

BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift DE 100 39 696 A 1

_® DE 100 28 686 A 1

(5) Int. Cl.⁷: **C 09 B 29/42**

(21) Aktenzeichen:

100 28 686.0

② Anmeldetag:

9. 6. 2000

43 Offenlegungstag:

13. 12. 2001

① Anmelder:

DyStar Textilfarben GmbH & Co. Deutschland KG, 60318 Frankfurt, DE

(74) Vertreter:

Zobel, M., Dipl.-Chem. Dr., Pat.-Anw., 51061 Köln

(72) Erfinder:

Hamprecht, Rainer, Dr., 51519 Odenthal, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- 54 Hydroxypyridonmethidazofarbstoffe
- (I) Hydroxypyridonmethidazofarbstoffe entsprechend der Formel (I) sowie deren tautomere Formen,

HO
$$\times^3$$
 \times^4 \times^4 \times^4 \times^4 \times^4 \times^2 \times^4 \times^2 \times^4 \times^2 \times^2 \times^4 \times^2 \times^4 \times^2 \times^4 \times^2 \times^4 \times^2 \times

worin die Substituenten X^1 bis X^4 , R^1 und R^2 die in der Beschreibung angegebene Bedeutung haben, eignen sich hervorragend zum Färben und Bedrucken von hydrophoben synthetischen Fasermaterialien oder deren Mischungen mit natürlichen Faserstoffen.

Beschreibung

[0001] Die Erfindung betrifft neue Hydroxypyridonmethidazofarbstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung sowie Farbstoffmischungen enthaltend Hydroxypyridonmethidazofarbstoffe.

[0002] Aus EP-A 767 220 sind bereits ähnliche Azofarbstoffe bekannt. Diese Farbstoffe sind jedoch hinsichtlich ihrer anwendungstechnischen Eigenschaften, insbesondere ihrer Thermonigrierechtheit noch verbesserungsbedürftig.
 [0003] Es wurden neue Hydroxypyridonmethidazofarbstoffe gefunden, die sich überraschenderweise durch hervorragende Thermonigrierechtheit und Sublimierechtheit bei Erhalt der guten Allgemeinechtheiten auszeichnen.

[0004] Gegenstand der vorliegenden Erfindung sind neue Hydroxypyridonmethidazofarbstoffe entsprechend der Formel (I), sowie deren tautomere Formen,

$$X^2$$
 X^1
 X^1
 X^2
 X^1
 X^2
 X^3
 X^4
 X^4
 X^2
 X^4
 X^2
 X^4
 X^4

20 worin

 X^1 für H. Cl. Br. -CN. -CH=O. -CO-T. -CO₂-R². -SO₂-T. oder -NO₂ steht.

X², X³ und X⁴ unabhängig voneinander für H, Cl oder Br stehen,

R¹ für H, T, oder -CF₃ steht und

 R^2 für geradkettiges oder verzweigtes C_1 - C_4 -Alkyl steht,

25 wobei

T für geradkettiges oder verzweigtes C₁-C₁₀-Alkyl steht, das gegebenenfalls durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen und/oder durch einen oder mehrere, bevorzugt einen Phenyl- oder Hydroxyrest substituiert ist oder für Phenyl steht, das gegebenenfalls durch 1 bis 2 gleiche oder verschiedene Reste aus der Reihe Cl, Br, C₁-C₂-Alkyl substituiert ist.

30 [0005] Die Farbstoffe der Formel (I) können auch in tautomeren Formen, von denen als wichtigste die Formel (Ia)

$$X^2$$
 X^1
 X^2
 X^1
 X^2
 X^3
 X^4
 X^4

40 genannt sei, auftreten. Im Sinne der vorliegenden Erfindung schließt die Formel (I) in ihren allgemeinen und bevorzugten Bedeutungen sämtliche mögliche tautomere Formen, insbesondere die der Formel (Ia), ein.

[0006] Bevorzugt sind Hydroxypyridonmethidazofarbstoffe der Formel (I) oder (Ia) worin

 X^2 , X^3 und X^4 für H stehen.

[0007] Besonders bevorzugt sind Farbstoffe der Formeln (I) und (Ia), worin

45 X^2 , X^3 und X^4 für H stehen,

R¹ für H, -CH₃, -C₂H₅, -CH(CH₃)₂, unsubstituiertes Phenyl oder CF₃ steht, und

R² für CH₃ oder C₂H₅ steht.

[0008] Ganz besonders bevorzugt sind Farbstoffe der Formel (I), worin

X1 für H. Cl, Br, oder -NO2 steht,

50 X^2 , X^3 und X^4 für H stehen,

 R^1 für H, -CH₃, -C₂H₅, oder -CH(CH₃)₂ steht, und

 \mathbb{R}^2 für \mathbb{CH}_3 oder $-\mathbb{C}_2\mathbb{H}_5$ steht.

[0009] Insbesondere bevorzugt sind Farbstoffe der Formel (I), worin

 $\mathbf{X}^{\mathbf{I}}$ für Nitro.

 $5 - X^2$, X^3 und X^4 für H,

R¹ für H oder CH₃ und

R² für CH₃ oder C₂H₅ steht.

[0010] Die erfindungsgemäßen Farbstoffe können beispielsweise durch Diazotierung von Aminen der Formel (II)

HO
$$X^2$$
 X^1 X^1 X^2 X^1 X^2 X^4 (II),

worin

 $X^1,\,X^2,\,X^3$ und X^4 die oben angegebenen Bedeutung haben, und Kupplung auf Kupplungskomponenten der Formel (III)

$$E \longrightarrow CN$$

$$R^{1}$$

$$CN$$

$$R^{2}$$

$$CN$$

$$(III),$$

worin

R¹ und R² die oben angegebene Bedeutung haben und

E für einen durch elektrophile Substitution verdrängbaren Substituenten, vorzugsweise für H. -CO₂H. -CH₂OH. -SO₃H. -CH=O. -COT. -CONII₂. -CONHT steht.

und wobei T die oben angegebene Bedeutung hat,

hergestellt werden.

[0011] Ein derartiges Kupplungsverfahren unter Verdrängung eines Substituenten ist z. B. in GB-A 2 036 775 und JP-A 58 157 863 beschrieben.

[0012] Die Kupplungsreaktion kann in wässrigen und nichtwässrigen Lösungsmitteln erfolgen. Unter den nichtwässrigen Lösungsmitteln seien Alkohole wie Methanol, Ethanol, Propanol, Butanol, Pentanol etc., dipolare aprotische Lösungsmittel wie DMF, DMSO, NMP und mit Wasser nicht mischbare Lösungsmittel wie Toluol oder Chlorbenzol genannt.

[0013] Die Kupplung wird vorzugsweise im stöchiometrischen Verhältnis von Kupplungs- und Diazokomponente durchgeführt, wobei es vorteilhaft und z. T. aus ökonomischen Gründen sinnvoll sein kann, die billigere Komponente in bis zu 30%igem Überschuss einzusetzen.

[0014] Die Kupplung erfolgt im allgemeinen bei Temperaturen zwischen –30 bis 100°C, bevorzugt sind Temperaturen von –10 bis 30°C, besonders bevorzugt Temperaturen von –5 bis 10°C.

[0015] Die Kupplung kann im sauren wie auch im alkalischen Milieu ausgeführt werden. Bevorzugt werden pH-Werte < 10, besonders bevorzugt < 7,0 und ganz besonders bevorzugt < 5,0.

[0016] Die Diazokomponenten der Formel (III) sind literaturbekannt und zum Teil auch, wie das besonders bevorzugte 3-Nitro-4-aminophenol, technisch erhältlich.

[0017] Die Kupplungskomponenten der Formel (III) sind gegebenenfalls bekannt und ihre Herstellung z.B. in EP-A 767 220 beschrieben.

[0018] Die erfindungsgemäßen Farbstoffe der Formel (I) eignen sich als solche, im Gemisch untereinander oder auch im Gemisch mit anderen Dispersionsfarbstoffen zum Färben und Bedrucken auch mittels des Ink-Jet-Verfahrens, von hydrophoben synthetischen Fasermaterialien und deren Mischungen mit natürlichen Faserstoffen.

[0019] Als hydrophobe, synthetische Materialien kommen z. B. in Betracht: Cellulose-2½-Acetat, Cellulosetriacetat, Polyamide und besonders Polyester, wie z. B. Polyethylenglykolterephthalat. Als natürliche Faserstoffe seien z. B. Baumwolle, regenerierte Cellulosefasern oder Wolle genannt.

[0020] Weiterhin sind die erfindungsgemäßen Farbstoffe oder deren Gemische geeignet zum Färben und Bedrucken von Wachsen, Ölen und Kunststoffen wie Polymethacrylat, PVC, Polystyrol oder ABS.

[0021] Ferner sind sie geeignet für textilen und nichttextilen Thermotransferdruck z. B. mittels eines Thermokopfes. [0022] Die Fürbe- und Druckbedingungen, die auch das Färben in überkritischem Kohlendioxid einschließen, sind an sich bekannt, vgl. z. B. EP-A 827 988, DE-A 35 08 904 und EP-A 474 600.

[0023] Die erfindungsgemäßen Farbstoffe oder deren Mischungen können auch zum Färben von keratinischen Fasern, z. B. bei der Haarfarbung oder der Färbung von Pelzen, verwendet werden.

[0024] Die neuen Farbstofte der Formel (I) oder deren Mischungen eignen sich weiterhin vorteilhaft für die Herstellung von Farbfiltern, wie sie z. B. in der EP-A-399 473 beschrieben sind.

[0025] Schließlich können sie auch vorteilhaft als Farbmittel für die Herstellung von Tonern für die Elektrophotographie verwendet werden.

[0026] Die erfindungsgemäßen Farbstoffe oder deren Mischungen liefern auf Polyester orange bis violette Färbungen mit hervorragender Thermomigrierechtheit und Sublimierechtheit, hoher Farbstärke und klarer Nuance.

[0027] Ein besonders gutes Zieh- und Aufbauvermögen lässt sich hierbei durch Mischungen der Farbstoffe der Formel (I) erreichen, die zwei oder mehr, vorzugsweise zwei bis 4 unterschiedliche Farbstoffe der Formel (I) enthalten. Bevorzugt sind hierbei Mischungen, die sich in den Substituenten R¹ und/oder R² unterscheiden.

[0028] Gegenstand der vorliegenden Erfindung sind weiterhin Farbstoffmischungen enthaltend mindestens einen Farbstoff der Formel (I) sowie mindestens einen weiteren Dispersionsfarbstoff. Als Dispersionsfarbstoffe eignen sich hierzu die im Colour Index gelisteten Dispersionsfarbstoffe, insbesondere Benzodifuranonfarbstoffe, sowie weiterhin die aus EP-A 767 220 bekannten Dispersionsfarbstoffe.

[0029] Bevorzugt als Mischungsfarbstoffe geeignete Benzodifuranonfarbstoffe leiten sich von der Formel (IV) ab,

65

60

45

50

$$V^{1}$$
 (IV),

15 worin

25

30

35

40

Y¹ und Y² unabhängig voneinander für H, C₁-C₆-Alkoxy, das durch C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy-C₂-C₄-alkoxycarbonyl oder Furfuryl substituiert sein kann, oder für -OC₂H₄-O-C₁-C₄-Alkyl oder -OC₂H₄-O-(C₂H₄O)₁₋₆-C₁-C₄-Alkyl stehen.

[0030] Unter diesen seien besonders die folgenden erwähnt:

 $Y^1 = OCH_3CH_3CH_3$, y2 = H (IVa)

(IV)b
$$Y^{1} = OCH_{2}$$
, $Y^{2} = H$

 $Y^{1} = OCH_{2}CH_{3}CH_{3}, Y^{2} = OCH_{2}CO_{2}C_{2}H_{4}OC_{2}H_{5}$ (IVc)

$$Y^{1} = H, Y^{2} = OCH_{2}CO_{2}C_{2}H_{4}OC_{2}H_{5}$$
 (IVd)

[0031] Bevorzugt sind Farbstoffmischungen enthaltend mindestens einen Farbstoff der Formel (I) und mindestens einen Farbstoff der Formel (IV).

[0032] Weiterhin bevorzugt sind Farbstoffmischungen enthaltend mindestens einen Farbstoff der Formel (I) und mindestens einen Dispersionsfarbstoff der Formel (V)

worin

D für den Rest einer carbo- oder heterocyclischen Diazokomponente steht,

A¹ und A² unabhängig voneinander für H oder einen für Pyridone typische Substituenten stehen,

A⁵ für H, einen Rest der Formel T, -OT¹, -NH₂, -NHT, -NT₂, -NHCOH, -NHCOT, -N=CH-T, -N=CT₂ oder -NHSO₂T steht.

oder

A1 und A2 und/oder

A2 und A3 und/oder

A4 und A5 zusammen mit den jeweils dazwischenliegenden Atomen einen ungesättigten, gegebenenfalls substituierten 5- oder 6-gliedrigen Carbo- oder Heterocyclus bilden, mit der Maßgabe, dass bei einer Ringbildung unter Beteiligung eines der beiden Reste A³ und A⁴ der nicht beteiligte Rest einen elektronenziehenden Rest bedeutet, X für O, NH, NT, NCOT, NCO₂T oder NSO₂T steht,

A³ und A⁴ unabhängig voneinander für -CN, -CO₂T, -CONH₂, -CONH₃, -CONT₂, CF₃, -CHO, -COT, -SO₂T, -SO₃T⁴, -SO₃T⁵, SO₂NH₂, SO₂NHT, SO₂NT₂, -SOT, -CH=NH, -CH=NT, -CT=NH, -CT=NL

$$\begin{array}{ccc}
-C = NT \\
I & -CO-CO_2T, \\
OT & \end{array}$$

-NO₂, NO, T⁴ oder T⁵

stehen, wobei vorzugsweise A³ und A⁴ nicht gleichzeitig für T⁴ und/oder T⁵ stehen,

A³ und A² zusammen mit dem C-Atom, an das sie gebunden sind, für eine cyclische methylenaktive Verbindung der Formel (VIa) bis (VIv) stehen, wobei diese Reste in Form von

angegeben sind:

(VIa)

10

15

20

$$CH_{2} \xrightarrow{O_{2}} V^{1} \xrightarrow{NC} CN \xrightarrow{V^{1}} CH_{2} \xrightarrow{CO_{2}T} V^{1}$$

$$CH_{2} \xrightarrow{S} O_{2}$$

$$CH_{2} \xrightarrow{S} O_{2}$$

(VIb)

25

30

(VIg)

(VIe)

(VIh)

(VIf)

(VIc)

(VIi)

45

50

40

55

(VIj)

(VIk)

(VII)

65

15

20

(VIq)

25

(VIp) 30 35

(VIr) 40

(VIs)

(VIt)

45

50

55

(VIu)

(VIv)

- V¹ für H oder einen Substituenten, insbesondere Cl, Br, CH₃, -CO₂T¹, -CN, -NO₂, -CF₃ oder -SO₂T¹ steht und
 - T für T^1 bis T^5 steht, wobei
 - T¹ Alkyl, Cycloalkyl oder Aralkyl bedeutet, T² Alkenyl bedeutet, T³ Alkinyl bedeutet,
- - T4 Aryl bedeutet,
 - T⁵ Hetaryl bedeutet.
 - [0033] Unter Dispersionsfarbstoffen der Formel (V) sind solche besonders bevorzugt, worin

Λ¹ H, T¹, T⁴ oder -CF₃,

 $A^2 \text{ II. -CN. -CO}_2 \text{T}^1$, -CONIIT oder -CF₃.

A³ und A⁴ unabhängig voneinander -CN, -CO₂T¹, -CONIT⁴, -CF₃, -CHO, -COT, -SO₂T, -NO₂, -T⁴ oder -T⁵ bedeuten, wobei Λ^3 und Λ^4 nicht gleichzeitig für T^4 oder T^5 stehen, Λ^5 für H. T^1 , T^2 , T^4 steht,

5

15

20

25

30

35

45

50

65

Deinen Rest der Formel

$$R^{21}$$
 R^{31}
 R^{51}

 R^{11} und R^{51} unabhängig voneinander für H, CF_3 , CI, Br, -CN, $-NO_2$, $-CO_2T^1$, T^1 , T^5 , $-SO_2T^1$, $-SO_2T^4$, $-OT^1$, $-OT^2$, $-OT^4$, -OCOT¹, -OCOT⁴, -OSO₂T¹ oder -OSO₂T⁴ stehen,

R21 und R41 unabhängig voneinander H, Cl, Br, -NO2, -CF3, T1, -OT1, -OT2, -OT4, -OCOT1, -OCOT4, -OSO2T1 oder -

R31 für H, Cl, Br, -CN, -NO2, -CF3, -CO2T1, T1, T5, -OT1, -OT2, -OT4, -OCOT1, -OCOT4, -SO3T1 oder -SO2T4 steht, T^{1} für C_{1} - C_{8} -Alkyl steht, das gegebenenfalls substituiert ist durch C_{1} - C_{8} -Alkoxy, $-C_{1}$ - C_{8} -Alkoxy- C_{2} - C_{5} -alkoxy, $-C_{1}$ - C_{8} -Alkoxy- $-C_{1}$ - $-C_{8}$ -Alkoxy- $-C_{1}$ - $-C_{1}$ OCOT1, -CO2T1, Cl, Br, -CN oder T4,

T² für C₂-C₈-Alkenyl steht, das gegebenenfalls substituiert ist durch -C1-C₈-Alkoxy, -C₁-C₈-Alkoxy-C₂-C₅-alkoxy, -CN, -CO₂T¹, Cl oder Br.

T4 für Phenyl steht, das gegebenenfalls substituiert ist durch Cl, Br, T1, OT1, -CF3, -NO2, -CN oder -CO2T1,

T⁵ Oxazol, Phenyloxazol, Benzoxazol, Thiazol, Benzthiazol, Thiadiazol oder Thiophen bedeutet, das gegebenenfalls substituiert ist durch Cl, Br, Ti, -NO2 und/oder -CO2Ti und X O bedeutet.

[0034] Unter den Dispersionsfarbstoffen der Formel (V) sind solche ganz besonders bevorzugt, worin A für H oder T steht,

A² H, -CN oder -CO₂T¹ bedeutet,

 A^3 für -CN oder -CO₂T¹ steht,

A4 A3 bedeutet,

A⁵ für H oder T¹ steht,

D für einen Rest der Formel

$$R^{21}$$
 R^{31}
 R^{51}
 R^{51}

steht, worin R¹¹ und R⁵¹ unabhängig voneinander H, Cl, Br, -CN, -NO₂, -CO₂T¹, T¹, -OT¹ oder -OT⁴ bedeuten,

R²¹ und R⁴¹ unabhängig voneinander H, Cl, Br, -NO₂, T¹ oder -OT¹ bedeuten, R³¹ für H, Cl, Br, -CN, -NO₂, T¹, -CO₂T¹ oder -OT¹ steht,

T1 für C1-C6-Alkyl steht.

T4 für Phenyl sicht, das gegebenenfalls substituiert ist durch Cl, Br, -NO2 und/oder -CO2T1 und X O bedeutet.

[0035] Ebenfalls bevorzugt sind Farbstoffmischungen enthaltend mindestens einen Farbstoff der Formel (I), minde-

stens einen Farbstoff der Formel (IV) und mindestens einen Farbstoff der Formel (V). [0036] Die erfindungsgemäßen Farbstoffe und Farbstoffmischungen können durch Mahlung z. B. in einer Perlmühle,

unter Zusatz von Hilfsmitteln wie z. B. Dispergiermitteln, Netzmitteln, Entstaubungsmitteln in feste oder flüssige Präparationen überführt werden.

Beispiel 1

[0037] In eine Mischung von 7,3 ml 50-%ige Schwefelsäure und 9,0 ml 96%ige Schwefelsäure wurden bei 0°C langsam 9.1 g 4-Amino-3-nitrophenol eingetragen. Bei 0°C wurden 11 ml 40-%ige Nirosylschwefelsäure zugetropft. Man ließ 4 Stunden bei 0°C nachreagieren und tropfte die Lösung der Diazotierung zu einer alkalischen Lösung von 10.0 g 6-Hydroxy-1-methyl-2-(1H)-pyridinyliden-propandinitril und 2 g Harnstoff in 300 ml Wasser. Durch Zugabe von wenig Eis wurde die Temperatur bei 0-5°C gehalten. Mit Natriumacetat wurde auf pH 2 gestellt. Man ließ über Nacht nachrühren, saugte ab, wusch mit Wasser und erhielt nach Trocknen des Presskuchens 10 g des Farbstoffs der Formel

der durch Umkristallisieren aus DMI weiter gereinigt werden kann. $\lambda_{max} = 517 \text{ nm (CH}_2\text{Cl}_2)$

[0038] Der Farbstoff färbt Polyester in einem klaren Rot mit hervorragenden Echtheiten insbesondere Nassechtheiten und Sublimierechtheit.

[0039] Nach analogen oder ähnlichen Verfahren können die nachfolgenden Farbstoffe erhalten werden, die ebenfalls Polyester mit guten Echtheiten anfärben.

 $\overline{\mathbf{x}}^{\mathbf{I}}$ Bsp. X^2 X^3 X^4 R^{I} R^2 Ton auf λ_{max.} Nr. Polyester (nm) 2 -NO₂H Н Η H C_2H_5 517 (CH₂Cl₂) rot 3 -NO₂ H Η Н CH₃ CH₃517 (DMF) rot Н H 4 -NO2 Н CH_3 C_2H_5 517 (DMF) rot 5 Н H -CO2CH3 Η Н CH₃ 504(CH₂Cl₂) rot 6 Η Cl Cl H H CH₃ 496(CH2Cl2) scharlach 7 Η Н CH₃H H Η 508(CH₂Cl₂) rot 8 Br Η H H H CH₃505(CH2Cl2) rot

Beispiel 9

[0040] Durch Perlmahlung und anschließender Sprühtrocknung wird ein Färbepräparat aus 10 Teilen des Farbstoffs von Beispiel 1, 10 Teilen des Farbstoffs von Beispiel 2, 10 Teilen des Farbstoffs der Formel

$$H_3CO$$
 NO_2
 NO_2

63 Teilen Stellmittel auf Basis eines Dispergiermittels (handelsübliches Ligninsulfonat: Kondensationsprodukte aus Formaldehyd, Naphthalin und Schwefelsäure), handelsüblicher Netzmittel (alkoxylierte Allcylphenole), handelsüblicher Entstaubungsmittel (Mineralöl mit Emulgatoren) und 7 Teilen Restfeuchte hergestellt.

[0041] In einem Färbebad, das mit Natriumphosphat und Essigsäure auf einen pH-Wert von 4.5 gestellt ist, werden 100 Teile eines Polyestergewebes (Polyethylenterephthalat) 30 bis 45 Minuten bei 125 bis 135°C mit 0.9 g des oben beschriebenen Färbepräparates (Flottenverhältnis 1: 10 bis 1: 40) gefärbt.

[65] [10042] Man erhält klare, rote Färbungen mit guten Echtheiten, insbesondere gutem Ziehvermögen und hervorragender Thermomigrierechtheit.

20

25

30

35

40

45

50

Beispiel 10

[0043] Durch Perlmahlung und anschließender Sprühtrocknung wird ein Färbepräparat aus

18,8 Teilen des Farbstoffs von Beispiel 4,

12.5 Teilen des Farbstoffs von Beispiel 3,

62.6 Teilen Stellmittel auf Basis handelsüblicher Ligninsulfonate, handelsüblicher Dispergiermittel (Kondensationsprodukte aus Formaldehyd, Naphthalin und Schwefelsäure), handelsüblicher Netzmittel (alkoxylierte Alkylphenole), handelsüblicher Entstaubungsmittel (Mineralöl mit Emulgatoren) und

6,1 Teilen Restfeuchte

hergestellt. Ю

[0044] In einem Färbebad, das mit Natriumphosphat und Essigsäure auf einen pH-Wert von 4.5 gestellt ist, werden 100 Teile eines Polyestergewebes (Polyethylenterephthalat) 30 bis 45 Minuten bei 125 bis 135°C mit 0.75 g des oben beschriebenen Färbepräparates (Flottenverhältnis 1:10 bis 1:40) gefärbt.

[0045] Man erhält klare, rote Färbungen mit guten Echtheiten, insbesondere gutem Ziehvermögen und hervorragender Thermomigrierechtheit.

15

30

40

45

50

55

Patentansprüche

1. Hydroxypyridonmethidazofarbstoffe entsprechend der Formel (I) sowie deren tautomere Formen,

20 25 (I),

 X^1 für H, Cl, Br, -CN, -CH=O, -CO-T, -CO₂-R², -SO₂-T, oder -NO₂ steht, X^2 , X^3 und X^4 unabhängig voneinander für H, Cl oder Br stehen,

R1 für H, T, oder -CF3 steht und

R² für geradkettiges oder verzweigtes C₁-C₄-Alkyl steht,

wobei

T für geradkettiges oder verzweigtes C₁-C₁₀-Alkyl steht, das gegebenenfalls durch 1 oder 2 Sauerstoffatome in Etherfunktion unterbrochen und/oder durch einen oder mehrere Phenyl- oder Hydroxyreste substituiert ist oder für Phenyl steht, das gegebenenfalls durch 1 bis 2 Reste aus der Reihe Cl, Br, C1-C2-Alkyl substituiert ist.

2. Farbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, dass

X2, X3 und X4 für H stehen.

3. Farbstoffe gemäß wenigstens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass

 X^2 , X^3 und X^4 für H stehen,

 R^1 für H, -CH₃, -C₂H₅, -CH(CH₃)₂, unsubstituiertes Phenyl oder CF₃ steht, und

 R^2 für CH_3 oder C_2H_5 steht.

4. Farbstoffe gemäß wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass

X¹ für H, Cl, Br, oder -NO₂ sieht,

 X^2 , X^3 und X^4 für H stehen,

 R^1 für H. -CH₃, -C₂H₅, oder -CH(CH₃)₂ steht, und

R² für CH₃ oder -C₂H₅ steht.

5. Farbstoffe gemäß wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass

X¹ für Nitro,

 X^2 , X^3 und X^4 für H,

R¹ für H oder CH₃ und

R² für CH₃ oder C₂H₅ steht.

6. Verfahren zur Herstellung der Farbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, dass man Amine der Formel (II)

60 (II),

65

X¹, X², X³ und X⁴ die in Anspruch 1 angegebenen Bedeutungen haben. diazotiert und auf Kupplungskomponenten der Formel (III)

10

15

20

25

30

35

40

45

50

55

65

R1 und R2 die in Anspruch 1 angegebene Bedeutung haben und

E für einen durch elektrophile Substitution verdrängbaren Substituenten, sieht, kuppeli

7. Farbstoffmischung enthaltend wenigstens zwei unterschiedliche Farbstoffe der Formel (I) gemäß Anspruch 1. 8. Farbstoffmischung gemäß Anspruch 7, dadurch gekennzeichnet, dass die Farbstoffe der Formel (I) sich an den Substituenten R¹ und/oder R² unterscheiden, wobei

R1 für H oder CH3 und

R² für CH₃ oder C₂H₅ stehen.

9. Farbstoffmischung enthaltend wenigstens einen Farbstoff der Formel (I) gemäß Anspruch 1 und wenigstens einen von Formel (I) verschiedenen Dispersionsfarbstoff.

10. Farbstoffmischung enthaltend wenigstens einen Farbstoff der Formel (I) gemäß Anspruch 1, wenigstens einen Farbstoff der Formel (IV)

$$V^{1}$$
 (IV),

 Y^1 und Y^2 unabhängig voneinander für H, C_1 - C_6 -Alkoxy, das durch C_1 - C_4 -Alkoxy-carbonyl, C_1 - C_4 -Alkoxy- C_2 - C_4 alkoxycarbonyl oder Furfuryl substituiert sein kann, -OC₂H₄-O-C₁-C₄-Alkyl, -OC₂H₄-O-(C₂H₄O)₁₋₆ -C₁H₄- C₄-Al-

und/oder wenigstens einen Farbstoff der Formel (V)

$$D-N=N$$

$$N$$

$$N$$

$$N$$

$$A^{2}$$

$$A^{3}$$

$$A^{5}$$

$$A^{4}$$

$$A^{3}$$

$$A^{3}$$

$$A^{4}$$

$$A^{3}$$

$$A^{4}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{4}$$

$$A^{3}$$

$$A^{4}$$

$$A^{5}$$

$$A^{4}$$

D für den Rest einer carbo- oder heterocyclischen Diazokomponente steht,

A¹ und A² unabhängig voneinander für H oder einen für Pyridone typische Substituenten stehen. A⁵ für H, einen Rest der Formel T, -OT¹, -NH₂, -NHT, -NT², -NHCOH, -NHCOT, -N=CH-T, -N=CT² oder -NHSO2T steht,

oder

A1 und A2 und/oder

 A^2 und A^3 und/oder

A4 und A5 zusammen mit den jeweils dazwischenliegenden Atomen einen ungesättigten, gegebenenfalls substitu-60 ierten 5- oder 6-gliedrigen Carbo- oder Heierocyclus bilden, mit der Maßgabe, dass bei einer Ringbildung unter Beteiligung eines der beiden Reste A³ und A⁴ der nicht beteiligte Rest einen elektronenziehenden Rest bedeutet, X für O. NH, NT, NCOT, NCO₂T oder NSO₂T sieht,

A³ und A⁴ unabhängig voneinander für -CN, -CO₂T, -CONH₂, -CONHT, -CONT₂, CF₃, -CHO, -COT, -SO₂T, -SO₃T⁴, -SO₃T⁵, SO₂NH₂, SO₂NHT, SO₂NT₂, -SOT, -CH=NH, -CH=NT, -CT=NH, -CT=NT,

-CO-CO₂T, OT

-NO₂, -NO, T⁴ oder T⁵ stehen, wobei vorzugsweise Λ^3 und Λ^4 nicht gleichzeitig für T^4 und/oder T^5 stehen,

 Λ^3 und Λ^4 zusammen mit dem C-Atom, an das sie gebunden sind, für eine cyclische methylenaktive Verbindung der Formel (VIa) bis (VIv)

5

10

35

50

55

60

stehen, wobei diese Reste in Form von

15

angegeben sind:

30 (VIa) (VIb) (VIc)

(VId) (VIe) (VIf)

$$(VIg)$$

$$(VIg)$$

$$(VIh)$$

$$(VIi)$$

12

(VIq)

55

60

65

(VIp)

- Leerseite -