

FIG. 1. Phase diagram of spin-glass ferromagnet.

Figure 1: Phase portrait of SK model in the RS approximation.

Figure 2: The solution q and m of the RS equations as a function of J_0/J and 1/J ($\beta = 1$). dx = 0.05.

Phase portrait of the SK model

The phase portrait of the SK model in the replica symmetric approximation is given in fig. 1 [Sherrington and Kirkpatrick, 1975].

1. In this exercise you will reproduce this phase plot, as follows. Without loss of generality we can assume $\beta = 1$. Make a 2d grid equally spaced grid (x, y) with $x = dx, 2dx, \ldots, 2$ with some suitable dx and the same for y. For each x, y define J = 1/y, $J_0 = x/y$. Subsequently solve the RS mean field equations

$$q = 1 - \frac{1}{\sqrt{2\pi}} \int dz e^{-z^2/2} \operatorname{sech}^2 (\beta J \sqrt{q}z + \beta J_0 m)$$

$$m = \frac{1}{\sqrt{2\pi}} \int dz e^{-z^2/2} \tanh (\beta J \sqrt{q}z + \beta J_0 m)$$

using fixed point iteration. ¹ Store the results in matrices q(x, y) and m(x, y) and display as a function of x, y. The solutions $q(J_0/J, 1/J)$ and $m(J_0/J, 1/J)$ should look like fig. 2, with the paramagnetic phase m = q = 0, the ferro magnetic phase m > 0, q > 0 and the spin glass phase m = 0, q > 0.

2. Compute the entropy of the solution in the different phases.

¹There exist standard numerical routines to compute the definite integral using Gaussian quadrature (in Matlab the routine integral(fun,a,b) integrates the function fun between a and b).

Figure 3: The entropy H of the system in the RS approximation as a function of J_0/J and 1/J (left) and the thresholded value (H > 0) (right) showing the AT line $(\beta = 1)$.

(a) Use the result of MacKay exercise 31.1 to derive an expression for the entropy and the average energy from the replica symmetric free energy. The result is

$$\begin{split} H &= -\frac{\beta^2}{4}J^2(q-1)^2 + \frac{1}{\sqrt{2\pi}}\int dz e^{-z^2/2}\log[2\cosh{(\beta J_0 m + \beta J\sqrt{q}z)}] \\ &-\beta J_0 m^2 - \beta^2 J^2 q(1-q) \\ \langle E \rangle &= -\frac{1}{2}J_0 m^2 - \frac{1}{2}\beta J^2 (1-q^2) \end{split}$$

(b) Compute the entropy in the phase plot similar to fig. 3. Hint: I encountered problems evaluating numerically the integral $\frac{1}{\sqrt{2\pi}}\int dz e^{-z^2/2}\log[2\cosh\left(\beta J_0m+\beta J\sqrt{q}z\right)]$. I resolved it by writing $\log 2\cosh(f(z))=|f(z)|+\log(1+e^{-2|f(z)|})$ with $f(z)=.\beta J_0m+\beta J\sqrt{q}z$. This removes the numerical overflow of $e^{|f(z)|}$ for large z and the underflow $e^{-|f(z)|}$ is harmless since it evaluates to zero.

References

[Sherrington and Kirkpatrick, 1975] Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of Spin-Glass. *Physical review letters*, 35:1792–1796.