Teoria dos Grafos - Trabalho de Disciplina - Parte 2

Amanda Lucio, Lucas Maximo

1 Local do arquivo

O repositório para o código está no link https://github.com/AmandaACLucio/GraphLibrary.Para acessar a readme do repositório é possível utilizar o link anterior ou acessar https://github.com/AmandaACLucio/GraphLibrary#readme

```
Inicalmente escolha o arquivo que deseja abrir
1: example.txt
2: garáo_l.txt
3: garáo_l.txt
3: garáo_l.txt
5: garáo_l.txt
5: garáo_l.txt
6: garáo_l.txt
6: garáo_l.txt
7: g
```

Figura 1: Print da interface no cmd

2 Estrutura do Código

Os arquivos de códigos podem ser estruturadas da seguinte forma por hierarquia e chamada.

No arquivo funções auxiliares tem o uso de Estrutura de dados para construções de algumas funções

3 Explicando o código

- Estruturas de Dados: Foi criado as três estruturas de dados, lista de adjacência, matriz de adjacência e vetor de adjacência, Evitando a utilização de bibliotecas de estruturas de dados já prontas, com objetivo de se obter mais controle sobre o retorno das funções.
- Grafos: Originalmente a classe grafo contém três estruturas de dados (lista de adjacência, matriz de adjacência e vetor de adjacência) que carregam na entrada o grafo para as mesmas, permitindo que o usuário possa escolhar qual estrutura utilizar. Para contagem das arestas é verificado se ocorreu ou não adição do nó e seus os nós da mesma não são iguais. A classe inclui as função de entrada, saída, BFS, DFS, ComponentesConexas (gera txt com todas as componentes), Diâmetro, Distância e análise se duas variáveis são de uma mesma componente. As

alterações nessa classe permitiu inicialmente a inserção ordenada, de forma que não seja mais necessário utilizar sort para aplicação de algoritmos de melhor caminho. Além disso, foram inseridas variáveis booleanas peso e direcao, permitindo que o usuário decida qual o formato do grafo inserido.

• Funções Auxiliares: As funções de auxiliares servem de suporte para construção da classe grafos. A partir delas podemos preencher e mostrar um vetor. Além disso, é possível fazer a separação de strings de um texto, permitindo que os números das linhas sejam separados em dois. Outras funções incluem mapear um inteiro para um booleano, permitindo que o calculo de componentes conexas seja efetuado através da análise se um vertíce já teve sua posição em um vetor mapeada como true ou não.

4 Adaptações no código

- Peso: Para adaptadação da estrutura, foram utilizados adição de atributo nos nodes de vertice e lista de adjacência, e uma segunda matriz do tipo float, que possibilitou que grafos sem peso não tivesse seu desempenho de memória modificado.
- Otimização da entrada: A classe grafo contém três estruturas de dados (lista de adjacência, matriz de adjacência e vetor de adjacência) que carregam na entrada o grafo para as mesmas, permitindo que o usuário possa escolhar qual estrutura utilizar. Em um vetor populado (função que preenche todas as posições necessárias com 0) armazenamos os nós, e em outros se os mesmos existem ou não, já que os nós são preenchidos automaticamente na entrada, tratando a possibilidade de um nó saltando e adicionando-os ordenado. Para contagem das arestas é verificado se ocorreu ou não adição do nó e seus os nós da mesma não são iguais. A classe inclui a função de entrada, saída, BFS, DFS, ComponentesConexas (gera txt com todas as componentes), Diâmetro, Distância(com peso e sem peso) e análise se duas variáveis são de uma mesma componente, Dijkstra, MST e Excentricidade.
- Novas funções auxiliares: Foi escrita uma função capaz de escrever um grafo a partir de um vetor pai e uma variável custo Total. A mesma sofreu sobrecarga para se ajusta a um grafo com peso e sem peso

5 Determinação da distância e o caminho mínimo

Tabela 1: Calculo da distância com inicio no vértice 1

Grafo	Fim 10	Fim 20	Fim 30	Fim 40	Fim 50
1.txt	0.97	1.2	0.69	1.06	1.31
$2.\mathrm{txt}$	1.7	1.68	2.39	1.86	2.29
$3.\mathrm{txt}$	1.91	1.97	2.78	2.41	2.07
$4.\mathrm{txt}$	2.57	2.58	2.6	2.58	2.2
5.txt	14.23	18.4	16.55	17.94	13.55

inf vertices pertencentes a componentes diferentes - refere-se a valor não existente ou não computado

Tabela 2: Calculo da distância e caminho com inicio no vértice 1 em fim em 10

Grafo	Distância	Caminho Mínimo
1.txt	0.97	[1, 120, 131, 911, 10]
2.txt	1.7	[1, 7166, 984, 4657, 3085, 5480, 8045, 9479, 9801, 10]
3.txt	1.91	[1, 99607, 80021, 11430, 38686, 26231, 80243,
		84478, 10667, 64731, 66341, 9539, 29013, 55482, 59986, 10
4.txt	2.57	[1,720665,966087,647029,522903,638396,278575,969459,
		$792685,\!68803,\!429712,\!969732,\!10]$
$5.\mathrm{txt}$	14.23	[1, 3263710, 4551166, 4646641, 1519374, 1897108, 1357973, 3568485,
		3498433,1679328,3108527,1797649,486500,3293402,10]

Tabela 3: Calculo da distância e caminho com inicio no vértice 1 em fim em 20

Grafo	Distância	Caminho Mínimo
1.txt	1.24	[1, 762, 811, 318, 515, 146, 66, 856, 168, 20]
$2.\mathrm{txt}$	1.68	[1,4132,4338,876,2795,7344,1116,4832,3497,9865,20]
$3.\mathrm{txt}$	1.97	[1, 99607, 97652, 28571, 20585, 17920, 43924, 33456, 74389, 20]
$4.\mathrm{txt}$	2.58	$[1,\!826870,\!816027,\!296139,\!162957,\!661278,\!721824,\!44240,\!165062,$
		$4007,\!105663,\!802040,\!99482,\!524288,\!259076,\!83549,\!20]$
$5.\mathrm{txt}$	18.4	Devido o horário de entrega, não foi possível calcular esse caminho

Tabela 4: Calculo da distância com inicio no vértice 1 em fim em 30

Grafo	Distância	Caminho Mínimo
1.txt	0.69	[1, 762, 811, 489, 83, 279, 30]
$2.\mathrm{txt}$	2.39	[1, 7166, 391, 6800, 3281, 1386, 2640, 1696, 8235, 30]
$3.\mathrm{txt}$	2.78	[1, 33682, 36275, 69461, 29537, 64817, 67739,
		12806,27005,92563,2800,3810,90384,65063,29572,30]
$4.\mathrm{txt}$	2.6	$[1,\!826870,\!600106,\!425523,\!161822,\!139391,\!1418,\!155219,\!352891,\!30]$
$5.\mathrm{txt}$	16.55	Devido o horário de entrega, não foi possível calcular esse caminho

Tabela 5: Calculo da distância com inicio no vértice 1 em fim em 40

Grafo	Distância	Caminho Mínimo
1.txt	1.06	[1, 120, 761, 333, 40]
$2.\mathrm{txt}$	1.86	[1, 7448, 4538, 8895, 7287, 40]
$3.\mathrm{txt}$	2.41	[1, 33682, 24570, 50483, 10697, 44141, 76658, 87469, 40]
$4.\mathrm{txt}$	2.58	[1,720665,966087,889431,942731,166954,131855,819302,640258,40]
$5.\mathrm{txt}$	17.94	Devido o horário de entrega, não foi possível calcular esse caminho

Tabela 6: Calculo da distância e caminho com inicio no vértice 1 em fim em 50

Grafo	Distância	Caminho Mínimo
1.txt	1.31	[1, 762, 631, 452, 424, 577, 376, 303, 198, 50]
$2.\mathrm{txt}$	2.29	[1, 7166, 5918, 3131, 5128, 6147, 5216, 2219, 5429, 6780, 6551, 185, 50]
$3.\mathrm{txt}$	2.07	[1, 99607, 80021, 11430, 38686, 26231, 79471, 59996, 50833, 98176, 66179, 50]
$4.\mathrm{txt}$	2.2	[1,826870,816027,96898,375457,675857,107698,120786,386496,
		$536700,\!370802,\!190374,\!547291,\!707676,\!50]$
$5.\mathrm{txt}$	13.55	Devido o horário de entrega, não foi possível calcular esse caminho

inf vertices pertencentes a componentes diferentes - refere-se a valor não existente ou não computado

6 Excentricidade

Tabela 7: Determinacao da Excentricidade

Tabela 8: Tempo de execução da excentricidade (s)

Grafo	10	20	30	40	50	Grafo	10	20	30	40	50
1.txt	2	2	2	2	2	1.txt	0.52	0.05	0.052	0.051	0.051
$2.\mathrm{txt}$	3	2	3	3	3	$2.\mathrm{txt}$	0.695	0.651	0.619	0.634	0.62
$3.\mathrm{txt}$	4	4	5	4	4	$3.\mathrm{txt}$	8.906	8.896	8.959	8.957	8.913
4.txt	5	4	5	5	5	$4.\mathrm{txt}$	282.361	277.015	273.908	273.555	277.296
$5.\mathrm{txt}$	25	28	25	27	25	$5.\mathrm{txt}$	4903.1	5565.83	6158.21	5349.36	4727.61

⁻ refere-se a valor não existente ou não computado

7 Tempo médio para calculo da excentricidade

Tabela 9: Determinação do Tempo médio para calcular a excentricidade com $\mathbf{k}=50$

Grafo	Tempo de execução médio (s)
1.txt	0.05028
2.txt	0.65538
3.txt	9.02826
4.txt	272.456
5.txt	4640.15

8 Árvore Geradora - MST

Tabela 10: Determinacao do custo mínimo e tempo de execução

Grafo	Custo Mínimo	Tempo de execução (ms)
1.txt	222.54	32
$2.\mathrm{txt}$	2182.82	477
$3.\mathrm{txt}$	22107.1	4944
$4.\mathrm{txt}$	222138	66848
$5.\mathrm{txt}$	5.641580e + 06	278339

⁻ refere-se a valor não existente ou não computado

9 Rede de colaboração

Distância e o caminho mínimo entre Edsger W. Dijkstra (2722) (o pesquisador) e: Alan M. Turing(11365), J. B. Kruskal (471365), Jon M.Kleinberg (5709), Eva Tardos (11386), Daniel R. Figueiredo (343930).

Tabela 11: Determinacao de distância de Edsger W. Dijkstra (2722)

Grafo	Custo Mínimo	Percurso
Alan M. Turing (11365)	infinito	
J. B. Kruskal (471365)	3.48037	[2722, 9490, 7200, 10343,646765, 490368, 10746, 3655, 471365]
Jon M.Kleinberg (5709)	2.70699	[2722, 217250, 11456, 768, 11448, 101826,
		12242, 11834, 9608, 5709]
Eva Tardos (11386)	2.75351	[2722, 217250, 11456, 768, 6479, 8528, 10572,
		357587, 11649, 3694, 318911, 11386]
Daniel R. Figueiredo (343930)	2.94283	[2722,9490,7200,391667,371226,4379,68773,11466,343930]