CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Basic Problems and Algorithms:

- Euclid's algorithm for gcd:
 - Correctness and Time Complexity
- Extended Euclidean / Aryabhatia's algorithm:
 - Correctness

GREATEST COMMON DIVISOR

- Notation:
 - a divides b (i.e. b is divisible by a): a b
 - a does not divide b: a ∤ b
- Euclid's Algorithm: (given a and b s.t. a > b > 0)
 - Let $r_0 = a$ and $r_1 = b$
 - Iterate (from i=2)

```
r_i = r_{i-2} \mod r_{i-1} and q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

• return r_i

EUCLID'S ALGORITHM - CORRECTNESS

- Theorem:
 - If Euclid's algorithm returns r_k, then r_k is gcd(a,b)
- Proof:
 - Let g = gcd(a,b).
 - We claim $r_k \mid g$ and $g \mid r_k$ and hence the conclusion.

EUCLID'S ALGORITHM - CORRECTNESS

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a \quad and \quad r_1 = b$
 - Iterate (from i=2)
 - $r_i = r_{i-2} \mod r_{i-1}$
 - $q_i = r_{i-2} \text{ div } r_{i-1}$
 - until $(r_{i-1} \mod r_i == 0)$
 - return r_i

- Proof of r_k|g:
 - Observe that $r_k | r_{k-1}$ and $r_{k-2} = r_{k-1}^* q_k + r_k$ • Implication: $r_k | r_{k-2}$
 - Since $r_k | r_{k-1}$ and $r_k | r_{k-2}$ and $r_{k-3} = r_{k-2} * q_{k-1} + r_{k-1}$ or_k $| r_{k-3}$
 - Inductively, we can show that
 or_k | r_i and r_k | r_{i-1} implies
 r_k | r_{i-2} for all i
 - Then $r_k | r_1 = b$ and $r_k | r_0 = a$. • i.e. $r_k | g$

EUCLID'S ALGORITHM — CORRECTNESS [CONTD.]

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a$ and $r_1 = b$
 - Iterate (from i=2)
 - $r_i = r_{i-2} \mod r_{i-1}$
 - $q_i = r_{i-2} \text{ div } r_{i-1}$
 - until $(r_{i-1} \mod r_i == 0)$
 - return r_i

- Proof of g | r_k:
 - Observe that g | r₀ and g | r₁
 - Since $r_i = r_{i-2} q_i * r_{i-1}$ for all i
 - o if $g \mid r_{i-2}$ and $g \mid r_{i-1}$
 - then $g \mid r_i$ for all i >= 2
 - Inductively,
 - $og | r_k$

```
Algorithm gcd(a,b): 

//Precondition:(a > b > 0) 

r_0 = a and r_1 = b 

Iterate (from i=2) 

r_i = r_{i-2} \mod r_{i-1} 

q_i = r_{i-2} \operatorname{div} r_{i-1} 

until (r_{i-1} \mod r_i) = 0 

return r_i
```

- Time Complexity is O(k*f(a,b))
 - where k is the (worst case) number of iterations
 - and f(a,b) is the cost of basic operations div or mod
 - which is O(1) assuming uniform cost model
- When does the worst case happen?
 - Consider the case: a ≈ b
 Then (a mod b) << b
 - Consider the case: a >> b,
 o (a mod b) ≈ b << a
 - Either case will lead to quick convergence:
 - o i.e. they will not result in worst case behavior

```
Algorithm gcd(a,b):
//Precondition:(a > b > 0)
     r_0 = a and r_1 = b
    Iterate (from i=2)
       r_i = r_{i-2} \mod r_{i-1}
       q_i = r_{i-2} \operatorname{div} r_{i-1}
    until (r_{i-1} \mod r_i) = 1
    return r<sub>i</sub>
```

- When does the worst case happen?
 - If a ≈ b or if a >> b,
 othe size reduction will be significant.
- The worst case will happen when
 - neither of the above (conditions) is true for a and b
 oi.e. !(a ≈ b) and !(a >> b)
 - and that is also the case for r_i and r_{i-1} in each iteration

```
oi.e. !(r_{i-1} \approx r_i) and !(r_{i-1} >> r_i) for each i
```

```
Algorithm gcd(a,b): 

//Precondition:(a > b > 0) 

r_0 = a and r_1 = b 

Iterate (from i=2) 

r_i = r_{i-2} mod r_{i-1} 

q_i = r_{i-2} div r_{i-1} 

until (r_{i-1} mod r_i == 0) 

return r_i
```

- When does the worst case happen?
- Fibonacci numbers fit the bill:
 - Consider $a==F_m$ and $b==F_{m-1}$
 - Then the sequence is:

$$or_0 = F_m$$

 $or_1 = F_{m-1}$
 $or_2 = F_m - F_{m-1} = F_{m-2}$
 $or_3 = F_{m-1} - F_{m-2} = F_{m-3}$
 $o...$

In each iteration, the reduction in size is not significant: the quotient q_i is 1 and the remainder r_i is comparable to r_{i-1}

```
Algorithm gcd(a,b):

//Precondition:(a > b > 0)

r_0 = a and r_1 = b

Iterate (from i=2)

r_i = r_{i-2} \mod r_{i-1}

q_i = r_{i-2} \operatorname{div} r_{i-1}

until (r_{i-1} \mod r_i) = 0

return r_i
```

- When does the worst case happen?
- Fibonacci numbers fit the bill:
 - If a = F_{m+1} b = F_m
 then gcd(a,b) will take m steps
 - $F_m \approx ((1 + \sqrt{5})/2)^m$ •i.e. $m = \Theta(\log(F_m))$
- •Time Complexity of gcd is $\Theta(\log(N))$, where N is the larger of the two inputs, assuming **the uniform cost model**

```
Algorithm gcd(a,b):

//Precondition:(a > b > 0)

r_0 = a and r_1 = b

Iterate (from i=2)

r_i = r_{i-2} \mod r_{i-1}

q_i = r_{i-2} \operatorname{div} r_{i-1}

until (r_{i-1} \mod r_i) = 0

return r_i
```

- •Time Complexity of gcd is ⊖(log(N)), where N is the larger of the two inputs, assuming *the uniform cost model*
- •What about the logarithmic cost model?
 - •Division operation would take time that is dependent on the size of the input values;
 - division could cost as much as b*b time for b bits.
 - in which case, the time complexity of gcd is
 ⊖(log(N)³)

EXTENDED EUCLID'S THEOREM

- Theorem:
 - For all a > b > 0, there exist integers x and y such that gcd(a,b) = a*x + b*y
 - Moreover, x and y can be computed in polynomial time.
- Proof of 1: Consider Euclid's algorithm
 - oLoop Invariant:

$$or_{i} = r_{i-2} - q_{i} * r_{i-1}$$

So, if gcd(a,b) returns r_k

$$or_k = r_{k-2} - q_k * r_{k-1}$$

$$= x * r_0 + y * r_1$$

gcd(a,b)

$$r_0 = a$$
 and $r_1 = b$

Iterate (from i=2)

$$r_{i} = r_{i-2} \mod r_{i-1}$$

$$q_i = r_{i-2} \operatorname{div} r_{i-1}$$

until
$$(r_{i-1} \mod r_i == 0)$$

return r_i

EXTENDED EUCLIDEAN ALGORITHM

- Theorem:
 - 1. For all a > b > 0, there exist integers x and y such that gcd(a,b) = a*x + b*y
 - 2. Moreover, x and y can be computed in polynomial time.
- Proof (Aryabhatia's algorithm):
- gcdAB(a,b): //Precondition:(a > b > 0)
 if (b=0) return (a, 1, 0);
 else {
 (d, x1, y1) = gcdAB(b, a mod b)
 // i.e. d = gcd(a, b) = gcd(b, a mod b) = b*x1 + (a mod b)*y1
 // i.e. d = gcd(a,b) = b*x1 + a*y1 (a/b)*b*y1
 return (d, y1, x1-(a/b)*y1);
 }