PHS1101 – Mécanique pour ingénieurs Contrôle périodique 2 Hiver 2019

Retour en classe

Question 1 – Concepts et réponses courtes (40 points)

Module de l'accélération de la SSI (10 points) Α.

$$\vec{a} = \vec{a}_n + \vec{a}_t = \vec{a}_n$$

Module de la vitesse est constant

$$\vec{a}_{t} = \vec{0}$$

$$a = a_n = \frac{v^2}{r} = \frac{(2\pi r/\Delta t)^2}{r} = \frac{4\pi^2 r}{(\Delta t)^2} = 8.58 \text{ m/s}^2$$

10 points de calculs

Quel est le module de l'impulsion subie par la fille due à la poussée ? В.

$$Imp_{fille} = \Delta L_{fille} = 20(2-0) = 40 \text{ kg} \cdot \text{m/s}$$

5 points de calculs

ii. Quel est le module de la force moyenne exercée par la père sur la fille ?

$$F_{\text{père->fille}} = \text{Imp}_{\text{fille}}/\Delta t = 40/0.5 = 80 \text{ N}$$

5 points de calculs

Après avoir été poussé par sa fille, quelle est la vitesse du père (en module)?

$$\sum F_x = 0$$

Pendant impact (fille + père)
$$\sum F_x = 0 \quad |v_{\text{père}}| = \text{Imp}_{\text{père}} / m_{\text{père}} = \text{Imp}_{\text{fille}} / m_{\text{père}} = 40/80 = 0.5 \text{ m/s}$$

10 points de calculs

Quel est le module de la force moyenne exercée par le père sur la fille ?

$$F_{\text{pere->fille}} = F_{\text{fille->pere}} = 80 \text{ N}$$

10 points de compréhension

Q2 - Solution (1/3)

A. DCL de la plateforme (instant initial)

Équilibre statique

$$\sum F_{y} = 3F_{res} - Mg = 0$$

$$Mg$$

$$F_{res} = \frac{Mg}{3}$$

Loi de Hooke

$$F_{res} = k\Delta L$$

10 points de calculs

B. Module de la vitesse du planchiste juste avant l'atterrissage

Conservation de l'énergie mécanique après la collision (système : planchiste + plateforme)

Les seules forces en jeu sont conservatives (le poids et les forces des ressorts) donc l'énergie mécanique est conservée.

$$E_1 = E_2$$

$$\frac{1}{2}(m+M)v_1^2 + (m+M)gh + 3 \cdot \frac{1}{2}k(\Delta L)^2 = 3 \cdot \frac{1}{2}k(\Delta L + h)^2$$

$$v_1 = 1,67 \text{ m/s}$$

Q2 - Solution (2/3)

B. Module de la vitesse du planchiste juste avant l'atterrissage

Conservation de la QM selon y pendant la collision (système : planchiste + plateforme)

Pendant la collision (temps très court), la somme des forces externes verticales est nulle (comme vu en A).

$$\sum F_{y} = 0 \qquad \qquad L_{0y} = L_{1y}$$

$$mv_{0y} = (m+M)v_{1y}$$

$$v_{0y} = \left(1 + \frac{M}{m}\right)v_{1y} = -6.11 \text{ m/s}$$

État 0 : juste avant collision en D État 1 : juste après collision en D

 $v_{1y} = -v_1 = -1,67 \text{ m/s}$

Planchiste en chute libre

Puisque les points C et D sont à la même hauteur, la vitesse du planchiste est la même en module. La vitesse étant orientée à un angle θ vers le haut au point C, elle sera plutôt orientée à un angle θ vers le bas au point D.

$$v_0 = \frac{\left|v_{0y}\right|}{\sin\theta} = 7,06 \,\text{m/s}$$

30 points de résolution de problème

Q2 - Solution (3/3)

C. Module de la vitesse du planchiste juste avant l'atterrissage

Conservation de l'énergie mécanique (système : planchiste)

Entre les points A et C, les forces qui agissent sur le planchiste sont le poids (conservative) et la normale (non conservative, mais elle ne fait pas de travail puisqu'elle est perpendiculaire à la trajectoire).

$$\sum U_{nc} = 0 \implies E_A = E_C$$

$$mgH = \frac{1}{2}mv_0^2 + mgc$$

$$H = c + \frac{v_0^2}{2g} = 3,54 \,\mathrm{m}$$

15 points de résolution de problème

D. Rayon maximal de la boucle

Dans le cas limite où le planchiste est sur le point de tomber au point B, la normale de la piste est nulle.

$$\sum F_n = mg = mv_B^2/R \qquad \Longrightarrow \qquad v_B^2 = gR$$

Conservation de l'énergie mécanique entre A et B (système : planchiste)

$$mgH = \frac{1}{2}mv_B^2 + 2mgR = \frac{5}{2}mgR$$

$$R = \frac{2}{5}H = 1,42 \text{ m}$$

10 points de résolution de problème

Q3 - Solution (1/2)

A. DCL-DCE de la charge en mouvement

10 points de compréhension

B. Vitesse en fonction du temps

Avec le DCL-DCE, on trouve l'accélération de la charge.

Charge en mouvement : $f_k = \mu_k N$ frottement cinétique

$$\sum F_{y} = N - mg \cos \theta = 0$$

$$\sum F_{x} = 3T - f_{k} - mg \sin \theta = ma$$

$$N = mg \cos \theta$$

$$3T_{0}e^{-bt} - \mu_{k}mg \cos \theta - mg \sin \theta = ma$$

$$a(t) = \frac{3T_{0}}{m}e^{-bt} - (\mu_{k} \cos \theta + \sin \theta)g$$

Q3 - Solution (2/2)

B. Vitesse en fonction du temps

Puisque l'accélération dépend du temps, on a :

$$v(t) = v_0 + \int_0^t a(t)dt'$$

La charge étant initialement immobile : $v_0 = 0$.

$$v(t) = 0 + \int_{0}^{t} \left[\frac{3T_{0}}{m} e^{-bt'} - (\mu_{k} \cos \theta + \sin \theta) g \right] dt' = \left[-\frac{3T_{0}}{mb} e^{-bt'} - (\mu_{k} \cos \theta + \sin \theta) g t' \right]_{0}^{t}$$

$$v(t) = \frac{3T_0}{mb} \left(1 - e^{-bt} \right) - \left(\mu_k \cos \theta + \sin \theta \right) gt$$

30 points de résolution de problème

C. La vitesse est maximale quand l'accélération est nulle.

$$a(t) = \frac{3T_0}{m}e^{-bt} - (\mu_k \cos\theta + \sin\theta)g = 0$$

10 points de calculs

$$t_{\text{max}} = \frac{1}{b} \ln \left[\frac{(\mu_k \cos \theta + \sin \theta) mg}{3T_0} \right] = 1,12 \text{ s}$$

D. Puissance générée à t=2 s par la personne

$$v_{\text{câble}} = 3v$$

10 points de calculs

$$P(t) = \vec{T} \cdot \vec{v}_{\text{câble}} = T_0 e^{-bt} \cdot 3v(t)$$

$$P(2) = 3T_0 e^{-2b} v(2) = 607 \cdot 2,046 = 1,24 \text{ kW}$$

Q4 - Solution (1/2)

A. Centre de masse

$$3m_b = 3\rho_b L_b h_b = 16.2 \text{ kg} \qquad \vec{r}_b = \left(200 - 50 - \frac{30}{2}\right) \vec{i} + \left(15 + 20 + \frac{3}{2} \cdot 15\right) \vec{j} = \left(135 \vec{i} + 57.5 \vec{j}\right) \text{cm}$$

$$m_p = \rho_p L_p h_p = 100 \text{ kg} \qquad \vec{r}_p = \frac{200}{2} \vec{i} + \left(15 + \frac{20}{2}\right) \vec{j} = \left(100 \vec{i} + 25 \vec{j}\right) \text{cm}$$

$$2m_{r,avant} = 2\rho_r \pi r^2 = 0.491 \text{ kg}$$
 $\vec{r}_{r,avant} = \left(20 + \frac{25}{2}\right)\vec{i} + \frac{25}{2}\vec{j} = \left(32.5\vec{i} + 12.5\vec{j}\right) \text{cm}$

$$2m_{r,arri\`ere} = 2\rho_r \pi r^2 = 0.491 \,\mathrm{kg} \quad \vec{r}_{r,arri\`ere} = \left(20 + 25 + 115 + \frac{25}{2}\right)\vec{i} + \frac{25}{2}\vec{j} = \left(172.5\vec{i} + 12.5\vec{j}\right) \,\mathrm{cm}$$

$$m_A = 60 \,\mathrm{kg}$$

$$\vec{r}_A = \left(65\vec{i} + 40\vec{j}\right) \text{cm}$$

$$\sum m_i = 177,18 \,\mathrm{kg}$$

Toutes les mesures sont en cm.

20 points de calculs

Q4 - Solution (2/2)

B. Vitesse du chariot après avoir lancé une brique

$$\vec{v}_{\mathrm{brique/chariot}} = \vec{v}_{\mathrm{brique}} - \vec{v}_{\mathrm{chariot}}$$

Conservation de la QM sur le système entier selon x

Puisqu'il n'y a pas de force externe horizontale, alors la QM est conservée selon l'axe x.

$$\sum F_{x} = 0$$

$$D = \left(m_{p} + 2m_{b} + 4m_{r} + m_{A}\right)v_{\text{chariot},x} + m_{b}v_{\text{brique},x}$$

$$O = \left(m_{p} + 2m_{b} + 4m_{r} + m_{A}\right)v_{\text{chariot},x} + m_{b}\left(v_{\text{chariot},x} + v_{\text{brique/chariot},x}\right)$$

$$v_{\text{chariot},x} = -\frac{m_{b}v_{\text{brique/chariot}}\cos\theta}{m_{p} + 3m_{b} + 4m_{r} + m_{A}}$$

$$v_{\text{chariot},x} = -\frac{m_b v_{\text{brique/chariot}} \cos \theta}{m_p + 3m_b + 4m_r + m_A} = -13,2 \text{ cm/s}$$

15 points de résolution de problème