

集合基本恒等式列表(1)

Identity	Name
$A \cap E = A$, $A \cup \emptyset = A$	Identity laws
$A \cup E = E$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
~~A=A	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

集合基本恒等式列表(2)

Identity	Name
$A \cup (A \cap B) = A$	Absorption laws
$A\cap (A\cup B)=A$	
$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\sim (A \cup B) = \sim A \cap \sim B$ $\sim (A \cap B) = \sim A \cup \sim B$	DeMorgan's laws
$A \cup \sim A = E$ $A \cap \sim A = \emptyset$	Complement laws
A - B = A \cap ~ B	Difference as intersection

其它集合恒等式

- $A \oplus B = B \oplus A$
- $\blacksquare A \oplus \emptyset = A$
- $\bullet A \oplus A = \emptyset$
- \bullet $A \oplus E = \sim A$,
- \bullet $A \oplus \sim A = E$
- $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$
- \bullet $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

集合恒等式(推广到集族)

分配律

$$\mathbf{B} \cup \left(\bigcup_{\alpha \in S} A_{\alpha}\right) = \bigcup_{\alpha \in S} \left(\mathbf{B} \cup A_{\alpha}\right)$$
$$\mathbf{B} \cap \left(\bigcap_{\alpha \in S} A_{\alpha}\right) = \bigcap_{\alpha \in S} \left(\mathbf{B} \cap A_{\alpha}\right)$$

■ 德●摩根律

$$\sim \left(\bigcup_{\alpha \in S} A_{\alpha}\right) = \bigcap_{\alpha \in S} \left(\sim A_{\alpha}\right)$$

$$\sim \left(\bigcap_{\alpha \in S} A_{\alpha}\right) = \bigcup_{\alpha \in S} \left(\sim A_{\alpha}\right)$$

$$\mathbf{B} - \left(\bigcup_{\alpha \in S} A_{\alpha}\right) = \bigcap_{\alpha \in S} \left(\mathbf{B} - A_{\alpha}\right)$$

$$\mathbf{B} - \left(\bigcap_{\alpha \in S} A_{\alpha}\right) = \bigcup_{\alpha \in S} \left(\mathbf{B} - A_{\alpha}\right)$$

对偶(dual)原理

- 对偶式(dual): 一个集合关系式, 如果只含有 \cap , \cup , \sim , \varnothing , E,=, \subseteq , 那么, 同时把 \cup 与 \cap 互换, 把 \varnothing 与E互换, 把 \subseteq 与 \supseteq 互换, 得到的式子称为原式的对偶式.
- 对偶原理: 对偶式同真假. 或者说, 集合恒等式的对偶式还是恒等式.

如: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 的对偶式是 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup \sim A = E$ 的对偶式是 $A \cap \sim A = \emptyset$

 $A \cap B \subseteq A$ 的对偶式是 $A \cup B \supseteq A$

 \emptyset ⊆ A的对偶式是E ⊇ A

集合恒等式证明方法(按使用的理论分)

■ 逻辑演算法:

利用逻辑等值式和推理规则证明 $A\subseteq B \perp B \subseteq A$, 或者 $\forall x, x x \in A \Leftrightarrow \Leftrightarrow x \in B$

■ 集合演算法:

利用集合恒等式和已知结论直接证明A=.....=B

- 集合构造符
- A Membership Table(类似于真值表)

考虑一个元素可能属于的集合的每一种组合,并证明在同样的集合组合中的元素属于恒等式两边的集合。

逻辑演算法(格式)

题目: *A=B*.

证明: $\forall x$,

$$x \in A$$

$$\Leftrightarrow x \in B$$

$$\therefore A=B$$
.

题目: *A***⊆***B*.

证明: $\forall x$,

$$x \in A$$

$$\Rightarrow x \in B$$

$$\therefore A \subseteq B$$
.

-

分配律的证明(逻辑演算)

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

证明: $\forall x, x \in A \cup (B \cap C)$

 $\Leftrightarrow x \in A \lor x \in (B \cap C) \qquad / \cup \hat{\mathbf{z}} \hat{\mathbf{y}}$

 $\Leftrightarrow x \in A \lor (x \in B \land x \in C) \quad / \cap \overrightarrow{\mathbb{E}} \ \lor$

 $\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C)$

/命题逻辑分配律

 $\Leftrightarrow (x \in A \cup B) \land (x \in A \cup C) / \cup \hat{z} \hat{z}$

 $\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

分配律的证明(集合构造符)

- 证明 $A \cup (B \cap C) = \{x | x \in A \lor x \in (B \cap C)\} (\cup 定义)$
 - $=\{x|x\in A\lor(x\in B\land x\in C)\}\ (\cap \overline{\mathbb{Z}})$
 - $=\{x| (x \in A \lor x \in B) \land (x \in A \lor x \in C)\} \text{ (命题逻辑)}$ 分配律)
 - $=\{x|\ (x\subseteq A\cup B)\ \land (x\subseteq A\cup C)\}\ (\cup\ \mathbb{E}\ \mathbb{X})$
 - $=\{x\mid x\in (A\cup B)\cap (A\cup C)\}\ (\cap \overline{\mathbb{Z}})$
 - $=(A \cup B) \cap (A \cup C)$
 - $\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

分配律的证明(A Membership Table)

A	B	C	$B\cap C$	$A \cup (B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap (A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

集合演算法----吸收律的证明

A∪(A∩B)=A (吸收律)

证明: $A \cup (A \cap B)$

 $=(A \cap E) \cup (A \cap B)$ (同一律)

 $=A\cap (E\cup B)$ (分配律)

 $=A\cap E$ (零律)

=*A* (同一律)

 $\therefore A \cup (A \cap B) = A$

集合演算法----吸收律的证明(续)

 $A \cap (A \cup B) = A$

证明: $A \cap (A \cup B)$

 $= (A \cap A) \cup (A \cap B)$ (分配律)

 $= A \cup (A \cap B)$ (等幂律)

=A (吸收律第一式)

 $\therefore A \cap (A \cup B) = A$

证明 $A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$

只需证明
$$A \subseteq B \Rightarrow A \cup B = B \Rightarrow A \cap B = A$$

 $\Rightarrow A - B = \emptyset \Rightarrow A \subseteq B$

证明 (1) 证 $A \subseteq B \Rightarrow A \cup B = B$

显然 $B \subseteq A \cup B$,下面证明 $A \cup B \subseteq B$.

任取x, $x \in A \cup B \Leftrightarrow x \in A \lor x \in B \Rightarrow x \in B \lor x \in B \Leftrightarrow x \in B$

因此有 $A \cup B \subseteq B$. $\therefore A \cup B = B$

(2) $i \mathbb{E} A \cup B = B \Rightarrow A \cap B = A$

 $A=A\cap (A\cup B)$ (吸收律)

 $=A\cap B$ (由已知,将 $A\cup B$ 用B代入)

$A \cap B = A \Rightarrow A - B = \emptyset \Rightarrow A \subseteq B$

 $(3) \times A \cap B = A \Rightarrow A - B = \emptyset$

假设 $A-B\neq\emptyset$,即 $\exists x\in A-B$, $\therefore x\in A$ 且 $x\notin B$.

又 $x \notin B \Rightarrow x \notin A \cap B$. ::与 $A \cap B = A$ 矛盾. 假设不成立.

 $(4) \mathop{\mathbf{ii}} A - B = \varnothing \Rightarrow A \subseteq B$

假设 $A\subseteq B$ 为假,那么

 $\exists x (x \in A \land x \notin B) \Rightarrow x \in A - B \Rightarrow A - B \neq \emptyset$ 与条件 $A - B = \emptyset$ 矛盾.

 $\therefore A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$ 直接证法:

$A-B=\varnothing \Rightarrow A\subseteq B$

若 $A\neq\emptyset$,任取 $x,x\in A$,

 $x \notin A - B$

 $\Rightarrow x \notin A \cap \sim B$

 $\Rightarrow \neg (x \in A \land x \in \sim B)$

 $\Rightarrow \neg (x \in A) \lor \neg (x \in \sim B)$ (与 $x \in A$ 形成析取三段论)

 $\Rightarrow x \notin \sim B \Rightarrow x \in B$, 所以 $A \subseteq B$

注意: $x \notin A \cap \sim B \Leftrightarrow x \notin A \land x \notin \sim B$ 成立吗?

应用 $A \subseteq B \Leftrightarrow A \cup B = B \Leftrightarrow A \cap B = A \Leftrightarrow A - B = \emptyset$ 可证明集合相等

例1试证 $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$

$$ii A \subseteq C \Leftrightarrow A \cup C = C$$

$$B \subseteq C \Leftrightarrow B \cup C = C$$

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup C = C$$

⇒A∪B⊆C 命题得证

例1 求证 $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$

证 假设 $A \cup B \subseteq C$ 不成立,

则 $\exists x, x \in A \cup B \land x \notin C$

 $\Rightarrow (x \in A \lor x \in B) \land x \notin C$

 $\Rightarrow (x \in A \land x \notin C) \lor (x \in B \land x \notin C)$

若 $x \in A$, 则与 $A \subseteq C$ 矛盾;

若 $x \in B$, 则与 $B \subseteq C$ 矛盾.

例2试证 $A \cap C = B \cap C \land A \cup C = B \cup C \Rightarrow A = B$

由已知等式通过运算产生新的等式

$$X=Y \Rightarrow X \cap Z=Y \cap Z, X \cup Z=Y \cup Z, X-Z=Y-Z$$

证由 $A \cap C = B \cap C$ 和 $A \cup C = B \cup C$ 得到

$$(A \cup C) - (A \cap C) = (B \cup C) - (B \cap C)$$

从而有
$$A \oplus C = B \oplus C$$
 $\Rightarrow (A \oplus C) \oplus C = (B \oplus C) \oplus C$

$$\Rightarrow A \oplus (C \oplus C) = B \oplus (C \oplus C)$$

$$\Rightarrow A \oplus \varnothing = B \oplus \varnothing$$

$$\Rightarrow A=B$$

例3 求证 $A-B \subseteq A \cup B$

$$i$$
I $A-B \subseteq A$

$$A \subseteq A \cup B$$

所以
$$A-B \subseteq A \cup B$$

证明补交转换律

 $A-B=A\cap \sim B$

【分析:逻辑演算法.】

证明: $\forall x$,

 $x \in A - B$

 $\Leftrightarrow x \in A \land x \notin B$

 $\Leftrightarrow x \in A \land x \in \neg B$

 $\Leftrightarrow x \in A \cap \sim B$

 $\therefore A-B=A\cap \sim B$.

证明德•摩根律的相对形式

- $A-(B\cup C)=(A-B)\cap (A-C)$
- $A-(B\cap C)=(A-B)\cup (A-C)$

证明:【分析:集合演算法】

A-($B \cup C$)

- $=A\cap\sim(B\cup C)$ (补交转换律)
- $=A\cap(\sim B\cap\sim C)$ (德摩根律)
- $=(A\cap A)\cap(\sim B\cap\sim C)$ (等幂律)
- $=(A\cap \sim B)\cap (A\cap \sim C)$ (交换律,结合律)
- $= (A-B)\cap (A-C)$ (补交转换律).

特征函数与集合运算

- $\chi_{A\cap B}(x) = \chi_A(x) \cdot \chi_B(x)$
- $\chi_{A-B}(x) = \chi_{A \cap \sim B}(x) = \chi_A(x) \cdot (1 \chi_B(x))$
- $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_A(x) \cdot \chi_B(x)$
- $\chi_{A\oplus B}(x) = (\chi_A(x) + \chi_B(x)) \mod 2 = \chi_A(x) \oplus \chi_B(x)$

幂集的性质

- $1. A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
- $2. P(A) \cup P(B) \subseteq P(A \cup B)$
- 3. $P(A) \cap P(B) = P(A \cap B)$
- $4. P(A-B) \subseteq (P(A)-P(B)) \cup \{\emptyset\}$

证明 $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$

证明: $(\Rightarrow) \forall X$,

$$X \in P(A)$$

$$\Leftrightarrow X \subseteq A$$

$$\Rightarrow X \subseteq A \land A \subseteq B$$

$$\Rightarrow X \subseteq B$$

$$\Leftrightarrow X \in P(B)$$

$$\therefore P(A) \subseteq P(B)$$

$$(\Leftarrow) \ \forall x,$$

$$x \in A$$

$$\Leftrightarrow \{x\} \in P(A)$$

$$\Rightarrow \{x\} \in P(A) \land P(A) \subseteq P(B)$$

$$\Rightarrow \{x\} \in P(B)$$

$$\Leftrightarrow x \in B$$

$$\therefore A \subseteq B$$
.

证明 $P(A) \cup P(B) \subseteq P(A \cup B)$

证明: ∀X,

 $X \in P(A) \cup P(B)$

 $\Leftrightarrow X \in P(A) \lor X \in P(B)$

 $\Leftrightarrow X \subseteq A \vee X \subseteq B$

 \Rightarrow X \subseteq A \cup B

 \Leftrightarrow X \in P(A \cup B)

 $\therefore P(A) \cup P(B) \subseteq P(A \cup B)$

$P(A) \cup P(B) \subseteq P(A \cup B)$ 的讨论

给出反例,说明等号不成立:

$$A=\{1\}, B=\{2\}, A \cup B=\{1,2\},$$
 $P(A)=\{\emptyset,\{1\}\}, P(B)=\{\emptyset,\{2\}\},$ $P(A \cup B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$ $P(A) \cup P(B) \subseteq \{\emptyset,\{1\},\{2\}\}$ 此时, $P(A) \cup P(B) \subset P(A \cup B)$.

证明 $P(A) \cap P(B) = P(A \cap B)$

证明: ∀X,

 $X \subseteq P(A) \cap P(B)$

 $\Leftrightarrow X \subseteq P(A) \land X \subseteq P(B)$

 $\Leftrightarrow X \subseteq A \land X \subseteq B$

 $\Leftrightarrow X \subseteq A \cap B$

 $\Leftrightarrow X \subseteq P(A \cap B)$

 \therefore P(A) \cap P(B) = P(A \cap B). #

证明 $P(A-B) \subseteq (P(A)-P(B)) \cup \{\emptyset\}$

证明: $\forall X, X \in P(A-B)$, 分两种情况,

- (1) $X=\emptyset$ 时,显然X∈(P(A)-P(B)) \cup {∅}
- (2) $X \neq \emptyset$ 时, $X \in P(A-B) \Leftrightarrow X \subseteq A-B \Rightarrow X \subseteq A \land \neg X \subseteq B$ $\Leftrightarrow X \in P(A) \land X \notin P(B)$

 $\Leftrightarrow X \in P(A)-P(B)$

 $\therefore P(A-B) \subseteq (P(A)-P(B)) \cup \{\emptyset\}.$

集合运算的优先级

- 分三级: 第一级最高, 依次降低
- 第一级: 补~, 幂P()
- 第二级: 广义并∪, 广义交∩
- 第三级: 并 ∪ , 交 ∩ , 相对补-, 对称差⊕
- 同一级: 用括号表示先后顺序

作业(7)

■ 后面的部分请自学

P20: 11,12,14,26,28

- 1. 证明 \diamondsuit A和B是全集E的子集,证明A \subseteq B当切仅当 \sim B $\subseteq\sim$ A.
- 2. 利用如下两种方式证明德摩根律: 如果A和B是两个集合,那么 \sim (A \cup B)= \sim A \cap \sim B
- a) 证明两边互为子集; b) 使用成员表

※对称差的性质

- 1. 交換律: A⊕B=B⊕A
- 2. 结合律: A⊕(B⊕C)=(A⊕B)⊕C
- 3. 分配律: A∩(B⊕C)=(A∩B)⊕(A∩C)
- $\bullet 4. A \oplus \emptyset = A, A \oplus E = \sim A$
- 5. $A \oplus A = \emptyset$, $A \oplus \sim A = E$
- 1、4和5由定义可直接证得。

※对称差的性质(证明2)

- 结合律: A⊕(B⊕C)=(A⊕B)⊕C
- 证明思路:

分解成"基本单位", 例如:

- 1. $A \cap \sim B \cap \sim C$
- 2. A \cap B \cap ~C
- 3. A \cap B \cap C
- 4. $\sim A \cap \sim B \cap \sim C$

 $A \oplus B \oplus C$

※对称差的性质(证明2、续1)

• 结合律: A⊕(B⊕C)=(A⊕B)⊕C

证明首先,

 $A \oplus B = (A-B) \cup (B-A) (\oplus 定义)$

= (A∩~B) ∪ (B∩~A) (补交转换律)

= (A∩~B) ∪ (~A∩B) (∩交换律) (*)

 $A \oplus B$

※对称差的性质(证明2、续2)

其次, A⊕(B⊕C)

- $= (A \cap \sim (B \oplus C)) \cup (\sim A \cap (B \oplus C)) \ (*)$
- $= (A \cap \sim ((B \cap \sim C) \cup (\sim B \cap C))) \cup (\sim A \cap ((B \cap \sim C) \cup (\sim B \cap C))) (*)$
- = (A∩(~(B∩~C)∩~(~B∩C))) ∪ (~A∩((B∩~C)∪(~B∩C))) (德•摩根律)
- = (A∩(~B∪C)∩(B∪~C))) ∪ (~A∩((B∩~C)∪(~B∩C))) (德•摩根律)
- = (A∩B∩C) ∪ (A∩~B∩~C) ∪ (~A∩B∩~C) ∪ (~A∩~B∩C) (分配律...)

※对称差的性质(证明2、续3)

同理,(A⊕B)⊕C

- $= (A \oplus B) \cap \sim C) \cup (\sim (A \oplus B) \cap C) (*)$
- $= (((A \cap \sim B) \cup (\sim A \cap B)) \cap \sim C) \cup$
 - $(\sim((A\cap\sim B)\cup(\sim A\cap B))\cap C)\ (*)$
- = (((A∩~B)∪(~A∩B))∩~C)∪ ((~(A∩~B)∩~(~A∩B))∩C) (德•摩根律)
- = (((A∩~B)∪(~A∩B))∩~C)∪ ((~A∪B)∩(A∪~B))∩C) (德•摩根律)
- $= (A \cap \sim B \cap \sim C) \cup (\sim A \cap B \cap \sim C) \cup$
- (~A∩~B∩C) ∪ (A∩B∩C) (分配律...)
- $\therefore A \oplus (B \oplus C) = (A \oplus B) \oplus C.$

※对称差的性质(讨论)

- 有些作者用△表示对称差: A⊕B=A△B
- 消去律: $A \oplus B = A \oplus C \Leftrightarrow B = C$ (习题一,23) $A = B \oplus C \Leftrightarrow B = A \oplus C \Leftrightarrow C = A \oplus B$
- 对称差与补: ~(A⊕B) = ~A⊕B = A⊕~B
 A⊕B = ~A⊕~B
- 问题: A⊕B⊕C=~A⊕~B⊕~C?

※对称差的性质(讨论、续)

■ 如何把对称差推广到*n*个集合:

$$A_1 \oplus A_2 \oplus A_3 \oplus \dots \oplus A_n = ?$$

- $\Box \forall x, x \in A_1 \oplus A_2 \oplus A_3 \oplus ... \oplus A_n$ $\Leftrightarrow x$ 恰好属于 $A_1, A_2, A_3, ..., A_n$ 中的奇数个
- 特征函数表达: $\chi_{A1\oplus A2\oplus \ldots \oplus An}(x)$

$$= \chi_{A1}(x) + \chi_{A2}(x) + ... + \chi_{An}(x) \pmod{2}$$

$$=\chi_{A1}(x)\oplus\chi_{A2}(x)\oplus\ldots\oplus\chi_{An}(x)$$

((mod 2),⊕,都表示模2加法,即相加除以2取余数)

※对称差的性质(讨论、续)

□ 问题: A⊕B⊕C = ~A⊕~B⊕~C?

答案: $A \oplus B \oplus C = \sim (\sim A \oplus \sim B \oplus \sim C)$

$$= \sim (A \oplus B \oplus \sim C) = A \oplus \sim B \oplus \sim C$$

 $(反复利用~(A\oplus B) = ~A\oplus B = A\oplus ~B和 A\oplus B = ~A\oplus ~B)$

- $A \oplus B \oplus C \oplus D = \sim A \oplus \sim B \oplus \sim C \oplus \sim D$
 - $= A \oplus \sim B \oplus C \oplus \sim D = \sim (\sim A \oplus \sim B \oplus C \oplus \sim D)$
 - =...
- $A = \sim (\sim A)$

※对称差的性质(证明3)

分配律: A∩(B⊕C)=(A∩B)⊕(A∩C)

证明

 $A\cap (B\oplus C)$

- $= A \cap ((B \cap \sim C) \cup (\sim B \cap C))$
- $= (A \cap B \cap \sim C) \cup (A \cap \sim B \cap C)$

$(A \cap B) \oplus (A \cap C)$

- $= ((A \cap B) \cap \sim (A \cap C)) \cup (\sim (A \cap B) \cap (A \cap C))$
- $=((A\cap B)\cap (\sim A\cup \sim C))\cup ((\sim A\cup \sim B)\cap (A\cap C))$
- $=(A\cap B\cap \sim C)\cup (A\cap \sim B\cap C)$
- \therefore A\(\text{(}B\(\phi\)C\))=(A\(\text{B}\)\(\phi\)(A\(\text{C}\)). #

 $A \cap (B \oplus C)$

※对称差分配律(讨论)

- $\bullet A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C) \vee$
- \bullet $A \cup (B \oplus C) = (A \cup B) \oplus (A \cup C)$?
- $\bullet A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C) ?$
- $\bullet A \oplus (B \cup C) = (A \oplus B) \cup (A \oplus C) ?$

※集族的性质

设A,B为集族,则

- $2. \mathcal{A} \subseteq \mathcal{B} \Rightarrow \mathcal{A} \subseteq \cup \mathcal{B}$
- 3. $\mathcal{A} \neq \emptyset \land \mathcal{A} \subseteq \mathcal{B} \Rightarrow \cap \mathcal{B} \subseteq \cap \mathcal{A}$
- 4. $\mathcal{A} \in \mathcal{B} \Rightarrow \cap \mathcal{B} \subseteq \mathcal{A}$
- 5. $A \neq \emptyset$ $\Rightarrow \cap A \subseteq \cup A$

※集族性质的证明(I)

 $\mathcal{A} \subseteq \mathcal{B} \Rightarrow \cup \mathcal{A} \subseteq \cup \mathcal{B}$

证明: $\forall x$,

 $x \in \bigcup A$

 $\Leftrightarrow \exists A(A \in \mathcal{A} \land x \in A) (\cup \mathcal{A}$ 定义)

 $\Rightarrow \exists A(A \in \mathcal{B} \land x \in A) (A \subseteq \mathcal{B})$

 $\Leftrightarrow x \in \cup \mathcal{B}(\cup \mathcal{B}$ 定义)

 $\therefore \cup \mathcal{A} \subseteq \cup \mathcal{B}$ #

※集族性质的证明(II)

证明: $\forall x$,

$$x \in \cap \mathcal{B} \Leftrightarrow \forall y (y \in \mathcal{B} \to x \in y)$$

$$\Rightarrow \mathcal{A} \in \mathcal{B} \to \mathcal{X} \in \mathcal{A} \qquad (UI)$$

$$\Rightarrow x \in \mathcal{A} (\mathcal{A} \in \mathcal{B})$$

$$\therefore \cap \mathcal{B} \subseteq \mathcal{A}$$
. #

解释UI规则:因为对于任意的y,如果 $y \in B$,那么 $x \in y$,同时 $A \neq B$ 中的一个元素,因此 $x \in A$

UI规则即全称量词消去规则

※集族性质的证明(III)

说明: Æ≠∅的条件不可去掉!

证明(方法1): $A \neq \emptyset \Rightarrow \exists y(y \in A)$, 设 $A \in A$

 $\forall x, x \in \cap \mathcal{A} \Leftrightarrow \forall y (y \in \mathcal{A} \to x \in y)$

 $\Rightarrow A \in \mathcal{A} \rightarrow x \in A \Rightarrow x \in A \ (A \in \mathcal{A})$

 $\Rightarrow A \in A \land x \in A \Rightarrow \exists y (y \in A \land x \in y)$

 $\Leftrightarrow x \in \cup A$

 $\therefore \cap A \subseteq \cup A.\#$

※集族性质的证明(IV)

说明: ÆØ的条件不可去掉!

证明(方法2): $\mathcal{A}\neq\emptyset$ $\Rightarrow \exists y(y\in\mathcal{A}), \mathcal{U}_A\subseteq\mathcal{A}$

那么 $\cap A \subseteq A$,而且 $A \subseteq \cup A$

所以 $\cap A \subseteq \cup A.\#$