Ergänzung

Komplexe Schwingungen

- Darstellung harmonischer Schwingungen
- Überlagerung harmonischer Schwingungen

Harmonische Schwingungen

Harmonische Schwingungen werden als Sinusschwingungen geschrieben:

$$y(t) = A \cdot \sin(\omega t + \varphi)$$

Dabei:

Amplitude A, Kreisfrequenz ω , Phase φ

Sowie:

Schwingungsdauer $T = \frac{2\pi}{\omega}$, Frequenz $f = \frac{\omega}{2\pi}$

Harmonische Schwingungen

Harmonische Schwingungen werden als Sinusschwingungen dargestellt:

$$y(t) = A \cdot \sin(\omega t + \varphi)$$

Darstellung im Komplexen

Harmonische Schwingungen werden im Komplexen als rotierende Zeiger dargestellt:

$$\underline{y}(t) = A \cdot e^{i(\omega t + \varphi)} = \underbrace{A \cdot e^{i\varphi}}_{=:\underline{A}} \cdot e^{i\omega t}$$

Der momentane (reelle) Wert der Sinusschwingung entspricht dabei dem Imaginärteil des rotierenden (komplexen) Zeigers.

Die komplexe Schreibweise dient insbesondere dazu, gleichfrequente sinusförmige Schwingungen zu überlagern:

$$y_1 = A_1 \cdot \sin(\omega t + \varphi_1)$$

 $y_2 = A_2 \cdot \sin(\omega t + \varphi_2)$

Die resultierende Schwingung $y_1 + y_2$ ist wiederum eine harmonische Schwingung:

$$y = A \cdot \sin(\omega t + \varphi)$$

mit zu berechnender Amplitude A und Phase φ .

Beispiel

$$y_1 = 4 \cdot \sin(2t)$$

$$y_2 = 3 \cdot \sin(2t + \pi/3)$$

Die resultierende Schwingung $y_1 + y_2$ ist dann:

Vorgehen: Addition gleichfrequenter Schwingungen

Zwei vorgegebene Schwingungen, die überlagert werden sollen:

$$y_1 = A_1 \cdot \sin(\omega t + \varphi_1)$$

 $y_2 = A_2 \cdot \sin(\omega t + \varphi_2)$

komplex schreiben

Superposition

$$\underline{y} = \underline{y_1} + \underline{y_2} = (\underline{A_1} + \underline{A_2}) \cdot e^{i\omega t} = \underline{A} \cdot e^{i\omega t}$$

zurück reell schreiben

$$y = Im(y)$$

Unter der Superposition versteht man dabei die Addition komplexer Zahlen:

$$\underline{A} = \underline{A_1} + \underline{A_2}$$

Beispiel: Addition gleichfrequenter Schwingungen

Zwei vorgegebene Schwingungen, die überlagert werden sollen:

$$y_1 = 4 \cdot \sin(2t)$$

 $y_2 = 3 \cdot \sin(2t + \pi/3)$

Zunächst: Schwingungen komplex schreiben

Superposition:

$$\underline{y_1} + \underline{y_2} = \left(4 + 3e^{i\pi/3}\right) \cdot e^{i2t}$$

Superposition, komplexe Addition

$$\underline{y_1} + \underline{y_2} = \left(4 + 3e^{i\pi/3}\right) \cdot e^{i2t}$$

$$4 + 3e^{i\pi/3} = 4 + 3\cos \pi/3 + 3i\sin \pi/3$$

= 4 + 3 \cdot 0, 5 + 3i\sqrt{3}/2
= 5, 5 + 2, 598i

$$|A| = \sqrt{5,5^2 + 2,598^2} = 6,08$$

 $\tan \varphi = 2,598/5,5 = 0,4724$
 $\varphi = \arctan 0,4724 = 0,44$

$$\underline{y} = \underline{y_1} + \underline{y_2} = 6,08 \cdot e^{i0,44} \cdot e^{i2t}$$

Die komplexe Addition lieferte für die Superposition der beiden Schwingungen:

$$\underline{y} = \underline{y_1} + \underline{y_2} = 6,08 \cdot e^{i0,44} \cdot e^{i2t}$$

Damit ergibt sich für die resultierende Schwingung in reeller Schreibweise:

$$y = 6,08 \cdot \sin(2t + 0,44)$$

Übung

Berechnen Sie die Superposition folgender Schwingungen:

$$y_1 = \sqrt{3} \cdot \sin(\omega t + \pi/2)$$

$$y_2 = \sin(\omega t)$$

Lösung

Zwei vorgegebene Schwingungen, die überlagert werden sollen:

$$y_1 = \sqrt{3} \cdot \sin(\omega t + \pi/2)$$

 $y_2 = \sin(\omega t)$

Zunächst: Schwingungen komplex schreiben

Superposition:

$$\underline{y} = \underline{y_1} + \underline{y_2} = \underbrace{\left(\sqrt{3} \cdot e^{i\pi/2} + 1\right)}_{=:A} \cdot e^{i\omega t}$$

Komplexe Schwingungen – Ueberlagerung

$$\underline{A} = \sqrt{3} \cdot e^{i\pi/2} + 1$$

$$= \sqrt{3} \cos \pi/2 + \sqrt{3}i \sin \pi/2 + 1$$

$$= 1 + i\sqrt{3}$$

$$\begin{array}{ll} |\underline{A}| &=& \sqrt{1+3}=2\\ \varphi &=& \arctan\sqrt{3}/1=1,047 \end{array}$$

$$\underline{y} = \underline{y_1} + \underline{y_2} = 2 \cdot e^{i1,047} \cdot e^{i\omega t}$$

$$y = 2 \cdot \sin(\omega t + 1,047)$$