RE Process

Lawrence Chung

Department of Computer Science

The University of Texas at Dallas

RE Process:

Why?

Quality of product < Quality of Process

☐ Garbage in garbage out, so get the right requirements

Product

RE Process: What is a Process?

- Given input, transforms it into output
- Consist of a set of activities
- Process descriptions are also specifications
 - Often produced by Requirements Engineers
 - > Should be as complete, consistent and clear

RE Process: The Basic RE Evolutionary Process

RE Process: The Basic RE Evolutionary Process

Evolution is inevitable – traceability is more than a virtue

RE Process: A Basic Framework [Loucopolos]

Many variations and extensions

3 fundamental activities:
 understand, (formally) describe, attain an agreement on, the problem

(domain experts, laws, standards, policies, documents, etc.)

- Elicitation: determine what's really needed, why needed, whom to talk to
- Specification: produce a (formal) RS model: translate "vague" into "concrete", etc. make various decisions on what & how
- Validation: assure that the RS model satisfies the users' needs

RE Process:

Spiral Model [KotonyaSummerville98]

How many cycles? When to analyze and negotiate? Risk analysis?

- Requirements elicitation: Requirements discovered through consultation with stakeholders
- Requirements analysis and negotiation: Requirements are analysed and conflicts resolved through negotiation
- Requirements documentation: A requirements document is produced
- Requirements validation: The requirements document is checked for consistency and completeness

RE Processes: RAD (Role Actor Diagram)

for prototyping [Kotonya&Sommerville98]

An RE Process is dominated by human, social and organisational factors

RE Process: A RE Process Maturity Model

Based on CMM

IEEE Standard for SRS

[IEEE-STD-830-1993] [Blum 1992, p160]

IEEE Standard Section 3

[IEEE-STD-830-1993.] [Blum 1992, p160]

3.1 External Interface Requirements

3.1.1 User Interfaces

3.1.2 Hardware Interfaces

3.1.3 Software Interfaces

3.1.4 Communication Interfaces

3.2 Functional Requirements

this section organized by mode, user class, feature, etc.

For example:

3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1

• • •

3.2.2 Mode 2

3.2.1.1 Functional Requirement 1.1

• • •

•••

3.2.n Mode n

• • •

3.3 Performance Requirements

Remember to state this in measurable terms!

3.4 Design Constraints

3.4.1 Standards compliance

3.4.2 Hardware limitations

etc.

3.5 Software System Attributes

3.5.1 Reliability

3.5.2 Availability

3.5.3 Security

3.5.4 Maintainability

3.5.5 Portability

3.6 Other Requirements

RE in Agile Methods

☐Basic Philosophy

Reduce communication barriers

Programmer interacts with customer

Reduce document-heavy approach

Documentation is expensive and of limited use

► Have faith in the people

Don't need fancy process models to tell them what to do!

Respond to the customer

Rather than focussing on the contract

□ Weaknesses

➤ Relies on programmer's memory

Code can be hard to maintain

Relies on oral communication

Mis-interpretation possible

Assumes single customer representative

Multiple viewpoints not possible

➤ Only short term planning

No longer term vision

E.g. Extreme Programming

➤ Instead of a requirements spec, use:

User story cards
On-site customer representative

- **▶**Pair Programming
- >Small releases

E.g. every three weeks

>Planning game

Select and estimate user story cards at the beginning of each release

- ➤ Write test cases before code
- The program code is the design doc

Can also use CRC cards (Class-Responsibility-Collaboration)

▶Continuous Integration

Integrate and test several times a day

RE in V Model

RE Process: Why?

It is more important to understand the problem than the solution. [Albert Einstein]

If software is simply for automation, what would a washing machine be like?

