

Lesson 3: Main Circle Commands

Summary:

Code Instruction	What it does
t.circle(radius)	Draw a circle with the given radius value. Radius value can be positive or negative, depends on the direction of the turtle motion.
t.circle(radius, arc)	Arc option allows to draw part of the circle. If arc=360 turtle draws all 360 degree circle, if arc=180, turtle draws half of the circle, if arc=90→ quarter of the circle. Arc value can be positive or negative, depends on the motion direction.
t.circle(radius, arc, steps)	With option steps (integer value) circle is approximated by an inscribed regular polygon, <i>steps</i> determine the number of steps to use. May be used to draw regular polygons. Step=3 means that we draw triangle, step=4 corresponds square, step=5→pentagon

A few tips:

a. A **circle** is a shape that is made up of a curved line. It's round, and all points on the curved line are an equal distance from the center point. The circumference is the distance around a circle

b. The arc of a circle is a portion of the circumference of a circle specified by yellow colour.

Arc value is measured in degrees and if arc=360 turtle draws all 360 degree circle, if arc=180, turtle draws half of the circle, if , for example, arc=90→ quarter of the circle. Arc value can be positive or negative, depends on the motion direction.

1. Example #1 (Draw circle)

import turtle
t=turtle.Turtle()
t.pensize(10)
t.color('red')
t.circle(100)

```
import turtle
t=turtle.Turtle()
t.pensize(10)
t.color('red','blue')
t.begin_fill()
t.circle(100)
t.end_fill()
```


2. Example #2 (Draw part of the circle). We use arc option


```
import turtle
t=turtle.Turtle()
t.pensize(10)
t.color('gold','orange')
t.begin_fill()
t.circle(100,270)
t.end_fill()

import turtle
t=turtle.Turtle()
t.pensize(10)
t.left(45)
t.color('gold','green')
t.begin_fill()
t.circle(100,180)
t.end_fill()
```

All images from Example #3 are drawn with **circle** code (turtle can draw different polygons as triangle, square, pentagon, hexagon...). To create it we use an option step, specified in summary. Again code circle(radius, arc, steps) has three options: option 1→radius value; option 2→arc value; option 3→ step value. I you use only option 1, turtle draws full circle with radius specified by radius value; if you use two options (option 1 and 2) turtle draws part of the circle; and when you use tree options (first radius value, second 360-degree value, and third option 3, or 4, or 5 or 6....) turtle draws polygon instead of circle.

3. Example #3(Draw inscribed into the circle regular polygon).

```
import turtle
t=turtle.Turtle()
t.pensize(10)

t.color('gold','green')
t.begin_fill()
t.circle(100,360,4)
t.end_fill()
```

```
import turtle
t=turtle.Turtle()
t.pensize(10)
t.left(55)
t.color('gold','green')
t.begin_fill()
t.circle(100,360,4)
t.end_fill()
```



```
import turtle
t=turtle.Turtle()
t.pensize(10)
t.left(55)
t.color('gold', 'green')
t.begin_fill()
t.circle(100,360,3)
t.end_fill()
```

import turtle
t=turtle.Turtle()
t.pensize(10)
t.left(55)
t.color('gold','green')
t.begin_fill()
t.circle(100,360,5)
t.end_fill()


```
import turtle
  t=turtle.Turtle()
  t.pensize(10)
  t.left(55)
  t.color('green','yellow')
  t.begin_fill()
  t.circle(100,360,8)
  t.end fill()
 import turtle
 t=turtle.Turtle()
 t.pensize(10)
 t.color('green','yellow')
 t.begin fill()
 t.circle(100,360,7)
 t.end_fill()
import turtle
t=turtle.Turtle()
t.pensize(10)
t.color('green','yellow')
t.begin fill()
t.circle(100,360,4)
t.end fill()
t.color('pink','violet')
t.left(180)
t.begin fill()
t.circle(100,360,4)
t.end_fill()
```

Challenges: write codes to create the following geometry shapes with circle code:

1. Expected output

2. Expected output

3. Expected output 4. Expected output

