TINF - Ponovljeni rok 24.04.2013.

- 1. Zadan je diskretni komunikacijski sustav kao na slici. Izvorište (opisano slučajnom varijablom X) generira simbole iz skupa simbola {0,1}. Vjerojatnosti pojavljivanja izvorišnih simbola su p(x=0)=p₀, odnosno p(x=1)=p₁ i p₀+p₁=1. Simboli se potom prenose preko bezmemorijskog kanala uz djelovanje aditivnog šuma Z. Neka je Z slučajna varijabla (neovisna o X) koja poprima vrijednosti iz skupa {-1,0,1} s jednakom vjerojatnošću te neka se na odredištu pojavljuju simboli y=x+z. Također preko preklopke A moguće je dobiti informaciju o apsolutnom iznosu aditivnog šuma na kanalu tj. w=|z|.
 - a. Odredite kapacitet danog kanala kada je preklopka A otvorena tj kada odrediše nema inf o apsolutnom iznosu aditivnog šuma
 - b. Odredite kapacitet danog kanala kada je preklopka A zatvorena tj kada odredište ima inf o apsolutnom iznosu aditivnog šuma. Napomena: ukupnu transinformaciju računajte prema izrazu I(X;Y|w) = ∑ I(X;Y|W=w)* p(W=w)

2. I.dio Odredite koji su od navedenih kodova jednoznačno dekodabilni i/ili prefiksni. Objasnite!

simboli	kod A	kod B
X ₁	1	1
X ₂	01	10
X ₃	001	100
X ₄	000	100

II.dio Uzimajući polazni rječnik D gdje je D[1]=a, D[2]=b, D[3]=c i D[4]=d dekodirajte kodiranu poruku 3 5 2 kodiranu s algoritmom LZW.

III.dio Neka je X slučajna varijabla koja poprima vrijednosti iz skupa {1,2,3} tj

neka je:

1, s vjerojatnošću 0,5

2, s vj. 0,125
3, s vj. 0,375

Koder informacija dani skup simbola kodira kao:
$$C(x)$$
=

0, ako je x=1
10, ako je x=2
11, ako je x=3

Neka je Z beskonačni slijed binarnih simbola nastao spajanjem odgovarajućih kodiranih riječi (npr. 122 postaje 01010). Odredite entropiju H(Z)!

3. I. dio Zadana je funkcija gustoće vjerojatnosti razine signala x(t) kao

$$f_x = \begin{cases} 0.5 - 0.25x & za -2 \ V \le x \le 2 \ V \\ 0 & inače \end{cases}$$

Uzorci signala se dovode na ulaz kvantizatora koji koristi 4 kvantiz. razine (L=4). Kvantizirani uzorci signala se kodiraju Huffmanovim kodom. Napomena: kvantizator provodi jednoliko kvantiziranje i amplitude uzoraka nalaze se u intervalu [-2 V, 2 V]

- a. Odredite srednju duljinu kodne riječi Huffman. Kodiranja
- b. Odredite srednju kvadratnu pogrešku nastalu uslijed kvantiziranja. Napomena: srednju kvadratnu pogrešku računamo prema izrazu

$$\overline{(N_q)^2} = \sum_{X_{qi}} \int_{x_{qi}}^{x_{qi} + \Delta/2} (x - x_{qi})^2 f_x(x) dx$$

x_{qi} = sredina i-te kvantizacijske razine

II.dio Zadan je periodični signal y(t). Odredite je li y(t) signal snage, energije ili niti jedno. Dokaži! (ako se dobro sjećam je ovako izgledao signal)

4. I.dio Zadan je linearni blok kod K s matricom provjere pariteta

 $H = [dimenzija 6 \times 20]$ (nije mi se dalo prepisivat sve te brojke xD)

- a. Odredi kodnu brzinu
- b. Odredi barem 1 kodnu riječ koda K (različitu od 0) koja ima minimalnu težinu. Obrazloži!

II.dio Zadana je matrica provjere pariteta H linearnog blok koda [7,3]

$$H = \begin{pmatrix} 1001011\\0101110\\0010111\\111111 \end{pmatrix}$$

Dekoder danog koda koristi sindromsko dekodiranje koje mu osigurava ispravljanje svih jednostrukih kao i svih SUSJEDNIH 2x pogrešaka. Neka je primljena kodna riječ c' = [0000011]. Odredite najvjerojatniju poslanu kodnu riječ c.

5. Diskretno bezmemorijsko izvorište X generira simbole iz skupa simbola od m elemenata s vjerojatnostima pojavljivanja p₁, p₂, ..., pm, pi ≥ 0 ; i=1, ... ,m i ∑ pi = 1 (i ide od 1 do m) . Neka je q neka druga razdioba vjeroj. Pojavljivanja m-1 elemanata i neka je q₁=p₁, q₂=p₂, ..., qm-₂=pm-₂ i qm-₁= pm-₁ + pm Odredite H(X) u ovisnosti o H(q), pm, pm-₁ te entropiji

$$H \left(\begin{array}{c} p_{m-1} \\ p_{m-1} + p_m \end{array} \right), \quad \frac{p_m}{p_{m-1} + p_m}$$

gdje je općenito gledano H(a,b)= -alog₂a – blog₂b.