1 Постановка задачи

Задана выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}, i = 1, \dots, m,\tag{1}$$

состоящая из множества пар «объект-метка»

$$\mathbf{x}_i \in \mathbf{X} \subset \mathbb{R}^n, \quad y_i \in \mathbf{y} \subset \mathbb{Y}.$$

Метка y объекта $\mathbf x$ принадлежит либо множеству: $y \in \mathbb Y = \{1, \dots, Z\}$ в случае задачи классификации, где Z — число классов, либо некоторому подмножеству вещественных чисел $y \in \mathbb Y \subseteq \mathbb R$ в случае задачи регрессии. Определим множество архитектур моделей глубокого обучения для дальнейшего выбора оптимальной.

Пусть задан граф V, E. Пусть для каждого ребра $< i, j > \in E$ определено множество функций $\mathbf{o}(i,j)$. Граф V, E с множеством функций \mathbf{O} называется моделью, если функция, задаваемая рекурсивно как

$$f_i(\mathbf{x}) = \sum_{j \in \text{Adj}(v_i)} o(i, j)(f_j(\mathbf{x})),$$

является непрерывной дифференцируемой функцией из \mathbb{R}^n во множество \mathbb{Y} при любом o(i,j), являющемся линейной комбинацией функций из множества $\mathbf{o}(i,j)$.

Пусть \mathbf{w} — множество всех параметров функций из $\mathbf{o}(i,j), < i, j > \in E$. Положим распределение параметров \mathbf{w} нормальным с нулевым средним и диагональной квариационной матрицей:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$$

Пусть для каждого ребра i,j задан нормированный положительный вектор $\gamma_{i,j} \in \mathbb{R}+^{|\mathbf{o}(i,j)|}$, определяющий веса функций из множества $\mathbf{o}(i,j)$. Будем считать, что бинарный вектор $\gamma_{i,j}$ распределен по распределению Дирихле:

$$\gamma_{i,j} \sim \text{Dir}(c, \mathbf{m}_{i,j}).$$

где $\mathbf{c}_{i,j}$ — вектор концентрации распределения, $_i, j$ — вектор средних. Обозначим за структуру модели Γ множество всех векторов γ .

Пусть также определено правдоподобие выборки $p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\gamma})$. Определение Правдоподобием модели \mathbf{f} назовем следующее выражение:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \mathbf{m}, c) = \int_{\mathbf{w}, \Gamma} p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \Gamma) p(\mathbf{w}|\mathbf{A}) p(\boldsymbol{\gamma}|\mathbf{m}, c) d\mathbf{W} d\Gamma.$$
 (2)

Пусть задано значение концентрации c. Требуется найти гиперпараметры модели A, m доставляющие максимум правдоподобия модели:

$$\underset{\mathbf{A}, \mathbf{m}}{\operatorname{arg\,max}} \in \operatorname{log} p(\mathbf{y} | \mathbf{X}, \mathbf{A}, \mathbf{m}, c).$$

Хочется: чтобы c находилось автоматически, см. spike-and-slab.

Утверждение (предварительно). При c << 0 оптимизация (2) эквивалентна оптимизации при ограничениях $\gamma_{i,j} \in 2^{|\mathbf{o}(i,j)|}$.

2 Вариационная постановка задачи

Пусть заданы распределения q_w, q_γ , аппроксимирующие апостериорные распределения $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c), p(\mathbf{\Gamma}||\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c).$

Положим $\boldsymbol{\theta}$ равным параметрам распределений q_w, q_γ . Положим $\mathbf{h} = [\mathbf{A}, \mathbf{m}]$. Пусть L — вариационная оценка правдоподобия:

$$L = \log p(\mathbf{y}|\hat{\mathbf{W}}, \hat{\mathbf{\Gamma}}) - D_{KL}(q_{\gamma}||p(\mathbf{\Gamma})) - D_{KL}(q_{W}||p(\mathbf{W})).$$

Пусть Q — валидационная функция:

$$Q(c, c_1, c_2, c_3, \mathbf{p}) = c_1 \log p(\mathbf{y}|\hat{\mathbf{W}}, \hat{\mathbf{\Gamma}}) + c_2 [-D_{KL}(q_\gamma || p(\mathbf{\Gamma})) - D_{KL}(q_W || p(\mathbf{W}))] +$$

$$+c_3 \sum_{p_k \in \mathbf{p}} D_{KL}(q_\gamma || p_k),$$

где ${\bf p}$ — заданные распределения на структурах, c_1, c_2, c_3 — коэффициенты.

Сформулируем задачу поиска оптимальной модели как двухуровневую задачу.

$$\hat{\mathbf{h}} = \arg\max_{\mathbf{h} \in \mathbb{R}^h} Q(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})), \tag{3}$$

где T — оператор оптимизации, решающий задачу оптимизации:

$$L(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})) \to \min.$$

Вопрос: в последнем слагаемом априорные или вариационные распределения.

Утверждение. Пусть $D_{KL}(q_w|p(\mathbf{w})=0, D_{KL}(q_\gamma|p(\Gamma)=0, \text{ пусть } c_1=1, c_2=1, c_3=0.$ Тогда оптимизация (3) эквивалентна оптимизации (2).

Определение (предварительно) Параметрической δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathbf{p}}(\delta, \mathbf{w}) = \mathsf{E} \sum_{w \in \mathbf{w}} I(|w| > \delta).$$

Определение (**предварительно**) Структурной δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathrm{s}}(\delta, \mathbf{\Gamma}) = \mathsf{E} \sum_{\gamma \in \mathbf{\Gamma}} \sum_{\gamma_i \in \gamma} I(\gamma_i > \delta).$$

Утверждение (предварительно). Пусть $c_1 = 1, c_3 = 0, c_2 > 0, c'_2 < c_2$. Пусть \mathbf{w}, \mathbf{w}' — параметры, полученные в результате соответствющих оптимизаций. Тогда $C_p(\delta, \mathbf{w}') \leq C_p(\delta, \mathbf{w})$.

Идея доказательства: для примера: пусть вар. распределение — нормальное. При снижении c_2 до нуля получаем $\mathbf{A}_q \to \infty$.

Утверждение (предварительно). Пусть c' < c. Пусть Γ, Γ' — параметры, полученные в результате соответствющих оптимизаций. Тогда $C_{\rm s}(\delta, {\bf w}') \leq C_{\rm s}(\delta, {\bf w})$.

Утверждение (предварительно, нужно развить). Пусть $c_3 > 0, c << 0$ и все $p_k \in \mathbf{p}$ отражают распределения на вершинах симплекса. Тогда оптимизация приведет к q_{γ} , сконцентрированному на одной из остальных вершин симплекса.

Утверждение (очень предварительно). Изменение c позволяет избежать ухода в локальный минимум.

Утверждение (очень предварительно). Изменение c_2 позволяет избежать ухода в локальный минимум.

Утверждение (предварительно). Пусть $c_1 = c_2 = c_3 = 0$. Пусть $q_w \sim \mathcal{N}(\mathbf{0}, \sigma), \sigma \sim 0$. Тогда оптимизация эквивалентна обычной оптимизации параметров с l_2 - регуляризацией.

Далее будем рассматривать $q_w \sim \mathcal{N}(\mathbf{0}, \mathbf{A}_q^{-1}), \quad q_\gamma \sim \text{Gumbel-Softmax}(\mathbf{g}, \tau)$. **Проблема:** Gumbel-Softmax близко к распределению Дирихле. В случае оптимизации Evidence $(c_1=c_2=1,c_3=0)$ оптимизация выродится к $q_\gamma=p_\gamma$.