Convex Optimization for Communications and Signal Processing Institute of Communications Engineering Department of Electrical Engineering National Tsing Hua University Fall 2020

Homework #3

Coverage: Chapter 1–4

Due date: 30 December, 2020

Instructor: Chong-Yung Chi TAs: Wei-Bang Wang & Meng-Syuan Lin

Notice:

1. Please hand in the hardcopy of your answer sheets to the TAs by yourself before the deadline.

- 2. Ansewrs to the problem set should be written on the A4 papers.
- 3. Write your name, student ID, and department on the beginning of your ansewr sheets.
- 4. Please do the homework independently by yourself, and support your answers with clear, logical and solid reasoning or proofs.
- 5. We will grade the homework and provide the solutions afterwards. However, it is not required to hand in your homework since the percentage of homework is zero in the term grade.

Problem 1. (10 points)

- (a) (3 points) Consider $f: \mathbb{R}^n \to \mathbb{R}$ as a convex function and denote \mathbf{x}^* as its global minimum. For all $\mathbf{y} \in \mathbb{R}^n$, the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(\alpha) \triangleq f(\mathbf{x}^* + \alpha \mathbf{y})$ is defined. Prove that \mathbf{x}^* is the global minimum of f if and only if $\forall \mathbf{y} \in \mathbb{R}^n$, $\alpha^* = 0$ is the global minimum of the function $g(\alpha)$.
- (b) (7 points) Let's consider a case where the function f is nonconvex. Denote $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, $\mathbf{x}^* = (0,0)$ and $p,q \in \mathbb{R}_{++}$, p < q. Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2) = (x_2 px_1^2)(x_2 qx_1^2)$. Show that if $f(y, my^2) < 0$ for $y \neq 0$ and m satisfying p < m < q, then \mathbf{x}^* is not a local minimum of f even though it is a local minimum along every line passing through \mathbf{x}^* .

Problem 2. (10 points) We consider the complex least ℓ_p -norm problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{p}$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$,

where $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{b} \in \mathbb{C}^m$, and the variable is $\mathbf{x} \in \mathbb{C}^n$. Here $\|\cdot\|_p$ denotes the ℓ_p -norm on \mathbb{C}^n , defined as

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for $p \ge 1$, and $\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$. We assume that **A** is full rank, and m < n.

- (a) (5 points) Formulate the complex least ℓ_2 -norm problem as a least ℓ_2 -norm problem with real problem data and variable.
- (b) (5 points) Formulate the complex least ℓ_2 -norm problem as an SOCP.

Problem 3. (15 points) Consider the following optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^{\mathbf{n}}} \sup_{\mathbf{P} \in \mathcal{D}} (1/2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}$$
s.t. $\mathbf{A} \mathbf{x} \prec \mathbf{b}$

where \mathcal{D} is a subset of possible matrices \mathbf{P} .

- (a) (5 points) Let $\mathcal{D} = \{\mathbf{P}_1, \dots, \mathbf{P}_K\} \subseteq \mathbb{S}_+^n$. Please reformulate the above problem into a QCQP using epigraph reformulation.
- (b) (5 points) Let $\mathcal{D} = \{ \mathbf{P} \in \mathbb{S}^n \mid -\gamma \mathbf{I} \leq \mathbf{P} \mathbf{P}_0 \leq \gamma \mathbf{I} \}$, where $\gamma \in \mathbb{R}_{++}$ and $\mathbf{P}_0 \in \mathbb{S}_{+}^n$. Please reformulate the above problem into a QP.
- (c) (5 points) Let $\mathcal{D} = \{\mathbf{P}_0 + \sum_{i=1}^K \mathbf{P}_i u_i \mid \|\mathbf{u}\|_2 \leq 1\}$, where $\mathbf{P}_i \in \mathbb{S}^n_+, i = 0, \dots, K$. Please reformulate the above problem into a SOCP using epigraph reformulation.

Problem 4. (10 points) The function $f: \mathbb{R}^n \to \mathbb{R}$ is a quasiconvex function. Consider the convex set $X \subseteq \mathbb{R}^n$ and denote $p^* = \inf_{\mathbf{x} \in X} f(\mathbf{x})$. Assume that f is not constant on any line segment of X. Prove that every local minimum of f over the set X, is also the global minimum.

Problem 5. (15 points) Formulate the following optimization problem as a semidefinite program (SDP).

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} & \sup_{\|\mathbf{c}\|_2 \le 1} \mathbf{c}^T \mathbf{F}(\mathbf{x})^{-1} \mathbf{c} \\ & \text{s.t. } \mathbf{F}(\mathbf{x}) \succ \mathbf{0}, \end{aligned}$$

where

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}_0 + x_1 \mathbf{F}_1 + \dots + x_n \mathbf{F}_n$$

and each $\mathbf{F}_i \in \mathbb{S}^m$.

Problem 6. (10 points)

(a) (5 points) Verify that $\mathbf{x} \in \mathbb{R}^n$, $y, z \in \mathbb{R}$ satisfy

$$\mathbf{x}^T \mathbf{x} \le yz, \ y \ge 0, \ z \ge 0$$

if and only if

$$\left\| \begin{bmatrix} 2x \\ y-z \end{bmatrix} \right\|_2 \le y+z, \ y \ge 0, \ z \ge 0.$$

(b) (5 points) Reformulate the following problem as an SOCP by (a).

$$\max_{\mathbf{x} \in \mathbb{R}^n} \left(\sum_{i=1}^m \frac{1}{\mathbf{a}_i^T \mathbf{x} - b_i} \right)^{-1}$$
s.t. $\mathbf{A} \mathbf{x} \succeq \mathbf{b}$,

where \mathbf{a}_i^T is the *i*th row of $\mathbf{A} \in \mathbb{R}^{m \times n}$ and b_i is the *i*th element of $\mathbf{b} \in \mathbb{R}^m$.

Problem 7. (10 points) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Formulate the following problems as LPs. Explain the relation between the optimal solutions of the original problem and reformulated problem.

(a) (5 points)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}.$$

(b) (5 points)

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1.$$

Problem 8. (10 points)

(a) (5 points) Show that $\mathbf{X} = \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ solves the SDP

$$\begin{aligned} & \min \quad \mathrm{Tr}(\mathbf{X}) \\ & \mathrm{s.t.} \quad \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{X} \end{array} \right] \succeq \mathbf{0}, \end{aligned}$$

with variable $\mathbf{X} \in \mathbb{S}^n$, where $\mathbf{A} \in \mathbb{S}^m_{++}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$ are given.

(b) (5 points) Show that $\operatorname{Tr}(\mathbf{B}^T \mathbf{A}^{-1} \mathbf{B})$ is a convex function of (\mathbf{A}, \mathbf{B}) .

Problem 9. (15 points) Consider the following optimization problem:

$$\min_{x \in \mathbb{R}, y \in \mathbb{R}} f_0(x, y) \triangleq (x - 2)^2 + (y - 3)^2$$
s.t. $x \ge 0$

$$x \le 2$$

$$y \ge 0$$

$$y \le 3$$

$$2x + y \le 5$$
.

- (a) (5 points) Show that problem is a convex optimization problem.
- (b) (10 points) Find an optimal solution, (x^*, y^*) . (You need to write the details of derivations.)