CNC-Maroc 2001—Epreuve de math I : Corrigé Par M.Taibi professeur en MP* à Rabat

Partie I

- 1- Soit $n \in \mathbb{Z}$, l'application $(x, \theta) \mapsto \cos(x \sin(\theta) n\theta)$ est continue et bornée sur $\mathbb{R} \times [0, \pi]$, donc J_n est bien définie et bornée sur \mathbb{R} .
- 2- Soit $n \in \mathbb{Z}$. Effectuer le ch
gt de variable affine $u = \pi \theta$ dans l'intégrale définissant J_{-n} , pour obtenir : $J_{-n}(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin(\pi - u) - n(\pi - u)) d\theta = (-1)^n J_n(x).$
- 3- Soit $n \in \mathbb{Z}$, l'application $(x, \theta) \mapsto \cos(x \sin(\theta) n\theta)$ est C^{∞} sur $\mathbb{R} \times [0, \pi]$. Par le théorème de dérivation sous le signe intégrale, J_n est de classe C^{∞} et pour tout $p \in \mathbb{N}$. $J_n^{(p)}(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\partial^p}{\partial x^p} (\cos(x\sin(\theta) - n\theta)) d\theta = \frac{1}{\pi} \int_0^{\pi} \sin^p(\theta) \cos(x\sin(\theta) - n\theta + p\frac{\pi}{2}) d\theta$

$$g_x(\theta) = -x^2 \sin^2(\theta) \cos(x \sin(\theta) - n\theta) - x \sin(\theta) \sin(x \sin(\theta) - n\theta) + (x^2 - n^2) \cos(x \sin(\theta) - n\theta)$$

$$= x \sin(\theta) \sin(n\theta - x \sin(\theta)) + x^2 \cos^2(\theta) - n^2) \cos(x \sin(\theta) - n\theta)$$

$$= \frac{d}{d\theta} \left((x \cos(\theta) + n) \sin(x \sin(\theta) - n\theta) \right)$$
on a
$$x^2 J_n(x) + x J'_n(x) + (x^2 - n^2) J_n(x) = \frac{1}{\pi} \int_0^{\pi} g_x(\theta) d\theta$$

$$= \left[(x \cos(\theta) + n) \sin(x \sin(\theta) - n\theta) \right]_0^{\pi}$$

$$= 0$$

5- Cours : Equation différentielle lineaire, sans second membre, du 2^{sd} ordre, résolue en y'' sur $I = \mathbb{R}_+^*$, donc l'espace des solutions sur \mathbb{R}_+^* est de dimension 2.

Partie II

1- Lemme de Granwall :

Fixons
$$y \in \mathbb{R}_+^*$$
 et posons $w(x) = \left(\int_u^x u(t)v(t)dt \right) \exp \left(\int_u^x v(t)dt \right)$ pour $x > 0$

(a) Si F désigne une primitive de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : $f:x\mapsto u(x)v(x)$, et V celle de l'application continue sur \mathbb{R}_+^* : V celle de l'application continue sur \mathbb{R}_+ plication v, alors $w(x) = (F(x) - F(y)) \exp(V(x) - V(y))$ qui est dérivable sur \mathbb{R}_+^* comme composée d'applications dérivables (elle est même C^1).

On a
$$w'(x) = \frac{d}{dx}w(x)$$

$$= u(x)v(x)\exp\left(\int_y^x v(t)dt\right) + \left(\int_y^x u(t)v(t)dt\right) \frac{d}{dx}\exp\left(\int_y^x v(t)dt\right)$$

$$= \left(u(x) + \int_y^x u(t)v(t)dt\right) \frac{d}{dx}\exp\left(\int_y^x v(t)dt\right)$$

$$= \left(u(x) - \int_x^{+\infty} u(t)v(t)dt + \int_y^{+\infty} u(t)v(t)dt\right)$$

$$\leq \alpha(y)\frac{d}{dx}\exp\left(\int_y^x v(t)dt\right) \quad \text{car} \quad u(x) - \int_x^{+\infty} u(t)v(t)dt \leq A$$
D'où

D'où

$$\forall s \in \mathbb{R}_+^*$$
, $w'(s) \leqslant \alpha(y) \frac{d}{ds} \exp\left(\int_u^s v(t) dt\right)$

(b) Soit $x \in]0, y]$, par intégration de l'inégalité précédente sur [x, y], on obtient : $\left|w(y)-w(x)\leqslant lpha(y)\left|1-\exp(\int_{y}^{x}v(t)dt)\right|=\exp\left(\int_{y}^{x}v(t)dt\right)\left[lpha(y)\exp\left(\int_{x}^{y}v(t)dt\right)-lpha(y)
ight]$ Or w(y) = 0, donc $-w(x) \exp\left(\int_y^x v(t)dt\right) \leqslant \alpha(y) \exp\left(\int_x^y v(t)dt\right) - \alpha(y)$, soit encore $\alpha(y)$

$$w(x) \exp \left(\int_y^x v(t) dt \right) \leqslant \alpha(y) \exp \left(\int_x^y v(t) dt \right)$$

En utilisant l'expression de w(x), on a :

$$\alpha(y) - w(x) \exp\left(\int_{y}^{x} v(t)dt\right) = \alpha(y) + \int_{x}^{y} u(t)v(t)dt$$
$$= \alpha(y) - \int_{y}^{+\infty} uv + \int_{x}^{+\infty} uv = \alpha(x)$$

et par suite:

$$u(x) \leqslant \alpha(x) \leqslant \alpha(y) \exp\left(\int_x^y v(t)dt\right) \text{ avec } 0 < x \leqslant y.$$

Faisons tendre y vers $+\infty$, dans l'inégalité précédente, en tenant compte de $\lim_{y\to+\infty}\alpha(y)=A$, il vient :

$$\forall x > 0, \quad u(x) \leqslant A \exp\left(\int_x^{+\infty} v(t)dt\right)$$

- 2- Autour de l'equation différentielle $F_q: y'' + (1+p)y = 0$
 - (a) Résolution de F_0 : équation différentielle linéaire à coefficients constants, son équation caractéristique est $r^2 + 1 = 0$. Donc les solutions réelles sont de la forme $y = A\cos(x) + B\sin(x)$ où A, B sont des constantes réelles.
 - (b) La méthode de variations des constantes permet de conclure : posons $y(x) = \lambda(x)\cos(x) + \mu(x)\sin(x)$ où λ , μ sont au moins de calsse C^1 .

$$y$$
 est solution de l'equation proposée ssi
$$\begin{cases} \lambda' \cos(x) + \mu' \sin(x) = 0 \\ -\lambda' \sin(x) + \mu' \cos(x) = -pf \end{cases}$$
 ssi

où
$$\lambda, \mu$$
 sont au moins de calsse C^1 .

 y est solution de l'equation proposée ssi
$$\begin{cases} \lambda' \cos(x) + \mu' \sin(x) = 0 \\ -\lambda' \sin(x) + \mu' \cos(x) = -pf \end{cases}$$
 ssi
$$\begin{cases} \lambda' = \begin{vmatrix} 0 & \sin(x) \\ pf & \cos(x) \end{vmatrix} = -pf \sin(x) \\ \mu' = \begin{vmatrix} \cos(x) & 0 \\ -\sin(x) & pf \end{vmatrix} = pf \cos(x) \end{cases}$$
 Avec $\lambda(x) = -\int_{b}^{x} p(t)f(t) \sin(t)dt$ et $\mu(x) = \int_{b}^{x} p(t)f(t) \cos(t)dt$. Les solutions de l'équation différentielle avec second membre sont de la forme :

$$y(x) = A\cos(x) + B\sin(x) + \lambda(x)\cos(x) + \mu(x)\sin(x)$$

Les solutions de l'équation différentielle avec second membre sont de la forme :
$$y(x) = A\cos(x) + B\sin(x) + \lambda(x)\cos(x) + \mu(x)\sin(x)$$
$$= A\cos(x) + B\sin(x) + \int_{b}^{x} f(t)\underbrace{(-p(t)\sin(t)\cos(x) + p(t)\cos(t)\sin(x))}_{b} dt$$

- (c) z est solution de F_p ssi z vérifie z'' + z = -pz. Comme en **b**) on obient $z(x) = A\cos(x) + B\sin(x) + \int_{b}^{x} z(t)k_p(x,t)dt$ avec
- 3- Soit $n \in \mathbb{Z}$.
 - (a) Soit $q \in C^2(\mathbb{R}^{*+}, \mathbb{R})$ tel que $I_n = \frac{J_n}{q}$ est solution d'une équation différentielle de type (F_{p_n}) , on alors : $J'_n = q'I_n + qI'_n, \quad J''_n = q''I_n + 2q'I'_n + qI''_n \text{ et puis :}$ $0 = (x^2 n^2)J_n + xJ'_n + x^2J''_n$ $= ((x^2 n^2)q + xq' + x^2q'')I_n + (xq + 2x^2q')I'_n + x^2qI''_n \quad (**)$ L'équation différentielle (**) est type F_{p_n} ssi $\begin{cases} xq + 2x^2q' = 0 \\ x > 0 \end{cases}$ et $q(x) = \frac{1}{\sqrt{x}}$ est une solution qui

convient et dans ce cas $p_n(x) = -\frac{n^2}{x^2} - \frac{1}{2x^2} + \frac{1}{2} \frac{\sqrt{x}}{x^3}$ qui est définie et continue sur \mathbb{R}_+^* .

(b) .
On rappelle
$$k_{p_n}(x,t)=-p_n(t)\sin(t)\cos(x)+p_n(t)\cos(t)\sin(x)$$

$$=-p_n(t)(\sin(x-t).$$

$$\left|I_n = \frac{J_n}{q}\right| \leqslant \frac{1}{\sqrt{x}} \operatorname{car} |J_n| \leqslant 1, \operatorname{donc} \\ |I_n(t)k_{p_n}(x,t)| \leqslant \frac{1}{\sqrt{t}} |p_n(t)| = O(\frac{1}{t^{\frac{5}{2}}}) \text{ et comme l'application } t \mapsto I_n(t)k_{p_n}(x,t) \text{ est continue sur } [1,+\infty[,t]]$$

son intégrabilité sur $[1,+\infty[$ en résulte.

L'expression de $k_{p_n}(x,t)$ montre que $x \mapsto \int_1^{+\infty} I_n(t) k_{p_n}(x,t) dt$ est une combinaison linéaire des fonctions $\cos(x)$ et $\sin(x)$.

- (c) I_n vérifie sur $\mathbb{R}_+^*: I_n'' + I_n = -p_n I_n$, donc d'après 2.c) I_n est de la forme : $I_n(x) = A\cos(x) + B\sin(x) + \int_1^x I_n(t) k_{p_n}(x,t) dt$ ici b=1Or $\int_1^x I_n(t) k_{p_n}(x,t) dt = \int_1^{+\infty} -\int_x^{+\infty} = \alpha \cos(x) + \beta \sin(x) \int_x^{+\infty}$ avec α et β des constantes réelles (voir question 3.b)).Donc $I_n(x) = C\cos(x) + D\sin(x) \int_x^{+\infty} I_n(t) k_{p_n}(x,t) dt$ avec C, D des réelles qui ne dépendent -a priori- que de n
- (d) $|I_n(x)| \leq |C| + |D| + \int_{-\infty}^{+\infty} I_n(t) k_{p_n}(x,t) dt$ qui résulte de $\leq |C| + |D| + \int_{-\infty}^{+\infty} |I_n(t)| k_{p_n}(x,t) dt$ qui résulte de $\leq |C| + |D| + \int_{-\infty}^{+\infty} |I_n(t)| k_{p_n}(t) dt$ expression de $K_{p_n}(x,t)$

Par le lemme de Granwall (voir question 1.b)

 $|I_n(x)| \leq M \exp(\int_x^{+\infty} |p_n(t)| dt \leq M \exp(\int_1^{+\infty} |p_n(t)| dt)$ où M = |C| + |D| et de plus C = D = 0, on a M = 0 et puis $I_n \equiv 0$ sur \mathbb{R}_+^* , impossible car J_n est non nulle.

Remarque : on peut démontrer que I_n est bornée sans utiliser le lemme de Granwall.

(e) Par transformation trigonométrique ,on a :

$$J_{n}(x) = qI_{n} = \frac{1}{q(x)} (A\cos(x) + B\sin(x)) - \frac{1}{q(x)} \int_{x}^{+\infty} I_{n}(t) k_{p_{n}}(x, t) dt$$
$$= \frac{1}{\sqrt{x}} (A_{n}\cos(x + \beta_{n})) - \frac{1}{\sqrt{x}} \int_{x}^{+\infty} I_{n}(t) k_{p_{n}}(x, t) dt.$$

 $\left|\frac{1}{\sqrt{x}}\int_{x}^{+\infty}I_{n}(t)k_{p_{n}}(x,t)dt\right|\leqslant\frac{1}{\sqrt{x}}\int_{x}^{+\infty}\left|I_{n}(t)\right|\left|k_{p_{n}}(x,t)\right|dt\leqslant\frac{\alpha}{\sqrt{x}}\int_{x}^{+\infty}\left|p_{n}(t)\right|dt.\text{ où α est un majorant de }\left|I_{n}\right|.$

L'expression de p_n montre que $\int_{x}^{+\infty} |p_n(t)| dt \leqslant \frac{cte}{x\sqrt{x}} + \frac{cte}{x^{3/2}\sqrt{x}} \underset{x \to +\infty}{=} O(\frac{1}{x^{3/2}})$

D'où $J_n(x) = \frac{1}{\sqrt{x}} \left(A_n \cos(x + \beta_n) \right) + O\left(\frac{1}{x^{3/2}} \right)$ au voisinage de $+\infty$.

Partie III

Ici $n \in \mathbb{N}$.

- 1- Quelques propriétés de J_n .
- (a) Pour $(m,k) \in \mathbb{N}^{*2}$ on a

$$J_{m-1}^{(k-1)}(0) - J_{m+1}^{(k-1)}(0) = \frac{1}{\pi} \int_{0}^{\pi} \sin^{(k-1)}(\theta) \cos((m-1)\theta + (k-1)\frac{\pi}{2}) d\theta$$

$$-\frac{1}{\pi} \int_{0}^{\pi} \sin^{(k-1)}(\theta) \cos((m+1)\theta + (k-1)\frac{\pi}{2}) d\theta$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \sin^{k}(\theta) \left(2\sin(\theta m)\sin(\frac{1}{2}\pi k) - 2\cos(\theta m)\cos(\frac{1}{2}\pi k)\right) d\theta$$

$$= 2\frac{1}{\pi} \int_{0}^{\pi} \sin^{k}(\theta) \left(\cos(\theta m + \frac{1}{2}\pi k)\right) d\theta$$

$$= J_{m}^{(k)}(0)$$

- (b) Soit n > 0 et $k \in \{0, ..., n-1\}$, on a : $J_n^{(0)}(0) = J_n(0) = \frac{1}{\pi} \int_0^\pi \cos(n\theta) d\theta = \frac{1}{\pi} \left[-\frac{1}{n} \sin(n\theta) \right]_0^\pi = 0$ supposons que $J_n^k(0) = 0$ pour tout $k \in [0, n-2]$, on a alors : $2J_n^{(k+1)}(0) = J_{n-1}^{(k-1)}(0) J_{n+1}^{(k-1)}(0) = 0$
- (c) Calcul de $J_n^{(n)}(0)$: $2J_n^{(n)}(0) = J_{n-1}^{(n-1)}(0) J_{n+1}^{(n-1)}(0) = J_{n-1}^{(n-1)}(0). \text{ d'où } J_n^{(n)}(0) = \left(\frac{1}{2}\right)^{n-1} J_1^{(1)}(0).$

Or $J_1'(0) = \frac{1}{2} (J_0(0) - J_2(0))$ (relation de 3.1.a), donc $J_1'(0) = \frac{1}{2} (1 - 0) = \frac{1}{2}$. D'où finalement $J_n^{(n)}(0) = (\frac{1}{2})^n$.

(d) La formule de taylo-young à l'ordre n autour de 0,donne : $J_n(x) = \sum_{k=0}^n \frac{1}{k!} J_n^{(k)}(0) x^k + o(x^n) = \frac{x^n}{2^n n!} + o(x^n) \text{ car } J_n^{(k)}(0) = 0 \text{ pour tout } k < n.$

Ceci montre bien que $J_n(x)$ est de signe de $\frac{x^n}{2^n n!}$ sur un voisinage pointé en 0, d'où l'existence de $\alpha > 0$ telle que J_n est strictement positive sur $]0, \alpha]$.

- 2- C'est du cours : (voir aussi 3-)
- 3- J_n solution non nulle sur $]0,\alpha]$ de $(E_n)\Leftrightarrow \phi_f=\frac{f}{J_n}$ est solution de l'équation différentielle : $z''=\left(2\frac{J_n'(x)}{J_n(x)}+\frac{1}{x}\right)z'\Leftrightarrow \frac{d}{dx}\phi_f$ est solution de $(\varepsilon_n):z'=\left(-\frac{2n+1}{x}+\psi_n(x)\right)z=0$, avec $\psi_n(x)=\frac{2n}{x}-2\frac{J_n'(x)}{J_n(x)}$.
 - (a) La solution générale de l'équation différentielle (ε_n) est de la forme : $z(x) = \lambda \exp(\int_{\alpha}^{x} \left(-\frac{2n+1}{t} + \psi_n(t)\right) dt)$ où $\lambda \in \mathbb{R}$, soit $z(x) = \lambda_n \frac{1}{x^{2n+1}} \exp(\int_{\alpha}^{x} \psi_n(t) dt)$ où $\lambda_n \in \mathbb{R}$.
 - (b) Pour $n \in \mathbb{N}^*$, prenons $\lambda_n = -\frac{1}{2^n n!} \frac{J_n(\alpha)}{\alpha^n}$, alors $y_n(x) = J_n(x) \phi_{y_n}(x)$ est une solution de (E_n) telle $\frac{d\phi_{y_n}}{dx} = -\frac{1}{x^{2n+1}} \frac{1}{2^n n!} \frac{J_n(\alpha)}{\alpha^n} \exp(\int\limits_{\alpha}^x \psi_n(t) dt) = -\frac{1}{x^{2n+1}} (1+\zeta_n(x))$, avec $\zeta_n(x) = \frac{1}{2^n n!} \frac{J_n(\alpha)}{\alpha^n} \exp(\int\limits_{\alpha}^x \psi_n(t) dt) 1$. Vu l'expression de ψ_n l'application ζ est définie et continue sur $]0,\alpha]$. De plus par $J_n(x) = \frac{x^n}{2^n n!} + x^n o(1)$ au voisinage de 0 et $\exp(\int\limits_{\alpha}^x \psi_n(t) dt) = \left(\frac{x^n}{J_n(x)}\right)^2 \cdot \left(\frac{\alpha^n}{J_n(\alpha)}\right)^2$, on a bien $\lim_{x \to 0^+} \zeta(x) = 0$. Pour n = 0, avec $\lambda_0 = -\frac{1}{J_0(\alpha)}$, le calcul direct donne le résultat.
 - (c) Pour n = 0, on a $\frac{d\phi_{y_0}}{dx} = -\frac{1}{x^1}J_0(\alpha)\exp(\int_{\alpha}^x \psi_0(t)dt) = -\frac{1}{x}$, donc $\phi_{y_0}(x) = -\ln(x) + c$ où c est un réel et puis $y_0(x) = J_0(x)\left(\ln(\frac{1}{x}) + c\right) \underset{x \to 0^+}{\to} +\infty$ car $J_0(0) = 1$.
 - (d) Pour $n \in \mathbb{N}^*$, $\frac{d\phi_{y_n}}{dx} = -\frac{1}{x^{2n+1}}(1+\zeta_n(x))$, avec $\lim_{x \to 0^+} \zeta_n(x) = 0$, on reconnait le développement asymptotique de $\frac{d\phi_{y_n}}{dx}$ qui s'intègre car ζ est prologeable par continuité sur $[0,\alpha]$. D'où $\phi_{y_n}(x) = \frac{1}{2nx^{2n}} + \frac{1}{x^{2n}}o(1)$ et puis $y_n(x) = J_n(x)\frac{1}{2nx^{2n}} + J_n(x)\frac{1}{x^{2n}}o(1)$. Mais $\frac{J_n(x)}{x^n} = \frac{1}{2^n n!}$, donc $y_n(x) \xrightarrow[x \to 0^+]{} + \infty$.
- 5- Sur \mathbb{R}_+^* , le thm de Cauchy-lipschitz s'applique, soit alors N_n une solution sur \mathbb{R}_+^* de (E_n) telle que $N_n(\frac{\alpha}{2}) = y_n(\frac{\alpha}{2})$ et $N'(\frac{\alpha}{2}) = y'_n(\frac{\alpha}{2})$. N_n et y_n coincident sur $]0, \alpha]$, donc $\lim_{x \to 0+} N_n(x) = \lim_{x \to 0+} y_n(x) = +\infty$.
- 6- Sur \mathbb{R}_+^* , l'ensemble des solutions $S_H(E_n)$ de l'équation différentielle (E_n) est un espace vectoriel de dimension deux, engendré par (J_n, N_n) . Donc toute solution y de (E_n) sur \mathbb{R}_+^* est de la forme : $y(x) = AJ_n(x) + BN_n(x)$ où A, B sont des constantes réelles.

Comme J_n est bornée, alors y est bornée ssi B=0. (en prenant y=0,ceci permet aussi de monter que la famille (J_n, N_n) est libre). D'où V ensemble des solutions bornées de (E_n) sur \mathbb{R}_+^* est un sous-espace vectoriel de $S_H(E_n)$ de dimension 1 engendré par J_n .

Partie IV

Remarquons d'abord que :

- · la fonction f est continue, de classe C^1 par morceaux et paire
- ·· la fonction g est continue, impaire et de classe C^1 sur \mathbb{R} .
 - 1- Our tout n∈ N, a_n(g) = 0 car g est une fonction impaire de même pour tout n∈ N*, b_n(f) = 0 car f est paire
 Par les relations liants les coefficients de Fourier trigonométriques et les coef, exponentiels et parités des fonctions f est g, on a :

$$\left\{\begin{array}{ll} a_n(f)=2c_n(f) \\ b_n(g)=2ic_n(g) \end{array}\right. \text{ D'autre part on a}: c_n(g')=-inc_n(g), \text{ d'où } a_n(g')=-nb_n(g).$$

$$\operatorname{Mais} g' = f - 1, \operatorname{donc} a_n(g') = a_n(f) - \underbrace{\int_0^1 \cos(2n\pi t) dt}_{=0} \operatorname{car} w = \frac{2\pi}{T} = \pi \text{ et puis } a_n(g') = a_n(f). \text{ par ce qui}$$

2- Pour
$$x = 0$$
, $\int_0^{\pi} \cos(\theta) d\theta = [\sin(\theta)]_0^{\pi} = 0$

précède
$$a_n(f) = a_n(g') = -nb_n(g)$$
.
2- Pour $x = 0$,
$$\int_0^{\pi} \cos(\theta) d\theta = [\sin(\theta)]_0^{\pi} = 0$$
Pour $x \neq 0$,
$$\int_0^{\pi} \cos(x \sin(\theta) \cos(\theta) d\theta = \frac{1}{x} \int_0^{\pi} \cos(x \sin(\theta)) d(x \sin(\theta))$$

$$= \frac{1}{x} [\sin(x \sin(x))]_0^{\pi}$$

$$= 0$$

(a) Montrons que $\forall x \in \mathbb{R}$, $J_1(x) = \frac{2x}{\pi} \int_0^1 \cos(xt) \sqrt{1 - t^2} dt$ Avec la transformation $\cos(x \sin(\theta) - \theta) = \cos(x \sin(\theta)) \cos(\theta) + \sin(x \sin(\theta)) \sin(\theta)$ on a:

$$J_{1}(x) = \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin(\theta) - \theta) d\theta$$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\cos(x \sin(\theta)) \cos(\theta) + \sin(x \sin(\theta)) \sin(\theta)) d\theta$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \cos(x \sin(\theta)) \cos(\theta) d\theta + \frac{1}{\pi} \int_{0}^{\pi} \sin(x \sin(\theta)) \sin(\theta) d\theta$$

$$= \frac{1}{\pi} \int_{0}^{\pi/2} \sin(x \sin(\theta)) \sin(\theta) d\theta + \frac{1}{\pi} \int_{\pi/2}^{\pi} \sin(x \sin(\theta)) \sin(\theta) d\theta$$

Faisons le cht de variable $t=\pi-\theta$, dans la seconde intégrale, il vient :

$$J_1(x) = \frac{2}{\pi} \int_0^{\pi/2} \sin(x \sin(t)) \sin(t) dt$$

Puis par le chgt de variable $u=\cos(t)$, on obtient : $J_1(x)=\frac{2}{\pi}\int_0^1 \frac{\sin(xu)}{\sqrt{1-u^2}}du$

Et enfin par une intégartion par parties $\begin{cases} U = x \sin(xu) \\ V = \sqrt{1 - u^2} \end{cases}$, on aboutit à :

$$\frac{\pi}{2}x J_1(x) = \int_0^1 U dV = [UV]_{u=0}^{u=1} - \int_0^1 V dU$$

$$= -\left[x \sin(xu)\sqrt{1 - u^2}\right]_{u=0}^{u=1} + \int_0^1 \cos(xu)\sqrt{1 - u^2} du$$

$$= \int_0^1 \cos(xu)\sqrt{1 - u^2} du$$

Finalement

$$J_1(x) = \frac{2x}{\pi} \int_0^1 \cos(xu) \sqrt{1 - u^2} du$$

(b) Soit $n \in \mathbb{N}^*$, on a: $a_n(f) = 2 \int_0^1 f(t) \cos(2n\pi t) dt = 2 \int_0^1 \cos(2n\pi t) \sqrt{1 - t^2} dt = \frac{\pi}{2n\pi} J_1(2n\pi)$

$$a_n(f) = \frac{1}{2n} J_1(2n\pi).$$

4- Convergence uniforme de la série de Fourier de f

- (a) D'après II-3-c), pour *n* assez grand : $J_1(2n\pi) = \frac{A_1}{\sqrt{2n\pi}} \sin(2n\pi + \beta_1) + O(\frac{1}{n^{3/2}}) = \frac{K}{\sqrt{n}} + O(\frac{1}{n^{3/2}})$ avec $K = \frac{A_1 \sin(B_1)}{\sqrt{2\pi}}$. D'où $a_n(f) = \frac{1}{2n\pi} J_1(2n\pi) = \frac{Cte}{n^{3/2}} + O(\frac{1}{n^{3/2}}) = O(\frac{1}{n^{3/2}})$
- (b) Par $a_n(f) = O(\frac{1}{n^{3/2}})$, le terme général de la série de Fourier de f vérifie $|a_n(f)\cos(n\pi t)| \leqslant |a_n(f)| \leqslant |a_n(f)|$ $\frac{c^{te}}{n^{3/2}}$, il y'a convergence normale (donc uniforme) de la série de fourier de f sur \mathbb{R} .
- (a) Voir la remarque ci-dessus...
- (b) Résultats du cours (thm de Direchlet de convegence normale des séries de fourier)
- 6- Sous les hypothèses f est continue sur $\mathbb R$

f est de classe C^1 par morceaux sur $\mathbb R$ f est à points de discontinuités réguliers

la conclusion en résulte.

Partie V

- 1- Comme J_0 est bornée sur \mathbb{R}_+ , et $t \mapsto e^{-pt}$ est intégrable sur \mathbb{R}_+ pour tout p > 0, alors l'application continue $t \mapsto J_0(t)e^{-pt}$ est intégrable sur \mathbb{R}_+ pour tout p > 0.
- 2- Les inégalités de 5.2) sont immédiates car les fonctions facteur de e^{-pt} sont majorées en valeur absolue par 1
 - Pour p > 0 fixé, et a > 0, on a: $\begin{vmatrix} +\infty \\ \int_0^{+\infty} J_0(t)e^{-pt}dt \int_0^a J_0(t)e^{-pt}dt \end{vmatrix} = \begin{vmatrix} +\infty \\ \int_0^{+\infty} J_0(t)e^{-pt}dt \end{vmatrix} \leqslant \frac{e^{-ap}}{p} \xrightarrow{a \to +\infty} 0$ D'où $\lim_{a \to +\infty} \int_0^a J_0(t)e^{-pt}dt = \int_0^{+\infty} J_0(t)e^{-pt}dt$. Mais $\int_0^a J_0(t)e^{-pt}dt = \frac{1}{\pi} \int_0^a \left(\int_0^{\pi} e^{-pt} \cos(x \sin(\theta)d\theta) dt \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} e^{-pt} \cos(x \sin(\theta)dt) d\theta \right) d\theta$ Or $\begin{vmatrix} \frac{1}{\pi} \int_0^{\pi} \left(\int_0^{+\infty} e^{-pt} \cos(x \sin(\theta)dt) d\theta \frac{1}{\pi} \int_0^{\pi} \left(\int_0^a e^{-pt} \cos(x \sin(\theta)dt) d\theta \right) \right] \\ = \frac{1}{\pi} \begin{vmatrix} \int_0^{\pi} \left(\int_0^{+\infty} e^{-pt} \cos(x \sin(\theta)dt) d\theta \right) \\ \leqslant \frac{1}{\pi} \int_0^{\pi} \left(\int_0^{+\infty} e^{-pt} \cos(x \sin(\theta)dt) d\theta \right) \\ \leqslant \frac{1}{\pi} \int_0^{\pi} \left(\int_0^{+\infty} e^{-pt} \cos(x \sin(\theta)dt) d\theta \right) \\ \leqslant \frac{e^{-ap}}{p} \xrightarrow{a \to +\infty} 0$

De ces résultas on déduit que :

$$\forall p \in \mathbb{R}_+^*, \quad F(p) = \frac{1}{\pi} \int_0^{\pi} \left(\int_0^{+\infty} e^{-pt} \cos(x \sin(\theta) dt) d\theta \right)$$

4- Ecrivons
$$e^{-pt}\cos(t\sin(\theta)) = \Re(e^{-pt}e^{i(t\sin(\theta))}) = \Re(e^{t(-p+i\sin(\theta))})$$
, alors
$$\int_{0}^{+\infty} e^{-pt}\cos(t\sin(\theta))dt = \Re(\lim_{x\to+\infty}\int_{0}^{x}e^{t(-p+i\sin(\theta))}dt)$$
Comme
$$\int_{0}^{x} e^{t(-p+i\sin(\theta))}dt = \left[\frac{1}{-p+i\sin(\theta)}e^{t(-p+i\sin(\theta))}\right]_{t=0}^{t=x}$$

$$= \left(\frac{-p}{p^2+\sin^2\theta} - i\frac{\sin\theta}{p^2+\sin^2\theta}\right)\left(e^{x(-p+i\sin(\theta))} - 1\right)$$
et que
$$\lim_{x\to+\infty} e^{x(-p+i\sin(\theta))} = \lim_{x\to+\infty} |e^{x(-p+i\sin(\theta))}| = \lim_{x\to+\infty} e^{-xp} = 0 \text{ car } p > 0, \quad \text{on a alors}$$

$$\int_{0}^{+\infty} e^{-pt}\cos(t\sin(\theta))dt = \Re\left(\frac{p}{p^2+\sin^2\theta} + i\frac{\sin\theta}{p^2+\sin^2\theta}\right) = \frac{p}{p^2+\sin^2\theta}.$$
Par
$$\int_{\pi/2}^{\pi} \frac{p}{p^2+\sin^2\theta}d\theta \stackrel{\text{chgt de } var \theta+\pi/2-\theta}{=} \int_{0}^{\pi/2} \frac{p}{p^2+\sin^2\theta}d\theta \text{ on a :}$$

$$F(p) = \frac{1}{\pi}\int_{0}^{\pi} \frac{p}{p^2+\sin^2\theta}d\theta + \frac{1}{\pi}\int_{\pi/2}^{\pi} \frac{p}{p^2+\sin^2\theta}d\theta .$$

$$= \frac{1}{\pi}\int_{0}^{\pi/2} \frac{p}{p^2+\sin^2\theta}d\theta + \frac{1}{\pi}\int_{\pi/2}^{\pi} \frac{p}{p^2+\sin^2\theta}d\theta .$$

$$= \frac{2}{\pi}\int_{0}^{\pi/2} \frac{p}{p^2+\sin^2\theta}d\theta$$

Pour le calcul de l'intégrale $\int\limits_0^{\pi/2} \frac{p}{p^2 + \sin^2 \theta} d\theta$ on fait le cht de variable $u = \tan(\theta)$, alors

$$\int_{0}^{\pi/2} \frac{p}{p^{2} + \sin^{2} \theta} d\theta = \int_{0}^{+\infty} \frac{p}{(p^{2} + \frac{u^{2}}{1 + u^{2}})(1 + u^{2})} du$$

$$= \int_{0}^{+\infty} \frac{p}{(p^{2} + (1 + p^{2})u^{2})} du$$

$$= \lim_{x \to +\infty} \frac{\arctan(\frac{x\sqrt{p^{2} + 1}}{p})}{\sqrt{p^{2} + 1}}$$

$$= \frac{\pi}{2} \frac{1}{\sqrt{p^{2} + 1}}$$
Finalement $F(p) = \frac{1}{\sqrt{p^{2} + 1}}$ pour tout $p > 0$