ISEL – LEIM Processamento de Imagem e Visão

Inverno 2024-2025

Série de Exercícios 2

X

ω	
$\hat{\omega}$	

dado por um classificador:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
3	3	1	3	2	1	2	2
3	3	1	3	3	2	3	1

Considere o seguinte conjunto de dados X com classe verdadeira ω e classe estimada $\hat{\omega}$,

Qual a probabilidade de erro?

de uma câmara digital de videovigilância adquiridas em 3 instantes de tempo.

Considere que as seguintes matrizes representam 3 imagens monocromáticas provenientes

Pretende-se realizar um algoritmo de detecção de objectos com base em subtracção de imagens. Determine a imagem de fundo com base na filtragem de mediana temporal.

100	105	101		
120	125	135		
140	130	195		

101	120	140
105	125	130
101	135	135

101	105	101		
120	125	200		
140	200	195		

101	105	101
120	125	135
140	130	135

Dada a seguinte matriz:

173	245	65	140	65
167	87	129	35	208
41	149	178	38	62
30	57	227	66	237
127	100	245	214	00

que representa o módulo do gradiente de uma imagem e um limiar de 50 para determinar os pixeis de contorno, a densidade de contornos desta imagem é:

 9
 42
 9
 4
 1
 7
 2
 4
 4
 6

 40
 5
 2
 2
 6
 4
 4
 8
 2

 38
 5
 4
 4
 5
 6
 3
 5
 3

de circunferências de raio conhecido, obtém-se o seguinte troco do acumulador:

Considere que depois de aplicar o algoritmo da transformada de Hough para a detecção

7									
Coordenac	36	3	1	8	5	8	5	4	5
	34	9	1	0	3	1	5	9	2
	32	4	9	0	7	9	15	9	8
	30	1	10	2	2	8	8	6	2
		50	52	54	56	58	60	62	64
				Coor	dena	da Y (_I	oixel)		

Com base nesta porção do acumulador, quais os parâmetros da melhor circunferência (centro $C = [X_0; Y_0]$) que a transformada detectou?

[32;60]

|40:58|

32:521

42: 56L

e forte):

Considere a seguinte matriz:

2
2
3
6
֡

que representa o módulo do gradiente de uma imagem, o limiar de 102 para determinar os pixeis de contorno e o limiar de 153 para decidir entre pixeis com contorno fraco ou forte. Qual o histograma normalizado da amplitude dos contornos com dois níveis (fraco

[0,32; 0,44]

[0,08; 0,52]

[0,16; 0,44]

[0,28; 0,48]

 154
 57

 181
 30

 81
 130

 67
 7

Plano R Plano G Plano B

Considere a imagem a cores representada pelos seguintes planos de cor.

por: $C_1 \to (0, 58; 0, 27), C_2 \to (0, 17; 0, 54) (R_n, G_n, respetivemente).$

Realize uma segmentação de cor no espaço RG normalizado, utilizando o algoritmo de distância ao centroide, considerando que existem duas cores dominantes representadas

Considere uma câmara representada pelo modelo de projecção de perspectiva simples, que se conhecem os seguintes parâmetros intrínsecos, $k_y = k_y = 0.25$, que o eixo óptico intersecta o plano da imagem no píxel de coluna 320 e linha 240 e que a lente tem uma distância focal de 4mm. Determine qual o pixel que corresponde ao ponto 3D dado por [600, 1000, 200] (mm), representado no referencial da câmara ([X,Y,Z]).

|470;165|

[323; 235]

[400; 200]

[330; 235]

Considere a seguinte matriz:

ter gerado este campo de movimento?

que representa o resultado do calculo do fluxo óptico, onde as setas indicam o sentido do deslocamento e as setas com traço forte indicam um descolamento maior que as setas a traço fraco. Qual o tipo de situação de movimento da câmara e/ou de objectos que pode

Deslocamento horizontal da câmara no sentido da esquerda para a direita (pan right).

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da direita para a esquerda.

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left) com um objecto a deslocar-se horizontalmente da esquerda para a direita.

Deslocamento horizontal da câmara no sentido da direita para a esquerda (pan left).

Considere que dispõem de uma câmara com um sensor de 1" e relação largura/altura de 4/3 (dimensões do sensor: altura 12.8mm e largura 16.0mm). Utilizando o modelo de projecção simples, qual a distância focal da lente para que, a 10 metros de distância, tenha um campo de visão horizontal de 5 metros (considere que a distância é medida a partir do plano focal)?

40 mm.

15 mm.

32 mm.

10 mm.