Chapitre 1

La boîte à outils du microéconomiste. Part 2

Mariona Segú

L1 Design, CY Cergy Paris Université

2025-2026 Matériel crée par Cécile Boyer et Pauline Morault

Introduction

- Jusqu'ici, nous avons étudié les trois principes fondamentaux de la microéconomie :
 - l'optimisation,
 - le coût d'opportunité,
 - le raisonnement à la marge.
- Nous allons maintenant voir la dernière partie :
 - comment le microéconomiste raisonne scientifiquement, en confrontant les modèles théoriques aux données,
 - les méthodes empiriques permettant de distinguer la causalité de la simple corrélation,
 - des exemples illustrant la diversité des sujets traités par les microéconomistes.

Plan

- 1. Méthode scientifique
- 2. Corrélation et causalité
- 3. Moindres Carrés Ordinaires (MCO)
- 4. Établir la causalité
- 5. Diversité des sujets traités

M.Segú Chapitre 1

Méthode

Méthode 0000000000

Selon l'hypothèse formulée sur le coût d'opportunité du temps, notre modèle prédit un choix optimal différent. Notre modèle suggère que :

 Les personnes ayant une valeur du temps plus élevée devraient habiter **plus près** de leur lieu de travail.

Avec les données appropriées, nous pouvons tester cette prédiction empirique.

Cet aller-retour entre modèles théoriques et méthodes empiriques est au coeur de l'approche scientifique du microéconomiste.

Deux étapes fondamentales

Méthode 0000000000

- La méthode scientifique retenue en microéconomie repose sur deux étapes principales :
 - 1. Développer des modèles qui permettent de représenter simplement le monde.
 - 2. Évaluer ces modèles et leurs prédictions en les testant à l'aide de données
- Lorsqu'un modèle est incompatible avec les données, les microéconomistes cherchent à l'ajuster ou à le remplacer.
- L'objectif n'est pas de créer un modèle parfait, mais des modèles utiles pour comprendre la société.

Exemple: les rendements de l'éducation

Le Ministère de l'Éducation souhaite comprendre les choix d'études des individus.

Vous construisez un modèle fondé sur des hypothèses concernant :

- les **coûts** d'une année d'études supplémentaire (droits de scolarité, coût d'opportunité du temps, etc.)
- les bénéfices attendus (salaire futur, prestige social, etc.)

Méthode 00000000000

Exemple : les rendements de l'éducation

En appliquant les principes d'optimisation, de coût d'opportunité et de raisonnement à la marge, on peut prédire :

- Les individus font une année d'étude supplémentaire tant que le bénéfice marginal dépasse le coût économique marginal.
- Le niveau d'étude optimal est atteint lorsque **bénéfice marginal** = coût marginal.

Méthode

Exemple : les rendements de l'éducation (formule)

Vous supposez qu'une année d'études supplémentaire augmente le salaire horaire de 10% :

$$S' = S + 10\% \times S = S \times (1 + 0.10) = S \times 1.1$$

Prédictions du modèle :

- Si un individu gagne 15€/h après 13 années d'études, il gagnerait
 16,5€/h après une année de plus.
- Deux années supplémentaires : $S'' = S \times 1.1^2 = S \times 1.21 = S + 21\% \times S$

• Un diplômé du bac gagne en moyenne **33% de plus** qu'un titulaire du brevet (3 ans d'étude en plus) : $1.1^3 = 1.33$

Exemple : les rendements de l'éducation (limites du modèle)

- Les microéconomistes savent qu'un modèle est une approximation de la réalité.
 - Un modèle est partiellement correct : il simplifie la complexité du monde réel.
 - Par exemple, la **L3** (licence 3) contribue davantage au salaire que la L2, car elle valide le diplôme.
 - Le type de diplôme obtenu (économie vs histoire) influence aussi le salaire.
- La relation entre niveau d'éducation et salaire prédite par le modèle est donc une simplification.
- Mais ce modèle reste utile car il produit des prédictions testables avec des données (salaires annuels et niveau d'éducation en France en 2020).

A.Segú Chapitre 1 9 / 49

Méthode 00000000000

Exemple : les rendements de l'éducation

Caractéristiques	Revenu salarial annuel moyen	Salaire annuel moyen en équivalent temps plein
	(en euros)	
Sexe		
Femmes	19 070	27 420
Hommes	24 040	32 430
Âge		
Moins de 25 ans	8 110	19 110
25-39 ans	19 670	26 910
40-49 ans	25 520	32 050
50-54 ans	26 780	33 150
55 ans ou plus	25 830	35 610
Niveau de diplôme		
Sans diplôme	14 800	22 340
CAP, BEP ou moins	17 570	24 410
Baccalauréat	20 360	26 500
Bac+2	26 120	31 880
Bac+3 ou plus	37 080	43 870

Exemple : les rendements de l'éducation

M.Segú Chapitre 1 11 / 49

Exemple : les rendements de l'éducation

Salaire annuel moyen à temps plein :

- $\bullet \ \, {\rm Niveau \; Bac} : S = 26\,500$
- Niveau Bac+2 : $S' = 31\,880$

Calcul du taux d'augmentation :

$$S' = S + X\% \times S \quad \Rightarrow \quad \frac{S' - S}{S} = X\%$$

$$\frac{31\,880 - 26\,500}{26\,500} = \frac{5\,380}{26\,500} \approx \mathbf{20\%}$$

Ce résultat est **très proche de la prédiction théorique** du modèle. Mais attention :

- Il s'agit d'un test sur un seul palier (Bac \rightarrow Bac+2).
- Le tableau observé montre une corrélation, pas une relation causale.

A.Segú Chapitre 1 12 / 4

Méthode 0000000000

Wooclap Question #2

<ロト <部ト < 注 ト < 注 ト

A.Segú Chapitre 1 12 / 49

Corrélation n'implique pas causalité

- Précédemment, on a vu qu'un passage du niveau Bac au niveau Bac+2 était associé à une augmentation de 20% du salaire annuel.
- Peut-on en conclure que poursuivre ses études deux années supplémentaires entraînera automatiquement une hausse de 20% de votre futur salaire?
 - Pas nécessairement!
- Illustrons cette distinction avec un exemple simple.

Exemple: campagnes publicitaires

Le PDG d'Adidos vous embauche comme consultant pour comprendre comment les campagnes publicitaires influencent les achats. Vous formulez une hypothèse :

• Les campagnes à dominante **rouge** sont plus efficaces.

Vous testez cette hypothèse avec des données :

- Ventes : +25% pendant les campagnes rouges
- Ventes : +5% pendant les campagnes bleues

Vous concluez que votre modèle est validé... mais le PDG, très insatisfait, vous licencie. **Pourquoi?**

M.Segú Chapitre 1 14 / 49

Exemple: campagnes publicitaires (suite)

Les campagnes rouges sont en réalité principalement diffusées durant la période de Noël. Les campagnes bleues sont réparties sur le reste de l'année.

Problème:

- Noël entraîne à la fois une hausse des ventes.
- et une augmentation de l'usage du rouge dans les publicités.

Erreur: vous avez attribué à la couleur rouge une causalité qui provenait en réalité d'un facteur tiers (Noël).

Conclusion: vous avez confondu corrélation et causalité.

Corrélation et causalité : définitions

Causalité

Une variable a un **effet direct** sur une autre. Exemple :

- Allumer une plaque électrique fait bouillir l'eau.
- En microéconomie, les liens causaux sont souvent plus complexes à établir.

Corrélation

Deux variables ont tendance à évoluer ensemble, sans que l'une cause nécessairement l'autre.

- Corrélation positive : les deux variables augmentent ensemble.
- Corrélation négative : l'une augmente pendant que l'autre diminue.
- Corrélation nulle : aucun lien observable.

La corrélation n'implique pas la causalité.

- Une corrélation signifie que deux variables évoluent ensemble.
- Une causalité signifie que l'une influence directement l'autre.
- Ce n'est pas parce que deux variables sont corrélées que l'une cause l'autre.

Deux sources fréquentes de confusion :

- 1. Les variables omises (ou facteurs confondants)
- 2. La causalité inverse (inversion du lien de cause à effet)

Source : Citéco - Chocolat, corrélation et causalité

- Une variable omise est un facteur non pris en compte dans l'analyse, mais qui influence les deux variables étudiées.
 - Cela peut créer une fausse impression de lien causal.
- Dans notre exemple sur les campagnes publicitaire, la période de Noël est une variable omise.
- Existe-t-il aussi une variable omise qui explique pourquoi le niveau d'éducation et le salaire sont positivement corrélés ?

La causalité inverse : c'est le fait de confondre la cause et l'effet.

Exemple : santé et richesse

- Les personnes en meilleure santé sont souvent plus riches.
- Mais dans quel sens va la causalité ?

Deux interprétations possibles :

- La richesse permet un meilleur accès aux soins, une alimentation de qualité, etc.
- La bonne santé permet de travailler plus, donc de gagner davantage.

M.Segú Chapitre 1 19 / 49

Pour déterminer s'il existe une relation causale entre deux variables, il faut analyser rigoureusement les données.

- Cela implique de formuler des hypothèses claires.
- Il faut aussi utiliser des outils statistiques appropriés.

Nous allons maintenant introduire la méthode des **moindres carrés ordinaires**.

<ロト <部ト < 注 ト < 注 ト

M.Segú Chapitre 1 20 / 49

Imaginons que nous cherchons à comprendre les facteurs du succès sportif.

MCO

- Objectif : étudier le lien entre les salaires des joueurs et les victoires en championnat.
- Variable dépendante : y = proportion de matchs gagnés (PremierLeague, Angleterre)
- Variable explicative : x =salaire relatif des joueurs
- Données : clubs observés entre 1974 et 1999

Observation empirique:

• Les clubs où les joueurs sont mieux payés remportent plus de matchs en moyenne.

Source: Hall et al. (2002), Journal of Sports Economics

Nous pouvons approximer cette relation entre x et y par une **équation** linéaire :

$$y = \hat{a} + \hat{b}x$$

- \hat{a} : intercept ou **ordonnée à l'origine**
- \hat{b} : pente de la droite, interprétée comme variation de y pour une unité de x
- Cette équation est obtenue par régression linéaire, en appliquant la méthode des moindres carrés

Rappel: équation d'une droite

L'équation d'une droite dans un plan cartésien s'écrit : y=a+bx

- ullet a : ordonnée à l'origine, c'est la valeur de y lorsque x=0
- b : **pente** de la droite

M.Segú Chapitre 1 24 / 49

Comment construire cette droite?

$$y = \hat{a} + \hat{b}x$$

- On parle de régression linéaire pour désigner la méthode pour retrouver ces deux coefficients \hat{a} et \hat{b} .
- La droite correspondante est appelée droite de régression.
- Le mot régression est utilisé pour indiquer que l'on "régresse", puisqu'on part d'une réalité complexe entre deux variables x et y et qu'on obtient une représentation simplifiée où tout est résumé avec ces deux coefficients.

- L'objectif est de minimiser la distance entre les observations et la droite de régression.
- Trouver les coefficients \hat{a} et \hat{b} qui minimisent la somme des "carrés" de ces distances.

Salaires relatifs

 Avec cette méthode nous obtenons les coefficients estimés suivants : y = 0,327 + 0,191x

On obtient la relation estimée suivante entre le taux de victoire et les salaires relatifs :

TauxVictoire =
$$0.327 + 0.191 \times \text{SalairesRelatifs}$$

- Le coefficient 0,327 est le taux de victoire hypothétique d'un club dont les joueurs ne seraient pas rémunérés.
- Le coefficient 0,191 indique qu'un accroissement d'une unité du salaire relatif (ex. de 0,5 à 1,5) est associé à une hausse de 19,1 points de pourcentage du taux de victoire.

Interprétation du coefficient 0,191 :

- Si les joueurs d'un club sont payés 100% de plus que la moyenne (x=2) au lieu d'être payés comme la moyenne (x=1),
- Alors la variation du taux de victoire attendue est :

$$\Delta$$
TauxVictoire = $0.191 \times (2-1) = 0.191 \times 1 = +19.1$ points de pource

Ceci illustre l'interprétation marginale et linéaire d'un coefficient estimé dans une régression simple.

La Moindres Carrés Ordinaires: régression multiple

La méthode se généralise au cas où plusieurs variables explicatives influencent y.

On estime alors un modèle de la forme :

$$y = a + b_1 x_1 + b_2 x_2 + \dots + b_K x_K$$

- x_k est la kème variable explicative
- ullet Il y a K+1 coefficients à estimer : $\hat{a},\hat{b}_1,\ldots,\hat{b}_K$

M.Segú Chapitre 1 30 / 49

La Moindres Carrés Ordinaires: régression multiple

Prix du vin de Bordeaux

On cherche à expliquer les **variations annuelles du prix du vin** de Bordeaux pour un même cru.

- Objectif : identifier les facteurs qui influencent les prix.
- Variables explicatives envisagées :
 - x_1 : ancienneté du vin (+)
 - x_2 : température moyenne d'avril à septembre (+)
 - x_3 : précipitations août-septembre (-)
 - x_4 : précipitations octobre-mars (+)

Prix du vin de Bordeaux

- Données : ventes aux enchères (1990–1991) de caisses de grands crus de Bordeaux produits entre 1952 et 1980.
- Sources climatiques : relevés météorologiques par année de production.
- Modèle estimé :

$$\log(\mathsf{prix}) = a + b_1 \times \widehat{\mathsf{Age}} \ \mathsf{du} \ \mathsf{vin} \\ + \ b_2 \times \mathsf{Temp\'erature} \ (\mathsf{avril}\mathsf{-sept}) \\ + \ b_3 \times \mathsf{Pr\'ecipitations} \ (\mathsf{ao\^{u}t}\mathsf{-sept}) \\ + \ b_4 \times \mathsf{Pr\'ecipitations} \ (\mathsf{oct}\mathsf{-mars})$$

On utilise le logarithme du prix car il permet une interprétation des coefficients en % de variation.

La Moindres Carrés Ordinaires: régression multiple

Prix du vin de Bordeaux

Types de modèles de régression et interprétations :

- Niveau-niveau : $Y = a + b_1 X$ \Rightarrow une unité de X augmente Y de b_1 unités
- Log-log : $\log(Y) = a + b_1 \log(X)$ \Rightarrow une augmentation de X de 1% augmente Y de b_1 %
- Log-niveau : $\log(Y) = a + b_1 X$ \Rightarrow une unité de X augmente Y de $b_1 \times 100 \%$
- Niveau-log : $Y = a + b_1 \log(X)$ \Rightarrow une augmentation de X de 1% augmente Y de $\frac{b_1}{100}$ unités

NB : on utilise ici la notation anglaise de la fonction logarithme, notée log au lieu de ln.

Prix du vin de Bordeaux

Résultats de la régression

$$\begin{split} \log(\text{prix}) &= a + 0.024 \times \hat{\text{Age}} \text{ du vin} \\ &+ 0.62 \times \text{Temp\'erature (avril-sept)} \\ &+ 0.39 \times \text{Pr\'ecipitations (ao\^ut-sept)} \\ &+ 0.12 \times \text{Pr\'ecipitations (oct-mars)} \end{split}$$

- +2,4% par année d'ancienneté supplémentaire
- +62% par degré supplémentaire en saison chaude
- -39% avec plus de pluie lors de la maturation
- +12% avec plus de pluie en hiver

Moindres Carrés : corrélation \neq causalité

- La méthode des moindres carrés (MCO) est largement utilisée pour étudier les relations entre variables.
- Mais elle ne permet pas, à elle seule, d'établir un lien de causalité.

Exemples:

- Taux de victoires et salaires relatifs : la causalité inverse est plausible (le succès attire les salaires).
- Climat et prix du vin : ici, la causalité inverse est peu crédible (le climat ne dépend pas du prix du vin!).

Conclusion: d'autres méthodes sont nécessaires pour identifier des effets causaux.

Chapitre 1

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Wooclap

M.Segú Chapitre 1 35 / 49

Établir la causalité

Défi principal : identifier le contrefactuel.

• Le contrefactuel : ce qui se serait passé pour Y si X n'avait pas changé, toutes choses égales par ailleurs.

Exemples de questions contrefactuelles :

- Quel aurait été mon revenu sans une année d'études supplémentaire ?
- Quelles ventes si la campagne avait été bleue et non rouge ?
- Quel taux de victoire si les salaires avaient été plus bas ?
- Quel prix du vin si la température avait été 1°C plus basse ?

Pourquoi c'est difficile?

- En microéconomie, on ne peut pas refaire la même expérience sur un même individu.
- Un chimiste peut reproduire ses expériences. Le microéconomiste, non.
- On ne peut pas observer une personne avec et sans diplôme dans le même monde.

Conclusion : les économistes doivent recourir à des méthodes alternatives pour approximer le contrefactuel.

- Méthode proche des sciences expérimentales, issue de la médecine.
- Permet d'évaluer l'effet d'une politique publique.

Principe:

- Tirage aléatoire dans une population :
 - Groupe de traitement : reçoit l'intervention.
 - Groupe de contrôle : ne reçoit rien.
- Si les deux groupes sont équivalents à l'origine, toute différence observée est probablement causale.

Expériences aléatoires contrôlées

Exemple: Self-Sufficiency Project (Canada, 1990s)

- Objectif: évaluer l'impact d'une prime à l'emploi sur le retour au travail.
- Population : familles monoparentales, principalement des mères seules avec enfants,
 - sans emploi depuis plus d'un an,
 - bénéficiaires d'une aide sociale faible.
- Traitement : prime de 25% du salaire versé en cas de retour à un emploi à temps plein.
- Théorie microéconomique sous-jacente : haut coût d'opportunité de retourner travailler (perte d'aide sociale + temps familial).

Expériences aléatoires contrôlées

Exemple: Self-Sufficiency Project (Canada, 1990s)

Michalopoulos et al. (2002), Final Report on the Self-Sufficiency Project for Long-Term Welfare Recipients, MDRC.

Méthode des doubles-différences

- Comparer les évolutions avant/après pour les deux groupes (traitement et contrôle).
- Formule :

$$\begin{aligned} \mathsf{Impact} &= (\mathsf{X}_{\mathsf{traitement}, \; \mathsf{après}} - \mathsf{X}_{\mathsf{traitement}, \; \mathsf{avant}}) \\ &- (\mathsf{X}_{\mathsf{contrôle}, \; \mathsf{après}} - \mathsf{X}_{\mathsf{contrôle}, \; \mathsf{avant}}) \end{aligned}$$

Exemple (emploi à temps plein) :

- Groupe traitement : $5\% \rightarrow 30\% \rightarrow \text{Différence} = 25 \text{ points}$
- Groupe contrôle : $5\% \rightarrow 15\% \rightarrow \text{Différence} = 10 \text{ points}$
- Impact de la politique : 25% 10% = 15%

Chapitre 1

Établir la causalité

- Les microéconomistes ne disposent pas la plupart du temps de groupes de contrôle statistiquement conçus pour étudier les questions d'intérêt.
- Ils doivent alors faire preuve d'imagination pour obtenir des groupes de contrôle crédibles à partir des données dont ils disposent.
 Deux des méthodes possibles sont :
 - les expériences "naturelles"
 - les méthodes instrumentales

Rendez-vous en cours d'Econometrie!

Wooclap

《ロト 4 週 ト 4 恵 ト 4 恵 ト 恵 ・ 夕 Q C M.Segú Chapitre 1 42 / 49

- Pour conclure ce chapitre, nous présentons quelques recherches récentes en économie.
- Elles illustrent la **diversité des sujets** et répondent aux questions posées en introduction du cours.

Exemple : Crise énergétique et technologies vertes

- Objectif : déterminer si la crise énergétique de 2022 a accéléré
 l'adoption des technologies à faible émission de carbone (TFEC).
- Bastos, Greenspon, Stapleton et Taglioni (2024, CEPR) étudient cette question à partir d'offres d'emploi en ligne dans 35 pays (2014–2022).
- Données : offres d'emploi en ligne dans 35 pays (2014–2022).
- Résultat : hausse significative des offres d'emploi mentionnant des TFEC en 2022.

Exemple : Crise énergétique et technologies vertes

La crise énergétique a-t-elle accéléré l'adoption des technologies vertes?

- L'augmentation des offres d'emploi liées aux TFEC est encore plus marquée dans :
 - les entreprises les plus énergivores,
 - situées dans des pays fortement exposés à la hausse du prix de l'énergie (ex. dépendants du gaz naturel importé).
- En août 2022, les prix de l'électricité dans la moitié des pays européens étaient plus de 12 fois plus élevés qu'en janvier 2018.
- Les résultats suggèrent que les chocs des prix de l'énergie et la tarification du carbone favorisent une adoption rapide des technologies vertes.

Exemple: Le burn-out

Quelles sont les implications économiques du burn-out ?

- Le marché du travail a connu une transformation profonde (disponibilité permanente, charge mentale...).
- En Suède, 1% des travailleurs font un burn-out chaque année.
- Étude : Nekoei, Sigurdsson et Wehr (Stockholm), données administratives 2006-2020.
- Facteurs de risque :
 - travailler dans une entreprise/profession à fort stress,
 - faible tolérance personnelle au stress,
 - être une femme.

Exemple: Le burn-out

Quelles sont les implications économiques du burn-out ?

- Conséquences :
 - Perte de salaire durable pour la personne (-12% à t+7),
 - Effets indirects sur :
 - conjoint(e): salaire réduit (-4,4% pour les femmes, -1,1% pour les hommes),
 - enfants : -2,5% en durée d'études, résultats scolaires affectés.
- Besoin d'interventions ciblées pour prévenir ces effets chez les groupes à risque.

Exemple: Connaissance et innovation

Faciliter l'accès à la connaissance stimule-t-il l'innovation ?

- La prospérité des pays repose en grande partie sur le progrès technologique.
- Étude de Buonanno, Cinnirella, Harka et Puca (Bergame), à partir de données historiques de l'Italie du 19^e siècle.
- Contexte : en 1861, réforme anticléricale ⇒ mise à disposition publique des livres des monastères fermés.
- Données :
 - Localisation des livres redistribués,
 - Brevets déposés entre 1863 et 1883, localisation des inventeurs.

Exemple: Connaissance et innovation

Faciliter l'accès à la connaissance stimule-t-il l'innovation?

- Résultats :
 - Municipalités réceptrices : +48% de brevets entre 1863 et 1883.
 - Effets persistants : brevets en 1910-1912, Exposition Universelle de Turin (1911).
- Conclusion : accès libre à la connaissance ⇒ stimulation de l'innovation.

Récapitulatif

- Présentation des notions fondamentales de la microéconomie :
 - Optimisation,
 - Coût d'opportunité,
 - Raisonnement à la marge.
- Présentation de la démarche scientifique des économistes :
 - Aller-retour permanent entre théorie et données,
 - Importance des modèles testables.
- Introduction aux principales méthodes empiriques :
 - Régression simple et multiple,
 - Corrélation vs causalité,
- Illustration par des recherches récentes sur :
 - Les technologies vertes,
 - Le burn-out,
 - L'accès à la connaissance.

