United International University (UIU) Mid-term Preparation Session (Fall 2024)

Course: Data Structures & Algorithms – 1 (DSA 1)

Instructor:

Mahfuz Hasan Reza

Founder, Learn With Mahfuz

Head, Academic & Growth, **UIU APP FORUM**

Organized By:

Computronix Academy, **UIU APP FORUM**

Time Complexity Analysis

- Time Complexity Video (In-Depth)
- Time Complexity Previous Question Solve (.pdf)

Asymptotic Analysis

- 1. Big-Oh (O) Worst Care
- 2. Big-Omega (1) Best Core

 3. Theta (0) Average Core

Big-O Notation (O-notation)

 $O(g(n)) = \{ f(n): \text{ there exist positive constants c}$ and n0 such that $0 \le f(n) \le cg(n) \text{ for all } n \ge n0 \}$

$$f(n) = O(g(n))$$

Omega Notation (Ω -Notation):

 $\Omega(g(n)) = \{ f(n): \text{ there exist positive constants } c$ and n0 such that $0 \le cg(n) \le f(n) \text{ for all } n \ge n0 \}$

$$f(n) = 12 (g(n))$$

 $f(n) > c \cdot g(n)$; $n > n_0$
 $f(n) > c \cdot g(n)$; $g(n) = 1$

Theta Notation (0-Notation):

 Θ (g(n)) = {f(n): there exist positive constants c1, c2 and n0 such that $0 \le c1 * g(n) \le f(n) \le c2 * g(n)$ for all $n \ge n0$ }

Note: $\Theta(g)$ is a set

$$C(3m) \leq f(n) \leq C(3m);$$

$$f(n) = O(3m)$$

Function	Descriptor	Big-Oh
С	Constant	O(1)
$\log n$	Logarithmic	$O(\log n)$
n	Linear	O(n)
$n \log n$	$n \log n$	$O(n \log n)$
n^2	Quadratic	$O(n^2)$
n^3	Cubic	$O(n^3)$
n^{k}	Polynomial	O(n ^k)
2^n	Exponential	$O(2^{n})$
n!	Factorial	O(n!)

Insertion Sort

 Insertion Sort in 1 Video (Theory, Code, Dry Run (Simulation) and Time
 Complexity)

Insertion Sort Algorithm

```
for(int i=1; i<size; i++){</pre>
    int tmp=arr[i];
    int j=i-1;
    while(arr[j]>tmp && j>=0){
        arr[j+1]=arr[j];
        j--;
    arr[j+1]=tmp;
```


Insertion Sort Complexity

Time Complexity	
Best	O(n)
Worst	O(n ²)
Average	O(n ²)
Space Complexity	O(1)

Arrays: Memory Mapping

Row-Major Mapping

Address(A[i][j])=
$$L_o + [i * n + j] *w$$

Column-Major Mapping

Address(A[i][j])=
$$L_o + [j * m + i] *w$$

Linear Search

```
int search(int array[], int n, int x) {
   // Going through array sequencially
   for (int i = 0; i < n; i++)
      if (array[i] == x)
      return i;
   return -1;
}</pre>
```


Binary Search

```
int binarySearch(int array[], int x, int low, int high) {
       // Repeat until the pointers low and high meet each other
 while (low <= high) {
   int mid = low + (high - low) / 2;
   if (x == array[mid])
     return mid;
   if (x > array[mid])
     low = mid + 1;
   else
     high = mid - 1;
 return -1;
```


Binary Search

Time Complexities

- Best case complexity: 0(1)
- Average case complexity: 0(log n)
- Worst case complexity: 0(log n)

Space Complexity

The space complexity of the binary search is 0(1).

Counting Sort

for (i=1 i < n i i++) count [i]+ = count [i-i]

Counting Sort

Complexity

Time Complexity	
Best	O(n+max)
Worst	O(n+max)
Average	O(n+max)
Space Complexity	O(max)
Stability	Yes

Merge Sort

Merge Sort

```
MergeSort(A, p, r):
    if p > r
        return
    q = (p+r)/2
    mergeSort(A, p, q)
    mergeSort(A, q+1, r)
    merge(A, p, q, r)
```

```
Have we reached the end of any of the arrays?

No:

Compare current elements of both arrays

Copy smaller element into sorted array

Move pointer of element containing smaller element

Yes:

Copy all remaining elements of non-empty array
```


Merge Sort Complexity

O(n*log n)
O(n*log n)
O(n*log n)
O(n)
Yes

Quicksort Complexity

Time Complexity		
Best	O(n*log n)	
Worst	O(n ²)	
Average	O(n*log n)	
Space Complexity	O(log n)	
Stability	No	

Linked List

Stack and Queue

Tower of Hanoi

- Move n-1 Discs from A to B using C
- Move a Disc from A to C
- Move n-1 Discs from B to C using A

```
void TOH(int n, int A, int B, int C)
{
     if(n>0)
     {
          TOH(n-1, A, C, B);
          printf( "Move a Disc from %d to %d", A, C);
          TOH(n-1, B, A, C);
     }
}
```


Application of Stacks: Convert Infix to Postfix Expression

Click here to see this video!

THANK YOU?

