APPLYING DURATION, CONVEXITY AND DV01

Nikita Belousov

October 14, 2022

1 INTEREST RATE FACTOR

Как вы знаете, процентые ставки меняются, и это влияет на стоимость нашего портфеля. Чтобы понимать как портфель облигаций отреагирует на изменение процентных ставок, мы считаем чувствительность нашего портфеля к изменению процентных ставок. Процентные ставки меняются под влиянием факторов процентного риска. Факторы процентого риска являются которые являются случайными величинами, которые влияют на ставки с определенным сроком, либо на всю кривую процентных ставок.

Однофакторный подход, подразумевает, что существует один фактор, влияющий на кривую процентных ставок. В общем случае такой подход не ограничивается на параллельные сдвиги.

2 DOLLAR VALUE OF A BASIS POINT

DV01 – 'dollar value of a basis point' - это **абсолютное** изменение стоимости портфеля в ответ на изменение ставки на 1 базисный пункт (при параллельном сдвиге).

$$\mathrm{DV01} = \frac{\Delta BV}{10,000 \times \Delta r}$$

3 DV01 APPLICATION TO HEDGING

Если у нас есть портфель который мы хотим захеджировать, но там потребуется

Hedge ratio (HR) – величина, которая определяет отношение позиции и инструмента хеджирования.

Целью операции хеджирования является создание позиции, стоимость которой не меняется при небольших изменениях процентых ставок.

$$\frac{V_{hedging}}{V_{initial}} = HR = \frac{DV01_{initial}}{DV01_{hedging}} \beta_{yield}$$

4 DURATION

Duration – величина чувствительности стоимости облигации к ставке, измеряемае в единицах времени (годах).

Macaulay Duration — Средневзвешенный срок до погашения всех денежных потоков по облигации

Modified Duration – Улучшение дюрации Макалея, учитывающее YTM в настоящий момент времени. Может применяться к облигациям со встроенным опционом.

$$MD = \frac{\text{Macaulay duration}}{1 + \text{market yield}} = \frac{1}{BV} \frac{\Delta BV}{\Delta r}$$

Отличие данной метрики от DV01, в том, что она описывает относительное изменение стоимости, а не абсолютное.

Effective Duration – Дюрация для callable/putable облигаций, которая решает проблему неточности MD для данных интрументов.

Effective Duration =
$$\frac{BC_{-\Delta r} - BV_{+\Delta r}}{2BV_0\Delta r}$$

$$DV01 = Duration \times 0.0001 \times BV$$

5 CONVEXITY

Дюрация представляет собой линейное приближение поскольку предполагается, что изменение стоимости облигации не зависит от знака изменения процентных ставок.

При увеличении процентой ставки кривизна облигации начинает играть все большую роль.

Convexity - вторая производная стоимости облигации по процентной ставке.

$$Convexity = \frac{(BV_{-\Delta r} - BV_0) + (BV_{+\Delta r} - BV_0)}{BV_0 \times (\Delta r)^2}$$

percentage price change \approx duration effect + convexity effect =

$$[duration \times \Delta r \times 100] + [\frac{1}{2} \times convexity \times (\Delta r)^2 \times 100]$$

Figure 1:

6 PORTFOLIO DURATION AND CONVEX-ITY

Дюрация портфеля вычисляется как взвешенная сумма отдельных облигаций

duration of portfolio =
$$\sum_{j=1}^{K} w_j D_j$$

Выпуклость портфеля облигаций вычисляется как взвешенное среднее выпуклостей отдельных облигаций

DV01 портфеля есть сумма DV01 отдельных облигаций

7 HEDGING USING DURATION AND CON-VEXITY

Рассмотрим Интвестицию (V), Облигацию 1 (P_1) и Облигацию 2 (P_2) . Нам известны их дюрация (D) и выпуклость (C). Мы хотим захеджировать нашу инвестицию используя эти облигации.

При изменении процентных ставок, стоимость инструментов изменяется соответственно как:

$$\Delta V = [-V \times D_V \times \Delta r] + \left[\frac{1}{2} \times V \times C_V \times (\Delta r)^2\right]$$

$$\Delta P_1 = [-P_1 \times D_{P_1} \times \Delta r] + \left[\frac{1}{2} \times P_1 \times C_{P_1} \times (\Delta r)^2\right]$$

$$\Delta P_2 = [-P_2 \times D_{P_2} \times \Delta r] + \left[\frac{1}{2} \times P_2 \times C_{P_2} \times (\Delta r)^2\right]$$

$$\begin{cases}
-V \times D_V - P_1 \times D_{P_1} - P_2 \times D_{P_2} = 0, \\
V \times C_V + P_1 \times C_{P_1} + P_2 \times C_{P_2} = 0
\end{cases}$$

Решение данной системы и приводит к требуемоему количеству облигаций $1\ \mathrm{u}\ 2.$

8 NEGATIVE CONVEXITY

Для облигаций со встроенным опционом возможен случай, в котором выпуклость отрицательна.

Figure 2:

9 CONSTRUCTING A BARBELL PORTFO-LIO

Barbell strategy — Используется в том случае, когда инвестор считает, что процентная ставка будет иметь высокую волатильность и использует облигации с большим или маленьким сроками до погащения.

 $\mathbf{Bullet}\ \mathbf{strategy}\ - \ \mathsf{Д}$ остигается покупкой облигаций со средним сроком до погашения.

Дюрации портфелей, составленных при помощи приведенных выше методов могут совпадать.