

your reliable partner

ROBA®-DSM

Construction and Development

Innovations for Your Success

With our innovative and economical solutions, we are able to set new records in the field of power transmission. Our many worldwide patents prove our constant ambition to develop better and technologically superior products.

Highly qualified engineers, high-performance 3D-CADsystems and the most up-to-date FEM calculation aids used in our Development and Construction departments mean that our business is perfectly equipped to offer our customers effective solutions.

Experts for all Power Transmission Questions

Exploit our know-how, gained by decades of experience in the development, production and application of power transmission products. Our experts in Construction and Development are happy to advise you personally and competently when selecting and dimensioning the drive solution you require.

in a backlash-free shaft connection

From Prototype to Finished Product

No mayr[®] product is released onto the market until it has proved its functional capabilities and reliability in extreme, long-term tests.

The spectrum of testing stands is as varied as our range of products:

- Friction work test stands
- Wear test stands
- Noise measurement room with highly accurate noise measurement inspection devices
- ☐ Torque inspection stands up to 200.000 Nm
- Impact alternating load test stands
- Force test stands
- ☐ Linear movement test stands
- □ Continuous performance test stands
- Magnetic flow measurement test stands
- ☐ High-speed test stands up to 20.000 rpm
- Misalignment and angular misalignment test stands
- Load and measurement test stands for DC motors

Product Data: Our 24-hour Service

Our website offers you detailed information 24 hours per day. 365 days per year with no delays. Here you can find not only the latest catalogues and technical documentation but also CAD-files for cost-saving construction of our products.

Unsurpassed -Our Standard Program

For safety clutches, safety brakes, backlash-free shaft couplings and high-quality DC drives, we offer you a complete product range with market and branch optimised constructions and designs.

A Worldwide Presence

Our Sales and Service network is constantly expanding. We guarantee you and your customers local representation almost all over the world. With eight branch firms in France, Switzerland, Italy, England, Poland, the USA, Singapore and China as well as around 30 representatives and eight subsidiaries in Germany, we provide local service for our customers in all important industrial areas.

Total Quality Management

Product Quality

Every delivery which leaves our firm has been subjected to a careful quality inspection, meaning that you are able to rely 100 % on $mayr^{\circ}$ products. If required, we pre-adjust our clutches and brakes accurately to the requested values and confirm the product characteristics with an Inspection Report.

Quality Management

mayr® uses the term quality to describe its products and services. Certification of our quality management confirms the quality-consciousness of our colleagues at every level of the company.

Our integrated management system is certified according to DIN EN ISO 9001:2000 (Quality) and DIN EN ISO 14001 (Environment) and complies with the OHSAS 18001/OHRIS (Occupational Health and Safety) demands.

Individual and Flexible Logistics

Flexible and optimally qualified colleagues ensure that your order is delivered according to schedule and with the most appropriate delivery method. We take into account your individual packaging and dispatch regulations as a matter of course. Our modern high rack warehouse has a permanently available stock of our wide standard product selection.

And if you are really in a hurry, simply use our uniquely-quick basic product delivery service!

ROBA®-DSM – the measuring machine element

The torque measuring shaft coupling ROBA®-DSM is based on the tried and tested backlash-free ROBA®-DS disk pack coupling. The areas of application for this torque measurement coupling range from test stand construction through use in serial production machines right up to condition monitoring. The system permits uncomplicated condition monitoring of machines and systems. Machines can be optimally utilised through evaluation of the coupling data.

Valuable data for maximum productivity

The ROBA®-DSM monitors machines and records the measurement values ¹⁾. From this data, important information can be obtained for the user:

- Machine performance data
- Unpermitted operating conditions lying outside the specifications (in case of a defect or reclaim)
- · Utilisation or runtime of the machine
- Current operating conditions and condition changes to the machine for preventative maintenance purposes
- Dynamic maintenance intervals dependent on the utilisation

Highlights and system advantages

- Direct PC connection possible (USB connection)
- Software for visualisation of the measurement values available as an option
- Use without bearings
- Wide temperature range from -20 ° to +70 °
- · Simple installation and set-up
- Low space requirements on the drive line, no torque support required
- Resistant to vibrations and distance changes on the energy transmitter
- Housing and plug-in connector suitable for industrial purposes (protected against water spray)
- High measuring rate of 7000 measurements per second permits the recording of highly-dynamic loads
- Operation of extension sensor without battery via contactless power supply

Fig. 1

 \wedge

Bore 2)

Hub 1 ø

(See Dimensions sheets pages 8 – 9)

Fig. 2

Bore 2)

Hub 2 ø (See Dimensions

sheets pages 8 - 9)

Order number HUB₁ HUB₂ 0 Key hub, standard (Fig. 7) Key hub, standard (Fig. 7) 0 1 Key hub, large (Fig. 8) Key hub, large (Fig. 8) 1 2 Shrink disk hub / external clamping (Fig. 9) Shrink disk hub / external clamping (Fig. 9) 2 4 Clamping ring hub (Fig. 11) 4 Clamping ring hub (Fig. 11) 5 Clamping hub (Figs. 1, 3 and 12) 5 Clamping hub (Figs. 1, 3 and 12) Flange (Fig. 13) 6 6 Flange (Fig. 13) Split clamping hub 3) (Fig. 14) Split clamping hub 3) (Fig. 14) 8 8 Shrink disk hub, large (Fig. 10) Shrink disk hub, large (Fig. 10) 9 9 ∇ ∇ 5 9

Example: $16 / 971.005 / \text{Hub } 1 - \emptyset 25 ^{H7} / \text{Hub } 2 - \emptyset 30 ^{H7}$

- 1) Recording of the measurement values possible only with the aid of appropriate software
- 2) Standard H7, other tolerances possible

Λ

Sizes

16 to 160

3) For Type 971.885 (double-sided split clamping hub), radial installation/disassembly is not possible as the hubs are offset at an angle.

Fig. 3: Type 971.555 (for other mounting variants, see pages 7 – 9)

Technical data and main dimensions			Size				
			16	40	100	160	
Nominal torque 1) 2)		T _{KN}	[Nm]	190	450	800	1600
Peak torque 3)		T _{KS}	[Nm]	285	675	1200	2400
Ultimate torque T _{KB}		[Nm]	570	1350	2400	4800	
Minimum hub bore Type 971.555 (Figs. 1 and 3) 4) 5) d _{K min}		[mm]	20	25	32	40	
Maximum hub bore	Maximum hub bore Type 971.555 (Figs. 1 and 3) 4) 5) d _{K max}		[mm]	45	60	90	100
Maximum speed		n _{max}	[rpm]	om] 9500 7000 5100 4		4300	
D	Permitted axial displacement 7) 8)	ΔK_{a}	[mm]	0,8	1,1	1,5	1,7
Permitted misalignments ⁶⁾	Permitted angular misalignment 9)	$\Delta K_{_{ m w}}$	[mm]	0,7	0,7	0,7	0,7
inisanginilents /	Permitted radial misalignment 7)	ΔK_r	[mm]	1,1	1,3	1,6	1,8
Total torsional rigidity		[10 ³ Nm/rad]	36,2	114,3	320	585	
Spring rigidities	Angular spring rigidity 9)		[Nm/rad]	229	298	1089	1990

Mass moments of inertia J [10⁻³kgm²]

Size	16	40	100	160
Clamping hub 5) 10)	0,74	3,64	16,94	34,32
Disk pack	0,08	0,26	1,19	3,27
Adaptor flange	0,38	1,67	7,06	15,36
Extension sensor	0,51	2,21	7,97	20,04

Weights [kg]

Size	16	40	100	160
Clamping hub 5) 10)	0,73	2,05	4,82	6,94
Disk pack	0,08	0,15	0,35	0,67
Adaptor flange	0,43	1,11	2,44	3,89
Extension sensor	0,58	1,34	2,91	4,27

1) Other torques and construction sizes available on request.

Dimensions [mm]

Size	16	40	100	160
Α	55,5	63,7	74,3	87,5
D	77	104	143	167
D ₃	82	110	150	175
 5)	40	55	75	85
I ₅	54	64	72	78
I ₆	84	104	122	136
L ⁵⁾	178,2	230,8	292	329,2
S	7,1	8,4	10	11,6

2) Valid for changing load direction as well as for max. permitted shaft misalignment. The following applies for split clamping hubs (Type 971.8_5): Valid for unchanging load direction as well as for max. permitted shaft misalignment.

- When the load direction changes, max. 60% of the stated nominal torque is permitted.
- 3) Valid for unchanging load direction, max. load cycles ≤ 10⁵.
 4) Transmittable torques dependent on
- bore, see page 10.
 5) For technical data on alternative
- mounting variations, see pages 8 9.
- 6) The permitted misalignments must not simultaneously reach their maximum values.
- 7) The values refer to couplings with 2 disk packs.
- 8) Only permitted as a static or virtually static value.
- 9) The values refer to 1 disk pack.
- 10) Mass moments of inertia and weights are valid for maximum bore.

ROBA®-DSM measuring system

ROBA®-DSM receiver

The ROBA®-DSM receiver establishes the contactless connection to the extension sensor and supplies it with energy via the ROBA®-DSM stator.

ROBA®-DSM stator

The stator must be aligned centrally to the extension sensor. The radial distance can total between 1 mm and 5 mm. After correct assembly, the LED on the ROBA®-DSM receiver lights up green and signalises correct data transfer. The extension sensor is rotated slowly by 360° for inspection purposes.

If the LED lights up red at different angular positions, please select a different mounting place for the ROBA®-DSM

Technical data

Supply voltage: 24 VDC (±10 %)

Max. current consumption:

Measuring signal output: 0 ... ±10 V (rotational

direction right positive, 10 V refers to T_{KN})

-20 °C to +70 °C

Nominal temperature range:

Temperature drift,

zero point: 0,04 % of final value / K

Temperature drift,

measured value: 0,03 % of final value / K Max. total error: < 1 % of final value Bandwidth: 3 kHz (-3 dB) 100 % of T_{KN} Receiver / stator IP65 Max. dyn. load:

Protection:

Extension sensor IP52

 $0 \dots n_{max}$ (Technical data, Permitted speed:

page 5)

Electrical connection (Fig. 4)

- The ROBA®-DSM receiver is equipped manufacturerside with a firmly installed 4-pole, A-encoded M12 plug.
- The voltage supply takes place via

Pin 1 = $+24 \text{ V} \pm 10 \%$ and

Pin 3 = GND.

☐ The output signal is provided to Pin 4 = Ua torque 0 ... ±10 V and

Pin 2 = GND

- ☐ The digital measurement data can be read into a PC directly via the USB port using the mayr®-software.
- The radio ID and the radio channel can be set and the offset compensation can be carried out via the USB port using the service software.

Fig. 4

ROBA®-DSM configuration possibilities/standard designs

Key hub

Dimensions [mm]

Size	16	40	100	160
d _{p min}	16	25	35	40
d _{p max}	32	50	70	80
D	77	104	143	167
d ₁	50	70	100	115
L	178,2	230,8	292	329,2
I	40	55	75	85
S	7,1	8,4	10	11,6
U	7	8	10	12

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,27	1,16	6,18	12,51

Weight [kg]

Size	16	40	100	160
Hub 1)	0,46	1,02	2,83	4,25

1) Mass moment of inertia and weight are valid for maximum bore.

Key hub, large

Fig. 8

Dimensions [mm]

Size	16	40	100	160
d _{G min}	30	45	65	75
d _{G max}	45	65	95	110
D	77	104	143	167
L	178,2	230,8	292	329,2
I	40	55	75	85
S	7,1	8,4	10	11,6

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,86	3,89	18,12	36,00

Weight [kg]

Size	16	40	100	160
Hub 1)	0,87	2,08	4,94	7,23

1) Mass moment of inertia and weight are valid for maximum bore.

Shrink disk hub / external clamping

Dimensions [mm]

Size	16	40	100	160
d _{S min} 2)	14	25	35	40
d _{s max} 2)	26	45	55	65
D	77	104	143	167
d ₂	53	74	104	118
k	3,5	3,5	5,5	5,5
L	168,2	210,8	252	279,2
l,	35	45	55	60
S	7,1	8,4	10	11,6
U	7	8	10	12

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,27	1,15	5,59	11,14

Weight [kg]

0 1 01					
Size	16	40	100	160	
Hub 1)	0,49	1,03	2,73	3,99	

- 1) Mass moment of inertia and weight are valid for maximum bore.
- 2) Transmittable torques dependent on bore, see page 10.

Shrink disk hub, large

Dimensions [mm]

Size	16	40	100	160
d _{SG min} 2)	25	40	55	65
d _{SG max} 2)	45	60	90	100
D	77	104	143	167
$d_{\scriptscriptstyle 5}$	77	100	143	162
k	3,5	3,5	5,5	5,5
L	178,2	220,8	262	299,2
I ₄	40	50	60	70
S	7,1	8,4	10	11,6
U	7	8	10	12

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,78	2,88	13,77	27,35

Weight [kg]

Size	16	40	100	160
Hub 1)	0,79	1,71	3,92	6,08

- 1) Mass moment of inertia and weight are valid for maximum bore.
- 2) Transmittable torques dependent on bore, see page 10.

Clamping ring hub

Fig. 11

Dimensions [mm]

Size	16	40	100	160
d _{KR min} 2)	20	25	32	40
d _{KR max} 2)	35	45	68	80
D	77	104	143	167
D ₁	73	97	135	158
L	178,2	230,8	292	329,2
I	40	55	75	85
S	7,1	8,4	10	11,6

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub ¹⁾	0,63	2,84	13,49	28,71

Weight [kg]

Size	16	40	100	160
Hub 1)	0,76	2,00	4,90	7,61

- 1) Mass moment of inertia and weight are valid for maximum bore.
- 2) Transmittable torques dependent on bore, see page 10.

Clamping hub

Fig. 12

Dimensions [mm]

Size	16	40	100	160
d _{K min} 2)	20	25	32	40
d _{K max} 2)	45	60	90	100
D	77	104	143	167
L	178,2	230,8	292	329,2
ı	40	55	75	85
	27	39,6	54,5	60
S	7,1	8,4	10	11,6

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,74	3,64	16,94	34,32

Weight [kg]

Size	16	40	100	160
Hub 1)	0,73	2,05	4,82	6,94

- 1) Mass moment of inertia and weight are valid for maximum bore.
- 2) Transmittable torques dependent on bore, see page 10.

Flange

Fig. 13

Dimensions [mm]

Size	16	40	100	160
Z ^{H7}	45	65	92	105
а	6 x M8	6 x M10	6 x M12	6 x M14
D	77	104	143	167
$d_{_4}$	40	60	85	100
f	4	4	5	5
L	128,2	156,8	182	215,2
S	7,1	8,4	10	11,6
T _K	62	86	116	140
U ₂	15	18	20	28

Mass moment of inertia J [10-3 kgm²]

Size	16	40	100	160
Flange 1)	0,23	0,89	3,87	9,48

Weight [kg]

Size	16	40	100	160
Flange 1)	0,26	0,52	1,16	2,10

1) Mass moment of inertia and weight are valid for maximum bore.

Split clamping hub

Dimensions [mm]

	-	•		
Size	16	40	100	160
d _{H min} ^{2) 3)}	18	25	35	40
d _{H max} ^{2) 3)}	28	40	60	75
D	77	104	143	167
d	50	70	100	115
L	178,2	230,8	292	329,2
I	40	55	75	85
l ₃	31	43	61	69
S	7,1	8,4	10	11,6
U	7	8	10	12

Mass moment of inertia J [10⁻³ kgm²]

Size	16	40	100	160
Hub 1)	0,25	1,20	6,31	12,49

Weight [kg]

Size	16	40	100	160
Hub 1)	0,47	1,21	3,17	4,45

- 1) Mass moment of inertia and weight are valid for maximum bore.
- 2) Transmittable torques dependent on bore, see page 10.
- 3) Optional keyway design according to DIN 6885 possible.

Frictionally locking transmittable torques of shrink disk hubs, clamping ring hubs, clamping hubs and split clamping hubs – dependent on bore

Shrink disk hubs				Si	ze		
			Bore	16	40	100	160
			Ø14	157	-	-	-
1			Ø16	179	-	-	-
			Ø20	240	-	-	-
			Ø22	269	-	-	-
			Ø25	312	438	-	-
			Ø28	-	491	-	-
			Ø30	-	526	-	-
			Ø32	-	600	-	-
	T _R	[Nm]	Ø35	-	669	1090	-
Frictionally locking		"	Ø38	-	741	1184	-
transmittable			Ø40	-	796	1246	1794
			Ø42	Caution!	852	1320	1884
torques			Ø45	Observe	932	1500	2019
Shrink disk hubs			Ø50	permitted		1692	2400
Suitable for			Ø55	peak torq	ues	1889	2680
			Ø60	for selecte	ed	-	2967
H7 / g6			Ø65	coupling s	size ·	-	3263

Clamping ring hubs					Si	ze	
Clamping ring	Olamping ring ridbs			16	40	100	160
			Ø20	126	-	-	- 1
			Ø22	138	-	-	-
			Ø25	168	327	-	-
			Ø28	201	366	-	-
			Ø30	216	420	-	-
			Ø32	230	470	785	-
		T _R [Nm]	Ø35	251	515	859	-
			Ø38	-	559	932	-
	T _R		Ø40	-	588	1050	1256
Frictionally locking			Ø45	-	661	1240	1413
transmittable			Ø50	-	-	1378	1680
torques			Ø55	Caution	! -	1516	1940
Clamping ring			Ø60	Observe) -	1654	2117
hubs			Ø65	permitte	d	1792	2293
Suitable for			Ø68	peak tor	ques	1874	2399
			Ø70	for selec	ted	-	2470
H7 / g6			Ø80	coupling	g size	-	2822

Shrink disk hu	bs,				Si	ze			
large			Bore	16	40	100	160		
			Ø25	339	-	-	-		
			Ø28	404	-	-	-		
			Ø30	448	-	-	-		
			Ø32	492	-	-	-		
			Ø35	558	-	-	-		
			Ø38	620	-	-	-		
			Ø40	659	873	-	-		
			Ø42	694	937	-	-		
		[Nm]	Ø45	738	1036	-	-		
			Ø48	-	1132	-	-		
	T_{R}		Ø50	-	1195	-	-		
			Ø52	-	1255	-	-		
Frictionally locking			Ø55	-	1338	2074	-		
transmittable			Ø60 - 1454 2	2366	-				
torques			Ø65	-	-	2658	3246		
Shrink disk			Ø70	Caution	n! -	2943	3618		
			Ø75	Observ	e -	3213	3991		
hubs, large			Ø80	permitte	ed	3458	4353		
Suitable for			Ø85	peak to	rques	3666	4695		
			Ø90	for sele	cted	3828	5007		
H7 / g6			Ø100	couplin	g size	-	5497		

Clamping huba				Size			
Clamping hub	5		Bore	16	40	100	160
			Ø20	183	-	-	-
			Ø22	202	-	-	-
			Ø25	229	604	-	-
			Ø28	257	677	-	-
			Ø30	275	725	-	-
			Ø32	293	773	1102	-
			Ø35	321	846	1205	- 1
			Ø38	348	918	1309	-
			Ø40	367	967	1378	1839
			Ø42	385	1015	1447	1931
		T _R [Nm]	Ø45	412	1087	1550	2069
			Ø48	-	1160	1653	2207
	T _R		Ø50	-	1208	1722	2299
			Ø52	-	1257	1791	2391
			Ø55	-	1329	1894	2529
			Ø60	-	1450	2066	2759
			Ø65	-	-	2239	2989
Frictionally locking			Ø68	-	-	2342	3127
transmittable			Ø70	-	-	2411	3219
			Ø75	Caution	n! _	2583	3449
torques			Ø80	Observ		2755	3679
Clamping hubs			Ø85	permitte		2927	3909
Suitable for			Ø90	peak to		3100	4139
			Ø95	for sele		-	4369
H7 / g6			Ø100	couplin	g size	-	4599

Split clamping hubs,					Si	ze	
large	large			16	40	100	160
			Ø18	130	-	-	-
- (1			Ø20	144	-	-	-
			Ø22	158	-	-	-
			Ø25	180	326	-	-
			Ø28	202	365	-	-
			Ø30	-	391	-	-
			Ø32	-	418	-	-
			Ø35	-	457	897	-
			Ø38	-	496	973	-
4000	T _R	[Nm]	Ø40	-	522	1025	1218
Frictionally locking			Ø42	-	-	1076	1279
transmittable			Ø45	-	-	1153	1370
torques			Ø50	-	-	1281	1522
Split clamping			Ø55	Caution	n! -	1409	1675
			Ø60	Observ	e -	1537	1827
hubs			Ø65	permitte	ed -	-	1979
Cuitable for			Ø68	peak to	rques	-	2071
Suitable for			Ø70	for sele	cted	-	2131
H7 / g6			Ø75	couplin	g size	-	2284

Product Summary

Safety Clutches/Overload Clutches

■ EAS®-Compact®/EAS®-NC

Positive locking and completely backlash-free torque limiting clutches

EAS®-smartic®

Cost-effective torque limiting clutches, quick installation

EAS®-element clutch/EAS®-elements

Load-disconnecting protection against high torques

EAS®-axial

Exact limitation of tensile and compressive forces

EAS®-Sp/EAS®-Sm/EAS®-Zr

Load-disconnecting torque limiting clutches with switching function

ROBA®-slip hub

Load-holding, frictionally locked torque limiting clutches

ROBA®-contitorque

Magnetic continuous slip clutches

Shaft Couplings

smartflex®

Perfect precision couplings for servo and stepping motors

■ ROBA®-ES

Backlash-free and damping for vibration-sensitive drives

ROBA®-DS/ROBA®-D

Backlash-free, torsionally rigid all-steel couplings

■ EAS®-control-DS

Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

■ ROBA-stop® standard

Multifunctional all-round safety brakes

■ ROBA-stop®-M motor brakes

Robust, cost-effective motor brakes

ROBA-stop®-S

Water-proof, robust monoblock brakes

ROBA-stop®-Z/ROBA-stop®-silenzio®

Doubly safe elevator brakes

ROBA®-diskstop®

Compact, very quiet disk brakes

ROBA®-topstop®

Brake systems for gravity loaded axes

■ ROBA®-linearstop

Backlash-free brake systems for linear motor axes

□ ROBATIC®/ROBA®-quick/ROBA®-takt

Electromagnetic clutches and brakes, clutch brake units

DC Drives

tendo®-PM

Permanent magnet-excited DC motors

■ tendo®-SC

1 quadrant and 4 quadrant transistor controllers

Chr. Mayr GmbH + Co. KG Eichenstrasse 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Hagen

Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0

Fax: 0 23 31/78 03 25

Bavaria

Eichenstrasse 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen

Lünener Strasse 211 59174 Kamen Tel.: 0 23 07/23 63 85

Fax: 0 23 07/24 26 74

Chemnitz

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96

Fax: 03 71/4 74 18 95

North

Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Rhine-Main

Franken

Unterer Markt 9

91217 Hersbruck

Tel.: 0 91 51/81 48 64

Fax: 0 91 51/81 62 45

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Branch office

Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 16, 215600 Zhangjiagang Tel.: 05 12/58 91-75 65 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30

Fax: 00 65/65 60 10 00 info@mayr.com.sg

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61

Switzerland

sales@mayr.co.uk

Mayr Kupplungen AG Tobeläckerstrasse 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70

Fax: 0 52/6 74 08 75 info@mayr.ch

France

Mayr France S.A. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Mayr Corporation 4 North Street Waldwick NJ 07463

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Representatives

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien

Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0.22/8 15.61.80 wamex@wamex.com.pl

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0.20/27 13 02 29 nenco@nenco.org

South Korea

Mayr Korea Co. Ltd. Room No.1002, 10th floor, Nex Zone, SK TECHNOPARK, 77-1, SungSan-Dong, SungSan-Gu, Changwon, Korea

Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C.

Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet. 🖔