5.7 Online mirror descent	

Quadratic regularization is imposing a certain prior knowledge where there is a good Wo in a small Lz ball.

Now we develop a general way of obtaining regret bounds for general regularizers.

Goal: analyse FTRL for Y convex loss and regularizers.

[Algorithm 5] Online mirror descent (OMD)

Let $\psi: \mathbb{R}^d \to \mathbb{R}$ be the regularizer

Let fir..., for : sequence of losses.

On each iteration t=1,---, T, the learner chooses we s.t.

 $W_{\ell} \in \operatorname{argmin}_{W \in \mathbb{R}^d} \{ \psi(W) - W \cdot \theta_{\ell} \}$ (522)

where $Z_t \in \partial f_t(w_t)$, $\theta_t = -\frac{\sum_{i=1}^{n}}{\sum_{j=1}^{n}} Z_i$ (negative sum)

Technical Note: $5 = 1R^d$. And we can always fold constraints by setting $\psi(w) = \infty$ if w violates the constraints.

[Examples of regularizers]

- Quadratic : 4(w) = 2/1/1/1/2
- Non-spherical quadratic: \(\psi \(\psi \) = \(\frac{1}{29} \) W A W
- Entropic: Y(w) = + = wjlogw; if we da

Difference: the slope when w -> boundary.

[Definition 27] Fenchel conjugate

The Fenchel conjugate of a function $\psi: \mathbb{R}^d \to \mathbb{R}$ is $\psi^*(\theta) := \sup_{w \in \mathbb{R}^d} \{w \cdot \theta - \psi(w)\}$

Intuition: For scalars $W, \theta \in \mathbb{R}$, fixed θ (as slope), $-\psi^{\dagger}(\theta)$

the state of the s

is the position where supporting hyperplane of 4 with slope of hit the vertical axis.

Useful facts:

- Φ ψ^* is always convex, since it's a supremum over a collection of linear function $\theta \mapsto w.\theta f(w)$
- Q Y*(0) ≥ W.O YCW) for all Welkd (French-Young inequality)
- 3 If r(w) = a4(w) with a>0, then r*(0) = a4*(0/a)
- ⊕ Y** = Y iff Y is convex (and low semi-continuous)
- 5) If ψ is differentiable, then $\nabla \psi^*(\theta) = \underset{w \in \mathbb{R}^d}{\text{arg max}} f w \cdot \theta \psi(w)$ f w is the gradient

Marroring

- (i) OMD update (522): We the argmin $\{ \Psi(w) w \cdot \theta_{+} \}$ We have $Wt = \nabla \Psi^{*}(\theta)$ and $- \Psi^{*}(\theta)$ is the corresponding value of regularized loss
 - (ii) Since W+ attain, supplies,-w.015, differentiate w.r.t. W and we have $\theta_t = \nabla \psi(W_t)$
 - (iii) One-to-one mapping: $W_t = \nabla \psi^*(\theta_t), \quad \theta_t = \nabla \psi(W_t)$
 - (iv) OMD updates: $\theta_{t+1} = \theta_t z_t$, $\theta_1, \dots, \theta_T$ by mirrored: $W_t = \nabla \psi^*(\theta_t)$, W_1, \dots, W_T .

[Example 32] Quadratic Let 4(w) = = 1/21 || w||2 Then $\Psi^*(\theta) = \sup_{w \in S} \{ w \cdot \theta - \frac{1}{2\eta} \| (w \|_2^2) = \frac{\eta}{2} \| \theta \|_2^2$

Let
$$\psi(w) = \frac{1}{\eta} \sum_{j=1}^{d} w_j \log w_j$$
 for $w \in \Delta d$

Let
$$\Theta_i - \frac{1}{\eta} (\log W_i + 1) = C$$
, $W_i = e^{\eta \theta_i - \eta c - 1}$
 $\sum W_i = 1$.

$$\Rightarrow w_i = \frac{e^{\eta \theta_i}}{\sum_{e} \eta \theta_j}$$

$$\Rightarrow \psi^*(w) = \sum_{i} \frac{\theta_i e^{\eta \theta_i}}{\sum_{e} \eta \theta_j} - \frac{1}{\eta} \sum_{i} \frac{e^{\eta \theta_i}}{\sum_{e} \eta \theta_i} \left[\eta \theta_i - \log \sum_{e} e^{\eta \theta_j} \right]$$

$$\Rightarrow \psi^*(w) = \frac{1}{\eta} \log \left(\sum_{j=1}^{d} e^{\eta \theta_j} \right)$$