

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه مکان

Image Processing in Spatial Domain

فیلتر در حوزه مکان

- در بسیاری از پردازشها، علاوه بر پیکسل (x,y)، پیکسلهای موجود دریک همسایگی آن نیز مورد استفاده قرار می گیرند
 - فیلتر خطی در حوزه مکان معادل به انجام کانولوشن میان تصویر و یک کرنل دوبعدی است

$$g(x,y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + \dots$$
$$+ w(0,0)f(x,y) + \dots + w(1,1)f(x+1,y+1)$$
$$g(x,y) = \sum_{a}^{b} \sum_{b}^{b} w(s,t)f(x+s,y+t)$$

aaaaaa | abcdefqh | hhhhhhh

fedcba|abcdefgh|hgfedcb

gfedcb|abcdefgh|gfedcba

cdefah labcdefah labcdefa

OpenCV

حاشیه تصویر؟

iiiiii|abcdefqh|iiiiiii with some specified 'i'

تولید کرنل

- تولید یک فیلتر $m \times n$ مستلزم تعیین m ضریب در کرنل است
- مثال: میخواهیم مقدار هر پیکسل برابر با میانگین مقدار مقادیر پیکسلهای اطراف آن باشد
 - مثال: میانگین وزندار

$\frac{1}{9} \times$	1	1	1		
	1	1	1		
	1	1	1		

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679	
	0.6065	1.0000	0.6065	
	0.3679	0.6065	0.3679	

فیلترهای هموارساز

- فیلترهای هموارساز فیلترهایی هستند که به منظور کاهش تغییرات شدید در شدت روشنایی پیکسلهای تصویر به کار میروند
 - یکی از کاربردهای این فیلترها کاهش نویز است
 - همچنین برای حذف جزئیات کماهمیت تصویر قبل از پردازشهای پیچیده تری نظیر استخراج شیئ به کار میروند
 - ساده ترین فیلتر هموارساز همان فیلتر متوسط گیر است
 - این فیلترها اصولا از لحاظ فرکانسی فیلترهای پائین گذر هستند

فیلترهای هموارساز

• لبههای تصویر که در بسیاری از کاربردها نظیر تشخیص اشیاء در تصویر نقش مهمی دارند، توسط فیلترهای هموارساز خاصیت پلهای خود را از دست میدهند و این میتواند اثر نامطلوبی باشد

• می توان متوسط گیری را به صورت وزن دار انجام داد

$\frac{1}{9}$ ×	1	1	1		
	1	1	1		
	1	1	1		

$\frac{1}{16} \times$	1	2	1		
	2	4	2		
	1	2	1		

فیلتر گاوسی

• می توان با نمونه برداری از توابع پیوسته کاربردی، فیلترهای مناسبی را بدست آورد

• تابع گاوسی:

$$G(s,t) = Ke^{-\frac{s^2+t^2}{2\sigma^2}} = Ke^{-\frac{r^2}{2\sigma^2}}$$

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

مقایسه فیلتر گاوسی و جعبهای

حذف سایه

- نورپردازی غیریکنواخت یکی از چالشهای بینایی کامپیوتر است
 - شدت روشنایی محیط معمولا تغییرات کندی دارد
 - با یک فیلتر پائین گذر می توان سایه تصویر را تخمین زد
 - با تقسیم دو تصویر، اثر سایه کاهش می یابد

نویز نمک و فلفل

- این نوع نویز برخلاف نویزهای بررسی شده، جمعشونده نیست
- فیلترهای هموارساز خطی نمی توانند این نوع نویز را به خوبی برطرف کنند
 - فیلترهای مرتبهای میتوانند عملکرد بهتری داشته باشند

فيلتر ميانه

• فیلتر میانه یک فیلتر غیرخطی است که بر اساس مرتبسازی پیکسلهای درون کرنل و جایگزینی مقدار میانه بجای پیکسل مرکزی عمل میکند

10	11	15	8	7						
7	10	50	12	10			11	12	12	
9	14	12	13	11			12	14	13	
10	16	14	15	14			11	13	12	
8	11	10	10	9						

فیلترهای تیزکننده

- برخلاف هموارسازی تصویر، اساس کار تیز کردن تصویر بر برجستهسازی جزئیات کوچک در تصویر است
 - از آنجائیکه متوسط گیری معادل با انتگرال گیری است، می توان نتیجه گرفت که تیز کردن تصویر را می توان توسط مشتق گیری که معادل با تفاضل است بدست آورد
 - بنابراین، لبهها و البته دیگر گسستگیها نظیر نویز نیز برجسته خواهند شد