Update monads

<u>Danel Ahman</u>, U. of Edinburgh Tarmo Uustalu, Inst. of Cybernetics, Tallinn

EWSCS, 5 March 2014

Pure functional programs

$$\frac{f:X\longrightarrow Y}{\lambda x.\,g\,(f\,x):X\longrightarrow Z}$$

$$f: X \longrightarrow 1 + Y$$
 $g: Y \longrightarrow 1 + Z$

$$\lambda x$$
. case $(f x)$ of $\{\operatorname{inl}(_{-}) \implies \operatorname{inl}() \mid \operatorname{inr}(y) \implies g y\} : X \longrightarrow 1 + Z$

- Historically monads have provided such general composition
 - $T : \mathbf{Set} \to \mathbf{Set}$
 - $\eta: \forall \{X\}. X \to TX$
 - $\bullet \ (-)^* : \forall \{X,Y\}. (X \longrightarrow TY) \longrightarrow (TX \longrightarrow TY)$
- Nowadays we often use algebraic presentations

Pure functional programs

$$\frac{f:X\longrightarrow Y \quad g:Y\longrightarrow Z}{\lambda x.\,g\,(f\,x):X\longrightarrow Z}$$

$$f: X \longrightarrow 1 + Y \qquad g: Y \longrightarrow 1 + Z$$

$$\lambda x$$
. case $(f x)$ of $\{ \operatorname{inl}(_{-}) \implies \operatorname{inl}() \mid \operatorname{inr}(y) \implies g y \} : X \longrightarrow 1 + Z$

- Historically monads have provided such general composition
 - $T : \mathbf{Set} \to \mathbf{Set}$
 - $\eta: \forall \{X\}. X \to TX$
 - $\bullet \ (-)^* : \forall \{X,Y\}. (X \longrightarrow TY) \longrightarrow (TX \longrightarrow TY)$
- Nowadays we often use algebraic presentations

Pure functional programs

$$\frac{f:X\longrightarrow Y}{\lambda x.\,g\,(f\,x):X\longrightarrow Z}$$

$$\frac{f: X \longrightarrow (S \to S \times Y) \qquad g: Y \longrightarrow (S \to S \times Z)}{\lambda x. \ \lambda s. \ g\left(\operatorname{snd}\left(f \times s\right)\right)\left(\operatorname{fst}\left(f \times s\right)\right): X \longrightarrow (S \to S \times Z)}$$

- Historically monads have provided such general composition
 - T : Set → Set
 - $\eta: \forall \{X\}. X \to TX$
 - $\bullet \ (-)^* : \forall \{X,Y\}.(X \longrightarrow TY) \longrightarrow (TX \longrightarrow TY)$
- Nowadays we often use algebraic presentations

Pure functional programs

$$\frac{f: X \longrightarrow Y \quad g: Y \longrightarrow Z}{\lambda x. g(f x): X \longrightarrow Z}$$

$$\frac{f: X \longrightarrow (S \to S \times Y) \qquad g: Y \longrightarrow (S \to S \times Z)}{\lambda x. \ \lambda s. \ g\left(\operatorname{snd}\left(f \times s\right)\right)\left(\operatorname{fst}\left(f \times s\right)\right): X \longrightarrow (S \to S \times Z)}$$

- Historically monads have provided such an interface:
 - $T : \mathbf{Set} \to \mathbf{Set}$
 - $\eta: \forall \{X\}. X \rightarrow TX$
 - $\bullet \ (-)^* : \forall \{X,Y\}. (X \longrightarrow TY) \longrightarrow (TX \longrightarrow TY)$
- Nowadays we often use algebraic presentations

Background: Three famous monads

Reader monad

State monad
$$S$$
 – a set $T_s X = S \rightarrow S \times X$

Ikp: $(S \rightarrow A) \rightarrow A$

upd: $S \times A \rightarrow A$

$$S - a \text{ set} \qquad (P, o, \oplus) - a \text{ monoid}$$

$$T_r X = S \to X \qquad T_w X = P \times X$$

$$|kp: (S \to A) \to A| \qquad upd: P \times A \to A$$

$$S - \text{ states} \qquad A - \text{ carrier of alg. for } T_{\{s,r,w\}}$$

$$P - \text{ updates (alt. "programs")} \qquad + \text{ some equations}$$

Writer monad

This talk: don't just overwrite. update!

Reader monad
$$S$$
 – a set $T_r X = S \rightarrow X$

Ikp: $(S \rightarrow A) \rightarrow A$

Writer monad
$$(P, o, \oplus) - \text{a monoid}$$

$$T_w X = P \times X$$

$$\text{upd} : P \times A \to A$$

$$S$$
 – states \mathcal{A} – carrier of alg. for $T_{\{s,r,w\}}$ + some equations

Monoids, monoid actions

• A monoid on a set P is given by

o:
$$P$$
, \oplus : $P \to P \to P$,

$$egin{aligned} egin{aligned} eta \oplus \circ &= eta \ \circ \oplus eta &= eta \end{aligned} \ egin{aligned} (eta \oplus eta') \oplus eta'' &= eta \oplus egin{aligned} (eta' \oplus eta'') \end{aligned}$$

• An action of a monoid (P, o, \oplus) on a set S is given by

$$\downarrow: S \rightarrow P \rightarrow S$$

$$s \downarrow o = s$$

 $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$

Update monads

A set S, monoid (P, o, \oplus) and action \downarrow give an update monad:

$$TX = S \to (P \times X)$$

$$\eta : \forall \{X\}. X \to (S \to P \times X)$$

$$\eta x = \lambda s. (o, x)$$

$$(-)^* : \forall \{X, Y\}. (X \to (S \to P \times Y))$$

$$\to (S \to P \times X) \to (S \to P \times Y)$$

$$f^* g = \lambda s. \text{ let } (p, x) = g s;$$

$$(p', y) = f x (s \downarrow p)$$

$$\text{in } (p \oplus p', y)$$

Reader and writer monads as instances

Recall update monads:

$$TX = S \rightarrow P \times X$$

- Reader monads: $T_r X = S \to X$ update monads with (P, o, \oplus) and \downarrow trivial
- Writer monads: $T_w X = P \times X$ update monads with S and \downarrow trivial

State monads as canonically related

• State monads:

$$T_s X = S \rightarrow (S \times X)$$

embed into and project from update monads

for P the free monoid on the overwrite semigroup (S, \bullet)

defined by $s \bullet s' = s'$

Update monad example: logging state

(set of states)

•
$$P = S^*$$

(log of states)

•
$$ss \oplus ss' = ss ++ ss'$$

•
$$s \downarrow ss = last(s : ss)$$

•
$$TX = S \rightarrow (S^* \times X)$$

Update monad example: writing into a buffer

- $S = E^* \times Nat$ (current buffer content and free space)
- $P = E^*$ (new values to write)
- o = []
- $\bullet \ p \oplus p' = p + p'$
- $(s, n) \downarrow p = (s ++ (p|n), n length(p|n))$

(p|n defined as p truncated to length n)

• $TX = (E^* \times Nat) \rightarrow (E^* \times X)$

Algebras of update monads (cf. algebraic effects)

An algebra of an update monad is a set A with an operation

$$\mathsf{act}: (S \to P \times \mathcal{A}) \to \mathcal{A}$$

$$a = \mathsf{act} \, (\lambda s. \, (\mathsf{o}, \mathsf{a}))$$

$$\mathsf{act} \, (\lambda s. \, (p, \mathsf{act} \, (\lambda s'. \, (p', \mathsf{a}))))$$

$$= \mathsf{act} \, (\lambda s. \, (p \oplus p'[s \downarrow p/s'], a[s \downarrow p/s']))$$

or, equivalently a pair of operations

$$\begin{aligned} \mathsf{lkp} : (S \to \mathcal{A}) &\to \mathcal{A} \\ \mathsf{upd} : P \times \mathcal{A} &\to \mathcal{A} \end{aligned}$$

$$a = \mathsf{lkp} \, (\lambda s. \, \mathsf{upd} (\mathsf{o}, \mathsf{a}))$$

$$\mathsf{upd} \, (p, \mathsf{upd} \, (p', \mathsf{a})) = \mathsf{upd} \, (p \oplus p', \mathsf{a})$$

$$\mathsf{lkp} \, (\lambda s. \, \mathsf{upd} \, (p, \mathsf{lkp} \, (\lambda s'. \, \mathsf{a}))) = \mathsf{lkp} \, (\lambda s. \, \mathsf{upd} \, (p, \mathsf{a}[\mathsf{s} \downarrow p/s']))$$

Update monads as compatible compositions

The update monad for S, (P, o, \oplus) , \downarrow is the compatible composition of the

reader monads and writer monads
$$T_r X = S \to X \qquad \qquad T_w X = P \times X$$

for the distributive law

$$\theta: \forall \{X\}. \ P \times (S \to X) \to (S \to P \times X)$$
$$\theta(p, f) = \lambda s. (p, f(s \downarrow p))$$

Thm. There is a bijection between update monads and distributive laws between reader and write monads.

Update monad algebras as compat. compositions

An algebra of the update monad for S, (P, o, \oplus) , \downarrow is a set \mathcal{A} carrying both the

satisfying an additional compatibility condition

$$\operatorname{\mathsf{upd}}(p,\operatorname{\mathsf{lkp}}(\lambda s'.a)) = \operatorname{\mathsf{lkp}}(\lambda s.\operatorname{\mathsf{upd}}(p,a[s\downarrow p/s']))$$

Buffers and truncation revisited

- $S = E^* \times Nat$ (current buffer content and free space)
- $P = E^*$ (new values to write)
- o = []
- $\bullet \ p \oplus p' = p + p'$
- $(s, n) \downarrow p = (s ++ (p|n), n length(p|n))$

 $(p|n \ defined \ as \ p \ truncated \ to \ length \ n)$

- $TX = (E^* \times Nat) \rightarrow (E^* \times X)$
- How to avoid truncation?

A finer dependently-typed version

Rather than

$$S$$
 – a set (P, o, \oplus) – a monoid \downarrow – an action $TX = S \rightarrow P \times X$

consider a *directed container* $(S, P, \downarrow, o, \oplus)$

P a S-indexed family,

$$\downarrow: \Pi s: S. P s \rightarrow S$$
o: $\Pi \{s: S\}. P s$

$$\oplus: \Pi \{s: S\}. \Pi p: P s. P (s \downarrow p) \rightarrow P s$$

$$TX = \Pi s : S. Ps \times X$$

S – states

Ps – updates *enabled* (or *safe*) in state s

Monads from directed containers

The def. of monad is the same (but with dependent typing):

$$TX = \Pi s : S.Ps \times X$$

$$\eta : \forall \{X\}.X \to \Pi s : S.Ps \times X$$

$$\eta x = \lambda s. (o, x)$$

$$(-)^* : \forall \{X, Y\}. (X \to \Pi s : S.Ps \times Y)$$

$$\to (\Pi s : S.Ps \times X) \to (\Pi s : S.Ps \times Y)$$

$$(f)^*(g) = \lambda s. \text{ let } (p, x) = g s;$$

$$(p', y) = f x (s \downarrow p)$$

$$\text{in } (p \oplus p', y)$$

Formally, it is the co-interpretation of directed containers

$$\langle\!\langle - \rangle\!\rangle^{\mathrm{dc}} : \mathsf{DCont}^{\mathrm{op}} \longrightarrow \mathsf{Monads}(\mathsf{Set})$$

Example: writing into a buffer (a finer version)

- $S = E^* \times Nat$ (current buffer content and free space)
- $P(s,n) = E^{\leq n}$ (new values to write)
- o = []
- $\bullet \ p \oplus p' = p + p'$
- $(s, n) \downarrow p = (s ++ p, n length(p))$
 - no additional truncation needed!

• $TX = \Pi(s, n) : E^* \times \text{Nat. } E^{\leq n} \times X$

Conclusion

- Update monads $TX = S \rightarrow (P \times X)$ are a natural combination of the reader and writer monads
 - from a programming perspective
 - from a monadic perspective
 - from an algebraic perspective

- They are also a special case of a more general dependently-typed version
 - the co-interpretation of directed containers

Connection to Kammar-Plotkin generalization

For a set S, a monoid (P, o, \oplus) , an action \downarrow , Kammar and Plotkin defined a generalized state monad as:

$$T_{KP} X = \Pi s : S.(s \downarrow P) \times X$$

 $T_{KP} X$ is the middle monad in the epi-mono factorization

$$TX = S \rightarrow (P \times X)$$

$$T_s X = S \rightarrow (S \times X)$$

$$T_{KP} X = \Pi s : S.(s \downarrow P) \times X$$

of the mon. morphism $\tau = \lambda f. \lambda s. \operatorname{let}(p, x) = f s$ in $(s \downarrow p, x)$