Base de données réparties - Fragmentation-

Pr. EL KABTANE Hamada

Définition

- La fragmentation est le processus de décomposition d'une base de donnée en un ensemble de sous bases de données.
- ► Cette décomposition doit être sans perte d'information.
- La fragmentation des données représente un sous-ensemble obtenu par la sélection de lignes et de colonnes à partir d'une relation globale localisée sur un site unique.

Pourquoi fragmenter?

- Amélioration des performances (placer les traitements à l'endroit où se trouvent les données).
- Favoriser les accès locaux.
- Équilibrer la charge de travail entre les sites.

Comment fragmenter?

- Possibilités de fragmentation d'une relation:
 - Découpage Horizontale:
 - Basée sur des sélections
 - o Fragment horizontal: Est constitué d'un sous-ensemble de tûples d'une relation

- Découpage Verticale:
 - Basée sur des projections
 - Fragment vertical: Est constitué d'un sous-ensemble d'attributs d'une relation

Comment fragmenter (suite) ?

- Possibilités de fragmentation d'une relation
 - Hybride:
 - o Basée sur Sélection et projection

Aspect correct de la fragmentation

- La fragmentation est régit par trois règles :
- 1. L'aspect complet (la complétion) : Si une relation R est décomposée en fragments FR1, FR2, ... FRn, chaque donnée qui se trouve dans R doit apparaitre dans un des fragments.

Cette règle est indispensable pour interdire toute perte de donnée pendant la fragmentation.

- 2. La reconstruction : on doit pouvoir recomposer R à partir de ses fragments.
- 3. La disjointure : Si une donnée ai apparait dans le fragment FRi, alors il ne peut apparaitre dans aucun autre fragment. La fragmentation verticale constitue une exception à cette règle, car les attributs de clé primaire doivent être répétés pour permettre la reconstruction. Cette règle garantit la redondance minimale des données.

Fragmentation Horizontale

- C'est la décomposition d'une table en sous tables par utilisation des prédicats permettant de sélectionner les lignes appartenant à chaque fragment.
- L'opération de sélection regroupe les tuples qui possèdent au moins une propriété en commun, comme par exemple les tuples utilisés par une même application ou dans un même site.
- Soit une relation R, un fragment horizontal est défini par σ_{pi} (R) où pi est un prédicat établi sur un ou plusieurs attributs de la relation.

Technique de Fragmentation Horizontale

- Il existe deux types de fragmentation horizontale:
 - Fragmentation horizontale primaire :
 - o Fragments définis par sélection

Ex:

Clients (NClient, Nom, Ville)

 $Client1 = \sigma_{Ville = Paris}(Client)$

Client1= SELECT * FROM Client WHERE Ville = "Paris"

Client2 = $\sigma_{\text{Ville }!=\text{Paris}}$ (Client)

Client2= SELECT * FROM Client WHERE Ville <> "Paris"

o Reconstruction par union des fragments

Ex : Client = Client1 U Client2

Fragmentation Horizontale Primaire – Exemple

NoClient	Nom	Ville
C1	Dupont	Paris
C2	Martin	Grenoble
C3	Martin	Paris
C4	Talon	Lille

CLIENT= CLIENT1@Site1 U CLIENT2@Site2 $\sigma_{\text{ville=paris}}$ (R) $\cap \sigma_{\text{ville}} <> \text{paris}$ (R) = \varnothing

CLIENT1= $\sigma_{ville\ =paris}$ (CLIENT)

NoClient	Nom	Ville
C1	Dupont	Paris
C3	Martin	Paris

CLIENT2=	σ_{ville}	<> paris	(CLIENT)
	-viiie	<pre><pre><pre><pre>parls</pre></pre></pre></pre>	,,

NoClient	Nom	Ville
C4	Talon	Lille
C2	Martin	Grenoble

Fragmentation Horizontale Dérivée

- La Fragmentation d'une table en fonction des fragments horizontaux d'une autre table.
- Fragments définis par (semi) jointure

Reconstruction par union des fragments

Fragmentation Horizontale Dérivée – Exemple 1

Commande:

ncde	nclient	produit	qté
D 1	C 1	P 1	10
D 2	C 1	P 2	20
D 3	C 2	P 3	5
D 4	C 4	P 4	10

Client1

NoClient	Nom	Ville
C1	Dupont	Paris
C3	Martin	Paris

ncde	nclient	produit	qté	
D 1	C 1	P 1	10	
D 2	C 1	P 2	20	

Table COMMANDE1 construite à partir du résultats de la requête suivante :

SELECT * FROM Commande WHERE NCLient IN (SELECT NCLient FROM CLIENT1)

OU

SELECT ncde, nclient, produit, gte from COMMANDE, CLIENT1

WHERE COMMANDE.nclient = CLIENT1.nclient

Commande1 = Commande X Client1

Fragmentation Horizontale Dérivée - Exemple 2

Contexte:

On considère une base de données comprenant les tables suivantes:

ETUDIANT (numE, nomE, pnomE, numC)

CENTRE (numC, villeC, adrC, telC)

avec : villeC ∈ {'Marrakech', 'Casablanca', 'Laayoune'}

Hypothèses

- Chaque site gère son centre
- Chaque centre gère ses étudiants

Fragmentation Horizontale Dérivée – Exemple 2

Solution:

1. Fragmente les centres horizontalement selon les sites:

$$CentreMar = \frac{1}{\sigma villeC = \text{`Marrakech'}}(Centre)$$

$$CentreCasa = \frac{1}{\sigma villeC = \text{`Casablanca'}}(Centre)$$

$$CentreLaay = \frac{1}{\sigma villeC = \text{`Laâyoune'}}(Centre)$$

2. Réaliser une semi jointure de la relation Etudiant avec les fragments de la relation centre :

Fragmentation Horizontale Dérivée – Exemple 2

```
CentreMar = select * from centre where villeC = 'Marrakech';
CentreCasa = select * from centre where villeC = 'Casablanca';
CentreLaay = select * from centre where villeC = 'Laâyoune';
```

- EtudiantMar = SELECT * FROM Etudiant WHERE numC IN (SELECT numC FROM CentreMar);
- EtudiantCasa = SELECT * FROM Etudiant WHERE numC IN (SELECT numC FROM CentreCasa);
- EtudiantLaay = SELECT * FROM Etudiant WHERE numC IN (SELECT numC FROM CentreLaay)

Exercice

■ Soit la base de données suivante :

Relation Compte

No client	Agence	Type compte	Somme	Rela	ation Agence
174723	Lausanne	courant	123345		
177498	Genève	courant	34564	Agence	Adresse
201639	Lausanne	courant	45102	Lausanne	Rue du lac, 3. 1002 Lausanne
201639	Lausanne	dépôt	325100	Genève	Avenue du Mont Blanc, 21. 1200 Genève
203446	Genève	courant	274882		
	Relation	Client			
No client	Nom client	Prènom	Age		
174723	8 Villard	Jean	29		
177498	Cattell	Blaise	38		
201639	Tsellis	Alan	51		
203446	Kowalsky	Valdimir	36		

Fragmenter les agences avec leurs clients avec leurs comptes.