# 1. Régime transitoire d'un circuit RC

# Introduction

On se propose, au cours de cette séance de travaux pratiques, d'étudier la réponse temporelle d'un circuit RC à un échelon de tension. Ce sera l'occasion pour nous de nous remémorer le mode de fonctionnement de l'oscilloscope, et également de découvrir un nouvel outil d'importance : le logiciel LatisPro que nous utiliserons conjointement à la carte d'acquisition SYSAM-Campus.

# Compétences expérimentales à acquérir

✓ Utilisation du GBF : Obtenir un signal périodique de valeur moyenne, de forme, d'amplitude et de fréquence données.

# ✓ Utilisation de l'oscilloscope :

- Visualiser un signal stable et adapté à l'oscilloscope en réglant les calibres de temps et de tension, et en utilisant le trigger.
- Mesurer à l'oscilloscope un intervalle de temps  $\tau$ .

### ✓ Utilisation de LatisPro :

- Choisir de façon cohérente les paramètres d'acquisition :  $T_{acq}$ , N,  $T_e$ .
- Utiliser le mode déclenchement.

# ✓ Gérer les problèmes de masse :

- Savoir placer les différents éléments d'un circuit de façon adaptée, pour éviter les problèmes de masse.
- Vérifier le montage en vérifiant que les masses communes des appareils sont reliées et ne court-circuitent pas certains composants.

# Matériel à disposition

- ✓ Un oscilloscope, un générateur basse fréquence,
- ✓ Une carte d'acquisition,
- ✓ Résistances et condensateurs divers.

# 1.1 Travail préliminaire

# 1.1.1 Préparation théorique

Nous allons, dans cette première partie, nous intéresser au circuit suivant, représenté en figure 1.1, constitué de l'association en série d'une résistance R et d'un condensateur C. Le condensateur considéré est initialement déchargé. À t=0, on ferme l'interrupteur K, de sorte que la tension aux bornes de l'ensemble RC passe brutalement de 0 à E.

Répondez aux questions suivantes.



FIGURE 1.1 – Étude de la réponse d'un circuit RC à un échelon de tension

- 1. Établir l'équation différentielle vérifiée par la tension  $u_c(t)$  aux bornes du condensateur. On introduira pour cela un temps caractéristique  $\tau$  dont on précisera l'expression et la signification physique.
- 2. Pourquoi dit-on que ce circuit est « du premier ordre »?
- Résoudre cette équation en tenant compte des conditions initiales pour déterminer l'expression de u<sub>c</sub>(t).
- 4. Déterminer l'expression de l'intensité i du courant circulant dans le circuit.
- 5. Représenter graphiquement  $u_c(t)$  et i(t).
- 6. Proposer deux méthodes permettant de déterminer graphiquement la valeur de  $\tau$ .

# 1.1.2 Réflexions pratiques

On souhaite dans un premier temps observer la tension  $u_c(t)$  aux bornes du condensateur à l'aide d'un oscilloscope. Plutôt qu'un interrupteur, on souhaite utiliser un signal carré, délivré par un GBF, variant entre 0 et 3V. On prendra pour le montage  $R = 10 k\Omega$  et C = 10 nF.

- 1. Représenter graphiquement l'allure du signal carré délivré par le GBF.
- 2. Quel est l'offset de ce signal?
- 3. Comment choisir la fréquence de ce signal pour pouvoir observer toute la charge du condensateur?
- 4. On souhaite afficher simultanément à l'oscilloscope la tension délivrée par le GBF et celle aux bornes du condensateur. Représentez le montage à réaliser en précisant le branchement des bornes de l'oscilloscope.

# 1.2 Manipulations

# 1.2.1 Observation à l'oscilloscope

On commence par utiliser l'oscilloscope pour étudier le circuit.

- 1. Réaliser le montage de la question précédente.
- 2. Observer simultanément à l'oscilloscope le signal e(t) délivré par le GBF et la tension  $u_c(t)$  aux bornes du condensateur. Le résultat observé est-il cohérent avec l'étude menée lors du travail préliminaire?
- 3. Déterminez expérimentalement la constante de temps  $\tau$  du circuit et la comparer à la valeur attendue. On donnera une estimation de l'incertitude associée à la mesure.
- 4. Envoyez un signal carré à haute fréquence  $(f \gg \frac{1}{\tau})$  et visualiser l'allure de  $u_c(t)$ . Qu'observe-t-on? Commentez.

# 1.2.2 Observation avec LatisPro

On se propose maintenant d'observer la tension aux bornes du condensateur à l'aide du logiciel LatisPro. Les branchements à effectuer sont les mêmes que précédemment mais les fils qui étaient connectés à l'oscilloscope doivent maintenant être reliés aux voies 1 et 2 de la carte d'acquisition (Ala carte SYSAM-Campus se branche avec les fils banane et non pas coaxiaux). On ne souhaite réaliser l'acquisition que d'une seule charge du condensateur.

- 1. Expliquer comment choisir les paramètres d'acquisition (nombre de points N, période d'acquisition  $T_{e}$  et durée totale de l'acquisition  $T_{acq}$ ) pour observer convenablement une charge du condensateur.
- 2. Comment faut-il régler le trigger pour observer une charge et non pas une décharge?
- 3. Réalisez l'acquisition avec les paramètres précédemment choisis.
- 4. À l'aide de l'outil « curseur » de LatisPro, mesurer la valeur du temps caractéristique τ.
- Utiliser l'outil « modélisation » de LatisPro afin d'en déduire de nouveau le temps caractéristique τ.