R crash course

Arnaud Legrand and Jean-Marc Vincent

Scientific Methodology and Performance Evaluation ENS Lyon, November 2016

Outline

R/knitr Crash Course General Introduction

Reproducible Documents: knitR Introduction to R

Needful R Packages by Hadley Wickam Plyr And Dplyr Ggplot2 Reshape and tydiR
Now let's play!

Why R?

R is a great language for data analysis and statistics

- Open-source and multi-platform
- Very expressive with high-level constructs
- Excellent graphics
- Widely used in academia and business
- Very active community
 - Documentation, FAQ on http://stackoverflow.com/questions/tagged/r
- Great integration with other tools

Why is such R a pain for computer scientists?

- R is not really a programming language
- Documentation is for statisticians
- Default plots are cumbersome (meaningful)
- Summaries are cryptic (precise)
- Steep learning curve even for us, computer scientists whereas we generally switch seamlessly from a language to another! That's frustrating!
 ;)

Do's and dont's

R is high level, I'll do everything myself

- CTAN comprises 4,334 T_EX, LaT_EX, and related packages and tools. Most of you do not use plain T_EX.
- Currently, the CRAN package repository features 4,030 available packages.
- How do you know which one to use??? Many of them are highly exotic (not to say useless to you).

I learnt with http://www.r-bloggers.com/

- Lots of introductions but not necessarily what you're looking for so I'll give you a short tour.
 - You should quickly realize though that you need proper training in statistics and data analysis if you do not want tell nonsense.
- Again, you should read Jain's book on The Art of Computer Systems Performance Analysis
- You may want to follow online courses:
 - https://www.coursera.org/course/compdata
 - https://www.coursera.org/course/repdata

Install and run R on debian

```
1 apt-cache search r
  Err, that's not very useful:) It's the same when searching on google but once the
  filter bubble is set up, it gets better...
1 sudo apt-get install r-base
1 R.
1 R version 3.2.0 (2015-04-16) -- "Full of Ingredients"
2 Copyright (C) 2015 The R Foundation for Statistical Computing
3 Platform: x86_64-pc-linux-gnu (64-bit)
5 R is free software and comes with ABSOLUTELY NO WARRANTY.
6 You are welcome to redistribute it under certain conditions.
7 Type 'license()' or 'licence()' for distribution details.
9 R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
15 Type 'q()' to quit R.
                                                                               6 / 48
```

Install a few cool packages

R has it's own package management mechanism so just run R and type the following commands:

 ddply, reshape and ggplot2 by Hadley Wickham (http://had.co. nz/)

```
install.packages("plyr")
  # or better: install.packages("dplyr")
install.packages("reshape")
# or better; install.packages("tidyr")
install.packages("ggplot2")
```

knitR by (Yihui Xie) http://yihui.name/knitr/

```
install.packages("knitr")
```

IDE

Using R interactively is nice but quickly becomes painful so at some point, you'll want an IDE.

Emacs is great but you'll need Emacs Speaks Statistics

sudo apt-get install ess

In this tutorial, I will briefly show you rstudio (https://www.rstudio.com/) and later how to use org-mode

Outline

R/knitr Crash Course

General Introduction

Reproducible Documents: knitR

Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyi

Ggplot2

Reshape and tydiR

Now let's play!

Conclusion

Rstudio screenshot

Reproducible analysis in Markdown + R

- Create a new R Markdown document (Rmd) in rstudio
- R chunks are interspersed with "`{r} and "'
- Inline R code: 'r sin(2+2)'
- You can knit the document and share it via rpubs
- R chunks can be sent to the top-level with Alt-Ctrl-c
- I usually work mostly with the current environment and only knit in the end
- Other engines can be used (use rstudio completion)

```
1 '''{r engine='sh'}
2 ls /tmp/
3 '''
```

- Makes reproducible analysis as simple as one click
- Great tool for quick analysis for self and colleagues, homeworks, ...

Reproducible articles with $\angle ATEX + R$

- Create a new R Sweave document (Rnw) in rstudio
- R chunks are interspersed with <<>>= and @
- You can knit the document to produce a pdf
- You'll probably quickly want to change default behavior (activate the cache, hide code, ...). In the preembule:

```
1 <<echo=FALSE>>=
2 opts_chunk$set(cache=TRUE,dpi=300,echo=FALSE,fig.width=7,
3 warning=FALSE,message=FALSE)
4 @
```

• Great for journal articles, theses, books, ...

Outline

R/knitr Crash Course

General Introduction
Reproducible Documents: knitR

Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyr Ggplot2

Reshape and tydiR

Now let's play!

Conclusion

Data frames

A data frame is a data tables (with columns and rows). $\tt mtcars$ is a built-in data frame that we will use in the sequel

```
head(mtcars);
```

```
mpg cyl disp hp drat wt qsec vs am gear car

2 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4

3 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4

4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4

5 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3

6 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
```

18.1 6 225 105 2.76 3.460 20.22 1 0

You can also load a data frame from a CSV file:

```
1 df <- read.csv("http://foo.org/mydata.csv", header=T,
2 strip.white=TRUE);</pre>
```

You will get help by using ?:

```
1 ?data.frame
2 ?rbind
3 ?cbind
```

7 Valiant

Exploring Content (1)

```
names(mtcars);
1 [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs"
                                                            "am"
2 [11] "carb"
str(mtcars);
'data.frame': 32 obs. of 11 variables:
  $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
3 $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
4 $ disp: num 160 160 108 258 360 ...
5 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
6 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
7 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
  $ qsec: num 16.5 17 18.6 19.4 17 ...
  $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
  $ am : num 1 1 1 0 0 0 0 0 0 0 ...
0 1
s gear: num 4 4 4 3 3 3 3 4 4 4 ...
2 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Exploring Content (2)

224 02 2 000

```
1 dim(mtcars);
2 length(mtcars);
1 [1] 32 11
2 [1] 11
summary(mtcars);
                cyl
                           disp hp
1 mpg
2 Min. :10.40
               Min. :4.000
                             Min. : 71.1
                                           Min. : 52.0
3 1st Qu.:15.43
               1st Qu.:4.000 1st Qu.:120.8
                                           1st Qu.: 96.5
4 Median :19.20
               Median :6.000
                             Median : 196.3
                                           Median : 123.0
5 Mean :20.09
               Mean :6.188
                             Mean :230.7
                                           Mean :146.7
6 3rd Qu.:22.80
               3rd Qu.:8.000
                             3rd Qu.:326.0
                                           3rd Qu.:180.0
7 Max. :33.90
               Max. :8.000
                             Max. :472.0
                                           Max. :335.0
8 drat
               wt
                             qsec
                                                VS
9 Min. :2.760
               Min. :1.513
                             Min. :14.50
                                           Min. :0.0000
o 1st Qu.:3.080
               1st Qu.:2.581
                            1st Qu.:16.89
                                           1st Qu.:0.0000
Median :3.695
               Median :3.325
                             Median :17.71
                                           Median : 0.0000
                                           Mean
12 Mean :3.597
               Mean :3.217
                             Mean :17.85
                                                 :0.4375
                                           3rd On 1 0000 16 / 48
```

2~4 0. .10 00

2~4 0. . . 2 610

Exploring Content (3)

plot(mtcars[names(mtcars) %in% c("cyl","wt","disp","qsec","gear")])

Accessing Content

```
1 mtcars$mpg
1 [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17
2 [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30
3 [31] 15.0 21.4
1 mtcars[2:5,]$mpg
1 [1] 21.0 22.8 21.4 18.7
1 mtcars[mtcars$mpg == 21.0,]
   mpg cyl disp hp drat wt qsec vs am gear carb
2 Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
3 Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
1 mtcars[mtcars$mpg == 21.0 & mtcars$wt > 2.7,]
  mpg cyl disp hp drat wt qsec vs am gear carb
2 Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
```

Extending Content

hist(mtcars\$cost,breaks=20);

Take away Message

- R is a great tool but is only a tool. There is no magic. You need to understand what you are doing and get a minimal training in statistics
- It is one of the building block of reproducible research (the reproducible analysis block) and will save you a lot of time
- It provides you an access to any statistical method you ever dreamt of
- Read at least Jain's book: The Art of Computer Systems Performance Analysis
- There are introductory online courses (from John Hopkins university) on coursera which you may want to follow

Outline

R/knitr Crash Course
 General Introduction
 Reproducible Documents: knitR
 Introduction to R

Needful R Packages by Hadley Wickam Plyr And Dplyr

> Ggplot2 Reshape and tydiR Now let's play! Conclusion

plyr: the Split-Apply-Combine Strategy

Have a look at http://plyr.had.co.nz/09-user/ for a more detailed introduction.

plyr: Powerful One-liners

```
1 library(plyr)
mtcars_summarized = ddply(mtcars,c("cyl","carb"), summarize,
       num = length(wt), wt_mean = mean(wt), wt_sd = sd(wt),
      qsec_mean = mean(qsec), qsec_sd = sd(qsec));
5 mtcars_summarized
   cyl carb num wt_mean wt_sd qsec_mean qsec_sd
2 1 4 1 5 2.151000 0.2627118 19.37800 0.6121029
3 2 4 2 6 2.398000 0.7485412 18.93667 2.2924368
4 3 6 1 2 3.337500 0.1732412 19.83000 0.5515433
5 4 6 4 4 3.093750 0.4131460 17.67000 1.1249296
6 5 6 6 1 2.770000
                       NA
                                 15.50000
                                               NA
7 6
     8 2 4 3.560000 0.1939502 17.06000 0.1783255
     8 3 3.860000 0.1835756 17.66667 0.3055050
8 7
9 8
     8 4 6 4.433167 1.0171431 16.49500 1.4424112
             1 3.570000
                             NA
                                 14.60000
                                               NA
```

4

5

6

plyr next generation = dplyr

It's much much faster and more readable. The tutorial is great...

```
1 library(dplyr)
2 mtcars %>% group_by(cyl,carb) %>%
            select(wt,qsec) %>%
            summarise(num = n(),
 wt_{mean} = mean(wt), wt_{sd} = sd(wt),
   qsec_mean = mean(qsec), qsec_sd = sd(qsec)) %>%
            filter(num>=1)
```

```
2 Groups: cyl
  cyl carb num wt_mean wt_sd qsec_mean qsec_sd
5 1 4 1 5 2.151000 0.2627118 19.37800 0.6121029
```

Source: local data frame [9 x 7]

6 2 4 2 6 2.398000 0.7485412 18.93667 2.2924368 7 3 6 1 2 3.337500 0.1732412 19.83000 0.5515433

24 / 48

Outline

R/knitr Crash Course
 General Introduction
 Reproducible Documents: knitR
 Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyr

Ggplot2

Reshape and tydiR Now let's play! Conclusion

ggplot2: Modularity in Action

- ggplot2 builds on plyr and on a modular grammar of graphics
- obnoxious function with dozens of arguments
- combine small functions using layers and transformations
- aesthetic mapping between observation characteristics (data frame column names) and graphical object variables
- an incredible documentation: http://docs.ggplot2.org/current/

ggplot2: Illustration (1)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=cyl)) +
geom_point();
```


ggplot2: Illustration (2)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl))) +
geom_point();
```


ggplot2: Illustration (3)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl),
shape = factor(gear))) + geom_point() + theme_bw() +
geom_smooth(method="lm");
```


ggplot2: Illustration (4)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl),
shape = factor(gear))) + geom_point() + theme_bw() +
geom_smooth(method="lm") + facet_wrap(~ cyl);
```


ggplot2: Illustration (5)

```
ggplot(data = movies, aes(x=year,y=rating,group=factor(year))) +
geom_boxplot() + facet_wrap(~Romance) + theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
panel.margin = unit(2, "lines"));
```


ggplot2: Illustration (6)

```
ggplot(movies, aes(x = rating)) + geom_histogram(binwidth = 0.5)+
facet_grid(Action ~ Comedy, labeller=mf_labeller) +
theme_bw() + theme(panel.margin = unit(.5, "lines"));
```


Outline

R/knitr Crash Course
 General Introduction
 Reproducible Documents: knitR
 Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyr Ggplot2

Reshape and tydiR

Now let's play! Conclusion

"Messy" data

When using ggplot or plyr, your data may not in the right shape, in which case you should give a try to reshape/melt

```
messy <- data.frame(
  name = c("Wilbur", "Petunia", "Gregory"),
  a = c(67, 80, 64),
  b = c(56, 90, 50)

messy</pre>
```

3 2 Petunia 80 90 4 3 Gregory 64 50

name a b 2 1 Wilbur 67 56

- a and b are two different types of drugs and the values correspond to heart rate
- ggplot faceting or coloring based on the drug type is a pain
- we need a way to make "wide" data longer

Reshape

```
1 library(reshape)
cleaner = melt(messy,c("name"))
names(cleaner)=c("name","drug","heartrate")
4 cleaner
      name drug heartrate
2 1 Wilbur
                       67
              а
3 2 Petunia a
                      80
4 3 Gregory a
                       64
5 4 Wilbur b
                       56
           b
                       90
6 5 Petunia
7 6 Gregory
            b
                       50
```

Tidyr

Just like plyr, reshape is a little magical. tidyr is the new generation (faster, more coherent). Again, the *tutorial* is great.

```
1 library(tidyr)
2 library(dplyr)
3 messy %>% gather(drug, heartrate, -name)
name drug heartrate
2 1 Wilbur a
                   67
3 2 Petunia a
             80
4 3 Gregory a
             64
5 4 Wilbur b
             56
6 5 Petunia b
             90
         Ъ
                   50
7 6 Gregory
```

Hint: Avoid mixing old-generation with new-generation as it overrides some function names and leads to weird behaviors

Outline

R/knitr Crash Course
 General Introduction
 Reproducible Documents: knitR
 Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyr

Dochana and tydip

Now let's play!

Conclusion

Summarizing information

You may like these cheat sheets:

https://www.rstudio.com/resources/cheatsheets/

```
df = read.csv("data/set1.csv", header=T)
# Alternatively: read.csv("https://raw.githubusercontent.com/
# alegrand/SMPE/master/lectures/data/set1.csv")
head(df,n=2)
```

A B
2 1 7.256717 8.261171

2 3.813100 4.335301

Get the following summary using plyr/reshape or dplyr/tydir:

1 Source: local data frame [2 x 6]

Alternative num mean sd min max

A 40 4.903817 1.544423 2.400016 9.172525

B 40 5.783643 1.542987 3.539874 10.027147

38 / 48

Plot the data

Alleviate over-plotting

Avoid over-plotting

Add summary information

Add more standard summaries

Or depict confidence intervals

Or use histograms...

Be careful with fancy plots you do not fully understand!

Outline

R/knitr Crash Course
 General Introduction
 Reproducible Documents: knitR
 Introduction to R

Needful R Packages by Hadley Wickam

Plyr And Dplyr Ggplot2 Reshape and tydiR Now let's play!

Conclusion

Take away Message

- R, ggplot and other such tools are incredibly powerful for presenting data. They are much more high level than any other tools I have seen so far.
- Mastering it will save you a lot of time as it will allow to look at your data through different angles and thus check many hypothesis and present them in the best possible way
- Read at least Jain's book: The Art of Computer Systems Performance Analysis
- However, you may have started understanding that a visualization is meant to check or to illustrate one particular aspect and that this "aspect" relies on a mathematical model. I will thus explain you in the next lecture what this model is.

To do for the Next Time: Use what you just learned to improve your data analysis, the article you're currently writing, . . .