COMP3667: Reinforcement learning practical 6

Temporal-Difference Learning

christopher.g.willcocks@durham.ac.uk & robert.lieck@durham.ac.uk

1 Overview

Welcome to the sixth reinforcement learning practical. In this practical, we will be experimenting with different TD methods to better understand their characteristics, advantages, and drawbacks. In particular, we will

- evaluate on-policy SARSA(0) and off-policy Q-Learning
- \bullet experiment with n-step TD learning
- compare the performance of these methods in different environments
- understand when/how/why they may fail to work and how to fix them.

2 Setup

For this practical, you will need a basic Python environment with numpy, matplotlib, and OpenAI gym (version 0.20.0). You will not need a GPU.

```
import gym
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
import itertools
from IPython import display
```

As before, we will use different versions of the frozen lake gym environment:

⟨⟩ copy code

You can use this function (slightly modified from previous practicals) for plotting the environment

```
def plot(env, v=None, policy=None, col_ramp=1, dpi=175, draw_vals=False, mark_ice=True):
    # set up plot

plt.rcParams['figure.dpi'] = dpi
    plt.rcParams.update({'axes.edgecolor': (0.32,0.36,0.38)})

plt.rcParams.update({'font.size': 4 if env.env.nrow == 8 else 7})

gray = np.array((0.32,0.36,0.38))

plt.figure(figsize=(3, 3))

ax = plt.gca()
    ax.set_xticks(np.arange(env.env.ncol)-.5)
```

```
ax.set_yticks(np.arange(env.env.nrow)-.5)
10
        ax.set_xticklabels([])
11
        ax.set_yticklabels([])
        plt.grid(color=(0.42,0.46,0.48), linestyle=':')
13
        ax.set_axisbelow(True)
14
        ax.tick_params(color=(0.42,0.46,0.48),
15
                        which='both', top='off', left='off', right='off', bottom='off')
16
        # use zero value as dummy if not provided
17
        if v is None:
18
            v = np.zeros(env.nS)
        # plot values
20
        plt.imshow(1-v.reshape(env.env.nrow,env.env.ncol)**col_ramp,
21
                    cmap='gray', interpolation='none',
22
                    clim=(0,1), zorder=-1)
23
        # go through states
24
        for s in range(env.nS):
25
            x, y = s % env.env.nrow, s // env.env.ncol
26
            # print numeric values
            if draw_vals and v[s] > 0:
28
                 vstr = '\{0:.1e\}'.format(v[s]) if env.env.nrow == 8 else '\{0:.6f\}'.format(v[s])
29
                plt.text(x - 0.45, y + 0.45, vstr, color=(0.2, 0.8, 0.2), fontname='Sans')
30
            # mark ice, start, goal
31
            if env.desc.tolist()[y][x] == b'F':
32
                plt.text(x-0.45,y-0.3, 'ice', color=(0.5, 0.6, 1), fontname='Sans')
33
                 if mark_ice:
                     ax.add_patch(plt.Circle((x, y), 0.2, color=(0.7, 0.8, 1), zorder=0))
            elif env.desc.tolist()[y][x] == b'S':
36
                plt.text(x-0.45,y-0.3, 'start',color=(0.2,0.5,0.5), fontname='Sans',
37
                          weight='bold')
38
            elif env.desc.tolist()[y][x] == b'G':
                plt.text(x-0.45,y-0.3, 'goal', color=(0.7,0.2,0.2), fontname='Sans',
40
                          weight='bold')
41
                 continue # don't plot policy for goal state
            else:
43
                 continue # don't plot policy for holes
44
            # plot policy
45
            def plot_arrow(x, y, dx, dy, v, scale=0.4):
46
                plt.arrow(x, y, scale * float(dx), scale * float(dy), color=gray+0.2*(1-v),
47
                           head_width=0.1, head_length=0.1, zorder=1)
48
            if policy is not None:
49
                 if policy[s, 0] > 0.0: plot_arrow(x, y, -policy[s, 0],
                                                                                0., v[s]) # left
                                                                 0., policy[s, 1], v[s]) # down
                 if policy[s, 1] > 0.0: plot_arrow(x, y,
51
                 if policy[s, 2] > 0.0: plot_arrow(x, y, policy[s, 2],
                                                                                0., v[s]) # right
52
                 if policy[s, 3] > 0.0: plot_arrow(x, y,
                                                                 0., -policy[s, 3], v[s]) # up
53
        plt.show()
```

and these two helper classes to define hard-coded policies or policies using Q-values

```
class QPolicy:
        def __init__(self, Q, epsilon, values=False):
2
            self.Q = Q
3
            self.epsilon = epsilon
4
            self.values = values
        def sample(self, state):
6
            if np.random.rand() > self.epsilon:
                best_actions = np.argwhere(self.Q[state] == np.max(self.Q[state])).flatten()
                return np.random.choice(best_actions)
10
            else:
                return env.action_space.sample()
11
        def __getitem__(self, item):
12
```

```
state, action = item
13
             if self.values:
14
                 return self.Q[state, action] / (self.Q[state].sum() + 1e-10)
             else:
                 best_actions = np.argwhere(self.Q[state] == np.max(self.Q[state])).flatten()
17
                 p = int(action in best_actions) / len(best_actions)
18
                 return (1 - self.epsilon) * p + self.epsilon / len(self.Q[state])
19
    class HardCodedPolicy:
20
        def __init__(self, state_action_map):
21
             self.state_action_map = state_action_map
22
        def sample(self, state):
23
             if state in self.state_action_map:
                 return np.random.choice(self.state_action_map[state])
25
             else:
26
                 return np.random.choice(4)
27
        def __getitem__(self, item):
28
             state, action = item
29
             if state in self.state_action_map:
30
                 if action in self.state_action_map[state]:
31
                     return 1 / len(self.state_action_map[state])
32
                 else:
33
                     return 0
34
             else:
35
                 return 1 / 4
36
```

Finally, these functions can be used to plot the learning progress

```
# (using global variables in functions)
    def update_plot(mod):
2
        reward_list[experiment_id].append(reward_sum)
3
        aoc[experiment_id] += reward_sum
        test_reward_list[experiment_id].append(test_reward_sum)
        test_aoc[experiment_id] += test_reward_sum
6
        if episode % mod == 0:
            plot_data[experiment_id].append([episode,
                                               np.array(reward_list[experiment_id]).mean(),
                                               np.array(test_reward_list[experiment_id]).mean()])
10
            reward_list[experiment_id] = []
11
            test_reward_list[experiment_id]
            for i in range(len(plot_data)):
13
                 color=next(plt.gca()._get_lines.prop_cycler)['color']
14
                plt.plot([x[0] for x in plot_data[i]],
15
                          [x[1] for x in plot_data[i]],
                          '-', color=color,
                          label=f"{plot_labels[i]}, AOC: {aoc[i]}|{test_aoc[i]}")
18
                plt.plot([x[0] for x in plot_data[i]],
19
                          [x[2] for x in plot_data[i]], '--', color=color)
            plt.xlabel('Episode number')
21
            plt.ylabel('Episode reward')
22
            plt.legend()
23
            display.clear_output(wait=True)
            plt.show()
25
    def next_experiment():
26
        reward_list.append([])
27
        aoc.append(0)
        test_reward_list.append([])
29
        test_aoc.append(0)
30
        plot_data.append([])
31
        return experiment_id + 1
32
```

```
reward_list = [[]]
aoc = [0]
test_reward_list = [[]]
test_aoc = [0]
plot_data = [[]]
plot_labels = []
experiment_id = 0
```

3 On-policy and off-policy learning with TD(0)

Recap TD Learning

Remember our 0-step temporal difference (TD) targets from the lecture, which can be computed for any (also partial) episodes

$$V_{\pi}(s_{t}) = \sum_{a_{t} \in \mathcal{A}} \pi(a_{t} \mid s_{t}) \sum_{s_{t+1} \in \mathcal{S}} p(s_{t+1} \mid s_{t}, a_{t}) \Big[\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma V_{\pi}(s_{t+1}) \Big]$$

$$= \mathbb{E}_{a_{t} \sim \pi(a_{t} \mid s_{t})} \mathbb{E}_{s_{t+1} \sim p(s_{t+1} \mid s_{t}, a_{t})} \Big[\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma V_{\pi}(s_{t+1}) \Big]$$

$$\approx \underbrace{\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma V_{\pi}(s_{t+1})}_{\text{TD}(0) \text{ target}}$$

$$Q_{\pi^{*}}(s_{t}, a_{t}) = \sum_{s_{t+1} \in \mathcal{S}} p(s_{t+1} \mid s_{t}, a_{t}) \Big[\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma \sum_{a_{t+1} \in \mathcal{A}} \pi^{*}(a_{t+1} \mid s_{t+1}) Q_{\pi^{*}}(s_{t+1}, a_{t+1}) \Big]$$

$$= \mathbb{E}_{s_{t+1} \sim p(s_{t+1} \mid s_{t}, a_{t})} \Big[\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma \mathbb{E}_{a_{t+1} \sim \pi^{*}(a_{t+1} \mid s_{t+1})} Q_{\pi^{*}}(s_{t+1}, a_{t+1}) \Big]$$

$$\approx \underbrace{\mathcal{R}^{a_{t}}_{s_{t}s_{t+1}} + \gamma Q_{\pi^{*}}(s_{t+1}, a_{t+1})}_{\text{TD}(0) \text{ target}}.$$

At a particular time t we are in state s_t and take action $a_t \sim \pi(a_t \mid s_t)$ sampled from the policy π . We then end up in state $s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)$ based on the environment's transition function. If we are interested in learning state-action values (i.e. solving the control problem), we additionally need to consider the following action $a_{t+1} \sim \pi^*(a_{t+1} \mid s_{t+1})$ based on the policy π^* that we want to learn or evaluate.

The TD(0) targets are noisy "snapshots" of how the values should look like based on the current transition at time t. The difference between the TD target and our current value estimate gives us a noisy TD error signal that tells us "how far off" our estimates are. This can be use to update our value estimates with a learning rate α (similar to SGD) to improve them

$$V_{\pi}(s_t) \leftarrow V_{\pi}(s_t) + \alpha \left[\underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma V_{\pi}(s_{t+1})}_{\text{TD}(0) \text{ target}} - V_{\pi}(s_t)\right]$$

$$Q_{\pi^*}(s_t, a_t) \leftarrow Q_{\pi^*}(s_t, a_t) + \alpha \left[\underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma Q_{\pi^*}(s_{t+1}, a_{t+1})}_{\text{TD}(0) \text{ target}} - Q_{\pi^*}(s_t, a_t)\right].$$

On-policy SARSA(0)

We can evaluate and improve our policy "on the go". This is called *on-policy* learning and it means that the policy π we use for sampling is the same as the policy π^* we are evaluating and learning.

Exercise

- Implement SARSA(0) by filling in the TD(0) targets and updates in the skeleton below. (The rest of the skeleton is for collecting episodes, evaluating the learned policy and plotting everything. The dashed line is the reward for the learned policy, the solid line is for the sampling policy.)
- Run a couple of evaluations with different values for the learning rate alpha and the exploration epsilon on the 4x4 environment. Use both "noisy" and "neutral" initialisations for Q (commenting in/out the

respective lines in the code). What effects do you observe? With what parameters does the agent learn best?

⟨⟩ copy code

```
# parameters
    num_episodes = 3000
2
    alpha = 0.1
    gamma = 0.9
    epsilon = 0.5
5
    Q = np.random.uniform(0, 1e-5, [env.observation_space.n, env.action_space.n]) # noisy
    Q = np.zeros([env.observation_space.n, env.action_space.n])
    V = np.zeros([env.observation_space.n])
9
10
    # policies
11
    sample_policy = QPolicy(Q, epsilon)
12
    learned_policy = sample_policy
13
    plot_labels.append(f"SARSA (alpha={alpha}, epsilon={epsilon})")
14
15
    for episode in range(num_episodes):
16
        state = env.reset()
17
        reward_sum = 0
18
        # learning a policy
19
        for t in itertools.count():
20
            action = sample_policy.sample(state)
21
            next_state, reward, done, _ = env.step(action)
            next_action = learned_policy.sample(next_state)
23
            # TD(0) targets
24
                                              # FILL IN HERE!
            v_target = ...
25
            q_target = ...
                                              # FILL IN HERE!
26
            # updates
27
            s, a = state, action
28
                                             # FILL IN HERE!
            V[s] += ...
29
                                             # FILL IN HERE!
            Q[s, a] += \dots
30
31
            reward_sum += reward
32
            if done:
33
                 break
34
            state = next_state
35
36
         # testing the learned policy
37
        state = env.reset()
38
        test_reward_sum = 0
39
        while True:
40
            action = learned_policy.sample(state)
41
            next_state, reward, done, _ = env.step(action)
42
            test_reward_sum += reward
43
            state = next_state
44
            if done:
45
                 break
46
47
        update_plot(int(np.ceil(num_episodes / 20)))
49
    env.close()
50
    experiment_id = next_experiment()
51
    print("Sampling policy and values")
    plot(env, v=V, policy=sample_policy, draw_vals=True)
53
    print("Learned policy and optimal/max values")
54
    plot(env, v=Q.max(axis=1), policy=learned_policy, draw_vals=True)
55
```

Off-policy Q-Learning

Sometimes, we would like to generate samples with one policy π (typically an exploratory policy) but then use the samples to learn another policy π^* (typically a near-optimal policy). This is possible with *off-policy* methods, such as Q-Learning.

3.0.1 Exercise

- Implement Q-Learning by using a different policy for the learned_policy (with lower epsilon) then for the sample_policy.
 - Note: Strictly speaking, the sample_policy does not change in Q-Learning. You can achieve this by using epsilon=1 in the sample_policy to select actions randomly. For other values of epsilon, the sample_policy "peeks" into the values of the learned policy, which lets it profit from that learning (but is not a clean implementation).
 - Bonus exercise: Learn the sample_policy using SARSA(0) while learning the learned_policy with Q-Learning (this requires maintaining two copies of values estimates, performing separate updates for both etc).
- Run the evaluation several times on the 4x4 and 8x8 environment. Try to get the fastest and most reliable learning by tweaking epsilon. How does the performance (episode reward) of the sampling policy (solid line) compare to that of the learned policy (dashed lines)? How is this different from SARSA(0)?

Expected TD(0) targets

The normal TD targets to estimate state-action values are computed by sampling from the policy π^* that is to be learned. This sampling step increases the noise in the TD error signal (in addition to the noise we already have due to sampling episodes). Instead, one can use the *expected* TD targets

$$\underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma \sum_{a_{t+1} \in \mathcal{A}} \pi^*(a_{t+1} \mid s_{t+1}) Q_{\pi^*}(s_{t+1}, a_{t+1})}_{\text{expected TD(0) target}}.$$

Exercise

- In the q_target replace the sampled value with an expectation over possible actions the learned_policy could take. *Note:* learned_policy[next_state, a] is giving you the probability of taking action a in state next_state.
- Compare the performance when using the expected TD(0) target to using the sampled one.

4 TD(n)

In TD(0) we do not look ahead and receiving a reward does only affect the value estimate of the current state and action. All the future expected rewards are approximated by using the current value estimates. However, we can improve on that by instead look n steps ahead (in hindsight) and taking the n next steps into account for computing TD targets. These TD(n) targets are

$$V_{\pi}(s_t) \approx \underbrace{\frac{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}}}_{\text{TD}(n) \text{ target}} + \gamma^{n+1} \, V_{\pi}(s_{t+n+1}) \underbrace{Q_{\pi^*}(s_t, a_t)}_{\text{TD}(n) \text{ target}} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1}) \underbrace{Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}}}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_t} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_{t+1}} + \gamma \, \mathcal{R}_{s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+1}}^{a_{t+1}} + \gamma \, \mathcal{R}_{s_t s_{t+1} s_{t+2}}^{a_{t+1}} + \ldots + \gamma^n \, \mathcal{R}_{s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma \, \mathcal{R}_{s_t s_{t+n} s_{t+n+1}}^{a_{t+n}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n} s_{t+n+1}}^{a_{t+n} s_{t+n+1}} + \gamma^{n+1} \, Q_{\pi^*}(s_{t+n+1}, a_{t+n+1})}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n} s_{t+n+1}}^{a_{t+n} s_{t+n+1}}}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n+1}}^{a_{t+n} s_{t+n+1}}}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n} s_{t+n+1}}^{a_{t+n+1}}}_{\text{TD}(n) \text{ target}} \cdot \underbrace{\mathcal{R}_{s_t s_{t+n+1}}^{a_{t+n+1}}}_{\text{TD}($$

To compute them in hindsight, we have to store a trace of the last n+1 transitions (including the current transition that is also used in TD(0)). The modified skeleton below is providing a trace of length n+1 containing the last n steps and the current transition (for n=0 this reduces to the TD(0) case of only considering the current transition).

```
# parameters
    num_episodes = 3000
2
    alpha = 0.1
3
    gamma = 0.9
    epsilon = 0.5
5
    n = 0
6
    Q = np.random.uniform(0, 1e-5, [env.observation_space.n, env.action_space.n]) # noisy
    Q = np.zeros([env.observation_space.n, env.action_space.n])
9
    V = np.zeros([env.observation_space.n])
10
11
    # policies
12
    sample_policy = QPolicy(Q, epsilon)
13
    learned_policy = sample_policy
14
    plot_labels.append(f"SARSA (n={n}, alpha={alpha}, epsilon={epsilon})")
15
16
    for episode in range(num_episodes):
17
        state = env.reset()
18
        reward_sum = 0
19
        trace = np.zeros((n + 1, 4), dtype=int)
20
        done_n = 0
21
        # learning a policy
22
        for t in itertools.count():
23
            action = sample_policy.sample(state)
24
            next_state, reward, done, _ = env.step(action)
25
            next_action = learned_policy.sample(next_state)
26
            trace[-1] = (state, action, reward, next_action)
            if t > n:
28
                 # n-step targets
29
                 n_step_return = ... # FILL IN HERE!
30
                 v_target = ...
                                     # FILL IN HERE!
                 q_target = ...
                                     # FILL IN HERE!
32
                 # updates
33
                 s, a, _, _ = trace[0]
34
                 V[s] += alpha * (v_target - V[s])
35
                 Q[s, a] += alpha * (q_target - Q[s, a])
36
37
            reward_sum += reward
38
            done_n += done
            if done_n > n:
40
                 break
41
            state = next_state
42
            trace = np.roll(trace, shift=-1, axis=0)
43
44
        # testing the learned policy
45
        state = env.reset()
46
        test_reward_sum = 0
47
        while True:
48
            action = learned_policy.sample(state)
49
            next_state, reward, done, _ = env.step(action)
            test_reward_sum += reward
51
            state = next_state
52
            if done:
53
                 break
55
        update_plot(int(np.ceil(num_episodes / 20)))
56
57
    env.close()
58
    experiment_id = next_experiment()
59
    print("Sampling policy and values")
60
```

```
plot(env, v=V, policy=sample_policy, draw_vals=True)
print("Learned policy and optimal/max values")
plot(env, v=Q.max(axis=1), policy=learned_policy, draw_vals=True)
```

SARSA(n)

Exercise

- Implement SARSA(n) by filling in the n_step_return, v_target and q_target in the skeleton.
- Run this on the 8x8 environment and compare different values of n in terms of performance (how quickly the agent learns) and run time (roughly how fast/slow everything is running). What effects do you observe?

Q-Learning

For Q-Learning there is a problem because we want to evaluate a different policy (π^*) than the one used for sampling (π) . That means that the n-step return was sampled with the "wrong" policy (π^*) might never take some of the actions sampled from π) and so is not representative for π^* . This bias can be corrected by adding an *importance sampling* factor (a general technique in Monte Carlo methods to correct for sampling from a "wrong" distribution) to the learning rate α

$$\rho_t = \frac{\pi^*(a_t \mid s_t) \, \pi^*(a_{t+1} \mid s_{t+1}) \, \dots \, \pi^*(a_{t+n} \mid s_{t+n})}{\pi(a_t \mid s_t) \, \pi(a_{t+1} \mid s_{t+1}) \, \dots \, \pi(a_{t+n} \mid s_{t+n})} = \frac{\prod_{k=0}^n \pi^*(a_{t+k} \mid s_{t+k})}{\prod_{k=0}^n \pi(a_{t+k} \mid s_{t+k})}$$

$$\alpha_t = \alpha \rho_t .$$

Exercise

- Implement TD(n) Q-Learning by
 - computing the importance sampling factor ρ (policy[s, a] is giving you the probability of taking action a in state s).
 - modifying the updates accordingly.
- Test TD(n) Q-Learning with different values for n and exploration in the sampling policy on the 8x8 environment. *Hint:* Use some small non-zero value for epsilon in the learned policy to make sure the importance sampling factors are not (almost) all zero. What do you observe?