Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	е
1.1 Описание входных данных	7
1.2 Описание выходных данных	8
2 МЕТОД РЕШЕНИЯ	9
3 ОПИСАНИЕ АЛГОРИТМОВ	12
3.1 Алгоритм метода calculate класса Class1	12
3.2 Алгоритм конструктора класса Class1	12
3.3 Алгоритм метода calculate класса Class2	12
3.4 Алгоритм конструктора класса Class2	13
3.5 Алгоритм метода calculate класса Class3	13
3.6 Алгоритм конструктора класса Class3	14
3.7 Алгоритм метода calculate класса Class4	14
3.8 Алгоритм конструктора класса Class4	14
3.9 Алгоритм функции main	15
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	17
5 КОД ПРОГРАММЫ	24
5.1 Файл Class1.cpp	24
5.2 Файл Class1.h	24
5.3 Файл Class2.cpp	25
5.4 Файл Class2.h	25
5.5 Файл Class3.cpp	25
5.6 Файл Class3.h	26
5.7 Файл Class4.cpp	26
5.8 Файл Class4.h	27
5.9 Файл main.cpp	27
6 ТЕСТИРОВАНИЕ	29

1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая демонстрирует реализацию принципа полиморфизма при иерархическом конструировании объекта.

Спроектировать 4 разных объекта. Перенумеровать классы их принадлежности от 1 до 4. Каждый объект имеет свойство целочисленного типа в закрытом доступе. Это свойство хранит значение коэффициента многочлена, соответствующее номеру класса. Его значение определяется в конструкторе объекта, посредством значений параметра целочисленного типа.

У каждого объекта есть метод в открытом доступе, с одинаковым наименованием. У этого метода есть один целочисленный параметр, который содержит значение переменной многочлена. Метод вычисляет значение многочлена степени согласно номеру класса принадлежности объекта и возвращает полученный целочисленный результат.

Сконструировать иерархию вложенных объектов (наследственность объектов). Объект второго класса содержит в своем составе объект первого класса. Объект третьего класса содержит в своем составе объект второго класса. Объект четвертого класса содержит в своем составе объект третьего класса. Обеспечить передачу необходимых коэффициентов конструкторам объектов согласно наследственности.

Алгоритм конструирования и отработки системы:

- 1. Объявляется указатель на объект четвертого класса.
- 2. Объявляются четыре целочисленные переменные a1, a2, a3 a4, значения которых соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
 - 3. Объявляется целочисленная переменная х, для хранения значения

переменной многочлена.

- 4. Объявляется целочисленная переменная i_class, для хранения значения номера класса.
 - 5. Вводятся значения переменных а1, а2, а3, а4.
- 6. Создается объект класс 4 посредством параметризированного конструктора, которому передаются в качестве аргументов a1, a2, a3 a4. Адрес объекта присваивается объявленному указателю.
 - 7. Начало цикла
 - 7.1. Вводится значение переменной х.
 - 7.2. Если значение х равно нулю, то цикл завершается.
 - 7.3. Иначе, вводится значение номера класса.
- 7.4. Согласно номеру класса, вызывается метод вычисления многочлена посредством объекта, который соответствует номеру класса и полученный результат выводится.
 - 8. Конец цикла.
 - 9. Завершается работа системы.

1.1 Описание входных данных

Первая строка:

«целое число, значение a1» «целое число, значение a2» «целое число, значение a3» «целое число, значение a4»

Начиная со второй строки, построчно:

«целое число, значение х» «целое число, номер класса»

1.2 Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

Со второй строки и далее построчно:

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект cl4 класса Class4 предназначен для ;
- библиотека iostream;
- объекты стандартного потока ввода/вывода данных cin/cout;
- условная конструкция if...else;
- цикл с предусловием while;
- арифметические операторы.

Класс Class1:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k1;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculate считает значение многочлена степени 1;
 - о метод Class1 конструктор.

Класс Class2:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k2;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculate считает значение многочлена степени 2;
 - о метод Class2 конструктор.

Класс Class3:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k3;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculate считает значение многочлена степени 3;
 - о метод Class3 конструктор.

Класс Class4:

- свойства/поля:
 - о поле коэффициент многочлена:
 - наименование k4;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculate считает значение многочлена степени 4;
 - о метод Class4 конструктор.

Таблица 1 – Иерархия наследования классов

N₂	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
1	Class1				
		Class2	public		2
2	Class2				
		Class3	public		3
3	Class3				
		Class4	public		4

N₂	Имя класса	Классы-	Модификатор	Описание	Номер
		наследники	доступа при		
			наследовании		
4	Class4				

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода calculate класса Class1

Функционал: считает значение многочлена степени 1.

Параметры: целочисленный параметр х.

Возвращаемое значение: целочисленное значение - результат вычислений.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода calculate класса Class1

No	Предикат	Действия	No
			перехода
1		Возвращение k1*х	Ø

3.2 Алгоритм конструктора класса Class1

Функционал: конструктор.

Параметры: целочисленный параметр р1.

Алгоритм конструктора представлен в таблице 3.

Таблица 3 – Алгоритм конструктора класса Class1

No	Предикат	Действия	N₂
			перехода
1		Присвоение полю k1 значения p1	Ø

3.3 Алгоритм метода calculate класса Class2

Функционал: считает значение многочлена степени 2.

Параметры: целочисленный параметр х.

Возвращаемое значение: целочисленное значение - результат вычислений.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода calculate класса Class2

N₂	Предикат	Действия	No
			перехода
1		Возврат суммы k2*x*x и возвращаемого значения метода calculate	Ø
		родительского объекта	

3.4 Алгоритм конструктора класса Class2

Функционал: конструктор.

Параметры: целочисленные параметры р1, р2.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса Class2

N₂	Предикат	Действия	No
			перехода
1		Вызов конструктора родителя с передачей в него параметров р1, р2	2
2		Присвоение полю k2 значения p2	Ø

3.5 Алгоритм метода calculate класса Class3

Функционал: считает значение многочлена степени 3.

Параметры: целочисленный параметр х.

Возвращаемое значение: целочисленное значение - результат вычислений.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода calculate класса Class3

N₂	Предикат	Действия	N₂
			перехода
1		Возврат суммы k3*x*x*x и возвращаемого значения метода calculate	Ø

N	Предикат	Действия	No
			перехода
		родительского объекта	

3.6 Алгоритм конструктора класса Class3

Функционал: конструктор.

Параметры: целочисленные параметры p1, p2, p3.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса Class3

N₂	Предикат	Действия	N₂
			перехода
1		Вызов конструктора родителя с передачей в него параметров р1, р2,	2
		p3	
2		Присвоение полю k3 значения p3	Ø

3.7 Алгоритм метода calculate класса Class4

Функционал: считает значение многочлена степени 4.

Параметры: целочисленный параметр х.

Возвращаемое значение: целочисленное значение - результат вычислений.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода calculate класса Class4

N₂	Предикат	Действия		
			перехода	
1		Возврат суммы k4*x*x*x*x и возвращаемого значения метод	a Ø	
		calculate родительского объекта		

3.8 Алгоритм конструктора класса Class4

Функционал: конструктор.

Параметры: целочисленные параметры p1, p2, p3, p4.

Алгоритм конструктора представлен в таблице 9.

Таблица 9 – Алгоритм конструктора класса Class4

N₂	Предикат	Действия	No
			перехода
1		Вызов конструктора родителя с передачей в него параметров р1, р2,	2
		p3, p4	
2		Присвоение полю k4 значения p4	Ø

3.9 Алгоритм функции main

Функционал: главная функция программы.

Параметры: нет.

Возвращаемое значение: целое, идентификатор работоспособности программы.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1	Объявление указателя cl4 на объект класса Class4		2
2		Объявление целочисленных переменных а1, а2, а3,	3
		a4, i_data, x	
3		Ввод значений а1, а2, а3, а4 с помощью cin	4
4		Создание объекта класса Class4 с передачей в	5
		конструктор параметров a1, a2, a3, a4 и	
		присвоение указателю на этот объект переменной	
		cl4	
5		Вывод строки "a1 = ", a1, "a2 = ", a2, "a3 = ", a3,	6
		"а4 = ", а4 и переход на новую строку	
6		Ввод значения х	7

N₂	Предикат	Действия	№ перехода
7	x == 0?		Ø
		Ввод значения i_class	8
8		Вывод строки "Class", i_class, " ", "F(", x, ")"	
9	i_class == 1? Вызов метода calculate с передачей в н		13
		параметра х у объекта класса Class1, который	
		является родительским объектом класса Class2,	
		который является родительским объектом объекта	
		класса Class3, который является родительским	
		объектом cl4	
			10
10	i_class == 2? Вызов метода calculate с передачей в нег		13
		параметра х у объекта класса Class2, который	
	является родительским объектом объек		
		Class3, который является родительским объектом	
		cl4	
			11
11	1 i_class == 3? Вызов метода calculate с передаче		13
		параметра х у объекта класса Class3, который	
		является родительским объектом cl4	
			12
12	i_class == 4?	Вызов метода calculate с передачей в него	13
		параметра х у объекта cl4	
			Ø
13		Переход на новую строку	6

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-7.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

Рисунок 7 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл Class1.cpp

Листинг 1 – Class1.cpp

```
#include "Class1.h"
#include <iostream>
using namespace std;

int Class1::calculate(int x){
   return k1*x;
}

Class1::Class1(int p1){
   k1 = p1;
}
```

5.2 Файл Class1.h

Листинг 2 – Class1.h

```
#ifndef __CLASS1__H
#define __CLASS1__H

class Class1 {
   int k1;
   public:
   int calculate(int p1);
     Class1(int a1);
   };

#endif
```

5.3 Файл Class2.cpp

Листинг 3 - Class 2.cpp

```
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;

int Class2::calculate(int x){
    return Class1::calculate(x) + k2*x*x;
}

Class2::Class2(int a1, int a2) : Class1(a1){
    k2 = a2;
}
```

5.4 Файл Class2.h

Листинг 4 – Class2.h

```
#ifndef __CLASS2__H
#define __CLASS2__H
#include "Class1.h"

class Class2: public Class1 {
   int k2;
public:
   int calculate(int x);
   Class2(int a1, int a2);
};

#endif
```

5.5 Файл Class3.cpp

Листинг 5 - Class3.cpp

```
#include "Class3.h"
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;
```

```
int Class3::calculate(int x){
    return Class2::calculate(x) + k3 *x *x *x;
}

Class3::Class3(int a1, int a2, int a3) : Class2(a1, a2){
    k3 = a3;
}
```

5.6 Файл Class3.h

Листинг 6 – Class3.h

```
#ifndef __CLASS3__H
#define __CLASS3__H
#include "Class2.h"

class Class3: public Class2 {
   int k3;
public:
   int calculate(int x);
   Class3(int a1, int a2, int a3);
};

#endif
#ifndef __CLASS3__H
#define __CLASS3__H
#include "CLASS3__H
#include "Class2.h"

class3: public Class2 {
   int k3;
   public:
   int calculate(int x);
   flass3(int a1, int a2, int a3);
};

#endif
```

5.7 Файл Class4.cpp

Листинг 7 – Class4.cpp

```
#include "Class4.h"
#include "Class3.h"
#include "Class2.h"
#include "Class1.h"
#include <iostream>
using namespace std;

int Class4::calculate(int x){
   return Class3::calculate(x) + k4 *x *x *x *x;
}

Class4::Class4(int a1, int a2, int a3, int a4) : Class3(a1, a2, a3){
   k4 = a4;
}
```

5.8 Файл Class4.h

Листинг 8 – Class4.h

```
#ifndef __CLASS4__H
  #define __CLASS4__H
  #include "Class3.h"

class Class4: public Class3 {
    int k4;
  public:
    int calculate(int x);
    Class4(int a1, int a2, int a3, int a4);
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <iostream>
#include "Class1.h"
#include "Class2.h"
#include "Class3.h"
#include "Class4.h"
using namespace std;
int main()
  Class4* cl4;
  int a1, a2, a3, a4, x, i_class;
  cin >> a1 >> a2 >> a3 >> a4;
  c14 = new Class4(a1, a2, a3, a4);
  cout << "a1 = " << a1 << " a2 = " << a2 << " a3 = " << a3 << "
                                                                 a4
= " << a4 << endl;
  x = -1;
  while (true) {
    cin >> x;
    if (x == 0){
       break;
    } else {
       switch (i_class){
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
1 1 1 1	a1 = 1 a2 = 1 a3 = 1 a4 = 1	a1 = 1 a2 = 1 a3 = 1 a4 = 1

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).