CSCI 490 Capstone Pitch Talk

Kun Zhang

Associate Professor

Department of Civil Engineering

California State University, Chico

Email: kzhang2@csuchico.edu

Office: Langdon Hall 307F

Research Goal: Sustainable and Resilient Pavement Infrastructure

Project 1: GUI for Pavement Temperature and Aging Analysis for Pavement Design

 Temperature is one of the critical environmental factors causing pavement distresses

- Rutting
 - Plastic Flow
 - Softer mixture
 - High-temp. (Summer)

- Bottom-up fatigue cracking (Alligator Cracking)
 - Thin pavement
 - Brittle mixture
 - Intermediate temp. (Spring & Fall)

- Transverse (thermal) cracking
 - Interval between 8-10m
 - Stiffer mixture
 - Low temp. (winter)

Model Development

- Follow the work done by Han et al. 2011 and Alavi et al. 2013 with modifications
 - To introduce and calibrate a seasonal variable ($\Delta \epsilon = \epsilon_a \epsilon$); and
 - Revise the thermal diffusivity between layers
- Governing PDE for heat transfer:

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\alpha \frac{\partial T}{\partial z} \right)$$

Modeling Pavement Temperature for Use in Binder Oxidation Models and Pavement Performance Prediction

Rongbin Han¹; Xin Jin²; and Charles J. Glover, Ph.D., P.E.³

Prediction of Asphalt Pavement Temperature Profile with Finite Control Volume Method

Mohammad Z. Alavi, Mohammad R. Pouranian, and Elie Y. Hajj

Model Development

Modeling Pavement Temperature for Use in Binder Oxidation Models and Pavement Performance Prediction

Rongbin Han¹; Xin Jin²; and Charles J. Glover, Ph.D., P.E.³

- Follow the work done by Han et al. 2011 and Alavi et al. 2013 with modifications
 - To introduce and calibrate a seasonal variable ($\Delta \varepsilon = \varepsilon_a \varepsilon$); and
 - Revise the thermal diffusivity between layers

• Governing PDE:
$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\alpha \frac{\partial T}{\partial z} \right)$$

 $\alpha_n = \frac{2\alpha_N \alpha_P}{\alpha_N + \alpha_P}$

Prediction of Asphalt Pavement Temperature Profile with Finite Control Volume Method

Mohammad Z. Alavi, Mohammad R. Pouranian, and Elie Y. Hajj

Integrate PDE over time and control volume

$$\int_{n}^{s} \int_{t}^{t+\Delta t} \frac{\partial T}{\partial t} dt dz = \int_{t}^{t+\Delta t} \int_{n}^{s} \alpha \frac{\partial}{\partial z} (\frac{\partial T}{\partial z}) dz dt$$

Discretized equation with a fully implicit scheme

$$T_P^1 \left(\frac{\Delta z}{\Delta t} + \frac{\alpha}{dz} + \frac{\alpha}{dz} \right) = \frac{\alpha}{dz} T_S^1 + \frac{\alpha}{dz} T_N^1 + T_P^0 \frac{\Delta z}{\Delta t}$$

The discretized equation is solved using the TriDiagonal-Matrix Algorithm (TDMA)

Data Collection

- Hourly pavement temperatures from the Seasonal Monitoring Program (SMP) in the Long Term Pavement Performance (LTPP) database.
 - A total of 49 asphalt pavement sections located in 27 states in the U.S
 - One LTPP section in each state was used to <u>calibrate</u> $\Delta \epsilon_1$ and $\Delta \epsilon_6$
 - If more than one LTPP section was monitored in a state, the rest of the pavement sections were used for **validation**
- Hourly climatic data from the LTPP InfoPave
 - MERRA-2: Modern-Era Retrospective Analysis for Research and Applications
 - Air Temperature, Wind Speed, and Solar

Results

- LTPP Section 48-1068 in Texas
 - Calibrated $\Delta \varepsilon_1 = -0.103$ and $\Delta \varepsilon_6 = 0.004$
 - This work: MAE= 2.263°C (@25mm), 1.913°C (@128mm), and 1.722°C (@232mm)
 - Han et al. 2011: MAE = 2.4°C, 2.0°C, and 2.2°C at 25mm, 128mm, and 232mm, resp.
 - Omairey et al. 2022: MAE = 4.01°C @ 25mm

Results

- Calibrated $\Delta \epsilon_1$ and $\Delta \epsilon_6$ for 27 states
 - $\Delta \epsilon_1$: -0.265 to -0.004
 - $\Delta \epsilon_6$: -0.327 to 0.130
 - New York ($\Delta \varepsilon_6 = 0.130$), Texas ($\Delta \varepsilon_6 = 0.004$), Utah ($\Delta \varepsilon_6 = 0.037$)

- Existing software
 - Developed by UNR and only be compatible with Windows XP system
- Work has been done in my team
 - Python-based Program for Pavement Temperature Analysis Using Finite Volume Method
 - Calibrate seasonal parameters for 27 States
- Potential Users and Customers
 - State/County/City Transportation Agencies for Pavement Design
 - Researchers/Engineers design the flexible pavement
- Needs
 - Improve computational efficiency
 - GUI to import environmental files and export/plot results

TEMPY-Code

```
### This code is used to calculate temperature field of asphalt pavement ###
### This code is used to calculate temperature field of asphalt pavement ###
import openpyxl as xl
import math
import numpy
import matplotlib.pyplot as plt
#from scipy import stats
from sklearn.linear model import LinearRegression
import pandas as pd
from datetime import datetime
Section ID = '31'
Thermo depth = [0.012, 0.024, 0.052, 0.064, 0.076, 0.088, 0.101, 0.152, 0.305, 0.457] # reserve for 10 thermocouples
# Define Pavement Thickness, unit meters; # 48-1068: 0.278; 0.152; 0.203;
thickness AC = 0.102
thickness Base = 0.076
thickness subbase = 0.305
thickness subgrade = 3 - thickness AC - thickness Base - thickness subbase # Total thickness = 3 meters
file path = r"C:\wrdapp\Tempy\MnROAD"
row_correction = 0 # shift peak of test to match the peak of simulation, default = 0
# delt e = e a - e AC, difference between absorption and emission of pavement surface, negative value, seasonal adjustment
delta e 1 = .10598863558982 #-0.15 # winter time value in Jan and Dec # default = -0.15
delta e 6 = .02147073036731 #-0.12 # summer time value in June and July # default = -0.05
post process = 'False' # run postprocess or not, True or False
Ucode = 'True' # this is used to run the sensitivity analysis for delta e 1 and delta e 6
# constants used in the simulation, e.g. density (rho) of pavement
rho AC = 2450 # density kg/m3; value from Omairey et al. 2021, this can be found from LTPP
rho base = 2350
rho subbase = 2350
rho_subgrade = 2200
rho water = 1000
```

Project 2: Pothole Volume Detection using 3D Camera

Potholes

- Bumping driving with safety concerns
- AAA reported \$26.5 Billion for vehicle repairs due to potholes
- My team has developed waste cooking oil based cold mix for pothole patching
- One of the issues is "Crews don't know how much patching material
 - to throw"
 - Pothole Volume is unknown

- Commercial software
 - GPC Highway Measure App
 - https://gpcsl.com/highways-highway-measure/
 - https://www.mobileworxs.com/solutions/3d-pothole-measurement/
 - Not accurate
- Previous Capstone Project done by Dalton Bailey (Fall 22)
 - Intel-Realsense 3D camera;
 - XX.ply files

Github

- https://github.com/Yalton/CSCI Capstone
- QuadP
 - Software designed to scan potholes and calculate volume
 - Software will automatically establish reference plane and calculate volume of all spaces beneath plane
 - Using the calculated volume and density provided by user mass of required material can be calculated
 - Software is entirely written in python using as few libraries as possible
- Need to improve integration method for volume calculation!!!

Database

- 31 potholes
- Actual volume measured based on sand fill method

