${\bf Numerical\ Linear\ Algebra}$

March 2, 2025

Topic: Orthogonal Vectors and Matrices

FAUST Scribe: David Zhang

1 Orthogonal Vectors and Matrices

Definition 1. A hermitian conjugate or adjoint of an $m \times n$ matrix A is the $n \times m$ matrix A^* obtained by taking the complex conjugate of each entry and then taking the transpose.

$$A^* = \overline{A}^T$$

Where

$$A^* = \begin{bmatrix} \overline{a_{11}} & \overline{a_{21}} & \cdots & \overline{a_{m1}} \\ \overline{a_{12}} & \overline{a_{22}} & \cdots & \overline{a_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \overline{a_{2n}} & \cdots & \overline{a_{mn}} \end{bmatrix}$$

If $A = A^*$, then A is said to be hermitian.

Definition 2. An inner product is bilinear, meaning

$$(x_1 + x_2)y = x_1y + x_2y$$
$$x(y_1 + y_2) = xy_1 + xy_2$$
$$(\alpha x)(\beta y) = \alpha \beta xy$$

Theorem 1.1. The vectors in an orthogonal set S are linearly independent.

Proof. Suppose $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$ for an orthogonal set $\{v_1, \ldots, v_k\}$. By bilinearity of the inner product,

$$0 = \langle \alpha_1 v_1 + \dots + \alpha_k v_k, v_i \rangle = \alpha_1 \langle v_1, v_i \rangle + \dots + \alpha_k \langle v_k, v_i \rangle.$$

Since $\langle v_j, v_i \rangle = 0$ for $j \neq i$, we get

$$\alpha_i \langle v_i, v_i \rangle = 0 \implies \alpha_i = 0.$$

Hence, all α_i must be zero and the vectors are linearly independent.

Key idea:

Inner products and Orthogonality can decompose arbitrary vectors into orthogonal components.

Theorem 1.2. If q_1, \ldots, q_n are orthogonal, then where v is an arbitrary vector, and qv^T is a scalar.

The vector $r = v - (q_1 v)q_1 - \cdots - (q_n v)q_n$ is orthogonal to q_1, \ldots, q_n .

 $Multiplying q_i \ by \ r \ gives$

$$q_i r = q_i v - (q_i q_1) v q_1 - \dots - (q_i q_n) v q_n$$

= $q_i v - q_i v q_i q_i$
= 0

References

[1] Lloyd N. Trefethenós, David Baué, Numerical Linear Algebra, Northwestern University.