Bank Lending Margins and The Exchange Rate Uncertainty Channel

Sneha Agrawal

New York University Job Talk

January 6, 2021

Main Question

- 1 How are US Banks exposed to ER uncertainty?
 - Banks sell large portion of the loans they originate¹
 - \blacksquare To foreign banks and institutional investors in secondary market
 - $\blacksquare \uparrow \text{ER}$ Uncertainty \implies Foreign banks 'retrench' (pull back)

'Pipeline Risk' through Syndicated Loans Market

 $^{^{1}}_{
m especially\ the\ riskier\ loans,\ within\ 30\ days\ of\ origination}$

Main Question

- 1 How are US Banks exposed to ER uncertainty?
 - Banks sell large portion of the loans they originate¹
 - \blacksquare To foreign banks and institutional investors in secondary market
 - $\blacksquare \uparrow \text{ER}$ Uncertainty \implies Foreign banks 'retrench' (pull back)
 - 'Pipeline Risk' through Syndicated Loans Market
- 2 How do US Banks respond to this ER Uncertainty?
 - Identification: Heterogenous Exposure (Loans/Assets)
 - Effect on US bank balance sheets (Q) and lending margins (P)
 - \blacksquare Large US banks tighten their credit standards, \uparrow loan margin

Propose "The ER-Uncertainty Channel" for Bank Margins

 $¹_{
m especially\ the\ riskier\ loans,\ within\ 30\ days\ of\ origination}$

Overview

Empirical Evaluation

- Qualitative Evidence
 - DealScan: What happens in the SLM?
 - SLOOS: What is the opinion of Senior Officers' at US Banks?

2 Quantitative Estimation

- Call Reports: Effect on Bank Margins, Balance Sheet
- Identification using heterogenous exposure
- USD as a 'Global Risk Indicator'

Model

- Foreign Bank's Problem
 - Currency Mismatch
 - Uncertainty leads to 'Retrenchment'

2 US Bank's Problem

- 'Pipeline Risk' reduces Loan Issuances, increases Margins
- Consistent with market power

Exchange Rate Uncertainty

Standard Deviation of daily returns within each Quarter

 $^{^2}$ Includes Euro, Canada, Japan, UK, Switzerland, Australia, Sweden «) $_{\rm I}$ - $_{\rm I}$

- Dollar Uncertainty increases
 - USD: "barometer of risk-taking capacity in the global capital markets" ³

³(Avdjiev et al. 2018)

- 1 Dollar Uncertainty increases
 - USD: "barometer of risk-taking capacity in the global capital markets" ³
- 2 Foreign Banks & Institutional Investors: less willing to hold large syndicated loan positions, US Domestic Banks bear the brunt.
 - Worsens the conditions for US banks to off-load loans

³(Avdjiev et al. 2018)

- Dollar Uncertainty increases
 - \blacksquare USD: "barometer of risk-taking capacity in the global capital markets" 3
- 2 Foreign Banks & Institutional Investors: less willing to hold large syndicated loan positions, US Domestic Banks bear the brunt.
 - Worsens the conditions for US banks to off-load loans
- US Banks tighten their credit standards, increase premium on riskier loans.

³(Avdjiev et al. 2018)

- Dollar Uncertainty increases
 - USD: "barometer of risk-taking capacity in the global capital markets" ³
- 2 Foreign Banks & Institutional Investors: less willing to hold large syndicated loan positions, US Domestic Banks bear the brunt.
 - Worsens the conditions for US banks to off-load loans
- 3 US Banks tighten their credit standards, increase premium on riskier loans.
- 4 Banks with larger loans are more sensitive to this uncertainty.
 - The effects are large and persistent.

³(Avdjiev et al. 2018)

- 1 Dollar Uncertainty increases
 - USD: "barometer of risk-taking capacity in the global capital markets" ³
- 2 Foreign Banks & Institutional Investors: less willing to hold large syndicated loan positions, US Domestic Banks bear the brunt.
 - Worsens the conditions for US banks to off-load loans
- 3 US Banks tighten their credit standards, increase premium on riskier loans.
- 4 Banks with larger loans are more sensitive to this uncertainty.
 - The effects are large and persistent.

³(Avdjiev et al. 2018)

Empirics: Part 1

Qualitative Evidence: DealScan and SLOOS

DealScan

WRDS Thomson Reuters Loan Pricing Corporation DealScan Database

- Comprehensive historical information on loan pricing and contracts' details in the Syndicated Loans Market
- Quarterly data from 1990-2018 on Syndicated Loans⁴
- Provides a good average of the US Loans Market
- Gather suggestive evidence for a mechanism that may affect US Banking: 4 main insights
- Limits to the analysis: cannot get detailed borrower and bank characteristics

⁴including Sole Lender loans

1: USD Exposure

■ 99% of the loans in my sample are denominated in USD.

1: USD Exposure

- 99% of the loans in my sample are denominated in USD.
- 30% of the loans are held by foreign banks (FBs)

FBs are exposed to changes in the level (or volatility) of the 'foreign value of USD' through their stake in the syndicates.

2: ER Uncertainty v/s Loan Volumes and Spreads

Aggregate Correlations

Quantity and Price effect of Higher ER Uncertainty

Higher ER uncertainty associated with lower log level of total loans in SLM, Higher AllInDrawn spreads

■ Controlling for USD appreciation, absorb loan type

3: Change in Lender Stake

Lender Stake = Loan Amount * Bank Allocation

US v/s Foreign Banks' Stake during high ER uncertainty

US Banks face 'Pipeline Risk', FBs 'Retrench'

■ Controlling for USD appreciation, absorb loan type

4: Effect on AllInSpread by Lead Arrangers' Exposure

AllInDrawn_{it} = $FE + \beta (E_{ibt} \times Vol(ER)_t) + \gamma (E_{ibt} \times \Delta_1(ER)_t) + E_{ibt} + \epsilon_{it}$, $E_{bt} = \log(\text{Lender Stake}_{ibt}), b \in \{\text{Lead US Bank, Lead Foreign Bank}\}$

Effect of ER Uncertainty on AllInDrawn

Lender_Type	Lead_USBank	Lead_ForBank
$Expo_t \times Vol(ER)_t$	24.42***	36.60**
Interpretation	52bps***	79bps**
	(7.510)	(15.23)
$\text{Expo}_t \times \Delta(ER)_t$	-0.495*	-0.0921
	(0.285)	(0.597)
Expo	-48.43***	-43.63***
	(2.675)	(5.553)
Observations	16128	3407
Adjusted R^2	0.361	0.334

Source: DealScan (1990Q1-2018Q4)

Robust SE in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

A one sd \uparrow in ER volatility is associated with a 52-79 basis points \uparrow in the AllInDrawn spreads for an average level of lender stake among US Lead Banks, and Foreign Lead Banks respectively.

DealScan Evidence

For US Syndicated Loans Market

- Foreign Banks are significantly exposed to USD fluctuations.
- 2 Higher ER volatility leads to lower volume of loans transacted.
- 3 Foreign Banks 'Retrench', US Banks face greater 'Pipeline Risk'.
- All lead bank charge higher spreads + fees in times with greater volatility in the foreign value of USD.

SLOOS

Senior Loan Officer Opinion Survey (SLOOS) Data

- Time Series data on Bank Lending Practices from 1992Q1-2018Q4 for US Banks.
- Panel of 80 banks with substantial assets and CI Loans⁵, Conducted 4-6 times in a year.
- Questions on changes in demand and supply of loans, including credit standards and reasons for changes.
- Without imposing undue reporting burden.
- 3 relevant questions: suggestive evidence for
 - 1 Tightening of credit standards
 - 2 Increase in Spreads over cost of loans
 - 3 Increase in Premium charged for Riskier Loans in times with higher ER uncertainty.

Tighter credit standards

Higher Spreads, Higher Premium on Risky Loans

- 1 sd \uparrow in ER Volatility is associated with
 - Quarterly ↑ Tighter credit standards for CI loans by 2 pp

 - \blacksquare \uparrow Higher premium on riskier loans by 3-4.5 pp

3: Higher Premium on Riskier Loans

	Large Banks				All Domestic Banks				
$Vol(ER)_t$	41.97**	44.00**	48.15*	45.31^*	27.16**	26.86*	29.97*	28.00*	
	(19.34)	(21.01)	(25.28)	(23.40)	(13.12)	(14.52)	(16.60)	(16.00)	
$\Delta_1(ER)_t$	0.0345 (0.749)	-0.0356 (0.821)	-0.00419 (0.853)	-0.200 (0.833)	0.0820 (0.573)	0.0207 (0.583)	0.0383 (0.602)	-0.0540 (0.583)	
X_{t-1}	0.611*** (0.108)	0.592^{***} (0.127)	0.593*** (0.129)	0.635*** (0.131)	0.619*** (0.147)	$0.650^{***} $ (0.151)	$0.647^{***} (0.153)$	0.686*** (0.146)	
$ \Delta_1 l(VIX)_t $		-7.526 (8.361)	-7.530 (8.468)	-8.949 (9.028)		-6.271 (5.601)	-6.306 (5.559)	-7.310 (5.120)	
$\Delta_1 EBP_t$		3.357 (11.57)	4.196 (11.69)	10.32 (12.75)		6.886 (7.144)	7.418 (7.029)	11.03 (7.795)	
$\Delta_1 FFR_t$			-2.707 (7.048)	-7.096 (7.837)			-1.929 (3.961)	-4.327 (4.209)	
$\Delta_1 T S_t$				-12.51* (6.976)				-7.075 (4.227)	
$\Delta_1 UO_t$				8.409 (27.86)				5.721 (16.52)	
_cons	-17.37*** (5.809)	-18.24*** (6.431)	-19.19** (7.417)	-18.54** (6.950)	-10.88** (4.103)	-10.68** (4.559)	-11.42** (4.979)	-11.00** (4.856)	
N	39	39	39	39	39	39	39	39	
Adj. R^2	0.479	0.459	0.445	0.485	0.493	0.493	0.480	0.508	

Source: SLOOS (2005Q1 - 2018Q4, excludes gfc), Robust SE in parentheses: * p < 0.10, ** p < 0.05, *** p < 0.01

SLOOS Evidence

- Higher ER uncertainty correlated with tightening of credit standards by the US Banks.
- **2** The effect is stronger and more robust for large banks.
- US Banks increase spreads over cost of loans to large and middle market firms.
- In particular, US Banks do not want to hold riskier loans. They charge a higher premium on riskier loans.

Empirics: Part 2

Quantitative Estimation: Call Reports and VAR

Call Reports

- \blacksquare Assets > \$10 bn (Unbalanced Panel of 40-70 banks) from 1995Q1-2018Q1

Assets	Liabilities
Loans (60%)	Deposits (80%)
Securities (20%)	Equity (10%)
Cash (5%)	
Interest Earning Assets (90%)	Core Deposits (70%)

■ 60% of the assets of all US commercial banks

Identification Strategy

- ER Uncertainty is a source of exogenous variation in SLM
- US Banks have substantial stake in SLM
 - Most of their loans are off-loaded within 30 days of origination.
 - Exploit heterogeneity in bank "Loans/Interest Earning Assets" ratio to identify the differential response

Identification Strategy

- ER Uncertainty is a source of exogenous variation in SLM
- US Banks have substantial stake in SLM
 - Most of their loans are off-loaded within 30 days of origination.
 - Exploit heterogeneity in bank "Loans/Interest Earning Assets" ratio to identify the differential response
- Key Prediction:
 - Large banks use their "Market Power" in loan originations to respond to 'Pipeline Risk' with Higher Lending Margins.
 - Quantity Effects are less obvious: find that Loan/Deposit ratio ↓.

Identification Strategy

- ER Uncertainty is a source of exogenous variation in SLM
- US Banks have substantial stake in SLM
 - Most of their loans are off-loaded within 30 days of origination.
 - Exploit heterogeneity in bank "Loans/Interest Earning Assets" ratio to identify the differential response
- Key Prediction:
 - Large banks use their "Market Power" in loan originations to respond to 'Pipeline Risk' with Higher Lending Margins.
 - Quantity Effects are less obvious: find that Loan/Deposit ratio \downarrow .
- Directly control for other macroeconomic and financial effects using time and bank fixed effects
 - Robust to excluding recessions, alternate exposure definitions.
 - Not driven by overall US economic uncertainty.

1: Price Effects Regression Framework

- Net Interest Income (NII) = Interest Income on Assets (IIA) - Interest Expense (IE)
- $\hspace{0.4in} \blacksquare \hspace{0.4in} \Delta_{h} \mathbf{Y}_{i,t} = \frac{\mathbf{Y}_{i,t+h} \mathbf{Y}_{i,t-1}}{\text{Interest Earning Assets}_{i,t-1}} * 100, \qquad \forall Y \in \{NII, IIA, EA\}$
- Exposure $E_{it^-} = \frac{1}{4} \sum_{l=1}^{4} \frac{\text{Loans}_{i,t-l}}{\text{Interest Earning Asset}_{i,t-l}}$

$$\Delta_h Y_{it} = \alpha_i + \delta_t + \beta(E_{i,t^-} * Vol(ER)_t) + \gamma(E_{i,t^-} * \Delta_1 ER_t)$$
$$+ \theta E_{i,t^-} + \sum_{l=0}^{l=3} \psi^l \Delta_0 Y_{i,t-l} + \epsilon_{it}, \quad \forall Y \in \{NII, IIA, EA\}$$

- Bank and Time Fixed Effects, Control for 4 lagged differences
- Asset Weighted Panel Regressions, Clustered SE by banks

Bank Margins are very Slow Moving

Small but Statistically Significant Changes are also Economically Significant

1: Effect on Bank Margin

	$\Delta_1 { m NII}$	$\Delta_2 { m NII}$	$\Delta_3 { m NII}$	$\Delta_4 { m NII}$
$E_{i,t^-} \times Vol(ER)_t$	0.30	1.21***	1.16***	1.40**
Annual (bp) Effect	05	13***	10***	09**
	(0.25)	(0.37)	(0.40)	(0.53)
$E_{i,t^-} \times \Delta_1 E R_t$	0.02**	-0.01	-0.01	-0.01
	(0.01)	(0.02)	(0.03)	(0.02)
$\mid E_{i,t}$	-0.09	-0.36***	-0.31***	-0.40**
	(0.08)	(0.10)	(0.11)	(0.20)
#Obs	3294	3252	3216	3172
Time FE	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y

Clustered SE in parentheses (* $p<0.10,\,^{**}p<0.05,\,^{***}p<0.01)$

\uparrow ER Uncertainty \Longrightarrow \uparrow US Bank Lending Margins

- Effect is half of the sd for the dependent variable, $R^2 \approx 0.40$
- Response at $E_{(95)} E_{(05)} = 5$ bps

1: Price Effect of ER Uncertainty

Interest Income on Assets versus Interest Expenses

Call Reports: Marginal Effect of Vol(ER) on NII, IIA and IE by Exposure

Interest Income \uparrow >> Interest Expense \uparrow

■ For Average Exposure US Bank, IIA $\uparrow \approx 14$ bps, IE $\uparrow \approx 4$ bps

2: Quantity Effects Regression Framework

- Effect on growth in Assets, Loans, Securities, Core Deposits, Managed Liabilities, Equity

$$\Delta_h \log Z_{it} = \alpha_i + \delta_t + \beta (E_{i,t^-} * Vol(ER)_t) + \gamma (E_{i,t^-} * \Delta_1 ER_t) +$$

$$\theta E_{i,t^-} + \sum_{l=0}^{l=3} \psi^l \Delta_0 \log Z_{i,t-l} + \epsilon_{it}, \quad \forall Z \in \{A, L, S, CD, E\}$$

- Bank and Time Fixed Effects, Control for 4 lagged differences
- Asset Weighted Panel Regressions, Clustered SE by banks

2: Quantity Effects

Call Reports: Effect on Loans/ Deposits ratio for US Banks

	$\Delta_1 \mathrm{L/D}$	$\Delta_2 { m L/D}$	$\Delta_3 { m L/D}$	$\Delta_4 { m L/D}$	$\Delta_5 { m L/D}$	$\Delta_6 { m L/D}$	
$E_{i,t^-} \times Vol(ER)_t$	-0.36***	-0.45***	-0.62***	-0.51**	-0.58***	-0.85***	
Annual(%) Effect	-5.7***	-4.8**	-4.9***	-3.2**	-3.1***	-3.8***	
	(0.123)	(0.163)	(0.202)	(0.212)	(0.209)	(0.206)	
$E_{i,t^-} \times \Delta E R_t$	0.001	-0.005	-0.0	-0.013	-0.010	-0.009	
-	(0.003)	(0.009)	(0.013)	(0.014)	(0.013)	(0.012)	
$E_{i,t-}$	0.027	-0.009	-0.015	-0.081	-0.146	-0.091	
-,-	(0.047)	(0.085)	(0.116)	(0.138)	(0.168)	(0.173)	
# Obs	2855	2821	2796	2771	2751	2726	
Time FE	Y	Y	Y	Y	Y	Y	
Bank FE	Y	Y	Y	Y	Y	Y	

Clustered SE in parentheses (* $p<0.10,\,^{**}p<0.05,\,^{***}p<0.01)$

- US Banks try to minimize their exposure to 'Pipeline Risk'
- Loan/Deposit ↓ as banks rely more on internal funding sources
- lacktriangledown and \downarrow Loan Origination $\Longrightarrow \uparrow$ Bank Lending Margins

2: Quantity Effects: US Bank Balance Sheet shrinks

Call Reports: Effect on Asset Growth for US Banks

	$\Delta_1 A$	$\Delta_2 A$	Δ_3 A	$\Delta_4 A$	$\Delta_5 A$	$\Delta_6 A$
$E_{i,t^-} \times Vol(ER)_t$	-0.09**	-0.10	-0.25*	-0.28*	-0.61***	-0.60**
Annual (%) Effect	-1.43**	-1.02	-1.96*	-1.75*	-3.2***	-2.72**
	(0.04)	(0.07)	(0.13)	(0.15)	(0.21)	(0.28)
$E_{i,t^-} \times \Delta E R_t$	0.003	0.002	0.008**	0.008	0.006	0.005
	(0.003)	(0.004)	(0.004)	(0.006)	(0.009)	(0.013)
$E_{i,t-}$	0.05**	0.06*	0.12**	0.13**	0.28***	0.32***
	(0.02)	(0.03)	(0.06)	(0.06)	(0.08)	(0.09)
# Obs	3001	2951	2924	2881	2847	2813
Time FE	Y	Y	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y	Y	Y

Clustered SE in parentheses (* $p<0.10,\,^{**}p<0.05,\,^{***}p<0.01)$

- \uparrow ER Uncertainty $\Longrightarrow \downarrow$ Asset Growth (\downarrow Loans, \downarrow Securities)
 - \uparrow ER Uncertainty $\implies \uparrow / \sim$ Core Deposits, \downarrow Equity

Call Reports Evidence

- US Banks with more loans are exposed more to SLM.
- Large US Banks with "market power" reduce risk exposure.
- Banks shrink and rely less on secondary markets.
- Higher bank margins for more exposed banks.
- Effects are significant and persistent.

- Spills over to the entire Banking System.
- Has real economics implications!

USD as Global Risk Indicator

- Perhaps the underlying channel is greater aversion of Foreign Banks to volatility in US financial markets?
- What is so special about ER Uncertainty?
- Allow for volatility and level changes in S&P 500
- Study how uncertainty is inter-twined with financial shocks: the mechanism is distinct from being driven by changes in EBP

ER Uncertainty Channel is distinct as USD is a Global Risk Indicator

Robustness to Stock Market Volatility

Call Reports: NIM (not driven by US Stock Market Volatility)

	$\Delta_1 { m NII}$	$\Delta_2 { m NII}$	$\Delta_3 { m NII}$	$\Delta_4 { m NII}$
$E_{i,t^-} \times Vol(ER)_t$	0.112	1.097***	0.888***	1.560***
Annual (bp) Effect	02	12***	7***	10**
	(0.27)	(0.38)	(0.28)	(0.38)
$E_{i,t^-} \times Vol(SP500)_t$	0.008	0.003	0.008	0.016
$E_{i,t^-} \times \Delta_1 E R_t$	0.022	-0.007	-0.022*	-0.012
$E_{i,t^-} \times \Delta_1 SP500_t$	0.001**	0.00	0.00	0.002*
$E_{i,t-}$	-0.230	-0.391***	-0.290*	-0.692*
	(0.240)	(0.113)	(0.163)	(0.357)
Observations	3272	3228	3188	3145
Time FE	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y

Clustered SE in parentheses (*p < 0.10, **p < 0.05, ***p < 0.01)

- Significant correlation of 0.44 between ER and SP500 volatilities.
- ER effects do not change with domestic stock market volatility
- \blacksquare Similar results for $\triangle EBP$, Also Robust Balance Sheet effects

Exchange Rate Uncertainty and EBP

- \uparrow ER Uncertainty $\Longrightarrow \uparrow$ EBP, \uparrow Spreads, \downarrow GDP for 4 quarters
- Higher EBP captures shift in risk attitude and willingness to intermediate credit ⁷

⁷Consistent with "The macroeconomic impact of financial and uncertainty shocks", Caldara, Albero, Gilchrist and Zakrajsek

Model

Simple 3 period Model of Foreign and US Banks

Model

■ Static Model, with 3 subperiods:

$$t = 0$$
 (Origination), $t = 1$ (Secondary Market), $t = 2$ (Liquidation)

- Large US Bank (with Market Power)
 - Issue new loans (N_0) at a commission c
 - Off-loads Q_1 of them in secondary market (holding cost otherwise)
 - Maximizes profits, distributed as dividends in the end

US Bank Balance Sheet

Assets	Liabilities		
Loans (L_0)	Deposits and Debt (B_0)		
Securities $(S_0)=0$ (wlog)	Equity (E_0)		
Assets (A_0)	Liabilities (A_0)		

■ Foreign Banks $\in [0,1]$ optimize allocation of funds F in SLM

Banks' Problem

US Bank's Problem

$$\pi^{U}(L_{0}, B_{0}) = \max_{N_{0} \geq 0} \left\{ \underbrace{(c - P_{0}(N_{0}))N_{0}}_{\text{New Loans Issuance}} + \max_{0 \leq Q_{1} \leq N_{0}} \left[\underbrace{(N_{0} - Q_{1})1}_{\text{Retained Loans}} - \underbrace{r(B_{0} + N_{0} - Q_{1})}_{\text{funding cost}} - \underbrace{\Phi(L_{0} + N_{0} - Q_{1})}_{\text{Holding Cost}} + \underbrace{P_{1}Q_{1}}_{\text{Offloading in SLM}} \right] \right\}$$

Banks' Problem

US Bank's Problem

$$\pi^{U}(L_{0}, B_{0}) = \max_{N_{0} \geq 0} \left\{ \underbrace{(c - P_{0}(N_{0}))N_{0}}_{\text{New Loans Issuance}} + \max_{0 \leq Q_{1} \leq N_{0}} \left[\underbrace{(N_{0} - Q_{1})1}_{\text{Retained Loans}} - \underbrace{r(B_{0} + N_{0} - Q_{1})}_{\text{Funding cost}} - \underbrace{\Phi(L_{0} + N_{0} - Q_{1})}_{\text{Holding Cost}} + \underbrace{P_{1}Q_{1}}_{\text{Offloading in SLM}} \right] \right\}$$

$$(1)$$

Foreign Banks' Problem $(f \in [0,1])$

$$\Pi^{f}(F, \Lambda^{f}) = \max_{0 \leq Q_{1}^{f} \leq F} \mathbb{E}_{E} \left[\underbrace{\pi^{f}(r_{E}, Q_{1}^{f})}_{\text{SLM Return}} - \underbrace{\Lambda^{f} \max\{0, r^{*}F - \pi^{f}(r_{E}, Q_{1}^{f})\}}_{\text{Penalty for negative profits}} \right]$$

$$\pi^{f}(r_{E}, Q_{1}^{f}) = (r_{E} + 1 - P_{1})Q_{1}^{f} + r^{*}(F - Q_{1}^{f}) \tag{2}$$

Secondary Market Equilibrium

Demand and Supply of Loanable Funds in SLM

Proposition 1 and 2

$$\forall \Lambda^f \ge 0, \uparrow \bar{r}_E \implies \uparrow Q_1^f \forall f \implies \uparrow Q_1^F \tag{3}$$

If
$$\Lambda^f > 0, \uparrow \sigma(r_E)$$
, given $\bar{r}_E \implies \downarrow Q_1^f \forall f \implies \downarrow Q_1^F$ (4)

Equilibrium New Loans Origination

LHS and RHS for FOC w.r.t N_0 in period 0

Proposition 3

$$\uparrow \sigma(r_E) \implies \downarrow RHS \implies \downarrow N_0^* \implies \downarrow P_0(N_0^*) \implies \uparrow (1 - P_0(N_0^*)) \quad (5)$$

 $\uparrow \text{ER Uncertainty} \implies \downarrow \text{Loans}, \uparrow \text{US Bank Lending Margins}$

Novel and Distinct Channel

- Foreign Banks retrenchment is driven by increased global risk indicated by greater volatility in foreign value of USD
- Not driven by increased domestic volatility in the US financial markets
 - Shows that indeed "USD is a barometer of risk taking capacity in global capital markets"
- 3 Not driven merely by the appreciation of USD
 - Second moments changes matter
- 4 USD volatility affects US Economy
 - Seems counterintuitive at first, but it is true!

Contribution to the Literature

■ Exchange Rates & Syndicated Loan Market Channel

- Neipman and Eisenholer (2019)
- Irani et al. (2018), Lee et al. (2015), Lee at al. (2017), Bruche et al. (2017)

2 Bank Margin Channels

■ Deposit Channel: Dreschler, Savov and Schnabl

3 First Order Effects of Second Moments

- VAR: Caldara, Albero Gilchrist, Zakrajšek (2016,EER)
- Ludvigson, Ma, Ng (2015 AER, 2020 AEJ)

4 Funding Constraints

- Regulatory Capital: Skander J. van Den Heuvel (2002)
- Borrowing: Schneider (2001), Gilchrist ét al (2017, AER)
- Maturity Mismatch

Appendix

Robustness to Change in EBP

Call Reports: NIM (not driven by US Corporate Risk Aversion)

	$\Delta_1 { m NII}$	$\Delta_2 { m NII}$	$\Delta_3 { m NII}$	$\Delta_4 { m NII}$
$E_{i,t^-} \times Vol(ER)_t$	0.32	1.24***	1.19***	1.43**
Annual (bp) Effect	05	13***	9.4^{***}	9.1**
	(0.23)	(0.38)	(0.42)	(0.55)
$E_{i,t^-} \times \Delta_1 E R_t$	0.033**	0.0006	-0.007	0.005
2,0	(0.014)	(0.019)	(0.027)	(0.018)
$E_{i,t^-} \times \Delta EBP_t$	-0.211**	-0.158*	-0.125	-0.244
-,-	(0.086)	(0.084)	(0.125)	(0.160)
E_{i,t^-}	-0.10	-0.37***	-0.31***	-0.42**
-,-	(0.084)	(0.105)	(0.118)	(0.206)
# Obs	3294	3252	3216	3172
Time FE	Y	Y	Y	Y
Bank FE	Y	Y	Y	Y

Clustered SE in parentheses (*p < 0.10, **p < 0.05, ***p < 0.01)

- Significant correlation of 0.12 between Vol(ER) and Δ EBP.
- ER effects do not change with changes in investor risk sentiments
- Also Robust Balance Sheet effects

