

On the Parameterization and the Geometry of the Configuration Space of a Single Planar Robot

Computational Geometric Learning supported by FET-Open grant

Dror Atariah Günter Rote Freie Universität Berlin

June 27th 2013

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

Setting

A planar polygonal (convex) robot $\mathcal A$ moving amid polygonal (convex) obstacles $\{\mathcal O_j\}_{j\in J}$.

Free...

Can be either in a *free* configuration C_{free} .

Setting

A planar polygonal (convex) robot $\mathcal A$ moving amid polygonal (convex) obstacles $\{\mathcal O_j\}_{j\in J}$.

Free...

Can be either in a *free* configuration C_{free} .

Forbidden...

Or, forbidden one $C_{forb} = C \setminus C_{free}$.

Contact Types

We consider two *main* types of contacts:

- ▶ Vertex-Edge
- ► Edge-Vertex

Contact Types

We consider two *main* types of contacts:

- Vertex-Edge
- ► Edge-Vertex

We can have two additional types of contact:

- Vertex-Vertex
- ► Edge-Edge

General Problem Statement

Ultimate Goal

Find a *collision free* path for \mathcal{A} to move from a start point to a target point.

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

The Configuration Space

A robot's configuration (pose) is determined by a translation vector $\vec{r} = (x, y) \in \mathbb{R}^2$ and an orientation angle $\theta \in S^1$.

Definition (Configuration Space)

The space $C = (\mathbb{R}^2 \times S^1)$ is called the *configuration space* of a given robot A.

- $\blacktriangleright \ \mathcal{C}_{forb} = \left\{ q \in \mathcal{C} \mid \operatorname{int}(\mathcal{A}(q)) \cap \left(\bigcup_{j} \operatorname{int}(\mathcal{O}_{j})\right) \neq \emptyset \right\}$
- $C_{free} = C \setminus C_{forb}$

Given a point $q=(x,y,\theta)\in\mathcal{C}$, the corresponding configuration of the robot in the *work space* is given by: $a_i(q)=\binom{x}{y}+r_i\binom{\cos(\alpha_i+\theta)}{\sin(\alpha_i+\theta)}$

Given a point $q=(x,y,\theta)\in\mathcal{C}$, the corresponding configuration of the robot in the *work space* is given by: $a_i(q)=\binom{x}{y}+r_i\binom{\cos(\alpha_i+\theta)}{\sin(\alpha_i+\theta)}$

Given a point $q = (x, y, \theta) \in \mathcal{C}$, the corresponding configuration of the robot in the *work space* is given by: $a_i(q) = {x \choose y} + r_i {\cos(\alpha_i + \theta) \choose \sin(\alpha_i + \theta)}$

Given a point $q = (x, y, \theta) \in \mathcal{C}$, the corresponding configuration of the robot in the *work space* is given by: $a_i(q) = {x \choose y} + r_i {\cos(\alpha_i + \theta) \choose \sin(\alpha_i + \theta)}$

Rising of Contact Surfaces

In the *configuration space*, we consider the following sets:

- ▶ Vertex-Edge Contact: $\{q \in C \mid a_i \in \partial \mathcal{O}_j\}$
- ▶ Edge-Vertex Contact: $\{q \in C \mid b_i \in \partial A\}$

Rising of Contact Surfaces

In the *configuration space*, we consider the following sets:

- ▶ Vertex-Edge Contact: $\{q \in C \mid a_i \in \partial \mathcal{O}_j\}$
- ► Edge-Vertex Contact: $\{q \in C \mid b_j \in \partial A\}$

Remark

- Each of these sets intersect both Cfree and Cforb
- The boundary between Cfree and Cforb is a union of subsets of theses sets

Rising of Contact Surfaces

In the *configuration space*, we consider the following sets:

- ▶ Vertex-Edge Contact: $\{q \in C \mid a_i \in \partial \mathcal{O}_j\}$
- ► Edge-Vertex Contact: $\{q \in C \mid b_j \in \partial A\}$

Remark

- Each of these sets intersect both C_{free} and C_{forb}
- The boundary between C_{free} and C_{forb} is a union of subsets of theses sets

Goal

Parameterize and study the geometry of these sets.

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

Let it rotate...

We consider the rotation of the robot about a fixed point $P \in \mathcal{W}$ such that $a \in \mathcal{A}$ is fixed to P.

$$P_a = \{q \in \mathcal{C} \mid a(q) = P\}$$

If $a = R_0$ then P_a is a vertical straight line.

Let it rotate...

We consider the rotation of the robot about a fixed point $P \in \mathcal{W}$ such that $a \in \mathcal{A}$ is fixed to P.

$$P_a = \{q \in \mathcal{C} \mid a(q) = P\}$$

If a is some arbitrary point in \mathcal{A} then P_a is a *helix* with axis in the θ direction.

Let it rotate...

We consider the rotation of the robot about a fixed point $P \in \mathcal{W}$ such that $a \in \mathcal{A}$ is fixed to P.

$$P_a = \{q \in \mathcal{C} \mid a(q) = P\}$$

If a is some arbitrary point in \mathcal{A} then P_a is a *helix* with axis in the θ direction.

Remark

Helices cover C.

Input

- ▶ A robot \mathcal{A} and a point $a \in \mathcal{A}$.
- ▶ A fixed point $P \in \mathcal{W}$ in the work space.

The parameterization

$$q_a^p(\phi) = \begin{pmatrix} \vec{r}(\phi) \\ \theta(\phi) \end{pmatrix} \in \mathcal{C}$$

where:

$$\vec{r}(\phi) = P - R^{\phi} a$$
 $\theta(\phi) = \phi \mod 2\pi$

Added Value

Currently, if the robot and the obstacles are convex then *exact bounds* of the free part of the contact surface can be found.

Vertex-Edge Contact

► Take the parameterization of rotation $q_a^P(\phi) = \binom{P - R^{\phi}a}{\mod 2\pi}$

Vertex-Edge Contact

- ► Take the parameterization of rotation $q_a^P(\phi) = {P-R^{\phi}a \choose \phi \mod 2\pi}$
- ► Set $P(t) = (1 t)b_j + tb_{j+1} \in E_j^{\mathcal{O}}$

- ► Take the parameterization of rotation $q_a^P(\phi) = {P-R^{\phi}a \choose \phi \mod 2\pi}$
- ► Set $P(t) = (1 t)b_j + tb_{j+1} \in E_i^{\mathcal{O}}$
- ► Then

$$S(t,\phi)=q_{a_i}^{P(t)}(\phi)$$

is a *developable surface* which parameterizes a *vertex-edge* contact surface.

Edge-Vertex Contact

► Take the parameterization of rotation $q_a^P(\phi) = \binom{P - R^{\phi}a}{\phi \mod 2\pi}$

Edge-Vertex Contact

- ► Take the parameterization of rotation $q_a^P(\phi) = \binom{P R^{\phi}a}{\phi \mod 2\pi}$
- ► Set $a(t) = (1 t)a_i + ta_{i+1}$

- ► Take the parameterization of rotation $q_a^P(\phi) = \begin{pmatrix} P R^{\phi} a \\ \phi \mod 2\pi \end{pmatrix}$
- ► Set $a(t) = (1 t)a_i + ta_{i+1}$
- ► Then

$$S(t,\phi)=q_{a(t)}^{b_j}(\phi)$$

is a non cylindrical ruled surface which parameterizes an edge-vertex contact surface.

The Full Picture

- For all possible vertex-edge and edge-vertex combinations we obtain the object to the right.
- In the convex case, we can easily compute the exact contact patches.

Drawback

In the introduced parameterization, non algebraic computations are needed. Thus, its accuracy in practical applications is limited.

Rational Workaround

Set
$$\psi=\tan\frac{\phi}{2}$$
 and $M^{\psi}=\frac{1}{1+\psi^2}\begin{pmatrix}1-\psi^2&-2\psi\\2\psi&1-\psi^2\end{pmatrix}$ we obtain a *rational parameterization*

$$k_a^P(\psi) = (\vec{r}(\psi), \tau(\psi))$$

where

$$\vec{r}(\psi) = P - M^{\psi}a$$

 $\tau(\psi) = \psi$

for
$$\psi \in (-\infty, +\infty)$$
.

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

Vertex-Edge Contact Surface

The contact surface consists of translated copies of *congruent* helix, therefore it is:

- Cylindrical
- Developable
- ▶ Has vanishing Gaussian curvature
- ▶ The mean curvature is identically 0 if and only if $a_i = \vec{0}$. In this case, the surface is a vertical plane.

Edge-Vertex Contact Surface

- ► Has negative Gaussian curvature.
- ► The *mean curvature* is identically 0 if the reference point is on the edge.
- ▶ Both curvatures depend *only* on *t*
- The curvatures extrema are attained along the same and unique helix.

Outline

Introduction

Configuration Space

Contact Surfaces Parameterization

Geometrical Properties

Summary

Recap

We considered:

- ► Parameterization of contact surfaces for polygonal robot in the plan.
- Geometrical analysis of the contact surfaces.

We considered:

- ► Parameterization of contact surfaces for polygonal robot in the plan.
- Geometrical analysis of the contact surfaces.

Local video / YouTube version