AP Practice Problems on the FTC

- 5. Let f be a function defined on the closed interval [0, 7]. The graph of f, consisting of four line segments, is shown above. Let g be the function given by $g(x) = \int_2^x f(t) dt$.
 - (a) Find g(3), g'(3), and g''(3).
 - (b) Find the average rate of change of g on the interval $0 \le x \le 3$.
 - (c) For how many values c, where 0 < c < 3, is g'(c) equal to the average rate found in part (b)? Explain your reasoning.
 - (d) Find the x-coordinate of each point of inflection of the graph of g on the interval 0 < x < 7. Justify your answer.

- 4. Let f be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of f', the derivative of f, consists of two semicircles and two line segments, as shown above.
 - (a) For -5 < x < 5, find all values x at which f has a relative maximum. Justify your answer.
 - (b) For -5 < x < 5, find all values x at which the graph of f has a point of inflection. Justify your answer.
 - (c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.
 - (d) Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.

- 5. Let g be a continuous function with g(2) = 5. The graph of the piecewise-linear function g', the derivative of g, is shown above for $-3 \le x \le 7$.
 - (a) Find the x-coordinate of all points of inflection of the graph of y = g(x) for -3 < x < 7. Justify your answer.
 - (b) Find the absolute maximum value of g on the interval $-3 \le x \le 7$. Justify your answer.
 - (c) Find the average rate of change of g(x) on the interval $-3 \le x \le 7$.
 - (d) Find the average rate of change of g'(x) on the interval $-3 \le x \le 7$. Does the Mean Value Theorem applied on the interval $-3 \le x \le 7$ guarantee a value of c, for -3 < c < 7, such that g''(c) is equal to this average rate of change? Why or why not?

- 4. A particle moves along the x-axis so that its velocity at time t, for $0 \le t \le 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t = 0, t = 3, and t = 5, and the graph has horizontal tangents at t = 1 and t = 4. The areas of the regions bounded by the t-axis and the graph of v on the intervals [0, 3], [3, 5], and [5, 6] are 8, 3, and 2, respectively. At time t = 0, the particle is at x = -2.
 - (a) For $0 \le t \le 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.
 - (b) For how many values of t, where $0 \le t \le 6$, is the particle at x = -8? Explain your reasoning.
 - (c) On the interval 2 < t < 3, is the speed of the particle increasing or decreasing? Give a reason for your answer.
 - (d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.