0

DATA ANALYSIS HACKATHON

BANK EVIE - CREDIT RISK ASSESSMENT

TABLE OF CONTENT

0

0

01

0

AIM

02

ANALYSIS

03

METHODOLOGIES

04

OUTCOME

0

0

INTRODUCTION

Bank Evie is a well established bank who is recently experiencing a decline in their revenue and managed to trace the source towards loan defaults.

More people can't afford to pay and consequently causing the bank to suffer the loses.

##

AIM ~ USE CASES

TRAITS

Determine the common traits among these loan defaulters

MODEL

Build a model to predict the future defaulters based on their traits

We'll follow Adam's journey to derive the outcomes...

DATA ANALYSIS

##

FEATURES

GIVEN CREDIT AMOUNT

includes both the individual and his/her family (supplementary) credit

MARITAL

STATUS

1 = married 2 = single 3 = others

AMOUNT OF BILL STATEMENT

Â,

It's the closest planet to the Sun and the smallest in the Solar System

GENDER

1 = male 2 = female

AGE

Year

AMOUNT OF PREVIOUS PAYMENT

It's the closest planet to the Sun and the smallest in the Solar System

EDUCATION

1 = graduate school

2 = university

3 = high school

4 = others

PAST PAYMENT

past monthly payment records (from April to September, 2005)

LOAN Defaulters 1 = True0 = False

UNBALANCED DATASET

REPAYMENT STATUS,
EDUCATION, AGE, BILL AMOUNT

MENU ANALYSIS

CONTACT

DIAGNOSTIC ANALYSIS

AGE GROUP

With increasing age group the number of clients that will default the payment next month is decreasing.

REPAYMENT

The earlier the payment is made lesser are the chances of those clients defaulting the payment.

EDUCATION

High school has the highest default %

Household debt reduces when the individual ages due to increase in income earning and less burden to withhold.

REPAYMENT

Earlier payments shows a discipline within the client's behavior, thus showing less tendency of being default.

EDUCATION

People with high school background

PREDICTIVE ANALYTICS

Randomly split the data into: Train - Valid - Test

TESTING

Run the dataset via the model and observe the accuracy

DATASET

Finding the relevant dataset for the case

MODEL

Building the model using tensorflow & keras

MENU ANALYSIS CONTACT

ACCURACY OF THE MODEL (1)

0

0

Used **Tensorflow** & Keras

ACCURACY RESULTS OF ALGORITHM (2)

MACHINE LEARNING MODELS	ACCURACY
Linear Regression	78.1%
SVM	77.8%
Bayes	78.3%
Stacked	78.8%

0

0

To start of, we best traits that predicts the defaulters behavior are - Repayment Status, Education, Age, Bill Amount

MODELS

The best model with the highest accuracy thus far is the STACKED model

0

NEXT STEPS

Further explore the correlation between the features & develop a better model - Confusion Matrix, Gaussian Kernel

REFERENCES

- 1. http://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients#
- 2. https://www.kaggle.com/code/fegadeharish/eda-and-logistic-regression
- 3. https://www.kaggle.com/code/scratchpad/notebook6ffd7504ae/edit
- 4. freecodecamp