Introduction to Machine Learning

Random Forest Bagging Ensembles

Learning goals

- Understand idea of bagging
- Be able to explain the connection between bagging and bootstrap
- Understand why bagging improves predictive performance

BAGGING

- Bagging is short for Bootstrap Aggregation
- Ensemble method, combines models into large "meta-model";
 ensembles usually better than single base learner
- Homogeneous ensembles always use same BL class (e.g. CART), heterogeneous ensembles can use different classes
- Bagging is homogeneous

TRAINING BAGGED ENSEMBLES

Train BL on *M* bootstrap samples of training data \mathcal{D} :

- ullet Draw n observations from ${\mathcal D}$ with replacement
- ullet Fit BL on each bootstrapped data $\mathcal{D}^{[m]}$ to obtain $\hat{b}^{[m]}$

- Data sampled in one iter called "in-bag" (IB)
- Data not sampled called "out-of-bag" (OOB)

PREDICTING WITH A BAGGED ENSEMBLE

Average predictions of *M* fitted models for ensemble: (here: regression)

BAGGING PSEUDO CODE

Bagging algorithm: Training

- 1: **Input:** Dataset \mathcal{D} , type of BLs, number of bootstraps M
- 2: for $m = 1 \rightarrow M$ do
- 3: Draw a bootstrap sample $\mathcal{D}^{[m]}$ from \mathcal{D}
- 4: Train BL on $\mathcal{D}^{[m]}$ to obtain model $\hat{b}^{[m]}$
- 5: end for

Bagging algorithm: Prediction

- 1: Input: Obs. **x**, trained BLs $\hat{b}^{[m]}$ (as scores $\hat{t}^{[m]}$, hard labels $\hat{h}^{[m]}$ or probs $\hat{\pi}^{[m]}$)
- 2: Aggregate/Average predictions

$$\hat{f}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left(\hat{f}^{[m]}(\mathbf{x}) \right) \qquad \text{(regression / decision score, use } \hat{f}_k \text{ in multi-class)}$$

$$\hat{h}(\mathbf{x}) = \arg\max_{k \in \mathcal{Y}} \sum_{m=1}^{M} \mathbb{I} \left(\hat{h}^{[m]}(\mathbf{x}) = k \right) \qquad \text{(majority voting)}$$

$$\hat{\pi}_k(\mathbf{x}) = \begin{cases} \frac{1}{M} \sum_{m=1}^{M} \hat{\pi}_k^{[m]}(\mathbf{x}) & \text{(probabilities through averaging)} \\ \frac{1}{M} \sum_{m=1}^{M} \mathbb{I} \left(\hat{h}^{[m]}(\mathbf{x}) = k \right) & \text{(probabilities through class frequencies)} \end{cases}$$

WHY/WHEN DOES BAGGING HELP?

- Bagging reduces the variability of predictions by averaging the outcomes from multiple BL models
- It is particularly effective when the errors of a BL are mainly due to (random) variability rather than systematic issues

 Increasing nr. of BLs improves performance, up to a point, optimal ensemble size depends on inducer and data distribution

MINI BENCHMARK

Bagging seems especially helpful for less stable learners like CART

