

Service- and Security Monitoring

Konsolidierung, Korrelierung und Visualisierung IT-Sicherheitskritischer Ereignisse

MARTIN STEINBACH

Universität Rostock, Institut für Informatik

Seminar Sommersemester 2018

Aufbereitung und Auswertung komplexer Daten

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

Ziele der Informationssicherheit

- Vertraulichkeit
- Verfügbarkeit
- Verbindlichkeit
- Integrität

Betrachtungen

- Zeitliche Perspektive
- Schweregrad (severity)
- Quelle
- Ereigniskorrelation

Ziele der Informationssicherheit

- Vertraulichkeit
- Verfügbarkeit
- Verbindlichkeit
- Integrität

Betrachtungen

- Zeitliche Perspektive
- Schweregrad (severity)
- Quelle
- Ereigniskorrelation

Ziele der Informationssicherheit

- Vertraulichkeit
- Verfügbarkeit
- Verbindlichkeit
- Integrität

Betrachtungen

- Zeitliche Perspektive
- Schweregrad (severity)
- Quelle
- Ereigniskorrelation

Zivil

- 90% aller Firmen: Opfer von Cyberattacken
- 80% derer mit finanziellen Einbußen.
- Diebstahl geistigen Eigentums (zwischen 2011 und 2015 Verdopplung)

Hoheitlich / Kritische Infrastrukturen / Cyberabwehr / Militär

- Nationales IT-Lagezentrum
- NCAZ
- CIR (Bw)

Warum Überwachung? Servicemonitoring = Securitymonitoring?

Servicemonitoring = Securitymonitoring?

Ja!?

Nur ein nicht manipulierter Dienst, der erwiesenermaßen seine Aufgaben erfüllt, kann die Ziele der IT-Sicherheit einhalten.

Beweis durch Überwachung

- Unerwartetes Verhalten
- Erreichbarkeit
- Angriffserkennung
- Nachvollziebarkeit

Warum Überwachung? Servicemonitoring = Securitymonitoring?

Servicemonitoring = Securitymonitoring?

Ja!?

Nur ein nicht manipulierter Dienst, der erwiesenermaßen seine Aufgaben erfüllt, kann die Ziele der IT-Sicherheit einhalten.

Beweis durch Uberwachung

- Unerwartetes Verhalter
- Erreichbarkeit
- Angriffserkennung
- Nachvollziebarkeit

Warum Überwachung? Servicemonitoring = Securitymonitoring?

Servicemonitoring = Securitymonitoring?

Ja!?

Nur ein nicht manipulierter Dienst, der erwiesenermaßen seine Aufgaben erfüllt, kann die Ziele der IT-Sicherheit einhalten.

Beweis durch Überwachung

- Unerwartetes Verhalten
- Erreichbarkeit
- Angriffserkennung
- Nachvollziebarkeit

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebunger

Ausblick

Statistische Netzwerkanalyse

DEMO

Aktive Überwachung Was kann überwacht werden?

Jede Entität, deren Status deutlich zueinander abgrenzbar sind

- Betriebssystemabhängig
 - Betriebssystemparameter
 - Auslastung
 - Speicher
 - Prozesse
 - Datendurchsatz
 - Updates
 - Sicherheitsauditierung

- Betriebssystemunabhängig
 - Netzwerkdienste
 - L3: ICMP{4,6
 - L4: TCP, UDP basierend
 - L4+: SNMP
 - Sensorer
 - Aktive Netzwerkkomponenten

Aktive Überwachung Was kann überwacht werden?

Jede Entität, deren Status deutlich zueinander abgrenzbar sind.

- Betriebssystemabhängig
 - Betriebssystemparameter
 - Auslastung
 - Speiche
 - Prozesse
 - Datendurchsatz
 - Updates
 - Sicherheitsauditierung

- Betriebssystemunabhängig
 - Netzwerkdienste
 - L3: ICMP{4.6
 - L4: TCP, UDP basierend
 - 14+ SNMP
 - Sensoren
 - Aktive Netzwerkkomponenten

Jede Entität, deren Status deutlich zueinander abgrenzbar sind.

- Betriebssystemabhängig
 - Betriebssystemparameter
 - Auslastung
 - Speicher
 - Prozesse
 - Datendurchsatz
 - Updates
 - Sicherheitsauditierung

- Betriebssystemunabhängig
 - Netzwerkdienste
 - L3: ICMP{4.6
 - L4: TCP, UDP basierend
 - L4+: SNMP
 - Sensorer
 - Aktive Netzwerkkomponenten

Jede Entität, deren Status deutlich zueinander abgrenzbar sind.

- Betriebssystemabhängig
 - Betriebssystemparameter
 - Auslastung
 - Speicher
 - Prozesse
 - Datendurchsatz
 - Updates
 - Sicherheitsauditierung

- Betriebssystemunabhängig
 - Netzwerkdienste
 - L3: ICMP{4,6}
 - L4: TCP. UDP basierend
 - L4+: SNMP
 - Sensoren
 - Aktive Netzwerkkomponenten

Visualisierungen Statusverlauf

State Breakdowns:

0k : (18.877%) 1d 7h 42m 51s Warning : (45.160%) 3d 3h 52m 9s Unknown : (0.000%) 0d 0h 0m 0s Critical : (35.962%) 2d 12h 25m 0s

Indeterminate: (0.000%) Od Oh Om Os

Quelle: selbst erstellt Erstellt mit: NagVis

Quelle: https://redmine.pfsense.org/issues/1354 Erstellt mit: https://oss.oetiker.ch/rrdtool/

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

cloud - laaS

- Stark steigende Systemanzahl (10K+)
- In wenigen Sekunden: virtuelles RZ
- Dynamisch wachsendes/sinkendes Logaufkommen
- Dynamische Kosten
- Proprietäre, inkompatible Monitoringsysteme ^a

^aIETF-draft: Syslog Extension for Cloud Using Syslog Structured Data

Anforderungen Logkorrelation

- Manuell undurchführbar
- Skalierbar (n+1)
- Automatisch durchführbai
- Minimierung des Speicheraufwandes

cloud - laaS

- Stark steigende Systemanzahl (10K+)
- In wenigen Sekunden: virtuelles RZ
- Dynamisch wachsendes/sinkendes Logaufkommen
- Dynamische Kosten
- Proprietäre, inkompatible Monitoringsysteme ^a

^aIETF-draft: Syslog Extension for Cloud Using Syslog Structured Data

Anforderungen Logkorrelation

- Manuell undurchführbar
- Skalierbar (n+1)
- Automatisch durchführbar
- Minimierung des Speicheraufwandes

Quelle: D.Frisch, C. Pape, S. Reissmann, and S. Rieger "Correlation and Consolidation of Distributed Logging Data in Enterprise Clouds" In International Journal on Advances in Internet Technology, vol 7, 2013, pp. 39–51.

RFC5424 Implementiert durch syslog-ng und rsyslog

Feld	Inhalt	Beispiel
HEADER		
facility	$int \in \{023\}$	< 16 5> (loca10)
severity	$int \in \{07\}$	<16 5 > (Notice)
timestamp	RFC3339	2003-10-11T22:14:15.003Z
hostname	string	mymachine.example.com
tag	string	evntslog
MSG		
MSGID	string	ID47
structured data	key=value	eventID="1011"
content	string	An application event log

<165> 2003-10-11T22:14:15.003Z mymachine.example.com evntslog - ID47 [exampleSDID@32473 iut="3" eventSource= "Application" eventID="1011"] BOMAn application event log entry...

- Menge der anfallenden Dater
- Hohe Redundanz der Daten
- Durchsuchbarkeit Logdaten

Relationale Datenbanker

- Schema der Daten muss bekannt sein
- Schemaänderungen nur schwer möglich

- Kein festes Schema
- Wohlformatierte strukturierte Daten (key ⇒ val)
- Sehr gut skalierbar

- Menge der anfallenden Daten
- Hohe Redundanz der Daten
- Durchsuchbarkeit Logdaten

Relationale Datenbanker

- Schema der Daten muss bekannt sein
- Schemaänderungen nur schwer möglich

- Kein festes Schema
- Wohlformatierte strukturierte Daten (key ⇒ val)
- Sehr gut skalierbar

- Menge der anfallenden Daten
- Hohe Redundanz der Daten
- Durchsuchbarkeit Logdaten

Relationale Datenbanken

- Schema der Daten muss bekannt sein
- Schemaänderungen nur schwer möglich

- Kein festes Schema
- Wohlformatierte strukturierte Daten (key ⇒ val)
- Sehr gut skalierbar

- Menge der anfallenden Daten
- Hohe Redundanz der Daten
- Durchsuchbarkeit Logdaten

Relationale Datenbanken

- Schema der Daten muss bekannt sein
- Schemaänderungen nur schwer möglich

- Kein festes Schema
- Wohlformatierte strukturierte Daten (key ⇒ val)
- Sehr gut skalierbar

Persistente Speicherung Überblick über 3 NoSQL-Strategien

$key \Rightarrow value datastores$

- Hochperformant (key ⇒ BLOB)
- Einfache API (insert, delete, lookup)
- Keine Suche in BLOBs

column-oriented datastores

- Verwaltung in Zeilen und Spalten
- Skalierung: Auftrennung in shards

document-based datastores

- document: Menge an Objekten mit unterschiedlichen Attributen
- Skalierung: Aufteilung der Objekte
- Volltextsuche

Persistente Speicherung Überblick über 3 NoSQL-Strategien

key \Rightarrow value datastores

- Hochperformant (key ⇒ BLOB)
- Einfache API (insert, delete, lookup)
- Keine Suche in BLOBs

column-oriented datastores

- Verwaltung in Zeilen und Spalten
- Skalierung: Auftrennung in shards

document-based datastores

- document: Menge an Objekten mit unterschiedlichen Attributen
- Skalierung: Aufteilung der Objekte
- Volltextsuche

key \Rightarrow value datastores

- Hochperformant (key ⇒ BLOB)
- Einfache API (insert, delete, lookup)
- Keine Suche in BLOBs

column-oriented datastores

- Verwaltung in Zeilen und Spalten
- Skalierung: Auftrennung in shards

document-based datastores

- document: Menge an Objekten mit unterschiedlichen Attributen
- Skalierung: Aufteilung der Objekte
- Volltextsuche

$m key \, \Rightarrow \, value \, \, datastores$

- Hochperformant (key ⇒ BLOB)
- Einfache API (insert, delete, lookup)
- Keine Suche in BLOBs.

column-oriented datastores

- Verwaltung in Zeilen und Spalten
- Skalierung: Auftrennung in shards

document-based datastores

- document: Menge an Objekten mit unterschiedlichen Attributen
- Skalierung: Aufteilung der Objekte
- Volltextsuche

Ziel der Korrelation von Logdaten

- Reduktion des Datenaufkommens
 - Konsolidierung
- 2. Identifizierung wesentlicher Informationer
 - Korrelation

Im Folgenden

Beispielhafte Korrelation anhand einer SSH Brute-Force-Attacke.

Ziel: Den einen erfolgreichen Versuch dieser Attacke zu identifizieren

Ziel der Korrelation von Logdaten

1. Reduktion des Datenaufkommens

- Konsolidierung
- 2. Identifizierung wesentlicher Informationer
 - Korrelation

Im Folgenden

Beispielhafte Korrelation anhand einer SSH Brute-Force-Attacke.

Ziel: Den einen erfolgreichen Versuch dieser Attacke zu identifizieren

- 1. Reduktion des Datenaufkommens
 - Konsolidierung
- 2. Identifizierung wesentlicher Informationen
 - Korrelation

Im Folgenden

Beispielhafte Korrelation anhand einer SSH Brute-Force-Attacke.

Ziel: Den einen erfolgreichen Versuch dieser Attacke zu identifizieren

- 1. Reduktion des Datenaufkommens
 - Konsolidierung
- 2. Identifizierung wesentlicher Informationen
 - Korrelation

Im Folgenden:

Beispielhafte Korrelation anhand einer SSH Brute-Force-Attacke.

Ziel: Den einen erfolgreichen Versuch dieser Attacke zu identifizieren.

Konsolidierung von Logevents Generierung neuer Lognachrichten

liblognorm - Regeln

Zusammenfassung der gleichen Meldung aus unterschiedlichen Quellen

```
rule=SSHSUCCESS: Accepted password for %user:
word% from %ip:ipv4% port %port: number% %protocol:word%

rule=SSHFAILURE: Failed password for %user:
word% from %ip:ipv4% port %port: number% %protocol:word%

rule=SSHFAILURE: Failed password for invalid user %user:
word% from %ip:ipv4% port %port: number% %protocol:word%
```

Konsolidierung von Logevents Serialisierung mittels JSON

liblognorm - Normalisierung

Erstellung strukturierter Daten und Weiterleitung an Korrelierungsinstanz

```
"data": {
    "protocol": "ssh2",
    "port": "54548",
    "ip": "10.0.23.4",
    "user": "root"
"time": "2014-01-29T16:06:00.000",
"host": "test.example.com",
"facility": "auth",
"severity": "info",
"program" : "sshd",
"message": " Failed password for root from
            10.0.23.4 port 54548 ssh2",
"tags" : ["SSHFAILURE"] }
```


Drools-Fusion

- Complex Event Processing (CEP) Engine
- Regeln basieren auf AL
- Zeitliche Schlussfolgerungen
- Datenbestand: in-memory-engine

Quelle: Tihomir Surdilovic, RedHat (Slideshare)

```
rule "SSH brute-force attempt"
no-loop
when
   Message (
                $host:host.
                $user:data["user"])
   $atts: CopyOnWriteArrayList(size >= 10)
       from collect(
            Message(
                       tags contains"SSHFAILURE",
                        host == $host.
                       data["user" ] == $user)
            over window : time (1m))
then
   Message last = (Message) $atts.get($atts.size()-1);
   for (Object f: $atts) {
       retract (f):
   insert (messageFactory(last)
        . setTime(last.getTime())
       . setSeverity(Message.Severity.WARNING)
       . setFacility(Message.Facility.SECURITY)
        . setMessage("SSH brute-force attack" +
            "for O(data.user) from O(data.ip)")
       . addTag ("BRUTEFORCE")
       . message( )) ;
end
```


- betrachtet werden: Syslog-tags
- Trifft zu: wenn w\u00e4hrend einer Brute-Force-Attacke Login gelingt
- SSHSUCCESS innerhalb von 10s nach SSHFAILURE und BRUTEFORCE und gleicher host, user

```
rule "Successful SSH brute-force attack"
no-loop
when
     $ att: Message ( tags contains "SSHFAILURE",
                         tags contains "BRUTEFORCE",
                         $host: host .
                         $user: data ["user"])
     $ suc: Message (
                         host == $host.
                         data ["user" ] == $user.
                         tags contains "SSHSUCCESS",
                         this finishes[10 s] $att)
then
     $att.addTag("INCIDENT");
     $att.setSeverity(Severity.EMERGENCY);
     $att.setMessage($att.getMessage() + "[bruteforce]");
update ($att):
end
```

- Erzeugung neuer Syslog-Nachrichten durch Regeln
- Setzen unterschiedlicher severity (Warning: 4; Emergency: 0)
- Auswertung über Visualisierung, SNMP-trap, check_drools

Severity	Facility	Message
emerge	security	Accepted password for root from 10.0.23.4 port 54548 ssh2 [bruteforce]
info	auth	Failed password for root from 10.0.23.4 port 54548 ssh2
wam	security	SSH brute-force attack for root from 10.0.23.4
info	auth	Connection closed by 10.0.23.4 [preauth]
info	auth	Failed password for root from 10.0.23.4 port 54548 ssh2
info	auth	Failed password for root from 10.0.23.4 port 54548 ssh2
info	auth	Failed password for root from 10.0.23.4 port 54548 ssh2

Forschungsziel: jCorrelat soll correlation template engine werden.

Benchmark

Limitierender Faktor: in-memory-engine

Einführung

Überwachung Überwachungsformen

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

ELK-Stack: passives Monitoring

scanning detection systems

- Trafficanalyse zu ungenau
- Erstellung eines fingerprints kaum möglich

Verkehrskorrelation durch statistische Verfahren

- Scans werden zeitlich korreliert
- Scan-Traffic Zuordnung zu Scan-Technik
- Identifizierung von orchestrated probing

Quelle: Bou-Harb, E., Debbabi, M., & Assi, C. (2014) Behavioral analytics for inferring large-scale orchestrated probing events. In 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 506–511). New York, NY: IEEE.

Einführung

Überwachung Überwachungsformer

Aktives Monitoring

Was kann überwacht werden

Passives Monitoring

Logkorrelation in Cloud-Umgebungen

Ausblick

Statistische Netzwerkanalyse

DEMO

ELK-Stack: passives Monitoring

ELK: Elasticsearch, Logstash, Kibana

ELK-Server

Danke für die Aufmerksamkeit

Folien stehen auf github.com zur Verfügung:

github.com/meetunix/seminar-komplex

martin.steinbach@uni-rostock.de