

4.1 Messverstärker:

4.1.1 Was ist ein elektrischer Verstärker?

- · (Elektrisch) gesteuerte elektrische Quelle
- · Linearer und nichtlineare Abhängigkeit (Ausgang/Eingang)
- 4 Kombinationen:
 - Spannungsgesteuerte Spannungsquelle
 - · Spannungsgesteuerte Stromguelle
 - · Stromgesteuerte Stromguelle
 - · Stromgesteuerte Spannungsquelle

Idealer Verstärker:

- Keine Rückwirkung von der Last auf Ausgang
- · Keine Rückwirkung von Ausgang auf Eingang
- · Verwendung:
 - Pegelanpassung
 - Entlastung von ursprüngliche Signalquelle (Entkopplung von Ausgang und Eingang)

Generierung von Signalformen

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

189

4. Komponenten:

4.1 Messverstärker:

4.1.1 Mathematische Modelle idealer Verstärker

4. Komponenten: 4.1 Messverstärker:

4.1.2 Realer Verstärker (erste Annäherung)

(E. Schrüfer: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

191

4. Komponenten:

4.1 Messverstärker:

4.1.2 Einfluss von Ausgangswiderstand

Spannungsgenerator: a) Ersatzschaltbild, b) Ausgangsspannung

(E. Schrüfer: Elektrische Messtechnik)

Spannungsgenerator: a) Ersatzschaltbild, b) Ausgangsspannung

(E. Schrüfer: Elektrische Messtechnik)

4.1 Messverstärker:

4.1.3 Ein Schritt weiter: idealisierter linearer Spanungsverstärker

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

4. Komponenten:

4.1 Messverstärker:

4.1.3 Ein Schritt weiter: idealisierter linearer Spanungsverstärker

4.1 Messverstärker:

4.1.4 Idealer Operationsverstärker

Ersatzschaltbild eines idealen Operationsverstärker

 $u_a = u_D \cdot A_u$ unabhängig von der Last!

i_a beliebig, von der Last abhängig

 $i_P = 0$, $i_N = 0$ unabhängig von u_D

$$A_{u} \rightarrow \infty$$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

4. Komponenten:

4.1 Messverstärker:

4.1.5 Idealer Operationsverstärker mit Gegenkopplung

$$u_{D} = \frac{u_{A}}{V_{0}}$$
 Annahme: u_{A} ist endlich $\rightarrow \lim_{V_{0} \to \infty} u_{D} = \lim_{V_{0} \to \infty} \frac{u_{A}}{V_{0}} = 0$

$$i_{1} = \frac{u_{E}}{R_{1}}, \quad i_{2} = -i_{1}, \rightarrow u_{A} = i_{2} \cdot R_{2} = -i_{1} \cdot R_{2} = -u_{E} \cdot \frac{R_{2}}{R_{1}}$$

$$V = \frac{u_A}{u_E} = -\frac{R_2}{R_1}$$

$$i_{1} + i_{2} = 0$$

$$u_{E} = R_{1}i_{1} - u_{D}$$

$$u_{A} = R_{2}i_{2} - u_{D} = V_{0}u_{D}$$

$$V = \frac{u_{A}}{u_{E}} = \frac{-\frac{R_{2}}{R_{1}}}{1 + \frac{1}{V_{0}}(1 + \frac{R_{2}}{R_{1}})}$$

$$\lim_{V_0 \to \infty} V = \frac{u_{\mathcal{A}}}{u_{\mathcal{E}}} = -\frac{R_2}{R_1}$$

$$V_{\rm g} = -\frac{R_1}{R_2}$$

4. Komponenten: 4.1 Messverstärker:

4.1.6 Ersatzschaltbilder realer Operationsverstärker

Operationsverstärker:

Schaltbild (a) und Kennlinie (b)

(E. Schrüfer: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

197

4. Komponenten:

4.1 Messverstärker:

4.1.6 Ersatzschaltbilder realer Operationsverstärker

Kleinsignal-Ersatzschaltbild eines realen Operationsverstärkers

4.1 Messverstärker:

4.1.7 Kenngrössen realer Operationsverstärker

• Leerlaufspannungsverstärkung (open loop voltage gain) V_0 Es handelt sich hierbei um die Differenzverstärkung der offenen Schleife, d. h. des nicht-rückgekoppelten, unbeschalteten Operationsverstärkers.

$$V_0 = \frac{\partial u_{\rm A}}{\partial u_{\rm D}}$$

- ideal: $V_0 \to \infty$

- real: $10^4 \le V_0 \le 10^7$

• Leerlaufspannungsverstärkungsmaß $V_0[dB]$

$$V_0 \text{ [dB]} = 20 \lg V_0 = 20 \lg \left(\frac{\partial u_A}{\partial u_D}\right)$$

- ideal: $V_0 \to \infty$

- real: $80 \text{ dB} \le V_0 \le 140 \text{ dB}$

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

199

4. Komponenten:

4.1 Messverstärker:

4.4.4 Kenngrössen realer Operationsverstärker

• Gleichtaktspannung (common mode voltage) u_{gl} Die Gleichtaktspannung entspricht dem arithmetischen Mittel der beiden Eingangsspannungen u_{N} und u_{P}

$$u_{\rm gl} = \frac{u_{\rm P} + u_{\rm N}}{2} \,.$$

• Gleichtaktspannungsverstärkung (common mode voltage gain) $V_{\rm gl}$ Bei einem realen Operationsverstärker erscheint die um den Faktor $V_{\rm gl}$ verstärkte Gleichtaktspannung $U_{\rm gl}$ am Ausgang

$$V_{\rm gl} = \frac{\partial u_{\rm A}}{\partial u_{\rm gl}} \,.$$

- ideal: $V_{\rm gl} = 0$ - real: $V_{\rm gl} \approx 1$

• Gleichtaktunterdrückung (common mode rejection ratio) CMRR

CMRR [dB] =
$$20 \lg \left(\frac{V_0}{V_{\rm gl}} \right)$$

- ideal: CMRR $\rightarrow \infty$

- real: CMRR $\approx 100 \text{ dB}$

4.1 Messverstärker:

4.1.7 Kenngrössen realer Operationsverstärker

Übertragungsfunktion (frequency response) <u>G</u>(ω)
 Die komplexe Übertragungsfunktion <u>G</u>(ω) von Operationsverstärkerschaltungen, die auch als Übertragungsfaktor bezeichnet wird, entspricht der komplexen Verstärkung, d. h. dem Verhältnis der in Zeigerform dargestellten Ausgangsspannung <u>U</u>_A zur Differenzeingangsspannung <u>U</u>_D. Diese Übertragungsfunktion läßt sich für reale Operationsverstärker nach Gl. (7.19) approximieren

Abb. 7.7. Frequenzgang der Leerlaufspannungsverstärkung des Operationsverstärkers μ A 741 ($U_{\rm B}=\pm15\,{\rm V}$) bei einer Temperatur von 25° C: a) Betrag, b) Phase

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

201

4. Komponenten:

4.1 Messverstärker:

4.1.7 Kenngrössen realer Operationsverstärker

• Gleichtakteingangswiderstand (common mode input resistance) Der Gleichtakteingangswiderstand $r_{\rm gl}$ wird wie folgt berechnet

$$r_{\rm gl} = \frac{\partial u_{\rm gl}}{\frac{1}{2}\partial(i_{\rm P} + i_{\rm N})}$$

- ideal: $r_{\rm gl} = \infty$
- real: $r_{\rm gl} = 1 \,\mathrm{G}\Omega \dots 100 \,\mathrm{T}\Omega$
- Differenzeingangswiderstand (differential input resistance) $r_{\rm E}$ Da im allgemeinen der Gleichtaktwiderstand $r_{\rm gl}$ groß ist gegenüber dem Differenzeingangswiderstand $r_{\rm E}$ ($r_{\rm gl} \gg r_{\rm E}$), gilt folgende Definitionsgleichung für den Differenzeingangswiderstand

$$r_{\rm E} = \frac{\partial u_{\rm D}}{\frac{1}{2}\partial(i_{\rm P} - i_{\rm N})}$$

- ideal: $r_{\rm E} = \infty$
- real: $r_{\rm E} = 1 \,{\rm M}\Omega \dots 1 \,{\rm T}\Omega$
- \bullet Ausgangswiderstand (output resistance) $r_{\rm A}$

$$r_{\rm A} = -\frac{\partial u_{\rm A}}{\partial i_{\rm A}}\bigg|_{u_{\rm D}=const.}$$

- ideal: $r_{\rm A}=0$
- real: $r_{\rm A} = 2 \Omega \dots 100 \Omega$

4.1 Messverstärker:

4.1.7 Kenngrössen realer Operationsverstärker

• Verstärkungs-Bandbreite-Produkt (gain bandwidth product) Vf_g Wichtiger noch als der reine Verstärkungsfaktor ist das sogenannte Verstärkungs-Bandbreite-Produkt $f_{g0}V_0$, welches bei Universaltypen bei etwa $V_0f_{g0}=10^6$ Hz liegt und bei auf hohe Bandbreite ausgerichteten Operationsverstärkern bis zu $3\cdot 10^9$ Hz reicht. Durch eine Gegenkopplungsschaltung gemäß Abb. 7.5 wird der effektive $Verstärkungsfaktor\ V$ und die effektive $Verstärkungsfaktor\ V$ und Bandbreite bzw. Grenzfrequenz f_g ist für Grenzfrequenzen oberhalb von f_{g0} ($f_g > f_{g0}$) bei einem bestimmten Operationsverstärkertyp stets ein konstanter Wert

Kenngrössen von kommerziell verfügbaren Operationsverstärker gibt es in "R. Lerch: Elektrische Messtechnik", siehe Tabelle 7.1

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

203

4. Komponenten:

4.1 Messverstärker:

4.1.8 Operationsverstärker-Grundschaltungen

Spannungsverstärker

Stromverstärker

4. Komponenten: 4.1 Messverstärker:

4.1.9 Arithmetische OP-Schaltungen

Spezialfall des I-U-Verstärkers: Invertierender Verstärker

Spezialfall des U-U-Verstärkers: Impedanzwandler, Spannungsfolger

Addierverstärker

Subtrahierverstärker

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

205

4. Komponenten:

4.1 Messverstärker:

4.1.10 OP-Brückenschaltungen

Aktive Brückenschaltung

Präzisionsspannungsquelle

4.1 Messverstärker:

4.1.11 Anwendungen mit OP-Verstärker

Gegengekoppelte Verstärker: Konstantspannungsquelle (a), Konstantstromquelle (b), Spannungsfolger (c) (E. Schrüfer: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

207

4. Komponenten:

4.1 Messverstärker:

4.1.11 Anwendungen mit OP-Verstärker

Invertierender Verstärker:
für Polaritätsumkehr (a),
Addition (b),
Subtraktion (c)
(E. Schrüfer: Elektrische Messtechnik)

4.1 Messverstärker:

4.1.11 Anwendungen mit OP-Verstärker

Integrierer: Schaltung (a) und Signale (b) (E. Schrüfer: Elektrische Messtechnik)

Differenzierer: Schaltung (a) und Signale (b) (E. Schrüfer: Elektrische Messtechnik)

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

209

4. Komponenten:

4.1 Messverstärker:

4.1.11 Anwendungen mit OP-Verstärker

Logarithmierer

(E. Schrüfer: Elektrische Messtechnik)

4.1 Messverstärker:

4.1.12 Komparatoren mit OP

Komparator ohne Hysterese

$$u_{\text{Eab}}$$
 $u_{\text{Eauf}} = -u_{\text{Amax}} \frac{R_1}{R_1 + R_2}$, $u_{\text{Eab}} = +u_{\text{Amax}} \frac{R_1}{R_1 + R_2}$.

Invertierender Schmitt-Trigger: Operationsverstärkerschaltung und Kennlinien des invertierenden Schmitt-Triggers

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

211

4. Komponenten:

4.1 Messverstärker:

4.1.12 Multivibrator mit OP

Multivibrator mit Komparator und Spannungsverläufe in der Multivibrator-Schaltung

$$\begin{split} \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} &= \frac{\pm u_{\mathrm{Amax}} - u_{\mathrm{C}}}{RC} \\ u_{\mathrm{C}}(t) &= u_{\mathrm{Amax}} \left(1 - \frac{2R_1 + R_2}{R_1 + R_2} e^{-t/RC} \right) \\ T &= 2RC \ln \left(1 + \frac{2R_1}{R_2} \right) \end{split}$$

$$R_1 = R_2$$

$$T = 2RC \ln 3 \approx 2, 2RC$$

4.1 Messverstärker:

4.1.13 Beispiel: Voltmeterschaltung

Voltmeterschaltung: hochohmige Spannungsmessung mit einem Strommessgerät

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

213

4. Komponenten:

4.1 Messverstärker:

4.1.13 Beispiel: Differenzverstärker

Differenzverstärker

Bei der Berücksichtigung der Eingangswiderstand R_i:

$$V \to V = \frac{R_1}{R_2 + R_i}$$

4.1 Messverstärker:

4.1.13 Beispiel: Instrumentenverstärker

$$u_1 = u_{E1} + R_1 \frac{u_{E1} - u_{E2}}{R} = \left(1 + \frac{R_1}{R}\right) u_{E1} - \frac{R_1}{R} u_{E2}$$

Op3
$$u_2 = u_{E2} - R_2 \frac{u_{E1} - u_{E2}}{R} = \left(1 + \frac{R_2}{R}\right) u_{E2} - \frac{R_2}{R} u_{E1}$$

$$u_{\text{E1}} = u_{\text{E2}} = u_{\text{gl}}$$
 $u_{\text{gl}} = \frac{u_2}{u_{\text{gl}}} = 1$

$$\frac{R_4}{R_3} = \frac{R_6}{R_5} \longrightarrow u_A = \frac{R_4}{R_3}(u_2 - u_1)$$

Instrumentenverstärker

$$\frac{u_{\rm A}}{u_{\rm E2} - u_{\rm E1}} = \frac{R_4}{R_3} \left(1 + \frac{R_1 + R_2}{R} \right)$$

Symmetrische Aufbau: $R_1=R_2=R'$ und $R_3=R_4=R_5=R_6$:

$$\frac{u_{\rm A}}{u_{\rm E2} - u_{\rm E1}} = 1 + \frac{2R'}{R}$$

aus: R. Lerch: Elektrische Messtechnik

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

215

Literatur für Kap 4.1

Autor	Titel	Verlag
R. Lerch	Elektrische Messtechnik	Springer
	Kapitel 7	Verlag
E. Schrüfer	Elektrische Messtechnik	
L. Reindl	Kapitel 2.3	Hanser Verlag
B. Zagar		