Teoria da Computação

Prof. Sergio D. Zorzo

Departamento de Computação - UFSCar

Aula 01

Teoria da Computação

Linguagens e Gramáticas

Alfabeto
Palavra
Linguagem Formal
Gramática
Hierarquia de Chomsky

Alfabeto

Definição: Símbolo ou Caractere

entidade abstrata básica não definida formalmente

Ex de Símbolo

letras dígitos

Definição: Alfabeto

conjunto finito de símbolos

Ex de Alfabeto

$$\Sigma_1 = \{a, b, c\}$$

 $\Sigma_2 = \{0, 1, ..., 9\}$
 $\Sigma_3 = \{\}$

Palavra

Definição: Palavra, Cadeia, Sentença sobre um Alfabeto sequência finita de símbolos justapostos

Ex: a, abcb são palavras sobre o alfabeto {a, b, c}

- ε palavra vazia sem símbolos
- ε é palavra sobre qualquer alfabeto

Definição: Tamanho ou Comprimento de uma palavra (representado por |palavra|)

número de símbolos que compõem a palavra

Ex: abcb sobre o alfabeto {a,b,c}

$$|abcb| = 4$$

 $|\epsilon| = 0$

Conjuntos de palavras sobre o alfabeto **\Sigma**

 Σ^* - conjunto de todas as palavras sobre Σ

$$\Sigma + = \Sigma^* - \{\epsilon\}$$

Ex: para $\Sigma = \{a, b\}$

$$\Sigma$$
+ = {a, b, aa, ab, ba, bb, aaa,...}

 $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa,...\}$

Definição: Prefixo, Sufixo, Subpalavra

prefixo (sufixo) - qualquer seqüência de símbolos inicial (final) de uma palavra

Subpalavra - qualquer seqüência de símbolos contígüa de uma palavra

Ex: para a palavra abcb sobre o alfabeto {a,b,c}

Prefixos de abcb: ε, a, ab, abc, abcb

Sufixos de abcb: ε, b, cb, bcb, abcb

prefixos e sufixos são subpalavras

Linguagem Formal

Definição: Linguagem Formal

um conjunto de palavras sobre um alfabeto

```
Exs: Linguagem Formal sobre o alfabeto Σ = {a, b}
conjunto vazio { }
conjunto formado pela palavra vazia { ε }
conjunto das palíndromos (palavras que têm a mesma leitura da esquerda para a direita e vice-versa)
{ ε , a , b , aa , bb , aaa , aba , bbb , bab , .... }
é uma linguagem infinita
```

Definição: Concatenação

Operação binária, definida sobre uma linguagem palavra formada pela justaposição das palavras

Notação - justaposição dos símbolos que representam as palavras componentes

Satisfaz às seguintes propriedades:

associatividade: v(wt) = (vw)t

elemento neutro (esq/dir): $\varepsilon w = w = w \varepsilon$

Ex: para v = ab e w = cd sobre o alfabeto {a,b,c,d}
vw = abcd vv = abab

Definição: Concatenação Sucessiva

concatenação sucessiva de uma palavra com ela mesma *Exemplo:*

 $w^3 = www w^1 = w a^5 = aaaaa$ $a^n = aaa...a (a repetido n vezes) <math>w^0 = \varepsilon$ para $w \neq \varepsilon$

Gramática

Definição: Gramática G = (V,T,P,S)

$$G = (V, T, P, S)$$

V - conjunto finito de símbolos (variáveis ou não-terminais)

T - conjunto finito de símbolos (terminais - disjunto de V)

P - conjunto finito de pares (α, β) (regra de produção) α é palavra de (V ∪ T)+ β é palavra de (V ∪ T)*

S - elemento de V (variável inicial)

Notação de (α, β)

$$\alpha \rightarrow \beta$$

notação abreviada para $\alpha \to \beta_1, ..., \alpha \to \beta_n$ $\alpha \! \to \! \beta_1 \mid ... \mid \beta_n$

Definição: Derivação

Seja G = (V, T, P, S) uma gramática

Derivação é um par da relação denotada por ⇒ com domínio em (V∪T)+ e contra-domínio em (V∪T)*

$$\alpha \Rightarrow \beta$$

- ⇒ é indutivamente definida
- a) para qq produção $S \to \beta$ (S é o símbolo inicial) $S \Rightarrow \beta$
- b) para qq par $\alpha \Rightarrow \beta$ onde $\beta = \beta_u \beta_v \beta_w$ se $\beta_v \rightarrow \beta_t$ é regra de produção de P então $\beta \Rightarrow \beta_u \beta_t \beta_w$

Derivação é uma substituição de uma subpalavra de acordo com uma regra de produção

Definição: Sucessivos Passos de Derivações ⇒* fecho transitivo e reflexivo da relação ⇒

fecho transitivo e reflexivo da relação ⇒
zero ou mais passos de derivações sucessivos
⇒+
fecho transitivo de relação →

fecho transitivo da relação ⇒
um ou mais passos de derivações sucessivos
⇒i

exatos i passos de derivações sucessivos i é número natural

Gramática é um formalismo Axiomático de Geração permite derivar ("gerar") todas as palavras da linguagem que representa

Definição: Linguagem Gerada por uma Gramática

G = (V, T, P, S) uma gramática

Linguagem Gerada por G, denotado por L(G) ou GERA(G) todas as palavras de símbolos terminais deriváveis a partir do símbolo inicial S

$$L(G) = \{ w \in T^* \mid S \Rightarrow^+ w \}$$

Ex: números naturais

G = (V, T, P, S)
V = {S, D}
T = {0, 1, 2,..., 9}
P = {S
$$\rightarrow$$
 D, S \rightarrow DS, D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

uma derivação do número 243 (existe outra?)

$$\mathsf{S} \Rightarrow \mathsf{DS} \Rightarrow \mathsf{2S} \Rightarrow \mathsf{2DS} \Rightarrow \mathsf{24S} \Rightarrow \mathsf{24D} \Rightarrow \mathsf{243}$$

portanto

$$S \Rightarrow 6243$$

logo ...

GERA(G) ou L(G) é o conjunto dos números naturais

Definição: Equivalência de Gramáticas

G1 e G2 são equivalentes se e somente se GERA(G1) = GERA(G2)

Convenções:

A, B, C,..., S, T símbolos variáveis

a, b, c,..., s, t símbolos terminais

u, v, w, x, y, z palavras de símbolos terminais

α, ß,... palavras de símbolos variáveis e/ou terminais

Ex: identificadores em Pascal

G = (V, T, P, S)
V = {S, C, L, D}
T = {a, b, ..., z, 0, 1, 2,..., 9}
P = { S
$$\rightarrow$$
 LC | L,
C \rightarrow LC | DC | L | D,
L \rightarrow a | b |...| z,
D \rightarrow 0 | 1 |...| 9 }

Ex: texto com aspas balanceadas

G = (V, T, P, S)
V = {S}
T = {x, "}
P = {S
$$\rightarrow$$
 xS | ϵ ,
S \rightarrow "S"}

Ex:
$$L(G) = \{ww \mid w \in palavra de \{a, b\}^*\}$$

$$G = (\{S, X, Y, A, B, F\}, \{a, b\}, P, S)$$

$$P = \{S \rightarrow XY,$$

$$X \rightarrow XaA \mid XbB \mid F,$$

$$Aa \rightarrow aA, \quad Ab \rightarrow bA, \quad AY \rightarrow Ya,$$

$$Ba \rightarrow aB, \quad Bb \rightarrow bB, \quad BY \rightarrow Yb,$$

$$Fa \rightarrow aF, \quad Fb \rightarrow bF, \quad FY \rightarrow \epsilon \}$$

Geração da cadeia baba S ⇒ XY ⇒ XaAY ⇒ XaYa ⇒ XbBaYa ⇒ XbaBYa ⇒ XbaYba ⇒ FbaYba ⇒ bFaYba ⇒ baFYba ⇒ baεba = baba

Definição: Sentença de uma Linguagem L(G)

uma cadeia $w \in T^*$ é uma sentença da gramática G = (V, T, P, S) se e somente se $S \Rightarrow^* w$, ou seja, w é uma cadeia formada apenas de símbolos terminais (pertencentes ao alfabeto da linguagem T) e pode ser obtida a partir do símbolo reservado S da gramática G por meio de sucessivas derivações.

Definição: Forma Sentencial

uma cadeia $\alpha \in (VUT)^*$ é uma forma sentencial da gramática G = (V, T, P, S) se e somente se $S \Rightarrow^* \alpha$, ou seja, α é um "embrião" para alguma sentença gerada pela gramática, ou a própria sentença.

Hierarquia de Chomsky

Hierarquia de Chomsky

A cada classe de linguagem da Hierarquia de Chomsky é associado um tipo de gramática

Todas as linguagens sobre um alfabeto

Linguagens Recursivamente Enumeráveis

Gramática com Estrutura de Frase ou do Tipo 0

Linguagens Sensíveis ao Contexto

- Gramática Sensível ao Contexto ou do Tipo 1

Linguagens Livre de Contexto

- Gramática Livre de Contexto ou do Tipo 2

Linguagens Regulares

- Gramática Regular ou do Tipo 3

Definição: Gramática com Estrutura de Frase (GEF) ou do Tipo 0

Uma gramática G = (V, T, P, S) é dita ser do Tipo 0 ou com Estrutura de Frase se todas as regras de produção $\alpha \rightarrow \beta$ são da forma:

$$\alpha \in (VUT)+e \beta \in (VUT)^*$$

ou seja, as cadeias α e β são formadas por símbolos definidos na gramática (terminais ou não terminais) e a cadeia α não pode ser vazia.

Os próximos tipos de gramática são gramáticas com restrições.

Definição: Gramática Sensível ao Contexto (GSC) ou do Tipo 1

Uma gramática G = (V, T, P, S) é dita ser do Tipo 1 ou Sensível ao Contexto se todas as regras de produção $\alpha \to \beta$ são da forma:

$$\alpha \in (VUT)+ e \beta \in (VUT)^*$$

e
$$|\alpha| \le |\beta|$$
 (exceto quando $\beta = \varepsilon$)

ou seja, as cadeias α e β são formadas por símbolos definidos na gramática (terminais ou não terminais) e a cadeia α tem que ter comprimento menor que a cadeia β , com exceção quando β for vazia.

Há autores que classificam esse tipo de gramática com produções da forma:

$$\alpha A \beta \rightarrow \alpha \mu \beta com \alpha, \beta, \mu \in (V U T)^* e A \in V$$

Exemplo: Gramática Sensível ao Contexto (GSC) ou do Tipo 1

$$G_1 = (V, T, P, S)$$
 $V = \{ S, A, B, C \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc \}$

$$L(G_1) = \{ a^n b^n c^n | n \ge 1 \}$$

Definição: Gramática Livre de Contexto (GLC) ou do Tipo 2

Uma gramática G = (V, T, P, S) é dita ser do Tipo 2 ou Livre de Contexto se todas as regras de produção $\alpha \rightarrow \beta$ são da forma:

$$\alpha \in Ve \quad \beta \in (VUT)^*$$

ou seja, as cadeias α e β são formadas por símbolos definidos na gramática (terminais ou não terminais) e a cadeia α tem que ser um símbolo não terminal.

Exemplo: Gramática Livre de Contexto (GLC) ou do Tipo 2

$$G_2 = (V, T, P, S)$$
 $V = \{ S, A, B \}$
 $T = \{ 0, 1 \}$
 $P = \{ S \rightarrow AB,$
 $A \rightarrow 0A11,$
 $A \rightarrow 1,$
 $B \rightarrow 0B,$
 $B \rightarrow 1 \}$

$$L(G_2) = \{ 0^n 1^{2n} 1 0^m 1 \mid n,m \ge 0 \}$$

Exemplo: Gramática Livre de Contexto ou do Tipo 2

$$G_3 = (V, T, P, S)$$

$$V = \{ S, A, B \} \qquad T = \{ a, b \}$$

$$P = \{ S \rightarrow aB$$

$$S \rightarrow bA$$

$$A \rightarrow a$$

$$A \rightarrow aS$$

$$A \rightarrow bAA$$

$$B \rightarrow b$$

$$B \rightarrow bS$$

$$B \rightarrow aBB$$

$$\}$$

 $L(G_3) = \{ w \in T^* e w contém o mesmo nro de a's e b's \}$

$$L(G_3) = \{ w \in T^* \mid |w|_a = |w|_b \}$$

Definição: Gramática Regular (GR) ou do Tipo 3

Uma gramática G = (V, T, P, S) é dita ser do Tipo 3 ou Regular se todas as regras de produção $\alpha \rightarrow \beta$ são da forma:

$$\alpha \in Ve \quad \beta \in TU(VxT)$$

ou seja, as cadeias α e β são formadas por símbolos definidos na gramática (terminais ou não terminais) e a cadeia α tem que ser um símbolo não terminal e a cadeia β tem que ser um símbolo terminal ou um símbolo terminal seguido por um símbolo não terminal.

Definição: Gramática Regular (GR) ou do Tipo 3

Uma gramática G = (V, T, P, S) é dita ser do Tipo 3 ou Regular se todas as regras de produção $\alpha \rightarrow \beta$ são da forma:

$$\alpha \in Ve \quad \beta \in TU(VxT)$$

Definição: Gramática Regular (GR) ou do Tipo 3 pode ser descrita por uma gramática linear

Tipos de gramática linear:

- Gramática Linear à Direita GLD
- Gramática Linear à Esquerda GLE
- Gramática Linear Unitária à Direita GLUD
- Gramática Linear Unitária à Esquerda GLUE

Definição: Gramática Regular (GR) ou do Tipo 3

Uma gramática G = (V, T, P, S) é dita ser do Tipo 3 ou Regular se for descrita por uma Gramática Linear (GLD ou GLE ou GLUD ou GLUE)

Uma gramática é uma GLD se as produções são da forma
A → wB ou A → w

Uma gramática é uma GLE se as produções são da forma

 $A \rightarrow Bw \ ou \ A \rightarrow w$

Uma gramática é uma GLUD se as produções são da forma

 $A \rightarrow wB$ ou $A \rightarrow w$, com $|w| \le 1$

Uma gramática é uma GLUE se as produções são da forma

 $A \rightarrow Bw \text{ ou } A \rightarrow w, \text{ com } |w| \le 1$ $com A, B \in V \text{ e } w \in T^*$

Exemplo: Gramática Regular ou do Tipo 3

$$G_4 = (V, T, P, S)$$
 $V = \{ S, C \}$
 $T = \{ a, b, c \}$
 $P = \{ S \rightarrow aS, S \rightarrow bC, C \rightarrow c \}$
 $L(G_4) = \{ a^n b c | n \ge 0 \}$

O padrão GLUD é o mais utilizado e será empregado neste curso.

Classe de Linguagens e Gramáticas

Uma linguagem L é do tipo 3 (ou 2 ou 1 ou 0)
sse
existir uma gramática G = (V, T, P, S) do tipo 3 (ou 2 ou 1 ou 0) que gera L ou seja, L = L(G)

O tipo da Linguagem é determinado pela menor classe da Gramática que a gera.

