Indian Institute of Information Technology Vadodara MA 101: Introduction to Discrete Mathematics Tutorial 6

- 1. Guess and prove the formula for sum of first n odd natural numbers, using mathematical induction.
- 2. Guess and prove the formula of 1.1! + 2.2! + 3.3! + ... + n.n!
- 3. Show that if n is a positive integer, then ${}^{2n}C_2 = 2({}^nC_2) + n^2$ where ${}^nC_i = \frac{n!}{i!(n-i)!}$.
- 4. Suppose that $a_{m,n}$ is defined recursively for $(m,n) \in \mathbb{N} \times \mathbb{N}$ by $a_{0,0} = 0$ and

$$a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0. \end{cases}$$

Show that $a_{m,n} = m + n(n+1)/2$ for all $(m,n) \in \mathbb{N} \times \mathbb{N}$.

- 5. Give a recursive definition of the sequence $a_n, n = 1, 2, 3, ...$ if $a_n = n(n+1)$
- 6. Give a recursive definition of the set of positive integers not divisible by 5.
- 7. Let f_n be the nth Fibonacci number. Prove that

$$f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1},$$

where n is a positive integer.

- 8. Give a recursive definition of the functions max and min so that $\max(a_1, a_2, ..., a_n)$ and $\min(a_1, a_2, ..., a_n)$ are the maximum and minimum of the n numbers $a_1, a_2, ..., a_n$ respectively.
- 9. A partition of a positive integer n is a way to write n as a sum of positive integers where the order of terms in the sum does not matter. For instance, 7 = 3 + 2 + 1 + 1 is a partition of 7. Let P_m equal the number of different partitions of m, and let $P_{m,n}$ be the number of different ways to express m as the sum of positive integers not exceeding n. Find P_5 , P_6 . You may also use following recursive definition.

$$P_{m,n} = \begin{cases} 1 & \text{if } m = 1\\ 1 & \text{if } n = 1\\ P_{m,m} & \text{if } m < n\\ 1 + P_{m,m-1} & \text{if } m = n > 1\\ P_{m,n-1} + P_{m-n,n} & \text{if } m > n > 1. \end{cases}$$

10. Given a positive integer n, consider a square of side n made up of n^2 1 × 1 squares. Prove that the total number S_n of squares present is $S_n = \frac{n(n+1)(2n+1)}{6}$