Page 13 to end of application: Please renumber paragraphs [0031] to [0092] as [0033] to [0095]. The following is a clean copy of the renumbered paragraphs.

BRIEF DESCRIPTION OF THE INVENTION

[0033] The present invention relates to an immunogenic composition comprising synthetic peptides capable of inducing antibodies against the main functional/regulatory site of the A β peptide with high cross-reactivity both to the soluble A $\beta_{1.42}$ peptide and the plaques in the brain of Alzheimer's Disease (AD) patients. The immunogenic composition when administered to an AD patient or a person predisposed to AD is expected to accelerate the clearance of amyloid plaques and immunoneutralization of the soluble A β derived toxins in the brain to prevent and treat AD. In particular, a peptide immunogen of this invention comprise a Th epitope selected from the group consisting of SEQ ID NOS: 1-64 and the immunologically functional analogs thereof linked to a short N-terminal A $\beta_{1.42}$ peptide fragment selected from the group consisting of 10 to 28 amino acid residues comprising EFRH of the A $\beta_{1.42}$ peptide, SEQ ID NO:65, or an immunologically functional analog of the A $\beta_{1.42}$ peptide fragment. Preferably the A $\beta_{1.42}$ peptide fragment is selected from the group SEQ ID NOS: 66-69 or a immunologically functional analogs thereof.

[0034] The present invention further provides an immunogenic composition comprising an immunologically effective amount of a peptide composition in a pharmaceutically acceptable vaccine formulation comprising an adjuvant or emulsifier selected from the group consisting of liposyn, saponin, squalene, L121, emulsigen monophosphyryl lipid A (MPL), polysorbate 80, QS21, Montanide ISA51, ISA35, ISA206 and ISA 720 as well as the other efficacious adjuvants and emulsifiers..

[0035] The present invention further provides a method for the induction of accelerated clearance of amyloid plaques and immunoneutralization of the soluble A β -derived toxins in the brain to prevent and treat Alzheimer Disease in a mammal by administering one or more of the immunogenic peptides to the mammal for a time and under conditions sufficient to induce antibodies directed against the functional/regulatory site of the A β ₁₋₄₂ peptide. A typical example of a vaccine of the

present invention is a peptide composition comprising 5-1000 μ g of the peptide immunogen in a vaccine formulated as a water in oil emulsion in a pharmaceutically acceptable adjuvant and/or carrier. A typical method of administering the vaccine is to inject intramuscularly the vaccine formulation at 0.5-2mL per dose on an immunization schedule of 0, 4, and 8 weeks intervals.

[0036] Yet another aspect of the invention relates to an immunogenic synthetic peptide of about 30 to about 60 amino acids consisting of a helper T cell (Th) epitope, linked to an N-terminal $A\beta_{1-42}$ peptide fragment selected from the group consisting of 10 to 28 amino acids with each fragment comprising amino acid residue 1 of the $A\beta_{1-42}$ peptide. See SEQ ID NO:65 wherein D, Aspartic acid, is designated as amino acid residue 1. Preferably the N terminal $A\beta_{1-42}$ peptide fragment is selected from the group SEQ ID NOs: 66-69 or a peptide analog of N-terminal fragment of $A\beta_{1-42}$ peptide. Optionally, amino acid spacers to separate the immunogenic domains may be included. The immunogenic domain elements separated by spacers can be covalently joined in any order provided that either the immunoreactivity of the peptide hapten is substantially preserved or that immunoreactivity to the N-terminal $A\beta$ peptide fragment, soluble $A\beta_{1-42}$ peptide, and the plaques is generated.

[0037] An important factor affecting immunogenicity of a synthetic peptide for an N-terminal $A\beta_{1.42}$ fragment immunogen is its presentation to the immune system by T helper cell epitopes (Th). Such Th is most reliably supplied to the peptide immunogen by foreign Th epitopes placed on a separate Th peptide domain element that are extrinsic to the target $A\beta$ peptide. Such peptide immunogens may be produced as hybrid polypeptides by recombinant DNA expression. They may also be more simply and less expensively supplied as a synthetic peptide immunogen comprising the target hapten B cell site from $A\beta$ peptide and T-helper epitopes (Th) appropriate for the host. Such peptides react with helper T-cell receptors and the class II MHC molecules, in addition to antibody binding sites (Babbitt et al., *Nature*, 1985; 317:359) and thus stimulate a tightly site-specific antibody response to the target antibody binding site. Previously such Th was supplied for workable $A\beta_{1.42}$ peptide immunogens by Th intrinsic to aggregated full length $A\beta$ peptide (WO

PATENT

Attorney Docket: 1151-4167

99/66957; WO 1999/27944; Janus et al., 2000, Morgan et al., 2000) and can be supplied by carrier protein. A wholly synthetic peptide immunogen enjoys the following advantages over $A\beta_{1-42}$ peptide aggregates, carrier conjugates and recombinant polypeptides in that the product is chemically defined for easy quality control. The synthetic peptide immunogen is stable. No elaborate downstream processing nor an elaborate manufacturing facility is needed. The immune response is site-specific and focused on the $A\beta$ target and not the carrier. Thus, undesirable responses such as epitopic suppression are avoided.

[0038] Immunogenicity of synthetic N-terminal functional-site directed $A\beta$ peptide immunogens can be optimized by (1) combining N-terminal $A\beta_{1-42}$ peptide fragment with selected foreign promiscuous Th sites to which the majority of a population are responsive; and (2) combining $A\beta$ peptide fragment with Th whose repertoire is enlarged through combinatorial chemistry, and thereby accommodate to the variable immune responsiveness of a genetically diverse population.

[0039] It has been found that peptides composition of the present invention are effective in stimulating the production of antibodies against the main functional/regulatory site of the A β peptide, with cross-reactivities to the soluble A β_{1-42} and the plaques in the brains of AD patients. Based on the immunogenicity data obtained in guinea pigs and baboons, and the data obtained from the immunoperoxidase staining of the amyloid plaques present in human AD brain sections by the spicific immune sera obtained, it is expected that the peptide immunogens of the present invention formulated appropriately are effective in humans. It is to be noted that the data obtained in baboons are particularly significant in that this is a species whose immune response closely resemble those of humans.

DETAILED DESCRIPTION OF THE INVENTION

[0040] This invention is directed to a novel peptide composition for the generation of high titer polyclonal antibodies with specificity for the main functional/regulatory site of the A β peptide, with cross-reactivities to the soluble A β ₁ and the plaques in the brain of Alzheimer Disease (AD) patients. The antibodies generated by the peptide composition are highly site-specific and bind to the A β

peptides and to amyloids plaques in the brain. Thus, the present invention provides an effective method for accelerating the clearance of amyloid plaques and immunoneutralization of soluble $A\beta$ derived toxins in the brains for the prevention and treatment of AD.

N-terminal $A\beta_{1.42}$ peptide fragments selected from the group consisting of 10 to 28 amino acids wherein each fragment comprises EFRH of the $A\beta_{1.42}$ peptide (SEQ ID NO:65), are short linear peptides which, by themselves are non-immunogenic. The short $A\beta_{1.42}$ peptide fragments can be immuno-potentiated by chemical coupling to a carrier protein, for example, keyhole limpet hemocyanin (KLH) or by fusion to a carrier polypeptide through recombinant DNA expression, for example, hepatitis B surface antigen. The deficiency of such "A β peptide(s)-carrier protein" vaccines is that a major portion of antibodies generated are non-functional antibodies directed against the carrier protein.

The immunogens of the present invention are wholly synthetic peptide immunogens comprising N-terminal fragment of $A\beta_{1.42}$ peptide of 10 to 28 amino acids with each fragment comprising EFRH of the $A\beta_{1.42}$ peptide covalently linked to promiscuous Th epitopes selected from the group consisting of SEQ ID NOs: 1 to 64. The immunogens of the invention elicit the production of site-specific antibodies which bind to the $A\beta_{1.42}$ peptide and its aggregates and are cross reactive with amyloid plaques in the brain to provide for accelerated clearance of amyloid plaques and immunoneutralization of the soluble $A\beta$ -derived toxins in the brain. Thus, the immunogen of the present invention is useful in preventing and treating AD.

The helper T cell epitopes (Th) useful in the invention comprise multiple class II MHC binding motifs. Specific examples of Th covalently linked to an N-terminal $A\beta_{1-42}$ peptide fragment are provided. The results of anti-sera from animals immunized with the immunogen peptides of the present invention demonstrate that potent site-directed $A\beta$ peptide reactive antibodies are generated, in a genetically diverse host population.

[0044] Generally, the synthetic immunogenic peptide of the present invention are approximately 20 to 100 amino acids long and comprise:

PATENT

Attorney Docket: 1151-4167

(i) a helper T cell (Th) epitope selected from the group consisting of SEQ ID Nos: 1 to 64;

- (ii) an N-terminal fragment of $A\beta_{1-42}$ peptide from about 10 to about 28 amino acid residues wherein each fragment comprises EFRH of the $A\beta_{1-42}$ peptide; and
- (iii) optionally a spacer consisting of at least an amino acid to separate the immunogenic domains.

[0045] Preferably, the N terminal fragment of the $A\beta_{1-42}$ peptide is selected from the group consisting of SEQ ID NOS: 66-69 and an immunologically effective analog thereof. The Th peptide is covalently attached to either the N- or C-terminus of the target N-terminal fragment of $A\beta_{1-42}$ peptide optionally with a spacer (e.g., Gly-Gly, ϵ -N Lys).

[0046] The peptide immunogen of this invention is represented by one of the following formula:

(A)_n-(N-terminal fragment of A β_{1-42} peptide)-(B)_o-(Th)_m-X;or (A)_n-(Th)_m-(B)_o-(N-terminal fragment of A β_{1-42} peptide)-X;

wherein

each A is independently an amino acid;

each B is a linking group selected from the group consisting of an amino acid, gly-gly, $(\alpha, \epsilon\text{-N})$ lys, Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO:73);

Each Th comprise an amino acid sequence that constitutes a helper T cell epitope, or an immune enhancing analog or segment thereof;

(N-terminal fragment of $A\beta_{1-42}$ peptide) is a synthetic peptide B cell target site antigen and is a fragment of about 10 to about 28 amino acid residues wherein each fragment comprises EFRH of the $A\beta_{1-42}$ peptide or an immunologically functional analog thereof;

X is an α -COOH or α -CONH $_2$ of an amino acid ;

n is from 0 to about 10; m is from 1 to about 4; and o is from 0 to about 10.

The peptide immunogen of the present invention comprises from about 20 to about 100 amino acid residues, preferably from about 25 to about 60 amino acid residues. Preferably, the (N-terminal fragment of $A\beta_{1.42}$ peptide) is selected from the group consisting of SEQ ID Nos: 66-69 and preferably the Th epitope is selected from the group consisting of SEQ ID NOs: 1, 3, 4, 5, 6, 7, 8, 9, 20, 38-40, 47-51 and 52-54. Preferably, m=1, n=1, and o=1 or 2.

When A is an amino acid, it is a non-naturally occurring or naturally occurring amino acid. Non-naturally occurring amino acids include, but are not limited to, ε -N lysine, β -alanine, ornithine, norleucine, norvaline, hydroxyproline, thyroxine, γ -amino butyric acid, homoserine, citrulline and the like. Naturally-occurring amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. when m is greater than one, and two or more of A are amino acids, then each amino acid may independently be the same or different. (A)_n may include a spacer, e.g., Gly-Gly, ε -N Lys.

[0049] B is a spacer and is an amino acid which can be naturally occurring or the non-naturally occurring amino acids as described above. Each B is independently the same or different. The amino acids of B can also provide a spacer, e.g., Gly-Gly, ε-Lys, or lysine between the promiscuous Th epitope and the N-terminal fragment of $Aβ_{1-42}$ peptide (e.g., SEQ ID NOs:66-69) or an immunologically functional analog thereof. In addition by physically separating the Th epitope from the B cell epitope, i.e., the N-terminal fragments of $Aβ_{1-42}$ peptide or its immunologically functional analog, the Gly-Gly or ε-Lys spacer can disrupt any artifactual secondary structures created by the joining of the Th epitope with an N-terminal fragment of $Aβ_{1-42}$ peptide or its immunologically functional analog and

thereby eliminate interference between the Th and/or B cell responses. The amino acids of B can also form a spacer which acts as a flexible hinge that enhances separation of the Th and the N-terminal fragments of $A\beta_{1-42}$ peptide. Examples of sequences encoding flexible hinges are found in the immunoglobulin heavy chain hinge region. Flexible hinge sequences are often proline rich. One particularly useful flexible hinge is provided by the sequence Pro-Pro-Xaa-Pro-Xaa-Pro (SEQ ID NO:77), where Xaa is any amino acid, and preferably aspartic acid. The conformational separation provided by the amino acids of B permits more efficient interactions between the presented peptide immunogen and the appropriate Th cells and B cells to enhances the immune responses to the Th epitope and the antibody-eliciting epitope or their immunologically functional analogs.

that comprises a Th epitope. A Th epitope may be a continuous or discontinuous epitope. In a discontinuous Th epitope, not every amino acid of Th is necessary. A Th epitope, or an analog or fragment thereof, is capable of enhancing or stimulating an immune response to the N-terminal fragment of $A\beta_{1-42}$ peptide. Th epitopes that are immunodominant and promiscuous are highly and broadly reactive across animal and human populations with widely divergent MHC types (Partidos *et al.*, 1991; US 5,759,551). The Th epitope of the subject peptides is about 10 to about 50 amino acids, preferably from about 10 to about 30 amino acids. When multiple Th epitopes are present (i.e., $m \ge 2$), each Th epitope may be the same or different. A Th segment comprises a contiguous portion of a Th epitope that is sufficient to enhance or stimulate an immune response to the N-terminal fragment of $A\beta_{1-42}$ peptide.

[0051] Th epitopes of the present invention include those derived from foreign pathogens including but not limited to those exemplified in Table 1 (SEQ ID Nos:1-21). Further, Th epitopes include idealized artificial Th and artificial idealized combinatorial Th disclosed in WO 99/66957 and listed here in Table 2 as SEQ ID Nos 22-64. Peptides comprising combinatorial Th are produced simultaneously in a single solid-phase peptide synthesis in tandem with the N-terminal fragment of $A\beta_{1-42}$ peptide, A and B. The Th epitopes also include

immunologically functional analogs thereof, having conservative substitutions, additions, deletions and insertions therein of from one to about 10 amino acid residues as long as the Th-stimulating function has not been essentially modified.

In the synthetic peptides of this invention, the Th epitope is covalently attached through a spacer B to either the N terminus or C terminus of the N-terminal fragment of $A\beta_{1-42}$ peptide or an immunologically functional analog thereof. An immunologically functional analog of the N-terminal fragment of $A\beta_{1-42}$ peptide may comprise conservative substitutions, additions, deletions, or insertions of from one to about four amino acid residues as long as immune responses that are crossreactive with the $A\beta_{1-42}$ peptides are elicited. The conservative substitutions, additions, and insertions can be accomplished with natural or non-natural amino acids as defined above.

[0053] The preferred peptide immunogens of this invention are those comprising the N-terminal fragment of the A β_{1-42} peptide fragments selected from the group consisting of SEQ ID NOs: 66-69 or an immunologically functional analog thereof; a spacer (e.g., Gly-Gly, ϵ -Lys); a Th epitope selected from the group consisting of an HB $_s$ Th (SEQ ID NO:1); HB $_c$ Th (SEQ ID NO:20); MVF Th (SEQ ID NOS:8, 9); PT Th (SEQ ID NOs:4, 5, 7), TT Th (SEQ ID NOs:3, 4, 6); CT Th (SEQ ID NOs:12, 21); DT Th (SEQ ID NO:13, 14), MVF Th derived artificial Th selected from the group consisting of SEQ ID Nos:38-40, 47-51); HBV Th derived artificial Th selected from the group consisting of SEQ ID NOS: 52-54. See Tables 1 and 2.

[0054] Peptide compositions which contain a cocktail of the subject peptide immunogens with two or more Th epitopes may enhance immunoefficacy in a broader population and thus provide an improved immune response to the $A\beta_{1-42}$ peptides and their fragments.

[0055] The peptide immunogens of this invention can be made by chemical synthesis methods which are well known to the ordinarily skilled artisan. See, for example, Fields et al., Chapter 3 in *Synthetic Peptides: A User's Guide*, ed. Grant, W. H. Freeman & Co., New York, NY, 1992, p. 77. Hence, peptides can be synthesized using the automated Merrifield techniques of solid phase synthesis with

the α -NH $_2$ protected by either t-Boc or F-moc chemistry using side chain protected amino acids on, for example, an Applied Biosystems Peptide Synthesizer Model 430A or 431. Preparation of peptide constructs comprising combinatorial library peptides for Th epitopes can be accomplished by providing a mixture of alternative amino acids for coupling at a given variable position. After complete assembly of the desired peptide immunogen, the resin is treated according to standard procedures to cleave the peptide from the resin and deblock the functional groups on the amino acid side chains. The free peptide is purified by HPLC and characterized biochemically, for example, by amino acid analysis or by sequencing. Purification and characterization methods for peptides are well known to one of ordinary skill in the art.

[0056] The immunogen of the present invention may also be prepared as a branched polymer by synthesis of the desired peptide construct directly onto a branched poly-lysyl core resin (Wang, et al., *Science*, 1991; 254:285-288).

synthesized by well known recombinant DNA techniques. Such techniques are provided in well-known standard manuals with detailed protocols. To construct a gene encoding a peptide of this invention, the amino acid sequence is reverse translated to obtain a nucleic acid sequence encoding the amino acid sequence, preferably with codons that are optimum for the organism in which the gene is to be expressed. Next, a synthetic gene is made, typically by synthesizing oligonucleotides which encode the peptide and any regulatory elements, if necessary. The synthetic gene is inserted in a suitable cloning vector and transfected into a host cell. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host. The peptide is purified and characterized by standard methods.

[0058] The efficacy of the peptide composition of the present invention can be established by injecting an animal, for example, guinea pigs, with an immunogenic composition comprising peptides of the invention. See, Table 4, SEQ ID NOS:70-75. The humoral immune response to the N-terminal fragment of $A\beta_{1-42}$ peptide and

the soluble $A\beta_{1-42}$ peptide are monitored. A detailed description of the procedures used is provided in the Examples hereinbelow.

[0059] Another aspect of this invention provides a peptide composition comprising an immunologically effective amount of one or more of the peptide immunogens of this invention in a pharmaceutically acceptable delivery system. Accordingly, the subject peptide composition can be formulated as a vaccine using pharmaceutically acceptable adjuvants, carriers or other ingredients routinely employed in the formulation of vaccines. Among the ingredients that can be used in this invention are adjuvants or emulsifiers including alum, liposyn, saponin, squalene, L121, emulsigen monophosphyryl lipid A (MPL), polysorbate 80, QS21, Montanide ISA51, ISA35, ISA206 and ISA 720 as well as the other efficacious adjuvants and emulsifiers. The composition may be formulated for immediate release or sustained release. The composition may also be formulated for induction of systemic immunity, e.g., by entrapment in or coadministration with microparticles. Such formulations are readily available to one of ordinary skill in the art.

[0060] The immunogens of the present invention can be administered via any conventional route, such as subcutaneous, oral, intramuscular, parenteral or enteral route. The immunogens can be administered in a single dose or in multiple doses. A suitable immunization schedule is readily determined and available to one of ordinary skill in the art.

[0061] The peptide composition of the present invention comprises an effective amount of one or more of the peptide immunogens of the present invention and a pharmaceutically acceptable carrier. Such a composition in a suitable dosage unit form generally contains about 0.25 μg to about 500 μg of the immunogen per kg body weight. When delivered in multiple doses, the effective amount may be conveniently divided per dosage unit. For example, an initial dose, e.g. 0.0025-0.5 mg per kg body weight; preferably 1-50 μg per kg of body weight of the peptide immunogen is to be administered by injection, preferably intramuscularly, followed by repeat (booster) doses of a similar amount. Dosage will depend on the age, weight and general health of the subject as is well known in the vaccine and therapeutic arts.

The immune response of the synthetic $A\beta_{1-42}$ peptide immunogens can be improved by delivery through entrapment in or on biodegradable microparticles of the type described by O'Hagan *et al.* (*Vaccine*, 1991; 9: 768-771). The immunogens can be encapsulated with or without an adjuvant in biodegradable microparticles, to potentiate immune responses, and to provide time-controlled release for sustained or periodic responses, and for oral administration, (O'Hagan *et al.*, 1991; and, Eldridge *et al.*, 1991; 28: 287-294).

[0063] The following examples are provided to illustrate the invention. The scope of the invention is not to be limited to the specific peptide immunogens and compositions provided. The examples demonstrate that the peptide immunogens of the present invention are useful for eliciting site-directed antibodies to both $A\beta_{1-10}$ and $A\beta_{1-14}$ fragments as well as cross-reactive antibodies to soluble $A\beta_{1-42}$ peptides as early as 4 weeks after the initial immunization.

EXAMPLE 1

TYPICAL METHODS TO SYNTHESIZE Aβ PEPTIDE IMMUNOGENS OF THE PRESENT INVENTION

synthesized individually by the Merrifield solid-phase synthesis technique on Applied Biosystems automated peptide synthesizers (Models 430, 431 and 433A) using Fmoc chemistry. Preparation of peptide immunogens comprising a combinatorial library Th, i.e., idealized artificial Th site such as MvF derived Th1-8 (SEQ ID NOs:38-40), can be accomplished by providing a mixture of the desired amino acids for chemical coupling at a given position as specified in the design. After complete assembly of the desired peptide, the resin was treated according to standard procedure using trifluoroacetic acid to cleave the peptide from the resin and deblock the protecting groups on the amino acid side chains. The cleaved, extracted and washed peptides were purified by HPLC and characterized by mass spectrometry and reverse phase HPLC.

PATENT

Attorney Docket: 1151-4167

EXAMPLE 2

EVALUATION OF THE IMMUNOGENICITY OF THE Aβ PEPTIDE IMMUNOGENS OF THE PRESENT INVENTION

[0065] A β -derived peptide immunogens were evaluated on groups of guinea pigs as specified by the experimental immunization protocol outlined below and by serological assays for determination of immunogenicity.

Standard Experimental Design:

Immunogens: (1) individual peptide immunogen; or

(2) a mixture of equal molar peptide immunogens as specified in each example.

Dose: $100 \mu g$ in 0.5 mL per immunization unless otherwise specified

Route: intramuscular unless otherwise specified

Adjuvants: Complete Freund's Adjuvant (CFA)/ Incomplete Adjuvant (IFA); or water in oil emulsions unless otherwise specified. CFA/IFA groups received CFA week 0, IFA in subsequent weeks.

Dose Schedule: 0, 3, and 6 weeks or otherwise specified.

Bleed Schedule: weeks 0, 5, 8 or otherwise specified

Species: Duncan-Hartley guinea pigs or otherwise specified

Assay: Specific ELISAs for each immune serum's anti-peptide activity. The Solid phase substrate was the A β peptide fragment e.g. A β_{1-14} or full length A β_{1-42} (SEQ ID NOs: 67 and 65). Blood was collected and processed into serum, and stored prior to ELISA with the target peptides.

[0066] The immunoreactivities of the antibodies elicited against A β peptides and against the soluble A β_{1-42} peptides were determined by ELISAs (enzyme-linked immunosorbent assays) using 96-well flat bottom microtiter plates which were

coated with the $A\beta_{1.42}$ peptide fragments, SEQ ID NOs: 67 or 65 as the immunosorbent. Aliquots (100 μ L) of the peptide immunogen solution at a concentration of 5 μ g/mL were incubated for 1 hour at 37°C. The plates were blocked by another incubation at 37°C for 1 hour with a 3% gelatin/PBS solution. The blocked plates were then dried and used for the assay. Aliquots (100 μ L) of the test immune sera, starting with a 1:100 dilution in a sample dilution buffer and tenfold serial dilutions thereafter, were added to the peptide coated plates. The plates were incubated for 1 hour at 37°C.

[0067] The plates were washed six times with 0.05% PBS/Tween® buffer. 100 μ L of horseradish peroxidase labeled goat-anti-species specific antibody was added at appropriate dilutions in conjugate dilution buffer (Phosphate buffer containing 0.5M NaCl, and normal goat serum). The plates were incubated for 1 hour at 37°C before being washed as above. Aliquots (100 μ L) of ophenylenediamine substrate solution were then added. The color was allowed to develop for 5-15 minutes before the enzymatic color reaction was stopped by the addition of 50 μ L 2N H₂SO₄. The A_{492nm} of the contents of each well was read in a plate reader. ELISA titers were calculated based on linear regression analysis of the absorbances, with cutoff A_{492nm} set at 0.5. The cutoff value chosen was rigorous with the values for diluted normal control samples being less than 0.15.

EXAMPLE 3

CHARACTERIZATION OF THE RELATIVE IMMUNOGENICITIES OF $\underline{A}\underline{\beta}_{1-42}\underline{A}\underline{N}\underline{D}$ ITS N-TERMINAL FRAGMENTS FOR OPTIMIZATION OF DESIGN FOR SITE-DIRECTED $\underline{A}\underline{\beta}$ PEPTIDE-BASED SYNTHETIC VACCINE

[0068] To design a total synthetic vaccine that generates a high level of high affinity antibodies against the A β peptides with high cross-reactivity to the soluble A $\beta_{1.42}$ peptides and the plaques in the brain of AD patients, the relative immunogenicities of A $\beta_{1.42}$ and its N-terminal fragments were characterized initially. In order to determine the relative immunological properties of the various regions within A $\beta_{1.42}$ peptide, a mild adjuvant suitable for human use, alum was employed in the first study. The relative immunogenicities of A $\beta_{1.42}$ peptide and an N-terminal fragment thereof, A $\beta_{1.28}$ were compared. The immunogenicity evaluation was

conducted according to procedures described in Example 2. Unexpectedly, $A\beta_{1-28}$ was found to be more immunogenic than the $A\beta_{1-42}$ peptide, indicating that there is immunosuppression within C-terminal fragment $A\beta_{29-42}$ (Table 5).

Subsequently, the immunogenicities of $A\beta_{1-28}$ was compared to $A\beta_{1-14}$, a shorter N-terminal fragment of $A\beta_{1-42}$. A more potent adjuvant suitable for human use (Montanide ISA51, Seppic, Paris, FR) was employed for the preparation of a water-in-oil emulsion for formulating the vaccine. Based on the data obtained as shown in Table 6, the relative immunogenicities for the three $A\beta$ peptides (i.e. $A\beta_{1-14}$, $A\beta_{1-28}$ and $A\beta_{1-42}$) were ranked $A\beta_{1-28} > A\beta_{1-42} > A\beta_{1-14}$. Surprisingly, the loss of the C-terminal 14mer from $A\beta_{1-42}$, improved rather than reduced the immunogenicity. The antibody response against $A\beta$ is primarily directed to the N-terminal region, particularly the $A\beta_{1-14}$ N-terminal fragment as shown by ELISA data (Table 6). However, a further shortening of the $A\beta_{1-28}$ fragment from the C-terminal to form the $A\beta_{1-14}$ fragment resulted in a loss in immunogenicity.

[0070] The short $A\beta_{1-14}$ fragment contains the main functional/regulatory site, EFRH, located at positions 3-6 of the $A\beta_{1-42}$ peptide as reported by Solomon *et al.* The blocking of this epitope by antibodies modulates the dynamics of aggregation as well resolubilization of already formed aggregates (Soloman *et al.*, *Proc Natl Acad. Sci*, 1996; 93:452-455; *Proc Natl Aca. Sci*, 1997; 94:4109-4112). Most of the anti- $A\beta_{1-28}$ and $A\beta_{1-42}$ antibodies are directed against the N-terinal fragment of the $A\beta_{1-42}$ peptide containing this epitope (Table 6). However, the $A\beta_{1-14}$ fragment by itself was poorly immunogenic. The results of this experiment suggest the presence of an intrinsic Th epitope within the $A\beta_{15-28}$ segment. This intrinsic Th epitope accounts for the modest immunogenicities of $A\beta_{1-28}$ and $A\beta_{1-42}$ peptides in guinea pigs.

The presence of a Th epitope in the $A\beta_{15-28}$ fragment is desirable. However, it is desirable to be able to engineer a more potent immunogen for a successful human vaccine when faced with the limitation of a restricted human MHC molecule, the number of appropriate doses and the type of adjuvants permitted for human use. Therefore, we attempted the linkage of a foreign or extrinsic Th such as that derived from HBV Th (SEQ ID NO: 1) to the C-terminal of the $A\beta_{1-28}$ peptide (SEQ ID NO:66). The extrinsic Th epitope significantly enhanced the

immunogenicity of the $A\beta_{1-28}$ fragment as shown in Table 6. The antibody response to the engineered immunogen with the $A\beta_{1-28}$ fragment remained directed to the functional N-terminal fragment of peptide immunogen (SEQ ID NO: 70) making this construct a better immunogen than the $A\beta_{1-28}$ fragment or $A\beta_{1-42}$ fragment alone. This peptide immunogen (SEQ ID NO: 70) represents a peptide immunogen with the formula:

(A)_n (N-terminal fragment of A β peptide) -(B)_o -(Th)_m

wherein:

A is αNH_2 , with $A\beta_{1-28}$ being an N-terminal fragment of $A\beta_{1-42}$;

B is glycine;

Th is a helper T cell epitope derived from a foreign pathogen, HBsAg Th (SEQ ID NO: 1), and wherein n is 1, m is 1 and o is 2.

EXAMPLE 4

LOWER LIMIT OF N-TERMINAL FRAGMENT OF A β FOR THE DEVELOPMENT OF A β BASED SYNTHETIC VACCINE FOR AD

[0072] Since the main functional/regulatory site comprising the EFRH residues is located at positions 3-6 of the A $\beta_{1.42}$ peptide (Soloman *et al. Proc Natl Acad. Sci*, 1996; 93:452-455; *Proc Natl Aca. Sci*, 1997; 94:4109-4112), it was useful to explore the shortest N-terminal fragment of A $\beta_{1.42}$ peptide as an optimal B cell target site on A β for incorporation into the synthetic immunogen of the present invention.

[0073] Each of several short non-immunogenic N-terminal fragments of $A\beta$, $A\beta_{1-10}$, $A\beta_{1-12}$, $A\beta_{1-14}$ along with $A\beta_{1-28}$ was incorporated into immunogens designed with a representative idealized artificial Th (SEQ ID NO:51). Linkage was through an ϵ N-Lys spacer. The engineered constructs were formulated with strong adjuvants due to the expected low immunogenicity of the short $A\beta$ fragments. The three synthetic constructs were formulated in complete and incomplete Freund's adjuvant and tested for their immunogenicities based on procedures as described in Example 2. As shown in Table 7, all four peptide immunogens were highly

immunogenic with Log_{10} ELISA titers in the range from 4.3 to 5.6 [i.e. $10^{4.3}$ to $10^{5.6}$] with very high crossreactivities to the full length $A\beta_{1.42}$ peptide after only four weeks from the initial immunization. More importantly, fragments as small as $A\beta_{1.10}$, $A\beta_{1.12}$ and $A\beta_{1.14}$ each linked to the idealized artificial Th (SEQ ID NO:51) were found to be highly immunogenic after linkage to a disclosed artificial Th epitope (Table 7). These peptide immunogens were designed in accordance with the formula:

 $(A)_n$ -(N-terminal fragment of A β peptide)- $(B)_o$ - $(Th)_m$

wherein:

A is αNH_2 , wherein the N-terminal fragment is $A\beta_{1-10}$, $A\beta_{1-12}$, $A\beta_{1-14}$ or $A\beta_{1-28}$;

B is ϵ -N Lysine, a spacer linked through its epsilon amino group to the next amino acid;

Th is a helper T cell epitope derived from an idealized artificial Th, MVF Th1-16(SEQ ID NO:51), wherein n is 1, m is 1 and o is 1.

It was found that further reduction in the length of the N-terminal fragment of $A\beta$ to less than a 10mer would result in more limited, thus undesirable, immunogenicity. It appears that peptides smaller than 10 amino acids are problematic for receptor recognition by class II MHC molecules (Immunology, Fifth edition, ed. Roitt *et al.*, 1998, Mosby International Ltd., London, pp88-89).

[0075] Based on this study of A β , the useful B cell site derived from A β_{1-42} should be in the size range of about 10 to about 28 residues.

EXAMPLE 5

SITE-DIRECTED IMMUNOREACTIVITY TARGETED BY THE SYNTHETIC PEPTIDE IMMUNOGEN LINKED TO ARTIFICIAL THE PITOPE

[0076] The non-immunogenic N-terminal fragment such as $A\beta_{1-14}$ of $A\beta$ peptide was linked either through an ϵ N-lysine spacer to an artificial Th peptide designated as MVF Th 1-16 (SEQ ID NO:51), or through a standard chemical coupling procedure to a conventional carrier protein KLH. The two immunogenic constructs were evaluated in guinea pigs for their relative "site-directed"

immunogenicities to $A\beta$ peptide and the resultant respective reactivity of the antibodies towards their respective carriers, the artificial Th epitope or the KLH carrier protein, according to the procedures described in Example 2. The short $A\beta_{1.14}$ peptide alone as a control immunogen, and the two immunogenic constructs were formulated in a water-in-oil emulsion containing the adjuvant ISA51, a formulation that is suitable for human use. As shown in Table 8, the N-terminal $A\beta_{1-14}$ fragment by itself is non-immunogenic as expected. The synthetic immunogen comprising $A\beta_{\text{1-14}}$ fragment and artificial Th (SEQ ID NO: 73) was found to be highly immunogenic in eliciting site-directed antibodies to $A\beta_{1-14}$. The antibodies were also found to be highly cross-reactive to soluble $A\beta_{\text{1-42}}$ peptide as early as 4 weeks after the initial immunization (Log₁₀ titers of 4.094 and 4.126 for 4 and 6 weeks post initial immunization respectively). When these $A\beta$ -reactive high titer immune sera were tested by ELISA on the MVF Th1-16 peptide (SEQ ID NO 51) coated plate, they were found to be negative (Log₁₀ titer of 0.038 and 0.064 for 4 and 6 weeks post initial immunization respectively)showing that irrelevant antibodies were not produced. The data obtained as shown in Table 8 clearly demonstrated the highly specific site-directed characteristic of the peptide immunogen of the present invention

The immunogens with the carrier protein KLH was found to be highly immunoreactive with the conventional peptide-carrier protein conjugate (e.g. Log_{10} titers of 4.903 and 5.018 for 4 and 6 weeks post initial immunization respectively). However, the antibodies elicited were only moderately crossreactive with the soluble $A\beta_{1-42}$ peptide (e.g. with Log_{10} titers of 3.342 and 2.736 for 4 and 6 weeks post initial immunization respectively). This is approximately 10X to 100X less than SEQ ID NO:73. Unexpectedly, the peptide immunogens of the present invention were highly site-directed and focused. Only functionally important antibodies towards the antiaggregation and disaggregation sites on the N-terminal fragment of the $A\beta$ peptide were generated rather than towards irrelevant carrier sites.

PATENT Attorney Docket: 1151-4167

EXAMPLE 6

EVALUATION OF Aβ PEPTIDE IMMUNOGEN BY CROSS-REACTIVITIES TO SENILE PLAQUES

[0078] Brains of AD patients with plaques and tangles and thioflavine S positive blood vessels (TSBV) containing amyloid plaques were used for evaluation of cross-reactivities to polymeric senile plaques of the immune sera raised in guinea pigs and baboons against Aβ peptide immunogens. Plaques and TSBV reactivities were detected by immunoperoxidase staining using Avidin-Biotinylated antibody Complex (ABC) method or by immunofluorescence staining using rhodamine conjugated Fab fragment of species specific anti-IgG. All guinea pig sera were tested at a dilution of 1:100 with end point titers determined for some of the samples. All baboon sera were tested at a dilution of 1:50. The evaluation of the immune and preimmune sera were kindly performed under code by Dr. Gaskin as described (Gaskin *et al.*, *J. Exp Med.* 165:245, 1987).

In Figure 1, serial cross sections of brains from 2 AD patients were [0079] initially examined at 10X magnification. Sections (a), (b) and (c) are from AD Brain 1 and (d), (e) and (f) are from AD brain 2. Preimmune normal serum and immune sera from guinea pigs collected at 6 weeks post-initial immunization were tested by immunoperoxidase staining on cryostat sections from AD temporal cortex rich in plaques and neurofilament tangles (NFT). The immune sera used in the first study shown on slides Figures 1a and 1d were obtained from animals immunized with A β_{1} . ₂₈ -εK-MvF Th1-16 (SEQ ID NO:74) prepared in ISA51 water-in-oil emulsion. The results show significant binding to both senile plaques and amyloid plaques on the thioflavine S positive blood vessels (TSBV). The cross-reactivities of the immune sera raised against the equivalent immunogen prepared in CFA/ICFA are shown in slides Figures 1b and 1d. Unexpectedly, in contrast to the results obtained with the vaccine formulated with ISA51, preferential binding to the Aβ₁₋₂₈ plaques on the blood vessels (TSBV) were observed for the sera raised against the CFA/ICFA vaccine. This means that the antibodies elicited by the vaccine formulated with ISA51 is distinguishable from the antibodies raised by the vaccine formulated in CFA/ICFA. Moreover, the antibodies generated by the vaccines formulated

according to the present invention provided antibodies that have the desired higher cross reactivity to senile plaques in the brain tissue. Preimmune serum gave no staining in corresponding serial sections shown in slides Figures 1c and 1f.

Further Immunoperoxidase staining of serial cross sections of AD brain 1 with preimmune and immune sera at 1:100 dilution are shown in Figures 2a to 2e at 40X magnification. The sera obtained from animals immunized with A β_{1-28} - ϵ K-MVF Th 1-16 (Seq ID NO:74) prepared in ISA 51 water-in-oil emulsion strongly stained the plaques forming a pattern of cores as shown in slides Figures 2a and 2d. Again, surprisingly, staining with immune sera prepared against the corresponding CFA/ICFA formulation gave a different staining pattern in that reactivities with plaques were predominantly on the blood vessels as shown in Figure 2b rather than with the plaques in the brain tissue. Preimmune serum did not stain the sections as shown in Figure 2c. The hyperimmune sera generated by immunization with A β_{1-42} peptide alone in CFA/ICFA, despite its strong reactivities with A β_{1-28} by ELISA, gave a surprisingly weak staining pattern in the section shown in Figure 2e.

Similar immunostaining of AD brain tissue was performed with 11 [0081] pooled immune and preimmune sera obtained from guinea pigs immunized with the various vaccine formulations described in Examples 3, 4 and 5. These sera were also evaluated for their antibody reactivities with the functional-site by $A\beta_{1-14}$ ELISA, and with the soluble $A\beta_{1-42}$ by $A\beta_{1-42}$ ELISA (Table 9). In general, parallel trends were found with sera tested in all three assays. As shown in Table 9, the anti-peptide reactivities of the pre-immune serum and the sera raised against the short peptide $A\beta_{1-14}$ alone formulated in ISA51 water-in-oil emulsion by ELISA were low and the cross-reactivities to plaques were negligible. Modest reactivities were found with sera from animals vaccinated with $A\beta_{\text{1-28}}$ peptide alone formulated in Alum and in ISA51, and $A\beta_{1-14}$ conjugated to KLH and formulated in ISA51. Whereas, significant site-directed reactivities to the functional $A\beta_{1-14}$ site, to soluble $A\beta$, and to the plaques and TSBV in AD patient brain tissue sections were found with sera from animals immunized with synthetic $A\beta$ /Th immunogens of the present invention. The results obtained from these studies, therefore, demonstrate excellent and useful immunogenicity of the peptide immunogens comprising the N-terminal fragment of

 $A\beta_{1.42}$ having amino acids from 1-28 to about 1-10, linked to foreign Th epitopes. Moreover, the results showed that the presence of a foreign Th epitope improves the immunogenicity of the peptide immunogens of the present invention to a surprising extent. The peptide immunogens of the present invention in clinically acceptable vaccine formulations acceptable to use in humans generated antibodies having the desired cross-reactivity to senile plaques in the brain tissues of AD patients.

EXAMPLE 7

THE IMMUNOGENICITY OF REPRESENTATIVE Aβ PEPTIDE VACCINES IN BABOONS AS PREDICTOR OF IMMUNOTHERAPEUTIC EFFICACY FOR AD

[0082] A representative synthetic immunogen, $A\beta_{1-28}$ - ϵ -K-MvF Th1-16 (SEQ ID NO:74), formulated in ISA51 water-in-oil emulsion at dose levels of 25ug/0.5mL,100ug/0.5mL and 400ug/0.5mL were given to three baboons Y299, X398, X1198 at 0, 3 and 6 weeks schedule from initial immunization. Pre-immune sera and sera at weeks 5 and 8 weeks post initial immunization (wpi) were collected. For comparison, a fourth baboon X798 was given 100ug/0.5mL doses of an equimolar mixture of free peptides $A\beta_{1-28}$ and $A\beta_{1-42}$ formulated in alum, the standard adjuvant approved for human use. Preimmune sera were used as the negative control.

[0083] Sera from all four immunized animals were collected and evaluated for their antibody reactivities with the functional site by $A\beta_{1-14}$ ELISA, and for reactivities with soluble $A\beta_{1-42}$ by $A\beta_{1-42}$ ELISA (for sera collected at 0, 5 and 8 wpi). The cross-reactivities of the anti-sera (8wpi only) with the senile plaques and the plaques in thioflavine S positive blood vessels were evaluated by immunostaining as described in Example 6. Instead of using anti-baboon lg, the antibody detector used is an Fab fragment from anti-human IgG that recognizes all human isotypes and is cross-reactive with baboon IgG.

[0084] Parallel trends again were found with sera tested in all three assays. As shown in Table 10, pre-immune sera were negative. Modest ELISA reactivities were found with serum from animal X798 vaccinated with $A\beta_{1-28}$ and $A\beta_{1-42}$ formulated in Alum. However, the reactivity of this serum was weak for the recognition of senile plaques. In contrast, significant site-directed reactivities to the

PATENT Attorney Docket: 1151-4167

functional-site of $A\beta_{1.14}$, to soluble $A\beta_{1.42}$, and to the plaques and TSBV in AD patient brain sections were found with sera collected at 8 weeks post initial immunization from animals immunized with the representative composition of the invention (SEQ ID NO:74) at both the 100ug/0.5mL and 400ug/0.5mL doses formulated with ISA51. The results obtained from this baboon study, therefore, demonstrated the usefulness of the immunogen of the present invention in a vaccine formulation appropriate for humans. The improvement in immunogenicity (10 to 100X increase in specific antibody titers to the functional-site of $A\beta$) is very significant in comparison to the peptide vaccine of the prior art with the immune responsiveness in baboons closely resembling that of humans.

[0085] Similarly, a mixture containing two to three synthetic immunogens of the present invention can be used for formulation into vaccines at from about 25 to 1000 ug per dose to elicit functional anti-A β_{1-14} antibodies in genetically diverse human populations for the prevention and treatment of AD. Broad immunogenicity in humans is expected due to the presence of a promiscuous Th epitope in the peptide immunogen of the invention that provides for achieving broad MHC recognition.

[0086]

Table 1

Pathogen-derived Promiscuous T Helper Cell Epitopes (Th)

Description of Th	Amino Acid Sequence	SEQ ID NO
HBs Th ^a	FFLLTRILTIPQSLD	1
PT₁Th ^a	KKLRRLLYMIYMSGLAVRVHVSKEEQYYDY	2
TT₁Th ^a	KKQYIKANSKFIGITEL	3
TT ₂ Th ^a	KKFNNFTVSFWLRVPKVSASHL	4
PT _{IA} Th ^a	YMSGLAVRVHVSKEE	5
TT ₃ Th ^a	YDPNYLRTDSDKDRFLQTMVKLFNRIK	6
PT ₂ Th ^a	GAYARCPNGTRALTVAELRGNAEL	7
MVF ₁ Th ^a	LSEIKGVIVHRLEGV	8
MVF ₂ Th ^a	GILESRGI KARITHVDTESY	9
TT₄ Th ^a	WVRDIIDDFTNESSQKT	10
TT ₅ Th ^a	DVSTIVPYIGPALNHV	11
CT Th ^a	ALNIWDRFDVFCTLGATTGYLKGNS	12
DT1 Th ^a	DSETADNLEKTVAALSILPGHGC	13
DT2 Tha	EEIVAQSIALSSLMVAQAIPLVGELVDIGFAATNFVESC	14
PF Th ^a	DHEKKHAKMEKASSVFNVVNS	15
SM Th ^a	KWFKTNAPNGVDEKHRH	16
TraT₁ Thª	GLQGKHADAVKAKG	17
TraT2 Tha	GLAAGLVGMAADAMVEDVN	18
TraT ₃ Th ^a	STETGNQHHYQTRVVSNANK	19
HB _{c50-69} ^b	SDFFPSVRDLLDTASALYRE	20
CTP ₁₁ Th ^c	TINKPKGYVGKE	21

^a US 5,759,551

^b Ferrari et al., J Clin Invest, 1991; 88:214

[°] Stagg et al., Immunology, 1993; 71:1

[0087]

Table 2
Artificial Idealized Th and Combinatorial Library Idealized Artificial Th a. MVF Th and Th epitopes derived therefrom

Th Identifier	Amino Acid Sequence	SEQ ID NO
MVF Th1	LSEIKGVIVHRLEGV	22
SSAL1 Th1	DLSDLKGLLLHKLDGL EI EIR III RIE I V V VVV V V F F FFF F F	23 24 25 26
MVF Th1-1	ISEIKGVIVHKIEGI MT RT TRM TM L L V	27 28 29
MVF Th1-2	ISEIKGVIVHKIEGT T RT TR T	30 31
MVF Th1-3	MSEIKGVIVHKLEGM LT MRT TRM TV	32 33
MVF Th1-4	ISEIKGVIVHKIEGI	34
MVF Th1-5	ITEIRTVIVTRIETI	35
MVF Th1-6	MSEMKGVIVHKMEGM	36
MVF Th1-7	LTEIRTVIVTRLETV	37
MVF Th1-8	ISISEIKGVIVHKIEGILF MT RT TRM TM L L V	38 39 40
MVF Th1-9	ISISEIKGVIVHKIEGILF T RT TR T	41 42
MVF Th1-10	ISLSEIKGVIVHKLEGMLF MT MRT TRM TV	43
MVF Th1-11	ISLTEIRTVIVTRLETVLF I I I	45 46
MVF Th1-12	ISISEIKGVIVHKIEGILF	47
MVF Th1-13	ISITEIRTVIVTRIETILF	48
MVF Th1-14	ISMSEMKGVIVHKMEGMLF	49
MVF Th1-15	ISLTEIRTVIVTRLETVLF	50
MVF Th1-16	ISITEIKGVIVHRIETILF	51

b. HBsAg Th, Prototype and Derivatives

Th Identifier	Amino Acid Sequence	SEQ ID NO
HbsAq-Th1	FFLLTRILTIPQSLD	52
HbsAg-Th1-1	KKKFFLLTRILTIPQSLD	53
HbsAg-Th1-2	FFLLTRILTIPQSL	54
	KKKLF LL TK LL TLPQSLD	55
	RRRIK <u>II</u> R <u>I</u> I I L IR	56
SSAL2 Th2	VR <u>vv</u> vv v v v	57
	F FF FV F	58
		59
HbsAq Th1-3	KKKIITITRIITIITTID	60
HbsAg Th1-4	KKKIITITRIITIITTI	61
HbsAg Th1-5	KKKMMTMTRMITMITTID	62
HbsAg Th1-6	FITMDTKFLLASTHIL	63
HbsAg Th1-7	KKKFITMDTKFLLASTHIL	64

[8800]

 $\frac{Table~3}{\mbox{Amino Acid Sequences of A}\beta_{\mbox{\tiny 1-42}}\mbox{Peptides and its N-terminus Fragments}$

SEQ ID NO		Amino Acid Sequence
SEQ ID NO:65 SEQ ID NO:66	Αβ ₁₋₄₂ Αβ ₁₋₂₈	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA DAEFRHDSGYEVHHQKLVFFAEDVGSNK
SEQ ID NO:67 SEQ ID NO:68 SEQ ID NO:69	$\begin{array}{c} A\beta_{1\text{-}14} \\ A\beta_{1\text{-}12} \\ A\beta_{1\text{-}10} \end{array}$	DAEFRHDSGYEVHH DAEFRHDSGYEV DAEFRHDSGY

[0089]

Table 4

Immunogen	Amino Acid Sequence	SEQ ID NO
$A\beta_{1-28}$ -GG-HBV	DAEFRHDSGYEVHHQKLVFFAEDVGSNK-GG-FFLLTRILTIPQSLD	70
$A\beta_{1-10}$ -EK-IS-MVF	DAEFRHDSGY-EK-ISITEIKGVIVHRIETILF	71
$A\beta_{1-12}$ - ϵ K-IS-MVF	DAEFRHDSGYEV-EK-ISITEIKGVIVHRIETILF	72
$A\beta_{1-14}$ -EK-IS-MVF	DAEFRHDSGYEVHH-EK-ISITEIKGVIVHRIETILF	73
$A\beta_{1-28}$ -EK-IS-MVF	DAEFRHDSGYEVHHQKLVFFAEDVGSNK-EK-ISITEIKGVIVHRIETILF	74
$A\beta_{1-14}$ -EK-MVF	DAEFRHDSGYEVHH-EK-ISISEIKGVIVHKIEGILF T RT TR T	75 76

PATENT Attorney Docket: 1151-4167

[0090]

Table 5

lmmunogen Adjuvant			ELISA Titer (Log ₁₀)								
	Adjuvant	GP ID#	***	4 V	VPI		6 WPI				
	Aujuvani		Αβ ₁₋	Avg.	Αβ ₁₋ 42	Avg.	Αβ ₁₋	Avg.	Αβ ₁₋ 42	Avg.	
Αβ ₁₋₂₈		1630	1.244	2.326	0.878	2.401	0.888	1.966	1.202	2.405	
(SEQ ID NO:66)	Alum	1631	3.408	2.020	3.924		3.044		3.608		
Αβ1-42		1634	0.773	1.124	0.680	1.461	1.062	1.784	1.203	1.807	
	Alum	1635	1.474	1.12-	2.242		2.505		2.510		
(SEQ ID NO:65)								L			

[0091]

Table 6

						ELISA Tit	er (Log ₁₀)			
Immunogen	Adjuvant	GP ID#		4 V	VPI			6 V	VPI	
_		10 #	Αβ1-14	Avg.	Αβ1-42	Avg.	Αβ1-14	Avg.	Αβ1-42	Avg.
ΛΩ		1658	1.168		1.229		1.100		1.285	
Aβ ₁₋₁₄ (SEQ ID NO: 67)	ISA 51	1659	1.090	1.129	0.720	0.975	1.441	1.271	0.874	1.080
A 0		1632	2.341		3.656		2.276		3.359	
Aβ ₁₋₂₈ (SEQ ID NO: 66)	ISA51	1633	2.241	2.291	3.107	3.382	3.153	2.715	3.550	3.455
An CC HBVTh		1642	4.792		4.526		4.548		4.441	
Aβ ₁₋₂₈ - GG-HBVTh (SEQ ID NO: 70)	ISA51	1643	4.432	4.612	4.637	4.582	4.447	4.498	4.081	4.261
ΛΩ		1636	2.724		3.603		2.286		3.250	
Aβ ₁₋₄₂ (SEQ ID NO: 65)	ISA51	1637	1.004	1.864	1.201	2.402	1.707	1.997	2.495	2.873

[0092]

Table 7

			ELISA Titer (Log ₁₀)									
Immunogen	Adjuvant	GP ID		4 V	VPI		6 WPI					
	•	"	Αβ1-14	Avg.	Αβ1-42	Avg.	Αβ1-14	Avg.	Αβ1-42	Avg.		
Αβ ₁₋₁₀ -εK-MVF		1666	4.293		4.924		4.414		5.180			
Th1-16 (SEQ ID NO: 71)	CFA/IFA	1667	4.696	4.495	5.250	5.087	4.225	4.320	5.350	5.265 		
Αβ ₁₋₁₂ -εK-MVF		1664	4.577		5.100		5.320	İ	6.000			
Th1-16 (SEQ ID NO: 72)	CFA/IFA .	1665	4.322	4.495	4.682	4.891	3.700	4.545	4.555	5.278		
Αβ ₁₋₁₄ -εΚ-ΜVF		1660	3.700		4.677		4.544		5.250			
Th1-16 (SEQ ID NO: 73)	CFA/IFA	1661	4.764	3.285	5.443	5.060	4.822	4.683	6.000	5.625		
		1584	3.355		4.610		2.743		4.487			
Aβ ₁₋₂₈ -εK-MVF Th1-16		1585	3.707	2 201	4.688	4.328	3.731	3.592	5.155	4.901		
(SEQ ID NO: 74)	CFA/IFA	1586	2.545	3.201	3.685	7.520	4.304	0.002	5.061			

[0093]

Table 8

Immunogen			ELISA Titer (Log ₁₀)								
	Adjuvant	GP ID		4 \	WPI			<u>6 \</u>	<u>WPI</u>		
mmunogen	,,	# 	Αβ ₁₋ 42	Avg.	Th peptide or KLH	Avg	Αβ ₁₋ 42	Avg.	Th peptide or KLH	Avg	
Λ0		1658	1.229		NA		1.285		NA		
Aβ ₁₋₁₄ (SEQ ID NO: 67)	ISA 51	1659	0.720	0.975	NA	NA	0.874	1.080	NA	NA ———	
Αβ1-14-εK-MVF		1662	4.388		0.006		4.559		0.065		
Th1-16 (SEQ ID NO: 73)	ISA 51	1663	3.800	4.094	0.070	0.038	3.693	4.126	0.063	0.064	
KLH-(C) Aβ1-14	T	1670	3.181		4.672		2.625		4.876		
(SEQ ID NO: 67)	ISA 51	1671	3.502	3.342	5.133	4.903	2.846	2.736	5.160	5.018	

[0094]

Table 9

	GP		LISA Tite			serial	taining ^a of frozen s of AD's	
Vaccine Formulation	ID#	Αβ1-42		Αβ1	-14	brain tissue		
			Avg		Avg	Plaque	TSBV	
	1630	0.878	2.401	1.244	2.326	+1	+4	
Aβ ₁₋₂₈ in Alum	1631	3.924	2.401	3.408	2.020			
10054	1632	3.686	3.397	2.341	2.291	+3	+5	
Aβ ₁₋₂₈ in ISA51	1633	3,107	3.537	2.241	2.201			
Aβ1-28-εK-MVF Th1-16 in	1584	4.610		3.355				
CFA/IFA	1585	4.688	4.328	3.707	3.201	+4	+6	
(SEQ ID NO: 74)	1586	3.685	1	2.540				
Aβ1-28-εK-MVF Th1-16 in ISA51	1642	3.603	4.582	2.724	3.510	+4	+6	
(SEQ ID NO: 74)	1643	1.201	4.302	1.004	0.010			
	1658	1.229	0.975	1.168	1.129	Neg	Neg	
Aβ ₁₋₁₄ in ISA51	1659	0.720		1.090				
Aβ ₁₋₁₄ -εK-MVF Th1-16 in	1660	4.677		3.700				
CFA/IFA	1661	5.443	5.060	4.764	4.232	+4	+6	
(SEQ ID NO: 73)				0.554				
Aβ1-14-εK-MVF Th1-16 in ISA51	1662	4.388	4.094	3.551	3.285	+4	+6	
(SEQ ID NO: 73)	1663	3.800		3.018				
Aβ1-12-εK-MVF Th1-16 in	1664	5.100	4 004	4.577	4.450	+4	+6	
CFA/IFA	1665	4.682	4.891	4.322	4.430	'-		
(SEQ ID NO: 72)	1666	4.924		4.293	-	 	-	
Aβ ₁₋₁₀ -εK-MVF Th1-16 in CFA/IFA	1000	4.924	5.087		4.455	+4	+5	
(SEQ ID NO: 71)	1667	5.250		4.696				
	1670	3.181		3.280	0.460	1.2	+4	
KLH-(C) Aβ ₁₋₁₄ in ISA51	1635	3.502	3.342	2.924	3.102	+2	T4	
Negative Control		<0.5		<0.5		Neg	Neg	
(preimmune serum)			İ					

a: Serial dilution @ 1:100

[0095]

Table 10

				El		Immunostaining of frozen sections of				
Group #	· i vaccine Formulation			Αβ ₁₋₄₂			Αβ ₁₋₁₄		1	n (8 wpi)
T .		0 WPI	5 WPI	8 WPI	0 WPI	5 WPI	8 WPI	Plaques	TSBV	
1	Αβ ₁₋₂₈ -εΚV-MVF Th1-16	25 μg	0.894	2.962	2.736	0.665	1.745	2.706	+2	+
2	in ISA51	100 μg	0.610	2.987	3.640	0.794	2.816	4.800	+4	+6
3	(SEQ ID NO: 74)	400 μg	0.696	2.696	4.050	0.539	4.250	3.799	+4	+6
4	Αβ ₁₋₂₈ + Αβ ₁₋₄₂ in Alum	100 μg	0.897	1.963	2.485	0.798	0.727	2.850	+	+
5	Negative control	-	-	-	-	-	-	-	Neg	Neg