Modelos de Computação CC1004

2015/2016

1º Teste – 30.03.2016

duração: 2h

N.º		Nome	
-----	--	------	--

1. Seja $A = (S, \{a, b\}, \delta, s_0, F)$ o AFND representado pelo diagrama indicado à esquerda, sendo δ uma função de $S \times \{a, b\}$ em 2^S .

a) Indique os valores de $\delta(s_0, b)$, $\delta(s_2, a)$ e $\delta(s_1, b)$.

c) Diga, justificando, se babb $\in \mathcal{L}(A)$ e se aabbab $\in \mathcal{L}(A)$.

2. Seja M o AFND- ε representado pelo diagrama indicado à esquerda. Seja δ a sua função de transição e seja δ' a função de transição do AFD equivalente (segundo a construção dada).

- a) O estado inicial do AFD equivalente é
- **b)** Sendo E o estado inicial do AFD equivalente, o valor de $\delta'(E,\mathtt{a})$ é e valor de $\delta'(E,\mathtt{b})$ é .

(Continua)

1º Teste de Modelos de Computação CC1004

2015/2016

N.º		Nome				
3.	Seja r a expressão re	gular ((Ø -	$(((aa) + b)^*)$ sobre $\Sigma = \{a, b\}$.			
a)						
b)	Indique uma expressã	io regular	não abreviada equivalente a r , mas mais simples. Justifique.			
c)]	Descreva informalme	nte a lingu	uagem $\mathcal{L}(r)$.			

1º Teste de Modelos de Computação CC1004

2015/2016

N.º		Nome	
4.	Seja $L = \{x \mid x \in \Sigma\}$	Σ^* , x tem	número par de b's e não começa em bb $\}$, com $\Sigma = \{a, b\}$.
			sição de um autómato finito determinístico (AFD) que reconheça L e tado (i.e., o que memoriza) e porque é que é $necessário$.
			s das palavras de L e determine uma expressão regular <i>abreviada</i> que se uma explicação sucinta.