21. Global approximation of non-periodic functions on an interval

Summary of the previous class

- Representing periodic functions as linear combinations of trigonometric basis functions
- Interpolation with trigonometric functions
- Orthogonality of the expansion
- Discrete Fourier transform
- Fast Fourier transform

Goals for today

 Spectral convergence of the trapezoid rule for smooth, periodic functions

- Global approximation of functions on an interval
- Chebyshev polynomials

Convergence rate for the trapezoid rule for integrating periodic functions

Convergence rate for the trapezoid rule for integrating periodic functions

Problem set: convergence of the trapezoid rule for periodic functions was surprisingly fast. Why?

- Problem set: convergence of the trapezoid rule for periodic functions was surprisingly fast. Why?
- \blacksquare Take $f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{i\pi x}$

- Problem set: convergence of the trapezoid rule for periodic functions was surprisingly fast. Why?
- \blacksquare Take $f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{i\pi x}$
- The trapezoid rule with N nodes and $h:=\frac{2\pi}{N}$:

$$\int f \simeq S_N := \frac{h}{2} \sum_{j=0}^{N-1} f(jh)$$

- Problem set: convergence of the trapezoid rule for periodic functions was surprisingly fast. Why?
- \blacksquare Take $f(x) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{i\pi x}$
- The trapezoid rule with N nodes and $h:=\frac{2\pi}{N}$:

$$\int f \simeq S_N := \frac{h}{2} \sum_{j=0}^{N-1} f(jh)$$

$$S_N = \frac{\pi}{N} \sum_{i=0}^{N-1} \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ijkh}$$

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_k \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

So

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_{k} \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

lacksquare $\sum_{j}=0$ unless j is integer multiple of N

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_{k} \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

- lacksquare $\sum_j = 0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_{k} \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

- lacksquare $\sum_{j}=0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $\blacksquare I = \hat{f}_0$

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_{k} \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

- lacksquare $\sum_{j}=0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $\blacksquare I = \hat{f}_0$
- \blacksquare So $|I-S_N| = \sum_{k=1}^{\infty} (\hat{f}_{kN} + \hat{f}_{-kN})$

$$S = \frac{\pi}{N} \sum_{k} \hat{f}_{k} \sum_{j=0}^{N-1} e^{ijk\frac{2\pi}{N}}$$

- $\sum_{i} = 0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $I = \hat{f}_0$
- \blacksquare So $|I-S_N| = \sum_{k=1}^{\infty} (\hat{f}_{kN} + \hat{f}_{-kN})$
- \blacksquare So if \hat{f}_n decay exponentially fast then so does $|I-S_N|$

Global approximation of non-periodic functions

Global approximation of non-periodic functions

- lacktriangle We can approximate a periodic function f globally using Fourier series
- And calculate the coefficients numerically

- lacktriangle We can approximate a periodic function f globally using Fourier series
- And calculate the coefficients numerically
- lacktriangle We get **spectral** (exponential) convergence if f is analytic

- lacktriangle We can approximate a periodic function f globally using Fourier series
- And calculate the coefficients numerically
- lacktriangle We get **spectral** (exponential) convergence if f is analytic
- Can we do this for non-periodic functions too?

- lacktriangle We can approximate a periodic function f globally using Fourier series
- And calculate the coefficients numerically
- lacktriangle We get **spectral** (exponential) convergence if f is analytic
- Can we do this for non-periodic functions too?
- lacksquare Take $f:[-1,+1]
 ightarrow \mathbb{R}$
- Other intervals via linear transformation

lacktriangle Recall the setting for global approximation of a function f:

- \blacksquare Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

- \blacksquare Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

 \blacksquare The basis functions ϕ_n must satisfy:

- \blacksquare Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

- The basis functions ϕ_n must satisfy:

- lacktriangle Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

- The basis functions ϕ_n must satisfy:

 - \bullet $(\phi_n)_{n=0}^{\infty}$ are mutually orthogonal and form a complete basis

- \blacksquare Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

- The basis functions ϕ_n must satisfy:

 - \bullet $(\phi_n)_{n=0}^{\infty}$ are mutually orthogonal and form a complete basis
- lacksquare What are suitable functions ϕ_n on the interval [-1,+1]?

- lacktriangle Recall the setting for global approximation of a function f:
- We search for an expansion

$$f(x) = \sum_{n=0}^{\infty} f_n \phi_n(x)$$

- The basis functions ϕ_n must satisfy:

 - \bullet $(\phi_n)_{n=0}^{\infty}$ are mutually orthogonal and form a complete basis
- \blacksquare What are suitable functions ϕ_n on the interval [-1,+1] ?
- Not sinusoids, since not periodic

Collaboration I

Making a periodic function

Suppose we are given a non-periodic function $f:[-1,+1]\to\mathbb{R}.$

- $lue{1}$ How could we build a smooth, periodic function g out of f?
- 2 How can we use that to approximate f?

Can we somehow use our knowledge of Fourier series?

- Can we somehow use our knowledge of Fourier series?
- Idea: Map $f:[-1,+1] \to \mathbb{R}$ into a smooth **periodic** function

- Can we somehow use our knowledge of Fourier series?
- Idea: Map $f:[-1,+1] \to \mathbb{R}$ into a smooth **periodic** function
- We cannot just periodise, since that will introduce discontinuities!

- Can we somehow use our knowledge of Fourier series?
- Idea: Map $f:[-1,+1] \to \mathbb{R}$ into a smooth **periodic** function
- We cannot just periodise, since that will introduce discontinuities!
- \blacksquare Let $z=e^{i\theta}$ be on the unit circle in the complex plane

- Can we somehow use our knowledge of Fourier series?
- Idea: Map $f:[-1,+1] \to \mathbb{R}$ into a smooth **periodic** function
- We cannot just periodise, since that will introduce discontinuities!
- \blacksquare Let $z=e^{i\theta}$ be on the unit circle in the complex plane
- Map to [-1, +1] by **projection** to x-axis:
- $\mathbf{x} := \mathrm{Re}(z)$

- Can we somehow use our knowledge of Fourier series?
- Idea: Map $f:[-1,+1] \to \mathbb{R}$ into a smooth **periodic** function
- We cannot just periodise, since that will introduce discontinuities!
- \blacksquare Let $z=e^{i\theta}$ be on the unit circle in the complex plane
- Map to [-1, +1] by **projection** to x-axis:
- $\mathbf{x} := \operatorname{Re}(z)$
- $\blacksquare \ \operatorname{So} \ x = \cos(\theta)$

- $x = \cos(\theta)$
- When θ ranges over 0 to 2π x ranges over [-1, +1] twice

- $x = \cos(\theta)$
- $\begin{tabular}{ll} \hline & \begin{tabular}{ll} \begin{tabular}{ll}$
- From f(x) we construct the function

$$g(\theta) := f(x) = f(\cos(\theta))$$

g is periodic!

- $x = \cos(\theta)$
- $\begin{tabular}{ll} \hline & \begin{tabular}{ll} \begin{tabular}{ll}$
- From f(x) we construct the function

$$g(\theta) := f(x) = f(\cos(\theta))$$

- q is periodic!
- lacksq g is also even: $g(-\theta)=g(\theta)$

g is periodic and even, so we can approximate it by a Fourier cosine series:

$$g(\theta) = \operatorname{Re}\left(\sum_n g_n e^{in\theta}\right)$$

g is periodic and even, so we can approximate it by a Fourier cosine series:

$$g(\theta) = \operatorname{Re}\left(\sum_n g_n e^{in\theta}\right)$$

$$= \sum_n g_n \cos(n\theta)$$

g is periodic and even, so we can approximate it by a Fourier cosine series:

$$g(\theta) = \operatorname{Re}\left(\sum_n g_n e^{in\theta}\right)$$

$$= \sum_n g_n \cos(n\theta)$$

$$f(x) = \sum_n g_n \phi_n(x)$$

• Where $\phi_n(x) := \cos(n\theta(x)) = \cos(n\arccos(x))$

g is periodic and even, so we can approximate it by a Fourier cosine series:

$$g(\theta) = \operatorname{Re}\left(\sum_n g_n e^{in\theta}\right)$$

$$= \sum_n g_n \cos(n\theta)$$

$$f(x) = \sum_n g_n \phi_n(x)$$

- Where $\phi_n(x) := \cos(n\theta(x)) = \cos(n\arccos(x))$
- These do not look like pleasant functions!

■ What are the functions $\phi_n(x) := \cos(n \arccos(x))$?

- $\blacksquare \text{ What are the functions } \phi_n(x) := \cos(n \arccos(x)) ?$
- Idea: Recall: $e^{in\theta}=(e^{i\theta})^n$

- $\blacksquare \text{ What are the functions } \phi_n(x) := \cos(n \arccos(x)) ?$
- Idea: Recall: $e^{in\theta} = (e^{i\theta})^n$
- Take the real part:

$$\cos(n\theta) = \left[\cos(\theta) + i\sin(\theta)\right]^n$$

- $\blacksquare \text{ What are the functions } \phi_n(x) := \cos(n \arccos(x)) \text{ ?}$
- Idea: Recall: $e^{in\theta} = (e^{i\theta})^n$
- Take the real part:

$$\cos(n\theta) = \left[\cos(\theta) + i\sin(\theta)\right]^n$$

- \blacksquare So we can express $\cos(n\theta)$ in terms of $\cos(\theta)$
- What is the relationship?

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2$$

Example:

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2$$

■ Recall: $\sin(\theta)^2 + \cos(\theta)^2 = 1$

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2$$

- Recall: $\sin(\theta)^2 + \cos(\theta)^2 = 1$
- $\qquad \text{So} \cos(2\theta) = 2\cos(\theta)^2 1 = 2x^2 1$

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2$$

- Recall: $\sin(\theta)^2 + \cos(\theta)^2 = 1$
- So $\cos(2\theta) = 2\cos(\theta)^2 1 = 2x^2 1$
- lacksquare In general: $\cos(n\theta)$ is a *polynomial* in x !
- lacktriangle Chebysev polynomials (of the first kind), $T_n(x)$

$$\cos(2\theta) = \cos(\theta)^2 - \sin(\theta)^2$$

- Recall: $\sin(\theta)^2 + \cos(\theta)^2 = 1$
- $\qquad \text{So} \cos(2\theta) = 2\cos(\theta)^2 1 = 2x^2 1$
- lacksquare In general: $\cos(n\theta)$ is a *polynomial* in x !
- lacktriangle Chebysev polynomials (of the first kind), $T_n(x)$
- Reference: Trefethen, Spectral Methods in MATLAB, Chap.

Chebyshev polynomials

We have shown that a function f on [-1,+1] can be written as

$$f(x) = \sum f_n T_n(x)$$

lacksquare Where the T_n are Chebyshev polynomials

Chebyshev polynomials

We have shown that a function f on [-1,+1] can be written as

$$f(x) = \sum f_n T_n(x)$$

- lacktriangle Where the T_n are Chebyshev polynomials
- Completeness follows from the completeness of Fourier series

Chebyshev polynomials

We have shown that a function f on [-1,+1] can be written as

$$f(x) = \sum f_n T_n(x)$$

- lacktriangle Where the T_n are Chebyshev polynomials
- Completeness follows from the completeness of Fourier series

Are they orthogonal?

Collaboration II

Finding orthogonality

Suppose $\tilde{f}(\theta):=f(\cos(\theta))$ and $\tilde{g}(\theta):=g(\cos(\theta))$ are orthogonal with respect to the standard inner product.

- What can you say about f(x) and g(x), where $x := \cos(\theta)$?
- ${\bf 2}$ Can you define a new inner product such that f(x) and g(x) become orthogonal with respect to that new inner product?

Chebyshev polynomials II

If we compute $\int_{-1}^{1} T_1(x) T_2(x) dx$ we do *not* get 0

Chebyshev polynomials II

- If we compute $\int_{-1}^1 T_1(x) \, T_2(x) dx$ we do *not* get 0
- lacktriangle But an inner product can include a weight function w:

$$(f,g) := \int f(x) g(x) w(x) dx$$

lacksquare w must be a *positive* function

Chebyshev polynomials III

lacksquare T_n are orthogonal with respect to the weight function

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

Chebyshev polynomials III

 $lacktriangleq T_n$ are orthogonal with respect to the weight function

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

■ This factor comes from the change of variables $x = \cos(\theta)$ in the integral:

$$\frac{1}{2} \int_{0}^{2\pi} f(\cos(\theta)) \, g(\cos(\theta)) d\theta = \int_{-1}^{+1} f(x) \, g(x) \, w(x) dx$$

Chebyshev polynomials III

lacksquare T_n are orthogonal with respect to the weight function

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

■ This factor comes from the change of variables $x = \cos(\theta)$ in the integral:

$$\frac{1}{2} \int_0^{2\pi} f(\cos(\theta)) g(\cos(\theta)) d\theta = \int_1^{+1} f(x) g(x) w(x) dx$$

 This is a consequence of the fact that Chebyshev polynomials satisfy a differential equation of Sturm-Liouville type

- We still would need to evaluate nasty integrals to find the coefficients in the Chebyshev expansion
- In the periodic case we found an alternative solution:

- We still would need to evaluate nasty integrals to find the coefficients in the Chebyshev expansion
- In the periodic case we found an alternative solution:
- Interpolation using a finite linear combinations of basis functions

- We still would need to evaluate nasty integrals to find the coefficients in the Chebyshev expansion
- In the periodic case we found an alternative solution:
- Interpolation using a finite linear combinations of basis functions
- Can we do the same here?

- lacksquare We want to interpolate $f:[-1,+1]
 ightarrow \mathbb{R}$
- \blacksquare Interpolate using $g_N = \sum_{n=0}^{N-1} \alpha_n T_n$

- lacksquare We want to interpolate $f:[-1,+1]
 ightarrow \mathbb{R}$
- \blacksquare Interpolate using $g_N = \sum_{n=0}^{N-1} \alpha_n T_n$
- Since this is *polynomial* interpolation, we *must not* use equally-spaced nodes x_j !

- \blacksquare We want to interpolate $f:[-1,+1] \to \mathbb{R}$
- \blacksquare Interpolate using $g_N = \sum_{n=0}^{N-1} \alpha_n T_n$
- Since this is *polynomial* interpolation, we *must not* use equally-spaced nodes x_i !
- lacksquare We need to solve the following for α_k :

$$\sum_{k=0}^{N-1} \alpha_k \, T_k(t_j) = f_j := f(x_j)$$

 \blacksquare How should we choose the nodes x_i ?

lacksquare Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

lacksquare Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

■ These are Chebyshev nodes or Chebyshev points

■ Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

- These are Chebyshev nodes or Chebyshev points
- We get

$$\sum_k \alpha_k \cos(j\,k\pi/n) = f_j$$

■ Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

- These are Chebyshev nodes or Chebyshev points
- We get

$$\sum_k \alpha_k \cos(j\,k\pi/n) = f_j$$

■ This is a Discrete Cosine Transform (DCT)

lacksquare Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

- These are Chebyshev nodes or Chebyshev points
- We get

$$\sum_k \alpha_k \cos(j\,k\pi/n) = f_j$$

- This is a Discrete Cosine Transform (DCT)
- There is again a fast algorithm, the FCT; it needs only 1/4 as much work as the FFT, due to symmetry

lacktriangle Due to the arccos in expression for T_n , we choose

$$x_j := \cos(\frac{j\pi}{N})$$

- These are Chebyshev nodes or Chebyshev points
- We get

$$\sum_k \alpha_k \cos(j\,k\pi/n) = f_j$$

- This is a **Discrete Cosine Transform** (DCT)
- There is again a fast algorithm, the FCT; it needs only 1/4 as much work as the FFT, due to symmetry
- Its complexity is still $\mathcal{O}(N \log N)$

Summary

- Spectral convergence of trapezoid rule
- \blacksquare By "transplanting" Fourier analysis, we found an orthogonal expansion of $f:[-1,+1]\to \mathbb{R}$
- Basis functions are Chebyshev polynomials
- They are orthogonal with respect to a particular inner product
- \blacksquare Chebyshev interpolation of N samples from a general non-periodic function uses the Discrete Cosine Transform
- \blacksquare The Fast Cosine Transform does this in $\mathcal{O}(N\log N)$ operations