## Errata

(Mathematische Einführung in Data Science von Sven-Ake Wegner)

## 23. März 2024

- Seite 15, Zeile -3 und Seite 16, Zeile 2:  $Var(x\xi)^{(n)}$
- Seite 17, Zeile 11:  $r_{xy}$
- Seite 24, Zeile -11:  $f = \langle (a_1, \dots, a_d), \cdot \rangle + a_0$
- Seite 26, Zeile 18:  $f(z) = \text{sig}(\langle w, \cdot \rangle)$
- Seite 31, Zeile 12: ... und  $\langle w, \widehat{w}_k \rangle < 0$  gelten.
- Seite 38, Zeile 13: ... und  $x_1, \ldots, x_k \in D_1 := \{x \mid (x, y) \in D\}$  gelten.
- Seite 38, Zeile 14:  $x_1 \in \underset{z \in D_1}{\operatorname{argmin}} \rho(x, z)$  sowie  $x_j \in \underset{z \in D_1}{\operatorname{argmin}} \rho(x, z)$  für  $j \geqslant 2$
- Seite 38, Zeile 20:  $f(x) \in \underset{y \in Y}{\operatorname{argmax}} N(y)$
- Seite 39, Zeile 4:  $z^* \leftarrow \operatorname{argmin}_{z \in D'_{\bullet}} \rho(x, z)$
- Seite 39, Zeile 5:  $D_1' \leftarrow D_1' \setminus \{(z^*, y^*)\}$
- Seite 39, Zeile 10–11: Hierbei bezeichnet  $\pi_2(x,y) = x$  die Projektion auf den zweiten Eintrag von  $(x,y) \in D$  und  $y^*$  das Label von  $z^*$ .
- Seite 39, Zeile -2: ... vorgenannten grauen Punkt  $\boldsymbol{x}$  mit ...
- Seite 41, Zeile 6–7: ... Trainingsdaten  $D_{\text{Train}}$  und  $Testdaten\ D_{\text{Test}}$ . Dann bestimmt man einen Klassifizierer  $f\colon X\to Y$  anhand von  $D_{\text{Train}}$ , und stellt fest, welcher Anteil der Punkte aus  $D_{\text{Test}}$  durch f korrekt klassifiziert wird.
- Seite 52, Zeile −14: Text *D*
- Seite 55, Zeile 21–23: ... bevor der minimale Abstand zwischen den Clustern in der nächsten Runde erstmalig über einen einzugebenden Wert  $\delta > 0$  wachsen würde.
- Seite 55, Zeile −15: *D*
- Zeile −12: while  $\min_{i\neq j} \rho(C_i, C_j) \leq \delta$  do
- Seite 56, Zeile 4: ..., wie in Definition 4.2, ...
- Seite 56, Zeile 8: Aufgabe 4.2
- Seite 62, Zeile 5:  $\operatorname{argmin}_{i=1,2} \|x \mu_i\|$
- Seite 70, Zeile 3–4: Wir wählen  $v_1 = 1$  als Eigenvektor zum Eigenwert  $\lambda_1$ . Dann gelten für Eigenwert und Eigenvektor  $\lambda_2$  bzw.  $v_2$  ...
- Seite 70, Zeile 7:  $v_2 \in \cdots$
- Seite 71, Zeile 5:  $\emptyset \neq S \subset V$
- Seite 72, Zeilen 6 und 8:  $\emptyset \neq S \subset V$
- Seite 73, Zeile 10: Ist G d-regulär (d.h., es gilt  $\deg(v) = d$  für alle Vertices  $v \in V$  mit einem  $d \in \mathbb{N}$ ), so gilt . . .
- Seite 74, Zeile 15:  $\emptyset \neq S \subset V$
- Seite 74, Zeile 16: Cheeg(G) =  $\frac{\#\partial S}{\text{vol }S}$
- Seite 87, Zeilen 11 und 14: AX
- Seite 91, Zeile 12: ... Singulärwert von A, ...
- Seite 95, Zeile 6: Ist  $1 \leq k < p$  und haben wir  $\sigma_{k+1} = \cdots = \sigma_p = 0, \ldots$
- Seite 102, Zeile 17:  $r = \operatorname{rk}(A)$
- Seite 106, Zeile 3:  $\forall i, j \in \{1, \dots, n\}$ :  $\left| \|T_{V_k} a_i T_{V_k} a_j\| \|a_i a_j\| \right| \leq 2 \left(\sum_{\ell=k+1}^r \sigma_\ell\right)^{1/2}$
- Seite 110, Zeile 7:  $\mathbb{R}^5_{\mathbf{T}}$
- Seite 112, Zeile 5: (Film) $_{\mathfrak{F}}$   $\mathbb{R}_{\mathfrak{F}} \xrightarrow{A} \mathbb{R}_{\mathfrak{B}}$  (Bewerterin) $_{\mathfrak{B}}$
- Seite 111, Zeile 4: R (statt R)

- Seite 112, Zeilen 14 und 25: R (statt R)
- Seite 112, Zeile −3: ...die Daten erst einem geeigneten Pre- oder Postprocessing zu unterziehen ...
- Seite 125, Zeile -3:  $H_d(1)$
- Seite 129, Zeile -1:  $0 < \varepsilon < 1$
- Seite 131, Zeile 9:  $H_{\delta,x_1} = \{(x_2,\ldots,x_d \in \mathbb{R}^{d-1} \mid (x_1,x_2,\ldots,x_d) \in H_{\delta}\}$
- Seite 134, Zeile 9: Für solche Zufallsvektoren erhält man ...
- Seite 139, Zeile  $-1: ||X^{(i)}|| \approx 1$
- Seite 146, Zeile 5:  $P[||X|| \sqrt{d}| \ge \varepsilon]$
- Seite 167, Zeile 5–7: Im Fall der Varianz sind diese eher technisch, und wir formulieren daher im Satz für die Varianz nur die sich ergebende qualitative asymptotische Aussage.
- Seite 183, Zeile -1: Wenn D linear trennbar ist, ...
- Seite 186, Zeile 8: \_\_\_return  $w^{(j)}$
- Seite 189, Zeile -5:  $(x,y) \in D$
- Seite 190, Zeile 14–15: ... die Worte "Bonus", "Vertrag", "das" und "Mensa" ...
- Seite 193, Zeile 6:  $\cdots = \langle w', x_0 (\langle w', x_0 \rangle + b')w' \rangle + b'$
- Seite 193, Zeile 12:  $\geq ||x_0 x_1||^2 + 2\langle (\langle w', x_0 \rangle + b')w', x_1 x \rangle$
- Seite 193, Zeile 13: =  $||x_0 x_1||^2 + 2(\langle w', x_0 \rangle + b')\langle w', x_1 x \rangle$
- Seite 194, Zeilen -2 und -1:  $\mathcal{R}(\underline{D})$ ,  $\mathcal{K}(\underline{D})$
- Seite 194, Zeile -1:  $h: \mathbb{R}^d \to \mathbb{R}^d$
- Seite 195, Zeilen 2, 4, 5, 9, 10, 12, 15 und 20:  $\Re(D)$ ,  $\Re(D)$
- Seite 196, Zeilen 6–8, 12 und 13:  $\mathcal{R}(D)$ ,  $\mathcal{K}(D)$
- Seite 198, Zeile 6:  $(w^*, b^*) \in M$
- Seite 198, Zeile 11–16: Es folgt also nach Proposition 17.14, dass  $w_1^* = w_2^* =: w^*$  ist. Gelte ohne Einschränkung  $b_1^* < b_2^*$ . Dann wählen wir für  $\frac{(w^*, b_1^*)}{(w^*, b_1^*)}$  und  $\frac{i}{(w^*, b_2^*)}$  jeweils  $i_1$  und einen Index i wie in Teil ② und erhalten

$$y_i(\langle w^*, x_i \rangle + b_1^*) = \langle w^*, x_i \rangle + b_1^* < \langle w^*, x_i \rangle + b_2^* = 1$$

im Widerspruch dazu, dass  $(w^*, b_1^*)$  in M liegt. Ist  $b_1^* > b_2^*$ , so vertauschen wir die Rollen von  $i_1$  und  $i_2$ .

- Seite 198, Zeile -11, -8 und -4:  $\mathcal{R}(D)$ ,  $\mathcal{K}(D)$
- Seite 200, Zeile 7:  $L(x, \theta, \mu) := f(x) \sum_{i=1}^q \theta_i g_i(x) + \underset{j=r}{\mu} \sum_{j=r}^q \mu_i h_j(x)$
- Seite 200, Zeile 18: ..., ist  $x^*$  ein Minimierer des oben angegebenen Optimierungsproblems ...
- Seite 203, Zeile 17: ... ist es möglich,  $i_0$  mit  $\lambda_{i_0} \neq 0$  ...
- Seite 206, Zeile 7:  $D_1 = \{(x_i, y_i) \mid i = 1, 6, 7\}$  und  $D_2 = \{(x_i, y_i) \mid i = 1, 6, 11\}$
- Seite 206, Zeile 8: Durch Streichen von Nullen in Beispiel 14.15(i) und Lösung des Optimierungsproblems für  $D_2$  erhalten wir . . .
- Seite 206, Zeile 12: <del>0.349</del> 0.439
- Seite 207, Zeile 4 (in den Bildern):  $D_1 \cdots D_2$
- Seite 207, Zeilen 12 und 13:  $\lambda_i^{\star}$
- Seite 208, Zeile 13: ... und Satz 14.12(ii) ist [GK02, Satz 2.46].
- Seite 209, Zeile -6:..., wenn man einen der Punkte  $x_6^*$ ,  $x_7^*$ , oder  $x_{11}^*$  weglässt?
- Seite 216, Zeile  $-14:\ldots$ , sodass  $y_i(\langle w, x_i \rangle + b) \ge 1$  für  $\ldots$
- Seite 220, Zeile 16: ... mit  $\lambda_{i_0}^* \neq 0$  ist ...
- Seite 220, Zeile 18: ... Wahl von  $\lambda^*$  und ...
- Seite 224, Zeile 6: Haben wir also  $\langle f, f \rangle = 0$  für alle  $x \in X$ , so ist ...

- Seite 224, Zeile −10: ... positive Semidefinitheit der Gram-Matrix ...
- Seite 226, Zeile 12: Geben Sie an, welche  $x \in \mathbb{R}$  vom zurückgezogenen Klassifizierer ...
- Seite 230, Zeile 15: die Rectified Linear Unit
- Seite 231, Zeile −4: ... Neuronen aus Proposition 16.2 zusammensetzen
- Seite 232, Zeile 3: ...sonst,
- Seite 236, Zeile 9: B ist die Matrix ohne das  $(\cdot)^{-1}$ .
- Seite 239, Zeile 15:  $\mathcal{F}(f_1 * f_2) = \mathcal{F}f_1 \cdot \mathcal{F}f_2$
- Seite 262, Zeile 1–4: Den Rieszschen Darstellungssatz in der Version 16.19 kann man in [Wer18, Theorem II.2.5] nachlesen, die andere Version 16.16, oft auch Riesz-Markov-Theorem genannt, findet man in [Rud87, Theorem 6.19].
- Seite 270, Zeile 14: Dann gilt  $h'(t) = \langle \nabla f(y + t(x y)), x y \rangle \dots$
- Seite 270, Zeile 16:  $\cdots = \int_0^1 \langle \nabla f(y + t(x y)), x y \rangle dt$
- Seite 270, Zeile 18:  $\cdots = \int_0^1 \langle \nabla f(y + t(x y)), x y \rangle \langle f(y), x y \rangle dt$
- Seite 271, Zeile 14: Folgerung 17.10. Sei  $f: \mathbb{R}^n \to \mathbb{R}$  differenzierbar und konvex.
- Seite 275, Zeile −2: Dann gilt wegen
- Seite 283, Zeile -9: 4:  $x^{(k+1)} \leftarrow x^{(k)} \gamma_k \nabla f(x^{(k)})$ .
- Seite 296, Zeile −14: S. Shalev-Shwartz und S. Ben-David, Understanding