TP Plaques

Exercice 1:

Déterminer la solution analytique via MATHEMATICA du déplacement vertical w(r) d'une plaque non pesante circulaire élastique, simplement appuyée sur son pourtour r=R, obéissant à la théorie de Love-Kirchhoff, soumise à une force $\vec{p}=p\,\vec{e_z}$ uniforme par unité de surface.

Exercice 2:

On considère une plaque carrée encastrée sur les 4 côtés (L=210 mm, E=70 GPa, ν =0.3) soumise à une densité surfacique p_0 =-5000 Pa sur la face supérieure.

Utiliser ABAQUS CAE avec divers types d'éléments finis plaques (théorie de Mindlin ou Love-Kirchhoff) pour calculer le déplacement maximum w_{max} pour deux épaisseurs différentes (h=20 mm et h=2 mm).

Comparer à la solution de référence : $w_{\text{max}} = 0.00126 \frac{p_0 L^4}{D}$.

Exercice 3:

On considère une plaque élastique (E=70 GPa, ν =0.3) rectangulaire (L_1 =200 mm, L_2 =150 mm et h=2 mm), en appui simple sur son pourtour, soumise sur la face supérieure à une densité surfacique de force uniformément répartie $p \vec{e_3}$ (p=-5000 Pa) sur une portion de la plaque (ξ_1 = $L_1/4$, ξ_2 = $L_2/4$, ℓ_1 = $L_1/5$, ℓ_2 = $L_2/5$).

1. Déterminer via MATHEMATICA la densité surfacique de force appliquée $p(x_1, x_2)$ sous forme de doubles séries de Fourier (solution de Navier) ainsi que le déplacement vertical $w(x_1, x_2)$ dans le cadre de la théorie de Love-Kirchhoff.

En déduire le déplacement vertical au centre de la plaque.

2. Comparer le résultat précédent à la solution approchée par la méthode des éléments finis obtenue sous ABAQUS.