Roger Access Control System

Instrukcja instalacji czytników MCT12E / MCT64E / MCT66E

Wersja produktu: 1.1

Oprogramowanie firmowe: 1.0.2 i wyższe

Wersja dokumentu: Rev. D

CE

Niniejszy dokument zawiera minimum informacji wymaganych do skonfigurowania, podłączenia i zamontowania urządzenia. Pełny opis funkcjonalności oraz parametrów konfiguracyjnych danego czytnika dostępny w jego instrukcji obsługi dostępnej na stronie www.r

WSTĘP

Czytnik przeznaczony jest do pracy w systemie RACS 5 i pełni funkcję urządzenia podrzędnego względem kontrolera dostępu, do którego podłączany jest za pośrednictwem magistrali RS485. Fabrycznie nowy czytnik posiada adres ID=100 a jego pozostałe nastawy są skonfigurowane do wartości domyślnych. Przed podłączeniem czytnika do kontrolera dostępu należy nadać mu niepowtarzalny adres RS485 z zakresu 100-115. Programowanie pozostałych parametrów konfigurujących czytnika jest opcjonalne i zależy od indywidualnych wymagań systemu. Zaprogramowanie adresu może być wykonane z poziomu komputera (program RogerVDM) lub manualnie w trakcie procedury resetu pamięci. Konfigurowanie ustawień czytnika z poziomu programu RogerVDM wymaga użycia interfejsu RUD-1.

KONFIGURACJA Z POZIOMU ROGERVDM

W celu konfiguracji czytnik należy podłączyć do komputera za pośrednictwem interfejsu RUD-1 (rys. 1) i uruchomić program narzędziowy RogerVDM.

Rys. 1 Sposób podłączenia czytnika MCT do interfejsu RUD-1

Procedura programowania z poziomu programu RogerVDM:

- Podłącz czytnik do interfejsu RUD-1 zgodnie z rys. 1, a interfejs RUD-1 do portu USB komputera.
- Uruchom program RogerVDM i wskaż urządzenie MCT, wersję firmware, kanał komunikacyjny RS485 oraz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1.
- Kliknij Połącz, program nawiąże połączenie z czytnikiem i automatycznie przejdzie do zakładki Konfiguracja.
- Ustaw odpowiedni adres RS485 w zakresie 100-115 oraz stosownie do indywidualnych wymagań pozostałe nastawy konfiguracyjne.
- Kliknij przycisk Wyślij do urządzenia a program prześle nowe ustawienia do czytnika.
- Opcjonalnie zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie Zapisz do pliku...).
- Po ukończeniu konfiguracji w programie RogerVDM w menu górnym wybierz Urządzenie -> Rozłącz.
- Odłącz czytnik od interfejsu RUD-1.

Uwaga: Podczas współpracy czytnika z programem RogerVDM nie używaj klawiatury ani nie zbliżaj karty do czytnika.

PROCEDURA RESETU PAMIĘCI

Procedura resetu pamięci umożliwia ustawienie nowego adresu czytnika na magistrali RS485 i jednocześnie kasuje wszystkie pozostałe nastawy konfiguracyjne przywracając ustawienia fabryczne.

Procedura resetu pamieci:

- Usuń wszystkie połączenia z linii A i B.
- Zewrzyj linie CLK i DTA.
- 3. Wykonaj restart czytnika (wyłącz/włącz zasilanie lub zewrzyj na chwilę styki RST).
- Gdy zaświeci się czerwony LED STATUS, zielony LED OPEN i pomarańczowy LED SYSTEM, rozewrzyj linie CLK i DTA.

- 5. Gdy świeci się pomarańczowy LED SYSTEM wprowadź trzy cyfry określające adres RS485 w przedziale 100-115 za pomocą klawiatury lub poprzez odczyt dowolnej karty zbliżeniowej standardu EM125kHz.
- Po wprowadzeniu trzeciej cyfry urządzenie wykona automatycznie restart i uruchomi się z nowo zaprogramowanym adresem.

W przypadku czytników bez klawiatury, trzy cyfry konfigurujące adres wprowadza się metodą wielokrotnego odczytu karty. W metodzie tej w celu wprowadzenia cyfry N należy N-krotnie odczytać dowolną kartę zbliżeniową standardu EM 125 kHz a następnie odczekać do momentu pojawienia się podwójnego bip-u i po tym sygnale zaprogramować kolejną cyfrę adresu. Emulację cyfry 0 wykonuje się przez 10-krotny odczyt karty.

Programowanie adresu ID=101 metodą wielokrotnego odczytu karty zbliżeniowej:

- Odczytaj 1-krotnie kartę i zaczekaj na podwójny bip.
- Odczytaj 10-krotnie kartę i zaczekaj na podwójny bip.
- Odczytaj 1-krotnie kartę i zaczekaj na podwójny bip.
- Odczekaj aż czytnik się zrestartuje przyjmując nowy adres oraz pozostałe nastawy fabryczne.

AKTUALIZACJA OPROGRAMOWANIA

W celu aktualizacji oprogramowania firmowego czytnik należy podłączyć do komputera za pośrednictwem interfejsu RUD-1 (rys. 1) i uruchomić program narzędziowy RogerISP. Plik z aktualnym firmware dostępny jest na stronie www.roger.pl

Procedura aktualizacji oprogramowania:

- Podłącz czytnik do interfejsu RUD-1 zgodnie z rys. 1, a interfejs RUD-1 do
- portu USB komputera. Załóż zworkę na styki FDM (rys. 2).
- Wykonaj restart czytnika (wyłącz/włącz zasilanie lub zewrzyj na chwilę styki
- Uruchom program RogerISP.
- Wybierz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1 i zaznacz Programowanie przez RS485.
- Wskaż ścieżkę dostępu do pliku firmware (*.hex)
- Kliknij *Programuj* i postępuj zgodnie z komunikatami na ekranie. Zdejmij zworkę ze styków FDM i wykonaj restart czytnika.

DODATKI

Rvs. 2 Lokalizacia stvków serwisowych

Tabela 1. Opis zacisków/przewodów czytnika				
Nazwa	Kolor przewodu	Kolor przewodu	Opis	
zacisku	(MCTxxE-IO)	(MCTxxE)		
12V	Czerwony	Czerwony	Plus zasilania	
GND	Czarny	Niebieski	Minus zasilania	
IN1	Różowy		Linia wejściowa IN1	
IN2	Niebieski		Linia wejściowa IN2	
IN3	Biało-żółty		Linia wejściowa IN3	
RS485 A	Brązowy	Brązowy	Interfejs RS485, linia A	
RS485 B	Zielono-biały	Biały	Interfejs RS485, linia B	
CLK	Biały	Zielony	Linia CLK	
DTA	Zielony	Żółty	Linia DTA	
TMP	Żółty	Różowy	Łącznik	
			antysabotażowy	
TMP	Szary	Szary	Łącznik	
			antysabotażowy	
IO1	Żółto-brązowy		Linia wyjściowa IO1	

102	Zielono- brązowy	Linia wyjściowa IO2
REL1-NC	Szaro-różowy	Styk normalnie zwarty przekaźnika REL1
REL1-COM	Czerwono- niebieski	Styk wspólny przekaźnika REL1
REL1-NO	Fioletowy	Styk normalnie otwarty przekaźnika REL1

Rys. 3 Podłączenie czytników i ekspanderów do kontrolera serii MC16

Rys. 4 Podłączenie zamka, czujnika otwarcia drzwi i przycisku wyjścia do czytnika MCTxx-IO

Tabela 2. Dane techniczne				
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15VDC			
Pobór prądu (średni)	MCT12E/MCT12E-IO: ~50 mA			
	MCT12E-BK/MCT12E-BK-IO: ~40 mA			
	MCT64E-IO: ~50 mA			
	MCT66E-IO: ~40 mA			
Wejścia	Trzy wejścia (IN1IN3) elektrycznie połączone			
	wewnętrznie z +12V przez rezystor 5,6 kΩ. Dla			
	linii typu NO i NC próg wyzwolenia na poziomie			
	ok. 3,5V			
Wyjścia przekaźnikowe	Wyjście przekaźnikowe (REL1) z pojedynczymi			
	stykami NO/NC, obciążalność 30V/1,5A DC/AC			
Wyjścia tranzystorowe	Dwa wyjścia tranzystorowe (IO1, IO2) typu otwarty			
	kolektor, maks. obciążenie 15VDC/1A			
Ochrona antysabotażowa	, , ,			
(TAMPER)	zamknięta			
Karty	EM 125 kHz UNIQUE, zgodne z EM4100/4102			
Zasięg odczytu	Do 7 cm			
Odległości	Do 1200 m długości magistrali RS485 pomiędzy			
	kontrolerem a czytnikiem			
Stopień ochrony IP	MCT12E: IP65			
	MCT64E-IO: IP64			
	MCT66E-IO: IP64			

Klasa środowiskowa (wg EN 50133-1)	Klasa IV, warunki zewnętrzne ogólne, temperatura otoczenia: -25°C- +60°C, wilgotność względna od 10 do 95% (bez kondensacji)
Wymiary W x S x G	MCT12E: 152,5 x 46 x 23(35) mm MCT64E-IO: 115 x 80 x 35 mm MCT66E-IO: 85 x 85 x 27 mm
Waga	~150g
Certyfikaty	CE; RoHS

Uwaga: Zachowanie stopnia szczelności obudowy jest gwarantowane przy założeniu szczelnego przylegania spodu obudowy do podłoża, na którym jest urządzenie zainstalowane. Po stronie instalatora leży uszczelnienie przestrzeni pomiędzy spodem obudowy a podłożem, na którym urządzenie jest zamontowane.

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt:
Roger Sp. z o. o. sp. k.
82-400 Sztum
Gościszewo 59
Tel.: +48 55 272 0132
Faks: +48 55 272 0133
Pomoc tech.: +48 55 267 0126
Pomoc tech. (GSM): +48 664 294 087

E-mail: <u>biuro@roger.pl</u> Web: <u>www.roger.pl</u>