

Improving Mathematical functions in Unum

STUDENT: SIDONG FENG SUPERVISOR: JOSH MILTHORPE

The Australian National University

Outline

Background Motivation & Approach Project Goal Experimental Results Future Work

The Universal Number: UNUM

- Superset of IEEE types, both 754 and 1788
- Integers->floats->unums
- No rounding(accurate), no overflow to ∞, no
 - underflow to zero
- Safe to parallelize
- They obey algebraic laws!
- Fewer bits than floats
- But... they're new

"YOU CAN'T BOIL THE OCEAN."
-Former Intel exec, when shown the unum idea

UNUM FORMAT

$$x = (-1)^{s} \times \begin{cases} 2^{2-2^{es-1}} \times \left(\frac{f}{2^{fs}}\right) & \text{if } e = \text{all 0 bits,} \\ \infty & \text{if } e, f, es, \text{ and } fs \text{ have all their bits set to 1,} \\ 2^{1+e-2^{es-1}} \times \left(1 + \frac{f}{2^{fs}}\right) & \text{otherwise.} \end{cases}$$

Three format to express a big number

Avogadro's number: ~6.022×10²³ atoms

Sign-Magnitude Integer (80 bits):

• IEEE Standard Float (64 bits):

• Unum (29 bits):

```
0 11001101 111111100001 1 111 1011 sign exp. frac. ubit exp. size frac. size
```

Unum Library by LLNL (Lawrence Livermore National Laboratory)

- hlayer
- ulayer
- glayer

GNU Multiple Precision Arithmetic Library(GMP)

There are several categories of functions in GMP:

- High-level signed integer arithmetic functions (mpz).
- High-level rational arithmetic functions (mpq).
- High-level floating-point arithmetic functions (mpf).

Big problems facing computing

- Rounding leads to inaccurate answer
- Too much energy and power needed per calculation
- Not enough bandwidth (the "memory wall")
- Rounding errors prevent use of parallel methods
- IEEE floats give different answers on different platforms

Project Goal

Improve the LLNL library,

Implement Arithmetic operation, Power,

and Transcendental functions, Exponential, Logarithmic.

Implementing the log function for unums

log(A,B) = (log(A), log(B))for all positive a and b

Implementing the log function for unums

$$x = | NaN \text{ if } x = NaN$$

$$| NaN \text{ if } x < 0$$

$$| -\infty \text{ if } x = 0$$

$$| +\infty \text{ if } x = +\infty$$

$$| mpf_log(x)$$

mpf_log: Taylor Expansion

$$\begin{aligned} \log(x) &= 1 & 0 & \text{if } x = 1 \\ &= 1 & n \cdot \log(2) + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(a-1)^k}{k} \text{ where} \\ &\qquad \qquad x = 2^n \cdot \text{a and } a \in (0,2] \end{aligned}$$

Implementing the exp function for unums

```
exp(a,b) = (exp(a),exp(b))
```

$$x = | NaN | if x = NaN$$

$$| O \text{ if } x = -\infty$$

$$| 1 \text{ if } x = 0$$

$$+\infty$$
 if $x = +\infty$

$$| mpf_exp(x)|$$

mpf_exp: Taylor Series

$$\exp(x) = 1$$
 1 if $x = 0$
 $= 1$ $e^{real} \cdot e^{Taylor_Series(decimal)}$ where
$$Taylor_series = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Implementing the pow function for unums

 $\mathbf{x}^{y} = \mathbf{e}^{y \log(x)}$

Experiment

Running Environment: 2.5GHz Intel core i5

Experimental Results for log

Experimental Results for log

Perform 10000 runs on different Unumenvironments and IEEE respectively.

Experimental Results for log

Perform 10000 runs on different Unumenvironments and IEEE respectively.

Experimental Results for exp

Experimental Results for exp

Perform 10000 runs on different Unumenvironments and IEEE respectively.

Experimental Results for exp

Perform 10000 runs on different Unumenvironments and IEEE respectively.

Future work

Improving efficiency:

Golden Ratio (log)

nth shifting algorithm (exp, pow)

Conclusion

Unum is much slower than IEEE (so far), however it produces an accurate result. (Gain accuracy, loss performance). If you do want a right result, use unum. More operations, more available testing.

[1] Wikipedia. Unum (number format), 2017.

[2] Gustafson, John L. The end of numerical error, 06 2016.

[3] Kulisch, Ulrich W. Up-to-date Interval Arithmetic from closed intervals to connected sets of real numbers, 07 2016.

[4] Free Software Foundation. What is GNU? September 4, 2009