Please amend the claims as follows:

- 1. (Currently amended) A fluorescent lamp circuit, comprising:
 - a power source selectively arranged to deliver power to a load;
 - a first fluorescent lamp coupled to the power source;
- a second fluorescent lamp coupled in series to the first fluorescent lamp and coupled to the power source;

an end-of-life detection circuit coupled to the first and second fluorescent lamps; and

a striation correction circuit coupled to the power source and coupled to the first and second fluorescent lamps that is arranged to apply a first striation correction current to the first fluorescent lamp and a second striation correction current to the second fluorescent lamp wherein a first voltage appearing across the first fluorescent lamp resulting from the first striation correction current is substantially similar in magnitude and having inverted polarity with respect to a second voltage across the second fluorescent lamp resulting from the second striation correction current.

- 2. (Cancelled)
- 3. (Currently amended) The circuit of claim 1 2 wherein the end-of-life detection circuit comprises a capacitor arranged in series with the first and second fluorescent lamps to sense voltage changes in a closed-loop circuit with the power source and the first and second fluorescent lamps.
- 4. (Original) The circuit of claim 3 wherein the end-of-life detection circuit further comprises a current sense transformer.

Case No.: US020475 (7790/490)

Serial No.: 10/537,008

Filed: May 25, 2005 Page 3 of 9

5. (Original) The circuit of claim 1 wherein the striation correction circuit comprises a first lamp correction circuit for generating the first striation correction current in the first fluorescent lamp and a second lamp correction circuit for generating the second striation

6. (Original) The circuit of claim 5 wherein the first lamp correction circuit is arranged in parallel with the first lamp and the second lamp correction circuit is arranged in parallel with the second lamp and wherein the first and second lamp circuits are in series.

correction current in the second fluorescent lamp.

- 7. (Original) The circuit of claim 6 wherein the first lamp correction circuit and the second lamp correction circuit each comprise a diode in series with a resistor and wherein the first and second lamp correction circuits are arranged symmetrically with the diodes opposing one another other.
- 8. (Original) The circuit of claim 5 wherein the first lamp correction circuit and the second lamp correction circuit comprises at least one transistor.
- 9. (Original) The circuit of claim 1 wherein the power source is a fluorescent lamp ballast coupled to the first and second fluorescent lamps through an isolation transformer.
- 10. (Original) The circuit of claim 1 wherein the fluorescent lamp circuit comprises at least one additional pair of fluorescent lamps and at least one additional corresponding striation correction circuit all coupled to the power source and wherein the at least one additional pair of fluorescent lamps are arranged in series with the first and second fluorescent lamps.
- 11. (Original) The circuit of claim 1 wherein the first and second striation correction currents are DC signals and wherein the first striation current is opposite in sense to the second striation current.

Case No.: US020475 (7790/490)

Serial No.: 10/537,008 Filed: May 25, 2005

Page 4 of 9

12. (Currently amended) A method of reducing striations in a fluorescent lighting system, comprising:

generating a first striation correction current and a second striation correction current;

applying the first striation correction current to a first fluorescent lamp; and applying the second striation correction current to a second fluorescent lamp wherein the first fluorescent lamp and the second fluorescent lamp are coupled in series and wherein a first voltage appearing across the first fluorescent lamp resulting from the first striation correction current is substantially similar in magnitude and having inverted polarity with respect to a second voltage appearing across the second fluorescent lamp resulting from the second striation correction current; and

sensing a voltage change in the fluorescent lighting circuit indicative of a fluorescent tube end-of-life condition wherein an end-of-life detection circuit is coupled to the first and second fluorescent lamps.

13. (Cancelled)

- 14. (Currently amended) The method of claim 12 13 wherein the end-of-life detection circuit comprises a capacitor arranged in series with the first and second fluorescent lamps.
- 15. (Previously presented) The method of claim 12 wherein a striation correction circuit comprises a first lamp correction circuit for generating the first striation correction current in the first fluorescent lamp and a second lamp correction circuit for generating the second striation correction current in the second fluorescent lamp.

Case No.: US020475 (7790/490)

Serial No.: 10/537,008

Filed: May 25, 2005 Page 5 of 9

16. (Original) The method of claim 15 wherein the first lamp correction circuit is

arranged in parallel with the first lamp and the second lamp correction circuit is arranged in

parallel with the second lamp and wherein the first and second lamp correction circuits are in

series.

17. (Original) The method of claim 16 wherein the first lamp correction circuit and

the second lamp correction circuit each comprise a diode in series with a resistor and wherein the

first and second lamp correction circuits are arranged symmetrically with the diodes opposing

one another other.

18. (Original) The method of claim 16 wherein the first lamp correction circuit and

the second lamp correction circuit are comprised of at least one component selected from the

group consisting of a transistor, a resistor, a diode, a capacitor and an inductor.

19. (Original) The method of claim 12 wherein the fluorescent lamp circuit

comprises at least one additional pair of fluorescent lamps and at least one additional

corresponding striation correction circuit all coupled to the power source and wherein the at least

one additional pair of fluorescent lamps are arranged in series with the first and second

fluorescent lamps.

20. (Currently amended) A system for reducing striations in a multi-tube fluorescent

lamp assembly, comprising:

means for generating a first striation correction current and a second striation

correction current;

means for applying the first striation correction current to a first fluorescent lamp;

means for applying the second striation correction current to a second fluorescent

lamp; and[[,]]

Case No.: US020475 (7790/490)

Serial No.: 10/537,008 Filed: May 25, 2005

Page 6 of 9

means for sensing a voltage change in the fluorescent lighting circuit indicative of

a fluorescent tube end-of-life condition wherein an end-of-life detection circuit is coupled to the

first and second fluorescent lamps;

wherein the first fluorescent lamp and the second fluorescent lamp are coupled in

series and wherein a first voltage appearing across the first fluorescent lamp resulting from the

first striation correction current is substantially equal in magnitude and having inverted polarity

with respect to a second voltage appearing across the second fluorescent lamp resulting from the

second striation correction current.

21. (Previously presented) The circuit of claim 1 wherein the first striation correction

current and the second striation correction current are substantially equivalent in magnitude.

22. (Previously presented) The circuit of claim 3 wherein net DC voltage on the

capacitor is zero.

23. (Previously presented) The method of claim 12 wherein the first striation

correction current and the second striation correction current are substantially equivalent in

magnitude.

24. (Previously presented) The system of claim 20 wherein the first striation

correction current and the second striation correction current are substantially equivalent in

magnitude.