Modélisation Stochastique et Réseaux Bayésiens

Apprentissage automatique des lois de probabilité conditionnelles

Roland Donat

Université de Bretagne Sud

ENSIBS - Spécialité Cyber Data

https://roland-donat.github.io/cours-rb/ensibs/

Plan de la présentation

- Introduction
- Rappels statistiques
- Apprentissage des LPC : Données complètes
- 4 Conclusion
- Bonus : Apprentissage des LPC : Données incomplètes

Objectifs pédagogiques

- Comprendre les problématiques liées à la construction pratique d'un réseau bayésien
- Estimer automatiquement les lois de probabilité conditionnelles (LPC) à partir de données observées sur le phénomène étudié

•00

- Introduction

Rappels stat LPC - données complètes Conclusion LPC données incomplètes Référence

Introduction

Objectif

000

Objectif

- Modéliser un phénomène aléatoire à partir d'un RB
- \Rightarrow Représenter la loi jointe d'une suite de v.a. $\mathbf{X} = (X_1, \dots, X_D)$

Problèmes

- Comment déterminer la structure du RB (i.e. le graphe)?
- Comment estimer les lois de probabilité conditionnelles (LPC) : $P(X_d|pa(X_d)), d = 1,...,D$?

Approches envisageables

- Approche par expertise: Utilisation d'avis d'experts et connaissances métiers
- Approche statistique : Utilisation de bases de données (contenant éventuellement des informations incomplètes)
- Approche mixte : expertise + bases de données

Rappels stat LPC - données complètes Conclusion LPC données incomplètes Référ

Introduction

Objectif

000

Objectif

- Modéliser un phénomène aléatoire à partir d'un RB
- \Rightarrow Représenter la loi jointe d'une suite de v.a. $X = (X_1, \dots, X_D)$

Problèmes

- Comment déterminer la structure du RB (i.e. le graphe)?
- Comment estimer les lois de probabilité conditionnelles (LPC) : $P(X_d | pa(X_d)), d = 1, ..., D$?

Approches envisageables

- Approche par expertise: Utilisation d'avis d'experts et connaissances métiers
- Approche statistique : Utilisation de bases de données (contenant éventuellement des informations incomplètes)
- Approche mixte : expertise + bases de données

Rappels stat LPC - données complètes Conclusion LPC données incomplètes Réfu

Introduction

Objectif

000

Objectif

- Modéliser un phénomène aléatoire à partir d'un RB
- \Rightarrow Représenter la loi jointe d'une suite de v.a. $\mathbf{X} = (X_1, \dots, X_D)$

Problèmes

- Comment déterminer la structure du RB (i.e. le graphe)?
- Comment estimer les lois de probabilité conditionnelles (LPC) : $P(X_d | pa(X_d)), d = 1, ..., D$?

Approches envisageables

- Approche par expertise: Utilisation d'avis d'experts et connaissances métiers
- Approche statistique : Utilisation de bases de données (contenant éventuellement des informations incomplètes)
- Approche mixte : expertise + bases de données

000

Exemple: Pourquoi l'herbe de mon jardin est-elle mouillée?

000

Exemple: Pourquoi l'herbe de mon jardin est-elle mouillée?

Intro 00•

Exemple : Pourquoi l'herbe de mon jardin est-elle mouillée?

Exemple: Pourquoi l'herbe de mon jardin est-elle mouillée?

000

Exemple: Pourquoi l'herbe de mon jardin est-elle mouillée?

Plan

- Rappels statistiques

Base de données - Exemple

Date	Éq. dom. Éq. ext.		FT	нт
2013-08-09	Montpellier	Paris SG	1-1	1-0
2013-08-10	Bordeaux	Monaco	0-2	0-0
2013-08-10	Evian	Sochaux	1-1	1-0
2013-08-10	Lille	Lorient	1-0	1-0
2013-08-10	Lyon	Nice	4-0	1-0
2013-08-10	Nantes	Bastia	2-0	1-0
2013-08-10	Rennes	Reims	2-1	1-1
2013-08-10	Valenciennes	Toulouse	3-0	1-0
2013-08-11	Ajaccio	St Etienne	0-1	0-1
2013-08-11	Guingamp	Marseille	1-3	0-3
2013-08-16	Sochaux	Lyon	1-3	1-2
2013-08-17	Bastia	Valenciennes	2-0	0-0
2013-08-17	Marseille Evian		2-0	1-0
2013-08-17	Nice	Rennes	2-1	1-1

Base de données - Exemple

Date	Éq. dom. Éq. ext.		FT	НТ
2013-08-09	Montpellier	Paris SG	1-1	1-0
2013-08-10	Bordeaux	Monaco	0-2	0-0
2013-08-10	Evian	Sochaux	1-1	1-0
2013-08-10	Lille	Lorient	1-0	1-0
2013-08-10	Lyon	Nice	4-0	1-0
2013-08-10	Nantes	Bastia	2-0	1-0
2013-08-10	Rennes	Reims	2-1	1-1
2013-08-10	Valenciennes	Toulouse	3-0	1-0
2013-08-11	Ajaccio	St Etienne	0-1	0-1
2013-08-11	Guingamp Marseille		1-3	0-3
2013-08-16	Sochaux Lyon		1-3	1-2
2013-08-17	Bastia	Valenciennes	2-0	0-0
2013-08-17	Marseille	rseille Evian		1-0
2013-08-17	Nice	Rennes	2-1	1-1

Caractéristiques des données

- Nombre de variables : 5
- Valeurs prises par la
- Observation caractérisée

Base de données - Exemple

Date	Éq. dom.	Éq. ext.	FT	нт
2013-08-09	Montpellier	Paris SG	1-1	1-0
2013-08-10	Bordeaux	Monaco	0-2	0-0
2013-08-10	Evian	Sochaux	1-1	1-0
2013-08-10	Lille	Lorient	1-0	1-0
2013-08-10	Lyon	Nice	4-0	1-0
2013-08-10	Nantes	Bastia	2-0	1-0
2013-08-10	Rennes	Reims		1-1
2013-08-10	Valenciennes	Valenciennes Toulouse		1-0
2013-08-11	Ajaccio	St Etienne	0-1	0-1
2013-08-11	Guingamp	Marseille	1-3	0-3
2013-08-16	Sochaux	Lyon	1-3	1-2
2013-08-17	Bastia	Valenciennes	2-0	0-0
2013-08-17	Marseille	Evian	2-0	1-0
2013-08-17	Nice	Rennes	2-1	1-1

Caractéristiques des données

- Nombre de variables : 5
- Valeurs prises par la variable "FT"
- Observation caractérisée.

Base de données - Exemple

Rappels stat

Date	Éq. dom.	Éq. ext.	FT	нт
2013-08-09	Montpellier	Paris SG	1-1	1-0
2013-08-10	Bordeaux	Monaco	0-2	0-0
2013-08-10	Evian	Sochaux	1-1	1-0
2013-08-10	Lille	Lorient	1-0	1-0
2013-08-10	Lyon	Nice	4-0	1-0
2013-08-10	Nantes	Bastia	2-0	1-0
2013-08-10	Rennes	Reims	2-1	1-1
2013-08-10	Valenciennes	Toulouse	3-0	1-0
2013-08-11	Ajaccio	St Etienne	0-1	0-1
2013-08-11	Guingamp	Marseille	1-3	0-3
2013-08-16	Sochaux	Lyon	1-3	1-2
2013-08-17	Bastia	Valenciennes	2-0	0-0
2013-08-17	Marseille	Evian	2-0	1-0
2013-08-17	Nice	Rennes	2-1	1-1

Caractéristiques des données

- Nombre de variables : 5
- Valeurs prises par la variable "FT"
- Observation caractérisée par le vecteur (2013-08-10, Lille, Lorient, 1-0, 1-0)

Base de données - Définition

Définition : Base de données

- Une base de données (BdD), notée \mathcal{D} , est un ensemble de Nobservations/individus/exemples caractérisés par *D* variables
- Formellement, une BdD peut se mettre sous la forme d'une matrice :

$$\mathcal{D} = \begin{bmatrix} x_{1,1} & \dots & x_{1,d} & \dots & x_{1,D} \\ \vdots & & \vdots & & \vdots \\ x_{n,1} & \dots & x_{n,d} & \dots & x_{n,D} \\ \vdots & & \vdots & & \vdots \\ x_{N,1} & \dots & x_{N,d} & \dots & x_{N,D} \end{bmatrix}$$

- Le vecteur colonne $\mathbf{x}_{\cdot,d} = (x_{1,d}, \dots, x_{n,d}, \dots, x_{N,d})$ représente toutes les observations de la variable d
- Le vecteur ligne $\mathbf{x}_{n,\cdot} = (x_{n,1}, \dots, x_{n,d}, \dots, x_{n,D})$ représente la n-ème observation de la BdD

Modélisation statistique : objectifs et démarche

Objectifs

- Résumer quantitativement l'information contenue dans une BdD en utilisant un modèle probabiliste
- Exploiter le modèle pour déduire de nouvelles connaissances

- v.a. $\mathbf{X} = (X_1, \dots, X_D)$ de loi jointe $\mathcal{L}(\theta)$ où θ représente les paramètres
- Notation : $\mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\theta)$

Modélisation statistique : objectifs et démarche

Objectifs

- Résumer quantitativement l'information contenue dans une BdD en utilisant un modèle probabiliste
- Exploiter le modèle pour déduire de nouvelles connaissances

Démarche

- Considérer les données comme des réalisations de variables aléatoires (v.a.) associées à une certaine loi jointe
- Formellement, cela signifie que chaque observation $\mathbf{x}_{n,\cdot} = (x_{n,1}, \dots, x_{n,D})$ est supposée être une réalisation d'une suite de v.a. $\mathbf{X} = (X_1, \dots, X_D)$ de loi jointe $\mathcal{L}(\theta)$ où θ représente les paramètres de la loi
- Notation : $\mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\boldsymbol{\theta})$

Modélisation statistique : remarques et exemple

Remarques

- Si les observations dans les données sont indépendants, on parle de données i.i.d. (Indépendantes et Identiquement Distribuées)
- Si les caractéristiques (variables) des observations sont indépendantes, alors chaque variable X_d suit une loi $\mathcal{L}_d(\theta_d)$ (Notation : $X_d \sim \mathcal{L}_d(\theta_d)$)

Modèle gaussien

- Données unidimensionnelles (D=1)
- $\Rightarrow \mathbf{X} = X_1 \sim \mathcal{N}(\mu, \sigma)$
- \Rightarrow $\theta = (\mu, \sigma)$: moyenne et écart-type
- Données multidimensionnelles ($D \ge 1$)
- $\Rightarrow \mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\Rightarrow \theta = (\mu, \Sigma)$: vecteur des moyennes et matrice de variance-covariance

Modélisation statistique : remarques et exemple

Remarques

- Si les observations dans les données sont indépendants, on parle de données i.i.d. (Indépendantes et Identiquement Distribuées)
- Si les caractéristiques (variables) des observations sont indépendantes, alors chaque variable X_d suit une loi $\mathcal{L}_d(\theta_d)$ (Notation : $X_d \sim \mathcal{L}_d(\theta_d)$)

Modèle gaussien

- Données unidimensionnelles (D=1)
- $\Rightarrow \mathbf{X} = X_1 \sim \mathcal{N}(\mu, \sigma)$
- $\Rightarrow \theta = (\mu, \sigma)$: moyenne et écart-type
- Données multidimensionnelles (D > 1)
- $\Rightarrow \mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- \Rightarrow $heta=(oldsymbol{\mu},oldsymbol{\Sigma})$: vecteur des moyennes et matrice de variance-covariance

Estimation des paramètres d'un modèle

Contexte

- Données : On dispose d'un jeu de données $\mathcal{D} = (x_1, \dots, x_N)$ où chaque observation $x_{n,\cdot}$ est caractérisée par D variables $(x_{n,1},\ldots,x_{n,D})$
- Modélisation : On suppose que \mathcal{D} est une suite de N réalisations i.i.d. du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_D)$ distribué selon la loi $\mathcal{L}(\boldsymbol{\theta})$
- Problématique : Comment estimer les paramètres θ à partir des données \mathcal{D} ?

Estimation des paramètres d'un modèle

Contexte

- Données : On dispose d'un jeu de données $\mathcal{D} = (x_1, \dots, x_N)$ où chaque observation $x_{n,\cdot}$ est caractérisée par D variables $(x_{n,1},\ldots,x_{n,D})$
- Modélisation : On suppose que \mathcal{D} est une suite de N réalisations i.i.d. du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_D)$ distribué selon la loi $\mathcal{L}(\boldsymbol{\theta})$
- Problématique : Comment estimer les paramètres θ à partir des données \mathcal{D} ?

- Construire un estimateur de $\theta!$
- Approche classique : Déterminer l'estimateur du maximum de vraisemblance de θ , souvent noté θ^{MV}

Estimation des paramètres d'un modèle - exemple de données

Données de clientèle bancaire

- Âge : âge de la personne
- Épargne : la personne a t-elle de l'épargne?
- Vente livret A : a t-on réussi à vendre un livret A à cette personne?

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

Définition de la vraisemblance d'un modèle par rapport à une observation

Vraisemblance d'un modèle par rapport à une observation

- Soit $\mathcal{D} = (\mathbf{x}_{1, \dots}, \mathbf{x}_{N, \dots})$ un ensemble de données i.i.d. modélisées par les v.a. $\mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\boldsymbol{\theta})$
- La vraisemblance mesure la plausibilité d'un modèle probabiliste (caractérisé par des paramètres θ) par rapport à l'observation $\mathbf{x}_{n,\cdot} \in \mathcal{D}$
- \Rightarrow La vraisemblance est notée $L(\theta; x_{n,\cdot})$
- En pratique le logarithme de la vraisemblance est souvent utilisé, on parle alors de log-vraisemblance $\ell\left(\theta;x_{n,\cdot}\right)=\ln L\left(\theta;x_{n,\cdot}\right)$

Interprétation

- une vraisemblance élevée signifie que le modèle choisi est crédible par rapport à la donnée observée
- une vraisemblance **faible** signifie que le modèle choisi est **peu crédible** par rapport à la donnée observée

Définition de la vraisemblance d'un modèle par rapport à une observation

Vraisemblance d'un modèle par rapport à une observation

- Soit $\mathcal{D} = (\mathbf{x}_{1,\cdot}, \dots, \mathbf{x}_{N,\cdot})$ un ensemble de données i.i.d. modélisées par les v.a. $\mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\boldsymbol{\theta})$
- La vraisemblance mesure la plausibilité d'un modèle probabiliste (caractérisé par des paramètres θ) par rapport à l'observation $x_{n,\cdot} \in \mathcal{D}$
- \Rightarrow La vraisemblance est notée $L(\theta; x_{n,\cdot})$
- En pratique le logarithme de la vraisemblance est souvent utilisé, on parle alors de log-vraisemblance $\ell\left(\theta;x_{n,\cdot}\right)=\ln L\left(\theta;x_{n,\cdot}\right)$

Interprétation

- une vraisemblance élevée signifie que le modèle choisi est crédible par rapport à la donnée observée
- une vraisemblance **faible** signifie que le modèle choisi est **peu crédible** par rapport à la donnée observée

Vraisemblance d'un modèle discret et fini

Vraisemblance d'un modèle discret et fini

• Si les v.a. $\mathbf{X} = (X_1, \dots, X_D)$ sont discrètes et finies, alors la vraisemblance du modèle $P(X_1, \ldots, X_D)$ sachant l'observation x_n , est donnée par :

$$L(P; \mathbf{x}_{n,\cdot}) = P(X_1 = x_{n,1}, \dots, X_D = x_{n,D}), \text{ (ici } \theta = P)$$

- Observation caractérisée par

Vraisemblance d'un modèle discret et fini

Vraisemblance d'un modèle discret et fini

• Si les v.a. $\mathbf{X} = (X_1, \dots, X_D)$ sont discrètes et finies, alors la vraisemblance du modèle $P(X_1, \ldots, X_D)$ sachant l'observation x_n , est donnée par :

$$L(P; \mathbf{x}_{n,\cdot}) = P(X_1 = x_{n,1}, \dots, X_D = x_{n,D}), \text{ (ici } \theta = P)$$

P(Âge, Épargne, Vente livret A)					
Âge	Épargne	Vente livret A	Proba		
[18,25]	non	échec	0,08		
[18,25]	non	succès	0,12		
[18,25]	oui	échec	0,0075		
[18,25]	oui	succès	0,0425		
[26,59]	non	échec	0,12		
[26,59]	non	succès	0,08		
[26,59]	oui	échec	0,06		
[26,59]	oui	succès	0,24		
60+	non	échec	0,05625		
60+	non	succès	0,00625		
60+	oui	échec	0,140625		
60+	oui	eucode	0.046976		

- Observation caractérisée par

Vraisemblance d'un modèle discret et fini

Vraisemblance d'un modèle discret et fini

• Si les v.a. $\mathbf{X} = (X_1, \dots, X_D)$ sont discrètes et finies, alors la vraisemblance du modèle $P(X_1, \ldots, X_D)$ sachant l'observation x_n , est donnée par :

$$L(P; \mathbf{x}_{n,\cdot}) = P(X_1 = x_{n,1}, \dots, X_D = x_{n,D}), \text{ (ici } \theta = P)$$

P(Âge, Épargne, Vente livret A)						
Âge	Épargne	Vente livret A	Proba			
[18,25]	non	échec	0,08			
[18,25]	non	succès	0,12			
[18,25]	oui	échec	0,0075			
[18,25]	oui	succès	0,0425			
[26,59]	non	échec	0,12			
[26,59]	non	succès	0,08			
[26,59]	oui	échec	0,06			
[26,59]	oui	succès	0,24			
60+	non	échec	0,05625			
60+	non	succès	0,00625			
60+	oui	échec	0,140625			
co.			0.040075			

- Observation caractérisée par
 - Âge : [26,59]
 - Épargne : non
 - Vente livret A : échec

Vraisemblance d'un modèle discret et fini

Vraisemblance d'un modèle discret et fini

• Si les v.a. $\mathbf{X} = (X_1, \dots, X_D)$ sont discrètes et finies, alors la vraisemblance du modèle $P(X_1, \ldots, X_D)$ sachant l'observation x_n , est donnée par :

$$L(P; \mathbf{x}_{n,\cdot}) = P(X_1 = x_{n,1}, \dots, X_D = x_{n,D}), \text{ (ici } \theta = P)$$

ı	P(Âge, Éparg	ne, Vente livret A)
Âge	Épargne	Vente livret A	Proba
[18,25]	non	échec	0,08
[18,25]	non	succès	0,12
[18,25]	oui	échec	0,0075
[18,25]	oui	succès	0,0425
[26,59]	non	échec	0,12
[26,59]	non	succès	0,08
[26,59]	oui	échec	0,06
[26,59]	oui	succès	0,24
60+	non	échec	0,05625
60+	non	succès	0,00625
60+	oui	échec	0,140625
60+	oui	succès	0,046875

- Observation caractérisée par
 - Âge : [26,59]
 - Épargne : non
 - Vente livret A : échec
- \Rightarrow Vraisemblance = 0.12
- Log-vraisemblance \simeq -2.12

Vraisemblance d'un modèle par rapport à un jeu de données

Vraisemblance d'un modèle par rapport à un jeu de données

- La vraisemblance d'un modèle (paramétré par θ) par rapport à un jeu de données \mathcal{D} , notée $L(\theta; \mathcal{D})$, correspond à la plausibilité du modèle θ par rapport à l'observation des données \mathcal{D}
- Lorsque les données sont supposées i.i.d., la vraisemblance est définie par

$$L(\boldsymbol{\theta}; \mathcal{D}) = \prod_{n=1}^{N} L(\boldsymbol{\theta}; \boldsymbol{x}_{n, \cdot})$$

 Lorsque l'on s'intéresse à un jeu de données, on utilise souvent la log-vraisemblance donnée par

$$\ell(\boldsymbol{\theta}; \mathcal{D}) = \ln L(\boldsymbol{\theta}; \mathcal{D}) = \sum_{n=1}^{N} \ell(\boldsymbol{\theta}; \mathbf{x}_{n, \cdot})$$

Vraisemblance d'un modèle par rapport à un jeu de données

Interprétation

- La vraisemblance est un indicateur permettant de comparer différents modèles probabilistes compte tenu de données oberservées
- ullet Dans l'absolu plus la log-vraisemblance d'un modèle par rapport à des ${\mathcal D}$ est élevée, plus le modèle probabiliste considéré est adapté pour représenter le phénomène sous-jacent

Attention

- La vraisemblance décroît avec le nombre de données observées
- ⇒ Il n'est pas pertinent de comparer des vraisemblances obtenues à partir de jeux de données de taille différente
- ⇒ En revanche, il peut être intéressant de comparer des vraisemblances moyennes par donnée observée

Vraisemblance d'un modèle par rapport à jeu de données - Exemple

Loi jointe

	P(Âge, Épargne, Vente livret A)					
Âge	Épargne	Vente livret A	Proba			
[18,25]	non	échec	0,08			
[18,25]	non	succès	0,12			
[18,25]	oui	échec	0,0075			
[18,25]	oui	succès	0,0425			
[26,59]	non	échec	0,12			
[26,59]	non	succès	0,08			
[26,59]	oui	échec	0,06			
[26,59]	oui	succès	0,24			
60+	non	échec	0,05625			
60+	non	succès	0,00625			
60+	oui	échec	0,140625			
60+	oui	succès	0,046875			

Données

A : Classe âge	E : Épargne	V : Vente livret A	Vraisemblance	Log-vraisemblance
[26,59]	non	échec		
[18,25]	non	échec		
60+	oui	succès		
Total données				

Vraisemblance d'un modèle par rapport à jeu de données - Exemple

Loi jointe

	P(Âge, Épargne, Vente livret A)					
Âge	Épargne	Vente livret A	Proba			
[18,25]	non	échec	0,08			
[18,25]	non	succès	0,12			
[18,25]	oui	échec	0,0075			
[18,25]	oui	succès	0,0425			
[26,59]	non	échec	0,12			
[26,59]	non	succès	0,08			
[26,59]	oui	échec	0,06			
[26,59]	oui	succès	0,24			
60+	non	échec	0,05625			
60+	non	succès	0,00625			
60+	oui	échec	0,140625			
60+	oui	succès	0,046875			

Données

A : Classe âge	E : Épargne	V : Vente livret A	Vraisemblance	Log-vraisemblance
[26,59]	non	échec	0,12	-2.1203
[18,25]	non	échec		
60+	oui	succès		
Total données				

Vraisemblance d'un modèle par rapport à jeu de données - Exemple

Loi jointe

P(Âge, Épargne, Vente livret A)					
Âge	Épargne	Vente livret A	Proba		
[18,25]	non	échec	0,08		
[18,25]	non	succès	0,12		
[18,25]	oui	échec	0,0075		
[18,25]	oui	succès	0,0425		
[26,59]	non	échec	0,12		
[26,59]	non	succès	0,08		
[26,59]	oui	échec	0,06		
[26,59]	oui	succès	0,24		
60+	non	échec	0,05625		
60+	non	succès	0,00625		
60+	oui	échec	0,140625		
60+	oui	succès	0,046875		

Données

Log-vraisemblance	Vraisemblance	V : Vente livret A	E : Épargne	A : Classe âge
-2.1203	0,12	échec	non	[26,59]
-2.5257	0,08	échec	non	[18,25]
		succès	oui	60+
		Total données		

Rappels statistiques

Vraisemblance d'un modèle par rapport à jeu de données - Exemple

Loi jointe

	P(Âge, Épargne, Vente livret A)			
Âge	Épargne	Vente livret A	Proba	
[18,25]	non	échec	0,08	
[18,25]	non	succès	0,12	
[18,25]	oui	échec	0,0075	
[18,25]	oui	succès	0,0425	
[26,59]	non	échec	0,12	
[26,59]	non	succès	0,08	
[26,59]	oui	échec	0,06	
[26,59]	oui	succès	0,24	
60+	non	échec	0,05625	
60+	non	succès	0,00625	
60+	oui	échec	0,140625	
60+	oui	succès	0,046875	

Données

A : Classe âge	E : Épargne	V : Vente livret A	Vraisemblance	Log-vraisemblance
[26,59]	non	échec	0,12	-2.1203
[18,25]	non	échec	0,08	-2.5257
60+	oui	succès	0,046875	-3.0603
Total données				

Rappels statistiques

Vraisemblance d'un modèle par rapport à jeu de données - Exemple

Loi jointe

	P(Âge, Épargne, Vente livret A)				
Âge	Épargne	Vente livret A	Proba		
[18,25]	non	échec	0,08		
[18,25]	non	succès	0,12		
[18,25]	oui	échec	0,0075		
[18,25]	oui	succès	0,0425		
[26,59]	non	échec	0,12		
[26,59]	non	succès	0,08		
[26,59]	oui	échec	0,06		
[26,59]	oui	succès	0,24		
60+	non	échec	0,05625		
60+	non	succès	0,00625		
60+	oui	échec	0,140625		
60+	oui	succès	0,046875		

Données

A : Classe âg	2	E : Épargne	V : Vente livret A	Vraisemblance	Log-vraisemblance
[26,5	9]	non	échec	0,12	-2.1203
[18,2	5]	non	échec	0,08	-2.5257
60	+	oui	succès	0,046875	-3.0603
	Total données			4,5E-4	-7.7063

Estimateur du maximum de vraisemblance

Estimateur du maximum de vraisemblance (Fisher 1922)

- Soit $\mathcal{D} = (\mathbf{x}_{1,\cdot}, \dots, \mathbf{x}_{N,\cdot})$ un ensemble de données supposées i.i.d. modélisées par les v.a. $\mathbf{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\boldsymbol{\theta})$
- On dit que θ^{MV} est un estimateur du maximum de vraisemblance (EMV) de θ si θ^{MV} maximise la vraisemblance, c-à-d.

$$\boldsymbol{\theta}^{\mathsf{MV}} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}; \mathcal{D}\right)$$

Propriétés des EMV

Les EMV sont

- Convergents en probabilité vers les paramètres à estimer
- Efficaces, i.e. ils convergent rapidement
- Asymptotiquement normaux, i.e. il est facile de construire des intervalles de confiance sur les estimations obtenues

Rappels statistiques

Estimateur du maximum de vraisemblance

Estimateur du maximum de vraisemblance (Fisher 1922)

- Soit $\mathcal{D} = (x_{1,\cdot}, \dots, x_{N,\cdot})$ un ensemble de données supposées i.i.d. modélisées par les v.a. $\boldsymbol{X} = (X_1, \dots, X_D) \sim \mathcal{L}(\boldsymbol{\theta})$
- ullet On dit que $m{ heta}^{MV}$ est un estimateur du maximum de vraisemblance (EMV) de θ si θ^{MV} maximise la vraisemblance, c-à-d.

$$\theta^{\mathsf{MV}} = \underset{\theta}{\mathsf{arg}} \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathcal{D})$$

Propriétés des EMV

Les FMV sont:

- Convergents en probabilité vers les paramètres à estimer
- Efficaces, i.e. ils convergent rapidement
- Asymptotiquement normaux, i.e. il est facile de construire des intervalles de confiance sur les estimations obtenues

- Apprentissage des LPC : Données complètes
 - Contexte
 - Vraisemblance dans un RB
 - FMV dans un RB

Contexte

- Données : On dispose d'un jeu de données $\mathcal{D} = (x_{1,\cdot}, \dots, x_{N,\cdot})$ où chaque observation $x_{n,\cdot}$ est caractérisée par D variables $(x_{n,1},\ldots,x_{n,D})$
- Modélisation : On suppose que \mathcal{D} est une suite de N réalisations i.i.d. du vecteur aléatoire discret et fini $\boldsymbol{X} = (X_1, \dots, X_D)$ représenté par un RB \mathcal{M} défini par ses LPC, notées ici $\theta_d = (P(X_d|pa(X_d)))_{d=1}$
- Le graphe du RB est supposé connu

Contexte - Exemple

Données

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

Contexte - Exemple

Données

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

Modélisation

Vraisemblance dans un RB

Vraisemblance dans un RB

• La vraisemblance du RB $\mathcal{M}(\theta_1,\ldots,\theta_D)$ par rapport à une donnée $\mathbf{x}_{n,\cdot}\in\mathcal{D}$ est définie par

$$L(\theta_1,\ldots,\theta_D;\boldsymbol{x}_{n,\cdot})=\prod_{d=1}^D P(X_d=x_{n,d}|\operatorname{pa}(X_d)=\operatorname{pa}(x_{n,d}))$$

 \Rightarrow La vraisemblance du RB $\mathcal{M}\left(\theta_{1},\ldots,\theta_{D}\right)$ par rapport aux données \mathcal{D} i.i.d. est définie par

$$L(\theta_1,\ldots,\theta_D;\mathcal{D}) = \prod_{n=1}^{N}\prod_{d=1}^{D}P\left(X_d = x_{n,d}|\operatorname{pa}\left(X_d\right) = \operatorname{pa}\left(x_{n,d}\right)\right)$$

⇒ D'où la log-vraisemblance :

$$\ell(\theta_1, ..., \theta_D; \mathcal{D}) = \sum_{n=1}^{N} \sum_{d=1}^{D} \ln P(X_d = x_{n,d} | pa(X_d) = pa(x_{n,d}))$$

Vraisemblance dans un RB

Vraisemblance dans un RB

• La vraisemblance du RB $\mathcal{M}(\theta_1, \dots, \theta_D)$ par rapport à une donnée $x_{n,\cdot} \in \mathcal{D}$ est définie par

$$L(\theta_1,\ldots,\theta_D;\boldsymbol{x}_{n,\cdot})=\prod_{d=1}^D P(X_d=x_{n,d}|\operatorname{pa}(X_d)=\operatorname{pa}(x_{n,d}))$$

 \Rightarrow La vraisemblance du RB $\mathcal{M}(\theta_1,\ldots,\theta_D)$ par rapport aux données \mathcal{D} i.i.d. est définie par

$$L(\theta_1,\ldots,\theta_D;\mathcal{D}) = \prod_{n=1}^{N} \prod_{d=1}^{D} P(X_d = x_{n,d} | \operatorname{pa}(X_d) = \operatorname{pa}(x_{n,d}))$$

$$\ell(\theta_1, ..., \theta_D; \mathcal{D}) = \sum_{n=1}^{N} \sum_{d=1}^{D} \ln P(X_d = x_{n,d} | pa(X_d) = pa(x_{n,d}))$$

Vraisemblance dans un RB

Vraisemblance dans un RB

• La vraisemblance du RB $\mathcal{M}(\theta_1, \dots, \theta_D)$ par rapport à une donnée $x_{n,\cdot} \in \mathcal{D}$ est définie par

$$L(\theta_1,\ldots,\theta_D;\boldsymbol{x}_{n,\cdot})=\prod_{d=1}^D P(X_d=x_{n,d}|\operatorname{pa}(X_d)=\operatorname{pa}(x_{n,d}))$$

 \Rightarrow La vraisemblance du RB $\mathcal{M}(\theta_1,\ldots,\theta_D)$ par rapport aux données \mathcal{D} i.i.d. est définie par

$$L(\theta_1,\ldots,\theta_D;\mathcal{D}) = \prod_{n=1}^{N} \prod_{d=1}^{D} P(X_d = x_{n,d} | \operatorname{pa}(X_d) = \operatorname{pa}(x_{n,d}))$$

⇒ D'où la log-vraisemblance :

$$\ell(\theta_1, ..., \theta_D; \mathcal{D}) = \sum_{n=1}^{N} \sum_{d=1}^{D} \ln P(X_d = x_{n,d} | pa(X_d) = pa(x_{n,d}))$$

^P ^{MV} (Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non		
[18,25]	oui		
[26,59]	non		
[26,59]	oui		
60+	non		
60+	oui		

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^PM'(Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non		
[18,25]	oui		
[26,59]	non		
[26,59]	oui		
60+	non		
60+	oui		

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^PM'(Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non		
[18,25]	oui		
[26,59]	non		
[26,59]	oui		
60+	non		
60+	oui		

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^P™(Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non	1/2	1/2
[18,25]	oui		
[26,59]	non		
[26,59]	oui		
60+	non		
60+	oui		

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^P ^{MV} (Vente Âge, Épargne)				
		Vei	nte	
Âge	Épargne	échec	succès	
[18,25]	non	1/2	1/2	
[18,25]	oui	0/1	1/1	
[26,59]	non			
[26,59]	oui			
60+	non			
60+	oui			

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^P ^{MV} (Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non	1/2	1/2
[18,25]	oui	0/1	1/1
[26,59]	non	4/5	1/5
[26,59]	oui	1/2	1/2
60+	non	2/2	0/2
60+	oui	1/2	1/2

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

^P ^{MV} (Vente Âge, Épargne)			
		Vei	nte
Âge	Épargne	échec	succès
[18,25]	non	1/2	1/2
[18,25]	oui	0/1	1/1
[26,59]	non	4/5	1/5
[26,59]	oui	1/2	1/2
60+	non	2/2	0/2
60+	oui	1/2	1/2

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

Maximum de vraisemblance dans un RB

Estimateurs du maximum de vraisemblance

 On cherche les estimateurs du maximum de vraisemblance (EMV) des LPC $\theta_1^{MV}, \dots, \theta_D^{MV}$ vérifiant :

$$\left(\theta_{1}^{\mathsf{MV}}, \dots, \theta_{D}^{\mathsf{MV}}\right) = \operatorname*{arg\,max}_{\theta_{1}, \dots, \theta_{D}} \ \sum_{n=1}^{N} \sum_{d=1}^{D} \ln P\left(X_{d} = x_{n, d} | \mathsf{pa}\left(X_{d}\right) = \mathsf{pa}\left(x_{n, d}\right)\right)$$

⇒ Les estimations du maximum de vraisemblance pour chaque LPC ont pour expression:

$$\hat{P}^{\mathsf{MV}}\left(X_{d} = \mathsf{x}_{d,k} | \mathsf{pa}\left(X_{d}\right) = \mathsf{x}_{d,j}'\right) = \hat{\theta}_{d,j,k}^{\mathsf{MV}} = \frac{N_{d,j,k}}{\sum_{k=1} N_{d,j,k}}$$

- $x_{d,k}$: k-ème valeur possible pour la v.a. X_d
- $\mathbf{x}'_{d,i}$: j-ème configuration de valeurs possibles pour les parents de la v.a. X_d
- N_{d,i,k}: Nombre d'occurrences de l'événement $\{X_d = x_{d,k} \text{ et pa } (X_d) = x'_{d,i} \}$ dans les données \mathcal{D}

- Conclusion

Compétences acquises

- Rappels généraux sur l'apprentissage statistique
- Formalisation du problème d'apprentissage des LPC du point de vue statistique
- Mise en oeuvre de la méthode du maximum de vraisemblance pour estimer les IPC d'un RB

Pour aller plus loin

- Apprentissage des LPC dans le cas de données incomplètes
- Apprentissage automatique de la structure d'un RB

Plan

- Bonus : Apprentissage des LPC : Données incomplètes
 - Représentation disjonctive des données
 - Types de données incomplètes
 - Hypothèses autour des données manquantes
 - Algorithme EM
 - Algorithme EM dans les RB

Représentation disjonctive des données

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

Représentation classique

- Les observations de chaque variable sont données explicitement
- → Représentation intuitive mais peu adaptée aux traitements des données incomplètes

Représentation disjonctive des données

	A : Classe âge		E : Ép	argne	V : Vente	e livret A
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	1	0	1	0
0	1	0	1	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1	0

Représentation disjonctive

- Chaque variable X possédant K modalités est décomposée en K sous-variables binaires où la modalité prise est associée à la valeur 1
- Représentation plus complexe mais adaptée aux traitements des différents types de données incomplètes

Types de données incomplètes

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
60+	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

- Données manquantes
- Onnées partiellement observées (généralisation cas 1
- Onnées partiellement observées pondérées (généralisation cas 1-2)

Types de données incomplètes

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
?	non	échec
[26,59]	non	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
?	non	échec
[26,59]	?	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	échec

- Données manquantes
- Données partiellement observées (généralisation cas 1)
- Données partiellement observées pondérées (généralisation cas 1-2)

Types de données incomplètes

A : Classe âge			E : Épargne		V : Vento	e livret A
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
?	?	?	1	0	1	0
0	1	0	1	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
?	?	?	1	0	1	0
0	1	0	?	?	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1	0

- Données manquantes
- Onnées partiellement observées (généralisation cas 1
- Données partiellement observées pondérées (généralisation cas 1-2)

Types de données incomplètes

	A : Classe âge		E : Épargne		V : Vento	e livret A
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
?	?	0	1	0	1	0
0	1	0	1	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0	?	?	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1	0

- Données manquantes
- Onnées partiellement observées (généralisation cas 1)
- Données partiellement observées pondérées (généralisation cas 1-2)

Types de données incomplètes

A : Classe âge			E : Épargne		V : Vente	e livret A
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	1	0	1	0	1	0
0	1	0	1	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0	1/3	2/3	1	0	1	0
0	1	0	1	1	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1	0

- Données manquantes
- Données partiellement observées (généralisation cas 1)
- Onnées partiellement observées pondérées (généralisation cas 1-2)

Types de données incomplètes (Rubin 1976)

Hypothèse MCAR: Missing Completely At Random

- La perte de données est issue d'un phénomène aléatoire indépendant des variables observées
- ⇒ Filtrage des données manquantes pour l'estimation des paramètres

Hypothèse MAR: Missing At Random

- Les variables ayant des observations manquantes dépendent de variables observées
- ⇒ Estimer les paramètres en utilisant l'algorithme EM

Hypothèse NMAR: Not Missing At Random

- Les variables ayant des observations manquantes dépendent de variables inconnues non observées
- ⇒ Identifier et ajouter de nouvelles variables pertinentes dans le modèle
- ⇒ Retour à l'hypothèse MAR

Algorithme Expectation-Maximisation (Dempster, Laird et Rubin 1977)

Principes de l'algorithme EM

- Classe d'algorithmes d'optimisation itératifs
- Décomposition d'un problème d'optimisation complexe en deux sous problèmes d'optimisation alternés plus simples

Principale application

 Calculer les estimations des paramètres d'un modèle probabiliste par la méthode du maximum de vraisemblance en présence de données incomplètes

Propriétés

- Méthode d'optimisation locale
- ⇒ La convergence vers l'optimum global n'est pas garantie
- ⇒ La qualité de la solution calculée dépend de l'initialisation de l'algorithme

Algorithme Expectation-Maximisation (Dempster, Laird et Rubin 1977)

Principes de l'algorithme EM

- Classe d'algorithmes d'optimisation itératifs
- Décomposition d'un problème d'optimisation complexe en deux sous problèmes d'optimisation alternés plus simples

Principale application

 Calculer les estimations des paramètres d'un modèle probabiliste par la méthode du maximum de vraisemblance en présence de données incomplètes

Propriétés

- Méthode d'optimisation locale
- ⇒ La convergence vers l'optimum global n'est pas garantie
- ⇒ La qualité de la solution calculée dépend de l'initialisation de l'algorithme

Algorithme Expectation-Maximisation (Dempster, Laird et Rubin 1977)

Principes de l'algorithme EM

- Classe d'algorithmes d'optimisation itératifs
- Décomposition d'un problème d'optimisation complexe en deux sous problèmes d'optimisation alternés plus simples

Principale application

 Calculer les estimations des paramètres d'un modèle probabiliste par la méthode du maximum de vraisemblance en présence de données incomplètes

Propriétés

- Méthode d'optimisation locale
- ⇒ La convergence vers l'optimum global n'est pas garantie
- ⇒ La qualité de la solution calculée dépend de l'initialisation de l'algorithme

Algorithme EM dans les RB - Contexte

- Données disponibles $\mathcal{D} = \mathcal{D}_C \cup \mathcal{D}_I$:
 - $\mathcal{D}_{\mathcal{C}}$: Observations complètement observées
 - \mathcal{D}_{l} : Observations partiellement observées
- Modélisation : $\mathcal{D}=$ réalisations i.i.d. de la suite de v.a. $\mathbf{X}=(X_1,\ldots,X_D)$ représenté par un RB \mathcal{M} de structure supposée connue

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	?	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
?	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	?

Algorithme EM dans les RB - Contexte

- Données disponibles $\mathcal{D} = \mathcal{D}_C \cup \mathcal{D}_I$:
 - \mathcal{D}_{C} : Observations complètement observées
 - \mathcal{D}_{l} : Observations partiellement observées
- Modélisation : $\mathcal{D}=$ réalisations i.i.d. de la suite de v.a. $\mathbf{X}=(X_1,\ldots,X_D)$ représenté par un RB \mathcal{M} de structure supposée connue

A : Classe äge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	?	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
?	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	?

Algorithme EM dans les RB - Contexte

- Données disponibles $\mathcal{D} = \mathcal{D}_C \cup \mathcal{D}_I$:
 - \mathcal{D}_{C} : Observations complètement observées
 - \mathcal{D}_{l} : Observations partiellement observées
- Modélisation : $\mathcal{D}=$ réalisations i.i.d. de la suite de v.a. $\mathbf{X}=(X_1,\ldots,X_D)$ représenté par un RB \mathcal{M} de structure supposée connue

A : Classe äge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	?	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
?	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	?

Algorithme EM dans les RB - Contexte

- Données disponibles $\mathcal{D} = \mathcal{D}_C \cup \mathcal{D}_I$:
 - \mathcal{D}_{C} : Observations complètement observées
 - \mathcal{D}_{l} : Observations partiellement observées
- Modélisation : $\mathcal{D} =$ réalisations i.i.d. de la suite de v.a. $\mathbf{X} = (X_1, \dots, X_D)$ représenté par un RB \mathcal{M} de structure supposée connue

V : Vente livret A	E : Épargne	A : Classe äge
échec	non	[26,59]
échec	non	[18,25]
échec	non	[26,59]
échec	?	[26,59]
succès	oui	60+
échec	oui	60+
succès	oui	[18,25]
échec	non	60+
échec	non	?
succès	non	[26,59]
succès	non	[18,25]
succès	oui	[26,59]
échec	oui	[26,59]
2		126 EM

Algorithme EM dans les RB - Illustration

Algorithme EM: Données d'entrée

Données \mathcal{D}

A : Classe âge	E : Épargne	V : Vente livret A
[26,59]	non	échec
[18,25]	non	échec
[26,59]	non	échec
[26,59]	?	échec
60+	oui	succès
60+	oui	échec
[18,25]	oui	succès
60+	non	échec
?	non	échec
[26,59]	non	succès
[18,25]	non	succès
[26,59]	oui	succès
[26,59]	oui	échec
[26,59]	non	?

Modèle M

Algorithme EM dans les RB - Illustration

Algorithme EM: Données d'entrée

Données $\mathcal D$

А	A : Classe âge			E : Épargne		V : Vente livret A	
[18,25]	[26,59]	60+	non	oui	échec	succès	
0	1	0	1	0	1	0	
1	0	0	1	0	1	0	
1	0	0	1	0	1	0	
0	1	0	?	?	1	0	
0	0	1	0	1	0	1	
0	0	1	0	1	1	0	
1	0	0	0	1	0	1	
0	0	1	1	0	1	0	
?	?	?	1	0	1	0	
0	1	0	1	0	0	1	
1	0	0	1	0	0	1	
0	1	0	0	1	0	1	
0	1	0	0	1	1	0	
0	1	0	1	0	?	?	

Modèle M

Algorithme EM dans les RB - Illustration

Algorithme EM: Initialisation

Données $\mathcal{D}^{(0)}$

A : Classe âge		E : Épargne		V : Vente livret A		
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	?	?	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
?	?	?	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	?	?

Modèle $\mathcal{M}^{(0)}$

Algorithme EM dans les RB - Illustration

Algorithme EM: Intération 1 - Étape E

Données $\mathcal{D}^{(1)}$

A : Classe âge		E : Épargne		V : Vente livret A		
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	1/2	1/2	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
1/3	1/3	1/3	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1/2	1/2

Modèle $\mathcal{M}^{(0)}$

Algorithme EM dans les RB - Illustration

Algorithme EM: Intération 1 - Étape M

Données $\mathcal{D}^{(1)}$

	. 61 0		F . F		W-W	
A : Classe âge		E : Épargne		V : Vente livret A		
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	1/2	1/2	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
1/3	1/3	1/3	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	1/2	1/2

Modèle $\mathcal{M}^{(1)}$

Algorithme EM dans les RB - Illustration

Algorithme EM: Intération 2 - Étape E

Données $\mathcal{D}^{(2)}$

A : Classe âge			E : Épargne		V : Vente livret A	
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	0,6875	0,3125	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0,292	0,417	0,292	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	0,735	0,265

Modèle $\mathcal{M}^{(1)}$

Algorithme EM dans les RB - Illustration

Algorithme EM: Intération 2 - Étape M

Données $\mathcal{D}^{(2)}$

A : Classe âge			E : Épargne		V : Vente livret A	
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	0,6875	0,3125	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0,292	0,417	0,292	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	0,735	0,265

Modèle $\mathcal{M}^{(2)}$

Algorithme EM dans les RB - Illustration

Algorithme EM: Intération 3 - Étape E

Données $\mathcal{D}^{(3)}$

A : Classe âge			E : Épargne		V : Vente livret A	
[18,25]	[26,59]	60+	non	oui	échec	succès
0	1	0	1	0	1	0
1	0	0	1	0	1	0
1	0	0	1	0	1	0
0	1	0	0,711	0,289	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	0
1	0	0	0	1	0	1
0	0	1	1	0	1	0
0,286	0,428	0,286	1	0	1	0
0	1	0	1	0	0	1
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	1	1	0
0	1	0	1	0	0,759	0.241

Modèle $\mathcal{M}^{(2)}$

Algorithme EM dans les RB - Méthode

Algorithme EM dans les RB (structure connue)

- Initialisation du modèle RB $\mathcal{M}^{(0)}$ caractérisé par ses LPC
- Étape E : Estimer la loi des données manquantes à partir du RB courant, noté $\mathcal{M}^{(t)}$
 - Pour chaque donnée incomplète $x = (x_{obs}, x_{mat}) \in \mathcal{D}_{l}$
 - Calculer la distribution de ses variables manguantes X_{mgt} conditionnellement à ses variables observées Xobs
 - \Rightarrow Calculer $P(X_{obs}|X_{mqt})$ en utilisant un algorithme d'inférence dans $\mathcal{M}^{(t)}$
 - \Rightarrow "Nouvelles" données courante $\mathcal{D}^{(t+1)} = \mathcal{D}_{\mathsf{C}} \cup \mathcal{D}_{\mathsf{L}}^{(t+1)}$ complétées par les distributions des variables manguantes
- Étape M : Estimer les LPC du modèle $\mathcal{M}^{(t+1)}$ à partir des données complétées $\mathcal{D}^{(t)}$
 - Utilisation de la méthode du maximum de vraisemblance
- Répéter les étapes E et M tant que $\mathcal{M}^{(t)}$ et $\mathcal{M}^{(t+1)}$ sont significativement différents

Dempster, A., N. Laird et D. B. Rubin (1977). "Maximum Likelihood from Incomplete Data Via the EM Algorithm". In: Journal of the

Fisher, R. A. (1922). "On the Mathematical Foundations of Theoretical Statistics". In: Philosophical Transactions of the Royal Society of

Rubin, D. B. (déc. 1976). "Inference and missing data". In: Biometrika 63.3, p. 581-592.