ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА

С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА

Цель работы: определение магнитной индукции вдоль оси соленоида с помощью датчика Холла.

Приборы и принадлежности: лабораторная установка, включающая в себя датчик Холла, соленоид, источник постоянного тока УНИП, выпрямитель, миллиамперметр.

Объект измерений: сила тока через соленоид, э. д. с. датчика Холла.

Средства измерений: милливольтметр, амперметр.

1. Теоретическая часть

Соленоид – это разновидность катушек индуктивности, представляющая собой пустотелый цилиндр с нанесенной на него обмоткой в один или несколько слоев. Название этого элемента происходит от греческих слов «солинас» («труба») и «эйдос» («подобный»). Соленоиды широко применяются в технике и служат для создания в определенном объеме однородного поля или используются для компенсации внешних магнитных полей. Соленоиды применяются, в основном, в тех случаях, когда необходимо создать достаточно интенсивное поле, а размеры устройства, создающего это поле, ограничены.

Получим выражения для индукции магнитного поля на оси кругового тока и оси соленоида с помощью закона Био-Савара-Лапласа (рис. 1). Предположим, что виток круглый и можно пренебречь поперечным сечением провода. Для этих условий вектор индукции магнитного поля в вакууме будет равен: $\vec{\mathrm{B}} = \frac{\mu_0 I}{4\pi} \int\limits_0^{2\pi R} \frac{\left[d\vec{l}, \overrightarrow{\rho_0}\right]}{\rho^3},$

$$\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \int_0^{2\pi R} \frac{\left[d\vec{l}, \overrightarrow{\rho_0}\right]}{\rho^3},$$

где $d\vec{l}$ – элемент проводника с током; $\overrightarrow{
ho_0}$ — единичный вектор, направленный от элемента dl к исследуемой точке M; ρ — длина отрезка, соединяющего элемент контура dl с точкой M.

Рис. 1. Схема для расчета индукции магнитного поля на оси соленоида для одного витка

Интегрирование ведется по замкнутой линии тока, создающего магнитное поле. В точках, лежащих на оси кругового тока, вектор индукции по условиям симметрии направлен вдоль этой оси, и поэтому достаточно просуммировать проекции на ось векторов индукций от каждого элемента $d\vec{l}$. Поскольку элемент $d\vec{l}$ составляет с вектором ρ_0 прямой угол, то:

$$\left[d\vec{l}, \overrightarrow{\rho_0}\right] = dl.$$

Кроме того, как видно из рис. 1 следует:

$$\rho^2 = R^2 + x_0^2, \qquad \sin \theta_0 = \frac{R}{\rho},$$

причем как угол θ_0 , так и расстояние ρ до точки M одинаковы для всех элементов длины кольца.

Проекция на ось X индукции dB_x , создаваемой отдельным элементом длины:

$$dB_x = \frac{\mu_0 I dl}{4\pi \rho^2} \cdot \sin \theta_0,$$

поэтому сумма этих проекций будет определяться выражением:

$$B = dB_x = \frac{\mu_0 I \sin \theta_0}{4\pi \rho^2} \int_0^{2\pi R} dl = \frac{\mu_0 I \sin \theta_0}{4\pi \rho^2} \cdot 2\pi R =$$

$$= \frac{\mu_0 I R^2}{2\rho^3} = \frac{\mu_0 I R^2}{2(R^2 + \chi_0^2)^{3/2}}.$$
(1)

Выражение (1) позволяет определить индукцию магнитного поля на оси соленоида (цилиндрической катушки) с равномерно распределенными витками. Действительно индукция магнитного поля в точке M (рис. 2), лежащей на оси соленоида, направлена вдоль этой оси и равна сумме индукций магнитного поля, создаваемых в точке M всеми витками.

Рис. 2. Схема для расчета индукции магнитного поля на оси соленоида

Если ω — число витков, приходящееся на единицу длины соленоида, то на малый участок длины dx приходится ωdx витков, создающих в точке M поле, индукция которого:

$$dB_x = \frac{\mu_0 I R^2}{2(R^2 + x_0^2)^{3/2}} \cdot \omega dx.$$

Как следует из рис. 2:

$$\rho = \sqrt{R^2 + x^2} = \frac{R}{\sin \theta}, \quad x = R \cdot \operatorname{tg}\theta,$$

откуда:

$$dx = -R \frac{d\theta}{\sin^2 \theta}.$$

С учетом этих соотношений получим:

$$dB_x = -\mu_0 \frac{\omega I}{2} \sin \theta d\theta.$$

Интегрируя это выражение по всем значениям угла θ , получим:

$$B_x = -\mu_0 \frac{\omega I}{2} \int_{\theta_1}^{\theta_2} \sin \theta d\theta = \mu_0 \frac{\omega I}{2} (\cos \theta_2 - \cos \theta_1),$$

где:

$$\cos \theta_1 = -\frac{0.5L - x_0}{\sqrt{R^2 + (0.5L - x_0)^2}},$$

$$\cos \theta_1 = -\frac{0.5L + x_0}{\sqrt{R^2 + (0.5L + x_0)^2}}.$$

Пока точка наблюдения находится внутри соленоида и не слишком близко к его краям, магнитное поле остается приблизительно однородным. Нетрудно заметить, что максимальная величина магнитной индукции будет в центре соленоида при $x_0 = 0$.

Если длина соленоида во много раз больше его радиуса (L>>R), то соленоид можно считать бесконечно длинным. Для точек, расположенных на оси такого соленоида и достаточно удаленных от его концов, $\theta_1\approx\pi$ и $\theta_2=0$, и, следовательно, индукция магнитного поля в вакууме будет равна:

$$B = \mu_0 \omega I. \tag{2}$$

Так как магнитная проницаемость воздуха приблизительно равна единице ($\mu \approx 1$), можно считать верной эту формулу и для расчета B в воздухе.

Для изучения распределения индукции магнитного поля по длине соленоида в данной работе применяются полупроводниковые элементы, использующие эффект Холла — явление, заключающееся в возникновении э. д. с. при воздействии магнитного поля на ток, протекающий через полупроводник.

Получим выражение для э. д. с. Холла в полупроводнике. Выберем направление вектора B и тока I_x , как указано на рис. 3. Тогда силу Лоренца F, которая действует на носители тока в полупроводнике n-типа, движущиеся в магнитном поле, можно записать в виде:

$$\vec{F} = -e[\vec{v}, \vec{B}],$$

где v — средняя скорость носителей тока в направлении линии тока.

Рис. 3. Силы, действующие на носитель тока в полупроводнике

Под влиянием этой силы электроны отклоняются к верхней грани пластины. В результате того, что у нижней грани образуется недостаток электронов, а у верхней избыток, в пластине возникает поперечное электрическое поле с напряженностью \vec{E} , направленное для выбранных направлений тока и вектора \vec{B} снизу вверх. Сила $e\vec{B}$, действующая на электрон, направлена в сторону, противоположную направлению силы Лоренца \vec{F} . В случае равновесного процесса протекания тока по полупроводнику эти силы уравновешиваются, то есть (в проекциях на ось Y);

$$eE = evB,$$

 $E = vB.$

Если пластина M достаточно длинная и широкая, то поперечное электрическое поле можно считать однородным. Тогда разность потенциалов U_Y между точками A и O равна:

$$U_Y = -Eb = -vBb. (3)$$

Ток в пластине I_x обусловлен упорядоченным движением электронов. Если число их в единице объема пластинки равно n_0 , а их средняя величина скорости в направлении линии тока равна υ , то силу тока I_{x} можно выразить с помощью формулы:

$$I_x = evn_0 S = evn_0 ab, (4)$$

где S = ab — площадь поперечного сечения пластинки.

Заменив в формуле (4)
$$v$$
 из соотношения (3), получим:
$$U_Y = -\frac{1}{en_0} \cdot \frac{I_x B}{a} = R_x \cdot \frac{I_x B}{a}. \tag{5}$$

Константа R_x в выражении (5) называется коэффициентом Холла. Она имеет размерность [м³/А · с]. Как видно, коэффициент Холла определяется концентрацией и знаком носителей тока в полупроводнике.

Из формулы (5) следует, что разность потенциалов, возникающая при прохождении тока через полупроводник, помещенный в магнитное поле, пропорциональна индукции магнитного поля при постоянной силе тока через датчик.

Это явление в настоящее время широко используется для измерения магнитной индукции. Действительно, измерив силу тока в полупроводнике и э. д. с. Холла, можно рассчитать значение магнитной индукции поля, в котором находится полупроводник, по формуле:

$$B = \frac{U_Y a}{I_Y R_Y}. (6)$$

2. Методика проведения измерений и описание установки

В работе используется полупроводниковый датчик Холла (Х501), встроенный в конструкцию, изображённую на рис. 4.

Рис. 4. Конструкция с датчиком Холла

Датчик Холла 1 располагается на торце специального штока 2 (зонда), который перемещают по оси соленоида. Для определения положения штока на его боковой грани нанесена сантиметровая шкала 3, рис. 5. К штоку подсоединен жгут проводов 4 для подключения электродов.

Рис. 5. Линейка на датчике Холла

Электрическая схема установки показана на рис. 6. Внешний вид лабораторной установки показан на рис. 7.

Рис. 6. Электрическая схема установки

Рис. 7. Лабораторная установка: **1** – кассета ФПЭ-04; **2** – датчик Холла; **3** – вольтметр; **4** – модуль ИП

Соленоид, расположенный внутри кассеты ФПЭ-04 посредством кабеля, подключается к источнику питания **4**. Ток через соленоид I_C фиксируется амперметром, модуль ИП. Перемещая шток с датчиком Холла **2** вдоль оси соленоида, с помощью цифрового вольтметра **3** измеряют э. д. с. Холла.

Параметры установки:

- толщина датчика Холла в направлении линий индукции магнитного поля a=0,2 мм;
 - управляющий ток датчика Холла $I_x = 90$ мА;
 - число витков соленоида N=3300;
 - длина соленоида L = 0,18 м;
 - диаметр соленоида D=0,1 м.

Датчик Холла расположен внутри соленоида и может перемещаться вручную внутри кассеты ФПЭ-04. Управляющий ток датчика Холла устанавливается автоматически до предельного значения $I_x=90$ мА при подключении кассеты к источнику питания. Контроль силы тока через соленоид I_C производится с помощью амперметра на модуле ИП.

Для получения рабочей формулы индукции магнитного поля B в центре соленоида, необходимо в уравнение (2) подставить ω — число витков, приходящееся на единицу длины соленоида и ток I_C :

$$\omega = \frac{L}{N},$$

получаем:

$$B = \frac{\mu_0 N I_C}{I_c},\tag{7}$$

где: $\mu_0 = 4\pi \cdot 10^{-7} \; \Gamma \text{H/M} - \text{магнитная постоянная.}$

Постоянную Холла получают из уравнения (5):

$$R_{x} = \frac{U_{Y}a}{I_{x}B}.$$
 (8)

3. Порядок выполнения работы и обработка результатов

- 1. Исследование зависимости магнитной индукции и э. д. с. Холла от тока в соленоиде.
- 1.1. Собрать схему, изображенную на рис. 6. Для этого гнезда на лицевой панели кассеты ФПЭ-04 соединить с соответствующими гнездами цифрового вольтметра. Поставить шток с датчиком Холла в среднее положение на оси соленоида («0» по шкале штока, рис. 8).

Рис. 8. Установка датчика Холла на «0» по шкале штока

1.2. Включить источник питания и цифровой вольтметр в сеть (220 В). Измерить э. д. с. Холла U_Y с помощью цифрового вольтметра 3, рис. 9. Ток I_C регулируется с помощью потенциометра на 4 – модуль ИП, рис. 10. Полученные результаты занести в табл. 1.

Рис. 9. Цифровой вольтметр

Рис. 10. Регулировка тока в соленоиде

 Таблица 1

 Экспериментальные данные

No	I_{C} , A	U_Y , мВ	В, мТл	$R_{x}, \frac{M^{3}}{A \cdot c}$	$\langle R_{\chi} \rangle, \frac{M^3}{A \cdot c}$
1	0,5				
2	1,0				
3	1,5				
4	2,0				

- 1.3. По формуле (7) рассчитать индукцию магнитного поля в центре соленоида.
 - 1.4. По формуле (8) определить постоянную Холла.
 - 1.5. Вычислить среднее значение постоянной Холла.
- 1.6. Построить графики зависимостей индукции магнитного поля и э. д. с. Холла от тока в соленоиде: $B = f(I_C)$ и $U_Y = f(I_C)$.
- 2. Исследование распределения индукции магнитного поля вдоль оси соленоида.
 - 2.1. Установить величину тока в соленоиде $I_C = 1$ A.
- 2.2. Перемещая шток с датчиком Холла вдоль оси соленоида с интервалом $\Delta x=2$ см, измерять э. д. с. Холла. Результаты измерений занести в табл. 2

2.3. Используя полученное выше среднее значение постоянной Холла $\langle R_x \rangle$ из табл. 1, по формуле (6) для каждого положения датчика Холла вычислить значение индукции магнитного поля в соленоиде:

$$B = \frac{U_Y a}{I_X \langle R_X \rangle}. (6)$$

Таблица 2

Экспериментальные данные

x.cm	10	8	6	4	2	0	-2	-4	-6	-8	-10
U_Y , м $\mathrm B$											
В, мТл											

2.4. Построить график зависимости индукции магнитного поля от координаты вдоль оси соленоида B = f(x).

Контрольные вопросы

- 1. Какова цель работы?
- 2. В чем заключается эффект Холла?
- 3. Каков физический смысл коэффициента Холла?
- 4. Напишите выражение для силы Лоренца.
- 5. Сделайте вывод выражения для магнитной индукции: а) на оси бесконечно длинного соленоида; б) на оси соленоида ограниченной длины.
- 6. При каком условии соленоид можно считать бесконечно длинным?
- 7. Как изменяется индукция магнитного поля вдоль оси соленоида?
- 8. Получите формулу для э. д. с. Холла.
- 9. Как изменится индукция магнитного поля на оси соленоида при увеличении числа витков на единицу длины в два раза при прочих равных условиях?
- 10. Как изменится э. д. с. Холла при увеличении в два раза продольного тока через датчик и уменьшении в два раза индукции магнитного поля?

- 11. Как изменится индукция магнитного поля на оси соленоида конечной длины, если его диаметр уменьшить в два раза, а ток в катушке оставить неизменным?
- 12. Как изменится направление силы Лоренца в случае изменения знака носителей заряда, если направление продольного тока через датчик не изменилось?
- 13. Как направлен вектор скорости носителей заряда в проводнике по отношению к направлению тока?
- 14. Какие поля называются однородными?
- 15. Покажите вид магнитных силовых линий внутри соленоида.
- 16. Изменится ли степень неоднородности магнитного поля в центре соленоида конечной длины при увеличении его длины?
- 17. Как должна быть ориентирована плоскость датчика Холла относительно магнитных силовых линий соленоида?

Рекомендуемая литература

В качестве литературы по магнитному полю и соленоидам можно рекомендовать [1, § 6.2-6.5; 3, § 110-117]. Там же можно найти ответы на некоторые контрольные вопросы.

- 1. Савельев И. В. Курс общей физики. В 5 тт. Т. 2. Электричество и магнетизм: Учебное пособие для вузов. 5-е изд., стер. СПб.: Издательство «Лань», 2021. 352 с.
- 2. Яворский Б.М, Детлаф А.А. Курс физики. М.: Издательский центр «Академия», 2015. 720 с.
- 3. Трофимова Т.И. Курс физики: учебное пособие для вузов М.: Издательский центр «Академия», 2006. 560 с.