Unifying Branch-and-Bound methods for ℓ_0 -penalized problems

Théo Guyard*, Cédric Herzet[†], Clément Elvira[‡], Ayşe-Nur Arslan[⋄]

*Inria and Insa Rennes, †Ensai, ‡CentraleSupélec, °Inria Bordeaux

In short

Provide necessary ingredients to implement generic and efficient ℓ_0 -problem solvers.

$\ell_0\text{-problem}$ $p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$ $\mathbf{Generic \ solvers} \qquad \mathbf{Specialized \ solvers}$ $\mathbf{Slow} \qquad \mathbf{Fast}$ $\mathbf{Flexible \ w.r.t} \ f/h$ $\mathbf{Proposed \ solver}$ \mathbf{Fast} \mathbf{Fast} $\mathbf{Flexible \ w.r.t} \ f/h$

Working hypotheses

- f simple to work with (convex, smooth, ...)
- h proper, closed, separable, cont. at $\mathbf{x} = \mathbf{0}$
- h even, convex, coercive, $h \ge h(\mathbf{0}) = 0$

Versatile toolbox

Branch-and-Bound algorithms

Principle

"Partition the feasible space into **regions** and **prune** those that cannot contain minimizers."

Regions construction

- $\nu = (S_0, S_1)$ disjoint subsets of $\{1, \ldots, n\}$
- S_0 entries fixed to zero
- ullet \mathcal{S}_1 entries fixed to non-zero

$$\mathcal{X}^{
u} = \{\mathbf{x} \in \mathbf{R}^n \mid \mathbf{x}_{\mathcal{S}_0} = \mathbf{0}, \ \mathbf{x}_{\mathcal{S}_1}
eq \mathbf{0}\}$$

• All regions explored: problem solved

Feasible space exploration

Processing nodes

• Node problem

$$p^{\nu} = \min_{\mathbf{x} \in \mathcal{X}^{\nu}} f(\mathbf{A}\mathbf{x}) + \lambda ||\mathbf{x}||_{0} + h(\mathbf{x})$$

- Test if region \mathcal{X}^{ν} contains minimizers: $p^{\nu} > p^{\star}$
- Practical pruning test with bounds

$$p^{\nu} \ge \tilde{p}^{\nu} > \bar{p} \ge p^{\star}$$

- Upper bound \bar{p} on p^*
 - → Evaluate objective at any point
 - → Efficient heuristics

Generic relaxations

Constructing lower-bounds

Node problem reformulation

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + g^{\nu}(\mathbf{x})$$
with $g_i^{\nu}(x_i) = \begin{cases} \mathbf{I}(x_i = 0) & \text{if } i \in \mathcal{S}_0 \\ h_i(x_i) + \lambda & \text{if } i \in \mathcal{S}_1 \\ h_i(x_i) + \lambda ||x_i||_0 & \text{otherwise} \end{cases}$

Primal relaxation

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{A}\mathbf{x}) + (g^{\nu})^{\star\star}(\mathbf{x})$

Dual relaxation

$$\max_{\mathbf{u} \in \mathbf{R}^m} -f^*(-\mathbf{u}) + (g^{\nu})^*(\mathbf{A}^{\mathrm{T}}\mathbf{u})$$

Closed-form expressions

- 1D-study of $g(x) = h(x) + \lambda ||x||_0$
- Parameters (τ, μ) easily computable from h^*
- Closed-form expressions

$$g^{\star\star}(x) = \begin{cases} \tau | x| & \text{if } |x| \le \mu \\ h(x) + \lambda & \text{if } |x| > \mu \end{cases}$$
$$g^{\star}(u) = \begin{cases} 0 & \text{if } |u| \le \tau \\ h^{\star}(u) - \lambda & \text{if } |u| > \tau \end{cases}$$

• Simple evaluation of prox, subdiff, ...

Numerical results

Standard instances

- f: least-squares
- h: bound-cstr. or ℓ_2 -norm (left/right)
- \bullet λ : tuned statistically

New application opportunities

- f: logistic
- h: bound-cstr. + ℓ_1 or ℓ_2 -norm (left/right)
- λ : tuned statistically

✓ Fast ✓ Flexible w.r.t f/h

Take home message

Opportunities to address new instances of ℓ_0 -problems efficiently.