Lecture 4: Model-Free Prediction

Hado van Hasselt

Outline

- Introduction
- 2 Monte-Carlo Learning
- Temporal-Difference Learning
- 4 $TD(\lambda)$

Reading: (Sutton & Barto Oct 2015) Chapters 5, 6, and 7 on prediction

Sample-based reinforcement learning

- Last lecture:
 - Planning by dynamic programming
 - ► Solve a known MDP
- This lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- Next lecture:
 - Model-free control
 - Optimise the value function of an unknown MDP

Sample-based reinforcement learning

- Sample-based methods learn directly from episodes of experience
- We call this Monte Carlo
- MC is model-free: no knowledge of MDP required, only samples
- Simplest version:
 - Consider policy evaluation
 - Roll out a full trajectories until termination
 - Average the returns along these trajectories
 - (Caveat: only applies in episodic problems)

Sample-based reinforcement learning

- Simple example, multi-armed bandit:
 - m actions, goal is to estimate value of each action
 - select action A_t , receive reward R_{t+1}
 - 'value' = expected reward =

$$v(a) = \mathbb{E}\left[R_{t+1}|A_t = a\right]$$

approximation = average observed reward =

$$\frac{1}{n(a)}\sum_{t=0}^{n}\mathcal{I}(A_{t}=a)R_{t+1}$$

where $\mathcal{I}(\cdot)$ is the indicator function and $n(a) = \sum_{t=0}^{n} \mathcal{I}(A_t = a)$ is the number of times action a was selected

Contextual bandits

- Imagine a bandit problem where the state might change
 - each episode still ends immediately
 - actions do not affect the states
 - e.g., different visitors to a website
- Then, we want to estimate

$$v(s,a) = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a\right]$$

v could be a neural network, could use loss

$$I_t(\theta) = (v_{\theta}(S_t, A_t) - R_{t+1})^2$$

Monte-Carlo Policy Evaluation

- Now consider sequential decision problems
- Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

• The *return* is the total discounted reward (for an episode ending at time T, where T > t):

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

• The value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Blackjack Example

- States (200 of them):
 - Current sum (12-21)
 - ▶ Dealer's showing card (ace-10)
 - ▶ Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action draw: Take another card (random, no replacement)
- Reward for stick:
 - ightharpoonup +1 if sum of cards > sum of dealer cards
 - ▶ 0 if sum of cards = sum of dealer cards
 - ▶ -1 if sum of cards < sum of dealer cards
- Reward for draw:
 - ▶ -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically draw if sum of cards < 12

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards \geq 20, otherwise twist

Previous lecture: approximate dynamic programming

- Use a function approximator $v_{\theta}(s)$, with parameters $\theta \in \mathbb{R}^n$.
- Use dynamic programming to compute θ_{k+1} from θ_k .
 - lacktriangle Sample states $ilde{\mathcal{S}}\subseteq\mathcal{S}$ (more simply, let $ilde{\mathcal{S}}=\mathcal{S}$)
 - ▶ For each sample state $s \in \tilde{\mathcal{S}}$, compute target value using Bellman optimality equation,
 - ► Then

$$\begin{split} \tilde{v}_k(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\theta_k}(s') \right) \\ \theta_{k+1} &= \underset{\theta}{\operatorname{argmin}} \sum_{s \in \tilde{\mathcal{S}}} \left(v_{\theta}(s) - \tilde{v}_k(s) \right)^2 \end{split}$$

Approximate dynamic programming

• Main idea: approximate $ilde{v}_k pprox v_\pi$, then update

$$heta_{k+1} = \operatorname*{argmin}_{ heta} \sum_{s \in \tilde{\mathcal{S}}} (\tilde{v}(s) - v_{ heta}(s))^2$$

• Extension 1: do not find the full minimum. Instead, follow gradient:

$$\theta_{k+1} = \alpha \sum_{s \in \tilde{S}} (\tilde{v}(s) - v_{\theta}(s)) \nabla_{\theta} v_{\theta}(s)$$

• Extension 2: sample a single state S_t :

$$\theta_{t+1} = \alpha \left(\tilde{v}(S_t) - v_{\theta}(S_t) \right) \nabla_{\theta} v_{\theta}(S_t)$$

Temporal difference learning

• In (approximate) DP: we use model and compute

$$\tilde{v}_k(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{\theta_k}(s') \right)$$

• Instead we could sample. In Monte Carlo, we use:

$$\tilde{v}_k(S_t) = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

• Alternatively, we could bootstrap, and use

$$\tilde{\mathbf{v}}_k(S_t) = R_{t+1} + \gamma \mathbf{v}_{\theta_k}(S_{t+1}).$$

• This is called temporal-difference learning

Temporal-Difference Learning

- TD methods learn directly from experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD also learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

MC and TD

- ullet Goal: learn $oldsymbol{
 u}_{\pi}$ online from experience under policy π
- Incremental Monte-Carlo
 - ▶ Update value $v(S_t)$ towards sampled return G_t

$$v(S_t) \leftarrow v(S_t) + \alpha \left(\mathbf{G_t} - v(S_t) \right)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - ▶ Update value $v(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v(S_t) \leftarrow v(S_t) + \alpha \left(R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \right)$$

• $\delta_t = R_{t+1} + \gamma v(S_{t+1}) - v(S_t)$ is called the *TD error*

MC and TD, with function approximation

- Goal: learn v_{π} online from experience under policy π
- Incremental Monte-Carlo
 - ▶ Update value $v(S_t)$ towards sampled return G_t

$$\theta_{t+1} = \theta_t + \alpha \left(R_{t+1} + \gamma v(S_{t+1}) - v_{\theta_t}(S_t) \right) \nabla_{\theta} v_{\theta}(S_t)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - ▶ Update value $v(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$\theta_{t+1} = \theta_t + \alpha \left(\frac{R_{t+1}}{R_{t+1}} + \frac{\gamma v(S_{t+1})}{R_{t+1}} - v_{\theta_t}(S_t) \right) \nabla_{\theta} v_{\theta}(S_t)$$

• $\delta_t = R_{t+1} + \gamma v(S_{t+1}) - v(S_t)$ is called the *TD error*

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
 - ► TD can learn online after every step
 - ▶ MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - ▶ TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - ► TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \dots$ is an unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma v(S_{t+1})$ is a biased estimate of $v_{\pi}(S_t)$
 - Unless $v(S_{t+1}) = v_{\pi}(S_{t+1})$
- But the TD target has much lower variance:
 - Return depends on many random actions, transitions, rewards
 - ▶ TD target depends on one random action, transition, reward

Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Very simple to understand/analyse
- TD has low variance, some bias
 - Usually more efficient than MC
 - ▶ TD(0) converges to $v_{\pi}(s)$
 - (but not always with function approximation)
 - More sensitive to initial value

Random Walk Example

Random Walk: MC vs. TD

Batch MC and TD

- TabularMC and TD converge: $v(s) o v_{\pi}(s)$ as experience $o \infty$ and lpha o 0
- But what about finite experience?

episode 1:
$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$

$$\vdots$$
 episode K:
$$s_1^K, a_1^K, r_2^K, ..., s_{T_K}^K$$

- e.g. Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k
- = sampling from an empirical model

AB Example

Two states A, B; no discounting; 8 episodes of experience

- A, 0, B, 0
- B, 1
- Б, 1
- B, 1
- B, 0

What is v(A), v(B)?

AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is v(A), v(B)?

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - v(S_t^k))^2$$

- ▶ In the AB example, v(A) = 0
- TD(0) converges to solution of max likelihood Markov model
 - ▶ Solution to the empirical MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_s^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

▶ In the AB example, v(A) = 0.75

Advantages and Disadvantages of MC vs. TD (3)

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more accurate in non-Markov environments

Monte-Carlo Backup

$$v(S_t) \leftarrow v(S_t) + \alpha (G_t - v(S_t))$$

Temporal-Difference Backup

$$v(S_t) \leftarrow v(S_t) + \alpha \left(R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \right)$$

Dynamic Programming Backup

$$v(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v(S_{t+1}) \right]$$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Unified View of Reinforcement Learning

n-Step Prediction

• Let TD target look *n* steps into the future

n-Step Return

• Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n = 1 (TD) G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1})$$

$$n = 2 G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2})$$

$$\vdots \vdots$$

$$n = \infty (MC) G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

• Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

• n-step temporal-difference learning

$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^{(n)} - v(S_t)\right)$$

Large Random Walk Example

λ -return

- The λ -return G_t^{λ} combines all n-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

• Forward-view $TD(\lambda)$

$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^{\lambda} - v(S_t)\right)$$

$\mathsf{TD}(\lambda)$ Weighting Function

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$TD(\lambda)$

Equivalence:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$G_t^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) v(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

- Interpretation:
 - Observe reward
 - ightharpoonup Continue with weight/probability γ
 - ▶ Bootstrap with weight (1λ) , continue with remaining weight λ
 - ▶ Observe next reward, and continue
- ullet Forward-view looks into the future to compute G_t^λ
- Like MC, can only be computed from complete episodes

Eligibility Traces

• Eligibility traces allow us to implement $TD(\lambda)$ online

$$\mathbf{e}_0(s) = 0$$

$$\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1}(S_t) + \nabla_{\theta} v_{\theta}(S_t)$$

Background reading: van Hasselt & Sutton 2015, Chapter 12 of Sutton & Barto 2017

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(1)$

- TD(1) is roughly equivalent to Monte-Carlo
- (Can be made exact for tabular or linear function approximation)

$\mathsf{TD}(\lambda)$ with function approximation

- With tabular or linear function approximation, TD(n) and $TD(\lambda)$ converge
 - ▶ Solution depends on n or λ , and on the function class (i.e., on the features)
 - ▶ Typically, the solution will have lower error if either the function is more flexible (better/more features), and if n or λ is higher

Experience replay

- In dynamic programming, we query a model
- With samples, we can do something similar:
 - ▶ Store sampled transitions $\{(S_n, A_n, R_{n+1}, S_{n+1})\}$
 - ► Replay these to the algorithm
- Useful if data is expensive
- Useful for more diverse updates (e.g., closer to i.i.d.)
- Can be interpreted as using an empirical model

Using stationary targets

- In approximate dynamic programming, we often update multiple states towards targets depending on v_k to obtain v_{k+1}
- Similarly, in TD we can keep the bootstrap value function fixed for a while
 - lacktriangle E.g., copy $heta_t^- = heta_t$, and then keep $heta_t^-$ fixed for several time steps

$$\theta_{t+1}^{-} = \theta_{t}^{-}$$

$$\theta_{t+1} = \theta_{t} + \alpha \left(R_{t+1} + \gamma v_{\theta_{t}^{-}}(S_{t+1}) - v_{\theta_{t}}(S_{t}) \right) \nabla_{\theta_{t}} v_{\theta_{t}}(S_{t})$$

- Periodically make a fresh copy
- Experience replay and stationary targets were important to stabilize learning in DQN on Atari

Deep Q-networks

• We can apply the same algorithms to action values q(s, a), updating towards

$$R_{t+1} + \gamma \sum_{a} \pi(a|S_{t+1})q(S_{t+1},a)$$

• Additionally, we can learn about policies other than current π . For instance, greedy policy:

$$R_{t+1} + \gamma \max_{a} q(S_{t+1}, a)$$

- We can combine this with 1) deep convolutional networks to represent q_{θ} , 2) experience replay, and 3) stationary targets q_{θ^-}
- This gives the DQN algorithm (more in next lecture)

Background reading:

Mnih, Kavukcuoglu, Silver, et al. 2015, Nature