MATHF412-Méthodes variationnelles et équations aux dérivées partielles

Titulaire: Denis Bonheure

Problèmes non-linéaires

Attention:Dans cette liste d'exercices nous considèrons $\Omega \subset \mathbb{R}^N$ comme un ouvert borné et lisse.

Exercice 1 Soit

(P)
$$\begin{cases} -\Delta u + \lambda u = |u|^{p-2}u, & \text{dans} \quad \Omega, \\ u = 0, & \text{sur} \quad \partial \Omega, \end{cases}$$

où
$$\lambda > -\lambda_1(\Omega)$$
 et $p \in (2, 2^*)$.

- a) Montrer que la fonctionnelle énergie associée n'est ni bornée inférieurement ni bornée supérieurement.
- b) Montrer que

$$I = \inf \left\{ \int_{\Omega} \left(|\nabla v|^2 + \lambda |v|^2 \right) dx : v \in W_0^{1,2}(\Omega) \text{ t.q. } \int_{\Omega} |v|^p dx = 1 \right\}$$

est atteint par une fonction u.

c) Montrer que $\overline{u} = I^{\frac{1}{p-2}}u$ est une solution du problème de départ.

Indice: Utiliser le théorème des multiplicateurs de Lagrange et la formulation faible du problème.

d) Montrer que $\lambda > -\lambda_1(\Omega)$ est une condition nécessaire.

Indice: Prendre la première fonction propre du laplacien comme fonction teste dans la formulation faible.

Exercice 2 (Variété de Nehari) Le but de cet exercice est d'obtenir les mêmes résultats de l'exercice précedent par une méthode différente. Soit J la fonctionnelle énergie associée au problème (P), on définit la variété de Nehari associée à J par

$$\mathcal{N} := \{ u \in W_0^{1,2}(\Omega) \setminus \{0\} : J'(u)u = 0 \}.$$

a) Montrer que \mathcal{N} est une variété de classe C^1 et qu'il existe $\rho > 0$ tel que

$$||u||_{W_0^{1,2}} \ge \rho > 0 \quad \forall \ u \in \mathcal{N},$$

où
$$||u||_{W_0^{1,2}} = (\int_{\Omega} (|\nabla u|^2 + \lambda |u|^2) \, dx)^{1/2}.$$

Indice: si $\psi(u) = ||u||_{W_0^{1,2}} - ||u||_{L^p}^p$, alors $\mathcal{N} = \psi^{-1}(0) \setminus \{0\}$.

- b) Montrer que J est bornée inférieurement sur \mathcal{N} .
- c) Soit

$$c = \inf_{v \in \mathcal{N}} J(v).$$

Montrer que si $u \in \mathcal{N}$ est tel que J(u) = c, alors J'(u) = 0.

Indice: Utiliser le théorème de multiplicateurs de Lagrange pour obtenir $J'(u)v = \mu \psi'(u)v$ pour toute $v \in W_0^{1,2}(\Omega)$. Ensuite montrer que $\mu = 0$.

- d) Montrer que l'infimum est atteint sur \mathcal{N} . En déduire que (P) possède une solution faible non triviale.
- e) Montrer que si $u \in \mathcal{N}$ est un point critique de J tel que J(u) < 2c, alors u ne change pas de signe dans Ω . En déduire que le problème (P) possède une solution faible non nulle et non négative.

Indice: Prouver que u^+ et u^- appartiennent à \mathcal{N} .

Exercice 3 Soit 1 . Montrer que le problème

$$\begin{cases} -\Delta u = |u|^{p-2}u, & \text{dans} \quad \Omega, \\ u = 0, & \text{sur} \quad \partial\Omega, \end{cases}$$

possède au moins une solution $u \not\equiv 0$.

Indice: Soit J la fonctionnelle associée. Etant donnée $\phi \in W_0^{1,2}(\Omega) \setminus \{0\}$ étudier le signe de $J(t\phi)$ pour $t \sim 0$. Ensuite montrer que l'infimum est atteint en $u \in W_0^{1,2}(\Omega) \setminus \{0\}$.

Exercice 4 Soient H un espace de Hilbert et $J \in C^1(H; \mathbb{R})$. Prouver que si J satisfait $(PS)_c$, alors

$$\mathcal{K}_c = \{ u \in H : J(u) = c, \ J'(u) = 0 \}$$

est un ensemble compact.

Remarque: $(PS)_c$ signifie la condition de Palais-Smale au niveau c.

Exercice 5 Soient H un espace de Hilbert et $J \in C^1(H; \mathbb{R})$ avec

$$J'(u) = ||u||_H^2 + K(u)$$

où $K: H \to H$ est un opérateur compact. Montrer que J satisfait la condition de Palais-Smale si, et seulement si, chaque suite de Palais-Smale est bornée.

Exercice 6 (Application du théorème du col) Le but de cet exercice est de prouver l'existence d'une solution faible pour le problème (P) par le théorème du col. Soit J la fonctionnelle associée.

- a) Montrer que J satisfait les conditions géométriques du théorème du col, c'est-à-dire, ils existent $\rho, \alpha > 0$ tels que
 - (i) $J(u) \ge \alpha \text{ pour } ||u||_{W_0^{1,2}} = \rho;$
 - (ii) Il existe $e \in W_0^{1,2}(\Omega)$ tel que $\|e\|_{W_0^{1,2}} > \rho$ et $J(e) \leq 0$.
- b) Montrer que J satisfait la condition de Palais-Smale pour tout $c \in \mathbb{R}$.

Indice: Utiliser l'exercice 5 pour vérifer la condition de Palais-Smale.

Remarque: Ici c signifie le niveau critique de J, c'est-à-dire, il existe $u \in W_0^{1,2}(\Omega)$ telle que J(u) = c et J'(u) = 0.

c) En conclure.