Equations d'agrégation-diffusion : asymptotiques et approximations

Sébastien Tran Tien

Thèse préparée à l'Institut Camille Jordan sous la direction de Frédéric Lagoutière

3 juillet 2023

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- Simite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha | x$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Chimiotactisme : effet d'attraction ou de répulsion d'une substance sur une cellule vivante capable de se déplacer pour se rapprocher ou s'éloigner du point d'émission de cette substance.

L'exemple des Dictyostelium Discosideum

Figure - Cycle de vie des Dicties, tiré de Jang et Gommer, J. R. Soc. Interface (2008)

ullet Modèle parabolique-elliptique de Keller et Segel ('70) sur \mathbb{R}^2 :

$$\partial_t \varrho + \nabla \cdot (\varrho \nabla c) = \Delta \varrho, \tag{1a}$$

$$-\Delta c = \varrho. \tag{1b}$$

- $\varrho \geqslant 0$ est une densité d'individus, c concentration de chimioattractant,
- Compétition entre la diffusion et le phénomène d'agrégation.
- Le système (1) est équivalent à l'équation d'agrégation-diffusion :

$$\partial_t \varrho + \nabla \cdot (\mathbf{a}[\varrho]\varrho) = \Delta \varrho,$$

$$\mathbf{a}[\varrho] = -\nabla W * \varrho,$$

où $W(x) = \frac{1}{2\pi} \ln |x|$ est le potentiel Newtonien.

Equation d'agrégation sur tout l'espace \mathbb{R}^d :

$$\partial_t \varrho + \nabla \cdot (a[\varrho]\varrho) = 0,$$

$$a[\varrho] = -\nabla W * \varrho,$$

$$\varrho(0, \cdot) = \varrho_0,$$

οù

- ϱ mesure de probabilité sur \mathbb{R}^d .
- $W \in \mathcal{C}^1(\mathbb{R}^d \setminus \{0\})$, vérifie W(x) = W(-x) et W(0) = 0.
- Lorsque W est régulier, existence de solutions globales ;
- Lorsque W a une singularité en l'origine, explosion des normes L^p en temps fini.

Equation d'agrégation sur tout l'espace \mathbb{R}^d :

$$\begin{split} &\partial_t \varrho + \nabla \cdot (a[\varrho]\varrho) = 0, \\ &a[\varrho] = -\nabla W * \varrho, \\ &\varrho(0,\cdot) = \varrho_0, \end{split}$$

οù

- ϱ mesure de probabilité sur \mathbb{R}^d .
- $W \in \mathcal{C}^1(\mathbb{R}^d \setminus \{0\})$, vérifie W(x) = W(-x) et W(0) = 0.
- Lorsque W est régulier, existence de solutions globales ;
- Lorsque W a une singularité en l'origine, explosion des normes L^p en temps fini.

 \Rightarrow Produit $a[\varrho]\varrho$ mal défini.

Continuation des solutions mesures après le temps d'explosion?

Lorsque W est lipschitzien et λ -convexe, i.e. $W(x) - \lambda \frac{|x|^2}{2}$ est convexe pour un certain $\lambda \leq 0$.

Les solutions faibles à valeurs mesures sont bien posées. Trois approches :

- I Flots de gradient dans l'espace de Wasserstein \mathbb{W}_2 : Carrillo, Di Francesco, Figalli, Laurent, Slepcev '11;
- 2 Solution de dualité en dimension 1 : James, Vauchelet '13, '16;
- 3 Flot de Filippov : Carrillo, James, Lagoutière, Vauchelet '15.

Lorsque W est lipschitzien et λ -convexe, i.e. $W(x)-\lambda\frac{|x|^2}{2}$ est convexe pour un certain $\lambda\leqslant 0$.

Les solutions faibles à valeurs mesures sont bien posées. Trois approches :

- I Flots de gradient dans l'espace de Wasserstein \mathbb{W}_2 : Carrillo, Di Francesco, Figalli, Laurent, Slepcev '11;
- 2 Solution de dualité en dimension 1 : James, Vauchelet '13, '16;
- 3 Flot de Filippov : Carrillo, James, Lagoutière, Vauchelet '15.

Toutes sont équivalentes à la notion de solution distributionnelle si on remplace $a[\varrho]$ par :

$$\widehat{a}[\varrho](x) = -\int_{v \neq x} \nabla W(x - y)\varrho(dy),$$

i.e.
$$\widehat{a}[\varrho] = -\widehat{\nabla W} * \varrho \text{ où } \widehat{\nabla W}(0) = 0 \text{ et } \widehat{\nabla W}(x) = \nabla W(x) \text{ si } x \neq 0.$$

Quelques notations

- Pour $p \in [1, +\infty)$, $\mathcal{P}_p := \{ \varrho \in \mathcal{P}(\mathbb{R}^d), \ \int |x|^p \varrho(dx) < +\infty \}.$
- Pour $\mu, \nu \in \mathcal{P}_p$, la distance de Wasserstein d'ordre p est :

$$W_p(\mu, \nu) := \inf_{\gamma \in \Gamma(\mu, \nu)} \left\{ \iint |x - y|^p \, \gamma(dx, dy) \right\}^{1/p}$$

où $\Gamma(\mu,\nu)$ est l'ensemble des mesures sur $(\mathbb{R}^d)^2$ de marginales μ et ν . L'espace de Wasserstein (\mathcal{P}_p,W_p) est noté \mathbb{W}_p .

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha | x$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Etude asymptotique $\varepsilon \to 0$

• Pour le système de relaxation :

$$\begin{split} &\partial_t \varrho^{\varepsilon} + \partial_x \sigma^{\varepsilon} = 0, \\ &\partial_t \sigma^{\varepsilon} + c^2 \partial_x \varrho^{\varepsilon} = \frac{1}{\varepsilon} (a[\varrho^{\varepsilon}] \varrho^{\varepsilon} - \sigma^{\varepsilon}). \end{split}$$

Pour l'équation d'agrégation avec diffusion :

$$\partial_t \varrho + \nabla \cdot (\mathbf{a}[\varrho]\varrho) = \varepsilon \Delta \varrho$$

Etude asymptotique $\varepsilon \to 0$

• Pour le système de relaxation :

$$\begin{split} &\partial_t \varrho^{\varepsilon} + \partial_x \sigma^{\varepsilon} = 0, \\ &\partial_t \sigma^{\varepsilon} + c^2 \partial_x \varrho^{\varepsilon} = \frac{1}{\varepsilon} (a[\varrho^{\varepsilon}] \varrho^{\varepsilon} - \sigma^{\varepsilon}). \end{split}$$

Pour l'équation d'agrégation avec diffusion :

$$\partial_t \varrho + \nabla \cdot (\mathbf{a}[\varrho]\varrho) = \varepsilon \Delta \varrho$$

Questions:

- Convergence au sens des mesures de ρ^{ε} lorsque $\varepsilon \to 0$?
- Estimations de convergence?
- Schémas numériques?

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- **2** Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Lien avec l'équation de Burgers, d=1, $W(x)=\alpha |x|$

Proposition

Soit $\varrho \in \mathcal{C}([0,T],\mathbb{W}_2(\mathbb{R}))$ et F(t) la fonction de répartition de $\varrho(t)$. Alors ρ est solution du problème d'agrégation de donnée $\rho_0 \in \mathcal{P}_2(\mathbb{R})$ si et seulement si $u := \alpha(1-2F)$ est solution au sens des distributions de l'équation de Burgers de donnée $u_0(x) = \alpha(1 - 2\varrho_0(] - \infty, x])$.

Formellement : pour ϱ régulière, $\partial_t \varrho + \partial_x (a[\varrho]\varrho) = 0$ intégrée en espace donne $\partial_t F + a[\rho]\partial_x F = 0$. Or :

$$\begin{split} a[\varrho](x) &= -\nabla W * \varrho(x) = -\alpha \operatorname{sgn} * \varrho(x) \\ &= -\alpha \left(\int_{y \leqslant x} \operatorname{sgn}(x - y) \varrho(dy) + \int_{y > x} \operatorname{sgn}(x - y) \varrho(dy) \right), \\ &= \alpha (1 - 2F(x)), \end{split}$$

donc u vérifie $\partial_t u + u \partial_x u = 0$, et les calculs se remontent.

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- **2** Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Le schéma de Delarue, Lagoutière, Vauchelet ('17)

Schéma volume finis :

$$\varrho_{j}^{n+1} = \varrho_{j}^{n} - \frac{\Delta t}{\Delta x} \left(F_{j+\frac{1}{2}}^{n} - F_{j-\frac{1}{2}}^{n} \right)$$

Flux de type upwind :

$$F_{j+\frac{1}{2}}^{n} := (a_{j}^{n})^{+} \varrho_{j}^{n} - (a_{j+1}^{n})^{-} \varrho_{j+1}^{n},$$

$$a_{j}^{n} := -\sum_{k \in \mathbb{Z}} \varrho_{k}^{n} \widehat{\nabla W} (x_{j} - x_{k}).$$

Schéma upwind pour W(x) = |x|

Ce schéma est convergent à l'ordre 1/2 en distance W_2 pour les solutions mesures lorsque W est λ -convexe (Delarue, Lagoutière, Vauchelet '20).

Figure – Schéma upwind pour donnée initiale ϱ_0 somme de deux gaussiennes.

Simulations pour
$$W(x)=-|x|$$
 (non $\lambda-$ convexe), $arrho_0=\delta_0$

Schéma upwind pour donnée initiale $\varrho_0 = \delta_0$.

Simulations pour W(x) = -|x| (non λ -convexe), $\varrho_0 = \delta_0$

Schéma upwind pour donnée initiale $\varrho_0 = \delta_0$.

Schéma de Rusanov pour la même donnée $\varrho_0 = \delta_0$.

Simulations pour W(x)=-|x| (non $\lambda-$ convexe), $\varrho_0=\delta_0$

Schéma upwind pour donnée initiale $\varrho_{\bf 0}=\delta_{\bf 0}.$ Schéma de Rusanov pour la même donnée $\varrho_{\bf 0}=\delta_{\bf 0}.$

Plusieurs solutions pour la même donnée initiale :

- Le schéma upwind converge vers le Dirac : il est équivalent au schéma de Roe (non entropique) pour u=2F-1.
- Le schéma de Rusanov sur ϱ , lui, est équivalent au schéma de Rusanov sur u, qui converge vers la solution entropique (l'onde de détente).

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- **2** Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Relaxation à la Jin-Xin pour une loi de conservation

■ Loi de conservation scalaire à flux $f \in C^1(\mathbb{R})$:

$$\partial_t u + \partial_x f(u) = 0. (3)$$

Système de relaxation (Jin-Xin '95) :

$$\partial_t u^{\varepsilon} + \partial_x v^{\varepsilon} = 0 \tag{4a}$$

$$\partial_t v^{\varepsilon} + c^2 \partial_{\mathsf{x}} u^{\varepsilon} = \frac{1}{\varepsilon} \Big(f(u^{\varepsilon}) - v^{\varepsilon} \Big), \tag{4b}$$

avec $c > ||f'(u)||_{I^{\infty}}$ (condition sous-caractéristique).

Relaxation à la Jin-Xin pour une loi de conservation

■ Loi de conservation scalaire à flux $f \in \mathcal{C}^1(\mathbb{R})$:

$$\partial_t u + \partial_x f(u) = 0. (3)$$

Système de relaxation (Jin-Xin '95) :

$$\partial_t u^{\varepsilon} + \partial_{\times} v^{\varepsilon} = 0 \tag{4a}$$

$$\partial_t v^{\varepsilon} + c^2 \partial_x u^{\varepsilon} = \frac{1}{\varepsilon} \Big(f(u^{\varepsilon}) - v^{\varepsilon} \Big), \tag{4b}$$

avec $c > ||f'(u)||_{L^{\infty}}$ (condition sous-caractéristique).

■ Formellement, quand $\varepsilon \to 0$, si $u^{\varepsilon} \underset{\varepsilon \to 0}{\longrightarrow} u$, $v^{\varepsilon} \underset{\varepsilon \to 0}{\longrightarrow} f(u)$, et u résout (3). Preuve rigoureuse : Natalini ('96)

Système de relaxation pour l'agrégation

Pour le système :

$$\partial_t \varrho^{\varepsilon} + \partial_x \sigma^{\varepsilon} = 0, \tag{5a}$$

$$\partial_t \sigma^{\varepsilon} + c^2 \partial_x \varrho^{\varepsilon} = \frac{1}{\varepsilon} (a[\varrho^{\varepsilon}] \varrho^{\varepsilon} - \sigma^{\varepsilon}), \tag{5b}$$

pour $W(x) = \frac{|x|}{2}$, c > 1/2, avec donnée $\varrho_0 \in \mathcal{P}_2$ et $\sigma_0 := a[\varrho_0]\varrho_0$.

Convergence de ϱ^{ε} vers ϱ solution de l'équation d'agrégation :

Système de relaxation pour l'agrégation

Pour le système :

$$\partial_t \varrho^{\varepsilon} + \partial_x \sigma^{\varepsilon} = 0, \tag{5a}$$

$$\partial_t \sigma^{\varepsilon} + c^2 \partial_x \varrho^{\varepsilon} = \frac{1}{\varepsilon} (a[\varrho^{\varepsilon}] \varrho^{\varepsilon} - \sigma^{\varepsilon}), \tag{5b}$$

pour $W(x) = \frac{|x|}{2}$, c > 1/2, avec donnée $\varrho_0 \in \mathcal{P}_2$ et $\sigma_0 := a[\varrho_0]\varrho_0$.

Convergence de ρ^{ε} vers ρ solution de l'équation d'agrégation :

 Au sens des mesures par des arguments de compacité (James, Vauchelet '11).

Système de relaxation pour l'agrégation

Pour le système :

$$\partial_t \varrho^{\varepsilon} + \partial_x \sigma^{\varepsilon} = 0, \tag{5a}$$

$$\partial_t \sigma^{\varepsilon} + c^2 \partial_{\mathsf{x}} \varrho^{\varepsilon} = \frac{1}{\varepsilon} (\mathsf{a}[\varrho^{\varepsilon}] \varrho^{\varepsilon} - \sigma^{\varepsilon}), \tag{5b}$$

pour $W(x) = \frac{|x|}{2}$, c > 1/2, avec donnée $\varrho_0 \in \mathcal{P}_2$ et $\sigma_0 := a[\varrho_0]\varrho_0$.

Convergence de ρ^{ε} vers ρ solution de l'équation d'agrégation :

- Au sens des mesures par des arguments de compacité (James, Vauchelet '11).
- En distance W_1 à vitesse $\sqrt{\varepsilon}T$, en utilisant la correspondance avec l'équation de Burgers (avec B. Fabrèges, F. Lagoutière et N. Vauchelet) en s'inspirant de Katsoulakis et Tsavaras ('97).

Théorème (Fabrèges, Lagoutière, T., Vauchelet, Axioms, '21)

On suppose $W(x) = \frac{|x|}{2}$. Soit $\varrho_0 \in \mathcal{P}_2(\mathbb{R})$, c > 1/2 et posons $\sigma_0 = a[\varrho_0]\varrho_0$. Il existe C > 0 tel que, pour tout $\varepsilon > 0$, si $(\varrho^\varepsilon, \sigma^\varepsilon)$ est la solution du système de relaxation de donnée (ϱ_0, σ_0) , on ait :

$$\forall T > 0, \qquad \sup_{t \in [0,T]} W_1(\varrho(t), \varrho^{\varepsilon}(t)) \leqslant C(\sqrt{\varepsilon T} + \varepsilon),$$

où $\varrho \in C([0,+\infty),\mathcal{P}_2(\mathbb{R}))$ est l'unique solution du problème d'agrégation de donnée ϱ_0 .

Idée de preuve :

- Faire les estimations sur $(u^{\varepsilon}, v^{\varepsilon}) = (\frac{1}{2} F_{\varrho^{\varepsilon}}, \frac{1}{2} F_{\sigma^{\varepsilon}})$ où $F_{\varrho^{\varepsilon}}, F_{\sigma^{\varepsilon}}$ sont les fonctions de répartition respectives de ρ^{ε} et σ^{ε} ;
- Utiliser le fait que, en 1D,

$$W_1(\varrho^{\varepsilon},\sigma^{\varepsilon}) = \|F_{\varrho^{\varepsilon}} - F_{\sigma^{\varepsilon}}\|_{L^1(\mathbb{R})}.$$

Estimations sur $(u^{\varepsilon}, v^{\varepsilon})$

■ En posant $a^{\varepsilon} = v^{\varepsilon} - cu^{\varepsilon}$ et $b = v^{\varepsilon} + cu^{\varepsilon}$, le système de relaxation sur $(u^{\varepsilon}, v^{\varepsilon})$ est équivalent au système diagonalisé :

$$\partial_t a^{\varepsilon} - c \partial_x a^{\varepsilon} = \frac{1}{\varepsilon} G(a^{\varepsilon}, b^{\varepsilon})$$
$$\partial_t b^{\varepsilon} + c \partial_x b^{\varepsilon} = \frac{1}{\varepsilon} G(a^{\varepsilon}, b^{\varepsilon})$$

où
$$G(a,b) = \frac{1}{2} \left(\frac{b-a}{2c} \right)^2 - \frac{a+b}{2}$$
.

- Utiliser la monotonie de G pour obtenir des inégalités d'entropie sur $(a^{\varepsilon}, b^{\varepsilon})$.
- En déduire des inégalités d'entropie sur $(u^{\varepsilon}, v^{\varepsilon})$ avec un reste de taille $O(\varepsilon)$
- Combiner ces inégalités avec celles sur la solution entropique u de l'équation de Burgers, en utilisant un dédoublement de variables de type Kruzkov.

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha | x$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- 3 Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Limite de diffusion $\varepsilon \to 0$

$$\left\{ \begin{array}{l} \partial_t \varrho^\varepsilon + \nabla \cdot (a[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ a[\varrho^\varepsilon] = -\nabla W * \varrho^\varepsilon, \\ \varrho^\varepsilon(0,\cdot) = \varrho_0^\varepsilon \in \mathcal{P}_2, \end{array} \right. \xrightarrow[\varepsilon \to 0]{} \left\{ \begin{array}{l} \partial_t \varrho + \nabla \cdot (\widehat{a}[\varrho] \varrho) = 0, \\ \widehat{a}[\varrho] = -\widehat{\nabla W} * \varrho, \\ \varrho(0,\cdot) = \varrho_0 \in \mathcal{P}_2. \end{array} \right.$$

 Evoqué par Carrillo, Craig, Yao '18 avec la Γ—convergence de flots de gradient (Serfaty '10) pour la fonctionnelle d'énergie

$$F^{\varepsilon}(\varrho) := \underbrace{\frac{1}{2} \iint W(x - y)\varrho(dx)\varrho(dy)}_{\text{énergie d'interaction}} + \varepsilon \underbrace{\int \varrho \ln \varrho}_{\text{entropie}},$$

Pour le potentiel Newtonien jusqu'au temps d'existence des solutions $L^1 \cap L^\infty$: Cozzi, Gie, Kelliher '16

Limite de diffusion $\varepsilon \to 0$

$$\left\{ \begin{array}{l} \partial_t \varrho^\varepsilon + \nabla \cdot (a[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ a[\varrho^\varepsilon] = -\nabla W * \varrho^\varepsilon, \\ \varrho^\varepsilon(0,\cdot) = \varrho_0^\varepsilon \in \mathcal{P}_2, \end{array} \right. \xrightarrow[\varepsilon \to 0]{} \left\{ \begin{array}{l} \partial_t \varrho + \nabla \cdot (\widehat{a}[\varrho] \varrho) = 0, \\ \widehat{a}[\varrho] = -\widehat{\nabla W} * \varrho, \\ \varrho(0,\cdot) = \varrho_0 \in \mathcal{P}_2. \end{array} \right.$$

■ Evoqué par Carrillo, Craig, Yao '18 avec la Γ—convergence de flots de gradient (Serfaty '10) pour la fonctionnelle d'énergie

$$F^{\varepsilon}(\varrho) := \underbrace{\frac{1}{2} \iint W(x - y)\varrho(dx)\varrho(dy)}_{\text{énergie d'interaction}} + \varepsilon \underbrace{\int \varrho \ln \varrho}_{\text{entropie}},$$

- Pour le potentiel Newtonien jusqu'au temps d'existence des solutions $L^1 \cap L^\infty$: Cozzi, Gie, Kelliher '16
- Seulement pour donnée 'bien préparée'

Limite de diffusion $\varepsilon \to 0$

$$\left\{ \begin{array}{l} \partial_t \varrho^\varepsilon + \nabla \cdot (a[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ a[\varrho^\varepsilon] = -\nabla W * \varrho^\varepsilon, \\ \varrho^\varepsilon(0,\cdot) = \varrho_0^\varepsilon \in \mathcal{P}_2, \end{array} \right. \xrightarrow[\varepsilon \to 0]{} \left\{ \begin{array}{l} \partial_t \varrho + \nabla \cdot (\widehat{a}[\varrho] \varrho) = 0, \\ \widehat{a}[\varrho] = -\widehat{\nabla W} * \varrho, \\ \varrho(0,\cdot) = \varrho_0 \in \mathcal{P}_2. \end{array} \right.$$

■ Evoqué par Carrillo, Craig, Yao '18 avec la Γ—convergence de flots de gradient (Serfaty '10) pour la fonctionnelle d'énergie

$$F^{\varepsilon}(\varrho) := \underbrace{\frac{1}{2} \iint W(x - y)\varrho(dx)\varrho(dy)}_{\text{énergie d'interaction}} + \varepsilon \underbrace{\int \varrho \ln \varrho}_{\text{entropie}},$$

- Pour le potentiel Newtonien jusqu'au temps d'existence des solutions $L^1 \cap L^\infty$: Cozzi, Gie, Kelliher '16
- Seulement pour donnée 'bien préparée'
- Pas d'estimation de la vitesse de convergence

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Convergence en dimension 1, $W(x) = \alpha |x|$

Théorème

On suppose d=1 et $W(x)=\alpha |x|$ pour un certain $\alpha \neq 0$.

Soit $\varrho_0 \in \mathcal{P}_2$ et T > 0. On note, pour $\varepsilon > 0$, $\varrho^{\varepsilon} \in \mathcal{C}([0, T], \mathbb{W}_2)$ la solution du problème diffusif de donnée ϱ_0 .

Alors, la suite $(\varrho^{\varepsilon})_{\varepsilon>0}$ converge au sens des mesures vers une solution $\varrho \in \mathcal{C}([0,T],\mathbb{W}_2)$ de l'équation d'agrégation, et on a :

$$\sup_{t\in[0,T]}W_1(\varrho^{\varepsilon}(t),\varrho(t))\leqslant C\sqrt{\varepsilon T},$$

où C > 0 est une constante indépendante de ε et T.

■ Traduction pour l'agrégation des estimations de Kuznetsov ('76) pour les lois de conservation scalaires

Convergence en dimension quelconque, dans \mathbb{W}_1 , pour W lipschitzien

Théorème (Lagoutière, Santambrogio, T.)

Soit W un potentiel lipschitzien. Soit $\varrho_0 \in \mathcal{P}_2$ et $(\varrho^{\varepsilon})_{\varepsilon>0}$ les solutions faibles du problème diffusif de données initiales $(\varrho^{\varepsilon}_0)_{\varepsilon>0} \subset \mathcal{P}_2$ bien préparées au sens où :

$$\lim_{\varepsilon \to 0} F^{\varepsilon}(\varrho_0^{\varepsilon}) = F^0(\varrho_0), \tag{6a}$$

$$\lim_{\varepsilon \to 0} W_2(\varrho_0^{\varepsilon}, \varrho_0) = 0, \tag{6b}$$

Pour tout T>0, la suite $(\varrho^{\varepsilon})_{\varepsilon>0}$ converge, à extraction près, vers une solution $\varrho\in\mathcal{C}([0,T],\mathbb{W}_2)$ du problème d'agrégation de donnée initiale ϱ_0 :

$$\sup_{t \in [0,T]} W_1(\varrho_t^{\varepsilon},\varrho_t) \xrightarrow[\varepsilon \to 0]{} 0.$$

Soit ϱ^{ε} solution du problème diffusif :

$$\begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (\mathsf{a}[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ & \varrho^\varepsilon(0,\cdot) = \varrho_0^\varepsilon, \end{cases} \quad \text{i.e.} \quad \begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (\varrho^\varepsilon \mathsf{v}^\varepsilon) = 0, \\ & \varrho^\varepsilon(0,\cdot) = \varrho_0^\varepsilon, \end{cases}$$

avec $v^{\varepsilon}=-\nabla W*\varrho^{\varepsilon}-arepsilonrac{\nabla arrho^{\varepsilon}}{arrho^{\varepsilon}}.$ Formellement, on a :

$$\frac{d}{dt}F^{\varepsilon}(\varrho_{t}^{\varepsilon}) = \int \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon})\partial_{t}\varrho_{t}^{\varepsilon} = \int \underbrace{\nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon})}_{} \cdot v_{t}^{\varepsilon}d\varrho_{t}^{\varepsilon} = -\int \left|\nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon})\right|^{2}d\varrho_{t}^{\varepsilon},$$

D'où l'inégalité de dissipation d'énergie :

$$F^{\varepsilon}(\varrho_{0}^{\varepsilon}) \geqslant F^{\varepsilon}(\varrho_{t}^{\varepsilon}) + \int_{0}^{t} \int \left| \nabla \frac{\delta F^{\varepsilon}}{\delta \rho} (\varrho_{s}^{\varepsilon}) \right|^{2} d\varrho_{s}^{\varepsilon} ds.$$

Soit ϱ^{ε} solution du problème diffusif :

$$\begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (a[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ & \varrho^\varepsilon(0,\cdot) = \varrho^\varepsilon_0, \end{cases} \quad \text{i.e.} \quad \begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (\varrho^\varepsilon v^\varepsilon) = 0, \\ & \varrho^\varepsilon(0,\cdot) = \varrho^\varepsilon_0, \end{cases}$$

avec $v^{\varepsilon}=-\nabla W*\varrho^{\varepsilon}-arepsilonrac{\nabla arrho^{\varepsilon}}{arrho^{\varepsilon}}.$ Formellement, on a :

$$\frac{d}{dt}F^{\varepsilon}(\varrho_{t}^{\varepsilon}) = \int \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon}) \partial_{t} \varrho_{t}^{\varepsilon} = \int \underbrace{\nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon})}_{} \cdot v_{t}^{\varepsilon} d\varrho_{t}^{\varepsilon} = -\int \left| \nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon}) \right|^{2} d\varrho_{t}^{\varepsilon},$$

D'où l'inégalité de dissipation d'énergie :

$$F^{\varepsilon}(\varrho_{0}^{\varepsilon}) \geqslant F^{\varepsilon}(\varrho_{t}^{\varepsilon}) + \frac{1}{2} \int_{0}^{t} \int |v_{s}^{\varepsilon}|^{2} d\varrho_{s}^{\varepsilon} ds + \frac{1}{2} \int_{0}^{t} \int \left| \nabla \frac{\delta F^{\varepsilon}}{\delta \varrho} (\varrho_{s}^{\varepsilon}) \right|^{2} d\varrho_{s}^{\varepsilon} ds.$$

Soit ϱ^{ε} solution du problème diffusif :

$$\begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (a[\varrho^\varepsilon] \varrho^\varepsilon) = \varepsilon \Delta \varrho^\varepsilon, \\ & \varrho^\varepsilon(0,\cdot) = \varrho^\varepsilon_0, \end{cases} \quad \text{i.e.} \quad \begin{cases} & \partial_t \varrho^\varepsilon + \nabla \cdot (\varrho^\varepsilon v^\varepsilon) = 0, \\ & \varrho^\varepsilon(0,\cdot) = \varrho^\varepsilon_0, \end{cases}$$

avec $v^{\varepsilon}=-\nabla W*\varrho^{\varepsilon}-arepsilonrac{\nabla arrho^{\varepsilon}}{arrho^{\varepsilon}}.$ Formellement, on a :

$$\frac{d}{dt}F^{\varepsilon}(\varrho_{t}^{\varepsilon}) = \int \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon}) \partial_{t} \varrho_{t}^{\varepsilon} = \int \underbrace{\nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon})}_{--\nu^{\varepsilon}} \cdot v_{t}^{\varepsilon} d\varrho_{t}^{\varepsilon} = -\int \left| \nabla \frac{\delta F^{\varepsilon}}{\delta \varrho}(\varrho_{t}^{\varepsilon}) \right|^{2} d\varrho_{t}^{\varepsilon},$$

D'où l'inégalité de dissipation d'énergie :

$$F^{\varepsilon}(\varrho_{0}^{\varepsilon}) \geqslant F^{\varepsilon}(\varrho_{t}^{\varepsilon}) + \frac{1}{2} \int_{0}^{t} \int |v_{s}^{\varepsilon}|^{2} d\varrho_{s}^{\varepsilon} ds + \frac{1}{2} \int_{0}^{t} \int \left|\nabla W * \varrho_{s}^{\varepsilon} + \varepsilon \frac{\nabla \varrho_{s}^{\varepsilon}}{\varrho_{s}^{\varepsilon}}\right|^{2} d\varrho_{s}^{\varepsilon} ds.$$

$$F^{\varepsilon}(\varrho_{0}^{\varepsilon}) \geqslant F^{\varepsilon}(\varrho_{t}^{\varepsilon}) + \frac{1}{2} \int_{0}^{t} \int |v_{s}^{\varepsilon}|^{2} d\varrho_{s}^{\varepsilon} ds + \frac{1}{2} \int_{0}^{t} \int \left|\nabla W * \varrho_{s}^{\varepsilon} + \varepsilon \frac{\nabla \varrho_{s}^{\varepsilon}}{\varrho_{s}^{\varepsilon}}\right|^{2} d\varrho_{s}^{\varepsilon} ds.$$

Extraction d'une sous-suite convergente

IDE \Longrightarrow borne uniforme sur $\int |x|^2 \varrho_t^{\varepsilon}(dx) \Longrightarrow$ compacité dans \mathbb{W}_1

Semicontinuité inférieure

- $1 \quad \liminf_{\varepsilon \to 0} F^{\varepsilon}(\varrho_t^{\varepsilon}) \geqslant F(\varrho_t).$
- **2** En notant $E^{\varepsilon} = \varrho^{\varepsilon} v^{\varepsilon}$, on obtient :

$$\liminf_{\varepsilon \to 0} \frac{1}{2} \int_0^t \int |v_s^{\varepsilon}|^2 d\varrho_s^{\varepsilon} ds \geqslant \frac{1}{2} \int_0^t \int |v_s|^2 d\varrho_s ds.$$

$$\lim \inf_{\varepsilon \to 0} \frac{1}{2} \int_{0}^{t} \left| \nabla W * \varrho_{s}^{\varepsilon} + \varepsilon \frac{\nabla \varrho_{s}^{\varepsilon}}{\varrho_{s}^{\varepsilon}} \right|^{2} d\varrho_{s}^{\varepsilon} ds \geqslant \int_{0}^{t} \left| \widehat{\nabla W} * \varrho_{s} \right|^{2} d\varrho_{s} ds.$$

Passage à la liminf dans l'IDE et à la lim dans l'équation de continuité :

$$F^{0}(\varrho_{0}) \geqslant F^{0}(\varrho_{t}) + \frac{1}{2} \int_{0}^{t} \int |v_{s}|^{2} d\varrho_{s} ds + \frac{1}{2} \int_{0}^{t} \int \left| \widehat{\nabla W} * \varrho_{s} \right|^{2} d\varrho_{s} ds, \quad (7a)$$

$$\partial_{t} \varrho + \nabla \cdot (\varrho v) = 0. \quad (7b)$$

En utilisant (7b), formellement :

$$\begin{split} \frac{d}{dt}F^{0}(\varrho_{t}) &= \frac{d}{dt}\frac{1}{2}\iint W(x-y)\varrho_{t}(dx)\varrho_{t}(dy) \\ &= \iint \widehat{\nabla W}(x-y)\cdot v_{t}(x)\varrho_{t}(dx)\varrho_{t}(dy) = \int (\widehat{\nabla W}*\varrho_{t})\cdot v_{t}d\varrho_{t}. \end{split}$$

Combinant avec (7a), on obtient :

$$\frac{1}{2}\int_{0}^{t}\int\left|v_{s}+\widehat{\nabla W}*\varrho_{s}\right|^{2}d\varrho_{s}ds\leqslant0.$$

Estimation de convergence \mathbb{W}_2 pour W $\lambda-$ convexe

Théorème (Lagoutière, Santambrogio, T.)

Soit W lipschitzien et λ -convexe.

Soit $\varrho_0 \in \mathcal{P}_2(\mathbb{R}^d)$ et notons $(\varrho^{\varepsilon})_{\varepsilon>0}$ les solutions faibles du problème diffusif de données $(\varrho_0^{\varepsilon})_{\varepsilon>0} \subset \mathcal{P}_2(\mathbb{R}^d)$ quelconques.

Pour tout T>0, si $\varrho\in\mathcal{C}ig([0,T],\mathbb{W}_2(\mathbb{R}^d)ig)$ est l'unique solution du problème d'agrégation de donnée ϱ_0 , on a :

$$\forall t \in [0, T], \qquad W_2(\varrho_t^{\varepsilon}, \varrho_t) \leqslant e^{-\lambda t} W_2(\varrho_0^{\varepsilon}, \varrho_0) + \sqrt{\frac{1 - e^{-2\lambda t}}{\lambda}} \sqrt{d\varepsilon}.$$

Deux preuves de ce résultat :

- **1** Calcul de $\frac{d}{dt}W_2^2(\varrho_t^{\varepsilon},\varrho_t)$ dans le formalisme du transport optimal
- Via une estimation discrète :

$$W_2(\varrho^{\epsilon,n}_{\Delta x},\varrho_{t^n})\leqslant e^{-2\lambda t^n}W_2(\varrho^{\epsilon}_0,\varrho_0)+C\sqrt{\frac{1-e^{-4\lambda t^n}}{\lambda}}\sqrt{\Delta x+\epsilon}+e^{-2\lambda t^n}\Delta x,$$

où $t^n=n\Delta t$ et $\varrho_{\Delta x}^{\varepsilon,n}$ est une approximation numérique de $\varrho_{t^n}^{\varepsilon}$ (upwind et diffusion explicite).

Ordre 1/2, $W \lambda$ -convexe

$$W_2(\varrho_t^{\varepsilon},\varrho_t) \leqslant e^{-\lambda t} W_2(\varrho_0^{\varepsilon},\varrho_0) + C(t) \sqrt{\varepsilon}.$$

Convergence order in W_2 distance, upwind scheme with implicit diffusion, J = 5000.0, $W(x) = |x|^{1.0+1}$, T = 0.50, CFL = 0.9Slope 0.5 Slope 1 -2 log₁₀ of the error in W₂ distance -5 -6 -3

Ordre 1, W pointu

Extension du résultat pour donnée quelconque

Théorème (Lagoutière, Santambrogio, T.)

Supposons que W soit lipschitzien, $\Delta W \leqslant 0$ et $\nabla^2 W \in L^{p_0}$ pour un certain $p_0 > \frac{d}{2} \vee 1$. Soit $\varrho_0 \in \mathcal{P}_2 \cap \mathcal{P}_{p_0}$ et posons $\varrho_0^{\varepsilon} := \varrho_0$.

Alors, pour tout T>0, $(\varrho^{\varepsilon})_{\varepsilon>0}$ converge dans $\mathcal{C}([0,T],\mathbb{W}_1)$, à extraction près, vers une solution $\varrho\in\mathcal{C}([0,T],\mathbb{W}_2)$ du problème d'agrégation.

Si, de plus, $\varrho_0 \in L^{p_0'} \cap L^{\frac{p_0}{p_0-p}}$, alors ϱ est unique dans $\mathcal{C}([0,T],\mathbb{W}_2) \cap L^{\infty}([0,T],L^{p_0'} \cap L^{\frac{p_0}{p_0-p}})$ et toute la suite $(\varrho^{\varepsilon})_{\varepsilon>0}$ converge.

- Idée de preuve : passer par une suite de données auxiliaires $(\mu_0^{\varepsilon})_{\varepsilon>0}$ bien préparées, et estimer $W_p(\mu_t^{\varepsilon}, \varrho_t^{\varepsilon})$.
- Le résultat s'applique à $W(x) \sim -|x|$ en dimension $d \ge 2$.

- Introduction
 - Agrégation et chimiotactisme
 - Contributions
- 2 Etude du cas 1D, $W(x) = \alpha |x|$
 - Correspondance avec l'équation de Burgers
 - Schémas numériques
 - Limite de relaxation
- Limite de diffusion dans le cas général
 - Etat de l'art
 - Résultats pour les solutions évolutives
 - Convergence des états stationnaires vers le Dirac

Etude des états stationnaires

Hypothèse supplémentaire sur W: pour $p \ge 1$

$$(A-p): \qquad \exists C > 0, \ \forall x \in \mathbb{R}^d, \ \nabla W(x) \cdot x \geqslant C|x|^p.$$

Figure – Potentiels non admissibles quand p = 1

- Sous l'hypothèse (A-p), l'unique état stationnaire de l'équation d'agrégation est, à translation près, le Dirac δ_0 .
- On considère des mesures centrées.

Convergence des états stationnaires vers le Dirac

Théorème (Lagoutière, Santambrogio, T.)

Supposons que W vérifie l'hypothèse (A-p) pour un certain $p \in [1, \infty)$. Pour tout $\varepsilon \geqslant 0$, la fonctionnelle d'énergie F^{ε} admet un minimiseur qui appartient à \mathcal{P}_p .

De plus, il existe une constante C>0, telle que pour tout $\varepsilon>0$ et ϱ^ε état stationnaire centré :

$$W_p(\varrho^{\varepsilon}, \delta_0) \leqslant C \varepsilon^{1/p}$$
.

- Optimal pour p = 2: les états stationnaires sont exactement Gaussiens
- Optimal pour p=1, d=1 (correspondance W_1/L^1 avec l'équation de Burgers)

Quelques questions ouvertes

- \blacksquare Estimation de convergence en distance W_2 pour le $\theta-$ schéma pour l'équation d'agrégation-diffusion
- Convergence à l'ordre 1 des solutions diffusives pour potentiel pointu
- Avec Hong Duong, Université de Birmingham : Existence de solutions mesures globales en temps pour l'équation d'agrégation-diffusion fractionnaire sur \mathbb{R}^d .
 - Idée : convergence d'un schéma de splitting JKO-convolution par le noyau du laplacien fractionnaire.

Convergence des états stationnaires vers le Dirac

Merci pour votre attention.

Quelques slides supplémentaires

Proposition

On suppose d=1 et $W(x)=\alpha |x|$ pour $\alpha \neq 0$. Soit $u_0 \in L^{\infty} \cap BV$.

Notons $(u_j^n)_{j\in\mathbb{Z}}^{n\in\mathbb{N}}$ défini par le schéma de Roe de donnée $u_0\in L^\infty\cap BV$ pour

l'équation de Burgers. Alors, en posant $\varrho_{j+1/2}^n = \frac{u_j^n - u_{j+1}^n}{2\alpha}$, la suite $(\varrho_{j+1/2}^n)_{j\in\mathbb{Z}}^{n\in\mathbb{N}}$ est solution du schéma upwind pour la donnée initiale $\varrho_0 := -\frac{1}{2\alpha} \hat{\varrho}_{\mathbf{x}} u_0$.

Réciproquement, si $(\varrho_i^n)_{i\in\mathbb{Z}}^{n\in\mathbb{N}}$ est défini par le schéma upwind de donnée

$$\varrho_0 \in \mathcal{P}_2(\mathbb{R})$$
, alors, en posant $u_j^n = \alpha \left(1 - 2\sum_{k < j} \varrho_{k+1/2}^n\right)$, la suite $(u_j^n)_{j \in \mathbb{Z}}^{n \in \mathbb{N}}$

est solution du schéma de Roe de donnée initiale $u_0(x) := \alpha(1 - 2F_0)$ où F_0 est la fonction de répartition de ϱ_0 .

Limite au sens des mesures de $(\nabla W * \varrho^{\varepsilon})\varrho^{\varepsilon}$

$$\begin{split} \int_0^t \iint \nabla W(x-y) \cdot \xi(s,x) \varrho_s^\varepsilon(dx) \varrho_s^\varepsilon(dy) ds \\ &= \frac{1}{2} \int_0^t \iint \nabla W(x-y) \cdot (\xi(s,x) - \xi(s,y)) \varrho_s^\varepsilon(dx) \varrho_s^\varepsilon(dy) ds \\ & \xrightarrow[\varepsilon \to 0]{} \frac{1}{2} \int_0^t \iint \nabla W(x-y) \cdot (\xi(s,x) - \xi(s,y)) \varrho_s(dx) \varrho_s(dy) ds \\ &= \int_0^t \iint \widehat{\nabla W}(x-y) \cdot \xi(s,x) \varrho_s(dx) \varrho_s(dy) ds, \end{split}$$

$$\operatorname{car}\,\widehat{\nabla W}(0)=0.$$

Etude des états stationnaires

Définition

Pour $\varepsilon \geqslant 0$, on appelle état stationnaire une mesure de probabilité ϱ telle que :

$$\begin{split} \widehat{\nabla W} * \varrho &= 0, \quad \operatorname{sur} \operatorname{supp}(\varrho) & \operatorname{si} \varepsilon &= 0, \\ \left\{ \begin{array}{ll} \nabla W * \varrho + \varepsilon \frac{\nabla \varrho}{\varrho} &= 0 \quad \operatorname{sur} \, \mathbb{R}^d, \\ \varrho &> 0 \quad \operatorname{sur} \, \mathbb{R}^d. \end{array} \right. & \operatorname{si} \varepsilon &> 0 \end{split}$$

En effet, formellement une solution stationnaire vérifie :

$$\nabla \cdot \left(\left(\nabla W * \varrho + \varepsilon \frac{\nabla \varrho}{\varrho} \right) \varrho \right) = 0.$$

En testant contre $W * \varrho + \varepsilon \ln \varrho$, on obtient :

$$\int \left| \nabla W * \varrho + \varepsilon \frac{\nabla \varrho}{\varrho} \right|^2 d\varrho = 0.$$

Preuve de $W_p(\varrho^{\varepsilon}, \delta_0) \leqslant C\varepsilon^{1/p}$ pour les états stationnaires

Pour ϱ^{ε} état stationnaire, on a :

$$\nabla W * \varrho^{\varepsilon} + \varepsilon \frac{\nabla \varrho^{\varepsilon}}{\varrho^{\varepsilon}} = 0.$$
 (8)

En testant contre $\rho^{\varepsilon}x$:

$$\int \varrho^{\varepsilon} x \cdot \nabla W * \varrho^{\varepsilon} dx + \varepsilon \int x \cdot \nabla \varrho^{\varepsilon} dx = 0$$

Avec une IPP et en symétrisant (∇W est impair) :

$$\frac{1}{2} \iint \nabla W(x-y) \cdot (x-y) \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) = \varepsilon d.$$

En utilisant l'hypothèse (A-p) on trouve :

$$\iint |x-y|^p \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) \leqslant \frac{2\varepsilon d}{C}.$$

Preuve de $W_p(\varrho^{\varepsilon}, \delta_0) \leqslant C\varepsilon^{1/p}$ pour les états stationnaires

Pour ϱ^{ε} état stationnaire, on a :

$$\nabla W * \varrho^{\varepsilon} + \varepsilon \frac{\nabla \varrho^{\varepsilon}}{\varrho^{\varepsilon}} = 0.$$
 (8)

En testant contre $\rho^{\varepsilon}x$:

$$\int \varrho^{\varepsilon} x \cdot \nabla W * \varrho^{\varepsilon} dx + \varepsilon \int x \cdot \nabla \varrho^{\varepsilon} dx = 0$$

Avec une IPP et en symétrisant (∇W est impair) :

$$\frac{1}{2} \iint \nabla W(x-y) \cdot (x-y) \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) = \varepsilon d.$$

En utilisant l'hypothèse (A-p) on trouve :

$$\iint |x|^p \varrho^{\varepsilon}(dx) \leqslant \iint |x-y|^p \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) \leqslant \frac{2\varepsilon d}{C}.$$

Preuve de $W_p(\varrho^{\varepsilon}, \delta_0) \leqslant C\varepsilon^{1/p}$ pour les états stationnaires

Pour ϱ^{ε} état stationnaire, on a :

$$\nabla W * \varrho^{\varepsilon} + \varepsilon \frac{\nabla \varrho^{\varepsilon}}{\varrho^{\varepsilon}} = 0.$$
 (8)

En testant contre $\varrho^{\varepsilon}x$:

$$\int \varrho^{\varepsilon} x \cdot \nabla W * \varrho^{\varepsilon} dx + \varepsilon \int x \cdot \nabla \varrho^{\varepsilon} dx = 0$$

Avec une IPP et en symétrisant (∇W est impair) :

$$\frac{1}{2} \iint \nabla W(x-y) \cdot (x-y) \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) = \varepsilon d.$$

En utilisant l'hypothèse (A-p) on trouve :

$$W_p^p(\varrho^{\varepsilon},\delta_0) = \iint |x|^p \varrho^{\varepsilon}(dx) \leqslant \iint |x-y|^p \varrho^{\varepsilon}(dx) \varrho^{\varepsilon}(dy) \leqslant \frac{2\varepsilon d}{C}.$$

Méthode de point fixe pour les états stationnaires

$$\begin{split} \varrho^{\varepsilon} & \text{ \'etat stationnaire} \Rightarrow \nabla \cdot \left(\left(\nabla W * \varrho + \varepsilon \frac{\nabla \varrho}{\varrho} \right) \varrho \right) = 0 \\ & \Rightarrow W * \varrho^{\varepsilon} + \varepsilon \ln \varrho^{\varepsilon} = C(\varepsilon) \\ & \Rightarrow \ln \varrho^{\varepsilon} = C(\varepsilon) - W * \varrho^{\varepsilon}/\varepsilon \\ & \Rightarrow \varrho^{\varepsilon} = \frac{e^{-W * \varrho^{\varepsilon}/\varepsilon}}{\int e^{-W * \varrho^{\varepsilon}/\varepsilon}}. \end{split}$$

■ Méthode de point fixe : ϱ^0 arbitraire, $\varrho^{n+1} = \frac{e^{-W*} \varrho^n/\varepsilon}{\int e^{-W*} \varrho^n/\varepsilon}$.

p	Ordre de convergence
1	1.00205259
2	0.49999997
3	0.3333333
4	0.25000000
5	0.20000000

Table – Convergence de ϱ^{ε} vers δ_0 pour $W(x)=|x|^p$, seui $l=10^{-6}$, densité initiale Gaussienne

Convergence des états stationnaires, $W(x) = \sqrt{x} + |x|$

