Hebb Net

Dikompilasi Oleh:

Agust Isa Martinus

Karakteristik JST Hebb

Karakteristik Hebb Net.

- 1. Aktifasi Bipolar.
 - Output +1 (fires) atau -1 (does not fire)
- 2. Setiap neuron dihubungkan dengan sinapsis atau jalur berarah dan berbobot (vektor).
 - Positif: excitatory (w>0)
 - Negatif: inhibitory (-p, p>0)
- 3. Setiap neuron mempunyai satu threshold (θ , ambang batas) yang tetap.
 - Fires, jika $net \ge \theta$.
 - Threshold diset sedemikian rupa sehingga inhibition adalah absolut. (any nonzero inhibitory input will prevent the neuron from firing.)
- 4. Setiap sinyal membutuhkan satu satuan waktu untuk mengalir pada jalur koneksi dari satu neuron ke neuron berikutnya.

Hebbian Synapse

- Time-dependent mecahnism
- Local mechanism
- Interactive mechanism
- Conjunctional or correlational mechanism

Review: Arsitektur Neuron Y

Hebb Net

- Arsitektur
 - Single Layer, Feed Forward
- Metode Pembelajaran
 - Extended Hebb Rule
 - ☐ (target bipolar)
 - ☐ (input binary or bipolar)
- Fungsi Aktifasi
 - Signum Function
 - \square If $net \ge \theta$ then Output = +1
 - \square If $net < \theta$ then Output = -1

Pelatihan dan Penggunaan

Pelatihan

- Latih JST
 menggunakan
 Algoritma
 Extended Hebb.
 - Extenden Hebb hanya 1-epoch.

Penggunaan

Operasikan JST menggunakan bobot-bobot (pengetahuan) hasil latihan (Algoritma Extended Hebb) yang telah dilakukan.

Proses Pelatihan dengan Supervisor

Pelatihan dengan Supervisor

Dasar Algoritma Extended Hebb

Original Hebb-rule

☐ Jika dua buah neuron yang saling terhubung melalui sinapsis, aktif (fire) secara bersamaan, maka bobot sinapsisnya bertambah kuat.

extended Hebb-rule

(original Hebb-rule, ditambahkan yang berikut)

☐ Jika dua buah neuron yang saling terhubung melalui sinapsis, tidak aktif (not fire) secara bersamaan, maka bobot sinapsisnya bertambah kuat juga.

Algoritma **Pembelajaran** Extended Hebb

☐ Langkah 0 : **Inisialisasi**

Inisialisasi laju belajar dan semua bobot

```
w_i = 0

\alpha = 1
```

//(i=0 to n, sebanyak input) //(0 < $\alpha \le 1$, laju belajar)

☐ Langkah 1 : **Iterasi**

(hanya 1-epoch, 1x iterasi)

Untuk setiap pasangan masukan dan keluaran, s:t, [s=(s1, s2, s3, ..., sn, s0)] laksanakan langkah 2 – 4,

Langkah 2

Set aktifasi unit masukan

$$x_i = s_i$$

 $//(i=0 \text{ to n}; x_0=s_0=+1)$

Langkah 3

Set aktifasi unit keluaran

$$y = t$$

Langkah 4

```
Hitung semua bobot dan bias w(baru) = w(lama) + \alpha \times v
```

```
w_i(baru) = w_i(lama) + \alpha x_i y //(i=0 to n; x_0=+1)
```

Prosedur **Penggunaan** Extended Hebb-net

Pelatihan

Latih dengan algoritma Extended Hebb untuk mendapatkan bobot.

Penggunaan

Untuk setiap pasangan masukan dan keluaran, s:t, yang akan diklasifikasi/dikenali, laksanakan langkah 1 – 2,

Langkah 1

Set aktifasi unit masukan

$$x_i = s_i$$
 (i=0 to n; $x_0 = s_0 = +1$)

Langkah 2

Hitung respons unit keluaran, y

- +1 jika $\theta \le net$
- -1 jika $net < \theta$

Kasus 1: Fungsi Logika

- □ Kasus:
 - Buat jaringan Hebb untuk menyatakan fungsi logika AND
- Representasi masukan/keluaran yang digunakan dicoba dengan:
 - a. Masukan dan keluaran biner $\{0, +1\}$
 - b. Masukan biner $\{0, +1\}$ dan keluaran bipolar $\{-1, +1\}$
 - c. Masukan dan keluaran bipolar {-1, +1}
- Melihat masalah yang timbul pada penggunaan fungsi aktivasi threshold.
 - Kadangkala jaringan dapat menentukan pola secara benar jika menggunakan representasi bipolar.

a. Representasi Biner-Biner

Tabel Masukan dan Target fungsi AND

		Masuka	an	Target
Pola	s1	s2	s0=1	t
1	1	1	1	1
2	1	0	1	0
3	0	1	1	0
4	0	0	1	0

- Masukan biner
- Target keluaran biner

Arsitektur Jaringan Hebb

$$w_{i}(\text{new}) = w_{i}(\text{old}) + \Delta w_{i},$$

$$\text{dengan } \Delta w_{i} = \alpha x_{i}t \text{ (i=0, ..., n)}$$

$$net = \sum_{i=0}^{n} W_{i} \chi_{i} \qquad \theta = 0$$

$$y = \varphi(net) \begin{cases} +1 & \text{jika net } \geq \theta \\ 0 & \text{iika net } \leq \theta \end{cases}$$

a. Representasi Biner-Biner

	Masukan			Target	Peru	bahan B	obot	Bobot			
Pola	x1	x2	x0=1	y=t	Δw1	Δw2	Δw0	w1	w2	w0	
								0	0	0	
1	1	1	1	1	1	1	1	1	1	1	
2	1	0	1	0	0	0	0	1	1	1	
3	0	1	1	0	0	0	0	1	1	1	
4	0	0	1	0	0	0	0	1	1	1	

- Perhitungan bobot dan bias
 - $\mathbf{w}_{i}(\text{new}) = \mathbf{w}_{i}(\text{old}) + \Delta \mathbf{w}_{i}$, dimana $\Delta \mathbf{w}_{i} = \alpha \mathbf{x}_{i} \mathbf{y}$ (i=0, ..., n)
- Hasil pembelajaran
 - Bobot berubah akibat pasangan data pertama saja
 - Dari hasil iterasi, diperoleh w1 =1, w2=1, dan w0=1

Penggunaan Representasi Biner-Biner

Pola	x1	x2	$net = \sum_{i=0}^{2} x_i w_i$ (w1=1, w2=1, w0=1)	$y = f(net) = \begin{cases} 1 \text{ jika } net \ge 0 \\ 0 \text{ jika } net < 0 \end{cases}$			
1	1	1	1.1 + 1.1 + 1.1 = 3	1			
2	1	0	1.1 + 0.1 + 1.1 = 2	1			
3	0	1	0.1 + 1.1 + 1.1 = 2	1			
4	0	0	0.1 + 0.1 + 1.1 = 1	1			

- ☐ f(net) tidak sama dengan target yang diinginkan pada fungsi AND
- ☐ Jaringan TIDAK DAPAT
 'MENGERTI' pola yang dimaksud

Latihan: Fungsi Logika AND, Biner-Biner

Menggunakan cara yang sama dengan contoh, tetapi dengan urutan (tabel) masukan yang berbeda.

	Masuka	n	Target
s1	s2	s0	t
1	0	1	0
1	1	1	1
0	1	1	0
0	0	1	0

	Masuka	n	Target
s1	s2	s0	t
1	0	1	0
0	1	1	0
0	0	1	0
1	1	1	1

b. Representasi Biner-Bipolar

Tabel Masukan dan Target fungsi AND

		Masuka	an	Target
Pola	s1	s2	s0=1	t
1	1	1	1	1
2	1	0	1	-1
3	0	1	1	-1
4	0	0	1	-1

- Masukan biner
- Target keluaran biner

Arsitektur Jaringan Hebb

$$w_{i}(\text{new}) = w_{i}(\text{old}) + \Delta w_{i},$$

$$\text{dengan } \Delta w_{i} = \alpha x_{i}t \text{ (i=0, ..., n)}$$

$$net = \sum_{i=0}^{n} w_{i} \chi_{i} \qquad \theta = 0$$

$$y = \varphi(net) \begin{cases} +1 & \text{jika net } \geq \theta \\ 0 & \text{jika net } < \theta \end{cases}$$

b. Representasi Biner-Bipolar

	Masukan			Target	Peru	bahan B	obot	Bobot Baru			
Pola	x1	x2	x0=1	y=t	Δw1	Δw2	Δw0	w1	w2	b=w0	
								0	0	0	
1	1	1	1	1	1	1	1	1	1	1	
2	1	0	1	-1	-1	0	-1	0	1	0	
3	0	1	1	-1	0	-1	-1	0	0	-1	
4	0	0	1	-1	0	0	-1	0	0	-2	

- Perhitungan bobot dan bias
 - $w_i(new) = w_i(old) + \Delta w_i$, dimana $\Delta w_i = \alpha x_i y$ (i=1, ..., n)
- ☐ Hasil pembelajaran
 - Bobot berubah akibat pasangan data pertama saja
 - Dari hasil iterasi, diperoleh w1 =..., w2=..., dan w0=...

$$X1 - W1 = 0$$
 $X2 - w2 = 0$
 Y
 $1 - w0 = -2$

Tabel Masukan dan Target fungsi AND

		Masuka	an	Target
Pola	s1	s2	s0=1	t
1	1	1	1	1
2	1	-1	1	-1
3	-1	1	1	-1
4	-1	-1	1	-1

- Masukan bipolar
- Target keluaran bipolar

Arsitektur Jaringan Hebb

$$w_{i}(\text{new}) = w_{i}(\text{old}) + \Delta w_{i},$$

$$\text{dengan } \Delta w_{i} = \alpha x_{i}t \text{ (i=0, ..., n)}$$

$$net = \sum_{i=0}^{n} w_{i} \chi_{i} \qquad \theta = 0$$

$$y = \varphi(net) \begin{cases} +1 & \text{jika net } \geq \theta \\ -1 & \text{jika net } < \theta \end{cases}$$

	Masukan			Target	Peru	Perubahan Bobot			Bobot Baru			
Pola	x1	x2	x0=1	y=t	Δw1	Δw2	Δb	w1	w2	b=w0		
								0	0	0		
1	1	1	1	1								
2	1	-1	1	-1								
3	-1	1	1	-1								
4	-1	-1	1	-1								

- ☐ Perhitungan bobot dan bias
 - $\mathbf{w}_{i}(\text{new}) = \mathbf{w}_{i}(\text{old}) + \Delta \mathbf{w}_{i}, \text{ dimana } \Delta \mathbf{w}_{i} = \mathbf{x}_{i} \mathbf{t} \ (i=1, ..., n)$
 - \blacksquare b(new) = b(old) + Δb, dimana Δb=t
- ☐ Hasil pembelajaran
 - Bobot berubah akibat pasangan data pertama saja
 - Dari hasil iterasi, diperoleh w1 =..., w2=..., dan w0=...

	Masukan			Target Perubahan Bobot			Bobot Baru			
Pola	x1	x2 x0=1 y=t		Δw1	Δw2	Δw0	w1	w2	w0	
								0	0	0
1	1	1	1	1	1	1	1	1	1	1
2	1	-1	1	-1	-1	1	-1	0	2	0
3	-1	1	1	-1	1	-1	-1	1	1	-1
4	-1	-1	1	-1	1	1	-1	2	2	-2

- Perhitungan bobot dan bias
 - $w_i(new) = w_i(old) + \Delta w_i$, dimana $\Delta w_i = x_i t$ (i=1 ... n). $b(new) = b(old) + \Delta b$, dimana $\Delta b = t$.
- Hasil pembélajaran
 - Dari hasil iterasi, diperoleh w1=2, w2=2, dan b=-2.

$$X1 - w1 = 2$$

$$X2- w2=2 \rightarrow Y$$

Pola	x1	x2	$net = \sum_{i=0}^{2} x_i w_i$	$y = f(net) = \begin{cases} 1 & jika & net \ge 0 \\ -1 & jika & net < 0 \end{cases}$
1	1	1	1.2 + 1.2 + 1.(-2) = 2	1
2	1	-1	1.2 + (-1).2 + 1.(-2) = -2	-1
3	-1	1	(-1).2 + 1.2 + 1.(-2) = -2	-1
4	-1	-1	(-1).2 + (-1).2 + 1.(-2) = -6	-1

- f(net) sama dengan target yang diinginkan pada fungsi AND
- □ Jaringan SUDAH DAPAT 'MENGERTI' pola yang dimaksud

Kasus 2: Pengenalan Pola

Diberikan 2 pola menyerupai huruf X dan O

```
      #
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
      .
```

POLA 1

POLA 2

Representasi Kasus

- Setiap karakter pola dianggap sebagai sebuah unit masukan
 - Karakter "#" diberi nilai 1, karakter "." diberi nilai -1 (minus 1)

	1	2	3	4	5						
1	#	•	•	•	#		4	-1	-1	-1	1
2	•	#	•	#	•		-	1	픾	1	-1
3	•	•	#	•		\rightarrow	-1	-1	1	-1	-1
4	•	#	•	#	•		-1	1	-1	1	-1
5	#	•	•	•	#		7	-1	幵	귀	1

- Pola terdiri dari 5 baris dan 5 kolom
 - Jaringan Hebb terdiri dari 25 unit masukan (x1 s/d x25) dan sebuah bias bernilai = 1
- □ Target
 - Keluaran jaringan bernilai 1 jika diberi masukan pola-1 (X) dan bernilai -1 (minus 1) jika diberi masukan pola-2 (O)

Representasi Masukan dan Target

Pola

1

2

	<i>x5</i>	x4	х3	x2	x1
	X10	x9	х8	<i>x7</i>	х6
	X15	x14	x13	X12	x11
	X20	x19	x18	X17	x16
t	x25	x24	x23	x22	x21
1	1	-1	-1	-1	1
	-1	1	-1	1	-1
	-1	-1	1	-1	-1
	-1	1	-1	1	-1
	1	-1	-1	-1	1
-1	-1	1	1	1	-1
	1	-1	-1	-1	1
	1	-1	-1	-1	1
	1	-1	-1	-1	1
	-1	1	1	1	-1

Arsitektur Jaringan Hebb

Pembelajaran Jaringan

	Masukan		Target	Perubahan Bobot		Bobot Bar	u
	x1 x25	x0=1	y=t	Δw1 Δw25	Δw0	w1 s/d w25	w0
						00000	0
Pola						00000	
	1 -1 -1 -1 1	1	1	1 -1 -1 -1 1	1	1 -1 -1 -1 1	1
	-1 1 -1 1 -1			-1 1-1 1-1		-1 1-1 1-1	
1	-1 -1 1 -1 -1			-1 -1 1 -1 -1		-1 -1 1 -1 -1	
	-1 1 -1 1 -1			-1 1-1 1-1		-1 1-1 1-1	
	1 -1 -1 -1 1			1 -1 -1 -1 1		1 -1 -1 -1 1	
	-1 1 1 1 -1	1	-1	1 -1 -1 -1 1	-1	2-2-2-2 2	0
2	1 -1 -1 -1 1			-1 1 1 1 -1		-2 2 0 2 -2	
2	1 -1 -1 -1 1			-1 1 1 1 -1		-2 0 2 0 -2	
	1 -1 -1 -1 1			-1 1 1 1 -1		-2 2 0 2 -2	
	-1 1 1 1 -1			1 -1 -1 -1 1		2-2-2-2 2	

[•] $w_i(new)=w_i(old)+\Delta w_i$, dimana $\Delta w_i=\alpha x_i$, y (i=0, ..., n; x0=+1)

Hasil Penggunaan (bobot (terakhir) hasil belajar)

Pola	x1 s/d x25	$net = \sum_{i=0}^{25} x_i w_i$	$y = f(net) = \begin{cases} 1 & jika & net \ge 0 \\ -1 & jika & net < 0 \end{cases}$
	1 -1 -1 -1 1	1.2 + (-1).(-2) ++ 1.2 = 42	1
	-1 1 -1 1 -1		
1	-1 -1 1 -1 -1		
	-1 1 -1 1 -1		
	1 -1 -1 -1 1		
	-1 1 1 1 -1	(-1).2 + 1.(-2) + + (-1).2 = -42	-1
	1 -1 -1 -1 1		
2	1 -1 -1 -1 1		
	1 -1 -1 -1 1		
	-1 1 1 1 -1		

- ☐ Keluaran jaringan sama dengan target yang diinginkan
- ☐ Jaringan DAPAT MENGENALI POLA

Pengenalan Pola

Diberikan 3 pola lain

Hasil Penggunaan

Pola	x1 x25	$net = \sum_{i=0}^{25} x_i w_i$	$y = f(net) = \begin{cases} 1 & jika & net \ge 0 \\ -1 & jika & net < 0 \end{cases}$
x (pola 3)	-1-1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1	(-1).2+(-1).(-2)++ (-1).2 + 0 = 26	1
I (pola 4)	-1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1	(-1).2 + 1.(-2) ++ (-1).2 + 0 = -22	-1
H (pola 5)	1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1	1.2+(-1).(-2)++ 1.2 + 0 = 10	1

Hasil Penggunaan

- □ Dari hasil penggunaan hasil pembelajaran JST dengan 2-pola (Pola-1 dan Pola-2), kemudian digunakan untuk mengenali 5-pola, yaitu: Pola-1, Pola-2, Pola-3, Pola-4, dan Pola-5, didapat:
- Pola-1, termasuk kelompok pola yang dimaksudkan.
- □ Pola-2, bukan termasuk
- □ Pola-3, termasuk kelompok
- ☐ Pola-4, bukan termasuk
- □ Pola-5, termasuk kelompok

Tugas

- Buat JST Hebb pengenal pola untuk mengenali Pola Karakter Angka Terakhir NIM anda.
 - Ukuran karakter 5x5 pixel,
 - Representasi input-output: Bipolar-Bipolar,
 - Fungsi aktifasi adalah Signum Function dengan nilai threshold, $\theta = 0$,
 - Algoritma pembelajaran yang digunakan adalah extended-Hebb,
 - Pola karakter (satu angka terakhir NIM) yang betul untuk latihan, boleh lebih dari 1-pola,
 - Pola karakter yang salah untuk latihan, boleh banyak pola dan banyak angka (selain angka terakhir NIM),
 - Buat dan tunjukan tabel pelatihannya.
- Gunakan JST Hebb Pengenal Pola yang terbentuk tadi untuk menilai karakter 0,1,2,...,9.
 - Buat dan tunjukan tabel penggunaanya.

Pustaka Acuan

- Jong Jek Siang, Drs. M.Sc., Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan Matlab, ANDI, Jogjakarta, 2005.
- Laurene Fausett, Fundamentals Of Neural Networks: Architectures, Algorithms, and Applications, Prentice-Hall, New Jersey, 1994.
- Simon Haykin, Neural Networks: A Comprehensive Foundation, 2nd, Prentice-Hall, New Jersey, 1999.

Sekian

Agust Isa Martinus

aimxx@yahoo.com

http://www.GusMartinus.mine.nu