Análisis de encuestas de hogares con R

Módulo 0: Seleccionado la muestra

Andrés Gutiérrez, Ph.D.

CEPAL - Unidad de Estadísticas Sociales

Tabla de contenidos I

Motivación

Muestreo aleatorio simple en dos etapas estratificado

Motivación

Desde que se popularizaron las encuestas de hogares en 1940, se ha hecho evidente algunas tendencias que están ligadas a los avances tecnológicos en las agencias estadísticas y en la sociedad y se han acelerado con la introducción del computador.

Gambino & Silva (2009)

Bibliografía y referencias

- ► Kish, L. (1965) Survey Sampling. John Wiley and Sons.
- ► Cochran, W. G. (1977) Sampling Techniques. John Wiley and Sons.
- ► Särndal, et. al. (2003) *Model-assisted Survey Sampling*. Springer.
- ▶ Gutiérrez, H. A. (2016) Estrategias de muestreo: diseño de encuestas y estimación de parámetros. Ediciones de la U.
- Gutiérrez, H. A. (2017) TeachingSampling. R package.

Muestreo aleatorio simple en dos etapas estratificado

- ► La teoría discutida en las secciones anteriores es aplicable cuando las unidades primarias de muestreo son seleccionadas dentro de un estrato.
- No hay nuevos principios de estimación o diseño involucrado en el desarrollo de esta estrategia de muestreo.

- ➤ Se supone que el muestreo en cada estrato respeta el principio de la independencia.
- Las estimaciones del total, así como el cálculo y estimación de la varianza son simplemente resultado de añadir o sumar para cada estrato la respectiva cantidad.

- lackbox Dentro de cada estrato U_h $h=1,\ldots,H$ existen N_{Ih} unidades primarias de muestreo, de las cuales se selecciona una muestra s_{Ih} de n_{Ih} unidades mediante un diseño de muestreo aleatorio simple.
- Suponga, además que el sub-muestreo dentro de cada unidad primaria seleccionada es también aleatorio simple.
- $lackbox{
 ightharpoonup}$ Para cada unidad primaria de muestreo seleccionada $i \in s_{Ih}$ de tamaño N_i se selecciona una muestra s_i de elementos de tamaño n_i .

Para utilizar los prinicpios de estimación del último conglomerado en este diseño particular se definen las siguientes cantidades:

- $1. \ d_{I_i} = \frac{N_{Ih}}{n_{Ih}} \text{, que es el factor de expansión de la i-ésima UPM en el estrato h.}$ $2. \ d_{k|i} = \frac{N_i}{n_i} \text{, que es el factor de expansión del k-ésimo hogar para la i-ésima UPM.}$
- 3. $d_k=d_{I_i} imes d_{k|i}=rac{N_{Ih}}{n_{Ih}} imes rac{N_i}{n_i}$, que es el factor de expansión final del k-ésimo elemento para toda la población U.

head(FrameI, 10)

PSU	Stratum	Persons	Income	Expenditure
PSU0001	idStrt001	118	70912	44232
PSU0002	idStrt001	136	68887	38382
PSU0003	idStrt001	96	37213	19495
PSU0004	idStrt001	88	36926	24031
PSU0005	idStrt001	110	57494	31142
PSU0006	idStrt001	116	75272	43473
PSU0007	idStrt001	68	33028	21833
PSU0008	idStrt001	136	64293	47660
PSU0009	idStrt001	122	33156	23292
PSU0010	idStrt002	70	65254	37115

head(sizes, 10)

Stratum	NIh	nlh	dl
idStrt001	9	2	4.5
idStrt002	11	2	5.5
idStrt003	7	2	3.5
idStrt004	13	2	6.5
idStrt005	11	2	5.5
idStrt006	5	2	2.5
idStrt007	14	2	7.0
idStrt008	7	2	3.5
idStrt009	8	2	4.0
idStrt010	8	2	4.0

head(FrameII, 10) %>% select(Stratum:Zone)

Stratum	NIh	nlh	dl	HHID	PersonID	PSU	Zone
idStrt001	9	2	4.5	idHH00053	idPer01	PSU0005	Rural
idStrt001	9	2	4.5	idHH00053	idPer02	PSU0005	Rural
idStrt001	9	2	4.5	idHH00053	idPer03	PSU0005	Rural
idStrt001	9	2	4.5	idHH00053	idPer04	PSU0005	Rural
idStrt001	9	2	4.5	idHH00053	idPer05	PSU0005	Rural
idStrt001	9	2	4.5	idHH00053	idPer06	PSU0005	Rural
idStrt001	9	2	4.5	idHH00054	idPer01	PSU0005	Rural
idStrt001	9	2	4.5	idHH00054	idPer02	PSU0005	Rural
idStrt001	9	2	4.5	idHH00054	idPer03	PSU0005	Rural
idStrt001	9	2	4.5	idHH00054	idPer04	PSU0005	Rural

[1] 697

```
sam = S.SI(Ni[1], ni[1])
clusterII = FrameII[which(FrameII$PSU == sampleI[1]),]
sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])</pre>
clusterHH <- left_join(sam.HH, clusterII, by = "HHID")</pre>
clusterHH$dki <- Ni[1] / ni[1]</pre>
clusterHH$dk <- clusterHH$dI * clusterHH$dki</pre>
sam_data = clusterHH
```

head(sam_data, 10) %>% select(Stratum:Zone)

Stratum	NIh	nlh	dl	PersonID	PSU	Zone
idStrt001	9	2	4.5	idPer01	PSU0005	Rural
idStrt001	9	2	4.5	idPer02	PSU0005	Rural
idStrt001	9	2	4.5	idPer03	PSU0005	Rural
idStrt001	9	2	4.5	idPer04	PSU0005	Rural
idStrt001	9	2	4.5	idPer01	PSU0005	Rural
idStrt001	9	2	4.5	idPer02	PSU0005	Rural
idStrt001	9	2	4.5	idPer03	PSU0005	Rural
idStrt001	9	2	4.5	idPer04	PSU0005	Rural
idStrt001	9	2	4.5	idPer01	PSU0005	Rural
idStrt001	9	2	4.5	idPer02	PSU0005	Rural

```
set.seed(1234)
for (i in 2:length(Ni)) {
  sam = S.SI(Ni[i], ni[i])
  clusterII = FrameII[which(FrameII$PSU == sampleI[i]), ]
  sam.HH <- data.frame(HHID = unique(clusterII$HHID)[sam])</pre>
  clusterHH <- left join(sam.HH, clusterII, by = "HHID")</pre>
  clusterHH$dki <- Ni[i] / ni[i]
  clusterHH$dk <- clusterHH$dI * clusterHH$dki</pre>
  data1 = clusterHH
  sam_data = rbind(sam_data, data1)
encuesta <- sam_data
```

```
dim(encuesta)
[1] 2675 17
sum(encuesta$dk)
[1] 157538
nrow(BigCity)
[1] 150266
attach(encuesta)
```

Definir diseño muestral con la librería srvyr

```
library(srvyr)
diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = dk,
    nest = T
sum(weights(diseno))
```

Calibrando los pesos muestrales, para ello empleamos la función calibrate de la librería survey

```
library(survey)
totales <- colSums(
  model.matrix(~ -1 + Zone:Sex, BigCity)) # Obtener totales Pob.
diseno_cal <- calibrate(</pre>
  diseno, ~-1 + Zone:Sex, totales, calfun = "linear")
sum(weights(diseno))
Γ17 157538
sum(weights(diseno_cal))
[1] 150266
nrow(BigCity)
[1] 150266
encuesta$wk <- weights(diseno_cal)</pre>
```

```
par(mfrow = c(1,2))
hist(encuesta$dk) ; hist(encuesta$wk)
```


plot(encuesta\$dk,encuesta\$wk)

boxplot(encuesta\$wk ~ encuesta\$Stratum)


```
Region <- as.numeric(</pre>
 gsub(pattern = "\\D",
      replacement = "", x = encuesta$Stratum))
encuesta$Region <-
  cut(Region, breaks = 5,
      labels = c("Norte", "Sur", "Centro", "Occidente", "Oriente"))
encuesta %<>% mutate(
  CatAge = case when(
   Age \leq 5 \sim "0-5".
   Age \leq 15 \sim 6-15,
   Age \leq 30 \sim 16-30.
   Age \leq 45 \sim 31-45.
   Age \leq 60 \sim 46-60,
   TRUE ~ "Más de 60"
  ),
  CatAge = factor(
   CatAge,
   levels = c("0-5", "6-15", "16-30", "31-45", "46-60", "Más de 60"),
    ordered = TRUE
saveRDS(object = encuesta, file = "../Data/encuesta.rds")
```


Email: andres.gutierrez@cepal.org