人工神经网络实验报告· MLP

周正平 • 2015011314 • zhouzp15@mails.tsinghua.edu.cn 2017年10月9日

Contents

1	实验	ì内容	2
	1.1	记号说明 :	2
	1.2	总体设计	2
2	算法	s实现	2
	2.1	全连接层	2
		2.1.1 模块描述	3
		2.1.2 原理推导	3
		2.1.3 算法实现	3
	2.2	激活函数	1
		2.2.1 模块描述	1
		2.2.2 算法实现	4
	2.3	损失函数	4
		2.3.1 模块描述	õ
		2.3.2 算法实现	5
3	实验	· · · · · · · · · · · · · · · · · · ·	5
	3.1	 	5
	3.2	双隐层网络	ŝ
4	对比	C分析	7
	4.1	激活函数	3
	4.2	隐层数	9
	4.3	隐层节点数	9
	4.4	损失函数 10)
	4.5	learning_rate	
	4.6	weight_decay	
		momentum 1	

1 实验内容

1.1 记号说明

为叙述方便起见,以下对报告中出现的各种记号及其语义作一说明:

记号	语义说明
x_{ik} or x_k	(第 i 个线性层的)输入向量的第 k 个分量
u_{ik} or u_k	(第 i 个线性层的)输出向量的第 k 个分量
y_{ik} or y_k	(第 i 个线性层的激活函数的)输出向量的第 k 个分量
W_k	W 矩阵的第 k 列
t_k	目标输出向量(正确标签)的第 k 个分量
E	损失函数值

1.2 总体设计

本次实验要求设计多层感知器(MLP)用于完成 MNIST 手写数字识别任务。以含有一个隐层的 MLP 为例,实验中所用网络结构如下:

Figure 1: 网络结构总览

总体来说,本次作业需要在给出的框架的基础之上,实现以下几个模块:

- 全连接层: 图中的 FC1 和 FC2, 公式为 u = xW + b;
- 激活函数: 图中的 Activate Function, 本次作业涉及 Relu 和 Sigmoid 两种;
- 损失函数: 图中的 Loss, 本次作业涉及 EuclideanLoss 和 SoftmaxCrossEntropyLoss 两种。

2 算法实现

2.1 全连接层

全连接层通过函数 u = xW + b 实现仿射变换,将输入向量变换到另一个线性空间。全连接层的导数推导等相对复杂,以下将较为详尽地阐明其推导过程及实现方法。

2.1.1 模块描述

对一个 batch 的训练样本而言,该模块基本描述如下(尽管输入输出对单个训练样本而言均为一维向量,但考虑整个 batch,输入输出向量均需加入第一个维度 batch size):

- 输入: m 维行向量 x [batch_size, m];
- 输出: n 维行向量 u [batch_size, n];
- 参数: $m \times n$ 权重矩阵 W[m,n]、n 维偏置行向量 b[1,n]。

2.1.2 原理推导

计算式 u=xW+b 即为 Forward 计算公式; 关键在于 Backward 公式的推导。由于梯度的反向传播关键在于求出输出 u 对于 x,W,b 的偏导数,而 numpy 实现了高效的矩阵计算,故以下结合线性代数知识,将梯度计算向量化:

$$\therefore \mathbf{u} = \mathbf{x}\mathbf{W} + \mathbf{b}$$

$$\therefore u_{k_1} = \sum_{k_2} x_{k_2} W_{k_2 k_1} + b_{k_1}$$

• 输出 u 对输入 x 的导数 $\frac{\partial y}{\partial x}$:

• 输出 u 对权重矩阵 W 的导数 $\frac{\partial u}{\partial W}$:

• 输出 u 对偏置向量 b 的导数 $\frac{\partial u}{\partial b}$:

2.1.3 算法实现

原理推导所得结论总结如下:

Forward(公式)	Backward(导数)	Backward(链式法则)
u = xW + b	$\frac{\partial u}{\partial x} = W^T$ $\frac{\partial u}{\partial W_k} = diag(x)$ $\frac{\partial u}{\partial b} = I$	$grad_input = grad_output \cdot W^T$ $grad_W = x^T \cdot grad_output$ $grad_b = grad_output$

结合导数运算的链式法则, Backward 代码中实现了以下逻辑:

• 返回值 $grad_input$: $grad_input = grad_output \cdot W^T$

• 权值矩阵梯度 $grad_W$: $grad_W = x^T \cdot grad_output$

• 偏置向量梯度 $grad_b$: $grad_b = grad_output$

2.2 激活函数

激活函数为网络引入非线性,本次实验涉及 Sigmoid 及 Relu 两种。

2.2.1 模块描述

总体来看,激活函数不改变输入向量的形状,只是逐元素进行函数运算。

- 输入: n 维行向量 u [batch_size, n];
- 输出: n 维行向量 y [batch_size, n]。

2.2.2 算法实现

激活函数的原理与实现相对简单,在代码实现时,只需注意根据链式法则,将下述导数公式再乘以输出 处的梯度值 *grad_output* 即可。以下进行简要总结:

激活函数	Forward(公式)	Backward(导数)	函数图像
Sigmoid	$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))	-6 -4 -2 0 2 4 6
Relu	$f(x) = \max(x, 0)$	f'(x) = (x > 0)	0 4 -2 0 2 4

2.3 损失函数

损失函数定义了优化的量化指标,本次实验涉及 EuclideanLoss 和 SoftmaxCrossEntropyLoss 两种。

2.3.1 模块描述

损失函数比较两个向量(或两个分布),通过某种方法计算其差别程度,得到一个实值标量作为输出。

- \mathbf{h} \mathbf{h} : n 447 \mathbf{h} $\mathbf{h$
- **输出**: 一个实值标量 E, 即损失值 loss。

2.3.2 算法实现

以下简要总结损失函数及其导数运算:

损失函数	Forward(公式)	Backward(导数)
EuclideanLoss	$f(x) = \frac{1}{2} \sum_{k} (y_k - t_k)^2$	f'(x) = y - t
${\bf Softmax Cross Entropy Loss}$	$f(x) = -\sum_{k} t_k \log p_k, \ p_k = \frac{e^{y_k}}{\sum e^{y_k}}$	f'(x) = p - t

需注意在 Forward 及 Backward 代码实现时, 要将总的 loss 除以 batch size:

• EuclideanLoss:

```
# Forward
return 0.5 * np.mean(np.square(input - target), axis=1)

# Backward
return (input - target) / len(input)
```

• SoftmaxCrossEntropyLoss:

```
# Forward
cross_entropy = -np.mean(np.sum(target * np.log(self.softmax), axis=1))

# Backward
return (self.softmax - target) / len(input)
```

3 实验结果

3.1 单隐层网络

对于单隐层 MLP 网络,经调参优化后,在测试集上获得的最高精度为 98.32%。 网络超参数配置如下:

 $(Linear[784, 392] \rightarrow Relu \rightarrow Linear[392, 10] \rightarrow SoftmaxCrossEntropyLoss)$:

超参数	取值
隐层节点数	392
激活函数	Relu
损失函数	${\bf Softmax Cross Entropy Loss}$
$learning_rate$	0.1
$weight_decay$	0.0001
momentum	0.0001
$batch_size$	100
max_epoch	100

绘制损失/精度曲线如下(相邻采样点间隔 50 个 iteration):

Figure 2: 损失/精度 -迭代次数曲线(单隐层网络)

3.2 双隐层网络

对于双隐层 MLP 网络,经调参优化后,在测试集上获得的最高精度为 98.75%。 网络超参数配置如下:

 $(Linear[784, 392] \rightarrow Relu \rightarrow Linear[392, 196] \rightarrow Relu \rightarrow Linear[196, 10] \rightarrow EuclideanLoss)$

超参数	取值
隐层 1 节点数	392
隐层 2 节点数	196
激活函数 1	Relu
激活函数 2	Relu
损失函数	EuclideanLoss
$learning_rate$	0.1
$weight_decay$	0.0002
momentum	0.0001
$batch_size$	100
max_epoch	100

绘制损失/精度曲线如下(相邻采样点间隔 50 个 iteration):

Figure 3: 损失/精度 -迭代次数曲线(双隐层网络)

4 对比分析

超参数的调节是优化 MLP 精度的重要因素。以下列出本节对比分析的主要超参数 (分析某一超参数的影响时,单、双隐层网络的其他超参数均默认与上一节中的最优值相同):

超参数	备选值		
激活函数	(Sigmoid, Relu)	以单、双隐层网络对比分析	
隐层数	(1,2)	以单、双隐层网络对比分析	
隐层节点数	$(25\%, 50\%, 75\%) \times 784$	以单隐层网络对比分析	
损失函数	(Euclidean Loss, Softmax Cross Entropy Loss)	以单隐层网络对比分析	
learning_rate	(1, 0.1)	以单隐层网络对比分析,分激活函数讨论	
$weight_decay$	(0, 0.0002)	以双隐层网络对比分析	
momentum	(0, 0.0001)	以双隐层网络对比分析	

4.1 激活函数

以单、双隐层网络为例,从训练时间、收敛性、精度三个方面对比分析 Sigmoid、Relu 两种激活函数:

隐层数目	激活函数	训练时间(100 个 epoch)	收敛性	最高测试精度
单	Sigmoid	$10.5 \mathrm{min}$	收敛较慢	96.99 %
	Relu	$6.5 \mathrm{min}$	收敛较快	98.32~%
双	Sigmoid	14min	收敛极慢	92.30%
	Relu	$12 \mathrm{min}$	收敛较快	98.75~%

对单隐层网络绘制测试精度曲线如下(相邻采样点间隔 1 个 epoch):

Figure 4: Sigmoid/Relu 精度曲线(单隐层网络)

从图中可以清晰地看出,对单隐层网络而言,Relu 函数相比 Sigmoid 不仅收敛较快(因 Relu 梯度在 x>0 时恒为 1,而 Sigmoid 在 |x| 很大时梯度 $\to 0$),训练时间更短(因 Relu 函数不涉及指数及乘除运算),最终测试精度也较高。

对于双隐层网络而言,笔者在实验中发现 Sigmoid 函数收敛极慢,而 Relu 则能够较快地收敛到最优值。这可能是因为网络加深后, Sigmoid 介于 [0,1] 间的导数使得反向传播的梯度越来越小,使得收敛缓慢。

4.2 隐层数

以单、双隐层两种网络为例,从训练时间、收敛性、精度三个方面对比分析:

隐层数	训练时间(100 个 epoch)	收敛性	最高测试精度
单	$6.5 \mathrm{min}$	收敛速度无显著差别	98.32 %
双	$12\min$	收敛速度无显著差别	98.75~%

绘制测试精度曲线如下(相邻采样点间隔 1 个 epoch):

Figure 5: 单隐层/双隐层精度曲线

从图中可以看出,在 MNIST 手写数字分类任务中,双隐层网络的测试精度优于单隐层网络,但网络结构更复杂,参数增多,训练时间较长。故而在实际应用中,需要在测试精度与训练时间之间进行权衡取舍。

4.3 隐层节点数

以单隐层网络为例,从训练时间、收敛性、精度三个方面对比分析:

隐层节点数	训练时间(100 个 epoch)	收敛性	最高测试精度
$25\% \times 784 = 196$	6.5min	收敛波动较大	98.30 %
$50\% \times 784 = 392$	$12 \mathrm{min}$	收敛最稳定	98.32~%
$75\% \times 784 = 588$	$20 \mathrm{min}$	收敛较稳定	98.24~%

绘制测试精度曲线如下(相邻采样点间隔 1 个 epoch):

Figure 6: 隐层节点数目 196/392/588 精度曲线(单隐层网络)

从图中可以看出,对于单隐层网络而言,隐层节点数目对测试精度的影响不大,训练曲线甚至极为相近。考虑到训练时长与隐层节点数呈正相关以及测试精度,本次实验选择 392 个隐层节点作为最终的超参数。

类似地,在双隐层的网络中,隐层 1、隐层 2 的节点数分别为 392、196 时,训练精度较高。笔者猜测在设计 MLP 时,也可适当借鉴 CNN 的池化思想,即隐层节点数目依次减少(实验中呈几何级数),保留关键信息(当然,这只是笔者的一点猜测,MLP 与 CNN 在特征提取方面仍存在显著的差异)。

4.4 损失函数

以单隐层网络为例,从训练时间、收敛性、精度三个方面对比 EuclideanLoss 与 SoftmaxCrossEntropy-Loss:

损失函数	训练时间(100 个 epoch)	收敛性	最高测试精度
EuclideanLoss	6min	收敛性无显著差别	98.30 %
${\bf Softmax Cross Entropy Loss}$	$6.5 \mathrm{min}$	收敛性无显著差别	98.32~%

Figure 7: EuclideanLoss/SoftmaxCrossEntropyLoss 精度曲线(单隐层网络)

从图中可以看出,对单隐层网络而言,SoftmaxCrossEntropyLoss 相对 EuclideanLoss 而言,精度上稍高一些;然而 softmax 的计算公式涉及指数运算,在输出层节点数较大时,这将导致较大的计算成本。

4.5 learning_rate

以单隐层网络对比分析,分 Sigmoid/Relu 两激活函数进行讨论:

激活函数	learning_rate	训练时间(100 个 epoch)	收敛性	最高测试精度
Sigmoid	1	$10.5 \mathrm{min}$	收敛较快, 波动较大	97.57 %
	0.1	$10.5 \mathrm{min}$	收敛较慢,波动较小	96.99~%
Relu	1	-	不收敛	-
	0.1	$6.5 \mathrm{min}$	收敛快,稳定	98.32~%

绘制测试精度曲线如下(相邻采样点间隔1个epoch):

Figure 8: Sigmoid/Relu 在不同 learning rate 下的精度曲线(单隐层网络)

从图中可以看出,对于梯度值较大的 Relu 函数,在 learning_rate 较大(1)时不能收敛;对于梯度值较小的 Sigmoid 函数,较大的 learning_rate 可以加快收敛速度,但同时也使得测试准确率在整个训练过程中不太稳定,可能是因为这个 learning_rate 在接近收敛时显得太大,导致在极小值附近出现震荡现象。

综上所述, $learing_rate = 0.1$ 的 Relu 函数收敛快,较为稳定,同时测试精度较高,对单隐层网络来说效果最佳。

4.6 weight_decay

在数学上,weight_dacay 本质上等价于平方正则项:将损失函数由 $E(W) = E_0(W)$ 扩展为 $\hat{E}(W) = E_0(W) + \frac{\lambda}{2}W^2$,从而 W 的更新公式也由 $W_k \leftarrow W_k - \eta \frac{\partial E}{\partial W_k}$ 变为 $W_k \leftarrow W - \eta (\frac{\partial E}{\partial W_k} + \lambda W_k)$ (其中 λ 为 weight_decay, η 为 learning_rate)。

以双隐层网络为例进行对比分析:

weight_decay	训练时间(100 个 epoch)	收敛性	最高测试精度
0	$6.5 \mathrm{min}$	收敛速度无显著差别,波动很大	98.14 %
0.0002	$12 \mathrm{min}$	收敛速度无显著差别,比较稳定	98.75~%

绘制测试精度曲线如下(相邻采样点间隔 1 个 epoch):

Figure 9: 不同 weight decay 下的精度曲线(双隐层网络)

从图中可以看出,对双隐层网络而言, $weight_decay = 0.0002$ 在收敛稳定程度上优于 $weight_decay = 0$,而在精度上前者稍占优势。笔者猜测,这可能是由于正则项惩罚过大的权重值,从而反向传播时的梯度不致过大,故每次迭代网络中各参数向量的变化量相对较小,因此测试精度不致有大的波动,稳定性得到增强。

4.7 momentum

momentum 的数学表达式为 $\triangle W_k \leftarrow \gamma \triangle W_k + \frac{\partial \hat{E}}{\partial W_k}$,其物理意义可以类比惯性,在神经网络的训练中则起到"在一定程度上保持原有更新方向"的作用。例如当训练陷入局部极小值时,梯度项几乎为 0,而动量项维持了原有更新方向,有助于借"惯性"跃出局部极小值;而当训练到达全局最小值时,尽管动量项仍维持原有更新方向,这股"惯性"不足以支撑它跃出真正的最小值谷底。此外,由于在收敛过程中更新方向基本保持不变,momentum 在理论上可以加速收敛的过程。

以双隐层网络为例进行对比分析:

momentum	训练时间(100 个 epoch)	收敛性	最高测试精度
0	$12 \mathrm{min}$	收敛速度无显著差别,波动大	98.30 %
0.0001	$12 \mathrm{min}$	收敛速度无显著差别, 较稳定	98.75~%

绘制测试精度曲线如下(相邻采样点间隔 1 个 epoch):

Figure 10: 不同 momentum 下的精度曲线(双隐层网络)

从图中可以看出,由于笔者设置的 momentum 值相差不大,在收敛速度上二者无显著差别;而在稳定性上,加入 momentum 似乎减小了收敛过程中的波动程度,笔者猜测可能是因为各个 batch 之间存在差别,加入动量项之后前一 batch 的更新方向会对本次 batch 产生影响,从而减小了各个 batch 之间更新方向的差别,使得收敛稳定性提高。