Transcendental Numbers

Vincent Lin

December 9, 2023

Introduction

Definition: An <u>algebraic number</u> is $\alpha \in \mathbb{C}$, which is the root of a nonzero polynomial in $\mathbb{Q}[x]$ (or $\mathbb{Z}[x]$). We denote the set of algebraic numbers \mathbb{A} or \mathbb{Q} . Otherwise, it is **transcendental**.

Examples of Algebraic Numbers

$$\frac{p}{q} \in \mathbb{Q}$$

It is the root of $x - \frac{p}{q}$. Therefore, we can deduce that $\mathbb{Q} \subseteq \mathbb{A}$. i is the root of $x^2 + 1$.

Examples of Transcendental Numbers

Do transcendental numbers even exist? Are there numbers which are not algebraic?

Existence of Transcendental Numbers

Theorem: Yes.

Why? $\mathbb C$ is uncountable, $\mathbb A$ is countable. Therefore, there are elements in $\mathbb C$ not in $\mathbb A$. Likewise, since $\mathbb R$ is uncountable, there are real transcendental numbers as well.

Countability of Algebraic Numbers

A is countable. Let $p(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and let the index of p be $|a_n| + \dots + |a_0| + n$. For each i > 0, list all p with index i. Then, list their roots.

Countability of Algebraic Numbers

index = 1: None

No new roots.

index = 2:
$$\pm x$$

New roots: $\{0\}$

index = 3:
$$\pm x^2, \pm x \pm 1, \pm 2x$$

New roots: $\{\pm 1\}$

Countability of Algebraic Numbers

Eventually, every algebraic number will be listed because it is the root of a polynomial $\mathbb{Z}[x]$ with finite index. Thus, \mathbb{A} is countable and has measure 0. However, it is dense in \mathbb{C} .

First Transcendental Number

Was the first transcendental number discovered e or π ? No, in general, it is very hard to check if a number is transcendental. Therefore, the first transcendental number was constructed in 1844. This is called Liouville's constant:

$$\sum_{n=1}^{\infty} \frac{1}{10^{n!}}$$

Approximation of Algebraic Numbers

Liouville's Approximation Theorem: For any real $\alpha \in \mathbb{A}$ of degree n, there is $C(\alpha) > 0$ such that for rational approximations,

$$\left|\alpha - \frac{p}{q}\right| \ge \frac{C(\alpha)}{q^n}$$

By MVT,
$$m(\alpha) - m\left(\frac{p}{q}\right) = \left(\alpha - \frac{p}{q}\right)m'(\xi)$$
. $m(\alpha) = 0, m\left(\frac{p}{q}\right)$ has denominator q^n . Thus, $\frac{C}{q^n} \le \left|\alpha - \frac{p}{q}\right| \sup_{x \in (\alpha - 1, \alpha + 1)} |p'(x)|$.

Let $\frac{p_n}{q_n}$ be the sum of the first n terms of

$$L = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$$

Then,

$$\left| L - \frac{p_n}{q_n} \right| = 10^{-(n+1)!} + 10^{-(n+2)!} + \dots$$

$$< 2 \cdot 10^{-(n+1)!}$$

$$< \left(10^{n!} \right)^{-n}$$

$$= \frac{1}{(q_n)^n}$$

Pop Quiz!

Are the following numbers algebraic or transcendental? It is hard to determine whether a number we did not construct is transcendental.

Quiz

log(2)

Transcendental, by the Lindemann-Weierstrass theorem.

 $\log_2(21441)$

Quiz

Transcendental, by the Gelfond-Schneider theorem.

 $\cos(1)$

Quiz

Transcendental by the Lindemann-Weierstrass theorem.

 e, π

Hint: The Lindemann-Weierstrass theorem shows that if e is transcendental, then π is transcendental.

Both transcendental, e proven by Hermite in 1873. Using this fact, the Lindemann-Weierstrass theorem shows π is transcendental.

 $\sqrt{2}^{\sqrt{2}}$

Quiz

Transcendental, by the Gelfond-Schneider theorem.

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Algebraic.

$$\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2$$

 i^i

Quiz

Transcendental, by the Gelfond-Schneider theorem.

Transcendence is unknown for all of these except one; which one?

- $e+\pi$
- $e\pi$
- e^{π}
- \bullet π^e
- e^e
- $\pi^{\pi^{\pi^{\eta}}}$

Transcendence is unknown for all of these except one; which one?

- \bullet $e+\pi$
- \bullet $e\pi$
- e^{π} Gelfond's constant
- π^e
- e^e
- $\pi^{\pi^{\pi^{\pi}}}$ Open problem: is this an integer?

Schanuel's conjecture, if true, would show these are transcendental:

- $e + \pi \leftarrow$
- $e\pi \leftarrow$
- \bullet e^{π}
- $\pi^e \leftarrow$
- $e^e \leftarrow$
- \bullet $\pi^{\pi^n} \leftarrow$

 ϕ ,

the golden ratio or $\frac{1+\sqrt{5}}{2}$

Algebraic. Minimal polynomial is $x^2 - x - 1$.

 γ ,

Euler-Mascheroni constant or 0.5772156649...

$$\lim_{n \to \infty} \left(-\log(n) + \sum_{k=1}^{n} \frac{1}{k} \right)$$

Both transcendence and irrationality are unknown.

 λ .

Conway's constant or 1.3035772690...

Look and say sequence

$$(a_n) = 1, 11, 21, 1211, 111221, 312211, \dots$$

$$\lambda = \lim_{n \to \infty} \frac{\operatorname{length}(a_{n+1})}{\operatorname{length}(a_n)}$$

Algebraic. Minimal polynomial has degree 71!

Algebraic Independence

Definition: Let L/K be a field extension. Then $S = \{s_1, \ldots, s_t\} \subseteq L$ is **algebraically independent** over K if for all $f \in K[x_1, \ldots, x_t]$, $f(s_1, \ldots, s_t) = 0 \implies f = 0$.

Stronger than linear independence. $\{\pi\}$ is algebraically independent over \mathbb{Q} .

Transcendence Basis

Definition: Let L/K be a field extension. The maximal algebraically independent subset of L is called a **transcendence basis** of L/K. It's cardinality is called the **transcendence degree** denoted $\operatorname{trdeg}(L/K)$.

All transcendence bases have the same size.
$$\operatorname{trdeg}(M/K) = \operatorname{trdeg}(M/L) + \operatorname{trdeg}(L/K).$$

$$\operatorname{trdeg}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = 0$$

$$\operatorname{trdeg}(\mathbb{Q}(\pi)/\mathbb{Q}) = 1$$

$$\operatorname{trdeg}(\mathbb{R}/\mathbb{Q}) = 2^{\aleph_0}$$

Lindemann-Weierstrass Theorem

Lindemann-Weierstrass Theorem: If $\alpha_1, \ldots, \alpha_n \in \mathbb{A}$, then $\{e^{\alpha_1}, \ldots, e^{\alpha_n}\}$ is \mathbb{A} -linearly independent.

equivalently, $\operatorname{trdeg}(\mathbb{Q}(e^{\alpha_1},\ldots,e^{\alpha_n})/\mathbb{Q})=n.$

Auxiliary Functions

Proof uses a cleverly constructed auxiliary function with nice properties (many zeroes or zeroes with high multiplicity) to form a contradiction. In Liouville's Approximation theorem, the auxiliary function was the minimal polynomial.

Gelfond's Auxiliary Function

Auxiliary Functions

Let the function

$$P(x,y) = \sum_{m=0}^{D-1} \sum_{n=1}^{D-1} a_{m,n} x^m y^n \in \mathbb{Z}[x,y]$$

Lindemann-Weierstrass theorem uses the auxiliary function

$$F(z) = P(e^z, e^{iz})$$

Lindemann-Weierstrass Theorem: If $\alpha_1, \ldots, \alpha_n \in \mathbb{A}$, then $\{e^{\alpha_1}, \ldots, e^{\alpha_n}\}$ is \mathbb{A} -linearly independent.

Set $\alpha_1 = 0, \alpha_2 = 1$. Shows e is transcendental. Set $\alpha_1 = 0, \alpha_2 = \alpha_2$. Shows e^{α_2} is transcendental. AFSOC, set $\alpha_1 = 0, \alpha_2 = \pi i$. Shows πi is transcendental; we know $i \in \mathbb{A}$ so $\pi \notin \mathbb{A}$.

Gelfond-Schneider Theorem

Gelfond-Schneider Theorem: If $\alpha, \beta \in \mathbb{A}$, $\alpha \neq 0, 1$, $\beta \notin \mathbb{Q}$, then any value of α^{β} is transcendental.

Answers Hilbert's Seventh Problem.

$$2^{\log_2(21441)} = 21441$$

so $\log_2(21441)$ is either transcendental or rational.

$$e^{\pi} = (e^{\pi i})^{-i} = (-1)^{-i}$$
 is transcendental.

Auxiliary Functions Used

Let the function

$$P(x,y) = \sum_{m=0}^{D-1} \sum_{n=1}^{D-1} a_{m,n} x^m y^n \in \mathbb{Z}[x,y]$$

Gelfond used Taylor series of $F(z) = P(e^z, e^{\beta z})$. Has zeroes of high multiplicity.

Schneider used $F(z) = P(e^z, e^{\log(\alpha)z})$. Has many zeroes of multiplicity one.

Baker's Theorem: Let nonzero $\alpha_1, \ldots, \alpha_n \in \mathbb{A}$. Then, if $2\pi i, \log(\alpha_1), \ldots, \log(\alpha_n)$ are \mathbb{Q} -linearly independent, they are also \mathbb{A} -linearly independent.

Alan Baker later showed it the statement is still true without $2\pi i$. Auxiliary function was

$$F(z_1,\ldots,z_n)=$$

$$\sum_{\lambda_1=0}^{L} \sum_{\lambda_2=0}^{L} \cdots \sum_{\lambda_n=0}^{L} p(\lambda_1, \lambda_2, \dots, \lambda_n) \alpha_1^{(\lambda_1 + \lambda_n \beta) z_1} \cdots \alpha_{n-1}^{(\lambda_{n-1} + \lambda_n \beta) z_{n-1}}$$

Corollary

Baker's theorem generalizes the Lindemann-Weierstrass and Gelfond-Schneider theorems. For $a_1, \ldots, a_n \in \mathbb{A}$ not 0 or 1, and $\beta_1, \ldots, \beta_n \in \mathbb{A} \setminus \mathbb{Q}$ and \mathbb{Q} -linearly independent, $a_1^{\beta_1} \cdots a_n^{\beta_n}$ is transcendental.

Schanuel's Conjecture

Schanuel's Conjecture: If z_1, \ldots, z_n be \mathbb{Q} -linearly independent, $\operatorname{trdeg}(\mathbb{Q}(z_1, \ldots, z_n, e^{z_1}, \ldots, e^{z_n})/\mathbb{Q}) \geq n$.

No progress for 60 years. Setting $z_1 = 1, z_2 = \pi i$ shows algebraic independence of e and π . Setting $z_1 = 1, z_2 = e$ shows transcendence of e^e . Setting $z_1 = \log \log \pi, z_2 = 1 + \log \log \pi, z_3 = \log \pi, z_4 = e \log \pi, z_5 = i\pi$, one can show π^e is transcendental.

References

- Ivan Niven
 Irrational Numbers
- John Conway
 The Look and Say Sequence
- Edward Burger
 Making Transcendence Transparent
- Wolfram MathWorld Schanuel's Conjecture
- Alexander Gelfond
 Transcendental and Algebraic Numbers
- Alan Baker
 Transcendental Number Theory
- Kannan Soundararajan
 Transcendental Number Theory

Thank You!

Questions?