Practical Protection Concepts PROTECTION AND INTEGRATION MADE SIMPLE

Per-Unit and Primary/Secondary Calculations

Per-Unit Basics

A per-unit value is the actual value of some quantity divided by the base value of that quantity. The basic equation for calculating a per-unit value is shown below.

$$Value_{perUnit} = \frac{Value_{Actual}}{Value_{Base}}$$

Equations used for finding base quantities of impedance, current, and power are shown in Table 1, where the base voltage (kV_B) is the nominal phase-to-phase voltage of the system in kilovolts, and the base power (MVA_B) is traditionally 100 MVA. In order to convert any per-unit value back to its actual units, simply multiply the per-unit quantity by its base value.

Table 1. Base Calculations for Per-Unit Conversions	
Base Quantity	Equation
Impedance (Z _B)	$Z_{B} = \frac{kV_{B}^{2}}{MVA_{B}}$
Current (I _B)	$I_{B} = \frac{MVA_{B} \cdot 1000}{\sqrt{3} \cdot kV_{B}}$
Power (MVA _B)	$MVA_{B} = \frac{\sqrt{3 \cdot kV_{B} \cdot I_{B}}}{1000}$

Primary/Secondary Conversions

Some fundamental primary/secondary conversions can be found in Table 2, along with brief descriptions of their use. The following example should help to illustrate the use of the equations in Tables 1 and 2.

Table 2. Primary/Secondary Conversions	
Equation	Description
Apri	Convert primary amps to secondary amps
$A \sec = {CTR}$	
$I_{Apri} = I_{Asec} \cdot CTR$	Convert secondary amps to primary amps
1000 · kV _{pri}	Convert primary kV to secondary volts
V _{sec} = PTR	
V V Sec · PTR	Convert secondary volts to primary kV
1000	
	Convert primary ohms to secondary ohms
Z -Z CIR	
$Z_{\Omega \text{sec}} = Z_{\Omega \text{pri}} \cdot \frac{STR}{PTR}$	
	Convert secondary ohms to primary ohms
PTR	
$L_{\Omega pri} = L_{\Omega sec} \cdot \overline{CTR}$	

Example. Line AB is operating at a line-to-line voltage of 230 kV and has positive-sequence impedance Z_L= 0.024 \(\text{ 85}^\circ\) per unit on a 100 MVA base. The CT ratio is 1200/5 and the PT ratio is 2000/1. If phase distance relays at Bus A are to reach 80% of Line AB, what should the relay reach be set to in secondary ohms?

 $V_{Base} = 230 \text{ kV}$

 $Z_{Base} = (230 \text{ kV})_2 / 100 \text{ MVA}$

 $Z_{Lactual} = (0.024 \square 85^{\circ}) * 529 \Omega$

 $Z_{Reachpri} = 0.80 * 12.7 \square 85^{\circ} \Omega$

 $Z_{Reachsec} = 10.16 \square 85^{\circ} \Omega * (1200/5) / 2000$

MVA_{Base} = 100 MVA

 $Z_{Base} = 529 \Omega$

 $Z_{Lactual} = 12.7 \square 85^{\circ} \Omega$

 $Z_{Reachpri} = 10.16 \square 85^{\circ} \Omega$

 $Z_{Reachsec} = 1.22 \square 85^{\circ} \Omega secondary$

The relay reach should be set to $1.22 \square 85^{\circ} \Omega$ secondary.

The ability to work comfortably with primary/secondary conversions and per-unit calculations is important when working with protective relays. Quick reference tables, like the ones shown above, can be very convenient in the field for making simple conversions. Where a more comprehensive collection of formulas and general reference material is needed, take a look at a pocket reference such as Protective Relaying Quick Reference.