

- 1. If nonlinear terms are additive fit with OLS Transform? But think about what it will do to error.

Nonlinear Models

- 3. Nonlinear Least Squares 4. Generalized Linear Models

What do you do when you don't have a line?

A Quadratic Adventure

 $Spores = b0 + b1 * Longevity + b2 * Longevity^2 + error$

Putting Nonlinear Terms into an Additive Model

fungus.lmsg <- lm(Spores ~ longevity + I(longevity^2), data=fungus)

We Can't use abline Anymore

```
plot(Spores ~ longevity, data=fungus, pch=19)
fungusFun <- function(x) coef(fungus.lmsq)[1] +
 coef(fungus.lmsq)[2]*x +
 coef(fungus.lmsq)[3]*x^2
curve(fungusFun, add=T, col="red", lwd=2)
```

Parameters are the Same as Ever summary(fungus.lmsq)

```
# Call:
# lm(formula = Spores ~ longevity + I(longevity^2), data = fungus)
# Residuals:
      Min
                1Q Median
 -2467932 -1474558 444878 1068889 3407021
# Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                -12432138
                             2883786
                                       -4.31 0.00017
# longevity
                   615120
                              126837
                                        4.85 3.9e-05
# I(longevity^2)
                    -5374
                                1328
                                       -4.05 0.00035
# Residual standard error: 1590000 on 29 degrees of freedom
# Multiple R-squared: 0.607, Adjusted R-squared: 0.58
```

We Can't use abline Anymore

log(MetabolicRate) = log(a) + b * log(mass) + error

▶ log(y) arcsin(sqrt(y)) for bounded data logit for bounded data (more well behaved) ► Box-Cox Transform May have to add 0.01, 0.5, or 1 to many of these in cases with 0s

You must ask yourself, what do the transformed variables mean?

Common Transformations

But Where does Error Come In log(MetabolicRate) = log(a) + b * log(mass) + errorimplies $MetabolicRate = a * mass^b * e^{error}$ but we often want $MetabolicRate = a * mass^b + error$

Nonlinear Least Squares Fitting

Uses algorithm for fitting. Very flexible. Must specify start values.

Nonlinear Least Squares Fitting

```
summary(primate.nls)
#
# Formula: bmr.watts ^ a * mass.g^b
# Parameters:
# Estimate Std. Error t value Pr(>|t|)
# a 0.01105 0.00225 4.93 0.00018
# b 0.79956 0.01842 43.41 < 2e-16
# Residual standard error: 0.982 on 15 degrees of freedom
# Number of iterations to convergence: 4
# Achieved convergence tolerance: 7.01e-07</pre>
```

NLS Performs Better

Exercise: Kelp!

- ► Evaluate the Frond ~ Holdfast relationship
- Fit a model with a log transformation
- Fit a model with a nls model
- Compare
- Check the diagnostics see anything?

Error: object 'kelp' not found

FRONDS are a count variable, cannot be < 0

3.5

Envelope Residuals from Log Transform

Mild Trumpet even in NLS

Maybe the error is wrong...

The Kelp Data

FRONDS are a count variable, cannot be < 0

Generalized Linear Models

Basic Premise: $y \sim dist(\eta, \nu)$

dist is a distribution of the exponential family η is a link function such that $\eta=f(\mu)$ where μ is the mean of a curve

 ϕ is a variance function

For example, if dist is Normal, canonical link is $\mu,$ variance is σ^2

Some Common Links

- ▶ Identity: $\eta = \mu$ e.g. $\mu = a + bx$
- \blacktriangleright Log: $\eta = log(\mu)$ e.g. $\mu = e^(a + bx)$
- ▶ Logit: $\eta = logit(\mu)$ e.g. $\mu = \frac{e^{(a+bx)}}{1+e^{(a+bx)}}$
- ▶ Inverse: $\eta = \frac{1}{\mu}$ e.g. $\mu = (a + bx)^{-1}$

Distributions, Canonical Links, and Dispersion

Distribution	Canonical Link	Variance Function
Normal	identity	1
Poisson	log	μ
Quasipoisson	log	$\mu\theta$
Binomial	logit	$\mu(1 - \mu)$
Quasibinomial	logit	$\mu(1 - \mu)\theta$
Negative Binomial	log	$\mu + \kappa \mu^2$
Gamma	inverse	μ^2
Inverse Normal	$1/\mu^2$	μ^3

Distributions and Other Links

Distribution	Links	
Normal	identity, log, inverse	
Poisson	log, identity, sqrt	
Quasipoisson	log, identity, sqrt	
Binomial	logit, probit, cauchit, log, log-log	
Quasibinomial	logit, probit, cauchit, log, log-log	
Negative Binomial	log, identity, sqrt	
Gamma	inverse, identity, log	
Inverse Normal	$1/\mu^2$, inverse, identity, \log	

Deviance and IWLS

Every GLM has a Set of Deviance Function to be Minimized i.e., for a normal distribution $D_M=\sum (y_i-\hat{\mu}_i)^2$

Models are Fit using Iteratively Weighted Least Squares algorithm

The Kelp Data

FRONDS are a count variable, cannot be < 0

How do we Assess Meeting Assumptions?

Fitting a GLM with a Poisson Error and Log Link

Fronds \sim Poisson(\hat{Fronds})

Fronds = exp(a + b * holdfast diameter)

20 25 30 35 40
Fitted Link

Fitted Link

Fitted Response

Different Types of Residuals

residuals(kelp.glm, type="deviance") residuals(kelp.glm, type="pearson") residuals(kelp.glm, type="response")

Ole, number

How do we Assess Meeting Assumptions?

GLM Model Coefficients

HLD_DIAM

```
# Call:
# glm(formula = FRONDS ~ HLD_DIAM, family = poisson(link = "log"),
     data = kelp)
# Deviance Residuals:
         1Q Median
# -5.902 -2.387 -0.557 1.613 6.512
# Coefficients:
             Estimate Std. Error z value Pr(>|z|)
```

(Intercept) 1.77806 0.05726 31.1 <2e-16

0.02362 0.00105 22.5 <2e-16 # (Dispersion parameter for poisson family taken to be 1) Null deviance: 1289.17 on 107 degrees of freedom # Residual deviance: 832.56 on 106 degrees of freedom (22 sharmetians deleted due to missiamess)

```
Checking Fit
    cor(fitted(kelp.glm),
        fitted(kelp.glm) + residuals(kelp.glm, type="response"))^2
```

[1] 0.3649 summary(kelp.lm)\$r.squared # [1] 0.277

The Fitted Model

Prediction Confidence Intervals by Hand

```
upperCI <- qpois(0.975, lambda = round(fitted(kelp.glm)))
lowerCl <- qpois(0.025, lambda = round(fitted(kelp.glm)))
HLD <- na.omit(kelp)$HLD_DIAM
$
kelp.ggplot +
geom_line(mapping=aes(x=HLD, y=upperCl), lty=2, col="blue") +
geom_line(mapping=aes(x=HLD, y=lowerCl), lty=2, col="blue")</pre>
```

Prediction Confidence Intervals by Hand

Overdispersion?

Which Overdispersed Distribution to Use?

v(Negative Binomial)
$$= \mu + \kappa \mu^2$$

 $v(quasipoisson) = \mu\theta$

see Ver Hoef and Boveng 2007 Ecology

$\mathsf{GLM}\ \mathsf{with}\ \mathsf{Negative}\ \mathsf{Binomial}$

library(MASS)
#
kelp.glm.nb <- glm.nb(FRONDS ~ HLD_DIAM, data=kelp)</pre>

Negative Binomial Performs Better

```
anova(kelp.glm, kelp.glm.nb)

# Analysis of Deviance Table

# Model 1: FRONDS " HLD_DIAM

# Model 2: FRONDS " HLD_DIAM

# Model 2: FRONDS " HLD_DIAM

# Resid. Dev Df Deviance

# 1 106 833

# 2 106 114 0 718
```

The Fitted Model

Fit with Prediction Error

