Pacific Northwest Earthquake Prediction and Analysis

Project 4 Group 4
Sofonias Abebe
Asres Dagnew
Jenn Andrews
Leo Rios

Objective

Analyze and predict earthquake patterns in the Pacific Northwest using historical data and machine learning.

This includes:

- ETL and database design Exploratory data analysis (EDA) ML modeling prediction Occurrence
- - Magnitude
 - Occurrence + Magnitude prediction

Data Sources and ETL

- Seismic activity dataset was obtained from the USGS Earthquake Hazards Program Catalog
- Filtered measurements for:
- Magnitude > 2.5
 Jan 1970 May 2025
 Latitude: 39.5 to 49.5
 Longitude: -125 to -116
 Exported to CSV and transformed with Pandas
- Created a PostgreSQL database with schema

Data Exploration (EDA)

Modeling

- 1. Initial Magnitude model Sofonias
 - a. Without binning
 - b. Results
- 2. Occurrence prediction Asres
- 3. Magnitude prediction Asres
 - a. Refinement with binning
- 4. Magnitude + Occurrence prediction tab in dashboard Sofonias/Asres?

- Initial training using Linear Regression and Random Forest using Magnitude as the target feature
 - Linear Regression
 - MAE: 0.3599
 - R²: 0.0273
 - o Random Forest Regressor
 - MAE: 0.3253
 - R²: 0.1902
- Feature Expansion and Grid Search
 - Encode 'magType' as categorical
 - Hyperparameter tuning

Occurrence Classification Model

- Two-Pipeline Modeling
 Pipeline 1: Classification Pipeline
 Goal: Predict whether an earthquake will occur in a given time/location bin
 Applies a Random Forest Classifier to predict
- whether an earthquake will occur in a specific region and time frame. Includes data balancing using SMOTE and feature selection.

Magnitude Prediction: Model Refinement

- Pipeline 2: Regression Pipeline
 Goal: If a quake is predicted to occur, estimate its magnitude
 Similar objective as the initial magnitude
- model, with feature refinements
 - Created temporal (monthly) and spatial (0.5°) binsAdd seasonal features

Model Results

Performance Summary:

- RMSE: 0.198 - R² Score: 0.852

Regression Performance Interpretation:

- Points near the line: good predictions.
- Points above the line: model overestimated magnitude.
- Points below the line: model underestimated magnitude.
- Scattered points far from the line: model uncertainty or noisy data.

Summary, Challenges/Limitations, Further Research

• Our two-pipeline model predicted the accuracy of an earthquake occurring at a specific time and location of 96% and an R² of that occurrence magnitude of 85.2%

HOWEVER...

Questions?