Алгебра Страница 16

6 Лекция 18.04

Действия групп

Определение 31. Пусть G — группа, X — множество. Действие G на X — это отображение $G \times X \to X$, которое действует по правилу $(g, x) \mapsto gx$ и удовлетворяет 2 условиям:

- 1. $\forall x \in X : ex = x$
- 2. $\forall x \in X, g, h \in G : g(hx) = (gh)x$

Обозначается как $G: X, G \curvearrowright X$.

Для любого элемента $g \in G$ можно определить $a_g: X \to X$, которое переводит $x \mapsto gx$. Это будет биекция, обратное отображение для $a_g: a_{g^{-1}}$. Рассмотрим $a: G \to S(X)$, которое переводит $g \mapsto a_g$, где S(X) — множество биекций на X.

Утверждение 4. a - uзоморфизм групп.

Доказательство. Сначала хотим проверить, что $a_{gh} = a_g \circ a_h$.

$$(a_g \circ a_h)x = a_g(a_h(x)) = a_g(hx) = ghx = g(hx) = (gh)x = a_{gh}(x)$$

Замечание 5. Можно показать, что определения через $G \times X \to X$ и $G \to S(X)$ эквивалентны.

Пример. Возьмем $G = S_n, X = \{1, 2, ..., n\}$. Тогда $\sigma \cdot x = \sigma(x)$, где $\sigma \in S_n, x, \sigma(n) \in X$.

Определение 32. Пусть $G \times X \to X$ действие. Орбита точки $x \in X$ — это множество $Gx = \{gx \mid g \in G\} \subseteq X$. Можно задать отношение эквивалентности, $x' \sim x$, если $x' \in Gx$. Следовательно все множество X разбивается на непересекающиеся орбиты.

Определение 33. Стабилизатор (или стационарная подгруппа) точки $x \in X$ — все элементы $g \in G$, такие что gx = x. Обозначается как $St(x) = \{g \in G \mid gx = x\} \subseteq G$. Это подгруппа в G.

Доказательство. Докажем, что St(x) — подгруппа в G. Понятно, что если gx = x, то и $g^{-1}x = g(g^{-1}x) = x$.

Пример. Возьмем $G = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}, X = \mathbb{C}$. Будем действовать как $(z, w) \mapsto zw$ в смысле обычного умножения. Тогда орбитой будут $\{w \in \mathbb{C} \mid |w| = c\}$, то есть числа с одним и тем же модулем. Стабилизатором будет

$$St(x) = \begin{cases} 1, \text{ если } x \neq 0 \\ S^1, \text{ иначе} \end{cases}$$

Пример. Возьмем $G = SL_n(\mathbb{R}), X = \mathbb{R}^n$. Тогда $Gx = \{0, \mathbb{R}^n \setminus \{0\}\}$. Поймем, что $\forall v \in \mathbb{R}^n \setminus \{0\}$ найдется $A \in SL_n(\mathbb{R})$, такая что $Ae_1 = v$. Дополним до базиса $v : v, v_1, \dots, v_{n-1}$. Тогда возьмем матрицу $A = \begin{pmatrix} v & v_1 & \dots & \frac{v_{n-1}}{\det A'} \end{pmatrix}$. Нетрудно видеть, что A подходит.

Лемма 7. Пусть G — конечная группа и G действует на X. Тогда $|Gx| = \frac{|G|}{|St(x)|}$.

Алгебра Страница 17

Доказательство. Рассмотрим $G/St(x) \to Gx$ и отображение $g \cdot St(x) \mapsto gx$. Если g'St(x) = gSt(x), то g' = gh для некоторого $h \in St(x)$. Тогда g'x = (gh)x = g(hx) = gx. Сюръективность следует из орбиты, потому что можно брать любые $g \in G$. И наконец инъективность. Пусть $g_1x = g_2x$. Подействуем $(g_2^{-1}\cdot)$: $g_2^{-1}g_1x = x$, что значит $g_2g_1^{-1} \in St(x)$, Но тогда $g_1 \in g_2St(x)$, тогда они пересекаются, а следовательно и совпадают.

То есть построенное отображение — биекция. Поэтому по теореме Лагранжа $|Gx|=|G/St(X)|=\frac{|G|}{|St(X)|}$.

Определение 34. Пусть $G \times X \to X$ действие. Назовем действие транзитивным, если $\forall x, y \in X \exists g \in G : y = gx$. Это равносильно тому, что X является одной из орбит.

Определение 35. Пусть $G \times X \to X$ действие. Назовем действие свободным, если gx = x для некоторого $x \in X$ влечет g = e. Иными словами, $\forall x \in X : St(x) = \{e\}$.

Определение 36. Пусть $G \times X \to X$ действие. Назовем действие эффективным, если gx = x для любого $x \in X$ влечет g = e. Иными словами, $\bigcap_{x \in X} St(x) = \{e\}$.

Факт 2. Любое свободное действие эффективно, но не любое эффективное действие свободно.

Пример. Действие на перестановках транзитивно и эффективно. При $n \le 2$ оно также свободно.

Определение 37. Ядро неэффективности действия $G \times X \to X - \mathfrak{smo} K = \{g \in G \mid \forall x \in X : gx = x\} = \ker a = \bigcap_{x \in X} St(x).$

Как починить действия? Будем рассматривать вместо действия $G \times X \to X$ другое действие $G/K \times X \to X$, которое действует как $(gK, x) \mapsto gx$.

Лемма 8. Упомянутое выше действие корректно определено и эффективно.

Доказательство. Докажем корректность. Пусть g'K = gK. Тогда g' = gk $(k \in K)$ и $\forall x \in X : g'x = (gk)x = g(kx) = gx$. Теперь эффективность. От противного, пусть $\exists g \in G, \forall x \in X : (gK)x = x$. Тогда gx = x, следовательно $g \in K$. Соответственно gK = eK (верно только для нейтрального элемента в G/K).

Три действия произвольной группы G на себе (X = G)

- 1. Левые сдвиги: $(g, h) \mapsto gh$. Оно транзитивно, свободно и эффективно.
- 2. Правые сдвиги: $(g,h) \mapsto hg^{-1}$. Оно также транзитивно, свободно и эффективно.
- 3. Сопряжение: $(g,h) \mapsto ghg^{-1}$. Заметим, что здесь K = Z(G), так как из условия $ghg^{-1} = h$ следует то, что g и h коммутируют.

Определение 38. Действия $G \times X \to X$ и $G \times Y \to Y$ называются изоморфными, если существует биекция $\varphi: X \to Y$, такая что

$$\forall x \in X, g \in G : \varphi(gx) = g\varphi(x)$$

Предложение 8. Любое свободное транзитивное действие $G \times X \to X$ изоморфно действию $G \times G \to G$ левыми сдвигами.

Алгебра Страница 18

Доказательство. Зафиксируем произвольный $x \in X$. Покажем, что отображение $\varphi: G \to X$, которое задается формулой $\varphi(h) = hx$, является искомой биекцией. Сюръективность отображения следует из транзитивности действия $G \times X \to X$, а инъективность следует из свободности.

Теперь проверим изоморфизм:

$$\varphi(gh) = (gh)x = g(hx) = g\varphi(h)$$

Следствие 11. Действия левыми и правыми сдвигами изоморфны.