

Taller 3 de Topología

1. Sea $X = \{1, 2, 3, 4, 5\}$. Dada la colección

$$\mathcal{T} = \{\varnothing, \{3\}, \{1, 2\}, \{3, 4\}, \{3, 5\}, \{1, 2, 3\}, \{3, 4, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, X\}.$$

- a) Verifique que \mathcal{T} es una topología sobre X.
- b) Halle la colección \mathcal{C} de todos los conjuntos cerrados sobre el espacio (X,\mathcal{T}) .
- c) Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos:
 - $A = \{1, 2, 4\}$
 - $A = \{1, 3, 4, 5\}$
 - $A = \{3, 4, 5\}$
 - $A = \{3, 5\}$
- 2. Sobre \mathbb{R} definamos la colección

$$\mathcal{T} = \{\varnothing, \mathbb{R}\} \cup \{(-n, n) : n \in \mathbb{Z}\}$$

- a) Muestre que \mathcal{T} es una topología sobre \mathbb{R} .
- b) Describa la colección \mathcal{C} de los cerrados en $(\mathbb{R}, \mathcal{T})$.
- c) Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos:
 - A = (-3, 5)
 - A = (1, 4]
 - $A = (-\infty, 8)$
- 3. Sea \mathbb{R} con la topología usual. Halle el interior IntA, la clausura \overline{A} , y el derivado A' para los siguientes conjuntos:
 - $A = (-3, 5] \cup (6, \infty)$
 - $A = \left\{ \frac{(-1)^n n}{n+1} : n \in \mathbb{Z}^+ \right\}$
 - $A = (0,8) \cup (8,3]$
- 4. Sean $A,\ B,\ y\ A_{\alpha}$ subconjuntos del espacio X. Pruebe lo siguiente:
 - a) Si $A \subset B$ entonces $\overline{A} \subset \overline{B}$.
 - $b) \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$
 - c) $\bigcup \overline{A_{\alpha}} \subset \overline{\bigcup A_{\alpha}},$ dé un ejemplo donde no se cumpla la igualdad.
- 5. Sean A, B, y A_{α} subconjuntos del espacio X. Determine si las siguientes igualdades se cumplen; si alguna igualdad es falsa, determine si alguna de las contenencias \subset o \supset se cumple
 - a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.

- b) $\bigcap \overline{A_{\alpha}} \subset \overline{\bigcap A_{\alpha}}$.
- $c) \ \overline{A B} = \overline{A} \overline{B}$
- 6. Sea X un espacio topológico. Pruebe que las siguientes afirmaciones son equivalentes:
 - a) X es T_1 : Para cada par de puntos distintos $x, y \in X$ existen entornos U de x y V de y tales que $x \notin V$ y $y \notin U$.
 - b) Para cada $x \in X$ el conjunto $\{x\}$ es cerrado.
- 7. Determine cuáles de los siguientes espacios son de Hausdorff y cuáles son T_1 . En cada caso justifique su respuesta.
 - a) $X = \{1, 2, 3, 4\}$ con $\mathcal{T} = \{\emptyset, \{1\}, \{3\}, \{1, 3\}, \{2, 4\}, \{1, 2, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$.
 - b) \mathbb{Z} con $\mathcal{T}_{cc} = \{U \subset \mathbb{Z} : \mathbb{Z} U \text{ es contable}\}.$
- 8. Sea $(\mathbb{R}^2, \mathbb{T}_{<})$ con < el orden del diccionario. Diga si las siguientes sucesiones convergen o no. Justifique la respuesta.
 - a) $\{(1-1/n) \times 1 : n \in \mathbb{Z}^+\}$
 - b) $\{0 \times (1/n) : n \in \mathbb{Z}^+\}$
- 9. Pruebe las siguientes afirmaciones:
 - a) Si X es un conjunto totalmente ordenado, entonces (X, \mathcal{T}_{\leq}) es un espacio Hausdorff.
 - b) Si (X, \mathcal{T}) y (Y, \mathcal{H}) son espacios Hausdorff entonces $X \times Y$ con la topología producto es una topología Hausdorff.
 - c) Si (X, \mathcal{T}) es un espacio Hausdorff y $Y \subset X$ entonces Y con la topología del subespacio \mathcal{T}_Y es una topología Hausdorff.
- 10. Pruebe que X es Hausdorff si y solo si

$$\Delta = \{(x, x) \in X \times X\}$$

es cerrado en la topología producto de $X \times X$.

- 11. Sean $X_1 = (X, \mathcal{T}_1)$ y $X_2 = (X, \mathcal{T}_2)$. Sea $id: X_1 \to X_2$ la función identidad.
 - a) Pruebe que id es continua, si y solo si, $\mathcal{T}_2 \subset \mathcal{T}_1$.
 - b) Pruebe que id es un homeomorfismo, si y solo si, $\mathcal{T}_1 = \mathcal{T}_2$
- 12. Sean (X, \mathcal{T}) y (Y, \mathcal{H}) . Pruebe que las siguientes funciones son continuas:
 - a) $\pi_1: X \times Y \to X \text{ con } \pi_1(x \times y) = x.$
 - b) $\pi_2: X \times Y \to X \text{ con } \pi_2(x \times y) = y.$
 - c) Dado un $y_0 \in Y$ fijo, $f_{y_0}: X \to X \times Y$ con $f_{y_0}(x) = x \times y_0$.
 - d) Dado un $x_0 \in X$ fijo, $g_{x_0} : X \to X \times Y$ con $g_{x_0}(x) = x_0 \times y$.

- 13. Pruebe que cada una de las siguientes parejas de conjuntos son homeomorfas como subespacios de \mathbb{R} con la topología usual.
 - $a) [a, \infty) y [b, \infty).$
 - b) $[a, \infty)$ y $(-\infty, b]$.
 - c) [0,1) y [a,b).
 - d) [0,1) y $[a,\infty)$.
- 14. Pruebe que los conjuntos (0,1) y [0,1) no son homeomorfos.
- 15. Sean (X,\mathcal{T}) y (Y,\mathcal{H}) espacios y $f:X\to Y$ una función. Pruebe que las siguientes afirmaciones son equivalentes:
 - a) f es continua.
 - b) Si $A \subset X$ entonces $f(\overline{A}) \subset \overline{f(A)}$.