Statistics Review

- A statistic is a function of a sample of data
- An *estimator* is a statistic
- Population parameter → unknown
- Estimator → used to estimate an unknown population parameter
- The sample, y, will be considered random
- Since y is random, estimators using y will be random

Since estimators are random, they have a ______, given a special name: sampling distribution.

We will obtain properties of the sampling distribution to see if the estimator is "good" or not.

3.1 Random Sampling from the Population

- Typically, we want to know something about a *population*
- The population is considered to be very large (infinite), and contains some unknown "truth"
- We likely won't observe the whole population, but a *sample* from the pop.
- We'll use the sample, y, to estimate that something

Example: suppose we want to know the mean height of a U of M student

Let y = height of a student

- Population: all students
- Population parameter of interest: μ_Y

We can't afford to observe the whole pop.

We'll have to collect a sample, y.

[Picture]

We want the sample to reflect the population.

Question: How should the sample be selected from the population?

In particular we want the sample to be i.i.d.

- Identically
- Independently
- Distributed

So, the sample *y* is random!!

- Could have gotten a different y
- Parallel universe

Table 3.1: Entire population of heights (in cm). The true (unobservable) population mean and variance are $\mu_y = 176.8$ and $\sigma_y^2 = 39.7$.

						-		
177.3	170.2	187.2	178.3	170.3	179.4	181.2	180.0	173.9
178.7	171.7	160.5	183.9	175.7	175.9	182.6	181.7	180.2
181.5	176.5	162.1	180.3	175.6	174.9	165.7	172.7	178.9
175.3	178.7	175.6	166.4	173.1	173.2	175.6	183.7	181.3
174.2	180.9	179.9	171.2	171.0	178.6	181.4	175.2	182.2
171.7	178.4	168.1	186.0	189.9	173.4	168.7	180.0	175.1
175.7	180.8	176.2	170.8	177.3	163.4	186.3	177.1	191.2
171.0	180.3	169.5	167.2	178.0	172.9	176.0	176.5	171.9
175.1	184.2	165.3	180.2	178.3	183.4	173.9	178.6	177.9
184.5	184.1	180.9	187.1	179.9	167.1	172.0	167.4	172.7
171.6	186.6	182.4	185.5	174.8	178.8	192.8	179.3	172.0

How could i.i.d. be violated in the heights example?

Example: mean income of Canadians. How could i.i.d. be violated?

How should we estimate the mean height?

3.2 Estimators and Sampling Distributions

An estimator uses the sample y to "guess" something about the pop.

```
We collect our sample, y = \{173.9, 171.7, 182.6, 181.5, 162.1, 174.9, 165.7, 182.2, 171.7, 168.1, 189.9, 175.7, 163.4, 186.3, 169.5, 171.9, 173.9, 172.0, 172.7, 172.0. How should we use this sample to estimate the mean height?
```

3.2.1 Sample mean

A popular choice for estimating a population mean is by using a sample mean (or sample average or just average)

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{3.1}$$

- From heights example: $\bar{y} = 174.1$, $\mu_y = 176.8$
- There are many ways to estimate μ_y . Examples?
- Why is (3.1) so popular?
- How good is \bar{y} at estimating μ_{y} in general?
- To answer these questions: idea of a sampling distribution

Recall that the sample, y, is random. Each element of y was selected randomly from the population. We could have selected a different sample of size n=20. For example, in a parallel universe, we could have gotten $y^*=\{175.9,\,175.3,\,182.2,\,178.6,\,175.2,\,180.3,\,178.3,\,183.7,\,176.0,\,167.4,\,178.7,\,178.7,\,186.0,\,175.6,\,180.0,\,168.7,\,178.6,\,173.1,\,173.2,\,187.1\}$, where the * in y^* denotes that we are in the parallel universe. In this parallel universe, we got $\bar{y}^*=177.6$. But in every universe, the population (table 3.1), is the same.

- Randomly sample from the population \rightarrow get y
 - o y is random
- Use y to calculate \bar{y}
 - $\circ \bar{y}$ is random
 - o could have gotten a different sample \rightarrow could have gotten a different \bar{y}
 - o population is always the same (μ_{ν})

3.2.2 Sampling distribution of the sample mean

- \bar{y} is random variable (it's an estimator, all estimators are random)
- random variables usually have probability functions
- \bar{y} has a *sampling distribution* (probability function for an estimator)
- sampling distribution imagine all possible values for \bar{y} that you could get plot a histogram
- Using a computer, I drew 1 mil. different random samples of n=20 from table 3.1. Calculate \bar{y} each time. Plot histogram:

Figure 3.1: Histogram for 1 million $\bar{y}s$

Which probability function is right for \bar{y} ? Why?

- Look at figure 3.1
- Notice the summation operator in equation 3.1

• Answer:	Reason:

 \bar{y} is random. We'll derive its:

- mean
- variance

Use these to determine if it's a "good" estimator via three statistical properties:

- Bias
- Efficiency
- Consistency

3.2.3 Bias

An estimator is unbiased if its expected value is equal to the population parameter it's estimating.

That is, \bar{y} is unbiased if $E[\bar{y}] = \mu_y$

Unbiased if it gives "the right answer on average".

Biased if it gives the wrong answer on average.

$$E[\bar{y}] = E\left[\frac{1}{n}\sum_{i=1}^{n}y_{i}\right]$$

$$= \frac{1}{n}E\left[\sum_{i=1}^{n}y_{i}\right]$$

$$= \frac{1}{n}E[y_{1} + y_{2} + \dots + y_{n}]$$

$$= \frac{1}{n}(E[y_{1}] + E[y_{2}] + \dots + E[y_{n}])$$

$$= \frac{1}{n}(\mu_{y} + \mu_{y} + \dots + \mu_{y})$$

$$= \frac{n\mu_{y}}{n} = \mu_{y}$$
(3.2)

3.2.4 Efficiency

An estimator is efficient if it has the smallest variance among all other potential estimators (for us, potential = linear, unbiased)

Need to get the variance of \bar{y} .