Implementation of elliptic curve cryptography in constrained environments

Anthony Van Herrewege Prof. Dr. Ir. I. Verbauwhede & Prof. Dr. Ir. B. Preneel

18 Februari 2009

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Introduction

Implement a compact hardware implementation of elliptic curve pairings.

Implement a compact hardware **implementation of** elliptic curve pairings.

- Program in GEZEL
- Optimize in VHDL
- Synthetize to FPGA/ASIC

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

Overview

- 1 What?
- 2 Why?
- 3 How?

What?

■ Public key cryptography

What?

- Public key cryptography
- Identity-based cryptography

What?

- Public key cryptography
- Identity-based cryptography
- Calculations over elliptic curves

Why?

- Identity-based cryptography
 - No public key lookup required: eg. *P* = National identification number

Elliptic Curve Pairings

Why?

- Identity-based cryptography
 - No public key lookup required: eg. P = National identification number
 - Date-stamped encryption possible:

```
eg. P = Nin + "20091223"
```

Elliptic Curve Pairings

Why?

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects:

Non-interactive key establishment Single round tripartite key establishment Ideal for eg. sensor networks

Why?

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects:
 Non-interactive key establishment
 Single round tripartite key establishment
 Ideal for eg. sensor networks
 - Drawbacks as well: no key revocation, still a central authority, ...

Why?

- Identity-based cryptography
 - No public key lookup required:
 eg. P = National identification number
 - Date-stamped encryption possible: eg. P = Nin + "20091223"
 - Other positive aspects:
 Non-interactive key 6

Non-interactive key establishment Single round tripartite key establishment Ideal for eg. sensor networks

- Drawbacks as well: no key revocation, still a central authority, ...
- Key strength comparison [bits]: RSA 3072ECC 256

How?

Elliptic curve pairing e:

$$e: G_1 \times G_1 \rightarrow G_2$$

Mapping needs to be:

- Bilinear: $e(P_1 + P_2, P_3) = e(P_1, P_3) \cdot e(P_2, P_3)$
- Non-degenerate: $e(P, P) \neq 1$
- Efficiently computable

Several available pairings:

Weil, Tate, ate, eta, . . .

Outline

- 1 Introduction
- 2 Elliptic Curve Pairings
- 3 Implementation
- 4 Conclussion

MALU

Modulo Arithmetic Logical Unit [general]:

Implementation

MALU

Modulo Arithmetic Logical Unit [optimized]:

Implementation

MALU

Modulo Arithmetic Logical Unit [optimized; d-bits wide]:

Wrappers - GF_{2^m}

*GF*₂^m Multiplication/Addition:

Implementation 000000

Wrappers - ECC

ECC Point Addition/Doubling:

Implementation 000000

State of the art

Some currently available implementations:

Name	Platform	Field	Speed
TinyTate	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	30.2s
TinyPBC	ATMega128L [7.4Mhz]	$\mathbb{F}_{2^{256}}$	5.45s
Hankerson	P4 [2.8Ghz]	$\mathbb{F}_{2^{1223}}$	0.07s
Hankerson	P4 [2.8Ghz] (SSE)	$\mathbb{F}_{2^{1223}}$	0.03s

Outline

- 4 Conclussion

MALU

- MALU
- GF_{2m} functions

- MALU
- GF_{2m} functions
- ECC functions

- MALU
- *GF*₂^m functions
- ECC functions
- Pairing functions (partial)

Conclussion

To do

■ Complete pairing functions

Conclussion

To do

- Complete pairing functions
- Bugfixing

Conclussion

To do

- Complete pairing functions
- Bugfixing
- Optimization (VHDL)

Conclussion To do

- Complete pairing functions
- Bugfixing
- Optimization (VHDL)
- Write thesis text

The end

Conclussion

Questions?

