

UNIVERSIDADE FEDERAL DO CEARÁ - UFC

Campus de Sobral

Departamento de Engenharia Elétrica

Disciplina: Variáveis Complexas SBL0095

Prof. Ailton Campos

Data: 03/05/2023 Período: 2023.1

TA T			
-IN	on	ne.	:

2^a Lista de Exercícios

1. Resolva os seguintes itens:

a) Sabendo que sen $\theta = 0, 6, 0^{\circ} < \theta < 90^{\circ}$, calcule cos θ e tg θ .

b) Sabendo que tg $\theta = 5$, $0^{\circ} < \theta < 90^{\circ}$, calcule cos θ e sen θ .

- 2. Um observador em uma planície vê ao longe uma montanha segundo um ângulo de 15° (ângulo no plano vertical formado por um ponto no topo da montanha, o observador e o plano horizontal). Após caminhar uma distância d em direção à montanha, ele passa a vê-la segundo um ângulo de 30°. Qual é a altura da montanha?
- 3. Considere agora que o observador do problema anterior encontrou um ângulo α na primeira medição e β na segunda medição. Determinar a altura da montanha em função de α , β e d.
- 4. Em que quadrante se tem simultaneamente:
 - a) sen $\theta < 0$ e cos $\theta < 0$?
 - b) sen $\theta > 0$ e tg $\theta < 0$?
 - c) $\cos \theta > 0$ e tg $\theta > 0$?
- 5. Calcule k de modo que as raízes da equação

$$x^2 - 2kx + k^2 + k = 0$$

sejam o seno e o cosseno de um mesmo ângulo.

- 6. Em um triângulo retângulo de hipotenusa 1, a soma dos catetos é $\sqrt{6}/2$. Calcular a razão entre o menor cateto e o maior cateto.
- 7. Dados $\ln 2 = 0,6931$ e $\ln 3 = 1,0986$, ache:
 - a) ln 6.
 - b) ln 72.
 - c) $\ln(2^m \times 3^n)$.
 - d) $\ln \frac{e}{2}$.
 - e) $\ln 0.666...$
- 8. Sabendo que 1,732 é uma aproximação de $\sqrt{3}$ com 3 algarismos decimais exatos, calcular o valor de $e^{\sqrt{3}}$ com 2 algarismos decimais exatos.
- 9. Ache os valores reais de x que satisfazem cada uma das igualdades abaixo:
 - a) $\frac{1}{3} \ln x + \ln 3 = \ln 5$.
 - b) $\ln x = \ln(a + b) + \ln(a b)$.

- 10. Para que valores de n, inteiro positivo, $(1+i)^n$ é real?
- 11. (**A fórmula de Cardano**) Existe uma fórmula chamada de Fórmula de Cardano (matemático italiano da época da Renascença) que fornece as raízes da equação do terceiro grau; $y^3 + \alpha y + b = 0$. A fórmula é a seguinte:

$$y = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}} + \sqrt[3]{-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}.$$

Resolver usando a Fórmula de Cardano: seja ν o volume de um cubo de aresta κ e ν' o volume de um paralelepípedo retângulo cuja área da base é 3, e cuja altura é igual a κ . Determinar κ de modo que $\nu = \nu' + 1$.

Observação: A importância deste problema é que para achar uma raíz real positiva, isto é, que resolve efetivamente o problema, é necessário usar números complexos.

Bom Trabalho!!!