

REAL ANALYSIS

作者: 知北游

时间: 2025年7月5日

目录

1	可测函数		1
	1.1	可测函数定义和性质	1
	1.2	可测函数的收敛	4
	1.3	可测函数与连续函数	6

可测函数

------- §1.1 ------可测函数定义和性质

【definition 1.1】(可测函数) 设 $E \subset \mathbb{R}^n$ 可测, $f: E \to \mathbb{R} \cup \{-\infty, \infty\}$, 若

$$\forall t \in \mathbb{R}, \{x \in E : f(x) > t\}$$
是可测集

,则称 f 是 E 上的可测函数.

【example 1.2】 设 f(x) 在 [a,b] 单调,则 f(x) 在 [a,b] 上可测.

Proof. $\forall t \in \mathbb{R}$, $\{x \in [a,b]: f(x) > t\}$ 定属于下述三种情况之一: 区间,单点集或空集. 从而可知

$$\{x \in [a,b] : f(x) > t\}$$

是可测集. 故 f(x) 在 [a,b] 上可测.

【proposition 1.3】 下面几种集合的可测性是等价的

- 1. $\{x: f(x) > t\}$
- 2. $\{x : f(x) \le t\} = E \setminus \{x : f(x) > t\}$
- 3. $\{x: f(x) \ge t\} = \bigcap_{k=1}^{\infty} \left\{ x: f(x) > t \frac{1}{k} \right\}$
- 4. $\{x : f(x) < t\} = E \setminus \{x : f(x) \ge t\}$

[remark 1.4] $\forall t \in \mathbb{R}$

$$\{x: f(x) > t\} = \bigcup_{k=1}^{\infty} \left\{ x: f(x) > t + \frac{1}{k} \right\} = (\{x: f(x) \leqslant t\})^c = \left(\bigcap_{k=1}^{\infty} \left\{ x: f(x) < t + \frac{1}{k} \right\} \right)^c$$

【theorem 1.5】 设 $D \subset \mathbb{R}$ 稠密,若 $\{f > a\} \in \mathcal{M} \quad (\forall a \in D) 则 f$ 可测

Proof. $\forall t \in \mathbb{R}$, 选取 $\{r_k\} \subset D$, 使得

$$r_k \geqslant t; \quad \lim_{k \to \infty} r_k = t.$$

 \Longrightarrow

$${x: f(x) > t} = \bigcup_{k=1}^{\infty} {x: f(x) > r_k}.$$

【theorem 1.6】 设 $f(x): E_1 \cup E_2 \to \mathbb{R}_\infty$,若 f(x) 在 E_1 和 E_2 上可测,则 f(x) 在 $E_1 \cup E_2$ 上可测.

Proof. 注意到:

$$\{x \in E_1 \cup E_2 : f(x) > t\} = \{x \in E_1 : f(x) > t\} \cup \{x \in E_2 : f(x) > t\}, \quad t \in \mathbb{R}.$$

【theorem 1.7】 若 f(x) 在 E 上可测, $A \subset E$ 可测,则 $f(x)|_A$ 可测.

Proof. 注意到:

$$\{x\in A: f(x)>t\}=A\cap \{x\in E: f(x)>t\},\quad t\in \mathbb{R}.$$

【theorem 1.8】 设 f(x), g(x) 在 E 上可测,则下列函数

$$cf(x)$$
 $f(x) + g(x)$ $f(x) \cdot g(x)$

在E上可测.

【theorem 1.9】 若 $\{f_k(x)\}$ 是 E 上的可测函数列,则下列函数:

$$\sup_{k\geqslant 1}\left\{f_k(x)\right\}\quad \inf_{k\geqslant 1}\left\{f_k(x)\right\}\quad \overline{\lim}_{k\to\infty}f_k(x)\quad \underline{\lim}_{k\to\infty}f_k(x)$$

在E上可测。

Proof. 只需考虑:

$$\{\sup_{k\geq 1} \{f_k(x)\} > t\} = \bigcup_{k=1}^{\infty} \{f_k(x) > t\}$$

和

$$\overline{\lim}_{k \to \infty} f_k(x) = \inf_{i \ge 1} \left(\sup_{k \ge i} f_k(x) \right)$$

【corollary 1.10】 设 $\{f_k(x)\}$ 在 E 上可测,且有

$$\lim_{k \to \infty} f_k(x) = f(x) \quad (x \in E)$$

则 f(x) 在 E 上可测.

【theorem 1.11】 设 $f: \mathbb{R}^n \to \mathbb{R}$, 则 f(x) 在 \mathbb{R}^n 上可测 \iff 对 \mathbb{R} 中的任一开集 $G, f^{-1}(G)$ 可测。

Proof. 充分性显然,下面证明必要性. 由假设知 $f^{-1}((t,+\infty))$ 是可测集,故

$$f^{-1}((a,b)) = f^{-1}((a,+\infty))\backslash f^{-1}([b,+\infty)) \quad (\forall (a,b) \in \mathbb{R})$$

可测. 由于 $G \subset \mathbb{R}$ 是开集,则 $G = \bigcup_{k \geqslant 1} (a_k, b_k)$,从而根据

$$f^{-1}(G) = \bigcup_{k \geqslant 1} f^{-1}(a_k, b_k)$$

知 $f^{-1}(G)$ 可测.

【theorem 1.12】 设 f 在 \mathbb{R} 上连续,g 在 \mathbb{R} 上可测且 a.e. 有限,h = f(g(x)) 是 \mathbb{R} 上的可测函数.

Proof. 对任一开集 $G \subset \mathbb{R}$, 易得 $f^{-1}(G)$ 是开集,

$$g^{-1}(f^{-1}(G))$$

可测. h(x) = f(g(x)) 在 \mathbb{R} 上可测.

【remark 1.13】 反过来不对

【corollary 1.14】 设 f 可测,令 $f^+ = \max(f, 0)$, $f^- = \max(-f, 0)$, 则 f^+ , f^- 可测【definition 1.15】(简单函数) 设 $E \subset \mathbb{R}^n$,令

$$\chi_{\mathbf{E}}(x) = \begin{cases} 1, x \in E, \\ 0, x \notin E \end{cases}$$

称其为E上的特征函数.进一步,令

$$f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(x), \quad x \in E.$$

其中 $E = \bigcup_{i=1}^n E_i$, $E_i \cap E_j = \emptyset$, $(\forall i \neq j)$. $f(x) = c_i$, $x \in E_i$, 称 f(x) 为 E 上简单函数.

$$\varphi_k(x) \leqslant \varphi_{k+1}(x), \quad k = 1, 2, \cdots,$$

使得

$$\lim_{k \to \infty} \varphi_k(x) = f(x), \quad x \in E;$$

(ii) 若 f(x) 是 E 上的可测函数,则存在可测简单函数列 $\{\varphi_k(x)\}$,使得 $|\varphi_k(x)| \leq |f(x)|$,且有

$$\lim_{k \to \infty} \varphi_k(x) = f(x), \quad x \in E$$

若 f(x) 还是有界的,则上述收是一致的.

§ 1.2

可测函数的收敛

【definition 1.17】(几乎处处收敛) 设 $\{f_k(x)\}$ 是 E 上几乎处处有限的可测函数. 若存在 E 中的点集 Z ,有 m(Z)=0 及

$$\lim_{k \to \infty} f_k(x) = f(x), \quad \forall x \in E \backslash Z,$$

则称 $\{f_k(x)\}$ 在 E 上几乎处处收敛于 f(x) , 并记为

$$f_k(x) \to f(x)$$
, a. e. $x \in E$.

【definition 1.18】(依测度收敛) 设 $\{f_k(x)\}$ 是 E 上几乎处处有限的可测函数. 若对任给的 $\varepsilon > 0$, 有

$$\lim_{k \to \infty} m\left(\left\{x \in E : |f_k(x) - f(x)| > \varepsilon\right\}\right) = 0,$$

则称 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x), 并记为

$$f_k(x) \xrightarrow{m} f(x), \quad \forall x \in E.$$

【definition 1.19】(近一致收敛) 设 $\{f_k(x)\}$ 是 E 上几乎处处有限的可测函数,若 $\forall \delta > 0$,存在 E 的可测子集 E_δ 满足 $m(E_\delta) \leq \delta$,使得

$$f_k(x) \Longrightarrow f(x) \quad \forall x \in E \backslash E_{\delta}$$

则称 $\{f_k(x)\}$ 在 E 近上一致收敛于 f(x), 并记为

$$f_k(x) \to f(x)$$
, a. un. $x \in E$.

【theorem 1.20】 设 $\{f_n\}$, $f \in E$ 上实值可测函数,则

1. $f_n \xrightarrow{\text{a.e.}} f \iff \forall \varepsilon > 0$

$$m\left(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}\left\{|f_i-f|\geq\varepsilon\right\}\right)=0$$

2. $f_n \xrightarrow{\text{a. un.}} f \iff \forall \varepsilon > 0$

$$\lim_{n \to \infty} m \left(\bigcup_{i=n}^{\infty} \{ |f_i - f| \ge \varepsilon \} \right) = 0$$

3. $f_n \xrightarrow{m} f \iff \{f_n\}$ 的任何子列 $\{f_{n'}\}$,存在其子列 $\{f_{n'_k}\}$,s.t.

$$f_{n'_h} \xrightarrow{\text{a. un.}} f$$

【theorem 1.21】 设 $\{f_n(x)\}, f(x)$ 是 E 上实值可测函数,则

- $1. \ f_n \xrightarrow{\text{a.un.}} f \Rightarrow f_n \xrightarrow{\text{a.e.}} f; f_n \xrightarrow{\text{a.un.}} f \Rightarrow f_n \xrightarrow{m} f.$
- 2. 若 $m(E) < \infty$, 则有 $f_n \xrightarrow{\text{a. e.}} f \iff f_n \xrightarrow{\text{a. un.}} f$
- 3. 设 $f_n \xrightarrow{m} f$, 则存在子列 $\{f_{n_k}\}$, 使 $f_{n_k} \xrightarrow{a. e} f$

【remark 1.22】 上述定理的 2 的 ⇒ 通常被称为 Egrorv 定理, 3 通常被称为 Riesz 定理

附录: 各种收敛的图示

$\mathbf{1.}m(E)<\infty$ 的情形

Proof.

- 1. (A ⇒ C) 由定义立得
- 2. (A ⇒ B) 由定义立得
- 3. $(A \Longrightarrow E)$
- 4. (C ⇒ B) 由等价定义立得 (定理1.20)
- 5. $(B \Longrightarrow C)$ Egorov 定理
- 6. (B \Longrightarrow D) 由 $m(E) < \infty$ 使用递减集合得测度连续性 (或由 B \Longleftrightarrow C 且 C \Longrightarrow D)
- 7. $(C \Longrightarrow D)$ 测度连续性 (或由 B \iff C 且 B \implies D)
- 8. (E ⇒ D) Markov 不等式
- 9. $(E \Longrightarrow F)$

$2.m(E) = \infty$ 的情形

.

_____ §1.3 ____ 可测函数与连续函数