FCC Test Report

for

Wii Contactless Charger

Trade Name : PowerHouse

Model No. : Wi08

FCC ID. : VXDWI08

Report Number: RF- F160-0809-156

Date of Receipt: Sept. 24, 2008

Date of Report : Oct. 6, 2008

Prepared for

Fu Da Tong Technology Co., Ltd.

14F-5, No. 872, Zhongzheng Rd., Zhonghe City, Taipei County 235, Taiwan R.O.C.

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

Verification of Compliance

Equipment under Test : Wii Contactless Charger

Trade Name : PowerHouse

Model No. : Wi08

FCC ID : VXDWI08

Manufacturer : Fu Da Tong Technology Co., Ltd. : Fu Da Tong Technology Co., Ltd. **Applicant**

Address : 14F-5, No. 872, Zhongzheng Rd., Zhonghe City, Taipei

County 235, Taiwan R.O.C.

Applicable Standards : 47 CFR part 15, Subpart C

Date of Testing : Sept. 25, 2008

Deviation : N/A

Condition of Test Sample: Engineering Sample

We, Central Research Technology Co., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY DATE:

DATE: **APPROVED BY**

(Tsun-Yu Shih/Laboratory Head)

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Contents

1	General Description	4
1.1	General Description of EUT	
1.2	Test Methodology	
1.3	Applied standards	
1.4	The Support Units	
1.5	Layout of Setup	
1.6	Test Capability	
1.7	Measurement Uncertainty	10
2	Radiated Emission	11
2.1	Applied standard	11
2.2	Test Instruments	12
2.3	Measurement Procedure	14
2.4	Test configuration	15
2.5	Test Data	16
3	Conducted Emission Measurement	24
3.1	Limits for Emission Measurement	24
3.2	Test Instruments	25
3.3	Test Procedures	26
3.4	Test Configurations	27
3.5	Tost Rosults	28

Attachment 1 - Photographs of the Test Configurations

Attachment 2 - External Photographs of EUT

Attachment 3 -Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment underTest: Wii Contactless Charger

Model No. : Wi08

Power in : 100~240Vac,50Hz/60Hz

Test Voltage : 120Vac/50Hz

Manufacturer : Fu Da Tong Technology Co., Ltd.

Channel Numbers : 1

Frequency Range : 250 kHz

Function Modulation : ASK

Function Description:

The EUT is used to transmit control command only. Please refer to the user's manual for the details.

1.2 Test Methodology

For this E.U.T., the radiated emissions measurement performed according to the procedures illustrated in ANSI C63.4:2003 and other required were illustrated in separate sections of this test report for detail.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.3 Applied standards

(1) Radiated Emission Requirement

According to §15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(2) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(3) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Teade Name	PowerCode	Supported by lab.
NA	*	*	*	*	*

1.5 Layout of Setup

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
Α	Power cord	1.5m					

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it.

For radiated emission, measurement of radiated emission from digital circuit is performed with normal transmitting.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4.

Test Room	Type of Test Room	Descriptions	
TR1	10m semi-anechoic chamber		
IKI	(23m×14m×9m)	Complying with the NSA requirements in	
TD10	3m semi-anechoic chamber	documents CISPR 22 and ANSI C63.4.	
TR10	$(9m \times 6m \times 6m)$	For the radiated emission measurement.	
TR11	3m semi-anechoic chamber	- For the radiated emission measurement	
IKII	$(9m \times 6m \times 6m)$		
TR4	Shielding Room	For the RF conducted emission	
IR4	(5m×3m×3m)	measurement.	
TR5	Shielding Room	For the conducted emission	
IRS	(8m×5m×4m)	measurement.	

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11 Lane 41 Fushuen St. Jungshan Chir

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Test Laboratory Competence Information

Central Research Technology Co. has been accredited/filed/authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C.	TAF	0905	ISO/IEC 17025
Accreditation	(Taiwan)	IAI	0903	130/ILC 17023
Certificate			SL2-IN-E-0033,	
Ochinicate	R.O.C.	BSMI	SL2-IS-E-0033,	ISO/IEC 17025
	(Taiwan)	DOMI	SL2-R1/R2-E-0033,	130/1LC 17023
			SL2-A1-E-0033	
	USA	FCC	474046 TW 1021	Test facility list
	USA	100	474046, TW-1021	& NSA Data
Site Filing	Canada	IC	4699A-1,-2,-3	Test facility list
Document	Callaua	2	4099A-1,-2,-3	& NSA Data
	lanan	VCCI	R-1527,C-1609,T-131,T-1441	Test facility list
	Japan	VOI	R-1327,G-1009,1-131,1-1441	& NSA Data
Authorization	Germany	TUV	10021687-2007	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.7 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty		
Radiated Emission: (30MHz~200MHz)	Horizontal: 2.8dB;Vertical: 3.5dB		
Radiated Emission: (200MHz~1GHz)	Horizontal: 3.4dB; Vertical: 2.8dB		
Radiated Emission: (1GHz~18GHz)	Horizontal: 2.5dB; Vertical: 2.4dB		
Line Conducted Emission	ESH2-Z5	3.1 dB	
Line Conducted Linission	ENV 4200	3.8 dB	

Page:10/31

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2 Radiated Emission

Test Result: Pass

2.1 Applied standard

According to §15.209(a), the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

No. 11, Lane 41, Fushuen St., Jung: TEL. : 886-2-25984542 FAX. : 886-2-25984546

2.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESI26/837491/015	2008/5/5	2009/5/4
Spectrum Analyzer	Agilent	E4407B/ MY45106706	2008/3/19	2009/3/18
Antenna	EMCO	6502/20558	2008/8/4	2011/8/3
Broadband Antenna	EMCO	3142C/ 52088	2008/7/27	2009/7/26
Horn Antenna*	EMCO	3117/ 57408	2008/2/25	2009/2/24
Horn Antenna*	EMCO	3116/ 58959	2008/2/14	2009/2/13
Pre-Amplifier*	MITEQ	AFS6-02001800-35 -10P-6/866643	2007/12/19	2008/12/18
Pre-Amplifier	Mini Circuit	ZKL-2/ 004	2008/8/14	2009/8/13
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	2008/6/30	2009/6/29

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR : No Calibration Required.
- 3. The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.
- 4. * Use over 1GHz measurement.

Page:12/31

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
10kHz	10kHz/10Hz	Peak/ Average	Maxhold	Field Strength of Fundament
9kHz	N/A	Quasi-Peak	Maxhold	Below 30MHz
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz

Climatic Condition

Ambient Temperature : 27°C; Relative Humidity: 65%

Page:13/31

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.
- c. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. For measurement of frequency above 1000MHz, the beamwidth of receiving horn antenna should keep covering EUT when the receiving horn antenna height varied.
- For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.
- j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.
- I. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.
- m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate A.V. value will be measured and presented.

Test configuration

: Pre-amplifier

Page:16/31

2.5 Test Data

Field Strength of Fundament

Operating Frequency: 250 KHz Test Mode: Transmitting

Frequency (MHz)	Polarization	Reading (dBu	-	Correction Factor (dB/m)	Field Strength (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
(141112)		PK	AV	(ub/iii)	PK	AV	PK	AV	PK	AV
0.247	V	59.97	55.01	14.78	74.75	69.79	119.6	99.6	44.85	29.81
0.247	Н	58.12	53.87	14.78	72.90	68.65	119.6	99.6	46.70	30.95

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier

2. Field Strength (dBuV/m) = Reading Data + Correction Factor

3. The limit is 2400/250=9.6 (uV/m) @ 300 m , The formular transfors the limit at 300 m to 3m is $L_3 = L_{300} \times (~d_{300}~/~d_3~)^2 = 99.6~dBuV/m$

4. Margin (dB) = Limit – Field Strength

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

V Polarization

H Polarization

Radiated Emission Measurement below 1000MHz

Operating Frequency: 250 KHz Test Mode: Transmitting

Polarization : Vertical Frequency Range : 9 kHz~150 kHz

	Freq. (kHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	11.40	50.58	21.06	71.64	126.47	54.83
2	56.23	44.58	15.41	59.99	112.60	52.61
3	100.09	39.28	15.10	54.38	107.60	53.22

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Pre-amplifier

2. Emission Level (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Emission Level

4. The formular transfor the limit at 300 m to 3m is $L_3 = L_{300} \times (d_{300} / d_3)^2$

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Operating Frequency: 250 KHz **Test Mode**: Transmitting

Polarization : Horizontal Frequency Range : 9 kHz~150 kHz

	Freq. (kHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	9.56	49.67	21.96	71.63	128.00	56.37
2	55.95	44.73	15.42	60.15	112.65	52.50
3	100.07	39.83	15.10	54.93	107.60	52.67

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Pre-amplifier

2. Emission Level (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Emission Level

4. The formular transfor the limit at 300 m to 3m is $L_3 = L_{300} \times (d_{300} / d_3)^2$

Polarization: Vertical **Frequency Range**: 150kHz~30MHz

	Freq. (MHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	7.67	24.45	14.13	38.58	69.54	30.96
2	17.40	22.31	13.83	36.14	69.54	33.40
3	25.25	37.32	13.11	50.43	69.54	19.11

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Pre-amplifier

2. Emission Level (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Emission Level

4. The formular transfor the limit at 30 m to 3m is $L_3 = L_{30} \times (d_{30}/d_3)^2$

Polarization : Horizontal Frequency Range : 150kHz~30MHz

	Freq. (MHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1	7.67	23.99	14.13	38.12	69.54	31.42
2	18.00	21.67	13.82	35.49	69.54	34.05
3	25.25	37.32	13.11	50.43	69.54	19.11

Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Pre-amplifier

2. Emission Level (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Emission Level

4. The formular transfor the limit at 30 m to 3m is $L_3 = L_{30} \times (d_{30}/d_3)^2$

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.

3 Conducted Emission Measurement

Test Result: Pass

3.1 Limits for Emission Measurement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Fraguency of Emission (MUz)	Conducted Limit (dBuV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 - 30	60	50			

^{*} Decreases with the logarithm of the frequency.

3.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date	
Test Receiver	R&S	ESCI 30/	2008/1/11	2009/1/10	
iest Receiver	Ras	836858/021	2006/1/11	2009/1/10	
LISN	R&S	ESH2-Z5/	2008/1/7	2009/1/6	
LISIN	Ras	836613/001	2000/1//	2009/1/0	
2 nd LISN	R&S	ENV4200/	2008/1/14	2000/4/42	
2 LISIN	Ras	833209/010	2006/1/14	2009/1/13	
50Ω terminator	N/A	N/A/	2008/8/26	2009/8/25	
5012 terminator	IN/A	001	2006/6/20	2003/0/23	
RF Switch	N/A	RSU28/	2008/3/3	2009/3/2	
IXI SWILCII	IN/A	338965/002	2006/3/3	2009/3/2	
RF Cable	N/A	N/A/	2008/3/3	2009/3/2	
KF Cable	IN/A	C0052 ~ 56	2006/3/3	2009/3/2	
Test Software	Audix	e3/	NCR	NCR	
iest Soitware	Audix	Ver. 5.4.219.f	NOR	NCK	
TR5	ETS	TR5/	NCR	NCR	
shielded room	LINDGREN	15353-F	NOR	NCR	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.

Instrument Setting

IF BW	Measurement Time	Detector	Trace	Comment
9kHz	1 second	Quasi-Peak / Average	Maxhold	

Climatic Condition

Ambient Temperature: 27°C; Relative Humidity: 65%

3.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane and 0.4 meters from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane.
- c. Connect the EUT's power source to the appropriate power mains through the LISN.
- d. All the other peripherals are connected to the 2nd LISN, if any.
- e. The LISN was placed 0.8 meters from the EUT and at least 0.8 meters from other units and other metal planes.
- f. Measure the conducted emissions on each power line (Neutral Line and Line 1 Hot side) of the EUT's power source by using the test receiver connected to the coupling RF output port of LISN.
- g. Rapidly scan the signal from 150kHz to 30MHz by using the receiver through the Maximum-Peak detector to determine those frequencies associated with higher emission levels for each measured line.
- h. Then measure the maximum level of conducted disturbance for each frequency found from step g. by using the receiver through the Quasi-Peak and Average detectors per CISPR 16-1.
- i. Record the level for each frequency and compare with the required limit.

3.4 Test Configurations

3.5 Test Results

Test Mode : Charge Mode

Tester : CDC Frequency Range : 150kHz~30MHz

Phase : Line

	Freq	Level	Factor	Read Level	Limit Line	Over Limit	Ant Pos	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB -	cm	- P	19
23 @	1.98	46.38	0.24	46.14	56.00	-9.62		LINE	QP
24	1.98	32.25	0.24	32.01	46.00	-13.75		LINE	AVERAGE
25	2.68	31.98	0.29	31.69	46.00	-14.02	50000	LINE	AVERAGE
26	2.68	45.35	0.29	45.06	56.00	-10.65	200	LINE	QP
27	4.44	41.89	0.40	41.49	56.00	-14.11	200	LINE	QP
28	4.44	34.26	0.40	33.86	46.00	-11.74	255	LINE	AVERAGE
29 @	5.74	39.50	0.46	39.04	50.00	-10.50	5000000	LINE	AVERAGE
30 @	5.74	51.87	0.46	51.41	60.00	-8.13	2000	LINE	QP
31	7.37	37.65	0.55	37.10	50.00	-12.35	200	LINE	AVERAGE
32	7.37	47.79	0.55	47.24	60.00	-12.21		LINE	QP
33	8.92	43.89	0.63	43.26	60.00	-16.11	0.000	LINE	QP
34	8.92	33.71	0.63	33.08	50.00	-16.29		LINE	AVERAGE
35	13.41	31.67	0.62	31.05	50.00	-18.33	-	LINE	AVERAGE
36	13.41	41.96	0.62	41.34	60.00	-18.04		LINE	QP
37	18.43	41.28	0.64	40.64	60.00	-18.72	0.000	LINE	QP
38	18.43	30.99	0.64	30.35	50.00	-19.01		LINE	AVERAGE
39	24.53	43.01	0.48	42.53	60.00	-16.99	-	LINE	QP
40	24.53	33.41	0.48	32.93	50.00	-16.59		LINE	AVERAGE

Note:

- Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.

Test Mode : Charge Mode

Tester : CDC Frequency Range : 150kHz~30MHz

Phase : Neutral

	Freq	Level	Factor	Level	Limit	Limit	Pos	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB -	cm	Š.	li .
1	0.25	50.57	0.16	50.41	61.86	-11.29		NEUTRAL	QP
2 @	0.25	45.91	0.16	45.75	51.86	-5.95		NEUTRAL	AVERAGE
3	0.29	31.68	0.17	31.51	50.50	-18.82	(0.000)	NEUTRAL	AVERAGE
4	0.29	48.63	0.17	48.46	60.50	-11.87		NEUTRAL	QP
5	0.33	48.52	0.16	48.36	59.53	-11.01	244	NEUTRAL	QP
6	0.33	34.05	0.16	33.89	49.53	-15.48	***	NEUTRAL	AVERAGE
7	0.38	33.01	0.16	32.85	48.34	-15.33	0.000	NEUTRAL	AVERAGE
8 @	0.38	49.81	0.16	49.65	58.34	-8.53		NEUTRAL	QP
9 @	0.55	45.48	0.17	45.31	56.00	-10.52	2000	NEUTRAL	QP
10	0.55	29.12	0.17	28.95	46.00	-16.88		NEUTRAL	AVERAGE
11	0.64	28.90	0.18	28.72	46.00	-17.10	0.000	NEUTRAL	AVERAGE
12 @	0.64	45.43	0.18	45.25	56.00	-10.57		NEUTRAL	QP
13	0.71	44.87	0.18	44.69	56.00	-11.13	2000	NEUTRAL	QP
14	0.71	28.48	0.18	28.30	46.00	-17.52		NEUTRAL	AVERAGE
15	0.91	42.11	0.19	41.92	56.00	-13.89	0.000	NEUTRAL	QP
16	0.91	25.84	0.19	25.65	46.00	-20.16		NEUTRAL	AVERAGE
17 @	1.24	37.72	0.22	37.50	46.00	-8.28	200	NEUTRAL	AVERAGE
18	1.24	43.85	0.22	43.63	56.00	-12.15		NEUTRAL	QP .
19	1.44	23.94	0.23	23.71	46.00	-22.06	0000	NEUTRAL	AVERAGE
20	1.44	41.35	0.23	41.12	56.00	-14.65		NEUTRAL	QP
21	1.73	45.06	0.24	44.82	56.00	-10.94	-	NEUTRAL	QP
22 @	1.73	39.72	0.24	39.48	46.00	-6.28		NEUTRAL	AVERAGE

	Freq	Level	Factor	Read Level	Limit Line	Over Limit	Ant Pos	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	cm		19
23	2.05	39.17	0.26	38.91	56.00	-16.83		NEUTRAL	QP
24	2.05	23.39	0.26	23.13	46.00	-22.61		NEUTRAL	AVERAGE
25 @	2.72	39.15	0.31	38.84	46.00	-6.85	5000000	NEUTRAL	AVERAGE
26	2.72	44.76	0.31	44.45	56.00	-11.24		NEUTRAL	QP
27 @	3.71	36.20	0.38	35.82	46.00	-9.80	200	NEUTRAL	AVERAGE
28	3.71	41.92	0.38	41.54	56.00	-14.08		NEUTRAL	QP
29	5.53	47.97	0.49	47.48	60.00	-12.03	5.55	NEUTRAL	QP
30	5.53	35.25	0.49	34.76	50.00	-14.75	222	NEUTRAL	AVERAGE
31	7.25	33.22	0.60	32.62	50.00	-16.78	200	NEUTRAL	AVERAGE
32	7.25	46.16	0.60	45.56	60.00	-13.84		NEUTRAL	QP
33	9.91	31.50	0.76	30.74	50.00	-18.50	5000	NEUTRAL	AVERAGE
34	9.91	42.72	0.76	41.96	60.00	-17.28	222	NEUTRAL	QP
35	13.48	42.51	0.95	41.56	60.00	-17.49	-	NEUTRAL	QP
36	13.48	31.24	0.95	30.29	50.00	-18.76		NEUTRAL	AVERAGE
37	19.84	29.60	1.32	28.28	50.00	-20.40	0.75	NEUTRAL	AVERAGE
38	19.84	40.75	1.32	39.43	60.00	-19.25		NEUTRAL	QP
39	23.76	32.03	1.30	30.73	50.00	-17.97		NEUTRAL	AVERAGE
10	23.76	42.98	1.30	41.68	60.00	-17.02		NEUTRAL	QP

Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.

Page:31/31

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.