Prova 2

Questão I) (4 pontos) Os dados a seguir são as vendas mensais (em milhares de dólares) para diferentes gastos de publicidade (também em milhares de dólares) e porcentagens de comissões de vendas.

Venda	245	138	352	322	228	275	560	366
Publicidade	16,5	18	22,3	17,4	19	20	32	18,6
Comissão	10,5	2	4	3,5	4.5	1.8	9	8,5

- 1) Qual quantidade de vendas este modelo prevê para gastos de publicidade de 25.000 e comissão de vendas de 8%?
- A) US \$ 564.318
- B) \$ 30,273.6
- C) \$ 561,734
- D) \$ 72.880
- E) nenhum dos itens acima
- 2)Realizar teste de hipóteses para testar se as despesas de publicidade e as comissões de vendas podem ou não ser usadas para prever as vendas.
- 3) No nível de significância de 5%, é a despesa de publicidade ou a porcentagem de comissão de vendas ou ambas significativas? (mostrar as contas)
- A) apenas despesas publicitárias
- B) ambas são significativas
- C) somente porcentagem da comissão de vendas
- D) nenhuma delas são significativas
- E) informação insuficiente para determinar
- 4) Qual a diferença entre R² e R² ajustado?
- A) o R² ajustado sempre aumenta à medida que mais variáveis independentes são adicionadas ao modelo
- B) o R2 ajustado é menor nesse caso porque o termo constante é negativo
- C) o R2 ajustado ajusta o poder explicativo pelos graus de liberdade
- D) o R2 ajustado é sempre menor que R2
- E) O R2 ajustado ajusta o poder explicativo por divisão pelo erro padrão de cada coeficiente

Questão II) (3 pontos) Uma análise de regressão múltipla foi realizada em 24 observações, com a seguinte tabela ANOVA parcial resultante:

Source	d.f.	SS	MS
Regression	3	1921.543	**
Error	**	**	168.0514
Total	**	**	

- 1) Esses resultados fornecem evidências suficientes (assumir α = 0,05) de uma relação de regressão entre as variáveis independentes e a variável dependente?
- 2) Quão eficaz na predição da variável dependente é o modelo de regressão que foi desenvolvido nesta situação?

Questão III) (3 pontos) O teste *Conconi* mede o desempenho de resistência de uma pessoa. Ele ocorre na pista de 400m onde um começa a correr lentamente (9km/h). A cada 200 metros a velocidade é aumentada em 0,5 km/h. No final de cada seção de 200m, o pulso é medido. O teste continua até que a velocidade não possa mais ser aumentada. O professor fez este teste no verão de 2012. Os dados estão contidos no arquivo conconi.rda. O gráfico de dispersão e o ajuste da linha de regressão OLS são:

- A) Qual é o valor da estatística(medida) para explicar a dispersão do pulso pelo aumento da velocidade?
- B) Em que quantidade o pulso aumenta em média quando a velocidade é aumentada em 1 km / h? Que outros valores também são plausíveis?
- C) Quão grande é a frequência cardíaca em repouso (isto é, quando não há movimento)? Em que intervalo você espera que esse valor seja? Parece plausível?
- D) Embaixo tem-se gráficos dos resíduos VS preditor, bem como o QQ plot normal dos resíduos. Decida quais dos seguintes quatro pressupostos são cumpridos:

- A) A linha de regressão captura a relação corretamente, isto é, E(ei) = 0?.
- B) A variância do erro é constante?
- C) Os erros seguem uma distribuição Normal?
- D) Os erros não estão correlacionados?