Type Soundness in an Intensional Dependent Type Theory with Type-in-Type and Recursion

February 25, 2021

1 Type Soundness

1.1 Contexts

1.1.1 Sub-Contexts are well formed

The following rules are admissible:

$$\begin{split} \frac{\Gamma,\Gamma' \vdash}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash M : \sigma}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash} \\ \frac{\Gamma,\Gamma' \vdash M \equiv M' : \sigma}{\Gamma \vdash} \end{split}$$

by mutual induction on the derivations.

1.1.2 Context weakening

For any derivation of $\Gamma \vdash \sigma : \star$, the following rules are admissible:

$$\begin{split} \frac{\Gamma, \Gamma' \vdash}{\Gamma, x : \sigma, \Gamma' \vdash} \\ \frac{\Gamma, \Gamma' \vdash M : \tau}{\Gamma, x : \sigma, \Gamma' \vdash M : \tau} \\ \frac{\Gamma, \Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow M' : \sigma} \end{split}$$

$$\begin{split} &\frac{\Gamma,\Gamma'\vdash M \Rrightarrow_* M':\sigma}{\Gamma,x:\sigma,\Gamma'\vdash M \Rrightarrow_* M':\sigma} \\ &\frac{\Gamma,\Gamma'\vdash M \equiv M':\tau}{\Gamma,x:\sigma,\Gamma'\vdash M \equiv M':\tau} \end{split}$$

by mutual induction on the derivations.

1.1.3 \Rightarrow is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \Rrightarrow M : \sigma} \Rrightarrow \text{-refl}$$

by induction

1.1.4 \equiv is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \equiv M : \sigma} \equiv \text{-refl}$$

by $\Rightarrow *-refl$

1.1.5 Context substitution

For any derivation of $\Gamma \vdash N : \tau$ the following rules are admissible:

$$\begin{split} \frac{\Gamma, x : \tau, \Gamma' \vdash}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow M' \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow_* M' \left[x \coloneqq N\right] : \sigma} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \Rightarrow_* M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rightarrow_* M' \left[x \coloneqq N\right] : \sigma} \\ \frac{\Gamma, x : \tau, \Gamma' \vdash M \equiv M' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \equiv M' \left[x \coloneqq N\right] : \sigma \left[x \coloneqq N\right]} \end{split}$$

by mutual induction on the derivations. Specifically, at every usage of x from the var rule in the original derivation, replace the usage of the var rule with the derivation of $\Gamma \vdash N : \tau$ weakened to the context of $\Gamma, \Gamma'[x \coloneqq N] \vdash N : \tau$, and apply \Rrightarrow -refl or \equiv -refl when needed.

1.2 Computation

1.2.1 \Rightarrow preserves type of source

The following rule is admissible:

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N : \tau}$$

by induction

$1.2.2 \Rightarrow$ -substitution

The following rule is admissible:

$$\frac{\Gamma, x: \sigma, \Gamma' \vdash M \Rrightarrow M': \tau \quad \Gamma \vdash N \Rrightarrow N': \sigma}{\Gamma, \Gamma' \left[x \coloneqq N\right] \vdash M \left[x \coloneqq N\right] \Rrightarrow M' \left[x \coloneqq N'\right]: \tau \left[x \coloneqq N\right]}$$

by induction on the \Rightarrow derivations

1.2.3 \Rightarrow is confluent

if $\Gamma \vdash M \Rrightarrow N : \sigma$ and $\Gamma \vdash M \Rrightarrow N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rrightarrow P : \sigma$ and $\Gamma \vdash N' \Rrightarrow P : \sigma$ by standard techniques

$1.3 \Rightarrow_*$

1.3.1 \Rightarrow_* is transitive

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rightarrow_* M' : \sigma \quad \Gamma \vdash M' \Rightarrow_* M'' : \sigma}{\Gamma \vdash M \Rightarrow_* M' : \sigma} \Rightarrow *-trans$$

by induction

1.3.2 \Rightarrow preserves type in destination

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N' : \tau}$$

By induction on the \Rightarrow derivation with the help of the substitution lemma.

- Π-⇒
 - $-M'[x\coloneqq N',f\coloneqq (\operatorname{fun} f:(x.\tau').x:\sigma'.M')]:\tau'[x\coloneqq N']$ by the substitution lemma used on the inductive hypotheses
 - $-\tau[x\coloneqq N] \Rightarrow \tau'[x\coloneqq N']$ by \Rightarrow -substitution, so $\tau[x\coloneqq N] \equiv \tau'[x\coloneqq N']$
 - by the conversion rule $M'\left[x\coloneqq N',f\coloneqq (\mathsf{fun}\,f:(x.\tau')\,.\,x:\sigma'.M')\right]:\tau\left[x\coloneqq N\right]$

- П-Е-⇒
 - M' N': τ [x := N'], by ⇒-substitution and reflexivity, τ [x := N] ⇒ τ [x := N'], so τ [x := N] ≡ τ [x := N']
 - by the conversion rule $M'N': \tau[x := N]$
- Π-I-⇒
 - fun $f:(x.\tau').x:\sigma'.M':\Pi x:\sigma'.\tau',\Pi x:\sigma.\tau \Rightarrow \Pi x:\sigma'.\tau'$, so $\Pi x:\sigma.\tau \equiv \Pi x:\sigma'.\tau'$
 - by the conversion rule fun $f:(x.\tau').x:\sigma'.M':\Pi x:\sigma.\tau$
- all other cases are trivial

1.3.3 \Rightarrow_* preserves type

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rightarrow_* M' : \sigma}{\Gamma \vdash M : \sigma}$$

by induction

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by induction

1.3.4 \Rightarrow_* is confluent

if $\Gamma \vdash M \Rrightarrow_* N : \sigma$ and $\Gamma \vdash M \Rrightarrow_* N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rrightarrow_* P : \sigma$ and $\Gamma \vdash N' \Rrightarrow_* P : \sigma$

Follows from \Rightarrow *-trans and the confluence of \Rightarrow using standard techniques

$1.3.5 \equiv \text{is symmetric}$

The following rule is admissible:

$$\frac{\Gamma \vdash M \equiv N : \sigma}{\Gamma \vdash N \equiv M : \sigma} \equiv \text{-sym}$$

trivial

1.3.6 \equiv is transitive

$$\frac{\Gamma \vdash M \equiv N : \sigma \qquad \Gamma \vdash N \equiv P : \sigma}{\Gamma \vdash M \equiv P : \sigma} \equiv \text{-trans}$$

by the confluence of \Rightarrow_*

$1.3.7 \equiv \text{preserves type}$

The following rules are admissible:

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M : \sigma}$$

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by the def of \Rightarrow_*

1.3.8 Regularity

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \sigma : \star}$$

by induction with \equiv -preservation for the Conv case

1.3.9 \rightsquigarrow implies \Rightarrow

For any derivations of $\Gamma \vdash M : \sigma, M \leadsto M'$

$$\Gamma \vdash M \Rightarrow M' : \sigma$$

by induction on \rightsquigarrow

$1.3.10 \rightarrow \text{preserves type}$

For any derivations of $\Gamma \vdash M : \sigma, M \leadsto M'$,

$$\Gamma \vdash M' : \sigma$$

since \leadsto implies \Rrightarrow and \Rrightarrow preserves types

1.4 Type constructors

1.4.1 Type constructors are stable

- if $\Gamma \vdash * \Rightarrow M : \sigma$ then M is *
- if $\Gamma \vdash * \Rightarrow_* M : \sigma$ then M is *
- if $\Gamma \vdash \Pi x : \sigma \cdot \tau \Rightarrow M : \sigma$ then M is $\Pi x : \sigma' \cdot \tau'$ for some σ', τ'
- if $\Gamma \vdash \Pi x : \sigma \cdot \tau \Rightarrow_* M : \sigma$ then M is $\Pi x : \sigma' \cdot \tau'$ for some σ', τ'

by induction on the respective relations

1.4.2 Type constructors definitionally unique

There is no derivation of $\Gamma \vdash * \equiv \Pi x : \sigma.\tau : \sigma'$ for any $\Gamma, \sigma, \tau, \sigma'$ from \equiv -Def and constructor stability

1.5 Canonical forms

If $\Diamond \vdash v : \sigma$ then

- if σ is \star then v is \star or $\Pi x : \sigma . \tau$
- if σ is $\Pi x : \sigma' \cdot \tau$ for some σ' , τ then v is fun $f : (x \cdot \tau') \cdot x : \sigma'' \cdot P'$ for some τ' , σ'' , P'

By induction on the typing derivation

- Conv.
 - if σ is \star then eventually, it was typed with type-in-type, or Π-F. it could not have been typed by Π-I since constructors are definitionaly unique
 - if σ is Πx : σ' . τ then eventually, it was typed with Π -I. it could not have been typed by type-in-type, or Π -F since constructors are definitionally unique
- type-in-type, $\Diamond \vdash v : \sigma \text{ is } \Diamond \vdash \star : \star$
- Π -F, $\Diamond \vdash v : \sigma$ is $\Diamond \vdash \Pi x : \sigma . \tau : \star$
- Π -I, $\Diamond \vdash v : \sigma$ is $\Diamond \vdash \text{fun } f : (x.\tau) . x : \sigma.M : \Pi x : \sigma.\tau$
- no other typing rules are applicable

1.6 Progress

 $\Diamond \vdash M : \sigma \text{ implies that } M \text{ is a value or there exists } N \text{ such that } M \leadsto N.$

By direct induction on the typing derivation with the help of the canonical forms lemma

Explicitly:

- M is typed by the conversion rule, then by **induction**, M is a value or there exists N such that $M \leadsto N$
- M cannot be typed by the variable rule in the empty context
- M is typed by type-in-type. M is \star , a value
- M is typed by Π -F. M is $\Pi x : \sigma.\tau$, a value
- M is typed by Π -I. M is fun $f:(x.\tau).x:\sigma.M'$, a value

- M is typed by Π -E. M is PN then exist some σ, τ for $\Diamond \vdash P : \Pi x : \sigma.\tau$ and $\Diamond \vdash N : \sigma$. By **induction** (on the P branch of the derivation) P is a value or there exists P' such that $P \leadsto P'$. By **induction** (on the N branch of the derivation) N is a value or there exists N' such that $N \leadsto N'$
 - if P is a value then by **canonical forms**, P is fun $f:(x.\tau).x:\sigma.P'$ and
 - * if N is a value then the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto P'[x:=N,f:=\operatorname{fun} f:(x.\tau).x:\sigma.M]$
 - * otherwise there exists N' such that $N \leadsto N'$, and the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N \leadsto (\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N'$
 - otherwise, there exists P' such that $P \leadsto P'$ and the one step reduction is $P \, N \leadsto P' \, N$

1.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck". Either a final value will be reached or further reductions can be taken. This follows by iterating the progress and preservation lemmas.