SECTION A: (40 MARKS)

1. The table gives the tRNA anticodons for three amino acids.

Amino acid	Base sequence anticodon on tRNA
Mehionine	UAC
Valine	CAA
Arginine	GCU

What is the base sequence on part of a DNA strand which could code for the tripeptide Methionine -Valine-Arginine?

- A. ATG GTT CGA
- B. AUG GUU CGA

- .C. TAC CAA GUT
- D. UAC CAA GCU
- The competitive exclusion principle implies that co-existing species
 - A. cannot feed on the same food.
 - B. cannot be closely related
 - C. cannot be of same size
 - D. may not occupy the same niche.
- 3. The diagram below show two adjacent cells and the values of the value of their φ_s and φ_p are given in Kpa

Cell A	Cell B
$\varphi_S = 1600$	$\varphi_{S} = 2200$
$\varphi_{P} = 800$	$\varphi_{P} = 1000$

Which cell is hypertonic in terms of water potential?

- A. Cell A $\varphi_w = 2400kp$
- B. Cell B $\varphi_w = 3200kpa$
- C. Cell A $\varphi_w = -800kpa$
- D. Cell B $\varphi_w = -1200kpa$
- A quadrant measuring 25cm × 25cm was used to measure the population abundance of barnacles on a rock shore. Data was collected from 10 randomly placed quadrants.

Quadrant	1	2	3	1	-					
No of barnacles	0	4	5	2	3	6	7	8	9	10
			13	2	9	0	10	8	2	10

Calculate the population size of barnacles in a study area of 1m².

- A. 20.4
- B. 40

- C. 200
- D. 80

5. The diagram below shows photosynthesis in C_4 plants.

What do products P, Q, R and S represent?

- A. OAA, Malate, Pyruvate, Co2.
- B. OAA, Co₂, Pyruvate, Malate.
- C. Malate, Co₂, Pyruvate, OAA.
- D. OAA, Malate Co₂, Pyruvate.
- 6. Which of the following statements are true about the casparian strip?
 - (i) It covers the whole endodermic cell
 - (ii) It consists of suberin which is impermeable to water
 - (iii) It is a thickening strip of the endodermis cell.
 - (iv) It ensures that water crosses the root through the apoplast only to xylem.
 - A. (i) and (ii) only

C. (ii) and (iii) only

B. (i) and (iv) only

- D. (iii) and (iv) only
- 7. The population of rodents in an ecosystem was estimated to be 400 using Lincoln index. In the time between the first and second captures, large numbers of rodents were born and view few died. How might this have affected the population estimate?
 - A. The population estimate was wrong because the method used is unsuitable for motile rodents.
 - B. The population estimate is correct because the newly-born rodents are incapable of reproducing.
 - C. The population is less than 400 because the birth rate exceeds the death rate.
 - D. The population is more than 400 because birth rate exceeds death rate.
- 8. The relationship between gross primary productivity (GPP), net primary productivity (NPP) and heat loss through respiration (R) can be represented by the equation:
 - A. $GPP = NPP \times R$

C. NPP = GPP + R

B. GPP = NPP - R

D. NPP = GPP - R

9.	Whi	nich phylum comprises of acoelomate		rally symmetrical, triploblastic
	A. B.	nisms? Annelid Nematoda	C. D.	Cnidaria Platyhelminthes
10.	The	quaternary structure of a protein is the		
	A. B. C. D.	linear sequence of amino acids in a poly linkage of two or more polypeptide chair folding and coiling of a polypeptide chair regular arrangement of a polypeptide chair	ns to io	e chain. orm a single function molecule
11.	Whi lymp	ch of the following is not true about be phatic systems in mammals?	oth the	e blood circulatory system and
	A. B.	Excretory products Plasma proteins	C. D.	Leucocytes Digested food
12.	Whi	ch one of the following may not always f	orm pa	art of a bacterial cell?
	A. B.	Cell wall Ribosome	C. D.	Flagellum Cytoplasm
13.	A pe	erson's blood group is type A if his/ her;		
	A. B. C. D.	red blood cells carry only B antigen blood plasma contains only antibody b blood plasma contains only A antigen blood plasma contains neither antibody a	a nor b	
14,	The	φ_w, φ_p and φ_s of three adjacent cells T ,	$oldsymbol{\mathit{Q}}$ and	R are shown in figure below.
		$Q \left(\begin{array}{c} \varphi_p = 8kpa \\ \varphi_s = 24kpa \end{array} \right) \left(\begin{array}{c} \varphi_s = 1 \\ \varphi_p = 1 \end{array} \right)$	20kpa 8kpa	R
		$\varphi_{w} = -4kpa$		
	The	cells that experience the least and the high	hest in	flux of water respectively are?
	A. B.	R and Q T and R	C. D.	T and Q
15.	Net	primary productivity in C ₄ plants is highe	r than	that in C ₃ plants because
	A. B. C. D.	C ₄ plants have a higher turn over photorespiration occurs in C ₃ plants rate of respiration is higher in C ₄ plants energy accumulates quickly in C ₄ plants		

16.	6. The unwinding of DNA double helix during transcription requires an enzyme									
	A. B.	DNA Li gase	C. D.	RNA polymerase DNA Helicase	: 15					
17.	In	HIV the role of the enzyme Reverse transcr	iptase	e is to?	£					
	A. B. C. D.	unite viral DNA with the host DNA	n t.							
18.	Wł	nich one of the following would decrease the	e card	iac rate in a mammal?						
	A. B. C. D.	increase in Co ₂ content in blood increase in the partial pressure of O ₂ in bl accumulation of lactic acid in tissues secretion of adrenaline into blood	ood							
19.		e most efficient method to determine the itat can be by;	comn	nonest plant species in a	large					
	A. B.	using a quadrant aerial photography	C. D.	using line transect dissect counting						
20.	Wh	ich one of the following does not occur dur	ing th	e opening of the stomata?						
	A. B. C. D.	Conversion of sugar into starch Conversion of starch into malic acid Water enters by osmosis into guard cell K ⁺ ions pumped into guard cells								
21.	One	of the roles of glycoproteins and glycolipic	ls on t	the cell membrane is to						
	A. B. C. D.	increase the absorption surface area provide receptor site for recognition of sti provide sites for varies reaction pathways separate protoplasm from the surroundings								
22.	The trans	transport of photosynthetic products in a plafer cells (phloem tissue) occurs by?	ant fr	om mesophyll cells to adja	ncent					
	A. B.	active transport mass flow	C. D.	osmosis cytoplasmic streaming						

5

Turn Over

23.	pla	plasmolysis it would be necessary to suspend the cell in external solution with a solute concentration of;										
	A. B.	0.4 m 0.8 m	C. D.									
24.		nich of the following is least likely to ompete for the same limited source?	ccur w	then organisms of related species								
	A. B.	Range restriction Resource partitioning	C. D.									
25.	me	ogs have 78 chromosomes in their dipliosis, how many chromosomes and chromosomes are cells at the end of meiosis 1?	oid ce omatid	ells. If a diploid dog cell enters s will be present in each of the								
	A. B. C. D.	39 chromosomes, 39 chromatids 39 chromosomes, 78 chromatids 78 chromosomes, 78 chromatids 78 chromosomes, 156 chromatids										
26.	Bac	eteria that lie in the human intenstines as human has consumed. This relationship is	sist dig descri	gestion and feed on the nutrients ibed as								
	A. B.	commensalism mutualism	C. D.	endoparasitism saprophytism								
27.	Whi	ich of the following events would move I web into a grazing food web?	energ	y and materials from a detritus								
	A. B. C. D.	A beetle eating the leaves of a living pla An earth worm eats dead leaves on the f A bird catches and eats an earth worm A marabou stork eats a dead bird.		loor								
28.	The	total dry weight of plant material in a fore	est is a	measure of the forest's								
	A. B.	GPP N.P.P	C. D.	Respiration Starving crop biomass								
29.	Com	ponents of the inflammatory response inc	lude al	ll the following except?								
	A. B.	Macrophages Neutrophils	C. D.	B-cells Mast cells								

			7			т. с	
		Translation Transcription		C. D.	DNA Replication Amino acid activation	on	
36.	Whic	h one of the foll	owing is the first step	during pro	tein synthesis?		
	B. C.	Guanine is paire Hydrogen bond:	ir with pyrimidines ed with Adenine s occur only in Purine y pair with pyrimidine	es es			
35.	Whice acids	th one of the following?	owing statements is c	orrect abou	ut base pairing in nuc	eleic	
	A. B. C.	minimizing tem cooling animals	perature change in an ciperature change in an				
34.	The l	high heat capaci	ty of water has the bio				
	A. B.	170. 450		C. D.	154 186		
33.	One later,	day an ecologi , the ecologist re	st caught and marked eturned to the populat the size of the butterfl	d 90 butter	rflies in a populatio ught 80 butterflies 1	n. A week	
	Whi	ch one of them v	would have the greates	st need for		?	
	A. B. C. D.		32.0 1.2 3.3 7.5	Su	61.1 3.0 8.2 49.8		
13.721	Anir		D have their body vo Volume (cm^3)		rface area shown b	elow.	
32.	A. B.	Light Temperature	Dhamata' ta t	C. D.	Wind velocity Humidity		
31.	Whi lead	Which of the following, if increased to an Elodea plants in water at 30 lead to a rise in the number of bubbles released from the plant?					
	A. B. C. D.	Co ₂ concentrate Co ₂ concentrate O ₂ concentrate	tion in blood is high tion in blood is low on in blood is high ion in blood is low		3.0		
50.	Oxygen enters blood in the lungs because relative to alveolar air the;						

37. The old DNA strand which serves as a guide to a new strand is called.	
A. a gene C. an anticodon B. polymerase D. a template	
38. In single circulation, the blood pressure is low because;	S 1
 A. animals that have single circulation have single- chambered hearts. B. the blood passes through two capillary systems. C. single circulation systems lack vaives. D. blood passes through the heart once. 	
39. Conversion of glycogen to glucose during stress would be stimulated by;	
A. insulin B. glucagon C. adrenaline D. thyroxine	
40. During stable environment conditions the rate of evolution change	
A. slows down B. remains constant C. increases rapidly D. increases slowly	
SECTION B:	
1. (a) Define the term hybrid. (0	2 marks)
	ossed to
(ii) Explain what would happen if the hybrids are crossed. (03	marks)

	(c)) If (i	the hybrids undergo polyploidy, tetrapliod would result What would be the chromosome number of the tetraploid? (01 mark)
		(ii	Suggest three advantages the tetraploid spartina would have ove spartina maritima. (03 marks)
42.		enty to 3	healthy students were monitored as they immersed their faces in water from 7°C. The results are shown in the graph below.
			10 10 10 10 10 10 10 10 20 20 25 30 5 10 15 20 25 30 35 40
	(a)	(i)	What is the effect of facial immersion on heart rate over the range of water temperature shown? (01 mark)
		(ii)	Suggest reasons for the relationship between facial immersion and heart rate. (04 marks)

(b) What is the effect of temperature on heart rate? (01 mark) Outline the events which occur leading to the rapture of red blood cells in hypotonic solution. (04 marks)

43. The figure below shows the type of natural selection acting on a continuous

(a) Identify the type of selection acting on the population. (i) (01 mark)

	(ii)	Explain how the selection pressure affects the population.	(03 marks)
(b)	Ofw	hat ecological advantage is the above type of selection?	(02 marris)
(c)	heter	g sickle-cell allele as an example, explain the sign rozygous advantages.	
(d)	In a Wha	certain population 14% of the babies were born with sickle-c t is the frequency of the carriers?	(02 marks)
		11	urn Over

44	. (a	(1)	What is meant by the term immunity?	(01 mark
		(ii)	How does a plasma cell differ from a memory cell?	(02 marks)
	(b)	State	three ways in which hology and the control of the c	
		syste	three ways in which helper cells improve efficiency m.	(03 marks)
		•••••		
	(c)	Expla	in how the body is protected from actions of its own immu	ne system.
				(04 marks)
		•••••		
		•••••		
15.	(0)	(:) T		
13.	(a)	(i) E	explain why less glucose is required to maintain cell reproduction anaerobic conditions.	netabolism in (03 marks)

(02 marks)	What is the role of oxygen in oxidative phosphorylation?	(ii)

(b) The graph below shows an activity of an enzyme that controls glycoysis at increasing substrate concentration at two levels of ATP.

i)	Describe how high levels of ATP affect enzyme activity.	(02 marks)
ii)	Explain how glycolysis is regulated by this enzyme.	

46. The figure below shows dendrites from neurons A and B forming synapses with neuron C.

(b)	Explain what would happen if;		
	(i)	Acetylchlorine increased the permeability of the post-synaptic membrane to Na ⁺ ions. (03 marks)	
7.0			
	(ii)	X increased the permeability of post-synaptic membrane to Cl ions (02 marks)	
(c)	State	a benefit of neuron C forming synapses with two neurons A and B . (02 marks)	
(d)		three advantages of nerve impulse transmission through synapses. (03 marks)	
ŧ			