

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Gestione della produzione di energia elettrica (Gennaio 2006)

Fabbisogno elettrico

Fabbisogno elettrico

Pianificare la produzione

Dati

- Un orizzonte temporale discreto $T = \{1, 2, ..., n\}$ (ore)
- Un vettore di domanda di potenza oraria $\mathbf{r} = (r_t)_{t \in T}$ (megawatt)
- Un insieme *U* di centrali termoelettriche

trovare

– una schedula $\mathbf{p} = (p_1, ..., p_n)$ che specifichi la potenza elettrica fornita da ciascuna centrale in ogni ora dell'orizzonte di pianificazione T

in modo che

- venga soddisfatta la domanda di potenza per ogni $t \in T$
- siano rispettati i requisiti operativi delle centrali
- il costo complessivo del combustibile consumato sia minimo

Requisiti operativi

- <u>Vincoli di potenza minima e massima</u>: se la centrale è accesa nell'ora $t \in T$, la potenza p_t generata può variare solo entro un intervallo specificato $[p_{min}, p_{max}]$
- <u>Vincoli di rampa</u>: se la centrale è accesa nelle ore t e $t+1 \in T$, e si ha $p_{t+1} > p_t$ (ovvero $p_{t+1} < p_t$), il dislivello $|p_{t+1} p_t|$ non può mai superare una soglia prescritta Dp_1 (ovvero Dp_0)
- <u>Vincoli di minimo on (off) time</u>: la centrale deve rimanere accesa (spenta) per almeno t_1 (almeno t_0) ore

Requisiti operativi

- <u>Vincoli di potenza minima e massima</u>: se la centrale è accesa nell'ora $t \in T$, la potenza p_t generata può variare solo entro un intervallo specificato $[p_{min}, p_{max}]$
- <u>Vincoli di rampa</u>: se la centrale è accesa nelle ore t e $t+1 \in T$, e si ha $p_{t+1} > p_t$ (ovvero $p_{t+1} < p_t$), il dislivello $|p_{t+1} p_t|$ non può mai superare una soglia prescritta Dp_1 (ovvero Dp_0)
- <u>Vincoli di minimo on (off) time</u>: la centrale deve rimanere accesa (spenta) per almeno t_1 (almeno t_0) ore

Costi

- I processi di produzione di energia presentano due termini principali di costo:
 - uno legato in modo diretto al combustibile consumato dalla centrale in condizioni di esercizio

istanti di accensione

$$C' = \sum_{t \in T_1} (ap_t^2 + bp_t + c)$$
 potenza erogata

- l'altro legato ai consumi non produttivi della centrale al momento di

accensione

$$C" = \alpha(1 - e^{-u/\tau_0}) + \beta$$
 tempo di uncommitment

Costi

• Il costo complessivo C = C' + C'' di una schedula della centrale dipende esclusivamente dalla potenza p_t fornita dalla centrale in ogni ora $t \in T$

Gestione di una centrale

Poniamoci nella prospettiva del gestore di una singola centrale.

- Supponiamo che in ogni ora del giorno alla centrale venga offerto un prezzo y_t per ogni megawatt prodotto
- Indichiamo con $T_1 = \{t \in T: p_t > 0\}$ l'insieme delle ore nelle quali la centrale è accesa

$$\sum_{t \in T_1} [ap_t^2 + (b - y_t)p_t + c] + C"(\mathbf{p})$$

In ogni $t \in T_1$ conviene scegliere una potenza p_t che minimizzi Il punto di minimo del termine di costo $[ap_t^2 + (b - y_t)p_t + c]$ si calcola annullando la derivata prima rispetto a p_t :

$$\frac{d[ap_t^2 + (b - y_t)p_t + c]}{dp_t} = 2ap_t + b - y_t = 0 \qquad p_t^* = \frac{y_t - b}{2a}$$

Gestione di una centrale

Poniamoci nella prospettiva del gestore di una singola centrale.

- Supponiamo che in ogni ora del giorno alla centrale venga offerto un prezzo y_t per ogni megawatt prodotto
- Indichiamo con $T_1 = \{t \in T: p_t > 0\}$ l'insieme delle ore nelle quali la centrale è accesa

$$\sum_{t \in T_1} [ap_t^2 + (b - y_t)p_t + c] + C"(\mathbf{p})$$

Il problema di *economic dispatching* (gestione della centrale che minimizzi i costi complessivi) consiste nel decidere

- quali sono gli intervalli di spegnimento della centrale
- quali sono gli intervalli di accensione della centrale e quale potenza viene erogata in ciascuna ora di tali intervalli

- Associamo un nodo a ogni intervallo [r, s] durante il quale la centrale risulta accesa
- Una transizione tra nodi consecutivi [r, s], [t, u] corrisponde a un periodo di spegnimento lungo (t s 1) ore
- Siccome la durata del periodo di spegnimento è nota, risulta noto il corrispondente costo di accensione $\alpha(1-e^{-(t-s-1)/\tau_0})+\beta$

1, 6
$$\alpha (1 - e^{-4/\tau_0}) + \beta$$
 11, 13

- I nodi sono pesati con il costo di fornire la potenza ottima p_t^* (cioè quella che minimizza il costo netto $ap_t^2 + (b y_t)p_t + c$)
- Siccome la durata del periodo di spegnimento è nota, risulta noto il corrispondente costo di accensione $\alpha(1 e^{-(t-s-1)/\tau_0}) + \beta$

• I nodi e gli archi introdotti formano un grafo *G* orientato e privo di circuiti

- Il problema si riduce a individuare un cammino di peso minimo nel grafo *G*
- Questo calcolo si può eseguire in tempo $O(n^3)$