Carnegie Mellon University

Introductory Numerical Methods for Simulating Batch Reactors

Dr. Joshua Pulsipher

Learning Outcomes

1. The relative advantages/disadvantages of using **explicit Euler** methods

2. How to implement explicit Euler to **simulate ODEs** using common computation environments (e.g., Python)

3. How to **simulate batch reactors** using numerical methods

4. [Time Permitting] A familiarity of **other numerical methods/tools** for simulating batch reactors

- Overview
- Explicit Euler
- Batch Reactors
- Other Numerical Methods (If time allows)

- Overview
- Explicit Euler
- Batch Reactors
- Other Numerical Methods

Simulating Dynamic Systems

Simulating dynamic systems is vital for enabling engineering applications

Curiosity Rover

Batch Reactor

- Simulate using numerical methods to approximate dynamics (e.g., differential equations)
- Enables us to computationally experiment and implement automation

Analytical vs. Numerical Methods

Analytical Methods

Separate and integrate

$$g(y)\frac{dy}{dx} = h(x)$$
 \longrightarrow $\int g(y)dy = \int h(x)dx + C$

ODEs of special forms

$$\frac{dy}{dx} = \frac{x+y}{x-y} \longrightarrow \frac{1}{2}\log\left(\frac{y^2}{x^2} + 1\right) - \tan^{-1}\left(\frac{y}{x}\right) = C - \log(x)$$

Solving general ODEs is often difficult or not possible

Numerical Methods

- Seek to numerically approximate the solution
- Finite difference methods are common

- More advanced methods are available
 - Not the focus of today

Outline

- Overview
- Explicit Euler
- Batch Reactors
- Other Numerical Methods

Katherine Goble

The Basics

Methodology

Consider a 1st order ODE

$$\frac{dy(t)}{dt} = f(y(t), t)$$
$$y(0) = y_0$$

• Define time steps Δt

$$t \in [t_0, t_f] \qquad t_k = t_0 + k\Delta t$$

Approximate derivative as finite difference

$$\left. \frac{dy(t)}{dt} \right|_{t_k} \approx \frac{\tilde{y}(t_{k+1}) - \tilde{y}(t_k)}{\Delta t}$$

Define update rule

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + f(y(t_k), t_k) \Delta t$$

Simulating a System of ODEs

System of 1st order ODEs

General representation

$$\frac{dy_1(t)}{dt} = f_1(y_1, y_2, \dots, y_n)$$

$$\frac{dy_2(t)}{dt} = f_2(y_1, y_2, \dots, y_n)$$

$$\vdots$$

$$\frac{dy_n(t)}{dt} = f_n(y_1, y_2, \dots, y_n)$$

$$y_1(0) = y_{1,0}, y_2(0) = y_{2,0}, \dots, y_n(0) = y_{n,0}$$

Vectorize

$$\frac{d\mathbf{y}(t)}{dt} = \mathbf{f}(\mathbf{y}(t), t)$$
$$\mathbf{y}(0) = \mathbf{y_0}$$

Vectorized Explicit Euler

Update rule uses vectorized representation

$$\tilde{\mathbf{y}}(t_{k+1}) = \tilde{\mathbf{y}}(t_k) + \mathbf{f}(\mathbf{y}(t_k), t_k) \Delta t$$

Properties: Error

Local Truncation Error (LTE)

Recall update rule

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + f(y(t_k), t_k) \Delta t$$

Taylor series expansion of analytic solution

$$y(t_k + \Delta t) = y(t_k) + \Delta t \frac{dy(t)}{dt} \Big|_{t_k} + O(\Delta t^2)$$

Difference w/ explicit Euler

$$y(t_k + \Delta t) - \tilde{y}(t_{k+1}) = O(\Delta t^2)$$

Hence, the error incurred after one step is

$$O(\Delta t^2)$$

Global Truncation Error (GTE)

The number of steps

$$\frac{t - t_0}{\Delta t} \propto \frac{1}{\Delta t}$$

Multiplying this with the LTE, we get GTE that is

$$O(\Delta t)$$

Hence, explicit Euler is a first order method

Higher order methods are available

Properties: Stability

Example

Stiff ODEs

- Systems that exhibit numerical instability
- Precise mathematical definition is nontrivial
- Common with reaction systems
 - Coexistence of small and large rate constants
- So, what can we do? → Use implicit methods

$$\tilde{y}(t_{k+1}) = \tilde{y}(t_k) + \frac{f(y(t_{k+1}), t_{k+1})}{\Delta t}$$

Tutorials

- 1. Go to https://github.com/pulsipher/eulercourse
- 2. Click on the "launch binder" button or click on the "Open in Colab" button
- 3. Open "exercise.ipynb" if you used binder

Outline

- Overview
- Explicit Euler
- Batch Reactors
- Other Numerical Methods

Batch Reactor Modeling

Simple ODE Model

Arrhenius equation for species i and reaction j

$$k_{ij}(t) = A_{ij} \exp\left(\frac{-E_{a,ij}}{RT(t)}\right)$$

Reaction rates

$$r_j(\mathbf{c},t) = \sum_{i \in I} k_{ij}(t) c_i^{\beta_{ij}}(t)$$

Species generation rates

$$g_i(\mathbf{c},t) = \sum_{j \in J} \gamma_{ij} r_j(\mathbf{c},t)$$

Species balances

$$\frac{dc_i(t)}{dt} = g_i(\mathbf{c}, t), \quad i \in I$$
$$c_i(0) = c_{i,0}, \qquad i \in I$$

The Basics

Derivation from mole balance

$$\frac{N_i(t)}{dt} = F_i(t) - F_i(t) + \int_{-\infty}^{V} g_i(t)dV(t)$$

Assume perfect mixing and constant volume

$$\frac{N_i(t)}{dt} = g_i(t)V \qquad \qquad \frac{c_i(t)}{dt} = g_i(t)$$

Exercise: Batch Reactor

Exercise 1

• Simulate a batch reactor with the following reaction system using explicit Euler for $t \in [0, 1]$

$$A \rightleftharpoons B$$

$$A \rightleftharpoons C$$

• Experiment with different choices of Δt

Problem Information

$$R = 1.987$$

$$A = \begin{bmatrix} 3.6362e6 & 190.6879 \\ -2.5212e16 & 0 \\ 0 & -8.7409e24 \end{bmatrix}$$

$$E_a = \begin{bmatrix} 10000 & 5000 \\ 25000 & 0 \\ 0 & 40000 \end{bmatrix} \qquad \beta = 1 \qquad \gamma = \begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$T(t) = \begin{cases} 333, & t < 0.5 \\ 325, & t \ge 0.5 \end{cases} \qquad \mathbf{c}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- Overview
- Explicit Euler
- Batch Reactors
- Other Numerical Methods

More Advanced Methods

Runge-Kutta

- Family of explicit and implicit iterative methods
- Various orders based on GTE $O(h^p)$
 - 1st order methods are the Euler methods
 - 4th order methods are popular

Orthogonal Collocation over Finite Elements

- The discretization uses finite elements
- We approximate the solution in each element as a polynomial function
- End up solving a system of linear equations

Common Simulation Tools

ODE Integrators

- Common in scripting languages
- Provide numerical solutions to ODE systems

Symbolic Solvers

- Can provide analytic solutions when possible
- Typically, not used for large problems

Optimization Tools

 Can incorporate differential equations when solving optimization problems

Problem Specific

Simulate dynamics for particular systems

Carnegie Mellon University

Introductory Numerical Methods for Simulating Batch Reactors

Dr. Joshua Pulsipher