Teori Perilaku Produsen dan Analisa Penawaran

Bagian 1

AK2163 - Mikroekonomi

Dr. Lukman Hanif Arbi

Prodi Aktuaria FMIPA ITB

24 September, 2019

Pokok2 Pembahasan

Konsep Produsen

Teknologi Produksi

Permintaan Faktor Produksi

Pokok2 Pembahasan

Konsep Produsen

Teknologi Produks

Permintaan Faktor Produksi

Konsep Produsen

Sederhananya sebuah produsen - disebut juga firma atau usaha - mengolah faktor2 produksi menjadi barang/jasa yang bisa langsung dikonsumsi atau juga bisa diolah lagi.

Pokok2 Pembahasan

Konsep Produser

Teknologi Produksi

Permintaan Faktor Produks

Fungsi Produksi

- Proses pengolahan faktor produksi menjadi hasil produksi disebut **teknologi produksi** dan dirumuskan dalam suatu **fungsi produksi** f(K, L)
- Fungsi produksi dapat melibatkan peubah input sebanyak2nya tapi kita hanya akan membahas barang kapital K dan tenaga kerja L
- Seringkali digunakan fungsi Cobb-Douglas sebagai contoh dalam analisa produksi dan penawaran:

$$f(K, L) = K^{\alpha}L^{\beta}$$

Produk Marjinal Tenaga Kerja (Marginal Product of Labour)

$$MP_L = \frac{\partial f(K, L)}{\partial L}$$

Produk Marjinal Barang Kapital (Marginal Product of Capital)

$$MP_K = \frac{\partial f(K, L)}{\partial K}$$

Kurva Produksi Sama (Isoquant)

Seperti kurva kepuasan sama dalam teori perilaku konsumen, semua kombinasi faktor produksi yang menghasilkan jumlah produksi sama dikenal sebagai kurva produksi sama (isoquant):

$$q = f(K, L)$$

Kurva Produksi Sama (Isoquant)

Juga seperti kurva kepuasan sama, kemiringan kurva ini adalah perbandingan kedua produk marjinal dan disebut tingkat substitusi teknis marjinal (marginal rate of technical substitution):

$$MRTS = \frac{MP_L}{MP_K} = \frac{\frac{\partial f(K,L)}{\partial L}}{\frac{\partial f(K,L)}{\partial K}} = \frac{\partial K}{\partial L}$$

Kurva Produksi Sama (Isoquant)

Jangka Produksi

Jangka Pendek

Sebagian dari faktor produksi tidak bisa diubah

Jangka Panjang

Semua faktor produksi bisa diubah

.

Dampak Skala

- Jenis2 teknologi produksi berikut fungsinya dapat dibagi berdasarkan dampak peningkatan skala produksi terhadap jumlah produksi
- ▶ Jika masing2 jumlah faktor produksi yang digunakan dikali t dan jumlah produksi menjadi lebih dari/sama dengan/kurang dari t kali lipat asalnya, disebut penambahan yang meningkat dengan/mengikuti/berkurang terhadap skala (increasing/constant/decreasing returns to scale)

Dampak Skala

Secara matematis:

- ▶ Meningkat dengan skala: tf(K, L) > f(tK, tL)
- ▶ Mengikuti skala: tf(K, L) = f(tK, tL)
- ▶ Berkurang dengan skala: tf(K, L) < f(tK, tL)

Pokok2 Pembahasan

Konsep Produser

Teknologi Produksi

Permintaan Faktor Produksi

Garis Biaya Sama (Isocost Line)

Seperti garis anggaran dalam teori konsumsi, total biaya yang dikeluarkan perusahaan untuk memproduksi sejumlah barang atau jasa sebagai berikut:

$$rK + wL$$

dimana:

- r adalah biaya untuk memperoleh barang/jasa kapital (dari rent atau rate of return)
- w adalah biaya untuk memperoleh tenaga kerja (dari wages)

Garis Biaya Sama (Isocost Line)

- Lagi2 mirip dengan teori konsumen, masalah optimisasi produsen dapat dimodel sebagai pencarian tingkat produksi tertinggi dengan biaya terbatas atau biaya paling sedikit untuk menghasilkan jumlah barang/jasa tertentu
- Kita akan memulai dengan pendekatan yang kedua (seperti pendekatan Hicks dalam teori konsumsi)
- Hasil optimisasi ini disebut fungsi permintaan faktor produksi kondisional; kondisional karena nilainya berubah tergantung jumlah/barang jasa yang diproduksi q

Dengan fungsi produksi *Cobb-Douglas* $f(K, L) = K^{\alpha}L^{\beta}$ yang dibatasi pada tingkat q:

$$\min_{K,L} \quad \mathcal{L} = rK + wL - \lambda(K^{\alpha}L^{\beta} - q)$$

$$\frac{\partial \mathcal{L}}{\partial K} = r - \lambda \alpha K^{\alpha - 1}L^{\beta} = 0$$

$$\frac{\partial \mathcal{L}}{\partial L} = w - \lambda \beta K^{\alpha}L^{\beta - 1} = 0$$

Didapati tercapainya titik optimal ketika:

$$\frac{r}{w} = \frac{\alpha L}{\beta K}$$

Persamaan ini dimasukkan persamaan $q=K^{\alpha}L^{\beta}$, menghasilkan tingkatan2 optimal bagi K dan L:

$$L^* = \left(q \left[\frac{\beta}{\alpha} \frac{r}{w}\right]^{\alpha}\right)^{\frac{1}{\alpha + \beta}}$$

$$K^* = \left(q \left[\frac{w}{r} \frac{\alpha}{\beta}\right]^{\beta}\right)^{\frac{1}{\alpha+\beta}}$$

Ini kasus jangka pendek atau jangka panjang?

Pertemuan Berikut...

- ► Biaya Produksi
- ► Untung/Rugi