FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

Página 126

PARA EMPEZAR, REFLEXIONA Y RESUELVE

- 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora:
 - a) ¿Cuántos radianes corresponden a los 360° de una circunferencia?
 - b) ¿Cuántos grados mide 1 radián?
 - c) ¿Cuántos grados mide un ángulo de $\frac{\pi}{2}$ radianes?
 - d) ¿Cuántos radianes equivalen a 270°?

b)
$$\frac{360^{\circ}}{2\pi}$$
 = 57° 17′ 44,8″

c)
$$\frac{360^{\circ}}{2\pi} \cdot \frac{\pi}{2} = 90^{\circ}$$

d)
$$\frac{270^{\circ}}{360^{\circ}} \cdot 2\pi = 3 \frac{\pi}{2}$$

Página 128

2. Pasa a radianes los siguientes ángulos:

f) 300°

Expresa el resultado en función de π y luego en forma decimal. Por ejemplo:

$$30^{\circ} = 30 \cdot \frac{\pi}{180} \text{ rad} = \frac{\pi}{6} \text{ rad} \approx 0,52 \text{ rad}$$

a)
$$\frac{2\pi}{360^{\circ}} \cdot 30^{\circ} = \frac{\pi}{6} \text{ rad} \approx 0.52 \text{ rad}$$

b)
$$\frac{2\pi}{360^{\circ}} \cdot 72^{\circ} = \frac{2\pi}{5} \text{ rad } \approx 1,26 \text{ rad}$$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 90^{\circ} = \frac{\pi}{2} \text{ rad } \approx 1,57 \text{ rad}$$

d)
$$\frac{2\pi}{360^{\circ}}$$
 · 127° ≈ 2,22 rad

e)
$$\frac{2\pi}{360^{\circ}} \cdot 200^{\circ} = \frac{10\pi}{9} \text{ rad } \approx 3,49 \text{ rad}$$

f)
$$\frac{2\pi}{360^{\circ}} \cdot 300^{\circ} = \frac{5\pi}{3} \text{ rad} \approx 5,24 \text{ rad}$$

- 3. Pasa a grados los siguientes ángulos:
 - a) 2 rad
- b) 0,83 rad
- c) $\frac{\pi}{5}$ rad d) $\frac{5\pi}{6}$ rad e) 3,5 rad

a)
$$\frac{360^{\circ}}{2\pi} \cdot 2 = 114^{\circ} 35' 29,6''$$

b)
$$\frac{360^{\circ}}{2\pi} \cdot 0.83 = 47^{\circ} 33' 19.8''$$

c)
$$\frac{360^{\circ}}{2\pi} \cdot \frac{\pi}{5} = 36^{\circ}$$

d)
$$\frac{360^{\circ}}{2\pi} \cdot \frac{5\pi}{6} = 150^{\circ}$$

e)
$$\frac{360^{\circ}}{2\pi}$$
 · 3,5 = 200° 32′ 6,8″

4. Completa la siguiente tabla añadiendo las razones trigonométricas (seno, coseno y tangente) de cada uno de los ángulos. Te será útil para el próximo apartado:

GRADOS	0	30		60	90		135	150		210	225		270			330	360
RADIANES			$\frac{\pi}{4}$			$\frac{2}{3}\pi$			π			$\frac{4}{3}\pi$		$\frac{5}{3}\pi$	$\frac{7}{4}\pi$		

La tabla completa está en el siguiente apartado (página siguiente) del libro de texto. Tan solo falta la última columna, que es igual que la primera.

Página 133

1. Demuestra la fórmula II.2 a partir de la fórmula:

$$cos(\alpha + \beta) = cos \alpha cos \beta - sen \alpha sen \beta$$

$$\cos (\alpha - \beta) = \cos (\alpha + (-\beta)) = \cos \alpha \cos (-\beta) - \sin \alpha \sin (-\beta) =$$

$$= \cos \alpha \cos \beta - \sin \alpha (-\sin \beta) =$$

$$= \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

2. Demuestra la fórmula II.3 a partir de la fórmula:

$$tg(\alpha - \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta}$$

$$tg\left(\alpha-\beta\right)=tg\left(\alpha+(-\beta)\right)=\frac{tg\;\alpha+tg\;(-\beta)}{1-tg\;\alpha\;tg\;(-\beta)}\stackrel{(*)}{=}\frac{tg\;\alpha+(-tg\;\beta)}{1-tg\;\alpha\;(-tg\;\beta)}=$$

$$=\frac{tg\;\alpha-tg\;\beta}{1+tg\;\alpha\;tg\;\beta}$$

(*) Como
$$\begin{cases} sen(-\alpha) = -sen \alpha \\ cos(-\alpha) = cos \alpha \end{cases} \rightarrow tg(-\alpha) = -tg \alpha$$

3. Demuestra la fórmula II.3 a partir de las fórmulas:

$$sen (\alpha - \beta) = sen \alpha cos \beta - cos \alpha - sen \beta$$

$$cos (\alpha - \beta) = cos \alpha cos \beta + sen \alpha - sen \beta$$

$$tg (\alpha - \beta) = \frac{sen (\alpha - \beta)}{cos (\alpha - \beta)} = \frac{sen \alpha cos \beta - cos \alpha sen \beta}{cos \alpha cos \beta + sen \alpha sen \beta} \stackrel{(*)}{=}$$

$$= \frac{sen \alpha cos \beta}{cos \alpha cos \beta} - \frac{cos \alpha sen \beta}{cos \alpha cos \beta}$$

$$= \frac{tg \alpha - tg \beta}{1 + tg \alpha tg \beta}$$

- (*) Dividimos numerador y denominador por $\cos \alpha \cos \beta$.
- 4. Si sen 12° = 0,2 y sen 37° = 0,6, halla cos 12°, tg 12°, cos 37° y tg 37°. Calcula, después, a partir de ellas, las razones trigonométricas de 49° y de 25°, utilizando las fórmulas (I) y (II).

•
$$sen 12^{\circ} = 0.2$$

 $cos 12^{\circ} = \sqrt{1 - sen^2 12^{\circ}} = \sqrt{1 - 0.04} = 0.98$
 $tg 12^{\circ} = \frac{0.2}{0.98} = 0.2$

•
$$sen 37^{\circ} = 0.6$$

 $cos 37^{\circ} = \sqrt{1 - sen^2 37^{\circ}} = \sqrt{1 - 0.36} = 0.8$
 $tg 37^{\circ} = \frac{0.6}{0.8} = 0.75$

•
$$49^{\circ} = 12^{\circ} + 37^{\circ}$$
, luego:
 $sen \ 49^{\circ} = sen \ (12^{\circ} + 37^{\circ}) = sen \ 12^{\circ} \cos 37^{\circ} + \cos 12^{\circ} sen \ 37^{\circ} =$

$$= 0.2 \cdot 0.8 + 0.98 \cdot 0.6 = 0.748$$

$$\cos 49^{\circ} = \cos (12^{\circ} + 37^{\circ}) = \cos 12^{\circ} \cos 37^{\circ} - sen \ 12^{\circ} sen \ 37^{\circ} =$$

$$= 0.98 \cdot 0.8 - 0.2 \cdot 0.6 = 0.664$$

$$tg \ 49^{\circ} = tg \ (12^{\circ} + 37^{\circ}) = \frac{tg \ 12^{\circ} + tg \ 37^{\circ}}{1 - tg \ 12^{\circ} tg \ 37^{\circ}} = \frac{0.2 + 0.75}{1 - 0.2 \cdot 0.75} = 1.12$$

$$\left(\text{Podría calcularse} \quad tg \ 49^{\circ} = \frac{sen \ 49^{\circ}}{\cos 49^{\circ}} \right).$$

•
$$25^{\circ} = 37^{\circ} - 12^{\circ}$$
, luego:
 $sen\ 25^{\circ} = sen\ (37^{\circ} - 12^{\circ}) = sen\ 37^{\circ}\ cos\ 12^{\circ} - cos\ 37^{\circ}\ sen\ 12^{\circ} =$

$$= 0,6 \cdot 0,98 - 0,8 \cdot 0,2 = 0,428$$

$$cos\ 25^{\circ} = cos\ (37^{\circ} - 12^{\circ}) = cos\ 37^{\circ}\ cos\ 12^{\circ} + sen\ 37^{\circ}\ sen\ 12^{\circ} =$$

$$= 0,8 \cdot 0,98 + 0,6 \cdot 0,2 = 0,904$$

$$tg\ 25^{\circ} = tg\ (37^{\circ} - 12^{\circ}) = \frac{tg\ 37^{\circ} - tg\ 12^{\circ}}{1 + tg\ 37^{\circ}\ tg\ 12^{\circ}} = \frac{0,75 - 0,2}{1 + 0,75 \cdot 0,2} = 0,478$$

5. Demuestra la siguiente igualdad:

$$\frac{\cos(a+b)+\cos(a-b)}{\sin(a+b)+\sin(a-b)} = \frac{1}{tg a}$$

$$\frac{\cos(a+b) + \cos(a-b)}{\sin(a+b) + \sin(a-b)} = \frac{\cos a \cos b - \sin a \sin b + \cos a \cos b + \sin a \sin b}{\sin a \cos b + \cos a \cos b + \cos a \cos b + \cos a \cos b} = \frac{2\cos a \cos b}{2\sin a \cos b} = \frac{\cos a}{\sin a} = \frac{1}{tg a}$$

6. Demuestra las tres fórmulas (III.1), (III.2) y (III.3) haciendo α = β en las fórmulas (I).

$$sen \ 2\alpha = sen \ (\alpha + \alpha) = sen \ \alpha \ cos \ \alpha + cos \ \alpha \ sen \ \alpha = 2 \ sen \ \alpha \ cos \ \alpha$$

$$cos \ 2\alpha = cos \ (\alpha + \alpha) = cos \ \alpha \ cos \ \alpha - sen \ \alpha \ sen \ \alpha = cos^2 \ \alpha - sen^2 \ \alpha$$

$$tg \ 2\alpha = tg \ (\alpha + \alpha) = \frac{tg \ \alpha + tg \ \alpha}{1 - tg \ \alpha \ tg \ \alpha} = \frac{2 \ tg \ \alpha}{1 - tg^2 \ \alpha}$$

7. Halla las razones trigonométricas de 60° a partir de las de 30°.

$$sen 60^{\circ} = sen (2 \cdot 30^{\circ}) = 2 sen 30^{\circ} cos 30^{\circ} = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

$$cos 60^{\circ} = cos (2 \cdot 30^{\circ}) = cos^{2} 30^{\circ} - sen^{2} 30^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$$

$$tg 60^{\circ} = tg (2 \cdot 30^{\circ}) = \frac{2 tg 30^{\circ}}{1 - tg^{2} 30^{\circ}} = \frac{2 \cdot \sqrt{3}/3}{1 - (\sqrt{3}/3)^{2}} = \frac{2 \cdot \sqrt{3}/3}{1 - 3/9} = \frac{2 \cdot \sqrt{3}/3}{2/3} = \sqrt{3}$$

8. Halla las razones trigonométricas de 90° a partir de las de 45°.

$$sen 90^{\circ} = sen (2 \cdot 45^{\circ}) = 2 sen 45^{\circ} cos 45^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 1$$

$$cos 90^{\circ} = cos (2 \cdot 45^{\circ}) = cos^{2} 45^{\circ} - sen^{2} 45^{\circ} = \left(\frac{\sqrt{2}}{2}\right)^{2} - \left(\frac{\sqrt{2}}{2}\right)^{2} = 0$$

$$tg 90^{\circ} = tg (2 \cdot 45^{\circ}) = \frac{2 tg 45^{\circ}}{1 - t\sigma^{2} 45^{\circ}} = \frac{2 \cdot 1}{1 - 1} \rightarrow \text{No existe.}$$

9. Demuestra que $\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$.

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

Página 134

10. Siguiendo las indicaciones que se dan, demuestra detalladamente las fórmulas IV.1, IV.2 y IV.3.

•
$$\cos \alpha = \cos \left(2 \cdot \frac{\alpha}{2}\right) = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}$$

Como por la igualdad fundamental:

$$\cos^2 \frac{\alpha}{2} + sen^2 \frac{\alpha}{2} = 1 \rightarrow 1 = \cos^2 \frac{\alpha}{2} + sen^2 \frac{\alpha}{2}$$

De aquí:

a) Sumando ambas igualdades:

$$1 + \cos \alpha = 2 \cos^2 \frac{\alpha}{2} \rightarrow \cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2} \rightarrow \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

b) Restando las igualdades $(2^{\underline{a}} - 1^{\underline{a}})$:

$$1 - \cos \alpha = 2 \operatorname{sen}^2 \frac{\alpha}{2} \quad \to \quad \operatorname{sen}^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2} \quad \to \quad \operatorname{sen} \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

• Por último:

$$tg \frac{\alpha}{2} = \frac{sen \alpha/2}{cos \alpha/2} = \frac{\pm \sqrt{\frac{1 - cos \alpha}{2}}}{\pm \sqrt{\frac{1 + cos \alpha}{2}}} = \sqrt{\frac{1 - cos \alpha}{1 + cos \alpha}}$$

11. Sabiendo que cos 78° = 0,2, calcula sen 78° y tg 78°. Averigua las razones trigonométricas de 39° aplicando las fórmulas del ángulo mitad.

•
$$cos 78^{\circ} = 0,2$$

$$sen 78^{\circ} = \sqrt{1 - cos^2 78^{\circ}} = \sqrt{1 - 0.2^2} = 0.98$$

$$tg 78^{\circ} = \frac{0.98}{0.2} = 4.9$$

•
$$sen 39^{\circ} = sen \frac{78^{\circ}}{2} = \sqrt{\frac{1 - cos 78^{\circ}}{2}} = \sqrt{\frac{1 - 0.2}{2}} = 0.63$$

$$\cos 39^\circ = \cos \frac{78^\circ}{2} = \sqrt{\frac{1 + \cos 78^\circ}{2}} = \sqrt{\frac{1 + 0.2}{2}} = 0.77$$

$$tg\ 39^{\circ} = tg\ \frac{78^{\circ}}{2} = \sqrt{\frac{1 - \cos 78^{\circ}}{1 + \cos 78^{\circ}}} = \sqrt{\frac{1 - 0.2}{1 + 0.2}} = 0.82$$

12. Halla las razones trigonométricas de 30° a partir de cos 60° = 0,5.

•
$$cos 60^{\circ} = 0.5$$

•
$$sen 30^\circ = sen \frac{60^\circ}{2} = \sqrt{\frac{1 - 0.5}{2}} = 0.5$$

$$\cos 30^\circ = \cos \frac{60^\circ}{2} = \sqrt{\frac{1+0.5}{2}} = 0.866$$

$$tg\ 30^{\circ} = tg\ \frac{60^{\circ}}{2} = \sqrt{\frac{1-0.5}{1+0.5}} = 0.577$$

- 13. Halla las razones trigonométricas de 45° a partir de cos 90° = 0.
 - $\cos 90^{\circ} = 0$

•
$$sen 45^\circ = sen \frac{90^\circ}{2} = \sqrt{\frac{1-0}{2}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$

$$cos 45^\circ = cos \frac{90^\circ}{2} = \sqrt{\frac{1+0}{2}} = \frac{\sqrt{2}}{2}$$

$$tg\ 45^{\circ} = tg\ \frac{90^{\circ}}{2} = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1$$

14. Demuestra que $2tg \alpha \cdot sen^2 \frac{\alpha}{2} + sen \alpha = tg \alpha$.

$$2 tg \alpha \cdot sen^{2} \frac{\alpha}{2} + sen \alpha = 2 tg \alpha \cdot \frac{1 - cos \alpha}{2} + sen \alpha =$$

$$= \frac{sen \alpha}{cos \alpha} (1 - cos \alpha) + sen \alpha = sen \alpha \left(\frac{1 - cos \alpha}{cos \alpha} + 1 \right) =$$

$$= sen \alpha \left(\frac{1 - cos \alpha + cos \alpha}{cos \alpha} \right) = sen \alpha \cdot \frac{1}{cos \alpha} =$$

$$= \frac{sen \alpha}{cos \alpha} = tg \alpha$$

15. Demuestra que $\frac{2 sen \alpha - sen 2\alpha}{2 sen \alpha + sen 2\alpha} = tg^2 \frac{\alpha}{2}$.

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} =$$

$$= \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha} = tg^2 \frac{\alpha}{2}$$

Página 135

- 16. Para demostrar las fórmulas (V.3) y (V.4), da los siguientes pasos:
 - Expresa en función de α y β :

$$cos(\alpha + \beta) = ...$$
 $cos(\alpha - \beta) = ...$

- Suma y resta como hemos hecho arriba y obtendrás dos expresiones.
- Sustituye en las expresiones anteriores:

$$\alpha + \beta = A$$

$$\alpha - \beta = B$$

•
$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

 $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$
Sumando $\rightarrow \cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha \cos\beta$ (1)

Restando
$$\rightarrow \cos(\alpha + \beta) - \cos(\alpha - \beta) = -2 \sin \alpha \sin \beta$$
 (2)

• Llamando
$$\begin{cases} \alpha + \beta = A \\ \alpha - \beta = B \end{cases} \rightarrow \alpha = \frac{A+B}{2}, \ \beta = \frac{A-B}{2}$$
 (al resolver el sistema)

• Luego, sustituyendo en (1) y (2), se obtiene:

$$(1) \rightarrow \cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$

(2)
$$\rightarrow \cos A - \cos B = -2 \operatorname{sen} \frac{A+B}{2} \operatorname{sen} \frac{A-B}{2}$$

17. Transforma en producto y calcula:

c)
$$\cos 75^{\circ} - \cos 15^{\circ}$$

a)
$$sen 75^{\circ} - sen 15^{\circ} = 2 cos \frac{75^{\circ} + 15^{\circ}}{2} sen \frac{75^{\circ} - 15^{\circ}}{2} =$$

$$= 2 cos 45^{\circ} sen 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{2}}{2}$$

b)
$$\cos 75^\circ + \cos 15^\circ = 2 \cos \frac{75^\circ + 15^\circ}{2} \cos \frac{75^\circ - 15^\circ}{2} =$$

= $2 \cos 45^\circ \cos 30^\circ = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$

c)
$$\cos 75^{\circ} - \cos 15^{\circ} = -2 \operatorname{sen} \frac{75^{\circ} + 15^{\circ}}{2} \operatorname{sen} \frac{75^{\circ} - 15^{\circ}}{2} =$$

$$= -2 \operatorname{sen} 45^{\circ} \cos 30^{\circ} = -2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{6}}{2}$$

18. Expresa en forma de producto el numerador y el denominador de esta fracción y simplifica el resultado:

$$\frac{sen 4a + sen 2a}{\cos 4a + \cos 2a}$$

$$\frac{\sec 4a + \sec 2a}{\cos 4a + \cos 2a} = \frac{2 \sec \frac{4a + 2a}{2} \cos \frac{4a - 2a}{2}}{2 \cos \frac{4a + 2a}{2} \cos \frac{4a - 2a}{2}} = \frac{2 \sec 3a}{2 \cos 3a} = tg \ 3a$$

Página 137

1. Resuelve estas ecuaciones:

a)
$$2\cos^2 x + \cos x - 1 = 0$$

b)
$$2sen^2 x - 1 = 0$$

c)
$$tg^2 x - tg x = 0$$

d)
$$2sen^2 x + 3cos x = 3$$

a)
$$\cos x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = \frac{1/2 \rightarrow x_1 = 60^\circ, \ x_2 = 300^\circ}{-1 \rightarrow x_3 = 180^\circ}$$

Las tres soluciones son válidas (se comprueba en la ecuación inicial).

b)
$$2 \ sen^2 \ x - 1 = 0 \ \to \ sen^2 \ x = \frac{1}{2} \ \to \ sen \ x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x_1 = 45^\circ, x_2 = 135^\circ$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x_3 = -45^\circ = 315^\circ, \ x_4 = 225^\circ$$

Todas las soluciones son válidas.

c)
$$tg^{2} x - tg x = 0 \rightarrow tg x (tg x - 1) = 0 \rightarrow tg x = 0 \rightarrow tg x = 180^{\circ}$$

 $tg x = 0 \rightarrow x_{1} = 0^{\circ}, x_{2} = 180^{\circ}$
 $tg x = 1 \rightarrow x_{3} = 45^{\circ}, x_{4} = 225^{\circ}$

Todas las soluciones son válidas.

d)
$$2 sen^2 x + 3 cos x = 3 \xrightarrow{(*)} 2 (1 - cos^2 x) + 3 cos x = 3$$

(*) Como
$$sen^2 x + cos^2 x = 1 \rightarrow sen^2 x = 1 - cos^2 x$$

$$2-2\cos^2 x + 3\cos x = 3 \rightarrow 2\cos^2 x - 3\cos x + 1 = 0$$

$$\cos x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} = \frac{1}{1/2}$$

Entonces: • Si
$$\cos x = 1 \rightarrow x_1 = 0^\circ$$

• Si
$$\cos x = \frac{1}{2} \rightarrow x_2 = 60^\circ$$
, $x_3 = -60^\circ = 300^\circ$

Las tres soluciones son válidas.

2. Resuelve:

a)
$$4\cos 2x + 3\cos x = 1$$

b)
$$tg 2x + 2cos x = 0$$

c)
$$\sqrt{2} \cos (x/2) - \cos x = 1$$

d)
$$2 sen x cos^2 x - 6 sen^3 x = 0$$

a)
$$4 \cos 2x + 3 \cos x = 1 \rightarrow 4 (\cos^2 x - \sin^2 x) + 3 \cos x = 1 \rightarrow$$

$$\rightarrow 4 (\cos^2 x - (1 - \cos^2 x)) + 3 \cos x = 1 \rightarrow 4 (2 \cos^2 x - 1) + 3 \cos x = 1 \rightarrow$$

$$\rightarrow 8 \cos^2 x - 4 + 3 \cos x = 1 \implies 8 \cos^2 x + 3 \cos x - 5 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{-3 \pm \sqrt{9 + 160}}{16} = \frac{-3 \pm 13}{16} = \frac{10/16 = 5/8 = 0,625}{-1}$$

• Si
$$\cos x = 0.625 \rightarrow x_1 = 51^{\circ} 19' 4.13'', x_2 = -51^{\circ} 19' 4.13''$$

• Si
$$\cos x = -1 \rightarrow x_3 = 180^\circ$$

Al comprobar las soluciones, las tres son válidas.

b)
$$tg \ 2x + 2 \cos x = 0 \rightarrow \frac{2 tg \ x}{1 - tg^2 \ x} + 2 \cos x = 0 \rightarrow$$

$$\rightarrow \frac{tg \ x}{1 - tg^2 \ x} + cos \ x = 0 \ \rightarrow \frac{sen \ x/cos \ x}{1 - (sen^2 \ x/cos^2 \ x)} + cos \ x = 0 \ \rightarrow$$

$$\rightarrow \frac{\operatorname{sen} x \cos x}{\cos^2 x - \operatorname{sen}^2 x} + \cos x = 0 \rightarrow \operatorname{sen} x \cos x + \cos x (\cos^2 x - \operatorname{sen}^2 x) = 0 \rightarrow$$

$$\rightarrow \cos x (sen x + cos^2 x - sen^2 x) = 0 \rightarrow \cos x (sen x + 1 - sen^2 x - sen^2 x) \rightarrow$$

$$\rightarrow cos x (1 + sen x - 2 sen^2 x) = 0 \rightarrow$$

$$\to \begin{cases} \cos x = 0 \\ 1 + \sin x - 2 \sin^2 x = 0 \end{cases} \to \sin x = \frac{-1 \pm \sqrt{1 + 8}}{-4} = \frac{-1/2}{1}$$

• Si
$$\cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$$

• Si
$$sen x = -\frac{1}{2} \rightarrow x_3 = 210^\circ, x_4 = 330^\circ = -30^\circ$$

• Si
$$sen x = 1 \rightarrow x_5 = 90^\circ = x_1$$

Al comprobar las soluciones, vemos que todas ellas son válidas.

c)
$$\sqrt{2} \cos \frac{x}{2} - \cos x = 1 \rightarrow \sqrt{2} \sqrt{\frac{1 + \cos x}{2}} - \cos x = 1 \rightarrow \sqrt{1 + \cos x} - \cos x = 1 \rightarrow \sqrt{1 - \cos x} = 1 + \cos x \rightarrow$$

$$\rightarrow 1 + \cos x = 1 + \cos^2 x + 2\cos x \rightarrow \cos^2 x + \cos x = 0 \rightarrow \cos x (\cos x + 1) = 0$$

• Si
$$\cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$$

• Si
$$\cos x = -1 \rightarrow x_3 = 180^{\circ}$$

Al comprobar las soluciones, podemos ver que las únicas válidas son:

$$x_1 = 90^{\circ} \text{ y } x_3 = 180^{\circ}$$

d) 2
$$sen x cos^2 x - 6 sen^3 x = 0 \rightarrow 2 sen x (cos^2 x - 3 sen^2 x) = 0 \rightarrow$$

$$\rightarrow 2 sen x (cos^2 x + sen^2 x - 4 sen^2 x) = 0 \rightarrow 2 sen x (1 - 4 sen^2 x) = 0$$

• Si
$$sen x = 0 \rightarrow x_1 = 0^{\circ}, x_2 = 180^{\circ}$$

• Si
$$sen^2 x = \frac{1}{4} \rightarrow sen x = \pm \frac{1}{2} \Rightarrow x_3 = 30^\circ, x_4 = 150^\circ, x_5 = 210^\circ, x_6 = 330^\circ$$

Comprobamos las soluciones y observamos que son válidas todas ellas.

3. Transforma en producto sen 3x - sen x y resuelve después la ecuación sen 3x - sen x = 0.

$$sen 3x - sen x = 0 \rightarrow 2 cos \frac{3x + x}{2} sen \frac{3x - x}{2} = 0 \rightarrow 2 cos 2x sen x = 0 \rightarrow$$

$$\rightarrow \begin{cases} \cos 2x = 0 \\ \sin x = 0 \end{cases}$$

• Si
$$\cos 2x = 0$$
 \rightarrow
$$\begin{cases} 2x = 90^{\circ} & \rightarrow x_1 = 45^{\circ} \\ 2x = 270^{\circ} & \rightarrow x_2 = 135^{\circ} \\ 2x = 90^{\circ} + 360^{\circ} & \rightarrow x_3 = 225^{\circ} \\ 2x = 270^{\circ} + 360^{\circ} & \rightarrow x_4 = 315^{\circ} \end{cases}$$

• Si
$$sen x = 0 \implies x_5 = 0^\circ, x_6 = 180^\circ$$

Comprobamos que las seis soluciones son válidas.

4. Resuelve las siguientes ecuaciones trigonométricas:

a) sen
$$(\pi - x) = \cos\left(\frac{3\pi}{2} - x\right) + \cos \pi$$

b) sen
$$\left(\frac{\pi}{4} - x\right) + \sqrt{2}$$
 sen $x = 0$

a)
$$sen (\pi - x) = sen x$$

$$cos \left(\frac{3\pi}{2} - x\right) = -sen x$$

$$cos \pi = -1$$
Entonces, la ecuación queda:

$$sen x = -sen x - 1 \rightarrow 2 sen x = -1 \rightarrow sen x = \frac{-1}{2}$$

Si
$$sen \ x = \frac{-1}{2} \rightarrow x_1 = \frac{7\pi}{6} \text{ rad}, \ x_2 = \frac{11\pi}{6} \text{ rad}$$

Al comprobar vemos:

$$x_{1} = \frac{7\pi}{6} \implies sen(\pi - x) = sen\left(\pi - \frac{7\pi}{6}\right) = sen\frac{-\pi}{6} = \frac{-1}{2}$$
$$cos\left(\frac{3\pi}{2} - x\right) = cos\left(\frac{3\pi}{2} - \frac{7\pi}{6}\right) = cos\frac{2\pi}{6} = cos\frac{\pi}{3} = \frac{1}{2}$$

Luego la solución es válida, pues:

$$sen (\pi - x) = \frac{-1}{2} = cos \left(\frac{3\pi}{2} - x\right) + cos \pi = \frac{1}{2} + (-1)$$

$$x_2 = \frac{11\pi}{6} \implies sen (\pi - x) = sen \left(\pi - \frac{11\pi}{6}\right) = sen \left(\frac{-5\pi}{6}\right) = -\frac{1}{2}$$

$$cos \left(\frac{3\pi}{2} - x\right) = cos \left(\frac{3\pi}{2} - \frac{11\pi}{6}\right) = cos \left(\frac{-2\pi}{6}\right) = cos \left(\frac{-\pi}{3}\right) = \frac{1}{2}$$

Luego también es válida esta solución, pues:

$$sen(\pi - x) = \frac{-1}{2} = cos\left(\frac{3\pi}{2} - x\right) + cos \pi = \frac{1}{2} + (-1)$$

Por tanto, las dos soluciones son válidas: $x_1 = \frac{7\pi}{6}$ rad y $x_2 = \frac{11\pi}{6}$ rad

b)
$$sen\left(\frac{\pi}{4} - x\right) = sen \frac{\pi}{4} \cos x - \cos \frac{\pi}{4} sen x = \frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} sen x$$

Luego la ecuación queda:

$$\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x + \sqrt{2}\sin x = 0 \rightarrow \frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x = 0 \rightarrow$$

$$\cos x + \sin x = 0 \rightarrow \cos x = -\sin x \rightarrow x_1 = \frac{3\pi}{4} \text{ rad}, \quad x_2 = \frac{7\pi}{4} \text{ rad}$$

Comprobamos que ninguna solución vale. Luego la ecuación no tiene solución.

5. Escribe, en radianes, la expresión general de todos los ángulos que verifican:

a)
$$tg x = -\sqrt{3}$$

b)
$$sen x = cos x$$

c)
$$sen^2 x = 1$$

d)
$$sen x = tg x$$

a)
$$x = 120^{\circ} + k \cdot 360^{\circ}$$
 o bien $x = 300^{\circ} + k \cdot 360^{\circ}$

Las dos soluciones quedan recogidas en:

$$x = 120^{\circ} + k \cdot 180^{\circ} = \frac{2\pi}{3} + k \pi \text{ rad} = x \text{ con } k \in \mathbb{Z}$$

b)
$$x = \frac{\pi}{4} + k \pi \text{ rad con } k \in \mathbb{Z}$$

c) Si
$$sen x = 1 \rightarrow x = \frac{\pi}{2} + 2k \pi \text{ rad}$$

Si $sen x = -1 \rightarrow x = \frac{3\pi}{2} + 2k \pi \text{ rad}$ $\Rightarrow x = \frac{\pi}{2} + k \pi \text{ rad con } k \in \mathbb{Z}$

O bien
$$sen \ x = 0 \rightarrow x = k \pi \text{ rad}$$

O bien $cos \ x = 1 \rightarrow x = 2k \pi \text{ rad}$ $\Rightarrow x = k \pi \text{ rad con } k \in \mathbb{Z}$

Página 142

EJERCICIOS Y PROBLEMAS PROPUESTOS

PARA PRACTICAR

Grados y radianes

Expresa en grados sexagesimales los siguientes ángulos dados en radianes:

a)
$$\frac{2\pi}{3}$$

b)
$$\frac{4\pi}{3}$$
 c) $\frac{5\pi}{4}$ d) $\frac{7\pi}{6}$ e) $\frac{9\pi}{2}$

c)
$$\frac{5\pi}{4}$$

d)
$$\frac{7\pi}{6}$$

e)
$$\frac{9\pi}{2}$$

F Hazlo mentalmente teniendo en cuenta que π radianes = 180°.

- a) 120°
- b) 240°
- c) 225°
- d) 210°
- e) 810°
- Expresa en grados sexagesimales los siguientes ángulos dados en radianes:
 - a) 1,5

b) 3,2

c) 5

d) 2,75

a)
$$\frac{360^{\circ}}{2\pi} \cdot 1.5 = 85^{\circ} 56' 37''$$

b)
$$\frac{360^{\circ}}{2\pi} \cdot 3.2 = 183^{\circ} \ 20' \ 47''$$

c)
$$\frac{360^{\circ}}{2\pi}$$
 · 5 = 286° 28' 44'

c)
$$\frac{360^{\circ}}{2\pi} \cdot 5 = 286^{\circ} \ 28' \ 44''$$
 d) $\frac{360^{\circ}}{2\pi} \cdot 2,75 = 157^{\circ} \ 33' \ 48''$

3 Pasa a radianes los siguientes ángulos dados en grados.

Exprésalos en función de π :

Simplifica la expresión que obtengas sin multiplicar por 3,14...

a)
$$\frac{40\pi}{180} = \frac{2\pi}{9}$$

a)
$$\frac{2\pi}{360^{\circ}} \cdot 40^{\circ} = \frac{2\pi}{9}$$

b)
$$\frac{2\pi}{360^{\circ}} \cdot 108^{\circ} = \frac{3\pi}{5}$$

c)
$$\frac{2\pi}{360^{\circ}} \cdot 135^{\circ} = \frac{3\pi}{4}$$

d)
$$\frac{2\pi}{360^{\circ}} \cdot 240^{\circ} = \frac{4\pi}{3}$$

e)
$$\frac{2\pi}{360^{\circ}} \cdot 270^{\circ} = \frac{3\pi}{2}$$

f)
$$\frac{2\pi}{360^{\circ}} \cdot 126^{\circ} = \frac{7\pi}{10}$$

4 Halla, sin utilizar la calculadora:

a)
$$5\cos\frac{\pi}{2} - \cos 0 + 2\cos \pi - \cos\frac{3\pi}{2} + \cos 2\pi$$

b)
$$5 tg \pi + 3 cos \frac{\pi}{2} - 2 tg 0 + sen \frac{3\pi}{2} - 2 sen 2\pi$$

a)
$$5 \cdot 0 - 1 + 2 \cdot (-1) - 0 + 1 = -2$$

b)
$$5 \cdot 0 + 3 \cdot 0 - 2 \cdot 0 + (-1) - 2 \cdot 0 = -1$$

5 Prueba que:

a)
$$4 sen \frac{\pi}{6} + \sqrt{2} cos \frac{\pi}{4} + cos \pi = 2$$

b)
$$2\sqrt{3} sen \frac{2\pi}{3} + 4 sen \frac{\pi}{6} - 2 sen \frac{\pi}{2} = 3$$

a)
$$4 sen \frac{\pi}{6} + \sqrt{2} cos \frac{\pi}{4} + cos \pi = 4 \cdot \frac{1}{2} + \sqrt{2} \cdot \frac{\sqrt{2}}{2} + (-1) = 2 + 1 - 1 = 2$$

b)
$$2\sqrt{3} \operatorname{sen} \frac{2\pi}{3} + 4 \operatorname{sen} \frac{\pi}{6} - 2 \operatorname{sen} \frac{\pi}{2} = 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} + 4 \cdot \frac{1}{2} - 2 \cdot 1 = 3 + 2 - 2 = 3$$

6 Halla el valor de A sin utilizar la calculadora:

a)
$$A = sen \frac{\pi}{4} + sen \frac{\pi}{2} + sen \pi$$

b)
$$A = sen \frac{2\pi}{3} + sen \frac{4\pi}{3} - sen 2\pi$$

c)
$$A = \cos \pi - \cos 0 + \cos \frac{\pi}{2} - \cos \frac{3\pi}{2}$$

a)
$$A = \frac{\sqrt{2}}{2} + 1 + 0 = \frac{\sqrt{2}}{2} + 1$$

b)
$$A = \frac{\sqrt{3}}{2} + \left(-\frac{\sqrt{3}}{2}\right) - 0 = 0$$

c)
$$A = -1 - 1 + 0 - 0 = -2$$

- 7 Expresa con un ángulo del primer cuadrante:
 - a) sen 1215°
- b) cos (-100°) c) tg (-50°)
- d) cos 930°
- e) tg 580°
- f) sen (-280°)

a)
$$1215^{\circ} = 3 \cdot 360^{\circ} + 135^{\circ}$$
 $\rightarrow sen \ 1215^{\circ} = sen \ 135^{\circ} = sen \ 45^{\circ}$

b)
$$100^\circ = 180^\circ - 80^\circ \rightarrow cos (-100^\circ) = cos 100^\circ = -cos 80^\circ$$

c)
$$tg(-50^\circ) = \frac{sen(-50^\circ)}{cos(-50^\circ)} = \frac{-sen 50^\circ}{cos 50^\circ} = -tg 50^\circ$$

d)
$$\cos 930^{\circ} = \cos 210^{\circ} = \cos (180^{\circ} + 30^{\circ}) = -\cos 30^{\circ}$$

$$^{(*)}930^{\circ} = 2 \cdot 360^{\circ} + 210^{\circ}$$

e)
$$tg 580^{\circ} = tg 220^{\circ} = tg (180^{\circ} + 40^{\circ}) = \frac{sen (180^{\circ} + 40^{\circ})}{cos (180^{\circ} + 40^{\circ})} = \frac{-sen 40^{\circ}}{-cos 40^{\circ}} = tg 40^{\circ}$$

(**) $580^{\circ} = 360^{\circ} + 220^{\circ}$

f)
$$sen(-280^\circ) = sen(-280^\circ + 360^\circ) = sen(80^\circ)$$

- 8 Busca, en cada caso, un ángulo comprendido entre 0° y 360°, cuyas razones trigonométricas coincidan con el ángulo dado:
 - a) 3720° b) 1935°
- c) 2040°
- d) 3 150° e) -200°
- $f)-820^{\circ}$

a)
$$3720^{\circ} = 10 \cdot 360^{\circ} + 120^{\circ} \rightarrow 120^{\circ}$$

b)
$$1935^{\circ} = 5 \cdot 360^{\circ} + 135^{\circ} \rightarrow 135^{\circ}$$

c)
$$2.040^{\circ} = 5 \cdot 360^{\circ} + 240^{\circ} \rightarrow 240^{\circ}$$

d)
$$3150^{\circ} = 8 \cdot 360^{\circ} + 270^{\circ} \rightarrow 270^{\circ}$$

e)
$$-200^{\circ} + 360^{\circ} = 160^{\circ} \rightarrow 160^{\circ}$$

f)
$$-820^{\circ} + 3 \cdot 360^{\circ} = 260^{\circ} \rightarrow 260^{\circ}$$

9 Halla, en radianes, el ángulo α tal que sen α = 0,72 y cos α < 0.

$$\begin{cases}
sen \ \alpha = 0.72 > 0 \\
cos \ \alpha < 0
\end{cases}$$
 \(\alpha \in 2^{\omega} \text{ cuadrante } \rightarrow \alpha \approx 0.8 rad

- Indica, sin pasar a grados, en qué cuadrante está cada uno de los siguientes ángulos:
 - a) 2 rad

- b) 3,5 rad
- c) 5 rad

Ten en cuenta que:

$$\frac{\pi}{2}\approx 1.57; \qquad \pi\approx 3.14; \qquad \frac{3\pi}{2}\approx 4.7; \qquad 2\pi\approx 6.28$$

$$\pi \approx 3,14;$$

$$\frac{3\pi}{2}\approx 4,7$$

$$2\pi \approx 6,28$$

- a) 2º cuadrante
- b) 3^{er} cuadrante
- c) 4º cuadrante

Fórmulas trigonométricas

Halla las razones trigonométricas del ángulo de 75° sabiendo que $75^{\circ} = 30^{\circ} + 45^{\circ}$.

$$sen~75^{\circ} = sen~(30^{\circ} + 45^{\circ}) = sen~30^{\circ}~cos~45^{\circ} + cos~30^{\circ}~sen~45^{\circ} =$$

$$=\frac{1}{2}\cdot\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4}$$

$$\cos 75^{\circ} = \cos (30^{\circ} + 45^{\circ}) = \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ} =$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$tg 75^{\circ} = tg (30^{\circ} + 45^{\circ}) = \frac{tg 30^{\circ} + tg 45^{\circ}}{1 - tg 30^{\circ} tg 45^{\circ}} = \frac{\sqrt{3}/3 + 1}{1 - \sqrt{3}/3} = \frac{(\sqrt{3} + 3)/3}{(\sqrt{3} - 3)/3} = \frac{3 + \sqrt{3}}{3 - 3/3} = \frac{(3 + \sqrt{3})^{2}}{9 - 3} = \frac{9 + 3 + 6\sqrt{3}}{6} = \frac{(3 + \sqrt{3})^{2}}{6} = \frac{(3 + \sqrt$$

$$3 - \sqrt{3} \qquad 9 - 3$$

$$= \frac{12 + 6\sqrt{3}}{4} = 2 + \sqrt{3}$$

NOTA: También podemos resolverlo como sigue:

$$tg 75^{\circ} = \frac{sen 75^{\circ}}{cos 75^{\circ}} = \frac{\sqrt{2} + \sqrt{6}}{\sqrt{6} - \sqrt{2}} = \frac{\left(\sqrt{2} + \sqrt{6}\right)^{2}}{6 - 2} = \frac{2 + 6 + 2\sqrt{12}}{4} = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3}$$

- Sabiendo que sen $x = \frac{3}{5}$ y que $\frac{\pi}{2} < x < \pi$, calcula, sin hallar previamente el valor de x:
 - a) sen 2x

- b) $tg \frac{x}{2}$
- c) sen $\left(x + \frac{\pi}{6}\right)$

- d) $\cos\left(x-\frac{\pi}{3}\right)$
- e) $\cos \frac{x}{2}$ f) $tg\left(x + \frac{\pi}{4}\right)$
- Tienes que calcular $\cos x = -\sqrt{1 \left(\frac{3}{5}\right)^2} = -\frac{4}{5}$ y $tg x = -\frac{3}{4}$, y aplicar las fór-

$$\cos x = -\sqrt{1 - \sin^2 x} = -\sqrt{1 - \frac{9}{25}} = -\frac{4}{5}$$
 (Negativo, por ser del 2º cuadrante).

$$tg \ x = \frac{sen \ x}{cos \ x} = -\frac{3}{4}$$

a)
$$sen 2x = 2 sen x cos x = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{24}{25}$$

b)
$$tg \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{\frac{1 - (-4/5)}{1 + (-4/5)}} = \sqrt{\frac{9/5}{1/5}} = 3$$

Signo positivo, pues si $x \in 2^{\circ}$ cuadrante, entonces $\frac{x}{2} \in 1^{\text{er}}$ cuadrante.

c)
$$sen\left(x + \frac{\pi}{6}\right) = sen \ x \cos \frac{\pi}{6} + cos \ x sen \frac{\pi}{6} =$$

$$= \frac{3}{5} \cdot \frac{\sqrt{3}}{2} + \left(-\frac{4}{5}\right) \cdot \frac{1}{2} = \frac{3\sqrt{3} - 4}{10}$$

d)
$$\cos\left(x - \frac{\pi}{3}\right) = \cos x \cos \frac{\pi}{3} + \sin x \sin \frac{\pi}{3} =$$

= $\left(-\frac{4}{5}\right) \cdot \frac{1}{2} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3} - 4}{10}$

e)
$$\cos \frac{x}{2} \stackrel{(*)}{=} \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 - 4/5}{2}} = \sqrt{\frac{1/5}{2}} = \sqrt{\frac{1}{10}} = \frac{\sqrt{10}}{10}$$

(*) Signo positivo, porque $\frac{x}{2} \in 1^{\underline{\text{er}}}$ cuadrante.

f)
$$tg\left(x + \frac{\pi}{4}\right) = \frac{tg \ x + tg \ \pi/4}{1 - tg \ x \ tg \ \pi/4} = \frac{-3/4 + 1}{1 - (-3/4) \cdot 1} = \frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}$$

Halla las razones trigonométricas del ángulo de 15° de dos formas, considerando:

a)
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$
 b) $15^{\circ} = \frac{30^{\circ}}{2}$

a)
$$sen 15^{\circ} = sen (45^{\circ} - 30^{\circ}) = sen 45^{\circ} cos 30^{\circ} - cos 45^{\circ} sen 30^{\circ} =$$

= $\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} = 0,258819$

$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ} =$$
$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4} = 0,965926$$

$$tg \ 15^{\circ} = \frac{sen \ 15^{\circ}}{cos \ 15^{\circ}} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{6 + 2 - 2\sqrt{12}}{6 - 2} =$$
$$= \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3} = 0,267949$$

b)
$$sen\ 15^{\circ} = sen\ \frac{30^{\circ}}{2} = \sqrt{\frac{1 - cos\ 30^{\circ}}{2}} = \sqrt{\frac{1 - \sqrt{3}/2}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}} =$$

$$= \frac{\sqrt{2 - \sqrt{3}}}{2} = 0,258819$$

$$cos\ 15^{\circ} = cos\ \frac{30^{\circ}}{2} = \sqrt{\frac{1 + cos\ 30^{\circ}}{2}} = \sqrt{\frac{1 + \sqrt{3}/2}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = 0,9659258$$

$$tg\ 15^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2 + \sqrt{3}}} = \frac{0,258819}{0,9659258} = 0,2679491$$

14 Resuelve las siguientes ecuaciones:

a)
$$2\cos^2 x - \sin^2 x + 1 = 0$$

b)
$$sen^2 x - sen x = 0$$

Saca factor común e iguala a cero cada factor.

c)
$$2\cos^2 x - \sqrt{3}\cos x = 0$$

d)
$$sen^2 x - cos^2 x = 1$$

e)
$$cos^2 x - sen^2 x = 0$$

f)
$$2\cos^2 x + \sin x = 1$$

g)
$$3 tg^2 x - \sqrt{3} tg x = 0$$

a)
$$2 \cos^2 x - \frac{\sin^2 x + 1}{\cos^2 x} = 0$$
 $\Rightarrow 2 \cos^2 x - \cos^2 x = 0$

$$\cos^2 x = 0 \rightarrow \cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Al comprobarlas en la ecuación inicial, las dos soluciones son válidas. Luego:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Lo que podemos expresar como:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

b)
$$sen x (sen x - 1) = 0 \rightarrow$$

$$\Rightarrow \begin{array}{c} sen \ x = 0 \ \rightarrow \ x_1 = 0^{\circ}, \ x_2 = 180^{\circ} \\ sen \ x = 1 \ \rightarrow \ x_3 = 90^{\circ} \end{array}$$

Comprobando las posibles soluciones, vemos que las tres son válidas. Luego:

$$x_1 = k \cdot 360^\circ = 2k \pi$$

$$x_2 = 180^\circ + k \cdot 360^\circ = \pi + 2k \pi$$

$$x_3 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

O, de otra forma:

$$x_1 = k \, \pi = k \cdot 180^\circ$$

$$x_3 = \frac{\pi}{2} + 2k \, \pi = 90^\circ + k \cdot 360^\circ$$
 con $k \in \mathbb{Z}$

 $(x_1 \text{ así incluye las soluciones } x_1 \text{ y } x_2 \text{ anteriores})$

c)
$$\cos x \left(2 \cos x - \sqrt{3} \right) = 0 \rightarrow \\ \begin{cases} \cos x = 0 \rightarrow x_1 = 90^{\circ}, \ x_2 = 270^{\circ} \\ \cos x = \frac{\sqrt{3}}{2} \rightarrow x_3 = 30^{\circ}, \ x_4 = 330^{\circ} \end{cases}$$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

NOTA: Obsérvese que las dos primeras soluciones podrían escribirse como una sola de la siguiente forma:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

d)
$$(1 - \cos^2 x) - \cos^2 x = 1 \rightarrow 1 - 2\cos^2 x = 1 \rightarrow \cos^2 x = 0 \rightarrow \cos x = 0 \rightarrow \begin{cases} x_1 = 90^{\circ} \\ x_2 = 270^{\circ} \end{cases}$$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

O, lo que es lo mismo:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

e)
$$(1 - sen^2 x) - sen^2 x = 0 \rightarrow 1 - 2 sen^2 x = 0 \rightarrow$$

$$\rightarrow sen^2 x = \frac{1}{2} \rightarrow sen x = \pm \frac{\sqrt{2}}{2}$$

• Si
$$sen x = \frac{\sqrt{2}}{2} \rightarrow x_1 = 45^\circ, x_2 = 135^\circ$$

• Si
$$sen x = -\frac{\sqrt{2}}{2} \rightarrow x_3 = 225^\circ, x_4 = 315^\circ$$

Comprobamos que todas las soluciones son válidas. Luego:

$$x_{1} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{2} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{3} = 225^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, lo que es lo mismo:

$$x = 45^{\circ} + k \cdot 90^{\circ} = \frac{\pi}{4} + k \cdot \frac{\pi}{2}$$
 con $k \in \mathbb{Z}$

f)
$$2(1 - sen^2 x) + sen x = 1 \rightarrow 2 - 2 sen^2 x + sen x = 1 \rightarrow$$

 $\rightarrow 2 sen^2 x - sen x - 1 = 0 \rightarrow$
 $\rightarrow sen x = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} = \frac{1 + 3}{4} =$

Las tres soluciones son válidas, es decir:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 210^\circ + k \cdot 360^\circ = \frac{7\pi}{6} + 2k \pi$$

$$x_3 = 330^\circ + k \cdot 360^\circ = \frac{11\pi}{6} + 2k \pi$$

g)
$$tg \ x \left(3 \ tg \ x - \sqrt{3}\right) = 0 \rightarrow$$

$$\begin{cases} tg \ x = 0 \ \rightarrow x_1 = 0^{\circ}, \ x_2 = 180^{\circ} \\ tgx \ x = \frac{\sqrt{3}}{3} \ \rightarrow x_3 = 30^{\circ}, \ x_4 = 210^{\circ} \end{cases}$$

Comprobamos las posibles soluciones en la ecuación inicial y vemos que las cuatro son válidas.

Entonces:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{4} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Lo que podría expresarse con solo dos soluciones que englobaran las cuatro anteriores:

$$x_1 = k \cdot 180^\circ = k \pi$$

$$x_2 = 30^\circ + k \cdot 180^\circ = \frac{\pi}{6} + k \pi \quad \text{con } k \in \mathbb{Z}$$

Página 143

15 Halla el valor exacto de estas expresiones:

a) sen
$$\frac{5\pi}{4}$$
 + cos $\frac{3\pi}{4}$ - sen $\frac{7\pi}{4}$

b)
$$\cos \frac{5\pi}{3} + tg \frac{4\pi}{3} - tg \frac{7\pi}{6}$$

c)
$$\sqrt{3} \cos \frac{\pi}{6} + \sin \frac{\pi}{6} - \sqrt{2} \cos \frac{\pi}{4} - 2\sqrt{3} \sin \frac{\pi}{3}$$

a)
$$-\frac{\sqrt{2}}{2} + \left(-\frac{\sqrt{2}}{2}\right) - \left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}$$

b)
$$\frac{1}{2} + \sqrt{3} - \frac{\sqrt{3}}{3} = \frac{3 + 6\sqrt{3} - 2\sqrt{3}}{6} = \frac{3 + 4\sqrt{3}}{6}$$

c)
$$\sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} - \sqrt{2} \cdot \frac{\sqrt{2}}{2} - 2\sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} + \frac{1}{2} - 1 - 3 = -2$$

16 Sabiendo que sen $x = \frac{2}{3}$ y que x es un ángulo del primer cuadrante, calcula:

b)
$$tg \frac{x}{2}$$

c)
$$\cos (30^{\circ} - x)$$

$$sen \ x = \frac{2}{3}$$

$$x \in 1^{\underline{er}} \text{ cuadrante}$$

$$\begin{cases}
\cos x, \ tg \ x > 0 \\
\frac{x}{2} \in 1^{\underline{er}} \text{ cuadrante} \\
\Rightarrow \begin{cases}
sen \ x/2 > 0 \\
\cos x/2 > 0 \\
tg \ x/2 > 0
\end{cases}$$

•
$$\cos x = \sqrt{1 - \sin^2 x} = 1 - \frac{4}{9} = \frac{\sqrt{5}}{3}$$

•
$$tg \ x = \frac{2/3}{\sqrt{5}/3} = \frac{2\sqrt{5}}{5}$$

a)
$$sen \ 2x = 2 \ sen \ x \cos x = 2 \cdot \frac{2}{3} \cdot \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9}$$

b)
$$tg \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \sqrt{\frac{1 - 2\sqrt{5}/5}{1 + 2\sqrt{5}/5}} = \sqrt{\frac{5 - 2\sqrt{5}}{5 + 2\sqrt{5}}} = \sqrt{\frac{25 + 4 \cdot 5 - 20\sqrt{5}}{25 - 4 \cdot 5}} = \sqrt{\frac{45 - 20\sqrt{5}}{5}} = \sqrt{9 - 4\sqrt{5}}$$

c)
$$\cos (30^{\circ} - x) = \cos 30^{\circ} \cos x + \sin 30^{\circ} \sin x = \frac{\sqrt{3}}{2} \cdot \frac{2\sqrt{5}}{5} + \frac{1}{2} \cdot \frac{2}{3} = \frac{\sqrt{15}}{5} + \frac{1}{3} = \frac{3\sqrt{15} + 5}{15}$$

17 Si $tg \alpha = -4/3$ y $90^{\circ} < \alpha < 180^{\circ}$, calcula:

a)
$$sen\left(\frac{\pi}{2} - \alpha\right)$$
 b) $cos\left(180^\circ - \frac{\alpha}{2}\right)$ c) $tg\left(900^\circ + \alpha\right)$

$$90^{\circ} < \alpha < 180^{\circ} \rightarrow \begin{cases} sen \ \alpha > 0 \\ cos \ \alpha < 0 \end{cases}$$

Además, $\frac{\alpha}{2} \in 1^{\underline{er}}$ cuadrante

•
$$tg \alpha = -\frac{4}{3}$$

•
$$\frac{1}{\cos^2 \alpha} = tg^2 \alpha + 1 = \frac{16}{9} + 1 = \frac{25}{9} \rightarrow \cos^2 \alpha = \frac{9}{25} \rightarrow \cos \alpha = -\frac{3}{5}$$

•
$$sen \alpha = \sqrt{1 - cos^2 \alpha} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

a)
$$sen\left(\frac{\pi}{2} - \alpha\right) = sen \frac{\pi}{2} cos \alpha - cos \frac{\pi}{2} sen \alpha = 1 \cdot \left(-\frac{3}{5}\right) - 0 \cdot \frac{4}{5} = -\frac{3}{5}$$

b)
$$\cos\left(180^{\circ} - \frac{\alpha}{2}\right) = \cos 180^{\circ} \cos \frac{\alpha}{2} + \sin 180^{\circ} \sin \frac{\alpha}{2} = -\cos \frac{\alpha}{2} =$$

$$= -\sqrt{\frac{1 + \cos \alpha}{2}} = -\sqrt{\frac{1 + (-3/5)}{2}} = -\sqrt{\frac{5 - 3}{10}} =$$

$$= -\sqrt{\frac{2}{10}} = -\sqrt{\frac{1}{5}} = -\frac{\sqrt{5}}{5}$$

c)
$$tg (900^{\circ} + \alpha) = tg (2 \cdot 360^{\circ} + 180^{\circ} + \alpha) = tg (180^{\circ} + \alpha) =$$

$$= \frac{tg 180^{\circ} + tg \alpha}{1 - tg 180^{\circ} tg \alpha} = \frac{0 + (-4/3)}{1 - 0 \cdot (-4/3)} = -\frac{4}{3}$$

18 Sabemos que $\cos x = -\frac{3}{4}$ y $\sin x < 0$. Sin hallar el valor de x, calcula:

b)
$$cos(\pi + x)$$

c)
$$\cos 2x$$

d)
$$tg \frac{x}{2}$$

e)
$$sen\left(\frac{\pi}{2}-x\right)$$

f)
$$\cos\left(\pi-\frac{x}{2}\right)$$

 $\begin{cases} \cos x = -3/4 \\ \sin x < 0 \end{cases} \rightarrow x \in 3^{\underline{er}} \text{ cuadrante } \Rightarrow \frac{x}{2} \in 2^{\underline{o}} \text{ cuadrante}$

a)
$$sen \ x = -\sqrt{1 - cos^2 \ x} = -\sqrt{1 - \frac{9}{16}} = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}$$

b)
$$\cos (\pi + x) = \cos \pi \cos x - \sin \pi \sin x = -\cos x = \frac{3}{4}$$

c)
$$\cos 2x = \cos^2 x - \sin^2 x = \frac{9}{16} - \frac{7}{16} = \frac{2}{16} = \frac{1}{8}$$

d)
$$tg \frac{x}{2} = -\sqrt{\frac{1 - \cos x}{1 + \cos x}} = -\sqrt{\frac{1 + 3/4}{1 - 3/4}} = \sqrt{\frac{7}{1}} = \sqrt{7}$$

e)
$$sen\left(\frac{\pi}{2} - x\right) = sen \frac{\pi}{2} cos x - cos \frac{\pi}{2} sen x = cos x = -\frac{3}{4}$$

f)
$$\cos\left(\pi - \frac{x}{2}\right) = \cos\pi\cos\frac{x}{2} + \sin\pi\sin\frac{x}{2} = -\cos\frac{x}{2} =$$

$$= -\left(-\sqrt{\frac{1 + \cos x}{2}}\right) = \sqrt{\frac{1 - 3/4}{2}} = \sqrt{\frac{1}{8}} = \frac{\sqrt{8}}{8}$$

19 Si $\cos 78^{\circ} = 0.2$ y $\sin 37^{\circ} = 0.6$, calcula $\sin 41^{\circ}$, $\cos 41^{\circ}$ y $tg 41^{\circ}$.

$$41^{\circ} = 78^{\circ} - 37^{\circ}$$

•
$$sen 78^{\circ} = \sqrt{1 - cos^2 78^{\circ}} = \sqrt{1 - 0.2^2} = 0.98$$

•
$$\cos 37^{\circ} = \sqrt{1 - \sin^2 37^{\circ}} = \sqrt{1 - 0.6^2} = 0.8$$

Ahora ya podemos calcular:

•
$$sen 41^\circ = sen (78^\circ - 37^\circ) = sen 78^\circ cos 37^\circ - cos 78^\circ sen 37^\circ = 0.98 \cdot 0.8 - 0.2 \cdot 0.6 = 0.664$$

•
$$cos 41^{\circ} = cos (78^{\circ} - 37^{\circ}) = cos 78^{\circ} cos 37^{\circ} + sen 78^{\circ} sen 37^{\circ} =$$

= $0.2 \cdot 0.8 + 0.98 \cdot 0.6 = 0.748$

•
$$tg \ 41^{\circ} = \frac{sen \ 41^{\circ}}{cos \ 41^{\circ}} = \frac{0,664}{0,748} = 0,8877$$

20 Si $tg(\alpha + \beta) = 4$ y $tg \alpha = -2$, halla $tg 2\beta$.

$$tg\;(\alpha+\beta) = \frac{tg\;\alpha + tg\;\beta}{1-tg\;\alpha\;tg\;\beta} \;\to\; 4 = \frac{-2+tg\;\beta}{1+2\;tg\;\beta} \;\to\;$$

$$\rightarrow$$
 4 + 8 tg β = -2 + tg β \rightarrow 7 tg β = -6 \rightarrow tg β = $-\frac{6}{7}$

Luego:

$$tg\ 2\beta = \frac{2\ tg\ \beta}{1 - tg^2\ \beta} = \frac{2\cdot (-6/7)}{1 - 36/49} = \frac{-12/7}{13/49} = \frac{-12\cdot 49}{7\cdot 13} = -\frac{84}{13}$$

PARA RESOLVER

- En una circunferencia de 16 cm de radio, un arco mide 20 cm. Halla el ángulo central en grados y en radianes.
 - 💌 Halla la longitud de la circunferencia y escribe la proporción entre las longitudes de los arcos y la medida de los ángulos.

Como la circunferencia completa ($\alpha = 100,53$ cm) son 2π rad, entonces:

$$\frac{100,53}{20} = \frac{2\pi}{\alpha} \rightarrow \alpha = \frac{20 \cdot 2\pi}{100,53} = 1,25 \text{ rad}$$

$$\alpha = \frac{360^{\circ}}{2\pi} \cdot 1,25 = 71^{\circ} \ 37' \ 11''$$

$$0 < \alpha < 2\pi$$

$$\frac{11\pi}{4} = \frac{8\pi + 3\pi}{4} \rightarrow \frac{11\pi}{4} = 2\pi + \frac{3\pi}{4} \Rightarrow \alpha = \frac{3\pi}{4}$$

23 Demuestra que
$$\frac{sen(\alpha + \beta)}{sen(\alpha - \beta)} = \frac{tg \alpha + tg \beta}{tg \alpha - tg \beta}$$
.

• Aplica las fórmulas de sen $(\alpha + \beta)$ y sen $(\alpha - \beta)$. Divide tanto el numerador como el denominador entre $\cos \alpha \cos \beta$ y simplifica.

$$\frac{sen (\alpha + \beta)}{sen (\alpha - \beta)} = \frac{sen \alpha cos \beta + cos \alpha sen \beta}{sen \alpha cos \beta - cos \alpha sen \beta} \stackrel{(*)}{=}$$

$$= \frac{sen \alpha cos \beta}{cos \alpha cos \beta} + \frac{cos \alpha sen \beta}{cos \alpha cos \beta}$$

$$\frac{sen \alpha cos \beta}{cos \alpha cos \beta} - \frac{cos \alpha sen \beta}{cos \alpha cos \beta} = \frac{tg \alpha + tg \beta}{tg \alpha - tg \beta}$$

^(*) Dividimos numerador y denominador entre $\cos \alpha \cos \beta$.

- 24 Prueba que $2 tg x cos^2 \frac{x}{2} sen x = tg x$.
 - Sustituye $\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$.

Como
$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} \rightarrow \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$

Y sustituyendo en la expresión:

$$2 \operatorname{tg} x \cos^2 \frac{x}{2} - \operatorname{sen} x = 2 \frac{\operatorname{sen} x}{\cos x} \cdot \frac{1 + \cos x}{2} - \operatorname{sen} x =$$

$$= \frac{\operatorname{sen} x (1 + \cos x) - \operatorname{sen} x \cos x}{\cos x} \stackrel{(*)}{=}$$

$$= \frac{\operatorname{sen} x [1 + \cos x - \cos x]}{\cos x} = \frac{\operatorname{sen} x}{\cos x} = \operatorname{tg} x$$

- (*) Sacando factor común.
- 25 Demuestra que $\cos\left(x + \frac{\pi}{3}\right) \cos\left(x + \frac{2\pi}{3}\right) = \cos x$.
 - Desarrolla y sustituye las razones de $\frac{\pi}{3}$ y $\frac{2\pi}{3}$.

$$\cos\left(x + \frac{\pi}{3}\right) - \cos\left(x + \frac{2\pi}{3}\right) =$$

$$= \left[\cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3}\right] - \left[\cos x \cos\frac{2\pi}{3} - \sin x \sin\frac{2\pi}{3}\right] =$$

$$= \left[(\cos x)\frac{1}{2} - (\sin x)\frac{\sqrt{3}}{2}\right] - \left[(\cos x)\left(-\frac{1}{2}\right) - (\sin x)\frac{\sqrt{3}}{2}\right] =$$

$$= \frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x = \cos x$$

- **26** Demuestra que $\cos \alpha \cos (\alpha \beta) + \sin \alpha \sin (\alpha \beta) = \cos \beta$.
 - Aplica las fórmulas de la diferencia de ángulos, simplifica y extrae factor común.

$$\cos \alpha \cos (\alpha - \beta) + \sin \alpha \sin (\alpha - \beta) =$$

=
$$\cos \alpha (\cos \alpha \cos \beta + \sin \alpha \sin \beta) + \sin \alpha (\sin \alpha \cos \beta - \cos \alpha \sin \beta)$$
 =

=
$$\cos^2 \alpha \cos \beta + \cos \alpha \sin \alpha \sin \beta + \sin^2 \alpha \cos \beta - \sin \alpha \cos \alpha \sin \beta$$
 =

=
$$\cos^2 \alpha \cos \beta + \sin^2 \alpha \cos \beta \stackrel{(*)}{=} \cos \beta (\cos^2 \alpha + \sin^2 \alpha) = \cos \beta \cdot 1 = \cos \beta$$

- (*) Extraemos factor común.
- 27 Prueba que $\frac{2 \operatorname{sen} \alpha \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \operatorname{tg}^2 \frac{\alpha}{2}$.

$$\frac{2 \operatorname{sen} \alpha - \operatorname{sen} 2\alpha}{2 \operatorname{sen} \alpha + \operatorname{sen} 2\alpha} = \frac{2 \operatorname{sen} \alpha - 2 \operatorname{sen} \alpha \cos \alpha}{2 \operatorname{sen} \alpha + 2 \operatorname{sen} \alpha \cos \alpha} = \frac{2 \operatorname{sen} \alpha (1 - \cos \alpha)}{2 \operatorname{sen} \alpha (1 + \cos \alpha)} = \frac{1 - \cos \alpha}{1 + \cos \alpha} = tg^2 \frac{\alpha}{2}$$

28 Simplifica:
$$\frac{2\cos(45^{\circ} + \alpha)\cos(45^{\circ} - \alpha)}{\cos 2\alpha}$$

Al desarrollar el numerador obtendrás una diferencia de cuadrados.

$$\frac{2\cos(45^{\circ} + \alpha)\cos(45^{\circ} - \alpha)}{\cos 2\alpha} =$$

$$= \frac{2(\cos 45^{\circ}\cos\alpha - \sin 45^{\circ}\sin\alpha)(\cos 45^{\circ}\cos\alpha + \sin 45^{\circ}\sin\alpha)}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{2(\cos^{2}45^{\circ}\cos^{2}\alpha - \sin^{2}45^{\circ}\sin^{2}\alpha)}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{2 \cdot \left[\left(\sqrt{2}/2\right)^{2}\cos^{2}\alpha - \left(\sqrt{2}/2\right)^{2}\sin^{2}\alpha\right]}{\cos^{2}\alpha - \sin^{2}\alpha} = \frac{2 \cdot 1/2\cos^{2}\alpha - 2 \cdot 1/2\sin^{2}\alpha}{\cos^{2}\alpha - \sin^{2}\alpha} =$$

$$= \frac{\cos^{2}\alpha - \sin^{2}\alpha}{\cos^{2}\alpha - \sin^{2}\alpha} = 1$$

29 Demuestra: $\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)} = \frac{1 + tg \alpha tg \beta}{1 - tg \alpha tg \beta}$

$$\frac{\cos{(\alpha-\beta)}}{\cos{(\alpha+\beta)}} = \frac{\cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}} \stackrel{(*)}{=}$$

$$= \frac{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{1 + tg \alpha tg \beta}{1 - tg \alpha tg \beta}$$
(*) Dividimos numerador y denominador entre:
$$\cos \alpha \cos \beta \cos \beta \cos \alpha \cos \beta$$

Simplifica la expresión $\frac{\sec n \ 2\alpha}{1 - \cos^2 \alpha}$ y calcula su valor para $\alpha = 90^\circ$.

$$\frac{sen \ 2\alpha}{1 - cos^2 \ \alpha} = \frac{2 \ sen \ \alpha \cos \alpha}{sen^2 \ \alpha} = \frac{2 \cos \alpha}{sen \ \alpha}$$

Por tanto, si
$$\alpha = 90^{\circ} \Rightarrow \frac{sen \ 2\alpha}{1 - cos^2 \ \alpha} = \frac{2 \ cos \ \alpha}{sen \ \alpha} = \frac{2 \cdot 0}{1} = 0$$

31 Resuelve las siguientes ecuaciones:

a)
$$sen\left(\frac{\pi}{4} + x\right) - \sqrt{2} sen x = 0$$

b)
$$sen\left(\frac{\pi}{6} - x\right) + cos\left(\frac{\pi}{3} - x\right) = \frac{1}{2}$$

c)
$$sen 2x - 2 cos^2 x = 0$$

Desarrolla sen 2x y saca factor común.

d)
$$\cos 2x - 3 \sin x + 1 = 0$$

• Desarrolla $\cos 2x$ y sustituye $\cos^2 x = 1 - \sin^2 x$

a)
$$\operatorname{sen} \frac{\pi}{4} \cos x + \cos \frac{\pi}{4} \operatorname{sen} x - \sqrt{2} \operatorname{sen} x = 0$$

$$\frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \operatorname{sen} x - \sqrt{2} \operatorname{sen} x = 0$$

$$\frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \operatorname{sen} x = 0 \to \cos x - \operatorname{sen} x = 0 \to \cos x = \operatorname{sen} x \to x_1 = \frac{\pi}{4}, \ x_2 = \frac{5\pi}{4}$$

Al comprobar, podemos ver que ambas soluciones son válidas. Luego:

$$x_1 = \frac{\pi}{4} + 2k \,\pi = 45^\circ + k \cdot 360^\circ$$

$$x_2 = \frac{5\pi}{4} + 2k \,\pi = 225^\circ + k \cdot 360^\circ$$
con $k \in \mathbb{Z}$

Podemos agrupar las dos soluciones en:

$$x = \frac{\pi}{4} + k \pi = 45^{\circ} + k \cdot 180^{\circ} \quad \text{con } k \in \mathbb{Z}$$

b)
$$sen \frac{\pi}{6} cos x - cos \frac{\pi}{6} sen x + cos \frac{\pi}{3} cox x + sen \frac{\pi}{3} sen x = \frac{1}{2}$$

 $\frac{1}{2} cos x - \frac{\sqrt{3}}{2} sen x + \frac{1}{2} cos x + \frac{\sqrt{3}}{2} sen x = \frac{1}{2}$
 $\frac{1}{2} cos x + \frac{1}{2} cos x = \frac{1}{2} \rightarrow cos x = \frac{1}{2}$ $x_1 = \pi/3$
 $x_2 = 5\pi/3$

Comprobamos y vemos que:

$$x_{1} \to sen\left(\frac{\pi}{6} - \frac{\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{\pi}{3}\right) = sen\left(-\frac{\pi}{6}\right) + cos 0 = \frac{-1}{2} + 1 = \frac{1}{2}$$

$$x_{2} \to sen\left(\frac{\pi}{6} - \frac{5\pi}{3}\right) + cos\left(\frac{\pi}{3} - \frac{5\pi}{3}\right) = sen\left(-\frac{3\pi}{3}\right) + cos\left(-\frac{4\pi}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2}$$

Son válidas las dos soluciones. Luego:

$$x_1 = \frac{\pi}{3} + 2k \,\pi = 60^\circ + k \cdot 360^\circ$$

$$x_2 = \frac{5\pi}{3} + 2k \,\pi = 300^\circ + k \cdot 360^\circ$$

$$con \quad k \in \mathbb{Z}$$

Comprobamos las soluciones. Todas son válidas:

$$x_1 = 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \pi$$

 $x_2 = 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \pi$

$$x_3 = 45^\circ + k \cdot 360^\circ = \frac{\pi}{4} + 2k \pi$$

$$x_4 = 225^\circ + k \cdot 360^\circ = \frac{5\pi}{4} + 2k \pi$$

También podríamos expresar como:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 45^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{4} + k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$\cos^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 1 - \sin^2 x - \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 1 - 2 \sin^2 x - 3 \sin x + 1 = 0 \rightarrow 2 \sin^2 x + 3 \sin x - 2 = 0 \rightarrow$$

$$→ sen x = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4} = \frac{1/2}{4} → x_1 = 30^\circ, x_2 = 150^\circ$$

$$-2 → |Imposible|, pues |sen x| ≤ 1$$

Comprobamos que las dos soluciones son válidas.

Luego:

$$x_1 = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}'$$

Página 144

Resuelve estas ecuaciones:

- a) $4 sen^2 x cos^2 x + 2 cos^2 x 2 = 0$
 - Al hacer $sen^2 x = 1 cos^2 x$, resulta una ecuación bicuadrada. Haz $cos^2 x = z$ y comprueba si son válidas las soluciones que obtienes.
- b) $4 \sec^2 x + \sec x \cos x 3 \cos^2 x = 0$
 - Divide por cos² x y obtendrás una ecuación con tg x.

c)
$$\cos^2 \frac{x}{2} + \cos x - \frac{1}{2} = 0$$

d)
$$tg^2 \frac{x}{2} + 1 = \cos x$$

e)
$$2 sen^2 \frac{x}{2} + cos 2x = 0$$

a)
$$4(1 - \cos^2 x) \cos^2 x + 2 \cos^2 x - 2 = 0$$

 $4 \cos^2 x - 4 \cos^4 x + 2 \cos^2 x - 2 = 0$
 $4 \cos^4 x - 6 \cos^2 x + 2 = 0 \rightarrow 2 \cos^4 x - 3 \cos^2 x + 1 = 0$

Sea
$$\cos^2 x = z \rightarrow \cos^4 x = z^2$$

Así:

$$2z^{2} - 3z + 1 = 0 \rightarrow z = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4}$$

$$z_{1} = 1 \rightarrow \cos x = \pm 1 \qquad x_{1} = 0^{\circ}$$

$$x_{2} = 180^{\circ}$$

$$z_{2} = \frac{1}{2} \rightarrow \cos x = \pm \frac{\sqrt{2}}{2} \qquad x_{3} = 45^{\circ}, \ x_{4} = 315^{\circ}$$

$$x_{5} = 135^{\circ}, \ x_{6} = 225^{\circ}$$

Comprobando las posibles soluciones, vemos que todas son válidas. Por tanto:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{3} = 45^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{4} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{4} + 2k \pi$$

$$x_{5} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{4} + 2k \pi$$

$$x_{6} = 225^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{4} + 2k \pi$$

O, agrupando las soluciones:

$$\left. \begin{array}{l} x_1 = k \cdot 180^\circ = k \, \pi \\ \\ x_2 = 45^\circ + k \cdot 90^\circ = \frac{\pi}{4} + k \, \frac{\pi}{2} \end{array} \right\} \, \mathrm{con} \ k \in \mathbb{Z}$$

b) Dividiendo por $\cos^2 x$:

$$\frac{4 \operatorname{sen}^{2} x}{\cos^{2} x} + \frac{\operatorname{sen} x \cos x}{\cos^{2} x} - \frac{3 \cos^{2} x}{\cos^{2} x} = 0 \to$$

$$\to 4 \operatorname{tg}^{2} x + \operatorname{tg} x - 3 = 0 \to$$

$$\to \operatorname{tg} x = \frac{-1 \pm \sqrt{1 + 48}}{8} = \frac{-1 \pm 7}{8} = \begin{cases} \frac{3}{4} \to \begin{cases} x_{1} = 36^{\circ} 52^{\circ} 11,6^{\circ} \\ x_{2} = 216^{\circ} 52^{\circ} 11,6^{\circ} \end{cases} \\ -1 \to \begin{cases} x_{3} = 135^{\circ} \\ x_{4} = 315^{\circ} \end{cases}$$

Las cuatro soluciones son válidas:

$$x_{1} = 36^{\circ} 52' 11,6'' + k \cdot 360^{\circ} \approx \frac{\pi}{5} + 2k \pi$$

$$x_{2} = 216^{\circ} 52' 11,6'' + k \cdot 360^{\circ} \approx \frac{6\pi}{5} + 2k \pi$$

$$x_{3} = 135^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{5} + 2k \pi$$

$$x_{4} = 315^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{5} + 2k \pi$$

O, lo que es lo mismo:

$$x_1 = 36^{\circ} 52' 11,6" + k \cdot 180^{\circ} \approx \frac{\pi}{5} + k \pi$$

$$x_2 = 135^{\circ} + k \cdot 180^{\circ} = \frac{3\pi}{4} + k \pi$$

$$con k \in \mathbb{Z}$$

c)
$$\frac{1 + \cos x}{2} + \cos x - \frac{1}{2} = 0 \rightarrow 1 + \cos x + 2 \cos x - 1 = 0 \rightarrow$$

 $\rightarrow 3 \cos x = 0 \rightarrow \cos x = 0 \rightarrow x_1 = 90^{\circ}, x_2 = 270^{\circ}$

Las dos soluciones son válidas. Luego:

$$x_1 = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_2 = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Agrupando las soluciones:

$$x = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi \text{ con } k \in \mathbb{Z}$$

d)
$$\frac{1 - \cos x}{1 + \cos x} + 1 = \cos x \rightarrow 1 - \cos x + 1 + \cos x = \cos x + \cos^2 x \rightarrow$$

$$\rightarrow 2 = \cos x + \cos^2 x \rightarrow \cos^2 x + \cos x - 2 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2}$$

$$= \frac{1 + 3}{2}$$

$$x = k \cdot 360^{\circ} = 2k \pi \quad \text{con } k \in \mathbb{Z}$$

e)
$$2 \cdot \frac{1 - \cos x}{2} + \cos^2 x - \sin^2 x = 0 \rightarrow 0$$

 $\rightarrow 1 - \cos x + \cos^2 x - (1 - \cos^2 x) = 0 \rightarrow 1 - \cos x + \cos^2 x - 1 + \cos^2 x = 0 \rightarrow 0$
 $\rightarrow 2 \cos^2 x - \cos x = 0 \rightarrow \cos x (2 \cos x - 1) = 0 \rightarrow 0$
 $\rightarrow \begin{cases} \cos x = 0 \rightarrow x_1 = 90^\circ, & x_2 = 270^\circ \\ \cos x = 1/2 \rightarrow x_3 = 60^\circ, & x_4 = 300^\circ \end{cases}$

Luego:

Se comprueba que son válidas todas. Por tanto:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 270^{\circ} + k \cdot 360^{\circ} = \frac{3\pi}{2} + 2k \pi$$

$$x_{3} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{4} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

Agrupando las soluciones quedaría:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 60^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{3} + 2k \pi$$

$$x_{3} = 300^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

33 Resuelve las siguientes ecuaciones:

a)
$$cos 2x + 3 sen x = 2$$

b)
$$tg 2x \cdot tg x = 1$$

c)
$$\cos x \cos 2x + 2\cos^2 x = 0$$

d)
$$2 sen x = tg 2x$$

e)
$$\sqrt{3} sen \frac{x}{2} + cos x - 1 = 0$$

f) $sen 2x cos x = 6 sen^3 x$

g)
$$tg\left(\frac{\pi}{4}-x\right)+tg x=1$$

Las tres soluciones son válidas:

$$x_{1} = 90^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{2} + 2k \pi$$

$$x_{2} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}'$$

b)
$$\frac{2 tg x}{1 - tg^2 x} \cdot tg x = 1 \rightarrow 2 tg^2 x = 1 - tg^2 x \rightarrow tg^2 x = \frac{1}{3} \rightarrow tg x = \pm \frac{\sqrt{3}}{3} \rightarrow \begin{cases} x_1 = 30^\circ, & x_2 = 210^\circ \\ x_3 = 150^\circ, & x_4 = 330^\circ \end{cases}$$

Las cuatro soluciones son válidas:

$$x_{1} = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_{2} = 210^{\circ} + k \cdot 360^{\circ} = \frac{7\pi}{6} + 2k \pi$$

$$x_{3} = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$x_{4} = 330^{\circ} + k \cdot 360^{\circ} = \frac{11\pi}{6} + 2k \pi$$

Agrupando:

$$x_1 = 30^\circ + k \cdot 180^\circ = \frac{\pi}{6} + k \pi$$

$$x_2 = 150^\circ + k \cdot 180^\circ = \frac{5\pi}{6} + k \pi$$
 con $k \in \mathbb{Z}$

c)
$$\cos x (\cos^2 x - \sin^2 x) + 2 \cos^2 x = 0 \rightarrow$$

 $\rightarrow \cos x (\cos^2 x - 1 + \cos^2 x) + 2 \cos^2 x = 0 \rightarrow$
 $\rightarrow 2 \cos^3 x - \cos x + 2 \cos^2 x = 0 \rightarrow \cos x (2 \cos^2 x + 2 \cos x - 1) = 0 \rightarrow$
 $\rightarrow \cos x = 0 \rightarrow x_1 = 90^\circ, \ x_2 = 270^\circ$
 $\cos x = \frac{-2 \pm \sqrt{4 + 8}}{4} = \frac{-2 \pm 2\sqrt{3}}{4} =$
 $= \frac{-1 \pm \sqrt{3}}{2} \approx \frac{-1,366}{0,366} \rightarrow \text{iImposible!, pues } |\cos x| \le -1 \\ 0,366 \rightarrow x_3 = 68^\circ 31^\circ 51,1^\circ, \ x_4 = 291^\circ 28^\circ 8,9^\circ$

Las soluciones son todas válidas:

$$\begin{aligned} x_1 &= 90^\circ + k \cdot 360^\circ = \frac{\pi}{2} + 2k \, \pi \\ x_2 &= 270^\circ + k \cdot 360^\circ = \frac{3\pi}{2} + 2k \, \pi \\ x_3 &= 68^\circ \, 31^\circ \, 51, 1^\circ + k \cdot 360^\circ \approx 0, 38\pi + 2k \, \pi \\ x_4 &= 291^\circ \, 28^\circ \, 8, 9^\circ + k \cdot 360^\circ \approx 1, 62\pi + 2k \, \pi \end{aligned} \right\} \ \text{con} \ \ k \in \mathbb{Z}'$$

Agrupadas, serían:

$$\begin{split} x_1 &= 90^\circ + k \cdot 180^\circ = \frac{\pi}{2} + k \, \pi \\ x_2 &= 68^\circ \, 31^\circ \, 51, 1^\circ + k \cdot 360^\circ \approx 0, 38\pi + 2k \, \pi \\ x_3 &= 291^\circ \, 28^\circ \, 8, 9^\circ + k \cdot 360^\circ \approx 1, 62\pi + 2k \, \pi \end{split} \right\} \, \text{con } \, k \in \mathbb{Z}'$$

d)
$$2 \operatorname{sen} x = \frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x} \to 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \to 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \to 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \to 2 \operatorname{sen} x - 2 \operatorname{sen} x \operatorname{tg}^2 x = 2 \operatorname{tg} x \to 2 \operatorname{sen} x - 2 \operatorname{sen} x -$$

Las cuatro soluciones son válidas. Luego:

$$x_{1} = k \cdot 360^{\circ} = 2k \pi$$

$$x_{2} = 180^{\circ} + k \cdot 360^{\circ} = \pi + 2k \pi$$

$$x_{4} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$

$$x_{5} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

Que, agrupando soluciones, quedaría:

$$x_{1} = k \cdot 180^{\circ} = k \pi$$

$$x_{2} = 120^{\circ} + k \cdot 360^{\circ} = \frac{2\pi}{3} + 2k \pi$$

$$x_{3} = 240^{\circ} + k \cdot 360^{\circ} = \frac{4\pi}{3} + 2k \pi$$

$$e) \sqrt{3} \sqrt{\frac{1 - \cos x}{2}} + \cos x - 1 = 0 \rightarrow \frac{3 - 3\cos x}{2} = (1 - \cos x)^{2} \rightarrow$$

$$\rightarrow 3 - 3\cos x = 2(1 + \cos^{2} x - 2\cos x) \rightarrow 2\cos^{2} x - \cos x - 1 = 0 \rightarrow$$

$$\rightarrow \cos x = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} = \frac{1 \pm 3}{4} = \frac{1 + 3}{4}$$

Al comprobar vemos que las tres soluciones son válidas:

$$x_1 = k \cdot 360^\circ = 2k \pi$$

$$x_2 = 120^\circ + k \cdot 360^\circ = \frac{2\pi}{3} + 2k \pi$$

$$x_3 = 240^\circ + k \cdot 360^\circ = \frac{4\pi}{3} + 2k \pi$$

$$con k \in \mathbb{Z}$$

f)
$$2 \operatorname{sen} x \cos x \cos x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} \cos^{2} x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x (1 - \operatorname{sen}^{2} x) = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x - 2 \operatorname{sen}^{3} x = 6 \operatorname{sen}^{3} x \to 2 \operatorname{sen} x = 0 \to x_{1} = 0^{\circ}, \ x_{2} = 180^{\circ}$$

$$\operatorname{sen}^{2} x = \frac{1}{4} \to \operatorname{sen} x = \pm \frac{1}{2} \to x_{3} = 30^{\circ}, \ x_{4} = 150^{\circ}$$

$$x_{5} = 210^{\circ}, \ x_{6} = 330^{\circ}$$

Comprobamos que todas las soluciones son válidas.

Damos las soluciones agrupando las dos primeras por un lado y el resto por otro:

$$g) \frac{tg (\pi/4) + tg x}{1 - tg (\pi/4) tg x} + tg x = 1 \rightarrow \frac{1 + tg x}{1 - tg x} + tg x = 1 \rightarrow$$

$$\rightarrow 1 + tg x + tg x - tg^{2} x = 1 - tg x \rightarrow tg^{2} x - 3 tg x = 0 \rightarrow$$

$$\rightarrow tg x (tg x - 3) = 0 \rightarrow$$

$$\rightarrow \begin{cases} tg x = 0 \rightarrow x_{1} = 0^{\circ}, & x_{2} = 180^{\circ} \\ tg x = 3 \rightarrow x_{3} = 71^{\circ} 33' 54,2'', & x_{4} = 251^{\circ} 33' 54,2'' \end{cases}$$

Las cuatro soluciones son válidas:

$$\begin{array}{l} x_1 = k \cdot 360^\circ = 2k\,\pi \\ \\ x_2 = 180^\circ + k \cdot 360^\circ = \pi + 2k\,\pi \\ \\ x_3 = 71^\circ 33^! \ 54,2^{\shortparallel} + k \cdot 360^\circ \approx \frac{2\pi}{5} + 2k\,\pi \end{array} \right\} \ \text{con} \ \ k \in \mathbb{Z}$$

$$x_4 = 251^\circ \ 33^! \ 54,2^{\shortparallel} + k \cdot 360^\circ \approx \frac{7\pi}{5} + 2k\,\pi \end{array}$$

O, lo que es lo mismo:

$$x_1 = k \cdot 180^\circ = k \pi$$

$$x_2 = 71^\circ 33' 54,2'' + k \cdot 180^\circ \approx \frac{2\pi}{5} + k \pi$$
 con $k \in \mathbb{Z}$

34 Resuelve las siguientes ecuaciones:

a)
$$sen 3x - sen x = cos 2x$$

b)
$$\frac{sen 5x + sen 3x}{cos x + cos 3x} = 1$$

c)
$$\frac{sen 3x + sen x}{cos 3x - cos x} = \sqrt{3}$$

d)
$$sen 3x - cos 3x = sen x - cos x$$

Transforma las sumas o diferencias de senos y cosenos, en productos.

a)
$$2 \cos \frac{3x + x}{2} \sin \frac{3x - x}{2} = \cos 2x$$

$$2\cos 2x \operatorname{sen} x = \cos 2x \rightarrow 2\operatorname{sen} x = 1 \rightarrow$$

$$\rightarrow sen x = \frac{1}{2} \rightarrow x_1 = 30^{\circ}, x_2 = 150^{\circ}$$

Comprobando, vemos que las dos soluciones son válidas. Luego:

$$x_1 = 30^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{6} + 2k \pi$$

$$x_2 = 150^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

b)
$$\frac{2 \operatorname{sen} 4x \cos x}{2 \cos 2x \cos x} = 1 \rightarrow \frac{\operatorname{sen} 4x}{\cos 2x} = 1 \rightarrow \frac{\operatorname{sen} (2 \cdot 2x)}{\cos 2x} = 1 \rightarrow$$

$$\rightarrow \frac{2 \operatorname{sen} 2x \cos 2x}{\cos 2x} = 1 \rightarrow 2 \operatorname{sen} 2x = 1 \rightarrow \operatorname{sen} 2x = \frac{1}{2} \rightarrow$$

$$\begin{cases} 2x = 30^{\circ} \rightarrow x_{1} = 15^{\circ} + k \cdot 360^{\circ} = \frac{\pi}{12} + 2k \pi \\ 2x = 150^{\circ} \rightarrow x_{2} = 75^{\circ} + k \cdot 360^{\circ} = \frac{5\pi}{12} + 2k \pi \\ 2x = 390^{\circ} \rightarrow x_{3} = 195^{\circ} + k \cdot 360^{\circ} = \frac{13\pi}{12} + 2k \pi \end{cases}$$

$$con \ k \in \mathbb{Z}'$$

$$2x = 510^{\circ} \rightarrow x_{4} = 255^{\circ} + k \cdot 360^{\circ} = \frac{17\pi}{12} + 2k \pi$$

Al comprobar, vemos que todas las soluciones son válidas.

c)
$$\frac{2 \ sen \ 2x \ cos \ x}{-2 \ sen \ 2x \ sen \ x} = \frac{\cos x}{-sen \ x} = -\frac{1}{tg \ x} = \sqrt{3} \ \rightarrow \ tg \ x = -\frac{\sqrt{3}}{3} \ \rightarrow \ \begin{cases} x_1 = 150^{\circ} \\ x_2 = 330^{\circ} \end{cases}$$

Ambas soluciones son válidas. Luego:

$$x_1 = 150^\circ + k \cdot 360^\circ = \frac{5\pi}{6} + 2k \pi$$

$$x_2 = 330^\circ + k \cdot 360^\circ = \frac{11\pi}{6} + 2k \pi$$

$$con k \in \mathbb{Z}$$

d)
$$sen 3x - sen x = cos 3x - cos x \rightarrow$$

$$\rightarrow$$
 2 cos 2x sen x = -2 sen 2x sen x \rightarrow (dividimos entre 2 sen x)

$$\rightarrow \cos 2x = -\sin 2x \rightarrow \frac{\sin 2x}{\cos 2x} = -1 \rightarrow \tan 2x = -1 \rightarrow$$

$$\Rightarrow \begin{cases} 2x = 315^{\circ} \rightarrow x_{1} = 157,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 135^{\circ} \rightarrow x_{2} = 67,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 675^{\circ} \rightarrow x_{3} = 337,5^{\circ} + k \cdot 360^{\circ} \\ 2x = 495^{\circ} \rightarrow x_{4} = 247,5^{\circ} + k \cdot 360^{\circ} \end{cases}$$

Podemos comprobar que las cuatro soluciones son válidas. Agrupándolas:

$$x = 67.5^{\circ} + k \cdot 90^{\circ}$$
 con $k \in \mathbb{Z}$

- 35 a) Demuestra que sen 3x = 3 sen $x \cos^2 x \sin^3 x$.
 - b) Resuelve la ecuación sen 3x 2 sen x = 0.
 - a) Haz sen 3x = sen(2x + x) y desarrolla. b) Sustituye sen 3x por el resultado anterior.

a)
$$sen 3x = sen (2x + x) = sen 2x cos x + cos 2x sen x =$$

= 2 $sen x cos x cos x + (cos^2 x - sen^2 x) sen x =$
= 2 $sen x cos^2 x + sen x cos^2 x - sen^3 x = 3 sen x cos^2 x - sen^3 x$

b) $sen 3x - 2 sen x = 0 \rightarrow por el resultado del apartado anterior:$

$$3 \operatorname{sen} x \cos^{2} x - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to 3 \operatorname{sen} x (1 - \operatorname{sen}^{2} x) - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to 3 \operatorname{sen} x - 3 \operatorname{sen}^{3} x - \operatorname{sen}^{3} x - 2 \operatorname{sen} x = 0 \to 4 \operatorname{sen}^{3} x - \operatorname{sen} x = 0 \to \operatorname{sen} x (4 \operatorname{sen}^{2} x - 1) = 0 \to 5 + 2 \operatorname{sen} x = 0 \to 2 \times 1 = 0 \to 2 \to 2 \times 1 = 0$$

$$\Rightarrow \begin{cases} \operatorname{sen} x = 0 \to x_{1} = 0^{\circ}, & x_{2} = 150^{\circ} \\ \operatorname{sen} x = \pm 1/2 \to x_{3} = 30^{\circ}, & x_{4} = 150^{\circ}, & x_{5} = 210^{\circ}, & x_{6} = 330^{\circ} \end{cases}$$

Todas las soluciones son válidas y se pueden expresar como:

$$\begin{aligned} x_1 &= k \cdot 180^\circ = k \, \pi \\ x_2 &= 30^\circ + k \cdot 180^\circ = (\pi/6) + k \, \pi \\ x_3 &= 150^\circ + k \cdot 180^\circ = (5\pi/6) + k \, \pi \end{aligned} \right\} \text{ con } k \in \mathbb{Z}$$

- **36** Resuelve:
 - a) sen 3x sen x cos 2x = 0
 - b) $\cos 3x 2\cos (\pi x) = 0$
 - c) cos 3x + sen 2x cos x = 0
 - 🕶 b) Expresa cos 3x en función de sen x y cos x haciendo cos 3x = cos (2x + x).
 - a) Por el ejercicio 35, a): $sen 3x = 3 sen x cos^2 x sen^3 x$.

Luego:

$$3 \operatorname{sen} x \cos^{2} x - \operatorname{sen}^{3} x - \operatorname{sen} x (\cos^{2} x - \operatorname{sen}^{2} x) = 0 \rightarrow$$

$$\rightarrow 3 \operatorname{sen} x \cos^{2} x - \operatorname{sen}^{3} x - \operatorname{sen} x \cos^{2} x - \operatorname{sen}^{3} x = 0 \rightarrow$$

$$\rightarrow 2 \operatorname{sen}^{3} x - 2 \operatorname{sen} x \cos^{2} x = 0 \rightarrow \operatorname{sen} x (\operatorname{sen}^{2} x - \cos^{2} x) = 0 \rightarrow$$

$$\Rightarrow \begin{cases} sen \ x = 0 \ \rightarrow \ x_1 = 0^\circ, \ x_2 = 180^\circ \\ sen^2 \ x - cos^2 \ x = -cos \ 2x = 0 \ \rightarrow \end{cases} \begin{cases} 2x = 90^\circ \ \rightarrow \ x_3 = 45^\circ \\ 2x = 270^\circ \ \rightarrow \ x_4 = 135^\circ \\ 2x = 450^\circ \ \rightarrow \ x_5 = 225^\circ \\ 2x = 630^\circ \ \rightarrow \ x_6 = 315^\circ \end{cases}$$

Las soluciones (todas válidas) se pueden expresar como:

$$\begin{aligned} x_1 &= k \cdot 180^\circ = k \, \pi \\ x_2 &= 45^\circ + k \cdot 90^\circ = \frac{\pi}{4} + k \cdot \frac{\pi}{2} \end{aligned} \right\} \text{con } k \in \mathbb{Z}$$

donde x_1 engloba las dos primeras soluciones obtenidas y x_2 las cuatro restantes.

b)
$$\cos (\pi - x) = -\cos x$$

 $\cos 3x = \cos (2x + x) = \cos 2x \cos x - \sin 2x \sin x =$
 $= (\cos^2 x - \sin^2 x) \cos x - 2 \sin x \cos x \sin x =$
 $= \cos x (\cos^2 x - \sin^2 x) - 2 \sin^2 x) =$
 $= \cos x (\cos^2 x - 3 \sin^2 x) = \cos x (1 - 4 \sin^2 x)$

Así, sustituyendo en la ecuación:

$$\begin{split} \cos x & (1-4 \ sen^2 \ x) - 2 \ (-\cos x) = 0 \ \rightarrow \\ & \rightarrow \cos x \ (1-4 \ sen^2 \ x) + 2 \ cos \ x = 0 \ \rightarrow \cos x \ (1-4 \ sen^2 \ x + 2) = 0 \ \rightarrow \\ & \rightarrow \cos x \ (3-4 \ cos \ x) = 0 \ \rightarrow \\ & \rightarrow \begin{cases} \cos x = 0 \ \rightarrow \ x_1 = 90^\circ, \ x_2 = 270^\circ \\ & \rightarrow \end{cases} \\ & \Rightarrow \begin{cases} \sin^2 x = \frac{3}{4} \ \rightarrow \ sen \ x = \pm \frac{\sqrt{3}}{2} \ \rightarrow \ x_3 = 60^\circ, \ x_4 = 120^\circ, \ x_5 = 240^\circ, \ x_6 = 300^\circ \end{cases} \end{split}$$

Todas las soluciones son válidas y las podemos agrupar, expresándolas como:

$$x_{1} = 90^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{2} + k \pi$$

$$x_{2} = 60^{\circ} + k \cdot 180^{\circ} = \frac{\pi}{3} + k \pi$$

$$x_{3} = 120^{\circ} + k \cdot 180^{\circ} = \frac{2\pi}{3} + k \pi$$

$$con \quad k \in \mathbb{Z}$$

c) Utilizando los resultados obtenidos en el ejercicio 36 b), para *cos* 3*x* y sustituyendo en la ecuación, se obtiene:

$$\cos x (1 - 4 \operatorname{sen}^{2} x) + 2 \operatorname{sen} x \cos x - \cos x = 0 \rightarrow$$

$$\rightarrow \cos x (1 - 4 \operatorname{sen}^{2} x + 2 \operatorname{sen} x - 1) = 0 \rightarrow$$

$$\rightarrow \cos x (-4 \operatorname{sen}^{2} x + 2 \operatorname{sen} x) = 0 \rightarrow$$

Las soluciones quedan, pues, como:

$$x_{1} = k \cdot \frac{\pi}{2} = k \cdot 90^{\circ}$$

$$x_{2} = \frac{\pi}{6} + 2k \cdot \pi = 30^{\circ} + k \cdot 360^{\circ}$$

$$x_{3} = \frac{5\pi}{6} + 2k \cdot \pi = 150^{\circ} + k \cdot 360^{\circ}$$
con $k \in \mathbb{Z}'$

donde x_1 engloba las cuatro primeras soluciones.

37 Demuestra las siguientes igualdades:

a)
$$\cos(\alpha + \beta) \cdot \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta$$

b)
$$sen^2\left(\frac{\alpha+\beta}{2}\right) - sen^2\left(\frac{\alpha-\beta}{2}\right) = sen \alpha \cdot sen \beta$$

c)
$$\cos^2\left(\frac{\alpha-\beta}{2}\right) - \cos^2\left(\frac{\alpha+\beta}{2}\right) = \operatorname{sen} \alpha \cdot \operatorname{sen} \beta$$

a)
$$\cos (\alpha + \beta) \cos (\alpha - \beta) = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) (\cos \alpha \cos \beta + \sin \alpha \sin \beta) =$$

$$= \cos^2 \alpha \cos^2 \beta - \sin^2 \alpha \sin^2 \beta =$$

$$= \cos^2 \alpha (1 - \sin^2 \beta) - (1 - \cos^2 \alpha) \cdot \sin^2 \beta =$$

$$= \cos^2 \alpha - \cos^2 \alpha \sin^2 \beta - \sin^2 \beta + \cos^2 \alpha \sin^2 \beta =$$

$$= \cos^2 \alpha - \sin^2 \beta$$

b) El primer miembro de la igualdad es una diferencia de cuadrados, luego podemos factorizarlo como una suma por una diferencia:

$$\left[sen \left(\frac{\alpha + \beta}{2} \right) + sen \left(\frac{\alpha - \beta}{2} \right) \right] \cdot \left[sen \left(\frac{\alpha + \beta}{2} \right) - sen \left(\frac{\alpha - \beta}{2} \right) \right] \stackrel{(*)}{=}$$

$$= \left[2 sen \frac{\alpha}{2} cos \frac{\beta}{2} \right] \cdot \left[2 cos \frac{\alpha}{2} sen \frac{\beta}{2} \right] =$$

$$= 4 \sqrt{\frac{1 - cos \alpha}{2}} \cdot \sqrt{\frac{1 + cos \beta}{2}} \cdot \sqrt{\frac{1 + cos \alpha}{2}} \cdot \sqrt{\frac{1 - cos \beta}{2}} =$$

$$= \sqrt{(1 - cos \alpha) (1 + cos \beta) (1 + cos \alpha) (1 - cos \beta)} =$$

$$= \sqrt{(1 - cos^2 \alpha) (1 - cos^2 \beta)} = \sqrt{sen^2 \alpha \cdot sen^2 \beta} = sen \alpha sen \beta$$

(*) Transformamos la suma y la diferencia en productos, teniendo en cuenta que:

$$\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2} = \alpha \quad \text{y} \quad \frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2} = \beta$$

c) Procedemos de manera análoga al apartado anterior, pero ahora:

$$\frac{\alpha - \beta}{2} + \frac{\alpha + \beta}{2} = \alpha \quad y \quad \frac{\alpha - \beta}{2} - \frac{\alpha + \beta}{2} = -\beta$$

$$\cos^{2}\left(\frac{\alpha - \beta}{2}\right) - \cos^{2}\left(\frac{\alpha + \beta}{2}\right) =$$

$$= \left[\cos\left(\frac{\alpha - \beta}{2}\right) + \cos\left(\frac{\alpha + \beta}{2}\right)\right] \cdot \left[\cos\left(\frac{\alpha - \beta}{2}\right) - \cos\left(\frac{\alpha + \beta}{2}\right)\right] =$$

$$= \left[2\cos\frac{\alpha}{2}\cos\frac{-\beta}{2}\right] \cdot \left[-2\sin\frac{\alpha}{2}\sin\frac{-\beta}{2}\right] = \left[2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\right] \cdot \left[2\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\right] =$$

$$= 4\sqrt{\frac{1 + \cos\alpha}{2}} \cdot \sqrt{\frac{1 + \cos\beta}{2}} \cdot \sqrt{\frac{1 - \cos\alpha}{2}} \cdot \sqrt{\frac{1 - \cos\beta}{2}} =$$

$$= \sqrt{(1 - \cos^{2}\alpha)(1 - \cos^{2}\beta)} = \sqrt{\sin^{2}\alpha \cdot \sin^{2}\beta} = \sin\alpha \sin\beta$$

NOTA: También podríamos haberlo resuelto aplicando el apartado anterior como sigue:

$$\cos^{2}\left(\frac{\alpha-\beta}{2}\right) - \cos^{2}\left(\frac{\alpha+\beta}{2}\right) = 1 - \sin^{2}\left(\frac{\alpha-\beta}{2}\right) - 1 + \sin^{2}\left(\frac{\alpha+\beta}{2}\right) =$$

$$= \sin^{2}\left(\frac{\alpha+\beta}{2}\right) - \sin^{2}\left(\frac{\alpha-\beta}{2}\right) \stackrel{(*)}{=} \sin\alpha \sin\beta$$

(*) Por el apartado b).

• sen 4α = sen $(2 \cdot 2\alpha)$ = 2 sen $\alpha \cos 2\alpha$ =

38 Expresa sen 4α y cos 4α en función de sen α y cos α .

$$= 2 \cdot 2 \operatorname{sen} \alpha \cos \alpha \cdot (\cos^{2} \alpha - \operatorname{sen}^{2} \alpha) =$$

$$= 4 (\operatorname{sen} \alpha \cos^{3} \alpha - \operatorname{sen}^{3} \alpha \cos \alpha)$$
• $\cos 4\alpha = \cos (2 \cdot 2\alpha) = \cos^{2} 2\alpha - \operatorname{sen}^{2} 2\alpha =$

$$= (\cos^{2} \alpha - \operatorname{sen}^{2} \alpha)^{2} - (2 \operatorname{sen} \alpha \cos \alpha)^{2} =$$

$$= \cos^{4} \alpha + \operatorname{sen}^{4} \alpha - 2 \cos^{2} \alpha \operatorname{sen}^{2} \alpha - 4 \operatorname{sen}^{2} \alpha \cos^{2} \alpha =$$

$$= \cos^{4} \alpha + \operatorname{sen}^{4} \alpha - 6 \operatorname{sen}^{2} \alpha \cos^{2} \alpha$$

39 Resuelve los sistemas siguientes dando las soluciones correspondientes al primer cuadrante:

a)
$$\begin{cases} x + y = 120^{\circ} \\ sen \ x - sen \ y = 1/2 \end{cases}$$
b)
$$\begin{cases} sen^{2} \ x + cos^{2} \ y = 1 \\ cos^{2} \ x - sen^{2} \ y = 1 \end{cases}$$

$$\text{Haz } cos^{2} \ y = 1 - sen^{2} \ y \ cos^{2} \ x = 1 - sen^{2} \ x.$$
c)
$$\begin{cases} sen \ x + cos \ y = 1 \\ x + y = 90^{\circ} \end{cases}$$

a) De la segunda ecuación:

$$2\cos\frac{x+y}{2}\sin\frac{x-y}{2} = \frac{1}{2}$$

Como:

$$x + y = 120^{\circ} \rightarrow 2 \cos 60^{\circ} \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow$$

$$\rightarrow 2 \cdot \frac{1}{2} \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow \operatorname{sen} \frac{x - y}{2} = \frac{1}{2} \rightarrow$$

$$\rightarrow \frac{x - y}{2} = 30^{\circ} \rightarrow x - y = 60^{\circ}$$

$$\operatorname{Asi:} \quad x + y = 120^{\circ}$$

$$\frac{x - y = 60^{\circ}}{2x} = 180^{\circ} \rightarrow x = 90^{\circ} \rightarrow y = 30^{\circ}$$

Luego la solución es: (90°, 30°)

b) Como
$$cos^2 y = 1 - sen^2 y$$

 $cos^2 x = 1 - sen^2 x$

El sistema queda:

$$\begin{array}{c}
sen^2 x + 1 - sen^2 y = 1 \\
1 - sen^2 x - sen^2 y = 1
\end{array}$$

$$\begin{array}{c}
sen^2 x - sen^2 y = 0 \\
-sen^2 x - sen^2 y = 0
\end{array}$$
(Sumando ambas igualdades)
$$\begin{array}{c}
-sen^2 x - sen^2 y = 0 \\
-sen^2 x - sen^2 y = 0
\end{array}$$

Sustituyendo en la segunda ecuación (por ejemplo) del sistema inicial, se obtiene:

$$\cos^2 x - 0 = 1 \rightarrow \cos^2 x = 1 = \begin{cases} \cos x = 1 \rightarrow x = 0^{\circ} \\ \cos x = -1 \rightarrow x = 180^{\circ} \in 2^{\circ} \text{ cuadrante} \end{cases}$$

Luego la solución es: (0°, 0°)

c)
$$x + y = 90^{\circ} \rightarrow \text{complementarios} \rightarrow \text{sen } x = \cos y$$

Sustituyendo en la primera ecuación del sistema:

$$\cos y + \cos y = 1 \rightarrow 2 \cos y = 1 \rightarrow \cos y = \frac{1}{2} \rightarrow y = 60^{\circ} \rightarrow$$

$$\rightarrow x = 90^{\circ} - y = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Luego la solución es: (30°, 60°)

40 Demuestra que para cualquier ángulo α se verifica:

$$sen \alpha + cos \alpha = \sqrt{2} cos \left(\frac{\pi}{4} - \alpha \right)$$

Desarrollamos la segunda parte de la igualdad:

$$\sqrt{2} \cdot \cos\left(\frac{\pi}{4} - \alpha\right) = \sqrt{2} \left(\cos\frac{\pi}{4}\cos\alpha + \sin\frac{\pi}{4}\sin\alpha\right) =$$

$$= \sqrt{2} \left(\frac{\sqrt{2}}{2}\cos\alpha + \frac{\sqrt{2}}{2}\sin\alpha\right) =$$

$$= \sqrt{2} \cdot \frac{\sqrt{2}}{2} \left(\cos\alpha + \sin\alpha\right) = \frac{2}{2} \left(\cos\alpha + \sin\alpha\right) =$$

$$= \cos\alpha + \sin\alpha$$

41 Demuestra que
$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = 2 \operatorname{tg} 2x$$
.

$$\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = \frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)^2 - (\cos x + \sin x)^2} =$$

$$= \frac{\cos^2 x + \sin^2 x + 2 \sin x \cos x - \cos^2 x - \sin^2 x + 2 \sin x \cos x}{\cos^2 x - \sin^2 x} =$$

$$= \frac{4 \sin x \cos x}{\cos^2 x - \sin^2 x} \stackrel{(*)}{=} \frac{4 \cdot (\sin x \cos x / \cos^2 x)}{\cos^2 x - \sin^2 x / \cos^2 x} = \frac{4 \cdot (\sin x / \cos x)}{1 - (\sin^2 x / \cos^2 x)} =$$

$$= \frac{4 \cdot tg x}{1 - tg^2 x} = 2 \cdot \frac{2 tg x}{1 - tg^2 x} = 2 \cdot tg 2x$$

(*) Dividimos numerador y denominador entre cos² x.

42 Simplifica la expresión $2 tg x cos^2 \frac{x}{2} - sen x$.

$$2 \operatorname{tg} x \cos^{2} \frac{x}{2} - \operatorname{sen} x = 2 \cdot \frac{\operatorname{sen} x}{\cos x} \left(\frac{1 + \cos x}{2} \right) - \operatorname{sen} x =$$

$$= \frac{\operatorname{sen} x (1 + \cos x)}{\cos x} - \operatorname{sen} x = \operatorname{sen} x \left(\frac{1 + \cos x}{\cos x} - 1 \right) =$$

$$= \operatorname{sen} x \left(\frac{1 + \cos x - \cos x}{\cos x} \right) = \operatorname{sen} x \cdot \left(\frac{1}{\cos x} \right) = \operatorname{tg} x$$

Página 145

CUESTIONES TEÓRICAS

¿Qué relación existe entre las razones trigonométricas de los ángulos que miden $\frac{\pi}{5}$ y $\frac{4\pi}{5}$ radianes?

$$\frac{\pi}{5} + \frac{4\pi}{5} = \frac{5\pi}{5} = \pi \rightarrow \text{son suplementarios, luego:}$$

$$sen \frac{\pi}{5} = sen \left(\pi - \frac{4\pi}{5}\right) = sen \frac{4\pi}{5}$$

$$\cos \frac{\pi}{5} = -\cos \frac{4\pi}{5}$$
; $tg \frac{\pi}{5} = -tg \frac{4\pi}{5}$

- 44 Relaciona estas expresiones con las razones trigonométricas del ángulo α :
 - a) sen $(\pi \alpha)$; cos $(\pi \alpha)$; tg $(\pi \alpha)$
 - b) sen $(\pi + \alpha)$; cos $(\pi + \alpha)$; tg $(\pi + \alpha)$
 - c) sen $(2\pi \alpha)$; cos $(2\pi \alpha)$; tg $(2\pi \alpha)$

a)
$$\begin{cases} sen \ (\pi - \alpha) = sen \ \alpha \\ cos \ (\pi - \alpha) = -cos \ \alpha \end{cases} \rightarrow tg \ (\pi - \alpha) = -tg \ \alpha$$

b)
$$\begin{cases} sen (\pi + \alpha) = -sen \alpha \\ cos (\pi + \alpha) = -cos \alpha \end{cases} \rightarrow tg (\pi + \alpha) = tg \alpha$$

c)
$$\begin{cases} sen \ (2\pi - \alpha) = -sen \ \alpha \\ cos \ (2\pi - \alpha) = cos \ \alpha \end{cases} \rightarrow tg \ (2\pi - \alpha) = -tg \ \alpha$$

- 45 Expresa A(x) en función de sen x y cos x:
 - a) $A(x) = sen(-x) sen(\pi x)$
 - b) $A(x) = cos(-x) + cos(\pi + x)$
 - c) $A(x) = sen(\pi + x) + cos(2\pi x)$

a)
$$A(x) = sen(-x) - sen(\pi - x) = -sen x - sen x = -2 sen x$$

b)
$$A(x) = \cos(-x) + \cos(\pi + x) = \cos x + (-\cos x) = 0$$

c)
$$A(x) = sen(\pi + x) + cos(2\pi - x) = -sen x + cos x$$

- 46 Demuestra que si α , β y γ son los tres ángulos de un triángulo, se verifica:
 - a) $sen(\alpha + \beta) sen \gamma = 0$
 - b) $cos(\alpha + \beta) + cos \gamma = 0$
 - c) $tg(\alpha + \beta) + tg \gamma = 0$
 - Ten en cuenta que $\alpha + \beta = 180^{\circ} \gamma$ y las relaciones que existen entre las razones trigonométricas de los ángulos suplementarios.

Como en un triángulo $\alpha + \beta + \gamma = 180^{\circ} \rightarrow \alpha + \beta = 180^{\circ} - \gamma$, entonces:

a)
$$sen(\alpha + \beta) = sen(180^{\circ} - \gamma) = sen \gamma \rightarrow sen(\alpha + \beta) - sen \gamma = 0$$

b)
$$\cos(\alpha + \beta) = \cos(180^{\circ} - \gamma) = -\cos\gamma \rightarrow \cos(\alpha + \beta) + \cos\gamma = 0$$

c)
$$tg(\alpha + \beta) = tg(180^{\circ} - \gamma) = -tg\gamma \rightarrow tg(\alpha + \beta) + tg\gamma = 0$$

47 Demuestra que si $\alpha + \beta + \gamma = 180^{\circ}$, se verifica:

$$tg \alpha + tg \beta + tg \gamma = tg \alpha \cdot tg \beta \cdot tg \gamma$$

• Haz $\alpha + \beta = 180^{\circ} - \gamma$ y desarrolla tg $(\alpha + \beta) = \text{tg } (180^{\circ} - \gamma)$.

Si
$$\alpha + \beta + \gamma = 180^{\circ} \rightarrow \alpha + \beta = 180^{\circ} - \gamma \rightarrow$$

 $\rightarrow tg (\alpha + \beta) = tg (180^{\circ} - \gamma) = -tg \gamma \Rightarrow tg \gamma = -tg (\alpha + \beta)$

Así, sustituyendo:

$$tg \alpha + tg \beta + tg \gamma \stackrel{(*)}{=} tg \alpha + tg \beta - tg (\alpha + \beta) =$$

$$= tg \alpha + tg \beta - \frac{tg \alpha + tg \beta}{1 - tg \alpha tg \beta} =$$

$$= \frac{(tg \alpha - tg^2 \alpha tg \beta) + (tg \beta - tg \alpha tg^2 \beta) - (tg \alpha + tg \beta)}{1 - tg \alpha tg \beta} =$$

$$= \frac{-tg^2 \alpha tg \beta - tg \alpha tg^2 \beta}{1 - tg \alpha tg \beta} = (sacando factor común)$$

$$= \frac{-tg \alpha tg \beta (tg \alpha + tg \beta)}{1 - tg \alpha tg \beta} = -tg \alpha \cdot tg \beta \cdot tg (\alpha + \beta) =$$

$$= tg \alpha \cdot tg \beta [-tg (\alpha + \beta)] \stackrel{(*)}{=} tg \alpha \cdot tg \beta \cdot tg \gamma$$

(*) $tg \gamma = -tg (\alpha + \beta)$

48 Haz, con la calculadora, una tabla de valores de la función y = cos 2x, dando a x valores comprendidos entre 0 y 2π radianes y representala gráficamente.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{3\pi}{8}$	$\frac{5\pi}{12}$	$\frac{\pi}{2}$	$\frac{7\pi}{12}$	<u>5π</u> 8	$\frac{2\pi}{3}$
$y = \cos 2x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$

$\frac{3\pi}{4}$	$\frac{7\pi}{8}$	$\frac{11\pi}{12}$	π	$\frac{5\pi}{4}$	$\frac{7\pi}{8}$	2π
0	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	-1	0	0

49 Representa las funciones:

a)
$$y = cos\left(x + \frac{\pi}{2}\right)$$

$$\mathbf{b)} \ y = \mathbf{sen} \left(x + \frac{\pi}{2} \right)$$

c)
$$y = cos\left(\frac{\pi}{2} - x\right)$$

PARA PROFUNDIZAR

50 Resuelve los sistemas siguientes dando las soluciones correspondientes al primer cuadrante:

a)
$$\begin{cases} sen \ x + sen \ y = \sqrt{3} \\ cos \ x + cos \ y = 1 \end{cases}$$

b)
$$\begin{cases} sen^2 x + cos^2 y = 3/4 \\ cos^2 x - sen^2 y = 1/4 \end{cases}$$

c)
$$\begin{cases} \cos(x+y) = 1/2 \\ \sin(x-y) = 1/2 \end{cases}$$

a) Despejando en la segunda ecuación:

$$\left. \begin{array}{l} \cos x = 1 - \cos y^{\,(*)} \\ \text{Como} \ \ sen \ x = \sqrt{1 - \cos^2 x} \end{array} \right\} \ \text{entonces:}$$

$$sen \ x = \sqrt{1 - (1 - \cos y)^2} = \sqrt{1 - 1 - \cos^2 y + 2 \cos y} = \sqrt{2 \cos y - \cos^2 y}$$

Y, sustituyendo en la primera ecuación, se tiene:

$$sen x + sen y = \sqrt{3} \rightarrow \sqrt{2 \cos y - \cos^2 y} + sen y = \sqrt{3} \rightarrow$$
$$\rightarrow sen y = \sqrt{3} - \sqrt{2 \cos y - \cos^2 y}$$

Elevamos al cuadrado:

$$sen^{2} y = 3 + (2 \cos y - \cos^{2} y) - 2\sqrt{3} (2 \cos y - \cos^{2} y)$$

$$sen^{2} y + \cos^{2} y - 2 \cos y - 3 = -2\sqrt{3} (2 \cos y - \cos^{2} y)$$

$$1 - 2 \cos y - 3 = -2\sqrt{3} (2 \cos y - \cos^{2} y)$$

$$-2 (1 + \cos y) = -2\sqrt{3} (2 \cos y - \cos^{2} y)$$

Simplificamos y volvemos a elevar al cuadrado:

$$(1 + \cos y)^{2} = 3 (2 \cos y - \cos^{2} y) \rightarrow$$

$$\rightarrow 1 + \cos^{2} y + 2 \cos y = 6 \cos y - 3 \cos^{2} y \rightarrow$$

$$\rightarrow 4 \cos^{2} y - 4 \cos y + 1 = 0 \rightarrow \cos y = \frac{4 \pm \sqrt{16 - 16}}{8} = \frac{1}{2} \rightarrow y = 60^{\circ}$$

Sustituyendo en (*), se tiene:

$$\cos x = 1 - \frac{1}{2} = \frac{1}{2} \rightarrow x = 60^{\circ}$$

b)
$$sen^2 x + cos^2 y = \frac{3}{4}$$
 Sumando: $cos^2 x - sen^2 y = \frac{1}{4}$

$$sen^2 x + cos^2 x + cos^2 y - sen^2 y = 1 \rightarrow$$

$$\rightarrow 1 + \cos^2 v - \sin^2 v = 1 \rightarrow$$

$$\rightarrow 2\cos^2 y = 1 \rightarrow \cos^2 y = \frac{1}{2} \rightarrow \cos y = \frac{\sqrt{2}}{2} \rightarrow y = 45^\circ$$

(Solo consideramos las soluciones del primer cuadrante).

Sustituyendo en la primera ecuación:

$$sen^2 x + cos^2 y = \frac{3}{4} \rightarrow sen^2 x + \frac{1}{2} = \frac{3}{4} \rightarrow$$

$$\rightarrow sen^2 x = \frac{3}{4} - \frac{1}{2} \rightarrow sen^2 x = \frac{1}{4} \rightarrow sen x = \pm \frac{1}{2}$$

Nos quedamos con la solución positiva, por tratarse del primer cuadrante. Así:

$$sen x = \frac{1}{2} \rightarrow x = 30^{\circ}$$

Luego la solución es: (30°, 45°)

c) Como
$$x, y \in 1^{\underline{\operatorname{er}}}$$
 cuadrante y además $\cos(x+y) > 0$
$$\sec n (x-y) > 0$$
 \Rightarrow
$$\begin{cases} x+y \in 1^{\underline{\operatorname{er}}} \text{ cuadrante } \\ x-y \in 1^{\underline{\operatorname{er}}} \text{ cuadrante } \end{cases}$$

Teniendo esto en cuenta:

$$cos(x + y) = \frac{1}{2} \rightarrow x + y = 60^{\circ}$$

$$sen(x-y) = \frac{1}{2} \rightarrow x-y = 30^{\circ}$$
 (Sumamos ambas ecuaciones)

$$2x = 90^{\circ} \rightarrow x = 45^{\circ}$$

Sustituyendo en la primera ecuación y despejando:

$$y = 60^{\circ} - x = 60^{\circ} - 45^{\circ} = 15^{\circ}$$

La solución es, por tanto: (45°, 15°)

51 Demuestra que:

a) sen
$$x = \frac{2 tg \ x/2}{1 + tg^2 \ x/2}$$

b)
$$\cos x = \frac{1 - tg^2 x/2}{1 + tg^2 x/2}$$

c)
$$tg x = \frac{2 tg x/2}{1 - tg^2 x/2}$$

a) Desarrollamos y operamos en el segundo miembro de la igualdad:

$$\frac{2 \lg (x/2)}{1 + \lg^2 (x/2)} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 + \frac{1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \sqrt{1 - \cos x}}{1 + \cos x} = \frac{2 \cos x}{1 + \cos x}$$
b)
$$\frac{1 - \lg^2 (x/2)}{1 + \lg^2 (x/2)} = \frac{1 - \frac{1 - \cos x}{1 + \cos x}}{1 + \frac{1 - \cos x}{1 + \cos x}} = \frac{1 + \cos x - 1 + \cos x}{1 + \cos x}}{\frac{1 + \cos x}{1 + \cos x}} = \frac{2 \cos x}{1 + \cos x}}{1 + \cos x}$$
c)
$$\frac{2 \lg (x/2)}{1 - \lg^2 (x/2)} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 - \frac{1 - \cos x}{1 + \cos x}} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}{1 + \cos x} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{1 + \cos x} = \frac{2 \sqrt{\frac{1 - \cos x}{1 + \cos x}}}}{1 + \cos x} = \frac{1 + \cos x}{1 + \cos x}}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x} = \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1 + \cos x} + \frac{1 + \cos x}{1 + \cos x}$$

$$= \frac{1 + \cos x}{1$$

PARA PENSAR UN POCO MÁS

52 Demuestra que, en la siguiente figura, $\alpha = \beta + \gamma$.

- a) Puedes realizar la demostración recurriendo a la fórmula de la tangente de una suma.
- b) Hay una posible demostración, más sencilla y elegante que la anterior, reconociendo los ángulos α , β y γ en la siguiente figura:

a)
$$tg (\beta + \gamma) = \frac{tg \beta + tg \gamma}{1 - tg \beta tg \gamma} = \frac{1/2 + 1/3}{1 - 1/2 \cdot 1/3} = \frac{5/6}{1 - 1/6} = \frac{5/6}{5/6} = 1$$

 $tg \alpha = 1$

Así, vemos que
$$tg(\beta + \gamma) = tg \alpha$$

Como $\alpha, \beta, \gamma \in 1^{\underline{er}}$ cuadrante
$$\left. \begin{array}{c} \beta + \gamma = \alpha \end{array} \right.$$

b) $\alpha = BOD$. Basta observar que se trata de uno de los ángulos agudos del triángulo rectángulo que se forma con la diagonal de un cuadrado.

 $\beta = \widehat{COD}$, por ser el ángulo agudo menor de un triángulo rectángulo cuyos catetos miden cuatro y dos unidades; igual (por semejanza) al formado por catetos de dos y una unidad.

 $\gamma = \widehat{AOC}$, pues, tomando las diagonales de los cuadrados pequeños por unidades, se trata del ángulo menor del triángulo rectángulo de catetos 3 y 1 unidades (OA y AC, respectivamente).

Así, podemos observar fácilmente en el dibujo que $\alpha = \beta + \gamma$, pues:

$$\widehat{BOD} = \widehat{AOD} = \widehat{AOC} + \widehat{COD}$$

53 Obtén la fórmula siguiente:

$$sen \alpha + cos \alpha = \sqrt{2} cos(\alpha - 45^{\circ})$$

Expresa el primer miembro como suma de senos y aplica la fórmula correspondiente.

$$\cos \alpha = sen (90^{\circ} - \alpha)$$

Sustituyendo en el primer miembro de la igualdad y desarrollando (transformaremos en producto):

$$sen \ \alpha + cos \ \alpha = sen \ \alpha + sen \ (90^{\circ} - \alpha) =$$

$$= 2 \ sen \ \frac{\alpha + (90^{\circ} - \alpha)}{2} \ cos \ \frac{\alpha - (90^{\circ} - \alpha)}{2} =$$

$$= 2 \ sen \ \frac{90^{\circ}}{2} \ cos \ \frac{2\alpha - 90^{\circ}}{2} =$$

$$= 2 \ sen \ 45^{\circ} \ cos \ (\alpha - 45^{\circ}) =$$

$$= 2 \ \frac{\sqrt{2}}{2} \ (cos \ \alpha - 45^{\circ}) = \sqrt{2} \ cos \ (\alpha - 45^{\circ})$$