Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 (currently amended). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure, said image sensing device having a color filter array of at least three different colors overlying said photosites, said standard and non-standard photosites each being associated with each of said colors;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; an additional section receiving said image signal;

a processing section expanding the response of the standard photosites to increased light exposures by utilizing signals from neighboring nonstandard photosites of the same color; and

a controller having a normal mode and an expanding mode, said controller in said normal mode diverting said signal directly to said additional section, said controller in said expanding mode diverting said image signal through said processing section to said additional section.

2 (original). The image capture system as claimed in claim 1 wherein the processing section expands the response of the non-standard photosites to decreased light exposures by utilizing the image signals from neighboring standard photosites.

3 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising: an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section for expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the processing section expands the response of the nonstandard photosites to decreased light exposures by utilizing the image signals from neighboring standard photosites; and

wherein the processing section further comprises:

means for processing the image signals against a plurality of thresholds, including a high exposure response threshold for the standard photosites and a low exposure response threshold for the non-standard photosites;

means for replacing the image signals from standard photosites exceeding the high exposure response threshold with a combination of the image signals from a neighborhood of non-standard photosites; and

means for replacing the image signals from non-standard photosites less than the low exposure response threshold with a combination of the image signals from a neighborhood of standard photosites, thereby producing an output image signal with an extended effective dynamic range.

4 (previously submitted). The image capture system as claimed in claim 3 wherein the image sensing device and the optical section are part of a digital camera and the processing section is part of a host computer separate from the digital camera.

5 (original). The image capture system as claimed in claim 4 wherein the processor is accessible via a network

6 (previously submitted). The image capture system as claimed in claim 3 wherein the image sensing device, the optical section and the processing section are included in a digital camera.

7 (original). The image capture system as claimed in claim 1 wherein the non-standard photosites have a response that is slower by at least one stop compared to the standard photosites.

8 (currently amended). The image capture system <u>sensor</u> as claimed in claim 1 <u>claim 26</u> wherein the photosites are monochromatic photosites.

9 (currently amended). The image capture system as claimed in elaim 1 claim 57 wherein the photosites are color photosites and the neighboring non-standard photosites are of the same color as standard photosite being processed by the processing section.

10 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

a color filter array comprised of two or more colors overlying the photosites, said standard and non-standard photosites being associated with each color of the array;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section expanding the response of the standard

photosites of each color to increased light exposures by utilizing the image signals from neighboring non-standard photosites of the same color at least two lines removed from the corresponding standard photosite and expanding the response of the non-standard photosites of each color to decreased light exposures by utilizing the image signals from neighboring standard photosites of the same color at least two lines removed from the corresponding non-standard photosite.

11 (cancelled).

12 (original). An image capture system providing an extended effective dynamic range, said system comprising:

an image sensing device having standard photosites with a predetermined standard response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal;

means for converting the image signal into digital image signals corresponding to the output of the standard and non-standard photosites; and

a processor that (a) processes the digital image signals against a plurality of thresholds, including a high exposure response threshold for the standard photosites and a low exposure response threshold for the non-standard photosites, (b) replaces the digital image signals from standard photosites exceeding the high exposure response threshold with a combination of the digital image signals from a neighborhood of non-standard photosites and (c) replaces the digital image signals from non-standard photosites less than the low exposure response threshold with a combination of the digital image signals from a neighborhood of standard photosites, thereby producing an output digital image signal with an extended effective dynamic range.

13 (original). The image capture system as claimed in claim 12 wherein the non-standard photosites have a response that is slower by at least one stop compared to the standard photosites.

14 (original). The image capture system as claimed in claim 12 wherein the photosites are monochromatic photosites.

15 (original). The image capture system as claimed in claim 12 wherein the photosites are color photosites.

16 (original). The image capture system as claimed in claim 15 wherein the color photosites are arranged in a color filter array pattern.

17 (original). The image capture system as claimed in claim 16 wherein each photosite is sensitive to one of a plurality of colors and the processor interpolates the other colors for each photosite from the neighboring photosites.

18 (original). The image capture system as claimed in claim 12 wherein the image sensing device, the optical section and the converting means are part of a digital camera and the processor is part of a host computer separate from the digital camera.

19 (original). The image capture system as claimed in claim 18 wherein the processor is accessible via a network.

20 (original). The image capture system as claimed in claim 12 wherein the image sensing device, the optical section, the converting means and the processor are included in a digital camera.

21 (cancelled).

22 (previously submitted). An image capture device providing an extended effective dynamic range, said image capture device comprising:

an image sensing device having standard photosites with a predetermined standard response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal;

means for converting the image signal into digital image signals corresponding to the output of the standard and non-standard photosites; and

a processor that expands the response of the standard photosites to increased exposures by utilizing the digital image signals from neighboring non-standard photosites and expands the response of the non-standard photosites to decreased exposures by utilizing the digital image signals from neighboring standard photosites;

wherein the processor (a) processes the digital image signals against a plurality of thresholds, including a high exposure response threshold for the standard photosites and a low exposure response threshold for the non-standard photosites, (b) replaces the digital image signals from standard photosites exceeding the high exposure response threshold with a combination of the digital image signals from a neighborhood of non-standard photosites and (c) replaces the digital image signals from non-standard photosites less than the low exposure response threshold with a combination of the digital image signals from a neighborhood of standard photosites, thereby producing an output digital image signal with an extended effective dynamic range.

23 (currently amended). A method for generating an extended effective dynamic range from a signal provided by an image sensor, said method comprising the steps of:

generating image signals from an image sensing device having standard photosites with a predetermined standard response to a light exposure and non-standard photosites with a slower response to the same light exposure, said image sensing device having a color filter array of at least three different colors overlying said photosites, said standard and non-standard photosites being associated with each of said colors;

setting one of an expanding mode and a normal mode;

in said expanding mode, expanding the dynamic range of selected photosites to extreme exposures by utilizing the image signals from neighboring photosites having a response, either standard or non-standard, opposite to that of the selected photosites; and

in said normal mode, transmitting said image signals without said expanding.

24 (previously submitted). The method as claimed in claim 23 wherein said expanding the dynamic range comprises expanding the response of the standard photosites to increased exposures by utilizing the image signals from neighboring non-standard photosites and expanding the response of the non-standard photosites to decreased exposures by utilizing the image signals from neighboring standard photosites.

25 (previously submitted). A method for generating an extended effective dynamic range from a signal provided by an image sensor, said method comprising the steps of:

generating image signals from an image sensing device having standard photosites with a predetermined standard response to a light exposure and non-standard photosites with a slower response to the same light exposure; and

expanding the dynamic range of selected photosites to extreme exposures by utilizing the image signals from neighboring photosites having a response, either standard or non-standard, opposite to that of the selected photosites;

wherein the step of expanding the dynamic range comprises expanding the response of the standard photosites to increased exposures by utilizing the image signals from neighboring non-standard photosites and expanding the response of the non-standard photosites to decreased exposures by utilizing the image signals from neighboring standard photosites; and

wherein the step of expanding the respective response of the standard and non-standard photosites comprises the steps of:

processing the image signals against a plurality of thresholds, including a high exposure response threshold for the standard photosites and a low exposure response threshold for the non-standard photosites;

replacing the image signals from standard photosites exceeding the high exposure response threshold with a combination of the image signals from a neighborhood of non-standard photosites; and

replacing the image signals from non-standard photosites less than the low exposure response threshold with a combination of the image signals from a neighborhood of standard photosites, thereby producing an output image signal with an extended effective dynamic range.

26 (previously submitted). An image sensor for generating an image signal with a differential response to image light, said image sensor comprising:

an array of photosites divided into standard photosites and nonstandard photosites; and

a structural element overlying the photosites and providing the standard photosites with a predetermined standard response to a light exposure and the non-standard photosites with a slower response to the same light exposure;

wherein the photosites are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise four standard photosites and the four photosites constituting the nearest neighbors of a given standard photosite comprise four nonstandard photosites.

27 (original). The image sensor as claimed in claim 26 wherein the structural element comprises an array of lenslets overlying the photosites, wherein the lenslets overlying the standard photosites are structured to be more efficient in focusing light than the lenslets overlying the non-standard photosites.

28 (original). The image sensor as claimed in claim 26 wherein the structural element comprises a mask with apertures overlying the photosites, wherein the apertures overlying the standard photosites are larger than the apertures overlying the non-standard photosites.

29 (original). The image sensor as claimed in claim 26 wherein the structural element comprises a neutral density filter overlying the photosites, wherein the portion of the neutral density filter overlying the standard photosites is more transparent than the portion of the neutral density filter overlying the non-standard photosites.

30 (original). An algorithm utilizing the image sensor as claimed in claim 26 in order to expand the response of the standard photosites to increased exposures by utilizing the image signals from neighboring non-standard photosites and to expand the response of the non-standard photosites to decreased exposures by utilizing the image signals from neighboring standard photosites.

31 (original). The image sensor as claimed in claim 26 further including a color filter array comprised of two or more colors overlying the photosites, said standard and non-standard photosites being associated with each color of the array.

32 (original). The image sensor as claimed in claim 31 wherein the color filter array is a Bayer array.

33 (previously submitted). An algorithm utilizing an image sensor for generating an image signal with a differential response to image light, said image sensor comprising:

an array of photosites divided into standard photosites and nonstandard photosites;

a structural element overlying the photosites and providing the standard photosites with a predetermined standard response to a light exposure and the non-standard photosites with a slower response to the same light exposure; and

a color filter array comprised of two or more colors overlying the photosites, said standard and non-standard photosites being associated with each color of the array;

in order to expand the response of the standard photosites of each color to increased exposures by utilizing the image signals from neighboring non-standard photosites of the same color at least two lines removed from the corresponding standard photosite and to expand the response of the non-standard photosites of each color to decreased exposures by utilizing the image signals from neighboring standard photosites of the same color at least two lines removed from the corresponding non-standard photosite.

34 (original). A digital camera including the image sensor claimed in claim 26.

35 (currently amended). The image sensor as claimed in claim 26 An image sensor for generating an image signal with a differential response to image light, said image sensor comprising:

an array of photosites divided into standard photosites and nonstandard photosites; and

a structural element overlying the photosites and providing the standard photosites with a predetermined standard response to a light exposure and the non-standard photosites with a slower response to the same light exposure;

wherein the structural element comprises an array of lenslets overlying the standard photosites, and the non-standard photosites are not overlayed with lenslets.

36 (original). An image capture system providing an extended effective dynamic range, said system comprising:

an image sensing device having standard photosites with a predetermined standard response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; means for converting the image signal into digital image signals corresponding to the output of the standard and non-standard photosites; and

a processor that (a) processes the digital image signals against a plurality of thresholds, including a first high exposure response threshold for the standard photosites and a second low exposure response threshold for the non-standard photosites, (b) replaces the digital image signals from standard photosites exceeding the first high exposure response threshold with a combination of the digital image signals from a neighborhood of non-standard photosites which exceed a third threshold and (c) replaces the digital image signals from non-standard photosites less than the second low exposure response threshold with a combination of the digital image signals from a neighborhood of standard photosites which exceed a fourth threshold, thereby producing an output digital image signal with an extended effective dynamic range.

37 (original). The image capture system as claimed in claim 36 wherein the third threshold is equivalent to the high exposure response threshold.

38 (original). The image capture system as claimed in claim 36 wherein the fourth threshold is equivalent to the low exposure response threshold.

39 (currently amended). The image capture system as claimed in claim 1, wherein the photosites are color photosites and are arranged in such a manner that the nearest photosite with the same color to a given photosite does not have the same response as the given photosite.

40 (currently amended). The image capture system as claimed in claim 1. An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosite photosites.

41 (currently amended). The image capture system as claimed in elaim 40, An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and

a processing section expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosites and the four photosites constituting the nearest neighbors of a given standard photosite comprise two standard photosites and two nonstandard photosites.

42 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section for expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosite and the four photosites constituting the nearest neighbors of a given standard photosite comprise two standard photosites and two nonstandard photosites; and

wherein the photosites are color photosites and are arranged such that the eight photosites constituting the nearest neighbors of a given standard photosite which is green in color comprise four non-standard photosites which are green in color, one standard photosite which is red in color, one standard photosite which is blue in color, one non-standard photosite which is red in color, and one non-standard photosite which is blue in color.

43 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section for expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosite and the four photosites constituting the nearest neighbors of a given standard photosite comprise two standard photosites and two nonstandard photosites; and

wherein the photosites are color photosites and are arranged such that the eight photosites constituting the nearest neighbors of a given non-standard photosite which is green in color comprise four standard photosites which are green in color, one standard photosite which is red in color, one standard photosite which is blue in color, one non-standard photosite which is red in color, and one non-standard photosite which is blue in color.

44 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section for expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosite and the four photosites constituting the nearest neighbors of a given standard photosite comprise two standard photosites and two nonstandard photosites; and

wherein the photosites are color photosites and are arranged such that the eight photosites constituting the nearest neighbors of a given photosite which is red in color comprise two non-standard photosites which are green in color, two standard photosites which are green in color, two standard photosites which are blue in color, and two non-standard photosites which are blue in color.

45 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section for exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section for expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are color photosites and are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise two standard photosites and two nonstandard photosite and the four photosites constituting the nearest neighbors of a given standard photosite comprise two standard photosites and two nonstandard photosites; and

wherein the photosites are color photosites and are arranged such that the eight photosites constituting the nearest neighbors of a given photosite which is blue in color comprise two non-standard photosites which are green in color, two standard photosites which are green in color, two standard photosites which are red in color, and two non-standard photosites which are red in color.

46 (previously submitted). The image capture system as claimed in claim 3, wherein the photosites are arranged in such a manner such that the nearest photosite to a given photosite does not have the same response as the given photosite.

47 (currently amended). The image capture system as claimed in claim 1, An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image
light, thereby causing the image sensing device to generate an image signal; and
a processing section expanding the response of the standard
photosites to increased light exposures by utilizing the image signals from
neighboring non-standard photosites;

wherein the photosites are arranged such that the four photosites constituting the nearest neighbors of a given non-standard photosite comprise four standard photosites and the four photosites constituting the nearest neighbors of a given standard photosite comprise four nonstandard photosites.

48 (cancelled).

49 (previously submitted). The image capture system as claimed in claim 1 wherein said additional section is a color filter array interpolator.

50 (previously submitted). The image capture system as claimed in claim 1 wherein said controller is disposable in each of said modes responsive to user input.

51 (currently amended). The image capture system as claimed in claim 1 An image capture system for generating an extended effective dynamic

range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; an additional section receiving said image signal;

a processing section for expanding the response of the standard photosites to increased light exposures by utilizing signals from neighboring non-standard photosites; and

a controller having a normal mode and an expanding mode, said controller in said normal mode diverting said signal directly to said additional section, said controller in said expanding mode diverting said image signal through said processing section to said additional section;

wherein said controller is disposable in each of said modes as a function of dynamic range of said image signal.

52 (previously submitted). The image capture system as claimed in claim 1 wherein said controller is permanently set in said expanding mode.

53 (currently amended). The method as claimed in elaim 23 claim 25 wherein said setting is responsive to user input.

54 (currently amended). The method as claimed in claim 23

A method for generating an extended effective dynamic range from a

signal provided by an image sensor, said method comprising the steps of:

generating image signals from an image sensing device having

standard photosites with a predetermined standard response to a light exposure
and non-standard photosites with a slower response to the same light exposure;

setting one of an expanding mode and a normal mode;

in said expanding mode, expanding the dynamic range of selected

photosites to extreme exposures by utilizing the image signals from neighboring

photosites having a response, either standard or non-standard, opposite to that of the selected photosites; and

in said normal mode, transmitting said image signals without said expanding;

wherein said setting is a function of dynamic range of said image signals.

55 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal;

a Bayer color filter array overlying the photosites, said standard and non-standard photosites being associated with each color of the array; and

a processing section expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are arranged such that the eight photosites constituting the nearest neighbors of a given photosite which is red in color comprise two non-standard photosites which are green in color, two standard photosite which are green in color, two standard photosites which are blue in color, and two non-standard photosites which are blue in color.

56 (previously submitted). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal;

a Bayer color filter array overlying the photosites, said standard and non-standard photosites being associated with each color of the array; and a processing section expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites;

wherein the photosites are arranged such that the eight photosites constituting the nearest neighbors of a given photosite which is blue in color comprise two non-standard photosites which are green in color, two standard photosite which are green in color, two standard photosites which are red in color, and two non-standard photosites which are red in color.

57 (currently amended). An image capture system for generating an extended effective dynamic range from a signal provided by an image sensor, said image capture system comprising:

an image sensing device having a uniform two-dimensional array of photosites, including standard photosites with a predetermined response to a light exposure and non-standard photosites with a slower response to the same light exposure, said image sensing device having a color filter array of at least three different colors overlying said photosites, said standard and non-standard photosites being associated with each of said colors;

an optical section exposing the image sensing device to image light, thereby causing the image sensing device to generate an image signal; and a processing section expanding the response of the standard photosites to increased light exposures by utilizing the image signals from neighboring non-standard photosites and expanding the response of the non-standard photosites to decreased light exposures by utilizing the image signals from neighboring standard photosites;

wherein the photosites are color photosites and the neighboring non-standard photosites are of the same color as standard photosite being processed by the processing section.