Automata Theory SCS 2212 **Dushani** Perera

Introduction

- Recommended reading:
 - Introduction to Languages and The Theory of Computation, John C Martin, Mc Graw Hill.
 - An Introduction to Formal Languages and Automata, Peter Linz, Narosha.
 - Introduction to Automata Theory, Languages and Computation, John E. Hopcroft, Rajeev Motwani, Jeffrey D Ullman, Pearson education.

Evaluation Criteria

Assignments: 30%

Final Examination: 70%

Automata Theory

The main emphasis of Automata theory is the study of definitions and properties of mathematical (computational) models (abstract models) that can be used for computations.

Basics Of Automata Theory

Mathematical Preliminaries

- Set :- Collection of symbols. If x is an element of set S then $x \in S$
- Sequence: Ordered collection of symbols.
- Tuple :- Sequence of finite number of objects (finite ordered list).
 - o k-tuple:- sequence of k elements
 - 2 tuple :- sequence of 2 elements (this is called a 'Pair')
- Cartesian Product :- A x B
 - \circ If A = {a, b} and B= {c, d} then;
 - $A \times B = \{(a,c), (a,d), (b,c), (b,d)\}$
 - $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

Mathematical Preliminaries Cont.

• Functions :- a mapping between two sets satisfying certain constraints.

 $f: D \rightarrow R$

Domain of f is D

Range of f is R

- Different types of functions
 - Onto: A function that uses all values of the range
 - Into: A function that does not use all values of the range
 - o **1-1**

String Operations

- Concatenation:-link strings together
- ac, ad, bc, bd

- Reversal
 - o $W = a_1 a_2 a_3 \dots a_n = W^R = a_n a_{n-1} a_{n-2} \dots a_1$
- Length of a string |w|
- Substring
 - \circ w= {a, b} substrings = { ϵ , a, b, ab}
- Empty string (ε)
 - \circ Length = 0

Lengths Of Possible Strings

- Let's say the Alphabet $\Sigma = \{a, b\}$ $|\Sigma| = 2$
 - How many strings of length 2 are possible on Σ ? 4 strings aa, ab, ba, bb (2²)
 - How many strings of length n are possible on Σ ? 2^n

• Number of strings of length n possible on an alphabet Σ is $|\Sigma|^n$

Powers Of Σ

Let's say the alphabet Σ = {a, b}

$$|\Sigma| = 2$$

- \circ Σ^1 :- set of all strings that can be formed on the alphabet which are of length 1.
 - Answer set of strings = {a, b}

 (2^1)

- \circ Σ^2 :- set of all strings that can be formed on the alphabet which are of length 2.
 - Concatenation as $\Sigma\Sigma$
 - Answer set of 4 strings = {aa, ab, ba, bb}

 (2^2)

- \circ Σ^3 :- set of all strings that can be formed on the alphabet which are of length 3.
 - Concatenation as $\Sigma\Sigma$
 - Answer set of 8 strings = $\{aaa, aab, aba, abb, baa, bab, bba, bbb\}$ (2³)
- \circ Σ^0 :- set of all strings that can be formed on the alphabet which are of length 0.
 - $\Sigma^0 = \{\epsilon\}$
- \circ Σ^n :- set of all strings that can be formed on the alphabet which are of length n.
 - Concatenation of Σ with itself n times

Powers Of Σ Cont.

Σ

- \circ Σ^* = set of all strings of all lengths possible on the alphabet Σ
- $\circ \quad \boldsymbol{\Sigma}^* = \boldsymbol{\Sigma}^0 \, \mathbf{U} \, \boldsymbol{\Sigma}^1 \, \mathbf{U} \, \boldsymbol{\Sigma}^2 \dots$
- $\circ \quad \Sigma^* = \{\varepsilon\} \cup \{a, b\} \cup \{aa, ab, ba, bb\}.....$
- Kleene closure / star closure

Σ^+

- $\circ \qquad \mathbf{\Sigma}^+ = \mathbf{\Sigma}^* \{\mathbf{\epsilon}\}$
- $\circ \quad \Sigma^+ = \Sigma^1 \cup \Sigma^2 \dots$
- \circ Σ^+ = {a, b} U {aa, ab, ba, bb}.....
- Positive closure

Languages

- If L_1, L_2, L_3 are languages defined on the alphabet $\Sigma = \{a, b\}$ as:
 - \circ L₁ = set of all strings of length 2 (finite language)
 - \circ L₂ = set of all strings of length 3 (finite language)
 - L_3 = set of all strings on Σ where all strings start with 'a' (infinite language)
 - {a, aa, ab, aaa, aab, aba, abb.......}

And

- If Σ^* is the set of all strings of all lengths possible on the alphabet Σ , **then**:
- $\bullet \quad \mathsf{L}_{1} \subseteq \Sigma^{*}, \, \mathsf{L}_{2} \subseteq \Sigma^{*}, \, \, \mathsf{L}_{3} \subseteq \Sigma^{*}$

Languages Cont.

- Language is a subset of strings that belong in the set of all strings defined on an alphabet.
- Since languages are sets, the union, intersection, and difference of two languages are defined.
- The complement of a language L is defined with respect to Σ^* .

$$L' = \Sigma^* - L$$

• Concatenation of two languages L_1 and L_2 contains every string in L_1 concatenated with every string in L_2 .

$$L_1 L_2 = \{x y \mid x \in L1, y \in L2\}$$

Languages Cont.

- Natural Languages
 - Difficult to define
 - Dictionary Definition: System suitable for expressing ideas, facts or concepts and rules for their manipulation.

- Formal Languages
 - Defined precisely so that mathematical analysis is possible.

Languages Cont.

- Two basic problems in programming language designs are:
 - How to define a programming language precisely?
 - How to use such definitions to write an efficient and reliable translation program?

- Theory of formal languages are extensively used in:
 - Definition of programming languages.
 - Construction of interpreters and compilers.

Powers of a Language L

- Lⁿ is defined as the concatenation of L with itself n times.
- $L^0 = \{ \epsilon \}$
- The star-closure of a language is defined as:

$$L^* = L^0 U L^1 U L^2$$

The positive closure of a language is defined as:

$$L^+ = L^1 U L^2$$

A string in a language L is called a 'sentence' of L.

Methods Of Defining Languages

- Definition methods:
 - Listing out all possible words in the language, if the language is finite. Eg:- Dictionary
 - Giving a set of rules, which defines all the acceptable words of the language.
- A language L over an alphabet Σ is a subset of Σ^* . Thus, set notations can be used to define languages. However, set notations are inadequate to define complex languages.
- Therefore, Grammars are used.
 - Grammar: Powerful mechanism for defining formal languages.

Formal Language

- A formal language has:
 - \circ Alphabet (Σ): A finite nonempty set of symbols.
 - Syntax: linguistic form of sentences in the language
 - Only concerned with the form rather than meaning
 - Semantics: Linguistic meaning of syntactically correct sentences.
 - A syntactically correct program need not make any sense semantically.

Definition Of a Grammar

- Grammar G is defined as : $G = (V, \Sigma, S, P)$
 - V: finite set of objects called variables (non-terminals, denoted by capital letters)
 - \circ Σ : finite set of objects called terminal symbols
 - \circ S: Initial non-terminal deriving symbol/start symbol (S \subseteq V)
 - P: finite set of productions

Definition Of a Grammar Cont.

- P: set of production rules.
 - All production rules are of the form
 - o v → w where
 - $\vee \in (\vee \cup \Sigma)+$
 - $\mathbf{w} \in (\mathsf{V} \cup \Sigma)^*$
- Production rules specify how the grammar transforms one string to another.
 - \circ Let w be a string of the form uxv; i.e. w = uxv and x \longrightarrow y is a production of the grammar.
 - Then we say that production is applicable to the string w, and may replace the occurrence of x in w by y.
 - This is written as uxv → uyv

Definition Of a Grammar Cont.

uxv → uyv

- We say uyv derives uyv or uyv is derived from uxv.
- We may derive new string from a given string by applying productions successively in arbitrary order.

$$W_1 \longrightarrow W_2 \dots W_n$$

This can be given as w₁ → * w_n

This means w₁ derives w_n

• w_1, w_2, \dots, w_n are called 'sentential forms' of the derivation.

Sentential Forms

- A sentential form is the start symbol S of a grammar or any string in $(V \cup \Sigma)^*$ that can be derived from S.
- Consider the following linear grammar.
 - $\circ \quad G = (\{S,B\}, \{a,b\}, S, \{S \rightarrow aB, S \rightarrow B, B \rightarrow bB, B \rightarrow \in \})$
 - Derivation of the above grammar :
 - \circ S \Rightarrow aS \Rightarrow aB \Rightarrow abB \Rightarrow abbB \Rightarrow abb
 - Each of {S, aS, aB, abB, abbB, abb} is a sentential form. Since this grammar is linear, each sentential form has at most one variable (Non terminal). Hence there is never any choice about which variable to expand next.

Definition Of a Grammar Cont.

- Let G be a grammar. Then the language generated by G is denoted by L(G).
- Two grammars are said to be equivalent if they generate the same language.
 - Important in the development of parsers.
 - It is hard/impossible to develop parsers for some grammars.
 - They may be transformed into equivalent grammars that can be parsed.

Example Definition

- The set of all legal identifiers in Pascal is a language.
 - Informal Definition: Set of strings with a letter followed by an arbitrary number of letters or digits.
 - Formal Definition : (Grammar)

```
<id>→ <|etter><rest>
<rest> → <|etter><rest> | <digit><rest> | ∈
<|etter> → a | b | c |.....|z
<digit> → 0 | 1 |.....|9
```

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

- Type 0 Grammar
 - The productions have no restrictions.
 - They are any phase structure grammar including all formal grammars.
 - \circ The productions can be in the form of $\alpha \to \beta$ where α is a string of terminals and non-terminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.
 - Example

 $S \rightarrow ACaB$

 $Bc \rightarrow acB$

 $CB \rightarrow DB$

 $aD \rightarrow Db$

- Type 1 Grammar
 - Type-1 grammars generate context-sensitive languages.
 - ο The productions must be in the form α A β → α γ β where A \in V (Non-terminal) and α , β , γ \in (Σ U V)* (Strings of terminals and non-terminals).
 - \circ The strings α and β may be empty, but γ must be non-empty.
 - The rule $R \rightarrow ε$ is allowed if R does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.
 - Example

 $AB \rightarrow AbBc$

 $A \rightarrow bcA$

 $B \rightarrow b$

- Type 2 Grammar
 - The productions must be in the form $A \rightarrow \gamma$ where $A \in V$ (Non terminal) and $\gamma \in (\Sigma \cup V)^*$ (String of terminals and non-terminals).
 - These languages generated by these grammars are recognized by a non-deterministic pushdown automaton.
 - Example

 $S \rightarrow Xa$

 $X \rightarrow a$

 $X \rightarrow aX$

 $X \rightarrow abc$

 $X \rightarrow \epsilon$

- Type 3 Grammar
 - Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.
 - The productions must be in the form $X \to a$ or $X \to aY$ where $X, Y \in V$ (Non terminal) and $a \in \Sigma$ (Terminal).
 - \circ The rule R \rightarrow ε is allowed if R does not appear on the right side of any rule.
 - o Example

$$X \,{\to}\, \epsilon$$

$$X \rightarrow a \mid aY$$

$$Y \rightarrow b$$

- Type 3 Grammar Cont.
 - \circ All production of the form A \longrightarrow aB or A \longrightarrow a where A and B are non-terminals and 'a' is in Σ^*
 - Right linear grammar.
 - \circ all production of the form A \longrightarrow Ba or A \longrightarrow a where A and B are non-terminals and 'a' is in Σ^*
 - Left linear grammar.

• A language L(G) is said to be of type k if it can be generated by type k grammar.