MM algorithm for Quantile regression for censored data with missing observations

Samidha Shetty

Pennsylvania State University

December 2018

Quantile regression

A linear quantile regression model is given as below:

$$Y_i = Z_i^T \theta_q + r_i, \quad i = 1, \dots, n$$

such that $P(r_i < 0|Z_i) = q$ or $E\{q - I(r_i < 0)|Z_i\} = 0$

Here Y_i : response, Z_i : vector of covariates, θ_a : unknown coefficient vector (which depends on a), r_i : error term

What are the advantages of quantile regression over mean regression?

Koenker and Bassett(1978) defined $\hat{\theta}$ as the minimizer of

$$L(\theta) = \sum_{i=1}^{n} \rho_q[y_i - z_i^T \theta] = \sum_{i=1}^{n} \rho_q(r_i(\theta))$$

where $\rho_{q}(r) = |r|[q - I(r < 0)].$

But this is not easily optimized as $\rho_q(r)$ is non-differentiable at r=0.

MM algorithm

Hunter and Lange (2000) introduced an MM algorithm to optimize $L(\theta)$.

First, $L(\theta)$ is approximated by $L_{\varepsilon}(\theta) = \sum_{i=1}^{n} \rho_{\sigma}^{\varepsilon}(r_{i})$, where,

$$ho_q^{arepsilon}(r) =
ho_q(r) - rac{arepsilon}{2} ln(arepsilon + |r|)$$

Second, the approximated function is minimized using an MM algorithm. At k^{th} iteration $\rho_{\sigma}^{\varepsilon}(r)$ is majorized by

$$\zeta_q^{\varepsilon}(r|r^k) = \frac{1}{4} \left[\frac{(r)^2}{\varepsilon + |r^k|} + (4q - 2)r + c \right]$$

where is c is such that $\zeta_a^{\varepsilon}(r^k|r^k) = \rho_a^{\varepsilon}(r^k)$.

MM algorithm

Thus the majorizer for $L_{\varepsilon}(\theta)$ is given as

$$Q_{\varepsilon}(\theta|\theta^k) = \sum_{i=1}^n \zeta_q^{\varepsilon}(r_i|r_i^k)$$

In the linear case, one can solve explicitly for θ^{k+1} , but otherwise, just reducing the value of $Q_{\varepsilon}(\theta|\theta^k)$ at each iteration suffices.

MM algorithm for Quantile regression

- Initialize θ^0 and small constant ε such that $\varepsilon n |\ln \varepsilon| = \tau$. Set k = 0.
- At every k^{th} iteration $\theta^{k+1} = \theta^k + \alpha^k \phi_{\varepsilon}^k$ where α^k is step size and ϕ_{ε}^k is step direction.
- Replace k = k + 1. Until $\frac{Q_{\varepsilon}(\theta^{k+1}|\theta^k) Q_{\varepsilon}(\theta^k|\theta^k)}{Q_{\varepsilon}(\theta^k|\theta^k)} < \tau$.

Censored data

Censoring, roughly speaking, is when the value of a observation is only partially known. Right censoring: We don't have the actual value of the observation, but instead know that it is above a certain value i.e. we observe $Y_i = min(T_i, c_i)$ and $\Delta_i : I(T_i < c_i)$ is an indicator of censoring.

Xie et al. (2015) used an inverse probability weighted estimating function of the form

$$\sum_{i=1}^{n} \frac{\Delta_{i}}{G(y_{i}|Z_{i})} \rho_{q}[y_{i} - z_{i}^{T}\theta]$$

where $G(Y_i|Z_i)$ is the survival function which is estimated using the Kaplan-Meier estimator. When c_i is independent of covariates,

$$\widehat{G}(t|Z_i) = \widehat{G}(t) = \prod_{s < t} \left\{ 1 - \frac{\text{\#of deaths before time s}}{\text{\#of surviving people at time s}} \right\}$$

Missing values

To deal with missing values in quantile estimation (Chen et al. (2014) devised an inverse probability weighting method that estimates the probability weights non-parametrically.

The objective function is modified as follows:

$$\sum_{i=1}^{n} \frac{\delta_i}{\widehat{p}(X_i)} \rho_q[y_i - z_i^T \theta]$$

where X_i is the matrix of response and subset of covariates which have complete data. δ_i is indicator of completeness of data for i^{th} observation.

 $\widehat{p}(X_i) = \frac{\sum_{i=1}^n K_h(X_i - X_i)\delta_i}{\sum_{i=1}^n K_h(X_i - X_i)}$ where $K_h(u) = K(u/h)/h^d$. Here d is the dimension of X_i and $K(\cdot)$ is a d-variate probability density function.

I have combined these two methods, and get the following objective function:

$$\sum_{i=1}^{n} \frac{\Delta_{i}}{\widehat{G}(y_{i}|Z_{i})} \frac{\delta_{i}}{\widehat{\rho}(X_{i})} \rho_{q}[y_{i} - z_{i}^{T}\theta]$$

Simulation Study

Model: $Y_i = 4.5Z_{1i} - 2Z_{2i} + r_i$

where $Z_{1i} \sim Normal(0,1)$, $Z_{2i} \sim Uniform(-3,3)$ and $r_i \sim Normal(0,1)$. I have used quantiles of Y to censor the data to attain the particular amount of censoring. Only covariate Z_2 has missing values.

For θ_1 :

C %	M %	q = 0.25		q = 0.5		q = 0.75	
		Bias	MSE	Bias	MSE	Bias	MSE
25%	30%	-0.2486	0.0719	-0.2474	0.0693	-1.0631	1.1749
50%	30%	-0.2172	0.0586	-2.2552	5.1272	-2.2495	5.1068
25%	50%	-0.2387	0.0703	-0.6786	0.5033	-1.0252	1.1038

For θ_2 :

C %	M %	q = 0.25		q = 0.5		q = 0.75	
		Bias	MSE	Bias	MSE	Bias	MSE
25%	30%	0.1140	0.0155	0.1136	0.0153	0.4406	0.2009
50%	30%	0.1167	0.0163	0.9935	0.9949	0.9829	0.9738
25%	50%	0.1058	0.0145	0.2982	0.0973	0.4386	0.2009

Boxplot for θ_1 estimates

Situation 1:25% right censoring and 30% missing observations Situation 2:50% right censoring and 30% missing observations Situation 3: 25% right censoring and 50% missing observations

FIGURE – Box plot for θ_1 estimates

Observations and future work

Observations and challenges

- The method estimates better for smaller quantiles.
- Increase in censoring affects the estimates drastically.
- The estimates for θ_1 are slightly worse than those for θ_2 .
- There seems to be a bias present in the estimation.
- Computation time: For n=500 it took 23.6 sec, n=1000 it took 130 sec and n=2000 it took 835 sec.

Future work

- Derive theoretical results for the combination of the two methods.
- Considering case where censoring is covariate dependent.
- Extending the methods to partially linear quantile regression.