INRAO

Analysis and integration of omics data in a context of plant abiotic stress: an example of workflow with the mixOmics package

Harold Duruflé

Chargé de Recherches (INRAE, BioForA)

Contribution of an integrative study to the understanding of plant adaptation to their environment: A focus on plant cell walls.

Supervisors:

Pr. Christophe DUNAND

Pr. Philippe BESSE & Sebastien DÉJEAN

Briefings in Bioinformatics, 00(00), 2020, 1–13
doi: 10.1093/bib/bbaa166
Problem Solving Protocol

A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis

Harold Duruflé, Merwann Selmani, Philippe Ranocha, Elisabeth Jamet, Christophe Dunand and Sébastien Déjean

Objectives & strategies

Mountains as areas of study

Mountains as areas of study

The model plant: Arabidopsis thaliana

PlantScreen Compact System

The cell wall: the plant skeleton

The cell wall contributes to the cell and the plant shapes

Different functions

Different compositions

Adapted from Höfte et, al., 2017 & Braidwood et al. 2013

The cell wall: main constituents

Cell wall polysaccharides

Scheller and Ulvskov 2010

- Interlaced networks that can be reorganized at any time
 - Dynamic and plastic
- Proteins contribute to assemble and remodel the cell wall
 - Different functional class

Study of natural populations

Highlighting the natural diversity of *A. thaliana* populations in the Pyrenees.

Natural populations from contrasted growth conditions

Environmental adaptation of A. thaliana

3 genetic clusters

2 contrasted altitudes

A system biology approach

Two organs

Omics analysis

Phenomics (Macro- and micro- phenotypic analyses)

5 and 4 phenotype on the rosette and the floral stems

Metabolomics

6 cell wall polysaccharides

Cell wall proteomics

• 364 and 414 cell wall proteins (CWPs) on rosette and floral stems

Transcriptomics

19,763 and 22,570 transcripts on rosette and floral stems

R Datasets Package "WallOmicsData"

Soon available (CRAN) for users needing benchmarking

- 3 biological replicates
- 20 plants per sample

A system biology approach: principle of blocks

mixOmics workflow

- 1) Ask a biological question
- 2) Run a method: pca(), pls(), spls(), plsda(), block.pls(),...
- 3) Represent individuals: plotIndiv()
- 4) Represent variables: plotVar(), plotLoadings(), cim(),...

Case study focused on the floral stem

Can we observe on the transcriptomics data, with no prior, the effect of different environmental growth conditions or different ecotypes?

→ Perform Principal Component Analysis

```
Result_PCA_stems_transcriptomics <- pca(Transcriptomics_Stems)
plotIndiv(Result_PCA_stems_transcriptomics)
plotVar(Result_PCA_stems_transcriptomics)</pre>
```


Can we observe on the transcriptomics data, with no prior, the effect of different environmental growth conditions or different ecotypes?

→ Perform Principal Component Analysis

```
plotIndiv(Result_PCA_stems_transcriptomics, group = Temperature, legend = TRUE)
plotVar(Result_PCA_stems_transcriptomics, var.names = FALSE, pch = 16, cex = 2, col = 2)
```


Can we observe a global effect of temperature on the different ecotypes according to their transcriptomics profiles?

→ Perform Projection to Latent Structures - Discriminant Analysis

```
Result_PLSDA_stems_transcriptomics_temperature <- plsda(X=Transcriptomics_Stems,Y= Temperature)
plotVar(Result_PLSDA_stems_transcriptomics_temperature)
plotIndiv(Result_PLSDA_stems_transcriptomics_temperature)
```


How to know the best candidate genes for the global effect of temperature?

→ Perform Sparse Projection to Latent Structures - Discriminant Analysis

```
Result_sPLSDA_stems_transcriptomics_temperature <- splsda(X = Transcriptomics_Stems, Y = Temperature, keepX = c(20,20))

plotIndiv(Result_sPLSDA_stems_transcriptomics_temperature)

plotVar(Result_sPLSDA_stems_transcriptomics_temperature, var.names = FALSE, pch = 16, cex = 2, col = 2)

plotLoadings(Result_sPLSDA_stems_transcriptomics_temperature, contrib = 'max', method = 'mean')
```


Horizontal integration

Can we highlight relationships between cell wall proteins and transcripts in stems?

→ Perform Projection to Latent Structures

Horizontal integration

Can we determine a multi-omics signature to classify ecotypes?

→ Perform multi-block Sparse Projection to Latent Structure - Discriminant Analysis (DIABLO)

```
Data Stems <- list(Transcriptomics = Transcriptomics Stems,
                      Proteomics = Proteomics Stems CW,
                      Metabolomics = Metabolomics Stems,
                      Phenomics = Phenomics Stems)
Keepdata Data Stems <- list(Transcriptomics = c(20, 20),</pre>
                                 Proteomics = c(20, 20),
                                 Metabolomics = c(6, 6),
                                 Phenomics = c(4, 4))
Result DIABLO stems <- block.splsda(X = Data Stems, Y = Temperature, keepX = Keepdata Data Stems)
plotIndiv(Result DIABLO stems, cex=4)
plotDiablo(Result DIABLO stems)
plotVar(Result DIABLO stems, var.names = c(FALSE, FALSE, TRUE, TRUE), pch = c(16, 17, NA, NA),
         cex = c(3, 3, 5, 5), col = c(2, 3, 7, 1))
  Block: Transcriptomics
                        Block: Proteomics
                                                                                                    Correlation Circle Plot
 Col.22Col.22.1
                                         Transcriptomics
                                    Col.1
                                          0.96
                                                    Proteomics
                                                                                                                   R&l_branchi
   Block: Metabolomics
                        Block: Phenomics
                                          0.92
                                                    0.91
                                                              Metabolomics
                                                                                     -0.5
                                                                                              Pectin Diameter Number_lateral_stems
                                           0.75
                                                     0.78
                                                                0.67
                                                                         Phenomics
```

• 15 • 22

Component 1

Can we determine a multi-omics signature to classify ecotypes?

→ Perform multi-block Sparse Projection to Latent Structure - Discriminant Analysis (DIABLO)

Vertical integration

Can we identify on the proteomics data behaviors that do not depend on the organ?

→ Perform Multivariate INTegrative Method (MINT)

Need to format the data to assemble the proteomic data of these two organs

```
# To retrieve the list of common proteins between Stems and Rosettes
Common List Prot Stem Rosette <- intersect(colnames(Proteomics Stems CW),</pre>
                                             colnames (Proteomics Rosettes CW))
length(Common List Prot Stem Rosette) # 304 common variables
# To build one single dataset with stem and rosette data
Data Prot Mint <- rbind.data.frame(Proteomics Rosettes CW[,Common List Prot Stem Rosette],
                                     Proteomics Stems CW[, Common List Prot Stem Rosette])
# To add factors
Organ Mint <- as.factor(rep(c("Rosette", "Stem"), each = 30))</pre>
Ecotype Mint <- rep(Ecotype, 2)</pre>
Genetic Cluster Mint <- rep (Genetic Cluster, 2)
Altitude Cluster Mint <- rep (Altitude Cluster, 2)
# To make the rownames more explicit and not duplicated
                                                                                                      Proteomics
rownames (Data Prot Mint) [31:60] <-paste0 ("Stem.", rownames (Data Prot Mint) [1:30])
rownames (Data Prot Mint) [1:30] <-paste0 ("Rosette.", rownames (Data Prot Mint) [1:30])
                                                                                                      Proteomics
```

With no prior, what are the main effects of different environmental growth conditions or different ecotypes, when controlling the variations due to the organ?

→ Perform MINT-PCA

```
res_mint_pca <- mint.pca(X = Data_Prot_Mint, study = Organ_Mint, ncomp = 3)
plotIndiv(res_mint_pca, legend = TRUE, ind.names = FALSE, pch = Organ_Mint, group = Ecotype_Mint)

res_pca_no_mint <- pca(X = Data_Prot_Mint, ncomp = 3)
plotIndiv(res_pca_no_mint, legend = TRUE, ind.names = FALSE, pch = Organ_Mint, group = Ecotype_Mint)</pre>
```


Can we determine a proteomics signature of the 5 ecotypes controlling the variations due to the organ?

→ Perform MINT-sPLS-DA

CONCLUSIONS

Conclusions

- Practice on your own data! The best way to understand what a method has to tell you.
- Do not bypass the elementary analyses (univariate, bivariate, multivariate single data set)
- Clearly identify the biological question to use the most appropriate methods

Thanks for your attention

Christophe Dunand Élisabeth Jamet Philippe Ranocha Vincent Burlat Maxime Bonhomme

Sébastien Déjean Philippe Besse

Nathalie Escaravage Monique Burrus

Michel Zivy Thierry Balliau

