W1211 Introduction to Statistics Lecture 21

Wei Wang

Nov 19, 2012

The Invariance Principle

- One of the nice features of MLE's is that, the MLE of a function of parameters, is the function of the MLE's of the parameters.
- More specifically, we have

Let $\hat{\theta}_1, \dots, \hat{\theta}_m$ be the MLE's of the parameters $\theta_1, \dots, \theta_m$. Then the MLE of any function $h(\theta_1, \dots, \theta_m)$ of these parameters is $h(\hat{\theta}_1, \dots, \hat{\theta}_m)$.

<u>Ex.</u> In the normal example, what is the MLE of σ ?

Large Sample Behavior

 The following proposition says, for large samples, it is "optimal" to use MLE's, because it is asymptotically unbiased and has the minimal variance among all unbiased estimators.

Proposition:

Under very general conditions on the joint distribution of the sample, When the sample size n is large, the maximum likelihood estimator is Approximately the MVUE of the parameter.

Confidence Intervals

- A point estimate, because it is a single number, by itself provides no information about the precision and reliability of estimation (the reason why we need standard error).
- An alternative to reporting a single sensible value for the parameter being estimated is to calculate and report an entire interval of plausible values – an interval estimate or confidence interval (CI).
- A confidence interval is always calculated by first selecting a confidence level, which is a measure of the degree of reliability of the interval.
- Construct a confidence interval for a standard normal random variable.

Illustration

- Let's first consider a simple, somewhat unrealistic problem situation.
 - We are interested in the population mean parameter μ .
 - 2. The population distribution is normal.
 - The value of the population standard deviation σ is known. (unlikely!)
- Suppose we have a random sample $X_1, X_2, ..., X_n$ from a normal distribution with mean value μ and standard deviation σ . As we know, \bar{X} also follows a normal distribution with mean value μ and standard deviation σ/\sqrt{n} . Thus, we could get a standard normal distribution by normalizing \bar{X} .

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Construction

• The smallest interval that contains 95% of the possible outcomes of Z is (-1.96, 1.96).

$$-1.96 < \frac{\bar{\mathbf{X}} - \mu}{\sigma/\sqrt{n}} < 1.96$$

$$-1.96 \cdot \frac{\sigma}{\sqrt{n}} < \bar{\mathbf{X}} - \mu < 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

$$\bar{\mathbf{X}} - 1.96 \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{\mathbf{X}} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}$$

Interpretation

- Thus we have $P\left(\bar{X} 1.96 \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \cdot \frac{\sigma}{\sqrt{n}}\right) = 0.95$.
- Some people interpreted this as: the true parameter μ has 95% chance of falling in the interval of $(\bar{X} 1.96 \cdot \sigma/\sqrt{n}, \bar{X} + 1.96 \cdot \sigma/\sqrt{n})$. Is it right?
- In fact, the two boundaries of the interval given above are random! Thus every time we sample n observations from the same population, we will get a different confidence interval!

Random Interval

- By constructing a confidence interval like this, we never be sure whether μ actually lies in our confidence interval. However, we know that about 95 out of 100 times intervals constructed using this method will capture the true parameter.
- Interpreted as: "the probability is .95 that the random interval includes or covers the true value of μ."

Confidence Interval for the Mean of a Normal Population when Variance is assumed known

▶ A 100(1 $-\alpha$)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}})$$

- ▶ $z_{\alpha/2}$ is the upper $(100 \cdot \alpha/2)\%$ percentile of a standard normal distribution, i.e., $P(Z > z_{\alpha/2}) = \alpha/2$.
- $ightharpoonup z_{\alpha}$'s are usually refered to as z critical values.

Connection between Interval Width, Confidence Level and Sample Size

- When constructing a confidence interval, confidence level, interval width, and sample size are closely related.
- Mathematically,

$$\mathbf{w} = \mathbf{2} \cdot \mathbf{z}_{\alpha/2} \cdot \sigma / \sqrt{n}$$

.

- ► So lower confidence level and larger sample size result in narrower interval width.
- Sometimes, we might want to know how many observations we need to collect to achieve a certain precision (width) under a fixed confidence level. This is called Sample Size Calculation.

Sample Size Calculation

► The general formula for the sample size n necessary to ensure an interval width w is obtained from $w = 2 \cdot z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

$$n = \left(2 \cdot z_{\alpha/2} \cdot \frac{\sigma}{\mathbf{w}}\right)^2$$

Ex. A new operating system has been installed, and we wish to estimate the true average response time μ to a particular editing command. Assuming that response times are normally distributed with $\sigma = 25$ millisec. How many tests should we do to ensure that the resulting 95% CI has a width of at most 10?

Sample Size Calculation

► The general formula for the sample size n necessary to ensure an interval width w is obtained from $w = 2 \cdot z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

$$n = \left(2 \cdot z_{\alpha/2} \cdot \frac{\sigma}{w}\right)^2$$

- Ex. A new operating system has been installed, and we wish to estimate the true average response time μ to a particular editing command. Assuming that response times are normally distributed with $\sigma = 25$ millisec. How many tests should we do to ensure that the resulting 95% CI has a width of at most 10?
- Plug in into the formula

$$n = (2 \cdot 1.96 \cdot \frac{25}{10})^2 = 96.04$$

So we need at least 97 tests.