Future of Computing: Moore's Law & Its Implications

15-213: Introduction to Computer Systems 27th Lecture, Dec. 3, 2015

Instructors:

Randal E. Bryant and David R. O'Hallaron

Moore's Law Origins

April 19, 1965

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

Moore's Law Origins

Moore's Thesis

- Minimize price per device
- Optimum number of devices / chip increasing 2x / year

Later

- 2x / 2 years
- "Moore's Prediction"

Moore's Law: 50 Years

Transistor Count by Year

What Moore's Law Has Meant

1976 Cray 1

- 250 M Ops/second
- ~170,000 chips
- 0.5B transistors
- 5,000 kg, 115 KW
- \$9M
- 80 manufactured

2014 iPhone 6

- > 4 B Ops/second
- ~10 chips
- > 3B transistors
- 120 g, < 5 W
- **\$649**
- 10 million sold in first 3 days

What Moore's Law Has Meant

1965 Consumer Product

2015 Consumer Product

Apple A8 Processor 2 B transistors

Visualizing Moore's Law to Date

If transistors were the size of a grain of sand

Intel 400419702,300 transistors

0.1 g

Apple A8
2014
2 B transistors

88 kg

Moore's Law Economics

Consumer products sustain the \$300B semiconductor industry

What Moore's Law Has Meant

What Moore's Law Could Mean

What Moore's Law Could Mean

2015 ConsumerProduct

2065 Consumer Product

- Portable
- Low power
- Will drive markets & innovation

Requirements for Future Technology

Must be suitable for portable, low-power operation

- Consumer products
- Internet of Things components
- Not cryogenic, not quantum

Must be inexpensive to manufacture

- Comparable to current semiconductor technology
 - O(1) cost to make chip with O(N) devices

Need not be based on transistors

- Memristors, carbon nanotubes, DNA transcription, ...
- Possibly new models of computation
- But, still want lots of devices in an integrated system

Moore's Law: 100 Years

Device Count by Year

Visualizing 10¹⁷ Devices

If devices were the size of a grain of sand

0.1 m³
3.5 X 10⁹ grains
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

1 million m³ 0.35 X 10¹⁷ grains

Increasing Transistor Counts

- 1. Chips have gotten bigger
 - 1 area doubling / 10 years
- 2. Transistors have gotten smaller
 - 4 density doublings / 10 years

Will these trends continue?

Chips Have Gotten Bigger

Intel 4004

1970

2,300 transistors

12 mm²

Apple A8

2014

2 B transistors

89 mm²

IBM z13

205

4 B transistors

678 mm²

Bryant aı tive, Third Edition 16

Chip Size Trend

Area by Year

Chip Size Extrapolation

Area by Year

Extrapolation: The iPhone 31s

Apple A59 2065 10¹⁷ transistors

173 cm²

Transistors Have Gotten Smaller

- Area A
- N devices
- Linear Scale L

$$L = \sqrt{A/N}$$

Linear Scaling Trend

Linear Scale by Year

Decreasing Feature Sizes

Intel 4004 1970 2,300 transistors L = 72,000 nm

Apple A8
2014
2 B transistors
L = 211 nm

Linear Scaling Trend

Submillimeter Dimensions

Submicrometer Dimensions

Linear Scaling Extrapolation

Linear Scale by Year

Subnanometer Dimensions

Reaching 2065 Goal

- Target
 - 10¹⁷ devices
 - 400 mm²
 - L = 63 pm

Is this possible?

Not with 2-d fabrication

Fabricating in 3 Dimensions

Parameters

- 10¹⁷ devices
- 100,000 logical layers
 - Each 50 nm thick
 - ~1,000,000 physical layers
 - To provide wiring and isolation
- L = 20 nm
 - 10x smaller than today

2065 mm³

3D Fabrication Challenges

Yield

How to avoid or tolerate flaws

Cost

High cost of lithography

Power

- Keep power consumption within acceptable limits
- Limited energy available
- Limited ability to dissipate heat

Photolithography

- Pattern entire chip in one step
- Modern chips require ~60 lithography steps
- Fabricate N transistor system with O(1) steps

Fabrication Costs

Method of stepper

Stepper

- Most expensive equipment in fabrication facility
- Rate limiting process step
 - 18s / wafer
- Expose 858 mm² per step
 - 1.2% of chip area

Fabrication Economics

Currently

- Fixed number of lithography steps
- Manufacturing cost \$10-\$20 / chip
 - Including amortization of facility

■ Fabricating 1,000,000 physical layers

Cannot do lithography on every step

Options

- Chemical self assembly
 - Devices generate themselves via chemical processes
- Pattern multiple layers at once

Samsung V-Nand Flash Example

- Build up layers of unpatterned material
- Then use lithography to slice, drill, etch, and deposit material across all layers
- ~30 total masking steps
- Up to 48 layers of memory cells
- Exploits particular structure of flash memory circuits

Meeting Power Constraints

- 2 B transistors
- 2 GHz operation
- 1—5 W

Can we increase number of devices by 500,000x without increasing power requirement?

- 64 B neurons
- 100 Hz operation
- 15—25 W
 - Liquid cooling
 - Up to 25% body's total energy consumption

Challenges to Moore's Law: Economic

Dennard Scaling

- Due to Robert Dennard, IBM, 1974
- Quantifies benefits of Moore's Law

How to shrink an IC Process

- Reduce horizontal and vertical dimensions by k
- Reduce voltage by k

Outcomes

- Devices / chip increase by k^2
- Clock frequency increases by k
- Power / chip constant

Significance

- Increased capacity and performance
- No increase in power

End of Dennard Scaling

What Happened?

- Can't drop voltage below ~1V
- Reached limit of power / chip in 2004
- More logic on chip (Moore's Law), but can't make them run faster
 - Response has been to increase cores / chip

Final Thoughts

- Compared to future, past 50 years will seem fairly straightforward
 - 50 years of using photolithography to pattern transistors on twodimensional surface
- Questions about future integrated systems
 - Can we build them?
 - What will be the technology?
 - Are they commercially viable?
 - Can we keep power consumption low?
 - What will we do with them?
 - How will we program / customize them?