Math 505 HW2

Anonymous

January 28, 2024

Definition 1 (Lang IV.6). Define the weight of a monomial $X_1^{v_1} \cdots X_n^{v_n}$ to be $v_1 + 2v_2 + \cdots + nv_n$, and the weight of a polynomial $g(X_1, \cdots, X_n)$ to be the max of the weights of each of it's monomials.

1. (a) Clearly the theorem is true for n = 1, since in that case we only have one symmetric polynomial being x_1 , and every symmetric polynomial is of course of the form $f(x_1)$ (since every polynomial is of that form). Suppose the claim is true for n - 1, with the added condition that if f is symmetric of degree d, then we can find a weight $\leq d$ polynomial $g \in R[y_1, \cdots, y_n]$ such that $f = g(e_1, \cdots, e_n)$. Now, for the symmetric polynomials on n variables, suppose that the theorem is true for all polynomials of degree $\leq d$ for some $d \geq 1$ (the case d = 0 is clear, because given a constant polynomial $f(x_1, \ldots, x_n) = c$, we can just take $F(y_1, \ldots, y_n) = c$ —this is induction on d). If we write,

$$P(t,x_1,\ldots,x_n)=(t-x_1)\cdots(t-x_n)$$

We can see that,

$$P(t, x_1, \dots, x_{n-1}, 0) = (t - x_1) \cdots (t - x_{n-1})t$$

= $t^n - e_1(x_n = 0)t^{n-1} + e_2(x_n = 0)t^{n-2} + \dots + (-1)^n e_n(x_n = 0)t$

Where $f(x_n = 0) := f(x_1, ..., x_{n-1}, 0)$. Dividing out by t shows that the $e_k(x_n = 0)$ for $1 \le k \le n-1$ are the elementary symmetric polynomials on n-1 variables. Now, let $f(x) \in R[x_1, ..., x_n]$ be a degree d symmetric polynomial, and let $g(x_1, ..., x_{n-1}) := 0$

 $f(x_n = 0)$. Notice first that g is symmetric on x_1, \ldots, x_{n-1} , and has degree $\leq d$, so by

induction on n we can find a polynomial $F \in R[y_1, ..., y_{n-1}]$ with weight $\leq d$ such that $g(x_1, ..., x_{n-1}) = F(e_1(x_n = 0), ..., e_{n-1}(x_n = 0))$. We consider the "lift" of this polynomial $h(x_1, ..., x_n) = F(e_1, ..., e_{n-1})$ (we are taking away the evaluation at 0).

Notice that if $e_1^{\alpha_1} \cdots e_n^{\alpha_n}$ is a monomial of F, it's degree is $\alpha_1 + 2\alpha_2 + \cdots + n\alpha_n$ since $\deg e_i = i$ (explicit calculation). The max of all these is just the weight, which is $\leq d$ by hypothesis, so $\deg h \leq d$.

Now, the idea is that we have f "up to" addition by a power of e_n . Thus, we consider $l(x_1, \ldots, x_n) := f(x_1, \ldots, x_n) - h(x_1, \ldots, x_n)$, and notice that $l(x_n = 0) = f(x_n = 0) - g(x_1, \ldots, x_n) = f(x_n = 0) - f(x_n = 0) = 0$, and, since $\deg h \le d$, $\deg l \le d$ (This is where the weight portion of the claim comes in). Since l is symmetric, $l(x_n = 0) = l(x_k = 0) = 0$ for every other k, so by the factor theorem $x_k \mid l$ for each $1 \le k \le n$, which shows that $(x_1 \cdots x_n) \mid l$. Notice then that $l/(x_1 \cdots x_n)$ has degree $\le d - n < d$, so we may apply the inductive hypothesis (on d) to find a polynomial $T \in R[y_1, \ldots, y_n]$ of weight $\le d - n$ such that $l/(x_1 \ldots x_n) = T(e_1, \ldots, e_n)$. Taking

$$T' = y_n T(y_1, \dots, y_n) + F(y_1, \dots, y_{n-1}, y_n)$$

will yield $f = T'(e_1, ..., e_n)$ (Notice that the last y_n of F is technically unnecessary). The $y_n T(y_1, ..., y_n)$ term has weight $n + \text{weight}(T(y_1, ..., y_n)) \le n + d - n = d$, and the latter term has weight $\le d$, so the sum has weight $\le d$, completing the proof.

(b) Again we prove the claim by induction on n. e_1 is clearly algebraically independent, so suppose the claim is true for some $n \ge 1$. Suppose instead that there was a polynomial $F \in R[y_1, \dots, y_{n+1}]$ so that $F(e_1, \dots, e_{n+1}) = 0$. If $y_{n+1} \mid F$, we can see that $F'(y_1, \dots, y_{n+1}) = \frac{1}{y_{n+1}} F(y_1, \dots, y_{n+1})$ will also have $F'(e_1, \dots, e_{n+1}) = 0$ everywhere, since otherwise F would be a product of two non-zero polynomials and hence itself nonzero. Letting α be the highest power of y_{n+1} appear in every monomial of F and replacing F with F/y_{n+1}^{α} will yield a (non-zero) polynomial relation on e_1, \dots, e_{n+1} where at least one monomial of F is not divisible by y_{n+1} .

Now, $F(e_1, ..., e_{n+1})$ is a function of $X_1, ..., X_{n+1}$ which is equal to 0 everywhere, so in particular we can plug in $X_{n+1} = 0$ and the new F will still be 0 everywhere. In symbols, $F(e_1(x_{n+1} = 0), ..., e_{n+1}(x_{n+1} = 0)) = 0$. Since $e_{n+1}(x_{n+1} = 0) = 0$ (since $e_{n+1} = x_1 \cdots x_{n+1}$), $F(e_1(x_{n+1} = 0), ..., e_{n+1}(x_{n+1} = 0)) = F(e_1(x_{n+1} = 0), ..., e_n(x_{n+1} = 0), 0)$, so $T(y_1, ..., y_n) = F(x_1, ..., x_n, 0)$ is so that $T(e_1, ..., e_n) = 0$. If T were equivalently 0, then every monomial of F would be divisible by y_{n+1} , which we constructed above to not happen. Thus T is a relation on the elementary symmetric polynomials on n-1 variables, a contradiction.

2. (a) This theorem follows from these two simple claims:

Claim.
$$S_n = \langle (\alpha_1 \ \alpha_2), (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n) \rangle.$$

Proof. Let σ be the permutation sending α_i to i, and let $\varphi(\tau) = \sigma^{-1}\tau\sigma$. Then $\varphi(\langle (\alpha_1 \alpha_2), (\alpha_1 \alpha_2 \cdots \alpha_n) \rangle) = \langle (1 2), (1 2 \cdots n) \rangle = S_n$, so by order considerations and since φ is an automorphism $\langle (\alpha_1 \alpha_2), (\alpha_1 \alpha_2 \cdots \alpha_n) \rangle = S_n$.

Claim. If $\tau = (\alpha_1 \ \alpha_2)$ is any transposition and σ is any *p*-cycle, then some power of σ , which is another *p*-cycle, sends α_1 to α_2 .

Proof. Since p is prime, σ^n has order p. It can be factored into the product of disjoint cycles, each of which has order dividing p. Thus precisely one has order p and the rest have order 1, which shows that σ^n is just a p-cycle. Let $\mathcal{F} = \{ \sigma(\alpha_1), \cdots, \sigma^{-(p-1)}(\alpha_1) \}$, and $1 \le m < n \le p-1$. If somehow $\sigma^m(\alpha_1) = \sigma^n(\alpha_1)$, then $\sigma^{n-m}(\alpha_1) = \alpha_1$, a contradiction since σ^{n-m} is a p-cycle. Thus $|\mathcal{F}| = p-1$, not containing α_1 , so $\mathcal{F} = \{ \alpha_2, \ldots, \alpha_n \}$. In particular, there is an n so that $\sigma^n(\alpha_1) = \alpha_2$.

Minimality is obvious as removing either generator would reduce the group to size p or 2 respectively, which is (strictly) less than p! for odd p.

(b) Notice that (13)(1234)(13) = (4321), so if we let x = (13) and a = (1234), we have the following properties:

$$a^4 = x^2 = e$$
, $xax^{-1} = a$

We also recall that $D_8 = \langle r, s \mid r^4 = s^2 = e, xax^{-1} = a \rangle$. Thus we have a surjective homomorphism

$$\varphi: \langle (13), (1234) \rangle \to D_8$$

$$(13) \mapsto s$$

$$(1234) \mapsto r$$

Since every element of D_8 is of the form $s^a r^b$, we only have to check injectivity on those elements. Indeed, if $\varphi(x^c a^b) = \varphi(x^d a^w)$, then $s^{d-c} = \varphi(x^{d-c}) = \varphi(a^{b-w}) = r^{b-w}$. Since $\langle s \rangle \cap \langle r \rangle = \langle 1 \rangle$, we must have $\varphi(x^{d-c}) = \varphi(a^{b-w}) = e$. The only power of a mapping to e is e, and similarly the only power of x mapping to e is e, which shows injectivity. Thus $\langle (13), (1234) \rangle \cong D_8$, and in particular $8 = |\langle (13), (1234) \rangle| < |S_4| = 4! = 24$. For the curious reader, the second claim from part (a) fails since $(1234)^2 = (13)(24)$, so no power of (1234) is a 4-cycle sending 1 to 3.

(c) This proof has multiple parts. First,

Claim.
$$S_n = \langle (12), (23), (34), \dots, (n-1 n) \rangle$$
.

Proof. Clearly (12) = (12). Assume that (12)(34) ··· (n-1 n) = (1234 ··· n) (where multiplication is taken from right to left) for some $n \ge 2$. Then (12)(34) ··· (n-1 n)(n n+1) = (1234 ··· n)(n n+1) = (n n+1 123 ···), which completes this subclaim. Since $S_n = \langle (12), (123 ··· <math>n) \rangle$, this completes the proof of the claim. □

Claim. $\{(12), (34), \cdots, (n-1 n)\}$ is a minimal system of generators.

Proof. We need only show it is minimal. If you throw away (12) or $(n-1 \ n)$, the remaining elements cannot generate the whole group since they either fix 1 or n respectively (since 1 and n don't show up in any transposition). The more important and more general case follows now. Suppose we drop $(l \ l + 1)$ for some $2 \le l < n - 1$. Clearly this transposition is not a product of the transpositions

$$\{(l+1 \ l+2), \cdots, (n-1 \ n)\}$$

Since each of those fix l (so any product fixes l). Similarly (l l + 1) is not a product of the transpositions

$$\{(12), \cdots, (l-1 l)\}$$

Notice at last that if $(l\ l+1)$ were a product of transpositions of the above form, we could group transpositions with values $\leq l$ on the left and values $\geq l+1$ on the right since disjoint cycles commute. To be a transposition, precisely one of these groups would have to be a transposition, otherwise you would get a product of two disjoint cycles. We have shown above that these products cannot be $(l\ l+1)$, which completes the proof.

The above two claims shows that S_n has a minimal system of generators for the extreme cases of k = 2, n - 1.

The idea behind getting the remaining k is the following: If a transposition and an n-cycle is minimal, and only transpositions is minimal, maybe some transpositions and a k-cycle is minimal.

Indeed, we have our final claim.

Claim. { $(12 \cdots k)$, $(k \ k + 1)$, \cdots , $(n - 1 \ n)$ } is a minimal system of generators for S_n .

Proof. First, notice that it is in fact a system of generators– $(12 \cdots k)(k \ k+1) \cdots (n-1 \ n) = (123 \cdots n)$, so we can use the first claim of part (a). The proof of minimality is almost the same as last time. Indeed, if we drop the k-cycle or the last transposition, the rest of the generators fix 1 or n respectively, hence cannot generate the whole group. If we instead dropped $(l \ l+1)$ for some $k \le l < n-1$, we again have 3 cases. The above transposition is not a product of $(123 \cdots k)$, $(k \ k+1)$, ..., $(l-1 \ l)$, since each of those fix l+1 so any product does. Similarly, $(l \ l+1)$ is not a product of $(l+1 \ l+2)$, ····, $(n-1 \ n)$ since each of those fix l. For a general product, commute the disjoint transpositions on the left/right resp. depending on if they have values ≤ l or ≥ l+1 only. For powers of the k-cycle, similarly commute it to the left. Once again since we have a product of disjoint cycles, to get a transposition we would need precisely one of the groups to be a transposition (and the other to be the identity). The above cases show this is not possible, which completes the proof. □

Finally notice that this system of generators has n-1-k+1=n-k elements for each $2 \le k \le n-1$.