Baptiste Trotabas, Ph.D. $\,$

 $\boldsymbol{r}(t)$: distance between the center of earth and satellite

 $\theta(t)$: angle between the vector ${\bf r}$ and ${\bf \hat{x}}$

 $\mathbf{F_G}$: gravity force $\mathbf{F_D}$: drag force $\mathbf{F_T}$: thrust force

r(t): distance between the center of earth and satellite

 $\theta(t)$: angle between the vector ${\bf r}$ and ${\bf \hat{x}}$

F_G: gravity forceF_D: drag forceF_T: thrust force

Assumption

The orbit stay in the plan defined by $(\hat{r}, \hat{\theta})$

r(t): distance between the center of earth and satellite

 $\theta(t)$: angle between the vector ${\bf r}$ and ${\bf \hat{x}}$

 $\mathbf{F_G}$: gravity force $\mathbf{F_D}$: drag force $\mathbf{F_T}$: thrust force

Assumption

The orbit stay in the plan defined by $(\hat{r}, \hat{\theta})$

Determine r(t) and $\theta(t)$ be solving the following equations.

 $\boldsymbol{r}(t)$: distance between the center of earth and satellite

 $\theta(t)$: angle between the vector ${\bf r}$ and ${\bf \hat{x}}$

 F_G : gravity force F_D : drag force F_T : thrust force

Assumption

The orbit stay in the plan defined by $(\hat{r}, \hat{\theta})$

Determine r(t) and $\theta(t)$ be solving the following equations.

$$\begin{split} \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} &= r \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 - \frac{\mu}{r^2} + \frac{\mathrm{d}r}{\mathrm{d}t} \frac{F_{T0}}{m\sqrt{\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \left(r\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2}} - \frac{\mathrm{d}r}{\mathrm{d}t} \frac{\rho(r)}{2m} C_d(r) S \sqrt{\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \left(r\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2} \\ \frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} &= -\frac{2}{r} \frac{\mathrm{d}r}{\mathrm{d}t} \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}\theta}{\mathrm{d}t} \frac{F_{T0}}{m\sqrt{\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \left(r\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2}} - \frac{\mathrm{d}\theta}{\mathrm{d}t} \frac{\rho(r)}{2m} C_d(r) S \sqrt{\left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \left(r\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2} \\ &= -J_{\text{anuary 23th 2023}} - PAGE 2 \end{split}$$

Input parameters

(*) Comparison of the lifetime obtained with STELA with that previously determined.

- (*) Comparison of the lifetime obtained with STELA with that previously determined.
- (**) Verify the numerical methods and coefficients used

- (*) Comparison of the lifetime obtained with STELA with that previously determined.
- (**) Verify the numerical methods and coefficients used

Time in orbit : 10 days 22 h 28 min 44.596 s

Time in orbit : 10 days 22 h 28 min 44.596 s

Time in orbit: 10 days 5 h 45 min 5.847 s (STELA)

Time in orbit : 2 years 35 days 0 h 22 min 2.851 s

Time in orbit : 2 years 35 days 0 h 22 min $2.851 \mathrm{s}$

Time in orbit: 1 years 49 days 17 h 11 min 11.216 s (STELA)

Time in orbit : 2 years 35 days 0 h 22 min 2.851 s

Time in orbit: 1 years 49 days 17 h 11 min 11.216 s (STELA)

Why such a difference?

Altitude where thrust compensates for drag

According to the theory (and because the orbit is circular), we can determine the altitude H^{\diamond} such as

$$F_{T0} - \frac{\rho(H^{\Diamond})}{2} C_d S \frac{\mu}{r_{earth} + H^{\Diamond}} = 0$$

Altitude where thrust compensates for drag

According to the theory (and because the orbit is circular), we can determine the altitude H^{\diamond} such as

Thank you for your attention