

1

2

3

1

2

3

1

2

** 7				
We	α	01	m	
`VV				-

1. A method for generating a cryptographic key using at least one parameter comprising the steps of:

retrieving at least one cryptographic share from a memory location identified as a function of said at least one parameter; and

generating a chyptographic key based on said at least one cryptographic share.

- 2. The method of claim 1 wherein said at least one retrieved cryptographic share is encrypted, said method further comprising the step of:
- decrypting said at least one cryptographic share.
- 1 3. The method of claim 2 wherein said step of decrypting comprises the step of: 2 decrypting using a value computed as a function of said at least one parameter.
 - 4. The method of claim 1 wherein said at least one retrieved cryptographic share is compressed, said method further comprising the step of: decompressing said at least one cryptographic share.
- 3
- 5. The method of claim 4 wherein said step of decompressing comprises the step 1 2 of:
- decompressing said at least one cryptographic share using an index of said 4 memory location.
 - 6. The method of claim 1 wherein said at least one parameter represents at least one measurement of a physical property.
- 7. The method of claim \(\) further comprising the step of: 1 2 generating at least one index as a function of said at least one parameter; and using said index to identify said memory location. 3

shares are encrypted.

1	8. The method of claim 7 further comprising the step of:
2	retrieving a cryptographic share from a memory location in the vicinity of said
3	memory location identified by said index.
1	9. The method of claim 7 wherein said step of generating at least one index
2	comprises the step of generating the same index for a set of parameter values.
1	10. The method of claim 9 wherein said set of parameter values are within a
2	predetermined range of values.
1	11. A data structure comprising:
2	a plurality of storage locations;
3	a first subset of said plurality of storage locations containing valid cryptographic
4	shares; and
5	a second subset of said plurality of storage locations containing invalid
6	cryptographic shares.
1	12. The data structure of claim 11 wherein said first subset of storage
2	locations correspond to storage locations which are expected to be accessed during a
3	legitimate computer resource access attempt.
1	13. The data structure of claim 11 wherein said second subset of storage location
2	correspond to storage locations which are expected to be accessed during an illegitimate
3	computer resource access attempt.
	1

14. The data structure of claim 11 wherein at least some of said cryptographic

3

4

1	15. The data structure of claim 14 wherein said encrypted cryptographic shares
2	are encrypted with a password.
1	16. The data structure of claim 11 wherein at least some of said cryptographic
2	shares are compressed.
1	17. The data structure of claim 11 wherein said cryptographic shares are
2	cryptographic shares of a polynomial secret sharing scheme.
1	18. The data structure of claim 11 wherein said cryptographic shares are
2	cryptographic shares of a vector space secret sharing scheme.
1	19. A method for maintaining a data structure which has valid cryptographic
2	shares stored in a plurality of locations, said method comprising the step of:
3	periodically changing the number of locations that contain valid cryptographic
4	shares.
1	20. The method of claim 19 wherein said step of changing the number of
2	locations that contain valid cryptographic shares comprises the step of:
3	storing invalid cryptographic shares in at least some locations which previously
4	contained valid cryptographic shares.
1	21. The method of claim 20 further comprising the step of:
2	storing said invalid cryptographic shares in locations which are not expected to be
3	accessed in connection with an authorized computer resource access attempt.

22. The method of claim 19 wherein said step of changing the number of locations that contain valid cryptographic shares comprises the step of: storing valid cryptographic shares in at least some locations which previously contained invalid cryptographic shares.

1	23. The method of claim 22 further comprising the step of:
2	storing said valid cryptographic shares in locations which are expected to be
3	accessed in connection with an authorized computer resource access attempt.
1	24. A method for generating a cryptographic key comprising the steps of:
2	measuring a plurality of keystroke features during entry of a password;
3	retrieving from a data structure a plurality of cryptographic shares as a function of
4	said plurality of keystroke features; and
5	generating a cryptographic key using said cryptographic shares.
1	25. The method of claim 24 wherein said cryptographic shares represent points
2	on a polynomial.
1	26. The method of claim 24 wherein said cryptographic shares represent vectors.
1	27. The method of claim 24 wherein said cryptographic shares are compressed.
1	28. The method of claim 27 wherein said cryptographic shares comprise y values
2	of points on a polynomial and the corresponding x values are derivable from a data
3	structure location.
1	29. The method of claim 24 further comprising the step of:
2	generating a plurality of indices as a function of said keystroke features; and
3	using said plurality of indices to identify locations within said data structure from
4	which to retrieve said cryptographic shares.
1	30. The method of claim 29 wherein said step of generating a plurality of indices
2	as a function of said keystroke features comprises the step of:
	- 1

3	for each of said keystroke features, generating one of two indices as a function of
4	a threshold value.
1	31. The method of claim 29 wherein said step of generating a plurality of indices
2	as a function of said keystroke features comprises the step of:
3	for each of said keystroke features, generating one of a plurality of indices as a
4	function of a plurality of threshold values.
1	32. The method of claim 24 wherein said cryptographic shares stored in said data
2	structure are encrypted, said method further comprising the step of:
3	decrypting said cryptographic shares using said password.
1	33. The method of claim 24 further comprising the steps of:
2	maintaining a history file containing information relating to prior successful key
3	generation attempts; and
4	based on said history file, storing invalid cryptographic shares in data structure
5	locations which are not expected to be accessed during subsequent legitimate key
6	generation attempts.
1	34. A method for generating a cryptographic key using a plurality of parameters
2	having a sequence and representing physical measurements, said method comprising the
3	steps of:
4	for each of said plurality of parameters:
5	retrieving an encrypted cryptographic share from a memory
6	location as a function of the sequence of said parameter;
7	decrypting said encrypted cryptographic share with a function of
8	said parameter; and
9	generating a cryptographic key using said decrypted cryptographic shares.

37. A data structure for use in generating a cryptographic key based on *n* parameters representing physical measurements, said data structure comprising:

n storage locations each associated with a respective one of said n parameters,

n storage locations each associated with a respective one of said n parameters, each particular storage location containing an encrypted cryptographic share which was encrypted using an expected value of a function of the parameter associated with said particular storage location.

- 38. The data structure of claim 37 wherein said function is a hash function.
- 39. The data structure of claim 37 wherein said cryptographic key may be generated using less than n cryptographic shares.