

Autómata Celular Para El Estudio De Un Sistema Cuántico 1D

Mateo De Mendoza, Daniel Peralta, Nicolas Nino, Brayan Pena

Departamento de Física Universidad Nacional de Colombia Noviembre 29 de 2022

Resumen General

Introducción, implementaciones y partícula libre

Representación en Momentum

Transformadas de Fourier

Estudio de la Varianza y el Promedio

Varianza y promedio en el tiempo.

Introducción del Potencial 04.

Colisión de una Gaussiana viajera contra una pared de potencial.

O 1. AUTÓMATA CELULAR CUÁNTICO

DISCRETIZACIÓN DEL ESPACIO

{EduardoOrtega2004}.

- El espacio se divide en N celdas
- Cada una contiene dos números complejos que representan el estado de la partícula.
- En cada punto del espacio y en cada momento, la partícula puede estar moviéndose hacia la derecha o hacia la izquierda
- ullet probabilidades de amplitud están representadas por $\Psi_r(x_i,t)$ $\Psi_l(x_i,t)$

$\Psi_r(x_{i-1},t)$	$\Psi_r(x_i,t)$	$\Psi_r(x_{i+1},t)$
$\Psi_l(x_{i-1},t)$	$\Psi_l(x_i,t)$	$\Psi_l(x_{i+1},t)$

EVOLUCIÓN DEL SISTEMA

En el esquema de autómatas celulares de difusión, hay dos fases en un solo paso de tiempo, la fase de colisión y la fase de advección. En la fase de colisión tenemos la siguiente regla para el intercambio de contenido local

$$\psi_r(x, t + \Delta t/2) = p\psi_r(x, t) + q\psi_l(x, t)$$

$$\psi_l(x, t + \Delta t/2) = q\psi_r(x, t) + p\psi_l(x, t)$$

Donde p, q \in C.

En la fase de advección, los contenidos en cada celda son desplazados a sus primeros vecinos. Para preservar condición la de evolución, las amplitudes p y q deben satisfacer:

$$|p|^2 + |q|^2 = 1$$
 $p^*q + pq^* = 0$

$$p^*q + pq^* = 0$$

EVOLUCIÓN DE PARTÍCULA LIBRE

La evolución del estado del sistema completo se expresa como una matriz

$$|\Psi(t+\Delta t)>=\mathbb{MC}|\Psi(t)>$$

 \mathbb{C} -Fase de Colisión

 ${\sf M}$ -Fase de Advención

$$\mathbb{U}=\mathbb{MC}$$
 = $e^{-i\hat{T}\Delta t}$ Operador temporal sin el potencial

INTRODUCCIÓN DEL POTENCIAL

- Operador de evolución temporal $\hat{U}=e^{-i\hat{H}\Delta t}$, Donde $\hat{H}=rac{P^2}{2m}+\hat{V}$ con potencial
- \bullet Aproximación de Trotter-Susuki $e^{-i(\hat{T}+\hat{V})t}=\lim_{ au o\infty}\left(e^{-i\hat{T}t/ au}e^{-i\hat{V}t/ au}
 ight)^{T}$

En términos de simulación, aplicar el operador \hat{U} es equivalente a aplicar muchas veces el operador $e^{-i\hat{T}\Delta t}e^{-i\hat{V}\Delta t}$ con $au=t/\Delta t$

- El problema de la introducción potencial se reduce a encontrar la representación matricial.
- Restringir los potenciales a potenciales independientes del tiempo.

Elementos de matriz son:

$$< x_m, i_{\alpha}|e^{-i\hat{V}(x)\Delta t}|x_n, i_{\beta}> = e^{-iV(x)\Delta t}\delta_{m,n}\delta_{\alpha,\beta}$$

Sea $\mathbb {V}$ la matriz del potencial, entonces la evolución del sistema total es

$$|\Psi(t + \Delta t)\rangle = VMC|\Psi(t)\rangle$$

Las reglas de evolución son:

$$\psi_r(x+\Delta x, t+\Delta t) = e^{-iV(x)\Delta t}(p\psi_r(x, t) + q\psi_l(x, t))$$

$$\psi_l(x-\Delta x, t+\Delta t) = e^{-iV(x)\Delta t}(p\psi_l(x, t) + q\psi_r(x, t))$$

Atributos , Métodos y más


```
\bigoplus
```

```
#include <cmath>
#include <complex> //Standard c++ library for complex numbers.
#include <iomanip>
#include <iostream>
#include <eigen3/Eigen/Dense>

//alias for complex numbers
typedef std::complex<double> complex;

const int L = 300; // space size
const double theta = M_PI / 4;
complex p(std::cos(theta), 0); // Transition amplitudes
complex q(0, std::sin(theta));
const int Q = 2; // Number of directions
const int N = Q*L; //Dimension of the vectors we will be using

// typedef ('aliases')
typedef Eigen::VectorXcd Vector;
typedef Eigen::MatrixXcd Matrix;
```

EIGEN: biblioteca C++ de alto nivel para álgebra lineal, operaciones matriciales y vectoriales, transformaciones geométricas, solucionadores numéricos y algoritmos relacionados.

01

Clase QLB


```
QLB::QLB(void){
int i,j;
  //Declare the size of the matrices,
  Psi.resize(N);
  Psi new.resize(N);
  M.resize(N,N);
  C.resize(N,N);
  for (i=0; i<N; i++){</pre>
    Psi(i) = (0,0);
    Psi new(i) = (0,0);
  for (j = 0; j < N; j++)
    //divide into odd and even case
        C(i,j)=p;
        if(i\%2 == 0){
          tf(j-i == 1){C(i,j)=q;}
          else {C(i,j)=0;}
          if(i-j == 1){C(i,j)=q;}
          else {C(i,j)=0;}
```

Constructor


```
0
1  // initialize the Advection
2  M = Matrix::Zero(N,N);
3  for (int j = 0; j < N; j++) {
4    if (j % 2 == 0) {
5       M((j + 2 + N) % (N),j) = (1, 1);
6    } else if (j % 2 == 1) {
7       M((j + 2 * L - 2 + N) % (N),j) = (1, 1);
8  }</pre>
```

inicialización de la matriz de colisión y advección

```
void OLB::Get Psi(void)
for (int ix = 0; ix < N; ix++)</pre>
     std::cout << Psi(ix,0) << std::endl;</pre>
void QLB::Get Psi new(void) {
 for (int ix = 0; ix < N; ix++)
    std::cout << Psi new(ix,0) << std::endl;</pre>
complex QLB::Rho(int ix) { return Psi(ix,0) + Psi(ix + 1,0); }
void OLB::Collision(void) {
Psi new = C * Psi;
void QLB::Advection(void) {
Psi = M * Psi new;
void OLB::Print Rho(void) {
  for (int ix = 0; ix < N; ix += 2)
     std::cout << ix/2 << " " << std::norm(Rho(ix)) << std::endl;
    //Add two blank lines for animating in gnuplot
     std::cout << "\n"<< "\n":
```

Métodos y main

```
void QLB::Start(void)
  for (int ix=0; ix<N; ix++){</pre>
    if (ix % 2 == 1) {
      double n=10;
      double k =(2*n*M PI)/N;
     double sigma0 = 15;
     double argument = -std::pow( (ix/2 - L/2.0)/sigma0, 2);
      double gaussian;
      qaussian = N* 1/(std::pow(2*sigma0*sigma0*M PI,0.25))*std::exp(argument);
      complex z (std::cos(k*ix)*gaussian, std::sin(k*ix)*gaussian);
      Psi(ix) = z:
int main()
  std::cout << std::fixed
            << std::setprecision(
                    3); // This is to choose the precision of complex numl
  OLB free particle;
  free particle.Start();
  for (int t = 0; t < 500; t++) {
    free particle.Print Rho();
    free particle.Collision();
    free particle.Advection();
  return 0:
```


O3. PARTICULA LIBRE Onda Plana

Relación de dispersión

Condiciones Iniciales de onda Plana

Para imponer condiciones iniciales de onda plana se debieron tener en cuenta las condiciones de fronteras periódicas

Condiciones Iniciales de onda Plana

Se usaron dos ondas iniciales distintas con diferentes números de onda que cumplieran esta condición

$$k = \frac{2\pi n}{L}$$

```
void QLB::Start(void){
   double k = ( 2* M_PI / L);
   double mu = L/2.0;
   for (int ix = 0; ix < Q * L; ix++) {
     if (ix % 2 == 1) {
       complex z(std::cos(k * ix)/2.0, -1 * std::sin(k * ix)/2.0);
       Psi(ix) = z;
   }
   }
}</pre>
```


Relación de dispersión de De Broglie

Por lo tanto, el periodo espacial de la función de onda debe ser un divisor del ancho del espacio de simulación.

$$k_1 = \frac{2\pi}{L} \quad k_2 = \frac{4\pi}{L}$$

Del principio de DeBroglie y de la relación entre la frecuencia y la energía de Planck se deriva la relación de dispersión de DeBroglie.

$$\omega = \frac{\hbar k^2}{2m}$$

Relación de Dispersión

No se observa un cambio considerable en el periodo temporal que deberia presentarse debido al cambio en el número de onda

$$k_2 = \frac{4\pi}{L}$$

No se observa un cambio considerable en el periodo temporal que deberia presentarse debido al cambio en el número de onda

Evolución Temporal de las ondas

Paquete Gaussiano

Estudio de la varianza y de otros efectos no físicos.

Condiciones Iniciales del paquete gaussiano

Se corrió el programa con dos distribuciones iniciales gaussianas

$$\sigma_1^2 = \frac{L^2}{100}$$

```
const double sigma2 = L*L/100.0;
void QLB::Start(void){
   double k = ( 2* M_PI / L);
   double mu = L/2.0;
   for (int ix = 0; ix < Q * L; ix++) {
      if (ix % 2 == 1) {
        Psi(ix) = std::exp(-std::pow(ix/2.0 - mu, 2)/(4*sigma2))/std::pow(sigma2*2*M_PI, 0.25);
   }
   }
}</pre>
```

Efecto de la suavidad de la distribución

Notamos que entre menos suave sea la distribución más brusca es la oscilación y efectos no físicos

Efecto de la suavidad de la distribución

Notamos que entre menos suave sea la distribución más brusca es la oscilación y efectos no físicos

Evolución temporal de la gaussiana y aparición de los efectos no físicos

Aumento en la resolución del Lattice

Transformadas de Fourier

```
\{\mathbf{x_n}\} \to \{\mathbf{X_k}\} \qquad X_k = \sum_{n=1}^{\infty} x_n \exp(-\frac{i2\pi}{N}kn)
```

```
void OLB::DFT(void){
  complex lenght(1/L,0);
 Vector AUX:
 AUX.resize(L);
  for(int ix = 0; ix<L; ix++){</pre>
    AUX(ix) = Psi(2*ix) + Psi(2*ix +1);
 for(int k=0; k<L; k++){</pre>
   complex sum:
   sum = 0;
   for(int n=0; n<L; n++){</pre>
     complex phase(cos((2*M_PI/L)*k*n), -sin((2*M_PI/L)*k*n));
     sum += AUX(n)*phase:
   Phi[k]=sum;
```


Transformada de Fourier: Onda Plana

Transformada de Fourier: Gaussiana Viajera

$$\psi(x,t) = \left(\sqrt{2\pi\sigma_x^2} \left(1 + \frac{i\hbar t}{2m\sigma_x^2}\right)\right)^{-\frac{1}{2}} \exp\left(-\frac{(x - \frac{p_0}{m}t)^2}{4\sigma_x^2(1 + \frac{i\hbar t}{2m\sigma_x^2})}\right) \exp\left(\frac{i}{\hbar}p_0x\right) \exp\left(-\frac{i}{\hbar}\frac{p_0^2}{2m}t\right)$$

$$\psi(p,t) = \left(\frac{1}{2\pi\sigma_p^2}\right)^{\frac{1}{4}} \exp\left(-\frac{(p-p_0)^2}{4\sigma_p^2}\right) \exp\left(-\frac{i}{\hbar}\frac{p^2}{2m}t\right)$$

De la forma de las funciones de onda se ve claramente que:

$$\bar{p}_t = p_0$$
 $(\Delta p)_t^2 = (\Delta p)_0^2 = \sigma_p^2$

Transformada de Fourier: Gaussiana Viajera

Varianza de un paquete a través del tiempo

$$\sigma^{2}(t) = \sigma_{0}^{2} + \frac{\hbar^{2}}{4m^{2}\sigma_{0}^{2}}t^{2}$$

$$\psi(x,t) = \left(\sqrt{2\pi\sigma_x^2} \left(1 + \frac{i\hbar t}{2m\sigma_x^2}\right)\right)^{-\frac{1}{2}} \exp\left(-\frac{(x - \frac{p_0}{m}t)^2}{4\sigma_x^2(1 + \frac{i\hbar t}{2m\sigma_x^2})}\right) \exp\left(\frac{i}{\hbar}p_0x\right) \exp\left(-\frac{i}{\hbar}\frac{p_0^2}{2m}t\right)$$

 \bigoplus

Varianza de un paquete a través del tiempo

Varianza de un paquete a través del tiempo

Promedio de un paquete Gaussiano

De las expresiones anteriores se tiene:

$$\bar{x}_t = \bar{x}_0 + \frac{p_0}{m}t$$

En términos de nuestra simulación:

$$\tan\frac{\pi}{4} = m = 1 \qquad \qquad \hbar = 1$$

$$\hbar = 1$$

$$p_0 = k_n = \frac{2\pi n}{500}$$

```
-----Gaussian-----
 int n = 8;
 double k = ( n*2*M_PI / L);
 // double k = 0;
double mu = L/2;
 double sigma2 = (L*L)/(100);
  for (int ix = 0; ix < 0 * L; ix++) {
   if (ix % 2 == 1) {
     complex z(std::cos(k * ix), -1 * std::sin(k * ix));
     Psi(ix) = z*std::exp(-std::pow(ix-mu, 2)/(2*sigma2));
```


Promedio de un paquete Gaussiano en el tiempo

- n=1
- \bullet n=2
- \bullet n=3

Promedio de un paquete Gaussiano en el tiempo

Promedio de un paquete Gaussiano en el tiempo

Pendiente teórica:

Pendiente medida:

$$m = \frac{2\pi}{500} \approx 0.0125$$

$$m = 0.0112$$

Error: 5%

Introducción del Potencial

```
double epsilon = 1;
V = Matrix::Zero(N,N);
for (i=0; i<L; i++){
   double V_x = Potential(i);
   complex aux(std::cos(epsilon*V_x), -std::sin(epsilon*V_x));
   V(2*i+1,2*i+1) = V(2*i,2*i) = aux;
}</pre>
```

```
double Potential(double x) 
if (x<L/2) return 0;
else{return 10;}
```


Pulso Gaussiano con una pared de Potencial

Conclusiones

El método reproduce de manera general el comportamiento del sistema bajo ciertas condiciones iniciales y potenciales específicos. Sin embargo presenta bastantes fallos y aparición de efectos no físicos cuando se va a realizar un estudio más detallado de la física que se pretende representar. Este tipo de errores puede deberse a que no se tiene una calibración adecuada de los parámetros de la simulación.

Gracias

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

