

Electrical Machines

Galina Demidova

Assoc. Prof.

demidova@itmo.ru

Dmitry Lukichev

Assoc. Prof.

lukichev@itmo.ru

Alexander Mamatov

Assist. Prof.

amamatov@itmo.ru

INSTRUCTORS

Galina Demidova Assoc. Prof. demidova@itmo.ru

PhD, associate Professor at Faculty of Control Systems and Robotics Chief Engineer at R&D Center "Precision Electromechanics" Leader researcher at Laboratory of Power Electronics and Automated Electric Drive

Alexander Mamatov Assist. Prof. amamatov@itmo.ru

PhD, researcher at Faculty of Control Systems and Robotics Engineer at R&D Center "Precision Electromechanics" Leader researcher at Laboratory of Power Electronics and Automated Electric Drive

Dmitry Lukichev Assoc. Prof. lukichev@itmo.ru

PhD, associate Professor at Faculty of Control Systems and Robotics Chief Engineer at R&D Center "Precision Electromechanics" Leader researcher at Laboratory of Power Electronics and Automated Electric Drive

INSTRUCTORS

Galina Demidova

Assoc. Prof.

demidova@itmo.ru

Magnetic circuits

DC motor

Alexander Mamatov Assist. Prof.

amamatov@itmo.ru

Transformers

Synchronous Machines

Servomotors

Dmitry Lukichev

Assoc. Prof.

lukichev@itmo.ru

AC Machinery

Brushless DC motor

ітмо

DC motor hometask

AC hometask

Alexander Mamatov

Transformer hometask

SM hometask

MO

An introduction to electric machines. Simple magnetic circuits.

COURSE AIMS

- To give an overview about Electrical Machines and their applications in industry, service and everyday life.
- To give basic knowledge in the basic composition of Electrical Machines, components used in these systems and application principles of these systems.
- To give basic knowledge for designing and exploitation of Electrical Machines in the respective field.

ітмо

LEARNING OUTCOMES

- Knows and orients in main structures of electrical machines and knows respective application areas.
- Knows the main type of electrical machines, their components and orients in respective basic applications.
- ▼ Knows and is able to evaluate the characteristics of electrical machines and the role of different knowledge in the design and integration of the components into a whole operational system.

ITMO

ITMO

AC Electrical Machines

Generators

Utility generators

☐ Backup generators

■ Wind turbines

İTMO

AC Electrical Machines

№□ 3-phase induction Cranes **Elevators** Fire pumps

Industry use

Synchronous Motors Servomotors Clocks Synchronous condenser

DC Electrical Machines

Generators

- Early power systems
 - ☐ Standalone systems (cellphone towels)

☐ Lift, cranes, trains

ITMO

DC Electrical Machines

Electric vehicles

Hybrid electric vehicle drivetrain

Electronic power steering systems

HVAC (Heating, Ventilation And Air conditioning) system

Windings

copper aluminum

ітмо

copper

Advantages

- Stronger than aluminum
- **☐** Higher Current carrying capacity
- ☐ Transformer with copper winding less expensive
- No Galvanic corrosion
- **☐** Smaller winding size
- **□** Easy to repair broken wire connection

Disadvantages

- Expensive
- **☐** Less Flexible
- ☐ Lesser resources available

Advantages

- ☐ Less Cost
- Corrosion resistive
- **□** Conductivity
- **☐** More Flexible
- **□** Lower eddy losses

Disadvantages

- **☐** Susceptible to oxidation at Joints
- **☐** Higher Resistivity

Resistivity of Copper is 1.68 x 10⁻⁸ Ohm

Resistivity of Aluminum 2.65 x 10⁻⁸ Ohm

Aluminum/Copper = $(2.65 \times 10^{-8}) / (1.68 \times 10^{-8}) = 1.6$

Conductivity

aluminum

- Magnetic materials are those materials in which a state of magnetization can be induced.
- Such materials when magnetized create a magnetic field in the surrounding space.
 - Magnetic materials include the elements

iron

nickel

cobalt

alloys containing some of these such as **steel** and some of their compounds.

ITMO

Magnetic Field

The force of attraction / repulsion between two magnetic poles is directly proportional to the strength of the poles and inversely proportional to the square of the distance between them

$$F_E = \frac{kq_1q_2}{r^2}$$

Electric field:

- 1) A distribution of electric charge at rest creates an electric field E in the surrounding space.
- 2) The electric field exerts a force $\bar{F}_E = q\bar{E}$ on any other charges in presence of that field.

Magnetic field:

- 1) A moving charge or current creates a magnetic field in the surrounding space (in addition to). \overline{E}
- 2) The magnetic field exerts a force \bar{F}_m on any other moving charge or current present in that field.

The magnetic field is a vector field vector quantity associated with each point in space.

$$\overline{F}_{\scriptscriptstyle m} = \big| q \big| v_{\scriptscriptstyle \perp} B = \big| q \big| v B \sin \varphi$$

$$\overline{F}_{\scriptscriptstyle m} \text{ is always perpendicular to } \overline{B} \text{and } \overline{v}$$

$$\overline{F}_{\scriptscriptstyle m} = q \overline{v} \times \overline{B}$$

Classification

- ☐ Ferromagnetic
- Paramagnetic
- Diamagnetic
- Magnetically Soft Material
- Magnetically Hard Material

ITMO

Ferromagnetic

- A type of material that is highly attracted to magnets and can become permanently magnetized is called a ferromagnetic.
- ☐ The relative permeability is much greater than unity and are dependent on the field strength
- These have hight susceptibility

Spins are aligned parallel in magnetic domains

ітмо

Paramagnetic

- ☐ It is a substance or body which very weakly attracted by the poles of a magnet, but not retaining any permanent magnetism.
- ☐ These have relative permeability slightly greather than unity and are magnetized slightly.
- They attract the lines of forces weakly.

Spins are randomly oriented

Diamagnetic

☐ It is substance which create a magnetic field in opposite to an externally applied field.

- ☐ Susceptibility is negative.
- ☐ These have relative permeability slightly less than unity.
- ☐ They reppel the lines of force slightly.

Flux distribution for a permanent magnet

Flux distribution for two adjacent, opposite poles

Flux distribution for a permanent magnet

Flux distribution for two adjacent, opposite poles

Flux distribution for two adjacent, like poles

Effect of a ferromagnetic sample on the flux distribution of a permanent magnet

adjacent, opposite poles

distribution of a permanent magnet

Magnetic flux lines around a current-carrying conductor

Flux distribution of a single-turn coil

Flux distribution of a current-carrying coil

ітмо

Magnetic Field

The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the charge is perpendicular to the magnetic field.

Interaction of magnetic force and charge

A charge moving at an angle ϕ to a magnetic field experiences a magnetic force with magnitude $F = |q|v_{\perp}B = |q|vB \sin \phi$.

A charge moving **perpendicular** to a magnetic field experiences a maximal magnetic force with magnitude

Magnetic Field

Positive charge moving in magnetic field direction of force follows right hand rule

Right Hand Rule

Negative charge F direction contrary to right hand rule.

ITMO

Determining the direction of flux for an electromagnet

Magnetic Field Lines and Magnetic Flux

- Magnetic field lines may be traced from N toward S (analogous to the electric field lines).
 - At each point they are tangent to magnetic field vector.
- The more densely packed the field lines, the stronger the field at a point.
 - Field lines never intersect.
- The field lines point in the same direction as a compass (from N toward S).
 - Magnetic field lines are not "lines of force".

The direction of the magnetic force depends on the velocity \vec{v} , as expressed by the magnetic force law $\vec{F} = q\vec{v} \times \vec{B}$.

Magnetic fields between two bar magnets

Unlike poles attract

Unlike poles attract

Practical part

ITMO

If the material is magnetically hard it will retain its magnetism once removed from the field.

Magnetic Field

B - SI unit

T - tesla

Magnetic Field

Direction of the force: (Fleming's Left-hand rule)

Fleming's left-hand rule (for electric motors)

ітмо

Motion of conductor

Magnetic Field

Fleming's right-hand rule (for generators)

If charged particle moves in region where both, *E* and *B* are present:

$$\overline{F}_m = |q| \left(\overline{E} + \overline{v} \times \overline{B} \right)$$

Principle for electromagnetic induction

Fleming's Right-hand Rule

Fleming's Left-hand Rule

- The magnetic circuit model acts as a uniform principle in descriptive magnetostatics, and as an approximate computational aid in electrical machine design.
- The model uses the conception of magnetic reluctance to establish an equivalent circuit for approximate analysis of static magnetic field in electrical machines.

Comparison of Electric and Magnetic Force

- Electric force vector along direction of electric field
- Electric force acts on charged particle regardless of whether particle is moving
- Electric force does work in displacing a charged particle

- Magnetic force vector perpendicular to magnetic field
- Magnetic force acts on charged particle only when particle is in motion
- Magnetic force associated with steady magnetic field does no work when a particle is displaced → force perpendicular to displacement of its point of application

B(H) Characteristics

$$B_{ind} = \mu_0 M$$

$$\mu_0 = 4\pi \cdot 10^{-7} [Wb / Am]$$

$$B = \mu_0 M + \mu_0 H$$

$$M = \chi H$$

magnetic susceptibility of the material

$$B=\mu_0\left(\chi+1\right)H=\mu H$$

$$\mu_r \qquad \text{relative permeability}$$

Simple magnetic circuits

B(H) Characteristics

Typical B-H loop of a ferromagnetic material

B(H) Characteristics

Typical B-H loop of a ferromagnetic material

Typical B-H loop of a ferromagnetic material

(anomalous) loss

Total loss = Static hysteresis Loss +

Classical eddy current loss + Excess

B-H Curve of a typical ferromagnetic material

Park, Jooyoung; Kim, Junkyeong; Zhang, Aoqi; Lee, Hwanwoo; Park, Seunghee "Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder" Journal of the Computational Structural Engineering Institute of Korea. 2015. Dec, 28(6): 691-697

Magnetically Soft material

Characteristics:

- ☐ They have hight permeability
- ☐ The magnetic energy stored is not high
- ☐ They have negligible coercive force
- ☐ They have low remanence
- ☐ Hystersis loop is narrow

Examples:

pure or ingot iron cast iron carbon steel manganese and nickel steel

Magnetically Hard Material

Characteristics:

- They posses hight value of BH product
- High retentivity
- ☐ High coercitivity
- ☐ Strong magnetic reluctance
- ☐ Hysteresis loop is more rectangular in shape

Examples:

Tungsten steel Cobalt steel Chromium steel

ITMO

