EXERCICE DES LYNX ET DES LIÈVRES

Dans une région du nord du Canada vivent des lynx du Canada et des lièvres arctiques. Quand ils sont en nombre suffisant, les lièvres sont les principales proies des lynx : un lynx consomme en moyenne environ 185 lièvres par an.

PREMIÈRE PARTIE : ESTIMATIONS À PARTIR DE STATISTIQUES

La Compagnie de la Baie d'Hudson est une entreprise qui commercialise les fourrures fournies par les trappeurs de cette région. Pendant un siècle, elle a tenu des statistiques du nombre de fourrures de lynx et de lièvres vendues par les trappeurs à son comptoir de la Baie d'Hudson.

À partir de ces statistiques, un biologiste américain a estimé le nombre de lynx et de lièvres pendant cette période et obtenu un graphique similaire à celui-ci.

La courbe des lièvres est en rouge ; c'est celle qui monte le plus haut. La courbe des lynx est en noir ; attention, il faut utiliser les graduations à droite du graphique pour les lynx.

- 1. D'après ce graphique, combien y avait-il de lynx et de lièvres en 1875 ?
- **2.** Le graphique semble indiquer que le nombre de lynx est tombé à 0 un peu avant 1925. Est-ce possible ?
- **3.** Visiblement, les deux courbes ont été obtenues en plaçant des points puis en reliant ces points par des segments. Que pensez-vous de cette méthode ?
- 4. En 1942, Charles Elton et Mary Nicholson, deux biologistes anglais, ont été les premiers à remarquer des variations approximativement périodiques des populations de lynx en Amérique du Nord.
 Le graphique confirme-t-il cette observation ?

DEUXIÈME PARTIE: MODÈLE MATHÉMATIQUE

Le mathématicien italien Vito Volterra a proposé en 1926 un modèle mathématique simplifié de l'évolution du nombre de proies et de prédateurs pour des écosystèmes ressemblant à celui des lièvres et des lynx. Les modèles de ce type peuvent aider à réguler la chasse ou la pêche dans le but de préserver les espèces.

En appliquant un de ces modèles aux lynx et aux lièvres précédents, on obtient un deuxième graphique.

Attention, pour les lynx, il faut utiliser les graduations à droite du graphique.

On note t la date en années. Par exemple 1887,5 correspond au 1^{er} juillet 1887. On note v(t) et x(t) les nombres de lièvres et de lynx (en milliers) à la date t d'après le deuxième graphique. Par exemple, v(1857) = 100 et x(1858) = 5.

- **5.** Quelles sont les solutions de l'équation v(t) = 100 ?
- **6.** Déterminez le minimum et le maximum de la fonction v. Même question pour la fonction x.
- 7. Dressez le tableau de variations de la fonction v sur l'intervalle de temps [1857; 1867]. Même question pour la fonction x.
- **8.** On peut penser que dans la nature, quand les lynx sont peu nombreux, le nombre de lièvres augmente et que, lorsque les lynx sont nombreux, le nombre de lièvres diminue. Est-ce le cas d'après le graphique entre 1857 et 1867 ?
- **9.** On critique parfois les modèles mathématiques en disant qu'ils simplifient trop la réalité. Peut-on faire cette critique ici ?