Tutoriat 7 - Rezolvări Inele. Generalități.

Savu Ioan Daniel, Tender Laura-Maria

- 15 decembrie 2020 -

Exercitiul 1

Găsiți elementele inversabile, divizorii lui zero, elementele nilpotente și elementele idempotente din \mathbf{Z}_{63} .

Rezolvare:

Un element \widehat{x} este inversabil în $\mathbf{Z}_{63} \iff (x, 63) = 1$. $63 = 3^2 \cdot 7$. Astfel, $U(\mathbf{Z}_{63}) = \{\widehat{1}, \widehat{2}, \widehat{4}, \widehat{5}, \ldots\}$.

Divizorii lui zero într-un inel R sunt elementele $a \in R$ pentru care $\exists b \in R$ $b \neq 0$. Din acest motiv elementele care sunt inversabile nu pot fi divizori ai lui zero. În \mathbf{Z}_n toate elementele \widehat{x} pentru care $(x,n) \neq 1$ sunt divizori ai lui zero. Răspunsul este $\{\widehat{3}, \widehat{6}, \widehat{7}, \widehat{9}, \widehat{12}, \ldots\}$.

Elementele nilpotente a sunt cele pentru care $\exists n \in \mathbb{N}^*$ astfel încât $a^n = 0$. 0 este întotdeauna element nipotent. În \mathbb{Z}_n , elementele nilpotente sunt elementele care conțin în descompunere cel puțin toți factorii primi distinți ai lui n. Pentru n = 63, căutam elementele multiplii de $3 \cdot 7 = 21$. Astfel, $N(\mathbb{Z}_{63}) = \{\widehat{0}, \widehat{21}, \widehat{42}\}$.

a este element idempotent dacă $a^2=a$. Atât 0 și 1 sunt întotdeauna idempotente. De asemenea, dacă a este idempotent, atunci și 1-a este. $a=a^2\iff a-a^2=0\iff a(1-a)=0$. Putem folosi această proprietate pentrun a găsi mai ușor cealaltă jumătate de elemente idempotente,

pentrun a găsi mai ușor cealaltă jumătate de elemente idempotente, Fie $n=p_1^{k_1}\cdot p_2^{k_2}\cdot ...\cdot p_r^{k_r}$. Atunci $\mathbf{Z}_n\cong \mathbf{Z}_{p_1^{k_1}}\times ...\times \mathbf{Z}_{p_r^{k_r}}$. Singurele elemente indempotente din fiecare $\mathbf{Z}_{p_i^{k_i}},\,i\in\overline{(1,r)}$ sunt $\overline{0},\overline{1}$.

Astfel, $\mathbf{Z}_{63} \cong \mathbf{Z}_9 \times \mathbf{Z}_7$. Elementele indempotente ar fi următoarele:

- 1. $(\overline{0}, \overline{\overline{0}})$, numerele care dau 0 la împărțirea cu 9 și cu 7, $\widehat{0}$.
- 2. $(\overline{1},\overline{\overline{1}})$ numerele care dau 1 la împărțirea cu 9 și cu 7, $\widehat{1}.$
- 3. $(\overline{0},\overline{\overline{1}})$ numerele care dau 0 la împărțirea cu 9 și 1 la împărțirea cu 7, $\widehat{36}$.

4. $(\overline{1},\overline{0})$ numerele care dau 1 la împărțirea cu 9 și 0 la împărțirea cu 7, $\widehat{36}$. $1-36=-35\equiv 28 \pmod{63}, \widehat{28}$.

Exercitiul 2

Se consideră numărul natural $n \geq 2$ care are r factori primi distincți în descompunerea sa. Să se arate că numărul idempotenților lui $\mathbf{Z_n}$ este 2^r . Să se determine idempotenții inelului Z_{36} .

Rezolvare:

Descompunem pe n în factori primi, $n=p_1^{q_1}p_2^{q_2}\dots p_r^{q_r}$. Atunci $\mathbf{Z_n}$ este izomorf cu $Z_{p_1^{q_1}}\times\dots\times Z_{p_r^{q_r}}$ Singurele elmente idempotente în $Z_{p_i^{q_i}}$ sunt $\widehat{0}$ și $\widehat{1}$. Deci idempotentele lui $\mathbf{Z_n}$ corespund prin izomorfism elementelor de forma (0,...,0,0),(0,....,0,1),...,(1,...,1,1). Există 2^r astfel de r-tupluri. Pentru a găsi idempotenții în inelul inițial, construim un sistem de congruențe liniare. De exemplu, pentru (1,0,....,0,1) sistemul ar fi:

$$\begin{cases} x \equiv 1 \mod p_1^{q_1} \\ x \equiv 0 \mod p_2^{q_2} \\ \dots \\ x \equiv 0 \mod p_{r-1}^{q_{r-1}} \\ x \equiv 0 \mod p_r^{q_r} \end{cases}$$

Din lema chineză a resturilor și din faptul că toți factorii primi sunt numere prime între ele, acest sistem sigur are solutii.

Pe baza descompunerii în factori primi avem că $Z_{36} \cong Z_{2^2} \times Z_{3^2}$. În inelul produs, avem idempotenții $(\widehat{0}, \overline{0}), (\widehat{0}, \overline{1}), (\widehat{1}, \overline{0}), (\widehat{1}, \overline{1})$. Primii doi idempotenții corespund lui $\widehat{0}$ și $\widehat{1}$. Pentru a afla corespondenții ultimilor doi idempotenți trebuie să rezolvăm două sisteme de congruențe:

$$\begin{cases} x \equiv 0 \mod 4 \\ x \equiv 1 \mod 9 \end{cases}$$
$$\begin{cases} x \equiv 1 \mod 4 \\ x \equiv 0 \mod 9 \end{cases}$$

Soluția primei ecuații este $\widehat{28}$. Putem rezolva și a doua ecuație, sau ne putem folosi de faptul că $\widehat{1} - \widehat{28}$ este tot idempotent, de unde obținem că $\widehat{1-28} = \widehat{-27} = \widehat{9}$ este cealaltă soluție.