

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA \rightarrow Everybody can decrypt m using Alice's public key Kp_A ✓ Authentication with non-repudiation (a.k.a Digital Signature)

Ks_A, Kp_A

 $D_{Kpa}(E_{Ksa}(m)) = m$

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA

- Everybody can decrypt m using Alice's public key KpA
- ✓ Authentication with non-repudiation (a.k.a Digital Signature)

Functional Requirements

 $D_{Ks}(E_{Kp}(m)) = m$ and $D_{Kp}(E_{Ks}(m)) = m$ for every pair (Kp, Ks)

- ✓ Generating a pair (Kp, Ks) is easy to compute (polynomial)
- ✓ Encryption is easy to compute (either polynomial or linear)
- ✓ Decryption is easy to compute (either polynomial or linear)
- Finding a matching key Ks for a given Kp is hard (exponential)
- Decryption without knowing the corresponding key is hard (exponential)