Predykcja dopasowania w Speed Dating

Ninejszy projekt porównuje kilka sposobów na przewidywaniem dopasowań podczas tzw. szybkich randek. Wykorzystana została baza <u>Speed Dating Experiment</u>.

Opis bazy

Baza składa się z opisów przeprowadzonych szybkich randek podczas eksperymentu. Opisy są bardzo bogate, jednak na potrzeby tego projektu skupiłem się na kilka, moim zdaniem, istotnych aspektach.

Algorytmy, które porównałem dokonują klasyfikacji rekordów na dwie grupy: **dopasowanie** oraz **brak dopasowania**. Informacja ta znajduje się w kolumnie **match** (wartości **0** lub **1**).

Spośród obecnych w bazie kolumn jako kolumny wejściowe wybrałem następujące:

- wiek osób randkujących (age oraz age_o),
- rasa osób randkujących (race oraz race_o),
- częstość randkowania (date),
- częstość wychodzenia w ogóle (go_out),
- ogólny poziom szczęścia (exhappy)

oraz poniższe cechy w 4 wersjach (własne preferencje, opinia osoby na temat partnera, preferencje partnera, opinia partnera o osobie):

- atrakcyjny (attr1_1, attr, pf_o_att, attr_o),
- szczery (sinc1_1, sinc, pf_o_sin, sinc_o).
- inteligentny (intel1_1, intel, pf_o_int, intel_o),
- zabawny (fun1_1, fun, pf_o_fun, fun_o),
- ambitny (*amb1_1*, *amb*, *pf_o_amb*, *amb_o*),
- wspólne zainteresowania (*shar1_1*, *shar*, *pf_o_shar*, *shar_o*).

Poniżej przedstawiam, jak prezentowały się dane w bazie dla wyżej wymienionych kolumn.

Kolumna	Min	Max	Średnia	Procent brakujących danych
age	18.0	55.0	26.358927924664975	0.0113392217713058
age_o	18.0	55.0	26.36499879139473	0.012413463833850561
race	1.0	6.0	2.7571858087793144	0.007519694437813321
race_o	1.0	6.0	2.7566526189042744	0.00871329672952972
date	1.0	7.0	5.00676246830093	0.011577942229649082
go_out	1.0	7.0	2.158091336305579	0.00942945810455956
exphappy	1.0	10.0	5.534130723692159	0.012055383146335641
attr1_1	0.0	100.0	22.514631883359332	0.00942945810455956
attr	0.0	10.0	6.189995107632094	0.024110766292671282
pf_o_att	0.0	100.0	22.49534684521648	0.01062306039627596
attr_o	0.0	10.5	6.190411462160177	0.02530436858438768
sinc1_1	0.0	60.0	17.39638872153271	0.00942945810455956
sinc	0.0	10.0	7.175163560054314	0.03306278348054428
pf_o_sin	0.0	60.0	17.396866932078645	0.01062306039627596
sinc_o	0.0	10.0	7.175256457792609	0.03425638577226068
intel1_1	0.0	50.0	20.26561272442462	0.00942945810455956
intel	0.0	10.0	7.368596881959911	0.03533062783480544
pf_o_int	0.0	50.0	20.270758837012853	0.01062306039627596
intel_o	0.0	10.0	7.369301288404361	0.036524230126521846
fun1_1	0.0	50.0	17.4570430691278	0.01062306039627596
fun	0.0	10.0	6.400597907324364	0.041776080210074
pf_o_fun	0.0	50.0	17.45971376811598	0.01169730245882072
fun_o	0.0	11.0	6.400598653030681	0.0429696825017904
amb1_1	0.0	53.0	10.682538953979968	0.011816662687992361
amb	0.0	10.0	6.777524132533264	0.08498448317020768
pf_o_amb	0.0	53.0	10.685375408052264	0.012771544521365481
amb_o	0.0	10.0	6.778409090909091	0.08617808546192408
shar1_1	0.0	30.0	11.845110815065958	0.014442587729768442
shar	0.0	10.0	5.474558883873615	0.12735736452613988
pf_o_sha	0.0	30.0	11.845930415807954	0.015397469563141562
shar_o	0.0	10.0	5.474869898657902	0.12843160658868466

Poniżej prezentuję wykresy kołowe opisujące wartości w poszczególnych kolumnach (ignorując brakujące dane).

Częstość randkowania

Częstość wychodzenia (niekoniecznie na randki)

Opinia osoby o partnerze - Ambitny

Opinia osoby o partnerze - Atrakcyjny

Opinia osoby o partnerze - Inteligentny

Opinia osoby o partnerze - Szczery

Opinia osoby o partnerze - Wspólne zainteresowania

Opinia osoby o partnerze - Zabawny

Opinia partnera o osobie - Ambitny

Opinia partnera o osobie - Atrakcyjny

Opinia partnera o osobie - Inteligentny

Opinia partnera o osobie - Szczery

Opinia partnera o osobie - Wspólne zainteresowania

Opinia partnera o osobie - Zabawny

Preferencja osoby - Ambitny

Preferencja osoby - Atrakcyjny

Preferencja osoby - Inteligentny

Preferencja osoby - Szczery

Preferencja osoby - Wspólne zainteresowania

Preferencja osoby - Zabawny

Preferencja partnera - Ambitny

Preferencja partnera - Atrakcyjny

Preferencja partnera - Inteligentny

Preferencja partnera - Szczery

Preferencja partnera - Wspólne zainteresowania

Preferencja partnera - Zabawny

Rasa

Przygotowanie bazy

Przed rozpoczęciem działania na wybranych kolumnach usunąłem wiersze, w których brakowało danych. Następnie podzieliłem wiersze na zbiory treningowy i testowy w stosunku 7 : 3.

Porównywane algorytmy

Do porównania użyłem następujące algorytmy:

- drzewo decyzyjne,
- Naive Bayes
- k najbliższych sąsiadów (dla k = 3, 5, 7)
- sieć neuronowa

Budowa sieci neuronowej

Sieć neuronową zbudowałem z następujących 3 warstw

- 1. warstwa gęsta składające się z 31 neuronów (tyle, ile kolumn na wejściu) z funkcją aktywacji relu,
- 2. warstwa gęsta składająca się z 10 neuronów z funkcją aktywacji relu,
- 3. warstwa gęsta wyjściowa z 2 neuronami oraz funkcją aktywacji softmax.

Sieć trenowałem w 30 epokach.

Wyniki

Drzewo decyzyjne

Dokładność: 0.79

Macierz błędu:

	0	1
0	1251	184
1	175	130

Naive Bayes

Dokładność: 0.77

Macierz błędu:

	0	1
0	1133	302
1	96	209

3 najbliższych sąsiadów

Dokładność: 0.81

Macierz błędu:

	0	1
0	1334	101
1	224	81

5 najbliższych sąsiadów

Dokładność: 0.82

Macierz błędu:

	0	1
0	1368	67
1	242	63

7 najbliższych sąsiadów

Dokładność: **0.82**

Macierz błędu:

	0	1
0	1379	56
1	251	54

Sieć neuronowa

Dokładność: **0.85**

Macierz błędu:

	0	1
0	1401	34
1	232	73

Zwycięzcą została więc sieć neuronowa.