Math 310

Homework 4

Due: 10/9/2024

Name: Gianluca Crescenzo

Exercise 1. Prove the following limits:

(1)
$$\left(\frac{2n}{n+2}\right)_n \to 2$$
.

Proof. Let $\epsilon>0$. There exists $N_{\epsilon}\in \mathbf{N}$ such that $N_{\epsilon}>\frac{2}{\epsilon}-1$. If $n\geqslant N_{\epsilon}$, then $n>\frac{2}{\epsilon}-1$ gives:

$$\frac{4}{\epsilon} < n+1 \implies \frac{4}{n+1} < \epsilon$$

$$\implies \frac{|2n-2n-4|}{n+1} < \epsilon$$

$$\implies \left| \frac{2n-2(n+1)}{n+2} \right| < \epsilon$$

$$\implies \left| \frac{2n}{n+2} - 2 \right| < \epsilon.$$

(2)
$$\left(\frac{\sqrt{n}}{n+1}\right)_n \to 0.$$

Proof. Observe that:

$$\left|\frac{\sqrt{n}}{n+1}\right| \leqslant \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}.$$

Claim: $\left(\frac{1}{\sqrt{n}}\right)_n \to 0$. Let $\epsilon > 0$. There exists $N_{\epsilon} \in \mathbb{N}$ such that $\frac{1}{\epsilon^2} < N_{\epsilon}$. If $n \ge N_{\epsilon}$, then $n > \frac{1}{\epsilon^2}$ gives:

$$\begin{split} \frac{1}{\epsilon^2} < n &\implies \frac{1}{n} < \epsilon^2 \\ &\implies \frac{1}{\sqrt{n}} < \epsilon \\ &\implies \left| \frac{1}{\sqrt{n}} \right| < \epsilon. \end{split}$$

Since $\left(\frac{1}{\sqrt{n}}\right)_n \to 0$, by "Lemma" $\left(\frac{\sqrt{n}}{n+1}\right)_n \to 0$.

$$(3) \left(\frac{(-1)^n}{\sqrt{n+7}}\right)_n \to 0.$$

Proof. We have:

$$\left| \frac{(-1)^n}{\sqrt{n+7}} \right| = \frac{1}{\sqrt{n+7}} \leqslant \frac{1}{\sqrt{n}}.$$

Since
$$\left(\frac{1}{\sqrt{n}}\right)_n \to 0$$
, by "Lemma" $\left(\frac{(-1)^n}{\sqrt{n+7}}\right)_n \to 0$.

(4) $(n^k b^n)_n \to 0$, where $0 \le b < 1$ and $k \in \mathbb{N}$.

Proof. We proceed by using the ratio test. Claim: $\left(\left|\frac{(n+1)^kb^{n+1}}{n^kb^n}\right|\right)_n \to b$. We have:

$$\left| \frac{(n+1)^k b^{n+1}}{n^k b^n} - b \right| = \left| \frac{\left((n+1)^k - n^k \right) b}{n^k} \right|$$

$$= b \cdot \frac{(n+1)^k - n^k}{n^k}$$

$$= b \left(\left(\frac{n+1}{n} \right)^k - 1 \right)$$

$$= b \left(\left(1 + \frac{1}{n} \right)^k - 1 \right).$$

Since $(\frac{1}{n})_n \to 0$, $\epsilon_n = \left(\left(1 + \frac{1}{n}\right)^k - 1\right)_n \to 0$. Thus by "Lemma", $\left(\left|\frac{(n+1)^k b^{n+1}}{n^k b^n}\right|\right)_n \to b$. Since $0 \le b < 1$, by the ratio test $(n^k b^n)_n \to 0$.

(5)
$$\left(\frac{2^{n+1}+3^{n+1}}{2^n+3^n}\right)_n \to 3.$$

Proof. Observe that:

$$\left| \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} - 3 \right| = \left| \frac{2^{n+1} + 3^{n+1} - 3(2^n + 3^n)}{2^n + 3^n} \right|$$

$$= \left| \frac{2 \cdot 2^n - 3 \cdot 2^n}{2^n + 3^n} \right|$$

$$= \frac{2^n}{2^n + 3^n}$$

$$\leq \frac{2^n}{3^n}$$

$$= \left(\frac{2}{3} \right)^n.$$

Since $\left(\left(\frac{2}{3}\right)^n\right)_n \to 0$, by "Lemma" $\left(\frac{2^{n+1}+3^{n+1}}{2^n+3^n}\right)_n \to 3$.

Exercise 2. Show that the sequence $(\cos(n))_n$ does not converge.

Exercise 3. If $(x_n)_n$ is a real sequence converging to x, show that

$$(|x_n|)_n \to |x|.$$

Is the converse true?

Proof. Since $(x_n)_n \to x$ is a convergent sequence, we have:

$$||x_n| - |x|| \le |x_n - x| < \epsilon.$$

Thus $(|x_n|)_n \to |x|$. Note that the converse is not true: $(|(-1)^n|)_n \to 1$ converges whereas $((-1)^n)_n$ does not.

Exercise 4. If $(x_n)_n$ is a real sequence converging to x > 0, show that there is an $N \in \mathbb{N}$ and c > 0 such that

$$x_n \geqslant c$$

for all $n \ge N$.

Proof. Pick $c = \frac{x}{2}$. Since $(x_n)_n$ is a convergent sequence, there exists $N_c \in \mathbb{N}$ such that $n \ge N_c$ implies $|x_n - x| < \frac{x}{2}$. Simplifying yields $\frac{x}{2} < x_n < \frac{3x}{2}$. Taking $c = \frac{x}{2}$ yields the desired result.

Exercise 5. If $(x_n)_n$ is a real sequence of positive terms converging to x, show that $x \ge 0$ and

$$(\sqrt{x_n})_n \to \sqrt{x}$$
.

Proof. Observe that:

$$\left|\sqrt{x_n} - \sqrt{x}\right| \le \left|\sqrt{x_n} - \sqrt{x}\right| \left|\sqrt{x_n} + \sqrt{x}\right| = |x_n - x| < \epsilon.$$

Hence $(\sqrt{x_n})_n \to \sqrt{x}$. If x < 0, then $\sqrt{x} \notin \mathbf{R}$, contradicting the definition of a real sequence.

Exercise 6. If $(x_n)_n$ and $(y_n)_n$ are sequences with $(x_n)_n \to 0$ and $(y_n)_n$ bounded, show that

$$(x_ny_n)_n \to 0.$$

Proof. Since $(y_n)_n$ is bounded, $|y_n| \le c$ for some c > 0. We have:

$$|x_n y_n| \leq c |x_n|$$
.

Taking $\epsilon_n = |x_n|$ and using "Lemma" gives $(x_n y_n)_n \to 0$.

Exercise 7. If $(x_n)_n$ is a sequence of positive terms such that

$$\left(\frac{x_{n+1}}{x_n}\right)_n \to L > 1,$$

show that $(x_n)_n$ is not bounded hence not convergent. If L=1, can we make any conclusion?

Proof. Consider the following picture:

$$\leftarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Since $\left(\frac{x_{n+1}}{x_n}\right)_n \to L$, we know there exists some $N \in \mathbb{N}$ such that $n \geqslant N$ implies $L - \epsilon < \frac{x_{n+1}}{x_n} < L + \epsilon$. Pick $\rho = L - \epsilon > 1$, then $\frac{x_{n+1}}{x_n} \geqslant \rho$. This gives $x_{n+1} \geqslant \rho x_n$. But inductively we have that:

$$x_{N+1} \geqslant \rho x_N$$
 $x_{N+2} \geqslant \rho x_{N+1} \geqslant \rho^2 x_N$
 \vdots
 $x_{N+n} \geqslant \rho^n x_N.$

Note that x_{N+n} is a tail of $(x_n)_n$, and since $(\rho^n)_n \to +\infty$, it must be the case that $(x_n)_n \to +\infty$. Now consider

$$(n)_n \to +\infty, \quad \left(\frac{n+1}{n}\right)_n \to 1,$$
 $\left(\frac{1}{n}\right)_n \to 0, \quad \left(\frac{n}{n+1}\right)_n \to 1.$

Hence if L = 1, we cannot make any conclusion.

Exercise 8. Let a and b be positive numbers. Show that

$$\left((a^n + b^n)^{\frac{1}{n}} \right)_n \to \max \left\{ a, b \right\}.$$

Proof. Case 1: $\max \{a, b\} = a$. Then b < a. We have:

$$(a^{n})^{\frac{1}{n}} \leq (a^{n} + b^{n})^{\frac{1}{n}} \leq (2a^{n})^{\frac{1}{n}}$$

$$\implies a \leq (a^{n} + b^{n})^{\frac{1}{n}} \leq (2^{\frac{1}{n}})a.$$

Hence $\left((a^n+b^n)^{\frac{1}{n}}\right)_n \to a$ by the squeeze theorem. Case 2: $\max\{a,b\}=b$. Then a < b. We have:

$$(b^{n})^{\frac{1}{n}} \leqslant (a^{n} + b^{n})^{\frac{1}{n}} \leqslant (2b^{n})^{\frac{1}{n}}$$

$$\implies b \leqslant (a^{n} + b^{n})^{\frac{1}{n}} \leqslant (2^{\frac{1}{n}})b.$$

Hence $\left((a^n+b^n)^{\frac{1}{n}}\right)_n \to b$ by the squeeze theorem.

Exercise 9. Let $(x_n)_n$ be a sequence of positive terms such that:

$$(x_n^{1/n})_n \to L < 1.$$

Prove that $(x_n)_n \to 0$. If L = 1 can we make any conclusion? What about L > 1?

Proof. Since $(x_n^{1/n})_n$ is a convergent sequence, we have that $L - \epsilon < x_n^{1/n} < L + \epsilon$.

Case 1: L < 1. Then $\rho := L + \epsilon < 1$. Hence $x_n^{1/n} < \rho$; i.e., $x_n = |x_n| < \rho^n$. Since $(\rho^n)_n \to 0$, we have that $(x_n)_n \to 0$.

Case 2: L > 1. Then $\rho := L - \epsilon > 1$. Hence $x_n^{1/n} \ge \rho$; i.e., $x_n \ge \rho^n$. Since $(\rho^n)_n \to +\infty$, we have that $(x_n^{1/n})_n \to +\infty$.

Case 3: L = 1. Observe that:

$$(a)_n \to a$$
, $(a^{1/n})_n \to 1$ for some $a > 1$,
 $(n)_n \to +\infty$, $(n^{1/n})_n \to 1$.

Therefore we cannot make any conclusion if L = 1.