Application of Optimal Mass Transportation to Medical Image Analysis

Jia-Wei Liao Advisor: Wen-Wei Lin

Department of Applied Mathematics National Yang Ming Chiao Tung University Geometry Information and Medical Image Lab

April 29, 2022

- Introduction
- 2 Related work
- Methods
- 4 Experiment results
- Conclusion

- Introduction
- 2 Related work
- Methods
- 4 Experiment results
- Conclusion

Introduction

RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS)

Flair

Whole Tumor

Tumor Core

Enhace Tumor

tumor	label	
WT	1, 2, 4	
TC	1, 4	
ET	4	

Table 1: The label of WT, TC, and ET.

Introduction

- Motivation: reduce memory usage and keep global information
- Idea: map irregular domain to regular domain
- Oifficulty: high conversion loss

Figure 1: An illustration for the OMT

- Introduction
- 2 Related work
- Methods
- 4 Experiment results
- Conclusion

Optimal Mass Transportation

OMT Problem

Let $(X,\mu),(Y,\nu)$ be two measurable spaces which have the same total mass $\int_X 1d\mu = \int_Y 1d\nu$. Let $\mathcal F$ be the set of measure-preserving maps and $c:X\times Y\to [0,\infty]$ be a cost function of transportation. The OMT problem is to find a map $f^*\in\mathcal F$ that minimizes the transportation cost

$$f^* = \arg\min_{f \in \mathcal{F}} \int_X c(x, f(x)) d\mu.$$

Discrete OMT

Definition (Discrete OMT Problem)

The discrete OMT problem with respect to $\|\cdot\|_2$ can represent as

$$\mathbf{f}^* = \arg\min_{\mathbf{f} \in \mathbb{F}_{\mu_V}} \sum_{i=1}^{n_v} \|v_i - \mathbf{f}_i^*\|_2^2 \, \mu_V(v_i)$$

where the local measure at the vertex v is

$$\mu_V(v) = \frac{1}{4} \sum_{v \subset \tau, \tau \in \mathcal{T}(\mathcal{B})} \operatorname{vol}(\tau) \cdot \rho(v)$$

and the space of mass-preserving map is

$$\mathbb{F}_{\mu_V} = \left\{ \begin{array}{l} \mathbf{f} \in \mathbb{R}^{n_v \times 3} \; \middle| \; \text{ f is the inducing matrix for a mass-preserving} \\ \text{map } f: (\mathcal{B}, \mu_V) \to (\mathcal{C}, \text{vol}) \end{array} \right.$$

Discrete OMT

OMT steps

- Solve the boundary map by projection gradient method.
- Solve the interior map by homotopy method.

Definition (Spherical OMT Problem)

$$\mathbf{g}^* = \arg\min_{\mathbf{f} \in G_{\mu_S}} \sum_{i=1}^{n_B} \|v_i - \mathbf{g}_i^*\|_2^2 \, \mu_S(v_i)$$

where the space of mass-preserving map is

$$\mathbb{G}_{\mu_S} = \left\{ \begin{array}{l} \mathbf{g} \in \mathbb{R}^{n_{\mathrm{B}} \times 3} & \mathbf{g} \text{ is the inducing matrix for a mass-preserving} \\ \text{map } g : (\partial \mathcal{B}, \mu_S) \to (\mathbb{S}^2, \text{area}) \end{array} \right.$$

Definition (Spherical OMT Problem)

$$\mathbf{g}^* = \underset{\mathbf{f} \in G_{\mu_S}}{\arg\min} \sum_{i=1}^{n_B} \|v_i - \mathbf{g}_i^*\|_2^2 \mu_S(v_i)$$

where the local measure at the vertex v as

$$\mu_{\mathcal{S}}(v) = \frac{1}{3} \sum_{v \subset \tau, \tau \in \mathcal{F}(\partial \mathcal{B})} \operatorname{area}(\tau) \cdot \rho(v).$$

Let \mathcal{P}_* be a projection operator. Then \mathbf{g}^t can update by

$$\mathbf{g}^{t+1} = \mathcal{P}_{\mathbb{G}_{\mu_{S}}}(\mathbf{g}^{t} - \eta^{t} \nabla C(\mathbf{g}^{t}))$$

where the cost function $C(\mathbf{g}) = \sum_{i=1}^{n_{\rm B}} \|v_i - \mathbf{g}_i^*\|_2^2 \mu_S(v_i)$ and the learning rate η is chosen by line search.

Projection operator

- ① Normalize to spherical $g(v) \leftarrow \frac{g(v)}{\|g(v)\|_2}$.
- $oldsymbol{\circ}$ Compute the spherical mass-preserving parameterization with g as initial.
- 3 Adjust the optimal rotation by SVD.

- **1** Compute the spherical OMT map $g_1: \partial \mathcal{B} \to \mathbb{S}^2$ with density ρ .
- ② Compute the spherical OMT map $g_2:\partial\mathcal{C}\to\mathbb{S}^2$ with area-preserving.
- **3** Compose the map by $g = g_2^{-1} \circ g_1$.

Figure 2: Compose the spherical OMT map

Solving the interior map by homotopy method

Let $0 = t_0 < t_1 < ... < t_p = 1$ be the p piece of [0,1] and

$$\mathbf{f}_{\mathrm{B}}^{(k)} = (1 - t_k)V_{\mathrm{B}} + t_k \mathbf{g}$$

be the homotopy of boundary map. We solve the interior map by

$$[L_V(f^{(k-1)})]_{I,I}\mathbf{f}_I^{(k)} = -[L_V(f^{(k-1)})]_{I,B}\mathbf{f}_B^{(k)}.$$

Figure 3: Homotopy flowchart

- Introduction
- 2 Related work
- Methods
- 4 Experiment results
- Conclusion

Two-Phase training process

Figure 4: Two-Phase training flowchart

Density function

Let I be the grayscale of flair, HE be the histogram equalization.

1 Phase 1 OMT density function:

$$\rho_1(v) = \exp(\gamma \cdot \mathsf{HE}(I(v))), v \in \mathcal{B}$$

Phase 2 OMT density function:

$$ho_2(v) = egin{cases} \exp(\gamma \cdot \operatorname{HE}(I(v))), & ext{if } v \in \mathcal{R} \ 1.0, & ext{if } v \in \mathcal{B} \setminus \mathcal{R} \end{cases}$$

Figure 5: Region of density

Model architecture

Figure 6: Multi-Head UNet (MHUNet) architecture

- Introduction
- 2 Related work
- Methods
- Experiment results
- Conclusion

Conversion loss

Let Y be the ground truth, $T:\mathcal{B}\to\mathcal{C}$ be the OMT map, and $T^{-1}:\mathcal{C}\to\mathcal{B}$ be the inverse OMT map. We defined the conversion loss

$$1 - \frac{2|Y \cap (T^{-1} \circ T)(Y)|}{|Y| + |(T^{-1} \circ T)(Y)|}$$

	Phase 1		Phase 2			
Grid size	WT	TC	ET	WT	TC	ET
112^{3}					0.12%	
128^{3}	0.34%	0.38%	0.96%	0.02%	0.02%	0.05%

Table 2: Conversion loss of data.

OMT data visualize

data	WT	TC	ET
raw data	6.49%	2.42%	1.45%
128^3 cube with $\gamma=1.0$	13.47%	5.03%	3.04%
128^3 cube with $\gamma=1.5$	18.27%	6.84%	4.14%
128^3 cube with $\gamma=1.75$	20.93%	7.84%	4.75%
128^3 cube with $\gamma=2.0$	23.72%	8.90%	5.40%

Table 3: Proportion of tumor in brain

raw data

 $\gamma = 1.0$

 $\gamma = 1.5$

 $\gamma = 1.75$

 $\gamma = 2.0$

Figure 7: Case BraTS2021_00003

Validation result

Let P, G be a prediction and ground truth. The dice similarity coefficient (DSC) is defined as

$$DSC(P,G) = \frac{2|P \cap G|}{|P| + |G|}$$

Model	WT	TC	ET
VNet	0.9318	0.9005	0.8691
UNet	0.9305	0.9023	0.8646
ResUNet	0.9307	0.9101	0.8602
MHUNet	0.9321	0.9146	0.8683

Table 4: DSC of validation dataset

Test result

Model	WT	TC	ET
MDUNet	0.9196	0.8644	0.8277
MDUNet + TTA	0.9201	0.8686	0.8308

Table 5: DSC of testing dataset

Figure 8: Box plot of DSC of testing dataset

- Introduction
- 2 Related work
- Methods
- 4 Experiment results
- Conclusion

Conclusion

- OMT map an object from an irregular domain to a regular domain, which reduce memory usage and keep global information.
- OMT can generate data augmentation by using the different parameters of density.
- We propose the Two-Phase training process.

Reference

- M.-H. Yueh, T.-M. Huang, T. Li, W.-W. Lin, and S.-T. Yau, "Projected gradient method combined with homotopy techniques for volume-measure-preserving optimal mass trans-portation problems," J. Sci. Comput., no. 64, 2021.
- W.-W. Lin, C. Juang, M.-H. Yueh, T.-M. Huang, T. Li, S. Wang, and S.-T. Yau, 3D Brain Tumor Segmentation Using a Two-Stage Optimal Mass Transport Algorithm, Scientific Reports, 11, 14686, 2021. https://doi.org/10.1038/s41598-021-94071-1
- O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

THE END

Thanks for listening!

