# Control por realimentación de estados - 03

Control Automático (EL-5408)

Escuela de de Ingeniería Electrónica

Observadores de estado (I)

### Observador de estado

Se define como un dispositivo que estima u observa las variables de estado, y se pueden clasificar de orden completo, de orden reducido, o de orden mínimo, dependiendo de la cantidad de variables n de estado. Un vector de estado observado se denota como:  $\tilde{x}$ .

Observadores de estado (II)

Se define un sistema de la forma:

$$\dot{x} = Ax + Bu \tag{1}$$

$$y = Cx (2)$$

El modelo de un observador de estado se caracteriza por incluir un término que contiene el error de estimación:

$$\dot{x} = A\tilde{x} + Bu + K_e(y - C\tilde{x}) 
= (A - K_eC)\tilde{x} + Bu + K_ey$$
(3)

Donde  $\tilde{x}$  es el estado estimado, y la matriz  $K_e$  es la matriz de ganancia del observador.

### Observadores de estado (III)

Observador de estado de orden completo

Al haber definido las ecuaciones de un modelo observador, se procede con el cálculo del error del observador, a partir de las ecuaciones (1) y (3):

$$\dot{x} - \dot{\tilde{x}} = Ax - A\tilde{x} - K_e(Cx - C\tilde{x}) \tag{4}$$

Simplificando la ecuación anterior se obtiene:

$$\dot{x} - \dot{\tilde{x}} = (A - K_e C)(x - \tilde{x}) \tag{5}$$

Y al saber que el error se define como:

$$e = x - \tilde{x} \tag{6}$$

Y por lo tanto al sustituir (6) en (5), se obtiene:

$$\dot{e} = (A - K_e C)e \tag{7}$$

Observadores de estado (IV)

### Problema dual

Si el sistema descrito es completamente observable, se puede seleccionar la matriz  $K_e$  y los valores propios, de manera que el error sea asintóticamente estable, para lo que se considera un sistema como el descrito en (1) y en (2), y el sistema dual:

$$\dot{z} = A^T z + C^T v \tag{8}$$

$$n = B^{\mathsf{T}} z \tag{9}$$

Suponiendo que la señal de control v es:

$$v = -Kz \tag{10}$$

Observadores de estado (V)

Si el sistema dual es completamente controlable, se puede determinar la matriz de realimentación de estado K del modo anteriormente estudiado, utilizando la matriz  $A^T - C^T K$ , llegando a considerar que los valores característicos son iguales a los de  $A - K^T C$ , se determina la relación:

$$K_e = K^T \tag{11}$$

Observadores de estado (VI)

Condición necesaria y suficiente para la observación del estado

Al ser el sistema descrito por (8) y (10), se conoce que este debe ser completamente controlable, por lo que:

$$\left[\begin{array}{c|c} C^T & A^T C & \dots & (A^T)^{n-1} C^T \end{array}\right] \tag{12}$$

Debe tener rango n, lo que a su vez es la condición de observabilidad completa.

Observadores de estado (VII)

Método de transformación para obtener la matriz de ganancia del observador de estado  $K_{\rm e}$ 

$$K_{e} = Q \begin{bmatrix} \alpha_{n} - a_{n} \\ \alpha_{n-1} - a_{n-1} \\ \vdots \\ \alpha_{1} - a_{1} \end{bmatrix} = (WN^{T})^{-1} \begin{bmatrix} \alpha_{n} - a_{n} \\ \alpha_{n-1} - a_{n-1} \\ \vdots \\ \alpha_{1} - a_{1} \end{bmatrix}$$
(13)

$$N = \left[ C^T \mid A^T C \mid \dots \mid (A^T)^{n-1} C^T \right]$$
 (14)

$$W = \begin{bmatrix} a_{n-1} & a_{n-2} & \dots & a_1 & 1 \\ a_{n-2} & a_{n-3} & \dots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_1 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$
 (15)

Observadores de estado (VIII)

Método de sustitución directa para obtener la matriz de ganancia del observador de estado  $K_e$ 

En este caso, se determina la ecuación:

$$K_e = \begin{bmatrix} k_{e1} \\ k_{e2} \\ \vdots \\ k_{en} \end{bmatrix}$$
 (16)

La cual se sustituye en el polinomio característico:

$$|sI - (A - K_e C)| = (s - \mu_1)(s - \mu_2) \dots (s - \mu_n)$$
 (17)

Observadores de estado (IX)

#### Fórmula de Ackermann

Al conocer las ecuaciones que definen un sistema dual:

$$\dot{z} = A^T z + C^T v \tag{18}$$

$$n = B^T z \tag{19}$$

La fórmula de Ackermann para asignación de polos se reescribe de la siguiente manera:

$$K = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} C^T \mid A^T C \mid \dots \mid (A^T)^{n-1} C^T \end{bmatrix}^{-1} \phi(A^T)$$
(20)

Observadores de estado (X)

De modo que se define la ecuación:

$$K_{e} = K^{T} = \phi(A^{T})^{T} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} = \phi(A) \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
(21)

Observadores de estado (XI)

# Ejemplo 4 [Ejercicio 10-6 [1]]

Sea el sistema:

$$\dot{x} = Ax + Bu \tag{22}$$

$$y = Cx (23)$$

Donde:

$$A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
 (24)

El cual utiliza la realimentación de estado observada tal que:

$$u = -K\tilde{x} \tag{25}$$

Diseñe un observador de estado de orden completo suponiendo que los valores propios deseados de la matriz del observador son:  $\mu_1=-10$  y  $\mu_2=-10$ .

Observadores de estado (XII)

Solución:

$$C^{T} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{26}$$

$$A^{T}C^{T} = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}^{T} \begin{bmatrix} 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (27)

$$\begin{bmatrix} C^T \mid A^T C^T \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 (28)

Observadores de estado (XIII)

Método de transformación

Se determina la ecuación característica:

$$|sI - A| = \begin{vmatrix} s & -20.6 \\ -1 & s \end{vmatrix} = s^2 - 20.6 = s^2 + a_1 s + a_2 = 0$$
 (29)

Por lo que se determina que  $a_1=0$  y  $a_2=-20.6$ . De la misma manera, se sabe que la ecuación característica deseada es:

$$(s+10)^2 = s^2 + 20s + 100 = s^2 + \alpha_1 s + \alpha_2$$
 (30)

Por lo que  $\alpha_1=$  20 y  $\alpha_2=$  100

Observadores de estado (XIV)

Como se trata de un sistema que se encuentra en la forma canónica observable, la matriz de transformación Q es una matriz identidad, en este caso  $2\times 2$ . Por lo anterior, y sustituyendo los valores de  $\alpha_n$  y  $a_n$ , se obtiene:

$$K_{e} = (WN^{T})^{-1} \begin{bmatrix} \alpha_{2} - a_{2} \\ \alpha_{1} - a_{1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 100 + 20.6 \\ 20 - 0 \end{bmatrix} = \begin{bmatrix} 120.6 \\ 20 \end{bmatrix}$$
(31)

Observadores de estado (XV)

Método de sustitución

En este caso, se utiliza la ecuación es

$$\dot{e} = (A - K_e C)e \tag{32}$$

Por lo que la ecuación característica del observador se obtiene:

$$|sI - A + K_eC| = 0 \tag{33}$$

Definiendo también:

$$K_{e} = \begin{bmatrix} k_{e1} \\ k_{e2} \end{bmatrix} \tag{34}$$

Observadores de estado (XVI)

Sustituyendo la información en (33),

$$\begin{vmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} k_{e1} \\ k_{e2} \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{vmatrix} s & -20.6 + k_{e1} \\ -1 & s + k_{e2} \end{vmatrix}$$
$$= s^{2} + K_{e2}s - 20.6 + k_{e1} = 0$$
(35)

Como se mencionó en el método anterior en (30), se obtiene que  $k_{\rm e1}=120.6$  y  $k_{\rm e2}=20$ :

$$K_{e} = \begin{bmatrix} 120.6 \\ 20 \end{bmatrix} \tag{36}$$

Observadores de estado (XVII)

Fórmula de Ackermann

$$K_{e} = \phi(A) \begin{bmatrix} C \\ CA \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (37)

Sustituyendo A en la ecuación característica, obtenemos:

$$\phi(A) = A^{2} + 20A + 100I$$

$$= \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix}^{2} + 20 \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix} + 100 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(38)

Sustituyendo lo valores obtenidos:

$$K_{e} = \begin{bmatrix} 120.6 & 412 \\ 20 & 120.6 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 120.6 \\ 20 \end{bmatrix}$$
(39)

4 D > 4 B > 4 E > 4 E > 9 Q P

Observadores de estado (XVIII)

Finalmente sustituyendo en la ecuación de para el observador de estado completo se obtiene:

$$\begin{bmatrix} \dot{\tilde{x_1}} \\ \dot{\tilde{x_2}} \end{bmatrix} = \begin{bmatrix} 0 & -100 \\ 1 & -20 \end{bmatrix} \begin{bmatrix} \tilde{x_1} \\ \tilde{x_2} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 120.6 \\ 20 \end{bmatrix} y \qquad (40)$$

# Bibliografía



K. Ogata.

Ingeniería de control moderna.

Pearson educación, EE.UU., 2010.