Title

Text

Exercise 3: Newton's Method for Systems

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory/ Recap
- 4. Exercises

Information

General

- Lecture material & problem sets available here
- Tutorial material available here

Goals

Goals of Today

- Understand Newton's method (again)
- Understand issues related to Newton's Method
- Understand how to generalize the method to a system of equations

Theory / Recap

Root of a function

- $f(x^*) = 0$, x^* is a root of f
- **Intermediate Value Theorem:**
 - f is continuous
 - $\operatorname{sign} f(a) \neq \operatorname{sign} f(b)$
 - Then $x^* \in [a, b]$

https://en.wikipedia.org/wiki/Zero_of_a_function#/media/File:X-intercepts.svg

Newton's Method

- **Derivation:**
 - Approximate: $f(x + \Delta x) \approx f(x) + f'(x)\Delta x$ (Taylor)
 - Discretize: $f(x^{(k)}) = f(x^{(k-1)}) + f'(x^{(k-1)})(x^{(k)} x^{(k-1)})$
 - Set $f(x^{(k)}) = 0$: $x^{(k)} = x^{(k-1)} \frac{f(x^{(k-1)})}{f'(x^{(k-1)})}$ (update rule)
- Iterate until $|x^{(k)} x^{(k-1)}| < \epsilon$
- Link

Issues

- Oscillation
- Stationary point

 $https://en.wikipedia.org/wiki/Newton\%27s_method\#/media/File:NewtonsMethodConvergenceFailure.svg$

Newton's Method for Systems

- $\mathbf{x}^* = [x_1^*, ..., x_N^*]^T$, $\mathbf{F}(\mathbf{x}^*) = [f_1(x_1^*), ..., f_N(x_N^*)]^T = \mathbf{0}$
- Update rule: $\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} J^{-1}(\mathbf{x}^{(k-1)})\mathbf{F}(\mathbf{x}^{(k-1)})$
- Define: $\mathbf{x}^{(k)} \mathbf{x}^{(k-1)} = \mathbf{y}^{(k-1)}$
- Write update rule as: $J(x^{(k-1)})y^{(k-1)} = -F(x^{(k-1)})$

Example 1: System of Equations

•
$$x_1 + x_2 - x_1x_2 + 2 = 0$$
; $x_1 \cdot \exp(-x_2) - 1 = 0$

- Initial Guess: $x_1^{(0)} = 0$; $x_2^{(0)} = 0$
- Compute the Jacobian
- Solve $J(\mathbf{x}^{(k-1)})\mathbf{y}^{(k-1)} = -\mathbf{F}(\mathbf{x}^{(k-1)})$
- Compute $\mathbf{x}^{(1)}$

Exercises

Q1

- Implement Newton's method for systems
- Solve a practical problem

Questions?

