SERVIÇO PÚBLICO FEDERAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MATO GROSSO

CAMPUS CUIABÁ - OCATYDE JORGE DA SILVA DEPARTAMENTO DE ELETROELETRÔNICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Controle de Sistemas Contínuos I

Lista 1: Transformada de Laplace e Função de Transferência de circuitos elétricos RC.

1) Determine a transformada inversa de Laplace de:

a)
$$F(s) = \frac{1}{s(s^2 + \omega^2)}$$

c)
$$F(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

c)
$$F(s) = \frac{s+1}{s(s^2+s+1)}$$

d)
$$F(s) = \frac{5s+2}{(s+1)(s+2)^2}$$

e)
$$F(s) = \frac{10(s+2)(s+4)}{(s+1)(s+3)(s+5)^2}$$

2) A função $\frac{A(s)}{B(s)}$ tem os seguintes zeros, polos e ganho:

Zeros em s = -1, s = -2

Polos em s = 0, s = -4, s = -6

Ganho estativo K = 5

Obtenha a expressão $\frac{A(s)}{B(s)}$.

3) Resolva a seguinte equação diferencial usando transformada de Laplace

$$y'' + 2\zeta \omega_n y' + \omega_n^2 y = 0$$
, $y(0) = a$, $y'(0) = b$

onde a e b são constantes.

SERVIÇO PÚBLICO FEDERAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MATO GROSSO

CAMPUS CUIABÁ - OCATYDE JORGE DA SILVA DEPARTAMENTO DE ELETROELETRÔNICA ENGENHARIA DE CONTROLE E AUTOMAÇÃO

4) Determine a função de transferência de cada um dos sistemas da rede RC da figura abaixo. Suponha que a entrada seja a tensão $v_e(t)$ e que a saída seja a tensão $v_s(t)$.

