Lab Sheet- 4

DIVISION OF TWO UNSIGNED INTEGER BINARY NUMBERS

Objective:

To implement restoring division algorithm in digital computer.

When the division is implemented in a digital computer, restoring and non-restoring algorithms are frequently used. In this lab session we are dealing with first. Here division process requires controlled subtract-restore operations. Whether the next operation is a subtraction or restoration, is controlled by the result of the current operation. Consider two binary numbers A and B. A is the dividend, B the divisor and Q = A / B the quotient. We assume that A>B and B! =0. The flow chart of the algorithm used, is given in figure 4.1.

Let us take examples:

Dividend (Register - A) = 12 Equivalent binary representation is 1100 and divisor (Register - B) = 4 Equivalent binary representation is 0100.
Subtraction may be achieved by adding 2's complement of B as we have done in lab 3 and here it is 1100. Double length dividend is stored in registers AQ.

	A	Q	
Initially	0000	1100	
	0 1 0 0		
Shift	0001	100	
Subtract	1 1 0 0		count = 0
Set LSB	<u>(1)1 0 1</u>		
Restore	0100		
	0001	1000	
Shift	0 0 1 1	0 0 0 0	
Subtract	1100		
Set LSB	①1 <u>11</u>	>	count = 1
Restore	0 1 0 0	¦ [
	0011	0 0 0 0 0	
Shift	0110	000	_
Subtract	1 1 0 0	r 1	count = 2
Set LSB	<u> </u>	_ 」 0001 一	
Shift	0 1 0 0	001	
Subtract	1100	- 	count = 3
	<u> </u>		
	γ Remainder	Quotient	
	Remaniuei	Quotient	

Dividend (Register - A) = 8 Equivalent binary representation is 1000 and divisor (Register - B) = 3 Equivalent binary representation is 00011.
Subtraction may be achieved by adding 2's complement of B as we have done in lab 3 and here it is 11101. Dividend is stored in registers AQ.

Let the number of bits stored in register Q is n Registers AQ is now shifted to the left with zero insertion into Q_{LSB} . Initialize the counter to zero value. And divisor is subtracted by adding 2's complement value. If A_{MSB} =1,set Q_{LSB} with value 0 and then increment the counter value by 1.The value of B is added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and process is repeated until count = n-1 i.e. all quotient bits are formed. While the partial remainder is shifted left, the quotient bits are also shifted. Finally Quotient is in Q and the final remainder is in A.

The flow chart for restoring division is shown below.

Figure 4.1