George Lenz HW3 7/15/2018

#### Problem 1:

This does not necessarily work because it may not give back the maximum answer. For example if you had a rod of length 7 and you had cuts with values such their values are 1=2, 2=6, 3=8, and 4=11 5=14 6=15 and 7=16 The highest pi / i would be of length 2 with a density of 3. so the cuts would be 2,2,2,1which gives 19 but with dynamic programming we can see that a rod of length 7 cut up into pieces of 5 and 2 would give a total value of 20 which is greater.

### Problem 2:

### Pseudocode1:

```
Bottom-Up-Cut-Rod(p, n)

let r[0...n] be a new array

r[0] = 0

for I = 1 to n

q = -\infty

for I = 1 to j

q = max(q, (p[i] - cost) + r[j-i])

r[j] = q

return r[n]
```

#### Pseudocode 2:

```
1  opt[0] = 0
2  sol[0] = []
3  for k = 1 to price.length
4  opt[k] = 0
5  sol[k] = null
6  for i = 1 to k
7  if opt[k] < opt[k-i] + (price[i] - cost)
8  opt[k] = opt[k-i] + (price[i] - cost)
9  sol[k] = sol[k-i] + [i]</pre>
```

## Problem 3:

a) This is similar to the knapsack or rod cutting algorithms in which you have a maximum weight (or in this case time) and you have a number of items (problems) each with an amount of weight and a benefit, and you want to maximize the benefit (or points) within the amount of total time.

b)

```
for t = 0 to T

P[0, time] = 0

for q = 0 to Q

P[time, 0] = 0

for t = 0 to T

if time <= T

if p_q + P[q-1, t-t_q] > P[q-1, t]

P[q, t] = p_q + P[q-1, t-t_q]

else

P[q, t] = P[q-1, t]
```

- c) the running time of this algorithm is O[qt] which is the time to fill the table. It is pseudo-polynomial.
- d) No, if the professor gave partial credit, it is no longer similar to an 0,1 knapsack problem and rather becomes more similar to the fractional knapsack algorithm.

# Problem 4:

b)

```
a)
change(V, A)
  minimumChagne[A+1]
  coinAmountList[A+1]
  NumberOfEachCoin[Vsize]
  minimumChange[0] and coinAmountList[0]= 0
  set minimunChange[1...A] = infinity
  for i...V.size
    for j...A
       if j \ge V[i]
         min(minimumChange[i], 1+ minimumChange[j-V[i]]
         coins[j] = i
   a = A
   while a > 0
     NumberOfEachCoin[coinAmountList[a]] + 1
     a = a- V[coinAmountList[a]]
```

the theoretical running time is [mn] where m is the size of V and n is the amount of change to be made.

## Problem 6:

a) to collect the data I modified the program to ask for an amount size, the amount of different coins, and the denominations of each coin. I then put in each denomination manually from 1-N, starting from a denomination of coin 1 with value 1, up to coin N with value N.

| Α       | N | Time |
|---------|---|------|
| 100000  | 3 | 0.06 |
| 1500000 | 3 | 0.1  |
| 2000000 | 3 | 0.14 |
| 2500000 | 3 | 0.17 |
| 3000000 | 3 | 0.2  |
| 3500000 | 3 | 0.24 |
| 4000000 | 3 | 0.28 |



| Α       | N  | Time |
|---------|----|------|
| 1000000 | 10 | 0.2  |
| 1000000 | 15 | 0.3  |
| 1000000 | 20 | 0.39 |
| 1000000 | 25 | 0.49 |
| 1000000 | 30 | 0.59 |
| 1000000 | 35 | 0.69 |
| 1000000 | 40 | 0.8  |
|         |    |      |



# As Function of A\*N for both





b) These results fit the data as polynomial fit best for all the graphs which was as expected. The only catch was that on the last graph of A\*N with a changing A, a linear graph also fit equally as well.