S
h

Phone : (Off.) +88-0721-711108

Cell: +88-01716-697645 Fax: +88-0721-750064

E-mail: shiuly_math_ru@yahoo.com Web : www.ru.ac.bd/mathematics

Date

vector Spaces and Subspaces

Field: $(F; +, \cdot)$

F-> non-empty set and +, one binary operations, Axioms for addition:

(closer law)

(a+b)+c = (b+e)+a (associative Law)

(As) There exists $0 \in F$ such that a+o=0+a=a for all $a \in F$. $O \rightarrow additive$ identity T

Ay For every $a \in F$, there exists, $-a \in F$ such that a+(-a)=(-a)+a=0 $[-a \rightarrow inverse inverse of a7]$

(A5) Addition is commutative : a+b=b+a, for all a, beF

Axioms for multiplication:

M) If a, bef, then abef

(ab). c = a. (be) for all a, b, c & F [Multiplication is associative]

M3) There exists 1 in F such that a.1 = 1.a = a $\forall a \in F$, $[1 \rightarrow multiplicative identity].$

(My) for every alf, there exists an element $d \in F$ such that $a \cdot d = d \cdot a = 1$ $\begin{bmatrix} d \\ a \end{bmatrix}$ inverse of a for multiplication J

M3) Multiplication is commulative; a.b=b.a for all a,b∈F.
Distributive laut:

(i) a (b+c) = ab+ac ∀ a, b, e∈F

(i) (a+b)c=ac+bc ∀ a,b,c∈F

Examples: - Treal number (R), (ii) complex number (C)

2 vector spaces:
Vector space: Let K be a field and let V be a non-empty set
with rules of addition and sealow will all him which assigns to
any u, veV, u+veV and to any ueV, kek kuev.
then V is called a vector space over K if the following axioms
any $u, v \in V$, $u+v \in V$ and to any $u \in V$, $k \in K$, $k u \in V$. Then V is called a vector space over K if the following axioms hold: Axioms for addition: [The elements of V are called vectors (A) $u, v, w \in V$
$\widehat{A_{1}} \overline{u,v,\omega \in V}, (u+v)+\omega = u+(v+\omega)$
(A2) There is a vector in I I shall in a be which
$u+0=0+u=u$ \forall $u\in V$ $[0\rightarrow zero\ vector]$ for each vector $u\in V$ there is a vector in V , denoted by $-u$ for which $u+(-u)=0$. $[-u\rightarrow inverse\ of\ u]$
for each vector UEV there is a vector in V denoted by -U
Joe which $u + (-u) = 0$. [-u \rightarrow inverse of u]
Axioms for multiplication:
Mi) For my kek me ony u, ve V, k(u+v) = ku+kv.
M2) for any scalars $a, b \in K$ and $u \in V$, $(a+b)u = au + bu$.
(M3) For any a, bck and any UETT (GL) = a (1)
(M_3) for any a , bek and any $u \in V$, $(ab)u = a(bu)$ (M_4) for the unit scalar $a \in V$
(My) For the unit scalar 1EK, 1·u=u \ u \ u \ v.
Example: Det K be an arbitrary field. The set of all n-tuples of element of K with vector addition and scalar multiplication defined by
$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$
and k(a, az,, an) = (ka, , kaz,, kan) where ai, bi, kEK.
is a vector space over K. This space is denoted by K".
This space is denoted by K".

4.3: W is a subspace of V iff () OEW and (ii) v, w ∈ W implies av+bw ∈ W for all a, b ∈ K. Problem 4.9: - Let V=R3. Show that W is a subspace of V where: (DN=S(a, b, 0): a, b ERS, i.e., W is the xy plane conserving of those vectors whose Hirl 100 - + in whose third component is o.

(i) W= {(a, b, c): a+b+c=0}, [i.e. sum of its component of Solo = 0 = (0,0,0) ∈ W, since the third component of (0,000 00 (0,0,0) is 0. For any vectors v=(a,b,0) w = (e, d, o) in W and any scalars k, k' (real mumbers) kv + k'w = k(a, b, 0) + k'(e, d, 0) = (ka, kb, 0) + (k'e + k'd, 0) $= (ka + k'e \cdot kb + k'd \cdot 0)$ Thus KN+K'WE Wand 30 W is a subspace of V (ii) 0=(0,0,0)eW, since 0+0+0=0. Suppose v = (a, b, c), w = (a', b', c') belong to W, i.e., a+b+c=0 and a'+b'+c'=0. Then for any sealars k and k', kv + k'w = k(a, b, e) + k'(a', b', e')= (ka, kb, kc) + (k'a' + k'b', k'c') = (ka+ k'a', kb+ k'b', ke+ k'e') (ka+k'a') + (kb+k'b') + (ke+k'e') = k(a+b+e)+k'(a+b'+e')
= k0+k'o = 0 13y given condition Thus KV+K'WEW and so Wis a subspace of V.

I x If U and W be subspaces of a vector space V, then 20. UNW is also a subspace of V. Proof: OEU and OEW, since U and Ware subspaces. SO, OE TINW, Suppose U, VE VIW. Then U, VEV and U, VEW. Since U and W are subspaces so au+6ve U and au+6ve W for any a, bek. Hence autbre UNWard so UNW is a subspace of V. Theorem: The intersection of any number of subspaces of a vector space V is a subspace of V. Linear combination: - Let V be a vector space over a field K and lef v, v2, ---, Vm E V. Any vector in V of the form is called a linear combination of V_1 , V_2 , ---, V_m . Problem: - Write the vector (1,7,-4) as a linear combination of the vectors u = (1, -3, 2) and v = (2, -1, 1)[P->75, problem 4.17 -> 27 (46) 000 000 (62) Problem! - For which value of k well the vector u=(1,-2,k) in \mathbb{R}^3 be a linear combination of the vectors V = (3,0,-2) and $\omega = (2,-1,-5)$? Sdi: u=xv+yw (1,-2,K) = 3(3,0,-2) + y(2,-1,-5) = (3x+2y,-y,-2x-5y)3x+2y=170-y=-270-2x-5y=K-13 From (D) and (D) x=-1, y=2 Theorem 4.5. Problem: for which value of k will the vector (1, k, 5) in \mathbb{R}^3 be a linear combination of the vectors u = (1, -3, 2) and v = (2, -1, 1)?

Problems: 4.19, 4.20, 4.21, 4.23, 4.24, 4.28

Theorem 4.5: Let S be a nonempty subset of V. Then £ L(S), the set of all linear combinations of vectors in S, is a subspace of V containing S. Furthermore, if W is any other subspace of V containing S, then L(S) C W.

Sum and Direct Sum

Sum: Let V and W be Bubspaces of a vector space V.

The sum of V and W, written V+W, consists of all sums

U+W where UEV and WEW:

W+W= {u+w: uet, we W?.

Direct Sum: The vector space V is said to be the direct sum of its subspaces U and W, denoted by $V = U \oplus W$ if every vector $v \in V$ can be written in one and only one way as v = u + w where $u \in V$ and $w \in W$.

Fx: TR3 -> vector space. Let U md W be the subspaces of R3 defined

Show that $\mathbb{R}^3 = \mathbb{V} \oplus \mathbb{W}$. Any vector $(a, b, c) \in \mathbb{R}^3$ can be written as the sum of a vector in \mathbb{V} and a vector in \mathbb{W} in one and only one way:

$$(a,b,c) = (a,b,0) + (0,0,c)$$
.

: R3 = UDW. ** Fx: V -> vector space of 2x2 matrices over R.

 $U = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \}, \quad W = \{ \begin{pmatrix} a & 0 \\ 2 & 0 \end{pmatrix} : \Rightarrow a, c \in \mathbb{R} \}$ $U = \{ \begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix} : \Rightarrow a, c \in \mathbb{R} \}$ $U = \{ \begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix} : \Rightarrow a, c \in \mathbb{R} \}$ $U = \{ \begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix} : \Rightarrow a, c \in \mathbb{R} \}$

U and Wate subspaces of V and U+W= { (a b): a, b, CER} 1

Examples: - Oreal number (R), (ii) complex number (C)

Prove that.
Theorem: the sum of the U+W of the subspaces o and W of V
is also a subspace of V.
Port ALACTILIAN simon OCTI and OF MI
and u'+w' belong to V+W with u, we want w, we W.
Then $(u+w)+(u+w')=(u+u)+(w+w$
K(u+w) = Ku+Kw E U+W.
Theorem 4.9: The sector space V is the direct sum of its subspaces
Proof: Suppose V=UDW. Then any vector VEV can be uniquely written in the form v=u+w where uev and weW.
written in the form v=u+w where uev and wew.
Thus in particular, V=U+W,
Suppose VEUNW. Them 1 = V+0 where VEU, OEW Also VEV, since U and W
Since such a sum for v must be unique so v=0.
Since such a such a
Honel UNW = 303.
Conversely, suppose V=U+W and UNW=303.
Conversely, suppose $V = U + W$ and $U \cap W = \{0\}$. Let $V \in V$. Since $V = U + W$, there exist $u \in U$ and $w \in W$ such that $V = u + w$. Also, suppose that $V = u' + w'$ where $u' \in U$ and $w' \in W$. Then $u + w = u' + w'$
Also, suppose that $v = u' + w'$ where $u' \in V$ and $w' \in W$.
Then $u+w=u'+w'$
$\alpha' u - u' = w' - w$
But u-u'ev and w'-wew; honce by UNW= 303
u-u'=0, $w'-w=0$ and so $u=u'$ and $w=w'$
But $u-u' \in V$ and $w'-w \in W$; hence by $U \cap W = \{0\}$ $u-u' = 0, w'-w = 0 \text{ and so } u=u' \text{ and } w=w'$ Therefore such a sum for $v \in V$ is unique and $V = U \oplus W$.
Problem; Let V and W be the subspaces of R3 defined of
$V = \{(a,b,c): a = b = c\} \text{ and } W = \{(a,b,c)\}.$
Show that IR3=UOW.

Basis and Dimension Linearly dependence: Let V be a vector space over a field K. The vectors v, v, v, vm EV are said to be linearly dependent over K if there exist scalars a, az, ..., amEK not all of them of such that a,v, + a,v, + a,v, + a, v, = 0. That is, if $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$ when at least one of the a's is not 0, then the vectors are Linearly dependent * Show that the vectors $\{u=(1,-1,0), v=(1,3,-1) \text{ and } w=(5,3,-2)$ are linearly dependent. 56!: $\times u + y \times + z = 0$ where \times , y, z unknown scalars $\times (1, -1, 0) + y (1, 3, -1) + z (5, 3, -2) = (0, 0, 0)$ =) x + y + 52 = 0 => x + y + 52 = 0 == x + y + 52 = 0 $-\frac{7}{7}$ $-\frac{22}{22}$ =0 $\frac{1}{2}$ $\frac{1}{2}$ Here & is a free variable. Set z=1, pete obtain, $\gamma=-2$ and $\chi=-3$ in (x=-3)

Problem: Determine whether or not the following vectors in R's are linearly dependent: () (1,-2,1), (2,1,-1), (7,-4,1)

$$(ii) (1,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3,7), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3), (1,-3,2), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3), (1,-3,2), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(ii) (1,2,-3), (1,-3,2), (2,0,-6), (3,-1,-1), (2,4,-5)$$

$$(2,-3,7), (0,0,0), (3,-1,-4), (3,-4), (3,-$$

Note: D'Two vectors u and v are dependent iff one is a multiple of the other. Tf one of the vectors Vi, - IVm say V =0, then the vectors

must be dependent. 3) If two of the vectors v,, ..., vm are equal, say v, = v2, then the vectors are dependent.

Since the echelon matrix has a zero row, the vectors are dependent

(1) En Since any Jour (or more) vectors in 12 are dependent

Since the echelon matrix has no zero vows, so the vectors are independent:

(IV) Since 0=(0,0,0) is one of the vectors are dependent.

Linearly independent? Let V be a vector space over a field K. The vectors v1, ..., vm E V are said to be linearly independent over K, if there exist scalars $a_1, \dots, a_m \in K$, all of them 0 such that $a_1v_1 + a_2v_2 + \dots + a_mv_m = 0$.

That is, $a_1v_1 + a_2v_2 + \dots + a_mv_m = 0 \quad \text{only if } a_1 = 0, \dots, a_m = 0$

then the vectors are linearly independent.

* Show that the vectors U = (6, 2, 3, 4), V = (0, 5, -3, 1) and w = (0,0,7,-2) are linearly independent.

Sol!: Suppose xu+yv+zw=0 where x,y, z are unknown sealars. $\chi(6,2,3,4)+\chi(0,5,-3,1)+\chi(0,0,7,-2)=(0,0,0,0)$

> => 2 =0, y =0 and 2x + 5y = 03x - 3y + 72 = 0

4x+y-22=0

xu+yv+zw=0 implies x=0, y=0 and z=0Hence u, v and w are independent.

Observe that the vectors in the above problem form a matrix in

echelon form: $\begin{pmatrix} 6 & 2 & 3 & 4 \\ 0 & 5 & -3 & 1 \\ 0 & 0 & 7 & -2 \end{pmatrix}$.

Thus we have shown that the nonzero rows of the above echelon matrix are independent.

Note: Any nonzero vector v is, by itself, independent; kv = 0, $v \neq 0$ implies k = 0.

The set $\{V_1, \dots, V_m\}$ is called a dependent or independent set according as the vectors V_1, \dots, V_m are dependent or independent. Also the empty set ϕ to be independent.

(3) A set which contains a dependent subset is itself dependent.

Problem: Let V be the vector space of polynomials of degree ≤ 3 over R. Determine whether $u, v, w \in V$ are independent or dependent where:

 $u=t^3-8t^2+5t+1$, $v=t^3-t^2+8t+2$, $w=2t^3-4t^2+9t+5$. Soft : Set a linear combination of the polynomials u, v and w equal to the zero polynomial; that is

xu+yv+zw=0 where x,y,z are unknown -scalars

.', $x(t^3-3t^2+5t+1)+y(t^3-t^2+8t+2)+z(2t^3-4t^2+9t+5)=0$

or $(x+y+2)t^3+(-3x-y+42)t^2+(5x+8y+92)t+(x+2y+52)=0$ The coefficients of the powers of t must each be 0:

 $x + y + 2^{2} = 0$ $-3x - y - 4^{2} = 0$ 5x + 8y + 92 = 0 x + 2y + 52 = 0

Solving the above homogeneous system, we obtain only the zero solution: x = 0, y = 0.

Hence u, v and w are independent.

Show that u+v, u-v and u-2v+w are also independent.

1 - A where z, y, z see

x(u+v)+y(u-v)+z(u-2v+w)=0 where x,y,z scalars

~ (x+y+2) u + (x-y-22) v + zw =0. But U, v and w are linearly independent; hence the coefficients in the above relation are each o:

> x+j+2 =0 x-y-22 =0

2 = 0

 $\therefore \chi = 0$, $\chi = 0$, $\chi = 0$. Thus u + v, u - v and $u - 2v + \omega$ are independent.

* Let V1, V2, ---, Vm be independent vectors and suppose u is a

linear combination of the vi, say $u = a_1v_1 + a_2v_2 + \cdots + a_mv_m$ where the ai are scalars. Show that the above representation of u is unique.

Proof: Suppose $U = b_1 V_1 + b_2 V_2 + \cdots + b_m V_m$ where the bi are scalars

 $0 = U - U = (a_1 - b_1)^{V_1} + (a_2 - b_2)^{V_2} + \cdots + (a_m - b_m)^{V_m}$

But Vi are independent, so

 $a_1 - b_1 = 0$, $\alpha_2 - b_2 = 0$ ---, $a_m - b_m = 0$

or a, =61, 92 = 62 -- , am = 6m

* Suppose $\{v_1, v_2, \dots, v_m\}$ is independent, but $\{v_1, v_2, \dots, v_m, \omega\}$

es dependent. Show that w is a Linear combination

of the Vi suppose

[Proof: ~ 1 V + a 2 V 2 + - - + a m V m + b w = 0 . But $\{v_1, \dots, v_m\}$ is independent, so $a_1 = 0, \dots, a_m = 0$. Hence $b \neq 0$ and

50 W = 5 (= a, v,)

so w = - b a, v, - · · · - b am vm

That is, w is a linear combination of the vi.

If one of them, say V_i is a linear combination of the preceding vectors: $V_i = a_1 V_1 + \cdots + a_{i-1} V_{i-1}$

Proof: - suppose vi = a,v,+...+ a,-1,vi-1.

Then $a_iv_i + \cdots + a_{i-1}v_{i-1} - v_i + 0v_{i+1} + \cdots + 0v_m = 0$ and the coefficient of v_i is not 0.

Hence the Vi VI, ... , Vm are linearly dependent.

Conversely, suppose the nonzero vectors v1, ---, vm are linearly dependent. Then there exist scalars a,, -- , am, not all of them o such that a,v,+···+amvm=0.

Let k be the largest integer such that ax \$\pm 0.

Then $a_1v_1 + \cdots + a_kv_k + 0v_{k+1} + \cdots + 0v_m = 0$

or a v + - - . + a v = 0 .

Suppose k=1, then $a_1v_1=0$, $a_1\neq 0$ and so $v_1=0$. But v₁, ··· , v_m are nonzero vectors; hence x>1 and $v_k = -a_k^{-1}a_1v_1 + \cdots - a_k^{-1}a_{k-1}v_{k-1}$.

That is, v_k is a linear combination of the preceding vectors. Theorem 5.1: The nonzero rows R_1, \cdots, R_n of a matrix in echelon form are linearly independent.

Proof: - suppose {Rn, kn-1, ..., Rif is dependent. Then one of of the rows, say Rm, is a linear combination of the preceding rows: $R_{m} = a_{m+1}R_{m+1} + a_{m+2}R_{m+2} + \cdots + a_{n}R_{n} \longrightarrow 1$

Suppose the KH component of Rm is its first nonzero entry. Then, since the matrix is in echelon form, the kth components of R_{m+1}, \dots, R_n are all 0 and so the Kth component of 1 is a_{m+1} : $0 + a_{m+2}$: $0 + \cdots + a_n$: 0 = 0. But this contradicts the assumption that the kth component of Rm is not O. Hence R₁,..., R_n wie linearly independent.

Basis and Dimension;

A vector space V is said to be of sinite dimension nor to be n-dimensional if there exist linearly independent vectors e, e, ... en which span V.

, en } is called a basis Then the sequence & e1, e2, of V. $\dim V = n$.

Examples: 1) Let K be any field. Consider the vector space K^n which consists of n-tuples of elements of K.

The vectors $e_1 = (1,0,0,---,0,0)$ $e_2 = (0,1,0,\cdots,0,0)$

form a basis, called the usual basis of K^n and $\dim K^n = n$

2 R → Sield, R3 → vector space The vectors $e_1 = (1,0,0)$

 $e_2 = (0,1,0)$

e3 = (0,0,1)

form a basis, called the usual basis of R3 and dimR2=3

Dr. Shiuly Akhter Associate Professor Department of Mathematics University of Rajshahi Rajshahi - 6205, Bangladesh

Phone: (Off.) +88-0721-711108

Cell: +88-01716-697645 : +88-0721-750064

E-mail: shiuly_math_ru@yahoo.com Web : www.ru.ac.bd/mathematics

Problem: Defermine whether or not the following form a basis of for the vector space 123:

(1,1,1) and (1,-1,5)

(1, 2, 3), (1, 0, -1), (3, -1, 0) and (2, 1, -2)

(1,1,1), (1,2,3) and (2,-1,1)

Sol?: (I and (i) no; for a basis of R3 must contain exactly 3 elements, since R3 is of dimension 3.

(iii) The vectors form a basis if and only if they, are independent. Thus form the matrix whose roues are the given vectors and row reduce to

echelon form;

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & -1 & 1 \end{pmatrix} \quad \begin{cases} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -3 & -1 \end{pmatrix} \quad \begin{cases} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{cases}$$

The echelon matrix has no zero rous.

Hence the three vectors are independent and so form a basis for R3.