



# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

# Tarea 4

### INTEGRANTES

Torres Valencia Kevin Jair - 318331818 Aguilera Moreno Adrián - 421005200 Rivera Silva Marco Antonio - 318183583

### PROFESORA

Karla Ramírez Pulido

## **AYUDANTES**

Alan Alexis Martínez López Manuel Ignacio Castillo López Alejandra Cervera Taboada

ASIGNATURA

Lenguajes de Programación

27 de octubre de 2022

1. Currifica cada uno de los siguientes términos.

 $\blacksquare \lambda abc.abc.$ 

Solución:  $\lambda a.\lambda b.\lambda c.abc$ 

 $\blacksquare \lambda abc.\lambda cde.acbdce.$ 

Solución:  $\lambda a.\lambda b.\lambda c.\lambda c.\lambda d.\lambda e.acbdce$ 

•  $(\lambda d.(\lambda de.e)(\lambda fc.c))(\lambda ab.b)$ . Solución:  $(\lambda d.(\lambda d.\lambda e.e)(\lambda f.\lambda c.c))(\lambda a.\lambda b.b)$ 

- 2. Aplica  $\alpha$ -conversiones en cada expresión para cambiar los términos de las variables de ligado.
- a)  $\lambda_a.\lambda_b.((\lambda_a.b)(\lambda_b.a))$

Solución:

$$\lambda_a.\lambda_b.((\lambda_a.b)\ (\lambda_b.a)) \to_{\alpha} \lambda_x.\lambda_y.((\lambda_w.y)\ (\lambda_z.x))$$

b)  $\lambda a.(a(\lambda b.(\lambda a.a\ b)a))$ 

Solución:

$$\lambda_a.(a(\lambda_b.(\lambda_a.a\ b)a)) \to_{\alpha} \lambda_x.(x(\lambda_y.(\lambda_w.w\ y)x))$$

c)  $\lambda x.(\lambda y.x \ \lambda y.(\lambda x.x \ y))$ 

Solución:

$$\lambda_x.(\lambda_y.x \ \lambda_y.(\lambda_x.x \ y)) \rightarrow_{\alpha} \lambda_a.(\lambda_b.a \ \lambda_c.(\lambda_e.e \ c))$$

3. Aplica  $\beta$ -reducciones a las siguientes expresiones para llegar a una Forma Normal, en caso de que no se pueda justifica. Además indica en cada paso el reducto y el redex.

$$l =_{def} \lambda a.a$$

$$K =_{def} \lambda a.\lambda b.a$$

$$S =_{def} \lambda a.\lambda b.\lambda a.ac(bc)$$

$$\Omega =_{def} (\lambda a.aa)(\lambda a.aa)$$

a)  $\lambda a.aK\Omega$ 

Solución:

$$\lambda_{a}.aK\Omega \equiv \lambda_{a}.a(\lambda_{a}.\lambda_{b}.a)((\underbrace{\lambda a.aa}_{Redex})(\lambda a.aa))$$

$$\rightarrow_{\beta} \lambda_{a}.a(\lambda_{a}.a)(\underbrace{(\lambda a.aa)(\lambda a.aa)}_{Reducto}).$$
Reducto

Esta  $\lambda$ -función diverge, como se puede observar en la  $\beta$ -reducción anterior.

b)  $(\lambda a.a(ll))c$ 

Solución:

$$(\lambda_{a}.a(ll))c \equiv \lambda_{a}.a((\underbrace{\lambda_{a}.a})(\lambda_{a}.a))c$$

$$Reducto y Redex$$

$$-\beta \underbrace{\lambda_{a}.a}_{Reducto y Redex} \underbrace{C}_{Reducto}$$

$$-\beta \underbrace{C}_{Reducto}$$

$$Reducto$$

$$Reducto$$

c)  $(\lambda d.\lambda e.(\lambda f.f(\lambda a.ad))e)b(\lambda c.\lambda b.cb)$ 

Solución:

$$(\lambda_{d}.\lambda_{e}.(\underbrace{\lambda_{f}.f}(\lambda_{a}.ad))e)b(\lambda_{c}.\lambda_{b}.cb) \rightarrow_{\beta} (\lambda_{d}.\lambda_{e}.(\underbrace{\lambda_{a}.a\ d})e)b(\lambda_{c}.\lambda_{b}.cb)$$

$$\stackrel{Redex}{Reducto}$$

$$\rightarrow_{\beta} (\lambda_{d}.\underbrace{\lambda_{e}.\ e}_{Reducto}(d)b(\lambda_{c}.\lambda_{b}.cb)$$

$$\stackrel{Redex}{Reducto}$$

$$\rightarrow_{\beta} (\underbrace{\lambda_{d}.\ d}_{Reducto}(b)(\lambda_{c}.\lambda_{b}.cb)$$

$$\stackrel{Redex}{\rightarrow_{\beta}} \underbrace{b}_{Reducto}(\underbrace{(\lambda_{c}.\lambda_{b}.c)b})$$

$$\stackrel{Reducto}{\rightarrow_{\beta}} \underbrace{b}_{Reducto}(\underbrace{\lambda_{c}.\lambda_{b}.c})b$$

- **4.**Realiza la representación de los booleanos en el cálculo  $\lambda$  según la representación de los Numerales de Church.
- a) Define la función disyunción ↔ (equivalencia) sobre los boolenos. Sabemos que a partir de las leyes de equivalencia de la lógica proposicional, tenemos que:

$$a \leftrightarrow b \equiv (a \to b) \land (b \to a)$$
  $a \to b \equiv \neg a \lor b$   $b \to a \equiv \neg b \lor a$ 

Por lo que finalmente tenemos que:  $a \leftrightarrow b \equiv (\neg a \lor b) \land (\neg b \lor a)$ .

– Como en clase se vio que and queda definido de la siguiente forma:

$$\wedge =_{def} \lambda a. \lambda b. ((ab)F).$$

Definimos las siguientes funciones como:

$$\vee \ =_{def} \lambda a. \lambda b. ((aT)b).$$

$$\neg =_{def} \lambda a.aFT.$$

$$\to =_{def} (\lambda a. \lambda b. \vee (\neg a)b).$$

$$\leftrightarrow =_{def} (\lambda a. \lambda b. \wedge (\rightarrow ab)(\rightarrow ba))$$

A continuación se muestra una ejecución donde tomamos los valores T y T.

Esto es,

$$(((\lambda a.\lambda b. \wedge (\rightarrow ab)(\rightarrow ba))T)T) \rightarrow_{\beta} ((\lambda b. \wedge (\rightarrow Tb)(\rightarrow bT))T)$$

$$\rightarrow_{\beta} (\wedge (\rightarrow TT)(\rightarrow TT))$$

$$\rightarrow_{\beta} (\wedge ((\lambda a.\lambda b. \vee (\neg a)b)TT)(\rightarrow TT))$$

$$\rightarrow_{\beta} (\wedge ((\lambda b. \vee (\neg T)b)T)(\rightarrow TT))$$

$$\rightarrow_{\beta} (\wedge ((\nu - T)T)((\lambda a.\lambda b. \vee (\neg a)b)TT))$$

$$\rightarrow_{\beta} (\wedge ((\nu - T)T)((\lambda b. \vee (\neg T)b)T))$$

$$\rightarrow_{\beta} (\wedge ((\nu - T)T)((\nu - T)T))$$

$$\rightarrow_{\beta} (\wedge (((\lambda a.aFT)T)T)(\vee (\neg T)T))$$

$$\rightarrow_{\beta} (\wedge (((\lambda a.aFT)T)T)(\vee (\neg T)T))$$

$$\rightarrow_{\beta} (\wedge (((TFT)T)(\vee (TFT)T))$$

$$\rightarrow_{\beta} (\wedge (((TFT)T)(\vee (TFT)T))$$

$$\rightarrow_{\beta} (\wedge (((TFT)T)(\vee (TFT)T))$$

$$(\vee ((TFT)T))$$

$$\rightarrow_{\beta} (\wedge (((TT)F)((TT)T))$$

$$(\vee ((TFT)T))$$

$$\rightarrow_{\beta} (\wedge (((TT)F)((TT)T)(((TT)F)((TT)))))$$

$$\rightarrow_{\beta} (\lambda a.\lambda b.((ab)F)(((TT)F)((TT)T)(((TT)F)((TT)T)))$$

$$\rightarrow_{\beta} (((TT)F)((T)T)(((TT)F)((TT)T))))$$

$$\rightarrow_{\beta} (((TT)F)((T)T)(((TT)F)((TT)T))))$$

$$\rightarrow_{\beta} ((((\lambda_b.T)F)((T)T)(((TT)F)((TT)T)))))$$

$$\rightarrow_{\beta} (((((\lambda_b.T)F)((T)T)(((TT)F)((TT)T)))))$$

$$\rightarrow_{\beta} ((((\lambda_b.T)F)((T)T)(((TT)F)((TT)T)))))$$

$$\rightarrow_{\beta} ((((\lambda_b.T)F)((TT)T)(((TT)F)((TT)T)))))$$

$$\rightarrow_{\beta} ((((\lambda_b.T)F)((TT)T)(((TT)F)((TT)T)))))$$

lo cual es cierto  $(T \leftrightarrow T \text{ es } T)$ .

b) Define la función xor (disyunción exclusiva) sobre los booleanos.

$$xor =_{def} \lambda a. \lambda b. ((a \text{ (not } b)) \ b))$$

A continuación se muestra una ejecución donde tomamos los valores T y T.

Esto es,

$$(((\lambda a.\lambda b.((a \text{ (not } b)) b)))T)T) \rightarrow_{\beta} ((\lambda b.((T \text{ (not } b)) b)))T)$$

$$\rightarrow_{\beta} (T \text{ (not } T)) T)$$

$$\rightarrow_{\beta} (T \text{ (not } T)) T)$$

$$\rightarrow_{\beta} ((\lambda_{a}.(\lambda_{b}.a)) \text{ (not } T)) T)$$

$$\rightarrow_{\beta} ((\lambda_{b}.\text{not } T) T)$$

$$\rightarrow_{\beta} (((\lambda_{b}.F) T))$$

$$\rightarrow_{\beta} F$$

Lo cual es cierto.

5. Observa la siguiente expresión en el lenguaje programación Racket.

```
(let ([ sum (\lambda (n) (if (zero ? n) 0 (+ n (sum (sub1 n))))))]) (sum 5))
```

- a) Ejecútala y explica el por qué del resultado.
- b) Ejecútala modificándola usando Combinador de Punto Fijo Y y Combinador de Punto Fijo Z. Explica el resultado en ambos casos.