RelEx: A system for clinical relation extraction via Convolutional Neural Network

Samantha(Darshini) Mahendran Bridget T. Mcinnes, Ph.D

Virginia Commonwealth University, Department of Computer Science

Outline

- 1. Introduction
- 2. Data
- 3. Methodology
- 4. Results and Analysis
- 5. Conclusion

Introduction

What is Relation Extraction?

Task of natural language processing (NLP) to identify and classify the relation between two entities in a text.

treats								
The	doctor	prescribed	him	Aspirin	for	his	headache	
0	0	0	0	Drug	0	0	Reason	

She was continued on *midorine* 5mg for a month

Drug Dosage Duration

Challenge

- Exponential growth of text in recent years
- Manual relation extraction is impossible
- Relation extraction in the clinical domain is more challenging as clinical records can contain multiple pairs of medical entities in the same sentence

Data

Data

n2c2-2018

- 1. *i2b2 (2010)* dataset includes problem related attributes and relations from patient discharge summaries
- 2. *n2c2 (2018)* dataset contains adverse drug events (ADE), drug related attributes and drug related relations from clinical records

Data: n2c2 (2018)

Example:

Relation	No of train instances	No of test instances
Drug-Strength	6702	4244
Drug-Duration	643	426
Drug-Route	5538	3546
Drug-Form	6654	4374
Drug-ADE	1107	733
Drug-Dosage	4225	2695
Drug-Reason	5169	3410
Drug-Frequency	6310	4034

Difference from other datasets

- relations in both datasets are fundamentally different
 - i2b2 (2010): multiple relations per entity pair

n2c2 (2018): single relation per entity pair

Methodology

Method

RelEx - Relation extraction system for identifying and classifying relations from clinical text using CNNs

Three approaches:

- Single label Sentence-CNN*
- Segment-CNN*
- Multi label Sentence-CNN

* based on Luo et al's paper

Sentence CNN(Single label)

Segment CNN

Our focus: Sentence CNN

A sentence can contain more than one distinct mentions of relation (pair of entities) with its own context

Sentence CNN(Multi label)

Sentence CNN(Multi label)

Sentence CNN (Multi-label)

- Loss function
 - binary cross entropy function is used as the problem is considered as binary classification of each label
- 2. Choice of output layer sigmoid activation function models the probability of a class as bernoulli distribution and calculates the conditional probabilities of each target class independent from the other class probabilities

 Output falls in the range of 0 to 1
- 3. Multi-hot-encoding of labels threshold of 0.5 which is the inflection point of sigmoid function to determine the class label

Feature Representation

Word2Vec

- Trained over MIMIC III (Medical Information Mart for Intensive Care)
 - Experimented: 200d, 300d, 400d
- Performed well with Segment CNN

GloVe

- Trained over Wikipedia (2014) and Gigaword 5
 - Experimented: 100d, 200d, 300d
- Performed well with Sentence CNN

Results & Analysis

i2b2 (2010) dataset - Results

*statistically significant

	Sentence CNN (Single label)			Sentence CNN (Multi label)			Segment CNN		
Relation	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
Problem - Treatment(TrP) (6)	0.68	0.69	0.69	0.71	0.62	0.66	0.7	0.71	0.71
Problem - Test(TeP) (3)	0.68	0.68	0.68	0.75	0.7	0.72*	0.78	0.79	0.79
* Problem - Problem(PP) (2)	0.87	0.88	0.87	0.93	0.89	0.92	0.87	0.86	0.87
Average	0.75	0.75	0.75	0.8	0.74	0.77	0.78	0.79	0.79

	Sentence CNN (Single label)			Senter	nce CNN (M	ulti label)	Segment CNN		
Problem - Treatment (TrP)	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
NTrP (1702)	0.78	0.79	0.78	0.64	0.57	0.60	0.76	0.86	0.81
TrAp (885)	0.57	0.67	0.61	0.76	0.82	0.79	0.59	0.62	0.6
TrCP (184)	0.75	0.23	0.34	0.73	021	0.33	0.91	0.14	0.22
TrNAP (62)	0.84	0.24	0.36	1.00	0.09	0.17	0.7	0.01	0.17
TrIP (51)	0.4	0.04	0.07	0.5	0.03	0.05	0.2	0.04	0.07
TrWP (24)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
System	0.68	0.69	0.69	0.71	0.62	0.66	0.7	0.705	0.705

	Senten	Sentence CNN (Single label)			ice CNN (Mi	ulti label)	Segment CNN		
Problem - Treatment (TrP)	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
NTrP (1702)	0.78	0.79	0.78	0.64	0.57	0.60	0.76	0.86	0.81
TrAp (885)	0.57	0.67	0.61	0.76	0.82	0.79	0.59	0.62	0.6
TrCP (184)	0.75	0.23	0.34	0.73	0.21	0.33	0.91	0.14	0.22
TrNAP (62)	0.84	0.24	0.36	1.00	0.09	0.17	0.7	0.01	0.17
TrIP (51)	0.4	0.04	0.07	0.5	0.03	0.05	0.2	0.04	0.07
TrWP (24)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
System	0.68	0.69	0.69	0.71	0.62	0.66	0.7	0.71	0.71

	Senten	ce CNN(Sin	gle label)	Sentence CNN (Multi label)			Segment CNN		
Problem - Test (TeP)	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
NTeP (993)	0.73	0.75	0.73	0.68	0.62	0.65	0.74	0.86	0.77
TeRP (993)	0.66	0.71	0.68	0.78	0.84	0.81	0.81	0.71	0.75
TeCP (166)	0.51	0.08	0.13	0.81	0.32	0.46	0.73	0.16	0.25
System	0.687	0.687	0.687	0.75	0.7	0.72	0.78	0.79	0.79

		Sentence CNN (Multi label)										
		Single labe	ls only		Multiple labels only				All labels			
Relation	# instances	Precision	Recall	F-measure	# instances	Precision	Recall	F-measure	Precision	Recall	F-measure	
Problem - Treatment (TrP)	644	0.65	0.64	0.65	240	0.96	0.59	0.73	0.71	0.62	0.66	
Problem - Test(TeP)	738	0.61	0.82	0.70	209	0.88	1.00	0.93	0.75	0.7	0.72	
* Problem - Problem (PP)	1039	0.93	0.68	0.78	469	1.00	0.78	0.88	0.93	0.89	0.92	
System	2421	0.73	0.71	0.71	918	0.95	0.79	0.85	0.8	0.74	0.77	

n2c2(2018) dataset - Results

*statistically significant

	Sentence CNN (Single label)			Senten	ice CNN (Mi	ulti label)	Segment CNN		
Relation	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
Drug-Strength	0.83	0.32	0.46	0.77	0.61	0.66*	0.96	0.92	0.94
Drug-Duration	0.66	0.21	0.32	0.83	0.73	0.78*	0.91	0.86	0.88
Drug-Route	0.30	0.57	0.39	0.91	0.9	0.9*	0.95	0.97	0.96
Drug-Form	0.47	0.62	0.53	0.91	0.9	0.91*	0.97	0.97	0.97
Drug-ADE	0.84	0.04	0.07	0.72	0.61	0.66*	0.79	0.64	0.69
Drug-Dosage	0.60	0.21	0.30	0.88	0.83	0.86*	0.91	0.95	0.93
Drug-Reason	0.59	0.78	0.67	0.85	0.84	0.84*	0.90	0.94	0.92
Drug-Frequency	0.39	0.38	0.38	0.92	0.94	0.93*	0.96	0.96	0.96
Average	0.59	0.46	0.46	0.87	0.87	0.87*	0.94	0.93	0.94

n2c2(2018) dataset - Results

*statistically significant

	Senten	Sentence CNN (Single label)			Sentence CNN (Multi label)			Segment CNN		
Relation	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure	
Drug-Strength	0.83	0.32	0.46	0.77	0.61	0.66	0.96	0.92	0.94	
Drug-Duration	0.66	0.21	0.32	0.83	0.73	0.78	0.91	0.86	0.88	
Drug-Route	0.30	0.57	0.39	0.91	0.9	0.9	0.95	0.97	0.96	
Drug-Form	0.47	0.62	0.53	0.91	0.9	0.91	0.97	0.97	0.97	
Drug-ADE	0.84	0.04	0.07	0.72	0.61	0.66	0.79	0.64	0.69	
Drug-Dosage	0.60	0.21	0.30	0.88	0.83	0.86	0.91	0.95	0.93	
Drug-Reason	0.59	0.78	0.67	0.85	0.84	0.84	0.90	0.94	0.92	
Drug-Frequency	0.39	0.38	0.38	0.92	0.94	0.93	0.96	0.96	0.96	
Average	0.59	0.46	0.46	0.87	0.87	0.87*	0.94	0.93	0.94	

n2c2(2018) dataset - Results

	Siı	Single labels only			∕lulti label c	only	All labels		
Relation	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
Drug-Strength	0.61	0.91	0.73	0.87	0.79	0.83	0.77	0.61	0.66
Drug-Duration	0.67	0.71	0.69	0.91	0.74	0.82	0.83	0.73	0.78
Drug-Route	0.54	0.8	0.64	0.96	0.91	0.94	0.91	0.9	0.9
Drug-Form	0.77	0.93	0.84	0.95	0.9	0.92	0.91	0.9	0.91
Drug-ADE	0.72	0.66	0.69	0.76	0.41	0.54	0.72	0.61	0.66
Drug-Dosage	0.7	0.83	0.76	0.93	0.84	0.88	0.88	0.83	0.86
Drug-Reason	0.82	0.87	0.85	0.89	0.81	0.85	0.85	0.84	0.84
Drug-Frequency	0.62	0.86	0.72	0.98	0.94	0.96	0.92	0.94	0.93
System	0.71	0.85	0.77	0.94	0.87	0.9	0.87	0.87	0.87

Conclusion & Future work

Conclusions

	Sentence - CNN (Single label)	Sentence - CNN (Multi-label)	Segment - CNN
Pros	 Good for multi class classification Not computationally expensive 	 Good for multi label classification Not computationally expensive 	 Explicitly distinguish segments Solves to multi label classification problem
Cons	 Not suitable for multi label classification Do not consider the positional information of entities 	 Do not consider the positional information of entities 	Computationally expensive

Future Work

- Explore additional segment-CNN architectures
 - incorporate CRF layer while concatenating segments
 - incorporate biLSTM
 - incorporate transformer with attention mechanism
- Explore different feature representations :
 - Feature-based representation
 - incorporate semantic similarity, relatedness and association
 - Featureless representation
 - Character embeddings

hyper parameter tuning

dataset	relation types	Sentence CNN (Single label)	Sentence CNN (Multi label)	Segment CNN
	Pr-Tr	Glove 200d	Glove 300d	MIMIC 200d
i2b2 - 2010	Pr-Te	Glove 200d	Glove 300d	MIMIC 200d
	Pr-Pr	MIMIC 200d	Glove 300d	MIMIC 300d
n2c2 - 2018	All	Glove 200d	Glove 200d	MIMIC 200d

t-test & p values

dataset	relation types	t-test	p value	Statistically significant
i2b2 - 2010	Pr-Tr	1.57	0.15	no
	Pr-Te	-2.97	0.02	yes
n2c2 - 2018	All	-95.22	1.65 e-13	yes

Experimental details

- Keras 2.3
- Spacy 2.1.3
- Hyper parameters that are tuned:
 - word embeddings (MIMIC III, GloVe)
 - embedding dimensions(100d, 200d, 300d, 400d)
 - sliding window (2, 3, 5)
 - optimizers (Adam, RMSProp)
 - loss (categorical cross entropy, binary cross entropy)

Bernoulli distribution

The Bernoulli distribution is a discrete distribution having two possible outcomes labelled by and in which ("success") occurs with probability and ("failure") occurs with probability, where . It therefore has probability density function. (1)

Precision and Recall

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

Softmax

- Softmax calculates the probabilities distribution of the event over 'n' different events. (will calculate the probabilities of each target class over all possible target classes).
- Output probabilities range will be 0 to 1, and the sum of all the probabilities will be equal to one.
- If the softmax function used for multi-classification model it returns the probabilities of each class and the target class will have the high probability.

Sigmoid

- Sigmoid function take any range real number and returns the output value which falls in the range of 0 to 1
- When we're building a classifier for a problem with more than one right answer,
 we apply a sigmoid function to each element of the raw output independently
- Unlike softmax which gives a probability distribution around n classes, sigmoid functions allow for independent probabilities.

Binary Cross-Entropy Loss

It is a Sigmoid activation plus a Cross-Entropy loss.

Unlike Softmax loss it is independent for each vector component (class), i.e. the loss computed for every CNN output vector component is not affected by other component values.

That's why it is used for multi-label classification

Categorical Cross-Entropy Loss

- It is a Softmax activation plus a Cross-Entropy loss.
- If we use this loss, we will train a CNN to output a probability over the n classes for each image.
- It is used for multi-class classification.

