Independent transversals via entropy compression (18)

landon rabern

November 9, 2013

1 Introduction

2 The setup

Let G be a graph and $\pi: V(G) \to [k]$ be a (proper) coloring of G. For $i \in [k]$, put $P_i := \pi^{-1}(i)$. For each $xy \in E(G)$, recursively define $T_G(xy)$ to be the tree with root xy having as children $T_G(e)$ for all $e \in E(G)$ such that e intersects $P_{\pi(x)} \cup P_{\pi(y)}$. We call $T_G(xy)$ the dependency tree rooted at xy. Note that, by definition, $T_G(xy)$ is a child of xy and in particular $T_G(xy)$ is an infinite tree.

3 Balanced partitions

Lemma 3.1. If $|P_i| \geq 2\Delta(G)$ for all $i \in [k]$, then π has an independent transversal.

Proof. Suppose the lemma is false. Then π has no independent transversal and we may as well have $|P_i| = 2\Delta(G)$ for all $i \in [k]$. Put $\Delta := \Delta(G)$. Number the vertices of each P_i with $1, \ldots, 2\Delta$. Then a transversal of π is represented by an element of $[2\Delta]^k$. Let A be an arbitrary transversal of π and xy an edge contained in A. For $h \in \mathbb{N}$, let R_h be the collection of subtrees of $T_G(xy)$ rooted at xy having h edges.

For each $h \in \mathbb{N}$, we construct an injection $f_h : [2\Delta]^{2h} \hookrightarrow R_h \times [2\Delta]^k$. Fix $(s_1, t_1, s_2, t_2, \dots, s_h, t_h) \in [2\Delta]^{2h}$. Put $A_0 := A$, $x_0 := x$ and $y_0 := y$. For $j \in [h]$, to form A_j replace the $\pi(x_{j-1})$ th slot of A_{j-1} with s_j and the $\pi(y_{j-1})$ th slot of A_{j-1} with t_j .

4 Lopsided partitions