# CS 480/680 Introduction to Machine Learning

Lecture 6
Support Vector Machines Part I
Maximum Margin Classifier and Constrained Optimization

Kathryn Simone 26 September 2024



#### Large margin classifiers are more robust



The symbol indicates a technically difficult section, one that can be skipped without interrupting the flow of the discussion.

#### 4.5.2 Optimal Separating Hyperplanes



The optimal separating hyperplane separates the two classes and maximizes the distance to the closest point from either class (Vapnik, 1996). Not only does this provide a unique solution to the separating hyperplane problem, but by maximizing the margin between the two classes on the training data, this leads to better classification performance on test data.



#### Computing the distance to the decision boundary

For a hyperplane defined by:

$$w^T x = -b$$

where  $w, x \in \mathbb{R}^d$ ,  $b \in \mathbb{R}$  the vector v from any point  $x_i$  and a point on the hyperplane  $x_h$  is

$$v = x_i - x_h$$

$$\implies v = x_i - \left(\frac{-b}{w}\right)$$

$$\implies v = x_i + \frac{b}{w}$$

The minimum distance d between the point  $x_i$  and the hyperplane is the projection of v onto the surface normal:

$$d = \frac{w}{\|w\|} \cdot v$$

$$= \frac{w}{\|w\|} \left( x_i + \frac{b}{w} \right)$$

$$= \frac{1}{\|w\|} (w^T x_i + b)$$



The margin is the distance from the boundary to the closest point

For a dataset of samples  $x_i \in \mathbb{R}^d$ , with labels  $y_i \in \{\pm 1\}$ , linearly separated by a hyperplane parametrized by w and b, the margin  $\gamma$  is the distance from the hyperplane to the closest point:

$$\gamma = \min_{i} \frac{1}{\|w\|} y_i (w^T x_i + b)$$

Where  $y_i$  converts the signed distance to an unsigned distance. The factor 1/||w|| can then be taken outside of the optimization over i, because the w does not depend on i:

$$\gamma = \frac{1}{\|w\|} \min_{i} y_i(w^T x_i + b)$$



#### The maximum margin classifier problem

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmax}} \gamma$$

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmax}} \frac{1}{\|w\|} \min_{i} y_{i}(w^{T}x_{i} + b)$$







#### Scaling parameters doesn't change decision boundary







## Scaling parameters doesn't change distance to points

Rescaling parameters by some scalar  $\alpha$ , such that  $w \to \alpha w$  and  $b \to \alpha b$ , does not change the decision boundary or the distance of any point  $x_i$  to the boundary:

$$d = \frac{1}{\|\alpha w\|} (\alpha w^T x_i + \alpha b)$$

$$= \frac{\alpha}{\alpha} \frac{1}{\|w\|} (w^T x_i + b)$$

$$= \frac{1}{\|w\|} (w^T x_i + b)$$



#### The canonical representation of the decision hyperplane



PAGE 10

#### Maximum margin classification as constrained optimization

We are interested in finding the parameters  $\hat{w}, \hat{b}$  that maximize the margin  $\gamma$ 

$$\begin{split} \hat{w}, \hat{b} &= \operatorname*{argmax}_{w,b} \gamma \\ \Longrightarrow \hat{w}, \hat{b} &= \operatorname*{argmax}_{w,b} \frac{1}{\|w\|} \min_{i} y_{i}(w^{T}x_{i} + b) \\ &= \operatorname*{argmax}_{w,b} \frac{1}{\|w\|} \text{ subject to: } y_{i}(w^{T}x_{i} + b) \geq 1 \ \ \forall i \\ &= \operatorname*{argmin}_{w,b} \frac{1}{2} \|w\|^{2} \ \ \text{subject to: } y_{i}(w^{T}x_{i} + b) \geq 1 \ \ \forall i \end{split}$$



## Constrained optimization problem



#### Constrained optimization with Lagrange multipliers

Consider the constrained objective

min 
$$y(x) = 0.2x^2 - x + 1$$
  
subject to:  $x \ge 5$ 

This can be transformed into the dual problem

$$\max \mathcal{L}(x,\lambda) = 0.2x^2 - x + 1 - \lambda(x-5)$$
  
subject to:  $\lambda > 0$ 

Where  $\lambda$  is a Lagrange multiplier. To maximize it, we compute the partial derivatives and set them to zero:

$$\frac{\partial \mathcal{L}}{\partial x} = 2(0.2)x - 1 - \lambda$$

$$= 0.4x - 1 - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(x+5) = 0$$

$$\implies x = 5$$

$$\implies \lambda = 0.4(5) - 1 = 2 - 1 = 1$$



#### Constrained optimization with Lagrange multipliers

$$\min y(x) = 0.2x^2 - x + 1$$

$$\text{subject to: } x \ge -3$$

$$\max \mathcal{L}(x, \lambda) = 0.2x^2 - x + 1 - \lambda(x + 3)$$

$$\text{subject to: } \lambda \ge 0$$

$$\frac{\partial \mathcal{L}}{\partial x} = 0.4x - 1 - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(x + 3) = 0$$

$$\implies x = -3$$

$$\implies \lambda = 0.4(-3) - 1 = -2.2$$

As the solution does not satisfy  $\lambda \geq 0$ , x = -3 is not a feasible solution to the dual problem.

In this case,  $\lambda = 0$ , and we solve for x

$$x = \frac{1}{0.4} = 2.5$$



#### Lagrangian dual of maximum margin classification problem

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmax}} \frac{1}{\|w\|} \min_{i} y_i(w^T x_i + b)$$

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2$$
  
subject to:  $y_i(w^T x_i + b) \ge 1 \ \forall i$ 

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1)$$
  
subject to:  $\lambda_i \ge 0 \ \forall i$ 



#### Karush-Kuhn-Tucker conditions and support vectors

Primal feasibility:  $y_i(w^Tx_i + b) - 1 \ge 0$ 

Dual feasibility :  $\lambda_i \geq 0$ 

Complementary slackness:  $\lambda_i(y_i(w^Tx_i+b)-1) \geq 0$ 

$$\lambda_i > 0 \implies y_i(w^T x_i + b) = 1$$
 constraint is active,  $x_i$  defines the margin

$$y_i(w^T x_i + b) > 1 \implies \lambda_i = 0$$
  
constraint is inactive,  $x_i$  is far from the margin



## Maximizing the Lagrangian dual

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{n} \lambda_i (y_i(w^T x_i + b) - 1)$$

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \lambda_i y_i w^T x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i$$

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{n} \lambda_i y_i x_i = 0$$

$$\implies w = \sum_{i=1}^{n} \lambda_i y_i x_i$$

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{i=1}^{n} \lambda_i y_i = 0$$

$$\implies \sum_{i=1}^{n} \lambda_i y_i = 0$$

# Apply derived constraints to solve for $\lambda_i$

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \lambda_i y_i w^T x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i \qquad w = \sum_{i=1}^n \lambda_i y_i x_i \quad \sum_{i=1}^n \lambda_i y_i = 0 \qquad \lambda_i \ge 0$$

$$= \frac{1}{2} \left( \sum_{i=1}^n \lambda_i y_i x_i \right)^T \left( \sum_{j=1}^n \lambda_j y_j x_j \right) - \sum_{i=1}^n \lambda_i y_i \left( \sum_{j=1}^n \lambda_j y_j x_j \right) x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i$$

$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j - \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j - \sum_{i=1}^n \lambda_i \lambda_j y_i y_j x_i x_j + \sum_{i=1}^n \lambda_i$$

$$= -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j + \sum_{i=1}^n \lambda_i$$

$$= \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j \qquad \lambda_i \ge 0$$

# Solve for $\lambda_i$

$$\sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i x_j$$

$$\lambda_i \ge 0$$

$$\sum_{i=1}^{n} \lambda_i u_i = 0$$

https://www.cvxpy.org/

```
import cvxpy as cp
import numpy as np
# Problem data.
m = 30
n = 20
np.random.seed(1)
A = np.random.randn(m, n)
b = np.random.randn(m)
# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve()
# The optimal value for x is stored in `x.value`.
print(x.value)
# The optimal Lagrange multiplier for a constraint is stored in
# `constraint.dual value`.
print(constraints[0].dual value)
```

## Solving for b

$$y_i(w^T x_i + b) = 1, x_i \quad x_i \in S_v$$

$$\implies b = \frac{1}{y_i} - w^T x_i$$

$$= y_i - w^T x_i$$

$$\approx \frac{1}{N_{sv}} \sum_{i \in S_v} y_i - w^T x_i$$

#### Does it work?





# Now that we're at the end of the lecture, you should be able to...

- Motivate the need for a large-margin classifier with reference to properties of robustness, error sensitivity, and generalization.
- ★ Define **margin** and recognize the maximum margin classification problem.
- ★ Apply Lagrangian multipliers to derive the dual of an optimization problem with inequality constraints.
- ★ Interpret the meaning of the solution to the dual objective of the maximum margin classifier, with reference to support vectors, active/inactive constraints, and the KKT conditions.
- ★ Apply off-the-shelf solution to solve the quadratic programming problem.
- Use the solution to the dual objective to predict class labels and identify the support vectors.
- ★ Defend the utility of SVMs with reference to **sparsity**.