有限单元法程序设计报告

516021910356 吴启元

Version 1. 空间桁架结构计算程序

程序功能

分析空间或平面桁架结构,计算节点位移、约束反力、单元内力与应力。

程序原理

使用杆单元为基本单元,假设杆单元单向受力。其单元刚度阵可表为

$$\mathbf{K} = \frac{EA}{l} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

经过坐标变换,单元刚度阵组集得到结构刚度阵。在组集结构刚阵时,搜寻每个单元与 其相关的编号最小单元,以便在一维存储时略去行头的零元素,大大减小存储容量的需求。 约束处理使用的方法是置大数法,对己知的位移对应的 K 阵主对角元赋 10²⁵ 值。

求解节点位移的方法是Cholesky分解法。求出节点位移后,按式 $\mathbf{F} = \mathbf{K} \cdot \mathbf{d}$ 求出每个单元的节点力与内力,最后将每个节点在不同单元中算出的节点力叠加,结合外加载荷数据,可以求得约束反力。

变量说明

N_node_unit	单元节点数	no_constraint	约束位移号
N_DOF_node	单个节点自由度	LD	一维存储的指针
N_node	节点数	EA	弹性模量与面积
N_unit	单元数	P ,P1,PP	外载荷、节点力、约束力
N_constraint	约束自由度数	K_1D	一维存储的整体刚阵
NM	单元类别数	TK	单元刚阵
N	总自由度数	Т	坐标变换阵
CAP_AK	一维存储AK的总容量	KU_structaxis	变换后的单元刚度阵
no_node_unit	单元节点的全局序号	IS	单元位移的全局编号

源程序文件

C#版本: 杆单元最终版.txt

其中void cal()为计算函数,其余部分是交互界面的设计。

程序运行环境: Windows7 以上系统, .NET Framework 4.6.1

直接打开 "空间桁架计算程序.exe"运行即可。

附: .NET Framework4.5.2安装包(可兼容4.6.1)

"NDP452-KB2901907-x86-x64-AllOS-ENU.exe"(下载自官网)

算例

课本^[1]第五章5-1图所示8节点14单元桁架结构。交互界面的默认输入值即为此算例的输入,具体内容可以参见文件"*输入数据.txt*"。

结果

第1节点第1约束力	-5.12E-13	第1节点第1位移	0.000345222
第1节点第2约束力	0	第1节点第2位移	1.00E-22
第1节点第3约束力	3.98E-13	第1节点第3位移	7. 79E-05
第2节点第1约束力	-4.55E-13	第2节点第1位移	0.000191147
第2节点第2约束力	1.14E-13	第2节点第2位移	4.85E-05
第2节点第3约束力	-1.02E-12	第2节点第3位移	6.82E-05
第3节点第1约束力	1000	第3节点第1位移	0.000207105
第3节点第2约束力	2.27E-13	第3节点第2位移	-4.85E-05
第3节点第3约束力	0	第3节点第3位移	-6.13E-05
第4节点第1约束力	1000	第4节点第1位移	0.000362497
第4节点第2约束力	0	第4节点第2位移	-1.00E-22
第4节点第3约束力	-3.98E-13	第4节点第3位移	-7.89E-05
第5节点第1约束力	-1027.144654	第5节点第1位移	1.03E-22
第5节点第2约束力	-1000	第5节点第2位移	1.00E-22
第5节点第3约束力	750	第5节点第3位移	-7.50E-23
第6节点第1约束力	0	第6节点第1位移	0
第6节点第2约束力	-1000	第6节点第2位移	1.00E-22
第6节点第3约束力	0	第6节点第3位移	0
第7节点第1约束力	0	第7节点第1位移	0
第7节点第2约束力	1000	第7节点第2位移	-1.00E-22
第7节点第3约束力	0	第7节点第3位移	0
第8节点第1约束力	−972 . 8553458	第8节点第1位移	9.73E-23
第8节点第2约束力	1000	第8节点第2位移	-1.00E-22
第8节点第3约束力	-750	第8节点第3位移	7.50E-23

Version 2. 平面三角形单元计算程序

程序功能

分析平面结构, 计算节点位移、约束反力、应力。

程序原理

使用三角形线性单元为基本单元,每个单元三个角点为节点。其单元刚度阵可如下计算

$$\mathbf{K} = \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \cdot t \cdot A$$

其中: t为单元厚度

$$A = \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B_1}, \mathbf{B_2}, \mathbf{B_3} \end{bmatrix}, \quad \mathbf{B}_i = \frac{1}{2A} \begin{bmatrix} b_i & 0 \\ 0 & c_i \\ c_i & b_i \end{bmatrix}$$

$$\mathbf{D}_{i} = \frac{E}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}$$

程序的原理与空间桁架结构计算程序基本一致,只不过无需坐标变换的步骤以及计算内力。仍然,在组集结构刚阵时,搜寻每个单元与其相关的编号最小单元,以便在一维存储时略去行头的零元素;约束处理使用置大数法,对已知的位移对应的 K 阵主对角元赋 10²⁵ 值;求解节点位移用 Cholesky 分解法。

求出位移后,用 σ = DBd 式求单元的正应力、切应力。按式F = $K \cdot d$ 求出每个单元的节点力与内力,将每个节点在不同单元中算出的节点力叠加,结合外加载荷数据,可以求得约束反力。

在结果显示的环节,需要设计算法作应力图,有 2 中不同的方法。其一是按单元作图,这种方法实现较为简单。基本思路如下: 1)按单元循环,依照每个单元三个节点的坐标绘制三角形轮廓; 2)将所有单元的应力作归一化处理,不同的应力大小对应不同 RGB 颜色参数; 3)对每个单元进行相应的颜色填充。

第二种方法是按节点作图,这种方法得到的图形对应的应力关系较为准确。1)计算每个单元的外心(垂直平分线交点),并将外心与三条边的中点连结;2)绘制边界的轮廓线;3)以算数平均相邻单元应力的方式计算每个节点的应力;4)按照归一化应力对节点进行相应颜色填充。

本程序采用的第一种方法、较为方便。第二种方法经过尝试、发现运算过于复杂。

变量说明

N_node_unit	单元节点数	LD	一维存储的指针
N_DOF_node	单个节点自由度	E,u,t	弹性模量、泊松比、厚度
N_node	节点数	P ,P1,PP	外载荷、节点力、约束力
N_unit	单元数	K_1D	一维存储的整体刚阵
N_constraint	约束自由度数	ТК	单元刚阵
NM	单元类别数	IS	单元位移的全局编号

N	总自由度数	plot	绘图参数
CAP_AK	一维存储AK的总容量	SIGNODE	节点应力
no_node_unit	单元节点的全局序号	SIGUNIT	单元应力
no_constraint	约束位移号		

源程序文件

C#版本: 三角形单元最终版.txt

其中void cal()为计算函数,其余部分是交互界面的设计。

程序运行环境: Windows7 以上系统, .NET Framework 4.6.1

安装.NET Framework后,直接打开 "平面三角形单元计算程序.exe" 即可运行。

算例

平面薄板,厚度为0.1m,弹性模量为2.06*10¹¹,长6m,宽4m,划分为48个单元,35个节点,如图所示。第21节点y方向有100N集中载荷作用。约束为1,7,29,35四个角点铰支。

结果

结果示意图如下(应注意计算机坐标系的方向,右向是x轴正向,下方是y轴正向)。可以看到结果与常识相符,24号单元有最大的y向拉应力,并且在计算域内,x越小,各向应力越小。由于单元较少,并且外载荷是以集中力的方式加入,有限元的结果显得比较粗糙。如果加密网格,可能会使结果更接近实际。

第1节点第1约束力 -8. 648574296 第1节点第2约束力 -4. 070135844 第7节点第1约束力 -3. 561833236 第7节点第2约束力 -45. 92986416 第29节点第1约束力 8. 648574296 第29节点第2约束力 -4. 070135844 第35节点第1约束力 3. 561833236 第35节点第2约束力 -45. 92986416

序号	位移	序号	位移
1	8. 65E-25	36	1. 99E-09
2	4. 07E-25	37	-1.55E-25
3	6.06E-10	38	2.67E-09
4	6.74E-10	39	-4. 91E-25
5	9.80E-10	40	3.96E-09
6	1.28E-09	41	-7. 24E-25
7	1.16E-09	42	7.78E-09
8	2.07E-09	43	-2.60E-10
9	1.09E-09	44	2.07E-10
10	3.05E-09	45	-3.12E-10
11	3.91E-10	46	5.21E-10
12	2.90E-09	47	-4.78E-10
13	3.56E-25	48	1.24E-09
14	4. 59E-24	49	-6.36E-10
15	2.60E-10	50	2.02E-09
16	2.07E-10	51	-9.22E-10
17	3. 12E-10	52	2.84E-09
18	5. 21E-10	53	-1.46E-09
19	4.78E-10	54	3.54E-09
20	1.24E-09	55	-1.25E-10
21	6.36E-10	56	3.80E-09
22	2.02E-09	57	-8.65E-25
23	9.22E-10	58	4.07E-25
24	2.84E-09	59	-6.06E-10
25	1.46E-09	60	6.74E-10
26	3.54E-09	61	-9.80E-10
27	1. 25E-10	62	1.28E-09
28	3.80E-09	63	-1.16E-09
29	1.89E-25	64	2.07E-09
30	2.05E-10	65	-1.09E-09
31	1.03E-25	66	3.05E-09
32	5.62E-10	67	−3. 91E−10
33	-2.42E-26	68	2.90E-09
34	1.17E-09	69	-3.56E-25
35	−5. 17E−26	70	4.59E-24

参考书目

- 1.《计算固体力学(Computational Solid Mechanics)》 刘正兴 孙雁 王国庆 陶昉敏
- 2.《数值分析》 李庆扬 王能超 易大义
- 3.CSDN C#论坛