

Exhibit 3

Using the Internet Protocol suite to build an end-end IPTV service

K.K. Ramakrishnan
AT&T Labs Research, NJ USA

TECS 2010 – Module 1

DISCLAIMER

The information provided here is not meant to describe specific AT&T's products or services. The content and material herein are entirely based on the opinions and knowledge of the author and are not meant to convey any opinions of AT&T.

These slides do not reveal any information proprietary to AT&T Business Units, suppliers, customers or business partners.

Most material is based on publicly available information or well-studied networking extrapolations and modeling formulations of public information.

The remainder of material is protected by patents or patent applications licensed by AT&T.

A Video Distribution Network based on IP

- AT&T has chosen to build a video distribution network on top of an end-end IP infrastructure
- Alternative approaches adopted by Cable providers and Verizon with FTTH
 - Use IP in the backbone, but seek to use the capacity of the access plant downstream to have a Layer 2 environment
 - Use the bandwidth to distribute channels and depend on “tuning” to access a particular channel
- Having an end-end IP distribution offers both opportunities and challenges
 - Enables integration of multiple applications; evolving from a linear-TV distribution to content distribution may be easier
 - Challenges arise: packet loss and recovery; congestion; channel change

IPTV service

- High visibility: direct customer impact.
- Service is very sensitive to delay and packet loss
 - Congestion on links -> packet loss-> video quality impairment
 - Need to tackle multiple failures, which are not very rare
 - Higher layer mechanisms - FEC, retransmission based recovery of lost packets - can handle (with reasonable delays), burst losses of 50 milliseconds
 - Fast restoration is critical

AT&T's IPTV service:

- 2+ million customers;
- Triple play: video, internet, and voice

Network backbone

- One Video hub office (VHO) per metro area
- Content is distributed to VHOs using **single source sparse mode multicast (PIM-SSM)**
 - a separate multicast tree for each channel

AT&T IPTV Backbone Distribution InfraStructure

Case 1:11-cv-04948-JLT SKNF Document 93-2 Filed 05/10/12 Page 7 of 13

IPTV Network – Example End-to-End Flow

R = Router; E = Ethernet Switch; R/E = Hybrid

GPON = Gigabit Passive Optical Network

SHO = Super Hub Office; VHO = Video Hub Office

IGMP = Internet Group Management Protocol

Some Network Characteristics for Providing IPTV

- Streaming video national video stream generally uses MPEG-X for compression/encoding over RTP
 - Use of IP Multicast (PIM-SSM) when possible from SHO to VHO and VHO to IO enables significant transport cost savings
 - Ethernet switches use Internet Group Management Protocol (IGMP)-snooping to change channels and bridge multicast groups to VLANs
- ***Perceived video quality is not highly tolerant of loss.*** Example approach:
 - L1/L2 protocols restore vast majority of network failures \leq 50 ms
 - STB & reliable transport layer protocols to overcome failures \leq 50 ms
- Instant Channel Change (ICC) popular feature to overcome delay in Multicast group/IGMP change
 - Typically implemented via Unicast IP flow (point-to-point)
- VoD is usually unicast from VHO to STB

What transport service does an app need?

Data loss

- ❖ some apps (e.g., audio) can tolerate some loss
- ❖ other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing

- ❖ some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

Throughput

- ❖ some apps (e.g., multimedia) require minimum amount of throughput to be "effective"
- ❖ other apps ("elastic apps") make use of whatever throughput they get

Security

- ❖ encryption, data integrity, ...

Transport service requirements of common apps

Application	Data loss	Throughput	Time Sensitive
file transfer	no loss	elastic	no
e-mail	no loss	elastic	no
Web documents	no loss	elastic	no
real-time audio/video	loss-tolerant	audio: 5kbps-1Mbps video:10kbps-5Mbps	yes, 100's msec
stored audio/video	loss-tolerant	same as above	yes, few secs
interactive games	loss-tolerant	few kbps up	yes, 100's msec
instant messaging	no loss	elastic	yes and no

Internet transport protocols services

TCP service:

- ❖ *connection-oriented*: setup required between client and server processes
- ❖ *reliable transport* between sending and receiving process
- ❖ *flow control*: sender won't overwhelm receiver
- ❖ *congestion control*: throttle sender when network overloaded
- ❖ *does not provide*: timing, minimum throughput guarantees, security

UDP service:

- ❖ unreliable data transfer between sending and receiving process
- ❖ does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security

Q: why bother? Why is there a UDP?

Internet apps: application, transport protocols

Application	Application layer protocol	Underlying transport protocol
e-mail	SMTP [RFC 2821]	TCP
remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
file transfer	FTP [RFC 959]	TCP
streaming multimedia	HTTP (eg Youtube), RTP [RFC 1889]	TCP or UDP
Internet telephony	SIP, RTP, proprietary (e.g., Skype)	typically UDP