Статистичні оцінки параметрів генеральної сукупності

Теорія ймовірностей, ймовірнісні процеси і математична статистика

Вивчаючи певну ознаку X генеральної сукупності, ми можемо знати характер закону розподілу випадкової величини X, але параметри цього закону залишаються невідомими.

Вивчаючи певну ознаку X генеральної сукупності, ми можемо знати характер закону розподілу випадкової величини X, але параметри цього закону залишаються невідомими.

Задача

На основі одержаної вибірки з генеральної сукупності визначити наближені числові значення невідомих параметрів розподілу.

Вивчаючи певну ознаку X генеральної сукупності, ми можемо знати характер закону розподілу випадкової величини X, але параметри цього закону залишаються невідомими.

Задача

На основі одержаної вибірки з генеральної сукупності визначити наближені числові значення невідомих параметрів розподілу.

Такі наближені числові значення параметрів розподілу називають їхніми **точковими статистичними оцінками**, або скорочено — **точковими оцінками**.

Нехай ми вивчаємо випадкову величину X, закон розподілу якої відомий, але містить невідомий параметр θ . Потрібно знайти точкову статистичну оцінку параметра θ за результатами n незалежних випробувань, у кожному з яких випадкова величина X набуває значень x_1, x_2, \ldots, x_n (вибірка обсягу n).

Нехай ми вивчаємо випадкову величину X, закон розподілу якої відомий, але містить невідомий параметр θ . Потрібно знайти точкову статистичну оцінку параметра θ за результатами n незалежних випробувань, у кожному з яких випадкова величина X набуває значень x_1, x_2, \ldots, x_n (вибірка обсягу n).

Означення

Будь-яку однозначну функцію $\theta_n^*=\theta_n^*(x_1,x_2,\dots,x_n)$, за допомогою якої знаходять наближене значення параметра θ розподілу випадкової величини, називають **точковою оцінкою** цього параметра.

Означення

Точкова оцінка $\theta_n^* = \theta_n^*(x_1, x_2, \dots, x_n)$ параметра розподілу θ випадкової величини X називається **незміщеною**, якщо її математичне сподівання дорівнює точному значенню цього параметра.

Означення

Точкова оцінка $\theta_n^* = \theta_n^*(x_1, x_2, \dots, x_n)$ параметра розподілу θ випадкової величини X називається **незміщеною**, якщо її математичне сподівання дорівнює точному значенню цього параметра.

<u>Оз</u>начення

Незміщена оцінка $\theta_n^* = \theta_n^*(x_1, x_2, \dots, x_n)$ називається **ефективною**, якщо вона має найменшу дисперсію серед усіх незміщених оцінок параметра θ , обчислених за вибірками одного і того ж обсягу.

Означення

Точкова оцінка $\theta_n^* = \theta_n^*(x_1, x_2, \dots, x_n)$ параметра розподілу θ називається **слушною (змістовною)**, якщо θ_n^* збігається за ймовірністю до оцінюваного параметра при необмеженому зростанні обсягу вибірки, тобто виконується така рівність:

$$\forall \varepsilon > 0$$
 $\lim_{n \to \infty} P\{|\theta_n^* - \theta| < \varepsilon\} = 1,$

де $\varepsilon > 0$ як завгодно мале число.

Означення

Точкова оцінка $\theta_n^* = \theta_n^*(x_1, x_2, \dots, x_n)$ параметра розподілу θ називається **слушною (змістовною)**, якщо θ_n^* збігається за ймовірністю до оцінюваного параметра при необмеженому зростанні обсягу вибірки, тобто виконується така рівність:

$$\forall \varepsilon > 0$$
 $\lim_{n \to \infty} P\{|\theta_n^* - \theta| < \varepsilon\} = 1,$

де $\varepsilon>0$ як завгодно мале число.

Теорема (Умова слушності незміщеної оцінки)

Якщо дисперсія незміщеної оцінки при необмеженому зростанні обсягу вибірки прямує до нуля, то така оцінка є слушною, тобто

$$\forall n \ M(\theta_n^*) = \theta, \ \lim_{n \to \infty} D(\theta_n^*) = 0 \quad \Rightarrow \quad \forall \varepsilon > 0 \ \lim_{n \to \infty} P\{|\theta_n^* - \theta| < \varepsilon\} = 1.$$

Нехай x_1, x_2, \ldots, x_n — вибірка, отримана в результаті n незалежних випробувань над випадковою величиною X — деякою ознакою генеральної сукупності, яка має математичне сподівання M(X)=a.

Нехай x_1,x_2,\dots,x_n — вибірка, отримана в результаті n незалежних випробувань над випадковою величиною X — деякою ознакою генеральної сукупності, яка має математичне сподівання M(X)=a. За точкову оцінку математичного сподівання a=M(X) беруть вибіркове середнє:

$$a_n^* = \overline{x}_{\mathsf{B}} = \frac{1}{n} \sum_{i=1}^n x_i.$$

Оцінка $a_n^* = \overline{x}_{\scriptscriptstyle \mathsf{B}}$ є незміщеною для M(X) = a.

$$M(\overline{x}_{\mathsf{B}}) = M\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}M(x_{i}) = \frac{1}{n}\cdot na = a$$

Припустимо додатково, що випадкова величина X має скінченну дисперсію $D(X)=\sigma^2.$

Припустимо додатково, що випадкова величина X має скінченну дисперсію $D(X)=\sigma^2.$

Тоді можна стверджувати, що оцінка $a_n^* = \overline{x}_{\mathrm{B}}$ є слушною.

$$D(\overline{x}_{\mathsf{B}}) = D\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}D(x_{i}) = \frac{1}{n^{2}}\cdot n\sigma^{2} = \frac{\sigma^{2}}{n}.$$

Припустимо додатково, що випадкова величина X має скінченну дисперсію $D(X)=\sigma^2.$

Тоді можна стверджувати, що оцінка $a_n^* = \overline{x}_{\scriptscriptstyle B}$ є слушною.

$$D(\overline{x}_{\mathsf{B}}) = D\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}D(x_{i}) = \frac{1}{n^{2}}\cdot n\sigma^{2} = \frac{\sigma^{2}}{n}.$$

Оскільки $\lim_{n\to\infty}D(\overline{x}_{\rm B})=\lim_{n\to\infty}rac{\sigma^2}{n}=0$, то це означає, що оцінка $\overline{x}_{\rm B}$ є слушною для параметра a.

Твердження

Якщо випадкова величина X нормально розподілена з параметрами M(X)=a і $D(X)=\sigma^2$, то оцінка $\overline{x}_{\rm B}$ має у класі всіх незміщених оцінок математичного сподівання a мінімальну дисперсію, яка дорівнює $\frac{\sigma^2}{a}$. Тому $\overline{x}_{\rm B}$ є ефективною оцінкою параметра a.

Якщо випадкова вибірка складається з результатів n незалежних випробувань x_1,x_2,\ldots,x_n над випадковою величиною X із математичним сподіванням M(X)=a і дисперсією $D(X)=\sigma^2$, то за точкову оцінку дисперсії беруть вибіркову дисперсію

$$D_{\mathsf{B}} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{\mathsf{B}})^2,$$

яка є зміщеною оцінкою параметра $D(X)=\sigma^2$, або підправлену вибіркову дисперсію

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x}_{B})^{2},$$

яка є незміщеною оцінкою параметра $D(X)=\sigma^2.$

$$s^2 = \frac{n}{n-1}D_{\mathsf{B}}$$

Дріб $\frac{n}{n-1}$ називають **поправкою Бесселя**. Для малих n поправка Бесселя значно відрізняється від одиниці. Для n>50 практично немає різниці між $D_{\rm B}$ і s^2 .

$$s^2 = \frac{n}{n-1}D_{\rm B}$$

Дріб $\frac{n}{n-1}$ називають **поправкою Бесселя**. Для малих n поправка Бесселя значно відрізняється від одиниці. Для n>50 практично немає різниці між $D_{\rm B}$ і s^2 .

Оцінки $D_{\mathtt{B}}$ і s^2 є слушними і не є ефективними.

$$s^2 = \frac{n}{n-1}D_{\rm B}$$

Дріб $\frac{n}{n-1}$ називають **поправкою Бесселя**. Для малих n поправка Бесселя значно відрізняється від одиниці. Для n>50 практично немає різниці між $D_{\rm B}$ і s^2 .

Оцінки $D_{\rm B}$ і s^2 є слушними і не є ефективними.

У випадку, коли математичне сподівання a відоме і випадкова величина X нормально розподілена, то незміщеною, слушною та ефективною оцінкою дисперсії $D(X) = \sigma^2$ є оцінка

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-a)^2.$$

Означення

Надійністю точкової оцінки θ^* параметра розподілу θ називають ймовірність γ , з якою виконується нерівність $|\theta-\theta^*|<\delta$, тобто

$$P\{|\theta - \theta^*| < \delta\} = \gamma. \tag{8.1}$$

Означення

Надійністю точкової оцінки θ^* параметра розподілу θ називають ймовірність γ , з якою виконується нерівність $|\theta-\theta^*|<\delta$, тобто

$$P\{|\theta - \theta^*| < \delta\} = \gamma. \tag{8.1}$$

Співвідношення (8.1) перетворимо до рівносильного виразу:

$$P\{-\delta < \theta - \theta^* < \delta\} = \gamma \qquad \text{afo} \qquad P\{\theta^* - \delta < \theta < \theta^* + \delta\} = \gamma.$$

Означення

Надійністю точкової оцінки θ^* параметра розподілу θ називають ймовірність γ , з якою виконується нерівність $|\theta-\theta^*|<\delta$, тобто

$$P\{|\theta - \theta^*| < \delta\} = \gamma. \tag{8.1}$$

Співвідношення (8.1) перетворимо до рівносильного виразу:

$$P\{-\delta < \theta - \theta^* < \delta\} = \gamma \qquad \text{afo} \qquad P\{\theta^* - \delta < \theta < \theta^* + \delta\} = \gamma.$$

Означення

Інтервал $(\theta^* - \delta, \theta^* + \delta)$, для якого виконується рівність (8.1), називається інтервалом довіри (надійним інтервалом), а його межі $\theta^* - \delta$ і $\theta^* + \delta$ — надійними межами для параметра розподілу θ .

Означення

Надійністю точкової оцінки θ^* параметра розподілу θ називають ймовірність γ , з якою виконується нерівність $|\theta-\theta^*|<\delta$, тобто

$$P\{|\theta - \theta^*| < \delta\} = \gamma. \tag{8.1}$$

Співвідношення (8.1) перетворимо до рівносильного виразу:

$$P\{-\delta < \theta - \theta^* < \delta\} = \gamma \qquad \text{afo} \qquad P\{\theta^* - \delta < \theta < \theta^* + \delta\} = \gamma.$$

Означення

Інтервал $(\theta^* - \delta, \theta^* + \delta)$, для якого виконується рівність (8.1), називається інтервалом довіри (надійним інтервалом), а його межі $\theta^* - \delta$ і $\theta^* + \delta$ — надійними межами для параметра розподілу θ .

Інтервал довіри для параметра розподілу θ є інтервал $(\theta^* - \delta, \theta^* + \delta)$, який з імовірністю γ «накриває» точне значення цього параметра.

Загальний спосіб, за допомогою якого знаходять інтервал довіри, полягає в тому, що розв'язують рівняння (8.1) і визначають з нього число δ . А для цього потрібно обчислити ймовірність $P\{\theta^*-\delta<\theta<\theta^*+\delta\}$. Останнє обчислення можна зробити, якщо відомий закон розподілу точкової оцінки $\theta^*(x_1,x_2,\ldots,x_n)$ або пов'язаної з нею іншої випадкової величини, бо тоді можна використати відомі формули з теорії ймовірностей:

$$P\{\alpha \leq \theta^* < \beta\} = F(\beta) - F(\alpha), \quad \text{afo} \quad P\{\alpha \leq \theta^* < \beta\} = \int\limits_{\alpha}^{\beta} p(x) dx,$$

де F(x) — функція розподілу і p(x) — щільність розподілу випадкової величини θ^* .

Теореми про надійні межі для математичного сподівання

Теорема

Нехай X — нормально розподілена ознака генеральної сукупності, для якої M(X)=a, $D(X)=\sigma^2$, $\overline{x}_{\rm B}$ — вибіркове середнє, обчислене за вибіркою обсягу n з цієї генеральної сукупності. Тоді

$$\forall t > 0$$
 $P\left\{ |\overline{x}_{\mathsf{B}} - a| < \frac{\sigma}{\sqrt{n}} t \right\} = 2\Phi(t),$ (8.2)

де
$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{t^2}{2}} dt.$$

Теорема

Нехай X — довільно розподілена ознака генеральної сукупності, для якої $M(X)=a,\ D(X)=\sigma^2,\ \overline{x}_{\scriptscriptstyle B}$ — вибіркове середнє, обчислене за вибіркою обсягу n з цієї генеральної сукупності. Тоді

$$\forall t > 0$$
 $\lim_{n \to \infty} P\left\{ |\overline{x}_{\scriptscriptstyle B} - a| < \frac{\sigma}{\sqrt{n}} t \right\} = 2\Phi(t).$ (8.3)

Нехай x_1, x_2, \ldots, x_n — результати n незалежних спостережень за випадковою величиною X, на підставі яких необхідно знайти інтервал довіри для невідомого параметра a=M(X).

Нехай x_1, x_2, \ldots, x_n — результати n незалежних спостережень за випадковою величиною X, на підставі яких необхідно знайти інтервал довіри для невідомого параметра a=M(X).

Оскільки для математичного сподівання точковою оцінкою є вибіркове середнє $\overline{x}_{\rm B}$, то для знаходження інтервалу довіри $\overline{x}_{\rm B}-\delta < a < \overline{x}_{\rm B}+\delta$ потрібно розв'язати рівняння:

$$P\{|\overline{x}_{\mathtt{B}} - a| < \delta\} = \gamma \quad \Leftrightarrow \quad P\{\overline{x}_{\mathtt{B}} - \delta < a < \overline{x}_{\mathtt{B}} + \delta\} = \gamma. \tag{8.4}$$

Якщо середнє квадратичне відхилення σ відоме, X — нормально розподілена випадкова величина або обсяг вибірки значний (n>30), то ми можемо записати, що

$$P\left\{|\overline{x}_{\mathrm{B}}-a|<\frac{\sigma}{\sqrt{n}}t\right\}=2\Phi(t)=\gamma.$$

Тоді, якщо $t=t_{\gamma}$ — розв'язок рівняння $2\Phi(t)=\gamma$, то з надійністю γ інтервал

$$\overline{x}_{\mathrm{B}} - \frac{\sigma}{\sqrt{n}} t_{\gamma} < a < \overline{x}_{\mathrm{B}} + \frac{\sigma}{\sqrt{n}} t_{\gamma}$$

 ε інтервалом довіри для математичного сподівання a.

Якщо середнє квадратичне відхилення σ невідоме, але обсяг вибірки значний (n>30), то інтервал довіри можна записати у вигляді

$$\overline{x}_{\mathsf{B}} - \frac{s}{\sqrt{n}} t_{\gamma} < a < \overline{x}_{\mathsf{B}} + \frac{s}{\sqrt{n}} t_{\gamma}, \tag{8.5}$$

де s — підправлене середнє квадратичне відхилення, знайдене за вибіркою обсягу n.

Якщо середнє квадратичне відхилення σ невідоме, обсяг вибірки незначний (n<30), але X — нормально розподілена випадкова величина, то інтервал довіри також записують у вигляді (8.5), де значення $t_{\gamma}=t(\gamma,n)$ шукають за таблицями як розв'язок рівняння

$$P\{|T| < t_{\gamma}\} = \int_{-t_{\gamma}}^{t_{\gamma}} s(x,n) dx = 2 \int_{0}^{t_{\gamma}} s(x,n) dx = \gamma,$$

де $T=rac{\overline{x}_{\mathrm{B}}-a}{s/\sqrt{n}}$ — випадкова величина, розподілена за законом Стьюдента з k=n-1 ступенями вільності, який характеризується щільністю розподілу

$$s(x,n) = B_n \left(1 + \frac{x^2}{n-1} \right)^{-\frac{n}{2}}, \quad x \in (-\infty, +\infty),$$

де B_n — деяка нормуюча константа. Розподіл Стьюдента залежить лише від одного параметра n і при $n \to \infty$ наближається до нормального закону розподілу.

Приклад

Випадкова величина X розподілена нормально з відомим середнім квадратичним відхиленням $\sigma=3$. Знайти інтервал довіри з надійністю $\gamma=0,95$ для оцінки невідомого математичного сподівання a, якщо вибіркове середнє $\overline{x}_{\rm B}=20,02$ знайдене за даними вибірки обсягу n=36.

Приклад

Випадкова величина X розподілена нормально з відомим середнім квадратичним відхиленням $\sigma=3$. Знайти інтервал довіри з надійністю $\gamma=0,95$ для оцінки невідомого математичного сподівання a, якщо вибіркове середнє $\overline{x}_{\rm B}=20,02$ знайдене за даними вибірки обсягу n=36.

3 рівняння $2\Phi(t)=0,95$ за допомогою таблиць функції Лапласа знаходимо $t=t_{\gamma}=1,96.$

Приклад

Випадкова величина X розподілена нормально з відомим середнім квадратичним відхиленням $\sigma=3$. Знайти інтервал довіри з надійністю $\gamma=0,95$ для оцінки невідомого математичного сподівання a, якщо вибіркове середнє $\overline{x}_{\rm B}=20,02$ знайдене за даними вибірки обсягу n=36.

3 рівняння $2\Phi(t)=0,95$ за допомогою таблиць функції Лапласа знаходимо $t=t_{\gamma}=1,96.$

Межі інтервалу довіри шукаємо за формулами:

$$\overline{x}_{\mathsf{B}} - \frac{\sigma}{\sqrt{n}} t_{\gamma} = 20,02 - \frac{3}{\sqrt{36}} \cdot 1,96 = 19,04;$$

$$\overline{x}_{\mathsf{B}} + \frac{\sigma}{\sqrt{n}} t_{\gamma} = 20,02 + \frac{3}{\sqrt{36}} \cdot 1,96 = 21,00.$$

Приклад

Випадкова величина X розподілена нормально з відомим середнім квадратичним відхиленням $\sigma=3$. Знайти інтервал довіри з надійністю $\gamma=0,95$ для оцінки невідомого математичного сподівання a, якщо вибіркове середнє $\overline{x}_{\rm B}=20,02$ знайдене за даними вибірки обсягу n=36.

3 рівняння $2\Phi(t)=0,95$ за допомогою таблиць функції Лапласа знаходимо $t=t_{\gamma}=1,96.$

Межі інтервалу довіри шукаємо за формулами:

$$\overline{x}_{\mathsf{B}} - \frac{\sigma}{\sqrt{n}} t_{\gamma} = 20,02 - \frac{3}{\sqrt{36}} \cdot 1,96 = 19,04;$$

$$\overline{x}_{\mathsf{B}} + \frac{\sigma}{\sqrt{n}} t_{\gamma} = 20,02 + \frac{3}{\sqrt{36}} \cdot 1,96 = 21,00.$$

Отже, $a \in (19, 04; 21, 00)$ з надійністю 0,95.

Нехай ознака X генеральної сукупності розподілена нормально. Знайдемо надійні межі для середнього квадратичного відхилення σ з заданою надійністю γ .

$$P\{|\sigma - s| < \delta\} = \gamma \quad \Leftrightarrow \quad P\{s - \delta < \sigma < s + \delta\} = \gamma.$$

Нехай ознака X генеральної сукупності розподілена нормально. Знайдемо надійні межі для середнього квадратичного відхилення σ з заданою надійністю γ .

$$P\{|\sigma-s|<\delta\} = \gamma \quad \Leftrightarrow \quad P\{s-\delta<\sigma< s+\delta\} = \gamma.$$

Перетворимо подвійну нерівність $s - \delta < \sigma < s + \delta$:

$$s\left(1 - \frac{\delta}{s}\right) < \sigma < s\left(1 + \frac{\delta}{s}\right) \quad \Leftrightarrow \quad s(1 - q) < \sigma < s(1 + q), \quad (8.6)$$

де
$$q = \frac{\delta}{s}$$
.

Нехай ознака X генеральної сукупності розподілена нормально. Знайдемо надійні межі для середнього квадратичного відхилення σ з заданою надійністю γ .

$$P\{|\sigma-s|<\delta\} = \gamma \quad \Leftrightarrow \quad P\{s-\delta<\sigma< s+\delta\} = \gamma.$$

Перетворимо подвійну нерівність $s - \delta < \sigma < s + \delta$:

$$s\left(1 - \frac{\delta}{s}\right) < \sigma < s\left(1 + \frac{\delta}{s}\right) \quad \Leftrightarrow \quad s(1 - q) < \sigma < s(1 + q), \quad (8.6)$$

де
$$q = \frac{\delta}{s}$$
.

Залишається знайти q.

Розглянемо випадкову величину $\chi=\sqrt{n-1}s/\sigma$, де n — обсяг вибірки. Відомо, що випадкова величина $(n-1)s^2/\sigma^2$ — розподілена за законом χ^2 з n-1 ступенями вільності, тому квадратний корінь з неї позначають через χ .

Розглянемо випадкову величину $\chi=\sqrt{n-1}s/\sigma$, де n — обсяг вибірки. Відомо, що випадкова величина $(n-1)s^2/\sigma^2$ — розподілена за законом χ^2 з n-1 ступенями вільності, тому квадратний корінь з неї позначають через χ .

Щільність розподілу χ має вигляд

$$R(x,n) = A_n x^{n-2} e^{-x^2/2},$$

де A_n — деяка стала. Цей розподіл не залежить від оцінюваного параметра σ , а залежить лише від обсягу вибірки n.

Для
$$q<1$$

$$P\{s-\delta<\sigma< s+\delta\}=P\{s(1-q)<\sigma< s(1+q)\}=$$

$$=P\left\{\frac{\sqrt{n-1}}{1+q}<\chi<\frac{\sqrt{n-1}}{1-q}\right\}=\int\limits_{\chi_1}^{\chi_2}R(x,n)dx=\gamma,$$

де $\chi_1=\sqrt{n-1}/(1+q)$, $\chi_2=\sqrt{n-1}/(1-q)$. З цього рівняння можна за заданими n і γ (за допомогою таблиці $q=q(\gamma,n)$) знайти q.

Для q < 1

$$P\{s - \delta < \sigma < s + \delta\} = P\{s(1 - q) < \sigma < s(1 + q)\} =$$

$$= P\left\{\frac{\sqrt{n - 1}}{1 + q} < \chi < \frac{\sqrt{n - 1}}{1 - q}\right\} = \int_{-\infty}^{\chi_2} R(x, n) dx = \gamma,$$

де $\chi_1=\sqrt{n-1}/(1+q)$, $\chi_2=\sqrt{n-1}/(1-q)$. З цього рівняння можна за заданими n і γ (за допомогою таблиці $q=q(\gamma,n)$) знайти q. Якщо q>1, то нерівність (8.6) набуде вигляду

$$0 < \sigma < s(1+q).$$

У цьому випадку q також шукають за таблицею значень $q = q(\gamma, n)$.

Приклад

За результатами 15-ти вимірювань, здійснених одним приладом, обчислили підправлене середнє квадратичне відхилення випадкових помилок вимірювань s=0,12. Оцінити точність приладу (середнє квадратичне відхилення σ) з надійністю $\gamma=0,99$.

Приклад

За результатами 15-ти вимірювань, здійснених одним приладом, обчислили підправлене середнє квадратичне відхилення випадкових помилок вимірювань s=0,12. Оцінити точність приладу (середнє квадратичне відхилення σ) з надійністю $\gamma=0,99$.

Задача зводиться до відшукання інтервалу довіри

$$s(1-q) < \sigma < s(1+q),$$

який покриває σ з заданою надійністю $\gamma=0,99.$

Приклад

За результатами 15-ти вимірювань, здійснених одним приладом, обчислили підправлене середнє квадратичне відхилення випадкових помилок вимірювань s=0,12. Оцінити точність приладу (середнє квадратичне відхилення σ) з надійністю $\gamma=0,99$.

Задача зводиться до відшукання інтервалу довіри

$$s(1-q) < \sigma < s(1+q),$$

який покриває σ з заданою надійністю $\gamma = 0,99$.

За таблицею $q=q(\gamma,n)$ за $\gamma=0,99$ і n=15 знаходимо q=0,73. Шуканий інтервал довіри

$$0,12(1-0,73) < \sigma < 0,12(1+0,73)$$
 abo $0,03 < \sigma < 0,21$.