CLAIMS

- A method of inhibiting intracellular translation of viral mRNAs into viral proteins required for virion assembly and infectivity, comprising: administering, to eukaryotic cells, tissues, or individuals, an agent which blocks the accumulation of spliced and unspliced viral transcripts and their utilization for viral protein synthesis at cellular ribosomes.
 - 2. The method of Claim 1 wherein the agent is administered topically.
 - 3. The method of Claim 1 wherein the agent comprises a compound of formula (I)

$$R_2$$
 N
 B
 $COOR_1$
 (I)

where

R₁ is hydrogen or a pharmacologically acceptable salt;

 R_2 is ortho-hydroxy-substituted phenyl or pyridyl, where the phenyl or pyridyl group is otherwise unsubstituted or substituted with 1 to 3 additional substituents selected from the group consisting of (C_1 - C_6) alkyl, phenyl, (C_1 - C_6)alkoxy, halogen or hydroxyl; and A-B is -CH₂-CR₃- or -CH=C-, where R_3 is hydrogen or (C_1 - C_6)alkyl.

- 4. The method of Claim 3 wherein R₁ is hydrogen, R₂ is phenyl, A-B is -CH=CR₃- and R₃ is hydrogen.
- 5. The method of Claim 3 wherein R_1 is hydrogen and R_2 is pyridyl.
- 6. The method of Claim 3 wherein R_1 is hydrogen, R_2 is phenyl, A-B is CH=C- and R_3 is hydrogen.
- 7. The method of Claim 1 wherein the agent comprises a compound of formula (II)

8.

$$R_1$$
 R_2
 N
 OR_3
 O
(II)

wherein

 R_1 is (C_1-C_6) alkyl;

 R_2 is (C_1-C_{10}) straight or branched alkyl, (C_3-C_6) cycloalkyl or phenoxy (C_1-C_3) alkyl, where the phenoxy group is substituted by substituted or unsubstituted phenoxy; and

R₃ is hydrogen or a pharmacologically acceptable salt.

- 8. The method of claim 7 wherein R_1 is methyl.
- 9. A method of inhibiting the utilization of spliced and unspliced viral transcripts for viral protein synthesis at cellular ribosomes comprising:

administering, to eukaryotic cells, tissues, or individuals, an agent which blocks hypusine formation within eIF5A in an amount sufficient to suppress the translationally productive interaction of eIF-5A with viral elements of nucleic acid and/or protein structure.

- 10. The method of Claim 9 wherein the agent is administered topically.
- 11. The method of Claim 9 wherein the agent comprises a compound of formula (I)

$$R_2$$
 N
 B
 $COOR_1$
 (I)

where

R₁ is hydrogen or a pharmacologically acceptable salt;

 R_2 is ortho-hydroxy-substituted phenyl or pyridyl, where the phenyl or pyridyl group is otherwise unsubstituted or substituted with 1 to 3 additional substituents selected from the group consisting of (C_1 - C_6) alkyl, phenyl, (C_1 - C_6)alkoxy, halogen or hydroxyl; and A-B is -CH₂-CR₃- or -CH=C-, where R_3 is hydrogen or (C_1 - C_6)alkyl.

- 12. The method of Claim 11 wherein R_1 is hydrogen, R_2 is phenyl, A-B is -CH=CR₃- and R_3 is hydrogen.
- 13. The method of Claim 11 wherein R_1 is hydrogen and R_2 is pyridyl.
- 14. The method of Claim 11 wherein R₁ is hydrogen, R₂ is phenyl, A-B is CH=C- and R₃ is hydrogen.
- 15. The method of Claim 9 wherein the agent comprises a compound of formula (II)

wherein

 R_1 is (C_1-C_6) alkyl;

 R_2 is (C_1-C_{10}) straight or branched alkyl, (C_3-C_6) cycloalkyl or phenoxy (C_1-C_3) alkyl, where the phenoxy group is substituted by substituted or unsubstituted phenoxy; and

R₃ is hydrogen or a pharmacologically acceptable salt.

16. The method of claim 15 wherein R_1 is methyl.

17. A method of inhibiting synthesis of specific viral proteins of Rev/Rex-dependent lentiviruses, or of viruses dependent on interaction of eIF-5A with viral elements of nucleic acid and/or protein structure comprising:

administering, to eukaryotic cells, tissues, or individuals, an agent which blocks hypusine formation and thus eIF5A function in an amount sufficient to inhibit biosynthesis of viral proteins of Rev/Rex-dependent lentiviruses or of viruses dependent on interaction of eIF-5A with viral elements of nucleic acid and/or protein structure.

- 18. The method of Claim 17 wherein the agent is administered topically.
- 19. The method of Claim 17 wherein the agent comprises a compound of formula (I)

$$R_2$$
 N
 B
 $COOR_1$
 (I)

where

R₁ is hydrogen or a pharmacologically acceptable salt;

 R_2 is ortho-hydroxy-substituted phenyl or pyridyl, where the phenyl or pyridyl group is otherwise unsubstituted or substituted with 1 to 3 additional substituents selected from the group consisting of (C_1 - C_6) alkyl, phenyl, (C_1 - C_6)alkoxy, halogen or hydroxyl; and

A-B is -CH₂-CR₃- or -CH=C-, where R₃ is hydrogen or (C₁-C₆)alkyl.

- 20. The method of Claim 17 wherein R_1 is hydrogen, R_2 is phenyl, A-B is -CH=CR₃- and R_3 is hydrogen.
- 21. The method of Claim 17 wherein R_1 is hydrogen and R_2 is pyridyl.
- 22. The method of Claim 17 wherein R₁ is hydrogen, R₂ is phenyl, A-B is CH=C- and R₃ is hydrogen.
- 23. The method of Claim 15 wherein the agent comprises a compound of formula (II)

$$R_1$$
 R_2
 N
 O
 O
 O
 O

wherein

 R_1 is (C_1-C_6) alkyl;

 R_2 is (C_1-C_{10}) straight or branched alkyl, (C_3-C_6) cycloalkyl or phenoxy (C_1-C_3) alkyl, where the phenoxy group is substituted by substituted or unsubstituted phenoxy; and

R₃ is hydrogen or a pharmacologically acceptable salt.

- 24. The method of claim 23 wherein R_1 is methyl.
- 25. A method of inhibiting replication of Rev/Rex-dependent lentiviruses, or viruses dependent on interaction of eIF-5A with viral elements of nucleic acid and/or protein structure comprising:

administering, to eukaryotic cells, tissues, or individuals, an agent which blocks hypusine formation and thus eIF5A function or reduces the availability of Rev/Rex protein, in an amount sufficient to inhibit replication of Rev/Rex-dependent lentiviruses or of viruses dependent on interaction of eIF-5A with viral elements of nucleic acid and/or protein structure.

- 26. The method of Claim 25 wherein the agent is administered topically.
- 27. The method of Claim 25 wherein the agent comprises a compound of formula (I)

 R_2 A $COOR_1$

where

R₁ is hydrogen or a pharmacologically acceptable salt;

 R_2 is ortho-hydroxy-substituted phenyl or pyridyl, where the phenyl or pyridyl group is otherwise unsubstituted or substituted with 1 to 3 additional substituents selected from the group consisting of (C_1-C_6) alkyl, phenyl, (C_1-C_6) alkoxy, halogen or hydroxyl; and

A-B is -CH₂-CR₃- or -CH=C-, where R₃ is hydrogen or (C₁-C₆)alkyl.

- 28. The method of Claim 27 wherein R_1 is hydrogen, R_2 is phenyl, A-B is -CH=CR₃- and R_3 is hydrogen.
- 29. The method of Claim 27 wherein R_1 is hydrogen and R_2 is pyridyl.
- 30. The method of Claim 27 wherein R₁ is hydrogen, R₂ is phenyl, A-B is CH=C- and R₃ is hydrogen.
- 31. The method of Claim 25 wherein the agent comprises a compound of formula (II)

$$R_1$$
 N
 O
 O
 O
 O

wherein

 R_1 is (C_1-C_6) alkyl;

 R_2 is (C_1-C_{10}) straight or branched alkyl, (C_3-C_6) cycloalkyl or phenoxy (C_1-C_3) alkyl, where the phenoxy group is substituted by substituted or unsubstituted phenoxy; and

R₃ is hydrogen or a pharmacologically acceptable salt.

- 32. The method of claim 31 wherein R_1 is methyl.
- 33. A method of inducing apoptosis in cells infected with Rev/Rex-dependent lentiviruses or viruses dependent on interaction of eIF-5A with viral elements of nucleic acid and/or protein structure comprising:

administering, to cells infected with such viruses, an agent which blocks intracellular hypusine formation or reduces the availability of Rev/Rex protein, in an amount sufficient to induce apoptotic ablation of virally-infected cells.

- 34. The method of Claim 33 wherein the agent is administered topically.
- 35. The method of Claim 33 wherein the agent comprises a compound of formula (I)

$$R_2$$
 N
 B
 $COOR_1$
 (I)

where

R₁ is hydrogen or a pharmacologically acceptable salt;

 R_2 is ortho-hydroxy-substituted phenyl or pyridyl, where the phenyl or pyridyl group is otherwise unsubstituted or substituted with 1 to 3 additional substituents selected from the group consisting of (C_1 - C_6) alkyl, phenyl, (C_1 - C_6)alkoxy, halogen or hydroxyl; and

A-B is -CH₂-CR₃- or -CH=C-, where R₃ is hydrogen or (C₁-C₆)alkyl.

36. The method of Claim 35 wherein R_1 is hydrogen, R_2 is phenyl, A-B is -CH=CR₃- and R_3 is hydrogen.

- 37. The method of Claim 35 wherein R_1 is hydrogen and R_2 is pyridyl.
- 38. The method of Claim 35 wherein R₁ is hydrogen, R₂ is phenyl, A-B is CH=C- and R₃ is hydrogen.
- 39. The method of Claim 35 wherein the agent comprises a compound of formula (II)

$$R_1$$
 (II)

wherein

 R_1 is (C_1-C_6) alkyl;

 R_2 is (C_1-C_{10}) straight or branched alkyl, (C_3-C_6) cycloalkyl or phenoxy (C_1-C_3) alkyl, where the phenoxy group is substituted by substituted or unsubstituted phenoxy; and

R₃ is hydrogen or a pharmacologically acceptable salt.

- 40. The method of claim 31 wherein R_1 is methyl.
- 41. A method according to claim 1, wherein said administering is carried out topically or systemically.
- 42. A method according to claim 1 wherein said administering is carried out by percutaneous, oral, intravascular, intramuscular, intraperitoneal, intrathecal, or subcutaneous application, or ocular and mucous membrane administration.
- 43. A method according to claim 27, wherein the Rev-dependent lentivirus or virus dependent on interaction of host cell eIF-5A with viral elements of nucleic acid and/or protein structure, is selected from the group consisting of the human immunodeficiency viruses, the human T-cell leukemia viruses, the hepatitis B virus, the simian immunodeficiency viruses, the bovine immunodeficiency viruses, the feline immunodeficiency viruses, visna virus, equine infectious anemia virus, caprine arthritis-encephalitis virus, and Mason-Pfizer virus.
- 44. A method according to claim 43, wherein said method is used to inhibit human immunodeficiency viruses.

45. A method for suppressing genital transmission of human immunodeficiency virus which comprises administering to a male or female genital a compound of formula III or IV

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_7
 R_8
 R_9
 R_9
 R_9
 R_9
 R_9
 R_9

wherein R_1 , R_2 , R_3 , and R_4 each individually represent a hydrogen, an alkyl, alkenyl or alkoxy group containing 1 to about 8 carbons, an aryl, aralkyl, or cycloalkyl group containing about 5 to 12 carbon atoms, or a carboalkoxy or carbamyl group containing up to 8 carbon atoms, or a peptide or peptidomimetic moiety containing 10 to about 30 carbon atoms.

46. The method of Claim 45 wherein the compound is deferiprone.