5CCS2FC2: Foundations of Computing II

Tutorial Sheet 3

- 2.5 (i) Show that the language A_{TM} is recursively enumerable by constructing a sound and complete algorithm that recognises all words $\langle M, w \rangle$, where M encodes a TM that accepts w.
 - (ii) Hence, or otherwise, show that its complement $\overline{\mathsf{A}_{TM}}$ is *not* recursively enumerable.

2.6 (Tricky!)

- (i) Show that the language $\overline{\mathsf{EQ}_{TM}}$ is not recursively enumerable by reducing A_{TM} to its complement EQ_{TM} . (In other words, that EQ_{TM} is not co-recursively enumerable.)
- (ii) Show that the language $\overline{\mathsf{EQ}_{TM}}$ is also not co-recursively enumerable by reducing A_{TM} to $\overline{\mathsf{EQ}_{TM}}$. (In other words, that EQ_{TM} is not recursively enumerable.)

(It follows that $\overline{\mathsf{EQ}_{TM}}$ and EQ_{TM} are 'harder' than any recursively enumerable or co-recursively enumerable problem. There are not even any sound-and-complete algorithms for either problem)

- 3.1 Determine whether the following are true or false?
 - (i) $10^{15}n \in O(n)$,

(v) $n \log n \in O(n^2)$,

(ii) $n^2 \in O(n)$,

- (vi) $2^{(2n+1)} \in O(4^n)$,
- (iii) $n^2 \in O(n \log n)$,
- (vii) $n^{\log \log n} \in O(n^{10})$.
- (iv) $n^2 \in O(n \log^2 n)$,

3.2 For each of the following formulas F construct a graph G_F and choose an integer k such that

F is satisfiable \iff G_F contains a clique of size k

(i)
$$F = (P \lor \neg Q \lor \neg S) \land (Q \lor \neg R \lor S) \land (\neg Q \lor R \lor S)$$

(ii)
$$F = (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

(iii)
$$F = (P \lor Q \lor \neg R) \land (P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R)$$

Use this property to identify which of the above formulas are satisfiable.

3.3 Construct a propositional formula that is satisfiable if and only if the following graph G=(V,E) can be coloured using only two colours, where

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 5)\}$$

