# Implementierung der Cut & Count-Technik am Beispiel Steiner tree

Levin von Hollen, Tilman Beck

{stu127560-, stu127568-}@informatik.uni-kiel.de

Christian-Albrechts Universität Kiel

27. Oktober 2016

## Überblick

- Cut & Count
  - Allgemeines
- Cut & Count mit Steiner Tree
  - Cut
  - Count
  - (Nice) Tree Decomposition
- Implementierung

#### Cut & Count-Technik

- Technik um connectivity-type Probleme mithilfe von Randomisierung zu lösen(Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan van Rooij, Jakub Onufry Wojtaszczyk)
- angewendet auf viele verschiedene Probleme (z.B. Longest Path, Steiner Tree, Feedback Vertex Set uvm)
- Randomisierung durch Isolation-Lemma
- als Ergebnis ein einseitiger Monte-Carlo-Algorithmus mit Laufzeit  $c^{tw(G)}|V|^{\mathcal{O}(1)}$

#### Cut & Count-Technik

#### Theorem

There exists a randomized algorithm, which given a graph G with n vertices, a tree decomposition of G of width t and a number k in  $3^t n^{\mathcal{O}(1)}$  time either states that there exists a connected vertex cover of size at most k in G, or that it could not verify this hypothesis. If there indeed exists such a cover, the algorithm will return "unable to verify" with probability at most 1/2.

#### Steiner Tree

#### **Problem**

**Input**: An undirected graph G = (V, E), a set of terminals  $T \subseteq V$  and an integer k.

**Question**: Is there a set  $X \subseteq V$  of cardinality k such that  $T \subseteq X$  and G[X] is connected?

## Cut (1)

- definiere Gewichtsfunktion  $\omega:V \to \{1,\ldots,N\}$
- sei  $\mathcal{R}_W$  die Menge aller Teilmengen von X aus V mit  $T\subseteq X$ ,  $\omega(X)=W$  und |X|=k
- sei  $S_W = \{X \in S_W | G[X] \text{ ist zusammenhängend} \}$
- $\cup_W S_W$  ist die Menge der Lösungen
- gibt es ein W für das die Menge nichtleer ist, so gibt der Algorithmus eine positive Antwort

## Cut (2)

- einen beliebigen Terminalknoten  $v \in T$  als  $v_1$  festlegen
- sei  $\mathcal{C}_W$  die Menge aller Subgraphen, die einen konsistenten Cut  $(X,(X_1,X_2))$  bilden, wobei  $X\in\mathcal{R}_W$  und  $v_1\in X_1$

#### Lemma 3.3

Let G = (V, E) be a graph and let X be a subset of vertices such that  $v_1 \in X \subseteq V$ . The number of consistently cut subgraphs  $(X, (X_1, X_2))$  such that  $v_1 \in X_1$  is equal to  $2^{cc(G[X])-1}$ .

#### **Bullet Points**

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris at libero
- Nam cursus est eget velit posuere pellentesque
- Vestibulum faucibus velit a augue condimentum quis convallis nulla gravida

## Blocks of Highlighted Text

#### Block 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

#### Block 2

Pellentesque sed tellus purus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Vestibulum quis magna at risus dictum tempor eu vitae velit.

#### Block 3

Suspendisse tincidunt sagittis gravida. Curabitur condimentum, enim sed venenatis rutrum, ipsum neque consectetur orci, sed blandit justo nisi ac lacus.

## Multiple Columns

#### Heading

- Statement
- 2 Explanation
- Second Example
  Second Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

## Table

| Treatments  | Response 1 | Response 2 |
|-------------|------------|------------|
| Treatment 1 | 0.0003262  | 0.562      |
| Treatment 2 | 0.0015681  | 0.910      |
| Treatment 3 | 0.0009271  | 0.296      |

Tabelle: Table caption

## Theorem

## Theorem (Mass-energy equivalence)

 $E = mc^2$ 

#### Verbatim

## Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

## **Figure**

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

#### Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

## References



John Smith (2012) Title of the publication

Journal Name 12(3), 45 - 678.

## The End