None

Null

27 février 2024

Table des matières

1	Exercice 1	1
2	Exercice 2 2.1 Question 1 2.2 Question 2	1 1 1
3	Exercice 3	2
4	Exercice 4	2
	4.1 Question 1	2
	4.1 Question 1	2
5	Exercice 5 5.1 Question 1	2
	5.1 Question 1	2
	5.2 Question 2	2
	5.3 Question 3	3
	5.4 Question 4	3
	5.5 Question 5	3

1 Exercice 1

Soit c un code PF. Soit $x_1, \ldots, x_k, y_1, \ldots, y_l$ pour lesquels il y a égalité. Alors, soit $i = \min\{i \in \mathbb{N} \mid x_i \neq y_i\}$. Alors en ne comptant que les i premiers caractères du mot de départ, selon la longueur des codes, ou bien $c(x_1, \ldots, x_{i-1})$ est un préfixe de $c(y_1, \ldots, y_{i-1})$ ou bien l'inverse.

2 Exercice 2

2.1 Question 1

c est un code PF.

2.2 Question 2

Pour déchiffrer le code, il suffit de regarder le premier 0 que l'on trouve. On choisit entre 1,2 et 3 pour le déchiffrer selon la valeur modulo 3 du nombre de 1 qui le suivent.

3 Exercice 3

J'ai une tête de cloche à fromage ouuuuuuuuuu?

4 Exercice 4

4.1 Question 1

On considère $\mathcal{U}_m = \{u \in \mathcal{U} \mid l(u) \leq m\}$. On a alors, puisque \mathcal{U}_m est fini, l'existence de $l_{max,m} = \max\{l(u) \mid u \in \mathcal{U}_m\} \leq m$.

On considère ensuite c_m le code c tronqué à \mathcal{U}_m . On a : La suite des \mathcal{U}_m est croissante et on a $\limsup \mathcal{U}_m = \mathcal{U}$. Donc, par passage à la limite supérieure, on a bien

$$\sum_{u \in \mathcal{U}} D^{-l(u)} \leq 1$$

4.2 Question 2

On retire, à partir de la profondeur l(1) une proportion $\alpha_1 D^{-l(1)}$ des branches. On définit une mesure μ sur les fils de l'arbre comme la proportion des feuilles de l'arbre qu'ils recouvrent. On note A_i l'union des fils enracinés à profondeur l(i) qu'on a utilisés pour du codage de longueur l(i). On a $\mu(A_i) = \alpha_i D^{-l(i)}$. Notre codage complet est l'union des A_i . On a alors :

$$\mu\left(\bigcup_{i \in \mathbb{N}^*} A_i\right) = \sum_{i=1}^n \mu(A_i) = \sum_{i=1}^n \alpha(i) D^{-l(i)} = \sum_{u \in \mathcal{U}} D^{-l(u)} \le 1$$

Donc on n'a pas de recouvrement des arbres.

5 Exercice 5

5.1 Question 1

On code chaque nombre en base 2 sur k bits. On demande pour chaque bit si le nombre a la même valeur. Bah on a trouvé.

5.2 Question 2

On utilise le code $c_2(k)$ sur les K objets. Puisque le code est PF, on peut juste regarder pour tout i le i-ème symbole, et en fonction de ce qu'on a lu sur les i-1 premiers, lorsqu'on arrive à la fin du code, on a trouvé le résultat. On a $E[l(c_2(U))]$ questions en moyenne et donc on a bien :

$$H_2(U) \le E[l(c_2)(U)] \le H_2(U) + 1$$

Pour tout $u \in \{1, ..., K\}$, on utilise $\lceil \log_2(p_u) \rceil$ questions.

5.3 Question 3

Le nombre moyen de questions d'un questionnaire est équivalent à la longueur moyenne du codage UD qu'il représente. Par inégalité de Kraft et inégalité de Gibbs, on a :

$$E[l(c)(k)] = \sum_{k=1}^{K} p_k l(c(k))$$

$$= -\sum_{k=1}^{K} p_k \log_2(2^{-l(c(k))})$$

$$\geq -\sum_{k=1}^{K} p_k \log_2 q_k$$

$$\geq -\sum_{k=1}^{K} p_k \log_2 p_k$$

$$= H_2(U)$$

Donc le questionnaire a en moyenne au moins $H_2(U)$ questions.

5.4 Question 4

On considère U_1,\ldots,U_m des réalisations i.i.d. de U.

1. Avec c_2 , en moyenne, on va utiliser :

$$H_2(U) \le \frac{1}{m} E[l(c_2(U_1)) + \ldots + l(c_2(U_m))] \le \frac{H_2(U) + 1}{m}$$

2. Avec un code arbitraire, on va utiliser :

$$H_2(U) \le \frac{1}{m} E[l(c(U_1)) + \dots l(c(U_m))]$$

5.5 Question 5

On passe à la limite dans la question précédente.