The Abstract Cauchy Problem

Let A be a closed operator on a Banach space E and consider the abstract Cauchy problem

(ACP)
$$\begin{cases} \dot{u}(t) = Au(t) & (t \ge 0) \\ u(0) = f . \end{cases}$$

By a <u>solution</u> of (ACP) for the initial value $f \in D(A)$ we understand a continuously differentiable function $u : [0,\infty) \to E$ satisfying u(0) = f and $u(t) \in D(A)$ for all $t \ge 0$ such that $\dot{u}(t) = Au(t)$ for $t \ge 0$.

By A-I,Thm.1.7 there exists a unique solution of (ACP) for all initial values in the domain D(A) whenever A is the generator of a strongly continuous semigroup. The converse does not hold (see Example 1.4. below). However, for the operator A_1 on the Banach space E_1 = D(A) (see A-I,3.5) with domain $D(A_1)$ = $D(A^2)$ given by A_1f = Af ($f \in D(A_1)$) the following holds.

Theorem 1.1. The following assertions are equivalent.

- (i) For every f ∈ D(A) there exists a unique solution of (ACP).
- (ii) A_1 is the generator of a strongly continuous semigroup.

Proof. (i) implies (ii).

Assume that (i) holds; i.e., for every $f \in D(A)$ there exists a unique solution $u(\cdot,f) \in C^1([0,\infty),E)$ of (ACP). For $f \in E_1$ define $T_1(t)f := u(t,f)$ (t\geq 0). By the uniqueness of the solutions it follows that $T_1(t)$ is a linear operator on E_1 and $T_1(s+t) = T_1(s)T_1(t)$. Moreover, since $u(\cdot,f) \in C^1$, it follows that $t + T_1(t)f$ is continuous from $[0,\infty)$ into E_1 . We show that $T_1(t)$ is a continuous operator for all t>0.

Let t>0. Consider the mapping $\eta: E_1 \to C([0,t],E_1)$ given by $\eta(f) = T_1(\cdot)f = u(\cdot,f)$. We show that η has a closed graph. In fact, let $f_n \to f$ in E_1 and $\eta(f_n) = u(\cdot,f_n) \to v$ in $C([0,t],E_1)$. Then $u(s,f_n) = f_n + \int_0^s Au(r,f_n) dr$. Letting $n \to \infty$ we obtain $v(s) = f + \int_0^s Av(r) dr$ for $0 \le s \le t$. Let

 $\tilde{v}(s) = T_1(s-t)v(t)$ for s > t, and $\tilde{v}(s) = v(s)$ for $0 \le s \le t$.