

```
Out[1]= \frac{g^2 t^4}{4} - g s t^3 v0 + t^2 v0^2
In[2]:= r2dot = D[r2, t] (* this is the time-derivative of r2 *)
Out[2]= q^2 t^3 - 3 q s t^2 v0 + 2 t v0^2
In[3]:= quad = Expand[r2dot/t] (* this is a quadratic polynomial in t. We don't want this to go negative *)
Out[3]= g^2 t^2 - 3 g s t v0 + 2 v0^2
ln[4]:= tMin = t /. First@Solve[D[quad, t] == 0, t] (* this is the value of t that minimizes 'quad' *)
Out[4]= \frac{3 \text{ s v0}}{2 \text{ g}}
 ln[5]:= quadMin = quad /. t \rightarrow tMin (* this is the minimal value of 'quad' *)
Out[5]= 2 v0^2 - \frac{9 s^2 v0^2}{4}
In[6]:= sLimit = s /. First@Solve[Sqrt[2] v0 == 3 s v0 / 2, s] (* this is the limiting value of 's' *)
Out[6]= \frac{2\sqrt{2}}{3}
ln[7]:= N@ArcSin[sLimit]/Degree (* this is the limiting angle, in degrees *)
Out[7] = 70.5288
In[8]:= (* an alternative approach *)
       Minimize [quad, t]
Out[8] = \; \left\{ \; \left\{ \begin{array}{ll} 2 \; v0^2 & g = 0 \\ \frac{1}{4} \; \left( 8 \; v0^2 - 9 \; s^2 \; v0^2 \right) & True \end{array} \right. , \; \left\{ t \; \rightarrow \; \left\{ \begin{array}{ll} \frac{3 \; s \; v0}{2 \; g} & g > 0 \; | \; | \; g < 0 \\ 0 & True \end{array} \right\} \right\}
```

 $ln[1]:= r2 = v0^2 t^2 + (1/4) g^2 t^4 - v0 g t^3 s$  (\* This is "r squared." The variable 's' is  $Sin[\theta] *$ )



## Physics 105, Fall 2016

### Solutions to

Week 1 Practice Problems Taylor 4.38(a) and 4.39

# Thanks to David Gee for this solution to

### Taylor problem 4.38(a)

#### Taylor 4.38(a)

Because of the constraint from the pendulum, the velocity is purely tangential, thus the speed of the mass is  $\ell\dot{\phi}$ . Using the given expression for the potential energy, the conservation of energy condition gives:

$$E = \frac{1}{2}m\ell^2\dot{\phi}^2 + mg\ell\left(1 - \cos\phi\right)$$

At the maximum angle  $\Phi$ ,  $\dot{\phi} = 0$ , thus  $E = mg\ell (1 - \cos \Phi)$ . From the half-angle formula,  $\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$ . Solving for  $\dot{\phi}$ :

$$\dot{\phi} = \sqrt{\frac{4g}{\ell} \left( \sin^2 \frac{\Phi}{2} - \sin^2 \frac{\phi}{2} \right)}$$

By symmetry, the period is four times the time it takes to go from 0 to  $\Phi$ , thus:

$$\begin{split} \tau &= 4 \int_0^\Phi \frac{d\phi}{\dot{\phi}} \\ &= 2 \sqrt{\frac{\ell}{g}} \int_0^\Phi \frac{d\phi}{\sqrt{\sin^2 \frac{\Phi}{2} - \sin^2 \frac{\phi}{2}}} \end{split}$$

In the limit of small oscillations,  $0 \le \phi \le \Phi \ll 1$ , thus  $\sin \frac{\phi}{2} \approx \frac{\phi}{2}$  and  $\sin \frac{\Phi}{2} \approx \frac{\Phi}{2}$ . Thus the period of small oscillations is:

$$\tau_0 = 4\sqrt{\frac{\ell}{g}} \int_0^{\Phi} \frac{d\phi}{\sqrt{\Phi^2 - \phi^2}}$$

$$= 4\sqrt{\frac{\ell}{g}} \left[ \arcsin \frac{\phi}{\Phi} \right]_{\phi=0}^{\phi=\Phi}$$

$$= 4\sqrt{\frac{\ell}{g}} \left[ \frac{\pi}{2} - 0 \right]$$

$$= 2\pi\sqrt{\frac{\ell}{g}}$$

Substituting yields:

$$\tau = \tau_0 \frac{1}{\pi} \int_0^{\Phi} \frac{d\phi}{\sqrt{\sin^2 \frac{\Phi}{2} - \sin^2 \frac{\phi}{2}}}$$

To rewrite this, let  $A = \sin \frac{\Phi}{2}$  and  $Au = \sin \frac{\phi}{2}$ . Then  $A du = \frac{1}{2} \cos \frac{\phi}{2} d\phi = \frac{1}{2} \sqrt{1 - A^2 u^2} d\phi$ ; the positive square root is chosen because  $0 \le \phi \le \pi$ . For the limits of integration, when  $\phi = 0$ , u = 0, and when  $\phi = \Phi$ , u = 1. Thus:

$$\tau = \tau_0 \frac{1}{\pi} \int_0^1 \frac{1}{\sqrt{A^2 - A^2 u^2}} \frac{2A \, du}{\sqrt{1 - A^2 u^2}}$$
$$= \tau_0 \frac{2}{\pi} \int_0^1 \frac{du}{\sqrt{1 - u^2} \sqrt{1 - A^2 u^2}}$$

# Problem 4.39

#### Here are the two integrals we will need

```
Integrate [1 / Sqrt[1 - u^2], {u, 0, 1}] \frac{\pi}{2} Integrate [u^2 / Sqrt[1 - u^2], {u, 0, 1}] \frac{\pi}{4}
```

The binomial expansion is on the inside front cover of the book. Putting it all together, we get from Eq. (4.103)

```
τ_o (2/π) Integrate[(1+A^2 u^2/2)/Sqrt[1-u^2], {u, 0, 1}] \frac{1}{4} (4+A<sup>2</sup>) τ_o
```

Then we use the definition of A to complete part (c) of the problem. Part (b) is gotten by setting A = 0.

```
A = Sin[\Phi/2]
```

Regarding the numerical question at the end of the problem,

```
N[1+(1/4) Sin[45 Degree/2]^2]
1.03661
```

This is close to the exact value 1.040 given at the end of the problem, and the difference is of order A^4, as we expect.