Алгоритми та складність

І семестр

Лекція 8

- Задача пошуку підрядка в рядку (string-matching problem) зустрічається в найрізноманітніших областях, починаючи з текстових редакторів та закінчуючи пошуковими системами в інтернеті і пошуком зразків в молекулах ДНК.
- Потрібно в тексті (символьний рядок) знайти підрядок, що відповідає рядку-шаблону.
- Тобто, вказати індекс першого зліва символу тексту, з якого починається входження шаблона (або позиції всіх таких входжень).
- Часом шаблону пошуку дають назву needle («голка»), а тексту haystack («копиця сіна»).

- Нехай *текст* задано масивом T[1..n] довжиною n, a *зразок* (шаблон) масивом P[1..m] довжиною т (т≤n).
- Елементи рядків символів Р і Т належать до скінченного алфавіту Σ .
- Зразок Р зустрічається в тексті Т зі *зміщенням* s (тобто починаючи з позиції (s+1)), якщо $0 \le s \le n-m$ та T[s+1..s+m] = P[1..m] (або T[s+j] = P[j], $1 \le j \le m$).

- Якщо Р зустрічається в Т зі зміщенням s, то s допустиме (коректне) зміщення, інакше зміщення s є недопустимим (некоректним).
- Задача пошуку підрядка є задачею пошуку всіх допустимих зміщень для шаблона Р в тексті Т.

3

- Нехай розглядаємо рядки скінченної довжини.
- Σ^* множина всіх скінченних рядків, утворених з символів алфавіту Σ .
- $\varepsilon \in \Sigma^*$ порожній рядок, довжини 0 (тобто $|\varepsilon| = 0$).
- ху конкатенація рядків х та у (довжина |х|+|у|).
- w \sqsubseteq x рядок w є *префіксом* рядка x, якщо x=wy для деякого y \in Σ^* . При цьому $|w| \le |x|$.
- w \square x рядок w є *суфіксом* рядка x, якщо x=yw для деякого y $\in \Sigma^*$. Аналогічно $|w| \le |x|$.

Наприклад, ab \sqsubseteq abcca та cca \sqsupset abcca.

• Порожній рядок є завжди буде і префіксом, і суфіксом будь-якого рядка.

- Для довільних рядків х та у, для будь-якого символа а виконується: х □ у ⇔ ха □ уа.
- Відношення 🗆 та 🗆 транзитивні.

Лема про суфікси, що перекриваються.

Нехай x, y, z – такі рядки, що х ⊐ z та у ⊐ z. Тоді:

- a) якщо $|x| \le |y|$, то $x \supset y$;
- б) якщо $|x| \ge |y|$, то у □ х;
- в) якщо |x| = |y|, то x = y.

- Розглянемо найпростіший алгоритм (груба сила).
- Вирівняємо шаблон з початком тексту і станемо зліва направо посимвольно їх порівнювати.
- Якщо всі т пар символів рівні, то входження знайдене, інакше зміщуємо зразок на один символ вправо і починаємо порівняння спочатку.
- Остання позиція зміщення, яку є сенс перевірити (n – m + 1) при індексації масивів з одиниці.

```
Naive-String-Matcher (T, P)
```

```
n = T.length
m = P.length
for s = 0 to n - m
for f = T[s + 1...s + m]
print "Образец найден со сдвигом" f = T[s + 1...s + m]
```


Приклад роботи алгоритму

- Рядок 4 перевіряє коректність поточного зміщення і неявно містить цикл попарної перевірки позицій.
- Цей тест виконується за час Θ(t+1), де t кількість символів, що співпали (форма запису підкреслює, що навіть у разі неспівпадіння першого символу на перевірку витратився певний час).

- В найгіршому випадку алгоритм виконає всі т порівнянь для кожного з (n-m+1) зміщень зразка.
- Тому загальна оцінка алгоритму O((n-m+1)m).
- Гірші випадки виникатимуть якраз при багатократних входженнях зразка.
- Приклад найгіршого випадку: нехай текст має вигляд " a^n " (п символів а), а зразок " a^m ". Якщо $m = \lfloor n/2 \rfloor$, час роботи для найгіршого випадку стає $\Theta(n^2)$.

- Однак загалом для пошуку слова в природомовному тексті найгірша ситуація не є типовою.
- Середня оцінка для випадкових текстів складе Θ(n+m) = Θ(n). Типова кількість операцій 2n.
- В алгоритмі ніяк не враховується інформація про текст, отримана для одного значення s, при розгляді наступних зміщень.
- Однак це може бути корисним. Наприклад, якщо для зразка P=aaab знайдене допустиме зміщення s=0, то зміщення 1, 2 і 3 гарантовано недопустимі.

Існує багато алгоритмів пошуку підрядка, і при виборі слід врахувати ряд факторів.

- Чи потрібна оптимізація взагалі. Наївний алгоритм в середньому працює непогано, не потребує передобробки, і саме він реалізований в стандарнтих бібліотеках.
- Чи висока ймовірність появи поганих даних. Тоді потрібно вибирати алгоритми з кращими оцінками для найгіршого випадку.
- Чи природа тексту (мови) не вступає у протиріччя з евристикою прискорення пошуку в середньому.
- Архітектура системи іноді дозволяє швидко порівнювати дві ділянки в оперативній пам'яті, можна це використати.

- Розмір алфавіту. Багато алгоритмів мають евристики, пов'язані з символом, що не співпав. Для великих алфавітів відповідні таблиці символів займатимуть забагато пам'яті, для малих евристика не буде ефективною.
- Пошук прискориться, якщо є можливість проіндексувати текст.
- Чи одночасно треба шукати декілька рядків? Чи потрібен наближений пошук (fuzzy string search)? Деякі алгоритми дозволяють таке робити після нескладних модифікацій.

Алгоритм Хорспула (Horspool)

- Для пришвидшення пошуку в багатьох алгоритмах застосовується ідея покращення вхідних даних: робиться передобробка шаблону, отримана інформація зберігається в таблиці і потім використовується в процесі пошуку.
- Загальна стратегія алгоритму Хорспула: зразок рухається по тексту зліва направо, але порівняння проводиться *справа наліво*.
- В разі виявлення неспівпадіння це дозволяє просунути шаблон одразу на декілька позицій.
- Особливість алгоритму полягає у способі обчислення зсуву зразка.
- Серед подібних алгоритмів цей найпростіший.

• Нехай в тексті шукається підрядок BARBER:

$$s_0 \cdots c \cdots s_{n-1}$$

$$B A R B E R$$

- Нехай символ тексту с лежить напроти останнього символу зразка (порівнюємо з кінця) і входження слова зараз немає. Тоді можливі чотири ситуації.
- Випадок 1. Якщо зразок не містить символ с (для нашого прикладу це S), шаблон можна зсунути на всю його довжину.

$$s_0$$
 ... S ... s_{n-1} \parallel $B A R B E R$ $B A R B E R$

• Випадок 2. Якщо зразок містить символ с, але він не останній (у нас це В), шаблон слід зсунути так, щоб напроти с було найправіше входження цього символу в шаблон.

• Випадок 3. Якщо с — останній символ зразка і більше в шаблоні він не зустрічається, зсуваємо як у випадку 1 на всю довжину.

$$s_0$$
 ··· M E R ··· s_{n-1} \parallel \parallel \parallel \parallel L E A D E R L E A D E R

• Випадок 4. Якщо с — останній символ зразка і серед інших (m—1) символів шаблону є інші його входження, зсуваємо як у випадку 2: входження символу с, найправіше серед решти інших входжень с у зразку, має бути напроти цього символу в тексті.

- Можна помітити, що порівняння символів справа наліво може привести до більших зсувів, ніж в наївному алгоритмі.
- Однак перевага буде втрачена, якщо при кожній перевірці переглядати всі символи зразка.
- Пропонується зберігати в спеціальній таблиці попередньо обчислені величини зсувів для кожного з можливих символів тексту.
- Для кожного с $\in \Sigma$ визначається

 $t(c) = \begin{cases} \text{довжина зразка } m, \text{ якщо } c \text{ немає} \\ \text{серед перших } (m-1) \text{ символів шаблону;} \end{cases}$ відстань від найправішого символа c серед перших (m-1) символів шаблону до останнього символа зразка, інакше.

• Наприклад, для шаблону BARBER всі елементи таблиці будуть дорівнювати 6, окрім t(E)=1, t(B)=2, t(R)=3, t(A)=4.

Алгоритм $ShiftTable\ (P\ [0..m-1])$ // Входные данные: Образец P[0..m-1] и алфавит символов
// Выходные данные: Таблица $Table\ [0..size-1]$,

// индексированная символами алфавита
// и заполненная величинами сдвигов
Инициализация всех элементов $Table\$ значениями mfor $j\leftarrow 0$ to m-2 do $Table\ [P\ [j\]] \leftarrow m-1-j$ return Table

- Спочатку всі значення в таблиці ініціалізуються довжиною зразка m.
- Потім шаблон переглядається зліва направо до передостаннього символа, і відповідний елемент таблиці заповнюється відстанню цього символу до правого кінця зразка.
- Якщо шаблон містить повтори символів, то за рахунок проходу зліва направо в кінці отримуємо шукані відстані від найправіших входжень.
- Ця таблиця також буде використана в алгоритмі Боєра-Мура.

• Загальна схема алгоритму Хорспула

Крок 1. Для заданого шаблону довжини m та відомого алфавіту будується таблиця зсувів.

<u>Крок 2.</u> Вирівнюємо початок зразка з початком тексту.

Крок 3. Поки не знайдеться шуканий підрядок чи шаблон не досягне кінця тексту, повторюємо: починаючи з кінця, порівнюємо відповідні символи зразка і тексту, поки не встановимо співпадіння всіх те символів (успішне завершення пошуку) або знайдеться пара різних символів; в цьому випадку зсуваємо шаблон на t(c) символів вправо, де с символ тексту напроти останнього символу зразка.

18

```
Алгоритм HorspoolMatching(P[0..m-1], T[0..n-1])
  // Реализация алгоритма Хорспула поиска подстрок
  // Входные данные: Образец P[0..m-1] и текст T[0..n-1]
  // Выходные данные: Индекс левого конца первой найденной
  //
                        подстроки или -1, если искомой подстроки
                        в тексте нет
  ShiftTable(P[0..m-1]) // Генерация таблицы сдвигов Table
                             // Позиция правого конца образца
  i \leftarrow m-1
  while i \leq n-1 do
    k \leftarrow 0
                              // Количество совпадающих символов
    while k \leq m-1 and P[m-1-k]=T[i-k] do
      k \leftarrow k + 1
    if k=m
      return i-m+1
    else
      i \leftarrow i + Table[T[i]]
  return -1
```

<u>Приклад.</u> Проілюструємо пошук зразка BARBER в тексті з латинських літер і пробілів (позначені для зручності підкресленнями).

Таблиця зсувів:

Символ с	A	В	C	D	E	F		R		Z	_
Зсув $t\left(c\right)$	4	2	6	6	1	6	6	3	6	6	6

Вигляд реального пошуку в конкретному тексті:

- Оцінка складності алгоритму для найгіршого випадку $\Theta(nm)$.
- Для випадкових текстів час роботи Θ(n).
- Передобробка виконується за час $\Theta(m+|\Sigma|)$.
- Хоча оцінки мають той самий порядок, що і в наївному алгоритмі, середня ефективність алгоритму краща: типова кількість операцій близька до 2n/|Σ|.
- Алгоритм Хорспула є спрощеною версією алгоритма Боєра-Мура, але при цьому працює навіть краще його на випадкових текстах (тим краще, чим більше різних символів у тексті). Однак на поганих даних регресує дещо частіше.

Алгоритм Райти (Raita)

- Також належить до сімейства алгоритмів типу Боєра-Мура, є покращенням алгоритму Хорспула для англійських текстів.
- Його відрізняє особливий спосіб порівняння символів шаблону і тексту.
- Назвемо *вікном* ту частину тексту, яка в поточний момент звіряється зі зразком.
- 1. Порівнюються останній символ зразка та найправіший символ вікна.
- 2. Порівнюються перший символ зразка та найлівіший символ вікна.
- 3. Порівнюється середній символ зразка та вікна.
- 4. Якщо попередні порівняння успішні, відбувається посимвольна звірка справа наліво з передостаннього до другого символу.
- 5. В разі виникнення неспівпадіння на будь-якій стадії, відбувається зсув шаблону за Хорспулом.

- Оцінки роботи алгоритму співпадають з оцінками алгоритму Хорспула.
- В середньому кількість операцій буде < n.
- Спосіб порівняння дозволяє ефективніше шукати зокрема слова з суфіксами —ion чи —ed, які широко розповсюджені в англійській мові. Зрозуміло, при звичайному порівнянні справа наліво прийдеться повністю проходити по таким суфіксам.
- Швидкодія зростатиме зі збільшенням довжини зразка, оскільки буде зменшуватися вклад трьох порівнянь символів.
- Спадання ефективності відбувається зі зменшенням алфавіту, але на практиці це може бути помітним лише для зовсім малих алфавітів.

Приклад.

Зсув

6

8

	0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
(1)	G C	A	T	C	G	C	A	G	A	G	A	G	Т	A	Т	A	C	A	G	T	A	C	G
(1)		н	есп	івп	ад	інн	я 🕽																
	GC	A	G	A	G	A	G]															

Приклад (далі).

Символ	Α	С	G	*
Зсув	1	6	2	8

• Приклад (завершення).

Символ	Α	С	G	*
Зсув	1	6	2	8

Алгоритм Боєра-Мура (Boyer-Moore)

- Алгоритм вважається стандартом при пошуку підрядка і є найефективнішим з алгоритмів загального призначення.
- В найкращому випадку працює за час $\Omega(n/m)$.
- Зазвичай час роботи сублінійний.
- Найгірший випадок: O(nm), якщо є співпадіння та O(n+m), якщо збігів немає.
- При оптимізації з використанням правила Галіла (the Galil rule) найгірший час роботи O(n+m).
- Порівняння зі зразком відбувається справа наліво.
- При обчисленні зсуву шаблону алгоритм враховує інформацію про частину, що співпала.

- Якщо перше порівняння символів неуспішне, шаблон зсувається вправо на t(c) (за Хорспулом).
- Нехай є k співпадінь символів зразка з текстом (0<k<m) та символ с перший, що відрізняється:

$$s_0 \dots c s_{i-k+1} \dots s_i \dots s_{n-1}$$
 $\parallel \parallel \parallel \parallel$
 $p_0 \dots p_{m-k-1} p_{m-k} \dots p_{m-1}$

- Величина зсуву вибирається з урахуванням двох величин:
 - зсув неспівпадаючого символу d_1 (bad-symbol shift);
 - зсув співпадаючого суфікса d_2 (good-suffix shift).

Зсув неспівпадаючого символу.

 Якщо шаблон не містить символу с, зсуваємо його вправо на (t(c) – k) символів, щоб с вийшов за межі зразка:

• Наприклад, тут зсув буде на t(S)-2=6-2=4 позиції:

29

Зсув неспівпадаючого символу.

- Зсув обчислиться так само, якщо шаблон містить символ с та при цьому t(c) k > 0.
- Наприклад, тут зсув буде на t(A)–2=4–2=2 позиції:

- У випадку $t(c) k \le 0$ просто зсуваємо шаблон на одну позицію вправо.
- Загалом, перший варіант зсуву d_1 визначається так: $d_1 = \max\{t(c) k, 1\}$.

Зсув співпадаючого суфікса.

- Позначимо як *suff*(k) суфікс зразка довжиною k (це та частина, що співпала).
- Припустимо, в шаблоні зустрічається ще одна послідовність *suff*(k) та їй передує символ, відмінний від с (інакше маємо повтор ситуації).
- Тоді зразок можна зсунути на відповідну відстань до найправішої такої послідовності.
- Наприклад, для шаблону ABCBAB: при k = 1 значення зсуву d_2 буде 2 ($ABC\overline{B}AB$),

при k = 2 значення зсуву d_2 буде 4 (\overline{ABCBAB}).

Зсув співпадаючого суфікса.

- А якщо в зразку подібних входжень *suff*(k) немає?
- Спробуємо зсунути шаблон на всю довжину т:

$$s_0$$
 ... c B A B ... s_{n-1} $\|\cdot\|$ $\|\cdot\|$ D B C B A B D B C B A B

• Але це не завжди дасть коректний результат!

 $A \quad B \quad C \quad B \quad A \quad B$

Зсув співпадаючого суфікса.

- Можна помітити, що в останньому зразку ABCBAB є префікс AB, що співпадає з суфіксом.
- Тому в шаблоні слід спочатку шукати найбільший префікс довжиною p<k, який співпадає з суфіксом аналогічної довжини p.
- Якщо такий префікс є, значенням d_2 буде відстань між префіксом і суфіксом, інакше $d_2 = m$.
- Для прикладу розглянемо таблицю співпадаючих суфіксів для зразка ABCBAB:

k	Зразок	d_2
1	ABCBA <u>B</u>	2
2	ABCB <u>AB</u>	4
3	ABC <u>BAB</u>	4
4	AB <u>CBAB</u>	4
5	ABCBAB	4

• Загальна схема алгоритму Боєра-Мура

Крок 1. Для заданого шаблону довжини m та відомого алфавіту будується таблиця зсувів неспівпадаючих символів.

Крок 2. Для заданого шаблону будується таблиця зсувів співпадаючих суфіксів.

Крок 3. Вирівнюємо початок зразка з початком тексту.

Крок 4. Поки не знайдеться шуканий підрядок чи шаблон не досягне кінця тексту, повторюємо: починаючи з кінця, порівнюємо відповідні символи зразка і тексту, поки не встановимо співпадіння всіх т символів (успішне завершення пошуку) або знайдеться пара різних символів після k≥0 символів, що співпали.

Крок 4 (кінець). В останньому випадку знаходимо d₁ з використанням значення t(c) з таблиці зсувів неспівпадаючих символів, де с — символ тексту, що не співпав. Якщо k > 0, також вибираємо відповідне d₂ з таблиці співпадаючих суфіксів. Визначаємо зсув:

$$d = \begin{cases} d_1 = \max\{t(c) - k, 1\}, & \text{при } k = 0, \\ \max\{d_1, d_2\}, & \text{при } k > 0. \end{cases}$$

• Зсув на максимальне з двох значень коректний, бо результат по кожному з випадків гарантує, що менші зсуви не приведуть до отримання шуканого підрядка.

<u>Приклад</u>. Пошук зразка ВАОВАВ в тексті з латинських літер і пробілів.

• Таблиця зсувів неспівпадаючих символів:

c	A	В	C	D		0		Z	
t(c)	1	2	6	6	6	3	6	6	6

 Таблиця зсувів співпадаючих суфіксів:

B A O B A B

• Перебіг пошуку:

- Алгоритм КМП (Knuth-Morris-Pratt).
- Один з найвідоміших алгоритмів пошуку підрядка.
- Має лінійну оцінку в найгіршому випадку (що компенсується не настільки високою ефективністю в середньому).
- На практиці метод використовується рідко, але є основою алгоритма Ахо-Корасік, що дозволяє знаходити входження зразка з заданого набору.
- Належить до алгоритмів, що проводять порівняння зліва направо.

- Як і в попередніх непримітивних алгоритмах, КМП використовує інформацію про символи, що співпали, для обчислення зсуву.
- Нехай ми знаходимося в процесі перевірки зразка ababaca при зміщенні s, при цьому q=5 символів співпали, а шостий відрізняється:

• Інформація про довжину ділянки збігу дозволяє дізнатися, які символи містить відповідна частина тексту, і визначити недопустимість певних зсувів.

• Наприклад, тут зсув (s+1) був явно недопустимий:

- Як при цьому визначити допустимість зсуву (s+2)?
- Якщо символи P[1..q] шаблону відповідають символам T[s+1..s+q] тексту, то треба знайти найменше зміщення s'>s таке, що для деякого k<q P[1..k] = T[s'+1..s'+k], де s'+ k = s + q.
- Тобто, знаючи, що P_q□T_{s+q} необхідно знайти найдовший істинний префікс P_k рядка P_q, який одночасно буде суфіксом T_{s+q}.

- Нове зміщення отримується як s' = s + (q k).
- В найкращому випадку k = 0 i s' = s + q, але в будьякому разі вже не потрібно порівнювати перші k символів зразка, бо вони гарантовано співпадають.
- Інформацію про зсув можна обчислити порівнюючи шаблон сам з собою:

- Шукається максимальне k<q, для якого P_k□P_q.
- Зручніше зберігати для кожного q кількість k символів, що співпадають при новому зміщенні s'.

- Для заданого шаблону P[1..q] визначимо *префікс-функцію* π : $\{1,2,...,m\} \to \{0,1,...,m-1\}$ так: $\pi[q] = \max\{k: k < q \text{ та } P_k \Box P_q\}$.
- Тобто, $\pi[q]$ є довжиною найбільшого префікса зразка, який є істинним суфіксом рядка P_{α} .
- Наприклад, префікс-функція для шаблону ababaca: [0, 0, 1, 2, 3, 0, 1]:
- "a", "ab" не містять нетривіального префікса = суфіксу "aba": префікс довжини 1 співпадає з суфіксом "abab": префікс довжини 2 співпадає з суфіксом "ababa": префікс довжини 3 співпадає з суфіксом "ababac" не містить нетрив. префікса = суфіксу "ababaca": префікс довжини 1 співпадає з суфіксом

Схема алгоритму обчислення префікс-функції.

- Значення $\pi[i]$ обчислюємо від i=1 до i=m-1 (при цьому $\pi[0]=0$).
- Для обчислення $\pi[i]$ вводиться ј довжина поточного зразка, який розглядається. Спочатку $j=\pi[i-1].$
- Тестуємо зразок довжини ј, порівнюючи символи s[j] та s[i]. Якщо вони співпадають: $\pi[i] = j+1$ та перехід до наступної ітерації (і + 1). Інакше: зменшуємо ј: $j=\pi[i-1]$ та продовжуємо тестування.
- Якщо дійшли до j=0 не знайшовши співпадінь: присвоєння $\pi[i]=0$ та перехід на ітерацію (i+1). 42

```
KMP_MATCHER(T, P)
 1 n \leftarrow length[T]
 2 \quad m \leftarrow length[P]
    \pi \leftarrow \text{Compute Prefix Function}(P)
   q \leftarrow 0
                                               Число совпавших символов
                                               Сканирование текста слева направо
    for i \leftarrow 1 to n
          do while q > 0 и P[q+1] \neq T[i]
 6
                  do q \leftarrow \pi[q]
                                               Следующий символ не совпадает
              if P[q+1] = T[i]
                then q \leftarrow q + 1

    Следующий символ совпадает

              if q = m
                                               \triangleright Совпали ли все символы образца P?
10
                then print "Образец обнаружен при сдвиге" i-m
11
                      q \leftarrow \pi[q]
                                               ⊳ Поиск следующего совпадения
12
```