Lecture 01, Math 447

Marius Junge

University of Illinois at Urbana-Champaign

Introduction To Real Analysis: Goals

- ► Have fun
- Proofs rigorous foundation of calculus
- $ightharpoonup \mathbb{R}$ (not \mathbb{C} as much hence *real* analysis)
- Motivating problems
 - Physics
 - Fix perimeter of rectangles; maximize area.

Self-contained proofs that the tools you're used to are valid.

Metric spaces (topological properties)

timestamp: 00:23

Question: What is \mathbb{R} ?

Answer 1) A complete ordered field (it's unique).

Answer 2) \mathbb{R} is a particular subset of $2^{\mathbb{Q}}$.

$$(2^A = P(A) = \{ B \mid \underset{B \text{ set}}{B \subset A} \})$$

What is a set? Hard question! For a logician (not for this class).

Russel's paradox:

$$R = \{ A \mid A \not\in A \}$$

Q: Is $R \in R$?

$$R \in R \iff R \notin R$$

Ans: R is not a set.

timestamp: 09:39

Axioms for \mathbb{N} (proposed)

a1)
$$1 \in \mathbb{N}$$
.

a2)
$$n \in \mathbb{N} \implies (n+1) \in \mathbb{N}$$
.

a3) If $A \subset \mathbb{N}$ is a set such that

$$1 \in A$$

$$n \in A \implies (n+1) \in A$$

then $A = \mathbb{N}$. (domino prin.)

 \mathbb{N} a set, $S: \mathbb{N} \to \mathbb{N}$ function

b1)
$$\mathsf{Im}(\mathcal{S}) = \mathbb{N} \setminus \{1\}.$$

b2) S injective.

b3) If $A \subset \mathbb{N}$ is a set such that

$$S(A) \subset A$$

$$1 \in A$$
,

then $A = \mathbb{N}$.

Formal link: S(n) = n + 1.

Then a3 = b3, and b1 is "close to" a1 & a2, but then there's b2...

Do these axioms produce the same version of \mathbb{N} ?

To be precise, natural numbers is the triple $(\mathbb{N}, S, 1)$ (axioms b1-3).

The triple in a1-3 would include the function "+1" $n \mapsto n+1$.

Axioms for \mathbb{N}

This model satisfies a1-3 but it's not \mathbb{N} . What's missing? What can we add to a1-3 to make the axioms equivalent? One element with two predecessors (noninjectivity) \Longrightarrow a loop. How could we modify a1-3 to prevent loops? Noninjectivity \Longrightarrow a loop \Longrightarrow the set is finite.

timestamp: 27:19

Axioms for \mathbb{N} (really)

- a0) \mathbb{N} is not finite
- a1) $1 \in \mathbb{N}$.
- a2) $n \in \mathbb{N} \implies (n+1) \in \mathbb{N}$.
- a3) If $A \subset \mathbb{N}$ is a set such that

$$1 \in A$$

$$n \in A \implies (n+1) \in A$$

then $A = \mathbb{N}$. (domino prin.)

 \mathbb{N} a set, $S: \mathbb{N} \to \mathbb{N}$ function

b1)
$$\operatorname{Im}(S) = \mathbb{N} \setminus \{1\}.$$

- b2) S injective.
- b3) If $A \subset \mathbb{N}$ is a set such that

$$S(A) \subset A$$

$$1 \in A$$
,

then $A = \mathbb{N}$.

Sharpen your skills:

- 1. Prove a0-3 and b1-3 are equivalent.
- 2. Add axiom: b0) \mathbb{N} is not finite Prove b0) $\Longrightarrow S$ is injective (b2)

How to go from \mathbb{N} to \mathbb{Z} ? Add negative numbers.

 \mathbb{Z} is the smallest abelian group that contains \mathbb{N} .

Look Up: abelian group or commutative group