School of Mathematics and Statistics

MT5836 Galois Theory

Handout VI: Galois groups; the Fundamental Theorem of Galois Theory

6 Galois Groups and the Fundamental Theorem of Galois Theory

Galois groups

Definition 6.1 Let K be an extension of the field F. The $Galois\ group\ Gal(K/F)$ of K over F is the set of all F-automorphisms of K with binary operation being composition of automorphisms.

The sets \mathscr{F} and \mathscr{G}

Definition 6.3 Let K be an extension of the field F and let G = Gal(K/F) be the Galois group of K over F.

- (i) Define \mathscr{G} to be the set of subgroups of G.
- (ii) Define F to be the set of intermediate fields; that is,

$$\mathscr{F} = \{ L \mid L \text{ is a field with } F \subseteq L \subseteq K \}.$$

(iii) If $H \in \mathcal{G}$, define

$$H^* = \{ x \in K \mid x\phi = x \text{ for all } \phi \in H \},$$

the set of points in K fixed by all F-automorphisms in H.

(iv) If $L \in \mathcal{F}$, define

$$L^* = \{ \phi \in G \mid x\phi = x \text{ for all } x \in L \},$$

the set of all F-automorphisms that fix all points in L.

We shall show that (iii) and (iv) in this definition provide us with maps $*: \mathscr{G} \to \mathscr{F}$ and $*: \mathscr{F} \to \mathscr{G}$ and then investigate properties of these maps.

Lemma 6.4 Let K be an extension of the field F and G = Gal(K/F).

- (i) If $H \in \mathcal{G}$, then $H^* \in \mathcal{F}$;
- (ii) If $L \in \mathscr{F}$, then $L^* \in \mathscr{G}$;
- (iii) If $H_1, H_2 \in \mathscr{G}$ with $H_1 \leqslant H_2$, then $H_1^* \supseteq H_2^*$;
- (iv) If $L_1, L_2 \in \mathscr{F}$ with $L_1 \subseteq L_2$, then $L_1^* \geqslant L_2^*$.

Thus our definitions of * provide us with maps $\mathscr{G} \to \mathscr{F}$ and $\mathscr{F} \to \mathscr{G}$ that reverse inclusions.

The Fundamental Theorem of Galois Theory

Definition 6.5 A finite extension of fields is called a *Galois extension* if it is normal and separable.

Lemma 6.6 Let K be a finite Galois extension of a field F and L be an intermediate field $(F \subseteq L \subseteq K)$. Then K is a Galois extension of L.

Theorem 6.7 (Fundamental Theorem of Galois Theory) Let K be a finite Galois extension of a field F and G = Gal(K/F). Then:

- (i) |G| = |K:F|.
- (ii) The maps $H \mapsto H^*$ and $L \mapsto L^*$ are mutual inverses and give a one-one inclusion-reversing correspondence between $\mathscr G$ and $\mathscr F$.
- (iii) If L is an intermediate field, then

$$|K:L| = |L^*|$$
 and $|L:F| = |G|/|L^*|$.

(iv) An intermediate field L is a normal extension of F if and only if L^* is a normal subgroup of G. Moreover, in this situation,

$$Gal(L/F) \cong G/L^*$$
.

Tools used in the proof of the Fundamental Theorem

Lemma 6.8 Let K be a finite Galois extension of a field F and G = Gal(K/F). The fixed field of G,

$$G^* = \operatorname{Fix}_K(G) = \{ x \in K \mid x\phi = x \text{ for all } \phi \in G \},$$

is precisely the base field of F.

Lemma 6.9 Let K be a finite separable extension of a field F and let H be a finite group of F-automorphisms of K (that is, H is some subgroup of Gal(K/F)). Then

$$|K:H^*| = |H|$$

(where $H^* = \operatorname{Fix}_K(H)$).

Lemma 6.10 Let K be a finite Galois extension of a field F and G = Gal(K/F). The following conditions on an intermediate field L are equivalent:

- (i) L^* is a normal subgroup of G;
- (ii) $L\phi \subseteq L$ for all $\phi \in G$;
- (iii) L is a normal extension of F.

Definition 6.11 When K is a finite Galois extension of the field F, the maps $H \mapsto H^*$ and $L \mapsto L^*$ are called the *Galois correspondence* between the set $\mathscr G$ of subgroups of the Galois group and the set $\mathscr F$ of intermediate fields.

Final observations for examples of Galois groups

Definition 6.12 Let f(X) be a polynomial over a field F. The Galois group Gal(f(X)) of f(X) is the Galois group Gal(K/F) of the splitting field K of f(X) over F.

Lemma 6.14 Let f(X) be a polynomial over the field F, let K be the splitting field of f(X) over F and let Ω be the set of roots of f(X) in K. Then Gal(K/F) is isomorphic to the group of permutations that it induces on Ω .

Since a polynomial of degree n has at most n roots in a splitting field, the above lemma has the following consequence as an immediate corollary.

Corollary 6.15 Let f(X) be a polynomial of degree n over a field F. The Galois group of f(X) over F is isomorphic to a subgroup of the symmetric group S_n of degree n.

Galois groups of finite fields

Definition 6.17 The Frobenius automorphism γ of the finite field \mathbb{F}_{p^n} of order p^n is the map $\gamma \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ given by

$$\gamma \colon a \mapsto a^p$$

for all $a \in \mathbb{F}_{p^n}$.

Lemma 6.18 The Frobenius automorphism γ of \mathbb{F}_{p^n} , given by $a\gamma = a^p$ for all $a \in \mathbb{F}_{p^n}$, is an \mathbb{F}_p -automorphism of \mathbb{F}_{p^n} (that is, an element of the Galois group $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$).

Theorem 6.19 Let p be a prime number and n a positive integer. Then the Galois group $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ of the Galois field of order p^n over its prime subfield is cyclic of order n generated by the Frobenius automorphism γ .