Pag 616 e seguenti $n = \frac{10 \cdot 4^{2x-1}}{4} - 10 \cdot 4^{x-1} + 6 > 0$ $\frac{4^{2x}}{4} - \frac{10 \cdot 4^{x}}{4} + 6 > 0$ 42x - 10-4x + 16 >0 4x=t $t^2 - 10t + 16 > 0$ $\Delta = 100 - 64 = 36$ $|\Delta'| = 6$ $t_{12} = \frac{10 \pm 6}{2} \longrightarrow 2 \quad \text{as} \quad t < 2 \quad v \quad t > 8$ \angle^{\times} < 2 ms $2^{2\times}$ < 2 ms \times < $\frac{1}{2}$ 22x > 2 ~~~ $\times > \frac{3}{2}$ 4×>8 ~~ $\times < \frac{1}{2}$ \vee $\alpha > \frac{3}{2}$ $\frac{n \ 30c}{(1-2^{x})(3^{x}-3)} > 0$ 5^x - 5³>0 5^x>5³ ~ x>3 N=0 5x-125 >0 $D_1 > 0$ $1-2^{\times} > 0$ $-2^{\times} > -1$ 2×<1=2° ~ × <0 $D_1 > 0$ $3^{\times} - 3 > 0$ 3×>3 ~ × >1 N - - + + D2 - - + + X<0 v 1<x≤3

n 330
$$\frac{4}{3} \times \frac{1}{3} = \frac{4 \cdot \sqrt{25^{4}}}{\sqrt{43^{4}}} = \frac{4 \cdot \sqrt{$$

36.
$$\log_{10} \frac{\sqrt{4}}{812} = \log_{2} (\frac{\sqrt{6}}{812})$$

$$= 2 \log_{2} (\frac{(2^{2})^{\frac{1}{8}}}{2^{\frac{3}{2}} \cdot 2^{\frac{1}{8}}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (2^{-\frac{1}{8}}) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8})) - 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}))$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}) - (\frac{1}{8}) - (\frac{1}{8})$$

$$= 2 \log_{2} (1^{\frac{2}{5}} - (\frac{1}{8}) - (\frac{1}{8}) - (\frac{1}{8})$$

$$= 2 \log_{2} (1^{\frac{2}{5}} -$$

$$t = 0$$
 $cos_{5} \times = 0$ $cos_{5} \times = 1$ $cos_{5} \times = 5$ $cos_{5} \times = 5$