Definition: Datalog Programm

Ein Datalog-Programm P (ohne IBen(Integritätsbedingungen)) ist eine endliche Menge von Horn-Klauseln mit Jedes $d \in P$ ist entweder

- ein Fakt q(...). ohne Variable
- eine sichere Regel $q(...): -p_1(...), ..., p_n(...)$. mit $q \in iPraedikat$

Eine Regel heißt sicher, wenn alle in ihr vorkommenden Variablen beschränkt sind.

Definition: Bedeutung eines Datalog Programms

Menge der Grundatome, die logisch aus P gefolgert werden können.

Satz von Gödel / Skolem

Eine Klauselmenge P hat ein Modell genau dann wenn P hat ein Herbrand-Modell. Daraus folgt, dass ein Verfahren analog zu Wahrheitstabellen in der Aussagenlogik möglich ist.

Skolemisierung

Jeder Formel der PL1 Logik, kann in eine erfüllbarkeitsäquivalte Formel in Skolem-Form gebracht werden. Dies bedeutet Pränexnormalform und alle Existenzquantoren durch Funktionen ersetzen.

Definition: Herbrand-Interpretation

Eine Teilmenge der Herbrand- Basis

Grundatom

Ein Grundatom f ist eine logische Folgerung einer Menge D von Datalog Klauseln (z.B. $D \models f$) \diamondsuit_{Def} . Jedes Herbrand Modell von D ist auch ein Modell von f.

Da f ein Grundatom ist gilt $D \models f \Longrightarrow f$ ist in jedem Herbrand-Modell von D enthalten. Das heißt $f \in \bigcap \{I | IHerbrand - Modell von D\}$.

Sei $f \in \bigcap \{I | IHerbrand - Modellvon D\}$, dann ist f ein Grundatom und jedes Modell von D auch in Modell von f.

Definition: Mege aller Konsequenzen

$$cons(D) =_{def} \{ f \in HB_D | D \models f \}$$

Definition: Substitution

Eine Substitution ist eine endliche Menge der Form

$$\{X_1/t_1, \cdots, X_n/t_n\}, X_1, ..., X_n$$
 unterschiedliche Variablen, $t_1, ..., t_n Terme, X_i \neq t_i$ (1)

Sei θ eine Substitution, t ein Term (Variable oder Konstante), so gilt

$$t\theta =_{def} \begin{cases} t_i, & \text{falls } t/t_i \in \theta \\ t, & \text{sonst} \end{cases}$$
 (2)

Definition: Grundsubstitution

Substitution bei der alle t_i Konstanten sind.

Definition: Unifizierbar

Seien L_1 und L_2 heißen **unifizierbar**, wenn $(\exists \text{ Substitution }\Theta)(L_1\Theta=L_2\Theta)$. Θ heißt dann **Unifikator**.

Definition: Komposition

Sei $\Theta = \{X_1/t_1, \cdots, X_n/t_n\}, \sigma = \{Y_1/n_1, \cdots, Y_m/t_m\}$ Substitutionen. Die Komposition $\Theta \sigma$ von Θ und σ erhält man aus

$$X_1/t_1\sigma, \cdots, X_m/t_m\sigma, Y_1/n_q, \cdots, Y_m/n_m$$
 (3)

Durch Streichen von Elementen der Form Z/Z sowie Y_i/n_i mit $Y_i=X_j$ für ein $jj\in\{1,...,n\}$

Definition: allgemeinere Substitution

Sei $\Theta = \{X_1/t_1, \dots, X_n/t_n\}, \sigma = \{Y_1/n_1, \dots, Y_m/t_m\}$ Substitutionen.

Die Komposition $\Theta\sigma$ von Θ und σ erhält man aus $X_1/t_1\sigma,\cdots,X_m/t_m\sigma,Y_1/n_q,\cdots,Y_m/n_m$

Definition: Beweisbaum

B entsteht aus S durch Anwendung von Θ auf alle Benennungen von Zielknoten. B repräsentiert einen Beweis für $g\Theta$, g benennung der Wurzel von S.

Definition: Tiefe eines Baums

maximale Anzahl von Zielknoten auf einem Pfad von einem Blattknoten zur Wurzel. Entsprechend Knoten der Tiefe i, Ebene i eines Baumes. Zusätzlich: Spezielle Suchbäume (Tiefe 0) für Fakten aus P.

Suchbaum zu cons

Sei P ein Datalog-Programm. Die Suchbaum / Beweisbaum Methode, angewand auf alle Ziele $q(X_1, \dots, X_{Stelligkeit(q)})$, q intentionales Prädikatesymbol von P, liefert cons(P) als Ergebnis

Suchbaum, Vollständigkeit

Die Suchbaum / Beweisbaum Methode bleibt vollständig für ein Programm P, wenn nur Bäume mit max. Tiefe max_fakt(P) betrachtet werden.

Resolutionsmethode

Für allgemeine Klauselformen entwickelte Methode zum automatischen Beweisen.

Definition: Vollständiger Verband

Partiell geordnete Mengt (V, \leq) bei der zu jeder Teilmenge ein Infinum (\perp_V) & Suprenum (\top_V) besteht. Jeder endliche Verband (und jeder Teilmengenverband) ist vollständig.

Definition: Monotone Transformation

Abbildung τ mit $(\forall a, b \in V)(a \le b \Rightarrow \tau(a) \le \tau(b))$.

Definition: Fixpunkt

 $a \in V : \tau(a) = a$

Magic Set Methode

Transformiere ein Programm in eine Version, die für ein gegebenes Ziel die gleiche Ausgabe hat aber das Ziel bei bottom-up Auswertung berücksichtigt wird. Algorithmus, Beispiel hier.

Vorgehen

1.Schritt

Füge für das Ziel $g=q(\cdots)$ die Regel $query^{f\cdots 1}(X_1,\cdots,X_k):-q^{\alpha}(\cdots)$. ein, wobei X_1,\cdots,X_k Variablen aus $q^{\alpha}(\cdots)$ sind. Erzeuge für jede Regel $r\in P$ und jedes mögliche Bindungsmuster β des Prädikates im Kopf von r eine Regel mit Bindungsmuster für jedes ihrer itensionalen Prädikate. Bestimme dabei unter Beachtung von β für jedes Argument im Rumpf ob es ausgezeichnet ist oder nicht. Falls ein IDB-Prädikat im Rumpf mehrfach auftritt, sollte man es durchnummerieren.

2.Schritt

Forme P_g^{B2} zu P_g^{magic3} . Sei $P_g^{magic}:=P_g^B$. Mach dann für jedes $r\in P_g^B$ und draus folgend für jedes Vorkommen $p^\beta_i(t_1,\ldots t_l)$ eines IDB-Prädikates im Rumpf von r folgendes:

- Streiche alle anderen Vorkommen von IDB-Prädikaten im Rumpf von r
- Ersetze p_q^{β} durch $magic_r_p^{\beta}$ _i
- Streiche alle Variablen aus $(t_1, \dots t_l)$, die nicht ausgezeichnet sind. ⁴
- Streiche alle nicht ausgezeichneten EDB-Prädikate aus r.
- Sei $z^{\alpha}(s_1, \dots, s_k)$ das Prädikat im Kopf von r. Streiche alle Variablen aus (s_1, \dots, s_k) , die nicht ausgezeichnet sind; α wird nicht verändert. Ersetze $magic_r_p^{\beta}_i(t_1, \dots t_l)$ durch $magic_z^{\alpha}(s'_1, \dots s'_{\widetilde{l}})^5$
- \bullet Füge P_g^{magic} die neuen Regel
n hinzu

```
for each r \in P_g^{\beta} do

begin

for each p^{\beta} i(t_1, ..., t_l), p \in iPr\ddot{a}d im Rumpf von r do

begin erzeuge Prädikat m = magic\_r\_p^{\beta} i(t'_1, ..., t'_{\tilde{l}}),

wobei die t'_1, ..., t'_{\tilde{l}} die ausgezeichneten Argumente von

t_1, ..., t_l sind;

if p Prädikatensymbol im Kopf von r

then füge m am Beginn des Rumpfes von r ein

else füge m unmittelbar vor p^{\beta} i(t_1, ..., t_l) ein

end; /* Einfügeposition für Semantik ohne Bedeutung */

ersetze Rumpf von r in P_g^{magic} durch den geänderten Rumpf

end;
```

Figure 1:

```
\begin{split} & \textbf{for each } r \in P_g^{magic} \textbf{ do} \\ & \textbf{ for each } p^{\beta} \underline{.} i(t_1,...,t_l) \text{ im Rumpf von } r \textbf{ do} \\ & P_g^{magic} := P_g^{magic} \cup \{ magic \underline{.} p^{\beta}(t_1',...,t_{\tilde{l}}') : - \quad magic \underline{.} r \underline{.} p^{\beta} \underline{.} i(t_1',...,t_{\tilde{l}}') \}; \end{split}
```

Figure 2:

3. + 4.Schritt

Definition: Ausgezeichnet

Argument eines Teilziels

Konstantensymbol, gemäß α gebunden, es in einem EDB-Prädikat auftritt, das ein ausgezeichnetes Argument hat.

EDB-Prädikat

Alle seine Argumente sind ausgezeichnet

¹Hochgestellte Zeichen sind Bindungsmuster (wie in Coral)

²Menge aller erreichbaren Regeln aus Schritt 1

³Bezüglich g äquivalent

 $^{^4}$ Bei "Prädikaten" ohne Argumente die entsthen können: Fall entsprechende Relation $\neq \emptyset$ wahr, sonst falsch

⁵Änderungen aus letztem Schritt