Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Feed-Forward Neural Networks

LATEST SUBMISSION GRADE

Correct

100%

A feedforward neural network has an input layer, 5 hidden layers and an output layer.
 1/1 point
 6

- During training, the training data specifies the exact form of the hidden layers of a neural network.
 - True
 - False
 - ✓ Correct
- 3. Implement the ReLU activation function using numpy by replacing **None** in the code bellow.

2 / 2 points

	/	Correct	
		Good job!	
4	The	main building blooks of a maghing looming quaters are (Charle all that annie)	
4.	rne	e main building blocks of a machine learning system are: (Check all that apply.)	ıt
	✓	A Model	
		✓ Correct	
	·	Correct!	
	✓	A loss function	
		✓ Correct	
		Correct!	
	~	An Optimization Procedure	
		✓ Correct	
		Correct!	
		Output Layers	
		Hidden layers	
5.		ich output unit/loss function pair is usually used for regression tasks that use neural vorks?	ıt
	\bigcirc	Sigmoid output units with Mean Squared Error Loss	
	\bigcirc	Softmax output units with Cross-Entropy Loss	
	•	Linear output units with Mean Squared Error Loss	
	0	Linear output units with Cross-Entropy Loss	
		✓ Correct	
		Correct!	

6.	The softmax output layer with cross-entropy loss is used to model the mean of a Gaussian distribution.	1 / 1 point
	○ True	
	False	
	✓ Correct Correct!	
	33.133.	
7.	Which of the following might be used as a stopping condition for gradient descent. (Check all that apply.)	1 / 1 point
	The magnitude of the change in parameter values	
	✓ Correct Correct!	
	The number of iterations or epochs	
	Correct	
	Correct!	
	The value of the training loss	
	The magnitude of change in loss function value	
	Correct!	
8.	How are neural network bias parameters usually initialized at the beginning of training?	1/1 point
	Initialized to 0.	
	Initialized to -1.	
	Initialized to samples from a standard normal distribution.	
	Initialized to samples from a standard uniform distribution.	

9.	Using all samples to estimate the gradient of the loss function with respect to the parameter results in less than linear return in accuracy of this estimate.	1 / 1 point
	True	
	○ False	
	Correct Correct!	
10.	You are working on a self-driving car project and want to train a neural network to perform traffic sign classification. You collect images with corresponding traffic sign labels, and want to determine the number of frames you will use for training. Given that you have around one million images with labels, what training/validation/testing data split would you use?	1/1 point
	100% training, 0% validation, 0% testing.	
	20% training, 40% validation, 40% testing.	
	96% training, 2% validation, 2% testing.	
	60% training, 20% validation, 20% testing.	
	Correct	

11. You finish training your traffic sign classifier, and want to evaluate its performance. You compute the classification accuracy on the training, validation, and testing data splits and get the following results:

2 / 2 points

Data Split	Training	Validation	Testing
Accuracy	70%	68%	67%

You know that a human has an accuracy of around 98% on the traffic sign classification task. What are things you might try to achieve human level performance? (Check all that apply.)

Collect more training data.

Correct!

Train your neural network longer.	
Correct	
Correct!	
Correct:	
Add regularization to your neural network.	
Add more layers to your neural network.	
Correct!	
 When a neural network overfits the training data, the generalization gap is usually very small. 	1 / 1 point
○ True	
False	
T disc	
Correct!	
13. Which of the following strategies are used for regularization in neural networks? (Check all that apply.)	1 / 1 point
Early Stopping	
Correct!	
☐ Increasing the number of parameters in the neural network architecture	
Dropout	
Correct	
Correct!	
✓ Norm Penalties	

	Correct	
	Correct!	
	Training the neural network longer	
14.	Dropout significantly limit the type of neural network models that can be used, and hence is usually used for specific architectures.	1 / 1 point
	○ True	
	False	
	Correct!	
15.	The name convolutional neural networks comes from the fact that these neural networks use a convolution operation instead of general matrix multiplication. True	1 / 1 point
	False	
	Correct!	
16.	The input to a pooling layer has a width, height and depth of <u>224x224x3</u> respectively. The pooling layer has the following properties:	2 / 2 points
	• Kernel shape: 2x2	
	• Stride: 2	
	What is the width of the output of this pooling layer?	
	112	
	Correct!	

17.	 Using convolutions might reduce overfitting, as the number of parameters in convolutional layers is less than the number of parameters in fully connected layers. 		
	True		
	○ False		
	Correct		
	Correct!		