Strömungslehre I

Dr.-Ing. Peter Wulf - Raum F219a http://www.mp.haw-hamburg.de/pers/Wulf/

2. Hydrostatik und Aerostatik

- Hydrostatische Grundgleichung
- Vertikale Druckverteilung
- Druckkräfte auf Behälterwände
- Hydrostatischer Auftrieb
- Hydrostatik bei gleichförmiger Beschleunigung
- Hydrostatische Stabilität schwimmender Körper
- Aerostatik

Fakultät Technik und Informatik Department Maschinenbau und Produktion

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Stand: 2009-04-08

Hydrostatik

⇒ Voraussetzungen der Hydrostatik:

- \Rightarrow inkompressibles Fluid (ρ = const)
- ⇒ Ruhezustand (keine Bewegungen des Fluids) oder gleichförmige Bewegung (Starrkörperbewegung des Fluids)
- ⇒ Bedeutung der Inkompressibilität
 - ⇒ Dichte ρ ist keine Funktion des Ortes (oder der Zeit)
 - \Rightarrow Fluidmasse im Volumen ergibt sich zu $m = \int \rho dV = \rho V$

⇒ Bedeutung des Ruhezustands

- ⇒ Keine Schubspannungen, da keine Scherbewegung
- ⇒ Im Fluid werden nur Druckkräfte übertragen, die senkrecht auf den Bezugsflächen stehen
- ⇒ Druckkräfte stehen mit der Schwerkraft und den Reaktionskräften der begrenzenden Wände im statischen Gleichgewicht
- ⇒ Druckkräfte sind ortsabhängig p=p(x,y,z)

Wirkung der Druckkräfte auf ein Kontrollvolumen

Hydrostatische Grundgleichung (1/2)

- Kräfte an einem infinitesimal kleinem Fluid-Quader
 - ⇒ Oberflächenkräfte (Druckkräfte) wirken nur auf den Flächen
 - ⇒ Volumenkräfte (hier Schwerkraft) wirken im ganzen Volumen

⇒ Taylorentwicklung für die Druckänderung in x-Richtung

$$p_1 = p(x, y, z)$$
 $p_2 = p(x + dx, y, z) = p + \frac{\partial p}{\partial x} dx + \dots$

Bei Abhängigkeiten von mehreren Koordinaten müssen partielle Ableitungen verwendet werden.

- \Rightarrow Volumenkraft aus Erdbeschleunigung: $dF_{Vx} = dm \cdot g_x = \rho g_x dV$ —
- \Rightarrow Kräftegleichgewicht $\sum F_x = 0 = p_1 dA_1 p_2 dA_2 + dF_{Vx}$

Hydrostatische Grundgleichung (2/2)

$$\Rightarrow \text{Kräftegleichgewicht} \quad \sum F_x = 0 = p_1 dA_1 - p_2 dA_2 + dF_{Vx}$$

$$= p dy dz - (p + \frac{\partial p}{\partial x} dx) dy dz + \rho g_x dx dy dz$$

$$\rightarrow \frac{\partial p}{\partial x} = \rho g_x$$

 $\rightarrow \frac{\partial p}{\partial x} = \rho g_x$ Für die y- und z-Richtung ergibt sich jeweils eine analoge Gleichung

⇒ Eulersche Grundgleichung der Hydrostatik

$$\frac{\partial p}{\partial x} = \rho g_x$$

$$\left| \frac{\partial p}{\partial x} = \rho g_x \right| \quad \left| \frac{\partial p}{\partial y} = \rho g_y \right| \quad \left| \frac{\partial p}{\partial z} = \rho g_z \right|$$

$$\frac{\partial p}{\partial z} = \rho g_z$$

⇒ Alternative Schreibweise:

zeigt in Richtung des Beschleunigungsvektors

Alternative Schreibweise:
$$grad p = \nabla p = \begin{pmatrix} \partial p/\partial x \\ \partial p/\partial y \\ \partial p/\partial z \end{pmatrix} = \rho \vec{g}$$
Der Druckgradient (größte räumliche Druckänderung)

⇒ Bei weiteren Volumenkräften/Beschleunigungen gilt:

$$\vec{a}_{ges} = \sum_{i} \vec{a}_{i} + \vec{g}$$
 \rightarrow $\frac{\partial p}{\partial x} = \rho a_{ges,x}$ $\frac{\partial p}{\partial y} = \rho a_{ges,y}$ $\frac{\partial p}{\partial z} = \rho a_{ges,z}$

Höhenabhängige Druckverteilung

- ⇒ Höhenabhängige Druckverteilung
 - ⇒ Inkompressibles Fluid der Höhe h
 - ⇒ Druck p_n an der Oberfläche
 - ⇒ g zeigt entgegen der z-Richtung

$$\rightarrow \frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 \quad \rightarrow \text{ Keine Druckänderung in der horizontalen Ebene}$$

$$\rightarrow \frac{\partial p}{\partial z} = -\rho g \qquad \rightarrow \text{Druckänderung erfolgt nur in vertikaler Richtung}$$

$$g \text{ zeigt entgegen } z$$

- ⇒ Druckverteilung ergibt sich aus der Integration über z $p = -\int \rho g dz + C = -\rho gz + C$
- ⇒ Randbedingung an der Oberfläche: p=p₀ wenn z=0

$$p(z=0) = C = p_0$$

 \Rightarrow Druckverteilung | $p = p_0 - \rho gz$

$$p = p_0 - \rho gz$$

- ⇒ Der Druck steigt proportional mit der Tiefe an
- ⇒ Der Druck wird am Behälterboden maximal

Hydrostatische Druckverteilung

- ⇒ Bei einem inkompressiblen, ruhenden, homogenen Fluid
 - ⇒ herrscht an Orten gleicher Tiefe der gleiche Druck
 - ⇒ stellt sich bei verbundenen (offenen) Gefäßen die gleiche Oberflächenhöhe ein (→ Prinzip der kommunizierenden Röhren)

⇒ ergibt sich in Behältern mit gleicher Bodenfläche und Füllhöhe unabhängig von der Gefäßform die gleiche Bodenkraft (→ Hydrostatisches oder Pascalsches Paradoxon)

Folie 5

Anwendungen: Messung von Drücken

⇒ Barometer: Messung von Absolutdrücken

$$p_1 = p_2 + \rho g h \cong \rho g h$$

Voraussetzung: Fluid hat mit p_2 seinen Dampfdruck nicht unterschritten (z.B. Quecksilber: $p_{D,Hg}$ =0,24Pa (bei 20°C))

⇒ Manometer: Messung von Differenzdrücken

⇒ U-Rohr Manometer

$$\Delta p = p_2 - p_1 = (p_0 - \rho_2 gh) - (p_0 - \rho_1 gh) = (\rho_1 - \rho_2) gh$$

$$\approx -\rho_2 gh \text{ (wenn } \rho_1 << \rho_2, \text{ z.B. } \rho_1 = \rho_{\text{Luft}}, \rho_2 = \rho_{\text{Hg}})$$

Technische Ausführung:

<u>Betz-Manometer</u> mit unterschiedlich großen Querschnitten, um
auch kleine Druckdifferenzen
auflösen zu können

2007

Quelle: Kuhlmann, Strömungsmechanik,

Anwendungen: Hydraulik

⇒ Hydraulische Presse

- ⇒ basiert auf dem Prinzip der kommunizierenden Röhren
- ⇒ Kraftverstärkung ergibt sich über das Flächenverhältnis A₁/A₂
- ⇒ Druck der Flüssigkeitssäule kann gegenüber dem Gesamtdruck im System vernachlässigt werden

$$\Rightarrow$$
 Kräfte an den Stempeln: $F_1 = p_1 A_1$ $p_1 = F_1 / A_1$ $F_2 = p_2 A_2$ $p_2 = F_2 / A_2$

$$\Rightarrow$$
 Hydrostatische Druckverteilung: $p_1 = p_2 + \rho gh \rightarrow \frac{F_1}{A_1} = \frac{F_2}{A_2} + \rho gh$ im allg. gilt: $\rho gh << \frac{F_2}{A_2}$

$$\Rightarrow$$
 Hydraulische Verstärkung $F_1 = F_2 \frac{A_1}{A_2}$ $F_1 >> F_2$ wenn $A_1 >> A_2$

Beispiel

⇒ Die Dichte einer Flüssigkeit soll mit der skizzierten Anordnung ermittelt werden

Geg.:
$$h_1=150$$
mm, $h_2=70$ mm, $h_3=66$ mm, $\rho_W=1000$ kg/m³, $\rho_{Hg}=13500$ kg/m³

Ges.: p

⇒ Beispiel wird an der Tafel vorgerechnet

Druckkräfte auf senkrechte Behälterwände

- \Rightarrow Druckkraft auf einen Behälterboden $F = (p_i p_a)A$ (gilt für alle Begrenzungsflächen, die senkrecht zu g stehen)
 - "i" =innen "a"=außen
- Druckkraft auf eine senkrechte gerade Behälterwand
 - ⇒ Druckdifferenz ändert sich mit z
 - ⇒ Integration über die Druckdifferenz

$$F = \int_A (p_i - p_a) dA \qquad p_i = p_0 - \rho gz$$
bei konstantem Außendruck $p_a = p_0$

$$\rightarrow F = -\int_{A} \rho gz dA$$

bei konstanter Behälterbreite B: A=B·h bzw. dA=B·dz

- ⇒ Resultierende Druckkraft nimmt mit der Tiefe h quadratisch zu
- \Rightarrow Angriffspunkt liegt im Schwerpunkt der Druckverteilung $z_S = -\frac{2}{3}h$

Achtung: Senkrechte gerade Wand ist ein Sonderfall!

Beispiel

⇒ Zwei Wasserbecken werden durch eine Wand (Breite B) getrennt.

Geg.:
$$h_1=2,0m$$
, $h_2=1,5m$, $g=9,81m/s^2$ $\rho=1000kg/m^3$, $B=10m$

- Ges.: a) Resultierende Druckkraft auf die Trennwand
 - b) Vertikaler Kraftangriffspunkt der resultierenden Druckkraft
- ⇒ Beispiel wird an der Tafel vorgerechnet

⇒ Für die Wand wird das Koordinatensystem x-w eingeführt

⇒ x-Achse liegt in der Spiegelschnittlinie (=oberer Rand)

⇒ w-Achse weist von der Spiegelschnittlinie nach unten

⇒ Aber: Druck ändert sich weiterhin mit z

 $\Rightarrow \alpha = \text{Neigungswinkel}$

 $p_{ij} = f(z)$

⇒ A = Fläche der Wand

⇒ D = Angriffspunkt der Druckkraft

⇒ S = Flächenschwerpunkt der Seitenwand

Abstand e=w_D-w_S (!)

Aufsicht auf die

Seitenwand!!

HACH ... ES IST DOCH

ALLES NUR EINE TRAGE

DES SPIEGELLINIENVERLAUFS

Quelle: Strybny, Ohne Panik Strömungsmechanik,

Druckkräfte auf geneigte Behälterwände (2/5)

- ⇒ Druckkraft auf eine geneigte gerade Behälterwand
 - ⇒ Integration über die Druckdifferenz (analog zur senkrechten Wand)

$$F = \int\limits_A (p_i - p_a) dA \qquad p_i = p_0 - \rho gz$$
 bei konstantem Außendruck $p_a = p_0$

$$\to F = \rho g \cos \alpha \int_A w dA$$

 \Rightarrow Integral $\int_A w dA$ ist bekannt aus TM1: **Statisches Moment** zur Bestimmung eines Flächenschwerpunkts: $w_s = \frac{\int_A w dA}{A}$

$$\rightarrow w_s \cdot A = \int_A w dA$$
 (Bei bekannter Lage des Flächenschwerpunkts w_s kann das Integral leicht bestimmt werden)

$$\Rightarrow \mathbf{Druckkraft}^* \left\{ \begin{bmatrix} F = \rho g \cdot \cos \alpha \cdot w_S \cdot A \\ F = -\rho g \cdot z_S \cdot A \end{bmatrix} \right. \text{ (mit Schwerpunkt der geneigten Fläche: } w_S)$$

$$\text{(mit Schwerpunkt der projezierten Fläche: } z_S)$$

*Druckkraft F steht senkrecht auf der Fläche A

Druckkräfte auf geneigte Behälterwände (3/5)

- ⇒ Vertikaler Angriffspunkt der Druckkraft: w=w_D
- \Rightarrow Drehmoment um die x-Achse: $F \cdot w_D = \int w dF$

$$dF = (p_i - p_a)dA \quad \text{bzw.} \quad dF = -\rho gzdA = \rho g \cdot \cos \alpha \cdot w \cdot dA \text{ (s.o.)}$$

$$\rightarrow w_D = \frac{\int_A wdF}{F} = \frac{\int_A \rho g \cdot \cos \alpha \cdot w^2 \cdot dA}{\rho g \cdot \cos \alpha \cdot w_S \cdot A} = \frac{\int_A w^2 \cdot dA}{w_S \cdot A}$$

 \Rightarrow Integral $\int_A w^2 dA$ ist bekannt aus TM2 zur Bestimmung des axialen Flächenträgheitsmoments: $I_x = \int_A w^2 dA$

Ist zu der Fläche das Flächenträgheitsmoment um die x-Achse bekannt, kann der Angriffspunkt der Druckkraft nur aus geometrischen Größen bestimmen werden:

 \Rightarrow Kraftangriffspunkt in w-Richtung $w_D = \frac{I_X}{w_S \cdot A}$

$$w_D = \frac{I_x}{w_S \cdot A}$$

Druckkräfte auf geneigte Behälterwände (4/5)

- ⇒ Seitlicher Angriffspunkt der Druckkraft: x=x_D
- \Rightarrow Drehmoment um die w-Achse: $F \cdot x_D = \int x dF$

$$dF = (p_i - p_a)dA \quad \text{bzw.} \quad dF = -\rho gzdA = \rho g \cdot \cos \alpha \cdot w \cdot dA \quad \text{(s.o.)}$$

$$\rightarrow x_D = \frac{\int_A xdF}{F} = \frac{\int_A \rho g \cdot \cos \alpha \cdot x \cdot w \cdot dA}{\rho g \cdot \cos \alpha \cdot w_S \cdot A} = \frac{\int_A x \cdot w \cdot dA}{w_S \cdot A}$$

⇒ Integral ∫_A xwdA ist bekannt aus TM2 zur Bestimmung des

Deviationsmoments: $I_{xw} = \int_A xw dA$

Ist zu der Fläche das Deviationsmoment um die w-Achse bekannt, kann der Angriffspunkt der Druckkraft nur aus geometrischen Größen bestimmen werden:

 \Rightarrow Kraftangriffspunkt in x-Richtung $x_D = \frac{I_{xw}}{w_s \cdot A}$

$$x_D = \frac{I_{xw}}{w_S \cdot A}$$

⇒ Das Deviationsmoment verschwindet bei symmetrischen Querschnitten, wenn die w-Achse im Schwerpunkt S liegt: I_{xw}=0

Druckkräfte auf geneigte Behälterwände (5/5)

- ⇒ Flächenträgheitsmoment I_x bezieht sich auf die Spiegellinie
- ⇒ Deviationsmoment I_{xw} bezieht sich auf die Spiegellinie (x-Achse) und auf die w-Achse
- ⇒ Beide Momente sind häufig nur für den Flächenschwerpunkt tabelliert
- \Rightarrow Satz von Steiner (s. TM2) $I_x = I_{x_s} + w_S^2 A$ $I_{xw} = I_{xw_s} + x_S w_S A$
 - \Rightarrow Schwerpunktachsen: Index x_s bzw. w_s
 - ⇒ w_S und x_S sind die Abstände der x- bzw. w-Achse zum Schwerpunkt

Ausgewählte Flächenträgheitsmomente (1/2)

Nr.	Flächenform	Fläche A	Koordinate h _s	Trägheitsmoment $I_{\rm S}$
1	h hs S Ws	$A = b \cdot h$	$h_{\rm S} = \frac{h}{2}$	$I_{\rm S} = \frac{b \cdot h^3}{12}$
2	t d ws	$A = d^2 \cdot \frac{\pi}{4}$	$h_{\rm S} = \frac{d}{2}$	$I_{\rm S} = \frac{d^4 \cdot \pi}{64}$
3	t b ws	$A = \frac{b+s}{2}h$	$h_{\rm S} = \frac{h\left(b + 2s\right)}{3\left(b + s\right)}$	$I_{\rm S} = \frac{h^3 (b^2 + 4 \ bs + s^2)}{36 \ (b + s)}$

Ausgewählte Flächenträgheitsmomente (2/2)

Nr.	Flächenform	Fläche A	Koordinate h_S	Trägheitsmoment $I_{\rm S}$
4	t b ws	$A = \frac{b \cdot h}{2}$	$h_{\rm S} = \frac{1}{3} \cdot h$	$I_{\rm S} = \frac{b \cdot h^3}{36}$
5	t d ws	$A = \pi \cdot \frac{d^2}{8}$	$h_{\rm S} = \frac{2 \cdot d}{3 \cdot \pi}$	$I_{\rm S} = 0,0068 \cdot d^4$
6	hs b a e	$A = \pi \cdot a \cdot b$	$h_S = b$	$I_{\rm S} = \frac{\pi}{4} \cdot a \cdot b^3$

Beispiel

 ⇒ Eine in A drehbar gelagerte rechteckige Platte (H x B) wird an der Spiegellinie mit einem Seil gehalten

Geg.: H=2m, B=4m,
$$\alpha$$
=20°, ρ =1000kg/m³, g=9,81m/s²

Ges.: Seilkraft S

⇒ Beispiel wird an der Tafel vorgerechnet

Druckkräfte auf gekrümmte Behälterwände (1/3)

- ⇒ Beschränkung auf Behälterwände mit einer Krümmung und konstanter Breite B
- \Rightarrow Betrachtung eines Flächenelements dA mit dem lokalen Neigungswinkel α
- ⇒ Kraft F_y in y-Richtung $dF_y = dF \cos \alpha$ ⇒ Wie oben gilt $dF = (p_i - p_a)dA$

$$\rightarrow dF_y = (p_i - p_a) \underbrace{dA\cos\alpha}_{dA_y}$$

$$\rightarrow F_y = \int_{A_y} (p_i - p_a) dA_y = -\rho g \int_{A_y} z dA_y$$
 (s.o.)

- ⇒ Integration über projezierte Fläche A_y kann wie bei der geraden geneigten Wand erfolgen (s.o.)
 - $\rightarrow \boxed{F_y = -\rho g \cdot z_S \cdot A_y}$

A_y=projezierte Fläche (rechteckig, da hier B=const) z_S=Schwerpunktkoordinate der projezierten Fläche A_y

Druckkräfte auf gekrümmte Behälterwände (2/3)

- \Rightarrow Kraft F_z in z-Richtung $dF_z = dF \sin \alpha$
 - \Rightarrow Wie oben gilt $dF = (p_i p_a)dA$

$$\rightarrow dF_z = (p_i - p_a) \underline{dA \sin \alpha}$$

$$dA$$

$$\rightarrow F_z = \int_{A_z} (p_i - p_a) dA_z = -\rho g \int_{A_z} z dA_z$$
 (s.o.)

$$\rightarrow |F_z = -\rho gV|$$
 (nach unten gerichtet)

- ⇒ Integration der Flüssigkeitshöhe z über die projezierte Fläche dA_z entspricht dem Flüssigkeitsvolumen V oberhalb der Wand $V = \int_A z dA_z$
- ⇒ F_z entspricht damit dem Flüssigkeitsgewicht über der Wand

Druckkräfte auf gekrümmte Behälterwände (3/3)

- ⇒ Vertikaler Angriffspunkt der Druckseitenkraft F_y
 - ⇒ ähnlich wie bei den geneigten Wänden, wobei
 - ⇒ das Flächenträgheitsmoment, > der Projektionsfläche einzusetzen sind
 - ⇒ der Flächenschwerpunkt,
 - ⇒ und die Fläche

$$\rightarrow \boxed{z_D = \frac{I_x(A_y)}{z_S(A_y) \cdot A_y}}$$

Hinweis: Es zählt nur die Projektionsfläche A_y . Mehrfachüberdeckungen der gekrümmten Wand haben keinen Einfluss auf F_y oder z_D .

- ⇒ Horizontaler Angriffspunkt der Gewichtskraft F_z
 - ⇒ im Massen- bzw. Volumenschwerpunkt S_V
 - ⇒ Koordinate y_{VS}

- ⇒ Aufdruckkraft: Vertikal nach oben gerichtete Kraft F_V wirkt an von unten mit Druck beaufschlagten Flächen
- \Rightarrow Aufdruckkraft entspricht dem **Gewicht** einer gedachten über der Fläche stehenden Flüssigkeitssäule: $F_V = \rho gV$
- \Rightarrow z.B. Links am Deckel $F_V = (p_i p_a)A_D = \rho g \cdot \Delta h \cdot A_D = \rho g \cdot V = G$
- ⇒ Angriffspunkt der Aufdruckkraft ist der Volumenschwerpunkt S

Beispiel

⇒ Für eine halbkreisförmige Sperrmauer ist die resultierende Druckkraft und ihr Angriffspunkt gesucht.

Geg.:
$$R, \rho, g, B$$

Ges.: a)
$$F_{Dy}$$
, F_{Dz}
b) z_D , y_D

Hinweis: Schwerpunkt im Halbkreis: $r_s=4R/3\pi$

⇒ Beispiel wird an der Tafel vorgerechnet

Hydrostatischer Auftrieb (1/2)

⇒ Ein vollständig in eine Flüssigkeit eingetauchter Körper

erfährt eine Auftriebskraft F_A

- ⇒ Auftriebskraft resultiert aus den hydrostatischen Druckdifferenzen
- ⇒ Druckkräfte an der Fläche dA

$$\Rightarrow$$
 Oben: $dF_{V1} = (p_0 - \rho g z_1) dA$

$$\Rightarrow$$
 Unten: $dF_{V2} = (p_0 - \rho g z_2) dA$

$$\Rightarrow$$
 Differenz: $dF_A = dF_{V2} - dF_{V1}$
= $\rho g(z_1 - z_2)dA$
= $\rho g dV$

- \Rightarrow Integration über das gesamte Volumen ergibt: $F_A = \rho g V$
- ⇒ Auftriebskraft entspricht dem Gewicht der verdrängten Flüssigkeit und greift im Volumenschwerpunkt S_V an

Hydrostatischer Auftrieb (2/2)

 \Rightarrow Ein <u>teilweise</u> in eine Flüssigkeit eingetauchter Körper erfährt eine Auftriebskraft ΔF_A , die zum verdrängten Volumen ΔV proportional ist: $\Delta F_A = \rho_B \Delta V$

⇒ Sind Teile des eingetauchten Körper nicht mit der Flüssigkeit

benetzt, tragen diese u.U. nicht zum Auftrieb bei

Beispiel

 \Rightarrow Ein zylindrischer Behälter (Höhe H, Fläche A) ist bis zur Höhe h mit einer Flüssigkeit (ρ_F) gefüllt. In den Behälter wird langsam eine Kugel ($\rho_K < \rho_F$) gegeben, die dann an der Oberfläche schwimmt.

Geg.: H, h, A, ρ_F , ρ_K , g

Ges.: Durchmesser der Kugel, so dass der Behälter gerade noch nicht überläuft

⇒ Beispiel wird an der Tafel vorgerechnet

Hydrostatik bei gleichförmiger Beschleunigung

- \Rightarrow Treten neben der Erdbeschleunigung weitere stationäre Volumenkräfte bzw. Beschleunigungen auf, so gilt: $\vec{a}_{ges} = \sum_{i} \vec{a}_i + \vec{g}$
- ⇒ Modifizierte Eulersche Grundgleichung der Hydrostatik

$$\rightarrow \frac{\partial p}{\partial x} = \rho a_{ges,x} \qquad \frac{\partial p}{\partial y} = \rho a_{ges,y} \qquad \frac{\partial p}{\partial z} = \rho a_{ges,z}$$

⇒ Die Oberfläche steht dabei lokal immer senkrecht zum resultierenden Kraftvektor dR

Zentrifugalbeschleunigung beim rotierenden Behälter

كا100 Bohl, Elmendorf, Techn. Strömungslehre, 2005

Stabilität schwimmender Körper (1/3)

- \Rightarrow Ein Körper **schwimmt** bei Eigengewicht = Auftrieb: $G = F_A$
- ⇒ Ist der Körper vollständig eingetaucht, schwebt er
- ⇒ Gleichgewicht bei nur zwei Kräften
 - ⇒ liegt vor, wenn beide Wirkungslinien übereinander liegen und die Kräfte gleich sind
 - ⇒ reicht für die Stabilität gegenüber Drehung nicht aus
- ⇒ Schwimmende oder schwebende Körper sind gegenüber Drehungen stabil, wenn rückstellende Momente auftreten
- S_K=Massenschwerpunkt, Angriffspunkt von G
- $S_V=$ Volumen- bzw. Verdrängungsschwerpunkt, Angriffspunkt von F_A

Stabilität schwimmender Körper (2/3)

- ⇒ Stabile Schwimmlage: Nach einer Auslenkung kehrt der Schwimmkörper in seine Ausgangslage zurück.
- ⇒ Instabile Schwimmlage: Die Auslenkung wird verstärkt
 - → Kippen oder Kentern bis neue stabile Lage erreicht
- ⇒ Indifferente Schwimmlage: Die Auslenkung bleibt bestehen, sofern keine äußeren Kräfte oder Momente wirken
- ⇒ Für Schiffe ist die Stabilität von entscheidender Bedeutung

Gewichtstabil: S_K liegt tiefer als S_V z.B. links beim U-Boot

oder

Formstabil: Metazentrum M liegt über S_K , z.B. rechts beim Schiff (Definition s. nächste Folie)

2005

Stabilität schwimmender Körper (3/3)

Metazentrum M = Schnittpunkt der Schwimmachse mit F_A

- ⇒ Ohne Herleitung:
 - ⇒ Metazentrische Höhe: $h_M = \frac{I_0}{V} e$ = Abstand zwischen Körperschwerpunkt S_K und Metazentrum M
 - ⇒ V = verdrängtes Flüssigkeitsvolumen
 - ⇒ I₀=Flächenträgheitsmoment der Schwimmfläche bezogen auf die Drehachse 0
 - \Rightarrow e = Abstand zwischen S_K und S_V

h_M>0 für Formstabilität

Segelschiffe: $h_M=0,9-1,5m$ Frachtschiffe: $h_M=0,6-0,9m$

Aerostatik

- **⇒** Ruhende kompressible Gase
- \Rightarrow Abgrenzung zur Hydrostatik: $\rho \neq const \rightarrow \rho = \rho(p,T)$
- ⇒ Bei großen Höhenunterschieden ist auch g≠const. Hier soll aber gelten: g=const

Folie 31

Grundgleichung der Aerostatik

 \Rightarrow Eulersche Grundgleichung (mit $\rho = \rho(z)$)

$$\frac{dp}{dz} = -\rho(z)g$$

 $\begin{array}{c|c} z & \rho(z), p(z), T(z) \\ & g \\ & \rho_0, p_0, T_0 \end{array}$

$$\frac{p}{\rho} = RT$$
 oder $pV = mRT$ ($R = spezifische Gaskonstante$, z.B. $R = 287 \text{J/(kgK)}$ für Luft)

- ⇒ Für die Änderung mit der Höhe können drei grundsätzliche alternative Annahmen zur Atmosphäre gemacht werden:
 - 1. die Atmosphäre ist **isotherm**, d.h. T=const, <u>oder</u>
 - 2. die Entropie bleibt konstant (= **isentrop**), <u>oder</u>
 - 3. es gilt die **Normatmosphäre** (Standardatmosphäre) nach ICAO (werden wir hier nicht betrachten)

Isotherme Schichtung

- \Rightarrow Temperatur T=const $\rightarrow \frac{p}{\rho} = RT = const$
- \Rightarrow Damit gilt $\frac{p}{\rho} = \frac{p_0}{\rho_0} \rightarrow \rho = \rho_0 \frac{p}{p_0}$

- ⇒ Für eine infinitesimal dicke Schicht dz folgt aus der Grundgleichung $dp = -\rho(z)gdz = -\rho_0 \frac{p}{p_0}gdz$
- ⇒ Trennung der Variablen und Integration

$$\int \frac{dp}{p} = -\frac{\rho_0}{p_0} g \int dz \quad \to \quad \ln p = -\frac{\rho_0}{p_0} g \cdot z + C$$

$$\Rightarrow$$
 p=p₀ bei z=0: $\ln p_0 = C$

$$\Rightarrow \text{Mit } \ln p - \ln p_0 = \ln \frac{p}{p_0} \rightarrow \frac{p}{p_0} = e^{-\frac{\rho_0}{p_0}g \cdot z} \rightarrow \left[\frac{p}{p_0} = e^{-\frac{g \cdot z}{RT}} \right]$$

$$\Rightarrow$$
 Mit $p = \rho \frac{p_0}{\rho_0} \rightarrow \left[\frac{\rho}{\rho_0} = e^{-\frac{g \cdot z}{RT}} \right]$

Quelle: Bohl, Elmendorf,

Isentrope Schichtung

- ⇒ Isentrope Änderung = kein Wärmeaustausch mit der Umgebung
- $\Rightarrow \text{ Damit gilt } \frac{p}{\rho^{\kappa}} = \frac{p_0}{\rho_0^{\kappa}} \rightarrow \rho = \rho_0 \left(\frac{p}{p_0}\right)^{1/\kappa} \quad (\kappa = \textit{lsentropenexponent}, \text{ Luft: } \kappa = 1,4 \text{ s. Thermodynamik)}$
- $\Rightarrow \text{ Für eine infinitesimal dicke Schicht} \\ dp = -\rho(z)gdz = -\rho_0 \left(\frac{p}{p_0}\right)^{\frac{1}{p_0}}gdz$
- ⇒ Trennung der Variablen und Integration

$$\int p^{-1/\kappa} dp = -\frac{\rho_0}{p_0^{1/\kappa}} g \int dz \to \frac{\kappa}{\kappa - 1} p^{\frac{\kappa - 1}{\kappa}} = -\frac{\rho_0}{p_0^{1/\kappa}} g \cdot z + C$$

$$\Rightarrow$$
 p=p₀ bei z=0: $\frac{\kappa}{\kappa-1}p_0^{\frac{\kappa-1}{\kappa}} = C$

$$\Rightarrow$$
 Nach Umstellung $\left| \frac{p}{p_0} = \left(1 - \frac{\rho_0}{p_0} \frac{\kappa - 1}{\kappa} gz \right)^{\overline{\kappa - 1}} \right|$

$$\Rightarrow \operatorname{Mit} \frac{p}{p_0} = \frac{\rho^{\kappa}}{\rho_0^{\kappa}} \rightarrow \left| \frac{\rho}{\rho_0} = \left(1 - \frac{\rho_0}{p_0} \frac{\kappa - 1}{\kappa} gz \right)^{\frac{1}{\kappa - 1}} \right|, \quad \operatorname{mit} \quad \frac{T}{T_0} = \frac{p/p_0}{\rho/\rho_0} \rightarrow \left[\frac{T}{T_0} = 1 - \frac{\rho_0}{p_0} \frac{\kappa - 1}{\kappa} gz \right]$$

Beispiel

⇒ Ein Wetterballon mit Masse m und Anfangsvolumen V₀ steigt in einer isothermen Atmosphäre auf. Bis zum Erreichen des maximalen Volumens V₁ ist die Hülle schlaff (V<V₁).

Geg.: m=2,5kg, V_0 =2,8m³, V_1 =10m³, p_0 =10⁵Pa, ρ_0 =1,27kg/m³, R_{Luft} =287J/kgK, g=9,81m/s²

Ges.: a) Notwendige Haltekraft am Boden (V=V₀)

- b) In welcher Höhe wird V₁ erreicht?
- c) Wie hoch steigt der Ballon (V=V₁)?
- ⇒ Beispiel wird an der Tafel vorgerechnet

Zusammenfassung

- \Rightarrow Vertikale Druckverteilung der Hydrostatik $p = p_0 \rho gz$
- ⇒ Druckkräfte und Angriffspunkte bei geneigten geraden

Wänden
$$F = \rho g \cdot \cos \alpha \cdot w_S \cdot A$$

 $F = -\rho g \cdot z_S \cdot A$ $w_D = \frac{I_x}{w_S \cdot A}$ $x_D = \frac{I_{xw}}{w_S \cdot A}$

 \Rightarrow Druckkräfte und Angriffspunkte bei einfach gekrümmten Wänden (A_y = projezierte Fläche) $I_x(A_y)$

$$z_D = \frac{I_x(A_y)}{F_y = -\rho g \cdot z_S \cdot A_y}$$
 $F_z = -\rho g V$ $z_D = \frac{I_x(A_y)}{z_S(A_y) \cdot A_y}$

- \Rightarrow Aufdruckkraft = Gewicht der fiktiven Flüssigkeitssäule $F_V = \rho gV$
- \Rightarrow Auftrieb = Gewicht der verdrängten Flüssigkeit $F_A = \rho g V$
- ⇒ Gewichts- und Formstabilität schwimmender Körper
- \Rightarrow Isotherme Atmosphärenschichtung: $p = p_0 e^{-\frac{s}{RT}}$
- ⇒ Isentrope Atmosphärenschichtung: $p = p_0 \left(1 \frac{\rho_0}{p_0} \frac{\kappa 1}{\kappa} gz \right)^{\frac{\kappa}{\kappa 1}}$