Computer Networks Assignment 3 Group Report

Date: 2020-11-30

Group Members:

Abdul Arif (105075345)

Ayokunle Olufemi Ayoola (110021647)

Brett Shepley (104826157)

Katerina Pace (104380084)

Application Structure:

Questions:

Q1) Select any two jobs from the One-To-One Jobs category, design and implement the create-assign-execute-report. [25 points]

Classes:

Job - This class is used purely for creating objects of itself to be added into a list. The parameter of the constructor include; JobCreator, JobName, NumOfSeekers, FullJob, and JobSeekerList

JobList - This class is used to create, add, start, and join Jobs. An object of this class is made in the Server class to allow for the manipulation of the JobList and Jobs

DetectIPAddress - This class will take in a specific IPAddress which is given from the Client (Job Creator) and will ping that address and determine if that IPAddress is online or offline.

DetectIPAddesses - This class will take in a specific IPAddress which is given from the Client (Job Creator) and will connect to that IPAddress and return what ports are open, closed, or filtered.

Detect if a given IP address or Host Name is online or not. The job creator would like the job seeker to find out if a given IP address is contacted to the network or not. The job description contains at least the target IP

This task was completed by Katerina Pace (104380084)

Detect all live IP addresses on a given subnet. The job description contains the target subnet in a.b.c.d/x format

This task was completed by Abdul Arif (105075345)

Q2) Select any two jobs from the One-To-Many Jobs category design and implement the create-assign-execute-report. [25 points]

Classes:

Job - This class is used purely for creating objects of itself to be added into a list. The parameter of the constructor include; JobCreator, JobName, NumOfSeekers, FullJob, and JobSeekerList

JobList - This class is used to create, add, start, and join Jobs. An object of this class is made in the Server class to allow for the manipulation of the JobList and Jobs

TCPFloodAttack - This class will take in a specific IPAddress and Port which is given from the Client (Job Creator) and will use the targets information to constantly send TCP packets to the specified IP and Port.

UDPFloodAttack - This class will take in a specific IPAddress and Port which is given from the Client (Job Creator) and will use the targets information to constantly send UDP packets to the specified IP and Port.

The job creator ask more than one job seeker to execute a TCP flood attack (any TCP flood attack) against a given port on a given IP

This task was completed by Ayokunle Olufemi Ayoola (110021647)

The job creator ask more than one job seeker to execute a UDP flood attack against a given port on a given IP

This task was completed by Brett Robert Shepley (104826157)

Q3) Implement test cases to test your implementation [10 points]

ONE TO ONE Jobs:

Part 1:

```
C:\Users\Katpa\Documents\GitHub\Network-Project>py detectIPOnline.py
Enter the host to be scanned: 192.168.5.1
Looking to see if host is online...

Pinging 192.168.5.1 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 10.0.80.5: Destination net unreachable.
Request timed out.

Ping statistics for 192.168.5.1:
Packets: Sent = 4, Received = 1, Lost = 3 (75% loss),

192.168.5.1 is online!
```

```
C:\Users\Katpa\Documents\GitHub\Network-Project>py detectIPOnline.py
Enter the host to be scanned: 192.168.1.108
Looking to see if host is online...

Pinging 192.168.1.108 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.108:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

192.168.1.108 is not online!
```

Part 3:

```
Run:

DetectipAddresses 

C:\Users\abdul\AppData\Local\Programs\Python\Python38\python.exe "C:\Users\abdul\Downloads\Classes 2018\Sesmester 6\COMP3670-1-R-2020F-a (Computer Networks)\
Enter the host to be scanned: \( \frac{1}{2} \) \( \frac{1}{2}
```

ONE TO MANY Jobs:

Part 2:

Part 3:

358131 665.064458	24.57.4.177	192.168.50.205	UDP	68 6452 + 25565 Len=8
358133 665.068617	24.57.4.177	192.168,50.203	UDP	68 25978 → 25565 Len=8
358135 665.074575	24,57,4,177	192,168,58,283	UDP	68 48634 + 25565 Len=8
358136 665.074609	24,57,4,177	192.168.50.205	UDP	60 1288 + 25565 Len=0
358137 665.074662	24.57.4.177	192.168.50.203	LIDP	60 41220 → 25565 Len=0
358138 665.080844	24.57.4.177	192.168.50.203	UDP	68 61511 + 25565 Len=8
358139 665.080871	24,57,4,177	192.168.58.283	UDP	68 44828 → 25565 Len=8
358140 665.086000	24.57.4.177	192.168.50.203	UDP	68 21716 → 25565 Len=0
358141 665.086037	24.57.4.177	192,168,50,283	UDP	68 57251 → 25565 Len=8
358142 665.086086	24.57.4.177	192.168.50.203	UDP	60 9410 + 25565 Len=0
358143 665.086127	24.57.4.177	192.168.50.203	LIDP	60 21599 + 25565 Len=0
358148 665,098429	24.57.4.177	192,168,50,203	UDP	68 23553 + 25565 Len=8
358149 665.096193	24.57.4.177	192.168.50.203	UDP	60 24343 → 25565 Len=0
358150 665.096217	24.57.4.177	192.168.50.283	UDP	60 60997 - 25565 Len-8
358151 665.096237	24.57.4.177	192,168,50,203	UDP	68 54331 → 25565 Len=8
358152 665.101743	24.57.4.177	192.168.58.285	UDP	60 59081 → 25565 Len=0
358153 665.101769	24.57.4.177	192.168.50.203	UDP	68 48853 + 25565 Len=8
358154 665.101832	24,57,4,177	192,168,50,203	UDP	68 58878 + 25565 Len=8
358155 665.181916	24,57,4,177	192.168.50.203	UDP	60 48580 → 25565 Len=0
358156 665.106190	24.57.4.177	192.168.50.203	LIDP	60 27821 → 25565 Len=0
358160 665.110710	24.57.4.177	192,168,58,283	UDP	68 33242 → 25565 Len≈8
358161 665,110710	24.57.4.177	192.168.50.203	UDP	60 31778 - 25565 Len=0
358162 665.116395	24.57.4.177	192,168.50.203	LIDP	60 53122 + 25565 Len=0
358163 665,116421	24,57,4,177	192.168.50.203	UDP	68 29973 → 25565 Len=8
358164 665.128138	24.57.4.177	192.168.50.203	UDP	68 17366 → 25565 Len=8
358165 665.120157	24.57.4.177	192.168.50.203	UDP	68 2988 + 25565 Len=8
358168 665,124491	24.57.4.177	192,168,58,283	UDP	68 49941 + 25565 Len=8
358169 665,124491	24.57.4.177	192.168.50.203	UDP	60 29793 → 25565 Len=0
358170 665.124547	24.57.4.177	192.168.50.203	LIDP	60 59203 + 25565 Len=0
358173 665.129476	24.57.4.177	192,168,50,203	UDP	60 34688 → 25565 Len≈8
358174 665.134769	24.57.4.177	192.168.58.283	UDP	68 47136 → 25565 Len=8
358175 665.134800	24.57.4.177	192.168.50.203	LIDP	68 36339 → 25565 Len=0
358176 665.134845	24.57.4.177	192,168,50,283	UDP	68 58852 → 25565 Len=8
358177 665.159526	24.57.4.177	192.168.50.203	UDP	60 2611 + 25565 Len=0
358178 665.154782	24.57.4.177	192.168.50.203	LIDP	68 4925 - 25565 Len=8
358179 665,155576	24,57,4,177	192,168,50,203	UDP	60 28432 + 25565 Len=0
358180 665.155616	24.57.4.177	192.168.50.203	UDP	60 26632 → 25565 Len=0
358182 665.161005	24.57.4.177	192,168,50,283	UDP	60 5083 + 25565 Len=0
358189 665,163261	24.57.4.177	192.168.50.203	UDP	60 52485 → 25565 Len+0
558190 665.163261	24.57.4.177	192.168.50.283	UDP	60 51827 → 25565 Len=0
358192 665.165707	24.57.4.177	192.168,50.203	UDP	68 7947 + 25565 Len-8
358193 665.165811	24,57,4,177	192,168,50,203	UDP	68 15862 + 25565 Len=8
358194 665,167719	24.57.4.177	192,168,50,203	UDP	60 40236 → 25565 Len=0
358195 665.168320	24.57.4.177	192.168.58.283	LIDP	60 31994 - 25565 Len-8