Связные множества в метрическом пространстве

Опр: 1. Метрическое пространство (X, ρ) несвязно, если \exists открытые множества U, V такие, что

$$U \neq \varnothing, V \neq \varnothing, U \cap V = \varnothing, X = U \cup V$$

Опр: 2. Метрическое пространство, которое не является несвязным - связно.

Опр: 3. Множество E в метрическом пространстве (X, ρ) несвязно, если существуют открытые множества $U, V \colon E \cap U \neq \emptyset, E \cap V \neq \emptyset, U \cap V = \emptyset$ и $E \subset U \cup V$.

Если рассматривать $E \subset X$, то оно может быть несвязно либо как метрическое пространство, либо как множество в метрическом пространстве (X, ρ) . Мы доказали в прошлый раз, что это одно и то же.

Теорема 1. Метрическое пространство (X, ρ) несвязно $\Leftrightarrow \exists$ непрерывная функция $X \to \mathbb{R}$, принимающая ровно два значения 0 и 1.

 \square (\Rightarrow) Пусть $X=U\cup V$, где $U\neq\varnothing$, $V\neq\varnothing$, $U\cap V=\varnothing$, где U,V - открытые множества. Тогда рассмотрим следующую функцию:

$$f(x) = \begin{cases} 1, & x \in U \\ 0, & x \in V \end{cases}$$

Проверим, что она непрерывна. Пусть $a \in U \Rightarrow f(a) = 1$, тогда $\forall \varepsilon > 0$, $\exists \, \delta \colon B(a, \delta) \subset U$. Такой шар найдется поскольку U - открыто. Получим, что $\forall x \in B(a, \delta), \, f(x) = 1$, тогда:

$$\forall \varepsilon > 0, \ \exists \ \delta \colon B(a, \delta) \subset U, \ \forall x \in B(a, \delta), \ |f(x) - f(a)| = 0 < \varepsilon$$

То есть функция непрерывна на U. Аналогично для $a \in V$.

 (\Leftarrow) Пусть $f \colon X \to \mathbb{R}$ - непрерывная функция, которая имеет всего два значения: 0 и 1. Тогда рассмотрим следующие множества:

$$U_0 = \{ x : f(x) < \frac{1}{2} \} = \{ x : f(x) = 0 \}$$

$$U_1 = \{ x : f(x) > \frac{1}{2} \} = \{ x : f(x) = 1 \}$$

Тогда верно следующее:

$$U_0 = f^{-1}((-\infty, \frac{1}{2})), U_1 = f^{-1}((\frac{1}{2}, +\infty))$$

Поскольку функция f - непрерывна, то U_0, U_1 - открытые множества, $U_0 \cap U_1 = \emptyset$, $U_0 \neq \emptyset$, $U_1 \neq \emptyset$. Поскольку функция f принимает два значения, то все $x \in X$ либо в U_0 , либо в $U_1 \Rightarrow X = U_0 \cup U_1$. Таким образом множество X - несвязно.

Теорема 2. Пусть X и Y - метрические пространства и $f: X \to Y$ - непрерывна. Тогда, если X - связно, то f(X) - связно.

 \square (I) способ: (От противного) Предположим противное: f(X) несвязно, тогда \exists открытые U,V:

$$U\cap f(X)\neq\varnothing,\,V\cap f(X)\neq\varnothing,\,f(X)\subset U\cup V$$

Возьмем прообразы этих множеств: $f^{-1}(U)$, $f^{-1}(V)$ - открытые множества. Поскольку $f(X) \subset U \cup V$, то $X \subset f^{-1}(U) \cup f^{-1}(V)$.

Эти множества не пересекаются $f^{-1}(U) \cap f^{-1}(V) = \emptyset$, иначе был бы элемет, чей образ лежал бы одновременно и в U, и в V, то есть: $\exists x \in X : f(x) \in U \cap V$, что не верно по предположению о несвязности.

Также $f^{-1}(U) \neq \emptyset$, поскольку $U \cap f(X) \neq \emptyset$, то есть $\exists x \in X : f(x) \in U$. Аналогично для $f^{-1}(V) \neq \emptyset$.

Таким образом поулчили, что X - несвязно \Rightarrow противоречие.

(II) способ: Если f(X) - несвязно, то $\exists g \colon f(X) \to \mathbb{R}$ - непрерывна и принимает два значения 0 и 1. Тогда g(f(x)) - непрерывна и принимает значения 0 и 1 \Rightarrow метрическое пространство X - несвязно \Rightarrow противоречие.

Опр: 4. Множество $I \subset \mathbb{R}$ называется промежутком, если из того, что $x_1, x_2 \in I$, $x_1 \leq x_2 \Rightarrow [x_1, x_2] \subset I$.

Утв. 1. На \mathbb{R} связными множествами являются только промежутки (множества содержащие вместе с двумя точками отрезок их соединяющий).

 (\Leftarrow) Промежуток - связное множество, так как выполнена теорема о промежуточном значении и никаких непрерывных двухзначных функций на нем быть не может.

(⇒) Пусть, мы взяли связное множество $I \subset \mathbb{R}$, которое не удовлетворяет свойству промежутка, то есть $\exists x_1, x_2 \in I$, $x_1 \leq x_2, c \in \mathbb{R}$: $x_1 \leq c \leq x_2, c \notin I$. Тогда можно разделить множество I на две части непустыми открытыми множествами $(-\infty, c)$ и $(c, +\infty)$ ⇒ противоречие c тем, что множество связное.

Следствие 1. Если (X, ρ) - связно и $f: X \to \mathbb{R}$ - непрерывна, то f(X) - промежуток, то есть:

$$\exists A, B \in f(X) \colon A \leq B \Rightarrow \forall C \in \mathbb{R} \colon A \leq C \leq B, C \in f(X)$$

□ Следует из предыдущего утверждения и предыдущей теоремы.

Rm: 1. Метрическое пространство (X, ρ) - несвязно \Leftrightarrow

- (1) $\exists F_1 \neq \varnothing, F_2 \neq \varnothing$ замкнуты $(X \setminus F_1 = F_2 \Rightarrow \text{открыты})$ такие, что $F_1 \cap F_2 = \varnothing, F_1 \cup F_2 = X$;
- (2) $\exists E \subset X \colon E \neq \emptyset, E \neq X$ и E открыто и замкнуто $(U = E, V = X \setminus E)$;

Rm: 2. По замечанию выше, то что в прошлом семестре доказали, что единственными открытыми и замкнутыми множествами являются \varnothing и $\mathbb{R} \Rightarrow$ мы доказали, что числовая прямая - это связное множество.

Линейно связные множества

Как понять, является ли множество связным или нет? Каждый раз искать функцию или строить хитрые открытые множества?

Опр: 5. Пусть (X, ρ) - метрическое пространство. Непрерывное отображение $x \colon [0, 1] \to X$ называется кривой, обозначение $x(t), t \in [0, 1]$.

Опр: 6. Метрическое пространство X (или его подмножество E) называется <u>линейно связным</u>, если $\forall x_0, x_1 \in X \ (\forall x_0, x_1 \in E), \ \exists$ кривая x(t) в X (в E), такая что $x(0) = x_0$ и $x(1) = x_1$.

Rm: 3. По определению, множество линейно связно, если любые две его точки можно соединить кривой.

Теорема 3. Если (X, ρ) - линейно связно, то оно связно. Обратное не верно.

 \square (От противного) Предположим, что это не верно, тогда \exists непрерывная функция $g: X \to \{0,1\}$ и существуют точки $x_0, x_1: g(x_0) = 0, g(x_1) = 1$. Соеденим эти точки $\Rightarrow x: [0,1] \to X$ - непрерывное отображение. Тогда на отрезке [0,1] определим функцию g(x(t)) - непрерывна, но принимает только два значения 0 и $1 \Rightarrow$ противоречие с тем, что отрезок - связное множество.

Почему обратное не верно?

Пример: Возьмем отрезок [-1,1] на оси y и возьмем функцию $y=\sin\frac{1}{x}$.

Рис. 1: Связное множество X, которое не является линейно связным.

Рассмотрим следующее множество

$$X = \{ (x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid x \neq 0 \} \cup \{ (0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1 \}$$

Упр. 1. Проверить, что это множество X на плоскости \mathbb{R}^2 связно, но не является линейно связным.

□ Для начала рассмотрим следующую лемму.

Лемма 1. Пусть X,Y - связные подмножества, $X\cap Y\neq\varnothing$, тогда $X\cup Y$ - связное подмножество того же пространства.

 \Box (От противного) Пусть $Z = X \cup Y$ - несвязное множество, тогда \exists открытые множества U,V такие, что:

$$Z \cap U \neq \emptyset$$
, $Z \cap V \neq \emptyset$, $U \cap V = \emptyset$, $Z \subset U \cup V$

Пусть $x \in X \cap Y \Rightarrow x \in U \lor x \in V$, пусть $x \in U$, поскольку множество $Z \cap V \neq \emptyset \Rightarrow \exists y \in V \colon y \in X \cup Y$. При этом $x \in X \land x \in Y \Rightarrow$ пусть $y \in Y$, тогда $y \in V \cap Y$ и одновременно с этим $x \in U \cap Y$. Получаем, что:

$$Y \cap U \neq \emptyset$$
, $Y \cap V \neq \emptyset$, $U \cap V = \emptyset$, $Y \subset U \cup V$

противоречие с тем, что Y - связное множество. Аналогично, если $x \in V$ и аналогично для $y \in X$.

Рассмотрим X как составленное из следующих множеств:

$$V = \{ (0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1 \}, \ U_+ = \{ (x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid x > 0 \}, \ U_- = \{ (x, \sin \frac{1}{x}) \in \mathbb{R}^2 \mid x < 0 \}$$
$$X = V \cup U_+ \cup U_- \subset \mathbb{R}^2$$

Утв. 2. Множество $V \cup U_+$ является связным подмножеством \mathbb{R}^2 .

 \square Каждое множество по отдельности V и U_+ являются линейно связным множеством \Rightarrow это связные множества. Предположим, что $Y=V\cup U_+$ - не является связным, тогда \exists открытые множества S,P такие, что:

$$S \neq \emptyset$$
, $P \neq \emptyset$, $S \cap P = \emptyset$, $Y = S \cup P$

Поскольку несвязность как подмножества, так и метрического пространства это одно и то же. По замечаниию выше S, P - являются одновременно открытыми и замкнутыми множествами, тогда множества $S \cap U_+, P \cap U_+$ - также являются открытыми в U_+ , по утверждению доказанному ранее. Тогда:

$$U_{+} = Y \cap U_{+} = (S \cup P) \cap U_{+} = (S \cap U_{+}) \cup (P \cap U_{+}), (S \cap U_{+}) \cap (P \cap U_{+}) = \emptyset$$

Тогда U_+ лежит в одном из множеств S или P, иначе оно несвязно \Rightarrow пусть $U_+ \subset S$. По аналогичным рассуждениям, V лежит в P, в противном случае оно несвязно или $Y \cap P = \varnothing \Rightarrow P = \varnothing$.

Пусть $(0, y_0) \in V$: $\sin(u) = y_0$. Поскольку $\sin(u + 2\pi n) = y_0$, то мы можем предположить, что u > 0 и пусть $x_n = \frac{1}{u + 2\pi n}$, тогда:

$$(x_n, y_n) = (x_n, \sin(\frac{1}{x_n})) = (\frac{1}{u+2\pi n}, y_0) \in U_+, (x_n, y_n) \to (0, y_0) \in V$$

Поскольку S это замкнутое множество в Y, то оно должно содержать все пределы последовательностей в S, в том числе и для $U_+ \subset S \Rightarrow V \subset S$, в силу произвольности $(0, y_0) \in V$. Таким образом получили, что множество $P = \emptyset \Rightarrow$ противоречие $\Rightarrow Y = V \cup U_+$ - связное.

Аналогично $V \cup U_-$ - связное множество и пересечение не пусто: $(U_- \cup V) \cap (U_+ \cup V) = V$, так как $U_- \cap U_+ = \varnothing$. По лемме выше, объединение этих двух множеств $X = (U_- \cup V) \cup (U_+ \cup V) = U_- \cup U_+ \cup V$ даст связное множество. Покажем, что $V \cup U_+$ не является линейно связным множеством.

Утв. 3. Множество $Z = V \cup U_+$ не является линейно связным множеством.

 \square (От противного) Пусть множество Z является линейно связным, тогда $\forall (x_0, y_0), (x_1, y_1) \in Z, \exists$ кривая:

$$g: [0,1] \to Z: g(0) = (x_0, y_0), g(1) = (x_1, y_1)$$

Пусть $g(0) \in V, g(1) \in U_+$, поскольку множество V - замкнуто, то $g^{-1}(V)$ - также будет замкнуто по непрерывности g, а поскольку оно еще и ограниченно, то по теореме Вейрштрасса:

$$\exists\,c\in g^{-1}(V)\colon \forall t\in g^{-1}(V)\subset [0,1],\,c\geq t$$

Переопределим функцию так, чтобы f(t) = g(c+t(1-c)), тогда $f(0) \in V$, $f(t) \in U_+$, $\forall t \in (0,1]$. Очевидно, что x(0) = 0 и поскольку f(t) = (x(t), y(t)) - непрерывная функция $\Rightarrow x(t), y(t)$ - непрерывные функции. Для любого $n \ge 1$ выберем значение $u_2 \colon u_2 > \frac{1}{x(\frac{1}{n})}$ так, чтобы $\sin{(u_2)} = (-1)^n$.

Пусть $x_2 = \frac{1}{u_2} \Rightarrow 0 = x(0) < x_2 < x(\frac{1}{n})$ и при этом $\sin(\frac{1}{x_2}) = \sin(u_2) = (-1)^n$. По теореме о промежуточном значении $\exists t_n \in (0, \frac{1}{n}) \colon x(t_n) = x_2$. Тогда получим:

$$0 < t_n < \frac{1}{n} \Rightarrow t_n \to 0 \Rightarrow x(t_n) \to x(0) = 0, \ y(t_n) = \sin(\frac{1}{x_n}) = (-1)^n \nrightarrow y(0)$$

Получили противоречие с непрерывностью y(t).

Вместо множества V мы можем взять множество $U_- \cup V$, и проделать аналогичные рассуждения, что в любом случае приведет к тому, что X - линейно несвязное множество.

В общем случае условие линейной связности в метрическом пространстве - достаточное, но не необходимое. В нормированном пространстве возможна равносильность при наличии открытости множества.

Утв. 4. Если E - открытое и связное множество в нормированном пространстве $(X, \|\cdot\|)$, то E - линейно связно.

- \square Введем на E отношение эквивалентности: $x \sim y, x, y \in E$, если x можно соединить с y кривой, содержащейся в E. Проверим выполнение свойств эквивалентности:
 - (1) $\forall x_0 \in E, x_0 \sim x_0 \Leftrightarrow x(t) \equiv x_0$ (рефлексивность);
 - (2) $\forall x_0, x_1 \in E, x_0 \sim x_1 \Leftrightarrow \exists x(t) : x(0) = x_0, x(1) = x_1 \Leftrightarrow \exists x(1-t) : x(1) = x_0, x(0) = x_1 \Leftrightarrow x_1 \sim x_0,$ таким образом $\forall x_0, x_1 \in E, x_0 \sim x_1 \Leftrightarrow x_1 \sim x_0$ (симметричность);
 - (3) $\forall x_0, x_1, x_2 \in E : x_0 \sim x_1 \wedge x_1 \sim x_2 \Leftrightarrow \exists x(t) : x(0) = x_0, x(1) = x_1 \wedge \exists \widetilde{x}(t) : \widetilde{x}(0) = x_1, \widetilde{x}(1) = x_2 \Rightarrow$ возьмем следующую кривую $g(t) = x(2t), t \in [0, \frac{1}{2}], g(t) = \widetilde{x}(2t-1), t \in [\frac{1}{2}, 1],$ она непрерывна, поскольку она непрерывна на отрезках $[0, \frac{1}{2}], [\frac{1}{2}, 1]$ и верно следующее:

$$x(2 \cdot \frac{1}{2}) = x(1) = x_1 = \widetilde{x}(2 \cdot \frac{1}{2} - 1) = \widetilde{x}(0) = g(\frac{1}{2})$$

Одновременно с этим:

$$q(0) = x(2 \cdot 0) = x_0, \ q(1) = \widetilde{x}(2 \cdot 1 - 1) = \widetilde{x}(1) = x_2$$

Как результат, мы получили непрерывную кривую в E, соединяющую x_0 и $x_2 \Rightarrow$ таким образом верно, что $\forall x_0, x_1, x_2 \in E \colon x_0 \sim x_1 \land x_1 \sim x_2 \Rightarrow x_0 \sim x_2$ (транзитивность);

Тогда множество E = объединению попарно непересекающихся классов эквивалентности. Класс эквивалентности множества E с представителем x_0 это $E_{x_0} = \{ x \in X \mid x \sim x_0 \}$.

Рис. 2: Классы эквивалентностей точек x_0 и x_1 .

Если число классов эквивалентности равно 1, то E - линейно связно. E_{x_0} - открытое множество, покажем это. Пусть $x \in E_{x_0} \Rightarrow$ существует непрерывная кривая из x_0 в точку x.

Поскольку E - открытое, то $\forall x \in E, \exists B(x,r) \subset E$. Тогда из точки x до любой точки $y \in B(x,r)$ существует прямая $x(t) = x + t(y-x), t \in [0,1]$ все точки которой принадлежат шару B(x,r), поскольку пространство нормированное:

$$\forall y \in B(x,r), \ \exists \ x(t) = x + t(y-x) \colon \forall t \in [0,1], \ x(t) \in B(x,r)$$

Рис. 3: Соединение точек шара B(x,r) и точки x через прямую $x(t)=x+t(y-x)\in B(x,r).$

Таким образом, любая точка $y \in B(x,r)$ соединяется отрезком с точкой $x \Rightarrow B(x,r) \subset E_{x_0}$, следовательно множество E_{x_0} - открыто.

Если число классов эквивалентностей больше 1, то E распадается в объединение двух непустых, непересекающихся открытых множеств, что противоречит связности E.

Опр: 7. Функция $f\colon X\to Y$ - <u>гомеоморфизм</u>, если f - биекция и f,f^{-1} - непрерывны.

Упр. 2. Существует ли гомеоморфизм:

Рис. 4: Существование гомеоморфизмов.

- 1) Отрезка и квадрата?
- 2) Двух пересекающихся отрезков и отрезка?
- □ В обоих случаях предположим, что гомеоморфизм существует. По определению гомеоморфизм это непрерывная биекция с непрерывной обратной функцией. Таким образом функция инъективна и если мы выбросим одну точку из области определения и области значения, гомеоморфзим сохранится. Функция и обратная функция останутся непрерывными, проверим свойства связности у данных множеств.

Рис. 5: Отсутствие гомеоморфизмов.

- Очевидно, если убрать концевые точки отрезка, он останется линейно связным множеством. Квадрат это линейно связное множество ⇒ связное множество. Если убрать из квадрата любую точку, он все равно останется связным множеством.
 - Уберем точку a из середины отрезка и уберем соответствующую ей точку f(a) из квадрата. Квадрат остался связным множеством, тогда как отрезок стал несвязным. Поскольку f^{-1} непрерывная функция и $Y \setminus \{f(a)\}$ связное множество, то $f^{-1}(Y \setminus \{f(a)\}) = X \setminus \{a\}$ должно быть связным, но это не так \Rightarrow получили противоречие.
- 2) Пересечение отрезков связное множество, если хотя бы одна концевая точка пересекающихся отрезков отображается внутрь отрезка, то убрав такую точку и её отображение, пересечение отрезков останется связным множеством, тогда как отрезок станет несвязным.
 - Поскольку f биекция, то она инъективна и значит, что хотя бы две концевые точки пересекающихся отрезков будут отображаться внутрь отрезка. Мы получили противоречие поскольку f непрерывная, а образ связного множества должен быть связным.

Упр. 3. Доказать, что, если в \mathbb{R}^n есть два базиса с матрицей перехода A, $\det A > 0$, то существует непрерывное преобразование одного базиса в другой.

 \square Будем использовать метод исключения переменных (метод Гаусса), чтобы связать любую матрицу перехода A, $\det A>0$ с единичной матрицей I_n . Рассмотрим следующую матрицу, элементы которой совпадают с единичной матрицей, за исключением одного (i,j)-го элемента, расположенного вне диагонали:

$$I_{i,j}(r) = I_n + rP_{i,j}, \ r \in \mathbb{R}$$

$$P_{i,j} = (\delta_{kl}(i,j)), \ 1 \le i \ne j \le n, \ \delta_{kl}(i,j) = \begin{cases} 1, & k = i \land l = j \\ 0, & k \ne i \lor l \ne j \end{cases}$$

Таким образом, домножение матрицы $I_{i,j}(r)$ на любую матрицу A слева даст сложение домноженной на скаляр r строки j матрицы A к строке i. Следовательно, следующее отображение:

$$f: [0,1] \to \mathbb{R}^{n^2}, f(t) = I_{i,j}(tr)A, t \in [0,1]$$

определеяет непрерывный путь из матрицы A к матрице $I_{i,j}(r)A$. Используя эту операцию можно определить операцию перестановки строк с изменением знака:

$$I_{j,i}(1) \cdot I_{i,j}(-1) \cdot I_{j,i}(1)$$

Если рассматривать пересечение i, j-ых столбцов и i, j-ых строк этого выражения, то получим следующие подматрицы:

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Следовательно, если матрица B получена из матрицы A перестановкой строк с изменением знака, то между ними существует непрерывное преобразование.

Используя операции выше, мы можем создать непрерывный путь, который будет соединить любую обратимую матрицу A и диагональную матрицу D вида:

$$D = \operatorname{diag}\{d_1, d_2, \dots, d_n\} = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{pmatrix}, d_i \neq 0, \forall i = \overline{1, n}$$

Если d_i и d_j отрицательны для $i \neq j$, тогда можно переставить строки i и j дважды (каждый раз меняя знак: $d_i \to -d_i$, $d_j \to -d_j$). Таким образом, мы получим таблицу, где отрицательным может быть только один элемент. Также заметим, что $\det D = d_1 d_2 \dots d_n$ и если он положителен, то все элементы также будут положительными. Но поскольку приведение к такому виду не изменяло определитель (перестановка строк со сменой знака, прибавление к строке другой строки, умноженной на скаляр), то $\det A = \det D > 0 \Rightarrow$ все элементы положительные.

Последняя операция, которую мы определим - домножение на ненулевой скаляр $r \in (0, \infty)$ строки i. Эта операция в матричном виде выражается в домножении слева на диагональную матрицу:

$$S(i, r) = diag(1, ..., 1, r, 1, ..., 1)$$

которая отличается от I_n только элементом в i-ой строчке, равному r. И таким образом для r>0 следующий путь:

$$g: [0,1] \to \mathbb{R}^{n^2}, \ g(t) = \operatorname{diag}(1,\dots,1,(1-t)+tr,1,\dots,1)A = S(i,(1-t)+tr)A, \ t \in [0,1]$$

непрерывно соединяет матрицу A с матрицей S(i,r)A. Применяя последовательно эту операцию к полученной матрице D с коэффициентами $r=\frac{1}{d_i}$ для каждой строки $1\leq i\leq n$, мы получим непрерывный путь, соединяющий исходную матрицу A, $\det A>0$ с единичной матрицей I_n . Таким образом, получили непрерывное преобразование из одного базиса в другой.

Упр. 4. $GL(n,\mathbb{R})=\{A\mid \det A\neq 0\}\subset \mathbb{R}^{n^2}$ - полная линейная группа, состоит из всех обратимых матриц. Доказать, что $GL_+(n,\mathbb{R})=\{A\mid \det A>0\}$ - линейно связное множество.

 \square Следует сразу из предыдущей задачи. Поскольку любая матрица внутри множества $GL_+(n,\mathbb{R})$ может быть приведена к единичной \Rightarrow можно через неё связать все остальные матрицы \Rightarrow множество линейно связно.

Упр. 5. Доказать, что $SL(n,\mathbb{R}) = \{A \mid \det A = 1\}$ является линейно связным множеством.

 \square Используя следующее непрерывное преобразование для всех матриц $A, \det A > 0$:

$$h: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}, \ h(A) = \frac{1}{\sqrt[n]{\det A}} A, \ \det(h(A)) = \left(\frac{1}{\sqrt[n]{\det A}}\right)^n \cdot \det A = 1$$

и используя результат упражнения выше, получаем, что любые матрицы в $SL(n,\mathbb{R})$ могут быть непрерывно преобразованы в $I_n \Rightarrow$ множество является линейно связным.

Линейные функции

Пусть X и Y - нормированные пространства.

Опр: 8. Отображение $L\colon X\to Y$ называется <u>динейным</u> (или еще говорят линейным оператор), если выполнено следующее:

$$L(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 L(x_1) + \alpha_2 L(x_2)$$

Конечномерные линейные отображения

Пример: Возникает вопрос, как например устроено $L: \mathbb{R} \to \mathbb{R}$? Возьмем базисный вектор $e_1 = 1$, тогда:

$$x = x_1 e_1 = x_1 \Rightarrow L(x) = L(x_1 e_1) = x_1 L(e_1) = x L(e_1) = kx$$

Пример: Как устроено линейное отображение $L \colon \mathbb{R}^n \to \mathbb{R}$ (динейный функционал)? Возьмем базис пространства $\mathbb{R}^n \colon e_1, \dots e_n \Rightarrow$ любой элемент x представится в виде $x = x_1e_1 + \dots + x_ne_n$, тогда:

$$L(x) = x_1 L(e_1) + \ldots + x_n L(e_n) = a_1 x_1 + \ldots + a_n x_n$$

Пример: Как устроено линейное отображение $L \colon \mathbb{R}^n \to \mathbb{R}^m$? Возьмем базис пространства $\mathbb{R}^n \colon e_1, \dots e_n \Rightarrow$ любой элемент x представится в виде $x = x_1 e_1 + \dots + x_n e_n$, тогда:

$$L(x) = x_1 L(e_1) + \dots + x_n L(e_n), L(e_1) = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, L(e_n) = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \Rightarrow$$

$$\Rightarrow L(x) = x_1 L(e_1) + \ldots + x_n L(e_n) = \underbrace{\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ a_{21} & \ldots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{mn} \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{X} = A \cdot X$$

Очевидно, что L - непрерывное отображение, поскольку везде это арифметические операции с непрерывными функциями x_1, \ldots, x_n . Но в общем случае, линейное отображение может быть разрывной функцией.

Бесконечномерные линейные отображения

Пример: Возьмем пространство непрерывных дифференцируемых функций $C^1[0,1]$ с нормой максимума функции: $\|f\| = \max_t |f(t)|$. Рассмотрим следующее линейное отображение:

$$L: C^{1}[0,1] \to \mathbb{R}, L(f) = f'(0)$$

Легко проверить, что оно действительно является линейным:

$$L(\alpha f + \beta g) = (\alpha f + \beta g)'(0) = \alpha f'(0) + \beta g'(0) = \alpha L(f) + \beta L(g)$$

Но при этом, оно не является непрерывным. Например, $f_n(x) = \frac{1}{n} \sin{(n^2 x)}$, тогда:

$$0 \le f_n \le \frac{1}{n}, f_n \Longrightarrow 0, L(f_n) = f'_n(0) = n \to \infty, L(f_n) \nrightarrow L(0)$$

В конечномерном пространстве линейный функционал всегда непрерывен, но в бесконечномерном пространстве всегда найдется линейный функционал, который будет разрывным.

Rm: 4. Пример на полном пространстве придумать сложнее, но там можно воспользоваться базисом Гамеля и аксиомой выбора.

С точки зрения анализа полезно понять, какие достаточные условия непрерывности на линейные функции надо накладывать.

Теорема 4. Пусть $L \colon X \to Y$ - линейная функция, тогда следующие утверждения равносильны:

- (1) L непрерывна;
- (2) L непрерывна в 0;
- (3) $\exists C > 0: ||L(x)||_Y \le C||x||_X, \forall x;$