1. välikoe 06.10.2003

1. Auto C lisää nopeuttaan kaarteessa siten, että sen tangentiaalikiihtyvyys on vakio 1,5 m/s 2 . Pisteessä A auton kiihtyvyyden suuruus on 2,5 m/s 2 ja radan kaarevuussäde 200 m. Laske auton nopeus pisteessä A.

2. Hydraulisylinteri OB pyörii nivelen O ympäri vastapäivään vakiokulmanopeudella 60 °/s ja samalla männän vartta vedetään sisäänpäin siten, että mitta L pienenee vakionopeudella 150 mm/s. Laske nivelen B nopeuden ja kiihtyvyyden suuruus. L = 125 mm.

3. Varsi OA pyörii nivelen O ympäri vastapäivään kulmanopeudella $3 \, \text{rad/s}$. Varren ollessa asennossa $q = 0^{\circ}$ pieni massa m asetetaan varren päälle etäisyydelle $r = 450 \, \text{mm}$ nivelestä O. Massan havaitaan alkavan luistaa varren päällä, kun kulma $q = 50^{\circ}$. Laske varren ja kappaleen välinen lepokitkakerroin m_s . $g = 9,81 \, \text{m/s}^2$.

4. Massaton sauva on nivelöity pisteestä O ja sen päihin on kiinnitetty pistemäiset massat 2 kg ja 4 kg kuvan mukaisesti. Sauva päästetään levosta liikkeelle asennosta $q = 60^{\circ}$, jolloin se heilahtaa pystytasossa niin, että massa 2 kg osuu jouseen sauvan tullessa vaaka-asentoon $q = 0^{\circ}$. Jousi on lineaarinen ja sen jousivakio on 35 kN/m. Laske (a) massan 2 kg nopeuden suuruus juuri ennen, kun se osuu jouseen ja (b) jousen suurin puristuma. Kohdassa (b) syntyvä puristuma on niin pieni, että sen syntyessä tapahtuvaa sauvan kääntymistä vaaka-asennosta ei tarvitse ottaa huomioon. $g = 9.81 \text{ m/s}^2$.