EECS-553 Homework 1

Vipransh Sinha

February 5, 2025

1. Curse of Dimensionality

Consider a synthetic dataset where training and test data are generated with n samples in d dimension according to $X_{train} = \text{np.random.randn(d)/np.sqrt(d)}$. Here 1/np.sqrt(d) normalization ensures that the points approximately lie on the unit Euclidean ball. Set k = 1 i.e. we are investigating vanilla nearest neighbor classifier. Let x be a test example similarly drawn from np.random.randn(d). Let d(x) be the distance to the nearest neighbor i.e.

$$d(x) = \min_{x' \in X_{train}} ||x - x'||_2.$$

We will plot the expected distance $\mathbb{E}[d(x)]$ as a function of d and n. Concretely, we vary $d \in \{2, 4, 6, 8, 10\}$ and $n = \{100, 200, 500, 1000, 2000, 5000\}$. In order to estimate the expectation, average over sufficiently many test points x (e.g 100 realizations).

- Plot $\mathbb{E}[d(x)]$ as a function of n and create a separate curve for each choice of d. Create the plot in semilogx for better visualization
- \bullet Comment on the influence of d on the distance to the nearest neighbor
- Suppose we wish to ensure $\mathbb{E}[d(x)] \leq \epsilon$ for some $\epsilon > 0$. Based on these experiments, how do you expect n should grow as a function of d and ϵ (your best guess e.g exponential vs polynomial dependence)?

Solution

Plotting $\mathbb{E}[d(x)]$ as a function of n, we get the following graph below (code found in index). As dimension (d) increases, the expected distance ($\mathbb{E}[d(x)]$) to the closest nearest neighbor increases. Since we are on a semilog graph, the rate at which $\mathbb{E}[d(x)]$ changes as n increases is distorted. To ensure that $\mathbb{E}[d(x)] \leq \epsilon$, n should grow at: $n \propto e^{c\epsilon d}$, where c is arbitrary.

Figure 1: Exercise 1 Graph

2. Fast kNN implementations

Consider a synthetic dataset where training and test data are generated with n samples in d=2 dimension according to Xtrain = np.random.randn(n,2), ytrain = sign(np.random.rand(n)) (same for test). We will evaluate the computational performance of different kNN implementations on this dataset. In sklearn.KNeighborsClassifier, you can set algorithm to one of algo = ('balltree', 'kdtree', 'brute'). Set k=5 neighbors i.e set clf = neighbors.KNeighborsClassifier(5, algorithm=algo). Use $n_{test}=5000$ test examples for your evaluations.

- (a) Verify that 'brute' is the fastest algorithm for training i.e for running cld.fit(Xtrain, ytrain). Try n = 1000, n = 10000, n = 100000 and report the time using time.time().
- (b) Verify that 'brute' becomes slower at inference for sufficiently large n. By inference, we mean the time it takes to run clf.predict(Xtest). Specifically, evaluate on the grid $n \in [1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000]$ and plot the inference time of the three kNN methods as a function of n. For which n choice, 'brute' becomes the slowest option for the first time? The precise n might be hardware dependent and it does not have to be exact as long as you observe a trasition in your plot. You can again use time.time() for time measurements. You might have to try larger n choice (like $n = 10^6$ or more) if needed.

Solution

Figure 2: Graph for Exercise 2b

- a) After running each of the kNN implementations at different dataset sizes, I am finding that brute is by far the fastest for dataset sizes of [1000, 5000, 10000, 100000]. Rounded to 10 decimal places, at dataset sizes of 1,000 and 5,000 we get a runtime of 0 seconds. At a dataset size of 10,000 we get a runtime of 0.001 seconds (which is 4 times faster than kdtree and 5 times faster than balltree. At a dataset size of 100,000 we get a runtime of 0.009 seconds (which is ~ 7.5 times faster than kdtree, and ~ 6 times faster than balltree). The code and detailed runtimes found in Index.
- b) The above graph shows that at around $n\approx 10^5$ training set size, brute starts to become the slowest kNN algorithm.

3. PSD matrices

- (a) Prove that if all eigenvalues of a smmetric matrix A are positive, then $x^T A x > 0$ for all $x \neq 0$ (and hence A is positive definite).
- (b) A Gram matrix is any $d \times d$ matrix whose $(i, j)^{th}$ entry is $\langle x_i, x_i \rangle$ for some vectors x_1, \ldots, x_d . Show that Gram matrices are positive semi-definite.

Solution

a) Since A is symmetric and has all positive eigenvalues, we can rewrite $A = PDP^{T}$, where

 $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, and P is an orthogonal matrix. Thus we can rewrite

$$x^T A x = x^T (P D P^T) x$$

Letting arbitrary $y = P^T x$, we can rewrite again as

$$= y^T D y$$

= $\lambda_1 y_1^2 + \ldots + \lambda_n y_n^2$

Since all y terms are squared, and all λ values are positive by the problem statement, we have shown that $x^T A x > 0$.

b) Let G be the Gram matrix, and $G_{i,j} = \langle x_i, x_i \rangle$. Let u be an arbitrary vector. Let's apply the condition of positive semi-definiteness and expand:

$$u^{T}Gu = \sum_{i,j} u_{i}G_{i,j}u_{j}$$
$$= \sum_{i,j} \langle x_{i}, x_{j} \rangle u_{j}$$

using properties of the inner product, we get

$$= \sum_{j} \langle \sum_{i} u_{i} x_{i}, x_{j} \rangle u_{j}$$
$$= \langle \sum_{i} u_{i} x_{i}, \sum_{j} u_{j} x_{j} \rangle = \langle y, y \rangle$$

for some arbitrary real y. $\langle y, y \rangle \geq 0$ always, thus showing Gram matrices to always be PSD.

4. Unconstrained Optimization

- (a) Let A be an $m \times n$ matrix and $b \in \mathbb{R}^m$. Consider a convex function $f : \mathbb{R}^m \to \mathbb{R}$. Using the definition of convexity, prove that g(x) = f(Ax + b) is convex.
- (b) Prove that if f is strictly convex, f has at most one minimizer (recall that for convex functions, all local minima are also global minima).
- (c) Consider the function $f(x) = \frac{1}{2}x^T A x + b^T x + c$, where A is a symmetric $d \times d$ matrix. Derive the Hessian of f. Under what conditions on A, f is convex? Strictly convex?

Solution

a) Let $\lambda \in [0,1]$, and $y,z \in f$. We know f is convex, meaning that is must satisfy this condition:

$$f(\lambda y + (1 - \lambda)z) \le \lambda f(y) + (1 - \lambda)f(z)$$

To prove that g(x) = f(Ax + b), is convex, we must do similarly to above, and apply the condition of convexity:

$$g(\lambda x_1 + (1 - \lambda)x_2) = f(A(\lambda x_1 + (1 - \lambda)x_2) + b)$$

= $f(\lambda Ax_1 + (1 - \lambda)Ax_2 + b)$

Since we know f is convex by the problem statement, we get

$$f(\lambda Ax_1 + (1 - \lambda)Ax_2 + b) \le \lambda f(Ax_1 + b) + (1 - \lambda)f(Ax_2 + b)$$

Applying the definition of g, we get

$$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$$

Thus, we have shown g to be convex.

b) Assume that 2 minimizers exist: x_1, x_2 :

$$f(x_1) = f(x_2) = \min_{x} f(x)$$

The condition for strict convexity is:

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Since $f(x_1) = f(x_2)$, we get

$$f(\lambda x_1 + (1 - \lambda)x_2) < f(x_1)$$

This contradicts that x_1 and x_2 are both minimizers, thus showing that if f is strictly convex, then f has at most one minimizer.

c) $H = \nabla^2 f(x)$. $\nabla f(x) = Ax + b$. Taking the gradient once more, we find that $H = \nabla^2 f(x) = A$. By definition, f is convex if H is positive semi-definite. Thus to be convex, A must be symmetric, and all eigenvalues of A must be ≥ 0 . To be strictly convex, A must be symmetric, and all eigenvalues must be > 0.

5. The Bayes Classifier and Excess Risk

Consider the 0-1 loss. In class, the Bayes classifier was defined and discussed for multiclass classification. The Bayes classifier h^* achieves the lowest risk $R(h^*) = R^*$, which is called the Bayes Risk. This means that quantity $R(h) - R^*$, which we call the excess risk, is non-negative for any classifier h.

In this problem, we consider binary classification with label $Y \in \{1, -1\}$, and define $\eta(x) := \Pr(Y = 1 | X = x)$, the probability that Y = 1 given than X takes on the values x. For any classifier h, prove that the excess risk is given by

$$R(h) - R^* = \mathbb{E}_X[|2\eta(X) - 1| | 1_{\{h(X) \neq \text{sign}(2\eta(X) - 1)\}}]$$

Here

$$\operatorname{sign}(t) := \left\{ \begin{array}{ll} 1 & t \ge 0 \\ -1 & t < 0 \end{array} \right.$$

The convention sign(0) = 1 does not affect the problem. The results says that the excess risk depends on how much (on average) $\eta(X)$ deviates from $\frac{1}{2}$ at points where h disagrees with the Bayes classifier.

Hint: Refer to the proof for the Bayes classifier in the lecture notes, and for the binary case rewrite the proof in terms of η .

Solution

We can use the definition of risk of $R(h) = \mathbb{E}_X[P(h(X) \neq Y|X)] = \eta(X)1_{\{h(X)=0\}} + (1 - \eta(X))1_{\{h(X)=1\}}$ to help derive the formula for excess risk. Rewriting the problem we get:

$$\begin{array}{lcl} R(h) - R^* & = & R(h) - R(h^*) \\ & = & \eta(X) \mathbf{1}_{\{h(X) = 0\}} + (1 - \eta(X)) \mathbf{1}_{\{h(X) = 1\}} - (\eta(X) \mathbf{1}_{\{h^*(X) = 0\}} + (1 - \eta(X)) \mathbf{1}_{\{h^*(X) = 1\}}) \end{array}$$

We can split this problem into the condition of $h(x) \neq h^*(x)$. In the case of $h(X) = 0, h^*(X) = 1$, we get

$$1_{\{h(X)=0\}} = 1, \ 1_{\{h^*(X)=1\}} = 1$$

 $\Rightarrow \eta(X) - (1 - \eta(X)) = 2\eta(X) - 1$

In the case of $h(X) = 1, h^*(X) = 0$, we get

$$1_{\{h(X)=1\}} = 1, \ 1_{\{h^*(X)=0\}} = 1$$

 $\Rightarrow (1 - \eta(X)) - \eta(X) = 1 - 2\eta(X)$

We can take the absolute value, to get this:

$$\mathbb{E}_X[|2\eta(X) - 1 | 1_{\{h(x) \neq h^*(X)\}}]$$

We can use the definition in the problem to find the fact that $h(X) \neq h^*(X)$ is equivalent to $h(X) \neq \text{sign}(2\eta(X) - 1)$. Thus we have arrived the solution of:

$$R(h) - R^* = \mathbb{E}_X[|2\eta(X) - 1| | 1_{\{h(X) \neq \text{sign}(2\eta(X) - 1)\}}]$$

Index

```
Code for Exercise 1:
import random as rand
import numpy as np
import matplotlib.pyplot as plt
def generate_data(n,d):
    X_{train} = np.random.randn(n, d)/np.sqrt(d)
    return X<sub>-</sub>train
def nearest_neigbor_distance(X_train, x):
    distances = np. lin alg.norm(X_train - x, axis = 1)
    return np.min(distances)
def expected_distance(n, d):
    X_{train} = generate_{data}(n, d)
    distances = [nearest_neigbor_distance(X_train,
    np.random.randn(d)/np.sqrt(d) for _ in range (100)]
    return np.mean(distances)
d_{values} = [2, 4, 6, 8, 10]
n_{\text{values}} = [100, 200, 500, 1000, 2000, 5000]
expected_distances = np.zeros((len(d_values), len(n_values)))
for i, d in enumerate (d_values):
    for j, n in enumerate (n_values):
        expected\_distances[i,j] = expected\_distance(n, d)
plt. figure (figsize = (10, 6))
for i, d in enumerate(d_values):
    plt.plot(n_values, expected_distances[i], marker='o', label=f'd={d}')
plt.xscale("log")
plt.xlabel("Number of training points (n)")
plt.ylabel ("Expected nearest neighbor distance E[d(x)]")
plt.title ("Expected Nearest Neighbor Distance vs. n for different d")
plt.legend()
plt.grid(True)
plt.show()
```

Dataset size: n = 1000Algorithm: ball_tree, Time taken: 0.0020022392 seconds Algorithm: kd_tree, Time taken: 0.0009977818 seconds Algorithm: brute, Time taken: 0.000000000 seconds Dataset size: n = 5000Algorithm: ball_tree, Time taken: 0.0019919872 seconds Algorithm: kd_tree, Time taken: 0.0030074120 seconds Algorithm: brute, Time taken: 0.000000000 seconds Dataset size: n = 10000Algorithm: ball_tree, Time taken: 0.0050034523 seconds Algorithm: kd_tree, Time taken: 0.0049917698 seconds Algorithm: brute, Time taken: 0.0010025501 seconds Dataset size: n = 100000Algorithm: ball_tree, Time taken: 0.0550014973 seconds Algorithm: kd_tree, Time taken: 0.0669918060 seconds Algorithm: brute, Time taken: 0.0090067387 seconds Code for Exercise 2: import random as rand import numpy as np import time import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier def generate_Xdata(n): $X_{train} = np.random.randn(n, 2)$ return X₋train def generate_Ydata(n): $Y_{train} = np. sign(np.random.rand(n))$ return Y_train def evaluate_knn_times(n, algorithms): for i in n: $print(f"\nDataset\ size:\ n = \{i\}")$ for algo in algorithms: clf = KNeighborsClassifier(n_neighbors=5, algorithm=algo) start = time.time()clf.fit(generate_Xdata(i), generate_Ydata(i))

Runtimes for Exercise 2:

```
time_taken = time.time() - start
            print(f"Algorithm: {algo}, Time taken: {time_taken:.10f}
            seconds")
def inference_test (n_test, n_values_test, algorithms):
    X_{test} = np.random.randn(n_{test}, 2)
    inference_times = {algo: [] for algo in algorithms}
    for n in n_values_test:
        X_train = generate_Xdata(n)
        Y_train = generate_Ydata(n)
        for algo in algorithms:
             clf = KNeighborsClassifier(n_neighbors=5, algorithm=algo)
             clf.fit (X_train, Y_train)
            start = time.time()
             clf.predict(X_test)
            time_taken = time.time() - start
            inference_times [algo].append(time_taken)
    return inference_times
n_{\text{values}} = [1000, 5000, 10000, 100000]
n_values_test = [1000, 2000, 5000, 10000, 20000, 50000,
100000, 200000, 500000
algorithms = ['ball_tree', 'kd_tree', 'brute']
#part a
evaluate_knn_times(n_values, algorithms)
#part b
test_times = inference_test(5000, n_values_test, algorithms)
plt. figure (figsize = (10, 6))
for algo in algorithms:
    plt.plot(n_values_test, test_times[algo],
    label=f'knn-{algo}', marker='o')
plt.xlabel("Training Set Size (n)")
plt.ylabel("Inference Time (seconds)")
plt.title("kNN Inference Time vs. Training Set Size")
plt.legend()
plt.xscale("log")
plt.yscale("log")
plt.grid()
plt.show()
```