MIT OpenCourseWare http://ocw.mit.edu

6.033 Computer System Engineering Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Protection

- 1) authentication
- 2) authorization
- 3) confidentiality

Crypto

Shared key
$$k_1 = k_2$$
 (DES)

Public key (RSA) $k_1 \neq k_2$

Security Primitives sign, verify encrypt, decrypt

Pub. Key $A \rightarrow B$ $\{m\}^{kApriv}$ sign $\{m\}^{kBpub}$ encrypt

Authentication

- 1) Who is requesting?(same principal as before)
- 2) Mesg that was sent = mesg recv.

Model

Principal (user) req "buy AAPL" guard service

```
authentication ← technical

↑

name

↑

trust ← psychological
```

Integrity ≠ Authenticity ≠ Confidentiality

- CRC

$$\frac{\text{secure}}{\text{sha-1}}$$
k₁≠ k₂ → MAC
k₁= k₂ → signature $\sqrt{\text{hash(m)}}$ {hash(m)}

Key Distribution Problem

 $A \rightarrow B$ "A's pub key is X"

certificates

CA – certificate authority

Secure Comm. Channel

Use pub. key to authenticate

Exchange a shared key
Properties of crypt. Protocols

- 1) freshness
- 2) appropriate
- 3) forward secrecy

Attacks crypto replay impersonation