PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 05

MAT1106 — Introducción al Cálculo

Fecha: 2020-09-01

Problema 1:

Sean a, b > 0 demuestre que

$$\sqrt{\frac{a^2+b^2}{2}} \ge \frac{a+b}{2}.$$

¿Cuándo se alcanza la igualdad?

Problema 2:

Sean a, b, c, d > 0 demuestre que

$$\sqrt{(a+c)(d+b)} > \sqrt{ab} + \sqrt{cd}$$

Problema 3:

Sean $a_1, a_2, \dots, a_n > 0$ demuestre que

$$(a_1 + \dots + a_n) \cdot \left(\frac{1}{a_1} + \dots + \frac{1}{a_n}\right) \ge n^2$$

Problema 4:

Sean a_1, \dots, a_n y b_1, \dots, b_n reales tales que para todo $1 \le j \le n-1$ se tiene que $a_i > a_{i+1}$ y $b_i > b_{i+1}$. Demuestre que

$$a_1b_1 + a_2b_2 + \dots + a_nb_n > S_n > a_1b_n + a_2b_{n-1} + \dots + a_nb_1.$$

Donde S_n es la suma de $a_{k_i}b_{j_i}$ con $k_i, j_i \in \{1, \dots, n\}$ tales que $k_a \neq k_b$ y $j_a \neq j_b$ si $a \neq b$, y que no se tiene que para todo $i \in \{1, \dots, n\}$ $k_i = j_i$.