

WHAT IS CLAIMED IS:

1. A refrigerant cycle apparatus comprising: a refrigerant circuit constituted by successively connecting a compressor, a gas cooler, throttling means, and an evaporator,

wherein the throttling means includes a plurality of capillary tubes, refrigerant circulation into each capillary tube is controlled so that a flow path resistance of the throttling means is variable, and the flow path resistance of the throttling means at the time of the starting of the compressor is reduced.

2. The refrigerant cycle apparatus according to claim 1, wherein the throttling means comprises: a first capillary tube; and a second capillary tube which is connected in parallel to the first capillary tube and whose flow path resistance is smaller than that of the first capillary tube, a valve device for controlling the refrigerant circulation into each capillary tube is disposed, and the refrigerant is passed into the second capillary tube at the starting time of the compressor.

3. The refrigerant cycle apparatus according to claim 1, wherein the throttling means comprises: a first capillary tube; and a second capillary tube which is connected in parallel to the first capillary tube and whose flow path resistance is smaller than that of the first

capillary tube, a valve device for controlling the refrigerant circulation into the second capillary tube is disposed, and the refrigerant is passed into the second capillary tube at the starting time of the compressor.

5

4. The refrigerant cycle apparatus according to claim 1, 2, or 3, wherein the flow path resistance of the throttling means is reduced or the refrigerant is passed into the second capillary tube for a predetermined time 10 from the starting of the compressor.

5. The refrigerant cycle apparatus according to claim 1, 2, or 3, wherein the flow path resistance of the throttling means is reduced or the refrigerant is passed 15 into the second capillary tube from when the compressor is started until a temperature of a refrigerant in the refrigerant circuit reaches a predetermined value.

6. The refrigerant cycle apparatus according to claim 1, 2, or 3, wherein the flow path resistance of the throttling means is reduced or the refrigerant is passed into the second capillary tube from when the compressor is started until a temperature of a space to be cooled by the evaporator drops to a predetermined value.

25

7. The refrigerant cycle apparatus according to claim 1, 2, 3, 4, 5, or 6, wherein carbon dioxide is used

as the refrigerant, the compressor includes first and second compression elements driven by a driving element, the refrigerant is sucked into the first compression element from the low-pressure side of the refrigerant circuit and compressed, and the refrigerant discharged from the first compression element and having an intermediate pressure is sucked into the second compression element, compressed, and discharged to a gas cooler.

10 8. A refrigerant cycle apparatus comprising: a refrigerant circuit constituted by successively connecting a compressor, the apparatus further comprising:

15 the throttling means including a plurality of capillary tubes; and a control device for controlling refrigerant circulation into each capillary tube and a rotation number of the compressor.

 wherein the control device controls the refrigerant circulation so that a flow path resistance of the throttling means is variable, and

20 the control device reduces the flow path resistance of the throttling means to raise the rotation number of the compressor, when a temperature detected by a sensor is not less than a predetermined value, and increases the flow path resistance of the throttling means
25 to lower the rotation number of the compressor, when the temperature drops from a set value based on an output of the sensor for detecting the temperature of a space to be

cooled by the evaporator.

9. The refrigerant cycle apparatus according to
claim 8, wherein the throttling means comprises: a first
5 capillary tube; and a second capillary tube which is
connected in parallel to the first capillary tube and whose
flow path resistance is smaller than that of the first
capillary tube, the control device is connected to a valve
device for controlling the refrigerant circulation into
10 each capillary tube, and the control device controls the
valve device so as to pass the refrigerant into the second
capillary tube, when the temperature detected by the sensor
is not less than the predetermined value and to pass the
refrigerant into the first capillary tube, when the
15 temperature drops below the set value.

10. The refrigerant cycle apparatus according to
claim 8, wherein the throttling means comprises: a first
capillary tube; and a second capillary tube which is
20 connected in parallel to the first capillary tube and whose
flow path resistance is smaller than that of the first
capillary tube, the control device is connected to a valve
device for controlling the refrigerant circulation into the
second capillary tube, and the control device controls the
25 valve device so as to pass the refrigerant into the second
capillary tube, when the temperature detected by the sensor
is not less than the predetermined value and to pass the

refrigerant into the first capillary tube, when the temperature drops below the set value.

11. The refrigerant cycle apparatus according to
5 claim 8, 9, or 10, wherein carbon dioxide is used as the refrigerant, the compressor includes first and second compression elements driven by a driving element, the refrigerant is sucked into the first compression element from the low-pressure side of the refrigerant circuit and compressed, and the refrigerant discharged from the first compression element and having an intermediate pressure is sucked into the second compression element, compressed, and discharged to the gas cooler.
10

15 12. A refrigerant cycle apparatus comprising:
a refrigerant circuit constituted by successively connecting a compressor, a gas cooler, throttling means, and an evaporator; and

a control device for controlling a flow path resistance of the throttling means and a rotation number of the compressor,
20

wherein the control device reduces the flow path resistance of the throttling means to raise the rotation number of the compressor, when a temperature detected by a sensor is not less than a defined temperature at any of
25 +29°C to +35°C, and increases the flow path resistance of the throttling means to lower the rotation number of the

compressor, when the temperature detected by the sensor is lower than the defined temperature based on an output of the sensor for detecting the temperature of a space to be cooled by the evaporator.

5

13. A refrigerant cycle apparatus comprising:

a refrigerant circuit constituted by successively connecting a compressor, a gas cooler, throttling means, and an evaporator;

10 a control device for controlling a flow path resistance of the throttling means and a rotation number of the compressor; and

15 an internal heat exchanger for exchanging heat between a refrigerant discharged from the gas cooler and a refrigerant discharged from the evaporator,

20 wherein the control device reduces the flow path resistance of the throttling means to raise the rotation number of the compressor, when a temperature detected by a sensor is not less than a defined temperature at any of +29°C to +35°C, and increases the flow path resistance of the throttling means to lower the rotation number of the compressor, when the temperature detected by the sensor is lower than the defined temperature based on an output of the sensor for detecting the temperature of the refrigerant 25 discharged from the internal heat exchanger via the evaporator.

14. The refrigerant cycle apparatus according to
claim 12 or 13, wherein the temperature of a space to be
cooled by the evaporator is set in a range of -2°C to +7°C.

5 15. The refrigerant cycle apparatus according to
claim 12, 13, or 14, wherein the throttling means
comprises: a first capillary tube; and a second capillary
tube which is connected in parallel to the first capillary
tube and whose flow path resistance is smaller than that of
10 the first capillary tube, the control device is connected
to a valve device for controlling the refrigerant
circulation into each capillary tube, and the control
device controls the valve device so as to pass the
refrigerant into the second capillary tube, when the
15 temperature detected by the sensor is not less than the
defined temperature, and to pass the refrigerant into the
first capillary tube, when the temperature is lower than
the defined temperature.

20 16. The refrigerant cycle apparatus according to
claim 12, 13, or 14, wherein the throttling means
comprises: a first capillary tube; and a second capillary
tube which is connected in parallel to the first capillary
tube and whose flow path resistance is smaller than that of
25 the first capillary tube, the control device is connected
to a valve device for controlling the refrigerant
circulation into the second capillary tube, and the control

device controls the valve device so as to pass the refrigerant into the second capillary tube, when the temperature detected by the sensor is not less than the defined temperature, and to pass the refrigerant into the 5 first capillary tube, when the temperature is lower than the defined temperature.

17. The refrigerant cycle apparatus according to claim 12, 13, 14, 15, or 16, wherein carbon dioxide is used 10 as the refrigerant, the compressor includes first and second compression elements driven by a driving element, the refrigerant is sucked into the first compression element from the low-pressure side of the refrigerant circuit and compressed, and the refrigerant discharged from 15 the first compression element and having an intermediate pressure is sucked into the second compression element, compressed, and discharged to the gas cooler.

18. A refrigerant cycle apparatus comprising: a 20 refrigerant circuit constituted by successively connecting a compressor, a gas cooler, throttling means, and an evaporator,

wherein throttling means includes a plurality of capillary tubes, refrigerant circulation into each 25 capillary tube is controlled so that a flow path resistance of the throttling means is variable, and the flow path resistance of the throttling means is increased at the time

of the starting of the compressor.

19. The refrigerant cycle apparatus according to
claim 18, wherein the throttling means comprises: a first
5 capillary tube; and a second capillary tube which is
connected in parallel to the first capillary tube and whose
flow path resistance is smaller than that of the first
capillary tube, a valve device for controlling the
refrigerant circulation into each capillary tube is
10 disposed, and the refrigerant is passed into the first
capillary tube at the starting time of the compressor.

20. The refrigerant cycle apparatus according to
claim 18, wherein the throttling means comprises: a first
15 capillary tube; and a second capillary tube which is
connected in parallel to the first capillary tube and whose
flow path resistance is smaller than that of the first
capillary tube, a valve device for controlling the
refrigerant circulation into the second capillary tube is
20 disposed, and the refrigerant is passed into the first
capillary tube at the starting time of the compressor.

21. The refrigerant cycle apparatus according to
claim 18, 19, or 20, wherein the flow path resistance of
25 the throttling means is increased or the refrigerant is
passed into the first capillary tube for a predetermined
time after the starting of the compressor.

22. The refrigerant cycle apparatus according to
claim 18, 19, or 20, wherein the flow path resistance of
the throttling means is increased or the refrigerant is
5 passed into the first capillary tube from when the
compressor is started until a temperature of the
refrigerant in the refrigerant circuit reaches a
predetermined value.

10 23. The refrigerant cycle apparatus according to
claim 18, 19, or 20, wherein the flow path resistance of
the throttling means is increased or the refrigerant is
passed into the first capillary tube from when the
compressor is started until a temperature of a space to be
15 cooled by the evaporator drops to a predetermined value.

24. The refrigerant cycle apparatus according to
claim 18, 19, 20, 21, 22, or 23, wherein carbon dioxide is
used as the refrigerant, the compressor includes first and
20 second compression elements driven by a driving element,
the refrigerant is sucked into the first compression
element from the low-pressure side of the refrigerant
circuit and compressed, and the refrigerant discharged from
the first compression element and having an intermediate
25 pressure is sucked into the second compression element,
compressed, and discharged to the gas cooler.