Mobile Charger Billing System Using Lightweight Blockchain

Phebe John

Department of Computer Applications

College of Engineering Trivandrum

1st October 2018

Slides

- 1 Introduction
- 2 Blockchain
- 3 Architecture
- 4 Conclusion
- 5 Reference

Introduction

- Green transportation such as electric vehicles are emerging as an alternative to the traditional vehicles.
- They operate by using electric charging.
- The way to charge an electric car is to use a mobile charger or use a charging infrastructure.
- A billing system is required through which a user is billed who has charged the electric vehicle.
- It is a mobile charger billing system that utilizes Blockchain technology.

Blockchain

- Current online transaction rely on certain trusted institutions.
- These third party sources can be hacked, manipulated or compromised .
- The Blockchain technology to solve the problems.
- It explains electronic cash which is dealt in peer-to-peer network so that direct transactions can be made between the two parties without trading through a third trusted institution.
- A Blockchain is essentially a public ledger that is executed and shared between participants.

Online Transaction Using Blockchain

Blockchain Structure

- Each Blocks constituting a Blockchain consist of a 'block header' and a 'block body'.
- The block header includes
 - Hash value of the previous block
 - Timestamp
 - Merkle Tree Root
- Each block is linked by a linked list method such as a chain.
- Block bodies may contain different values depending on its service.

Blockchain Structure

Blockchain Structure after Hashing

Modification of Data

- Here, I have a chain of three blocks.
- Each block has a hash and a hash of the previous block.
- So block 3 points to block 2 and block 2 points to the block 1.
- Now the block 1 is special. It is the Genesis block.
- Now if block 2 is tampered, it changes the hash of the block 2.
- Computers are very fast and they can calculate hash at a very high speed.

Modification of Data

Simplified Payment Verification - SPV

- Space and Power-constrained devices cannot maintain the full Blockchain.
- A simplified payment verification (SPV) is used to operate without the full Blockchain.
- SPV nodes download only the block header rather than the complete chain.
- Therefore, they do not know about the transactions.
- SPV node will establish a link between the transaction and the block that contains it, using a Merkle Path.

Merkle Path

System Architecture

- The system consists of a power supplier, a service provider, and a mobile charger.
- It is assumed that both the Service Provider and the mobile charger parent node are Full Block.
- The remaining mobile chargers utilize SPV.

System Architecture

Mobile charger packet information for billing

- It is assumed that each mobile charger knows the IP address of its own service provider.
- Each mobile charger can obtain the information of the current block and the neighboring node through the service provider.
- Table I shows the message type whereas the data types are specified in Table II.
- If certain mobile chargers are grouped together, they can be grouped by passing their groupld value to their service provider.

Message Type

Message	Description
Register	The mobile charger registers itself by transferring
	its 'idTag' to the Service Provider Server.
RegisterAck	Response message to 'Register'.
CheckAuth	If a new mobile charger is added, the Service Pro-
	vider server forwards this message to the parent
	node of the group.
CheckAuthAck	Response message to 'CheckAuth'
Authorize	A mobile charger participating in a group requests
	permission to join the group by sending its idtag.
AuthorizeAck	Ack Response message to 'Authorize'

Data Type

Туре	Description
idTag	Mobile Charger unique identifier
idTagInfo	It is delivered after registration. There are 'Inter-
	val', 'currentTime', 'status' fields.
Interval	Cycle to send 'ChargeProfile'
currentTime	The current time in the Service Provider. It is used
	to synchronize the mobile charger's internal clock
ChargeProfile	Consists of idtag and each charge history. Char-
	ging history includes start time, maximum output
	power, and end time.

Registration Process

Transaction Communication

- The mobile charger transmits its Charging Profile to the service profile after charging.
- The mobile charger delivers all its charging profiles which occurred within the 'interval' value from idTagInfo to the parent node.
- The parent node that receives the profile of the group generates a block.
- If you get more than half the correct validation results for a transaction, the service provider adds the block to the existing Blockchain.
- The service provider checks the block information for billing and transmits the charge information according to the charge amount for each group

Sequence of transaction communication

Architecture Reference

Lightweight Blockchain data

- The proposed method is a re-construction of a block into a new type of block which is called Charge List Block.
- The service provider receives block for each group transaction from the parent node, and it re-constructs the block body part.
- If the size of the Blockchain data exceeds a certain size, it check the billing profile for the last transaction for each group.
- The block header of the Charge List Block is generated in the same way as the existing block header part, and is transmitted for each group.
- The group parent mobile chargers receive the newly created block form a new Blockchain starting from the reconstructed block.

Seminar

Algorithm

Algorithm 1: Block Data Size decrease

Input: Whole Block

Output: Charge List Block

- 1. Check Charging Data for each group-
 - 2. for number of group do-
- - end for
 - do
 - 6. for number of group do-
 - 7. i = 1
 - 8. $Charge_{G_i} = Charge_{G_i} + CurrentBlockCharge_{G_i}$
 - End for
- 10. CurrentBlockCharge move to next Block.
- 11. while(End of Block)₽
- 12. Generate Charge List Block
- 13. for number of group do-
- 14. Add Group_{id} + Charge_{Gi} to Block data
- 15. end for₽
- Add BlockHeader_{lastest} and Block data
- 17. Send Charge List Block to each group parent node.

Conclusion

- In order to provide efficient charging according to the charge details of the mobile charger, the mobile charger can be grouped by utilizing the groupld.
- In addition, using Blockchain technology, appropriate billing for charging can be generated.
- Moreover, I propose a technique to reduce the size of block data, and solve the problem of accumulating data size of existing Blockchain.

Reference

- Nam Ho Kim, Sun Moo Kang, Choong Seon Hong "Mobile charger billing system using lightweight Blockchain", Sep. 2016.
- Ali Dorri, Marco Steger, Salil S. Kanhere, and Raja Jurdak "BlockChain: A Distributed Solution to Automotive Security and Privacy", IEEE Communications Magazine, Vol. 55, Issue. 6, Dec. 2017
- Narayanan, Arvind; Bonneau, Joseph; Felten, Edward; Miller, Andrew; Goldfeder, Steven "Bitcoin and cryptocurrency technologies: a comprehensive introduction", IEEE Communications Magazine, 2016

Reference

- Leonardo Aniello , Roberto Baldoni *"A Prototype Evaluation of a Tamper-Resistant High Performance Blockchain-Based Transaction Log for a Distributed Database"*, European Dependable Computing Conference (EDCC), Sep. 2017
- Michael Crosby et al, Blockchain Technology: Beyond Bitcoin, AIR (Applied Innovation Review), No. 2, June 2016
- Kenji Saito , Hiroyuki Yamada "What's So Different about Blockchain? — Blockchain is a Probabilistic State Machine", International Conference on Distributed Computing Systems Workshops, Jun. 2016
- Quoc Khanh Nguyen "Blockchain A Financial Technology for Future Sustainable Development", Conference on Green Technology and Sustainable Development (GTSD) Nov. 2016

Questions?

Thank You

