Capítulo 3

Matemática Elementar

Matrizes e Sistemas Lineares

28 de abril de 2023

Igor Oliveira matematicaelementar@imd.ufrn.br

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte Natal-RN

Índice

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Apresentação da Aula

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operaçãos

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Motivação

Matrizes são, fundamentalmente, tabelas numéricas sobre as quais se definem certas operações algébricas, útil para armazenar vários dados em um só elemento. Além disso, as matrizes se aplicam ao estudo dos sistemas lineares (conforme veremos neste capítulo), bem como desempenham um papel decisivo no estudo das transformações lineares, as quais são justamente as funções estudadas na Álgebra Linear.

Definição 1

Sejam $m, n \in \mathbb{N}^*$. Uma matriz (real) do tipo $m \times n$ (lê-se: m por n) é uma "tabela" disposta em m linhas e n colunas. Denotamos os números reais que formam a i-ésima linha de uma matriz n por n0 por

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}.$$

Chamamos de <u>entradas</u>, de uma matriz A, os reais a_{ij} que a compõem. Poderemos indicar uma matriz A do tipo $m \times n$ comentradas a_{ij} por

$$A = (a_{ij})_{m \times n}$$

ou, simplesmente, $A = (a_{ij})$.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Elementares
Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Exemplo 2

As matrizes $A = (a_{ij})_{3\times 2}$, em que $a_{ij} = i + j$ e, $B = (b_{ij})_{2\times 4}$, em que $b_{ij} = i^j$, são:

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix} \text{ e } B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \end{bmatrix}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares Atividade Online

Operações

Operações Elementares

Atividade Online

Matrizes Quadradas Atividade Online

Determinante

Exercícios

Exercicios Bibliografia

Definição 3

Uma matriz A do tipo $n \times n$, é dita <u>quadrada</u> de ordem n. O conjunto formado por suas entradas a_{ij} é chamado de <u>diagonal</u> de A. O conjunto formado pelas entradas a_{ij} tais que i+j=n+1 é chamado de <u>diagonal</u> secundária de A. Uma matriz do tipo $m \times n$ cujas entradas são todas iguais a zero chama-se nula e será denotada por $0_{m \times n}$.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

. . .

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 3

Uma matriz A do tipo $n \times n$, é dita <u>quadrada</u> de ordem n. O conjunto formado por suas entradas a_{ij} é chamado de <u>diagonal</u> de A. O conjunto formado pelas entradas a_{ij} tais que i+j=n+1 é chamado de <u>diagonal</u> secundária de A. Uma matriz do tipo $m \times n$ cujas entradas são todas iguais a zero chama-se <u>nula</u> e será denotada por $0_{m \times n}$.

Exemplo 4

Dada a matriz A quadrada de ordem 3 abaixo, sua diagonal é formada pelos números 2, 4 e 1. A diagonal secundária é formada por 1, 4 e 4.

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 0 \\ 4 & 5 & 1 \end{bmatrix}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

. . . .

Exercícios Bibliografia

UFRN

Atividade Online

Atividade Online 17 - Use Matrizes para Representar Dados

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Definição 5 (Produto por escalar e adição de matrizes)

Dadas matrizes de mesmo tipo, $A=(a_{ij})_{m\times n}$ e $B=(b_{ij})_{m\times n}$, e $\lambda\in\mathbb{R}$, definimos o produto por escalar λA e a adição A+B por:

$$\lambda A = \begin{bmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{bmatrix}$$

е

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{bmatrix}.$$

Matemática Elementar Igor Oliveira

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Exemplo 6

Calcule:

$$A = 3 \cdot \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix}$$

е

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 16 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \end{bmatrix}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online
Operações com
Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Elementares
Atividade Online

Atividade Online

Matrizes Quadradas
Atividade Online

Determinante

Exercícios

Bibliografia

Proposição 7 (Propriedades do produto por escalar e da adição)

Sejam A, B e C matrizes de mesmo tipo $m \times n$, e $\lambda, \mu \in \mathbb{R}$. Tem-se:

- i. Comutatividade da adição: A + B = B + A;
- ii. Associatividade da adição: A + (B + C) = (A + B) + C;
- iii. Elemento neutro da adição: $A + 0_{m \times n} = A$;
- iv. Existência do oposto aditivo: $A + (-A) = 0_{m \times n}$;
- v. Associatividade a multiplicação por escalar: $\overline{\lambda(\mu A)} = (\lambda \mu)A;$
- vi. Elemento neutro da multiplicação por escalar: $1 \cdot A = A$;
- vii. Distributividade, de uma em relação à outra: $\lambda(A+B) = \lambda A + \lambda B$ e $(\lambda + \mu)A = \lambda A + \mu A$.

Matemática Elementar

Apresentação

Matrizes
Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online
Operações
Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 8 (Multiplicação de matrizes)

Dadas matrizes $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times p}$, onde o número de colunas de A concide com o número de linhas de B. Definimos o produto AB como a matriz $P = (p_{ij})_{m \times p}$, cujas entradas são:

$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \cdots + a_{in} b_{nj}.$$

Matemática Elementar

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online Operações

Elementares

Atividade Online

Matrizes Quadradas
Atividade Online

Determinante

Exercícios

Definição 8 (Multiplicação de matrizes)

Dadas matrizes $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times p}$, onde o número de colunas de A concide com o número de linhas de B. Definimos o produto AB como a matriz $P = (p_{ij})_{m \times p}$, cujas entradas são:

$$p_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}.$$

Exemplo 9

Calcule:

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 0 & -1 & 3 \\ 3 & 2 & 1 \end{bmatrix} e B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}.$$

Matemática Elementar

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online Sistemas Lineares

Atividade Online Operações Elementares

Atividade Online

Matrizes Quadradas Atividade Online

Determinante

Exercícios

Bibliografia

Proposição 10 (Propriedades do produto de matrizes)

Sejam as matrizes $A = (a_{ii})_{m \times n}$, $B = (b_{ii})_{n \times n}$, $C = (c_{ii})_{n \times n}$ $D=(d_{ii})_{n\times p}$ e $E=(e_{ii})_{m\times n}$. Tem-se:

- i. Associatividade: A(BC) = (AB) C;
- Distributividade à esquerda, em relação a soma: A(B+D)=AB+AD;
- iii. Distributividade à direita, em relação a soma: (A + E)B = AB + EB.

Matemática Elementar Igor Oliveira

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Observação 11

Dadas duas matrizes A e B quadradas e de mesma ordem, os dois produtos AB e BA estão bem definidos. No entanto, de modo geral, eles NÃO SÃO IGUAIS, isto é, O PRODUTO DE MATRIZES QUADRADAS DE MESMA ORDEM NÃO É COMUTATIVO. Quando, excepcionalmente, ocorre a igualdade AB = BA, dizemos que A e B comutam.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Observação 11

Dadas duas matrizes A e B quadradas e de mesma ordem, os dois produtos AB e BA estão bem definidos. No entanto, de modo geral, eles NÃO SÃO IGUAIS, isto é, O PRODUTO DE MATRIZES QUADRADAS DE MESMA ORDEM NÃO É COMUTATIVO. Quando, excepcionalmente, ocorre a igualdade AB = BA, dizemos que A e B comutam.

Exemplo 12

Comprove a observação anterior comparando o produto das matrizes quadradas do Exemplo 9 com o produto abaixo:

$$C = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Matemática Elementar

Apresentação

Matrizes
Atividade Online

Operações com Matrizes

Atividade Online

Atividade Online Operações

Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Atividade Online

Atividade Online 18 - Multiplicação de Matrizes por Números Escalares

Atividade Online 19 - Some e Subtraia Matrizes

Atividade Online 20 - Use Matrizes para Manipular Dados

Atividade Online 21 - Multiplique Matrizes

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online Operações

Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Um sistema de m equações lineares nas variáveis x_1, x_2, \ldots, x_n pode ser representado pelas equações

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ (\dots) \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Tal sistema é equivalente à equação matricial AX = B, onde

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

Nesse caso, dizemos que A é a <u>matriz do sistema</u>. Quando $B = 0_{m \times 1}$, o sistema é dito <u>homogêneo</u>. Observe que todo sistema homogêneo admite a <u>solução $X = 0_{n \times 1}$ </u>, dita <u>trivial</u>.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Definição 13 (Sistemas lineares equivalentes)

Dois sistemas lineares são ditos <u>equivalentes</u> quando têm o mesmo conjunto solução.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Atividade Unline

Matrizes Quadradas
Atividade Online

Determinante

Exercícios

2:1-1:------

Definição 13 (Sistemas lineares equivalentes)

Dois sistemas lineares são ditos <u>equivalentes</u> quando têm o mesmo conjunto solução.

Definição 14 (Matriz aumentada de um sistema linear)

Dado um sistema linear AX = B, define-se a sua matriz aumentada (A|B), como sendo a matriz obtida "posicionando" a matriz B à direita da matriz A, isto é,

$$(A|B) = \begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{bmatrix}.$$

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Exemplo 15

Qual a matriz aumentada do sistema linear abaixo?

$$\begin{cases}
x + y - z = 1 \\
x - y = 1
\end{cases}$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Atividade Online

М

Atividade Online 22 - Represente Sistemas Lineares com Matrizes

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Algumas operações sobre as linhas de uma matriz são ditas elementares. São elas:

- ► $(l_i \leftrightarrow l_j)$: Troca de posição entre duas linhas l_i e l_j ;
- $(I_i \rightarrow \lambda I_i)$: Multiplicação de uma linha I_i por um escalar $\lambda \neq 0$;
- $(I_j \rightarrow I_j + \lambda I_i)$: Substituição de uma linha I_j por $I_j + \lambda I_i$, sendo $\lambda \neq 0$.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios Bibliografia

Algumas operações sobre as linhas de uma matriz são ditas elementares. São elas:

- ► $(l_i \leftrightarrow l_j)$: Troca de posição entre duas linhas l_i e l_j ;
- $(I_i \rightarrow \lambda I_i)$: Multiplicação de uma linha I_i por um escalar $\lambda \neq 0$;
- $(I_j \rightarrow I_j + \lambda I_i)$: Substituição de uma linha I_j por $I_j + \lambda I_i$, sendo $\lambda \neq 0$.

Definição 16 (Equivalência por linhas)

Diz-se que uma matriz B é linha equivalente a uma matriz A quando B é obtida de A efetuando-se nesta uma sequência de operações elementares.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Exercícios

Exercícios Bibliografia

Algumas operações sobre as linhas de uma matriz são ditas elementares. São elas:

- ► $(l_i \leftrightarrow l_i)$: Troca de posição entre duas linhas l_i e l_i ;
- $(I_i \rightarrow \lambda I_i)$: Multiplicação de uma linha I_i por um escalar $\lambda \neq 0$:
- $(I_j \rightarrow I_j + \lambda I_i)$: Substituição de uma linha I_j por $I_j + \lambda I_i$, sendo $\lambda \neq 0$.

Definição 16 (Equivalência por linhas)

Diz-se que uma matriz B é linha equivalente a uma matriz A quando B é obtida de A efetuando-se nesta uma sequência de operações elementares.

Proposição 17

Dois sistemas lineares AX = B e A'X = B' são equivalentes se suas matrizes aumentadas (A|B) e (A'|B') são linha equivalentes.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online Sistemas Lineares

Atividade Online

Operações Elementares

Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Definição 18 (Matriz escalonada)

Diz-se que uma matriz $A = (a_{ij})_{m \times n}$ é <u>escalonada</u> quando cumpre as seguintes condições:

- ➤ O primeiro elemento não-nulo de uma linha está à esquerda do primeiro elemento não-nulo da linha subsequente;
- ► As linhas nulas, caso existam, estão abaixo das demais.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Definição 18 (Matriz escalonada)

Diz-se que uma matriz $A = (a_{ij})_{m \times n}$ é <u>escalonada</u> quando cumpre as seguintes condições:

- ➤ O primeiro elemento não-nulo de uma linha está à esquerda do primeiro elemento não-nulo da linha subsequente;
- ► As linhas nulas, caso existam, estão abaixo das demais.

Para resolvermos um sistema linear, fazemos o <u>escalonamento</u> da matriz aumentada do sistema a fim de obtermos uma matriz escalonada que seja linha equivalente à matriz aumentada do sistema. Esse procedimento é chamado de <u>Método de Gauss</u> ou Eliminação Gaussiana.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Elementare:

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios Bibliografia

Exemplo 19

Encontre o conjunto solução para o sistema

$$\begin{cases} x - 2y + 3z = 1 \\ 2x + y - z = 2 \\ 4x - 3y + 5z = 4 \end{cases}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios Bibliografia

> UFRN Natal-RN

32

Exemplo 19

Encontre o conjunto solução para o sistema

$$\begin{cases} x - 2y + 3z = 1 \\ 2x + y - z = 2 \\ 4x - 3y + 5z = 4 \end{cases}.$$

Exemplo 20

Encontre o conjunto solução para o sistema

$$\begin{cases} 2x - y & + 4t = 9 \\ x + y - z + 2t = 7 \\ -x + 2y + z - t = 3 \\ 4y - z + 3t = 13 \end{cases}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

O------

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante Exercícios

Bibliografia

Atividade Online

Atividade Online 23 - Operações sobre Linhas de uma Matriz

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas Atividade Online

Determinante

Exercícios

Bibliografia

UFRN Natal-RN

32

Definição 21 (Matrizes triangulares e diagonais)

Uma matriz quadrada $A = (a_{ij})_{n \times n}$ é dita <u>triangular</u>, quando ocorre uma das possibilidades:

$$a_{ij} = 0 \ \forall i > j \ \text{ou} \ a_{ij} = 0 \ \forall i < j.$$

No primeiro caso, ela é dita triangular superior e, no segundo, triangular inferior. Uma matriz que é triangular superior e inferior é dita diagonal.

Matemática Elementar

Apresentação

Matrizes

Atividade Online Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 21 (Matrizes triangulares e diagonais)

Uma matriz quadrada $A = (a_{ij})_{n \times n}$ é dita <u>triangular</u>, quando ocorre uma das possibilidades:

$$a_{ij} = 0 \ \forall i > j \ \text{ou} \ a_{ij} = 0 \ \forall i < j.$$

No primeiro caso, ela é dita triangular superior e, no segundo, triangular inferior. Uma matriz que é triangular superior e inferior é dita diagonal.

Exemplo 22

As matrizes A, B e C abaixo são, respectivamente, triangular superior, inferior e diagonal.

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 7 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix} e C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Matemática Elementar

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online Sistemas Lineares

Atividade Online Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante Exercícios

Bibliografia

Definição 23 (Matriz Identidade)

Uma matriz diagonal $n \times n$ cujas entradas não nulas são todas iguais a 1 é chamada de <u>matriz identidade</u> de ordem n, a qual denota-se por I_n ou, simplesmente, por I.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Definição 23 (Matriz Identidade)

Uma matriz diagonal $n \times n$ cujas entradas não nulas são todas iguais a 1 é chamada de matriz identidade de ordem n, a qual denota-se por I_n ou, simplesmente, por I.

A matriz identidade de ordem *n* é o elemento neutro da multiplicação de matrizes quadradas, pois, para toda matriz quadrada A de ordem n, vale a igualdade:

$$AI = IA = A$$
.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online Operações

Elementares Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 24 (Matrizes invertíveis)

Diz-se que uma matriz quadrada A é <u>invertível</u>, quando existe uma matriz quadrada B, de mesma ordem que A, tal que

$$AB = BA = I$$
.

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online Operações

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 24 (Matrizes invertíveis)

Diz-se que uma matriz quadrada A é <u>invertível</u>, quando existe uma matriz quadrada B, de mesma ordem que A, tal que

$$AB = BA = I$$
.

Prova-se que A, quando invertível, possui uma única matriz inversa. Tal matriz é dita a <u>inversa</u> de A, e denotada por A^{-1} .

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Definição 24 (Matrizes invertíveis)

Diz-se que uma matriz quadrada *A* é <u>invertível</u>, quando existe uma matriz quadrada *B*, de mesma ordem que *A*, tal que

$$AB = BA = I$$
.

Prova-se que A, quando invertível, possui uma única matriz inversa. Tal matriz é dita a inversa de A, e denotada por A^{-1} .

Exemplo 25

Verifique que as matrizes abaixo são invertíveis multiplicando-as.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} e B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Matemática Elementar

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Exercícios

Bibliografia

Exemplo 26

Calcule a inversa das matrizes abaixo

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} e B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 4 & 2 \end{bmatrix}.$$

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Exemplo 26

Calcule a inversa das matrizes abaixo

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} e B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 4 & 2 \end{bmatrix}.$$

Exemplo 27

Qual a solução do sistema abaixo?

$$\begin{cases}
x + y = 2 \\
2y = 4
\end{cases}$$

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Elementares
Atividade Online

.....

Matrizes Quadradas

Atividade Online

Determinante Exercícios

Bibliografia

Atividade Online

Atividade Online 24 - Determine as Matrizes Inversas Atividade Online 25 - Encontre a Inversa de uma Matriz 2x2

Atividade Online 26 - Matriz Inversa de uma Matriz 3x3 Atividade Online 27 - Use Matrizes para Resolver Sistemas de Equações Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Determinante de Matrizes 2×2 e 3×3

Definição 28 (Determinante de matrizes 2 \times 2 e 3 \times 3)

Dadas as matrizes $A = (a_{ij})_{2\times 2}$ e $B = (b_{ij})_{3\times 3}$, definimos o determinante de A e B, denotados, respectivamente, por det A e det B como sendo

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Е

$$\det B = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix}$$

$$= (b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{32})$$

$$- (b_{13}b_{22}b_{31} + b_{11}b_{23}b_{32} + b_{12}b_{21}b_{33}).$$

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Exercícios

1. Determine, caso exista, a matriz A, tal que AB = C, em que

$$B = \begin{bmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{bmatrix} e C = \begin{bmatrix} 3 & 1 \\ -1 & 4 \end{bmatrix}.$$

Sejam A e B matrizes $m \times n$ e $n \times p$ respectivamente. A afirmação abaixo é sempre válida?

Se
$$AB = 0_{m \times p}$$
, então $A = 0_{m \times n}$ ou $B = 0_{n \times p}$.

Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares Atividade Online

Operações

Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Exercícios

- **3**. Encontre uma matriz $A_{2\times 2}$, não-nula, tal que $AA = 0_{2\times 2}$.
- 4. Determine as soluções dos seguintes sistemas lineares:

$$\begin{cases} x - 2y - 3z = 0 \\ 3x + y - z = -1 \end{cases};$$

$$\begin{cases} x + y + z = 2 \\ 2x - y + 3z = 9 \\ x + 2y - z = -3 \end{cases}$$

$$\begin{cases} x_1 - 2x_2 + x_3 + 2x_4 = 1 \\ x_1 + x_2 - x_3 + x_4 = 2 \\ x_1 + 7x_2 - 5x_3 - x_4 = 3 \end{cases}.$$

Matemática Elementar

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

Operações

Elementares

Atividade Online

Matrizes Quadradas Atividade Online

arvidade Ominie

Determinante

Exercícios

Exercícios

5. Seja

$$A = \begin{bmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix}.$$

Para quais matrizes $B_{4\times 1}$, o sistema AX = B tem solução? **6**. Mostre que, se A e B são matrizes $n \times n$, ambas invertíveis, então AB é invertível e vale a igualdade $(AB)^{-1} = B^{-1}A^{-1}$. Matemática Elementar Igor Oliveira

Apresentação

Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares
Atividade Online

0-----

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios

Bibliografia

Matemática Elementar

Igor Oliveira

Apresentação Matrizes

Atividade Online

Operações com Matrizes

Atividade Online

Sistemas Lineares

Atividade Online

Operações Elementares

Atividade Online

Matrizes Quadradas

Atividade Online

Determinante

Exercícios