Descriptive Statistics With R Software

Fitting of Linear Models

• •

Least Squares Method – R Commands and More than One Variables

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Fitting Linear Model through Least Squares Estimates

R Command

Fitting Linear Models 1m

Description

1m is used to fit linear models.

Usage

```
lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y =
FALSE, qr = TRUE, singular.ok = TRUE, contrasts
= NULL, offset, ...)
```

Fitting Linear Model through Least Squares Estimates Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.

data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting process.

Example

Data on marks obtained by 20 students out of 500 marks and the number of hours they studied per week are recorded as follows:

We know from experience that marks obtained by students increase as the number of hours increase.

Marks	337	316	327	340	374	330	352	353	370	380
Number of hours per week	23	25	26	27	30	26	29	32	33	34

Marks	384	398	413	428	430	438	439	479	460	450
Number of hours per week	35	38	39	42	43	44	45	46	44	41

Example

Solving it for the given data on marks and hours, we get the values of α and β as follows:

$$\overline{y} = \frac{1}{20} \sum_{i=1}^{20} y_i = 389.9, \qquad \overline{x} = \frac{1}{20} \sum_{i=1}^{20} x_i = 35.1$$

$$\hat{\beta} = \frac{\sum_{i=1}^{20} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{20} (x_i - \overline{x})^2} = 6.3,$$

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x} = 168.65$$

Model: marks = 168.65 + 6.3*hours

Example

```
marks =
c(337,316,327,340,374,330,352,353,370,380,384,
398,413,428,430,438,439,479,460,450)
hours =
c(23,25,26,27,30,26,29,32,33,34,35,38,39,42,43,44,45,46,44,41)
```

Fitting Linear Model through Least Squares Estimates Example

R Command

Fitting Linear Model through Least Squares Estimates Example

```
R Console
> hours
 [1] 23 25 26 27 30 26 29 32 33 34 35 38 39 42 43 44
[17] 45 46 44 41
> marks
 [1] 337 316 327 340 374 330 352 353 370 380 384 398
[13] 413 428 430 438 439 479 460 450
> lm(marks~hours)
Call:
lm(formula = marks ~ hours)
Coefficients:
(Intercept)
                   hours
                   6.304
    168.647
```

Fitting Linear Model through Least Squares: More than One Variables

$$y = \alpha + \beta x + e$$

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$$

Relationship between y and $x_1, x_2, ..., x_p$ is linear.

Matrix plots are useful in graphically verifying the linearity.

Conduct the experiment and obtain n tuples of observations on dependent variable (y) and independent variables $x_1, x_2, ..., x_p$.

Fitting Linear Model through Least Squares: More than One Variables

$$y_{1} = \alpha + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{p} x_{1p} + e_{1}$$

$$y_{2} = \alpha + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{p} x_{2p} + e_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_{n} = \alpha + \beta_{1}x_{n1} + \beta_{2}x_{n2} + \dots + \beta_{p} x_{np} + e_{n}$$

$$\begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p} \end{pmatrix} + \begin{pmatrix} e_{1} \\ e_{2} \\ \vdots \\ e_{n} \end{pmatrix}$$

Fitting Linear Model through Least Squares: More than One Variables

How to find parameters?

Use principle of least squares

$$\hat{\beta} = (X'X)^{-1}X'y$$
 Least squares estimator

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}, \quad \beta = \begin{pmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}$$

Following data is obtained on the delivery time taken in delivering the parcels and corresponding distance travelled by a courier person.

Delivery Time Data				
Obs.	Delivery time(in minutes) (y)	Number of parcels (x ₁)	Distance (in meters) (x ₂)	
1	16.68	7	560	
2	11.5	3	220	
3	12.03	3	340	
4	14.88	4	80	
5	13.75	6	150	
6	18.11	7	330	
7	8	2	110	
8	17.83	7	210	
9	79.24	30	1460	
10	21.5	5	605	
11	40.33	16	688	
12	21	10	215	

Delivery Time Data					
Obs.	Delivery time(in minutes) (y)	Number of parcels (x ₁)	Distance (in meters) (x ₂)		
13	13.5	4	255		
14	19.75	6	462		
15	24	9	448		
16	29	10	776		
17	16.35	6	200		
18	19	7	132		
19	9.5	3	36		
20	35.1	17	770		
21	17.9	10	140		
22	52.32	26	817		
23	18.75	9	450		
24	19.83	8	635		
25	10.75	4	450		

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i, i = 1, 2, ..., 25$$

```
deltime =
c(16.68,11.5,12.03,14.88,13.75,18.11,8,17.83,
79.24,21.5,40.33,21,13.5,19.75,24,29,16.35,19
,9.5,35.1,17.9,52.32,18.75,19.83,10.75)
parcelno =
c(7,3,3,4,6,7,2,7,30,5,16,10,4,6,9,10,6,7,3,1
7,10,26,9,8,4)
distance =
c(560,220,340,80,150,330,110,210,1460,605,688
,215,255,462,448,776,200,132,36,770,140,817,4
50,635,450)
```

Matrix Plot

```
pairs(x, ...) produces a matrix of scatterplots.
```

Arguments:

x coordinates of points given as numeric columns of a matrix or data frame.

formula a formula, such as $\sim x + y + z$. Each term will give a separate variable in the pairs plot, so terms should be numeric vectors.

data a data.frame (or list) from which the variables in formula should be taken.

Matrix Plot

Arguments

subset an optional vector specifying a subset of observations to be used for plotting.

data a data.frame (or list) from which the variables in formula should be taken.

Example with Two Variables Matrix Plot

> pairs(~deltime + parcelno + distance,
main="Matrix Plot of Delivery Time data")

Matrix Plot of Delivery Time data

> library(scatterplot3d)

scatterplot3d(deltime,
parcelno, distance)

scatterplot3d(deltime,
parcelno,
distance,angle=120)

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i, i = 1, 2, ..., 25$$

```
>lm(deltime ~ parcelno + distance)
```

Call:

```
lm(formula = deltime ~ parcelno + distance)
```

Coefficients:

(Intercept)	parcelno	distance
2.19579	1.67803	0.01311

Model:

deltime = 2.196 + 1.68 * parcelno + 0.013 * distance

```
R Console
                                                                 > deltime
 [1] 16.68 11.50 12.03 14.88 13.75 18.11 8.00 17.83 79.24 21.50 40.33
[12] 21.00 13.50 19.75 24.00 29.00 16.35 19.00 9.50 35.10 17.90 52.32
[23] 18.75 19.83 10.75
> parcelno
 [1] 7 3 3 4 6 7 2 7 30 5 16 10 4 6 9 10 6 7
                                                         3 17 10 26 9
[24] 8 4
> distance
              340
                     80
                        150 330 110 210 1460
                                                 605
                                                     688
 [1] 560 220
                                                          215
                                                               255
     462
          448
               776
                    200
                        132
                              36 770 140 817
                                                 450
                                                     635
                                                          450
[14]
> lm(deltime~parcelno+distance)
Call:
lm(formula = deltime ~ parcelno + distance)
Coefficients:
(Intercept)
               parcelno
                            distance
    2.19579
                1.67803
                             0.01311
```