Week Five

Siva Sundar, EE23B151

July 2024

6th August

SEIR Model

- An extension to "SIR model".
- The full-form is as follows:
 - * 'S' stands for "Susceptible" to disease. Entities in this set are vulnerable to diseases.
 - * 'E' stands for "Exposed". Entities in this set are infected, but they are not infectious to other Entities in S.
 - * 'I' stands for "Infected". Entities in this set can infect others as well.
 - * 'R' stands for "Recovered" from infection.

• Assumptions:

- * For the entities in 'E' to infect others, it takes some time (ie, for moving from the set 'E' to 'I'). Let's assume this follows "exponential distribution" with parameter as "a" (hence, time average is a^{-1}).
- * Birth rate Λ equals death rate $N\mu$, making N (population size, S+E+I+R=N) a constant. The term ' μ ' is the per capita death rate.

7th August

• Set of **Differential Equations** for the model:

$$\frac{dS}{dt} = \mu N - \mu S - \frac{\beta IS}{N}$$

$$\frac{dE}{dt} = \frac{\beta IS}{N} - (\mu + a)E$$

$$\frac{dI}{dt} = aE - (\gamma + \mu)I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Notice that as S + E + I + R = N:

$$\frac{dS}{dt} + \frac{dE}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0$$

• Reproduction Number:

The basic reproduction number is the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection. (Assuming, individuals are not infected nor immunized (naturally or through vaccination)

Author: Siva Sundar Roll No: EE23B151

For this model,

- * Exposed individuals become infectious with probability 'a'.
- * Total cases for an exposed individual: $\mu + a$. (be infected or die)
- * Duration of infection: $(\gamma + \mu)^{-1}$.
- * Disease spreads from Infectious individuals with probability β .
- $R_0 = (Prob. transmission per contact) \times (Duration of infection) \times (Probability of surviving 'Exposed' stage)$

$$\Rightarrow R_0 = \beta \times \frac{1}{\mu + \gamma} \times \frac{a}{a + \gamma}$$
 (See Ref.[2])

- States of Equilibrium:
 - * Disease-Free-Equilibrium (DFE): disease is **not** present in the population. Mathematically, (S, E, I, R) = (N, 0, 0, 0).
 - * Endemic Equilibrium (EE): disease **persists** in the population at a **constant** level over time. It represents a *steady-state* situation where the disease is constantly present in the population but at a *stable* level.

For a biologically meaningful initial condition as follows:

 $(S(0), E(0), I(0), R(0)) \in \{(S, E, I, R) \in [0, N]^4 : S, E, I, R \ge 0, S + E + I + R = N\}$ it holds that:

$$R_o \leqslant 1 \Rightarrow \lim_{t \to \infty} (S(t), E(t), I(t), R(t)) = DFE = (N, 0, 0, 0)$$
$$R_o > 1, I(0) > 0 \Rightarrow \lim_{t \to \infty} (S(t), E(t), I(t), R(t)) = EE$$

8th August

CLICK HERE to see the **Julia** code which **solves** the **Differential Equations** seen above. Below are some output figures for different values of a, β , μ and γ .

Figure 1: $a = \beta = \mu = \gamma = 0.1$ (DFE)

Figure 2: $a = \beta = 0.1 \& \mu = \gamma = 0.01$ (EE)

References:

- [1] Wikipedia: Compartmental models in epidemiology
- [2] Introduction to SEIR Models by Swiss TPH