

CHEMISTRY

Introductor io

¿Cual es la fórmula molecular del siguiente compuesto?

La formula molecular es la formula química que indica el numero y tipo de átomos distintos presentes

El pH de una solución es igual a 2. Si la concentración molar del hidrogeno se duplica determinar el pH de la solución final (log 2 = 0,3)

Si:
$$pH = 2$$

Entonces:
$$[H^{+}] = 10^{-2}M$$

Luego:
$$[H^+]f = 2.10^{-2}M$$

SabemospH =
$$-\log[H^+]$$

$$pH_f = -log(2 \times 10^{-2})$$

$$pH_f = -[log(2) + log(10^{-2})]$$

$$pH_f = -[log(2) - 2log10]$$

$$pH_f = -[0.3 - 2]$$

$$pH_{f} = 1, 7$$

A 4 litros de una solución de H_2SO_4 1,5 M se agrega una solución de H_2SO_4 12M y agua. Determinar el volumen de acido agregado si al final se tiene 20 litros de solución 0,5M

Se tiene 500 g de piedra caliza que contiene el 90 % da $CaCO_3$. ¿ Que volumen de CO_2 , en C.N., se obtiene a partir de la reacción mostrada.

Dato:
$$m.A.(u)$$
: $Ca = 40$, $C = 12$, $= = 16$

$$CaCO_3 + HCI \rightarrow CaCl_2 + CO_2 + H_2O$$

Se balancea la ecuación química:

$$CaCO_3 + 2HCI \rightarrow CaCl_2 + CO_2 + H_2O$$

90% CaCO₃

masa de $CaCO_3 = 500.(0,9)$

masa de $CaCO_3 = 450g$

Se realiza el cálculo estequiométrico.

¿Cuál es la masa molecular de un gas ideal si 30 g ocupan un volumen de 10 L a 27 °C y 1140 mmHg?

Dato: R= 62,4 mmHg.L/mol.K

Datos:

$$T = (27 + 273)K = 300K$$

$$m = 30 g$$

$$\overline{M} = ??$$

$$P.V = R.T.\frac{m}{\overline{M}}.$$

$$1140.10 = \frac{624}{10}.300.\frac{30}{\overline{M}}$$

$$\overline{M} = 49,2 \frac{g}{mol}$$

¿Determine la masa de la plata que se deposita al pasar una corriente de 0,05 A a través de una solución de $AgNO_3$, durante 30 min? Dato: MA(Ag=108)

$$AgNO_3$$
 Ag^{1+} NO_3^{-1-} catión Anión cátodo ánodo reduce no se oxida Ag se oxida el oxígeno del agua O_2

$$I = 0.05 \text{ A}$$

$$t = 30 \text{ min} = 30(60) = 1800 \text{ s}$$

$$q = I.t$$

$$q = 0.05. (1800)$$

$$q = 90C$$

$$Ag_{(ac)}^{1+} + 1e \longrightarrow Ag^{\circ}$$

$$108g \longrightarrow 96500C$$

$$P_{eq} = \frac{108}{1} = 108$$

$$m = 0.1 \text{ g}$$

Un compuesto químico tiene la siguiente composición Fe = 28 %, S = 24 % O = 48%. Determinar su atomicidad.

Dato: M.A.: Fe = 56, S = 32, O = 16

Dividen datos

$$S = 24/32 = 0.75$$

se divide entre el menor valor

$$0.5/0,5 = 1$$

Atomicidad:
$$2 + 3 + 12 = 17$$

se multiplica por 2

$$Fe_2S_3O_{12}$$

$$Fe_2(SO_4)_3$$

Identifique una sustancia que descompone el ozono en la estratosfera.

- a) H_2SO_4
- b) C_6H_6
- c) SO₃
- d) CO₂

CFCl₃

El ozono de la estratosfera se descompone por acción de los freones, sustancias derivadas del metano y el etano con contenido de cloro y flúor (CFCl). Entre los freones más importantes se tiene el tricloro fluorometano (CFCl₃) conocido como freon-11, el cual es usado como un refrigerante.