DATA VIRUS
MALICIOUS SOFTWARE

Network Intrusion Detection System

on real time data with Machine Learning

HACKING

CYBERCRIMINALS

PASSWORD CRACKING

ADWARE

But what is it really a Intrusion Detection System?

An intrusion detection system (IDS) is a device or software application that monitors a network or systems for malicious activity.

Dataset - Problem Goals

The dataset of the problem was the **UNSW-NB15 Dataset**.

The basic idea - Implementation

- Create a machine learning model that can make decisions and validate if the current traffic is related to an attack or a normal flow.
- We conducted our own research on papers regarding the machine learning algorithms that are related and finally we used the below:

Tests	Normal/Abnormal Classification	Attack Type Classification
Multilayer Perceptron	83.96%	82.81%
Random Forest	81.33%	68.08%
Support Vector Machines	76.10% RACKING	68.08%

Which model should we choose?

It is obvious that MLP produces the better results of the three. We can use the current model for evaluation at the data feeding phase.

Multilayer Perceptron - Best solution

Perceptron

150

layers

Extension: Real time data streaming

Nowadays the data that each network device handles grows exponentially so we must adjust our implementation to real time circumstances.

Data Stream Pipeline - Overview

MALICIOUS SOFTWARE

Packet Collection - Steps

- Choose a network interface you want to use.
- Bind to that interface and start listening the traffic.
- Collect each packet.
- Pass the packet byte stream to the next phase of the pipeline.

Argus Tool

- Retrieve the byte stream from the previous step.
- Handle the data properly.
- Extract some reports using Argus tool.
- Use ra to read the reports and extract the features we want for our model.
- Pass the above output to the next phase for cleaning and further processing.

Argus - Features

dur	proto	service	state
spkts	dpkts	rate	sttl
dttl	sload	dload	sinpkt
dinpkt	sjit	djit	swin
stcpb	dtcpb	tcprtt	smeanz
dmeanz	trans_depth	res_body_len	ct_srv_src
ct_state_ttl	ct_dst_ltm	is_ftp_login	ct_flw_http_m

Cleaning - feature extraction

- Retrieve the byte stream from the previous step.
- Generate the "extra" features that are based on some algorithms.
- Generate from the above the dataframe that we will forward to the model.

Model Prediction

We feed the generated dataframe to the model and after some processing it produces the result.


```
Normal Behavior
Possible 'Fuzzers' Attack : added to out.csv for analysis.
Possible 'Fuzzers' Attack : added to out.csv for analysis.
Normal Behavior
```

Thank you for your attention!