Université de Montréal MILA

Devoir 1

Alex Maggioni (20266243) Canelle Wagner (20232321)

Robin Milosz

21 février 2024

1 Question 1

En utilisant les définitions de O, Ω , Θ , vu en classe (sans utiliser les limites), montrer ou infirmez les énoncés suivants :

1.1 $2^n \in \Theta(3^n)$

Rappelons que si $2^n \in \Theta(3^n)$, alors par définition 2^n doit appartenir à la fois à $\Omega(3^n)$ et $O(3^n)$.

Commençons par examiner si 2^n appartient à $\Omega(3^n)$. Supposons par l'absurde que c'est le cas. Alors, il existe des constantes c > 0 et $n_0 \in \mathbb{N}$ telles que pour tout $n \geq n_0$, nous avons $2^n \geq c \cdot 3^n$.

$$2^n \ge c \cdot 3^n$$

Considérons le logarithme naturel (fonction monotnone croissante) de chaque côté de cette inégalité pour obtenir :

$$n\ln(2) \ge \ln(c) + n\ln(3)$$

$$n(\ln(2) - \ln(3)) \ge \ln(c)$$

Comme $\ln(2) < \ln(3)$, nous avons $\ln(2) - \ln(3) < 0$. En divisant les deux côtés de l'inégalité par cette quantité négative, la direction de l'inégalité change :

$$n \le \frac{\ln(c)}{\ln(2/3)}$$

Cela signifie que n doit être inférieur ou égal à une constante pour l'inégalité à être vraie, ce qui est une contradiction puisque n peut être arbitrairement grand. Par conséquent, notre hypothèse initiale est fausse, et 2^n n'appartient pas à $\Omega(3^n)$. Ce résultat implique donc que 2^n ne peut pas non plus appartenir à $\Theta(3^n)$, car $\Theta(3^n)$ nécessite que la fonction soit à la fois dans $\Omega(3^n)$ et $O(3^n)$.

1.2
$$2^{n+b} \in \Theta(2^n)$$

Nous allons établir que 2^{n+b} appartient à la fois aux classes $\Omega(2^n)$ et $O(2^n)$, ce qui par définition, impliquerait que $2^{n+b} \in \Theta(2^n)$. Nous considérons que $b \in \mathbb{N}_{\geq 2}$.

Preuve pour $\Omega(2^n)$. Pour montrer que $2^{n+b} \in \Omega(2^n)$, nous devons trouver une constante c > 0 et un entier n_0 tels que $2^{n+b} \ge c \cdot 2^n$ pour tout $n \ge n_0$. Soit $c = 2^b$, et choisissons $n_0 = 1$. Démontrons que pour tout $n \ge n_0$, l'inégalité est vérifiée :

$$\begin{split} 2^{n+b} &= 2^n \cdot 2^b \\ &\Rightarrow 2^n \cdot 2^b \geq c \cdot 2^n \\ &\Rightarrow 2^n \cdot 2^b \geq 2^1 \cdot 2^n \text{ (Sachant que } 2^b \geq 2^2 > 2^1 \text{ pour tout } b \geq 2) \\ &\Rightarrow 2^n \cdot 2^b \geq 2 \cdot 2^n \quad \forall n \geq n_0 = 0, c = 2 \end{split}$$

Cela prouve que $2^{n+b} \in \Omega(2^n)$.

Preuve pour $O(2^n)$. De manière similaire, pour montrer que $2^{n+b} \in O(2^n)$, nous devons trouver une constante c > 0 et un entier n_0 tels que $2^{n+b} \le c \cdot 2^n$ pour tout $n \ge n_0$. Avec le même choix de $c = 2^b$ et $n_0 = 1$, démontrons que pour tout $n \ge n_0$, l'inégalité est vérifiée :

$$2^{n+b} = 2^n \cdot 2^b$$

$$\Rightarrow 2^n \cdot 2^b \le c \cdot 2^n$$

$$\Rightarrow 2^n \cdot 2^b \le 2^b \cdot 2^n \quad \forall n \ge n_0 = 0, c = 2^b$$

Cela prouve que $2^{n+b} \in O(2^n)$.

En réunissant les deux résultats, nous concluons que $2^{n+b} \in \Theta(2^n)$.

2 Question 2

En utilisant la règle de la limite, déterminez l'ordre relatif (O, Ω ou Θ) des fonctions suivantes :

2.1
$$f(n) = 2^n$$
 et $g(n) = 3^n$

$$= \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

$$= \lim_{n \to \infty} \frac{2^n}{3^n}$$

$$= \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

Ainsi $2^n \in \mathcal{O}(3^n)$, $3^n \notin \mathcal{O}(2^n)$

2.2
$$f(n) = \frac{n}{\ln n}$$
 et $g(n) = \sqrt{n}$

$$= \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

$$= \lim_{n \to \infty} \frac{n}{\ln(n)} \frac{1}{\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{\ln(n)} = \left[\frac{\infty}{\infty}\right]$$

(Règle Hôpital!)

$$\Rightarrow \frac{\partial}{\partial n} \sqrt{n} = \frac{1}{2\sqrt{n}}$$
$$\Rightarrow \frac{\partial}{\partial n} \ln(n) = \frac{1}{n}$$

$$\Rightarrow \lim_{n \to \infty} \frac{n}{2\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{2} = \infty$$

Alors
$$\frac{n}{\ln n} \notin \mathcal{O}(\sqrt{n}), \sqrt{n} \in \mathcal{O}(\frac{n}{\ln n})$$

3 Question 3

Montrez que la fonction suivante est lisse :

$$f(n) = 2n^2 - 3n - 4$$

Une fonction est lisse si :

- 1. La fonction est éventuellement non décroissante.
- 2. $f(bn) \in O(f(n))$ pour tout $b \ge 2$.

Première condition : Éventuellement non décroissante

Pour montrer que f(n) est éventuellement non décroissante, nous devons montrer que :

$$f(n) \le f(n+1)$$
 pour tout $n \ge n_0$.

En développant f(n+1), nous obtenons :

$$f(n+1) = 2(n+1)^2 - 3(n+1) - 4$$

$$= 2(n^2 + 2n + 1) - 3(n+1) - 4$$

$$= 2n^2 + 4n + 2 - 3n - 3 - 4$$

$$= 2n^2 + n - 5.$$

Pour que $f(n) \le f(n+1)$, nous devons avoir :

$$2n^{2} - 3n - 4 \le 2n^{2} + n - 5$$
$$1 \le 4n$$
$$n \ge \frac{1}{4}.$$

Ainsi, pour tout $n \ge \frac{1}{4}$, f(n) est non décroissante.

Deuxième condition : $f(bn) \in O(f(n))$ pour tout $b \ge 2$

En développant f(bn), nous obtenons :

$$f(bn) = 2(bn)^{2} - 3(bn) - 4$$
$$= 2b^{2}n^{2} - 3bn - 4.$$

Nous devons trouver la limite de $\frac{f(bn)}{f(n)}$ lorsque n tend vers l'infini :

$$\lim_{n \to \infty} \frac{f(bn)}{f(n)} = \lim_{n \to \infty} \frac{2b^2n^2 - 3bn - 4}{2n^2 - 3n - 4}$$

$$= \lim_{n \to \infty} \frac{2b^2 - 3b/n - 4/n^2}{2 - 3/n - 4/n^2}$$

$$= \frac{2b^2}{2} = b^2.$$

Ainsi, en appliquant la règle de la limite, nous obtenons que pour tout $b \geq 2$, f(bn) est dans $\Theta(f(n))$. Cela implique donc, par définition de Θ , que $f(bn) \in O(f(n))$ pour tout $b \geq 2$.

En combinant les deux conditions, nous concluons que $f(n) = 2n^2 - 3n - 4$ est une fonction lisse.