Math 3B: Lecture 19

Noah White

November 4, 2016

Last time

• Modelling using differential equations

Last time

- Modelling using differential equations
- Exponential population growth

Last time

- Modelling using differential equations
- Exponential population growth
- Logistic population growth

Logistic growth

The equation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

is called the Logistic equation and K is the carrying capacity.

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1.
$$N(0) = 0$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1. N(0) = 0

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Case 2.
$$N(0) = K$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains K.

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 1. N(0) = 0

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains 0.

Case 2.
$$N(0) = K$$

In this case the growth rate is 0 initially, so N(t) does not increase or decrease, so remains K.

Key takeaway

Both N(t) = 0 and N(t) = K are solutions to the ODE. They are called equalibrium solutions.

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 3.
$$0 \le N(0) \le K$$

In this case, N is initially increasing and so becomes more positive, slowing down as it gets close to K.

Assume that r > 0 and K > 0.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N$$

Case 3. $0 \le N(0) \le K$

In this case, N is initially increasing and so becomes more positive, slowing down as it gets close to K.

Case 4.
$$N(0) \ge K$$

In this case N is initially decreasing but decreases slower and slower as it gets close to K.

Logistic growth with outside effects

We can also modify the logistic equation to get something which models an outside effect. For example harvesting.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N - h(t)$$

Logistic growth with outside effects

We can also modify the logistic equation to get something which models an outside effect. For example harvesting.

$$\frac{\mathrm{d}N}{\mathrm{d}t} = r\left(1 - \frac{N}{K}\right)N - h(t)$$

This would model a population growing logistically but where we are harvesting at a rate of h(N). E.g. we decide to continually harvest 3% of the population then

$$h(N) = 0.03N$$
.

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y=e^{\sin x}$ is a solution of $\frac{\mathrm{d}y}{\mathrm{d}x}=y\cos x$. To check note that

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y = e^{\sin x}$ is a solution of $\frac{dy}{dx} = y \cos x$. To check note that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\sin x} \cos x$$

The most straighforward way of checking a function y = f(x) is a solution to a differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x,y)$$

is to simply plug it in to both sides.

Example

The function $y = e^{\sin x}$ is a solution of $\frac{dy}{dx} = y \cos x$. To check note that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\sin x} \cos x$$
$$y \cos x = e^{\sin x} \cos x$$