Introducing Stochasticity

CS 3600 Intro to Artificial Intelligence

Games of Chance

Plenty of games include elements of randomness

- Poker, Blackjack, Solitaire (shuffling)
- Backgammon, Monopoly (dice)
- Roulette, Pachinko, Slots (mechanical)

We can still use search, if we modify our search tree to include probabilities with edges

For adversarial games, we can introduce another player, "Chance", and use a slightly modified version of Minimax

Expectiminimax

The "Expectiminimax" value is the same as Minimax except that for chance nodes we take the expected value of all the children

$$\text{EXPECTIMINIMAX}(s) = \begin{cases} \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ \max_{a} \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ \min_{a} \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \\ \sum_{a} P(a) \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{CHANCE} \end{cases}$$

We end up with a version of adversarial search that uses this instead of Minimax-Value.

Stochastic Actions

In the single-agent case, instead of having a "Chance" player, we can model actions as having **non-deterministic** outcomes

Deterministic actions

Result(s,a) = s'

Stochastic actions

Result(s,a) =
$$\{s_1, s_2, ..., s_k\}$$

This type of representation is called an "And-Or search tree"

Solutions for And-Or search trees (no cycles)

As long as there are no cycles, we can still do search!

The result of searching an And-Or tree is no longer a sequence of actions, but a contingency plan:

[Clean, if S=5 then [Right, Clean] else [Left]]

An acyclic contingency plan has a nested set of sub-plans for each possible outcome, and can **also** be represented as a tree

One version of And-Or Search

```
def and_or_search(prob):
    or_search(prob.initstate,prob,[])
```

```
def or search (state, prob, path):
    if prob.goal test(state):
        return empty plan
    if state in path:
        return failure #cycle
    for action in prob.acts(state):
        S = prob.result(state,action)
        np = [state,]+path
        plan = and search(S, prob, np)
        if plan != failure:
            return [action,]+plan
    return failure
```

```
def and_search(states, prob, path):
    subplans = list
    for s in states:
        subplan=or_search(s,prob,path)
        if subplan == failure:
            return failure
        plans.append(subplan)
    return subplans
```

Like DFS, but with a base-case for cycles, and alternating AND/OR layers. Compare Fig 4.11

Solutions for And-Or search trees (with cycles)

Actually, even if there are cycles, we can sometimes find a solution.

If each outcome of a non-deterministic action occurs **eventually**, we can still find a "solution" that will... eventually... get to the goal.

To keep our solutions compact, we can introduce **labels** for repeated steps

[L_1 : Clean, **if** S=5 **then** L_1 **else** [Right ...]]

From contingency plans to policy

These "plans" are starting to get increasingly complex...

Instead of a sequence of actions (or a tree of sequences), why not find a **mapping** from state to action so that no matter what state we end up in, we can **immediately** know what to do next? This kind of mapping is called a **policy**.

Analogy

A "plan" is a list of directions

A "policy" is a map marked with arrows

High level review

Uninformed search

BFS, DFS, IDS, UCS

Informed search

A*, heuristics

Adversarial search

Minimax and alpha-beta pruning

Non-deterministic

Expectiminimax, And-Or, and contingency plans

High level preview

Before the midterm

Stochastic actions

Markov Decision Processes, Reinforcement Learning

Decisions with uncertainty

Probability, Bayes Nets, Hidden Markov Models, Filtering

After the midterm

Optimization

Hill Climbing, Simulated Annealing, Evolutionary Algorithms, Gradient Descent

Machine Learning

Linear Regression, Neural Networks, Deep Learning, Decision Trees, Random Forests