ITI1500A Devoir # 3 SOLUTIONS

3.2

(c)	F = CD + ABD + ABC

(e)

(f)

$$F(w,x,y,z) = wy + w'y'$$

$$F(w,x,y,z) = w'y + wy'$$

g()

h()

01

00

(b)

C

	V					
113	1	00	01	11	10	
	00	mo	1	m ₃	m ₂	
	01	m ₄	m ₃	m ₇	m _o 1	1
	11	m ₁₂	m ₁₃	m ₂₅	m ₁₄	3
HE:	10	m_{δ}	m _s 1	m ₁₁	m ₁₀	-

(c)

(a)
$$F = xz' + w'y'z + wxy$$

	1	m ₃	<i>m</i> ₂		00) ""	mı	1	1
	m ₅	m_7	m ₆		01	m_4	m_5	m_7 1	m ₆
	m ₁₃	m ₁₅	m ₁₄	x	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	m_9	m_{11}	m ₁₀		A 10	$m_{\mathcal{S}}$	m_{g}	m ₁₁	m ₁₀
		z		J	L			D	
I	$7 = \chi z'$	w'y'z	+ wxy		(b) F	= A'C+	ABC'+A	lBD′₊

wx	00	00 m ₀	m_1	11 m ₃ 1	m_2	
	01	m_4 1	m_5 1	m_7 1	m_{δ} 1	
	11	m ₁₂	m ₁₃	m ₁₅	m_{14}	
v	10	m_8	m_g 1	m_{11} 1	m_{10}	

	⟨CD			(7	
AI	3	00	01	11	10	
	00	m_0 1	m_1	<i>m</i> ₃	m_2 1	
	01	m ₄	m ₅	m ₇	m_{δ} 1	
	11	m_{12}	m ₁₃	m ₁₅	m ₁₄	В
A	10	m ₈	m_g	m_{11}	1	
	(d)	7/-	0 0000000	D + A'B - D + B'D	+ B'D' 0' + A'D'	

3.8

(a)
$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$

(b) $F = \Sigma(1, 3, 5, 9, 12, 13, 14)$

(c) $F = \Sigma(0, 1, 2, 3, 11, 12, 14, 15)$

(d) $F = \Sigma(3, 4, 5, 6, 7, 11, 12)$

3.10

Essential: xz, x'z'

F=xz+x'z'+wx or

 $\mathbf{F}=_{\mathbf{XZ}+\mathbf{X'Z'}+\mathbf{WZ'}}$

(a)

 $F = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$

D

Essential: AC, B'D', A'BD€

01

10

B

F=AC+B'D'+A'BD+CD or ϕ $F=AC+B'D'+A'BD+B'C\phi'$

(b)

Note: dans le cours:

Essentiel: AC, B'D', A'BD, AC (groupage actuel) ou AC, B'D', A'BD, B'C (groupage différent)

ou wz', x'z', xz (groupage différent)

Essential: wx, x'z', xz (groupage actuel)

Seuls les essentiels font parties de la fonction simplifiée selon du groupage choisi

 $F = \Sigma(1, 3, 4, 5, 10, 11, 12, 13, 14, 15)$

Essential: AC, BC'

$$F = AC + BC' + A'B'D$$

(c)

Même principe que pour (a) et (b)

 $F = \Sigma(0, 1, 4, 5, 6, 7, 9, 11, 14, 15)$

Essential: w'y', xy

$$F = w'y' + xy + wx'z$$

(d)

F(A, B, C, D) = S(0, 1, 3, 7, 8, 9, 10, 13, 15)

Essential: B'C', AB'D'

F=B'C'+AB'D'+A'CD+ABD

(e)

Même principe que pour (a) et (b)

F = S(0, 1, 2, 4, 5, 6, 7, 10, 15)

Essential: w'y', xyz, x'yz' F=w'y'+xyz+x'yz'+w'z' or F= w'y'+xyz+x'yz'+w'x

(f)

1.	VΖ			
x	00	01	11	10
	m_0	m_1	m_3	m_2
() 1	1	X	X
3	m_4	m_5	m_7	m_6
1	1	1	X	1
L		78(5)		1

F = 1 $F = \Sigma(0,1, 2, 3, 4, 5, 6, 7)$

 $F = \Sigma (0, 2, 6, 8, 10, 13, 14)$

F = BC + ABD' + A'BD $F = \Sigma (5, 6, 7, 12, 14, 15)$

$$F = B'D' + C'D' + A'BC$$

$$F = F = \Sigma(0, 2, 4, 6, 7, 8, 10, 12)$$

(a)

(b)

(c)
$$F = (A' + C' + D')(A' + C')(C' + D')$$

 $F' = (A' + C' + D')' + (A' + C')' + (C' + D')'$
 $F' = ACD + AC + CD$

$$F = C' + A'D'$$

$$F = (C(A + D))'$$

$$F = (C(A'D')')'$$

3.18

a-

$$F = (A \oplus B)'(C \oplus D) = (AB' + A'B)'(CD' + C'D)$$

$$= (AB + A'B')(CD' + C'D) = ABCD' + ABC'D + A'B'CD' + A'B'C'D$$

$$F' = (AB + A'B')' + (CD' + C'D)'$$

$$F' = ((A' + B')' + (A + B)')' + ((C' + D)' + (C + D')')'$$

$$F = (AB + A'B') (C'D + CD')$$

$$F = ((AB + A'B')')' ((C'D + CD')')'$$

$$F = ((AB)' . (A'B')')' ((C'D)' . (CD')')'$$

$$F' = (((AB)' . (A'B')')' ((C'D)' . (CD')')')'$$

