Chapter 3 Exercises

Campinghedgehog

August 26, 2023

P 1 Exercise 3.12

- (c) If (p_i) is a sequence of points in S and $p \in S$, then $p_i \to p$ in S if and only if $p_i \to p$ in X.
- (d) Every subspace of a Hausdorff space is Hausdorff.
- (e) Every subspace of a first countable space is first countable.
- (f) Every subspace of a second countable space is second countable.

(sol) 1.1 Exercise 3.12

(c) Assume $p_i \to p$ in S. Since for all open neighborhoods V_p in S, there exists U_p in X such that $V_p \subseteq U_p$, $p_i \to p$ in X as well.

Assume $p_i \to p$ in X. Since it is a sequence of points in S, by definition, for each open set intersect S, blah blah blah, $p_i \to p$ in S as well.

- (d) Let X be Hausdorff. Let S be a subspace. Let $x, y \in S$. Then there exists U_x an U_y open sets of X such that they are disjoint. Since they are disjoint, intersecting them with S still leaves them disjoint.
- (d) Every point has a neighborhood basis in X; taking the intersection of that neighborhood with S, each basis element intersected with S is open in S and by definition is a basis for that neighborhood.
- (e) By part by, the basis for the subspace is the collection of basis elements intersected with S, which is countable since the original basis is countable.

P 2 Exercise 3.13

Let X be a topological space and let S be a subspace of X. Show that the inclusion map $S \hookrightarrow X$ is a topological embedding.

(sol) 2.1 Exercise 3.13

Restricting the co-domain to just S yields the bijective identity, which is a homeomorphism.

P 3 Exercise 3.14

Give an example of a topological embedding that is neither an open map nor a closed map.

(sol) 3.1 Exercise 3.14

The inclusion map is a topological embedding. So for any topological space X, choose a subset that is neither closed nor open, and thus the inclusion map from such a subset to X is neither open nor closed.

P 4 Exercise 3.15

A surjective topological embedding is a homeomorphism.

(sol) 4.1 Exercise 3.15

The restriction of a surjective topological embedding is the whole co-domain itself, thus the whole map is both injective and surjective so it's bijective and thus a homeomorphism with respect to the whole co-domain.

P 5 Exercise 3.25

$$\mathscr{B} = \{U_1 \times \cdots \times U_n : U_i \text{ is an open subset of } X_i, i = 1, \dots, n\}$$

Prove that \mathcal{B} is a basis for a topology.

(sol) 5.1 Exercise 3.25

Let \mathscr{T} be the topology as follows: a subset of $X_1 \times \cdots \times X_n$ is open if and only if the projections into X_1, \ldots, X_n are open.

By definition, each set in \mathscr{B} is open. Let U, V be arbitrary open subsets of the product space. Then it's components U_i s and V_i s are all open in X_i . Then $U_i \cap V_i$ is open in X_i . Then

$$U_1 \cap V_1 \times \cdots \times U_n \cap V_n$$

is open in the product space and is contained in

$$(U_1 \times ... \times U_n) \cap (V_1 \times ... \times V_n)$$

Thus \mathscr{B} is a basis for \mathscr{T} .

P 6 3.29

Prove the preceding corollary using only the characteristic property of the product topology.

If $X_1, ..., X_n$ are topological spaces, each canonical projection $\pi_i : X_1 \times \cdots \times X_n \to X_i$ is continuous.

(sol) 6.1 3.29

Let $Y = X_1, ..., X_n$ and let f be the identity map. Since the identity is always continuous, each $f_i = \pi_i \circ f$ is also continuous. And since f is identity, $f_i = \pi_i$. So the result follows.

P 7 3.32

Prove proposition 3.31:

Let $X_1, ..., X_n$ be topological spaces.

(a) The product topology is "associative" in the sense that the three topologies on the set $X_1 \times X_3 \times X_3$, obtained by thinking of it as $X_1 \times X_3 \times X_3$ or $(X_1 \times X_3) \times X_3$ or $X_1 \times (X_3 \times X_3)$ are equal.

(sol) 7.1 3.32

(a) Let $f((x_1, x_2), x_3) = (x_1, x_2, x_3)$. Bijection is clear. Now just need to prove continuity of f and f^{-1} .

P 8

(sol) 8.1