Increasing the Enlistment Bonus Cap and MOS Channeling Effects

Tirso Diaz, Michael Ingerick and Paul Sticha Human Resources Research Organization

United States Army Research Institute for the Behavioral and Social Sciences

March 2007

Approved for public release; distribution is unlimited.

U.S. Army Research Institute for the Behavioral and Social Sciences

A Directorate of the Department of the Army Deputy Chief of Staff, G1

Authorized and approved for distribution:

SCOTT E GRAHAM
Acting Technical Director

South & Mahan

MICHELLE SAMS
Director

michelle Damo

Research accomplished under contract for the Department of the Army

Human Resources Research Organization

Technical review by

Daniel Houser, Department of Economics, George Mason University Peter Greenston, U.S. Army Research Institute

NOTICES

DISTRIBUTION: Primary distribution of this Study Report has been made by ARI. Please address correspondence concerning distribution of reports to: U.S. Army Research Institute for the Behavioral and Social Sciences, Attn: DAPE-ARI-MS, 2511 Jefferson Davis Highway, Arlington, Virginia 22202-3926.

FINAL DISPOSITION: This Study Report may be destroyed when it is no longer needed. Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The findings in this Study Report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

		ATION DAGE
	REPORT DOCUMENTA	ATION PAGE
REPORT DATE (dd-mm-yy) March 2007	2. REPORT TYPE Final	3. DATES COVERED (from to) September 2005 – June 2006
4. TITLE AND SUBTITLE		5a. CONTRACT OR GRANT NUMBER DASW01-03-D-0015 / DO 0025
Increasing the Enlistment Bonu Channeling Effects	is Cap and MOS	5b. PROGRAM ELEMENT NUMBER 622785
6. AUTHOR(S)		5c. PROJECT NUMBER A790
Tirso Diaz, Michael Ingerick, an Resources Research Organizat		5d. TASK NUMBER 257
		5e. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Human Resources Research Organization 66 Canal Center Plaza, Suite 400		8. PERFORMING ORGANIZATION REPORT NUMBER FR-06-31
Alexandria, VA 22314		
9. SPONSORING/MONITORING AGENCY U. S. Army Research Institute for		10. MONITOR ACRONYM ARI
Sciences		11. MONITOR REPORT NUMBER
2511 Jefferson Davis Highway Arlington, VA 22202-3926 12. DISTRIBUTION/AVAILABILITY STATEMENT		Study Report 2007-02
Approved for public release; dis		
13. SUPPLEMENTARY NOTES		
Dr. Peter Greenston, Contracting	ng Officer's Representative	
14. ABSTRACT (Maximum 200 word Faced with a difficult recruiting		ved to increase the cap on recruiting bonuses

Faced with a difficult recruiting environment, the Army moved to increase the cap on recruiting bonuses from its current maximum of \$20K to \$40K. To understand the personnel management implications of raising the bonus cap, the current study estimated its projected impact on Army accessions, specifically applicants' job training and term-of-service (TOS) choices. Using an empirically-based Job Choice Model (JCM), based on actual applicant choice data taken from REQUEST transactions for the first quarter of FY 2005 (n = 18,803), we estimated the model and then simulated applicants' MOS-TOS choices under the existing bonus cap of \$20K and a raised bonus cap of \$40K. Results of our simulations indicated that the raised bonus cap could increase accessions, particularly among higher quality applicants, to higher priority MOS about 8-10%, on average, and to longer TOS by roughly 12-17%. At the same time, however, accessions to lower priority MOS are projected to drop about 2%. For Army personnel policy researchers, the methodology, estimates and results of the Job Choice Modeling (JCM) could be used in future efforts to model the impact of bonus policy on Army applicants' enlistment behavior.

15. SUBJECT TERMS Recruitment Incentives Job Choice Enlistment Bo		Channeling Effects onus			
SECURITY CLASSIFICATION OF			19. LIMITATION OF ABSTRACT	20. NUMBER OF PAGES	21. RESPONSIBLE PERSON Ellen Kinzer
16. REPORT Unclassified	17. ABSTRACT Unclassified	18. THIS PAGE Unclassified	Unlimited	142	Technical Publications Specialist (703) 602-8047

Increasing the Enlistment Bonus Cap and MOS Channeling Effects

Tirso Diaz, Michael Ingerick and Paul Sticha Human Resources Research Organization

Selection and Assignment Research Unit Michael G. Rumsey, Chief

U.S. Army Research Institute for the Behavioral and Social Sciences 2511 Jefferson Davis Highway, Arlington, Virginia 22202-3926

March 2007

Army Project Number 622785A790

Personnel Performance and Training Technology

Approved for public release; distribution is unlimited.

Acknowledgements

The authors wish to acknowledge the review provided by Dr. Dan Houser of George Mason University on the initial development of the Job Choice Model.

INCREASING THE ENLISTMENT BONUS CAP AND MOS CHANNELING EFFECTS

EXECUTIVE SUMMARY

Research Requirement:

Faced with a difficult recruiting environment, the Army is moving to increase the cap on recruiting bonuses from its current maximum of \$20K to \$40K. This policy change is designed to have MOS channeling effects and may also have market expansion effects. At the top end, this financial incentive targets recruits willing to enlist in high priority military occupational specialties (MOS) for relatively long enlistment terms. Raising the bonus cap potentially carries significant implications for the Army's ability to meet its personnel allocation requirements. To ensure that Army personnel managers and stakeholders understand these implications they need to know what impact raising the cap could have.

The current research aimed to examine the impact of raising the current bonus cap on Army applicant job training and term-of-service (TOS) choice. In particular, to what extent would raising the bonus cap "channel" Army applicants into higher priority MOS and longer TOS?

Procedure:

To meet the study's objective, we specified, estimated, and applied a Job Choice Model (JCM) (Diaz, Ingerick, & Sticha, 2004), which jointly models Army applicants' decisions to join or not join the Army, and their choices of MOS and TOS. A previous version of this model has proven integral in current research to evaluate the ARI's Enlisted Personnel Allocation System (EPAS). Using actual applicant choice data from the first quarter of FY 2005 (n = 18,803), we first estimated and validated the JCM. Once validated, we used the JCM to simulate applicants' MOS-TOS choices under two conditions: (a) the existing bonus cap of \$20K and (b) the proposed bonus cap of \$40K.

Findings:

Overall, results of our simulations indicated the following:

- Raising the current bonus cap to \$40K is expected to increase somewhat overall Army accessions and to uniformly channel applicants, particularly high quality applicants (i.e., I-IIIA's or those with some college), to higher priority MOS and away from low priority ones. Specifically, raising the cap is projected to decrease the percent of non-accessions by 0.4%, while accessions to higher priority MOS are expected to increase, on average, 6.6%. Among higher quality applicants, non-accessions are expected to decline by 0.5-1%; accessions to higher priority MOS are projected to increase, on average, about 8-10%; and accessions to lower priority MOS are expected to decrease by 2%.
- Consistent with its impact on accessions, raising the cap is expected to attract applicants, particularly higher quality applicants, to somewhat longer TOS for higher priority MOS.
 Specifically, TOS commitments among higher priority MOS are projected to increase, on

average, about 4.0% for 4 years, 11.0% for 5 years, and 13.6% for 6 years, while declining 1.3% for 3 years. Similarly, among higher quality applicants, TOS commitments are expected to increase, on average, roughly 3.5-5% for 4 years, 12-16% for 5 years, and 14-17% for 6 years, while declining 1.5-3.5% for 3 years—an increase in the average TOS from 4.10 years to 4.15 years.

• On average, raising the cap is expected to increase the bonus dollars awarded per accession from \$5,633 to \$6,092—an increase of 8%. Across all applicants, the average bonus awarded to applicants accessing to higher priority MOS is projected to increase by \$1,267. Overall, this translates into an increase in the total bonus dollars awarded by the Army from \$77.5 M to \$83.9 M. Among higher quality applicants, the average bonus dollars awarded to those accessing to higher priority MOS is expected to increase, on average, by \$1,700-\$3,300 — a 13-23% increase.

Utilization and Dissemination of Findings:

These findings offer Army personnel managers and stakeholders insights into how raising the current bonus cap (from \$20K to \$40K) could impact the Army's ability to meet its personnel requirements. Operationally, they can be used to guide future bonus policy and personnel planning. For Army personnel policy researchers, the methodology, estimates and results of Job Choice Modeling (JCM) could be used in future efforts to model the impact of bonus policy on Army applicants' enlistment behavior.

INCREASING THE ENLISTMENT BONUS CAP AND MOS CHANNELING EFFECTS

CONTENTS

	Page
Research Requirement	1
Procedure	2
Modeling Applicant Job Choice: Estimation and Application of the Job Choice Model	
(JCM)	2
Overview of the Job Choice Model (JCM)	
Analysis Data	4
Data Preparation and Simplification	6
Identifying Applicant Transactions for JCM Estimation and Forecasting	6
Constructing Applicant Choice Set.	
Converting Incentive Codes to Dollars	7
Configuring the Enlistment Alternative Space	
JCM Estimation	
Specification of the Model	
Specifying the Systematic Utility	
Specifying the Residual Utility	
Estimation Results	
Interpreting the JCM Estimation Results	
Bonus Cap's Effects on Applicant Utilities	
Model Fit Diagnostics	
Summary.	
Forecasting Impact of Changes in Bonus Policy	
Design and Conditions	
Analysis Indices	
Channeling Effects by MOS	
Channeling Effect by TOS	31
Increases in Bonus Award Amounts	
Findings	33
Forecasted Impact on Applicant Job Choice	
Forecasted Impact on Applicant TOS Choice	
Forecasted Impact on Bonus Dollars Awarded	
Discussion	51
Recap of Key Findings	
Recommendations	51
2 aferences	53

CONTENTS (continued)	S (continued)	CONTENTS
----------------------	---------------	----------

Appendix A: Model Fit Diagnostics	A-1
Appendix B: Forecasted MOS Channeling Effects	B-1
Appendix C: Forecasted TOS Channeling Effects	C-1
Appendix D: Forecasted Changes in Bonus Dollars Awarded by MOS	D-1
Appendix E: Forecasted Changes in Total Bonus Dollars Awarded by TOS	E-1
Appendix F: Forecasted Impact of Market Expansion - Illustrative Cases	F-1
LIST OF TABLES	
Table 1. List of Alternative Attributes and Applicant Characteristics Used in the JCM Table 2. MOS Alternative Configuration and Clusters	8
Table 3. JCM Parameter Estimates Table 4. Bonus Dollar Amounts by Priority Level and Type Under Baseline and Proposed Poli Condition	icy
Table 5. Bonus Dollar (\$1,000s) Amounts Over the \$20K Cap (TOS=4,5,6) or \$10K Cap (TOS=3) for Selected Levels of HG, SB, and EB/ACF Incentive Level	
LIST OF FIGURES	
Figure 1. JCM Relating Applicant Characteristics, Alternative Attributes, and Economic Indicators to Enlistment Decision	2
Figure 2. Utility From Incentives Using Baseline Policy (HG=\$3K and SB=\$3K)	
Figure 3. Utility From Incentives Using Proposed Policy (HG=\$3K and SB=\$3K)	
Figure 4. Utility From Incentives Using Baseline Policy (HG=\$6K and SB=\$6K)	
Figure 5. Utility From Incentives Using Proposed Policy (HG=\$6K and SB=\$6K)	
Figure 6. Percent Change in Accessions Relative to Baseline by MOS Under Zero Market Expansion	
Figure 7. Percent Change in Accessions Relative to Baseline by MOS and AFQT Category	<i>J</i> 1
Under Zero Market Expansion	35
Figure 8. Percent Change in Accessions Relative to Baseline by MOS and Educational	
Attainment Under Zero Market Expansion	36
Figure 9. Percent Change in Accessions Relative to Baseline by MOS and Educational	
Attainment (Some College and High School Graduates Only) Under Zero Market	27
Expansion	
- · · · · · · · · · · · · · · · · · · ·	ን 3 የ

CONTENTS (continued)

Figure 11. Percent Change in Accessions Relative to Baseline by Term of Service (TOS) and
Incentive Level Under Zero Market Expansion
Figure 12. Percent Change in Accessions Relative to Baseline by Term of Service (TOS),
Incentive Level, and AFQT Category Under Zero Market Expansion
Figure 13. Percent Change in Accessions Relative to Baseline by Term of Service (TOS),
Incentive Level, and Educational Attainment Under Zero Market Expansion
Figure 14. Percent Change in Accessions Relative to Baseline by Term of Service (TOS),
Incentive Level, and Educational Attainment (Some College and High School Graduates
Only) Under Zero Market Expansion
Figure 15. Percent Change in Accessions Relative to Baseline by Term of Service (TOS),
Incentive Level, and Gender Under Zero Market Expansion
Figure 16. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by
MOS Under Zero Market Expansion
Figure 17. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by
MOS and AFQT Category Under Zero Market Expansion47
Figure 18. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by
MOS and Educational Attainment Under Zero Market Expansion
Figure 19. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by
MOS and Educational Attainment (Some College and High School Graduates Only) Under
Zero Market Expansion49
Figure 20. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by
MOS and Gender Under Zero Market Expansion50

INCREASING THE ENLISTMENT BONUS CAP AND MOS CHANNELING EFFECTS

Research Requirement

The Army has faced and continues to face challenges in recruiting youth to join the Army and in filling select military occupational specialties (MOS), including several that are mission critical (GAO, 2005). In response to this difficult recruiting environment, the Army is moving to increase the cap on recruiting bonuses from its current maximum of \$20K to \$40K. This policy change is designed to have MOS channeling effects and may also have market expansion effects. At the top end, this financial incentive targets recruits willing to enlist in high priority MOS for relatively long enlistment terms. Raising the bonus cap potentially carries significant implications for the Army's ability to meet its personnel requirements. To ensure that Army personnel managers and stakeholders understand these implications they need to know what impact raising the cap could have.

The current research aimed to examine the impact of raising the current bonus cap on Army applicant job training and term-of-service (TOS) choice. In particular, to what extent would raising the bonus cap "channel" Army applicants into higher priority MOS and longer TOS?

To meet this objective, we specified, estimated, and applied a Job Choice Model (JCM) (Diaz, Ingerick, & Sticha, 2004), which simulates Army applicant job choices. A previous version of this model has proven integral in current research to evaluate the ARI's Enlisted Personnel Allocation System (EPAS). Based on actual applicant choice data from the first quarter of FY 2005, the JCM jointly models applicant decisions to join or not join the Army, and their choices of MOS training and TOS. It produces probabilities that reflect the likelihood of an applicant choosing a particular MOS-TOS combination from a list of enlistment alternatives, as a function of his/her characteristics and the incentives associated with each alternative. Once estimated and validated, the JCM was employed to simulate applicant enlistment decisions under an increased bonus cap (of \$40K) to forecast its likely impact on Army accessions.

This report is organized as follows. First, we provide an overview of the JCM and summarize the steps taken in estimating and applying it to the current problem. Second, we describe the design, conditions, and indices used to assess the forecasted impact of raising the bonus cap, and related market expansion effects, on Army accessions. Third, we present findings from this assessment, including estimates of the degree to which the raised bonus cap will channel Army applicants to higher priority MOS and longer TOS. Finally, the report concludes with a recap of key findings.

¹ In Appendix F we extend the analysis to consider the impact of the increased Enlistment Bonus cap under <u>illustrative</u> market expansion rates.

Procedure

Modeling Applicant Job Choice: Estimation and Application of the Job Choice Model (JCM)

When making their decisions to join the Army, applicants typically go through a round of processing at a Military Entrance Processing Station (MEPS). Upon successful completion of this processing, the applicants then sit down with an Army counselor to decide on their MOS assignments and terms-of-service (TOS). Alternatively, they may elect not to join the Army. Ultimately, the applicant's enlistment decision (i.e., to join or not join the Army, choice of MOS, and TOS) is influenced by many factors, including his/her characteristics (e.g., gender, education level, and ability), the types of jobs s/he is offered, and the enlistment incentives available for each MOS. For example, male applicants are more likely, on average, to enlist in electronics or mechanical jobs than female applicants. There are also other factors, such as local economic conditions, (e.g., unemployment and poverty rates) that are known to impact an applicant's decision. For instance, holding all other factors constant, applicants from more difficult economic conditions (i.e., higher unemployment and poverty rates) may be more inclined to choose the more highly incentivized MOS, irrespective of their personal job preferences.

To model this decision process, the authors constructed and extended a job-choice model (JCM) that had been developed previously to simulate Army applicant job choices (see Diaz et al., 2004). In the following sections, we provide a conceptual overview of the JCM, discuss its advantages, and describe the steps taken to prepare, estimate, and validate the model.

Overview of the Job Choice Model (JCM)

The goal of developing the JCM was to construct a mathematical model that relates applicant characteristics, attributes of their enlistment alternatives, and local economic indicators to their actual enlistment decisions. Figure 1 provides a conceptual summary of the JCM. The JCM posits that enlistment decisions are a function of applicant preferences or utilities for various MOS-TOS enlistment alternatives. These utilities in turn are a function of (a) applicant characteristics (e.g., demographics, education, and ability), (b) attributes of enlistment alternatives, and (c) local economic and other indicators. The modeling focuses on the applicant decision making process at the MEPS. Other factors, such as the role "influencers" (e.g., parents and teachers) play on an applicant's decision, were outside the scope of the JCM.

Figure 1. JCM Relating Applicant Characteristics, Alternative Enlistment Attributes, and Economic Indicators to the Enlistment Decision

The JCM developed in this study was based on actual enlistment choices made by Army applicants during the first quarter of FY 2005. The enlistment choices of applicants, MOS alternatives, and incentives offered were obtained from an ARI database containing REQUEST (Recruit Quota System) transactions between the applicant and Army counselor at the MEPS. REQUEST is the Army's on-line computer MOS training reservation system. The database includes information on qualification requirements, such as minimum Aptitude Area (AA) scores, gender restrictions, driver's license, security background check, and others. The database also reflects real-world constraints, such as availability of MOS training seats. Generally, the Army manages the incentives to target priority MOS, longer TOS, and attract high quality applicants. Adjustments to the levels and distribution of incentives in response to changes in enlistment priorities and recruiting trends are reflected in REQUEST.

Compared to modeling approaches based on choice experiments (e.g., conjoint analysis), the JCM developed in this study has its advantages and disadvantages. The biggest advantage is that it reflects actual enlistment behavior in a real applicant setting, in the presence of a counselor with priorities that may not be consistent with the applicant's preferences. A second advantage is that the qualification requirements and constraints reflected in the REQUEST data are also carried over to the JCM. Having information on these requirements is important because they impact the estimated relationship between incentives and enlistment behavior and, consequently, the accuracy of forecasted classification effects. This was a major difficulty

encountered in recent research examining the effect of enlistment incentives on rating choice in the Navy (Golfin, 2003). Finally, because practically all applicant MEPS transactions were included in the database, estimation and forecasting analyses directly benefited from a large and representative sample of the Army's applicant pool. The primary disadvantage with the JCM is that the levels of various choice attributes, specifically the bonus types and amounts, exhibit a higher degree of correlation relative to the optimally designed attribute-levels presented in choice experiments. While potentially problematic, variance restriction is less of an issue when dealing with the combined total of bonuses, which was the focus in applying the JCM to evaluate the increased bonus cap. Additionally, the availability of a large sample for estimation and forecasting, as was the case here, potentially mitigates the less-than-optimal attribute-space derived from actual REQUEST transactions.

In sum, the JCM jointly models the applicant decision to join or not join the Army, the choice of MOS, and TOS. It produces probabilities that describe the likelihood of an applicant choosing a particular MOS-TOS option from a list of enlistment alternatives, as a function of his/her characteristics and the incentives available with each alternative. These probabilities were then used to analyze MOS/TOS channeling effects and to estimate increases in bonus costs associated with raising the cap to \$40K.

Analysis Data

The analysis sample used in the estimation and forecasting application of the JCM consisted of Army applicants from the first quarter of FY 2005. Specifically, the sample included applicants from the ARI database with MEPS transaction dates from 21 September to 31 December 2004. Included in the REQUEST data was detailed information describing the transaction between applicant and counselor, such as applicant demographics and test scores (e.g., AFQT and AA), enlistment alternatives and incentives returned by queries against REQUEST by the counselor, and the applicant's actual enlistment decision. Enlistment alternatives and decisions were identified by MOS and reception station date. As mentioned earlier, the alternatives and incentives already reflected applicant qualification requirements and other MOS training availability constraints. We also supplemented the REQUEST transactions data with indicators describing local socioeconomic conditions from the Bureau of Labor Statistics and the U.S. Census. These indicators were merged to applicant records using zip codes or county information derived from the applicant home address in the database.

Analysis variables used in the JCM are summarized in Table 1. Applicants, MOS, and TOS are indexed by i, m, and t, respectively. Incentives indexed by both m and t change in level by MOS and TOS. Incentives indexed only by m are constant across TOS, but are subject to MOS eligibility rules.

² While the exact bonus amount and types offered change over the course of a fiscal year in response to current and emerging Army priorities, these changes tend to be comparatively small.

Table 1. List of Alternative Attributes and Applicant Characteristics Used in the JCM

MOS/TOS-	-Specific Incentives:
• $X_{EB,i,m,t}$	Enlistment Bonus (EB) available to the <i>i</i> th applicant for the <i>m</i> th MOS and <i>t</i> years of
	TOS. This is Army's primary monetary incentive tool and is offered in increasing
	dollar amounts by priority level of an MOS.
• $X_{EB2,i,m,t}$	Reduced amount of EB available to the <i>i</i> th applicant for the <i>m</i> th MOS and <i>t</i> years
	of TOS when EB is combined with ACF.
• $X_{AC2,i,m,t}$	Army College Fund (ACF) available to the <i>i</i> th applicant for the <i>m</i> th MOS and <i>t</i>
	years of TOS.
• $X_{HG,i,m}$	High Grad (HG) bonus available to the <i>i</i> th applicant for the <i>m</i> th MOS. This cash
	bonus is available to applicants with varying levels of college education (at least 30
	or 60 college credit hours, and BA or associate degrees).
• $X_{SB,i,m}$	Seasonal Bonus (SB) available to the <i>i</i> th applicant for the <i>m</i> th MOS. The SB
	incentive is used to encourage enlistment into near term training classes. It is
	offered at three levels depending on how close training start date is at the time of
- 17	transaction at the MEPS.
$\bullet X_{AB,i,m}$	Airborne Bonus (AB) available to the <i>i</i> th applicant for the <i>m</i> th MOS.
	nic Variables:
• $Z_{sexM,i}$	Gender indicator variable (1=Male, 0=Female)
• $Z_{edC,i}$	Indicator variable for education status beyond high school graduate (i.e., at least
-	some college semester hours).
• $Z_{edG,i}$	Indicator variable for high school graduate education status.
• Z _{edS,i}	Indicator variable for high school senior education status.
• $Z_{edN,i}$	Indicator variable for non-high school graduate education status.
\bullet $Z_{I3A,i}$	Indicator variable for AFQT Category I-IIIIA.
• $Z_{AA,i,m}$	Score of the applicant for the Aptitude Area for the mth MOS.
	mic Indicators:
• Z _{uem,i}	Unemployment rate in the applicant's local county.
• $Z_{inc,i}$	Median household income in the applicant's local county.
• $Z_{pov,i}$	Poverty rate in in the applicant's local county.
• Z _{vet,i}	Percentage of veterans living in the applicant's zip code area.
• Z _{rr,i}	Percentage of households in the applicant's zip code area located outside of
	urbanized area or urban clusters.

Data Preparation and Simplification

Because the REQUEST data represented real-world transactions, certain features of the data were not directly amenable to our modeling approach without simplification and/or transformation. For example, in the course of a single MEPS transaction, the counselor may make two or more queries against REQUEST. Additionally, there were several cases where applicants returned to the MEPS multiple times after their initial transaction. In order to avoid unnecessary modeling complexity, we made several simplifications to the REQUEST data. In doing so, every effort was taken to preserve features of the data that are relevant in modeling applicant enlistment choice behavior in relation to incentives.

Specifically, there were four features of the REQUEST data requiring attention. These were: (a) identifying applicants' MEPS transactions for use in the JCM estimation and forecasting, as some applicants had multiple transaction dates; (b) constructing a single job list of MOS-TOS alternatives, as many MEPS transactions involved more than one query against REQUEST that likely returned duplicate MOS; (c) converting incentive codes recorded in the REQUEST data into dollar amounts; and (d) configuring the MOS-TOS enlistment alternative space.

Identifying Applicant Transactions for JCM Estimation and Forecasting. While a large majority of applicants had a single MEPS transaction (about 85%), there were applicants with multiple transactions. Of these, most returned for a second time (about 11%), with the remaining applicants typically making three to four visits. To simplify the model, for those applicants who returned to the MEPS multiple times, we retained their last transaction in the database. We elected to do this as the MOS-TOS alternatives returned in queries made during the last transaction matched well with actual enlistment choices contained in the reservation file.

Constructing Applicant Choice Set. Enlistment alternatives returned by REQUEST are indexed in the database by MOS and reception station date. In the course of a single transaction date, many applicants make multiple queries which can produce duplicate MOS-TOS alternatives with the same or varying reception dates. To simplify this, we aggregated opportunities across queries within the same transaction date and dropped duplicate MOS-TOS in the combined list. This simplification essentially assumes that all alternatives presented define the choice space for the applicant. Such an assumption is reasonable since in actual REQUEST transactions the applicant may decide at any time, irrespective of whether the opportunity appears in the current query. A slight complication occurs when duplicate MOS have different reception dates. Our analysis of the data indicated that incentives of duplicate MOS alternatives generally were identical. If differences existed between duplicate MOS records, these mostly concerned the availability and level of the Seasonal Bonus (SB) incentive. To handle the duplicate MOS in the combined list, we retained the (MOS-reception date) record if the MOS was the actual choice of the applicant, and randomly selected from each set of duplicate records associated with MOS not selected by the applicant. This decision rule ensures that the JCM always included incentives that factored into the applicant's final enlistment decision without systematically biasing their impact.³

³ For example, always keeping the earliest reception date would likely lead to underestimation of the impact of the SB incentive.

Converting Incentive Codes to Dollars. While the REQUEST data records the codes representing the different types of incentives available for an MOS for a given applicant, the actual dollar value associated with an incentive must be "computed" as a function of the MOS and transaction date⁴. With the exception of the SB incentive, information on the dollar values associated with different incentives could be found in MILPER messages that specify the Army's existing bonus policy and incentive structure. Using the MILPER messages covering the first quarter of FY 2005, we converted the incentive codes in the database to their corresponding dollar values. In the case of the SB incentive, information in the MILPER messages was not specific beyond "as needed." Additionally, our analysis of the SB amounts in the reservation records of applicants did not exactly match the incentive codes by SB priority levels. We therefore conducted descriptive and tabulation analyses to estimate a reasonable dollar amount by SB priority level and MOS.

Configuring the Enlistment Alternative Space. Inspection of applicants' MOS choices indicated a total of 150 MOS. When combined with TOS, this yielded a considerably large choice space, which was problematic for computational and model accuracy purposes. To address this, we reduced the choice space as follows. First, we combined small MOS that were similar in job content (i.e., belonging to the same Career Management Field) and had similar incentive levels. Second, to obtain a JCM that is relevant to the research requirements of this study, we kept MOS with priority levels 1 or 2 during the first quarter of FY 2005 as singletons. The Army uses nine levels to prioritize MOS, with level 1 as the top priority and level 9 as the lowest priority. Finally, for the remaining MOS, we aggregated those with smaller n and similar job content based on their priority levels. For this final aggregation, we grouped the remaining priority levels into three categories: (a) priority levels 3 and 4; (b) priority levels 5 through 7; and (c) priority levels 8 and 9. After combining MOS, there were a total of 36 "job alternatives." Henceforth, we will continue to refer to the 36 reconfigured job alternatives as MOS alternatives. In combination with the TOS dimension, this reconfiguration produced a choice space with 136 alternatives, including the alternative of not joining the Army. This was further reduced to 104 alternatives after dropping 27 MOS-TOS alternatives whose combined total accounted for less than 0.3 percent of the sample. The final set of 36 MOS alternatives is summarized in Table 2.

⁴ One must take into account transaction date, as there are periodic changes in the dollar values associated with different incentives.

Table 2. MOS Alternative Configuration and Clusters

Alternative					
		,	Reduced	Mag	
<u>ID</u>	Label	Cluster*	Cluster	MOS	
1	11X	1	1	11B, 11C, 11X	
2	13F	2	1	13F	
3	FA1	2	1	13B, 13D, 13M	
4	FA2	2	1	13P, 13R, 13S, 13W	
5	AD1	2	1	14E, 14J, 14R, 14S, 14T	
6	AV1	7	4	15B, 15D, 15F, 15G, 15H, 15J, 15N, 15R, 15S, 15T, 15U, 15Y	
7	AV2	7	4	15P, 15Q	
8	18X	1	1	18X	
9	19D	1	1	19D	
10	19K	1	1	19K	
11	EN11	10	7	21D, 21E, 21F, 21J, 21K, 21L, 21M, 21R, 21S, 21T, 21U, 21V,	
11	EN1	10	7	21W, 44B, 44E, 62B	
12	EN2	10	7	21B, 21C	
13	SI1	14	10	25B, 25D, 25M, 25R, 25V	
14	SI2	3	2	25C, 25F, 25L, 25P, 25Q, 25S, 25U, 31C, 31R	
15	PA1	4	3	37F, 46Q, 46R	
16	LEI	4	3	31B, 31E	
17	EL1	6	4	35A, 35D, 35F, 35H, 35K, 35L, 35M, 35P, 35R, 35T, 35Y, 52C, 91A	
18	EL2	6	4	33W, 35E	
19	AX1	8	5	27D, 42A, 42L, 44C, 56M	
20	AM1	11	4	45B, 45G, 45K	
21	52D	5	4	52D	
22	63B	5	4	63B	
23	VM1	5	4	63D, 63H, 63J, 63M	
24	VM2	5	4	63A	
25	74D	13	9	74D	
26	TR1	9	6	88H, 88K, 88L, 88N	
27	88M	9	6	88M	
28	89D	4	3	89D	
29	89B	9	6	89B	
		•		91D, 91E, 91G, 91H, 91J, 91K, 91M, 91P, 91Q, 91R, 91S, 91T,	
30	MD1	12	8	91V, 91W, 91X	
31	92F	9	6	92F	
32	92G	9	6	92G	
33	SL1	9	6	92A, 92L, 92M, 92R, 92S, 92W, 92Y	
34	IN1	3	2	96B, 96D, 96U, 98J, 98K	
35	HI1	5	3	97B, 97E	
36	98X	3	2	98X	

^{*} MOS-Cluster Titles: 1=Close Combat; 2=Non Linc-of-Sight Fire; 3=Surveillance, Intelligence, and Communications; 4=Security and Civil Affairs; 5=Mechanical Maintenance Repair; 6= Electronics Maintenance Repair; 7=Aircraft Maintenance Repair; 8=Administration; 9=Logistics/Supply Support; 10=Heavy Equipment Operator; 11=Craftworker; 12=Medical Care, Health, and Well-Being; 13=Skilled Science Technician; 14=Media Specialist

JCM Estimation

To model applicants' enlistment decision process, we used discrete choice methodology. This methodology is commonly used in econometrics and marketing to model the choice behavior of an individual selecting from a finite set of alternatives (Train, 1986; Ben-Akiva & Lerman, 1985; Greene 2000). Using this methodology enabled us to relate the probability of an applicant choosing an enlistment alternative to the attributes of that alternative and the characteristics of the applicant. Given the requirements of this study, it was important to develop a JCM that jointly models the applicant's decision to join or not join the Army, choice of MOS, and TOS. In this way, important aspects of Army enlistment incentive policy that simultaneously entice enlistments in priority MOS and longer TOS can be more accurately represented in the JCM. Our development of the JCM emphasized systematic relationships that are useful for predicting or forecasting enlistment choices of applicants. The specification of this model, results of the estimation, and diagnostics are discussed in the following sections.

Specification of the Model. Typically discrete choice modeling is based on the multinomial logit (MNL) model. While informative, there are important behavioral aspects of the Army applicant choice process that were not supported a priori by the assumptions of this model. For instance, the MNL assumes independence from irrelevant alternatives, which holds that an individual's relative preference for two alternatives is not affected by the availability of a third alternative. This assumption is not likely to hold in the current choice context given the similar types of jobs applicants are presented, even under the reduced alternative choice space. For example, an applicant would likely view combat jobs such as MOS 11X (infantry) and 13F (field artillery) to be more similar to one another than to administration jobs such as MOS 42A (Human Resource Specialist) or 44C (Accounting Specialist). Therefore the preference for MOS 11X relative to 42A will decrease if 13F is also available to the applicant. To address this, we employed a more flexible framework with less restrictive assumptions, the mixed multinomial logit (MMNL) model, to develop the JCM.

A first step in developing the JCM is to mathematically specify the utility (or value) that an applicant places on an alternative. As to be expected, an applicant's utility for a given enlistment alternative would likely be derived from that alternative's attributes, such as type of job (MOS), length of commitment (TOS), and various monetary incentives. For example, increasing the bonus for a specific enlistment alternative would likely increase its total utility and therefore would improve its probability of selection. Because they are based on individual perceptions, utilities are also expected to differ across individual applicants even when attributes of alternatives are held constant. To some extent, these individual differences can be explained by observable applicant characteristics (e.g., gender, education level, and ability).

As with any empirically based model, there will be residual utilities that cannot be explained by observable data. In our specification, we partitioned this residual utility into two components. The first component reflected unobserved applicant characteristics not directly captured by our data that would be related to and predictive of enlistment choices (e.g., applicant motivation, vocational interests, and so on). The second component represented the usual disturbance term (i.e., random error).

To formally summarize the above description, we denote the utility to the *i*th applicant of the enlistment alternative corresponding to the *m*th MOS and *t*th TOS by:

$$U_{i,m,t} = V_{i,m,t}(X,Z) + F_{i,m} + E_{i,m,t}$$

The term $V_{i,m,t}(X,Z)$ represents the systematic component of utility, which is linked in predictable ways to the attributes of the (m,t) alternative and characteristics of the ith applicant. The residual component is the sum $F_{i,m} + E_{i,m,t}$, where $F_{i,m}$ represents error related to unobserved characteristics of the applicant and $E_{i,m,t}$ is pure disturbance (i.e., random error). From the researcher's viewpoint, these two error components also represent sources of uncertainty about the applicant's choice behavior. The forms of the systematic and residual utilities are specified later below.

A second step in the specification of the JCM is specifying the decision protocol used by the applicant when choosing among the set of available enlistment alternatives. Consistent with conventional applications of discrete choice modeling, we developed the JCM based on the random utility maximization (RUM) assumption. The RUM posits that among all available alternatives, an individual will choose the alternative that has maximum value to him/her. In the current context, this means that in choosing among enlistment alternatives, applicants are expected to select those enlistment alternatives with the greatest utility. More formally, letting $E_{i,m,t}^* = F_{i,m} + E_{i,m,t}$, the probability that the *i*th applicant chooses the alternative (m',t') is described by:

$$\begin{split} P_{i}(m',t') &= \Pr \left\{ U_{i,m',t'} > U_{i,m,t} ; m' \neq m \text{ and } t' \neq t \right\} \\ &= \Pr \left\{ V_{i,m',t'} - V_{i,m,t} > E_{i,m,t}^{*} - E_{i,m',t'}^{*}; m' \neq m \text{ and } t' \neq t \right\} \end{split}$$

The first equality simply restates the RUM assumption. The second equality states that the systematic utility of the chosen alternative exceeds the systematic utilities of all not chosen alternatives by an amount that is larger than the differences between their residual utilities. In other words, the probability of an applicant selecting a specific alternative increases as the systematic utility of that alternative for the applicant increases relative to the other alternatives. Additionally, the last equality indicates that if the systematic utilities are not strong (i.e., random component dominates the random utility), the choice probabilities from the model would not be different from those obtained from random selection.

Specifying the Systematic Utility. We now fully express the systematic utility in terms of monetary incentives, applicant demographics, and aptitude scores obtained from the REQUEST transaction data. In the following we use the indices i, m, and t, in the utility expression to indicate that a parameter or variable varies by applicant, MOS, and TOS, respectively. For the

⁵ Recently, generalizations of conventional discrete choice modeling that relax the RUM assumption have been proposed. One such approach calls for explicitly incorporating motivational and attitudinal factors when modeling individuals' choices (Walker, 2001).

enlistment alternative associated with the *m*th MOS and *t* years of TOS, the full expression for the systematic utility is given by:

$$\begin{split} V_{i,m,t}(X,Z) &= A_{M,m} + G_{sexM,m} Z_{sexM,i} + G_{13A,m} Z_{13A,i} + G_{edGC,m} Z_{edGC,i} + G_{AA} Z_{AA,i,m} \\ &+ A_{T,t} + H_{sexM,t} Z_{sexM,i} + H_{13A,t} Z_{13A,i} + G_{edGC,t} Z_{edGC,i} \\ &+ B_{HG} X_{HG,i,m} + B_{SB} X_{SB,i,m} + B_{AB} X_{AB,i,m} \\ &+ B_{EB} X_{EB,i,m,t} + \left(B_{EBds}^* X_{EBds,i,m,t} + B_{EBdns}^* X_{EBdns,i,m,t} \right) + B_{AC} X_{AC,i,m,t} \\ &+ B_{BC} \max \left(0, X_{TB,i,m,t} - C_t \right) \end{split}$$

for the 103 (m,t) combinations included in the reduced enlistment alternative space, m=1,...,36 and t=3,...,6. The A-constants, G-, H-, and B-coefficients are parameters to be estimated from the data. Characteristics of the *i*th applicant are represented by Z variables while the attributes of the (m,t) enlistment alternative are represented by X variables. Except for $X_{EBds,i,m,t}$, $X_{EBdns,i,m,t}$, and $X_{TB,i,m,t}$, which will be described below, all other variables were defined previously in Table 1.

The first two lines include MOS- and TOS-specific constants and the component of systematic utility related to applicant demographics (i.e., gender, high school degree status, and AFQT I-IIIA Category) and AA scores. To obtain a parsimonious model, interactions between applicant demographics and enlistment alternatives were constructed separately with respect to the MOS and TOS dimensions of the enlistment alternatives, as opposed to directly specifying interactions relative to the 103 MOS-TOS combinations in the choice space. Furthermore, interactions between applicant demographics and MOS were restricted to be equal within an MOS-cluster, a group of MOS based on job requirements/description. The 14 MOS-clusters used in the JCM are identified under the column "Cluster" in Table 2. The third line in the utility expression represents a component of systematic utility explained by monetary incentives that can vary across the MOS-dimension of the alternative space (i.e., high grad bonus, seasonal bonus, and Airborne bonus).

The fourth line in the utility expression represents the component of utility explained by the EB/ACF incentive. Unlike the first three lines in the utility expression, this component varies with respect to both MOS and TOS dimensions of the alternative space. The formulation of this component was complicated by the two optional ways the EB/ACF incentive is offered to applicants: as a full cash bonus amount or a reduced cash bonus plus college money, if both options are available. The reduction in the full EB dollar amount (i.e., $X_{EB,i,m,t}$) is represented in the utility expression by the variables $X_{EBds,i,m,t}$ and $X_{EBdns,i,m,t}$, for senior and non-senior applicants, respectively. The coefficients B_{EBds}^* and B_{EBdns}^* were specified to be normally

These variables are constructed as the interactions between the senior category indicator variable and the reduction in EB amount: $X_{EBds,i,m,t} = Z_{edS,i} \times X_{EBd,i,m,t}$ and $X_{EBdns,i,m,t} = (1 - Z_{edS,i}) \times X_{EBd,i,m,t}$, where $X_{EBd,i,m,t} = X_{EB,i,m,t} - X_{EB2,i,m,t}$ is the reduction in the full EB amount.

distributed random parameters with different means and a common variance. We used random coefficient parameters as a mechanism for combining the two options in a single utility expression, and to avoid the need to explicitly model applicant's choice between EB-only and EB+ACF alternative forms of the EB/ACF incentive. Specifying two random coefficients with different means allows senior and non-senior applicants to differ in their average preference for the two forms of the EB/ACF incentive.⁷

The last line in the utility expression represents an adjustment term to keep the systematic utility derived from bonus incentives behaviorally consistent with the choice situation faced by the applicant. The quantity $\max(0, X_{TB,i,m,t} - C_i)$ represents the amount of the total bonus for the (m,t) enlistment alternative that *exceeds* the bonus cap. The variable $X_{TB,i,m,t}$ in this quantity is the pre-cap total bonus $X_{HG,i,m} + X_{SB,i,m} + X_{AB,i,m} + X_{EB,i,m,t}$ and the constant C_i equals the bonus cap for t years of TOS. Without this adjustment term in the systematic utility, for example, a \$30K total bonus would be interpreted as having twice the value of a \$15K total bonus. Technically, this is not possible because the applicant can only receive \$20K of the \$30K total bonus amount (under the extant bonus cap policy). This term is the key in applying the estimated JCM to forecast the effects of increasing the bonus cap from \$20K to \$40K in this evaluation study.

For the alternative corresponding to the decision not to join the Army, we specified a linear systematic utility by combining applicant demographics from REQUEST data and socioeconomic variables from the secondary data sources. The full expression is shown below. In this case, the applicant education status in the non-accession utility formulation was expanded to four categories (i.e., not HS Graduate, HS Senior, HS Graduate, College+).

$$\begin{split} V_{i,999,0}\big(X,Z\big) &= A_{M,999} + G_{sexM,999} Z_{sexM,i} + G_{13A,999} Z_{13A,i} \\ &+ G_{edN,999} Z_{edN,i} + G_{edG,999} Z_{edG,i} + G_{edC,999} Z_{edC,i} \\ &+ G_{uem,999} Z_{emp,i} + G_{pov,999} Z_{pov,i} + G_{inc,999} Z_{inc,i} + G_{vet,999} Z_{vet,i} + G_{rr,999} Z_{rr,i} \end{split}$$

Specifying the Residual Utility. In addition to specifying the systematic utility, we needed to specify the distributional structure of the residual utility. Earlier we expressed the residual utility as $F_{i,m} + E_{i,m,t}$, where $F_{i,m}$ represents error related to unobserved applicant characteristics and $E_{i,m,t}$ represents pure disturbance (i.e., random error). In specifying the distributional form for $F_{i,m}$, we first noted that unobserved applicant characteristics would most likely explain

⁷ This formulation was motivated by viewing EB-only dollar amount as representative of the full value of the incentive and the EB+ACF option as an alternative package with approximately equal value. From this standpoint, the term $B_{EBds}^* X_{EBds,i,m,t} + B_{AC} X_{AC,i,m,t}$ can be interpreted as the net effect of reducing the cash bonus and adding college money in the incentive package for a senior applicant.

⁸ We conducted plausibility checks by comparing the actual total bonus received by applicants who accessed (as reported in the REQUEST data) with the corresponding capped total bonus given by $\min(C_t, X_{TB,i,m,t})$. Our analysis showed high correlation (95%) between the actual total bonus and computed total bonus.

shared utility across similar jobs or MOS. To put this postulated behavior in the model, we specified $F_{i,m}$ to be a random utility component that is common to all MOS within an MOS-cluster, for all MOS-TOS (i.e., accession) enlistment alternatives, having a normal distribution with zero mean and standard deviation (SD) to be estimated from the data. The $F_{i,m}$ s were assumed to be uncorrelated across MOS-cluster for a given applicant. In contrast, the disturbance terms $E_{i,m,t}$ is were assumed to have the standard Gumbel distribution with zero mean, independently distributed across all (accession and non-accession) enlistment alternatives. Finally, we also specified an additional random utility component, $F_{i,999}$, in the non-accession utility of applicants who were offered multiple MOS alternatives. This extra component reflects heterogeneity in residual utility for the non-accession alternative (or equivalently, for joining the Army) between applicants offered single MOS and those offered multiple MOS alternatives. This specification posits a smaller variance for applicants choosing between not joining the Army and a single MOS.

Estimation Results. We estimated the JCM parameters using the mixed logit estimation procedure in the BIOGEME software (Bierlaire, 2003). The procedure employs a maximum simulated likelihood method for estimating model parameters. Included in this method is a simulation-based approach for approximating the multidimensional distribution of unobserved applicant characteristics to evaluate the likelihood during estimation. To further simplify model estimation, we constrained the $F_{i,m}$ s of MOS-clusters that are similar to be equal, reducing the dimension of the unobserved applicant characteristics used for modeling correlation among alternatives from 14 to 10. Table 2 shows this smaller MOS-cluster configuration under the column "Reduced Cluster." Altogether, the estimation involved a 12-dimensional multivariate normal distribution for each applicant: (a) 10 dimensions for applicant characteristics ($F_{i,m'}$, m'=1,...,10), (b) one for the additional error term for applicants facing multiple MOS ($F_{i,999}$), and (c) one for the random coefficient for the reduced EB dollar amount (B_{EBds}^* or B_{EBdns}^*). We used three hundred Halton draws (quasi random numbers) from this distribution during the estimation for each applicant.

Given the very large analysis data set available from the REQUEST data, we employed a sampling procedure to identify a subset of applicants for JCM estimation. The remaining applicants were used for out-of-sample model fit diagnostics. Out of a total of 18,803 applicants, 4,020 were used in the estimation, and the remaining 14,783 were used for out-of-sample diagnostics. To identify the estimation sample, we employed a choice-based sampling to ensure that all MOS-TOS alternatives were adequately represented during estimation. This approach avoided over-representation of a few alternatives, such as those associated with 11X and/or TOS of four years, that would be obtained if simple random sampling was used. To carry out the choice-based sampling, we first grouped applicants according to their chosen MOS-TOS

¹⁰ For details on the estimation method, see Train (2003).

⁹ Readers are reminded that this is one of the main motivations for using a mixed multinomial logit model (MMLM). For a given applicant, the utilities of MOS belonging to the same cluster can be expected to share a residual utility and thus be correlated. Not taking into account this correlation would seriously violate the independence from irrelevant alternatives (IIA) assumption in the standard MNL choice model.

combination (or non-accession choice). Applicants were then selected by under-sampling from the larger MOS-TOS groups and over-sampling from the smaller MOS-TOS groups. To obtain unbiased JCM estimates, we assigned weights to applicants during the estimation that were equal to the reciprocal of the sampling rates in their respective MOS-TOS groups.

The JCM parameter estimates obtained at the end of estimation runs are presented in Table 3, along with their corresponding standard errors (S.E.) and t-statistics. To protect against model misspecification error, standard errors and t-statistics are based on robust variance-covariance matrix estimates (Bierlaire, 2003). Bolded t-statistics are significant at the .05 level. Where standard error and t-statistic values are blank, the corresponding parameters were fixed at zero. 11

¹¹ Parameters were fixed to zero to either render the model identifiable, or in some cases, to be consistent with official Army policy (e.g., females are restricted from combat jobs, thus gender by MOS-cluster interactions involving MOS with female restrictions were fixed at zero).

Table 3. JCM Parameter Estimates

Parameter	Estimate	S.E.	t-stat
MOS-Specific (Constants		
$A_{M,I}$	0.0000		
$A_{M,2}$	-0.7624	0.2372	-3.21
$A_{M,3}$	-1.1231	0.2342	-4.79
$A_{M,4}$	-2.5115	0.3067	-8.19
$A_{M,5}$	-2.6821	0.2878	-9.32
$A_{M,\delta}$	1.2892	0.8200	1.57
$A_{M,7}$	-1.2066	0.9239	-1.31
$A_{M,8}$	3.5881	0.7161	5.01
$A_{M,9}$	-1.0108	0.1369	-7.39
A _{M.10}	-1.6915	0.1750	-9.67
$A_{M,II}$	-2.5045	0.7158	-3.50
$A_{M,12}$	-2.8826	0.7543	-3.82
$A_{M,13}$	-0.0574	0.7110	-0.08
$A_{M,14}$	-2.5957	0.6909	-3.76
$A_{M,15}$	-2.5129	0.8303	-3.03
A _{M,16}	-3.0446	0.8238	-3.70
A _{M.17}	-4.4955	0.7488	-6.00
$A_{M,18}$	-4.0014	0.8487	-4.71
A _{M.19}	-6.5450	3.6689	-1.78
$A_{M,20}$	-3.5432	0.7305	-4.85
$A_{M,21}$	-2.9522	0.6658	-4.43
$A_{M,22}$	-1.3146	0.6238	-2.11
$A_{M,23}$	-2.7946	0.6423	-4.35
A _{M.24}	-2.7284	0.6553	-4.16
$A_{M.25}$	-0.9564	0.5852	-1.63
$A_{M,26}$	-1.1420	0.4707	-2.43
$A_{M,27}$	-0.9464	0.4800	-1.97
$A_{M,28}$	-4.3761	0.8746	-5.00
$A_{M,29}$	-1.6117	0.4948	-3.26
$A_{M,30}$	-2.5487	0.8940	-2.85
$A_{M,31}$	-0.2838	0.4585	-0.62
$A_{M,32}$	-0.8950	0.4811	-1.86
$A_{M.33}$	-0.9678	0.4782	-2.02
$A_{M.34}$	-2.3710	0.6993	-3.39
$A_{M,35}$	-2.9897	0.7566	-3.95
$A_{M.36}$	1.9769	1.1299	1.75
A _{M.999} TOS-Specific C	2.5304 Constants	2.2607	1.12
$A_{T,3}$	0.0000		
$A_{T.4}$	-1.3196	0.1640	-8.05
$A_{T.5}$	-2.3094	0.2273	-10.16
$A_{T.6}$	-1.7773	0.4624	-3.84

Table 3. JCM Parameter Estimates (con't)

Parameter	Estimate	S.E.	t-stat
MOS AA Score	and Incentives		
G_{AA}	0.7768	0.2252	3.45
B_{HG}	0.1875	0.0509	3.69
B_{SB}	-0.0015	0.0143	-0.10
B_{AB}	0.4232	0.0531	7.97
B_{EB}	0.0551	0.0152	3.63
B_{EBDS}	0.0653	0.0488	1.34
B_{EBDN}	-0.0547	0.0354	-1.54
B_{AC}	0.0228	0.0038	6.01
B_{BC}	-0.1561	0.0327	-4.77
	ubgroup Interac	tions	
$G_{I3A,I}$	-1.0648	0.4207	-2.53
$G_{13A,2}$	-0.8062	0.4162	-1.94
$G_{13A,3}$	0.0000		
$G_{I3A,5}$	0.3177	0.4589	0.69
$G_{I3A,6}$	-1.3475	0.4107	-3.28
$G_{I3A.7}$	-0.6643	0.4966	-1.34
$G_{I3A.8}$	-0.4673	0.6302	-0.74
$G_{I3A,9}$	2.2689	1.1442	1.98
$G_{I3A,I0}$	-1.1306	0.3990	-2.83
$G_{I3A,I1}$	-0.7511	0.4051	-1.85
$G_{I3A,I2}$	-0.1560	0.5056	-0.31
$G_{I3A,I3}$	2.1035	0.7725	2.72
$G_{13A,14}$	-0.9956	0.4674	-2.13
$G_{13A,15}$	-0.2312	0.4940	-0.47
$G_{13A,999}$	1.4763	0.5437	2.72
$G_{edGC,I}$	-0.3072	0.3379	-0.91
$G_{edGC,2}$	-0.6153	0.3334	-1.85
$G_{edGC,3}$	0.0000		
$G_{edGC,5}$	0.8419	0.3908	2.15
$G_{edGC,6}$	-0.2796	0.3279	-0.85
$G_{edGC,7}$	0.1703	0.4758	0.36
$G_{edGC,8}$	0.3912	0.4320	0.91
$G_{edGC,9}$	1.3107	0.9677	1.35
$G_{edGC,10}$	0.1167	0.3007	0.39
$G_{edGC,11}$	0.1986	0.3586	0.55
$G_{edGC,12}$	-0.4365	0.4146	-1.05
$G_{edGC,13}$	0.6251	0.4157	1.50
GedGC, 14	0.5800	0.4270	1.36
$G_{edGC,15}$	0.2014	0.4363	0.46
$G_{edC,999}$	-0.3850	0.6056	-0.64
$G_{edG,999}$	-3.3015	0.5489	-6.01
$G_{edS,999}$	0.0000		
$G_{edN,999}$	-3.8863	0.6589	-5.90

Table 3. JCM Parameter Estimates (con't)

Parameter	Estimate	S.E.	t-stat
$G_{sexM,I}$	0.0000	 	
$G_{sexM,2}$	0.0000		
$G_{sexM,3}$	0.0000		
$G_{sexM.5}$	-0.7348	0.4222	-1.74
$G_{sexM,6}$	0.7846	0.4471	1.75
$G_{sexM.7}$	1.5789	0.5547	2.85
$G_{sexM,8}$	0.0190	0.4866	0.04
$G_{sexM.9}$	-0.5292	1.0841	-0.49
$G_{sexM,10}$	-1.1281	0.3553	-3.17
$G_{sexM,II}$	0.6076	0.4537	1.34
$G_{sexM,12}$	0.5535	0.5119	1.08
$G_{sexM,13}$	-1.3681	0.4723	-2.90
$G_{sexM,14}$	-1.4622	0.4196	-3.48
$G_{sexM,15}$	-1.1363	0.4584	-2.48
$G_{sexM,999}$	-2.3366	0.5569	-4.20
TOS-Subgroup	Interactions		
$H_{I3A,3}$	0.0000		
$H_{I3A.4}$	1.8759	0.1157	16.22
$H_{I3A,5}$	1.9189	0.1814	10.58
$H_{I3A,6}$	1.4996	0.4272	3.51
$H_{edGC,3}$	0.0000		
$H_{edGC.4}$	0.6823	0.1077	6.33
$H_{edGC,5}$	0.6888	0.1379	5.00
$H_{edGC,6}$	0.2457	0.2151	1.14
$H_{sexM,3}$	0.0000		
$H_{sexM,4}$	-1.0342	0.1317	-7.8 5
$H_{sexM,5}$	-1.0169	0.1705	-5.96
$H_{sexM,6}$	-1.4311	0.2272	-6.30
Applicant Socio	economic Chara	acteristics (Not A	ccession)
$G_{uem,999}$	-0.0328	0.1242	-0.26
$G_{ m pov,999}$	-0.0696	0.0685	-1.02
$G_{inc.999}$	-0.0265	0.0289	-0.92
$G_{vet,999}$	0.0110	0.0167	0.66
$G_{rr,999}$	0.0018	0.0054	0.33
S.D. of Unobser	ved Characteris	tics Distn.	
S_{EBD}	0.0360	0.0805	0.45
$S_{F,I}$	2.7685	0.4791	5.78
$S_{F,2}$	2.0157	0.5733	3.52
$S_{F,3}$	2.7563	0.5928	4.65
$\mathcal{S}_{F.4}$	1.4889	0.5005	2.97
$\mathcal{S}_{F,5}$	3.8453	2.2360	1.72
$S_{F.6}$	0.8607	0.5353	1.61
$S_{F.7}$	1.1965	0.5337	2.24
$S_{F,8}$	2.1521	0.6223	3.46
$S_{F,9}$	0.2336	0.7428	0.31
$S_{F,I\theta}$	0.4041	2.1299	0.19
$S_{F,999}$	8.2991	0.8059	10.30

Interpreting the JCM estimation results. Direct interpretation of the JCM parameter estimates is not straightforward given the interplay among the various parameters. For instance, relating the MOS-specific constants directly to applicant preferences is not meaningful without including the applicant demographic interactions. This is also complicated by the underlying distribution of unobserved applicant characteristics, which has the effect of averaging the contribution of utility constants and coefficients to choice probabilities. In contrast, these contributions are more direct under the MNL model. Given these practical limitations, we will only describe important observations about the parameter estimates and not provide detailed comparisons of relative preferences for specific alternatives. We will then show how the JCM relates higher and lower priority MOS by TOS choices for varying levels of monetary incentives and compare the predicted impact of the incentives under the baseline and proposed policies.

We first describe the MOS and TOS alternative constants. The estimated values for MOS-specific constants range from about -3 to +3. Note that these constants are already expressed as differences relative to MOS 11X (fixed at 0). The magnitudes of the differences between estimates mostly range from 0 to about 2. As shown in a later analysis, these differences are within the range of utilities derived from incentives. Therefore the relative preferences for different MOS can be managed through selective application of incentives. Looking at the three priority-level 1 MOS during this quarter, one has a highly negative estimated constant (-4.4 for 89D), while the other two have estimated constants (-.8 for 13F and -.3 for 92F) that are in the middle of the range of estimated constants. The high negative constant for 89D might indicate a high average negative preference given the nature of the job (Explosives Ordnance Disposal [EOD] Specialist). On the other hand, while the preferences indicated by the estimated constants for 13F and 92F are near the average, there might not be enough applicants joining these MOS to meet Army requirements – hence the need for higher-valued monetary incentives available for priority 1 MOS. Generally speaking, there will be a range of plausible explanations for interpreting estimated parameters. Conversely, interpretation of the TOS-specific estimated constants is more straightforward. Looking at these constants indicates that, in the absence of monetary incentives, applicants would prefer a three year commitment compared to a longer TOS of four to six years. There is a relatively large drop in the estimated constant from three to four years of TOS, compared to differences for the TOS constant from four to six years. We suspect that this gap is connected to the change in bonus cap from \$10K for a TOS of three years to \$20K for a TOS of four to six years, rather than an abrupt decrease in attractiveness of four years of TOS.

We next describe the interaction between applicant characteristics and enlistment alternatives. We begin with the estimated coefficients for the applicant's AA scores for different MOS alternatives and then describe the estimated constants corresponding to the interaction between applicant demographics and MOS clusters and TOS. The estimated coefficient for the effect of AA score on an applicant's utility for an MOS is significantly positive. This indicates that among MOS for which they are eligible, applicants tend to choose the MOS for which they have the highest score. This person-job match observation is consistent with previous work modeling Army applicants' job choices (Diaz et al., 2004).

The estimated interaction effects between applicant demographics and MOS clusters indicate applicant differences associated with enlistment in the Army and in preferences for

certain types of jobs. The estimated effects for AFQT category and MOS cluster interaction indicate that Category I-IIIA applicants are less likely to join the Army than Category IIIB and IV applicants. In terms of types of MOS, Category I-IIIA applicants are more likely to enlist in MOS associated with Medical and Administrative types of jobs, and less likely to enlist in Close Combat, Logistics/Supply, and Skilled Science Technician (SST) MOS. ¹² The estimated effects for education status and MOS cluster interaction indicate that seniors and applicants with at least some college credits are less likely to join than HS graduates and non-HS graduates. Likely contributing to the lower senior applicant's preference for joining the Army is that school is still going on during the first quarter, even taking into account the possibility of entering the Delayed Entry Program (DEP). In terms of specific types of MOS, HS graduates and applicants with at least some college are more likely to enlist in Security/Civil Affairs (CSA), Administrative, Medical, and SST clusters. Lastly, the estimated effects for gender and MOS cluster interaction indicate that males are more likely to join the Army than females. Among jobs with no gender restriction, males are more likely to enlist in Electronics and Mechanical types of jobs, while females are more likely to enlist in Medical, SST, Media, and Logistics/Supply types of jobs.

The estimated interaction effects between applicant demographics and TOS indicate some differences in applicant preferences. The estimated interactions between AFQT categories and TOS indicate that Category I-IIIA applicants are more likely to enlist for four, five, and (to a lesser degree) six years than three years. The estimated interactions between education status and TOS indicate that HS graduates and those with some college are more likely to enlist for four or five years than three or six years. Lastly, the estimated interactions between gender and TOS indicate that males are less likely to enlist for longer TOS than females.

We next discuss results related to the monetary incentives. We first note that interpreting estimated coefficients for monetary incentives separately is not straightforward, because dollar levels specified by policy for these incentives and their total are correlated. Nevertheless, the estimated values are meaningful for inferring the strength of the incentive's contribution in enhancing the attractiveness of different MOS/TOS alternatives to applicants. Overall, the directions of the estimated coefficients are all in the anticipated direction, with one exception. The coefficients for EB, HG, and AB bonuses and college money (ACF incentive) indicate that all contribute significantly and positively to applicants' perceptions of utility. The coefficient for SB is not significant (slightly negative), which likely is due to correlation among the incentives. 13 The estimates for the means of the random coefficients for reduced EB bonus for HS seniors and HS non-seniors are not significant. While technically not significant, the magnitude of the coefficients is not negligible, and their sign is in the expected direction, indicating that seniors, on average, perceive higher total utility from the EB/ACF incentive package than non-seniors. 14 Finally, the estimated coefficient for the amount of total bonus over the cap is significantly negative, which is the anticipated direction. More importantly, this negative effect indicates a potential for increasing the attractiveness of alternatives

. .

¹² Only a single MOS, Chemical Operations, represented the SST cluster during the quarter.

¹³ A preliminary analysis using data from an earlier quarter in FY 2004 with slightly lower HG bonuses produced a significant coefficient for SB.

¹⁴ This interpretation is consistent from a RUM perspective, since seniors are more likely to assign greater value to the optional college money and thus when choosing between the EB-only and reduced EB+ACF incentive packages will elect the package that best maximizes utility. In contrast, because non-seniors, on average, are likely to perceive no additional value from ACF, they are less likely to choose an EB+ACF package with a greater total bonus amount.

corresponding to MOS at the highest levels (e.g., 1 and 2) and TOS of 5 or 6; these are the alternatives that are likely to benefit from raising the bonus cap.

We next describe the results related to unobserved applicant characteristics. The SD of unobserved characteristics that interact with the reduced MOS clusters indicate unequal unexplained variance in utility among MOS alternatives (heteroscedasticity of random utilities) and correlation among alternatives within clusters. Six reduced MOS clusters have statistically significant SD estimates. The largest estimated SD (3.8), which corresponds to the fifth reduced cluster, has a t-statistic of 1.72 – technically below, but approaching statistical significance (p < .05). The statistically significant SD estimates and the differences in their magnitude indicate that utilities for enlistment alternatives are heteroscedastic and correlated within MOS clusters. Lastly, the extra variance included in the non-accession utility for applicants offered more than a single MOS is also significant, as was expected.

Lastly, we describe the results for socioeconomic variables included in the utility for non-accession. None among these variables have statistically significant estimated coefficients, and therefore do not make a substantial contribution in the overall applicant decision to join the Army. (Note that this finding applies to recruits already going through processing at the MEPS.) There were some relatively weak effects observed during preliminary analysis comparing applicants who actually accessed and those who did not access, but these effects were likely washed out in the full JCM. The variable with the strongest non-significant effect is the poverty rate (with *t*-statistic of 1.02). Its estimated coefficient in the full model is negative, indicating that applicants in areas with higher poverty rate are more likely to join the Army.

Bonus Cap's Effects on Applicant Utilities. Overall, the statistical significance of incentive-related coefficients indicates that monetary incentives contribute individually and in combination to make incentivized MOS/TOS enlistment alternatives more attractive to applicants, particularly high quality ones (i.e., I-IIIA's). To better illustrate the combined effects of the monetary incentives, we plotted high quality applicants' perceived utility from the EB/ACF, HG, and SB incentive for selected MOS priority levels by TOS, under the existing bonus policy (with a \$20K cap) and the proposed bonus policy (with a \$40K cap). For this analysis we selected two levels of HG and SB (in combination), the first with both HG and SB dollars equal to \$3K and the second with HG and SB dollars equal to \$6K. He MOS priority levels selected were 1, 2, 4, 6, and 8. The EB, reduced EB, and ACF dollar amounts for these levels are shown in Table 5. The bonus caps for the baseline policy are \$10K for 3 years and \$20K for 4 to 6 years TOS, while the bonus caps for the proposed policy are \$10K for 3 years and \$40K for 4 to 6 years TOS.

Figure 2 shows high quality applicant estimated perceived utility by TOS and MOS level from EB/ACF, HG, and SB incentives for the lower-valued combination of HG and SB under the existing bonus cap. Figure 3 plots the same utilities under the proposed cap of \$40K. As

¹⁵ We excluded the AB bonus in this analysis because: (a) unlike the HG incentive it is not offered to all incentivized MOS and (b) the AB dollar amount (\$3K) was relatively low compared to HG and SB incentives during the first quarter of FY 2005 and subsequent quarters. HG is as high as \$8K while the top SB incentive exceeded \$10K.

¹⁶ This corresponds to HG levels for 30 and 60 hours of college credit, and 60-day and 30-day priority levels for SB incentive.

evidenced from comparing Figures 2 and 3, raising the bonus cap is expected to positively increase the utility applicants place on longer TOS and higher priority MOS. Starting at 5 years of TOS, the impact of the increased bonus cap becomes especially apparent, as the utilities associated with priority level 1 and 2 MOS become significantly greater than those associated with level 4 MOS and below. At 6 years of TOS, an even greater separation is achieved for priority MOS levels 1 and 2 from raising the bonus cap. Indeed, under the existing cap, I-IIIA applicant perceived utility in choosing a level 1 and 2 MOS equaled or was less than that associated with a level 4 MOS. Similarly, the perceived utility associated with higher priority MOS for longer TOS (5-6 years) tended to be equal to or less than the corresponding utility associated with shorter TOS. In both cases, these trends essentially represent an interaction among MOS levels, TOS, and total bonus induced by the existing bonus cap. Comparable patterns can be observed when comparing 3- and 4-year TOS, where a change in bonus cap from \$10K to \$20K (under baseline policy) or \$40K (under proposed policy) occurs; this effectively makes it more attractive for applicants to enlist for at least four years or more when considering higher priority level MOS.

tre bare.

Figure 2. Utility From Incentives Using Baseline Policy (HG=\$3K and SB=\$3K)

Figure 3. Utility From Incentives Using Proposed Policy (HG=\$3K and SB=\$3K)

Figures 4 and 5 show the same information as Figures 2 and 3 but using the highervalued combination of HG and SB. There are two important observations immediately apparent when examining these two additional figures. First, immediately apparent from Figures 3 and 4 is the higher overall levels of the utilities, which clearly is due to the higher HG and SB bonuses. Second, as evident by comparing Figures 4 and 5, the low bonus caps under the baseline policy have a highly constraining effect under higher levels of HG and SB incentives, resulting in diminished discriminatory potential for the various MOS priority levels. Enlistment alternatives with 4 years of TOS or higher clearly benefited from higher bonus caps in the proposed policy. Clearly this is because the bonus cap for 3 years of TOS remains the same at \$10K under the proposed policy, which is easily exceeded with higher levels of HG and SB. (The top SB incentive amount exceeding \$10K, which became available subsequent to our analysis sample quarter, in most likelihood would have induced eligible applicants to sign-up for at least four years under the new bonus cap.) In addition to making 4 years TOS or higher more attractive than 3 years, the higher bonus cap under the proposed policy also fixed an undesirable effect of the interaction induced by the bonus cap on the relative utility levels of higher level MOS. For example, in Figure 4 the order of the utility values for MOS levels 1, 2, and 4 is opposite their intended effect, but is corrected in Figure 5 under a higher bonus cap. This undesirable interaction induced by the bonus cap on longer TOS and higher level MOS is again expected to become an issue as soon as the HG and SB incentives (or other incentives not based on MOS levels) reach a certain level.¹⁷

¹⁷ For this reason, the SB incentive structure in the proposed policy, which closely tied the SB dollar amounts to the MOS levels, is a favorable approach. It stands a better chance of preventing the undesirable interaction effect at higher MOS level and longer TOS, and is therefore more likely to produce enlistments that are consistent with MOS priority levels.

Figure 4. Utility From Incentives Using Baseline Policy (HG=\$6K and SB=\$6K)

Figure 5. Utility From Incentives Using Proposed Policy (HG=\$6K and SB=\$6K)

Model Fit Diagnostics. While its interpretation is not straightforward, the overall fit of the model (pseudo- $R^2 = .24$) is substantial given the large dimension of the choice space. Additionally, this level of fit compares favorably to that typically observed in the applied social and behavioral sciences. To further evaluate model fit, we compared the expected choices of applicants based on the estimated JCM to their actual MOS and TOS choices. This comparison was conducted separately using the JCM estimation sample (n = 4,020) and the hold-out validation sample (n = 14,783). Within each sample, comparisons between expected and observed choices were carried out for the overall sample and by subgroups.

Results of these analyses for the estimation sample can be found in Tables A-1 and A-2 in Appendix A. Each row in these tables compares the observed and expected number of accessions and the corresponding percentage within a subgroup (e.g., sum of percentages equals 100 within male subgroup), for each MOS and TOS enlistment alternative. ¹⁸ The column "Diff. N." reports the difference between observed and expected number of accessions, while the column "Ratio N." reports the ratio of expected accessions relative to observed accessions. As evidenced by Tables A-1 and A-2, the estimated number of accessions/non-accessions closely matched the observed accessions/non-accessions for most MOS alternatives and all TOS alternatives, both for the sample as a whole and by subgroup. While there were a few MOS alternatives for which there were somewhat sizeable differences, they tended to be for MOS and subgroup combinations where the number of accessions was very small.

Results for the hold-out sample can be found in Tables A-3 and A-4 in Appendix A. As with the estimation sample, there was a strong correspondence between the observed and expected number of accessions/non-accessions for most MOS alternatives and all TOS alternatives, both for the overall sample and by subgroup. Similarly, where there were relatively large differences, they tended to occur for combinations of MOS and subgroups with small accessions.

Overall our fit diagnostics indicated that the internal fit and predictive accuracy of the JCM were very good, both for the sample as a whole and by subgroup.

Summary. The estimated JCM showed differences in preferences among MOS alternatives and years of TOS, holding applicant characteristics and incentives constant. The estimated JCM also indicated that there are applicant differences in MOS/TOS preferences. Lastly, the results related to monetary incentives demonstrates potential for classification that is consistent with enlistment priorities of the Army. In particular, choice probabilities for "higher level" MOS and longer TOS by targeted quality applicants (e.g., those in AFQT category I-IIIA and with 30 hours of college credit or higher) are expected to increase under the higher bonus caps of the proposed incentive policy. Findings from our simulations presented later lend support to these observations.

25

¹⁸ In aggregating accessions by MOS/TOS choice, the number applicants was weighted to reflect their representation in the total analysis sample (i.e., the estimation and hold-out samples combined).

Forecasting Impact of Changes in Bonus Policy

To investigate the impact of raising the bonus cap on Army accessions, we compared the estimated MOS/TOS classification distribution of applicants using the full analysis sample (n = 18,803) under two bonus structures:

- 1. the existing bonus structure, in place during the period for which the data were collected, where the bonus cap is \$20K; and
- 2. a modified bonus structure, based on proposed incentive levels made at the Enlistment Incentive Review Board (EIRB) meeting on 16 February 2006, where the bonus cap was raised to \$40K.

Comparisons were made under current market conditions during the first quarter of FY 2005 (i.e., using the full applicant sample) and under illustrative market expansion rates, where raising the bonus cap to \$40K was assumed to expand the Army's high quality applicant pool (see Appendix F). The following sections describe the experimental conditions used in the constructive simulations and the evaluation indices used to analyze the forecasted impact of raising the bonus cap on Army accessions.

Design and Conditions

Several independent simulations were conducted, in each case using all applicants in the analysis sample. The first two focus on channeling effects under assumed zero market expansion, and the last three introduce market expansion. Each simulation produced a simulated MOS-TOS classification distribution based on the aggregated applicant enlistment choice probabilities estimated using the JCM. For the first (i.e., baseline) simulation, the JCM choice probabilities were computed using the existing bonus structure in place during the first quarter of FY 2005. For the remaining simulations, JCM probabilities were computed using the bonus structure proposed during the 16 February 2006 EIRB meeting. Detailed comparisons of the two bonus structures are shown in Table 4.

For analysis purposes, the estimated MOS/TOS classification distribution obtained from the first simulation served as the baseline distribution. Each of the MOS/TOS classification distributions from the other four simulations were then compared against this baseline. Comparing these subsequent simulations against the baseline distribution, as opposed to the observed MOS/TOS distribution, is preferable since differences in choice pattern can be more meaningfully attributed to differences in bonus structure and/or market conditions.

As shown in Table 4, where the two bonus structures differ is in the EB bonus amounts for priority level 1 MOS. Otherwise, all other bonuses are the same by TOS across the two structures. While the higher cash bonus by itself was expected to increase the attractiveness of level 1 MOS, the raised bonus cap's greatest impact was expected to be in channeling applicants to longer TOS. This can be seen in Table 5, which shows the average pre-cap bonus amounts over the existing cap of \$20K for select HG, SB, and EB/ACF levels. As suggested by the table, raising the bonus cap to \$40K would increase the average bonus awarded significantly. This is

especially true for higher quality applicants (I-IIIA's) signing up for higher priority MOS (levels 1 and 2) and longer TOS. Thus, even under FY 2005 HG and SB bonus levels, raising the bonus cap to \$40K can be expected to increase the attractiveness of high priority MOS and longer TOS for targeted applicants. The simulation results discussed in the next section provide support for these expectations.

To isolate the effects of raising the bonus cap, we kept the SB dollar amount constant across the two bonus structures. We decided against using the proposed SB levels because the dollar amounts were almost twice those offered in the first quarter of FY 2005. Thus, using the proposed SB incentives would have resulted in bonuses well in excess of the \$20K bonus cap under the baseline condition. Additionally, there were significant differences in how the proposed SB levels were to be applied compared to the first quarter of FY 2005. Specifically, while some information indicated that higher dollar amounts were to go to top priority seats by MOS level (\$15K for Levels 1 and 2 and \$10K for level 3), the MILPER message for the first quarter of FY 2005 simply stated "as needed." Preliminary baseline simulation runs using the proposed SB dollar amounts and structure confirmed that they were problematic. From these runs, we obtained percentage shares for priority levels 1 and 2 MOS that were substantially lower than their actual (or fitted) percentages, indicating that the proposed SB amounts and structure were not consistent with the actual enlistment behavior of applicants in the analysis sample; specifically, that level 1 and 2 MOS were less attractive than indicated by applicants' actual enlistment choices.

Table 4. Bonus Dollar Amounts by Priority Level and Type Under Baseline and Proposed Policy Condition

	Rase	Baseline Policy (First Quarter EV 2005)	(Riret O.)	artor EV 7	(200			: 4		
Priority Level/Type	TOS=2	TOS=3	TOS=4	TOS=5	70S=6	TOS=2	rropos TOS=3	Proposea Policy Condition* OS=3 TOS=4 TOS=5	ondition* TOS=5	7-30T
EB/ACF Incentives By Priority Level and Type	iority Level	and Type								103-1
1 EB\$ only	4K	7K	12K	16K	20K	6K	8K	15K	20K	25K
	3K + 150	5K+450	7K+850	9K+950	12K+950	5K+150	6K+450	10K+850	13K+950	17K+950
2 EB\$ only	4K	6K	10K	14K	16K	4K	6K	11K	14K	16K
EB\$+ACF	3K+150	3K+450	5K+850	7K+950	8K+950	3K+150	3K+450	5K+850	7K+950	8K+050
3 EB\$ only	3K	5K	8K	12K	14K	3K	5K	9K	12K	14K
EB\$+ACF	2K+150	3K+450	4K+850	5K+950	6K+950	2K+150	3K+450	4K+850	5K+950	6K+950
4 EB\$ only	2K	4K	6K	8K	12K	2K	4K		% % %	12K
EB\$+ACF	1K + 150	2K+450	3K+850	4K+950	5K+950	1K+150	2K+450	3K+850	4K+950	5K+950
5 EB\$ only	1K	3К	4K	6K	8K	1K	3K	4K	6K	%K
EB\$+ACF	0K+150	1K+450	2K+850	3K+950	4K+950	0K+150	1K+450	2K+850	3K+950	4K+950
6 EB\$ only		2K	3K	4K	6K		2K	3K	4K	6K
EB\$+ACF	0K+150	0K+450	1K+850	2K+950	3K+950	0K+150	0K+450	1K+850	2K+950	3K+950
7 EB\$ only		1K	2K	3K	4K		14	2K	3K	4K
EB\$+ACF	0K + 150	0K+450	0K+850	1K+950	2K+950	0K+150	0K+450	0K+850	1K+050	2K+050
8 EB\$ only							2		000	000 137
ACF Only	150	450	850	950	950	150	450	850	950	950
High-Grad Bonus (TOS>=3) **	=3)**									
BA Degree		8K					8K			
Associate Degree		7K					7K			
60 Hrs. Semester Hours		6K					K Y9			
30 Hrs. Semester Hours		3K					3K			
Seasonal Bonus $(TOS >= 3) **$	3)**									
30-day Priority Level		6K/9K					6K/9K			
60-day Priority Level		3K					38			
90-day Priority Level		1K					<u> </u>			
Airborne Bonus $(TOS > = 3)$	3)	3K					*			
Tot. Bonus Cap by TOS	6K	10K	20K	20K	20K	6K	10K	40K	40K	40K
4 71 7 11 11	;					CAR	TOTE	401	40P	404

* The full EB dollar amounts (i.e., EB\$ Only) by MOS level are based on the proposed incentive policy structure during the 16 February 2006 EIRB meeting. The reduced EB amounts (i.e., in EB\$+ACF) are based on approximated values.

** The dollar amounts for the HG and SB bonus under the Proposed Policy condition were fixed to corresponding levels under the Baseline

Condition.

Table 5. Bonus Dollar (\$1,000s) Amounts Over the \$20K Cap (TOS=4,5,6) or \$10K Cap (TOS=3) for Selected Levels of HG, SB, and EB/ACF Incentive Level

	ncentive Level			TOS		
HG	SB	EB/ACF	3	4	5	
BA (\$8K)	30-day (\$9K)	1	14	9	13	1
, ,	• • •	2	13	7	11	1
		3	12	5		1
		4	11	3		
		5	10	1		
		6	9			
		7	8		•	
	30-day (\$6K)	1	11	6	10	1
	σο day (φοικ)	2	10	4		1
		3	9	2		
		4	8	2		
		5	7		L	
	60-day (\$3K)		8	3	7	
	60-day (\$3K)	1	8 7	3 1		1
		2 3		1		
			6		3	
	37.4	4	5			
	N.A.	1	5			
		2	4		2	
		3	3			
60-Hrs (\$6K)	30-day (\$9K)	1	12	7		1
		2	11	5		1
		3	10	3		
		4	9	1		
		5	8		1	
		6	7			
	30-day (\$6K)	1	9	4		1
		2	8	2		
		3	7			
		4	6	<u></u>		
	60-day (\$3K)	1	6	1	13 11 9 5 3 1 10 8 6 2 7 5 3 4 2 11 9 7 3 1 8 6 4 2 8 6 4 5 3 1	
		2	5			
		3	4			
		4	3			
	N.A.	1	3		2	
		2	2			
30-Hrs (\$3K)	30-day (\$9K)	1	9	4	8	1
` ,		2	8	2		
		3	7			
		4	6		•	
	30-day (\$6K)	1	6	1	5	
	Ju-day (BUK)	2	5	i		
		3	3 4			
					1	
	(0.1. (0.21)	4	3			
	60-day (\$3K)	1	3		13 11 9 5 3 1 10 8 6 2 7 5 3 4 2 11 9 7 3 1 8 6 4 5 3 1 2	
		2	2			
	N.A.	1				

Note. HG, SB, and EB combinations not exceeding bonus cap of \$20K are excluded.

Analysis Indices

We used three types of analysis indices to evaluate the raised bonus cap's impact. Each index summarizes comparisons between the baseline and each one of the five policy simulation conditions. Two indices measure channeling effects by MOS and TOS, while the third index measures the increase in bonuses awarded. These indices were computed for the overall sample and by subgroup using AFQT categories, education status, and gender. The discussions below provide a conceptual and computational description of each index.

Channeling Effects by MOS. The first type of index measures the raised bonus cap's potential channeling effects on applicants' MOS choice. For each MOS, it expresses the expected increase/decrease in accessions under the proposed bonus structure, for given market expansion rate, as a percentage of expected baseline accessions. This can be expressed computationally as:

$$CM(m) = \frac{N_P(m,r) - N_B(m)}{N_B(m)} \times 100$$

where $N_P(m,r)$ is the expected accessions for the mth MOS under the proposed bonus structure and a market expansion rate of r, and $N_B(m)$ is expected accessions for the mth MOS under the baseline condition. Expected accessions were estimated using the aggregated JCM choice probabilities of all applicants for the mth MOS under each bonus structure condition:

$$N_{B}(m) = \sum_{i,t} P(i,m,t \mid \text{Baseline})$$

$$N_{P}(m,r) = \sum_{i,t} W(i \mid r) P(i,m,t \mid \text{Policy}; r)$$

For each summation above, the JCM choice probabilities of applicants were aggregated across all TOS. The second summation is a weighted aggregation of choice probabilities under the policy case. For instance, under the 3% market expansion condition, W(i|r) equals 1.03 if the *i*th applicant is I-IIIA and unity otherwise.¹⁹

To measure the potential channeling effects from lower to higher priority MOS by subgroup, we computed the index following the same procedure, but using only applicants belonging to the targeted subgroup:

$$CM_{G}(m) = \frac{N_{P,G}(m,r) - N_{B,G}(m)}{N_{B,G}(m)} \times 100$$

The subscript G identifies one of the following eight subgroups:

¹⁹ In interpreting the computations used for these indices, a useful heuristic is to view the applicant choice probabilities produced by the JCM as being attributed to partial individuals.

- AFQT Category:
 - (1) I-IIIA; (2) IIIB and Lower
- Education Status:
 - (3) Some College; (4) H.S. Graduate; (5) Senior; (6) Not H.S. Graduate
- Gender:
 - (7) Male; (8) Female

The subgroup version of the expected accessions $N_{P,G}(m,r)$ and $N_{B,G}(m)$ was computed in the same way as in the overall index, but the choice probabilities were aggregated exclusively using those applicants belonging to the targeted subgroup G.

Channeling Effect by TOS. The second type of index measures the degree to which the raised bonus cap channel applicants from shorter to longer TOS. Similar to the preceding index for MOS, this index represents the relative increase/decrease in expected accessions signing up for a select TOS under the proposed bonus structure, for a given market expansion rate, as a percentage of the expected baseline accessions. The index is computed for the overall sample and by subgroup, respectively, using:

$$CT(t) = \frac{N_{P}(t,r) - N_{B}(t)}{N_{B}(t)} \times 100$$

$$CT_{G}(t) = \frac{N_{P,G}(t,r) - N_{B,G}(t)}{N_{B,G}(t)} \times 100$$

where $N_P(t,r)$ is the number of expected accessions signing-up for t years of TOS under the proposed bonus structure and a market expansion rate of r, and $N_B(t)$ is the number of expected accessions signing-up for t years of TOS under the baseline condition. The subgroup quantities $N_{P,G}(t,r)$ and $N_{B,G}(t)$ are the same as their respective counterparts in the overall index, except that expected accessions were counted only for the applicable subgroup G.

Increases in Bonus Award Amounts. The third type of index measures the raised bonus cap's impact on the average bonus dollar amount awarded to applicants. For each MOS, the index represents the difference in average total bonus per applicant under proposed and baseline bonus structure. The index is computed for the overall sample and by subgroup, respectively, using:

$$DB(m) = \overline{B}_{P}(m) - \overline{B}_{B}(m)$$

$$DB_{G}(m) = \overline{B}_{P,G}(m) - \overline{B}_{B,G}(m)$$

where $\overline{B}_{P}(m)$ and $\overline{B}_{P,G}(m)$ are the average bonuses, respectively, for overall and subgroup G under the proposed bonus structure, and $\overline{B}_{B}(m)$ and $\overline{B}_{B,G}(m)$ are corresponding averages under the baseline bonus structure. The average bonuses for the overall sample were computed using the following procedures:

$$\overline{B}_{B}(m) = \frac{\sum_{i,t} TB(i,m,t \mid \text{Baseline})P(i,m,t \mid \text{Baseline})}{\sum_{i,t} P(i,m,t \mid \text{Baseline})}$$

$$\overline{B}_{P}(m) = \frac{\sum_{i,t} TB(i,m,t \mid \text{Policy})P(i,m,t \mid \text{Policy}; r = 0)}{\sum_{i,t} P(i,m,t \mid \text{Policy}; r = 0)}$$

As in the computation of the channeling effects indices, it is again useful to view the choice probabilities above as attributed to partial individuals. The quantities $TB(i,m,t \mid \text{Baseline})$ and $TB(i,m,t \mid \text{Policy})$ are the combined total of all bonuses (i.e., EB, HG, SB, and AB) that the *i*th applicant would receive if he/she signs up for the *m*th MOS for *t* years of TOS under the baseline and policy incentive structures, subject to the applicable bonus cap. For example, an applicant with pre-cap bonus total of \$25K would only receive \$20K total under the baseline for a 4-year TOS and all of the \$25K under the proposed bonus structure. The subgroup average bonuses are computed as above, but the summation is evaluated only across applicants belonging to the targeted subgroup.

As can be seen, differences in average total bonuses can be positive or negative. This index is a function of both increases in bonuses and channeling effects under the proposed incentive. The increases in total bonuses under the proposed bonus policy are expected to produce higher average bonuses across all MOS, with relatively higher increments anticipated for higher MOS levels. However, the channeling of quality applicants who qualify for higher bonuses away from some MOS (especially, lower level MOS) is expected to lower their average total bonus.

Findings

Forecasted Impact on Applicant Job Choice

Figures 6 through 10 illustrate the forecasted impact of raising the bonus cap to \$40K on applicants' job choice by MOS and select subgroups under zero market expansion.²⁰ Overall, and as these figures show, raising the cap is expected to:

- Increase somewhat the percentage of Army applicants accessing.
- Uniformly channel applicants, particularly higher quality applicants (i.e., I-IIIA's or those with some college), to higher priority MOS and away from less incentivized ones.

More specifically:

- Across all applicants, the percent of those *not* accessing is expected to decline about 0.4%. Among higher quality applicants, quality taken as I-IIIA's or HSDG or greater, non-accessions are projected to decrease, on average, 0.5-1%.
- Across all applicants, accessions to higher priority MOS are projected to increase, on average, about 6.6%, ranging from under 1% (11X, 18X) to 21% (89D) (see Figure 6). Whereas, accessions to lower priority or less incentivized MOS are expected to decrease, on average, about 1.4%. Among the lower priority MOS, 19D, 19K, LE1, and EL2 would be the most markedly affected (percent decreases greater than 2%).
- Among higher quality applicants, accessions to higher priority MOS are expected to increase, on average, about 8-10%, while accessions to lower priority MOS are expected to decline roughly 2% (see Figures 7-9). According to our forecast, this channeling effect will be most pronounced among those with some college experience, one of the primary targets of this policy change. Among this group, accessions to higher priority MOS would increase, on average, about 21%. Conversely, accessions to lower priority MOS would decline about 4%.
- While comparable, there are some aggregate differences in forecasted accession patterns for males and females (see Figure 10). For example, among males, accessions to higher priority MOS are expected to increase about 6.5%, while among females, accessions are expected to increase about 10.9%. Nevertheless, because the numbers behind these percentages are comparatively small, there is very little indication that they would translate into significant changes in the composition of those accessing, either to the Army as a whole or to specific MOS.

²⁰ For a complete breakdown of results, see Appendix B.

Figure 6. Percent Change in Accessions Relative to Baseline by MOS Under Zero Market Expansion

Figure 7. Percent Change in Accessions Relative to Baseline by MOS and AFQT Category Under Zero Market Expansion

Figure 8. Percent Change in Accessions Relative to Baseline by MOS and Educational Attainment Under Zero Market Expansion

Figure 9. Percent Change in Accessions Relative to Baseline by MOS and Educational Attainment (Some College and High School Graduates Only) Under Zero Market Expansion

Figure 10. Percent Change in Accessions Relative to Baseline by MOS and Gender Under Zero Market Expansion

Forecasted Impact on Applicant TOS Choice

Figures 11 through 15 show the forecasted impact of raising the bonus cap to \$40K on applicants' term-of-service (TOS) choice by MOS priority level and select subgroups under zero market expansion.²¹ Consistent with the preceding analyses, and as these figures demonstrate, raising the cap is expected to channel applicants, particularly higher quality applicants (i.e., I-IIIA's or those with some college), to somewhat longer TOS for higher priority MOS. Specifically:

- Across all applicants, TOS commitments among higher priority MOS are projected to increase, on average, about 4.0% for 4 years, 11.0% for 5 years, and 13.6% for 6 years (see Figure 11), while declining 1.3% for 3 years. Practically, this translates into a modest increase in the average TOS from 3.82 years to 3.86 years.
- Among higher quality applicants, TOS commitments to higher priority MOS are expected to increase, on average, roughly 3.5-5% for 4 years, 12-16% for 5 years, and 14-17% for 6 years, while declining 1.5-3.5% for 3 years (see Figures 12-14)—an increase in the average TOS from 4.10 years to 4.15 years. As with the preceding analyses, this trend will be most pronounced among applicants with some college experience, where TOS commitments to higher priority MOS are projected to increase 13% for 4 years, about 21% for 5 years, and 19% for 6 years. Among applicants with some college experience, this represents an increase in their average TOS from 4.25 to 4.32 years.
- Among males and females, TOS commitments to higher priority MOS are projected to increase, although at a comparatively higher rate for females. As Figure 15 shows, among males, TOS commitments to higher priority MOS are expected to increase about 4% for 4 years, 11% for 5 years, and 13% for 6 years—an increase in average TOS from 3.81 to 3.85 years. Among females, TOS commitments to higher priority MOS are expected to increase about 7% for 4 years, 17% for 5 years, and 19% for 6 years—an increase in average TOS from 3.93 to 3.99 years.

39

²¹ For a complete breakdown of results, see Appendix C.

Figure 11. Percent Change in Accessions Relative to Baseline by Term of Service (TOS) and Incentive Level Under Zero Market Expansion

Figure 12. Percent Change in Accessions Relative to Baseline by Term of Service (TOS), Incentive Level, and AFQT Category Under Zero Market Expansion

Figure 13. Percent Change in Accessions Relative to Baseline by Term of Service (TOS), Incentive Level, and Educational Attainment Under Zero Market Expansion

Figure 14. Percent Change in Accessions Relative to Baseline by Term of Service (TOS), Incentive Level, and Educational Attainment (Some College and High School Graduates Only) Under Zero Market Expansion

Figure 15. Percent Change in Accessions Relative to Baseline by Term of Service (TOS), Incentive Level, and Gender Under Zero Market Expansion

Forecasted Impact on Bonus Dollars Awarded

Figures 16 through 20 show the forecasted impact of raising the bonus cap to \$40K on average bonus dollars (i.e., sum of EB, HG, SB, and AB) awarded by MOS and select subgroups under zero market expansion.²² Overall, raising the cap is expected to increase the average bonus dollars awarded from \$5,633 to \$6,092—an increase of 8%. More specifically, our analyses indicate that:

- Across all applicants, the average bonus dollars awarded to applicants accessing to higher priority MOS are projected to increase, on average, by \$1,267 (see Figure 16) from \$9,530 to \$10,797 per accession. Taken together, this translates into an increase in the total bonus dollars awarded by Army from \$77.5 M to \$83.9 M.
- Among higher quality applicants, the average bonus dollars awarded to those accessing to higher priority MOS is expected to increase, on average, by \$1,700-\$3,300 a 13-23% increase (see Figures 17-19). Of the high priority MOS, 13F, 89D, and 92F would experience the greatest increases about \$3,000-\$7,000 each. Among applicants with some college experience, the average bonus dollars awarded to those accessing to higher priority MOS is forecasted to increase, on average, by \$3,285 (or 23%).
- Among males and females, the average bonus dollars awarded to those accessing to higher priority MOS are expected to increase about \$1,200 and \$2,100, respectively. As Figure 20 indicates, among males, average bonus dollars awarded would increase by \$1,211, from \$9,674 to \$10,885 a 12% increase. Among females, the average bonus awarded would increase by \$2,081, from \$7,548 to \$9,629 a 28% increase.

_

²² For a complete breakdown of results, see Appendices D and E.

Figure 16. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by MOS Under Zero Market Expansion

Figure 17. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by MOS and AFQT Category Under Zero Market Expansion

Figure 18. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by MOS and Educational Attainment Under Zero Market Expansion

Figure 19. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by MOS and Educational Attainment (Some College and High School Graduates Only) Under Zero Market Expansion

Figure 20. Change in Average Bonus Awarded (in Thousands of Dollars) Relative to Baseline by MOS and Gender Under Zero Market Expansion

Discussion

Recap of Key Findings

Taken together, our analyses indicated the following:

- Raising the current bonus cap to \$40K is expected to increase somewhat overall Army accessions and to uniformly channel applicants, particularly high quality applicants (i.e., I-IIIA's or those with some college), to higher priority MOS and away from lower priority ones. Specifically, raising the cap is projected to decrease the percent of non-accessions by 0.4%, while accessions to higher priority MOS are expected to increase, on average, 6.6%. Among higher quality applicants, non-accessions are expected to decline by 0.5-1%. Similarly, accessions to higher priority MOS are projected to increase, on average, about 8-10%, while accessions to lower priority MOS are expected to decrease by 2%.
- Consistent with its impact on accessions, raising the cap is expected to attract applicants, particularly higher quality applicants, to somewhat longer TOS for higher priority MOS. Specifically, TOS commitments among higher priority MOS are projected to increase, on average, about 4.0% for 4 years, 11.0% for 5 years, and 13.6% for 6 years, while declining 1.3% for 3 years. Similarly, among higher quality applicants, TOS commitments are expected to increase, on average, roughly 3.5-5% for 4 years, 12-16% for 5 years, and 14-17% for 6 years, while declining 1.5-3.5% for 3 years—an increase in the average TOS from 4.10 years to 4.15 years.
- On average, raising the cap is expected to increase the bonus dollars awarded per accession from to \$5,633 to \$6,092—an increase of 8%. Across all applicants, the average bonus dollars awarded to applicants accessing to higher priority MOS are projected to increase, on average, by \$1,267. Overall, this translates into an increase in the total bonus dollars awarded by Army from \$77.5 M to \$83.9 M. Among higher quality applicants, the average bonus dollars awarded to those accessing to higher priority MOS is expected to increase, on average, by \$1,700-\$3,300 a 13-23% increase.

Recommendations

We used the mixed multinomial logit model to describe MOS-TOS training choices of Army applicants during the first quarter of FY 2005 as a function of applicant characteristics, incentives, and extant bonus cap policy. The estimated model was subsequently employed to predict training choices under a modified incentive policy with a higher bonus cap. While the internal predictive accuracy of the model was validated using a separate hold-out sample from the same quarter under extant policy and zero market expansion, the predicted accuracy under the new incentive policy and increased bonus cap was not validated because the needed data were not available at the time of the study.

The choice model and policy simulation capabilities developed in this study have the potential to inform the EIRB and other Army staff in charge of managing the Army's enlistment incentives. For instance, the estimated choice model could be embedded in a computer application for simulating incentive policy scenarios. As preparation for such application, the estimated model should be validated under the new incentive policy and increased bonus cap. We outline two approaches for conducting this validation. In the first approach, the procedure used to validate the internal predictive accuracy would be applied directly to applicant transactions data obtained under the new incentive policy and bonus cap, and predicted and observed choices compared by subgroups. This approach would likely require additional calibration of the estimated MOS and/or TOS constants in the model to reflect differences in demand during the first quarter of FY 2005 and the new period from which new data would be collected. The disadvantage of this approach is that it requires individual transactions data, which are difficult to obtain and to process. In the second approach, the observed choices from the new period would be compared to the predicted choices from the first quarter of FY 2005 by subgroup. In addition to the calibration of MOS and TOS constants to account for changes in demands between the two periods, this approach would include re-weighting the first quarter of FY 2005 data to reflect the applicant subgroups' distribution in the new data. This approach overcomes the difficulty of collecting and processing individual transaction data, because it only requires applicant demographics and test scores and their MOS-TOS reservations.

The JCM developed in this study empirically describes individual characteristics (test scores and demographics) and job preferences under the existing classification system. It is therefore a logical starting point for personnel classification interventions studies. For example, using a framework with a JCM as a key component, the potential benefits of new classification composites can be evaluated under approximately real world classification system conditions. Ultimately the better classification composites will be those that can show improvements (e.g., lower attrition or better performance) under operational conditions, and not only under idealized research conditions. The JCM also provides a unified tool for managing personnel classification systems beyond, or in combination with, incentives. For example, using a JCM the analyst can examine the impact of cut score changes on two or more MOS simultaneously, while taking into account applicant preferences. This is in contrast to the current practice of examining one MOS at a time, which disregards the impact of lowering/raising the cut score on other MOS and applicant preferences.

Overall, modeling techniques, such as discrete choice modeling, provide a framework for bringing together an array of factors (e.g., aptitude, personality, and economic) that influence individuals' job choices under real world conditions. Because of this, these techniques constitute an important tool and one that should have a more prominent role in personnel classification research.

References

- Ben-Akiva, M. & Lerman (1985). Discrete choice analysis: Theory and application to travel demand. Cambridge, MA: MIT Press.
- Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Bolduc, D., Boersch-Supan, A., Brownstone, D., Bunch, D.S., Daly, A., de Palma, A., Gopinath, D., Karlstrom, A., & Munizaga, M.A.. (2002). *Hybrid choice models: Progress and challenges. Marketing Letters*, 13, 163-175.
- Bierlaire, M. (2003). An introduction to BIOGEME (Version 1.3) http://roso.epfl.ch/biogeme.
- Diaz, T., Ingerick, M., & Lightfoot, M.A. (2004). Evaluation of alternative aptitude area (AA) composites and job families for Army classification (Study Report 2005-01). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Diaz, T., Ingerick, M., & Sticha, P. (2007). *Modeling Army applicant's job choices: The EPAS Simulation Job Choice Model (JCM)* (Study Note 2007-01). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Golfin, P. (2003). Toward an understanding of the role of incentives in Enlisted recruiting. Alexandria, VA: Center for Naval Analyses.
- Greene, W. (2000). Econometric analysis (4th ed.). Upper Saddle River, NJ: Prentice Hall.
- Train, K. (1986). Qualitative choice analysis. Cambridge, MA: MIT Press.
- Train, K. (2003). Discrete choice methods with simulation. New York, NY: Cambridge University Press.
- U.S. Government Accountability Office (GAO) (2005, November). DoD needs action plan to address enlisted personnel recruitment and retention challenges. Washington, DC: Author.
- Walker, J. (2001). Extended discrete choice models: Integrated framework, flexible error structures, and latent variables. Unpublished doctoral dissertation. Department of Civil Engineering, MIT, Cambridge, MA.

Appendix A: Model Fit Diagnostics

A-2

Table A-1. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pc
ALL	1	11X	2707	2729	-22	1.01	14.40	14.51	-0.1
	2	13F	349	357	-8	1.02	1.86	1.90	-0.0
	3	FA1	794	752	42	0.95	4.22	4.00	0.2
	4	FA2	197	196	1	0.99	1.05	1.04	0.0
	5	AD1	147	153	-6	1.04	0.78	0.81	-0.0
	6	AVI	264	288	-24	1.09	1.40	1.53	-0.1
	7	AV2	185	171	14	0.92	0.98	0.91	0.0
	8	18X	236	220	16	0.93	1.26	1.17	0.0
	9	19D	559	555	4	0.99	2.97	2.95	0.0
	10	19K	229	234	-5	1.02	1.22	1.24	-0.0
	11	EN1	339	354	-15	1.04	1.80	1.88	-0.0
	12	EN2	316	320	-4	1.01	1.68	1.70	-0.0
	13	SII	290	310	-20	1.07	1.54	1.65	-0.1
	14	SI2	664	668	-4	1.01	3.53	3.55	-0.0
	15	PA1	40	42	-2	1.04	0.21	0.22	-0.0
	16	LE1	542	515	27	0.95	2.88	2.74	0.1
	17	EL1	137	152	-15	1.11	0.73	0.81	-0.0
	18	EL2	20	21	-1	1.05	0.11	0.11	-0.0
	19	AX1	66	68	-2	1.03	0.35	0.36	-0.0
	20	AM1	46	49	-3	1.07	0.24	0.26	-0.0
	21	52D	122	124	-2	1.02	0.65	0.66	-0.0
	22	63B	551	575	-24	1.04	2.93	3.06	-0.1
	23	VM1	275	282	-7	1.03	1.46	1.50	-0.0
	24	VM2	24	26	-2	1.10	0.13	0.14	-0.0
	25	74D	213	231	-18	1.08	1.13	1.23	-0.0
	26	TR1	108	102	6	0.95	0.57	0.54	0.0
	27	88M	377	364	13	0.97	2.00	1.94	0.0
	28	89D	110	105	5	0.95	0.59	0.56	0.0
	29	89B	196	196	3	1.00	1.04	1.04	0.0
	30	MD1	978	1016	-38	1.04	5.20	5.40	-0.2
	31	92F	630	621	9	0.99	3.35	3.40	0.0
	32	92G	206	202	4	0.98	1.10	1.07	0.0
	33	SL1	437	461	-24	1.06	2.32	2.45	-0.1
	34	IN1	543	542	1	1.00	2.32	2.43	0:0
	35	HII	600	623	-23	1.04	3.19	3.31	
	36	98X	99	102	-3	1.04	0.53	0.54	-0.1
	999	Non-Acc	5207	5076	131	0.97	27.69	27.00	-0.03 0.70
MALE	1	11X	2707	2729	-22	1.01			
MITTEL	2	13F	349	357	-22 -8		18.02	18.16	-0.1
	3	FAI	794	752	-8 42	1.02 0.95	2.32	2.38	-0.0
	4	FA2					5.28	5.00	0.23
			186	160	27	0.86	1.24	1.06	0.1
	5	AD1	125	108	17	0.87	0.83	0.72	0.1
	6	AV1	234	224	10	0.96	1.56	1.49	0.0
	7	AV2	131	144	-13	1.10	0.87	0.96	-0.09
	8	18X	236	220	16	0.93	1.57	1.46	0.1
	9	19D	559	555	4	0.99	3.72	3.69	0.03
	10	19K	229	234	-5	1.02	1.52	1.56	-0.03
	11	EN1	300	292	8	0.97	2.00	1.94	0.05
	12	EN2	271	296	-25	1.09	1.80	1.97	-0.17
	13	SII	146	151	-5	1.03	0.97	1.00	-0.03
	14	SI2	468	518	-50	1.11	3.12	3.45	-0.33
	15	PA1	25	24	1	0.95	0.17	0.16	0.0
	16	LE1	373	379	-6	1.02	2.48	2.52	-0.04
	17	EL1	128	141	-13	1.10	0.85	0.94	-0.09
	18	EL2	17	19	-2	1.14	0.11	0.13	-0.01

Table A-1. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
	20	AM1	36	39	-3	1.08	0.24	0.26	-0.02
	21	52D	75	108	-33	1.45	0.50	0.72	-0.22
	22	63B	533	512	22	0.96	3.55	3.41	0.14
	23	VM1	248	265	-16	1.07	1.65	1.76	-0.11
	24	VM2	24	26	-2	1.10	0.16	0.17	-0.01
	25	74D	103	113	-10	1.10	0.69	0.75	-0.07
	26	TR1	68	56	12	0.82	0.45	0.37	0.08
	27	88M	229	234	-5	1.02	1.52	1.56	-0.03
	28	89D	100	93	7	0.93	0.67	0.62	0.05
	29	89B	71	92	-21	1.29	0.47	0.61	-0.14
	30	MD1	649	664	-14	1.02	4.32	4.42	-0.10
	31	92F	449	428	21	0.95	2.99	2.85	0.14
	32	92G	136	115	21	0.84	0.91	0.77	0.14
	33	SLI	233	239	-6	1.02	1.55	1.59	-0.04
	34	INI	454	457	-2	1.01	3.02	3.04	-0.02
	35	HII	463	450	13	0.97	3.08	2.99	0.09
	36	98X	70	64	6	0.92	0.47	0.43	0.04
	999	Non-Acc	3759	3724	36	0.99	25.02	24.78	0.24
FEMALE	1	11X							
	2	13F							
	3	FA1							
	4	FA2	11	36	-25	3.33	0.29	0.95	-0.66
	5	AD1	22	44	-23	2.05	0.58	1.16	-0.58
	6	AV1	30	64	-34	2.13	0.79	1.69	-0.90
	7	AV2	54	27	27	0.50	1.43	0.71	0.71
	8	18X							
	9	19D							
	10	19K							
	11	EN1	39	62	-23	1.60	1.03	1.64	-0.61
	12	EN2	45	24	21	0.53	1.19	0.64	0.56
	13	SII	144	160	-16	1.11	3.81	4.24	-0.42
	14	SI2	196	150	45	0.77	5.19	3.97	1.22
	15	PA1	15	18	-3	1.18	0.40	0.48	-0.08
	16	LE1	169	136	33	0.81	4.47	3.60	0.87
	17	EL1	9	12	-3	1.29	0.24	0.32	-0.08
	18	EL2	3	2	1	0.53	0.08	0.05	0.03
	19	AXI	20	23	2	1.12	0.53	0.61	-0.08
	20	AM1	10	10		1.02	0.26	0.26	0.00
	21	52D	47	16	31	0.34	1.24	0.42	0.82
	22	63B	18	64	-46	3.58	0.48	1.69	-1.22
	23	VM1	27	17	9	0.65	0.71	0.45	0.26
	24	VM2							
	25	74D	110	118	-8	1.07	2.91	3.12	-0.21
	26	TR1	40	46	-6	1.15	1.06	1.22	-0.16
	27	88M	148	130	18	0.88	3.92	3.44	0.48
	28	89D	10	12	-2	1.15	0.26	0.32	-0.05
	29	89B	125	104	20	0.84	3.31	2.75	0.55
	30	MD1	329	353	-24	1.07	8.71	9.34	-0.64
	31	92F	181	193	-12	1.06	4.79	5.11	-0.32
	32	92G	70	87	-17	1.24	1.85	2.30	-0.45
	33	SL1	204	222	-19	1.09	5.40	5.88	-0.48
	34	IN1	89	85	4	0.96	2.36	2.25	0.11
	35	HIII	137	173	-35	1.26	3.63	4.58	-0.95
	36	98X	29	38	-9	1.30	0.77	1.01	-0.24
	999	Non-Acc	1448	1352	96	0.93	38.32	35.79	2.53

Table A-2. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pet
HGC	i	11X	1536	1504	32	0.98	12.54	12.28	0.20
	2	13F	205	185	20	0.90	1.67	1.51	0.10
	3	FA1	498	465	33	0.93	4.07	3.80	0.2
	4	FA2	75	110	-35	1.47	0.61	0.90	-0.29
	5	AD1	80	78	2	0.97	0.65	0.64	0.02
	6	AVI	174	166	8	0.95	1.42	1.36	0.0
	7	AV2	121	126	-5	1.04	0.99	1.03	-0.04
	8	18X	198	184	14	0.93	1.62	1.50	0.11
	9	19D	383	388	-5	1.01	3.13	3.17	-0.04
	10	19K	142	162	-20	1.14	1.16	1.32	-0.16
	11	ENI	264	253	11	0.96	2.16	2.07	0.09
	12	EN2	223	241	-18	1.08	1.82	1.97	-0.15
	13	SII	213	223	-10	1.05	1.74	1.82	-0.08
	14	SI2	475	449	26	0.95	3.88	3.67	0.21
	15	PA1	32	38	-5	1.16	0.26	0.31	-0.05
	16	LE1	383	411	-28	1.07	3.13	3.36	-0.23
	17	EL1	105	114	-9	1.08	0.86	0.93	-0.07
	18	EL2	18	19	-2	1.09	0.15	0.16	-0.01
	19	AX1	47	49	-2	1.04	0.38	0.40	-0.02
	20	AM1	25	27	-2	1.09	0.20	0.22	-0.02
	21	52D	82	80	2	0.97	0.67	0.65	0.02
	22	63B	379	376	3	0.99	3.10	3.07	0.02
	23	VM1	158	178	-21	1.13	1.29	1.45	-0.16
	24	VM2	11	10	1	0.93	0.09	0.08	0.01
	25	74D	161	171	-10	1.06	1.31	1.40	-0.08
	26	TR1	78	72	6	0.92	0.64	0.59	0.05
	27	88M	293	263	31	0.89	2.39	2.15	0.24
	28	89D	69	91	-23	1.33	0.56	0.74	-0.18
	29	89B	117	136	-19	1.17	0.96	1.11	-0.16
	30	MD1	755	779	-23	1.03	6.17	6.36	-0.20
	31	92F	526	492	34	0.94	4.30	4.02	0.28
	32	92G	160	161	-1	1.01	1.31	1.31	-0.01
	33	SL1	319	343	-24	1.07	2.61	2.80	-0.20
	34	IN1	415	423	-9	1.02	3.39	3.45	-0.07
	35	HII	509	432	78	0.85	4.16	3.53	0.63
	36	98X	90	94	-4	1.05	0.73	0.77	-0.03
·	999	Non-Acc	2926	2952	-26	1.01	23.90	24.11	-0.21
SENIOR	1	11X	597	734	-137	1.23	15.76	19.35	-3.58
	2	13F	24	55	-31	2.32	0.63	1.45	-0.82
	3	FA1	30	94	-64	3.13	0.79	2.48	-1.69
	4	FA2	6	22	-15	3.53	0.16	0.58	-0.42
	5	AD1	12	27	-15	2.22	0.32	0.71	-0.39
	6	AV1	75	61	14	0.81	1.98	1.61	0.37
	7	AV2	44	29	15	0.66	1.16	0.76	0.40
	8	18X	38	35	3	0.91	1.00	0.92	0.08
	9	19D	77	73	4	0.95	2.03	1.92	0.11
	10	19K	40	30	10	0.74	1.06	0.79	0.27
	11	EN1	24	39	-15	1.63	0.63	1.03	-0.39
	12	EN2	33	43	-9	1.27	0.87	1.13	-0.26
	13	SII	57	59	-2	1.04	1.51	1.56	-0.20
	14	SI2	96	106	-10	1.10	2.53	2.79	-0.03
	15	PA1	6	3	4	0.42	0.16	0.08	0.28
	16	LEI	138	58	80	0.42	3.64	1.53	2.12
	17	ELI	8	10	-1	1.18	0.21	0.26	
		EL2	1	1	-1	1.18	0.21		-0.05 0.00
	18	P.L.Z		3		1 (1/1	11 (1/2	0.03	V VV

Table A-2. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pet.
	20	AM1	16	12	4	0.73	0.42	0.32	0.11
	21	52D	21	24	-4	1.17	0.55	0.63	-0.08
	22	63B	103	125	-22	1.21	2.72	3.29	-0.57
	23	VM1	21	31	-10	1.47	0.55	0.82	-0.26
	24	VM2	11	14	-3	1.27	0.29	0.37	-0.08
	25	74D	31	37	-5	1.17	0.82	0.98	-0.16
	26	TR1	16	17	-1	1.05	0.42	0.45	-0.03
	27	88M	14	46	-32	3.27	0.37	1.21	-0.84
	28	89D	21	4	17	0.18	0.55	0.11	0.45
	29	89B	21	17	5	0.79	0.55	0.45	0.11
	30	MD1	173	173	-1	1.00	4.57	4.56	0.01
	31	92F	14	30	-15	2.05	0.37	0.79	-0.42
	32	92G	24	25	-1	1.03	0.63	0.66	-0.03
	33	SL1	78	76	2	0.97	2.06	2.00	0.06
	34	IN1	127	96	31	0.76	3.35	2.53	0.82
	35	HII	44	76	-31	1.70	1.16	2.00	-0.84
	36	98X	9	8	ì	0.87	0.24	0.21	0.03
	999	Non-Acc	1718	1491	227	0.87	45.37	39.30	6.07
NG	1	11X	574	491	83	0.86	20.74	17.75	2.99
	2	13F	120	117	3	0.97	4.34	4.23	0.11
	3	FA1	266	193	73	0.72	9.61	6.98	2.64
	4	FA2	116	64	52	0.55	4.19	2.31	1.88
	5	AD1	55	48	7	0.87	1.99	1.74	0.25
	6	AV1	15	61	-46	4.08	0.54	2.21	-1.66
	7	AV2	20	15	4	0.78	0.72	0.54	0.18
	8	18X		1	-1			0.04	-0.04
	9	19D	100	95	5	0.95	3.61	3.43	0.18
	10	19K	47	42	5	0.90	1.70	1.52	0.18
	11	EN1	51	62	-11	1.22	1.84	2.24	-0.40
	12	EN2	59	36	23	0.61	2.13	1.30	0.83
	13	SII	20 93	28	-8 20	1.41	0.72	1.01	-0.29
	14	SI2		113 1	-20	1.22	3.36 0.04	4.09	-0.72
	15 16	PA1 LE1	1 21	46	-25	1.23 2.20	0.04	0.04	0.00 -0.90
	17	EL1	24	28	-23 -5	1.21	0.70	1.66 1.01	-0.90 -0.14
	18	EL2	1	26	-5 1	0.33	0.04	1.01	0.04
	19	AXI	1	7	-7	0.33	0.04	0.25	-0.25
	20	AMI	5	10	-5	1.97	0.18	0.36	-0.23
	21	52D	19	20	-1	1.05	0.69	0.72	-0.18
	22	63B	69	75	-6	1.08	2.49	2.71	-0.22
	23	VM1	96	73	23	0.76	3.47	2.64	0.83
	24	VM2	2	2	23	1.11	0.07	0.07	0.00
	25	74D	21	24	-3	1,13	0.76	0.87	-0.11
	26	TR1	14	13	l	0.94	0.51	0.47	0.04
	27	88M	69	55	14	0.80	2.49	1.99	0.51
	28	89D	20	10	10	0.49	0.72	0.36	0.36
	29	89B	58	43	15	0.75	2.10	1.55	0.54
	30	MD1	50	64	-14	1.28	1.81	2.31	-0.51
	31	92F	90	100	-10	1.11	3.25	3.62	-0.36
	32	92G	22	16	6	0.73	0.80	0.58	0.22
	33	\$LI	40	43	-3	1.08	1.45	1.55	-0.11
	34	INI	1	22	-21	16.25	0.04	0.80	-0.76
	35	HII	46	115	-69	2.49	1.66	4.16	-2.50
	36	98X	. 5		-,	,		0	2.00

Table A-3. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
I-IIIA	1	11X	1739	1758	-19	1.01	13.18	13.32	-0.14
	2	13F	258	229	29	0.89	1.95	1.74	0.22
	3	FA1	516	537	-21	1.04	3.91	4.07	-0.16
	4	FA2	129	139	-10	1.08	0.98	1.05	-0.08
	5	AD1	136	136		1.00	1.03	1.03	0.00
	6	AV1	249	249		1.00	1.89	1.89	0.00
	7	AV2	121	137	-16	1.14	0.92	1.04	-0.12
	8	18X	236	220	16	0.93	1.79	1.67	0.12
	9	19D	344	356	-13	1.04	2.61	2.70	-0.09
	10	19K	134	141	-8	1.06	1.02	1.07	-0.05
	11	ENI	166	202	-36	1.22	1.26	1.53	-0.27
	12	EN2	215	197	18	0.92	1.63	1.49	0.14
	13	SII	222	242	-20	1.09	1.68	1.83	-0.15
	14	SI2	518	550	-32	1.06	3.92	4.17	-0.24
	15	PA1	40	42	-2	1.04	0.30	0.32	-0.02
	16	LE1	336	387	-50	1.15	2.55	2.93	-0.39
	17	EL1	108	117	-8	1.08	0.82	0.89	-0.07
	18	EL2	17	20	-4	1.21	0.13	0.15	-0.02
	19	AX1	41	45	-4	1.11	0.31	0.34	-0.03
	20	AM1	34	38	-3	1.10	0.26	0.29	-0.03
	21	52D	65	74	-9	1.14	0.49	0.56	-0.07
	22	63B	350	376	-26	1.07	2.65	2.85	-0.20
	23	VM1	165	161	4	0.98	1.25	1.22	0.03
	24	VM2	12	17	-5	1.39	0.09	0.13	-0.04
	25	74D	136	157	-21	1.15	1.03	1.19	-0.16
	26	TRI	43	38	5	0.88	0.33	0.29	0.04
	27	88M	129	165	-36	1.28	0.98	1.25	-0.27
	28	89D	99	99	-1	1.01	0.75	0.75	0.00
	29	89B	70	84	-14	1.20	0.73	0.73	-0.11
	30	MD1	923	958	-36	1.04	6.99	7.26	-0.11
	31	92F	272	249	23	0.92	2.06	1.89	0.17
		92F 92G	114	89	25	0.78	0.86	0.67	0.17
	32			229	-36		1.46	1.74	-0.27
	33	SL1	193			1.19			
	34	IN1	526	511	16	0.97	3.99	3.87	0.11
	35	HII	559	507	52	0.91	4.24	3.84	0.39
	36	98X	99	102	-3 246	1.03	0.75	0.77	-0.02
	999	Non-Acc	3884	3639	246	0.94	29.43	27.57	1.85
IIIB+IV	1	11X	968	971	-3	1.00	17.27	17.32	-0.05
	2	13F	91	128	-37	1.41	1.62	2.28	-0.66
	3	FA1	278	214	64	0.77	4.96	3.82	1.14
	4	FA2	68	57	11	0.84	1.21	1.02	0.20
	5	AD1	11	17	-6	1.56	0.20	0.30	-0.11
	6	AVI	15	39	-24	2.60	0.27	0.70	-0.43
	7	AV2	64	34	30	0.53	1.14	0.61	0.54
	8	18X							
	9	19D	215	199	16	0.92	3.84	3.55	0.29
	10	19K	95	93	3	0.97	1.69	1.66	0.04
	11	EN1	173	152	21	0.88	3.09	2.71	0.38
	12	EN2	101	123	-22	1.21	1.80	2.19	-0.39
	13	SII	68	68		1.00	1.21	1.21	0.00
	14	SI2	146	118	28	0.81	2.60	2.10	0.50
	15	PA1							
	16	LEI	206	129	77	0.63	3.68	2.30	1.37
	17	EL1	29	36	-7	1.23	0.52	0.64	-0.12
	1/								
	18	EL2	3	1	3	0.18	0.05	0.02	0.04

Table A-3. Estimation Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
•	20	AM1	12	11		0.97	0.21	0.20	0.02
	21	52D	57	51	7	0.88	1.02	0.91	0.11
	22	63B	201	199	2	0.99	3.59	3.55	0.04
	23	VM1	110	121	-11	1.10	1.96	2.16	-0.20
	24	VM2	12	9	2	0.80	0.21	0.16	0.05
	25	74D	7 7	75	3	0.96	1.37	1.34	0.04
	26	TRI	65	64	1	0.99	1.16	1.14	0.02
	27	88M	248	199	49	0.80	4.42	3.55	0.88
	28	89D	11	5	6	0.47	0.20	0.09	0.11
	29	89B	126	112	14	0.89	2.25	2.00	0.25
	30	MD1	55	58	-3	1.05	0.98	1.03	-0.05
	31	92F	358	372	-14	1.04	6.39	6.63	-0.25
	32	92G	92	113	-20	1.22	1.64	2.02	-0.37
	33	SL1	244	233	12	0.95	4.35	4.16	0.20
	34	IN1	17	31	-14	1.86	0.30	0.55	-0.25
	35	нп	41	115	-74	2.82	0.73	2.05	-1.32
	36	98X							
	999	Non-Acc	1323	1437	-114	1.09	23.60	25.63	-2.02

Table A-4. Estimation Sample TOS Fit Diagnostics by Subgroup

						<u> </u>		
Subgoup	TOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
ALL	3	5765	5730	35	0.99	30.66	30.47	0.19
	4	4844	4945	-101	1.02	25.76	26.30	-0.54
	5	2128	2169	-41	1.02	11.32	11.53	-0.22
	6	859	884	-25	1.03	4.57	4.70	-0.13
	Non-Acc	5207	5076	131	0.97	27.69	26.99	0.70
MALE	3	5014	4978	36	0.99	33.37	33.13	0.24
	4	3852	3904	-52	1.01	25.64	25.98	-0.34
	5	1771	1787	-16	1.01	11.79	11.89	-0.11
	6	629	633	-4	1.01	4.19	4.21	-0.03
	Non-Acc	3759	3724	36	0.99	25.02	24.78	0.23
FEMALE	3	751	752	-1	1.00	19.88	19.91	-0.03
	4	992	1041	-49	1.05	26.26	27.56	-1.30
	5	357	382	-25	1.07	9.45	10.11	-0.66
	6	230	250	-20	1.09	6.09	6.62	-0.53
	Non-Acc	1448	1352	96	0.93	38.33	35.80	2.53
HGC	3	3556	3500	56	0.98	29.04	28.58	0.46
	4	3597	3627	-30	1.01	29.38	29.62	-0.24
	5	1579	1576	2	1.00	12.90	12.87	0.02
	6	587	590	-3	1.01	4.79	4.82	-0.02
	Non-Acc	2926	2952	-26	1.01	23.90	24.11	-0.21
SENIOR	3	497	952	-455	1.92	13.11	25.11	-12.00
	4	884	778	106	0.88	23.31	20.52	2.80
	5	467	397	70	0.85	12.32	10.47	1.85
	6	226	174	52	0.77	5.96	4.59	1.37
	Non-Acc	1718	1491	227	0.87	45.31	39.32	5.99
NG	3	1713	1279	434	0.75	61.91	46.22	15.68
	4	363	540	-177	1.49	13.12	19.52	-6.40
	5	82	195	-113	2.37	2.96	7.05	-4.08
	6	47	120	-73	2.57	1.70	4.34	-2.64
	Non-Acc	562	633	-71	1.13	20.31	22.88	-2.57
I-IIIA	3	2533	2580	-47	1.02	19.19	19.55	-0.36
	4	4116	4241	-125	1.03	31.19	32.14	-0.95
	5	1892	1939	-47	1.03	14.34	14.69	-0.36
	6	772	798	-26	1.03	5.85	6.05	-0.20
	Non-Acc	3884	3639	246	0.94	29.43	27.57	1.86
IIIB+IV	3	3232	3150	82	0.97	57.65	56.19	1.46
	4	728	704	25	0.97	12.99	12.56	0.43
	5	236	229	7	0.97	4.21	4.08	0.12
	6	87	86	1	0.98	1.55	1.53	0.02
	Non-Acc	1323	1437	-114	1.09	23.60	25.63	-2.03

Table A-5. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct
ALL	1	11X	2707	2726	-19	1.01	14.40	14.50	-0.10
	2	13F	349	345	4	0.99	1.86	1.83	0.02
	3	FA1	794	766	28	0.96	4.22	4.07	0.15
	4	FA2	197	189	8	0.96	1.05	1.01	0.04
	5	AD1	147	151	-4	1.02	0.78	0.80	-0.02
	6	AV1	264	256	8	0.97	1.40	1.36	0.04
	7	AV2	185	166	19	0.90	0.98	0.88	0.10
	8	18X	236	226	10	0.96	1.26	1.20	0.05
	9	19D	559	567	-8	1.01	2.97	3.02	-0.04
	10	19K	229	253	-24	1.11	1.22	1.35	-0.13
	11	EN1	339	339		1.00	1.80	1.80	
	12	EN2	316	345	-29	1.09	1.68	1.83	-0.15
	13	SH	290	300	-10	1.04	1.54	1.60	-0.05
	14	SI2	664	642	22	0.97	3.53	3.41	0.12
	15	PA1	40	33	7	0.81	0.21	0.18	0.04
	16	LE1	542	535	7	0.99	2.88	2.85	0.04
	17	EL1	137	154	-17	1.13	0.73	0.82	-0.09
	18	EL2	20	20		0.98	0.11	0.11	
	19	AX1	66	80	-14	1.21	0.35	0.43	-0.07
	20	AM1	46	49	-3	1.07	0.24	0.26	-0.02
	21	52D	122	131	-9	1.07	0.65	0.70	-0.05
	22	63B	551	574	-23	1.04	2.93	3.05	-0.12
	23	VM1	275	275		1.00	1.46	1.46	****
	24	VM2	24	22	2	0.91	0.13	0.12	0.01
	25	74D	213	247	-34	1.16	1.13	1.31	-0.18
	26	TRI	108	94	14	0.87	0.57	0.50	0.07
	27	88M	377	388	-11	1.03	2.00	2.06	-0.06
	28	89D	110	128	-18	1.17	0.59	0.68	-0.10
	29	89B	196	179	17	0.91	1.04	0.95	0.09
	30	MD1	978	976	2	1.00	5.20	5.19	0.01
	31	92F	630	642	-12	1.02	3.35	3.41	-0.06
	32	92G	206	186	20	0.90	1.10	0.99	0.11
	33	SL1	437	466	-29	1.07	2.32	2.48	-0.15
	34	IN1	543	580	-37	1.07	2.89	3.08	-0.20
	35	HII	600	624	-24	1.04	3.19	3.32	-0.13
	36	98X	99	100	-1	1.01	0.53	0.53	-0.01
	999	Non-Acc	5207	5049	158	0.97	27.69	26.85	0.84
MALE	1	11X	2706	2725	-19	1.01	17.72	17.85	-0.12
•	2	13F	349	345	4	0.99	2.29	2.26	0.03
	3	FA1	794	766	28	0.96	5.20	5.02	0.18
	4	FA2	188	159	29	0.85	1.23	1.04	0.19
	5	AD1	123	102	21	0.83	0.81	0.67	0.14
	6	AV1	243	205	38	0.84	1.59	1.34	0.25
	7	AV2	142	132	10	0.93	0.93	0.86	0.07
	8	18X	236	226	10	0.96	1.55	1.48	0.07
	9	19D	559	566	-7	1.01	3.66	3.71	-0.05
	10	19K	229	253	-24	1.11	1.50	1.66	-0.16
	11	EN1	299	291	8	0.97	1.96	1.91	0.05
	12	EN2	298	320	-23	1.08	1.95	2.10	-0.14
	13	SII	187	161	26	0.86	1.93	1.05	0.17
	13	S11 S12	187 494	512		1.04	3.24		
					-18			3.35	-0.12
	15	PA1	28	18	10	0.66	0.18	0.12	0.07
	16	LE1	399	401	-2 24	1.01	2.61	2.63	-0.01
	17	EL1	102	136	-34	1.33	0.67	0.89	-0.22
	18 19	EL2 AX1	20 41	18 50	2 -9	0.91 1.22	0.13 0.27	0.12 0.33	0.01 -0.06

Table A-5. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct
	20	AM1	46	41	5	0.89	0.30	0.27	0.03
	21	52D	103	115	-11	1.11	0.67	0.75	-0.08
	22	63B	504	527	-23	1.04	3.30	3.45	-0.15
	23	VM1	257	257		1.00	1.68	1.68	
	24	VM2	24	22	2	0.91	0.16	0.14	0.01
	25	74D	112	116	-4	1.04	0.73	0.76	-0.03
	26	TR1	62	48	14	0.77	0.41	0.31	0.09
	27	88M	276	266	11	0.96	1.81	1.74	0.07
	28	89D	102	113	-11	1.11	0.67	0.74	-0.07
	29	89B	101	91	10	0.90	0.66	0.60	0.07
	30	MD1	578	613	-35	1.06	3.79	4.02	-0.23
	31	92F	476	479	-3	1.01	3.12	3.14	-0.02
	32	92G	131	108	24	0.82	0.86	0.71	0.15
	33	SL1	226	254	-28	1.13	1.48	1.66	-0.18
	34	IN1	394	490	-96	1.24	2.58	3.21	-0.63
	35	HII	441	482	-41	1.09	2.89	3.16	-0.27
	36	98X	71	71		1.00	0.47	0.47	
	999	Non-Acc	3926	3788	138	0.96	25.72	24.81	0.90
FEMALE	1	11X	· -						
	2	13F							
	3	FA1							
	4	FA2	9	30	-21	3.36	0.25	0.85	-0.60
	5	AD1	24	48	-24	2.01	0.68	1.36	-0.68
	6	AV1	21	51	-30	2.41	0.59	1.44	-0.85
	7	AV2	43	34	8	0.80	1.22	0.96	0.25
	8	18X							
	9	19D							
	10	19K							
	11	EN1	40	48	-8	1.20	1.13	1.36	-0.23
	12	EN2	18	24	-6	1.33	0.51	0.68	-0.17
	13	SII	103	139	-36	1.35	2.91	3.94	-1.02
	14	SI2	170	130	40	0.77	4.81	3.68	1.13
	15	PA1	12	14	-2	1.18	0.34	0.40	-0.06
	16	LE1	143	134	9	0.94	4.04	3.79	0.25
	17	EL1	35	18	17	0.52	0.99	0.51	0.48
	18	EL2		1	-1	•		0.03	-0.03
	19	AXI	25	29	-5	1.19	0.71	0.82	-0.11
	20	AM1		8	-8			0.23	-0.23
	21	52D	19	16	3	0.86	0.54	0.45	0.08
	22	63B	47	47		1.00	1.33	1.33	0.00
	23	VM1	18	18		1.00	0.51	0.51	0.00
	24	VM2						0.51	0.00
	25	74D	101	131	-30	1.29	2.86	3.71	-0.85
	26	TR1	46	46	50	1.00	1.30	1.30	0.00
	27	88M	101	122	-22	1.22	2.86	3.46	-0.60
	28	89D	8	15	-7	1.96	0.23	0.42	-0.20
	29	89B	95	88	7	0.93	2.69	2.49	0.19
	30	MD1	400	363	37	0.91	11.31	10.28	1.03
	31	92F	154	163	-9	1.06	4.36	4.62	-0.26
	32	92G	75	79	-4	1.06			
	33	SLI	211	212	-1	1.03	2.12	2.24	-0.12
	33	IN1	149	90	-1 59		5.97	6.00	-0.04
	35	HII				0.60	4.21	2.55	1.66
			159	142	18	0.89	4.50	4.02	0.48
	36	98X	28	29	-1	1.05	0.79	0.82	-0.03
	999	Non-Acc	1281	1261	20	0.98	36.23	35.71	0.52

Table A-6. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct
HGC	1	11X	1716	1600	116	0.93	14.07	13.12	0.95
	2	13F	175	167	8	0.96	1.44	1.37	0.07
	3	FA1	490	466	24	0.95	4.02	3.82	0.20
	4	FA2	67	108	-41	1.62	0.55	0.89	-0.34
	5	AD1	88	83	5	0.94	0.72	0.68	0.04
	6	AV1	169	152	17	0.90	1.39	1.25	0.14
	7	AV2	128	118	10	0.92	1.05	0.97	0.08
	8	18X	195	189	5	0.97	1.60	1.55	0.05
	9	19D	366	372	-6	1.02	3.00	3.05	-0.05
	10	19K	145	173	-27	1.19	1.19	1.42	-0.23
	11	EN1	246	238	8	0.97	2.02	1.95	0.07
	12	EN2	223	259	-36	1.16	1.83	2.12	-0.29
	13	SII	217	203	15	0.93	1.78	1.66	0.12
	14	SI2	481	430	51	0.89	3.94	3.53	0.42
	15	PA1	28	28		1.00	0.23	0.23	0.00
	16	LE1	361	428	-67	1.19	2.96	3.51	-0.55
	17	EL1	62	104	-42	1.68	0.51	0.85	-0.34
	18	EL2		18	-18			0.15	-0.15
	19	AXI	48	60	-12	1.25	0.39	0.49	-0.10
	20	AM1	46	29	17	0.63	0.38	0.24	0.14
	21	52D	95	79	16	0.83	0.78	0.65	0.13
	22	63B	365	350	15	0.96	2.99	2.87	0.12
	23	VM1	163	187	-24	1.15	1.34	1.53	-0.20
	24	VM2	6	4	2	0.63	0.05	0.03	0.02
	25	74D	183	189	-6	1.03	1.50	1.55	-0.05
	26	TRI	76	61	15	0.81	0.62	0.50	0.12
	27	88M	268	260	8	0.97	2.20	2.13	0.07
	28	89D	67	99	-32	1.47	0.55	0.81	-0.26
	29	89B	136	124	12	0.91	1.12	1.02	0.10
	30	MDI	751	720	31	0.96	6.16	5.90	0.26
	31	92F	516	508	8	0.98	4.23	4.17	0.07
	32	92G	175	138	38	0.79	1.44	1.13	0.30
	33	SL1	333	337	-4	1.01	2.73	2.76	-0.03
	34	IN1	393	456	-63	1.16	3.22	3.74	-0.52
	35	HII	459	452	7	0.99	3.76	3.71	0.06
	36	98X	90	85	5	0.94	0.74	0.70	0.04
	999	Non-Acc	2867	2922	-55	1.02	23.51	23.96	-0.45
SENIOR	1	11X	533	694	-161	1.30	13.52	17.63	-4.10
	2	13F	40	64	-24	1.60	1.01	1.63	-0.61
	3	FA1	36	105	-68	2.89	0.91	2.67	-1.75
	4	FA2	7	19	-12	2.68	0.18	0.48	-0.30
	5	AD1	15	31	-15	2.00	0.38	0.79	-0.41
	6	AV1	89	62	27	0.70	2.26	1.57	0.68
	7	AV2	42	33	9	0.79	1.07	0.84	0.23
	8	18X	41	36	5	0.88	1.04	0.91	0.13
	9	19D	85	97	-12	1.14	2.16	2.46	-0.31
	10	19K	36	39	-3	1.10	0.91	0.99	-0.08
	11	ENI	50	44	5	0.89	1.27	1.12	0.15
	12	EN2	56	47	9	0.83	1.42	1.19	0.23
	13	S11	58	63	-6	1.10	1.47	1.60	-0.13
	14	SI2	82	102	-20	1.24	2.08	2.59	-0.51
	15	PA1	12	3	9	0.25	0.30	0.08	0.23
	16	LE1	158	60	97	0.38	4.01	1.52	2.49
	17	EL1	12	11	,,	0.97	0.30	0.28	0.03
	18	EL2	12	1	-1	0.77	0.50	0.03	-0.03

Table A-6. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
	20	AMI		12	-12			0.30	-0.30
	21	52D	6	28	-23	4.93	0.15	0.71	-0.56
	22	63B	128	150	-22	1.17	3.25	3.81	-0.56
	23	VM1	20	33	-13	1.64	0.51	0.84	-0.33
	24	VM2	18	16	2	0.92	0.46	0.41	0.05
	25	74D	16	34	-18	2.14	0.41	0.86	-0.46
	26	TRI	19	17	2	0.89	0.48	0.43	0.05
	27	88M	28	54	-26	1.92	0.71	1.37	-0.66
	28	89D	20	9	10	0.48	0.51	0.23	0.28
	29	89B	7	15	-8	2.04	0.18	0.38	-0.20
	30	MD1	176	176		1.00	4.47	4.47	0.00
	31	92F	21	35	-14	1.70	0.53	0.89	-0.36
	32	92G	20	35	-14	1.70	0.51	0.89	-0.38
	33	SL1	64	74	-10	1.16	1.62	1.88	-0.26
	34	IN I	136	101	35	0.75	3.45	2.57	0.89
	35	HII	82	82		1.00	2.08	2.08	0.00
	36	98X	6	11	-5	1.83	0.15	0.28	-0.13
	999	Non-Acc	1806	1528	278	0.85	45.83	38.81	7.01
NG	1	11X	458	432	26	0.94	17.18	16.20	0.98
	2	13F	135	115	20	0.85	5.06	4.31	0.75
	3	FA!	268	196	72	0.73	10.05	7.35	2.70
	4	FA2	123	61	62	0.50	4.61	2.29	2.33
	5	AD1	44	37	7	0.85	1.65	1.39	0.26
	6	AV1	6	42	-36	6.71	0.23	1.57	-1.35
	7	AV2	15	15		1.01	0.56	0.56	0.00
	8	18X		1	-1			0.04	-0.04
	9	19D	107	98	10	0.91	4.01	3.67	0.34
	10	19K	48	41	7	0.86	1.80	1.54	0.26
	11	EN1	43	56	-13	1.31	1.61	2.10	-0.49
	12	EN2	37	39	-2	1.06	1.39	1.46	-0.07
	13	SII	15	34	-19	2.28	0.56	1.27	-0.71
	14	SI2	100	110	-10	1.10	3.75	4.12	-0.37
	15	PA1		1	-1	•		0.04	-0.04
	16	LE1	24	47	-23	1.98	0.90	1.76	-0.86
	17	EL1	64	39	24	0.62	2.40	1.46	0.94
	18	EL2	20	1	19	0.03	0.75	0.04	0.71
	19	AX1	2	4	-2	1.86	0.08	0.15	-0.07
	20	AM1		9	-9	•		0.34	-0.34
	21	52D	22	23	-2	1.09	0.83	0.86	-0.04
	22	63B	57	73	-16	1.28	2.14	2.74	-0.60
	23	VM1	92	55	37	0.60	3.45	2.06	1.39
	24	VM2		2	-2			0.07	-0.07
	25	74D	14	24	-10	1.72	0.53	0.90	-0.37
	26	TRI	13	15	-3	1.20	0.49	0.56	-0.07
	27	88M	81	74	7	0.92	3.04	2.77	0.26
	28	89D	23	20	4	0.85	0.86	0.75	0.11
	29	89B	52	40	13	0.76	1.95	1.50	0.45
	30	MD1	51	79	-28	1.54	1.91	2.96	-1.05
	31	92 F	93	99	-6	1.06	3.49	3.71	-0.22
	32	92G	10	14	-4	1.37	0.38	0.52	-0.15
	33	SLI	40	55	-15	1.37	1.50	2.06	-0.56
	34	IN1	14	23	-9	1.63	0.53	0.86	-0.34
	35	H11	59	90	-31	1.52	2.21	3.37	-1.16
	36	98X	3	4	-1	1.37	0.11	0.15	-0.04
			533		-66	1.12	19.99		

Table A-7. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
I-IIIA	1	11X	1821	1850	-29	1.02	13.39	13.60	-0.21
	2	13F	237	236	1	1.00	1.74	1.74	0.01
	3	FA1	519	568	-49	1.09	3.82	4.18	-0.36
	4	FA2	151	141	10	0.94	1.11	1.04	0.07
	5	AD1	135	133	2	0.99	0.99	0.98	0.01
	6	AVI	236	227	9	0.96	1.74	1.67	0.07
	7	AV2	131	136	-5	1.04	0.96	1.00	-0.04
	8	18X	236	226	10	0.96	1.74	1.66	0.07
	9	19D	352	364	-12	1.03	2.59	2.68	-0.09
	10	19K	139	162	-23	1.16	1.02	1.19	-0.17
	11	EN1	190	203	-13	1.07	1.40	1.49	-0.10
	12	EN2	182	214	-32	1.18	1.34	1.57	-0.24
	13	SI1	244	240	4	0.98	1.79	1.76	0.03
	14	SI2	542	543	-1	1.00	3.99	3.99	-0.01
	15	PA1	40	33	7	0.81	0.29	0.24	0.05
	16	LE1	373	401	-28	1.07	2.74	2.95	-0.21
	17	EL1	127	127		1.00	0.93	0.93	0.00
	18	EL2	20	19	1	0.96	0.15	0.14	0.01
	19	AX1	36	54	-18	1.49	0.26	0.40	-0.13
	20	AM1	46	38	8	0.83	0.34	0.28	0.06
	21	52D	66	80	-14	1.22	0.49	0.59	-0.10
	22	63B	357	383	-26	1.07	2.63	2.82	-0.19
	23	VM1	157	156	2	0.99	1.15	1.15	0.01
	24	VM2	24	17	7	0.70	0.18	0.13	0.01
	25	74D	131	165	-34	1.26	0.96	1.21	-0.25
	26	TRI	62	43	19	0.69	0.46	0.32	0.14
	27	88M	176	207	-30	1.17	1.29	1.52	-0.23
	28	89D	105	124	-19	1.17	0.77	0.91	-0.14
	29	89B	71	80	-19	1.18	0.77	0.59	-0.14
				929	-o -1		6.82		
	30 31	MD1 92F	928 271	929 264	6	1.00 0.98	1.99	6.83 1.94	-0.01 0.05
	32	92F 92G			21	0.98	0.86		
			117	96				0.71	0.15
	33	SL1	212	238	-26	1.12	1.56	1.75	-0.19
	34	IN1	525	551	-26	1.05	3.86	4.05	-0.19
	35	HII	562	532	30	0.95	4.13	3.91	0.22
	36	98X	93	97	-4	1.04	0.68	0.71	-0.03
	999	Non-Acc	3985	3723	261	0.93	29.30	27.38	1.93
IIIB+IV	1	11X	886	876	10	0.99	17.02	16.84	0.19
	2	13F	113	110	3	0.98	2.17	2.11	0.06
	3	FA1	275	198	76	0.72	5.28	3.81	1.48
	4	FA2	46	48	-1	1.03	0.88	0.92	-0.04
	5	AD1	12	17	-5	1.44	0.23	0.33	-0.10
	6	AVI	28	29	-1	1.05	0.54	0.56	-0.02
	7	AV2	54	30	23	0.57	1.04	0.58	0.46
	8	18X							
	9	19D	207	203	4	0.98	3.98	3.90	0.08
	10	19K	90	92	-2	1.02	1.73	1.77	-0.04
	11	EN1	149	135	13	0.91	2.86	2.59	0.27
	12	EN2	134	130	4	0.97	2.57	2.50	0.08
	13	SII	46	60	-14	1.30	0.88	1.15	-0.27
	14	SI2	122	99	23	0.81	2.34	1.90	0.44
	15	PA1							
	16	LEI	169	135	34	0.80	3.25	2.59	0.65
	17	ELI	10	27	-17	2.71	0.19	0.52	-0.33
	18	EL2	10		,		0.17	0.52	-0.55
	19	AX1	30	26	4	0.87	0.58	0.50	0.08
	19	AAI	30	20	4	U.8 /	0.38	0.30	0.08

Table A-7. Hold-Out (Validation) Sample MOS Fit Diagnostics by Subgroup

Subgroup	Alt. ID	MOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff, Pct.
	20	AM1		11	-11			0.21	-0.21
	21	52D	56	50	6	0.90	1.08	0.96	0.11
	22	63B	194	191	3	0.98	3.73	3.67	0.06
	23	VM1	118	119	-2	1.01	2.27	2.29	-0.02
	24	VM2		5	-5			0.10	-0.10
	25	74D	82	82		1.00	1.58	1.58	0.00
	26	TR1	46	51	-5	1.11	0.88	0.98	-0.10
	27	88M	201	182	19	0.90	3.86	3.50	0.36
	28	89D	5	4	1	0.87	0.10	0.08	0.02
	29	89B	125	100	25	0.80	2.40	1.92	0.48
	30	MD1	50	47	4	0.93	0.96	0.90	0.06
	31	92F	359	378	-19	1.05	6.90	7.27	-0.37
	32	92G	89	91	-2	1.02	1.71	1.75	-0.04
	33	SL1	225	228	-3	1.01	4.32	4.38	-0.06
	34	IN1	18	29	-11	1.60	0.35	0.56	-0.21
	35	HII	38	92	-54	2.43	0.73	1.77	-1.04
	36	98X	6	3	3	0.57	0.12	0.06	0.06
	999	Non-Acc	1222	1325	-103	1.08	23.48	25.47	-1.99

Table A-4. Hold-Out (Validation) Sample TOS Fit Diagnostics by Subgroup

Subgoup	TOS	Obs. N	Exp. N	Diff. N	Ratio N	Obs. Pct.	Exp. Pct.	Diff. Pct.
ALL	3	5765	5626	139	0.98	30.66	29.92	0.74
	4	4844	5041	-197	1.04	25.76	26.81	-1.05
	5	2128	2230	-102	1.05	11.32	11.86	-0.54
	6	859	857	2	1.00	4.57	4.56	0.01
	Non-Acc	5207	5049	158	0.97	27.69	26.85	0.84
MALE	3	5105	4970	134	0.97	33.43	32.55	0.88
	4	3816	4026	-211	1.06	24.99	26.37	-1.38
	5	1733	1858	-125	1.07	11.35	12.17	-0.82
	6	691	627	64	0.91	4.52	4.11	0.42
	Non-Acc	3926	3788	138	0.96	25.71	24.81	0.90
FEMALE	3	660	655	5	0.99	18.69	18.54	0.15
	4	1028	1015	13	0.99	29.11	28.73	0.38
	5	395	372	23	0.94	11.18	10.53	0.65
	6	168	230	-62	1.37	4.76	6.51	-1.75
	Non-Acc	1281	1261	20	0.98	36.27	35.69	0.58
HGC	3	3633	3412	221	0.94	29.79	27.98	1.81
	4	3589	3680	-91	1.03	29.43	30.18	-0.75
	5	1514	1611	-98	1.06	12.41	13.21	-0.80
	6	592	570	22	0.96	4.85	4.67	0.18
	Non-Acc	2867	2922	-55	1.02	23.51	23.96	-0.45
SENIOR	3	515	985	-471	1.91	13.06	24.99	-11.93
	4	878	825	52	0.94	22.27	20.93	1.34
	5	501	422	79	0.84	12.71	10.71	2.00
	6	242	181	61	0.75	6.14	4.59	1.55
	Non-Acc	1806	1528	278	0.85	45.81	38.77	7.04
NG	3	1618	1229	389	0.76	60.67	46.08	14.59
	4	377	536	-159	1.42	14.14	20.10	-5.96
	5	114	197	-83	1.73	4.27	7.39	-3.11
	6	25	106	-81	4.26	0.94	3.97	-3.04
	Non-Acc	533	599	-66	1.12	19.99	22.46	-2.47
I-IIIA	3	2664	2658	6	1.00	19.59	19.55	0.04
	4	4240	4408	-168	1.04	31.18	32.42	-1.24
•	5	1933	2020	-87	1.05	14.21	14.86	-0.64
	6	777	788	-11	1.01	5.71	5.80	-0.08
	Non-Acc	3985	3723	261	0.93	29.30	27.38	1.92
IIIB+IV	3	3101	2967	134	0.96	59.59	57.01	2.57
	4	604	634	-29	1.05	11.61	12.18	-0.58
	5	195	209	-15	1.07	3.75	4.02	-0.27
	6	82	69	13	0.84	1.58	1.33	0.25
	Non-Acc	1222	1325	-103	1.08	23.48	25.46	-1.98

Appendix B: Forecasted MOS Channeling Effects

Appendix B reports the raised bonus cap's forecasted impact on MOS channeling under the five market expansion conditions, for all applicants and by subgroup. For comparison purposes, results under the existing cap are reported under "Baseline." Table B-1 reports the forecasted number ("N") and percent ("%") of accessions by MOS, grouped by incentive level. The percentages reported for all applicants represent their share of an MOS relative to total accessions, whereas the subgroup percentages represent their share of an MOS relative to the total for a subgroup. Table B-2 reports changes in accessions by MOS, both in number ("N +/-") and expressed as percent increase or decrease ("% +/-"), relative to their corresponding baseline.

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Mark	Market Expansion (I-IIIA's	on (I-III/	4's)			
			Bas	Baseline		%0		1.1%		2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	N	%	N	%	N	%	N	%
ALL	Level 1-2	11X	2,720.1	14.47	2,744.6	14.60	2,765.0	14.71	2,785.4	14.81	2,844.8	15.13	2,883.8	15.34
		13F	345.5	1.84	376.8	2.00	379.6	2.02	382.5	2.03	391.0	2.08	396.5	2.11
		18X	226.2	1.20	2.56.8	1.21	229.3	1.22	231.8	1.23	239.0	1.27	243.8	1.30
		89D	121.0	0.64	146.4	0.78	147.9	0.79	149.5	0.80	154.0	0.82	157.0	0.84
		92F	644.4	3.43	9.669	3.72	703.1	3.74	706.6	3.76	716.8	3.81	723.5	3.85
		92G	185.8	0.99	191.4	1.02	192.5	1.02	193.5	1.03	196.6	1.05	198.6	1.06
		X86	0.66	0.53	102.3	0.54	103.4	0.55	104.5	0.56	107.7	0.57	109.8	0.58
	Level 3-9	FAI	760.6	4.05	758.1	4.03	764.3	4.06	770.4	4.10	788.1	4.19	799.8	4.25
		FA2	188.4	1.00	. 185.0	86.0	186.5	0.99	188.0	1.00	192.3	1.02	195.1	1.04
		AD1	151.4	0.81	149.3	0.79	150.8	0.80	152.2	0.81	156.5	0.83	159.3	0.85
		AV1	265.3	1.41	262.9	1.40	265.5	1.41	268.0	1.43	275.4	1.46	280.3	1.49
		AV2	171.0	0.91	169.8	06.0	171.3	0.91	172.8	0.92	177.2	0.94	180.1	96.0
		19D	569.5	3.03	555.4	2.95	559.3	2.97	563.2	3.00	574.4	3.05	581.8	3.09
		19K	244.6	1.30	238.3	1.27	239.9	1.28	241.5	1.28	246.2	1.31	249.2	1.33
		EN1	343.3	1.83	339.7	1.81	341.9	1.82	344.1	1.83	350.4	1.86	354.6	1.89
		EN2	339.3	1.80	333.1	1.77	335.3	1.78	337.5	1.80	344.0	1.83	348.3	1.85
		SII	301.3	1.60	297.3	1.58	299.9	1.59	302.5	1.61	310.0	1.65	314.9	1.67
		S12	649.4	3.45	640.1	3.40	645.9	3.44	651.8	3.47	0.699	3.56	680.2	3.62
		PAI	38.7	0.21	38.0	0.20	38.4	0.20	38.8	0.21	40.0	0.21	40.8	0.22
		LE1	528.0	2.81	517.4	2.75	521.7	2.77	525.9	2.80	538.3	2.86	546.5	2.91
		EL1	150.5	08.0	147.9	0.79	149.2	0.79	150.5	0.80	154.3	0.82	156.8	0.83
		EL2	19.4	0.10	18.7	0.10	18.9	0.10	19.1	0.10	19.7	0.10	20.1	0.11
		AX1	77.7	0.41	77.5	0.41	78.1	0.42	78.7	0.42	80.5	0.43	81.7	0.43
		AM1	50.2	0.27	49.5	0.26	49.9	0.27	50.3	0.27	51.5	0.27	52.3	0.28
		52D	129.5	69.0	128.3	89.0	129.1	69.0	130.0	69.0	132.5	0.70	134.1	0.71
		63B	574.8	3.06	568.0	3.02	572.1	3.04	576.2	3.06	588.3	3.13	596.2	3.17
		NM1	275.5	1.47	272.1	1.45	273.8	1.46	275.5	1.46	280.3	1.49	283.5	1.51
		VM2	27.4	0.15	27.2	0.14	27.4	0.15	27.6	0.15	28.1	0.15	28.5	0.15
		74D	244.3	1.30	240.1	1.28	241.8	1.29	243.6	1.30	248.6	1.32	252.0	1.34
		TRI	99.1	0.53	9.86	0.52	99.1	0.53	9.66	0.53	100.9	0.54	101.8	0.54
		88M	377.9	2.01	376.5	2.00	378.6	2.01	380.8	2.02	386.9	2.06	390.9	2.08
		89B	186.6	0.99	184.1	86.0	185.0	86.0	185.8	66.0	188.4	1.00	190.0	1.01
		MD1	990.3	5.27	979.2	5.21	989.5	5.26	8.666	5.32	1,029.7	5.48	1,049.4	5.58
		SL1	466.1	2.48	459.6	2.44	462.2	2.46	464.7	2.47	472.0	2.51	476.8	2.54
		Z	579.1	3.08	568.1	3.02	574.0	3.05	579.9	3.08	597.1	3.18	608.4	3.24
		H	617.2	3.28	608.7	3.24	614.3	3.27	620.0	3.30	636.4	3.38	647.2	3.44
	Not Acc	NAC	5,044.2	26.83	5,026.6	26.73	5,067.0	26.95	5,107.5	27.16	5,225.1	27.79	5,302.4	28.20

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

Baseline NGACOLID Level Level Local Loc									Marke	Market Expansion (I-IIIA's	on (I-IIIA	(8,1			
Level MOS N % N % N % N % N % N % N % N % N % N % N % N % Level 1.2 11X Level 1.2 11X 1,831.2 9.72 1,885.7 9.85 1,876.1 9.88 1,806.2 1,41 20.66 1,41 20.68 1,806.2 1,41 20.68 1,806.2 1,41 20.88 1,806.2 1,41 20.68 1,41 20.66 1,41 20.68 1,41 20.53 1,14 20.53 1,14 20.53 1,14 1,14 20.53 1,14 1,14 20.53 1,14 1,14 20.53 1,14 1,14 20.53 1,14 1,14 20.53 1,14 20.53 1,14 20.53 1,14 20.88 1,14 20.88 1,14 20.88 1,14 20.88 1,14 20.88 1,14 20.89 1,14 20.89				Base	eline		%(1.1%	, ,	2.2%		5.4%		7 5%
Level 1-2 11X 18312 972 1855.7 9.85 1,876.1 9.98 1 18Y 231.9 1.23 263.1 1.40 266.0 1.41 18X 226.2 1.20 226.3 1.40 266.0 1.41 92F 263.7 1.40 318.8 1.69 266.0 1.41 92G 90.0 0.48 95.7 0.51 96.7 0.54 92G 90.0 0.48 95.7 0.51 96.7 0.54 92G 90.0 0.48 95.7 0.51 96.7 0.54 92G 90.0 0.48 95.7 0.51 0.67 0.67 AVI 134.6 0.71 1134.8 0.70 1136.2 0.70 AVI 234.0 1.24 33.1 1.86 35.5 1.25 AVI 234.0 1.24 33.1 1.86 35.0 1.89 BNI 15.3 0.74 <td< th=""><th>Subgroup</th><th>Level</th><th>MOS</th><th>N</th><th>%</th><th>N</th><th>%</th><th></th><th>%</th><th>N</th><th>%</th><th>N</th><th>%</th><th>></th><th>,; ,%</th></td<>	Subgroup	Level	MOS	N	%	N	%		%	N	%	N	%	>	,; ,%
13F 231.9 1.23 263.1 1.40 266.0 141 18X 226.2 1.20 263.1 1.40 266.0 141 89D 116.3 0.62 14.0 318.8 1.20 229.3 1.22 92F 263.7 0.63 14.0 0.55 14.0 0.55 14.0 0.55 92G 90.0 0.48 95.7 0.51 96.7 0.51 92A 96.5 0.51 99.8 0.53 100.9 0.54 98.7 0.51 99.8 0.53 100.9 0.54 ADI 138.2 0.73 134.8 0.72 136.2 0.72 AVD 138.2 0.73 134.8 0.72 136.2 0.73 AVD 138.2 0.74 138.1 0.72 136.2 0.73 BNJ 13.2 13.7 1.23 0.70 144.7 0.73 AVD 13.8 0.74 1	I-IIIA	Level 1-2	11X	1,831.2	9.72	1,855.7	9.85	1,876.1	86.6	1,896.5	10.09	1,955.9	10.40	1.994.9	10 61
18X 226.2 1.26 1.20 229.3 1.22 89D 116.3 0.62 14.7 0.75 143.3 0.76 92F 263.7 1.40 318.8 1.69 322.3 1.22 92F 263.7 1.40 318.8 1.69 322.3 1.00 92G 90.0 0.44 98.7 0.51 96.7 0.51 9X 96.5 20.5 1.69 322.3 1.00 0.54 PAJ 138.2 0.75 1.34.8 0.72 136.5 2.99 AVI 224.0 1.24 2.95 561.5 2.99 0.70 AVI 224.0 1.24 231.7 1.23 24.2 1.25 AVI 224.0 1.24 231.7 1.23 234.2 1.25 BNJ 365.2 1.94 351.1 1.84.7 0.71 146.7 0.71 ISB 1.05 351.1 1.23 371.1			13F	231.9	1.23	263.1	1.40	266.0	1.41	268.9	1.43	277.3	1.47	282.8	1.50
97D 116.3 0.62 141.7 0.75 143.3 0.76 92F 263.7 1.04 91.8 1.69 322.3 1.71 92F 263.7 0.51 99.8 0.53 100.9 0.54 92G 90.0 0.48 95.3 0.51 100.9 0.54 PA1 557.8 2.96 558.4 2.95 561.5 2.99 AV1 134.2 0.71 114.8 0.72 136.2 0.72 AV1 134.6 0.71 132.5 0.72 136.2 0.72 AV1 234.0 1.24 231.7 1.23 234.2 1.25 AV1 234.0 1.24 231.7 1.23 234.2 1.25 BNI 200.2 1.03 1.45.1 0.77 146.7 0.74 BNI 200.2 1.04 31.31 0.77 1.09 0.74 SII 200.2 1.05 20.0 1.05			18X 781	226.2	1.20	226.8	1.20	229.3	1.22	231.8	1.23	239.0	1.27	243.8	1.30
92F 263.7 1.40 318.8 1.69 322.3 1.71 92G 90.0 0.51 98.7 0.51 96.7 0.51 92G 96.5 0.51 92.8 0.53 100.9 0.54 PAJ 557.8 2.96 555.4 2.95 66.5 0.72 0.51 0.54 AVI 138.2 0.73 134.8 0.72 136.2 0.73 AVI 134.6 0.74 132.5 0.70 134.0 0.71 AVI 134.6 0.74 138.1 0.72 134.0 0.71 AVI 139.3 0.74 138.1 0.73 134.0 0.71 IDD 365.2 1.94 351.1 1.86 355.0 1.89 INI 205.2 1.94 351.1 1.86 355.0 1.89 INI 205.2 1.98 351.1 1.86 355.0 1.89 SII 205.2 1.18			89D	116.3	0.62	141.7	0.75	143.3	92.0	144.8	0.77	149.4	0.79	152.3	0.81
92G 900 0.48 95.7 0.51 96.7 0.51 9 FAI 557.8 0.65 555.4 0.53 100.9 0.54 ADI 134.6 0.71 132.5 0.70 134.0 0.71 AVI 234.0 1.24 231.7 1.23 234.2 1.25 AVI 234.0 1.24 138.1 1.23 234.2 0.73 AVI 234.0 1.24 138.1 0.73 139.6 0.74 IDD 365.2 1.94 351.1 1.86 355.0 1.89 IDD 365.2 1.94 351.1 1.86 355.0 1.89 IDD 365.2 1.94 351.1 1.86 355.0 1.89 IDD 365.2 1.10 200.0 1.06 202.2 1.09 SII 203.6 1.45.1 0.77 146.7 0.78 SII 203.6 1.45.1 0.77 146.7 0.78 <th></th> <th></th> <th>92F</th> <th>263.7</th> <th>1.40</th> <th>318.8</th> <th>1.69</th> <th>322.3</th> <th>1.71</th> <th>325.8</th> <th>1.73</th> <th>336.0</th> <th>1.79</th> <th>342.7</th> <th>1.82</th>			92F	263.7	1.40	318.8	1.69	322.3	1.71	325.8	1.73	336.0	1.79	342.7	1.82
98X 96.5 0.51 99.8 0.53 100.9 0.54 FA1 557.8 2.96 555.4 2.95 561.5 2.99 FA2 138.2 2.96 555.4 2.95 561.5 2.99 AVI 234.0 1.24 0.71 132.5 0.70 134.0 0.71 AVI 234.0 1.24 231.7 1.23 234.2 1.25 AVI 234.0 1.24 231.7 1.23 234.2 1.25 19D 365.2 1.99 355.0 1.89 0.74 0.74 19D 365.2 1.09 1.24 234.2 1.25 0.74 19D 365.2 1.09 1.14 0.77 1.46.7 0.74 19D 365.2 1.09 1.24 355.0 1.89 0.74 1.89 11 205.2 1.00 1.00 1.00 1.26 1.00 1.26 SII 231.7			92G	90.0	0.48	95.7	0.51	6.7	0.51	8.76	0.52	100.8	0.54	102.8	0.55
PAI 557.8 2.96 555.4 2.95 561.5 2.99 ADI 1134.6 0.73 134.8 0.72 136.2 0.72 AVI 134.6 0.73 134.9 0.71 136.2 0.71 AVI 134.6 0.74 134.8 0.77 136.2 0.71 AV2 139.3 0.74 138.1 0.73 139.6 0.71 I9D 365.2 1.94 351.1 1.86 355.0 1.89 I9D 365.2 1.94 351.1 1.86 355.0 1.89 ENI 203.6 1.08 202.2 1.89 SII 203.7 1.26 233.7 1.24 236.3 1.26 SII 237.7 1.26 233.7 1.24 236.3 1.26 SII 38.7 0.21 38.2 2.06 1.08 2.03 2.84 2.09 SII 38.2 2.2 2.34 2.09	•		788 788	96.5	0.51	8.66	0.53	100.9	0.54	102.0	0.54	105.2	0.56	107.3	0.57
FAZ 138.2 0.73 134.8 0.72 136.2 0.72 AV1 234.6 0.71 132.5 0.70 134.0 0.71 AV2 134.6 0.71 132.5 0.70 134.0 0.71 AV2 139.3 0.74 138.1 0.73 139.6 0.74 19D 365.2 1.94 351.1 1.86 355.0 1.89 19K 151.3 0.80 145.1 0.77 146.7 0.74 ENZ 209.6 1.08 1.86 355.0 1.89 1.89 S11 237.7 1.26 233.7 1.24 236.3 1.26 S12 544.3 2.89 535.0 2.84 540.9 2.88 PA1 38.7 0.21 38.0 0.20 38.4 0.20 EL1 120.9 0.64 118.3 0.63 119.6 0.64 EL1 120.9 0.20 2.84 540.9		Level 3-9	FAI	557.8	2.96	555.4	2.95	561.5	2.99	567.6	3.02	585.4	3.11	597.0	3.18
AUI 134.6 0.71 132.5 0.70 134.0 0.71 132.5 AVI 134.6 0.71 132.5 AVI 139.3 0.74 123.1 123 234.2 1.25 AV2 139.3 0.74 138.1 0.73 139.6 0.74 19D 365.2 1.94 351.1 1.86 355.0 1.89 19K 151.3 0.80 145.1 0.77 146.7 0.78 ENI 203.6 1.08 200.0 1.06 202.2 1.08 203.5 1.11 203.5 1.12 203.7 1.24 236.3 1.26 202.2 1.08 203.7 1.24 236.3 1.26 202.2 1.08 203.1 1.09 203.2 1.09 203.2 1.09 203.2 1.00 203.2			FA2	138.2	0.73	134.8	0.72	136.2	0.72	137.7	0.73	142.0	0.76	144.9	0.77
AVI 234.0 1.24 231.7 1.23 224.2 1.25 197 197 197 197 197 197 197 197 197 197			AD1	134.6	0.71	132.5	0.70	134.0	0.71	135.4	0.72	139.7	0.74	142.4	0.76
AV2 139.3 0.74 138.1 0.73 139.6 0.74 19D 365.2 1.94 351.1 1.86 355.0 1.89 19K 151.3 0.80 145.1 0.77 146.7 0.78 ENI 203.6 1.08 200.0 1.06 202.2 1.08 ENI 237.7 1.26 233.7 1.24 236.3 1.26 SII 237.7 1.26 233.7 1.24 236.3 1.26 SII 237.7 1.26 233.7 1.24 236.3 1.26 SII 237.7 1.26 233.7 1.24 236.3 1.26 PAI 38.7 0.21 38.0 0.20 38.4 0.20 ELJ 10.0 118.3 0.10 38.2 2.06 392.4 2.09 AXI 38.9 0.21 38.2 0.20 38.2 0.20 392.4 2.09 AXI 38.9			AV1	234.0	1.24	231.7	1.23	234.2	1.25	236.8	1.26	244.2	1.30	249.0	1.32
19D 365.2 1.94 351.1 1.86 355.0 1.89 19K 151.3 0.80 145.1 0.77 146.7 0.78 ENI 203.6 1.08 200.0 1.06 202.2 1.08 ENI 203.6 1.11 203.2 1.08 205.4 1.09 SII 237.7 1.26 233.7 1.24 205.4 1.09 SII 237.7 1.26 233.7 1.24 205.4 1.09 PAI 38.7 0.21 38.0 0.20 38.4 0.20 LEI 398.8 2.12 38.2 2.06 392.4 2.09 ELI 120.9 0.64 118.3 0.63 119.6 0.20 AXI 55.8 0.21 38.2 2.06 392.4 2.09 AXI 55.8 0.21 38.1 0.63 118.3 0.10 18.5 0.10 AXI 55.8 0.20 <			AV2	139,3	0.74	138.1	0.73	139.6	0.74	141.1	0.75	145.5	0.77	148.4	0.79
19K 151.3 0.80 145.1 0.77 146.7 0.78 ENI 203.6 1.08 200.0 1.06 202.2 1.08 ENI 203.6 1.11 203.2 1.08 200.2 1.09 SI1 237.7 1.26 233.7 1.24 236.3 1.26 SI2 544.3 2.89 535.0 2.84 540.9 2.88 PA1 38.7 0.21 38.0 0.20 38.4 0.20 LE1 120.9 0.64 118.3 0.63 119.6 0.64 EL1 120.9 0.64 118.3 0.63 119.6 0.04 AXI 38.9 0.21 38.2 2.06 392.4 2.09 AMI 38.9 0.21 38.1 0.63 119.6 0.64 AMI 38.9 0.21 38.1 0.20 38.5 0.10 AMI 38.2 0.03 35.6 0.03 <td< th=""><th></th><th></th><th>19D</th><th>365.2</th><th>1.94</th><th>351.1</th><th>1.86</th><th>355.0</th><th>1.89</th><th>358.9</th><th>1.91</th><th>370.1</th><th>1.97</th><th>377.5</th><th>2.01</th></td<>			19D	365.2	1.94	351.1	1.86	355.0	1.89	358.9	1.91	370.1	1.97	377.5	2.01
EN1 203.6 1.08 200.0 1.06 202.2 1.08 SI1 237.7 1.26 233.7 1.24 236.3 1.26 SI2 544.3 2.89 535.0 2.84 540.9 2.88 PAI 38.7 0.21 38.8 2.05 38.4 0.20 ELI 120.9 0.64 118.3 0.63 312.4 2.09 ELI 120.9 0.64 118.3 0.63 319.4 2.09 ELI 120.9 0.64 118.3 0.60 392.4 2.09 AXI 55.8 0.30 55.6 0.30 56.2 0.30 AXI 55.8 0.30 55.6 0.30 56.2 0.30 AXI 38.9 0.21 38.1 0.20 38.5 0.20 VMI 155.0 0.82 151.6 0.80 153.3 0.82 VMZ 17.5 0.09 17.3 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.88 RSM 192.5 1.02 191.2 1.01 193.3 1.03 SUL - 234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			19 K	151.3	0.80	145.1	0.77	146.7	0.78	148.3	0.79	152.9	0.81	156.0	0.83
ENZ 209.5 1.11 203.2 1.08 205.4 1.09 SII 237.7 1.26 233.7 1.24 236.3 1.26 SII 237.7 1.26 233.7 1.24 236.3 1.26 PAI 38.7 0.21 38.0 0.20 38.4 0.20 ELI 120.9 0.64 118.3 0.63 119.6 0.20 ELI 120.9 0.64 118.3 0.63 119.6 0.64 ELZ 19.1 0.10 18.3 0.10 18.3 0.10 0.64 AXI 55.8 0.30 55.6 0.30 56.2 0.30 AXI 38.9 0.21 38.1 0.20 38.5 0.20 AMI 38.9 0.21 38.1 0.20 38.5 0.20 AMI 38.2 0.20 38.1 0.20 38.2 0.20 VMI 155.0 0.82 17.3 0.09 </th <th></th> <th></th> <th>ENI ENI</th> <th>203.6</th> <th>1.08</th> <th>200.0</th> <th>1.06</th> <th>202.2</th> <th>1.08</th> <th>204.4</th> <th>1.09</th> <th>210.8</th> <th>1.12</th> <th>215.0</th> <th>1.14</th>			ENI ENI	203.6	1.08	200.0	1.06	202.2	1.08	204.4	1.09	210.8	1.12	215.0	1.14
SII 237.7 1.26 233.7 1.24 236.3 1.26 SI2 544.3 2.89 535.0 2.84 540.9 2.88 PAI 38.7 0.21 38.0 0.20 38.4 0.20 LEI 398.8 2.12 388.2 2.06 392.4 2.09 ELJ 120.9 0.64 118.3 0.63 119.6 0.64 ELZ 19.1 0.10 18.3 0.10 18.5 0.10 AXI 38.9 0.21 38.1 0.20 38.5 0.20 AMI 38.9 0.21 38.1 0.20 38.5 0.20 VM1 155.0 0.82 151.6 0.80 153.3 0.82 VM2 17.5 0.09 17.5 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.85 TRI 42.5 0.23 42.0 0.22 42.5 0.23 88M 192.5 1.02 191.2 1.01 193.3 1.03 SUI -234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			ENZ	209.5	1.11	203.2	1.08	205.4	1.09	207.7	1.10	214.2	1.14	218.5	1.16
N12			SIS	237.7	1.26	233.7	1.24	236.3	1.26	238.9	1.27	246.3	1.31	251.2	1.34
HAII 38.7 0.21 38.0 0.20 38.4 0.20 HEII 398.8 2.12 388.2 2.06 392.4 2.09 ELI 120.9 0.64 118.3 0.63 119.6 0.64 ELZ 19.1 0.10 118.3 0.63 119.6 0.64 HII 521.0 0.64 118.3 0.63 119.6 0.64 HII 521.2 19.1 0.10 18.3 0.10 18.5 0.10 HII 521.2 19.1 0.10 19.1 19.1 19.1 19.1 HII 521.2 2.03 38.2 0.20 HII 521.2 19.1 19.1 19.1 19.1 19.3 HII 521.2 2.77 513.0 2.72 518.6 2.76 HII 521.5 2.77 513.0 2.72 518.6 2.76 HII 521.5 2.77 513.0 2.72 518.6 2.76 HII 521.5 2.77 513.0 2.72 518.6 2.76			SIZ	544.3	2.89	535.0	2.84	540.9	2.88	546.8	2.91	563.9	3.00	575.1	3.06
LEI 598.8 2.12 388.2 2.06 392.4 2.09 ELI 120.9 0.64 118.3 0.63 119.6 0.64 ELI 19.1 0.10 118.3 0.63 119.6 0.64 AMI 38.9 0.21 38.1 0.20 38.5 0.10 AMI 38.9 0.21 38.1 0.20 38.5 0.20 S2D 78.4 0.42 77.2 0.41 78.0 0.41 63B 382.9 2.03 376.1 2.00 38.2 0.20 VMI 155.0 0.82 151.6 0.80 17.5 0.09 VMJ 155.0 0.82 17.3 0.09 17.5 0.09 VMJ 162.7 0.86 158.5 0.84 160.2 0.82 VMJ 162.7 0.86 17.3 0.09 17.5 0.09 TRI 42.5 0.23 0.42 0.22 42.5<			PAI	38.7	0.21	38.0	0.20	38.4	0.20	38.8	0.21	40.0	0.21	40.8	0.22
ELI 120.9 0.64 118.3 0.63 119.6 0.64 ELZ 19.1 0.10 18.3 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.10 18.5 0.20 18.5 0.20 18.5 0.20 18.5 0.20 18.5 0.20 18.5 0.09 17.2 0.09 17.5			i cei	398.8	2.12	388.2	2.06	392.4	2.09	396.7	2.11	409.1	2.18	417.3	2.22
AXI 55.8 0.30 18.3 0.10 18.5 0.10 AXI 55.8 0.30 55.6 0.30 56.2 0.30 AMI 38.9 0.21 38.1 0.20 38.5 0.20 52D 78.4 0.42 77.2 0.41 78.0 0.41 63B 382.9 2.03 376.1 2.00 380.2 2.02 VM2 17.5 0.09 17.3 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.85 TR1 42.5 0.23 42.0 0.22 42.5 0.23 88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 - 234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 5513.0 2.75 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			ELI	120.9	0.64	118.3	0.63	119.6	0.64	120.9	0.64	124.7	99.0	127.2	0.68
AMI 35.8 0.30 55.6 0.30 56.2 0.30 AMI 38.9 0.21 38.1 0.20 38.5 0.20 52D 78.4 0.42 77.2 0.41 78.0 0.41 63B 382.9 2.03 376.1 2.00 380.2 2.02 VM1 155.0 0.82 151.6 0.80 153.3 0.82 VM2 17.5 0.09 17.3 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.85 TR1 42.5 0.23 42.0 0.22 42.5 0.23 88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 - 234.9 1.25 228.5 1.21 231.0 1.23 IN1 548.8 2.91 5537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 3717.9 19.77 3			ELZ	19.1	0.10	18.3	0.10	18.5	0.10	18.7	0.10	19.3	0.10	19.7	0.10
AMI 38.9 0.21 38.1 0.20 38.5 0.20 52D 77.2 0.41 77.2 0.41 78.0 0.41 63B 38.2.9 2.03 376.1 2.00 380.2 2.02 VM1 155.0 0.82 157.6 0.80 153.3 0.82 VM2 17.5 0.09 17.3 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.85 TRI 42.5 0.23 42.0 0.22 42.5 0.23 88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 -234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 3.717.9 19.77 3			X :	55.8	0.30	55.6	0.30	56.2	0.30	8.99	0.30	58.6	0.31	59.8	0.32
52D 78.4 0.42 77.2 0.41 78.0 0.41 63B 382.9 2.03 376.1 2.00 380.2 2.02 VM1 155.0 0.82 151.6 0.80 153.3 0.82 VM2 17.5 0.09 17.3 0.09 17.5 0.09 74D 162.7 0.86 158.5 0.84 160.2 0.85 TR1 42.5 0.23 42.0 0.22 42.5 0.23 88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 - 234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.7			AMI	38.9	0.21	38.1	0.20	38.5	0.20	38.9	0.21	40.2	0.21	41.0	0.22
VM1 155.0 2.03 376.1 2.00 380.2 2.02 VM1 155.0 0.82 151.6 0.80 153.3 0.82 VM2 17.5 0.09 17.5 0.0			32D	4.8.6	0.42	77.2	0.41	78.0	0.41	78.9	0.42	81.3	0.43	83.0	0.44
VM1 155.0 0.82 151.6 0.80 153.3 0.82 VM2 17.5 0.09 17.5			979	382.9	2.03	376.1	2.00	380.2	2.02	384.3	2.04	396.4	2.11	404.3	2.15
VMZ 17.5 0.09 17.3 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.09 17.5 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23			IM's	155.0	0.82	151.6	0.80	153.3	0.82	154.9	0.82	159.8	0.85	163.0	0.87
TRI 102.7 0.80 158.5 0.84 160.2 0.85 TRI 102.7 0.80 158.5 0.84 160.2 0.85 88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 - 234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			21VI V	C./1	0.0	5.71	0.09	17.5	0.09	17.7	0.09	18.3	0.10	18.6	0.10
88M 192.5 1.02 191.2 1.01 193.3 1.03 89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 234.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			7.4.F	102.7	0.80	158.5	0.84	160.2	0.85	162.0	98.0	167.0	0.89	170.4	0.91
89B 81.8 0.43 79.3 0.42 80.2 0.43 1.03 89B 81.8 0.44 79.3 0.42 80.2 0.43 ND1 9945.7 5.02 935.6 4.97 945.9 5.03 SL1 2.34.9 1.25 228.5 1.21 231.0 1.23 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			INI	42.5	0.23	42.0	0.22	42.5	0.23	43.0	0.23	44.3	0.24	45.2	0.24
89B 81.8 0.43 79.3 0.42 80.2 0.43 MD1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 2.34.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			88IVI	192.5	1.02	191.2	1.01	193.3	1.03	195.4	1.04	201.5	1.07	205.5	1.09
ND1 946.7 5.02 935.6 4.97 945.9 5.03 SL1 2.34.9 1.25 228.5 1.21 231.0 1.23 INI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			89B	8.1.8	0.43	79.3	0.42	80.2	0.43	81.1	0.43	83.6	0.44	85.3	0.45
NI 548.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			MDI	946.7	5.02	935.6	4.97	945.9	5.03	956.2	5.09	986.1	5.24	1,005.8	5.35
HII 524.8 2.91 537.8 2.85 543.7 2.89 HII 521.5 2.77 513.0 2.72 518.6 2.76 NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3			SCI	234.9	1.25	228.5	1.21	231.0	1.23	233.5	1.24	240.8	1.28	245.6	1.31
NAC 3,695.1 19.61 3,677.4 19.52 3,717.9 19.77 3				521.5	16.7	537.8	2.85	543.7	2.89	549.6	2.92	566.9	3.01	578.2	3.07
3,073.1 19.81 3,677.4 19.52 3,717.9 19.77 3	1	Mot Agg	MAZ	1 202 5	77.7	2.62.4	7/.7	518.6	2.76	524.3	2.79	540.7	2.88	551.4	2.93
		INOI ACC	INAC	3,093.1	19:01	5,077.4	19.52	3,717.9	19.77	3,758.3	19.99	3,876.0	20.61	3,953.2	21.02

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's)	on (I-IIIA	(s,1			
			Bas	Baseline		%0		1.1%	. 1	2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	N	%	N	%	N	%	N	%
IIIB+IV	Level 1-2	11X	6.888	4.72	888.9	4.72	6.888	4.73	6.888	4.73	6.888	4.73	6.888	4.73
		13F	113.7	09.0	113.7	0.60	113.7	0.60	113.7	09:0	113.7	0.60	113.7	09.0
		18X	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		89D	4.7	0.02	4.7	0.02	4.7	0.02	4.7	0.02	4.7	0.02	4.7	0.02
		92F	380.8	2.02	380.8	2.02	380.8	2.02	380.8	2.02	380.8	2.02	380.8	2.02
		92G	95.8	0.51	95.8	0.51	95.8	0.51	95.8	0.51	95.8	0.51	92.8	0.51
		X86	2.5	0.01	2.5	0.01	2.5	0.01	2.5	0.01	2.5	0.01	2.5	0.01
	Level 3-9	FAI	202.8	1.08	202.8	1.08	202.8	1.08	202.8	1.08	202.8	1.08	202.8	1.08
		FA2	50.3	0.27	50.3	0.27	50.3	0.27	50.3	0.27	50.3	0.27	50.3	0.27
		AD1	16.8	0.09	16.8	0.09	16.8	60:0	16.8	60.0	16.8	60.0	16.8	0.09
		AVI	31.2	0.17	31.2	0.17	31.2	0.17	31.2	0.17	31.2	0.17	31.2	0.17
		AV2	31.7	0.17	31.7	0.17	31.7	0.17	31.7	0.17	31.7	0.17	31.7	0.17
		19D	204.3	1.08	204.3	1.08	204.3	1.09	204.3	1.09	204.3	1.09	204.3	1.09
		19K	93.3	0.50	93.3	0.50	93.3	0.50	93.3	0.50	93.3	0.50	93.3	0.50
		ENI	139.7	0.74	139.7	0.74	139.7	0.74	139.7	0.74	139.7	0.74	139.7	0.74
		EN2	129.8	0.69	129.8	69.0	129.8	69.0	129.8	69.0	129.8	69.0	129.8	69.0
		SII	63.6	0.34	63.6	0.34	63.6	0.34	63.6	0.34	63.6	0.34	63.6	0.34
		S12	105.1	0.56	105.1	0.56	105.1	0.56	105.1	0.56	105.1	0.56	105.1	0.56
		PAI	0.0	00.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		LEI	129.2	69.0	129.2	69.0	129.2	69.0	129.2	69.0	129.2	69.0	129.2	69.0
		EL1	29.6	0.16	29.6	0.16	29.6	0.16	29.6	0.16	29.6	0.16	29.6	0.16
		EL2	0.4	0.00	0.4	0.00	0.4	0.00	0.4	0.00	0.4	00.00	0.4	0.00
		AX1	21.9	0.12	21.9	0.12	21.9	0.12	21.9	0.12	21.9	0.12	21.9	0.12
		AM1	11.4	90.0	11.4	90.0	11.4	90.0	11.4	90.0	11.4	0.00	11.4	90.0
		52D	51.1	0.27	51.1	0.27	51.1	0.27	51.1	0.27	51.1	0.27	51.1	0.27
		63B	191.9	1.02	191.9	1.02	191.9	1.02	191.9	1.02	191.9	1.02	191.9	1.02
		VMI	120.5	0.64	120.5	0.64	120.5	0.64	120.5	0.64	120.5	0.64	120.5	0.64
		VM2	6.6	0.05	6.6	0.05	6.6	0.05	6.6	0.05	6.6	0.05	6.6	0.05
		74D	81.6	0.43	81.6	0.43	81.6	0.43	81.6	0.43	81.6	0.43	81.6	0.43
		TR1	9.99	0:30	9.99	0.30	56.6	0.30	9.99	0.30	9.99	0:30	26.6	0.30
		88M	185.3	86.0	135.3	86.0	185.3	0.99	185.3	0.99	185.3	0.99	185.3	0.99
		89B	104.8	0.56	104.8	0.56	104.8	0.56	104.8	0.56	104.8	0.56	104.8	0.56
		MDI	43.6	0.23	43.6	0.23	43.6	0.23	43.6	0.23	43.6	0.23	43.6	0.23
		SL1	231.2	1.23	231.2	1.23	231.2	1.23	231.2	1.23	231.2	1.23	231.2	1.23
		Z	30.3	0.16	30.3	0.16	30.3	0.16	30.3	0.16	30.3	0.16	30.3	0.16
		111	7.56	0.51	95.7	0.51	73.7	0.51	95.7	0.51	72.7	0.51	7.5.7	0.51
	Not Acc	NAC	1,349.1	7.16	1,349.1	7.16	1,349.1	7.18	1,349.1	7.18	1,349.1	7.18	1,349.1	7.18

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Mark	Market Expansion (I-IIIA's	On (I-III/	(\$,1			
			Bas	Baseline		%0		1.1%		2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	Ν	%	N	%	Z	%	×	%
HGC	Level 1-2	11X	1,581.8	8.40	1,599.6	8.49	1,610.9	8.57	1,622.1	8.63	1.654.8	8.80	1 676 2	8 01
		13F	168.8	06.0	194.4	1.03	196.0	1.04	197.6	1.05	202.2	1.08	205.2	1 09
		18X	188.7	1.00	189.3	1.00	191.4	1.02	193.5	1.03	199.5	1.06	203.5	1.08
		89D	9.66	0.53	124.3	99.0	125.6	0.67	127.0	0.68	130.8	0.70	133.3	0.71
		92F	511.6	2.72	562.9	2.99	565.6	3.01	568.3	3.02	576.1	3.06	581.2	3.09
		92G	137.1	0.73	142.4	0.76	143.1	92.0	143.8	0.76	145.9	0.78	147.3	0.78
	,	X86	83.6	0.44	6.98	0.46	87.8	0.47	88.8	0.47	91.5	0.49	93.2	0.50
	Level 3-9	FAI	467.6	2.48	465.4	2.47	469.0	2.49	472.6	2.51	483.1	2.57	490.0	2.61
		FA2	110.5	0.59	107.5	0.57	108.3	0.58	109.1	0.58	111.4	0.59	112.9	09.0
		ADI	83.4	0.44	81.8	0.43	82.6	0.44	83.4	0.44	85.7	0.46	87.1	0.46
		AVI	157.3	0.84	155.4	0.82	156.9	0.83	158.4	0.84	162.7	0.87	165.6	0.88
		AV2	122.8	0.65	121.8	0.65	122.9	0.65	124.0	99.0	127.1	0.68	129.1	69.0
		061	378.2	2.01	366.1	1.94	368.5	1.96	371.0	1.97	378.1	2.01	382.7	2.04
		19K	164.5	0.87	159.1	0.84	160.1	0.85	161.2	98.0	164.3	0.87	166.3	0.88
		ENI	242.6	1.29	239.4	1.27	240.9	1.28	242.3	1.29	246.7	1.31	249.6	1.33
		ENZ	254.1	1.35	248.4	1.32	250.0	1.33	251.6	1.34	256.4	1.36	259.5	1.38
			206.6	1.10	203.1	1.08	204.8	1.09	206.5	1.10	211.5	1.12	214.7	1.14
		212	436.1	2.31	427.7	2.27	431.6	2.30	435.4	2.32	446.7	2.38	454.1	2.41
		FAI	33.9	0.18	33.2	0.18	33.6	0.18	33.9	0.18	35.0	0.19	35.7	0.19
		LEI :	420.8	2.23	4,0.7	2.18	414.0	2.20	417.4	2.22	427.1	2.27	433.5	2.31
		ELI	109.9	0.58	107.5	0.57	108.4	0.58	109.3	0.58	111.9	09.0	113.6	09.0
		EL2	17.7	0.09	17.0	0.09	17.2	0.09	17.3	60.0	17.9	0.10	18.2	0.10
		XX:	57.1	0.30	56.9	0.30	57.4	0.31	57.8	0.31	59.1	0.31	59.9	0.32
		AMI	28.0	0.15	27.4	0.15	27.6	0.15	27.8	0.15	28.4	0.15	28.9	0.15
		22D	8.8/	0.42	77.8	0.41	78.3	0.42	78.8	0.42	80.2	0.43	81.1	0.43
		929	354.2	× × ×	348.8	1.85	351.3	1.87	353.7	1.88	360.7	1.92	365.3	1.94
		i W	184.5	0.98	181.4	0.96	182.5	0.97	183.5	0.98	186.6	0.99	188.6	1.00
		7 M Z	0.0	0.03	8.8	0.05	8.6	0.05	9.8	0.05	8.7	0.05	8.8	0.05
		/4D	184.9	0.98	181.0	96.0	182.3	0.97	183.5	0.98	187.3	1.00	189.7	1.01
		IKI	66.8	0.35	66.4	0.35	66.7	0.35	67.0	0.36	67.8	0.36	68.3	0.36
		88M	263.6	1.40	261.1	1.39	262.4	1.40	263.7	1.40	267.4	1.42	269.8	1.44
		89B	129.6	69.0	127.3	89.0	127.9	89.0	128.5	89.0	130.2	69.0	131.4	0.70
		MDI G.:	733.1	3.89	723.3	3.84	730.8	3.89	738.4	3.93	760.4	4.04	774.9	4.12
		SLI	338.7	1.80	332.9	1.77	334.6	1.78	336.3	1.79	341.3	1.82	344.6	1.83
		Z	454.9	2.41	445.0	2.36	449.6	2.39	454.2	2.42	467.6	2.49	476.4	2.53
	Mark	HIII	442.5	2.35	434.7	2.31	438.7	2.33	442.7	2.35	454.3	2.42	461.9	2.46
	Not Acc	NAC	2,933.6	15.57	2,919.6	15.50	2,941.8	15.65	2,964.0	15.76	3,028.6	16.11	3,071.0	16.33

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's	on (I-IIIA	(\$,			
			Bas	Baseline		%0		1.1%		2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	Ν	%	N	%	N	%	N	%
SENIOR	Level 1-2	11X	696.2	3.70	703.0	3.73	709.5	3.77	716.0	3.81	734.8	3.91	747.2	3.97
		13F 18Y	62.1 36.5	0.33	67.0	0.36	97.6	0.36	68.3	0.36	70.2	0.37	71.4	0.38
		89D	5.2	0.03	5.7	0.03	5.7	0.20	. v	0.03	78.7	0.03	55.1	0.03
		92F	33.8	0.18	36.9	0.20	37.3	0.20	37.6	0.20	38.5	0.20	39.2	0.21
		92G	32.8	0.17	33.1	0.18	33.4	0.18	33.7	0.18	34.5	0.18	35.1	0.19
		X86	12.0	90.0	11.9	90.0	12.1	90.0	12.2	90.0	12.6	0.07	12.8	0.07
	Level 3-9	FA1	101.6	0.54	101.5	0.54	102.5	0.55	103.5	0.55	106.4	0.57	108.3	0.58
		FA2	19.6	0.10	19.2	0.10	19.4	0.10	19.5	0.10	20.0	0.11	20.4	0.11
		ADI	30.4	0.16	30.0	0.16	30.3	0.16	30.6	0.16	31.5	0.17	32.1	0.17
		AV1	62.6	0.33	62.2	0.33	62.8	0.33	63.5	0.34	65.3	0.35	9.99	0.35
		AV2	32.5	0.17	32.3	0.17	32.6	0.17	33.0	0.18	33.9	0.18	34.6	0.18
		19D	94.4	0.50	92.6	0.49	93.4	0.50	94.2	0.50	96.5	0.51	98.0	0.52
		19K	37.8	0.20	37.0	0.20	37.3	0.20	37.6	0.20	38.5	0.20	39.1	0.21
		ENI	44.1	0.23	43.8	0.23	44.1	0.23	44.5	0.24	45.5	0.24	46.1	0.25
		EN2	46.1	0.24	45.6	0.24	46.0	0.24	46.4	0.25	47.4	0.25	48.1	0.26
		SII	63.0	0.33	62.6	0.33	63.2	0.34	63.8	0.34	65.7	0.35	6.99	0.36
		S12	103.5	0.55	102.6	0.54	103.6	0.55	104.7	0.56	107.7	0.57	109.6	0.58
		PAI	3.4	0.02	3.3	0.02	3.4	0.02	3.4	0.02	3.5	0.02	3.6	0.02
		LEI	60.5	0.32	60.1	0.32	9.09	0.32	61.1	0.33	62.7	0.33	63.8	0.34
		EL1	11.3	90.0	11.2	90.0	11.3	90.0	11.4	90.0	11.8	90.0	12.0	90.0
		EL2	1.3	0.01	1.3	0.01	1.3	0.01	1.4	0.01	1.4	0.01	4.1	0.01
		AX1	15.7	0.08	15.6	80.0	15.8	80.0	15.9	80.0	16.4	0.09	16.7	0.09
		AM1	13.0	0.07	13.0	0.07	13.1	0.07	13.2	0.07	13.6	0.07	13.8	0.07
		52D	28.4	0.15	28.2	0.15	28.4	0.15	28.7	0.15	29.4	0.16	29.9	0.16
		63B	146.8	0.78	145.3	0.77	146.6	0.78	147.9	0.79	151.5	0.81	153.9	0.82
		VMI	32.5	0.17	32.2	0.17	32.5	0.17	32.8	0.17	33.6	0.18	34.2	0.18
		VM2	16.3	0.09	16.2	60.0	16.3	0.09	16.4	60.0	16.9	0.09	17.1	0.09
		74D	34.0	0.18	33.8	0.18	34.1	0.18	34.4	0.18	35.3	0.19	35.9	0.19
		TRI	16.9	0.09	16.9	0.09	17.0	0.09	17.1	60.0	17.4	60.0	17.6	0.09
		88M	52.5	0.28	53.7	0.29	54.2	0.29	54.7	0.29	56.2	0.30	57.2	0.30
		89B	15.5	0.08	15.4	80.0	15.5	80.0	15.6	80.0	16.0	0.08	16.2	60.0
		MDI	176.8	0.94	175.6	0.93	177.5	0.94	179.3	0.95	184.8	0.98	188.4	1.00
		SL1	73.8	0.39	73.2	0.39	73.7	0.39	74.2	0.39	75.7	0.40	7.97	0.41
		Z	100.5	0.53	99.5	0.53	100.6	0.54	101.7	0.54	104.8	0.56	106.8	0.57
			80.6	0.43	80.0	0.42	80.8	0.43	81.6	0.43	84.0	0.45	85.6	0.46
	Not Acc	NAC	1,521.8	8.08	1,518.2	8.06	1,532.0	8.15	1,545.7	8.22	1,585.8	8.43	1,612.0	8.57

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

	7.5%					17.6 0.09																																26.4 0.14 15.9 0.34 63.9 0.34 42.5 0.23 86.1 0.46 55.5 0.30
	5.4%	%	2.42	0.63	0.01	0.0	0.54	0.09	0.02	1.06	0.32	0.21	0.25	0.0	0.53	0.23	0.31	0.21	0.17	0.61	0.01	0.26	0.16	0.00	0.03	0.05	0.12	0.40	0.32	0.01	0.17	1.5	0.08	0.08	0.14 0.34 0.22	0.14 0.34 0.22 0.45	0.14 0.34 0.22 0.25 0.29	0.08 0.34 0.22 0.29 0.29
(\$,1		N	455.2	118.6	1.1	17.3	102.1	16.2	3.6	198.7	6.09	39.3	47.4	16.3	8.66	43.4	58.3	40.2	32.8	114.6	1.5	48.5	30.7	0.4	5.1	9.5	22.8	76.0	60.1	2.5	26.1		15.7	15.7 63.3	15.7 63.3 42.2	15.7 63.3 42.2 84.5	15.7 63.3 42.2 84.5 55.0	15.7 63.3 42.2 84.5 55.0 24.7
ion (I-III/	2.2%	%	2.38	0.62	0.01	0.09	0.54	0.09	0.02	1.03	0.32	0.20	0.25	0.08	0.52	0.23	0.30	0.21	0.17	0.59	0.01	0.25	0.16	00.0	0.03	0.05	0.12	0.40	0.31	0.01	0.14	0.08		0.33	0.33	0.33 0.22 0.44	0.33 0.22 0.44 0.29	0.33 0.22 0.44 0.29 0.13
Market Expansion (I-IIIA's		N	447.3	116.7	1.1	16.8	100.7	16.1	3.5	194.3	59.4	38.3	46.2	15.9	98.0	42.7	57.2	39.5	32.1	111.7	1.5	47.4	29.8	0.4	5.0	9.3	22.5	74.7	59.2	2.5	25.7	15.5	,	67.3	62.3 41.7	62.3 41.7 82.0	62.3 41.7 82.0 54.1	62.3 41.7 82.0 54.1 24.0
Mark	1.1%	%	2.36	0.62	0.01	0.09	0.53	0.09	0.02	1.03	0.31	0.20	0.24	0.08	0.52	0.23	0.30	0.21	0.17	0.59	0.01	0.25	0.16	00.0	0.03	0.05	0.12	0.39	0.31	0.01	0.14	0.08	0.33	0.00	0.22	0.22	0.22 0.43 0.29	0.22 0.43 0.29 0.13
		N	444.6	116.0	1.1	16.6	100.2	16.0	3.5	192.8	58.9	37.9	45.8	15.8	97.4	42.5	56.8	39.3	31.9	110.8	1.5	47.0	29.5	0.4	4.9	9.2	22.4	74.3	58.8	2.5	25.5	15.4	62.0		41.6	41.6	41.6 81.2 53.9	41.6 81.2 53.9 23.8
	%0	%	2.35	0.61	0.01	60.0	0.53	80.0	0.02	1.02	0.31	0.20	0.24	80.0	0.51	0.22	0.30	0.21	0.17	0.58	0.01	0.25	0.16	0.00	0.03	0.05	0.12	0.39	0.31	0.01	0.13	0.08	0.33		0.22	0.22 0.43	0.22 0.43 0.28	0.22 0.43 0.28 0.12
		N	441.9	115.4	1:1	16.4	2.66	16.0	3.5	191.3	58.4	37.5	45.4	15.7	2.96	42.2	56.5	39.1	31.6	109.8	1.5	46.7	29.2	0.4	4.9	9.1	22.3	73.8	58.5	2.5	25.4	15.4	61.7		41.4	41.4 80.4	41.4 80.4 53.6	41.4 80.4 53.6 23.5
	Baseline	%	2.35	0.61	0.01	0.09	0.53	0.08	0.02	1.02	0.31	0.20	0.24	0.08	0.51	0.22	0.30	0.21	0.17	0.58	0.01	0.25	0.16	00.00	0.03	0.05	0.12	0.39	0.31	0.01	0.13	0.08	0.33	000	0.77	0.43	0.43	0.43 0.28 0.13
	Ba	N	442.0	114.7	1.0	16.2	0.66	15.9	3.4	191.4	58.4	37.6	45.4	15.7	6.96	42.3	56.5	39.1	31.7	109.9	1.5	46.7	29.3	0.4	4.9	9.2	22.3	73.9	58.6	2.5	25.4	15.4	61.8	7 . 7	†	41.4 80.5	41.4 80.5 53.6	41.4 80.5 53.6 23.7
		MOS	11X	13F	18X	89D	92F	92G	X86	FAI	FA2	AD1	AVI	AV2	19D	19 K	EN1	EN2	SII	S12	PAI	LE1	EL1	EL2	AX1	AMI	52D	63B	VM1	VM2	74D	TRI	88M	808	970	MD1	MDI SLI	SL1 SL1 IN1
		Level	Level 1-2							Level 3-9																												
		Subgroup	Ŋ																																			

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's	AIII-I) uc	(\$,			
			Base	Baseline)	%0		.1%	(7	2.2%		5.4%		7.5%
Subgroup	Level	MOS	Ν	%	N	%	Ν	%	N	%	N	%		%
COLL+	Level 1-2	11X	281.2	1.49	301.1	1.60	303.9	1.62	306.7	1.63	314.8	1.67	320.1	1.70
		13F	27.6	0.15	37.4	0.20	37.8	0.20	38.2	0.20	39.3	0.21	40.0	0.21
		701 C08	93.0	0.31	33.7	0.51	97.8	0.52	98.8 22.1	0.53	101.9	0.54	104.0	0.55
		97E 97E	58.1	0.11	77.0	0.17	0.2.0 7.0.5	0.17	20.1	0.18	34.2	0.18	34.8 0.10	0.19
		92G	28.0	0.15	313	0.41	31.5	0.42	31.8	0.42	30.0 32.4	0.45	81.9 27.8	0.44
		X86	48.6	0.26	51.5	0.27	52.0	0.28	52.5	0.28	54.1	0.29	55.2	0.29
	Level 3-9	FA1	75.3	0.40	76.5	0.41	77.2	0.41	77.9	0.41	80.0	0.43	81.3	0.43
		FA2	20.1	0.11	18.4	0.10	18.6	0.10	18.8	0.10	19.2	0.10	19.6	0.10
		AD1	19.6	0.10	19.2	0.10	19.4	0.10	19.6	0.10	20.2	0.11	20.6	0.11
		AV1	51.7	0.27	50.6	0.27	51.1	0.27	51.6	0.27	53.1	0.28	54.1	0.29
		AV2	21.8	0.12	21.4	0.11	21.6	0.11	21.8	0.12	22.4	0.12	22.7	0.12
		19D	70.4	0.37	,62.6	0.33	63.1	0.34	63.7	0.34	65.3	0.35	66.4	0.35
		19K	33.0	0.18	29.3	0.16	29.6	0.16	29.8	0.16	30.6	0.16	31.0	0.17
		ENI	47.7	0.25	45.9	0.24	46.3	0.25	46.7	0.25	47.8	0.25	48.6	0.26
		EN2	46.7	0.25	43.9	0.23	44.3	0.24	44.7	0.24	45.8	0.24	46.5	0.25
		SII	51.3	0.27	49.3	0.26	49.8	0.26	50.3	0.27	51.6	0.27	52.5	0.28
		SI2	9.96	0.51	92.3	0.49	93.3	0.50	94.2	0.50	97.0	0.52	8.86	0.53
		PAI	11.6	90:0	11.2	90.0	11.3	90.0	11.4	90.0	11.8	90.0	12.0	90.0
		LEI	84.8	0.45	80.3	0.43	81.1	0.43	81.9	0.44	84.1	0.45	85.5	0.45
		EL1	19.2	0.10	18.2	0.10	18.4	0.10	18.6	0.10	19.1	0.10	19.5	0.10
		EL2	5.9	0.03	5.5	0.03	5.5	0.03	5.6	0.03	5.8	0.03	5.9	0.03
		AX1	19.0	0.10	18.9	0.10	19.1	0.10	19.3	0.10	19.8	0.11	20.1	0.11
		AMI	7.7	0.04	7.2	0.04	7.3	0.04	7.4	0.04	7.6	0.04	7.7	0.04
		52D	15.3	80.0	14.8	80.0	14.9	80.0	15.0	80.0	15.4	80.0	15.6	0.08
		63B	80.7	0.43	77.6	0.41	78.3	0.42	79.0	0.42	81.1	0.43	82.5	0.44
		VMI	27.1	0.14	25.9	0.14	26.1	0.14	26.3	0.14	26.9	0.14	27.3	0.15
		VM2	2.2	0.01	2.1	0.01	2.1	0.01	2.2	0.01	2.2	0.01	2.3	0.01
		74D	50.3	0.27	47.7	0.25	48.1	0.26	48.5	0.26	49.7	0.26	50.5	0.27
		TR1	12.5	0.07	12.2	90.0	12.3	0.07	12.4	0.07	12.6	0.07	12.8	0.07
		88M	38.6	0.20	37.8	0.20	38.1	0.20	38.4	0.20	39.3	0.21	39.9	0.21
		86B	20.2	0.11	19.0	0.10	19.2	0.10	19.3	0.10	19.7	0.10	20.0	0.11
		MD1	211.9	1.12	206.3	1.09	208.5	1.11	210.7	1.12	217.2	1.16	221.5	1.18
		SL1	62.9	0.33	59.7	0.32	60.1	0.32	60.5	0.32	61.8	0.33	62.7	0.33
		Z	105.4	0.56	100.7	0.53	101.8	0.54	102.9	0.55	106.0	0.56	108.1	0.57
	Not Acc	UVN	9050	50.5	041.7	5 00	2030	10.0	0.011	0.02	120.1	0.04	4.22.4	0.03
	ואסו שהי	INAC	230.0	2.03	741.7	2.00	720.7	5.05	938.0	5.10	983.1	5.23	7.666	5.31

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

		·						Market	et Expansion (I-III	VIII-I) uo	(\$,1			
			Bas	Baseline	!	%0		1.1%		2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	N	%	N	%	X	%	×	, , %
HG	Level 1-2	11X	1,300.7	96.9	1,298.5	68.9	1,306.9	6.95	1,315.4	7.00	1,339.9	7.13	1,356.1	7.21
		13F	141.1	0.75	157.0	0.83	158.2	0.84	159.4	0.85	162.9	0.87	165.2	0.88
		X8.7	92.9	0.49	92.6	0.49	93.6	0.50	94.6	0.50	97.6	0.52	99.5	0.53
		89D	78.6	0.42	91.9	0.49	92.9	0.49	93.8	0.50	9.96	0.51	98.5	0.52
		92F	453.5	2.41	485.0	2.57	487.1	2.59	489.2	2.60	495.3	2.63	499.4	2.66
		92G	109.1	0.58	111.1	0.59	111.6	0.59	112.1	09.0	113.5	09.0	114.4	0.61
	0 6 1	98X	35.0	0.19	35.5	0.19	35.8	0.19	36.2	0.19	37.4	0.20	38.1	0.20
	Level 3-9	FAI	392.3	2.08	388.9	2.06	391.8	2.08	394.7	2.10	403.1	2.14	408.6	2.17
		FA2	90.3	0.48	0.68	0.47	89.7	0.48	90.3	0.48	92.1	0.49	93.4	0.50
		ADI	63.7	0.34	62.6	0.33	63.2	0.34	63.8	0.34	65.5	0.35	9.99	0.35
		AV!	105.6	0.56	104.8	0.56	105.8	0.56	106.8	0.57	109.6	0.58	111.5	0.59
		AV2	0.101	0.54	100.4	0.53	101.3	0.54	102.2	0.54	104.7	0.56	106.3	0.57
		191	307.8	1.63	503.5	1.61	305.4	1.62	307.3	1.63	312.7	1.66	316.3	1.68
		19 K	131.5	0.70	129.7	69.0	130.6	69.0	131.4	0.70	133.7	0.71	135.2	0.72
		EN	195.0	1.03	193.4	1.03	194.6	1.03	195.7	1.04	198.9	1.06	201.0	1.07
		EN2	207.4	1.10	234.4	1.09	205.7	1.09	506.9	1.10	210.6	1.12	213.0	1.13
		SII	155.3	0.82	153.8	0.82	155.0	0.82	156.3	0.83	159.8	0.85	162.2	0.86
		SIZ	339.4	1.80	335.4	1.78	338.3	1.80	341.2	1.81	349.7	1.86	355.3	1.89
		PAI	22.3	0.12	22.0	0.12	22.2	0.12	22.5	0.12	23.2	0.12	23.6	0.13
		LEI	336.0	1.78	330.3	1.75	332.9	1.77	335.5	1.78	343.0	1.82	348.0	1.85
		ELI	90.7	0.48	89.2	0.47	90.0	0.48	2.06	0.48	92.8	0.49	94.2	0.50
		EL2	11.8	0.06	11.5	90.0	11.6	90.0	11.8	90.0	12.1	90.0	12.3	0.07
		AX.	38.1	0.20	38.0	0.20	38.3	0.20	38.5	0.20	39.3	0.21	39.8	0.21
		AMI	20.4	0.11	20.2	0.11	20.3	0.11	20.4	0.11	20.9	0.11	21.1	0.11
		777 777	03.0	0.34	63.0	0.33	63.4	0.34	63.8	0.34	64.8	0.34	65.5	0.35
		959	2/3.5	1.45	271.2	1.44	272.9	1.45	274.6	1.46	279.6	1.49	282.8	1.50
		I WI A	5./51	0.83	5555	0.83	156.4	0.83	157.2	0.84	159.7	0.85	161.3	98.0
		VM2	4.0	0.03	6.4	0.03	6.4	0.03	6.4	0.03	6.5	0.03	6.5	0.03
		/4D	134.0	0.71	133.3	0.71	134.1	0.71	135.0	0.72	137.5	0.73	139.2	0.74
		IKI	54.3	0.29	54.2	0.29	54.4	0.29	54.6	0.29	55.2	0.29	55.5	0.30
		88M	225.1	1.19	223.3	1.19	224.3	1.19	225.3	1.20	228.1	1.21	230.0	1.22
		89B	109.5	0.58	108.3	0.57	108.8	0.58	109.2	0.58	110.5	0.59	111.4	0.59
		MDI	521.2	2.77	517.0	2.74	522.3	2.78	527.7	2.81	543.2	2.89	553.4	2.94
		SEI	275.8	1.46	273.2	1.45	274.5	1.46	275.8	1.47	279.5	1.49	281.9	1.50
		Z	349.6	1.86	344.3	1.83	347.8	1.85	351.4	1.87	361.6	1.92	368.4	1.96
			323.9	1.72	320.5	1.70	323.3	1.72	326.1	1.73	334.2	1.78	339.5	1.81
	Not Acc	NAC	1,983.0	10.53	1,977.8	10.50	1,991.6	10.59	2,005.4	10.67	2,045.5	10.88	2,071.8	11.02

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's	on (I-III	(S.)			
			Bas	Baseline [%0		1.1%		2.2%		5.4%		7.5%
Subgroup	Level	MOS	N	%	N	%	N	%	N	%	N	%	N	%
MALE	Level 1-2	11X	2,719.5	14.43	2,744.0	14.56	2,764.4	14.70	2,784.8	14.81	2,844.1	15.13	2,883.1	15.33
		13F	345.4	1.83	376.6	2.00	379.5	2.02	382.3	2.03	390.8	2.08	396.3	2.11
		X 8 2	226.2	1.20	226.8	1.20	229.3	1.22	231.8	1.23	239.0	1.27	243.8	1.30
		89D	106.2	0.56	127.1	0.67	128.4	0.68	129.8	69.0	133.7	0.71	136.3	0.72
		92F	473.7	2.51	516.4	2.74	519.2	2.76	522.0	2.78	530.0	2.82	535.3	2.85
		92G	108.7	0.58	112.7	09.0	113.4	09.0	114.1	0.61	116.3	0.62	117.6	0.63
		X86	68.2	0.36	70.2	0.37	70.9	0.38	71.7	0.38	73.9	0.39	75.4	0.40
	Level 3-9	FAI	760.4	4.04	758.0	4.02	764.1	4.06	770.2	4.10	787.9	4.19	799.6	4.25
		FA2	156.8	0.83	153.5	0.81	154.8	0.82	156.0	0.83	159.6	0.85	162.0	0.86
		ADI	102.7	0.55	100.8	0.53	101.7	0.54	102.7	0.55	105.5	0.56	107.3	0.57
		AVI	210.2	1.12	208.3	1.11	210.3	1.12	212.3	1.13	218.2	1.16	222.1	1.18
		AV2	137.6	0.73	136.6	0.73	137.9	0.73	139.1	0.74	142.8	0.76	145.2	0.77
		061 	569.4	3.02	555.3	2.95	559.2	2.97	563.0	2.99	574.3	3.05	581.6	3.09
		19K	244.5	1.30	238.3	1.26	239.9	1.28	241.5	1.28	246.1	1.31	249.2	1.33
		EN	293.2	1.56	289.9	1.54	291.9	1.55	293.8	1.56	299.4	1.59	303.1	1.61
		EN2	315.8	1.68	309.8	1.64	311.9	1.66	314.0	1.67	320.2	1.70	324.2	1.72
		SII	156.3	0.83	153.9	0.82	155.2	0.83	156.5	0.83	160.3	0.85	162.8	0.87
		SIZ	524.4	2.78	516.2	2.74	521.0	2.77	525.7	2.80	539.6	2.87	548.7	2.92
		PAI	22.6	0.12	22.0	0.12	22.3	0.12	22.5	0.12	23.2	0.12	23.7	0.13
		LEI	392.8	2.08	384.4	2.04	387.6	2.06	390.8	2.08	400.1	2.13	406.3	2.16
		ELI	139.8	0.74	137.3	0.73	138.5	0.74	139.7	0.74	143.2	92.0	145.6	0.77
		EL2	17.9	0.10	17.2	0.00	17.4	0.09	17.6	0.09	18.2	0.10	18.5	0.10
		AXI	49.1	0.26	49.0	0.26	49.4	0.26	49.8	0.26	51.0	0.27	51.8	0.28
		AMI	41.4	0.22	40.8	0.22	41.1	0.22	41.4	0.22	42.4	0.23	43.1	0.23
		320	115.2	0.60	112.0	0.59	112.8	09.0	113.5	09.0	115.8	0.62	117.2	0.62
		920	1.076	2.79	519.6	2.76	523.4	2.78	527.3	2.80	538.4	2.86	545.7	2.90
		IMIA	1./57	1.30	253.8	55.1	255.4	1.36	256.9	1.37	261.5	1.39	264.5	1.41
		747	4.72	0.13	7:17	0.14	27.4	0.15	27.5	0.15	28.1	0.15	28.5	0.15
		7. E	0.511	0.61	112.9	0.60	113.8	0.61	114.6	0.61	117.1	0.62	118.7	0.63
		IKI	5.25	0.28	52.2	0.28	52.5	0.28	52.8	0.28	53.5	0.28	54.1	0.29
		88M	7:157	1.34	250.9	1.33	252.5	1.34	254.1	1.35	258.6	1.38	261.6	1.39
		89B	94.6	0.50	92.9	0.49	93.4	0.50	93.9	0.50	95.3	0.51	96.2	0.51
		MD1	630.9	3.35	622.3	3.30	629.0	3.35	635.6	3.38	655.0	3.48	9.299	3.55
		SLI	252.3	1.34	247.6	1.31	249.2	1.33	250.8	1.33	255.4	1.36	258.4	1.37
		Z E	488.9	2.60	479.2	2.54	484.2	2.57	489.1	2.60	503.6	2.68	513.1	2.73
	Not Acc	NAC	3 770 8	20.00	2.764.3	10.08	2 705 5	20.100	7.627.7	2.53	488.2	2.60	496.5	2.64
	2317337	247	2,7,7,6	20.00	3,704.3	17.70	5,175.3	20.19	3,820./	20.35	3,917.4	20.83	3,976.9	21.15

Table B-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, MOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's)	AIII-I) uc	(3,			
			Bas	Baseline		%0		1.1%		2.2%		5 4%		7 50%
Subgroup	Level	MOS	N	%	N	%	×	%	′ ×	, % !	. ×	%	>	,; %
FEMALE	Level 1-2	11X 13F 18X												
		G68	14.8	0.08	19.3	0.10	19.5	0.10	19.7	0.10	203	0 11	707	0 11
		92F	170.7	0.91	183.1	0.97	183.9	0.98	184.6	0.98	186.8	0.99	188.2	1.00
		92G	77.0	0.41	78.7	0.42	79.1	0.42	79.4	0.42	80.3	0.43	810	0.43
		X86	30.9	0.16	32.1	0.17	32.5	0.17	32.8	0.17	33.8	0.18	34.4	0.18
	Level 3-9	FAI	0.2	0.00	0.2	0.00	0.2	00.0	0.2	0.00	0.2	00.0	0.5	000
		FA2	31.7	0.17	31.5	0.17	31.7	0.17	32.0	0.17	32.7	0.17	33.2	0.00
		AD1	48.7	0.26	48.5	0.26	49.0	0.26	49.5	0.26	51.0	0.27	51.9	0.28
		AV1	55.1	0.29	54.6	0.29	55.1	0.29	55.7	0.30	57.2	0.30	58.2	0.3.1
		AV2	33.4	0.18	33.2	0.18	33.5	0.18	33.7	0.18	34.5	0.18	34.9	0.19
		19D 19K											!	
		ENI	50.1	0.27	49.7	0.26	50.0	760	\$03	77.0	015	7,00	3 13	6
		EN2	23.6	0.13	23.2	0.12	23.4	0.12	23.5	0.17	0.10	0.13	51.5 1.72	0.27
		SII	145.0	0.77	143.4	0.76	144.7	0.77	146.0	0.78	149.6	0.80	152.0	0.13
		S12	125.0	99.0	123.9	99.0	125.0	99.0	126.1	0.67	129.3	0.69	131.5	0.01
		PAI	16.2	0.09	15.9	80.0	16.1	60.0	16.3	0.00	16.8	60'0	17.1	0.09
		LE1	135.2	0.72	133.0	0.71	134.1	0.71	135.1	0.72	138.2	0.74	140.2	0.75
		EL1	10.7	90.0	10.6	90.0	10.7	90.0	10.8	90.0	11.1	90.0	11.3	0.06
		EL2	1.5	0.01	1.5	0.01	1.5	0.01	1.5	0.01	1.6	0.01	1.6	0.01
		AX1	28.6	0.15	28.5	0.15	28.7	0.15	28.9	0.15	29.5	0.16	29.9	0.16
		AM1	∞. ∞. ;	0.05	8.7	0.05	8.8	0.05	8.9	0.05	9.1	0.05	9.3	0.05
		320	16.4	0.00	16.3	0.09	16.3	60.0	16.4	60.0	16.7	0.09	16.9	60.0
		036	2.0 2.0 7.0	0.26	48.4	0.26	48.7	0.26	49.0	0.26	49.9	0.27	50.5	0.27
		INI A	18.5	0.10	18.3	0.10	18.4	0.10	18.5	0.10	18.8	0.10	19.0	0.10
		2 INI 2	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.00	0.0	00.0
		7±0 1=1	179.1	0.08	1.7.7	0.67	128.1	0.68	129.0	69.0	131.6	0.70	133.3	0.71
		Noo	126.1	57.0	40.4	27.0	40.0	0.25	46.8	0.25	47.4	0.25	47.7	0.25
		00IVI	1.021	0.67	0.521	0.67	126.2	0.67	126.7	0.67	128.3	89.0	129.3	69.0
		89B	91.9	0.49	91.2	0.48	91.6	0.49	92.0	0.49	93.1	0.50	93.8	0.50
		MIDI	359.4	1.91	356.9	1.89	360.5	1.92	364.2	1.94	374.8	1.99	381.8	2.03
		SLI Pri	213.8	1.13	212.0	1.13	213.0	1.13	213.9	1.14	216.6	1.15	218.3	1.16
			30.2 143.0	0.48	88.9	0.47	89.8	0.48	90.8	0.48	93.5	0.50	95.3	0.51
	Not Acc	NAC	1 264 4	6 7.1	1 262 3	6.70	1 271 5	6.76	1 200 0	0.77	148.2	0.79	150.7	0.80
			., 0., 6.	0.:71	C:707,1	0.70	C.177,1	0.70	1,200.0	0.81	1,307.8	6.96	1,325.4	7.05

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	ion (I-IIIA's	4,8)			
			Baseline	%0	0,	1.19	%	2.2%	9.	5.4%	%	7.5%	%
Subgroup	Level	MOS	N	N + /-	-/+ %	N +/-	-/+ %	N + /-	-/+ %	N + /-	-/+ %	N + /-	-/+ %
ALL	Level 1-2	11X	2,720.1	24.5	06.0	44.9	1.65	65.3	2.40	124.7	4.59	163.7	6.02
		13F	345.5	31.2	9.03	34.1	6.87	37.0	10.70	45.4	13.14	50.9	14.74
		18X	226.2	9.0	0.24	3.0	1.35	5.5	2.45	12.8	99.5	17.6	7.76
		89D	121.0	25.4	20.99	27.0	22.28	28.5	23.56	33.0	27.31	36.0	29.77
		92F	644.4	55.1	8.56	58.7	9.10	62.2	9.65	72.4	11.23	79.1	12.27
		92G	185.8	5.7	3.05	6.7	3.62	7.8	4.18	10.8	5.83	12.8	6.91
		X86	0.66	3.3	3.32	4.4	4.43	5.5	5.54	8.7	8.76	10.8	10.88
	Level 3-9	FA1	9.097	-2.5	-0.32	3.7	0.48	8.6	1.28	27.5	3.62	39.2	5.15
		FA2	188.4	-3.4	-1.82	-1.9	-1.03	-0.5	-0.25	3.8	2.04	6.7	3.54
		AD1	151.4	-2.1	-1.37	9.0-	-0.40	8.0	0.56	5.1	3.36	7.9	5.20
	,	AV1	265.3	-2.4	-0.90	0.2	90.0	2.7	1.02	10.1	3.82	15.0	5.65
		AV2	171.0	-1.2	69:0-	0.3	0.20	1.9	1.08	6.3	3.67	9.2	5.36
		19D	5.69.5	-14.1	-2.47	-10.2	-1.79	-6.4	-1.12	4.9	98.0	12.3	2.15
		19K	244.6	-6.2	-2.54	4.6	-1.89	-3.0	-1.24	1.6	99.0	4.7	1.91
		ENI	343.3	-3.7	-1.07	-1.5	-0.43	0.7	0.21	7.1	2.08	11.3	3.30
		EN2	339.3	-6.3	-1.85	4.0	-1.19	-1.8	-0.53	4.7	1.39	0.6	2.64
		SII	301.3	4.0	-1.32	-1.4	-0.47	1:1	0.38	9.8	2.86	13.5	4.49
		SIZ	649.4	-9.3	-1.44	-3.4	-0.53	2.4	0.38	19.6	3.01	30.8	4.74
		PAI	38.7	-0.8	-1.95	-0.3	-0.87	0.1	0.21	1.3	3.35	2.1	5.41
		LE1	528.0	-10.6	-2.01	-6.4	-1.21	-2.1	-0.40	10.3	1.95	18.5	3.50
		EL1	150.5	-2.6	-1.73	-1.3	-0.87	0.0	0.00	3.8	2.51	6.3	4.16
		EL2	19.4	-0.7	-3.68	-0.5	-2.64	-0.3	-1.60	0.3	1.42	0.7	3.40
		AX1	7.77	-0.2	-0.31	0.4	0.48	1.0	1.26	2.8	3.55	3.9	5.05
		AM1	50.2	-0.7	-1.49	-0.3	-0.65	0.1	0.18	1.3	2.61	2.1	4.20
		52D	129.5	-1.3	-0.97	-0.4 4.0-	-0.31	4.0	0.34	2.9	2.25	4.5	3.50
		63B	574.8	6:9-	-1.20	-2.7	-0.48	1.4	0.24	13.4	2.34	21.3	3.71
		VM1	275.5	-3.4	-1.24	-1.8	-0.64	-0.1	-0.03	4.8	1.73	7.9	2.88
		VM2	27.4	-0.2	-0.82	0.0	-0.13	0.2	0.57	0.7	2.59	1.1	3.92
		74D	244.3	4.2	-1.72	-2.5	-1.01	-0.7	-0.29	4.4	1.78	7.7	3.14
		TRI	99.1	-0.5	-0.48	0.0	-0.02	0.4	0.45	1.8	1.81	2.7	2.70
		88M	377.9	-1.3	-0.35	8.0	0.20	2.9	0.76	0.6	2.38	13.0	3.44
		89B	186.6	-2.5	-1.32	-1.6	-0.86	-0.7	-0.39	1.8	0.97	3.5	1.86
		MDI	990.3	-11.1	-1.12	-0.8	-0.08	9.5	96.0	39.4	3.98	59.1	5.97
		SL1	466.1	-6.5	-1.39	4.0	-0.85	-1.5	-0.31	5.9	1.26	10.7	2.28
		Z	579.1	-11.0	-1.90	-5.1	-0.87	8.0	0.15	18.1	3.12	29.4	5.07
		HIII	617.2	-8.5	-1.38	-2.9	-0.47	2.8	0.45	19.2	3.11	29.9	4.85
	Not Acc	NAC	5,044.2	-17.6	-0.35	22.8	0.45	63.3	1.25	180.9	3.59	258.2	5.12

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	sion (I-IIIA's	A's)			
į			Baseline	%0	%	1.1	%	2.2		5.4%		7.5	%
Subgroup	Level	MOS	N	N + /-	-/+%	N + /-	-/+ %	N + /-	-/+ %	N + /-	-/+ %	% -/+ N	-/+%
I-IIIA	Level 1-2	11X	1,831.2	24.5	1.34	44.9	2.45	65.3	3.57	124.7	6.81	163.7	
		13F	231.9	31.2	13.46	34.1	14.70	37.0	15.95	45.4	19.58	50.9	
		X81	226.2	0.0	0.24	3.0	1.35	5.5	2.45	12.8	5.66	17.6	
		89D	116.3	25.4	21.83	27.0	23.17	28.5	24.51	33.0	28.41	36.0	
		92F	263.7	55.1	20.92	58.6	22.25	62.2	23.58	72.4	27.44	79.1	
		926	90.0	5.7	6.30	6.7	7.47	7.8	8.64	10.8	12.04	12.8	
		98X	96.5	3.3	3.41	4.4	4.55	5.5	5.68	8.7	8.99	10.8	
	Level 3-9	FAI	557.8	-2.5	-0.44	3.7	0.65	8.6	1.75	27.5	4.94	39.2	
		FA2	138.2	-3.4	-2.48	-1.9	-1.41	-0.5	-0.34	3.8	2.79	6.7	
		ADI	134.6	-2.1	-1.54	9.0-	-0.45	8.0	0.63	5.1	3.78	7.9	
		AVI	234.0	-2.4	-1.02	0.2	0.07	2.7	1.16	10.1	4.33	15.0	
		AV2	139.3	-1.2	-0.85	0.3	0.24	1.9	1.33	6.3	4.50	9.2	
		19D	365.2	-14.1	-3.85	-10.2	-2.80	-6.4	-1.74	4.9	1.34	12.3	
		19 K	151.3	-6.2	4.11	9.4-	-3.06	-3.0	-2.00	1.6	1.07	4.7	
		ENI	203.6	-3.7	-1.80	-1.5	-0.72	0.7	0.36	7.1	3.50	11.3	
		EN2	209.5	-6.3	-2.99	4.0	-1.93	-1.8	-0.86	4.7	2.25	9.0	
		SII	237.7	4.0	-1.68	-1.4	-0.60	1.1	0.48	9.8	3.63	13.5	
		S12	544.3	-9.3	-1.71	-3.4	-0.63	2.4	0.45	19.6	3.59	30.8	
		PA!	38.7	8.0 <u>-</u>	-1.95	-0.3	-0.87	0.1	0.21	1.3	3.35	2.1	
		LEI	398.8	-10.6	-2.67	-6.4	-1.60	-2.1	-0.53	10.3	2.59	18.5	
		ELI	120.9	-2.6	-2.16	-1.3	-1.08	0.0	0.00	3.8	3.13	6.3	
		ELZ	19.1	-0.7	-3.75	-0.5	-2.69	-0.3	-1.63	0.3	1.45	0.7	
		YXI	55.8	-0.2	-0.43	0.4	99.0	1.0	1.76	2.8	4.94	3.9	
		AMI	38.9	-0.7	-1.92	-0.3	-0.85	0.1	0.23	1.3	3.37	2.1	
		52D	78.4	-1.3	-1.60	-0.4	-0.52	0.4	0.56	2.9	3.71	4.5	
		929	382.9	6.9-	-1.80	-2.7	-0.72	4.	0.37	13.4	3.51	21.3	
		IMIA	155.0	-3.4 5.5	-2.21	-1.8	-1.13	-0.1	-0.06	4.8	3.07	7.9	
		VM2	5.71	-0.2	-1.28	0.0	-0.20	0.2	0.89	0.7	4.05	1.1	
		/4U	162.7	4.2	-2.59	-2.5	-1.51	-0.7	-0.44	4.4	2.67	7.7	
		IKI	42.5	-0.5	-1.13	0.0	-0.04	0.4	1.05	1.8	4.21	2.7	
		88W	192.5	-1.3	-0.69	8.0	0.40	2.9	1.49	0.6	4.67	13.0	
		8918	81.8	-2.5	-3.02	-1.6	-1.96	-0.7	-0.89	1.8	2.21	3.5	
		MDI	946.7	-11.1	-1.17	8.0-	-0.08	9.5	1.00	39.4	4.17	59.1	
		SLI	234.9	-6.5	-2.76	4.0	-1.69	-1.5	-0.62	5.9	2.49	10.7	
		Z 5	548.8	-11.0	-2.00	-5.1	-0.92	0.8	0.15	18.1	3.29	29.4	5:35
	Mot And	TITI VIAC	321.3	C.6-	-1.04	6.7-	-0.55	2.8	0.53	19.2	3.68	29.9	
	NOI ACC	NAC	3,695.1	-17.6	-0.48	22.8	0.62	63.3	1.71	180.9	4.90	258.2	

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expan	Market Expansion (I-IIIA's)	1,s)			
			Baseline	%0		1.1%		2.2%	%	5.4%	%	7.5%	9,
Subgroup	Level	MOS	N	N +/-	-/+ %	N +/-	-/+%	N +/-	-/+%	N + /-	-/+ %	$N + \sqrt{-}$	-/+ %
IIIB+IV	Level 1-2	11X	6.888	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		13F	113.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		18X	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		268 268	4.7	0.0	0.01	0.0	0.01	0.0	0.01	0.0	0.01	0.0	0.01
		92F	380.8	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		92G	95.8	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00
		X86	2.5	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Level 3-9	FAI	202.8	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00
		FA2	50.3	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		ADI	16.8	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		AV1 AV2	31.2	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		19D	2043	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00	0.0	0.00
		19K	93.3	0:0	0.00	0.0	0.00	000	000	0.0	00.0	0.0	0.00
		ENI	139.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		EN2	129.8	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00
		SII	63.6	0.0	00.0	0.0	0.00	0.0	00.0	0.0	00.0	0.0	0.00
		SIZ	105.1	0.0	0.00	0.0	0.00	0.0	00.0	0.0	00.0	0.0	0.00
		PAI	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		LE1	129.2	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		ELI	29.6	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00
		EL2	0.4	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		YXI	21.9	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		AMI	4.11.4	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		22D	1.15	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		038	9.191	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		VM2	9.9	0.0	00.0	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00
		74D	81.6	0:0	0.00	0.0	0.00	0.0	0.00	0.0	00.0	0.0	00.0
		TRI	9.99	0.0	0.00	0.0	0.00	0.0	00.0	0.0	00.00	0.0	0.00
		88M	185.3	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		89B	104.8	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00
		MD1	43.6	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		SLI	231.2	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		Z	30.3	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Not Acc	NAC	1 349 1	0.0	00.0	0.0	00.00	0.0	00.00	0.0	0.00	0.0	0.00
			***	25	00:0	2.0	000	2.5	00.0	0.0	0.00	0.0	0.00

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	ion (I-IIIA's	4.8)			
			Baseline	%0	9,	1.19	%	2.2%	Ί	5.4%	%	7.5%	%
Subgroup	Level	MOS	N	N +/-	-/+ %	N + /-	-/+ %	N +/-	-/+ %	N + /-	-/+ %	$N + \sqrt{-}$	-/+ %
HGC	Level 1-2	11X	1,581.8	17.8	1.12	29.0	1.83	40.3	2.54	72.9	4.61	94.4	
		13F	168.8	25.7	15.20	27.2	16.14	28.8	17.08	33.4	19.82	36.5	21.61
		18X	188.7	9.0	0.33	2.7	1.44	4.8	2.54	10.9	5.75	14.8	7.86
		89D	9.66	24.8	24.87	26.1	26.20	27.4	27.52	31.2	31.38	33.8	33.91
		92F	511.6	51.3	10.03	54.0	10.56	26.7	11.08	64.5	12.61	9.69	13.61
		92G	137.1	5.3	3.87	6.0	4.39	6.7	4.91	8.8	6.42	10.2	7.42
		X86	83.6	3.3	3.95	4.2	5.06	5.2	6.17	7.9	9.40	9.6	11.52
	Level 3-9	FA1	467.6	-2.2	-0.47	1.4	0.30	5.0	1.07	15.5	3.31	22.4	4.79
		FA2	110.5	-3.0	-2.71	-2.2	-1.99	-1.4	-1.26	0.0	0.84	2.5	2.23
		AD1	83.4	-1.6	-1.87	-0.8	-0.93	0.0	0.01	2.3	2.73	3.8	4.52
		AVI	157.3	-2.0	-1.26	-0.5	-0.30	1.0	0.65	5.4	3.42	8.2	5.24
		AV2	122.8	-1.0	-0.78	0.1	0.08	1.2	0.95	4.3	3.47	6.3	5.13
		19D	378.2	-12.1	-3.20	-9.7	-2.56	-7.3	-1.92	-0.2	-0.05	4.5	1.18
		19K	164.5	-5.4	-3.27	4.3	-2.63	-3.3	-1.99	-0.2	-0.12	1.8	1.11
		ENI	242.6	-3.3	-1.35	-1.8	-0.74	-0.3	-0.12	4.1	1.67	6.9	2.85
		EN2	254.1	-5.8	-2.26	4.1	-1.62	-2.5	-0.98	2.3	0.89	5.4	2.12
		SII	206.6	-3.5	-1.69	-1.8	-0.87	-0.1	-0.05	4.8	2.34	8.1	3.90
		SIZ	436.1	-8.4	-1.92	-4.5	-1.03	9.0-	-0.14	10.6	2.43	18.0	4.12
		PAI	33.9	-0.7	-2.15	-0.4	-1.07	0.0	0.01	1.1	3.14	1.8	5.19
		EI EI	420.8	-10.1	-2.40	-6.7	-1.60	-3.4	-0.81	6.4	1.51	12.8	3.03
		ELI	109.9	-2.5	-2.25	-1.6	-1.43	-0.7	-0.61	2.0	1.78	3.7	3.34
		EL2	17.7	-0.7	-3.95	-0.5	-2.91	-0.3	-1.88	0.2	1.13	0.5	3.11
		XX:	57.1	-0.2	-0.33	0.2	0.43	0.7	1.18	1.9	3.38	2.8	4.82
		AMI	28.0	-0.7	-2.33	-0.4	-1.56	-0.2	-0.79	0.4	1.44	0.8	2.91
		52D	78.8	-1.0	-1.27	-0.5	-0.66	0.0	-0.04	1.4	1.74	2.3	2.91
		63B	354.2	-5.3	-1.50	-2.9	-0.82	-0.5	-0.14	9.9	1.85	11.2	3.16
		. W.	184.5	-3.1	-1.66	-2.0	-1.09	-0.9	-0.51	2.1	1.15	4.1	2.24
		7W2	8.6	-0.1	-0.73	0.0	-0.26	0.0	0.21	0.1	1.58	0.2	2.47
		74D	184.9	-3.9	-2.10	-2.6	-1.41	-1.3	-0.72	2.4	1.30	4.8	2.62
		IRI	8.99	-0.4	-0.61	-0.1	-0.19	0.2	0.23	1.0	1.46	1.5	2.26
		88M	263.6	-2.5	-0.95	-1.2	-0.46	0.1	0.02	3.8	1.43	6.2	2.36
		89B	129.6	-2.3	-1.78	-1.7	-1.32	-1.1	-0.86	9.0	0.47	1.7	1.34
		MDI	733.1	8.6-	-1.33	-2.2	-0.30	5.4	0.73	27.4	3.74	41.8	5.71
		SEI	338.7	-5.8	-1.73	4.1	-1.22	-2.4	-0.71	2.6	0.76	5.8	1.72
		Z	454.9	6.6°	-2.18	-5.3 5.6	-1.17	-0.7	-0.16	12.7	2.79	21.5	4.73
	Mar Ass		447.3	8./-	-1./6	-3.8	-0.86	0.2	0.05	11.8	2.67	19.4	4.39
	Not Acc	NAC	2,933.6	-14.0	-0.48	8.2	0.28	30.4	1.04	95.0	3.24	137.4	4.69

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	A's)			
			Baseline	%0	0	1.19	%	2.2%	%	5.4%	%	7.5%	0
Subgroup	Level	MOS	×	N +/-	-/+%	N +/-	-/+ %	N +/-	-/+%	N +/-	-/+ %	N +/-	-/+%
SENIOR	Level 1-2	X11	696.2	8.9	0.98	13.3	1.91	19.8	2.84	38.6	5.55	51.0	7.33
		13F 18Y	1.79	y.4 0.1	7.87	ر:ر د د د	8.8/ 0.8/	6.2	9.92	· · ·	12.98	9.3	14.98
		89D	5.5	0.4	7.68	0.5	8.86). 	10.05	0.7	13.48	0; c	15.74
		92F	33.8	3.1	9.22	3.4	10.18	3.8	11.15	4.7	13.94	5.3	15.78
		92G	32.8	0.3	0.93	9.0	1.81	0.9	2.70	1.7	5.28	2.3	6.97
		X86	12.0	0.0	-0.26	0.1	0.84	0.2	1.93	9.0	5.12	6.0	7.22
	Level 3-9	FA1	101.6	-0.1	-0.15	6.0	0.84	1.8	1.82	4.8	4.68	6.7	6.56
		FA2	19.6	-0.4	-1.92	-0.2	-1.04	0.0	-0.15	0.5	2.43	8.0	4.12
		AD1	30.4	-0.5	-1.55	-0.2	-0.53	0.1	0.49	1.1	3.46	1.6	5.41
		AV1	62.6	-0.4	-0.61	0.3	0.42	6.0	1.45	2.8	4.44	4.0	6.41
		AV2	32.5	-0.2	-0.66	0.1	0.38	0.5	1.41	1.4	4.42	2.1	6.40
		19D	94.4	-1.8	-1.91	-1.0	-1.06	-0.2	-0.22	2.1	2.24	3.6	3.85
		19K	37.8	-0.8	-2.03	-0.5	-1.23	-0.2	-0.44	0.7	1.88	1.3	3.40
		ENI	44.1	-0.3	-0.76	0.0	0.02	0.4	08.0	1.4	3.06	2.0	4.55
		EN2	46.1	-0.4	-0.96	-0.1	-0.16	0.3	0.63	1.4	2.94	2.1	4.46
		SII	63.0	-0.5	-0.71	0.2	0.28	8.0	1.28	2.6	4.17	3.8	80.9
		SIZ	103.5	6.0-	-0.84	0.2	0.16	1.2	1.16	4.2	4.07	6.2	5.98
		PAI	3.4	0.0	-0.67	0.0	0.42	0.1	1.51	0.2	4.69	0.2	6.78
		LEI	60.5	-0.5	-0.78	0.1	0.12	9.0	1.02	2.2	3.64	3.2	5.37
		EL1	11.3	-0.1	-0.89	0.0	0.04	0.1	0.98	0.4	3.69	9.0	5.48
		EL2	1.3	0.0	-1.14	0.0	-0.05	0.0	1.03	0.1	4.19	0.1	6.26
		AX1	15.7	-0.1	-0.35	0.1	09.0	0.2	1.55	0.7	4.30	1.0	6.11
		AM1	13.0	-0.1	-0.64	0.0	0.31	0.2	1.26	0.5	4.02	8.0	5.83
		52D	28.4	-0.2	-0.82	0.0	0.08	0.3	0.99	1.0	3.63	1.5	5.36
		63B	146.8	-1.5	-1.01	-0.2	-0.15	1.0	0.70	4.7	3.20	7.1	4.84
		VM1	32.5	-0.3	-0.98	0.0	-0.10	0.3	0.78	1.1	3.35	1.6	5.03
		VM2	16.3	-0.2	-0.99	0.0	-0.11	0.1	92.0	0.5	3.31	8.0	4.98
		74D	34.0	-0.3	-0.85	0.0	0.07	0.3	0.99	1.3	3.68	1.9	5.44
		TRI	16.9	-0.1	-0.38	0.0	0.22	0.1	0.83	4.0	2.59	9.0	3.74
		88M	52.5	1.3	2.39	1.8	3.36	2.3	4.32	3.7	7.13	4.7	86.8
		89B	15.5	-0.1	-0.89	0.0	-0.11	0.1	0.67	0.5	2.94	0.7	4.43
		MD1	176.8	-1.2	-0.68	0.7	0.38	2.6	1.45	8.0	4.54	11.6	6.58
		SL1	73.8	9.0-	-0.79	-0.1	-0.09	0.4	09.0	1.9	2.63	2.9	3.95
		Z:	100.5	-0.9	-0.92	0.1	0.15	1.2	1.21	4.3 E. 6	4.31	6.4	6.34
			80.6	-0.7	-0.85	0.1	0.18	1.0	1.20	3.4	4.19	5.0	6.14
	Not Acc	NAC	1,521.8	-3.5	-0.23	10.2	0.67	24.0	1.58	64.0	4.21	90.2	5.93

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	4,8)			
			Baseline	%0		1.1%		2.2%	%	5.4%	%	7.5%	/%
Subgroup	Level	MOS	N		-/+ %	N + /-	-/+ %	N +/-	-/+%	7/+ N	-/+%	N + /-	-/+%
DU	Level 1-2	11X	442.0	-0.1	-0.02	2.6	0.59	5.3	1.20	13.2	2.98	18.3	4.15
		13F	114.7	0.7	09.0	1.3	1.17	2.0	1.74	3.9	3.40	5.2	4.49
		18X	1.0	0.0	2.68	0.0	3.81	0.1	4.94	0.1	8.22	0.1	10.38
		G68	16.2	0.2	1.40	0.4	2.50	9.0	3.59	1.1	6.77	1.4	8.86
		92F	99.0	0.7	0.72	1.2	1.22	1.7	1.72	3.1	3.18	4.1	4.13
		92G	15.9	0.1	0.39	0.1	69.0	0.2	0.99	0.3	1.87	0.4	2.45
		X86	3.4	0.0	0.65	0.1	1.73	0.1	2.80	0.2	5.92	0.3	7.97
	Level 3-9	FAI	191.4	-0.1	-0.06	1.4	0.73	2.9	1.51	7.3	3.80	10.2	5.31
		FA2	58.4	-0.1	-0.10	0.5	0.77	1.0	1.64	2.4	4.18	3.4	5.84
		AD1	37.6	0.0	-0.10	0.3	0.87	0.7	1.84	1.8	4.68	2.5	6.53
		AVI	45.4	0.0	-0.06	0.4	0.83	8.0	1.73	2.0	4.33	2.7	6.04
		AV2	15.7	0.0	90.0-	0.1	69.0	0.2	1.44	9.0	3.63	0.8	5.06
		061	96.9	-0.2	-0.17	0.5	0.49	1.1	1.14	2.9	3.04	4.2	4.29
		19 K	42.3	-0.1	-0.17	0.2	0.40	0.4	96.0	1.1	2.60	1.6	3.68
		ENI	56.5	0.0	-0.08	0.3	0.56	0.7	1.20	1.7	3.05	2.4	4.27
		ENZ	39.1	-0.1	-0.20	0.2	0.40	4.0	1.00	1.1	2.75	1.5	3.90
		SII	31.7	0.0	-0.13	0.2	0.65	0.5	1.43	1.2	3.69	1.6	5.18
		SIZ	109.9	-0.1	-0.10	6.0	08.0	1.9	1.70	4.7	4.31	9.9	6.02
		PA1	1.5	0.0	-0.21	0.0	0.88	0.0	1.98	0.1	5.18	0.1	7.27
		LE1	46.7	-0.1	-0.15	0.3	0.65	0.7	1.44	1.8	3.77	2.5	5.29
		EL1	29.3	0.0	-0.11	0.3	0.00	9.0	1.90	1.4	4.82	2.0	6.74
		EL2	4.0	0.0	-0.39	0.0	0.65	0.0	1.69	0.0	4.72	0.0	6.70
		YX1	4.9	0.0	-0.01	0.0	0.64	0.1	1.28	0.2	3.15	0.2	4.37
		AMI	9.2	0.0	-0.13	0.1	0.75	0.1	1.62	0.4	4.17	0.5	5.84
		52D	22.3	0.0	-0.10	0.1	0.39	0.2	0.87	0.5	2.29	0.7	3.23
		638	73.9	-0.1	-0.10	0.4	0.52	8.0	1.14	2.2	2.95	3.0	4.13
		IMA S	28.0	0.0	-0.08	0.3	0.48	9.0	1.03	1.6	2.65	2.2	3.72
		7 ivi 2	57.5	0.0	-0.04	0.0	0.26	0.0	0.55	0.0	1.42	0.0	1.98
		74D	25.4	0.0	-0.12	0.1	0.47	0.3	1.05	0.7	2.76	1.0	3.88
		IKI	4.61	0.0	-0.04	0.1	0.47	0.2	0.98	4.0	2.47	0.5	3.44
		W88 G08	61.8	-0.1	-0.15	0.2	0.37	0.5	0.89	1.5	2.39	2.1	3.38
		89B	41.4	0.0	-0.07	0.1	0.31	0.3	0.70	8.0	1.81	1.1	2.54
		MDI	80.5	-0.1	-0.12	0.7	0.92	1.6	1.96	4.0	5.00	9.9	86.9
		SE!	53.6	-0.1	-0.11	0.2	0.42	0.5	96.0	1.4	2.52	1.9	3.55
		Z E	23.7	0.0	-0.53	0.1	0.46	0.3	1.45	1.0	4.33	1.5	6.22
		LILL	1.44.1	-0.1	-0.07	0.8	0.81	1.6	1.68	4.0	4.22	5.5	5.89
	Not Acc	NAC	588.9	-0.1	-0.02	4.3	0.74	8.8	1.50	21.9	3.72	30.5	5.18

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Market	et Expansion	sion (I-IIIA's	A's)			
			Baseline	%0	9,	1:1	%	2.2%	%	5.4%	%	7.5	%
Subgroup	Level	MOS	N	N +/-	-/+ %	N + /-	-/+ %	N +/-	-/+%	N +/-	-/+%	N+/-	-/+ %
COLL+	Level 1-2	11X	281.2	20.0	7.11	22.8	8.10	25.6	60.6	33.7	11.97	39.0	13.86
		13F	27.6	8.6	35.57	10.2	36.93	10.6	38.30	11.7	42.27	12.4	44.87
		18X	95.8	6.0	0.97	2.0	2.09	3.1	3.20	6.2	6.43	8.2	8.55
		89D	20.9	11.5	54.76	11.8	56.45	12.2	58.15	13.2	63.09	13.9	66.33
		92F	58.1	19.8	34.07	20.4	35.07	21.0	36.06	22.7	38.97	23.8	40.88
		92G	28.0	3.3	11.77	3.5	12.57	3.7	13.37	4.4	15.71	4.8	17.24
		X86	48.6	2.8	5.84	3.4	6.95	3.9	8.07	5.5	11.32	6.5	13.45
	Level 3-9	FA1	75.3	1.1	1.52	1.9	2.47	2.6	3.42	4.7	6.18	0.9	8.00
		FA2	20.1	-1.7	-8.58	-1.6	-7.74	-1.4	-6.89	6.0-	-4.45	9.0-	-2.84
		AD1	19.6	-0.4	-2.10	-0.2	-1.11	0.0	-0.11	0.5	2.77	6.0	4.67
		AVI	51.7	-1.1	-2.19	9.0-	-1.19	-0.1	-0.20	1.4	2.70	2.4	4.60
		AV2	21.8	-0.4	-2.01	-0.2	-1.10	0.0	-0.19	0.5	2.46	6.0	4.21
		19D	70.4	-7.8	-11.11	-7.3	-10.32	-6.7	-9.53	-5.1	-7.24	-4.0	-5.73
		19K	33.0	-3.7	-11.08	-3.4	-10.32	-3.2	-9.56	-2.4	-7.33	-1.9	-5.87
		ENI	47.7	-1.8	-3.73	4.1-	-2.91	-1.0	-2.09	0.1	0.29	6.0	1.85
		EN2	46.7	-2.8	-6.03	-2.4	-5.21	-2.1	-4.39	6.0-	-2.02	-0.2	-0.46
		SII	51.3	-2.0	-3.93	-1.5	-3.01	-1.1	-2.09	0.3	0.59	1.2	2.35
		SIZ	9.96	4.3	-4.46	-3.4	-3.49	-2.4	-2.51	0.3	0.32	2.1	2.18
		PAI	11.6	-0.4	-3.44	-0.3	-2.38	-0.2	-1.32	0.2	1.77	0.4	3.80
		LEI	84.8	4.	-5.24	-3.7	4.34	-2.9	-3.45	-0.7	-0.83	0.7	0.88
		EL1	19.2	-1.0	-5.19	-0.8	4.25	9.0-	-3.31	-0.1	-0.57	0.2	1.22
		EL2	5.9	-0.4	-7.31	4.0-	-6.30	-0.3	-5.28	-0.1	-2.33	0.0	-0.40
		AXI	19.0	-0.1	-0.69	0.0	0.24	0.2	1.18	0.7	3.91	1.1	5.70
		AM1	7.7	4.0-	-5.48	-0.4	4.58	-0.3	-3.67	-0.1	-1.04	0.1	89.0
		52D	15.3	-0.5	-3.17	-0.4	-2.37	-0.2	-1.57	0.1	0.75	0.3	2.27
		63B	80.7	-3.1	-3.79	-2.3	-2.90	-1.6	-2.01	0.5	0.59	1.9	2.29
		VM1	27.1	-1.3	-4.66	-1.1	-3.91	6.0-	-3.16	-0.3	-0.98	0.1	0.45
		VM2	2.2	-0.1	-2.37	0.0	-1.44	0.0	-0.51	0.0	2.19	0.1	3.97
		74D	50.3	-2.6	-5.12	-2.2	4.30	-1.7	-3.47	-0.5	-1.05	0.3	0.53
		TRI	12.5	-0.3	-2.18	-0.2	-1.53	-0.1	-0.88	0.1	1.02	0.3	2.27
		88M	38.6	-0.7	-1.91	-0.4	-1.13	-0.1	-0.35	0.7	1.93	1.3	3.42
		89B	20.2	-1:1	-5.60	-1.0	-4.90	8.0-	4.20	4.0-	-2.15	-0.2	-0.80
		MD1	211.9	-5.6	2.63	-3.4	-1.58	-1:1	-0.53	5.4	2.53	9.6	4.53
		SL1	62.9	-3.3	-5.21	-2.8	-4.50	-2.4	-3.80	-1.1	-1.74	-0.2	-0.39
		Z	105.4	7.4	4. 4.	-3.6	-3.41	-2.5	-2.38	9.0	0.62	2.7	2.58
		HII	118.0	4.4	5.65	-5.2	-2.10	0.2-	-1.09	1.5	1.24	5.6	3.17
	Not Acc	NAC	920.6	8.8	-0.93	-0.4	-0.04	8.0	0.84	32.5	3.42	48.6	5.11

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	ion (I-IIIA's	4,8)			
			Baseline	%0	0,	1.1	%	2.2%	1	5.4%	%	7.5%	%
Subgroup	Level	MOS	N	N +/-	-/+ %	N +/-	-/+ %	N + /-	-/+ %	N +/-	-/+ %	$N + \sqrt{-}$	-/+%
HG	Level 1-2	X11 X21	1,300.7	-2.2	-0.17	6.3	0.48	14.7	1.13	39.3	3.02	55.4	
		131	141.1	15.8	11.22	17.0	12.07	18.3	12.93	21.8	15.42	24.1	17.06
		18X 888	92.9	-0.3	-0.33	0.7	0.77	1.7	1.87	4.7	5.06	9.9	7.15
		368	78.6	13.3	16.91	14.3	18.13	15.2	19.36	18.0	22.93	19.9	25.27
		92F	453.5	31.5	6.95	33.6	7.41	35.7	7.88	41.9	9.23	45.9	10.11
		92G	109.1	2.0	1.84	2.5	2.29	3.0	2.73	4.4	4.04	5.3	4.89
		788 288	35.0	0.5	1.32	0.8	2.42	1.2	3.53	2.4	6.74	3.1	8.85
	Level 3-9	FAI	392.3	-3.3	-0.85	-0.5	-0.11	2.4	0.62	10.8	2.76	16.4	4.17
		FA2	90.3	 	-1.40	9.0-	-0.71	0.0	-0.01	1.8	2.02	3.0	3.36
		ADI	63.7		-1.79	9.0-	-0.87	0.0	0.04	1.7	2.72	2.9	4.47
		AVI	105.6	8.0	-0.80	0.1	0.13	1.1	1.07	4.0	3.77	5.9	5.55
		4 v 2	101.0	-0.5	-0.52	0.3	0.34	1.2	1.20	3.7	3.69	5.4	5.33
		761 761	307.8	4. Ei	-1.40	-2.4	-0.79	-0.5	-0.18	4.9	1.60	8.5	2.76
		7.6	5.151	\.'.	-1.31	-0.9	-0.70	-0.1	-0.09	2.2	1.69	3.8	2.85
		EN	195.0	s: I-	-0.77	-0.4	-0.21	0.7	0.36	3.9	2.01	0.9	3.09
		EN2	4.707	-2.9	-1.42	-1.7	-0.81	-0.4	-0.21	3.2	1.55	5.6	2.70
		SIS	155.3	-1.5	-0.95	-0.3	-0.17	1.0	0.62	4.5	2.91	6.9	4.42
		215	339.4	4.0	-1.19	-1.1	-0.33	1.8	0.53	10.3	3.03	15.9	4.68
		PA!	22.3	-0.3	-1.47	-0.1	-0.39	0.2	69.0	6.0	3.85	1.3	5.92
		CEI	336.0	-5.6	-1.68	-3.1	-0.91	-0.5	-0.14	7.1	2.10	12.0	3.57
		ELI	90.7	-1.5	-1.63	e.0-	-0.83	0.0	-0.04	2.1	2.27	3.4	3.79
		ELZ	11.8	-0.3	-2.26	-0.1	-1.22	0.0	-0.17	0.3	2.87	9.0	4.86
		X	38.1	-0.1	-0.14	0.2	0.52	0.5	1.18	1.2	3.12	1.7	4.38
		AMI	20.4	-0.2	-1.14	-0.1	-0.42	0.1	0.29	0.5	2.38	0.8	3.75
		52D	63.6	-0.5	-0.81	-0.2	-0.24	0.2	0.32	1.3	1.98	1.9	3.06
		938	2/3.5	-2.3	-0.83	9.0-	-0.20	1.1	0.42	6.1	2.22	9.3	3.41
		IWA	15/.3	×	-1.14	6.0-	-0.60	-0.1	-0.06	2.4	1.52	4.0	2.55
		7 W Z	4.0	0.0	-0.17	0.0	0.14	0.0	0.45	0.1	1.37	0.1	1.96
		/4U	134.6	-1.3	-0.97	-0.4	-0.33	0.4	0.31	2.9	2.18	4.6	3.40
		IKI	54.3	-0.7	-0.25	0.1	0.12	0.3	0.49	0.8	1.56	1.2	2.26
		88M 489	225.1	∞. .	-0.78	-0.8	-0.35	0.2	0.09	3.0	1.35	4.9	2.17
		89B	109.5	-1.2	-1.07	-0.7	-0.66	-0.3	-0.25	1.0	0.95	1.9	1.73
		MDI	521.2	-4.2	-0.81	1.1	0.22	6.5	1.25	22.0	4.23	32.2	6.19
		SEI Si:	2/5.8	-2.6	-0.93	-1.3	-0.47	0.0	-0.01	3.7	1.33	6.1	2.20
		Z S	349.6	.5.3 5.3	-1.50	-1.7	-0.50	1.8	0.51	12.1	3.45	18.8	5.38
	Maria	III	9.626	4.5.4	-1.05	-0.6	-0.18	2.2	0.68	10.3	3.19	15.7	4.84
	NOI ACC	NAC	1,983.0	-5.1	-0.26	9.8	0.44	22.4	1.13	62.5	3.15	88.8	4.48

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's	4's)			
			Baseline	%0	0,	1.1	%	2.2%	%	5.4%	%	7.5%	0
Subgroup	Level	MOS	N	N + /-	-/+ %	N +/-	-/+%	$N + / \sim$	-/+%	N +/-	-/+ %	N + /-	-/+ %
MALE	Level 1-2	11X	2,719.5	24.5	06.0	44.9	1.65	65.3	2.40	124.7	4.58	163.6	6.02
		13F	345.4	31.2	9.02	34.1	98.6	36.9	10.70	45.4	13.13	50.9	14.73
		18X	226.2	9.0	0.24	3.0	1.35	5.5	2.45	12.8	5.66	17.6	7.76
		89D	106.2	20.9	19.70	22.3	20.97	23.6	22.24	27.5	25.93	30.1	28.35
		92F	473.7	42.7	9.02	45.5	09.6	48.3	10.19	56.3	11.89	61.6	13.00
		92G	108.7	4.0	3.64	4.7	4.30	5.4	4.97	7.5	6.91	8.9	8.18
		X86	68.2	2.0	2.94	2.8	4.06	3.5	5.17	5.7	8.41	7.2	10.54
	Level 3-9	FA1	760.4	-2.5	-0.32	3.7	0.48	8.6	1.28	27.5	3.62	39.2	5.15
		FA2	156.8	-3.2	-2.05	-2.0	-1.26	-0.7	-0.47	2.8	1.82	5.2	3.32
		AD1	102.7	-2.0	-1.90	-1.0	-0.96	0.0	-0.03	2.8	2.69	4.6	4.47
		AVI	210.2	-1.9	-0.90	0.1	90.0	2.2	1.03	8.0	3.82	11.9	5.66
		AV2	137.6	-1.0	-0.72	0.3	0.20	1.5	1.11	5.2	3.79	7.6	5.54
		19D	569.4	-14.1	-2.47	-10.2	-1.79	-6.3	-1.11	4.9	98.0	12.3	2.15
		19K	244.5	-6.2	-2.54	4.6	-1.89	-3.0	-1.24	1.6	99.0	4.7	1.91
		EN1	293.2	-3.3	-1.13	-1.4	-0.47	9.0	0.19	6.2	2.11	6.6	3.37
		EN2	315.8	-5.9	-1.88	-3.8	-1.22	-1.7	-0.55	4 4.	1.40	8.4	2.67
		SII	156.3	-2.4	-1.55	-1.1	-0.72	0.2	0.12	4.0	2.56	6.5	4.16
		SIZ	524.4	-8.2	-1.56	-3.4	-0.65	1.4	0.26	15.2	2.91	24.3	4.64
		PA1	22.6	-0.5	-2.30	-0.3	-1.22	0.0	-0.15	0.7	2.98	1:1	5.03
		LE1	392.8	-8.4	-2.14	-5.2	-1.32	-2.0	-0.51	7.3	1.87	13.5	3.43
		EL1	139.8	-2.5	-1.79	-1.3	-0.92	-0.1	-0.06	3.4	2.46	5.8	4.12
		EL2	17.9	-0.7	-3.76	-0.5	-2.72	-0.3	-1.69	0.2	1.33	9.0	3.31
		AX1	49.1	-0.2	-0.33	0.3	0.51	0.7	1.35	1.9	3.81	2.7	5.42
		AMI	41.4	-0.7	-1.60	-0.3	-0.78	0.0	0.05	1.0	2.45	1.7	4.03
		\$2D	113.2	<u></u>	-1.01	-0.4	-0.34	0.4	0.33	2.6	2.29	4.0	3.57
		63B	526.1	-6.4	-1.23	-2.6	-0.50	1.2	0.23	12.3	2.34	19.6	3.72
		VM1	257.1	-3.3	-1.28	-1.7	-0.67	-0.1	-0.06	4.4	1.72	7.4	2.88
		VM2	27.4	-0.5	-0.82	0.0	-0.13	0.2	0.57	0.7	2.59	1.1	3.92
		74D	115.6	-2.6	-2.28	-1.8	-1.55	-1.0	-0.82	1.5	1.30	3.1	5.69
		TRI	52.5	-0.2	-0.43	0.0	0.07	0.3	0.58	1.1	2.05	1.6	3.02
		88M	251.7	8.0-	-0.32	8.0	0.30	2.3	0.92	6.9	2.73	6.6	3.92
		89B	94.6	-1.8	-1.87	-1.3	-1.35	8.0-	-0.83	9.0	0.67	1.6	1.66
		MD1	630.9	9.8-	-1.36	-1.9	-0.31	4.7	0.75	24.0	3.81	36.7	5.82
		SL1	252.3	4.7	-1.86	-3.1	-1.23	-1.5	-0.60	3.1	1.23	6.1	2.43
		Z	488.9	-9.7	-1.99	4.7	-0.97	0.2	0.05	14.7	3.01	24.2	4.96
		HII	474.2	-7.2	-1.51	-2.9	-0.60	1.5	0.31	14.1	2.96	22.3	4.71
	Not Acc	NAC	3,779.8	-15.5	-0.41	15.6	0.41	46.8	1.24	137.5	3.64	197.1	5.21

Table B-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	of Evnans	Market Expansion (I-IIIA's	4,6)			
			Raceline	00	,	-	70	200	27.	6 4	3/	7 5	
Subgroup	Level	MOS	Dascinic	N +/-	-/+%	1.1 N +/-	-/+ %	7.7 -/+ N	-/+ <i>%</i>	N +/-	% +/-	%C'/ N+/	% %+/- %
FEMALE	Level 1-2	11X 13F											, I
		18X 89D	14.8	4	30.23	4.7	31.65	40	33.07	v	17.71	Ç.	6
		92F	170.7	12.4	7.27	13.2	7.71	13.9	/0.55 8 14	16.1	9.7.7	2.7	39.92
		92G	77.0	1.7	2.22	2.0	2.65	2.4	3.07	3.3	4 30	2.7.1	5.11
		X86	30.9	1.3	4.16	1.6	5.25	2.0	6.35	2.9	9.54	3.6	11.64
	Level 3-9	FAI	0.2	0.0	-3.85	0.0	-2.79	0.0	-1.74	0.0	1.34	0.0	3.36
		FA2	31.7	-0.2	69:0-	0.0	0.09	0.3	0.88	1.0	3.15	1.5	4.65
		AD1	48.7	-0.1	-0.24	4.0	0.78	6.0	1.81	2.3	4.79	3.3	6.74
		AV1	55.1	-0.5	-0.90	0.0	0.05	9.0	1.01	2.1	3.79	3.1	5.62
		AV2	33.4	7.0-	-0.58	0.1	0.19	0.3	0.95	1:1	3.18	1.6	4.65
		19K											
		EN1	50.1	-0.4	-0.73	-0.1	-0.19	0.2	0.34	6.0	1.88	4	2 90
		EN2	23.6	-0.3	-1.36	-0.2	-0.83	-0.1	-0.29	0.3	1.26	0.5	2.28
		SII	145.0	-1.6	-1.08	-0.3	-0.21	1.0	99.0	4.6	3.19	7.0	4.85
		S12	125.0	-1.2	-0.92	0.0	-0.03	1.1	0.86	4.3	3.46	6.5	5.16
		PA1	16.2	-0.2	-1.46	-0.1	-0.37	0.1	0.71	9.0	3.86	1.0	5.93
		LE1	135.2	-2.2	-1.65	-1.2	-0.86	-0.1	-0.08	3.0	2.20	5.0	3.70
		EL1	10.7	-0.1	-0.95	0.0	-0.11	0.1	0.73	0.3	3.18	0.5	4.78
		EL2	1.5	0.0	-2.70	0.0	-1.64	0.0	-0.59	0.0	2.49	0.1	4.51
		AX1	28.6	-0.1	-0.27	0.1	0.42	0.3	1.11	6.0	3.11	1.3	4.42
		AM1	8.8	-0.1	-0.95	0.0	-0.08	0.1	0.80	0.3	3.34	0.4	5.01
		52D	16.4	-0.1	-0.68	0.0	-0.14	0.1	0.40	0.3	1.96	0.5	2.99
		63B	8.8	4.0-	-0.88 -0.88	-0.1	-0.23	0.2	0.42	1.1	2.32	1.7	3.56
		VMI V	2.8.2	-0.1	-0.76	0.0	-0.22	0.1	0.32	0.3	1.89	0.5	2.92
		2 ivi 2	0.0	0.0	-0.65	0.0	0.45	0.0	1.54	0.0	4.72	0.0	6.81
		TRI	128.7	0.1-	-1.22	^ c	-0.52	0.2	0.18	2.9	2.22	6.6	3.55
		88M	126.1	-0.5	.0.47		0.01		0.5		1.33	1.1	42.24
		89B	91.9	-0.7	-0.77	-0.3	-0.35	0.0	0.07	1.7	1.08	3.1	2.49 20.0
		MD1	359.4	-2.5	-0.70	1.1	0.32	4.8	1.33	15.4	4.29	22.4	6.22
		SL1	213.8	-1.8	-0.84	6.0-	-0.40	0.1	0.03	2.8	1.29	4.5	2.12
		Z	90.2	-1.3	-1.41	-0.3	-0.37	9.0	0.67	3.3	3.70	5.1	5.69
		HIII	143.0	-1.4	-0.94	0.0	-0.02	1.3	0.90	5.1	3.58	7.6	5.34
	Not Acc	NAC	1,264.4	-2.1	-0.17	7.2	0.57	16.4	1.30	43.4	3.43	61.1	4.83
							!						

Appendix C: Forecasted TOS Channeling Effects

Appendix C reports the raised bonus cap's forecasted impact on TOS channeling under the five market expansion conditions, for all applicants and by subgroup. For comparison purposes, results under the existing cap are reported under "Baseline." Within each subgroup results by TOS are grouped by incentive level, which is indicated under the "Level" column. Overall, the layout and information presented in Tables C-1 and C-2 are similar to corresponding tables in Appendix B.

Table C-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, TOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's)	ion (I-III/	4,8)			
			Baseline	ne		%0		.1%	2	2.2%		5.4%		7.5%
Subgroup	Level	TOS	N	%	N	%	N	%	N	%	N	%	N	%
ALL	ALL	3	5,655.8	30.02	5,597.7	29.71	5,626.1	29.92	5,654.5	30.07	5,737.1	30.51	5,791.3	30.80
		4 m	5,024.3	26.67	5,019.7	26.64	5,067.7	26.95	5,115.8	27.21	5,255.7	27.95	5,347.5	28.44
		n ve	863.8	4 58	2,200.0 873.1	12.13	2,308.8	12.28	2,331.6	12.40	6,397.9	12.75	2,441.5	12.98
		666	5,044.2	26.77	5,026.6	26.68	5,067.0	26.95	5.107.5	27.16	5.225.1	27.79	5.302.4	28.20
	Level 1-2	3	1,895.2	10.06	1,870.7	9.93	1,878.3	9.99	1,885.9	10.03	1,907.9	10.15	1,922.4	10.22
		4	1,478.3	7.85	1,538.4	8.17	1,552.9	8.26	1,567.4	8.34	1,609.6	8.56	1,637.3	8.71
		ر د د	840.2	4.46	932.9	4.95	942.2	5.01	951.6	5.06	978.7	5.21	9.966	5.30
	-	9	128.4	0.68	145.9	0.77	147.4	0.78	149.0	0.79	153.6	0.82	156.6	0.83
	Level 3-9	m 4	3,760.6	19.96	3,727.0	19.78	3,747.8	19.93	3,768.7	20.04	3,829.2	20.36	3,868.9	20.58
		† v	3,540.0	7 30	3,481.3	18.48 7.18	3,514.9	18.69	3,548.4	18.87	3,646.1	19.39	3,710.2	19.73
		9	735.4	3.90	727.2	3.86	734.4	3.91	741.7	3.94	762.7	4.06	776.5	4.13
	Not Acc	666	5,044.2	26.77	5,026.6	26.68	5,067.0	26.95	5,107.5	27.16	5,225.1	27.79	5,302.4	28.20
I-IIIA	ALL	3	2,639.7	14.01	2,581.7	13.70	2,610.1	13.88	2,638.5	14.03	2,721.1	14.47	2,775.3	14.76
		4 :	4,375.6	23.23	4,371.0	23.20	4,419.1	23.50	4,467.2	23.76	4,607.0	24.50	4,698.8	24.99
		ss v	2,001.9	10.63	2,072.9	11.00	2,095.7	11.15	2,118.5	11.27	2,184.8	11.62	2,228.4	11.85
		666	3.695.1	19.61	3.677.4	4.25 19.52	809.8	19.77	3.758.3	4.35	3 876 0	20.61	861.1	71.07
	Level 1-2	3	714.1	3.79	9.689	3.66	697.2	3.71	704.8	3.75	726.9	3.87	741.3	3 94
		4	1,259.3	89.9	1,319.4	7.00	1,333.9	7.09	1.348.5	7.17	1.390.7	7.40	14184	7.54
		5	756.0	4.01	848.6	4.50	858.0	4.56	867.3	4.61	894.5	4.76	912.3	4.85
		9	126.4	0.67	143.8	0.76	145.4	0.77	147.0	0.78	151.6	0.81	154.6	0.82
	Level 3-9	ب	1,925.6	10.22	1,892.1	10.04	1,912.9	10.17	1,933.7	10.28	1,994.2	10.61	2,034.0	10.82
		4 1	3,116.3	16.54	3,051.6	16.20	3,085.1	16.41	3,118.7	16.59	3,216.3	17.11	3,280.4	17.45
		n v	1,246.0	3.53	1,224.3	6.50 3.49	1,237.7	6.58 3.53	1,251.2	3.57	1,290.4	3.68	1,316.1	7.00
	Not Acc	666	3,695.1	19.61	3,677.4	19.52	3.717.9	19.77	3.758.3	19.99	3.876.0	20.61	3.953.2	21.02
IIIB+IV	ALL	3	3,016.1	16.01	3,016.0	16.01	3,016.0	16.04	3,016.0	16.04	3,016.0	16.04	3,016.0	16.04
		4	648.7	3.44	648.7	3.44	648.7	3.45	648.7	3.45	648.7	3.45	648.7	3.45
		vo v	213.0	1.13	213.1	1.13	213.1	1.13	213.1	1.13	213.1	1.13	213.1	1.13
		٥٥	72.1	0.38	72.1	0.38	72.1	0.38	72.1	0.38	72.1	0.38	72.1	0.38
		999	1,349.1	7.16	1,349.1	7.16	1,349.1	7.18	1,349.1	7.18	1,349.1	7.18	1,349.1	7.18
	Level 1-2	.n .	1,181.1	6.27	1,181.1	6.27	1,181.1	6.28	1,181.1	6.28	1,181.1	6.28	1,181.1	6.28
		4 v	218.9	01.10	218.9	1.16	218.9	1.16	218.9	1.16	218.9	1.16	218.9	1.16
		o 0	2.0	0.01	2.0	0.01	94.3 2.0	0.01	84.3 2.0	0.0	84.3 2.0	0.45	84.3 2.0	0.45
	Level 3-9	3	1,835.0	9.74	1,835.0	9.74	1,835.0	9.76	1,835.0	9.76	1.835.0	9.76	1.835.0	97.6
		4	429.7	2.28	429.7	2.28	429.7	2.29	429.7	2.29	429.7	2.29	429.7	2.29
		<i>د</i> د	128.8	0.68	128.8	0.68	128.8	0.69	128.8	0.69	128.8	0.69	128.8	0.69
	Not Acc	666	1,349.1	7.16	1,349.1	7.16	1.349.1	7.18	1 349 1	7.18	1 349 1	718	1 349 1	7.18
													117.1.76	7.10

Table C-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, TOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's)	√III-I) uo	(\$,1			
			Baseline	ne		%0	1.	.1%	2.	2.2%		5.4%		7.5%
Subgroup	Level	LOS	N	%	Ν	%	N	%	N	%	N	%	N	%
HGC	ALL	3	3,441.7	18.27	3,398.2	18.04	3,412.7	18.15	3,427.2	18.23	3,469.5	18.45	3,497.2	18.60
		4	3,680.3	19.53	3,653.5	19.39	3,687.8	19.61	3,722.1	19.80	3,821.9	20.33	3,887.3	20.67
		vo v	1,604.8	8.52	1,678.8	8.91	1,695.3	9.02	1,711.9	9.10	1,760.0	9.36	1,791.5	9.53
		900	5/5.7	3.06	585.9	3.11	591.8	3.15	597.7	3.18	614.8	3.27	626.1	3.33
		999	2,933.6	15.57	2,919.6	15.50	2,941.8	15.65	2,964.0	15.76	3,028.6	16.11	3,071.0	16.33
	Level 1-2	m ·	1,072.7	5.69	1,056.0	5.60	1,058.9	5.63	1,061.9	5.65	1,070.7	5.69	1,076.4	5.72
		4 4	1,026.1	5.45	1,061.9	5.64	1,071.7	5.70	1,081.4	5.75	1,109.7	5.90	1,128.3	6.00
		n 4	5/3.1	5.04	1163	3.53	6/2.2	3.58	6/8.8	3.61	697.9	3.71	710.5	3.78
	Love 1 2 0	0	2.66.0	17 57	7 247 7	12.42	0./11	13.63	23653	12.63	2.700.0	0.65	124.9	0.00
	Level 3-9	J 4	2,509.0	14.09	2,542.2	13.76	2,535.7	13.91	2,505.5	14.04	2,398.8	14.70	2,420.8	12.8/
		S	1,031.7	5.48	1,013.1	5.38	1,023.1	5.44	1,033.1	5.49	1,062.0	5.65	1.081.0	5.75
		9	476.5	2.53	469.6	2.49	474.2	2.52	478.9	2.55	492.3	2.62	501.2	2.67
	Not Acc	666	2,933.6	15.57	2,919.6	15.50	2,941.8	15.65	2,964.0	15.76	3,028.6	16.11	3,071.0	16.33
SENIOR	ALL	m	982.5	5.22	969.2	5.14	9.926	5.19	984.1	5.23	1,005.7	5:35	1,019.8	5.42
		4	814.6	4.32	837.0	4.44	845.8	4.50	854.6	4.54	880.2	4.68	897.0	4.77
		v, v	416.4	2.21	412.0	2.19	416.4	2.21	420.8	2.24	433.6	2.31	442.0	2.35
		9 0	180.7	0.96	179.6	0.95	181.5	0.97	183.4	0.98	189.0	1.01	192.6	1.02
		999	1,521.8	80.8	1,518.2	8.06	1,532.0	8.15	1,545.7	8.22	1,585.8	8.43	1,612.0	8.57
	Level 1-2	ω.	365.7	1.94	358.5	1.90	361.2	1.92	363.8	1.93	371.5	1.98	376.5	2.00
		4	288.4	1.53	312.3	1.66	315.6	1.68	318.9	1.70	328.5	1.75	334.8	1.78
		'n	200.3	1.06	198.9	1.06	201.0	1.07	203.2	1.08	209.4	1.11	213.5	1.14
		٥	24.2	0.13	24.3	0.13	24.6	0.13	24.9	0.13	25.6	0.14	26.1	0.14
	Level 3-9	ω,	616.8	3.27	610.7	3.24	615.5	3.27	620.3	3.30	634.2	3.37	643.3	3.42
		4 v	526.2	2.79	524.7	2.78	530.2	2.82	535.7	2.85	551.7	2.93	562.2	2.99
		o v	1565	0.13	213.1	0.13	215.3	1.15	217.6	1.16	224.2	1.19	228.5	1.22
	Not Acc	666	1,521.8	8.08	1,518.2	8.06	1.532.0	8.15	1.545.7	8.22	1.585.8	8.43	1,612.0	8.57
NG	ALL	3	1,231.6	6.54	1,230.3	6.53	1,236.8	6.58	1,243.2	6.61	1,262.0	6.71	1,274.3	6.78
		4	529.5	2.81	529.2	2.81	534.2	2.84	539.2	2.87	553.6	2.94	563.1	2.99
		د ک	193.7	1.03	195.2	1.04	197.1	1.05	199.0	1.06	204.4	1.09	208.0	1.11
		9	107.4	0.57	107.5	0.57	108.5	0.58	109.5	0.58	112.5	09.0	114.4	0.61
		999	588.9	3.13	588.7	3.12	593.2	3.15	597.7	3.18	610.8	3.25	619.4	3.29
	Level 1-2	m·	456.8	2.42	456.2	2.42	458.2	2.44	460.1	2.45	465.8	2.48	469.5	2.50
		4 ·	163.8	0.87	164.1	0.87	165.6	0.88	167.1	0.89	171.4	0.91	174.2	0.93
		'n	66.7	0.35	68.3	0.36	69.0	0.37	9.69	0.37	71.4	0.38	72.6	0.39
	,	9	0.0	0.03	5.2	0.03	5.3	0.03	5.3	0.03	5.5	0.03	5.6	0.03
	Level 3-9	m·	774.8	4.11	774.1	4.11	778.6	4.14	783.1	4.16	796.2	4.23	804.8	4.28
		4 ,	365.7	1.94	365.1	1.94	368.6	1.96	372.1	1.98	382.2	2.03	388.9	2.07
		o o	127.0 102.4	0.67	126.9	0.67	128.1	0.68	129.3 104.2	0.69	133.0	0.71	135.3	0.72
	Not Acc	666	588.9	3.13	588.7	3.12	593.2	3.15	597.7	3.18	610.8	3.25	619.4	3 79
												C	1.7.10	7.57

Table C-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, TOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's)	VIII-I) uo	\s\			
			Baseline	ine		%0	, —i	1.1%	2.	2.2%	5	5.4%		7.5%
Subgroup	Level	TOS	N	%	N	%	N	%	N	%	N	%	N	%
COLL+	ALL	3	501.2	2.66	482.7	2.56	486.0	2.58	489.2	2.60	498.7	2.65	504.9	2.69
		4	871.8	4.63	864.8	4.59	873.7	4.65	882.6	4.69	9.806	4.83	925.7	4.92
		'n	432.0	2.29	460.7	2.45	465.6	2.48	470.5	2.50	484.6	2.58	493.9	2.63
		9	183.3	0.97	189.0	1.00	191.0	1.02	193.0	1.03	198.8	1.06	202.6	1.08
		666	920.6	5.05	941.7	5.00	950.2	5.05	928.6	5.10	983.1	5.23	999.2	5.31
	Level 1-2	3	126.7	19'0	121.1	0.64	121.7	9.65	122.3	9.65	124.1	99.0	125.2	19.0
		4	213.3	1.13	241.2	1.28	243.7	1.30	246.1	1.31	253.4	1.35	258.1	1.37
		'n	172.0	0.91	208.8	1.11	211.0	1.12	213.3	1.13	219.7	1.17	224.0	1.19
		9	48.3	0.26	57.4	0.30	58.0	0.31	58.6	0.31	60.4	0.32	61.6	0.33
	Level 3-9	3	374.5	1.99	361.7	1.92	364.3	1.94	366.9	1.95	374.6	1.99	379.7	2.02
		4	658.6	3.50	623.6	3.31	630.1	3.35	636.5	3.39	655.3	3.48	9'299	3.55
		S	260.1	1.38	251.9	1.34	254.5	1.35	257.2	1.37	264.9	1.41	270.0	1.44
		9	135.0	0.72	131.7	0.70	133.1	0.71	134.4	0.72	138.4	0.74	141.1	0.75
	Not Acc	666	920.6	5.05	941.7	5.00	950.2	5.05	928.6	5.10	983.1	5.23	999.2	5.31
HG	ALL	3	2,940.5	15.61	2,915.4	15.47	2,926.7	15.57	2,938.0	15.63	2,970.8	15.80	2,992.3	15.91
		4	2,808.4	14.91	2,788.7	14.80	2,814.1	14.97	2,839.5	15.10	2,913.2	15.49	2,961.6	15.75
		'n	1,172.8	6.23	1,218.1	6.47	1,229.8	6.54	1,241.4	09.9	1,275.3	6.78	1,297.6	6.90
		9	392.3	2.08	396.9	2.11	400.8	2.13	404.7	2.15	416.0	2.21	423.4	2.25
		666	1,983.0	10.53	1,977.8	10.50	1,991.6	10.59	2,005.4	10.67	2,045.5	10.88	2,071.8	11.02
	Level 1-2	3	946.0	5.02	934.9	4.96	937.3	4.98	939.7	5.00	946.6	5.03	951.2	5.06
		4	812.9	4.31	820.8	4.36	828.0	4.40	835.3	4.44	856.3	4.55	870.2	4.63
		Ś	401.2	2.13	456.9	2.42	461.2	2.45	465.6	2.48	478.2	2.54	486.5	2.59
		9	50.9	0.27	59.0	0.31	59.6	0.32	60.3	0.32	62.1	0.33	63.3	0.34
	Level 3-9	33	1,994.5	10.59	1,980.5	10.51	1,989.4	10.58	1,998.3	10.63	2,024.2	10.77	2,041.2	10.86
		4	1,995.6	10.59	1,968.0	10.45	1,986.1	10.56	2,004.2	10.66	2,056.9	10.94	2,091.5	11.12
		S	771.6	4.10	761.2	4.04	768.5	4.09	775.9	4.13	797.1	4.24	811.1	4.31
		9	341.5	1.81	337.9	1.79	341.2	1.81	344.4	1.83	353.9	1.88	360.1	1.92
	Not Acc	666	1,983.0	10.53	1,977.8	10.50	1,991.6	10.59	2,005.4	10.67	2,045.5	10.88	2,071.8	11.02

Table C-1. Forecasted Number of Accessions and Percent of Total by Subgroup, Incentive Level, TOS, and Market Expansion Condition

								Marke	Market Expansion (I-IIIA's	on (I-III	(Y.S)			
			Baseline	ne		%0	-	.1%	2.	2.2%		5.4%		7.5%
Subgroup	Level	TOS	N	%	N	%	N	%		%		%	×	%
MALE	ALL	m	4,984.8	26.46	4,929.8	26.17	4,955.8	26.36	4,981.8	26.49	5,057.5	26.90	5.107.2	27.16
		4	4,007.5	21.27	4,005.6	21.26	4,045.0	21.51	4,084.3	21.72	4,198.7	22.33	4.273.7	22.73
		S	1,843.7	9.79	1,908.2	10.13	1,927.6	10.25	1,946.9	10.35	2,003.3	10.65	2.040.2	10.85
		9	631.1	3.35	639.1	3.39	645.6	3.43	652.1	3.47	610.9	3.57	683.3	3 63
		666	3,779.8	20.06	3,754.3	19.98	3,795.5	20.19	3,826.7	20.35	3,917.4	20.83	3,976.9	21.15
	Level 1-2	m	1,783.9	9.47	1,760.1	9.34	1,767.5	9.40	1,775.0	9.44	1,796.7	9.56	1.810.9	9.63
		4 '	1,369.6	7.27	1,422.2	7.55	1,436.0	7.64	1,449.7	7.71	1,489.7	7.92	1,516.0	8.06
		v,	782.5	4.15	865.2	4.59	874.0	4.65	882.8	4.69	908.3	4.83	925.1	4.92
		9	112.0	0.59	126.3	0.67	127.7	89.0	129.0	69.0	133.0	0.71	135.7	0.72
	Level 3-9	m .	3,200.9	16.99	3,169.7	16.82	3,188.2	16.96	3,206.8	17.05	3,260.8	17.34	3.296.3	17.53
		4	2,637.9	14.00	2,583.5	13.71	2,609.0	13.88	2,634.6	14.01	2,708.9	14.41	2.757.7	14.67
		5	1,061.2	5.63	1,043.0	5.54	1,053.6	5.60	1,064.2	5.66	1,094.9	5.82	1,115.1	5.93
		9	519.2	2.76	512.8	2.72	517.9	2.75	523.0	2.78	537.9	2.86	547.7	2.91
	Not Acc	666	3,779.8	20.06	3,764.3	19.98	3,795.5	20.19	3,826.7	20.35	3,917.4	20.83	3.976.9	21.15
FEMALE	ALL	ω.	6.00	3.56	6.799	3.55	670.3	3.56	672.7	3.58	679.6	3.61	684.1	3.64
		4 1	1,016.8	5.40	1,014.0	5.38	1,022.8	5.44	1,031.6	5.49	1,057.0	5.62	1,073.8	5.71
		ν,	371.3	1.97	377.8	2.01	381.2	2.03	384.7	2.05	394.7	2.10	401.2	2.13
		9	232.6	1.23	234.0	1.24	236.3	1.26	238.6	1.27	245.4	1.31	249.8	1.33
		666	1,264.4	6.71	1,262.3	6.70	1,271.5	6.76	1,280.8	6.81	1,307.8	96.9	1,325.4	7.05
	Level 1-2	m·	111.3	0.59	110.6	0.59	110.7	0.59	110.9	0.59	111.2	0.59	111.5	0.59
		4 i	108.7	0.58	116.2	0.62	116.9	0.62	117.7	0.63	119.9	0.64	121.3	0.65
		'n	57.7	0.31	67.7	0.36	68.3	0.36	8.89	0.37	70.4	0.37	71.4	0.38
		9	16.4	0.09	19.6	0.10	19.8	0.11	20.0	0.11	20.6	0.11	21.0	0.11
	Level 3-9	ω·	559.7	2.97	557.3	2.96	559.6	2.98	561.8	2.99	568.4	3.02	572.7	3.05
		4 1	908.1	4.82	897.8	4.77	905.9	4.82	913.9	4.86	937.2	4.98	952.5	5.07
		'n	313.6	1.66	310.0	1.65	312.9	1.66	315.8	1.68	324.3	1.72	329.8	1.75
		٥	216.2	1.15	214.4	1.14	216.5	1.15	218.6	1.16	224.8	1.20	228.8	1.22
	Not Acc	999	1,264.4	6.71	1,262.3	6.70	1,271.5	6.76	1,280.8	6.81	1,307.8	96.9	1,325.4	7.05

Table C-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expans	ion (I-III	1,8)			
			Baseline	%0	0	1:1	%	2.2	2.2%	5.4%	9,	7.5%	0,
Subgroup	Level	TOS	N	N +/-	~/+ <i>%</i>	N + /-	-/+ %	N +/-	-/+ %	+	10	N +/-	-/+ %
ALL	ALL	3	5,655.8	-58.0	-1.03	-29.6	-0.52	-1.3	ļ	81.4	1.44	135.6	2.40
		4	5,024.3	4.6	-0.09	43.4	98.0	91.5		231.4	4.61	323.2	6.43
		'	2,215.0	71.0	3.21	93.8	4.24	116.6		182.9	8.26	226.5	10.22
		9	863.8	9.3	1.08	18.1	2.10	26.9		52.6	6.09	69.4	8.03
		999	5,044.2	-17.6	-0.35	22.8	0.45	63.3		180.9	3.59	258.2	5.12
	Level 1-2	m ·	1,895.2	-24.5	-1.29	-16.9	-0.89	-9.3		12.7	0.67	27.2	1.44
		4 (1,478.3	60.1	4.06	74.6	5.05	89.1		131.3	8.88	159.0	10.76
		S.	840.2	92.7	11.04	102.1	12.15	111.4		138.6	16.49	156.4	18.61
	,	9	128.4	17.5	13.61	19.1	14.84	20.6		25.2	19.66	28.3	22.01
	Level 3-9	03	3,760.6	-33.6	-0.89	-12.7	-0.34	8.1		9.89	1.82	108.4	2.88
		4	3,546.0	-64.7	-1.82	-31.1	-0.88	2.4		100.1	2.82	164.2	4.63
		٠ ک	1,374.8	-21.7	-1.58	-8.2	-0.60	5.2		4.4	3.23	70.1	5.10
		9	735.4	-8.2	-1.11	6.0-	-0.13	6.3		27.3	3.72	41.1	5.59
	Not Acc	666	5,044.2	-17.6	-0.35	22.8	0.45	63.3		180.9	3.59	258.2	5.12
I-IIIA	ALL	e	2,639.7	-58.0	-2.20	-29.6	-1.12	-1.2		81.4	3.08	135.6	5.14
		4	4,375.6	4.6	-0.11	43.5	0.99	91.5		231.4	5.29	323.2	7.39
		٠ <i>۲</i>	2,001.9	71.0	3.54	93.8	4.68	116.6		182.9	9.14	226.4	11.31
		9 0	791.7	6.6	1.18	18.1	2.29	26.9		52.6	6.64	69.4	8.76
		999	3,695.1	-17.6	-0.48	22.8	0.62	63.3		180.9	4.90	258.2	6.99
	Level 1-2	m ·	714.1	-24.5	-3.43	-16.9	-2.36	-9.3		12.8	1.79	27.3	3.82
		4 '	1,259.3	60.1	4.77	74.6	5.92	89.1		131.3	10.43	159.0	12.63
		so v	756.0	92.7	12.26	102.0	13.49	111.3		138.5	18.32	156.3	20.68
	,	9	1.26.4	17.5	13.82	19.1	15.08	20.6	1	25.2	19.97	28.3	22.36
	Level 3-9	m ·	1,925.6	-33.5	-1.74	-12.7	-0.66	8.1		9.89	3.56	108.4	5.63
		4 v	3,116.3	-64.7	-2.08	-31.1	-1.00	2.4		100.1	3.21	164.2	5.27
		n 4	1,246.0	-21./	-1./4	7.8-	-0.66	5.2		44.4 27.3	3.56	70.1	5.63
	Not Acc	666	3 695 1	-176	-0.48	22.8	0.62	63.3		180.0	4 90	7507	6.00
IIIB+IV	ALL	3	3,016,1	0.0	0.00	0.0	00.0	0.0		00	000	7.9.77	0000
		4	648.7	0.0	0.00	0.0	0.00	0.0		0:0	0.00	0.0	00.0
		5	213.0	0.0	. 0.02	0.0	0.02	0.0		0.0	0.02	0.0	0.02
		9	72.1	0.0	00.0	0.0	0.00	0.0		0.0	0.00	0.0	0.00
		666	1,349.1	0.0	0.00	0.0	0.00	0.0		0.0	0.00	0.0	0.00
	Level 1-2	3	1,181.1	0.0	00.0	0.0	00.0	0.0		0.0	0.00	0.0	0.00
		4	218.9	0.0	-0.01	0.0	-0.01	0.0		0.0	-0.01	0.0	-0.01
		so.	84.2	0.0	90.0	0.0	90.0	0.0		0.0	90.0	0.0	90.0
		9	2.0	0.0	0.01	0.0	0.01	0.0		0.0	0.01	0.0	0.01
	Level 3-9	ω,	1,835.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		4 (429.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		n vo	128.8	0.0	00.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
	Not Acc	666	1.349.1	0.0	000	0.0	000	0.0	00.0	0.0	00.0	0.0	0.00
					20:0		00:0	0.0	0.00	0.0	0.00	0.0	0.00

Table C-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's	A's)			
			Baseline	%0	,	1.19	%	2.2	%	5.4%	%	7.5%	%
Subgroup	Level	TOS	N	N +/-	-/+%	N + /-	%	N +/-	-/+ %		-/+ %	N +/-	-/+%
HGC	ALL	3	3,441.7	-43.5	-1.26	-29.0		-14.5	-0.42	27.8		55.5	1.61
		4 '	3,680.3	-26.7	-0.73	7.5		41.8	1.14	141.6		207.1	5.63
		s, c	1,604.8	74.0	4.61	90.5		107.0	6.67	155.1		186.7	11.63
		٥ ٥	5/5.7	10.3	1.78	16.1		22.0	3.83	39.2		50.4	8.76
		999	2,933.6	-14.0	-0.48	8.2		30.4	1.04	95.0		137.4	4.69
	Level 1-2	m ·	1,072.7	-16.7	-1.56	-13.7		-10.7	-1.00	-2.0		3.7	0.35
		4,	1,026.1	35.8	3.49	45.5		55.3	5.38	83.5		102.1	9.95
		so v	573.1	92.5	16.14	99.1		105.7	18.44	124.8		137.3	23.96
		9	99.2	17.1	17.27	18.4		19.6	19.81	23.3		25.7	25.92
	Level 3-9		2,369.0	-26.8	-1.13	-15.3		-3.7	-0.16	29.8		51.8	2.19
		4 ,	2,654.1	-62.5	-2.36	-38.0		-13.4	-0.51	58.1		105.0	3.96
		n v	1,031.7	-18.6	-1.80	9. c		4. 6	0.13	30.3		49.4	4.78
	Not Acc	666	2 933 6	-140	-0.48	2.7-	ŀ	20.4	1.04	15.9		132.	5.18
SENIOR	AII	,,,	987 5	13.3	1.36	2.0		50.4	1.04	93.0		137.4	4.69
	770) 4	814.6	22.5	-1.50 27.6	-5.9		5.1	0.16	23.1		37.3	3.80
		r vo	416.4	4.4.5	-1 07	21.2 -0.1		40.0	1.91	02.0		82.4	10.12
		9	180.7	-1:1	-0.60	8.0		2.7	1.51	. ×		11.9	6.13
		666	1,521.8	-3.5	-0.23	10.2		24.0	1.58	64.0		90.2	5.93
	Level 1-2	3	365.7	-7.2	-1.97	-4.6		-1.9	-0.52	5.8		10.8	2.95
		4	288.4	23.9	8.29	27.2		30.5	10.58	40.1		46.4	16.10
		v, v	200.3	-1.5	-0.73	0.7		2.8	1.41	0.6		13.1	6.55
		9	24.2	0.1	0.39	0.4		9.0	2.60	1.4		1.9	7.92
	Level 3-9	m ·	616.8	-6.1	-0.99	-1.3		3.4	0.56	17.4		26.5	4.30
		4 4	526.2	-1.5	-0.29	4.0		9.5	1.80	25.5		36.0	6.84
		n v	1.017	-3.0	-1.39	-0.7		1.5	0.71	8.1		12.4	5.75
	Not Acc	060	1 521 8	3.5	0.73	10.5		7.7	+C.1	6.0		10.0	6.39
UN	AI I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,221.0	1.5	0.10	10.2		24.0	1.38	04.0		90.7	5.93
2	770	η 4	5.005	7.1.	-0.10	2. C 2. L		11.7	0.95	30.4		42.8	3.47
		· v	193.7	1.5	0.77	. £		7.7	1.65	10.7		33.7 14.3	6.36
		9	107.4	0.1	0.12	1.1		2.2	2.01	1.5		7.1	6.57
		666	588.9	-0.1	-0.02	4.3		8.8	1.50	21.9		30.5	5.18
	Level 1-2	w.	456.8	9.0-	-0.13	1.4		3.3	0.72	9.6		12.7	2.79
		4	163.8	0.4	0.22	1.9		3.3	2.04	7.7		10.5	6.40
		ر د	66.7	1.6	2.47	2.3		2.9	4.36	4.7		5.9	8.91
		٥	0.0	0.2	4.89	0.3		0.4	7.14	0.5		9.0	12.56
	Level 3-9	m ·	774.8	-0.6	-0.08	3.9		8.4	1.08	21.4		30.0	3.88
		4 4	365.7	-0.6	-0.17	2.9		6.4	1.74	16.5		23.2	6.34
		n v	127.0	-0.2 -0.1	-0.12	1.1	0.86	2.3	1.84	6.0	4.68	8.3	6.55
	Not Acc	666	588.9	-0.1	-0.02	43		0.1	1.70	21.0		0.4	6.28
							ı		OC: T	21.7	İ	30.3	5.18

Table C-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	(\$,1			
			Baseline	%0	.0	1.1%	%	2.2%		5.4%		7.5%	,0
Subgroup	Level	TOS	N	N +/-	-/+ %	N +/-	* /+ %	N +/-	-/+ %	N +/-	7/+ 9	% -/+ N	-/+%
COLL+	ALL	3	501.2	-18.5	-3.69	-15.2	-3.04	-12.0	σ.	-2.5	-0.50	3.7	0.73
		4	871.8	-7.1	-0.81	1.9	0.21	10.8	1.24	36.8	4.22	53.9	
		S	432.0	28.7	6.64	33.6	7.77	38.4	8.90	52.6	12.18	61.9	
		9	183.3	5.7	3.11	7.7	4.20	7.6	5.28	15.5	8.44	19.3	
		666	920.6	-8.8	-0.93	-0.4	-0.04	8.0	0.84	32.5	3.42	48.6	
	Level 1-2	3	126.7	-5.6	-4.43	-5.0	-3.95	4.4	-3.47	-2.6	-2.08	-1.5	
		4	213.3	27.9	13.07	30.4	14.24	32.8	15.40	40.1	18.79	44.8	
		ς,	172.0	36.9	21.43	39.1	22.72	41.3	24.01	47.8	27.77	52.0	
		9	48.3	0.6	18.67	9.6	19.95	10.3	21.24	12.1	24.96	13.2	
	Level 3-9	3	374.5	-12.9	-3.43	-10.2	-2.73	-7.6	-2.02	0.1	0.03	5.2	1
		4	658.6	-35.0	-5.31	-28.5	-4.33	-22.0	-3.35	-3.3	-0.50	9.1	
		5	260.1	-8.2	-3.14	-5.5	-2.12	-2.9	-1.10	4.9	1.87	6.6	
		9	135.0	-3.3	-2.46	-2.0	-1.45	9.0-	-0.43	3.4	2.53	0.9	
	Not Acc	666	9:056	8.8-	-0.93	-0.4	-0.04	8.0	0.84	32.5	3.42	48.6	
HG	ALL	3	2,940.5	-25.0	-0.85	-13.8	-0.47	-2.5	-0.08	30.3	1.03	51.9	
		4	2,808.4	-19.7	-0.70	5.7	0.20	31.0	1.11	104.8	3.73	153.2	
		5	1,172.8	45.3	3.86	56.9	4.86	9.89	5.85	102.5	8.74	124.7	
		9	392.3	4.6	1.16	8.5	2.16	12.4	3.15	23.7	6.04	31.1	
		666	1,983.0	-5.1	-0.26	9.8	0.44	22.4	1.13	62.5	3.15	88.8	
	Level 1-2	3	946.0	-11.1	-1.17	-8.7	-0.92	-6.3	-0.67	9.0	0.07	5.2	
		4	812.9	7.9	0.97	15.2	1.87	22.4	2.76	43.5	5.35	57.3	
		5	401.2	55.7	13.88	0.09	14.96	64.4	16.05	77.0	19.20	85.3	
		9	50.9	8.1	15.94	8.7	17.20	9.4	18.45	11.2	22.11	12.5	
	Level 3-9	3	1,994.5	-14.0	-0.70	-5.1	-0.25	3.8	0.19	29.7	1.49	46.7	
		4	1,995.6	-27.6	-1.38	-9.5	-0.47	9.8	0.43	61.3	3.07	656	
		2	771.6	-10.4	-1.35	-3.1	-0.40	4.2	0.55	25.5	3.30	39.4	
		9	341.5	-3.5	-1.04	-0.3	-0.09	3.0	0.87	12.4	3.64	18.7	
	Not Acc	666	1,983.0	-5.1	-0.26	8.6	0.44	22.4	1.13	62.5	3.15	88.8	

Table C-2. Forecasted Change in Accessions Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's	4's)			
			Baseline	%0	9,	1.1	%	2.2%	%	5.4%	%	7.5%	%
Subgroup	Level	LOS	N	N + /-	-/+ %	N + /-	-/+ %	N + /-	-/+ %	N +/-	-/+ %	N +/-	7+%
MALE	ALL	3	4,984.8	-55.0	-1.10	-29.0	-0.58	-3.0	-0.06	72.7	1.46	122.4	
		4	4,007.5	-1.9	-0.05	37.4	0.93	76.8	1.92	191.1	4.77	266.2	6.64
		S	1,843.7	64.5	3.50	83.9	4.55	103.2	5.60	159.6	8.66	196.5	10.66
		9	631.1	7.9	1.26	14.4	2.29	20.9	3.31	39.8	6.30	52.2	8.26
		666	3,779.8	-15.5	-0.41	15.6	0.41	46.8	1.24	137.5	3.64	197.1	5.21
	Level 1-2	n	1,783.9	-23.8	-1.33	-16.4	-0.92	6.8-	-0.50	12.8	0.72	27.1	1.52
		4	1,369.6	52.6	3.84	66.3	4.84	80.1	5.85	120.1	8.77	146.4	10.69
		S.	782.5	82.7	10.57	91.5	11.69	100.3	12.82	125.9	16.09	142.7	18.23
		9	112.0	14.3	12.79	15.7	14.02	17.1	15.25	21.1	18.82	23.7	21.17
	Level 3-9	3	3,200.9	-31.2	-0.98	-12.7	-0.40	5.9	0.18	59.9	1.87	95.3	2.98
		4	2,637.9	-54.5	-2.06	-28.9	-1.10	-3.3	-0.13	71.0	2.69	119.8	4.54
		ς,	1,061.2	-18.2	-1.71	-7.6	-0.72	2.9	0.28	33.7	3.18	53.9	5.08
		9	519.2	-6.4	-1.23	-1.3	-0.24	3.8	0.74	18.7	3.60	28.5	5.48
	Not Acc	666	3,779.8	-15.5	-0.41	15.6	0.41	46.8	1.24	137.5	3.64	197.1	5.21
FEMALE	ALL	т.	6.079	-3.0	-0.45	9.0-	-0.09	1.8	0.26	8.7	1.29	13.2	1.97
		4	1,016.8	-2.8	-0.27	0.9	0.59	14.8	1.45	40.2	3.96	57.0	5.60
		S.	371.3	6.5	1.75	6.6	2.67	13.4	3.60	23.4	6.30	29.9	8.06
		9	232.6	1.4	0.59	3.7	1.59	0.9	2.59	12.8	5.49	17.2	7.40
		666	1,264.4	-2.1	-0.17	7.2	0.57	16.4	1.30	43.4	3.43	61.1	4.83
	Level 1-2	m·	111.3	-0.7	-0.61	9.0-	-0.50	-0.4	-0.39	-0.1	-0.06	0.2	0.15
		4 '	108.7	7.5	68.9	8.2	7.58	0.6	8.28	11.2	10.29	12.6	11.62
		y, v	57.7	10.0	17.34	10.6	18.28	11.1	19.22	12.7	21.95	13.7	23.75
		9	16.4	3.1	19.16	3.4	20.42	3.6	21.68	4.2	25.35	4.6	27.76
	Level 3-9	m·	559.7	-2.3	-0.41	-0.1	-0.01	2.2	0.39	8.7	1.56	13.0	2.33
		4	908.1	-10.3	-1.13	-2.2	-0.25	5.8	0.63	29.1	3.20	44.4	4.88
		v, o	313.6	-3.5	-1.12	9.0-	-0.20	2.3	0.72	10.7	3.41	16.2	5.18
	,	9	216.2	-1.8	-0.83	0.3	0.15	2.5	1.13	8.6	3.98	12.7	5.86
	Not Acc	666	1,264.4	-2.1	-0.17	7.2	0.57	16.4	1.30	43.4	3.43	61.1	4.83

Appendix D: Forecasted Changes in Bonus Dollars Awarded by MOS

Appendix D reports the forecasted changes in the average and total bonus dollars awarded (in thousands) from raising the bonus cap under the five market expansion conditions by incentive level and MOS, for all applicants and by subgroup. For comparison purposes, results under the existing cap are reported under "Baseline." Table D-1 reports the *average* bonus dollars awarded ("Avg \$") under each of the five market expansion conditions and changes in this amount, expressed as percent increase or decrease ("% +/-"), relative to the baseline. Table D-2 reports changes in *total* bonus dollars awarded under the five market expansion conditions, both in amount awarded ("\$ +/-") and expressed as percent increase or decrease ("% +/-"), relative to baseline.

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	478)			
			Baseline		%0		.1%	2	2.2%	3	5.4%		7.5%
Subgroup	Level	MOS	Avg 8	Avg \$	-/+%	Avg S	-/+ %	Avg \$	-/+ %	Avg \$	-/+%	Avg \$	-/+ %
ALL	Level 1-2	11X	9,422	10,052	69.9	10,075	6.94	10,098	7.18	10,163	7.87	10,204	8.31
		13F	9,267	12,029	29.80	12,060	30.13	12,090	30.46	12,177	31.39	12,231	31.98
		18X	15,143	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05
		89D	15,008	19,084	27.16	19,090	27.20	19,096	27.24	19,112	27.35	19,122	27.41
		92F	7,266	9,938	36.78	8,646	37.32	10,017	37.86	10,130	39.41	10,201	40.40
		92G	5,468	6,449	17.94	6,484	18.58	6,519	19.22	6,618	21.03	6,681	22.19
		X86	16,235	17,731	9.21	17,736	9.24	17,741	9.27	17,754	9.35	17,762	9.40
	Level 3-9	FAI	8,157	8,499	4.20	8,516	4.41	8,533	4.61	8,579	5.18	8,608	5.54
		FA2	4,746	4,617	-2.74	4,630	-2.46	4,643	-2.18	4,680	-1.40	4,704	-0.90
		AD1	8,239	8,272	0.40	8,281	0.51	8,290	0.62	8,315	0.92	8,330	1.11
		AVI	553	534	-3.52	535	-3.40	535	-3.28	537	-2.93	538	-2.72
		AV2	144	143	-0.58	143	-0.37	144	-0.18	145	0.38	145	0.74
		19D	5,744	5,587	-2.73	5,599	-2.52	5,611	-2.32	5,644	-1.74	5,665	-1.37
		19K	5,451	5,312	-2.54	5,322	-2.37	5,331	-2.20	5,357	-1.71	5,374	-1.40
		ENI	2,440	2,375	-2.67	2,385	-2.23	2,396	-1.80	2,426	-0.57	2,445	0.21
		EN2	3,739	3,625	-3.07	3,640	-2.66	3,655	-2.25	3,698	-1.09	3,726	-0.36
		SII	804	292	-4.55	692	-4.33	771	4.11	9//	-3.49	179	-3.11
		SIZ	3,610	3,547	-1.75	3,552	-1.61	3,556	-1.47	3,570	-1.09	3,579	-0.85
		PA1	2,572	2,525	-1.84	2,525	-1.84	2,525	-1.84	2,525	-1.84	2,525	-1.84
		LE1	929	530	-4.73	531	-4.47	533	4.22	537	-3.50	539	-3.04
		EL1	3,572	3,489	-2.34	3,496	-2.12	3,504	-1.91	3,525	-1.32	3,538	-0.95
		EL2	10,862	10,749	-1.05	10,751	-1.03	10,753	-1.00	10,760	-0.94	10,764	-0.91
		AX1	170	170	-0.19	170	0.12	171	0.42	172	1.27	173	1.81
		AM1	3,188	3,095	-2.94	3,103	-2.69	3,110	-2.45	3,132	-1.78	3,145	-1.35
		52D	4,634	4,584	-1.08	4,604	-0.65	4,624	-0.22	4,680	0.98	4,715	1.75
		63B	6,095	6,039	-0.92	6,061	-0.56	6,083	-0.20	6,145	0.82	6,185	1.47
		VM1	4,350	4,257	-2.15	4,277	-1.68	4,298	-1.21	4,355	0.12	4,392	0.97
		VM2	1,057	1,042	-1.47	1,046	-1.08	1,050	-0.69	1,061	0.40	1,069	1.09
		74D	4,136	4,022	-2.75	4,037	-2.39	4,052	-2.03	4,093	-1.03	4,120	-0.39
		TR1	832	808	-2.96	813	-2.35	818	-1.74	832	-0.02	841	1.09
		88M	4,571	4,790	4.80	4,816	5.36	4,841	5.92	4,914	7.51	4,960	8.52
		89B	3,630	3,535	-2.61	3,550	-2.21	3,564	-1.82	3,604	-0.70	3,630	0.01
		MDI	148	146	-1.51	146	-1.46	146	-1.41	146	-1.28	146	-1.20
		SL1	2,875	2,759	-4.03	2,774	-3.51	2,789	-2.99	2,831	-1.53	2,858	-0.59
		Z	5,407	5,335	-1.33	5,338	-1.27	5,341	-1.22	5,349	-1.07	5,354	-0.97
		HII	5,755	5,730	-0.43	5,732	-0.40	5,734	-0.37	5,739	-0.28	5,742	-0.23

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	ion (I-IIIA's	4,8)			
			Baseline		%0		1.1%	2.			5.4%	7	7.5%
Subgroup	Level	MOS	Avg S	Avg S	-/+ %	Avg S	-/+ %		-/+ %	Avg \$	-/+%	AVR S	-/+%
I-IIIA	Level 1-2	11X	12,313	13,206	7.26	13,206	7.26	13,206	7.26	13,206	7.26	13.206	
		13F	12,531	16,098	28.47	16,098	28.47	16,098	28.47	16,098	28.47	16,098	28.47
		18X	15,143	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05
		268 268	15,527	19,645	26.52	19,644	26.52	19,645	26.52	19,645	26.52	19,644	26.52
		92F	13,034	17,899	37.33	17,899	37.33	17,899	37.33	17,899	37.33	17,899	37.33
		92G	11,275	12,894	14.35	12,894	14.35	12,894	14.35	12,894	14.35	12,894	14.35
		X86	16,661	18,181	9.12	18,181	9.12	18,181	9.12	18,181	9.12	18,181	9.12
	Level 3-9	FAI	10,109	10,585	4.72	10,585	4.72	10,585	4.72	10,585	4.72	10,585	4.72
		FA2	6,432	6,296	-2.11	6,296	-2.11	6,296	-2.11	6,296	-2.11	6,296	-2.11
		ADI	9,145	9,197	0.57	9,197	0.57	9,197	0.57	9,197	0.57	9,197	0.57
		AVI	627	909	-3.41	909	-3.41	909	-3.41	909	-3.41	909	-3.41
		AV2	177	176	-0.42	176	-0.42	176	-0.42	176	-0.42	176	-0.42
		19D	7,490	7,312	-2.37	7,312	-2.37	7,312	-2.37	7,312	-2.37	7,312	-2.37
		19K	6,901	6,736	-2.40	6,736	-2.40	6,736	-2.40	6,736	-2.40	6,736	-2.40
		EN I	4,113	4,033	-1.94	4,033	-1.94	4,033	-1.94	4,033	-1.94	4,033	-1.94
		EN2	6,057	5,940	-1.93	5,940	-1.93	5,940	-1.93	5,940	-1.93	5,940	-1.93
		SII	1,019	926	-4.21	926	-4.21	926	4.21	926	-4.21	926	-4.21
		71S	4,162	4,096	-1.58	4,096	-1.58	4,096	-1.58	4,096	-1.58	4,096	-1.58
		PAI	2,572	2,525	-1.84	2,525	-1.84	2,525	-1.84	2,525	-1.84	2,525	-1.84
		rei Si	/36	706	4.09	206	-4.09	206	4.09	200	-4.09	200	-4.09
		ELI	4,447	4,362	-1.91	4,362	-1.91	4,362	-1.91	4,362	-1.91	4,362	-1.91
		EL2	9/0,11	10,971	-0.97	10,971	-0.97	10,971	-0.97	10,971	-0.97	10,971	-0.97
		AX!	230	236	-0.07	236	-0.07	236	-0.07	236	-0.07	236	-0.07
		AMI	4,123	4,019	-2.51	4,019	-2.51	4,019	-2.51	4,019	-2.51	4,019	-2.51
		32D	650,7	610,7	-0.44	7,619	-0.44	7,619	-0.44	7,619	-0.44	7,619	-0.44
		950	7,130	171,6	-0.32	9,121	-0.32	9,121	-0.32	9,121	-0.32	9,121	-0.32
		VM1	75/,/	7,640	-1.19	7,640	-1.19	7,640	-1.19	7,640	-1.19	7,640	-1.19
		247	1,051	1,634	-1.01	1,634	-1.01	1,634	-1.01	1,634	-1.01	1,634	-1.01
		. t.	0,210	6,093	-1.89	6,093	-1.89	6,093	-1.89	6,093	-1.89	6,093	-1.89
		IKI	1,939	1,894	-2.33	1,894	-2.33	1,894	-2.33	1,894	-2.33	1,894	-2.33
		80IVI	8,971	9,434	5.16	9,434	5.16	9,434	5.16	9,434	5.16	9,434	5.16
		898	6,695	6,571	-1.85	6,571	-1.85	6,571	-1.85	6,571	-1.85	6,571	-1.85
		MDI 1	155	152	-1.46	152	-1.46	152	-1.46	152	-1.46	152	-1.46
		SEI	5,664	5,510	-2.72	5,510	-2.72	5,510	-2.72	5,510	-2.72	5,510	-2.72
		INI I	2,093	5,025	-1.23	5,625	-1.23	5,625	-1.23	5,625	-1.23	5,625	-1.23
			3,938	5,931	-0.44	5,931	-0.44	5,931	-0.44	5,931	-0.44	5,931	-0.44

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	1,s)			1
			Baseline		%0		1.1%	2.	2.2%	S	5.4%		7.5%
Subgroup	Level	MOS	Avg §	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+ %
IIIB+IV	Level 1-2	11X	3,465	3,467	0.04	3,467	0.04	3,467	0.04	3,467	0.04	3,467	0.04
		13F	2,610	2,610	0.00	2,610	0.00	2,610	00'0	2,610	0.00	2,610	0.00
		18X	0	0	0.00	0	0.00	0	00.0	0	0.00	0	0.00
		89D	2,103	2,105	0.11	2,105	0.11	2,105	0.11	2,105	0.11	2,105	0.11
		92F	3,272	3,273	0.02	3,273	0.02	3,273	0.02	3,273	0.02	3,273	0.02
		92G	12	12	99.0	12	99.0	12	99.0	12	99.0	12	99.0
		X86	0	0	0.00	0	0.00	0	0.00	0	0.00	0	00.00
	Level 3-9	FAI	2,787	2,787	0.00	2,787	00.0	2,787	00.0	2,787	0.00	2,787	0.00
		FA2	113	113	0.00	113	0.00	113	00.0	113	0.00	113	0.00
		ADI	166	166	0.00	166	0.00	991	00.0	166	0.00	166	0.00
		AVI	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		AV2	0	0	0.00	0	0.00	0	00.0	0	0.00	0	0.00
		19D	2,623	2,623	0.00	2,623	0.00	2,623	0.00	2,623	0.00	2,623	00.00
		19K	3,098	3,098	0.00	3,098	0.00	3,098	0.00	3,098	0.00	3,098	0.00
		ENI	0	0	0.00	0	00'0	0	0.00	0	0.00	0	0.00
		EN2	-	••••	-1.68	_	-1.68	-	-1.68	-	-1.68		-1.68
		SII	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		SIZ	747	747	0.00	747	0.00	747	00.00	747	0.00	747	0.00
		PA1	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		LEI	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		EL1	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		EL2	135	135	-0.05	135	-0.05	135	-0.05	135	-0.05	135	-0.05
		AX1	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		AMI	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		52D	0	0	0.00	0	0.00	0	00.00	0	0.00	0	0.00
		63B	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		VMI	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		VM2	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		74D	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
		TRI	0	0	-2.30	0	-2.30	0	-2.30	0	-2.30	0	-2.30
		88M	0	0	0.00	0	0.00	0	00.0	0	0.00	0	0.00
		89B	1,237	1,237	0.00	1,237	0.00	1,237	0.00	1,237	0.00	1,237	0.00
		MDI	0	0	0.00	0	00.00	0	0.00	0	0.00	0	0.00
		SL1	40	40	0.00	40	0.00	40	00'0	40	0.00	40	0.00
		Z	179	179	0.00	179	0.00	179	0.00	179	0.00	179	0.00
		HII	4,652	4,652	0.00	4,652	00.0	4,652	0.00	4,652	0.00	4,652	0.00

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	sion (I-IIIA's)	4's)			
			Baseline		%0		1.1%	2	2.2%	5	5.4%	7	7.5%
Subgroup	Level	MOS	Avg S	Avg S	-/+ %	Avg \$	-/+ %	Avg S	-/+%	Avg 8		AVR S	-/+ %
HGC	Level 1-2	11X	11,068	11,951	7.98	11,980	8.24	12,007	8.49	12,086	9.20	12,136	9.65
		13F	12,498	16,470	31.78	16,502	32.03	16,534	32.29	16,623	33.01	16,680	33.46
		18X	15,556	16,099	3.49	16,099	3.49	16,099	3.49	16,099	3.49	16,099	3.49
		89D	16,831	21,144	25.63	21,152	25.67	21,159	25.71	21,178	25.83	21,191	25.90
		92F	7,962	10,996	38.10	11,042	38.67	11,086	39.23	11,214	40.84	11,296	41.87
		92G	5,503	6,717	22.07	6,757	22.79	6,797	23.51	6,910	25.56	6,982	26.87
		X86	16,815	18,549	10.31	18,554	10.34	18,560	10.37	18,575	10.47	18,585	10.52
	Level 3-9	FAI	10,204	10,695	4.81	10,718	5.03	10,740	5.25	10,804	5.88	10,844	6.27
		FA2	5,783	5,590	-3.33	5,609	-3.00	5,628	-2.68	5,682	-1.75	5,716	-1.17
		AD1	11,147	11,246	0.89	11,260	1.02	11,274	1.14	11,313	1.49	11,338	1.71
		AV1	917	887	-3.23	888	-3.10	890	-2.97	893	-2.62	895	-2.39
		AV2	186	185	-0.50	185	-0.28	185	-0.06	187	0.56	187	0.95
		19D	6,979	6,777	-2.89	6,792	-2.68	6,807	-2.47	6,848	-1.87	6,875	-1.49
		19 K	6,636	6,459	-2.67	6,469	-2.51	6,479	-2.36	6,508	-1.93	6,526	-1.65
		EZ I	3,156	3,073	-2.63	3,087	-2.17	3,101	-1.72	3,142	-0.43	3,168	0.40
		EN2	4,566	4,431	-2.97	4,450	-2.54	4,470	-2.12	4,524	-0.93	4,559	-0.17
		SII	1,071	1,022	4.64	1,024	-4.39	1,027	4.15	1,034	-3.45	1,039	-3.02
		SIZ	4,843	4,768	-1.54	4,776	-1.38	4,783	-1.23	4,804	-0.81	4,817	-0.54
		PAI	2,900	2,852	-1.66	2,852	-1.66	2,852	-1.66	2,852	-1.66	2,852	-1.66
		LE1	899	638	-4.57	639	4.30	641	4.04	646	-3.29	649	-2.82
		EC1	4,671	4,580	-1.93	4,592	-1.68	4,604	-1.43	4,637	-0.73	4,657	-0.28
		EL2	11,388	11,281	-0.94	11,284	-0.92	11,286	-0.90	11,293	-0.84	11,297	-0.80
		¥X:	165	165	-0.26	165	0.07	166	0.41	167	1.35	168	1.95
		AMI	4,891	4,760	-2.68	4,775	-2.37	4,790	-2.07	4,831	-1.23	4,857	-0.70
		52D (35	5,444	5,380	-I.18	5,406	-0.71	5,431	-0.24	5,503	1.08	5,549	1.92
		038	5/5,/	7,310	-0.89 -0.89	7,339	-0.49	7,368	-0.09	7,451	1.02	7,503	1.73
		I W	2,002	5,489	-2.07	5,517	-1.57	5,545	-1.07	5,624	0.35	5,675	1.26
		7M2	1,659	1,615	-2.65	1,625	-2.04	1,635	-1.44	1,664	0.28	1,682	1.38
		74D	4,859	4,723	-2.81	4,741	-2.43	4,759	-2.06	4,810	-1.00	4,843	-0.33
		IRI	1,058	1,023	-3.29	1,030	-2.64	1,037	-1.99	1,057	-0.15	1,069	1.04
		88M G09	4,768	4,981	4.46	5,011	5.09	5,041	5.72	5,127	7.52	5,181	8.67
		898	4,608	4,490	-2.57	4,509	-2.16	4,528	-1.75	4,581	-0.59	4,616	0.16
		MD.	195	193	-1.34	193	-1.29	193	-1.24	193	-1.10	193	-1.01
		SEI Bii	3,637	3,491	4.03	3,511	-3.48	3,530	-2.93	3,587	-1.38	3,623	-0.38
		Z E	6,240	6,162	-1.25	6,165	-1.19	6,169	-1.13	6,179	-0.97	6,186	-0.87
		1111	0,839	0,840	-0.29	6,841	-0.26	6,843	-0.24	6,848	-0.17	6,851	-0.12

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Market	et Expansion	sion (I-IIIA's)	\(\start \)			
			Baseline		%0		.1%	2	2.2%	5	5.4%	7	7.5%
Subgroup	Level	MOS	Avg \$	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+%		-/+ %	Avg \$	-/+ %
SENIOR	Level 1-2	11X	8,534	8,919	4.51	8,934	4.69	8,949	4.86		5.35	9,017	5.66
		13F	9,230	11,623	25.93	11,636	26.07	11,649	26.21	11,685	26.60	11,708	26.84
		18X	12,880	12,880	0.00	12,880	0.00	12,880	0.00	12,880	0.00	12,880	0.00
		89D	13,390	15,200	13.52	15,201	13.52	15,201	13.52	15,202	13.53	15,203	13.54
		92F	8,739	11,273	28.99	11,296	29.26	11,319	29.53	11,385	30.28	11,426	30.75
		92G	7,487	7,851	4.87	7,868	5.10	7,885	5.33	7,933	5.97	7,963	6.37
		X86	14,887	14,886	0.00	14,886	0.00	14,886	0.00	14,886	0.00	14,886	0.00
	Level 3-9	FAI	6,893	7,189	4.29	7,196	4.40	7,204	4.51	7,225	4.82	7,238	5.01
		FA2	3,057	3,024	-1.07	3,030	-0.88	3,036	-0.69	3,052	-0.15	3,062	0.18
		AD1	4,428	4,418	-0.22	4,421	-0.15	4,424	-0.09	4,431	0.07	4,436	0.18
		AVI	21	21	-1.35	21	-1.28	21	-1.22	21	-1.05	21	-0.94
		AV2	49	49	-0.26	49	-0.21	49	-0.15	49	0.01	49	0.11
		19D	3,358	3,336	-0.65	3,343	-0.45	3,350	-0.25	3,369	0.32	3,381	89.0
		19 K	2,372	2,353	-0.80	2,359	-0.57	2,364	-0.34	2,380	0.31	2,389	0.72
		ENI	286	981	-0.59	984	-0.28	286	0.03	995	0.89	1,001	1.44
		EN2	1,755	1,745	-0.54	1,751	-0.25	1,756	0.04	1,770	0.85	1,779	1.37
		SII	798	566	-0.63	267	-0.53	267	-0.44	268	-0.18	268	-0.01
		SIZ	1,076	1,073	-0.27	1,074	-0.18	1,075	-0.09	1,078	0.15	1,080	0.31
		PA1	147	145	-1.83	145	-1.83	145	-1.83	145	-1.83	145	-1.83
		LE1	195	193	-1.16	193	-0.97	194	-0.79	195	-0.27	195	0.05
		EL1	1,050	1,042	-0.77	1,043	-0.62	1,045	-0.47	1,049	-0.04	1,052	0.23
		EL2	5,970	5,957	-0.22	5,957	-0.21	5,957	-0.21	5,958	-0.20	5,958	-0.20
		AX1	194	194	0.02	195	0.16	195	0.31	196	0.72	196	0.97
		AM1	1,283	1,278	-0.39	1,280	-0.25	1,281	-0.11	1,286	0.28	1,290	0.53
		52D	5,282	5,270	-0.23	5,279	-0.04	5,289	0.14	5,316	0.64	5,332	96.0
		63B	5,595	5,576	-0.33	5,589	-0.10	5,602	0.13	5,637	0.77	2,660	1.17
		VM1	3,886	3,872	-0.37	3,880	-0.17	3,888	0.04	3,910	0.61	3,924	0.97
		VM2	868	893	-0.25	895	-0.04	968	0.17	905	0.76	905	1.13
		74D	2,603	2,598	-0.19	2,603	-0.02	2,607	0.14	2,619	09.0	2,627	06.0
		TR1	391	389	-0.51	391	-0.02	393	0.46	399	1.83	402	2.70
		88M	8,008	8,503	2.00	8,516	5.16	8,529	5.33	8,565	5.78	8,588	90.9
		89B	2,368	2,356	-0.49	2,364	-0.18	2,371	0.12	2,391	86.0	2,404	1.52
		MDI	18	18	0.26	18	0.29	18	0.31	18	0.39	18	0.43
		SL1	1,033	1,022	-1.03	1,026	-0.64	1,030	-0.25	1,041	0.85	1,049	1.54
		ZE	2,219	2,214	-0.22	2,215	-0.20	2,215	-0.17	2,217	-0.10	2,218	-0.06
		1111	7,401	2,400	-0.12	4,437	-0.00	7,401	0.00	2,403	0.10	7,40/	0.20

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

						Mark	et Expan	Market Expansion (I-IIIA's	A's)			
		Baseline		%0		1.1%	2	2.2%		5.4%		7.5%
Subgroup Level	MOS	Avg S	Avg S	-/+ %	Avg §	-/+ %	Avg S	-/+ %		7+%	Avg 8	-/+ %
Level 1-2	11X	4,929	4,980	1.04	4,998	1.40	5,016	1.76	5,066	2.77	5,098	3.42
	13F	4,533	4,780	5.45	4,802	5.93	4,823	6.41	4,885	7.76	4,924	8.62
	18X	19,462	20,647	60.9	20,647	60.9	20,647	60.9	20,647	6.09	20,647	60.9
	Q68	4,316	4,811	11.47	4,812	11.49	4,813	11.52	4,816	11.58	4,817	11.62
	92F	3,163	3,469	99.6	3,483	10.10	3,497	10.54	3,536	11.78	3,562	12.58
	92G	1,003	1,144	14.06	1,154	14.97	1,163	15.87	1,189	18.47	1,205	20.15
	X86	6,835	7,029	2.85	7,031	2.88	7,034	2.91	7,040	3.01	7,044	3.07
Level 3-9	FAI	3,825	3,853	0.74	3,862	96.0	3,870	1.18	3,893	1.79	3,908	2.18
	FA2	3,352	3,347	-0.15	3,355	0.07	3,362	0.30	3,383	0.92	3,396	1.31
	ADI	4,874	4,867	-0.14	4,872	-0.03	4,878	0.08	4,893	0.40	4,903	09.0
	AVI	27	27	-0.52	27	-0.32	27	-0.12	27	0.44	28	0.79
	AV2	16	16	-2.05	91	-1.71	16	-1.38	16	-0.44	16	0.16
	19D	3,246	3,237	-0.27	3,247	0.02	3,256	0.32	3,283	1.15	3,300	1.67
	19K	3,594	3,588	-0.19	3,600	0.15	3,612	0.48	3,646	1.43	3,668	2.04
	ENI	501	497	-0.73	499	-0.28	502	0.17	208	1.45	512	2.26
	EN2	108	694	-1.88	869	-1.39	701	-0.91	711	0.45	717	1.32
	SII	127	127	-0.13	128	0.19	128	0.50	129	1.39	130	1.95
	SIZ	1,100	1,097	-0.33	1,098	-0.19	1,100	-0.05	1,104	0.34	1,107	0.58
	PAI	538	533	-1.00	533	-1.00	533	-1.00	533	-1.00	533	-1.00
	LEI :	4	4	-1.42	14	-1.12	14	-0.83	14	-0.02	14	0.49
	EL1	423	417	-1.56	417	-1.46	417	-1.37	418	-1.12	419	-0.96
	EL2	4,259	4,243	-0.39	4,245	-0.33	4,248	-0.27	4,254	-0.12	4,258	-0.03
	AXI	146	146	-0.07	147	0.39	147	0.83	149	2.11	150	2.92
	AMI	889	681	-1.01	683	-0.79	684	-0.58	689	0.03	691	0.41
	320	156	942	-0.96	947	-0.36	953	0.24	696	1.94	086	3.04
	928	556	946	-0.96	950	-0.49	954	-0.02	296	1.30	975	2.15
	iw.	969	649	-1.19	652	-0.66	655	-0.13	999	1.37	672	2.33
	7W A	55	55	-0.72	55	0.07	26	98.0	57	3.14	58	4.61
	74D	924	918	-0.66	923	-0.15	928	0.35	941	1.77	949	2.68
	TRI	336	335	-0.41	336	0.17	338	0.75	344	2.40	347	3.45
	88M	733	749	2.30	754	2.89	758	3.48	770	5.15	778	6.22
	898	1,042	1,037	-0.41	1,040	-0.21	1,042	0.00	1,048	09.0	1,052	0.98
	MDI	0	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
	SLI SII	594	586	-1.42	589	-0.87	592	-0.32	601	1.23	209	2.23
	Z E	2,933	2,913	-0.67	2,916	-0.57	2,919	-0.47	2,928	-0.18	2,933	-0.01
	HII	3,38/	3,386	-0.05	3,390	0.09	3,395	0.23	3,408	0.61	3,416	0.86
										l		

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							MARK	et Expan	Market Expansion (I-IIIA's)	A'S)			
			Baseline		%0	1	1.1%	2	2.2%	5	5.4%		7.5%
Subgroup	Level	MOS	Avg §	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+ %	Avg \$	-/+%	Avg \$	-/+ %
+TTOO	Level 1-2	11X	13,549	16,048	18.45	16,069	18.60	16,088	18.74	16,144	19.15	16,179	19.41
		13F	14,412	21,359	48.20	21,374	48.31	21,390	48.41	21,432	48.70	21,458	48.89
		18X	16,843	17,840	5.92	17,840	5.92	17,840	5.92	17,840	5.92	17,840	5.92
		89D	17,868	24,567	37.49	24,567	37.49	24,568	37.50	24,570	37.51	24,572	37.52
		92F	10,419	17,528	68.23	17,577	68.70	17,625	69.16	17,762	70.47	17,849	71.31
		92G	8,466	11,385	34.48	11,428	34.99	11,471	35.49	11,591	36.92	11,668	37.82
		X86	16,798	19,393	15.45	19,402	15.50	19,410	15.55	19,434	15.69	19,449	15.78
	Level 3-9	FAI	13,405	15,029	12.11	15,048	12.25	15,066	12.39	15,118	12.78	15,150	13.02
		FA2	9,277	8,729	-5.90	8,744	-5.74	8,760	-5.57	8,802	-5.12	8,829	-4.83
		AD1	13,602	14,197	4.37	14,208	4.46	14,219	4.54	14,250	4.76	14,270	4.91
		AV1	1,978	1,905	-3.69	1,907	-3.61	1,908	-3.53	1,912	-3.32	1,915	-3.18
		AV2	420	421	0.36	422	0.52	423	69.0	425	1.15	426	1.45
		19D	10,541	9,958	-5.53	9,971	-5.40	9,984	-5.28	10,022	4.92	10,045	4.70
		19K	9,155	8,595	-6.11	8,608	-5.97	8,621	-5.83	8,656	-5.44	8,679	-5.20
		ENI	5,469	5,244	4.11	5,257	-3.88	5,270	-3.65	5,306	-2.99	5,328	-2.58
		EN2	8,280	7,970	-3.74	7,988	-3.52	8,006	-3.30	8,057	-2.69	8,089	-2.30
		SII	2,230	2,086	-6.46	2,089	-6.33	2,092	-6.20	2,100	-5.85	2,105	-5.62
		S12	7,772	7,609	-2.10	7,615	-2.03	7,620	-1.96	7,635	-1.77	7,644	-1.65
		PA1	4,911	4,816	-1.93	4,816	-1.93	4,816	-1.93	4,816	-1.93	4,816	-1.93
		LE1	1,418	1,326	-6.52	1,328	-6.38	1,330	-6.24	1,335	-5.85	1,339	-5.61
		EL1	7,433	7,226	-2.79	7,233	-2.68	7,241	-2.58	7,262	-2.29	7,276	-2.11
		EL2	13,555	13,400	-1.14	13,401	-1.13	13,402	-1.13	13,404	-1.11	13,406	-1.10
		AX1	120	120	-0.65	120	-0.50	120	-0.35	120	0.08	121	0.34
		AM1	7,704	7,434	-3.50	7,445	-3.36	7,455	-3.23	7,485	-2.85	7,503	-2.61
		52D	9,022	8,951	-0.79	8,975	-0.52	8,999	-0.25	6,067	0.50	9,110	0.97
		63B	12,346	12,366	0.17	12,387	0.34	12,408	0.51	12,466	86.0	12,503	1.27
		VM1	9,611	9,359	-2.62	9,388	-2.32	9,416	-2.02	9,497	-1.18	9,549	-0.64
		VM2	3,872	3,756	-2.99	3,762	-2.85	3,767	-2.71	3,782	-2.31	3,792	-2.07
		74D	7,851	7,560	-3.71	7,577	-3.49	7,594	-3.28	7,641	-2.68	7,670	-2.31
		TRI	2,645	2,517	-4.86	2,527	4.45	2,538	4.05	2,568	-2.90	2,588	-2.18
		88M	9,713	10,467	7.76	10,498	80.8	10,529	8.40	10,616	9.30	10,671	98.6
		86B	8,156	7,813	4.20	7,837	-3.91	7,861	-3.62	7,928	-2.80	7,970	-2.28
		MDI	557	556	-0.23	556	-0.21	556	-0.19	256	-0.14	557	-0.10
		SL1	7,380	6,989	-5.29	7,014	-4.96	7,038	-4.63	7,106	-3.70	7,150	-3.11
		Z	8,735	8,566	-1.94	8,568	-1.92	8,570	-1.90	8,575	-1.84	8,578	-1.80
		HIII	8,979	8,981	0.03	8,983	0.05	8,985	0.07	8,991	0.13	8,994	0.17

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	sion (I-IIIA's)	A's)			
			Baseline		%0		1.1%	2	2.2%		5.4%	7	7.5%
Subgroup	Level	MOS	Avg S	Avg 8	-/+ %	Avg \$	-/+ %	Avg S	-/+%	Avg S	-/+ %	Avg 8	-/+%
HG	Level 1-2	11X	10,532	11,001	4.46	11,029	4.72	11,056	4.98	11,133	5.71	11,182	6.17
		13F	12,124	15,303	26.23	15,337	26.51	15,370	26.78	15,463	27.55	15,523	28.04
		18X	14,230	14,281	0.36	14,281	0.36	14,281	0.36	14,281	0.36	14,281	0.36
		Q68	16,554	19,937	20.44	19,946	20.49	19,955	20.54	19,979	20.69	19,994	20.78
		92F	7,648	9,947	30.07	886'6	30.61	10,029	31.14	10,146	32.68	10,222	33.66
		92G	4,742	5,402	13.91	5,437	14.65	5,472	15.39	5,573	17.51	5.637	18.87
		X86	16,840	17,323	2.87	17,325	2.88	17,327	2.89	17,331	2.92	17,334	2.94
	Level 3-9	FA1	685,6	9,843	2.64	598'6	2.87	988'6	3.10	9,948	3.74	786'6	4.14
		FA2	5,004	4,941	-1.25	4,960	-0.88	4,978	-0.52	5,030	0.52	5,063	1.18
		AD1	10,390	10,339	-0.49	10,354	-0.35	10,368	-0.21	10,408	0.17	10,433	0.41
		AVI	397	396	-0.35	397	-0.20	397	-0.04	399	0.40	400	0.67
		AV2	135	134	-0.51	135	-0.27	135	-0.04	136	0.61	136	1.02
		19D	6,164	6,122	-0.70	6,135	-0.48	6,148	-0.26	6,186	0.34	6,210	0.73
		19K	6,004	5,976	-0.47	5,984	-0.33	5,993	-0.19	6,017	0.21	6,032	0.47
		ENI	2,590	2,557	-1.25	2,571	-0.73	2,584	-0.22	2,622	1.24	2,646	2.18
		EN2	3,729	3,670	-1.58	3,688	-1.10	3,706	-0.63	3,756	0.71	3,787	1.56
		SII	889	089	-1.16	682	-0.86	684	-0.57	069	0.26	694	0.79
		S12	4,009	3,986	-0.56	3,993	-0.39	4,000	-0.22	4,019	0.26	4,031	0.55
		PAI	1,856	1,852	-0.20	1,852	-0.20	1,852	-0.20	1,852	-0.20	1,852	-0.20
		E	479	470	-1.80	472	-1.49	473	-1.19	477	-0.33	480	0.21
		ELI	4,085	4,040	-1.10	4,052	-0.82	4,063	-0.54	4,096	0.26	4,116	0.76
		ELZ	10,302	10,273	-0.28	10,276	-0.25	10,279	-0.22	10,288	-0.14	10,293	-0.08
		AXI	881	187	-0.21	188	0.22	189	0.65	191	1.86	193	2.63
		AMI	3,835	3,800	-0.90 -0.90	3,814	-0.53	3,828	-0.17	3,868	98.0	3,893	1.51
		775 738	4,503	4,343	26.0-	4,566	-0.40	4,590	0.12	4,657	1.58	4,700	2.52
		QC)	4 913	2,603 4 84 5	-1.79	3,890	-0.32	3,918	41.0	5,995	1.45	6,044	2.29
		VM2	906	901	-0.37	906	-0.60	4,676	1 18	4,973	1.20	5,021	2.18
		74D	3,742	3,707	-0.92	3.724	-0.47	3.740	-0.03	3 787	3.41	3 817	4.85 10.0
		TRI	693	687	-0.95	692	-0.23	697	0.49	711	2.54	720	10.7
		88M	3,921	4,051	3.33	4,078	4.01	4,105	4.69	4,180	6.62	4.229	7.87
		89B	3,955	3,906	-1.24	3,922	-0.83	3,938	-0.43	3,984	0.73	4,013	1.47
		MD1	48	48	-0.93	48	-0.86	48	-0.80	48	-0.62	48	-0.51
		SUI SII	2,783	2,727	-2.02	2,744	-1.42	2,760	-0.82	2,808	06.0	2,839	2.00
		Z E	5,488	5,458	-0.53	5,462	-0.46	5,466	-0.39	5,477	-0.19	5,484	-0.07
		1111	0,000	0,0,0	-0.11	0,0,0	-0.10	0,0//	-0.10	6,078	-0.08	6,079	-0.07

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	sion (I-IIIA's	A's)			
			Baseline		%0		1.1%	2	2.2%	5	5.4%		7.5%
Subgroup	Level	MOS	Avg S	Avg §	-/+ %	Avg \$	-/+ %	Avg \$	-/+ %	AVR S	-/+ %		* /+ %
MALE	Level 1-2	11X	9,422	10,052	69'9	10,075	6.94	10,098	7.18	10,163	7.87	10,204	8.30
		13F	9,268	12,028	29.78	12,059	30.11	12,090	30.44	12,176	31.38	12,231	31.97
		18X	15,143	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05	15,604	3.05
		89D	14,886	18,861	26.70	18,867	26.75	18,874	26.79	18,892	26.91	18,903	26.99
		92F	7,420	10,206	37.54	10,245	38.07	10,284	38.59	10,394	40.08	10,465	41.03
		92G	6,356	7,501	18.02	7,535	18.55	7,569	19.08	7,664	20.57	7,724	21.52
		X86	16,465	18,061	9.70	18,065	9.72	18,068	9.74	18,077	6.79	18,083	9.82
	Level 3-9	FAI	8,157	8,500	4.21	8,516	4.41	8,533	4.61	8,579	5.18	8,608	5.54
		FA2	5,178	5,036	-2.74	5,051	-2.46	5,065	-2.19	5,105	-1.42	5,130	-0.93
		AD1	8,026	8,005	-0.26	8,015	-0.13	- 8,025	-0.01	8,053	0.34	8,071	0.56
		AVI	549	530	-3.49	530	-3.37	531	-3.24	533	-2.90	534	-2.69
		AV2	160	159	-0.65	159	-0.48	160	-0.31	160	0.17	161	0.47
		19D	5,743	5,587	-2.72	5,598	-2.52	5,610	-2.31	5,643	-1.73	5,665	-1.36
		19K	5,450	5,312	-2.54	5,321	-2.37	5,330	-2.19	5,357	-1.71	5,374	-1.40
		EN	2,458	2,390	-2.77	2,400	-2.36	2,410	-1.94	2,439	-0.77	2,457	-0.03
		EN2	3,775	3,659	-3.07	3,674	-2.67	3,689	-2.27	3,732	-1.14	3,759	-0.43
		SII	573	530	-7.53	531	-7.30	532	-7.07	536	-6.44	538	-6.04
		SIZ	3,584	3,515	-1.93	3,520	-1.80	3,524	-1.67	3,538	-1.30	3,546	-1.07
		PAI	3,035	2,991	-1.44	2,991	-1.44	2,991	-1.44	2,991	-1.44	2,991	-1.44
		LEI	504	477	-5.35	478	-5.10	480	-4.86	483	4.17	485	-3.73
		EL1	3,591	3,505	-2.38	3,513	-2.17	3,520	-1.96	3,541	-1.38	3,555	-1.01
		EL2	10,873	10,758	-1.06	10,760	-1.03	10,763	-1.01	10,770	-0.95	10,774	-0.91
		AX1	193	192	-0.33	193	-0.08	193	0.17	194	98.0	195	1.30
		AMI	3,227	3,125	-3.18	3,133	-2.93	3,141	-2.68	3,163	-1.99	3,177	-1.55
		52D	4,784	4,735	-1.01	4,755	-0.60	4,775	-0.19	4,830	96.0	4,865	1.70
		638	6,110	6,052	-0.95	6,073	-0.59	6,095	-0.24	6,156	0.76	6,195	1.40
		IWA Sec	4,420	4,324	-2.17	4,345	-1.70	4,365	-1.23	4,423	80.0	4,460	0.92
		VM2	1,057	1,042	-1.47	1,046	-1.08	1,050	-0.69	1,061	0.40	1,069	1.09
		74D	4,166	4,021	-3.47	4,035	-3.13	4,049	-2.79	4,089	-1.85	4,114	-1.25
		TRI	664	643	-3.15	647	-2.58	650	-2.01	661	-0.40	899	0.63
		88M	4,793	5,023	4.80	5,047	5.29	5,070	5.78	5,137	7.18	5,180	8.06
		89B	3,883	3,758	-3.23	3,771	-2.89	3,784	-2.55	3,822	-1.58	3,846	-0.96
		MDI	133	130	-2.00	130	-1.97	130	-1.94	131	-1.86	131	-1.80
		SL1	3,328	3,181	-4.42	3,195	-3.99	3,209	-3.57	3,248	-2.39	3,274	-1.63
		Z.	5,337	5,263	-1.38	5,266	-1.33	5,269	-1.27	5,278	-1.11	5,283	-1.02
		HII	5,503	5,469	-0.63	5,470	-0.60	5,472	-0.57	5,476	-0.50	5,478	-0.45

Table D-1. Forecasted Changes in Average Bonuses Awarded Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expan	Market Expansion (I-IIIA's)	A's)			
			Baseline		%0		1.1%	2	2.2%		5.4%		7 5%
Subgroup	Level	MOS	Avg §	Avg S	-/+ %	Avg S	-/+ %	Avg S	-/+ %	AVR S	7+%	AVR S	-/+ %
FEMALE	Level 1-2	11X											
		13F 18X											
		Q68	15,882	20,553	29.41	20,555	29.42	20,556	29.43	20,561	29.46	20.563	29.47
		92F	6,838	9,183	34.29	9,224	34.88	9,264	35.47	9,378	37.14	9,452	38.22
		92G	4,214	4,942	17.28	4,975	18.07	5,009	18.87	5,105	21.14	5,166	22.60
		X86	15,728	17,011	8.15	17,019	8.20	17,026	8.25	17,048	8.39	17,061	8.47
	Level 3-9	FAI	8,035	7,814	-2.75	7,814	-2.75	7,814	-2.75	7,814	-2.75	7,814	-2.75
		FA2	2,610	2,568	-1.61	2,576	-1.31	2,584	-1.01	2,606	-0.16	2,620	0.37
		ADI	8,689	8,827	1.59	8,833	1.66	8,839	1.72	8,856	1.91	8,866	2.03
		AVI	571	550	-3.65	551	-3.52	551	-3.39	553	-3.04	555	-2.82
		AV2	78	78	0.17	78	0.50	78	0.82	79	1.73	80	2.30
		19D											
		19K			,								
		EN	2,331	2,284	-2.00	2,297	-1.45	2,310	-0.91	2,346	0.64	2,369	1.64
		EN2	3,263	3,167	-2.93	3,185	-2.39	3,202	-1.85	3,252	-0.34	3,284	0.63
		SII	1,053	1,023	-2.93	1,025	-2.71	1,027	-2.51	1,033	-1.92	1,037	-1.55
		SIZ	3,716	3,678	-1.02	3,684	-0.86	3,690	-0.70	3,707	-0.25	3,717	0.03
		PAI	1,927	1,880	-2.42	1,880	-2.42	1,880	-2.42	1,880	-2.42	1,880	-2.42
		LEI	707	681	-3.55	683	-3.26	989	-2.98	691	-2.17	695	-1,66
		EL1	3,330	3,274	-1.68	3,282	-1.43	3,290	-1.19	3,312	-0.51	3,327	-0.08
		EL2	10,740	10,640	-0.93	10,642	-0.91	10,643	-0.90	10,647	-0.87	10,649	-0.85
		YXI	131	131	0.17	131	0.58	- 132	0.98	134	2.12	134	2.84
		AMI	3,006	2,955	-1.69	2,961	-1.48	2,968	-1.28	2,985	-0.69	2,996	-0.32
		52D	3,597	3,541	-1.57	3,561	-1.02	3,580	-0.48	3,636	1.07	3,671	2.05
		638	5,941	5,906	-0.59	5,932	-0.16	5,957	0.27	6,030	1.50	6,076	2.28
		IWA:	3,381	3,321	-1.78	3,339	-1.23	3,357	-0.69	3,409	0.84	3,442	1.82
		VM2	908	008	-0.74	800	-0.74	800	-0.74	800	-0.74	800	-0.74
		74D	4,109	4,023	-2.10	4,038	-1.72	4,054	-1.34	4,098	-0.28	4,125	0.40
		TRI	1,022	993	-2.80	1,000	-2.15	1,007	-1.50	1,026	0.36	1,038	1.55
		88M	4,127	4,325	4.79	4,354	5.49	4,382	6.18	4,464	8.17	4,517	9.45
		89B	3,369	3,309	-1.78	3,324	-1.34	3,339	-0.89	3,382	0.37	3,409	1.19
		MD!	174	172	-0.95	172	-0.87	173	-0.80	173	-0.59	173	-0.46
		SLI	2,340	2,266	-3.16	2,281	-2.52	2,296	-1.89	2,338	-0.07	2,366	1.09
		Z	5,786	5,724	-1.08	5,726	-1.04	5,729	-0.99	5,736	-0.87	5,740	-0.80
		IIII	0,550	0,392	0.03	6,295	0.07	6,598	0.11	909'9	0.24	6,611	0.32

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expans	Market Expansion (I-IIIA's)	1,8)			
			Baseline		%0		1%	2.	2.2%	5	5.4%	1	7.5%
Subgroup	Level	MOS	Total \$	-/+ <i>§</i>	-/+ %	<i>\$</i> +/-	-/+ %	-/+ <i>\$</i>	-/+ %	**************************************	-/+ %	-/+8	-/+ %
ALL	Level 1-2	11X	25,627.9	1,961.1	7.65	2,230.7	8.70	2,500.3	9.76	3,284.5	12.82	3,799.2	14.82
		13F	3,202.3	1,329.5	41.52	1,376.1	42.97	1,422.7	44.43	1,558.2	48.66	1,647.1	51.43
		18X 009	3,425.0	113.0	3.30	151.9	4.43	190.8	75.5	304.0	88.8	3/8.3	11.04
		89D 07E	1,815.9	8.//6	33.83	1,008.5	55.54 40.62	1,039.1	27.72	1,128.2	62.13	1,186.6	65.35
		92F 92G	1,002.3	2,270.1	71.53	2,532.0	49.62 22.87	2,595.0	24.10	7.076,7	33.00 28.00	2,098.0	30.62
		X86	1,607.8	206.5	12.84	226.4	14.08	246.4	15.33	304.5	18.94	342.6	21.31
	Level 3-9	FA1	6,204.0	239.9	3.87	304.6	4.91	369.2	5.95	557.3	86.8	8.089	10.97
		FA2	894.4	-40.3	-4.51	-31.0	-3.46	-21.6	-2.42	5.5	0.62	23.3	2.61
		AD1	1,247.3	-12.1	-0.97	1.3	0.11	14.8	1.18	53.7	4.31	79.3	6.36
		AVI	146.8	-6.4	4.39	4.9	-3.34	-3.4	-2.29	1.1	0.77	4.1	2.78
		AV2	24.6	-0.3	-1.27	0.0	-0.18	0.2	0.91	1.0	4.07	1.5	6.14
		19D	3,271.2	-167.9	-5.13	-139.6	-4.27	-111.4	-3.41	-29.2	-0.89	24.7	0.75
		19 K	1,333.1	6.99-	-5.02	-56.2	4.21	-45.4	-3.41	-14.2	-1.06	6.4	0.48
		ENI	837.6	-31.1	-3.71	-22.2	-2.65	-13.3	-1.59	12.5	1.49	29.4	3.51
		EN2	1,268.9	-61.7	-4.86	-48.4	-3.81	-35.1	-2.77	3.5	0.28	28.9	2.27
		SII	242.3	-14.1	-5.82	-11.6	-4.78	-9.1	-3.74	-1.8	-0.73	3.0	1.25
		SIZ	2,344.1	-74.1	-3.16	-50.0	-2.13	-25.8	-1.10	44.3	1.89	90.3	3.85
		PAI	9.66	-3.7	-3.75	-2.7	-2.69	-1.6	-1.63	4.1	1.45	3.5	3.47
		LEI	293.6	-19.5	-6.65	-16.5	-5.62	-13.5	4.60	4.7	-1.61	1.0	0.35
		EL1	537.8	-21.7	-4.03	-16.0	-2.97	-10.3	-1.91	6.2	1.16	17.1	3.17
		EL2	211.1	6.6-	-4.68	-7.7	-3.64	-5.5	-2.59	1.0	0.46	5.2	2.46
		AX1	13.2	-0.1	-0.50	0.1	0.59	0.2	1.69	9.0	4.87	6.0	96.9
		AM1	160.2	-7.0	-4.38	-5.3	-3.33	-3.6	-2.28	1.3	0.78	4.5	2.79
		52D	600.3	-12.2	-2.04	-5.8	96:0-	0.7	0.12	19.5	3.25	31.9	5.31
		63B	3,503.9	-73.8	-2.11	-36.1	-1.03	1.6	0.05	111.4	3.18	183.4	5.23
		VMI	1,198.7	-40.4	-3.37	-27.7	-2.31	-14.9	-1.24	22.2	1.85	46.5	3.88
		VM2	29.0	-0.7	-2.28	-0.3	-1.20	0.0	-0.13	6.0	3.00	1.5	5.05
		74D	1,010.3	-44.7	-4.42	-34.1	-3.37	-23.4	-2.32	7.5	0.74	27.7	2.74
		TRI	82.5	-2.8	-3.43	-1.9	-2.36	-1.1	-1.30	1.5	1.79	3.1	3.81
		88M	1,727.2	76.5	4.43	96.3	5.58	116.2	6.73	173.9	10.07	211.8	12.26
		89B	677.2	-26.4	-3.90	-20.7	-3.05	-14.9	-2.20	1.8	0.26	12.7	1.88
		MD1	146.5	-3.8	-2.61	-2.3	-1.54	-0.7	-0.47	3.9	2.65	6.9	4.69
		SL1	1,340.0	-71.9	-5.36	-58.0	4.33	-44.2	-3.30	-3.9	-0.29	22.5	1.68
		Z	3,131.1	-100.1	-3.20	6.99-	-2.14	-33.6	-1.07	63.2	2.02	126.8	4.05
		H	3,552.2	-64.3	-1.81	-30.8	-0.87	2.7	0.08	100.0	2.82	163.9	4.61
:	ALL		77,506.3	6,415.2	8.28	7,264.3	9.37	8,114.0	10.47	10,584.3	13.66	12,205.6	15.75

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	Market Expansion	ion (I-IIIA's	4's)			
			Baseline		%0		1.1%	2.	2.2%	5	5.4%	7	7.5%
Subgroup	Level	MOS	Total \$	\$ +/-	-/+ %	- 1		<i>\$</i> +/-	-/+ %	·/+ &	-/+ %	·/+ §	-/+ %
I-IIIA	Level 1-2	11X	22,547.8	1,959.7	8.69	2,229.3	68.6	2,498.9	11.08	3,283.1	14.56	3,797.8	16.84
		13F	2,905.6	1,329.5	45.76	1,376.1	47.36	1,422.7	48.96	1,558.2	53.63	1,647.1	56.69
		18X	3,425.6	113.0	3.30	151.9	4.43	190.8	5.57	304.0	8.88	378.3	11.04
		89D	1,806.0	977.8	54.14	1,008.4	55.84	1,039.1	57.53	1,128.1	62.47	1,186.6	65.70
		92F	3,436.4	2,269.8	66.05	2,332.6	67.88	2,395.4	69.71	2,578.0	75.02	2,697.8	78.51
		92G	1,014.6	218.7	21.56	232.3	22.89	245.8	24.23	285.3	28.12	311.2	30.67
		X86	1,607.8	206.5	12.84	226.4	14.08	246.4	15.33	304.5	18.94	342.6	21.31
	Level 3-9	FAI	5,638.9	239.9	4.25	304.5	5.40	369.2	6.55	557.3	9.88	8.089	12.07
		FA2	888.7	-40.3	-4.54	-31.0	-3.48	-21.6	-2.43	5.5	0.62	23.3	2.62
		AD1	1,230.6	-12.1	-0.98	1.3	0.11	14.8	1.20	53.7	4.37	79.3	6.45
		AVI	146.8	-6.4	-4.39	4.9	-3.34	-3.4	-2.29	1.1	0.77	4.1	2.78
		AV2	24.6	-0.3	-1.27	0.0	-0.18	0.2	0.91	1.0	4.07	1.5	6.14
		19D	2,735.3	-167.9	-6.14	-139.6	-5.10	-111.4	-4.07	-29.2	-1.07	24.7	0.90
		19K	1,044.1	6.99-	-6.41	-56.2	-5.38	-45.4	4.35	-14.2	-1.36	6.4	0.61
		EN I	837.6	-31.1	-3.71	-22.2	-2.65	-13.3	-1.59	12.5	1.49	29.4	3.51
		EN2	1,268.8	-61.7	-4.86	-48.4	-3.81	-35.1	-2.77	3.5	0.28	28.9	2.27
		SII	242.3	-14.1	-5.82	-11.6	-4.78	-9.1	-3.74	-1.8	-0.73	3.0	1.25
		SIZ	2,265.6	-74.1	-3.27	-50.0	-2.20	-25.8	-1.14	44.3	1.95	90.3	3.99
		PAI	9.66	-3.7	-3.75	-2.7	-2.69	-1.6	-1.63	1.4	1.45	3.5	3.47
		LE1	293.6	-19.5	-6.65	-16.5	-5.62	-13.5	-4.60	4.7	-1.61	1.0	0.35
		EL1	537.8	-21.7	-4.03	-16.0	-2.97	-10.3	-1.91	6.2	1.16	17.1	3.17
		EL2	211.1	6.6-	-4.69	-7.7	-3.64	-5.5	-2.59	1.0	0.46	5.2	2.46
		AX1	13.2	-0.1	-0.50	0.1	0.59	0.2	1.69	9.0	4.87	6.0	96.9
		AMI	160.2	-7.0	4.38	-5.3	-3.33	-3.6	-2.28	1.3	0.78	4.5	2.79
		52D	600.3	-12.2	-2.04	-5.8	-0.96	0.7	0.12	19.5	3.25	31.9	5.31
		63B	3,503.9	-73.8	-2.11	-36.1	-1.03	1.6	0.05	111.4	3.18	183.4	5.23
		VM1	1,198.7	40.4	-3.37	-27.7	-2.31	-14.9	-1.24	22.2	1.85	46.5	3.88
		VM2	29.0	-0.7	-2.28	-0.3	-1.20	0.0	-0.13	6.0	3.00	1.5	5.05
		74D	1,010.3	-44.7	-4.42	-34.1	-3.37	-23.4	-2.32	7.5	0.74	27.7	2.74
		TRI	82.5	-2.8	-3.43	-1.9	-2.36	-1.1	-1.30	1.5	1.79	3.1	3.82
		88M	1,727.2	76.5	4.43	96.3	5.58	116.2	6.73	173.9	10.07	211.8	12.26
		89B	547.6	-26.4	4.82	-20.7	-3.77	-14.9	-2.72	1.8	0.32	12.7	2.32
		MDI	146.5	-3.8	-2.61	-2.3	-1.54	-0.7	-0.47	3.9	2.65	6.9	4.69
		SEI	1,330.7	-71.9	-5.40	-58.0	-4.36	-44.2	-3.32	-3.9	-0.29	22.5	1.69
		Z	3,125.6	-100.1	-3.20	-66.9	-2.14	-33.6	-1.07	63.2	2.02	126.8	4.06
			3,100.9	-64.3	-2.07	-30.8	-0.99	2.7	0.09	100.0	3.22	163.9	5.28

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

		-					Mark	et Expans	Market Expansion (I-IIIA's)	1.8)			
			Baseline _		%0	1	1.1%	2.	2.2%		4%		.5%
Subgroup	Level	MOS	Total \$	\$ +/-	-/+ %	-/+ 8	-/+ %	-/+ <i>\$</i>	-/+ %	·/+ \$	-/+%	·/+ 8	-/+%
IIIB+IV	Level 1-2	11X	3,080.1	1.4	0.04	1.4	0.04	1.4	0.04	1.4	0.04	1.4	
		13F	296.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		18X	0.0	0.0	00.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		89D	8.6	0.0	0.12	0.0	0.12	0.0	0.12	0.0	0.12	0.0	0.12
		92F	1,245.9	0.2	0.02	0.2	0.02	0.2	0.02	0.2	0.02	0.2	0.02
		92G	1:1	0.0	99.0	0.0	99'0	0.0	99.0	0.0	99.0	0.0	99.0
		X86	0.0	0.0	0.00	0.0	00.00	0.0	0.00	0.0	00.0	0.0	0.00
	Level 3-9	FAI	565.0	0.0	0.00	0.0	00.00	0.0	00.0	0.0	00'0	0.0	00.0
		FA2	5.7	0.0	0.00	0.0	0.00	0.0	00.0	0.0	00.0	0.0	0.00
		ADI	16.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		AVI	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		AV2	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.00
		190	535.8	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.00
		19K	289.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		EN1	0.0	0.0	0.00	0.0	00.0	0.0	0.00	0.0	0.00	0.0	0.00
		EN2	0.1	0.0	-1.68	0.0	-1.68	0.0	-1.68	0.0	-1.68	0.0	-1.68
		SII	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0
		S12	78.5	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.00
		PAI	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0
		LEI	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		EC1	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00
		EL2	0.1	0.0	-0.05	0.0	-0.05	0.0	-0.05	0.0	-0.05	0.0	-0.05
		AX1	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		AM1	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00
		52D	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		956	0:0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		IWA:	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		VM2	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		74D	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		TRI	0.0	0.0	-2.30	0.0	-2.30	0.0	-2.30	0.0	-2.30	0.0	-2.30
		88M 88M	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		898	129.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		MDI ĝi:	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		SL1	9.3	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		Z	5.4	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		1111	5.55	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Mark	et Expan	Market Expansion (I-IIIA's	A's)			
			Baseline		%0	-	1.1%	2	2.2%	S	5.4%	7	7.5%
Subgroup	Level	MOS	Total 8	S +/-	-/+%	\$ +/-	-/+ %	\$ +/-	·/+ %	s +/-		-/+8	-/+ %
HCC	Level 1-2	11X	17,507.7	1,610.2	9.20	1,789.9	10.22	1,969.5	11.25	2,492.0	14.23	2,835.0	16.19
		13F	2,109.1	1,092.7	51.81	1,125.2	53.35	1,157.6	54.89	1,252.0	59.36	1,314.0	62.30
		18X	2,935.0	112.5	3.83	146.0	4.98	179.5	6.12	277.1	9.44	341.1	11.62
		Q68	1,675.8	953.1	26.88	981.9	58.59	1,010.7	60.31	1,094.5	65.32	1,149.5	68.60
		92F	4,073.7	2,116.5	51.96	2,171.6	53.31	2,226.7	54.66	2,387.0	58.60	2,492.2	61.18
		92G	754.4	202.1	26.78	212.6	28.18	223.1	29.57	253.7	33.62	273.7	36.28
		X86	1,405.9	206.1	14.66	223.9	15.92	241.6	17.18	293.2	20.85	327.0	23.26
	Level 3-9	FAI	4,771.4	206.0	4.32	255.2	5.35	304.5	6.38	447.8	9.39	541.9	11.36
		FA2	638.8	-38.0	-5.96	-31.5	-4.93	-24.9	-3.91	-5.9	-0.92	9.9	1.03
		AD1	929.4	-9.2	-0.99	0.7	0.08	10.7	1.15	39.7	4.27	58.7	6.31
		AVI	144.3	-6.4	-4.45	4.9	-3.39	-3.4	-2.34	1.0	0.71	3.9	2.72
		AV2	22.8	-0.3	-1.28	0.0	-0.20	0.2	0.89	6.0	4.05	1.4	612
		19D	2,639.7	-158.4	-6.00	-136.5	-5.17	-114.5	-4.34	-50.6	-1.92	-8.7	-0.33
		19K	1,091.3	-63.9	-5.85	-55.4	-5.08	-47.0	-4.30	-22.3	-2.05	-6.2	-0.57
		EN1	765.7	-30.2	-3.95	-22.2	-2.89	-14.1	-1.84	9.5	1.24	24.9	3.25
		EN2	1,160.3	-59.9	-5.16	-47.8	-4.12	-35.7	-3.08	-0.5	-0.04	22.6	1.95
		SII	221.4	-13.9	-6.26	-11.6	-5.23	-9.3	-4.20	-2.7	-1.20	1.7	0.77
		SIZ	2,111.8	-72.3	-3.42	-50.7	-2.40	-29.0	-1.37	33.9	1.61	75.3	3.56
		PAl	98.4	-3.7	-3.77	-2.7	-2.72	-1.6	-1.66	1.4	1.42	3.4	3.44
		E	281.1	-19.3	-6.86	-16.4	-5.84	-13.5	-4.81	-5.1	-1.83	0.4	0.13
		ELI	513.5	-21.3	4.14	-15.8	-3.08	-10.4	-2.03	5.3	1.04	15.7	3.05
		EL2	201.4	8.6-	-4.85	7.7-	-3.81	-5.6	-2.76	9.0	0.28	4.6	2.28
		AX1	9.4	-0.1	-0.59	0.0	0.50	0.2	1.60	0.5	4.78	9.0	6.87
		AM1	137.1	-6.8	4.94	-5.3	-3.89	-3.9	-2.85	0.3	0.19	3.0	2.19
		52D (35)	429.1	-10.4	-2.43	-5.8	-1.36	-1.2	-0.28	12.2	2.84	21.0	4.89
		038	2,011.9	-62.1	-2.38	-34.1	-1.30	-6.0	-0.23	75.6	2.89	129.1	4.94
		i ivi v	1,035.6	28.5	-3.69	-27.2	-2.64	-16.3	-1.58	15.6	1.51	36.5	3.53
		2M1V	2.41	-0.5	-3.36	-0.3	-2.30	-0.2	-1.23	0.3	1.86	9.0	3.89
		. t	2.070	5.0		2.4.2	-3.81	-24.8	-2.76	5.6	0.29	20.5	2.28
		IKI	1.07	7.7-	-3.88 5.50 5.50	-2.0	-2.82	-1.2	-1.77	6.0	1.31	2.4	3.33
		80B	0.752,1	0.00	3.47	6.76	4.61	72.2	5.74	113.8	9.05	141.1	11.23
		ays IUM	143.3	7.67-	4.30	20.0	-3.45	-15.5	-2.60	-0.7	-0.12	0.6	1.50
		SE1	1.232.0	-2.8	-5.68	57.3	-1.59	7.0-	-0.52	3.7	2.60	9.9	4.64
		Z	2,838.7	8.96-	-3.41	-66.7	2,35	36.6	-5.03	8./.	-0.63	16.4	1.33
		HII	3,035.0	-62.0	-2.04	-33.9	-1.12	5.5.5	-1.27	25.0	1.80	108.4	3.82
										7.5.7	٥٢.7	C. 47.1	4.77

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

Baseline 0% 1.1% 2.2% 5.4% 5.4% 6.4% 5.4% 6.4% <								Market	et Expansion	sion (I-IIIA's				
Level MOS Total S 8 + L % + L <th< th=""><th></th><th></th><th></th><th>Baseline</th><th></th><th>%0</th><th></th><th>.1%</th><th>2.</th><th>.2%</th><th>5</th><th>.4%</th><th></th><th>7.5%</th></th<>				Baseline		%0		.1%	2.	.2%	5	.4%		7.5%
Level 2 11	Subgroup	Level	MOS	Total \$. 1	-/+ %	-/+ \$	-/+ %	\$ +/-	-/+%	8 +/	-/+ %	* /+ \$	
13F 573.5 205.1 357.7 213.6 372.5 222.1 38.73 246.8 89D 70.2 11.4 0.29 3.8 0.81 8.9 24.0 89D 70.3 15.6 22.4 16.6 23.8 17.5 24.0 92F 255.5 12.08 40.89 15.4 42.43 129.9 43.9 24.0 92G 245.4 14.3 5.84 17.2 70.0 41.9 6.4 6.4 6.81 14.3 28.4 ADI 138.4 -0.2 1.5 0.83 3.4 15.0 0.0 14.3 6.41 6.81 14.3 18.1 1.0 1.0 0.0 1.0 0.0 1.1 1.0 0.0 1.1 <t< th=""><th>SENIOR</th><th>Level 1-2</th><th>11X</th><th>5,941.5</th><th>328.7</th><th>5.53</th><th>397.3</th><th>69:9</th><th>465.9</th><th>7.84</th><th>665.</th><th>11.20</th><th>796.3</th><th>13.40</th></t<>	SENIOR	Level 1-2	11X	5,941.5	328.7	5.53	397.3	69:9	465.9	7.84	665.	11.20	796.3	13.40
BX 700 1.14 0.29 3.8 0.81 8.9 1.90 24.0			13F	573.5	205.1	35.77	213.6	37.25	222.1	38.73		43.03	262.9	45.85
89D 703 156 2224 166 23.58 175 24.93 20.3 92F 2955 1208 40.89 155.4 42.43 129.9 43.96 143.2 92G 245.4 14.3 5.84 17.2 700 8.17 20.3 41.3 20.3 41.3 20.3 41.3 20.3 41.3 20.3 41.3 20.3 41.4 36.9 5.27 44.9 6.41 68.1 42.4 1.09 6.41 68.1 41.3 6.41 68.1 42.4 1.09 6.43 6.41 68.1 42.4 1.19 6.41 6.41 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41 68.1 6.41			18X	470.2	-1.4	-0.29	3.8	0.81	8.9	1.90		5.09	33.8	7.19
92F 295.5 120.8 40.89 125.4 424.3 129.9 43.96 143.2 92G 245.4 14.3 5.84 17.2 700 20.0 8.17 28.4 98X 178.4 -0.5 -0.69 1.0 20.0 8.17 28.4 FA1 700.6 2.9 -4.14 36.9 5.27 -44.9 6.41 68.1 ADI 134.8 -1.8 -2.9 -1.1 -1.90 -0.5 -0.83 1.4 AV1 1.3 0.0 -1.97 -0.9 -0.69 -0.8 0.13 0.1 4.8 AV1 1.3 0.0 -1.97 -0.9 -0.8 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 <t< th=""><th></th><th></th><th>89D</th><th>70.3</th><th>15.6</th><th>22.24</th><th>16.6</th><th>23.58</th><th>17.5</th><th>24.93</th><th></th><th>28.84</th><th>22.1</th><th>31.40</th></t<>			89D	70.3	15.6	22.24	16.6	23.58	17.5	24.93		28.84	22.1	31.40
92G 2454 143 584 172 700 200 8.17 284 FAI 700.6 20.5 1.5 1.8 2.0 1.9 2.0 8.17 284 FAI 700.6 29.8 -1.8 -2.9 -1.1 -1.90 -0.5 -0.81 1.4 AVI 13.4 -2.4 -1.77 -0.9 -0.69 0.0 -0.83 0.1 1.4 8.1 2.9 -0.8 0.1 1.1 1.1 -1.90 -0.5 -0.81 1.1 1.1 1.1 -1.90 -0.5 -0.83 1.4 8.1 1.1 1.1 1.1 -1.90 -0.5 -0.83 1.1			92F	295.5	120.8	40.89	125.4	42.43	129.9	43.96		48.44	151.8	51.38
98X 1784 -0.5 -0.26 1.5 0.83 3.4 1.93 9.1 FAI 700.6 2.90 -4.14 36.9 5.27 -44.9 6.41 68.1 ADI 134.8 -1.8 -2.9 -1.17 -0.9 -0.69 0.5 -0.39 4.8 AVI 13.8 -2.4 -1.77 -0.9 -0.69 0.5 0.39 4.8 AVI 13.6 0.0 -0.92 0.0 0.17 0.0 0.12 0.0 AVI 43.6 -0.6 -0.25 -0.6 -1.79 -0.7 -0.7 0.0 BNJ 43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.8 1.7 BNJ 43.6 -0.6 -1.34 0.0 -0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			92G	245.4	14.3	5.84	17.2	7.00	20.0	8.17		11.56	33.8	13.78
FAI 700.6 29.0 4.14 36.9 5.77 44.9 64.1 68.1 ADI 1348 -1.8 -2.97 -1.1 -1.90 -0.5 -0.83 1.4 ADI 1348 -1.8 -1.77 -0.0 -0.87 0.0 -0.83 1.4 AV2 1.6 0.0 -1.95 0.0 -0.87 0.0 0.01 0.0 0.01 0.0			X86	178.4	-0.5	-0.26	1.5	0.83	3.4	1.93		5.12	12.9	7.22
59.8 -1.8 -2.97 -1.1 -1.90 -0.5 -0.83 114 134.8 -2.4 -1.77 -0.9 -0.69 0.5 0.39 4.8 1.5 0.0 -1.95 0.0 -0.87 0.0 0.1 0.0 317.0 -8.1 -2.55 -4.8 -1.50 -1.5 -0.46 8.1 43.6 -0.6 -1.35 -0.1 -0.26 0.7 -0.77 2.0 43.6 -0.6 -1.35 -0.1 -0.26 0.0		Level 3-9	FA1	9.007	29.0	4.14	36.9	5.27	44.9	6.41		9.72	83.3	11.89
134.8 -2.4 -1.77 -0.9 -0.69 0.5 0.39 4.8 1.3 0.0 -1.95 0.0 -0.87 0.0 0.21 0.0 1.6 0.0 -0.92 0.0 -0.87 0.0 0.21 0.0 317.0 -8.1 -2.55 -4.8 -1.50 -0.7 -0.46 8.1 43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.83 1.7 43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.83 1.7 43.6 -0.2 -1.50 -0.1 -0.25 0.1 0.83 1.7 11.4 -1.2 -1.11 0.0 -0.25 0.1 0.83 0.7 11.14 -1.2 -1.11 0.0 -0.25 0.1 0.3 0.4 11.14 -0.2 -1.34 0.0 -0.25 0.0 0.24 0.0 11.9 -0.1 -1.35 0.0			FA2	8.65	-1.8	-2.97	-1.1	-1.90	-0.5	-0.83		2.27	2.6	4.31
1.3 0.0 -1.95 0.0 -0.87 0.0 0.21 0.0 317.0 -81 -2.55 -4.8 -1.50 -1.5 -0.46 8.1 89.7 -2.5 -2.85 -4.8 -1.50 -1.5 -0.46 8.1 89.7 -2.5 -2.82 -1.6 -1.50 -0.7 -0.77 2.0 43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.83 1.7 116.9 -1.2 -1.50 -0.3 -0.41 0.5 0.67 3.1 116.9 -0.2 -1.34 0.0 -0.25 0.1 0.83 0.7 111.4 -1.2 -1.11 0.0 -0.25 0.1 0.83 0.7 11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.24 0.8 11.9 -0.2 -1.93 -0.1 -0.85 0.0 0.23 0.7 11.9 -0.2 -1.34 0.			AD1	134.8	-2.4	-1.77	6.0-	-0.69	0.5	0.39		3.54	7.5	5.60
1.6 0.0 -0.92 0.0 0.17 0.0 1.26 0.1 81.70 -8.1 -2.55 -4.8 -1.50 -1.5 -0.46 8.1 89.7 -2.5 -2.82 -1.6 -1.79 -0.7 -0.77 2.0 43.6 -0.6 -1.35 -0.1 -0.26 0.3 -0.4 0.83 1.7 80.9 -1.2 -1.34 0.0 -0.25 0.1 0.83 1.7 116.9 -0.2 -1.34 0.0 -0.25 0.1 0.83 1.7 11.8 -0.2 -1.34 0.0 -0.25 0.1 0.83 0.7 11.8 -0.2 -1.34 0.0 -0.25 0.0 0.03 0.0 11.9 -0.2 -1.34 0.0 -0.45 0.0 0.03 0.0 11.9 -0.2 -1.33 0.0 -0.26 0.1 0.8 0.3 150.0 -0.2 -1.33			AV1	1.3	0.0	-1.95	0.0	-0.87	0.0	0.21		3.35	0.1	5.41
317.0 -8.1 -2.55 -4.8 -1.50 -1.5 -0.46 8.1 89.7 -2.5 -2.82 -1.6 -1.79 -0.7 -0.77 2.0 43.6 -0.6 -1.35 -0.1 -0.26 0.0<			AV2	1.6	0.0	-0.92	0.0	0.17	0.0	1.26		4.43	0.1	6.51
89.7 -2.5 -2.82 -1.6 -1.79 -0.7 -0.77 2.0 43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.83 1.7 80.9 -1.2 -1.36 -0.3 -0.41 0.5 0.67 3.1 111.4 -1.2 -1.34 0.0 -0.25 0.1 0.83 0.7 111.4 -1.2 -1.11 0.0 -0.02 1.2 1.07 4.7 0.5 -0.2 -1.34 0.0 -0.02 1.0 0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 11.9 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.3 11.9 -0.2 -1.34 -0.1 -0.85 0.0 0.22 0.3 11.0 -1.13 -0.3 0.0 0.0 0.0 0.1 0.83 3.2.8 11.5 -1.10 -1.34 <th></th> <th></th> <th>19D</th> <th>317.0</th> <th>-8.1</th> <th>-2.55</th> <th>4.8</th> <th>-1.50</th> <th>-1.5</th> <th>-0.46</th> <th></th> <th>2.56</th> <th>14.4</th> <th>4.55</th>			19D	317.0	-8.1	-2.55	4.8	-1.50	-1.5	-0.46		2.56	14.4	4.55
43.6 -0.6 -1.35 -0.1 -0.26 0.4 0.83 1.7 80.9 -1.2 -1.50 -0.3 -0.41 0.5 0.67 3.1 116.9 -0.2 -1.34 0.0 -0.25 0.1 0.83 0.7 111.4 -1.2 -1.11 0.0 -0.025 0.1 0.83 0.7 11.8 -0.2 -1.34 0.0 -0.085 0.0 0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.34 0.0 11.9 -0.2 -1.93 -0.1 -0.85 0.0 0.24 0.0 11.9 -0.2 -1.66 -0.1 -0.57 0.1 0.34 0.0 11.9 -0.2 -1.35 0.0 -0.26 0.1 0.82 0.3 11.7 -1.35 0.0 0.06 0.0 0.04 1.14 0.7 11.6.6 -1.0 -1.33 0.1 <th></th> <th></th> <th>19K</th> <th>89.7</th> <th>-2.5</th> <th>-2.82</th> <th>-1.6</th> <th>-1.79</th> <th>-0.7</th> <th>-0.77</th> <th></th> <th>2.20</th> <th>3.7</th> <th>4.15</th>			19K	89.7	-2.5	-2.82	-1.6	-1.79	-0.7	-0.77		2.20	3.7	4.15
80.9 -1.2 -1.50 -0.3 -0.41 0.5 0.67 3.1 16.9 -0.2 -1.34 0.0 -0.25 0.1 0.83 0.7 111.4 -1.2 -1.11 0.0 -0.02 1.2 1.07 4.7 0.5 0.0 -2.49 0.0 -1.42 0.0 -0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 11.9 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 11.9 -0.2 -1.35 0.0 -0.67 0.1 0.82 0.3 15.0 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.1 -1.34 -2.1			ENI	43.6	-0.6	-1.35	-0.1	-0.26	0.4	0.83		3.98	2.6	6.05
16.9 -0.2 -1.34 0.0 -0.25 0.1 0.83 0.7 111.4 -1.2 -1.11 0.0 -0.02 1.2 1.07 4.7 0.5 0.0 -2.49 0.0 -1.42 0.0 -0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 11.9 -0.2 -1.66 -0.1 -0.57 0.1 0.51 0.0 11.9 -0.2 -1.66 -0.1 -0.57 0.1 0.51 0.0 16.7 -0.2 -1.06 -0.1 -0.57 0.1 0.51 0.3 16.7 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 155.0 -1.16 -1.05 0.1 0.04 1.7 1.13 6.4 88.6 -0.1 -1.34 -2.1			EN2	6.08	-1.2	-1.50	-0.3	-0.41	0.5	0.67		3.82	4.8	5.89
111.4 -1.2 -1.11 0.0 -0.02 1.2 1.07 4.7 0.5 0.0 -2.49 0.0 -1.42 0.0 -0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 -0.34 0.0 11.9 -0.2 -1.66 -0.1 -0.85 0.0 0.22 0.4 8.0 -0.1 -1.35 0.0 -0.26 0.1 0.82 0.3 16.7 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.05 0.1 0.04 1.7 1.13 6.4 150.0 -1.6 -1.05 0.1 0.04 1.7 1.14 0.2 16.5 -1.7 -1.35 -0.3			SII	16.9	-0.2	-1.34	0.0	-0.25	0.1	0.83		3.99	1.0	90.9
0.5 0.0 -2.49 0.0 -1.42 0.0 -0.34 0.0 11.8 -0.2 -1.93 -0.1 -0.85 0.0 -0.34 0.0 11.9 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 8.0 -0.1 -1.35 0.0 -0.26 0.1 0.82 0.3 15.0 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 126.5 -1.6 -1.05 0.1 0.04 1.7 1.13 0.7 126.5 -1.7 -1.34 -2.1 -0.25 6.8 0.83 32.8 14.6 -0.2 -1.24 0.0 0.05 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0			SIZ	111.4	-1.2	-1.11	0.0	-0.02	1.2	1.07		4.23	7.0	6.31
11.8 -0.2 -1.93 -0.1 -0.85 0.0 0.22 0.4 11.9 -0.2 -1.66 -0.1 -0.57 0.0 0.25 0.0 8.0 -0.1 -1.35 0.0 -0.26 0.1 0.82 0.3 15.0 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 15.0 -1.6 -1.03 0.0 0.04 1.7 1.13 6.4 126.5 -1.7 -1.34 -2.1 -0.25 6.8 0.83 32.8 14.6 -0.2 -1.24 0.0 -0.27 1.0 0.82 5.0 14.6 -0.1 -1.34 -0.1 -0.27 1.0 0.93 0.6 6.6 -0.1 -0.89 0.0 0.05 0.1 1.14 3.8 6.7 -0.1 -0.89 <t< th=""><th></th><th></th><th>PA1</th><th>0.5</th><th>0.0</th><th>-2.49</th><th>0.0</th><th>-1.42</th><th>0.0</th><th>-0.34</th><th></th><th>2.78</th><th>0.0</th><th>4.82</th></t<>			PA1	0.5	0.0	-2.49	0.0	-1.42	0.0	-0.34		2.78	0.0	4.82
11.9 -0.2 -1.66 -0.1 -0.57 0.1 0.51 0.4 8.0 -0.1 -1.35 0.0 -0.26 0.1 0.82 0.3 3.1 -0.2 -1.03 0.0 0.76 0.1 0.82 0.3 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.05 0.1 0.04 1.7 1.13 6.4 821.4 -11.0 -1.34 -2.1 -0.25 6.8 0.83 32.8 126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.83 32.8 14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.05 0.1 1.14 3.8 6.6 -0.1 -0.89 0.0			LE1	11.8	-0.2	-1.93	-0.1	-0.85	0.0	0.22		3.36	9.0	5.42
8.0 -0.1 -1.35 0.0 -0.26 0.1 0.82 0.3 16.7 -0.2 -1.03 0.0 0.76 0.1 1.86 0.2 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.03 0.0 0.04 1.7 1.13 6.4 821.4 -11.0 -1.34 -2.1 -0.25 6.8 0.83 32.8 126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.82 5.0 146.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.14 3.8 6.6 -0.1 -0.89 0.0			EL1	11.9	-0.2	-1.66	-0.1	-0.57	0.1	0.51		3.65	0.7	5.72
3.1 0.0 -0.33 0.0 0.76 0.1 1.86 0.2 16.7 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.16 -1.03 0.0 0.05 6.8 0.83 32.8 126.5 -1.17 -1.34 -2.1 -0.25 6.8 0.83 32.8 126.5 -0.2 -1.24 0.0 -0.27 1.0 0.82 5.0 8.6 -0.9 -1.04 0.0 -0.15 0.1 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 76.2 -1.4 -1.81 -0.6			EL2	8.0	-0.1	-1.35	0.0	-0.26	0.1	0.82		3.98	0.5	6.05
16.7 -0.2 -1.03 0.0 0.06 0.2 1.14 0.7 150.0 -1.6 -1.05 0.1 0.04 1.7 1.13 64 821.4 -11.0 -1.34 -2.1 -0.25 6.8 0.83 32.8 126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.82 5.0 14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 8.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 566 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 76.2 -1.4 -1.81 -0.6 -0.73 0.3 2.7 222.9 -2.5 -1.14 -0.1 -0.05			AX1	3.1	0.0	-0.33	0.0	0.76	0.1	1.86		5.05	0.2	7.14
150.0 -1.6 -1.05 0.1 0.04 1.7 1.13 6.4 821.4 -11.0 -1.34 -2.1 -0.25 6.8 0.83 32.8 126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.82 5.0 14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 6.6 -0.1 -0.89 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			AMI	16.7	-0.2	-1.03	0.0	90.0	0.2	1.14		4.31	1.1	6:39
821.4 -11.0 -134 -2.1 -0.25 6.8 0.83 32.8 126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.82 5.0 14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			52D	150.0	-1.6	-1.05	0.1	0.04	1.7	1.13		4.29	9.6	6.37
126.5 -1.7 -1.35 -0.3 -0.27 1.0 0.82 5.0 14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			63B	821.4	-11.0	-1.34	-2.1	-0.25	8.9	0.83		3.99	49.8	90.9
14.6 -0.2 -1.24 0.0 -0.15 0.1 0.93 0.6 88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			VM1	126.5	-1.7	-1.35	-0.3	-0.27	1.0	0.82		3.97	7.6	6.05
88.6 -0.9 -1.04 0.0 0.05 1.0 1.14 3.8 6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 76.2 -1.4 -1.81 -0.6 -0.73 0.3 5.7 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			VM2	14.6	-0.2	-1.24	0.0	-0.15	0.1	0.93		4.09	6.0	6.17
6.6 -0.1 -0.89 0.0 0.20 0.1 1.29 0.3 424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			74D	9.88	6.0-	-1.04	0.0	0.05	1.0	1.14		4.30	5.7	6.38
424.9 31.9 7.51 37.0 8.70 42.0 9.88 56.6 36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			TRI	9.9	-0.1	-0.89	0.0	0.20	0.1	1.29		4.46	0.4	6.55
36.7 -0.5 -1.38 -0.1 -0.29 0.3 0.79 1.4 3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.3 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			88M	424.9	31.9	7.51	37.0	8.70	42.0	88.6		13.32	66.2	15.58
3.2 0.0 -0.43 0.0 0.67 0.1 1.76 0.2 76.2 -1.4 -1.81 -0.6 -0.73 0.35 2.7 222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			86B	36.7	-0.5	-1.38	-0.1	-0.29	0.3	0.79		3.95	2.2	6.02
76.2 -1.4 -1.81 -0.6 -0.73 0.35 2.7 22.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 1.98.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			MDI	3.2	0.0	-0.43	0.0	0.67	0.1	1.76		4.95	0.2	7.04
222.9 -2.5 -1.14 -0.1 -0.05 2.3 1.04 9.4 1.98.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			SL1	76.2	-1.4	-1.81	9.0-	-0.73	0.3	0.35		3.49	4.2	5.56
198.4 -1.9 -0.96 0.2 0.12 2.4 1.20 8.6			Z	222.9	-2.5	-1.14	-0.1	-0.05	2.3	1.04		4.20	14.0	6.28
			HHI	198.4	-1.9	-0.96	0.2	0.12	2.4	1.20		4.35	12.7	6.42

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Marke	et Expans	Market Expansion (I-IIIA's)	(\$,1			
			Baseline		%0		1.1%	2.	2.2%		.4%	7	7.5%
Subgroup	Level	MOS	Total \$	S +/-	-/+ %	\$ +/-	-/+ %	·/+ 8	-/+ %	·/+ \$	-/+%	-/+ S	-/+ %
NG	Level 1-2	11X	2,178.7	22.2	1.02	43.6	2.00	64.9	2.98	127.1	5.84	168.0	7.71
		13F	519.8	31.6	60.9	37.3	7.17	42.9	8.26	59.4	11.43	70.2	13.50
		18X	20.4	1.8	8.93	2.1	10.13	2.3	11.33	3.0	14.81	3.5	17.10
		89D	8.69	9.1	13.03	10.0	14.28	10.8	15.52	13.4	19.14	15.0	21.51
		92F	313.1	32.7	10.45	35.8	11.44	38.9	12.44	48.0	15.34	54.0	17.24
		92G	16.0	2.3	14.50	2.5	15.76	2.7	17.02	3.3	20.69	3.7	23.09
		X86	23.5	8:0	3.52	1.1	4.66	1.4	5.79	2.1	9.11	2.6	11.28
	Level 3-9	FAI	732.0	5.0	89.0	12.4	1.69	19.8	2.71	41.4	5.66	55.6	7.60
		FA2	195.8	-0.5	-0.25	1.7	0.85	3.8	1.94	10.1	5.13	14.2	7.23
		ADI	183.1	-0.5	-0.25	1.5	0.84	3.5	1.93	9.3	5.09	13.1	7.17
		AVI	1.2	0.0	-0.58	0.0	0.51	0.0	1.60	0.1	4.78	0.1	6.87
		AV2	0.3	0.0	-2.11	0.0	-1.03	0.0	0.04	0.0	3.18	0.0	5.23
		061	314.5	-1.4	4.0-	1.6	0.51	4.6	1.46	13.3	4.22	19.0	6.03
		19K	152.1	-0.5	-0.35	0.8	0.55	2.2	1.45	6.2	4.07	8.8	5.80
		EN I	28.3	-0.2	-0.81	0.1	0.28	0.4	1.37	1.3	4.54	1.9	6.63
		EN2	27.7	9.0-	-2.07	-0.3	-1.00	0.0	0.08	6.0	3.22	1.5	5.27
		SII	4.0	0.0	-0.26	0.0	0.84	0.1	1.94	0.2	5.13	0.3	7.23
		SIZ	120.9	-0.5	-0.43	0.7	0.61	2.0	1.64	5.6	4.66	8.0	6.64
		PAI	0.8	0.0	-1.21	0.0	-0.13	0.0	96.0	0.0	4.12	0.0	6.20
		LEI	9.0	0.0	-1.57	0.0	-0.49	0.0	09.0	0.0	3.75	0.0	5.81
		ELI	12.4	-0.2	-1.66	-0.1	-0.58	0.1	0.50	0.5	3.65	0.7	5.71
		EL2	×: (0.0	-0.77	0.0	0.32	0.0	1.41	0.1	4.59	0.1	6.67
		AX.	0.7	0.0	-0.07	0.0	1.02	0.0	2.12	0.0	5.32	0.1	7.42
		AMI	6.3	-0.1	-1.14	0.0	-0.05	0.1	1.03	0.3	4.20	0.4	6.27
		77D	21.7	-0.2	-1.06	0.0	0.03	0.2	1.12	6.0	4.28	1.4	6.36
		920	5.07	, o	-1.06	0.0	0.03	0.8	1.12	3.0	4.29	4.5	6.36
		IMA Sec.	4.86	5.0-	-1.27	-0.1	-0.19	0.3	0.00	1.6	4.06	2.4	6.13
		7.W.2	0.1	0.0	-0.76	0.0	0.33	0.0	1.42	0.0	4.60	0.0	89.9
		/4D	23.5	-0.2	-0.77	0.1	0.32	0.3	1.41	1.1	4.58	1.6	6.67
		IRI	5.2	0.0	-0.45	0.0	0.64	0.1	1.74	0.3	4.92	0.4	7.01
		88M	45.3	1.0	2.15	1.5	3.28	2.0	4.40	3.5	79.7	4.4	9.81
		898	43.2	-0.2	-0.48	0.0	0.11	0.3	0.70	1.0	2.42	1.5	3.55
		MUI	0:0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00
		SLI PH	51.9	-0.5	-1.53	-0.1	-0.45	0.2	0.63	1.2	3.78	1.9	5.85
		Į Į	9.4	, c	-1.20	0.1	-0.11	0.7	0.98	2.9	4.14	4.3	6.21
			210:0	ż	-0.12	7.7	0.50	0.1	1.91	15.5	4.86	21.7	6.80

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Market	et Expansion	ion (I-IIIA's	(\$.1			
			Baseline		%0	-	1%	2.	2.2%	5	5.4%	7	7.5%
Subgroup	Level	MOS	Total \$	-/+ <i>§</i>		-/+ 8	-/+ %	?/+ <i>\$</i>	-/+ %	~/+ <i>§</i>	-/+ %	**/+ \$	-/+%
COLL+	Level 1-2	11X	3,809.5	1,023.4		1,074.2	28.20		29.53	1,273.0	33.42	1,370.1	35.96
		13F	398.0	401.6		410.3	103.08		105.25	444.0	111.56	460.5	115.70
		18X	1,613.2	112.1		131.1	8.13		9.30	205.3	12.73	241.5	14.97
		89D	374.3	422.2		430.9	115.11		117.45	465.1	124.26	481.9	128.73
		92F	605.7	760.3		774.4	127.85		130.17	829.2	136.91	856.0	141.33
		92G	237.2	119.3		123.2	51.96		53.61	138.6	58.42	146.0	61.58
		X86	816.6	181.2	22.19	192.2	23.53		24.88	235.1	28.79	256.1	31.36
	Level 3-9	FA1	1,009.7	139.5		151.7	15.02		16.23	199.4	19.75	222.7	22.06
		FA2	186.8	-26.1		-24.3	-13.03		-12.08	-17.4	-9.34	-14.1	-7.53
		AD1	267.2	5.8		8.8	3.30		4.42	20.5	7.67	26.2	08'6
		AV1	102.3	-5.9		4.9	-4.76		-3.73	-0.7	-0.71	1.3	1.27
		AV2	9.2	-0.2		-0.1	-0.58		0.50	0.3	3.65	0.5	5.71
		19D	742.1	-118.9		-112.5	-15.17		-14.31	-87.6	-11.80	-75.4	-10.16
		19 K	301.9	-49.9		-47.3	-15.67		-14.83	-37.4	-12.38	-32.5	-10.76
		ENI	260.8	-20.1		-17.4	-6.68		-5.66	-7.1	-2.71	-2.0	-0.77
		EN2	387.0	-36.9		-33.1	-8.55		-7.55	-18.0	-4.66	-10.7	-2.76
		SII	114.5	-11.6		-10.5	-9.15		-8.16	-6.1	-5.29	-3.9	-3.40
		SIZ	751.1	-48.6		40.9	-5.44		4.42	-10.9	-1.45	3.7	0.49
		PA1	56.9	-3.0		-2.4	-4.26		-3.22	-0.1	-0.19	1.0	1.80
		LE1	120.3	-13.7		-12.6	-10.44		-9.47	-8.0	-6.63	-5.7	4.77
		EL1	142.9	-11.2		-9.7	-6.82		-5.80	4.1	-2.85	-1.3	-0.92
		EL2	80.0	-6.7		-5.9	-7.36		-6.35	-2.7	-3.42	-1.2	-1.49
		AX1	2.3	0.0		0.0	-0.25		0.83	0.1	3.99	0.1	90.9
		AM1	59.0	-5.2		4.6	-7.79		-6.78	-2.3	-3.87	-1.2	-1.95
		52D	137.7	-5.4		4.0	-2.88		-1.82	1.7	1.25	4.5	3.27
		63B	995.8	-36.2		-25.6	-2.57		-1.51	15.7	1.57	35.8	3.60
		VMI	260.9	-18.7		-16.0	-6.14		-5.11	-5.6	-2.14	-0.5	-0.19
		VM2	8.4	4.0-		-0.4	-4.24		-3.20	0.0	-0.17	0.2	1.82
		74D	394.6	-34.1		-30.1	-7.64		-6.63	-14.6	-3.71	-7.1	-1.79
		TRI	33.0	-2.3		-2.0	-5.91		4.89	9.0-	-1.91	0.0	0.04
		88M	374.6	21.3		25.7	98.9		8.02	42.7	11.40	51.0	13.62
		86B	164.4	-15.7		-14.2	-8.61		-7.66	-8.0	4.89	-5.0	-3.06
		MDI	118.1	-3.4		-2.1	-1.79		-0.72	2.8	2.39	5.2	4.43
		SL1	464.4	47.5		42.9	-9.24		-8.25	-25.0	-5.38	-16.2	-3.49
		Z	920.4	-57.9		-48.4	-5.26		-4.23	-11.3	-1.23	8.9	0.73
		HII	1,065.0	-39.2		-28.3	-2.65		-1.62	14.6	1.37	35.6	3.34
					•								

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Marke	Market Expansion	sion (I-IIIA's	4,8)			
			Baseline		%0		1.1%	2	2.2%	5.	5.4%	7	7.5%
Subgroup	Level	MOS	Total \$		\ O	\$ +/-	-/+ %	·/+ §	-/+ %	·/+ 8	-/+ %	-/+8	-/+ %
HG	Level 1-2	11X	13,698.2	6.985	4.28	715.6	5.22	844.4	6.16	1,219.1	8.90	1,464.9	10.69
		13F	1,711.1	691.1	40.39	714.9	41.78	738.7	43.17	808.0	47.22	853.5	49.88
		18X	1,321.8	0.4	0.03	14.9	1.13	29.5	2.23	71.8	5.43	99.5	7.53
		89D	1,301.4	530.9	40.80	551.0	42.34	571.0	43.88	629.4	48.36	2.799	51.30
		92F	3,468.0	1,356.2	39.11	1,397.3	40.29	1,438.4	41.47	1,557.8	44.92	1,636.2	47.18
		92G	517.3	82.8	16.00	89.4	17.27	6.56	18.55	115.1	22.25	127.7	24.68
		X86	589.3	24.9	4.23	31.7	5.37	38.4	6.52	58.1	98.6	71.0	12.04
	Level 3-9	FAI	3,761.7	66.5	1.77	103.5	2.75	140.6	3.74	248.4	09'9	319.2	8.49
		FA2	452.0	-11.9	-2.64	-7.2	-1.58	-2.4	-0.52	11.5	2.55	20.7	4.57
		AD1	662.2	-15.1	-2.27	-8.1	-1.22	-1.1	-0.17	19.2	2.89	32.5	4.90
		AV1	42.0	-0.5	-1.15	0.0	-0.06	0.4	1.03	1.8	4.19	2.6	6.26
		AV2	13.6	-0.1	-1.02	0.0	90.0	0.2	1.15	9.0	4.32	6.0	6.40
		19D	1,897.6	-39.5	-2.08	-23.9	-1.26	-8.4	-0.44	37.0	1.95	66.7	3.52
		19K	789.4	-14.0	-1.77	-8.1	-1.02	-2.2	-0.28	15.0	1.90	26.3	3.33
		ENI	504.9	-10.2	-2.02	-4.7	-0.94	0.7	0.14	16.5	3.28	26.9	5.33
		EN2	773.3	-23.0	-2.97	-14.7	-1.90	-6.5	-0.84	17.5	2.27	33.3	4.31
		SII	106.9	-2.2	-2.10	-1.1	-1.03	0.1	0.05	3.4	3.18	5.6	5.24
		S12	1,360.7	-23.7	-1.75	8.6-	-0.72	4.2	0.31	44.9	3.30	71.5	5.26
		PAI	41.4	-0.7	-1.67	-0.2	-0.59	0.2	0.49	1.5	3.64	2.4	5.70
		LE1	160.9	-5.6	-3.45	-3.8	-2.39	-2.1	-1.33	2.8	1.76	6.1	3.79
		EL1	370.6	-10.1	-2.72	-6.1	-1.64	-2.1	-0.57	9.4	2.54	17.0	4.58
		EL2	121.3	-3.1	-2.53	-1.8	-1.46	-0.5	-0.39	3.3	2.73	5.8	4.77
		AX1	7.1	0.0	-0.35	0.1	0.75	0.1	1.84	0.4	5.03	0.5	7.12
		AMI	78.2	-1.6	-2.03	-0.7	-0.96	0.1	0.12	2.5	3.26	4.2	5.31
		52D	291.4	-5.0	-1.72	-1.9	-0.64	1.3	0.44	10.5	3.59	16.5	5.65
		038	1,616.2	-25.9	-1.61	-8.5	-0.52	0.6	0.56	59.9	3.71	93.3	5.77
		IWA:	172.9	-19.5	-2.53	-11.2	-1.45	-3.0	-0.38	21.2	2.74	37.0	4.78
		VM2	2.8	0.0	-0.55	0.0	0.54	0.1	1.64	0.3	4.82	0.4	6.91
		74D	503.6	-9.5	-1.88	4.0	-0.80	1.4	0.28	17.2	3.42	27.6	5.48
		TRI	37.7	-0.5	-1.20	0.0	-0.11	0.4	0.97	1.6	4.13	2.3	6.21
		W88	882.4	22.3	2.52	32.2	3.65	42.2	4.78	71.1	8.06	90.1	10.21
		89B	433.0	6.6-	-2.30	-6.4	-1.49	-2.9	-0.67	7.3	1.68	14.0	3.23
		MDI	25.2	-0.4	-1.73	-0.2	-0.65	0.1	0.43	6.0	3.58	1.4	5.64
		SLI	767.6	-22.5	-2.94	-14.4	-1.88	-6.4	-0.83	17.2	2.24	32.6	4.25
		Z E	1,918.3	-38.9	-2.03	-18.3	-0.95	2.4	0.12	62.3	3.25	101.7	5.30
		IIII	1,970.0	-777.1	-1.15	-5.6	-0.29	11.5	0.58	61.3	3.11	93.9	4.77

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

Subgroup Level 1-2 II.9% 1.19% 2.29% 5.49% 5.49% MALE Level 1-2 11 % 1.11 % 4.7 % +/- \$ +/- % +/- \$ 5.4% <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mark</th> <th>et Expans</th> <th>Market Expansion (I-IIIA's)</th> <th>4's)</th> <th></th> <th></th> <th></th>								Mark	et Expans	Market Expansion (I-IIIA's)	4's)			
Foulp Lével MOS Total S 8+L %+L %+L <th< th=""><th></th><th></th><th></th><th>Baseline</th><th></th><th>%0</th><th></th><th>.1%</th><th>2.</th><th>.2%</th><th></th><th>.4%</th><th>7</th><th>7.5%</th></th<>				Baseline		%0		.1%	2.	.2%		.4%	7	7.5%
Level 1-2 IIX 256,318 1,599,7 7,65 2,229 8,70 2,498 3,227 1,1 1,599,7 7,65 2,229 8,70 2,413 4,40 1,513 4,43 1,413 4,43 1,413 4,43 1,413 4,43 1,413 4,43 1,414 1,414 1,4	Subgroup	Level	MOS	Total \$	°/+ 8	%	\$ +/-	-/+ %	. 1		-/+ 8	-/+ %	°/+ \$	-/+%
13F 3,201.1 1,238.1 41.49 1,347 42.94 1,421.3 44.40 1,556.7 89D 1,580.4 8113.0 33.0 151.9 4.43 190.8 5.77 304.0 89D 1,580.4 816.4 51.66 842.7 53.2 860.0 54.9 94.0 92G 691.2 1,575.8 49.95 1,894.3 51.30 159.0 94.0 96.9 94.9 96.0 96.0 94.0 96.0	MALE	Level 1-2	11X	25,621.8	1,959.7		2,229.2	8.70	2,498.7	9.75	3,282.7	12.81	3,797.2	14.82
BX 34256 1130 330 151.9 443 1908 557 304.0			13F	3,201.1	1,328.1		1,374.7	42.94	1,421.3	44.40	1,556.7	48.63	1,645.6	51.41
89D 1,580,4 816,4 51,66 82,7 53,32 88,90 54,88 945,3 92F 3,5150 1,755,8 49,95 1,804,3 51,33 1852,9 52,71 1,940 92G 691,12 14,42 22,31 163,5 23,63 173,9 1,940 92G 601,22 14,51 12,93 136,0 3,63 23,71 1,940 FAJ 612,24 14,51 12,93 136,0 -3,69 -3,51 1,940 AD1 824,5 -13,7 -20,6 -4,91 160,3 25,71 1,940 AV1 11,154 -5,0 -4,36 -1,09 -0,3 -0,4 25,0 AV2 11,154 -5,0 -4,36 -3,8 -3,30 -2,6 20,2 20,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1 14,1			18X	3,425.6	113.0		151.9	4.43	190.8	5.57	304.0	8.88	378.3	11.04
92F 3,515.0 1,755.8 49,95 1,804.3 513.3 1,822.9 227.1 1,994.0 92G 6,020.4 1,122.4 143.2 163.5 23.65 172.8 25.00 199.8 PA1 6,202.4 143.2 159.0 141.7 173.0 159.4 199.8 FA1 6,202.4 140.1 129.0 141.7 173.0 159.4 199.8 AVI 115.4 -20.0 38.7 3.40 -2.15 -2.65 3.0 AVI 115.4 -5.0 4.36 -2.16 -2.56 3.0 -0.0			89D	1,580.4	816.4		842.7	53.32	0.698	54.98	945.3	59.82	995.5	62.99
92G 691.2 154.2 22.31 163.5 23.65 172.8 25.00 199.8 PAJ 6,202.4 145.1 12.93 159.0 17.1 173.0 15.41 213.5 FAJ 811.7 -38.4 -473 -30.6 -36.9 -21.5 -5.55 37.4 ADI 811.7 -38.4 -473 -30.0 -36.9 -0.13 -0.04 25.0 -2.65 -3.5			92F	3,515.0	1,755.8		1,804.3	51.33	1,852.9	52.71	1,994.0	56.73	2,086.7	59.36
98X 1,1224 145.1 12.93 159.0 14,17 15.93 15.90 15.41 213.5 FA1 6,202.4 3.60 3.87 304.6 4.91 369.3 557.4 FA2 81.7 4.36 4.36 -3.0 -2.6 -2.5 5.74 AVI 115.4 -5.0 -2.15 -9.0 -1.09 -0.3 -0.04 25.0 AVI 215.0 -0.3 -1.37 -0.1 0.28 0.2 0.09			92G	691.2	154.2		163.5	23.65	172.8	25.00	199.8	28.90	217.5	31.47
FAI 6,2024 240.0 387 304.6 4,91 369.3 5,95 557.4 ADI 824.5 -17.4 -21.6 -3.69 -21.5 -2.65 3.0 ADI 824.5 -17.7 -2.15 -9.0 -1.09 -0.3 -0.4 3.0 AVI 115.4 -5.0 -4.36 -3.8 -3.30 -2.6 -2.55 0.9 AV2 220 -0.3 -1.37 -0.1 -0.2 0.0 </th <th></th> <th></th> <th>X86</th> <th>1,122.4</th> <th>145.1</th> <th></th> <th>159.0</th> <th>14.17</th> <th>173.0</th> <th>15.41</th> <th>213.5</th> <th>19.02</th> <th>240.2</th> <th>21.40</th>			X86	1,122.4	145.1		159.0	14.17	173.0	15.41	213.5	19.02	240.2	21.40
811.7 -38.4 -4.73 -300 -3.69 -21.5 -2.65 3.0 115.4 -5.15 -4.96 -1.09 -0.3 -0.04 25.0 115.4 -6.03 -1.37 -0.1 -0.28 -0.3 -0.04 25.0 22.0 -0.3 -1.37 -0.1 -0.28 -2.6 -2.9 0.9 1,332.6 -16.7 -5.13 -139.4 -4.26 -1.11 -2.4 0.9 1,332.6 -16.8 -5.02 -5.01 -6.28 -1.11 -2.9 0.9 1,320.8 -27.9 -3.87 -0.03 -2.81 -1.34 -2.9 -14.1 -2.9 1,192.0 -58.4 -4.90 -45.9 -3.85 -3.35 -2.81 -3.4 -2.9 -14.1 -2.9 -14.1 -2.9 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6		Level 3-9	FAI	6,202.4	240.0		304.6	4.91	369.3	5.95	557.4	8.99	8.089	10.98
824.5 -17.7 -2.15 -9.0 -1.09 -0.3 -0.04 25.0 115.4 -5.0 -4.36 -3.30 -2.6 -2.25 0.9 220 -0.3 -1.37 -1.34 -4.26 -1.12 -3.40 -29.1 1,332.5 -66.8 -5.02 -56.1 -4.26 -111.2 -3.40 -29.1 1,192.0 -8.0 -8.0 -5.03 -2.81 -1.26 -1.75 9.5 1,192.0 -8.0 -8.96 -7.1 -7.96 -6.2 -6.96 -6.96 1,879.5 -6.51 -3.46 -45.8 -2.44 -2.66 -1.41 20.4 88.6 -7.1 -7.96 -6.2 -6.3 -1.41 20.4 4.7 88.7 -6.5 -3.46 -45.8 -2.44 -2.6 -1.41 20.4 2.8 -1.41 20.4 2.8 1.0 -1.41 2.4 2.8 2.8 1.0 -1.41 2.8 <td< th=""><th></th><th></th><th>FA2</th><th>811.7</th><th>-38.4</th><th></th><th>-30.0</th><th>-3.69</th><th>-21.5</th><th>-2.65</th><th>3.0</th><th>0.37</th><th>19.2</th><th>2.36</th></td<>			FA2	811.7	-38.4		-30.0	-3.69	-21.5	-2.65	3.0	0.37	19.2	2.36
115.4 -5.0 -4.36 -3.8 -3.30 -2.6 -2.25 0.9 3,269.9 -167.7 -5.13 -0.1 -0.28 -0.1 0.28 0.9 3,269.9 -167.7 -5.13 -19.4 -0.28 -111.2 -3.40 -29.1 1,322.5 -66.8 -5.02 -50.1 -42.1 -45.4 -34.0 -19.1 1,920.8 -27.9 -3.87 -20.3 -2.81 -12.6 -1.75 9.5 1,920.8 -27.9 -3.87 -20.3 -2.81 -12.6 -1.75 9.5 1,920.9 -8.0 -8.96 -7.1 -7.96 -6.2 -6.1 -1.41 2.9 -3.6 -1.6 -2.8 -3.6			AD1	824.5	-17.7		-9.0	-1.09	-0.3	-0.04	25.0	3.04	41.7	5.05
22.0 -0.3 -1.37 -0.1 -0.28 0.2 0.80 0.9 3.269.9 -167.7 -5.13 -19.4 4.26 -111.2 -340 -29.1 1,332.5 -68.8 -5.02 -56.1 -42.6 -111.2 -340 -14.1 700.8 -58.4 -4.90 -45.9 -3.85 -33.5 -2.81 -14.1 -14.1 -14.1 1,192.0 -88.4 -4.90 -45.9 -3.85 -33.5 -2.81 -14.1 -15.4 -10.1 -14.1			AVI	115.4	-5.0		-3.8	-3.30	-2.6	-2.25	6.0	0.81	3.3	2.82
3,269,9 -167.7 -5.13 -139.4 -4.26 -111.2 -3.40 -29.1 720.8 -5.68 -5.02 -56.1 -4.21 -45.4 -3.40 -14.1 720.8 -5.68 -5.02 -56.1 -4.21 -45.4 -3.40 -14.1 1,192.0 -8.0 -9.0 -45.9 -3.85 -3.35 -2.81 2.8 8.0 -8.0 -8.06 -7.1 -7.96 -62.2 -6.96 -3.6 1,879.5 -65.1 -3.46 -45.8 -2.44 -26.6 -1.41 29.4 6.8.5 -1.1 -7.96 -6.2 -6.96 -3.6 -1.6 -3.6 -1.6 -3.6 -1.41 29.4 -1.7 -1.9 -1.0 -1.1 -1.6 -3.6 -1.0 -1.0 -1.5 -1.1 -1.0 -1.2 -3.4 -1.7 -1.2 -3.4 -4.7 -1.2 -3.6 -1.0 -1.0 -1.0 -1.2 -1.1 -1.2			AV2	22.0	-0.3		-0.1	-0.28	0.2	08.0	6.0	3.96	1.3	6.03
1,332.5 -66.8 -5.02 -56.1 4.21 45.4 -3.40 -14.1 720.8 -27.9 -3.87 -20.3 -2.81 -12.6 -1.75 9.5 1,192.0 -8.4 -4.90 -45.9 -2.81 -12.6 -1.75 9.5 89.6 -8.96 -7.1 -7.96 -6.2 -6.96 -3.6 1,879.5 -65.1 -3.46 -45.8 -2.44 -26.6 -1.41 2.8 1,879.5 -65.1 -3.46 -45.8 -2.44 -26.6 -1.41 2.9 1,879.5 -65.1 -3.71 -1.8 -2.65 -1.11 1.59 -1.41 2.9 -1.1 -1.59 -1.41 2.9 -1.1 -1.59 -1.1 2.9 -1.1 -1.59 -1.1 -1.59 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.1 -2.0 -1.4 -1.0 -2.0 -2.0 -2.0 -2.0			19D	3,269.9	-167.7		-139.4	-4.26	-111.2	-3.40	-29.1	-0.89	24.8	0.76
720.8 -27.9 -3.87 -20.3 -2.81 -12.6 -1.75 9.5 1,192.0 -58.4 -4.90 -45.9 -3.85 -3.35 -2.81 2.8 89.6 -8.0 -8.96 -7.1 -7.96 -6.96 -3.6 88.6 -8.0 -8.96 -7.1 -7.96 -6.96 -3.6 68.5 -2.5 -3.71 -1.8 -2.63 -1.41 29.4 198.0 -14.6 -7.38 -12.6 -6.36 -10.6 -3.7 198.0 -20.7 -4.13 -12.6 -6.36 -10.1 -1.59 1.0 194.9 -20.7 -4.13 -12.6 -6.36 -10.1 -2.02 -3.73 -5.2 -2.68 0.7 194.9 -9.3 -4.78 -7.3 -3.73 -5.2 -2.68 0.7 41.4 -10.9 -2.0 -0.49 -0.8 -0.10 1.52 -2.68 0.7 3.214.0 <td< th=""><th></th><th></th><th>19K</th><td>1,332.5</td><td>8.99-</td><td></td><td>-56.1</td><td>-4.21</td><td>-45.4</td><td>-3.40</td><td>-14.1</td><td>-1.06</td><td>6.4</td><td>0.48</td></td<>			19K	1,332.5	8.99-		-56.1	-4.21	-45.4	-3.40	-14.1	-1.06	6.4	0.48
1,192.0 -58.4 -4.90 -45.9 -3.85 -33.5 -2.81 2.8 89.6 -8.0 -8.96 -7.1 -7.96 -6.2 -6.96 -3.6 89.6 -8.0 -8.96 -7.1 -7.96 -6.2 -6.96 -3.6 68.5 -2.5 -3.71 -1.8 -2.65 -1.1 -1.59 1.0 198.0 -14.6 -7.38 -12.6 -6.36 -10.6 -1.05 -1.34 -4.7 198.0 -14.6 -7.38 -12.6 -10.6 -1.06 -1.06 -1.06 -1.06 -1.06 -1.00			ENI	720.8	-27.9		-20.3	-2.81	-12.6	-1.75	9.5	1.32	24.1	3.34
89.6 -8.0 -8.96 -7.1 -7.96 -6.2 -6.96 -3.6 1,879.5 -65.1 -3.46 -45.8 -2.44 -26.6 -1.41 29.4 68.5 -2.5 -3.71 -1.8 -2.65 -1.1 -1.39 1.0 198.0 -14.6 -7.38 -12.6 -6.36 -10.6 -3.34 -4.7 502.0 -20.7 -4.13 -15.4 -3.07 -10.1 -2.02 5.3 194.9 -9.3 -4.78 -7.3 -3.73 -5.2 -2.68 0.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -6.3 -4.9 -3.68 -3.5 -2.63 0.6 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 20.0 -2.16 -3.50 -1.09 -0.4 -0.01 10.0 481.4 -2.73 -2.			EN2	1,192.0	-58.4		-45.9	-3.85	-33.5	-2.81	2.8	0.24	26.6	2.23
1,879.5 -65.1 -3.46 -45.8 -2.44 -26.6 -1.41 29.4 68.5 -2.5 -3.71 -1.8 -2.65 -1.1 -1.59 1.0 198.0 -14.6 -7.38 -12.6 -6.36 -10.1 -1.59 1.0 502.0 -20.7 -4.13 -12.6 -6.36 -10.1 -2.02 5.3 198.0 -9.3 -4.78 -7.3 -3.73 -5.2 2.68 0.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.68 0.7 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -3.50 -1.09 -0.4 -0.01 100.2 481.4 -2.73 -2.68 -2.35 -1.47 -1.29 20.4 481.4 -2.73 -2.68 -2.35 -1.47 -1.29 -2.8 1,206. 53.8			SII	9.68	-8.0		-7.1	-7.96	-6.2	96'9-	-3.6	-4.05	-1.9	-2.14
68.5 -2.5 -3.71 -1.8 -2.65 -1.1 -1.59 1.0 198.0 -14.6 -7.38 -12.6 -6.36 -10.6 -5.34 -4.7 502.0 -20.7 -4.13 -12.6 -6.36 -10.6 -5.34 -4.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.7 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.6 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.3 -4.9 -3.50 -1.09 -0.4 -0.01 100.2 481.4 -2.73 -5.68 -2.35 -14.7 -1.29 20.4 48.8 -1.2 -2.8 -0.3 -1.20 0.0 -0.13 0.0 48.1.4 -2.73 -5.67 -2.23 -4.63 -1.73 -3.59 -2.8 1,206.6 53.8 4.46 </th <th></th> <th></th> <th>S12</th> <th>1,879.5</th> <th>-65.1</th> <th></th> <th>-45.8</th> <th>-2.44</th> <th>-26.6</th> <th>-1.41</th> <th>29.4</th> <th>1.57</th> <th>66.2</th> <th>3.52</th>			S12	1,879.5	-65.1		-45.8	-2.44	-26.6	-1.41	29.4	1.57	66.2	3.52
198.0 -14.6 -7.38 -12.6 -6.36 -10.6 -5.34 -4.7 502.0 -20.7 -4.13 -15.4 -3.07 -10.1 -2.02 5.3 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.7 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -35.0 -1.09 -0.4 -0.01 100.2 481.4 -27.3 -2.68 -2.35 -14.7 -1.29 20.4 20.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -2.73 -5.67 -2.23 -4.63 -1.73 -3.89 -2.8 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 2,609.7 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 2,609.3			PA1	68.5	-2.5		-1.8	-2.65	-1.1	-1.59	1.0	1.49	2.4	3.52
502.0 -20.7 -4.13 -15.4 -3.07 -10.1 -2.02 5.3 194.9 -9.3 -4.78 -7.3 -3.73 -5.2 -2.68 0.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.7 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -3.50 -1.09 -0.4 -0.01 100.2 481.4 -27.3 -3.42 -2.68 -2.35 -14.7 -1.29 20.4 481.4 -27.3 -3.42 -2.68 -2.35 -1.47 -1.29 20.4 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 2,609.3 -2.8 -3.4 -1.5 -1.5 -2.27 -1.0 -1.21 1.0 <th></th> <th></th> <th>CE1</th> <th>198.0</th> <th>-14.6</th> <th></th> <th>-12.6</th> <th>-6.36</th> <th>-10.6</th> <th>-5.34</th> <th>4.7</th> <th>-2.38</th> <th>-0.9</th> <th>-0.43</th>			CE1	198.0	-14.6		-12.6	-6.36	-10.6	-5.34	4.7	-2.38	-0.9	-0.43
194.9 -9.3 -4.78 -7.3 -3.73 -5.2 -2.68 0.7 9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.7 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -3.50 -1.09 -0.4 -0.01 100.2 1,136.3 -38.8 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 481.4 -27.3 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 481.4 -27.3 -2.28 -0.3 -1.20 0.0 -0.13 0.9 4.8 -1.2 -2.57 -2.23 -4.63 -17.3 -3.59 -2.8 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 2,609.7 -2.8 </th <th></th> <th></th> <th>EL1</th> <th>502.0</th> <th>-20.7</th> <th></th> <th>-15.4</th> <th>-3.07</th> <th>-10.1</th> <th>-2.02</th> <th>5.3</th> <th>1.05</th> <th>15.4</th> <th>3.06</th>			EL1	502.0	-20.7		-15.4	-3.07	-10.1	-2.02	5.3	1.05	15.4	3.06
9.5 -0.1 -0.66 0.0 0.43 0.1 1.52 0.4 133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.6 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -3.50 -1.09 -0.4 -0.01 100.2 1,136.3 -38.8 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 2,0.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -2.23 -4.63 -17.3 -3.59 -2.8 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 2,609.3 -2.0 -6.20 -3.34 -1.9 -2.27 -1.0 -1.21 11.0 2,609.3 -87.6 -2.13 -3.19 -2.28 -3.19 -4.16 -10.0 <th></th> <th></th> <th>EL2</th> <th>194.9</th> <th>-9.3</th> <th></th> <th>-7.3</th> <th>-3.73</th> <th>-5.2</th> <th>-2.68</th> <th>0.7</th> <th>0.37</th> <th>4.6</th> <th>2.36</th>			EL2	194.9	-9.3		-7.3	-3.73	-5.2	-2.68	0.7	0.37	4.6	2.36
133.7 -6.3 -4.73 -4.9 -3.68 -3.5 -2.63 0.6 541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -35.0 -1.09 -0.4 -0.01 100.2 1,136.3 -38.8 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 29.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -2.23 -4.63 -17.3 -3.59 -2.8 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 2,609.3 -87.2 -3.18 -3.49 -4.16 -10.0 2,609.5 -5.5.6 -2.13			AX1	9.5	-0.1		0.0	0.43	0.1	1.52	4.0	4.70	9.0	6.79
541.4 -10.9 -2.02 -5.1 -0.94 0.8 0.14 17.7 3,214.0 -69.6 -2.16 -35.0 -1.09 -0.4 -0.01 100.2 1,136.3 -38.8 -2.16 -35.0 -1.09 -0.4 -0.01 100.2 29.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -22.3 -4.63 -17.3 -3.59 -2.8 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 2,609.3 -87.2 -3.34 -5.6 -5.18 -3.49 -4.16 -10.0 2,609.5 -5.5.6 -2.13 -3.12 -1.20 -6.9 -0.26 64.0			AM1	133.7	-6.3		4.9	-3.68	-3.5	-2.63	9.0	0.42	3.2	2.42
3,214.0 -69.6 -2.16 -35.0 -1.09 -0.4 -0.01 100.2 1,136.3 -38.8 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 29.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -22.3 -1.20 0.0 -0.13 0.9 1,200.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.6 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 2,609.3 -87.2 -3.34 -5.6 -5.38 -3.49 -4.16 -10.0 2,609.3 -87.2 -3.13 -5.6 -2.28 -3.19 -1.22 48.7 2,609.5 -5.56 -2.13 -3.12 -1.20 -6.9 -0.26 64.0			52D	541.4	-10.9		-5.1	-0.94	8.0	0.14	17.7	3.28	28.9	5.33
1,136.3 -38.8 -3.42 -26.8 -2.35 -14.7 -1.29 20.4 29.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -22.3 -4.63 -17.3 -3.59 -2.8 3.4.8 -1.2 -3.57 -0.9 -2.51 -0.5 -1.45 0.6 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -42.0 -12.4 -3.6 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 2,609.3 -87.2 -3.34 -5.6 -5.18 -3.49 -4.16 -10.0 2,609.5 -87.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			63B	3,214.0	9.69-		-35.0	-1.09	-0.4	-0.01	100.2	3.12	166.3	5.17
29.0 -0.7 -2.28 -0.3 -1.20 0.0 -0.13 0.9 481.4 -27.3 -5.67 -22.3 -4.63 -17.3 -3.59 -2.8 34.8 -1.2 -3.57 -0.9 -2.51 -0.5 -1.45 0.6 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			VMI	1,136.3	-38.8		-26.8	-2.35	-14.7	-1.29	20.4	1.80	43.5	3.83
481.4 -27.3 -5.67 -22.3 -4.63 -17.3 -3.59 -2.8 34.8 -1.2 -3.57 -0.9 -2.51 -0.5 -1.45 0.6 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 83.9.7 -52.0 -6.20 -43.5 -5.18 -3.49 -4.16 -10.0 2,609.3 -87.2 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			VM2	29.0	-0.7		-0.3	-1.20	0.0	-0.13	6.0	3.00	1.5	5.05
34.8 -1.2 -3.57 -0.9 -2.51 -0.5 -1.45 0.6 1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 839.7 -52.0 -6.20 -43.5 -5.18 -34.9 -4.16 -10.0 2,609.3 -87.2 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			74D	481.4	-27.3		-22.3	4.63	-17.3	-3.59	-2.8	-0.58	8.9	1.40
1,206.6 53.8 4.46 67.7 5.61 81.6 6.76 121.9 367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 839.7 -52.0 -6.20 -43.5 -5.18 -34.9 -4.16 -10.0 2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			TRI	34.8	-1.2		-0.9	-2.51	-0.5	-1.45	9.0	1.64	1.3	3.66
367.5 -18.5 -5.04 -15.4 -4.20 -12.4 -3.36 -3.4 83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 83.9 -52.0 -6.20 -43.5 -5.18 -34.9 -4.16 -10.0 2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			88M	1,206.6	53.8		67.7	5.61	81.6	92.9	121.9	10.10	148.4	12.30
83.9 -2.8 -3.34 -1.9 -2.27 -1.0 -1.21 1.6 839.7 -52.0 -6.20 -43.5 -5.18 -34.9 -4.16 -10.0 2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			868	367.5	-18.5		-15.4	4.20	-12.4	-3.36	-3.4	-0.92	2.5	69.0
839.7 -52.0 -6.20 -43.5 -5.18 -34.9 -4.16 -10.0 2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			MD1	83.9	-2.8		-1.9	-2.27	-1.0	-1.21	1.6	1.88	3.3	3.91
2,609.3 -87.2 -3.34 -59.6 -2.28 -31.9 -1.22 48.7 2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			SL1	839.7	-52.0		-43.5	-5.18	-34.9	-4.16	-10.0	-1.19	6.4	97.0
2,609.5 -55.6 -2.13 -31.2 -1.20 -6.9 -0.26 64.0			Z	2,609.3	-87.2		-59.6	-2.28	-31.9	-1.22	48.7	1.86	101.5	3.89
			HII	2,609.5	-55.6	١	-31.2	-1.20	-6.9	-0.26	64.0	2.45	110.5	4.23

Table D-2. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, MOS, and Market Expansion Condition

							Marke	et Expans	Market Expansion (I-IIIA's)	_			
			Baseline		%0		.1%	2.	2.2%		5.4%	7	7.5%
Subgroup	Level	MOS	Total \$	-/+8	-/+ %	\$ +/-	-/+%	\$ +/-	-/+%	·/+ 8	-/+ %	\$ +\-	-/+ %
FEMALE	Level 1-2	11X											
		13F											
		18 X	3 300	7.5	200	0 4)	6		ć	0	ţ		
		89D	235.5	101.4	08.55	165.8	70.38	1.0.1	72.24	182.8	77.63	191.2	81.16
		92F	1,16/.5	514.3	44.06	528.5	45.28	542.8	46.50	584.2	50.05	611.4	52.38
		976	324.6	64.5	19.88	9.89	21.20	73.1	22.52	85.5	26.35	93.7	28.87
		X86	485.3	61.4	12.65	67.4	13.89	73.4	15.13	6.06	18.73	102.4	21.10
	Level 3-9	FA1	1.6	-0.1	-6.49	-0.1	-5.46	-0.1	4.44	0.0	-1.44	0.0	0.52
		FA2	82.7	-1.9	-2.29	-1.0	-1.22	-0.1	-0.14	2.5	2.99	4.2	5.04
		AD1	422.8	5.7	1.34	10.4	2.45	15.1	3.56	28.7	6.79	37.7	8.91
		AVI	31.5	-1.4	-4.52	-1:1-	-3.47	-0.8	-2.42	0.2	0.64	0.8	2.64
		AV2	2.6	0.0	-0.41	0.0	0.68	0.0	1.78	0.1	4.97	0.2	7.06
		19D											
		19K											
		ENI	116.7	-3.2	-2.72	-1.9	-1.64	-0.7	-0.57	3.0	2.54	5.3	4.58
		EN2	76.9	-3.3	-4.25	-2.5	-3.20	-1.6	-2.14	0.7	0.92	2.3	2.93
		SII	152.8	-6.1	-3.97	4.5	-2.92	-2.8	-1.86	1.9	1.21	4.9	3.23
		S12	464.6	0.6-	-1.93	4.1	-0.89	0.7	0.16	14.8	3.20	24.1	5.19
		PA1	31.2	-1.2	-3.84	6.0-	-2.78	-0.5	-1.72	0.4	1.35	1.1	3.37
		LE1	95.5	4.9	-5.14	-3.9	4.09	-2.9	-3.05	0.0	-0.02	1.9	1.98
		EL1	35.8	6.0-	-2.61	9.0-	-1.54	-0.2	-0.47	6.0	2.65	1.7	4.69
		EL2	16.3	9.0-	-3.60	-0.4	-2.54	-0.2	-1.48	0.3	1.60	9.0	3.63
		AX1	3.7	0.0	-0.10	0.0	1.00	0.1	2.09	0.2	5.29	0.3	7.39
		AM1	26.5	-0.7	-2.63	-0.4	-1.56	-0.1	-0.49	0.7	2.62	1.2	4.67
		52D	58.9	-1.3	-2.23	-0.7	-1.16	0.0	-0.08	1.8	3.05	3.0	5.10
		63B	289.8	-4.3	-1.47	-1.1	-0.39	2.0	69.0	11.1	3.85	17.1	5.92
		VM1	62.4	-1.6	-2.52	6.0-	-1.45	-0.2	-0.37	1.7	2.75	3.0	4.79
		VM2	0.0	0.0	-1.39	0.0	-0.30	0.0	0.78	0.0	3.94	0.0	6.01
		74D	528.9	-17.4	-3.29	-11.8	-2.23	-6.1	-1.16	10.2	1.93	21.0	3.96
		TRI	47.7	-1.6	-3.32	-1.1	-2.26	9.0-	-1.20	6.0	1.90	1.9	3.93
		88M	520.6	22.6	4.35	28.6	5.50	34.6	6.65	52.0	86.6	63.4	12.18
		86B	309.7	-7.9	-2.54	-5.2	-1.68	-2.6	-0.83	5.1	1.66	10.2	3.29
		MD1	62.5	-1.0	-1.64	-0.3	-0.56	0.3	0.52	2.3	3.67	3.6	5.74
		SL1	500.4	-19.9	-3.97	-14.6	-2.91	-9.3	-1.86	6.1	1.21	16.2	3.23
		Z	521.8	-12.9	-2.47	-7.3	-1.40	-1.7	-0.33	14.6	2.79	25.3	4.84
		HIII	942.7	-8.7	-0.92	0.4	0.05	9.6	1.01	36.1	3.82	53.4	5.67
													İ

Appendix E: Forecasted Changes in Total Bonus Dollars Awarded by TOS

Appendix E reports the forecasted changes in the total bonus dollars awarded (in thousands) from raising the bonus cap under the five market expansion conditions by incentive level and TOS, for all applicants and by subgroup. For comparison purposes, results under the existing cap are reported under "Baseline." All tables changes in *total* bonus dollars awarded under the five market expansion conditions, both in amount awarded ("\$ +/-") and expressed as percent increase or decrease ("% +/-"), relative to baseline.

Table E-1. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

					land to the second seco		Mark	et Expan	Market Expansion (I-IIIA's)	1.s)			
			Baseline		%0		.1%	2	2.2%		5.4%		7.5%
Subgroup	Level	TOS	Total \$	·/+ 8	-/+ %	·-/+ §	-/+ %	\$ +/-	-/+%	·/+ §	-/+ %		
ALL	ALL	3	16,884.0	-372.0	-2.20	-247.7	-1.47	-123.4	-0.73	238.2	1.41	475.5	2.82
		4	35,098.5	2,784.2	7.93	3,189.3	60'6	3,594.3	10.24	4,772.8	13.60	5,546.1	15.80
		S	21,225.9	3,403.0	16.03	3,669.6	17.29	3,936.2	18.54	4,711.8	22.20	5,220.7	24.60
		9	4,297.9	0.009	13.96	653.3	15.20	706.6	16.44	861.5	20.05	963.2	22.41
	Level 1-2	m	9,022.1	-186.5	-2.07	-129.1	-1.43	-71.7	-0.79	95.4	1.06	205.0	2.27
		4	18,157.5	3,143.8	17.31	3,370.0	18.56	3,596.2	19.81	4,254.2	23.43	4,686.1	25.81
		2	12,156.3	3,488.3	28.70	3,657.3	30.09	3,826.3	31.48	4,317.9	35.52	4,640.5	38.17
		9	2,041.7	631.1	30.91	660.5	32.35	6.689	33.79	775.4	37.98	831.5	40.72
	Level 3-9	3	7,861.9	-185.5	-2.36	-118.6	-1.51	-51.7	-0.66	142.8	1.82	270.5	3.44
		4	16,941.0	-359.6	-2.12	-180.7	-1.07	-1.8	-0.01	518.5	3.06	860.0	5.08
		S	9.690,6	-85.3	-0.94	12.3	0.14	109.9	1.21	393.9	4.34	580.2	6.40
		9	2,256.2	-31.1	-1.38	-7.2	-0.32	16.7	0.74	86.1	3.82	131.7	5.84
I-IIIA	ALL	3	11,672.1	-371.7	-3.18	-247.4	-2.12	-123.1	-1.05	238.5	2.04	475.8	4.08
		4	34,041.6	2,783.7	8.18	3,188.7	9.37	3,593.8	10.56	4,772.2	14.02	5,545.6	16.29
		5	20,835.6	3,401.6	16.33	3,668.2	17.61	3,934.8	18.88	4,710.4	22.61	5,219.4	25.05
		9	4,242.7	0.009	14.14	653.3	15.40	206.6	16.65	861.5	20.31	963.2	22.70
	Level 1-2	3	5,406.9	-186.2	-3.44	-128.8	-2.38	-71.4	-1.32	95.7	1.77	205.3	3.80
		4	17,420.7	3,143.3	18.04	3,369.5	19.34	3,595.7	20.64	4,253.7	24.42	4,685.5	26.90
		S	11,876.2	3,486.9	29.36	3,655.9	30.78	3,824.9	32.21	4,316.5	36.35	4,639.1	39.06
		9	2,040.1	631.1	30.94	660.5	32.38	6.689	33.82	775.4	38.01	831.5	40.76
	Level 3-9	3	6,265.2	-185.5	-2.96	-118.6	-1.89	-51.7	-0.83	142.8	2.28	270.5	4.32
		4	16,620.9	-359.6	-2.16	-180.7	-1.09	-1.8	-0.01	518.5	3.12	860.0	5.17
		S	8,959.4	-85.3	-0.95	12.3	0.14	109.9	1.23	393.9	4.40	580.2	6.48
		9	2,202.6	-31.1	-1.41	-7.2	-0.33	16.7	0.76	86.1	3.91	131.7	5.98
IIIB+IV	ALL	æ	5,211.9	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01
		4	1,056.9	0.5	0.05	0.5	0.05	0.5	0.05	0.5	0.05	0.5	0.05
		S.	390.2	1.4	0.35	1.4	0.35	1.4	0.35	1.4	0.35	1.4	0.35
		9	55.3	0.0	0.01	0.0	0.01	0.0	0.01	0.0	0.01	0.0	0.01
	Level 1-2	3	3,615.2	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01	-0.3	-0.01
		4	736.8	0.5	0.07	0.5	0.07	0.5	0.07	0.5	0.07	0.5	0.07
		5	280.0	1.4	0.49	1.4	0.49	1.4	0.49	1.4	0.49	1.4	0.49
		9	1.6	0.0	0.40	0.0	0.40	0.0	0.40	0.0	0.40	0.0	0.40
	Level 3-9	3	1,596.7	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		4	320.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
		so v	110.2	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00
			0.55	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00

Table E-1. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	Market Evnension	ion (I IIIA)	4,6)			
			Baseline		%0		1%	C			5 40%	1	705 1
Subgroup	Level	TOS	Total \$	\$ +/-	-/+ %	\$ +/-	-/+ %	· -/+ &	-/+ %	-/+ <i>\$</i>	-/+ % t:	-/+ s	% +/- % +/-
HGC	ALL	3	11,556.2	-322.1	-2.79	-250.0	-2.16	ı	-1.54	31.7	0.27	1	1 46
		4	28,748.9	2,059.0	7.16	2,386.9	8.30		9.44		12.76		14.94
		'n	16,505.7	3,286.6	19.91	3,500.2	21.21		22.50		26.27	•	28.74
		9	3,549.9	590.0	16.62	635.0	17.89		19.16		22.84		25.26
	Level 1-2	m·	5,724.9	-159.2	-2.78	-133.8	-2.34		-1.89		-0.61	1	0.24
		4 ,	14,164.3	2,481.7	17.52	2,657.1	18.76		20.00		23.60		25.96
		v v	8,916.9	3,352.9	37.60	3,485.0	39.08		40.56		44.87	4,253.1	47.70
		٥	1,655.6	617.8	37.32	642.8	38.83		40.34		44.73		47.61
	Level 3-9	.n	5,831.3	-162.9	-2.79	-116.2	-1.99		-1.19	i	1.14		2.67
		4 (14,584.6	-422.7	-2.90	-270.2	-1.85		-0.81		2.23		4.23
		ν ν	7,588.8	-66.4	-0.87	15.2	0.20		1.28		4.40		6.46
a On the		9	1,894.3	-27.8	-1.47	-7.8	-0.41		0.64		3.71		5.73
SENIOR	ALL	m ,	2,669.6	-40.8	-1.53	-12.5	-0.47		0.59		3.67		5.69
		4 v	4,431.2	682.6	15.40	738.8	16.67		17.94		21.63		24.05
		'n,	3,867.9	59.0	1.53	102.2	2.64		3.76		7.01		9.14
		9	585.5	2.3	0.40	8.8	1.50		2.60		5.82		7.92
	Level 1-2	. n	1,757.2	-21.9	-1.25	-3.3	-0.19		0.87		3.96		5.98
		4 ,	2,905.3	621.0	21.38	659.8	22.71		24.04		27.92		30.47
		Ś	2,759.1	78.6	2.85	8.601	3.98		5.11		8.40		10.56
		9	353.1	5.1	1.45	9.1	2.57		3.69		6.93		90.6
	Level 3-9	ω,	912.3	-18.8	-2.06	-9.2	-1.01		0.05	l .	3.13		5.14
		4 ,	1,526.0	61.6	4.04	79.0	5.18		6.32		9.65		11.83
		Ś	1,108.8	-19.6	-1.77	-7.6	-0.69		0.39		3.54		5.60
014	A 1. 4	٥	232.4	-2.8	-1.21	-0.3	-0.13		96.0	- 1	4.12		6.19
52,	ALL	.n	2,658.2	-9.1	-0.34	14.8	0.56		1.46		4.08		5.80
		4 r	1,918.3	42.6	2.22	63.6	3.32		4.41		7.60		9.70
		Λ \	852.2	57.4	6.73	67.2	7.88		9.04		12.39		14.59
	,	٥	162.5	7.7	4.71	9.5	5.84		96.9	- 1	10.24		12.39
	revel 1-2	~) ·	1,540.0	-5.4	-0.35	8.0	0.52		1.39		3.93	ŀ	5.59
		4 r	1,088.0	41.0	3.77	53.1	4.88		5.99		9.22		11.34
		o v	480.3	56.8	11.82	62.5	13.02		14.22		17.72		20.02
		٥	33.0	8.2	24.77	8.6	26.14		27.51		31.51		34.13
	Level 3-9	. n	1,118.2	-3.7	-0.33	8.9	0.61		1.55		4.29	1	60.9
		4 (830.4	1.5	0.18	10.5	1.26		2.34		5.48		7.54
		n (371.9	0.0	0.16	4.6	1.25		2.33		5.49		7.57
			5.671	-0.5	-0.40	6.0	99:0	- 1	1.72		4.81		6.84

Table E-1. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expan	Market Expansion (I-IIIA's)	\\s)			
			Baseline		%0		1.1%	2	2.2%	5	5.4%	7	7.5%
Subgroup	Level	TOS	Total \$	~/+ <i>\$</i>	-/+ %	°/+ \$	-/+ %	8 +/-	-/+%		-/+%	-/+ <i>\$</i>	-/+ %
COLL+	ALL	3	2,003.9	-141.1	-7.04	-124.5	-6.21		-5.39	-59.6	-2.97	1	-1.39
		4	8,490.5	950.5	11.19	1,053.5	12.41		13.62		17.15		19.47
		5	5,357.8	1,424.8	26.59	1,499.1	27.98		29.37		33.40		36.05
		9	1,533.5	333.9	21.77	354.4	23.11		24.45		28.33		30.89
	Level 1-2	3	774.0	-53.9	-6.97	-48.7	-6.29	l	-5.61	ı	-3.63	-18.1	-2.34
		4	3,371.5	1,303.4	38.66	1,354.3	40.17		41.68		46.06		48.94
		5	2,875.7	1,427.5	49.64	1,474.6	51.28		52.92		\$7.68		60.81
		9	833.3	343.2	41.18	356.1	42.73		44.29		48.80		51.77
	Level 3-9	3	1,230.0	-87.2	-7.09	-75.9	-6.17		-5.24	ı	-2.56	l	-0.80
		4	5,119.0	-353.0	-6.90	-300.8	-5.88		-4.86		-1.89		0.05
		s	2,482.2	-2.7	-0.11	24.5	0.99		2.08		5.27		7.36
		9	700.2	-9.3	-1.33	-1.7	-0.25		0.83		3.97		6.03
HG	ALL	3	9,552.3	-181.0	-1.89	-125.5	-1.31		-0.73		96:0	l	2.06
		4	20,258.4	1,108.6	5.47	1,333.4	6.58		7.69		10.92		13.04
		5	11,147.9	1,861.8	16.70	2,001.1	17.95	•	19.20		22.84		25.22
		9	2,016.4	256.2	12.70	280.7	13.92		15.13		18.66		20.98
	Level 1-2	3	4,950.9	-105.3	-2.13	-85.2	-1.72		-1.31	i	-0.13		0.64
		4	10,792.8	1,178.3	10.92	1,302.8	12.07		13.23		16.58		18.79
		5	6,041.2	1,925.5	31.87	2,010.4	33.28	•	34.68		38.77		41.46
		9	822.2	274.7	33.40	286.7	34.87		36.33		40.60		43.39
	Level 3-9	3	4,601.4	-75.7	-1.65	-40.4	-0.88		-0.11	i	2.13	l	3.59
		4	9,465.6	-69.7	-0.74	30.6	0.32		1.38		4.47		6.49
		S	5,106.7	-63.7	-1.25	-9.3	-0.18		0.88		3.98		6.02
		9	1,194.2	-18.5	-1.55	-6.0	-0.51		0.53		3.56		5.55

Table E-1. Forecasted Changes in Total Bonuses Awarded (in Thousands) Relative to Baseline by Subgroup, Incentive Level, TOS, and Market Expansion Condition

							Mark	et Expan	Market Expansion (I-IIIA's)	(\$.1			
			Baseline		%0		1.1%	2	2.2%		5.4%	7	%5 /
Subgroup	Level	LOS	Total \$	*/+ \$	-/+ %	\$ +/-	-/+%	-/+8	-/+%	* /+ \$	·/+ %	7/+8	./+ % //+ %
MALE	ALL	3	16,075.7	-357.8	-2.23	-238.6	-1.48		-0.74		141	1	2.83
		4	31,252.0	2,510.5	8.03	2,872.1	9.19		10.35		13.71	-	15.92
		S	19,101.0	3,046.6	15.95	3,286.5	17.21		18.46		22.12		24.51
		9	3,449.2	493.3	14.30	536.2	15.55	579.1	16.79	703.9	20.41		22.78
	Level 1-2	т	8,718.8	-181.8	-2.09	-125.2	-1.44		-0.79	ı	1.10	1	2.34
		4	17,168.9	2,821.9	16.44	3,035.0	17.68		18.92		22.53		24.90
		vo :	11,491.5	3,112.7	27.09	3,270.7	28.46		29.84		33.84		36.46
		9	1,778.3	519.5	29.21	544.8	30.63		32.05		36.19		38.90
	Level 3-9	ĸ	7,356.9	-176.0	-2.39	-113.4	-1.54		69:0-	i	1.78	ı	3.41
		4	14,083.0	-311.5	-2.21	-162.9	-1.16		-0.10		2.97		4.98
		vo ·	7,609.4	-66.1	-0.87	15.8	0.21		1.28		4.42		6.47
		9	1,670.8	-26.2	-1.57	9.8-	-0.51		0.54		3.62		5.63
FEMALE	ALL	w.	808.3	-14.2	-1.75	-9.1	-1.12		-0.49		1.35	1	2.56
		4	3,846.5	273.7	7.12	317.2	8.25		9.38		12.66		14.82
		'n	2,124.9	356.4	16.77	383.0	18.03		19.28		22.93		25.33
		9	848.8	106.8	12.58	117.1	13.80		15.02		18.57		20.90
	Level 1-2	m·	303.3	4.7	-1.55	-3.9	-1.28		-1.02	1	-0.26	ı	0.25
		4 (988.6	321.8	32.56	335.0	33.88		35.21		39.07		41.61
		vo v	664.7	375.6	56.50	386.6	58.15		59.80		64.60		67.75
	,	9	263.4	111.6	42.38	115.8	43.94		45.51		50.06		53.05
	Level 3-9	m·	505.0	-9.5	-1.88	-5.2	-1.02		-0.17		2.32	1	3.95
		4 '	2,857.9	-48.1	-1.68	-17.8	-0.62		0.44		3.52		5.55
		'n	1,460.1	-19.2	-1.32	-3.5	-0.24		0.83		3.96		6.02
		9	585.3	-4.9	-0.83	1.4	0.23		1.30		4.39	37.6	6.43

Appendix F: Forecasted Impact Of Market Expansion – Illustrative Cases

Forecasted Impact of Market Expansion – Illustrative Cases

To complement the MOS channeling effects analyses presented in the paper, we extended the analysis to include the impact of raising the bonus cap under different market expansion conditions. These conditions are purely illustrative.

Since applicants of average or lower quality (IIIBs and below) are not expected to benefit from raising the bonus cap, their total in the Army applicant pool were kept constant in our market expansion simulations. That is, only the I-IIIA segment of the applicant pool was assumed to expand in our analysis. The illustrative I-IIIA market expansion rates employed in our simulations are (a) = 1.1%, (b) = 2.2%, and (c) = 5.4%.

To operationalize the non-zero market expansion in the simulations, the required weights were applied to the computed choice probabilities of I-IIIA applicants. For example, when aggregating the choice probabilities under the 2.2% market expansion condition, those computed from the choice set for I-IIIA applicants are weighted by 1.022, while probabilities obtained from IIIB applicants and lower were assigned unit weights. Thus, the predicted enlistment choices of each I-IIIA applicant counted an additional 2.2% in the corresponding aggregated MOS/TOS percentages. Employing this weighing scheme resulted in the desired percentage increase in total I-IIIA applicants for each condition.

Figure F-1 summarizes the forecasted impact from an expanded market of high quality applicants, specifically I-IIIA's, on accessions by MOS.²⁴ Overall, an expanded applicant pool of I-IIIA's has the potential to:

- Further increase the percent of I-IIIA's accessing to higher priority MOS. Specifically, expanding the market of I-IIIA's by 2.2% and 5.4% over the current applicant pool could increase the percent of I-IIIA's accessing to higher priority MOS, on average, by 12.1% and 15.6%, respectively. Among the higher priority MOS, the gains are projected to be greatest for 13F, 89D, and 92F—increases of 16-28% each.
- Mitigate the potentially harmful channeling effects on lower priority MOS to be expected from raising the existing bonus cap to \$40K. As observed previously, raising the cap is projected to channel I-IIIA's to high priority MOS at the expense of low priority MOS. Holding all other factors constant, our simulation indicates that even a modest expansion of the applicant market (an increase in I-IIIA's between 2.2 and 5.4 percent) carries the potential to ameliorate these channeling effects, such that all MOS enjoy a gain in higher quality accessions relative to existing conditions.

-

²⁴ For a complete breakdown of results, see Appendix B.

Figure F-1. Percent Change in Accessions (AFQT Category I-IIIA's) Relative to Baseline Under 1.1%, 2.2%, and 5.4% Market Expansion