

BIRDS-2, BIRDS-3 Long Range Test Results

By: Tharindu Dayarathna, Adrian Salces 2018-12-25

Performed Tests

Test - 1: Calibration

- Measuring downlink effective attenuation
- Measuring uplink attenuation
- Test 2: Measuring UHF TRX receiving sensitivity of BIRDS-2, BIRDS-3 satellites using signal generator setup
- Test 3 : Measuring UHF TRX receiving sensitivity of BIRDS-3 satellite using ICOM radio setup

Test-1:Measuring effective downlink attenuation (EDA)

Procedure

- First BIRDS-3 satellite transmitted continuous beacon signal (437.375 MHz, 19dBm)
- BIRDS GS antenna and HORYU GS antenna were pointed towards sarakura mountain until maximum power received.
- Finally received power from BIRDS-3 was measured and antenna direction was fixed and then BIRDS-2 satellite was started to transmit beacon from same location.

Satellite Orientation and Kyutech Ground Station

BIRDS-2

BIRDS-3

GS view from sarakura mountain

Effective Downlink Attenuation (EDA) Results

BIRDS GS Antenna

Transmitted from	Power received using BIRDS GS antenna	Effective downlink Path loss (19- RX Pwr)	Comparison
BIRDS-3 FM	-69 dBm	88 dB	BIRDS-3,
BIRDS-2 UPD	-84 dBm	103 dB	reception is 15 dB better

HORYU GS Antenna

Transmitted from	Power received using HORYU GS antenna	Effective downlink Path loss (19- RX Pwr)	Comparison
BIRDS-3 FM	-73 dBm	92 dB	BIRDS-3,
BIRDS-2 UPD	-86 dBm	105 dB	reception is 13 dB better

Test-1:Measuring the effective uplink attenuation (EUA)

Procedure

- BIRDS GS and HORYU GS transmitted 435.313MHz 45dBm signal
- At sarakura side below antennas received transmitted signal from GS
 - i. BIRDS-3 EM antenna (To represent BIRDS-3 FM)
 - ii. BIRDS-2 UPD antenna
 - iii. Reference dipole antenna
- For every antenna received power is recorded was recorded at sarakura side

Satellite Orientation and Kyutech Ground Station

BIRDS-2 UPD

BIRDS-3 EM

Reference Dipole Antenna

This was not the correct position of the dipole antenna. It was place exactly like satellite (Forgot take a photo)

Effective Uplink Attenuation (EUA) Results

Transmitted from BIRDS GS Antenna

Received using	Received power	Effective uplink Path loss (45- RX Pwr)	Comparison
BIRDS-2 UPD	-52 dBm	97 dB	BIRDS-3,
BIRDS-3 EM	-49 dBm	94 dB	reception is 3dB
Reference Dipole	-49.5 dBm	94.5 dB	better

Transmitted from HORYU GS Antenna

Received using	Received power	Effective uplink Path loss (45- RX Pwr)	Comparison
BIRDS-2 UPD	-56 dBm	101 dB	BIRDS-3,
BIRDS-3 EM	-51 dBm	96 dB	reception is 5dB
Reference Dipole	-51.5 dBm	96.5 dB	better

Received power levels using BIRDS-3 EM antenna and Reference dipole antenna were similar. Since uplink path loss for BIRDS-3 FM satellite was taken as 94dB.

BIRDS-2 Antenna

When 19 dBm transmitted from Sat (Downlink)

Sat name	Received power at GS		
BIRDS-3	-69 dBm		
BIRDS-2	-84 dBm		

$$Z_{in} = Z_0 \frac{Z_L + iZ_0 \tan(\beta L)}{Z_0 + iZ_L \tan(\beta L)}$$

$$Z_0 = 50\Omega$$

When 45 dBm transmitted from GS (Uplink)

Sat name	Received power at Sat
BIRDS-3	-49 dBm 3 dB
BIRDS-2	-52 dBm

EUA and **EDA** Comparisons

EDA

Transmitted from CW TX	BIRDS GS Antenna	HORYU GS Antenna	Comparisons
BIRDS2 UPD	↑ 103 dB ↑	↑ 105 dB ↑	-In flight configuration, BIRDS3 FM
BIRDS3 FM	↑ 88 dB	92 dB	antenna performs 13-15 dB better than BIRDS2 UPD antenna.
Note: Both are nearly flight configuration: UHF antenna connected to UHF TRX port, no external connectors		to UHF TRX port, no external connectors	
		EUA	
Receiving by	F IRDS GS Antenna	HORYU GS Antenna	Comparisons
BIRDS2 UPD	97 dB ↑	1 01 dB ↑	-When both connected to SA, BIRDS3
BIRDS3 EM	♥ 94 dB	♥ 96 dB	EM antenna performs 3-5 dB better than BIRDS2 UPD antenna.
Dipole REF	94.5 dB	96.5 dB	-BIRDS3 EM and dipole REF antennas perform similarly.

Note: All antennas are connected to spectrum analyzer (SA) so not fully in flight configuration

Test-2: Measuring UHF TRX Sensitivity of BIRDS-2 and BIRDS-3

Procedure

- 1. For the uplink commands BIRDS ground station was used.
- 2. First Signal Generator setup was used to send uplink to BIRDS-2 and BIRDS-3 satellites

Procedure continues..

- 3. For given variable value ground station sent commands to the satellite and at sarakura side, If satellites receive the correct command it sent acknowledgment to ground station. Then it is taken as success.
- 4. First BIRDS-2 sensitivity was measured and then BIRDS-3 sensitivity was measured.

Receiving power measurement at sarakura side using BIRDS3 EM

- First BIRDS-3 EM satellite was placed at "A".
 And received power from GS was measured.
- Then it was placed at "B" and receiving power was measured.
- Finally power level difference for "A" and "B" was calculated.
- "B" point power reception level was 5dB higher than "A".
- 5dB was subtracted from every BIRDS-3 EM power reading to get position "A" power level.

Indirect Method of Estimating Received Power for BIRDS2 UPD

Total Uplink Attenuation

Accounts for actual antenna gain (symmetric)

Accounts for the fact that uplink channel would provide 6 dB higher loss than downlink channel

Total Uplink Attenuation = 103 dB + 6 dB + Var. ATT

RX Power Estimate = 45 dBm - (109 dB + Var. ATT)

Uplink Success Rate for BIRDS2 UPD Using its Own Antenna

SG Frequency Deviation = 12.5 kHz

Variable Attenuator Value (dB)	Uplink Success Rate	Total Uplink Attenuation* (dB)	BIRDS2 Command RX Power (dBm), estimated	RX Power Measured by BIRDS3 EM (dBm)
0	6/6	109	-64	-50
10	4/6	119	-74	-60
13	6/6	122	-77	-63
19	6/6	128	-83	-71
23	6/6	132	-87	-75
26	0/6	135	-90	-78
29	0/6	138	-93	-80
30	0/6	139	-94	-80

SG Frequency Deviation = 16 kHz

Variable Attenuator Value (dB)	Uplink Success Rate	Total Uplink Attenuation* (dB)	BIRDS2 Command RX Power (dBm), estimated	RX Power Measured by BIRDS3 EM (dBm)
26	0/6	135	-90	-78
30	0/3	139	-94	-80

Uplink Success Rate for BIRDS2 UPD Using Dipole REF Antenna

Uplink Success Rate for BIRDS2 UPD Using Dipole REF Antenna

SG Frequency Deviation = 12.5 kHz

Variable Attenuator Value (dB)	USR	Total Uplink Attenuation** (dB)	BIRDS2 Command RX Power (dBm), estimated	RX Power Measured by BIRDS3 EM (dBm)
30	4/4	124.5	-80	-79.5
40	4/4	134.5	-89	-89.5
43	3/3	137.5	-92	-92.5
50	3/3	144.5	-99	-99.5
55	3/3	149.5	-104	-104.5
57	-	151.5	-	-106.5
60	0/1	154.5	-109	-109.5

^{*}Total Uplink Attenuation = EUA for dipole REF antenna = 94.5 dB

=> When using dipole reference antenna, there was 32 dB improvement over using own satellite antenna. This may be explained by better antenna and lower captured noise level (antenna a little far from satellite body).

Receiving sensitivity results for BIRDS-3

- Frequency deviation of signal generator = 12.5 kHz
- Transmitted power = 28 Watt (45dBm)
- Average noise level in the receiver = -109dBm

Extra attenuators added in ground station	Total attenuation (= Added Att + Uplink path loss)	Received power at sarakura side (Measured)	Success rate
40 dB	134 dB	-89 dBm	8/10
43 dB	137 dB	-92 dBm	3/10
45 dB	139 dB	-94 dBm	3/10
47 dB	141 dB	-96 dBm	0/10

Using wired test. Maximum receiving sensitivity of the transceiver was given when 15KHz frequency deviation was used. Then by changing from 12.5KHz to 15KHz again same test was performed.

Receiving sensitivity results for BIRDS-3

- Frequency deviation of signal generator = 15 kHz
- Transmitted power = 28 Watt (45dBm)
- Average noise level in the receiver = -109dBm

Extra attenuators added in ground station	Total attenuation (= Added Att + Uplink path loss)	Received power at sarakura side (Measured)	Success rate
40 dB	134 dB	-89 dBm	6/10
43 dB	137 dB	-92 dBm	8/10
45 dB	139 dB	-94 dBm	6/10
47 dB	141 dB	-96 dBm	7/10
48 dB	142 dB	-97 dBm	3/10
50 dB	144 dB	-99 dBm	1/10

- 1st Long range test we could use only 40 dB attenuator (Success rate was 3/5). With 41dB was attenuator value zero success.
- Improvement from 1st Long rang test is about 8dB
- This time we transmitted 3dB more, because of data rate reduction uplink gained 3dB and because of other things (RF shielding) uplink has gains about 2dB more

Test-3: Measuring UHF TRX Sensitivity of BIRDS-3 using ICOM radio setup

Procedure

- 1. For the uplink commands BIRDS ground station was used.
- 2. ICOM radio setup was used to send uplink to BIRDS-3

Receiving sensitivity results for BIRDS-3 using ICOM radio setup

- Transmitted power = 28 Watt (45dBm)
- Average noise level in the receiver = -109dBm

Extra attenuators added in ground station	Total attenuation (= Extra Att + Uplink path loss)	Received power at sarakura side (Calculated)	Success rate
30 dB	124 dB	-79 dBm	5/6
34 dB	128 dB	-83 dBm	5/10
36 dB	130 dB	-85 dBm	5/10
38 dB	132 dB	-87 dBm	4/10
40 dB	134 dB	-89 dBm	0/10

- In 1st BIRDS-3 Long range test, this test was not performed.
- Because of not enough time this test could not be performed for BIRDS-2

Link Budget for BIRDS-3

	10 deg Elevation	30 deg Elevation	60 deg Elevation	80 deg Elevation
TX power Out	50 watt (47 dBm)			
Ant gain	22 dB	22 dB	22 dB	22 dB
TX line loss	3 dB	3 dB	3 dB	3 dB
EIRP	66 dBm	66 dBm	66 dBm	66 dBm
Ant pointing loss	5dB	5dB	5dB	5dB
Polarization loss	3dB	3dB	3dB	3dB
Atmospheric + Ionospheric loss	1.4 dB	1.4 dB	1.4 dB	1.4 dB
Path loss	148.54 dB	142.7 dB	138.6 dB	137.5 dB
Effective attenuation	-138.94 dB	-133.1 dB	-129 dB	-127.9 dB
Power at the satellite	-91.94 dBm	-86.1 dBm	-82 dBm	-80.9 dBm
In the satellite				
Antenna pointing loss	3 dB	3 dB	3 dB	3 dB
Antenna gain + Cable loss	0.5 dB	0.5 dB	0.5 dB	0.5 dB
Received power	-94.44 dBm	-88.6 dBm	-84.5 dBm	-83.4 dBm
Required power	-97 dBm	-97 dBm	-97 dBm	-97 dBm
Link margin (Received power – Required power)	2.56 dB	8.4 dB	12.5 dB	13.6 dB

Summary and Conclusions for BIRDS-3

- Uplink success rate is 5dB better than previous long range test (Without considering power increment by 3dB).
- Measured noise level in the receiver is about -109dBm. this make the receiver sensitivity deviate from it's performance. (According to wired test, to decode a command correctly SNR should be more than 12dB)
- According to link margin calculation for new ground station setup BIRDS-3 has a positive link margin without considering doppler effect.

Summary and Conclusions for BIRDS-2

- Uplink success rate in this LRT is worse than in previous LRT.
 - > Despite the fact that we used the new GS configuration and transmitted 3 dB higher power, successful uplink could be achieved up to only 23 dB maximum attenuator (34 dB in previous LRT).
- Exact reason for degraded performance is still unknown and large difference difficult to explain.
 - > The combined effects of different noise levels and satellite antenna pointing may have caused this difference but this is unlikely.
- Using dipole antenna provided 32 dB better uplink performance over using satellite's own antenna. *Due to better antenna gain and lower noise?*
- Different received power sensitivity vs previous wireless sensitivity test likely due to more noise from satellite captured in this LRT.

Thank You

Extra Slides for BIRDS-2 UPD Results and Discussion (if necessary)

Comparison with Previous Long Range Test

Parameters	Previous LRT (2018/03/22)	This LRT (2018/12/19)	
GS Transmitter	IC9100	SG+RF Amplifier	
TX Power (dBm)	42	45	
Tuning of BIRDS GS antenna position	None, by default fixed to AZ=220°, EL=5°/6°	Yes, tuned to AZ=238°, EL=5°	
Satellite UHF antenna direction	Horizontal, element oriented such that maximum reception at GS (max gain direction, θ=315°)*	Horizontal, element simply parallel to GS antenna element (θ=0°)*	
Noise level	Not measured	Not measured (could not be)	
Maximum attenuator (dB) with received ACK	34	23 dB	

^{*} In previous LRT, during downlink calibration, gain at θ =315° was 3 dB higher than at θ =0°.

Exact reason unknown. Large difference difficult to explain. The combined effects of different noise levels and satellite antenna pointing may have caused this difference but this is unlikely.

Comparison with Previous RX Power Sensitivity Results

Parameters	This LRT Using Satellite Antenna	This LRT Using Dipole Reference Antenna	Previous Wireless RX Sensitivity Test
GS Transmitter	SG+RF Amplifier	SG+RF Amplifier	SG+RF Amplifier
Satellite Location	Mt. Sarakura	Mt. Sarakura	Seikyo
Satellite and Antenna Configuration	Flight configuration, own antenna	Dipole antenna connected by cable, about 0.3 m away from satellite body	Satellite inside shield box, monopole antenna connected by cable but outside shield box
RX Power Sensitivity	-87 dBm (uncertain, estimated only)	-104 dBm (measured)	-96 dBm (measured)
Noise contribution from satellite internal noise	High	Low/Medium	Low
Noise floor measurement with antenna connected to SA	No proper measurement data (-97 dBm but relative offset of SA was set to -20 dB)	No measurement data with satellite nearby (-120 dBm w/o satellite)	<-110 dBm (-110 dBm is the measurement when monopole antenna was connected and not connected to SA, measured on 2018/12/24 w/o satellite and RX box)

Parameters	Link Budget (at EL=45°)	Previous LRT	This LRT
GS TX Power	45 dBm (IC9100/SG + RF Amp)	42 dBm (IC9100)	45 dBm (SG + RF Amp)
Path Loss due to propagation environment	144.5 dB	114.6 dB (may be overestimated)	109.1 dB (likely correct)
Cable losses	3.9 dB	3.9 dB	3.9 dB
GS antenna gain	18	18	18
Satellite antenna gain	~ -10 dB (new estimate)	~ -10 dB (new estimate) 1 dB (old estimate)	~ -13 dB (new estimate)
Polarization loss	3 dB	0 dB	$0~\mathrm{dB}$
GS antenna pointing loss	3 dB (new)	~ 3 dB	0 dB
Satellite antenna pointing loss	3 dB	0 dB (lumped into gain)	0 dB (lumped into gain)
Ionospheric loss	0.4 dB	0 dB	0 dB
Atmospheric loss	1.1 dB	1.1 dB	1.1 dB
Attenuator Used	0 dB	34 dB	23 dB
Effective Attenuation	150.9	148.6	132.1
Performance loss due to Doppler error	Not considered	Not considered	Not considered
Actual RX Noise Floor	Lower in space than on ground?	Not measured	No proper measurement data
RX Power	-105.9 dBm	-106.6 dBm (new estimate) -95.6 dBm (old estimate, I thought we had 5 dB margin at EL=20°, assumed -101 dBm RX sensitivity from cable test)	-87 dBm (estimated only)
Result	Uplink not successful	Uplink successful at this attenuator	Uplink successful at this attenuator