Chapter 48 Espaces préhilbertiens réels, Espaces vectoriels euclidiens

48.1 Produit scalaire

Exercice 48.1

Soit $E = \mathbb{R}^2$ et des réels a, b, c, d. On pose pour u = (x, y) et v = (x', y')

$$\varphi(u,v) = axx' + bxy' + cx'y + dyy'.$$

Trouver condition nécessaire et suffisante pour que φ soit un produit scalaire sur \mathbb{R}^2 .

Exercice 48.2

Soit E l'espace vectoriel des polynômes réels de degré au plus n. Pour $P,Q \in E$, on pose

$$\varphi(P,Q) = \sum_{k=0}^{n} P(k)Q(k).$$

Montrer que φ est un produit scalaire.

Exercice 48.3

On suppose que E est l'espace vectoriel $\mathscr{C}([a,b],\mathbb{R})$. Soit ω une fonction continue et strictement positive définie sur [a,b]. On pose

$$\varphi(f,g) = \int_{a}^{b} \omega(t) f(t) g(t) dt,$$

pour touts f, g de E.

Montrer que φ est un produit scalaire.

Exercice 48.4 Mines-Ponts PSI 2016

Soient I un intervalle de \mathbb{R} et $(f_i)_{1 \le i \le n}$ une famille de fonctions continues et de carré intégrable sur I. On pose pour tout $(i, j) \in [1, n]^2$,

$$a_{i,j} = \int_{I} f_i(t) f_j(t) \, \mathrm{d}t.$$

Soit $\varphi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (X, Y) \mapsto X^T A Y$.

Montrer que φ est un produit scalaire si, et seulement si la famille $(f_i)_{1 \le i \le n}$ est libre.

48.2 Familles orthogonales

Exercice 48.5

On considère l'espace vectoriel E des fonctions continues sur \mathbb{R} et 2π -périodiques et on munit E du produit scalaire $\langle *, * \rangle$ défini par

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) dt.$$

- 1. Démontrer que $\langle *, * \rangle$ est effectivement un produit scalaire sur E.
- **2.** Pour tout $k \in [1, n]$, on considère la fonction $f_k : x \mapsto \cos(kx)$. Montrer que la famille $(f_k)_{1 \le k \le n}$ est une famille orthogonale de E. Est-elle orthonormale ?

Exercice 48.6 Oral CCINP PSI 2021

Soient E un espace euclidien de dimension n, (e_1, \ldots, e_n) une base orthonormée de E et (x_1, \ldots, x_n) une famille de vecteurs de E telle que

$$\sum_{k=1}^{n} ||x_k||^2 < 1.$$

1. Montrer que, pour tous $\lambda_1, \dots, \lambda_n \in \mathbb{R}$,

$$\left\| \sum_{k=1}^{n} \lambda_k x_k \right\|^2 \le \left(\sum_{k=1}^{n} \lambda_k^2 \right) \left(\sum_{k=1}^{n} \left\| x_k \right\|^2 \right).$$

2. En déduire que la famille $(e_1 + x_1, \dots, e_n + x_n)$ est une base de E.

48.3 Orthogonalité

Exercice 48.7

E un espace vectoriel euclidien, F et G deux sous-espace vectoriel de E.

- **1.** Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- **2.** Montrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 48.8

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions continues à valeurs réelles, sur le segment [1,1], muni du produit scalaire $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)\,\mathrm{d}t$. C'est un espace vectoriel préhilbertien réel. Soit $F\subset E$ le sous-espace des fonctions nulles sur le segment [-1,0]. Expliciter F^\perp . En déduire que $F+F^\perp\neq E$. **Exercice 48.9**

Soient E un espace vectoriel euclidien et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si

$$\forall x \in E, ||p(x)|| \le ||x||.$$

Exercice 48.10

Soit $E = \mathcal{C}^0([0,1], \mathbb{R})$. Montrer que

$$(f,g) \mapsto \int_0^1 x f(x)g(x) dx$$

définit un produit scalaire sur E. Déterminer le projeté orthogonal de $x \mapsto 1$ sur Vect $(x \mapsto x, x \mapsto x^2)$.

48.4 Algorithme de Gram-Schmidt

Exercice 48.11

L'espace \mathbb{R}^3 est muni de sa structure canonique d'espace vectoriel euclidien.

- **1.** Vérifier que les vecteurs $e_1 = (1, 1, 0)$, $e_2 = (1, 0, 1)$ et $e_3 = (0, 1, 1)$ forment une base de \mathbb{R}^3 .
- **2.** Déterminer la base orthonormale (f_1, f_2, f_3) de \mathbb{R}^3 obtenue en appliquant le procédé d'orthonormalisation de Gram-Schmidt à la base (e_1, e_2, e_3) .

Exercice 48.12

Orthonormaliser pour le produit scalaire canonique de \mathbb{R}^3 , la base suivante

$$u = (0, 0, -1)$$
 $v = (4, -2, 0)$ $w = (2, 1, 0)$

Exercice 48.13

Soit $E = \mathbb{R}_3[X]$. Pour $(P, Q) \in E^2$, on pose $\langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) dt$.

- **1.** Montrer que l'application $\langle *, * \rangle$ est un produit scalaire.
- 2. Déterminer la base de E obtenue par orthonormalisation (pour ce produit scalaire) de la base canonique.

Exercice 48.14

À deux polynômes P et Q de $\mathbb{R}_n[X]$, on associe le nombre

$$\varphi(P,Q) = \int_0^1 P'(t)Q'(t)dt + P(0)Q(0)$$

- **1.** Montrer que φ est un produit scalaire sur $\mathbb{R}_n[X]$.
- **2.** Lorsque n = 3, donner une base orthonormée pour ce produit scalaire.

Exercice 48.15 Oral Mines-Ponts PSI 2023

Soit
$$E = \mathbb{R}_3[X]$$
. On pose, pour $i \in [0,3]$, $L_i = \prod_{k \in [0,3] \setminus \{i\}} \frac{X-k}{i-k}$.

- 1. Calculer $L_i(j)$ pour $j \in [0,3]$. Montrer que (L_0, L_1, L_2, L_3) est une base de E.
- 2. Soit $\varphi: (P,Q) \mapsto \sum_{k=0}^{3} (P(k) + P(k+1))(Q(k) + Q(k+1))$. Montrer qu'il s'agit d'un produit scalaire.
- 3. Trouver une base orthonormale pour ce produit scalaire.

Exercice 48.16 Oral Centrale PSI 2011

Soient $E = \mathbb{R}[X]$. Si $(P, Q) \in E^2$, on pose

$$\langle P, Q \rangle = \int_{-\pi/2}^{\pi/2} P(t)Q(t) \cos t \, dt.$$

- **1.** Montrer que $\langle *, * \rangle$ est une produit scalaire.
- 2. Montrer qu'il existe une unique suite $(P_n)_{n\geq 0}$ de polynômes telle que : pour tout n, P_n est normalisé (coefficient dominant égal à 1) de degré n et (P_n) est orthogonale.
- 3. Montrer

$$\forall n \in \mathbb{N}, P_n(-X) = (-1)^n P_n(X).$$

4. Montrer que P_n s'annule n fois sur $]-\pi/2, \pi/2[$.

48.5 Calculs en bases orthonormale

Exercice 48.17 Banque PT 2011, Épreuve A, Partie C

On désigne par E l'espace vectoriel $\mathbb{R}_3[X]$ des polynômes à coefficients réels, de degré inférieur ou égal à 3. On considère l'application φ définie par

$$\forall (P,Q) \in E \times E, \varphi(P,Q) = \int_{-1}^{1} P(t)Q(t) \, \mathrm{d}t.$$

- 1. Montrer que φ est un produit scalaire sur E.
- 2. Montrer qu'il existe un base orthonormale $(\pi_0, \pi_1, \pi_2, \pi_3)$ de E et une seule telle que

$$\forall i \in \{0, 1, 2, 3\}, \text{Vect}(\pi_0, \dots, \pi_i) = \text{Vect}(1, X, \dots, X^i) \text{ et } \varphi(\pi_i, X^i) > 0.$$

puis déterminer les quatre polynômes π_0 , π_1 , π_2 , π_3 .

- **3.** Soit $P \in E$ tel que $\int_{-1}^{1} [P(t)]^2 dt = 1$.
 - (a) Montrer qu'il existe $(\alpha_0, \alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^4$ tels que $P = \sum_{i=0}^3 \alpha_i \pi_i$.
 - (b) Sans déterminer les réels α_i , déterminer $\sum_{i=0}^{3} \alpha_i^2$.
 - (c) i. Soient (a, b, c, d) et (a', b', c', d') deux quadruplets de réels. Montrer que

$$|aa' + bb' + cc' + dd'| \le \sqrt{a^2 + b^2 + c^2 + d^2} \sqrt{a'^2 + b'^2 + c'^2 + d'^2}$$

ii. En déduire que

$$\forall x \in \mathbb{R}, |P(x)| \le \sqrt{\sum_{i=0}^{3} \left[\pi_i(x)\right]^2}.$$

(d) En étudiant, pour tout k de $\{0, 1, 2, 3\}$, sup $\{|\pi_k(x)| | -1 \le x \le 1\}$, montrer

$$\sup \{ |P(x)| \mid |x| \le 1 \} \le 2\sqrt{2}.$$

Exercice 48.18 *X-ENS PSI 2011*

Soient $(a, b) \in \mathbb{R}^2$ avec $a < b, w \in \mathcal{C}^0([a, b], \mathbb{R}_+^*)$ et $E = \mathbb{R}[X]$. On considère le produit scalaire défini sur E par

$$\forall (P,Q) \in E^2, \langle P,Q \rangle = \int_a^b w(x) P(x) Q(x) \, \mathrm{d}x.$$

- **1.** Soit $n \in \mathbb{N}$. Montrer qu'il existe une unique famille (P_0, \dots, P_n) de $\mathbb{R}_n[X]$ orthogonale pour $\langle *, * \rangle$ et telle que, pour tout i, P_i soit normalisé (coefficient dominant 1) et de degré i.
- 2. Soit $n \in \mathbb{N}^*$. Montrer que P_n a n racines distinctes dans]a, b[. Soient $m \in \mathbb{N}^*$ et $(c_1, \dots, c_m) \in \mathbb{R}^m$ un m-uplet de réels distincts deux à deux. On pose

$$\forall k \in \llbracket 1, m \rrbracket, b_k = \int_a^b w(x) \prod_{\substack{1 \leq j \leq m \\ j \neq k}} \frac{x - c_j}{c_k - c_j} \, \mathrm{d}x.$$

3. Montrer

$$\forall Q \in \mathbb{R}_{m-1}[X], \int_a^b w(x)Q(x) \, \mathrm{d}x = \sum_{k=1}^m b_k Q(c_k).$$

4. On suppose que (c_1, \ldots, c_m) sont les racines de P_m . Montrer

$$\forall Q \in \mathbb{R}_{2m-1}[X], \int_a^b w(x)Q(x) \, \mathrm{d}x = \sum_{k=1}^m b_k Q(c_k).$$

Exercice 48.19

Écrire la matrice dans la base canonique des applications linéaires suivantes.

- **1.** La projection orthogonale de \mathbb{R}^3 sur la droite engendrée par le vecteur (-1, 2, 2).
- **2.** La projection orthogonale de \mathbb{R}^3 sur le plan d'équation x + y + z = 0.
- 3. Le demi-tour de \mathbb{R}^3 dont l'axe est engendré par le vecteur (-2, 1, 1).
- **4.** La réflexion de \mathbb{R}^3 par rapport au plan d'équation 2x y + z = 0.

Exercice 48.20

L'espace \mathbb{R}^4 est muni de sa structure canonique d'espace vectoriel euclidien. Soient

$$e_1 = (1, 0, 1, 0),$$
 $e_2 = (1, -1, 1, -1),$ et $F = \text{Vect}(e_1, e_2).$

- 1. Déterminer une base orthonormale de F
- 2. Déterminer l'expression analytique de la projection orthogonale sur F.
- 3. En déduire la matrice de cette application dans la base canonique de \mathbb{R}^4 .
- **4.** Déterminer la distance du vecteur (1, 2, 3, 4) au sous-espace vectoriel F.

Exercice 48.21

Dans $E = R^4$, soit F le sous-espace vectoriel des X = (x, y, z, t) tels que

$$\begin{cases} x + y + z + t = 0 \\ x + 2y + 3z + 4t = 0 \end{cases}.$$

- **1.** Donner une base de F et une base de F^{\perp} .
- **2.** Exprimer la projection orthogonale sur F.

Exercice 48.22

Dans \mathbb{R}^4 muni du produit scalaire canonique, on considère les hyperplans

$$H_1: x_1 + x_2 + x_3 + x_4 = 0$$
 et $H_2: x_1 + x_2 + x_3 - x_4 = 0$,

les équations étant données dans la base canonique de \mathbb{R}^4 , et on pose $F = H_1 \cap H_2$.

- 1. Déterminer une base de H_1^{\perp} , une base de H_2^{\perp} et une base de F^{\perp} .
- **2.** Construire une base orthonormale de F^{\perp} .
- 3. En déduire les matrices des projections orthogonales sur F et sur F^{\perp} dans la base canonique.

Exercice 48.23

Soit $E = \mathcal{M}_2(\mathbb{R})$ que l'on munit du produit scalaire usuel $\langle M, N \rangle = \text{Tr}(M^T N)$. On désigne par F le sous-espace vectoriel de E formé des matrices antisymétriques et $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Calculer d(A, F).

Exercice 48.24

Soit $E = \mathcal{M}_n(\mathbb{R})$ et $\varphi : E \times E \to \mathbb{R}$ définie par $\varphi(A, B) = \operatorname{Tr} (A^T B)$.

- 1. Montrer que φ est un produit scalaire sur E.
- **2.** On note F l'espace vectoriel engendré par les matrices symétriques de E.
 - (a) Donner une base et la dimension de F.
 - (b) Déterminer F^{\perp} , l'orthogonal de F pour le produit scalaire φ .
- **3.** On suppose maintenant n=2. On pose $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Calculer $d(A, F^{\perp})$.

Exercice 48.25

On considère $E = \mathbb{R}[x]$.

- 1. Montrer que l'égalité $\langle P, Q \rangle = \int_0^1 PQ$ définit un produit scalaire sur E.
- 2. À partir de la base canonique de $F = \mathbb{R}_2[X]$, déterminer une base orthonormale de F pour ce produit scalaire.
- 3. Déterminer la projection orthogonale du polynôme X^3 sur F et calculer la distance de X^3 à F.

Exercice 48.26 Un calcul de distance

Déterminer la borne inférieure de l'ensemble des réels I(a,b) lorsque a et b décrivent $\mathbb R$ avec

$$I(a,b) = \int_0^1 (e^t - (at + b))^2 dt.$$

48.6 Matrices orthogonales

Exercice 48.27

Soit $(a, b, c, d) \in \mathbb{R}^4$. À quelle condition, sur (a, b, c, d), la matrice

$$A = \begin{pmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{pmatrix}$$

est-elle orthogonale?