ST3247 Simulation

Lingjie, April 30, 2021

R programming

Common functions

remainder : %% matrix multiplication: %*%

rounding : floor, ceiling, round, signif load R commands : source(filename, echo=TRUE)

set seed : set.seed(1234)vectorise function : Vectorize(fn)

: sapply(X, fn, *params) apply

: apply(X, 1, fn): 1 := row, 2 := col

generate sample : rxxxx $pdf P(X = x), f_X$: dxxxx $\operatorname{cdf} P(X \leq x), F_X$: pxxxx cdf quantile $F^{-1}(x)$: gxxxx

Probability and Math Stat Background

Important knowledge

Law of Total Probability

 $P(X \in A)$

 $= \sum_{i=1}^{n} P(X \in A, Y \in B_i)$ $= \sum_{i=1}^{n} P(X \in A | Y \in B_i) P(Y \in B_i)$

Indicator function: I(a < x < b)

Mode of distribution

Discrete: i s.t. $p_i \geq p_j \ \forall j \neq i$

Continuous: x s.t. $f(x) > f(w) \ \forall x \neq w$

Conditional Expectation:

 $E(X|Y=y) = \int x f_{x|y}(x|y) dx = \frac{\int x f_{x,y}(x,y) dx}{\int f_{x,y}(y) dx}$

and E(X) = E(E(X|Y))

Conditional Variance:

Var(X) = E(Var(X|Y)) + Var(E(X|Y))

Var(X) > Var(E(X|Y))

Computing RV pmf Recursively

Binomial

$$P(X = x + 1) = \frac{n!}{(n - x - 1)!(x + 1)!} p^{x + 1} (1 - p)^{n - x - 1}$$

$$= \frac{n!(n - x)}{(n - x)!x!(x + 1)} p^{x} (1 - p)^{n - x} \frac{p}{1 - p}$$

$$= \frac{n - x}{x + 1} \frac{p}{1 - p} P(X = x)$$

Poisson

For x > 0 $P(X = x + 1) = e^{-\lambda} \frac{\lambda^{x+1}}{(x+1)!}$ $= \frac{\lambda}{x+1} e^{-\lambda} \frac{\lambda^x}{x!}$ $= \frac{\lambda}{x+1} P(X = x)$

Solving Min Max RV

Let $Y \sim min(X_1, X_2) X_1, X_2$ are independent

$$P(Y \le y) = P(min(X_1, X_2) \le y) = 1 - P(min(X_1, X_2) > y)$$

= 1 - P(X_1 > y, X_2 > y) = 1 - P(X_1 > y)P(X_2 > y)

Let $Y \sim max(X_1, X_2) X_1, X_2$ are independent

 $P(Y \le y) = P(max(X_1, X_2) \le y)$

 $= P(X_1 \le y, X_2 \le y) = P(X_1 \le y)P(X_2 \le y)$

Uniform Distribution

 $: f(x) = \frac{1}{b-a}I(a \le x \le b)$

 $: F(x) = \frac{x-a}{b-a}$

E(X) : $\frac{b+a}{2}$ $Var(X): \frac{(\bar{b}-a)^2}{12}$

Poisson Process

N(t) := number of events in the time interval [0, t]N(t+s) := number of events in the time interval [0, t+s]N(t+s)-N(t):= num of events in the time interval [t,t+s]m(t) := the area under the intensity function from 0 to t m(t+s) - m(t) := the area under the intensity function from t to t + s

process is defined as Poisson process with rate $\lambda, \lambda > 0$ if

1. N(0) = 0 \Rightarrow nothing happened before time 0

2. Number of events occurring in disjoint time intervals are independent

 \Rightarrow independent increments assumption

 \Rightarrow e.g. N(t) is independent of N(t+s) - N(t)

3. Distribution of number of events only depend on length of interval, not location

 \Rightarrow stationary increment assumption

⇒ distribution of event across every interval of time is the same

4. $\lim_{h\to 0} \frac{P(N(h)=1)}{h} = \lambda$ ⇒ within a small interval of length h, the probability of one event is approximately λh

5. $\lim_{h\to 0} \frac{P(N(h)\geq 2)}{h} = 0$ ⇒ within a small interval of length h, the probability of two or more events is approximately 0

Therefore, $N(t) \sim Pois(\lambda t)$

Non-homogeneous Poisson Process

N(t) := number of events by time t

N(t) is a non-homogenous Poisson process with intensity function $\lambda(t)$ if

(same condition as Poisson Process except)

1. $\lim_{h\to p} P(\text{exactly 1 event between } t \text{ and}$ $(t+h)/h = \lambda(t)$

N(t+s) - N(t) = Pois(m(t+s) - m(t))

Mean value function

Definition 1 (Mean Value Function)

$$m(t) = \int_0^t \lambda(s)ds, t \ge 0$$

 $\lambda(t) := \text{intensity at time } t, \text{ indicates how likely it is that}$ event will occur around time t.

$$N(t+s) - N(t) = Pois\left(m(t+s) - m(t)\right)$$

Pseudo-Random Number Generation Types of PRNGs

Linear Congruential Generators

Pseudo-code for LCG

1. Set Z_0

2. For i = 1 to n:

1. Set $Z_i = (aZ_{i-1} + c) \mod m$

2. Set $U_i = Z_i/m$

Obtaining Full Period

1. Only positive integer that divides both m and c is 1

2. If q is prime num that divides m, then q divides a-1

3. If 4 divides m, then 4 divides a-1

PRNG in R

shift register with period $2^{19937} - 1$

Statistical Tests for PRNGs

Frequency Test: Check for Uniformity

check: if U_i appear to be evenly distributed between 0 and 1

Correlation Test: Check for Autocorrelation

check: no correlation at lag j for all j

Discrete Random Variable

Generation

Objective: Given pmf, generate random variable **Constraint**:

1. E(N), 2. num of Unif[0,1], 3. storage space

() /		/ 1/	· ·	
Algo	No. iter	No. RVs	Storage	Infinite support?
Seq. Inversion	E(X) + 1	1	-	Y
Ordered. Inversion	$\langle E(X) + 1 \rangle$	1	Variable	Y
Truncation	1	1	-	Y
Rejection	$\approx c$	$\approx 2c$	-	Y
Table	1	1	M	N
Alias	2	2	3(K-1)	N

Inversion Method

Sequential Inversion

Algorithm 1 [Sequential Inversion]

- 1. Generate $U \sim Unif[0,1]$
- 2. Set $X = 0, S = p_0 \Rightarrow P(X = 0) = p_0$
- 3. While U > S, do

$$3.1 X = X + 1$$

$$3.2 S = S + p_x$$

4. Return X

R Implementation [Poisson]

Expected Iterations

$$E(N) = 1P(X = 0) + 2P(X = 1) + 3P(X = 2) + \cdots$$

$$= 0P(X = 0) + 1P(X = 0) + 2P(X = 1) + 3P(X = 2) + \cdots$$

$$+P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + \cdots$$

$$= E(X) + 1$$

Ordered Inversion

Improved Inversion method by checking the largest interval first

Algorithm 2 [Ordered Inversion]

- 1. Set-up Stage:
 - 1.1 Sort p_i 's (decreasing)
 - 1.2 $Y := \text{indices of the sorted } p_i$'s
 - 1.3 $q_i := \text{to be pmf of sorted } p_i$'s
- 2. Generation Stage:
 - 2.1 Generate Z from q_i (algo 1)
 - 2.2 Return X = Y[Z+1]

R Implementation [discrete pmf]

 $X \in (p_0 = 0.2, p_1 = 0.55, p_2 = 0.25)$

```
X <- c(0.2, 0.55, 0.25)
##############
# Set-up Stage
############
Q <- sort(X, decreasing=TRUE)
#Q = (0.55, 0.25, 0.2)
Y <- c(1, 2, 0) # stored index
#Y adjust with support (start = 1 or 0)
################
# Generation Stage
###############
U <- runif(n=1, min=0, max=1) #cdf
Z <- 0; S <- Q[1] #P(Q=0)
while(U>S){
    Z <- Z+1
    S <- S+Q[Z+1]
}
Y[Z+1] #generated X</pre>
```

Expected Iterations

$$E(N1) = E(X) + 1 = 2.05$$

 $E(N2) = [0(0.55) + 1(0.25) + 2(0.2)] + 1 = 1.65$

Truncation of a Related Continuous cdf

Required steps

- Identify G(x) by setting G(i+1) = F(i)
- Show $\frac{dG}{dx} > 0$ (mono increasing) and $0 \le G \le 1$
- G(0) = 0

Note: if support starts from 1, check G(1) = 0

• find $G^{-1}(U)$

Algorithm 3 [Inversion by Truncation]

- 1. Generate $U \sim Unif[0,1]$
- 2. Set $X = |G^{-1}(U)|$
- 3. Return X

R Implementation [discrete uniform]

```
generate X \sim uniform(0, K-1)

F(i) = \sum_{j=0}^{i} \frac{1}{K} = \frac{i+1}{K}

G(i+1) = \frac{i+1}{K} \Rightarrow G(x) = \frac{x}{K}

\therefore G^{-1}(U) = KU \therefore X = \lfloor KU \rfloor
```

```
U <- runif(n=1) # continuous uniform
X <- floor(K*U)</pre>
```

Note: if $Y \sim uniform(1, K) \Rightarrow Y = X + 1$

R Implementation [geometric]

```
\begin{array}{l} X \sim Geo(p), q := 1 - p \\ P(X = i) = p(1 - p)^{i - 1} = (1 - q)q^{i - 1} = q^{i - 1} - q^i, i \geq 1 \\ F(i) = \sum_{j = 1}^i P(X = j) = 1 - q^i \text{ (oscillating sum)} \\ G(i + 1) = F(i) = 1 - q^i \Rightarrow G(x) = 1 - q^{x - 1} \\ \therefore G^{-1}(U) = 1 + \frac{\log(1 - U)}{\log q} \therefore X = \lfloor 1 + \frac{\log(1 - U)}{\log q} \rfloor \end{array}
```

```
U <- runif(1)
X <- floor(1+log(1-U)/log(q))
```

R Implementation [Random Permutation]

Algorithm 4 [Generating Random Permutation]

Let $P_1P_2\cdots P_n$ be any permutation of the num $\{1,2,\cdots,n\}$

- 1. Set k=n
- 2. Generate $Z \sim Unif(1, 2, \dots, k)$
- 3. Interchange P_z and P_k
- 4. Update k = k 1
- 5. if k > 1, return to step 2
- 6. Return the final permutation $P_1P_2\cdots P_n$

```
P <- 1:n # ordered numbers
k <- n
while(k>1){
U <- runif(n=1)
z <- floor(k*U) + 1 #discrete unif(1, k)
Pz <- P[z]; Pk <- P[k]
P[k] <- Pz; P[z] <- Pk # interchange value</pre>
```

```
8 k <- k - 1
9 }
return(P)</pre>
```

Table Method

Algorithm 5 [Table Method]

 $X \in S = \{0, 1, 2, \cdots, K - 1\}$

Set-up Stage:

Create table A length M where each $i \in S$ appear k_i times Generate Stage:

- 1. Generate U from Unif[0,1]
- 2. Let $Z = \lfloor MU \rfloor + 1$
- 3. Return X = A[Z]

R Implementation [4-point distribution]

```
p_0 = 0.120, \ p_1 = 0.111, \ p_2 = 0.419, \ p_3 = 0.350
```

```
1 A <- c(rep(0, 120), rep(1, 111),

2 rep(2, 419), rep(3, 350))

3 U <- runif(n-1)

4 Z <- floor(M * U) + 1

5 X <- A[Z]
```

Rejection Method

Wish to draw $X \sim p_i$ with only access to $Y \sim q_i$ with $p_i \leq cq_i, c \geq 1 \ \forall i$

 $p_i :=$ target dist, $q_i :=$ proposal dist, c :=rejection constant P(accepted) = 1/c = 1 /num of iteration

Algorithm 6 [Rejection Algorithm for Discrete RV]

- 1. generate $U \sim Unif[0,1]$
- 2. generate Y from q_i
- 3. if $Ucq_Y \le p_Y$ Set X = Y
- 4. Else
 Go to Step 1
- 5. Return X

R Implementation [infinite distribution]

$$p_i = \frac{6}{\pi^2 i^2}, i \ge 1$$
, consider $q_i = \frac{1}{i(i+1)}, i \ge 1$ generate q_i by inversion by truncation:
 $\therefore G(x) = 1 - 1/x \therefore G^{-1}(U) = 1/(1 - U)$ find $c: p_i = \frac{6}{\pi^2 i^2} \le \frac{12}{\pi^2 i(i+1)} = \frac{12}{\pi^2} q_i = cq_i$ $U \le (p_i)/(cq_i) = \frac{6}{\pi^2} \frac{r_i^2}{12} (\frac{i^2+i}{i^2}) = \frac{1}{2} (1 + \frac{1}{i})$

```
while(TRUE){
    U <- runif(n=1)
    V <- runif(n=1)
    Y <- floor(1/(1-V)) #qi
    if(U <= 0.5*(1+1/Y)){
        X <- Y
        break
    }
}</pre>
```

Alias Method

based on theorem: any finite pmf can be re-written as uniform mixture of descrete 2-point distribution.

Mixture distribution

Suppose that $q_j^{(1)}, q_j^{(2)}, \cdots, q_j^{(n)}$ are n different pmfs on the finite set $\{0,1,\cdots,K-1\}$

Supposed p_i is a pmf on the set $\{1, \dots, n\}$

Then the following pmf is known as a mixture of n discrete distributions:

$$P(X = j) = \sum_{i=1}^{n} p_j q_j^{(i)}, \ j \in [0, K-1]$$

Algorithm 8 (Generating from Mixtures)

- 1. Generate V from p_i
- 2. Generate X from $q_j^{(V)}$
- 3. ReturnX

R Implementation [Generating from a mixture]

X with pmf $r_0 = 0.1, r_1 = 0.1, r_2 = 0.4, r_3 = 0.4$

```
1 U <- runif(n=1)
2 V <- runif(n=1)
3 if(U <= 0.2){
4    if(V <= 0.5){X <- 0}
5    else{X <- 1}
6 }
7 else{
8    if(V <= 0.5){X <- 2}
9    else{X <- 3}
9</pre>
```

Lemma 1 (Alias Method Lemma)

For a probability vector $\mathbf{P} = (p_0, \dots, p_{K-1}),$

1. there exists an $i \in [0, K-1]$ s.t. $\mathbf{P_i} < 1/(K-1)$, and 2. for this *i*, there exists a $j, j \neq i$ s.t. $\mathbf{P_i} + \mathbf{P_i} \geq 1/(K-1)$ 24

Theorem 2 (Alias Method Theorem)

Any finite probability vector \mathbf{P} can be expressed as $\mathbf{P} = \frac{1}{K-1} \sum_{m=1}^{K-1} \mathbf{Q^{(m)}}$ for suitably defined $\mathbf{Q^{(1)}}, \cdots, \mathbf{Q^{(K-1)}}$

- Algorithm 10 (Alias Method Setup)

 1. Initialise $\mathbf{P}' = \mathbf{P}, n = K$
 - 2. For m in 1 : (K-2):
 - 1. Apply Lemma1 to pick i, j from \mathbf{P}' Note: \mathbf{P}' is n-point dist, $i, j \in [0, K-1]$
 - 2. Set $\mathbf{Q_{i}^{(m)}} = (n-1)\mathbf{P_{i}'}$
 - 3. Set $\mathbf{Q_i^{(m)}} = 1 (n-1)\mathbf{P_i'}$
 - 4. Update

store results

 $P[i+1] \leftarrow 0 \# pi = 0$

update

Q.table[m,] <- c(i, j, Q.i)

$$\mathbf{P'} = \left[\mathbf{P'} - \frac{\mathbf{1}}{\mathbf{n} - \mathbf{1}} \mathbf{Q^{(m)}}\right] \frac{n - 1}{n - 2}$$

- 5. Update n = n 1
- 3. Set $Q^{(K-1)} = P'$

R Implementation [Alias Method Setup]

```
p_0 = 7/16, p_1 = 4/16, p_2 = 2/16, p_3 = 3/16
```

```
P \leftarrow c(7/16, 4/16, 2/16, 3/16)
n <- K <- length(P)
# set up table
Q.table <- matrix(0, nrow=K-1, ncol=3)
for(m in 1:K-2){
    # Pi < 1/(K-1)
    id <- which (P>0 \& P < 1/(n-1))
    # choose min pi satisifying cond
    i <- id[which.min(P[id])] - 1
    # since lemma always true, choose max val
    j \leftarrow which.max(P) - 1
     # set Q^m row
    Q \leftarrow rep(0, K)
    Q.i \leftarrow P[i+1]*(n-1)
    Q[i+1] < - Q.i
    Q[j+1] < -1 - Q.i
```

```
P[-(i+1)] \leftarrow ((P-(1/n-1)*Q)*(n-1)/(n-1))U \leftarrow runif(1)
# change index
n <- n - 1
\# Q^{K-1}
id \leftarrow which (P>0 & P< 1/(n-1))
i <- id[which.min(P[id])]-1
j \leftarrow which.max(P) - 1
Q.table[K-1,] <- c(i, j, P[i+1])
# store names
colnames(Q.table) <- c('i','j',</pre>
                        'Q.stage.i')
```

Algorithm 11 (Alias Method Generation)

- 1. Generate $V \sim Unif(1, K-1)$
- 2. Generate X from $\mathbf{Q}^{(\mathbf{V})}$
- 3. Return X

26

27

28

30

31

32

33

34

29 }

R Implementation [Alias Method Generation]

i | j | Q with a given alias table $0 \ 3 \ 1/12$ 1 | 2 | 5/7

```
1 n <- nrow(alias.table) + 1</pre>
2 U <- runif(n=1) # for sample
3 V <- runif(n=1) # for rejection
_{4} row.num <- floor((n-1)*U) + 1 # sample
5 X <- ifelse(V <= alias.table[row.num, 3],
              alias.table[row.num, 'i'],
              alias.table[row.num, 'j'])
```

Continuous Random Variable Generation

Inverse Transform Algorithm

Theorem 1: Distribution of $F^{-1}(U)$ Let $U \sim unif(0,1)$, for any strictly increasing cdf F, $X = F^{-1}(U)$ has distribution F

Algorithm 1 (Inverse Transform Algo)

- 1. Generate $U \sim unif(0,1)$
- 2. Return $X = F^{-1}(U)$

R Implementation Exponentials

cdf for exp is $F(x) = 1 - e^{-\lambda x}$ $\Rightarrow F^{-1}(U) = -\frac{1}{\lambda}log(1-U) \sim Exp(\lambda) \Leftrightarrow -\frac{1}{\lambda}log(U)$

```
X \leftarrow -(1/lambda)*log(U)
```

R Implementation $[X^n]$

$$F(x) = x^n \Rightarrow F^{-1}(U) = U^{1/n}$$

$$U \leftarrow \text{runif}(1)$$

$$X \leftarrow U**(1/n)$$

R Implementation [Maximal Order Statistics]

 $X_{(n)} = \max\{X_1, X_2, \cdots, X_n\}$ Method1: take Max of X

Method2: use $P(X_{(n)} \le x) = [F(x)]^n$

$$Xn \leftarrow inverseF(U**(1/n))$$

Method3: take Max of U

```
U <- runif(n)
Un \leftarrow max(U)
X <- inverseF(Un)
```

Inversion by Numerical Solution

In cases where F^{-1} is unknown, we solve F(X) - U = 0Since goal: Given U, find X s.t. F(X) = U

Bisection Method

provide an initial interval [a,b], search for solution Alogrithm 2 (Bisection method)

Given an initial interval [a,b] that contains the solution to F(X) = U and a width δ

Note: require understanding if the solution indeed lies in interval [a,b]

1. While
$$b - a > 2\delta$$

Set $X = \frac{1}{2}(a + b)$
If $F(X) \le U$ set $a = X$
Else set $b = X$

2. Return X

R Implementation[Generate Normal(0,1)]

use *pnorm* for cdf, note: mode of N(0,1) = 0

1. Generate $U \sim unif(0,1)$

```
2. If U < 0.5
       Solve \Phi(X) - U = 0 using bisection, with
   a = -7, b = 0
```

3. Else

```
Solve \Phi(X) - U = 0 using bisection, with
a = 0, b = 7
```

```
f <- function(X, U) pnorm(X) - U #F(X)-U
invert_f <- function(U) {</pre>
    if (U<=0.5) {
         out <- uniroot(f, c(-7, 0), U=U)
    } else {
         out \leftarrow uniroot(f, c(0, 7), U=U)
    out $root
```

Rejection Method

wish to draw X with f(x) with access to g(y)Support of X contained in support of Y $f(x) \le cg(x) \ \forall \ x,c \ge 1$ Note: can find $\max \log(h(x))$ for easy compute Theorem 2: (Rejection Algo for Continuous RV)

- 1. The RV generated by rejection also has a density f
- 2. The num of iterations of the algo needed is a geometric RV with mean c

Algorithm 3 [Rejection Algo for Continuous RV]

- 1. Generate $U \sim unif(0,1)$
- 2. Generate Y from g(y)
- 3. If $Ucg(Y) \leq f(Y)$ Set X = Y
- 4. Else

Go to Step 1

Beta(2,4)

$$f(x) = \frac{\Gamma(2+4)}{\Gamma(2)\Gamma(4)}x(1-x)^3$$

$$= 20x(1-x)^3, 0 < x < 1$$

$$g(x) = I(0 \le x \le 1)$$

$$c \ge \max_x \frac{f(x)}{g(x)} = h(x)$$

$$h'(x) = 20[(1-x)^3 - 3x(1-x)^2] = 0 \Rightarrow x = 0.25$$

$$c \ge \max_x h(x) = h(0.25) = 135/64 \approx 2.11$$

- 1. Generate $U, V \sim unif(0, 1)$
- 2. if $U \leq (256/27)V(1-V)^3$ set X=V
- 3. Else, return to step 1

Gamma(1.5, 1)

$$f(x) = \frac{1}{\Gamma(1.5)} x^{1/2} e^{-x}$$

$$= \frac{2}{\sqrt{\pi}} x^{1/2} e^{-x}, x > 0$$

$$g(x) = \frac{2}{3} e^{-2x/3} \sim Exp(E(f) = 2/3)$$

$$c \ge h(x) = \frac{3}{\sqrt{\pi}} x^{1/2} x^{-x/3}$$

$$h'(x) = \frac{3}{\sqrt{\pi}} \left(\frac{1}{2} x^{-1/2} e^{-x/3} - \frac{1}{3} x^{1/2} e^{-x/3} \right)$$

$$= 0 \Rightarrow x = 1.5$$

$$c \ge h(1.5) = \frac{3^{3/2}}{(2\pi e)^{1/2}} \approx 1.257$$

- 1. Generate $U, V \sim unif(0, 1)$
- 2. Set Y = -(3/2)log(V)
- 3. if $U < (2eY/3)^{1/2}e^{-Y/3}$ set X = Y
- 4. Else return to step 1

N(0,1)

1. Generate W from

$$f(w) = \frac{2}{\sqrt{2\pi}}e^{-w^2/2}, 0 < w < \infty$$

using rejection algorithm

- 2. Generate $U \sim unif(0,1)$
- 3. If $U \le 0.5$ Return X = -W
- 4. Else

Return X = W

Rejection algorithm to generate f(w)

$$g(y) = e^{-y}, 0 < y < \infty$$

 $h(x) = \sqrt{2/\pi}e^{x-x^2/2}$
 $c = \max_{x} h(x) = h(1) = \sqrt{2e/\pi} \approx 1.32$

- 1. Generate $U_1, U_2, U_3 \sim unif(0,1)$
- 2. Set $Y = -log(U_1)$
- 3. If $U_2 \le exp(-(Y-1)^2/2)$ go to step 5
- 4. Else return to step 1
- 5. If $U_3 \leq 0.5$, set X = -Y, else set X = Y
- 6. Return X

Modified Rejection Method

Incomplete Knowledge of f

Given only kernel of $f \Rightarrow f_1$ with a normalising constant c_N kernel does not contain any multiplicative constants

$$\int f_1(x)dx = \frac{1}{C_N}$$

$$f(x) = c_N f_1(x)$$
find c, g s.t. $f_1(x) < cq(x)$

Gamma: $f_1(x) = x^{a-1}e^{-x/b}, x > 0$ Normal: $f_1(x) = e^{-0.5(x-5)^2}, x \in \mathbf{R}$ Beta: $f_1(x) = x^{15}(1-x)^{32}, x \in [0,1]$ No restriction on c > 1, but min c

Modified Rejection Alogrithm

Alogrithm 4 [Modified Rejection Algorithm]

- 1. Generate $U \sim unif(0,1)$
- 2. Generate $Y \sim g(y)$
- 3. If $Ucg(Y) \le f_1(Y)$ Set X = Y

4. Else

Go to Sep 1

5. Return X

Truncated Gamma

$$Y \sim \Gamma(2,1)$$

$$X = Y|Y \ge 5$$

$$P(X \le x) = P(Y \le x|Y \ge 5)$$

$$= \frac{P(5 \le Y \le x)}{P(Y \ge 5)}$$

$$= \frac{\int_{5}^{x} y e^{-y} dy}{P(Y \ge 5)}$$

$$\propto \int_{5}^{x} y e^{-y} dy$$

$$\Rightarrow f(x) \propto f_{1}(x) = x e^{-x}$$

$$\det g(x) = \frac{\frac{1}{2} e^{-x/2}}{e^{-5/2}}, x \ge 5$$

$$\Leftrightarrow P(G \le x|G \ge 5), G \sim Exp(1/2)$$

$$h(x) = \frac{f_{1}(x)}{g(x)} = \frac{2x e^{-x}}{e^{5/2 - x/2}}$$

$$= 2x e^{-5/2} e^{-x/2}, x \ge 5$$

$$\therefore h'(x) \le 0 \Rightarrow \max_{h} h(x) = h(5) = 10e^{-5}$$

$$\Rightarrow f_{1}(x) \le 10e^{-5}g(x)$$

From memoryless property

$$P(W > 5 + t | W > 5) = P(W > t)$$

$$P(W \le 5 + t | W > 5) = P(W \le t)$$

$$P(W \le x | W > 5) = P(W \le x - 5), x > 5$$

$$= P(W + 5 \le x), x > 5$$

- \Rightarrow generate Exp(0.5) + 5 for W|W > 5
 - 1. Generate $U_1, U_2 \sim unif(0,1)$
 - 2. Set $Y = 5 2log(U_1)$
 - 3. If $U_2 \leq (Y/5)e^{-Y/2}e^{5/2}$ then set X = Y
 - 4. Else, return to step 1

Composition or Mixture Method

express target density f as finite mixture of densities

$$f(x) = \sum_{i=1}^{n} p_i f_i(x)$$

Algorithm 5 [Mixture Method for Continuous R.V.s]

- 1. Generate $Z \sim p_i$
- 2. Generate $X \sim f_Z$

A mixture of 2 Densities

Example:

$$f(x) = \frac{1}{2\sqrt{2\pi}} \left[e^x + e^{-x} \right] e^{-0.5(x^2 + 1)}$$
$$= \frac{1}{2} f_1(x) + \frac{1}{2} f_2(x)$$

where $f_1(x) = N(1,1), f_2(x) = N(-1,1)$

- 1. $U \sim unif(0,1)$
- 2. If $U \le 0.5$

Return $X \sim N(1,1)$

3. Else

Return $X \sim N(-1, 1)$

A Mixture of Point Mass and Uniform

Example:

$$f(x) = \frac{1}{3}I(x=0) + \frac{2}{3}I(2 < x < 3)$$

I(X=0) denotes a degenerate RV always taking value 0, other is unif(2,3)

- 1. Generate $U \sim unif(0,1)$
- 2. If $U \le 1/3$

Return X = 0

3. Else

Return $X \sim unif(2,3)$

Composition for Polynomial Densities

consider
$$f(X) = \sum_{i=0}^{K-1} c_i x^i, x \in [0, 1]$$

observe $\Leftrightarrow \sum_{i=0}^{K-1} \frac{c_i}{i+1} (i+1) x^i$

Condition

- c_i are non-negative constants
- K > 0
- $\sum_{i=0}^{K-1} c_i/(i+1) = 1$

Algorithm 6 [Composition Method for Polynomial Densities]

- 1. Generate $Z \sim p_i = \frac{c_1}{(i+1)}, Z \in [0, K-1]$
- 2. Generate $U \sim Unif(0,1)$
- 3. Return $X = U^{1/(Z+1)}$

Generating from a Polynomial Density

Example:

$$f(x) = x^3 + \frac{9}{2}x^5$$
$$= \frac{1}{4}4x^3 + \frac{3}{4}6x^5$$

- 1. Generate $V, U \sim unif(0, 1)$
- 2. If V < 1/4, set $X = U^{1/4}$
- 3. Else, set $X = U^{1/6}$

Box-Muller Transformation

Let $X, Y \sim N(0, 1)$ independently, R, Θ denote polar coordinates of (X, Y)

$$R^{2} = X^{2} + Y^{2}$$

$$tan\Theta = \frac{Y}{X}$$

$$f(x,y) = \frac{1}{2\pi}e^{-(x^{2} + y^{2})/2}$$

$$let d = x^{2} + y^{2} \ge 0, \ \theta = tan^{-1}(\frac{y}{x}) \in [0, 2\pi]$$

$$f(d,\theta) = \left(\frac{1}{2}e^{-d/2}\right)\left(\frac{1}{2}\pi\right)$$

Algorithm 7 [Box-Muller Transformation]

- 1. Generate $U_1, U_2 \sim Unif(0,1)$
- 2. Set $R^2 = -2log(U_1), \Theta = 2\pi U_2$
- 3. Set

$$X = R\cos(\Theta) = \sqrt{-2log(U_1)}\cos(2\pi U_2)$$
$$Y = R\sin(\Theta) = \sqrt{-2log(U_1)}\sin(2\pi U_2)$$

4. To obtain $N(\mu, \sigma^2)$, use linear transformation of X, Y

Poisson Process

Theorem 3 [Distribution of Inter-Arrival Times]

- The inter-arrival times X_1, X_2, \cdots are i.i.d. $Exp(\lambda)$
- The time of the nth arrival, $S_n = \sum_{i=1}^n X_i$ is distributed as $\Gamma(n, \lambda)$

Theorem 4 [Conditional Distribution of $\{S_n\}$]

Given N(t) = n, the arrival times S_1, S_2, \dots, S_n have the same distribution as the order statistics corresponding to n independent RV uniformly distribution on the interval (0, t)

Homogeneous Poisson Process

Algorithm 8 [Method1: Homogeneous Poisson Process]

- 1. Set t = 0, I = 0
- 2. Repeat:

Generate $U \sim unif(0,1)$

Set $t = t - \frac{1}{\lambda}log(U)$

If t > T exit the algo (no events by time T)

Else

Set I = I + 1

Set $S_i = t$

 S_n will contain the n event times before T, in increasing order

Remark: Algo 8 offers alternative way to generate Pois. Since $N(1) \sim Pois(\lambda)$, we set T=1 and count number of events.

Algorithm 9 [Method2: Homogeneous Poisson Process]

- 1. Generate $N(T) \sim Pois(\lambda T)$
- 2. Generate $U_1, \dots, U_{N(T)} \sim unif(0, 1)$
- 3. Set the collection of event times to be $\{TU_1, TU_2, \cdots, TU_{N(T)}\}$

Nonhomogeneous Poisson Process

Algorithm 10 [Thinning Method for Nonhomogeneous Poisson Process]

- 1. Set t = 0, I = 0
- 2. While $t \leq T$

Generate $U, V \sim uni f(0, 1)$

Set $t = t - \frac{1}{\lambda}log(U)$. If t > T exit algo

If $V \leq \lambda(t)/\lambda$

Set I = I + 1

Set $S_i = t$

Note: $\lambda \geq \lambda(t) \ \forall \ t$

Estimation in Monte Carlo Simulations

- 1. Identify X
- 2. Generate X_1, X_2, \cdots, X_n
- 3. Estimate E(X) using \bar{X}

Properties of Sample Mean and Sample Variance

Strong Law of Large Numbers (SLLN)

Theorem 1 (SSLN)

Given iid X_1, X_2, \cdots, X_n , with $E(X) < \infty$

$$\frac{1}{n}\sum_{i=1}^{n} X_i \to E(X) \text{ with prob } 1$$

Central Limit Theorem (CLT)

Given iid X_1, X_2, \dots, X_n , with $-\infty < E(X_1) = \mu < \infty$ and $Var(X_1) = \sigma^2 < \infty$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \to N(0, 1)$$
 converge in prob

Stoppping Rules

Confidence Interval

Algorithm 3 & 4 (Confidence Interval Stopping Rule)

1. $L := \max \text{ acceptable interval width}$

2. Generate X_1, X_2, \dots, X_n s.t.

$$2z_{(\alpha/2)}\frac{s}{\sqrt{n}} < L$$

$$2z_{(\alpha/2)}\frac{\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}} < L \text{ for Ber(p)}$$

3. The CI for E(X)

$$\begin{split} &\bar{X}\pm z_{(\alpha/2)}\frac{s}{\sqrt{n}}\\ &\bar{X}\pm z_{(\alpha/2)}\frac{\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}} \text{ for Ber(p)} \end{split}$$

Standard Error

Algorithm 5 & 6 (Standard Error Stopping Rule)

- 1. $d := \max \text{ acceptable standard error deviation}$
- 2. Generate X_1, X_2, \dots, X_n s.t.

$$\frac{\frac{s}{\sqrt{n}} < d}{\frac{\sqrt{\bar{X}(1-\bar{X})}}{\sqrt{n}}} < d \text{ for Ber(p)}$$

3. return \bar{X} as estimate of E(X)

Recursive update of \bar{X}, s^2

$$\bar{X}_{j+1} = \bar{X}_j + \frac{X_{j+1} - \bar{X}_j}{j+1}$$

$$s_{j+1}^2 = \left(1 - \frac{1}{j}\right) s_j^2 + (j+1)(\bar{X}_{j+1} - \bar{X}_j)^2$$

Monte Carlo Integration

Direct Monte Carlo Integration

$$\int_{-\infty}^{\infty} h(x)f(x)dx \Leftrightarrow E(h(X)) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

Important: 1. introduce a pdf to integral, 2. Simulate the introduced pdf

Note: similar result applies for summation

Example: integrating over interval a, b

$$\theta = \int_a^b g(x)dx = \int_a^b g(x)(b-a)\frac{1}{b-a}I(a \le x \le b)dx$$

- 1. generate $U_1, U_2, \cdots, U_n \sim Unif(0,1)$
- 2. set $V_i = (b-a)U_i + a \ \forall i$
- 3. Estimate θ with $\frac{1}{n} \sum_{i=1}^{n} g(V_i)(b-a)$

Example: integrating over interval $-\infty, \infty$

$$\theta = \int_{-\infty}^{\infty} x e^{(-x^2)} dx = \int_{-\infty}^{\infty} \sqrt{2\pi} x e^{(-0.5x^2)} \frac{1}{\sqrt{2\pi}} e^{(-0.5x^2)} dx$$

- 1. generate $X_1, X_2, \dots, X_n \sim N(0, 1)$
- 2. estimate θ with $\frac{1}{n}\sum_{i=1}^{n}\sqrt{2\pi}X_{i}e^{-0.5X_{i}^{2}}$

Importance Sampling

$$\theta = E[h(X)] = \int h(x)f(x)dx = \int \frac{h(x)f(x)}{g(x)}g(x)dx$$
$$= \int h(x)\frac{f(x)}{f_t(x)}f_t(x)dx$$

Algorithm 7 (Importance Sampling)

- 1. Generate $X_1, X_2, \cdots, X_n \sim g$
- 2. Estimate θ using

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{h(X_i)f(X_i)}{g(X_i)}$$

Tilted Density

Suppose f is pdf, $M(t) = \int exp(tx)f(x)dx$ be mgf, the tilted density of f :=

$$f_x(x) = \frac{exp(tx)f(x)}{M(t)}I(-\infty < t < \infty)$$

useful for estimating small probability. However, this is a family of distribution and choosing t is tricky

Example of tilted densities

pdf	tilted densities
	$Exp(\lambda - t), t < \lambda$
Ber(p)	$Ber(\frac{pe^t}{pe^t+1-p}), M(t) = pe^t + (1-p)$

Binomial Tail

want to estimate
$$P(X \ge 16), X \sim Bin(20, 0.4)$$

pmf: $P(X = x) = C_x^{20} p^x (1 - p)^{20 - x}, p = 0.4$
tilted pmf: $P(X_t = x) = \frac{exp(tx)}{(pe^t + 1 - p)^{20}} C_x^{20} p^x (1 - p)^{20 - x}$
 $P(X \ge 16) = \sum_{x=0}^{20} I(X \ge 16) \left[C_x^{20} p^x (1 - p)^{20 - x} \right]$
 $= \sum_{x=0}^{20} I(x \ge 16) \frac{(pe^t + 1 - p)^{20}}{exp(tx)} \left[\frac{exp(tx)}{(pe^t + 1 - p)^{20}} C_x^{20} p^x (1 - p)^{20 - x} \right]$

- 1. Direct Monte Carlo
 - [1] gen X_1, X_2, \dots, X_n from Bin(20, 0.4)
 - [2] Compute $Y_i = I(X_i \ge 16), i \in [1, n]$
 - [3] Estimate using \bar{Y}
- 2. Importance Sampling
 - [1] Generate X_1, X_2, \dots, X_n from tilted density, with t = 1.8
 - [2] Compute

$$W_i = I(X_i \ge 16) \frac{(pe^t + 1 - p)^{20}}{exp(tX_i)}. i \in [1, n]$$

[3] Estimate using \bar{W}

Discrete Event Simulation

Condition: system where one or more phenomena of interest change value or change state at discrete points in time. Key points:

- 1. Event cause the state of system to change
- 2. Change involves sequence of actions to be taken on the entities and variables being recorded.
- 3. Simulated time is constant while these actions take place.

Components

1. System

A collection of objects that interact through time according to certain rules.

2. System State (SS)

A collection of variables of interest in the system under study.

3. Entity

An object in a system that requires explicit representation

4. Event

A change in the system state

5. Event List (EL)

A list of tureu or upcoming events

Generating Events from Nonhomogeneous Poisson Process

Algorithm 1 (Nonhomogeneous Poisson Process)

- 1. let t=s
- 2. generate $U \sim Unif[0,1]$
- 3. Update $t = t \frac{1}{2}log(U)$
- 4. Gen $V \sim Unif[0,1]$
- 5. If $V \leq \lambda(t)/\lambda$

set $T_s = t$ and exit the algorithm

6. Else Return to step 2

R Implementation[Generate $Pois(\lambda_t)$]

Single Server Queue

Interested to find T_p :=time past T that the last customer departs

Problem Set-up

Arrival time: $T_t \sim Pois(\lambda(t))$ ranges refer to timing of the day (e.g. 2nd hour etc)

$$\lambda(t) = \begin{cases} 2, & x \in [0,3) \cup [6,8) \\ 3, & x \in [3,4) \cup [5,6) \cup [8,9) \\ 6, & x \in [4,5) \end{cases}$$

Serving time: $Y \sim N\left(0.25, \frac{2}{60}^2\right)$

No additional arrivals allowed after 5pm (9hrs).

DES variable definition

- 1. System: service station
- 2. Entity: server, customer, t := current time
- 3. Event: arrival, departure of customers
- 4. SS: (n)

 n := num of customers in the system, exclude those who have left, including those at station and queue
- 5. EL: (t_A, t_D) $t_A, t_D := \text{time of next arrival, departure}$
- 6. Param: (t)t := current time

Initialising the model

- 1. SS = (0)
- 2. $EL = (T_0, \infty)$
- 3. Param = (0)

Updating System

- 1. $t_A \le t_D, t_A \le T$: arrival before T [1] Param = $(t = t_A)$
 - [2] SS = (n = n + 1)
 - $[3] t_A = T_t$
 - [4] If SS = 1: update $t_D = t + Y$
- 2. $t_D < t_A, t_D \le T$: departure before T
 - [1] Param = $(t = t_D)$
 - [2] SS = (n = n 1)
 - [3a] If SS = 0, update $t_D = \infty$
 - [3b] else: set $t_D = t + Y$

```
3. \min(t_A, t_D) > T, n > 0: customer in system, after T 3 [1] Param = (t = t_D) 3 [2] SS = (n = n - 1) 4 [3] If SS > 0, update t_D = t + Y 4. \min(t_A, t_D) > T, n = 0: no customer, after T [1] return T_p = \max(t - T, 0)
```

R code

```
1 # init
2 n <- 0; ta <- genPois(s=0); td <- Inf</pre>
3 now.time <- 0</pre>
4 end.time <- 10 #days to simulate
5 run <- TRUE
6 # helper functions
r customerArrival <- function(){</pre>
      # simulate customer arrival
      now.time <<- ta
      n < - n + 1
      ta <<- genPois(now.time)
11
12
      if(n==1)
           td <<- now.time + genServingTime()
13
14
15 }
16 customerDeparture <- function(){</pre>
      # simulate customer departure
17
      now.time <<- td
18
      n < < - n - 1
19
      if(n==0)
20
           td <<- Inf
21
      } else {
22
23
           td <<- now.time + genServingTime()
      }
24
25 }
26 while(run){
      if(min(ta, td) <= end.time){</pre>
           # before T
           if(ta <= td){
               # arrival
               customerArrival()
           } else {
               # departure
               customerDeparture()
      else if (n > 0)
           # remaining customer, after T
```

```
customerDeparture()
} else {
    # no customer, after T
    Tp <- max(now.time - end.time, 0)
    run <- FALSE # end
}</pre>
```

Min of Exp is Exp

 $X_i \sim Exp(\lambda_i)$ independently, $X = \min\{X_1, X_2, \cdots, X_n\}$

$$P(X \le x) = 1 - P(X > x)$$

$$= 1 - P(X_1 > x, X_2 > x, \dots, X_n > x)$$

$$= 1 - \prod_{i=1}^{n} P(X_i > x)$$

$$= 1 - \prod_{i=1}^{n} e^{-\lambda_i x}$$

$$= 1 - e^{x \sum_{i=1}^{n} \lambda_i}$$

$$= Exp(\sum_{i=1}^{n} \lambda_i)$$

Insurance Claims

Interested to find probability of non-negative capital after T=5 months

Problem Set-up

Claim amount $:= Y = 100W \sim \Gamma(3, 4/100)$ Premium amt per pholder := cEvent time $:= X \sim Exp(\nu + n\mu + n\lambda)$ Type of event := J

$$P(J=1) = p_1 = \frac{\nu}{\nu + n\mu + n\lambda}$$

$$P(J=2) = p_2 = \frac{n\mu}{\nu + n\mu + n\lambda}$$

$$P(J=3) = p_3 = \frac{n\lambda}{\nu + n\mu + n\lambda}$$

where 1. New policyholder join time $\sim Exp(\nu)$, 2. Pholders staying time $\sim Exp(\mu)$, 3. Claim event time $\sim Exp(\lambda)$

DES variable definition

- 1. System: insurance company
- 2. Entity: 1. claim, 2. customer, 3. capital

- 3. Event: 1. New policyholder, 2. Lost policyholder, 3. claim
- 4. SS: (n, a) n := num of policyholdersa := current capital
- 5. EL: (t_E, J) $t_E := \text{time of next event}$ J := type of event
- 6. Param = (t, I) t := current timeI := indicator for non-negative capital

Initialising the model

- 1. $SS = (n_0, a_0), a_0 \ge 0$
- 2. EL = (X, J)
- 3. Param = (0,1)

Updating System

- 1. $t_E > T$: after T
- 2. $t_E < T$: before T
 - [1] $a = a + nc(t_E t)$

[1] set I = 1 and exit

- [2] $t = t_E$
- [3a] if J = 1: n = n + 1
- [3b] if J = 2: n = n 1
- [3c] if J = 3:

[3ci] if Y > a: set I = 0 and exit

[3cii] else: set a = a - Y

- [4] update next event time $t_E = t + X$
- [5] update J

R code

```
n <- 10; a <- 500 # preset n0 and a0
te <- genTime(); j <- genType()</pre>
3 now.time <- 0; end.time <- 10 # end time</pre>
4 I.capital <- 1 #sufficient capital
5 while(te <= end.time){</pre>
      a <<- a + n*premium*(te - now.time)
      now.time <<- te
      if(j==1){
           # new customer
           n < < - n + 1
10
      } else if (j==2){
11
           # customer quit
12
          n < < - n - 1
13
      } else {
14
           # claim event
15
           claim <- genClaim()</pre>
16
           if(claim > a){
               # if claim more than capital
               I.capital <<- 0
               return(I.capital)
           } else {
21
               # if claim less than capital
22
               a <<- a - claim
23
           }
      j <<- genType()</pre>
      te <<- now.time + genTime()
28 }
```

Repair Problem

Interested to approximate E(T), T :=time system crashes

Problem Set-up

```
 \begin{aligned} \text{Failure time} &:= X \sim F \\ \text{Service time} &:= Y = G \sim Unif(a,b) \\ n &:= \text{num of required working machine} \\ s &:= \text{num of spare machines} \end{aligned}
```

DES variable definition

- 1. System: factory
- 2. Entity: 1.spare machine, 2.in-use machine, 3. repairman
- 3. Event: 1.failure, 2.completion of repair

```
4. SS = (SS)

SS := \text{num of machines down at time t},

0 \le SS \le n + s
```

- 5. EL: $(t_1 \leq t_2 \leq \cdots \leq t_n, t^*)$ $t_1, \cdots, t_n :=$ ordered times where n machines currently in use will fail $t^* :=$ time machine complete repair
- 6. Param = (t)t := current time

Initialising the model

- 1. SS = (0)
- 2. EL = $(X_1, \dots, X_n, \infty)$
- 3. Param = (0)

 t_1, \dots, t_n are ordered $X_1, \dots, X_n \sim F$

Updating System

```
1. t_1 < t^*: failure 27
[1] Param = (t = t_1) 28
[2] SS = (SS = SS + 1) 29
[3a] if SS = s + 1:
exit 32
[3b] else if SS < s + 1:
update (t_2, t_3, \dots, t_n, X + t) as ordered vector 34
[3bi] if SS = 1:
update t^* = t + Y 36
37
```

```
2. t_1 > t^*: repair completion
[1] \text{ Param} = (t = t^*)
[2] SS = (SS = SS - 1)
[3a] \text{ if } SS > 0:
\text{update } t^* = t + Y
[3b] \text{ else if } SS = 0:
\text{update } t^* = \infty
```

R code

```
# helper function
updateFailure <- function(){
    # update machine failure
    now.time <<- fail.time[1]
    failed <<- failed + 1
    if(failed == s+1){
        # failed more than required
        return (now.time)
    } else if (failed < s + 1) {</pre>
        # add in spare machine
        fail.time[1] <<- now.time +
                          genFailure()
        fail.time <<- sort(fail.time)</pre>
        if(failed == 1){
             # if only 1 failure,
             # gen repair time
             repair.time <<- now.time +
                              genRepair()
        }
    }
updateRepair <- function(){</pre>
    # update machine repaired
    now.time <<- repair.time</pre>
    failed <<- failed - 1
    if(failed > 0){
        # if there is machine to repair
        repair.time <<- now.time +
                              genRepair()
    } else if (failed == 0){
        # no more machine to repair
        repair.time <<- Inf
while(failed <= s){</pre>
    if(fail.time[1] < repair.time){</pre>
        updateFailure()
    } else {
        updateRepair()
    }
```

Inventory Model

Interested in estimating expected profit up to fixed time T, profit = R - H - C

Problem Set-up

customer arrival time := $T \sim Pois(\lambda)$ demand $:= D \sim G$:= threshold S:= inventory limit := (s, S), when x < s and no ordering policy outstanding order, ordered s.t. x = Sprice := r:= c(y)cost := Lorder time := hholding cost

DES variable definition

- 1. System: store
- 2. Entity: 1. customer, 2. order
- 3. Event: 1. customer visiting store, 2. order arriving
- 4. SS: (x, y)x := inventory amounty := order amount
- 5. EL: (t_0, t_1) $t_0 := \text{time next customer arrive}$ $t_1 := \text{time order fulfilled}$
- 6. Param := (t, H, R, C)t := current timeH := holding costR := revenue $C := \cos t$

Initialising the model

- 1. SS = (S, 0)
- 2. $EL = (X, \infty)$
- 3. Param = (0, 0, 0, 0)

Updating System

1. $t_0 < t_1$: new customer arrival [1] Update Param $H = H + (t_0 - t)xh$ $t=t_0$ $w = \min(D, x)$ R = R + wr[2] update SS: x = x - w

[3] update next arrival time: $t_0 = t + T$

[4] if (x < s) & (y = 0): update y = S - xupdate $t_1 = t + L$ 2. $t_0 \ge t_1$: order arrival [1] update Param $H = H + (t_0 - t)xh$ $t = t_1$

R code

31

C = C + c(y)

set y = 0

set $t_1 = \infty$

[2] update x = x + y

```
x < - S; y < - 0
  t0 <- genArrival(); t1 <- Inf
  now.time <- 0; end.time <- 10 #num of days
  H <- 0; R <- 0; Cost <- 0
  customerArrival <- function(){</pre>
      # customer arrive in store
      H < - H + (t0 - now.time)*x*h
      now.time <<- t0
      demand <- genDemand()</pre>
      w <- min(demand, x)
      R <<-R + w * r
      x <<- x - w
      t0 <<- now.time + genArrival()
      if((x < s)&(y==0)){
          # if inventory less than threshold
          # and no pending orders
          v <<- S - x
          t1 <<- now.time + L
      }
 }
20
  orderArrival <- function(){</pre>
      # order arrive in store
      H < - H + (t0 - now.time) * x * h
      now.time <<- t1
      Cost <<- Cost + cost(y)
      v <<- 0
      t1 <<- Inf
27
28
  while (min(t0, t1) <= end.time) {
      if(t0 < t1){
          customerArrival()
      } else {
```

orderArrival()

Queueing System with Two Parallel Servers

Interested in time spent in system by each customer, number of services performed by each server

Problem Set-up

```
service time by server i := Y_i \sim G_i
 arrival time of customer := T_t \sim Pois(\lambda(t))
customers are labelled by their arrival, customer 1 arrive
earlier than customer 2 etc.
```

If both servers are occupied, customer join queue, else customer join server 1 if it's free else server 2

DES variable definition

- 1. System: two parallel servers
- 2. Entity: 1. customer, 2. server
- 3. Event: 1. customer arrival, 2. customer departure
- 4. SS: (n, i_1, i_2) n := total num of customers in system $i_1 := i^{th}$ customer is with server 1 $i_2 := i^{th}$ customer is with server 2
- 5. EL: (t_A, t_1, t_2) $t_A := \text{next arrival time}$ $t_1 := \text{completion time for server } 1$ $t_2 := \text{completion time for server } 2$
- 6. Param: (t, N_A, C_1, C_2) t := time $N_A := \text{number of arrival by time } t$ $C_1 := \text{number of customers served by server } 1$ $C_2 :=$ number of customers served by server 2
- 7. A(n), D(n): matrix of nx1 n^{th} entry represents the arrival time and departure time of customer n

Initialising the model

- 1. SS = (0, 0, 0)
- 2. $EL = (T_0, \infty, \infty)$
- 3. Param = (0,0,0,0)
- 4. An = Dn = NULL

Updating System

```
1. \min(t_A, t_1, t_2) = t_A: new arrival
        [1] Param = (t = t_A, N_A = N_A + 1, C_1, C_2)
        [2] update A(N_A) = t
        [3] update t_A = T_t
        [4a] if n = 0:
   update SS = (n = 1, i_1 = N_A, i_2 = 0)
   update t_1 = t + Y_1
        [4b] if n = 1:
   update SS = (n = 2, i_1 = N_A, i_2)
   update t_1 = t + Y_1 (or update server 2)
        [4c] if n > 1:
   update SS = (n = n + 1, i_1, i_2)
2. t_1 < t_A, t_1 \le t_2: departure from server 1
        [1] Param = (t = t_1, N_A, C_1 = C_1 + 1, C_2)
        [2] update D(i_1) = t
        [3a] if n = 1:
   update SS = (n = 0, i_1 = 0, i_2 = 0)
   update t_1 = \infty
        [3b] if n = 2:
   update SS = (n = 1, i_1 = 0, i_2)
   update t_1 = \infty
        [3c] if n > 2:
   let m = \max(i_1, i_2)
   update SS = (n - 1, m + 1, i_2)
   update t_1 = t + Y_1
3. t_2 < t_A, t_1 > t_2: departure from server 2
        [1] Param = (t = t_2, N_A, C_1, C_2 = C_2 + 1)
        [2] update D(i_2) = t
        [3a] if n = 1:
   update SS = (n = 0, i_1 = 0, i_2 = 0)
   update t_2 = \infty
        [3b] if n = 2:
   update SS = (n = 1, i_1, i_2 = 0)
   update t_2 = \infty
        [3c] if n > 2:
   let m = \max(i_1, i_2)
   update SS = (n - 1, i_1, m + 1)
   update t_2 = t + Y_2
```

```
R code
# init
n <- 0; i1 <- 0; i2 <- 0
ta <- genArrival(s=0); t1 <- Inf; t2 <- Inf
now.time <- 0; N <- 0; C1 <- 0; C2 <- 0
An <- NULL; Dn <- NULL
# helper function
updateArrival <- function(){</pre>
    now.time <<- ta: N <<- N + 1
    An[N] <<- now.time
    ta <<- genArrival(s=now.time)
    if(n==0)
        n < < - n + 1
        i1 <<- N
        i2 <<- 0
        t1 <-- now.time + genServTime.1()
    } else if (n==1){
        n <<- 2
        if(max(t1, t2) == t1){
            # server 1 is free
            i1 <<- N
             t1 <<- now.time +
                          genServTime.1()
        } else{
             # server 2 is free
            i2 <<- N
            t2 <<- now.time +
                          genServTime.2()
        }
    } else {
        n < < - n + 1
    }
updateDeparture.1 <- function(){</pre>
    now.time <<- t1; C1 <<- C1 + 1
    Dn[i1] <<- now.time</pre>
    if (n==1) {
        n <<- 0
        i1 <<- 0; i2 <<- 0
        t1 <<- Inf
    } else if (n==2){
        n <<- 1
        i1 <<- 0
        t1 <<- Inf
    } else {
        m \leftarrow max(i1, i2)
```

```
n < < - n - 1
         i1 < < - m + 1
         t1 <<- now.time + genArrival()
    }
updateDeparture.2 <- function(){</pre>
    now.time <<- t2; C2 <<- C2 + 1
    Dn[i2] <<- now.time</pre>
    if(n==1){
         n <<- 0
        i1 <<- 0; i2 <<- 0
         t2 <<- Inf
    } else if (n==2){
        n <<- 1
         i2 <<- 0
         t.2 <<- Inf
    } else {
         m \leftarrow max(i1, i2)
         n < < - n - 1
         i2 <<-m+1
        t2 <<- now.time + genArrival()
    }
run <- TRUE
while(run){
    if (min(ta, t1, t2) <= end. time) {
         # server running
        if(min(ta, t1, t2) == ta){
             updateArrival()
        } else if (t1 <= t2){</pre>
             updateDeparture.1()
        } else {
             updateDeparture.2()
    } else if (n>0){
         # remaining jobs
        if(t1 <= t2){
             updateDeparture.1()
        } else {
             updateDeparture.2()
    } else {
         # no jobs, after end time
         run <- FALSE
    }
```

Variance Reduction

variance recateurn				
Antithetic Variable	Control Variable			
1. Need same distribution	1. X and Y have different			
for X and X'	distribution			
2. Need negative	2. Just need some			
correlation	correlation			
3. The mean of X is being	3. The mean of Y must be			
estimated	known			
4. No estimation needed	4. Need to estimate c^*			

Antithetic Variables

Definition 1 (Antithetic Pairs)

 X_1, X_2 are defined to be an antithetic pair if they are identically distributed but negatively correlated

Estimation without Antithetic Random Variable

- Identify RV X and write a program to simulate it
- Generate i.i.d sample $X_1, \dots, X_n \sim X$
- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- $(1 \alpha)100\%$ CI: $\bar{X} \pm z(\alpha/2)s/\sqrt{n}$

Estimation with Antithetic RV

- \bullet Identify RV X and write a program to simulate it
- Generate i.i.d sample $X_1, \dots, X_{n/2}$ and their antithetic pairs $X'_1, \dots, X'_{n/2}$, where n is even integer
- Set $Y_i = \frac{1}{2}(X_i + X_i')$
- $\bar{Y} = \frac{1}{n/2} \sum_{i=1}^{n/2} Y_i, \ s^2 = \frac{1}{n/2-1} \sum_{i=1}^{n/2} (Y_i \bar{Y})^2$
- $(1-\alpha)100\%$ CI: $\bar{Y} \pm z(\alpha/2)s/\sqrt{n/2}$

 $var(\bar{Y}) \le var(\bar{X})$

General Method: U, 1-U

Theorem 2 (Correlation for Monotone Functions)

Suppose h is a function of d variables, and is a monotone function of each of its coordinates. In other words, for any i from 1 to d, it holds that if $x_i \leq y_i$, then either

 $h(x_1, x_2, \dots, x_i, \dots, x_d) \le h(x_1, x_2, \dots, y_i, \dots, x_d)$ or $h(x_1, x_2, \dots, x_i, \dots, x_d) \ge h(x_1, x_2, \dots, y_i, \dots, x_d)$.

If the above condition holds, then

$$Cov[h(U_1, \dots, U_d), h(1 - U_1, \dots, 1 - U_d)] \le 0$$

$$X_{i} = h(U_{1}, \dots, U_{d})$$

$$X'_{i} = h(1 - U_{1}, \dots, 1 - U_{d})$$

$$X = h(F^{-1}(U_{1}), F^{-1}(U_{2}), \dots, F^{-1}(U_{d}))$$

$$X'_{i} = h(F^{-1}(1 - U_{1}), F^{-1}(1 - U_{2}), \dots, F^{-1}(U_{d}))$$

Note: check $\frac{d}{dx} > 0$ for strictly increasing condition

Example1: Monte Carlo Integration with Antithetic Pairs $\mu = E(e^U) = \int_0^1 e^x dx$

- 1. Generate $U \sim unif(0,1)$
- 2. Set $X_1 = e^U$, $X_1' = e^{1-U}$
- 3. Estimate $E(e^U)$ using $\bar{X} = (X_1 + X_1')/2$

Example 2: Simulating Reliability

 $s_i = 1$ if functioning and $s_i = 0$ if failed.

 $\Phi=1\Leftrightarrow \text{overall system}$ is functioning

$$\Phi(s_1, s_2, s_3, s_4, s_5) = \max\{s_1 s_3 s_5, s_2 s_3 s_4, s_2 s_5, s_1 s_4\}$$

$$P(S_i = 1) = p_i = 1 - P(S_i = 0)$$

$$r(p_1, p_2, p_3, p_4, p_5) = P(\Phi = 1) = E(\Phi)$$

Using Antithetic Pairs

- 1. Generate $U_1, U_2, \cdots, U_5 \sim Unif(0,1)$
- 2. Set $S_i = 1$ if $U_i \leq p_i$ else 0
- 3. Compute $W_i = \Phi(S_1, \dots, S_5)$
- 4. Set $S'_i = 1$ if $1 U_i \le p_i$ else 0
- 5. Compute $W'_i = \Phi(S'_1, \dots, S'_5)$

Specific Method for Normal

if $X \sim N(\mu, \sigma^2)$, then antithetic RV is $X' = 2\mu - X$

$$X_i = h(W_1, \dots, W_d)$$

 $X'_i = h(2\mu_1 - W_1, \dots, 2\mu_d - W_d)$

Control Variables

estimate $\mu = E(X)$, require μ_Y to be known

$$\hat{\mu} = X + c^*(Y - \mu_Y)$$

$$c^* = -\frac{Cov(X, Y)}{Var(Y)}$$

$$Var(X + c^*(Y - \mu_Y)) = Var(X) - \frac{[Cov(X, Y)]^2}{Var(Y)}$$

Note: (var reduction / var(X) = corr(X,Y))

$$E(U) = \frac{1}{2} E(U^2) = \frac{1}{3}$$

$$\rho(X,Y)^2 = \frac{[Cov(X,Y)]^2}{Var(Y)} \cdot \frac{1}{Var(X)}$$

Using Control Variables in Simulation

- 1. Identify a RV X and write a program to simulate it
- 2. Generate X_1, X_2, \cdots, X_n
- 3. Identify Y_1, \dots, Y_n that was part of the simulation with a known μ_Y
- 4. Estimate \hat{c}^* from data
- 5. Set $W_i = X_i + c^*(Y_i \mu_Y)$
- 6. Compute $\bar{W} = \frac{1}{n} \sum_{i=1}^{n} W_i$, and $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (W_i \bar{W})^2$
- 7. Then $(1 \alpha)100\%$ CI: $\bar{W} \pm z(\alpha/2)s/\sqrt{n}$

Back to Example 1: Integrating e^x

Using U as control variate, E(U) = 0.5 $Var(e^U + c^*(U - 1/2)) << Var(e^U)$ use $X_i = e^U + c^*(U - 1/2)$

Back to Example2: Reliability Function

Using $Y = \sum_{i=1}^{5} S_i$ as control variate, $E(Y) = E(\sum_{i=1}^{5} S_i) = \sum_{i=1}^{n} p_i$ use $X_i = W_i + c^*(Y_i - \sum_{i=1}^{5} p_i)$

Var of estimator

Control variables : Var(W)Antithetic pair : Var(Y)

Importance Sampling

Importance sampling can be used more generally to reduce variance of estimator. However, it is difficult to choose an alternative density to use as theoretical analysis is often difficult.

Example3: Quality Control Studies

Let X_1, X_2, \cdots be a sequence of i.i.d $N(\mu, 1)$ RV with $\mu < 0$ Wish to know when will partial sum exceed limits

$$S_n = \sum_{i=1}^n X_i$$

$$N = \min\{n : S_n < -A \text{ or } S_n > B\}$$

A, B are fixed known positive numbers, N is stopping time Interested in estimating $P(S_n > B)$

Instead of $N(\mu, 1)$, consider $N(-\mu, 1)$ and estimate with \bar{W}

$$W_{i} = I\left(\sum_{i=1}^{N} X_{i} > B\right) \frac{\prod_{i=1}^{N} f_{\mu}(X_{i})}{\prod_{i=1}^{N} f_{-\mu}(X_{i})}$$
$$\therefore \frac{f_{\mu}(x)}{f_{-\mu}(x)} = e^{2\mu x}$$
$$\Rightarrow W_{i} = I\left(\sum_{i=1}^{N} X_{i} > B\right) exp(2\mu \sum_{i=1}^{N} X_{i})$$

Statistical Validation Techniques

General step for hypothesis testing

- 1. Take note of assumption
- 2. Specify H_0, H_1 and significant level $\alpha = 0.05$
- 3. Compute test statistics
- 4. Obtain p-value of obs a more extreme test statistics
- 5. State the conclusion (reject or do not reject H_0)

Goodness of Fit Tests: Discrete data

$$H_0: P(Y_j = i) = p_i, i \in [0, K - 1]$$

Let $N_i := \text{number of } Y_j = i$ For a fixed i

$$X_j = \begin{cases} 1, Y_j = i \\ 0, Y \neq i \end{cases}$$

 $j \in [1, n]$. Then under $H_0, P(X_j = 1) = P(Y_j = i) = p_i$

$$N_i = \sum_{j=1}^n X_j \sim Bin(n, p_i)$$

Therefore, under H_0 , $E(N_i) = np_i$. Using $(N_i - np_i)^2$ as indication for how likely our assumption is true

$$T = \sum_{i=0}^{K-1} \frac{(N_i - np_i)^2}{np_i} \sim \chi_{K-1}^2$$

 $N_i := \text{num of observation that took value } i$

 $p_i := \text{postulated probability of observing the value } i$

n := num of obs we made

 $K := \text{num of different possible values } Y_i \text{ can take}$

When n is large $(n \ge 50), T \sim \chi_{K-1}^2$

When n is small, use simulation to estimate the p-value

χ^2 test summary

Summary of χ^2 test when all parameters in H_0 are fully specified

- 1. independent set of Y_1, \dots, Y_n from real-life process
- 2. $H_0: Y_1, \dots, Y_n$ are from pmf p_i and H_1 is not
- 3. $T = \sum_{i=0}^{K-1} \frac{(N_i np_i)^2}{np_i} \sim \chi_{K-1}^2$
- 4. p-value is area under χ^2_{K-1} to the right of observed test stat

Example 1 (χ^2 Goodness of Fit test)

 $H_0: p_i = 0.2, i \in [0, 4]$

 $N_i = \{12, 5, 19, 7, 7\}, E(N_i) = 10$

T = (4 + 25 + 81 + 9 + 9)/10 = 12.8

 $P_{H_0}(T \ge 12.8) = P(\chi_4^2 \ge 12.8) = 0.0123$

pchisq(12.8, df=4, lower.tail=FALSE)

χ^2 test after estimation of parameters

If pmf in H_0 is not completely specified and we need to estimate m parameters

$$\chi^2_{K-1-m}$$

Example 2 (Comparing to $Pois(\lambda)$ Distribution)

i	0	1	2	3	4	5 or more
N_i	6	2	1	9	7	5
\hat{p}_i	0.05	0.1596	0.2312	0.2237	0.1622	0.1682

1. find
$$\hat{\lambda} = \frac{\sum_{i=1}^{30} Y_i}{30} = 87/30, Y_i = N_i \cdot i$$

2.
$$T_{obs} = \sum_{i=0}^{5} \frac{(N_i - 30\hat{p}_i)^2}{30\hat{p}_i} = 19.887$$

3.
$$P(\chi^2_{K-1-m=6-1-1=4} \ge 19.887) = 0.0005$$

Estimating p-value by Simulation

Algorithm 1 (Estimating p-value in Goodness-of-fit Test)

1. use observed data Y_1, Y_2, \dots, Y_n to compute the observed test statistics

$$T_{obs} = \sum_{i=0}^{K-1} \frac{(N_i - np_i)^2}{np_i}$$

- 2. For $s \in [1, M]$, M is the max iter
 - [1] Generate $Y_1^s, Y_2^s, \dots, Y_n^s$ from pmf p_i in H_0
 - [2] Compute $N_0^s, N_1^s, \dots, N_{K-1}^s$ from Y_1^s, \dots, Y_n^s
 - [3] Compute $T_s = \sum_{i=0}^{K-1} \frac{(N_i^s np_i)^2}{nn_i}$
 - [4] Set $V_s = I(T_s \ge T_{obs})$
- 3. estimate p-value with

$$\bar{V} = \frac{1}{M} \sum_{s=0}^{M} V_s$$

Goodness of Fit Tests: Continuous data

Forming Discrete Data from Continuous

- 1. Bin Y_i into K distinct intervals $(-\infty, y_1], (y_1, y_2], \cdots, (y_{K-1}, \infty)$
- 2. Set $Y_i^d = i 1$ if Y_j lies in interval $(y_{i-1}, y_i]$. Set up N_i and test goodness of fit
- 3. $H_0: P(Y_i^d = i) = F(Y_{i-1}) F(y_i), i \in [0, K-1]$

Kolmogorov Smirnov Test

where $y_{(j)}$ are the ascending ordered $Y_j,\,F_e$ is empirical cdf, y:=F(x)

$$F_{e}(x) = \frac{\#i : Y_{i} \le x}{n}$$

$$D = \max_{x} |F_{e}(x) - F(x)|$$

$$= \max\left\{\frac{j}{n} - F(y_{(j)}), F(y_{(j)}) - \frac{j-1}{n}\right\}, j \in [1, n]$$

$$P_{F}(D \ge d) = P_{F}\left(\max_{0 \le y \le 1} \left|\frac{\#i : U_{i} \le y}{n} - y\right| \ge d\right)$$

calculate max $\left\{\frac{j}{n} - F(y_{(j)}), F(y_{(j)}) - \frac{j-1}{n}\right\}$

- 1. get $F(y_i)$
- 2. sort $F(y_i)$ ascending
- 3. calculate $\max\left\{\frac{j}{n} F(y_{(j)}), F(y_{(j)}) \frac{j-1}{n}\right\}$

Algorithm 2: Estimating p-value in KS test by simulation

For $s \in [1, M]$, M := number of iteration to run

- 1. Generate $U_1^{(s)}, U_2^{(s)}, \cdots, U_n^{(s)}$ i.i.d from unif(0,1)
- 2. Compute

$$W_k = \max_{0 \le y \le 1} |\frac{\#i : U_i \le y}{n} - y|$$

3. Set $V_s = I(W_k \ge D_{obs})$

Estimate p-value with

$$\bar{V} = \frac{1}{M} \sum_{s=1}^{M} V_s$$

Remember to sort the generated $U_i^{(s)}$

Two Sample Rank Sum Test

 $X_1, \dots, X_n, Y_1, \dots, Y_m$, data from simulation and real world $H_0: n+m$ values are iid

- 1. order n + m values
- 2. R_i denote the rank of the X_i among the n+m values
- 3. $R = \sum_{i=1}^{n} R_i$ as the test stat
- 4. X_i, Y_i from diff dist for extreme large or small R
- 5. when n, m are large

$$R \sim N(\frac{n(n+m+1)}{2}, \frac{nm(n+m+1)}{12}$$

$$\frac{R - \frac{n(n+m+1)}{2}}{\sqrt{\frac{nm(n+m+1)}{12}}} \sim N(0, 1)$$

$$r^* = \frac{r - \frac{n(n+m+1)}{2}}{\sqrt{\frac{(nm(n+m+1))}{12}}}$$

$$p\text{-value} = \begin{cases} 2P(Z < r^*) & r \le n(n+m+1)/2\\ 2P(Z > r^*) & r > n(n+m+1)/2 \end{cases}$$

Note: if tie, take average rank. Remember to c.c.

Example 5 (Two Sample Rank Sum test)

 $X = \{132, 104, 162, 171, 129\},\$ $Y = \{107, 94, 136, 99, 114, 122, 108, 130, 106, 88\}$ $rank(X) = R_i = [12, 4, 14, 15, 10], R = \sum_{i=1}^{5} R_i = 55$ p-value = $2P_{H_0}(R \ge 55) \approx 2P(Z \ge \frac{54.5 - 40}{\sqrt{50(16)/12}})$, cc

Validating Poisson Processes

Nonhomogeneous Poisson Process

 $N_i := \text{num of arrivals on day } i$

$$N_i \sim Pois(m(T))$$

$$m(T) = \int_0^T \lambda(s)ds$$

Then using $E(N_i)$ and goodness of fit test

Homogenous Poisson Process

Key assumption to test, where T is the total time interval

 H_0 : arrival time $\sim unif(0,T)$

 H_1 : not uniform

Note: it's arrival time and not inter-arrival time (which follow exp dist)

Quick tips

Easiest way to generate RV

Ber : $u \sim unif(0,1)$, set X = 1 if $u \ge p$ else 0

Binom : generate n Ber with p

Pois Process : homogeneous, thining method Exp : numeric inversion $X = -\frac{1}{\lambda}log(u)$

Gamma : generate α Exp with λ

Normal : Box-Muller transformation with u_1, u_2

Finding simulation algo cdf

Use $P(Y \leq y \cap U \geq p)$ instead of conditional probability