

Akademia Górniczo-Hutnicza w Krakowie

MĘDRALA RADOSŁAW

MIKOS WERONIKA 284414

AUI				_			
Wydział:	Rok studiów:	Rok	Kierunek:		Grupa:		
WEAIiB	II	akademicki: 2019/2020	Informatyk elektronika me				
Temat: Introduction to Artificial Intelligence							
Data wykonania:	Data odda 23.04.2		lliczenia: OC	ENA:			

1. Cel ćwiczenia

Celem ćwiczeń zapoznanie się z biblioteką EasyAI oraz wykonanie probabilistycznego wariantu jeden z gier.

2. EasyAI

EasyAI to framework sztucznej inteligencji wykorzystywany do tworzenia programów gier dla dwóch graczy, takich jak Tic Tac Toe, Connect 4, Hexapwn itp. Został on napisany w języku programistycznym Python i ułatwia zdefiniowanie mechanizmów gry oraz umożliwia rozgrywki z komputerem.

3. Hexapawn

Hexapawn to gra deterministyczna dla dwóch graczy wymyślona przez Martina Gardnera w 1962r. Została stworzona w celu zilustrowania zasady działania maszyny samouczącej.

Na szachownicy n×m każdy z graczy rozpoczyna grę z liczbą *m* pionków umieszczonych w najbliższym rzędzie. Podobnie jak w szachach pionki poruszają się po linii prostej i chwytają po przekątnej. Nie posiadają uprawnień do podwójnego kroku. Gracz z białymi pionkami rozpoczyna grę.

Aby wygrać, gracz musi:

- przesunąć jeden ze swoich pionków na koniec planszy
- uniemożliwić ruch drugiego z graczy

4. Octaspawn

Octaspawn jest to wariant gry hexapawn zawartej w bibliotece EasyAI. Na planszy 4x4, każdy z graczy posiada 4 pionki. W chwili wykonania ruchu przez gracza istnieje 10 % szansy na przywrócenie jednego pionka na pozycję startową (każdego schwytanego z równą szansą).

5. Wyniki

Grę przetestowano przy dwóch wariantach parametru *depth* klasy Negamax. Otrzymane wyniki przedstawiono w poniższych tabelach.

deph=4

Numer rozgrywki	Średni czas ruchu w grze [s]	Numer wygrywającego gracza
1	0.03617036666666666	1
2	0.013455727272727269	1
3	0.014744223076923059	1
4	0.0193052	1
5	0.018170199999999987	1
6	0.012005454545454571	1
7	0.012992490909090907	1
8	0.011230009090909088	1
9	0.017961145454545493	1

Gracz 1 wygrał 9 rozgrywek.

Gracz 2 wygrał 0 rozgrywek.

deph=10

Numer rozgrywki	Średni czas ruchu w grze [s]	Numer wygrywającego gracza
1	0.598838244444444	1
2	0.5455231624999998	2
3	0.7039738900000001	2
4	0.3782751461538456	1
5	0.5907688285714302	1
6	0.5089365538461533	1
7	0.9609723636363647	1
8	0.4744319272727279	1
9	0.46843184166666657	2
10	0.6653716142857148	1

Gracz 1 wygrał 7 rozgrywek.

Gracz 2 wygrał 3 rozgrywki.

6. Wnioski

Biblioteka EasyAI pozwala na zapoznanie się ze wstępem do sztuczej inteligencji i umożliwia początkującym programistom probować swoich sił w tworzeniu gier AI. Przejrzyste oraz czytelne skrypty wraz z przydatnymi komentarzami są dużymi zaletami biblioteki.

Problem, z jakim napotkano się podczas tworzenia projektu, było zaimplementowanie części algorytmu związanej z losowością powrotu pionka na plansze. Przypisanie nazwy wszystkim pionkom w celach informacyjnych, który z pionków został złapany stanowiło największą niedogodność w całym zadaniu. Porównano algorytmy z Negamax z alpha-beta pruning dla różnych wartości depth, niestety nie udało się to dla Negamax bez alpha-beta pruning.