Project Design Phase-II Technology Stack (Architecture & Stack)

Date	20 October 2022
Team ID	PNT2022TMID40948
Project Name	Smart Farmer – IOT Enabled Smart Farming
-	Application
Maximum Marks	4 Marks

DOMAIN: IoT

Project Title: Smart Farmer – IOT Enabled Smart Farming Application

Team Members:

- 1) GOKUL S
- 2) MURALIDHARAN M
- 3) NAVEENKUMAR V
- 4) SUTHISH M

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table1 & table 2

Guidelines:

- Include all the processes (As an application logic / Technology Block)
- 2. Provide infrastructural demarcation (Local / Cloud)
- 3. Indicate external interfaces (third party API's etc.)
- 4. Indicate Data Storage components / services
- 5. Indicate interface to machine learning models (if applicable)

<u>Table-1 : Components & Technologies:</u>

S.No	Component	Description	Technology
	•		
1.	User Interface	Through Mobile app or Web Application the	HTML, CSS, JavaScript / Angular Js /
		information processed will be sent to the user	React Js etc.
	Application Lagis 4	through message or mail. The code will include certain conditions like based	Java / Duthan
2.	Application Logic-1	on the humidity condition the water flow will be	Java / Python
		controlled, based on the moisture content the water	
		flow will be controlled and if the temperature	
		exceeds certain level it will also be intimated	
		through message and mail.	
3.	Application Logic-2	Here we can develop the software process like	IBM Watson STT service
٥.	Application Logic-2	creating a device and then adding Node RED to	I I I Service
		form as an interface.	
4.	Application Logic-3	Here the sensed data and the conditions can be	IBM Watson Assistant
	, application Logic c	checked and the final result can be obtained.	TENT TYGOOTT / COLORATI
5.	Database	We can save all the data in SQL or any other	MySQL, NoSQL, etc.
		database so that the user can retrieve data	,,,
		whenever required.	
6.	Cloud Database	The database we created and the predefined	IBM DB2, IBM Cloudant etc.
		data's like weather from external API can be	
		combined here and can be stored safely with	
		security for future purpose.	
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage
			Service or Local Filesystem
8.	External API-1	With the help of external API only we can know the	IBM Weather API, etc.
		weather condition and compare with our sensed	
		inputs.	
9.	External API-2	Purpose of External API used in the application	Aadhar API, etc.
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.
10.	masimis zeaming Wodel	- arposo or masimis assuming Model	Solver recognition Model, etc.
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud	Local, Cloud Foundry, Kubernetes, etc.
		Local Server Configuration: Through our ideas	
		Cloud Server Configuration : Through IBM	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology	
1.	Open-Source Frameworks	MIT App Inventor, Python, Weather App API.	Technology of Opensource framework	
2.	Security Implementations	Here we are using IBM Cloud and it is the very	IBM Cloud, MIT App Invertor , IBM	
		secured place where we can store the data and	Watson Assistant	
		retrieve the information whenever needed.		
3.	Scalable Architecture	Cloud-based IoT is becoming an increasingly popular	IBM Cloud	
		and desirable solution. This work presents a specially		
		designed architecture based on IBM Cloud services for		
		monitoring livestock using Internet of things (IoT)		
		equipment and a wide range of cloud native services. Used services in IBM a stress test to prove the ability of		
		the developed architecture for data processing was		
		completed		
4.	Availability	Many important features are available in this	Sensor Networks , IBM Watson IoT ,	
		application instead of wasting time by staying in	IBM Cloud , Weather API'S , Analytics	
		the farm and monitoring the conditions we have	, , , , , , , ,	
		the moisture, humidity and temperature which will		
		denote the corresponding quantities and we have		
		both automatic and manual mode so once the		
		certain conditions are met pump will be on/off and		
		messages will be sent when needed so the farmer		
		just have to check the message in their phone and		
		can take decisions accordingly.		
5.	Performance	Excelled efficiency: Today's agriculture is in a	Sensor Networks , IBM Watson IoT ,	
		race. Farmers have to grow more products in	IBM Cloud , Weather API'S , Analytics	
		deteriorating soil, declining land availability and		
		increasing weather fluctuation. IoT-enabled		
		agriculture allows farmers to monitor their product		
		and conditions in real-time. They get insights fast,		
		can predict issues before they happen and make		
		informed decisions on how to avoid them.		
		Additionally, IoT solutions in agriculture introduce		

S.No	Characteristics	Description	Technology
S.No	Characteristics	automation, for example, demand-based irrigation, fertilizing and robot harvesting. Expansion:-By the time we have 9 billion people on the planet, 70% of them will live in urban areas. IoT-based greenhouses and hydroponic systems enable short food supply chains and should be able to feed the people. Smart closed-cycle agricultural systems allow growing food basically everywhere—in supermarkets, on skyscrapers' walls and rooftops, in shipping containers and, of course, in the comfort of everyone's home. Reduced resources: Plenty of agriculture IoT solutions are focused on optimizing the use of resources—water, energy, land. Precision farming using IoT relies on the data collected from diverse sensors in the field which helps farmers accurately allocate just enough resources to within one plant. Cleaner process: Not only do IoT-based systems for precision farming help producers save water and energy and, thus, make farming greener, but also significantly scale down on the use of pesticides and fertilizer. This approach allows getting a cleaner and more organic final product compared to traditional agricultural methods. Agility: One of the benefits of using IoT in agriculture is the increased agility of the processes. In the conditions of extreme weather changes, new capabilities help agriculture professionals save the crops. Improved product quality: Data-driven agriculture helps both grow more and better	Technology
		products. Using soil and crop sensors, aerial drone monitoring and farm mapping, farmers better understand detailed dependencies between the	

S.No	Characteristics	Description	Technology
		conditions and the quality of the crops. Using connected systems, they can recreate the best conditions and increase the nutritional value of the products.	
		As a result, all of these factors can eventually lead to higher revenue.	

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

 $\underline{https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d}$