Zener diode

Recall: Diode forward direction

Recall: Diode reverse direction

If V_Diode = -10V, where does the voltage drop across? => Depletion region => Why?

Every material has a breakdown electric field. For Si Ebreakdown = 3×10⁵ 1/cm = 30 V/µm

What happens if \(\vec{E} \ge \vec{E}_{breakdown} ?

=> Impact ionization => Avalanche multiplication

=> Current increases strongly for == Ebrechdown

=> Is silicon material destroyed during breakdown?

→ No! Only electronic processes, no structural changes.

Other techical field: Electrical breakdown in air. What happens? Have you seen such phenomenon?

Zener diode: The width of the depletion region can be tuned by dopping: $W_{D} = \sqrt{\frac{2\varepsilon}{e} \left(\frac{1}{N_{A}} + \frac{1}{N_{D}}\right) V_{bi}}$

Le Equation from Microelectronics course.

IV characteristic:

We typically operate Zener diode in severse direction

Circuit symbol

Why this circuit symbol - 2?

Vz can be 5V, 10V, 18V...

$$V < V_z \Rightarrow T_{zener} = \frac{dV}{dI} \approx \infty$$

 $V \ge V_z \Rightarrow T_{zener} = \frac{dV}{dI} \approx 0$

IV characteristic (quantitative)

I ≈ I. ∈ (V-Vz)/Vz La can be smaller La regular diode than 26 mV, so turn-on turn-on not included can be very about.

Basic Zener diode circuit

What is current I? Similar to diode discussion, the equation based on KVL cannot be solved analytically.

- We need alternative solutions.

1) Graphical solution based on load line

$$V_{Bat} = IR + V_{z}(I)$$

$$\Rightarrow$$

$$V_{\text{Bat}} - IR = V_{z}(I)$$

LHS

RHS

2 Approximate analytical solution by assuming $V_z = constant$ (e.g. $V_z = 10V$)

$$V_{Bat} = IR + V_{z}$$

$$\Rightarrow I = \frac{V_{Bat} - V_{z}}{R}$$

Example:
$$V_{Bat} = 10V$$
 $V_{Z} = 5V$ $R = 1 k\Omega$

$$\Rightarrow I = \frac{V_{Bat} - V_{Z}}{R} = \frac{10V - 5V}{1 k\Omega} = 5 \text{ mA}$$