Forgalomirányítók

Tibi Varga

Mi is az a forgalomirányítás?

A forgalomirányító felel a hálózatok közti forgalom irányításáért.

Routers Route Packets

Cisco IOS command line interface (CLI) can be used to view the route table.

A forgalomirányítók is számítógépek

A forgalomirányító tulajdonképpen egy specializált számítógép, amik szintén az alábbi összetevők segítségével működnek:

- Központi feldolgozó egység (CPU)
- Operációs rendszer (OS)
- Memória és tárolók (RAM, ROM, NVRAM, Flash, merevlemez)

Memory	Volatile / Non-Volatile	Stores
RAM	Volatile	 Running IOS Running configuration file IP routing and ARP tables Packet buffer
ROM	Non-Volatile	Bootup instructions Basic diagnostic software Limited IOS
NVRAM	Non-Volatile	Startup configuration file
Flash	Non-Volatile	IOS Other system files

A forgalomirányítók is számítógépek

A forgalomirányítóknak speciális csatlakozóik és hálózati interfészkártyáik vannak, hogy eszközöket hálózatba kapcsoljanak.

Back Panel of a Router

Az eszközök LED kijelzői

CISCO 1941 LEDs

#	Port	LED	Color	Description
1	GE0/0 and GE0/1	S (Speed)	1 blink + pause	Port operating at 10 Mb/s
			2 blink + pause	Port operating at 100 Mb/s
			3 blink + pause	Port operating at 1000 Mb/s
		L (Link)	Green	Link is active
			Off	Link is inactive
2	Console	EN	Green	Port is active
			Off	Port is inactive
3	USB	EN	Green	Port is active
			Off	Port is inactive

A forgalomirányító feladatai Támogatott interfészek a forgalomirányítók és a kapcsolók esetén

- LAN-okhoz való csatlakozáshoz a kapcsolók általában Ethernet szabványokat támogatnak (Fast Ethernet vagy Gigabit Ethernetés vezeték nélküli).
- WAN-hoz való csatlakozáshoz a forgalomirányítók különböző interfészeket támogatnak: soros, DSL, optikai DTE, DCE

A forgalomirányító feladatai Kiegészítő port a Cisco forgalomirányítók és a kapcsolók esetén

- A konzolport arra célra tervezték, hogy csatlakoztassa a Cisco hálózati eszközöket terminálon keresztül egy PC-hez konfiguráció esetén.
- Általában konzol kábel keresztkötésű, a Cisco eszköz vége RJ45-ön keresztül csatlakozik, a terminál vége pedig soros portban zárul.
- A legtöbb Cisco útválasztó tartalmaz egy kiegészítő (Aux) portot tartalék aszinkron portként. Ezt a portot általában az útválasztó távoli kezeléséhez használják. Modemhez csatlakozik, és lehetővé teszi az adminisztrátor számára hogy csatlakozzon az útválasztó CLI-jéhez.

Konzol hozzáférés

A konzol hozzáféréshez szükséges:

- Konzolkábel RJ-45
 DB-9 konzolkábel
- Terminálemulációs szoftver - Tera Term, PuTTY, HyperTerminal

A forgalomirányítók hálózatokat kapcsolnak

össze

 A forgalomirányító több hálózatot kapcsol össze, tehát több, különböző IPhálózatokhoz tartozó interfésze van.

A forgalomirányítók a legjobb útvonalakat választják

- A forgalomirányítók a távoli hálózatokról statikus útvonalakból és dinamikus forgalomirányító protokollok által szerezhetnek információt, így építik fel a forgalomirányító táblájukat.
- A forgalomirányító az irányítótáblája (forgalomirányító tábla) segítségével határozza meg a csomag továbbításához a legjobb útvonalat.
- A forgalomirányító a csomagot egy adatkapcsolati keretbe ágyazza a kimenő interfész számára és a csomagot továbbítja a célja felé.

A forgalomirányítók a legjobb útvonalakat választják

How the Router Works

R1**∜show ip route**

Codines c

C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - CSPF NSSA external type 1, N2 - OSFF NSSA external type 2

E1 - CSPF external type 1, E2 - CSPF external type 2, E - ESP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - CER

P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, FastEthernet0/0

C 192.168.2.0/24 is directly connected, SerialO/0/0

S 192.168.3.0/24 is directly connected, Serial0/0/0

Routers use the routing table like a map to discover the best path for a given network.

Csomagtovábbító módszerek

- Folyamatkapcsolás (Process switching) – Egy régebbi csomagtovábbító módszer, de a Cisco forgalomirányítók még mindig támogatják.
- Gyorskapcsolás (Fast switching) –
 Gyakori módszer, amely egy
 gyorskapcsolási gyorsítótárban tárolja a
 következő ugrás információkat.
- Cisco Express Forwarding (CEF) A CEF a legújabb és egyben az ajánlott csomagtovábbító módszer a Cisco IOS-ban. A táblabejegyzéseit nem a csomagok, hanem a változások alapján követi.

Cisco Express Forwarding

Csatlakozás hálózathoz

Alapértelmezett átjárók

Az eszközöknek a következő IP-cím információkkal kell rendelkezniük

- IP-cím Egyedileg azonosít egy állomást a helyi hálózaton.
- Alhálózati maszk Meghatározza az állomás helyi alhálózatát.
- Alapértelmezett átjáró Meghatározza, hogy melyik
 forgalomirányítónak kell a csomagot
 küldeni akkor, ha a cél nem
 ugyanazon az alhálózaton van.

Destination MAC Address	Source MAC Address	Source IP Address	Destination MAC Address	Data
11-11-11- 11-11-11	AA-AA-AA AA-AA-AA	192.168.1.110	172.16.1.99	

A hálózati címzés dokumentálása

A dokumentációnak legalább az alábbiakat tartalmaznia kell egy topológia digramon és címtáblázatban:

- Az eszközök nevei
- A használt interfésze
- IP-címek és alhálózati maszkok
- Alapértelmezett átjárók címei

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	Fa0/0	192.168.1.1	255.255.255.0	N/A
	S0/0/0	192.168.2.1	255.255.255.0	N/A
R2	Fa0/0	192.168.3.1	255.255.255.0	N/A
	S0/0/0	192.168.2.2	255.255.255.0	N/A
PC1	N/A	192.168.1.10	255.255.255.0	192.168.1.1
PC2	N/A	192.168.3.10	255.255.255.0	192.168.3.1