Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Курсовая работа на тему "Решение нелинейных интервальных систем уравнений методом Кравчика" Дисциплина: интервальный анализ

Выполнила студентка:

Дикарева Мария Γ руппа: 5030102/00201

Принял:

к. ф.-м. н., доцент Баженов Александр Николаевич СОДЕРЖАНИЕ

Содержание

1	Постановка задачи	2
2	Теория 2.1 Внешнее множество решений 2.2 Метод Кравчика	2 2 2
3	Результаты 3.1 Начальное приближение X содержит решение системы (1)	
4	Вывод	4
Лı	итература	5

1 Постановка задачи

Необходимо исследовать систему двух нелинейных уравнения с двумя неизвестными, заданной на брусе $\mathbf{X} \subset \mathbb{IR}^2$:

$$F(x) = \begin{pmatrix} F_1(x) \\ F_2(x) \end{pmatrix} = \begin{pmatrix} x_1 + x_2 = [1, 3] \\ \frac{x_1}{x_2} = [1, 6] \end{pmatrix}$$
 (1)

Используя начальное приближение \mathbf{X} необходимо уточнить решения системы интервальных нелинейных уравнений (1) с помощью интервального метода Кравчика.

2 Теория

2.1 Внешнее множество решений

Внешним множеством решений называется объединенное множество решений, образованное решениями всех точечных систем F(a,x)=b

$$\Xi_{\text{uni}}(\mathbf{F}, \mathbf{a}, \mathbf{b}) = \{ x \in \mathbb{R}^n \mid (\exists a \in \mathbf{a})(\exists b \in \mathbf{b})(F(a, x) = b) \}$$
 (2)

2.2 Метод Кравчика

Метод Кравчика предназначен для уточнения двухсторонних границ решений систем уравнений, в общем случае нелинейных, заданных на некотором брусе $\mathbf{X} \subset \mathbb{IR}$, вида

$$F(x) = 0$$
, rge $F(x) = \{F_1(x), ..., F_n(x)\}^T$, $x = (x_1, ...x_n)$ (3)

Также данный метод может быть использован для того, чтобы понять, что решений нет.

Отображение $\mathcal{K}: \mathbb{ID} \times \mathbb{R} \to \mathbb{IR}^n$, задаваемое выражением

$$\mathcal{K}(\mathbf{X}, \overline{x}) := \overline{x} - \Lambda * F(\overline{x}) + (I - \Lambda * \mathbf{L}) * (\mathbf{X} - \overline{x})$$
(4)

называеся оператором Кравчика на \mathbb{ID} относительно точки \overline{x} .

Итерационная схема данного метода выглядит следующим образом

$$\mathbf{X}^{k+1} \leftarrow \mathbf{X}^k \cap \mathcal{K}(\mathbf{X}^k, \overline{x}^k), \quad k = 0, 1, 2..., \ x^k \in \mathbf{X}^k$$
 (5)

С целью получить брус $\mathcal{K}(\mathbf{X}^k, \overline{x}^k)$ наименьшей ширины будем выбирать центр разложения $\overline{x}^k = \operatorname{mid}\mathbf{X}^{(k)}$, вещественная $n \times n$ -матрица $\Lambda^{(k)} = (\operatorname{mid}\mathbf{L}^{(k)})^{-1}$.

Сходимость данного метода гарантирована при выполнении условия

$$\rho(|I - \Lambda * \mathbf{L}|) < 1$$
 — спектральный радиус меньше единицы. (6)

3 Результаты

Для того, чтобы определить брус локализации решения системы \mathbf{X} , который будет выбран в качестве начального приближения $\mathbf{X}^{(0)}$, был построен график системы.

Рис. 1: График неравенств $x_1 + x_2 = [1, 3], \frac{x_1}{x_2} = [1, 6]$

3.1 Начальное приближение Х содержит решение системы (1)

Выберем начальное приближение, содержащее решение системы (1):

$$X^0 = [0.1, 2.7] \times [0.1, 5] \tag{7}$$

Спектральный радиус:

$$\rho(|I - \Lambda * \mathbf{L}|) = 0.999 \tag{8}$$

Полученный результат после 50 итераций:

Рис. 2: Метод Кравчика для интервальной системы (1) с начальным приближением $X^0 = [0.1, 2.7] \times [0.1, 5]$

На рис. 2 красные квадраты показывают итерации оператора Кравчика, черные - полученные \mathbf{X}^k . Получим таблицу результатов для первых десяти итераций.

№	\mathbf{X}^k	$\mathcal{K}(\mathbf{X}^k, \overline{x}^k)$
0	$[0.1, 2.7] \times [0.1, 5]$	$[-3.84561, 2.9297] \times [-0.00250518, 4.91841]$
1	$[0.1, 2.7] \times [0.1, 4.91841]$	$[-3.76697, 2.9296] \times [-0.0024296, 4.8398]$
2	$[0.1, 2.7] \times [0.1, 4.8398]$	$[-3.69121, 2.9295] \times [-0.00235441, 4.76406]$
3	$[0.1, 2.7] \times [0.1, 4.76406]$	$[-3.61822, 2.92941] \times [-0.00227966, 4.69109]$
4	$[0.1, 2.7] \times [0.1, 4.69109]$	$[-3.5479, 2.92931] \times [-0.00220541, 4.6208]$
5	$[0.1, 2.7] \times [0.1, 4.6208]$	$[-3.48015, 2.92921] \times [-0.0021317, 4.55307]$
6	$[0.1, 2.7] \times [0.1, 4.55307]$	$[-3.41489, 2.92912] \times [-0.00205857, 4.48783]$
7	$[0.1, 2.7] \times [0.1, 4.48783]$	$[-3.35202, 2.92903] \times [-0.00198608, 4.42498]$
8	$[0.1, 2.7] \times [0.1, 4.42498]$	$[-3.29145, 2.92893] \times [-0.00191426, 4.36443]$
9	$[0.1, 2.7] \times [0.1, 4.36443]$	$[-3.23311, 2.92884] \times [-0.00184316, 4.30611]$

3.2 Начальное приближение X лежит выше системы (1)

Выберем начальное приближение, не содержащее решение системы (1):

$$X^0 = [0.1, 2.7] \times [2, 8] \tag{9}$$

Спектральный радиус:

$$\rho(|I - \Lambda * \mathbf{L}|) = 0.806 \tag{10}$$

В результате получаем, что метод не сходится к решению системы, останавливаясь на четвертой итерации.

Рис. 3: Метод Кравчика для интервальной системы (1) с начальным приближением $X^0 = [0.1, 2.7] \times [2, 8]$

Получим таблицу результатов.

Nº	\mathbf{X}^k	$\mathcal{K}(\mathbf{X}^k, \overline{x}^k)$
0	$[0.1, 2.7] \times [2, 8]$	$[-2.22737, 10.3489] \times [-8.30924, 4.18776]$
1	$[0.1, 2.7] \times [2, 4.18776]$	$[-0.259045, 9.25477] \times [-7.2957, 2.29997]$
2	$[0.1, 2.7] \times [2, 2.29997]$	$[0.629469, 7.8464] \times [-5.9943, 1.51843]$
3	$[0.629469, 2.7] \times [nan, nan]$	-

4 Вывод

- 1. Полученные результаты для первого примера подтверждают частичную сходимость интервального метода Кравчика для решения системы нелинейных уравнений. Он сходится по оси Y, но по оси X границы оператора Кравчика выходят за границы начального приближения, из-за чего по X метод не дает приближения.
- 2. Для первого примера метод сходится примерно на 10^{-1} за итерацию за первые 6 итераций, далее замедляется. За 50 итераций метод сходится до $\mathbf{X} = [0.1, 2.7] \times [0.1, 3.13772]$
- 3. Если неверно выбрать начальное приближение, то метод Кравчика не дает верный результат. Это связано с тем, что для получения \mathbf{X}^{k+1} вычисляется пересечение \mathbf{X}^k с оператором Кравчика. Если в изначальном \mathbf{X}^0 не содержится решения, то и в пересечении не может быть решения. В таком случае даже выполнение условия на спектральный радиус не гарантирует сходимость.

5

Список литературы

- [1] Histogram. URL: https://en.wikipedia.org/wiki/Histogram
- [2] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001.-592 с., илл.
- [3] Box plot. URL: https://en.wikipedia.org/wiki/Box_plot
- [4] Анатольев, Станислав (2009) «Непараметрическая регрессия», Квантиль, №7, стр. 37-52.