Departamento Acadêmico de Eletrônica - DAELN IFSC – Câmpus Florianópolis

Eletrônica Digital 1

Sistemas de numeração

Prof. Matheus Leitzke Pinto matheus.pinto@ifsc.edu.br

Sumário de aula

- Conceitos básicos
- Faixa de contagem no sistema binário
- Conversão binário para decimal
- Faixa de contagem no sistema hexa
- Conversão de hexa para decimal
- Conversão de hexa para binário
- Conversão de binário para hexa

• Conhecer os principais sistemas de numeração utilizados em eletrônica digital e sua relação, é útil no entendimento dos dispositivos e circuitos.

Relação entre sistemas de numeração usados em eletrônica digital

DECIMAL	BINÁRIO	HEXADECIMAL
0	0b0	0x0
1	0b1	0x1
2	0b10	0x2
3	0b11	0x3
4	0b100	0x4
5	0b101	0x5
6	0b110	0x6
7	0b111	0x7
8	0b1000	0x8
9	0b1001	0x9
10	0b1010	0xA
11	0b1011	0xB
12	0b1100	0xC
13	0b1101	0xD
14	0b1110	0xE
15	0b1111	0xF
16	0b10000	0x10

Unidades de quantificação de bits

- Byte: número de 8 bits.
- Nibble: número de 4 bits.
- **kiloBit** (kb ou kib): 2¹⁰ (1024) bits.
- **kiloByte** (kB ou kiB): 2^{10} (1024) bytes = 8192 (8 x 1024) bits.
- megaBit (Mb ou Mib): 2²⁰ (1024 x 1024) bits
- megaByte (MB ou MiB): 2²⁰ (1024 x 1024) bytes
- gigaBit (Gb ou Gib): 2³⁰ (1024 x1024 x 1024) bits
- **gigaByte** (GB ou GiB): 2³⁰ (1024 x1024 x 1024) bytes

Bits e dígitos relevantes em um número

- MSB (Most Significant Bit bit mais significativo): bit mais à esquerda. Ex.: 0b10011
- LSB (Least Significant Bit bit menos significativo): bit mais à direira. Ex.: 0b10011
- MSD (Most Significant Digit digito mais significativo): digito mais à esquerda. Ex.: 0b<u>1</u>0011, <u>4</u>67₁₀, 0x<u>3</u>EC
- LSD (Least Significant Digit digito menos significativo): digito mais à direira. Ex.: 0b10011, 467, 0x3EC

Faixa de contagem no sistema binário

Faixa de contagem no sistema binário

Contagem com 4 bits

Faixa de contagem no sistema binário

- Com N bits podemos representar 2^N números binários diferentes, em uma faixa de 0 à 2^N - 1 em decimal. Por exemplo, com 4 bits:
 - Número de valores representáveis: 2⁴ = 16 números;
 - Faixa de valores: 0b0000 (0) à 0b1111 (15).

Conversão binário para decimal

Conversão binário para decimal

• Método das divisões sucessivas. Exemplo: Converter 34 para binário.

Faixa de contagem no sistema hexa

Faixa de contagem no sistema hexa

• Quando contamos em hexa, cada digito pode ser incrementado de 0 à F.

• Quando o digito de uma posição chega ao valor F, este volta para 0 e o digito da próxima posição é incrementado.

Faixa de contagem no sistema hexa Exemplo

Faixa de contagem no sistema hexa Exemplo

Continuando:

Conversão de hexa para decimal

Conversão de hexa para decimal

 A conversão de hexadecimal para decimal é semelhante à conversão de binário para decimal

$$15 \times \underline{16^2 + 14 \times 16^1 + 8 \times 16^0}$$
= 3840 + 224 + 8
= 4072

Conversão de hexa para binário

Conversão de hexa para binário

Cada digito hexa é convertido no equivalente binário de 4 bits.

Conversão de binário para hexa

Conversão de hexa para binário

• Separa-se o número em grupos de *nibbles*.

