2023년 한이음 ICT멘토링 **개 발 보 고 서**

2023. 8. 21

프로젝트명 여러 대의 소형 로봇을 탑재한 캥거루 로봇[23_HI049]

요 약 본

	프로젝트 정보
프로젝트명	여러 대의 소형 로봇을 탑재한 캥거루 로봇[23_HI049]
주제 영역	□ 생활 □ 업무 ■ 공공/교통 □ 금융/핀테크 □ 의료 □ 교육 □ 유통/쇼핑 □ 엔터테인먼트
기술 분야	□ SW·AI □ 방송·콘텐츠 □ 블록체인·융합 ■ 디바이스 □ 차세대보안 □ 미래통신·전파
성과 목표	■ 논문게재 및 포스터 발표 □ 앱등록 ■ 프로그램등록 ■ 특허 □ 기술이전 □ 실용화 ■ 공모전(한이음 ICT멘토링 공모전) □ 기타()
프로젝트 소개	• 소형 로봇을 탑재하고 자율주행하며 재난지를 탐색하는 캥거루형(모체) 로봇과 협소 지역을 탐사하는 관절형(소형) 로봇으로 구성된 탐사 로봇 시스템 제작 (탐사로봇시스템: 모체 탐사로봇 + 소형 탐사로봇 + 통신NF + 관제서버로 구성)
개발 배경 및 필요성	 재난 지역은 추가 붕괴나 가스 누출 등으로 인해 구조 요원을 포함한 사람의 접근이 불가한 경우가 많아 인명 구조에 큰 어려움이 있음 ICT 기술 및 AI 기술을 접목해 재난 지역 탐사 로봇을 개발하면 사람의 접근이 불가능한 상황에서도 피해자 수색과 재난 상황 실시간 파악이 가능해질 것임 장시간 탐사와 장거리 이동, 협소지역 탐사, 에너지 공급 등을 고려해 소형 로봇을 탑재한 상태로 이동할 수 있는 모체 로봇과 소형 탐사 로봇 개발해 시너지 제고
프로젝트 특·장점	무선 충전 기능을 제공하는 캥거루형 모체 로봇으로 장시간 운용 자율주행 기능 및 객체 탐지, 데이터 가공 등 자동화 환경 제공 장애물 통과에 용이한 관절형 소형 로봇으로 재난지 탐사 시 이동 제약 극복 여러 대의 소형 로봇을 동시 투입하여 동 시간 대비 탐사 효율성 극대화 시 기술을 활용해 로봇이 자율적으로 이동하며 탐사함으로써 관리자 개입 최소화 사용자 맞춤형 관리자용 web 서버를 통한 실시간 모니터링과 원격 제어 가능
주요 기능	 캥거루형 모체 로봇: 소형 로봇 승하차, 로봇 충전, 재난지 탐사, 자율주행, 통신 관절형 소형 로봇: 관절 제어, 재난지 탐사, 자율주행, 통신 관제 서버: 실시간 스트리밍, 실시간 위치 확인, 객체 탐지, 탐사 데이터 도식화, 관리자 수동제어, 과거 영상 확인, 날씨 및 지도 정보 제공 등 반응형 웹 서비스
기대효과 및 활용 분야	 ◆ 기대효과: 재난 지역 내 추가 인명 피해 최소화, 모체 로봇과 소형 로봇 역할 세분화로 로봇별 장점 극대화, 뱀형 로봇으로 협소지역 이동 제약 극복, 여러 대의 로봇 동시 투입으로 탐사 범위 확대, 반응형 웹 서비스 기반 관제 업무 편리화 등 ◆ 활용 분야: 재난 및 위험지역 내부구조 및 상황 탐지 활동, 로봇 크기에 따른 분할 및 협업이 필요한 분야, 이동형 상황인지 기술이 필요한 산업, 로봇 활용 재난 대비 교육 등

본 문

1. 프로젝트 개요

1. 프로젝트 소개

- 1) 프로젝트 목표
- 소형 로봇을 탑재하고 자율주행하면서 재난 지역 탐색을 수행하는 캥거루형 모체 로봇과 큰 로봇 또는 사람이 접근하기 어려운 협소지역을 탐사하는 관절형소형 로봇으로 구성된 재난용 탐사 로봇 시스템을 제작하고자 함
- 2) 프로젝트 내용
- 모체 탐사 로봇 + 소형 탐사 로봇 + AI 기술 + 여러 가지 NF + 관제 서버로 구성된 재난 지역 탐사 로봇 시스템을 제작.
- 캥거루에 착안하여 소형 로봇을 싣고 이동할 수 있는 모체 로봇을 제작해 장거리 이동과 소형 로봇의 충전 기능을 제공.
- 협소 지역을 탐사하는 소형 로봇은 바퀴와 관절의 능동적 제어가 가능한 관절 형태로 제작하여 이동의 제약을 줄이고 장애물 극복에 탁월한 기능을 수행.
- 협소 지역 탐사가 필요한 경우 소형 로봇이 탐사 활동을 수행, 모체 로봇으로 탐사 정보를 전송하고 모체 로봇이 서버로 전송하는 기능을 포함.
- 모체 및 소형 로봇 운용 시 카메라 센서로 주변 환경을 관찰, 자율주행과 함께 객체 탐지를 수행하여 효율성 높임.
- 모체 및 소형 로봇에 부착된 여러 센서로 수집한 데이터를 서버에서 통합적으로 관리, 가공하여 관리자에게 웹페이지를 통해 시각적으로 볼 수 있도록 제공.

2. 개발 배경 및 필요성

- 1) 개발 배경
- 재난, 산업 재해로 인한 붕괴 지역 내 매몰자 탐색은 추가 붕괴 위험이 있어 구조 요원의 생명에도 치명적인 위협이 되고 있으며, 심각한 오염과 위험물이 있는 지역은 구조 요원의 접근이 불가함.
- 본 프로젝트는 ICT 기술 및 AI 기술을 접목해 재난 환경에서 활용할 수 있는 로봇을 개발함으로써 인명 구조와 재난 상황을 인지해 추가 사고와 인명 피해 를 최소화하는데 기여하고자 함.
- 2) 필요성
- 붕괴 사고나 땅꺼짐 등으로 협소 지역을 조사해야 하는 경우 소형 로봇이 필요

- 하지만, 소형 로봇은 물리적인 크기의 한계로 장거리 이동과 장시간 로봇 운용에 제약이 있어 이를 보완할 수 있는 별도의 시스템이 필요할 것임.
- 본 프로젝트는 개별 로봇의 단점을 상쇄하면서 활용도를 높일 수 있는 모체 로 복과 소형 로봇을 동시에 개발하고자 함

3. 프로젝트 특・장점

- 1) 캥거루 로봇 시스템의 특·장점
- 무선 충전 기능을 제공하는 모체 로봇을 소형 로봇을 싣고 다니는 캥거루형 로 봇으로 제작하여 기존의 탐사 로봇보다 장시간 운용이 가능함.
- 자율주행 기능 제공 및 카메라로 수집된 영상데이터로 객체 탐지 수행, 센서 데 이터 수집 등을 로봇이 자체적으로 수행하여 자동화 환경 제공.
- 모체 로봇보다 협소 지역을 탐사하는 소형 로봇을 관절형 로봇으로 제작하여 장애물 회피 능력 향상 및 탐사 시 이동 제약을 줄임.
- 모체 로봇의 운용 불가 시 여러 대의 소형 로봇을 동시에 투입함으로써 넓은 지역을 동시에 탐사 가능함.
- 로봇이 수집한 데이터를 가공하여 도식화한 정보 및 실시간 스트리밍 영상, 특수상황에서 사용 가능한 원격 수동제어 기능 등 관리자용 웹 서비스 제공
- 2) 관절형 소형 로봇의 차별성

본 프로젝트의 관절형 소형 로봇은 타 로봇과 비교해 다음과 같은 차별성을 가짐

- 야간용 적외선 카메라를 사용하여 어두운 곳에서도 영상 정보 수집 가능
- 능동형 바퀴 탑재로 장애물과 화경에 따라 가벼적 자율주행 가능
- 로봇의 위치 파악에 LiDAR 센서, SLAM 알고리즘 활용으로 자체 지도 제작
- 통신은 데이터에 따라 여러 Network Function으로 효율적인 정보 정달
- 계단 오르기 및 장애물 극복 가능

비교분석	본 프로젝트	한국로봇융합연구원	한국원자력연구원	한컴로보틱스
카메라 센서	야간용 적외선 카메라	열화상카메라 + CMOS 카메라	CCD 카메라 + LED	일반적인 무선카메라
자율 주행	0	0	0	0
바퀴여부	능동형바퀴	캐터필러	X	캐터필러
위치 파악	LiDAR 센서	IMU 센서	제어보드+ 드라이버보드	2
SLAM	0	X	X	X
통신	TCP/IP 내 여러가지 NF	EtherCAT	CAN	일반적인 무선통신
계단 오르기	0	0	X	0
금액	적은 비용	<	<	<

출처) 사진1. 협소공간생존자탐색을위한뱀형로봇의다중센서모듈(2021), 사진2. 비정형환경에적용하기위한뱀로봇개발(2013), 사진3. 대한민국특허청(10-0893004)

Ⅱ. 프로젝트 내용

1. 프로젝트 구성도

- 1) 전세 시스템 서비스 구성도
- 모체 로봇, 소형 로봇 및 관제 서버를 포함한 전체 서비스 구성도

[로본 운용 관점]

- 1. 현장 투입: 모체 로봇을 재난 지역에 투입
- 2. 로봇 운용
- 2-1. 소형 로봇 탐사: 모체 로봇이 협소 지역 등으로 탐사 불가 시 승하차기를 작동하여 소형 로봇 탐사 지속
- 2-2. 객체 탐지: 객체 탐지 알고리즘을 이용하여 구조대상자 발견 시 식별 가능 3. 탐사 종료: 탐사 완료 시 소형 로봇은 모체 로봇으로 복귀. 로봇 시스템 종료

[관리자 사용 관점]

- 1. 접근: 권한이 부여된 관리자가 관제 서버에 접근
- 2. 데이터 확인
- 2-1. 실시간 데이터: 모체 로봇이나 소형 로봇이 실시간으로 전송하는 영상 스트리밍, 소형 로봇 위급 상황 발생 시 원격 제어
- 2-2. 저장된 데이터: 지난 영상 정보, 모체 로봇 및 소형 로봇이 수집한 데이터 등 저장된 데이터 확인

- 2) 캥거루형 모체 로봇 서비스 구성도
- 탐사지 내 모체 로봇의 투입부터 데이터 수집, 주행 등 서비스 순서

- 1. 재난 지역 투입 : 모체 로봇을 재난 지역에 투입
- 2. 자율주행: 자율주행 기술로 협소 지역 탐사
- 3. 데이터 수집
 - 3-1. 센서: 모체 로봇에 부착된 센서로 데이터 수집
 - 3-2. 데이터 송신: 수집한 데이터 서버로 송신
 - 3-3. 데이터 수신: 소형 로봇 수집 데이터를 받아 서버로 전송
- 4. 영상 정보 수집
 - 4-1. 카메라: 주변 상황 확인 및 구조대상자 확인
 - 4-2. 영상 정보 송신: 적외선 카메라로 수집한 영상 정보 서버로 송신
 - 4-3. 객체 탐지: 객체 탐지 알고리즘으로 구조대상자 식별
- 5. 주행 불가: 주행이 불가한 경우 정지
- 6. 신호 전달: 서보 모터에 승하차기 개방 신호 전달 후 소형 로봇 탐사 시작
- 3) 캥거루형 모체 로봇 하드웨어 구성도
- 캐터필러, 소형 로봇 탑재 컨테이너, 무선 충전 장치, 탐사 센서 등으로 구성.

- 4) 관절형 소형 로봇 서비스 구성도
- 소형 로봇의 주행 및 각종 데이터 수집, 데이터 전송 등 서비스 순서

- 1. 신호 전달: 모체 로봇 승하차기 서보 모터에 개방 신호 전달
- 2. 자율주행: 자율주행 기술로 협소 지역 탐사
- 3. 영상 정보 수집
 - 3-1. 카메라: 주변 상황 확인 및 구조대상자 확인
 - 3-2. 영상 정보 송신: 적외선 카메라로 수집한 영상 정보 서버로 송신
 - 3-3. 객체 탐지: 객체 탐지 알고리즘으로 구조대상자 식별 가능
- 4. 데이터 수집
 - 4-1. 센서: 소형 로봇에 부착된 센서로 데이터 수집
 - 4-2. 데이터 송신: 수집한 데이터를 모체 로봇에 송신
- 5. 강제 제어: 위급 상황 시 서버의 컨트롤러로 소형 로봇 강제 주행
- 6. 신호 전달: 모체 로봇 승하차기 서보 모터에 개방 신호 전달
- 5) 관절형 소형 로봇 하드웨어 구성도
- 탐사에 필요한 여러 센서와 이동에 필요한 초음파 센서, 서보 모터 등으로 구성

- 6) 관제 서버 서비스 구성도
- User, Server(Front, Back)에 따른 요청/응답 및 데이터 저장 등 수행

[USER]

- 1. 요청: 관리자가 웹에 접속, 접근하는 데이터를 서버에 전달, 필요한 정보 요청
- 2. 응답: 서버에서 받아온 데이터를 관리자가 이용할 수 있도록 휴대폰이나 컴퓨터로 전달

[Front-end]

- 3. 데이터 요청: 관리자의 요청을 처리할 수 있는 필요 데이터를 서버에 요청
- 4. 데이터 수신: DB에 저장된 데이터 받음

[Back-end]

- 4-1. 모체 로봇 및 소형 로봇 센서 데이터 저장
- 4-2. 모체 로봇 및 소형 로봇 영상 정보 저장
- 4-3. 관리자 계정 저장
- 5. API 요청: 기상청 및 카카오지도 API로 정보 제공
- 6. 실시간 영상 스트리밍: 로봇 카메라로 주변 상황 스트리밍
- 7. 지난 영상 파일 저장: 스트리밍 이후 영상 확인을 위한 파일 저장

2. 프로젝트 기능

1) 전체 기능 목록

구분	시스템 구분	기능그룹	기능	설명					
		소형로봇	소형로봇 하차	탐사 지역에 도착해 소형 로봇이 탐사 시작하는 경우 서보 모터를 동작하여 소형 로봇 하차 (9/30)	60%				
		승하차	소형로봇 승차	탐사 종료 후 혹은 소형 로봇 배터리가 부족해서 복귀할 때 서보 모터를 동작해 승차시킴 (9/30)					
		자율주행	모체 로봇 자율주행	SLAM 알고리즘을 활용하여 LiDAR 센서로 감지한 로봇의 주변 상황 데이터를 분석해 장애물과의 충돌을 회피하면서 자율적으로 이동 (8/31)	70%				
			시작 위치 복귀	모체 로봇의 라즈베리파이 전원이 들어온 위치로 로봇의 탐사가 끝나면 돌아옴 (8/31)					
	모체 로봇	재난지 탐사	모체 로봇 사람인식	영상처리기술 및 객체 탐지 기술을 활용하여 탐사 지역 내 사람 인식 (7/31)	100%				
			모체로봇 서버 간 HTTP 통신	2분에 한 번씩 모체 로봇이 수집한 주변 환경 데이터와 소형 로봇이 전송한 주변 환경 데이터를 서버로 전송 (9/30)	100%				
	통신	모체 로봇 소형로봇 간 HTTP 통신	소형 로봇이 전송한 온습도 및 위치 등 주변 환경 데이터를 받아 임시 저장 (8/15)	100%					
			모체 로봇 서버 간 소켓 통신	서버에서 실시간 스트리밍할 수 있도록 모체 로봇이 촬영한 협소 지역 탐사 영상 송신 (9/30)	60%				
			모체 로봇 저장공간관리	서버로 데이터를 전송하고 난 후 모체 로봇에 저장된 데이터 삭제 (9/30)	90%				
	자율주형		소형로봇 자율 이동	탐색 지역의 험난한 지형을 LiDAR 센서로 파악하여 자율적으로 이동할 수 있도록 구현 (8/31)	70%				
	소형 로봇	관절제어	가변적 이동 제어	협소 지역을 이동하기 위해 상황에 따라 바퀴 및 관절을 변경, 선택하여 이동 제어 (7/31)	100%				
S/W		재난지 탐사	소형로봇 사람 인식	영상처리기술 및 객체 탐지 기술을 활용하여 탐사 지역 내 사람이 있는지 인식 (7/31)	100%				
		_	소형로봇 모체 로봇간 데이터 전송	소형 로봇이 수집한 데이터를 30초에 한 번씩 모체 로봇에 데이터를 전송 (8/15)	100%				
			서버에서 실시간 스트리밍할 수 있도록 소형 로봇이 촬영한 협소 지역 탐사 영상을 서버에 송신 (9/30)	60%					
			소형 로봇 저장공간관리	모체 로봇에 데이터를 전송하면 소형 로봇에서 데이터를 삭제하여 저장공간 관리 (9/30)	80%				
			반응형 web	관리자가 컴퓨터뿐만 아니라 휴대폰, 노트북에서 볼 수 있도록 반응형 web으로 제작 (8/31)	80%				
, A			web 로그인	web에 로그인하는 관리자의 정보를 확인한 후 접속 허용 및 차단 (7/31)	100%				
	서버-		실시간 위치 확인	모체 로봇 및 소형 로봇 각각의 위치를 자체 생성된 map에서 확인할 수 있도록 구현 (8/31)	70%				
			모체 로봇 / 소형로봇 데이터	모체 로봇 및 소형 로봇이 수집한 데이터를 시각화된 정보로 제공 (8/31)	90%				
	프론트		날씨/지도정보 제공	기상청 API와 카카오 지도 API 등을 활용해 재난 지역의 날씨/지도 정보 제공 (7/31)	100%				
			실시간 스트리밍	로봇이 실시간 스트리밍 중인 영상을 웹페이지에서 볼 수 있도록 구현 (8/31)	80%				
			컨트롤러	소형 로봇의 위급 상황에 관리자 개입이 필요한 경우 수동으로 조작할 수 있도록 함 (9/30)	50%				
			과거 영상 정보	2개월 내 저장된 과거 영상을 재생 (9/30)	70%				

구분	시스템 구분	기능 그룹	기능	설명	현재 진척도						
			모체 로봇 소켓 통신	모체 로봇이 송신한 실시간 영상 정보를 받음 (8/31)	80%						
	서버-	데이터 수신	모체 로봇 HTTP 통신	모체 로봇이 2분에 한 번씩 송신한 데이터를 받음 (8/15)							
	백		소형로봇 소켓 통신	소형 로봇이 송신한 실시간 영상 정보를 받음 (8/31)	70%						
		데이터 가공, 저장	데이터 가공 및 저장	수집한 데이터를 서버에서 처리할 수 있는 형태로 가공해서 저장 (8/31)	90%						
CAM		로봇 상태	모체 로봇 탐사 정보 관리	모체 로봇 탐사 시작 정보와 탐사 중지 정보를 저장 (8/15)	100%						
S/W		정보 관리	소형 로봇 탐사 정보 관리	소형 로봇 탐사 시작 정보를 저장 (8/15)	100%						
			모체 로봇 데이터 정보 관리	모체 로봇에 부착된 온습도 센서 등으로 측정한 데 이터를 저장 (8/15)	100%						
	DB	탐사 정보 관리	소형 로봇 데이터 정보 관리	소형 로봇에 부착된 온습도 센서 등으로 측정한 데 이터를 저장 (8/15)	100%						
			영상 정보 관리	2개월간 모체 로봇 및 소형 로봇이 수집한 영상 정보를 저장 (9/30)	60%						
		서버 접속 정보 관리	웹 user 정보	web 페이지에 관리자로 지정된 아이디와 비밀번호를 저장 (7/31)	100%						
	모체		로봇 충전	소형로봇 무선충전	소형 로봇이 탐사 중 배터리가 일정량 이하로 떨어진 경우 무선 충전 장치를 지닌 모체 로봇으로 돌아와 충전하도록 제어 (9/30)	40%					
			모체 로봇 보조전력공급	LiPo 배터리를 이용해 모체 로봇에 전력을 공급 (9/30)							
		모체	소형 로봇 승하차	승하차 컨테이너 개폐	컨테이너 내에 서보 모터를 장착한 개폐장치를 만들고 소형 로봇을 승하차시킬 때 여닫음 (8/31)	70%					
			로봇 및 장치제어	모체 로봇 MCU	라즈베리파이를 활용해 모체 로봇의 MCU를 구현 (9/30)	보드구매 90%					
	上大		모체 로봇 이동장치	험난한 지형에서 용이하게 이동할 수 있도록 캐터필러를 활용해 모체 로봇을 이동 (7/31)	센서구매 100%						
		사율주행 	LiDAR 센싱	자율주행과 물체인지 등에 활용할 수 있도록 로봇의 주변과 재난 지역 상황 LiDAR 센서로 센싱 (8/31)	센서구매 60%						
		재난지	적외선 카메라 센싱	재난 지역에 도착해 모체 로봇이 탐사하는 지역을 적외선 카메라로 촬영 (8/31)	센서구매 80%						
			탐사	온습도 센싱	온습도 센서를 이용해 재난 지역의 온습도를 측정 (8/15)	센서구매 100%					
	소형 로봇		DC 모터	소형 로봇의 바퀴 이동 및 관절 작동을 가변적으로 사용할 수 있도록 제어 (8/15)	부품구매 100%						
		자율주행	LiDAR 센싱	자율주행과 물체인지 등에 활용할 수 있도록 로봇의 주변과 재난 지역 상황을 LiDAR 센서로 센싱 (8/31)	센서구매 70%						
									초음파 센싱	초음파 센서를 이용해 주변 지형과의 거리를 측정하여 로봇을 이동하도록 DC 모터를 작동 (8/15)	센서구매 100%
		관절제어	소형 로봇 관절 제어	서보 모터를 동작하여 관절을 움직여 험지를 유연하게 이동하도록 제어 (8/15)	100%						
		_	재난지	온습도 센싱	온습도 센서를 이용해 재난 지역의 온습도를 측정 (8/15)	센서구매 100%					
		탐사	적외선 카메라 센싱	재난 지역에 도착해 소형 로봇이 탐사하는 지역을 적외선 카메라로 촬영 (8/31)	센서구매 80%						
		소형로봇 외피	소형 로봇 관절캡	물리적 위험 상황이 발생할 경우 로봇을 보호해주는 외부 관절 캡 제작 (8/31)	70%						
		로봇 및 장치제어	소형로봇 MCU	라즈베리파이를 이용해 소형 로봇의 MCU 구현 (9/30)	보드구매 90%						

2) S/W 주요 기능

	기능	설명	프로젝트실물사진
	자율주행	모체 로봇 및 소형 로봇이 재난 지역을 자유롭게 주행하도록 각 로봇의 주변 상황을 인식하여 장애물 충돌을 회피하면서 주행 LIDAR 센서와 SLAM 알고리즘 을 활용해 자체 지도 제작 기술 및 위치 추정	SLAM
모처 봇 및 형 봇 로 봇	재난 지역 탐사	모체 로봇 및 소형 로봇에 부착 된 야간용 적외선 카메라와 온 습도 센서 등 각종 센서를 활용 해 주변 상황 확인, 데이터 수 집, 재난 지역 영상 촬영 등을 수행하고 서버로 전송 개발한 관절 인식 및 객체 탐지 알고리즘으로 재난 지역 내 구 조대상자 탐지와 web 서버에서 실시간 스트리밍으로 확인 가능	
서버- 프론트	관리자용 web (관제 서버)	 관리자가 재난 지역 정보와 탐사 정보, 로봇 정보를 확인할 수있는 반응형 웹페이지로 제가 로봇으로부터 받은 수집 데이터를 가공, 도식화하여 사용자에게 제공 카메라 모듈로 수집한 영상 데이터를 실시간으로 전송, 관리자가 web에서 로봇의 주변 상황을 실시간 스트리밍할 수 있게함 	Digit States and the state of t
DB	데이터 관리	데이터 수신, 데이터 가공 및 저장 기능 수행 모체 로봇 및 소형 로봇이 수집한 데이터를 DB에 저장하고 가공하여 web 서버에서 확인 영상 촬영 녹화본을 저장하여향후 2개월간 web 서버에서 열람 가능	信性 user 対处 100 m

● 데이터 흐름도

- 센싱 데이터 및 영상데이터, web 서버 계정 정보 등 데이터 수집, 저장, 활용 흐름

[로그인 계정]

또는 소형 로봇 수집 데이터 전송

- ① 계정 저장: 관리자용 계정 정보 저장
- ② 계정 로그인: 웹 서버 로그인

[수집 데이터]

- ① 소형 로봇 수집 데이터 전송: 소형 로봇 내 센서로 수집한 데이터를 모체로 봇에 전송
- ② 모체 로봇 수집 데이터 또는 소형 로봇 수집 데이터 전송: 탐사 로봇 종류에 따라 모체 로봇 수집 데이터 또는 소형 로봇 데이터를 서버로 전송
- ③ 필요 데이터 전송: 관제 서버에 필요한 데이터를 DB에서 선택적으로 전송 [영상 정보]
- ①-1. 모체 로봇 실시간 스트리밍: 모체 로봇 적외선 카메라로 주변 상황 모니터링 서버로 전송
- ①-2. 소형 로봇 실시간 스트리밍: 소형 로봇 적외선 카메라로 주변 상황 모니터링 서버로 전송
- ② 영상 저장: 모체 로봇 및 소형 로봇이 수집한 영상 정보를 DB에 2개월간 저장

- SW 알고리즘: OpenPose를 활용한 객체 일부 관절 탐지
- OpenPose는 딥러닝을 기반으로 한 실시간 2D 인체 자세 추정 알고리즘으로 신체의 관절을 스켈레톤으로 나타냄.
- 재난 지역 내 매몰자의 신체를 인식하고 자세를 추정하여 생존자 구조를 도움.

순서도	주요 내용
 [객체 관절 탐지 순서]	[OpenPose를 활용한 "추론"알고리즘]
시작	① VGG-19 CNN에 영상 삽입하여 Feature map 생성
카메라 열기	② Feature map을 입력하여 Confidence Map 결과값으
프레임 캡쳐	로 Joint Heatmap 생성
프레임 전처리	③ Part Affinity Field 결과값으로 Joint 간 연결 정보
사람이 맞는지 추로	수집
yes	④ 새로운 특징점으로 Heatmap 생성
출력물 후처리	⑤ ③~④ 반복 수행
<u> </u>	⑥ Body, Hand, Face의 Skeleton 결과값 제공

- SW 알고리즘: YOLO를 활용한 재난 지역 내 구조 대상자 탐지
- YOLO는 실시간 객체 탐지를 수행하는 딥러닝 기반 알고리즘으로 학습한 데이터셋을 기반으로 객체 탐지를 수행함.
- 재난 지역 내 탐지되는 객체는 구조 대상자 및 장애물 등으로 넓은 범위의 종류보다 적은 범위의 종류 내 높은 탐지 정확도를 요구함.
- 탐지 가능성이 높은 객체 이미지로 학습함으로써 객체 탐지 정확도를 높이고, 입력 이미지의 예측 Bounding Box 개수를 늘려 로봇이 전송한 스트리밍 영상 프레임 하 나에서 여러 개의 객체를 동시에 탐지할 수 있도록 적용함.

[객체 인식 순서] [YOLO를 활용한 "추론"알고리즘] [기메리 열기	순서도	주요 내용
^{트레임에 지시작형과 레이블 그리기} ⑤ Bounding Box와 Class 결과값 제공	[객체 인식 순서] 시작 카메라 걸기 프레임 합체 프레임 합체 프레임 한체리 박이터넷 중 해당하는 대원인지 구분 가영 클레스 IC 선뢰도, 경계상자 주술 중됩된 경계상자 제거 나머지 경계상자에도 반복 프레임에 작사라임과 레이블 그리기	[YOLO를 활용한 "추론" 알고리즘] ① 영상을 NxN Grid 영역으로 분할 ② 분할 이미지 신경망 통과 ③ IoU로 예측한 Bounding Box와 실제 객체의 정확도 계산 ④ NMS로 동일한 객체의 Bounding Box 중 가장 높은 확률 선택

- SW 알고리즘: SLAM을 활용한 재난 지역 자율주행
- SLAM은 추정할 수 없는 공간을 이동하며 주변을 탐색하는 로봇이 센서를 이용해 그 공간의 지도 및 현재 위치를 추정함.
- 재난 지역을 탐사하는 모체 로봇 및 소형 로봇은 미리 정해진 경로에 따라 주행하는 것이 아닌 사전 정보가 없는 공간을 탐사한다는 특징을 가짐.
- LiDAR 센서를 탑재한 모체 로봇 및 소형 로봇은 적외선 카메라 및 라즈베리파이 카메라 센서를 사용하기 때문에 LiDAR SLAM 기반의 Visual SLAM 기술을 제안하고 적용함.
- 연기에 의해 로봇의 시야가 가려지는 상황이 발생해도 Visual SLAM 알고리즘을 이용하여 지속적인 자율주행이 가능함.

SLAM을 활용한 자율주행 지도 생성 순서

- ① 로봇에 장착된 센서를 통해 환경 데이터 수집
- ② 수집한 데이터를 필요한 형식으로 변환하고 보정 (Lidar 센서 데이터 각도 오차 보정, 로봇 자세 추정)
- ③ 로봇의 움직임에 기반하여 로봇 경로 추정
- ④ 추정된 로봇의 위치와 센서 데이터를 사용하여 2D 또는 3D 맵 생성
- ⑤ 맵을 구축하면서 과거의 로봇 경로와 현재 경로를 비교하고, 유사한 패턴이나 특 징을 갖는 영역 식별
- ⑥ 생성된 맵을 최적화하여 센서 데이터와 로봇의 포즈를 더 정확하게 일치시킦
- ⑦ 맵과 로봇의 경로를 시각화

3) H/W 주요 기능

구분	기능/부품	설명	프로젝트실물사진
	소형 로봇 승하차	모체 로봇이 더 이상 탐사할 수 없는 경우, 소형 로봇이 탐사 가능한 너비의 협소 공간이면 컨테이너를 개방해 탑재한 소형로봇 하자 소형 로봇 탐사 종료 또는 배터리 부족으로 복귀 시 컨테이너개폐장치를 작동해 승차	〈모형도〉
모체 로봇	로봇 및 장치제어	모체 로봇의 중앙제어장치인 라즈베리파이를 중심으로 여러 센서, 카메라 모듈, 모터 등 장치제어 소형 로봇으로부터 받은 데이터와 모체 로봇에서 자체 수집한데이터(온습도 등)를 시간 간격을 두고 서버로 전송 카메라 모듈로 촬영한 영상 데이터를 서버로 실시간 전송하여 web 서버에서 스트리밍 가능	〈실물사진〉
	이동장치 (캐터필러)	캐터필러 바퀴를 사용하여 모체 로봇 자율주행 시 재난 지역 내 장애물 및 비정형 지형 통과를 원활히 수행	
	로봇 충전	재난 지역 내 장시간 탐사가 가 능하도록 소형 로봇 무선 충전 장치 제공	
소 로	로봇 및 장치제어	소형 로봇 중앙제어장치인 라즈베리파이를 통해 여러 센서, 카메라 모듈, 서보 모터 등 장치제어 센서로 수집하는 데이터를 2분마다 모체 로봇으로 전송 후 삭제하여 저장 용량 확보 카메라 모듈로 촬영한 영상 데이터를 서버로 실시간 전송하여 web 서버에서 스트리밍 가능	<모형도>
上大 	관절 제어	서보 모터와 초음파 센서를 이용하여 소형 로봇의 관절 및 바퀴를 능동적으로 제어함으로써 장애물이 많은 협소 지역에서 유연한 이동 가능	<실물사진>
	소형 로봇 외피	• 로봇을 외부 물리적 충격으로부 터 보호	

● 모체 로봇 하드웨어 설계도

- 라즈베리파이를 중심으로 온습도 센서, 적외선 카메라 센서 등 탐사에 필요한 하드웨어와 캥거루형 로봇을 이루는 무선 충전 장치, 컨테이너 등 하드웨어 간 회로 연결 및 포트 연결을 나타냄.

● 소형 로봇 하드웨어 설계도

- 라즈베리파이를 중심으로 서보 모터, DC 모터, 초음파 센서, 적외선 센서 등 뱀형 로봇의 이동에 필요한 하드웨어와 온습도 센서, 카메라 센서 등 탐사에 필요한 하드웨 어의 회로 연결 및 포트 연결을 나타냄.

- 소형 로봇(다관절 뱀형 로봇) 운동 모델과 이동 제어 알고리즘
- (1) 소형 로봇 개발을 위해 고려한 사항
- 뱀형 로봇은 여러 개의 연속된 관절로 이루어진 로봇임.
- 백형 로봇 관절 알고리즘은 로봇의 길이, 관절의 개수, 관절의 범위를 조절해야 함.
- 대부분 헊지는 크고 작은 계단들의 연속으로 간주할 수 있음.
- 계단 등반 상황에 따라 수직항력과 마찰력을 고려한 운동 방정식을 작성하여 운동을 분석하고 알고리즘을 설계함. (참고문헌: "험지 주행을 위한 다관절 트랙 로봇 설계 및 개발", 고두열, 김수현, 로봇학회논문지, 2009)
- 경로 계획: 경로에서 로봇이 어떤 순서로 관절을 움직여야 하는지 결정.
- 제어 알고리즘 설계: 로봇의 관절을 제어하기 위한 알고리즘으로 운동 모델과 경로 계획을 기반으로 관절 각도와 위치를 조절하여 로봇이 움직일 수 있도록 한.
- 알고리즘 시뮬레이션 및 로봇 적용: 설계한 알고리즘을 시뮬레이션 환경에서 테스트 하여 로봇의 동작을 확인한 후 실제 백형 로봇에 적용하여 로봇의 동작 확인함

(2) 소형 로봇의 운동 모델

- 계단 등반 상황을 아래의 3가지 경우로 분류하고, 각 상황에 맞춰 로봇이 이용할 수 있도록 관절 각도와 위치의 변화를 추적하는 운동 모델 설계.
- (¬) 관절들을 이용하여 접근 각을 생성하였을 때 로봇의 가장 앞 단 관절 중심으로 부터 지면 사이의 높이보다 계단 높이가 높음
- (ㄴ) 로본의 가장 앞 단 관절 중심으로부터 지면 사이의 높이와 계단 높이가 동일
- (ㄷ) 로부의 가장 앞 단 관절 중심으로부터 지면 사이의 높이가 계단 높이보다 낮음

소형 로봇 첫 번째 관절의 전부 소형 바퀴 중심과 장애물의 높이가 같은 경우 운동 모델

- 지면과의 반력과 마찰력을 고려하여 힘 평형식과 모멘트 식을 새롭게 고안함
- 모멘트 M_0 >이 일 때 소형 로봇이 회전하여 장애물을 극복함을 의미하고, M_0 \leq 0 일 때 소형 로봇이 장애물을 극복하지 못함을 의미함
- 장애물 통과 시 평철의 길이와 전-후부 프레임의 무게 등이 영향을 미치며 평철의 길이가 길수록. 프레임 무게가 가벼울수록 장애물을 쉽게 통과 가능함
- 서보 모터 최대 부하 토크 값은 축 중심으로부터의 거리와 그 거리에서 미는 힘인 무게의 곱으로 표현되므로 서보 모터 최대 부하 토크 값을 고려하여 평철과 서보 모 터를 선정함

- (3) 소형 로봇의 이동 제어
- 본 프로젝트에서 만든 소형 로봇은 관절과 바퀴의 가변적 주행으로 기동성 보장 및 장애물 통과 능력을 향상시켰음
- 바퀴로 주행 가능한 지역은 바퀴로 이동하고 바퀴 주행이 불가능한 장애물 지역은 다관절 제어를 통해 이동하도록 제어
- 소형 로봇의 관절은 내부적인 제어장치 또는 모터에 의해 움직이며 센서의 인식값 과 프로그래밍에 따라 자동으로 제어되는 능동 관절로 구현함
- 장애물 지역에서 소형 로봇은 앞쪽 서보 모터의 반시계 방향 회전과 뒤쪽 서보 모 터의 반시계 방향 회전, 뒤쪽 DC모터를 작동시켜 장애물을 넘어가도록 설계함

소형 로봇의 주행 제어 모델

- 소형 로봇의 앞면 프레임에 부착된 초음파 센서는, 협소 공간에서 자율주행을 위한 장애물 탐지용으로 최소 2cm부터 거리 측정이 가능함
- 소형 로봇의 탐사 공간이 협소 지역임을 고려하고 초음파 센서의 측정 오류를 줄이 기 위해 소형 로봇의 소형 바퀴와 장애물과의 거리가 임계값 이하일 때 첫 번째 관절 을 작동하도록 설계함
- 소형 로봇의 소형 바퀴와 장애물과의 거리가 임계값(3cm)인 경우 전면부 서보모터 회전각 계산식은 다음과 같음(오른쪽은 자유물체도와 회전각 식에 사용한 변수임)

- 장애물과의 거리 임계값은 변경가능하며, 예시로 계산식에서 3cm를 정한것임
- 계산식에서 전면부 서보모터의 회전각 θ는 소형 바퀴의 반지름 r₂ 와 장애물 높이 h와 관련이 있기 때문에 예상되는 여러 상황에 따라 회전각을 변경하면서 로봇에 적용함
- 관절 주행 시 첫 번째 관절의 동작 순서
 - ① 소형 로봇이 모체 로봇에서 나와 탐사 시작.
 - ② 소형 로봇 자율주행.
 - ③ 소형 로본 앞쪽 초음파 센서가 장애물과의 거리가 10cm 이하인지 판별.
 - ④-1. 10cm 이상이면 장애물이 없다고 판단, 바퀴 주행
 - ④-2. 10cm 이하이면 앞, 뒤 서보 모터를 반시계 방향으로 회전, 후부 DC 모터 전진

- 캥거루형 모체 로본 컨테이너 알고리즘
- 캥거루형 모체 로봇이 탐사를 시작하면 컨테이너에 소형 로봇을 싣고 다님.
- 더 이상 주행할 수 없는 공간 혹은 협소 지역을 탐사해야 하는 경우 소형 컨테이너 개폐장치에 신호를 인가해 소형 로봇 하차하여 탐사 지속.

모체로부 컨테이너 개폐장치 작동 순서

- ① 모체 로봇에 전원을 인가하여 탐사 시작
- ② 모체 로봇 자율주행
- ③ 모체 로봇이 더 나아갈 수 있는지 판별
- (기) 만약 더 나아갈 수 있는 경우 주행 지속
- (ㄴ) 모체 로봇이 더 나아갈 수 없는 경우
- ④ 소형 로봇이 탐사 가능한지 판별
- (¬) 만약 소형 로봇이 탐사할 수 없는 경우 모체 로봇이 기존 경로로 돌아가며 주행
- ⑤ 만약 소형 로봇이 탐사할 수 있는 경우 모체 로봇 정지
- ⑥ 서보 모터 값을 0에서 90도로 시계방향 회전
- ⑦ 컨테이너 개폐장치 작동
- ⑧ DB에 컨테이너 개폐여부 및 개폐시간 저장

3. 주요 적용 기술

- OpenPose 알고리즘
- OpenPose는 VGG-19 기반의 CNN을 사용하여 학습한 알고리즘임
- 인체의 신체 부위를 검출하는 "Part Affinity Fields" 단계와 앞서 생성된 위치 후 보와 연결 정보를 사용하여 각 관절의 정확한 위치를 결정하는 "Instance Confidence Maps" 단계를 거쳐 인체의 관절 위치를 정확하게 감지하고 연결하는 알고리즘
- Bottom-up 방식을 사용하여 Object Detection 과정이 없어 속도가 빨라 실시간으로 처리 가능하며 사람이 아닌 승용차나 버스와 같은 차량에서도 같은 방식을 통해 key point detection을 적용하여 Joint를 찾을 수 있음.

● YOLO 알고리즘

- YOLO는 물체 감지와 객체 인식에 대한 딥러닝 기반 접근 알고리즘으로 입력된 이미지를 일정 분할로 Grid한 다음, 신경망을 통과하여 Bounding box와 Class 예측을 생성하여 최종 감지 출력을 결정함.
- Region Proposal 단계를 제거하여 Object Detection을 한 단계에서 처리하는 1 step object detection model이어서 속도가 빠름.

● SLAM 알고리즘

- "SLAM"은 로봇 및 자율주행 차량과 같은 이동 로봇의 동적 매핑 및 로봇 위치 추정을 위한 SLAM 라이브러리임.
- "SLAM"은 센서 데이터(Lidar 센서, 카메라 등)를 활용하여 로봇 주변 환경을 스캔하고, 이러한 데이터를 기반으로 지도를 생성함 (mapping).
- 동시에 로봇의 위치와 자세를 추정하여 지도에 정확하게 투영함. 따라서 로봇의 자율 탐색, 경로 계획, 장애물 회피 등에 유용하게 활용될 수 있음.

4. 프로젝트 개발 환경

	구분	상세내용					
	OS	Raspbian, Windows 10, Linux(Ubuntu)					
S/W 개발환경	개발환경(IDE)	IntelliJ, Visual Studio, Thonny, VS Code, Eclipse, MySQL					
	개발도구	SpringBoot, Html, CSS, JavaScript					
	개발언어	Python, Java					
	기타사항	-					
	디바이스	보조배터리, 무선충전장치, 서보 모터, DC모터, 다이나믹셀, 캐터필리오프로드 바퀴					
H/W	센서	LiDAR 센서, 온습도 센서, 초음파 센서, 적외선 카메라 센서, 라즈베리 파이 카메라 센서					
구성장비	통신	라즈베리파이, Wifi					
	언어	Python					
	기타사항	관절보호 캡, 관절 연결 프레임					
	형상관리	구글 공유 드라이브, GitLab, GitHub					
프로젝트 관리환경	의사소통관리	일일업무보고서 작성, 카카오톡 실시간 공유, 오프라인미팅					
	기타사항	-					

5. 기타 사항 [본문에서 표현되지 못한 프로젝트의 가치(Value)] 및 제작 노력

- 1) 밲형 소형 로봇 관절 설계
- 소형 로봇을 뱀 형태로 제작하여 관절과 바퀴의 능동적 주행으로 기동성과 유 연성을 가질 수 있도록 설계함.
- 바퀴 주행이 가능한 환경은 기동성을 보장하도록 바퀴만 동작함. 만약 장애물을 만나는 경우 관절을 움직여 관절과 바퀴의 가변적 주행으로 장애물 통과 능력 을 보장함.
- 소형 로봇의 첫 번째 관절 제어 알고리즘을 구현할 때 서보 모터 회전 각도를 45도로 고정하였지만 뒤따르는 관절들은 험지에서 장애물을 넘기 위해서 로봇 과 지면 재질의 마찰계수, 전면부 관절과 장애물 사이의 각도인 접근 각을 고 려해야 함.
- 장애물 모형을 제작하여 장애물 모형과 소형 로봇의 운동방정식을 작성하여 *θ* 값이 얼마나 되는지 분석한 후 다른 관절들의 서보 모터가 몇도 회전이 필요한 지 분석 중임.
- 2) MQTT 통신 방식을 이용한 온습도 센서 데이터 전송
- 본 프로젝트의 센싱 데이터 전송은 Publish-Subscribe 패턴을 사용해 디바이스가 데이터를 발행(publish)하면, 해당 토픽을 구독(subscribe)한 모든 클라이언트들에게 메시지가 전달되도록 구성하였음, 이를 통해 실시간 데이터 전송에 유용하면서도 네트워크 사용 효율성을 높일 수 있었음
- http 프로토콜은 헤더가 크고 데이터가 전송될 때마다 TCP를 연결/연결을 끊기 위해 패킷이 전송되므로 전송되는 데이터가 많을수록 총 데이터 트래픽이 커지 는 단점이 있음
- MQTT의 헤더는 상대적으로 작으며 TCP 연결을 유지하면서 다음 데이터를 보내고 받을 수 있으므로 HTTP보다 총 데이터 트래픽을 억제하는게 가능함
- 온습도 센서 데이터 같은 작은 크기의 데이터를 전송하는 경우, HTTP 대신 MOTT와 같은 경량 통신 프로토콜을 사용하는 것이 더 적합한 것으로 보임.

Ⅲ. 프로젝트 수행 내용

1. 프로젝트 수행일정

프로젝트 기간 (ICT멘토링 사이트 기준)		2023.03.31. ~ 2023.11.15.									
구분	· 추진내용		프로젝트 기간								
TE	<u> </u>	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
계획	주제 선정 및 자료조사										
분석	구현 가능성 검토 및 기능 상세화										
	소형 로봇 내부 설계										
	소형 로봇 외부 설계										
설계	모체 로봇 내부 설계										
	모체 로봇 외부 설계										
	서버 및 네트워크 설계										
	로봇 외부 개발										
개발	로봇 내부 개발										
	서버 및 네트워크 구축										
테스트	모델에 대한 테스트 후 수정 및 보완										
종료	결과보고 작성 및 프로젝트 마무리										

2. 프로젝트 추진 과정에서의 문제점 및 해결방안

- 1) 프로젝트 관리 측면
- 라즈베리파이의 초기화 과정에서 중요 코드를 재작성해야 하는 경험을 겪음
- → 한이음에서 진행하는 GitLab 강의를 수강하며 GitLab의 중요성을 다시 한번 깨닫고, GitLab 및 개별 GitHub를 사용하여 코드를 정리하는 습관이 생김
- 주제 상 여러 대의 로봇을 만들어야 하므로 라즈베리파이 및 LiDAR 센서 등 각종 센서와 실습 장비를 전부 구매하기에는 예산이 한정적임
- → 중요한 센서를 실습 장비 지원으로 구매, 나머지 장비는 개인이 소지하고 있던 키트 내 센서를 가져와 사용하고 개인 소지 물품을 최대한 활용하여 해결하고 있음

- 2) 프로젝트 개발 측면
- 소형 로봇 개발 시 뱀형 로봇을 구현하기 위해 능동형 주행이 필요하였고 서보 모 터와 DC 모터를 하드웨어적으로 연결할 적절한 커넥터가 없어 어려움을 겪었음
- → 현재 약간의 틈이 생긴 채로 연결하였지만, 관절 제어에 적절한 커넥터를 3D 프 린터 이용 혹은 직접 제작하여 소형 로봇 내 관절에 맞는 커넥터를 제작 중
- 능동형 주행을 위한 바퀴의 경우 오프로드 바퀴이기에, 보유한 서보 모터의 동력 으로 관절 제어가 어려운 부분이 있음
- → 바퀴의 크기를 바꿔보고 여러 서보 모터를 바꾸어보며 관절 제어에 적절한 동력 을 줄 수 있는 모멘트를 실험 중
- → 또한 서보 모터 회전 각도를 조정하는 과정에서 논문 및 자료 등에서 장애물 통과 시 진입 각 및 마찰계수를 살펴보아 최적의 함수를 설계 중임
- 모체 로봇과 소형 로봇의 알고리즘을 개발하는 과정에서 특정 조건에서 알고리즘 이 객체를 인식하지 못하는 문제가 발생하여 이를 보완하는 과정에서 어려움을 겪었 음
- → 기존의 알고리즘을 수정하는 작업을 진행 중임 해결이 되지 않을 경우 새로운 알 고리즘을 사용할 계획임
- 가벼운 알고리즘이 아닌 경우 생각보다 다양한 조건을 충족하여야 하기에 새로운 기능들을 추가하는 과정에서 어려움을 겪음
- → 다양한 조건들을 모두 충족하기 위해 관련 기능들을 추가하는 작업 진행 중임
- SLAM 기술을 구현하는 과정에서 라즈베리파이 원격 접속 단계에서 접속에 권한이 없다는 오류가 발생하여 어려움을 겪음
- → 네트워크 설정을 깔끔하게 재설정하여 오류를 완벽히 해결함
- 라즈베리파이와 라즈베리파이, 라즈베리파이와 서버 간의 통신을 구현하는 데에 있어서 각각의 ip주소와 네트워크 정보를 이용하여 서로에게 접속하여 데이터를 전송해야 하는데 접속이 거부당하는 오류를 겪음
- → IoT 디바이스에서 주로 사용되는 MQTT 통신 방식을 사용하여 MQTT 클라이언트에서 브로커에 접속하는 정보를 이용하여 통신을 설정해주어 디바이스 간의 접속과데이터 전송이 되도록 오류를 완벽히 해결화

3. 프로젝트를 통해 배우거나 느낀 점

- 수통의 중요성
- 장기가 프로젝트이므로 팀원 가 소통이 필수적 요소임을 배웠음
- 각자 역할이 주어지지만 프로젝트 진행 시 의견을 공유하고 새로운 의견을 수렴하는 과정에서 독특한 아이디어로 프로젝트의 차별성이 생겨 긍정적인 효과를 준다는 것을 느꼈음
- 팀 프로젝트를 하면서 팀원들의 참여가 저조하고 의사소통이 잘 이루어지지 않으면 혼자 프로젝트를 해결해야겠다고 생각하고 마무리한 적이 종종 있었지만, 이번 장기간 프로젝트를 처음 해보면서 혼자가 아닌 팀원들과의 의사소통이 매우 중요하다는 것을 배웠음
- 각자 맡아 개발하는 분야가 다르지만 하나의 결과물을 내놓아야 하는 만큼 서로 유기적으로 소통하며 서로의 분야에 아이디어를 내며 개발을 진행하니 처음 해보 는 부분들에 있어 막힘없이 프로젝트가 진행될 수 있었음
- 팀원들과의 소통을 통해 새로운 방안을 고안해보며 기술과 지식 능력을 향상시킬 수 있었기에 뿌듯함을 느낌.
- 협업의 중요성
- 팀 프로젝트이기에, 팀장 주도하에 각자 파트(소프트웨어, 하드웨어, 웹 등)를 나누고. 각자 맡은 파트에 책임감을 가지고 제작 설계 및 개발을 하려고 노력하였음
- 언젠가 혼자 프로젝트를 진행한 적이 있었는데, 팀 단위로 하는 프로젝트를 진행 하니 일의 능률도 높아지고, 혼자서는 할 수 없는 일을 수행할 수 있음을 느낌
- 혼자서 생각해내지 못하는 일도 팀원들과 의견을 나누다 보면 보다 좋은 아이디어 도 나오게 되고, 각자 맡은 역할이 달라 혼자 해내야 하는 일도 있지만, 얼마나 진행되었는지, 무엇이 부족한지 등을 함께 공유하고 얘기를 하니 혼자 진행하는 것보다 수월하게 일이 진행된다는 것을 느꼈음
- 올해만 벌써 3번째로 팀으로 진행하는 프로젝트인데 9개월이라는 장기간의 프로젝트는 처음이라서 협업과 커뮤니케이션 능력 강화에 있어서 더욱 노력하였음
- 협업 도구의 중요성
- 협업이기 때문에 GitLab, GitHub 및 구글 드라이브를 통한 코드 및 자료 정리의 중요성을 배워음
- GitLab 강의로 배운 효율적인 작업 관리 방법을 실제 개발 시 사용하면서 강의가 도움이 되었음
- 오픈소스의 중요성
- 코딩의 새로운 기술을 습득하고 활용할 수 있었으며 팀 단위의 개발을 위한 오픈 소스 활용의 중요성 또한 느꼈음

Ⅳ. 기대효과 및 활용분야

1. 프로젝트의 기대효과

- 작품의 기대효과
 - 재난 지역에 장기간 운용 가능한 캥거루형 로봇을 투입함으로써 노동력을 감소 시키고 추가 인명 피해 최소화
 - 모체 로봇 및 소형 로봇 역할 세분화로 모체 로봇의 물리적 크기 한계와 소형 로봇의 배터리 용량 한계를 상쇄함으로써 로봇별 장점 극대화
 - 재난 현장에 투입되는 소형 로봇을 관절형 로봇으로 제작하여 다수의 장애물이 존재하는 험지에서 이동 제약을 극복하고 여러 대의 소형 로봇을 동시에 투입 함으로써 동일 시간 대비 탐사 범위 확대
 - 모체 로봇 및 소형 로봇이 수집한 데이터를 자동으로 문서화 및 가시화하고 실 시간 영상 확인 가능한 사용자 맞춤 웹 서버 제작
 - 라즈베리파이의 확장성을 활용하여 다른 형태의 재난 현장에서 상황에 따른 모 듈 전환으로 로봇 운용에 있어 가변적 활용 가능
- 참여 멘티의 교육적 기대효과
 - 로봇 관련 기술 및 개발 능력 함양
 - 장기간 프로젝트 수행을 통한 종합적 사고력 및 책임감 증진
 - 팀 프로젝트로 팀원 간 협동심 및 팀워크 향상
 - 실질적 개발 경험 습득으로 실제 산업 환경에서의 직무 능력 확보
 - 개발 진행 시 발생하는 상황에 대처하는 능력 습득

2. 프로젝트의 활용분야

- 재난, 산업 재해로 인한 붕괴 지역 내 구조대상자 탐색 활동과 심각한 오염이 발생한 지역, 위험물이 있는 지역의 내부구조 및 상황 탐지에 활용
- 로봇의 크기에 따른 탐사 지역 분할 및 협업 능력이 필요한 상황에 투입 가능
- 이동형 로봇의 센서 데이터 수집 및 가공 능력을 상황인지 기술이 필요한 산업 환경에 확장하여 적용 가능
- 제작한 모체 로봇 및 소형 로봇을 재난 상황 대비 교육콘텐츠로 활용 가능