NSR Search Results Page 1 of 4

Visit the <u>Isotope Explorer</u> home page!

24 reference(s) found:

Keynumber: 1999HO26

Reference: Astrophys.J. 521, 735 (1999)

Authors: R.D.Hoffman, S.E.Woosley, T.A.Weaver, T.Rauscher, F.-K.Thielemann **Title:** The Reaction Rate Sensitivity of Nucleosynthesis in Type II Supernovae

Keyword abstract: NUCLEAR REACTIONS 32 S, 39 K, 45 , 46 Ca, 50 V, 69 , 70 Zn(n, γ), 33 S, 43 Ca, 44 Sc (p, γ), 33 S, 40 K, 45 Ti(n, α), 40 K, 45 Ti(n,p), 44 Ti(α ,p), 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca, 44 Ti(α , γ),E not given; applying distallar reactions rates. Soveral libraries compared

analyzed stellar reactions rates. Several libraries compared.

Keynumber: 1989DU03

Reference: Nucl.Instrum.Methods Phys.Res. A278, 484 (1989)

Authors: P.Durner, T.von Egidy, F.J.Hartmann **Title:** Neutron-Capture Gamma Rays below 40 keV

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁹K, ⁵¹V, ¹²⁷I, ¹³³Cs, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁹¹Ir, ¹⁹⁷Au, ²³²Th(n,γ),E=low; meaured Eγ,absolute Iγ. ²⁸Al, ⁴⁰K, ⁵²V, ¹²⁸I, ¹³⁴Cs, ¹⁶⁰Tb, ¹⁶⁶Ho, ¹⁷⁰Tm, ¹⁷⁶Lu, ¹⁸²Ta, ¹⁹²Ir, ¹⁹⁸Au, ²³³Th deduced transitions. Si-Li detector.

Keynumber: 1988SE06

Reference: Z.Phys. A330, 141 (1988)

Authors: H.Seyfarth, S.Brant, P.Gottel, V.Paar, D.Vorkapic, D.Vretenar **Title:** Low-Lying States and Degree of Chaoticity of ⁴⁰K in IBFFM

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured $\gamma\gamma(\theta)$,E γ ,I γ . 40 K deduced

levels, J, π , γ -branching ratios, δ , γ -multipolarity. Interacting boson-fermion model.

Keynumber: 1986KR16

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n,γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Keynumber: 1985VOZV

Reference: Proc.AIP Conf.Capture Gamma-Ray Spectroscopy and Related Topics, Knoxville, Tenn., (1984), S.Raman, Ed., AIP, New York, p.305 (1985)

Authors: T.von Egidy, P.Hungerford, H.H.Schmidt, H.J.Scheerer, A.N.Behkami, G.Hlawatsch, B.Krusche, K.P.Lieb, H.G.Borner, S.A.Kerr, K.Schreckenbach

Title: Structural and Statistical Aspects of Extensive Level Schemes from (n,γ) and Transfer Reactions **Keyword abstract:** NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³⁵Cl, ³⁹, ⁴⁰, ⁴¹K, ¹¹³Cd, ¹³³Cs, ¹⁵⁴Sm, ¹⁵³Eu, ¹⁵⁴Gd, ¹⁶⁰, ¹⁶²Dy(n,γ), (n,e),E not given; measured not given. ²⁰F, ²⁴Na, ²⁸Al, ³⁶Cl, ⁴⁰, ⁴¹, ⁴²K, ¹¹⁴Cd, ¹³⁴Cs, ¹⁵⁵Sm, ¹⁵⁴Eu, ¹⁵⁵Gd, ¹⁶¹, ¹⁶³Dy deduced levels,γ-transition multipolarity,strength distribution.

NSR Search Results Page 2 of 4

Keynumber: 1984VO01

Reference: J.Phys.(London) G10, 221 (1984)

Authors: T.von Egidy, H.Daniel, P.Hungerford, H.H.Schmidt, K.P.Lieb, B.Krusche, S.A.Kerr,

G.Barreau, H.G.Borner, R.Brissot, C.Hofmeyr, R.Rascher

Title: Levels and Gamma Transitions of ⁴⁰K Studied by Neutron Capture

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured E γ ,I γ . 40 K deduced

neutron binding energy, levels, J, π , γ -branching. Shell, statistical models.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1974OP01

Reference: Nucl. Phys. A222, 388 (1974)

Authors: A.M.F.Op Den Kamp

Title: Circular Polarization and γ-γ Angular Correlation Measurements in the 39 K(n,γ) 40 K Reaction **Keyword abstract:** NUCLEAR REACTIONS 39 K(polarized n,γ),E=thermal; measured circular polarization pγ(θ), σ (Εγ,θ(γ)). 40 K levels deduced J, π ,γ-mixing,fractions in the capture state. Natural target.

Keynumber: 1974ISZX

Coden: THESIS DABBB 34B 5613

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰K deduced levels,Q,γ-multiplicity,level-width.

NSR Search Results Page 3 of 4

Keynumber: 1973OPZZ Coden: REPT RCN-184

Keyword abstract: NUCLEAR REACTIONS K, 39 , 41 K, 57 Fe(n, γ); measured E γ ,I γ , $\gamma\gamma$ (θ),Q. 40 , 42 K

deduced levels, J, π, γ -branching. ⁵⁸Fe levels deduced J.

Keyword abstract: RADIOACTIVITY ⁴⁰, ⁴²K; measured Εγ,Ιγ.

Keynumber: 1973OPZX Coden: REPT RCN-203 P298

Keyword abstract: NUCLEAR REACTIONS ³⁹K(polarized n, γ); measured E γ ,I γ ,CP, $\gamma\gamma$ (θ). ⁴⁰Ca levels

deduced J. π . γ -mixing.

Kevnumber: 1972SE19

Reference: Nucl.Instrum.Methods 105, 301 (1972)

Authors: H.Seyfarth, A.M.Hassan, B.Hrastnik, P.Gottel, W.Delang

Title: Efficiency Determination for Some Standard Type Ge(Li) Detectors for Gamma-Rays in the

Energy Range from 0.04 to 11 MeV

Keyword abstract: NUCLEAR REACTIONS ³⁹K, ⁴⁵Sc(n,γ),E=thermal; measured Eγ,Iγ. ⁴⁰K, ⁴⁶Sc

deduced transitions.

Keynumber: 1972OPZZ

Coden: CONF Budapest, Contributions, P104, AM F Op den Kamp, 10/11/72

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ), measured γ -CP. 40 K level deduced J.

Kevnumber: 1972OP02

Reference: Phys.Lett. 39B, 204 (1972)

Authors: A.M.F.Op den Kamp, J.Kopecky, F.Stecher-Rasmussen, K.Abrahams, P.M.Endt **Title:** Interference of the Two Spin Components of the Capture State in the (n, γ) Reaction **Keyword abstract:** NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured γ -CP; deduced

interference of 2 spin components in capture state.

Keynumber: 1972OP01

Reference: Nucl. Phys. A180, 569 (1972) **Authors:** A.M.F.Op den Kamp, A.M.J.Spits

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ³⁹K Enriched Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K, ¹H, ⁶Li, ¹²C, ¹⁹F, ⁴⁰Ar, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E= thermal; 19 F, 28 Si(n,n' γ),E=fast; measured E γ ,I γ . 39 K(n, γ),E=thermal; measured E γ ,I γ , γ γ -coin; deduced

Q. ⁴⁰, ⁴²K deduced levels,γ-branching. Ge(Li),NaI detectors.

Kevnumber: 1972GOZN

Coden: CONF Budapest, Contributions, P114, 10/12/72

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured $\gamma\gamma(\theta)$,E γ ,I γ , $\gamma\gamma$ -coin;

deduced Q. 40 K deduced levels, J, π .

Keynumber: 1971GOYN

Coden: REPT JUL-788-NP,P Goettel

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$. 154 Eu;

measured γγ-coin, γγ(θ). 40 K, 154 Gd levels deduced γ-mixing.

NSR Search Results Page 4 of 4

Keynumber: 1970JO04

Reference: Can.J.Phys. 48, 1109 (1970) **Authors:** L.V.Johnson, T.J.Kennett

Title: Study of Thermal Neutron Capture in Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K(n, γ), E=thermal; measured E γ , I γ , $\gamma\gamma$ -coin;

deduced Q. 40 K deduced levels, J, π , γ -branching. Ge(Li) detectors.

Keynumber: 1970EI03

Reference: Z.Phys. 233, 154 (1970) **Authors:** J.Eichler, F.Djadali

Title: Beitrag zur Kernspektroskopie an ³⁶Cl, ⁹⁰Y und ⁴⁰K durch Messung der Polarisation von γ-

Strahlung nach Neutroneneinfang

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 39 K, 89 Y(polarized n, γ), E=thermal; measured γ -

circular polarization. 36 Cl level deduced γ -mixing. 40 K, 90 Y levels deduced J, π .

Keynumber: 1969BO04

Reference: Can.J.Phys. 47, 591(1969)

Authors: J.F.Boulter, W.V.Prestwich, B.Arad **Title:** Lifetime of the 29.4 keV Level in ⁴⁰K

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ),E=thermal; measured $\gamma\gamma$ -delay. 40 K deduced

 $T_{1/2}$.

Keynumber: 1969AB03

Reference: Nucl.Phys. A124, 34 (1969) **Authors:** K.Abrahams, W.Ratynski

Title: Circular Polarization of γ-Radiation After Capture of Polarized Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ³⁹K, ⁴⁰Ca, ⁴⁸Ti, ⁵⁹Co, ¹¹³Cd, ²⁰⁷Pb(n,γ), E=thermal; measured Pγ. Εγ. ⁴⁰K, ⁴¹Ca, ⁴⁹Ti, ⁶⁰Co, ¹¹⁴Cd, ²⁰⁸Pb, deduced levels, J. delta, Natural targets, Ge(Li)

detector.

Keynumber: 1966KE07

Reference: Nucl.Phys. 89, 254(1966)

Authors: T.J.Kennett, L.B.Hughes, W.V.Prestwich

Title: The 39 K(n, γ) 40 K Reaction

Keyword abstract: NUCLEAR REACTIONS 39 K(n, γ), E = th; measured E γ , I γ , deduced Q. 40 K

deduced levels. Natural target.
