MATH 330 - HW #28

Cristobal Forno

December 2, 2017

Proposition 13.10: A subset of a countable set is countable. **Proof:**Assume $B \subseteq C$, where C is a countable set.

If $B = \emptyset$, then B is obviously countable.

If B is nonempty, then there exists a surjection $\mathbb{N} \to B$, by Prop. 13.9. The surjection $\mathbb{N} \to B$ can compose the surjection $B \to A$, $x \mapsto \begin{cases} x & \text{if } x \in A \\ a_0 & \text{otherwise,} \end{cases}$ for a fixed $a_0 \in A$. This composition give a surjection $\mathbb{N} \to A$, and by Prop. 13.9, A is countable. \square