Package 'colocr'

October 12, 2022

```
Type Package
Title Conduct Co-Localization Analysis of Fluorescence Microscopy
     Images
Version 0.1.1
License GPL-3
URL https://docs.ropensci.org/colocr,
     https://github.com/ropensci/colocr
BugReports https://github.com/ropensci/colocr/issues
Description Automate the co-localization analysis of fluorescence microscopy
     images. Selecting regions of interest, extract pixel intensities from
     the image channels and calculate different co-localization statistics. The
     methods implemented in this package are based on Dunn et al. (2011)
     <doi:10.1152/ajpcell.00462.2010>.
Encoding UTF-8
LazyData true
Suggests testthat, shinytest, covr, knitr, rmarkdown, devtools, purrr,
     shinyBS
RoxygenNote 7.1.0
Imports imager, magick, shiny, scales, magrittr
VignetteBuilder knitr
NeedsCompilation no
Author Mahmoud Ahmed [aut, cre] (<a href="https://orcid.org/0000-0002-4377-6541">https://orcid.org/0000-0002-4377-6541</a>)
Maintainer Mahmoud Ahmed <mahmoud.s.fahmy@students.kasralainy.edu.eg>
Repository CRAN
Date/Publication 2020-05-08 13:20:06 UTC
```

2 .intensity_get

R topics documented:

.intensity_get																			
.labels_add .														 					3
.manders																			3
.pearson																			
colocr														 					5
colocr_app																			5
image_load .																			
roi_check																			
roi_select																			7
roi_show																			
roi_test	 •																		9

Index 10

.intensity_get

Get pixel intensities

Description

Get the pixel intensities of certain image channels

Usage

```
.intensity_get(img, ind = c(1, 2))
```

Arguments

img An object of class cimg

ind A numeric of length two for channel indexes

Value

A list of three items. The first two items are the values of the pixel intensities of the channels indicated by ind. The third is the labels of the individual regions of interest.

```
# load image
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

# choose parameters
int <- roi_select(img, threshold = 90) %>%
    .intensity_get()
```

.labels_add 3

.labels_add

Label regions of interest

Description

Add labels to regions of interest in an image

Usage

```
.labels_add(px, tolerance, n)
```

Arguments

px An object of class pixset

tolerance A numeric to be passed to label

n A numeric, the number of desired regions of interest

Value

An object of class cimg. The labels are coded the values in the object starting from 1. The rest of the image is labeled 0.

.manders

Calculate Marnders Overlap Coefficient

Description

Calculates the manders overlap coefficient between two numeric vectors

Usage

```
.manders(r, g)
```

Arguments

r A numeric vector g A numeric vector

Value

A numeric of length one.

4 .pearson

Examples

```
set.seed(123)
r <- rnorm(10)
set.seed(1234)
g <- rnorm(10)
.manders(r, g)
```

.pearson

Calculate Pearson's Correlation Coefficient

Description

Calculates the Pearson's correlation coefficient between two numeric vectors

Usage

```
.pearson(r, g)
```

Arguments

g

A numeric vector r A numeric vector

Value

A numeric of length one.

```
set.seed(123)
r <- rnorm(10)
set.seed(1234)
g <- rnorm(10)
.pearson(r, g)
```

colocr 5

colocr

colocr: Conduct Co-localization Analysis of Microscopy Images.

Description

Automate the co-localization analysis of fluorescence microscopy images. Selecting regions of interest, extract pixel intensities from the image channels and calculate different co-localization statistics.

colocr functions

```
roi_select roi_show roi_check roi_test
```

colocr_app

Run the shiny App

Description

Run the shiny App

Usage

colocr_app()

image_load

Load images from files

Description

A wrap around image_read and magick2cimg to load one or more images from files.

Usage

```
image_load(image_file)
```

Arguments

image_file A character vector of one or more paths to image files

Value

A cimg object or a list of cimg objects when multiple files are passed to image_file.

6 roi_check

Examples

```
# load image
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)</pre>
```

roi_check

Show pixel intensities

Description

Show the pixel intensities of certain image channels

Usage

```
roi_check(img, ind = c(1, 2))
```

Arguments

img A cimg object or a list of multiple images such as the one returned from

roi_select

ind A numeric object of length two. For the channel indexes. or a list of similar

vectors for each of img items.

Details

Calling this function returns two plots. The first is a scatter plot of the pixel intensities from two channels. The second is the density distribution of the intensities from the two channels.

```
# load images
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

# choose ROI and show the pixel intensities
oldpar <- par()
par(mfrow = c(1, 2))

roi_select(img, threshold = 90) %>%
    roi_check()

par(oldpar)
```

roi_select 7

roi_select	Select regions of interest

Description

Select regions of interest in an image using different morphological operations

Usage

```
roi_select(
  img,
  threshold,
  shrink = 5,
  grow = 5,
  fill = 5,
  clean = 5,
  tolerance = 0.1,
  n = 1
)
```

Arguments

img	An object of class cimg or a list of multiple cimg items
threshold	A numeric to be passed to $\ensuremath{threshold}$ or a vector of values for each image in img
shrink	A numeric to be passed to shrink or a vector of values for each image in img
grow	A numeric to be passed to grow or a vector of values for each image in img
fill	A numeric to be passed to fill or a vector of values for each image in img
clean	A numeric to be passed to clean or a vector of values for each image in img
tolerance	A numeric to be passed to label or a vector of values for each image in img
n	A numeric of the number of regions of interest or a vector of values for each image in img

Details

The function applies several imager morphological manipulations to select the regions of interest. These include threshold which sets all values below certain cut to 0; shrink/grow for pixel set dilation and erosion; fill/clean for removing isolated regions and holes. When n is provided, the individual regions (connected components) are selected where tolerance is used to determine if two pixels belong to the same region.

Value

A cimg. The original input img with an additional attribute label. label is a vector of integers. The labels for the selected regions of interests starts from 1 and 0 is ignored. When img is a list, a list is returned.

8 roi_show

Examples

```
# load images
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

# choose ROI
newimg <- roi_select(img, threshold = 90)

# check the ROI labels
unique(attr(newimg, 'label'))</pre>
```

roi_show

Show the selected regions of interest

Description

Show/highlight the selected regions of interest on different image channels

Usage

```
roi\_show(img, ind = c(1, 2))
```

Arguments

img A cimg object or a list of multiple images such as the one returned from roi_select
 ind A numeric object of length two. For the channel indexes. or a list of similar vectors for each of img items.

Details

calling this function with img object which is returned from roi_select returns four different plots. The original image, a low resolution representation of the selected regions of interest and the two channels indicated through ind highlighted.

```
# load images
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

# choose and show ROI
oldpar <- par()
par(mfrow=c(2,2))

roi_select(img, threshold = 90) %>%
    roi_show()
```

roi_test 9

par(oldpar)

roi_test Test Co-localization

Description

Perform co-localization test statistics.

Usage

```
roi_test(img, ind = c(1, 2), type = "pcc")
```

Arguments

img	A cimg object or a list of multiple images such as the one returned from ${\tt roi_select}$
ind	A numeric object of length two. For the channel indexes. or a list of similar vectors for each of img items.
type	A character vector of the desired co-localization statistics. Default is 'pcc', other inputs are 'moc' or 'both'.

Details

The co-localization stats requested in type is returned as a column for each. When different labels are provided, the stats are calculated for each label individually. When is img is a list a list of such data.frames is returned

Value

A data.frame or a list of data.frames.

```
# load images
fl <- system.file('extdata', 'Image0001_.jpg', package = 'colocr')
img <- image_load(fl)

# choose roi and test colocalization
roi_select(img, threshold = 90) %>%
    roi_test()
```

Index

```
.intensity_get, 2
.labels\_add, 3
. \, \mathsf{manders}, \, 3 \\
.pearson, 4
cimg, 2, 3, 6-9
clean, 7
colocr, 5
colocr_app, 5
fill, 7
grow, 7
image_load, 5
image\_read, 5
imager, 7
label, 3, 7
magick2cimg, 5
pixset, 3
roi_check, 5, 6
roi_select, 5, 6, 7, 8, 9
roi\_show, 5, 8
roi_test, 5, 9
shrink, 7
threshold, 7
```