CS 4072 - Topics in CS Process Mining

Lecture # 15

April 12, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

- Heuristic Mining
 - ► Learning Dependency Graph (quick recap)
 - Learning Causal Nets and perform annotations

Learning Dependency Graph

First step in the Heuristic Mining

Loop pattern

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

Included arcs (assuming thresholds >=1 and >=0.5)

Home Work

► Compute the dependency measures: $|a \Rightarrow_L b|$ and $|d \Rightarrow_L d|$ for the given event log.

L = [
$$\langle a, e \rangle^5$$
, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times \left| \left\{ 1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b \right\} \right|$$

$$|a \Rightarrow_L b| = \begin{cases} \frac{|a>_L b| - |b>_L a|}{|a>_L b| + |b>_L a| + 1} & \text{if } a \neq b \\ \frac{|a>_L a|}{|a>_L a| + 1} & \text{if } a = b \end{cases}$$

Solution

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

$ \Rightarrow_L $	а	b	С	d	e
a	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10-10}{10+10+1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
<i>e</i>	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

Example

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

$ \Rightarrow_L $	а		b			С	d	e
a	$\frac{0}{0+1} =$: 0	11- 11+	$\frac{-0}{0+1} = 0.$	92	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.9$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+}$	$_{1} = -0.92$	$2 \frac{0}{0+1}$	=0		$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+}$	$_{\overline{1}} = -0.92$	$\frac{10}{10+}$	$\frac{-10}{10+1} = 0$)	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
${ >_L }a$	<i>a</i>	b 11	<i>c</i>	d 13	<u>e</u> 5	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
<i>b c</i>	0	10	10 0	0	11 11	$\frac{0-11}{0+11+1} = -0$	$\begin{vmatrix} a \rightarrow -b \end{vmatrix} = \int \frac{ a>}{ a>a}$	$\frac{ a _L b - b _L a }{ a _L b + b _L a + 1}$ if $a \neq b$
d <u>e</u>	0	0	0	4 0	13 0		$ a \Rightarrow_L b = \begin{cases} \frac{ a }{ a } \\ \frac{ a }{ a } \end{cases}$	$ \frac{ a }{ a +1} if a = b $

Dependency graph using a lower threshold (threshold of 2 for |>L| and 0.7 for |⇒L|)

$ \Rightarrow_L $	a	b	c	d	e
a	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10 - 10}{10 + 10 + 1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
<i>e</i>	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

$ >_L $	а	b	с	d	e
\overline{a}	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Computing the dependency graph

- 1. Set thresholds for the minimal number of direct successions and dependency measures
- 2. Count direct successions
- 3. Compute dependency measures
- 4. Draw dependency graph including only arcs that meet both thresholds

Learning Splits/Joins

Second step in the Heuristic Mining

Desired output: a causal net Splits/joins and frequencies

Causal Net

Interpreting Bindings

Example: output bindings of activity a

Interpreting Bindings

Example: input & output bindings of activity d

Interpreting Bindings

Example: input bindings of activity e

Example path: adde

L = [$\langle a, e \rangle^5$, $\langle a, b, c, e \rangle^{10}$, $\langle a, c, b, e \rangle^{10}$, $\langle a, b, e \rangle^1$, $\langle a, c, e \rangle^1$, $\langle a, d, e \rangle^{10}$, $\langle a, d, d, e \rangle^2$, $\langle a, d, d, e \rangle^1$]

How to discover splits and joins?

- Two classes of approaches:
- 1. Heuristics using a time window before and after each activity.
 - ▶ By counting sets of input and output activities the bindings can be determined (local decision).
- 2. Optimization approaches based on replay.
 - ► Given a set of possible input and output bindings, one can see whether reality can be replayed properly.
 - ► The set of possible input and output bindings is finite, so a "best set of bindings" can be determined using some goal function.
- Many variations are possible!

Approach 1: based on heuristics

- Activities have possible inputs and outputs (based on dependency graph).
- Count how often they appear in a window before (for input bindings) and a window after (for output bindings).

Example: window size 4

1....klbgadhek...
2....lkgcahedl...

3....kblgaehdk...

4....klgbadehk...

5....klkcadkeh...

Count frequencies of input and output activities

input bindings

• {b}: 3 times

• {c}: 2 times

output bindings

• {d,e}: 5 times

Add bindings and frequencies

```
1. ...klbgadhek...
```

- 2. ... IkgcahedI...
- 3. ...kblgaehdk...
- 4. ...klgbadehk...
- 5. ...klkcadkeh...

input bindings

- {b}: 3 times
- {c}: 2 times

output bindings

{d,e}: 5 times

Process Mining | Spring 2022

20

Another example: window size 4

1....klbgadhek...
2....kgcahhdl...
3....kbcgaehdk...
4....klcbadkhk...
5....klkcadkeh...

Count frequencies of input and output activities

Process Mining | Spring 2022

input bindings

- {b}: 1 time
- {c}: 2 times
- {b,c}: 2 times

output bindings

- {d}: 2 times
- {d,e}: 3 times

Add bindings and frequencies

Do this yourself!

```
    ...klbgadhek...
    ...lkgcahhdl...
    ...kbcgaehdk...
    ...klcbadkhk...
    ...klkcadkeh...
    input bindings
```

• {b}: 1 time

- {c}: 2 times
- {b,c}: 2 times output bindings
- {d}: 2 times
- {d,e}: 3 times

Refinements needed

- ▶ What if there are no corresponding activities in the input or output window?
- Noise filtering: remove infrequent bindings
- Handling repeating activities (e.g., cut off window size)
- Details are out of scope but be aware of such complications when interpreting results!

Approach 2: optimization problem

- Evaluate all possible activity bindings and take best one.
- ▶ Based on the idea that ideally a trace can be replayed from the initial state to the final state.
- ► This can be checked precisely using various replay approaches (will be discussed later).
- Hence, one can use approaches that simply "try bindings" exhaustively.

Example: sets of input and output bindings

Each input/output arc needs to be involved in at least one binding.

There are

```
|\{\{\{b,c\}\}\}, \{\{b\},\{c\}\}\}, \{\{b\},\{b,c\}\}\}, \{\{c\},\{b,c\}\}\}, \{\{b\},\{c\},\{b,c\}\}\}| x
|\{\{\{d,e\}\}\}, \{\{d\},\{e\}\}\}, \{\{d\},\{d,e\}\}\}, \{\{e\},\{d,e\}\}\}, \{\{d\},\{e\},\{d,e\}\}\}|
= 5 x 5 = 25 possible a activities.
```

Example: sets of input and output bindings

Each input/output arc b needs to be involved in at least one binding. Inclusive Inclusive **Inclusive** AND-join XOR-join **OR-join** OR-join OR-join The re are $|\{\ \{\{b,c\}\}\ ,\ \{\{b\},\{c\}\}\ ,\ \{\{b\},\{b,c\}\}\ ,\ \{\{c\},\{b,c\}\}\ ,\ \{\{b\},\{c\},\{b,c\}\}\ \}|\ x$ |{ {{d,e}}} , {{d},{e}} , {{d},{d,e}} , {{e},{d,e}} } , {{d},{e}} } | = $5 \times 5 = 25$ possible a activities.

Optimization approach

- For each activity select one of the input-output binding combinations.
- One can do this exhaustively and try all combinations.
- Evaluation can be done using replay.
- Take best one (taking into account fitness, precision, generalization, and simplicity).

Possible refinements

- ▶ If too time consuming:
 - Randomize
 - Use a genetic algorithm

Reading Material

Chapter 7: Aalst