Discrete Mathematics

UNIT-2

Proposition

- A proposition is a declarative statement that is either true or false.
- It is denoted by a capital letter, such as P, Q, R, etc.

Example Question 1: Determine whether the following statement is a proposition: "The sky is blue."

Answer 1: Yes, it is a proposition.

Example Question 2: Is the statement "2 + 2 = 5" a proposition?

Answer 2: Yes, it is a proposition.

Example Question 3: Identify the proposition in the following statement: "All dogs are mammals."

Answer 3: The proposition is "All dogs are mammals."

Example Question 4: Determine whether the statement "It is raining outside" is a proposition.

Answer 4: Yes, it is a proposition.

Example Question 5: Is the statement "Mathematics is fun" a proposition?

Answer 5: Yes, it is a proposition.

Conjunction

- Conjunction combines two propositions using the word "and."
- It is denoted by the symbol ∧ (logical AND).
- The resulting proposition is true only if both individual propositions are true.

Example Question 1: Evaluate the truth value of $P \wedge Q$, given P is true and Q is false.

Answer 1: $P \wedge Q$ is false.

Example Question 2: If P represents "It is sunny" and Q represents "The temperature is hot," write the conjunction for "It is sunny and the temperature is hot."

Answer 2: P A Q

Example Question 3: True or false: P \(\text{P} \) is always true for any proposition P.

Answer 3: True.

Example Question 4: Determine the truth value of $(P \land Q) \land R$ if P, Q, and R are all true.

Answer 4: $(P \land Q) \land R$ is true.

Example Question 5: Is the conjunction "P $\land \neg Q$ " equivalent to " $\neg Q \land P$ "?

Answer 5: Yes, they are logically equivalent.

Topic: Disjunction

- Disjunction combines two propositions using the word "or."
- It is denoted by the symbol ∨ (logical OR).
- The resulting proposition is true if at least one of the individual propositions is true.

Example Question 1: Evaluate the truth value of P v Q, given P is false and Q is true.

Answer 1: P V Q is true.

Example Question 2: If P represents "It is raining" and Q represents "I have an umbrella," write the disjunction for "It is raining or I have an umbrella."

Answer 2: P v Q

Example Question 3: True or false: P v P is always true for any proposition P.

Answer 3: True.

Example Question 4: Determine the truth value of $(P \lor Q) \lor R$ if P, Q, and R are all false.

Answer 4: (P V Q) V R is false.

Example Question 5: Is the disjunction "P v ¬Q" equivalent to "¬Q v P"?

Answer 5: Yes, they are logically equivalent.

Negation

- Negation changes the truth value of a proposition.
- It is denoted by the symbol ¬ (logical NOT).
- If the original proposition is true, its negation is false, and vice versa.

Example Question 1: Find the negation of the proposition P: "The moon is made of cheese."

Answer 1: The negation of P is ¬P: "The moon is not made of cheese."

Example Question 2: True or false: $\neg(\neg P)$ is equivalent to P for any proposition P.

Answer 2: True.

Example Question 3: If P represents "It is sunny," what is the negation of P?

Answer 3: The negation of P is ¬P: "It is not sunny."

Example Question 4: Determine the truth value of $\neg(P \lor Q)$ if P and Q are both true.

Answer 4: $\neg(P \lor Q)$ is false.

Example Question 5: Is the negation of "P \wedge Q" equivalent to "¬P \vee ¬Q"?

Answer 5: Yes, they are logically equivalent.

Conditional Statements

- Conditional statements express an implication between two propositions.
- It is denoted by the symbol → (conditional or implication).
- The resulting proposition is false only if the antecedent (the first proposition) is true and the consequent (the second proposition) is false.

Example Question 1: Determine the truth value of $P \rightarrow Q$, given P is false and Q is true.

Answer 1: $P \rightarrow Q$ is true.

Example Question 2: If P represents "It is raining" and Q represents "The ground is wet," write the conditional statement for "If it is raining, then the ground is wet."

Answer 2: $P \rightarrow Q$

Example Question 3: True or false: $P \rightarrow P$ is always true for any proposition P.

Answer 3: True.

Example Question 4: Determine the truth value of $(P \rightarrow Q) \rightarrow R$ if P, Q, and R are all true.

Answer 4: $(P \rightarrow Q) \rightarrow R$ is true.

Example Question 5: Is the conditional statement "P $\rightarrow \neg$ Q" equivalent to " \neg Q \rightarrow P"?

Answer 5: No, they are not logically equivalent.

Bi-conditional Statements

- Bi-conditional statements express a two-way implication between two propositions.
- It is denoted by the symbol ↔ (bi-conditional or equivalence).
- The resulting proposition is true if both individual propositions have the same truth value.

Example Question 1: Evaluate the truth value of $P \leftrightarrow Q$, given P is true and Q is true.

Answer 1: $P \leftrightarrow Q$ is true.

Example Question 2: If P represents "I am happy" and Q represents "I am smiling," write the bi-conditional statement for "I am happy if and only if I am smiling."

Answer 2: $P \leftrightarrow Q$

Example Question 3: True or false: $P \leftrightarrow P$ is always true for any proposition P.

Answer 3: True.

Example Question 4: Determine the truth value of $(P \leftrightarrow Q) \leftrightarrow R$ if P, Q, and R are all false.

Answer 4: $(P \leftrightarrow Q) \leftrightarrow R$ is true.

Example Question 5: Is the bi-conditional statement "P $\leftrightarrow \neg$ Q" equivalent to " \neg Q \leftrightarrow P"?

Answer 5: Yes, they are logically equivalent.

Compound Proposition

- Compound propositions are formed by combining multiple logical operators and propositions.
- They can be evaluated using truth tables to determine their truth values.

Example Question 1: Evaluate the truth value of $(P \lor Q) \land \neg R$, given P is true, Q is false, and R is true.

Answer 1: $(P \lor Q) \land \neg R$ is false.

Example Question 2: Write the compound proposition for "The sun is shining and it is not raining."

Answer 2: P ∧ ¬Q

Example Question 3: True or false: $(P \land Q) \lor R$ is equivalent to $(P \lor R) \land (Q \lor R)$.

Answer 3: False.

Example Question 4: Determine the truth value of $\neg(P \land Q) \lor (P \lor R)$ if P is true, Q is true, and R is false.

Answer 4: $\neg(P \land Q) \lor (P \lor R)$ is true.

Example Question 5: Simplify the compound proposition (P \vee Q) \wedge (\neg P \vee R).

Answer 5: $(P \lor Q) \land (\neg P \lor R)$ simplifies to $Q \lor (\neg P \land R)$.

Truth Tables

- Truth tables display all possible combinations of truth values for a compound proposition.
- Each row represents a specific combination of truth values for the individual propositions.
- The last column represents the resulting truth value of the compound proposition.

Example Question 1: Construct a truth table for P \wedge Q.

Answer 1:

Р	Q	PΛQ
Т	Т	Т
Т	F	F

F	Т	F
F	F	F

Example Question 2: Create a truth table for P v Q.

Answer 2:

Example Question 3: Find the truth values for the compound proposition $(P \land Q) \rightarrow R$, given P is true, Q is true, and R is false.

Answer 3:

Р	Q	R	$(P \land Q) \rightarrow R$

Т	Т	F	F

Example Question 4: Evaluate the truth value of the compound proposition $(P \rightarrow Q)$ \vee R, given P is false, Q is true, and R is true.

Answer 4:

P	Q	R	$(P \rightarrow Q) \vee R$
F	Т	Т	Т

Example Question 5: Construct a truth table for $\neg (P \lor Q)$.

Answer 5:

CODECHAMP_{V3.0}

P	C&D BY	PIXELIZE.IN ¬(P v Q)
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

Tautologies and Contradictions

- Tautologies are compound propositions that are always true, regardless of the truth values of the individual propositions.
- Contradictions are compound propositions that are always false.

Example Question 1: Determine whether the compound proposition $P \lor \neg P$ is a tautology.

Answer 1: Yes, P ∨ ¬P is a tautology.

Example Question 2: Is the compound proposition $(P \land Q) \lor (\neg P \land \neg Q)$ a tautology?

Answer 2: Yes, it is a tautology.

Example Question 3: Identify the contradiction in the compound proposition $(P \land \neg P) \lor (Q \land \neg Q)$.

Answer 3: The contradiction is (P A ¬P). EC L V3.0

Example Question 4: Determine whether the compound proposition (P \vee Q) \wedge (P \wedge Q) is a contradiction.

Answer 4: No, it is not a contradiction.

Example Question 5: Is the compound proposition $(P \leftrightarrow Q) \lor (\neg P \land \neg Q)$ a tautology?

Answer 5: No, it is not a tautology.

Logical Equivalence

- Two compound propositions are logically equivalent if they have the same truth values for all possible combinations of truth values for the individual propositions.
- Equivalence is denoted by the symbol ≡.

Example Question 1: Determine whether the compound propositions $P \land (Q \lor R)$ and $(P \land Q) \lor (P \land R)$ are logically equivalent.

Answer 1: Yes, they are logically equivalent.

Example Question 2: Are the compound propositions $P \to Q$ and $\neg P \lor Q$ logically equivalent?

Answer 2: Yes, they are logically equivalent.

Example Question 3: True or false: $P \land Q$ is logically equivalent to $Q \land P$ for any propositions P and Q.

Answer 3: True.

Example Question 4: Determine whether the compound propositions $(P \to Q) \to R$ and $P \to (Q \to R)$ are logically equivalent.

Answer 4: Yes, they are logically equivalent.

Example Question 5: Are the compound propositions (P \land Q) \lor R and P \land (Q \lor R) logically equivalent?

Answer 5: No, they are not logically equivalent.

De Morgan's Law

De Morgan's Law is a fundamental concept in propositional logic that describes the relationship between negation and conjunction/disjunction. It provides a way to express the negation of a compound proposition in terms of its individual propositions. De Morgan's Law is composed of two parts: the negation of a conjunction and the negation of a disjunction.

Negation of a Conjunction:

The negation of a conjunction (P \land Q) is equivalent to the disjunction of the negations of the individual propositions: $\neg P \lor \neg Q$.

Example 1: Apply De Morgan's Law to $\neg (P \land Q)$.

Solution 1: $\neg (P \land Q)$ is equivalent to $(\neg P \lor \neg Q)$.

Example 2: Use De Morgan's Law to rewrite $\neg (A \land B \land C)$.

Solution 2: $\neg (A \land B \land C)$ is equivalent to $(\neg A \lor \neg B \lor \neg C)$.

Negation of a Disjunction:

The negation of a disjunction (P V Q) is equivalent to the conjunction of the negations of the individual propositions: $\neg P \land \neg Q$.

Example 3: Rewrite $\neg (P \lor Q)$ using De Morgan's Law.

Solution 3: $\neg (P \lor Q)$ is equivalent to $(\neg P \land \neg Q)$.

Example 4: Apply De Morgan's Law to $\neg (A \lor B \lor C)$.

Solution 4: $\neg (A \lor B \lor C)$ is equivalent to $(\neg A \land \neg B \land \neg C)$.

De Morgan's Law can also be extended to more complex compound propositions by applying the negation to the entire proposition and distributing it to the individual propositions.

Example 5: Use De Morgan's Law to rewrite $\neg((P \land Q) \lor R)$.

Solution 5: $\neg((P \land Q) \lor R)$ can be rewritten as $(\neg P \lor \neg Q) \land \neg R$ by applying De Morgan's Law to the conjunction and negating the disjunction.

In summary, De Morgan's Law provides a way to express the negation of conjunction as a disjunction of negations, and the negation of a disjunction as a conjunction of negations. It is a powerful tool in simplifying and manipulating compound propositions in propositional logic.

Example Question 6: Apply De Morgan's Law to $\neg(P \land Q)$.

Answer 1: $\neg(P \land Q)$ is equivalent to $(\neg P \lor \neg Q)$.

Quantifiers

- Quantifiers are used to express the scope of variables in mathematical statements.
- Universal quantifier (∀): Represents "for all" or "for every."
- Existential quantifier (∃): Represents "there exists" or "there is at least one."

Example Question 1: Express the statement "Every student passed the exam" using a quantifier.

Answer 1: $\forall x (Student(x) \rightarrow PassedExam(x))$

Example Question 2: Rewrite the statement "There exists a prime number less than 10" using a quantifier.

Answer 2: $\exists x (Prime(x) \land x < 10)$

Example Question 3: True or false: $(\exists x)P(x)$ is equivalent to $(\neg \forall x)\neg P(x)$.

Answer 3: True.

Example Question 4: Express the negation of "For every natural number, there exists a greater natural number."

Answer 4: $\neg(\forall x)\exists y \text{ (NaturalNumber}(x) \rightarrow \text{(GreaterNumber}(y) \land y > x))$

Example Question 5: Rewrite the statement "There is a real number that is not positive" using a quantifier.

Answer 5: $\exists x (RealNumber(x) \land \neg Positive(x))$

Valid Arguments

- Valid arguments are deductive reasoning patterns where the conclusion logically follows from the premises.
- To determine validity, truth tables, logical equivalences, and inference rules can be used.

Example Question 1: Determine the validity of the argument: "If it is raining, then the ground is wet. The ground is wet. Therefore, it is raining."

Answer 1: The argument is invalid.

Example Question 2: Evaluate the validity of the argument: "All dogs have four legs. Fido is a dog. Therefore, Fido has four legs."

Answer 2: The argument is valid.

Example Question 3: True or false: If an argument is valid, it guarantees that the conclusion is true.

Answer 3: True.

Example Question 4: Determine the validity of the argument: "If it is Monday, then John has a meeting. It is Monday. Therefore, John has a meeting."

Answer 4: The argument is valid.

Example Question 5: Evaluate the validity of the argument: "If a shape has four equal sides, then it is a square. This shape is a square. Therefore, it has four equal sides."

Answer 5: The argument is valid.

Rules of Inference

 Rules of inference are logical rules used to derive conclusions from premises in valid arguments.

1. Modus Ponens:

 If we have a conditional statement of the form "If P, then Q" and we know that P is true, we can conclude that Q is also true. • Symbolically: $(P \rightarrow Q)$, $P \vdash Q$.

2. Modus Tollens:

- If we have a conditional statement of the form "If P, then Q" and we know that Q is false, we can conclude that P is also false.
- Symbolically: $(P \rightarrow Q)$, $\neg Q \vdash \neg P$.

3. Hypothetical Syllogism:

- If we have two conditional statements "If P, then Q" and "If Q, then R", we can conclude that "If P, then R".
- Symbolically: $(P \rightarrow Q)$, $(Q \rightarrow R) \vdash (P \rightarrow R)$.

4. Disjunctive Syllogism:

- If we have a disjunction statement "P ∨ Q" and we know that one of the disjuncts is false (¬P or ¬Q), we can conclude the other disjunct.
- Symbolically: $(P \lor Q)$, $\neg P \vdash Q$ or $(P \lor Q)$, $\neg Q \vdash P$.

5. Addition:

- If we have a proposition P, we can conclude the disjunction statement
 "P v Q" for any proposition Q.
- Symbolically: $P \vdash (P \lor Q)$ or $P \vdash (Q \lor P)$.

Example 1: Modus Ponens

Premise 1: If it is raining, then the ground is wet.

Premise 2: It is raining.

Conclusion: Therefore, the ground is wet.

Example 2: Modus Tollens

Premise 1: If it is a mammal, then it gives birth to live young.

Premise 2: It does not give birth to live young.

Conclusion: Therefore, it is not a mammal.

Example 3: Hypothetical Syllogism

Premise 1: If it is a dog, then it has fur.

Premise 2: If it has fur, then it is warm-blooded.

Conclusion: Therefore, if it is a dog, then it is warm-blooded.

Example 4: Disjunctive Syllogism

Premise 1: It is either sunny or rainy.

Premise 2: It is not sunny. DECHAMP_{V3.0}

Conclusion: Therefore, it is rainy.

Example 5: Addition

Premise: I am a student.

Conclusion: Therefore, I am a student or I am a teacher.

Note: Each example is worth 2 marks.

Regenerate response