Decision Making: An Introduction

Song Liu (song.liu@bristol.ac.uk)

Twitter: @songandylilu

Office: Fry Building, GA.18

How to be a PhD student?

- Things to do with your supervisor:
 - Decide core working hours (e.g., 10am 3pm), so you and your supervisor can easily reach each other via email or IM and start discussions during this time.
 - Schedule a fixed meeting time slot. The frequency depends on you and your supervisor's preference. Most common period is weekly or biweekly.
- Things to keep in mind:
 - Stick to your meeting schedule. Even if there is not much to report, it is still nice to update him/her regularly on your research.
 - Get up early! Working at night constantly causes mental health issues.
 - Go to seminars (in particular, statistics seminars.)

Prologue

- Unit Director: Dr. Song Liu (Office GA 18)
- Who am I?
 - A former MSc student in the University of Bristol, 14 years ago.
 - Went to Japan for my PhD and Postdoc.
 - Came back to work as a lecturer in Statistical Science
 - Why?
 - Homepage: http://allmodelsarewrong.net

- What do I do?
 - intractable model inference, estimating statistical discrepancies, and their applications (such as Score Matching and GAN).

Prologue

- Two Classes (Lectures) + One Computing Lab. (Practice)
 - Classes: Monday 12-1pm and Wednesday, 9-10am
 - Lab: Friday, 10am-12, 2 hours.
- Assessment Plan (Read online document):
 - 5 Personal portfolio (30%)
 - Summary of lectures, in your own words
 - Answers to Homework.
 - 2 Assessed coursework (40%)
 - Announcement: Wednesday after lecture, Week 5 and Week 9
 - Deadline: Friday 5pm, Week 5 and Week 9
 - 1 SM1 + SC1 Group project (30%)

Prologue

Syllabus:

- Introduction of Statistical Decision Making/Learning Week 1-2
 - 4 lectures
- Probability Theory

Week 3

- 2 lectures
- Linear Methods for Regression

Week 4-5

- 3 lectures
- Linear Methods for Classification

Week 6-7

- 3 lectures
- Probabilistic Graphical Model

Week 8

- 2 lectures
- Advanced Topics in Machine Learning (2 guest lectures) Week 9

Reference

This unit **roughly** follows Chapter 1,2,3 and 4 of

Rattern Recognition and Machine Learning

Christopher Bishop, 2006

Decision Making

 Many modern-day computational tasks are about making decisions or predictions.

 Decision making has been a great challenge of human society for a long time.

■ A Look back ... in China

"Oracle Bones"

- Emperor has a question.
- Write it down on the bones of large animals and toss it to flame.
- Cracks on bones reveal "Gods' will".
- Priest deciphers the patterns of cracks and provides an answer.

■ A Look back ... in Greece

Pythia

• Supplicant has a question.

He/she travels to Delphi asks Pythia.

• **Pythia** inhales vapors at Temples of Apollo, speaks gibberish.

 Priest deciphers her gibberish and provides supplicant an answer.

Fast forward >> ... Modern Era

- No one believes in Pythia or Oracle bones anymore.
- However, the modern-day society faces another great challenge on decision making.

 Human cannot digest information fast enough and make rationalized decisions.

Fast forward >> ... Modern Era

• Therefore, computer algorithms are utilized to answer complex questions (often via blackbox procedures).

• If we do not understand how A.I. makes decisions, we are not different from our ancestors.

Rational Decision Making

- Predictions should be Precise (no gibberish).
 - Need to study decision making under a math framework.
- Prediction should be Data-driven.
 - e.g. "sun rises up from west tomorrow" is not backed up by historical data.
- Takes Cost into consideration.
 - Cost of making a wrong decision may be different in tasks.
- Takes Random nature of Data into consideration!
 - Data generation/collection maybe noisy.

Statistical Decision Making

 We will see how statistical decision making exemplifies these guidelines.

• Fun fact: They way of taking randomness into account in decision making defines two distinct groups of statisticians: Frequentists and Bayesians.

Formal Notations

- *x*, *y*, *z*, scalars, *x*, *y*, *z*, vectors.
- $x \in \mathbb{R}^d$, vector x in d dimensional real-space.
- $x^{(i)}$, the *i*-th dimension of x.
- *X*, a set
- $x_i \in X$, the *i*-th member in X.
- $f(x) \in \mathbb{R}^m$, function takes input vector x and maps it into m dimensional real space.
- $X, Y, Z \in \mathbb{R}^{b \times d}$, matrices, with b rows and d columns.
- "=" is equality, ":=" is definition.
 - $X := \{x_1, x_2\}$
 - $\sum_{i} \sum_{j} x_i y_j = \sum_{j} \sum_{i} x_i y_j$

Least Squares Regression

Regression Problem

- Regression is a common decision task.
- Predict outcome given some known inputs.

- For example,
 - Predict blood pressure given a patient's physical conditions.
 - Predict final year grade given a student's firstyear scores.
 - etc.

Regression Problem

- Input: $x \in R^d$
 - d-dimensional real-input,
 - e.g. weight, height, age, etc.
- Output: $y \in R$,
 - one dimensional real-output,
 - e.g. blood-pressure
- The Problem:
 - Given an input x, predict its output.
- Dataset $D := \{(x_i, y_i)\}_{i=1}^n$
 - Observed pairs of inputs and outputs.

Least Squares (LS)

$$\min_{f} \sum_{i \in D_0} [y_i - f(\mathbf{x}_i)]^2$$

- f(x): prediction function given x.
 - return a real-valued prediction
- $[\cdot]^2$: square cost function.
 - cost on difference between prediction and observed output
- $D_0 \subseteq D$: training dataset.
 - ullet contains paired observations for tuning prediction f

Linear LS

$$\mathbf{w}_{\mathrm{LS}} \coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D_0} [y_i - f(\mathbf{x}_i; \mathbf{w})]^2$$

$$f(\mathbf{x}; \mathbf{w}) \coloneqq \langle \mathbf{w}_1, \mathbf{x} \rangle + w_0, \mathbf{w} \coloneqq \begin{bmatrix} \mathbf{w}_1 \\ w_0 \end{bmatrix}$$

- Solution: $\mathbf{w}_{\mathrm{LS}} = (\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{X}\mathbf{y}^{\mathsf{T}}$.
 - Suppose x is a column vector.

•
$$X \coloneqq \begin{bmatrix} x_1, \dots, x_n \\ 1, \dots, 1 \end{bmatrix} \in R^{(d+1) \times n}, y = [y_1, \dots, y_n] \in R^n.$$

- Proof: Homework
- LS Prediction: $f(x; w_{LS})$.

Linear Least Squares (LS)

$$\mathbf{w}_{\mathrm{LS}} \coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D_0} [y_i - f(\mathbf{x}_i; \mathbf{w})]^2$$

$$f(\mathbf{x}; \mathbf{w}) \coloneqq \langle \mathbf{w}_1, \mathbf{x} \rangle + w_0, \mathbf{w} \coloneqq [\mathbf{w}_1, w_0]^{\mathsf{T}}$$

- LS is data-driven and uses squared function as its cost.
- How does LS take randomness of dataset into account?
- To answer this, we see LS from a probabilistic perspective.

Normal Distribution

- Random events of a Normal dist. happen on real domain.
- Normal dist. has a probability density function (PDF):

•
$$p(x|\mu,\sigma) \coloneqq \frac{1}{Z(\sigma)} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
, $Z(\sigma) = \sigma\sqrt{2\pi}$, $x \in R$.

• We use $N_x(\mu, \sigma^2)$ denote a Normal PDF. w.r.t. x.

Probabilistic Modelling PRML 1.2.5

- We express randomness of y using a prob. distribution.
- Given x, we assume $p(y|x, w, \sigma) = N_v(f(x; w), \sigma^2)$.
 - y follows a Normal dist. with mean f(x; w) and var. σ^2 .
- This is only the model for a single y and x pair.
 - We have a dataset of n(x, y) pairs!
- By assuming (y_i, x_i) are independent and identically distributed (IID), we can model
 - $p(y_1 ... y_n | x_1 ... x_n, w, \sigma) = \prod_{i=1}^n N_{y_i}(f(x_i; w), \sigma^2)$.
 - Why?

LS from a probabilistic view

PRML Figure 1.16

Q: How to determine ${\it w}$ and σ in a data-driven approach?

Maximum Likelihood Estimation (MLE)

PRML Figure 1.14

- PDF evaluated at observations are called likelihood.
- Given a dataset D, MLE maximizes (log) likelihood with respect to the unknown parameter θ .
- To determine parameter θ in $p(x|\theta)$:

•
$$\theta_{\text{ML}} \coloneqq \underset{\theta}{\operatorname{argmax}} \log p(D|\theta) = \underset{\theta}{\operatorname{argmax}} \log p(x_1 \dots x_n|\theta)$$

- Assuming $D \coloneqq \{x_1 \dots x_n\}$ is IID
- $\theta_{\text{ML}} = \underset{\theta}{\operatorname{argmax}} \sum_{i} \log p(x_i | \theta)$

Likelihood and Maximizing Likelihood

25

LS from a probabilistic view

- We have
 - a probabilistic model of y given x with unknown parameters
 - a dataset D_0
- We can perform MLE to find $w_{\rm ML}!$

•
$$\mathbf{w}_{\text{ML}} \coloneqq \operatorname{argmax}_{\mathbf{w}} \log \prod_{i}^{n} N_{y_{i}}(f(\mathbf{x}_{i}; \mathbf{w}), \sigma^{2})$$

$$= \operatorname{argmax}_{\mathbf{w}} \left[\sum_{i = 1}^{n} -\frac{(y_{i} - f(\mathbf{x}_{i}; \mathbf{w}))^{2}}{2\sigma^{2}} \right] - n \log \sigma \sqrt{2\pi}$$

$$= \operatorname{argmin}_{\mathbf{w}} \left[\sum_{i = 1}^{n} (y_{i} - f(\mathbf{x}_{i}; \mathbf{w}))^{2} \right]$$

• We can see $w_{\rm ML} = w_{\rm LS}$.

LS from a probabilistic view

•
$$\sigma_{\text{ML}}$$
: = $\operatorname{argmax}_{\sigma>0} \left[\sum_{i=1}^{n} -\frac{\left(y_i - f(x; w)\right)^2}{2\sigma^2} \right] - n\log \sigma \sqrt{2\pi}$

•
$$\sigma_{\rm ML}^2 = \frac{1}{n} [y - f(x; w_{\rm ML})]^2$$

• This probabilistic view not only allows us to fit a prediction function f, but also the uncertainty of our prediction σ .

 This probabilistic view enables us to develop powerful regression tools on top of LS, which we will see in later.

LS with Feature Transform

 Linear LS only fits straight lines, which can be a problem if the relationship between y and x is non-linear.

9/25/2023 Statistical Methods 1

LS with Feature Transform

 It is easy to fit a nonlinear curve to our dataset, while maintaining the simple solution of linear LS.

$$\mathbf{w}_{\mathrm{LS}}\coloneqq \operatorname*{argmin}_{\mathbf{w}}\sum_{i\in D_0}[y_i-f'(\mathbf{x}_i;\mathbf{w})]^2$$

$$f'(\mathbf{x};\mathbf{w})\coloneqq \langle \mathbf{w}_1, \boldsymbol{\phi}(\mathbf{x})\rangle + w_0, \mathbf{w}\coloneqq \begin{bmatrix} \mathbf{w}_1\\ w_0 \end{bmatrix}$$
 • $\boldsymbol{\phi}(\mathbf{x})$: $R^d\to R^b$, is called a feature transform.

- - $\phi(x) := x$, Linear transform.
 - $\boldsymbol{\phi}(x) \coloneqq [x, x^2, x^3, ..., x^b]^{\mathsf{T}}$, Polynomial transform
- Solution: $\mathbf{w}_{\mathrm{LS}} = (\boldsymbol{\phi}(\mathbf{X})\boldsymbol{\phi}(\mathbf{X})^{\mathsf{T}})^{-1}\boldsymbol{\phi}(\mathbf{X})\mathbf{v}^{\mathsf{T}}$

•
$$\phi(X) \coloneqq \begin{bmatrix} \phi(x_1), \cdots, \phi(x_n) \\ 1, \cdots, 1 \end{bmatrix} \in R^{(b+1) \times n}$$

LS with Polynomial Transform (b = 2)

30

LS with Feature Transform

$$\mathbf{w}_{\mathrm{LS}} \coloneqq \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i \in D_0} [y_i - f'(\mathbf{x}_i; \mathbf{w})]^2$$
$$f'(\mathbf{x}; \mathbf{w}) \coloneqq \langle \mathbf{w}_1, \boldsymbol{\phi}(\mathbf{x}) \rangle + w_0, \mathbf{w} \coloneqq [\mathbf{w}_1, w_0]^{\mathsf{T}}$$

- However, introducing complex feature transform in regression also opens cans of worms.
 - Overfitting
 - Curse of dimensionality
- Next lecture, we are going to see what are these problems and how to handle them using probabilistic methods.

Homework

- Prove $\boldsymbol{w}_{\mathrm{LS}} = (\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}})^{-1}\boldsymbol{X}\boldsymbol{y}^{\mathsf{T}}$
- The solution of w_{LS} on page 15 is useless if n < d.
 - Why?
 - Can you find a solution to this problem?
- In what scenarios, the use of Normal distribution to model $p(y|x, w, \sigma)$ on page 21 is a bad idea?
 - Find at least 2 scenarios and explain why.
- Prove $w_{LS} = [\phi(X)]^{-1} y^{\top}$ if $\phi(X)$ is symmetric and invertible.
- If we increase b of $\phi(x)$ by 2-fold, by how many folds will the computation time of $w_{\rm LS}$ increase?

Homework (Challenge)

- LS principle can be seen in many other machine learning problems outside of regression. Given a dataset $D := \{x_i\}_{i=1}^n$, where $x \in R^d$. Consider the following objective:
- $\mathbf{w}' \coloneqq \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^d, \langle \mathbf{w}, \mathbf{w} \rangle = 1} \sum_i ||\mathbf{w} \mathbf{w}^{\mathsf{T}} \mathbf{x}_i \mathbf{x}_i||^2$.
 - ||a-b||: the Euclidean distance between two vectors a and b.
- Express w' in terms of x_i .
- What is the geometric interpretation of the obj. above?

Homework (Challenge)

- <u>Kullback-Leibler (KL) divergence</u> is a measure of dissimilarity between distributions and is expressed as:
- $KL[q, p] := \int q(x) \log \frac{q(x)}{p(x)} dx$
- If you have a probabilistic model $p(x|\theta)$ and you know your data is drawn from a probability distribution with density q, it makes sense to select your model parameter θ by $\min_{\theta} KL[q, p_{\theta}]$, so that the fitted model is closest to the actual data distribution in terms of KL.
- Q: What is the relationship between this model fitting objective and MLE? Under what assumptions, they are closely related?