BONUS: INTRO TO CRYPTOGRAPHY

The art of secret writing!

BME 121 2016

Jeff Luo

Cryptography

- "Crypto": secret
- "Graphy": writing (like calligraphy, biography,...)
- From Greek words kryptós and graphein
- The necessities of politics, war, and governance have always included the need to keep communications secret and efficient between trusted friends
- At the same time, to gain advantage upon enemies, the art of Cryptanalysis came about: to break cryptographic systems

Cipher

- A single cryptographic system is called a cipher
 - Modern ones include RSA, DES, AES, Fiestel, and more... they are used to power up technologies like SSL, HTTPS, and secured e-commerce

We'll look at two of the earliest ciphers in recorded history

Cryptography Basics

- Plaintext: the unencrypted, original message
 - HELLO WORLD
- Ciphertext: the encrypted message
 - LAK\$@#@EKJF
- Encryption: the process of transforming plaintext into ciphertext, using a cipher
- Decryption: the process of transforming ciphertext into plaintext, using a cipher in reverse

One of the Earliest Ciphers

 In ancient Sparta, they used a Scytale (pronounced ska-teil) to wrap a piece of long paper or leather around to write secret messages

Spartan Scytale Cipher

- It is a Transposition Cipher
 - Letters are rearranged according to some "secret" order
- To properly decode the message, an friend or enemy must have a Scytale (or stick) with the same diameter, and wrap the paper according to the correct curvature

Breaking the Spartan Scytale Cipher

- Transposition Ciphertext exhibit a certain repeated rearrangement pattern, and its not too hard to recognize these:
- Can be broken in modern times by repeated trial and error, and the use of pattern finding and matching algorithms (including dictionaries)

T | I | I | S | A | T | H | S | S | P | R | A

THE CAESAR CIPHER!

- Named after Gaius Julius Caesar
- Formal Modern Name: Caesar Shift Cipher
- It is a Substitution Cipher
- For the majority of the 500 years of the Roman Empire, they used 1 cipher, in a basic or advanced configuration
- It fooled everyone!

THE CAESAR CIPHER!

- Start with a plaintext alphabet
- Shift the alphabet to the right by a number of positions to form the cipher alphabet (the amount of shift is the "password", or Cryptographic Key)
- Encryption: Replace each letter in the plaintext by its corresponding ciphertext in the alphabet
- 4. Decryption: Replace each letter in the ciphertext by its corresponding plaintext in the alphabet

Example

Plaintext: grumpycat

Ciphertext: dorjmvzxq

Try decrypting this: k1

Breaking the Basic Caesar Cipher

- In Basic Caesar Cipher, the secret is the number of positions shifted
 - 26 letters: 26 shifts to try
 - One of them will look like correct legible language text, while the rest look like garbage text
- Not hard to break, but
- Literacy wasn't very common
 - This provided the actual security of using the Basic Caesar Cipher

Decryption shift	Candidate plaintext			
0 (ciphertext)	exxegoexsrgi			
1	dwwdfndwrqfh			
2	cvvcemcvqpeg			
3	buubdlbupodf			
4	attackatonce			
5	zsszbjzsnmbd			
6	yrryaiyrmlac			

Advanced Caesar Cipher

- Pick a word or phrase as a password:
 - EG: Biomedical
- Discard all repetitions of letters in the password:
 - Biomedcal
- This password begins the ciphertext alphabet, the rest of the alphabet follows in standard order, beginning at the last letter of the password

Example

Plaintext: grumpycat

Ciphertext: cwzrujoby

Try decrypting this: jex

Breaking the Advanced Caesar Cipher

- Can't simply shift and try, since the ciphertext alphabet is not in the same order as the plaintext..., but
- Every language has a hidden statistical pattern:
 - The number of times each letter shows up in each word, message, essay ...
 across collections and collections of documents

Overall, the English language has the following relative frequencies:

а	b	С	d	е	f	g	h	i	j	k	ı	m
8.17%	1.49%	2.78%	4.25%	12.70%	2.23%	2.02%	6.09%	6.97%	0.15%	0.77%	4.03%	2.41%
n	0	p	а	r	S	t	u	V	w	X	V	Z
	_	r	7	-	•	•	G	•	••		J	_

English Language Letter Frequency

Breaking the Advanced Caesar Cipher

- The Caesar Cipher simply reassigns the labels in the x axis of the histogram
- If you collect enough ciphertext (created with the same password), you can count the occurrence of each letter and then produce a histogram with the ciphertext letters as labels
- Match those labels with the ones in the plaintext language, and bingo!

In Short

- Transposition Ciphers rearrange the plaintext to create the ciphertext
 - Vulnerable to guess work, or systematic trial and error
- Substitution Ciphers replace the plaintext using a specific alphabet to create the ciphertext
 - Vulnerable to Frequency Analysis
- Modern Ciphers do both at the same time, to stop both kinds of cryptanalysis and attacks

 They also have vulnerabilities of their own (Google DES attack cryptanalysis)

1 Round of a total of 8 in the IDEA Cipher

Summary / Practice: Encryption

- Strings are actually arrays of Chars
 - An array of Strings, is a 2D array of Chars...
- If string library methods cannot solve a string problem, then frame it as an array problem and solve it by converting the string into an array of characters:
 - someString.ToCharArray()
- With EncryptionSkeleton.cs as the starting point, study the code in method Encrypt() and then complete the method Decrypt().

