20 From Subgroups to Coverings

In the last chapter we have seen that if X is a locally path connected space and $x_0 \in X$ then there are 1-1 functions:

$$\begin{pmatrix} \text{isomorphism classes} \\ \text{of path connected} \\ \text{coverings of } (X, x_0) \end{pmatrix} \xrightarrow{\Omega} \begin{pmatrix} \text{conjugacy classes} \\ \text{of subgroups} \\ \text{of } \pi_1(X, x_0) \end{pmatrix}$$

$$\begin{pmatrix} \text{isomorphism classes of} \\ \text{pointed path connected} \\ \text{coverings of } (X, x_0) \end{pmatrix} \xrightarrow{\Omega} \begin{pmatrix} \text{subgroups} \\ \text{of} \\ \pi_1(X, x_0) \end{pmatrix}$$

In both cases the function Ω associates to a covering $p\colon T\to X$ with $\tilde{x}_0\in p^{-1}(x_0)$ the (conjugacy class of) subgroup $p_*(\pi_1(T,\tilde{x}_0))\subseteq \pi_1(X,x_0)$. The natural question is for which subgroups $H\subseteq \pi_1(X,x_0)$ there exists a covering $p\colon T\to X$ such that $\Omega(p)=H$. Our goal here will be to prove that under some assumptions on X such covering P exists for any subgroup P, and so the maps P0 given above are bijections. As the first step we will show that P0 is a bijection provided that there exists a covering of P1 corresponding to the trivial subgroup of P2 corresponding to the trivial subgroup of P3 corresponding to the trivial subgroup of P4 corresponding to the trivial subgr

20.1 Definition. Let X be a locally path connected space. A *universal covering* of X is a covering $\tilde{p} \colon \widetilde{X} \to X$ such that \widetilde{X} is a simply connected space.

Directly from the Lifting Criterion 19.5 we obtain:

20.2 Proposition. Let X be a locally path connected space and $\tilde{p} \colon \widetilde{X} \to X$ be a universal covering of X. For any covering $q \colon T \to X$ there exists a map of coverings:

Notice that by Exercise 19.2 if T is path connected then the map f in Proposition 20.2 is onto. This suggests that if X has a universal covering then any path connected covering of X may be obtained as a quotient space of the universal covering space \widetilde{X} . This is the main idea in the proof of the following fact:

20.3 Theorem. Let X be a locally path connected space and let $x_0 \in X$. If there exists a universal covering $\tilde{p} \colon \widetilde{X} \to X$ then for each subgroup $H \subseteq \pi_1(X, x_0)$ there exists a covering $p_H \colon T_H \to X$ and $\tilde{x}_H \in p_H^{-1}(x_0)$ such that $p_{H*}(\pi_1(T_H, \tilde{x}_H)) = H$.

Proof. Let $H \subseteq \pi_1(X, x_0)$ be a subgroup. Let $\tilde{p} \colon \widetilde{X} \to X$ be a universal covering of X and let $y_0 \in \tilde{p}^{-1}(x_0)$. For each point $y \in \widetilde{X}$ let τ_y be a path in \widetilde{X} joining y_0 with y. Notice that if $\tilde{p}(y) = \tilde{p}(y')$ then the path $\tilde{p}\tau_y * \tilde{p}\overline{\tau_{y'}}$ is loop in X based at x_0 . Notice also that the homotopy class of this loop does not depend on the choice of paths τ_y and $\tau_{y'}$. Indeed, if σ_y and $\sigma_{y'}$ are some other paths in \widetilde{X} joining y_0 with, respectively, y and y' then, since \widetilde{X} is simply connected, by Proposition 5.6 we obtain $\tau_y \simeq \sigma_y$ and $\tau_{y'} \simeq \sigma_{y'}$ which gives a homotopy $\tilde{p}\tau_y * \tilde{p}\overline{\tau_{y'}} \simeq \tilde{p}\sigma_y * \tilde{p}\overline{\sigma_{y'}}$.

Define a relation \sim on \widetilde{X} such that $y \sim y'$ if

- (i) $\tilde{p}(y) = \tilde{p}(y')$
- (ii) $[\tilde{p}\tau_y * \tilde{p}\overline{\tau_{y'}}] \in H$

One can check that \sim is an equivalence relation on \widetilde{X} (exercise). Denote the quotient space by X_H and let $q:\widetilde{X}\to X_H$ be the quotient map. We get a commutative diagram

where p_H is given by $p_H([y]) = \tilde{p}(y)$. We will prove that $p_H \colon X_H \to X$ is a covering. Let $x \in X$ and let $U \subseteq X$ be an open neighborhood of x which is U is path connected and evenly covered by \tilde{p} . Such U exists by the assumption that X is locally path connected. We will show that U is evenly covered by p_H . We have $\tilde{p}^{-1}(U) = \bigcup_{i \in I} \tilde{U}_i$ where $\{\tilde{U}_i\}_{i \in I}$ is the set of all distinct slices of \tilde{p} over U. Notice that if y, y' are points in the same slice \tilde{U}_i and $y \neq y'$ then $y \not\sim y'$ since $\tilde{p}(y) \neq \tilde{p}(y')$. On the other hand we claim that the following holds:

Claim. If \widetilde{U}_i , \widetilde{U}_j are two slices, and there exist points $y_i \in \widetilde{U}_i$, $y_j \in \widetilde{U}_j$ such that $y_i \sim y_j$ then for every $y_i' \in \widetilde{U}_i$, $y_j' \in \widetilde{U}_j$ such that $\widetilde{p}(y_i') = \widetilde{p}(y_i')$ we have $y_i' \sim y_j'$.

To see this denote $x = \tilde{p}(y_i) = \tilde{p}(y_j)$ and $x' = \tilde{p}(y_i') = \tilde{p}(y_j')$. Since $x, x' \in U$ and U is path connected we can find a path σ in U such that $\sigma(0) = x$ and $\sigma(1) = x'$. Denote by $\widetilde{\sigma}_i$ and $\widetilde{\sigma}_j$ the lifts of σ to, respectively \widetilde{U}_i and \widetilde{U}_j . Notice that $\widetilde{\sigma}_i(0) = y_i$, $\widetilde{\sigma}_i(1) = y_i'$, and likewise $\widetilde{\sigma}_j(0) = y_j$, $\widetilde{\sigma}_j(1) = y_j'$. Denote also by τ_{y_i} , τ_{y_i} paths in \widetilde{X} that connect the point y_0 to, respectively y_i and y_j :

By the definition of the relation \sim in order to show that $y_i' \sim y_j'$ we only need to verify that $[\tilde{p}(\tau_{y_i} * \widetilde{\sigma}_i) * \tilde{p}(\overline{\tau_{y_j} * \widetilde{\sigma}_j})] \in H$. This holds since

$$[\tilde{p}(\tau_{y_i} * \widetilde{\sigma}_i) * \tilde{p}(\overline{\tau_{y_j} * \widetilde{\sigma}_j})] = [\tilde{p}\tau_{y_i} * \sigma * \overline{\sigma} * \tilde{p}\overline{\tau_{y_j}}] = [\tilde{p}\tau_{y_i} * \tilde{p}\overline{\tau_{y_j}}]$$

and $[\tilde{p}\tau_{y_i}*\tilde{p}\overline{\tau_{y_j}}] \in H$, since by assumption $y_i \sim y_j$.

The statement of the claim implies that for any slice \widetilde{U}_i the set $q^{-1}(q(\widetilde{U}_i))$ is a union of some number of slices of \widetilde{p} over U, and so it is an open set in \widetilde{X} . This shows that the set $q(\widetilde{U}_i)$ is open in X_H . It also shows that if $V \subseteq \widetilde{U}_i$ is an open set then q(V) is open in X_H . Indeed, it is enough to check that $q^{-1}(q(V))$ is open in \widetilde{X} , but this holds since $q^{-1}(q(V)) = \widetilde{p}^{-1}(\widetilde{p}(V)) \cap q^{-1}(q(\widetilde{U}_i))$.

The claim also implies that we can select a subset $\{\widetilde{U}_{i_k}\}_{k\in K}$ of the set of slices of \widetilde{p} over U such that the map $q'\colon\bigcup_{k\in K}U_{i_k}\to p_H^{-1}(U)$ obtained as a restriction of q is a continuous bijection. Since by the observation above q' maps open sets to open sets, the inverse function q'^{-1} is also continuous, and so q' is a homeomorphism. Finally, since $\bigcup_{k\in K}U_{i_k}\cong U\times K$ (where the set K is taken with the discrete topology) we obtain a homeomorphism $U\times K\cong p_H^{-1}(U)$.

Let $\tilde{x}_H = q(y_0)$. It remains to prove that $p_{H*}(\pi_1(T_H, \tilde{x}_H)) = H$. Let ω be a loop in X based at x_0 , and let $\widetilde{\omega} \colon [0,1] \to X_H$ be the lift of ω satisfying $\widetilde{\omega}(0) = \tilde{x}_H$ Recall that by Theorem 18.1 $[\omega]$ is an element of $p_{H*}(\pi_1(T_H, \tilde{x}_H))$ if and only if $\widetilde{\omega}$ is a loop in X_H . Therefore it will suffice to show that $\widetilde{\omega}$ is a loop if and only if $[\omega] \in H$. Notice that $\widetilde{\omega} = q\widetilde{\omega}'$ where $\widetilde{\omega}' \colon [0,1] \to \widetilde{X}$ is the lift of ω to \widetilde{X} satisfying $\widetilde{\omega}'(0) = y_0$. From the construction of X_H it follows that $\widetilde{\omega}$ is a loop if and only if $\widetilde{\omega}'(1) \sim \widetilde{\omega}'(0) = y_0$

where \sim is the equivalence relation on \widetilde{X} defined before. Take $\widetilde{\omega}'$ to be a path joining y_0 with $\widetilde{\omega}'(1)$ and take the constant path c_{y_0} as a path joining y_0 with itself. Using the definition of \sim we obtain that $\widetilde{\omega}'(1) \sim \widetilde{\omega}'(0)$ if and only if $[\tilde{p}\widetilde{\omega}' * \tilde{p}\overline{c_{y_0}}] \in H$. Since $[\tilde{p}\widetilde{\omega}' * \tilde{p}\overline{c_{y_0}}] = [\omega]$ we obtain that $\widetilde{\omega}'(1) \sim \widetilde{\omega}'(0)$ if and only if $[\omega] \in H$

The remaining task is to determine for which spaces a universal covering exists. We will need the following definition:

20.4 Definition. A space X is *semi-locally simply connected* if every point $x \in X$ has an open neighborhood $U \subseteq X$ such that the homomorphism $i_* \colon \pi_1(U, x) \to \pi_1(X, x)$ induced by the inclusion map $i \colon U \to X$ is the trivial homomorphism.

Equivalently, X is semi-locally simply connected if each point in X has an open neighborhood U such that any loop based at x and contained in U is homotopic to the constant loop, but though a homotopy contained in X (and not necessarily a homotopy contained in U).

20.5 Example. If X is a space such that each point $x \in X$ has an open neighborhood U where $\pi_1(U,x)$ is the trivial group, then X is semi-locally simply connected. One can use this to show, for example, that every topological manifold is semi-locally simply connected. On the other hand, it is possible to find a semi-locally simply connected space X, such that for some point $x \in X$ every open neighborhood of x has a non-trivial fundamental group.

20.6 Example. The *Hawaiian earring* space is a subspace $X \subseteq \mathbb{R}^2$ given by $X = \bigcup_{n=1}^{\infty} C_n$ where C_n is the circle with radius $\frac{1}{n}$ and center at the point $(0, \frac{1}{n})$:

This space is not semi-locally simply connected since for each open neighborhood U of the point $x_0 = (0,0)$ the homomorphism $\pi_1(U,x_0) \to \pi_1(X,x_0)$ is non-trivial.

Semi-local simple connectedness is a necessary condition for existence of a universal covering:

20.7 Proposition. If X is a space such that there exists a universal covering $p \colon \widetilde{X} \to X$ then X is semi-locally simply connected.

Proof. Exercise. □

Conversely, we will show that the following holds:

20.8 Theorem. If X is a space which is connected, locally path connected, and semi-locally simply connected then there exists a universal covering $p: \widetilde{X} \to X$.

Proof. Let X be a space satisfying assumptions of the theorem. We will say that an open set $U \subseteq X$ is *trivial* if U is path connected and for any $x \in U$ the homomorphism $i_* \colon \pi_1(U,x) \to \pi_1(X,x)$ induced by the inclusion map $i \colon U \to X$ is trivial. Since X is locally path connected and semi-locally simply connected trivial sets form a basis of the topology on X, that is any open set in X is a union of trivial sets.

The first step in the construction of a universal covering $p\colon\widetilde{X}\to X$ is to describe the set of points of the space \widetilde{X} . This description will be based on the following reasoning. Assume that we already have a universal covering $p\colon\widetilde{X}\to X$, let $x_0\in X$ and let $\widetilde{x}_0\in p^{-1}(x_0)$. Since the space \widetilde{X} is path connected, for any point $\widetilde{x}\in\widetilde{X}$ there exists a path $\widetilde{\omega}$ such that $\omega(0)=\widetilde{x}_0$ and $\widetilde{\omega}(1)=\widetilde{x}$. Moreover, since \widetilde{X} is simply connected any two such path in \widetilde{X} are homotopic. In effect the assignment $[\widetilde{\omega}]\mapsto\widetilde{\omega}(1)$ gives a bijection:

$$\begin{pmatrix} \text{homotopy classes of paths} \\ \widetilde{\omega} \colon [0,1] \to \widetilde{X} \\ \text{with } \widetilde{\omega}(0) = \widetilde{x_0} \end{pmatrix} \cong \begin{pmatrix} \text{points of } \widetilde{X} \end{pmatrix}$$

Notice that we also have a bijection:

$$\begin{pmatrix} \text{homotopy classes of paths} \\ \widetilde{\omega} \colon [0,1] \to \widetilde{X} \\ \text{with } \widetilde{\omega}(0) = \widetilde{x_0} \end{pmatrix} \stackrel{\sim}{=} \begin{pmatrix} \text{homotopy classes of paths} \\ \omega \colon [0,1] \to X \\ \text{with } \omega(0) = x_0 \end{pmatrix}$$

which assigns to the homotopy class of a path $\widetilde{\omega}$ in \widetilde{X} the homotopy class of $p\widetilde{\omega}$. The inverse function sends the homotopy class of a path ω in X to the homotopy class of $\widetilde{\omega}$, where $\widetilde{\omega}$ is the unique lift of ω satisfying $\widetilde{\omega}(0) = \widetilde{x}_0$.

In effect we get a bijective correspondence:

$$\left(\text{points of }\widetilde{X}\right) \cong \left(\begin{array}{c} \text{homotopy classes of paths} \\ \omega \colon [0,1] \to X \\ \text{with } \omega(0) = x_0 \end{array}\right)$$

The upshot of this argument is that if we are given a space X then we can define \widetilde{X} to be the set on the right hand side of the above bijection.

Next, we need to define a topology on the set \widetilde{X} . Let $[\omega] \in \widetilde{X}$, and let U be a trivial set such that $\omega(1) \in U$. Define:

$$U[\omega] = \{ [\omega * \alpha] \mid \alpha : [0, 1] \rightarrow U, \ \alpha(0) = \omega(1) \}$$

One can check that the collection of all sets $U[\omega]$ defined in this way is a basis of a topology on \widetilde{X} (exercise). We will consider \widetilde{X} as a topological space with topology defined by this basis.

Consider the function $p: \widetilde{X} \to X$ given by $p([\omega]) = \omega(1)$. We will show that this is a universal covering of X. We will use the following observations, proofs of which are left as an exercise:

(i) For any trivial set $U \subseteq X$ and any path $[\omega] \in \widetilde{X}$ such that $\omega(1) \in U$ the map

$$p|_{U[\omega]}\colon U[\omega]\to U$$

is a homeomorphism.

(ii) Let $U \subseteq X$ be a trivial set, let $x \in U$ and let $H(x_0, x) = \{ [\omega] \in \widetilde{X} \mid \omega(1) = x \}$. Then

$$p^{-1}(U) = \bigcup_{[\omega] \in H(x_0, x)} U[\omega]$$

Moreover $U[\omega] \cap U[\omega'] = \emptyset$ for all $[\omega], [\omega'] \in H(x_0, x), [\omega] \neq [\omega']$.

(iii) For a path $\omega: [0,1] \to X$ such that $\omega(0) = x_0$ and for $s \in [0,1]$ let ω_s be the path in X defined by $\omega_s(t) = \omega(st)$. The function $h_\omega: [0,1] \to \widetilde{X}$ given by $h_\omega(s) = [\omega_s]$ is continuous.

Directly from (ii) is follows that the function p is continuous. Furthermore, combining (ii) and (i) we obtain that p is covering and that each trivial set in X is evenly covered by p.

Next, by (iii) the space \widetilde{X} is path connected. Indeed, for any $[\omega] \in \widetilde{X}$ the function h_{ω} is a path in \widetilde{X} joining $[\omega]$ with $[c_{x_0}]$, the homotopy class of the constant path at x_0 . It remains then to show that the fundamental group $\pi_1(\widetilde{X},[c_{x_0}])$ is trivial, or equivalently that $p_*(\pi_1(\widetilde{X},[c_{x_0}]))$ is the trivial subgroup of $\pi_1(X,x_0)$. Assume then that ω is a loop in X such that $[\omega] \in p_*(\pi_1(\widetilde{X},[c_{x_0}]))$. By Theorem 18.1 this means that the lift of ω to \widetilde{X} that starts at $[c_{x_0}]$ is a loop in \widetilde{X} . Notice, however, that this lift is given the path h_s defined in (iii). This path is a loop only when $[c_{x_0}] = h_{\omega}(0) = h_{\omega}(1) = [\omega]$ i.e. only when $[\omega]$ is the trivial element of $\pi_1(X,x_0)$.

Exercises to Chapter 20

E20.1 Exercise. Prove Proposition 20.7.

E20.2 Exercise. Let X, Y be connected and locally path connected spaces, and let $\tilde{p}_X \colon \widetilde{X} \to X$, and $\tilde{p}_Y \colon \widetilde{Y} \to Y$ be their universal coverings. Show that if $X \simeq Y$ then $\widetilde{X} \simeq \widetilde{Y}$.

E20.3 Exercise. Describe explicitly all non-isomorphic connected coverings of the space $\mathbb{R}P^2 \times \mathbb{R}P^2$

E20.4 Exercise. Let X be a space, and let $A \subseteq X$. Assume that both X and A are connected and locally path connected, and that the inclusion map $i \colon A \to X$ induces an isomorphism of the fundamental groups

$$i_* \colon \pi_1(A, x_0) \xrightarrow{\cong} \pi_1(X, x_0)$$

for $x_0 \in A$. Show that if $\tilde{p} \colon \widetilde{X} \to X$ is a universal covering of X then the map $\tilde{p}|_{\tilde{p}^{-1}(A)} \colon \tilde{p}^{-1}(A) \to A$ is a universal covering of A.

E20.5 Exercise. a) Let X be a finite, path connected, 1-dimensional CW complex. Show that if $\tilde{p}: \widetilde{X} \to X$ is the universal covering of X then the space \widetilde{X} has the structure of a 1-dimensional CW complex such that \tilde{p} is a cellular map.

b) Use part a) to show that if F is a finitely generated free group then every subgroup of F is free.

c) Recall that [G:H] denotes the index of a subgroup H in a group G. Let F be free group on n generators, and let H be a subgroup of F. Show that if [F:H]=k then H is a free group on (n-1)k+1 generators.