OPEN PROBLEMS @ BEYONDRL WORKSHOP: REINCARNATING

REINFORCEMENT LEARNING

Rishabh Agarwal

Google Research

bit.ly/reincarnating_rl

Tabula rasa Reinforcement Learning

Large-scale systems: Tabula rasa workflow

Works well here.

Not so much here.

Playing DOTA with large-scale RL training

Actual learning curve (10 months)

Restarting from scratch (~40 months)

Berner, Christopher, et al. "Dota 2 with large scale deep reinforcement learning." arXiv preprint arXiv:1912.06680 (2019).

Solving Rubik's cube with a robot hand

"We rarely trained experiments from scratch ...

Restarting training from an uninitialized model would have caused us to lose weeks or months of training progress."

Deep RL is expensive!

Alphastar: Achieves grandmaster level in Starcraft

- Replication would cost > \$1,000,000.
- Excludes most researchers outside resource-rich labs.

Reincarnating RL: An alternative workflow

Reincarnating RL: An alternative workflow

"Prior computational work, such as learned network weights and policies, should be maximally leveraged."

Reincarnating RL: What's different?

• Lots of related work on imitation + RL, offline RL, transfer, LfD and so on ..

 Such papers typically don't focus on the incorporating such methods as a part of how we do RL research itself.

What would Reincarnating RL look like?

What would Reincarnating RL look like?

Reincarnating RL as a research workflow

Benefits of Reincarnating RL?

More compute and sample-efficient

Benefits of Reincarnating RL?

- More compute and sample-efficient
- Allows for continually updating/training agents

Benefits of Reincarnating RL?

- More compute and sample-efficient
- Allows for continually updating/training agents
- Collaboratively tackling challenging problems

Ad-hoc reincarnation strategies common in large-scale RL

N DOTA 2 AlphaStar Minecraft with VPT

Reincarnating RL common rare in typical papers

Ad-hoc reincarnation strategies common in large-scale RL

Reincarnating RL common rare in typical papers

Minecraft with VPT

Achieved by fine-tuning with behavioral cloning

A quick primer on RL

Markov Decision Process (MDP)

S - Set of States

A - Set of Actions

 $Pr(s \mid a, s)$ - Transitions

lpha - Starting State Distribution

γ - Discount Factor

r(s) - Reward [or r(s,a)]

Goal:
$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^{t} r(s_{t}, a_{t}) \right]$$

$$s_t \sim P(\cdot \mid s_{t-1}, a_{t-1}), a_t \sim \pi(\cdot \mid s_t)$$

A quick primer on RL

How good is a state-action pair?

The Q-function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy π . Formally,

$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t} \gamma^{t} R(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a, s_{t} \sim P(\cdot | s_{t-1}, a_{t-1}), a_{t} \sim \pi(\cdot | s_{t})\right]$$

Bellman Optimality Equation

$$Q^*(s, a) := \max_{\pi} Q^{\pi}(s, a) = \mathbb{E} \left[r(s, a) + \gamma \max_{a'} Q^*(s', a') \right]$$

Solving for the optimal policy

Q-learning: Use a function approximator to estimate the Q-function, *i.e.*

$$Q(s,a;\theta) \approx Q^*(s,a)$$
 function parameters (weights)

If the function approximator is a deep neural network => Deep Q-learning!

Case study: Policy to Value Reincarnating RL

Transfer an existing policy to a (more) sample-efficient value-based student agent.

Policy to Value Reincarnating RL (PVRL)

$$\pi_{\Phi}(a|s)$$
 — $Q_{\theta}(s,a)$ Value-based Student agent

Desiderata

- Teacher-agnostic
 - o Student shouldn't be constrained by teacher's architecture and algorithm

Policy to Value Reincarnating RL (PVRL)

$$\pi_{\Phi}(a|s)$$
 — $Q_{\theta}(s,a)$ Value-based Student agent

Desiderata

- Teacher-agnostic
- Weaning off teacher
 - Undesirable to maintain teacher dependency for successive reincarnations

Policy to Value Reincarnating RL (PVRL)

Existing
Teacher Policy

Value-based Student agent

Desiderata

- Teacher-agnostic
- Weaning off teacher
- Sample Efficient
 - Reincarnation should be cheaper than training from scratch

Reincarnating RL as a workflow

Reincarnating RL as a workflow

Saved 50M frames or 1 day of GPU training!

PVRL: Experimental Setup

- Interactive teacher policy: DQN trained for 400M frames (7 days)
 - Also assume access to replay data of the teacher
- Transfer a student DQN using 10M frames (a few hours)
- 10 Atari games with sticky actions (for stochasticity)
- Evaluation: Interquartile Mean [1]

A note about evaluation: Interquartile Mean

IQM discards the lowest 25% and highest 25% of the combined scores (colored balls) and computes the mean of the remaining 50% scores.

Mean

For more details, see Deep RL at the Edge of the Statistical Precipice. NeurIPS 2021 (Outstanding Paper).

PVRL: Closely-related approaches

Adapting existing approaches:

- Rehearsal: Replaying Teacher Samples
- **Pretraining:** Offline RL on Teacher Data
- Kickstarting: On-policy Distillation + Q-learning
- **DQfD:** Learning from teacher demonstrations
- JSRL: Improving exploration using teacher

PVRL results on ALE

Kickstarting (On-policy Distillation + RL)

QDagger: A simple PVRL baseline

$$\mathcal{L}_{QDagger}(\mathcal{D}) = \mathcal{L}_{TD}(\mathcal{D}) + \lambda_t \mathbb{E}_{s \sim \mathcal{D}} \Big[\sum_a \pi_T(a|s) \log \pi(a|s) \Big]$$
Q-learning loss
On-policy distillation

Combine Q-learning with Dagger. Phases:

- (Offline) Pretrain on Teacher data
- (Online) Train on self-collected data.

Decaying coefficient to wean off the teacher.

Tackling a hard control task: Humanoid run

Making progress on BLE

- Access to the Perciatelli QR-DQN agent trained for a month.
- Given access to finite compute (10-12 hours on a TPU-v2), how much progress can be made?

Making progress on BLE

^[1] Bellemare, Marc G., et al. "Autonomous navigation of stratospheric balloons using reinforcement learning." Nature 588.7836 (2020): 77-82.

^[2] The Balloon Learning Environment. https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html

Offline Pretraining

Teacher Rehearsal

Jump-Start Reinforcement Learning

Deep Q-learning from Demonstrations

Kickstarting (On-policy Distillation + RL)

Our naive method: Q-Dagger (Dagger + Q-learning)

Considerations in Reincarnating RL

Reincarnation vs Distillation

Dependence of Prior Computation

Benchmarking Differences with Tabula Rasa

Fine-tuning for Reincarnation

"If I have seen further than others, it is by standing upon the shoulders of giants."

- Sir Isaac Newton