AMENDMENTS TO THE CLAIMS

1 1-10.	(Canceled)

1	11. (Currently Amended) A method of determining enforcement security devices in a
2	network topology, the method comprising the computer-implemented steps of:
3	locating a plurality of adjacent nodes within a sequence of nodes, the plurality of
4	adjacent nodes being between a source node and a destination node in the
5	network topology, each located node in the sequence plurality of adjacent
6	nodes having at least two adjacent nodes, including a previous node in the
7	sequence and a next node in the sequence, wherein for each located node in
8	the plurality of adjacent nodes, the next node is different than the previous
9	node;
10	for each located particular node in the sequence:
11	determining if the located particular node is the destination node, and if the located
12	particular node is the destination node, then identifying each node in the
13	sequence as being part of a path closure set between for the source node and
14	the destination node;
15	determining if the located particular node is a loop closure node, and if the located
16	particular node is a loop closure node, then determining if one or more nodes
17	in the sequence that are part of a loop path defined by the loop closure node
18	are already designated as being part of the path closure set, and
19	if one or more nodes in the sequence that are part of a loop path defined by the loop
20	closure node are already designated as being part of the path closure set, then

- designating each node in the loop path as part of the path closure set, else

 designating each node in the loop path as part of the path closure set if at least

 a designated node in the loop path is subsequently determined to be

 part of the path closure set.
- 1 12. (Original) A method as recited in Claim 11, wherein locating a plurality of adjacent 2 nodes in a sequence includes locating each node in the network topology using the sequence.
- 1 13. (Original) A method as recited by Claim 11, further comprising identifying one or 2 more enforcement security devices from nodes in the path closure set.
- 1 14. (Original) A method as recited in Claim 11, further comprising identifying one or 2 more enforcement security devices from nodes in the path closure set, and implementing a
- 1 15. (Currently Amended) A method as recited in Claim 11, wherein determining that the
- 3 node was located as a next node for at least two other nodes in the sequence.

security policy on the identified one or more enforcement security devices.

1 16. (Original) A method as recited in Claim 11, wherein designating each node in the

located particular node is a loop closure node includes determining that the located particular

- 2 loop path as part of the path closure set if a designated node in the loop path is subsequently
- 3 determined to be part of the path closure set includes designating each node in the loop path
- 4 as part of the path closure set if one of the at least two nodes in the sequence that are adjacent
- 5 to the loop closure node is subsequently determined to be part of the path closure set.

3

2

- 1 17. (Original) A method as recited in Claim 11, wherein locating a plurality of adjacent
- 2 nodes in a sequence includes locating the plurality of nodes using a depth-first methodology.
- 1 18-30. (Canceled)
- 2 31. (Currently Amended) A computer-implemented method of determining security
- devices in a network topology, the method comprising:
- 4 identifying a source node and a destination node for traffic that is to be sent through
- 5 the network topology;
- for each particular node in the network topology, adding the particular node to a path
- 7 closure set for the source node and destination node if a determination is made
- 8 that the particular node is part of a looping sequence of nodes in which (a) at
- 9 least one node in the looping sequence is already designated as being part of
- the path closure set and (b) the at least one node designated as being part of
- the path closure set is not also a loop closure node for that looping sequence;
- 12 and
- storing a list of one or more security devices that occur in the path closure set.
- 14 32. (Currently Amended) A computer-implemented method of determining security
- devices in a network topology, the method comprising:
- identifying a source node and a destination node for traffic that is to be sent through
- 17 the network topology;
- for each particular node in the network topology, adding the particular node to a path
- closure set for the source node and destination node if a determination is made

1		that the particular hode is part of a looping sequence of hodes in which at least
2		one node adjacent to a loop closure node for that looping sequence of nodes is
3		subsequently identified as being part of the path closure set; and
4		storing a list of one or more security devices that occur in the path closure set.
5	33.	(Currently Amended) A computer readable medium for determining security devices
6		in a network topology, the computer readable medium carrying instructions for
7		performing the steps of:
8		identifying a source node and a destination node for traffic that is to be sent through
9		the network topology;
10		for each particular node in the network topology, adding the particular node to a path
11		closure set for the source node and destination node if a determination is made
12		that the particular node is part of a looping sequence of nodes in which (a) at
13		least one node in the looping sequence is already designated as being part of
14		the path closure set and (b) the at least one node designated as being part of
15		the path closure set is not also a loop closure node for that looping sequence;
16		and
17		storing a list of one or more security devices that occur in the path closure set.
18	34.	(Currently Amended) A computer readable medium for determining security devices
19		in a network topology, the computer readable medium carrying instructions for
20		performing the steps of:
21		identifying a source node and a destination node for traffic that is to be sent through
22		the network topology;

1		for each particular node in the network topology, adding the particular node to a path
2		closure set for the source node and destination node if a determination is made
3		that the particular node is part of a looping sequence of nodes in which at least
4		one node adjacent to a loop closure node for that looping sequence of nodes is
5		subsequently identified as being part of the path closure set; and
6		storing a list of one or more security devices that occur in the path closure set.
7	35.	(Currently Amended) A computer system to determine security devices in a network
8		topology, the computer system comprising:
9		means for identifying a source node and a destination node for traffic that is to be sen
10		through the network topology;
11		means for adding, for each particular node in the network topology, the particular
12		node to a path closure set for the source node and destination node if a
13		determination is made that the particular node is part of a looping sequence of
14		nodes in which (a) at least one node in the looping sequence is already
15		designated as being part of the path closure set and (b) the at least one node
16		designated as being part of the path closure set is not also a loop closure node
17		for that looping sequence; and
18		means for storing a list of one or more security devices that occur in the path closure
19		set.
20	36.	(Currently Amended) A computer system to determine security devices in a network
21		topology, the computer system comprising:

means for identifying a source node and a destination node for traffic that is to be sent
through the network topology;
means for adding, for each particular node in the network topology, the particular
node to a path closure set for the source node and destination node if \underline{a}
determination is made that the particular node is part of a looping sequence of
nodes in which at least one node adjacent to a loop closure node for that
looping sequence of nodes is subsequently identified as being part of the path
closure set; and
means for storing a list of one or more security devices that occur in the path closure
set.