• *Problem 9.2(g-h). Tinker and then compute formulas that do not contain a sum for the following:

(g)
$$\sum_{i=1}^{n} ij$$

= $j \sum_{i=1}^{n} i$ Constant Rule
= $j \frac{n(n+1)}{2}$ Common Sums

$$\begin{array}{ll} \text{(h)} \ \sum_{i=0}^{n} (i+j)^2 \\ &= \sum_{i=0}^{n} (i^2+2ij+j^2) \\ &= \sum_{i=0}^{n} (i^2) + \sum_{i=0}^{n} (2ij) + \sum_{i=0}^{n} (j^2) \\ &= \frac{n(n+1)(2n+1)}{6} + \sum_{i=0}^{n} (2ij) + \sum_{i=0}^{n} (j^2) \\ &= \frac{n(n+1)(2n+1)}{6} + 2j\sum_{i=0}^{n} i + j^2\sum_{i=0}^{n} 1 \\ &= \frac{n(n+1)(2n+1)}{6} + 2j\frac{n(n+1)}{2} + j^2(n+1) \\ &= \frac{n(n+1)(2n+1)}{6} + 2j\frac{n(n+1)}{2} + j^2(n+1) \\ &= \frac{n(n+1)(2n+1)}{6} + jn(n+1) + j^2n + j^2 \\ &= \frac{n(n+1)(2n+1)}{6} + jn(n+1) + j^2 \\ &= \frac{n(n+1)(2n+1)}{6} + jn(n+1) + j^2 \\ &= \frac{n$$

- *Problem 9.3(j-k). Compute formulas that do not contain a sum for the following:
 - (j) $\sum_{i=0}^{n} \sum_{j=0}^{i} 2^{i}$

$$=\sum_{i=0}^{n}i\sum_{j=0}^{i}2^{i}$$
 Innermost Sum
$$=\sum_{i=0}^{n}i(2^{i+1}-1)$$
 Common Sums
$$=\sum_{i=0}^{n}(i2^{i+1}-i)$$
 Distribute
$$=\sum_{i=0}^{n}i2^{i+1}-\sum_{i=0}^{n}i$$
 Addition Rule
$$=\sum_{i=0}^{n}i2^{i}\cdot 2^{1}-\sum_{i=0}^{n}i$$
 Simplify
$$=2\sum_{i=0}^{n}i2^{i}-\sum_{i=0}^{n}i$$
 Constant Rule
$$=2(\frac{n(n+1)}{2})(2^{n+1}-1)-\frac{n(n+1)}{2}$$
 Common Sums
$$=n(n+1)(2^{n+1}-1)-\frac{n(n+1)}{2}$$
 Simplify

(k)
$$\sum_{i=0}^{n} \sum_{j=0}^{i} i2^{j}$$

$$= \sum_{i=0}^{n} i \sum_{j=0}^{n} 2^{i}$$
 Innermost Sum

$$= \sum_{i=0}^{n} i (2^{i+1} - 1)$$
 Common Sums

$$= \sum_{i=0}^{n} i$$
 The rest in ipad...

• *Problem 9.14. Determine which of these functions is in $\Theta(n)$, in $\Theta(n^2)$, or neither.

$$\Theta(n)$$
 $\Theta(n^2)$ neither
b e a
c i g
d h
f i

- *Problem 9.31(a-b). Give the asymptotic big-Theta behavior of the runtime T_n , where,
 - (a) $T_0 = 1$; $T_n = T_{n-1} + n^2$; for $n \ge 2$ $\Theta(n)$
 - (b) $T_0 = 1$; $T_1 = 2$; $T_n = 2T_{n-1} T_{n-2} + 2$ for $n \ge 2$ $\Theta(2^n)$