Лекция 9 1

1.1 Теорема Вейля о равномерном распределении

Введем необходимые определения. Пусть \mathbb{T}^n - n -мерный тор, параметризованный nугловыми переменными $\{x_1,\ldots,x_n mod 2\pi\}$

Рассмотрим преобразование $T: x_j \mapsto x_j + \alpha_j (mod 2\pi)$, оно задается числами $\alpha_1, \ldots, \alpha_n$. $\forall x \mapsto x, Tx, T^2x, \dots$ - орбита (траектория) точки x.

Теорема (Вейля): Пусть $m_1\alpha_1 + \ldots + m_n\alpha_n + m_02\pi = 0 \Leftrightarrow m_1 = m_2 = \ldots = m_n = m_0 = 0$, пусть $f \colon \mathbb{T}^n \to \mathbb{R}$ - интегрируема по Риману. Тогда $f(T^m x) \xrightarrow{1 \over (2\pi)^n} \int_{\mathbb{T}^n} f(x) d^n x, m \to \infty$ равномерно по x.

Следствие 1: Траектория (последовательность) $T^k x, k = 0, 1, 2 \dots$ равномерно распределена по \mathbb{T}^n при всех x.

Следствие 2: (Кронекер) Пусть $\alpha_1,\ldots,\alpha_n;\beta_1,\ldots,\beta_n$ - заданы, причем $\alpha_1,\ldots,\alpha_n,1$ рационально несоизмеримы. Тогда $\forall \varepsilon$ неравенство $|p\alpha_j + \beta_j + q_j(mod1)| < \varepsilon, 1 \le j \le n$ имеет бесконечно многорешений в целых числах p, q_1, \ldots, q_n .

Рассмотрим непрерывный аналог.

Пусть $f \colon \mathbb{T}^n \to \mathbb{R}$ - непрерывная функция. Обозначим через ω набор частот $\{\omega_1,\ldots,\omega_n\}$, где $\omega_i=const$. Если движение задается урвнениями $x_j=\omega_jt+x_j^0, 1\leq j\leq n$, то такое движение называется условно-периодическим.

Набор частот ω называется резонансным, если выполнена следующая импликация: $k_1\omega_1 + \cdots + k_n\omega_n = 0 \Leftrightarrow k_j = 0 \forall j \in \overline{1}, n.$

Функция $f(\omega_1 t + x_1^0, \dots, \omega_n t + x_n^0)$ называется условно-периодической функцией по t . Возьмем фиксированный нерезонансный набор частот и введем следующее обозначение:

$$\mathbb{I}(t, x^{0}) = \int_{0}^{\tau} f(\omega_{1}t + x_{1}^{0}, \dots, \omega_{n}t + x_{n}^{0}) dt$$

$$\lambda = const = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) d^n x = \langle f \rangle$$

 $\mathbf{Teopema}$: $\mathbb{I}(t,x^0) = \lambda \tau + \overline{o}(\tau)$, $\forall x^0 \in \mathbb{T}^n$, $\lambda = const = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} f(x) \, d^n x = < f > .$ Замечание: Теорема Вейля имеет еще такую эквивалентную формулировку:

$$\lim_{\tau \to \infty} \frac{\mathbb{I}(\tau, x^0)}{\tau} = \lambda, \forall x^0 \in \mathbb{T}^n.$$

Теорема (Боля о знакопостоянстве интегралов от условно-периодических функций): Если частоты рационально несоизмеримы, $\langle f \rangle = 0$ то существует точка $x_1^0(x_2^0)$ такая, что $\mathbb{I}(t,x^0) \geq (\leq)0, \forall t \in \mathbb{R}, f(x_i^0) = 0, (i=1,2).$

Пример: Пусть n=1 , тогда $f(x+2\pi)=f(x), \forall x\in\mathbb{R}, < f>=0$. Тогда $\exists x_0:$ $\int_{x_0}^x f(z) \, dz \ge 0, f(x_0) = 0.$

Рассмотрим:

$$f = \cos x \Rightarrow <\cos x > = 0$$

 $\int_{x_0}^x \cos z \, dz = \sin x - \sin x_0$. Требуется, чтобы: $\sin x - \sin x_0 \ge 0 \Rightarrow \sin x_0 = -1 \Rightarrow \cos x_0 = -1$

$$z = t + x^0$$
, $\int_{x_0}^x f(z) dz = \int_0^{x - x_0} f(t + x_0) dt$.

Сделаем замену времени:
$$z=t+x^0\,,\; \int_{x_0}^x f(z)\,dz=\int_0^{x-x_0} f(t+x_0)\,dt\,.$$
 По формуле Ньютона - Лейбница получаем:
$$\int_{x_0}^x f(z)\,dz=F(x)-F(x_0)\,\,,\; F^{'}(x)=f(x)\,\,,\; F(x+2\pi)=F(x)\,\,{\rm t}\,< f>=0\,.$$

Можно взять $x_1^0 = x_{min}, x_2^0 = x_{max}$ - точки экстремума функции F. Пример действительно иллюстрирует теорему Боля в случае n=1

Доказательство теоремы Боля:

1. Пусть сначала f - тригонометрический полином, обозначим $k=(k_1,\ldots,k_n)\in\mathbb{Z}^n$. Тогда $f(x)=\sum_{|k|\leq N}' f_k e^{i(k,x)}$, где введено следующее обозначение для суммы $\sum_{k\neq 0}' =\sum_{k\neq 0}' f_k e^{i(k,x)}$. Считаем, что $(k, x) = \sum_{j=1}^{n} k_j x_j$.

Рассмотрим $g(x) = \sum_{|k| \le N}^{j-1} \frac{f_k}{i(k,\omega)} e^{i(k,x)}$. $\sum_{j=1}^{'n} \frac{\partial g}{\partial x_j} \omega_j = f \Rightarrow [g(\omega t + x^0)] = f(\omega t + x^0)$ $\mathbb{I}(\tau, x^0) = g(\omega \tau + x^0) - g(x^0)$ Пусть $x^0 = x_{min}$ - точка минимума функции $g(x) \Rightarrow$ $\forall \tau \mathbb{I}(\tau, x^0) \ge 0 \implies f(x^0) = 0$

2 . Применим теорему Вейерштрасса, то есть возьмем $\forall f$ - произвольную непрерывную функцию, пусть еще выполнено, что: $\langle f \rangle = 0$. Тогда $\forall \varepsilon > 0, \varepsilon = \frac{1}{m}$ тригонометрический полином $\exists f_m(x), < f_m(x) >= 0$ такой что: $\max_{x \in \mathbb{T}^n} |f(x) - f_m(x)| < 0$

Рассмотрим $\mathbb{I}_m(\tau, x^0) = \int_0^\tau f_m(\omega t + x^0) dt$ из предыдущего $\Rightarrow \exists x_m^0 : \mathbb{I}_m(\tau, x_m^0) \geq 0$ $\forall \tau, f_m(x_m^0) = 0$. Можем выбрать сходящуюся подпоследовательность $x_{m_n}^0 \to x^0, (n \to \infty)$. Выполняется следующее утверждение:

 $\forall \tau : \mathbb{I}(\tau, x^0) \ge 0 \quad \text{if } f(x^0) = 0.$

Действительно, при фиксированном τ выполняется: $\mathbb{I}_{m_k}(\tau, x_{m_k}^0) \to \mathbb{I}(\tau, x^0), k \to \infty$.

Пусть $\omega_1, \ldots, \omega_n$ рационально соизмеримы и < f >= 0. Тогда \exists хотя Упражнение: бы две различные точки такие, что:

 $\mathbb{I}(\tau, x^0) \ge 0 (\le 0) \forall \tau \quad f(x^0) = 0$

Пример: $\omega_i = 0 \implies \mathbb{I}(\tau, x^0) = \tau f(x^0), \quad f(x^0) = 0$

Пусть теперь n=2 , рассмотрим: $\mathbb{I}(\tau,x_1^0,x_2^0)=\int_0^\tau f(\omega_1t+x_1^0,\omega_2t+x_2^0)\,dt$. Будем считать, что $\frac{\omega_1}{\omega_2}$ - иррационально и < f>=0 . Тогда справедлива следующая теорема. **Теорема:** Если функция $f\in C^2(\mathbb{R}^2)$, то $\forall \varepsilon>0$ и T>0 существует $\exists \tau>T$ такое, что:

 $\mathbb{I}(\tau, x^0) < \varepsilon, \forall x^0 \in \mathbb{T}^2$

Boпрос: A что будет для n=3?