1 Théorie des graphes :

1.1 Définitions

1.1.1 Introduction

Un graphe Γ est un triplet (V, E, γ) où :

- V est un ensemble fini dont les éléments sont appelés sommets
- E est un ensemble fini dont les éléments sont appelés $\operatorname{arrêtes}$
- γ est une fonction qui associe à chaque arrête $e \in E$ une paire de sommets $\{x,y\} \in V$

Qu'on notera plus généralement P = (V, E)

Exemple de graphe

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, \{x, y\} \in V$. On dit que x et y sont **adjacents** et que e est **incidenté** à x et y.

1.1.2 Cas particulier d'arête

On appelle **arête multiple** toutes les arêtes incidenté à 2 même points. Un **lacet** est une arête qui incidente le même point.

Graphe avec arête multiple et graphe avec lacet

Un graphe est dit simple s'il ne contient pas d'arête multiple ni de lacet

1.1.3 Degré d'un sommet

Le **degré** d'un sommet $v \in V$ est le nombre d'arête incidentes à v (les lacets compte pours 2 arêtes). On le note : deg(v).

<u>Théorème</u> : Soit $\Gamma = (V, E)$, alors $\sum_{v \in V} deg(v) = 2 \# E$. Autrement dit la

somme des degrés de tout les sommets est égale au nombre d'arête $\times 2$. Ce qui implique que la somme des degrés d'un graphe est d'office paire.

7 arêtes 2 sommets (bleu) de degré 4 6 sommets (rouge) de degré 1 $2 \times 4 + 6 \times 1 = 14 = 2 \times$ nombre d'arête totale

Graphe complet 1.1.4

Le graphe complet K est le graphe simple à n sommets pour lequel chaque paire de sommet à une arête. Autrement dit, les sommets sont tous adjacents entre-eux.

1.1.5 Sous-graphes

Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si : $U \subseteq$ et $F \subseteq E$. On notera $\Gamma' \leq \Gamma$

Chemins

1.2.1 Definition

Soit P = (V, E) et $v, w \in V$, un **chemin** de v à w de longueur n est une séquence alternée de (n+1) sommets $v_0, v_1, ..., v_n$ et de n arêtes $e_1, e_2, ..., e_n$ de la forme : $(v_0, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v_n)$.

Un chemin est **simple** si aucun sommet ne se répète, sauf peut-être celui de départ ou d'arrivée.

Remarque : Dans un graphe simple on notera juste la suite des sommets (car il existe qu'un seul chemin les reliants). Avec l'exemple ci-dessus : (v_1, v_2, v_4, v_5)

1.2.2 Graphe connexe

Un graphe $\Gamma = (V, E)$ est **connexe** si $\forall x, y \in V : \exists$ un chemin de x à y.

Soit $\Gamma=(V,E)$ un graphe et $x\in V$, la **composante connexe** de Γ contenant x est le sous-graphe Γ' de Γ dont les sommets et les arêtes sont contenues dans un chemin de Γ' démarrant en x.

1.2.3 Cycles

Soit $\Gamma = (V, E)$ et $v \in V$, un **cycle** est un chemin allant de v à v. Il est **simple** si on ne passe pas plusieurs fois sur le même sommet (à part v).

