Guide de l'outil **Coq** Passage de la déduction naturelle à **Coq**

September 23, 2019

Tactiques existantes en Coq

Déduction Naturelle	Nom	$cute{Equivalent}$ Coq	Tactique
			_
$A \vdash A$	Hyp	$\Gamma, H: A \vdash A$	exact H.
$\Gamma \vdash G$		$\Gamma \vdash G$	
$\Gamma, A \vdash G$	Aff	$\Gamma, H : A \vdash G$	clear H.
$\Gamma \vdash A \to G \Gamma \vdash A$			
$\Gamma \vdash G$	E_{\rightarrow}	=	cut A.
$\Gamma, A \vdash G$		$\Gamma, H: A \vdash G$	
$\Gamma \vdash A \to G$	$I_{ ightarrow}$	$\Gamma \vdash A \to G$	intro H.
$\Gamma \vdash A \Gamma \vdash B$			
$\Gamma \vdash A \land B$	I_{\wedge}	=	split.
$\Gamma \vdash A$			
$\Gamma \vdash A \lor B$	I_{\lor}^{1}	=	left.
$\Gamma \vdash B$			
$\Gamma \vdash A \lor B$	I_{\vee}^2	=	right.
$\Gamma \vdash A \lor \neg A$	TiersExclu	=	apply (classic A).
$\Gamma, x : A \vdash (G \ x)$			
$\Gamma \vdash \forall x : A.(G \ x)$	$I_{orall}$	=	intro x.
$\Gamma \vdash x = x$	$I_{=}$	=	reflexivity.
$\Gamma \vdash [b \mid a]G$		$\Gamma, H: a = b \vdash [b \mid a]G$	
Γ , $a = b \vdash G$	$E_{=}$	$\Gamma, H: a = b \vdash G$	rewrite -> H.

Tactiques équivalentes en Coq

Déduction Naturelle	Nom	Équivalent Coq	Tactique
		$\overline{\Gamma,H:\bot \vdash G}$	cut False.
$\Gamma \vdash \bot$		$\top + \bot - B \leftarrow \top + \bot$	intro H.
$B \dashv \Lambda$	E_{\perp}	$\Gamma \vdash G$	contradiction.
			cut (G \/ ~G).
			intro Hgng.
			elim Hgng.
			intros Hg Hng.
			exact Hg.
			cut False.
		$\Gamma,\ H: \bot \vdash G$	intro H.
$\Gamma, \neg G \vdash \bot$		$\Gamma \vdash \Gamma \rightarrow G$ $\Gamma \vdash \Gamma$	contradiction
$\Gamma \vdash G$	E_{\perp}	$D \dashv I$	apply (classic G).
		$\Gamma,\; H:A\wedge B,\; HA:A,\; HB:B\vdash A$	cut (A // B).
		$\Gamma,\ H:A\wedge B\vdash A\to B\to A$	intro H.
		$\Gamma,\ H:A\wedge B \vdash A$	elim H.
$\Gamma \vdash A \land B$		$\Gamma \vdash A \land B \rightarrow A$ $\Gamma \vdash A \land B$	intros HA HB.
$\Gamma \vdash A$	E^1_\wedge	$\Gamma \vdash A$	exact HA.
2			cut (A // B).
			intro H.
			elim H.
$\Gamma \vdash A \land B$			intros HA HB.
$\Gamma \vdash B$	E^2_{\wedge}	idem	exact HB.
$\Gamma \vdash A \lor B \Gamma, H1 : A \vdash G \Gamma, H2 : B \vdash G$		$\Gamma, H: A \lor B \vdash A \to G \ \Gamma, H: A \lor B \vdash B \to G$	
$\Gamma \vdash G$	$E_{\!$	$\Gamma, H: A \lor B \vdash G$	elim H.
$\Gamma, H : A \vdash \neg B \Gamma, H : A \vdash B$		$\Gamma, H: A \vdash \bot$	unfold not.
$\Gamma \vdash \neg A$	I_{\neg}	$\Gamma \vdash \neg A$	intro H.
$\Gamma, H: A \to B \vdash A$			
$\overline{\ \Gamma, H: A \to B \vdash B \ }$	Apply	=	apply H.

Déduction Naturelle	Nom	$cute{Equivalent}$ Coq	Tactique
$\Gamma \vdash \neg A \Gamma \vdash A$			
$\Gamma \vdash G$	E_{\neg}	=	absurd A.
$\Gamma \vdash A \lor \neg A$	TiersExclu	=	apply (classic A).
$\Gamma \vdash \neg \neg A$			
$\Gamma \vdash A$	Pierce	=	apply (NNPP A).
$\Gamma, H1: A, H2: A \to B, H3: B \vdash G$		$\Gamma, H1: A, H2: A \to B \vdash B \to G$	
$\Gamma, H1: A, H2: A \to B \vdash G$	Modus Ponens	$\Gamma, H1: A, H2: A \to B \vdash G$	generalize (H2 H1).
$\Gamma, x : A \vdash (G \ x)$			
$\Gamma \vdash \forall x : A.(G \ x)$	$I_{orall}$	=	intro x.
$\Gamma \vdash \forall x : A.(G \ x) \ \Gamma \vdash y : A$		$\Gamma, y: A \vdash \forall x: A.(G\ x)$	
$\Gamma \vdash (G \ y)$	E_{\forall}	$\Gamma, y : A \vdash (G \ y)$	generalize y.
$\Gamma \vdash (G \ y) \ \Gamma \vdash y : A$			
$\Gamma \vdash \exists x : A.(G \ x)$	I_{\exists}	=	exists y.
$\Gamma \vdash \exists x : A.(P \ x) \ \Gamma, y : A, H : (P \ y) \vdash G$		$\Gamma, H: \exists x: A.(P\ x) \vdash \forall y: A.(P\ y) \to G$	
$\Gamma \vdash G$	E_{\exists}	$\Gamma, H: \exists x: A.(P\ x) \vdash G$	elim H.
$\Gamma \vdash (G\ 0) \Gamma \vdash \forall m : Nat.(G\ m) \to (G\ (S\ m))$			
$\Gamma \vdash \forall n : Nat.(G \ n)$	E_{Nat}	≈	intro n ;elim n.
$_{\omega}$ $\Gamma \vdash (G \ 0)$ $\Gamma \vdash \forall m : Nat.(G \ (S \ m))$			
$\Gamma \vdash \forall n : Nat.(G \ n)$	Cas sur Nat	≈	intro n ; case n.
$\forall k \in [1, N]: \Gamma, H: T = (C_k \ u_1 \dots u_{n_k}) \vdash G$			
$\Gamma, T: (I \ v_1 \dots v_n) \vdash G$	I inductif	≈	inversion T.
$\Gamma, H : t\llbracket (C \ u_1 \dots u_n) \rrbracket = t\llbracket (C' \ v_1 \dots v_p) \rrbracket \vdash G$	$C \neq C'$	=	discriminate H.
$\Gamma \vdash u_1 = v_1 \to \dots u_n = v_n \to G$			
$\Gamma, H: (C \ u_1 \dots u_n) = (C \ v_1 \dots v_n) \vdash G$	C injectif	≈	injection H.
$\Gamma \vdash G'$			
$\Gamma \vdash G$	$G \rhd G'$	=	simpl.
$\Gamma, H : a = b \vdash [a \mid b]G$			
$\Gamma, H: a = b \vdash G$	b = a	=	rewrite <- H.
$\Gamma, HA: A, HB: B \vdash G$			
$\Gamma, H: A \wedge B \vdash G$	E'_{\wedge}	=	destruct H as (HA,HB).
$\Gamma, HA : A \vdash G \Gamma, HB : B \vdash G$			
$\Gamma, H: A \lor B \vdash G$	E'_{\vee}	=	destruct H as [HA HB].