Série 1

Exercice 1. Soit $G \cap X$ une action de groupe. Une partie $A \subset X$ est dite *stable* sous l'action de G si pour tout $g \in G$ on a $g \cdot A \subset A$. Montrer que A est stable sous l'action de G si et seulement si A est réunion d'orbites.

Exercice 2. Soient p premier et $n \in \mathbb{N}^*$, soit G un groupe de cardinal p^n , montrer que le centre de G est non trivial.

Exercice 3. Soit G un groupe commutatif qui agit fidèlement et transitivement sur un ensemble X. Montrer que l'action $G \curvearrowright X$ est simplement transitive.

Exercice 4. 1. Démontrer que l'action tautologique $\mathfrak{S}_n \curvearrowright [\![1,n]\!]$ est n-transitive.

- 2. Démontrer que l'action tautologique $\mathfrak{A}_n \curvearrowright \llbracket 1, n \rrbracket$ est (n-2)-transitive, mais pas (n-1)-transitive.
- 3. Que dire d'une action (n-1)-transitive sur [1, n]?

Exercice 5. Soit \mathbb{K} un corps, on considère l'action naturelle de $GL_{n+1}(\mathbb{K})$ sur $\mathbb{P}^n(\mathbb{K})$, l'ensemble des droites vectorielles de \mathbb{K}^{n+1} .

- 1. Déterminer le noyau de cette action.
- 2. En déduire que $PGL_n(\mathbb{K}) := GL_{n+1}(\mathbb{K})/\{\lambda \operatorname{Id} \mid \lambda \in \mathbb{K}^*\}$ agit fidèlement sur $\mathbb{P}^n(\mathbb{K})$.
- 3. Dans le cas n=1, montrer que l'action est 2-transitive et déterminer le stabilisateur de $(\mathbb{K} \times \{0\}, \{0\} \times \mathbb{K})$.
- 4. Toujours pour n = 1, montrer que l'action est 3-transitive. Est-elle k-transitive pour k > 3?
- 5. Qu'en est-il pour $n \ge 2$?

Exercice 6. Soient $G \curvearrowright X$ et $n \in \mathbb{N}^*$, on appelle action diagonale de G sur X^n l'action définie par :

$$\forall g \in G, \ \forall (x_1, \dots, x_n) \in X^n, \quad g \cdot (x_1, \dots, x_n) := (g \cdot x_1, \dots, g \cdot x_n).$$

- 1. À quelle condition l'action diagonale $G \curvearrowright X^n$ est-elle transitive?
- 2. On note $X^{(n)} := \{(x_1, \dots, x_n) \in X^n \mid \forall i \neq j, x_i \neq x_j\}$. Montrer que l'action diagonale stabilise $X^{(n)}$.
- 3. À quelle condition l'action restreinte $G \curvearrowright X^{(n)}$ est-elle transitive (resp. simplement transitive)?

Exercice 7. Soient N et H deux groupes et soit $\phi: H \to \operatorname{Aut}(N)$ un morphisme. Montrer que \cdot_{ϕ} définit bien une loi de groupe sur $N \times H$, où :

$$\forall n_1, n_2 \in N, \forall h_1, h_2 \in H, \qquad (n_1, h_1) \cdot_{\phi} (n_2, h_2) := (n_1 (\phi(h_1)(n_2)), h_1 h_2).$$

Ne pas oublier l'associativité. Quel est le neutre pour cette loi ? Quel est l'inverse de (n,h) ?

Exercice 8. Soient N et H deux groupes et soit $\phi: H \to \operatorname{Aut}(N)$ telle que $\forall h \in H \ \phi(h) = \operatorname{Id}$, montrer que $N \rtimes_{\phi} H \simeq N \times H$.

Exercice 9. Soient N et H deux groupes et soit $G = N \rtimes H$. Montrer que si G est abélien alors $G = N \times H$.

Exercice 10. Montrer que $\mathfrak{S}_3 \simeq \mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$. Montrer que \mathfrak{S}_3 et $\mathbb{Z}/6\mathbb{Z}$ sont les seuls groupes de cardinal 6.

Exercice 11. Montrer que $\mathfrak{S}_n \simeq \mathfrak{A}_n \rtimes \mathbb{Z}/2\mathbb{Z}$. Le produit est-il direct?

Exercice 12. Soit D_n le groupe dédral d'ordre n, c'est-à-dire le groupe des isométries d'un n-gone régulier du plan. Montrer que $D_n \simeq \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$. Le produit est-il direct?

Exercice 13. Montrer qu'il existe au moins trois produits semi-directs $(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times \mathbb{Z}/2\mathbb{Z}$ non isomorphes.