

Hochschule Karlsruhe University of Applied Sciences

Fakultät für Informatik und Wirtschaftsinformatik Wirtschaftsinformatik

BACHELORTHESIS

Performance-Optimierung einer asynchronen Marketing Event-API

von Drilon Jashari

Matrikelnr. 74861

Arbeitsplatz SAP SE, Walldorf

Erstbetreuer*in Prof. Dr. rer. nat. Udo Müller

Zweitbetreuer*in Prof. Dr. Ingo Stengel

Abgabetermin 30.06.2025

Karlsruhe, 30.06.2025

Vorsitzender des Prüfungsausschusses

Inhaltsverzeichnis

In	Inhaltsverzeichnis				
1	Einleitung				
	1.1	Problemstellung und Motivation	4		
	1.2	Forschungsfrage und Hypothesen	4		
	1.3	Zielsetzung und Abgrenzung	4		
	1.4	Aufbau der Arbeit	4		
2	Theoretische Grundlagen				
	2.1	Marketing-Automatisierung und Event-APIs	5		
	2.2	Java: Architektur, Speicherverwaltung und Threading-Modell	5		
	2.3	Node.js: Event-Loop, asynchrone Programmierung	5		
	2.4	Leistungsmessung von Webdiensten: Methoden und Metriken	5		
3	Stand der Forschung				
	3.1	Bestehende Vergleiche zwischen Java und Node.js	6		
	3.2	Performance-Optimierung von Web-APIs	6		
	3.3	Spezifische Herausforderungen bei Marketing-Event-APIs	6		
4	Methodik 7				
	4.1	Beschreibung der untersuchten Systeme	7		
	4.2	Entwicklungs- und Testumgebung	7		
	4.3	Erhebungsmethoden und Metriken	7		
	4.4	Teststrategie und Lastprofile	7		
5	Implementierung				
	5.1	Java-Implementierung: Architektur und Besonderheiten	8		
	5.2	Node.js-Migration: Anpassungen und Herausforderungen	8		
	5.3	Optimierungsstrategien	8		
6	Ergebnisse				
	6.1	Darstellung der Messergebnisse	9		
	6.2	Vergleich beider Implementierungen	9		

	6.3	Analyse der Leistungsunterschiede	9		
7	Diskussion 1				
	7.1	Interpretation der Ergebnisse	10		
	7.2	Beantwortung der Forschungsfrage	10		
	7.3	Kritische Würdigung der Methodik	10		
	7.4	Praktische Implikationen für SAP Emarsys	10		
8	Fazit und Ausblick				
	8.1	Zusammenfassung der Ergebnisse	11		
	8.2	Praktische Empfehlungen	11		
	8.3	Weiterführende Forschungsfragen	11		
${f A}$	Anhang 1				
	A.1	Quellcode-Auszüge	12		
	A.2	Detaillierte Messergebnisse	12		
	A.3	Sonstige relevante Materialien	12		

Einleitung

- 1.1 Problemstellung und Motivation
- 1.2 Forschungsfrage und Hypothesen
- 1.3 Zielsetzung und Abgrenzung
- 1.4 Aufbau der Arbeit

Theoretische Grundlagen

- 2.1 Marketing-Automatisierung und Event-APIs
- 2.2 Java: Architektur, Speicherverwaltung und Threading-Modell
- 2.3 Node.js: Event-Loop, asynchrone Programmierung
- 2.4 Leistungsmessung von Webdiensten: Methoden und Metriken

Stand der Forschung

- 3.1 Bestehende Vergleiche zwischen Java und Node.js
- 3.2 Performance-Optimierung von Web-APIs
- 3.3 Spezifische Herausforderungen bei Marketing-Event-APIs

Methodik

- 4.1 Beschreibung der untersuchten Systeme
- 4.2 Entwicklungs- und Testumgebung
- 4.3 Erhebungsmethoden und Metriken
- 4.4 Teststrategie und Lastprofile

Implementierung

- 5.1 Java-Implementierung: Architektur und Besonderheiten
- 5.2 Node.js-Migration: Anpassungen und Herausforderungen
- 5.3 Optimierungsstrategien

Ergebnisse

- 6.1 Darstellung der Messergebnisse
- 6.2 Vergleich beider Implementierungen
- 6.3 Analyse der Leistungsunterschiede

Diskussion

- 7.1 Interpretation der Ergebnisse
- 7.2 Beantwortung der Forschungsfrage
- 7.3 Kritische Würdigung der Methodik
- 7.4 Praktische Implikationen für SAP Emarsys

Fazit und Ausblick

- 8.1 Zusammenfassung der Ergebnisse
- 8.2 Praktische Empfehlungen
- 8.3 Weiterführende Forschungsfragen

Anhang A

Anhang

- A.1 Quellcode-Auszüge
- A.2 Detaillierte Messergebnisse
- A.3 Sonstige relevante Materialien