Support Vector Machines Homework 02

Due February 17, 2016

Robert Brown

Problem 3.2

number	property	name
1	$q(\vec{a} + \vec{b}) = q\vec{a} + q\vec{b}$	distributivity I
2	$(p+q)\vec{a} = p\vec{a} + q\vec{a}$	distributivity II
3	$p(q\vec{a}) = (pq)\vec{a}$	associativity
4	$1\vec{a} = \vec{a}$	identity

- 1. Consider the i^{th} element of $\vec{a} + \vec{b}$: $q(a_i + b_i) = qa_i + qb_i$. Since scalar multiplication distributes the same $\forall a_i \in \vec{a}$, the property $q(\vec{a} + \vec{b}) = q\vec{a} + q\vec{b}$ follows \Box
- 2. consider the i^{th} element of \vec{a} : $(p+q)a_i = pa_i + qa_i$. Since scalar multiplication distributes the same $\forall a_i \in \vec{a}$, the property \vec{a} , $p\vec{a} + q\vec{a}$ follows \square
- 3. consider the i^{th} element of \vec{a} : $p(qa_i) = (pq)a_i$. Since scalar multiplication distributes the same $\forall a_i \in \vec{a}$, the property $p(q\vec{a}) = (pq)\vec{a}$ follows \square
- 4. consider the i^{th} element of \vec{a} : $1(a_i) = a_i$. Since scalar multiplication distributes the same $\forall a_i \in \vec{a}$, the property $1\vec{a} = \vec{a}$ follows \square

Problem 3.4

$$\vec{w} \cdot \vec{x} = b$$

$$\vec{w} \cdot \vec{x} - b = 0$$

$$\sum_{i=1}^{n} w_i x_i - b = 0$$

$$\sum_{i=1}^{n+1} w_i x_i = 0$$

Where $w_{n+1} = -1$ and $x_{n+1} = b$. Representing our sum as a vector, we are left with a new form $\vec{w} \cdot \vec{x} = 0$ that is equivalent to $\vec{w} \cdot \vec{x} = b$, with our bias unit b fixed inside of \vec{x} . Now \vec{w} is clearly orthogonal to \vec{x} by the definition of orthogonality $(\vec{w} \cdot \vec{x} = 0)$. \square .