AMENDMENTS TO THE CLAIMS:

- 1. (**Currently Amended**) A biosensor for determining the concentration of an analyte in a liquid sample, said biosensor comprising:
 - (a) an electrode support;
- (b) an arrangement of electrodes disposed on the electrode support, the arrangement of electrodes comprising at least a working electrode comprising conductive ink, wherein the conductive ink comprises at least one enzyme, at least one mediator, and a polymer that provides hydrophilic domains in the conductive ink,
- (c) a first conductive track leading from the working electrode to an electrical contact associated with the working electrode; and
- (d) a second conductive track leading from the <u>a</u> second electrode to an electrical contact associated with the <u>at least</u> second electrode.

2. (Canceled)

3. (**Previously Presented**) The biosensor of claim 1, wherein the at least one mediator is selected from the group consisting of organometallic compounds, organic compounds, and coordination compounds with inorganic or organic ligands.

4.-5. (**Canceled**)

- 6. (**Original**) The biosensor of claim 1, the biosensor requiring a low volume of sample to trigger an electrochemical reaction.
- 7. (**Previously Presented**) The biosensor of claim 1, wherein spacing between the working electrode and the second electrode does not exceed about 200 micrometers.

8. (**Original**) The biosensor of claim 1, wherein the working electrode has an area of from about 0.5 mm² to about 5 mm².

- 9. (**Original**) The biosensor of claim 1, wherein the electrode arrangement further comprises a trigger electrode.
- 10. (**Original**) The biosensor of claim 1, wherein the electrode arrangement further comprises a third electrode.
- 11. (**Previously Presented**) The biosensor of claim 10, wherein the electrode arrangement further comprises a fourth electrode, the fourth electrode having the function of a trigger electrode.
- 12. (**Previously Presented**) The biosensor of claim 1, further comprising an insulating layer overlying the electrode arrangement and said conductive tracks.
- 13. (**Original**) The biosensor of claim 12, wherein a layer of mesh is interposed between the electrode arrangement and the insulating layer.
- 14. (**Previously Presented**) The biosensor of claim 12, wherein a capillary space is interposed between the electrode arrangement and the insulating layer.
- 15. (**Previously Presented**) The biosensor of claim 1, further comprising a layer of tape overlying the electrode arrangement and the conductive tracks.
- 16. (**Currently Amended**) A biosensor for determining the concentration of an analyte in a liquid sample, the biosensor comprising:
 - (a) a first substrate having two major surfaces;

(b) a second substrate having two major surfaces;

(c) a working electrode disposed on one major surface of the first substrate, the working electrode comprising a conductive ink, wherein the conductive ink comprises at least one enzyme, at least one mediator, and a polymer that provides hydrophilic domains in the conductive ink:

- (d) a second electrode disposed on one major surface of the second substrate;
- (e) a first conductive track leading from the working electrode to an electrical contact associated with the working electrode;
- (f) a second conductive track leading from the second electrode to an electrical contact associated with the second electrode; and
- (g) an insulating layer disposed between the working electrode and the second electrode; wherein the major surface bearing the working electrode faces the major surface bearing the second electrode.

17. (Canceled)

18. (**Previously presented**) The biosensor of claim 16, wherein the at least one mediator is selected from the group consisting of organometallic compounds, organic compounds, and coordination compounds with inorganic or organic ligands.

19-20. (Canceled)

- 21. (**Original**) The biosensor of claim 16, the biosensor requiring a low volume of sample to trigger an electrochemical reaction.
- 22. (**Original**) The biosensor of claim 16, wherein spacing between the working electrode and the at least one other electrode does not exceed about 200 micrometers.
- 23. (**Original**) The biosensor of claim 16, wherein the working electrode has an area of from about 0.5 mm² to about 5 mm².

24. (**Previously presented**) The biosensor of claim 16, wherein the biosensor further

comprises a trigger electrode.

25. (**Previously presented**) The biosensor of claim 16, wherein the biosensor further

comprises a third electrode.

26. (**Previously presented**) The biosensor of claim 25, wherein the biosensor further

comprises a fourth electrode, the fourth electrode having the function of a trigger electrode.

27. (**Original**) The biosensor of claim 16, wherein a layer of mesh is interposed between

the working electrode and the insulating layer.

28. (**Previously Presented**) The biosensor of claim 16, wherein a capillary space is

interposed between the working electrode and the insulating layer.

29. (**Previously Presented**) The biosensor of claim 1, wherein the enzyme is a

dehydrogenase.

30. (**Previously Presented**) The biosensor of claim 16, wherein the enzyme is a

dehydrogenase.

31. (Currently Amended) A biosensor for determining the concentration of an analyte in

a liquid sample, said biosensor comprising:

an electrode support;

a first electrically conductive track disposed on the electrode support, the track including

a working electrode portion, a contact portion exposed for contact with a meter, and a

conductive track portion electrically coupled between the working electrode portion and the

contact portion, wherein the working electrode portion contains intermixed conductive ink,

5

wherein the conductive ink comprises an enzyme, mediator and a polymer that provides hydrophilic domains in the conductive ink; and

a second electrically conductive track spaced from the first electrically conductive track and including a second contact portion exposed for contact with a meter.

- 32. (**Previously presented**) The biosensor of claim 31, wherein the polymer that provides hydrophilic domains in the conductive ink is polyethylene glycol.
- 33. (**Previously presented**) The biosensor of claim 1, wherein the polymer that provides hydrophilic domains in the conductive ink is polyethylene glycol.
- 34. (**Previously presented**) The biosensor of claim 16, wherein the polymer that provides hydrophilic domains in the conductive ink is polyethylene glycol.