Teoria Espectral em Espaços de Hilbert

Alex Farah Pereira

Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense

22 de setembro de 2016

Espaços Vetoriais de Dimensão Finita

Sejam V um espaço vetorial (real ou complexo) de dimensão finita e $T:V\longrightarrow V$ um operador linear.

Proposição

T é diagonalizável se, e somente se, V admite uma base formada por autovetores de T. Neste caso, a matriz de T nesta base é uma matriz diagonal.

Proposição

Se V é um espaço euclidiano, então $\mathcal T$ é auto-adjunto se, e somente se, existe uma base ortonormal de V formada por autovetores de $\mathcal T$.

Espaços Euclidianos

Seja E um espaço vetorial sobre \mathbb{K} (real ou complexo). Um produto interno em E é uma aplicação

$$\langle \cdot, \cdot \rangle : E \times E \longrightarrow \mathbb{K}$$

que satisfaz

(P1)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle \ \forall x_1, x_2, y \in E$$

(P2)
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \ \forall x, y \in E, \lambda \in \mathbb{C}$$

(P3)
$$\langle x, y \rangle = \overline{\langle y, x \rangle} \ \forall x, y \in E$$

(P4)
$$\langle x, x \rangle > 0 \ \forall x \neq 0$$

O par $(E, \langle \cdot, \cdot \rangle)$ é chamado de espaço euclidiano.

Exemplos

Exemplo 1

 \mathbb{R}^n é um espaço euclidiano com

$$\langle x, y \rangle = \sum_{j=0}^{n} x_j y_j$$

onde $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}^n$.

Exemplo 2

 \mathbb{C}^n é um espaço euclidiano com

$$\langle x, y \rangle = \sum_{j=0}^{n} x_j \overline{y_j}$$

onde $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{C}^n$.

Exemplos

Exemplo 3

 $\ell_2=\{(x_n)_n\in\mathbb{C}\,;\,\sum_{n=0}^\infty|x_n|^2<\infty\}$ é um espaço euclidiano com

$$\langle x, y \rangle = \sum_{n=0}^{\infty} x_j \overline{y_j}$$

onde $x = (x_n)_n, y = (y_n)_n \in \ell_2$.

Exemplo 4

 $L_2(X, \Sigma, \mu)$ é um espaço euclidiano com

$$\langle f, g \rangle = \int_X f \overline{g} d\mu$$

onde $f, g \in L_2(X, \Sigma, \mu)$.

Espaços Normados

Uma norma em E é uma função $\|\cdot\|:E\longrightarrow\mathbb{R}$ que satisfaz

(N1)
$$||x|| \ge 0 \ \forall x \in E$$

(N2)
$$\|\lambda x\| = |\lambda| \|x\| \ \forall x \in E \ \forall \lambda \in \mathbb{C}$$

(N3)
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in E$$

(N4)
$$||x|| = 0 \Leftrightarrow x = 0$$

O par $(E, \|\cdot\|)$ é chamado de espaço normado.

• Todo espaço euclidiano é um espaço normado!

$$||x|| = \sqrt{\langle x, x \rangle}, \ \forall x \in E$$

Espaços de Hilbert

Um espaço de Hilbert é um espaço de Banach com a norma induzida pelo produto interno. Os espaços

- \bullet \mathbb{R}^n ;
- \mathbb{C}^n ;
- $\ell_2 = \{(x_n)_n \in \mathbb{C} ; \sum_{n=0}^{\infty} |x_n|^2 < \infty\};$
- $L_2(X, \Sigma, \mu)$.

são espaços de Hilbert com seus respectivos produtos internos.

Ortogonalidade

Sejam E um espaço com produto interno e A um subconjunto de E. Denominamos o subconjunto

$$A^{\perp} = \{ y \in E ; \langle x, y \rangle = 0 \text{ para todo } x \in A \}$$

de complemento ortogonal.

Teorema

Sejam H um espaço de Hilbert e M um subespaço fechado de H. Então

- (a) $H = M \oplus M^{\perp}(x \in H \Leftrightarrow x = p + q \text{ com } p \in M \text{ e } q \in M^{\perp});$
- (b) Os operadores P(x) = p e Q(x) = q são projeções (lineares, contínuos e $P^2 = P$ e $Q^2 = Q$).
 - $||x p|| = \text{dist}(x, M) = \inf_{y \in M} ||x y||;$
 - p é chamado de projeção ortogonal de x sobre M;
 - P é chamado de projeção ortogonal de H sobre M.

Conjuntos Ortonormais

Seja E um espaço com produto interno. Um conjunto $S \subset E$ é dito ortonormal quando para todos $x,y \in S$,

$$\langle x, y \rangle = \left\{ \begin{array}{ll} 0, & x \neq y, \\ 1, & x = y. \end{array} \right.$$

Um conjunto ortonormal S tal que $S^{\perp}=\{0\}$ é chamado de sistema ortonormal completo.

Exemplos

- A base canônica $\{e_1, \ldots, e_n\}$ de \mathbb{K}^n ;
- A base canônica $\{e_n; n \in \mathbb{N}\}$ de ℓ_2 .

Todo conjunto ortonormal em um espaço com produto interno é linearmente independente.

Conjuntos Ortonormais

Proposição

Sejam H um espaço de Hilbert e $\{x_1, \ldots, x_n\}$ um conjunto ortonomal finito em H.

(a) Se $M = [x_1, \dots, x_n]$ e $x \in H$, então

$$||x - \sum_{i=1}^{n} \langle x, x_i \rangle x_i|| = \operatorname{dist}(x, M).$$

(b) Para todo $x \in H$, $\sum_{i=1}^{n} |\langle x, x_i \rangle|^2 \le ||x||^2$.

Desigualdade de Bessel

Seja $S = \{x_i : i \in I\}$ um conjunto ortonormal no espaço de Hilbert H. Então, para todo $x \in H$,

$$\sum_{i\in J} |\langle x, x_i \rangle|^2 \le ||x||^2,$$

onde $J = \{i \in I : \langle x, x_i \rangle \neq 0\}.$

Conjuntos Ortonormais

Teorema

Seja $S = \{x_i ; i \in I\}$ um conjunto ortonormal no espaço de Hilbert H. As seguintes afirmações são equivalentes:

- (a) Para cada $x \in H$, $x = \sum_{i \in I} \langle x, x_i \rangle x_i$.
- (b) S é um sistema ortonormal completo.
- (c) $\overline{[S]} = H$.
- (d) Para cada $x \in H$, $||x||^2 = \sum_{i \in I} |\langle x, x_i \rangle|^2$. (Identidade de Parseval)
- (e) Para todos $x, y \in H$, $\langle x, y \rangle = \sum_{i \in I} \langle x, x_i \rangle \overline{\langle y, x_i \rangle}$.

Processo de Ortogonalização

Sejam E um espaço com produto interno e $(x_n)_n$ uma sequência de vetores linearmente independentes em E.

Processo de Ortogonalização de Gram-Schmidt

Existe uma sequência ortonormal $(e_n)_n$ em E tal que para todo $n \in \mathbb{N}$,

$$[x_1,\ldots,x_n]=[e_1,\ldots,e_n].$$

Corolário

Existe uma sequência ortonormal $(e_n)_n$ em E tal que

$$[x_n; n \in \mathbb{N}] = [e_n; n \in \mathbb{N}].$$

Processo de Ortogonalização

Teorema

Um espaço de Hilbert H de dimensão infinita é separável se, e somente se, existe em H um sistema ortonormal completo enumerável.

Teorema de Riesz-Fischer

Todo espaço de Hilbert separável de dimensão infinita é isometricamente isomorfo a ℓ_2 .

Teorema

Todo espaço de Hilbert contém sistemas ortonormais completos.

Teoria Espectral

Sejam V um espaço vetorial e $T:V\longrightarrow V$ um operador linear.

- $\lambda \in \mathbb{K}$ é um autovalor de $T \Leftrightarrow$ existe $x \in V, v \neq 0$; $T(x) = \lambda x$;
- $V_{\lambda} = \{x \in V \; ; \; T(x) = \lambda x\}$ é dito autoespaço associado ao autovalor λ .

Sabemos que quando V tem dimensão finita:

$$\lambda$$
 é autovalor de $T\Leftrightarrow \ker(T-\lambda I)\neq\{0\}\Leftrightarrow T-\lambda I$ não é injetora
$$\Leftrightarrow T-\lambda I$$
 não é bijetora $\Leftrightarrow (T-\lambda I)^{-1}$ não existe

Espectro de Operadores Contínuos

Sejam E um espaço normado e $T \in \mathcal{L}(E, E)$.

$$\lambda$$
 não é autovalor $\Rightarrow (T - \lambda I)^{-1}$ é linear e injetora $(T - \lambda I)$ é sobrejetora? $(T - \lambda I)^{-1}$ é contínua?

- λ é um valor regular de T quando $(T \lambda I)$ é bijetora e sua inversa é contínua.
- $\rho(T)$ é o conjunto dos valores regulares de T chamado de conjunto resolvente de T.
- $\sigma(T) = \mathbb{K} \rho(T)$ é chamado de espectro de T.

E um espaço de Banach $\Rightarrow \rho(T) = \{\lambda \in \mathbb{K} : (T - \lambda I) \text{ \'e bijetora} \}$

Espectro de Operadores Contínuos

Exemplo

O operador $T \in \mathcal{L}(\ell_2,\ell_2)$ definido por

$$T((a_n)_n) = (0, a_1, a_2, \ldots)$$

para todo $(a_n)_n \in \ell_2$ não possui autovalores. Além disso, T é injetora porém não é bijetora. Portanto $0 \in \sigma(T)$ e não é autovalor.

Teorema

Sejam E um espaço de Banach e $T \in \mathcal{L}(E,E)$. Então o espectro de T é um compacto de \mathbb{K} . Além disso,

$$\sigma(T) \subset \{\lambda \in \mathbb{K} ; |\lambda| \leq ||T||\}.$$

Operadores Compactos

Um operador $T: E \longrightarrow F$ entre espaços normados é dito compacto quando satisfaz uma (e, portanto, todas) das afirmações a seguir:

- $\overline{T(B_E)}$ é compacto em F;
- $\overline{T(A)}$ é compacto em F para todo limitado A em E;
- Para toda sequência limitada $(x_n)_n$ em E, a sequência $(T(x_n))_n$ tem subsequência convergente em F.

Operadores Integrais são compactos!

 $K:[a,b] \times [c,d] \longrightarrow \mathbb{C}$ uma função contínua e $T:C[a,b] \longrightarrow C[c,d]$ definido por

$$T(f)(t) = \int_a^b K(s,t)f(s) ds$$

para todo $t \in [c, d]$. K é chamada de núcleo do operador integral T.

Teoria Espectral de Operadores Compactos

Proposição

Sejam E um espaço de Banach, $T:E\longrightarrow E$ um operador compacto e $\lambda \neq 0$. Então

- (a) $V_{\lambda} = \ker(T \lambda I)$ tem dimensão finita.
- (b) $(T \lambda I)(E)$ é fechado em E.
- (c) $(T \lambda I)$ é injetora se, e somente se, é sobrejetora.

Teorema Espectral para Operadores Compactos

O espectro de um operador compacto $T: E \longrightarrow E$ em um espaço de Banach E é enumerável, podendo ser finito, e o único ponto de acumulação possível é o zero.

Operadores Autoadjuntos

Sejam H um espaço de Hilbert (complexo) e $T \in \mathcal{L}(H,H)$. Dizemos T é autoadjunto quando satisfaz

$$\langle T(x), y \rangle = \langle x, T(y) \rangle$$

para todos $x, y \in H$.

Proposição

Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ um operador autoadjunto. Então

$$||T|| = \sup\{|\langle T(x), x \rangle|; ||x|| = 1\}.$$

Teoria Espectral de Operadores Autoadjuntos

Proposição

Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ um operador autoadjunto. Então:

- (a) Os autovalores de T são números reais.
- (b) Se λ e μ são autovalores distintos de T, então $V_{\lambda} \perp V_{\mu}$.

Teorema

Seja H um espaço de Hilbert. O espectro $\sigma(T)$ de um operador autoadjunto $T \in \mathcal{L}(H,H)$ é real.

Teoria Espectral de Operadores Autoadjuntos

Proposição

Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ um operador não-nulo, compacto e autoadjunto. Então $\|T\|$ ou $-\|T\|$ é um autovalor de T associado ao qual existe um autovetor $x \in H$ tal que $\|x\| = 1$ e $|\langle T(x), x \rangle| = \|T\|$.

Corolário

Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ um operado compacto e autoadjunto. Então:

- (a) $\sigma(T) \neq \emptyset$.
- (b) Se $\sigma(T) = \{0\}$, então T = 0.

Teoria Espectral de Operadores Autoadjuntos

Decomposição Espectral de Operadores Compactos e Autoadjuntos

Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ um operador compacto e autoadjunto. Então H admite um sistema ortonormal completo formado por autovetores de T. Mais ainda, existem sequências (finitas ou infinitas) de autovalores $(\lambda_n)_n$ de T e de vetores $(v_n)_n$ tais que cada v_n é autovetor associado a λ_n e

$$T(x) = \sum_{n} \lambda_n \langle x, v_n \rangle v_n.$$

Referências

Bibliografia

- G. Botelho, D. Pellegrino & E. Teixeira, *Fundamentos de Análise Funcional*, Textos Universitários, SBM, 2012
- J.B. Conway, *A Course in Functional Analysis*, Graduate texts in mathematics 96, Springer, 1990.

email: alexpereira@id.uff.br

OBRIGADO!!!