HOW TO PROVE IT: CHAPTER 3

Kyle Stratton

These are the exercises for Chapter 3 from the third edition of *How to Prove It* by Daniel J. Velleman. They are numbered (Chapter).(Section).(Exercise).

3.1.1. Consider the following theorem. (This theorem was proven in the introduction.)

Theorem 1. Suppose n is an integer larger than 1 and n is not prime. Then $2^n - 1$ is not prime.

- (1) Identify the hypotheses and the conclusion of the theorem. Are the hypotheses true when n = 6? What does the theorem tell you in this instance? Is it right?
- (2) What can you conclude from the theorem in the case n = 15? Check directly that this conclusion is correct.
- (3) What can you conclude from the theorem in the case n = 11?

Proof.

- (1) This theorem has three hypotheses: n is an integer, n > 1, and n is not prime. The conclusion of the theorem is that $2^n 1$ is not prime. In the case when $n = 6 = 2 \times 3$, all of the hypotheses are satisfied, so the theorem tells us that $2^6 1$ is not prime. We can directly check that $2^6 1 = 63 = 3^2 \times 7$ is not prime.
- (2) In the case when $n = 15 = 3 \times 5$, all of the hypotheses are satisfied. This means that the theorem tells us that $2^{15} 1$ is not prime. As discussed in Part (1) of Exercise I.1, $2^{15} 1 = 32767 = 31 \times 1057$.
- (3) In the case when n = 11, not all of the hypotheses are satisfied. In particular, 11 is prime. Because not all of the hypotheses of the theorem are satisfied, we cannot draw any conclusions from it.

3.1.2. Consider the following theorem. (The theorem is correct, but we will not ask you to prove it here.)

Theorem 2. Suppose that $b^2 > 4ac$. Then the quadratic equation $ax^2 + bx + c = 0$ has exactly two real solutions.

- (1) Identify the hypotheses and conclusion of the theorem.
- (2) To give an instance of the theorem, you must specify values for a, b, and c, but not x. Why?
- (3) What can you conclude from the theorem in the case a=2, b=-5, c=3? Check directly that this conclusion is correct.
- (4) What can you conclude from the theorem in the case a = 2, b = 4, c = 3?

Proof.		

Date: July 20, 2020.

Theorem 3. Suppose n is a natural number larger than 2, and n is not a prime number. Then $2n + 13$ is not a prime number.
What are the hypotheses and conclusion of this theorem? Show that the theorem is incorrect by finding a counterexample.
Proof.
3.1.4. Complete the following alternative proof of the theorem in Example 3.1.2.
Theorem 4. Suppose a and b are real numbers. If $0 < a < b$ then $a^2 < b^2$.
<i>Proof.</i> Suppose $0 < a < b$. Then $b - a > 0$. [Fill in a proof of $b^2 - a^2 > 0$ here.] Since $b^2 - a^2 > 0$, it follows that $a^2 < b^2$. Therefore, if $0 < a < b$ then $a^2 < b^2$.
Proof.
3.1.5. Suppose a and b are real numbers. Prove that if $a < b < 0$ then $a^2 > b^2$.
Proof.
3.1.6. Suppose a and b are real numbers. Prove that if $0 < a < b$ then $1/b < 1/a$.
Proof.
3.1.7. Suppose a is a real number. Prove that if $a^3 > a$ then $a^5 > a$. (Hint: One approach is to start by completing the following equation: $a^5 - a = (a^3 - a) \cdot \underline{?}$.)
Proof.
3.1.8. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.
Proof.
3.1.9. Suppose $A \cap B \subseteq C \setminus D$. Prove that if $x \in A$, then if $x \in D$ then $x \notin B$.
Proof.
3.1.10. Suppose a and b are real numbers. Prove that if $a < b$ then $(a + b)/2 < b$.
Proof.
3.1.11. Suppose x is a real number and $x \neq 0$. Prove that if $(\sqrt[3]{x} + 5)/(x^2 + 6) = 1/x$ then $x \neq 8$.
Proof.
3.1.12. Suppose a, b, c , and d are real numbers, $0 < a < b$, and $d > 0$. Prove that if $ac \ge bd$ then $c > d$.
Proof.
3.1.13. Suppose x and y are real numbers, and that $3x + 2y \le 5$. Prove that if $x > 1$ then $y < 1$.

3.1.3. Consider the following incorrect theorem.

Proof.	
3.1.14 $x = -1$. Suppose x and y are real numbers. Prove that if $x^2 + y = -3$ and $2x - y = 2$ then 1.
Proof.	
3.1.15	Prove the first theorem in Example 3.1.1.
Theor	em 5. Suppose $x > 3$ and $y < 2$. Then $x^2 - 2y > 5$.
	t: You might find it useful to apply the theorem from Example 3.1.2, which stated that $a + b = b = 1$ to $a + b = 1$.
Proof.	
3.1.16	. Consider the following theorem.
Theor	em 6. Suppose x is a real number and $x \neq 4$. If $(2x-5)/(x-4) = 3$ then $x = 7$.
(1)	What is wrong with the following proof of the theorem?
	<i>Proof.</i> Suppose $x = 7$. Then $(2x - 5)/(x - 4) = (2 \cdot 7 - 5)/(7 - 4) = 9/3 = 3$. Therefore if $(2x - 5)/(x - 4) = 3$ then $x = 7$.
(2)	Give a correct proof of the theorem.
Proof.	
3.1.17	. Consider the following incorrect theorem.
Theor	em 7. Suppose that x and y are real numbers and $x \neq 3$. If $x^2y = 9y$ then $y = 0$.
(1)	What's wrong with the following proof of the theorem?
	<i>Proof.</i> Suppose that $x^2y=9y$. Then $(x^2-9)y=0$. Since $x\neq 3, x^2\neq 9$, so $x^2-9\neq 0$. Therefore we can divide both sides of the equation $(x^2-9)y=0$ by x^2-9 , which leads to the conclusion that $y=0$. Thus, if $x^2y=9y$ then $y=0$.
(2)	Show that the theorem is incorrect by finding a counterexample.
Proof.	
3.2.1.	
Proof.	
3.2.2.	
Proof.	
3.2.3.	
Proof.	
3.2.4.	
Proof.	

3.2.5.	
Proof.	
3.2.6.	
Proof.	
3.2.7.	
Proof.	
3.2.8.	
Proof.	
3.2.9.	
Proof.	
3.2.10.	
Proof.	
3.2.11.	
Proof.	
3.2.12.	
Proof.	
3.2.13.	
Proof.	
3.2.14.	
Proof.	
3.2.15.	
Proof.	
3.2.16.	_
Proof.	
3.2.17.	
Proof.	
3.2.18.	
Proof.	
3.3.1. <i>Proof.</i>	
$\Gamma T001$.	

3.3.2.	
Proof.	
3.3.3.	
Proof.	
3.3.4.	
Proof.	
3.3.5.	
Proof.	
3.3.6.	
Proof.	
3.3.7.	
Proof.	
3.3.8.	
Proof.	
3.3.9.	
Proof.	
3.3.10.	
Proof.	
3.3.11.	_
Proof.	
3.3.12.	_
Proof.	
3.3.13.	
Proof.	
3.3.14.	
Proof.	
3.3.15. Proof	
Proof.	
3.3.16. <i>Proof.</i>	
i iooj.	

3.3.17.	
Proof.	
3.3.18.	
Proof.	
3.3.19.	
Proof.	
3.3.20.	
Proof.	
3.3.21.	
Proof.	
3.3.22.	
Proof.	
3.3.23.	
Proof.	
3.3.24.	
Proof.	
3.3.25.	
Proof.	
3.3.26.	
Proof.	
3.4.1.	
Proof.	
3.4.2.	_
Proof.	
3.4.3.	
Proof.	
3.4.4.	_
Proof.	
3.4.5.	
Proof.	

3.4.6.	
Proof.	
3.4.7.	
Proof.	
3.4.8.	
Proof.	
3.4.9.	
Proof.	
3.4.10.	
Proof.	
3.4.11.	
Proof.	
3.4.12.	
Proof.	
3.4.13.	
Proof.	
3.4.14.	
Proof.	
3.4.15.	
Proof.	
3.4.16.	
Proof.	
3.4.17.	
Proof.	
3.4.18.	
Proof.	
3.4.19.	_
Proof.	
3.4.20.	
Proof.	

3.4.21.	
Proof.	
3.4.22.	
Proof.	
3.4.23.	
Proof.	
3.4.24.	
Proof.	
3.4.25.	
Proof.	
3.4.26.	
Proof.	
3.4.27.	
Proof.	
3.5.1.	
Proof.	
3.5.2.	
Proof.	
3.5.3.	
Proof.	
3.5.4.	
Proof.	
3.5.5.	
Proof.	
3.5.6.	
Proof.	
3.5.7.	
Proof.	
3.5.8.	
Proof.	

3.5.9.	
Proof.	
3.5.10.	
Proof.	
3.5.11.	
Proof.	
3.5.12.	
Proof.	
3.5.13.	
Proof.	
3.5.14.	
Proof.	
3.5.15.	
Proof.	
3.5.16.	
Proof.	
3.5.17.	
Proof.	
3.5.18.	
Proof.	
3.5.19.	
Proof.	
3.5.20.	
Proof.	
3.5.21.	
Proof.	
3.5.22.	
Proof.	
3.5.23.	
Proof.	

3.5.24.	
Proof.	
3.5.25.	
Proof.	
3.5.26.	
Proof.	
3.5.27.	
Proof.	
3.5.28.	
Proof.	
3.5.29.	
Proof.	
3.5.30.	
Proof.	
3.5.31.	
Proof.	
3.5.32.	
Proof.	
3.5.33.	_
Proof.	
3.6.1.	_
Proof.	
3.6.2.	
Proof.	
3.6.3.	
Proof.	
3.6.4.	
Proof.	
3.6.5.	
Proof.	

3.6.6.	
Proof.	
3.6.7.	
Proof.	
3.6.8.	
Proof.	
3.6.9.	
Proof.	
3.6.10.	
Proof.	
3.6.11.	
Proof.	
3.6.12.	
Proof.	
3.6.13.	
Proof.	
3.7.1.	
Proof.	
3.7.2.	
Proof.	
3.7.3.	
Proof.	
3.7.4.	
Proof.	
3.7.5.	_
Proof.	
3.7.6.	
Proof.	
3.7.7.	
Proof.	

3.7.8.	
Proof.	
3.7.9.	
Proof.	
3.7.10.	
Proof.	