

Claims

1. A compound having the formula

a N-oxide, an addition salt, a quaternary amine or a stereochemically isomeric form

5 thereof, wherein

$-b^1=b^2-C(R^{2a})=b^3-b^4$ represents a bivalent radical of formula

$-CH=CH-C(R^{2a})=CH-CH=$ (b-1);

$-N=CH-C(R^{2a})=CH-CH=$ (b-2);

$-CH=N-C(R^{2a})=CH-CH=$ (b-3);

10 $-N=CH-C(R^{2a})=N-CH=$ (b-4);

$-N=CH-C(R^{2a})=CH-N=$ (b-5);

$-CH=N-C(R^{2a})=N-CH=$ (b-6);

$-N=N-C(R^{2a})=CH-CH=$ (b-7);

q is 0, 1, 2; or where possible q is 3 or 4;

15 R^1 is hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyl; C₁₋₆alkyloxycarbonyl;

C₁₋₆alkyl substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl,

C₁₋₆alkylcarbonyloxy; C₁₋₆alkyloxyC₁₋₆alkylcarbonyl substituted with

C₁₋₆alkyloxycarbonyl;

R^{2a} is cyano, aminocarbonyl, mono- or di(methyl)aminocarbonyl, C₁₋₆alkyl substituted

20 with cyano, aminocarbonyl or mono- or di(methyl)aminocarbonyl, C₂₋₆alkenyl

substituted with cyano, or C₂₋₆alkynyl substituted with cyano;

each R^2 independently is hydroxy, halo, C₁₋₆alkyl optionally substituted with cyano or

$-C(=O)R^6$, C₃₋₇cycloalkyl, C₂₋₆alkenyl optionally substituted with one or more

halogen atoms or cyano, C₂₋₆alkynyl optionally substituted with one or more halogen

25 atoms or cyano, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, carboxyl, cyano, nitro, amino,

mono- or di(C₁₋₆alkyl)amino, polyhalomethyl, polyhalomethyloxy,

polyhalomethylthio, $-S(=O)_pR^6$, $-NH-S(=O)_pR^6$, $-C(=O)R^6$, $-NHC(=O)H$,

$-C(=O)NHNH_2$, $-NHC(=O)R^6$, $-C(=NH)R^6$ or a radical of formula

30 wherein each A independently is N, CH or CR⁶;

B is NH, O, S or NR⁶;

p is 1 or 2; and

R⁶ is methyl, amino, mono- or dimethylamino or polyhalomethyl;
L is C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₇cycloalkyl, whereby each of said aliphatic group may be substituted with one or two substituents independently selected from
* C₃₋₇cycloalkyl,
5 * indolyl or isoindolyl, each optionally substituted with one, two, three or four substituents each independently selected from halo, C₁₋₆alkyl, hydroxy, C₁₋₆alkyloxy, cyano, aminocarbonyl, nitro, amino, polyhalomethyl, polyhalomethoxy and C₁₋₆alkylcarbonyl,
* phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; or
10 L is -X-R³ wherein
R³ is phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; and
15 X is -NR¹-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)- or -S(=O)₂;-; Q represents hydrogen, C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl or -NR⁴R⁵; and R⁴ and R⁵ are each independently selected from hydrogen, hydroxy, C₁₋₁₂alkyl,
C₁₋₁₂alkyloxy, C₁₋₁₂alkylcarbonyl, C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or
20 di(C₁₋₁₂alkyl)amino, mono- or di(C₁₋₁₂alkyl)aminocarbonyl wherein each of the aforementioned C₁₋₁₂alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₆alkyl)amino, polyhalomethyl, polyhalomethoxy, polyhalomethylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H,
25 -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, aryl and Het; or
R⁴ and R⁵ taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C₁₋₁₂alkyl)aminoC₁₋₄alkylidene;
Y represents hydroxy, halo, C₃₋₇cycloalkyl, C₂₋₆alkenyl optionally substituted with one
30 or more halogen atoms, C₂₋₆alkynyl optionally substituted with one or more halogen atoms, C₁₋₆alkyl substituted with cyano or -C(=O)R⁶, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C₁₋₆alkyl)amino, polyhalomethyl, polyhalomethoxy, polyhalomethylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶
35 or aryl;
aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano,

nitro, polyhaloC₁₋₆alkyl and polyhaloC₁₋₆alkyloxy;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridinyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy.

- 5 2. A compound as claimed in claim 1 wherein R¹ is hydrogen, aryl, formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyl substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl.
- 10 3. A compound as claimed in claim 1 or 2 wherein L is -X-R³ wherein R³ is 2,4,6-trisubstituted phenyl.
- 15 4. A compound as claimed in any one of claims 1 to 3 wherein Y is cyano, -C(=O)NH₂ or a halogen.
- 20 5. A compound as claimed in any one of claims 1 to 4 wherein Q is hydrogen or NR⁴R⁵.
- 25 6. A compound as claimed in any one of claims 1 to 5 wherein the compound is 4-[[4-amino-5-chloro-6-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]-benzonitrile; 4-[[5-chloro-4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile; 4-[[5-bromo-4-(4-cyano-2,6-dimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile; 4-[[4-amino-5-chloro-6-[(4-cyano-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile; 4-[[5-bromo-6-[(4-cyano-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile; 4-[[4-amino-5-chloro-6-(4-cyano-2,6-dimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile; or 4-[[4-amino-5-bromo-6-(4-cyano-2,6-dimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile; a N-oxide, an addition salt, a quaternary amine and a stereochemically isomeric form thereof.
- 30 7. A compound as claimed in any one of claims 1 to 6 for use as a medicine.
- 35 8. The use of a compound of formula

a *N*-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein

$-a^1 = a^2 - a^3 = a^4$ - represents a bivalent radical of formula

wherein each A independently is N, CH or CR⁶;

B is NH, O, S or NR⁶;

- 25 p is 1 or 2; and
R⁶ is methyl, amino, mono- or dimethylamino or polyhalomethyl;
L is C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₇cycloalkyl, whereby each of said aliphatic group may be substituted with one or two substituents independently selected from
* C₃₋₇cycloalkyl,
30 * indolyl or isoindolyl, each optionally substituted with one, two, three or four substituents each independently selected from halo, C₁₋₆alkyl, hydroxy,

- C₁₋₆alkyloxy, cyano, aminocarbonyl, nitro, amino, polyhalomethyl, polyhalomethoxy and C₁₋₆alkylcarbonyl,
- * phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; or
- 5 L is -X-R³ wherein
R³ is phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; and
- 10 X is -NR¹-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)- or -S(=O)₂;-
Q represents hydrogen, C₁₋₆alkyl, halo, polyhaloC₁₋₆alkyl or -NR⁴R⁵; and
R⁴ and R⁵ are each independently selected from hydrogen, hydroxy, C₁₋₁₂alkyl,
C₁₋₁₂alkyloxy, C₁₋₁₂alkylcarbonyl, C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or
di(C₁₋₁₂alkyl)amino, mono- or di(C₁₋₁₂alkyl)aminocarbonyl wherein each of the
15 aforementioned C₁₋₁₂alkyl groups may optionally and each individually be
substituted with one or two substituents each independently selected from hydroxy,
C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino,
imino, mono- or di(C₁₋₆alkyl)amino, polyhalomethyl, polyhalomethoxy,
polyhalomethylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H,
20 -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, aryl and Het; or
R⁴ and R⁵ taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or
mono- or di(C₁₋₁₂alkyl)aminoC₁₋₄alkylidene;
- Y represents hydroxy, halo, C₃₋₇cycloalkyl, C₂₋₆alkenyl optionally substituted with one
25 or more halogen atoms, C₂₋₆alkynyl optionally substituted with one or more halogen
atoms, C₁₋₆alkyl substituted with cyano or -C(=O)R⁶, C₁₋₆alkyloxy,
C₁₋₆alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di(C₁₋₆alkyl)amino,
polyhalomethyl, polyhalomethoxy, polyhalomethylthio, -S(=O)_pR⁶,
-NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶
or aryl;
- 30 aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each
independently selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano,
nitro, polyhaloC₁₋₆alkyl and polyhaloC₁₋₆alkyloxy;
- Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is
selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl,
35 tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic
radical may optionally be substituted with an oxo group; and said aromatic hetero-
cyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridinyl, pyrimidinyl,

pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy;

for the manufacture of a medicine for the treatment of subjects suffering from HIV (Human Immunodeficiency Virus) infection.

5

9. The use of a compound as claimed in any one of claims 1 to 6 for the manufacture of a medicine for the treatment of subjects suffering from Human Immunodeficiency Virus infection.

10. 10. The use of a compound as claimed in any one of claims 1 to 6 wherein R¹ is hydrogen, aryl, formyl, C₁-6alkylcarbonyl, C₁-6alkyl, C₁-6alkyloxycarbonyl, C₁-6alkyl substituted with formyl, C₁-6alkylcarbonyl, C₁-6alkyloxycarbonyl for the manufacture of a medicine for the treatment of subjects suffering from HIV (Human Immunodeficiency Virus) infection.

15

11. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in any one of claims 1 to 6.

20. 12. A process for preparing a pharmaceutical composition as claimed in claim 11 characterized in that a therapeutically effective amount of a compound as claimed in any one of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.

25. 13. A process for preparing a compound as claimed in claim 1, characterized by
a) reacting an intermediate of formula (II) with an amino derivative of formula (III) under solvent-free conditions or in a reaction-inert solvent under a reaction-inert atmosphere

30

wherein W¹ is a suitable leaving group and L, Y, Q, R¹, R², R^{2a}, q and

-b¹=b²-C(R^{2a})=b³-b⁴= are as defined in claim 1;

b) reacting an intermediate of formula (IV) with an intermediate of formula (V) under solvent-free conditions or in an appropriate solvent under a reaction-inert atmosphere

wherein W^2 is a suitable leaving group and Y , Q , R^1 , R^2 , R^{2a} , R^3 , q and
 $-b^1=b^2-C(R^{2a})=b^3-b^4=$ are as defined in claim 1;

c) reacting an intermediate of formula (IV) with an intermediate of formula (VI) in
5 an appropriate solvent under a reaction-inert atmosphere in the presence of a
suitable base

wherein W^2 is a suitable leaving group and Y , Q , R^1 , R^2 , R^{2a} , R^3 , q and $-b^1=b^2-C(R^{2a})=b^3-b^4=$ are as defined in claim 1;

10 or, if desired, converting compounds of formula (I-a) into each other following
art-known transformation reactions; and further, if desired, converting the
compounds of formula (I-a), into an acid addition salt by treatment with an acid,
or conversely, converting the acid addition salt form into the free base by
treatment with alkali; and, if desired, preparing stereochemically isomeric forms
15 thereof.

- 14. The combination of a compound as defined in claim 1 or 8 and another
antiretroviral compound.
- 20 15. A combination as claimed in claim 14 for use as a medicine.
- 16. A product containing (a) a compound as defined in claim 1 or 8, and (b) another
antiretroviral compound, as a combined preparation for simultaneous, separate or
sequential use in anti-HIV treatment.
- 25 17. A pharmaceutical composition comprising a pharmaceutically acceptable carrier
and as active ingredients (a) a compound as defined in claim 1 or 8, and (b) another
antiretroviral compound.