계산력 연습

[영역] 3.함수

즛 1 과정

3-4-1.함수의 식 구하기, y = ax와 y = a/x의 교점

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-03-14

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 함수 y = ax $(a \neq 0)$ 의 식 구하기

- (1) y가 x에 정비례, 그래프가 원점을 지나는 직선이면 함수의 식을 $y = ax(a \neq 0)$ 의 꼴로 놓는다.
- (2) 함수의 그래프가 점 (p, q)를 지난다면 y = ax에 대입하여 상수 a의 값을 구한다.

2. 함수 $y = \frac{a}{x} (a \neq 0, x \neq 0)$ 의 식 구하기

- (1) y가 x에 반비례, 그래프가 원점에 대하여 대칭인 한 쌍의 매끄러운 곡선이면 함수의 식을 $y = \frac{a}{x}(a \neq 0)$ 의 꼴로 놓는다.
- (2) 함수의 그래프가 점 $(p,\ q)$ 를 지난다면 $y=\frac{a}{x}$ 에 대입하여 상수 a의 값을 구한다.

3. 함수
$$y=ax$$
와 함수 $y=\frac{b}{x}$ 의 교점

- (1) 함수 y = ax와 함수 $y = \frac{b}{x}$ 의 교점 구하기
- ① $ax = \frac{b}{x}$ 라 하고 x의 값을 구한다.② 구한 x의 값을 대입하여 y의 값을 구한다.
- (2) 교점이 주어질 때, 함수의 식 구하기
- : 직선과 곡선의 교점의 좌표를 두 함수 y=ax, $y=\frac{b}{x}$ 에 대입하여 미지수의 값을 구한다.

함수의 식 구하기

- \square y가 x에 정비례하고, 다음 조건을 만족할 때, x와 y사이의 관계식을 구하여라.
- 1. x = 4 y = 12
- 2. x = 1**일 때,** y = -2
- 3. $x = \frac{1}{2}$ **일** 때, y = -5
- 4. x=3일 때, y=2

$$5.$$
 $x = -5$ 일 때, $y = 2$

6.
$$x = \frac{1}{3}$$
일 때, $y = \frac{3}{4}$

7.
$$x = 3$$
일 때, $y = 6$

8.
$$x = 3$$
일 때 $y = -12$

9.
$$x = 8$$
일 때 $y = -2$

10.
$$x = 36$$
일 때 $y = 4$

☑ 다음 그래프가 나타내는 함수의 식을 구하여라.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

☑ 함수의 그래프를 보고 다음 값을 구하여라.

25. 다음은 함수 y = ax의 그래프이다. 이 그래프가 점 (-2k+4, 3k+4)을 지날 때, k의 값을 구하여라.

26. 다음은 함수 y = ax의 그래프이다. 이 때, b의 값을 구하여 라.

27. 함수 y = ax의 그래프이다. 이때 a+b의 값을 구하여라.

28. 다음은 함수 y=ax의 그래프이다. 이 때 a+b의 값을 구하여라.

29. 다음은 함수 y=ax의 그래프이다. 이 때 a+b의 값을 구하여라.

30. 다음은 함수 y=ax의 그래프이다. 이 때 a-b의 값을 구하여라.

31. 다음은 함수 y=ax의 그래프이다. 이 때 $\frac{k}{a}$ 의 값을 구하여라.

32. 함수 $y = ax(a \neq 0)$ 의 그래프이다. 이 때 ab-4a의 값을 구하여라.

33. 다음은 함수 $y=ax,\ y=bx$ 의 그래프이다. 이 때 ab의 값을 구하여라.

34. 다음은 두 함수 $y=ax,\ y=bx$ 의 그래프이다. 이 때 ab의 값을 구하여라.

ightharpoonup y가 x에 반비례하고, 다음 조건을 만족할 때, x와 y사이 의 관계식을 구하여라.

35.
$$x = 6$$
 일 때, $y = -4$

36.
$$x=1$$
 일 때, $y=3$

37.
$$x = -3$$
 일 때, $y = 12$

38.
$$x = \frac{1}{2}$$
 일 때, $y = 4$

39.
$$x = \frac{3}{4}$$
 일 때, $y = -\frac{2}{3}$

40.
$$x = 2$$
일 때 $y = -6$

41.
$$x = 45$$
일 때, $y = -\frac{1}{5}$

42.
$$x = \frac{1}{4}$$
일 때, $y = 20$

43.
$$x = -7$$
일 때, $y = -5$

44.
$$x = \frac{2}{3}$$
일 때, $y = -12$

45.
$$x = -\frac{7}{5}$$
일 때, $y = \frac{25}{14}$

☑ 다음 그래프가 나타내는 함수의 식을 구하여라.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

☑ 함수의 그래프를 보고 다음 값을 구하여라.

56. 다음은 함수 $y=\frac{a}{x}(a\neq 0)$ 의 그래프이다. 점 A의 y좌표의 값을 b라고 할 때, $\frac{b}{a}$ 의 값을 구하여라.

57. 다음은 함수 $y=\frac{a}{x}$ 의 그래프이다. 이 때 a+b의 값을 구하여라.

58. 다음은 함수 $y=rac{a}{x}$ 의 그래프이다. 이 때, $rac{a}{b}$ 의 값을 구하여라.

59. 다음은 함수 $y=\frac{a}{x}$ 의 그래프가 다음 그림과 같을 때, b의 값을 구하여라.

60. 다음 그림은 함수 $y=\frac{a}{x}$ 의 그래프이다. 이때 a-b의 값을 구하여라.

61. 다음 그림은 함수 $y=\frac{a}{x}$ 의 그래프이다. 이 때 $\frac{a}{b}$ 의 값을 구하여라.

□ 다음 함수의 그래프를 보고 각 기호에 맞는 함수의 식을 구하여라.

- 62. ♂:
- 63. ଢ:
- 64. ©
- 65. 🖨 :
- □ 다음 함수의 그래프를 보고 (1), (2), (3)에 알맞은 함수의 식 구하여라.

- 66. (1)
- 67. (2)
- 68. (3)

☐ 다음 함수의 그래프를 보고 각 기호에 맞는 함수의 식을 구하여라.

- 69. 🕥 :
- 70. ©:
- 71. 🕲 :
- 72. **a**:
- 73. 📵 :

B

함수 y = ax와 $y = \frac{a}{x}$ 의 교점

☑ 두 함수의 교점이 주어질 때, 다음 값을 구하여라.

- 74. 함수 y=ax의 그래프와 $y=\frac{b}{x}$ 의 그래프가 점 $(2,\ 4)$ 에서 만날 때, $\frac{b}{a}$ 의 값
- 75. 두 함수 $y=ax,\ y=\frac{b}{x}$ 의 그래프가 점 $(4,\ 3)$ 에서 만날 때, ab의 값

- 76. $y = \frac{6}{x}$ 의 그래프와 함수 y = ax의 그래프가 점 (2, b)에서 만날 때, a-b의 값
- 77. 함수 $y=-\frac{3}{2}x$ 와 $y=\frac{a}{x}$ 의 그래프가 점 $(2,\ b)$ 에서 만날 때, $\frac{a}{b}$ 의 값
- 78. 두 함수 y = ax, $y = -\frac{8}{x}$ 의 그래프가 점 (b, -2)만날 때, ab의 값
- 79. 함수 y=ax의 그래프와 $y=\frac{4}{x}(x>0)$ 의 그래프가 점 $(2,\ b)$ 에서 만날 때, a+b의 값
- 80. 함수 $y = ax \ (a \neq 0), \ y = \frac{8}{x}$ 의 그래프가 두 점 $(4, -b), \ (-4, \ b)$ 에서 만날 때, $\frac{b}{a}$ 의 값
- 81. 두 함수 y=ax, $y=-\frac{6}{x}$ 의 그래프가 점 (b, -3)에서 만 날 때, 4a+b의 값
- 82. 함수 y=ax의 그래프와 함수 $y=\frac{b}{x}$ 의 그래프가 만나는 두 점의 좌표가 $(-2,\ c),\ (2,\ -4)$ 일 때, a+b+c의 값
- 83. 함수 y = ax의 그래프와 함수 $y = \frac{b}{x}$ 의 그래프가 만나는 두 점의 좌표가 (-3, 2), (3, c)일 때, a+b+c의 값

- □ 다음 주어진 함수의 그래프를 보고 알맞은 값을 구하여 라. (단, a, b는 상수)
- 84. 두 함수 y=3x, $y=\frac{a}{x}(a\neq 0)$ 의 그래프이다. 이 때, a의 값을 구하여라.

85. 다음 그래프는 함수 $y=\frac{2}{3}x$ 와 $y=\frac{a}{x}$ 의 그래프이다. 이 때, a의 값을 구하여라.

86. 두 함수 $y=ax,\ y=-\frac{9}{x}$ 의 그래프이다. 이때, a의 값을 구하여라.

87. 다음은 두 함수 $y=\frac{2}{5}x,\;y=\frac{a}{x}$ 의 그래프이다. 이때, 상수 a의 값을 구하여라.

88. 다음 그림은 함수 $y=\frac{12}{x}$ 의 그래프와 y=ax의 그래프이 다. 이때, ab의 값을 구하여라.

89. 다음 그림은 두 함수 y=ax와 $y=\frac{b}{x}(x>0)$ 의 그래프이다. 이 때, a+b의 값을 구하여라.

90. 그림은 두 함수 $y=\frac{3}{2}x,\ y=\frac{a}{x}$ 의 그래프이다. 이 때, a-b의 값을 구하여라.

91. 다음 그림은 $y=\frac{3}{2}x$ 와 $y=\frac{a}{x}$ 의 그래프이다. 이 때, a-b의 값을 구하여라.

92. 두 함수 y=-3x, $y=\frac{a}{x}(x<0)$ 의 그래프이다. 두 그래프 가 점 $(b,\ 12)$ 에서 만날 때, a+b의 값을 구하여라.

정답 및 해설 🥻

- 1) y = 3x
- $\Rightarrow y = ax$ 에서 12 = 4a이므로 a = 3 $\therefore y = 3x$
- 2) y = -2x
- $\Rightarrow y = ax \text{ on } -2 = a \qquad \therefore y = -2x$
- 3) y = -10x
- $\Rightarrow y = ax$ 에서 $-5 = \frac{1}{2}a$ 이므로 a = -10 $\therefore y = -10x$
- 4) $y = \frac{2}{3}x$
- \Rightarrow y=ax에서 2=3a이므로 $a=rac{2}{3}$ \therefore $y=rac{2}{3}x$
- 5) $y = -\frac{2}{5}x$
- $\Rightarrow y = ax$ 에서 2 = -5a이므로 $a = -\frac{2}{5}$ $\therefore y = -\frac{2}{5}x$
- 6) $y = \frac{9}{4}x$
- $\Rightarrow y = ax$ 에서 $\frac{3}{4} = \frac{1}{3}a$ 이므로 $a = \frac{9}{4}$ $\therefore y = \frac{9}{4}x$
- 7) y = 2x
- 8) y = -4x
- 9) $y = -\frac{1}{4}x$
- 10) $y = \frac{1}{9}x$
- 11) $y = \frac{4}{3}x$
- \Rightarrow y=ax에 $x=3,\ y=4$ 를 대입하면 4=3a에서 $a=\frac{4}{3}$ \therefore $y=\frac{4}{3}x$
- 12) $y = -\frac{1}{2}x$
- \Rightarrow y=ax에 $x=-2,\ y=1$ 을 대입하면 1=-2a에서 $a=-\frac{1}{2}$ \therefore $y=-\frac{1}{2}x$

- 13) $y = \frac{3}{2}x$
- \Rightarrow y=ax에 x=2, y=3을 대입하면 3=2a에서 $a=\frac{3}{2}$ \therefore $y=\frac{3}{2}x$
- 14) y = 2x
- \Rightarrow y=ax에 x=1, y=2를 대입하면 2=a 따라서 함수의 식은 y=2x이다.
- 15) y = 3x
- \Rightarrow y=ax에 x=-2, y=-6을 대입하면 -6=-2a \therefore a=3 따라서 함수의 식은 y=3x이다.
- 16) $y = \frac{2}{3}x$
- $\Rightarrow y = ax$ 에 x = 3, y = 2를 대입하면 2 = 3a $\therefore a = \frac{2}{3}$

따라서 함수의 식은 $y = \frac{2}{3}x$ 이다.

- 17) $y = \frac{4}{5}x$
- \Rightarrow y=ax에 x=-5, y=-4를 대입하면 -4=-5a \therefore $a=\frac{4}{5}$ 따라서 함수의 식은 $y=\frac{4}{5}x$ 이다.
- 18) y = -x
- \Rightarrow y=ax에 x=-2, y=2를 대입하면 2=-2a \therefore a=-1 따라서 함수의 식은 y=-x이다.
- 19) y = -3x
- \Rightarrow y=ax에 x=1, y=-3을 대입하면 -3=a 따라서 함수의 식은 y=-3x이다.
- 20) $y = -\frac{1}{2}x$
- $\Rightarrow y = ax$ 에 x = 6, y = -3을 대입하면 -3 = 6a $\therefore a = -\frac{1}{2}$

따라서 함수의 식은 $y = -\frac{1}{2}x$ 이다.

- 21) $y = -\frac{5}{2}x$
- \Rightarrow y=ax에 x=-2,y=5 를 대입하면 5=-2a \therefore $a=-\frac{5}{2}$ 따라서 함수의 식은 $y=-\frac{5}{2}x$ 이다.

22)
$$y = -\frac{3}{2}x$$

23)
$$y = -\frac{1}{2}x$$

24)
$$y = \frac{3}{2}x$$

$$ightharpoonup 원점을 지나는 직선이므로 함수의 식을 $y=ax$ 이라고 할 때 점 $(2,\ 3)$ 을 지나므로 대입하면 $3=2a$ 에서 $a=rac{3}{2}$ 이고 함수의 식은 $y=rac{3}{2}x$ 이다.$$

25)
$$-\frac{1}{2}$$

$$\Rightarrow y = ax$$
가 점 $(4, 2)$ 를 지나므로 이를 대입하면 $2 = 4a$ $\therefore a = \frac{1}{2}$ 이제 $y = \frac{1}{2}x$ 가 점 $(-2k+4, 3k+4)$ 를 지나므로 대입하면 $3k+4=\frac{1}{2}(-2k+4), 3k+4=-k+2, 4k=-2$ $\therefore k=-\frac{1}{2}$

$$26) -3$$

$$\Rightarrow y = ax$$
의 그래프가 $(-4, 6)$ 을 지나므로 $-4a = 6$ $\therefore a = -\frac{3}{2}$ $y = -\frac{3}{2}x$ 의 그래프가 $(2, b)$ 를 지나므로 $b = -3$

$$27) - 9$$

⇒
$$y = ax$$
가 점 $(-6, 4)$ 를 지나므로 $4 = -6a, a = -\frac{2}{3}$ 이고 함수의 식은 $y = -\frac{2}{3}x$ 이다.
또한 $y = -\frac{2}{3}x$ 가 점 $(2, b)$ 를 지나므로 $b = -\frac{2}{3} \times 2 = -\frac{4}{3}$
∴ $a + b = -\frac{2}{3} + \left(-\frac{4}{3}\right) = -\frac{6}{3} = -2$

28)
$$\frac{25}{2}$$

다
$$y = ax$$
의 그래프가 $(-2, -5)$ 를 지나므로 $-2a = -5$ $\therefore a = \frac{5}{2}$ $y = \frac{5}{2}x$ 의 그래프가 $(4, b)$ 를 지나므로 $b = \frac{5}{2} \times 4 = 10$ $\therefore a + b = \frac{5}{2} + 10 = \frac{25}{2}$

29)
$$-\frac{11}{2}$$

다
$$y = ax$$
의 그래프가 $(2, -3)$ 을 지나므로 $-3 = 2a$ $\therefore a = -\frac{3}{2}$ $y = -\frac{3}{2}x$ 의 그래프가 $(b, 6)$ 을 지나므로 $-\frac{3}{2}b = 6$ $\therefore b = -4$ $\therefore a + b = -\frac{3}{2} - 4 = -\frac{11}{2}$

30)
$$\frac{3}{2}$$

$$\Rightarrow y = ax$$
의 그래프가 $(4, 2)$ 를 지나므로 $a = \frac{1}{2}$ $y = \frac{1}{2}x$ 의 그래프가 $(-2, b)$ 를 지나므로 $b = -1$ $\therefore a - b = \frac{1}{2} + 1 = \frac{3}{2}$

31)
$$-6$$

$$y = ax$$
의 그래프가 $(-6, 4)$ 를 지나므로 $a = -\frac{2}{3}$
$$y = -\frac{2}{3}x$$
의 그래프가 $\left(k, -\frac{8}{3}\right)$ 을 지나므로
$$-\frac{2}{3}k = -\frac{8}{3} \quad \therefore \quad k = 4$$
$$\therefore \quad \frac{k}{a} = 4 \div \left(-\frac{2}{3}\right) = 4 \times \left(-\frac{3}{2}\right) = -6$$

32) 15

$$\Rightarrow y = ax$$
의 그래프가 $(-2, -5)$ 를 지나므로 $a = \frac{5}{2}$ $y = \frac{5}{2}x$ 의 그래프가 $(4, b)$ 를 지나므로 $b = \frac{5}{2} \times 4 = 10$ $\therefore ab - 4a = \frac{5}{2} \times 10 - 4 \times \frac{5}{2} = 25 - 10 = 15$

33)
$$-\frac{3}{4}$$

⇒
$$y = ax$$
의 그래프는 $(2, 1)$ 을 지나므로 $a = \frac{1}{2}$

$$y = bx$$
의 그래프는 $(-2, 3)$ 을 지나므로 $b = -\frac{3}{2}$

$$\therefore ab = \frac{1}{2} \times \left(-\frac{3}{2}\right) = \frac{3}{4}$$

34) -1

$$\Rightarrow y = ax$$
의 그래프는 $(3, 1)$ 을 지나므로 $a = \frac{1}{3}$ $y = bx$ 의 그래프는 $(1, -3)$ 을 지나므로 $b = -3$ $\therefore ab = \frac{1}{3} \times (-3) = -1$

35)
$$y = -\frac{24}{x}$$

- $\Rightarrow y = \frac{a}{x}$ 에서 $-4 = \frac{a}{6}$ 이므로 a = -24
 - $\therefore y = -\frac{24}{r}$
- 36) $y = \frac{3}{x}$
- $\Rightarrow y = \frac{a}{r} \text{ on M} \quad 3 = a \quad \therefore \quad y = \frac{3}{r}$
- 37) $y = -\frac{36}{r}$
- $\Rightarrow y = \frac{a}{r}$ 에서 $12 = -\frac{a}{3}$ 이므로 a = -36
 - $\therefore y = -\frac{36}{x}$
- 38) $y = \frac{2}{}$
- $\Rightarrow y = \frac{a}{r} \text{ oil M} \quad a = xy = \frac{1}{2} \times 4 = 2 \quad \therefore \quad y = \frac{2}{r}$
- 39) $y = -\frac{1}{2x}$
- $\Rightarrow y = \frac{a}{x}$ oil $\Rightarrow xy = \frac{3}{4} \times \left(-\frac{2}{3}\right) = -\frac{1}{2}$
 - $\therefore y = -\frac{1}{2x}$
- 40) $y = -\frac{12}{r}$
- 41) $y = -\frac{9}{x}$
- 42) $y = \frac{5}{x}$
- 43) $y = \frac{35}{x}$
- 44) $y = -\frac{8}{x}$
- 45) $y = -\frac{5}{2x}$
- 46) $y = \frac{12}{}$
- \Rightarrow $y=\frac{a}{x}$ 에 x=6, y=2을 대입하면 $2=\frac{a}{6}$ 에서 a=12 52) $y=-\frac{24}{x}$ $\therefore y = \frac{12}{\pi}$
- 47) $y = -\frac{8}{x}$

- $\Rightarrow y = \frac{a}{x}$ 에 x = -2, y = 4을 대입하면 $4 = -\frac{a}{2}$ 에서 a = -8 $\therefore y = -\frac{8}{\pi}$
- 48) $y = \frac{4}{r}$
- ⇒ 그래프가 원점에 대하여 대칭인 한 쌍의 곡선이므로 함 수의 식을 $y = \frac{a}{r}$ 로 놓고, 점 (2,2)를 지나므로

 $y=\frac{a}{x}$ 에 x=2, y=2를 대입하면

- $2 = \frac{a}{2} \qquad \therefore a = 4$
- 따라서 함수의 식은 $y = \frac{4}{r}$ 이다.
- 49) $y = \frac{6}{x}$
- ⇨ 그래프가 원점에 대하여 대칭인 한 쌍의 곡선이므로 함 수의 식을 $y = \frac{a}{x}$ 로 놓고, 점 (2,3)을 지나므로

 $y=\frac{a}{x}$ 에 x=2, y=3을 대입하면

- $3 = \frac{a}{2}$ $\therefore a = 6$
- 따라서 함수의 식은 $y = \frac{6}{x}$ 이다.
- 50) $y = -\frac{5}{3}$
- $\Rightarrow y = \frac{a}{x}$ 에 x = 5, y = -1을 대입하면 $-1 = \frac{a}{5}$ 에서 a = -5 $\therefore y = -\frac{5}{x}$
- 51) $y = -\frac{4}{3}$
- ⇒ 그래프가 원점에 대하여 대칭인 한 쌍의 곡선이므로 함 수의 식을 $y=\frac{a}{x}$ 로 놓고, 점 (1,-4)를 지나므로 $y=\frac{a}{x}$ 에 x=1, y=-4를 대입하면
 - $-4 = \frac{a}{1} \qquad \therefore a = -4$
 - 따라서 함수의 식은 $y = -\frac{4}{x}$ 이다.
- ⇒ 그래프가 원점에 대하여 대칭인 한 쌍의 곡선이므로 함 수의 식을 $y=\frac{a}{r}$ 로 놓고, 점 (-4,6)을 지나므로 $y=\frac{a}{x}$ 에 x=-4, y=6을 대입하면
 - $6 = \frac{a}{-4} \qquad \therefore a = -24$

따라서 함수의 식은 $y = -\frac{24}{x}$ 이다.

- 53) $y = -\frac{30}{r}$
- 다 그래프가 원점에 대하여 대칭인 한 쌍의 곡선이므로 함 수의 식을 $y=\frac{a}{x}$ 로 놓고, 점 $\left(-9,\frac{10}{3}\right)$ 을 지나므로 $y=\frac{a}{x}$ 에 $x=-9,\ y=\frac{10}{3}$ 을 대입하면 $\frac{10}{3}=\frac{a}{-9} \qquad \qquad \therefore \ a=-30$

따라서 함수의 식은 $y=-\frac{30}{x}$ 이다.

- 54) $y = -\frac{18}{x}$
- 55) $y = \frac{10}{x}$
- 56) $-\frac{1}{6}$
- $\Rightarrow y = \frac{a}{x}$ 의 그래프가 (3, 3)을 지나므로 a = 9 $y = \frac{9}{x}$ 의 그래프가 (-6, b)를 지나므로 $b = \frac{9}{(-6)} = -\frac{3}{2}$ $\therefore \frac{b}{a} = \left(-\frac{3}{2}\right) \times \frac{1}{9} = -\frac{1}{6}$
- 57) -5
- $\Rightarrow y = \frac{a}{x}$ 의 그래프가 (-2, 3)을 지나므로 a = -6 $y = \frac{-6}{x}$ 의 그래프가 (b, -6)을 지나므로 $\frac{-6}{b} = -6$ $\therefore b = 1$ $\therefore a + b = -6 + 1 = -5$
- 58) -6
- $\Rightarrow y = \frac{a}{x}$ 의 그래프가 (3, 4)를 지나므로 a = 12 $y = \frac{12}{x}$ 의 그래프가 (-6, b)를 지나므로 $b = \frac{12}{-6} 2$ $\therefore \frac{a}{b} = \frac{12}{(-2)} = -6$
- 59) $-\frac{9}{2}$
- $\Rightarrow y=rac{a}{x}$ 의 그래프가 $(6,\ 3)$ 을 지나므로 a=18 $y=rac{18}{x}$ 의 그래프가 $(-4,\ b)$ 를 지나므로 $b=rac{18}{-4}=-rac{9}{2}$
- 60) 27

- $\Rightarrow y = \frac{a}{x}$ 의 그래프가 (6, 4)를 지나므로 a = 24 $y = \frac{24}{x}$ 의 그래프가 (-8, b)를 지나므로 $b = \frac{24}{-8} = -3$ $\therefore a b = 24 (-3) = 27$
- 61) (
- $\Rightarrow y = \frac{a}{x}$ 가 점 A(3, 6)을 지나므로 $6 = \frac{a}{3}$, a = 18 $y = \frac{18}{x}$ 의 그래프가 B(6, b) 를 지나므로 $b = \frac{18}{6} = 3$ $\therefore \frac{a}{b} = \frac{18}{3} = 6$
- 62) y = x
- 63) y = -x
- 64) $y = \frac{1}{x}$
- 65) $y = -\frac{1}{x}$
- 66) y = -3x
- 67) $y = -\frac{3}{x}$
- 68) $y = \frac{x}{4}$
- 69) $y = -\frac{3}{5}x$
- 70) y = -x
- 71) $y = \frac{5}{3}x$
- 72) $y = \frac{3}{5}x$
- 73) $y = \frac{15}{r}$
- 74) 4
- $\Rightarrow y = ax$ 가 점 (2, 4)를 지나므로 대입하면 4 = 2a, a = 2 $y = \frac{b}{x}$ 가 점 (2, 4)를 지나므로 대입하면 $4 = \frac{b}{2}, b = 8$. $\therefore \frac{b}{a} = \frac{8}{2} = 4$
- 75) 9
- y = ax가 점 (4, 3)를 지나므로 $3 = 4a, a = \frac{3}{4}$ $y = \frac{b}{x}$ 가 점 (4, 3)를 지나므로 $3 = \frac{b}{4}, b = 12$

$$\therefore ab = \frac{3}{4} \times 12 = 9$$

76)
$$-\frac{3}{2}$$

$$\Rightarrow$$
 $(2, b)$ 가 $y=\frac{6}{x}$ 위의 점이므로 대입하면 $b=\frac{6}{2}=3$ 에서 점 $(2, 3)$ 이고 이 점이 $y=ax$ 위의 점이므로 대입하면 $3=2a, \ a=\frac{3}{2}$ 이다.

$$\therefore a-b=\frac{3}{2}-3=-\frac{3}{2}$$

$$\Rightarrow$$
 $(2, b)$ 가 $y=-\frac{3}{2}x$ 위의 점이므로 $b=-\frac{3}{2}\times(2)=-3$, $(2, -3)$ 이 $y=\frac{a}{x}$ 위의 점이므로 $-3=\frac{a}{2}$, $a=-6$ $\therefore \frac{a}{1}=\frac{-6}{2}=2$

78)
$$-2$$

$$\Rightarrow y = -\frac{8}{x}$$
의 그래프가 점 $(b, -2)$ 를 지나므로 $-2 = \frac{-8}{b}$ 에서 $b = \frac{-8}{-2} = 4$ $y = ax$ 의 그래프가 점 $(4, -2)$ 를 지나므로 $-2 = 4a$, $a = -\frac{1}{2}$ $\therefore ab = \left(-\frac{1}{2}\right) \times 4 = -2$

79) 3

다 점
$$(2, b)$$
가 $y=\frac{4}{x}$ 위의 점이므로 대입하면
$$b=\frac{4}{2}=2 \text{ 에서 } (2, 2)$$
이다. 이 점이 $y=ax$ 위의 점이므로 $2=2a, a=1$ 이고 $a+b=1+2=3$ 이다.

$$80) -4$$

$$\Rightarrow y = \frac{8}{x}$$
가 점 $(4, -b)$ 를 지나므로
$$-b = \frac{8}{4} = 2 \text{ 에서 } b = -2$$

$$y = ax \text{ 가 점}(4, 2)$$
를 지나므로 $2 = 4a, a = \frac{1}{2}$
$$\frac{b}{a} = -2 \times 2 = -4$$

81)
$$-4$$

$$\Rightarrow y = -\frac{6}{x}$$
의 그래프가 점 $(b, -3)$ 를 지나므로 $-3 = \frac{-6}{b}$ $\therefore b = 2$ 이제 $y = ax$ 의 그래프가 점 $(2, -3)$ 를 지나므로 $-3 = 2a$ $\therefore a = -\frac{3}{2}$ $\therefore 4a + b = 4 \times \left(-\frac{3}{2}\right) + 2 = -6 + 2 = -4$

82) -6

$$\Rightarrow$$
 $y=ax$ 가 점 $(2,-4)$ 를 지나므로 대입하면 $-4a=2a,\ a=-2$ 이다.
또한 $y=\frac{b}{x}$ 가 점 $(2,-4)$ 를 지나므로 대입하면 $-4=\frac{b}{2},\ b=-8$ 이다.
그리고 $y=-2x$ 가 점 $(-2,c)$ 를 지나므로 $c=-2\times(-2)=4$ 에서 $a+b+c=(-2)+(-8)+4=-6$ 이다.

83)
$$-\frac{26}{3}$$

$$\Rightarrow y = ax$$
가 점 $(-3, 2)$ 를 지나므로 $2 = -3a, a = -\frac{2}{3}$ 이다. $y = \frac{b}{x}$ 가 점 $(-3, 2)$ 를 지나므로 $2 = \frac{b}{-3}, b = -6$ 이다. 이제 $y = -\frac{2}{3}x$ 가 점 $(3, c)$ 를 지나므로 $c = -\frac{2}{3} \times 3 = -2$ 이다. $\therefore a + b + c = \left(-\frac{2}{3}\right) + (-6) + (-2) = -\frac{26}{3}$

84) 12

$$\Rightarrow$$
 점 P가 $y=3x$ 위의 점이므로 $x=-2$ 일 때 $y=3\times(-2)=-6$ 에서 P $(-2,-6)$ $y=\frac{a}{x}$ 가 점 P $(-2,-6)$ 를 지나므로 $-6=\frac{a}{-2}$ 에서 $a=12$

85) 24

$$\Rightarrow$$
 점 A 가 $y=\frac{2}{3}x$ 위의 점이므로 $x=-6$ 일 때 $y=\frac{2}{3} imes(-6)=-4$ 에서 A $(-6,-4)$ 이제 $y=\frac{a}{x}$ 가 점 A $(-6,-4)$ 를 지나므로 $-4=\frac{a}{-6}$ 에서 $a=24$

86) -1

$$\Rightarrow$$
 점 P 가 $y=-\frac{9}{r}$ 위의 점이므로

$$x=-3$$
 일 때 $y=\frac{-9}{-3}=3$ 에서 $P(-3, 3)$ 이제 $y=ax$ 의 그래프가 점 $P(-3, 3)$ 를 지나므로 $3=-3a, a=-1$

87) 10

$$\Rightarrow y = \frac{2}{5}x$$
의 그래프에서 $x = 5$ 일 때 $y = \frac{2}{5} \times 5 = 2$ 이므로 두 그래프의 교점의 좌표는 $(5, 2)$ 이다. $y = \frac{a}{x}$ 의 그래프가 점 $(5, 2)$ 를 지나므로 $2 = \frac{a}{5}, a = 10$

88) $\frac{16}{3}$

다 점
$$(3, b)$$
가 $y=\frac{12}{x}$ 위의 점이므로 대입하면 $b=\frac{12}{3}=4$ 이고, $(3, 4)$ 가 $y=ax$ 위의 점이므로 대입하면 $4=3a$ 에서 $a=\frac{4}{3}$ 이다. 따라서 $ab=\frac{4}{3}\times 4=\frac{16}{3}$ 이다.

89) 10

$$\Rightarrow y = ax$$
의 그래프가 점 $(2, 4)$ 를 지나므로 $4 = 2a, a = 2$ $y = \frac{b}{x}$ 가 점 $(2, 4)$ 를 지나므로 $4 = \frac{b}{2}, b = 8$ $\therefore a + b = 2 + 8 = 10$

90) 3

91) 4

다
$$y = \frac{3}{2}x$$
, $y = \frac{a}{x}$ 의 교점을 $P(2, p)$ 라고 할 때 이 점이 $y = \frac{3}{2}x$ 위의 점이므로 $x = 2$, $y = p$ 를 대입하면 $p = \frac{3}{2} \times 2 = 3$ 에서 $P(2, 3)$ 이다. 이때 점 $P(2, 3)$ 이 $y = \frac{a}{x}$ 위의 점이므로 $x = 2$, $y = 3$ 을 대입하면 $3 = \frac{a}{2}$, $a = 6$ 이제 점 $(3, b)$ 가 $y = \frac{6}{x}$ 위의 점이므로 $x = 3$, $y = b$ 를 대입하면 $b = \frac{6}{3} = 2$ $\therefore a - b = 6 - 2 = 4$

 $\Rightarrow y = -3x$ 의 그래프가 점 (b, 12) 를 지나므로 $12 = -3 \times b, b = -4$ $y = \frac{a}{x}$ 가 점 (-4, 12) 를 지나므로 $12 = \frac{a}{-4}, a = -48$ $\therefore a + b = (-48) + (-4) = -52$

92) -52