Otimização e Processamento de Consultas

- Objetivo
 - produzir uma estratégia de consulta para recuperar o resultado da mesma
 - plano para: executar a consulta
 - acessar os dados
 - armazenar resultados intermediários
 - Deve ser utilizado algum índice? Qual índice deve ser escolhido?

Estimativa de Custo

- Estratégia a ser escolhida depende
 - do tamanho de cada relação
 - da distribuição de valores dentro de colunas
 - custo
- Objetivo
 - estimar o tamanho do resultado (número de tuplas a serem retornadas) e o custo da consulta

Componentes da Função Custo

- Custo de acesso à memória secundária
 - custo para buscar, ler e escrever blocos de dados que residem em disco
- Custo de armazenamento
 - custo para armazenar quaisquer arquivos intermediários gerados pela estratégia de execução da consulta

Componentes da Função Custo

- Custo de computação
 - custo para a realização de operações em memória principal (i.e., buffers)
- Custo do uso da memória
 - custo relacionado ao número de buffers de memória principal necessários durante a execução da consulta

Componentes da Função Custo

- Custo de comunicação
 - custo de transmitir uma consulta e os seus resultados do site do banco de dados até o site ou terminar na qual a consulta foi originada

Funções Custo para Seleção

- Métodos para seleção simples
 - varredura de arquivo (i.e., file scan)
 - linear
 - binária
 - varredura de índice (i.e., index scan)
 - Primário
 - Agrupamento
 - Secundário

Estruturas de Índices

- Índice primário baseado na chave de ordenação;
- Índice de agrupamento (clustering) baseado no campo de ordenação não-chave de um arquivo;
- Índice secundário baseado em qualquer campo não ordenado de um arquivo;
- Índices multiníveis;
- Árvores B e B+;
- Tabelas Hash;

Tipos de Índices

Densos: uma entrada no arquivo de índices p/cada registro no arquivo de dados

Um índice denso sobre um arquivo de dados següenciais

Esparsos: apenas alguns registros de dados são representados no arquivo de índices

Um índice esparso sobre um arquivo de dados seqüenciais

Tipos

- Índice Denso
 - Seqüência de blocos contendo apenas as chaves dos registros e os ponteiros para os próprios registros
 - Índice denso = (chave-ponteiro, registro)
- Índice Esparso
 - Usa menos espaço de armazenamento que o índice denso ao custo de um tempo um pouco maior para localizar um registro dada a sua chave
 - Índice esparso = (c · Aponta para o 10. registro do bloco dados)

Tipos de Índices

Índice	Arquivo de Dados	Atributo Indexado	Registros recuperados
Primário	ordenado	Chave primária	0 ou 1
Agrupamento	ordenado	Não chave	0 ou vários
Secundário	desordenado	Chave primária Não chave	0 ou 1 0 ou vários

Índice Primário

- Características
 - Ordenado pela chave primária
 - definido com base em um arquivo de dados
 - possui um único nível
 - esparso

total de entradas no índice = número de páginas do

arquivo de dados

diminui o total de blocos e melhora o desempenho na pesquisa

Índice Primário

Estrutura do registro (entrada)

Índice Primário

menor número de blocos

- · menos entradas
- registros menores

pesquisa binária mais eficiente no índice

DATA FILE

Arquivo de Dados

- Número de registros (r) = 30.000
- Tamanho da página (P) = 1.024 bytes
- Tamanho dos registros (R) = 100 bytes
- Fator de página de disco (bfr) = (piso)P/R = 10
 - número de registros que cabem em uma páginas
- Número de páginas (p) = (teto) r/bfr = 3.000

Arquivo de Índice

- Número de registros (r) = 3.000
 - número de páginas do arquivo de dados
- Tamanho da página (P) = 1.024 bytes
- Tamanho dos registros (R) = 15 bytes
 - chave = 9 bytes
 - endereço = 6 bytes
- Fator de página de disco (bfr) = (piso) P/R = 68
- Número de páginas (p) = (teto) r/bfr = 45

Desempenho em Acesso a discos

- Sem o uso do índice
 - busca binária no arquivo de dados
 log₂ n = log₂ 3000 = 12
- Com o uso do índice
 - busca binária no arquivo de índice + leitura do registro no arquivo de dados

$$\log_2 n + 1 = \log_2 45 + 1 = 6 + 1 = 7$$

Inserção

Problemas

- deslocamento dos registros nos arquivos de dados e de índice para ordenação
- alteração dos valores dos campos de referência no índice (registros âncoras)

Soluções

arquivo overflow desordenado

lista ligada de registros overflow para cada bloco no arquivo de dados

reorganizaç

ão periódica com recriação

Remoção

- Características
 - · lógica, ao invés de física
 - · registros marcados como removidos
- reorganização periódica → recriação do índice

Índice de Agrupamento (Cluster)

Características

- ordenado
- definido com base em um arquivo de dados ordenado por um atributo não chave (atributo de agrupamento) – pode ter valores duplicados
- possui um único nível
- Esparso
 - total de entradas no índice = número de valores distintos do atributo de agrupamento

Índice de Agrupamento

Estrutura do registro (entrada)

Índice de Agrupamento

menor número de blocos

- menos entradas
- registros menores

DATA FILE

pesquisa binária mais eficiente no índice

Inserção e Remoção

Problemas

- Deslocamento dos registros nos arquivos de dados e de índice para ordenação
- alteração dos valores dos campos de referência no índice

Solução

- reservar um bloco no arquivo de dados para cada valor distinto do atributo de agrupamento
- adicionar um campo de encadeamento nesses blocos

Desempenho em Acesso a Disco

- Índice de agrupamento
 - o desempenho tende a ser ligeiramente pior que o desempenho de um índice primário
 - a repetição de valores pode conduzir à leitura de mais de uma página no arquivo de dados
 - No Exemplo, o desempenho para o campo indexado com valor 3 corresponde a:

$$\log_2 n + 2 = \log_2 45 = 6 + 2 = 8$$

Índice Secundário

Características

- Ordenado
- definido sobre um atributo n\(\tilde{a}\)o ordenado do arquivo de dados
- possui um único nível
- Arquivo de dados
 - em geral, desordenado
 - porém, pode estar ordenado por outro atributo que não o indexado com índice secundário

Índice Secundário

Estrutura do registro (entrada)

Índice Secundário

Vantagens

- propicia uma ordenação lógica do arquivo de dados
- facilita as operações de inserção e remoção em arquivos de dados desordenados
- pode ser definido sobre atributo
 - chave (UNIQUE)
 - não chave

Índice Secundário - Chave

Denso

- possui uma entrada para cada registro no arquivo de dados
- não pode usar registros âncoras
- chave de busca
 - valores distintos do atributo indexado

arquivo de dados não ordenado pela chave

Índice Secundário: Chave

> INDEX FIELD

VALUE

2

3

5

10

11

12 13

15

16

17 18

19 20

21

22 23

INDEX FILE (<K(i), P(i)> entries)

BLOCK

POINTER

DATA FILE

19

22

campo de referência: endereço do bloco

ordenado pela chave do arquivo de dados

Chave Primária

Sequência no arquivo de dados

- ordenada: índice primário
- desordenada: índice secundário
- Índice secundário
 - possui maior densidade do que o primário
 - maior número de entradas
 - maior espaço alocado em disco
 - apresenta pior desempenho na busca binária

Desempenho na Pesquisa

Tipo de	Arquivo de	Arquivo de	Melhora no
Índice	Índice	Dados	Desempenho
primário	busca binária	busca binária	discreta
chave primária	O(log ₂ b)	O(log ₂ b)	
secundário	busca binária	busca linear	significativa
chave primária	O(log ₂ b)	O(b)	

Índice secundário

 deve ser utilizado para pesquisas freqüentes

Arquivo de Dados

- Número de registros (r) = 30.000
- Tamanho do bloco (B) = 1.024 bytes
- Tamanho dos registros (R) = 100 bytes
- Fator de bloco de disco (bfr) = [B/R] = 10
- Número de blocos (b) = [r/bfr] = 3.000

Arquivo de Índices

- Número de registros (r) = 30.000
 - número de registros do arquivo de dados
- Tamanho do bloco (B) = 1.024 bytes
- Tamanho dos registros (R) = 15 bytes
 - chave = 9 bytes
 - endereço = 6 bytes
- Fator de bloco de disco (bfr) = |B/R| = 68
- Número de blocos (b) = [r/bfr] = 442

Acessos a Disco

- Sem o uso do índice
 - busca linear (custo médio)

$$b/2 = 3.000/2 = 1500$$

- Com o uso do índice
 - busca binária no arquivo de índice +
 - leitura do registro no arquivo de dados

$$\lceil \log_2 442 \rceil + 1 = 9 + 1 = 10$$

Índice Secundário: Não Chave

Atributo n\u00e4o chave

pode possuir valores duplicados no arquivo de dados

Opções de implementação

- incluir uma entrada no índice para cada registro do arquivo de dados
- diversas entradas podem possuir o mesmo valor de chave de busca → índice denso

Índice Secundário: Não Chave

- Opções de implementação
 - criar registros de tamanho variável
 - chave de busca: valores não repetidos
 - campo de referência: um ou mais endereços dos registros do arquivo de dados que satisfazem à chave de busca
 - utilizar um nível adicional de indireção
 - endereços dos registros do arquivo de dados que satisfazem à chave de busca são armazenados no nível adicional

Número de Índices

- Um arquivo pode possuir
 - no máximo um índice primário ou um índice de agrupamento
 - existe somente um campo ordenado
 - vários índices secundários
 - Arquivo totalmente invertido
 - possui um índice secundário para cada um de seus campos

Tipo de Índice	Número de Entradas	Denso ou Esparso
Primário	Número de blocos no arquivo de dados	Esparso
Agrupamento	Número de valores distintos do campo de indexação	Esparso
Secundário (chave)	Número de registros no arquivo de dados	Denso
Secundário	Número de registros no arquivo de dados	Denso
(não chave)	ou Número de valores distintos do campo de indexação	Esparso

Exemplo:

tamanho fixo e possuam valores de

campo únicos.

(CAMPO DE INDEXAÇÃO)

Múltiplos Niveis

 Motivação: se o arquivo de índices se torna muito grande para ser armazenado em blocode disco, é interessante indexá-lo em mais de um nível

 Vantagem: índice pequeno pode ser mantido em memória e o tempo de busca é mais baixo

 Desvantagem: muitos níveis de índices podem aumentar a complexidade do sistema

Múltiplos Níveis

- Um índice multinível é um "Índice de índice".
- Primeiro nível: arquivo ordenado pela chave de indexação, valores distintos, entradas de tamanho fixo.
- Demais níveis: índice primário sobre o índice do nível anterior e assim sucessivamente até que no último nível o índice ocupe apenas um bloco.
- Número de acessos a bloco: um a cada nível de índice, mais um ao bloco do arquivo de dados