

 $01_{/40}$

iiESI Asian Workshop, 12:15-12:45, November 17th, 2014

Current Situation and Integration Potential in Transport Area in Japan

Hitoshi HAYASHIYA Takashi SUZUKI Hitoshi NAKAJIMA

(East Japan Railway Company)

- Introduction
- Electric Energy Utilization in Railway Transportation
- Utilization of Regenerative Energy
- Examples of Other Projects
- Conclusions

JR Kyushu

Introduction

iiESI Asian Workshop, November 17th, 2014, Kvoto, JAPAN

 $03_{/40}$

Japan National Railway was privatized and divided into 6 railway company in 1987.

Railway Transport Volume (passenger km) (2007 FY)

JR Hokkaido

Voltage categories of TPS in Japan

iiESI Asian Workshop, November 17th, 2014, Eco-friendliness of Railway

CO2 emission from each transportation mode

iiESI Asian Workshop, November 17th, 2014, Share in Transportation

Ratio of Each Transportation Mode (passenger km)

iiESI Asian Workshop, November 17th, 2014, Total Energy Consumption is not Small

Kyoto, JAPAN

ENERGY CONSUMPTION AND TRANSPORTATION MARKET SHARE

(FY2012 results)

MARKET SHARE BY PASSENGER TRANSPORTATION MODE

Passenger

ENERGY CONSUMPTION BY PASSENGER TRANSPORTATION MODE

Source: Compiled based on data from The Energy Conservation Center, Japan (ECCJ)'s Handbook of Energy & Economic Statistics in Japan

Energy

Contents

iiESI Asian Workshop, November 17th, 2014, Kyoto, JAPAN

 $02_{/40}$

- 1 Introduction
- 2 Electric Energy Utilization in Railway Transportation
- 3 Utilization of Regenerative Energy
- 4 Other Projects in Railway Transportation
- 5 Conclusions

Total Energy Consumption is not Small

Total Electric Energy Consumption for Railway Transportation

(JR East) about 5TWh/year (Railway Total) 18.073TWh/year (2009 FY)

= 1.6%of total electric energy in Japan

d.c. Traction Power Supply System

- 1.5kV d.c. for trains and 6.6kV a.c. for station and signaling.
- Interval Length of traction substations is about 3-5km around city area and about 10km in country side.

d.c. Traction Load Curves

Contents

iiESI Asian Workshop, November 17th, 2014, Kyoto, JAPAN

 $02_{/40}$

- 1 Introduction
- 2 Electric Energy Utilization in Railway Transportation
- 3 Utilization of Regenerative Energy
- 4 Examples of Other Projects
- 5 Conclusions

What is regenerative power?

- Regenerative power is utilized by the other powering train simultaneously.
- Inverse power flow from d.c. to a.c. is impossible by diode rectifier.
- Residual regenerative power is canceled and kinetic power is dispersed as heat.

What is regenerative power?

Kinetic energy 25m/s, 376t = 117MJ = 33kWh

Assumption:

Utilization ratio 40%

Regeneration time 30s

Electric energy and power 13kWh, 1568kW

- -Tie feeding between upward and downward feeders
- -Regenerative inverter
- -Self-commutation (PWM) inverter
- -Energy Storage system (ESS)

Tie-feeding

 $20_{/40}$

 Upward feeder and downward feeder are connected in the middle of traction substations.

- Opportunities to utilize regenerative power increase.
- JR West reported about 3.4% energy saving in suburban line.

Regenerative inverter

21/40

 Regenerative power is converted from d.c. 1.5kV to a.c. 6.6kV and utilized at station or signaling system.

• Realized since 1970's

PWM inverter

 Function of regenerative inverter is combined to conventional diode rectifier.

- Realized in 2005 at TSUKUBA Express Line.
- They have started selling electricity from regenerative energy since December in 2013.

Energy storage system

24/40

- Flywheel system in 1988.
- First Lithium-ion battery in 2006 by JR West for compensation for voltage drop.

• Storage medium: Lithium-ion battery, Ni-MH battery, Electric double layer capacitor

Requirement for battery

25_{/40}

General requirement for energy storage system for regenerative energy utilization

Electric power: 500kW - 2MW

Storage capacity: 10kWh - 400kWh

Voltage: d.c. 1.5kV (or 750V)

Price of battery decreases drastically and application of ESS to traction PSS is promoted during last a few years.

Energy Storage System for Traction in Japan

 $26_{/40}$

More than 10 energy storage systems have already installed in d.c.
1.5kV or d.c. 750V traction PSS (power supply system)

Purpose of ESS in d.c. traction PSS

- Compensation for voltage drop: MW order electric power transmission causes large voltage drop.
 - JR West, Tobu Railway etc.
- Avoiding regenerative brake cancelation: Large voltage drop causes regenerative brake cancelation.
 - Seibu Railway, Kobe City, Kagoshima City etc.
- **Utilization of regenerative energy**: Canceled power was conventionally lost as heat generation at brake friction pad.
 - JR East
- **Emergency power supply**: D.c. traction power can be supplied even when black out of utility company happens.
 - Tokyo Monorail

East Japan Railway Company

Practical installation of Li-ion battery at Haijima SS in 2013 and Okegawa SS in 2014.

Energy saving effect of ESS

Haijima SS 400MWh/year

Okegawa SS 700MWh/year

Effect of Energy Storage System at OKEGAWA

Effect of Energy Storage System at HAIJIMA

Reduction ratio to total traction energy of HAIJIMA SS

Contents

iiESI Asian Workshop, November 17th, 2014, Kyoto, JAPAN

 $02_{/40}$

- 1 Introduction
- 2 Electric Energy Utilization in Railway Transportation
- 3 Utilization of Regenerative Energy
- 4 Examples of Other Projects
- 5 Conclusions

Railway Static Power Conditioner (RPC)

 $31_{/40}$

Railway is single phase load and causes three phase unbalance in grid.

By introducing RPC, three phase unbalance problem is solved by ac/dc/ac link.

HIRAIZUMI "Zero Emission Station"

 $33_{/40}$

All electric power are supplied from PV system on the sunny day from 78kW, 500m² PV panel and 240kWh Lithium-ion battery.

During the daytime, residual power is stored at Li-ion battery.

Night

During the night, station power is supplied from stored battery.

Rooftop PV System at TOKYO Station

453kW, 3846m², 300MWh/year

KEIYO Depot "Mega-Solar Plant"

1050kW, 6600m², 1000MWh/year

To SHIN-NARASHINO Station (for TOKYO)

Comparison between ESS and PV

	Energy Storage System for Regenerative Power		Photovoltaic System around Railway Premises	
	HAIJIMA SS	OKEGAWA SS	TOKYO Station	KEIYO Depot
Started Operation	2013	2014	2011	2014
Capacity	78kWh, 2000kW	137kWh 2000kW	430kW	1050kW
Effect	400 MWh/year	700 MWh/year	300 MWh/year	1000 MWh/year
Area	100m ²	100m ²	3800m ²	6600m ²
CO ₂ Reduction / Cost (normalized)	1.0	1.7	0.1	0.7

Catenary and battery-powered hybrid railcars

A WORKING DIAGRAM OF THE CATENARY AND BATTERY-POWERED HYBRID RAILCAR TRAIN SYSTEM

- Started operation on March 2014 at KARASUYAMA Line.
- 190kWh on-board Li-ion battery.

Contents

 $02_{/40}$

- 1 Introduction
- 2 Electric Energy Utilization in Railway Transportation
- 3 Utilization of Regenerative Energy
- 4 Examples of Other Projects
- 5 Conclusions

Conclusions

Integration potential in railway transportation area?

- Electric railway is unstable and unbalanced load.
- Changing regenerative energy is utilized within d.c. traction power supply system now.

Possibility

- On ground energy storage system can realize peak cut of changing traction load and may contribute to stabilization of power grid in the future.
- Reduction of system cost, not battery cost, will be a key in the future for more introduction.

New HSR from NAGANO to KANAZAWA

