Bayesian decision theory

Nuno Vasconcelos ECE Department, UCSD

Notation

- ▶ the notation in DHS is quite sloppy
 - e.g. show that

$$P(error) = \int P(error \mid z)P(z)dz$$

- really not clear what this means
- we will use the following notation

$$P_{X|Y}(x_0 \mid y_0)$$

- subscripts are random variables (uppercase)
- arguments are the values of the random variables (lowercase)
- equivalent to $P(X = x_0 \mid Y = y_0)$

Bayesian decision theory

- framework for computing optimal decisions on problems involving uncertainty (probabilities)
- basic concepts:
 - world:
 - has states or classes, drawn from a state or class random variable Y
 - fish classification, Y ∈ {bass, salmon}
 - student grading, Y ∈ {A, B, C, D, F}
 - medical diagnosis ∈ {disease A, disease B, ..., disease M}
 - observer:
 - measures observations (features), drawn from a random process X
 - fish classification, X = (scale length, scale width) ∈ R²
 - student grading, X = (HW₁, ..., HWₙ) ∈ Rⁿ
 - medical diagnosis X = (symptom 1, ..., symptom n) ∈ Rⁿ

Bayesian decision theory

- decision function:
 - observer uses the observations to make decisions about the state of the world y
 - if $x \in \Omega$ and $y \in \Psi$ the decision function is the mapping

$$g:\Omega\to\Psi$$

such that

$$g(x) = y_o$$

and y_o is a prediction of the state y

- loss function:
 - is the cost $L(y_o, y)$ of deciding for y_o when the true state is y
 - usually this is zero if there is no error and positive otherwise
- goal: to determine the optimal decision function for the loss L(.,.)

Classification

- ▶ we will focus on classification problems
 - the observer tries to infer the state of the world

$$g(x) = i, \quad i \in \{1, \dots, M\}$$

we will also mostly consider the "0-1" loss function

$$L[g(x), y] = \begin{cases} 1, & g(x) \neq y \\ 0, & g(x) = y \end{cases}$$

- but the regression case
 - the observer tries to predict a continuous y

$$g(x) \in \Re$$

 is basically the same, for a suitable loss function, e.g. squared error

$$L[g(x), y] = ||y - g(x)||^2$$

probabilistic representations

- joint distribution
- class-conditional distributions
- class probabilities

properties of probabilistic inference

- chain rule of probability
- marginalization
- independence
- Bayes rule

- ▶ in order to find optimal decision function we need a probabilistic description of the problem
 - in the most general form this is the joint distribution

$$P_{X,Y}(x,i)$$

but we frequently decompose it into a combination of two terms

- these are the "class conditional distribution" and "class probability"
- class probability
 - prior probability of state i, before observer actually measures anything
 - reflects a "prior belief" that, if all else is equal, the world will be in state i with probability P_Y(i)

class-conditional distribution:

 is the model for the observations given the class or state of the world

consider the grading example

- I know, from experience, that a% of the students will get A's, b% B's, c% C's, and so forth
- hence, for any student, P(A) = a/100, P(B) = b / 100, etc.
- these are the state probabilities, before I get to see any of the student's work
- the class-conditional densities are the models for the grades themselves
- let's assume that the grades are Gaussian, i.e. they are completely characterized by a mean and a variance

- knowledge of the class changes the mean grade, e.g. I expect
 - A students to have an average HW grade of 90%
 - B students 75%
 - C students 60%, etc
- this means that

$$P_{X|Y}(x|i) = G(x, \mu_i, \sigma)$$

- i.e. the distribution of class i is a Gaussian of mean μ_i and variance σ
- note that the decomposition

$$P_{X,Y}(x,i) = P_{X|Y}(x|i)P_{Y}(i)$$

is a special case of a very powerful tool in Bayesian inference

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

The chain rule of probability

- is an important consequence of the definition of conditional probability
 - note that, by recursive application of

$$P_{X,Y}(x, y) = P_{X|Y}(x | y)P_{Y}(y)$$

we can write

$$P_{X_{1},X_{2},...,X_{n}}(x_{1},x_{2},...,x_{n}) = P_{X_{1}|X_{2},...,X_{n}}(x_{1} | x_{2},...,x_{n}) \times \times P_{X_{2}|X_{3},...,X_{n}}(x_{2} | x_{3},...,x_{n}) \times ... \times ... \times P_{X_{n-1}|X_{n}}(x_{n-1} | x_{n}) P_{X_{n}}(x_{n})$$

- ▶ this is called the chain rule of probability
- ▶ it allows us to modularize inference problems

The chain rule of probability

- ▶ e.g. in the medical diagnosis scenario
 - what is the probability that you will be sick and have 104° of fever?

$$P_{Y,X_1}(sick,104) = P_{Y|X_1}(sick \mid 104)P_{X_1}(104)$$

- breaks down a hard question (prob of sick and 104) into two easier questions
- Prob (sick|104): everyone knows that this is close to one

The chain rule of probability

▶ e.g. what is the probability that you will be sick and have 104° of fever?

$$P_{Y,X_1}(sick,104) = P_{Y|X_1}(sick \mid 104)P_{X_1}(104)$$

- Prob(104): still hard, but easier than P(sick,104) since we now only have one random variable (temperature)
- does not depend on sickness, it is just the question "what is the probability that someone will have 104°?"
 - gather a number of people, measure their temperatures and make an histogram that everyone can use after that

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

- frequently we have problems with multiple random variables
 - e.g. when in the doctor, you are mostly a collection of random variables

- we can summarize this as
 - a vector $\mathbf{X} = (x_1, ..., x_n)$ of n random variables
 - $P_X(x_1, ..., x_n)$ is the joint probability distribution
- but frequently we only care about a subset of X

Marginalization

- what if I only want to know if the patient has a cold or not?
 - does not depend on blood pressure and weight
 - all that matters are fever and cough
 - that is, we need to know P_{X1,X4}(a,b)
- we marginalize with respect to a subset of variables
 - (in this case X₁ and X₄)
 - this is done by summing (or integrating) the others out

$$P_{X_1,X_4}(x_1,x_4) = \sum_{x_3,x_4} P_{X_1,X_2,X_3,X_4}(x_1,x_2,x_3,x_4)$$

$$P_{X_1,X_4}(x_1,x_4) = \int \int P_{X_1,X_2,X_3,X_4}(x_1,x_2,x_3,x_4) dx_2 dx_3$$

Marginalization

▶ important equation:

- seems trivial, but for large models is a major computational asset for probabilistic inference
- for any question, there are lots of variables which are irrelevant
- direct evaluation is frequently intractable
- typically, we combine with the chain rule to explore independence relationships that will allow us to reduce computation

▶ independence:

X and Y are independent random variables if

$$P_{X|Y}(x \mid y) = P_X(x)$$

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

Independence

- very useful in the design of intelligent systems
 - frequently, knowing X makes Y independent of Z
 - e.g. consider the shivering symptom:
 - if you have temperature you sometimes shiver
 - it is a symptom of having a cold
 - but once you measure the temperature, the two become independent

$$P_{Y,X_{1},S}(sick,98,shiver) = P_{Y|X_{1},S}(sick \mid 98,shiver) \times P_{S|X_{1}}(shiver \mid 98)P_{X_{1}}(98)$$

$$= P_{Y|X_{1}}(sick \mid 98) \times P_{X_{1}}(shiver \mid 98)P_{X_{1}}(98)$$

simplifies considerably the estimation of the probabilities

Independence

- combined with marginalization, enables efficient computation
 - e.g to compute P_Y(sick)
 - 1) marginalization

$$P_{Y}(sick) = \sum_{s} \int P_{Y,X_{1},S}(sick, x, s) dx$$

• 2) chain rule

$$P_{Y}(sick) = \sum_{s} \int P_{Y|X_{1},S}(sick \mid x, s) P_{S|X_{1}}(s \mid x) P_{X_{1}}(x) dx$$

• 3) independence

$$P_{Y}(sick) = \int P_{Y|X_{1}}(sick \mid x)P_{X_{1}}(x)\sum_{s} P_{S|X_{1}}(s \mid x)dx$$

dividing and grouping terms (divide and conquer) makes the integral simpler

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule

▶ Bayes rule

$$P_{Y|X}(y \mid x) = \frac{P_{X|Y}(x \mid y)P_{Y}(y)}{P_{X}(x)}$$

- is the central equation of Bayesian inference
- allows us to "switch" the relation between the variables
- this is extremely useful
- e.g. for medical diagnosis doctor needs to know

$$P_{Y|X}(disease\ y\ |\ symptom\ x)$$

- this is very complicated because it is not causal
- we are asking for the probability of cause given consequence

 Bayes rule transforms it into the probability of consequence given cause

$$P_{Y|X}(disease \ y \mid symptom \ x) =$$

$$= \frac{P_{X|Y}(symptom \ x \mid disease \ y)P_{Y}(disease \ y)}{P_{X}(symptom \ x)}$$

and some other stuff

- note that P_{X|Y}(symptom x| disease y) is easy you can get it out of any medical textbook
- what about the other stuff?
 - P_Y(disease y) does not depend on the patient you can get it by collecting statistics over the entire population
 - P_x(symptom x) is a combination of the two (marginalization)

$$P_X(symptom \ x) = \sum_{y} P_{X|Y}(symptom \ x \mid disease \ y) P_Y(disease \ y)$$

Bayes rule

- ▶ Bayes rule allows us
 - to combine textbook knowledge with prior knowledge to compute the probability of cause given consequence
 - e.g. if you heard on the radio that there is an outbreak of "measles",
 - you increase the prior probability for the measles disease (cause)

$$P_{y}(measles) \uparrow \uparrow \uparrow$$

since (relation between cause and consequence)

$$P_{X|Y}(patient\ symptoms\ |\ measles)$$

does not change, Bayes rule will give you the "updated"

$$P_{Y|X}(measles \mid patient \ symptoms)$$

- that accounts for the new information
- this is hard if you work directly with the posterior probability

- probabilistic representations
 - joint distribution
 - class-conditional distributions
 - class probabilities
- properties of probabilistic inference
 - chain rule of probability
 - marginalization
 - independence
 - Bayes rule
- we are now ready to make optimal decisions!

