#Fluid Dynamics: - dynamics of liquid, gases & plasmas
Macroscopic Phenomena
Pluid: CONTINUOUS medium with well-defined macroscopic quantities (density p, pressure b) => even at microscopic level, the fluid is composed of particles.
In astrophysical systems:
Denvity Shigh (e.g. compact objects)
Density—Shigh (e.g. compact objects) Show (e.g. ISM, IGM)
Temperature high (eg accretion disk, jets) slow (e.g. Ism)
Islow (e.g. ISM)
Examples of fluids in the Universe:
1) Star Interiors, Compact objects
(White Dwarf, Mentoon stars)
O ISM, IGM, ICM
O Accretion disks, Jets, Stellar, Winds
#fluid element; a region of fluid that is;
(a) small enough that there are no significant variations of any variable q
Isegion << Iscale \(\frac{a}{ \nabla q }
(b) large enough to contain sufficient particles (to satisfy continuum limit)
nljegion >> / (n: no. density of) particles

A flyids are collection of molecules, widely spaced for a gas, closely spaced for a liquid.

& Flyids continuously deform under shear stress, while solids den't.

Eulerian VS Lagrangian descriptions;

(a) Eulerian: - considers the properties of fluid measured in a frame of reference, which is fixed in space,

(b) Lagrangian: - considers the properties of fluid measured in CD-MONING frame of reference.

$$\frac{Df}{Dt} = \frac{d}{dt} f(n(t), y(t), z(t), t)$$

$$= \frac{\partial f}{\partial n} \frac{dn}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} + \frac{\partial f}{\partial t}$$

 $\frac{Df}{Dt} = \frac{\partial f}{\partial t} + (u, \nabla) f$ fagrangian derivative Eulerian derivative Advection term

```
If Fluid Dynamics equations
  2) + 3. (Pi) = 0 continuity eqn → Conservation of mass
g = \frac{\partial \vec{u}}{\partial x} + g(\vec{u} \cdot \vec{v})\vec{u} = -\vec{v} + g\vec{g} ever eqn = mom cons.
                                                                        > energy cons.
           \frac{d\theta}{dt} = \frac{d\varepsilon}{dt} + \frac{dW}{dt}
                       conservative form?
\frac{\partial U}{\partial t} + \vec{\nabla}, \vec{F} = S
V = \begin{bmatrix} S \\ S u \end{bmatrix} & \begin{cases} F = \begin{bmatrix} S \vec{u} \\ E \end{pmatrix} \\ E \end{bmatrix}
where E = \frac{1}{2} S u^2 + e
K \cdot E \cdot density \quad Internal energy density
         \frac{\partial f}{\partial t} + \vec{\nabla} \cdot (\vec{r} \vec{u}) = 0
        2 (Pi) + F. [Pixi+ P] = Si
         <u>∂E</u> + <del>\(\bar{V}\)</del> (E+\(\bar{V}\) \(\bar{U} = \(\bar{V}\) \(\bar{g}\)
 3 equations & 4 unknowns > Need a closure
             Equation of state 
Ideal gas EoS; p = g R_B T
       (other sel consect EoS)
```

Why Numerical Simulation?

complicated & non-linear native of equations!

> conservative from of fluid equations are solved on a grid using Numerical techniques!

PLUTO code

- O It is a finite volume/finite difference, shock-capturing code, which solves the system of conservation laws.
- O Equations are discretized and solved on a stouctured mesh.
- O written in C, C++ & fortran.

Instabilities (

small perturbation in any system > decay with time \ Grow in amplit

or oscillates around equillibrium point

Stable

Grow in amplitude with time & never returns to initial state.

Unstable

Instabilities at Two fluid interface

o constant gravity

Assume, $R_{y} = A \exp\{i(kn-\omega t)\}$

perturbed position

Linear Stability Analysis

$$\frac{\omega}{R} = \frac{\beta u + \beta' u'}{\beta + \beta'} + \sqrt{\frac{g}{R} \frac{(\beta - \beta')}{(\beta + \beta')} - \frac{\beta \beta' (u - u')^2}{(\beta + \beta')^2}}$$