Correction Partiel

Exercice 1

Soient
$$U = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $V = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$. On a $AU = V \Longleftrightarrow U = A^{-1}V$.

Or
$$AU = V \iff \begin{cases} x+y-z = X \\ -3x-3y+4z = Y \\ 3x+2y-3z = Z \end{cases}$$
. En faisant $L_2 \leftarrow L_2 + 3L_1$ et $L_3 \leftarrow L_3 - 3L_1$, on obtient

$$AU = V \iff \left\{ \begin{array}{cccc} x + y - z & = & X \\ z & = & Y + 3X \\ -y & = & Z - 3X \end{array} \right. \iff \left\{ \begin{array}{cccc} x & = & X + Y + Z \\ y & = & 3X - Z \\ z & = & 3X + Y \end{array} \right.$$

Ainsi,

$$A^{-1} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 3 & 0 & -1 \\ 3 & 1 & 0 \end{array}\right)$$

Exercice 2

On sait que $\dim(\mathbb{R}_2[X]) = 3$.

- 1. $\operatorname{Card}(\mathscr{B}_1) = 2 < \dim(\mathbb{R}_2[X])$, donc \mathscr{B}_1 n'engendre pas $\mathbb{R}_2[X]$.
- 2. $\operatorname{Card}(\mathscr{B}_2) = 4 > \dim(\mathbb{R}_2[X])$, donc \mathscr{B}_2 n'est pas une famille libre de $\mathbb{R}_2[X]$
- 3. Montrons que \mathscr{B}_3 est une famille libre de $\mathbb{R}_2[X]$. Soit $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $\alpha.1 + \beta(X+1) + \gamma(X^2 + 2X) = 0$. Alors, on a $\gamma X^2 + (\beta + 2\gamma)X + \alpha + \beta = 0$. Ainsi, $\alpha = \beta = \gamma = 0$. La famille \mathscr{B}_3 est libre. Or $\operatorname{Card}(\mathscr{B}_3) = 3 = \dim(\mathbb{R}_2[X])$, c'est donc une base de $\mathbb{R}_2[X]$.

Exercice 3

Soient E, F deux \mathbb{R} -ev et $f \in \mathcal{L}(E, F)$.

- 1. $\operatorname{Ker}(f) \subset E$ et comme f(0) = 0, $0 \in \operatorname{Ker}(f)$, ainsi $\operatorname{Ker}(f) \neq \emptyset$. De plus, soient $(u, v) \in (\operatorname{Ker}(f))^2$ et $\alpha \in \mathbb{R}$. On a $f(\alpha u + v) = \alpha f(u) + f(v) = \alpha.0 + 0 = 0$. D'où, $\alpha u + v \in \operatorname{Ker}(f)$. On a prouvé que $\operatorname{Ker}(f)$ est un sev de E donc un \mathbb{R} -ev.
 - $\operatorname{Im}(f) \subset F$ et comme $0 = f(0), \ 0 \in \operatorname{Im}(f)$, ainsi $\operatorname{Im}(f) \neq \emptyset$. De plus, soient $(u,v) \in \left(\operatorname{Im}(f)\right)^2$ et $\alpha \in \mathbb{R}$. $\exists (u_1,v_1) \in E^2$ tel que $u = f(u_1)$ et $v = f(v_1)$. Ainsi, $\alpha u + v = \alpha f(u_1) + f(v_1) = f(\alpha u_1 + v_1)$ D'où, $\alpha u + v \in \operatorname{Im}(f)$. On a prouvé que $\operatorname{Im}(f)$ est un sev de F donc un \mathbb{R} -ev.
- 2. Supposons f injective.

Soit $u \in \text{Ker}(f)$. Alors f(u) = 0 or f(0) = 0. On en déduit que u = 0. On a montré que $\text{Ker}(f) \subset \{0\}$. L'inclusion inverse est immédiate.

• Supposons que $Ker(f) = \{0\}.$

Soit $(u, v) \in E^2$ tel que f(u) = f(v). Alors, f(u - v) = 0, c'est-à-dire, $u - v \in \text{Ker}(f)$. Par conséquent, u - v = 0 i.e. u = v. Donc, f est injective.

3. $\operatorname{Im}(f) = F \iff \forall v \in F \ \exists u \in E \ \text{tel que } v = f(u) \iff f \ \text{est surjective}.$

Exercice 4

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (x+y-z,x-y-3z) \end{array} \right.$$

- 1. Soient $u=(x,y,z)\in\mathbb{R}^3,\ v=(x',y',z')\in\mathbb{R}^3$ et $\alpha\in\mathbb{R}$. On a $\alpha u+v=(\alpha x+x',\alpha y+y',\alpha z+z')$. Ainsi, $f(\alpha u+v)=\left((\alpha x+x')+(\alpha y+y')-(\alpha z+z'),(\alpha x+x')-(\alpha y+y')-3(\alpha z+z')\right)=\alpha(x+y-z,x-y-3z)+(x'+y'-z',x'-y'-3z')=\alpha f(u)+f(v)$. Donc, f est linéaire.
- 2. $\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3, x + y z = 0 \text{ et } x y 3z = 0\} = \{(x, y, z) \in \mathbb{R}^3, x = 2z \text{ et } y = -z\} = \operatorname{Vect}((2, -1, 1)).$ Ainsi, u = (2, -1, 1) engendre $\operatorname{Ker}(f)$. Or $u \neq 0$ donc c'est une famille libre. En conclusion, (u) est une base de $\operatorname{Ker}(f)$.
- 3. Via le théorème du rang, $\dim(\operatorname{Im}(f) = \dim(\mathbb{R}^3) \dim(\operatorname{Ker}(f) = 3 1 = 2 = \dim(\mathbb{R}^2)$. Comme $\operatorname{Im}(f) \subset \mathbb{R}^2$, on en déduit que $\operatorname{Im}(f) = \mathbb{R}^2$.

Exercice 5 (3 points)

- 1. On a 2(1,-1,3) 3(-1,-2,1) (5,2,3) = (0,0,0). Donc, le famille est liée.
- 2. Soit $(a,b,c) \in \mathbb{R}^3$ tel que af+bg+ch=0. Alors, pour tout $x \in \mathbb{R}$, $ax+bx^2+ce^{2x}=0$. En prenant x=0, on a c=0. Puis, en prenant x=1 et x=-1, on a a+b=0 et -a+b=0. D'où, a=b=0. Donc, la famille est libre.
- 3. Soit $(a,b) \in \mathbb{R}^2$ tel que aA + bB = 0. On a a + 6b = 0, a 2b = 0, -3a + b = 0 et 4a + 4b = 0. Ainsi, a = b = 0. La famille est donc libre.

Exercice 6 (4 points)

On note $\mathcal{B}_1 = (i, j)$ et $\mathcal{B}_2 = ((1, 1); (-1, 0)) = (e_1, e_2)$

- $1. \ A = \left(\begin{array}{cc} 3 & -5 \\ 0 & -2 \end{array}\right).$
- $2. \ D = \left(\begin{array}{cc} -2 & 0 \\ 0 & 3 \end{array} \right).$
- 3. On a $id(e_1)=(1,1)=i+j$ et $id(e_2)=(-1,0)=-j$. D'où la matrice P.
- 4. On calcule facilement que $P^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. De plus, on a $P^{-1}AP = D$.

Exercice 7 (3 points)

- 1. ${}^tUU = x^2 + y^2 + z^2 = 1$. Ainsi $P^2 = (U {}^tU)(U {}^tU) = U({}^tUU){}^tU = U \times 1 \times {}^tU = U {}^tU = P$.
- 2. On a $P = \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix}$. On vérifie matriciellement que MP = PM = 0.