Psychoinformatics & Neuroinformatics

Week 11

Machine Learning (3/3)

by Tsung-Ren (Tren) Huang 黄從仁

Tren's Academic Tree

Huang **National Taiwan University**

Application of Deep Neural Nets (1/2)

Brain decoding using recurrent neural net

Machine translation of cortical activity to text with an encoder-decoder framework

Joseph G. Makin^{1,2 ⋈}, David A. Moses^{1,2} and Edward F. Chang^{1,2 ⋈}

Application of Deep Neural Nets (2/2)

Predicting sexuality using convolutional neural net

Topics for today

Computations of Neural Networks Why do neural nets work?

(Deep) Learning in Neural Networks How do neural nets learn?

Explainable AI
What do neural nets learn?

Topics for today

Computations of Neural Networks Why do neural nets work?

(Deep) Learning in Neural Networks How do neural nets learn?

Explainable AI & Causal ML What do neural nets learn?

Analysis of a Cognitive System

David Marr's 3 levels of analysis:

Implementation (1/5): Possible States

A neuron has two states: 0 (resting) vs. 1 (firing)

Implementation (2/5): Addition

Suppose the neuron Z has a low threshold

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1
7 V I V (OD)		

$$Z=X+Y$$
 (OR)

Implementation (3/5): Multiplication

Suppose the neuron Z has a high threshold

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1
7_V*V (AND)		

$$Z = X * Y (AND)$$

Implementation (4/5): Division

From excitatory to **inhibitory** connections:

X	Z
0	1
1	0

$$Z=1-X$$
 (NOT)

Implementation (5/5): Division

Inhibitions can lead to **subtraction** or **division**:

Algorithm: Arithmetic Combinations

A neural network=A series of continuous transformations

Computational Problem: Recognition

Here is a dog detector where W encodes a dog template:

Decision Boundary: $w_2X_2 = -w_1X_1 - w_0 \Rightarrow w_2X_2 + w_1X_1 + w_01 = 0$ $(w_2, w_1, w_0) \cdot (X_2, X_1, 1) = 0$

Revisiting the ROC curve

A ML can transform features to solve its problem

Universal Approximation Theorem

A 3-layer net can approximate any continuous function

$$oldsymbol{F(\mathbf{x})} = \sum_{i=1}^{N} v_i oldsymbol{arphi} \left(w_i^T | \mathbf{x_i} - b_i
ight) oldsymbol{y_i}$$

as an approximate realization of the function f where f is independent of φ ; that is,

$$|F(x) - f(x)| < \varepsilon$$

for all $x \in I_m$. In other words, functions of the form F(x) are dense in $C(I_m)$.

A 3-layer net, <u>Taylor Series</u>, & <u>Fourier Transform</u> are special cases of <u>Generalized Additive</u> <u>Models</u>!

Topics for today

Computations of Neural Networks Why do neural nets work?

(Deep) Learning in Neural Networks How do neural nets learn?

Explainable AI & Causal ML What do neural nets learn?

Workflow of Supervised Learning

Adjusting model parameters to minimize prediction errors

Model (1/2): Frameworks

Keras is the easiest framework to build neural nets

Model (2/2): Keras Cheatsheet

Cross Entropy or Mean Squared Error

OPTIMIZATION METHOD

Stochastic Gradient Descent

MODEL

Graph of Logistic and/or Linear Regressions

Python For Data Science *Cheat Sheet*

Keras

Learn Python for data science Interactively at www.DataCamp.com

Keras

Keras is a powerful and easy-to-use deep learning library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models.

A Basic Example

Data

Also see NumPy, Pandas & Scikit-Learn

Your data needs to be stored as NumPy arrays or as a list of NumPy arrays. Ideally, you split the data in training and test sets, for which you can also resort to the train test split module of sklearn.cross validation.

Keras Data Sets

Other

```
>>> from urllib.request import urlopen
>>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/
nl/machine-learning-databases/pima-indians-diabetes/
pima-indians-diabetes.data"), delimiter=",")
>>> X = data[:,0:8]
>>> y = data[:,8]
```

Preprocessing

Sequence Padding

>>> from keras.preprocessing import sequence
>>> x_train4 = sequence.pad_sequences(x_train4,maxlen=80)
>>> x_test4 = sequence.pad_sequences(x_test4,maxlen=80)

One-Hot Encoding

```
>>> from keras.utils import to categorical
>>> Y train = to categorical(y_train, num classes)
>>> Y_test = to categorical(y_test, num classes)
>>> Y train3 = to categorical(y_test3, num classes)
>>> Y train3 = to categorical(y_test3, num classes)
```

Model Architecture

```
Sequential Model
>>> from keras.models import Sequential
>>> model = Sequential()
>>> model2 = Sequential()
>>> model3 = Sequential()
```

Multilayer Perceptron (MLP)

inary Classification

```
>>> model.add(Dense(1,kernel_initializer='uniform',activation='sigmoid'))
Multi-Class Classification
>>> from keras.layers import Dropout
>>> model.add(Dense(512,activation='relu',input_shape=(784,)))
>>> model.add(Dropout(0.2))
>>> model.add(Dropout(0.2))
>>> model.add(Dropout(0.2))
>>> model.add(Dropout(0.2))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(512,activation='relu'))
>>> model.add(Dense(10,activation='softmax'))
```

Regression

>>> model.add(Dense(64,activation='relu',input_dim=train_data.shape[1]))
>>> model.add(Dense(1))

>> from keras.layers import Activation, Conv2D, MaxPooling2D, Flatten

Convolutional Neural Network (CNN)

```
>> model2.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:]))
>> model2.add(Activation('relu'))
>> mode12.add(Conv2D(32,(3,3)))
>> model2.add(Activation('relu'))
>> model2.add(MaxPooling2D(pool size=(2,2)))
>> model2.add(Dropout(0.25))
>> model2.add(Conv2D(64,(3,3), padding='same'))
>> model2.add(Activation('relu'))
>> model2.add(Conv2D(64,(3, 3)))
>> model2.add(Activation('relu'))
>> model2.add(MaxPooling2D(pool size=(2,2)))
>> model2.add(Dropout(0.25))
>> model2.add(Flatten())
>> model2.add(Dense(512))
>> model2.add(Activation('relu'))
>> model2.add(Dropout(0.5))
```

>>> model2.add(Dense(num_classes)) >>> model2.add(Activation('softmax')) Recurrent Neural Network (RNN)

```
>>> from keras.klayers import Embedding,LSTM
>>> model3.add(Embedding(20000,128))
>>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))
>>> model3.add(Dense(1,activation='sigmoid'))
```

Also see NumPy & Scikit-Lear

Train and Test Sets

Standardization/Normalization

```
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(x train2)
>>> standardized X = scaler.transform(x train2)
>>> standardized_X test = scaler.transform(x_test2)
```

Inspect Model

Compile Model

```
MLP: Binary Classification
```

Recurrent Neural Network

Model Training

```
>>> model3.fit(x train4,
y train4,
batch size=32,
epochs=15,
verbose=1,
validation data=(x test4,y test4))
```

Evaluate Your Model's Performance

```
>>> score = model3.evaluate(x test,
y_test,
batch size=32)
```

Prediction

```
>>> model3.predict(x_test4, batch_size=32)
>>> model3.predict classes(x test4,batch size=32)
```

Save/Reload Models

```
>>> from keras.models import load model
>>> model3.save('model_file.h5')
>>> my model = load model('my model.h5')
```

Model Fine-tuning

Optimization Parameters

Early Stopping

```
>>> from keras.callbacks import EarlyStopping

>>> early stopping monitor = EarlyStopping(patience=2)

>>> model3.fit(x train4,
 y train4,
 batch size=32,
 epochs=15,
 validation data=(x test4,y test4),
 callbacks=[early stopping monitor])
```

DataCamp

DataCamp

Error/Loss Functions

Adjusting model parameters to minimize prediction errors

ERROR / Loss Function Cross Entropy or Mean Squared Error

OPTIMIZATION METHOD

Stochastic Gradient Descent

MODEL

FEED FORWARD NETWORK
Graph of Logistic and/or
Linear Regressions

When $Y_{pred} = [0.1, 1, 0.4]$, CE=-ln(1)=0 but $MSE = \sqrt{0.1^2 + 0.4^2} \neq 0$

Optimization (1/2): Gradient Descent

Using iterative methods to minimize error/loss functions

ERROR / Loss Function

Cross Entropy or Mean Squared Error

OPTIMIZATION METHOD

Stochastic Gradient Descent

MODEL

FEED FORWARD NETWORK
Graph of Logistic and/or
Linear Regressions

Convergence

Divergence

Optimization (2/2): Repetitions

1 batch/iteration = 1 adjustment of model parameters

FEED FORWARD NETWORK
Graph of Logistic and/or
Linear Regressions

In each batch, L is different:

$$\overrightarrow{W}^{new} = \overrightarrow{W}^{old} - \alpha \frac{\partial L(\overrightarrow{W})}{\partial \overrightarrow{W}}$$

Workflow of Supervised Learning

Adjusting model parameters to minimize prediction errors

Topics for today

Computations of Neural Networks Why do neural nets work?

(Deep) Learning in Neural Networks How do neural nets learn?

Explainable AI & Causal ML What do neural nets learn?

eXplainable AI (XAI) methods

Model-agnostic: Models are accessible but not trainable

Cognitivist XAI: Model-specific

For example, simply adding a learnable attention layer

Input image

ResNet50

Behaviorist XAI: Model-agnostic (1/2)

LIME=Local Interpretable Model-Agnostic Explanation

Behaviorist XAI: Model-agnostic (2/2)

LIME is a special case of SHapley Additive exPlanations (SHAP) , which estimate feature importance better than feature lesion.

$$g(z') = \phi_0 + \sum_{i=1}^{M} \phi_i z_i'$$

Ground Truth: $Y=X_1+X_2+X_1X_2$

Intact: $Y=ModelA(X_1,X_2)$

Lesioned: Y=ModelB(X₂)=X₂

Intact-Lesioned=X₁+X₁X₂

But this difference is NOT solely contributed by X₁!

Causal Machine Learning: Causality > Al

XAI may reveal that your AI is not learning real causality

An "accurate" classifier of bile duct stone (膽管結石):

Panda (60% confidence)

Adversarial Perturbation

Gibbon

So what?

Your model can't generalize to (99% confidence) other datasets.

Causal ML: Al→ Causality (1/2)

The feature importance of X decreases after M added:

$$Y=f(X) \rightarrow Y=f(X, M)=\beta_X X+\beta_M M+\beta_0$$

The linear function **f** can be replaced by a nonlinear ML!

The linear function **g** can be replaced by a nonlinear ML!

More accurate predictions after M added:

$$Y=g(X) \rightarrow Y=g(X, M)=\beta_X X+\beta_M M+\beta_{MX} MX+\beta_0$$

Causal ML: Al→ Causality (2/2)

Double ML uses ML to factor out confounding associations:

$$Y=f(X, W)$$

Step 1:

$$Y=g(W)+Y_R$$

 $X=h(W)+X_R$

Step 2:

$$Y_R = \beta X_R + \varepsilon$$

Topics for today

Computations of Neural Networks Why do neural nets work?

(Deep) Learning in Neural Networks How do neural nets learn?

Explainable AI & Causal ML What do neural nets learn?

