Summer/Winter/Semester2

Tutorial 9

2015

This tutorial explores sums of non normal random variables (CLT).

Central Limit Theorem (CLT)

Given a sequence of iid random variables $X_i \sim (\mu, \sigma^2)$ for $i = 1, \dots, n$.

Given a sequence of national variation, where $\sigma^2 < \infty$ and n is large, then the distribution function of $\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}}$ tends to the standard Normal.

Less formally, $\sum_{i=1}^{n} X_i \to N(n\mu, n\sigma^2)$ and $\bar{X} \to N(\mu, \frac{\sigma^2}{n})$.

Normal Approximation to the Binomial (CLT special case)

For large $n, X \sim Bin(n, p) \rightarrow N(np, np(1-p))$.

Guide: Use when n > 25, np > 5, n(1-p) > 5.

Continuity correction

Given a discrete integer valued RV $X \sim (\mu, \sigma^2)$ and the approximating Normal $Y \sim N(\mu, \sigma^2)$ we adjust by 1/2 to (usually) improve the approximation.

$$P(X \ge x) \to P(Y \ge x - 1/2)$$

$$P(X \le x) \to P(Y \le x + 1/2)$$

1. Central Limit Theorem

- (a) In your own words, explain the Central Limit Theorem.
- (b) Why does the Central Limit Theorem apply to the Binomial Distribution?

2. Central Limit Theorem

A new type of electronics flash for cameras will last an average of 5000 hours with a standard deviation of 400 hours. A company quality control engineer intends to select a random sample of 100 of these flashes and use them until they fail.

- (a) What is the approximate probability that the mean life time of 100 flashes will be less than 4940 hours?
- (b) What is the approximate probability that the mean life time of 100 flashes will be between 4960 and 5040 hours (ie. within 40 hours of μ , the population mean)

3. Normal approximation to Discrete RV

Let X_1, X_2, X_3 be independent rolls of a fair 6-sided die and let $S = X_1 + X_2 + X_3$.

(a) Show that
$$E(X_i) = 3.5$$
 and $Var(X_i) = \frac{35}{12}$.

- (b) Compute a normal approximation with continuity correction for $P(S \le 6)$.
- (c) Using probability, compute $P(S \le 6)$ exactly. What is the relative error of the approximation in (b)?

4. Normal Approximation to Binomial

Suppose that $X \sim B(20, 0.25)$.

- (a) Write down E(X) and Var(X).
- (b) Compute a normal approximation to $P(X \ge 5)$ using a continuity correction.
- (c) Use R to compute the exact probability. What is the relative error of the approximation in (b).
- (d) Repeat (a)-(c) for $X \sim B(20, 0.1)$.
- (e) Why is the relative error in (d) so poor compared to (c)?

5. Normal approximation to Binomial

The MATH1005 exam includes 25 multiple choice questions, each with 5 options. A student randomly guesses each answer independently.

- (a) Using a normal approximation with continuity correction, approximate the probability that the student gets at least 8 questions correct.
- (b) Use R to compute the exact probability and calculate the relative error of the normal approximation.

6. Poor Normal approximation to Binomial

- (a) Find the relative error of the Normal approximation to $P(X \le 2)$, when $X \sim Bin(25, 0.25)$.
- (b) Can you explain why this is a poor appoximation?