非交换几何选讲

曲豆豆 码字 南七技校福利社 五道口分社 2019年3月12日 第01-4稿

图: 雾气朦胧的安徽合肥大蜀山森林公园 拍摄于 2014.5.31 - 10: 44

在五道口也要红专并进、理实交融呀~

目录

1	Hoc	hschild 理论	3
	1.1	结合代数的双模、余中心 :	3
	1.2	Hochschild 同调	7
	1.3	Hochschlid 上同调	2
	1.4	一些例子	8
2	循环	同调 $oldsymbol{2}$	4
	2.1	Connes 复形 $C^{\lambda}_{ullet}(A)$	4
	2.2	循环双复形 CC••(A)	7
	2.3	Connes 算子 <i>B</i>	1
	2.4	一些例子	7
	2.5	循环上同调	2
3	乘积	. 48	5
	3.1	多重切向量场与 Schouten-Nijenhuis 括号	5
	3.2	Shuffle 乘积	7
	3.3	Cup 乘积	8
	3 4	Gerstenhaher 乖和	a

第1章 Hochschild 理论

1.1 结合代数的双模、余中心

我们需要**代数拓扑、同调代数**的预备知识,并且采用同调代数的标准术语、记号,诸如链复形、上同调、导出函子等等。首先介绍基本的记号与概念。

在本课,我们给定一个特征 0 的含幺交换环 K(例如一个域),考虑含幺结合 K-代数 A(注意 A 未必是交换代数),并且 A 作为交换环 K 上的模是投射模(projective module)。A 的 K-代数结构给出如下 K-模同态:

$$A \otimes_K A \rightarrow A$$
$$(a_1, a_2) \mapsto a_1 a_2$$

由 A 的结合性, $(a_1a_2)a_3=a_1(a_2a_3)$ 对 A 中任意元素 a_1,a_2,a_3 成立.

对于含幺结合 K-代数 A,回顾 A 的**反代数** (opposite algebra) A^{op} . 反代数 A^{op} 作为 K-模与 A 完全相同,记号如下:

$$\begin{array}{ccc} \mathrm{id} : A & \to & A^\mathrm{op} \\ x & \mapsto & x^\mathrm{op} \end{array}$$

但是 A^{op} 具有与 A "相反"的乘法,具体地,对于 A^{op} 中的元素 $x^{\text{op}}, y^{\text{op}}$,成立

$$x^{\mathrm{op}}y^{\mathrm{op}} := (yx)^{\mathrm{op}}$$

定义 1.1.1. 对于含幺结合 K-代数 A, 我们定义 K-代数 A^c 为

$$A^e := A \otimes_K A^{op}$$

即 $A 与 A^{op}$ 的 K- 代数张量积。

容易验证对于任何两个含幺结合 K-代数 A,B, 总有

$$(A \otimes_K B)^{\mathrm{op}} = A^{\mathrm{op}} \otimes_K B^{\mathrm{op}}$$

从而容易得到

$$(A^{\mathrm{op}})^e = (A^e)^{\mathrm{op}}$$

对于 K— 代数 A,回顾 **双** A— 模(A-bimodule)的概念如下:

定义 1.1.2. 对于 K-代数 A, 双 A-模是指如下资料:

- (1) K-模 M;
- (2) A 在 M 上的左、右 K-线性作用,

并且满足相容性: (a.m).b = a.(m.b) 对任意 $m \in M$ 以及 $a,b \in A$ 成立。

例如,A 本身自然有双 A-模结构,A 在其上的左、右作用即为左乘、右乘。再比如 K-模张量积 $A \otimes_K A$ 具有如下双 A-模结构:

$$b.(a_1 \otimes a_2) := (ba_1) \otimes a_2$$

$$(a_1 \otimes a_2).b := a_1 \otimes (a_2b)$$

其中 $a_1, a_2, b \in A$.

再比如,对于 K-代数 A,考虑其对偶

$$A^* := \operatorname{Hom}(A, K)$$

则 A^* 具有以下的双 A-模结构: 对任意 $a, x \in A$ 以及 $f \in A^*$,

$$\begin{cases} (a.f)(x) := f(xa) \\ (f.a)(x) := f(ax) \end{cases}$$

容易验证这的确使得 A^* 为双 A-模。

我们不再回顾左模、右模的概念了,也不去回顾右模与左模的平衡张量积。

性质 1.1.3. 设 M 为双 A-模,

(1) M 可自然地视为左 A^e -模:

$$(a_1 \otimes a_2^{op}).m = a_1.m.a_2$$

(2) M 可自然地视为右 A^e-模:

$$m.(a_1 \otimes a_2^{op}) = a_2.m.a_1$$

反之, 左(右) A^{e} -模也可视为双 A-模。

证明. 容易验证。

特别地如果 M,N 都是双 A-模,那么考虑平衡张量积 $M\otimes_{A^e}N$,它的双 A-模结构具体如下:

$$a.(m \otimes n) = (a.m) \otimes n = m \otimes (n.a)$$

$$(m \otimes n).b = m \otimes (n.b) = (b.m) \otimes n$$

对于任何 $m \in M, n \in N, a, b \in A$ 成立。

定义 1.1.4. (余中心 cocenter) 对于双 A-模 M, 称双 A-模

$$M \otimes_{A^e} A$$

为 M 的余中心(cocenter)。

容易看出,对任意的 $m \in M$, $a \in A$,在余中心 $M \otimes_{A^e} A$ 当中,成立

$$(m.a) \otimes 1 = m \otimes (a.1) = m \otimes a = m \otimes (1.a) = (a.m) \otimes 1$$

从而 $(m.a - a.m) \otimes 1 = 0$. 事实上, M 的余中心具有如下结构:

性质 1.1.5. 对于双 A-模 M, 则有如下双 A-模同构

$$M \otimes_{A^e} A \cong M/\{(m.a-a.m)|a \in A, m \in M\}$$

证明. 考虑如下的双 A-模链复形

$$\partial_{\bullet}:A\otimes A\otimes A\to A\otimes A\to A\to 0$$

其中

$$\partial: a_1 \otimes a_2 \otimes a_3 \quad \mapsto \quad a_1 a_2 \otimes a_3 - a_1 \otimes a_2 a_3$$

$$a_1 \otimes a_2 \quad \mapsto \quad a_1 a_2$$

容易验证 $\partial^2=0$ (由 A 的结合性),从而 ∂_{\bullet} 为双 A-模链复形。并且显然 $\partial:A\otimes A\to A$ 是满同态。

断言链复形 ∂_{\bullet} 为正合(exact)的。事实上, ∂_{\bullet} 到其自身的恒等链映射与零链映射是链同伦的。我们构造如下的链同伦 h_{\bullet} :

$$h: a_1 \mapsto 1 \otimes a_1$$

$$a_1 \otimes a_2 \mapsto 1 \otimes a_1 \otimes a_2$$

容易验证,对于任意的 $\varphi = a_1 \otimes a_2 \in A \otimes A$,成立

$$(\partial h + h\partial)\varphi = (\partial h + h\partial)(a_1 \otimes a_2)$$

$$= \partial(1 \otimes a_1 \otimes a_2) + h(a_1 a_2)$$

$$= a_1 \otimes a_2 - 1 \otimes a_1 a_2 + 1 \otimes a_1 a_2$$

$$= a_1 \otimes a_2 = \varphi$$

从而对于 $\varphi \in A \otimes A$, 如果 $\partial \varphi = 0$, 那么

$$\varphi = (\partial h + h\partial)\varphi = \partial(h\varphi)$$

这说明链复形 ∂_{\bullet} 在 $A \otimes A$ 处正合,因此 ∂_{\bullet} 是正合的。

接下来,将函子 $M \otimes_{A^e}$ — 作用于链复形 ∂_{\bullet} ,得到如下的双 A-模链复形:

$$M \otimes_{A^e} \partial_{\bullet} : M \otimes A \to M \to M \otimes_{A^e} A \to 0$$

由张量函子的右正合性,上述链复形也是正合的。其中注意到双 A-模同构

$$M \otimes_{A^e} (A \otimes A \otimes A) \cong M \otimes A$$

 $m \otimes (a_1 \otimes a_2 \otimes a_3) \mapsto (a_3.m.a_1) \otimes a_2$

以及双 A-模同构

$$M \otimes_{A^e} (A \otimes A) \cong M$$

 $m \otimes (a_1 \otimes a_2) \mapsto a_2.m.a_1$

于是正合列 $M \otimes_{A^e} \partial_{\bullet}$ 的边界映射有如下具体表达式:

$$M \otimes_{A^e} \partial: M \otimes A \rightarrow M$$

 $m \otimes A \mapsto m.a - a.m$

从而由正合性, 易知

$$M \otimes_{A^e} A \cong M/\{(m.a-a.m)|a \in A, m \in M\}$$

可见,M 的余中心无非是商掉 M 当中"非交换的部分"所得到的"交换的部分",如此望文生义。例如,如果 A 为交换 K-代数,那么 A 本身作为双 A-模,其余中心为 A 本身.

1.2 Hochschild 同调

定义 1.2.1. (Hochschild 同调)

对于双 A-模 M, 以及非负整数 n, 记

$$H_n(A,M) := \operatorname{Tor}_n^{A^e}(M,A)$$

称为 M 的第 n 个 Hochschild 同调。特别地,我们记

$$HH_n(A) := H_n(A, A)$$

由定义以及导出函子的基础知识,容易知道双 A- 模 M 的第 0 个 Hochschild 同调

$$H_0(A, M) = M \otimes_{A^e} A = M / \{(m.a - a.m) | a \in A, m \in M\}$$

正是 M 的余中心。注意 Hochschild 同调一般并不是环,仅仅能保证它是双 A-模。

具体地,由导出函子的定义,我们采用投射消解(projective resolution)来计算 Hochschild 同调。若双 A-模链复形

$$P_{\bullet} \rightarrow A := ... \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$$

为双 A-模 A 的投射消解 (正合,并且每个 $P_i(i \ge 0)$ 作为 K-模是投射的),那么

$$H_n(A,M) \cong H_n(M \otimes_{A^e} P_{\bullet})$$

由同调代数的事实,它与投射消解 P_{\bullet} 的选取无关。

事实上 Hochschild 同调可以与空间上的微分形式类比。作为一个具体计算例子,我们考虑 $\mathbb C$ 上的 n 元多项式代数

$$A := \mathbb{C}[x^1, x^2, ..., x^n]$$

注意到 A 作为 \mathbb{C} -代数是交换的,从而 $A = A^{op}$. 我们记

$$A^{\mathrm{op}} = \mathbb{C}[y^1, y^2, ..., y^n] \quad A^e = \mathbb{C}[x^1, x^2, ..., x^n; y^1, y^2, ..., y^n]$$

性质 1.2.2. 考虑 \mathbb{C} -代数 $A:=\mathbb{C}[x^1,x^2,...,x^n]$, 则其第 k 个 Hochschild 同调

$$HH_k(A) \cong \Omega_A^k := A \otimes \bigwedge^k(\mathbb{C}^n)$$

是以 A 为系数的 k-形式。

证明. 我们给出 A 的投射消解, 比如众所周知的 Koszul 消解

$$\mathcal{K}_A \to A \to 0$$

具体地,引入n个新的独立变元 $\eta^1,\eta^2,...,\eta^n$ (视为复线性空间 \mathbb{C}^n 的一组基),考虑环

$$\mathcal{K}:=rac{A^e[\eta^1,\eta^2,...,\eta^n]}{\{(\eta^i\eta^j+\eta^j\eta^i)|i
eq j\}}=A^e\otimes extstyle \bigwedge^*(\mathbb{C}^n)$$

为以 A^e 为系数的外代数。

注意 Κ 有自然的分次:

$$\deg \eta^i = 1 \quad \deg x^i = \deg y^i = \deg 1 = 0$$

记 \mathcal{K}_l 为 \mathcal{K} 的 l 次分量 $(0 \le l \le n)$,即

$$\mathcal{K}_l = \bigoplus_{1 \leq i_1 < i_2 < ... < i_l \leq n} A^e \eta^{i_1} \wedge \eta^{i_2} \wedge ... \wedge \eta^{i_l} = A^e \otimes \bigwedge^l (\mathbb{C}^n)$$

此时 $K = \mathbb{C}$ 是域,因此 \mathcal{K} (作为 K-模,即复线性空间)的投射性显然。我们定义 Koszul 复形 $(\mathcal{K}_A, \partial)$ 如下:

$$\mathcal{K}_A: \dots \xrightarrow{\partial} \mathcal{K}_n \xrightarrow{\partial} \mathcal{K}_{n-1} \xrightarrow{\partial} \dots \xrightarrow{\partial} \mathcal{K}_1 \xrightarrow{\partial} \mathcal{K}_0$$

其中边缘算子 ∂ (首先是 A^e -模同态) 满足

$$\partial \eta^i = x^i - y^i$$

以及与外微分相同的莱布尼茨法则:对任意 $\omega \in \mathcal{K}$,成立

$$\partial(\eta^i \wedge \omega) = \partial \eta^i \wedge \omega - \eta^i \wedge \partial \omega$$

再考虑连接映射

$$\varepsilon: \mathcal{K}_0 = A^c \to A$$
$$x^i \mapsto x^i$$
$$y^i \mapsto x^i$$

则众所周知, Koszul 复形

$$\mathcal{K}_A \xrightarrow{\varepsilon} A \to 0$$

为 A 的投射消解(证明从略)。我们以此计算 $HH^{\bullet}(A)$. 我们注意到以下两个简单事实: 其一:对任何 1 < l < n,成立双 A-模同构

$$A \otimes_{A^e} \mathcal{K}_l = A \otimes_{A^e} A^e \otimes \bigwedge^l (\mathbb{C}^n) \cong A \otimes \bigwedge^l (\mathbb{C}^n)$$

其二: 函子 $A \otimes_{A^e}$ — 作用于 Koszul 复形 \mathcal{K}_A 之后,成立

$$A \otimes_{A^e} \partial = 0$$

这是因为,对于任意 $f \in A$,在 $A \otimes_{A^e} A^e$ 当中总成立

$$f \otimes x^i = x^i f \otimes 1 = f x^i \otimes 1 = f \otimes (x^i)^{\text{op}} = f \otimes y^i$$

因此

$$f \otimes (x^i - y^i) = 0 \in A \otimes_{A^e} A^e$$

从而由 ∂ 的定义,容易看出 $A \otimes_{A^e} \partial = 0$.

综上两方面,直接计算之,

$$HH_{k}(A) = H_{k}(A \otimes_{A^{e}}^{L} A)$$

$$= H_{k}(A \otimes_{A^{e}} \mathcal{K}_{A})$$

$$= A \otimes_{A^{e}} \mathcal{K}_{k}$$

$$= A \otimes \bigwedge^{k} (\mathbb{C}^{n})$$

$$= \Omega_{A}^{k}$$

从而得证。

事实上对于一般的含幺结合 K-代数 A, $HH_{\bullet}(A)$ 扮演了"微分形式"的角色。这是 Hochschild 同调的一种几何解释。

对于一般的 A, A 作为双 A-模, 由一种典范的投射消解, 称之为 Bar-复形:

定义 1.2.3. (Bar-复形)

对于含幺结合 K-代数 A, 定义以下双 A-模链复形

$$\cdots \rightarrow B_2 A \xrightarrow{b} B_1 A \xrightarrow{b} B_0 A \xrightarrow{b} A \rightarrow 0$$

如下:

$$B_n A := A \otimes A^{\otimes n} \otimes A \ (n \ge 0)$$

$$b: a_0 \otimes a_1 \otimes ... \otimes a_n \mapsto \sum_{k=0}^{n-1} (-1)^k a_0 \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

称之为 Bar-复形。

首先容易验证 $b^2 = 0$,从而 $B_{\bullet}A \xrightarrow{b} A \to 0$ 确实是链复形。对于 $n \ge 1$,具体验证如下:

$$b^{2}(a_{0} \otimes a_{1} \otimes ... \otimes a_{n}) = b \left(\sum_{k=0}^{n-1} (-1)^{k} a_{0} \otimes a_{1} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n} \right)$$

$$= \sum_{k=0}^{n-1} (-1)^{k} b(a_{0} \otimes a_{1} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n})$$

$$= \sum_{k=0}^{n-1} (-1)^{k} \left[\sum_{l=0}^{k-2} (-1)^{l} a_{0} \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n} + (-1)^{k-1} a_{0} \otimes ... \otimes (a_{k-1} a_{k} a_{k+1}) \otimes ... \otimes a_{n} + (-1)^{k} a_{0} \otimes ... \otimes (a_{k} a_{k+1} a_{k+2}) \otimes ... \otimes a_{n} - \sum_{l=k+2}^{n-1} (-1)^{l} a_{0} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes a_{n} \right]$$

$$= \sum_{0 \leq k < l \leq n-1} \left(-(-1)^{k+l} + (-1)^{k+l} \right) a_{0} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes a_{n} + \sum_{0 \leq k \leq n-2} \left((-1)^{2k+1} + (-1)^{2k} \right) a_{0} \otimes ... \otimes (a_{k} a_{k+1} a_{k+2}) \otimes ... \otimes a_{n}$$

$$= 0$$

从而验证完毕。

我们可以把 $a_0 \otimes ... \otimes a_n$ 想象为直线上依次排列的 n+1 个质点,将算子 b 想象为相邻质点两两"碰撞"。

性质 1.2.4. 记号同之前, 则 Bar-复形

$$B_{\bullet}A \to A \to 0$$

是 A 的投射消解。

证明. 对任意 $n \ge 0$, $B_n A = A \otimes A^{\otimes n} \otimes A$ 是投射 K-模(这是因为由最初的假定,A 是投射 K-模,从而其张量积也投射)于是我们只需再验证该链复形是正合的。

为此,我们构造链同伦

$$h: B_{n-2}A \rightarrow B_{n-1}A \quad (n \ge 1, B_{-1}A = A)$$

 $a_0 \otimes ... \otimes a_n \mapsto 1 \otimes a_0 \otimes ... \otimes a_n$

只需验证 hb + bh = 1,之后与性质1.1.5的证明类似。

注意到对于任意 $n \geq 0$,成立

$$bh(a_0 \otimes ... \otimes a_n) = b(1 \otimes a_0 \otimes ... \otimes a_n)$$

$$= a_0 \otimes ... \otimes a_n - \sum_{k=0}^{n-1} 1 \otimes a_0 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

$$= a_0 \otimes ... \otimes a_n - 1 \otimes b(a_0 \otimes ... \otimes a_n)$$

$$= (1 - hb)a_0 \otimes ... \otimes a_n$$

因此 bh + hb = 1, 证毕。

定义 1.2.5. 设 M 为双 A-模, 定义 Hochschild 链复形

$$C_{\bullet}(A, M) := M \otimes_{A^e} B_{\bullet} A$$

$$\cdots M \otimes A^{\otimes 3} \to M \otimes A^{\otimes 2} \to M \otimes A \to M$$

方便起见, 该链复形的边缘算子仍记作 b.

则易知 M 的 Hochdchild 同调无非是 Hochschlid 链复形的同调:

$$H_n(A, M) = H_n(C_{\bullet}(A, M))$$

注意到有双 A-模同构

$$C_n(A, M) = M \otimes_{A^e} (A \otimes A^{\otimes n} \otimes A) \cong M \otimes A^{\otimes n}$$

在此同构意义下,容易验证 $C_{\bullet}(A, M)$ 的边缘算子 b 有如下显示表达: 对任意 $m \in M$,以及 $a_1, a_2, ..., a_n \in A$,成立

$$b (m \otimes (a_1 \otimes ... \otimes a_n)) = m \otimes_{A^e} (b(1 \otimes a_1 \otimes ... \otimes a_n \otimes 1))$$

$$= m \otimes_{A^e} [a_1 \otimes ... \otimes a_n \otimes 1$$

$$+ \sum_{k=1}^{n-1} (-1)^k 1 \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n \otimes 1$$

$$+ (-1)^n 1 \otimes a_1 \otimes ... \otimes a_n]$$

$$= (m.a_1) \otimes a_2 \otimes ... \otimes a_n$$

$$+ \sum_{k=1}^{n-1} (-1)^k m \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

$$+ (-1)^n (a_n.m) \otimes a_1 \otimes ... \otimes a_{n-1}$$

Hochschlid 链复形的边缘算子的显式表达与 Bar-复形非常相似,从上式最右边的前两项可以看出; 区别在于上式最右边的第三项。

1.3 Hochschlid 上同调

对于双 A-模 M,既然我们已经考虑余中心 $M \otimes_{A^e} A$,那么我们自然也会去考虑 $\operatorname{Hom}_{A^e}(A,M)$. 我们称双 A-模 $\operatorname{Hom}_{A^e}(A,M)$ 为 M 的导出中心 (derived center)。

性质 1.3.1. (导出中心的结构) 对于双 A-模 M, 则有双 A-模同构

$$\operatorname{Hom}_{A^e}(A, M) \cong \{ m \in M | a.m - m.a = 0 \ \forall a \in A \}$$

容易验证 $\{m \in M | a.m - m.a = 0 \ \forall a \in A\}$ 为 M 的双 A-子模。粗俗地说,该子模由"与 A 中所有元素交换"的元素构成,故谓之"中心"。

证明. 对于任意的 $\varphi \in \operatorname{Hom}_{A^e}(A, M)$ 以及 $a \in A$,则 $\varphi(a)$ 的取值由 $\varphi(1)$ 完全决定:

$$\varphi(a) = \varphi(a.1) = a.\varphi(1)$$

而另一方面,

$$\varphi(a) = \varphi(1.a) = \varphi(1).a$$

从而有 $a.\varphi(1) = \varphi(1).a.$ 于是我们可以构造如下双 A- 模同态:

$$\operatorname{Hom}_{A^e}(A, M) \rightarrow \{m \in M | a.m - m.a = 0 \ \forall a \in A\}$$

 $\varphi \mapsto \varphi(1)$

容易验证该模同态为同构。证毕。

然后我们考虑 Hom(-,M) 的导出函子,自然地去定义如下:

定义 1.3.2. (Hochschild 上同调)

对于双 A-模 M, 以及 n > 0, 定义 M 的第 $n \land Hochschild$ 上同调

$$H^n(A, M) = \operatorname{Ext}_{A^e}^n(A, M)$$

特别地, 我们记

$$H^n(A) = \operatorname{Ext}_{A^e}^n(A, A)$$

由定义知,M 的第 0 个 Hochschild 上同调为 $Hom_{A^e}(A,M)$,是 M 的导出中心。回顾 Bar-复形,我们考虑如下的 Hochschild 上链复形

$$C^{\bullet}(A,M) = \operatorname{Hom}_{A^{e}}(B_{\bullet}A,M)$$

该上链复形的微分算子 ∂ 由 Bar-复形 $B_{\bullet}A$ 的边缘算子 b 所诱导。则 M 的 Hochschild 上同调满足

$$H^n(A, M) = H^n(C^{\bullet}(A, M), \partial) = H^n(\operatorname{Hom}_{A^e}(B_{\bullet}A, M), \partial)$$

注意有自然的双 A-模同构

$$C^n(A, M) = \operatorname{Hom}_{A^e}(A \otimes A^{\otimes n} \otimes A, M) \cong \operatorname{Hom}(A^{\otimes n}, M)$$

(即取值于 M 的 n 重 K-线性映射)于是对于任意的 $\varphi \in C^n(A,M) = \operatorname{Hom}(A^{\otimes n},M)$,容易知道 $\partial \varphi \in \operatorname{Hom}(A^{\otimes n+1},M)$ 具有如下显式表达:对任意 $a_0,a_1,...,a_m \in A$,

$$\partial \varphi(a_0, a_1, ..., a_n) = a_0.\varphi(a_1, a_2, ..., a_n)$$

$$-\sum_{k=0}^{n-1} (-1)^k \varphi(a_0, ...; (a_k a_{k+1}); ..., a_n)$$

$$-(-1)^n \varphi(a_0, a_1, ..., a_{n-1}).a_n$$

接下来讨论 Hochschild 上同调的几何意义。我们已经知道第 0 个 Hochschild 上同调为 M 的导出中心,现在我们看 $H^1(A,M)$,我们将发现它是 A 的取值于 M 的外导子。

回顾导子 (derivation) 的概念如下:

定义 1.3.3. (早子) 对于双 A-模 M. K-线性映射

$$D:A\to M$$

称为 A 的取值于 M 的导子 (derivation), 如果对任意的 $a_1, a_2 \in A$, 成立

$$D(a_1a_2) = D(a_1).a_2 + a_1.D(a_2)$$

对于 $m \in M$ 我们定义

$$ad_m: A \rightarrow M$$

$$a \mapsto [m,a] := m.a - a.m$$

则容易验证 ad_m 为 A 的取值于 M 的导子,称形如这样的导子为**内导子** (inner derivation)。 我们记

$$\operatorname{Der}(A,M) := \{D : A \to M | D$$
为导子
$$\operatorname{Inn}(A,M) := \{\operatorname{ad}_m | m \in M\} \subseteq \operatorname{Der}(A,M)$$

注意 Inn(A, M) 与 Der(A, M) 都有显然的 K-模结构,且前者是后者的 K-子模。

性质 1.3.4. $(HH^1(A, M))$ 的结构) 对于双 A-模 M, 成立

$$HH^1(A, M) \cong \frac{Der(A, M)}{Inn(A, M)}$$

我们称上式右边的集合当中的元素为 A 的取值于 M 的外导子 (outer derivation)。

证明. 只需考虑 Hochschild 上链复形

$$C^0(A, M) \xrightarrow{\partial^0} C^1(A, M) \xrightarrow{\partial^1} C^2(A, M) \to \cdots$$

我们只需具体计算之。对于 $\varphi \in C^1(A,M) \cong \operatorname{Hom}(A,M)$,则 $\partial^1 \varphi \in C^2(A,M) \cong \operatorname{Hom}(A^{\otimes 2},M)$ 满足: 对任意 $a_1,a_2 \in A$,成立

$$\partial^1 \varphi(a_1, a_2) = a_1 \cdot \varphi(a_2) - \varphi(a_1 a_2) + \varphi(a_1) \cdot a_2$$

可见 $\varphi \in \ker \partial^1$ 当且仅当 $\varphi \in \operatorname{Der}(A, M)$. 也就是说 $\ker \partial^1 = \operatorname{Der}(A, M)$. 另一方面,对于 $m \in C^0(A, M) \cong M$,以及 $a \in A$,成立

$$(\partial^0 m)(a) = a.m - m.a = -\operatorname{ad}_m(a)$$

因此 $\ker \partial^0 \cong \operatorname{Inn}(A, M)$. 从而

$$\mathrm{HH}^1(A,M) = \frac{\ker \partial^1}{\mathrm{Im}\,\partial^0} \cong \frac{\mathrm{Der}(A,M)}{\mathrm{Inn}(A,M)}$$

特别地, 当 M = A 时,

$$HH^1(A) = Der(A, A)/Inn(A, A)$$

注意到 Der(A,A) 上面还有更多的结构: 对于 $\forall D_1, D_2 \in Der(A,A)$,定义

$$[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1 : A \to A$$

容易验证 $[D_1, D_2]$ 仍然为 A 的导子,并且 [-,-] 为 Der(A,A) 上的李括号(Lie bracket)。 另外容易验证

$$[\operatorname{Der}(A,A),\operatorname{Inn}(A,A)]\subseteq\operatorname{Inn}(A,A)$$

具体地,对于 $D \in Der(A, A)$ 以及 $m \in M$,成立

$$[D, \mathrm{ad}_m] = \mathrm{ad}_{D(m)}$$

也就是说 Inn(A,A) 是 Der(A,A) 的理想。于是 [-,-] 诱导了 $HH^1(A) = \frac{Der(A,A)}{Inn(A,A)}$ 上的李括号结构.

如果 A 是交换 K-代数,则 Inn(A, A) = 0。于是

$$\mathrm{HH}^1(A) \cong \mathrm{Der}(A,A)$$

可被认为是"切向量场"(此时 A 被认为是"函数环")。

我们再去考虑 $HH^2(A,M)$. 对于任意的

$$\varphi \in C^2(A, M) = \operatorname{Hom}(A^{\otimes 2}, M)$$

则对 $a_0, a_1, a_2 \in A$,成立

$$\partial \varphi(a_0, a_1, a_2) = a_0 \cdot \varphi(a_1, a_2) - \varphi(a_0 a_1, a_2) + \varphi(a_0, a_1 a_2) - \varphi(a_0, a_1) \cdot a_2$$

引理 1.3.5. 对于双 A-模 M, 以及 $\varphi \in C^2(A,M) = \text{Hom}(A^{\otimes 2},M)$, 我们令

$$\hat{A} := A \oplus M$$

并赋以如下的 K-代数结构: 对于任意 $a_1, a_2 \in A$ 以及 $m_1, m_2 \in M$,规定 \hat{A} 的乘法 $\hat{\bullet}_{\varphi}$ 为

$$(a_1 \oplus m_1) \hat{\bullet}_{\varphi}(a_2 \oplus m_2) := a_1 a_2 \oplus [a_1.m_2 + m_1.a_2 + \varphi(a_1, a_2)]$$

那么 $(\hat{A}, \hat{\bullet}_{\varphi})$ 为结合代数, 当且仅当 $\partial \varphi = 0$.

证明. 这是简单的计算验证。对于任意的 $a_0, a_1, a_2 \in A$ 以及 $m_0, m_1, m_2 \in M$,直接计算之,

$$[(a_0 \oplus m_0) \hat{\bullet}_{\varphi} (a_1 \oplus m_1)] \hat{\bullet}_{\varphi} (a_2 \oplus m_2)$$

$$= a_0 a_1 a_2 \oplus [a_0 a_1 . m_2 + a_0 . m_1 . a_2 + m_0 . a_1 a_2 + \varphi(a_0, a_1) . a_2 + \varphi(a_0 a_1, a_2)]$$

以及

$$(a_0 \oplus m_0) \hat{\bullet}_{\varphi} [(a_1 \oplus m_1) \hat{\bullet}_{\varphi} (a_2 \oplus m_2)]$$

$$= a_0 a_1 a_2 \oplus [a_0 a_1 . m_2 + a_0 . m_1 . a_2 + m_0 . a_1 a_2 + a_0 . \varphi(a_1, a_2) + \varphi(a_0, a_1 a_2)]$$

因此 $\hat{\bullet}_{\varphi}$ 满足结合性,当且仅当

$$\varphi(a_0, a_1).a_2 + \varphi(a_0a_1, a_2) = a_0.\varphi(a_1, a_2) + \varphi(a_0, a_1a_2)$$

而此式等价于 $\partial \varphi = 0$.

注意到在 \hat{A} 当中,对任意的 $m_1, m_2 \in M$,以及任意 $\varphi \in C^2(A, M)$,总有 $m_1 \hat{\bullet}_{\varphi} m_2 = 0$. 于是 我们不妨将 " $A \oplus M$ " 当中的 "M" 理解为 "一阶小量"。我们考虑 $\varphi = 0$ 时 $\hat{A}_0 := A \oplus M$ 的代数结构

$$(a_1 \oplus m_1) \bullet (a_2 \oplus m_2) := a_1 a_2 \oplus (a_1.m_2 + m_1.a_2)$$

显然 (\hat{A}_0, \bullet) 为结合代数。若 $\partial \varphi = 0$,则结合代数 $(\hat{A}, \bullet_{\varphi})$ 为 (\hat{A}_0, \bullet) 的**一阶形变**,而 φ 为其"形变参数"。

从而 M 的第 2 个 Hochschild 上同调

$$H^2(A,M) \cong \frac{\{\varphi | (\hat{A}, \hat{\bullet}_{\varphi})$$
是结合代数}{Im($\partial : C^1(A,M) \to C^2(A,M)$)

商掉的东西(Im d)为形如以下的一类特殊的一阶形变:

$$\varphi_f: A \otimes A \rightarrow M$$

$$a_1 \otimes a_2 \mapsto a_1.f(a_2) + f(a_1).a_2 - f(a_1a_2)$$

其中 $f \in C^1(A, M) = \text{Hom}(A, M)$, $\varphi_f = \partial f$.

Hochschild 上同调与 Hochschild 同调两者之间有如下自然的配对:

定义 1.3.6. 设 M, N 为双 A-模, 则自然有如下配对:

$$C^n(A, M) \otimes C_n(A, N) \to N \otimes_{A^e} M$$

定义为:对任意 $f \in C^n(A,M) = \operatorname{Hom}(A^{\otimes n},M)$ 以及任意 $y \otimes a_1 \otimes \cdots \otimes a_n \in C_n(A,N) = N \otimes A^{\otimes n}$,有

$$(f, y \otimes a_1 \otimes \cdots \otimes a_n) \mapsto y \otimes f(a_1, ..., a_n) \in N \otimes_{A^e} M$$

其中任意 $y \in N$, 以及 $a_1,...,a_n \in A$.

容易验证,该配对自然诱导了

$$H^n(A, M) \otimes H_n(A, N) \to N \otimes_{A^e} M$$

这是容易发现的(先限制,再下降,下降的良定性容易说明。)

特别地, 当 M = A, $N = A^*$ (其中 $A^* := \text{Hom}(A, K)$) 时,我们有双线性函数

$$H^n(A,A)\otimes H_n(A,A^*)\to A^*\otimes_{A^e}A\xrightarrow{\operatorname{ev}}K$$

我们考察一个 Hochschild 上同调的具体算例。

性质 1.3.7. 若 $A = \mathbb{C}[x^1,...,x^n]$ 为 \mathbb{C} 上的 n 元多项式环,则

$$\operatorname{HH}^k(A) \cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n), A\right)$$

证明. 对于这个特例,采用 Koszul 复形计算更佳简便。有关记号同性质1.2.2的证明过程. 考虑 Koszul 复形

$$\mathcal{K}_A:\cdots\stackrel{\partial}{\to} A^e\otimes \bigwedge^{k+1}(\mathbb{C}^n)\stackrel{\partial}{\to} A^e\otimes \bigwedge^k(\mathbb{C}^n)\stackrel{\partial}{\to} A^e\otimes \bigwedge^{k-1}(\mathbb{C}^n)\stackrel{\partial}{\to}\cdots$$

然后将函子 $\operatorname{Hom}_{A^e}(-,A)$ 作用于之上。注意到有 \mathbb{C} -线性同构

$$\operatorname{Hom}_{A^e}\left(A^e\otimes \bigwedge^k(\mathbb{C}^n),A\right)$$
 $\cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n),\operatorname{Hom}_{A^e}(A^e,A)\right)$
 $\cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n),A\right)$

此外再注意到,上链复形 $\operatorname{Hom}_{A^e}(\mathcal{K}_A,A)$ 的微分算子 $d:=\operatorname{Hom}_{A^e}(\partial,A)=0$. 这是因为对于 $\varphi\in\operatorname{Hom}_{A^e}\left(A^e\otimes \bigwedge^k(\mathbb{C}^n),A\right),\ \omega\in \bigwedge^{k+1}(\mathbb{C}^n)$ 以及 $f\in A^e$,成立

$$d\varphi(f\otimes\omega)=\varphi(\partial(f\otimes\omega))$$

回顾 Koszul 复形边缘算子运算规则

$$\partial: \eta^i \mapsto x^i - y^i \in A^e$$

又由于 φ 为 A^e -模同态,从而对于任意 $\tilde{\omega} \in \bigwedge^k(\mathbb{C}^n)$,成立

$$\varphi(x^i \otimes \tilde{\omega}) = x^i.\varphi(1 \otimes \tilde{\omega}) = \varphi(1 \otimes \tilde{\omega}).x^i = \varphi((x^i)^{\mathrm{op}} \otimes \tilde{\omega}) = \varphi(y^i \otimes \tilde{\omega})$$

也就是说 $\varphi((x^i-y^i)\otimes \tilde{\omega})=0$. 由此可见 d=0. 综上可知

$$\operatorname{HH}^k(A) \cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n), A\right)$$

注意到 $\operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n),A\right)$ 之中的元素形如

$$\sum_{1 < i_1 < \dots < i_k < n} f_{i_1 \dots i_k} \partial_{i_1} \wedge \dots \wedge \partial_{i_k}$$

回顾 $HH_{\bullet}(A)$ 中的元素可被认为是"微分形式",可见 $HH^{\bullet}(A)$ 中的元素则是"多重切向量场"。

1.4 一些例子

如果 $K \hookrightarrow A$ 为嵌入,那么我们可以更加方便地计算 Hochschild (上) 同调:

定义 1.4.1. (约化 Bar-复形) ($reduced\ Bar$ -complex) 对于 K-代数 A, 如果 $K \hookrightarrow A$, 那么考虑 K-模

$$\overline{A} := A/K$$

我们定义如下的约化 Bar-复形 ($\overline{B}_{\bullet}A,b$):

$$\overline{B}_n A := A \otimes \overline{A}^{\otimes n} \otimes A \quad \forall i > 0$$

边缘算子 $b: \overline{B}_n A \to \overline{B}_{n-1} A$ 如下定义:

$$b\left(a_0\otimes(\overline{a_1}\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}\right) := (a_0a_1)\otimes(\overline{a_2}\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}$$

$$+ \sum_{i=1}^{n-1}(-1)^ia_0\otimes(\overline{a_1}\otimes\cdots(\overline{a_ia_{i+1}})\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}$$

$$+ (-1)^na_0\otimes(\overline{a_1}\otimes\cdots\otimes\overline{a_{n-1}})\otimes(a_na_{n+1})$$

注意到 $\overline{B}_{\bullet}A$ 是 $B_{\bullet}A$ 的商模:

$$\overline{B}_n A = \frac{B_n A}{\{a_0 \otimes (a_1 \otimes \cdots \otimes a_{i-1} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n) \otimes a_{n+1}\}}$$

容易发现约化 Bar-复形的 "b" 正是 Bar-复形的 b. 但是我们要验证 b 的良定性,即与代表元选取无关。这是容易验证的。于是我们得到以下链复形:

$$\overline{B}_{\bullet}A \to A \to 0$$

与之前 Bar-复形完全类似,我们容易验证此复形也是正合的。只需构造同伦算子

$$h: \overline{B}_{n-1}A \to \overline{B}_nA$$

$$a_0 \otimes (\overline{a_1} \otimes \cdots \otimes \overline{a_{n-1}}) \otimes a_n \mapsto 1 \otimes (\overline{a_0} \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_n}) \otimes a_{n+1}$$

验证 bh + hb = 1 即可。

定义 1.4.2. (约化 Hochschild (上) 链复形)

对于双 A-模 M, 我们令

$$\overline{C}_{\bullet}(A, M) := M \otimes_{A^{e}} \overline{B}_{\bullet} A \cong M \otimes \overline{A}^{\otimes \bullet}
\overline{C}^{\bullet}(A, M) := \operatorname{Hom}_{A^{e}}(\overline{B}_{\bullet} A, M) \cong \operatorname{Hom}(\overline{A}^{\otimes \bullet}, M)$$

称之为关于 M 的约化 Hochschild (上) 链复形。

事实上,约化 Hochschild (上)链复形的 (上)同调自然同构于 Hochschild (上)同调——这是由以下代数引理保证的:

引理 1.4.3. 条件同上, 则商映射

$$\pi_{\bullet}: C_{\bullet}(A, M) \twoheadrightarrow \overline{C}_{\bullet}(A, M)$$

所诱导的链映射

$$\pi_{\bullet}: (C_{\bullet}(A,M),d) \twoheadrightarrow (\overline{C}_{\bullet}(A,M),d)$$

为拟同构。

证明. 注意链映射 π_{\bullet} 为满态射,只需再证明其核复形

 $\ker \pi_{\bullet}$

是正合的即可。我们承认之(似乎不太好证)。

注意上述引理也适用于 Hochschild 上链复形的情形,完全类似,不再赘述。从而我们立刻有如下推论:

推论 1.4.4. 对于 K-代数 A, 如果 $K \hookrightarrow A$ 为嵌入,则有自然同构:

$$H_{\bullet}(A, M) \cong H_{\bullet}(\overline{C}_{\bullet}(A, M))$$

 $H^{\bullet}(A, M) \cong H^{\bullet}(\overline{C}^{\bullet}(A, M))$

关于(约化)Bar-复形,我们还有另一种理解方式:关于 A 的(约化)Bar-复形是 A 与某个 微分分次代数的自由乘积。

定义 1.4.5. (微分分次代数)

Z-分次 K-代数

$$A:=\bigoplus_{n\in\mathbb{Z}}A_n$$

称为微分分次代数 (differential graded algebra), 若它配以 K-线性算子 $d: A \to A$, 并且满足:

$$\left\{ \begin{array}{l} \mathrm{d}(A_n) \subseteq A_{n+1} \quad \forall n \in \mathbb{Z} \\ \mathrm{d}^2 = 0 \\ \mathrm{d}(\alpha\beta) = (\mathrm{d}\alpha)\beta + (-1)^{\deg\alpha}\alpha(\mathrm{d}\beta) \quad \forall \alpha,\beta \in A, \ \text{并且 α 是齐次元} \end{array} \right.$$

对于微分分次代数 (A,d), 由于 A 的分次以及 $d^2 = 0$, 从而自然有上链复形

$$\cdots \rightarrow A_{-1} \xrightarrow{d} A_0 \xrightarrow{d} A_1 \rightarrow \cdots$$

我们将此上链复形也记为 (A,d).

微分分次代数最直接的例子是,对于光滑流形 X,考虑 $A := \Omega^{\bullet}(X)$ 为 X 上的微分形式。A 上的乘法即为微分形式的外积 \wedge ,微分结构即为外微分 d.

我们可以适当修改微分分次代数的定义,将条件" $d(A_n) \subseteq A_{n+1}$ "改为" $d(A_n) \subseteq A_{n-1}$ ",此时的微分算子我们习惯记为" ∂ ". 对于这样的微分分次代数 (A,∂) ,它可以被视为链复形。

例子 1.4.6. 我们考虑如下 K-代数:

$$A:=K[\varepsilon]:=K\oplus K\varepsilon\oplus K\varepsilon^2\oplus\cdots$$

其中 ε 为形式变量,并且规定 $\deg \varepsilon = 1$,由此诱导出 $K[\varepsilon]$ 的分次结构。其微分算子 ∂_{ε} 由以下诱导:

$$\partial_{\varepsilon}(1) = 0 \quad \partial_{\varepsilon}(\varepsilon) = 1$$

注意 $\deg \varepsilon = 1$, 按照微分代数的定义可计算出

$$\partial_\epsilon(\epsilon^2) = \partial_\epsilon(\epsilon)\epsilon + (-1)^{\text{deg}\,\epsilon}\epsilon\partial_\epsilon(\epsilon) = \epsilon - \epsilon = 0$$

一般地,对于非负整数 n 我们有

$$\partial_{\varepsilon}(\varepsilon^n) = \begin{cases} 0 & n$$
 为偶数 $\varepsilon^{n-1} & n$ 为奇数

从而链复形 $(K[\varepsilon], \partial_{\varepsilon})$:

$$\cdots \to K\varepsilon^4 \xrightarrow{0} K\varepsilon^3 \xrightarrow{1} K\varepsilon^2 \xrightarrow{0} K\varepsilon \xrightarrow{1} K \to 0$$

是正合的。其中 $1: K\varepsilon^{2n+1} \to K\varepsilon^{2n}$ 将 ε^{2n+1} 映为 ε^{2n} .

众所周知,对于两个 K-代数 A, B,我们可以谈论它们的**自由乘积**(free product)A*B. 若 $A = \bigoplus_{i \in \mathbb{Z}} A_n$ 是微分分次代数,其微分算子为 d,则容易知道 A*B 自然也有微分分次代数结构:

$$\begin{cases} \deg b &= 0 \quad \forall b \in B \\ \deg a &= n \quad \forall a \in A_n \subseteq A \\ db &= 0 \quad \forall b \in B \end{cases}$$

容易知道 A*B 中的 N 次齐次元必形如以下元素的有限和:

$$b_1a_1b_2a_2\cdots b_ma_mb_{m+1} \quad (b_i \in B, a_i \in A_{n_i}, \sum_{i=1}^m n_i = N)$$

性质 1.4.7. 对于 K-代数 A,则有链复形的同构

$$(B_{\bullet}A \to A, b) \cong (A * K[\varepsilon], \partial_{\varepsilon})$$

其中 $(K[\varepsilon], \partial_{\varepsilon})$ 为例子 1.4.6 当中的微分分次代数, 视为链复形; 同构映射为

$$\varphi_n: B_n A \to (A * K[\varepsilon])_n$$

$$a_0 \otimes (a_1 \otimes \cdots \otimes a_n) \otimes a_{n+1} \mapsto a_0 \varepsilon a_1 \varepsilon a_2 \cdots a_n \varepsilon a_{n+1}$$

这给出了 Bar-复形的又一种理解方式。

证明. 容易验证 φ_n 为 K-模同构, 且逆映射 φ_n^{-1} 由以下诱导:

$$\varepsilon^n \mapsto \underbrace{1\varepsilon 1\varepsilon 1 \cdots 1\varepsilon 1}_{n \uparrow \varepsilon}$$

然后只需验证 $\varphi_{\bullet}: (B_{\bullet} \to A, b) \to (A * K[\varepsilon], \partial_{\varepsilon})$: 是链映射,也就是要验证交换关系 $\varphi \circ b = \partial_{\varepsilon} \circ \varphi$

$$B_n A \xrightarrow{b} B_{n-1} A$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

$$(K[\varepsilon] * A)_n \xrightarrow{\partial_{\varepsilon}} (K[\varepsilon] * A)_{n-1}$$

而这容易验证,验证如下:

$$\varphi \circ b(a_0 \otimes a_1 \otimes \cdots \otimes a_n \otimes a_{n+1})$$

$$= \varphi \left(\sum_{k=0}^n (-1)^k a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_{n+1} \right)$$

$$= \sum_{k=0}^n (-1)^k a_0 \varepsilon a_1 \varepsilon \cdots \varepsilon a_{n+1}$$

$$= \partial_{\varepsilon} (a_0 \varepsilon a_1 \varepsilon \cdots a_n \varepsilon a_{n+1})$$

$$= \partial_{\varepsilon} \circ \varphi (a_0 \otimes a_1 \otimes \cdots \otimes a_n \otimes a_{n+1})$$

我们还可以考虑 $(K[\varepsilon], \partial_{\varepsilon})$ 的商代数 $K[\varepsilon]/\varepsilon^2$,易知 $(K[\varepsilon]/\varepsilon^2, \partial_{\varepsilon})$ 也构成微分分次代数,从而也通过微分算子 ∂_{ε} 视为链复形。在此代数中, $\varepsilon^2 = 0$.

类似地,我们可以给出约化 Bar-复形的另一种理解方式:

性质 1.4.8. 对于 K-代数 A,则有链复形同构

$$(\overline{B}_{\bullet}A \to A, b) \cong (A * K[\varepsilon]/\varepsilon^2, \partial_{\varepsilon})$$

只需注意到 $A * K[\varepsilon]/\varepsilon^2$ 当中的 n 次齐次元必形如以下元素的有限和:

$$a_0 \varepsilon a_1 \varepsilon \cdots a_n \varepsilon a_{n+1} \quad (a_i \in A)$$

证明. 完全类似。事实上此链复形同构映射由 $\varphi_n: B_nA \to (A*K[\varepsilon])_n$ 诱导,其良定性由下式保证: 对任意 $1 \le i \le n$,

$$\varphi_n(a_0 \otimes \cdots \otimes a_{i-1} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{n+1})$$

$$= a_0 \varepsilon a_1 \cdots a_{i-1} \varepsilon 1 \varepsilon a_{i+1} \cdots \varepsilon a_{n+1}$$

$$= a_0 \varepsilon a_1 \cdots a_{i-1} 1 \varepsilon^2 a_{i+1} \cdots \varepsilon a_{n+1}$$

$$= 0 \mod \varepsilon^2$$

本节最后简单介绍以下 Hochschild (上) 同调与其它常见的(上) 同调理论的关系。

例子 1.4.9. (群的上同调)

设 G 是一个群, $M \in \text{Rep}(G)$ 为群 G 的一个左 K-表示,则有 G-模链复形

$$0 \to M \xrightarrow{\delta} C^1(G, M) \xrightarrow{\delta} C^2(G, M) \xrightarrow{\delta} \dots$$

其中

$$C^{n}(G, M) := \operatorname{Hom}(G^{n}, M) = \{f : G^{n} \to M\}$$

并且微分算子 δ 满足

$$\begin{cases}
\delta(m)(g) = g.m - m \\
(\delta f)(g_0, g_1, ..., g_n) = g_0.f(g_1, g_2, ..., g_n) \\
-\sum_{k=1}^{n-1} (-1)^k f(g_1, ..., g_k g_{k+1}, ..., g_n) \\
-(-1)^n f(g_0, g_1, ..., g_{n-1})
\end{cases}$$

容易验证 $\delta^2=0$. 此链复形的上同调

$$H^{\bullet}(G,M) := H^{\bullet}(C^{\bullet}(G,M),\delta)$$

称之为群的上同调 (group cohomology)

由 δ 的表达式容易看出,群的上同调与 Hochschild 上同调有以下关系:

性质 1.4.10. 设 G 是一个群,M 为群 G 的一个左 K-模,考虑群代数 A := K[G],于是 M 自然 有左 A-模结构。那么有同构:

$$H^{\bullet}(G,M) \cong H^{\bullet}(K[G],M)$$

其中左边为群 G 关于 M 的上同调,右边为群代数 K[G] 关于 M 的 Hichschild 上同调。

注意 M 仅仅是左 K[G]-模,并没有双 K[G]-模结构呀,怎么谈论 Hochschild 上同调? (强行规定 G 在 M 上的右作用恒为 1,通过 K-线性扩张得到 K[G] 在 M 的右作用,这样就得到 M 的双 K[G]-模结构了。)

证明. 注意到 $\operatorname{Hom}(G^n, M)$ 中的元素可以自然地 K-线性延拓为 $\operatorname{Hom}(K[G]^n, M)$ 中的元素,这给 出它们之间的同构。然后注意到 A = K[G] 的 $\operatorname{Hochschild}$ 上链复形的微分算子的显式表达式,(见 定义1.3.2的下方)它与群上同调相应的上链复形的微分算子显式表达式"相同"。细节从略。

若熟悉李代数同调,我们可以将李代数同调与其泛包络代数的 Hochschild 同调联系起来:

例子 1.4.11. (李代数同调) 对于李代数 g, M 为李代数 g 的一个左 K-模。令 A := U(g) 为 g 的泛包络代数,则 A 自然有左 A-模结构。(再通过某种"比较平凡"的方式给出右作用?与上例类似?)则有同构

$$H_{\bullet}(\mathcal{U}(\mathfrak{g}), M) \cong H^{\mathrm{Lie}}_{\bullet}(\mathfrak{g}, M)$$

其中左边是 A 关于 M 的 Hochschild 同调, 右边是李代数同调。

并没有在此叙述李代数同调的定义。留给感兴趣者。此处从略。

事实上,也可以考虑**群的同调、李代数上同调**,它们也有对应的 Hochschild 同调、上同调。

第2章 循环同调

与上一章一样,我们仍假设 K 为特征零的含幺交换环,A 为 K-代数,且作为 K-模是投射的。不过,在本章我们新增一条假定:

$$\mathbb{O} \hookrightarrow K$$

也就是说,有理数域能够嵌入到 K 中。(事实上,任何特征零的域都满足此假定。)

2.1 Connes 复形 $C^{\lambda}(A)$

回顾对于 K-代数 A,若 A 交换,则其 Hochschild 同调 $HH_{\bullet}(A)$ 可以被理解为"空间" A 上的"微分形式"。本节我们进一步研究 $HH_{\bullet}(A)$.

记号 2.1.1. 对于 K-代数 A, 双 A-模 M=A. 考虑其 Hochschild 链复形 $C_{\bullet}(A):=C_{\bullet}(A,A)$:

$$C_n(A) := C_n(A, A) \cong A^{\otimes n+1}$$

(回顾定义1.2.5). 我们考虑群 $\mathbb{Z}/(n+1)\mathbb{Z}$ 在 $C_n(A)$ 上的如下左 K-作用:记记 $\mathbb{Z}/(n+1)\mathbb{Z}$ 的生成元为 λ ,则

$$\lambda: C_n(A) \to C_n(A)$$

$$a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto (-1)^n a_n \otimes a_0 \otimes \cdots \otimes a_{n-1}$$

考虑 $C_n(A)$ 模掉此群作用, 所得的商 K-模记为

$$C_n^{\lambda}(A) := C_n(A)/(1-\lambda)$$

其中的元素称之为循环余不变量 (cyclic co-invariant)。

容易验证,

$$\lambda^{n+1}a_0\otimes a_1\otimes\cdots\otimes a_n=(-1)^{n(n+1)}a_0\otimes a_1\otimes\cdots\otimes a_n=a_0\otimes a_1\otimes\cdots\otimes a_n$$

即 $\lambda^{n+1} = id$. 可见这的确是 $\mathbb{Z}/(n+1)\mathbb{Z}$ 的作用。

回顾 Bar-复形,我们可以直观地视为"直线上依次排列质点,相邻两两碰撞";而在这里,商掉 λ 循环作用后,直观地更像是"圆周上排列质点"。

我们将说明,Hochschild 链复形 $C_{\bullet}(A)$ 的边缘算子 b,沿商映射 $C_{\bullet}(A) \rightarrow C_{\bullet}^{\lambda}(A)$ 下降,诱导了 $C_{\bullet}^{\lambda}(A)$ 的链复形结构(称之为 Connes 复形)。

引理 2.1.2. 对于 K-代数 A, 我们定义算子 $b': C_{\bullet}(A) \to C_{\bullet-1}(A)$ 如下:

$$b': C_n(A) \to C_{n-1}(A)$$

$$a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto \sum_{k=0}^{n-1} (-1)^k a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_n$$

则成立:

- (1) $b' \circ b' = 0$.
- (2) 对任意 n > 1, 则以下图表交换:

$$C_n(A) \xrightarrow{b'} C_{n-1}(A)$$

$$\downarrow^{1-\lambda} \qquad \downarrow^{1-\lambda}$$

$$C_n(A) \xrightarrow{b} C_{n-1}(A)$$

证明. 注意到有同构 $C_n(A) \cong B_nA(\cong A^{\otimes n+1})$,其中 $B_{\bullet}A$ 为 Bar-复形;容易看出这里定义的 b' 在此同构下,正是 Bar 复形当中的边缘算子,从而 $b' \circ b' = 0$,也就是说 $(C_{\bullet}(A),b')$ 是一个链复形,并且同构于 Bar-复形 $(B_{\bullet}A,b)$. (这里有轻微的记号混用:Bar-复形 $(B_{\bullet}A,b)$ 当中的 "b",前者在此是临时记号。)

我们再来看(2). 回顾 $b: C_n(A) \to C_{n-1}(A)$ 的显式表达式(见定义1.2.5的下方,并且令其中 M=a 以及 $m=a_0$)(注意此图中的 b 与 b' 并不是同一个映射,它们的具体表达式相差一

项),直接验算之:

$$(1 - \lambda) \circ b' (a_0 \otimes a_1 \otimes \cdots \otimes a_n)$$

$$= (1 - \lambda) \left(\sum_{k=0}^{n-1} (-1)^k a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_n \right)$$

$$= \sum_{k=0}^{n-1} (-1)^k a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_n$$

$$+ \sum_{k=0}^{n-2} (-1)^{k+n} a_n \otimes a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_{n-1}$$

$$- (a_{n-1} a_n) \otimes a_0 \otimes \cdots \otimes a_{n-2}$$

$$= b(a_0 \otimes a_1 \otimes \cdots \otimes a_n) - (-1)^n (a_n a_0) \otimes a_1 \otimes \cdots \otimes a_{n-1}$$

$$+ (-1)^n \sum_{k=0}^{n-1} (-1)^k a_n \otimes a_0 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_{n-1}$$

$$- (a_{n-1} a_n) \otimes a_0 \otimes \cdots \otimes a_{n-2}$$

$$= b(a_0 \otimes a_1 \otimes \cdots \otimes a_n - (-1)^n a_n \otimes a_0 \otimes \cdots \otimes a_{n-1})$$

$$= b \circ (1 - \lambda) (a_0 \otimes a_1 \otimes \cdots \otimes a_n)$$

也就是说,

$$(1 - \lambda) \circ b' = b \circ (1 - \lambda)$$

从而此图表交换,证毕。

此图表的交换关系也可改写为

$$[b,\lambda] = (1-\lambda) \circ (b-b')$$

其中 $[b, \lambda] := b \circ \lambda - \lambda \circ b$.

此引理给出了链复形 $(C_{\bullet}(A),b')$ 与 $(C_{\bullet}(A),b)$ 之间的链映射:

$$(1-\lambda)_{\bullet}:(C_{\bullet}(A),b')\to(C_{\bullet}(A),b)$$

然而注意到

$$C_n^{\lambda}(A) := C_n(A)/(1-\lambda) = \operatorname{coker}(1-\lambda)_n$$

于是我们(在由 K-模链复形构成范畴当中)考虑链映射 $(1-\lambda)_{\bullet}$ 的余核,这给出了 $C^{\lambda}_{\bullet}(A)$ 的链 复形结构:

定义 2.1.3. (Connes 复形) 对于 K-代数 A, 考虑链映射

$$(1-\lambda)_{\bullet}: (C_{\bullet}(A), b') \to (C_{\bullet}(A), b)$$

的余核链复形

$$(C^{\lambda}_{\bullet}(A), b^{\lambda}) := \operatorname{coker}[(1 - \lambda)_{\bullet}]$$

称其为 Connes 复形。并且记

$$H^{\lambda}_{\bullet}(A) := H_{\bullet}(C^{\lambda}_{\bullet}(A))$$

称之为 A 的循环同调(cyclic homology).

也就是说,有如下的交换图表:

此交换图表每一横行都为链复形,其中第三横行为 Connes 复形;每一列都是右短正合的。并且容易知道:Connes 复形的边缘算子 b^{λ} 正是 Hochschild 链复形的边缘算子 b 沿商映射 $C_{\bullet}(A) \to C_{\bullet}^{\lambda}(A)$ 的下降。

2.2 循环双复形 CC_{••}(A)

引理 2.2.1. (平均算子) 对于任意 K-代数 A, 以及 n > 0, 引入平均算子 $\mathcal{N}: C_n(A) \to C_n(A)$:

$$\mathcal{N} := 1 + \lambda + \lambda^2 + \dots + \lambda^n$$

则此算子满足以下性质:

- (1) $b'\mathcal{N} = \mathcal{N}b$
- (2) $(1-\lambda)\mathcal{N}=\mathcal{N}(1-\lambda)=0$. 此外,如果有理数域 $\mathbb{Q}\hookrightarrow K$,那么对于任意 $n\geq 0$,以下链复形是正合的:

$$\cdots \to C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \xrightarrow{1-\lambda} C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \xrightarrow{1-\lambda} C_n(A) \xrightarrow{\rightarrow} C_n(A) \to 0$$

证明. (1) 任意固定 $n \geq 1$, 为了区分算子在不同空间的作用, 我们采用临时记号

$$\begin{cases} \lambda: C_n(A) \to C_n(A) \\ \overline{\lambda}: C_{n-1}(A) \to C_{n-1}(A) \end{cases} \begin{cases} \mathcal{N} := 1 + \lambda + \dots + \lambda^n \\ \overline{\mathcal{N}} := 1 + \overline{\lambda} + \dots + \overline{\lambda}^{n-1} \end{cases}$$

则在此记号下我们需要证 $b'\mathcal{N} = \overline{\mathcal{N}}b$.

定义缩并算子

$$s: C_n(A) \rightarrow C_{n-1}(A)$$

 $a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto (a_0 a_1) \otimes \cdots \otimes a_n$

则容易验证(稍微注意一下正负号,确实都是正号)

$$b = \sum_{k=0}^{n} \overline{\lambda}^{k} s \lambda^{-k} \qquad b' = \sum_{k=0}^{n-1} \overline{\lambda}^{k} s \lambda^{-k}$$

于是有

$$b'\mathcal{N} = \left(\sum_{k=0}^{n-1} \overline{\lambda}^k s \lambda^{-k}\right) \left(\sum_{l=0}^n \lambda^l\right) = \sum_{0 \leq k \leq n-1 \atop 0 \leq l \leq n} \overline{\lambda}^k s \lambda^l$$

同理也有

$$\overline{\mathcal{N}}b = \sum_{\substack{0 \leq k \leq n-1 \ 0 \leq l \leq n}} \overline{\lambda}^k s \lambda^l$$

从而 $b'\mathcal{N} = \overline{\mathcal{N}}b$.

(2) 给定 $n \ge 0$, 注意到 $\lambda^{n+1} = 1$, 从而

$$(1-\lambda)\mathcal{N} = (1-\lambda)(1+\lambda+\cdots+\lambda^n) = 1-\lambda^{n+1} = 0$$

同理 $\mathcal{N}(1-\lambda)=0$. 因此该图表是链复形,只需再验证正合性。

现在假设 \mathbb{O} 是 K 的子环。我们构造如下链同伦:

$$\cdots \longrightarrow C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \xrightarrow{1-\lambda} C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \longrightarrow \cdots$$

$$\downarrow \text{id} \qquad \downarrow \text{id} \qquad \downarrow \text{id} \qquad \downarrow \text{id}$$

$$\cdots \longrightarrow C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \xrightarrow{1-\lambda} C_n(A) \xrightarrow{\mathcal{N}} C_n(A) \longrightarrow \cdots$$

其中 $f,g:C_n(A)\to C_n(A)$ 定义为

$$\begin{cases} f := \frac{1}{n+1} (\lambda^{n-1} + 2\lambda^{n-2} + 3\lambda^{n-3} + \dots + n) \\ g := \frac{1}{n+1} \end{cases}$$

 $(利用了 Q \hookrightarrow K)$ 则容易验证

$$f(1-\lambda) + \mathcal{N}g = g\mathcal{N} + (1-\lambda)f = 1$$

从而证毕。

特别地,当 K 为域时(注意我们总假定 $\operatorname{char} K = 0$)成立正合性。链同伦 f,g 的构造来自于(关于变元 λ 的多项式的)欧几里得辗转相除法。

由此引理,我们可构造出如下的循环双复形 (cyclic bicomplex),记为 $CC_{\bullet \bullet}(A)$:

$$\downarrow b \qquad \qquad \downarrow -b' \qquad \qquad \downarrow b \qquad \qquad \downarrow -b' \\
C_2(A) \stackrel{1-\lambda}{\longleftarrow} C_2(A) \stackrel{\mathcal{N}}{\longleftarrow} C_2(A) \stackrel{1-\lambda}{\longleftarrow} C_2(A) \stackrel{1-\lambda}{\longleftarrow} \cdots \\
\downarrow b \qquad \qquad \downarrow -b' \qquad \qquad \downarrow b \qquad \qquad \downarrow -b' \\
C_1(A) \stackrel{1-\lambda}{\longleftarrow} C_1(A) \stackrel{\mathcal{N}}{\longleftarrow} C_1(A) \stackrel{1-\lambda}{\longleftarrow} C_1(A) \stackrel{1-\lambda}{\longleftarrow} \cdots \\
\downarrow b \qquad \qquad \downarrow -b' \qquad \qquad \downarrow b \qquad \qquad \downarrow -b' \\
C_0(A) \stackrel{1-\lambda}{\longleftarrow} C_0(A) \stackrel{\mathcal{N}}{\longleftarrow} C_0(A) \stackrel{1-\lambda}{\longleftarrow} C_0(A) \stackrel{1-\lambda}{\longleftarrow} \cdots$$

其中对于任意 $p,q \ge 0$, $CC_{p,q}(A) = C_p(A)$ 为该图表的从下往上第 p 行,从左往右第 q 列的节点;此图表的偶数列与奇数列为 $(C_{\bullet}(A),b)$ 与 $(C_{\bullet}(A),-b')$ 交替。并且注意到,此图表不是交换的,而是对于其中每一个方框都满足**反交换性**。

我们回顾一些同调代数工具:

定义 2.2.2. (双复形的全复形)

对于任意的含幺交换环 K (这里暂时不必假定 char K=0), 以及 K-模双复形 $(A_{\bullet \bullet}, \mathbf{d}, \partial)$:

即:

$$\begin{cases} d_{p,q}: A_{p,q} \to A_{p-1,q} \\ \partial_{p,q}: A_{p,q} \to A_{p,q-1} \end{cases}$$

使得该图表每一行、每一列都是链复形, 并且满足反交换关系

$$\partial_{p-1,q} \circ \mathrm{d}_{p,q} + \mathrm{d}_{p,q-1} \circ \partial_{p,q} = 0$$

则我们定义双复形 $A_{\bullet \bullet}$ 的全复形 (total complex) (Tot $_{\bullet}(A_{\bullet \bullet}),d$) 如下:

$$\begin{cases} \operatorname{Tot}_n(A_{\bullet \bullet}) &:= \bigoplus_{p+q=n} A_{p,q} \\ d_n &:= \sum_{p+q=n} (d_{p,q} + \partial_{p,q}) \end{cases}$$

对于两个双复形 $A_{\bullet\bullet}$ 与 $A'_{\bullet\bullet}$,我们可以去定义双复形之间的态射 $f_{\bullet\bullet}:A_{\bullet\bullet}\to A'_{\bullet\bullet}$,进而考虑双复形范畴。双复形的态射自然诱导了相应的全复形之间的链映射,也就是说 Tot 具有函子性。我们还有以下同调代数工具:

引理 2.2.3. 设 $f_{\bullet\bullet}: A_{\bullet\bullet} \to A'_{\bullet\bullet}$ 为双复形之间的态射。如果对于任意 $n \geq 0$, 链映射

$$f_{n,\bullet}:A_{n,\bullet}\to A'_{n,\bullet}$$

为拟同构 (quasi-isomorphism), (即它诱导的任意阶同调对象之间的态射均为同构), 那么链映射

$$\operatorname{Tot}_{\bullet}(f_{\bullet \bullet}) : \operatorname{Tot}_{\bullet}(A_{\bullet \bullet}) \to \operatorname{Tot}_{\bullet}(A'_{\bullet \bullet})$$

也为拟同构。

证明. 同调代数工具, 承认之。

我们回到循环双复形 $CC_{\bullet\bullet}(A)$. 由上述同调代数工具,我们可以给出循环同调 $H^{\lambda}_{\bullet}(A):=H_{\bullet}(C^{\lambda}_{\bullet}(A))$ 的另一种定义:

 \Box

定理 2.2.4. 对于 K-代数 A, 假设 $\mathbb{Q} \hookrightarrow K$, 记

$$HC_{\bullet}(A) := H_{\bullet}(Tot_{\bullet}(CC_{\bullet \bullet}(A)))$$

为 A 的循环双复形的全复形的同调, 那么有自然的同构

$$HC_{\bullet}(A) \cong H^{\lambda}_{\bullet}(A)$$

证明. 对于循环双复形 $CC_{\bullet\bullet}(A)$, 我们再考虑另一个双复形 $CC'_{\bullet\bullet}(A)$ 如下:

考虑双复形之间的态射

$$f_{\bullet \bullet} : CC_{\bullet \bullet}(A) \to CC'_{\bullet \bullet}(A)$$

其中 $f_{n,0}:C_n(A)\to C_n^\lambda(A)$ 为商映射。由引理2.2.1 知 $CC_{\bullet\bullet}(A)$ 的每一行都是正合的,从而容易验证 $f_{\bullet\bullet}$ 满足引理 2.2.3 的使用条件,因此我们有同构

$$H_{\bullet}(\operatorname{Tot}_{\bullet}(CC_{\bullet\bullet}(A))) \cong H_{\bullet}(\operatorname{Tot}_{\bullet}(CC'_{\bullet\bullet}(A)))$$

上式左边,由定义,即为 $HC_{\bullet}(A)$; 而再注意到 $Tot_{\bullet}(CC'_{\bullet \bullet})$ 正是 Connes 复形 C^{λ}_{\bullet} ,从而上式右边 为循环同调 $H^{\lambda}_{\bullet}(A)$.

也就是说,循环同调(Connes 复形的同调)自然同构于循环双复形的全复形的同调。

2.3 Connes 算子 \mathcal{B}

我们将给出循环同调的更多等价定义方式,并计算一些具体例子。本节均假定 $\mathbb{Q} \hookrightarrow K$ (甚至直接把 K 当成特征零的域)。我们需要更多的同调代数工具:

引理 2.3.1. (杀掉可缩复形)

对于 K-模链复形

$$\cdots \to A_{n+1} \oplus B_{n+1} \xrightarrow{\mathsf{d}} A_n \oplus B_n \xrightarrow{\mathsf{d}} A_{n-1} \oplus B_{n-1} \to \cdots$$

其中

$$d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

并且 (B_{\bullet}, δ) 是可缩链复形, 其同伦逆

$$h: B_{\bullet} \to B_{\bullet+1}$$

使得 $h\delta + \delta h = 1$. 那么下述图表交换:

$$\cdots \longrightarrow A_{n+1} \xrightarrow{\alpha - \beta h \gamma} A_n \xrightarrow{\alpha - \beta h \gamma} A_{n-1} \longrightarrow \cdots$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

$$\cdots \longrightarrow A_{n+1} \oplus B_{n+1} \xrightarrow{d} A_n \oplus B_n \xrightarrow{d} A_{n-1} \oplus B_{n-1} \longrightarrow \cdots$$

并且此图表的每一行都为链复形, 并且链映射

$$\varphi := \begin{pmatrix} 1 \\ -h\gamma \end{pmatrix}$$

为拟同构。

证明. 注意到 $\delta^2 = 0$, 以及

$$0 = d^2 = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & \alpha \beta + \beta \gamma \\ \gamma \alpha + \delta \gamma & \gamma \beta + \delta^2 \end{pmatrix}$$

从而我们有

$$\begin{cases} \alpha^2 = -\beta \gamma \\ \alpha \beta = -\beta \delta \\ \gamma \alpha = -\delta \gamma \\ \gamma \beta = 0 \end{cases}$$

再注意到 $h\delta + \delta h = 1$,直接计算验证可知 φ_{\bullet} 的确为链复形之间的链映射。细节略。 再注意链映射

$$\varphi_{\bullet}: (A_{\bullet}, \alpha - \beta h \gamma) \to (A_{\bullet} \oplus B_{\bullet}, d)$$

为单射,并且其余核

$$\operatorname{coker} \varphi_{\bullet} \cong (B_{\bullet}, \delta)$$

是正合的,因此 φ_{\bullet} 为拟同构。

这个引理的功能是,如果给定的链复形 $(A_{\bullet} \oplus B_{\bullet}, \mathbf{d})$ 当中"含有正合的部分" (B_{\bullet}, δ) ,那我们可以把这个"正合的部分"剔除掉,得到一个"不那么冗余"的链复形 $(A_{\bullet}, \alpha - \beta h \delta)$,并且此复形与原来的复形的各阶同调自然同构。

我们将此引理用于循环双复形 $CC_{\bullet\bullet}(A)$ 的全复形 $Tot_{\bullet}(CC_{\bullet\bullet}(A))$ 上。回顾 $CC_{\bullet\bullet}(A)$ 为如下 双复形:

注意到该双复形的第偶数列为 Hochschild 链复形(链映射 b),第奇数列为 Bar-复形(链映射 -b').注意 Bar-复形是正合的,并且有同伦逆

$$h: C_n(A) \to C_{n+1}(A) \tag{2.1}$$

$$a_0 \otimes a_1 \otimes \cdots \otimes a_n \mapsto 1 \otimes a_0 \otimes a_1 \otimes \cdots \otimes a_n$$
 (2.2)

使得 b'h + hb' = 1.

现在,注意到

也就是说,我们把循环双复形 $CC_{\bullet \bullet}(A)$ 的全复形 $(Tot_{\bullet}(CC_{\bullet \bullet}(A)),d)$ 写为:

$$\cdots \to X_{n+1} \oplus Y_{n+1} \xrightarrow{d} X_n \oplus Y_n \xrightarrow{d} X_{n-1} \oplus Y_{n-1} \to \cdots$$

边缘算子矩阵 $\mathbf{d} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ 留给读者。但是要注意 (Y_{\bullet}, δ) 的正合性是由 Bar-复形 $(C_{\bullet}(A), -b')$ 的正合性所诱导的: δ 也存在同伦逆,仍记为 h.

综上,对 $Tot_{\bullet}(CC_{\bullet \bullet}(A))$ 使用引理2.3.1,我们得到以下结果:

性质 2.3.2. 对于 K-代数 A, 考虑以下双复形 $\mathcal{B}_{\bullet \bullet}(A)$:

此图表的最左下角为第 0 行 0 列,右下角空白处都为 0,具体地,

$$\mathcal{B}_{p,q}(A) = \begin{cases} CC_{p-q,2q}(A) & p \ge q \\ 0 & p < q \end{cases}$$

(也就是说, $\mathcal{B}_{\bullet \bullet}$ 的结点是由将循环双复形 $CC_{\bullet \bullet}(A)$ 的第奇数列(Bar-复形)都删掉,再将原来第 2l 列整体向左、上各平移 l 格所得)其中 Connes 算子 $\mathcal{B}: C_n(A) \to C_{n+1}(A)$ 定义为以下的复合:

$$C_{n+1}(A) \stackrel{1-\lambda}{\longleftarrow} C_{n+1}(A) \stackrel{\mathcal{N}}{\longleftarrow} C_{n+1}(A)$$

$$\downarrow b \qquad \qquad h \left(\downarrow -b' \qquad \qquad \downarrow b \right)$$

$$C_n(A) \stackrel{1-\lambda}{\longleftarrow} C_n(A) \stackrel{\mathcal{N}}{\longleftarrow} C_n(A)$$

$$\mathcal{B} := (1 - \lambda)h\mathcal{N}$$

那么, 存在自然的双复形单同态

$$\mathcal{B}_{\bullet\bullet}(A) \hookrightarrow CC_{\bullet\bullet}(A)$$

并且其诱导的全复形的链映射

$$\operatorname{Tot}_{\bullet}(\mathcal{B}_{\bullet\bullet}(A)) \hookrightarrow \operatorname{Tot}_{\bullet}(CC_{\bullet\bullet}(A))$$

为拟同构。

证明. 只需注意到

$$\operatorname{Tot}_n(\mathcal{B}_{\bullet\bullet}) = \left(\bigoplus_{\substack{p+q=n\\ q \text{ } j_i \in \mathfrak{A}}} CC_{p,q}(A)\right) \hookrightarrow \operatorname{Tot}_n(CC_{\bullet\bullet}(A))$$

直接使用引理2.3.1,细节从略。但是要验证 $\mathcal{B}_{\bullet \bullet}(A)$ 的确是双复形,即需要验证反交换关系

$$\mathcal{B} \circ b + b \circ \mathcal{B}$$

而这是容易的,验证如下:

$$\mathcal{B} \circ b = (1 - \lambda)h\mathcal{N}b = (1 - \lambda)hb'\mathcal{N}$$
$$= (1 - \lambda)(1 - b'h)\mathcal{N} = (1 - \lambda)\mathcal{N} - (1 - \lambda)b'h\mathcal{N}$$
$$= -b(1 - \lambda)h\mathcal{N} = -b \circ \mathcal{B}$$

从而证毕。

于是我们得到循环同调的又一等价定义:

$$H^{\lambda}_{\bullet}(A) \cong H_{\bullet}(\operatorname{Tot}_{\bullet}(\mathcal{B}_{\bullet\bullet}))$$

我们可以将链复形 $Tot_{\bullet}(\mathcal{B}_{\bullet\bullet})$ 适当改写,使得形式更加美观:

性质 2.3.3. 对于 K-代数 A, 以及形式变元 u, 考虑如下链复形:

$$(CC_{\bullet}(A), b + uB)$$

其中

$$CC_n(A) := (C_{\bullet}(A)[u^{-1}])_n := \bigoplus_{k=0}^{\infty} u^{-k} C_{n-2k}(A)$$

(注意这是有限直和) 换句话说, 我们给定以下分次

$$deg(b) = -1$$
, $deg(B) = 1$, $deg(u) = -2$

那么此链复形的同调自然同构于循环同调:

$$H_{\bullet}(CC_{\bullet}(A), b + uB) \cong H_{\bullet}^{\lambda}(A)$$

证明. 这个几乎显然。注意到

$$\operatorname{Tot}_{n}(\mathcal{B}_{\bullet\bullet}(A)) = \bigoplus_{k=0}^{\infty} \mathcal{B}_{n-k,k}(A) = \bigoplus_{k=0}^{\infty} C_{n-2k}(A)$$
$$CC_{n}(A) = \bigoplus_{k=0}^{\infty} u^{-k} C_{n-2k}(A)$$

于是有自然的链复形同构

$$\operatorname{Tot}_{\bullet}(\mathcal{B}_{\bullet\bullet}(A)) \to CC_{\bullet}(A)$$
$$\mathcal{B}_{n-k,k}(A) \mapsto u^{-k}C_{n-2k}(A)$$

容易验证此对应也保持相应的边缘算子。证毕。

注意,我们还可以考虑 $(CC_{\bullet}(A),b)$,它与 $(CC_{\bullet}(A),b+u\mathcal{B})$ 具有不同的边缘算子: 前者的同调我们早已知道是 Hochschild 同调,而后者的同调为循环同调。

注记 2.3.4. (复几何的背景)

对于复流形 X, 它作为光滑流形, 有外微分算子 d; 再注意到它的复结构, 有算子 $\overline{\partial}$ ——前者代表拓扑, 而后代表复几何。它们之间有关系

$$d = \overline{6} + \partial$$

并且满足

$$\partial^2 = \overline{\partial}^2 = 0 \quad \partial \overline{\partial} + \overline{\partial} \partial = 0$$

我们考虑以下"拓扑与复几何之间的桥梁":

$$d_u := \overline{\partial} + u\partial$$

称此算子为霍奇滤链($Hodge\ filtration$),其中 $0 \le u \le 1$. 注意 d_u 满足稳定性条件 $d_u^2 = 0$,即 $\overline{\partial}$ 与 d 的"过渡"的任何一个"中间状态"都仍为外微分算子。

所以,似乎可以如下粗暴地对应?

复几何	非交换几何
复流形 X	K-代数 A
Ω_X^{ullet}	$CC_{\bullet}(A)$
9	Ь
9	иВ
d	b + uB
$H_{\mathrm{DR}}^{\bullet}(X)$	$H^{\lambda}_{ullet}(A)$
$H_{\overline{\partial}}^{\bullet}(X)$	$\mathrm{HH}_{ullet}(A)$

这格表格似乎不太对吧,应该是 Hochschild 同调 $\mathrm{HH}_{ullet}(A)$ 对应于"非交换版本的"微分形式 Ω^{ullet} ,从之前的例子能看出来。

定义 2.3.5. (周期循环同调与负循环同调) 对于 K-代数 A, 与 $CC_{\bullet}(A)$ 类似, 我们还可以去定义以下:

(1) 定义周期循环复形 (periodic cyclic complex)

$$CC^{\mathrm{per}}_{\bullet}(A) := (C_{\bullet}(A)((u)), b + uB)$$

该复形的同调

$$HC^{\mathrm{per}}_{\bullet}(A) := H_{\bullet}(CC^{\mathrm{per}}_{\bullet}(A), b + uB)$$

称之为周期循环同调(periodic cyclic homology)。

(2) 定义负循环复形 (negative cyclic complex)

$$CC_{\bullet}^{-}(A) := (C_{\bullet}(A)\llbracket u \rrbracket, b + uB)$$

该复形的同调

$$HC_{\bullet}^{-}(A) := H_{\bullet}(CC_{\bullet}^{-}(A), b + uB)$$

称之为负循环同调 (negative cyclic homology)。

注意上述定义当中的"[u]"是指关于形式变元 u 的形式幂级数,而"((u))"为关于 u 的 Laurent 级数。由定义,显然有

$$CC_{\bullet}(A) \cong CC_{\bullet}^{\mathrm{per}}(A)/CC_{\bullet}^{-}(A)$$

至此,我们定义出了 $CC_{\bullet}(A)$, $CC_{\bullet}^{per}(A)$ 以及 $CC_{\bullet}^{-}(A)$ 。事实上,这三者都有深刻的物理背景,见下表:

非交换几何中的对象	几何、物理背景	几何、物理背景
$CC_{ullet}^{per}(A)$	open-closed string states	de-Rham cohomology
$CC_{\bullet}(A)$	open string states	gauge theory
$CC_{ullet}^{-}(A)$	closed string states	gravity

其中特别注意,周期循环同调是 de-Rham 上同调的"非交换版本",我们将在后文举例说明。

2.4 一些例子

回顾约化 Bar-复形 $\overline{B}_{\bullet}(A)$ (见定义1.4.1),我们可以类似地通过约化 Bar-复形来构造类似的 "循环双复形":在 $K \hookrightarrow A$ 的条件下,考虑约化 Hochschild 链复形

$$\overline{C}_n(A) := \overline{C}_n(A, A) \cong A \otimes \overline{A}^{\otimes n}$$

类似去定义循环算子 $\lambda:\overline{C}_n(A)\to\overline{C}_n(A)$,其显式表达式与非约化情形完全相同;以及平均算子

$$\mathcal{N}: \overline{C}_n(A,A) \cong A \otimes \overline{A}^{\otimes n}$$

可惜是错的,类似于此前的 λ , \mathcal{N} 并不良定。比如

$$0 = \lambda(0) = \lambda(a_0 \otimes \overline{1}) = -1 \otimes \overline{\lambda} \neq 0$$

但是,Connes 算子 $\mathcal{B}: \overline{C}_n(A) \to \overline{C}_{n+1}(A)$ 是有意义的,运算规则与非约化情形完全相同,具体地,

$$\mathcal{B}(a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_n}) = (\widetilde{1-\lambda})h\widetilde{\mathcal{N}}(a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_n})$$

$$= (\widetilde{1-\lambda})h\left(\sum_{k=0}^n (-1)^{n(n+1-k)}a_k \otimes \overline{a_{k+1}} \otimes \cdots \otimes \overline{a_n} \otimes \overline{a_0} \otimes \cdots \otimes \overline{a_{k-1}}\right)$$

$$= (\widetilde{1-\lambda})\left(\sum_{k=0}^n (-1)^{n(n+1-k)}1 \otimes \overline{a_k} \otimes \overline{a_{k+1}} \otimes \cdots \otimes \overline{a_n} \otimes \overline{a_0} \otimes \cdots \otimes \overline{a_{k-1}}\right)$$

$$= \sum_{k=0}^n (-1)^{nk}1 \otimes \overline{a_k} \otimes \overline{a_{k+1}} \otimes \cdots \otimes \overline{a_n} \otimes \overline{a_0} \otimes \cdots \otimes \overline{a_{k-1}}$$

其中 $a_{-1} := a_n$.

性质 2.4.1. 对于 K-代数 A, 假设 $K \hookrightarrow A$, 则有如下双复形 $\overline{\mathcal{B}}_{\bullet\bullet}(A)$:

记此双复形的全复形为 $\overline{CC}_{\bullet}(A) := \operatorname{Tot}_{\bullet}(\overline{\mathcal{B}}_{\bullet \bullet}(A))$,则有自然同构

$$H^{\lambda}_{\bullet}(A) \cong H_{\bullet}(\overline{CC}_{\bullet}(A))$$

也就是说,在 $K \hookrightarrow A$ 的条件下,我们可以用约化版本的双复形来计算循环同调。

证明. 考虑商映射 $\pi_{\bullet}: C_{\bullet}(A,A) \to \overline{C}_{\bullet}(A,A)$ 自然诱导的双复形同态

$$\pi_{\bullet\bullet}: \mathcal{B}_{\bullet\bullet}(A) \twoheadrightarrow \overline{\mathcal{B}}_{\bullet\bullet}(A)$$

注意 $\pi_{\bullet\bullet}$ 限制在双复形的每一列上,都为相应链复形的拟同构(这里使用了引理 1.4.3),因此根据引理2.2.3,其诱导的全复形之间的同态

$$\operatorname{Tot}_{\bullet}(\mathcal{B}_{\bullet\bullet}(A)) \twoheadrightarrow \operatorname{Tot}_{\bullet}(\overline{\mathcal{B}}_{\bullet\bullet}(A))$$

为拟同构。再注意性质 2.3.2, 上式左边的同调即为循环同调, 从而证毕。

与非约化情形类似,我们也可以

$$\operatorname{Tot}_{\bullet}(\overline{\mathcal{B}}_{\bullet\bullet}(A)) \cong \overline{\mathcal{C}}_{\bullet}(A)[u^{-1}], b+u\mathcal{B})$$

甚至去定义"约化周期循环同调"、"约化负循环同调",此处不再赘述。

本节接下来给出循环同调的一些典型的计算实例。

例子 2.4.2. 对于环 K, 设 K-代数 A = K, 那么其循环同调

$$H_n^{\lambda}(K) \cong \begin{cases} K & n \text{ 为偶数} \\ 0 & n \text{ 为奇数} \end{cases}$$

我们早已具体计算出 $K[x^1,x^2,...,x^n]$ 的 Hochschild 同调,特别地 $\mathrm{HH}_{ullet}(K)$ 只有第零个是非平凡的(同构于 K),其余都为 0. 不过, $H^\lambda_{ullet}(K)$ 与 $\mathrm{HH}_{ullet}(K)$ 并不相同。

证明. 我们采用最简便的方法去计算, 当然采用约化循环双复形啦。在本例中,

$$\overline{A} = K/K = 0$$

从而双复形 $\overline{\mathcal{B}}_{\bullet\bullet}(K)$ 为以下:

其全复形 $\overline{CC}_{\bullet}(K)$ 为以下

$$\cdots \rightarrow 0 \xrightarrow{0} K \xrightarrow{0} 0 \xrightarrow{0} K$$

从而易求循环同调。

当然我们也可以按照循环同调最原始的定义去计算,其实也不难算,如下: 另一种计算方式.直接计算。此时,

$$C_n(K) \cong K^{\otimes n+1} \cong K$$

我们记其生成元

$$\varepsilon_n := \underbrace{1 \otimes 1 \otimes \cdots \otimes 1}_{n+1 \uparrow \uparrow} \in C_n(K)$$

容易验证算子 b 与算子 λ 的作用

$$b(\varepsilon_n) = \begin{cases} \varepsilon_{n-1} & n \text{ 为偶数} \\ 0 & n \text{ 为奇数} \end{cases}$$
 $\lambda(\varepsilon_n) = \begin{cases} \varepsilon_n & n \text{ 为偶数} \\ -\varepsilon_n & n \text{ 为奇数} \end{cases}$

因此,易知 Connes 复形 $C^{\lambda}_{\bullet}(K) := C_{\bullet}K/(1-\lambda)$ 具体如下:

$$\cdots \to 0 \xrightarrow{0} K \xrightarrow{0} 0 \xrightarrow{0} K$$

对它取同调,即得循环同调。

接下来,考虑 $A = K[x^1, x^2, ..., x^n]$ 为 n 元多项式环的情形,我们企图取计算 A 的循环同调。注意在之前我们已经使用 Koszul 复形求出了 $A = K[x^1, x^2, ..., x^n]$ 的 Hochschild 同调。

引理 2.4.3. 设 $A=K[x^1,x^2,...,x^n]$ 为 n 元多项式环,考虑微分形式代数 $\Omega_A^{\bullet}:=K[x^1,...,x^n;\mathrm{d} x^1,...\mathrm{d} x^n]$,注意 Ω_A^{\bullet} 上有外积运算 \wedge 与外微分运算 d . 考虑以下 K-模同态

$$\Phi: \overline{C}_p(A) \to \Omega_A^p$$

$$a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_p} \mapsto \frac{1}{p!} a_0 da_1 \wedge da_2 \wedge \cdots \wedge da_p$$

则 Φ 是良定的, 并且成立:

$$\begin{cases} \Phi \circ b = 0 \\ \Phi \circ \mathcal{B} = d \circ \Phi \end{cases}$$

其中 $b:\overline{C}_p(A)\to\overline{C}_{p-1}(A)$ 为约化 Hochschild 复形的边缘算子, $\mathcal{B}:\overline{C}_{p-1}(A)\to\overline{C}_p(A)$ 为约化的 Connes 算子。

证明. Φ 的良定性,即 \overline{A} 中元素与代表元选取无关。而此代表元选取至多相差"常数项"(即 K 中元素),它在外微分 d 的作用下为零。因此 Φ 良定。

我们来验证 $\Phi \circ b = 0$. 暴力验证如下:

$$\Phi \circ b(a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_n})$$

$$= \frac{1}{p!} \left(a_0 a_1 da_2 \wedge \cdots \wedge da_p + \sum_{k=1}^{p-1} (-1)^k a_0 da_1 \wedge \cdots \wedge d(a_k a_{k+1}) \wedge \cdots \wedge da_p \right)$$

$$+ (-1)^p a_0 a_p da_1 \wedge \cdots \wedge da_{p-1} \right)$$

$$= \frac{1}{p!} \left(a_0 a_1 da_2 \wedge \cdots \wedge da_p + \sum_{k=1}^{p-1} (-1)^k a_0 a_k da_1 \wedge \cdots \wedge \widehat{da_k} \wedge \cdots \wedge da_p \right)$$

$$+ \sum_{k=1}^{p-1} (-1)^k a_0 a_{k+1} da_1 \wedge \cdots \wedge \widehat{da_{k+1}} \wedge \cdots \wedge da_p + (-1)^p a_0 a_p da_1 \wedge \cdots \wedge da_{p-1} \right)$$

$$= 0$$

第二个等式 $\Phi \circ \mathcal{B} = \mathbf{d} \circ \Phi$ 也容易直接验证: 一方面,

$$\Phi \circ \mathcal{B}(a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_n})$$

$$= \sum_{k=0}^{p} \frac{(-1)^{pk}}{(p+1)!} \left(da_k \wedge da_{k+1} \wedge \cdots \wedge da_p \right) \wedge \left(da_0 \wedge da_1 \wedge \cdots \wedge da_{k-1} \right)$$

$$= \frac{1}{p!} da_0 \wedge da_1 \wedge \cdots \wedge da_n$$

而另一方面,

$$d \circ \Phi(a_0 \otimes \overline{a_1} \otimes \cdots \otimes \overline{a_p}) = \frac{1}{p!} d(a_0 da_1 \wedge \cdots \wedge da_p) = \frac{1}{p!} da_0 \wedge da_1 \wedge \cdots \wedge da_p$$

从而得证。

由此引理,我们即可去计算 $A := K[x^1, x^2, ..., x^n]$ 的循环同调。

性质 **2.4.4.** 对于 $A := K[x^1, x^2, ..., x^n]$, 则其循环同调

$$H_n^{\lambda}(A) \cong \left\{ egin{array}{ll} (\Omega_A^n/\mathrm{d}\Omega_A^{n-1}) \oplus K & n \ ext{为偶数} \\ \Omega_A^n/\mathrm{d}\Omega_A^{n-1} & n \ ext{为奇数} \end{array}
ight.$$

证明. 事实上,刚才的引理 2.4.3 表明, Φ 诱导以下两个双复形之间的态射:

(按村儿里的规矩,此处应该有立方交换图)

其中左边为 $\overline{\mathcal{B}}_{\bullet\bullet}(A)$,而右边的每一行均为 de-Rham 上链复形,每一列的边缘算子都为零。 注意到 Φ 是满射,以及我们早已用 Koszul 复形得到的

$$H_n(\overline{C}_{\bullet}(A)) \cong HH_n(A) \cong \Omega_A^n \cong H_n(\Omega_A^{\bullet}, 0)$$

从而双复形同态 Φ 限制在每一列上都为拟同构,于是由引理 2.2.3,立刻知道

$$\Phi: \operatorname{Tot}_{\bullet}(\overline{\mathcal{B}}_{\bullet\bullet}(A), b, \mathcal{B}) \to \operatorname{Tot}_{\bullet}(\Omega_{A}^{\bullet}, 0, d)$$

为拟同构。上式左边的同调即为 A 的循环同调,而右边的同调可以直接计算。只需要注意到 (Poincare 引理) de-Rham 复形

$$\cdots \xrightarrow{d} \Omega^{\bullet}(A) \xrightarrow{d} \Omega^{\bullet}(A) \xrightarrow{d} \Omega^{\bullet}(A) \to 0$$

的(上)同调满足

$$H^{n}(\Omega_{A}^{\bullet}, \mathbf{d}) = \begin{cases} K & n = 0 \\ 0 & n > 0 \end{cases}$$

因此容易计算出

$$H_n^{\lambda}(A)\cong \left\{egin{array}{ll} (\Omega_A^n/\mathrm{d}\Omega_A^{n-1})\oplus K & n$$
 为偶数 $\Omega_A^n/\mathrm{d}\Omega_A^{n-1} & n$ 为奇数

注记 2.4.5. 容易知道, Connes 算子

$$\mathcal{B}: \overline{C}_n(A) \to \overline{C}_{n+1}(A)$$

在 ker b 上的限制, 可以下降为 Hochschild 同调之间的同态

$$\mathcal{B}: HH_n(A) \to HH_{n+1}(A)$$

Hochschild 同调扮演的角色相当于微分形式,而此时 Connes 算子扮演的则是外微分。

注记 2.4.6. 双复形满同态

$$\Phi: (\overline{\mathcal{B}}_{\bullet\bullet}(A), b, \mathcal{B}) \twoheadrightarrow (\Omega_A^{\bullet}, 0, d)$$

其实是可裂 (split) 的。具体地, 存在双复形同态

$$\eta: \Omega^{\bullet}(A) \to \overline{C}_{\bullet}(A)$$

$$a_0 da_1 \wedge da_2 \wedge \cdots \wedge da_p \mapsto \sum_{\sigma \in S_p} (-1)^{\operatorname{sgn} \sigma} a_0 \otimes a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(p)}$$

使得 $\Phi \circ \eta = id$.

容易验证 (简单的组合技巧) η 的确诱导了双复形同态

$$\eta:(\Omega_A^{\bullet},0,d)\to(\overline{\mathcal{B}}_{\bullet\bullet}(A),b,\mathcal{B})$$

2.5 循环上同调

本章最后,简单介绍一下循环上同调(Cyclic cohomology)。对于双 A-模 M,回顾我们之前已经介绍的 Hochschild 上链复形

$$C^n(A,M) := \operatorname{Hom}(A^{\otimes n},A)$$

特别地,当 M = A 时,我们给出以下记号:

记号 2.5.1. 对于 K-代数 A, 以及 n > 0, 我们记 Hochschild 上链复形

$$C^n(A) := C^n(A, A) \cong \operatorname{Hom}(A^{\otimes n}, A) \cong \operatorname{Hom}(A^{\otimes n+1}, K)$$

并且将该 Hochschild 上链复形的微分算子记为 b*.

我们此前考虑同构 $C_n(A) \cong A^{\otimes n+1}$,而 Hochschild 上链复形 $C^n(A) \cong \operatorname{Hom}(A^{\otimes n+1},K)$ 恰为其对偶;微分算子 b^* 的作用即为 b 的对偶:即对任意 $f \in C^n(A) \cong \operatorname{Hom}(A^{\otimes n+1},K)$ 以及 $\omega \in A^{\otimes n+2} \cong C_{n+1}(A)$,成立

$$(b^*f)(\omega) = f(b(\omega))$$

与循环余不变量对偶,我们可以谈论循环不变量:

定义 2.5.2. (循环不变量)

对于 $f \in C^n(A)$, 称 f 为循环不变量 (cyclic invariant), 如果对任意的 $a_0, ..., a_n \in A$, 成立

$$f(a_0, a_1, ..., a_n) = (-1)^n f(a_n, a_0, ..., a_{n-1})$$

记 $C^n(A)$ 当中的循环不变量之全体为 $C^n_\lambda(A)$.

容易验证 $b^*(C^n_\lambda(A)) \subseteq C^{n+1}_\lambda(A)$,从而 $(C^\bullet_\lambda(A), b^*)$ 为 $(C^\bullet(A), b^*)$ 的子复形。(不必暴力验证了,由循环余不变量对偶过去就行)看图说话即可:

左图我们早已熟悉,注意它的每一列都是右正合的。将反变左正合函子 Hom(-,K) 作用于左图即得到右图,右图的每一列都是左正合的。

定义 2.5.3. (循环上同调)对于 K-代数 A 定义 A 的循环上同调 ($Cyclic\ cohomology$)

$$H_{\lambda}^{\bullet}(A) := HC^{\bullet}(A) := H^{\bullet}(C_{\lambda}^{\bullet}(A), d^{*})$$

作为例子,我们具体计算一下第零个循环上同调。

例子 2.5.4. 对于 K-代数 A,则有

$$H_{\lambda}^{0}(A) = \{ f \in \operatorname{Hom}(A, K) | \forall x, y \in A, f(xy) = f(yx) \}$$

证明. 直接计算即可。只需考虑 Hochschild 上链复形

$$0 \to C^0_{\lambda}(A) \xrightarrow{b^*} C^1_{\lambda}(A) \xrightarrow{b^*} C^2_{\lambda}(A) \to \cdots$$

易知 $C^0_\lambda(A) = C^0(A) = \operatorname{Hom}(A, K)$,从而

$$H^0_{\lambda}(A) = \ker(b^* : C^0(A) \to C^1(A))$$

对于 $f \in \text{Hom}(A, K)$,若 $b^* f = 0$,则对于任意 $x, y \in A$,有

$$0 = (b^*f)(x, y) = f(b(x \otimes y)) = f(xy - yx) = f(xy) - f(yx)$$

从而可知

$$H_{\lambda}^{0}(A) = \{ f \in \operatorname{Hom}(A, K) | \forall x, y \in A, f(xy) = f(yx) \}$$

像 $H^0_\lambda(A)$ 当中的线性算子那样,满足

$$f(xy) = f(yx) \quad (\forall x, y \in A)$$

的线性算子称之为迹算子。

高阶的循环上同调可被认为是"导出的"迹算子。

第3章 乘积

Product

Recall: Commutative non-Commutative polyvectorfield $(C^{\bullet}(A, A), \partial)$ differential form $(C_{\bullet}(A, A), b)$ (Ω_X^{\bullet}) $(C_{\bullet}(A), b, \mathcal{B})$ cyclic homology $H_{\bullet}(C_{\bullet}(A)[u^{-1}], b + u\mathcal{B})$ negative homology $H_{\bullet}(C_{\bullet}(A)[u], b + u\mathcal{B})$ periodic homology (analogue of de Rham cohomology) $H_{\bullet}(C_{\bullet}(A)(u), b + u\mathcal{B})$ Today:

3.1 多重切向量场与 Schouten-Nijenhuis 括号

定义 3.1.1. A is a
$$\mathbb{Z}$$
-graded algebra, $A = \bigoplus_{k \in \mathbb{Z}} A_k$, such that

$$A_k \cdot A_l \subseteq A_{k+l}$$

and associative.

A is graded commutative if

$$a_k \cdot a_l = (-1)^{kl} a_l a_k$$

定义 3.1.2. g is a graded Lie algebra(super Lie algebra) if

- $(1) \mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_k$
- (2) Lie bracket $[,]\mathfrak{g}_k \times \mathfrak{g}_l \mapsto \mathfrak{g}_{k+l}$ which is graded skew-symmetric

$$[a,b] = -(-1)^{\deg a \deg b}[b,a]$$

(3) Graded Jacobi identity

$$[[a,b],c] = [a,[b,c]] - (-1)^{\deg a \deg b}[b,[a,c]]$$

例子 3.1.3. $(1)(\Omega_X^{\bullet}, \wedge)$ is a graded commutative algebra.

(2) $PV_X := \Gamma(X, \wedge^*TX)$ poly vector field, is graded commutative alg.

Schousten-Nijenhuis bracket{,}:

$$\{,\}: PV^p \times PV^q \to PV^{p+q-1}$$

$$\xi = \xi_1 \wedge ... \wedge \xi_p$$

$$\eta = \eta_1 \wedge ... \wedge \eta_q$$

then

$$\{\xi,\eta\} = \sum_{i,j} (-1)^{i+j} [\xi_1,\eta_j] \xi_1 \wedge ... \widehat{\xi_i} ... \xi_p \wedge \eta_1 ... \widehat{\eta_j} ... \eta_q$$

Check:

- (1) $\{,\}$ is well-defined and coordinate independent.(HW)
- (2) $\{\xi, \eta\} = -(-1)^{(\deg \xi 1)(\deg \eta 1)} \{\eta, \xi\}$

记号 **3.1.4.** A is graded, then $(A[1])_n := A_{n-1}$ shifted gradation...

So, $PV_X[1]$ is a graded Lie algebra, and

$$(PV_X[1])_0 = T_X$$

is a Lie algebra.

(3) graded Leibnitz rule

$$\{\alpha, \beta \wedge \gamma\} = \{\alpha, \beta\}\gamma + (-1)^{(\deg \alpha - 1) \deg \beta}\beta\{\alpha, \gamma\}$$

(挪之前的分次)

性质 3.1.5. (1)(PV, \wedge) graded algebra

- $(2)(PV[1], \{,\})$ graded Lie alg
- (3) (1)(2)is compactible(Leibnitz rule)

Gerstenhaber algebra (Wiki, HW) (in physics, Classical BV algebra)

3.2 Shuffle 乘积

定义 3.2.1. Let S_n be the symmetric group, A (p,q)-Shuffle is a permutation $\sigma \in S_{p+q}$ such that

$$\sigma(1) < \sigma(2) < \dots < \sigma(p)$$

$$\sigma(p+1) < \sigma(p+2) < \ldots < \sigma(q)$$

Let

$$Sh_{p,q} := all the p, q-Shuffle$$

Let A, A' be to K-algebras, M, M' are A, A'-bimodule. We define the Shuffle product \times

$$C_p(A, M) \times C_q(A', M') \rightarrow C_{p+q}(A \otimes A', M \otimes M')$$

$$(m, a_1, ..., a_p) \times (m', a_1', ..., a_q') \mapsto \sum_{\sigma \in Sh_{p,q}} (-1)^{|\sigma|} (m \otimes m', \sigma(a_1, ..., a_p, a_1', ..., a_q'))$$

Here $\sigma(a_1,...,a_p,a_1',...,a_q')=(a_{\sigma^{-1}(1)})$

性质 3.2.2. The Shuffle product \times is compatible with Hochschild differential b: i.e.

$$b(x \times y = b(x) \times y + (-1)^{\deg x} x \times b(y)$$

推论 3.2.3. we get a chain complex map

$$C_{\bullet}(A,M) \otimes C_{\bullet}(A',M') \rightarrow C_{\bullet}(A \otimes A',M \otimes M')$$

pass to homology, we get

$$H_{\bullet}(A,M) \otimes H_{\bullet}(A',M') \to H_{\bullet}(A \otimes A',M \otimes M')$$

In particular,

$$C_{\bullet}(A) \otimes C_{\bullet}(A') \to C_{\bullet}(A \otimes A')$$

定理 3.2.4. (Künneth Forumla)

Assume a, A' are flat over K, then Shuffle product gives an isomorphism

$$HH_{\bullet}(A) \otimes HH_{\bullet}(A') \cong HH_{\bullet}(A \otimes A')$$

Functoriality:

$$\varphi:A\to B$$

is a map of K-algebra, then

$$\varphi_{\bullet}: C_{\bullet}(A) \to C_{\bullet}(B)$$

induces

$$\varphi: \mathrm{HH}_{\bullet}(A) \to \mathrm{HH}_{\bullet}(B)$$

推论 3.2.5. Let A be a commutative associative algebra, then $(HH_{\bullet}(A), \times)$ is a graded commutative algebra.

HW: If $A = K[x^i]$, then

$$(\mathrm{HH}_{\bullet}(A), \times) \cong (\Omega_A^{\bullet}, \wedge)$$

3.3 Cup 乘积

$$C^{\bullet}(A,A) = \bigoplus_{p} (C^{p}(A,A))$$

定义 3.3.1. For $f \in C^p(A,A), g \in C^q(A,A)$. Define cup product

$$f \cup g \in C^{p+q}(A,A)$$

性质 3.3.2. Cup product is compatible with Hochschild differential ∂:

$$\partial(f \cup g) = (\partial f) \cup g + (-1)^{\deg f} f \cup \partial g$$

推论 3.3.3. There is a well-defined cup product

$$\cup: H^p(A,A) \times H^q(A,A) \to H^{p+q}(A,A)$$

HW: If $A = \mathbb{C}[x^i]$, then

$$(H^{\bullet}(A,A),\cup)\cong (PV_A,\wedge)$$

3.4 Gerstenhaber 乘积

Gerstenhaber algebra(自己查定义)

定义 3.4.1. Gershenhaber product

$$C^p(A,A) \times C^q(A,A) \to C^{p+q-1}(A,A)$$

$$(f,g) \to f \circ g$$

性质 3.4.2.

$$\partial (f \circ g) - (\partial f) \circ g - (-1)^{\deg g - 1} f \circ \partial g = \pm (f \cup g - (-1)^{\deg f \deg g} g \cup f)$$

= the failure of \circ being a chain map is measured by the commutativity of cup product

证明. HW

推论 3.4.3. $({}^{\bullet}(A,A), \cup)$ is a graded commutative algebra.

证明. Omit.

定义 3.4.4. (Cerstenhaber bracket)

$$\{f,g\} = f \circ g - (-1)^{(f-1)(g-1)}g \circ f$$

性质 3.4.5.

$$\partial \{f,g\} = \{\partial f,g\} \pm \{f,\partial g\}$$

and induces $\{,\}$ defines on $H^{\bullet}(A,A)$. this is the analogue of Schouten-Nijenhuis bracket.

Coalgebra and homotopy associativity

We will talk with the category \mathbb{Z} -graded K-modules

$$Mod_k^{\mathbb{Z}}$$

object: $C=\bigoplus_{k\in\mathbb{Z}}C_k$ morphism: $f:C\to D$ is said to have degree n if

$$f: C_k \to C_{k+n}$$

$$\operatorname{Hom}(C,D) := \bigoplus_n (C,D)_n$$

(i.e. degree=n) where

$$\operatorname{Hom}(C,D)_n = \bigoplus_m \operatorname{Hom}(C_m,D_{m+n})$$

now,C, $D \in Mod_K^{\mathbb{Z}}$

$$(C \otimes D)_n := \sum_{m+l=n} C_m \otimes D_l$$

we define the flip

$$\tau: C_{\bullet} \otimes D_{\bullet} \to D_{\bullet} \otimes C_{\bullet}$$

$$c_m \otimes d_l \mapsto (-1)^{ml} d_l \otimes c_m$$

 \rightsquigarrow Koszul sign rule:

Eg. $f \in \text{Hom}(C, D), g \in \text{Hom}(C', D')$, then

$$(f \otimes g)(x \otimes y) = (-1)^{|g||x|} f(x)g(y)$$

 C_{\bullet} graded K-module. Graded duality??

$$C_n^* := \operatorname{Hom}(C_{-n}, K)$$

$$C_{\bullet}^* := \bigoplus_n C_n^*$$

A complex is \mathbb{Z} - graded K-module

$$\cdots \to C_{-1} \xrightarrow{d} C_0 \xrightarrow{d} C_1 \xrightarrow{d} C_2 \to \cdots$$

 $deg d = 1, d^2 = 0.$

Complex $(C_{\bullet}, \mathbf{d}) \rightsquigarrow \text{dual complex } (C_{\bullet}^*, \mathbf{d}^*) \text{is the dual of } C_{-(n+1)} \xrightarrow{\mathbf{d}} C_{-n}$.
Shift

$$(C_{\bullet}, \mathbf{d}) \rightsquigarrow (C_{\bullet}[1])$$

$$(C_{\bullet}[1])_n := C_{n+1}$$

differential = -d

 (C_{\bullet}, d_C) and (D_{\bullet}, d_D) , then $(C_{\bullet} \otimes D_{\bullet}, d)$

$$d: C_p \otimes D_q \to C_{p+1} \otimes D_q \oplus C_p \otimes D_{q+1}$$

$$d = d_C \otimes 1 + (-1)^p 1 \otimes d_D$$

A graded K-algebra,

$$A = \bigoplus_{n} A_n \in Mod_K^{\mathbb{Z}}$$

$$m: A \otimes A \rightarrow A$$

degree of m is 0.

satisfying associativity

Category of associative graded K-algebra

$$Ass - alg_K^{\mathbb{Z}}$$

 $A \in Ass-alg_K^{\mathbb{Z}}$ is called (graded) "commutative" if

A differential graded K-algebra (A_{\bullet},d) $d(\alpha \cdot \beta) = (d\alpha)\beta + (-1)^{|\alpha|}\alpha d\beta$

V is a graded K-module, then define

$$Sym^m(V) = V^{\otimes m} / \sim$$

where

$$\alpha \otimes \beta \sim (-1)^{|\alpha||\beta|} \beta \otimes \alpha$$

and define

$$\bigwedge^m(V) := V^{\otimes m} / \sim$$

where

$$\alpha \otimes \beta \sim -(-1)^{|\alpha||\beta|}\beta \otimes \alpha$$

If $V = V_0$, then $Sym^n(V_0)$ is the usual symmetric tensor, and $\bigwedge^n(V_0)$ exterior. HW:

$$Sym^n(V_{\bullet}[1]) \cong \bigwedge^n(V)[n]$$

here $[n] = ([1])^{n \text{times}}$

We have natural forgetful functor

$$Ass-alg_K^{\mathbb{Z}} \to Mod_K^{\mathbb{Z}}$$

$$Commu - alg_K^{\mathbb{Z}} \to Mod_K^{\mathbb{Z}}$$

whose left adjoints are called "free objects".

定义 3.4.6. $V \in Mod_K^{\mathbb{Z}}$, define the tensor algebra

$$T(V) := K \oplus V \oplus V^{\otimes a} \oplus \cdots = \bigoplus_{n \geq 0} V^{\otimes n}$$

with algebra structure given by \otimes :

$$(v_1 \otimes ... \otimes v_p) \cdot ((v_{p+1} \otimes ... \otimes v_{p+q})) = v_1 \otimes ... \otimes v_{p+q}$$

$$T: Mod_K^{\mathbb{Z}} \to Ass - alg_K^{\mathbb{Z}}$$

 $V \mapsto T(V)$

性质 3.4.7. T is the left adjoint of

$$Ass-alg_K^{\mathbb{Z}} \to Mod_K^{\mathbb{Z}}$$

这个显然,不证了。

定义 3.4.8. $V \in Mod_K^{\mathbb{Z}}$, we define Sym(V) by

$$Sym(V) := \bigoplus_{m \ge 0}^{n} (V)$$

 $Sym: Mod_K^{\mathbb{Z}} \to Commu - alg_K^{\mathbb{Z}}$

性质 3.4.9. Sym is the left adjoint of

$$Commu - alg_K^{\mathbb{Z}} \to Mod_K^{\mathbb{Z}}$$

Let $A \in Ass-alg_K^{\mathbb{Z}}, M$ is a (graded) bi-module, a derivation

 $D:A\to M$

is a K-linear map ,and satisfies

$$D(ab) = D(a)b \pm aD(b)$$

性质 **3.4.10.** (if V is a graded K-module)

$$Der(T(V), M) \cong Hom(V, M)$$

In particular,

$$Der(T(V), T(V)) \cong Hom(V, T(V))$$

Check:If $D_1, D_2 \in \text{Der}(A, A)$, then

$$[D_1,D_2]:=D_1\circ D_2-(-1)^{|D_1||D_2|}D_2\circ D_1$$

is also a (graded) derivation.

i.e. $(\operatorname{Der}(A,A),[-,-])$ is a graded Lie algebra.

Co-algebra

定义 3.4.11. $C_{\bullet} \in Mod_K^{\mathbb{Z}}$ is a graded coalgebra over K, if there is a coproduct (deg = 0)

$$\triangle: C \to C \otimes C$$

counit $\varepsilon: C \to K$ satisfying

co-derivation

 $\delta: C \to C$ satisfying

A differential graded co-algebra is a co-algebra C with a co-derivation $\delta:C\to C$ such that $\deg \delta=1$ and $\delta^2=0$.

co-augmentation

(Recall: A:K-algebra. augmentation is an algebra morphism $A \to K$.)

Co-algebra (C, \triangle) is called co-augmentation if there is a co-algebra map $K \to C$.

 (C, \triangle) is co-commutative, if

注记 3.4.12. If (C, \triangle) is a co-algebra, then (C^*, \triangle^*) is an algebra

$$A \otimes A = C^* \otimes C^* \to (C \otimes C)^* \xrightarrow{\triangle^*} C^* = A$$

例子 3.4.13. $V \in Mod_K^{\mathbb{Z}}$,

$$T^{c}(V) := \bigoplus_{n \geq 0} V^{\otimes n}$$

$$\triangle : T(V) \to T(V) \otimes T(V)$$
 $v_{1} \otimes ... \otimes v_{n} \mapsto \sum_{i=0}^{n} (v_{1} \otimes ... \otimes v_{i}) \otimes (v_{i+1} \otimes ... \otimes v_{n})$

Check: \triangle is a co-product, and what is its dual?

例子 3.4.14.

$$\overline{T^c}(V) := \bigoplus_{n \ge 1} V^{\otimes n}$$

$$\overline{\triangle}(v_1 \otimes ... \otimes v_n) = \sum_{i=1}^{n-1} (v_1 \otimes ... \otimes v_i) \otimes (v_{i+1} \otimes v_n)$$

 $\overline{T^c}(V)$ is a co-product on $\overline{T^c}(V)$.

Coder(C) is all the co-derivation....

性质 3.4.15. Coder(C) is a graded Lie algebra, where

$$[D_1, D_2] = D_1 \circ D_2 - (-1)^{|D_1||D_2|} D_2 \circ D_1$$

Associativity.

$$\bullet: A \otimes A \to A$$

$$\Longrightarrow$$

$$m: A[1] \otimes A[1] \to A[1]$$

 $sa_1 \otimes sa_2 \mapsto (-1)^{|a_1|+1} s(a_1 a_2)$

Observation: Associativity of $\bullet \Longleftrightarrow [m, m] = 0$

术语索引

Bar-复形, 9

cocenter 余中心, 5 Connes' complex Connes 复形, 26 Connes' operator Connes 算子, 34 cyclic bicomplex 循环双复形, 29 cyclic co-invariant 循环余不变量, 24 Cyclic cohomology 循环上同调, 44 cyclic homology 循环同调, 27 cyclic invariant 循环不变量, 43

derivation 导子, 13 derived center 导出中心, 12 differential graded algebra 微分分次代数, 20

exact 正合, 6

group cohomology 群的上同调, 23

Hochschild 同调, 7 Hochschild 上同调, 12 Hochschild 上链复形, 12 Hochschild 链复形, 11 Hodge filtration 霍奇滤链, 36

inner derivation 内导子, 13

Lie bracket 李括号, 14

negative cyclic complex 负循环复形, 36

opposite algebra 反代数, 3 outer derivation 外导子, 14

periodic cyclic complex 周期循环复形, 36

projective module 投射模, 3
projective resolution 投射消解, 7
quasi-isomorphism 拟同构, 30
reduced Bar-complex 约化 Bar-复形, 18
total complex 全复形, 30