Sequential Data and Markov Models

Sargur N. Srihari

srihari@cedar.buffalo.edu

Machine Learning Course:

http://www.cedar.buffalo.edu/~srihari/CSE574/index.html

Sequential Data Examples

- Often arise through measurement of time series
 - -Snowfall measurements on successive days
 - -Rainfall measurements on successive days
 - Daily values of currency exchange rate
 - Acoustic features at successive time frames in speech recognition
 - Nucleotide base pairs in a strand of DNA
 - -Sequence of characters in an English sentence
 - Parts of speech of successive words

Markov Model – Weather

• The weather of a day is observed as being one of the following:

—State 1: Rainy

—State 2: Cloudy

-State 3: Sunny

		Tomorrow		
		Rain	Cloudy	Sunny
Today	Rain	0.3	0.3	0.4
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

Markov Model – Weather State Diagram

Sound Spectrogram of Speech

- "Bayes Theorem"
- Plot of the intensity of the spectral coefficients versus time index
- Successive observations of speech spectrum highly correlated (Markov dependency)

Markov model for the production of spoken words

- States represent phonemes
- Production of word: "cat"
- Represented by states /k/ /a/ /t/
- Transitions from
 - /k/ to /a/
 - /a/ to /t/
 - /t/ to a silent state
- Although only correct cat sound is represented by model, perhaps other transitions can be introduced,
 - eg, /k/ followed by /t/

Markov Model for word "cat"

Stationary vs Non-stationary

- Stationary: Data evolves over time but distribution remains same
 - —e.g., dependence of current word over previous word remains constant
- Non-stationary: Generative distribution itself changes over time

Making a Sequence of Decisions

- Processes in time, states at time t are influenced by a state at time t-1
- Wish to predict next value from previous values, e.g., financial forecasting
- Impractical to consider general dependence of future dependence on all previous observations
 - Complexity grows without limit as number of observations increases
- Markov models assume dependence on most recent observations

Latent Variables

- While Markov models are tractable they are severely limited
- Introduction of latent variables provides a more general framework
- Lead to state-space models
- When latent variables are:
 - —Discrete
 - they are called *Hidden Markov models*
 - —Continuous
 - they are linear dynamical systems

Hidden Markov Model

Markov Model Assuming Independence

- —Assume observations are independent
- Graph without links
- To predict whether it rains tomorrow is only based on relative frequency of rainy days
- Ignores influence of whether it rained the previous day

Markov Model

- Most general Markov model for observations $\{x_n\}$
- Product rule to express joint distribution of sequence of observations

$$p(x_1,...x_N) = \prod_{n=1}^{N} p(x_n \mid x_1,...x_{n-1})$$

First Order Markov Model

• Chain of observations $\{x_n\}$

Joint distribution for a sequence of n variables

$$p(x_1,...x_N) = p(x_1) \prod_{n=2}^{N} p(x_n | x_{n-1})$$

It can be verified (using product rule from above) that

$$p(x_n \mid x_1..x_{n-1}) = p(x_n \mid x_{n-1})$$

- If model is used to predict next observation, distribution of prediction will only depend on preceding observation and independent of earlier observations
- Stationarity implies conditional distributions $p(x_n/x_{n-1})$ are all equal

Markov Model – Sequence probability

 What is the probability that the weather for the next 7 days will be "S-S-R-R-S-C-S"?

$$O = \{S_3, S_3, S_3, S_1, S_1, S_1, S_3, S_2, S_3\}$$

—Find the probability of *O*, given the model.

$$\begin{split} P(O \mid Model \,) &= P(S_3, S_3, S_3, S_1, S_1, S_3, S_2, S_3 \mid Model \,) \\ &= P(S_3) \cdot P(S_3 \mid S_3) \cdot P(S_3 \mid S_3) \cdot P(S_1 \mid S_3) \\ &\cdot P(S_1 \mid S_1) \cdot P(S_3 \mid S_1) \cdot P(S_2 \mid S_3) \cdot P(S_3 \mid S_2) \\ &= \pi_3 \cdot a_{33} \cdot a_{33} \cdot a_{31} \cdot a_{11} \cdot a_{13} \cdot a_{32} \cdot a_{23} \\ &= 1 \cdot (0.8) \cdot (0.8) \cdot (0.1) \cdot (0.4) \cdot (0.3) \cdot (0.1) \cdot (0.2) \\ &= 1.536 \times 10^{-4} \end{split}$$

Second Order Markov Model

• Conditional distribution of observation x_n depends on the values of two previous observations x_{n-1} and x_{n-2}

$$p(x_1,..x_N) = p(x_1)p(x_2 \mid x_1) \prod_{n=3}^{N} p(x_n \mid x_{n-1}, x_{n-2})$$

Each observation is influenced by previous two observations

Mth Order Markov Source

- Conditional distribution for a particular variable depends on previous M variables
- Pay a price for number of parameters
- Discrete variable with K states
 - First order: $p(x_n/x_{n-1})$ needs K-1 parameters for each value of x_{n-1} for each of K states of x_n giving K(K-1) parameters
 - $-M^{th}$ order will need $K^{M-1}(K-1)$ parameters

Introducing Latent Variables

- Model for sequences not limited by Markov assumption of any order but with limited number of parameters
- For each observation x_n , introduce a latent variable z_n
- z_n may be of different type or dimensionality to the observed variable
- Latent variables form the Markov chain
- Gives the "state-space model"

Latent variables

Observations

Conditional Independence with Latent Variables

 Satisfies key assumption that

$$Z_{n+1} \perp Z_{n-1} \mid Z_n$$

From d-separation

When latent node z_n is filled, the only path between z_{n-1} and z_{n+1} has a head-to-tail node that is blocked

Jt Distribution with Latent Variables

Latent variables

Observations

Joint distribution for this model

$$p(x_1,...x_N,z_1,...z_n) = p(z_1) \left[\prod_{n=2}^N p(z_n \mid z_{n-1}) \right] \prod_{n=1}^N p(x_n \mid z_n)$$

- There is always a path between any x_n and x_m via latent variables which is never blocked
- Thus predictive distribution $p(x_{n+1}|x_1,...,x_n)$ for observation x_{n+1} does not exhibit conditional independence properties and is hence dependent on all previous observations

Two Models Described by Graph

Latent variables

Observations

- Hidden Markov Model: If latent variables are discrete:
 Observed variables in a HMM may be discrete or continuous
- Linear Dynamical Systems: If both latent and observed variables are Gaussian

Further Topics on Sequential Data

Hidden Markov Models:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.2-HiddenMarkovModels.pdf

Extensions of HMMs:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.3-HMMExtensions.pdf

Linear Dynamical Systems:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.4-LinearDynamicalSystems.pdf

Conditional Random Fields:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.5-ConditionalRandomFields.pdf