\Box

```
from sklearn.datasets import load_breast_cancer
import pandas as pd
import numpy as ny
import matplotlib.pyplot as plt
KNN
cancer=load_breast_cancer()
print(cancer.keys())
    dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
X=cancer.data
cancer.target
    0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1,
          1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
          1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
                     1, 1, 0, 1, 1, 0, 1, 1,
                                          1, 1, 0,
                                                  1,
                                                     1, 1, 1,
          1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
          1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
          0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1,
          1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0,
                                                       0, 1, 0,
          1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
                     1, 1, 1, 1, 1, 1, 0, 1,
                                             1, 0,
                                                     0, 1, 1,
                                                  1,
               1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
          0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
          0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,
                1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
          1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
                1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
                     1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
          1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
          1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])
cancer.target_names
    array(['malignant', 'benign'], dtype='<U9')</pre>
Гэ
cancer.feature_names
```

```
array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
             'mean smoothness', 'mean compactness', 'mean concavity',
'mean concave points', 'mean symmetry', 'mean fractal dimension',
             'radius error', 'texture error', 'perimeter error', 'area error',
             'smoothness error', 'compactness error', 'concavity error',
             'concave points error', 'symmetry error',
             'fractal dimension error', 'worst radius', 'worst texture',
             'worst perimeter', 'worst area', 'worst smoothness',
             'worst compactness', 'worst concavity', 'worst concave points',
             'worst symmetry', 'worst fractal dimension'], dtype='<U23')
X.shape
    (569, 30)
Y=cancer.target
Y.shape
 「→ (569,)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=4)
x train.shape
 □→ (455, 30)
x_test.shape
 □→ (114, 30)
y train.shape
 y test.shape
 □→ (114,)
Χ
 С→
```

```
array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
            1.189e-01],
           [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
            8.902e-02],
           [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
            8.758e-02],
           . . . ,
           [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
            7.820e-02],
           [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
            1.240e-01],
           [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
            7.039e-02]])
type(X)
   numpy.ndarray
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier()
knnmodel=model.fit(x_train,y_train)
print(knnmodel)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                        metric params=None, n jobs=None, n neighbors=5, p=2,
                        weights='uniform')
Yp=knnmodel.predict(x test)
Υp
0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,
           1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1,
           0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,
           0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0,
           1, 1, 0, 1])
len(Yp)
Г⇒ 114
y_test
С→
```

print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(455, 30) (114, 30) (455,) (114,)

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report

acc1=(accuracy_score(y_test,Yp))
acc1

C→ 0.8771929824561403

print(confusion_matrix(y_test,Yp))

[29 5] [9 71]]

print(classification_report(y_test,Yp))

₽	precision	recall	f1-score	support
0	0.76	0.85	0.81	34
1	0.93	0.89	0.91	80
accuracy			0.88	114
macro avg	0.85	0.87	0.86	114
weighted avg	0.88	0.88	0.88	114

ls=[]

```
for i in range(1,30):
    model=KNeighborsClassifier(n_neighbors=i)
    knnmodel=model.fit(x_train,y_train)
    Yp=knnmodel.predict(x_test)
    acc=(accuracy_score(y_test,Yp))
```

```
ls.append(acc)
print(ls)
```

[0.8771929824561403, 0.833333333333334, 0.8771929824561403, 0.8596491228070176, 0.87

```
plt.plot(ls)
plt.xlabel("kneighbors")
plt.ylabel("Accuracy")
plt.title("knn accuracy graph")
plt.show()
```


Logistic Regression

from sklearn.linear model import LogisticRegression

model1=LogisticRegression()

model1

lrmodel=model1.fit(x_train,y_train)

/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:432: FutureWa FutureWarning) Ypl=lrmodel.predict(x test)

Ypl

y_test

acc2=(accuracy_score(y_test,Ypl))
acc2

C→ 0.9122807017543859

print(confusion_matrix(y_test,Ypl))

print(classification_report(y_test,Ypl))

₽		precision	recall	f1-score	support
	0	0.80	0.94	0.86	34
	1	0.97	0.90	0.94	80
	accuracy			0.91	114
	macro avg	0.89	0.92	0.90	114
	weighted avg	0.92	0.91	0.91	114

lrmodel.classes_

□→ array([0, 1])

1rmodel.coef

 \Box

array([[1.52600655, 0.17074294, 0.0778339 , -0.00609732, -0.09889202, lrmodel.intercept_

□→ array([0.24003215])

-0.67690442. -1.10809088. -0.40349885. -0.40321753. -0.0701916711)

import matplotlib.pyplot as plp

plp.scatter(cancer.data[:,0],cancer.data[:,1],c='r')

Decision Tree

X1=pd.DataFrame(cancer.data,columns=cancer.feature_names)

X1.head()

₽		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	sy
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
	4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	

Y1=pd.DataFrame(cancer.target,columns=['Cancer Type'])

Υ1

С>

	Cancer	Туре
0		0
1		0
2		0
3		0
4		0
•••		
564		0
565		0
566		0
567		0
568		1

569 rows × 1 columns

X1.shape

[→ (569, 30)

Y1.shape

[→ (569, 1)

X1.describe()

₽

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	conca
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.08
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.07
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.00
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.02
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.06
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.13
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.42

 $from \ sklearn.tree \ import \ Decision Tree Classifier$

```
dt=DecisionTreeClassifier(criterion='entropy', max_depth=2)
dt
```

model2=dt.fit(X1,Y1)
model2

Yp2=model2.predict(x_test)
Yp2

from sklearn import tree

tree.plot_tree(model2, feature_names=cancer.feature_names, class_names=cancer.target_names

₽

[Text(167.4, 181.2, 'worst perimeter <= 105.95\nentropy = 0.953\nsamples = 569\nvalue Text(83.7, 108.72, 'worst concave points <= 0.135\nentropy = 0.283\nsamples = 345\nv Text(41.85, 36.239999999998, 'entropy = 0.097\nsamples = 320\nvalue = [4, 316]\ncl Text(125.550000000000001, 36.239999999998, 'entropy = 0.999\nsamples = 25\nvalue = Text(251.1000000000002, 108.72, 'worst perimeter <= 117.45\nentropy = 0.556\nsample Text(209.25, 36.239999999998, 'entropy = 0.998\nsamples = 57\nvalue = [30, 27]\ncl Text(292.95, 36.239999999998, 'entropy = 0.094\nsamples = 167\nvalue = [165, 2]\ncl


```
acc3=(accuracy_score(y_test,Yp2))
acc3
```

Г → 0.8596491228070176

SVM(Support Vector Machine)

```
from sklearn.svm import SVC, LinearSVC
from sklearn import svm

clf = LinearSVC()
clf.fit(x_train, y_train)
prediction = clf.predict(x_test)
```

```
acc4=accuracy_score(prediction, y_test)
acc4
```

CVC ... + b DDE konnol

```
X2 = cancer.data[:, :2] # we only take the Sepal two features.
Y2 = cancer.target
C = 1.0 # SVM regularization parameter

# SVC with linear kernel
svc = svm.SVC(kernel='linear', C=C).fit(X2, Y2)
# LinearSVC (linear kernel)
lin_svc = svm.LinearSVC(C=C).fit(X2, Y2)
```

```
# 2AC MILL KRE KELLET
rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X2, Y2)
# SVC with polynomial (degree 3) kernel
poly svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X2, Y2)
 "the number of iterations.", ConvergenceWarning)
     /usr/local/lib/python3.6/dist-packages/sklearn/svm/base.py:193: FutureWarning: The de
       "avoid this warning.", FutureWarning)
h = .02
# create a mesh to plot in
x_{min}, x_{max} = X2[:, 0].min() - 1, <math>X2[:, 0].max() + 1
y_{min}, y_{max} = X2[:, 1].min() - 1, <math>X2[:, 1].max() + 1
xx, yy = ny.meshgrid(ny.arange(x_min, x_max, h),
                      ny.arange(y_min, y_max, h))
# title for the plots
titles = ['SVC with linear kernel',
     'LinearSVC (linear kernel)',
      'SVC with RBF kernel',
      'SVC with polynomial (degree 3) kernel']
for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)):
   # Plot the decision boundary. For that, we will assign a color to each
   # point in the mesh [x_min, x_max]x[y_min, y_max].
   plt.subplot(2, 2, i + 1)
   plt.subplots_adjust(wspace=0.4, hspace=0.4)
   Z = clf.predict(ny.c_[xx.ravel(), yy.ravel()])
   # Put the result into a color plot
   Z = Z.reshape(xx.shape)
   plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
   # Plot also the training points
   plt.scatter(X2[:, 0], X2[:, 1], c=Y2, cmap=plt.cm.coolwarm)
   plt.xlabel('Mean Radius')
   plt.ylabel('Mean Texture')
   plt.xlim(xx.min(), xx.max())
   plt.ylim(yy.min(), yy.max())
   plt.xticks(())
   plt.yticks(())
  plt.title(titles[i])
plt.show()
 C→
```


Accuracy Graph of all Agorithms

