

Another [objective of the invention is] advantage would be to attain long life spans and small thicknesses on the order of 0.5 mm.

SUMMARY OF THE INVENTION

This invention relates to a process for manufacturing an electroluminescent film including depositing on a pliable, transparent, nonconductive substrate a cord made of a resistive material to form at least one zone, depositing at least seven layers of an electroluminescent material on the resistive material and the cord to form a complex within the zone by alternating steps of coating and drying, and covering the complex within a pliable film.

This invention further relates to an electroluminescent element including a transparent plastic film on which is deposited at least one cord made of a resistive material delimiting a zone, at least seven layers of electroluminescent material deposited on the film and the cord to form an assembly within the zone, a pliable film forming a rear surface coated on the assembly, and an electrical connection connected to the conductive cord(s).

BRIEF DESCRIPTION OF THE DRAWINGS

Better comprehension of the invention will be obtained from the description below which refers to the attached drawings in which:

Fig. 1 shows a top view of an element according to the invention, and

Fig. 2 shows a sectional view of such an element.

DETAILED DESCRIPTION

On page 3, please replace the first paragraph with the following:

The number of layers of electroluminescent material is preferably [comprised] between 9 and 14.

On page 4, please delete the third paragraph and replace the fourth paragraph with the following:

[The] Turning now to the drawings, the element is constituted by a pliable or flexible substrate (1), e.g., a polypropylene film. On this substrate (1) is deposited a conductive cord (2, 3) delimiting a zone (4, 5) on which are deposited nine layers of an electroluminescent material.