Macao Polytechnic Institute School of Applied Sciences

Bachelor of Science in Computing

Course Syllabus

Academic Year 2019/2020 Semester 2

Course Title	Software Engineering Course Code COMP223			COMP223	
Pre-requisite Course	Nil				
Language of Instruction	English			Credit	3
Course Duration (Theory)	45 hrs	Course Duration (Practice)	0 hrs	Total Course Duration	45 hrs
Teacher(s) / Title	Dr. Amang (Song-Kyoo) Kim		E-mail	amangkim.mpi@gmail.com	
Office	Rm# A320		Telephone	8599-6455	

COURSE DESCRIPTION:

This course introduces the concepts of software development. Emphasis will be put on understanding the processes, techniques and methods used to develop application software. Besides, students are exposed to various software development approaches. Upon completion, students will be able to understand the major software development methodologies and techniques, appreciate their relative merits and their limitations.

Learning Outcomes:

After completing the course, students will be able to:

- 1. Classify the problems typically encountered in each aspect of software engineering and apply alternative processes, tools and technologies for overcoming those problems (SM3p, EA2p, D1p, EP2p).
- 2. Identify the various types of work activities that occur and the types of work products that are generated in each phase of the software lifecycle (EA1p, D3p, ET1p, EP1p).
- 3. Apply various software engineering process models, and identify the strengths and

- weaknesses of each one (D2p, ET2p, EP5p).
- 4. Make use of the software design processes in order to deliver a product meeting the requirements of users (D6p, ET4p, ET3p, EP8p).
- 5. Illustrate software development standards and processes including those for requirements, design, construction, testing, project management and quality assurance (EA3p, D5p, ET5p, ET6p, EP4p).
- 6. Plan software process improvement models and the importance to the profession of applying and improving one's software engineering competencies and practices (EA4p, D4p, EP7p, EP9p).

CONTENT:

6.0 hours 1. Introduction to software engineering & process 1.1 Professional software development 1.2 Software process models (2.1) 1.3 Process activities (2.2 & 2.3) Process improvement (2.4) 6.0 hours 2. Requirements engineering (Ch. 4) Functional and non-functional requirements 2.2 The software requirements document 2.3 Requirements specification 2.4 Requirements engineering processes 2.5 Requirements elicitation and analysis 2.6 Requirements validation 2.7 Requirements management

3. System modeling (Ch. 5)

4.5 hours

- 3.1 Context models
- 3.2 Interaction models
- 3.3 Structural models
- 3.4 Behavioral models
- 3.5 Model-driven engineering

4. Architectural design (Ch. 6)

4.5 hours

	4.1	Architectural design decisions		
	4.2	Architectural views		
	4.3	Architectural patterns		
	4.4	Application architectures		
5.	Desi	ign and implementation (Ch. 7)	1.5 hours	
	5.1	Object-oriented design using UML		
	5.2	Design patterns		
	5.3	Implementation issues		
	5.4	Open source development		
6.	Soft	ware Evolution (Ch. 9)	3.0 hours	
	6.1	Evolution processes		
	6.2	Program evolution dynamics		
	6.3	Software maintenance		
	6.4	Legacy system management		
7.	Agil	le software development (Ch. 3)	3.0 hours	
	7.1	Agile method & Capability Maturity Model (CMM / CMMI)		
	7.2	Agile development techniques		
	7.3	Agile project management		
	7.4	Continuous Development (CD): Beyond Agile process		
8.	Proj	ject planning (Ch. 23)	3.0 hours	
	8.1	Software pricing		
	8.2	Plan-driven development		
	8.3	Project scheduling		
	8.4	Agile planning		
	8.5	Estimation technique		
9.	Soft	Software Development Practice		
	9.1	Software development in Internet era		
	9.2	Case study: Com2uS mobile game development		
	9.3	Group Activity: SW development startups		

10. Quality management (Ch. 24)

3.0 hours

- 10.1 Software quality
- 10.2 Software standards
- 10.3 Review and inspections
- 10.4 Software measurement and metrics

TEACHING METHOD:

Lectures, case method teaching and online (Facebook) support¹

Attendance:

Attendance requirements are governed by the Academic Regulations. Students who do not meet the attendance requirements for the course will not be permitted to sit the final and re-sit examination and shall be awarded an 'F' grade.

Assessment:

This course is graded on a 100 point scale, with 100 being the highest possible score and 50 the pass score.

Item	Description	AHEP3 LO	Percentage
1. Popup Quiz	Home/Class-based	EA1p, EA3p,	5%
	exercises	ET2p, EP2p	
2. Take-home	Home based exercises	SM3p, EA2p,	15%
assignment (x4)		ET3p, EP4p	
3. Group Project	Presentation and Report	D4p, D6p,	15%
		ET2p, ET4p,	
		EP5p	
4. Group Activity	Project management	D1p, D3p,	10%
	practice	ET5p, ET6p,	
		EP7p EP8p	

¹ https://www.facebook.com/groups/511360236118981/

5. Test	1.5-hour written test	EA4p, D2p,	15%
		ET1p, EP1p	
6. Examination	3-hour written examination	EA4p, D2p,	40%
		D5p, EP9p	
	100%		

Students with an overall score of less than 35 in the coursework must take the re-sit examination even if the overall score for the course is 50 or above.

Students with a score of less than 35 in the final examination must take the re-sit examination even if the overall score for the course is 50 or above.

Students with an overall final grade of less than 35 are NOT allowed to take the re-sit examination.

TEACHING MATERIALS:

Техтвоок

1. Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson, Boston, MA.

REFERENCE:

ARTICLES

- 1. S.-K. Kim (2014), Com2uS: mobile game pioneer, International Journal of Teaching and Case Studies 5:2, pp. 189-196.
- 2. S.-K. Kim (2014), Com2uS Mobile Game Development, Journal of Information Technology Case and Application Research 16:3-4, pp. 155-167.
- 3. M. Iansiti and A. MacCormack (1997), **Developing Products on Internet Time**, *Harvard Business Review*, **Sep.-Oct Issue**, pp. 108-117 [Access] https://hbr.org/1997/09/developing-products-on-internet-time
- 4. S.-K. Kim (2019), Systematic Innovation Mounted Software Development Process and Intuitive Project Management Framework for Lean Startups, *ArXiv.org*[Access] https://arxiv.org/abs/1708.06900
- 5. M. Shahin, M. Ali Babar and L. Zhu (2017), Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices, *IEEE Access* 5, pp. 3909-3943.

Cases

- 1. S.-K. Kim (2019), **Developing Product on Internet Time: A Process Design Exercise** (**Revised**), *MPI Case Bank*, 3 pages
- 2. J. J. Bussgang and et al. (2018), Continuous Software Development: Agile's Successor, *Harvard Business School* 9-818-050, 17 pages.
- 3. R. D. Austin (2008), CMM versus Agile: Methodology Wars in Software Development, *Harvard Business School* **9-607-084**, 17 pages.