OASIS INFOBYTE INTERNSHIP

TASK-1

AUTHOR-KRIPA JOSE

IRIS FLOWER CLASSIFICATION

Importing libraries and data cleaning

```
In [4]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
    from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LogisticRegression
   import warnings
   from sklearn.metrics import accuracy_score
   from sklearn import metrics
   from sklearn.metrics import classification_report, confusion_matrix
   warnings.filterwarnings("ignore")
```

Import the iris dataset.

```
In [5]: df=pd.read_csv("Iris.csv")
```

In [6]: df

_	2.0		
Δ	+	16	
υu	·	ıu	٠.

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Check the shape, data types, and summary statistics of the dataset

In [7]: df.shape

Out[7]: (150, 6)

In [8]: df.dtypes

Out[8]: Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

In [9]: df.describe()

_			$\Gamma \sim$	-	
- ()	и и	т.	ιч	- 1	1
_	·u	•	」	- 1	٠

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Check for missing values and duplicate rows in the dataset.

```
In [10]: df.isnull().sum()
Out[10]: Id
                           0
         SepalLengthCm
                           0
         SepalWidthCm
                           0
         PetalLengthCm
                           0
         PetalWidthCm
                           0
          Species
                           0
         dtype: int64
In [11]: | df.duplicated().sum()
Out[11]: 0
```

Count the number of observations for each species in the dataset.

Given dataset has 150 rows and 6 columns. The dataset do not have neither any missing values nor duplicated values. The target variable in this dataset is 'Species'. We have 3 categories in 'Species' column namely, 'Iris-setosa', 'Iris-versicolor' and 'Iris-virginica'

distributed equally in the dataset.

Data Visualization

Create a heatmap of the correlation matrix to visualize the relationships between the features.

In [13]: sns.heatmap(df.corr(),cmap='coolwarm',annot=True)
 plt.show()

There is high positive correlation among 'SepalLengthCm','PetalLengthCm' and 'PetalWidthCm' which implies that if one of the dimension is high for a flower, most probably the other two dimensions will also be high. But we notice that 'SepalWidthCm' is negatively correlated with other 3 physical features. This shows that flowers with low sepal width will be having high value for the other 3 features.

Create a pairplot of the data to visualize the distribution of the features for each species.

From the above pairplot we see clusters of each species for different feature combination. For most plots, the clusters are separated.

Model Building

Split the dataset into training and testing sets.

```
In [15]: X=df.drop(['Id','Species'],axis=1)
X
```

	^					
Out[15]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	
	0	5.1	3.5	1.4	0.2	
	1	4.9	3.0	1.4	0.2	
	2	4.7	3.2	1.3	0.2	
	3	4.6	3.1	1.5	0.2	
	4	5.0	3.6	1.4	0.2	
	145	6.7	3.0	5.2	2.3	
	146	6.3	2.5	5.0	1.9	
	147	6.5	3.0	5.2	2.0	
	148	6.2	3.4	5.4	2.3	
	149	5.9	3.0	5.1	1.8	
	150 r	rows × 4 columns				
In [16]:	y=df y	['Species']				
Out[16]:	0 1 2	Iris-set Iris-set Iris-set Iris-set	cosa cosa			

```
In [17]: # split the data into training and testing data using the train_test_split fun
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state
```

Out[18]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	118	7.7	2.6	6.9	2.3
	18	5.7	3.8	1.7	0.3
	4	5.0	3.6	1.4	0.2
	45	4.8	3.0	1.4	0.3
	59	5.2	2.7	3.9	1.4
	133	6.3	2.8	5.1	1.5
	137	6.4	3.1	5.5	1.8
	72	6.3	2.5	4.9	1.5
	140	6.7	3.1	5.6	2.4
	37	4.9	3.1	1.5	0.1

105 rows × 4 columns

```
In [19]:
         y_train
Out[19]: 118
                 Iris-virginica
         18
                     Iris-setosa
         4
                     Iris-setosa
         45
                     Iris-setosa
         59
                 Iris-versicolor
         133
                 Iris-virginica
         137
                 Iris-virginica
         72
                Iris-versicolor
         140
                 Iris-virginica
         37
                     Iris-setosa
         Name: Species, Length: 105, dtype: object
```

Logistic Regression

Here we are going to build our model using logistic regressor

```
In [20]: log=LogisticRegression()
log.fit(X_train,y_train)
Out[20]: LogisticRegression()
```

After training the model, we can use test data for prediction

```
In [21]: y_pred=log.predict(X_test)
```

Evaluate the model using accuracy, precision, recall, and f1 score.

```
In [22]: accuracy=accuracy_score(y_test,y_pred)
accuracy
```

Out[22]: 0.97777777777777

In [23]: print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
Iris-versicolor	1.00	0.94	0.97	18
Iris - virginica	0.93	1.00	0.96	13
accuracy			0.98	45
macro avg	0.98	0.98	0.98	45
weighted avg	0.98	0.98	0.98	45

Print the confusion matrix of the model.

In [24]: print(confusion_matrix(y_test,y_pred))

[[14 0 0] [0 17 1] [0 0 13]]

Our model is 97.77% accurate and have high value for precision, recall and f1 score. The confusion matrix of our model is also good.

In []:

In []: