π	10π				

Najmniejszą wspólną wielokrotnością okresów $T_1,~T_2$ i T_3 jest $10\pi,~$ a więc okrese rozważanej funkcji to $T=10\pi.$

1.1 Podstawowe parametry i miary sygnałów ciągłych

- 1.1.1 Wartość średnia
- 1.1.2 Energia sygnału
- 1.1.3 Moc i wartość skuteczna sygnału

Analiza sygnałów okresowych za pomocą szeregów ortogonalnych

- 2.1 Trygonometryczny szereg Fouriera
- 2.2 Zespolony szerego Fouriera
- 2.3 Obliczenia mocy sygnałów twierdzenie Parsevala

Analiza sygnałów nieokresowych. Przekształcenie całkowe Fouriera

- 3.1 Wyznaczanie transformaty Fouriera z definicji
- 3.2 Wykorzystanie twierdzeń do obliczeń transformaty Fouriera
- 3.3 Obliczenia energii sygnału za pomocą transformaty Fouriera. Twierdzenie Parsevala

Transmisja sygnałów przez układy liniowe o stałych parametrach (LTI)

- 4.1 Obliczanie splotu ze wzoru
- 4.2 Filtry

