Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

B)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

C)
$$h[n] = x[n]$$

D) Nessuna delle altre risposte

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

D) Nessuna delle altre

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A) $E\{x^2(t)\}$ diverso dalle altre risposte

B)
$$E\{x^2(t)\}=1$$

C)
$$E\{x^2(t)\} = 0$$

D)
$$E\{x^2(t)\} = 1.5$$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

1

- **A)** $h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} 5]$
- **B)** $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} 6\right]$
- C) $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} 5\right]$
- **D)** $h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 5\right]$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \geq 0$

Esercizio 7. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{17}{4}$
- **C**) 4
- D) altro

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{2}{(1+\pi^2)^2}$
- **C**) 0
- **D)** $\frac{1}{(1+\pi^2)^2} + 2$
- **E)** $\frac{2}{(1+\pi^2)^2}+1$

.. .

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 2. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{37}{4}$
- **C**) 9
- D) altro

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** x(t) è un processo stazionario in senso lato.
- **B)** x(t) è un processo con media e varianza funzione del tempo.
- C) x(t) è un processo ciclostazionario in senso lato.

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- B) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- D) Nessuna delle altre risposte
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) 0

- **B)** $\frac{1}{(1+\pi^2)^2} + 2$
- C) $\frac{2}{(1+\pi^2)^2} + 1$
- **D**) $\frac{2}{(1+\pi^2)^2}$
- E) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **B)** h[n] = x[n]
- C) Nessuna delle altre risposte
- **D)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$

Esercizio 2. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{13}{36}$
- B) altro
- C) $\frac{1}{9}$
- **D**) 0

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

1

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- A) Nessuna delle altre
- **B)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

C)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

D)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- B) altro
- C) $\frac{32}{(1+16\pi^2)^2} + 16$
- **D)** $\frac{8}{(1+16\pi^2)^2} + 16$
- **E**) $\frac{32}{(1+16\pi^2)^2}$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- **B**) 0
- C) $\frac{17}{4}$
- D) altro

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{1}{(1+\pi^2)^2} + 2$
- C) $\frac{2}{(1+\pi^2)^2} + 1$
- **D**) 0
- **E**) $\frac{2}{(1+\pi^2)^2}$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

- **B)** $h[n] = (\frac{1}{6})^n u[n]$
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **B)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- C) Nessuna delle altre
- **D)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1$
- **B)** $E\{x^2(t)\}$ diverso dalle altre risposte
- C) $E\{x^2(t)\} = 1.5$
- **D)** $E\{x^2(t)\} = 0$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) x_1(t)]$
- B) Nessuna delle altre risposte
- C) $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) 3/4x_1(t)]$
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$

- **D)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- **E**) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5 \right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- B) Nessuna delle altre risposte
- **C)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

C)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

1

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- B) Nessuna delle altre
- C) $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **D)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) $\frac{37}{4}$
- C) altro
- **D**) 9

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2} + 4$
- **B**) 0
- C) altro
- **D**) $\frac{6}{(1+4\pi^2)^2}+4$
- **E)** $\frac{8}{(1+4\pi^2)^2}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5 \right]$$

Esercizio 2. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{17}{4}$
- B) altro
- **C**) 4
- **D**) 0

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

- **A)** 0
- B) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- C) $\frac{8}{(4+\pi^2)^2}$
- D) altro
- **E**) $\frac{4}{(4+\pi^2)^2} + 1$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- **D)** $h[n] = (\frac{1}{6})^n u[n]$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **B)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- C) Nessuna delle altre
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$

- **D)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1$
- **B)** $E\{x^2(t)\} = 0$
- C) $E\{x^2(t)\} = 1.5$
- **D)** $E\{x^2(t)\}$ diverso dalle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = 1/2$
- **B)** $E\{x(t)\} = F_{\eta}(t+T)$
- **C)** $E\{x(t)\} = 0$
- **D)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) assume valori non nulli per ogni valore di $n \geq 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 3

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

- B) Nessuna delle altre risposte
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{37}{4}$
- B) altro
- **C**) 0
- **D**) 9

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- **D**) $\frac{8}{(4+\pi^2)^2}$
- E) $\frac{4}{(4+\pi^2)^2}+1$

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- $\mathbf{B)} \ h[n] = \left(\frac{1}{8}\right)^n u[n]$
- C) $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- D) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

D) Nessuna delle altre risposte

E)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 3

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

B)
$$h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

- C) Nessuna delle altre risposte
- **D)** h[n] = x[n]

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

B)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

C)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7 \right]$$

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) 4
- C) altro
- **D**) $\frac{17}{4}$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{2}{(1+\pi^2)^2}$
- B) altro
- **C**) 0

D)
$$\frac{1}{(1+\pi^2)^2} + 2$$

E)
$$\frac{2}{(1+\pi^2)^2}+1$$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = 1/2$
- **B)** $E\{x(t)\} = 0$
- **C)** $E\{x(t)\} = F_{\eta}(t+T)$
- **D)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{2}{(1+\pi^2)^2}+1$$

B)
$$\frac{1}{(1+\pi^2)^2} + 2$$

D)
$$\frac{2}{(1+\pi^2)^2}$$

E) altro

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

B)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^2 - 3]$$

C)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

B)
$$h[n] = x[n]$$

C)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

D)
$$h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$

Esercizio 5. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 9
- **B**) $\frac{37}{4}$
- C) altro
- **D**) 0

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** x(t) è un processo ciclostazionario in senso lato.
- B) x(t) è un processo con media e varianza funzione del tempo.
- C) x(t) è un processo stazionario in senso lato.

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- B) Nessuna delle altre
- C) $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **D)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

- C) Nessuna delle altre risposte
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo ciclostazionario in senso lato.
- **B)** x(t) è un processo stazionario in senso lato.
- C) x(t) è un processo con media e varianza funzione del tempo.

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z - a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} - 4\right]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^{-3} - 3\right]$$

D)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

B)
$$h[n] = x[n]$$

C) Nessuna delle altre risposte

$$\mathbf{D)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(4+\pi^2)^2}$
- **B)** $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- **C**) 0
- **D**) $\frac{4}{(4+\pi^2)^2} + 1$
- E) altro

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{17}{4}$
- B) altro
- **C**) 4
- **D**) 0

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- B) Nessuna delle altre
- C) $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **D)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

2

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) 3/4x_1(t)]$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) x_1(t)]$
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- **B)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **B)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- E) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

- C) Nessuna delle altre risposte
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

Esercizio 3. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{13}{36}$
- \mathbf{D}) $\frac{1}{9}$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

B)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

C)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

- **B)** h[n] = x[n]
- C) Nessuna delle altre risposte
- $\mathbf{D)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C) Nessuna delle altre

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{2}{(1+\pi^2)^2}+1$$

B)
$$\frac{2}{(1+\pi^2)^2}$$

C)
$$\frac{1}{(1+\pi^2)^2} + 2$$

- **D**) 0
- E) altro

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

A)
$$E\{x(t)\} = F_{\eta}(t) - F_{\eta}(t-T)$$

B)
$$E\{x(t)\} = F_{\eta}(t+T)$$

C)
$$E\{x(t)\} = 0$$

D)
$$E\{x(t)\} = 1/2$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{13}{36}$
- B) altro
- C) $\frac{1}{9}$
- **D**) 0

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] puramente immaginario con X[0] = 0

D) X[k] complesso con |X[0]| = 3

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **B**) $\frac{8}{(1+16\pi^2)^2} + 16$
- **C**) 0
- **D**) $\frac{32}{(1+16\pi^2)^2}$
- E) altro

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

B)
$$h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

- **C)** h[n] = x[n]
- **D)** $h[n] = (\frac{1}{8})^n u[n]$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2}$
- B) altro
- **C**) 0
- **D)** $\frac{6}{(1+4\pi^2)^2}+4$
- E) $\frac{8}{(1+4\pi^2)^2}+4$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{6}\right)^n u[n]$
- **D)** h[n] = x[n]

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

1

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo stazionario in senso lato.

C) x(t) è un processo ciclostazionario in senso lato.

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- B) $\frac{17}{4}$
- C) altro
- **D**) 0

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \ge 0$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

C)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

D) Nessuna delle altre

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- C) Nessuna delle altre risposte
- **D)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$

Esercizio 2. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

1

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- **B**) 0
- C) $\frac{13}{36}$
- D) altro

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

B)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

C)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \ge 0$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{6}{(1+4\pi^2)^2}+4$
- C) $\frac{8}{(1+4\pi^2)^2}+4$
- **D)** $\frac{8}{(1+4\pi^2)^2}$
- E) altro

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

C) Nessuna delle altre

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

D)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

1

A) $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$

B) $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$

C) $h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$

D) $h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) 0

B) altro

C) $\frac{2}{(1+\pi^2)^2} + 1$

D) $\frac{2}{(1+\pi^2)^2}$

E) $\frac{1}{(1+\pi^2)^2}+2$

Esercizio 5. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

 $RC = \frac{1}{2\pi f_0}$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

A) 0

B) $\frac{1}{9}$

C) altro

D) $\frac{13}{36}$

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A) $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$

B) Nessuna delle altre risposte

C) h[n] = x[n]

 $\mathbf{D)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

A) x(t) è un processo ciclostazionario in senso lato.

B) x(t) è un processo stazionario per la media.

C) x(t) è un processo non stazionario.

D) x(t) è un processo ciclostazionario solo per la media.

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

- **A)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- B) Nessuna delle altre
- C) $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **D)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- B) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) altro

B)
$$\frac{2}{(1+\pi^2)^2} + 1$$

C)
$$\frac{1}{(1+\pi^2)^2} + 2$$

D) 0

E)
$$\frac{2}{(1+\pi^2)^2}$$

Esercizio 3. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{13}{36}$
- C) $\frac{1}{9}$
- **D**) 0

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

- **B)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- C) Nessuna delle altre
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo stazionario in senso lato.

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

E)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **B)** $h[n] = (\frac{1}{4})^n u[n]$
- C) Nessuna delle altre risposte
- **D)** h[n] = x[n]

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} - 4\right]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] \left[n(1-a^{-3}) + 6a^{-3} - 3\right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = (\frac{1}{4})^n u[n]$
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) Nessuna delle altre risposte
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

1

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

C) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

- B) Nessuna delle altre
- C) $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

B)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

Esercizio 7. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t) \cos f_0$ costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{17}{4}$
- **C**) 4
- D) altro

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- B) altro
- C) $\frac{6}{(1+4\pi^2)^2}+4$
- **D**) $\frac{8}{(1+4\pi^2)^2}$
- **E)** $\frac{8}{(1+4\pi^2)^2} + 4$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) Nessuna delle altre risposte
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 2. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{13}{36}$
- C) $\frac{1}{9}$
- **D**) 0

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A)
$$h[n] = x[n]$$

- B) Nessuna delle altre risposte
- **C)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **D)** $h[n] = (\frac{1}{16})^n u[n]$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \ge 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **E**) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = F_{\eta}(t+T)$
- **B)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$
- C) $E\{x(t)\} = 1/2$
- **D)** $E\{x(t)\} = 0$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} 6]$
- **B)** $h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 5\right]$
- C) $h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} 5\right]$
- **D)** $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} 5\right]$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(4+\pi^2)^2}$
- **B**) 0
- C) $\frac{4}{(4+\pi^2)^2} + 1$
- D) altro
- E) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^2 - 3]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

C)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A)
$$E\{x^2(t)\} = 1.5$$

B) $E\{x^2(t)\}$ diverso dalle altre risposte

C)
$$E\{x^2(t)\} = 0$$

D)
$$E\{x^2(t)\} = 1$$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

A)
$$\frac{4}{(4+\pi^2)^2}+1$$

D)
$$\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$$

E)
$$\frac{8}{(4+\pi^2)^2}$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- D) Nessuna delle altre risposte
- E) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- B) Nessuna delle altre risposte
- **C)** h[n] = x[n]
- **D)** $h[n] = (\frac{1}{8})^n u[n]$

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- A) Nessuna delle altre
- **B)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 8. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- **A**) 0
- B) altro
- C) $\frac{37}{4}$
- **D**) 9

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo stazionario in senso lato.
- C) x(t) è un processo ciclostazionario in senso lato.

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **B)** assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E**) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

A) 0

B)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

C)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

- **D**) $\frac{32}{(1+16\pi^2)^2}$
- E) altro

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- **C)** h[n] = x[n]
- **D)** $h[n] = (\frac{1}{6})^n u[n]$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} 5]$
- **B)** $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} 6]$
- C) $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} 5]$
- **D)** $h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 5\right]$

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

2

(suggerimento: si lavori nel dominio della frequenza).

- A) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- **A**) 0
- **B**) 4
- C) $\frac{17}{4}$
- D) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- C) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) x_1(t)]$
- B) Nessuna delle altre risposte
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

1

- **A)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$
- **B)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] \left[n(1-a^{-2}) + 9a 8\right]$
- C) $h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$
- **D)** $h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a 7 \right]$

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- C) Nessuna delle altre risposte
- **D)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{13}{36}$
- B) altro
- **C**) 0
- **D**) $\frac{1}{9}$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) $\frac{8}{(4+\pi^2)^2}$
- C) $\frac{4}{(4+\pi^2)^2} + 1$
- D) altro
- **E)** $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{1}{(1+\pi^2)^2} + 2$
- C) $\frac{2}{(1+\pi^2)^2}$
- **D)** $\frac{2}{(1+\pi^2)^2} + 1$
- E) altro

Esercizio 3. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- A) altro
- **B**) 0
- **C**) 9
- **D**) $\frac{37}{4}$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- D) Nessuna delle altre risposte
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1.5$
- **B)** $E\{x^2(t)\}$ diverso dalle altre risposte
- C) $E\{x^2(t)\}=0$
- **D)** $E\{x^2(t)\} = 1$

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = (\frac{1}{6})^n u[n]$
- **C)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- **D)** Nessuna delle altre risposte

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 3. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- **A)** 0
- **B**) 9
- C) altro
- **D**) $\frac{37}{4}$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{32}{(1+16\pi^2)^2} + 16$
- C) $\frac{32}{(1+16\pi^2)^2}$
- **D)** $\frac{8}{(1+16\pi^2)^2} + 16$
- E) altro

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **B)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- C) Nessuna delle altre
- **D)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\}$ diverso dalle altre risposte
- **B)** $E\{x^2(t)\}=1$
- **C)** $E\{x^2(t)\} = 0$
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} 4\right]$
- **B)** $h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} 3]$
- C) $h[n] = \delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^2 3]$
- **D)** $h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} 3]$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

 ${\bf E)}\,$ Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) altro

B)
$$\frac{32}{(1+16\pi^2)^2}$$

C) 0

D)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

E)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- C) $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- D) Nessuna delle altre risposte

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 6. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- B) altro
- C) $\frac{17}{4}$
- **D**) 0

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) assume valori non nulli per ogni valore di $n \geq 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C) Nessuna delle altre

D)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{2}{(1+\pi^2)^2}+1$$

B)
$$\frac{2}{(1+\pi^2)^2}$$

D)
$$\frac{1}{(1+\pi^2)^2} + 2$$

E) altro

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

1

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- C) Nessuna delle altre risposte
- **D)** h[n] = x[n]

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n > 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 8. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- **A)** 0
- **B**) $\frac{37}{4}$
- **C**) 9
- D) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

B) Nessuna delle altre

C)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

D)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

1

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t)$$
, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

B) Nessuna delle altre risposte

C)
$$\psi_1(t) = \sqrt{T}x_1(t)$$
, $\psi_2(t) = c[x_2(t) - \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.

D) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

B)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

C)
$$\frac{32}{(1+16\pi^2)^2}$$

- **D**) 0
- E) altro

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- B) assume valori non nulli per ogni valore di $n \geq 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t) \cos f_0$ costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 9
- C) $\frac{37}{4}$
- **D**) 0

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

2

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

$$\mathbf{B)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$$

- **C)** h[n] = x[n]
- D) Nessuna delle altre risposte

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- **A)** x(t) è un processo stazionario per la media.
- **B)** x(t) è un processo non stazionario.
- C) x(t) è un processo ciclostazionario solo per la media.
- **D)** x(t) è un processo ciclostazionario in senso lato.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A)
$$h[n] = x[n]$$

- B) Nessuna delle altre risposte
- **C)** $h[n] = (\frac{1}{8})^n u[n]$
- **D)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- A) x(t) è un processo stazionario per la media.
- **B)** x(t) è un processo non stazionario.
- C) x(t) è un processo ciclostazionario solo per la media.
- **D)** x(t) è un processo ciclostazionario in senso lato.

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{8}{(1+4\pi^2)^2}+4$
- C) $\frac{8}{(1+4\pi^2)^2}$
- D) altro
- **E**) $\frac{6}{(1+4\pi^2)^2}+4$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- A) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

- **A**) $\frac{1}{9}$
- **B**) 0
- C) $\frac{13}{36}$

D) altro

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

B)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

B)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

C)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A) $E\{x^2(t)\}$ diverso dalle altre risposte

B)
$$E\{x^2(t)\}=1.5$$

C)
$$E\{x^2(t)\} = 0$$

D)
$$E\{x^2(t)\} = 1$$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = x[n]$$

B) Nessuna delle altre risposte

C)
$$h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

$$\mathbf{D)} \ h[n] = \left(\frac{1}{6}\right)^n u[n]$$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

- **A)** X[k] puramente reale con X[0] = 0
- B) X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 5. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{37}{4}$
- **C**) 9
- D) altro

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{6}{(1+4\pi^2)^2}+4$
- B) altro
- **C**) 0
- **D)** $\frac{8}{(1+4\pi^2)^2}$
- E) $\frac{8}{(1+4\pi^2)^2}+4$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$(\sin(\pi t/T))$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

D)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

E) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{4}{(4+\pi^2)^2}+1$$

B)
$$\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$$

C)
$$\frac{8}{(4+\pi^2)^2}$$

D) 0

E) altro

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C) Nessuna delle altre

D)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

D) Nessuna delle altre risposte

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A) $E\{x^2(t)\}$ diverso dalle altre risposte

B)
$$E\{x^2(t)\} = 0$$

C)
$$E\{x^2(t)\} = 1.5$$

D)
$$E\{x^2(t)\} = 1$$

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- B) $\frac{1}{9}$
- C) $\frac{13}{36}$
- **D**) 0

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

B)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

C)
$$h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- C) $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo stazionario in senso lato.
- B) x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo con media e varianza funzione del tempo.

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D) Nessuna delle altre

Esercizio 3. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

1

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- **B**) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- C) $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- D) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{32}{(1+16\pi^2)^2} + 16$
- C) $\frac{8}{(1+16\pi^2)^2} + 16$
- **D**) 0
- **E**) $\frac{32}{(1+16\pi^2)^2}$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 7. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t) \cos f_0$ costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{37}{4}$
- **D**) 9

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

B)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

C)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 3. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{37}{4}$
- **B**) 9
- **C**) 0
- D) altro

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

B)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A) Nessuna delle altre

B)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

C)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

D)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- **B)** h[n] = x[n]
- C) $h[n] = \left(\frac{1}{8}\right)^n u[n]$
- D) Nessuna delle altre risposte

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1$
- **B)** $E\{x^2(t)\} = 0$
- C) $E\{x^2(t)\}$ diverso dalle altre risposte
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{2}{(1+\pi^2)^2}$
- **B)** $\frac{1}{(1+\pi^2)^2} + 2$
- C) $\frac{2}{(1+\pi^2)^2} + 1$
- D) altro
- **E)** 0

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 9
- **B**) 0
- C) $\frac{37}{4}$
- D) altro

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- B) Nessuna delle altre risposte
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 3. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

1

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- B) Nessuna delle altre risposte
- **C**) $h[n] = (\frac{1}{6})^n u[n]$
- **D)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$
- **B)** $E\{x(t)\} = 1/2$
- **C)** $E\{x(t)\} = F_{\eta}(t+T)$
- **D)** $E\{x(t)\} = 0$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- A) Nessuna delle altre
- **B)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- **D)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- B) altro
- **C**) 0
- **D)** $\frac{8}{(4+\pi^2)^2}$
- **E)** $\frac{4}{(4+\pi^2)^2} + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) altro

B)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

C)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

D) 0

E)
$$\frac{32}{(1+16\pi^2)^2}$$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{8}\right)^n u[n]$$

B)
$$h[n] = x[n]$$

C)
$$h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

D) Nessuna delle altre risposte

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

1

A) X[k] puramente immaginario con X[0] = 0

B)
$$X[k]$$
 puramente reale con $X[0] = 3$

C) X[k] puramente reale con X[0] = 0

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 7. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t) \cos f_0$ costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{17}{4}$
- B) altro
- **C**) 0
- **D**) 4

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- ${\bf D})\,$ non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 3

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{8}{(4+\pi^2)^2}$
- C) $\frac{4}{(4+\pi^2)^2} + 1$
- **D**) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- E) altro

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

1

- **A)** $E\{x^2(t)\}$ diverso dalle altre risposte
- **B)** $E\{x^2(t)\} = 1$
- C) $E\{x^2(t)\} = 0$
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- **D)** Nessuna delle altre risposte

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$ Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

 $x_2(t) = e^{-at}u(t) \quad a > 0$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$

E) assume valori non nulli per ogni valore di $n \geq 0$

Esercizio 8. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t)=\frac{1}{RC}\mathrm{e}^{-t/RC}u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{13}{36}$
- **D**) $\frac{1}{9}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{1}{(1+\pi^2)^2} + 2$
- B) altro
- C) $\frac{2}{(1+\pi^2)^2}$
- **D**) $\frac{2}{(1+\pi^2)^2} + 1$
- **E**) 0

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- B) Nessuna delle altre

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 4. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{1}{9}$
- C) $\frac{13}{36}$
- **D**) 0

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

B)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

C)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] \left[n(1-a^{-3}) + 6a^{-3} - 3\right]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{6}\right)^n u[n]$$

B)
$$h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

C)
$$h[n] = x[n]$$

D) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo stazionario in senso lato.
- C) x(t) è un processo ciclostazionario in senso lato.

Esercizio 2. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) 4
- C) altro
- **D**) $\frac{17}{4}$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

- **A)** $h[n] = (\frac{1}{6})^n u[n]$
- B) Nessuna delle altre risposte
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **B)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D) Nessuna delle altre

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** Nessuna delle altre risposte
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(1+4\pi^2)^2}+4$$

B)
$$\frac{8}{(1+4\pi^2)^2}$$

C) 0

D)
$$\frac{6}{(1+4\pi^2)^2} + 4$$

E) altro

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **B)** assume valori non nulli per ogni valore di $n \ge 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **E**) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **B)** h[n] = x[n]
- C) Nessuna delle altre risposte
- **D)** $h[n] = (\frac{1}{4})^n u[n]$

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

1

A) x(t) è un processo stazionario per la media.

- **B)** x(t) è un processo non stazionario.
- C) x(t) è un processo ciclostazionario in senso lato.
- **D)** x(t) è un processo ciclostazionario solo per la media.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2}$
- **B**) 0
- C) $\frac{6}{(1+4\pi^2)^2}+4$
- D) altro
- E) $\frac{8}{(1+4\pi^2)^2}+4$

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} 7]$
- **B)** $h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$
- C) $h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} 7]$
- **D)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a 8]$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- **C)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- **B**) $\frac{13}{36}$
- C) altro

D) 0

Esercizio 8. (1.5 Punti) Si consideri la sequenza $x[n], n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- B) X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente reale con X[0] = 0

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

1

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.

- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 4. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{37}{4}$
- **D**) 9

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- **A)** x(t) è un processo non stazionario.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo stazionario per la media.
- **D)** x(t) è un processo ciclostazionario solo per la media.

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{4}{(4+\pi^2)^2} + 1$
- C) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- **D**) $\frac{8}{(4+\pi^2)^2}$
- **E**) 0

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **B)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- ${f D})$ Nessuna delle altre

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A) Nessuna delle altre

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

D)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

B)
$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

C)
$$h[n] = x[n]$$

$$\mathbf{D)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

A) altro

C)
$$\frac{1}{(1+\pi^2)^2} + 2$$

D)
$$\frac{2}{(1+\pi^2)^2}$$

E)
$$\frac{2}{(1+\pi^2)^2}+1$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = F_{\eta}(t+T)$
- **B)** $E\{x(t)\} = 1/2$
- **C)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$
- **D)** $E\{x(t)\} = 0$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z - a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a 8]$
- **B)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$
- C) $h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$
- **D)** $h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$

Esercizio 7. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- **B**) $\frac{13}{36}$
- **C**) 0
- D) altro

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **B)** h[n] = x[n]
- C) $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- **D)** Nessuna delle altre risposte

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

1

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

- C) Nessuna delle altre
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} - 4\right]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

D)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) j\pi/(2T^2)\psi_1(t)]$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) $\frac{8}{(4+\pi^2)^2}$
- B) altro
- C) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- **D**) 0
- **E**) $\frac{4}{(4+\pi^2)^2} + 1$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** x(t) è un processo ciclostazionario in senso lato.
- **B)** x(t) è un processo con media e varianza funzione del tempo.
- C) x(t) è un processo stazionario in senso lato.

Esercizio 8. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{13}{36}$
- **B**) 0
- C) altro
- **D**) $\frac{1}{9}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 9
- C) $\frac{37}{4}$
- **D**) 0

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- B) Nessuna delle altre risposte
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi} \tan^{-1} \left(\frac{\pi}{aT}\right) \psi_1(t)]$ con c costante di normalizzazione.
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- C) $h[n] = (\frac{1}{4})^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2}$
- **B**) 0
- C) $\frac{6}{(1+4\pi^2)^2}+4$
- **D)** $\frac{8}{(1+4\pi^2)^2}+4$
- E) altro

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a 8]$
- **B)** $h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a 7 \right]$
- C) $h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} 7]$
- **D)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} 7 \right]$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

 $H(z) = \prod_{i=1}^{4N} H_i(z)$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **B)** assume valori non nulli per ogni valore di $n \ge 0$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- **A)** x(t) è un processo non stazionario.
- **B)** x(t) è un processo ciclostazionario solo per la media.
- C) x(t) è un processo ciclostazionario in senso lato.
- **D)** x(t) è un processo stazionario per la media.

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente immaginario con X[0] = 0

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) $\frac{8}{(1+4\pi^2)^2} + 4$
- C) $\frac{6}{(1+4\pi^2)^2} + 4$
- **D)** $\frac{8}{(1+4\pi^2)^2}$
- E) altro

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

D)
$$h[n] = (\frac{1}{6})^n u[n]$$

Esercizio 4. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{17}{4}$
- **B**) 4
- C) altro
- **D**) 0

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z - a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

B)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

D)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 6. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) x_1(t)]$
- C) $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) 3/4x_1(t)]$
- D) Nessuna delle altre risposte
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$

- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1$
- **B)** $E\{x^2(t)\} = 1.5$
- C) $E\{x^2(t)\} = 0$
- **D)** $E\{x^2(t)\}$ diverso dalle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- A) x(t) è un processo ciclostazionario in senso lato.
- B) x(t) è un processo ciclostazionario solo per la media.
- C) x(t) è un processo stazionario per la media.
- **D)** x(t) è un processo non stazionario.

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B)** $\frac{8}{(1+4\pi^2)^2}+4$
- C) $\frac{8}{(1+4\pi^2)^2}$
- **D**) 0
- E) $\frac{6}{(1+4\pi^2)^2}+4$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **B)** $h[n] = (\frac{1}{4})^n u[n]$
- **C)** h[n] = x[n]
- D) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- **B**) $\frac{17}{4}$
- **C**) 0
- D) altro

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

D) Nessuna delle altre

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

1

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)] \ \text{con } c \text{ costante di normalizzazione.}$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** h[n] = x[n]
- **C)** $h[n] = (\frac{1}{6})^n u[n]$
- **D)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

B)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\}$ diverso dalle altre risposte
- **B)** $E\{x^2(t)\}=0$
- C) $E\{x^2(t)\} = 1$
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

B)
$$\frac{32}{(1+16\pi^2)^2}$$

C)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

- D) altro
- **E**) 0

Esercizio 8. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- B) altro
- **C**) 0
- **D**) $\frac{17}{4}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] \left[n(1-a^{-2}) + 9a - 8\right]$$

C)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

D)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7 \right]$$

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 3. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{17}{4}$
- **C**) 4
- D) altro

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

1

- A) x(t) è un processo stazionario per la media.
- B) x(t) è un processo ciclostazionario solo per la media.

- C) x(t) è un processo ciclostazionario in senso lato.
- **D)** x(t) è un processo non stazionario.

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- E) Nessuna delle altre risposte

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = (\frac{1}{6})^n u[n]$
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **B**) 0
- C) $\frac{8}{(1+16\pi^2)^2} + 16$
- **D**) $\frac{32}{(1+16\pi^2)^2}$
- E) altro

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+16\pi^2)^2} + 16$
- **B**) 0
- C) altro
- **D)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **E**) $\frac{32}{(1+16\pi^2)^2}$

Esercizio 3. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 0
- C) $\frac{1}{9}$
- **D**) $\frac{13}{36}$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C) Nessuna delle altre

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = (\frac{1}{4})^n u[n]$$

B)
$$h[n] = x[n]$$

- C) $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- D) Nessuna delle altre risposte

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo stazionario in senso lato.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

B)
$$\frac{32}{(1+16\pi^2)^2}$$

C) 0

D)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

E) altro

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{6}\right)^n u[n]$$

B)
$$h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

C)
$$h[n] = x[n]$$

D) Nessuna delle altre risposte

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

1

A)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

B)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

D)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{13}{36}$
- **B**) 0
- C) $\frac{1}{9}$
- D) altro

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- B) Nessuna delle altre risposte

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \, \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

E)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

A)
$$E\{x(t)\} = 1/2$$

B)
$$E\{x(t)\} = F_{\eta}(t+T)$$

C)
$$E\{x(t)\} = 0$$

D)
$$E\{x(t)\} = F_{\eta}(t) - F_{\eta}(t-T)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A) Nessuna delle altre risposte

B)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

C)
$$h[n] = (\frac{1}{8})^{n-1} u[n-1]$$

D)
$$h[n] = x[n]$$

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

- A) $\frac{2}{(1+\pi^2)^2}$
- **B**) 0
- C) $\frac{1}{(1+\pi^2)^2} + 2$
- **D**) $\frac{2}{(1+\pi^2)^2} + 1$
- E) altro

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) 3/4x_1(t)]$
- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) x_1(t)]$
- E) Nessuna delle altre risposte

Esercizio 5. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 9
- **B**) $\frac{37}{4}$
- **C**) 0
- D) altro

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z - a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a 7 \right]$
- **B)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} 7]$
- C) $h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$
- **D)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a 8]$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo stazionario in senso lato.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo con media e varianza funzione del tempo.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **C)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

- A) altro
- B) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- C) $\frac{4}{(4+\pi^2)^2} + 1$
- **D**) $\frac{8}{(4+\pi^2)^2}$
- **E**) 0

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^2 - 3]$$

B)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} - 4\right]$$

D)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} - 3]$$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D) Nessuna delle altre

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo ciclostazionario in senso lato.
- B) x(t) è un processo stazionario in senso lato.
- C) x(t) è un processo con media e varianza funzione del tempo.

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = (\frac{1}{6})^n u[n]$
- C) Nessuna delle altre risposte
- **D)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) assume valori non nulli per ogni valore di $n \geq 0$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$

Esercizio 8. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{37}{4}$
- **B**) 0
- **C**) 9
- D) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

B)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

C)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

D)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{6}{(1+4\pi^2)^2}+4$$

B)
$$\frac{8}{(1+4\pi^2)^2}+4$$

C)
$$\frac{8}{(1+4\pi^2)^2}$$

- D) altro
- **E**) 0

Esercizio 3. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{17}{4}$
- **C**) 0
- **D**) 4

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- **B)** $h[n] = (\frac{1}{6})^n u[n]$
- **C)** h[n] = x[n]
- D) Nessuna delle altre risposte

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- B) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **D)** Nessuna delle altre risposte
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- **A)** x(t) è un processo non stazionario.
- B) x(t) è un processo stazionario per la media.
- C) x(t) è un processo ciclostazionario in senso lato.
- **D)** x(t) è un processo ciclostazionario solo per la media.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- **A)** x(t) è un processo ciclostazionario solo per la media.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo non stazionario.
- **D)** x(t) è un processo stazionario per la media.

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- $\mathbf{B)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$
- C) $h[n] = (\frac{1}{2})^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- B) altro
- C) $\frac{6}{(1+4\pi^2)^2}+4$
- **D**) $\frac{8}{(1+4\pi^2)^2}+4$

E)
$$\frac{8}{(1+4\pi^2)^2}$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- B) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} 7]$
- **B)** $h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a 7 \right]$
- C) $h[n] = \delta[n-8] + a^{n-9}u[n-9][n(1-a^{-2}) + 9a 8]$
- **D)** $h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} 7]$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{17}{4}$
- **B**) 4
- C) altro
- **D**) 0

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 3

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **D)** assume valori non nulli per ogni valore di $n \geq 0$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 2. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{13}{36}$
- **B**) 0
- C) $\frac{1}{9}$
- D) altro

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- **B)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **C)** h[n] = x[n]
- D) Nessuna delle altre risposte

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = 1/2$
- **B)** $E\{x(t)\} = 0$
- **C)** $E\{x(t)\} = F_n(t) F_n(t-T)$
- **D)** $E\{x(t)\} = F_n(t+T)$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E) Nessuna delle altre risposte

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{8}{(1+16\pi^2)^2} + 16$
- C) $\frac{32}{(1+16\pi^2)^2} + 16$
- **D**) $\frac{32}{(1+16\pi^2)^2}$
- E) altro

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

2

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

- A) X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 3

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

C)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

D)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 3
- **B)** X[k] complesso con |X[0]| = 3
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{32}{(1+16\pi^2)^2} + 16$
- C) $\frac{32}{(1+16\pi^2)^2}$
- D) altro
- **E)** $\frac{8}{(1+16\pi^2)^2} + 16$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

1

- A) x(t) è un processo ciclostazionario in senso lato.
- B) x(t) è un processo stazionario per la media.
- C) x(t) è un processo non stazionario.
- **D)** x(t) è un processo ciclostazionario solo per la media.

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- B) Nessuna delle altre risposte
- **C)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- **D)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{13}{36}$
- C) $\frac{1}{9}$
- **D**) 0

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

- A) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- B) Nessuna delle altre risposte

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) 0

B) $\frac{8}{(4+\pi^2)^2}$

C) $\frac{4}{(4+\pi^2)^2} + 1$

D) altro

E) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

B)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

1

A) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

B) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.

C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** assume valori non nulli per ogni valore di $n \ge 0$
- E) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 6. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{17}{4}$
- **C**) 4
- **D**) 0

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi} \tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{8}\right)^n u[n]$
- **D)** h[n] = x[n]

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 2. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- B) altro
- **C**) 0
- **D**) $\frac{17}{4}$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+16\pi^2)^2} + 16$
- **B**) $\frac{32}{(1+16\pi^2)^2}$
- C) altro
- **D)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **E**) 0

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D) Nessuna delle altre

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

B)
$$h[n] = x[n]$$

C) Nessuna delle altre risposte

D)
$$h[n] = (\frac{1}{4})^n u[n]$$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} - 6\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^2 - 5]$$

D)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- B) Nessuna delle altre risposte
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

B)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

D) È sufficiente l'unico versore
$$\psi_1(t) = \sqrt{T}x_1(t)$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k]$$
 puramente immaginario con $X[0] = 0$

B)
$$X[k]$$
 puramente reale con $X[0] = 3$

C)
$$X[k]$$
 complesso con $|X[0]| = 3$

D)
$$X[k]$$
 puramente reale con $X[0] = 0$

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

C)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

D)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **B)** h[n] = x[n]
- **C**) $h[n] = (\frac{1}{4})^n u[n]$
- D) Nessuna delle altre risposte

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

- A) x(t) è un processo stazionario per la media.
- **B)** x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo ciclostazionario solo per la media.
- **D)** x(t) è un processo non stazionario.

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **B**) $\frac{32}{(1+16\pi^2)^2}$
- C) altro
- **D**) 0
- **E)** $\frac{8}{(1+16\pi^2)^2} + 16$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$

Esercizio 8. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{17}{4}$
- **B**) 0
- C) altro
- **D**) 4

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) altro

B)
$$\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$$

C) 0

D)
$$\frac{8}{(4+\pi^2)^2}$$

E)
$$\frac{4}{(4+\pi^2)^2}+1$$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) Nessuna delle altre risposte

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

C) Nessuna delle altre

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** h[n] = x[n]
- **C)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- **D)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$

Esercizio 5. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\}$ diverso dalle altre risposte
- **B)** $E\{x^2(t)\}=0$
- C) $E\{x^2(t)\} = 1.5$
- **D)** $E\{x^2(t)\} = 1$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) 9
- C) altro
- **D**) $\frac{37}{4}$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7 \right]$$

B)
$$h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$$

C)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t} \right)^2$$

1

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

- C) $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

Esercizio 4. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{37}{4}$
- **B**) 0
- **C**) 9
- D) altro

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^2 - 5]$$

D)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 7. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

2

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{8}\right)^n u[n]$
- **D)** h[n] = x[n]

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{8}{(1+4\pi^2)^2}$
- C) $\frac{8}{(1+4\pi^2)^2} + 4$
- **D)** 0
- E) $\frac{6}{(1+4\pi^2)^2}+4$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{6}\right)^n u[n]$
- D) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2}$
- B) $\frac{8}{(1+4\pi^2)^2}+4$
- **C**) 0
- D) altro
- **E)** $\frac{6}{(1+4\pi^2)^2}+4$

Esercizio 3. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E)** assume valori non nulli per ogni valore di $n \geq 0$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

- C) Nessuna delle altre
- **D)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

C)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- E) Nessuna delle altre risposte

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^2 - 5]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A)
$$E\{x^2(t)\} = 1$$

B)
$$E\{x^2(t)\} = 1.5$$

- C) $E\{x^2(t)\}$ diverso dalle altre risposte
- **D)** $E\{x^2(t)\} = 0$

Esercizio 8. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- B) altro
- C) $\frac{17}{4}$
- **D**) 4

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- **B**) $\frac{17}{4}$
- **C**) 0
- D) altro

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) $\frac{4}{(4+\pi^2)^2}+1$
- **B**) 0
- C) altro
- **D)** $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- **E)** $\frac{8}{(4+\pi^2)^2}$

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

1

La risposta all'impulso del filtro vale:

A)
$$h[n] = x[n]$$

B) Nessuna delle altre risposte

C)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

D)
$$h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

A)
$$E\{x(t)\} = F_{\eta}(t+T)$$

B)
$$E\{x(t)\} = F_{\eta}(t) - F_{\eta}(t-T)$$

C)
$$E\{x(t)\} = 0$$

D)
$$E\{x(t)\} = 1/2$$

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **B)** assume valori non nulli per ogni valore di $n \geq 0$
- C) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E**) non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 3

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- A) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- D) Nessuna delle altre risposte
- E) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 2. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- **B**) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- C) altro
- **D)** $\frac{4}{(4+\pi^2)^2} + 1$
- **E)** $\frac{8}{(4+\pi^2)^2}$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 5. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{37}{4}$
- **B**) 0
- C) altro
- **D**) 9

Esercizio 6. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = (\frac{1}{4})^n u[n]$
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^{-3} 3\right]$
- **B)** $h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 3\right]$
- C) $h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] [n(1-a^{-3}) + 6a^{-3} 3]$
- **D)** $h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] \left[n(1-a^{-3}) + 6a^{-2} 4\right]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+16\pi^2)^2} + 16$
- **B**) 0
- C) $\frac{32}{(1+16\pi^2)^2} + 16$
- D) altro
- **E**) $\frac{32}{(1+16\pi^2)^2}$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

1

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

D)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

Esercizio 4. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **C)** h[n] = x[n]
- **D)** $h[n] = (\frac{1}{4})^n u[n]$

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- B) altro
- **C**) 4
- **D**) $\frac{17}{4}$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7 \right]$$

C)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = 1/2$
- **B)** $E\{x(t)\} = 0$
- **C)** $E\{x(t)\} = F_{\eta}(t+T)$

D)
$$E\{x(t)\} = F_{\eta}(t) - F_{\eta}(t-T)$$

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- B) X[k] puramente immaginario con X[0] = 0
- C) X[k] puramente reale con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 3

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo stazionario in senso lato.
- B) x(t) è un processo ciclostazionario in senso lato.
- C) x(t) è un processo con media e varianza funzione del tempo.

Esercizio 2. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- B) altro
- C) $\frac{37}{4}$
- **D**) 9

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

1

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{2|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- **B**) $\frac{2}{(1+\pi^2)^2}$
- C) altro
- **D)** $\frac{1}{(1+\pi^2)^2} + 2$
- E) $\frac{2}{(1+\pi^2)^2}+1$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = \text{DFT}\{x[n]\}$. Si ha

- A) Nessuna delle altre
- **B)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- **D)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- $\mathbf{B)} \ h[n] = \left(\frac{1}{4}\right)^n u[n]$
- C) $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- D) Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$
- C) $\frac{4}{(4+\pi^2)^2} + 1$
- **D**) $\frac{8}{(4+\pi^2)^2}$
- **E**) 0

Esercizio 3. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- B) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- **D)** h[n] = x[n]

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1$
- **B)** $E\{x^2(t)\} = 1.5$
- C) $E\{x^2(t)\}$ diverso dalle altre risposte
- **D)** $E\{x^2(t)\} = 0$

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **B)** $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- C) $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **D)** Nessuna delle altre

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- B) altro
- **C**) 0
- **D**) $\frac{13}{36}$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z - a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a 7 \right]$
- **B)** $h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a 8]$
- C) $h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} 7\right]$
- **D)** $h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} 7]$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

- A) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- A) x(t) è un processo con media e varianza funzione del tempo.
- **B)** x(t) è un processo stazionario in senso lato.
- C) x(t) è un processo ciclostazionario in senso lato.

Esercizio 2. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- B) altro
- C) $\frac{37}{4}$
- **D**) 9

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

C)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

- **A)** $\frac{32}{(1+16\pi^2)^2} + 16$
- **B**) 0
- C) $\frac{32}{(1+16\pi^2)^2}$
- **D)** $\frac{8}{(1+16\pi^2)^2} + 16$
- E) altro

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) 3/4x_1(t)]$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + 1$
- E) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

2

- **A)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$
- **B)** $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$
- D) Nessuna delle altre

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- ${f B}$) Nessuna delle altre risposte
- C) $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- **D)** h[n] = x[n]

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- C) Nessuna delle altre risposte
- **D)** $h[n] = \left(\frac{1}{4}\right)^n u[n]$

Esercizio 2. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$(t) \quad T\left(\sin(\pi t/T)\right)$$

 $x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

E) Nessuna delle altre risposte

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

- **A)** $\frac{6}{(1+4\pi^2)^2}+4$
- B) altro
- **C**) 0
- **D)** $\frac{8}{(1+4\pi^2)^2}+4$
- **E)** $\frac{8}{(1+4\pi^2)^2}$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 0$
- **B)** $E\{x^2(t)\} = 1$
- C) $E\{x^2(t)\}$ diverso dalle altre risposte
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 5. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

- **A)** $h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 5\right]$
- **B)** $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^{-3} 5\right]$
- C) $h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] \left[n(1-a^{-3}) + 8a^{-2} 6\right]$
- **D)** $h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} 5]$

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **E**) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$

Esercizio 7. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] complesso con |X[0]| = 3
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] puramente immaginario con X[0] = 0
- **D)** X[k] puramente reale con X[0] = 0

Esercizio 8. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- **B**) 0
- C) $\frac{13}{36}$
- D) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

B)
$$\frac{32}{(1+16\pi^2)^2}$$

C) altro

D)
$$\frac{32}{(1+16\pi^2)^2} + 16$$

E) 0

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = x[n]$$

B)
$$h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

C) Nessuna delle altre risposte

D)
$$h[n] = (\frac{1}{6})^n u[n]$$

Esercizio 3. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

1

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- D) Nessuna delle altre risposte

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

Esercizio 4. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\} = 1.5$
- **B)** $E\{x^2(t)\}=0$
- **C)** $E\{x^2(t)\} = 1$
- **D)** $E\{x^2(t)\}$ diverso dalle altre risposte

Esercizio 5. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente reale con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 3
- C) X[k] complesso con |X[0]| = 3
- **D)** X[k] puramente immaginario con X[0] = 0

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{1}{9}$
- B) altro
- C) $\frac{13}{36}$
- **D**) 0

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

C)
$$h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

Esercizio 8. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **E)** assume valori non nulli per ogni valore di $n \geq 0$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **C)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$
- D) Nessuna delle altre risposte

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

- **A)** $E\{x(t)\} = F_{\eta}(t) F_{\eta}(t-T)$
- **B)** $E\{x(t)\} = F_{\eta}(t+T)$
- C) $E\{x(t)\} = 1/2$
- **D)** $E\{x(t)\} = 0$

Esercizio 3. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

1

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) 4
- \mathbf{C}) 0
- **D**) $\frac{17}{4}$

Esercizio 4. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 1, 9 e zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 5. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{4N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- **A)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 4N^2 + N + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 4N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 4N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 4N^2 + 1$

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

B)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

C)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] [n(1-a^{-3}) + 8a^{-3} - 5]$$

D)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

Esercizio 7. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- A) Nessuna delle altre risposte
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- **D)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **E)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2}+4$
- **B)** 0
- C) $\frac{8}{(1+4\pi^2)^2}$
- **D)** $\frac{6}{(1+4\pi^2)^2} + 4$
- E) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

D)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = (\frac{1}{8})^n u[n]$
- **C)** h[n] = x[n]
- **D)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

1

A)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

B) Nessuna delle altre

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(1+16\pi^2)^2} + 16$$

- B) altro
- C) $\frac{32}{(1+16\pi^2)^2} + 16$
- **D**) $\frac{32}{(1+16\pi^2)^2}$
- **E**) 0

Esercizio 5. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- A) altro
- B) $\frac{1}{9}$
- C) $\frac{13}{36}$
- **D**) 0

Esercizio 6. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] [n(1-a^{-2}) + 9a^{-2} - 7]$$

C)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] \left[n(1-a^{-2}) + 9a - 8\right]$$

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \geq 0$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq N^2 + 1$

- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + N + 1$

Esercizio 8. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{4|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A)
$$\frac{8}{(4+\pi^2)^2} + \frac{1}{4}$$

B) 0

C)
$$\frac{8}{(4+\pi^2)^2}$$

D)
$$\frac{4}{(4+\pi^2)^2} + 1$$

E) altro

Esercizio 2. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A) Nessuna delle altre

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 3. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

1

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- B) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$

- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$

Esercizio 4. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = a^{n-8}u[n-8][n(1-a^{-2})+9a-7]$$

C)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] [n(1-a^{-2}) + 9a^{-2} - 7]$$

D)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

A)
$$h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

B)
$$h[n] = x[n]$$

C) Nessuna delle altre risposte

D)
$$h[n] = \left(\frac{1}{16}\right)^n u[n]$$

Esercizio 6. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 9
- **B**) 0
- C) altro
- **D**) $\frac{37}{4}$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

A)
$$E\{x(t)\} = F_n(t) - F_n(t-T)$$

B)
$$E\{x(t)\} = 0$$

C)
$$E\{x(t)\} = F_n(t+T)$$

D)
$$E\{x(t)\} = 1/2$$

Esercizio 8. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **E)** assume valori non nulli per ogni valore di $n \ge 0$

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{4}\right)^n u[n] - \frac{1}{8} \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = (\frac{1}{8})^n u[n]$
- **B)** $h[n] = \left(\frac{1}{4}\right)^{n-1} u[n-1]$
- **C)** h[n] = x[n]
- **D)** Nessuna delle altre risposte

Esercizio 3. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^3 - 1}{z^7(z-a)^2}$. Indicare quale risultato è corretto.

1

A)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-6}u[n-8] [n(1-a^{-3}) + 8a^{-3} - 5]$$

B)
$$h[n] = \delta[n-5] + 2a\delta[n-6] + a^{n-6}u[n-7] \left[n(1-a^{-3}) + 8a^{-3} - 5\right]$$

C)
$$h[n] = \delta[n-7] + a^{n-6}u[n-8] \left[n(1-a^{-3}) + 8a^2 - 5\right]$$

D)
$$h[n] = \delta[n-6] + 2a\delta[n-7] + a^{n-7}u[n-8] [n(1-a^{-3}) + 8a^{-2} - 6]$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$$

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

C) Nessuna delle altre risposte

D)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

E) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 5. (1.5 punti) Il segnale $x(t) = 2 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 4
- B) $\frac{17}{4}$
- C) altro
- **D**) 0

Esercizio 6. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

- B) Nessuna delle altre
- C) $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$
- **D)** $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

Esercizio 7. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

- **A)** $E\{x^2(t)\}=0$
- **B)** $E\{x^2(t)\}$ diverso dalle altre risposte
- C) $E\{x^2(t)\}=1$
- **D)** $E\{x^2(t)\} = 1.5$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A)** $\frac{8}{(1+4\pi^2)^2} + 4$
- **B**) $\frac{8}{(1+4\pi^2)^2}$
- **C**) 0
- **D)** $\frac{6}{(1+4\pi^2)^2}+4$
- E) altro

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,1,9 e zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

- **A)** X[k] puramente immaginario con X[0] = 0
- **B)** X[k] puramente reale con X[0] = 0
- C) X[k] puramente reale con X[0] = 3
- **D)** X[k] complesso con |X[0]| = 3

Esercizio 2. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \frac{1}{4} \left(\frac{1}{2}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{2}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** $h[n] = \left(\frac{1}{4}\right)^n u[n]$
- **B)** $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
- C) Nessuna delle altre risposte
- **D)** h[n] = x[n]

Esercizio 3. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$.

1

- A) x(t) è un processo ciclostazionario in senso lato.
- B) x(t) è un processo stazionario per la media.
- C) x(t) è un processo ciclostazionario solo per la media.
- **D)** x(t) è un processo non stazionario.

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- **A)** assume valori non nulli per ogni valore di $n \ge 0$
- **B)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- E) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = \frac{d}{dt}x_1(t)$$

(suggerimento: si lavori nel dominio della frequenza).

A)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - j\pi/(2T^2)\psi_1(t)]$$

- B) È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) Nessuna delle altre risposte
- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$

E)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{3T^3}{\pi^2}}x_2(t)$$

Esercizio 6. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) $\frac{13}{36}$
- **B**) 0
- C) $\frac{1}{9}$
- D) altro

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- B) altro
- C) $\frac{8}{(1+16\pi^2)^2} + 16$

D)
$$\frac{32}{(1+16\pi^2)^2}$$

E)
$$\frac{32}{(1+16\pi^2)^2}+16$$

Esercizio 8. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

C)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

D)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento di un filtro causale: $H(z) = \frac{z^3 - 1}{z^5(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-4}u[n-6] [n(1-a^{-3}) + 6a^{-3} - 3]$$

B)
$$h[n] = \delta[n-3] + 2a\delta[n-5] + a^{n-4}u[n-5] \left[n(1-a^{-3}) + 6a^{-3} - 3\right]$$

C)
$$h[n] = \delta[n-4] + 2a\delta[n-5] + a^{n-5}u[n-6] [n(1-a^{-3}) + 6a^{-2} - 4]$$

D)
$$h[n] = \delta[n-5] + a^{n-4}u[n-6] \left[n(1-a^{-3}) + 6a^2 - 3\right]$$

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, e η è una variabile casuale con funzione di distribuzione cumulativa $F_{\eta}(y)$. Si valuta $E\{x(t)\}$, ottenendo

A)
$$E\{x(t)\} = 1/2$$

B)
$$E\{x(t)\} = F_{\eta}(t+T)$$

C)
$$E\{x(t)\} = F_{\eta}(t) - F_{\eta}(t-T)$$

D)
$$E\{x(t)\} = 0$$

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A) Nessuna delle altre

B)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

C)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

D)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

Esercizio 4. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **B)** non assume valori negativi ed è nulla a partire da $n \geq 2N^2 + 1$
- C) assume valori non nulli per ogni valore di $n \geq 0$
- **D)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **E)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **B)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- C) $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi} \tan^{-1} \left(\frac{\pi}{aT}\right) \psi_1(t)]$ con c costante di normalizzazione.
- **D)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.
- E) Nessuna delle altre risposte

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{2T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

- A) altro
- **B**) $\frac{32}{(1+16\pi^2)^2} + 16$
- C) $\frac{32}{(1+16\pi^2)^2}$
- **D**) 0
- **E**) $\frac{8}{(1+16\pi^2)^2} + 16$

Esercizio 7. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 9
- **B**) $\frac{37}{4}$
- C) altro
- **D**) 0

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- **B)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{6}\right)^n u[n]$
- **D)** Nessuna delle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

A) $\frac{8}{(1+4\pi^2)^2}$

B) 0

C) altro

D) $\frac{8}{(1+4\pi^2)^2} + 4$

E) $\frac{6}{(1+4\pi^2)^2}+4$

Esercizio 2. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta + \cos(2\pi f_0 t + \theta)$, dove ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità, e θ è una variabile casuale indipendendente da ζ distribuita uniformemente nell'intervallo $(-\pi, +\pi)$.

A) x(t) è un processo ciclostazionario in senso lato.

B) x(t) è un processo stazionario in senso lato.

C) x(t) è un processo con media e varianza funzione del tempo.

Esercizio 3. (1.5 Punti) Si consideri la sequenza x[n], n = 0, 1, ..., 9 di N = 10 campioni, che vale 1 per n = 0, 2, 8 e vale zero altrove. Sia $X[k] = DFT\{x[n]\}$. Si ha

A) $X[k] = 1 + 2\cos(\frac{4k\pi}{10})$ $0 \le k \le 9$

B) Nessuna delle altre

C) $X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$

D) $X[k] = 2\cos(\frac{2\pi}{10}k)$ $0 \le k \le 9$

Esercizio 4. (1.5 punti) Il segnale $x(t) = \frac{1}{3} + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A**) 0
- B) altro
- C) $\frac{1}{9}$
- **D**) $\frac{13}{36}$

Esercizio 5. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$
$$x_2(t) = e^{-at}u(t) \quad a > 0$$

(suggerimento: si lavori nel dominio della frequenza).

- **A)** $\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = c[x_2(t) \frac{\sqrt{T}}{\pi}\tan^{-1}\left(\frac{\pi}{aT}\right)\psi_1(t)]$ con c costante di normalizzazione.
- **B)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- C) Nessuna delle altre risposte
- **D)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$
- **E)** $\psi_1(t) = \sqrt{T}x_1(t)$, $\psi_2(t) = c[x_2(t) + \tan^{-1}(\pi/T)\psi_1(t)]$ con c costante di normalizzazione.

Esercizio 6. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{2N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} z^{-m}$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- B) assume valori non nulli per ogni valore di $n \ge 0$
- C) non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \ge 2N^2 + N + 1$
- **E)** può assumere sia valori positivi che negativi ed è nulla a partire da $n \geq 2N^2 + 1$

Esercizio 7. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a - 7 \right]$$

B)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

C)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

D)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

Esercizio 8. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{3}\right)^n u[n] - \frac{1}{6} \left(\frac{1}{3}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- A) Nessuna delle altre risposte
- **B)** $h[n] = \left(\frac{1}{3}\right)^{n-1} u[n-1]$
- C) $h[n] = \left(\frac{1}{6}\right)^n u[n]$
- **D)** h[n] = x[n]

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale $x(t) = 3 + \cos(2\pi f_0 t)$ con f_0 costante, passa attraverso un filtro passabasso di tipo RC con costante di tempo

$$RC = \frac{1}{2\pi f_0}$$

e con risposta all'impulso $h(t) = \frac{1}{RC} e^{-t/RC} u(t)$. La potenza del segnale in uscita dal filtro vale:

- **A)** 0
- B) altro
- **C**) 9
- **D**) $\frac{37}{4}$

Esercizio 2. (2.0 Punti)

Antitrasformare la seguente funzione di trasferimento numerica di un filtro causale: $H(z) = \frac{z^2 - 1}{z^8(z-a)^2}$. Indicare quale risultato è corretto.

A)
$$h[n] = \delta[n-8] + a^{n-8}u[n-9] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

B)
$$h[n] = \delta[n-8] + a^{n-9}u[n-9] [n(1-a^{-2}) + 9a - 8]$$

C)
$$h[n] = a^{n-8}u[n-8] [n(1-a^{-2}) + 9a - 7]$$

D)
$$h[n] = \delta[n-7] + a^{n-8}u[n-8] \left[n(1-a^{-2}) + 9a^{-2} - 7\right]$$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-\frac{|t-kT|}{T}}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. La potenza del segnale in uscita dal filtro vale:

1

A)
$$\frac{8}{(1+4\pi^2)^2}+4$$

- **B**) 0
- C) altro

D)
$$\frac{6}{(1+4\pi^2)^2}+4$$

E)
$$\frac{8}{(1+4\pi^2)^2}$$

Esercizio 4. (2.5 punti) Si usi il procedimento di Gram-Schmidt per trovare la base ortonormale che consente di rappresentare i due segnali:

$$x_1(t) = \frac{\sin(\pi t/T)}{\pi t}$$

$$x_2(t) = T \left(\frac{\sin(\pi t/T)}{\pi t}\right)^2$$

(suggerimento: si lavori nel dominio della frequenza).

A) Nessuna delle altre risposte

B)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - x_1(t)]$$

C)
$$\psi_1(t) = \sqrt{T}x_1(t), \ \psi_2(t) = \sqrt{\frac{48T}{5}}[x_2(t) - 3/4x_1(t)]$$

- **D)** $\psi_1(t) = x_1(t), \ \psi_2(t) = x_2(t)$
- **E)** È sufficiente l'unico versore $\psi_1(t) = \sqrt{T}x_1(t)$

Esercizio 5. (1.5 Punti) Quando all'ingresso di un filtro numerico viene inviato il segnale

$$x[n] = \left(\frac{1}{8}\right)^n u[n] - \frac{1}{16} \left(\frac{1}{8}\right)^{n-1} u[n-1]$$

l'uscita vale

$$y[n] = \left(\frac{1}{8}\right)^n u[n]$$

La risposta all'impulso del filtro vale:

- **A)** h[n] = x[n]
- B) Nessuna delle altre risposte
- **C)** $h[n] = \left(\frac{1}{8}\right)^{n-1} u[n-1]$
- **D)** $h[n] = \left(\frac{1}{16}\right)^n u[n]$

Esercizio 6. (2.0 punti) Si consideri un processo casuale $x(t) = \zeta r(t - \eta)$, dove r(t) è un impulso rettangolare causale di durata T e ampiezza unitaria, η e ζ sono due variabili casuali statisticamente indipendenti. ζ è una variabile casuale discreta che assume i due valori ± 1 con uguale probabilità.

- A) x(t) è un processo a tempo continuo e discreto in ampiezza, non stazionario per la media.
- B) x(t) è un processo a tempo continuo e discreto in ampiezza, a valore medio nullo.
- C) x(t) è un processo a tempo continuo e continuo in ampiezza, a valore medio nullo.

Esercizio 7. (1.5 Punti) Si consideri un filtro numerico del tipo:

$$H(z) = \prod_{i=1}^{N} H_i(z)$$

dove

$$H_i(z) = \sum_{m=0}^{N} a_m z^{-m} \ a_m > 0$$

La risposta all'impulso h[n]:

- A) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + 1$
- B) può assumere sia valori positivi che negativi ed è nulla a partire da $n \ge N^2 + N + 1$
- C) non assume valori negativi ed è nulla a partire da $n \ge N^2 + 1$
- **D)** non assume valori negativi ed è nulla a partire da $n \geq N^2 + N + 1$

E) assume valori non nulli per ogni valore di $n \geq 0$

Esercizio 8. (1.5 Punti) Si consideri la sequenza x[n], $n=0,1,\ldots,9$ di N=10 campioni, che vale 1 per n=0,2,8 e vale zero altrove. Sia $X[k]=\mathrm{DFT}\{x[n]\}$. Si ha

A)
$$X[k] = 2\cos(\frac{2\pi}{10}k)$$
 $0 \le k \le 9$

B)
$$X[k] = 1 + \frac{1}{2} \left(e^{-j\frac{4\pi}{10}k} + e^{j\frac{2\pi}{10}8k} \right) \quad 0 \le k \le 9$$

C)
$$X[k] = 1 + 2\cos(\frac{4k\pi}{10})$$
 $0 \le k \le 9$

D) Nessuna delle altre