The Knapsack Problem

A Survey of Solution Approaches

Sayak Biswas UNIVERSITY of **FLORIDA** UFID: 54584911

April 17, 2016

Abstract

This paper surveys existing literature for different approaches to solve the knapsack problem. The Knapsack Problem is a combinatorial optimization problem in which one has to maximize the profits gained by packing a set of objects in a knapsack without exceeding its capacity. The problem is \mathcal{NP} -hard, thus there is no known polynomial time algorithm for a large input.

Specifically, we take a look at the 0-1 Knapsack Problem and provide a qualitative comparison between the three well-known approaches towards solving the problem: dynamic programming, backtracking and branch & bound algorithms.

1 Introduction

The *Knapsack Problem* is an optimization problem, which at a high level is to choose the most profitable subset from a collection of available items without overloading the knapsack. The problem is formally defined as follows:

Given a knapsack of maximum capacity C and n items each weighing w_i and with an associated profit of p_i , the $Knapsack\ Problem$ is to choose a subset of the items such to maximize $\sum_{i=1}^n p_i x_i$ on the condition $\sum_{i=1}^n w_i x_i \leq C, i=1,...,n$ where x_i is the number of copies of each item.

The 0-1 knapsack problem restricts the copy count to either zero or one, meaning the object is either included in the knapsack or not, *i.e.* $x_i \in \{0, 1\}$.

2 Algorithms

A naïve brute force approach would be to consider all 2^n possible combinations of items for the knapsack and choose the one that yields te maximum profit. Such an approach would lead to exponential complexity and hence is not desirable.

2.1 Dynamic Programming

Dynamic programming solves optimization problems by breaking it into smaller subproblems and then solving those subproblems to find the overall solution. To design a dynamic programming solution for the problem, we first define a function knap(1, n, C) which finds the optimal solution, $f_n(C)$ for a knapsack of capacity C using objects from I to n. We divide this into subproblems denoted by knap(1, j, y) which finds the optimal solution for a knapsack of capacity g using objects from g to g. Let the solution to this be defined by g.

At any point in the problem state, the solution depends on making a decision on whether to use the current object or not. So, we obtain the top-down recurrence relation

$$f_i(y) = \max \{f_{i-1}(y), f_{i-1}(y - w_i) + p_i\}, y \ge w_i$$
(1)

Let us consider an example with a knapsack of capacity C = 6, three given objects with weights 2,3,4 and profits 1,2,5 respectively. Using the relation 1 we calculate all possible values and store them in a table as follows

So, we have a matrix of size $n \times C$ which we fill in row-wise manner as values in a row depend on

the previous row values. The running time is O(nC) and the space requirement is O(C). Below is the pseudo-code:

Algorithm 1 DynamicKnapsack(p, w, n, C)

```
1: for j from 0 to C do
       result[0,j] \leftarrow 0
3: end for
4: for i from 1 to n do
       for j from 0 to C do
6:
           if w[i-1] > j then
               result[i, j] \leftarrow result[i - 1, j]
 7:
           else
8:
               result[i, j] \leftarrow max(result[i-1, j], result[i-1, j-w[i-1]] + p[i-1])
9:
10:
       end for
11:
12: end for
```

2.2 Backtracking

A backtracking algorithm builds a set of possible solution all the while discarding any partial solution candidates which it determines to be not feasible. As discussed earlier the solution space for θ -1 Knapsack problem consists of 2^n ways of assigning 0 or 1 to x_i . Below is a possible solution space when n=3.

This space is searched in depth-first manner from the start node. From each E-node we check if the next node will result in a feasible solution. If yes, the next node becomes the E-node. If no, we backtrack to the previous node and kill the E-node. To do this, we use an upper bound on the best solution that can be achieved from this node. We obtain this bound by relaxing the constraint from $x_i \in \{0, 1\}$ to $0 \le x_i \le 1$ and using the greedy algorithm (of sorting the items in non-decreasing order of profit per unit weight and adding to the knapsack) for the rest of the problem. The pseudo-code for the bounding algorithm and the backtracking solution is given below.

Algorithm 2 GreedyBound $(p, w, n, C, k, p_c, w_c)$

```
1: for i from k + 1 to n do

2: w_c \leftarrow w_c + w_i

3: if w_c < C then

4: p_c \leftarrow p_c + p_i

5: else

6: return p_c + (1 - (w_c - C)/w_i) * p_i

7: end if

8: end for

9: return p_c
```

Algorithm 3 BacktrackingKnapsack $(p, w, n, C, k, p_c, w_c)$

```
1: if w_c + w_k \leq C then
 2:
        y_k \leftarrow 1
        if k < n then
 3:
            BACKTRACKINGKNAPSACK(p, w, n, C, k+1, p_c + p_k, w_c + w_k)
 4:
 5:
        if p_c + p_k > p_t and k = n then
 6:
 7:
            p_t \leftarrow p_c + p_k
            w_t \leftarrow w_c + w_k
 8:
            for j from 1 to k do
 9:
10:
                x_j \leftarrow y_j
            end for
11:
        end if
12:
14: if GreedyBound(p, w, n, C, k, p_c, w_c) \ge p_t then
15:
        y_k \leftarrow 0
        if k < n then
16:
17:
            BacktrackingKnapsack(p, w, n, C, k+1, p_c, w_c)
        end if
18:
        if p_c > p_t and k = n then
19:
20:
            p_t \leftarrow p_c
21:
            w_t \leftarrow w_c
22:
            for j from 1 to k do
23:
                x_j \leftarrow y_j
            end for
24:
        end if
25:
26: end if
```