MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2019-20

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (25m de tolerância).

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>quatro grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta.

GRUPO I

1. [5,7] Sejam as transformações lineares $R \in L(\mathbb{R}^2, \mathbb{R}^3)$ e $S, T \in L(\mathbb{R}^3, \mathbb{R}^3)$, dadas por

$$R(x,y) = (x+y,x+2y,-2x-y), S(x,y,z) = (z-x-y,z-x,x+y-z),$$

$$T(x,y,z) = (-x+y+z,x+y-z,y+z)$$

em relação às bases canónicas E_3 , para o espaço \mathbb{R}^3 , e E_2 , para o espaço \mathbb{R}^2 .

- **a)** Calcule o núcleo e o contradomínio de *R*. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Verifique quais das funções dadas são injetivas. Justifique.
- c) Mostre que apenas a função T é bijetiva e obtenha a sua função inversa.
- **2.** [2,0] Sejam V e W espaços lineares sobre um corpo Ω . Mostre que se $T: V \to W$ é uma transformação linear injetiva, então T é invertível e a sua função inversa $T^{-1}: T(V) \to V$ é linear.

GRUPO II

- **3.** [4,0] Considere as transformações lineares definidas na questão 1. e as bases $U = \{(0,1,-1),(0,1,0),(1,0,1)\} \subset \mathbb{R}^3$ e $B = \{(1,-1),(1,1)\} \subset \mathbb{R}^2$.
 - a) Usando o cálculo matricial, obtenha as matrizes $m(T)_{E_3,U}$, representação matricial de T em relação às bases E_3 e U, e $m(R)_{B,E_3}$, representação matricial de R em relação às bases B e E_3 .
 - **b)** Usando preferencialmente as matrizes obtidas na alínea anterior, calcule a matriz $m(TSR)_{B,U}$, representação matricial de TSR em relação às bases B e U.

......(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (25m de tolerância).

2ª Prova de Avaliação

GRUPO III

4. [**2,5**] Seja a matriz real:

$$C = \begin{bmatrix} 5 & 1 & 0 & 4 \\ 1 & 0 & \beta - 1 & 1 \\ 2 & 1 & \beta + 1 & 1 \\ 0 & \alpha - 1 & \beta & 2 \end{bmatrix}$$

- a) Determine, indicando todas as operações efetuadas, os valores dos parâmetros α e β para os quais a matriz C é não singular.
- **b**) Sejam $A \in B$ duas matrizes do tipo $n \times n$. Admita que B é obtida a partir de A por aplicação consecutiva das seguintes operações (OP) sobre as linhas (L) de A:

OP1 : Multiplicação de todas as linhas de A por (-2) .

OP2:
$$-2L_1 - 4L_2 \rightarrow L_2$$
; OP3: $L_3 - 2L_4 \rightarrow L_3$;

Relacione o determinante de B com o determinante de A. Justifique.

GRUPO IV

5. [5,8] Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$m(T) = \begin{bmatrix} a & 8 & b \\ 8 & a & b \\ b & b & 4 \end{bmatrix}, \ a, b \in \mathbb{R}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 . Seja o espaço próprio, associado a um dos valores próprios de m(T), $\mathrm{E}(\alpha) = \left\{ (x,y,z) \in \mathbb{R}^3 : 2x + 2y + z = 0 \right\}$ e a base, para o espaço \mathbb{R}^3 , $\mathrm{B} = \left\{ (2,2,1), (1,0,0), (1,0,-2) \right\}$.

- **a)** Determine os valores próprios e os respetivos espaços próprios; indique, para cada um destes subespaços, uma base e a dimensão.
- **b**) Verifique, justificando, se T admite uma base de vetores próprios, U, para \mathbb{R}^3 . Em caso afirmativo, obtenha essa base e as matrizes $m(T)_{\mathrm{U,U}}$ e $m(T)_{\mathrm{U,E}}$.
- c) Calcule a matriz $m(T)_{B,B}$ e verifique se esta matriz é semelhante à matriz $m(T)_{U,U}$. Justifique devidamente, apresentando as expressões matriciais que as relacionam.