Deep Generative Models

Lecture 3

Roman Isachenko

Son Masters

Spring, 2022

Recap of previous lecture

MLE problem for autoregressive model

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \sum_{j=1}^{m} \log p(x_{ij}|\mathbf{x}_{i,1:j-1},oldsymbol{ heta}).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\boldsymbol{\theta}), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1, \boldsymbol{\theta}), \quad \dots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Masking helps to make neural network autoregressive.

- ► MADE masked autoencoder (MLP).
- ▶ WaveNet masked 1D convolutions.
- PixelCNN masked 2D convolutions.

PixelCNN++ uses discretized mixture of logistic distribution to make the output distribution more natural.

Recap of previous lecture

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X})d\boldsymbol{\theta}$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Recap of previous lecture

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

1. Variational lower bound (ELBO)

2. EM-algorithm, amortized inference

3. ELBO gradients, reparametrization trick

1. Variational lower bound (ELBO)

EM-algorithm, amortized inference

3. ELBO gradients, reparametrization trick

Variational lower bound (ELBO)

Derivation 1 (inequality)

$$\log p(\mathbf{x}|\theta) = \log \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} =$$

$$= \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} \right] \ge \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} = \mathcal{L}(q, \theta)$$

Derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(q, \boldsymbol{\theta}).$$

Variational lower bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

▶ Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{q},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\max_{q} \mathcal{L}(q, \theta) \equiv \min_{q} KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)).$$

1. Variational lower bound (ELBO)

2. EM-algorithm, amortized inference

3. ELBO gradients, reparametrization trick

EM-algorithm

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z})} d\mathbf{z}.$$

Block-coordinate optimization

- lnitialize θ^* ;
- ► E-step

$$egin{aligned} q^*(\mathbf{z}) &= rg \max_q \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg \min_q \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*)) = \mathit{p}(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

M-step

$$\theta^* = \arg\max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM illustration

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*).$$

- ▶ $q(\mathbf{z})$ approximates true posterior distribution $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$, that is why it is called **variational posterior**;
- \triangleright $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$oldsymbol{ heta}_k = oldsymbol{ heta}_{k-1} + \eta
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{\phi}_k, oldsymbol{ heta})|_{oldsymbol{ heta} = oldsymbol{ heta}_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},\boldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}(\boldsymbol{\phi},\boldsymbol{\theta}).$$

► E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational posterior distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z}, \theta)$. Now all we have to do is to obtain two gradients $\nabla_{\phi}\mathcal{L}(\phi, \theta)$, $\nabla_{\theta}\mathcal{L}(\phi, \theta)$.

Challenge: Number of samples n could be huge (we heed to derive unbiased stochastic gradients).

1. Variational lower bound (ELBO)

EM-algorithm, amortized inference

 ${\it 3. ELBO \ gradients, \ reparametrization \ trick}\\$

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, heta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, heta) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

The variational posterior $q(\mathbf{z}|\mathbf{x},\phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$. image credit: https://jmtomczak.github.io/blog/4/4_VAE.html

ELBO gradients, (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

E-step:
$$\nabla_{\phi} \mathcal{L}(\phi, \theta)$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &=
abla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \ &
eq \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \end{aligned}$$

Reparametrization trick

$$r(x) = \mathcal{N}(x|0,1), y = \sigma \cdot x + \mu, p_Y(y|\theta) = \mathcal{N}(y|\mu,\sigma^2), \theta = [\mu,\sigma].$$

$$\begin{aligned} \bullet & \quad \epsilon^* \sim r(\epsilon), \quad \mathbf{z} = g(\mathbf{x}, \epsilon, \phi), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi) \\ & \quad \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) f(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int r(\epsilon) f(\mathbf{z}) d\epsilon \\ & \quad = \int r(\epsilon) \nabla_{\phi} f(g(\mathbf{x}, \epsilon, \phi)) d\epsilon \approx \nabla_{\phi} f(g(\mathbf{x}, \epsilon^*, \phi)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon^*, \phi), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot)$, $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Summary

- ► LVM maximizes variational evidence lower bound (ELBO) to find MLE for the parameters.
- The general variational EM algorithm maximizes ELBO objective.
- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.
- ► The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution.