Names:	Worksheet #13
CS Logins:	Decision Trees

As always, sit with a partner and work through these together.

Activity 1: Evaluating a Decision Tree

Classify the two following examples with the decision tree on the slides

	, , , , , , , , , , , , , , , , , , , ,			Input	Attribu	ites			
Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
Yes	No	No	Yes	Full	\$	No	No	Thai	30-60
Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60

Example #1:	
Example #2:	

Activity 2: Compute the information gain of the Price attribute (on the entire training data)

Entire training data has: 6 Yeses and 6 Nos

Subset of examples with price = \$ has: 3 Yeses and 4 Nos

Subset of examples with price = \$\$ has: 2 Yeses

Subset of examples with price = \$\$\$ has: 1 Yes and 2 Nos

Entropy of the entire training data:
Entropy of \$: Entropy of \$\$: Entropy of \$\$: Entropy of \$\$: Remainder of price attribute:
Information gain of price = "entropy of entire training data" - "remainder of price"
Information gain of price =

Names:	Worksheet #13
CS Logins:	Decision Trees

As always, sit with a partner and work through these together.

Activity 1: Evaluating a Decision Tree

Classify the two following examples with the decision tree on the slides

	, , , , , , , , , , , , , , , , , , , ,			Input	Attribu	ites			
Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
Yes	No	No	Yes	Full	\$	No	No	Thai	30-60
Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60

Example #1:	
Example #2:	

Activity 2: Compute the information gain of the Price attribute (on the entire training data)

Entire training data has: 6 Yeses and 6 Nos

Subset of examples with price = \$ has: 3 Yeses and 4 Nos

Subset of examples with price = \$\$ has: 2 Yeses

Subset of examples with price = \$\$\$ has: 1 Yes and 2 Nos

Entropy of the entire training data:
Entropy of \$: Entropy of \$\$: Entropy of \$\$: Entropy of \$\$: Remainder of price attribute:
Information gain of price = "entropy of entire training data" - "remainder of price"
Information gain of price =