METHOD OF PRODUCING GLASS-LIKE COATINGS ON INORGANIC MATERIAL ARTICLES

Patent number: SU885227 Publication date: 1981-11-30

Inventor: TARASEVICH BORIS P; KHITROV MIKHAIL YU; SIROTKIN OLEG S; GONYUKH VALERIJ M;

ZAVYALOV VIKTOR V; KUZNETSOV EVGENIJ V; SAJFULLIN RENAT S; ASHMARIN GENNADIJ D; BEZDENEZHNYKH INNOKENTIJ S

Applicant: KZ KHIM TEKH INST KIROVA (SU)

Classification:

- international: (IPC1-7): C04B41/06

Application number: SU19802902410 19800328 Priority number(s): SU19802902410 19800328

Report a data error here

Abstract not available for SU885227

Data supplied from the esp@cenet database - Worldwide

Союз Советских Социалистических Республик

ОПИСАНИЕ 1 пр 885227 **ИЗОБРЕТЕНИЯ**

Государстаєнный комитет CCCP во деязм изобретений и открытий

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 28.03.80 (21) 2902410/29-33

с присоединением заявки №

(23)Поноритет -

Опубликовано 30.11.81. Бюллетень № 44 Дата опубликования описания 01.12.81

(53) VAK 666.97 (088.8)

C 04 B 41/06

(72) Авторы изобретения Б. П. Тарасевич, М. Ю. Хитров, О. С. Сироткия, В. М. Гон В. В. Завьялов, Е. В. Кузнецов, Р. С. Свифуллин; Г. Д. Апмария и И. С. Безденежных

(71) Заявитель

Казанский химико-технологический инститим. С. М. Кирова

(54) спосов получения стекловидных покрытий НА ИЗДЕЛИЯХ ИЗ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

Изобретение относится к производству изделий из керамики, стекла, ситаллов, асбеста, асбоцемента, металлов и других термостойких неорганических материалов и может быть использовано при нанесении на них стекловидных защитно-декоративных покрытий.

Известен шиксрный способ получения стекловидных покрытий на изпелиях из неорганических материалов в виде глазурных покрытий на керамике, эма-левых - на метаплах [1].

Однако получение стекловидных покрытий по данному способу отличается большим количеством операций, длительностью и трудоенкостью.

Наиболее близким техническим решением к предлагаемому является способ глазурования керамических изделий путем их нагрева и обработки парами пятиокиси фосфора и воды при температу- 20 ре стеклообразования 950-1050°C с последующей выпержкой (термообработкой) изделий при 950-1100°C в нейтральной

среде в течение 30-60 мин и охлаждением до комнатной температуры.

Известный способ значительно упрощает процесс получения глазурного стекловидного покрытия в сравнении со иликерным способом [2]

Недостатком известного способа является то, что повержностный спой стекловидного покрытия имеет ультрафосфатный состав, т.е. обогажен РуО5, так как по мере нарашивания толщин покрытия диффузия к его поверхности окислов на подложки затрудняется. Это приводит к необходимости проведения дополнительной операции термообработки покрытия в нейтральной среде для выравнивания состава покрытия по толшине, что усложняет процесс. В конвейерных аппаратах непрерывного пействия проведение данной операции затруднено, в аппаратах же периодического действия удлиняет процесс, что в свою очередь обуславливает в ряде случаев недостаточную химическую ус3

тойчивость покрытия, симжение его микротвердости. Наряду с этим получаемое согласно известному способу стекловидное покрытие является бесцветным и прозрачивы, что не дает возножности получать цветовую гамму поковитий.

Кроме того, известный способ ограничен применением подложе, инемених области стекдообразования с 12,05, что сужает номенклатуру покрываемых материалов, в частности затруднено получение покрытий на некоторых моноожисых, а также металлических подлежках.

цель изобретения - снижение температуры и упрощение процесса получения цветных глазурей.

Поставленная цель достигается тем, что в способ получении стехномицики покрытий им изделиях из неорганичестких материалов путем нагрева до температуры стехнообразования и обработи и парами 16/0 с постедумяции охлаждением, при обработие долопительно зводят пары по крайней мере одного оксида из группы 18/04, 100 д ил оксида из

Обработка изделий парами Р4 040 - НоС 30 в присутствии паров стекнообразовате ля B203 или SiO2 или B2O3 совместно с 5102 и RO или R₂03 или RO₂ или совместно RO, R203, RO2 позволяет получать многокомпонентные стекловидные покрытия, регулировать подачу в реакционную зону тех или иных окислов и варьировать их количественное соотношение в покрытии. Это дает возможность получить стекловидные покрытия с различными физико-механическими характеристиками и химической устойчивостью к тем или иным реагентам, с улучшенньми декоративными качествами и на различных подложках, включая моноокисные, металлические и т.п.; одновремен- 45 но упростить процесс за счет ликвидации операции термообработки изделий в нейтральной среде, а также снижения в ряде случаев температуры стекнообразования.

Получают стекловидные глазурные покрытия на керамических изделиях из различных видов гининстого сырвя, химический состав которых приведен в табл. 1, а также на изделиях из синтетической радиокераюмки и асбеста, состав которых приведен в табл. 2. Пример 1. В качестве подпожки используют керамические изделии на основе тили Кошаковского месторождекия следующего зимического состава, нас. 7: 510_2 17, 1; 14_0 2, 710_2 12, 96_1 ; 62_0 2, 4_0 64; 63_0 2, 42_1 ; 63_0 1, 6

остальное.

Наделие помещиот в реахционную ячейку, нагревают до 900-950°С, посте чего осуществляют подачу паров Р₄0₅-H₂0. При этом одновременно реакционную ячейку подамот пары 8,0₅° H₂0 в кончестие до 5-10 мол. 7 в "парогазоной фазе. Подачу паров осуществляют нутем сублючации неоргацического борьной кислото с водямам паром. Линтельность обработки заменит от заданной толямивы порития. После обработки изделий в парогазовой фазе 7₆(0₅-S₂0₅-H₂0 изделия охнаждият до комактаюй тенпературы.

Гидропитическая устойчивость полученного покрытия превосходит покрытие, получаемое по известному способу - потери массы покрытия при кипячении в воде в течении 1 ч состававт, мг/ск²: соответственно 0,10-0,11 по известному способу и 0,05-0,06 по предлагаемой способу.

Пример 2. В условиях, вмалогичных примеру 1, получают стекловидные глазуриме покрытия на керванке и асбеств в присутствии паров Соб. Последний получается в парогазоной фазе инфолитическим разложением соединений кобальта, которые предварительно пульверизируют в реакционную мчейку, например:

 $\cos (NO_3)_2$ $\frac{7100^{\circ}\text{C}}{\cos (NO_3)_2}$ $\cos -2NO_2 + O_2/2$ в результате получают прозрачное глазурное покрытие, окрашенное в синий пвет.

Примера 1. В условиях, вкапогичаю примерам и г., получают стекловидкай глазуряме кократия в присутствие наров оксидов металнов, представленных в табл. 3, получая при этом покрытия, окрашение в различене цвета либо заглушеные (инпрозрачиме).

П р и м е р 4. В условиях, аналогиямых примеру 1, получают также стектиоминимых примеру 1, получают также стектиоминимых примерований примерований примерований предоставляющих примерований примерова

Пример 5. В качестве подложки используют трансформаторную сталь марок А-340, 3-310 (-в виде ленты, предназначенной для изготовления магнитопроводов). Подложку нагревают в реак-ционной ячейке до 800-850°С и осуществляют подачу паров P4040- B203- H20, как описано в примере 1. При этом в реакционную ячейку одновременно подают пары стеклообразователя \$102, в ка-10 честве паров RO вводят \$20, а R204-Al203 и Co203, поддерживая соотношения между окислами в парогазовой фазе в следующих пропорциях, нас. 7: P205 15,24; B203 26,16; 5102 5,16; 5,0 38,93; Alo 0 a 10,95; Co20 a 3,56, и используя в качестве исходных вещести соответствующие пиролитически разлагаемые соединения. Например, для получения паров 6:02 используют 5:14, SiCl₄, Si(OC₂ H₅)₄ или другие кремнеорганические соединения.

> 54,22 0,99 0,76 14.25 73.83/ 0.38

> > /0,25

Полученное стеклопідное эмалёвое покрытие имеет КТР с. в 27 10 трад., тангенс угла диэлектрических потерь тебер 0,018, диэлектрическую проинцае мость 6,00 = 6,0, хорошую хивическую устойчилость (потеря массы в воде, определяемая породковым нетодом, составляет 0,8%) и может быть использоваю право при маготовлевии магинтопроводов.

Предлагаемый способ позволяет уптростить процес получения стекловидных покрытий и воменклатуру покрываемах матерылов, завтричер, производить
измесение покрытий на кварц, осуществаять эмащирование металлов и, кроме
того, имеет место дополнительнай поломительный эфект, выражающийся в
улучшении отдельных физико-мехапичесской устойчивости получаемых покрытий.

Таблица 1 "

Месторождение глинистого сыръя	Химический состав, мас. %							
	\$10 ₂	Al203 Ti02	Fe ₂ 0 ₃	Ca0	Hg0	Nag0 K ₂ 0	so 3	ή,η,π,
Николаевское	65-67	19,4-22	5-7	0,72	1,35	0,2	-	Остальное
Никифоровское	57-65	20-21 12,08	59-41	0,45	1,12	0,3	-	То же
Агрызское	69,18	13,54	5,96	2,20	0,20	2,83	0,27	
Ивановское	70,36	13,45	2,12	3,85	1,75	2,50	0,30	- " -
Горномарий- ское	75,9	10,11	3,64	2,10	0,87	2,48	0,04	- " -
Йошкар-Олин- ское	75,31	11,50	3,46	1,25	1,17	2,42	0,48	- " -
				.			T_g	блица 2
Керамическая	Химический состав, мас. 7							
масса	SiO2	A1203 Ti02	Fe ₂ 0 ₃	Ca0	Mg0	Ba0	Na ₂ 0 K ₂ 0	Mn0 Cr ₂ 0 ₃
	L	LE				L		

0.15 3.13 0.53

885227	

Продолжение табл. 2 Химический состав, мас. 7								
5102	A1203 T102	Fe ₂ O ₃	CaO	Mg O	Ba O	Nag0 K ₂ 0	Mn O	C r ₂ 0 ₃
3,7	94,2	-	2,1	<u>.</u>	-	-	_	-
2,76	94,4	-	-	-	-	-	2,35	0,49
42	0,5	1,5		43	Спеды	n.n.n.	Остал	ьное
	3,7 2,76	3,7 94,2 2,76 94,4	3,7 94,2 - 2,76 94,4 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,7 94,2 - 2,1 - 2,76 94,4	Si 0_2 $\frac{A_{12}0}{T_10_2}$ $F_{6_2}0_3$ G_{40} $G_{$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		T	аблица 3
Окисел металла	Исходное сырьевое вещество	Схема реакции перевода соответствующего окисла в парогазовую фазу	Внешний вид получаемого глазурного - покрытия
Cu0	Нитрат меди Cu(NO ₃) ₂ , 3H ₂ O	Cu (NO ₃ ½ 7320°C cu0+2NO ₂ +0 _{2/2}	Светло-зе- леное
Cr ₂ 0 ₃	Бихромат натрия Na ₂ Cr ₂ C ₇ ·2N ₂ O	Na ₂ C ₅ Q, 20°C Cr ₂ O ₃ +Na ₂ O+3½O ₂	Темно-зеленое
Mn0 ₂	Перманганат калия КМпО ₄	2KMn04 200°C 2Mn02+K20 + 3/202	Фиолетовое
uo ₃ ·	Уранил-ацетат UO ₂ (CH ₃ COO) ₂ -2H ₂ O	UO2 (CH3COO)27275°C UO3+CO2 +H2O	Золотнстое
Zr0 ₂	Сульфат циркония Zr (SO ₄) ₂ .4H ₂ O	Zr(S04)2 7450°C Zr02 +2503	Молочное глу- шение
T10 ₂	Тетраэтоксититан Ті (ОС ₂ Н _Б) ₄	>TI (0C2H5) >600°C TIO2+H20 + CO2	То же

Формула изобретения

Способ получения стекловидных покрытий на изделиях из неорганических материалов путем нагрева до температуры стеклообразования и обработки парами Р 05 в присутствии паров Н 0 с последующим охлаждением, о т л и чающийся тем, что, с целью снижения температуры и упрощения про- 50 цесса получения цветных глазурей, при обработке дополнительно вводят пары

по крайней мере одного оксида из группы В₂О₃, 5:0₂ и по крайней мере одного оксида метапла из группы RO, RoO2; Rog.

Источники информации, принятые во внимание при экспертизе 1. Энциклопедия неорганических материалов. Киев, 1977, т. 1, с. 290-291, т. 2, с. 795-796. 2. Авторское свидетельство СССР

600119, xm. C 04 B 41/06, 1975.

Заказ 10442/32 Тираж 663 Подписное

Филиал ШШ "Патент", г. Ужгород, ул. Проектная, 4