SEMINAR 4

Problema 1. Considerăm relațiile γ și δ pe \mathbb{R} .

- (i) $x\gamma y$ dacă $x + y \in \mathbb{Z}$
- (ii) $x\delta y$ dacă $x + y\sqrt{2} \in \mathbb{R}\backslash\mathbb{Q}$.

Să se studieze dacă γ , δ sunt reflexive, simetrice, tranzitive.

Solutie:

(i) $\exists x \in \mathbb{R}$ pentru care $x + x \notin \mathbb{Z}$, de exemplu $1, 2 + 1, 2 \notin \mathbb{Z}$, sau $\sqrt{2} + \sqrt{2} = 2\sqrt{2} \notin \mathbb{Z}$. Deci γ nu este reflexivă.

Este simetrică: dacă $x\gamma y \Leftrightarrow x+y \in \mathbb{Z}. \ y+x=x+y \in \mathbb{Z} \Rightarrow y\gamma x.$

Nu este tranzitivă: $1, 3 + 0, 7 = 2 \in \mathbb{Z}$; $0, 7 + 2, 3 = 3 \in \mathbb{Z}$, dar $1, 3 + 2, 3 = 3, 6 \notin \mathbb{Z}$.

(ii) $x + x\sqrt{2} = x(1 + \sqrt{2})$. Dacă $\exists x \in \mathbb{R}$ a.î. $x(1 + \sqrt{2}) \in \mathbb{Q}$, atunci γ NU este reflexivă.

 $x(1+\sqrt{2}) = \frac{p}{q} \Leftrightarrow x = \frac{p}{q(1+\sqrt{2})} = \frac{p(1-\sqrt{2})}{q(-1)} = \frac{p}{q}(\sqrt{2}-1) \in \mathbb{R}. \text{ Deci } \delta \text{ NU este reflexivă. NU este nici simetrică. De exemplu } \sqrt{2}\delta 1 \text{ pentru că } \sqrt{2}+1\cdot\sqrt{2} \in \mathbb{R}\backslash\mathbb{Q}, \text{ dar } 1+\sqrt{2}\cdot\sqrt{2}=3 \in \mathbb{Z} \subset \mathbb{Q}, \text{ deci 1 nu este în relația } \delta \text{ cu } \sqrt{2}. \delta \text{ NU verifică nici axioma tranzitivității. De exemplu } \sqrt{2}\delta 1, 1\delta(\sqrt{2}-1), \text{ (avem } 1+(\sqrt{2}-1)\cdot\sqrt{2})=1+2-\sqrt{2}=3-\sqrt{2}\in\mathbb{R}\backslash\mathbb{Q}), \text{ dar } \sqrt{2}+(\sqrt{2}-1)\cdot\sqrt{2})=\sqrt{2}+2-\sqrt{2}=2\in\mathbb{Z}\subset\mathbb{Q}.$ Deci $\sqrt{2}$ nu este în relația δ cu $\sqrt{2}-1$.

Problema 2. Pe mulțimea numerelor complexe \mathbb{C} definim relația $z \sim w \Leftrightarrow z - w \in \mathbb{R}$. Arătați că \sim este relație de echivalență, determinați clasele de echivalență și un sistem de reprezentanți.

Solutie:

- (i) reflexivitatea: $z z = 0 \in \mathbb{R}$ pentru $\forall z \in \mathbb{C}$, deci $z \sim z$.
- (ii) simetria: dacă $z w \in \mathbb{R}$, atunci $w z = -(z w) \in \mathbb{R}$, de unde $w \sim z$.
- (iii) tranzitivitatea: dacă $z w \in \mathbb{R}$ și $w u \in \mathbb{R}$, atunci $z u = z w + w u \in \mathbb{R}$, adică $z \sim u$. Avem astfel o relație de echivalență.

Fie $z \in \mathbb{C}$, clasa de echivalență a lui $z, [z] = \{z + x \mid x \in \mathbb{R}\}$ ceea ce reprezintă o dreaptă orizontală ce trece prin z. Ecuația acesteia este $y = \operatorname{Im}(z)$. Sistemul de reprezentanți este axa imaginară.

Problema 3. Fie X o mulţime infinită. Pe $\mathcal{P}(X)$ definim relaţia $A \sim B \Leftrightarrow A\Delta B$ este finită. (Δ reprezintă diferența simetrică a mulţimilor). Arătaţi că \sim este o relaţie de echivalență.

Soluție: $A\Delta A = \emptyset$, $|\emptyset| = 0$, deci $A \sim A$. $B\Delta A = A\Delta B$, deci $A \sim B \Rightarrow B \sim A$. Fie $A \sim B$ şi $B \sim C$. $A\Delta C \subset (A\Delta B) \cup (B\Delta C)$, care este o mulțime finită, fiind reuniune de două mulțimi finite.

Problema 4. Considerăm operațiile algebrice pe \mathbb{N} :

- (i) x * y = x + 1,
- (ii) x * y = x,
- (iii) x * y = xy + 1,
- (iv) x * y = 0,
- $(v) x * y = \max\{x, y\}.$

Precizați dacă sunt asociative, comutative sau posedă element neutru.

1

2 SEMINAR 4

Solutie:

(i) (x*y)*z = (x+1)*z = x+1. x*(y*z) = x*(y+1) = x+1. Operația este asociativă. Avem $x*y = x+1 \neq y+1 = y*x$. Deci operația nu este comutativă. Nu are nici element neutru pentru că $x*e = x \Leftrightarrow x+1 = x \Leftrightarrow 1 = 0$, ceea ce este fals.

- (ii) (x*y)*z = x*z = x, x*(y*z) = x*y = x. De aici (x*y)*z = x*(y*z). $x*y = x \neq y = y*x \Rightarrow$ operația nu este comutativă. $x*e = x \Leftrightarrow x = x$. $e*x = x \Leftrightarrow e = x$ ptr. $\forall x \in \mathbb{N}$. Deci nu există un element neutru.
- (iii) (x*y)*z = (xy+1)*z = (xy+1)z+1 = xyz+z+1. Pe de altă parte x*(y*z) = x*(yz+1) = x(yz+1)+1 = xyz+x+1. Cele două cantități nu sunt egale pentru $\forall x,y,z\in\mathbb{N}$, deci operația nu este asociativă. Este comutativă pentru că x*y = xy+1 = yx+1 = y*x. Elementul neutru trebuie să satisfacă $x*e = x \Leftrightarrow xe+1 = x \Leftrightarrow x(e-1) = -1$ pentru $\forall x\in\mathbb{N} \Rightarrow \nexists e\in\mathbb{N}$ cu această proprietate.
- (iv) Operația este asociativă (x*y)*z=0=x*(y*z), comutativă x*y=0=y*x, și nu are element neutru.
- (v) Este asociativă: $(x*y)*z = \max\{\max\{x,y\},z\} = \max\{x,y,z\} = \max\{x,\max\{y,z\}\} = x*(y*z)$. Este comutativă $x*y = \max\{x,y\} = \max\{y,x\} = y*x$. Elementul neutru este 0, (dacă $0 \in \mathbb{N}$), altfel 1.

Problema 5. Fie $a,b,c \in \mathbb{Z}, b \neq 0$. Pe \mathbb{Z} definim operația x*y = axy + b(x+y) + c. Arătați că $M_{a,b,c} = (\mathbb{Z},*)$ este monoid $\Leftrightarrow b = b^2 - ac$ și b|c. Mai mult, pentru $a \neq 0$, avem izomorfismele de monoizi $M_{a,b,c} \simeq M_{a,1,0} \simeq K_a$, unde K_a este monoidul multiplicativ $\{am+1 \mid m \in \mathbb{Z}\}$.

Soluție: Impunând condiția de asociativitate care trebuie să fie adevărată pentru $\forall x,y,z\in\mathbb{Z}$ și făcând socotelile elementare găsim $b^2-b-ac=0$. Pentru elementul neutru e avem x*e=x pentru $(\forall)x\in\mathbb{Z}.\ x*e=x\Leftrightarrow x(ae+b-1)+be+c=0, (\forall)x\in\mathbb{Z}\Rightarrow be+c=0$ și ae+b-1=0, deci $e=-\frac{c}{b}\in\mathbb{Z}\Leftrightarrow b|c$. Cu această expresie a lui e și înmulțind cu b ecuația ae+b-1=0 devine $b^2-b-ac=0$.

Deci $M_{a,b,c} = (\mathbb{Z}, *)$ este monoid $\Leftrightarrow b = b^2 - ac \neq b|c$.

Presupunem acum că $a \neq 0$ şi $M_{a,b,c}$ este monoid, deci b|c şi deci $d = \frac{c}{b} \in \mathbb{Z}$, de unde c = bd. Din $b^2 = b + ac$ împărțind cu b şi înlocuind obținem b = 1 + ad. c = bd = (1 + ad)d. Următoarele corespondențe sunt izomorfisme de monoizi. $f: M_{a,b,c} \longrightarrow M_{a,1,0}, f(x) = x + d$ şi $g: M_{a,1,0} \longrightarrow K_a, g(x) = ax + 1$.