

<u> Help</u>

<u>Course</u> > <u>Module 4 Model Development</u> > <u>Graded Review Questions</u> > Graded Review Questions

Graded Review QuestionsGraded Review Questions Instructions

- 1. Time allowed: Unlimited
- We encourage you to go back and review the materials to find the right answer
- Please remember that the Review Questions are worth 50% of your final mark.
- 2. Attempts per question:
- One attempt For True/False questions
- Two attempts For any question other than True/False
- 3. Clicking the "**Final Check**" button when it appears, means your submission is **FINAL**. You will **NOT** be able to resubmit your answer for that question ever again
- 4. Check your grades in the course at any time by clicking on the "Progress" ta

Question 1

1/1 point (graded)

Let \bar{x} be a dataframe with 100 rows and 5 columns, let \bar{y} be the target with 100 samples, assuming all the relevant libraries and data have been imported, the following line of code has been executed:

```
LR = LinearRegression()

LR.fit(X, y)

yhat = LR.predict(X)
```

How many samples does | yhat | contain :

O 5			
© 500			
● 100 ✔			
O 0			
Submit			
• Answers are displayed within the problem			
Question 2			
1/1 point (graded) What value of R^2 (coefficient of determination) indicates your model performs best?			
□ -100			
□ -1			
□ 0			
✓			
Submit			
Answers are displayed within the problem			
Question 3			
1/1 point (graded)			

Question 3 What statement is true about Polynomial linear regression

Polynomial linear regression is not linear in any way

✓ Although the predictor variables of Polynomial linear regression are not linear the relationship between the parameters or coefficients is linear. ✓

■ Polynomial linear regression uses wavelets

Submit

1 Answers are displayed within the problem

Question 4

1/1 point (graded)

The Larger the Mean square error, the better your model performs:

✓ False ✓

True

Submit

• Answers are displayed within the problem

Question 5

1/1 point (graded)

Assume all the libraries are imported, y is the target and X is the features or dependent variables, consider the following lines of code:

Input=[('scale',StandardScaler()),('model',LinearRegression())]

12010	pipe=Pipeline(Input)	
	pipe.fit(X,y)	
	ypipe=pipe.predict(X)	
	what is the result of ypipe :	
	polynomial transform, Standardize the data, then perform a prediction using a linear regression model	
	✓ Standardize the data, then perform prediction using a linear regression model ✓	
	polynomial transform then Standardize the data	
	✓	
	Submit	
	Answers are displayed within the problem	
	Learn About Verified Certificates	© All Rights Reserved