IR Project

May 26, 2018

0.0.1 Library imports for the code

```
In [1]: import numpy as np
    import scipy.io as sio
    import matplotlib.pyplot as plt
    import warnings
    import os, re
    from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
    from sklearn.model_selection import train_test_split
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import confusion_matrix, f1_score, accuracy_score
    from sklearn.metrics import precision_score, recall_score, classification_report
    from sklearn.neighbors import NearestCentroid, KNeighborsClassifier
    from datetime import datetime as dt
    %matplotlib inline
    warnings.filterwarnings('ignore')
```

0.0.2 Classifier Tester

Will test and show important metrics for any classifier passed to it

```
In [2]: def testClassifier(x_train, y_train, x_test, y_test, clf):
            metrics = \Pi
            start = dt.now()
            clf.fit(x_train, y_train)
            end = dt.now()
            print ('training time: ', (end - start))
            metrics.append(end-start)
            start = dt.now()
            yhat = clf.predict(x_test)
            end = dt.now()
            print ('testing time: ', (end - start))
            metrics.append(end-start)
            print ('classification report: ')
            print(classification_report(y_test, yhat))
            print ('f1 score')
            print (f1_score(y_test, yhat, average='macro'))
            print ('accuracy score')
```

```
print (accuracy_score(y_test, yhat))
precision = precision_score(y_test, yhat, average=None)
recall = recall_score(y_test, yhat, average=None)
for p, r in zip(precision, recall):
    metrics.append(p)
    metrics.append(r)
metrics.append(f1_score(y_test, yhat, average='macro'))
print ('confusion matrix:')
print (confusion_matrix(y_test, yhat))
plt.imshow(confusion_matrix(y_test, yhat), interpolation='nearest')
plt.show()
return metrics
metrics_dict = []
```

0.1 DBWorld Emails Data

The data for this database is already pre-processed and in bag of words format. We just read and split the data into train test sets

Naive Bayes We have chosen MultinomialNB as it gives the best results for Naive Bayes in case of text classification.

```
In [4]: mnb = MultinomialNB()
       mnb_me = testClassifier(X_train, y_train, X_test, y_test, mnb)
       metrics_dict.append({'name':'NaiveBayes', 'metrics':mnb_me})
training time: 0:00:00.012191
testing time: 0:00:00
classification report:
             precision
                        recall f1-score
                                             support
          0
                            0.92
                  0.92
                                      0.92
                                                  13
          1
                  0.89
                            0.89
                                      0.89
                                                   9
avg / total
                  0.91
                            0.91
                                      0.91
                                                  22
f1 score
0.905982905982906
accuracy score
0.9090909090909091
confusion matrix:
```

[[12 1] [1 8]]

Rocchio Classification For this we will be using the NearestCentroid classifier as when it is used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

```
In [5]: tfidf = TfidfTransformer()
       tfidf.fit(X_train)
       train_tf = tfidf.transform(X_train)
       test_tf = tfidf.transform(X_test)
       ncr = NearestCentroid()
       ncr_me = testClassifier(train_tf, y_train, test_tf, y_test, ncr)
       metrics_dict.append({'name':'Rocchio', 'metrics':ncr_me})
training time: 0:00:00.002045
testing time: 0:00:00.000997
classification report:
             precision
                          recall f1-score
                                             support
          0
                  1.00
                            0.85
                                      0.92
                                                  13
                                                   9
          1
                  0.82
                            1.00
                                      0.90
avg / total
                  0.93
                            0.91
                                      0.91
                                                  22
```

f1 score

0.9083333333333333 accuracy score 0.9090909090909091 confusion matrix: [[11 2] [0 9]]

kNN Classification We'll use kNearestNeighbor for classification now. We tried different values for k and 4 came out to be the best for this.

training time: 0:00:00

testing time: 0:00:00.003567

classification report:

support	f1-score	recall	precision	
13 9	0.96 0.95	0.92	1.00	0
_				/
22	0.95	0.95	0.96	avg / total

f1 score

```
0.9536842105263159
accuracy score
0.9545454545454546
confusion matrix:
[[12 1]
[ 0 9]]
```


Conclusion As we can see the kNN classifier with k=4 gives the highest accuracy and f1 score for this document. The training time is negligible but the testing time is the highest among all as it is a known trait of kNN.

0.2 Health Tweets

First of all we need to do pre-processing on the data as it is in raw text format. We split the tweets according to the delimeter '|' and clean-up the text.

Pre-processing We divide the documents into different classes according to the news agency accounts. The documents are then converted to tf-idf vectors. Further they are split into train test sets.

```
In [7]: health_tweet = os.listdir('Datasets/Health-News-Tweets/Health-Tweets/')
          X_data = []
          y_data = []
          for files in health_tweet:
```

```
file = open('Datasets/Health-News-Tweets/Health-Tweets/'+files, encoding="utf8")
    data = file.readlines()
    for line in data:
        try:
            line = re.sub(r"http\S+", "", line.split('|')[2]).lower()
            X_data.append(line.strip())
            y_data.append(files.rstrip('.txt'))
        except: pass
    file.close()
vectorizer = CountVectorizer()
vectorizer.fit(X_data)
train_mat = vectorizer.transform(X_data)
tfidf = TfidfTransformer()
tfidf.fit(train_mat)
train_tfmat = tfidf.transform(train_mat)
X_train, X_test, y_train, y_test = train_test_split(train_tfmat,
                    y_data, test_size=0.33, random_state=42)
```

Naive Bayes We have chosen MultinomialNB as it gives the best results for Naive Bayes in case of text classification.

```
In [8]: mnb = MultinomialNB()
        mnb_me = testClassifier(X_train, y_train, X_test, y_test, mnb)
        metrics_dict.append({'name':'NaiveBayes', 'metrics':mnb_me})
training time: 0:00:00.274875
testing time: 0:00:00.024196
classification report:
                  precision
                               recall f1-score
                                                   support
KaiserHealthNews
                       0.71
                                  0.67
                                            0.69
                                                      1202
       NBChealth
                       0.54
                                  0.24
                                            0.33
                                                      1419
       bbchealth
                       0.89
                                  0.38
                                            0.53
                                                      1323
       cbchealth
                       0.78
                                  0.22
                                            0.34
                                                      1274
       cnnhealth
                       0.75
                                  0.23
                                            0.36
                                                      1315
                                  0.21
  everydayhealth
                       0.97
                                            0.35
                                                      1083
   foxnewshealth
                       1.00
                                  0.01
                                            0.01
                                                       638
   gdnhealthcare
                       0.94
                                  0.78
                                            0.85
                                                       982
      goodhealth
                       0.33
                                  0.95
                                            0.49
                                                      2527
  latimeshealth
                       0.56
                                  0.16
                                            0.24
                                                      1425
  msnhealthnews
                       0.50
                                  0.32
                                            0.39
                                                      1041
                                  0.21
                                            0.25
       nprhealth
                       0.31
                                                      1534
  nytimeshealth
                       0.30
                                  0.70
                                            0.42
                                                      2005
  reuters health
                       0.42
                                  0.59
                                            0.49
                                                      1597
    usnewshealth
                       1.00
                                  0.01
                                            0.02
                                                       472
       wsjhealth
                       0.95
                                  0.44
                                            0.60
                                                      1061
     avg / total
                       0.61
                                 0.45
                                            0.42
                                                     20898
```

f1 score 0.39768202422709514 accuracy score

0.44573643410852715

	~		
COD	† 11 C	I On	matrix:
COII.	ւսօ	TOIL	matta.

cor	ıfusi	on mat	trix:											
[[805	9	0	1	3	0	0	1	127	2	0	77	162	10
	0	5]												
[36	335	8	13	16	1	0	0	327	23	53	126	324	156
	0	1]												
[2	23	505	15	5	0	0	45	203	10	32	53	284	146
	0	0]												
[4	52	13	280	11	0	0	1	220	22	30	68	362	209
	0	2]												
[9	33	2	6	306	1	0	0	645	10	13	53	187	49
_	0	1]												
[1	0_	0	0	3	231	0	0	744	12	17	10	57	8
_	0	0]												
[0	42	4	7	11	0	4	0	191	15	35	38	151	140
-	0	0]	_		_						_	_		
[1	0	2	1	3	0	0	767	134	0	0	3	69	1
-	0	1]	_	•	•	•	•		0.1.10	•	4.0	_		4.4
	3	2	2	0	6	0	0	1	2412	6	16	7	58	14
_	0	0]	4	0	•	•	•	•	040	000	00	50	007	0.4
[30	18	4	8	9	0	0	0	613	223	39	58	337	84
_	0	2]	4		0		•	•	054	00	000	5 0	0.40	00
[8	31	4	3	2	1	0	0	254	29	330	56	243	80
г	0	0]	0	0	0	0	0	4	121	10	01	216	440	126
L	101	31	8	9	8	0	0	1	434	19	21	316	449	136
[32	1] 13	3	4	6	2	0	1	329	10	13	60	1394	134
L	0	2]	3	4	O	۷	U	1	329	10	13	02	1394	134
Ε	32	27	12	11	5	0	0	2	132	14	58	68	293	936
L	0	7]	12	11	J	U	U	2	102	14	50	00	230	330
[6	1	0	0	7	3	0	1	389	1	0	3	53	2
L	5	1]	U	U	,	3	U	1	503	1	U	3	00	2
Ε	63	7	3	2	5	0	0	0	125	5	7	26	222	130
L	0	466]]			J	J	J	J	120	J	'	20	222	100
	v	100]	,											

Rocchio Classification For this we will be using the NearestCentroid classifier as when it is used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

```
In [9]: tfidf = TfidfTransformer()
        tfidf.fit(X_train)
        train_tf = tfidf.transform(X_train)
        test_tf = tfidf.transform(X_test)
        ncr = NearestCentroid()
        ncr_me = testClassifier(train_tf, y_train, test_tf, y_test, ncr)
        metrics_dict.append({'name':'Rocchio', 'metrics':ncr_me})
training time: 0:00:00.107705
testing time: 0:00:00.028529
classification report:
                  precision
                               recall f1-score
                                                   support
KaiserHealthNews
                       0.65
                                  0.72
                                            0.68
                                                      1202
                       0.40
                                  0.26
                                            0.32
       NBChealth
                                                      1419
       bbchealth
                       0.78
                                  0.38
                                            0.51
                                                      1323
       cbchealth
                       0.45
                                  0.47
                                            0.46
                                                      1274
       cnnhealth
                       0.47
                                  0.48
                                            0.47
                                                      1315
  everydayhealth
                       0.70
                                  0.48
                                            0.57
                                                      1083
  foxnewshealth
                                            0.26
                       0.24
                                  0.29
                                                       638
```

0.72

0.68

gdnhealthcare

goodhealth

0.85

0.75

0.78

0.71

982

2527

		meshea			0.38		0.42		0.40		1425			
		ealth:			0.33		0.62		0.44		1041			
		nprhea			0.20		0.41		0.27		1534			
	•	meshea			0.82		0.35		0.49		2005			
r		rs_hea			0.43		0.52		0.47		1597			
		ewshea.			0.54		0.56		0.55		472			
		wsjhea	alth		0.97		0.61		0.75		1061			
	av	g / to	otal		0.57		0.50		0.51		20898			
	scor 50778	e 873183	33032	2										
acc	curac	y scoi	re											
0.4	19842	090152	21676	73										
		on mat	trix:											
[[860	16	4	12	29	2	2	6	12	31	5	197	7	9
[5 59	5] 372	13	106	56	11	92	0	22	88	159	282	13	133
L	11	2]	13	100	50	11	92	U	22	00	139	202	13	133
[2	30	507	116	20	7	65	99	8	30	90	204	8	128
	7	2]												
	3	41	18	593	19	7	67	1	15	67	96	183	17	143
[4 13	0] 41	6	52	626	19	52	3	93	90	65	173	16	33
L	33	0]	O	02	020	10	02	J	50	50	00	170	10	00
[1	20	8	6	60	522	6	1	191	48	62	93	8	5
г	52	0]	4	20	4.5	0	107	4	1.0	11	100	00	C	0.1
[1 7	51 0]	1	32	15	8	187	1	16	41	109	82	6	81
[4	5	14	15	65	1	1	706	5	44	2	107	9	2
	2	0]												
[5	26	15	11	173	100	22	2	1719	130	89	169	11	5
[50 38	0] 50	9	47	55	26	42	5	64	595	170	242	16	52
L	14	0]	9	41	55	20	42	5	04	393	170	242	10	52
[12	56	3	27	10	14	34	0	17	52	650	132	9	21
_	4	0]												
	151	77	14	86	55	9	52	2	33	101	106	632	25	175
[15 60	1] 50	15	101	98	7	46	2	52	140	100	382	704	224
L	20	4]	10	101	30	'	40	۷	02	140	100	302	104	224
[46	68	16	89	9	0	101	1	1	49	206	164	7	830
	2	8]												
[7	1	1	4	24	16	7	0	51	42	12	42	0	0
	264	1]												
	57	19	7	24	12	2	9	0	2	24	25	125	6	98
	2	649]]	J											

kNN Classification We'll use kNearestNeighbor for classification now. We tried different values for k and 4 came out to be the best for this.

training time: 0:00:00.061494 testing time: 0:01:48.927677

classification report:

	precision	recall	f1-score	support
KaiserHealthNews	0.37	0.60	0.45	1202
NBChealth	0.21	0.40	0.28	1419
bbchealth	0.23	0.49	0.31	1323
cbchealth	0.29	0.26	0.28	1274
cnnhealth	0.35	0.34	0.34	1315
everydayhealth	0.47	0.58	0.52	1083
foxnewshealth	0.14	0.09	0.11	638
gdnhealthcare	0.47	0.85	0.61	982
goodhealth	0.70	0.59	0.64	2527
latimeshealth	0.42	0.15	0.22	1425
msnhealthnews	0.29	0.22	0.25	1041
nprhealth	0.27	0.14	0.19	1534
nytimeshealth	0.44	0.32	0.37	2005

1	usn	rs_hea ewshea wsjhea	alth		0.43 0.67 0.61		0.26 0.38 0.28		0.33 0.48 0.38		1597 472 1061			
	av	g / to	otal		0.41		0.38		0.37		20898			
0.3 acc	curac 37960	17504 y sco: 57038	re 95109	56										
	itusi 717	on ma [.] 67	trıx: 84	24	28	11	13	34	13	12	15	73	56	24
LL	5	26]	04	24	20	11	10	94	10	12	10	73	50	24
[114 5	565 13]	169	77	77	45	26	53	39	23	49	58	66	40
[75	161	644	54	54	25	13	83	29	19	30	28	59	33
_	2	14]												
[70 5	164	251	335	46	30	24	64	25	25	45	57	64	60
Ε	5 87	9] 158	158	71	444	54	21	41	95	18	31	43	61	24
L	2	7]	100			01	21		00	10	01	10	01	2.1
[23	62	66	24	48	628	9	24	97	14	32	9	26	8
	13	0]												
[30	108	94	37	32	32	59	52	35	12	26	23	27	61
]	4 12	6] 14	65	9	10	6	0	838	4	3	1	2	12	3
L	0	3]	00	3	10	U	O	000	7	5	1	۷	12	3
[77	151	105	57	113	183	28	95	1501	18	54	26	73	24
	19	3]												
[112	211	172	80	111	66	28	83	86	211	57	58	94	40
]	6 49	10] 179	175	47	50	47	24	56	38	38	225	22	54	26
L	3	8]	175	41	30	41	24	30	30	50	220	22	34	20
[195		204	88	75	39	30	97	52	34	57	220	92	65
	14	25]												
[148	219	251	95	84	68	32	109	56	37	57	94	648	77
[8 98	22]	253	06	20	38	82	72	22	20	68	17	02	423
L	90	213 43]	255	96	38	30	02	12	22	20	00	47	83	423
[18	37	32	15	33	36	13	16	46	8	10	12	15	2
	177	2]												
[134	106		51	30	16	16	61	15	10	23	51	51	74
	2	298]	J											

Conclusion For this dataset the Rocchio outperformed the rest of the two classification algorithms and it also was the one that took the least amount of time for training as well testing of the data.

0.3 Sentence Corpus

First of all we need to do pre-processing on the data as it is in raw text format. We split the dataset according to the Argumentative Zones annotation scheme and clean-up the text.

Pre-processing We divide the documents into different classes according to the Argumentative Zones annotation scheme. The documents are then converted to tf-idf vectors. Further they are split into train test sets.

```
except: pass
file.close()
vectorizer = CountVectorizer()
vectorizer.fit(X_data)
train_mat = vectorizer.transform(X_data)
tfidf = TfidfTransformer()
tfidf.fit(train_mat)
train_tfmat = tfidf.transform(train_mat)
X_train, X_test, y_train, y_test = train_test_split(train_tfmat, y_data, test_size=0.33, random_state=42)
```

Naive Bayes We have chosen MultinomialNB as it gives the best results for Naive Bayes in case of text classification.

```
In [12]: mnb = MultinomialNB()
         mnb_me = testClassifier(X_train, y_train, X_test, y_test, mnb)
         metrics_dict.append({'name':'NaiveBayes', 'metrics':mnb_me})
training time: 0:00:00.008956
testing time: 0:00:00.001373
classification report:
             precision
                          recall f1-score
                                             support
                            0.00
       aimx
                  0.00
                                      0.00
                                                  35
      base
                  0.00
                            0.00
                                      0.00
                                                   9
                            0.00
                                      0.00
                                                  33
                  0.00
       cont
                  0.61
                            1.00
                                      0.76
                                                 272
      misc
                  0.83
                            0.29
                                      0.43
                                                 150
       ownx
avg / total
                  0.58
                            0.63
                                      0.54
                                                 499
```

f1 score

0.23646979440642255

accuracy score

0.6312625250501002

confusion matrix:

0]] 0 29 6] 0 Γ 0 31 0 0 33 0] Γ 0 272 07 Ω 0 ΓΟ 0 0 107 43]]

Rocchio Classification For this we will be using the NearestCentroid classifier as when it is used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

```
In [13]: tfidf = TfidfTransformer()
         tfidf.fit(X_train)
         train_tf = tfidf.transform(X_train)
         test_tf = tfidf.transform(X_test)
         ncr = NearestCentroid()
         ncr_me = testClassifier(train_tf, y_train, test_tf, y_test, ncr)
         metrics_dict.append({'name':'Rocchio', 'metrics':ncr_me})
training time: 0:00:00.013593
testing time: 0:00:00.003481
classification report:
             precision
                          recall f1-score
                                              support
       aimx
                  0.73
                            0.46
                                       0.56
                                                   35
                            0.22
                                       0.31
                                                    9
                  0.50
       base
                  0.44
                            0.33
                                       0.38
                                                   33
       cont
                  0.79
                            0.93
                                       0.85
       misc
                                                  272
                  0.75
                            0.63
                                       0.68
                                                  150
       ownx
                  0.74
                            0.75
                                       0.74
                                                  499
avg / total
```

f1 score

```
0.5562834866867061
accuracy score
0.7535070140280561
confusion matrix:
[[ 16
        1
            1
                5
                   12]
 0
            2
                1
                    4]
        0 11
               17
                    5]
            7 253
        1
                   117
 Γ
        0
            4
               46
                   94]]
```


kNN Classification We'll use kNearestNeighbor for classification now. We tried different values for k and 4 came out to be the best for this.

```
In [14]: knn = KNeighborsClassifier(n_neighbors = 5)
         knn_me = testClassifier(train_tf, y_train, test_tf, y_test, knn)
         metrics_dict.append({'name':'kNN', 'metrics':knn_me})
training time: 0:00:00.004380
testing time: 0:00:00.055142
classification report:
             precision
                          recall f1-score
                                             support
       aimx
                  0.14
                            0.14
                                      0.14
                                                  35
       base
                  0.00
                            0.00
                                      0.00
                                                   9
       cont
                  0.16
                            0.09
                                      0.12
                                                  33
```

misc	0.75	0.79	0.77	272
ownx	0.61	0.60	0.61	150
avg / total	0.61	0.63	0.62	499

f1 score

0.32674377265926563

accuracy score

0.6292585170340681

confusion matrix:

[[5	0	0	17	13]
[1	0	2	0	6]
[3	1	3	18	8]
[13	3	10	216	30]
[14	5	4	37	90]]

Conclusion For this dataset again the Rocchio outperformed the rest of the two classification algorithms and it also was the one that took the least amount of time for training as well testing of the data. The Naive Bayes performed the worst in this case