Full Notes

D. Zack Garza

January 24, 2020

Contents

1	Friday January 10	1
2	Monday January 13th	2
3	Wednesday January 15th 3.1 Topology and Algebra of $\mathbb C$	4
4	Friday January 17th	6
5	Wednesday January 22nd	9
6	Friday January 24th	11
7	Appendix	14
	7.1 Useful Techniques	15

1 Friday January 10

Recall that \mathbb{C} is a field, where $z = x + iy \implies \overline{z} = x - iy$, and if $z \neq 0$ then $z^{-1} = \overline{z}/|z|^2$.

Lemma (Triangle Inequality: $|z+w| \le |z| + |w|$

Proof:

$$(|z| + |w|)^2 - |z + w|^2 = 2(|z\overline{w}| - \Re z\overline{w}) \ge 0.$$

Lemma (Reverse Triangle Inequality): $||z| - |w|| \le |z - w|$.

Proof:

$$|z| = |z - w + w| \le |z - w| + |w| \implies |w| - |z| \le |z - w| = |w - z|.$$

Claim: $(\mathbb{C}, |\cdot|)$ is a normed space.

Definition: $\lim z_n = z \iff |z_n - z| \to 0 \in \mathbb{R}.$

Definition: A disc is defined as $D_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| < r\}$, and a subset is open iff it contains a disc. By convention, D_r denotes a disc about $z_0 = 0$.

Definition: $\sum_{k} z_k$ converges iff $S_N := \sum_{|k| < N} z_k$ converges.

Note that $z_n \to z$ and $z_n = x_n + iy_n$, and

$$|z_n - z| = \sqrt{(x_n - x)^2 - (y_n - y)^2} < \varepsilon \implies |x - x_n|, |y - y_n| < \varepsilon.$$

Since \mathbb{R} is complete iff every Cauchy sequence converges iff every bounded monotone sequence has a limit

Note: This is useful precisely when you don't know the limiting term.

Note that $\sum_{k} z_k$ thus converges if $\left| \sum_{k=m}^{n} z_k \right| < \varepsilon$ for m, n large enough, so sums converges iff they have small tails.

Definition: $S_N = \sum_{k=1}^{N} z_k$ converges absolutely iff $\tilde{S} := \sum_{k=1}^{N} |z_k|$ converges.

Note that the partial sums $\sum_{k=1}^{N} |z_k|$ are monotone, so \tilde{S}_N converges iff the partial sums are bounded above.

Definition: A sum of the form $\sum_{k=0}^{\infty} a_k z_k$ is a power series.

Examples:

$$\sum x^{k} = \frac{1}{1-x}$$
$$\sum (-x^{2})^{k} = \frac{1}{1+x^{2}}.$$

Note that both of these have a radius of convergence equal to 1, since the first has a pole at x = 1 and the second as a pole at x = i.

2 Monday January 13th

Recall that $\sum z_k$ converges iff $s_n = \sum_{k=1}^n z_k$ converges.

Lemma: Absolute convergence implies convergence.

The most interesting series: $f(z) = \sum a_k z^k$, i.e. power series.

Divergence lemma: If $\sum z_k$ converges, then $\lim z_k = 0$.

Corollary: If $\sum z_k$ converges, $\{z_k\}$ is uniformly bounded by a constant C > 0, i.e. $|z_k| < C$ for all k.

Proposition: If $\sum a_k z_k$ converges at some point z_0 , then it converges for all $|z| < |z|_0$.

The inequality is necessarily strict. For example, $\sum \frac{z^{n-1}}{n}$ converges at z=-1 (alternating harmonic series) but not at z=1 (harmonic series).

Proof: Suppose $\sum a_k z_1^k$ converges. The terms are uniformly bounded, so $\left|a_k z_1^k\right| \leq C$ for all k. Then we have

$$|a_k| \le C/|z_1|^k$$

, so if $|z| < |z_1|$ we have

$$\left| a_k z^k \right| \le |z|^k \frac{C}{|z_1|^k} = C(|z|/|z_1|)^k.$$

So if $|z| < |z_1|$, the parenthesized quantity is less than 1, and the original series is bounded by a geometric series. Letting $r = |z|/|z_1|$, we have

$$\sum \left| a_k z^k \right| \le \sum c r^k = \frac{c}{1 - r},$$

and so we have absolute convergence.

Exercise (future problem set): Show that $\sum \frac{1}{k} z^{k-1}$ converges for all |z| = 1 except for z = 1. (Use summation by parts.)

Definition The radius of convergence is the real number R such that $f(z) = \sum a_k z^k$ converges precisely for |z| < R and diverges for |z| > R. We denote a disc of radius R centered at zero by D_R . If $R = \infty$, then f is said to be *entire*.

Proposition: Suppose that $\sum a_k z^k$ converges for all |z| < R. Then $f(z) = \sum a_k z^k$ is continuous on D_R , i.e. using the sequential definition of continuity, $\lim_{z \to z_0} f(z) = f(z_0)$ for all $z_0 \in D_R$.

Recall that $S_n(z) \to S(z)$ uniformly on Ω iff $\forall \varepsilon > 0$, there exists a $M \in \mathbb{N}$ such that $n > M \Longrightarrow |S_n(z) - S(z)| < \varepsilon$ for all $z \in \Omega$

Note that arbitrary limits of continuous functions may not be continuous. Counterexample: $f_n(x) = x^n$ on [0,1]; then $f_n \to \delta(1)$. Note that it uniformly converges on $[0,1-\varepsilon]$ for any $\varepsilon > 0$.

Exercise: Show that the uniform limit of continuous functions is continuous.

Hint: Use the triangle inequality.

Proof of proposition: Write $f(z) = \sum_{k=0}^{N} a_k z^k + \sum_{N+1}^{\infty} a_k z^k := S_N(z) + R_N(z)$. Note that if |z| < R, then there exists a T such that |z| < T < R where f(z) converges uniformly on D_T .

Check!

We need to show that $|R_N(z)|$ is uniformly small for |z| < s < T. Note that $\sum a_k z^k$ converges on D_T , so we can find a C such that $|a_k z^k| \le C$ for all k. Then $|a_k| \le C/T^k$ for all k, and so

$$\left| \sum_{k=N+1}^{\infty} a_k z^k \right| \leq \sum_{k=N+1}^{\infty} |a_k| |z|^k$$

$$\leq \sum_{k=N+1}^{\infty} (c/T^k) s^k$$

$$= c \sum_{k=N+1}^{\infty} |s/T|^k$$

$$= c \frac{r^{N+1}}{1-r} \qquad = C\varepsilon_n \to 0,$$

which follows because 0 < r = s/T < 1.

So $S_N(z) \to f(z)$ uniformly on |z| < s and $S_N(z)$ are all continuous, so f(z) is continuous.

There are two ways to compute the radius of convergence:

• Root test: $\lim_{k} |a_k|^{1/k} = L \implies R = \frac{1}{L}$.

• Ratio test: $\lim_{k} |a_{k+1}/a_k| = L \implies R = \frac{1}{L}$

As long as these series converge, we can compute derivatives and integrals term-by-term, and they have the same radius of convergence.

3 Wednesday January 15th

See references: Taylor's Complex Analysis, Stein, Barry Simon (5 volume set), Hormander (technically a PDEs book, but mostly analysis)

Good Paper: Hormander 1955

We'll mostly be working from Simon Vol. 2A, most problems from from Stein's Complex.

3.1 Topology and Algebra of $\mathbb C$

To do analysis, we'll need the following notions:

- 1. Continuity of a complex-valued function $f: \Omega \to \Omega$
- 2. Complex-differentiability: For $\Omega \subset \mathbb{C}$ open and $z_0 \in \Omega$, there exists $\varepsilon > 0$ such that $D_{\varepsilon} = \{z \mid |z z_0| < \varepsilon\} \subset \Omega$, and f is **holomorphic** (complex-differentiable) at z_0 iff

$$\lim_{h \to 0} \frac{1}{h} (f(z_0 + h) - f(z_0))$$

exists; if so we denote it by $f'(z_0)$.

Example: f(z) = z is holomorphic, since f(z + h) - f(z) = z + h - z = h, so $f'(z_0) = \frac{h}{h} = 1$ for all z_0 .

Example: Given $f(z) = \overline{z}$, we have $f(z+h) - f(z) = \overline{h}$, so the ratio is \overline{h} and the limit doesn't exist. Note that if $h \in \mathbb{R}$, then $\overline{h} = h$ and the ratio is identically 1, while if h is purely imaginary, then $\overline{h} = -h$ and the limit is identically -1.

We say f is holomorphic on an open set Ω iff it is holomorphic at every point, and is holomorphic on a closed set C iff there exists an open $\Omega \supset C$ such that f is holomorphic on Ω .

If f is holomorphic, writing $h = h_1 + ih_2$, then the following two limits exist and are equal:

$$\lim_{h_1 \to 0} \frac{f(x_0 + iy_0 + h_1) - f(x_0 + iy_0)}{h_1} = \frac{\partial f}{\partial x}(x_0, y_0)$$

$$\lim_{h_2 \to 0} \frac{f(x_0 + iy_0 + ih_2) - f(x_0 + iy_0)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(x_0, y_0)$$

$$\implies \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

So if we write f(z) = u(x, y) + iv(x, y), we have

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{(x_0, y_0)} = \frac{1}{i} \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \Big|_{(x_0, y_0)},$$

and equating real and imaginary parts yields the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

$$\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

The usual rules of derivatives apply:

$$1. \ (\sum f)' = \sum f'$$

Proof: Direct.

2. $(\prod f)' = \text{product rule}$

Proof: Consider (f(z+h)g(z+h)-f(z)g(z))/h and use continuity of g at z.

3. Quotient rule

Proof: Nice trick, write
$$q = \frac{f}{g}$$
 so $qg = f$, then $f' = q'g + qg'$ and $q' = \frac{f'}{g} - \frac{fg'}{g^2}$.

4. Chain rule

Proof: Use the fact that if f'(g(z)) = a, then

$$f(z+h) - f(z) = ah + r(z,h), \quad |r(z,h)| = o(|h|) \to 0.$$

Write b = g'(z), then

$$f(g(z+h)) = f(g(z) + bh + r_1) = f(g(z)) + f'(g(z))bh + r_2$$

by considering error terms, and so

$$\frac{1}{h}(f(g(z+h)) - f(g(z))) \to f'(g(z))g'(z)$$

.

4 Friday January 17th

Reference: See Lang's Complex Analysis, there are plenty of solution manuals.

Let $f: \Omega \to \mathbb{C}$ be a complex-valued function. Recall that f is complex differentiable iff the usual ratio/limit exists. Note that h = x + iy and $h \to 0 \iff x, y \to 0$.

We can write $f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$. This follows from Cauchy-Riemann since $u_x = v_y$ and $u_y = -v_x$.

Definition: We want to define ∂ , $\overline{\partial}$ operators. We have the identities

$$x = \frac{z + \overline{z}}{z}$$
 $y = \frac{z - \overline{z}}{iz}$.

We can then write

$$dz = dx + idy$$
$$d\overline{z} = dx - idy.$$

We define the dual operators by $\left\langle \frac{\partial}{\partial z}, dz \right\rangle = 1$ and similarly $\left\langle \frac{\partial}{\partial \overline{z}}, d\overline{z} \right\rangle = 1$. By the chain rule, we can write

$$f_z = f_x x_z + f_y y_z$$

$$= \frac{1}{2} f_x + f_y \frac{1}{2i}$$

$$= \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f,$$

and similarly
$$f_{\overline{z}} = f_x x_{\overline{z}} + f_y z_{\overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y} \right) f$$
.

We thus find $\partial_x = \partial_z + \partial_{\overline{z}}$ and $\partial_y = i(\partial_z - \partial_{\overline{z}})$, and define

$$\partial f = \frac{\partial f}{\partial z} dz$$
$$\overline{\partial} f = \frac{\partial f}{\partial \overline{z}} d\overline{z}$$
$$df = f_z dz + f_{\overline{z}} d\overline{z}.$$

Proposition: f is holomorphic iff $f_{\overline{z}} = 0$.

This means that f depends on z alone and not \overline{z} .

Proof:
$$\overline{\partial} f = 0$$
 iff $\frac{1}{2}(f_x + if_y) = 0$, so $(u_x - v_y) + i(v_x + u_y) = 0$.

Application to PDEs: We can write $u_{xx} = v_{xy}$, $u_{yy} = v_{yx}$ and so $u_{xx} + u_{yy} = 0 = v_{xx} + v_{yy}$. Thus $\Delta f = 0$, and f satisfies Laplace's equation and is said to be harmonic.

Corollary: If f is analytic, then u, v are both harmonic functions.

Theorem (Chain Rule): Let w = f(z) and g(w) = g(f(z)). Then

$$h_z = g_w f_z + g_{\overline{w}} \overline{f}_z$$
$$h_{\overline{z}} = g_w f_{\overline{z}} + g_{\overline{w}} \overline{f}_{\overline{z}}.$$

If f, g are holomorphic, $f_{\overline{z}} = g_{\overline{w}} = 0$, so $h_{\overline{z}} = 0$ and h is holomorphic and $h_z = g_w f_z$.

Example: Given a power series $f = \sum a_n(z - z_0)^n$. Then

- 1. There exists a radius of convergence R such that f converges precisely on $D_R(z_0)$.
- 2. f is continuous on $D_R(z_0)^{\circ}$.
- 3. By the root test, $R = (\limsup |a_n|^{1/n})^{-1} = \liminf |a_n/a_{n+1}| = (\limsup |a_{k+1}/a_k|)^{-1}$.

Recall the ratio test: $\sum a_k$ converges absolutely iff $\limsup |a_{k+1}/a_k| < 1$

Theorem: If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 is holomorphic on $|z| < R$ for $R > 0$ then $f'(z) = \sum_{n=1}^{\infty} a_n n z^{n-1}$.

Exercise: Show $\lim_{n} n^{\frac{1}{n}} = 1$. Also tricky: show $\lim_{n} \sin(n)$ doesn't exist, and $\sin(n)$ is dense in [-1,1].

Proof: Consider $\limsup |a_n n|^{\frac{1}{n}}$.

Remark: An analytic function is holomorphic in its domain of convergence, so analytic implies holomorphic. The converse requires Cauchy's integral formula.

Note: look for 13 equivalent statements, Springer GTM Lipman.

Proof: Given |z| < R, fix r > 0 such that |z| < r < R. Suppose that |w - z| < r - |z|, so |w| < r.

We want to show

$$|S| = \left| \frac{f(w) - f(z)}{w - z} - \sum_{n=1}^{\infty} a_n n z^{n-1} \right| \to 0 \text{ as } w \to z.$$

Figure 1: Image

Idea: write everything in terms of power series. Use the fact that $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \cdots)$, and so $\left|(w^k - z^k)/(w - z)\right| \le kr^{k-1}$.

$$S = \sum_{n=1}^{\infty} a_n \left(\frac{w^n - z^n}{w - z} - nz^{n-1} \right)$$

$$= \sum_{n=1}^{\infty} a_n \left(w^{n-1} + w^{n-2}z + \dots + z^{n-1} + nz^{n-1} \right)$$

$$= \sum_{n=1}^{\infty} a_n \left((w^{n-1} - z^{n-1}) + (w^{n-2} - z^{n-2})z + \dots + (w - z)z^{n-2} \right) = \sum_{n=2}^{\infty} a_n (w - z) \left(\dots + z^{n-2} \right)$$

$$\leq \sum_{n=2}^{\infty} |a_n| \frac{1}{2} n(n-1) r^{n-2} |z - w|.$$

Next time: trying to prove holomorphic functions are analytic.

5 Wednesday January 22nd

Note: multiple complex variables, see Hormander or Steven Krantz

Recall from last time that if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $z_0 \neq 0$ has radius of convergence R =

 $(\limsup |a_n|^{1/n})^{-1} > 0$, then f' exists and is obtained by differentiating term-by-term. We have f analytic implies f holomorphic (and smooth), we want to show the converse. For this, we need integration.

Definition: A parameterized curve is a function z(t) which maps a closed interval $[a,b] \subset \mathbb{R}$ to \mathbb{C} .

Definition: The curve is said to be smooth iff z' exists and is continuous on [a, b], and $z'(t) \neq 0$ for any t. At the boundary $\{a, b\}$, we define the derivative by taking one-sided limits.

Definition: A curve is said to be piecewise smooth iff z(t) is continuous on [a, b] and there are $a < a_1 < \cdots < a_n = b$ with z smooth on each $[a_k, a_{k+1}]$.

Note: may fail to have tangent lines at a_i .

Definition: Two parameterizations $z:[a,b]\to\mathbb{C}$, $\tilde{z}:[c,d]\to\mathbb{C}$ are equivalent iff there exists a C^1 bijection $s:[c,d]\to[a,b]$ where $s\mapsto t(s)$ such that s'>0 and $\tilde{z}(s)=z(s(t))$.

Note that s' > 0 preserves orientation and s' < 0 reverses orientation.

Definition:

$$\gamma: [a,b] \to \mathbb{C} \implies \gamma^- := [a,b] to \mathbb{C}, \ t \mapsto \gamma(a+b-t).$$

Definition: A curve is closed iff z(a) = z(b), and is simple iff $z(t) \neq z_{t_1}$ for $t \neq t_1$.

Definition: For $C_r(z_0) := \{z \mid |z - z_0| = r\}$, the positive orientation is given by $z(t) = z_0 + re^{2\pi i t}$ for $t \in [0, 1]$.

Definition: The integral of f over γ is defined as

$$\int_{\gamma} f \ dz = \int_{a}^{b} f(z(t))z'(t) \ dt.$$

Note: This doesn't depend on parameterization, since if t = t(s), then a change of variables yields

$$\int_{\gamma} f \ dz - \int_{c}^{d} f(z(t(s)))z'(t(s))t'(s) \ ds = \int_{c}^{d} f(\tilde{z}(s))\tilde{z}'(s) \ ds.$$

Definition: The length of γ is defined as $|\gamma| = \int |z'(t)| dt$.

Proposition:

1. We can extend this definition to piecewise smooth curves by

$$\int_{\gamma} f \ dz = \sum \int_{a_k}^{a_{k+1}} f \ dz$$

- 2. This integral is linear and $\int_{\gamma} f = -\int_{\gamma^{-}} f$.
- 3. We have an inequality

$$\left| \int_{\gamma} f \right| \le \max_{a \le t \le b} |f(z(t))| |\gamma|.$$

Definition: A function F is a primitive for f on Ω iff F is holomorphic on Ω and F'(z) = f(z) on Ω .

Recall that in \mathbb{R} , we have $F(x) \int_a^x f(t) dt$ as an antiderivative with F'(x) = f(x), and $\int f = F(b) - F(a)$.

Theorem: If f is continuous, has a primitive F in Ω , and γ is a curve beginning at w_0 and ending at w_1 , then $\int_{\gamma} f = F(w_1) - F(w_0)$.

Proof: Use definitions, write z(t) where $z(a) = w_1, z(b) = w_2$. Then

$$\int_{\gamma} f = \int_{a}^{b} f(z(t))z'(t) dt$$

$$= \int_{a}^{b} F'(z(t))z'(t) dt$$

$$= \int_{a}^{b} F_{t} dt$$

$$= F(z(b)) - F(z(a)) \text{ by FTC}$$

$$= F(w_{1}) - F(w_{2}).$$

Note that if γ is piecewise smooth, the sum of the integrals telescopes to yield the same conclusion. Corollary: If f is continuous and γ is a closed curve in Ω , and f has a primitive in Ω , then $\oint f = 0$.

6 Friday January 24th

Corollary: If γ is a closed curve on Ω an open set and f is continuous with a primitive in Ω (i.e. an F holomorphic in Ω with F' = f) then $\int_{\gamma} f \, dz = 0$.

Proof (easy):

$$\int_{\gamma} f \ dz = \int_{\gamma} F' = F'(z)z(t) \ dt = F(z(b)) - F(z(a)) = 0.$$

Corollary: If f is holomorphic with f' = 0 on Ω , then f is constant.

Proof (easy): Pick $w_0 \in \Omega$; we want to fix $w_0 \in \Omega$ and show $f(w) = f(w_0)$ for all $w \in \Omega$.

Take any path $\gamma: w_0 \to w$, then

$$0 = \int_{\gamma} f' = f(w) - f(w_0).$$

Example: Let $f(z) = e^{-z^2}$, this is holomorphic. Write $f(z) = \sum (-1)^n z^{2n} / n!$, so $\int f = \sum (-1)^n z^{2n+1} / (n!(2n+1))$. Since f is entire, $\int f$ is entire, and $(\int f)' = f$ so this function has a primitive. Thus $\int_{\gamma} f(z) = 0$ for any closed curve. So take γ a rectangle with vertices $\pm a, \pm a + ib$.

So

$$\int_{\gamma} f = \int_{-a}^{a} e^{-x^{2}} dx + \int e^{-(a+iy)^{2}} i dy - \int_{-a}^{a} e^{-(x+ib)^{2}} dx - \int_{0}^{b} e^{-(a+iy)^{2}} i dy = 0.$$

We can do some estimates,

$$e^{-(a+iy)^2} = e^{-(a^2+2iay-y^2)} = e^{-a^2+y^2}e^{2iay} \le e^{-a^2+y^2} \le e^{-a^2+b^2}$$

$$\left| \int_0^b e^{-(a+ib)^2}i \ dy \right| \le e^{-a^2+b^2} \cdot b$$

$$\int_{-a}^a e^{-(x^2+2ibx)-b^2} = e^{b^2} \int_{-a}^a e^{-x^2}(\cos(2bx) - i\sin(2bx)) \stackrel{\text{odd fn}}{=} e^{b^2} \int_{-a}^a e^{-x^2}\cos(2bx) \ dx.$$

Now take $a \to \infty$ to obtain

Figure 2: Image

$$\int_{\mathbb{R}} e^{-x^2} dx = e^{b^2} \int_{\mathbb{R}} e^{-x^2} \cos(2bx) dx.$$

We can compute

$$\int_{\mathbb{R}} e^{-x^2} = \left[\left(\int_{\mathbb{R}} e^{-x^2} \right)^2 \right]^{1/2} = \left(\int_0^{2\pi} \int_0^{\infty} e^{r^2} r \ dr \ d\theta \right) = \sqrt{\pi}.$$

and then conclude

$$\int_{\mathbb{R}} e^{-x^2} \cos(2bx) = \sqrt{\pi}e^{-b^2}.$$

Make a change of variables $2b = 2\pi \xi$, so $b = \pi \xi$, then

$$\int_{\mathbb{R}} e^{-x^2} \cos(2\pi \xi x) \ dx = \sqrt{\pi} e^{-\pi^2 \xi^2}.$$

Thus $\mathcal{F}(e^{-x^2}) = \sqrt{\pi}e^{-\pi^2\xi^2}$, allowing computation of the Fourier transform. Note that this can be used to prove the Fourier inversion formula.

Exercise: Show that this is an approximate identity and prove the Fourier inversion formula.

Exercise: Show $\mathcal{F}(e^{-ax^2}) = \sqrt{\pi/a}e^{-\pi^2/a\cdot\xi^2}$, and thus taking $a = \pi$ makes $e^{\pi x^2}$ is an eigenfunction of \mathcal{F} with eigenvalue 1.

Theorem: If f has a primitive on Ω then F(z) is holomorphic and $\int_{\gamma} f = 0$. If f is holomorphic, then $\int_{\gamma} f = 0$.

Theorem (Green's): Take $\Omega \in \mathbb{R}^2$ bounded with $\partial \Omega$ piecewise smooth. If $f, g \in C^1\overline{\Omega}$, then

$$\int_{\partial \Omega} f \ dx + g \ dy = \iint_{\Omega} (g_x - f_y) \ dA.$$

Proof: Not given here!

Proof of Theorem: Write $\gamma = \partial \Gamma$, and noting that $f_z = f_x = \frac{1}{i} f_y$ implies that $\frac{\partial f}{\partial \overline{z}}$, so

$$\int_{\gamma} f \ dz = \int_{\gamma} f(z) \ (dx + idy)$$

$$= \int f(z) \ dx + if(z) \ dy$$

$$= \iint_{\Gamma} (if_x - f_y) \ dA$$

$$= i \iint_{\Gamma} \left(f_x - \frac{1}{i} f_y \right) dA = 0.$$

Next class: We'll prove that this integral over any triangle is zero by a limiting process.

7 Appendix

Collection of facts used on problem sets

Standard forms of conic sections:

• Circle: $x^2 + y^2 = r^2$ • Ellipse: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$

• Hyperbola: $\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$

– Rectangular Hyperbola: $xy = \frac{c^2}{2}$.

• Parabola: $-4ax + y^2 = 0$.

Mnemonic: Write $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$, then consider the discriminant $\Delta =$ $B^2 - 4AC$:

• $\Delta < 0 \iff \text{ellipse}$

 $-\Delta < 0$ and $A = C, B = 0 \iff \text{circle}$

 $\Delta = 0 \iff parabola$

• $\Delta > 0 \iff$ hyperbola

Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$
 $x^{2} + bx = (x + s)^{2} - s^{2}$ where $s = \frac{b}{2}$.

Useful Properties

•
$$\Re(z) = \frac{1}{2}(z + \overline{z})$$
 and $\Im(z) = \frac{1}{2i}(z - \overline{z})$.
• $z\overline{z} = |z|^2$

•
$$z\overline{z} = |z|^{\frac{2}{2}}$$

•
$$\cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

• $\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$.

Useful Series

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Cauchy-Riemann Equations

$$u_x = v_y$$
 and $u_y = -v_x$
 $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

7.1 Useful Techniques

Showing a function is constant: Write f = u + iv and use Cauchy-Riemann to show $u_x, u_y = 0$, etc.

Deriving Polar Cauchy-Riemann: See walkthrough here. Take derivative along two paths, along a ray with constant angle θ_0 and along a circular arc of constant radius r_0 . Then equate real and imaginary parts. See problem set 1.

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

The sum of the interior angles of an *n*-gon is $(n-2)\pi$, where each angle is $\frac{n-2}{n}\pi$.