่ I. ลิมิต

บทนิยาม

 $\lim_{x \to \infty} f(x) = L$ หมายความว่า f(x) มีค่าเข้าใกล้ L เมื่อ x เข้าใกล้ a ทางซ้าย $\lim_{x \to \infty} f(x) = L$ หมายความว่า f(x) มีค่าเข้าใกล้ L เมื่อ x เข้าใกล้ a ทางขวา $\lim_{x \to a} f(x) = L \text{ ก็ต่อเมื่อ } \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$

หลักการหาลิมิตของฟังก์ชัน

พิจารณา $\lim_{x\to a}\frac{f(x)}{g(x)}$ ให้แทน x ด้วย a ถ้าได้ $\frac{\ln \theta}{\ln \theta}$ จะได้ว่า $\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\ln \theta}{\ln \theta}$ ถ้าได้ $\frac{0}{ia_0}$ จะได้ว่า $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ ถ้าได้ $\frac{\mathrm{เล} v}{0}$ จะได้ว่า $\lim_{x \to a} \frac{f(x)}{g(x)} =$ หาค่าไม่ได้

ถ้าได้ $\frac{0}{0}$, $\frac{\infty}{\infty}$ จะได้ว่า $\lim_{x \to a} \frac{f(x)}{g(x)}$ สรุปไม่ได้ ให้แยก factor คูณด้วย Conjugate ใช้กฎของโลปิตาล

II. ความต่อเนื่อง

บทนิยาม

ให้ $a \in R$ ใดๆ ฟังก์ชัน f ต่อเนื่องที่ x = a ก็ต่อเมื่อ

- 1. f(a) หาค่าได้
- 2. $\lim_{x \to a} f(x)$ หาค่าได้ $\left(\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)\right)$
- $\lim_{x \to a} f(x) = f(a)$

III. อนุพันธ์

บทนิยาม

• เราจะเรียกค่า $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ เมื่อลิมิตหาค่าได้ว่า "อนุพันธ์ของฟังก์ชัน f " เขียนแทนด้วย f'(x), y', $\frac{d}{dx}y$, $\frac{d}{dx}f(x)$ ดังนั้น $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

 \blacksquare อนุพันธ์ของฟังก์ชัน f ที่ x = a เขียนแทนด้วย $f'(a), \frac{d}{dx}f(x)\Big|_{x = a}$ ดังนั้น $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

NOTE

ถ้า f เป็นฟังก์ชันที่ไม่ต่อเนื่อง ที่ x=a แล้ว f เป็นฟังก์ชัน ที่ไม่มีอนพันธ์ ที่ x = a

การหาอนุพันธ์โดยใช้สูตร

สูตรการหาอนพันธ์ (c เป็นค่าคงตัว)

1.
$$\frac{d}{dr}c = 0$$

$$5. \frac{d}{dx}(uv) = uv' + vu'$$

2.
$$\frac{d}{dx}cx^n = c\frac{d}{dx}x^n$$

2.
$$\frac{d}{dx}cx^n = c\frac{d}{dx}x^n$$
 6. $\frac{d}{dx}(uvw) = u'vw + uv'w + uvw'$

$$3. \frac{d}{dx}x^n = nx^{n-1}$$

3.
$$\frac{d}{dx}x^n = nx^{n-1}$$
 7.
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$(4.) \frac{d}{dx}(u \pm v) = u' \pm v' \qquad 8. \frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$$

$$8. \ \frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$$

กฎลูกโซ่และการหาอนุพันธ์ของฟังก์ชันคอมโพสิท

IV. การประยุกต์ของอนุพันธ์

กฎของโลปิตาล

ถ้า
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}, \frac{\infty}{\infty}$$
 แล้ว $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{\overline{0}}{\overline{0}}$ ฟอบน

ความชั้นเส้นโค้ง/ ความชั้นเส้นสัมผัสเส้นโค้ง

ความชั้นของเส้นตรงที่มาสัมผัสเส้นโค้ง f ณ จุด x=a คือ f'(a) เรียก f'(a)ความชั้นของเส้นสัมผัส หรือ ความชั้นของเส้นโค้ง ที่ x=a

ฟังก์ชันเพิ่ม ฟังก์ชันลด

ถ้า f'(x) < 0 สำหรับทุก x ในช่วง s แล้ว f เป็นฟังก์ชันลดบนช่วง s ถ้า f'(x) > 0 สำหรับทุก x ในช่วง s แล้ว f เป็นฟังก์ชันเพิ่มบนช่วง s

IV. การประยุกต์ของอนุพันธ์ (ต่อ)

ค่าสูงสุดสัมพัทธ์ ต่ำสุดสัมพัทธ์

หลักการหาค่าสูงสุดสัมพัทธ์ ต่ำสุดสัมพัทธ์

- 1. หาค่าวิกฤต (x=c) จาก f'(x)=0 หรือ f'(x) หาค่าไม่ได้
- 2. ทดสอบว่าค่าวิกฤตให้ค่าสูงสุดลัมพัทธ์ หรือต่ำสุดสัมพัทธ์

วิธีที่ 1 ดูที่ $f'(x)$	วิธีที่ 2 คูที่ $f'(x)$	
$f'(x) \xrightarrow{\oplus c}$	f''(c) < 0	f(c) เป็นค่าสูงสุดสัมพัทธ์
f'(x)	f''(c) > 0	f(c) เป็นค่าต่ำสุดสัมพัทธ์
	f''(c) = 0	สรุปไม่ได้ (ต้องกลับไปใช้วิธีที่ 1)
$f'(x) \xrightarrow{+} c \xrightarrow{+}$	เป็นจุดเปลี่ยนเว้า	لم
f'(x)	. บนขุทเบตบนเ <i>ง</i> (

IV. การประยุกต์ของอนุพันธ์ (ต่อ)

ค่าสูงสุดสัมบูรณ์ ต่ำสุดสัมบูรณ์

หลักการหาค่าสูงสุดสัมบูรณ์ ต่ำสุดสัมบูรณ์

- 1. หาค่าวิกฤต (x=c) จาก f'(x)=0 หรือ f'(x) หาค่าไม่ได้พร้อมทั้งหาค่า
- 2. หาจุดปลาย f(a), f(b)
- เปรียบเทียบค่าของฟังก์ขัน
 ค่าที่มากที่สุด จะเป็นค่า สูงสุดสัมบูรณ์
 ค่าที่น้อยที่สุด จะเป็นค่า ต่ำสุดสัมบูรณ์

V. อินทิเกรต

ปฏิยานุพันธ์

ฟังก์ชัน F เป็นปฏิยานุพันธ์ของ f เมื่อ F'(x) = f(x) สำหรับทุกค่าของ x

อินทิเกรตไม่จำกัดเขต

🔾 สูตรอินทิเกรตไม่จำกัดเขต ให้ k และ c เป็นค่าคงตัว

$$1. \int k dx = kx + c$$

$$4. \int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $n \neq -1$ 5. $\int f'(x) dx = f(x) + c$

$$\int f'(x) dx = f(x) + c$$

3.
$$\int kf(x)dx = k \int f(x)dx$$

อินทิเกรตจำกัดเขต

กำหนดให้ F(x) เป็นปฏิยานุพันธ์ของ f(x) จะได้ว่า

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

สูตรอินทิเกรตจำกัดเขต

1. ถ้า
$$a < c < b$$
 จะได้ว่า $\int\limits_a^b f(x) dx = \int\limits_a^c f(x) dx + \int\limits_c^b f(x) dx$

$$2. \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

V. อินทิเกรฅ (ต่อ)

การหาพื้นที่ใต้เส้นโค้ง

ขั้นตอนการหาพื้นที่ใต้กราฟ

- หาจุดตัดแกน x / จุดตัดกราฟ
- 2. คำนวณหาพื้นที่ในแต่ละส่วน

$$A_1 = \int_a^b f(x) dx, \ A_2 = \int_b^c f(x) dx$$

$$A = \int_{a}^{b} (f - g) dx$$