Machine Learning

Final Examination

Maintain Honor Code

There are 5 problems. Total points 116.

Problem 1 : 30 Points
Problem 2 : 30 Points
Problem 3 : 25 Points
Problem 4 : 25 Points
Problem 5 : 06 Points

- 1. You can use the text-books by K Murphy and S. Theodoridis. If you use any other book mention it. You can use class hand-outs. However you should derive all your results.
- 2. No consultation allowed with anyone.
- 3. You can consult me for any needed clarification. You can use any of the recommended text-books. You can also use class hand-outs, assignments, and a calculator.
- 4. Answer all five problems. Please insert a box around your answers for readability.

Name (Capital Letters):

Sign:

2

Questions

1. (30 points) We are given data points which belong to two different classes: C_1 and C_2 . Let the set of two-dimensional data points be

$$X = \{x_1, x_2, x_3, x_4\}$$

The data points x_1 and x_2 , belong to the class C_1 , and data points x_3 and x_4 belong to the class C_2 respectively, where

$$x_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T, \quad x_2 = \begin{bmatrix} 3 & 5 \end{bmatrix}^T$$
 $x_3 = \begin{bmatrix} -1 & 1 \end{bmatrix}^T, \quad x_4 = \begin{bmatrix} 1 & -3 \end{bmatrix}^T$

Determine the direction of the best linear discriminating vector.

Hint: See one of your assignments. Write explicitly the steps, as shown in the assignment problem.

2. (30 points) **Question** This problem is on principal component analysis (PCA). The set of data points is $\{x_1, x_2, x_3\}$. These are

$$x_1 = \begin{bmatrix} -1 & 0 \end{bmatrix}^T$$
, $x_2 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$, $x_3 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$

Determine the principal component of these data points. Use only the dominant eigenvalue. Also determine the corresponding error in the approximation two different ways.

Hint: See one of your assignments. Write explicitly the steps, as shown in the assignment problem.

- 3. (25 points) There are two parts in the problem
 - (a) (18 points) Let $y = (y_1, y_2)$, and $w_1, w_2 \ge 0$ be constants.

$$\max f(y) = \sum_{j=1}^{2} w_j \ln y_j$$

Subject to:
$$(y_1 + y_2) = 1$$

where $y_1, y_2 > 0$.

- i. (12 points) What are the optimal values of the y_j 's? Justify your answer.
- ii. (6 points) The global maximum of f(y) occurs at what values of y_1 , and y_2 . What is it?
- (b) (7 points) Generalize the result in part (a). Let $y=(y_1,y_2,\ldots,y_K)$, and $w_j\geq 0, 1\leq j\leq K$ be constants.

$$\max f(y) = \sum_{j=1}^{K} w_j \ln y_j$$

Subject to:
$$\sum_{j=1}^{K} y_j = 1$$

where $y_j > 0, 1 \le j \le K$. The global maximum of f(y) occurs at what values of $y_j, 1 \le j \le K$. What is it?

It is not necessary to show all the steps in this part of the problem. Simply write the expressions.

- 4. (25 points) This problem is on directed graphical model. Each random variable in the set $\{X_1, X_2, X_3, X_4, X_5, X_6\}$ is specified by a node in the directed graph. The links in the graph specify dependencies of the random variables.
 - (a) (2 points) What kind of graph is it?
 - (b) (10 points) Write explicitly, an expression for the joint distribution

$$P(X_1, X_2, X_3, X_4, X_5, X_6)$$

in terms of conditional distributions $P\left(X_i \mid \Theta_i\right)$, where Θ_i is the set of dependent random variables of the random variable X_i , where $1 \leq i \leq 6$.

- (c) (13 points) Assume that each random variable X_i takes two values.
 - i. (5 points) What is the size of the table to specify the joint distribution $P(X_1, X_2, X_3, X_4, X_5, X_6)$?
 - ii. (8 points) What is the total size of the tables when tables of conditional distributions are used?

5. (6 points) Name three well-known decision tree algorithms.