

REDES DE DATOS

LAN INALÁMBRICAS

Ingeniero ALEJANDRO ECHAZÚ

alejandroechazu@frba.utn.edu.ar

GENERALIDADES

APLICACIONES DE LAN INALÁMBRICAS

1. Ampliación de redes

Empleo de Puntos de Acceso (AP) inalámbricos.

De celda única o multicelda.

2. Inteconexión de edificios

Empleo de radioenlaces punto a punto, que une routers o bridges.

3. Acceso nómade

Permite el acceso a una computadora móvil o portátil.

4. Trabajo en red "ad hoc"

Sin servidor central. Peer to peer.

LAN INALÁMBRICA DE CELDA ÚNICA AMPLIACIÓN DE RED

LAN INALÁMBRICA MULTICELDA AMPLIACIÓN DE RED

INTERCONEXIÓN DE EDIFICIOS

ACCESO NÓMADE DE LAN INALÁMBRICA

(a) Infrastructure Wireless LAN

(b) Ad hoc LAN

REQUISITOS LAN INALÁMBRICAS

- Rendimiento
- Número de Nodos
- Conexión a la LAN troncal
- Área de Servicio
- Consumo de batería
- · Robustez en la transmisión y seguridad
- Funcionamiento de redes adyacentes
- Funcionamiento sin licencia
- Traspaso (Handoff) / Intinerancia (Roaming)
- Configuración dinámica

TECNOLOGÍAS DE LAN INALÁMBRICAS

• De Infrarroios (IR)

- ·Haz dirigido
- Omnidireccional
- •Difusión (uso de reflector)

Radio por espectro expandido

Dos técnicas: Salto de Frecuencia y Secuencia Directa. Banda 900 MHz, 2,4 GHz y 5,8 GHz

Topología con concentrador o peer to peer

No necesita licencia del ENACOM.

• Radio (microondas) de banda estrecha

Se conoce también como radioenlaces.

- •Con licencia del ENACOM (coordinación, sin interferencias, configuración en celdas). Banda 18 GHz.
- •Sin licencia del ENACOM (configuración entre pares, baja potencia). Banda 5,8 GHz.

ESPECTRO ENSANCHADO SPREAD SPECTRUM

HEDY LAMARR (1914 / 2000) ACTRIZ E INVENTORA DE LA TÉCNICA PATENTE DE SISTEMA DE COMUNICACIONES SECRETO

9 DE NOVIEMBRE DÍA DEL INVENTOR INTERNACIONAL

https://www.dailymotion.com/video/x3arvt

TÉCNICAS DE ESPECTRO ENSANCHADO (SS)

Uso de una secuencia de expansión (pseudoaleatoria o seudoruido) en el tx y rx.

Más inmunidad a distintos ruidos (robustez).

Seguridad en las comunicaciones (baja detectabilidad y capacidad de encripción).

Permite varios usuarios en el mismo ancho de banda, con pocas interferencias.

Estas ventajas compensan la pérdida de eficiencia espectral (Vtx/AB).

Con esta técnica no se requiere licencia para usar el canal radioeléctrico. En Argentina el organismo regulador es el ENACOM (ex-CNC).

Tecnología de multiplexión (CDM) y acceso múltiple (CDMA).

Uso en las tecnologías Wi Fi y Bluetooth.

PROCESO DE ESPECTRO EXPANDIDO

TRANSMISOR

RECEPTOR

SECUENCIA PSEUDOALEATORIA P(T)
GENERACIÓN MEDIANTE UN MISMO CÓDIGO EN TX Y RX
TIENE PROPIEDADES DE LAS SEÑALES ALEATORIAS PERO NO LO SON

SECUENCIA DIRECTA

SALTO DE FRECUENCIA

Figura 9: Gráfica de Codificación con Salto en Frecuencia

Tecnología de radio MIMO

- Múltiples entradas / Múltiples salidas
- Comparación SIMO, MISO y SISO

Tecnologías inalámbricas para transmisión de datos

	Ejemplo	Banda	Vel máx	Técnica
	Norma		Alcance	Met Mod
WPAN	BLUE TOOTH IEEE 802.15	2,4 GHz	1 Mbps a 24 Mbps 10 m	FH GFSK
WLAN	WI FI Ethernet sin cables IEEE 802.11	2,4 GHz 5,8 GHZ	11 Mbps 54 Mbps 50 m	DS FH
WMAN o WWAN	WI MAX IEEE 802.16	2,3 a 3,5 GHz	54 Mbps 60 km	
WRAN	IEEE 802.22	Espacios libres entre 54 a 862 MHz (TV)	23 Mbps 33 km pudiendo llegar a 100 km	OFDMA Sin licencia.

GRÁFICO RESUMEN TECNOLOGÍAS INALÁMBRICAS

WPAN

• Protocolo de comunicaciones de bajo costo y poco alcance, que depende de la clase/potencia.

Clase	Potencia máxima permitida (mW)	Potencia máxima permitida (dBm_)	Alcance (aproximado)
Clase 1	100 mW	20 dBm	~100 metros
Clase 2	2.5 mW	4 dBm	~5-10 metros
Clase 3	1 mW	0 dBm	~1 metro
Clase 4	0.5 mW	0 dBm	~0.5 metro

- Distintas velocidades de transmisión según la versión.
- Norma IEEE 802.15

Versión	Velocidad de transmisión en Mbps
Versión 1.2	1 Mbit/s
Versión 2.0 + EDR	3 Mbit/s
Versión 3.0 + HS	24 Mbit/s
Versión 4.0	32 Mbit/s
Versión 5	50 <u>Mbit/s³</u>

• Puede usar 23 o 79 canales para los saltos de frecuencia (FH) según el país.

Area	Banda de frecuencias (GHz)	Canales Bluetooth
USA	2.400-2.483,5	79
Europa	2.400-2.483,5	79
España	2.445-2.475	23
Francia	2.446,5-2.483,5	23
Japón	2.471-2.497	23

- Cantidad de dispositivos limitados (8)
- Automatización de la conexión. Código PIN inicialmente para identificación.
- Ataque por BLUEJACKING (mensaje introduce virus). Si no se usa desactivar la función.

NORMAS DE Wireless LAN

IEEE 802.11 (Wi Fi)

https://www.wi-fi.org

Norma IEEE	Características	Frec Op y Vtx máx
802.11 legacy	DS-SS FH-SS IR	Vtx 1/2 Mbps Fr 2,4 GHz
802.11a	OFDM	Vtx 54 Mbps Fr 5 GHz
802.11b	DS-SS	Vtx 11 Mbps Fr 2,4 GHz
802.11g	OFDM Compatible con b	Vtx 54 Mbps Fr 2,4 GHz
802.11n Wi Fi 4	OFDM Compatible con a y b. Tecno SU MIMO Alcance 70 m (2,4 GHz). Modulación 64 QAM	Vtx 300 / 600 Mbps Fr 2,4 y 5,8 GHz
802.11ac Wi Fi 5	Alcance 30 m. Modulación 256 QAM. Tecnología MU MIMO	Vtx 7 Gbps Fr 5,8 GHz
802.11ax Wi Fi 6	OFDM Modulación 1024 QAM. Tecno MU MIMO	Vtx 10 Gbps Fr 2,4 y 5,8 GHz

NOVEDADES DE WI FI 6

Generation of network connection	Sample user interface visual
Wi-Fi 6	@
Wi-Fi 5	:
Wi-Fi 4	30

https://www.xataka.com/especiales/que-wifi-6-que-va-a-mejorar-tu-red-wifi-casa-cuando-te-conectes-a-publica

- Atiende los requerimientos de IoT (INTERNET de las cosas)
- Mayor capacidad y velocidad de transferencia de datos.
- Mayor eficiencia con alta densidad de usuarios.
- Uso de OFDMA para mejor el empleo con más dispositivos.
- Mayor duración de las baterías.
- Encripción con protocolo WPA 3.
- Emplea BBS Color que evita interferencias de señales vecinas.

https://www.xataka.com/basics/wifi-6e-6ghz-que-que-ventajas-supone

Modelo de Capas IEEE 802.11

IR (IR en inglés): Infrarrojo

EE-SF (FH-SS en inglés): Salto de Frecuencia

EE-SD (DS-SS en inglés): Secuencia Directa

FUNCIONAMIENTO DE CANALES INALÁMBRICOS

Mínima interferencia co-canal y otras interferencias (dispositivos bluetooth, microondas, parlantes, etc).

Ajuste a los canales óptimos de las bandas de frecuencias Wi Fi

Función autocanal.

Función de escaneo y cambio de canal.

Se comparten las frecuencias de las bandas 2,4 y 5,8 GHz. No requieren licencia.

La de 2,4 GHz es más usada. Tiene 14 canales para Wi Fi.

La de 5,8 GHz se congestiona menos.

! 5GHz 2.4GHz

Frequency		
Channel	f. (MHz)	EU
1	2412	Х
2	2417	X
3	2422	X
4	2427	X
5	2432	X
6	2437	X
7	2442	X
8	2447	X
9	2452	X
10	2457	X
11	2462	X
12	2467	X
13	2472	X
14	2484	

Channel Allocation | Channel Allocation

Channel	Frequency f _c (MHz)	EU
184	4920	
188	4940	
192	4960	
196	4980	
208	5040	
212	5060	
216	5080	
36	5180	X
40	5200	X
44	5220	X

Channel	Frequency f _e (MHz)	EU
48	5240	X
52	5260	X
56	5280	X
60	5300	X
64	5320	X
100	5500	X
104	5520	Х
108	5540	X
112	5560	X
116	5580	X

Channel	Frequency f _c (MHz)	EU
120	5600	X
124	5620	X
128	5640	X
132	5660	X
136	5680	X
140	5700	X
149	5745	
153	5765	
157	5785	
161	5805	

Non-Overlapping Channels for 2.4 GHz WLAN 802.11b (DSSS) channel width 22 MHz

802.11g/n (OFDM) 20 MHz ch. width - 16.25 MHz used by sub-carriers

802.11n (OFDM) 40 MHz ch. width - 33.75 MHz used by sub-carriers

The Wi-Fi Spectrum: 5GHz

- 21 non-overlapping 20 MHz channels
- 9 non-overlapping 40 MHz channels
- Only 4 non-DFS channels for bonding
- Creates channel planning problems similar to 2.4 GHz
- 5 GHz isn't a panacea, RF management is still king

WLAN (capa física)

- Ondas radioeléctricas. Área de cobertura.
 Velocidades de transmisión. Atenuaciones.
 Obstáculos.
- Instalación adecuada de los AP.
 Recomendaciones.

ANÁLISIS DE COBERTURA DE LA RED INALÁMBRICA WI FI

1.USANDO APLICACIÓN INFORMÁTICA

Aplicación NETSPOT.

https://www.netspotapp.com/es/features.html

Software para análisis de las áreas de cobertura de redes inalámbricas que permiten un rendimiento óptimo y seguridad.

2. MEDICIONES DE YELOCIDADES CON DISPOSITIVOS MOVILES

Con aplicación para distintos sistemas operativos que hace mediciones y puede evaluarse con cierta aproximación.

http://www.speed-test.es/

https://www.speedtest.net/es

https://wifi-analyzer.uptodown.com/android

CAPA FÍSICA

1º paso con NETSPOT.

https://www.netspotapp.com/es/features.html

2º paso con NETSPOT. Se establece el Mapa de Calor Wi Fi.

Empleo de Wi Fi ANALYZER

SERVICIOS IEEE 802.11

Se distinguen:

- Conjunto servicios (básicos y extendidos)
- ·Sistema de distribución

EST = Estación AP = Punto de acceso

Algunos Servicios

- Asociación / reasociación
- Autenticación y fin de la A.
- Privacidad
- Integración
- Distribución de mensajes

SUBCAPA MAC 802.11

ENTREGA FIABLE DE DATOS

Prevee un protocolo de intercambio de tramas.

- Mecanismo de 2 tramas: empleo de ACK y time out.
 Repetición de trama si es necesario.
- Mecanismo de 4 tramas: con esquema previo RTS/CTS que evita colisiones y luego las 2 tramas.

CONTROL DE ACCESO

Dos posibilidades: protocolo de acceso distribuido o de acceso centralizado.

- Función de Coordinación Distribuida (DCF)
 - Algoritmo de prevención de contienda para acceso a la totalidad del tráfico. Protocolo CSMA/CA (prevención de colisiones)
- Función de Coordinación Puntual (control centralizado opcional) (PCF)

Algoritmo centralizado para acceso libre de contienda. Asegura acceso a usuarios.

SEGURIDAD

- Autenticación
- Privacidad

IEEE 802.11i

Aplica WPA2 (acceso protegido por encripción)

MECANISMO DE 2 TRAMAS (DCF)

MECANISMO DE 4 TRAMAS (DCF)

PROBLEMAS EN LA COMUNICACIÓN POR RADIO

Figura 4-26. (a) El problema de la terminal oculta. (b) El problema de la terminal expuesta.

Solución al problema de la estación oculta

- 1: Antes de transmitir la trama A envía un mensaje RTS (Request To Send)
 - 4. A envía su trama seguro de no colisionar con otras estaciones
- 2: B responde al RTS con un CTS (Clear To Send)
- 3. C no capta el RTS, pero sí el CTS. Sabe que no debe transmitir durante el tiempo equivalente a 500 bytes

Ampliación

Arquitectura IEEE 802.11

IEEE 802.11 IEEE 802.11a IEEE 802.11b IEEE 802.11g

SEGURIDAD EN WI FI

- WPS (WiFi Protected Setup) son mecanismos para facilitar la conexión de dispositivos a una red inalámbrica. El más usado es el intercambio de PIN.
- WEP (Wired Equivalent Privacy) ofrece seguridad similar a la red cableada mediante una encriptación.
- WPA (Wi-Fi Protected Access) agrega seguridad mediante el uso de claves dinámicas proporcionadas a cada usuario.
- WPA2 usa algoritmo de encriptación AES (Advanced Encryption Standard).
- WPA2 PSK (Pre-Shared Key) es para uso doméstico o de oficinas pequeñas donde se comparte la clave.
- Otros recursos de seguridad:
 - nombre de la red (SSID)
 - filtrado de direcciones MAC

Formato de trama MAC 802.11

FC = Frame control

D/I = Duration/Connection ID

SC = Sequence control

FC (control de trama): indica el tipo de trama (control, gestión o datos)

D/I (duración/conexión): indica tiempo de reserva del canal para una tx satisfactoria o identificación de una conexión.

ADDRESS (direcciones): depende del contexto. Fuente, destino, estación tx y estación rx.

SC (control de secuencia): fragmentación, reensamblado y nº de tramas enviadas.

Tipos de Tramas

- •Control (sondeo de ahorro de energía, RTS, CTS, ACK, fin período libre contienda CF, CF-ACK)
- •Datos (Datos, +ACK-CF,+CF-POLL, etc)
- •Gestión (entre estaciones y puntos de acceso, gestión de asociaciones)

TECNOLOGÍAS INCORPORADAS EN WI FI 5

BEAMFORMING

Es una tecnología que permite a un AP enfocar la señal hacia los destinos de interés.

MU MIMO

EQUIPOS WLAN

Puede agrupar las capacidades de:

- Gateway
- Router
- Cable módem o módem X-DSL
- Access Point
- Switch
- Firewall
- Doble banda

ALGUNAS SOLUCIONES - PROBLEMAS

D LINK – WIRELESS N NANO 300 – USB ADAPTER

http://us.dlink.com/products/connect/wire less-n-nano-usb-adapter/

TP LINK - TL WN8200ND - HIGH POWER WIRELESS - 300 MBPS - USB ADAPTER

http://www.tp-

link.com/en/products/details/cat-11_TL-WN8200ND.html#specifications

CONFIGUREMOS AP WI FI

TP LINK 300 M TL WA 801N

IP 192.168.0.254

Usuario: admin

Contraseña: admin

AP VDSLARNET

IP 192.168.1.1

Ver etiqueta del módem

Wi Max

Backhaul es la porción de la red que comprende los enlaces intermedios entre el núcleo y el borde.

Wi Max

https://youtu.be/UevGUFrgSaM

Transmisión de datos sin contienda a diferencia de Wi Fi.

Problema de interoperabilidad. Intervención del Wi Max FORUM.

Eficiencia espectral de 3,7 bps / 1 Hz

PROTOCOLOS DE Wireless MAN

Protocolo IEEE	Características	Frec Op y Vtx
802.16	Con visión directa	Fr 10/66GHz
Wi Max	Fijo	Vtx 32 – 134
	Radio celda 2 a 5 km	Mbps
802.16 a	Sin visión directa	Fr <11 GHz
	Fijo	Vtx 75 Mbps
	Radio celda 5 a 10 km	
802.16 e	Terminales en	Fr < 6 GHz
	movimiento	Vtx 15 Mbps
	Sin visión directa	
	Móvil	
	Radio celda 2 a 5 km	
802.16 m	Podría llegar a 50 km	
Wi Max 2	Móvil	Vtx 300 Mbps

Es una tecnología para comunicaciones punto a multipunto en banda ancha. Combinación tecno.