MH3500 Midterm Recap

MH1810

February 29, 2024

1 Discrete Random Variables

(a)
$$X \sim \text{Bernoulli}(p)$$
.

$$P(X = x) = (1 - p)^{1 - x} p^x$$
, for $x = 0, 1$.

$$\circ E(X) = p, \quad Var(X) = p(1-p), \quad M_X(t) = pe^t + 1 - p$$

(b)
$$X \sim \text{Binomial}(n, p)$$
.

$$P(X = x) = \binom{n}{n} (1-p)^{1-x} p^x$$
, for $x = 0, 1, ..., n$.

$$\circ E(X) = np, \quad Var(X) = np(1-p), \quad M_X(t) = (pe^t + 1 - p)^n$$

(c)
$$X \sim \text{Geometric}(p)$$
.

$$P(X = x) = p(1-p)^{x-1}, \text{ for } x = 1, 2, \dots$$

$$\circ E(X) = \frac{1}{p}, \quad Var(X) = \frac{1-p}{p^2}, \quad M_X(t) = \frac{pe^t}{1-(1-p)e^t}, \quad \text{for } t < -\ln(1-p)$$

(d)
$$X \sim \text{Poisson}(\lambda)$$
.

$$P(X=x) = e^{-\lambda} \frac{\lambda^x}{x!}, \text{ for } x=0,1,\ldots$$

$$\circ E(X) = \lambda, \quad Var(X) = \lambda, \quad M_X(t) = e^{\lambda(e^t - 1)}$$

2 Continuous Random Variables

(a)
$$X \sim \text{Uniform}(a, b)$$
.

$$\circ f_X(x) = \frac{1}{b-a}, \quad \text{for } x \in [a,b].$$

$$\circ E(X) = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}, \quad M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, \quad \text{for } t \neq 0$$

(b)
$$X \sim N(\mu, \sigma^2)$$
.

$$\circ f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad \text{for } x \in \mathbb{R}.$$

$$\circ E(X) = \mu, \quad Var(X) = \sigma^2, \quad M_X(t) = \exp\left(t\mu + \frac{\sigma^2 t^2}{2}\right)$$

(c)
$$X \sim \text{Exp}(\lambda)$$
.

$$f_X(x) = \lambda e^{-\lambda x}, \quad \text{for } x > 0.$$

$$\circ E(X) = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}, \quad M_X(t) = \frac{\lambda}{\lambda - t}, \quad \text{for } t < \lambda$$

(d) $X \sim \text{Gamma}(\alpha, \beta)$.

$$\circ f_X(x) = \frac{x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)}e^{-\frac{x}{\beta}}, \text{ for } x > 0.$$

$$\circ E(X) = \alpha \beta, \quad Var(X) = \alpha \beta^2, \quad M_X(t) = (1 - \beta t)^{-\alpha}, \quad \text{for } t < \frac{1}{\beta}$$

(e) Chi-squared distribution: If
$$X_1, \ldots, X_n \sim N(0,1)$$
, then $X_1^2 + \ldots X_n^2 \sim \chi_n^2 \sim \text{Gamma}(\frac{n}{2},2)$.

(f) t-distribution: If
$$X \sim N(0,1)$$
 and $Y \sim \chi_k^2$, then $\frac{X}{\sqrt{Y/k}} \sim t_k$.

(g) F-distribution: If
$$U \sim \chi_m^2$$
 and $V \sim \chi_n^2$, then $\frac{U/m}{V/n} \sim F(m,n)$.

3 Moment Generating Functions

Let X be a random variable. The moment generating function (MGF) of X is $M_X(t) = E(e^{tX})$.

- If $M_X(t) = M_Y(t)$ for all $t \in [-a, a]$, then X and Y has the same distribution.
- If Y = aX + b for $a, b \in \mathbb{R}$, $M_Y(t) = e^{tb}M_X(at)$.
- If X and Y are independent random variables, then $M_{X+Y}(t) = M_X(t)M_Y(t)$.

If $M_X(t)$ exists in an open interval containing zero, then we can generate the moments by differentiating the MGF. The n-th moment of X is

$$E(X^n) = \frac{d^n}{dt^n} M_X(t)|_{t=0}.$$

The *n*-th central moment is defined as $E((X - E(X))^n)$.

4 Sample Mean and Sample Variance

Let $X_1, ... X_n$ be i.i.d. random variables with population mean $E(X_1) = \mu$ and population variance $Var(X_1) = \sigma^2$. We define the following statistics:

Sample mean,
$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and Sample variance, $s^2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

In general, $E(\bar{X}) = \mu$, $Var(\bar{X}) = \frac{\sigma^2}{n}$ and $E(s^2) = \sigma^2$.

Next, we restrict $X_i \sim N(\mu, \sigma^2)$, for all i = 1, ..., n. Then,

$$\left[\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \implies \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N(0, 1)\right] \qquad \text{and} \qquad \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2.$$

Suppose we want to approximate μ with a given set of n samples.

- If σ^2 is known, use $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1)$.
- If σ^2 is unknown, use s^2 to approximate σ^2 and for n > 30, use $\frac{\sqrt{n}(\bar{X} \mu)}{s} \sim N(0, 1)$.
- If σ^2 is unknown, use s^2 to approximate σ^2 and for $n \leq 30$, use $\frac{\sqrt{n}(\bar{X}-\mu)}{s} \sim t_{n-1}$.

5 Important Definitions and Theorems

Definition 1 (Convergence in Probability). A sequence of random variables $\{X_n\}$ is said to converge in probability towards a random variable X if for all $\varepsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| > \varepsilon) = 0.$$

Definition 2 (Convergence in Distribution). A sequence of random variables $\{X_n\}$ is said to converge in distribution towards a random variable X if

$$\lim_{n \to \infty} |P(X_n \le x) - P(X \le x)| = 0,$$

for all $x \in \mathbb{R}$ at which $P(X \leq x)$ is continuous.

Theorem 1 (Lévy's Continuity Theorem). Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables with corresponding MGF $M_n(t)$ and CDF F_n . Suppose there is a random variable X with MGF M(t) and CDF F. If for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty} M_n(t) = M(t),$$

then

$$\lim_{n \to \infty} F_n(x) = F(x),$$

for $x \in \mathbb{R}$, where F is continuous. This means that $\{X_n\}$ converges in distribution to X.

Theorem 2 (Central Limit Theorem). Let X_1, \ldots, X_n be i.i.d. r.v. with $E(X_1) = \mu$ and $Var(X_1) = \sigma^2 < \infty$. Let $Z \sim N(0, 1)$ and write

$$Z_n = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma},$$

then Z_n converges in distribution to Z. Furthermore, the convergence is uniform, i.e.,

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |P(Z_n \le x) - P(Z \le x)| = 0.$$

Theorem 3 (Weak Law of Large Numbers). Let X_1, \ldots, X_n be i.i.d. r.v. with $E(X_1) = \mu$, then \bar{X} converges to μ in probability, i.e., for all $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{X} - \mu| > \varepsilon) = 0.$$

Theorem 4 (Chebyshev's Inequality). Let X be a random variable with mean μ and finite non-zero variance σ^2 . For any real number k > 0,

$$P(|X - \mu| > k) \le \frac{\sigma^2}{k^2}.$$

This is a special case of Markov's Inequality involving the second central moment of X.

6 Method of Moments Estimators

Let X_1, \ldots, X_n be i.i.d. random variables of distribution \mathcal{D}_{θ} , where θ is unknown. The *m*-th sample moment is denoted as

$$s_m = \frac{1}{m} \sum_{i=1}^n X_i^m.$$

The *m*-th moment is denoted as $\mu_m = E(X_1^m)$. It can be shown using the Weak LLN, that S_m converges in probability to μ_m . We aim to write $\theta = h(\mu_1, \dots, \mu_m)$ for some function h. Then, the MME for θ is $\hat{\theta}_{MME} = h(s_1, \dots, s_m)$.

7 Maximum Likelihood Estimators

Let X_1, \ldots, X_n be i.i.d. random variables of distribution \mathcal{D}_{θ} , where θ is unknown. Let $\mathbb{S} = (a, b)$ be the range of parameters of θ . Let $f(X_i|\theta)$ be the mass/density function for X_i . The likelihood function for X_1, \ldots, X_n is

$$L(X_1,\ldots,X_n|\theta) = \prod_{i=1}^n f(X_i|\theta).$$

The MLE for θ is defined as

$$\hat{\theta}_{MLE} = \underset{\theta \in \mathbb{S}}{\operatorname{arg\,max}} L(X_1, \dots, X_n | \theta).$$

To ensure $\hat{\theta}$ exists, we need to verify the standard conditions for $L(\theta)$, for $\theta \in (a,b)$, i.e.,

- $L(\theta) > 0$, for all $\theta \in (a, b)$.
- $L'(\theta)$ exists for all $\theta \in (a, b)$.
- $\lim_{\theta \to a^+} L(\theta) = \lim_{\theta \to b^-} L(\theta) = 0.$

If the maximizer exists, we solve $\frac{d}{d\theta}L(\theta) = 0$ for θ . However, if this is complicated to solve, we can resolve to the log-likelihood function, that is to solve $\frac{d}{d\theta} \ln L(\theta) = 0$ for θ to obtain $\hat{\theta}_{MLE}$.

8 Bias, Variance, Consistency

Let X_1, \ldots, X_n be i.i.d. random variables of distribution \mathcal{D}_{θ} , where θ is unknown. Let $\hat{\theta}$ be an estimator for θ based on the n samples. We have the following quantities:

- Bias($\hat{\theta}$) = $E(\hat{\theta}) \theta$.
- $\operatorname{Var}(\hat{\theta}) = E((\hat{\theta} E(\hat{\theta}))^2).$
- Standard Error: $SE(\hat{\theta}) = \sqrt{Var(\hat{\theta})}$.

• Mean Squared Error: $MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Bias(\hat{\theta})^2 + Var(\hat{\theta})$.

 $\hat{\theta}$ can be computed explicitly based on a given set of observations. For this set of observations, the performance of $\hat{\theta}$ can be measured via the estimated standard error, $\widehat{SE}(\hat{\theta})$, the standard error evaluated based on observations.

Definition 3 (Consistency). $\hat{\theta}$ is said to be a consistent estimator for θ if for all $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|\hat{\theta} - \theta| > \varepsilon) = 0.$$

Theorem 5 (Sufficient Condition for Consistency). Let $\hat{\theta}$ be an estimator for θ . If

$$\lim_{n \to \infty} \operatorname{Bias}(\hat{\theta}) = 0 \quad \text{and} \quad \lim_{n \to \infty} \operatorname{Var}(\hat{\theta}) = 0,$$

then $\hat{\theta}$ is a consistent estimator.

Theorem 6 (MME Consistency). Let $\hat{\theta} = h(s_1, \dots, s_m)$ be the method of moments estimator for θ . If h is continuous in all s_1, \dots, s_m , then $\hat{\theta}$ is a consistent estimator.

Theorem 7 (MLE Consistency). Let $\hat{\theta}$ be the maximum likelihood estimator for θ . Under appropriate regularity assumptions on $L(\theta)$, $\hat{\theta}$ is a consistent estimator.

9 Other Useful Properties

• Suppose X_1, \ldots, X_n are i.i.d. random variables with a CDF F. Let $Y_1 = \min(X_1, \ldots, X_n)$ and $Y_2 = \max(X_1, \ldots, X_n)$, then

$$P(Y_1 \le y) = 1 - (1 - F(y))^n$$
 $P(Y_2 \le y) = (F(y))^n$.

- If X and Y are independent random variables, then E(XY) = E(X)E(Y). The converse is **TRUE** if X, Y are normally distributed. Generally, the converse is **FALSE**.
- Bernoulli distribution is a special case of binomial distribution with n=1.
- Suppose $X_i \sim \text{Binomial}(n_i, p)$, for i = 1, ..., k are pairwise independent, then

$$X_1 + X_2 \dots + X_k \sim \text{Binomial}(n_1 + \dots + n_k, p).$$

• Suppose $X_i \sim \text{Poisson}(\lambda_i)$, for i = 1, ..., k are pairwise independent, then

$$X_1 + X_2 \dots + X_k \sim \text{Poisson}(\lambda_1 + \dots + \lambda_k).$$

• Suppose $X_i \sim \text{Gamma}(\alpha_i, \beta)$, for i = 1, ..., k are pairwise independent, then

$$X_1 + X_2 \ldots + X_k \sim \text{Gamma}(\alpha_1 + \ldots + \alpha_k, \beta).$$

• Suppose $X_i \sim N(\mu_i, \sigma_i^2)$, for i = 1, ..., k are pairwise independent, then

$$\sum_{i=1}^{k} a_i X_i \sim \mathcal{N}(\sum a_i \mu_i, \sum a_i^2 \sigma_i^2).$$

 \bullet Suppose $X \sim \chi_m^2$ and $Y \sim \chi_n^2$ are independent random variables, then

$$X + Y \sim \chi^2_{m+n}$$

• Gamma function:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^t dt.$$

$$\Gamma(z+1) = z\Gamma(z) = z!$$
, for $z \in \mathbb{Z}^+$.

• Beta function:

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$$

• Relationship between Exp, Gamma and χ^2 :

$$\operatorname{Exp}(\lambda) \sim \operatorname{Gamma}\left(1, \frac{1}{\lambda}\right), \qquad \chi_n^2 \sim \operatorname{Gamma}\left(\frac{n}{2}, 2\right).$$