10

15

20

25

30

CLAIMS

- A method for controlling Cryptosporidium parvum in a mammal, comprising administering to said mammal an effective amount of a tetracycline compound, such that Cryptosporidium parvum is controlled in said mammal.
 - 2. The method of claim 1, wherein said tetracycline compound is of formula I:

wherein:

X is CHC(R13Y'Y), CHR6, S, NR6, or O;

R², R⁴ and R^{4'} are each hydrogen, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic or a prodrug moiety;

R^{2'}, R³, R¹⁰, R¹¹ and R¹² are each hydrogen or a pro-drug moiety;

 R^5 is hydroxy, hydrogen, thiol, alkanoyl, aroyl, alkaroyl, aryl, heteroaromatic, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;

 R^6, R^7, R^8 and R^9 are each independently hydrogen, hydroxyl, halogen, thiol, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;

 \mathbb{R}^{13} is hydrogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;

Y' and Y are each independently hydrogen, halogen, hydroxyl, cyano, sulfhydryl, amino, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl:

and pharmaceutically acceptable salts thereof.

- 3. The method of claim 2, wherein R^2 , R^2 , R^3 , R^{10} , R^{11} , and R^{12} are each hydrogen or a prodrug moiety.
- 4. The method of claim 2, wherein R⁴ and R⁴ are each alkyl.

30

- 5. The method of claim 5, wherein R⁴ and R⁴ are each methyl.
- The method of claim 2, wherein R⁵ is alkanoyl.
- 5 7. The method of claim 5, wherein R⁵ is an ester.
 - The method of claim 7, wherein R⁵ is a propanoic ester.
 - 9. The method of claim 2, wherein R⁵ is hydroxyl.
 - 10. The method of claim 2, wherein R⁵ is hydrogen.
 - 11. The method of claim 2, wherein X is S.
- 15 12. The method of claim 2, wherein X is CHR⁶.
 - 13. The method of claim 12, wherein R⁶ is alkyl.
 - 14. The method of claim 13, wherein R⁶ is methyl.
 - 15. The method of claim 2, wherein R⁶ comprises a heteroatom.
 - 16. The method of claim 15, wherein R⁶ comprises a sulfur atom.
- 25 17. The method of claim 16, wherein R⁶ is a thioether.
 - 18. The method of claim 17, wherein R⁶ is a cyclopentylthio ether.
 - 19. The method of claim 2, wherein R⁹ is hydrogen.
 - 20. The method of claim 2, wherein R⁹ is alkyl or alkenyl.
 - 21. The method of claim 20, wherein \mathbb{R}^9 is cyclopentenyl.
- 35 22. The method of claim 20, wherein \mathbb{R}^9 is t-butyl.
 - 23. The method of claim 2, wherein R⁹ is alkynyl.

- 24. The method of claim 22, wherein R9 is 2-cyclohexenyl-ethynyl.
- 25. The method of claim 1, wherein said tetracycline compound is of the formula:

26. The method of claim 1, wherein said tetracycline compound is of the formula:

10 27. The method of claim 1, wherein said tetracycline compound is of the formula:

28. The method of claim 1, wherein said tetracycline compound is of the formula:

29. The method of claim 1, wherein said tetracycline compound is of the formula:

30. The method of claim 1, wherein said tetracycline compound is doxycycline.

20

10

20

30

31. The method of claim 1, wherein said tetracycline compound is of the formula:

32. The method of claim 1, wherein said tetracycline compound is of the formula:

- 33. The method of claim 1, wherein said mammal is immunocompetent.
- 34. The method of claim 1, wherein said mammal is immunocompromised.
- 35. The method of claim 1, wherein said mammal is a human.
- 36. The method of claim 35, wherein said human has an immunodeficiency.
- 15 37. The method of claim 36, wherein said human has AIDS.
 - 38. The method of claim 36, wherein said human has undergone chemotherapy.
 - The method of claim 1, wherein said effective amount is effective to treat a Cryptosporidium parvum related disorder in said mammal.
 - The method of claim 37, wherein said Cryptosporidium parvum related disorder is diarrhea.
- The method of claim 37, wherein said Cryptosporidium parvum related disorder is cryptosporidiosis.
 - 42. The method of claim 1, wherein said tetracycline compound inhibits more than 70% of *Cryptosporidium parvum* at a concentration less than 100 µg/ml.
 - 43. The method of claim 41, wherein said tetracycline compound inhibits more than 70% of *Cryptosporidium parvum* at a concentration less than 10 μg/ml.

15

20

25

- 44. The method of claim 43, wherein said tetracycline compound inhibits more than 70% of *Cryptosporidium parvum* at a concentration less than 1 μg/ml.
- 5 45. A method for treating a Cryptosporidium parvum related disorder in a mammal, comprising administering to said mammal an effective amount of a tetracycline compound such that said mammal is treated for said disorder.
 - 46. The method of claim 45, wherein said tetracycline compound is of formula I:

(I)

wherein:

X is CHC(R¹³Y'Y), CHR⁶, S, NR⁶, or O;

 R^2 , R^4 , and $R^{4^{\prime}}$ are each independently hydrogen, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic or heterogramatic:

R^{2'}, R³, R¹⁰, R¹¹ and R¹² are each hydrogen or a pro-drug moiety;
R⁵ is hydroxy, hydrogen, thiol, alkanoyl, aroyl, alkaroyl, aryl, heteroaromatic, alkyl, alkanyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or arylalkyl;

R⁶, R⁷, R⁸ and R⁹ are each independently hydrogen, hydroxyl, halogen, thiol, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or arylalkyl;

R¹³ is hydrogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or arylalkyl;

Y' and Y are each independently hydrogen, halogen, hydroxyl, cyano, sulfhydryl, amino, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, or arylalkyl;

and pharmaceutically acceptable salts thereof.

30

5

- 47. The method of claim 46, wherein R^2 , R^2 , R^3 , R^{10} , R^{11} , and R^{12} are each hydrogen or a prodrug moiety.
- 48. The method of claim 47, wherein R⁴ and R⁴ are each methyl.
- 49. The method of claim 48, wherein \mathbb{R}^5 is alkanoyl, an ester group, a hydroxyl group or hydrogen.
- The method of claim 48, wherein X is S or CHR⁶.
- 51. The method of claim 50, wherein R⁶ is alkyl.
- 52. The method of claim 50, wherein R⁶ comprises a heteroatom.
- 15 53. The method of claim 52, wherein R⁶ is a thioether.
 - 54. The method of claim 46, wherein R⁹ is hydrogen, alkyl, alkenyl, or alkynyl.
 - 55. The method of claim 54, wherein R⁹ is cyclopentenyl.
 - 56. The method of claim 54, wherein R⁹ is t-butyl.
 - 57. The method of claim 54, wherein R⁹ is 2-cyclohexenyl-propynyl.
- 25 58. The method of claim 46, wherein said tetracycline compound is selected from the group consisting of 5-propionyl-6-cyclopentylsulfanylmethyl doxycycline; thiatetracycline; 9-cyclopent-1-enyl-doxycycline; 5-propionyl-9-tert-butyl-doxycycline; doxycycline; 9-tert-butyl doxycycline; 9-cyclohex-1-enylethynyl minocycline; and 6-cyclopentylsulfanylmethyl doxycycline.
 - 59. The method of claim 46, wherein said mammal is immunocompetent.
 - 60. The method of claim 46, wherein said mammal is immunocompromised.
- 35 61. The method of claim 46, wherein said mammal is a human.
 - 62. The method of claim 61, wherein said human is immunodeficient.

30

- 63. The method of claim 62, wherein said human has AIDS.
- 64. The method of claim 62, wherein said human has undergone chemotherapy.
- 65. The method of claim 46, wherein said effective amount is effective to treat a Cryptosporidium parvum related disorder in said mammal.
- The method of claim 65, wherein said Cryptosporidium parvum related disorder is
 diarrhea.
 - The method of claim 65, wherein said Cryptosporidium parvum related disorder is cryptosporidiosis.
- 15 68. The method of claim 46, further comprising the administration of a pharmaceutically acceptable carrier.
 - The method of claim 46, further comprising the administration of a supplementary anti-Cryptosporidium parvum agent.
 - The method of claim 46, wherein said supplementary agent is paromomycin or a derivative thereof.
- A pharmaceutical composition comprising an effective amount of a tetracycline
 compound to treat a *Cryptosporidium parvum* related disorder in a mammal and a pharmaceutically acceptable carrier.
 - 72. The pharmaceutical composition of claim 71, wherein said tetracycline compound is selected from the group consisting of: 5-propionyl-6-cyclopentylsulfanylmethyl doxycycline; thiatetracycline; 9-cyclopent-1-enyl-doxycycline; 5-propionyl-9-tert-butyl-doxycycline; doxycycline; 9-tert-butyl doxycycline; 9-cyclohex-1-enylethynyl minocycline; and 6-cyclopentylsulfanylmethyl doxycycline.
- The pharmaceutical composition of claim 71, wherein said tetracycline compound is 9 cyclopent-1-enyl-doxycycline.

- 74. The pharmaceutical composition of claim 71, wherein said *Cryptosporidium parvum* related disorder is cryptosporidoisis.
- The pharmaceutical composition of claim 71, wherein said Cryptosporidium parvum related disorder is diarrhea.
 - 76. The pharmaceutical composition of claim 71, further comprising an effective amount of a supplementary anti-Cryptosporidium parvum agent.
- 10 77. A tetracycline compound of the formula: