```
In [1]: # --- Setup Project Path ---
        import sys
        import os
        # Add the project root to the Python path to allow imports from 'src'
        project root = os.path.abspath(os.path.join(os.getcwd(), '...'))
        if project root not in sys.path:
            sys.path.append(project root)
        # --- General Imports ---
        import yaml
        import pandas as pd
        # --- Custom Project Imports ---
        from src.training pipeline import TrainingPipeline
        from src.backtester import VectorizedBacktester
        # --- Load Configuration ---
        config path = os.path.join(project root, 'configs', 'config.yaml')
        print(f"Loading configuration from: {config path}")
        with open(config path, 'r') as file:
            config = yaml.safe load(file)
        print("Configuration loaded successfully.")
```

Loading configuration from: C:\Projetos_Python\gld_lstm_strategy\configs\config.yaml Configuration loaded successfully.

```
In [2]: # --- 1. Run Pipeline with LSTM Model ---

# Instantiate the main pipeline
pipeline = TrainingPipeline(config=config, project_root=project_root)

print("="*50)
print("RUNNING PIPELINE FOR LSTM MODEL")
print("="*50)

# Run the static test specifically for the 'lstm' model type
lstm_results = pipeline.run_static_test(model_type='lstm')
```

```
print("\n\n ✓ --- LSTM Pipeline Finished! --- ✓ ")
Random seeds set to 2025 for reproducibility.
_____
RUNNING PIPELINE FOR LSTM MODEL
_____
==== Starting STATIC Test Run for model type='lstm' =====
==== Step 1: Loading and Preparing Full Dataset =====
--- Loading Main Asset Data ---
Loading GLD data from local cache: C:\Projetos Python\gld lstm strategy\data\gld data.csv
--- Loading Macroeconomic Data ---
Loading DX-Y.NYB data from local cache: C:\Projetos Python\gld lstm strategy\data\dx-y.nyb data.csv
Loading ^TNX data from local cache: C:\Projetos Python\gld lstm strategy\data\^tnx data.csv
Loading ^VIX data from local cache: C:\Projetos Python\gld lstm strategy\data\^vix data.csv
Loading CL=F data from local cache: C:\Projetos Python\gld lstm strategy\data\cl=f data.csv
Loading SI=F data from local cache: C:\Projetos Python\gld lstm strategy\data\si=f data.csv
Loading TIP data from local cache: C:\Projetos Python\gld lstm strategy\data\tip data.csv
Loading HG=F data from local cache: C:\Projetos Python\gld lstm strategy\data\hg=f data.csv
==== Starting Feature Engineering Pipeline =====
Step 1: Creating custom OHLCV features...
Step 2: Applying 'All' technical indicator strategy from pandas ta...
130it [00:26, 4.86it/s]
```

25/09/2025, 15:24 3_model_benchmark

```
-> Dropped 2 redundant TA columns.
Step 3: Creating custom interaction and ratio features...
Step 4: Creating lagged and momentum features...
Step 5: Merging macroeconomic features...
-> Macro features merged and forward-filled.
Step 6: Defining target variable...
Pipeline complete. Dropped 77 rows with NaN values.
Final dataset shape: (2438, 247)
_____
--- Splitting data chronologically ---
Train set size: 1761, Validation set size: 311, Test set size: 366
--- Running Feature Selection ---
Selected 37 features via BorutaPy.
--- Scaling data ---
--- Preparing data and training LSTM Model ---
Epoch 1/100
50/50 -
                          40s 524ms/step - accuracy: 0.5030 - loss: 0.7019 - val accuracy: 0.4180 - val loss: 0.7305
Epoch 2/100
50/50 -
                          40s 496ms/step - accuracy: 0.5585 - loss: 0.6879 - val accuracy: 0.4180 - val loss: 0.7121
Epoch 3/100
50/50 -
                          29s 572ms/step - accuracy: 0.5489 - loss: 0.6861 - val accuracy: 0.6557 - val loss: 0.6872
Epoch 4/100
50/50 -
                          22s 435ms/step - accuracy: 0.5691 - loss: 0.6838 - val accuracy: 0.4180 - val loss: 0.6974
Epoch 5/100
50/50 -
                          48s 567ms/step - accuracy: 0.5838 - loss: 0.6729 - val accuracy: 0.4180 - val loss: 0.7160
Epoch 6/100
50/50 -
                          23s 463ms/step - accuracy: 0.6016 - loss: 0.6685 - val accuracy: 0.4180 - val loss: 0.7056
Epoch 7/100
50/50 -
                          25s 502ms/step - accuracy: 0.6108 - loss: 0.6620 - val accuracy: 0.4590 - val loss: 0.7094
Epoch 8/100
50/50 -
                          22s 438ms/step - accuracy: 0.6115 - loss: 0.6596 - val accuracy: 0.4426 - val loss: 0.7162
Epoch 9/100
50/50 -
                          42s 459ms/step - accuracy: 0.6270 - loss: 0.6525 - val accuracy: 0.4918 - val loss: 0.7050
Epoch 10/100
50/50
                          22s 445ms/step - accuracy: 0.6184 - loss: 0.6473 - val accuracy: 0.5082 - val loss: 0.7017
```

•	11/100	20.5	40 Ama / at a a		0. 6201	1	0 (202		0.5164	0 7020
•	12/100		·	-					0.5164 - val_lo	
Epoch	13/100		·	_					0.5902 - val_lo	
	14/100		·	-					0.6311 - val_lo	
	15/100	16s	322ms/step	- accuracy:	0.6855 -	loss:	0.6150 -	val_accuracy:	0.5984 - val_lo	oss: 0.6434
50/50 Epoch	16/100	22s	448ms/step	- accuracy:	0.6800 -	loss:	0.6257 -	val_accuracy:	0.5410 - val_lo	oss: 0.6906
50/50 Epoch	17/100	43s	484ms/step	- accuracy:	0.6736 -	loss:	0.6041 -	val_accuracy:	0.5738 - val_lo	oss: 0.6412
	18/100	24s	484ms/step	- accuracy:	0.7016 -	loss:	0.5977 -	val_accuracy:	0.6721 - val_lo	oss: 0.6043
	19/100	33s	310ms/step	- accuracy:	0.7139 -	loss:	0.5822 -	val_accuracy:	0.6230 - val_lo	oss: 0.6172
	20/100	15s	301ms/step	- accuracy:	0.7208 -	loss:	0.5667 -	val_accuracy:	0.6721 - val_lo	oss: 0.6169
	21/100	18s	354ms/step	- accuracy:	0.7158 -	loss:	0.5691 -	val_accuracy:	0.6803 - val_lo	oss: 0.6158
50/50		23s	412ms/step	- accuracy:	0.7198 -	loss:	0.5646 -	val_accuracy:	0.6885 - val_lo	oss: 0.5929
50/50		14s	278ms/step	- accuracy:	0.7396 -	loss:	0.5445 -	val_accuracy:	0.6148 - val_lo	oss: 0.6275
50/50		14s	275ms/step	- accuracy:	0.7159 -	loss:	0.5560 -	val_accuracy:	0.6803 - val_lo	oss: 0.6010
50/50		15s	289ms/step	- accuracy:	0.7295 -	loss:	0.5453 -	val_accuracy:	0.7049 - val_lo	oss: 0.5656
50/50		14s	273ms/step	- accuracy:	0.7227 -	loss:	0.5308 -	val_accuracy:	0.6803 - val_lo	oss: 0.6030
50/50	27/100	21s	276ms/step	- accuracy:	0.7489 -	loss:	0.5219 -	val_accuracy:	0.7213 - val_lo	oss: 0.5546
50/50	28/100	13s	264ms/step	- accuracy:	0.7563 -	loss:	0.5015 -	val_accuracy:	0.6885 - val_lo	oss: 0.5792
50/50	-	13s	268ms/step	- accuracy:	0.7274 -	loss:	0.5211 -	val_accuracy:	0.7131 - val_lo	oss: 0.5323
50/50		14s	273ms/step	- accuracy:	0.7863 -	loss:	0.4833 -	val_accuracy:	0.6721 - val_lo	oss: 0.5674
50/50		13s	259ms/step	- accuracy:	0.7763 -	loss:	0.4730 -	val_accuracy:	0.7049 - val_lo	oss: 0.5492
Epoch	31/100									

```
50/50 -
                           13s 261ms/step - accuracy: 0.7885 - loss: 0.4418 - val accuracy: 0.7377 - val loss: 0.5541
Epoch 32/100
50/50 -
                           13s 262ms/step - accuracy: 0.7878 - loss: 0.4426 - val accuracy: 0.7213 - val loss: 0.5174
Epoch 33/100
50/50 -
                           20s 411ms/step - accuracy: 0.7949 - loss: 0.4380 - val accuracy: 0.7787 - val loss: 0.4662
Epoch 34/100
50/50 -
                           14s 282ms/step - accuracy: 0.8123 - loss: 0.4249 - val accuracy: 0.7295 - val loss: 0.5130
Epoch 35/100
50/50 -
                           14s 272ms/step - accuracy: 0.8041 - loss: 0.4283 - val accuracy: 0.7131 - val loss: 0.5576
Epoch 36/100
50/50
                           14s 286ms/step - accuracy: 0.8196 - loss: 0.4213 - val accuracy: 0.7459 - val loss: 0.5098
Epoch 37/100
50/50 -
                           14s 278ms/step - accuracy: 0.8138 - loss: 0.4153 - val accuracy: 0.6967 - val loss: 0.5521
Epoch 38/100
50/50 -
                           14s 274ms/step - accuracy: 0.8091 - loss: 0.4115 - val accuracy: 0.7131 - val loss: 0.5675
Epoch 39/100
50/50 -
                           20s 264ms/step - accuracy: 0.8183 - loss: 0.4031 - val accuracy: 0.7459 - val loss: 0.5175
Epoch 40/100
50/50 -
                           14s 273ms/step - accuracy: 0.8211 - loss: 0.4185 - val accuracy: 0.7049 - val loss: 0.5543
Epoch 41/100
50/50
                           14s 287ms/step - accuracy: 0.8385 - loss: 0.3914 - val accuracy: 0.7295 - val loss: 0.5626
Epoch 42/100
50/50 -
                           14s 279ms/step - accuracy: 0.8278 - loss: 0.3902 - val accuracy: 0.7295 - val loss: 0.5882
Epoch 43/100
50/50 -
                           19s 237ms/step - accuracy: 0.8073 - loss: 0.3991 - val accuracy: 0.7295 - val loss: 0.6361
Epoch 44/100
50/50 -
                           13s 269ms/step - accuracy: 0.8337 - loss: 0.3714 - val accuracy: 0.7459 - val loss: 0.5831
Epoch 45/100
50/50 -
                           14s 274ms/step - accuracy: 0.8271 - loss: 0.3825 - val accuracy: 0.7459 - val loss: 0.5808
Epoch 46/100
50/50
                           13s 258ms/step - accuracy: 0.8444 - loss: 0.3550 - val accuracy: 0.7705 - val loss: 0.6124
Epoch 47/100
50/50 -
                           13s 264ms/step - accuracy: 0.8418 - loss: 0.3579 - val accuracy: 0.7705 - val loss: 0.6309
Epoch 48/100
50/50 -
                           13s 258ms/step - accuracy: 0.8472 - loss: 0.3670 - val accuracy: 0.6967 - val loss: 0.6306
6/6 -
                        1s 142ms/step
```

--- Evaluating Model on Unseen Test Data ---

✓ --- LSTM Pipeline Finished! --- ✓

```
In [3]: # --- 2. Run Pipeline with XGBoost Model ---
        # We can reuse the same pipeline instance
        print("="*50)
        print("RUNNING PIPELINE FOR XGBOOST MODEL")
        print("="*50)
        # Run the static test specifically for the 'xqboost' model type
        xgboost results = pipeline.run static test(model type='xgboost')
        print("\n\n ✓ --- XGBoost Pipeline Finished! --- ✓ ")
       _____
       RUNNING PIPELINE FOR XGBOOST MODEL
       _____
       ==== Starting STATIC Test Run for model type='xgboost' =====
       ==== Step 1: Loading and Preparing Full Dataset =====
       --- Loading Main Asset Data ---
       Loading GLD data from local cache: C:\Projetos Python\gld lstm strategy\data\gld data.csv
       --- Loading Macroeconomic Data ---
       Loading DX-Y.NYB data from local cache: C:\Projetos Python\gld lstm strategy\data\dx-y.nyb data.csv
      Loading ^TNX data from local cache: C:\Projetos_Python\gld_lstm_strategy\data\^tnx_data.csv
      Loading ^VIX data from local cache: C:\Projetos Python\gld lstm strategy\data\^vix data.csv
       Loading CL=F data from local cache: C:\Projetos Python\gld lstm strategy\data\cl=f data.csv
       Loading SI=F data from local cache: C:\Projetos Python\gld lstm strategy\data\si=f data.csv
       Loading TIP data from local cache: C:\Projetos Python\gld lstm strategy\data\tip data.csv
       Loading HG=F data from local cache: C:\Projetos Python\gld lstm strategy\data\hg=f data.csv
       ==== Starting Feature Engineering Pipeline =====
       Step 1: Creating custom OHLCV features...
       Step 2: Applying 'All' technical indicator strategy from pandas ta...
      130it [00:12, 10.80it/s]
```

25/09/2025, 15:24 3_model_benchmark

```
-> Dropped 2 redundant TA columns.
       Step 3: Creating custom interaction and ratio features...
       Step 4: Creating lagged and momentum features...
       Step 5: Merging macroeconomic features...
        -> Macro features merged and forward-filled.
       Step 6: Defining target variable...
       Pipeline complete. Dropped 77 rows with NaN values.
       Final dataset shape: (2438, 247)
       _____
       --- Splitting data chronologically ---
       Train set size: 1761, Validation set size: 311, Test set size: 366
       --- Running Feature Selection ---
       Selected 37 features via BorutaPy.
       --- Scaling data ---
       --- Preparing data and training XGBoost Model ---
       C:\Users\rbert\.venv\lib\site-packages\xgboost\callback.py:386: UserWarning:
       [14:18:19] WARNING: C:\actions-runner\ work\xgboost\xrc\learner.cc:738:
       Parameters: { "use label encoder" } are not used.
       --- Evaluating Model on Unseen Test Data ---

✓ --- XGBoost Pipeline Finished! --- ✓
In [4]: # --- 3. Run Backtests for Both Models ---
        def run_backtest_for_results(results_dict, config, model_name):
            Helper function to run the backtest for a given results dictionary.
            print("\n" + "="*50)
            print(f"RUNNING BACKTEST FOR {model_name.upper()} MODEL")
```

```
print("="*50)
    # Extract necessary data from the results dictionary
    processed data = results dict['processed data for backtest']
    y pred proba = results dict['pred probas']
    # Recreate X test to get the prices and the correct date index
    X = processed data.drop(columns=[config['TARGET NAME']])
    train val size = int(len(X) * (1 - config['TEST SIZE']))
    X test = X.iloc[train val size:]
    # Convert probabilities to binary signals
    test predictions = (y pred proba > 0.5).astype(int)
    # Create a pandas Series for the signals with the correct date index
    if model name.lower() == 'lstm':
        signal dates = X test.index[config['TIME STEPS']:]
    else: # XGBoost uses 2D data, so no offset is needed for the index
        signal dates = X test.index
    signals series = pd.Series(test predictions, index=signal dates, name="signal")
    # Get the price data for the same period
    price data for backtest = X test.loc[signal dates]
    # Instantiate and run the backtester
    backtester = VectorizedBacktester(
        price data=price data for backtest,
        signals=signals series,
        config=config
    portfolio = backtester.run(commission=0.001, slippage=0.001)
    return portfolio
# Run the backtest for each model's results
lstm portfolio = run backtest for results(lstm results, config, "LSTM")
xgboost portfolio = run backtest for results(xgboost results, config, "XGBoost")
```

RUNNING BACKTEST FOR LSTM MODEL

==== Starting Vectorized Backtest with vectorbt =====

--- Backtest Performance Stats ---

backeese refrommance sea	
Start	2024-04-18 00:00:00
End	2024-12-30 00:00:00
Period	177 days 00:00:00
Start Value	100.0
End Value	114.64216
Total Return [%]	14.64216
Benchmark Return [%]	9.2085
Max Gross Exposure [%]	100.0
Total Fees Paid	2.349421
Max Drawdown [%]	3.349057
Max Drawdown Duration	36 days 00:00:00
Total Trades	11
Total Closed Trades	11
Total Open Trades	0
Open Trade PnL	0.0
Win Rate [%]	72.727273
Best Trade [%]	4.984358
Worst Trade [%]	-0.796262
Avg Winning Trade [%]	1.972687
Avg Losing Trade [%]	-0.622551
Avg Winning Trade Duration	5 days 06:00:00
Avg Losing Trade Duration	3 days 16:00:00
Profit Factor	8.454068
Expectancy	1.331105
Sharpe Ratio	2.994728
Calmar Ratio	9.718887
Omega Ratio	2.018344
Sortino Ratio	6.045033
dtype: object	

⁻⁻⁻ Plotting Equity Curve and Drawdowns ---

```
==== Backtest Finished =====
```

RUNNING BACKTEST FOR XGBOOST MODEL

==== Starting Vectorized Backtest with vectorbt =====

--- Backtest Performance Stats ---

Dacktest Fel Tollilance Stat	.5
Start	2023-07-19 00:00:00
End	2024-12-30 00:00:00
Period	366 days 00:00:00
Start Value	100.0
End Value	177.072868
Total Return [%]	77.072868
Benchmark Return [%]	31.012145
Max Gross Exposure [%]	100.0
Total Fees Paid	10.306133
Max Drawdown [%]	2.602918
Max Drawdown Duration	21 days 00:00:00
Total Trades	38
Total Closed Trades	38
Total Open Trades	0
Open Trade PnL	0.0
Win Rate [%]	86.842105
Best Trade [%]	7.627185
Worst Trade [%]	-0.769631
Avg Winning Trade [%]	1.803887
Avg Losing Trade [%]	-0.242435
Avg Winning Trade Duration	5 days 21:49:05.454545454
Avg Losing Trade Duration	2 days 09:36:00
Profit Factor	61.57335
Expectancy	2.028233
Sharpe Ratio	5.081341
Calmar Ratio	29.504051
Omega Ratio	2.474839
Sortino Ratio	11.73365
dtype: object	

⁻⁻⁻ Plotting Equity Curve and Drawdowns ---

==== Backtest Finished =====

```
In [5]: # --- 4. Final Results Comparison ---
        # Extract the statistics from both portfolio objects
        lstm stats = lstm portfolio.stats()
        xgboost_stats = xgboost_portfolio.stats()
        # Define the key metrics we want to compare
        metrics_to_compare = [
            'Total Return [%]',
            'Benchmark Return [%]',
            'Sharpe Ratio',
            'Sortino Ratio',
            'Max Drawdown [%]',
            'Win Rate [%]',
            'Profit Factor',
            'Total Trades'
        # Create a comparison DataFrame
        comparison_df = pd.DataFrame({
            'LSTM': lstm stats[metrics to compare],
            'XGBoost': xgboost_stats[metrics_to_compare]
        })
```

```
print("\n\n" + "="*50)
print("MODEL BENCHMARK COMPARISON")
print("="*50)
display(comparison_df.round(4))
```

MODEL BENCHMARK COMPARISON

	LSTM	XGBoost
Total Return [%]	14.64216	77.072868
Benchmark Return [%]	9.2085	31.012145
Sharpe Ratio	2.994728	5.081341
Sortino Ratio	6.045033	11.73365
Max Drawdown [%]	3.349057	2.602918
Win Rate [%]	72.727273	86.842105
Profit Factor	8.454068	61.57335
Total Trades	11	38

5. Benchmark Conclusion

The results from the side-by-side comparison provide a clear and conclusive winner. After running both models through the same rigorous pipeline, the data shows the following:

- Total Return: The XGBoost model generated a vastly superior Total Return of 77.07%, compared to 14.64% for the LSTM.
- **Risk-Adjusted Return:** The **XGBoost** model demonstrated exceptional risk-adjusted performance, with a **Sharpe Ratio of 5.08** and a **Sortino Ratio of 11.73**, both significantly higher than the LSTM's.

25/09/2025, 15:24 3_model_benchmark

- **Risk Control:** The **XGBoost** model also proved to be better at preserving capital, achieving a lower **Max Drawdown of 2.60%** versus the LSTM's 3.35%.
- Consistency: With a Win Rate of 86.8% across 38 trades, the XGBoost model was far more consistent than the LSTM.

Verdict: Based on these results, the **XGBoost model is the unequivocal choice** for this trading strategy, as it delivers dramatically higher returns, superior risk-adjusted performance, greater consistency, and better risk control.

This outcome suggests that for this problem, the rich, tabular dataset created during the comprehensive feature engineering phase is best leveraged by a powerful tree-based ensemble like XGBoost, which excels at finding complex, non-linear relationships between predictive features.