

Uvod

- Neurodegenerativne bolesti su neizlečive bolesti nervnog sistema
- Automatska analiza slika detekcija neuronskih ćelija
- Neuroni su specijalne celije koje kodiraju i prenose informacije u obliku akcionih potencijala
- Najbolji pristup prepoznavanju neurona su algoritmi mašinskog učenja

- Izdvajanje regiona sa slika
- Izdvajanje atributa
- Podela na skup za treniranje i testiranje
- Treniranje i evaluacija

Skupovi atributa

1. CHARM (Compound Hierarchy of Algorithms Representing Morphology)

2. SIFT (Scale-Invariant Feature Transform)

- 1. KNN (k najbližih suseda)
- 2. SVM (Metod potpornih vektora)
- 3. RF (Random Forest)

O atributima CHARM

- WND-CHARM Python biblioteka otvorenog koda
- Veliki broj generičkih deskriptora slika
- Atributi se mogu podeliti na 4 kategorije:
 - 1.polinomijalne dekompozicije,
 - 2.atributi visokog kontrasta,
 - 3.statistika piksela i
 - 4.deskriptori tekstura
- Transformacije: fft, transformacija ivica, transformacija nad transformacijama

O atributima SIFT

- Gausovi kerneli za pronalaženje lokalnih ekstremuma na slikama
- Lokalni ekstremum je potencijalni 'keypoint'
- Tejlorov red lokalizovanje keypoint-a sa većom tačnošću
- Keypoint-u se dodjeljuje orijentacija
- Izracunava se deskriptor koji odgovara tom keypoint-u

Grafički prikaz

Algoritmi, parametri i treniranje

- Klasifikacija: SVM, Random
 Forests i KNN (najbolji sa SIFT atributima)
- Izbor modela: Unakrsna validacija (cv=5)
- Evaluacija: Unakrsnom
 validacijom i nad test skupom

- Klasifikacija SIFT atributi 2 x 990 slika
- Klasifikacija CHARM atributi 2 x 493 slike
- Nešto lošiji rezultati od onih dobijenih u radu

Metod	Atributi	Optimalna vrednost parametra	Tačnost algoritma sa optimalnom vrednošću parametra	Tačnost algoritma sa optimalnom vrednošću parametra korišćenjem unakrsne validacije
KNN	CHARM	"n neighbours": 6	0.8108108108108109	0.8325602968460112
	SIFT	"n neighbours": 5	0.8365384615384616	0.8737189309923903
SVM	CHARM	'C': 2 'gamma': 0.0009765625	0.8277027027027027	0.818315811172954
	SIFT	'C': 64, 'gamma': 0.00390625	0.8461538461538461	0.850645404254214
RF	CHARM	'max_features': 36, 'min_samples_leaf': 1	0.8412162162162162	0.8112760255617399
	SIFT	'max_features': 16, 'min_samples_leaf': 1	0.8581730769230769	0.8477547204113967

Izazovi

- Izuzetno složena izračunavanja
- Velika dimenzionalnost podataka
- Računarski resursi
- Vreme
- Relativno loš API za izdvajanje
 CHARM atributa
- Postojanje bagova u API-ju

Literatura

Automated neuron detection in high-content fluorescence microscopy images using machine learning Autori: G. Mata, M. Radojevic et al.

Link do repozitorijuma

https://github.com/UnaStankovic/NeuronMosaicsDetection/

