

SEQUENCE LISTING

1007 Sim Peter J.
zhao, Ji
Wiedmer, Therese

1007 <120> METHODS AND COMPOSITIONS TO ALTER TISSUE SUSCEPTIBILITY
TO IMMUNE INJURY, TO PROGRAMMED CELL DEATH, AND TO
CLEARANCE BY THE RETICULOENDOTHELIAL SYSTEM

<130> 160180.90121

<140>

<141>

<160> 9

<170> PatentIn Ver. 2.0

<210> 1

<211> 1445

<212> DNA

<213> Homo sapiens

<400> 1

cgccggccgcg tcgaccgaaa ccaggagccg cgggtgttgg cgcaaagggtt actccccagac 60
cctttccgg ctgacttctg agaagggtgc gcagcagctg tgcccgacag tctagaggcg 120
cagaagagga agccatcgcc tggcccccggc tctctggacc ttgtctcgct cgggagcgg 180
aacagcggca gccagagaac tgtttaatc atggacaaac aaaactcaca gatgaatgct 240
tctcacccgg aaacaaactt gccagttggg tatccctcctc agtatccacc gacagcattc 300
caaggacctc caggtatag tggctaccct gggccccagg tcagctaccc acccccacca 360
gccggccatt caggtcctgg cccagctggc ttcctgtcc caaatcagcc agtgtataat 420
cagccagtat ataatcagcc agttggagct gcaggggtac catggatgcc agcgccacag 480
cctccattaa actgtccacc tggatttagaa tattaagtgc agatagatca gataactgatt 540
catcagcaaa ttgaacttct ggaagttta acaggttttgc aaactaataa caaatatgaa 600
attaagaaca gctttggaca gagggtttac tttcagctgg aagatactga ttgtctgtacc 660
cgaaaattgct gtggggccatc tagacctttt accttgagga ttattgataa tatgggtcaa 720
gaagtcataa ctctggagag accactaaga tgttagcagct gttgttgcc ctgctgcctt 780
cagggagatag aaatccaagc tcctccttgt gtaccaatag gttatgttat tcagacttgg 840
caccatgtc taccaaagtt tacaattcaa aatgagaaaa gagaggatgt actaaaaata 900
agtggccat gtgttgtgtc cagctgttgc ggagatgttgc attttggat taaatctttt 960
gatgaacagt gtgttgtgg caaaatttcc aagcaactggc ctggaaattttt gagagaggca 1020
tttacagacg ctgataactt tggaaatccag ttccctttag accttgatgt taaaatgaaa 1080
gctgtatga ttggccttg ttccctcatt gacttcatgt ttttggaaag cactggcagc 1140
caggaacaaa aatcaggagt gtggtagtgg attagtggaa gtctcctcag gaaatctgaa 1200
gtctgtatgtat tgattgagac tatctaaact catacctgta tgaattaagc tgtaaggcct 1260
gtagctctgg ttgtataactt ttgctttca aattatagtt tatcttctgt ataactgatt 1320
tataaagggtt ttgtacatt tttaataact cattgtcaat ttgagaaaaa ggacatatga 1380

gtttttgcat ttattaaatga aacttcctt gaaaaactgc tttaaaaaaaaa agtcgacgcg 1440
gccgc 1445

<210> 2
<211> 318
<212> PRT
<213> Homo sapiens

<400> 2
Met Asp Lys Gln Asn Ser Asn Met Asn Ala Ser His Pro Glu Thr Asn
1 5 10 15

Leu Pro Val Gly Tyr Pro Pro Asn Tyr Pro Pro Thr Ala Phe Gln Gly
20 25 30

Pro Pro Gly Tyr Ser Gly Tyr Pro Gly Pro Gln Val Ser Tyr Pro Pro
35 40 45

Pro Pro Ala Gly His Ser Gly Pro Gly Pro Ala Gly Phe Pro Val Pro
50 55 60

Asn Gln Pro Val Tyr Asn Gln Pro Val Tyr Asn Gln Pro Val Gly Ala
65 70 75 80

Ala Gly Val Pro Trp Met Pro Ala Pro Gln Pro Pro Leu Asn Cys Pro
85 90 95

Pro Gly Leu Glu Tyr Leu Ser Gln Ile Asp Gln Ile Leu Ile His Gln
100 105 110

Gln Ile Glu Leu Leu Glu Val Leu Thr Gly Phe Glu Thr Asn Asn Lys
115 120 125

Tyr Glu Ile Lys Asn Ser Phe Gly Gln Arg Val Tyr Phe Ala Ala Glu
130 135 140

Asp Thr Asp Cys Cys Thr Arg Asn Cys Cys Gly Pro Ser Arg Pro Phe
145 150 155 160

Thr Leu Arg Ile Ile Asp Asn Met Gly Gln Glu Val Ile Thr Leu Glu
165 170 175

Arg Pro Leu Arg Cys Ser Ser Cys Cys Cys Pro Cys Cys Leu Gln Glu
180 185 190

Ile Glu Ile Gln Ala Pro Pro Gly Val Pro Ile Gly Tyr Val Ile Gln
195 200 205

Thr Trp His Pro Cys Leu Pro Lys Phe Thr Ile Gln Asn Glu Lys Arg
210 215 220

Glu Asp Val Leu Lys Ile Ser Gly Pro Cys Val Val Cys Ser Cys Cys
225 230 235 240

Gly Asp Val Asp Phe Glu Ile Lys Ser Leu Asp Glu Gln Cys Val Val
245 250 255

Gly Lys Ile Ser Lys His Trp Thr Gly Ile Leu Arg Glu Ala Phe Thr
260 265 270

Asp Ala Asp Asn Phe Gly Ile Gln Phe Pro Leu Asp Leu Asp Val Lys
275 280 285

Met Lys Ala Val Met Ile Gly Ala Cys Phe Leu Ile Asp Phe Met Phe
290 295 300

Phe Glu Ser Thr Gly Ser Gln Glu Gln Lys Ser Gly Val Trp
305 310 315

<210> 3

<211> 1622

<212> DNA

<213> Mus musculus

<400> 3

tctaaagact cagggaaacaa aacctaaatt gcctcaaagt tcaggtgctt tttctccctg 60
acttttagtct agtggagtag tgccggcacct atgcctttct gagaggagtc tggagagctg 120
agtcgctgct ggtgcttagga ttcttaggaat tcgcctcaact tggagctgca tgagaaaaga 180
aaggcttgca aatggaggct cctcgctcaag gaacataactt gccagctggg tatgcccctc 240
agtatcctcc agcagcagtc caaggacctc cagagcatac tggacgcccc acattccaga 300
ctaactacca agttccccag tctggttatc caggacctca ggctagctac acagtctcaa 360
catctggaca tgaaggatat gctgctacac ggcttcctat tcaaaataat cagactatag 420
tccttgcaaa cactcagtgg atgccagcac caccacctat tctgaactgc ccacctggc 480
tagaatactt aaatcagata gatcagcttc tgattcatca gcaagttgaa cttctagaag 540
tcttaacagg cttgaaaaca aataacaaat ttgaaatcaa gaacagcctc gggcagatgg 600
tttatgttgc agtggaaagat actgactgct gtactcgaaa ttgctgtgaa gcgtctagac 660
ctttcacctt aagaatcctg gatcatctgg gccaagaagt catgactctg gagcgacctc 720
ttagatgcag tagctgctgc ttcccctgct gcctccagga gatagaatac caggtcctc 780
cgggggtgcc aataggatgtt gtgactcaga cctgcaccc atgtctgcca aagctcaactc 840
ttcagaacga caagagggag aatgttctaa aagtagttgg tccatgtgtt gcatgcaccc 900
gctgttcaga tattgacttt gagatcaagt ctcttcatca agtgcactaga attggtaaga 960
tcaccaagca gtggctgggt tggctgtgaaag aggccctcac ggattcggat aactttggga 1020
tccaattccc gctagacctg gaggtgaaga tgaaagctgt gacgcttggt gcttgcttcc 1080
tcatagatta catgtttttt gaaggctgtg agtaggaaca gaaatccgac ctgcagtagg 1140
aatcaatgaa agaggacaga gaagatctga agtctacaca aggagatcat atgattgaga 1200

gacctggggc ttttgattt cttcattgaa atttctcaga atcaagctgt tatacatgaa 1260
gcatagtatg taacatttg gtttcaaattt ggtagtttat ctttacattt attggaatag 1320
acctggataa ttatctttat acacttctaa aaatatgcac caaatcaag taaaaaaaaa 1380
aaagacgaag agaagtgtat gttttaaaat aaaacattttt atggaaaagt aagttaaattc 1440
ataatctggg atttattttt catctttgt tcaatttaaa ccttggtagt gctgatttt 1500
ttataaaattt gtactttact atcaaaccta gttagtttat ttcttacaga aatcctcccta 1560
ttatggaa attacatatt tttgaaagct ttttaaaaga tactattgcc tggaaattc 1620
ta 1622

<210> 4
<211> 307
<212> PRT
<213> Mus musculus

<400> 4
Met Glu Ala Pro Arg Ser Gly Thr Tyr Leu Pro Ala Gly Tyr Ala Pro
1 5 10 15

Gln Tyr Pro Pro Ala Ala Val Gln Gly Pro Pro Glu His Thr Gly Arg
20 25 30

Pro Thr Phe Gln Thr Asn Tyr Gln Val Pro Gln Ser Gly Tyr Pro Gly
35 40 45

Pro Gln Ala Ser Tyr Thr Val Ser Thr Ser Gly His Glu Gly Tyr Ala
50 55 60

Ala Thr Arg Leu Pro Ile Gln Asn Asn Gln Thr Ile Val Leu Ala Asn
65 70 75 80

Thr Gln Trp Met Pro Ala Pro Pro Pro Ile Leu Asn Cys Pro Pro Gly
85 90 95

Leu Glu Tyr Leu Asn Gln Ile Asp Gln Leu Leu Ile His Gln Gln Val
100 105 110

Glu Leu Leu Glu Val Leu Thr Gly Phe Glu Thr Asn Asn Lys Phe Glu
115 120 125

Ile Lys Asn Ser Leu Gly Gln Met Val Tyr Val Ala Val Glu Asp Thr
130 135 140

Asp Cys Cys Thr Arg Asn Cys Cys Glu Ala Ser Arg Pro Phe Thr Leu
145 150 155 160

Arg Ile Leu Asp His Leu Gly Gln Glu Val Met Thr Leu Glu Arg Pro
165 170 175

Leu Arg Cys Ser Ser Cys Cys Phe Pro Cys Cys Leu Gln Glu Ile Glu
180 185 190

Ile Gln Ala Pro Pro Gly Val Pro Ile Gly Tyr Val Thr Gln Thr Trp
195 200 205

His Pro Cys Leu Pro Lys Leu Thr Leu Gln Asn Asp Lys Arg Glu Asn
210 215 220

Val Leu Lys Val Val Gly Pro Cys Val Ala Cys Thr Cys Cys Ser Asp
225 230 235 240

Ile Asp Phe Glu Ile Lys Ser Leu Asp Glu Val Thr Arg Ile Gly Lys
245 250 255

Ile Thr Lys Gln Trp Ser Gly Cys Val Lys Glu Ala Phe Thr Asp Ser
260 265 270

Asp Asn Phe Gly Ile Gln Phe Pro Leu Asp Leu Glu Val Lys Met Lys
275 280 285

Ala Val Thr Leu Gly Ala Cys Phe Leu Ile Asp Tyr Met Phe Phe Glu
290 295 300

Gly Cys Glu
305

<210> 5

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Fragment of SEQ ID NO:2

<400> 5

Cys Glu Ser Thr Gly Ser Gln Glu Gln Lys Ser Gly Val Trp
1 5 10

<210> 6

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer for SEQ ID NO:1

<400> 6
tcagaattcg gatccatgga caaacaaaac tcacagatg 39

<210> 7
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for SEQ ID NO:1

<400> 7
gcttcctgc aggtcgacctt accacactcc tgattttgt tcc 43

<210> 8
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for SEQ ID NO:3

<400> 8
tcagaattcg gatccatgga ggctcctcg tcaggaac 38

<210> 9
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for SEQ ID NO:3

<400> 9
gcttcctgc aggtcgacctt acacacagcc ttcaaaaaac tag 43

(b)
Cont.