PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-367291

(43) Date of publication of application: 20.12.2002

51)Int.Cl.

G11B 20/10 G06F 11/10 G11B 20/18 H03M 13/01 H03M 13/35 H03M 13/39

21)Application number: 2001-176221

11.06.2001

(71)Applicant:

FUJITSU LTD

(72)Inventor:

ICHIHARA KAZUTO SUGAWARA TAKAO SATO YUICHI

MORITA TOSHIHIKO **TAKATSU MOTOMU**

54) INFORMATION RECORDING AND REPRODUCING DEVICE AND METHOD AS WELL AS SIGNAL DECODING CIRCUIT

57) Abstract:

22)Date of filing:

'ROBLEM TO BE SOLVED: To improve decoding performance by efficiently icorporating the characteristics of a noise model formed by exactly modeling the oise characteristic of magnetic recording and reproducing channels into a decoding rocess.

OLUTION: The correlation of the noises to the past and future states dependent pon the input signal patterns in the past N bit and future Q bit and the dispersion nereof are calculated and stored in a noise correlation computing section 84 by raining in maximum a posteriori probability (MAP) decoding. In reproducing the hitening noise values for the past and future states obtained by whitening the hromatic noises by using the correlation of the noises and the dispersion thereof tored by a whitening noise computing section 91 and the input signal (channel iformation) AC (yk|smk) of the maximum a posteriori probability decoding is alculated from the whitened noise values for the past and future states by an image ignal computing section 92 and the likelihood in the maximum a posteriori probability ecoding (MAP decoding) is determined from this input signal.

EGAL STATUS

Date of request for examination]

24.12.2003

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's ecision of rejection or application converted registration]

Date of final disposal for application]

Patent number]

Date of registration]

Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of ajection]

Date of extinction of right]

- [0052] Note that a magnetic record/reproduction channel 54 including the head/medium 56 and the equalizer 58 can be deemed as an encoder that converts the output signal x_k of the external encoder 52 into an output signal y_k of the magnetic record/reproduction channel 54. Therefore, the magnetic record/reproduction channel 54 is called herein as an internal encoder 54.
- 10 [0053] An analog signal y_k shaped by the equalizer 58 is decoded by a repetitive decoder 60, which is a decoder with respect to the external encoder 52 and the magnetic record/reproduction channel 54, and eventual decoded data is acquired after the decoded analog signal y_k go through 15 an RLL/MTR decoder 62, an ECC decoder 64, and a CRC detector 66.
- [0152] A fourth embodiment of the present invention will be described next. The fourth embodiment of the present invention realizes a Noise Predictive Maximum Likelihood (NPML) decoding using not only a correlation for the past noise but also a correlation for the future noise in the Viterbi decoding, by employing the shortest path selection method in Fig. 13. The equation for branch metric calculation in this NPML decoding is the same as the equation (25).
- [0153] That is, according to the fourth embodiment, the information recording and reproducing apparatus performing the Viterbi decoding comprises: a noise correlation

 30 operating unit that calculates correlation and deviation of noises for past and future states which depend on input signal patterns in the past and future; a storage unit that stores the correlation and deviation of noises for the past

and future states; a whitened noise operating unit that determines whitened noise values for the past and future states in which colored noises are changed into whitened noises, by using the correlation and deviation of noises for the past and future states which are stored in the storage unit; and an input signal calculating unit that calculates an input signal of the Viterbi decoding from the whitened noise values for the past and future states and the deviation.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-367291

(P2002-367291A)

(43)公開日 平成14年12月20日(2002.12.20)

(51) Int.Cl. ⁷	離別記号	FΙ				-7]-ド(参考)
G11B 20/10	3 4 1	G11B 2	0/10		3 4 1 B	5 B 0 0 1
	3 2 1				3 2 1 A	5 D 0 4 4
G06F 11/10	3 3 0	G06F 1	1/10		3 3 0 L	5 J O 6 5
G 1 1 B 20/18	5 1 2	G11B 2	0/18		512A	
	5 2 0				5 2 0 Z	
	審查請求	未請求請求以	頁の数9 (ΟL	(全 30 頁)	最終頁に続く
(21)出願番号	特願2001-176221(P2001-176221)	(71)出願人	00000522	3	····	
			富士通株	式会社	Ł	
(22)出願日	平成13年6月11日(2001.6.11)					田中4丁目1番
			1号			
		(72)発明者	市原一	人		
•					7中原区上小	田中4丁目1番
•					战式会社内	
		(72)発明者				
					市中原区上小	田中4丁目1番
•					式会社内	_, _, _,
		(74)代理人				•
	•			竹内	進 (外1	名)
•						
						最終頁に続く
		1				

(54) 【発明の名称】 情報記録再生装置及び方法並びに信号復号回路

(57) 【要約】

【課題】磁気記録再生チャネルの雑音特性を正確にモデル化した雑音モデルの特性を効率的に復号過程に取り入れて復号性能を向上させる。

【解決手段】最大事後確率復号(MAP復号)において、トレーニングにより雑音相関演算部84で過去Nビット及び未来Qビットにおける入力信号パターンに依存した過去及び未来の状態に対する雑音の相関とその分散を算出して記憶する。再生時は、白色化雑音演算部91が記憶した雑音の相関とその分散)を使って有色雑音を白色化した過去及び未来の状態に対する白色化雑音値を求め、入力信号演算部92が過去及び未来の状態に対する白色化した雑音値とその分散から最大事後確率復号の入力信号(チャネル情報)Λc(y、|s、)を算出し、この入力信号から最大事後確率復号(MAP復号)における上度を求める。

【特許請求の範囲】

【請求項1】情報記録再生装置において、

現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音 相関演算部と、

前記雑音の相関と前記分散を記憶する記憶部と、

前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、

前記る白色化した雑音値と白色化した雑音の分散から符 10 号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする情報記録再生装置。

【請求項2】情報記録再生装置において、

等化後雑音が白色雑音に近くなる等化目標を備えた等化 器と、

前記等化器からの入力信号に対し、現在と過去又は未来 における入力信号パターンに依存した現時点に対する雑 音の分散を算出する雑音相関演算部と、

前記雑音の分散を記憶する記憶部と、

前記記憶部に記憶した分散から復号器の入力信号を算出 20 する入力信号演算部と、を備えたことを特徴とする情報 記録再生装置。

【請求項3】情報記録再生装置において、

等化後維音が白色雑音に近くなる等化目標を備えた等化 器と、

前記等化器からの入力信号に対し、現在と過去又は未来 における入力信号パターンに依存した現時点に対する雑 音の分散を算出する雑音相関演算部と、

前記雑音の分散を記憶する記憶部と、

等化後の入力信号の系列を小さなウインドウ系列に分割 30 復号回路。 し、ウインドウ系列の順番に、前記記憶部に記憶した分 【請求項 9 散から入力信号(チャネル信号)の尤度を算出するスラ 等化後雑音 イデング・ウインドウ処理部と、を備えたことを特徴と 器と、 する情報記録再生装置。 前記等化器

【請求項4】情報記録再生方法において、

現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散と、雑音の相関を求めて記憶し、

前記雑音の相関と分散を使って有色雑音を白色化した前 記入力信号パターンに対する白色化雑音値を求め、

前記白色化した雑音値と白色化した雑音の分散から復号 器の入力信号を算出することを特徴とする情報記録再生 方法。

【請求項5】情報記録再生方法において、

等化後雑音が白色雑音に近くなる等化信号を対象に、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出して記憶し、

前記記憶した分散から復号器の入力信号を算出すること を特徴とする情報記録再生方法。

【請求項6】最大事後確率復号 (MAP復号) を行う情 50

報記録再生方法において、

等化後雑音が白色雑音に近くなる等化後の入力信号系列を対象に、過去及び未来における入力信号パターンに依存した過去及び未来の状態に対する雑音の分散を算出して記憶部し、

等化後の入力信号系列を小さなウインドウ系列に分割 し、ウインドウ系列の順番に、前記記憶部に記憶した分 散から入力信号の尤度をスライデングしながら算出する ことを特徴とする情報記録再生方法。

【請求項7】信号復号回路において、

現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音 相関演算部と、

前記雑音の相関と前記分散を記憶する記憶部と、

前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、

前記る白色化した雑音値と白色化した雑音の分散から符号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする信号復号回路。

【請求項8】信号復号回路において、

等化後雑音が白色雑音に近くなる等化目標を備えた等化 器と、

前記等化器からの入力信号に対し、現在と過去又は未来 における入力信号パターンに依存した現時点に対する雑 音の分散を算出する雑音相関演算部と、

前記雑音の分散を記憶する記憶部と、

前記記憶部に記憶した分散から復号器の入力信号を算出 する入力信号演算部と、を備えたことを特徴とする信号 復号回路。

【請求項9】信号復号回路において、

等化後雑音が白色雑音に近くなる等化目標を備えた等化 器と

前記等化器からの入力信号に対し、現在と過去又は未来 における入力信号パターンに依存した現時点に対する雑 音の分散を算出する雑音相関演算部と、

前記雑音の分散を記憶する記憶部と、

等化後の入力信号の系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分40 散から入力信号(チャネル信号)の尤度を算出するスライデング・ウインドウ処理部と、を備えたことを特徴とする信号復号回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク、MO、光ディスク、磁気テープなどの情報記録再生装置及び方法に関し、特に反復型復号に磁気記録再生系の雑音特性を取り込んで復号する情報記録再生装置及び方法に関する。

[0002]

【従来技術】従来、記録再生装置には、記録した信号を 誤りなく再生するため、強力なエラー訂正機能が搭載さ れている。このエラー訂正によって初めて、ノイズが含 まれた不安定な信号の中から記録信号を確実に復元する ことが可能となる。

【0003】近年、記録再生装置のエラー訂正は、主としてPRML (Partial Response Maximum Likelihoo d) 及びECC (Error Correcting Code) と呼ぶ2つの手法の組合せによって実現されている。

【0004】PRMLは、記録チャネルを符号間干渉の 10 あるパーシャルレスポンスチャネル (PRチャネル) とみなし、一般にビタビ検出器を用いた最尤復号 (Maximu m Likelihood Detection) を行う方法である。

【0005】また近年、PRMLに変わる新しい符号・復号方法として、ターボ符号や低密度パリティ検査符号(LDPC: Low Density Parity Check Code)等が提案されている。これらは反復計算で復号を行うことから、ここでは反復型復号法(iterative method)と総称する。

【0006】 反復型復号法としては、米国特許第5446747号明細書図面に開示されているターボ符号が代表的である。ターボ符号は、2つの再帰的組織畳み込み符号(RSC: Recursive systematic convolutional code)をランダムインターリーバを介して接続した並列連接(parallel concatenation)符号であり、復号は2つの軟入出力復号器を用いた反復計算によって行う。

【0007】ターボ符号は通信の分野で考案されたが、磁気記録再生系のPRチャネルに適用する場合、2つの要素符号器(constituent encoder)をランダムインターリーバを介して縦列連接(serial concatenation)した構成を取る。この時、チャネルに近い要素符号器を内符号器(inner encoder)、もう一方の要素符号器を外符号器(outer encoder)と呼ぶ。PRチャネルでは、チャネル自体を畳み込み符号器とみなすことができるので、内符号器は明に設ける必要がない。一方、外符号器としては、2つの再帰的組織畳み込み符号(RSC)を用いるものや1つの再帰的組織畳み込み符号(RSC)を用いるものなどが各種提案されている。

【0008】また、文献「R. G. Gallager, "Low-Density Parity-Check Codes," Cambridge, MA: MIT Press, 1963」に開示される低密度パリティ検査符号 (LDPC: Lowdensity parity check codes)を用いる場合もある。反復型復号法の復号器は、内復号器と外復号器と呼ぶ2つの要素復号器(constituent decoder)で構成する。反復型復号法で特徴的な点は、最大事後確率 (MAP: Maximum a posteriori Probability)復号を行うという点であり、そのため2つの要素復号器はいずれも軟入力・軟出力 (SISO: Soft-In/Soft-Out)復号器となる。SISO復号器は単なる0または1といった硬判定結果を出力するのではなく、0.4や0.9といった信頼度情報を出

力する。畳込み符号等の状態遷移で定義される符号に対する軟入力軟出力 (SISO) 復号の具体的計算法として、BCJRアルゴリズム (Bahl-Cocke-Jeinek-Raviv) がある。BCJRアルゴリズムは、文献「L. R. Bahl et al., "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, vol. 20, pp. 248-87, 1974.」に詳しく説明されている。このような反復型復号法は、PRML復号法を上回る高いエラー訂正能力を有しており、次世代符号復号方法として有望視されている。

[0009]

【発明が解決しようとする課題】ところで、情報記録再生装置にあっては、磁気記録再生チャネルの雑音特性を 正確に予測して復号過程に取り入れるようにすれば、エ ラーレート性能を向上させることができる。

【0010】従来の情報記録再生装置における雑音予測法(Noise prediction scheme)としてベースとなる復号法は、ビタビによる最上復号法(Viterbi Maximum Like lihood)であり、例えば米国特許第6158027号明細書図面、同第6104766号明細書図面、同第5784415号明細書図面およびEPC特許第WO9852330号明細書図面などがある。

【0011】しかしながら、これらの特許の中には、最大事後確率復号法(MAP: maximum a posteriori pro bability)、ターボ(Turbo)復号法、低密度パリティ検査符号法(LDPC)等の反復型復号法(Iterative de coding Method)へ雑音予測法を適用したものではない。また、これらの特許では、雑音相関の入力信号パターン依存性は全く考慮しておらず、雑音モデルとしての取り扱いが極めて不十分であった。

【0012】一方、論文「A. Kavcic and A. Patapoutia n、"A signal-dependent autoregressive channel mode ls、"IEEE Trans. Magn. 、vol. 35、 no. 5、pp. 2316-23 18、Sept. 1999.」や論文「A. Kavcic、"Soft-Output D etector for Channels withIntersymbol Interference and Markov Noise Memory、" Proc. IEEE Global Telec om. Conf. 、Dec. 1999.」では、過去の雑音に対する相関が入力信号パターンに依存するということを初めて議論し、これをビタビアルゴリズムや最大事後確率アルゴリズム(MAPアルゴリズム)に適用しているが、未来の雑音に対する相関は考慮されていない。

【0013】また、論文、Dec. 1999.「Y.Wu and J.R. Cruz、"Noise predictive turbo systems、"TMRC'2000 Paper E5、Aug. 2000.」や論文「T.R.Oenning、"Ch annel capacity and coding for magnetic recording channels with media noise、"PhD thesis、the University of Minnesota、Sept. 2000.」では、雑音予測法(Noise prediction scheme)に基づいた雑音相関の対処法を、反復型復号法へ適用する方法を初めて議論しているが、雑音相関が入力信号のパターンに依存するという

ことは考慮しておらず、雑音モデルの取り扱いが不十分であった。

【0014】本発明は、磁気記録再生チャネルの雑音特性を正確にモデル化し、この雑音モデルの特性を効率的に復号過程に取り入れることにより復号性能を向上させる情報記録再生装置及び方法並びに信号復号回路を提供することを目的とする。

[0015]

【課題を解決するための手段】図1は、本発明の原理説 明図である。本発明は、図1(A)の最大事後確率復号 (MAP復号)を行う情報記録再生装置において、過去 及び未来、即ち過去Nビット及び未来Qビットにおける 入力信号パターン x н , …, x н に依存した過去及び 未来の状態に対する図1 (C)の自己相関122のよう な雑音の相関 e (s k) とその分散 σ (s k) を算出す る雑音相関演算部84と、過去及び未来の状態に対する 雑音の相関 e (s ,) とその分散 σ (s ,) を記憶する 記憶部88と、記憶部88に記憶した雑音の相関e(s 。 、)とその分散 σ (s 、)を使って図 1 (B)の周波数 スペクトル118を持つ有色雑音を、周波数スペクトル 20 120の白色化した過去及び未来の状態に対する白色化 雑音値 nx を求める白色化雑音演算部 9 1 と、過去及び 未来の状態に対する白色化した雑音値とその分散σ(s 、) から最大事後確率復号の入力信号(チャネル情報) Λ c (y_k | s^{*}_k) を算出する入力信号演算部とを備え、 この入力信号から最大事後確率復号(MAP復号)にお ける尤度を求めるようにしたことを特徴とする。

【0016】このように本発明は、情報記録再生装置に特有の雑音モデルとして、過去及び未来の入力信号パターンに依存した相関を持つガウスーマルコフ型(Gauss-Markov型)の有色雑音モデルを仮定し、この雑音モデルの特性をできるだけ計算効率のよい方法で復号に取り込むことで、復号性能を向上させる。特に、有色雑音モデルをガウス型(Gauss型)で表現し、入力信号依存性のある正確な相関値(分散)を用いることで復号性能を向上させる。

【0017】また本発明は、一般的な反復型復号(Iterative decoding)を行う情報記録再生装置において、同様に、過去Nビット及び未来Qビットにおける入力信号パターン x 、 、 、 x 、 に依存した過去及び未来の状 40態に対する雑音の相関 e (s 、)とその分散 σ (s 、)を算出する雑音相関演算部と、過去及び未来の状態に対する雑音の相関 e (s 、)とその分散 σ (s 、)を記憶する記憶部と、記憶部に記憶した過去及び未来の状態に対する雑音の相関 e (s 、)とその分散 σ (s 、)を使って有色雑音を白色化した過去及び未来の状態に対する白色化雑音値 n 、を求める白色化雑音値 g 等部と、過去及び未来の状態に対する白色化した雑音値とその分散 σ

(s *) から反復型復号の入力信号(チャネル情報) Λ c (y * | s * *) を算出する入力信号算出部とを備え、こ

50

の入力信号から反復型復号における尤度を求めるように したことを特徴とする。

【0018】この場合にも、有色雑音モデルをガウス型 (Gauss型)で表現し、入力信号依存性のある正確な相 関値(分散)を用いることで復号性能を向上させる。

【0019】本発明は、最大事後確率復号(MAP復号)を行う簡易型の情報記録再生装置として、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器からの入力信号を対象に、過去Nビット及び未来Qビットにおける入力信号パターンχμη, ω, χμη に依存した過去及び未来の状態に対する雑音の分散σ

(s) を算出する雑音相関演算部と、過去及び未来の 状態に対する雑音の分散σ (s) を記憶する記憶部 と、記憶部に記憶した分散σ (s) から最大事後確率 復号の入力信号(チャネル信号)Λ c (y | s) を算 出する入力信号演算部とを備え、この入力信号から最大 事後確率復号(MAP復号)における尤度を求めるよう にしたことを特徴とする。

【0020】このように等化後雑音が白色雑音に近くなる等化目標を備えた等化器を使用すれば、過去及び未来の状態に対する雑音の相関とその分散を使って有色雑音を白色化した過去及び未来の状態に対する白色化雑音値を求める白色化雑音演算が不要となり、入力信号の計算に使用する雑音パラメータも雑音の分散のみとなり、計算量が大幅に低減し、メモリ使用量も少なく、非常に実用性の高い簡潔な装置構成となる。

【0021】また本発明は、一般的な反復型復号を行う同じく簡易型の情報記録再生装置として、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器30からの入力信号を対象に、過去Nピット及び未来Qビットにおける入力信号パターンχικ, …, χικ に依存した過去及び未来の状態に対する雑音の分散σ(s) を算出する雑音相関演算部と、過去及び未来の状態に対する雑音の分散σ(s) を記憶する記憶部と、記憶部に記憶した分散σ(s) を記憶する記憶部と、記憶部に記憶した分散σ(s) から反復型復号の入力信号演算部とを備え、この入力信号から反復型復号における尤度を求めるようにしたことを特徴とする。

【0022】本発明は、最大事後確率復号(MAP復号)を行う情報記録再生装置において、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器からの入力信号を対象に、過去Nビット及び未来Qビットにおける入力信号パターンxェル、・・・、xェーのに依存した過去及び未来の状態に対する雑音の分散 σ (s) を算出する雑音相関演算部と、過去及び未来の状態に対する雑音の分散 σ (s) を記憶する記憶部と、等化後の入力信号系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分散 σ (s) から入力信号(チャネル信号) Λ c (y | s) を求め、 L 度を算出するスライデング・ウインドウ処理部と

を備えたことを特徴とする。

【0023】このように本発明にスライデング・ウイン ドウ法 (Sliding Window法) を適用することにより、更 に復号処理で使用するメモリ領域を削減できる。

【OO24】また本発明は、一般的な反復型復号(Iter ative decoding) を行う情報記録再生装置において、等 化後雑音が白色雑音に近くなる等化目標を備えた等化器 と、等化器からの入力信号を対象に、過去Nビット及び 未来Qビットにおける入力信号パターンx⋈, …, x ₩ に依存した過去及び未来の状態に対する雑音の分散 σ(s¹k)を算出する雑音相関演算部と、過去及び未来 の状態に対する雑音の分散 σ (s c) を記憶する記憶部 と、等化後の入力信号系列を小さなウインドウ系列に分 割し、ウインドウ系列の順番に、記憶部に記憶した分散 σ (s ,) から入力信号 (チャネル信号) Λ c (y | s 「、)を求め、尤度を算出するスライデング・ウインドウ 処理部とを備えたことを特徴とする。

【0025】更に本発明は、ビタビ復号を行う情報記録 再生装置において、過去Nビット及び未来Qビットにお ける入力信号パターンxxx , …, xxx に依存した過去 及び未来の状態に対する雑音の相関e(s**)とその分 散σ(s[®]k)を算出する雑音相関演算部と、過去及び未 来の状態に対する雑音の相関e(s^{*}*)とその分散σ (s k) を記憶する記憶部と、記憶部に記憶した過去及 び未来の状態に対する雑音の相関 e (s ,) とその分散 σ (s *,) を使って有色雑音を白色化した過去及び未来 の状態に対する白色化雑音値nkを求める白色化雑音演 算部と、過去及び未来の状態に対する白色化した雑音値 とその分散 σ (s *,) からビタビ復号のブランチメトリ ック (チャネル信号) Λ c (y_k | s , を算出するブラ ンチメトリック算出部とを備え、この入力信号からビタ ビ復号における尤度を求めるようにしたことを特徴とす

【0026】ここで最人事後確率復号、反復型復号およ びビタビ復号における白色化雑音演算部は、過去Nビッ ト及び未来Qビットにおける現在の一つ前の状態 s ki から現在の状態 s * へ遷移するパスを通過する過去及び 未来の区間 k-L-1~k+Mの全てのパスの内、パス メトリックが最小となる最短パスの等化波形平均値を求 めて白色化した等化雑音値を推定する。

【OO27】また本発明の情報記録再生装置は、過去N ビットのみ又は未来Qビットにおける入力信号パターン を対象とすることで、簡略化しても良い。

【0028】雑音相関演算部は、入力信号パターンに対 する等化信号の平均値を求め、等化波形と平均値との差 により入力信号パターンに依存した雑音の相関とその分 散を求める。これにより正確な入力信号に依存した雑音 の相関と分散を求めることができる。

【0029】雑音相関演算部は、MTR拘束等の拘束条 件付き符号を磁気記録して再生する場合、拘束を掛けな 50

いランダムな入力信号を使用したトレーニングにより、 入力信号パターンに依存した雑音の相関とその分散を求 める。これによりMTR拘束によって出現確率が低く抑 えられたパターンが存在した場合でも、効果的に雑音相 関を求めるためのトレーニング回数の削減する。またM TR拘束を考慮した復号を行うことによって、復号に要 する状態とパスを削減し、効率ほ高めて復号性能(エラ ーレート)を向上できる。

【0030】雑音相関演算部は、記憶部に、雑音の相関 と分散をトラック幅方向に対する再生ヘッドの所定のオ フトラック間隔で記憶し、媒体プリアンブル部の振幅値 の変化からオフトラック量を検知し、このオフトラック 量に応じた雑音の相関と分散を前記記憶部から読み出し て復号に使用し、より正確な復号を行う。

【0031】雑音相関演算部は、記憶部に、雑音の相関 と分散をゾーン毎、シリンダ毎、あるいはセクタ毎に記 **憶して、それぞれの復号に使用することで、正確な復号** を行う。

【0032】雑音相関演算部は、媒体のトレーニングセ クタ又はトレーニングシリンダに記録したトレーニング 系列の再生信号から雑音の相関と分散を求めることで、 トレーニング効率を向上させる。

【0033】雑音相関演算部は、記憶部に記憶した雑音 の相関とその分散を、媒体の各セクタ毎のプリアンブル の振幅値に応じて補正して求めることで、精度の高い復 号を行う。更に、雑音相関演算部は、ある特定のタイミ ングで、雑音の相関と分散を再計算して記憶部を更新 し、雑音パラメータの時間劣化に対応した耐久性のある 装置を実現する。

【0034】本発明は最大事後確率復号 (MAP復号) を行う情報記録再生方法において、過去Nビット及び未 来Qビットにおける入力信号パターン x 🛶 , …, x 🙀 に依存した過去及び未来の状態に対する雑音の相関e (s"_k) とその分散 σ (s"_k) を算出して記憶し、記憶 した雑音の相関 e (s * k) とその分散 σ (s * k) を使っ て有色雑音を白色化した過去及び未来の状態に対する白 色化雑音値nkを求め、過去及び未来の状態に対する白 色化した雑音値とその分散 σ (s k) から最大事後確率 復号の入力信号 (チャネル信号) Λ c (y, | s ,) を算 40 出することを特徴とする。

【0035】本発明は、一般的な反復型復号を行う情報 記録再生方法において、過去Nビット及び未来Qビット における入力信号パターンx k-n , …, x k-v に依存した 過去及び未来の状態に対する雑音の相関e(s**、)とそ の分散 σ (s ,) を算出して記憶し、記憶した過去及び 未来の状態に対する雑音の相関e (s k) とその分散σ (s k) を使って有色雑音を白色化した過去及び未来の 状態に対する白色化雑音値nkを求め、過去及び未来の 状態に対する白色化した雑音値とその分散 σ (s,)か ら反復型復号の入力信号(チャネル信号)Λc (y և s

*,)を算出することを特徴とする。

【0036】本発明は最大事後確率復号(MAP復号)を行う情報記録再生方法において、等化後雑音が白色雑音に近くなる等化信号を対象に、過去Nビット及び未来Qビットにおける入力信号パターン x κ-ν , ···, x κ-ν に依存した過去及び未来の状態に対する雑音の分散 σ (s x) から最大事後確率復号の入力信号 (チャネル信号) Λ c (y x | s x) を算出することを特徴とする。

【0037】本発明は、反復型復号を行う情報記録再生方法において、等化後雑音が白色雑音に近くなる等化信号を対象に、過去Nビット及び未来Qビットにおける入力信号パターン $\mathbf{x}_{\mathbf{k},\mathbf{k}}$, …, $\mathbf{x}_{\mathbf{k},\mathbf{k}}$ に依存した過去及び未来の状態に対する雑音の分散 \mathbf{x} ($\mathbf{x}_{\mathbf{k}}$) を算出して記憶部し、記憶部に記憶した分散 \mathbf{x} ($\mathbf{x}_{\mathbf{k}}$) から反復型復号の入力信号(チャネル信号) \mathbf{x} ($\mathbf{y}_{\mathbf{k}}$ | $\mathbf{x}_{\mathbf{k}}$) を算出することを特徴とする。

【0038】本発明は最大事後確率復号(MAP復号)を行う情報記録再生方法において、等化後雑音が白色雑音に近くなる等化後の入力信号系列を対象に、過去Nビット及び未来Qビットにおける入力信号パターン $x \mapsto , \cdots, x \mapsto$ に依存した過去及び未来の状態に対する雑音の分散 σ (s) を算出して記憶部し、等化後の入力信号系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、記憶部に記憶した分散 σ (s) から入力信号(チャネル信号) Λ σ (g | g) を求め、尤度をスライデングしながら算出することを特徴とする。

【0039】本発明は、反復型復号を行う情報記録再生方法において、等化後継音が白色雑音に近くなる等化信 30号を対象に、過去Nビット及び未来Qビットにおける入力信号パターン x *** 、 *** 、 *** に依存した過去及び未来の状態に対する雑音の分散 σ (s ***) を算出して記憶し、等化後の入力信号系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分散 σ (s ***) から入力信号(チャネル信号)Λ c (y ***| s ***) を求め、尤度をスライデングしながら算出することを特徴とする。

【0040】本発明は、ビタビ復号を行う情報記録再生方法において、過去Nビット及び未来Qビットにおける入力信号パターン x_{k+1} , …, x_{k+1} に依存した過去及び未来の状態に対する雑音の相関値 $e(s_k^*)$ とその分散 $\sigma(s_k^*)$ を算出して記憶し、記憶した過去及び未来の状態に対する雑音の相関 $e(s_k^*)$ とその分散 σ

(s、)を使って有色雑音を白色化した過去及び未来の 状態に対する白色化雑音値 n_k を求め、過去及び未来の 状態に対する白色化した雑音値とその分散 σ (s、)からビタビ復号のブランチメトリック(チャネル信号) Λ c(y_k | s 、)を算出する。これ以外の特徴は、装置構成の場合と同じになる。 【0041】更に本発明は、信号復号回路を提供するものであり、現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音相関演算部と、雑音の相関と分散を記憶する記憶部と、記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、白色化した雑音値と白色化した雑音の分散から符号器の入力信号を算出する入力信号演算部とを備えたことを特徴とする。

10

【0042】また本発明の信号復号回路は、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、雑音の分散を記憶する記憶部と、記憶部に記憶した分散から復号器の入力信号を算出する入力信号演算部とを備えたことを特徴とする。

【0043】更に本発明の信号復号回路は、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器からの入力信号に対し、現在と過去又は未来における入力信号バターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、雑音の分散を記憶する記憶部と、等化後の入力信号の系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、記憶部に記憶した分散から入力信号(チャネル信号)を求め、尤度を算出するスライデング・ウインドウ処理部とを備えたことを特徴とする。の信号復号回路における他の特徴は、情報記録再生装置の場合と同じになる。

[0044]

【発明の実施の形態】図2は、本発明が適用されるハードディスクドライブのブロック図である。図2において、ハードディスクドライブは、SCSIコントローラ10、ドライブコントロール12及びディスクエンクロージャ14で構成される。勿論、ホストとのインタフェースはSCSIコントローラ10に限定されず、適宜のインタフェースコントローラが使用できる。

【0045】SCSIコントローラ10には、MCU (メインコントロールユニット) 16、制御記憶として 使用されるDRAMもしくはSRAMを用いたメモリ18、制御プログラムを格納するフラッシュメモリなどの 不揮発性メモリを使用したプログラムメモリ20、ハードディスクコントローラ (HDC) 22及びデータバッファ24が設けられる。

【0046】ドライブコントロール12には、ドライブインタフェースロジック26、DSP28、リード/ライトLSI30及びサーボドライバ32が設けられる。 【0047】更にディスクエンクロージャ14にはヘッドIC36が設けられ、ヘッドIC34に対し記録ヘッドと再生ヘッドを備えた複合ヘッド36-1~36-6を接続している。

【0048】複合ヘッド36-1~36-6は磁気ディ

スク38-1~38-3の各記録面に対し設けられ、VCM40によるロータリアクチュエータの駆動で磁気デ ィスク38-1~38-3の任意のトラック位置に移動 される。磁気ディスク38-1~38-3はスピンドル モータ42により一定速度で回転される。

【0049】図3は、図2のリードチャネル30の構成 であり、反復型復号法を採用している。図3において、 [0、1]のバイナリーパターンからなるユーザデータ は、誤訂正検出のためのCRC(Cyclic redundancy che ck codes) 符号器 4 4 に入力された後、エラー訂正のた めのECC (Error Correcting Code) 符号器 4.6 に入力 される。

【0050】次に、ECC符号器46の出力結果がPL L (Phase Locked Loop)による再生時のタイミング補正 を可能ならしめるためのRLL(Run Length Limited)符 号器に入力される。この例では、磁気記録再生チャネル の特性を考慮して連続磁化反転を制限するMTR(Maxi mum Transition) 符号を採用していることから、RLL /MTR符号器48に入力される。

【0051】ECC/MTR符号器48の出力結果u. は、外符号器ユニット50の外符号器52に入力され る。外符号器52の出力xxは、ヘッド/媒体56を介 して磁気記録後に再生される。再生されたアナログ信号 は、等化器58を介してPR4、EPR4、EEPR 4、MEEPR4等の所望の目標波形となるように信号 が整形され、チャネル信号ャレンなろ

【0052】ところで、ヘッド/媒体56と等化器58 からなる磁気記録再生チャネル54は、外符号器52の 出力信号xxを磁気記録再生チャネル54の出力信号yx に変換する符号器とみなすことが可能であり、ここでは 30 内符号器54と呼ぶものとする。

【0053】等化器58で整形されたアナログ信号y* は、外符号器52と内符号器54に対する復号器である 反復型復号器60で復号され、RLL/MTR復号器6 2、ECC復号器64、CRC検出器66を介して最終 的な復号データが得られる。

【0054】図4は、図3のリードチャネルにおけるC RC符号器44から内符号器54までの詳細である。ユ ーザデータは、CRC符号器44によりECCにおける 誤訂正を検出するためのパリティが付加され、ECC符 号器46においてリード・ソロモン符号による誤り訂正 のためのパリティが付加され、その出力結果がRLL/ MTR符号器48に入る。

【0055】RLL/MTR符号器48からの出力信号 uxはインターリーバ70により乱数化され、その系列 が外符号器52に入力される。ここで、外符号器52の 出力する外符号は、復号結果として [0, 1] の2値判 定(硬判定)の結果(ディジタル値)を出力するのではな く、復号系列が0もしくは1である確からしさ(信頼性情 報)を表す軟判定結果(アナログ値)を入出力する軟判

定復号器による反復復号を前提とした符号であるターボ 符号、低密度パリティ検査符号(LDPC等を用いるも のとする。

12

[0056] PUMUX (Puncturing & Multiplexer) 7 2は、RLL/MTR符号器48の出力uxに対する外 符号器52の出力pxを記録系列xx に変換する。ここ で、PUMUX72は、長さUten ビットのRLL/M TR符号器48の出力uxを、長さXim ビットのPUM UX出力xxに変換する比を表す符号化率Um /Xm が所望の値となるように、外符号器出力 px を適当に間 引いた(Puncturing)後に符号器出力 uxに加える(Multip lexer)。

【0057】PUMUX出力x,は、ヘッド/媒体56 で記録再生され、周波数制限によって雑音を抑圧するC Tフィルタ(Continuous Time Filter) 78と、CTF出 力を有限の遅延線とタップによって最終的に波形整形す るFIR (Finite Impulse Response) フィルタ80を備 えた等化器58により、再生された波形が所望の信号波 形に等化される。

【0058】ここで、FIRフィルタ80の出力ャ ょは、ヘッド/媒体56、CTフィルタ78、及びFI Rフィルタ80からなる磁気記録再生チャネルを内符号 器54とみなした場合、PUMUX72の出力xxに対 する内符号系列となる。図5は、図3の内符号器54か らCRC検出器66までの詳細である。磁気記録再生チ ャネルである内符号器54により系列x,が等化器80 の出力となる内符号系列ットに変換され、磁気記録再生 チャネルに対する復号器となる反復型復号器60に設け た内符号復号器86に送られる。内符号復号器86は、 この例では、最大事後確率復号を行うMAP復号器とす る。

【0059】ここで、内符号系列yxは、磁気記録再生 チャネルである内符号器54を通過することにより、必 然的に信号成分だけでなく雑音成分までも含むこととな り、雑音相関演算部84で後の説明で明かにする手法で 推定した雑音の相関とその標準偏差σの値を、内符号復 号器86上のメモリ88に保持する。

【0060】内符号復号器86では最大事後確率アルゴ リズム (MAPアルゴリズム) により、内符号系列 yk、標準偏差σ、及び記録系列xkに対する事前情報 Λ. (xk)から、磁気記録再生チャネルにおける状態の時間遷 移を表すトレリス線図上の各状態におけるk-1時点か らk 時点への遷移確率である演算ブロック90のyx、 トレリスの始端からk-1時点までの各状態にいたる確 率である演算ブロック94)のαι-ι、トレリスの終端か ら k 時点までの各状態にいたる確率である演算ブロック 95の β_k 、そして α_{k+1} 、 β_k 、 γ_k の積より計算される 各ビットに対する信頼性情報である演算ブロック96の Λ(x_k)を算出する。

【0061】 演算ブロック96の信頼性情報 A(x,)から

20

(8)

事前情報を Λ a(x_k)を演算ブロック98で減じることにより外部情報 Λ e(x_k)を計算し、これが出力となる。出力された外部情報 Λ .(x_k)は、図4のPUMUX72の逆操作を行うDE-PUMUX100、インターリーバー102を経て、RLL/MTR符号器出力系列ukに対する事前情報 Λ .(u_k)として外符号復号器104に入力される。

【0062】外復号器104で外符号を復号した後、適当な反復終了条件を満たしていなければ、RLL/MT R符号器出力系列 \mathbf{u} 、に対する外部情報 Λ 、(\mathbf{u} 、)を、図4のインターリーバー70の逆操作を行うデ・インターリー106及びPUMUX108を介して内符号復号器86に記録系列 \mathbf{x} 、に対する事前情報 Λ 、(\mathbf{x} 、)として送る。

【0063】 反復復号器60は、このように複数の復号 器間で信頼性情報を反復して計算することにより、復号 の精度を高める。尚、反復型復号器については、論文

「Z. Wu、"Coding and Iterative Detection for Magnetic Recording Channels," Kluwer Academic Publishers, 2000.」がある。

【0064】 反復型復号器 60における反復計算の過程で、外符号復号器 104において適当な反復終了条件を満たしていれば、RLL/MTR符号器出力系列u、に対する信頼性情報 Λ(u、)が硬判定プロック110に送ら *

*れ、[0, 1]の2値判定される。

【0065】2値判定された結果は、RLL/MTR復号器62に送られる。その復号結果に対しECC復号器64によりエラー訂正が行われ、最終的にCRC検出器66により誤訂正の検査がされてからユーザデータが得られる。

【0066】次に、図5の磁気記録再生チャネルに対するMAP復号器となる内符号復号器86で行われるBCRJ復号法 (Bahi-Cocke-Jeinek-Raviv復号法)の手順について説明する。記録系列xxに対する図5の内符号復号器54である磁気記録再生チャネルがPRチャネル、例えばPR4チャネルとなっているものとする。このPR4チャネルの各状態を図6のように定めるものとすると、各状態における時間に対する推移を表す状態推移図は図7のように表せる。

【0067】ここで、PR4 チャネルにおける雑音llk が 平均値がllosepark のガウス分布であると仮定し、lk-1 時点の状態から lk 時点の状態へ遷移するときの理想等化値をllosepark と表すと、雑音llosepark の確率密度関数は次式となる。

【0068】 【数1】

※【0070】

【数2】

$$p(n_k) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{n_k^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(y_k - d_{\{s_{k-1} \to s_k\}}\right)^2}{2\sigma^2}\right)$$
(1)

【0069】この式(1)の両辺に $(2\pi)^{1/2}$ σ を乗じ、その自然対数をとることによって、チャネル情報は次式のようになる。

$$\Lambda_{c}(y_{k}) = -\frac{\left(y_{k} - d_{\{s_{k-1} \to s_{k}\}}\right)^{2}}{2\sigma^{2}}$$
 (2)

【0071】チャネル情報 $\Lambda_c(x_k)$ と記録系列 x_k に対する事前情報 $\Lambda_s(x_k)$ からPR4 チャネルに対する最大事後確率復号は図7のように行われる。ここで、 γ_k (s_{k-1} , s_k)はk時点における各状態にk-1時点の各状態から遷移する確率、 α_{k-1} (s_{k-1})はk-1時点における各状態

★にトレリスの始端から至る確率、β、(s、)はk時点における各状態にトレリスの終端から溯って至る確率であり、それぞれ式(3)~(5)で表すことができる。

[0072]

【数3】

$$\gamma_k(s_{k-1}, s_k) = \exp\{x_k \Lambda_a(x_k)\} \exp\{\Lambda_c(y_k)\}$$
(3)

$$\alpha_{k}(s_{k}) = \sum_{s_{k-1}} \alpha_{k-1}(s_{k-1}) \gamma_{k}(s_{k-1}, s_{k})$$
 (4)

$$\beta_{k-1}(s_{k-1}) = \sum_{s_k} \beta_k(s_k) \gamma_k(s_{k-1}, s_k)$$
 (5)

【0073】ただし、初期状態と終了状態を状態Soと仮定すると、終端条件は以下の通りである。

[0074]

50 【数4】

$$\alpha_0(s_0) = \begin{cases} 1, & \text{if } s_0 = S_0 \\ 0, & \text{if } s_0 \neq S_0 \end{cases} \qquad \beta_N(s_N) = \begin{cases} 1, & \text{if } s_N = S_0 \\ 0, & \text{if } s_N \neq S_0 \end{cases}$$
 (6)

【0075】ここで、k時点におけるxkが"1"となる 事後確率と"0"となる事後確率の比の自然対数(対数尤 度比)で表される信頼性情報 Λ (x_k)は次式となる。

* [0076] 【数5】

質性情報
$$\Lambda(x_k)$$
 は次式となる。
$$\sum_{\substack{\alpha_{k-1}, s_k, x_k = 1 \\ (s_{k-1}, s_k), x_k = 0}} \alpha_{k-1}(s_{k-1}) \gamma_k(s_{k-1}, s_k) \beta_k(s_k)$$
(7)

【0077】ただし、(sk-1,sk),xk=1はxk=1に関連付け られた全ての状態遷移を、(sk-1, sk), xk = 0はxk = 0に関連 付けられた全ての状態遷移を意味する。そして、式(7) から、図5の演算ブロック98のようにして、事前情報 Λ。(xk)を差し引くことで外部情報 Λ。(xk)を得る。 図 5 ※

$$\Lambda_a(x_k) = \Lambda(x_k) - \Lambda_a(x_k)$$

※の内符号復号器86は、この外部情報Λ.(x,)を出力と する。

[0078]

【数6】

(8)

★【0080】なお、計算量を減らすため、BCJR復号

法を対数領域で計算するLogMA P復号法も提案されて

【0079】図9は、BCJR復号アルゴリズムにおけ る計算の手順をまとめたフローチャートである。まずス テップS1で(2)(3)式に基づいてγ(s₁₋₁, s_k)を 算出する。次に、ステップS2で(4)式に基づきα (s)を求め、ステップS3で(5)式に基づいてβ к (sк) を求める。最後にステップS4で(7)(8)式に 基づいてΛ(x_k) Λ_c(x_k)を得る。

$$\gamma_k(s_{k-1}, s_k) = x_k \Lambda_a(x_k) + \Lambda_c(y_k)$$

$$\alpha_k(s_k) = \max_{s_{k-1}} \{\alpha_{k-1}(s_{k-1}) + \gamma_k(s_{k-1}, s_k)\}$$

$$\beta_{k-1}(s_{k-1}) = \max_{s_{k-1}} * [\beta_k(s_k) + \gamma_k(s_{k-1}, s_k)]$$

いる。LogMAP復号法では、(3)~(7)式が以下の(9)~ (13)式に置き替わるが、計算の手順は同様である。 [0081]

【数7】

$$\mathbf{i}(s_{k-1}) = \max_{s_{k-1}} \{ \beta_k(s_k) + \gamma_k(s_{k-1}, s_k) \}$$
 (11)

$$\alpha_0(s_0) = \begin{cases} 0, & \text{if } s_0 = S_0 \\ -\infty, & \text{if } s_0 \neq S_0 \end{cases} \qquad \beta_N(s_N) = \begin{cases} 0, & \text{if } s_N = S_0 \\ -\infty, & \text{if } s_N \neq S_0 \end{cases}$$
 (12)

$$\Lambda(x_k) = \max_{(s_{k-1}, s_k), x_k = 1} [\alpha_{k-1}(s_{k-1}) + \gamma_k(s_{k-1}, s_k) + \beta_k(s_k)]
- \max_{(s_{k-1}, s_k), x_k = 0} [\alpha_{k-1}(s_{k-1}) + \gamma_k(s_{k-1}, s_k) + \beta_k(s_k)]$$
(13)

【0082】ただし、

☆【数8】

[0083]

 $\max * (a,b) = \max(a,b) + \ln\{1 + \exp(-|b-a|)\}\$

(14)

【0084】である。さらに、(14)式を、

【数9】

[0085]

 $\max * (a,b) = \max(a,b)$

のSISO復号法である。

【0086】と近似し計算量を一層削減するMax-LogM AP復号法も提案されている。

【0087】また、SOVA(Soft Output Viterbi.A lgorithm) 復号法においても同様である。SOVA復号 法は、ビダビ復号法を軟出力を行うように拡張したもの であり、原理的にはBCJR復号法と同じ軟入力軟出力 50

【0088】BCJR復号法とSOVA復号法の違い は、BCJR復号法が全ての可能なパス(状態遷移の系 列)を考えて事後確率を求めるのに対し、SOVA復号 法は一部のパスだけから事後確率を求める点にある。そ のため、SOVA復号法は、BCJR復号法より性能は

(15)

劣るものの、計算量は少ない。

【0089】またパスの選び方は異なるが、原理的に同 じSISO復号法であることから、各状態遷移に対する パスメトリックの計算はBCJR復号法と同じ(3)

17

(4) 式あるいは(9)(10)式に基づいている。従 って、本発明による(25)(26)式をそのまま適用 することができる。

【0090】なお、SOVA復号法については、論文・ J. Hagenauer and P. Hoeher, "Aviterbi algorithm with soft-decision outputs and its applications", IEEEGlobeCom, pp. 1680-86, 1989.」などがある。

【0091】式(2)~(8)の計算を行う従来の最大事後 確率復号器は、チャネル雑音nx を式(1)で示されるよう な、雑音間に相関のない白色雑音を前提にして構成され ており、雑音間に相関のある実際のチャネルに適用して も十分な性能が得られなかった。

【0092】また、従来の最大事後確率復号器は、記録 密度の増大に伴いますます無視できなくなる、媒体上の 記録信号パターンに依存したPE (Partial Erasure) やNLTS (Non Linear Transition Shift)等の非線形 要因による影響を考慮しておらず、今後の磁気記録装置 における記録密度増大に対処するには、はなはだ不十分 であった。

$$n_k = y_k - d(s_k^m)$$

【0097】ここで、s、はk時点における図10から定 まる状態である。また装置の簡略化のため、d(s k)の代 わりに、状態s、に対する理想等化波形を用いてもよ 11

【0098】図11は、雑音モデルの説明図である。式 30 (16)から求めた図11 (A) の等化器54における出 力雑音mx が、図11(B)のように、周波数スペクトル 118のように周波数依存性を持った有色雑音であり、 図11 (C) の時間軸上では、過去Lビット、未来Mビッ※

 $n_{k} = w_{k} + \sum_{i=1}^{-1} e_{i}(s_{k}^{m})n_{k-i} + \sum_{i=1}^{M} e_{i}(s_{k}^{m})n_{k-i}$ (17)

【0101】ここに、e-l. (s"k)~e_l (s"k)は記録状態s"k に依存した過去Lビットの雑音の現時点に対する重み、e 1(s k)~eu(s k)は記録状態s kに依存した未来Mビット の雑音の現時点に対する重み、w は現時点に加わる白色 ガウス雑音である。

 $\sigma^{2}(s_{k}^{m}) = \left\langle \left(n_{k} - \sum_{i=-l}^{-1} e_{i}(s_{k}^{m}) n_{k-i} - \sum_{i=-l}^{M} e_{i}(s_{k}^{m}) n_{k-i} \right)^{2} \right\rangle$ (18)

【0104】が最小となる値を求めれば良い。但し、く >は期待値を表している。

【0105】従って、状態s、に対するnxの自己相関関 数の期待値をR...(j|s"k)= <nk nk , j | s"k >、 -L

*【0093】そこで、本発明の第1実施形態では、媒体 上の記録信号パターンに依存したPE やNLTS等の 非線形要因による性能劣化に対応するため、過去Nビッ ト、未来Qビットの 2 値記録信号x_{k-N} , ..., x_k, ..., x k-q に対する2^{Nigil} 個の状態S[®]。~S[®]2 (Nigil)-1 0のテーブルのように定め、信号、雑音パラメータに対 してこの記録信号状態依存性を持たせるものとする。

【0094】そして、状態S® o~S® 2*(N+U+1)-1 本発明における等化後波形ykの平均値d(S)~)~d(S

)を、トレーニング系列を使用して図5の雑 音相関演算部84により図10のように求める。このト レーニング系列を使用した雑音相関の演算は、図4及び 図5のトレーニング系列発生器74、セレクタ76、8 2、トレーニング計算器84により実現され、この点は 後の説明で明らかにする。また、図10において、N= 0とすることで未来のみ、Q=0とすることで過去のみ の記録信号依存性を考慮することによって、トレーニン グ回数、平均値計算時間、図10の記録信号状態依存性 を格納するメモリを削減できる。

【0095】この第1実施形態では、次式によってk時 点における等化器出力雑音nxを導出するものとする。

[0096]

【数10】

(16)

※トの雑音と相関のあるガウスーマカロフ(Gauss-Marko v) 系列の自己相関122を持つとする。なお、白色ガ ウス雑音については破線の周波数スペクトル120と自 己相関124を持つ。

【0099】この時、出力雑音nk は次式のようにな る。

[0100]

【数11】

 \bigstar [0102] We line-L , ..., n_{k-1} , n_{k0} , ..., n_{k0} と無相関なので、e-L (s k)、…、 e-I (s k)、 e 40 ₁(s^{*}_k)、…、e₁(s^{*}_k)としてはw_kの分散

[0103]

【数12】

≤j≤Mとすると、最小二乗法より、

[0106]

【数13】

$$\left\langle n_{k-j} \left(n_k - \sum_{i=-k}^{M} e_i(s_k^m) n_{k-i} \right) \right\rangle = R_{mn} (j \mid s_k^m) - \sum_{i=-k}^{M} e_i(s_k^m) R_{nk} (j-i \mid s_k^m) = 0 \quad (-M \le l, j \le L, i \ne 0, j \ne 0)$$
 (19)

【0107】が成立すればよい。

【0108】よって、nkの(L+M+1)×(L+M+1)共分散行列をRi,j(s"k) = [Rmm (j-i | s"k)]、1≦i、 j≦L+M+1としたとき、その L+1行、L+1列成分を除いた行列R\

* ...i (s k)を 【 0 1 0 9 】 【数 1 4 】

$$\mathbf{R}_{\backslash L+1}\left(\boldsymbol{s}_{k}^{m}\right) = \begin{bmatrix} \mathbf{R}_{i,j\left(1 \leq i \leq L, 1 \leq j \leq L\right)}\left(\boldsymbol{s}_{k}^{m}\right) & \mathbf{R}_{i,j\left(1 \leq i \leq L, L+2 \leq j \leq L+M+1\right)}\left(\boldsymbol{s}_{k}^{m}\right) \\ \mathbf{R}_{i,j\left(L+2 \leq i \leq L+M+1, 1 \leq j \leq L\right)}\left(\boldsymbol{s}_{k}^{m}\right) & \mathbf{R}_{i,j\left(L+2 \leq i \leq L+M+1, L+2 \leq j \leq L+M+1\right)}\left(\boldsymbol{s}_{k}^{m}\right) \end{bmatrix}$$
(20)

[0110]
$$\succeq$$
 \cup , $e(s_k) = \{e_{-L}(s_k), \dots, e_{-1}(s_k), \dots, e_{-1}(s_k) = \{R_m (-L | s_k), \dots, R_m (M | s_k), \dots, R_m (M | s_k), \dots, R_m (M | s_k) = \mathbf{R}_{L+1}(s_k^m) \mathbf{r}(s_k^m)$

【0112】によりe(s゚,)が求まる。このときの白色ガ \star 【0113】 ウス雑音w, の分散 σ^2 (s゚,)は \star 【数16】 σ^2 (s_k^m) = R_m (0|s_k^m) - \mathbf{r}^{T} (s_k^m) $\mathbf{R}_{\mathsf{L}+1}^{-1}$ (s_k^m) \mathbf{r} (s_k^m) (22)

【0114】となる。

【0115】この第1実施形態では、復号の精度を高めるため、式(2)のチャネル情報の計算において、記録パターンに依存した過去及び未来の雑音に対する相関を導入した雑音予測最大事後確率復号法(NPMAP復号法(Noise Predictive MaximumA posteriori Probability))を行う。

【0116】式(21)、(22)より求まるe(s x)、 σ(s x)は、図12のテーブルに示す媒体上の信号の状態に対する雑音の相関及び標準偏差のように、図10の状態 30 s x に依存しているものとすると、チャネル情報 ☆

☆ A. (,,)の計算において図12のテーブルを用いることで、記録信号依存型の雑音予測最大事後確率復号(NP MAP)が実現できる。

【0117】ここで最大事後確率復号器(MAP復号器)の入力雑音が過去Lビット、未来Mビットの雑音と相関のあるマルコフ系列であると仮定すれば、相関のない白色雑音を前提とした式(1)に対して、その確率密度関数は次式となる。

【0118】 【数17】

$$p(n_k \mid n_{k-L}, \dots, n_{k-1}, n_{k+1}, \dots, n_{k+M}) = \frac{1}{\sqrt{2\pi} \sigma(s_k^n)} \exp \left(-\frac{\left(n_k - \sum_{i=-L}^{-1} e_i(s_k^m) n_{k-i} - \sum_{i=-L}^{M} e_i(s_k^m) n_{k-i}\right)^2}{2\sigma^2(s_k^m)} \right)$$
(23)

【0119】式(23)の両辺に(2π)^{1/2} を乗じ、その 自然対数をとることによって、最人事後確率復号 (MA P復号) における記録信号に依存したチャネル情報 Λ. ◆

◆ (y, |s,) が得られる。 【0120】 【数18】

$$\Lambda_{c}(y_{k} \mid s_{k}^{m}) = -\ln \sigma(s_{k}^{m}) - \frac{\left(n_{k} - \sum_{i=-L}^{-1} e_{i}(s_{k}^{m})n_{k-i} - \sum_{i=1}^{M} e_{i}(s_{k}^{m})n_{k-i}\right)^{2}}{2\sigma^{2}(s_{k}^{m})}$$
(24)

【0121】式(24)を計算するためには、過去Lビットおよび未来Mビットの雑音を推定する必要がある。そこで、PRチャネルの状態sk-、から状態sk へ遷移するパスを通過する区間k-L-1~k+ Mの全てのパスメトリックを計算し、その値が最小となるパスを求める。

【0122】図13はPR4チャネルで、過去Lビット =2ビット、未来Mビット=2ビットとして、状態snか 50 らsi へ遷移するパスを通過する区間k-3~k+2の全てのパスメトリックを計算し、その値が最小となるパスを求めた具体例である。

【0123】そして、最短パスに相当する等化波形の平均値d(S ー)~d(S い) を図12から求め、式(16)より等化後雑音nkを推定するものとする。よって、式(24)は次式となる。

【0125】図14は、PR4チャネルで、過去レビット=2ビット、未来Mビット=2ビットとしてとした場合の雑音予測最大事後確率復号(NPMAP)における式(25)による状態のチャネル情報 A.(y, | s,) の具体的な計算例である。

【0126】この式(25)によるチャネル情報の演算は、図5の演算ブロック90に内蔵している白色化雑音演算部91と入力信号演算部92で行う。即ち、白色化雑音演算部91は、記憶部88に記憶した図12のテーブルの雑音の相関e(s x)とその分散σ(s x)を使って、図11(B)の周波数スペクトル118を持つ有色雑音を、周波数スペクトル120の白色化した過去及び未来の状態に対する白色化雑音値を求める。

【0127】そして、入力信号演算部92が、過去及び未来の状態に対する白色化した雑音値とその分散σ(s、)から式(25)のチャネル情報Λc(y,|s、)を算出し、その後に、このチャネルから最大事後確率復号(MAP復号)における尤度を求める。

【0128】ここで、式(25)におけるd(S" $_{\text{H-I}}$)~d (S" $_{\text{H-I}}$)を推定する方法としては、図13のような最短パス選択方式ではなく、図8の最人事後確率復号(MAP復号)における α , β である式(4),(5)もしくは式(10),(11)を用いてもよいし、適当な回数繰り返し復号を行った復号結果を用いてもよい。

【 0 1 2 9 】 また装置を簡略化するため、d(S * 1.1) ~ 30 d(S * 1.1) の代わりに状態 なに対する理想等化波形を用いてもよいし、式(2 5) の右辺の第一項を省略してもよい。

【0130】また、L=0とすることで未来のみ、M=0とすることで過去のみの雑音相関を考慮することで、トレーニング回数、雑音パラメータ計算時間、図12の信号状態に対する雑音パラメータのテーブルを格納するメモリを削減できる。

【0131】式(25)から求まるチャネル情報 A。(,,) を用いて式(3)~(7)、対数領域で計算するときは式(9)~(13)に適用することで最大事後確率復号(MA P復号)を実施できる。

【0132】図15は、第1実施形態におけるトレーニング信号の記録再生による、信号状態に対する雑音パラメータ取得のためのトレーニング機能を示す。

【0133】トレーニング系列の記録再生中は、CRC※

※符号器 4 4 から P U M U X 7 2 に至る系列による符号化は行われず、セレクタ 7 6 の切替えによりトレーニング系列生成器 7 4 から生成されたランダムなトレーニング系列をヘッド/媒体 5 6 により記録再生し、C T フィルク 7 8 及び F I R フィルタ 8 0 からなる等化器 5 8 により所望の等化波形に整形する。

【0134】等化器58からの等化液形は、セレクタ82の切替により雑音相関演算部84に与えられ、等化波形の平均値から図10における等化後波形の平均値d(s)から、式(16)~(22)よりe(s)、 σ (s)を計算して図12の信号状態に対する雑音パラメータのテーブルを完成させ、スイッチ85を閉じることで、図10及び図12のテーブルをメモリ88に保存する。

【0135】図16は、トレーニング終了後のデータ系列の記録再生状態である。このデータ系列の記録再生中は、セレクタ76によりトレーニング系列生成器74は切り離され、ユーザデータ系列に対してCRC符号器44からPUMUX72に至る過程で符号化が施され、ヘッド/媒体54により記録再生し、CTフィルタ78及びF1Rフィルタ80からなる等化器58により所望の等化波形に整形される。

【0136】再生過程では、セレクタ82により雑音相関演算部84は切り離され、等化波形は反復型復号器60に送られる。そして、反復型復号器60の初段にあたる内符号復号器86(磁気記録再生チャネルに対するMAP復号器)で、図5のPUMUX108の出力である事前情報 Λ . (x.)と、メモリ88に保存されている図10及び図12のテーブルを参照して式(25)によりチャネル情報を求めた後、最大事後確率復号(MAP復号)を行う。

【0137】次に本発明の第2実施形態を説明する。本発明の第1実施形態にあっては、図11の周波数スペクトル118および自己相関122のように、等化後雑音を相関のある有色雑音としてモデル化していたが、等化後雑音が相関のない白色雑音に近くなるような等化目標をもつ等化器58を選択することで、等化後雑音を白色雑音にモデル化できる。この時、PRチャネル情報情報 Λ 。(y_k | s_k)は次式となる。

[0138]

【数20】

$$\Lambda_{c}(y_{k} | s_{k}^{m}) = -\ln \sigma(s_{k}^{m}) - \frac{\left(y_{k} - d(s_{k}^{m})\right)^{2}}{2\sigma^{2}(s_{k}^{m})}$$
(26)

4.0

【0139】式(26)から求まるチャネル情報 Λ。(x) 50 を用いて式(3)~(7)、或いは対数領域で計算するとき

は式(9)~(13)に適用することで、最大事後確率復号 (MAP復号)を実現できる。

【0140】この第2実施形態では、雑音パラメータが記録信号に依存した標準偏差σ(s) だけとなり、式(25)と比較して、過去Lビット、未来Mビットの信号d(s) ~d(s))を推定する必要がないため、計算量が大幅に低減し、大幅な装置の高速化が可能となる。

【0141】また、装置のメモリに保持しなければならない雑音パラメータも記録信号に依存した標準偏差σ(s^{*}*)だけとなるので、メモリ削減が可能である。

【0142】更に第2実施形態にあっては、式(26)において、 $d(s^*_{k+1})\sim d(s^*_{k+1})$ の代わりに状態 s^*_{k} に対する理想等化波形を用いてもよいし、右辺の第一項を省略してもよく、これによって更に装置を簡略化できる。

【0143】次に本発明の第3実施形態を説明する。第2実施形態において、記録信号に依存した標準偏差を用いた最大事後確率復号(MAP復号)を実施する場合、スライデング・ウインドウ法(Sliding Window法)を採用することにより装置メモリの削減が実現できる。

【0144】スライデング・ウインドウ法では、図5の内符号復号器86において、まず、系列長N。の受信系列y、を系列長N。の小さな系列、即ちウインドウ(Window)に分割する。この分割した系列長N。の系列に対する信頼性情報を、式(26)、(3)~(7)に従ってそれぞれ計算することにより、最大事後確率復号器(MAP復号器)おける α (x_{*})、 β (x_{*})、 γ (x_{*})、 Λ (x_{*})、即ち図5の演算ブロック90、94、95、96のを格納するメモリを削減でき、また復号遅延を短くすることができる。

【0145】ここで、分割した系列長N.のウインドウの 30 すぐ後につづく系列長N.の系列を、式(5)の ß の計算を信頼できるものとするためのトレーニング系列として利用する。また分割されたウインドウ数は

[0146]

【数21】

 $N_{wind} = [(N_s - N_t)/N_u]$

【0147】となる。

【0148】図17は、スライデング・ウインドウ法を 具体的に説明する。まず、1番目のウインドウ132ー 1において、系列 y_1 , … y_m に対する信頼性情報 Λ_1 , …, Λ_m を、式(26),(3)~(7)から求める。但し、 β_m の計算にはトレーニング系列 y_{mil} , …, y_{min} を用いる。

【0149】i番目のウインドウ132-iにおいても、同様に、トレーニング系列 y_{iMul} , …, y_{iMul} を用いて β_{iMu} を計算し、信頼性情報 $\Lambda_{(i-1)Mul}$, …, Λ_{iMu} を求める。3)最後の N_{vind} 番目のウインドウ132-Nでは、系列 $y_{(Nvind-1)Mul}$, …, y_{i} を用いて、式(26), (3) ~(7) から信頼性情報 $\Lambda_{(Nvind-1)Mul}$,

···、Λ_Nを求める。

【0150】この第3実施形態におけるスライデング・ウインドウ法を適用して信頼性情報を算出する場合の詳細は、図18のフローチャートのようになる。即ち、ステップS1で入力系列を小さな系列であるウインドウに分割し、ステップS2でウインドウ番号を1にセットした後、ウインドウ番号がN*ind ー1に達するまでステップS3~S8を繰り替えして信頼性情報を求める。そしてステップS3でウインドウ番号がN*ind に達したら、ステップS9~S12により信頼性情報を求める。

24

【0151】なお、スライデング・ウインドウ法については、論文「S.Benedetto, D. Divsalar, G. Montors i, and F. Pollara, "Soft-output decoding algorith ms initerative decoding of turbo codes," JPL TDA P rogress Report, vol. 42-124, Feb. 15, 1996.」や、論文「MAP decoder for convolutional codes," IEEEJ. Select. Areas Commun., vol. 16, pp. 260-264, Feb. 1998.」などがある。

【0152】次に本発明の第4実施形態を説明する。本発明の第4実施形態は、図13のような最短パス選択方式を採用することにより、ビタビ復号においても、過去だけでなく未来の雑音に対する相関を取り入れた雑音予測最尤復号法(NPML; Noise Predictive Maximum Likelihood)を実現する。この雑音最尤復号法NPMLにおけるブランチメトリック計算式は、式(25)と同じになる。

【0153】即ち、第4実施形態は、ビタビ復号を行う情報記録再生装置において、過去及び未来における入力信号パターンに依存した過去及び未来の状態に対する雑音の相関とその分散を算出する雑音相関演算部と、過去及び未来の状態に対する雑音の相関とその分散を記憶する記憶部と、記憶部に記憶した過去及び未来の状態に対する雑音の相関とその分散を使って有色雑音を白色化した過去及び未来の状態に対する白色化雑音値を求める白色化雑音演算部と、過去及び未来の状態に対する白色化した雑音値とその分散からビタビ復号の入力信号を算出して入力信号算出部とを備えることになる。

【0154】次に本発明の第5実施形態を説明する。本発明の第1実施形態で、RLL符号としてMTR符号(Maximum Transition Run)を採用したとき、MTR符号の拘束条件やパーシャルレスポンスPRによっては、図6、図10、図12における状態の消失やトレリス上のパスが制限される場合がある。そこで第5実施形態にあっては、状態の消失やトレリス上のパスが制限を考慮し、効率のよいd(s**)、e(s**)、σ(s**)のトレーニングを行い、効率のよい復号を行う。

【0155】図19は、4連続以上の磁化反転を禁止した16/17MTR符号にEEPR4を適用した場合のPRチャネルにおける状態であり、過去しビット=3、未来Qビット=0としている。

50

26

【0156】この場合、MTR符号の拘束条件により、NRZ符号で"0101"及び"1010"に相当する 状態が存在しない。また、図20はEEPR4の状態遷移であり、状態遷移するパスは拘束条件がない場合は3 2本であるのに対し、拘束条件がある場合は点線の6本 のパスが消失することで26本に減らすことができる。 そのため図5の内符号復号器86で必要とするメモリ及 び計算量を少なくすることができる。

【0157】更に図21のように、第5実施形態あっては、雑音予測最大事後確率復号(NPMAP)で使用する状態に対する等化信号の平均値d(s,)、雑音の相関e(s,)、雑音の標準偏差 σ (s,)に対するテーブルも同じく減らすことができるので、反復型復号器60で必要とするメモリ及び計算量を少なくすることができ、加えて、図21のパラメータを計算するトレーニングも簡略化できる。

【0158】本発明の第6実施形態は、状態に対する等化信号の平均値d(s*、)、雑音の相関e(s*、)、雑音の標準偏差 σ (s*、)を、トラック幅方向に対して任意のオフトラック間隔で保持し、セクタ先頭のプリアンブルの振幅値の変化からオフトラック量を検知し、オフトラック量に応じた雑音の相関e(s*、)、雑音の標準偏差 σ (s*、)を適用して雑音予測最大事後確率復号(NPMAP)を行う。

【0159】具体的には、プリアンブルの振幅値が低下してオフトラック量が増加したら、オフトラック量に応じて状態に対する等化信号の平均値d(s,)を減少させ、雑音の相関e(s,)と雑音の標準偏差 σ (s,)は増加させる。このため再生ヘッドがオフトラックした場合でも精度の高い復号ができる。

【0160】本発明の第7実施形態は、状態に対する等化信号の平均値d(s 、)、雑音の相関e(s 、)、雑音の標準偏差σ(s 、)を、ディスク媒体のゾーン毎、シリンダ毎或いはセクタ毎に記憶して、それぞれの復号に適用する。このため、媒体位置に応じて正確な復号ができる。

【0161】本発明の第8実施形態は、状態に対する等化信号の平均値d(s^*)、雑音の相関e(s^*)、雑音の標準偏差 σ (s^*)を求めるためのトレーニング系列を記録再生する専用のトレーニングセクタ或いはトレーニングシリンダを設けることにより、トレーニング効率を向上さ 40せる。

【0162】本発明の第9実施形態は、一度計算した状態に対する等化信号の平均値d(s,)、雑音の相関e (s,)、雑音の標準偏差 σ (s,)を、各セクタのプリアンブルの振幅値を用いてオフトラックの場合と同様にして補正することで、より精度の高い復号ができる。

【0163】本発明の第10実施形態は、状態に対する 等化信号の平均値d(s *)、雑音の相関e(s *)、雑音の標 準偏差σ(s *)を、装置内温度の変動時、装置起動から の経過時間、エラー発生時などのある特定のタイミング 50

でトレーニング系列を使用して再計算して記憶し、これを復号に適用することで、時間的な劣化に対応した耐久性の高い装置が実現できる。なお、本発明は、上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含む。また本発明は上記の実施形態に記載された数値による限定は受けない。

【0164】(付記1)情報記録再生装置において、現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音相関演算部と、前記雑音の相関と前記分散を記憶する記憶部と、前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、前記る白色化した雑音値と白色化した雑音の分散から符号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする情報記録再生装置。(1)

【0165】(付記2)情報記録再生装置において、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、前記等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、前記雑音の分散を記憶する記憶部と、前記記憶部に記憶した分散から復号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする情報記録再生装置。(2)

【0166】(付記3)情報記録再生装置において、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、前記等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、前記雑音の分散を記憶する記憶部と、等化後の入力信号の系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分散から入力信号(チャネル信号)の尤度を算出するスライデング・ウインドウ処理部と、を備えたことを特徴とする情報記録再生装置。(3)

【0167】(付記4)付記1乃至3のいずれかに記載の情報記録再生装置において、反復方復号根最大事後確率復号又はビタビ復号を行うことを特徴とする情報記録再生装置。

【0168】(付記5)付記1記載の情報記録再生装置において、前記白色化雑音演算部は、過去及び未来における現在の一つ前の状態から現在の状態へ遷移するパスを通過する過去及び未来の区間の全てのパスの内、パスメトリックが最小となる最短パスの等化波形平均値を求めて白色化した等化雑音値を推定することを特徴とする情報記録再生装置。

【0169】(付記6)付記1乃至5のいずれか記載の情報記録再生装置において、前記雑音相関演算部は、過去のみ又は未来のみの入力信号パターンを対象とすることを特徴とする情報記録再生装置。

【0170】(付記7)付記1乃至6のいずれかに記載の情報記録再生装置において、前記雑音相関演算部は、入力信号パターンに対する等化信号の平均値を求め、等化波形と前記平均値との差により入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする情報記録再生装置。

【0171】(付記8)付記1乃至7のいずれかに記載の情報記録再生装置において、前記雑音相関演算部は、MTR拘束等の拘束条件付き符号を磁気記録して再生する場合、拘束を掛けないランダムな入力信号を使用したトレーニングにより、入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする情報記録再生装置。

【0172】(付記9)付記1乃至8のいずれかに記載の情報記録再生装置において、前記雑音相関演算部は、前記記憶部に、前記雑音の相関と分散をトラック幅方向に対する再生ヘッドの所定のオフトラック問隔で記憶し、媒体プリアンブル部の振幅値の変化からオフトラック量を検知し、該オフトラック量に応じた雑音の相関と分散を前記記憶部から読み出して復号に使用することを 20 特徴とする情報記録再生装置。

【0173】(付記10)付記1乃至9のいずれかに記載の情報記録再生装置において、前記雑音相関演算部は、前記記憶部に、雑音の相関と分散をゾーン毎、シリンダ毎、あるいはセクタ毎に記憶して、それぞれの復号に使用することを特徴とする情報記録再生装置。

【0174】(付記11))付記1乃至10のいずれかに記載の情報記録再生装置において、前記雑音相関演算部は、媒体のトレーニングセクタ又はトレーニングシリンダに記録したトレーニング系列の再生信号から雑音の30相関と分散を求めることを特徴とする情報記録再生装置。

【0175】(付記12)付記1乃至11のいずれかに 記載の情報記録再生装置において、前記雑音相関演算部 は、前記記憶部に記憶した雑音の相関とその分散を、媒 体の各セクタ毎のプリアンブルの振幅値に応じて補正し て求めることを特徴とする情報記録再生装置。

【0176】(付記13)付記1乃至15のいずれかに 記載の情報記録再生装置において、前記雑音相関演算部 は、ある特定のタイミングで、雑音の相関と分散を再計 算して前記記憶部を更新することを特徴とする情報記録 再生装置。

【0177】(付記14)情報記録再生方法において、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散と、雑音の相関を求めて記憶し、前記雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求め、前記白色化した雑音値と白色化した雑音の分散から復号器の入力信号を算出することを特徴とする情報記録再生方法。(4)

【0178】(付記15)情報記録再生方法において、 等化後雑音が白色雑音に近くなる等化信号を対象に、現 在と過去又は未来における入力信号パターンに依存した 現時点に対する雑音の分散を算出して記憶し、前記記憶 した分散から復号器の入力信号を算出することを特徴と する情報記録再生方法。(5)

【0179】(付記16)最大事後確率復号(MAP復号)を行う情報記録再生方法において、等化後雑音が白色雑音に近くなる等化後の入力信号系列を対象に、過去及び未来における入力信号パターンに依存した過去及び未來の状態に対する雑音の分散を算出して記憶部し、等化後の入力信号系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分散から入力信号の上度をスライデングしながら算出することを特徴とする情報記録再生方法。(6)

【0180】(付記17)付記14乃至16のいずれかに記載の情報記録再生方法において、前記雑音相関演算部は、ある特定のタイミングで、雑音の相関と分散を再計算して前記記憶部を更新することを特徴とする情報記録再生方法。

【0181】(付記18)付記14記載の情報記録再生 方法において、過去及び未来における現在の一つ前の状態から現在の状態へ遷移するパスを通過する過去及び未 来の区間の全てのパスの内、パスメトリックが最小とな る最短パスの等化波形平均値を求めて白色化した等化雑 音値を推定することを特徴とする情報記録再生方法。

【0182】(付記19)付記14乃至18のいずれか 記載の情報記録再生方法において、過去のみ又は未来の みの入力信号パターンを対象とすることを特徴とする情 報記録再生方法。

【0183】(付記20)付記14乃至18のいずれかに記載の情報記録再生方法において、入力信号パターンに対する等化信号の平均値を求め、等化波形と前記平均値との差により入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする情報記録再生方法。

【0184】(付記21)付記14乃至20のいずれかに記載の情報記録再生方法において、MTR拘束等の拘束条件付き符号を磁気記録して再生する場合、拘束を掛けないランダムな入力信号を使用したトレーニングにより、入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする情報記録再生方法。

【0185】(付記22)付記14乃至21のいずれかに記載の情報記録再生方法において、雑音の相関と分散をトラック幅方向に対する再生ヘッドの所定のオフトラック間隔で記憶部に記憶し、媒体プリアンブル部の振幅値の変化からオフトラック量を検知し、該オフトラック量に応じた雑音の相関と分散を前記記憶部から読み出して復号に使用することを特徴とする情報記録再生方法。

【0186】(付記23)付記14乃至22のいずれか

50

に記載の情報記録再生方法において、雑音の相関と分散をゾーン毎、シリンダ毎、あるいはセクタ毎に記憶して それぞれの復号に使用することを特徴とする情報記録再 生方法。

【0187】(付記24)付記14乃至23のいずれかに記載の情報記録再生方法において、媒体のトレーニングセクタ又はトレーニングシリンダに記録したトレーニング系列の再生信号から雑音の相関と分散を求めることを特徴とする情報記録再生方法。

【0188】(付記25)付記14乃至24のいずれか 10 に記載の情報記録再生方法において、記憶部に記憶した 雑音の相関とその分散を、媒体の各セクタ毎のプリアン ブルの振幅値に応じて補正して求めることを特徴とする 情報記録再生方法。

【0189】(付記26)付記14乃至25のいずれかに記載の情報記録再生方法において、ある特定のタイミングで、雑音の相関と分散を再計算して記憶部を更新することを特徴とする情報記録再生方法。

【0190】(付記27)信号復号回路において、現在と過去又は未来における入力信号パターンに依存した現 20在に対する雑音の分散と雑音の相関を算出する雑音相関演算部と、前記雑音の相関と前記分散を記憶する記憶部と、前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、前記る白色化した雑音値と白色化した雑音の分散から符号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする信号復号回路。(7)

【0191】(付記28)信号復号回路において、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、前記等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、前記雑音の分散を記憶する記憶部と、前記記憶部に記憶した分散から復号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする信号復号回路。(8)

【0192】(付記29)信号復号回路において、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、前記等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、前記雑音の分散を記憶する記憶部と、等化後の入力信号の系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、前記記憶部に記憶した分散から入力信号(チャネル信号)の尤度を算出するスライデング・ウインドウ処理部と、を備えたことを特徴とする信号復号回路。(9)【0193】(付記30)付記27乃至29のいずれかに記載の信号復号回路において、反復方復号根最大事後確率復号又はビタビ復号を行うことを特徴とする信号復

号回路。

【0194】(付記31)付記27記載の信号復号回路において、前記白色化雑音演算部は、過去及び未来における現在の一つ前の状態から現在の状態へ遷移するパスを通過する過去及び未来の区間の全てのパスの内、パスメトリックが最小となる最短パスの等化波形平均値を求めて白色化した等化雑音値を推定することを特徴とする信号復号回路。

【0195】(付記32)付記27乃至31のいずれか 記載の信号復号回路において、前記雑音相関演算部は、 過去のみ又は未来のみの入力信号パターンを対象とする ことを特徴とする信号復号回路。

【0196】(付記33)付記27乃至32のいずれかに記載の信号復号回路において、前記雑音相関演算部は、入力信号パターンに対する等化信号の平均値を求め、等化波形と前記平均値との差により入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする信号復号回路。

【0197】(付記34)付記27乃至33のいずれかに記載の信号復号回路において、前記雑音相関演算部は、MTR拘束等の拘束条件付き符号を磁気記録して再生する場合、拘束を掛けないランダムな入力信号を使用したトレーニングにより、入力信号パターンに依存した雑音の相関とその分散を求めることを特徴とする信号復号回路。

【0198】(付記35)付記27乃至34のいずれかに記載の信号復号回路において、前記雑音相関演算部は、前記記憶部に、前記雑音の相関と分散をトラック幅方向に対する再生ヘッドの所定のオフトラック間隔で記憶し、媒体プリアンブル部の振幅値の変化からオフトラック量を検知し、該オフトラック量に応じた雑音の相関と分散を前記記憶部から読み出して復号に使用することを特徴とする信号復号回路。

【0199】(付記36)付記27乃至35のいずれかに記載の信号復号回路において、前記雑音相関演算部は、前記記憶部に、雑音の相関と分散をゾーン毎、シリンダ毎、あるいはセクタ毎に記憶して、それぞれの復号に使用することを特徴とする信号復号回路。

【0200】(付記37))付記37乃至36のいずれかに記載の信号復号回路において、前記雑音相関演算部は、媒体のトレーニングセクタ又はトレーニングシリンダに記録したトレーニング系列の再生信号から雑音の相関と分散を求めることを特徴とする信号復号回路。

【0201】(付記38)付記27乃至37のいずれかに記載の信号復号回路において、前記雑音相関演算部は、前記記憶部に記憶した雑音の相関とその分散を、媒体の各セクタ毎のプリアンブルの振幅値に応じて補正して求めることを特徴とする信号復号回路。

【0202】(付記39)付記27乃至37のいずれか に記載の信号復号回路において、前記雑音相関演算部 は、ある特定のタイミングで、雑音の相関と分散を再計

50

算して前記記憶部を更新することを特徴とする信号復号 回路。

[0203]

【発明の効果】以上説明してきたように本発明によれば、磁気記録復号装置に特有の雑音モデルとして、過去、未来の入力信号パターンに依存した相関を持つガウスーマロコフ型(Gauss-Markov型)の有色雑音モデルを仮定し、この雑音モデルの特性をできるだけ計算効率のよい方法で取り込むことで、復号性能(エラーレート性能)を向上させることができる。

【0204】また本発明は最大事後確率復号法(MAP復号法)などの反復型復号法において、有色雑音モデルをガウス型で表現し、入力信号依存性のある正確な相関値(分散)を用いることで、復号性能を向上させるることができる。

【0205】またビタビ復号法においても、過去と未来の雑音相関に対する入力信号パターン依存性を正確に考慮することで、復号特性を向上させることができる。

【0206】更に、過去と未来の雑音相関に対する入力信号パターン依存性を、トレーニングにより求めて復号 20にて移用していることとから、装置個々の状態に適合した最適な復号を動的に行うことができる。

【図面の簡単な説明】

【図1】本発明の原理説明図

【図2】本発明が適用されるハードディスクドライブの ブロック図

【図3】図2の記録再生系となるリードチャネルのブロック図

【図4】図3のCRC符号化から反復型復号器までの構成を取り出したブロック図

【図5】図3のうち符号化からCRC検出器までの構成を取り出したブロック図

【図6】PR4チャネルにおける状態の説明図

【図7】 PR 4 チャネルにおける状態遷移の説明図

【図8】最大事後確率復号法 (MAP復号法) における α、β、γの計算法の説明図

【図9】最大事後確率復号法(MAP復号法)における 計算手順のフローチャート

【図10】本発明の復号で使用する媒体上の記録信号に 対する状態と等化の地波形の平均値を格納したテーブル 40 の説明図

【図11】本発明の復号過程で取り込む雑音モデルの説明図

【図12】本発明の復号で使用する媒体上の信号の状態 に対する雑音の相関と標準偏差を格納したテーブルの説 明図

【図13】本発明の雑音予測最大事後確率復号法(NP MAP復号法)における最短パスの選択例の説明図

【図14】本発明の雑音予測最大事後確率復号法(NP MAP復号法)における状態のチャネル情報の計算例の 50 説明図

【図15】トレーニング信号の記録再生による状態の信号及び雑音パラメータを取得するトレーニング機能のブロック図

【図16】トレーニングで取得した信号の状態に対する 信号及び雑音パラメータを取り入れて復号するデータ信 号記録再生のブロック図

【図17】本発明の最大事後確率復号(MAP復号)に 適用するスライデング・ウインドウ法の説明図

【図18】スライデング・ウインドウ法を用いた本発明 の最大事後確率復号 (MAP復号) のフローチャート

【図19】16/17MTR符号にEEPR4を適用した場合のPRチャネルの状態説明図

【図20】16/17MTR符号にEEPR4を適用した場合のPRチャネルの状態遷移の説明図

【図21】図20のPRチャネルを対象とした媒体上の信号状態に対する雑音の相関と標準偏差、および等化信号の平均値を格納したメモリテーブルの説明図

【符号の説明】

) 10:SISCコントローラ

12:ドライブコントロール

14:エンクロージャ

16:メインコントロールユニット (MCU)

18:メモリ

20:プログラムメモリ

22:ハードディスクコントローラ (HDC)

24:データバッファ

26:ドライブインタフェースロジック

28:DSP

30 30: リードチャネル (RDC)

32:サーボドライバ

34:ヘッドIC

36-1~36-6:復号ヘッド

38-1~38-3:磁気ディスク

40:スピンドルモータ (SPM)

42:ボイスコイルモータ (VCM)

44:CRC符号器

46: ECC符号器

48: R L L / M T R 符号器

50:外符号器ユニット

52:外符号器

54:内符号器(磁気記録再生チャネル)

56:ヘッド/媒体

58: 等化器

60:反復型復号器

62: R L L / M T R 復号器

64:ECC復号器

66: CRC検査器

70,102:インターリーバー

72, 108: PUMUX

74:トレーニング系列発生器

76,82:セレクタ

78:CTフィルタ

80:FIRフィルタ

84: 雑音相関演算部

86:内符号復号器 (MAP復号器)

88:メモリ

(A)

90, 94, 95, 96, 98:演算ブロック

33

* 91:白色化雑音演算部

92:入力信号演算部

100: DE-PUMUX

104:外符号復号器

106:デ・インターリーバー

110:硬判定ブロック

132-1, 132-i, 132-N:ウインドウ

【図1】

本発明の原理説明図 A.(u.) V(xr)-V·(xr) 60 反顶型银号器

【図2】

本発明が適用されるハードディスクドライブのブロック図

【図6】

PR4チャネルにおける状態の説明図

Xx-t Xx	状態
0.0	Sı
0 1	81
10	Sı
11	S,

【図7】

PR4チャネルにおける状態運移の説明図

【図3】

図2の記録再生系となるリードチャネルのブロック図

[図4]

図3のCRC符号化から反復型復号器までの構成を取り出したブロック図

【図5】

図3のうち符号化からCRC検出器までの構成を取り出したブロック図

【図8】

最大事後確率復号法(MAP復号法)におけるα、β、γの計算法の説明図

【図9】

最大事務確率復号法(MAP復号法)における計算手順のフローチャート

【図10】

本発明の復号で使用する媒体上の記録信号に対する状態と等化の 地波形の平均値を格納したテーブルの説明図

	X	集体上 0	の記録	信号	x,	4nem	to the third and a TO the life		
X**	• • • •	¥4.1	x,	X & +1	•••	X k+Q	状態	等化機波形の平均値	
Ò	:	0	٥	0	:	0	S ^m o	$d(S_0^{ro})$	
0	:	0	٥	0	:	1	S ^m ,	d (5 ^{ra} 1)	
•••	**	•••	:	•••	:	•••			
1	:	1	1	1	:	0	Sm2-1N+(1+1)-2	d (S"2-(N+O+1)-2)	
1	•••	1	1	1	:	1	Sm 2 TN+Q+11-1	d (S"2*{N+O+1}-1)	

【図 1 2 】 本発明の復号で使用する媒体上の信号の状態に対する融音の相関と標準偏差を格納したテーブルの説明図

状態			投音(
13.199	e. _L (S ^m _k)	:	$e_{-1}(S_{m}^{m}) \qquad e_{1}(S_{m}^{m})$			e _M (S ^m _b)	雑音の標準偏差 σ (S ^m _k)	
S ^m 0	e. _L (S ⁿ ₀)	•••	¢ .1(S ^{ca} 0)	e 1(Sm0)	•••	ε _M (S ^m ₀)	σ (S ^m a)	
S"ı	σ. _ε (S ^m ₁)	•	e. ₁ (S ^{ra} 1)	e 1(S ^m 1)		σ _M (S ¹⁰ 1)	σ (S ^m ₁)	
	***	• • •	•••		• • •		111	
2,(H-0+1)-	6-T(2, 3, (N+G+1)-5)	•••	6.1(S"2"(N+Q+1)-2)	61(5"2-(N+Q+1)-4)		e M(2, 1, (M+O+1)-5)	σ (S ⁴¹ 2*(N+Q+1)-2)	
5"2"(N+Q+1)-	8.L(S 2-[N+Q+1)-1)	•••	e -1(2, 14+0+11-1)	e 1(2,(H+0+1)-1)		e M(S"2"(N+Q+1)-1)	σ (S ^m 2*{N+Q+1}·1)	

【図11】

本発明の復号過程で取り込む維音モデルの説明図

【図19】

16/17MTR符号にEEPR4を適用した場合のPRチャネルの状態説明図

X n - s X n - 2 X n - 1 X n	状態
0000	5*•
0 0 0 1	5*1
0010	S*:
0011	5"1
0100	S=4
0101	存在しない
0110	S".
0111	S*,
1000	S*•
1001	S".
1010	存在しない
1011	S*
1100	S"12
1101	S*11
1110	S*14
1111	S*11

【図13】

本発明の練音予測最大事後確率復号法(NPMAP復号法)における最短パスの選択例の説明図

S、を通過するパスの中でパスメトリックが最短のパス

【図14】

本発明の雑音予測最大事後確率復号法(NPMAP復号法)における状態のチャネル情報の計算例の説明図

Sx-1からSxへ至る場合のチャネル情報

 $\Lambda_{\varepsilon}(y_{k}|s_{k}^{-}) = -\ln\sigma(s_{k}^{-}) - \frac{\left(y_{k} - d\left(s_{k}^{-}\right) - e_{-1}\left(s_{k}^{-}\right)y_{k-1} - d\left(s_{k-1}^{-}\right)\right) - e_{-2}\left(s_{k}^{-}\right)y_{k-2} - d\left(s_{k-2}^{-}\right)\right) - e_{3}\left(s_{k}^{-}\right)\left(y_{k-1} - d\left(s_{k-1}^{-}\right)\right) - e_{3}\left(s_{k}^{-}\right)\left(y_{k-2} - d\left(s_{k-2}^{-}\right)\right)\right)}{2\sigma^{2}\left(s_{k}^{-}\right)}$

【図15】

トレーニング信号の記録再生による状態の信号及び報音パラメータを取得するトレーニング機能のブロック図

【図16】

トレーニングで取得した信号の伏劫に対する信号及び雑音パラメータを取り入れて復号するデータ信号記録再生のブロック図

【図 1 7 】 本発明の最大事後確率復号(MAP復号)に適用するスライデング・ウインドウ法の説明図

【図18】

【図20】

【図21】

類20のPRチャネルを対象とした媒体上の信号状態に対する雑音の相関と標準信義、および等化信号の平均値を推納したメモリテーブルの説明図

伏您			経官の	神器			雑音の	等化信号の
1746	e-(5"i)		0-1(5"k)	0 (\$".)		p.(S".)	数準與差 σ(S*.)	平均值 d(8"。)
s=,	e-L(5",)		B~(S*)	0,(37,)		Bu(S"e)	a(5°4)	d(S-*)
S"ı	0-L(S-1)		8-1(S*1)	e (S",)		8 s(S"1)	ø(\$*1)	d(\$",)
S":	e-r(\$,*)	• • •	a-(5":)	e ₁ (5° ₁)	•••	0.(5 2)	ø(\$*:)	d(S"1)
\$	0-L(S"1)	•••.	8-1(S*1)	a,(S*,)	• • •	au(5",)	ø(S*.)	d(3°;)
S*4	e-L(S*i)		B-(S*)	0.(S".)	• • •	8 x(S=4)	ø(\$*4)	d(5"+)
存在しない					_			
S*ı	9-L(S")		e_(S")	0,(5",)		eu(S",)	ø(S*,)	d(S*.)
s•,	e-L(5"1)		0-1(\$";)	0,(5",)	• ; •	e u(S"1)	ø(5°1)	d(\$",)
S*.	0-L(S"1)	• • •	0-1(5"1)	e,(S",)	• • • •	e (S",)	ø(9 ™,)	d(S*•)
S*•	o~(S*)		0-1(S".)	e (S",)	•••	es(5")	σ(S*,)	d(S*)
存在しない	_							
5°11	0-L(S"11)	• • •	0-1(S*,1)	e (S",,)		eu(5";;)	r(\$-11)	d(S*,,)
S=1.	0-L(S"12)		e-1(5°11)	e (S"(a)		9 14(S-12)	ø(\$*11)	d(S*11)
S*13	8-L(S"11)		B-1(S"11)	e ((S":)	• • •	eu(S"15)	a(S*11)	d(\$*14)
S=1.4	0-L(S"10)	• • •	8-1(S",1)	a,(S";.)		e (S*1;)	ø(5°,,)	d(S*14)
S*i•	a_L(S*11)		e-(S")	e,(S*,,)		e #(S"11)	ø(5",a)	d(S*11)

【手続補正書】

【提出日】平成13年10月19日(2001.10.19)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項1】情報記録再生装置において、

現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音 相関演算部と、

前記雑音の相関と前記分散を記憶する記憶部と、

前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、

前記る白色化した雑音値と白色化した雑音の分散から<u>復</u>号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする情報記録再生装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】請求項7

【補正方法】変更

【補正内容】

【請求項7】信号復号回路において、

現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音 相関演算部と、

前記雑音の相関と前記分散を記憶する記憶部と、

前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、

前記る白色化した雑音値と白色化した雑音の分散から<u>復</u>号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする信号復号回路。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0003

【補正方法】変更

【補正内容】

【0003】近年、記録再生装置のエラー訂正は、主としてPRML (Partial Response Maximum Likelihoo d) 及びECC (Error <u>Correction</u> Code) と呼ぶ2つの手法の組合せによって実現されている。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0004

【補正方法】変更

【補正内容】

【0004】PRMLは、記録チャネルを符号間干渉の

あるパーシャルレスポンスチャネル (PRチャネル) とみなし、一般にビタビ検出器を用いた最尤復号 (Maximu m Likelihood <u>Decoding</u>) を行う方法である。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0005

【補正方法】変更

【補正内容】

【0005】また近年、PRMLに変わる新しい符号・ 復号方法として、ターボ符号や低密度パリティ検査符号 (LDPC: Low Density Parity Check Code) 等が提 案されている。これらは反復計算で復号を行うことか ら、ここでは反復型復号法(iterative decoding metho d) と総称する。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】雑音相関演算部は、MTR拘束等の拘束条件付き符号を磁気記録して再生する場合、拘束を掛けないランダムな入力信号を使用したトレーニングにより、入力信号パターンに依存した雑音の相関とその分散を求める。これによりMTR拘束によって出現確率が低く抑えられたパターンが存在した場合でも、効果的に雑音相関を求めるためのトレーニング回数の削減する。またMTR拘束を考慮した復号を行うことによって、復号に要する状態とパスを削減し、効率を高めて復号性能(エラーレート)を向上できる。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0043

【補正方法】変更

【補正内容】

【0043】更に本発明の信号復号回路は、等化後雑音が白色雑音に近くなる等化目標を備えた等化器と、等化器からの入力信号に対し、現在と過去又は未来における入力信号パターンに依存した現時点に対する雑音の分散を算出する雑音相関演算部と、雑音の分散を記憶する記憶部と、等化後の入力信号の系列を小さなウインドウ系列に分割し、ウインドウ系列の順番に、記憶部に記憶した分散から入力信号(チャネル信号)を求め、尤度を算出するスライデング・ウインドウ処理部とを備えたことを特徴とする。これらの信号復号回路における他の特徴は、情報記録再生装置の場合と同じになる。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0046

【補正方法】変更

【補正内容】

【0046】ドライブコントロール12には、ドライブ インタフェースロジック26、DSP28、リー<u>ドチャ</u> <u>ネル3</u>0及びサーボドライバ<u>34</u>が設けられる。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】0050

【補正方法】変更

【補正内容】

【0050】次に、ECC符号器46の出力結果がPLL(Phase Locked Loop)による再生時のタイミング補正を可能ならしめるためのRLL(Run Length Limited)符号器に入力される。この例では、磁気記録再生チャネルの特性を考慮して連続磁化反転を制限するMTR (Maximum Transition Run) 符号を採用していることから、RLL/MTR符号器48に入力される。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】0051

【補正方法】変更

【補正内容】

【0051】RLL/MTR符号器48の出力結果u、は、外符号器ユニット50の外符号器52に入力される。外符号器52の出力x、は、ヘッド/媒体56を介して磁気記録後に再生される。再生されたアナログ信号は、等化器58を介してPR4、EPR4、EEPR4、MEEPR4等の所望の目標波形となるように信号が整形され、チャネル信号y、となる。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0058

【補正方法】変更

【補正内容】

【0058】ここで、FIRフィルタ80の出力y、は、ヘッド/媒体56、CTフィルタ78、及びFIRフィルタ80からなる磁気記録再生チャネルを内符号器54とみなした場合、PUMUX72の出力x、に対する内符号系列となる。図5は、図3の内符号器54からCRC検出器66までの詳細である。磁気記録再生チャネルである内符号器54により系列x、が等化器58の出力となる内符号系列y、に変換され、磁気記録再生チャネルに対する復号器となる反復型復号器60に設けた内符号復号器86に送られる。内符号復号器86は、この例では、最大事後確率復号を行うMAP復号器とする。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0060

【補正方法】変更

【補正内容】

【0060】内符号復号器86では最大事後確率アルゴリズム(MAPアルゴリズム)により、内符号系列 y_k 、標準偏差 σ 、及び記録系列 x_k に対する事前情報 Λ 。 (x_k) から、磁気記録再生チャネルにおける状態の時間遷移を表すトレリス線図上の各状態におけるk-1 時点から k 時点への遷移確率である演算ブロック90の y_k 、トレリスの始端から k-1 時点までの各状態にいたる確率である演算ブロック940 α_{k+1} 、トレリスの終端から k 時点までの各状態にいたる確率である演算ブロック950 β_k 、そして α_{k+1} 、 β_k 、 y_k の積より計算される各ビットに対する信頼性情報である演算ブロック96の $\Lambda(x_k)$ を算出する。

【手続補正13】

【補正対象書類名】明細書

【補正対象項目名】0061

【補正方法】変更

【補正内容】

【0061】演算ブロック96の信頼性情報 $\Lambda(x_k)$ から事前情報 Δ a(x_k)を演算ブロック98で減じることにより外部情報 Λ e(x_k)を計算し、これが出力となる。出力された外部情報 Λ ·(x_k)は、図4のPUMUX72の逆操作を行うDE-PUMUX100、インターリーバー102を経て、RLL/MTR符号器出力系列 u_k に対する事前情報 Λ 。(u_k)として外符号復号器104に入力される。

【手続補正14】

【補正対象書類名】明細書

【補正対象項目名】0062

【補正方法】変更

【補正内容】

【0062】 <u>外符号復</u>号器104で外符号を復号した後、適当な反復終了条件を満たしていなければ、RLL / MTR符号器出力系列 u_k に対する外部情報 Λ . (u_k) を、図4のインターリーバー70の逆操作を行うデ・インターリ<u>ーバー1</u>06及びPUMUX108を介して内符号復号器86に記録系列 x_k に対する事前情報 Λ . (x_k) として送る。

【手続補正15】

【補正対象書類名】明細書

【補正対象項目名】0066

【補正方法】変更

【補正内容】

【0066】次に、図5の磁気記録再生チャネルに対するMAP復号器となる内符号復号器86で行われるBC IR復号法(Bahi-Cocke-Jeinek-Raviv復号法)の手順について説明する。記録系列xに対する図5の内符号器54である磁気記録再生チャネルがPRチャネル、例えばPR4チャネルとなっているものとする。このPR4チャネルの各状態を図6のように定めるものとすると、各状態における時間に対する推移を表す状態推移図は図 7のように表せる。

【手続補正16】

【補正対象書類名】明細書

【補正対象項目名】 0 0 7 1

【補正方法】変更

【補正内容】

【手続補正17】

【補正対象書類名】明細書

【補正対象項目名】 0079

【補正方法】変更

【補正内容】

【0079】図9は、BCJR復号アルゴリズムにおける計算の手順をまとめたフローチャートである。まずステップS1で(2)(3)式に基づいて γ_k (s_{k-1} , s_k)を算出する。次に、ステップS2で(4)式に基づき α (s_k)を求め、ステップS3で(5)式に基づいて β_k (s_k)を求める。最後にステップS4で(7)(8)式に基づいて $\Lambda(x_k)$ $\Lambda_*(x_k)$ を得る。

【手続補正18】

【補正対象書類名】明細書

【補正対象項目名】0094

【補正方法】変更

【補正内容】

【 0 0 9 4 】 そして、状態S 。 ~ S z (1444-1)-1 に対する 本発明における等化後波形y。 の平均値d (S 。) ~ d (S

2 (MUDDE) シを、トレーニング系列を使用して図5の雑音相関演算部84により図10のように求める。このトレーニング系列を使用した雑音相関の演算は、図4及び図5のトレーニング系列発生器74、セレクタ76,82、雑音相関演算部84により実現され、この点は後の説明で明らかにする。また、図10において、N=0とすることで未来のみ、Q=0とすることで過去のみの記録信号依存性を考慮することによって、トレーニング回数、平均値計算時間、図10の記録信号状態依存性を格納するメモリを削減できる。

【手続補正19】

【補正対象書類名】明細書

【補正対象項目名】0098

【補正方法】変更

【補正内容】

【0098】図11は、雑音モデルの説明図である。式(16)から求めた図11(A)の等化器<u>58</u>における出

力雑音n.が、図11 (B) のように、周波数スペクトル118のように周波数依存性を持った有色雑音であり、図11 (C) の時間軸上では、過去Lビット、未来Mビットの雑音と相関のあるガウスーマルロフ (Gauss-Markov) 系列の自己相関122を持つとする。なお、白色ガウス雑音については破線の周波数スペクトル120と自己相関124を持つ。

【手続補正20】

【補正対象書類名】明細書

【補正対象項目名】0101

【補正方法】変更

【補正内容】

【0101】ここに、 e_{-1} (s_{-k}) \sim e_{-1} (s_{-k})は記録状態 s_{-k} に依存した過去Lビットの雑音の現時点に対する重み、 e_{-1} (s_{-k}) \sim e_{-1} (s_{-k})は記録状態 s_{-k} に依存した未來Mビットの雑音の現時点に対する重み、 w_{-k} は現時点に加わる白色ガウス雑音である。

【手続補正21】

【補正対象書類名】明細書

【補正対象項目名】0126

【補正方法】変更

【補正内容】

【0126】この式(25)によるチャネル情報の演算は、図5の演算ブロック90に内蔵している白色化雑音演算部91と入力信号演算部92で行う。即ち、白色化雑音演算部91は、記憶部88に記憶した図12のテーブルの雑音の相関e(s、)とその分散の(s、)を使って、図11(B)の周波数スペクトル118を持つ有色雑音を、周波数スペクトル120の白色化した過去及び未来の状態に対する白色化雑音値として求める。

【手続補正22】

【補正対象書類名】明細書

【補正対象項目名】 0 1 3 3

【補正方法】変更

【補正内容】

【0133】トレーニング系列の記録再生中は、CRC符号器44からPUMUX72に至る系列による符号化は行われず、セレクタ76の切替えによりトレーニング系列<u>発生</u>器74から生成されたランダムなトレーニング系列をヘッド/媒体56により記録再生し、CTフィルタ78及びFIRフィルタ80からなる等化器58により所望の等化波形に整形する。

【手続補正23】

【補正対象書類名】明細書

【補正対象項目名】 0 1 3 5

【補正方法】変更

【補正内容】

【0135】図16は、トレーニング終了後のデータ系列の記録再生状態である。このデータ系列の記録再生中は、セレクタ76によりトレーニング系列発生器74は

切り離され、ユーザデータ系列に対してCRC符号器 4 4 から PUMUX 7 2 に至る過程で符号化が施され、ヘッド/媒体 5.6 により記録再生し、CTフィルタ 7 8 及び FIRフィルタ 8 0 からなる等化器 5.8 により所望の等化波形に整形される。

【手続補正24】

【補正対象書類名】明細書

【補正対象項目名】 0 1 4 4

【補正方法】変更

【補正内容】

【0144】スライデング・ウインドウ法では、図5の内符号復号器86において、まず、系列長N。の受信系列 y、を系列長N。の小さな系列、即ちウインドウ(Window)に分割する。この分割した系列長N。の系列に対する信頼性情報を、式(26),(3)~(7)に従ってそれぞれ計算することにより、最大事後確率復号器(MAP復号器)おける α (x_k), β (x_k), γ (x_k), Λ (x_k)、即ち図5の演算ブロック90,94,95,96を格納するメモリを削減でき、また復号遅延を短くすることができる。

【手続補正25】

【補正対象書類名】明細書

【補正対象項目名】 0149

【補正方法】変更

【補正内容】

【0149】i番目のウインドウ132-iにおいても、同様に、トレーニング系列 y iMu¹l , ···, y iMu¹Nl を用いてβ iMu を計算し、信頼性情報 Λ (i-1)Mu¹ , ···, Λ iMu を求める。最後のN vind 番目のウインドウ132-Nでは、系列 y iMu¹l , ···, y i を用いて、式(26),(3)~(7)から信頼性情報 Λ (iMu¹l)Mu¹ ,

···, Axを求める。

【手続補正26】

【補正対象書類名】明細書

【補正対象項目名】 0 1 5 4

【補正方法】変更

【補正内容】

【0154】次に本発明の第5実施形態を説明する。本 発明の第1実施形態で、RLL符号としてMTR符号

(Maximum Transition Run) を採用したとき、MTR符号の拘束条件やパーシャルレスポンスPRによっては、図6、図10、図12における状態の消失やトレリス上のパスが制限される場合がある。そこで第5実施形態にあっては、状態の消失やトレリス上のパスの制限を考慮し、効率のよいd(s_*)、 $e(s_*$)、 $\sigma(s_*$)のトレーニングを行い、効率のよい復号を行う。

【手続補正27】

【補正対象書類名】明細書

【補正対象項目名】 0 1 6 4

【補正方法】変更

【補正内容】

【0164】(付記1)情報記録再生装置において、現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音相関演算部と、前記雑音の相関と前記分散を記憶する記憶部と、前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、前記る白色化した雑音値と白色化した雑音の分散から復号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする情報記録再生装置。(1)

【手続補正28】

【補正対象書類名】明細書

【補正対象項目名】 0 1 6 7

【補正方法】変更

【補正内容】

【0167】(付記4)付記1乃至3のいずれかに記載の情報記録再生装置において<u>前記復号器は</u>反復型復<u>号として最</u>大事後確率復号又はビタビ復号を行うことを特徴とする情報記録再生装置。

【手続補正29】

【補正対象書類名】明細書

【補正対象項目名】0190

【補正方法】変更

【補正内容】

【0190】(付記27)信号復号回路において、現在と過去又は未来における入力信号パターンに依存した現在に対する雑音の分散と雑音の相関を算出する雑音相関演算部と、前記雑音の相関と前記分散を記憶する記憶部と、前記記憶部に記憶した雑音の相関と分散を使って有色雑音を白色化した前記入力信号パターンに対する白色化雑音値を求める白色化雑音演算部と、前記る白色化した雑音値と白色化した雑音の分散から復号器の入力信号を算出する入力信号演算部と、を備えたことを特徴とする信号復号回路。(7)

【手続補正30】

【補正対象書類名】明細書

【補正対象項目名】 0 2 0 3

【補正方法】変更

【補正内容】

[0203]

【発明の効果】以上説明してきたように本発明によれば、磁気記録再生装置に特有の雑音モデルとして、過去、未来の入力信号パターンに依存した相関を持つガウスーマロコフ型(Gauss-Markov型)の有色雑音モデルを仮定し、この雑音モデルの特性をできるだけ計算効率のよい方法で取り込むことで、復号性能(エラーレート性能)を向上させることができる。

【手続補正31】

【補正対象書類名】明細書

【補正対象項目名】0206

【補正方法】変更

【補正内容】

【0206】更に、過去と未来の雑音相関に対する入力*

*信号パターン依存性を、トレーニングにより求めて復号にて<u>利</u>用していることとから、装置個々の状態に適合した最適な復号を動的に行うことができる。

フ	r7	1	トペー	ジの続き

(51) Int. Cl. 7 FΙ 識別記号 テーマコート'(参考) G 1 1 B 20/18 G 1 1 B 20/18 5 3 2 532H 5 3 4 534A 540 5 4 0 5 7 2 572B 572C 572D 572F 572G H 0 3 M 13/01 H 0 3 M 13/01

13/39

13/35 13/39

(72) 発明者 佐藤 裕一

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

(72) 発明者 森田 俊彦

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72) 発明者 ▲高▼津 求

13/35

13/39

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

Fターム(参考) 5B001 AA10 AA13 AB02 AC01 AC02

AD04 AE02

5D044 BC01 BC02 BC06 CC01 CC04

DE68 DE81 EF05 FG18

5J065 AA01 AB01 AC03 AD10 AD13

AE06 AF02 AG05 Ali06 Ali19