	Name: Sanket Chandrashekhar Harvande
	Roll; 19 Stigns (Alambia Page no.: 01)
	Sign: Date:/
	Sub: Theory of Computer Science
	·
	Assignment No.:03
Q · 1	Define :-
7	
$a\rangle$	Context free Grammer
⇒	A context free grammer Gisa quodruple
	$G = (V, \Sigma, P, S)$ where $V : set of non-terminal$
	Σ : set of terminal
	P: set of rewriting rule or production rule.
	S! The start symbol.
	G is a soleyt free exceeded if each element of P is
	G is a context free grammer if each element of P is
	$x \rightarrow \alpha$ where $x \in V \& \alpha \in (V \cup \Sigma)^*$
.)	D C /=
b)	Regular Grammer:- The longuage accepted by finite automata
	be described using a set of production known as regular
	grammer. The production of regular grammer are of the
	following fram.
	$A \rightarrow a$ $A \rightarrow aB$
	$A \rightarrow Ba$
	$A \rightarrow e$
	where $a \in T(\Sigma)$ & A,B $\in V$
	A language generated by a regular grammer is known
	05 regular language.
	A regular grammer can be written in two forms
	i) Right Linear form :-

Sanket Chandrashekhar Harvande (19)

Tain.

Page no.: <u>02</u> /

Aright Linear form will have production of the given form

 $A \rightarrow a$ $A \rightarrow aB$ $A \rightarrow aB$ A

 $A \rightarrow \epsilon$ on the right.

ii) left-linear form;-

A left linear form will have production of the following form

 $A \rightarrow a$ $A \rightarrow Ba$ $A \rightarrow \epsilon$ $A \rightarrow \epsilon$ Symbol on the right.

c) Context free language!-

Context free grammer $G = (V, \Sigma, P, S)$ associated with language $L(G) \subseteq \Sigma^*$ as follows $L(G) = \{x \in \Sigma^* \mid S \xrightarrow{*} x\}$

L(G): Language generated by grammer G.

x represents set of all terminals strings which can be derieved from start symbol of G.

A language is context free language if there is a context free grammer G such that L = L(G)

d) Chomsky Hierarchy of grammer:

According to Noam Chomsky, there are four types of grammers & they are as follows:

Type 0 → unrestricted grammer:

Unrestricted grammer generates

recursively enumerable language (REL). The productions have
no restrictions hence it is termed as unrestricted grammer.

Sanket Chandrashekhar Harvande (19)

,	Page no.: <u>03</u> / Date://
	They generate the language that are recognized by a Turing Machine (TM.)
(2)	Type 1 -> Context sensitive Grammer (C 5 G)
	C5 G generates context sensitive languages (C5L). They generate the languages that are recognized by linear bounded automata. (LBA). The production must be in the form $ \alpha A\beta \rightarrow \alpha Y\beta $
(3)	Type 2 → Context free Grammer (GFG)
	CFG generates context free language (CFL) they generate the languages that are recognized by push down automata (PDA).
(4)	Type 3 → Regular Grammer: - (RG)
	Regular Grammer generates regular language. They generate the language that are recognized by finite state machine. (FSM).

Sanket Chandrashekhar Harvande (19)		
	Date:	Page no.: <u>04</u> /
g-2	Simplify the following grammer.	
	$S \rightarrow ASB \mid E$ $A \rightarrow aAS \mid a \mid aA$ $B \rightarrow SbS \mid bS \mid sb \mid b \mid aAS \mid a \mid aA \mid bb$	
	i) Remove ∈ production S → ASB AB A → aAS a aA B → sb5 b5 sb b A bb	
	(i) Remove unit production	
	$S \rightarrow ASB AB$ $A \rightarrow aAS a aA$ $B \rightarrow sbS bS sb b aAS a aA bb$	
	iii) Lemma 1 1-	
	$G' = (V', \Sigma, P', S)$ $V' = \{A, B, S\}$	
	i'V) Lemma 2:	
	$G'' = \{ v'', \Sigma'', P'', 5 \}$	1 ×
	$V'' = \{A, S, B\}$ $\Xi'' = \{a, b, bb\}$	
	$p'' = S \longrightarrow ASB AB$	
	$A \longrightarrow aAS a aA$ $B \longrightarrow sbS bs sb b bb aAs a$	A 6

	Sanket Chandrashekhar Harvande (19)
	Atam
	Page no.: <u>05</u> / Date://
0 2	
903	Convert CFG to CNF.
	$5 \rightarrow asb ab$
	for every terminal symbol introduce a new non-terminal
	If A > BIB2 Bm is a rule GFG then the rule in
	$\begin{array}{ccc} CNF \\ A \longrightarrow B101 & Dn-3 \longrightarrow Bn-2 Dn-2 \end{array}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$D_{\perp} \rightarrow B3D3$
	32 7 8883
	CNF: step 1:-
	5 → AsB
	$S \rightarrow AB$
	$A \rightarrow a$
	B o b
	Step 2:-
	$s \rightarrow AD1$
	DI → SB
	S → AB
	$A \rightarrow a$
	$B \rightarrow b$
9.4	Convert GFG to GNF.
	$5 \rightarrow AA10$
	$A \rightarrow SS11$
\rightarrow	i) Not necessary
	ii) Consider s = A1 A = A2
	$\begin{array}{c} A1 \rightarrow A2A2 \downarrow 0 & \bigcirc \\ A2 \rightarrow A1A111 & \bigcirc \\ \end{array}$
	$A2 \rightarrow A141/1 \qquad -2$
	iii) Rule 2 is not in GNF form so
	$A2 \rightarrow A2A2A1 \mid OA1 \mid I \qquad [A] \rightarrow A2A2 \mid O]$
	Using demma d
	$B_1 = 0A1$, $B_2 = 1$ $a_1 = A_2A1$
	$\therefore A2 = 0A I$
	$A2 \rightarrow 0A Z IZ$

	Sanket Chandrashekhar Harvande (19)		
	S. Lauri	Page no.: <u>0 6</u> /	
1	$Z \rightarrow A2A1$ $A1$ $Z \rightarrow A2A1Z$	→ A2A2 0	
	$\begin{array}{c} \text{IV)} & \text{Al} \rightarrow \text{A2A2} \text{O} \\ & \text{A2} \rightarrow \text{OA} \text{II} \text{OA} \text{Z} \\ & \text{Z} \rightarrow \text{A2AI} \text{A2AI} \text{Z} \end{array}$		
	$\begin{array}{c c} A & \rightarrow & 0A & A2 & A2 & 0A \\ A2 & \rightarrow & 0A & 1 & 0A & 2 & 2 \\ Z & \rightarrow & A2A & A2 & Z \end{array}$	ZA2 1ZA2 0	
	V) AI \rightarrow OAIA2 1A2 OA A2 \rightarrow OAI 1 OAIZ 1 Z \rightarrow OAIAI 1AI OAI	Z ZAI IZA	
	Now rewrite the rules by	converting back A1 = 5, A2 = A	
	$S \rightarrow 0SA \mid 1A \mid 0S$ $A \rightarrow 0S \mid 1 \mid 0SZ$ $Z \rightarrow 0SS \mid 1S \mid 0SZ$ $Z \rightarrow 0SSZ \mid 1SZ$	Z Z Z	
g .5	Consider the grammer.		
,	$S \longrightarrow OB \mid 1A$ $A \longrightarrow O \mid OS \mid 1AA$ $B \longrightarrow A \mid AB \mid AB \mid AB \mid AB \mid AB \mid AB \mid AB$		
	B -> 1/15/0BB for the string collolar find the following left most derivation, night most derivation & parse tree.		
\rightarrow	Leftmost derivation:-		
		5 → 0B] 3 → 08B]	

Sanket Chandrashekhar Harvande (19)

Page no.: <u>07</u> / -> 001B [B -1] → 0011 S [B→IS] → 00110B $[5 \rightarrow 0B]$ > 0011015 $[8 \rightarrow 15]$ > 0011010B $[s \rightarrow 0B]$ → ∞(10)01 $[B \rightarrow 1]$ Rightmost derivation: $5 \rightarrow 08$ $[5 \rightarrow 0B]$ \rightarrow 00BB $[B \rightarrow OBB]$ \rightarrow 00BIS [B → 157 > 00B105 [S > OB) \rightarrow 00 Blols $[B \rightarrow 15]$ > 00B1010B $[s \rightarrow 0B]$

 $[B \rightarrow 1]$

 $[B \rightarrow 17]$

Parse tree

-> 00 B10101

-> 00|10|0|

