Geometry of Linear Neural Networks that are Equivariant / Invariant under Permutation Groups

Kathlén Kohn

joint work with

Anna-Laura Sattelberger

Vahid Shahverdi

Geometric questions:

- 1. How does the network architecture affect the geometry of the function space?
- 2. How does the geometry of the function space impact the training of the network?

Geometric questions:

- 1. How does the network architecture affect the geometry of the function space?
- 2. How does the geometry of the function space impact the training of the network?
 - a) static optimization properties (only depend on the loss)
 - b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

Geometric questions:

- 1. How does the network architecture affect the geometry of the function space?
- 2. How does the geometry of the function space impact the training of the network?
 - a) static optimization properties (only depend on the loss)
 - b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

netwo	rk architecture	ALLEGO SA	
activation	network structure	loss	
·	The state of the s		

netwo	ork architecture		
activation	network structure	loss	
identity	The state of the s		
ReLU			
polynomial		1	

netwo		
activation	network structure	loss
identity	fully-connected	
ReLU	convolutional	
polynomial	group equivariant	1

netwo	rk architecture	A 4 10 10 10 10 10 10 10 10 10 10 10 10 10	
activation	network structure	loss	
identity	fully-connected	squared-error loss	= Euclidean dist
ReLU	convolutional	Wasserstein distance	= polyhedral dist.
polynomial	group equivariant	cross-entropy	\cong KL divergence

netwo	rk architecture		
activation	network structure	loss	
identity	fully-connected	squared-error loss	= Euclidean dist
ReLU	convolutional	Wasserstein distance	= polyhedral dist.
polynomial	group equivariant	cross-entropy	\cong KL divergence

activation = identity & network structure = fully-connected

activation = identity & network structure = fully-connected

This network parametrizes linear maps:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

activation = identity & network structure = fully-connected

This network parametrizes linear maps:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

Its function space is

$$\mathcal{M}_2 = \{W \in \mathbb{R}^{3\times 4} \mid \operatorname{rank}(W) \leq 2\}.$$

activation = identity & network structure = fully-connected

This network parametrizes linear maps:

$$\mu: \mathbb{R}^{2\times 4} \times \mathbb{R}^{3\times 2} \longrightarrow \mathbb{R}^{3\times 4},$$
$$(W_1, W_2) \longmapsto W_2 W_1.$$

Its function space is

$$\mathcal{M}_2 = \{ W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \le 2 \}.$$

In general:
$$\mu: \mathbb{R}^{k_1 \times k_0} \times \mathbb{R}^{k_2 \times k_1} \times \ldots \times \mathbb{R}^{k_L \times k_{L-1}} \longrightarrow \mathbb{R}^{k_L \times k_0},$$

$$(W_1, W_2, \ldots, W_L) \longmapsto W_L \cdots W_2 W_1.$$

Its function space $\mathcal{M}_r = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{k_L \times k_0} \mid \operatorname{rank}(W) \leq r\}$, where $r := \min(k_0, \ldots, k_L)$, is an algebraic variety.

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, \ (W_1, W_2) \longmapsto W_2 W_1$

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, (W_1, W_2) \longmapsto W_2W_1$ with function space $\mathcal{M}_2 = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{9\times 9} \mid \operatorname{rank}(W) \leq 2\}.$

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, (W_1, W_2) \longmapsto W_2 W_1$ with function space $\mathcal{M}_2 = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{9\times 9} \mid \operatorname{rank}(W) \leq 2\}.$

Its inputs and outputs are 3×3 images:

a ₁₁	a ₁₂	a ₁₃	
a ₂₁	a ₂₂	a ₂₃	$\in \mathbb{R}^9$
a ₃₁	a ₃₂	a ₃₃	

Running Example

Consider an autoencoder
$$\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, (W_1, W_2) \longmapsto W_2 W_1$$
 with function space $\mathcal{M}_2 = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{9\times 9} \mid \operatorname{rank}(W) \leq 2\}.$

Its inputs and outputs are 3×3 images:

	a ₁₁	a ₁₂	a ₁₃	
	a ₂₁	a ₂₂	a ₂₃	$\in \mathbb{R}^9$.
1	a ₃₁	a ₃₂	a ₃₃	

Consider the clockwise rotation by 90°:

Running Example

Consider an autoencoder
$$\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, (W_1, W_2) \longmapsto W_2 W_1$$
 with function space $\mathcal{M}_2 = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{9\times 9} \mid \operatorname{rank}(W) \leq 2\}.$

Its inputs and outputs are 3×3 images:

	a ₁₁	a ₁₂	a ₁₃	
	a ₂₁	a ₂₂	a ₂₃	$\in \mathbb{R}^9$.
等 人	a ₃₁	a ₃₂	a ₃₃	

Consider the clockwise rotation by 90°:

Which $W \in \mathcal{M}_2$ are equivariant under σ ?

Running Example

Consider an autoencoder
$$\mu: \mathbb{R}^{2\times 9} \times \mathbb{R}^{9\times 2} \longrightarrow \mathbb{R}^{9\times 9}, (W_1, W_2) \longmapsto W_2 W_1$$
 with function space $\mathcal{M}_2 = \operatorname{im}(\mu) = \{W \in \mathbb{R}^{9\times 9} \mid \operatorname{rank}(W) \leq 2\}.$

Its inputs and outputs are 3×3 images:

a ₁₁	a ₁₂	a ₁₃	
a ₂₁	a ₂₂	a ₂₃	$\in \mathbb{R}^9$
a ₃₁	a ₃₂	a ₃₃	

Consider the clockwise rotation by 90°:

Which $W \in \mathcal{M}_2$ are equivariant under σ ? Which are invariant?

is represented by the permutation matrix

$$P_{\sigma} = egin{bmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ \end{pmatrix} egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ \end{pmatrix} egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 \ \end{pmatrix} egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ \end{pmatrix} egin{bmatrix} 0 & 0 & 0 & 1 \ \end{pmatrix} egin{bmatrix} 0 & 0 & 0 & 1 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ \end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \$$

$$\sigma: \mathbb{R}^9 \longrightarrow \mathbb{R}^9, egin{array}{c|ccccc} a_{11} & a_{12} & a_{13} \\ \hline a_{21} & a_{22} & a_{23} \\ \hline a_{31} & a_{32} & a_{33} \\ \hline \end{array} \longmapsto egin{array}{c|cccc} a_{31} & a_{21} & a_{11} \\ \hline a_{32} & a_{22} & a_{12} \\ \hline a_{33} & a_{23} & a_{13} \\ \hline \end{array}$$

is represented by the permutation matrix

	0 1 0 0	0 1	0 0 0 1	0	1	(0		0
$P_{\sigma} = $					0	0	0		
		()		1	0	0	0	0
		,	,		0	1	0	0	U
					0	0	1	0	
		()			()		1

 $W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ \Leftrightarrow $W \cdot P_{\sigma} = P_{\sigma} \cdot W$.

is represented by the permutation matrix

 $W \in \mathbb{R}^{9 imes 9}$ is equivariant under σ

$$\Leftrightarrow W \cdot P_{\sigma} = P_{\sigma} \cdot W.$$

 $W \in \mathbb{R}^{9 \times 9}$ is invariant under σ \Leftrightarrow

$$\Leftrightarrow W \cdot P_{\sigma} = W.$$

 $W \in \mathbb{R}^{9 imes 9}$ is equivariant under σ iff

$$W = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \varepsilon_3 \\ \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \beta_3 & \varepsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \beta_2 & \varepsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \beta_2 & \beta_3 & \beta_4 & \beta_1 & \varepsilon_3 \\ \hline \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 & \delta_1 & \delta_2 & \delta_3 & \delta_4 & \varepsilon_4 \\ \gamma_4 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \varepsilon_4 \\ \gamma_3 & \gamma_4 & \gamma_1 & \gamma_2 & \delta_3 & \delta_4 & \delta_1 & \delta_2 & \varepsilon_4 \\ \hline \gamma_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \varepsilon_4 \\ \hline \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_5 \end{bmatrix}$$

 $W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$W = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \varepsilon_3 \\ \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \beta_3 & \varepsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \beta_2 & \varepsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \beta_2 & \beta_3 & \beta_4 & \beta_1 & \varepsilon_3 \\ \hline \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 & \delta_1 & \delta_2 & \delta_3 & \delta_4 & \varepsilon_4 \\ \gamma_4 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \varepsilon_4 \\ \gamma_3 & \gamma_4 & \gamma_1 & \gamma_2 & \delta_3 & \delta_4 & \delta_1 & \delta_2 & \varepsilon_4 \\ \hline \gamma_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \varepsilon_4 \\ \hline \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_5 \end{bmatrix}$$

The linear space \mathcal{E}^{σ} of σ -equivariant $W \in \mathbb{R}^{9 \times 9}$

 $W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$W = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \varepsilon_3 \\ \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \beta_3 & \varepsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \beta_2 & \varepsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \beta_2 & \beta_3 & \beta_4 & \beta_1 & \varepsilon_3 \\ \hline \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 & \delta_1 & \delta_2 & \delta_3 & \delta_4 & \varepsilon_4 \\ \gamma_4 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \varepsilon_4 \\ \gamma_3 & \gamma_4 & \gamma_1 & \gamma_2 & \delta_3 & \delta_4 & \delta_1 & \delta_2 & \varepsilon_4 \\ \hline \gamma_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \varepsilon_4 \\ \hline \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_1 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_2 & \varepsilon_5 \end{bmatrix}$$

The linear space \mathcal{E}^{σ} of σ -equivariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_2 = \{W \in \mathbb{R}^{9 \times 9} \mid \mathrm{rank}(W) \leq 2\}$ of our autoencoder is an algebraic variety with

- ◆ 10 irreducible components over ℂ
- ullet 4 irreducible components over ${\mathbb R}$

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$!

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$!

Any neural network can parametrize at most one of the real irreducible components of $\mathcal{E}^{\sigma}\cap\mathcal{M}_{2}.$

 $W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$W = \begin{bmatrix} \alpha_1 & \alpha_1 & \alpha_1 & \alpha_1 & \beta_1 & \beta_1 & \beta_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \alpha_2 & \alpha_2 & \alpha_2 & \beta_2 & \beta_2 & \beta_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \alpha_3 & \alpha_3 & \alpha_3 & \beta_3 & \beta_3 & \beta_3 & \beta_3 & \beta_3 \\ \alpha_4 & \alpha_4 & \alpha_4 & \alpha_4 & \beta_4 & \beta_4 & \beta_4 & \beta_4 & \gamma_4 \\ \alpha_5 & \alpha_5 & \alpha_5 & \alpha_5 & \alpha_5 & \beta_5 & \beta_5 & \beta_5 & \gamma_5 \\ \alpha_6 & \alpha_6 & \alpha_6 & \alpha_6 & \beta_6 & \beta_6 & \beta_6 & \beta_6 \\ \alpha_7 & \alpha_7 & \alpha_7 & \alpha_7 & \beta_7 & \beta_7 & \beta_7 & \gamma_7 \\ \alpha_8 & \alpha_8 & \alpha_8 & \alpha_8 & \beta_8 & \beta_8 & \beta_8 & \beta_8 \\ \alpha_9 & \alpha_9 & \alpha_9 & \alpha_9 & \beta_9 & \beta_9 & \beta_9 & \beta_9 \end{bmatrix}$$

 $W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$W = \begin{bmatrix} \alpha_1 & \alpha_1 & \alpha_1 & \alpha_1 & \beta_1 & \beta_1 & \beta_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \alpha_2 & \alpha_2 & \alpha_2 & \beta_2 & \beta_2 & \beta_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \alpha_3 & \alpha_3 & \alpha_3 & \beta_3 & \beta_3 & \beta_3 & \beta_3 & \beta_3 \\ \alpha_4 & \alpha_4 & \alpha_4 & \alpha_4 & \beta_4 & \beta_4 & \beta_4 & \beta_4 & \gamma_4 \\ \alpha_5 & \alpha_5 & \alpha_5 & \alpha_5 & \beta_5 & \beta_5 & \beta_5 & \beta_5 \\ \alpha_6 & \alpha_6 & \alpha_6 & \alpha_6 & \beta_6 & \beta_6 & \beta_6 & \beta_6 & \gamma_6 \\ \alpha_7 & \alpha_7 & \alpha_7 & \alpha_7 & \beta_7 & \beta_7 & \beta_7 & \beta_7 \\ \alpha_8 & \alpha_8 & \alpha_8 & \alpha_8 & \beta_8 & \beta_8 & \beta_8 & \beta_8 \\ \alpha_9 & \alpha_9 & \alpha_9 & \alpha_9 & \beta_9 & \beta_9 & \beta_9 & \beta_9 \end{bmatrix}$$

The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_2 = \{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\}$ is an irreducible algebraic variety $\cong \{A \in \mathbb{R}^{9 \times 3} \mid \operatorname{rank}(A) \leq 2\}.$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all i = 1, 2, ..., k.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all $i = 1, 2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_r \cong \{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\}$ is an irreducible variety.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all $i = 1, 2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_r \cong \{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_n$.

The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_n$.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all $i = 1, 2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_r \cong \{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_n$.

The set of *G*-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_n$.

What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_r$ with autoencoders?

Invariance

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all $i=1,2,\ldots,k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_r \cong \{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_n$.

The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_n$.

What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_r$ with autoencoders?

Lemma: $\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(AB) = k, AB \in \mathcal{I}^{\sigma}\} = 0$

Invariance

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{m \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \pi_2 \circ \ldots \circ \pi_k$ into disjoint cycles.

Lemma: The linear space \mathcal{I}^{σ} of σ -invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_i are equal, for all $i = 1, 2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_r \cong \{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_n$.

The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_n$.

What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_r$ with autoencoders?

Lemma: $\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(AB) = k, AB \in \mathcal{I}^{\sigma}\} = \{A \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(A) = k\} \times \{B \in \mathbb{R}^{k \times n} \mid \text{columns indexed by } \pi_i \text{ are equal}\}$ $\Rightarrow \sigma \text{ induces weight sharing on the encoder!}$

$$\sigma: \mathbb{R}^9 \longrightarrow \mathbb{R}^9, egin{array}{c|cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \hline \end{array} \longmapsto egin{array}{c|cccc} a_{31} & a_{21} & a_{11} \\ a_{32} & a_{22} & a_{12} \\ a_{33} & a_{23} & a_{13} \\ \hline \end{array}$$

has function space $\mathcal{I}^{\sigma} \cap \mathcal{M}_2$

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

Idea: Let $T \in GL_n$.

W is P_{σ} -equivariant iff $T^{-1}WT$ is $T^{-1}P_{\sigma}T$ -equivariant.

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

Idea: Let $T \in GL_n$.

W is P_{σ} -equivariant iff $T^{-1}WT$ is $T^{-1}P_{\sigma}T$ -equivariant.

This base change also preserves rank!

		a ₁₂					a ₁₁
$\sigma: \mathbb{R}^9 \longrightarrow \mathbb{R}^9,$	a ₂₁	a ₂₂	a ₂₃	\longmapsto	a ₃₂	a ₂₂	a ₁₂
	a ₃₁	a ₃₂	a ₃₃		a ₃₃	a ₂₃	a ₁₃

$$P = P_{\sigma}$$

α_1	α_2	α_3	α_{4}	β_1	β_2	β_3	β_4	ε_3
α_{4}	α_1	α_2	α_3	β_4	β_1	β_2	β_3	ε_3
α_3	α_{4}	α_1	α_2	β_3	β_4	β_1	β_2	ε_3
α_2	α_3	α_{4}	α_1	β_2	β_3	β_4	β_1	ε_3
γ_1	γ_2	γ_3	γ_4	δ_1	δ_2	δ_3	δ_4	ε_{4}
γ_4	γ_1	γ_2	γ_3	1,000		δ_2		ε_{4}
γ_3	γ_4	γ_1	γ_2	δ_3	δ_4	δ_1	δ_2	ε_{4}
γ_2	γ_3	γ_4	γ_1	δ_2	δ_3	δ_4	δ_1	ε_{4}
ε_1	ε_1	ε_1	ε_1	ε_2	ε_2	ε_2	ε_2	ε_5 _
$\begin{array}{c} \gamma_1 \\ \gamma_4 \\ \gamma_3 \\ \gamma_2 \end{array}$	$\begin{array}{c} \gamma_2 \\ \gamma_1 \\ \gamma_4 \\ \gamma_3 \end{array}$	γ_3 γ_2 γ_1 γ_4	γ ₄ γ ₃ γ ₂ γ ₁	$\begin{array}{c c} \delta_1 \\ \delta_4 \\ \delta_3 \\ \delta_2 \end{array}$	δ_2 δ_1 δ_4 δ_3	δ_3 δ_2 δ_1 δ_4	$ \delta_4 $ $ \delta_3 $ $ \delta_2 $ $ \delta_1 $	ε ₄ ε ₄ ε ₄ ε ₄

$$\sigma: \mathbb{R}^9 \longrightarrow \mathbb{R}^9, egin{array}{c|cccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \hline \end{array} \longmapsto egin{array}{c|cccc} a_{31} & a_{21} & a_{11} \\ a_{32} & a_{22} & a_{12} \\ a_{33} & a_{23} & a_{13} \\ \hline \end{array}$$

 $P = \text{diagonalization of } P_{\sigma}$

0 0 0	i	$\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \end{array}$	0 0 0 -i			0		0
		3 4		1	0	0	0	1/8
		0		0	i	0	0	0
U					0	-1	0	0
				0	0	0	-i	
		0				0		1

a ₁₁	0	0	0	a ₁₂	0	0	0	a ₁₃ -
0	c ₁₁	0	0	0	c ₁₂	0	0	0
0	0	b_{11}	0	0	0	b_{12}	0	0
0	0	0	d_{11}	0	0	0	d_{12}	0
a ₂₁	0	0	0	a ₂₂	0	0	0	a ₂₃
0	c ₂₁	0	0	0	C ₂₂	0	- 0	0
0	0	b ₂₁	0	0	0	b ₂₂	0	0
0	0	0	d_{21}	0	0	0	d_{22}	0
a ₃₁	0	0	0	a ₃₂	0	0	0	a ₃₃ _

 $P = \text{diagonalization of } P_{\sigma}$

$$\begin{bmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & 1 & & & \\ & & & -1 & & & \\ & & & & -i & & \\ & & & & -i & & \\ \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & & & \\ a_{21} & a_{22} & a_{23} & & & \\ a_{31} & a_{32} & a_{33} & & & \\ & & & b_{11} & b_{12} & & \\ & & & b_{21} & b_{22} & & \\ & & & & c_{11} & c_{12} & \\ & & & & c_{21} & c_{22} & \\ & & & & d_{11} & d_{12} & \\ & & & & d_{21} & d_{22} & \\ \end{bmatrix}$$

There are 10 ways how W can have rank 2:

There are 10 ways how W can have rank 2:

 One of the diagonal blocks has rank 2; other blocks are 0

There are 10 ways how W can have rank 2:

• One of the diagonal blocks has rank 2; \rightsquigarrow 4 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0

There are 10 ways how W can have rank 2:

- One of the diagonal blocks has rank 2; \rightsquigarrow 4 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0
- Two distinct blocks have rank 1; other blocks are 0

$$W= egin{bmatrix} a_{11} & a_{12} & a_{13} & & & & & & & & \\ a_{21} & a_{22} & a_{23} & & & & & & & & & \\ a_{31} & a_{32} & a_{33} & & & & & & & & & \\ & & & b_{11} & b_{12} & & & & & & & \\ & & & b_{21} & b_{22} & & & & & & \\ & & & & c_{11} & c_{12} & & & & \\ & & & & c_{21} & c_{22} & & & & \\ & & & & & d_{11} & d_{12} & & \\ & & & & & d_{21} & d_{22} \end{bmatrix}$$

There are 10 ways how W can have rank 2:

- One of the diagonal blocks has rank 2; \sim 4 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0
- Two distinct blocks have rank 1; other blocks are 0

 \rightsquigarrow 6 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles chops P_{σ} into blocks.

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$P_{\sigma} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline & 0 & 1 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 1 & 0 \\ \hline & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{\sigma} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \epsilon_3 \\ \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \beta_3 & \epsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \beta_2 & \epsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \epsilon_3 \\ \alpha_3 & \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \epsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \beta_2 & \beta_3 & \delta_4 & \beta_1 & \epsilon_3 \\ \alpha_1 & \gamma_2 & \gamma_3 & \gamma_4 & \beta_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \delta_4 \\ \alpha_4 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \alpha_2 & \gamma_3 & \gamma_4 & \gamma_1 & \gamma_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_2 \\ \alpha_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \alpha_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \alpha_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \alpha_3 & \epsilon_1 & \epsilon_1 & \epsilon_1 & \epsilon_1 & \epsilon_2 & \epsilon_2 & \epsilon_2 & \epsilon_2 & \epsilon_5 \end{bmatrix}$$

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$P_{\sigma} = \begin{bmatrix} \begin{smallmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad W = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta_1 & \beta_2 & \beta_3 & \beta_4 & \epsilon_3 \\ \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \beta_3 & \epsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \alpha_3 & \beta_4 & \beta_1 & \beta_2 & \epsilon_3 \\ \alpha_3 & \alpha_4 & \alpha_1 & \alpha_2 & \beta_3 & \beta_4 & \beta_1 & \beta_2 & \epsilon_3 \\ \alpha_2 & \alpha_3 & \alpha_4 & \alpha_1 & \beta_2 & \beta_3 & \beta_4 & \beta_1 & \epsilon_3 \\ \alpha_1 & \gamma_2 & \gamma_3 & \gamma_4 & \beta_1 & \delta_2 & \delta_3 & \delta_4 & \epsilon_4 \\ \gamma_4 & \gamma_1 & \gamma_2 & \gamma_3 & \delta_4 & \delta_1 & \delta_2 & \delta_3 & \epsilon_4 \\ \gamma_3 & \gamma_4 & \gamma_1 & \gamma_2 & \delta_3 & \delta_4 & \delta_1 & \delta_2 & \epsilon_4 \\ \gamma_2 & \gamma_3 & \gamma_4 & \gamma_1 & \beta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \gamma_2 & \gamma_3 & \gamma_4 & \gamma_1 & \delta_2 & \delta_3 & \delta_4 & \delta_1 & \epsilon_4 \\ \epsilon_1 & \epsilon_1 & \epsilon_1 & \epsilon_1 & \epsilon_2 & \epsilon_2 & \epsilon_2 & \epsilon_2 & \epsilon_2 \end{bmatrix}$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ -equivariant iff each block is a (possily non-square) circulant matrix.

Consider
$$\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$$
 and $\sigma \in \mathcal{S}_n$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$P_{\sigma} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \hline \end{bmatrix} & W = \begin{bmatrix} \frac{\alpha_1}{\alpha_2} & \frac{\alpha_3}{\alpha_3} & \frac{\alpha_4}{\alpha_4} & \frac{\beta_1}{\alpha_2} & \frac{\beta_2}{\alpha_3} & \frac{\beta_4}{\beta_4} & \frac{\beta_3}{\beta_2} & \frac{\beta_3}{\beta_3} \\ \frac{\alpha_2}{\alpha_3} & \frac{\alpha_4}{\alpha_4} & \frac{\alpha_1}{\alpha_2} & \frac{\alpha_3}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_1}{\beta_2} & \frac{\beta_3}{\beta_3} & \frac{\beta_3}{\beta_4} & \frac{\beta_1}{\beta_2} & \frac{\beta_3}{\beta_3} \\ \frac{\alpha_2}{\alpha_3} & \frac{\alpha_4}{\alpha_4} & \frac{\alpha_1}{\alpha_1} & \frac{\alpha_2}{\beta_3} & \frac{\beta_4}{\beta_4} & \frac{\beta_1}{\beta_2} & \frac{\beta_3}{\beta_4} & \frac{\beta_1}{\beta_1} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_1}{\beta_2} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_1}{\beta_2} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_2}{\beta_1} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_2}{\beta_3} & \frac{\beta_4}{\beta_1} & \frac{\beta_4}$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ -equivariant iff each block is a (possily non-square) circulant matrix.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \text{length}(\pi_j)$.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \text{length}(\pi_j)$.

Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \operatorname{length}(\pi_j)$.

Diagonalize P_σ and sort the eigenvalues. This yields the diagonal matrix P.

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma=\pi_1\circ\ldots\circ\pi_k$ into disjoint cycles and let $\ell_j:=\operatorname{length}(\pi_j)$.

Diagonalize P_σ and sort the eigenvalues. This yields the diagonal matrix P.

$$\ell_1 = 4, \, \ell_2 = 4, \, \ell_3 = 1$$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma=\pi_1\circ\ldots\circ\pi_k$ into disjoint cycles and let $\ell_j:=\operatorname{length}(\pi_j)$.

Diagonalize P_σ and sort the eigenvalues. This yields the diagonal matrix P.

$$\ell_1 = 4, \ \ell_2 = 4, \ \ell_3 = 1$$

 $d_1 = 3, \ d_2 = 2, \ d_3 = 0, \ d_4 = 2, \ d_5 = 0, \dots$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \text{length}(\pi_j)$.

Diagonalize P_σ and sort the eigenvalues. This yields the diagonal matrix P.

$$\ell_1 = 4, \ \ell_2 = 4, \ \ell_3 = 1$$

 $d_1 = 3, \ d_2 = 2, \ d_3 = 0, \ d_4 = 2, \ d_5 = 0, \dots$
 $\#(\mathbb{Z}/1\mathbb{Z})^{\times} = 1, \ \#(\mathbb{Z}/2\mathbb{Z})^{\times} = 1, \ \#(\mathbb{Z}/4\mathbb{Z})^{\times} = 2$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \text{length}(\pi_j)$.

Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z}/m\mathbb{Z})^{\times}$ many blocks of size $d_m \times d_m$, where $d_m := \#\{j \text{ such that } m | \ell_j\}$.

Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $(r_{m,u})$ of

$$\sum_{m\in\mathbb{Z}_{>0}}\sum_{u\in(\mathbb{Z}/m\mathbb{Z})^{\times}}r_{m,u}=r,\quad \text{ where } 0\leq r_{m,u}\leq d_m.$$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

Decompose $\sigma = \pi_1 \circ \ldots \circ \pi_k$ into disjoint cycles and let $\ell_j := \operatorname{length}(\pi_j)$.

Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z}/m\mathbb{Z})^{\times}$ many blocks of size $d_m \times d_m$, where $d_m := \#\{j \text{ such that } m | \ell_j\}$.

Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $(r_{m,u})$ of

$$\sum_{m\in\mathbb{Z}_{>0}}\sum_{u\in(\mathbb{Z}/m\mathbb{Z})^{\times}}r_{m,u}=r,\quad \text{ where } 0\leq r_{m,u}\leq d_{m}.$$

The component indexed by $(r_{m,u})$ is

$$\cong \prod_{m\in\mathbb{Z}_{>0}} \prod_{u\in(\mathbb{Z}/m\mathbb{Z})^\times} \{A\in\mathbb{C}^{d_m\times d_m}\mid \mathrm{rank}(A)\leq r_{m,u}\}.$$

Equivariance over $\mathbb R$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

To diagonalize P_{σ} , we need a complex base change!

Equivariance over $\mathbb R$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

To diagonalize P_{σ} , we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

Equivariance over $\mathbb R$

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

To diagonalize P_{σ} , we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, use base change $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$

Equivariance over \mathbb{R}

Consider $\mathcal{M}_r = \{W \in \mathbb{R}^{n \times n} \mid \text{rank}(W) \leq r\}$ and $\sigma \in \mathcal{S}_n$.

To diagonalize P_{σ} , we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, use base change $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$

$$ightharpoonup rac{1}{2} egin{bmatrix} 1 & \sqrt{2} & 1 & 0 \ 1 & 0 & -1 & -\sqrt{2} \ 1 & -\sqrt{2} & 1 & 0 \ 1 & 0 & -1 & \sqrt{2} \ \end{pmatrix} \in O_4(\mathbb{R})$$

$$P=P_{\sigma}$$
 after $O_{9}(\mathbb{R})$ -base change

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & b_{21} & b_{22} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & b_{21} & b_{22} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

 One of the diagonal blocks has rank 2; other blocks are 0

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & b_{21} & b_{22} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are $\frac{4}{4}$ ways how W can have rank 2:

• One of the diagonal blocks has rank 2; \longrightarrow 3 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

- One of the diagonal blocks has rank 2; \longrightarrow 3 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0
- Two first 2 blocks have rank 1; last block is 0

running example

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$b_{11} & b_{12}$$

$$b_{21} & b_{22}$$

$$c_1 & -c_2 & d_1 & -d_2 \\ c_2 & c_1 & d_2 & d_1 \\ e_1 & -e_2 & f_1 & -f_2 \\ e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

- One of the diagonal blocks has rank 2; \longrightarrow 3 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0
- Two first 2 blocks have rank 1; last block is 0

 \rightsquigarrow 1 component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Blocks of the latter kind have even rank!

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Blocks of the latter kind have even rank! The variety of such blocks of bounded rank is irreducible.

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Blocks of the latter kind have even rank! The variety of such blocks of bounded rank is irreducible.

 \Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$,

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Blocks of the latter kind have even rank! The variety of such blocks of bounded rank is irreducible.

 \Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$, parametrize them via autoencoders,

In general: After the $O_n(\mathbb{R})$ -base change, the σ -equivariant matrices become block diagonal:

- ullet at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2m \times 2m$ matrices consisting of m^2 matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Blocks of the latter kind have even rank! The variety of such blocks of bounded rank is irreducible.

 \Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$, parametrize them via autoencoders, understand their algebraic properties such as dimension, degree, ...

Which of these 4 components is best ??

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

- One of the diagonal blocks has rank 2; \longrightarrow 3 components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$ other blocks are 0
- Two first 2 blocks have rank 1; last block is 0

 \rightsquigarrow 1 component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity,

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: $\mathsf{EDdeg}(\mathcal{M})$.

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: $\mathsf{EDdeg}(\mathcal{M})$.

We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$!

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: $\mathsf{EDdeg}(\mathcal{M})$.

We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$!

1. EDdeg stays invariant under orthogonal base changes.

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: $\mathsf{EDdeg}(\mathcal{M})$.

We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$!

- 1. EDdeg stays invariant under orthogonal base changes.
- 2. $\mathsf{EDdeg}(\mathcal{X} \times \mathcal{Y}) = \mathsf{EDdeg}(\mathcal{X}) \cdot \mathsf{EDdeg}(\mathcal{Y})$

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space $\mathcal M$ using the squared-error loss means to solve an optimization problem of the form

 $\min_{W \in \mathcal{M}} \|W - U\|_F^2$, where U is a generic matrix encoding the data.

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: $\mathsf{EDdeg}(\mathcal{M})$.

We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_r$!

- 1. EDdeg stays invariant under orthogonal base changes.
- 2. $\mathsf{EDdeg}(\mathcal{X} \times \mathcal{Y}) = \mathsf{EDdeg}(\mathcal{X}) \cdot \mathsf{EDdeg}(\mathcal{Y})$
- 3. EDdeg $(\mathcal{X}_{s,d}) = \binom{d}{s}$, where $\mathcal{X}_{s,d}$ is either the space of $d \times d$ matrices of rank $\leq s$ or of $2d \times 2d$ matrices of rank $\leq 2s$ that consist of $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ submatrices

Which of these 4 components is best ??

$$W = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ & & b_{11} & b_{12} \\ & & b_{21} & b_{22} \\ & & & c_1 & -c_2 & d_1 & -d_2 \\ & & & c_2 & c_1 & d_2 & d_1 \\ & & & e_1 & -e_2 & f_1 & -f_2 \\ & & & e_2 & e_1 & f_2 & f_1 \end{bmatrix}$$

There are 4 ways how W can have rank 2:

- One of the diagonal blocks has rank 2;
 with EDdeg 3, 1, and 2, respectively.
- Two first 2 blocks have rank 1;
 with EDdeg 3 ⋅ 2 = 6.

 \leadsto 3 components of $\mathcal{E}^{\sigma}\cap\mathcal{M}_2$

 \leadsto 1 component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_2$

Data science requires us to rethink the schism between mathematical disciplines!

> differential geometry ⇒ algebraic geometry ⇒

data science ⇒

Paul Breiding, Kathlén Kohn and Bernd Sturmfels

Metric Algebraic Geometry

5.2 Optimal Transport and Independence Models . . 5.3 Wasserstein meets Segre-Veronese

6.1 Plane Curves

7.3 Offset Discriminant.....

Springer Nature

Historical Snapshot 8.1 Voronoi Basics.... 1.1 Polars 8.2 Algebraic Boundaries 1.2 Foci 8.3 Degree Formulas 9.2 Matrix Inversion and Eckhart-Young 9.3 Condition Number Theorems..... Computations 10 Machine Learning.... 3.2 The Parameter Continuation Theorem 10.2 Convolutional Networks 3.3 Polynomial Homotopy Continuation 11 Maximum Likelihood 11.1 Kullback-Leibler Divergence 11.2 Maximum Likelihood Deeree Wasserstein Distance

	12.2 Eigenvectors and Singular Vectors
13	Computer Vision

13.3 3D Reconstruction from Unknown Cameras ...

14.1 Calculus and Beyond......

15 Sampling

15.2 Sampling with Density Guarantees 15.3 Markov Chains on Varieties

