Improving Semi-supervised End-to-End ASR using CycleGAN and Inter-domain Losses

Institute for Natural Language Processing - University of Stuttgart, Germany

MAIN CONTRIBUTIONS

- We propose a cycle-consistent inter-domain loss, which is dissimilarity between encoded speech and hypothesis, for generating better representation. Besides, we combine the cycle-consistent inter-domain loss and the identity mapping loss from CycleGAN in a single framework for semi-supervised E2E ASR and achieve noticeable performance improvement.
- We provide the analysis on the ASR output and the visualization of inter-domain embedding from speech and text, which explains the reason of performance gain by our proposed method.

Decoder

Input_B _ cyclic_B

Text Emb

METHOD

CTC

(a) Semi-supervised E2E (Karital, 2018)

(b) CycleGAN inter-domain loss

(c) Identity mapping loss

- Figure (a) is model architecture for supervised training (oracle and initial model).
- Figure (b) is the cycle-consistent inter-domain loss, which minimizes the distance between the inter-domain embedding from speech and its hypothesis. $L_{cyc,dom} = \mathcal{D}(input_B, cycle_B) = \mathcal{D}(e(x), \hat{e}(g(d(e(x)))))$ Where $\mathcal{D}(.)$ is a method to measure the distance between distributions. In this work, we use Maximum Mean Discrepancy (MMD).
- Figure (c) is the identity mapping loss that encourages to preserves important features after translation. $L_{idt} = \|\hat{e}(b) b\|_1$.

RESOURCE

We conducted the experiments on WSJ, Librispeech 100+360 Task and Voxforge (it,nl,de,fr). The oracle and initial models in result table are trained by Espnet [3] and our method is implemented under Espnet ^a.

^ahttps://github.com/chiayuli/semi-supervised-E2E-using-CycleGAN

VISUALIZATION

t-SNE visualization of inter-domain embedding from speech

REFERENCES

- [1] J.-Y. Zhu et al., "Unpaired image-to-image translation using cycle-consistent ad- versarial networks," in Proc. of ICCV, 2017.
- [2] S. Karita1 et al., "Semi- supervised end-to-end speech recognition," in Proc. of Interspeech, 2018.
- S. Kim et al., "Joint CTC-attention based endto-end speech recognition using multi-task learning," in Proc. of ICASSP, 2017.

IMPACT OF USING CYCLEGAN LOSSES

Model	Objective	paired data	unpaired data
Initial model 🛑	$L = L_{pair} = (1 - mtl) * L_{ctc} + mtl * L_{att}$	V	
Semi-supervised models	$L = \alpha * L_{pair} + (1 - \alpha) * L_{unpair}$		
-Baseline [2] 🔵	$L_{unpair} = \beta L_{dom} + (1 - \beta)L_{text}$	V	V
-Retrain-idt 🛑	$L_{unpair} = L_{idt}$	V	V
-Retrain-cyc	$L_{unpair} = \beta L_{cyc,dom} + (1 - \beta)L_{text}$	V	V
-Retrain-cyc+idt 🔵	$L_{unpair} = \beta(L_{cyc,dom} + L_{idt}(x)) + (1 - \beta)(L_{text} + L_{idt}(y))$	V	V

- Retrain-idt (red dots) has better CER than Baseline, and its performance does not fluctuate over speech-to-text ratio. Retrain-cyc (blue dots) achieves the best CER at $\beta = 0.4$ and it also performs better than the Baseline (green dots) all the time except at $\beta = 0$.
- Retrain-cyc outperforms Baseline at β which implies that the encoder using our proposed $L_{cyc,dom}$ generates better embedding than the one using L_{dom} .
- Retrain-cyc+idt (cyan dots), which combines L_{idt} , $L_{cyc,dom}$ and L_{text} , have advantages from the both losses and achieves good performance while β varies.

CER/WER ACROSS ENGLISH CORPUS

WSJ (15h paired+80h unpaired data)				
Model	Type	LM	CER(%)	WER(%)
Oracle	-	N	4.3	14.1
Initial model	-	N	14.8	42.6
Baseline	Text	N	13.1	38.3
Retrain-cyc+idt	Text	N	12.4	36.9
Baseline	Both	N	13.5	39.6
Retrain-cyc+idt	Both	N	12.5	36.9
Oracle	-	Y	2.3	4.9
Initial model	-	Y	8.3	17.6
Baseline	Text	Y	7.3	15.8
Retrain-cyc+idt	Text	Y	7.1	15.4
Baseline	Both	Y	7.4	15.8
Retrain-cyc+idt	Both	Y	6.9	15.2

Librispeech (100h paired+360h unpaired data)				
Model	Type	LM	CER(%)	WER(%)
Oracle	-	N	3.9	11.0
Initial model	-	N	8.7	22.7
Baseline	Text	N	8.5	22.4
Retrain-cyc+idt	Text	N	8.3	21.7
Baseline	Both	N	8.5	22.4
Retrain-cyc+idt	Both	N	8.1	21.4
Oracle	-	Y	3.5	8.9
Initial model	-	Y	7.0	16.1
Baseline	Text	Y	6.8	15.8
Retrain-cyc+idt	Text	Y	6.7	15.6
Baseline	Both	Y	6.8	15.6
Retrain-cyc+idt	Both	Y	6.6	15.2

CER ON NON-ENGLISH DATA

Models	it	nl	de	fr
paired data (hr.)	5	5	10	5
Oracle	12.9	25.2	5.6	30.8
Initial model	29.4	35	20.3	53.3
Baseline	22.1	33.7	20.2	47.9
Retrain-cyc+idt	19.7	32.8	19.4	41.4

ANALYSIS

Our methods show better insertion and substitution.				
REF	Baseline	Retrain-idt	Retrain-cyc	
departed	the parted	departed	the parted	
commodore	commod or	commodare	commodare	
/sil/	a	/sil/	/sil/	
making	mak <mark>e at</mark>	making	makean	
	<u> </u>	<u> </u>		