Лабораторная работа № 4

Усилительный каскад на биполярном транзисторе Подготовка к работе

1. Расчет рабочего режима транзистора в схеме ОЭ графическим методом.

Рис. 1. Схема усилительного каскада с общим эмиттером

$$R_1$$
=10 кОм, R_2 =2.4 кОм, R_{κ} =390 Ом, $R_{\mathfrak{I}1}$ =51 Ом, $R_{\mathfrak{I}2}$ =51 Ом, $R_{\mathfrak{I}}$ =1 кОм, $R_{\mathfrak{I}}$ =1 кОм, $R_{\mathfrak{I}}$ =2.2 мкФ, $R_{\mathfrak{I}}$ =2.2 мкФ, $R_{\mathfrak{I}}$ =47мкФ, $R_{\mathfrak{I}}$ =10 нФ, $R_{\mathfrak{I}}$ =10 кОм, $R_{\mathfrak{$

 h_{219} = (значение взять из ЛР 3)

Построение рабочей точки на характеристиках транзистора

1.1. Построение нагрузочной прямой на **входных** характеристиках по двум точкам.

$$R_{\rm cm} = R_6 + R_9 (1 + h_{21}) =$$
 = Om, $E_{\rm cm} =$ B.

Уравнение нагрузочной прямой (в общем виде и числах):

$$U_{69} = =$$

1)
$$U_{691} =$$
_____ B, $I_{61} =$ ____ = MKA,
2) $U_{692} =$ ____ B $I_{62} =$ ___ = MKA

Методом пересечения найти рабочие ток и напряжение.

Добавить обработанную характеристику в протокол.

Результат графического расчета:

$$I_{6A}$$
 = MKA, U_{6A} = B.

1.2. Построение нагрузочной прямой на выходных характеристиках.

$$R_{=}=R_{\kappa}+R_{3}=$$
 Om, $E_{\pi}=$ B.

Уравнение нагрузочной прямой (в общем виде и числах):

$$U_{\kappa 9} = =$$

1)
$$U_{\kappa = 1} =$$
_____ B, $I_{\kappa 1} =$ ___ = MA

2)
$$U_{\kappa_{92}} =$$
_____ B $I_{\kappa_{2}} =$ ____ = mA

При необходимости построить фрагмент выходной характеристики, соответствующей рабочему току базы.

Методом пересечения найти рабочие ток и напряжение.

Добавить обработанную характеристику в протокол.

Результат графического расчета:

$$I_{\kappa A}=$$
 MA, $U_{\kappa \ni A}=$ B.

Параметр	$U_{$ бэ $},$ м B	I_6 , мк ${ m A}$	I_{κ} , MA	$U_{\scriptscriptstyle m K3},{ m B}$
Теоретический расчет	Из ЛР 3			
Графический расчет				

2. Расчет основных параметров каскада.

Малосигнальная схемы замещения усилительного каскада ОЭ

(Конденсатор $C_{\mathfrak{d}}$ – отключен)

 $K_{u0} = K_{uxx} \cdot \xi_{BX} \cdot \xi_{BMX} =$

– Конденсатор
$$C_{\mathfrak{d}}$$
 – включен,

$$R_{\scriptscriptstyle 9}$$
 =

$$K_{u xx} =$$

$$R_{\text{BX}}=$$

$$R_{\text{вых}} =$$

$$\xi_{\scriptscriptstyle BX} =$$

$$\xi_{\text{вых}} =$$

$$K_{u0} = K_{uxx} \cdot \xi_{bx} \cdot \xi_{bbx} =$$

- 3. Определение нижней полосы пропускания каскада.
 - Конденсатор C_9 отключен.

$$\tau_{_{\rm H1}} = =$$

$$\tau_{_{\mathrm{H}2}} =$$
 =

$$\tau_{_{\mathrm{H}}} = \left(\frac{1}{\tau_{_{\mathrm{H}1}}} + \frac{1}{\tau_{_{\mathrm{H}2}}}\right)^{-1} = 1$$

$$f_{\scriptscriptstyle \mathrm{H}} =$$

– Конденсатор $C_{\mathfrak{d}}$ – включен

$$\tau_{_{\rm H1}} = =$$

$$\tau_{_{\rm H2}} = =$$

$$\tau_{C_9} = =$$

$$r_{\text{TP.}\,9} = =$$

$$\tau_{_{\rm H}} = \left(\frac{1}{\tau_{_{\rm H}1}} + \frac{1}{\tau_{_{\rm H}2}} + \frac{1}{\tau_{_{C9}}}\right)^{-1} =$$

$$f_{\scriptscriptstyle
m H}=$$

4. Алгоритм экспериментального определения входного сопротивления каскада.

1.