Spectroscopic information about a hypothetical tetrahedral configuration in ^{156}Gd

Q. T. Doan^{a,*}, O. Stezowski^{a,b}, D. Guinet^{a,b}, J. Dudek^c, D. Curien^c, N. Schunck^{d,1}

^aInstitut de Physique Nucléaire de Lyon, France ^bUniversité de Lyon, Université Lyon 1, Lyon, France ^cDepartement de Recherches Subatomiques, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France ^dInstitute of Nuclear Physics PAN, PL-31-342 Kraków, Poland

Abstract

A detailed γ -ray spectroscopy of the lowest two negative-parity bands in 156 Gd has been performed ... Keywords: γ -ray spectroscopy, 156 Gd

1. Introduction

Theoretical studies based on the nuclear meanfield approach and group theory considerations suggest [1, 2] that some atomic nuclei may exhibit tetrahedral and/or octahedral symmetries. To the lowest order, tetrahedral symmetry is realized through octupole deformation $Y3 \pm 2$ of the nuclear surface. Previous research[3] has determined magic numbers for which tetrahedral deformation should be the easiest to observe leading to tetrahedral proton and neutron "magic" numbers Zt/Nt = 32, 40, 56, 64, 70, 90, and 112, withextra gaps at Nt = 136 and 142. The authors of Refs. [1, 2, 3] have furthermore demonstrated that nuclei with an exact tetrahedral symmetry have all multipole moments $Q_{\lambda} < 7$, $\nu = 0$ except for Q_{32} - thus, in particular, the corresponding quadrupole moments Q_2 vanish. The radiation intensity can be written down using the standard expression in the Equation 1.

$$I(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta) \qquad (1)$$

*Corresponding author

.

Email address: qtdoan@gmail.com (Q. T. Doan)

2. Experiment setup

Figure 1: Partial level scheme of 156Gd.

.....

3. Spectroscopy information

Transition intensities are presented in the Figure 1 \dots

4. Acknowledgements

Thiswork benefited from the TNT2-D cards, developed and financed by CNRS/IN2P3 for the GABRIELA project ...

Appendix A. Experiment data

Experiment data are shown in the Table A.1 ...

¹Present address: Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

Table A.1: Data γ ray detection.

Table III. Bata / Itaj detection.		
Interaction	Clover	Cluster
1	74.5	79.8
2	22.4	18.3
≥ 3	j3.3	j2.8

References

- [1] J. Dudek, et al., Phys. Rev. Lett. 97 (072501).
- $[2]\,$ N. Schunck, et al., Acta Phys. Pol. B 36 (1071).
- [3] J. Dudek, et al., Phys. Rev. Lett. 88 (252502).