Danish Small Satellite Programme

DTU Satellite Systems and Design Course Space Environment

Flemming Hansen

MScEE, PhD
Technology Manager
Danish Small Satellite Programme
Danish Space Research Institute

Phone: 3532 5721 E-mail: fh@dsri.dk

Downloads available from: http://www.dsri.dk/roemer/pub/Cubesat

Danish Small Satellite Programme

Overview of the Space Environment

External Factors

Residual atmosphere (up to ≈800 km) - Drag causes orbit decay and reentry

Trapped protons - Degrades materials and electronic components, causes single-event effects in semiconductor components.

Trapped electrons - Degrades materials and electronic components

Solar protons from flares - Degrades materials and electronic components, causes single-event effects in semiconductor components.

Cosmic rays - causes single-event effects in semiconductor components.

Solar radiation: IR, Visible, UV, X-Ray - Degrades materials

Plasma from magnetic substorms - Causes spacecraft charging

Atomic oxygen - Erodes exposed surfaces

Local Factors

Outgassing - Deposits on cold surfaces, e.g. optical apertures.

Danish Small Satellite Programme

Earth's Radiation Belts

Trapped Protons

Trapped Electrons

Charged particles + Magnetic field

$$\mathbf{F} = q (\mathbf{v} \times \mathbf{B} + \mathbf{E})$$

> gyration, bound and drift motions

♦ electrons: 100 keV - 10 MeV

♦ protons: 1 MeV - 400 MeV

Danish Small Satellite Programme

Effects of High-Energy Charged Particles in the Space Environment

- Biological effects (Prolonged exposure of astronauts in MIR and International Space Station)
 - → Shielding, return to ground in case of majorsolar flares
- Degradation of materials and semiconductors by ionization and lattice displacements
 - → Materials selection, radiation hardening, shielding
- Single-Event Upsets in computer memory cells
 - → Error Detection and Correction (EDAC), radiation hardening
- Radiation background (Increased noise level in CCD, X-ray and gamma-ray detectors)
 - → Radiation hardening, shielding, select orbit outside or inside radiation belts, disable payload while passing through radiation belts

Danish Small Satellite Programme

Calculation of Effects of Ionizing Radiation in the Space Environment

ESA has created a web-facility - SPENVIS that gives the user acess to a number of useful modeling and calculation resources – see SPENVIS opening vindow at right

You have to be a registered user to gain access to the facility.

http://www.spenvis.oma.be/spenvis/

Danish Small Satellite Programme

Radiation in Syn-Synchronous Polar Low Earth Orbit

Danish Small Satellite Programme

Radiation in Molniya Orbit (RØMER)

63.4°

270°

293°

Danish Small Satellite Programme

Radiation Environment in Molniya Orbit - Trapped Proton Fluxes Along Orbit

Danish Small Satellite Programme

Radiation Environment in Molniya Orbit - Trapped Electron Fluxes Along Orbit

Danish Small Satellite Programme

Radiation Environment in Geostationary Transfer Orbit, 28.5° Inclination

Danish Small Satellite Programme

Radiation Environment in Molniya Orbit - Trapped Proton Fluxes Along Orbit

Danish Small Satellite Programme

[nT]

Danish Small Satellite Programme

Effects of South-Atlantic Anomaly

UoSAT-3 Single-Event Upsets

Danish Small Satellite Programme

DSRI

Radiation Dose Tolerance of Materials

Danish Small Satellite Programme

Solar Flares

Major Solar Flare

Probability of exceeding a given fluence level for various mission durations

Danish Small Satellite Programme

DSRI

Cosmic Rays

Cosmic ray species vs particle energy

Effect of high-energy charged particle in integrated circuit

Danish Small Satellite Programme

Single-Event Latch-Up

Two-transistor model for latch-up in CMOS device showing parasitic elements

Latch-up protection circuit for ADSP-2100 digital signal processor

Danish Small Satellite Programme

Typical Radiation Tolerences of Rad Hard and COTS Parts

Characteristics	сотѕ	Rad Hard
Total Dose	10 ³ –10 ⁴ rads	10 ⁵ –10 ⁶ rads
Dose-Rate Upset	106-108 rads (Si)/s	>10 ⁹ rads (Si)/s
Dose-Rate-Induced Latchup	10 ⁷ -10 ⁹ rads (Si)/s	>10 ¹² rads (Si)/s
Neutrons	10 ¹¹ –10 ¹³ n/cm ²	10 ¹⁴ –10 ¹⁵ n/cm ²
Single-Event Upset (SEU)	10 ⁻³ –10 ⁻⁷ errors/bit-day	10 ⁻⁸ -10 ⁻¹⁰ errors/bit-day
Single-Event Latchup/Single- Event Burnout (SEL/SEB)	< 20 MeV-cm ² /mg (LET)	37-80 MeV-cm ² /mg (LET)

[•] COTS characteristics may vary unpredictably from lot to lot and even within a lot.

COTS: Commercial Off-the-Shelf (parts)

[•] Higher margins and more testing (screening) are required with COTS usage, which will offset lower piece part costs.

[•] LET is Linear Energy Transfer threshold.

Danish Small Satellite Programme

DSRI

Linear Energy Transfer (LET) Spectra in Orbit

Danish Small Satellite Programme

DSRI

Single-Event Upset - Linear Energy Transfer Threshold

Danish Small Satellite Programme

Single-Event Upset Protection Methods

