PRESENTATION TO

SPACE PLASMA PHYSICS ACTIVE EXPERIMENTS WORKING GROUP

NASA/MSFC 23 SEPT 1980

R.W. FREDRICKS WISP P.I.

VLF WAVE INJECTION EXPERIMENTS

- VLF WAVE-PARTICLE INTERACTIONS
- VLF PROPAGATION

TRAVELING IONSPHERIC DISTURBANCES AND ATMOSPHERIC GRAVITY WAVES

HF, VHF REMOTE SOUNDING

IONOSPHERIC BUBBLES

HF, VHF REMOTE SOUNDING AND PROPAGATION

PLASMA WAVE PHYSICS

- LINEAR AND NON-LINEAR PLASMA PHYSICS IN SPACE
- ANTENNA-PLASMA INTERACTION STUDIES

WISP INVESTIGATION ORGANIZATION

SYSTEMS GROUP RESEARCH STAFF

WISP DEFINITION PHASE

CO-INVESTIGATOR RESPONSIBILITIES

TRW

-Taylor (RPDP Co-i)

-plasma wave physics and wave/particle interactions

STANFORD - Helliwell and Katsufrakis

-VLF/ELF wave propagation and wave/particle interactions

U of 10WA - Shawhan (RPDP P.I.)

-plasma wave physics and wave/particle interactions

NASA/MSFC - Reasoner (RPDP Co-1)

-plasma diagnostics & wave/particle interactions

PINY - Gross

-Traveling lonospheric disturbances and gravity waves

NASA/GSFC - Benson

-Equatorial bubbles and plasma wave physics

SAO - Grossi

HF & VHF wave propagation and traveling ionospheric disturbances

NASA/JSC - Garriott

-antenna impedance and wave/particle interactions

LaTrobe Univ. (Australia) - Dyson

-equatorial bubbles and simultaneous ground-based measurements

Lockheed - Calvert

mplasma wave physics in HF regime

-CORE microprocessor definition

SYSTEMS GROUP RESEARCH STAFF

WISP

WISP PROJECT LIFE CYCLE TRU

DEFENSE AND SPACE SYSTEMS GROUP

WISP EQUIPMENT

FOR FIRST FLIGHT

TRW

•	Flight							
	1_	2	3	4	5	6		
Date (Calendar year) 19	82	83	84	85	85	86	86	
Quarter	4	4	3	2	4	2	4	
Equipment								
CORE (Common Operating Resich Equip.)	X	X	X	X	X	X	X	
VLF Transmitter Subsystem		Х	X			X	X	
Extendible Antenna ¹	X X X	X	X X X	X	X	X	X	
Recoverable Plasma Diagnostics Package (RPDP)	X	X	X	X	X .	X	X	
Phase 1 RPDP Instrumentation ²	X	×	X			X	X	
HF Sounder Receiver	X		X X X X X	X*	X*	•••	••	
HF Sounder Subsystem ⁵		×	X	X	X			
Phase 2 RPDP Instrumentation ⁶		X	X	••		X	X	
Special Display & Analysis Equip.7		Х	X	X	X	X	X	
Low Light Level TV		Х	X	•	•••	X	X	
VHF Sounder Subsystem			X	X	x			
Power Amplifier, 20-40 db gain, 150-350 MHz				X	X			
Loop Transmitting Antenna						X	X	
Tether System (conducting tether wire)					X	X	

³⁰⁰ m tip-to-tip maximum length dipole pointed in ± Y directions.

Step frequency receiver, electric field antenna, magnetic field antenna (loop), ion retarding potential analyzer, Langmuir probe, ion mass spectrometer.

On Spacelab.

On RPDP

On Spacelab

Instrumentation added to RPDP: step frequency receiver, correlator, linear receiver, 2 electric field antennas, 2 magnetic field antennas (loop), quadrispherical low energy proton and electron differential energy analyzer.

Spectrum analyzer and oscilloscope with Z modulation and variable persistence.

WISP
NOMINAL SUBSYSTEM SIZES
AS OF DEC 22,1979

WISP/HF BLOCK DIAGRAM

SYSTEMS GROUP RESEARCH STAFF

WISP

FUNCTIONAL BLOCK DIAGRAM

OF INSTRUMENTATION

SYSTEMS

WISP DEFINITION PHASE

ANTENNA DESIGN

BASIC ANTENNA

- Bi-Stem by Astro
- Nominal length- 300 m tip-to-tip

TRADEOFF STUDY REQUIRED

- Three options identified
 - -Bare Bi-Stem from bay
 - -Bi-Stem with insulating sleeve from bay
 - -Bare BI-Stem from Astromast
- Analysis Required
 - -Dynamics
 - -Thermal
 - -Electrical
 - -Safety
- Decision by end of Phase 1

BI-STEM

DIPOLE ANTENNA SUBSYSTEM DASS

FUNCTIONS

- MECHANICALLY HOLDS DIPOLE ELEMENTS
- PLACED HIGH IN BAY TO EXTEND ELEMENTS OVER BAY DOORS
- ELECTRICALLY ISOLATE ELEMENTS AND GROUND

PROBLEMS

- CONFIGURATION -- MAST NEEDED?
- RADIATED EMI -- EXEMPTION NEEDED?
- DYNAMICS -- STUDY NEEDED (BY MSFC)?

15

SYSTEMS GROUP RESEARCH STAFF

HISP PRESENTATION TO MASA/MSFC

STATE STREET STREETS GACLE

11-1-79

MISP SCIENCE ODJECTIVES

VLF WAVE INJECTION EXPERIMENTS

- VLF WAVE-PARTICLE INTERACTIONS
- VLF PROPAGATION

TRAVELING IONSPHERIC DISTURBANCES AND ATMOSPHERIC GRAVITY WAVES

. HF. VHF REMOTE SOUNDING

IONOSPHERIC BUBBLES

HF, VHF REMOTE SOUNDING AND PROPAGATION

PLASMA WAVE PHYSICS

- LINEAR AND NON-LINEAR PLASMA PHYSICS IN SPACE
- ANTENNA-PLASMA INTERACTION STUDIES

WISP

FIRST TEAM MEETING
OBJECTIVES

FUNCTIONAL OBJECTIVES AS REQUIRED BY ERD

- UNDERSTAND CONTENT REQUIRED
- UNDERSTAND FO SCIENTIFIC REQUIREMENTS
- REDUCE TO COMMON FORMAT

HARDWARE

- DESCRIBE WISP SUBSYSTEM CONCEPTS
- DESCRIBE OTHER INSTRUMENTATION

ANTENNA IMPEDANCE

REVIEW AND DISCUSS QUESTION

INTERFACES

- DISCUSS CONCEPTS AND OPTIONS
- MAKE DECISIONS OF PHILOSOPHY

FUNCTIONAL OBJECTIVES - OUTLINE CATEGORY, NUMBER, TITLE, AUTHOR/RESPONSIBILITY

CATEGORY 1 - ENGINEERING [FO 1-9]

FO No.	Short Title	Author/Responsibility
F0 1	System Configuration and Activation	TRW
FO 2	System Checkout (all WISP Systems ON except H.V.)	TRW, Collins, Spar
F0 3	VLFSS Checkout (FO 2, except VLFSS H.F. ON and transmitter power dumped to antenna simulator)	Collins
FO 4	HFSS Checkout (FO 2, except HFSS H.V. ON and transmitter power dumped to antenna simulator)	Spar
F0 5	Antenna extension or retraction	TRW, MSFC
FO 6	VLFSS Interference Tests (FO 3, except power to antenna); secondary objective: measure Z _A , propagation	Collins, TRW
F0 7.	HFSS Interference Tests (FO 4, except power to antenna); secondary objective: measure Z _A propagation	Spar
F0 8	Antenna Deflection Determination	Garriott, TRW
F0 9	Standby Procedure	TRW, Collins, Spar
	CATEGORY II - VLFSS, WAVE PARTICLE INTERACTIONS [F	0 10-19]
FO 10	Survey of Growth and Triggering	Stanford
FO 11	Detailed Properties of Triggered Emissions (3 or 4 parts)	Stanford
FO 12	Power Line Radiation Simulation	Stanford
F0 13	Induced Particle Precipitation	Stanford
FO 14)		
	TBD	Stanford, Investigators
F0 19		
	CATEGORY III - VLFSS, WAVE PROPAGATION [FO 20	0-29]
F0 20	Dipole Radiation Pattern for Characteristic Wave Modes; 1 - Whistler Mode	James
FO 21		• •
F0 26	TBD	Stanford, Investigators

CATEGORY III (Cont'd)

F0 27	Field-Aligned VLF Ducts; (a) Siple-to-WISP and (b) WISP-to-Siple	Stanford
FO 28	WISP-to-Ground Beacon Mode	Stanford
FO 29	Plasmapause VLF Propagation	Stanford
	CATEGORY IV - VLFSS PLASMA PHYSICS [FO 30-3	39]
F0 30	Auroral Kilometric Radiation	Stanford
FO 31		
50.20	TBD	Stanford, Investigators
FO 39)		,
,	CATEGORY V - VLFSS, RESERVED [FO 40-49]	
FO 40 \		
• • •	TBD, Reserved for VLFSS	Stanford, Collins, TRW,
FO 49		Investigators
F0 50	Determine the field-aligned electron density distribution from ducted echoes	50-69] Benson
FO 51	Determine the length and stability of field- aligned bubbles by obtaining nearly continu- ous conjugate echoes while in a ducting region	Benson
F0 52	Determine transverse size of density irregulari- ties within a bubble by obtaining multiple near-end ducted echoes	Benson
FO 53	Determine the electron density at the apex of a field-lined density irregularity by obtaining Z-mode ducted echoes.	Benson
FO 54	Determine the extent of the bottomside density depletion from ground echoes	Benson
F0 55	Determine the changes in the total electron density content between Spacelab and the subsatellite as a bubble region is transversed	Benson
F0 56	Determine background neutral temperature, composition, and wind as well as background plasma temperature, composition and drifts.	Benson
F0 57	Determine AGW and TID wave characteristics, i.e., wave amplitude, phase, angular frequency, and wave vector	Benson

CATEGORY VI (Cont'd)

FO 58	Study the interdependence of AGW's and TID's	Benson
F0 59	Study the source regions of the AGW's and TID's from among the sources: magnetosphere, auroral region, equatorial region, stratosphere-mesosphere, and troposphere	Benson
FO 60	Equatorial Bubbles, Spread F, HF Ducts and Scintillation	Dyson
FO 61	Small Amplitude Discrete Irregularities at the Equator	Dyson
FO 62	Gravity Waves and TID's (HFSS, VHFSS)	Dyson
F0 63	Mid-Latitude Spread F (VHFSS)	Dyson
FO 64	Measurement of Large-Scale Wave Structures in the lonosphere	Gross
FO 65	Large-Scale Disturbance Structures	Gross
FO 66	Relationships between Wave Structures and Field-Aligned Irregularities	Gross
FO 67	Source Regions for Large-Scale Structures	Gross
F0 68 \	TBD	HF Investigators
F0 ⁻ 69 ^f		
	CATEGORY VII - HFSS, WAVE PROPAGATION [FO 70-	89]
F0 70	Determine the resonance cone structures in the antenna radiation pattern as a function of antenna length	Benson
F0 71	antenna radiation pattern as a function of	Benson
	antenna radiation pattern as a function of antenna lengthDetermine the characteristics of the ionospheric irregularities that give rise to the greatest	
F0 71	antenna radiation pattern as a function of antenna length Determine the characteristics of the ionospheric irregularities that give rise to the greatest scattering of whistler and Z-mode signals Determine the optimum ducting conditions for	Benson
F0 71	antenna radiation pattern as a function of antenna length Determine the characteristics of the ionospheric irregularities that give rise to the greatest scattering of whistler and Z-mode signals Determine the optimum ducting conditions for X, O, Z, and whistler mode signals Determine the efficiency of wave mode coupling	Benson Benson
F0 71 F0 72 F0 73	antenna radiation pattern as a function of antenna length Determine the characteristics of the ionospheric irregularities that give rise to the greatest scattering of whistler and Z-mode signals Determine the optimum ducting conditions for X, 0, Z, and whistler mode signals Determine the efficiency of wave mode coupling between the Z and 0 modes	Benson Benson
F0 71 F0 72 F0 73 F0 74	antenna radiation pattern as a function of antenna length Determine the characteristics of the ionospheric irregularities that give rise to the greatest scattering of whistler and Z-mode signals Determine the optimum ducting conditions for X, 0, Z, and whistler mode signals Determine the efficiency of wave mode coupling between the Z and 0 modes	Benson Benson
F0 71 F0 72 F0 73 F0 74	antenna radiation pattern as a function of antenna length Determine the characteristics of the ionospheric irregularities that give rise to the greatest scattering of whistler and Z-mode signals Determine the optimum ducting conditions for X, 0, Z, and whistler mode signals Determine the efficiency of wave mode coupling between the Z and 0 modes Propagation of Plasma Waves (HFSS)	Benson Benson Taylor HF Investigators

CATEGORY VIII (Cont'd)

F0	81	Identify nonlinear wave processes including ion modulation effects on electron plasma waves	Benson
F0	82	Determine the stability of nf waves	Benson
F0	83	Determine the domain of stimulated temperature anisotropies	Benson
FO	84	Isolate nonlinear plasma wave processes from instrumental effects, plasma sheath effects and other spacecraft plasma perturbations	Benson
FO	85	Identify the cause of the "floating" nature of some resonances	Benson
F0	86	Explain electrostatic wave propagation phenomena such as the disappearance of the $3f_{H}$ echo when $f_{N}/f_{H} = 4$	Benson
FO	87	Determine the electrostatic to electromagnetic fraction of energy emitted from the antenna under different resonant conditions	Benson
F0	88	Determine electron-beam wave generation in ambient plasma for beam propagation quasiparallel to magnetic field	Benson
F0	89	Determine electron-beam wave generation in ambient plasma for beam propagation quasiperpendicular to magnetic field	Benson
FO	90	Determine electron-beam wave generation in ambient plasma for beam oblique propagation	Benson
FO	91	Determine electron-beam wave generation in ambient plasma driven to high anisotropy levels by HFSS/VHFSS for beam propagation quasi-parallel to magnetic field	Benson
FO	92	Determine electron-beam wave generation in ambient plasma driven to high anisotropy levels by HFSS/VHFSS for beam propagation quasi-perpendicular to magnetic field	Benson
FO	93	Determine electron-beam wave generation in ambient plasma driven to high anisotropy levels for oblique beam propagation	Benson
FO	94	Linear Impedance Dependence on Dipole Length	Balmain
FO	95	Linear Impedance Dependence on Dipole Orienta- tion	Balmain
FO	96	Linear Impedance Dependence on Dipole D.C. Bias	Balmain
FO	97	Nonlinear Impedance Dependence on CW Power Level	Balmain

CATEGORY VIII (Cont'd)

F0 98	Linear CW Near-Field Evolution with Distance	Balmain
F0 99	Nonlinear CW Near-Field Evolution with Distance	Balmain
FO 100	Resonance Sounding	James
FO 101	Resonance Interactions using RPDP Diagnostics	Reasoner
F0 102	Stochastic Heating of Plasma and Nonlinear Effects near the Antenna using RPDP Diagnostics	Reasoner
FO 103		
: }	TBD	HF Investigators
FO 109)		
	CATEGORY IX - HFSS, RESERVED [FO 110-129]	· · · · · · · · · · · · · · · · · · ·
FO 110 \		
	TBD, Reserved	Investigators
F0 129		
	CATEGORY X - VHFSS, GENERAL [FO 130-139]	•
F0 130	VHF Determinations of Coupled Neutral and Ionospheric Turbulence	Grossi, Gross
FO 131.	See F0 62	
FO 132	See F0 63	
FO 134		
: }	TBD	investigators
FO 139	•	
	CATEGORY XI - MISCELLANEOUS [FO 140-149]	
FO 140		·,
• }	TBD	TRW, Collins, Spar
FO 147	·	
FO 148	System Activation	TRW, Collins, Spar
FO 149	Configuration for Return	TRW, Collins, Spar

WISP ACTIVE EXPERIMENT INTERACTIVE MATRIX

AUTHOR	FO No	WISP SS	RPDP	SEPAC	CRM	AEPI	MMP	EIMS	WAMDII	ALAE	ISO	ENAP	TRS
DYSON	T-1	HFSS	Х										
TAYLOR	T-2	VLFSS											
STANFORD	T-3	VLFSS	X										
	T-4	11				<u> </u>		<u> </u>					
	T-5	u	×										
	7-6	11											
	T-7	1,	×										
	T-8	"	×										
	T-9	"											
V	T-10	11	×										<u> </u>
Dyson	T-11	HFSS	×			·							
BENSON	7-12	HFSS											
	T-13						·						
	T-14												
	T-15												
	T-16												
	T-17				<u> </u>								
	T-18								·				
	T-19											<u> </u>	
	T-20					<u> </u>			<u> </u>				<u> </u>
V	T-21	V											
Dyson	T-22	HFSS			<u> </u>		<u> </u>	<u> </u>					
	T-23				ļ	<u> </u>							
1	T-24	1					<u> </u>	<u> </u>					<u> </u>
DYSON	T-25	HFSS .				<u> </u>		<u> </u>				<u> </u>	
GROSS	T-26	HESS			1.		1					1	

WISP ACTIVE EXPERIMENT INTERACTIVE MATRIX

AUTHOR	FO No	WISP SS	RPDP	SEPAC	CRM	AEPI	ММР	EIMS	WAMDII	ALAE	ıso	ENAP	TRS
GR055	T-27	HFSS	×								•		
	T-28		×										
	T-29		X										
	7-30		X									1	
	T-31		X										
	T-32		_X										
	T-33	V	X	,									
aross	T-34	VHF	×			-							
TAYLOR	T-35	HFSS	X								İ		
TAYLOR	T-36	HFSS	X										
GROSSI	T-37	VHFSS	X										
GARRIOTT	T-38		×	X									
JAMES	T-49	HF3S	X										
	T-50		X										
	T-51										i		
	T-52		X								<u> </u>		
	T-53		X										 -
	T-54		_X	-						· · · · · · · · · · · · · · · · · · ·			
	7-55		X						,				
Y	7-52	٧	_X		<u> </u>								
McNamaea	T-57	HFSS	_X									1	
	T-58		X	·			·						
\	7-59	V	X										
Hooceraft	T-64	HFSS	X					1					
	T-65												·
4	T-66	1	X				•						

WISP ACTIVE EXPERIMENT INTERACTIVE MATRIX

AUTHOR	FO No	WISP SS	RPDP	SEPAC	CRM	AEPI	ММР	EMS	WAMDII	ALAE	ISO	ENAP	TRS	
MOORCROFT	T-67	HFSS	×									-		l
HOLDREW	7-68	HFSS	X											l
HULDEBU		1	Х											I
	T-70		X											
	T-71		X										-]
	T-72		×]
	T-73									l				
	T-74		×	٠,										
٧	T-75	Ψ	×		-								-]
BALMAIN	T-76	HFSS			a.									
	T-77	1												1
	T-18	V												
	T-79	HFSS/NLFSS				X								
	T-80	HFSS	X											
	T-81			_							-			
	T-82													
	T-83													1
	T-84					×								1
V	T-85	V	X											
McNamaka	T-86	HFSS	X				1							1
MOLDREN		. ————	×										·	1
REASONER			×											1
	T-89	HFSS	X											1
														1
						1								1
					,		ļ —							1
				B					4	L		4		_

16.

RMI Rmu

WISP DEFINITION PHASE

EMI CONSIDERATIONS

WISP SCIENTIFIC OBJECTIVES:

- -depend on energizing antenna to high voltages
- -study of the plasma response and loading

PREVIOUS DISCUSSIONS:

- -Bob Blount/JSC
- -narrow band emissions higher than spec are required by WISP

PROBLEM:

-fear that induced voltages or currents will affect avionics

SOLUTION:

-increase experimental power levels gradually and monitor the avionics

PROCEDURE:

-request appropriate waiver from STS operator

WISP

EMI

SYSTEMS GROUP

RESEARCH

CHANGE NO.

