Подготовка к ЦТ Физика Вариант 10

Инструкция для учащихся

Вариант содержит 32 задания и состоит из части А (20 заданий) и части В (12 заданий). На его выполнение отводится 180 минут. Задания рекомендуется выполнять по порядку. Если задание не удается выполнить сразу, то перейдите к следующему. После того как выполните все задания, вернитесь к пропущенным.

При выполнении теста разрешается пользоваться калькулятором, который не относится к категории запрещенных средств хранения, приема и передачи информации. Во всех тестовых заданиях, если специально не оговорено в условии, сопротивлением воздуха при движении следует пренебречь.

При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ m/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$					
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$;	Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{Д} ж}{\textit{моль} \cdot \textit{K}}$					
$\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$						
Постоянная Авогадро $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23}$ Дж/К					
$\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Планка h = 6,63·10 ⁻³⁴ Дж·с					
$\sqrt{5} = 2,24$						

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10 ¹²	109	10 ⁶	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	МИЛЛИ	микро	нано	пико
Обозначение	T	Γ	M	К	С	M	МК	Н	П
приставок									

Часть А

В каждом задании части А только один из предложенных ответов является верным. В бланке ответов под номером задания поставьте метку (х) в клетке, соответствующей номеру выбранного Вами ответа.

A1	Среди перечисленных ниже терминов физической величиной является:	1) 1;
AI	среди перечисленных ниже терминов физической величиной является. 1) кинетическая энергия;	2) 2;
	2) взаимодействие;	3) 3;
	3) тяготение;	4) 4;
	4) колебание;	5) 5.
1.0	5) инерция.	4) 4
A2	На рисунке приведён график зависимости х, м	1) 1;
	координаты тела x от времени t .	2) 2;
	Соответствующий графику кинематический	3) 3;
	закон движения тела ооозначен цифрои:	4) 4;
	1) $x = A + Bt$, rge $A = 4.0$ M, $B = 8.0$ M/c; 2) $x = A + Bt$ rge $A = 0.0$ M, $B = 2.0$ M/c;	5) 5.
	(2) x - A + Bt, 1 $(4 + B) + (4 +$	
	3) $x = A + Bt$, где $A = 8.0$ м, $B = 2.0$ м/с;	
	4) $x = A + Bt$, где $A = 0.0$ м, $B = 4.0$ м/с;	
	5) $x = A + Bt$, где $A = 0.0$ м, $B = 8.0$ м/с.	
A3	Автомобиль первую часть пути проехал с постоянной скоростью модуль	1) 70 км/ч;
	которой $v_1 = 60$ км/ч, а вторую – с постоянной скоростью, модуль	2) 72 км/ч;
	которой $v_2 = 90$ км/ч. Если на первую часть пути он затратил в $k = 2,0$	3) 75 км/ч;
	раза больше времени, чем на вторую, то средняя путевая скорость $\langle \upsilon angle$	4) 78 км/ч;
	·	5) 80 км/ч.
A 4	движения автомобиля на всем пути равна:	1) 20
A4	Материальная точка равномерно движется по окружности радиусом	1) 30 m;
	$R=30$ см. Если угловая скорость точки $\omega=15$ рад/с, то за промежуток	2) 25 m;
	времени $\Delta t = 4.0$ с материальная точка пройдет путь s, равный:	3) 20 m;
		4) 18 m;
		5) 15 м.
A5	Тело массой m = 2,0 кг движется под действием нескольких сил вдоль	1) 1,0 H;
	оси Ох. Если движение тела описывается уравнением $x = At + Bt^2$, где	2) 2,0 H;
	A = 3,0 м/с, $B = 2,0$ м/с ² , то модуль равнодействующей F всех сил,	3) 4,0 H;
	дейситвующих на тело, равен:	4) 6,0 H;
		5) 8,0 H.

A6	На рисунтической вдоль от Равнодейст была наибо	ой эг си гвуюш	нерги <i>Ох</i> , цая с	5 6 x, M	1) 1-2; 2) 2-3; 3) 3-4; 4) 4-5; 5) 5-6.								
A7	соотношені 1) $p_1 = p_2$, F	горизо Оду. (см. р п давл и в иями: г ₁ = F ₂	онтал Уров рис.). ления второі ; 2	2	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.								
A8	4) $p_1 < p_2$, F Единицей м	¹ ₁ < F ₂ иоляр		1) 1 кг·моль; 2) 1 моль ⁻¹ ; 3) 1 кг/м ³ ; 4) 1 кг/моль; 5) 1 моль/кг.									
A9	Если в комнате сухой термометр психрометра показывает температур $t_0 = 20$ °C, а влажный $-t = 17$ °C, то относительная влажность ф воздух равна (см. таблицу):												1) 44 %; 2) 54 %; 3) 59 %; 4) 65 %; 5) 74 %.
A10	10 На рисунке представлены графики зависимости объёма V идеального газа от абсолютной температуры T при изобарном нагревании двух газов (I, II). Если массы газов одинаковы $(m_1 = m_2)$, а отношение их давлений $\frac{p_2}{p_1} = 2$, то отношение молярных масс газов $\frac{M_1}{M_2}$									000 T, K	1) $\frac{1}{4}$; 2) $\frac{1}{2}$; 3) 1; 4) 2; 5) 4.		
A11	равно: На T–V-диаграмме изображен процесс $0 \to 1 \to 2 \to 3 \to 4 \to 5$, проведённый с одним молем одноатомного газа. Внутренняя энергия газа не изменялась ($\Delta U = 0$) на участке:											1 4V ₀ V	1) $0 \rightarrow 1$; 2) $1 \rightarrow 2$; 3) $2 \rightarrow 3$; 4) $3 \rightarrow 4$; 5) $4 \rightarrow 5$.
A12	Два заряда расстоянии напряжённо A, находя E = 20 кВ/м	т дру ости з цейся	т от д электј на	цруга ростат расст	(см. р гичест оянии	оис.). кого : и г о	Если поля т зар	моду в точ ояда	/ль ике q ₂ ,	l r	q ₂	A	1) 2 мкH; 2) 4 мкH; 3) 8 мкH; 4) 16 мкH; 5) 25 мкH.

A13	Два резистора включены в электрическую цепь параллельно, как показано на рисунке. Значения силы тока в резисторах $I_1 = 0.8 \text{ A}, I_2 = 0.2 \text{ A}$. Для сопротивлений резисторов справедливо соотношение:	1) $R_1 = 4R_2$; 2) $R_1 = 2R_2$; 3) $R_1 = \frac{1}{4} R_2$; 4) $R_1 = \frac{1}{2} R_2$;
	резнеторов спривединьо соотношение.	
		5) $R_1 = R_2$.
A14	Чтобы измерить мощность тока, необходимо воспользоваться прибором, который называется:	 штангенциркуль; вольтметр; ваттметр; барометр; амперметр.
A15	Направление силы Ампера \vec{F}_A , действующей на прямолинейный проводник с током, помещенный в однородное магнитное поле с индукцией \vec{B} (см. рис.), обозначено цифрой: 1) 1; 2) 2; 3) 3; 4) 4; 5) 5.	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A16	При равномерном изменении силы тока со скоростью $\Delta I/t=1$ A/c в катушке индуктивности возникает ЭДС самоиндукции равная $\epsilon=0,20$ В. Если сила тока в этой катушке $I=5,0$ A, то энергия W её магнитного поля равна:	1) 0,5 Дж; 2) 1,5 Дж; 3) 2,5 Дж; 4) 3,5 Дж; 5) 4,5 Дж.
A17	Подвешенный на пружине груз, двигаясь по вертикали, совершает свободные колебания. Если расстояние $s=20$ см от верхнего крайнего положения до нижнего крайнего положения груз проходит за промежуток времени $\Delta t=0,40$ с, то амплитуда A и период T колебаний груза равны:	1) A = 0,40 m, T = 0,80 c; 2) A = 0,20 m, T = 0,80 c; 3) A = 0,20 m, T = 0,40 c; 4) A = 0,10 m, T = 0,80 c; 5) A = 0,10 m, T = 0,40 c.
A18	Скорость звука в воде $\upsilon = 1440$ м/с. Если время между испусканием и приемом сигнала эхолотом $\Delta t = 5,2$ с, то глубину моря H, равна:	1) 277 m; 2) 554 m; 3) 1108 m; 4) 3744 m; 5) 7488 m.
A19	Луч света переходит из воздуха в воду. Установите соответствие между физическими величинами и их возможными изменениями при этом. Физические величины А) Скорость распространения световой волны Б) Частота световой волны В) Длина световой волны З) не изменится 3) не изменится	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
	1) A2 Б3 B1; 2) A3 Б1 B3; 3) A2 Б2 B3; 4) A1 Б2 B2; 5) A2 Б3 B2.	
A20	Если атом водорода, поглотив фотон, перешел с третьего энергетического уровня ($E_3 = -2,41\cdot10^{-19}$ Дж) на шестой ($E_6 = -6,02\cdot10^{-20}$ Дж), то частота v поглощенного фотона равна:	1) 3,18·10 ¹⁵ Γ ι; 2) 7,27·10 ¹⁴ Γ ι; 3) 2,73·10 ¹⁴ Γ ι; 4) 1,14·10 ¹⁴ Γ ι; 5) 4,00·10 ¹³ Γ ι.

Часть В

Ответы, полученные при выполнении заданий части В запишите в бланке ответов. Искомые величины, обозначенные многоточием должны быть вычислены в указанных в заданиях единицах.

Если в результате вычислений получается дробное число, округлите его до целого, пользуясь правилами приближенных вычислений, и в бланк ответов запишите округленное число, начиная с первой клеточки. Каждую цифру и знак минуса (если число отрицательное) пишите в отдельной клеточке.

Единицы измерения величин (кг, м, Φ , мА, ${}^{\circ}C$ и др.) не пишите.

B1.	График зависимости проекции скорости υ_x материальной точки, движущейся вдоль оси Ox , от времени t изображен на рисунке. В течение первых шести секунд от начала отсчёта времени материальная точка прошла путь s , равный дм.
B2.	Горизонтальный стержень ab вращается вокруг вертикальной оси с частотой v . По стержню без трения может скользить шарик массой $m=33$ г, прикреплённый к оси пружиной, жесткость которой $k=1,1$ кН/м. Если в недеформированном состоянии длина пружины $l_0=30$ см, а при вращении стержня удлинение пружины $\Delta l=4,0$ см, то частота вращения v стержня вокруг вертикальной оси равна c^{-1}
В3.	К бруску массой $m = 1,2$ кг, лежащему на горизонтальной поверхности, прикреплена невесомая пружина жёсткостью $k = 20$ Н/м. Коэффициент трения между бруском и поверхностью $\mu = 0,4$. Если для медленного равномерного и прямолинейного перемещения бруска по поверхности на расстояние $l = 72$ см к свободному концу первоначально недеформированной пружины приложили горизонтальную силу, то работа A, совершённая этой силой, равна Дж.
B4.	Если деревянный шар опустить в жидкость плотностью $\rho_1 = 0.8$ г/см ³ , то он будет плавать в ней погрузившись на 50 % своего объёма. Если этот шар опустить в жидкость плотностью $\rho_2 = 0.3$ г/см ³ , то этот шар будет тонуть в ней с ускорением a равным см / c ² .
B5.	Закрытый цилиндрический сосуд объёмом $V = 69$ см ³ имеет небольшую трещину, через которую за сутки в него поступает $\Delta N = 5 \cdot 10^{17}$ молекул идеального газа. Температура газа в сосуде поддерживается постоянной $T = 300$ К. Если начальное давление газа в сосуде равно нулю, а скорость поступления молекул в него постоянна, то за время $\tau = 300$ сут сосуд заполнится газом до давления p , равного кПа
B6.	В калориметре находилась вода (c = 4,2 кДж/(кг·°С, L = 2,26 МДж/кг) массой m_1 = 1200 г при температуре t_1 = 20 °С. В воду впустили водяной пар массой m_2 = 83 г при температуре конденсации t_2 = 100 °С. Если теплоёмкость калориметра пренебрежимо мала, то после установления термодинамического равновесия температура t_3 воды в калориметре будет равна °С.
В7.	Один моль одноатомного идеального газа совершает цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа в пять раз больше минимального, а максимальный объём газа в три раза больше минимального. Коэффициент полезного действия η цикла равен %.
B8.	Поверхность металла сначала освещают монохроматическим светом с частотой $v_1 = 7,2 \cdot 10^{14}$ Гц, а затем монохроматическим светом с частотой $v_2 = 1,44 \cdot 10^{15}$ Гц. Если модуль максимальной скорости
	вылетающих фотоэлектронов в первом случае в три раза меньше, чем во втором $\left(\upsilon_{\max 1} = \frac{\upsilon_{\max 2}}{3}\right)$, то длина волны λ_{κ} электромагнитного излучения, соответствующая красной границе фотоэффекта для данного металла равна нм
В9.	В электрической цепи, схема которой представлена на рисунке, сопротивления $R_1 = 2$ Ом и $R_2 = 4$ Ом. Если при разомкнутом ключе К сила тока, проходящего через резистор R_1 , $I_1 = 10$ А, а при замкнутом ключе сила тока в источнике $I = 12$ А, то внутреннее сопротивление R_1 источника тока равно Ом.
B10.	Квадратная рамка с длиной стороны $a=3,4$ см, изготовленная из тонкой проволоки сечением $S=1,1$ мм 2 с удельным сопротивлением $\rho=1,7\cdot 10^{-8}$ Ом·м, помещена в однородное магнитное поле , линии индукции которого перпендикулярны плоскости рамки. Если скорость равномерного изменения
	индукции магнитного поля $\frac{\Delta B}{\Delta t} = -0.10 \frac{T \pi}{c}$, то сила тока I в рамке равна м A .
B11.	В идеальном колебательном LC-контуре происходят свободные электромагнитные колебания. Зависимость силы тока от времени имеет вид $I = A \sin(Bt + D)$, где $A = 0.2$ A, $B = 2.5 \cdot 10^3$ рад/с, $D = 6.3$ рад. Если ёмкость конденсатора $C = 5.0$ мк Φ , то максимальное напряжение U_0 на конденсаторе равно В.
B12.	Четыре точечных заряда $q_1 = q_2 = q_3 = q_4 = q = 1,7$ мкКл, находящиеся в вакууме, закреплены в вершинах квадрата, длина стороны которого $a = 21$ см. Если из центра квадрата маленькое тело массой $m = 0,14$ г и зарядом $Q = 35$ нКл начинает движение с начальной скоростью, модуль которой $v_0 = 14$ м/с, то, удалившись на бесконечно большое расстояние от закреплённых зарядов, тело приобретёт скорость v_0 , модуль которой равен м/с (Примечание. Действием силы тяжести пренебречь.)

Ответы	B – 10										
№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	
№ ответа	1	4	1	4	5	2	2	4	5	5	
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	
№ ответа	2	4	3	3	2	3	4	4	5	3	

№ задачи	B1	B2	В3	B4	B5	В6	В7	B8	В9	B10	B11	B12
№ ответа	75	10	4	250	9	60	26	476	2	55	16	20