Hedging Climate Change News

Robert F. Engle, Stefano Giglio, Bryan Kelly, Heebum Lee, Johannes Stroebel

RFS

胡震霆 2023/04/19

研究背景&动机

- 世界气候环境变化充满不确定性,其所带来的经济后果也无法预测。
- 采用保险的方式应对气候风险效果有限:
- 一方面, 气候风险具有长期且不可分散性。
- 另一方面,气候风险真实发生后,保险公司需要对所有人进行赔付,这是不现实的。
- 在本文中,作者提出了一种采用公开交易的资产的投资组合来对冲 气候风险的方法。
- 通过对气候风险进行分期对冲,投资者能够很好对冲掉长期内的气候风险敞口,弥补潜在气候危机带来的危害。

研究问题

- 构造对冲目标,即有关气候风险变化的时间序列(news about long-run climate risk)
- 考虑新闻报刊对可能引起气候风险变化事件的报道,这是投资者用以对气候风险进行主观判断的直接来源
- 上述事件包括:自然灾害、地球气候环境变化、监管政策更新、 新能源开发、化石燃料价格变化等。
- 对新闻语料库进行分析得到两个气候风险指数。
- 构造投资组合用以对冲气候风险指数的冲击
- 将气候风险视为一种系统风险因子,寻找市场中存在能够代表该因子的投资组合(模拟因子投资组合)

研究问题

- 构造投资组合用以对冲气候风险指数的冲击
- 考虑到气候风险指数样本相对于股票数目较小,无差别筛选存在数据挖掘风险。采用公司特征代表的风险敞口来获得参数化的投资组合权重。(例如:公司的碳足迹)
- 将对冲组合与其它备选对象的样本内外表现进行比较
- 样本内比较对气候风险指数回归的系数显著性
- 样本外比较不同组合与气候风险指数的相关性

研究框架

- ※ 一些需要考虑的问题:
 - 如何选择新闻文本以覆盖投资者用以获取气候变化风险信息的渠道?
 - 如何度量新闻文本中的气候风险?
 - 特定新闻对气候风险的报道是积极还是消极?
 - 是否需要区分不同类型的气候风险新闻(物理风险和监管风险)

1. Wall Street Journal climate change news index(WSJ index)

选择原因:

- WSJ是金融市场投资者订阅最多的期刊之一
- 可以获取到自1980s以来的所有新闻报道的完整语料

衡量气候风险:

计算WSJ报道内容同"气候变化权威词汇表"的文本相似度

- 从74篇来自政府、公共卫生组织以及其它组织的权威语料中提取 "气候变化权威词汇表"CCV(词汇和对应的词频)
- 利用CCV计算每一篇WSJ报道的文本-词频向量 v_i ,并且采用tf-idf方式计算词频
- 将CCV中的词频用tf-idf方式表达为 $v_{\rm C}$,计算 v_i 和 $v_{\rm C}$ 的余弦相似度,乘以10000作为WSJ index

1. Wall Street Journal climate change news index(WSJ index)

Fig 1: VVC代表的词云图

1. Wall Street Journal climate change news index(WSJ index)

Fig 2: WSJ index from 1984 to 2017

2. Crimson Hexagon's negative sentiment climate change news index(CH index)

WSJ index的不足:

- WSJ index的构建隐含意义是: 当气候变化时,所有的新闻都是负面新闻,都与气候风险相关(思考问题3)
- WSJ index构建仅仅基于WSJ, 且主要受众为金融市场投资者。

Crimson Hexagon(数据商):

- 数据规模: 2008年5月以来,覆盖超1000个数据源(包括WSJ)的超过1万亿新闻与社交媒体发布文本,文本在不同数据源均匀分布。
- 数据分析:搜索引擎配备专有NLP算法,可以提供特定情绪、主题的文本及指数序列。

2. Crimson Hexagon's negative sentiment climate change news index(CH index)

衡量气候风险:

- 搜索关键词 "climate change" (防范数据挖掘风险),将范围限制在新闻媒体。CH返回的结果包括:包含关键词的语料的数目、积极/消极语料的占比、文本情绪指数二级分类、与climate change相关联的语料的主题分解。
- 构造CH指数, CH指数的含义为一日中与 "climate change"主题相关且被归为消极语料的新闻占比,将其乘以10000以便分析。

2. Crimson Hexagon's negative sentiment climate change news index(CH index)

Fig 3: CH index & WSJ index from 2008 to 2017

3. 构建对冲目标

构建步骤

- 将WSJ index和CH index汇总到月度频率(平均)。
- 用AR(1)过程来拟合两指数:

$$WSJ_{t} = \alpha WSJ_{t-1} + \varepsilon_{t}$$
$$CH_{t} = \alpha CH_{t-1} + \varepsilon'_{t}$$

$$CC_t^{WSJ}$$
, $CC_t^{NegNews}$

3. 构建对冲目标

Fig 4: Correlation across CCt measures (Cor = 0.3)

Step2: 构造气候风险组合

1. 股票数据集

数据源:

- CRSP, 只包括普通股, 月度股票收益率数据。
- 去除廉价股,即股价低于5美元,这些股票的收益率容易受到市场 微观事件扰动。
- 去除小盘股,即市值低于20%的股票,这些股票收益率会严重影响组合收益。

Step2: 构造气候风险组合

2. MSCI E-score

衡量风敞口:

- 识别能系统性度量一个公司对气候风险的敞口的指标。
- 利用第三方ESG数据供应商的指标来度量风险敞口。
- 以ESG评分为投资目标的投资行为逐渐兴起,因此将其纳入分析具有实际意义。

MSCI 数据集:

- 内容:公司1995-2016年度ESG分数。
- 方法: 在ESG大类下细分许多小类,每个小类对应公司在该方面的表现,积极为1,消极为0。
- E-score: 一家公司在environment分类下所有的positive指标数减去negative指标数。

Step2:构造气候风险组合

2. Sustainalytics E-score

Sustainalystics 数据集:

- 内容: 自2009年9月起的公司ESG得分,信息含量最广的为"Total ESG Score",其等于"Total E Score"、"Total S Score"、
 "Total G Score"的平均值。
- 三大类评分由其下小类评分加权得出,小类评分通过比较公司与同 行业其它公司在该小类下的表现计算。
- 三大类评分去间为[0,100],本文直接将"Total E Score"作为度量气候风险敞口的指标。

Step2: 构造气候风险组合

3. 描述性统计及指标修正

描述性统计指标:

• 样本期内每一期E-score截面平均值。

Fig 5: Summary Statistics over time.

Step2: 构造气候风险组合

3. 描述性统计及指标修正

描述性统计修正:

- 每种指标均出现非连续性变化,潜在原因可能是指标计算模型的更改,这一更改对于对冲组合的样本外表现有负面影响。
- 修正1:对每个公司的E-Score截面去均值处理,以第二种分数为例,结果记为 $Z_t^{SUS_A}$ 。
- 修正2: 保留每个公司E-Score的截面排名结果,对该结果进行标准 化处理,使其落在[-0.5, 0.5]上,以第二种分数为例,结果记为 $Z_t^{SUS_R}$ 。

1. 构造投资组合

处理:

- 将气候变化风险分离开来,避免涉及到其它的风险因子。
- 加入代表常见风险因子的投资组合:市值、价值、市场,参数化投资组合权重分别为:
- ▶ 市值:截面标准化的市值,50%的大股票权重为正,50%的小股票权 重为负。
- ▶ 价值:截面标准化的账面市值比,分界线不明。
- ▶ 市场: 个股占全部市值的百分比。

2. 样本内拟合

回归模型(以SUS_A分数为例):

$$CC_{t} = \xi + w_{SUS} Z_{t-1}^{SUS_A'} r_{t} + w_{SIZE} Z_{t-1}^{SIZE'} r_{t} + w_{HML} Z_{t-1}^{HML'} r_{t} + w_{MKT} Z_{t-1}^{MKT'} r_{t} + e_{t},$$

回归参数:

- w_{SUS} 、 w_{SIZE} 、 w_{HML} 、 w_{MKT} 代表四个投资组合的权重
- 为了进行比较,将 $Z_{t-1}^{SUS_A}$ 替换为两种ETF的收益率,分别为:
- ➤ XLE: 主要由能源行业的公司股票构成。
- ▶ PBD: 主要由以绿色以及可再生能源及科技为主的公司构成。

2. 样本内拟合

	(1)	(2)	(3)	(4)	(5)
$Z_{t-1}^{SUS_A'}r_t$	1.416*** (0.436)				
$Z_{t-1}^{SUS_R'}r_t$		67.789*** (17.834)			
$Z_{t-1}^{MSCI_A'}r_t$			12.658* (6.849)		
$Z_{t-1}^{MSCI_R'}r_t$				53.743* (27.401)	
r_t^{XLE}					0.085 (0.810)
r_t^{PBD}					0.208 (0.630)
$Z_{t-1}^{HML'} r_t$	1.221 (7.019)	2.309 (6.873)	-5.862 (6.878)	-5.941 (6.858)	-6.772 (8.093)
$Z_{t-1}^{SIZE'}r_t$	-5.680** (2.350)	-6.034** (2.289)	-5.511* (2.773)	-5.459** (2.696)	-2.765 (2.474)
$Z_{t-1}^{MKT'}r_t$	0.783 (0.642)	0.789 (0.628)	0.841 (0.692)	0.789 (0.680)	0.091 (1.285)
Constant	2.894 (2.681)	2.673 (2.613)	4.659* (2.700)	4.891* (2.669)	5.959** (2.897)
R-squared N	.153 88	.187 88	.083 88	.088 88	.047 88

Tb 1: Full-regression: WSJ index

2. 样本内拟合

	(1)	(2)	(3)	(4)	(5)
$Z_{t-1}^{SUS_A'}r_t$	0.266* (0.141)				
$Z_{t-1}^{SUS_R'}r_t$		12.286** (5.864)			
$Z_{t-1}^{MSCI_A\prime}r_t$			1.089 (2.173)		
$Z_{t-1}^{MSCI_R'}r_t$				6.641 (8.696)	
r_t^{XLE}					-0.092 (0.252)
r_t^{PBD}					0.036 (0.196)
$Z_{t-1}^{HML'}r_t$	-4.536** (2.272)	-4.390* (2.260)	-5.934*** (2.182)	-5.919*** (2.177)	-5.520** (2.519)
$Z_{t-1}^{SIZE'}r_t$	-0.137 (0.761)	-0.179 (0.753)	0.210 (0.880)	0.100 (0.856)	0.501 (0.770)
$Z_{t-1}^{MKT'}r_t$	0.315 (0.208)	0.314 (0.206)	0.287 (0.219)	0.295 (0.216)	0.297 (0.400)
Constant	-0.115 (0.868)	-0.137 (0.859)	0.313 (0.857)	0.306 (0.847)	0.376 (0.902)
R-squared N	.125 88	.133 88	.090 88	.094 88	.089 88

Tb 2: Full-regression: CH index

2. 样本内拟合

结果分析:

- 表1的1-2列表明根据SUS E-score构建的对冲组合能够很好地捕捉 到气候变化的风险敞口,且该投资组合能对冲15%-19%的气候风险 指数变化。
- 表1的3-4列表明根据MSCI E-score构建的对冲组合捕捉风险敞口能力较弱,但依旧显著。
- 对比表1的1和2列、3和4列可以得出,根据排序性指标构建的组合 对风险敞口的捕捉略优于根据绝对值指标构建的组合。
- 对比表1的1-4列和第5列可以得出,相关ETF并没有捕捉到气候变化 风险。
- 表2的主要结果与表1类似

3. 样本外表现

样本外构造投资组合:

• 例如: 在2017年1月构造投资组合,公司i的权重等于:

$$\mathbf{w}_{i,Jan,2017} = \widehat{w}_{SUS_A} * Z_{i,Dec,2016}^{SUS_A} + \widehat{w}_{SIZE} * Z_{i,Dec,2016}^{SIZE} + \widehat{w}_{HML} * Z_{i,Dec,2016}^{HML} + \widehat{w}_{MKT} * Z_{i,Dec,2016}^{MKT}$$

- 检验方法1: 利用[t0, t-1]的数据进行拟合,在t期构造投资组合,检验t时期的投资组合收益同气候变化风险的相关性(t-1取最小值为30)。
- 检验方法2: 利用[t0, t') ∪(t', T]的数据进行拟合, 在t'期构造投资组合, 检验t时期的投资组合收益同气候变化风险的相关性。

3. 样本外表现

A. Out-of-sample fit

	The out of sample ju								
	CC^{WSJ}	$H_{OOS}^{SUS_A}$	$H_{OOS}^{SUS_R}$	$H_{OOS}^{MSCI_A}$	$H_{OOS}^{MSCI_R}$	H_{OOS}^{ETF}	r_t^{XLE}	r_t^{PBD}	
CC^{WSJ}	1.000								
$H_{OOS}^{SUS_A}$	0.174	1.000							
$H_{OOS}^{SUS_R}$	0.206	0.973	1.000						
$H_{OOS}^{MSCI_A}$	0.013	0.688	0.621	1.000					
$H_{OOS}^{MSCI_R}$	0.019	0.677	0.624	0.988	1.000				
H_{OOS}^{ETF}	-0.005	0.427	0.349	0.861	0.852	1.000			
r_t^{XLE}	0.068	-0.138	0.004	-0.097	-0.039	-0.141	1.000		
r_t^{PBD}	0.111	0.185	0.272	0.294	0.350	0.190	0.656	1.000	

Tb 3-Panel A: Out-of-sample fit

3. 样本外表现

	B. Cross-validation fit							
	CC^{WSJ}	$H_{Cross}^{SUS_A}$	$H_{Cross}^{SUS_R}$	$H_{Cross}^{MSCI_A}$	$H_{Cross}^{MSCI_R}$	H_{Cross}^{ETF}	r_t^{XLE}	r_t^{PBD}
CC^{WSJ}	1.000							
$H_{Cross}^{SUS_A}$	0.244	1.000						
$H_{Cross}^{SUS_R}$	0.300	0.976	1.000					
$H_{Cross}^{MSCI_A}$	0.039	0.742	0.671	1.000				
$H_{Cross}^{MSCI_R}$	0.067	0.733	0.676	0.982	1.000			
H_{Cross}^{ETF}	-0.069	0.454	0.390	0.678	0.651	1.000		
r_t^{XLE}	0.068	0.041	0.072	-0.009	-0.034	0.297	1.000	
r_t^{PBD}	0.111	0.272	0.266	0.310	0.298	0.470	0.656	1.000

Tb 3-Panel B: Out-of-sample fit

3. 样本外表现

结果分析:

- H表示根据不同E-Scores构建的对冲指标,结果表明根据SUS E-score 构建的投资组合能够更好地在样本外对冲气候变化风险,其对冲效果 显著优于根据MSCI E-score构建的投资组合。
- Fig6展示了与Table一致的结论。
- 将CH index作为对冲目标的结果与将WSJ index作为对冲目标的结果一致。

Fig 6: Out-of-sample fit

Future Exploring

- 本文研究频率为月度、未来可以调整至日度频率、该情形下数据挖掘 的风险更小、训练集密度更大、样本外表现更优良。
- 除了美股外,可以考虑加入全球股市的股票、债券、衍生品等进行对 冲。
- 本文采用的公司风险敞口代表数据直接来源于第三方数据商,后续研究可以自行构建更加全面的指标,比如公司受到潜在自然灾害影响的地理临近度。
- 将气候变化风险进行重新定义或者细分,本文的方法并没有考虑是否 区分物理风险以及政策风险。