## Maurice Karnaugh





The Karnaugh map makes it easy to minimize Boolean expressions!

#### A function of four variables a b c d.

The truthtable consists of 11 "1" and 5 "0". According to earlier, we know that the function can be expressed in the SoP form with 11 minterms or in PoS form with 5 maxterms.



| $f(a,b,c,d) = \sum (0,1,2,3,4,5,6,7,8,10,13)$<br>f = abcd + abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                |                 |                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|----------------|-----------------|-------------------|--|--|--|
| $f(a,b,c,d) = \prod_{a}$ $f = (\overline{a} + b + c + \overline{d}) \cdot (a + b + c + \overline{d}) \cdot (a + b + c + \overline{d}) \cdot (a + b + \overline{d}) \cdot (a + \overline{d}) \cdot $ | <u>-</u> .      |                 |                | _               | i+b+c+d)(ā+b+c+d) |  |  |  |
| a cd<br>b<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00              | 01<br>1         | 11<br>3        | 10<br>2         |                   |  |  |  |
| 0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 1             | <sup>5</sup> 1  | <sup>7</sup> 1 | <sup>6</sup> 1  |                   |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>12</sup> 0 | <sup>13</sup> 1 | 15 ()          | <sup>14</sup> 0 |                   |  |  |  |
| 1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>8</sup> 1  | 9 0             | 11 0           | <sup>10</sup> 1 |                   |  |  |  |

Anyone who used Boolean algebra know that it follows hard work to produce simpler expressions. Minterms could be combined in many different ways, which all result in different simplified expressions - How do we know that we have found the minimum expression?

#### A map with frames at unit distance

The Karnaugh map is the Truth Table but with the minterms in a different order.

Note the numbering!



The frames are ordered in such way that only one bit changes between two vertical frames or horisontal frames. This order is called Gray code.

#### Two "neighbors"

The frames "5" and "13" are "neighbors" in the Karnaugh map (but they are distant from each other in the truthtable).

They correspond to *two* minterms with *four* variables, and the figure shows how, with Boolean algebra, they can be reduced to one term with *three* variables.



What the two frames have in common is that b = 1, c = 0 and d = 1; and the reduced term expresses just that.

Everywhere in the Karnaugh map where one can find two frames that are "neighbors" (vertically or horizontally) the minterms can be reduced to "what they have in common". This is called a **grouping**.

### Four "neighbors"

Frames "1" "3" "5" "7" is a group of four frames with "1" that are "neighbors" to each other. Here too, the four minterms could be reduced to a term that expresses what is common for the frames, namely that a = 0 and d = 1.



Everywhere in Karnaugh map where one can find such groups of four ones such simplifications can be done, **grouping of four**.

#### Eight "neighbors"



All groups of 2, 4, 8, (... 2 N ie. powers of 2) frames containing ones can be reduced to a term, with what they have in common, **grouping of n**.

### Karnaugh - torus



The Karnaugh map should be drawn on a torus (a donut). When we reach an edge, the graph continnues from the opposite side! Frame 0 is the "neighbor" with frame 2, but also the "neighbor" with frame 8 which is "neighbor" to frame 10.

### The optimal groupings?

We look for the largest grouping possible. In this example, there is a grouping with eight (frames 0,1,3,2,4,5,7,6). Corners (0,2,8,10) form a group of four.



Two of the frames (0,2) have already been included in the first group, but it does not matter if a minterm is included multiple times.

All ones in the logic function must either be in a grouping, or be included as a minterm. The "1" in frame 13 may form a group with "1" in frame 5, unfortunately there are no bigger grouping for this "1".

• The resulting function is a major simplification compared to the original function with the 11 minterms!

William Sandqvist william@kth.se

## Incorrect groupings?

Is there any incorrect groupings in this Karnaugh diagram?



## Incorrect groupings?

Is there any incorrect groupings in this Karnaugh diagram?



Groupings should be 2, 4, 8 (= power of two) "neighbors" vertical or horisontal. Not diagonal.

| a cd<br>b | 00 | 01 | 11 | 10 |
|-----------|----|----|----|----|
| 0         | 1  | 1  | 0  | 1  |
| 0<br>1    | 0  | 1  | 0  | 0  |
| 1<br>1    | 0  | 1  | 1  | 0  |
| 1<br>0    | 1  | 0  | 0  | 1  |

 $\overline{bd}$ 

| a<br>b | cd     | 00 | 01 | 11 | 10 |  |
|--------|--------|----|----|----|----|--|
| _      | 0      | 1  | 1  | 0  | 1  |  |
|        | 0      | 0  | 1  | 0  | 0  |  |
|        | 1      | 0  | 1  | 1  | 0  |  |
|        | 1<br>0 | 1  | 0  | 0  | 1  |  |
|        |        |    |    |    |    |  |

| $\overline{bd}$ | a cd<br>b | 00 | 01 | 11 | 10 |  |
|-----------------|-----------|----|----|----|----|--|
|                 | 0         | 1  | 1  | 0  | 1  |  |
|                 | 0<br>1    | 0  | 1  | 0  | 0  |  |
| abd             | 1         | 0  | 1  | 1  | 0  |  |
|                 | 1         | 1  | 0  | 0  | 1  |  |
|                 |           |    |    |    |    |  |

bd acd abd

| a<br>b | cd     | 00 | 01 | 11 | 10 |  |
|--------|--------|----|----|----|----|--|
| _      | 0      | 1  | 1  | 0  | 1  |  |
|        | 0<br>1 | 0  | 1  | 0  | 0  |  |
|        | 1<br>1 | 0  | 1  | 1  | 0  |  |
|        | 1<br>0 | 1  | 0  | 0  | 1  |  |
|        |        |    |    |    |    |  |

| $\overline{bd}$ |
|-----------------|
| acd             |
| abd             |

| a<br>b | cd     | 00 | 01 | 11 | 10 |  |
|--------|--------|----|----|----|----|--|
| _      | 0      | _1 | 1  | 0  | 1  |  |
|        | 0<br>1 | 0  | 1  | 0  | 0  |  |
|        | 1      | 0  | 1  | 1  | 0  |  |
| •      | 1<br>0 | 1  | 0  | 0  | 1  |  |
|        |        |    |    | ·  |    |  |

$$f = \overline{b}\overline{d} + \overline{a}\overline{c}d + abd$$



 $\overline{bd}$ 







#### Grouping of "0"



The Karnaugh map is also useful for groupings of 0's. The groupings may include the same number of frames as the case of groupings of 1's. In this example, 0:s are grouped together in pairs with their "neighbors". Maxterms are simplified to what is in common for the frames.

The resulting expression is a product of three sums and it represents a simplification compared to the original five maxterms.

### De Morgan



If you use "0" as if they were "1" you will get the function inverted! (totally wrong)

With De Morgans theorem you can invert the inverted function to get the result. (now correct)

#### Maps for other number of variables



Karnaugh maps with three and two variables are also useful.

The Karnaugh map can conveniently be used for functions of up to four variables, and with a little practice up to six variables.

#### Ex 6.4 change NOR to NAND







NOR-NOR to OR-AND change "straight on!

$$(a+c)(b+c) = \overline{(a+c)(b+c)} = \overline{(a+c)+(b+c)}$$
OR-AND
NOR-NOR



William Sandqvist william@kth.se

Ex. 6.4



Ex. 6.4



$$f(a,b,c) = c + a \cdot b$$

Ex. 6.4



$$f(a,b,c) = \overline{c} + a \cdot b$$





AND-OR NAND-NAND change gates "straight on"



$$f(a,b,c) = c + a \cdot b$$

No gate on





AND-OR ⇐⇒ NAND-NAND



$$f(a,b,c) = c + a \cdot b$$

Or algebraic:



William Sandqvist william@kth.se

#### PLD-chip has output inverters

PLD circuits often have an XOR gate at the output so that they shall be able to invert the function. One can then choose to bring together 0s (and invert) or 1s after what is most advantageous.



When the control signal is a "1" the gates output is b's inverse, when a is "0", the output is equal to b

#### Ex. 6.5 Minimize with the K-map

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

|                            | $x_3$ | $x_2$ | $x_1$ | $x_0$ | f                                                                            |
|----------------------------|-------|-------|-------|-------|------------------------------------------------------------------------------|
| 0                          | 0     | 0     | 0     | 0     | 1                                                                            |
| 1                          | 0     | 0     | 0     | 1     | 0                                                                            |
| 2                          | 0     | 0     | 1     | 0     | 1                                                                            |
| 2<br>3<br>4<br>5<br>6<br>7 | 0     | 0     | 1     | 1     | 0                                                                            |
| 4                          | 0     | 1     | 0     | 0     | 1                                                                            |
| 5                          | 0     | 1     | 0     | 1     | 0                                                                            |
| 6                          | 0     | 1     | 1     | O     | 0                                                                            |
| 7                          | 0     | 1     | 1     | 1     | 0                                                                            |
| <b>8</b><br>9              | 1     | 0     | 0     | 0     | 1                                                                            |
| 9                          | 1     | O     | 0     | 1     | 0                                                                            |
| 10                         | 1     | 0     | 1     | 0     | 1                                                                            |
| 11                         | 1     | 0     | 1     | 1     | 0                                                                            |
| 12                         | 1     | 1     | 0     | 0     | 1                                                                            |
| 13                         | 1     | 1     | 0     | 1     | 1<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>0<br>0 |
| 14                         | 1     | 1     | 1     | 0     | 0                                                                            |
| 15                         | 1     | 1     | 1     | 1     | 0                                                                            |

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

|                                      | $x_3$ | $x_2$ | $x_1$ | $x_0$ | f                                                                                           |
|--------------------------------------|-------|-------|-------|-------|---------------------------------------------------------------------------------------------|
| 0                                    | 0     | 0     | 0     | 0     | 1                                                                                           |
| 1                                    | 0     | O     | 0     | 1     | 0                                                                                           |
| 2                                    | 0     | 0     | 1     | 0     |                                                                                             |
| 3                                    | 0     | 0     | 1     | 1     | 0                                                                                           |
| 4                                    | 0     | 1     | O     | 0     | 1                                                                                           |
| 5                                    | 0     | 1     | 0     | 1     | 0                                                                                           |
| 6                                    | 0     | 1     | 1     | 0     | 0                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0     | 1     | 1     | 1     | 0                                                                                           |
| 8                                    | 1     | 0     | 0     | 0     | 1                                                                                           |
| 9                                    | 1     | 0     | 0     | 1     | 0                                                                                           |
| 10                                   | 1     | 0     | 1     | O     | 1                                                                                           |
| 11                                   | 1     | 0     | 1     | 1     | 0                                                                                           |
| 12                                   | 1     | 1     | 0     | 0     | 1                                                                                           |
| 13                                   | 1     | 1     | 0     | 1     | 0                                                                                           |
| 14                                   | 1     | 1     | 1     | O     | 1<br>0<br>1<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>0<br>0<br>0<br>0 |
| 15                                   | 1     | 1     | 1     | 1     | 0                                                                                           |

| x <sub>3</sub> x <sub>1</sub>           | × <sub>0</sub> | 01 | 11 | 10 |
|-----------------------------------------|----------------|----|----|----|
| x <sub>3</sub><br>x <sub>2</sub> 0<br>0 | 0              | 1  | 3  | 2  |
| 0                                       | 4              | 5  | 7  | 6  |
| 1<br>1                                  | 12             | 13 | 15 | 14 |
| 1                                       | 8              | 9  | 11 | 10 |

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

| $x_3$ | $x_2$                                                         | $x_1$                                                              | $x_0$                                                                                                                                                                                                                                                                                                                                                                                                                   | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0                                                             | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | O                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0     | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 1                                                             | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 1                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 1                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0     | 1                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 0                                                             | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 0                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 0                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 0                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 1                                                             | 0                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 1                                                             | 0                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 1                                                             | 1                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1     | 1                                                             | 1                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0 0<br>0 0<br>0 0<br>0 0<br>0 1<br>0 1<br>0 1<br>1 0<br>1 0<br>1 0 | 0       0       0         0       0       0         0       0       1         0       1       0         0       1       0         0       1       1         1       0       0         1       0       0         1       0       1         1       0       1         1       1       0         1       1       0         1       1       0         1       1       0         1       1       1         1       1       1 | 0       0       0       0         0       0       0       1         0       0       1       0         0       0       1       1         0       1       0       0         0       1       1       0         0       1       1       1         1       0       0       0         1       0       1       0         1       0       1       1         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       1       0       0         1       < |

| \                                | x <sub>1</sub> ; | ×<br>00        | 01                    | 11             | 10             |
|----------------------------------|------------------|----------------|-----------------------|----------------|----------------|
| x <sub>3</sub><br>x <sub>2</sub> | 0                | 01             | <sup>1</sup> 0        | <sup>3</sup> 0 | <sup>2</sup> 1 |
|                                  | 0                | <sup>4</sup> 1 | <sup>5</sup> <b>0</b> | <sup>7</sup> 0 | <sup>6</sup> 0 |
|                                  | 1<br>1           | 12             | Ď                     | <sup>1</sup> 5 | <sup>1</sup> 0 |
|                                  | 1<br>0           | <sup>8</sup> 1 | 90                    | 10             | 19             |

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"

| x <sub>3</sub> x <sub>1</sub>           | х<br>00        | 01             | 11             | 10             |
|-----------------------------------------|----------------|----------------|----------------|----------------|
| x <sub>3</sub><br>x <sub>2</sub> 0<br>0 | 01             | <sup>1</sup> 0 | <b>9</b>       | 21             |
| 0<br>1                                  | 41             | <sup>5</sup> 0 | <sup>7</sup> 0 | <sup>6</sup> 0 |
| 1<br>1                                  | 12             | 1 $\vec{0}$    | <sup>1</sup> 5 | <sup>1</sup> 0 |
| 1<br>0                                  | <sup>8</sup> 1 | 90             | 10             | 19             |

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = \bar{x}_1 \bar{x}_0 + \bar{x}_2 \bar{x}_0$$

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = \overline{x_1} \overline{x_0} + \overline{x_2} \overline{x_0}$$

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = \overline{x_1} \overline{x_0} + \overline{x_2} \overline{x_0}$$



$$\overline{f} = \{ "0" \text{ as } "1" \} = x_0 + x_2 x_1$$

$$f(x_3, x_2, x_1, x_0) = \sum m(0, 2, 4, 8, 10, 12)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = \overline{x_1} \overline{x_0} + \overline{x_2} \overline{x_0}$$

Grouping of "0"



$$f = \{ "0" \text{ as } "1" \} = x_0 + x_2 x_1$$

This time it was advantageous to group 0s and invert the output!

#### Ex. 6.8 Don't Care

Sometimes, the problem is such that certain input combinations are "impossible" i.e. they can not occur. Such minterms (or maxterms) are denoted d ("do not care") and used as ones or zeros depending on what works best to get as large groupings as possible.

$$f(x_3, x_2, x_1, x_0) = \sum m(3, 5, 7, 11) + d(6, 15)$$
  $f = ?$   $\overline{f} = ?$ 

(A risk may be that what is thought to be "impossible" still occurs!? Therefore, it may often be better to take care of all combinations.)

$$f(x_3, x_2, x_1, x_0) = \sum m(3, 5, 7, 11) + d(6, 15)$$
  $f = ?$   $\overline{f} = ?$ 



$$f(x_3, x_2, x_1, x_0) = \sum m(3, 5, 7, 11) + d(6, 15)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = x_1 x_0 + \overline{x_3} x_2 x_0$$

$$f(x_3, x_2, x_1, x_0) = \sum m(3, 5, 7, 11) + d(6, 15)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"



$$f = x_1 x_0 + \overline{x_3} x_2 x_0$$



$$f(x_3, x_2, x_1, x_0) = \sum m(3, 5, 7, 11) + d(6, 15)$$
  $f = ?$   $\overline{f} = ?$ 

Grouping of "1"  $\overline{x}_3 x_2 x_0$ <sup>X</sup>1<sup>X</sup>0  $f = x_1 x_0 + x_3 x_2 x_0$ 

Grouping of "0"



William Sandqvist william@kth.se

#### Alarm for water tank







#### Ex. 8.2



#### Ex. 8.2

| X | $x_3$ | $x_2$ | $x_1$ | $x_0$ | U | $u_2$ | $u_1$ | $u_0$ |
|---|-------|-------|-------|-------|---|-------|-------|-------|
|   |       |       |       |       |   |       |       |       |



Ex. 8.2

| X  | $x_3$ | $x_2$ | $x_1$ | $x_0$ | U | $u_2$ | $u_1$ | $u_0$ |
|----|-------|-------|-------|-------|---|-------|-------|-------|
| 0  | 0     | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| 1  | 0     | 0     | 0     | 1     | 1 | 0     | 0     | 1     |
| 3  | 0     | 0     | 1     | 1     | 2 | 0     | 1     | 0     |
| 7  | 0     | 1     | 1     | 1     | 3 | 0     | 1     | 1     |
| 15 | 1     | 1     | 1     | 1     | 4 | 1     | 0     | 0     |



Only the in-combinations X 0, 1, 3, 7, 15 can occur. All other incombinations can be used as "don't care".

We can directly see from the table that  $u_2$  and  $x_3$  are same,  $u_2$  can be directly connected to  $x_3$ .  $u_2 = x_3$ .

The other expressions are obtained by using their Karnaugh maps.

Ex. 8.2

| X  | $x_3$ | $x_2$ | $x_1$ | $x_0$ | U | $u_2$ | $u_1$ | $u_0$ |
|----|-------|-------|-------|-------|---|-------|-------|-------|
| 0  | 0     | 0     | 0     | 0     | О | 0     | 0     | 0     |
| 1  | 0     | 0     | 0     | 1     | 1 | 0     | 0     | 1     |
| 3  | 0     | 0     | 1     | 1     | 2 | 0     | 1     | 0     |
| 7  | 0     | 1     | 1     | 1     | 3 | 0     | 1     | 1     |
| 15 | 1     | 1     | 1     | 1     | 4 | 1     | 0     | 0     |
|    |       |       |       |       |   |       |       |       |



Only the in-combinations X 0, 1, 3, 7, 15 can occur. All other incombinations can be used as "don't care".

We can directly see from the table that  $u_2$  and  $x_3$  are same,  $u_2$  can be directly connected to  $x_3$ .  $u_2 = x_3$ .

The other expressions are obtained by using their Karnaugh maps.

Ex. 8.2

| X  | $x_3$ | $x_2$ | $x_1$ | $x_0$ | U | $u_2$ | $u_1$ | $u_0$ |
|----|-------|-------|-------|-------|---|-------|-------|-------|
| 0  | 0     | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| 1  | 0     | 0     | 0     | 1     | 1 | 0     | 0     | 1     |
| 3  | 0     | 0     | 1     | 1     | 2 | 0     | 1     | 0     |
| 7  | 0     | 1     | 1     | 1     | 3 | 0     | 1     | 1     |
| 15 | 1     | 1     | 1     | 1     | 4 | 1     | 0     | 0     |



#### Ex. 8.2 With NAND gates.



#### P and N MOS-transistors



# Ex. 7.3 CMOS-gate ?

















#### 7.3



| Α | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

# OR-gate

#### 7.3 other solution



#### 7.3



# 7.3



# Ex. 7.4 CMOS-gate ?



William Sandqvist william@kth.se

#### 7.4 EN = 1



$$Y = \overline{A}$$

When EN = 1 we have an inverter.

#### 7.4 EN = 0



When EN = 0 the output is totaly disconnected from the supply voltage and ground. A can no longer influence the output value.

This is a third output state, "Three State".

Many outputs could be connected to the same line ("bus"). One of the outputs at a time can be active. The otherare in their Three-state condition.



William Sandqvist william@kth.se

# Ex. 7.5 CMOS-gate ?





Pull-down circuit is the inverted function. The Pull-up circuit is the function noninverted:

$$\overline{Y} = A \cdot C + B \implies Y = \overline{A \cdot C} + \overline{B} = \overline{A \cdot C} \cdot \overline{B} = |(\overline{A} + \overline{C}) \cdot \overline{B}|$$

William Sandqvist william@kth.se

#### 7.5

$$\overline{Y} = A \cdot C + B \implies Y = \overline{A \cdot C + B} = \overline{A \cdot C} \cdot \overline{B} = (\overline{A} + \overline{C}) \cdot \overline{B}$$

$$(A + C)B$$

The Pull-up net must therefore consist of A and C in parallel (+) then connected in series (·) with B. The use of PMOS transistors inverts the variables A, B and C.



# A MOS-transistor "on chip"



MOS-transistor step by step:

http://micro.magnet.fsu.edu/electromag/java/transistor/

# Moore than 2.000.000.000 MOS-transistors/chip!



Pentium 4
has 50.000.000
MOS-transistors

