Week 2 — solutions

1 Open Questions

Exercise 1. (*) (Rosen, exercise 8, 1.4 in 8^{th} edition) Translate these statements into English, where R(x) is "x is a rabbit" and H(x) is "x hops" and the domain consists of all animals.

- 1. $\forall x (R(x) \to H(x))$: All rabbits hop.
- 2. $\exists x (R(x) \to H(x))$: There is an animal that hops if it's a rabbit.
- 3. $\forall x (R(x) \land H(x))$: All animals are rabbits and also hop.
- 4. $\exists x (R(x) \land H(x))$: There is one rabbit that also hops.

Exercise 2. (**) (Rosen, exercise 9, 1.5 in 8^{th} edition) Let L(x,y) be the statement "x loves y", where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements:

1. Everybody loves Sharon.

 $\forall x \ L(x, \text{Sharon}).$

2. Everybody loves somebody.

 $\forall x \exists y \ L(x,y).$

3. There is somebody whom everybody loves.

 $\exists x \forall y \ L(y,x).$

4. Nobody loves everybody.

 $\forall x \exists y \ \neg L(x,y).$

5. There is somebody whom Daisy does not love.

 $\exists x \ \neg L(\text{Daisy}, x).$

6. There is somebody whom no one loves.

 $\exists x \forall y \neg L(y, x).$

7. There is exactly one person whom everybody loves.

 $\exists x \ (\forall y \ L(y,x) \land \forall z ((\forall w \ L(w,z)) \rightarrow z = x)).$

8. There are exactly two people whom Marsellus loves.

 $\exists x \exists y \ (x \neq y \land L(\text{Marsellus}, x) \land L(\text{Marsellus}, y) \land \forall z (L(\text{Marsellus}, z) \rightarrow (z = x \lor z = y))).$

9. Everyone loves himself or herself.

$$\forall x \ L(x,x).$$

10. There is someone who loves no one besides himself or herself.

$$\exists x \forall y \ (L(x,y) \to x = y).$$

Exercise 3. (*) (Rosen, exercise 16, sec. 1.4 in 8th edition) Determine the truth value of each of these statements if the domain consists of all integers.

- 1. $\exists x(x^2=2)$: There is no integer number that would satisfy this equation. Thus this is false.
- 2. $\exists x(x^2 = -1)$: The square root of a real number cannot be negative. Thus it is false.
- 3. $\forall x(x^2+2\geq 1)$: The lowest solution is 2 when x=0; all other solutions are greater than 2. Thus this is true.
- 4. $\forall x(x^2 \neq x)$: An example of this not holding true is when x = 1. Thus it is false.

Exercise 4. (*) (Rosen, exercise 26, sec. 1.5 in 8^{th} edition) Let Q(x,y) be the statement "x + y = x - y." If the domain for both variables consists of all integers, what are the truth values?

- 1. Q(1,1): x + y = x y, 1 + 1 = 1 1, 2 = 0 which is false.
- 2. Q(2,0): x + y = x y, 2 + 0 = 2 0, 2 = 2 which is true.
- 3. $\forall y Q(1,y): x+y=x-y, 1+y=1-y$ which is false (counterexample: y=2).
- 4. $\exists x Q(x,2): x + y = x y, x + 2 = x 2$ which is false.
- 5. $\exists x \exists y Q(x, y)$: It is true (Example: y = 0).
- 6. $\forall x \exists y Q(x, y)$: It is true (y = 0).
- 7. $\exists y \forall x Q(x, y)$: It is true (y = 0).
- 8. $\forall y \exists x Q(x, y)$: It is false.
- 9. $\forall x \forall y Q(x, y)$: It is false.

Exercise 5. (*) (Rosen, exercise 37, sec. 1.4 in 8th edition) Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.

- 1. $\forall x(x^2 \geq x)$: This is a true statement, so there is no counterexample.
- 2. $\forall x (x > 0 \lor x < 0)$: x = 0
- 3. $\forall x(x=1): x=2$

2 Exam Questions

Exercise 6. (**) Given the two statements below, where the domain of discourse is \mathbf{R} for both x and y,

$$\exists y \forall x (x \neq 0 \to xy = 1) \qquad \exists x \forall y (xy < 0 \to xy > 0)$$

- O They are both false.
- Only the first is true.
- \checkmark Only the second is true.
- O They are both true.

The first statement is "obviously incorrect" because not all non-zero x-values can be the inverse of some particular y-value. But let's do it more carefully: if the first statement is False, then its negation must be True. So, consider the negation of the first statement:

$$\neg (\exists y \forall x (x \neq 0 \to xy = 1)) \equiv \neg (\exists y \forall x (\neg (x \neq 0) \lor xy = 1))$$

$$\equiv \forall y \exists x (x \neq 0 \land \neg (xy = 1))$$

$$\equiv \forall y \exists x (x \neq 0 \land xy \neq 1).$$

We have to show that this final statement " $\forall y \exists x (x \neq 0 \land xy \neq 1)$ " is True: for y = 0 one can take any x with $x \neq 0$ (because xy = 0 and thus $xy \neq 1$), and for $y \neq 0$ one can take $x = \frac{2}{y}$ (because then $x \neq 0$ and xy = 2 and thus $xy \neq 1$). So, irrespective of the value of y, a non-zero x-value can be found such that xy is not equal to one, proving that indeed " $\forall y \exists x (x \neq 0 \land xy \neq 1)$ " is True. Because the negation of the first statement it True, the first statement is False.

For the statement " $\exists x \forall y (xy < 0 \rightarrow xy > 0)$ ", consider x = 0, then for all y it is the case that xy < 0 is False and thus " $xy < 0 \rightarrow xy > 0$ " is True. It follows that an x-value exists such that for all y-values the statement " $xy < 0 \rightarrow xy > 0$ " is True: thus the second statement is True.

Exercise 7. (**)

Consider the two statements below, where P(x,y) is a propositional function and the domain of discourse is $\mathbb{Z}_{\geq 0}$ for x, y and z:

$$(\exists y \forall x P(x,y)) \rightarrow (\forall x \exists y P(x,y))$$
 $(\neg \exists x \ x^x = x!) \rightarrow \forall y, z \ y \neq z.$

- O They are both false.
- Only the first is true.
- Only the second is true.
- ✓ They are both true.

If $\exists y \forall x \, P(x,y)$ is True, there is some value \tilde{y} (formally: use existential instantiation) such that $\forall x P(x,\tilde{y})$ is True. Thus (formally using existential generalization) $\forall x \exists y \, P(x,y)$. It follows that the first statement is True.

The statement $\neg \exists x \ x^x = x!$ is equivalent to $\forall x \ x^x \neq x!$. Because x = 0 is in the domain $\mathbf{Z}_{\geq 0}$ for x it follows from $\forall x \ x^x \neq x!$ (formally: use universal instantiation) that $0^0 \neq 0!$; but $0^0 = 1 = 0!$ so $\forall x \ x^x \neq x!$ is False. Because the statement "False $\rightarrow q$ " is True for any (logical) value q, it follows that the second statement is True.

Exercise 8. (**) Let E be a set of endpoints on a network, let P be a set of paths connecting those endpoints, and let C(p, x, y) be the proposition that path $p \in P$ connects endpoints x and y with $x, y \in E$. The statement "there are at least two paths connecting every two distinct endpoints on the network" can be expressed by

$$\bigcirc \ \, \forall x,y \in E \, \Big(x \neq y \to \exists p,q \in P \, \Big(p \neq q \land \big(C(p,x,y) \lor C(q,x,y) \big) \Big) \Big).$$

$$\bigcirc \ \, \forall x,y \in E \, \Big(x \neq y \land \exists p,q \in P \, \Big(p \neq q \land C(p,x,y) \land C(q,x,y) \big) \Big).$$

$$\checkmark \ \, \neg \Big(\exists x,y \in E \, \big(x \neq y \land \forall p,q \in P \, \big(p = q \lor \neg C(p,x,y) \lor \neg C(q,x,y) \big) \big) \Big).$$

$$\bigcirc \ \, \neg \Big(\exists x,y \in E \, \big(x \neq y \land \forall p,q \in P \, \big(p = q \land \neg C(p,x,y) \land \neg C(q,x,y) \big) \big) \Big).$$

Given any two distinct endpoints (i.e., $\forall x, y \in E \text{ if } x \neq y \text{ then } \dots$) there are at least two paths (i.e., $(x \neq y \rightarrow \exists p, q \in P \ (p \neq q \dots))$) connecting the two distinct endpoints (i.e., $(p \neq q \land C(p, x, y) \land C(q, x, y))$), leading to the complete logical expression

$$\forall x, y \in E \ (x \neq y \to \exists p, q \in P \ (p \neq q \land C(p, x, y) \land C(q, x, y))).$$

This is equivalent to

$$\neg\neg\Big(\forall x,y\in E\ \big(\neg(x\neq y)\vee\exists p,q\in P\ (p\neq q\wedge C(p,x,y)\wedge C(q,x,y))\big)\Big)$$

and thus to

$$\neg \Big(\exists x, y \in E \ \big(x \neq y \land \neg \exists p, q \in P \ \big(p \neq q \land C(p, x, y) \land C(q, x, y) \big) \big) \Big)$$

and finally to

$$\neg \Big(\exists x,y \in E \, \big(x \neq y \, \wedge \, \forall p,q \in P \, (p = q \vee \neg C(p,x,y) \vee \neg C(q,x,y))\big)\Big).$$

The other three possibilities can be seen to be wrong in various different ways.

Exercise 9. (**) Given the propositional function T(x), the statement $\exists!x T(x)$ is logically equivalent to

$$\checkmark \neg (\forall x [T(x) \rightarrow \exists y \neq x T(y)]).$$

- $\bigcap \exists x \forall y ((\neg T(y)) \lor (y = x)).$
- $\bigcirc \exists x (T(x) \lor \forall y [(\neg T(y)) \lor (y = x)]).$
- $\bigcirc \exists x (T(x) \land \forall y [T(y) \land (y=x)]).$

The second and third statements are True for the propositional function T(x) with a non-empty domain that is False for all x (and for which the statement $\exists ! x T(x)$ is thus False). The fourth statement is False for, for instance, the propositional function T(x) that consists of the statement "x equals 1" and where the domain of x contains the element 1 and at least one other element, whereas for that same propositional function the statement $\exists ! x T(x)$ is True.

This leaves only the first statement, and indeed it is equivalent to $\exists ! x \, T(x)$ because $\neg (\forall x \, [T(x) \rightarrow \exists y \neq x \, T(y)])$ is equivalent to $\neg (\forall x \, [\neg T(x) \lor \exists y \neq x \, T(y)])$ and thus equivalent to $\exists x \, T(x) \land \forall y \neq x \, \neg T(y)$.

Exercise 10. (**) Given the propositional functions G(x): "x is a boy", F(y): "y is a girl", and A(z): "z likes computers", the statement "all boys like computers and there is a girl that does not like computers" can be expressed by

Using the equivalence $p \to q \equiv \neg p \lor q$, the first answer is equivalent to $\neg[(\exists y\,G(y) \land \neg A(y)) \lor (\forall x\,\neg F(x) \lor A(x))]$, implying it is equivalent to $(\forall y\,\neg G(y) \lor A(y)) \land (\exists x\,F(x) \land \neg A(x))$ and thus to $(\forall y\,G(y) \to A(y)) \land (\exists x\,F(x) \land \neg A(x))$. This says that for all elements of the domain it is the case that if the element is a boy, then that boy like computers $((\forall y\,G(y) \to A(y)))$ and that furthermore $((\land x))$ there exists an element of the domain that is a girl that does not like computers $((\exists x\,F(x) \land \neg A(x)))$. This corresponds to the statement "all boys like computers and there is a girl that does not like computers". Note that this statement does not imply that there are any boys in the domain – but if there are boys, then those boys like computers.

The other answers are incorrect:

- Twice using the same equivalence $p \to q \equiv \neg p \lor q$ again, the second answer is equivalent to $\neg[(\forall x \neg F(x) \lor A(x)) \lor (\exists y \neg G(y) \lor \neg A(y))]$, implying it is equivalent to $(\exists x F(x) \land \neg A(x)) \land (\forall y G(y) \land A(y))$. This says that there exists an element of the domain that is a girl that does not like computers (" $(\exists x F(x) \land \neg A(x))$ ") and that furthermore (" \land ") all elements of the domain are boys that like computers (" $(\forall y G(y) \land A(y))$ "): this is contradictory because the girl (that does not like computers) cannot at the same time be one of the boys (that like computers).
- The third answer says that there exists an element of the domain such that \underline{if} that element is a girl then that girl does not like computers (" $(\exists x \, F(x) \to \neg A(x))$ ") combined with (" \wedge ") a condition that does not express anything about "girls". It follows that the first part is True if there are no girls in the (non-empty) domain, whereas the original statement says that "there is a girl ...".
- The fourth answer is equivalent to the reformulated version of the second answer (as derived above) because $p \land q \equiv q \land p$.

Exercise 11. (*)

1. Which expressions below are equivalent to $\neg(\forall x \exists y P(x,y))$. Explain.

$$\checkmark \exists x \forall y \ \neg P(x,y);$$
$$\bigcirc \exists x \exists y \ \neg P(x,y).$$

We find the result step by step by expressing the negation on each element:

$$\neg(\forall x\exists y\,P(x,y)) \leftrightarrow \exists x\neg(\exists y\,P(x,y)) \leftrightarrow \exists x\forall y\neg P(x,y).$$

^{* =} easy exercise, everyone should solve it rapidly

^{** =} moderately difficult exercise, can be solved with standard approaches

 $^{*** =} difficult \ exercise, \ requires \ some \ idea \ or \ intuition \ or \ complex \ reasoning$