Systems Thinking

Exploring Data

THE CAUSATION CHECKLIST

There are a number of ways that two variables can be related, without A causing B

REVERSE CAUSATION

Rather than A causing B, would B causing A make more sense?

$$A \leftarrow B$$

Example

Winter coat usage (A) correlates with cold weather (B), but cold weather actually causes winter coat usage

CONFOUNDERS

Might some other variable, C, actually be causing both A and B?

Example

Basketball performance (A) and shoe size (B) are correlated, but 'height' (C) drives both basketball performance and shoe size

COINCIDENCE

If there's no reasonable connection, could it just be a coincidence?

Example

From 2000-2009, the amount of cheese eaten per person (A) correlated with the number of people who died by becoming tangled in their own bedsheets (B)!

A further consideration ...

MULTIPLE CAUSES

Might A be only one of many causes of B?

Example

Having good friends (A) correlates with well-being (B), but many other factors (C, D...etc.) also contribute to well-being

THE CAUSATION CHECKLIST

There are a number of ways that two variables can be related, without A causing B

REVERSE CAUSATION

Rather than A causing B, would B causing A make more sense?

$$A \leftarrow B$$

Example

Winter coat usage (A) correlates with cold weather (B), but cold weather actually causes winter coat usage

CONFOUNDERS

Might some other variable, C, actually be causing both A and B?

Example

Basketball performance (A) and shoe size (B) are correlated, but 'height' (C) drives both basketball performance and shoe size

COINCIDENCE

If there's no reasonable connection, could it just be a coincidence?

Example

From 2000-2009, the amount of cheese eaten per person (A) correlated with the number of people who died by becoming tangled in their own bedsheets (B)!

A further consideration ...

MULTIPLE CAUSES

Might A be only one of many causes of B?

Example

Having good friends (A) correlates with well-being (B), but many other factors (C, D...etc.) also contribute to well-being

Teacher is boring I am sleepy

In your groups...

- Construct a contingency table for the one explanatory variable associated with your hypothesis.
- 2. Analyze your Chi-squared results
 - p > 0.05: go back to the drawing board
 - p < 0.05: make it better
- 1. Revise your theory:
 - Consider "multiple causes" but the other explanatory variable must be related to the original
- 1. Do more testing
 - Build additional contingency tables for these other explanatory variables