k-means Clustering

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay
Portland State University

Outline

1 The *k*-means Algorithm

2 Quality Analysis of *k*-means

Real Points

Suppose the set of points X are from \mathbb{R}^d

A natural center of points is the average point or mean

$$\mu = \frac{1}{|S|} \cdot \sum_{x \in S} x$$

■ Here the sum is coordinate-wise total:

$$(1,3) + (2,5) = (3,8)$$

Real Points

Suppose the set of points X are from \mathbb{R}^d

A natural center of points is the average point or mean

$$\mu = \frac{1}{|S|} \cdot \sum_{x \in S} x$$

■ Here the sum is coordinate-wise total:

$$(1,3) + (2,5) = (3,8)$$

- \blacksquare This is the basis of the k-means algorithm
- Proposed by Lloyd in 1957, published in 1982
- Also by Max in 1960

Real Points

Suppose the set of points X are from \mathbb{R}^d

A natural center of points is the average point or mean

$$\mu = \frac{1}{|S|} \cdot \sum_{x \in S} x$$

■ Here the sum is coordinate-wise total:

$$(1,3) + (2,5) = (3,8)$$

- \blacksquare This is the basis of the k-means algorithm
- Proposed by Lloyd in 1957, published in 1982
- Also by Max in 1960

Euclidean distance of x and y,
$$||x - y|| = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

The *k*-means Algorithm (Lloyd-Max)

Algorithm k-means

```
Require: Set of points X

1: Start with centers c_1, \ldots, c_k chosen arbitrarily from X

2: repeat

3: for each point x_i \in X do

4: Assign x_i to cluster C_j that minimizes ||x_i - c_j||

5: end for

6: for each cluster C_j do

7: c_j \leftarrow \frac{1}{|C_j|} \cdot \sum_{x_i \in C_j} x_i

8: end for

9: until cluster centers do not change
```

Time Complexity of *k*-means

Algorithm *k*-means

```
Require: Set of points X

1: Start with centers C_1, \ldots, C_k chosen arbitrarily from X

2: repeat

3: for each point X_i \in X do

4: Assign X_i to cluster C_j that minimizes ||X_i - C_j||

5: end for

6: for each cluster C_j do

7: C_j \leftarrow \frac{1}{|C_j|} \cdot \sum_{X_i \in C_j} X_i

8: end for

9: until cluster centers do not change
```

Time Complexity of *k*-means

Algorithm *k*-means

```
Require: Set of points X

1: Start with centers C_1, \ldots, C_k chosen arbitrarily from X

2: repeat

3: for each point X_i \in X do

4: Assign X_i to cluster C_j that minimizes ||X_i - C_j||

5: end for

6: for each cluster C_j do

7: C_j \leftarrow \frac{1}{|C_j|} \cdot \sum_{X_i \in C_j} X_i

8: end for

9: until cluster centers do not change
```

- Again we need a "rate of cost decrease" type argument as for *k*-median
- What is a suitable cost function that the mean minimizes?

■ For what function g(.,.), mean(S) minimizes $\sum_{x \in S} g(x,c)$ over all c?

- For what function g(.,.), mean(S) minimizes $\sum_{x \in S} g(x,c)$ over all c?
- Such *g* is called Bregman divergence that encompasses many functions

- For what function g(.,.), mean(S) minimizes $\sum_{x \in S} g(x,c)$ over all c?
- Such g is called Bregman divergence that encompasses many functions
- \blacksquare One such g is squared Euclidean distance

$$g(x,c) = ||x-c||^2$$

- For what function g(.,.), mean(S) minimizes $\sum_{x \in S} g(x, c)$ over all c?
- Such *g* is called Bregman divergence that encompasses many functions
- \blacksquare One such g is squared Euclidean distance

$$g(x,c)=||x-c||^2$$

■ This leads to our *k*-means clustering problem for real points with Euclidean distance

k-means clustering

Given a set X of n points in the metric space (\mathcal{U}, d)

■ Find a set C of k points (cluster centers) in \mathcal{U} that minimizes,

$$cost(C) = \sum_{p \in X} d(p, NearestCenter(p))^2$$

Euclidean *k*-means clustering

Given a set X of n points in \mathbb{R}^d

■ Find a set C of k points (cluster centers) in \mathbb{R}^d that minimizes,

$$cost(C) = \sum_{p \in X} ||p - NearestCenter(p)||^2$$

Time Complexity of Lloyd's Algorithm

■ M_1 , M_2 ,..., M_ℓ are the sets of means computed over ℓ iterations

To show: $cost(M_{\ell}) < cost(M_{\ell-1}) < cost(M_{\ell-2}) < \ldots < cost(M_1)$

Time Complexity of Lloyd's Algorithm

■ $M_1, M_2, ..., M_\ell$ are the sets of means computed over ℓ iterations

To show: $cost(M_{\ell}) < cost(M_{\ell-1}) < cost(M_{\ell-2}) < \ldots < cost(M_1)$

- In every iteration, means are picked as centers of the clusters
- A mean minimizes the sum-of-squares cost function
- So, *k*-means cost also decreases for the new set of centers

Time Complexity

- In every iteration, cost decreases
- The algorithm never cycles The same set of centers never comes back
- Number of iterations is bounded by the number of distinct sets of means

Time Complexity

- In every iteration, cost decreases
- The algorithm never cycles The same set of centers never comes back
- Number of iterations is bounded by the number of distinct sets of means
- **2** 2ⁿ subsets: 2^n distinct means; $(2^n)^k$ distinct sets of means

Time Complexity

- In every iteration, cost decreases
- The algorithm never cycles The same set of centers never comes back
- Number of iterations is bounded by the number of distinct sets of means
- **2** 2 subsets: 2^n distinct means; $(2^n)^k$ distinct sets of means
- Lloyd's algorithm always terminates
- In practice, it is very fast
- One can also terminate the algorithm after a few iterations

Outline

1 The *k*-means Algorithm

2 Quality Analysis of *k*-means

Analysis of Quality

Initialization/Seeding is the key

■ Does random initialization help?

■ Does random initialization help? No! We still can get nearby centers

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?
- Sensitive to outliers

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?
- Sensitive to outliers
- We need something in between

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?
- Sensitive to outliers
- We need something in between
- we should pick far away points only if there are many points in the vicinity

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?
- Sensitive to outliers
- We need something in between
- we should pick far away points only if there are many points in the vicinity
- We should not pick an outlier as a center

- Does random initialization help? No! We still can get nearby centers
- We need well-separated centers can we use Greedy 2 Furthest point algorithm for *k*-center?
- Sensitive to outliers
- We need something in between
- we should pick far away points only if there are many points in the vicinity
- We should not pick an outlier as a center

This leads to a new seeding algorithm!

■ Start with a uniformly random center

- Start with a uniformly random center
- Next center is chosen from a distribution biased towards far away points

- Start with a uniformly random center
- Next center is chosen from a distribution biased towards far away points
- Cost of a point X_i , $cost(X_i, C) = \min_{c \in C} ||X_i c||^2$

- Start with a uniformly random center
- Next center is chosen from a distribution biased towards far away points
- Cost of a point X_i , $cost(X_i, C) = min_{c \in C} ||X_i C||^2$
- Define the probability $p_i = cost(x_i, C)/cost(C)$

The *k*-means++ Algorithm

Algorithm *k*-means++

```
Require: Set of points X, parameter k
 1: Select c_1 randomly from X
 2: C \leftarrow \{c_1\}
 3: while (|C| \neq k) do
     for each i = 1 to n do
            cost(x_i, C) \leftarrow \min_{c \in C} ||x_i - c||^2
    end for
 7: cost(C) \leftarrow \sum_{i=1}^{n} cost(x_i, C)
        Sample a random point y \in X, selecting each x_i w.p.
    p_i = cost(x_i, C)/cost(C)
    C \leftarrow C \cup \{y\}
10: end while
11: Invoke Lloyd's algorithm with C as the seed
```

Analysis of *k*-means++

■ Time complexity: O(nk) + Lloyd's

Analysis of *k*-means++

- Time complexity: O(nk) + Lloyd's
- Approximation factor: $O(\log k)$

Analysis of *k*-means++

- Time complexity: O(nk) + Lloyd's
- Approximation factor: $O(\log k)$

Compare this with *p*-swap Local search

- $O(n^{p+1}k^{p+1}\log n)$ time, but 9 + (1/p)-approximation
- Works in general metric space (even for non-numerical data)