Generalized Group Lasso for Patient Subgroup Selection

Wenxuan Deng

Takeda Pharmaceuticals U.S.A., Inc.

Wenxuan.Deng@takeda.com

August 16, 2018

Overview

- Introduction
 - Prognostic and Predictive Biomarkers
 - Why not regression trees?
- 2 Methods
- 3 Algorithm
 - Algorithm Framework
- 4 Simulation

Prognostic Biomarkers

Predictive Biomarkers

Tree-based Methods

Regression trees GUIDE[Loh, 2018]:

- piecewise-linear Model
- examine residual patterns for each treatment level

Cannot repeat even the most naive simulation in GUIDE paper.

Reason: limited sample size. Even two splits will results in small sample size in each branch. The results would be highly unstable. Tree-based method is not appropriate to clinical trial dataset and identify prognostic and predictive biomarkers.

Ordinary Linear Model

$$Y = X\beta + W\tau + G\alpha + W \otimes G\gamma + \epsilon$$

- X: Baseline variables
- W: Treatment variables
- G: Main effects of genes, i.e. expression levels, SNP or mutation
- $W \otimes G$: Interaction effects of genes and treatment
- ϵ : Random errors

Group lasso

We choose group lasso for its ability to

- handle high dimensional data
- allow hierarchical structure

However, the current group lasso based methods

- penalize on all parameters
- have no efficient adaptive penalty weights
- do not specifically target on patients treatment subgroup identification

Loss Function

We assume the hierarchical relationship between prognostic biomarkers and predictive biomarkers, that is a predictive biomarker should be a prognostic biomarker.

The loss function is

$$\min_{\theta} f(\theta|Y,X,W,G) + g(\theta)$$

where

$$g(\theta) = \lambda \sum_{i} \phi_{i} |\gamma_{i}| + \lambda \sum_{i} \theta_{i} \sqrt{\alpha_{i}^{2} + \gamma_{i}^{2}} + \rho(||\alpha||^{2} + ||\gamma||^{2})$$

where $f(\theta|Y,X,W,G) = ||Y - (X\beta + W\tau + G\alpha + W\otimes G\gamma)||^2$ is L-2 loss function, i.e. sum of squared errors for ordinary linear model.

 $\theta = (\beta, \tau, \alpha, \gamma)$ is parameter vector.

Loss function for ordinary linear model

$$\min_{\theta} \| Y - (X\beta + W\tau + G\alpha + W \otimes G\gamma) \|^{2}
+ \lambda \sum_{i} \phi_{i} |\gamma_{i}| + \lambda \sum_{i} \theta_{i} \sqrt{\alpha_{i}^{2} + \gamma_{i}^{2}}
+ \rho(||\alpha||^{2} + ||\gamma||^{2})$$
(1)

Denote $X^{(i)} = [G_i, W \otimes G_i]$ is the /th group of the main and interaction effects of gene /. Then, based on KKT conditions, we let

$$\phi_i = \parallel X^{(i)} \parallel_2$$

$$heta_i = \sqrt{\parallel G_i \parallel_2^2 + 1.4(1 - \sqrt{\frac{2}{\pi}}) \parallel W \otimes G_i \parallel_2^2}$$

$$\min_{\theta} \| Y - (X\beta + W\tau + G\alpha + W \otimes G\gamma) \|^{2}
+ \lambda \sum_{i} \phi_{i} |\gamma_{i}| + \lambda \sum_{i} \theta_{i} \sqrt{\alpha_{i}^{2} + \gamma_{i}^{2}}$$
(2)

Theorem

Let p_0 be the dimension of baseline and treatment covariates, and p_1 be the dimension of main effect covariates. The total dimension is $p=p_0+2p_1$. Then only $\min\{p_1,n-p_0\}$ genes have nonzero main effects in equation (1).

Remark: When p > 2n, the number of selected genes is bounded by sample size.

Optimization Stratgies

- Fast iterative shrinkage-thresholding algorithm with backtracking[Beck and Teboulle, 2009]
- Adaptive restart for rippling behavior [O'Donoghuet and Candes, 2009]
- Adaptive stepsize of cyclic Barzilai-Borwein spectral approach[Wright, 2009]
- Warm start in cross validation

Proximal Operator

Definition

Let

$$Q_{\tau_i,g}(t,u) = g(t) + \frac{1}{2\tau} \parallel t - u \parallel^2$$

then the proximal operator is defined as

$$\tilde{t} = arg \min Q_{ au_i,g}(t,u)$$

For convenience, we denote $P_{\tau_i,g}(u) = \tilde{t}$

Remark: Proximal operator is a point that compromises between minimizing g and being near to u.

Algorithm

initialization $\theta 0=0$ or warm start from previous run, $au_0=0.1$, stepsize $\eta=0.5$;

while i < k do

 $u_i = \theta_{i-1} - \tau_i \nabla f(\theta_{i-1})$ Find the smallest nonnegative integers s_i such that with $\tau_i = \eta^{s_{i-1}} \tau_{i-1}$,

$$(f+g)(P_{\tau_i,g}(u_i)) \leq Q_{\tau_i,g}(P_{\tau_i,g}(u_i),u_i);$$

Then, we compute $t_i = P_{\tau_i,g}(u_i)$ And accelarate the computation by setting if $f(\theta_i + g(\theta_i)) > f(\theta_{i-1}) + g(\theta_{i-1})$ then $\rho_i = 1$

else

$$\rho_i = \frac{1 + \sqrt{1 + 4\rho_{i-1}^2}}{2}$$

end

$$\theta_i = t_i + (\frac{\rho_{i-1}-1}{\rho_i})(t_i - t_{i-1})$$
 and find τ_{i+1} that $\tau_{i+1}I$ can mimic the Hessian $\nabla^2 f(\theta_i)$

end

Algorithm 1: Patient Subgroup Identification Group Lasso Algorithm

References

Loh, Wei-Yin, Michael Man, and Shuaicheng Wang.

 $^{\prime\prime}$ Subgroups from regression trees with adjustment for prognostic effects and postselection inference. $^{\prime\prime}$

Statistics in medicine (2018).

Beck, Amir, and Marc Teboulle.

"A fast iterative shrinkage-thresholding algorithm for linear inverse problems." SIAM journal on imaging sciences 2.1 (2009): 183-202. (2009).

Wright, Stephen J., Robert D. Nowak, and Mário AT Figueiredo.

"Sparse reconstruction by separable approximation."

IEEE Transactions on Signal Processing 57.7: 2479-2493.(2009)

O'Donoghue, B., and E. Candes.

"Adaptive restart for accelerated gradient schemes."

Foundations of computational mathematics 15.3: 715-732. (2015)

The End