EXAMEN TRAITEMENT DU SIGNAL - 1SN

Jeudi 18 Janvier 2018

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (5 points)

Pour $f_0 > 0$, on considère un signal déterministe

$$x(t) = f_0 \left[\frac{\sin(\pi f_0 t)}{\pi f_0 t} \right]^2 = f_0 \text{sinc}^2(\pi f_0 t).$$

1. On échantillonne le signal x(t) avec la fréquence d'échantillonnage $F_e=1/T_e$. Déterminer la transformée de Fourier du signal échantillonné

$$x_e(t) = \sum_{k=-\infty}^{+\infty} x(kT_e)\delta(t - kT_e)$$

notée $X_e(f)$. Représenter graphiquement $X_e(f)$ lorsque $F_e=4f_0$.

2. On construit le signal numérique $y(kT_e)$ de la manière suivante

$$y(kT_e) = \begin{cases} x(kT_e) \text{ si } k \text{ pair} \\ -x(kT_e) \text{ sinon.} \end{cases}$$

c'est-à-dire $y(kT_e)=(-1)^kx(kT_e)$. Montrer que la transformée de Fourier du signal échantilonné $y_e(t)$ est définie par

 $Y_e(f) = X_e \left(f + \frac{F_e}{2} \right) +$

Représenter $Y_e(f)$ pour $F_e = 4f_0$.

3. Comment peut-on restituer le signal x(t) à partir du signal échantillonné $x_e(t) + y_e(t)$ avec $y(kT_e) = (-1)^k x(kT_e)$?

Exercice 2 : Questions de cours (2 points)

- Qu'appelle-t'on formule d'interpolation de Shannon? Quel est son intérêt?
- Qu'est ce qu'un signal stationnaire?
- Qu'est ce qu'un bruit blanc?
- Qu'est ce qu'un filtre anti-repliement ? Est-il analogique ou numérique ?

Exercice 3 (3 points)

On considère un signal aléatoire stationnaire X(t) de moyenne nulle et de fonction d'autocorrélation $R_X(\tau) = \Lambda_1(\tau)$ avec

$$\Lambda_1(\tau) = \begin{cases} 1 - \tau & \text{si } 0 \le \tau \le 1 \\ 1 + \tau & \text{si } -1 \le \tau \le 0 \\ 0 & \text{sinon.} \end{cases}$$

et on forme le signal aléatoire

$$Y(t) = \int_{t-2}^{t} X(u) du$$

- Montrer que Y(t) est obtenu par filtrage linéaire de X(t) avec un filtre dont on déterminera la fonction de transfert et la réponse impulsionnelle.
- lacktriangle Montrer que la densité spectrale de puissance de $oldsymbol{\chi}(t)$ s'écrit

$$s_Y(f) = \frac{[1 - \cos(2\pi f)] [(1 - \cos(4\pi f))]}{4\pi^4 f^4}$$

On rappelle la relation $\sin^2(x) = \frac{1-\cos(2x)}{2}$.

Transformée de Fourier

$$X(f) = \int_{\mathbb{R}} x(t)e^{-i2\pi ft}dt \qquad x(t) = \int_{\mathbb{R}} X(f)e^{i2\pi ft}df$$

	1 .1.	
x(t) réelle paire	<u></u>	X(f) réelle paire
x(t) réelle impaire	<u></u>	X(f) imaginaire pure impaire
x(t) réel	=	$\begin{cases} \operatorname{Re} \{X(f)\} \text{ paire} \\ \operatorname{Im} \{X(f)\} \text{ impaire} \\ X(f) \text{ pair} \\ \operatorname{arg} \{X(f)\} \text{ impaire} \end{cases}$
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$		$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0 t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	=	$X^*(-f)$
$x(t) \cdot y(t)$		X(f) * Y(f)
x(t) * y(t)	=	$X(f) \cdot Y(f)$
x(at)		$\frac{1}{ a }X\left(\frac{f}{a}\right)$
$\frac{dx^{(n)}(t)}{dt^n}$	=	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	~_7	$\frac{dX^{\{n\}}(f)}{df^n}$

	Formule de Parseval
$\int_{\mathbb{R}}$	$x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$
	$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$

Série de Fourier
$x(t) = \sum_{n} c_n e^{+i2\pi n f_0 t} \rightleftharpoons X(f) = \sum_{n} c_n \delta(f - n f_0)$
avec $c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-i2\pi n f_0 t} dt$

	T.F.	
1	=	$\delta(f)$
$\delta(t)$	-	1
$e^{+i2\pi f_0 t}$	=	$\delta (f - f_0)$
$\delta\left(t-t_0\right)$		$e^{-i2\pi f t_0}$
$\sum_{k \in \mathbb{Z}} \delta\left(t - kT\right)$		$\frac{1}{T} \sum_{k \in \mathbb{Z}} \delta\left(f - \frac{k}{T}\right)$
$\cos\left(2\pi f_0 t\right)$	<u></u>	$\frac{1}{2} \left[\delta (f - f_0) + \delta (f + f_0) \right]$
$\sin\left(2\pi f_0 t\right)$	₹	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$		$\frac{2a}{a^2 + 4\pi^2 f^2}$
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_T(t)$	<u></u>	$T\sin e^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$		$\Pi_{B}\left(f\right)$
$B\sin c^2\left(\pi Bt\right)$		$\Lambda_{B}\left(f ight)$

!!!!!! Attention !!!!!

 $\Pi_{T}(t)$ est de support égal à T. $\Lambda_{T}(t)$ est de support égal à 2Tet on a $\Pi_{T}(t) * \Pi_{T}(t) = T \Lambda_{T}(t)$

$$\delta(t) = \begin{cases} 0 \text{ si } t \neq 0 \\ +\infty \text{ si } t = 0 \end{cases} \text{ et } \int_{\mathbb{R}} \delta(t) dt = 1$$

$$\delta(t - t_0) f(t) = \delta(t - t_0) f(t_0)$$

$$\delta(t - t_0) * f(t) = f(t - t_0)$$