A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 2EB

Bookmark

Show all steps: (

ON

Problem

Let G be a group. The symbol $H \subseteq G$ is commonly used as an abbreviation of "H is a *normal* subgroup of G." A *normal series* of G is a finite sequence $H_0, H_1, ..., H_n$ of subgroups of G such that

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$$

Such a series is called a *solvable series* if each quotient group H_{i+1}/H_i is abelian. G is called a *solvable group* if it has a solvable series.

Let *G* be a solvable group, with a solvable series $H_0, ..., H_n$. Let *K* be a subgroup of *G*. Show that $J_0 = K \cap H_0, ..., J_n = K \cap H_n$ is a normal series of *K*.

Step-by-step solution

Step 1 of 4

Here, objective is to prove that $J_0 = K \cap H_0, \dots, J_n = K \cap H_n$ is a normal series of K.

Comment

Step 2 of 4

Consider G is a group and normal series of G is a finite sequence H_0, H_1, \dots, H_n of subgroups of G, such that $\{e\} = H_0 \triangleleft H_1 \triangleleft \dots \triangleleft H_n = G$ such type of series is called solvable series.

H is normal subgroup of *G* is represented by $H \triangleleft G$.

Comment

