$$\begin{cases}
S_{1} & S$$

4.3.2 Kinewitic Jawbian.

The movement of the ed effector can be expressed or defined by its instantoneous velocity and rotation velocity using a value tree tensor.

Ynlo(P): kimenstic tensor

4.4: Achierosle speeds and manipulstility

The jawsian motrix allows to characterize the achievoste velouties of the rosot given a comprymetion.

In fact, if we know the maximal joint velocities, we have:

-9 max <9 <9 max

There fare

min J(9) 9 (X (maxt) 1919



rosot. It allows to memre the capacity of the rosot to generate a relocity.

## 4.5 Singular Configurations:

According to the previous chapter, we remind that the calculation of the IKN could lead to infinity of solutions for two cases &

2 - The rosot is redomdont according to the task.

2 - The rosot configuration is as perific configuration
that generates undeterminate situation of a local
redundancy at the expense of one or several Dof. In this
case, the configuration is called a principle configuration.

o From mathematical point of view, the analysis of the Singularities is based on the columbian of the IKA of the resolution of a set of equations with nequation and a variosles. For simplicity, we can use the VKA instead of IKA for this purpose.

The VKN is not invusible if [ det(J191) =0 ]. From Kris equation, we can extract all the singular configurations.



exemple 2: Singular emfigueshor of our authropomorphic rosot (600f) with as pherical wrist. (3 revolute joints).

=> Singularity of the wrist &



In this configuration, it seems clearly that quand 96 are redoudont to generate a rotation obout it Homeren the rotation about 3 count be shown . We can find this result by colubting the jawnian of the wrist.

$$\begin{bmatrix} \dot{a} \\ \dot{b} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{q}_{4} \\ \dot{q}_{5} \\ \dot{q}_{6} \end{bmatrix}$$

matrix with arant of 2 = p det J) = 0

- A Singularity of the manipulator: l2 03 l3 94 ly  $\int = \begin{cases}
C_{11} \left( l_{2} c_{2} + l_{3} c_{23} \right) & s_{1} \left( l_{2} c_{2} + l_{3} c_{23} \right) & l_{3} s_{1} c_{23} \\
S_{11} \left( l_{11} s_{2} + l_{3} s_{23} \right) & -c_{1} \left( l_{12} c_{2} + l_{3} c_{23} \right) & -l_{2} c_{1} c_{1} c_{2} c_{2$ => det (3(91) = l2l353(l2592+l3523). · Singular configurations à dype1: 3=0 stT = 6 rank (8)=2 (sano singularity)
as the planer rosot).

Type 2: la Co+ la Co2=0 type 2: l2 C2+ l3 C23 = 0 =Dreduk (A=2, lost of 200f Inkis case Phelogs to 30 axis and 92 comment modify the position of puit P. P. 13 93

- -P The VKOT gives Kurosot velocity performances, sengular emfiguration and Knewst postures.
- -> The IKN allows to calulate the joint velocities
  references according to the operational velocities
  (generates should morrents).
- -D the VKN allows also to whates the goint efforts
  corresponding to a static effort applied on the rusot
  and the compliance matries of the rusot. This model is
  mandatory for effort control and vision control of the
  rosot.

## Some aspects of rosst that need to be investigated &

- Rosst Lynamics
- trajectory generation and planification
- Linear control of robot and non-linear control.
- free control.
- Rosst programming
- parallel rosats.
- Rosst identification and colistration.
- Robot vision surving.