Lista 1

Adrian Mucha 236526

October 15, 2018

1 Zadanie 1

1.1 Machine epsilon

1.1.1 Problem

Używając języka Julia, napisać program wyznaczający iteracyjnie epsilony maszynowe. Epsilonem maszynowym nazywamy najmniejszą liczbę macheps > 0 taką, że fl(1.0 + macheps) > 1.0 dla każdego typu zmiennopozycyjnego (Float16, Float32, Float64).

1.1.2 Rozwiązanie

Znalezienie epsilonu maszynowego opisałem w kilku krokach:

- 1. przypisz do wybranego typu zmiennej epsilon = 1.0
- 2. wykonuj dzielenie zmiennej epsilon przez 2 (przesunięcie bitowe w prawo), dopóki $1.0 + epsilon \neq 1.0$

Po tym jak pętla zostanie zakończona, w zmiennej *epsilon* znajdziemy najmniejszą wartość większą od zera - macheps.

1.1.3 Wyniki

Wyniki zgadzają się z wartościami funkcji wbudowanych oraz tymi zawartymi w pliku nagłówkowym float.h.

Тур	macheps	eps(typ)	float.h
Float16	0.000977	0.000977	_
Float32	1.1920929e - 7	1.1920929e - 7	1.192093e - 07
Float64	2.220446049250313e -	2.220446049250313e -	2.220446e - 16
	16	16	

Table 1: Wyniki wywołań poszczególnych funkcji dla wybranych typów wraz z danymi z pliku float.h języka C

1.2 Eta

1.2.1 Problem

Znaleźć iteracyjnie liczbę eta taką, że eta>0.0 dla wszystkich typów zmiennopozycyjnych zgodnych ze standarded IEEE 754.

1.2.2 Rozwiązanie

Iteracyjne szukanie liczby eta [1] $x \leftarrow 1.0$ $x/2 \neq 0.0$ $x \leftarrow x/2$ x Uzyskana w ten sposób liczba x zapisana bitowo w formacie Float32 przyjmuje postać następującą:

$$\begin{array}{l} 0\ 00000000\ 000000000000000000000001 \\ =\ 1.0e-45 \end{array}$$

Warto wspomnieć, że tego typu liczbę, której cechą są same zera - nazywamy zdenormalizowaną (subnormal).

1.2.3 Wyniki

Typ	eta	nextfloat(0.0)
Float16	6.0e - 8	6.0e - 8
Float32	1.0e - 45	1.0e - 45
Float64	5.0e - 324	5.0e - 324

Table 2: Wartości eta według typów zmiennoprzecinkowych

1.3 MAX

1.3.1 Problem

1.3.2 Rozwiązanie

1.3.3 Wyniki