LaPIS Diagnostic Test Workbook - Mathematics

Name : Kanishka S

Class: 7

Section : A

School : AKV Public School

Login ID : AKV125

Kanishka S's Performance Report

Score: 23/40 Percentage: 57.5%

Kanishka S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Mensuration

Topics to be Improved		
Perimeter	Perimeter of triangle	

Hi, here in this video you will learn **Perimeter**

Question: 1

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 2

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 3

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(___+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved			
Arithmetic mean, mode and median	Mean, Median and Mode		
Range	Finding the range		

Hi, here in this video you will learn Mean, Median, Mode

Question: 4

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 5

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

Question: 6

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.

Answer	
Answei	•

of all observation number of observation . Mean = -

Here s sum of all observation = ______, number of observation = ______

Therefore, mean = _____

Arrange the data in ascending order : _____

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.

Hi, here in this video you will learn Range

Question: 7

Range of the data = ______ - _____

Answer:

The difference between highest value and lowest value is ______.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$.

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 8

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
 $\frac{-38-51}{2}$ $51+38$

$$\frac{-38-5}{2}$$

$$51 + 38$$

.....

......

......

$$\frac{51+20}{2}$$

Answer:

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 9

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of 5 =

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Geometry

Topics to be Improved		
Sum of lengths of two sides of a triangle Sum of two sides of a triangle		
Right angle triangle and pythagoras property Basics of Pythagoras property		
Faces vertex and edges	Idenfication of faces, edges and vertices	

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 10

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are The possible way to reach point C from point A	
$\frac{\text{Side AC} = \dots}{\text{Side AC}}$	
$Side AB + BC = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	=
Therefore, the greatest distance to reach C from	A in the given diagram is
Question: 11 (Sum of / Difference between) than the length of the third side.	ne length of any two sides of a triangle is smaller
Answer:	
There are sides in a triangle.	
The sum of the two sides of a triangle is	than the other side of the triangle.
The difference of the two sides of a triangle is	than the other side of the triangle.

Example: In triangle XYZ,

Question: 12	
4	

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Pythagoras property

Question: 13

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ ...

Question: 14

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
Answer:
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,
Question: 17
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 18
How many vertices, edges and faces does dices have?

|--|

The shape of d	lice is	·	
Dices have	vertices	edges and	faces

Number system

Topics to be Improved		
Operations on rational numbers	Subtraction of rational numbers	
Positive and negative rational numbers	Identification of positive rational numbers	
Fractions	Division of fraction	
Exponents	Solving exponents	

 Hi , here in this video you will learn **Operation on rational numbers**

Question: 19

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

 $\underline{Question:\ 20}$

Find the addition of shaded part of box A and shaded part of box B.

 $\underline{Answer:}$

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = $_$

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 21

Find the missing values in the given figure.

$$= \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, 1 _____ $\frac{7}{10} =$ ______

Therefore, result is _

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 22

Segregate positive and negative rational number.

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers ar
Question: 23
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 24
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Division on fractions
Question: 25
Find the shape which contains the improper fraction of $5\frac{2}{7}$.
$\begin{array}{ c c c c c }\hline\hline 10\\\hline 35\\\hline \end{array}$
Answer:
$5\frac{2}{7}$ is a (proper/mixed) fraction. Here, 5 is , 2 is and 7 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Question:	26
-----------	----

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$$

......

Question: 27

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by ____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is ___

Hi, here in this video you will learn Exponents and power

Question: 28

Find the exponential form of 1000.

Answer:

____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$

(ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____,

exponential form = ____.

Comparing Quantities

Topics to be Improved	
Equivalent ratios Basic of proportion	
Percentage	Basic of percentage

Hi, here in this video you will learn Basics of proportion	
Question: 31	
If a:b and c:d are equivalent ratio, then it can be expressed as	
$\underline{Answer:}$	
A (proportion / ratio) is used to express (one/two) equivalent r Standard form to express proportion is	atios.
$Question: \ 32$	

Find the ratio of shaded part to unshaded part of A and B. Are the two ratios equivalent ?

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 33

If a: b:: c: d is proportion, shade the correct expression

$\boxed{ a = \frac{bc}{d} } \boxed{ \boxed{ c = \frac{ad}{b} } } \boxed{ \boxed{ ad=cd} }$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or = (in fraction) . First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms. Therefore, a \times d =, then a = and c =,
Hi, here in this video you will learn Basics of percentage
Question: 34
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 35
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form
Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 36

apples.

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten

There are $_$ apples in a b	asket.	
Number of rotten apples are	·	
Fraction form of rotten apples	in a basket $=$ \square	
Convert it into a percent—	v % –	

Algebra

Topics to be Improved		
subtraction of algebraic expressions	subtraction of algebraic expressions	
Basics of simple equation	Formating of simple equation	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Terms of an expression	Identification of terms in an expression	

Hi, here in this video you will learn Subtraction on expression

Question: 37	
--------------	--

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A? _____

Answer:

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 39

Solve the following:

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

 $\operatorname{Hi},$ here in this video you will learn $\operatorname{\bf Solving}$ an equation using application

Question: 40

......

Box B contains _____ times the number of chocolates in Box A

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box B = $___$ × (No. of chocolates in Box A)

Answer: Four times of $m = \underline{\hspace{1cm}}$ Subtracting four times of m from $4 = \underline{\hspace{1cm}}$ The equation is _____ Question: 42 Compare the given two statements (<,>,=)Sum of 2a and 9 | Add 9 to the product of a and 2Answer: Sum of 2a and $9 = \underline{\hspace{1cm}}$ Product of a and $2 = \underline{\hspace{1cm}}$ Add 9 to the product of a and 2 =Therefore, sum of 2a and 9 Add 9 to the product of a and 2Hi, here in this video you will learn **Types of expression** Question: 43 There are _____ terms in the expression 7x + 3y + m + 5. Answer: In algebraic expression, _____ (variables/ terms) are connected together with operations of addition. The terms in the expression are $____$, $____$, and $____$. Therefore, there are ______ terms in the expression. Question: 44 Classify the following expression into monomial, binomial and polynomial. 1. 7m + n + 22. $8x^2 + 0$ 3. 7xy + 4m

Write the equation for the following statement.

Subtracting four times of m from 4 is n

1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a	
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a	
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a	
Question: 45	
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)	
Answer:	
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a	_ expression.
Hi, here in this video you will learn Addition on expression	
Question: 46	
Shade the like terms.	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9a
$\underline{Answer:}$	
Given terms are	
Two or more term have (same/ different) variables is called like Here, like terms are	e terms.
<u>Question: 47</u>	
Complete the expression $7r^2 + r \Box - 2 \Box = \underline{r^2}$	
Answer:	
(Like / Unlike) terms can be added or subtracted.	
$_{7r^2+ r} \square_{-2} \square = (7 + \ 2)_{r^2} = _$	
Question: 48	
Sam have 3a chocolates and 9v icecream. Ram have 7a chocolates and 5v icecre	

((i)	Total	chocolates	Ram	and Sam	have ·	
١	11	rotai	CHOCOlates	паш	and Dam	mave.	

(ii) How many icecreams Sam have more than Ram: ______.

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have:

 $Ram's \ chocolate + Sam's \ chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

Hi, here in this video you will learn Terms of an expression

Question: 49

Separate the variables and constants for all the terms given in the box

......

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables

Question: 50

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

The terms in the expression $3x + 5$ is/are
The terms in the expression $12a$ is/are
The terms in the expression $4xy$ is/are
The terms in the expression $12a + b + 1$ is/are
The terms in the expression $7m + 0$ is/are

Question: 51

Shade the outline of circle that contains the term of the given expression.

$$6m^2 - 7mn + nl$$

Answer:

In algebraic expression, ______ (variables/ terms) are connected together with operations of addition.

Here, _____, ____, are the terms of the given expression.