

Characterizing Bias in Classifiers using Generative Models

Ashish Kapoor

Data and Code is available at: https://github.com/danmcduff/characterizingBias

Daniel McDuff Shuang Ma Yale Song

Problem & Motivation

- Models are often biased because the data used to train them is biased.
- Existing approaches rely on oracles labeling which are ultimately limited.
- We propose a simulation-based approach for interrogating classifiers in a systematic manner.

Approach

We first use a *Generative Model* to synthesize face images and then apply Bayesian Optimization to find errors in the target classifier.

Image Generation Training Progresses

$$\mathcal{L}_G = -\mathbb{E}_{z,\theta} \big[\log D(G(z,\theta)) \big]$$

$$\mathcal{L}_D = -\mathbb{E}\big[\log D(x)\big] - \mathbb{E}_{z,\theta}\big[\log D(G(z,\theta))\big] - \mathbb{E}_{z,\theta}\big[\log C(G(z,\theta))\big]$$

$$\mathcal{L}_{adv} = \min_{G} \max_{D} \mathcal{L}_{G} + \mathcal{L}_{D}$$

Bayesian Optimization

Classification Loss: $L_c = Loss(f(\theta))$

 L_c reflects the misclassification cost when applying θ . $\theta = [race; gender]$

Composite Loss:

$$L = (1 - \alpha)L_c + \alpha \min_{i} ||\Theta_i - \theta||$$

The second term encourages exploration and prioritizes sampling a diverse set of images.

Contribution

- Presenting an approach for conditionally generating synthetic face images.
- 2. Showing how synthetic data can be used to efficiently identify bias.
- Proposing a Bayesian Optimization sampling procedure to identify bias more efficiently.
- 4. Releasing the dataset, model and code.

Data

D.	Country	People		Frames		Generated Images		
Region		M	W	M	W	M	W	
	Nigerian	81	28	768	467	Section Section	36 36 SE	
Black	Kenya	11	5	91	49			
	S. Africa	136	102	1641	1984	11. 12. 13. 18. 18.		
	Total	228	135	2500	2500		00 00 00 00	
	-		0.0	• 4 0 0				
S Asian	India	142	83	2108	2267	T 20 T 20 T	T T T T T T T T T T T T T T T T T T T	
	Sri Lanka	1	2	11	7			
	Pakistan	19	11	381	226		80 9 9 E	
	Total	162	96	2500	2500	60 00 00 ap ap	96 96 96 96	
	Australia	175	121	2500	2500	T 1 1 2 2 2		
White	Total	175	121	2500	2500			
	Iotai	1/3	121	2300	2500			
						TO THE STATE OF	1 2 2 2 2 2 3 3 3 B	
	Japan	105	89	930	1421	90 90 90 90	90 90 mg 80 A0	
NE Asian	China	105	46	789	447			
	S. Korea	29	12	464	251		TO THE STATE OF	
	Hong Kong	36	28	317	381			
	Total	275	175	2500	2500			

We sampled a balanced subset from MS-CELEB-1M.

- 1. Utilize Google Search API and NLTK extract nationality and gender information.
- 2. Sample evenly distributed images from countries with more homogeneous demographics.

Table 1. The number of people and images we sampled from (by country and gender) to train our generation model.

Evaluation

✓ Validation of Image Generation

FID Score

	Black		White		North East Asian		South Asian	
	Male	Female	Male	Female	Male	Female	Male	Female
Ours	8.10	8.14	8.08	7.70	8.01	8.00	8.06	8.10
StyleGAN	7.70	7.92	7.68	7.80	7.76	7.80	7.94	7.66

✓ Classifier Interrogation

API	Task	All	Black	S. Asian	NE Asian	White	Men	Women
IBM	Face Det.	8.05	16.9	7.63	3.96	3.80	11.3	2.27
	Gender Class.	8.26	9.00	2.13	20.0	1.87	15.8	0.27
SE	Face Det.	0.13	0.00	0.00	0.53	0.00	0.21	0.00
	Gender Class.	2.84	3.39	0.74	5.85	1.38	5.14	0.00

Table 2: Face and gender classification error rates.

Figure 2. Mean faces for correct classifications and incorrect classifications.

Figure 3: a) Sample efficiency of finding samples that were misclassified using random sampling and Bayesian Optimization with

=1. b) Percentage of images that cause classifier failures (y-axis) as we vary the value of α . c) Qualitative examples of failure cases.