1. Partes de la Práctica 5

1.1 Primera Parte: Configuración en Modo Ad-Hoc con Dos Nodos

Objetivo:

• Configurar una red **ad-hoc** entre **dos dispositivos** (cliente y servidor) y medir el **throughput** alcanzado.

Pasos clave:

- 1. Configurar los dos dispositivos en **modo ad-hoc**:
 - o Establecer el mismo **SSID** y **canal**.
 - o Configurar **direcciones IP estáticas** en la misma subred (por ejemplo, 192.168.1.1 y 192.168.1.2).
- 2. Realizar pruebas de rendimiento utilizando herramientas como **iperf** para medir el throughput.
- 3. Anotar el valor obtenido:
 - Si se trabaja con IEEE 802.11b, el límite teórico es 11 Mbps, pero el throughput real suele estar entre 4 y 6 Mbps debido al overhead del protocolo.

Impacto:

- Se verifica que en **modo ad-hoc**, los dispositivos se comunican directamente sin necesidad de un Access Point (AP).
- El rendimiento obtenido está por debajo del límite teórico.

Protocolo asociado:

• IEEE 802.11b: Operación en la banda de 2.4 GHz, con un límite teórico de 11 Mbps.

1.2 Segunda Parte: Configuración en Modo Ad-Hoc con Cuatro Nodos

Objetivo:

• Extender la red **ad-hoc** a **cuatro dispositivos** (dos clientes y dos servidores) y observar cómo el rendimiento disminuye.

Pasos clave:

- 1. Configurar todos los dispositivos en modo ad-hoc:
 - o Mismo **SSID** y **canal** para los 4 nodos.
- 2. Realizar pruebas de rendimiento:

- Medir el throughput entre los nodos usando iperf o herramientas similares.
- 3. Analizar los resultados:
 - El rendimiento global disminuye debido al canal compartido y al aumento de colisiones.
 - o Con **802.11b**, se obtiene un throughput aproximado de **2-3 Mbps** por conexión.

Impacto:

- El **canal compartido** limita el rendimiento cuando aumentan los nodos conectados.
- Se evidencia el impacto de las colisiones y del acceso al medio mediante CSMA/CA.

Protocolo asociado:

• IEEE 802.11b: Capacidad teórica limitada a 11 Mbps.

1.3 Tercera Parte: Configuración en Modo Infraestructura con un Access Point (AP)

Objetivo:

• Configurar una red en **modo infraestructura** utilizando un **AP** (**Access Point**) como intermediario entre los dispositivos.

Pasos clave:

- 1. Configurar el AP en modo **802.11b** o **802.11g**:
 - o Asignar un **SSID** y un **canal** específico.
- 2. Conectar dos dispositivos (cliente y servidor) al AP.
- 3. Medir el **throughput** utilizando **iperf**.
- Comparar los resultados obtenidos en modo infraestructura con los de modo ad-hoc:
 - o En **802.11b**, el throughput suele ser **4-6 Mbps** debido a las mismas limitaciones de overhead.
 - En 802.11g, el límite teórico es 54 Mbps, pero el throughput real ronda los 20-25 Mbps.

Impacto:

- El AP mejora la gestión de la red al actuar como punto central.
- El rendimiento depende del estándar WiFi utilizado (802.11b o 802.11g).

Protocolo asociado:

• **IEEE 802.11b**: 2.4 GHz, **11 Mbps** teóricos.

• **IEEE 802.11g**: 2.4 GHz, **54 Mbps** teóricos.

1.4 Cuarta Parte: Configuración con Tres Access Points en Canales No Solapados

Objetivo:

• Mejorar el rendimiento de la red utilizando **tres APs configurados en canales no solapados**.

Pasos clave:

- 1. Configurar los tres APs en **canales 1, 6 y 11** (canales no solapados en la banda de 2.4 GHz).
- 2. Conectar un único dispositivo transmisor a cada AP.
- 3. Medir el throughput máximo obtenido en cada AP utilizando **iperf**.
- 4. Analizar los resultados:
 - Con 802.11b, se obtiene un throughput aproximado de 3 Mbps por AP debido a las limitaciones del estándar.
 - o El uso de **canales no solapados** evita interferencias entre los APs.

Impacto:

- La configuración de **canales no solapados** permite que cada AP opere sin interferencias.
- El rendimiento global mejora al distribuir los dispositivos entre los APs.

Protocolo asociado:

• IEEE 802.11b/g: Uso eficiente de los canales 1, 6 y 11 en la banda de 2.4 GHz.

2. Conceptos Importantes y Cambios que Afectan las Preguntas

- 1. Modo Ad-Hoc:
 - o Permite la comunicación directa entre dispositivos sin AP.
 - o Ventaja: Configuración sencilla.
 - Desventaja: Menor rendimiento y más colisiones a medida que aumentan los nodos.
- 2. Modo Infraestructura:
 - o Utiliza un AP como punto central de comunicación.
 - o Mejora la gestión del tráfico y permite mayor estabilidad.
- 3. Throughput vs. Velocidad Teórica:
 - o La **velocidad teórica** es el límite máximo del estándar WiFi.
 - o El **throughput efectivo** es menor debido a:

- Overhead del protocolo (control, retransmisiones, etc.).
- Interferencias y colisiones en la banda de 2.4 GHz.

4. Canales no solapados:

o En la banda de **2.4 GHz**, los canales **1, 6 y 11** no se solapan, lo que permite una operación simultánea sin interferencias.

5. Estándares WiFi:

- o **802.11b**: 2.4 GHz, hasta **11 Mbps** (rendimiento real: 4-6 Mbps).
- o **802.11g**: 2.4 GHz, hasta **54 Mbps** (rendimiento real: 20-25 Mbps).
- 802.11n: Soporta 2.4 GHz y 5 GHz con mejoras de rendimiento gracias a MIMO y channel bonding.

3. Resumen de Protocolos Utilizados en la Práctica 5

Protocolo	Función	Aplicación en la práctica
802.11b	WiFi en 2.4 GHz, límite de 11 Mbps.	Configuración de modo ad-hoc e infraestructura.
802.11g	WiFi en 2.4 GHz, límite de 54 Mbps.	Mejora del rendimiento en modo infraestructura.
802.11n	WiFi en 2.4/5 GHz con mayor rendimiento (MIMO y Channel Bonding).	Potencial mejora del throughput en configuraciones avanzadas.
CSMA/CA	Acceso al medio compartido evitando colisiones.	Operación de la red inalámbrica en todos los modos.
Iperf	Herramienta para medir el rendimiento de la red.	Pruebas de throughput en todos los escenarios.

4. Cambios Importantes en la Práctica

1. Aumento de nodos en modo ad-hoc:

- Impacta negativamente en el rendimiento debido a las colisiones y el canal compartido.
- 2. Uso de APs en modo infraestructura:
 - o Mejora la estabilidad y gestión de la red.
 - o El rendimiento depende del estándar utilizado (802.11b o 802.11g).

3. Canales no solapados:

o Permiten la coexistencia de múltiples APs sin interferencias.