Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	Г <u>ИУК «Информатика и управление»</u>
КАФЕДРА	ИУК2 «Информационные системы и сети»

ЛАБОРАТОРНАЯ РАБОТА №3

«Моделирование и расчет электрических цепей, содержащих диоды»

ДИСЦИПЛИНА: «Основы электроники»

Проверил: (Выполнил: студент гр. ИУК4-32Б	(Подпись)	_(Зудин Д.В) (Ф.И.О.)
Результаты сдачи (защиты): - Балльная оценка:	Проверил:	(Подпись)	(
- Балльная оценка:	Дата сдачи (защиты):			
	- Балльна			

Калуга, 2022 г.

Цель: формирование практических навыков моделирования и расчета электрических цепей, содержащих диоды.

Задачи:

- 1. Определение значения тока и напряжения на диоде с помощью моделирования схемы;
- 2. Определение значения тока и напряжения на диоде графическим способом.

Вариант №1

Теоретические сведения

Полупроводниковым диодом называется двухэлектродный прибор, основу которого составляет электронно-дырочный (n-p) переход (рис.1).

Рис.1. Устройство полупроводникового диода

Отличия реальной характеристики от теоретической

В области малых токов реальная и теоретическая характеристики совпадают. Но при больших прямых токах, а также при больших обратных напряжениях характеристики расходятся, что является следствием ряда причин, не учтенных при теоретическом анализе процессов в электронно-дырочном переходе.

Рабочий режим

Характеристику диода следует рассматривать как график некоторого уравнения, связывающего величины i и U. Для сопротивления R_{H} подобным уравнением является закон Ома:

$$i = U_R / R_{\scriptscriptstyle H} = (E - U) / R_{\scriptscriptstyle H}$$

Имеется два уравнения с двумя неизвестными i и U, причем одно из уравнений дано графически. Для решения такой системы уравнений надо построить график второго уравнения и найти координаты точки пересечения двух графиков.

Уравнение для сопротивления $R_{_H}$ — это прямая линия, называемая линией нагрузки. Ее можно построить по двум точкам на осях координат. При i=0 из уравнения получим: $E-U_D=0$ или $U_D=E$, что соответствует точке A на рис. 27. Если U=0, то $i=E/R_{_H}$.

Через точки A и B проводим прямую, которая является линией нагрузки. Координаты точки T дают решение поставленной задачи. Следует отметить, что все остальные точки прямой AB не соответствуют каким-либо рабочим режимам диода.

Характеристику нелинейной цепи, называемую *рабочей характеристикой диода*, т.е. график зависимости i = f(U), можно получить суммированием напряжений для характеристик диода и нагрузочного резистора R_{μ} .

Исследуемая электрическая схема

Моделирование схемы

1. Измерить напряжение $U_{ab \ xx}$ на зажимах разомкнутой ветви ab:

$$U_{ab xx} = 16.67 (B)$$

2. Измерить входное сопротивление $R_{\text{вх}}$:

$$R_{BX} = 233.3 \text{ (OM)}$$

3. Определить ток и напряжение на диоде с помощью схемы, преобразованной согласно теореме об эквивалентном источнике:

$$U_D = 764,3 \text{ MB}$$

 $I_D = 68,18 \text{ MA}$

4. Построить прямую ветвь ВАХ диода

5. Построим прямую ветвь ВАХ диода и линию нагрузки.

В преобразованной схеме источник напряжения соответствует Е = 16.67 В

Часть напряжение падает на диоде $U_D=0.764B,$ а часть на сопротивлении R_{ab} : $U_R=I_D$ $R_{ab}=0.068*233.3=15.8644$ B

Таким образом, $E = U_R + U_D = 15,8644 + 0,764 = 16,6284 B$

Вывод: в ходе работы были сформированы практические навыки моделирования электрических цепей и использование законов Ома и Кирхгофа для расчета электрических цепей.