Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Факультет інформатики та обчислювальної технікі Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів»

Варіант 6

Виконав студент ІП-13 Вдовиченко Станіслав Юрійович

(шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

• **Мета** – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

•Постановка задачі (6 варіант)

Дано натуральне число п. Перевірити, чи можна подати п! у вигляді добутку трьох послідовних цілих чисел.

Тобто треба знайти факторіал натурального числа n за допомогою арифметичного циклу, потім дослідити чи можна подати це значення у вигляду добутку трьох послідовних цілих чисел також використовуючи арифметичний цикл.

• Математична модель

Змінна	Тип	Ім'я	Призначення
Число	Натуральний	number	Вхідні дані
Лічильник циклу	Натуральний	i	Ітераційна
			змінна
Лічильник циклу	Натуральний	n	Ітераційна
			змінна
Добуток	Натуральний	composition	Проміжні дані
Рівність	Логічний	definition	Проміжні дані
Факторіал	Натуральний	factorial	Вихідні дані
Множник	Натуральний	a	Вихідні дані
Множник	Натуральний	b	Вихідні дані
Множник	Натуральний	С	Вихідні дані

Розв'язання.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію перевірки введеного числа(повинно бути >0).
- Крок 3. Деталізуємо дію знаходження значення факторіала.
- Крок 4. Деталізуємо знаходження добутку.
- Крок 5. Деталізуємо перевірку добутку.

Факторіал знаходимо за допомогою арифметичного циклу.

Для цього застосуємо цикл з параметром, де:

- i := number; (початкове значення ітераційної змінної, змінну number задаємо вручну).
- i > 0; (умова повторення, поки більше нуля)
- і--; (крок циклу, -1)

Для знаходження добутку також застосуємо цикл з параметром, де

- n := 1; (початкове значення ітераційної змінної).
- $n \le factorial$; (умова повторення, поки змінна n не більша за змінну factorial).
- n++; (крок циклу, 1).

Також перед знаходженням добутку задаємо значення (a:=b:=c:=1) трьох змінних (множників), які ймовірно будуть послідовними натуральними числами.

При кожній ітерації циклу перезадаємо значення множників (a,b,c) таким чином:

c := b;

b := a;

a := n;

Тобто числа будуть послідовно збільшуватись на 1 (так як п збільшується на 1 з кожною ітерацією).

Потім перевіряємо добуток (composition):

composition := a*b*c;

I якщо добуток (composition) буде дорівнювати значенню факторіала (factorial), то виходимо з циклу і виводимо значення добутку.

Якщо ж добуток так і не буде дорівнювати значенню факторіала, то виходимо з циклу дивлячись на умову повторення.

• Псевдокод

Крок 1.

Початок

Введення даних

Декларування змінних

Перевірка введеного значення

Знаходження значення факторіала

Знаходження добутку

Перевірка значення добутку

Виведення даних

Кінець

Крок 2.

Початок

Введення number;

factorial := 1, definition := false, a := b := c := 1;

Перевірка введеного значення

Знаходження значення факторіала

Знаходження добутку

Перевірка значення добутку

Виведення даних

```
Крок 3.
Початок
Введення number;
factorial := 1, definition := false, a := b := c := 1;
     якщо (number <= 0)
           T0
             вивід "Значення задано невірно"
      все якшо
            інакше
                 Знаходження значення факторіала
                 Знаходження добутку
                 Перевірка значення добутку
            все інакше
Виведення даних
Кінець
Крок 4.
Початок
Введення number;
factorial := 1, definition := false, a := b := c := 1;
     якщо (number <= 0)
           T0
             вивід "Значення задано невірно"
      все якшо
            інакше
                 для і від number до 0 з кроком -1 повторити
                       factorial = factorial*i;
                 все повторити
                 Знаходження добутку
                 Перевірка значення добутку
            все інакше
Виведення даних
```

```
Крок 5.
Початок
Введення number;
factorial := 1, definition := false, a := b := c := 1;
      якщо (number <= 0)
           T0
              вивід "Значення задано невірно"
      все якщо
           інакше
                 для і від number до 0 з кроком -1 повторити
                       factorial = factorial*i;
                 все повторити
                 для n від 1 до factorial з кроком 1 повторити
                       c := b;
                       b := a;
                       a := n;
                       composition := a*b*c;
                       Перевірка значення добутку
                 все повторити
           все інакше
```

Виведення даних

```
Крок 6.
Початок
Введення number;
factorial := 1, definition := false, a := b := c := 1;
      якщо (number <= 0)
            TO
              вивід "Значення задано невірно"
      все якщо
            інакше
                 для і від number до 0 з кроком -1 повторити
                       factorial = factorial*i;
                 все повторити
                 для n від 1 до factorial з кроком 1 повторити
                       c := b;
                       b := a;
                       a := n;
                       composition := a*b*c;
                           якщо (composition == factorial)
                             definition := true;
                             break;
                           все якщо
                 все повторити
            все інакше
```

Виведення даних

Кінепр

```
Крок 7.
Початок
Введення number;
factorial := 1, definition := false, a := b := c := 1;
      якщо (number <= 0)
           T0
              вивід "Значення задано невірно"
      все якщо
            інакше
                 для і від number до 0 з кроком -1 повторити
                       factorial = factorial*i;
                 все повторити
                 для n від 1 до factorial з кроком 1 повторити
                       c := b;
                       b := a;
                       a := n;
                       composition := a*b*c;
                          якщо (composition == factorial)
                             definition := true;
                             break;
                          все якщо
                 все повторити
            все інакше
 Виведення factorial;
 якщо (definition == true)
            Виведення а, b, с
 все якщо
          інакше
                 Виведення "Неможливо розкласти"
          все інакше
```

• Блок-схема

• Випробування алгоритму

Блок	Дія	
	Початок	
1	Введення number := 4	
2	4 > 0	
3	(i := 4; 4>0; 4-1) factorial $:= 1*4=4;$	
4	(i := 3; 3>0; 3-1) factorial $:= 4*3=12;$	
5	(i := 2; 2>0; 2-1) factorial $:= 12*2=24;$	
6	(i := 1; 1>0; 1-1) factorial $:= 24*1=24;$	
7	(0 = 0)	
8	(n := 1; 1< 24; 1+1)	
	c := 1, b:=1 ;a := 1	
	composition := $1*1*1=1$;	
	1 != 24;	
9	(n := 2; 2 < 24; 2+1)	
	c := 1, b := 1; a := 2;	
	composition := 1*1*2=2;	
	2 != 24;	
10	(n := 2; 2 < 24; 2 + 1)	
	c := 1, b := 1; a := 2;	
	composition := 1*1*2=2;	
	2 != 24;	
11	(n := 3; 3 < 24; 3+1)	
	c := 1, b := 2; a := 3;	
	composition := $1*2*3=6$;	
	6 != 24;	
12	(n := 4; 4 < 24; 4 + 1)	
	c := 2, b := 4;	
	composition := $2*3*4=24$;	
	24 == 24;	
	definition = true;	
	break;	
13	Виведення factorial	
14	definition == true	
	Виведення а,b,с	
	Кінець	

• Висновок

Під час виконання лабораторної роботи я дослідив особливості роботи складних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Розв'язав поставлену задачу за допомогою складних циклів. Розробив псевдокод, блок-схему, протестував алгоритм.