

GRAPH ATTENTION NETWORKS

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio y Yoshua Bengio

Presentador: Jorge Díaz Ramírez ICT3115 - Sistemas Urbanos Inteligentes Fecha: 19/05/2022

Contenidos

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

- 1. INTRODUCCIÓN
- 2. ARQUITECTURA GAT
- 3. CONFIGURACIÓN DE LOS EXPERIMENTOS
- 4. EVALUACIÓN
- 5. CONCLUSIONES

Introducción

Graph attention networks

P Veličković, G Cucurull, A Casanova... - arXiv preprint arXiv ..., 2017 - arxiv.org

- ... 2.1 GRAPH ATTENTIONAL LAYER We will start by describing a single graph attentional layer,
- ... The particular attentional setup utilized by us closely follows the work of Bahdanau et al. (...
- ☆ Guardar 59 Citar Citado por 3363 Artículos relacionados Las 8 versiones >>>

[PDF] Graph attention networks

P Velickovic, G Cucurull, A Casanova, A Romero, P Lio... - stat, 2017 - utdallas.edu

- ... 2.1 GRAPH ATTENTIONAL LAYER We will start by describing a single graph attentional layer,
- ... The particular attentional setup utilized by us closely follows the work of Bahdanau et al. (...
- ☆ Guardar 59 Citar Citado por 5935 Artículos relacionados >>>

[PDF] arxiv.org

[PDF] utdallas.edu

Introducción

Graph Attention Networks

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, P. Lio', Yoshua Bengio

ICI R 2018. 4991 ditations, 47 References

We present graph attention networks (GATs), novel neural network architectures that operate on graphstructured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in white Show more

☐ Save

INTRODUCCIÓN

- Las redes neuronales convolucionales se han aplicado con éxito para abordar problemas como la clasificación de imágenes, la segmentación semántica o traducción automática,
 - PERO los datos muy estructurados (grilla)
 - Por ejemplo Mallas 3D, redes sociales, redes de telecomunicación, entre otras -> grafos

INTRODUCCIÓN

- Las redes neuronales de grafos (GNN) se introdujeron en Gori et al. (2005) y Scarselli et al. (2009) como una generalización de las redes neuronales recursivas.
- Los mecanismos de atención se han convertido casi en un estándar de facto en muchas tareas basadas en secuencias (Bahdanau et al., 2015; Gehring et al., 2016).
 - Cuando se utiliza para calcular una representación de una única secuencia, se suele denominar autoatención o intra-atención.

INTRODUCCIÓN

- Basado en lo anterior:
 - La idea es calcular las representaciones ocultas de cada nodo del grafo, atendiendo a sus vecinos, siguiendo una estrategia de autoatención.

- 1. Capa Atencional de grafo
 - \circ Entrada: Conjunto de características de nodos $\, {f h} = \{ ec h_1, ec h_2, \dots, ec h_N \} \, . \,$
 - Donde:
 - $\vec{h}_i \in \mathbb{R}^F$
 - *N* es el número de nodos y *F* es el número de características de cada nodo
 - \circ Salida: Nuevo conjunto de características de nodos $\mathbf{h}' = \{\vec{h}_1', \vec{h}_2', \dots, \vec{h}_N'\}$
 - Donde:
 - \bullet $\vec{h}'_i \in \mathbb{R}^{F'}$
 - Cardinalidad F' potencialmente distinta a F

- 1. Capa Atencional de grafo
 - \circ Transformación Lineal: Parametrizada por la matriz de pesos $\mathbf{W} \in \mathbb{R}^{F' imes F}$
 - Aplicada a cada nodo
 - Auto-atención en los nodos:
 - lacksquare Mecanismo atencional compartido: $a:\mathbb{R}^{F'} imes\mathbb{R}^{F'}
 ightarrow\mathbb{R}$
 - lacksquare calcula los coeficientes de atención: $e_{ij}=a(\mathbf{W}ec{h}_i,\mathbf{W}ec{h}_j)$
 - Indicando la importancia de las características del nodo j para el nodo i
 - Atendiendo a cada otro nodo
 - Atención enmascarada:
 - Solo calcular e_{ij} para los nodos $j \in \mathcal{N}_i$, donde \mathcal{N}_i es alguna vecindad del nodo i en el gráfico

- 1. Capa Atencional de grafo
 - Auto-atención en los nodos:
 - Se normalizan todas las opciones de j usando Softmax, para hacer comparables todos los coeficientes:

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$

En la práctica

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

Donde, .T trasposición, || Concatenación

- 1. Capa Atencional de grafo
 - Auto-atención en los nodos:
 - Los coeficientes de atención normalizados se utilizan para calcular una combinación lineal de las características que les corresponden, para que sirvan como características finales de salida para cada nodo:

$$ec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} lpha_{ij} \mathbf{W} ec{h}_j
ight)$$

1. Capa Atencional de grafo

- Auto-atención en los nodos:
 - Para estabilizar el proceso de aprendizaje del mecanismo de atención utilizan
 Atención multi-cabezas.
 - K mecanismos de atención independientes ejecutan la transformación de la ecuación anterior

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Donde, || Concatenación

 α_{ij}^k Son los coeficientes de atención normalizados calculados por el k-ésimo mecanismo de atención (a^k)

W^k es la matriz de pesos de la transformación lineal de entrada correspondiente

- 1. Capa Atencional de grafo
 - Auto-atención en los nodos:
 - En especial, si se realiza atención con multicabeza en la capa final (predicción) de la red, la concatenación ya no es sensible. En su lugar, se emplea el promedio y se retrasa la aplicación de la no linealidad final (softmax o un sigmoide logístico para problemas de clasificación):

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Figure 1: Left: The attention mechanism $a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ employed by our model, parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. Right: An illustration of multihead attention (with K=3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}'_1 .

CONFIGURACIÓN DE LOS EXPERIMENTOS

1. Aprendizaje Transductivo

- a. Dataset Cora y Citeseer
 - i. Modelo con 2 capas GAT
 - ii. 1era capa con cabezas de atención K=8
 - iii. Calcular F'=8 características, seguida de función de no lineal ELU (Exponential Linear Unit)
 - iv. 2da capa con solo 1 cabeza de atención para calcular las clases, seguido por la activación SoftMax
 - v. $\lambda = 0.0005$
 - vi. Dropout=0.6 para las dos capas

CONFIGURACIÓN DE LOS EXPERIMENTOS

1. Aprendizaje Transductivo

- a. Dataset Pubmed
 - Modelo con 2 capas GAT
 - ii. 1era capa con cabezas de atención K=8
 - iii. Calcular F'=8 características, seguida de función de no lineal ELU (Exponential Linear Unit)
 - iv. 2da capa con solo 8 cabeza de atención para calcular las clases, seguido por la activación SoftMax
 - v. $\lambda = 0.001$
 - vi. Dropout=0.6 para las 2 capas

CONFIGURACIÓN DE LOS EXPERIMENTOS

Aprendizaje Inductivo

- a. Datasets
 - i. Modelo con 3 capas GAT
 - ii. Las 1ras dos capas con cabezas de atención K=4
 - iii. Calcular F'=256 características, seguida de función de no lineal ELU (Exponential Linear Unit)
 - iv. 3ra capa con solo 6 cabeza de atención para calcular las clases, seguido por la activación Sigmoide Logística
 - v. Sin Regularización
 - vi. Sin Dropout
 - vii. Skip connections en las capas atencionales intermedias
 - viii. $\lambda = 0.01$ (Pubmed) y $\lambda = 0.005$ (Cora y Citeseer)
 - ix. Early stopping strategy
 - x. 100 épocas

Evaluación

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed. GCN-64* corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%
MoNet (Monti et al., 2016)	$81.7\pm0.5\%$	<u></u>	$78.8 \pm 0.3\%$
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%
GAT (ours)	$\textbf{83.0} \pm 0.7\%$	$\textbf{72.5} \pm 0.7\%$	$\textbf{79.0} \pm 0.3\%$

Table 3: Summary of results in terms of micro-averaged F₁ scores, for the PPI dataset. GraphSAGE* corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture. Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

Conclusiones

 (GATs), novedosa red neuronal de tipo convolucional que operan con datos estructurados en forma de grafos, aprovechando las capas de autoatención enmascaradas.

Unión de varias técnicas (convolución y atención) en grafos

GRAPH ATTENTION NETWORKS

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio y Yoshua Bengio

Presentador: Jorge Díaz Ramírez ICT3115 - Sistemas Urbanos Inteligentes Fecha: 19/05/2022