Course Code: BMEG 3105

Course Title: Data Analytics for Personalized Genomics and Precision medicine

Lecture Topic: NN

Scribed by Hu Jingjie (1155157229@link.cuhk.edu.hk)

### Contents

- 1. Feature selection and dimension reduction
- 2. Principal components analysis
- 3. Neural networks
- 4. Activation functions

# Feature selection and dimension reduction



choose the best subset genes from all the genes

# Principal components analysis

- Filter
  - Classification performance is not involved in the selection loop
  - ➤ Variance thresholds: Features with a higher variance contain more useful information · Age, Height
  - ➤Information gain: Features should be different

| - Wannau                                                  | Person | Height(<br>m) | Weight(<br>kg) |
|-----------------------------------------------------------|--------|---------------|----------------|
| • Wrapper                                                 | P1     | 1.79          | 75             |
| ➤ Using the classification performance to guide selection | P2     | 1.64          | 54             |
| Computational expensive                                   | Р3     | 1.70          | 63             |
| ➤ Recursive feature elimination                           | P4     | 1.88          | 78             |
| > Sequential feature selection                            | P5     | 1.75          | 70             |

1st capture max variance 2nd capture max amount of residual variance, at orthogonal to the first

- make the average of each feature 0. Then, we get X'

$$\Sigma = \frac{1}{n-1} {X'}^T X'$$
,  $\Sigma$ : a  $d$  by  $d$  matrix

- $\clubsuit$  Find the eigenvectors and eigenvalues of  $\Sigma$
- **❖** M eigenvectors with the M largest eigenvalues ➤ Principal components

| Person | Height<br>(m) | Weight<br>(kg) | Age |
|--------|---------------|----------------|-----|
| P1     | 1.79          | 75             | 20  |
| P2     | 1.64          | 54             | 20  |
| P3     | 1.70          | 63             | 20  |
| P4     | 1.88          | 78             | 20  |
| P5     | 1.75          | 70             | 20  |

❖ Project the data to the M eigenvectors' direction

$$\Rightarrow \hat{X} = X'P$$

# **Neural networks**

# the relationship between different variables is much more complicated than simple linear combination





image -> label
why is this a dog (function)

(combination of lot of logistic regression)

Universal approximation theorem:  $[sol(s^n)]$  Let [a,b] be a finite segment of the real line, s=b-a and  $\lambda$  be any positive number. Then one can algorithmically construct a computable sigmoidal activation function  $\sigma: \mathbb{R} \to \mathbb{R}$ , which is infinitely differentiable, strictly increasing on  $(-\infty, s)$ ,  $\lambda$ -strictly increasing on  $[s, +\infty)$ , and satisfies the following properties:

1) For any  $f\in C[a,b]$  and arepsilon>0 there exist numbers  $c_1,c_2, heta_1$  and  $heta_2$  such that for all  $x\in[a,b]$ 

$$|f(x)-c_1\sigma(x-\theta_1)-c_2\sigma(x-\theta_2)|<\varepsilon$$

2) For any continuous function F on the d-dimensional box  $[a,b]^d$  and  $\varepsilon>0$ , there exist constants  $e_p,\, e_{pq},\, \theta_{pq}$  and  $\zeta_p$  such that the inequality

$$\left|F(\mathbf{x}) - \sum_{p=1}^{2d+2} e_p \sigma \left( \sum_{q=1}^d c_{pq} \sigma(\mathbf{w}^q \cdot \mathbf{x} - \theta_{pq}) - \zeta_p \right) \right| < \varepsilon$$

holds for all  $\mathbf{x}=(x_1,\dots,x_d)\in[a,b]^d$ . Here the weights  $\mathbf{w}^d,q=1,\dots,d$ , are fixed as follows:  $\mathbf{w}^1=(1,0,\dots,0),\quad \mathbf{w}^2=(0,1,\dots,0),\quad \dots,\quad \mathbf{w}^d=(0,0,\dots,1).$ 

In addition, all the coefficients  $e_p$ , except one, are equal.

Here " $\sigma$ :  $\mathbb{R} \to \mathbb{R}$  is  $\lambda$ -strictly increasing on some set X" means that there exists a strictly increasing function u:  $X \to \mathbb{R}$  such that  $|\sigma(x) - u(x)| \le \lambda$  for all  $x \in X$ . Clearly, a  $\lambda$ -increasing function behaves like a usual increasing function as  $\lambda$  gets small. In the "depth-width" terminology, the above theorem says that for certain activation functions depth-2 width-2 networks are universal approximators for univariate functions and depth-3 width-(2d+2) networks are universal approximators for d-variable functions (d>1).



# the weight between an an an ar and x y is different

# =) increase complexity of function

C. Add two bias nodes in the input layer X

D. Add an additional feature in the input layer

E. Change the linear function to non-linear activation function

linear - just one layers

# **Activation functions**







### **Different activation functions-ReLU**



# **Different activation functions-Softmax**













 $ReLU(x) = \max(x, 0)$ 



Sklearn









