Fibonacci

Santiago Toll Leyva Universidad de Artes Digitales

Guadalajara, Jalisco

Email: idv16a.stoll@uartesdigitales.edu.mx

Profesor: Efraín Padilla

Mayo 08, 2019

Tarea 1: Fibonacci

Teoria

La serie Fibonacci describe una secuencia infinita de numeros ordenados. Esta serie describe un espiral perfecto que se encuentra en la naturaleza; los terminos de la sucesion tambien establecen la "proporcion aurea". Los numeros de la serie se obtienen al sumar los dos numeros previos en la serie.

Planteamiento del problema

La serie Fibonacci se define a partir de la siguienta funcion:

$$f(n) = \begin{cases} 0 & n = 0\\ 1 & n = 1\\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

A partir de la funcion anterior podemos determinar que podemos obtener el siguiente numero de la serie utilizando los valores de las dos posiciones anteriores.

Solucion del problema

Para resolver el problema se utilizaron dos funciones.

Funcion recursiva Complejidad n.

$$f(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ f(n-1) + f(n-2) & for \ \mathbf{x} < n \end{cases}$$

Esto significa que la funcion se llamara a si misma mientras x sea menor a n.

Funcion no recursiva Complejidad n².

$$f(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

Codigo

```
Listing 1. Fibonacci C++
2 /**
3 * @file
           Fibonacci.cpp
           Santiago Toll (santiago.toll97@gmail.com)
4 * @ authors
5 * @ date
          May 2019
6
 * @brief
           Fibonacci in c++
7
 * @bug
8
        No known bugs.
9
 */
13
14
  * Includes
15
  */
16
  17 #include "pch.h"
18 #include <iostream>
19 #include <chrono>
20 #include <string>
21
22 using std::cin;
23
 using std::cout;
  using std::string;
24
25
  using std::chrono::high_resolution_clock;
  using :: std :: chrono :: duration ;
2.7
28
 29
30
 /* Fibonacci using recursivity.
 31
32
33
 RecursiveFibonacci(int numberber)
34
35
   if (numberber <= 1)</pre>
36
37
    return numberber;
38
39
   e1se
40
    return RecursiveFibonacci(numberber - 1) + RecursiveFibonacci(numberber - 2);
41
42
43
44
45
  46
 /* Fibonacci (non recursive)
  47
48 int
49 Fibonacci (int n)
50
51
   //initialize variable
52
   int n1 = 0, n2 = 1;
53
54
   if (n \ll 1)
55
   {
```

```
56
       return n;
57
58
     else
59
     {
60
       int tmp = 0;
       for (int i = 0; i < n - 1; ++i)
61
62
63
         tmp = n1 + n2;
64
         n1 = n2;
65
         n2 = tmp;
66
67
       return tmp;
68
69
70
71
   72
   /* Function used to print results
73
   74 void
75 PrintResult(int result, double duration)
76 {
77
     std::string text = "Result: " + std::to_string(result) + "\n" +
78
       "Elapsed time: " + std::to_string(duration) + "\n";
     std::cout << text << std::endl;</pre>
79
80
81
82
   int main()
83
84
     int number = 0;
85
86
     std::cout << "Enter the position in sequence: ";
87
     std::cin >> number;
88
89
     // get the start time
90
     auto startTime = high_resolution_clock::now();
91
     // Call Non recursive fibonacci function.
92
     int result = Fibonacci(number):
93
     // Get end time.
94
     auto endTime = high_resolution_clock::now();
95
     // Calculate elapsed time.
     duration <double> duration = endTime - startTime;
96
97
98
     PrintResult(result, duration.count());
99
100
     startTime = high_resolution_clock::now();
101
     // Call Non recursive fibonacci function.
102
     result = RecursiveFibonacci(number);
103
     // Get end time.
104
     endTime = high_resolution_clock::now();
105
     // Calculate elapsed time.
     duration = endTime - startTime;
106
     PrintResult(result, duration.count());
107
108
109
     return 0;
110
```

4

Benchmark

