$A_v \quad A_z$ $\nabla \cdot \overrightarrow{A} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial (A_\phi)}{\partial \phi} + \frac{\partial (A_z)}{\partial z}$ $S_v sin(\theta) sin(\phi) + S_z cos(\theta)$ $S = \frac{\hbar}{2} \sigma$ of chimney at angle which can be written 1 Calm down Miho 4 Mechanics in terms of $\ddot{\theta}$. Do the same for τ_p around $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Dimensional Analysis?Virial Theo- $\nabla \times \overrightarrow{A} = \hat{r} \left[\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right] + \left[\frac{\partial A_r}{\partial z} \right]$ Rotation rem is powerful.relativistic/nona point p. $\tau(x) - \tau_p = I_p \ddot{\theta}$ take $\frac{d\tau}{dx}$ $S_{+} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} S_{-} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \chi_{+x} =$ relativistic?Force, energy, momentum? $\tau = Frsin(\theta) = I\alpha \quad L =$ 2 General Terms $I\omega \quad KE = \frac{1}{2}I\omega^2 \quad L = mvr \quad \frac{dL}{dt} = 0$ $\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} \quad \chi_{-x} = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix} \quad \chi_{+y} =$ $P = \tau \omega$ $R_{CM} = \frac{1}{M} \int x dm$ $I_1 \dot{\omega}_1 + (I_3 - I_3) \dot{\omega}_2 + (I_3 - I_3) \dot{\omega}_2 + (I_3 - I_3) \dot{\omega}_1 + (I_3 - I_3) \dot{\omega}_2 + (I_3 - I_3) \dot{\omega}_2 + (I_3 - I_3) \dot{\omega}_1 + (I_3 - I_3) \dot{\omega}_2 +$ Z = atomic/proton A (mass number) = $\chi_{-y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} \chi_{+z} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \chi_{-z} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $I_2)\omega_2\omega_3 = M_1$ $I_2\dot{\omega_2} + (I_1 - I_3)\omega_3\omega_1 =$ Z + N molar mass of air 28.97 g/mol M_2 $I_3\dot{\omega}_3 + (I_2 - I_1)\omega_1\omega_2 = M_3$ $\chi(0) = C_+ \chi_+ + C_- \chi_-$ Use same basis as B $1L = 0.001m^3$ $\rho_{H20} = 1000 \frac{kg}{m^3}$ $\rho_{air} =$ $rsin\phi$ $r = \sqrt{x^2 + y^2}$ $\phi = \frac{y}{x}$ $\hat{x} =$ $I = \int_0^V \rho r^2 dV = \int r^2 dm$ Solid cylinfield $\chi(t) = \alpha \chi_{+} e^{-\frac{iE_{-}t}{\hbar}} + \beta \chi_{-} e^{-\frac{iE_{+}t}{\hbar}}$ $1.2754\frac{kg}{m^3}$ Interior T_{sun} : $10^6 \, ^{\circ}C$ Ou- $\cos\phi\hat{r} - \sin\phi\hat{\phi}$ $\hat{v} = \sin\phi\hat{r} + \cos\phi\hat{\phi}$ $\hat{r} =$ der/disc: $I = \frac{1}{2}MR^2$ Hoop: $I = MR^2$ $\hat{S}^2 = \hat{S_x}^2 + \hat{S_v}^2 + \hat{S_z}^2 = \hat{S_z}^2 + \hat{S_+}\hat{S_-} - \hbar\hat{S_z}$ ter T_{sun} : 5778K fm: 10^{-15} peta: 10^{15} $\cos\phi\hat{x} + \sin\phi\hat{y}$ $\hat{\phi} = -\sin\phi\hat{x} + \cos\phi\hat{y}$ Solid Sphere: $\frac{2}{5}MR^2$ Rod/solid cylin- $\hat{S}_{+} = \hat{S}_{x} + i\hat{S}_{v}$ $\hat{S}_{-} = \hat{S}_{x} - i\hat{S}_{v}$ pico: 10^{-12} atto: 10^{-18} **Spherical Coordinates** der/recta about center: $\frac{1}{12}MR^2$ Rod **Magnetic Field** $= dr\hat{r} + rd\theta\hat{\theta} + rsin\theta d\phi\hat{\phi}$ about edge: $\frac{1}{3}ML^2$ Thin spherical shell NORMALIZE Φ $E_+ = -\mu B$ $E_- = +\mu B$ $\mu = \gamma S$ H = $f(x) = \frac{1}{\sqrt{2\pi}} \int F(k)e^{ikx}dk$ $F(k) = dV = r^2 \sin\theta dr d\theta d\phi$ $\nabla f = \hat{r} \frac{\partial f}{\partial r} +$ 1. Write out Schroedinger $\frac{2}{3}MR^2$ Rectangle: $\frac{bh^3}{12}$ Rectangle ed- $-\gamma B \cdot S$ Ex. $H = -\gamma B_0 S_z \rightarrow \chi_+, E_+ =$ 2. Solve second order $\rightarrow \Psi(x)$ $\frac{1}{\sqrt{2\pi}}\int f(x)e^{ikx}dx$ Eigenvector: $\hat{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \theta} \quad \nabla \cdot \overrightarrow{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) +$ $-\frac{-\gamma B_0 \hbar}{2}$, χ_- , $E_- = \frac{+\gamma B_0 \hbar}{2}$ using boundary ge: $\frac{bh^3}{3}$ $I_{parr} = I_{CM} + Md^2$ roll: v =3. Use boundary conditions 4. Solve E using the wavefunction $\lambda \cdot (\text{matrix}) \cdot (\text{eigenvector}) = \lambda \cdot \text{eigenvector}$ $\frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta A_{\theta})$ conditions $\rightarrow \chi(t) = [state]$ $\omega \times R$ $\alpha = \frac{R \times f(=\mu mg)}{T}$ $T_{load} = T_{hold} e^{\mu \phi}$ Finding Eigenvalues/vectors: $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$ Larmor Precess. $\tau = \frac{e}{2m} LBsin(\theta)$ $\omega =$ $\partial (sinA_{\phi}sin\theta)$ Rotat Liquid: $dA\left(\frac{\partial P}{\partial r}dr\right) = \omega^2 r \rho dA dr$ 1. Apply operator on states to find $\frac{e}{2m}B_0$ Stern-Gerlach Exp: $F = \nabla(\mu \cdot$ $ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ eigenvalues then find eigenvector $h(r) = \frac{\omega 2r^2}{2g}$ $V_{eff} = \frac{L^2}{2ur^2} + V(r)$ orbit 2. If Hamiltonian matrix is found $f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots$ $B)\nabla(\gamma S \cdot B)$ Relate $e^{-\frac{1}{\hbar}} = e^{\frac{1}{\hbar}}$ to find find the eigenvalue/vector from stable when $\frac{\partial^2 V_{eff}}{\partial r^2} > 0$ $F = -\frac{\partial V(r)}{\partial r}$ the matrix momentum of the split beams $c^2 = a^2 + b^2 - 2abcos(\theta)$ cos(x) =If a state is an eigenstate of an opera-Operators $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ $sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$ Lagrangian tor, the state should return to its ori- $\frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} (sin\theta \frac{\partial f}{\partial \theta}) \ + \\$ $L^{2}|\Psi\rangle = \hbar^{2}l(l+1)|\Psi\rangle L_{7}|\Psi\rangle = \hbar m|\Psi\rangle$ ginal state when applying the opera-ODEs: $b^2 - 4ac > 0$: $y = C_1 e^{r_1 t} +$ $\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = 0$ $p_{\theta} = \frac{\partial L}{\partial \dot{\theta}}$ H = 0 $S^{2}|\Psi\rangle = \hbar^{2}s(s+1)|\Psi\rangle S_{z}|\Psi\rangle = \hbar S_{z}|\Psi\rangle$ tor $\alpha = \frac{e^2}{hc} \approx \frac{1}{137}$ Ry = $\frac{me^4}{2h^2} \approx 13.6 \text{eV}$ $C_2 e^{r_2 t}$ $b^2 - 4ac < 0$ with $r = \lambda \pm \mu i y = 0$ $rsin(\theta)cos(\phi), \quad y = rsin(\theta)sin(\phi)$ $J^{2}|\Psi\rangle = \hbar^{2}J(J+1)|\Psi\rangle J_{z}|\Psi\rangle = \hbar J_{z}|\Psi\rangle$ $\sum_{i} \dot{q}_{i} \frac{dL}{d\dot{q}_{i}} - L \quad x_{1}(t) = Ae^{i\omega t} \quad Mx'' =$ $z = r\cos(\theta)$ $\hat{x} = \sin(\theta)\cos(\phi)\hat{r} + \frac{1}{2}\sin(\theta)\cos(\phi)\hat{r}$ $C_1 e^{\lambda t} cos(\mu t) + C_2 e^{\lambda t} sin(\mu t)$ $b^2 - 4ac =$ $a_B = \frac{\hbar^2}{m_e e^2} p = \frac{h}{\lambda} = \frac{hk}{2\pi} = \hbar k \quad \langle f|g \rangle =$ $J_{+}|\Psi\rangle = \hbar\sqrt{J(J+1)-J_{z}(J_{z}+1)}|J_{z}+1\rangle$ $cos(\theta)cos(\phi)\hat{\theta} - sin(\theta)\hat{\phi}$ $kx \det(k - \omega^2 M) = 0 \quad v = \sqrt{\frac{T}{u}}$ $0: y = C_1 e^{rt} + C_2 t e^{rt}$ y'' + By + C = $J_{-}|\Psi\rangle = \hbar \sqrt{J(J+1)} - J_{z}(J_{z}-1)|J_{z}-1\rangle$ $sin(\theta)sin(\phi)\hat{r} + cos(\theta)sin(\phi)\hat{\theta} + cos(\phi)\hat{\phi}$ $\begin{bmatrix} b \\ c \end{bmatrix} f(x)^* g(x) dx \qquad [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \qquad \sigma^2 = 0$ $0 \rightarrow y = C_1 sin(\sqrt{B}t) + C_2 cos(\sqrt{B}t) - \frac{C}{B}$ $\ddot{s} = \frac{T}{2} s'' s(x,t) = g(x) f(t) \frac{c^2 g''}{g} = \frac{f}{f} =$ $L_{+}|\Psi\rangle = \hbar\sqrt{l(l+1)} - m(m+1)|m+1\rangle$ $\hat{z} = \cos(\theta)\hat{r} - \sin(\theta)\hat{\theta} \ \hat{r} = \sin(\theta)\cos(\phi)\hat{x} +$ $\langle \Psi | x^2 | \Psi \rangle - \langle \Psi | x | \Psi \rangle^2$ $\int_{-\infty}^{\infty} |\Psi(x, t)|^2 dx =$ $\sum_{i=1}^{n} a_{i} = a\left(\frac{1-r^{n}}{1-r}\right)$ when $|\mathbf{r}| < 1 = \frac{a}{1-r}$ $L_{-}|\Psi\rangle = \hbar\sqrt{l(l+1)-m(m-1)}|m-1\rangle$ $sin(\theta)sin(\phi)\hat{y} - cos(\theta)\hat{z}$ $\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{ipx}{\hbar}}$ $[x_i, p_j] = i\hbar\delta_{ij}$ $-\omega^2 u = \frac{1}{2} \left(\rho \left(\frac{\partial s}{\partial t} \right)^2 + T \left(\frac{\partial s}{\partial x} \right)^2 \right)$ $L_{+} = L_{x} + iL_{v}$ $L_{-} = L_{x} - iL_{v}$ $I\omega = \hbar m$ $\int_{0}^{\infty} x^{n} e^{-\frac{x}{a}} dx = n! a^{n+1} \int_{0}^{\infty} x^{2n} e^{-\frac{x}{a^{2}}} dx =$ $cos(\theta)cos(\phi)\hat{x} + cos(\theta)sin(\phi)\hat{y} - sin(\theta)\hat{z}$ $\hat{R} = e^{\frac{-i\phi L_z}{\hbar}} \hat{U}_{time} = e^{\frac{-i\hat{H}t}{\hbar}} \hat{T}_{transl} = e^{\frac{-ipx}{\hbar}}$ $\Psi(r,t) = \Psi(r)e^{-\frac{iEt}{\hbar}}$ orth. basis $\Psi(x,0) =$ $\sqrt{\pi} \frac{(2n)!}{n!} \left(\frac{a}{2}\right)^{2n+1} \int_0^\infty x^{2n+1} e^{-\frac{x^2}{a^2}} dx$ $= -sin(\phi)\hat{x} + cos(\phi)\hat{y} \theta =$ $M\frac{dv}{dt} = -v_{exmass}\frac{dm}{dt}$ find mass of sun F =Two Particle State $\frac{n!}{2}a^{2n+2} \int lnx dx$ $S^2 = (S_1)^2 + (S_2)^2 + 2S_1 \cdot S_2 \quad S_1 \cdot S_2 (\uparrow \downarrow)$ $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $KE[T] = -\frac{1}{2}PE[V]$ GPE Heisenberg's Uncertainty Principle $) = (S_{x1} \uparrow)(S_{x2} \downarrow) + (S_{v1} \uparrow)(S_{v2} \downarrow) +$ 1) + $C \int_{-\infty}^{\infty} e^{-a(x+b)^2} dx$ of sphere $U = -\int_0^R \frac{G\left(\frac{4\pi r^3}{3}\right)\rho 4\pi r^2 \rho dr}{\pi}$ Stats $\Delta p \Delta x \geq \frac{\hbar}{2}$, $\Delta t \Delta E \geq \frac{\hbar}{2}$ $L = mvr = p \cdot r$ $(S_{z1} \uparrow)(S_{z2} \downarrow) = \frac{\hbar^2}{4}(2 \downarrow \uparrow - \uparrow \downarrow) S_{-}(\uparrow \uparrow$ $x_{randwalk} = \sqrt{N} P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} z =$ $\sqrt{\frac{\pi}{a}} \int_{-\infty}^{\infty} e^{-ax^2 + bx + c} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}$ $\theta = \frac{x}{r}$ $\Delta L \Delta \theta \ge \frac{\hbar}{2} \Delta x \sim N_e^{-\frac{1}{3}}$ $(S_{1-} \uparrow) \uparrow + \uparrow (S_{2-} \uparrow) = \hbar(\downarrow \uparrow + \uparrow \downarrow)$ $\frac{3}{5} \frac{GM^2}{R}$ $\mu = \frac{m_1 m_2}{m_1 + m_2} \frac{dP}{dr} = -g(r)\rho(r)$ BE Singlet $|S = 0, S_z = 0\rangle = \frac{(\uparrow \downarrow - \downarrow \uparrow)}{\sqrt{2}}$ Triplet **Bohr Model** Trig Identities $cx^a y^b \to \frac{\delta z}{z} = \sqrt{\left(a\frac{\delta x}{x}\right)^2 + \left(b\frac{\delta y}{y}\right)^2}$ $\frac{m_e v^2}{2} = \frac{Z k_e e^2}{2} \qquad L = m v r = n \hbar \qquad E =$ $= (Zm_p + Nm_n - M)c^2 \frac{n_n}{n} = e^{-\frac{(m_n - m_n)}{kT}}$ $|11\rangle = \uparrow \uparrow$ $|10\rangle = \frac{(\uparrow \downarrow + \downarrow \uparrow)}{\sqrt{2}}$ $-\cos(x)$ $\frac{Zk_ee^2}{2r_n} = -\frac{Z^2(k_ee^2)^2m_e}{2\hbar^2n^2}$ Rydberg Energy Poisson: $\nabla^2 \Phi$ $S_1 \cdot S_2 |10\rangle = \frac{\hbar^2}{4} |10\rangle \qquad S_1 \cdot S_2 |00\rangle =$ $k_{\parallel} = k_1 + k_2 \frac{1}{k_{series}} = \frac{1}{k_1} + \frac{1}{k_2} \omega_{pend} =$ $(R_E) = \frac{(k_e e^2)^2 m_e}{2\hbar^2}$ $E_{\gamma} = R_E \left(\frac{1}{n_{\varepsilon}^2} - \frac{1}{n_i^2}\right)$ $(sin(x))^{-1}sec(x) = (cos(x))^{-1}$ Diffusion $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$ $sin(a \pm b) =$ $-\frac{3\hbar^2}{4}|00\rangle$ $S^2|10\rangle = 2\hbar^2|10\rangle$ $S^2|00\rangle =$ $\sqrt{g/l}$ $F = ma = -kx x(t) = Acos(\omega t) +$ $sin(a)cos(b) \pm sin(b)cos(a) \cos(a \pm b) =$ Solution $c(x,t) = \frac{C_{x=0}}{\sqrt{4\pi Dt}} e^{\frac{-x^2}{4Dt}}$ $cos(a)cos(b) = sin(a)sin(b) tan(a \pm b)$ $Bsin(\omega t) \omega = \sqrt{\frac{k}{m}}$ $E_{max} = \frac{1}{2}kA^2$ Schroedinger's Equation Infinite Square Well (only bound state) $tan(A)\pm tan(B)$ $sin(2\theta)$ $(\nabla f)dl = f(b) - f(a)$ $v_{max} \rightarrow \Delta x = 0$ $\frac{-\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V\psi = E\psi \quad \text{Time Dependent:} \quad \frac{d^2\Psi}{dx^2} = -k^2\Psi, k = \frac{\sqrt{2mE}}{\hbar}, E \ge 0, \Psi = 0$ $\overline{1 \mp tan(A)tan(B)}$ Div Theorem $\oint_{S} F \cdot ds = \int_{V} (\nabla \cdot F) dV$ $2sin(\theta)cos(\theta)$ $cos(2\theta) = cos^2\theta - sin^2\theta =$ Waves $v_g = \frac{\partial \omega}{\partial k}$, $v_p = \frac{\omega}{k}$ if $\omega = ak$ then $v_g = v_p$ de- $\frac{-\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V \psi = i\hbar \frac{\partial \chi}{\partial t} = H \chi$ $H_{rel} = \frac{\partial \omega}{\partial t}$ Asin(kx) + Bcos(kx) $E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$ Stokes's Theorem $\oint_{\Gamma} F \cdot dl = \int_{S} (\nabla \times F) ds$ $2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta) \qquad \frac{d}{dx}\tan(x) =$

 $\nabla = \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}$ $\nabla \times A = \text{ep water grav waves: } \omega = \sqrt{gk}$ $v_g = \frac{v_p}{2}$

 $\frac{\partial}{\partial y} \quad \frac{\partial}{\partial z}$

Falling Chimney

 $\sqrt{m^2c^4 + p^2c^2 + V(x)}$

 $\tau = I\ddot{\theta} = F \cdot r$ Make sure $l = \frac{L}{2}$. Find τ_{orig}

 $S_r = S \cdot \hat{r} = S_x sin(\theta)cos(\phi) +$

 $\psi_n(x) = \sqrt{\frac{2}{a}} sin(\frac{n\pi}{a}x)$ 3D: $\Psi(r) =$

Cylindrical Coordinates

 $dl = dr\hat{r} + rd\phi\hat{\phi} + dz\hat{z} \quad dV = rdrd\theta dz$

Cheat Sheet Comp

Miho Wakai 1

Cheat Sheet Comp Miho Wakai 2	Perturbation Theory	$E_{dip} = \frac{-p}{4\pi\epsilon_0 r^3} [2\cos(\theta)\hat{r} + \sin(\theta)\hat{\theta}]$	2d, find E which gets halved.	$VT^{\frac{f}{2}} = C TV^{\gamma-1} =$
	$E_n^1 = \langle \Psi_0 H' \Psi_0 \rangle$	$E_{dip} = \frac{[3(p \cdot r)r - pr^2]}{4\pi\epsilon_0 r^5}$	Lenses $Power = \frac{1}{f} \qquad \frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$	C Adiabatic: $\Delta Q = 0$ $dS = 0$ $\Delta T \neq 0$ $(P_1, V_1 \rightarrow P_2, V_2) : W = \frac{P_1 V_1 - P_2 V_2}{1 - \nu} = 0$
$\sqrt{\frac{8}{V}}sin\left(\frac{n_{\chi}\pi x}{L_{\chi}}\right)sin\left(\frac{n_{\chi}\pi y}{L_{v}}\right)sin\left(\frac{n_{z}\pi z}{L_{z}}\right)$	$\Psi_n^1 = \Sigma_{m \neq n} \frac{\langle \Psi_m^0 H' \Psi_n^0 \rangle}{\langle E_n^0 - E_m^0 \rangle} \Psi_m^0$	Magnetic Dipoles	$f = \frac{1}{2}$ fspher curved mirror = $-\frac{R}{2}$	- /
$E = \frac{\hbar^2}{8m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_v^2} + \frac{n_z^2}{L_z^2} \right)$	$\left \left\langle \Psi_{m}^{0}\right H^{\prime} \Psi_{n}^{0}\right\rangle \right ^{2}$	$m = I \int da = Ia dm = dIA +$	Relativity	$Nk rac{1}{\gamma-1}(T_f-T_i)$ Adiabatic Relation
(")		$IdA \qquad dI = dq \frac{\omega}{2\pi} \qquad m = \frac{1}{2} \int (r \times J) d\tau$	$\begin{pmatrix} ct' \\ t \end{pmatrix}$ $\begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} ct \\ 0 & 0 \end{pmatrix}$	$ndT = \frac{dU}{C_{v}} = \frac{-PdV}{C_{v}} = \frac{PdV + VdP}{R} \qquad PV = \frac{PdV + VdP}{R}$
Finite Square Well	$\frac{1}{2} \left[W_{aa} + W_{bb} \pm \sqrt{((W_{aa} - W_{bb})^2 + 4 W_{ab} ^2)} \right]$	$A_{dip}(r) = \frac{\mu_0}{4\pi} \frac{m \times r}{r^2} \qquad B_{dip}(r) =$	$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} $ for in-	$nRT P = \frac{\rho RT}{M} \gamma = \frac{C_P}{C_V} PV^{\gamma} = const$
Bound State (E<0) $k = \frac{\sqrt{-2mE}}{\hbar}$ Three ty-	$P_{a \to b} = c_b(t) ^2 \approx \frac{ V_{ab}^2 }{\hbar^2} \frac{\sin^2[(\omega_0 - \omega)\frac{t}{2})]}{(\omega_0 - \omega)^2}$	$\frac{\mu_0}{4\pi} \frac{1}{r^3} [3(m \cdot \hat{r})\hat{r} - m]$ $B_{\text{dip in z axis}}(r) = \mu_0 m^{-1} [2\cos(\theta)\hat{r}]$ Number 1		$P^{1-\gamma}T^{\gamma} = C VT^{\frac{f}{2}} = C TV^{\gamma-1} = C$
pes of wavefunctions due to sections of well (within well: $\Psi(x) = D\cos(lx)l =$	$H' = -ezE_z = -ercos(\theta)E_z \qquad V = qEd$	$\frac{\mu_0 \dot{m}}{4\pi} \frac{1}{r^3} [2\cos(\theta) \hat{r} + \sin(\theta) \hat{\theta}] \text{Nuclear}$ Magneton $t = e^{\dagger h}$ $F = \nabla(t = P)$	verse $+\beta \gamma$ $tan(\theta) = \frac{y}{x} = \frac{1}{\gamma} \frac{sin(\theta')}{cos(\theta') + \frac{y}{c}}$	$P_1V_1toP_2V_2 \to W = \frac{\text{const}(V_f^{1-\gamma} - V_i^{1-\gamma})}{1-\gamma} = \frac{1-\gamma}{1-\gamma}$
$\frac{\sqrt{2m(E+V_0)}}{\hbar}$) $tan(z) = \sqrt{(Z_0/Z)^2 - 1} z =$	6 EM Maxwell's Equations	Magneton $\mu_N = \frac{e\hbar}{2m_p}$ $F = \nabla(m \cdot B)$ $\tau = m \times B$ $PE = -m \cdot B$	$\omega' = \gamma(1 - \beta \cos\theta)\omega$ $f_r = \frac{f_s}{\gamma}$ $L =$	
la Wide deep well \rightarrow E _n + $V_0 \approx \frac{n^2 \pi^2 \hbar^2}{2m(2a)^2}$	$\nabla \cdot E = \frac{\rho}{\epsilon_0} \nabla \times E = \frac{\partial B}{\partial t} \nabla \cdot B = 0$	Magnetized Sphere	$\frac{L_0}{\gamma} T = \gamma T_0 \qquad u_{\text{on shore}} = \frac{v + u'_{\text{on boat}}}{1 + \left(\frac{vu'}{2}\right)}$	$Nk\frac{1}{\gamma-1}(T_f - T_i) PV^{\gamma} = (nRT)^{\gamma}$ Barome-
Shallow, narrow well $\rightarrow a \rightarrow 0, V_0 \rightarrow \infty$	$\nabla \times B - \frac{1}{c^2} \frac{\partial E}{\partial t} = \mu_0 J$	$m = \frac{4\pi R^3}{3}M$ $B_{\text{inside}} = \frac{2}{3}\mu_0 M$ vol. cur-	, ,	tric Formula $\frac{dT}{dz} = -\frac{M}{R}g\left(\frac{\gamma-1}{\gamma}\right)$
$E = \frac{-ma^2V_0^2}{2\hbar^2}$ (δ well) for E>0 $E + V_0 =$	Electrotatics	rent: $J = \nabla \times M$ surf. current: $K = M \times \hat{n}$ Reflection Refraction Transmission	when v_x : $u = \frac{u'_x + v}{1 + \frac{v}{c^2} u'_x}$ $u = \frac{u'_y}{\gamma + \frac{v}{c^2} v'}$	Black Body Radiation
$n^2\pi^2\hbar^2$	$\oint E \cdot dA = \frac{Q}{\epsilon_0} \qquad E = -\overrightarrow{\nabla} \Phi(\overrightarrow{x}) = -\frac{dV}{dx}$	$n = \frac{c}{v}$ $n_1 sin(\theta_1) = n_2 sin(\theta_2)$	$J^{\mu} = (c\rho, \overrightarrow{J}) = \rho_0(\gamma c, \gamma \overrightarrow{u}) = \rho_0 u^u A^{\mu} =$	$B = \frac{2hv^3}{c^2} \frac{1}{e^{hv/kT} - 1} \lambda_{peak} = \frac{2.8978 \times 10^3}{T}$
2m(2a) ² Harmonic Oscillator (only bound state)	$F = qE$ $\Delta V = -\int_{-}^{+} E \cdot dl$ $J = \sigma E$ $\rho =$	Brewster's angle perfectly polarized light is transmitted without re-	$(\Phi, \overrightarrow{A})$ Doppler _{resolution} : $R = \frac{c}{\Delta v}$	Power radiated across all $\nu: j^* = \varepsilon \sigma T^4$
Harmonic Oscillator (only bound state)	$\frac{1}{\sigma} \qquad \frac{dq}{dt} = I = JA$	flection. Reflection of unpolarized light will be reflected as perfect-	7 Thermal Physics	$P_{\text{net}} = A\sigma\varepsilon \left(T^4 - T_0^4\right)$ Radiation Pressure
$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2 x^2 \psi = E\psi \qquad \hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2m} + $	and the second of the second o	ly polarized. $\theta_B = tan^{-1} \left(\frac{n_2}{n_1}\right) E_0 =$	$\rho_{water} = 997 \frac{kg}{m^3}$ ice to water = $L = 334 \frac{kJ}{kg}$	Perfect Reflector: $P = 2\frac{l}{c}$ Perfect Absor-
$\frac{1}{2}k\hat{x}^2 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2 = \hbar\omega\left(a_+a + \frac{1}{2}\right)$	$\oint B \cdot dl = \mu_0 I = \int (\nabla \times B) ds \overrightarrow{\nabla} \times \overrightarrow{B} =$	$E_0 e^{i(k_1 z - \omega t)} \hat{x}, B_0 = \frac{E_0}{v_1} e^{i(k_1 z - \omega t)} \hat{y} E_R =$	water to gas = $2264.705 \frac{kJ}{kg} Cs = \frac{Q}{m\delta T}$	ber: $P = \frac{1}{c}$ 8 Stat Mech
	$\mu_0 \overrightarrow{J} \pmod{\frac{\partial E}{\partial t}} \overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A} \qquad \mu_0 \overrightarrow{j} = \overrightarrow{D}$	$E_R e^{i(-k_1 z - \omega t)} \hat{x} B_R = -\frac{E_R}{v_1} e^{i(-k_1 z - \omega t)} \hat{y}$	$L = \frac{Q}{m}$ Conduction $\frac{Q}{t} = -\frac{kA\Delta T}{d}$ $\frac{dQ}{dt} =$	$Z_{\text{classical}} = \frac{1}{h^3} \int e^{\frac{-H}{k_B T}} d^3 q d^3 p \ S = k_B ln(\Omega)$
$E_n = (n + \frac{1}{2})\hbar\omega$ (sum for 2) $x =$	$\overrightarrow{\nabla}(\overrightarrow{\nabla \cdot A}) - \overrightarrow{\nabla^2 A} \Phi = \int B \cdot dA = BA\cos(\theta)$	$E_T = E_T e^{i(k_2 z - \omega t)} \hat{x}, B_T = \frac{E_T}{V_2} e^{i(k_2 z - \omega t)} \hat{y}$	$-\frac{\kappa AdI}{dx}$ $P = A\epsilon\sigma T^4$ Fusion=solid \rightarrow	no of microstates $\Omega = \sum_{k} w_k$ (coin =
· ·	$F = \int I(dl \times B) = BILsin(\theta)$ Soleno-	Boundary conditions must be satisfied	liquid Isentropic: $\Delta S = 0$ Isobaric: $\Delta P = 0$ Isochoric: $\Delta P = 0$ Adiabatic:	2^N) Ω Multiplicity = $\frac{N!}{n!(N-n)!}$ $P_r =$
3D: $E = (n + \frac{3}{2})\hbar\omega$ $g = \frac{1}{2}n(n+1)(n+2)$	id $B_0 = \frac{nI}{\epsilon_0 c^2}$ Biot Savart Law $d\vec{B} =$	at $x = 0$, $x = d$ etc for both E field and B fields.	$Q = 0 \ dU = Tds - pdV = \left(\frac{\partial U}{\partial S}\right)_V dS +$	$\frac{e^{\frac{-E_r}{k_B T}}}{Z} \qquad Z = \sum_r e^{\frac{-E_r}{k_B T}} E_{avg} = -\frac{1}{Z} \frac{dZ}{d\beta} =$
Free Particle V = 0	$\frac{\mu_0 I}{4\pi} \frac{d \overrightarrow{l} \times \hat{r}}{r^2}$ F per unit l between wires:	Diffraction Single Slit: $tan(\theta) = \frac{y}{D}$ Condition	$\left(\frac{\partial U}{\partial V}\right)_{S} dV$ Helmholtz: $F = E - TS$ Ent-	Z $Z = Z_{f}e^{-t}$ $Z_{avg} = Z_{d\beta}$ $Z_{d\beta} = -\frac{\partial LnZ}{\partial \beta}$ non-int, distinct: $Z_{tot} = Z_1Z_2$
$\psi_k(x,t) = Ae^{i(kx - \frac{\hbar k^2}{2m}t)}$ $k = \pm \frac{\sqrt{2mE}}{\hbar}$	$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d}$	for min.: $y \approx \frac{m\lambda D}{a}$ (a = width of slit)	halpy: $H = U + PV$ Gibbs: $G = U - PV$	1 2
$k > 0 \rightarrow right v_{quantum} =$	Generating EMF	Resolvance of Grating: $R = \frac{\lambda}{\Lambda \lambda} = mN$ (m	$TS + PV = H - TS$ $df = \left(\frac{\partial f}{\partial x}\right)_{y} dx +$	non-int, indistinct: $Z_{tot} = \frac{1}{N!} Z_1^N$ $P = \frac{1}{\beta} \frac{\partial lnZ}{\partial V}$ Stirling $ln(N!) = NlnN - N +$
$\sqrt{\frac{E}{2m}} = \frac{1}{2}v_{classical} = v_{group} = v_{phase}$	$F = q(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$ $\varepsilon = -\frac{\partial F}{\partial t} = \oint \overrightarrow{E} \cdot dl =$	= order of diffraction, N = total of slits) Double Slit: Condition for max.:	$\left(\frac{\partial f}{\partial y}\right)_{Y} dy \left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V} \left(\frac{\partial T}{\partial P}\right)_{S} = -\left(\frac{\partial F}{\partial S}\right)_{V} \left(\frac{\partial T}{\partial S}\right)_{S} = -\left(\frac{\partial F}{\partial S}\right)_{S} \left(\frac{\partial T}{\partial S}\right)_{S} = -\left(\frac{\partial F}{\partial S}\right)_$, NI
$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk$	$-\oint \frac{\partial \overrightarrow{B}}{\partial t} \cdot \hat{n} da = -\frac{d\phi_B}{dt}$	$Dsin(\theta) = m\lambda \rightarrow y \approx \frac{m\lambda D}{d}$ (d = dist	$\left(\frac{\partial V}{\partial S}\right)_{P}^{X} \qquad \left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T} \qquad \left(\frac{\partial V}{\partial T}\right)_{P} =$	$\mathcal{O}(lnN)$ $N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \beta = \frac{1}{k_B T}$ $n(E) = g(E)f(E)$ f(E): Maxwell Boltzman:
$\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(x,0) e^{-ikx} dx$	Gauss Law stuff with Capacitance +Q -Q	between slits) Circ. $\theta = 1.22 \frac{\lambda}{D}$	$-\left(\frac{\partial S}{\partial P}\right)_{T}$	$\frac{1}{e^{\beta(E-\mu)}}$ Fermi Dirac: $\frac{1}{e^{\beta(E-\mu)}+1}$ Bose Ein-
	Pill box $E = \frac{\sigma}{2\epsilon_0}$ Parallel Plates: $E = \frac{\sigma}{2\epsilon_0}$	Dielectrics $P = \chi \varepsilon_0 E D = \varepsilon_0 E + P \sigma_{pol} = P \cdot n E = 0$	Entropy	stein: $\frac{1}{g(F)} \lambda = \frac{h}{\pi}$ $p = \sqrt{2mkT}$ $F =$
Bound state with $E < 0$ take $t = \sqrt{-2mE}$	$-\frac{Q}{\epsilon_0 A} \hat{z} C = \frac{\epsilon_0 A}{d}$ Concen. Spheres: $E = \frac{Q}{2}$	$\frac{\sigma_{free}}{\varepsilon} \varepsilon = (1 + \gamma)\varepsilon_0 C = \frac{\varepsilon A}{\varepsilon}$	$S = kln(\Omega)$ when energy and of molecules are fixed $\Delta S = Nkln(\frac{V_f}{V_i})$	$-k_B ln(Z)$
Bound state with E < 0 take $k = \frac{\sqrt{-2mE}}{\hbar}$ use $-\frac{\hbar^2}{2m}\Delta\left(\frac{\partial\Psi}{\partial x}\right) + \int_{-\varepsilon}^{\varepsilon} V(x)\Psi(x)dx = 0$	0 (-)	- Circuits		
lading and all		$\varepsilon = V + IR$ $P = I^2R = VI = \frac{V^2}{R} C[F] = \frac{Q}{V}$	$\Delta S = \frac{\Delta V}{T} (revsysonly, ifnot, U/T)$ Reversible = $\Delta S = 0$ Size =	$n = \frac{N}{V} \qquad g(\epsilon) = \frac{\pi (8m)^{\frac{3}{2}}}{2h^3} V \sqrt{\epsilon} = \frac{3N}{2\epsilon_F^{3/2}} \sqrt{\epsilon}$
$V = -\alpha \delta(x) \qquad \psi(x) = \frac{\sqrt{m\alpha}}{\hbar} e^{\frac{-m\alpha(x)}{\hbar^2}} \qquad E = \frac{1}{2}$	Em waves $E = cB$ $c = \frac{1}{\sqrt{c}} u(x,t) = 0$	$C_{par} = C_1 + C_2$ $\frac{1}{C_{ser}} = \frac{1}{C_1} + \frac{1}{C_2}$ $\tau = R \times$	$Nk \left[ln \left(\frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{\frac{3}{2}} \right) + \frac{5}{2} \right]$	$E = \frac{h^2 k^2}{8mL^2} \epsilon_F = \mu(T = 0) = \frac{h^2 k_{max}}{8mL^2} =$
$\frac{-m\alpha^2}{2\hbar^2}$ Scat. state with E > 0 $R = \frac{\beta^2}{1+\beta^2}$	EM Waves $E = cB c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} u(x,t) = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$ S power per unit area = $\frac{1}{\mu_0} E \times B = \epsilon_0 c E^2$	$C L = \frac{\mu k N^2 S(\text{A of coil})}{L(\text{coil length})} \varepsilon = L \frac{dI}{dt} \tau =$	$\left[\frac{1}{N} \left(\frac{N}{3Nh^2} \right) \right]^{\frac{1}{2}}$	$\frac{12}{2}$ $\frac{2NL}{2}$ $\frac{2/3}{2}$ $\frac{3+2}{2}$ $\frac{5}{2}$
$T = \frac{1}{1+\beta^2} \qquad \beta = \frac{m\alpha}{\hbar^2 k} \qquad k = \frac{\sqrt{2mE}}{\hbar}$	S power per unit area = $\frac{1}{2}E \times B = \epsilon_0 c E^2$	$\frac{L}{R}$ $E = \frac{1}{2}LI_L^2$ $I = I_0(1 - e^{\frac{t}{\tau}})$ for induc-	Ideal Gas $\Delta U = Q - W \qquad \Delta T = 0 \rightarrow \Delta U = 0$	$\frac{h^{2}}{8m} \left(\frac{3N_{max}}{\pi V} \right)^{3/3} E_{tot} = \frac{\pi^{3}h^{2}}{10mL^{2}} \left(\frac{3N}{\pi} \right)^{3} P = \frac{\pi^{3}h^{2}}{15m} \left(\frac{3n}{\pi} \right)^{\frac{5}{3}} \epsilon_{F} \approx \frac{1}{mv^{2}} N_{max} = \frac{1}{2} \frac{4\pi^{2}}{10mL^{2}} \left(\frac{3n}{\pi} \right)^{\frac{5}{3}} \epsilon_{F} \approx \frac{1}{2} \frac{3n}{10mL^{2}} \left(\frac{3n}{\pi} \right)^{\frac{5}{3}} \left(3$
Hydrogen Atom	g momentum density = $\frac{S}{c^2} = \frac{u}{c}$	tors: $I \uparrow \varepsilon \downarrow$ Work done to charge capaci-	$C_v = \frac{g\widetilde{R}}{2}$ $C_P = C_V + R$ Monoatomic	$\frac{\kappa \ln}{15m} \left(\frac{\sin}{\pi} \right)^3 \qquad \epsilon_F \approx \frac{1}{mv^2} N_{max} = \frac{1.4\pi}{1.2m} \frac{3}{1.2m} \frac{3}$
e transitions $hf = \frac{Z^2 me^4}{8h^2 \varepsilon_0^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$	Electric Dipoles	$tor \rightarrow W = \int_0^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} CV^2$ Method of Images	$C_V = \frac{3}{2}R$ Diatomic $C_V = \frac{5}{2}R$ $C_v = \frac{dU}{dT}$	$2\frac{1}{8}\frac{4\pi}{3}k_{max}^{3}$ $N = \frac{8\pi}{3}L^{3}\frac{(2mL)}{h^{3}}$ $\rho(E) =$
0 [1 2]	$U = -p \cdot E \qquad \tau = p \times E \qquad p = \int r \rho(r) d^3 r$	Method of Images Write potential with z+d and z-d sum-	$U_{\text{mono}} = \frac{3}{2}nRT$ PDF of velocity	$\frac{dn}{dE} = \frac{4\pi (2m)^{3/2} E^{1/2}}{h^3}$ if T = 0: N =
Particle in a Ring	$V_{dip}(r) = \frac{1}{4\pi\varepsilon_0} \frac{p \cdot \hat{r}}{r^2}$ $p = qd$ $p =$	ming both charges, Surface charge induced on conductor = $\sigma = -\varepsilon (\partial V/\partial n)$ Com-	$\rightarrow f(v)dv = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} 4\pi v^2 e^{-\frac{mv^2}{2kT}} dv$	$\int_0^{\epsilon_F} \rho(E) dE \ T_F = \frac{\epsilon_F}{k_B} \ P = \frac{2}{3} \frac{U}{V} \ C_V =$
$-\frac{\hbar^2}{2mR^2}\frac{\partial\Psi}{\partial\phi} = E\Psi E = \frac{L_z^2}{2I} \Psi(\phi) = Ce^{\pm in\phi}$	$\alpha E F \approx p \cdot \nabla V \; E_{dip} = \frac{-p}{4\pi c_0 \sigma^3}$	pute Q for total surface area. Find F with		$\frac{\pi^2 N k^2 T}{2\epsilon_F}$ Strong Degeneracy = $K_B T \ll \epsilon_F$