Avaliação de Métodos de Seleção de Características de Amostras Android com a Ferramenta FS3E (v2)

Nicolas Neves², Vanderson Rocha², Diego Kreutz¹ Hendrio Bragança², Eduardo Feitosa²

¹Universidade Federal do Pampa (UNIPAMPA) diegokreutz@unipampa.edu.br

²Universidade Federal do Amazonas (UFAM)

{nicolas.neves, hendrio.luis, efeitosa}@icomp.ufam.br vanderson@ufam.edu.br

Resumo. Neste artigo apresentamos uma avaliação extensiva de oito métodos de seleção de características utilizando a nova versão da F3SE (v2). Para a avaliação dos métodos, utilizamos seis datasets distintos. Os resultados indicam que há uma variabilidade significativa entre os métodos e entre os datasets. Entretanto, podemos observar os métodos FSDroid e SemiDroid apresentam uma maior estabilidade e qualidade geral na seleção de características.

1. Introdução

A seleção de características, também conhecida como seleção de variáveis ou seleção de atributos, é uma técnica que permite selecionar as características que tornam um modelo mais simples, mais fácil de interpretar e menos propenso a *overfitting* [HEAVY.AI, 2023]. Os métodos mais comuns de seleção de características são: (1) **filtro**, que é baseado na seleção de características com base em estatísticas; (2) **invólucro**, que considera a seleção de um conjunto de características como um problema de busca; e (3) **embutido**, onde a classificação e a seleção de características são realizadas simultaneamente.

A FS3E [Costa et al., 2022] permite a incorporação e avaliação sistemática de métodos de seleção de características para o domínio de detecção de malwares Android [Soares et al., 2022]. A versão original contém os métodos de seleção de características JOWNDroid, LR, RFG, SigAPI e SigPID. Como podemos observar na Figura 1, a ferramenta é composta por três etapas: (a) **métodos** de seleção de características, (b) **avaliação** com modelos de aprendizado de máquina, e (c) **visualização** dos resultados.

Figura 1. Etapas e fluxo de dados da FS3E [Costa et al., 2022]

Na primeira etapa, os **métodos** de seleção de características escolhidos pelo usuário são aplicados sobre cada *dataset* de **entrada**. A **saída** desta etapa serve de **entrada** para a **avaliação**, que utiliza modelos de aprendizado de máquina. As métricas de avaliação resultantes representam a **entrada** da etapa de **visualização**. É importante ressaltarmos que desconhecemos trabalho similar (vide [Costa et al., 2022]), ou seja, um arcabouço de software para implementação, disponibilização e avaliação sistemática de métodos e técnicas de seleção de características para o domínio de detecção de malwares Android. É importante destacarmos também que assumimos que os *datasets* de entrada da FS3E não contém amostras intencionalmente modificadas por um atacante.

Neste trabalho apresentamos a incorporação e avaliação de quatro novos métodos de seleção de características, o *Artificial Bee Colony* (ABC) [Mohammadi et al., 2020], FSDroid [Mahindru and Sangal, 2021a], SemiDroid [Mahindru and Sangal, 2021b] e *Multi-Tiered* (MT) [Bhat and Dutta, 2022]. Para a avaliação dos métodos utilizamos os *datasets* AndroCrawl, Adroit, Android Permissions, DefenseDroid, Drebin-215 e KronoDroid (Dispositivo Real). Detalhes adicionais sobre a implementação e o código dos métodos, bem como informações técnicas e identificação das fontes dos *datasets* originais e sub-sets reduzidos estão disponíveis no repositório do GitHub¹.

As principais contribuições do trabalho são: (a) implementação, reprodução e disponibilização de quatro métodos adicionais de seleção de características, (b) uma avaliação extensiva de oito métodos utilizando seis *datasets* distintos, (c) identificação de aspectos conceituais e de implementação que levam alguns métodos a ter resultados superiores aos demais e (d) identificação de anomalias em *datasets* e métodos de seleção.

2. Resultados

Utilizamos como entrada os *datasets* detalhados na Tabela 1. Para cada *dataset*, apresentamos um resumo das características e amostras de cada *dataset*, incluindo o número e percentagem de amostras maliciosas e benignas e o total de amostras.

Dataset	Características	Amostras						
Dataset	Caracteristicas	Mal	wares	Ben	Total			
AndroCrawl	141	10170	10.5%	86562	89.5%	96732		
Adroit	166	3418	29.8%	8058	70.2%	11476		
Android Permissions	151	17787	66,21%	9077	33,79%	26864		
DefenseDroid	2938	6000	50.1%	5975	49.9%	11975		
Drebin-215	215	5560	37%	9476	63%	15036		
KronoDroid	383	41382	53%	36755	47%	78137		

Tabela 1. Datasets

Utilizamos a FS3E (v2) para executar os métodos JOWNDroid, LR, RFG, SigPID, ABC, FSDroid, SemiDroid e MT pada cada *dataset*. Cada método gera um novo subset que é utilizado como entrada do modelo *Random Forest*². Como resultados temos as métricas de acurácia, precisão, *recall*, F1-Score, MCC e ROC_AUC. Os testes foram realizados em uma máquina Dell G15, com 16 GB de memória, processador Intel I5-11, rodando Ubuntu 20.04 e Python 3.11.

¹https://github.com/Malware-Hunter/WRSeg23-FS3E-v2

²Hiperparâmetros utilizados: *n_estimators=100*, *max_depth=2*, *random_state=0*

As Tabelas 2, 3, 4, 5, 6, 7 apresentam os resultados para os seis *datasets* escolhidos. A primeira coluna indica o *dataset*, sendo que há um novo *dataset* para cada método (e.g., ABC_Adroit, i.e., *dataset* gerado pelo método ABC sobre o conjunto original do Adroit). O *dataset* original aparece na primeira linha de cada tabela. As colunas 2 a 7 apresentam as métricas do modelo *Random Forest* executado sobre cada conjunto de dados. Finalmente, as duas últimas colunas apresentam o número de características do *dataset* e a porcentagem de redução em relação ao conjunto de dados original (linha 1).

Dataset Accuracy Precision Recall F1_Score MCC ROC_AUC # caract. Redução (%) Adroit 81.90 66.31 79.72 72.40 0.59 81.27 167 0.00 ABC_Adroit 79.75 81.93 66.36 72.44 0.60 81.30 166 0.60 89.13 91.29 70.22 79.38 0.73 29 82.63 FSDroid_Adroit 83.69 JOWNDroid_Adroit 70.07 44.37 1.96 3.75 0.04 50.46 47 71.86 LR_Adroit 88.80 87.33 73.00 79.52 0.72 84.25 101 39.52 RFG_Adroit 76.89 83.55 86.22 76.83 76.95 0.67 122 26.95 SemiDroid_Adroit 88.70 89.91 69.89 78.65 83.28 89 22 0.72 18 MT_Adroit 83.75 76.85 82.58 87.26 71.01 0.69 5 97.01 SigPID_Adroid 89.18 94.44 67.64 78.83 0.74 82.98 97.01

Tabela 2. Métricas e redução para o dataset Adroit

No caso do *dataset* Adroit (Tabela 2), podemos observar que os métodos de seleção SigPID e MT apresentaram uma alta taxa de redução e um bom desempenho, isto é, uma ROC_AUC muito próxima aos demais métodos. No caso do SigPID, aspectos do *dataset* como esparsidade, frequência das características e pares com alta concordância contribuem para o bom resultado.

É interessante observarmos que os métodos LR e SemiDroid apresentaram reduções de 101 e 18 características. Entretanto, as métricas resultantes foram similares aos métodos SigPID e MT, que atingiram taxas de redução significativamente maiores. Estes resultados indicam que o SigPID e MT são os mais indicados para *datasets* similares ao Adroit quando o objetivo é atingir uma alta taxa de redução. Já em termos de métricas de classificação, métodos como o FSDroid atingem taxas melhores, ao custo de uma redução ligeiramente menor (e.g., redução de 82% contra 97% do SigPID e MT).

Dataset	Accuracy	Precision	Recall	F1_Score	MCC	ROC_AUC	# caract.	Redução (%)
Androcrawl	98.37	94.57	89.60	92.02	0.91	94.50	142	0.00
ABC_Androcrawl	98.32	94.53	89.16	91.77	0.91	94.28	140	1.41
FSDroid_Androcrawl	98.36	94.33	89.76	91.99	0.91	94.56	29	79.58
JOWNDroid_Androcrawl	89.29	25.93	1.03	1.99	0.03	50.34	31	78.17
LR_Androcrawl	98.00	93.47	87.10	90.17	0.89	93.19	8	94.37
RFG_Androcrawl	91.46	78.77	25.68	38.74	0.42	62.44	22	84.51
SemiDroid_Androcrawl	98.14	95.38	86.51	90.73	0.90	93.01	16	88.73
MT_Androcrawl	89.29	41.56	4.72	8.48	0.11	51.97	5	96.48
SigPID_Androcrawl	98.06	94.14	87.01	90.43	0.89	93.19	6	95.77

Tabela 3. Métricas e redução para o dataset Androcrawl

No caso do *dataset* Androcrawl (Tabela 3), podemos observar uma tendência similar ao Adroit, exceto para os métodos RFG e MT, que obtiveram métricas significativamente piores. Diferentemente do RFG e MT, métodos como o SigPID selecionam características criadas por especialistas, como "*Contains URL known to be suspicious*" e "*Airpush Included*". Já o RFG e MT selecionam apenas características pouco expressivas para reconhecer malwares, como "*GET_PACKAGE_SIZE*", "*EXPAND_STATUS_BAR*",

"Landroid/content/Context;-; startService", "FLASHLIGHT", e "FORCE_BACK". Interessantemente, algumas dessas características estão indicadas como "Harmless" no dataset, ou seja, tem baixa relação com aplicativos maliciosos.

Detectamos que o MT possui um threshold de 0,8 na frequência de cada característica na primeira etapa do método. Isto nos leva a hipótese de o MT eliminar prematuramente características que são importantes para a detecção de malwares, como aquelas criadas por especialistas. Como resultado, o MT acaba selecionando características menos relevantes em *datasets* como o Androcrawl, o que explica os resultados piores.

Tabela 4. Métricas e redução para o dataset Android_Permissions

Accuracy Precision Recall F1 Score MCC ROC AUC # caract Reducão (%)

Dataset	Accuracy	Precision	Recaii	F1_Score	MCC	KUC_AUC	# caract.	Kedução (%)
Android_Permissions	66.72	69.17	89.76	78.13	0.15	55.67	152	0.00
ABC_Android_Permissions	66.55	68.92	90.14	78.11	0.15	55.24	150	1.32
FSDroid_Android_Permissions	67.13	67.96	95.26	79.33	0.13	53.63	44	71.05
JOWNDroid_Android_Permissions	66.02	66.85	96.56	79.01	0.06	51.37	69	54.61
LR_Android_Permissions	66.77	66.88	98.70	79.73	0.09	51.45	69	54.61
RFG_Android_Permissions	66.09	66.49	98.37	79.35	0.04	50.61	22	85.53
SemiDroid_Android_Permissions	66.48	67.43	95.48	79.04	0.10	52.56	17	88.82
MT_Android_Permissions	66.21	66.21	100.00	79.67	0.00	50.00	4	97.37
SigPID_Android_Permissions	66.61	66.72	98.93	79.69	0.08	51.11	43	71.71

No caso do dataset Android Permissions (Tabela 4), podemos observar um desempenho baixo quando comparado com outros datasets. A explicação para esse comportamento pode estar fortemente relacionada a dois aspectos do dataset. Primeiro, o Android Permissions possui um desbalanceamento inverso de amostras, isto é, mais amostras malignas do que benignas. Segundo, possui diversas características compostas, definidas por especialistas (e.g. "add or modify calendar events and send email to guests", "modify/delete usb storage contents modify/delete sd card contents"), o que acaba dificultando a seleção de características. Finalmente, é importante observarmos que o dataset original (linha 1 da tabela) também apresenta um desempenho ruim, ou seja, isto pode ser um indicativo de má qualidade geral das características definidas no dataset. É possível observarmos também que apenas características do tipo permissões não leva a taxas muito boas (i.e., acima de 90%) para classificação de malwares Android. Por exemplo, no caso do dataset Adroit, cujos resultados podem ser vistos na Tabela 2, o melhor método de seleção levou a taxas de classificação abaixo de 85%.

Tabela 5. Métricas e redução para o dataset Defensedroid_prs

Dataset	Accuracy	Precision	Recall	F1_Score	MCC	ROC_AUC	# caract.	Redução (%)
Defensedroid_prs	92.38	93.62	91.00	92.29	0.85	92.39	2878	0.00
ABC_Defensedroid_prs	91.97	93.11	90.70	91.89	0.84	91.98	2789	3.09
FSDroid_Defensedroid_prs	88.56	91.52	85.05	88.17	0.77	88.57	32	98.89
JOWNDroid_Defensedroid_prs	73.54	84.79	57.50	68.53	0.50	73.57	1296	54.97
LR_Defensedroid_prs	88.68	87.27	90.62	88.91	0.77	88.67	2041	29.08
RFG_Defensedroid_prs	73.59	83.87	58.57	68.97	0.50	73.63	22	99.24
SemiDroid_Defensedroid_prs	92.10	94.69	89.23	91.88	0.84	92.11	289	89.96
MT_Defensedroid_prs	81.41	78.69	86.27	82.30	0.63	81.40	6	99.79
SigPID_Defesemsedroid_prs	89.84	93.08	86.12	89.46	0.80	89.84	70	97.57

No caso do dataset DefenseDroid (Tabela 5), podemos observar novamente um comportamento similar ao do Androcrawl. É interessante destacarmos que os métodos FSDroid e o SigPID, novamente, atingem taxas de redução acima de 97% e conseguem manter taxas de classificação muito próxima do dataset original (linha 1 da tabela).

Tabela 6. Métricas e redução para o dataset Drebin-215

Dataset	Accuracy	Precision	Recall	F1_Score	MCC	ROC_AUC	Total reduzido	Porcentagem
Drebin215	98.80	99.23	97.50	98.36	0.97	98.53	216	0.00
ABC_Drebin215	98.80	99.23	97.50	98.36	0.97	98.53	216	0.00
FSDroid_Drebin215	93.78	94.77	88.03	91.27	0.87	92.59	20	90.74
JOWNDroid_Drebin215	80.09	82.07	59.01	68.66	0.56	75.73	34	84.26
LR_Drebin215	93.73	95.07	87.56	91.16	0.86	92.45	32	85.19
RFG_Drebin215	96.91	96.84	94.74	95.78	0.93	96.46	42	80.56
SemiDroid_Drebin215	94.52	93.48	91.56	92.51	0.88	93.91	23	89.35
MT_Drebin215	93.29	91.51	90.23	90.86	0.86	92.66	21	90.28
SigPID_Drebin215	94.87	95.34	90.55	92.88	0.89	93.98	21	90.28

No caso do Drebin-215 (Tabela 6) os resultados mostram que todos os métodos conseguiram uma pontuação próxima ao *dataset* original, menos o JOWNDroid, que ficou 23% abaixo da taxa de ROC_AUC. Há dois aspectos a considerar com relação ao JOWNDroid. Primeiro, ele utiliza modelos pouco apropriados para esses conjuntos de características, como a regressão linear. Segundo, seus modelos de MLP podem ter desempenho ruim em *datasets* pequenos, desbalanceados ou ruidosos.

Tabela 7. Métricas e redução para o dataset KronoDroid_real_device.

Dataset	Accuracy	Precision	Recall	F1_Score	MCC	ROC_AUC	# caract.	Redução (%)
KronoDroid_real_device	97.60	98.15	97.30	97.72	0.95	97.62	287	0.00
ABC_KronoDroid_real_device	97.47	98.03	97.17	97.60	0.95	97.48	283	1.39
FSDroid_KronoDroid_real_device	92.65	92.32	93.92	93.12	0.85	92.57	32	88.85
JOWNDroid_KronoDroid_real_device	56.42	55.26	93.07	69.34	0.13	54.11	65	77.35
LR_KronoDroid_real_device	93.66	93.86	94.20	94.03	0.87	93.63	103	64.11
RFG_KronoDroid_real_device	73.20	79.11	67.12	72.62	0.47	73.58	22	92.33
SemiDroid_KronoDroid_real_device	95.68	95.91	95.93	95.92	0.91	95.66	30	89.55
MT_KronoDroid_real_device	88.02	88.08	89.49	88.78	0.76	87.93	10	96.52
SigPID_KronoDroid_real_device	93.60	94.19	93.69	93.94	0.87	93.59	18	93.73

O KronoDroid (Tabela 7) apresenta resultados similares aos do DefenseDroid, ou seja, apenas os métodos JOWNDroid e RFG ficam com métricas abaixo de 80%.

É importante destacarmos que os métodos FSDroid e SemiDroid apresentam bons resultados (e.g., precisão e *recall*), com taxas de redução acima de 80%, para a maioria dos *datasets*. Podemos dizer que os dois métodos apresentam uma boa estabilidade e capacidade de generalização, uma descoberta interessante. Ambos os métodos implementam uma seleção de características em dois estágios. Primeiro, realizam o ranqueamento das características utilizando cinco técnicas distintas, incluindo *gain-ratio*, *information gain*, *chi-square*, OneR, PCA e *logistic regression*. O ranqueamento resulta em cinco sub-sets distintos. A partir de um ponto de corte (e.g., 10 melhores características), é realizado uma união dos cinco sub-sets, resultando em um novo sub-grupo de características que é processado utilizando três técnicas distintas, incluindo técnicas de correlação, análise do conjunto aproximado e avaliação de subconjunto de consistência. Como os valores de corte dos dois métodos são distintos, sendo 10 características para o FSDroiod e as 10% melhores para SemiDroid, os resultados são ligeiramente diferentes (e.g., FSDroid e SemiDroid selecionam respectivamente 29 e 18 características do *dataset* Adroit).

Finalmente, cabe ressaltar que se o conjunto de dados tiver um desbalanceamento de classes, os modelos poderão ter dificuldade em detectar a classe minoritária, resultando em baixo *recall*, como pode ser observado nos resultados do Adroit e Androcrawl, os dois *datasets* com maior nível de desbalanceamento de classes. Isso gera uma discussão

em torno da seleção de características de cada método, que também pode ser afetada pelo viés do desbalanceamento do *dataset*. Por exemplo, o MT utiliza um *threshold* de seleção baseado na frequência da característica, o que pode implicar em não selecionar características que são importantes para detectar *malwares*.

3. Considerações Finais

Os resultados experimentais com a FS3E-v2 nos permitem apresentar *insights* importantes em relação aos métodos de seleção de características para o domínio de detecção de *malwares* Android. Por exemplo, os métodos FSDroiod e SemiDroid apresentaram a maior estabilidade e capacidade de generalização para os seis *datasets*, atingindo taxas de redução muito boas (e.g., acima de 80%). Um segundo exemplo é o fato de métodos como o RFG e MT serem pouco adequados para *datasets* que contém características criadas por especialistas, como foi o caso do conjunto de dados Androcrawl.

Como trabalhos futuros podemos destacar: (a) incorporação de mais métodos de seleção de características; (b) inclusão de *datasets* modernos e atualizados na avaliação, como o MH-100K [Bragança et al., 2023a]; (c) utilização de técnicas de explicabilidade (XAI) para entender o comportamento dos métodos de seleção em determinados conjuntos de dados [Bragança et al., 2023b]; (d) avaliar os métodos de seleção em um ambiente com coleta de dados em tempo real; e (e) investigar como ataques adversariais podem influenciar a seleção das características.

Agradecimentos. Esta pesquisa foi parcialmente financiada, conforme previsto nos Arts. 21 e 22 do decreto no. 10.521/2020, nos termos da Lei Federal no. 8.387/1991, através do convênio no. 003/2021, firmado entre ICOMP/UFAM, Flextronics da Amazônia Ltda e Motorola Mobility Comércio de Produtos Eletrônicos Ltda, e apoiada pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Referências

- Bhat, P. and Dutta, K. (2022). A multi-tiered feature selection model for android malware detection based on feature discrimination and information gain. *Journal of King Saud University*, 34(10, Part B).
- Bragança, H., Rocha, V., Souto, E., Kreutz, D., and Feitosa, E. (2023a). Capturing the behavior of android malware with mh-100k: A novel and multidimensional dataset. In *XXIII SBSeg*.
- Bragança, H., Rocha, V., Souto, E., Kreutz, D., and Feitosa, E. (2023b). Explaining the effectiveness of machine learning in malware detection: Insights from explainable AI. In *XXIII SBSeg*.
- Costa, E., Kreutz, D., Rocha, V., Leão, L., Sabóia, S., Neves, N., and Feitosa, E. (2022). FS3E: uma ferramenta para execução e avaliação de métodos de seleção de características para detecção de malwares android. In *XXII SBSeg*, pages 151–158. SBC.
- HEAVY.AI (2023). Feature selection definition? https://www.heavy.ai/technical-glossary/feature-selection.
- Mahindru, A. and Sangal, A. (2021a). FSDroid: A feature selection technique to detect malware from android using machine learning techniques. *Multimedia Tools and Applications*, 80(9):13271–13323.
- Mahindru, A. and Sangal, A. (2021b). SemiDroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches. *Int. J. of ML and Cybernetics*, 12.
- Mohammadi, F. G., Shenavarmasouleh, F., Amini, M. H., and Arabnia, H. R. (2020). Malware detection using artificial bee colony algorithm. In *ACM Int. Conf. on Pervasive and Ubiquitous Computing*. ACM.
- Soares, T., Kreutz, D., Rocha, V., Costa, E., Leão, L., Pontes, J., Assolin, J., Rodrigues, G., and Feitosa, E. (2022). Uma análise de métodos de seleção de características aplicados à detecção de malwares android. In *XXII SBSeg*, pages 288–301. SBC.