Menkar Towards a Multimode Presheaf Proof Assistant

Andreas Nuyts¹, Dominique Devriese²

¹KU Leuven, Belgium ²Vrije Universiteit Brussel, Belgium

> TYPES '19 Oslo, Norway June 13, 2019

Modal type theory: Examples

Irrelevance: dependent definitional constancy

Agda notation: $(x : A) \rightarrow B x$

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

```
 (\operatorname{rel} + m)(\operatorname{rel} + p)(\operatorname{rel} + x)(\operatorname{rel} + xs) \vdash m : \mathbb{N}  OK: (\operatorname{rel} \ge \operatorname{rel}) (rel + m)(rel + p)(rel + x)(rel + xs) \vdash n : \mathbb{N}  OK: (\operatorname{rel} \ge \operatorname{rel}) (rel + m)(rel + p)(rel + x)(rel + xs) \vdash p : m < n OK: (\operatorname{rel} \ge \operatorname{rel}) (rel + m)(irr + p)(rel + x)(irr + xs) \vdash x : X OK: (\operatorname{rel} \ge \operatorname{rel}) OK: (\operatorname{rel} \ge \operatorname{rel}) (rel + m)(irr + p)(rel + x)(irr + xs) \vdash xs: List<sub>m</sub> X BAD: (\operatorname{rel} \ge \operatorname{rel})
```

$$(rel+m)(irr+p)(irr+p)(rel+x)(irr+xs) \vdash cons_X m n p x xs : List_n X$$

$$rel \setminus rel = rel$$
 $irr \setminus rel = re$
 $rel \setminus irr = irr$ $irr \setminus irr = re$

Irrelevance: dependent definitional constancy

Agda notation: $(x : A) \rightarrow B x$

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr \mid mn : \mathbb{N}) \to (irr \mid m < n) \to X \to List_m X \to List_n X$

```
 \begin{aligned} &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash m: \mathbb{N} & \mathsf{OK}\colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash n: \mathbb{N} & \mathsf{OK}\colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash p: m < n & \mathsf{OK}\colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash x: X & \mathsf{OK}\colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash xs: \operatorname{List}_m X & \mathsf{BAD}\colon (\operatorname{rel} \geq \operatorname{irr}) \end{aligned}
```

 $(rel+m)(irr+p)(irr+p)(rel+x)(irr+xs) \vdash cons_X m n p x xs : List_n X$

$$rel \setminus rel = rel$$
 $rel \setminus irr = irr$

$$irr \setminus rel = rel$$

 $irr \setminus irr = rel$

Irrelevance: dependent definitional constancy

Agda notation: $(x : A) \rightarrow B x$

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

```
 \begin{array}{lll} (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash m: \mathbb{N} & \operatorname{OK:} (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash n: \mathbb{N} & \operatorname{OK:} (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash p: m < n & \operatorname{OK:} (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+xs)(\operatorname{irr}+xs) \vdash x: X & \operatorname{OK:} (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash xs: \operatorname{List}_m X & \operatorname{BAD:} (\operatorname{rel} \geq \operatorname{irr}) \\ \end{array}
```

 $(\operatorname{rel} + m)(\operatorname{irr} + p)(\operatorname{rel} + x)(\operatorname{irr} + xs) \vdash \operatorname{cons}_X m n p x xs : \operatorname{List}_n X$

 $rel \ rel = rel$ $irr \ rel = re$ $rel \ irr = irr$ $irr \ irr = re$

Irrelevance: dependent definitional constancy

Agda notation: $(x : A) \rightarrow B x$

Sized lists:

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

```
 (\operatorname{rel} + m)(\operatorname{rel} + p)(\operatorname{rel} + x)(\operatorname{rel} + xs) \vdash m : \mathbb{N}  OK: (\operatorname{rel} \ge \operatorname{rel})  (rel + m)(rel + p)(rel + x)(rel + xs) \vdash n : \mathbb{N}  OK: (\operatorname{rel} \ge \operatorname{rel})  (rel + m)(rel + p)(rel + x)(rel + xs) \vdash p : m < n  OK: (\operatorname{rel} \ge \operatorname{rel})  (rel + m)(irr + p)(rel + x)(irr + xs) \vdash x : X  OK: (\operatorname{rel} \ge \operatorname{rel})  (rel + m)(irr + p)(rel + x)(irr + xs) \vdash xs : \operatorname{List}_m X BAD: (\operatorname{rel} \ge \operatorname{rel})
```

 $(\operatorname{rel} + m)(\operatorname{irr} + p)(\operatorname{rel} + x)(\operatorname{irr} + xs) \vdash \operatorname{cons}_X m n p x xs : \operatorname{List}_n X$

 $rel \ rel = rel$ $irr \ rel = re$ $rel \ irr = irr$ $irr \ irr = re$

Irrelevance: dependent definitional constancy

```
Agda notation: (x : A) \rightarrow B x
```

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

```
 \begin{array}{llll} (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash m : \mathbb{N} & \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash n : \mathbb{N} & \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash p : m < n & \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash x : X & \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash xs : \operatorname{List}_m X & \mathsf{BAD} : (\operatorname{rel} \geq \operatorname{irr}) \\ \hline (\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash cons_X m n p x xs : \operatorname{List}_n X \\ \end{array}
```

$$rel \setminus rel = rel$$
 $irr \setminus rel = re$
 $rel \setminus irr = irr$ $irr \setminus irr = re$

Irrelevance: dependent definitional constancy

```
Agda notation: (x : A) \rightarrow B x
```

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

$$(rel + m)(irr + n)(irr + p)(rel + x)(irr + xs) \vdash cons_X m n p x xs : List_n X$$

$$rel \setminus rel = rel$$
 $irr \setminus rel = re$
 $rel \setminus irr = irr$ $irr \setminus irr = re$

Irrelevance: dependent definitional constancy

```
Agda notation: (x : A) \rightarrow B x
```

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

$$\begin{aligned} &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash m : \mathbb{N} & \mathsf{OK} \colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash n : \mathbb{N} & \mathsf{OK} \colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{rel}+p)(\operatorname{rel}+x)(\operatorname{rel}+xs) \vdash p : m < n & \mathsf{OK} \colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash x : X & \mathsf{OK} \colon (\operatorname{rel} \geq \operatorname{rel}) \\ &(\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash xs : \operatorname{List}_m X & \mathsf{BAD} \colon (\operatorname{rel} \geq \operatorname{irr}) \\ &(\operatorname{rel}+m)(\operatorname{irr}+p)(\operatorname{irr}+p)(\operatorname{rel}+x)(\operatorname{irr}+xs) \vdash \operatorname{cons}_X m n p x xs : \operatorname{List}_n X \end{aligned}$$

$$rel \ rel = rel$$
 $irr \ rel = rel$

Irrelevance: dependent definitional constancy

```
Agda notation: (x : A) \rightarrow B x
```

- $nil_X : (\mathbf{irr} \mid n : \mathbb{N}) \to (\mathbf{irr} \mid 0 < n) \to \mathbf{List}_n X$,
- $cons_X : (irr + mn : \mathbb{N}) \to (irr + m < n) \to X \to List_m X \to List_n X$

$$(\operatorname{rel} + m)(\operatorname{rel} + p)(\operatorname{rel} + x)(\operatorname{rel} + xs) \vdash m : \mathbb{N} \qquad \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + m)(\operatorname{rel} + p)(\operatorname{rel} + x)(\operatorname{rel} + xs) \vdash n : \mathbb{N} \qquad \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + m)(\operatorname{rel} + p)(\operatorname{rel} + x)(\operatorname{rel} + xs) \vdash p : m < n \qquad \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + m)(\operatorname{irr} + p)(\operatorname{rel} + x)(\operatorname{irr} + xs) \vdash x : X \qquad \mathsf{OK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + m)(\operatorname{irr} + p)(\operatorname{rel} + x)(\operatorname{irr} + xs) \vdash xs : \operatorname{List}_m X \qquad \mathsf{BAD} : (\operatorname{rel} \geq \operatorname{irr}) \\ (\operatorname{rel} + x)(\operatorname{rel} + x)(\operatorname{rel} + xs)(\operatorname{rel} + xs) \vdash xs : \operatorname{List}_m X \qquad \mathsf{CK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs) \vdash xs : \operatorname{List}_m X \qquad \mathsf{CK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs) \vdash xs : \operatorname{List}_m X \qquad \mathsf{CK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{rel} + xs) \vdash xs : \operatorname{List}_m X \qquad \mathsf{CK} : (\operatorname{rel} \geq \operatorname{rel}) \\ (\operatorname{rel} + xs)(\operatorname{rel} + xs)(\operatorname{re$$

$$(\operatorname{rel} + m)(\operatorname{irr} + p)(\operatorname{rel} + x)(\operatorname{irr} + xs) \vdash \operatorname{cons}_X m n p x xs : \operatorname{List}_n X$$

$$rel \ rel = rel$$
 $irr \ rel = rel$
 $rel \ irr = irr$ $irr \ irr = rel$

Crisp functions do not preserve paths.

- Strict equality $\underline{\dot{=}} : (\mathbf{cri} \mid x \mid y : A) \rightarrow \mathcal{U}$
- "Amazing right adjoint" $\sqrt{:(\mathbf{cri} \mid \mathcal{U})} \to \mathcal{U}$ Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$\operatorname{cri} \backslash \operatorname{cri} = \operatorname{cri} \qquad \operatorname{con} \backslash \operatorname{cri} = \operatorname{cri}$$

Crisp functions do not preserve paths.

- Strict equality $\underline{\dot{=}} : (\mathbf{cri} : x \ y : A) \to \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} + A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} + A : \mathcal{U})(\operatorname{con} + B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$\operatorname{cri} \backslash \operatorname{cri} = \operatorname{cri} \qquad \operatorname{con} \backslash \operatorname{cri} = \operatorname{cri}$$

Crisp functions do not preserve paths.

- Strict equality $\underline{\dot{}} = \underline{\dot{}} : (\mathbf{cri} \mid x \ y : A) \to \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A : \mathcal{U} \quad \operatorname{OK:} (\operatorname{con} \ge \operatorname{cri})}{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}$$

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$cri \setminus cri = cri$$
 $con \setminus cri = cri$ $cri \setminus con = \emptyset$ $con \setminus con = con$

Crisp functions do not preserve paths.

- Strict equality $\dot{=}$: (cri | x y : A) $\rightarrow \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A : \mathcal{U} \quad \mathsf{OK} : (\operatorname{con} \ge \operatorname{cri})}{(\operatorname{cri} : A : \mathcal{U}) \vdash B : \mathcal{U} \quad \mathsf{BAD} : \mathsf{unavailable}}{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}$$

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$cri \setminus cri = cri$$
 $con \setminus cri = cri$
 $cri \setminus con = \emptyset$ $con \setminus con = cor$

Crisp functions do not preserve paths.

- Strict equality $\underline{\dot{}} = \underline{\dot{}} : (\mathbf{cri} \mid x \ y : A) \to \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U}) \vdash B : \mathcal{U}} \xrightarrow{\operatorname{BAD}: \text{unavailable}}$$
$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$cri \setminus cri = cri$$
 $con \setminus cri = cri$
 $cri \setminus con = \emptyset$ $con \setminus con = cor$

Crisp functions do not preserve paths.

- Strict equality $\dot{=}$: (cri | x y : A) $\rightarrow \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A : \mathcal{U} \quad \mathsf{OK:} \ (\operatorname{con} \ge \operatorname{cri})}{(\operatorname{cri} : A : \mathcal{U}) \vdash B : \mathcal{U} \quad \mathsf{BAD:} \ \mathsf{unavailable}}{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}$$

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{con} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$cri \setminus cri = cri$$
 $con \setminus cri = cri$
 $cri \setminus con = \emptyset$ $con \setminus con = cor$

Crisp functions do not preserve paths.

- Strict equality $\dot{=}$: (cri | x y : A) $\rightarrow \mathcal{U}$
- "Amazing right adjoint" √: (cri | U) → U
 Licata, Orton, Pitts, Spitters (2018)

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A : \mathcal{U} \quad \mathsf{OK:} \ (\operatorname{con} \ge \operatorname{cri})}{(\operatorname{cri} : A : \mathcal{U}) \vdash B : \mathcal{U} \quad \mathsf{BAD:} \ \mathsf{unavailable}}{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}$$

$$\frac{(\operatorname{cri} : A : \mathcal{U}) \vdash A \times B : \mathcal{U}}{(\operatorname{cri} : A : \mathcal{U})(\operatorname{con} : B : \mathcal{U}) \vdash \sqrt{(A \times B)} : \mathcal{U}}$$

$$\begin{array}{ll} \operatorname{cri} \backslash \operatorname{cri} = \operatorname{cri} & \operatorname{con} \backslash \operatorname{cri} = \operatorname{cri} \\ \operatorname{cri} \backslash \operatorname{con} = \oslash & \operatorname{con} \backslash \operatorname{con} = \operatorname{con} \\ \end{array}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \leq v \Leftrightarrow \rho \leq \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\Gamma \vdash f t : B t$$

Multimode type theory

- Set of modes *p*, *q*, *r*, . . .
- Types $A: \mathcal{U}^{p}_{\ell}$ have a mode
- Posets of mod'ties $\mu: p \to q$
- Functions have a modality
- ⇒ poset-enriched categories
- Left division $\mu \setminus \dashv \mu \circ -$

Licata, Shulman, Riley (2017)

$$\frac{\mu: p \to q}{\Gamma \vdash_q f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_p t: A}{\Gamma \vdash_q f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality $v \circ \mu$ of $g \circ f$
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \leq v \Leftrightarrow \rho \leq \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\Gamma \vdash f t : B t$$

Multimode type theory

- Set of modes p, q, r, \ldots
- Types $A: \mathcal{U}^p_\ell$ have a mode
- ullet Posets of mod'ties $\mu: p
 ightarrow q$
- Functions have a modality
- 0 −0−
 ⇒ poset and shad exception
- Left division $\mu \setminus \dashv \mu \circ -$

Licata, Shulman, Riley (2017)

$$\frac{\mu: p \to q}{\Gamma \vdash_q f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_p t: A}{\Gamma \vdash_q f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A: \mathcal{U}_{\ell}^{p}$ have a mode
- ullet Posets of mod'ties $\mu: p
 ightarrow q$
- Functions have a modality
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: \rho \to q}{\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_{\rho} t: A}{\Gamma \vdash_{q} f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, . . .
- Types A : U^P have a mode
- Posets of mod'ties $\mu: p \to q$
- Functions have a modality
 - = -a-⇒ need-enriched caterior
- Left division $\mu \setminus \dashv \mu \circ -$

Licata, Shulman, Riley (2017)

$$\frac{\mu: \rho \to q}{\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_{\rho} t: A}{\Gamma \vdash_{q} f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality v ∘ μ of g ∘ f
 ⇒ ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types A : U^ρ have a mode
- Posets of mod'ties $\mu: p \rightarrow q$
- Functions have a modality
 - o o —
 ⇒ poset-enriched categorie
- Left division μ \ − ∃ μ ∘ −
 Licata, Shulman (2016)
- Licata, Shulman, Riley (2017)

$$\frac{\mu: p \to q}{\Gamma \vdash_q f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_p t: A}{\Gamma \vdash_q f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, . . .
- Types $A:\mathcal{U}^p_\ell$ have a mode
- Posets of modities $\mu: p \rightarrow q$
- Functions have a modality
 - o o —
 ⇒ poset-enriched categorie
- Left division $\mu \setminus \exists \mu \circ -$
- Licata, Shulman, Riley (2017)

$$\mu: \rho \to q
\Gamma \vdash_q f: (\mu \mid x : A) \to B x
\underline{\mu} \setminus \Gamma \vdash_\rho t : A$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A: \mathcal{U}^p_\ell$ have a mode
- ullet Posets of mod'ties $\mu: p
 ightarrow q$
- Functions have a modality
 - - ⇒ poset-enriched category
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: \rho \to q}{\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_{\rho} t: A}{\Gamma \vdash_{\alpha} f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A: \mathcal{U}^p_\ell$ have a mode
- Posets of mod'ties $\mu: p \to q$
- Functions have a modality
 - $\bullet \ \operatorname{Id}_{p}: p \to p$ $\bullet \ -\circ -$
 - ⇒ poset-enriched category
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: p \to q}{\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_{p} t: A}{\Gamma \vdash_{q} f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality v ∘ μ of g ∘ f
 ⇒ ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- Posets of mod'ties $\mu: p \rightarrow q$
- Functions have a modality
- ⇒ poset-enficined category
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: p \to q}{\Gamma \vdash_q f: (\mu \mid x: A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_p t: A}{\Gamma \vdash_a f t: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality v ∘ μ of g ∘ f
 ⇒ ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \leq v \Leftrightarrow \rho \leq \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- Posets of mod'ties $\mu: p \rightarrow q$
- Functions have a modality
 - ⇒ poset-enriched categor
- Left division $\mu \setminus \dashv \mu \circ -$

$$\begin{array}{l}
\mu: p \to q \\
\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x \\
\underline{\mu \setminus \Gamma \vdash_{p} t: A}
\end{array}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality v ∘ μ of g ∘ f
 ⇒ ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- Posets of mod'ties $\mu: p \rightarrow q$
- Functions have a modality
 - $id_p: p \rightarrow p$
 - − ∘ −⇒ poset-enriched category
- Left division $\mu \setminus \dashv \mu \circ -$

$$\mu: \rho \to q$$

$$\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x$$

$$\mu \setminus \Gamma \vdash_{\rho} t: A$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality v ∘ μ of g ∘ f
 ⇒ ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- ullet Posets of mod'ties $\mu: p
 ightarrow q$
- Functions have a modality
 - $id_p: p \rightarrow p$
 - - -
 - $\Rightarrow \text{poset-enriched category}$
- Left division $\mu \setminus \dashv \mu \circ -$

$$\mu: p \to q$$

$$\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x$$

$$\mu \setminus \Gamma \vdash_{p} t: A$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- Posets of mod'ties $\mu: p \to q$
- Functions have a modality
 - $id_p: p \to p$
 - - -
 - \Rightarrow poset-enriched category
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: \rho \to q}{\Gamma \vdash_{q} f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_{\rho} t: A}{\Gamma \vdash_{q} ft: B t}$$

Modal type theory

- Poset of modalities μ, ν, ρ, \dots
- Functions have a modality
 - Modality ε of $\lambda x.x$
 - Modality $v \circ \mu$ of $g \circ f$ \Rightarrow ordered monoid
- Left division $\mu \setminus \dashv \mu \circ \mu \setminus \rho \le v \Leftrightarrow \rho \le \mu \circ v$

Pioneered by:

Pfenning (2001), Abel (2006, 2008)

$$\frac{\Gamma \vdash f : (\mu \mid x : A) \to B x}{\mu \setminus \Gamma \vdash t : A}$$

$$\frac{\Gamma \vdash f t : B t}{\Gamma \vdash f t : B t}$$

Multimode type theory

- Set of modes p, q, r, \dots
- Types $A : \mathcal{U}_{\ell}^{p}$ have a mode
- ullet Posets of mod'ties $\mu: p
 ightarrow q$
- Functions have a modality
 - $id_p: p \rightarrow p$
 - - 0 -
 - $\Rightarrow \mathsf{poset}\text{-}\mathsf{enriched}\;\mathsf{category}$
- Left division $\mu \setminus \dashv \mu \circ -$

$$\frac{\mu: p \to q}{\Gamma \vdash_q f: (\mu \mid x : A) \to B x}$$

$$\frac{\mu \setminus \Gamma \vdash_p t: A}{\Gamma \vdash_q f t: B t}$$

- Modes: data, type
- Modalities:
 - id_{data}:data → data
 par:type → data
 id_{type}:type → type

$$\operatorname{id}_{\operatorname{data}} \setminus \operatorname{id}_{\operatorname{data}} = \operatorname{id}_{\operatorname{data}} \quad \begin{array}{l} \operatorname{par} \setminus \operatorname{id}_{\operatorname{data}} = \oslash \\ \operatorname{id}_{\operatorname{data}} \setminus \operatorname{par} = \operatorname{par} & \operatorname{par} \setminus \operatorname{par} = \operatorname{id}_{\operatorname{type}} \end{array}$$

 $d_{\text{type}} \setminus id_{\text{type}} = id_{\text{type}}$

 $(par \mid X : *)(id_{data} \mid x, y : X)(id_{data} \mid b : Bool) \vdash_{data} if X b x y : X$

- Modes: data, type
- Modalities:
 - id_{data} : data \rightarrow data
 - par:type → data
 - id_{type} : $type \rightarrow type$

```
\mathrm{id}_{\mathtt{data}} \setminus \mathrm{id}_{\mathtt{data}} = \mathrm{id}_{\mathtt{data}} \qquad \begin{aligned} & \mathsf{par} \setminus \mathrm{id}_{\mathtt{data}} = \oslash \\ & \mathrm{id}_{\mathtt{data}} \setminus \mathsf{par} = \mathsf{par} \end{aligned} \qquad \begin{aligned} & \mathsf{par} \setminus \mathrm{id}_{\mathtt{data}} = \oslash \\ & \mathsf{par} \setminus \mathsf{par} = \mathrm{id}_{\mathtt{type}} \end{aligned}
```

 $d_{\text{type}} \setminus id_{\text{type}} = id_{\text{type}}$

```
(par \mid X : *)(id_{data} \mid x, y : X)(id_{data} \mid b : Bool) \vdash_{data} if X b x y : X
```

- Modes: data, type
- Modalities:
 - id_{data} : data \rightarrow data
 - par:type → data
 - id_{type} : $type \rightarrow type$

$$\begin{array}{ll} id_{\text{data}} \setminus id_{\text{data}} = id_{\text{data}} & \text{par} \setminus id_{\text{data}} = \oslash \\ id_{\text{data}} \setminus \text{par} = \text{par} & \text{par} \setminus \text{par} = id_{\text{type}} \end{array}$$

 $id_{\text{type}} \setminus id_{\text{type}} = id_{\text{type}}$

```
(\mathrm{id}_{\mathrm{type}} : X : *) \vdash_{\mathrm{type}} X : * \\ (\mathrm{par} : X : *)(\mathrm{id}_{\mathrm{data}} : x, y : X)(\mathrm{id}_{\mathrm{data}} : b : \mathrm{Bool}) \vdash_{\mathrm{data}} b : \mathrm{Bool} \\ (\mathrm{par} : X : *)(\mathrm{id}_{\mathrm{data}} : x, y : X)(\mathrm{id}_{\mathrm{data}} : b : \mathrm{Bool}) \vdash_{\mathrm{data}} x : X \\ (\mathrm{par} : X : *)(\mathrm{id}_{\mathrm{data}} : x, y : X)(\mathrm{id}_{\mathrm{data}} : b : \mathrm{Bool}) \vdash_{\mathrm{data}} y : X
```

 $(par \mid X : *)(id_{data} \mid x, y : X)(id_{data} \mid b : Bool) \vdash_{data} if X b x y : X$

- Modes: data, type
- Modalities:
 - id_{data} : data \rightarrow data
 - par:type → data
 - id_{type} : $type \rightarrow type$

```
\begin{array}{ll} id_{\text{data}} \setminus id_{\text{data}} = id_{\text{data}} & \text{par} \setminus id_{\text{data}} = \oslash \\ id_{\text{data}} \setminus \text{par} = \text{par} & \text{par} \setminus \text{par} = id_{\text{type}} \end{array}
```

 $id_{type} \setminus id_{type} = id_{type}$

```
 \begin{array}{l} (\mathrm{id}_{\mathsf{type}} + X : *) \vdash_{\mathsf{type}} X : * \\ (\mathsf{par} + X : *) (\mathrm{id}_{\mathsf{data}} + x, y : X) (\mathrm{id}_{\mathsf{data}} + b : \mathsf{Bool}) \vdash_{\mathsf{data}} b : \mathsf{Bool} \\ (\mathsf{par} + X : *) (\mathrm{id}_{\mathsf{data}} + x, y : X) (\mathrm{id}_{\mathsf{data}} + b : \mathsf{Bool}) \vdash_{\mathsf{data}} x : X \\ (\mathsf{par} + X : *) (\mathrm{id}_{\mathsf{data}} + x, y : X) (\mathrm{id}_{\mathsf{data}} + b : \mathsf{Bool}) \vdash_{\mathsf{data}} y : X \end{array}
```

- Modes: data, type
- Modalities:
 - id_{data} : data \rightarrow data
 - par:type → data
 - id_{type} : $type \rightarrow type$

```
\begin{array}{ll} id_{\text{data}} \setminus id_{\text{data}} = id_{\text{data}} & \text{par} \setminus id_{\text{data}} = \oslash \\ id_{\text{data}} \setminus \text{par} = \text{par} & \text{par} \setminus \text{par} = id_{\text{type}} \end{array}
```

 $id_{\text{type}} \setminus id_{\text{type}} = id_{\text{type}}$

```
 \begin{array}{l} (\mathrm{id}_{\mathsf{type}} : X : *) \vdash_{\mathsf{type}} X : * \\ (\mathsf{par} : X : *) (\mathrm{id}_{\mathsf{data}} : x, y : X) (\mathrm{id}_{\mathsf{data}} : b : \mathsf{Bool}) \vdash_{\mathsf{data}} b : \mathsf{Bool} \\ (\mathsf{par} : X : *) (\mathrm{id}_{\mathsf{data}} : x, y : X) (\mathrm{id}_{\mathsf{data}} : b : \mathsf{Bool}) \vdash_{\mathsf{data}} x : X \\ (\mathsf{par} : X : *) (\mathrm{id}_{\mathsf{data}} : x, y : X) (\mathrm{id}_{\mathsf{data}} : b : \mathsf{Bool}) \vdash_{\mathsf{data}} y : X \\ \\ (\mathsf{par} : X : *) (\mathrm{id}_{\mathsf{data}} : x, y : X) (\mathrm{id}_{\mathsf{data}} : b : \mathsf{Bool}) \vdash_{\mathsf{data}} \text{if } X \ b \ x \ y : X \\ \end{array}
```

System F ω

- Modes: data, type
- Modalities:
 - id_{data} : data \rightarrow data
 - par:type → data
 - id_{type} : $type \rightarrow type$

```
id_{\text{data}} \setminus id_{\text{data}} = id_{\text{data}} par \setminus id_{\text{data}} = \emptyset id_{\text{data}} \setminus par = par par \setminus par = id_{\text{type}}
```

 $id_{\text{type}} \setminus id_{\text{type}} = id_{\text{type}}$

```
 \begin{array}{l} (\mathrm{id}_{\mathsf{type}} \mid X : *) \vdash_{\mathsf{type}} X : * \\ (\mathsf{par} \mid X : *) (\mathrm{id}_{\mathsf{data}} \mid x, y : X) (\mathrm{id}_{\mathsf{data}} \mid b : \mathsf{Bool}) \vdash_{\mathsf{data}} b : \mathsf{Bool} \\ (\mathsf{par} \mid X : *) (\mathrm{id}_{\mathsf{data}} \mid x, y : X) (\mathrm{id}_{\mathsf{data}} \mid b : \mathsf{Bool}) \vdash_{\mathsf{data}} x : X \\ (\mathsf{par} \mid X : *) (\mathrm{id}_{\mathsf{data}} \mid x, y : X) (\mathrm{id}_{\mathsf{data}} \mid b : \mathsf{Bool}) \vdash_{\mathsf{data}} y : X \\ \hline (\mathsf{par} \mid X : *) (\mathrm{id}_{\mathsf{data}} \mid x, y : X) (\mathrm{id}_{\mathsf{data}} \mid b : \mathsf{Bool}) \vdash_{\mathsf{data}} \text{if } X \ b \ x \ y : X \\ \hline \end{array}
```

- ∞ modes: proof, data, type, kind, sort, ...
- • modalities incl. ad hoc polymorphism, continuity, parametricity, structurality, irrelevance, shape-irrelevance at every mode.
- ⇒ Superhuman bookkeeping task: Need type-checker.
- Code duplication for every modality is impossible: Need mode & modality polymorphism.

- modes: proof, data, type, kind, sort, ...
- modalities incl. ad hoc polymorphism, continuity, parametricity, structurality, irrelevance, shape-irrelevance at every mode.
- ⇒ Superhuman bookkeeping task: Need type-checker.
- Code duplication for every modality is impossible Need mode & modality polymorphism.

- modes: proof, data, type, kind, sort, ...
- • modalities incl. ad hoc polymorphism, continuity, parametricity, structurality, irrelevance, shape-irrelevance at every mode.
- ⇒ Superhuman bookkeeping task: Need type-checker.
- Code duplication for every modality is impossible: Need mode & modality polymorphism.

- modes: proof, data, type, kind, sort, ...
- • modalities incl. ad hoc polymorphism, continuity, parametricity, structurality, irrelevance, shape-irrelevance at every mode.
- ⇒ Superhuman bookkeeping task: Need type-checker.
- ⇒ Code duplication for every modality is impossible Need mode & modality polymorphism.

- modes: proof, data, type, kind, sort, ...
- • modalities incl. ad hoc polymorphism, continuity, parametricity, structurality, irrelevance, shape-irrelevance at every mode.
- ⇒ Superhuman bookkeeping task: Need type-checker.
- ⇒ Code duplication for every modality is impossible: Need mode & modality polymorphism.

A **multimode** proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \perp , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: I, (_ = 0), (_ = 1), ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \bot , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: I, (_ = 0), (_ = 1), ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016)
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \perp , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: \mathbb{I} , $(_-=0)$, $(_-=1)$, ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \perp , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: I, (_ = 0), (_ = 1), ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \perp , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: I, (_ = 0), (_ = 1), ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - $\mathcal{U}^{\mathsf{HS}}$ (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \bot , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: \mathbb{I} , $(_-=0)$, $(_-=1)$, ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - $\mathcal{U}^{\mathsf{HS}}$ (object classifier), Π^{μ} , Σ^{μ} , strict equality, . . .
 - **Prop** (subobject classifier), \vee , \wedge , \top , \bot , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: \mathbb{I} , $(_-=0)$, $(_-=1)$, ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016
- * Infeasible to extend existing proof assistant.

A multimode proof assistant:

- General rules of multimode* TT hardcoded
- Specific multimode systems to be written in pluggable modules
- Support for internal mode/modality polymorphism*

- Primitives for:
 - \mathcal{U}^{HS} (object classifier), Π^{μ} , Σ^{μ} , strict equality, ...
 - **Prop** (subobject classifier), \vee , \wedge , \top , \bot , ...
 - Extension types $A[\varphi ? a]$
 - Orton & Pitts's strictness axiom
 - Dependable atomicity* (cf. my talk tomorrow)
- System-specific: \mathbb{I} , $(_-=0)$, $(_-=1)$, ...
- Should be definable:
 Glue, Weld, Ψ ("relativity") (cf. G. Moulin's PhD, 2016)
- * Infeasible to extend existing proof assistant.

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}:\mathcal{P}\to\mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities
 - for custom primitives,
- Implement id and- -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}:\mathcal{P}\to\mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities
 - for custom primitives,
- Implement id and- ∘ −.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}:\mathcal{P}\to\mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities
 - for custom primitives,
- Implement id and
 ○ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors,
 Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}:\mathcal{P}\to\mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities
 - for custom primitives,
- Implement id and- ∘ −.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and - ∘ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and
 ∘ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and
 ∘ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and- -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and
 ∘ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors,
 Planned: Instance arguments
- Have modal fun!

Pen & paper / LATEX

- Define cat. of modes P,
- Pick (presheaf) models:

$$\mathcal{F}: \mathcal{P} \to \mathsf{CwF},$$

- Check requirements of presheaf primitives,
- Model custom primitives.

In Haskell

- Add syntax, reduction and typing rules
 - for modalities,
 - for custom primitives,
- Implement id and
 ∘ -.

- Define fibrancy,
- Construct a fibrant universe,
- Prove fibrancy of type constructors, Planned: Instance arguments
- Have modal fun!

- Type-checks DTT with 1 mode and 1 modality
- Degrees of Relatedness in progress...

- Cubes for parametricity
- Cubes for HoTT
- Guarded type theory with clock irrelevance and time warps?
 Time warps: Adrien Guatto (2018)
- Directed degrees of relatedness
- ...

- Type-checks DTT with 1 mode and 1 modality
- Degrees of Relatedness in progress...

- Cubes for parametricity
- Cubes for HoTT
- Guarded type theory with clock irrelevance and time warps?
 Time warps: Adrien Guatto (2018)
- Directed degrees of relatedness
- ...

- Type-checks DTT with 1 mode and 1 modality
- Degrees of Relatedness in progress...

- Cubes for parametricity
- Cubes for HoTT
- Guarded type theory with clock irrelevance and time warps?
 Time warps: Adrien Guatto (2018)
- Directed degrees of relatedness
- ...

- Type-checks DTT with 1 mode and 1 modality
- Degrees of Relatedness in progress...

- Cubes for parametricity
- Cubes for HoTT
- Guarded type theory with clock irrelevance and time warps?
 Time warps: Adrien Guatto (2018)
- Directed degrees of relatedness
- ...

- Type-checks DTT with 1 mode and 1 modality
- Degrees of Relatedness in progress...

- Cubes for parametricity
- Cubes for HoTT
- Guarded type theory with clock irrelevance and time warps?
 Time warps: Adrien Guatto (2018)
- Directed degrees of relatedness
- ...

Take home message

If you need a **multimode/presheaf proof assistant**, don't hesitate to get in touch :-)

https://github.com/anuyts/menkar

Thanks!

Questions?