CRY 2024 Groupes

Alexandre Duc

- 1. Groupe Additif \mathbb{Z}_m
- 2. Inverse Modulaire
- 3. Groupe Multiplicatif \mathbb{Z}_m^*
- 4. Fonction Indicatrice d'Euler
- 5. Ordres et Générateurs

Groupe

Définition (Groupe)

Un **groupe** (\mathbb{G}, \star) est un ensemble \mathbb{G} muni d'une opération \star qui vérifie les propriétés suivantes :

- Pour tous les éléments $a, b \in \mathbb{G}$, le résultat de $a \star b$ appartient également à \mathbb{G} (**Loi Interne**).
- Pour tous les éléments $a, b, c \in \mathbb{G}$, l'égalité $(a \star b) \star c = a \star (b \star c)$ est vraie (**Associativité**).
- Il existe un élément $e \in \mathbb{G}$ tel que pour tout $a \in \mathbb{G}$, on a $a \star e = e \star a = a$ (Élément Neutre).
- Pour tout élément $a \in \mathbb{G}$, il existe un élément $b \in \mathbb{G}$ tel que $a \star b = b \star a = e$ (**Élément Symétrique**).
- Un groupe (\mathbb{G}, \star) pour lequel $a \star b = b \star a$ pour tout $a, b \in \mathbb{G}$ est appelé **commutatif**, ou **abélien**.

Groupe Additif \mathbb{Z}_m

Théorème (Groupe Abélien)

L'ensemble $\mathbb{Z}_m = \{0, 1, \dots, m-2, m-1\}$ muni de l'addition modulo m, où m > 0 est un entier naturel non-nul, est un groupe abélien.

On appelle parfois l'élément symétrique d'un groupe additif, un **opposé** ou un **inverse additif**.

Alexandre Duc CRY 2024 4/34

Elément Symétrique

Question

Quel est l'élément symétrique de 12 dans \mathbb{Z}_{15} ? Quel est l'élément symétrique de 0 dans \mathbb{Z}_7 ?

Addition et Soustraction Modulaires **Exemples**

Prenons $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$

- $-5 \equiv 1 \pmod{6}$ vu que $1+5 \equiv 0 \pmod{6}$.
- $4-3 \equiv 4+(-3) \equiv 4+3 \equiv 1 \pmod{6}$.
- $5-2 \equiv 5+(-2) \equiv 5+4 \equiv 3 \pmod{6}$.

- 1. Groupe Additif \mathbb{Z}_m
- 2. Inverse Modulaire
- 3. Groupe Multiplicatif \mathbb{Z}_m^*
- 4. Fonction Indicatrice d'Euler
- 5. Ordres et Générateurs

But

But

Nous allons essayer de définir un groupe multiplicatif modulo n. Pour cela, nous devons définir ce qu'est un inverse multiplicatif.

Inverse Modulaire

Définition (Inverse Modulaire)

Un entier a est **inversible** modulo m si l'équation $ax \equiv 1 \pmod{m}$ possède une solution $x \in \mathbb{Z}$.

- $ax \equiv 1 \pmod{m}$ possède une solution $x \in \mathbb{Z}$ si l'équation ax + ym = 1 possède une solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.
- On note a^{-1} l'inverse modulaire (ou inverse multiplicatif) de a.

Alexandre Duc CRY 2024 9/ 34

Inverse Modulaire

Théorème (Inverse Modulaire)

a est inversible modulo m si et seulement si pgcd(a, m) = 1.

Alexandre Duc CRY 2024 10/34

Calcul de l'Inverse Modulaire

Pour **calculer** l'inverse de *a* modulo *m* (lorsqu'il existe) :

- Trouver l'identité de Bézout ax + my = 1 à l'aide de l'algorithme d'Euclide étendu.
- L'inverse modulaire de a est $a^{-1} \equiv x \pmod{m}$.

Inverse Modulaire

Exemples

- $12^{-1} \equiv 310 \pmod{3719}$ car on a $1 = (-1) \cdot 3719 + 310 \cdot 12$.
- $1345^{-1} \equiv 1609 \pmod{2322}$ car $1 = 413 \cdot 2322 713 \cdot 1345$.
- Un nombre entier est inversible modulo 15 s'il ne possède pas de facteur premier avec 15. Ainsi, les nombres inversibles modulo 15 sont $\{1, 2, 4, 7, 8, 11, 13, 14\}$. En effet, $1^2 \equiv 2 \cdot 8 \equiv 4^2 \equiv 7 \cdot 13 \equiv 11^2 \equiv 14^2 \equiv 1 \pmod{15}$.

$$1^2 \equiv 2 \cdot 8 \equiv 4^2 \equiv 7 \cdot 13 \equiv 11^2 \equiv 14^2 \equiv 1 \pmod{15}.$$

CRY 2024 12/34

Multiplication Modulaire

- Il n'est **pas toujours possible** de simplifier les équations du type $ac \equiv bc \pmod{m}$ en écrivant $a \equiv b \pmod{m}$.
- Par exemple, $3 \cdot 12 \equiv 3 \cdot 2 \pmod{6}$, mais $12 \not\equiv 2 \pmod{6}$.
- Par contre, $3 \cdot 12 \equiv 3 \cdot 2 \pmod{5}$ peut être simplifié en $12 \equiv 2 \pmod{5}$, car 3 et 5 ne possèdent pas de facteur en commun.
- On peut simplifier une équation du type $ac \equiv bc \pmod{m}$ uniquement lorsque c et m sont premiers entre eux.
- La simplification correspond à un division par c, ce qui est une multiplication par l'inverse modulaire.

Arithmétique modulaire Propriétés

Voici quelques propriétés utiles lorsque l'on effectue des calculs modulaires :

- $(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m.$
- $ab \mod m = (a \mod m)(b \mod m) \mod m$.
- $a^b \mod m = (a \mod m)^b \mod m$.

- 1. Groupe Additif \mathbb{Z}_m
- 2. Inverse Modulaire
- 3. Groupe Multiplicatif \mathbb{Z}_m^*
- 4. Fonction Indicatrice d'Euler
- 5. Ordres et Générateurs

Autres groupes?

Question

- Est-ce que l'ensemble {0,2,4,6,8} muni de l'addition modulo 10 est un groupe?
- Est-ce que l'ensemble $\{0,1,\ldots,m-1\}$ muni de la multiplication modulo m>1 est un groupe ?
- Est-ce que l'ensemble {2,4,6,8} muni de la multiplication modulo 10 est un groupe?

Groupe Multiplicatif \mathbb{Z}_m^*

Théorème (Groupe Multiplicatif \mathbb{Z}_m^*)

L'ensemble $\mathbb{Z}_m^* = \{1 \leq a \leq m : \operatorname{pgcd}(a, m) = 1\}$ muni de la multiplication modulo m, où m > 0 est un entier naturel non-nul, est un groupe abélien.

L'addition n'a pas de sens dans un groupe multiplicatif!

Alexandre Duc CRY 2024 17/ 34

Groupe Multiplicatif \mathbb{Z}_m^* Exemples

- $\mathbb{Z}_6^* = \{1,5\}$ et $1^2 \equiv 5^2 \equiv 1 \pmod{6}$.
- $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$ et $1^2 \equiv 11^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{12}$.
- $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$ et $1^2 \equiv 2 \cdot 4 \equiv 3 \cdot 5 \equiv 6^2 \equiv 1 \pmod{7}$.

Alexandre Duc CRY 2024 18/34

Groupe Multiplicatif \mathbb{Z}_p^*

Théorème (Groupe Multiplicatif \mathbb{Z}_p^*)

Pour p premier, l'ensemble $\{1,2,\ldots,p-1\}$ muni de la multiplication modulo p est un groupe abélien et est noté \mathbb{Z}_p^* .

- Il est ainsi possible de multiplier et de diviser (c'est-à-dire de multiplier par l'inverse modulaire) modulo p dans \mathbb{Z}_p^* .
- Pour un nombre $a \in \mathbb{Z}_p^*$, on notera $a^i \mod p$ l'opération $\underbrace{a \cdot a \cdots a}_{i \text{ fois}} \mod p$, opération que l'on appelle **exponentiation** modulaire.
- Pour un nombre $c = a^b \mod p$, on dit que b est le **logarithme discret** en base a de c modulo p.

Groupe Multiplicatif \mathbb{Z}_p^*

- $2/5 \pmod{7} \equiv 2 \cdot (5^{-1}) \pmod{7} \equiv 2 \cdot 3 \pmod{7} \equiv 6 \pmod{7}$
- 5³ mod 7 = 6. Donc le logarithme discret en base 5 de 6 modulo 7 est 3.

Alexandre Duc CRY 2024 20/ 34

- 1. Groupe Additif \mathbb{Z}_m
- 2. Inverse Modulaire
- 3. Groupe Multiplicatif \mathbb{Z}_m^*
- 4. Fonction Indicatrice d'Euler
- 5. Ordres et Générateurs

Indicatrice d'Euler

Définition (Indicatrice d'Euler)

On note $\varphi(n)$ le nombre d'éléments dans $\{1, \ldots, n\}$ qui sont premiers avec n.

Par exemple:

- $\varphi(1) = 1$
- $\varphi(2) = 1$
- $\varphi(3) = 2$
- $\varphi(4) = 2$
- $\varphi(12) = 4$
- $\varphi(17) = 16$
- $\varphi(100) = 40$
- $\varphi(65537) = 65536$

Calcul de l'Indicatrice d'Euler

- Si p est un nombre premier, alors $\varphi(p) = p 1$.
- Si p est premier et k > 1, $\varphi(p^k) = (p-1)p^{k-1}$.
- Si pgcd(m, n) = 1, $\varphi(mn) = \varphi(m)\varphi(n)$
- Si $p \neq q$ sont des nombres premiers, alors $\varphi(pq) = (p-1)(q-1)$.

Calcul de l'Indicatrice d'Euler

Méthode Condensée

$$\varphi(n) = n \prod_{p \text{ premier divise } n} \left(1 - \frac{1}{p}\right)$$

Par exemple :

$$\varphi(12) = 12 \cdot \prod_{p \in \{2,3\}} \left(1 - \frac{1}{p}\right) = 12 \cdot \frac{1}{2} \cdot \frac{2}{3} = 4$$

Alexandre Duc CRY 2024 24/34

- 1. Groupe Additif \mathbb{Z}_m
- 2. Inverse Modulaire
- 3. Groupe Multiplicatif \mathbb{Z}_m^*
- 4. Fonction Indicatrice d'Euler
- 5. Ordres et Générateurs

Ordre d'un Groupe

Définition (Ordre d'un Groupe)

Dans un groupe fini, l'ordre du groupe est le nombre d'éléments dans ce groupe.

- L'ordre du groupe additif \mathbb{Z}_{12} est de 12.
- L'ordre du groupe multiplicatif Z₇* est de 6.

Question

Quel est l'ordre du groupe multiplicatif \mathbb{Z}_{12}^* ?

Ordre d'un Élément

Définition (Ordre d'un Élément)

Dans un groupe fini (noté multiplicativement), l'**ordre d'un** élément $a \in \mathbb{G}$ est le plus petit exposant entier $i \geq 1$ tel que $a^i = 1$.

Si \mathbb{G} a n éléments et s'il existe un élément $g \in \mathbb{G}$ tel que g, g^2, g^3, \dots, g^n soient tous différents, on dit que \mathbb{G} est un **groupe cyclique**, et l'élément g est appelé un **générateur** (ou élément primitif) du groupe \mathbb{G} .

Ordre d'un Élément

Exemples

Par exemple, pour \mathbb{Z}_7^* :

- L'ordre de 1 est égal à 1.
- L'ordre de 2 est égal à 3, puisque $2^1 \equiv 2 \pmod{7}$, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$.
- L'ordre de 3 est égal à 6, puisque $3^1 \equiv 3 \pmod{7}$, $3^2 \equiv 2 \pmod{7}$, $3^3 \equiv 6 \pmod{7}$, $3^4 \equiv 4 \pmod{7}$, $3^5 \equiv 5 \pmod{7}$, $3^6 \equiv 1 \pmod{7}$. 3 est donc un générateur de \mathbb{Z}_7^* .

Théorème de Lagrange

Théorème (Joseph-Louis Lagrange, 1771)

L'ordre ord(a) **d'un élément** a d'un groupe fini divise **l'ordre du groupe** (le nombre d'éléments du groupe).

En poursuivant avec l'exemple de \mathbb{Z}_7^* , on observe que $\operatorname{ord}(1)=1$, $\operatorname{ord}(2)=3$, $\operatorname{ord}(3)=6$, $\operatorname{ord}(4)=3$, $\operatorname{ord}(5)=6$ et $\operatorname{ord}(6)=2$, qui divisent tous le nombre d'éléments de \mathbb{Z}_7^* , qui est égal à 6.

Alexandre Duc CRY 2024 29/34

Problème

Question

Montrer que 2 n'est pas un générateur de \mathbb{Z}_{17}^* .

Théorème de Fermat-Euler

Le théorème suivant est appelé le petit théorème de Fermat.

Théorème (Pierre de Fermat, 1640)

Si p est un nombre premier, et si a est un entier non-divisible par p, alors

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Il a été généralisé par le mathématicien bâlois Leonhard Euler :

Théorème (Leonhard Euler, 1761)

Si n est un entier naturel et a un entier premier avec n, alors

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Alexandre Duc CRY 2024 31/ 34

Exercice

Question

Calculez à la main

7¹²³⁴⁵⁶ mod 13

et

7¹²³⁴⁵⁶⁹ mod 15

Alexandre Duc CRY 2024 32/ 34

Conséquence

Conséquence

Si pgcd(a, n) = 1, $a^b \pmod{n} \equiv a^{b \mod{\varphi(n)}} \pmod{n}$.

Alexandre Duc CRY 2024 33/ 34

Problème

Question

Quels sont les trois derniers chiffres de 99999?

Solutions

Elément Symétrique

Question

Quel est l'élément symétrique de 12 dans \mathbb{Z}_{15} ? Quel est l'élément symétrique de 0 dans \mathbb{Z}_7 ?

Solution

3

C

Autres groupes?

Question

- Est-ce que l'ensemble {0,2,4,6,8} muni de l'addition modulo 10 est un groupe?
- Est-ce que l'ensemble $\{0,1,\ldots,m-1\}$ muni de la multiplication modulo m>1 est un groupe?
- Est-ce que l'ensemble {2, 4, 6, 8} muni de la multiplication modulo 10 est un groupe?

Solution

- Oui.
- Non. 0 n'est pas inversible ainsi que parfois d'autres éléments.
- Qui. L'élément neutre est le 6.

Problème

Question

Montrer que 2 n'est pas un générateur de \mathbb{Z}_{17}^* .

Solution

L'ordre de \mathbb{Z}_{17}^* est de 16. On calcule alors simplement l'ordre de 2 qui doit diviser 16. $2^2=4, 2^4=16, 2^8=1$. L'ordre de 2 est de 8 et n'est donc pas un générateur.

Exercice

Question

Calculez à la main

7¹²³⁴⁵⁶ mod 13

et

7¹²³⁴⁵⁶ mod 15

Solution

Le petit théorème de Fermat nous permet de simplifier l'exposant modulo p-1 et le théorème d'Euler de simplifier l'exposant modulo $\varphi(n)$ lorsque la base est première avec le module. Nous obtenons donc

$$7^{123456} \mod 13 = 7^0 = 1$$

et

$$7^{1234569} \mod 15 = 7^{1234569 \mod 8} \mod 15 = 7^1 = 7$$

Problème

Question

Quels sont les trois derniers chiffres de 99999?

Solution

On cherche à calculer $9^{9999} \mod 1000 = 9^{9999 \mod 400} \mod 1000 = 9^{-1} \mod 1000 = 889$.