Team meeting presentation

Development of hybrid finite element/neural network methods to help create digital surgical twins

Author: LECOURTIER Frédérique

Supervisors: DUPREZ Michel, FRANCK Emmanuel, LLERAS

Vanessa

Decembre 12, 2023

Introduction

Scientific context

Context: Create real-time digital twins of an organ (such as the liver).

 ϕ -FEM Method : New fictitious domain finite element method.

- ightharpoonup domain given by a level-set function \Rightarrow don't require a mesh fitting the boundary
- → allow to work on complex geometries
- → ensure geometric quality

Practical case: Real-time simulation, shape optimization...

Objectives

Internship objective : Correct and certify the prediction of a Fourier Neural Operator (FNO), trained with ϕ -FEM solution.

PhD Objective: Develop hybrid finite element / neural network methods.

OFFLINE

- · Learn several geometry representations
- Generate ϕ -FEM solutions as training data on several geometry
- Train a Neural Operator (to map the geometry and the function on the solution)

ONLINE

Data: 1 geometry + 1 function

- Compute representation of 1 geometry and 1 function
- Compute predictions from the Neural Operator
- Use $\phi\text{-FEM}$ to correct the prediction

Evolution:

- Geometry : 2D, simple, fixed (as circle, ellipse..) $\,
 ightarrow \,$ 3D / complex / variable
- PDE : simple, static (Poisson problem) $\, o \,$ complex / dynamic (elasticity, hyper-elasticity)
- Neural Network : simple and defined everywhere (PINNs) ightarrow Neural Operator

PDE considered

Poisson problem with Dirichlet conditions:

Find $u:\Omega\to\mathbb{R}^d(d=1,2,3)$ such that

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \Gamma, \end{cases} \tag{P}$$

with Δ the Laplace operator, Ω a smooth bounded open set and Γ its boundary. We will define by

$$||u_{ex} - u_{method}||_{0,\Omega}^{(rel)} = \frac{\int_{\Omega} (u_{ex} - u_{method})^2}{\int_{\Omega} u_{ex}^2}$$

the relative error between

- u_{ex} : the exact solution
- u_{method} : the solution obtained by a method (can be: FEM or ϕ -FEM, a correction solver or the prediction of an neural network).

Problem - Unknown solution on a Circle

→ Level-set function :

$$\phi(x,y) = -1/8 + (x - 1/2)^2 + (y - 1/2)^2$$

→ FNO solution :

$$f(x,y) = \exp\left(-\frac{(x-\mu_0)^2 + (y-\mu_1)^2}{2\sigma^2}\right) \quad (1)$$

with $\sigma \sim \mathcal{U}([0.1, 0.6])$

$$\mu_0, \mu_1 \sim \mathcal{U}(]X_0 - r, X_0 + r[)$$

→ Theoretical experiment solution :

$$u_{\rm ex}(x,y) = S\sin\left(8\pi f\left((x-0.5)^2 + (y-0.5)^2\right) + \varphi\right) \tag{2}$$

Remark : $\varphi=0 \ \Rightarrow \ u=0 \ {\rm on} \ \Gamma$

→ PINNs solution

$$u_{ex}(x,y) = \phi(x,y)\sin(x)\exp(y) \tag{3}$$

Finite Element Methods

Standard FEM method $\phi ext{-FEM}$ method

Finite Element Methods

Standard FEM method

φ-FEM method

Presentation of standard FEM method

Variational Problem : Find $u \in V \mid a(u, v) = I(v), \ \forall v \in V$ with V - Hilbert space, a - bilinear form, I - linear form.

Approach Problem : Find $u_h \in V_h \mid a(u_h, v_h) = I(v_h), \ \forall v_h \in V_h$ with $\bullet u_h \in V_h$ an approximate solution of u_h . $\bullet V_h \subset V, \ dim V_h = N_h < \infty, \ (\forall h > 0)$ \Rightarrow Construct a piecewise continuous functions space

$$\textit{V}_{\textit{h}} := \textit{P}_{\textit{C},\textit{h}}^{\textit{k}} = \{\textit{v}_{\textit{h}} \in \textit{C}^{0}(\bar{\Omega}), \forall \textit{K} \in \mathcal{T}_{\textit{h}}, \textit{v}_{\textit{h}|\textit{K}} \in \mathbb{P}_{\textit{k}}\}$$

 $\mathcal{T}_h = \{K_1, \dots, K_{N_e}\}$ (N_e : number of elements)

where \mathbb{P}_k is the vector space of polynomials of total degree $\leq k$.

Finding an approximation of the PDE solution \Rightarrow solving the following linear system:

$$AU = b$$

with

$$A=(a(\varphi_i,\varphi_j))_{1\leq i,j\leq N_h},\quad U=(u_i)_{1\leq i\leq N_h}\quad \text{and}\quad b=(I(\varphi_j))_{1\leq j\leq N_h}$$

where $(\varphi_1, \ldots, \varphi_{N_h})$ is a basis of V_h .

MIMESIS

Finite Element Methods

Standard FEM method

 ϕ -FEM method

Problem

Let $u = \phi w + g$ such that

$$\begin{cases} -\Delta u = f, \text{ in } \Omega, \\ u = g, \text{ on } \Gamma, \end{cases}$$

where ϕ is the level-set function and Ω and Γ are given by :

The level-set function ϕ is supposed to be known on \mathbb{R}^d and sufficiently smooth. For instance, the signed distance to Γ is a good candidate.

 $\it Remark$: Thanks to $\it \phi$ and $\it g$, the conditions on the boundary are respected.

Fictitious domain

- $ightharpoonup \phi_h$: approximation of ϕ
- $ightarrow \Gamma_{\it h} = \{\phi_{\it h} = 0\}$: approximate boundary of Γ
- $\rightarrow \Omega_h$: computational mesh
- $\rightarrow \partial \Omega_h$: boundary of Ω_h ($\partial \Omega_h \neq \Gamma_h$)

Remark : n_{vert} will denote the number of vertices in each direction for \mathcal{O}

Facets and Cells sets

- $\rightarrow \mathcal{T}_h^{\Gamma}$: mesh elements cut by Γ_h
- $ightarrow \mathcal{F}_h^{\Gamma}$: collects the interior facets of \mathcal{T}_h^{Γ} (either cut by Γ_h or belonging to a cut mesh element)

ϕ -FEM Method - Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$a_h(w,v) = \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial\Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + G_h(w,v),$$

$$I_h(v) = \int_{\Omega_h} f \phi_h v + G_h^{rhs}(v)$$

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_T} \in \mathbb{P}_k(T), \ \forall T \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

ϕ -FEM Method - Poisson problem

Approach Problem : Find $w_h \in V_h^{(k)}$ such that

$$a_h(w_h, v_h) = I_h(v_h) \quad \forall v_h \in V_h^{(k)}$$

where

$$\begin{split} a_h(w,v) &= \int_{\Omega_h} \nabla(\phi_h w) \cdot \nabla(\phi_h v) - \int_{\partial \Omega_h} \frac{\partial}{\partial n} (\phi_h w) \phi_h v + \boxed{G_h(w,v)}, \\ I_h(v) &= \int_{\Omega} f \phi_h v + \boxed{G_h^{rhs}(v)} \end{split} \qquad \text{Stabilization terms}$$

and

$$V_h^{(k)} = \left\{ v_h \in H^1(\Omega_h) : v_{h|_T} \in \mathbb{P}_k(T), \ \forall T \in \mathcal{T}_h \right\}.$$

For the non homogeneous case, we replace

$$u = \phi w \rightarrow u = \phi w + g$$

by supposing that g is currently given over the entire Ω_h .

Stabilization terms

Independent parameter of h
$$G_h(w,v) = \left[\begin{array}{c} \sigma h \sum_{E \in \mathcal{F}_h^{\Gamma}} \int_{E} \left[\frac{\partial}{\partial n} (\phi_h w) \right] \left[\frac{\partial}{\partial n} (\phi_h v) \right] + \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} \Delta(\phi_h w) \Delta(\phi_h v) \right] \\ I^{\text{st} \ order \ term} \\ G_h^{\textit{rhs}}(v) = \left[-\sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} f \Delta(\phi_h v) \right] \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h v) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w) \\ \sigma h^2 \sum_{T \in \mathcal{T}_h^{\Gamma}} (\Delta(\phi_h w) + f) \Delta(\phi_h w)$$

<u>1st term</u>: ensure continuity of the solution by penalizing gradient jumps.

 \rightarrow Ghost penalty [Burman, 2010]

<u>2nd term</u>: require the solution to verify the strong form on Ω_h^{Γ} .

Purpose:

- → reduce the errors created by the "fictitious" boundary
- → ensure the correct condition number of the finite element matrix
- → restore the coercivity of the bilinear scheme

Internship results

Correction Methods Results - with FNO Other results

Internship results

Correction Methods Results - with FNO Other results

We are given μ_0 the FNO prediction (for the problem under consideration).

We are given u_{θ} the FNO prediction (for the problem under consideration). **By multiplying**:

By adding:

We will consider

$$\tilde{u}=u_{\theta}+\tilde{c}\approx 0$$

We want $\tilde{\mathit{C}}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{\mathbf{C}} = \tilde{\mathbf{f}}, & \text{in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{on } \Gamma. \end{cases} \tag{\mathcal{C}_{+}}$$

We will consider

$$\tilde{u} = u_{\theta} \boxed{c} \approx 1$$

with $\tilde{f}=f+\Delta u_{\theta}$ and $\tilde{C}=\phi C$ for the ϕ -FEM method.

Remark : In practice, it may be useful to integrate by parts the term containing Δu_{θ} .

We want $\mathit{C}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(u_{\theta}C) = f, & \text{on } \Omega, \\ C = 1, & \text{on } \Gamma. \end{cases}$$

Correction Methods

We are given u_{θ} the FNO prediction (for the problem under consideration).

By adding:

We will consider

$$\tilde{u} = u_{\theta} + \tilde{C}$$

We want $\tilde{C}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta \tilde{\mathbf{C}} = \tilde{\mathbf{f}}, & \text{in } \Omega, \\ \tilde{\mathbf{C}} = 0, & \text{on } \Gamma. \end{cases}$$
 (C₊)

with $\tilde{f}=f+\Delta u_{\theta}$ and $\tilde{\textit{C}}=\phi\textit{C}$ for the ϕ -FEM method.

Remark: In practice, it may be useful to integrate by parts the term containing Δu_{θ} .

By multiplying - elevated problem :

Find $\hat{u}:\Omega\to\mathbb{R}^d$ such that

$$\begin{cases} -\Delta \hat{u} = f, & \text{in } \Omega, \\ \hat{u} = g + m, & \text{on } \Gamma, \end{cases}$$
 $(\mathcal{P}^{\mathcal{M}})$

with $\hat{u} = u + m$ (m a constant).

We will consider

$$\tilde{u} = u_{\theta}^{\wedge} C$$

with $\hat{u_{\theta}} = u_{\theta} + m$.

We want $\mathit{C}:\Omega \to \mathbb{R}^d$ such that

$$\begin{cases} -\Delta(\hat{u_{\theta}}C) = f, & \text{in } \Omega, \\ C = 1, & \text{on } \Gamma. \end{cases}$$

Internship results

Correction Methods Results - with FNO

Other results

Explanation

Train a FNO:

Correct the predictions of the FNO:

Some important points on the FNO:

- → widely used in PDE solving and constitute an active field of research
- → FNO are Neural Operator networks: Unlike standard neural networks, which learn using inputs and outputs of fixed dimensions, neural operators learn operators, which are mappings between spaces of functions.
- → **Mesh resolution independent :** can be evaluated at almost any data resolution without the need for retraining

Correction on a FNO prediction - ϕ -FEM

We consider an unknown solution on the circle with f Gaussian (1), $n_{vert} = 63$, $n_{data} = 1000$ (including validation sample) and $n_{test} = 100$.

Training on 4000 epochs (bs=64,lr=0.01):

epoch

Remark: We should try to reduce the resolution for correction, maybe we will gain in the time-to-error ratio.

epoch=1000 epoch=2000 epoch=3000 epoch=4000

Internship results

Correction Methods Results - with FNO

Other results

Precision of the prediction - FEM

We consider the trigonometric solution on the circle (2) with

$$u_{ex}(x,y) = S \sin (8\pi f ((x-0.5)^2 + (y-0.5)^2) + \varphi)$$

with ${\it S}=0.5$ and $\varphi=0$.

Exact solution : Testing different correction methods for different frequencies.

$$u_{\theta} = u_{ex} \in \mathbb{P}^{10} \rightarrow \tilde{u} \in \mathbb{P}^1$$

Correction with FEM ($n_{vert} = 100$):

	fem	Corr_add	Corr_add_IPP	Corr_mult
f = 1	2.10e-03	2.44e-10	1.29e-13	2.97e-13
f = 2	6.62e-03	1.53e-10	1.28e-13	2.80e-13
f = 3	1.41e-02	8.86e-11	1.27e-13	2.68e-13
f = 4	2.42e-02	9.52e-11	1.26e-13	2.61e-13

Precision of the prediction - FEM

We consider $(S, f, \varphi) = (0.5, 1, 0)$.

Disturbed solution : Testing different ϵ and different degree k.

$$u_{\theta} = u_{ex} + \epsilon P \in \mathbb{P}^k \ o \ \tilde{u} \in \mathbb{P}^1$$

with ϵ a real number and P a perturbation. Correction (\mathcal{C}_+) with FEM ($n_{\textit{vert}}=32$):

Results for
$$k = 10$$
:
eps corr_add

1.00e+00 6.57e-02
1.00e-01 6.57e-03
1.00e-02 6.57e-04
1.00e-03 6.57e-05
1.00e-04 6.57e-06

$$\textit{Remark}: \textit{P}(\textit{x},\textit{y}) = \textit{S}_{\textit{p}} \sin \left(8\pi f_{\textit{p}} \left((\textit{x} - 0.5)^2 + (\textit{y} - 0.5)^2 \right) + \varphi_{\textit{p}} \right) \text{ with } (\textit{S}_{\textit{p}},f_{\textit{p}},\varphi_{\textit{p}}) = (0.5,2,0)$$

Theoretical results - FEM

Correction by multiplication on the elevated problem: We consider

- $\hat{u_{ex}} = u_{ex} + m$: the exact solution of $(\mathcal{P}^{\mathcal{M}})$
- $\hat{u_{\theta}} = u_{\theta} + m$: a disturbed solution of $(\mathcal{P}^{\mathcal{M}})$.
- $\tilde{u_h} = \hat{u_\theta} C_h$: the approximate solution of $(C_{\times}^{\mathcal{M}})$
- **1.** When m tends to infinity:

solution of
$$(\mathcal{C}_{\times}^{\mathcal{M}}) \to \text{solution of } (\mathcal{C}_{+})$$

Results:
$$n_{\text{vert}} = 32$$
, $\epsilon = 0.001$

2. For *m* sufficiently large : $C_{ex} = \hat{u_{ex}}/\hat{u_{\theta}}$

$$\left|\left|\mathsf{C}_{\mathsf{ex}}-\mathsf{C}_{\mathsf{h}}\right|\right|_{0,\Omega} \leq \mathsf{ch}^{k+1}\epsilon \left|\left|\mathsf{P}''\right|\right|_{0,\Omega}$$

Results :
$$n_{\text{vert}} = 32$$
, $\epsilon = 0.001$, $f_p = 2$

PhD results

Explanation

Context : Need $u_{\theta} \in \mathbb{P}^k$ with k of high degree

FNO

(on a regular grid)

Solutions:

1. MLP - Multi-Layer Perceptron

Problem : As the prediction is injected into an FEM solver, the accuracy of the derivatives is very important.

NN which can predict solution at any point

2. PINNs - MLP with a physical loss

$$loss = mse(\Delta(\phi(x_i, y_i)w_{\theta,i}) + f_i)$$

$$inputs = \{(x_i, y_i)\}$$

$$outputs = \{u_i\}$$

$$i=1,...,n_{po}$$

$$u_i = \phi(x_i, y_i)w_i(x_i, y_i)$$

with $(x_i, y_i) \in \mathcal{O}$.

Remark: We impose exact boundary conditions.

PINNs Training

We consider the solution on the circle defined in (3) and defined by

$$u_{ex}(x,y) = \phi(x,y)\sin(x)\exp(y)$$

We train a PINNs with 4 layers of 20 neurons over 10000 epochs (with $n_{pts}=2000$ points selected uniformly over \mathcal{O}).

 $\underline{\wedge}$ We consider a single problem (f fixed) on a single geometry (ϕ fixed).

$$||u_{ex} - u_{\theta}||_{0,\Omega}^{(rel)} \approx 2.81e - 3$$

Derivatives

Correction by addition

$$u_{\theta} \in \mathbb{P}^{10} \rightarrow \tilde{u} \in \mathbb{P}^1$$

FEM / ϕ -FEM : $n_{\textit{vert}} \in \{8, 16, 32, 64, 128\}$

Corr : $n_{\textit{vert}} \in \{5, 10, 15, 20, 25, 30\}$

Remark : The stabilisation parameter σ of the ϕ -FEM method has a major impact on the error obtained.

Calculation time (to reach an error of 1e-4)

		mesh	u_PINNs	assemble	solve	TOTAL
	FEM	0,08832		29,55516	0,07272	29,71621
	PhiFEM	0,33222		1,86924	0,00391	2,20537
	Corr_add_FEM	0,00183	0,11187	0,46195	0,00061	0,57626
	Corr_add_PhiFEM	0,03213	0,05351	0,22006	0,00040	0,30609

• **mesh** - FEM : construct the mesh (φ-FEM : construct cell/facet sets)

- **u_PINNs** get $u_{ heta}$ in \mathbb{P}^{10} freedom degrees
- assemble assemble the FE matrix
- solve resolve the linear system

Conclusion

Conclusion

Observations:

- **1.** Correction by addition seems to be the best choice (based on theoretical results obtained with FEM)
- **2.** We need a high degree prediction ($u_{\theta} \in \mathbb{P}^{10}$)
- \Rightarrow no longer use FNO (needs NN defined at any point)
- **3.** We need to approximate the derivatives of the solution precisely
- \Rightarrow no longer use simple MLP, replaced by a PINNs

What's next?

- **1.** Consider multiple problems (varying *f*)
- **2.** Consider multiple and more complex geometry (varying ϕ)
- 3. Replace PINNs with a Neural Operator

Bibliography

Bibliography

- [1] Erik Burman. "Ghost penalty". Comptes Rendus. Mathématique 348.21 (2010), pp. 1217–1220. ISSN: 1778-3569.
- [2] Erik Burman et al. "CutFEM: Discretizing geometry and partial differential equations". International Journal for Numerical Methods in Engineering 104.7 (2015), pp. 472–501. ISSN: 1097-0207.
- [3] Stéphane Cotin et al. φ-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer.
- [5] Michel Duprez, Vanessa Lleras, and Alexei Lozinski. "A new ϕ -FEM approach for problems with natural boundary conditions". Numerical Methods for Partial Differential Equations 39.1 (2023), pp. 281–303. ISSN: 1098-2426.
- [6] Michel Duprez and Alexei Lozinski. "\(\phi\)-FEM: A Finite Element Method on Domains Defined by Level-Sets". SIAM Journal on Numerical Analysis 58.2 (Jan. 2020), pp. 1008–1028. ISSN: 0036-1429.
- [7] Zongyi Li et al. Neural Operator: Graph Kernel Network for Partial Differential Equations. Mar. 6, 2020.
- [8] Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. May 16, 2021.
- [9] Zongyi Li et al. Fourier Neural Operator with Learned Deformations for PDEs on General Geometries. July 11, 2022.
- [10] Zongyi Li et al. *Physics-Informed Neural Operator for Learning Partial Differential Equations*. July 29, 2023.
- [11] N. Sukumar and Ankit Srivastava. "Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks". Computer Methods in Applied Mechanics and Engineering 389 (Feb. 2022), p. 114333. ISSN: 00457825.

Architecture of the FNO

Input *X* of shape (bs,ni,nj,nk) **Output** *Y* of shape (bs,ni,nj,1) with bs the batch size, ni and nj the grid resolution and nk the number of channels.

Description of the FNO architecture

- → perform a P transformation, to move to a space with more channels (to build a sufficiently rich representation of the data)
- → apply *L* Fourier layers defined by

$$\mathcal{H}'_{\theta}(\tilde{\mathbf{X}}) = \sigma\left(\mathcal{C}'_{\theta}(\tilde{\mathbf{X}}) + \mathcal{B}'_{\theta}(\tilde{\mathbf{X}})\right), \ l = 1, \dots, L$$

with \tilde{X} the input of the current layer and

- $\,\sigma$ an activation function (ReLU or GELU)
- $\mathcal{C}_{ heta}^{\prime}$: convolution sublayer (convolution performed by Fast Fourier Transform)
- $\mathcal{B}_{\theta}^{\prime}$: "bias-sublayer"
- → return to the target dimension by performing a Q transformation (in our case, the number of output channels is 1)

Fourier Layer Structure

Convolution sublayer : $C'_{ heta}(X) = \mathcal{F}^{-1}(\mathcal{F}(X) \cdot \hat{W})$

- $\rightarrow \hat{W}$: a trainable kernel
- $ightarrow \mathcal{F}$: 2D Discrete Fourier Transform (DFT) defined by

$$\mathcal{F}(X)_{ijk} = \frac{1}{ni} \frac{1}{nj} \sum_{i'=0}^{ni-1} \sum_{j'=0}^{nj-1} X_{i'j'k} e^{-2\sqrt{-1}\pi \left(\frac{i'}{ni} + \frac{\bar{i}'}{nj}\right)}$$

 \mathcal{F}^{-1} : its inverse.

 $ightharpoonup (Y \cdot \hat{W})_{ijk} = \sum_{k'} Y_{ijk'} \hat{W}_{ijk'} \quad \Rightarrow \quad \text{applied channel by channel}$

Bias-sublayer:
$$\mathcal{B}_{ heta}'(\mathsf{X})_{ijk} = \sum_{k'} \mathsf{X}_{ijk} \mathsf{W}_{k'k} + \mathsf{B}_k$$

- → 2D convolution with a kernel of size 1
- → allowing channels to be mixed via a kernel without allowing interaction between pixels.

Dual method - Poisson Problem

Problem : Find u on Ω_h and p on Ω_h^{Γ} such that

$$\begin{split} \int_{\Omega_h} \nabla u \nabla v - \int_{\partial \Omega_h} \frac{\partial u}{\partial n} v + \frac{\gamma}{h^2} \sum_{T \in \mathcal{T}_h^{\Gamma}} \int_{T} \left(u - \frac{1}{h} \phi p \right) \left(v - \frac{1}{h} \phi q \right) \\ + G_h(u, v) &= \int_{\Omega_h} f v + G_h^{rhs}(v), \ \forall v \text{ on } \Omega_h, \ q \text{ on } \Omega_h^{\Gamma} \end{split}$$

with γ an other positive stabilization parameter and G_h and G_h^{rhs} the stabilization terms defined previously.

For the non homogeneous case, we replace

$$\int_{\tau} \left(u - \frac{1}{h} \phi p \right) \left(v - \frac{1}{h} \phi q \right) \quad \rightarrow \quad \int_{\tau} \left(u - \frac{1}{h} \phi p - g \right) \left(v - \frac{1}{h} \phi q \right)$$

by assuming ${\it g}$ is defined on $\Omega_{\it h}^{\Gamma}$