Due: Nov 5th

- 1. Do problem II.7.10 in Edwards (page 141), as corrected below. That is, classify the critical point $(-1, \pi/2, \pi)$ of $f(x, y, z) = x \sin z z \sin y$.
- 2. Do problem 8.82 (b) in Schaums (page 205). That is, Examine $w=x^2+y^2+z^2-6xy+8xz-10yz$ for maxima and minima.
- 3. Do problem II.8.4 in Edwards (page 158). That is, Consider $f: \mathbb{R}^3 \to \mathbb{R}$ given by

$$f(x, y, z) = x^{2} + 4y^{2} + z^{2} + 2xz + (x^{2} + y^{2} + z^{2})\cos xyz.$$

You may assume $\mathbf{0} = (0, 0, 0)$ is a critical point of f.

- (a) Show that $q(x, y, z) = 2x^2 + 5y^2 + 2z^2 + 2xz$ is the quadratic form of f at $\mathbf{0}$, (that is, $d^{(2)}f_{\mathbf{0}}$) by substituting the expansion $\cos t = 1 t^2/2 + O(t^4)$, collecting all second degree terms and *verifying* the appropriate condition on the remainder R(x, y, z). State the uniqueness theorem you apply.
- (b) Write down the symmetric 3×3 matrix A such that

$$q(x, y, z) = \begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

By calculating appropriate determinants of submatrices of A, determine the behavior of f at $\mathbf{0}$.

(c) Find the eigenvalues of q. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be the associated eigenvectors (do not solve for them). Find the matrix of q with respect to this basis [Edwards says something more complicated, but this is what he means]. Then give a geometric description of the surface $2x^2 + 5y^2 + 2z^2 + 2xz = 1$.