

ROBUST RIDGE REGRESSION APPROACH FOR COMBINED MULTICOLLINEARITY-OUTLIER PROBLEM

Aliah Natasha Affindi, Sanizah Ahmad

Sanizah Ahmad

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Shah Alam

4 - 5 AUGUST 2021

CONTENTS

- 1 INTRODUCTION
- 2 OBJECTIVE
- 3 IDEA OF ROBUST RIDGE REGRESSION
- 4 METHODOLOGY
- 5 RESULTS AND DISCUSSIONS
- 6 CONCLUSIONS

Introduction

- Regression analysis is often used for parameter estimation using method of ordinary least squares (OLS) which offers good parameter estimates if all assumptions are met.
- However, if the assumptions are not met due to presence of combined multicollinearity and outliers, parameter estimates may be severely distorted.

Introduction

MULTICOLLINEARITY

Multicollinearity is a statistical phenomenon in which two or more variables in a regression model are dependent upon the other variables in such a way that one can be linearly predicted from the other with a high degree of accuracy.

OUTLIERS

Observation that lies an abnormal distance from other values in a random sample from a population.

Objective

To investigate and compare on the performances of some robust ridge regression estimators using simulation study and real datasets.

Robust Ridge Regression Estimators

- Ridge S
- Ridge M
- Ridge MM
- Ridge Least Trimmed Squares (LTS)

Idea of Robust Ridge Regression

Solve Multicollinearity Problem

[Use Ridge Regression]

Ridge Regression

Solve Outliers Problem

[Use Robust Estimator]

Solve
Multicollinearity
and Outlier
Problem

[Use Robust Ridge Regression]

- S
- M
- MM
- Least Trimmed Squares (LTS)

- Ridge S
- Ridge M
- Ridge MM
- Ridge Least Trimmed Squares (LTS)

Methodology: Simulation Study

Generate the explanatory variables by using equation

$$x_{ij} = ig(1-
ho^2ig)z_{ij} +
ho z_{ij}$$
 and levels of multicollinearity

 $(\rho = 0.50, \rho = 0.90, \rho = 0.95)$

Generate outliers by introducing two different distributions of error terms:

- i. Laplace distribution with mean 0 and variance 2
- ii. Cauchy distribution with median 0 and scale parameter 1

Build model based on different distribution of error term for each sample size (n=25, n=50, n=100)

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon_i$$

Examine the **performance** of each estimators using the **root mean square error (RMSE)** and **bias.**

The **best method** is the one with **smallest** RMSE and bias values.

Repeat the simulation for *m*=1000 times.

Apply all the robust ridge of the model generated

Measurement Criteria

CRITERION	FORMULA			
Bias	$Bias = \bar{\beta_i} - \beta_i$			
	where $\bar{\beta}_i = \frac{\sum_{i=1}^m \beta_i}{m}$			
Root Mean Square Error (RMSE)	$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (\hat{\beta}_i - \beta_i)^2}$			

where *m* is the number of simulation runs

All analyses were carrie

Simulation Results on Laplace Distribution 21

Laplace								
Method	n	ρ =0.5	ρ =0.50		ρ =0.90		ρ =0.95	
		Bias	RMSE	Bias	RMSE	Bias	RMSE	
OLS	25	0.0006	0.4105	0.0642	1.6637	0.0185	3.2114	
	50	0.0087	0.2754	0.0815	1.1507	0.1099	2.1716	
	100	0.0003	0.1875	0.0092	0.7772	0.0229	1.4185	
Ridge S	25	0.0898	0.3526	0.0391	0.8296	0.0428	1.5100	
	50	0.0537	0.2564	0.0858	0.6269	0.0592	1.0931	
	100	0.0223	0.1807	0.0296	0.5020	0.0319	0.7547	
Ridge M	25	0.0775	0.3604	0.0258	0.8194	0.0449	1.4647	
	50	0.0498	0.2587	0.0833	0.6463	0.0524	1.0387	
	100	0.0213	0.1814	0.0264	0.5027	0.0273	0.6906	
Ridge MM	25	0.0789	0.3589	0.0278	0.8033	0.0381	1.4202	
	50	0.0504	0.2583	0.0839	0.6327	0.0572	1.0086	
	100	0.0215	0.1812	0.0280	0.4978	0.0288	0.6785	
Ridge LTS	25	0.0965	0.3493	0.0241	0.7738	0.0472	1.3622	
	50	0.0553	0.2559	0.0916	0.6023	0.0661	0.9818	
	100	0.0229	0.1805	0.0248	0.4842	0.0429	0.6642	

iCMS2021: 063-051

Simulation Results on Cauchy Distribution 20

				Cauchy				
Method	n	ρ=0.50		ρ=	ρ=0.90		ρ=0.95	
		Bias	RMSE	Bias	RMSE	Bias	RMSE	
OLS	25	3.9811	76.3161	15.7149	301.2479	10.3837	347.9403	
	50	0.4014	13.9885	4.6226	321.6129	14.6776	482.7921	
	100	0.6616	14.4042	0.4881	75.5959	6.6782	286.1028	
Ridge S	25	0.5308	0.7435	0.3195	1.1835	0.1970	1.7309	
	50	0.5619	0.7336	0.4015	0.7978	0.2746	1.1347	
	100	0.5443	0.7187	0.4484	0.6651	0.3211	0.7507	
Ridge M	25	0.4825	0.7733	0.2526	1.3751	0.1996	2.0430	
	50	0.5408	0.7441	0.3898	0.8396	0.2706	1.1593	
	100	0.5372	0.7205	0.4353	0.6683	0.2771	0.7363	
Ridge MM	25	0.5159	0.7371	0.2918	0.9876	0.1920	1.5087	
	50	0.5568	0.7343	0.4100	0.7091	0.2711	0.8914	
	100	0.5451	0.7176	0.4500	0.6446	0.2995	0.6857	
Ridge LTS	25	0.5195	0.7294	0.3143	0.9629	0.1717	1.4167	
	50	0.5577	0.7305	0.3744	0.6813	0.2934	0.8531	
	100	0.5401	0.7152	0.4227	0.6320	0.2848	0.6650	

iCMS2021: 063-051

iCMS2021: 063-051

mulation results: Density plots

Density Plots of $\hat{\beta}_1$, $\hat{\beta}_2$ and $\hat{\beta}_3$ for 1000 Simulations for (a) Laplace Distributio and (b) Cauchy Distribution for ρ =0.95 with n=50.

Application to Real Dataset

Longley dataset (Adegoke, 2016)

This dataset is chosen since the data properties exhibit the interest of study where **both multicollinearity and outliers exist** in the dataset (Cook, 1977; Besley et al., 1980; and Jahufer, 2013).

Longley data consists of **six variables** known as Employment, Prices, Unemployed, Military, GNP and Population Size. GNP is the Gross National Product, employment is the number of people employed, price is the GNP implicit price deflator, unemployed is the number of unemployed, military is the number of people in the armed forces and population size is the non-institutionalized population of persons at age ≥14 years.

Measurement criteria
Standard error (SE) for each estimated parameter

iCMS2021: 063-051

Application on Longley Dataset

Estimate	OLS	Ridge S	Ridge M	Ridge MM	Ridge
					LTS
$\widehat{m{eta}}_1$	0.0151	-0.0040	-0.0060	-0.0049	-0.0068
SE	0.0849	0.0841	0.0840	0.0840	0.0840
$\widehat{m{eta}}_2$	-0.0358	-0.0059	-0.0027	-0.0045	-0.0015
SE	0.0334	0.0276	0.0270	0.0274	0.0268
$\widehat{m{eta}}_3$	-0.0202	-0.0157	-0.0153	-0.0155	-0.0151
SE	0.0048	0.0040	0.0039	0.0039	0.0039
$\widehat{m{eta}}_{4}$	-0.0103	-0.0090	-0.0089	-0.0090	-0.0089
SE	0.0021	0.0020	0.0020	0.0020	0.0020
$\widehat{m{eta}}_5$	-0.0511	-0.1529	-0.1636	-0.1575	-0.1678
SE	0.2260	0.2167	0.2159	0.2164	0.2156
$\widehat{m{eta}}_6$	1.8292	1.3300	1.2776	1.3075	1.2566
SE	0.4554	0.3280	0.3146	0.3222	0.3092

Conclusions

- ➤ Ordinary least squares (OLS) is **not suggested** to be used when there exist high multicollinearity and outliers in the data since it may produce high value of mean square error (MSE) and bias which may lead to inaccurate estimation.
- The results of the simulation study was found to be parallel with the result on the real data application where Ridge LTS is the best estimator to be used in the existence of multicollinearity and outliers simultaneously.

21 THANK YOU

INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND STATISTICS

Acknowledgment

The authors wish to thank Universiti Teknologi MARA (UiTM) Shah Alam, Malaysia for the support fund (600-IRMI/REI 5/3 (005/2019)).

