INDIA INSTITUTE OF TECHNOLOGY KHARAGPUR

Date ----, FN/AN, Time: 3 Hrs., Full Marks 50, Dept. of Mathematics

No. of Students 62, End Autumn Semester Examination: 2011-12

Sub.No. MA40001/MA41007, Sub. Name: Functional Analysis, 4th year

Instruction: Attempt any FIVE questions. All questions carries equal marks.

1(a) Let B(X,Y) denotes the set of all bounded linear operators from a normed space X into a normed space Y. If Y is a Banach space, then prove that $(B(X,Y), \|.\|_{B(X,Y)})$ is a Banach space, where

$$||T||_{B(X,Y)} = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||_Y}{||x||_X}$$

- **1(b)** Find the dual basis of (e_1, e_2, e_3) for \mathbb{R}^3 where $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$.
- 1(c) Find the dual space of \mathbb{R}^n .
- **2(a)** If (X, <, >) is a real inner product space in which $||x + y||^2 = ||x||^2 + ||y||^2$ holds for all $x, y \in X$ then show show that $x \perp y$. Can the same conclusion be drawn if X is a complex inner product space. Justify your answer.
- 2(b) State and prove Schwarz inequality in case of inner product space.
- **2(c)** Prove that a subspace of a separable Hilbert space is separable.
- **3(a)** Let $T: X \to X$ be a bounded linear operator on a complex inner product space. If $\langle Tx, x \rangle = 0$ for all $x \in X$ then show that T = 0. Show that this does not hold in the case of a real inner product space.
- **3(b)** If Y is a closed subspace of a Hilbert space then prove that $Y = Y^{\perp \perp}$, where

$$Y^{\perp} = \{ x \in H : x \perp Y \}.$$

3(c) Let X be the inner product space of all real valued continuous functions on $[0, 2\pi]$ with inner product defined by

$$< x, y > = \int_0^{2\pi} x(t)y(t) dt.$$

Show that (u_n) where $u_n(t) = \cos nt$ form an orthogonal sequence in X. Find its corresponding orthonormal sequence.

4(a) If (e_k) is an orthonormal sequence in an inner product space X and $x \in X$ then show that x - y with y given by

$$y = \sum_{k=1}^{n} \alpha_k e_k, \qquad \alpha_k = < x, e_k >$$

is orthogonal to the subspace $Y_n = \text{span}\{e_1, e_2, \cdots, e_n\}$.

- 4(b) State and prove Riesz's Theorem in regard to represent bounded linear functional on a Hilbert space.
- **4(c)** On \mathbb{C}^2 , let the operator $T:\mathbb{C}^2\to\mathbb{C}^2$ be defined by

$$Tx = (\xi_1 + i\xi_2, \xi_1 - i\xi_2),$$

where $x = (\xi_1, \xi_2)$. Find T^* . Further show that $T^*T = TT^* = 2I$.

5(a) Define Hilbert-adjoint operator T^* of a bounded linear operator $T: H_1 \to H_2$, where H_1 and H_2 are Hilbert spaces. Prove that T^* exists and it is unique. Also prove that T^* is a bounded linear operator with norm

$$||T^*|| = ||T||.$$

- **5(b)** If (T_n) is a sequence of bounded linear operators on a Hilbert space and $T_n \to T$ then show that $T_n^* \to T^*$.
- **5(c)** Let H be a Hilbert space and the operator $U: H \to H$ be unitary. Then prove that U^{-1} is unitary.
- 6(a) State and prove Banach fixed point theorem
- **6(b)** Let $X = \{x \in \mathbb{R} : x \ge 1\} \subset \mathbb{R}$ and let the mapping $T : X \to X$ be defined by $Tx = \frac{x}{2} + \frac{1}{x}$. Using Banach fixed point theorem show that T has a unique fixed point in X.
- **6(c)** Let $T: X \to X$ be a mapping on a complete metric space X = (X, d) and suppose that T^m is a contraction on X for some positive integer m. Then show that T has a unique fixed point.