1 Introduction

CrIn GeCrIn GeProduction. Supercringe introduction here:

2 Some basic knowledge about researching problem...

Parameters and constants we use in this work:

```
Constants (3):

e = 2.718282
pi = 3.141593
AbObA = 1337.228690

Variables (3):
a = 3.141500
kek = 13.000000
x = 1.000000

Parameters of exploration:
Number of differentiates = 2
Macloren's accuracy = 3
Tanget point = 0.200000
Delta coverage of tangent point = 2.500000
Graph diapasone = [-1:15]
```

So let's calculate smth with a given function:

```
f(a, \text{ kek, } x) = \cos\left(a + \frac{kek}{1.000^{AbObA}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln e)} - 0.000)\right)
```

Firstly, let's insert all constants:

```
f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{1337.229}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln 2.718)} - 0.000)\right)
```

And simplify this expression (if possible):

```
f(a, kek, x) = \cos(a + kek) + \ln(1.000 + x \cdot kek)
```

3 Exploration the expression as a function of multiple variables

- Calculation a value of function in the point

```
BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!! In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) expression's value = 1.73157
```

- Finding the first derivation of function

Personally, I've always thought about first derivation of something like that function... Haven't you? But now, by using information of the solution of the so

```
1 step: Finding a derivation of kek
While preparing for exams, I learned a lot of new things, for example:
(kek)' =
= 1.000
2 step: Finding a derivation of x
Only after two cups of beer you might understand it:
(x)' =
= 1.000
3 step: Finding a derivation of x \cdot kek
Never say it to girls:
(x \cdot kek)' =
= kek + x
4 step: Finding a derivation of 1.000
Only by using special skills we might know::
(1.000)' = \dots = [top secret] = \dots =
= 0.000
5 step: Finding a derivation of 1.000 + x \cdot kek
What if:
```

 $(1.000 + x \cdot kek)' =$

= kek + x

6 step: Finding a derivation of $\ln (1.000 + x \cdot kek)$ Even my two-aged sister knows that: $(\ln(1.000 + x \cdot kek))' =$ $= \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$ 7 step: Finding a derivation of kek The first task in MIPT was to calculate: (kek)' == 1.0008 step: Finding a derivation of a Never say it to girls: (a)' == 1.0009 step: Finding a derivation of a + kekIt's simple as fuck: $(a+kek)' = \dots = [\text{top secret}] = \dots =$ = 2.00010 step: Finding a derivation of $\cos(a + kek)$ As we know: $(\cos\left(a + kek\right))' =$ $= 2.000 \cdot (-1.000) \cdot \sin(a + kek)$ 11 step: Finding a derivation of $\cos(a + kek) + \ln(1.000 + x \cdot kek)$ I was asked not to tell anyone that: $(\cos(a + kek) + \ln(1.000 + x \cdot kek))' =$ = $2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$ In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 1.84017

Congratulations! The first derivation of the expression is:

f'(a, kek, x) =
$$2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$$

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 1.84017

- Finding the 2 derivation $\$ Let's find the 1 derivation of the expression:

1 step: Finding a derivation of kekOnly after two cups of beer you might understand it:

$$(kek)' = ... = [top secret] = ... =$$
= 1.000

2 step: Finding a derivation of xEven my two-aged sister knows that:

$$(x)' =$$
$$= 1.000$$

3 step: Finding a derivation of $x \cdot kek$ Even my two-aged sister knows that:

$$(x \cdot kek)' =$$
$$= kek + x$$

4 step: Finding a derivation of 1.000 When I was a child, my father always told me: "Remember, son:

$$(1.000)' =$$
 $= 0.000$

5 step: Finding a derivation of $1.000 + x \cdot kek$

I have no words to describe this fact:

$$(1.000 + x \cdot kek)' = \dots = [\text{top secret}] = \dots =$$

= kek + x

6 step: Finding a derivation of $\ln (1.000 + x \cdot kek)$ My roommate mumbled it in his sleep all night:

$$\begin{split} &(\ln{(1.000+x\cdot kek)})'=\dots=[\text{top secret}]=\dots=\\ &=\frac{1.000}{1.000+x\cdot kek}\cdot (kek+x) \end{split}$$

7 step: Finding a derivation of kek I have no words to describe this fact:

$$(kek)' = ... = [top secret] = ... =$$
= 1.000

8 step: Finding a derivation of a

While preparing for exams, I learned a lot of new things, for example:

$$(a)' =$$

= 1.000

9 step: Finding a derivation of a + kekIt's really easy to find:

$$(a + kek)' =$$

= 2.000

10 step: Finding a derivation of $\cos(a + kek)$

What if:

$$(\cos(a+kek))' = \dots = [\text{top secret}] = \dots =$$

 $= 2.000 \cdot (-1.000) \cdot \sin(a + kek)$

11 step: Finding a derivation of $\cos(a + kek) + \ln(1.000 + x \cdot kek)$ You should be aware of the fact that:

$$(\cos(a + kek) + \ln(1.000 + x \cdot kek))' =$$

$$= 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$$

So the 1 derivation of the expression is:

$$2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$$

Let's find the 2 derivation of the expression:

1 step: Finding a derivation of xA true prince must know that:

$$(x)' =$$

= 1.000

2 step: Finding a derivation of kek

For centuries, people have hunted for the secret knowledge that:

$$(kek)' =$$

= 1.000

3 step: Finding a derivation of kek + x

I spend the hole of my life to find the answer and finally it's:

$$(kek + x)' = \dots = [top secret] = \dots =$$

= 2.000

4 step: Finding a derivation of kek

Never say it to girls:

$$(kek)' =$$

= 1.000

5 step: Finding a derivation of x It's really easy to find:

$$(x)' =$$

= 1.000

6 step: Finding a derivation of $x \cdot kek$ Sometimes I hear the same voice in my head, it always says:

$$(x \cdot kek)' = \dots = [\text{top secret}] = \dots =$$

= kek + x

7 step: Finding a derivation of 1.000 Even my two-aged sister knows that:

$$(1.000)' =$$

= 0.000

8 step: Finding a derivation of $1.000 + x \cdot kek$ Only by using special skills we might know::

$$(1.000 + x \cdot kek)' =$$

= kek + x

9 step: Finding a derivation of 1.000

My friends always beat me, because I didn't know that:

$$(1.000)' = \dots = [top secret] = \dots =$$

= 0.000

10 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}$ A true prince must know that:

$$\left(\frac{1.000}{1.000+x\cdot kek}\right)' = \dots = [\text{top secret}] = \dots =$$

$$= \frac{(-1.000)\cdot (kek+x)}{(1.000+x\cdot kek)^{2.000}}$$

11 step: Finding a derivation of $\frac{1.000}{1.000+x\cdot kek}\cdot (kek+x)$ Sometimes I hear the same voice in my head, it always says:

12 step: Finding a derivation of *kek* Only by using special skills we might know::

$$(kek)' = \dots = [\mathbf{top} \ \mathbf{secret}] = \dots =$$

= 1.000

13 step: Finding a derivation of a

While preparing for exams, I learned a lot of new things, for example:

$$(a)' =$$

= 1.000

14 step: Finding a derivation of a + kek

She: please, never speak with my dad about math... Me: ok) Also me after homework of matan:

$$(a + kek)' = \dots = [\text{top secret}] = \dots =$$

= 2.000

15 step: Finding a derivation of $\sin(a + kek)$

My roommate mumbled it in his sleep all night:

$$(\sin(a+kek))' = \dots = [\text{top secret}] = \dots =$$

 $= 2.000 \cdot \cos\left(a + kek\right)$

```
(-1.000)' = \dots = [\text{top secret}] = \dots = 0.000
```

A true prince must know that:

16 step: Finding a derivation of -1.000

17 step: Finding a derivation of $(-1.000) \cdot \sin(a + kek)$ A true prince must know that:

$$((-1.000) \cdot \sin(a + kek))' =$$

$$= (-1.000) \cdot 2.000 \cdot \cos(a + kek)$$

18 step: Finding a derivation of 2.000

If someone asked me that in the middle of the night, I wouldn't hesitate to say:

$$(2.000)' =$$

= 0.000

19 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin(a + kek)$ When I was a child, my father always told me: "Remember, son:

$$(2.000 \cdot (-1.000) \cdot \sin(a + kek))' = \dots = [\text{top secret}] = \dots =$$

= $2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek)$

20 step: Finding a derivation of $2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)$ thanks to the results of my colleagues' scientific work, I know that:

$$(2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x))' =$$

$$= 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek) + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}$$

So the 2 derivation of the expression is:

$$2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a+kek)} + \frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}} \cdot (kek+x) + 2.000 \cdot \frac{1.000}{1.000+x \cdot kek}$$

Finally... The 2 derivation of the expression:

```
f^{(2)}(a, \text{ kek, x}) = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek) + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek}
BRITISH SCIENTISTS WERE SHOCKED AGAIN, WHEN THEY COUNT THE 2 DERIVATION OF THIS EXPRESSION!!! In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 2.77280
```

Finding partical derivations Partial derivation of the expression on the variable a:

```
\frac{\partial f}{\partial a} = (-1.000) \cdot \sin{(a+13.000)}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.42008 !!! Partial derivation of the expression on the variable kek: \frac{\partial f}{\partial kek} = (-1.000) \cdot \sin{(3.142 + kek)} + \frac{1.000}{1.000 + kek}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.49151 !!! Partial derivation of the expression on the variable x: \frac{\partial f}{\partial x} = 13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.92857 !!!
```

Finding full derivation Full derivation:

```
\sqrt{\left((-1.000) \cdot \sin\left(a + 13.000\right)\right)^{2.000} + \left((-1.000) \cdot \sin\left(3.142 + kek\right) + \frac{1.000}{1.000 + kek}\right)^{2.000} + \left(13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}\right)^{2.000}}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.13150 !!!
```

4 Exploration the expression as a function of the first variable

Now let's consider the expression as a function of the first variable a: $f(a) = \cos(a + 13.000) + 2.639$

```
Decomposing on Macloren's formula Maklorens formula for a \rightarrow a_0 = 3.142: f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})
```

Graphics Graph $f(a) = \cos(a + 13.000) + 2.639$ on the diapasone $a \in [-1:15]$:

Equations in the point Tangent equation in the point $a_0 = 0.200$:

 $f(a) = (-0.592) \cdot (a - 0.200) + 3.445$

Normal equation in the point $a_0 = 0.200$:

 $f(a) = 1.689 \cdot (a - 0.200) + 3.445$

Their graphs in $\delta = 2.50000$ coverage of the point $a_0 = 0.200000$

5 Conclusion

Ultrar cringe conclusion here: