Testing local Lorentz invariance with gravitational waves

- effective field theory searches
- cosmic ray constraints
- interferometer constraints

Jay D. Tasson
Carleton College

underlying theory at Planck scale

options for probing experimentally

galaxy-sized accelerator

 suppressed effects in sensitive experiments
 CPT and Lorentz violation

can arise in theories of new physics

 difficult to mimic with conventional effects

effective field theory search for Lorentz violation (SME)

perform a <u>systematic search</u> via an effective field theory

On-going effort

Data Tables for Lorentz and CPT Violation arXiv:0801.0287v10 ~250 Refs. with sensitivities, including:

gravitational Čerenkov radiation superconducting gravimeters short-range gravity devices gravitational-wave interferometers lunar laser ranging binary-pulsar observations planetary ephemerides gravity probe B bound kinetic energy WEP atom interferometers comagnetometry perihelion precession equivalence-principle pendulum Solar-spin precession

On-going effort

Data Tables for Lorentz and CPT Violation arXiv:0801.0287v10 ~250 Refs. with sensitivities, including:

gravitational Čerenkov radiation superconducting gravimeters short-range gravity devices gravitational-wave interferometers lunar laser ranging binary-pulsar observations planetary ephemerides gravity probe B bound kinetic energy WEP atom interferometers comagnetometry perihelion precession equivalence-principle pendulum Solar-spin precession

atom interferometer ring-laser gyroscopes torsion pendula binary pulsars short-range gravity gravitational-wave detectors space-based WEP tests antimatter gravity charged matter WEP muonium free fall light bending time-delay & Doppler tests

constraints via gravitational waves to date

Data Tables for Lorentz and CPT Violation arXiv:0801.0287v10 ~250 Refs. with sensitivities, including:

Constraints on Lorentz Violation from Gravitational Cherenkov Radiation, Kostelecky and Tasson, Phys. Lett. B 749, 551 (2015).

The Standard-Model Extension and Gravitational Tests, Tasson, Symmetry 8, 111 (2016).

Testing Local Lorentz Invariance with Gravitational Waves, Kostelecky and Mewes, Phys. Lett. B 757, 510 (2016).

Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226. Yunes, Yagi, and Pretorius, Phys. Rev. D 94, 084002 (2016).

Searching for Photon-Sector Lorentz Violation using Gravitational-Wave Detectors, Kostelecky, Melissinos, and Mewes, Phys. Lett. B 761, 1 (2016).

searching for symmetry violation

pure phenomenology

theoretical framework

advantage

- easy parameterization
- quantitative comparisons of very different experiments eg: lab gravity & atomic
- calculate predictions
- consistent analysis

disadvantage

- not predictive
- unclear assumptions
- no relation between experiments

more work!

Lorentz-violating effects

- 1) boost violation
- 2) rotation invariance violation
- 3) dispersion relation effects

Lorentz-violation in gravitational waves

- A) effects on generation at the source
- B) effects on the physics of the detectors
- C) effects on vacuum propagation
 - i) dispersion (isotropic or not)
 - ii) birefringence (isotropic or not)
- D) kinematic effects on gravitational wave interactions
- Definition Isotropic Lorentz violation/preferred frame models: Models such that coordinates can be found in which rotation invariance is preserved and only boost invariance is violated.

A limit of the general field theoretic approach in which coordinates can be found such that only the "0" components for Lorentz-violating tensors are nonzero

$$\mathcal{L} \supset \frac{1}{4} \epsilon^{\mu\rho\alpha\kappa} \epsilon^{\nu\sigma\beta\lambda} h_{\mu\nu} \Big(\eta_{\kappa\lambda} - \overline{s}_{\kappa\lambda} - \overline{s}_{\kappa\lambda\delta\gamma} \partial^{\delta} \partial^{\gamma} \Big) \partial_{\alpha} \partial_{\beta} h_{\rho\sigma}$$

effective field theory, linearized gravity

$$\mathcal{L}_{\mathcal{K}^{(d)}} = \frac{1}{4} h_{\mu\nu} \widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} h_{\rho\sigma},$$

$$\widehat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma\varepsilon_1\varepsilon_2...\varepsilon_{d-2}} \partial_{\varepsilon_1} \partial_{\varepsilon_2} ... \partial_{\varepsilon_{d-2}}$$

$$\equiv \mathcal{K}^{(d)\mu\nu\rho\sigma\circ^{d-2}}$$

- general action-based linearized theory of gravity based on a symmetric 2-tensor field, containing the GR limit, constructed from constant coefficients, derivatives, gravitational field
- 2) 14 classes of operators:3 of which maintain the usual GR gauge structure theory questions for the others

Notation:
$$\mathcal{K}^{(d)\mu
u
ho\sigmaarepsilon_1arepsilon_2...arepsilon_{d-2}}$$
 \supset $k_{(V)jm}^{(d)}$ $ar{s}_{jm}^{(d)}$

Čerenkov Radiation

effective direction and energy dependent index of refraction

$$n \approx 1 - \frac{1}{2} \sum_{d} (-1)^{d/2} s^{(d)} |\vec{l}|^{d-4}$$
$$s^{(d)}(\hat{p}) = \sum_{im} Y_{jm}(\hat{p}) \bar{s}_{jm}^{(d)}$$

power loss to gravitons

$$\frac{dE}{dt} = -\frac{1}{8|\vec{p}|\sqrt{m_w^2 + \vec{p}^2}} \int \frac{d^3l}{(2\pi)^2|\vec{l}|} |\mathcal{M}|^2 \delta(\cos\theta - \cos\theta_C)$$

$$\cos \theta_C = \frac{\sqrt{m_w^2 + \vec{p}^2}}{|\vec{p}|} \frac{1}{n(|\vec{l}|)} + \frac{|\vec{l}|}{2|\vec{p}|} \left(1 - \frac{1}{[n(|\vec{l}|)]^2} \right)$$

natural cutoff at l = p

$$\frac{dE}{dt} = -F^{w}(d)G_{N}(s^{(d)})^{2}|\vec{p}|^{2d-4}$$

Čerenkov Radiation

effective direction and energy dependent index of refraction

and energy dependent index of remains
$$n \approx 1 - \frac{1}{2} \sum_{d} (-1)^{d/2} s^{(d)} |\vec{l}|^{d-4}$$

$$s^{(d)}(\hat{p}) = \sum_{jm} Y_{jm}(\hat{p}) \bar{s}_{jm}^{(d)}$$

$$s^{(d)}(\hat{p}) = \sum_{im} Y_{jm}(\hat{p}) \bar{s}_{jm}^{(d)}$$

$$\frac{dE}{dt} = -\frac{1}{8|\vec{p}|\sqrt{m_W^2 + \vec{p}^2}} \int \frac{d^3l}{(2\pi)^2|\vec{l}|} |\mathcal{M}|^2 \delta(\cos\theta - \cos\theta_C)$$

power loss to gravitons
$$\frac{dE}{dt} = -\frac{1}{8|\vec{p}|\sqrt{m_W^2 + \vec{p}^2}} \int \frac{d^3l}{(2\pi)^2|\vec{l}|} |\mathcal{M}|^2 \delta(\cos\theta - \cos\theta_C)$$

$$\cos\theta_C = \frac{\sqrt{m_W^2 + \vec{p}^2}}{|\vec{p}|} \frac{l}{\eta(|\vec{l}|)} + \frac{|\vec{l}|}{2|\vec{p}|} \left(1 - \frac{1}{[n(|\vec{l}|)]^2}\right)$$
 natural cutoff at $l = p$

natural cutoff at l=p

$$\frac{dE}{dt} = -F^{w}(d)G_{N}(s^{(d)})^{2}|\vec{p}|^{2d-4}$$

scalars, fermions, photons

direction dependence momentum dependence

Čerenkov Radiation

solve power loss for time of flight

$$t = \frac{\mathcal{F}^{w}(d)}{G_{N}(s^{(d)})^{2}} \left(\frac{1}{E_{f}^{2d-5}} - \frac{1}{E_{i}^{2d-5}} \right)$$

constraints via travel distance and observed energy

$$s^{(d)}(\hat{p}) \equiv (\bar{s}^{(d)})^{\mu\nu\alpha_1...\alpha_{d-4}} \hat{p}_{\mu} \hat{p}_{\nu} \hat{p}_{\alpha_1} \dots \hat{p}_{\alpha_{d-4}} = \sum_{jm} Y_{jm}(\hat{p}) \bar{s}^{(d)}_{jm} < \sqrt{\frac{\mathcal{F}^w(d)}{G_N E_f^{2d-5} L}}$$
 OMG particle and friends

we see 'em so they didn't gravi-Čerenkov away all energy

Observatory	Events	E _{max} (EeV)	-	
AGASA	22	213		μ
Fly's Eye	1	320		P'
Haverah Park	13	159		
HiRes	11	127	11	
Pierre Auger	136	127	p^{μ}	
SUGAR	31	197		
Telescope Array	60	162		
Volcano Ranch	2	139		
Yakutsk	23	160		
			-	

Čerenkov radiation

constraints

- billion fold improvements on 9 d=4 coefficients
- first-ever constraints on 153 d=6, d=8, d=10 coefficients

Conservative constraints on coefficients $\bar{s}_{jm}^{(8)}$ in GeV⁻⁴.

d	j	Lower bound	Coefficient	Upper bound		
8	0	$-7 \times 10^{-49} <$	$\bar{s}_{00}^{(8)}$			
8	1	$-1 \times 10^{-45} < $ $-9 \times 10^{-46} < $ $-9 \times 10^{-46} < $	$ar{s}_{10}^{(8)}$ Re $ar{s}_{11}^{(8)}$ Im $ar{s}_{11}^{(8)}$	$< 1 \times 10^{-45}$ $< 8 \times 10^{-46}$ $< 9 \times 10^{-46}$		
8	2	$-9 \times 10^{-46} <$ $-1 \times 10^{-45} <$ $-8 \times 10^{-46} <$ $-1 \times 10^{-45} <$ $-1 \times 10^{-45} <$ $-1 \times 10^{-45} <$	$ar{s}_{20}^{(8)}$ Re $ar{s}_{21}^{(8)}$ Im $ar{s}_{21}^{(8)}$ Re $ar{s}_{21}^{(8)}$ Im $ar{s}_{22}^{(8)}$	$< 1 \times 10^{-45}$ $< 8 \times 10^{-46}$ $< 9 \times 10^{-46}$ $< 9 \times 10^{-46}$ $< 9 \times 10^{-46}$		
8	3	$-1 \times 10^{-45} <$	$\bar{s}_{30}^{(8)}$	$< 1 \times 10^{-45}$		

effective field theory dispersion relation

$$\omega = \left(1 - \varsigma^{0} \pm \sqrt{(\varsigma^{1})^{2} + (\varsigma^{2})^{2} + (\varsigma^{3})^{2}}\right) |\boldsymbol{p}|,$$

$$\varsigma^{0} = \sum_{djm} \omega^{d-4} Y_{jm}(\boldsymbol{\hat{n}}) k_{(I)jm}^{(d)},$$

$$\varsigma^{1} \mp i\varsigma^{2} = \sum_{djm} \omega^{d-4} {}_{\pm 4}Y_{jm}(\boldsymbol{\hat{n}}) \left(k_{(E)jm}^{(d)} \pm ik_{(B)jm}^{(d)}\right),$$

$$\varsigma^{3} = \sum_{dim} \omega^{d-4} Y_{jm}(\boldsymbol{\hat{n}}) k_{(V)jm}^{(d)}.$$

- 1) anisotropy convenient spherical harmonic direction dependence
- 2) birefringence plus/minus in dispersion
- 3) dispersion through various powers of frequency

$$\left| \sum_{jm} Y_{jm}(160^{\circ}, 120^{\circ}) k_{(V)jm}^{(5)} \right| \lesssim 2 \times 10^{-14} \text{ m}$$

summary

- Effective field theory methods facilitate a broad and organized search for new physics.
- Much work has been done with gravitational systems.
- Much remains to explore, e.g. gravitational waves.