TRANSFORMING UNIVERSITY MENTAL HEALTH SUPPORT: AN AGENTIC AI FRAMEWORK FOR PROACTIVE INTERVENTION AND RESOURCE MANAGEMENT

SKRIPSI

THE SUSTAINABLE DEVELOPMENT GOALS Industry, Innovation and Infrastructure Affordable and Clean Energy Climate Action

Written by:

GIGA HIDJRIKA AURA ADKHY 21/479228/TK/52833

TEKNOLOGI INFORMASI PROGRAM

DEPARTMENT OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY FACULTY OF ENGINEERING UNIVERSITAS GADJAH MADA YOGYAKARTA 2025

ENDORSEMENT PAGE

TRANSFORMING UNIVERSITY MENTAL HEALTH SUPPORT: AN AGENTIC AI FRAMEWORK FOR PROACTIVE INTERVENTION AND RESOURCE MANAGEMENT

THESIS

Proposed as A Requirement to Obtain
Undergraduate Degree (Sarjana Teknik)
in Department of Electrical Engineering and Information Technology
Faculty of Engineering
Universitas Gadjah Mada

Written by:

GIGA HIDJRIKA AURA ADKHY 21/479228/TK/52833

Has been approved and endorsed

on \dots

Supervisor I

Supervisor II

Dr. Bimo Sunarfri Hantono, S.T., M.Eng.
NIP 197701312002121003

Guntur Dharma Putra, PhD NIP 111199104201802102

STATEMENT

Saya yang bertanda tangan di bawah ini :

Name : Giga Hidjrika Aura Adkhy

NIM : 21/479228/TK/52833

Tahun terdaftar : 2021

Program : Bachelor's degree

Major : Information Engineering

Faculty : Faculty of Engineering, Universitas Gadjah Mada

Menyatakan bahwa dalam dokumen ilmiah Skripsi ini tidak terdapat bagian dari karya ilmiah lain yang telah diajukan untuk memperoleh gelar akademik di suatu lembaga Pendidikan Tinggi, dan juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang/lembaga lain, kecuali yang secara tertulis disitasi dalam dokumen ini dan disebutkan sumbernya secara lengkap dalam daftar pustaka.

Dengan demikian saya menyatakan bahwa dokumen ilmiah ini bebas dari unsur-unsur plagiasi dan apabila dokumen ilmiah Skripsi ini di kemudian hari terbukti merupakan plagiasi dari hasil karya penulis lain dan/atau dengan sengaja mengajukan karya atau pendapat yang merupakan hasil karya penulis lain, maka penulis bersedia menerima sanksi akademik dan/atau sanksi hukum yang berlaku.

Yogyakarta, tanggal-bulan-tahun

Materai Rp10.000

(Tanda tangan)

Giga Hidjrika Aura Adkhy NIM 21/479228/TK/52833

PAGE OF DEDICATION

Tugas akhir ini kupersembahkan kepada kedua orang tuaku. Kupersembahkan pula
kepada keluarga dan teman-teman semua, serta untuk bangsa, negara, dan agamaku.
[contoh]

PREFACE

Puji syukur ke hadirat Allah SWT atas limpahan rahmat, karunia, serta petunjuk-Nya sehingga tugas akhir berupa penyusunan skripsi ini telah terselesaikan dengan baik. Dalam hal penyusunan tugas akhir ini penulis telah banyak mendapatkan arahan, bantuan, serta dukungan dari berbagai pihak. Oleh karena itu pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. <isi dengan nama Kadep>
- 2. <isi dengan nama Sekdep>
- 3. <isi dengan nama Dosen Pembimbing>
- 4. Kedua Orang Tua, kakak, dan adik yang selalu memberikan arahan selama belajar dan menyelesaikan tugas akhir ini.
- 5. <isi dengan nama orang lainnya>

Akhir kata penulis berharap semoga skripsi ini dapat memberikan manfaat bagi kita semua, aamiin. [Contoh]

CONTENTS

ENDOR	SEME	NT PAGE	ii
STATEN	MENT		iii
PAGE C	F DED	ICATION	iv
PREFAC	CE		V
CONTE	NTS		vi
LIST O	F TABL	ES	ix
LIST O	F FIGU	RES	X
NOME	NCLAT	URE AND ABBREVIATION	хi
INTISA	RI		xiii
ABSTR	ACT		xiv
CHAPT	ER I	Introduction	1
1.1	Backg	round	1
1.2	Proble	m Formulation	2
1.3	Object	tives	2
1.4	Scope	and Limitations	2
1.5	Contri	butions	3
1.6	Thesis	Outline	3
CHAPT	ER II	Literature Review and Theoretical Background	5
2.1	Theore	etical Background	5
	2.1.1	AI Konversasional untuk Dukungan Kesejahteraan dan Keterli-	
		batan Mahasiswa	5
	2.1.2	Gamifikasi untuk Peningkatan Keterlibatan dan Motivasi Maha-	
		siswa	6
	2.1.3	Aplikasi Teknologi Blockchain dalam Pendidikan dan Sistem Ter-	
		integrasi	6
	2.1.4	Platform Terintegrasi untuk Keterlibatan dan Kesejahteraan Ma-	
		hasiswa	7
	2.1.5	Sintesis dan Celah Penelitian	7
2.2	Literat	ture Review	8
	2.2.1	AI Konversasional Hibrida (Hybrid Conversational AI)	8
	2.2.2	Gamifikasi dan Teori Motivasi	9
	2.2.3	Teknologi Blockchain dan Aplikasinya yang Relevan	9
	2.2.4	Keterlibatan Pengguna (<i>User Engagement</i>) dan Kesejahteraan Ma-	
		hasiswa (Student Well-being) dalam Konteks Digital	9
2.3	Analis	is Perbandingan Metode	9
2.4	Pertan	yaan Tugas Akhir (Jika Perlu)	9

CHAPT	ER III	Metode Per	nelitian	10
3.1	Resear	ch Method	ology: Design Science Research (DSR)	10
3.2	System	n Overview	and Conceptual Design	10
3.3	Function	onal Archit	ecture: The Agentic Core	10
	3.3.1	The Anal	ytics Agent	10
	3.3.2	The Inter	vention Agent	10
	3.3.3	The Triag	ge Agent	11
3.4	Techni	cal Archite	ecture: The Hybrid System	11
	3.4.1	Overall S	ystem Architecture Diagram	11
	3.4.2	The "Brai	n": FastAPI + LangChain Service	11
	3.4.3	The "Ner	vous System": n8n Workflows	11
3.5	Databa	ase Design		12
3.6	User I	nterface (U	I) Design	12
3.7	Securi	ty and Priva	acy by Design	12
3.8	Alur T	ugas Akhir	·	13
3.9	Etika,	Masalah, d	an Keterbatasan Penelitian (Opsional))	13
CHAPTI	ER IV	Hasil dan F	Pembahasan	14
4.1	Pemba	hasan Hasi	l 1 (Ubah Judul Sesuai dengan Hal yang Hendak dibahas)	14
4.2	Pemba	hasan Hasi	l 2 (Ubah Judul Sesuai dengan Hal yang Hendak dibahas)	14
4.3	Perban	dingan Ha	sil Penelitian dengan Hasil Terdahulu	14
CHAPT	ER V	Tambahan	(Opsional)	15
CHAPT	ER VI	Kesimpula	n dan Saran	16
6.1	Kesim	pulan		16
6.2	Saran.			16
REFERE	ENCES			17
LAMPIF	RAN			L-1
L.1	Isi Lar	npiran		L-1
L.2	Pandua	an Latex		L-2
	L.2.1	Syntax D	asar	L-2
		L.2.1.1	Penggunaan Sitasi	L-2
		L.2.1.2	Penulisan Gambar	L-2
		L.2.1.3	Penulisan Tabel	L-2
		L.2.1.4	Penulisan formula	L-2
		L.2.1.5	Contoh list	L-3
	L.2.2	Blok Bed	a Halaman	L-3
		L.2.2.1	Membuat algoritma terpisah	L-3
		L.2.2.2	Membuat tabel terpisah	L-3
		L.2.2.3	Menulis formula terpisah halaman	L-4
L.3	Forma	t Penulisan	Referensi	L-6

	L.3.1	Book	L-6
	L.3.2	Handbook	L-8
L.4	Contoh	n Source Code	L-10
	L.4.1	Sample algorithm	L-10
	L.4.2	Sample Python code	L-11
		Sample Matlab code	

LIST OF TABLES

Table 3.1	Key Columns and Data Types for conversation_logs Table	12
Table 1	Tabel ini	L-2
Table 2	Contoh tabel panjang	L-4

LIST OF FIGURES

Figure 1 Contoh gambar	L	, -	2
------------------------	---	------------	---

NOMENCLATURE AND ABBREVIATION

[SAMPLE]

b = bias

 $K(x_i, x_j)$ = fungsi kernel y = kelas keluaran

C = parameter untuk mengendalaikan besarnya

pertukaran antara penalti variabel slack den-

gan ukuran margin

 L_D = persamaan Lagrange dual L_P = persamaan Lagrange primal

w = vektor bobot x = vektor masukan

ANFIS = Adaptive Network Fuzzy Inference System
ANSI = American National Standards Institute

DAG = Directed Acyclic Graph

DDAG = Decision Directed Acyclic Graph

HIS = Hue Saturation Intensity
QP = Quadratic Programming
RBF = Radial Basis Function

RGB = Red Green Blue SV = Support Vector

SVM = Support Vector Machines

INTISARI

Intisari ditulis menggunakan bahasa Indonesia dengan jarak antar baris 1 spasi dan maksimal 1 halaman. Intisari sekurang-kurangnya berisi tentang latar belakang dan tujuan penelitian, metodologi yang digunakan, hasil penelitian, kesimpulan dan implikasi, dan Kata kunci yang berhubungan dengan penelitian.

Kata Kunci ditulis maksimal 5 kata yang paling berhubungan dengan isi skripsi. Silakan mengacu pada ACM / IEEE *Computing classification* jika Anda adalah mahasiswa Sarjana TI http://www.acm.org/about/class/ atau mengacu kepada IEEE keywords http://www.ieee.org/documents/taxonomy_v101.pdf jika Anda berasal dari Prodi Sarjana TE.

Kata kunci : Kata kunci 1, Kata kunci 2, Kata kunci 3, Kata kunci 4, Kata kunci 5

Contoh Abstrak Teknik Elektro:

"Penelitian ini bertujuan untuk mengembangkan sistem pengendalian suhu ruangan dengan menggunakan microcontroller. Metodologi yang digunakan adalah desain sirkuit, implementasi sistem pengendalian, dan pengujian performa. Hasil penelitian menunjukkan bahwa sistem pengendalian suhu ruangan yang dikembangkan mampu mengendalikan suhu ruangan dengan akurasi sebesar ±0,5°C. Kesimpulan dari penelitian ini adalah sistem pengendalian suhu ruangan yang dikembangkan efektif dan efisien.

Kata kunci: microcontroller, sistem pengendalian suhu, akurasi."

Contoh Abstrak Teknik Biomedis:

"Penelitian ini bertujuan untuk mengevaluasi keefektifan prototipe alat pemantau denyut jantung berbasis elektrokardiogram (ECG) untuk pasien jantung. Metodologi yang digunakan meliputi desain dan pembuatan prototipe, pengujian dengan pasien, dan analisis data. Hasil penelitian menunjukkan bahwa prototipe alat pemantau denyut jantung berbasis ECG memiliki akurasi yang baik dan mampu memantau denyut jantung pasien secara efektif. Kesimpulan dari penelitian ini adalah prototipe alat pemantau denyut jantung berbasis ECG merupakan solusi yang efektif dan efisien untuk memantau pasien jantung.

Kata kunci: elektrokardiogram, alat pemantau denyut jantung, akurasi."

Contoh Abstrak Teknologi Informasi:

"Penelitian ini bertujuan untuk mengevaluasi keamanan dan privasi pengguna aplikasi media sosial terpopuler. Metodologi yang digunakan meliputi analisis kebijakan privasi dan pengaturan keamanan, pengujian penetrasi, dan survei pengguna. Hasil penelitian menunjukkan bahwa beberapa aplikasi media sosial memiliki kebijakan privasi yang kurang jelas dan rendahnya tingkat keamanan. Kesimpulan dari penelitian ini adalah pentingnya meningkatkan kebijakan privasi dan tingkat keamanan pada aplikasi media sosial untuk melindungi privasi dan data pengguna.

Kata kunci: media sosial, keamanan, privasi, pengguna."

ABSTRACT

The provision of mental health support in Higher Education Institutions (HEIs) is often hampered by a reactive model, limited scalability, and inefficient resource allocation. This research addresses these challenges by proposing a novel agentic AI framework designed to enable a proactive, data-driven approach to student well-being. The framework is comprised of three collaborative agents: an **Analytics Agent** for trend identification, an **Intervention Agent** for automated outreach, and a **Triage Agent** for efficient resource routing.

We designed and implemented a functional prototype of this framework utilizing a hybrid architecture that combines a locally-hosted Large Language Model (LLM) managed by LangChain within a FastAPI backend, orchestrated by the n8n workflow automation platform. The prototype's feasibility was validated through three testing scenarios demonstrating its capability to autonomously generate insight reports, manage intervention workflows, and perform initial triage. The results indicate that this agentic framework presents a viable pathway for transforming university mental health services, offering significant potential to improve operational efficiency and enable proactive, evidence-based decision-making.

Keywords: Keyword 1, Keyword 2, Keyword 3, Keyword 4, Keyword 5

CHAPTER I

INTRODUCTION

1.1 Background

Higher Education Institutions (HEIs) are facing a critical and growing challenge in supporting student well-being [1]. A landmark report highlights the escalating prevalence of mental health and substance use issues among student populations, urging institutions to adopt a more comprehensive support model [1]. This crisis not only jeopardizes students' academic success and personal development but also places an immense, unsustainable strain on the institutions tasked with supporting them [1].

The traditional support model, centered around on-campus counseling services, is fundamentally **reactive**. It relies on students to self-identify their distress and navigate the process of seeking help. This paradigm faces significant operational challenges, including insufficient staffing, long waiting lists, and an inability to provide immediate, 24/7 support, which ultimately limits access for a large portion of the student body [1]. Consequently, a critical gap persists between the need for mental health services and their actual provision, leaving many students without timely support [1].

To bridge this gap, a paradigm shift from a reactive to a **proactive** support model is imperative [1]. The engine for this evolution is **Digital Transformation**, a process that leverages technology to fundamentally reshape organizational processes and enhance value delivery within HEIs [1]. Within this context, Artificial Intelligence (AI) has emerged as a key enabling technology, with systematic reviews confirming its significant potential to analyze complex data, automate processes, and deliver personalized interventions at scale within the higher education landscape [1].

This research moves beyond conventional AI applications by proposing the use of **Agentic AI**. An intelligent agent is an autonomous system capable of perception, decision-making, and proactive action to achieve specific goals [1], representing a new frontier in educational technology [1]. We propose that a framework built upon a system of collaborative intelligent agents, a Multi-Agent System (MAS), a concept already explored for smart campus management [1], can create a truly transformative ecosystem. Such a system would not only serve as a support tool for students but, more importantly, would function as a strategic asset for the institution, enabling data-driven decision-making, automating operational workflows, and facilitating a proactive stance on student well-being. This thesis details the design, development, and evaluation of such a framework, prototyped within the UGM-AICare project.

1.2 Problem Formulation

The inefficiency and reactive nature of current university mental health support systems present a complex problem. This research addresses the following core challenges:

- 1. The primary challenge is the **design of an agentic AI framework** capable of automating key institutional processes, specifically in the areas of trend analysis, proactive intervention, and initial user triage.
- 2. A significant technical challenge lies in the **design and implementation of a robust, modular, and hybrid architecture** to realize this framework, requiring the integration of local Large Language Models (e.g., self-hosted Gemma 3), cloud-based models (e.g., Gemini through AI Studio), and workflow automation platforms (e.g., n8n).
- 3. Finally, there is a need to **evaluate the potential impact** of such a framework on institutional operational efficiency and data-driven decision-making, which will be validated through a proof-of-concept prototype and scenario-based testing.

1.3 Objectives

The primary objectives of this thesis are:

- 1. To design the conceptual and technical framework for the agentic AI system.
- 2. To implement a functional proof-of-concept prototype.
- 3. To evaluate the prototype's capabilities against predefined functional scenarios.

1.4 Scope and Limitations

To ensure the feasibility and focus of this research, the following boundaries are established:

- 1. This research is focused on the **design and prototype implementation** of the agentic AI framework, not a full-scale, university-wide deployment.
- 2. The evaluation of the framework is based on **functional**, **scenario-based testing** of the prototype's capabilities. It does not measure the long-term psychological impact on students or the real-world operational savings for the institution.
- 3. The data utilized for testing the analytics agent will consist of anonymized, preexisting chat logs or simulated data to ensure user privacy and controlled testing conditions.
- 4. The research will not address the ethical implications of AI in education, such

as bias in AI algorithms or the potential for misuse of student data. These are acknowledged as important issues but are outside the scope of this thesis.

1.5 Contributions

- 1. Academic: A novel framework for applying agentic AI in an institutional (higher education) context.
- 2. Practical: A blueprint for UGM to develop a more proactive, data-driven, and efficient mental health support system.

1.6 Thesis Outline

The structure of this thesis is outlined as follows:

Chapter I: Introduction. This chapter elaborates on the background of the study, the justification for the research's significance, the problem formulation to be addressed, and the specific objectives to be achieved. It also defines the scope and limitations of the research, outlines the expected contributions, and presents the overall organizational structure of the thesis report.

Chapter II: Literature Review and Theoretical Framework. This chapter presents a comprehensive review of relevant prior research in the fields of conversational AI, the application of gamification in educational and well-being contexts, related blockchain applications, and studies on user engagement and student welfare. Furthermore, this chapter establishes the theoretical foundation that underpins the core concepts and technologies utilized in this research.

Chapter III: System Design and Architecture. This chapter outlines the methodology and technical blueprint for the system. This chapter explains the adoption of Design Science Research and presents the system's high-level conceptual architecture, including its core functional components. It details the underlying technical architecture, justifying the chosen technology stack, and describes the database structure. The chapter also covers the user interface design for system administration and specifies the integrated security and privacy measures.

Chapter IV: Implementation and Evaluation. This chapter describes the development and testing of the system prototype. This chapter details the technical environment used for implementation and demonstrates the functional prototype that was built. It then explains the testing process used to evaluate the system's performance against its design requirements. The chapter concludes by presenting the results from these tests and providing an analysis of the findings.

Chapter V: Conclusion and Future Work. This chapter summarizes the study's findings and contributions. This chapter revisits the initial research problems and presents

the main conclusions drawn from the research. It concludes by offering recommendations for both the future development of the system and for subsequent research in this area.

CHAPTER II

LITERATURE REVIEW AND THEORETICAL BACKGROUND

2.1 Theoretical Background

Penelitian mengenai pemanfaatan teknologi untuk mendukung mahasiswa bukanlah hal baru. Berbagai solusi digital telah diusulkan dan dievaluasi untuk meningkatkan aspek-aspek tertentu dari pengalaman belajar dan kehidupan mahasiswa. Namun, integrasi spesifik antara AI konversasional dengan kapabilitas empatik, mekanisme gamifikasi yang memotivasi, dan infrastruktur blockchain yang menjamin keamanan dan transparansi, khususnya untuk meningkatkan keterlibatan (*engagement*) dan kesejahteraan (*well-being*) mahasiswa secara simultan, masih merupakan area yang relatif baru dan terus berkembang, menyisakan banyak ruang untuk eksplorasi dan kontribusi ilmiah. Tinjauan ini akan mengulas beberapa area kunci penelitian terdahulu secara sistematis untuk memetakan lanskap riset saat ini dan mengidentifikasi celah yang relevan.

2.1.1 AI Konversasional untuk Dukungan Kesejahteraan dan Keterlibatan Mahasiswa

Pemanfaatan AI konversasional, dalam bentuk *chatbot* atau agen virtual, telah menunjukkan potensi signifikan dalam menyediakan dukungan kepada mahasiswa. Penelitian awal cenderung berfokus pada implementasi *chatbot* untuk tugas-tugas administratif dan penyediaan informasi umum [2]. Seiring dengan kemajuan *Natural Language Processing* (NLP) dan *Large Language Models* (LLMs), fokus penelitian bergeser ke arah pengembangan agen konversasional yang lebih canggih. Tinjauan sistematis mengenai desain agen konversasional empatik, khususnya dalam konteks dukungan kesehatan mental, mengidentifikasi bahwa arsitektur hibrida seringkali lebih unggul dalam mencapai akurasi dan nuansa respons [3]. Studi kasus di Indonesia juga mengonfirmasi penerimaan positif mahasiswa terhadap *chatbot* untuk dukungan kesehatan mental awal, dengan catatan penting mengenai kebutuhan personalisasi dan penanganan privasi [4].

Dalam domain keterlibatan akademik, sistem tutor cerdas (*Intelligent Tutoring Systems* - ITS) dan agen konversasional telah dieksplorasi untuk menyediakan pendampingan belajar personal. Tinjauan oleh Rizvi dkk. (2023) membahas bagaimana ITS berbasis AI dapat meningkatkan pengalaman belajar dan keterlibatan mahasiswa melalui jalur pembelajaran yang adaptif dan umpan balik instan [5]. Kontribusi utama dari studi-studi ini adalah demonstrasi efektivitas AI dalam personalisasi pembelajaran. Namun, banyak dari sistem ini belum secara eksplisit mengintegrasikan dukungan kesejahteraan emosional atau aspek sosial dari keterlibatan. Selain itu, potensi dampak negatif seperti kelelahan digital akibat interaksi berkepanjangan dengan sistem AI, serta isu etika terkait

pengumpulan dan penggunaan data mahasiswa, tetap menjadi perhatian yang memerlukan mitigasi cermat dalam desain platform [6].

2.1.2 Gamifikasi untuk Peningkatan Keterlibatan dan Motivasi Mahasiswa

Gamifikasi telah diakui sebagai strategi yang menjanjikan untuk meningkatkan motivasi dan keterlibatan mahasiswa di berbagai aktivitas akademik maupun non-akademik [7, 8]. Tinjauan literatur sistematis oleh Rossi dkk. (2023) mengonfirmasi potensi ini, meskipun menekankan variabilitas implementasi dan tantangan dalam analisis empiris yang seragam [9].

Efektivitas gamifikasi sering dikaitkan dengan kemampuannya memenuhi kebutuhan psikologis dasar seperti yang dijelaskan dalam *Self-Determination Theory* (SDT) [10, 11]. Namun, implementasi yang dangkal atau terlalu berfokus pada imbalan ekstrinsik berisiko menciptakan keterlibatan superfisial dan bahkan dapat merusak motivasi intrinsik jangka panjang [12]. Studi oleh Hanus dan Fox (2015), sebuah penelitian longitudinal, memberikan wawasan penting mengenai dampak jangka panjang gamifikasi terhadap motivasi intrinsik, perbandingan sosial, dan performa akademik, menyoroti kompleksitas interaksi ini dari waktu ke waktu [13].

Lebih lanjut, respons mahasiswa terhadap gamifikasi dapat bervariasi berdasarkan karakteristik individual. Penelitian mengenai tipe pemain (*player types*) menyarankan bahwa personalisasi desain gamifikasi, dengan menyesuaikan elemen permainan dengan preferensi pengguna yang berbeda (misalnya, *achievers, explorers, socializers, philan-thropists*), dapat meningkatkan efektivitasnya [14]. Hal ini menunjukkan bahwa pendekatan "satu ukuran untuk semua" dalam gamifikasi mungkin kurang optimal. Mengintegrasikan pemahaman tentang tipe pengguna ke dalam desain platform gamifikasi menjadi salah satu kontribusi potensial, meskipun tantangan teknis untuk personalisasi adaptif tetap ada.

2.1.3 Aplikasi Teknologi Blockchain dalam Pendidikan dan Sistem Terintegrasi

Teknologi Blockchain menawarkan potensi transformatif untuk sektor pendidikan, terutama dalam hal peningkatan keamanan data, transparansi, dan verifikasi [15]. Aplikasi awal banyak berfokus pada penerbitan dan verifikasi kredensial akademik yang aman dan tahan pemalsuan [16]. Namun, potensi blockchain melampaui sekadar ijazah digital.

Dalam konteks platform terintegrasi yang diusulkan, blockchain dapat memainkan peran krusial dalam sistem penghargaan gamifikasi. Penggunaan *smart contract* dapat mengotomatisasi distribusi penghargaan (misalnya, token atau lencana digital) berdasarkan pencapaian yang terverifikasi, menciptakan sistem yang lebih transparan dan akuntabel [17]. Meskipun tinjauan spesifik mengenai integrasi blockchain dalam sistem *reward*

gamifikasi pendidikan masih terbatas, penelitian mengenai tantangan umum blockchain dalam gamifikasi mulai muncul, menyoroti aspek seperti pengalaman pengguna dan skalabilitas [18].

Aspek penting lainnya adalah manajemen identitas dan privasi data. Konsep *Self-Sovereign Identity* (SSI) yang didukung oleh blockchain berpotensi memberdayakan mahasiswa dengan kontrol lebih besar atas data pribadi mereka [19]. Ini sangat relevan mengingat platform yang diusulkan akan mengumpulkan data interaksi AI dan progres gamifikasi. Namun, tantangan implementasi SSI yang user-friendly dan integrasinya dengan sistem universitas yang ada masih signifikan. Selain itu, keseimbangan antara transparansi inheren blockchain (terutama pada blockchain publik) dan kebutuhan privasi pengguna memerlukan desain arsitektur yang hati-hati, mungkin melibatkan solusi *off-chain storage* atau teknik peningkatan privasi lainnya [19].

2.1.4 Platform Terintegrasi untuk Keterlibatan dan Kesejahteraan Mahasiswa

Upaya untuk meningkatkan keterlibatan dan kesejahteraan mahasiswa seringkali melibatkan berbagai intervensi atau platform digital yang berdiri sendiri. Namun, terdapat argumen kuat yang mendukung pendekatan terintegrasi. Sistem dukungan mahasiswa yang terintegrasi, yang mengkoordinasikan berbagai layanan dan sumber daya, telah terbukti dapat meningkatkan hasil akademik dan non-akademik mahasiswa dengan mengatasi berbagai penghalang secara holistik [20]. Dalam konteks digital, platform kesejahteraan digital (digital well-being platforms) mulai banyak dikembangkan, meskipun tinjauan sistematis seperti yang dilakukan oleh Borges dkk. (2021) menunjukkan bahwa penelitian di area ini, khususnya di pendidikan tinggi, masih terus berkembang dan memerlukan lebih banyak bukti empiris mengenai efektivitas jangka panjang dan desain yang optimal [21]. Pengukuran keterlibatan pengguna (user engagement) pada platform digital semacam ini juga merupakan aspek penting, di mana tinjauan sistematis oleh Ng dkk. (2022) dapat memberikan panduan mengenai konseptualisasi dan metrik pengukuran yang relevan [22].

2.1.5 Sintesis dan Celah Penelitian

Dari tinjauan pustaka yang lebih mendalam ini, semakin jelas bahwa meskipun terdapat kemajuan signifikan dalam pemanfaatan AI konversasional untuk dukungan [3, 5], penerapan gamifikasi untuk motivasi [9, 13], dan eksplorasi blockchain untuk keamanan dan transparansi di sektor pendidikan [16, 18], beberapa celah penelitian utama tetap ada dan memotivasi urgensi penelitian ini:

1. **Integrasi Sinergis Multiteknologi yang Belum Teruji:** Fokus utama tetap pada kurangnya studi yang secara komprehensif merancang, mengimplementasikan, dan mengevaluasi platform yang mengintegrasikan *ketiga* teknologi ini (AI hibrida,

gamifikasi yang dipersonalisasi, dan blockchain) secara sinergis untuk tujuan ganda: peningkatan keterlibatan *dan* kesejahteraan mahasiswa. Sebagian besar penelitian masih bersifat parsial atau konseptual [17].

- 2. **Personalisasi Gamifikasi Berbasis Data dan Tipe Pengguna:** Meskipun pentingnya personalisasi gamifikasi telah diidentifikasi [14], implementasi praktis dan evaluasi platform gamifikasi yang secara dinamis beradaptasi dengan tipe pengguna atau data perilaku mahasiswa (yang mungkin difasilitasi oleh AI dan dicatat secara aman oleh blockchain) masih minim.
- 3. **Studi Longitudinal dan Dampak Jangka Panjang:** Kebutuhan akan studi longitudinal untuk memahami efek jangka panjang dari intervensi teknologi, baik gamifikasi [13] maupun platform kesejahteraan digital [21], masih sangat besar. Penelitian ini, meskipun mungkin terbatas dalam durasinya, dapat memberikan dasar untuk investigasi semacam itu.
- 4. Validasi dalam Konteks Budaya Spesifik (Indonesia): Kebutuhan akan penelitian yang memvalidasi efektivitas dan penerimaan platform teknologi canggih ini dalam konteks budaya dan sistem pendidikan tinggi di Indonesia tetap krusial [4].
- 5. **Desain Etis dan Tata Kelola Platform Terintegrasi:** Mengelola data sensitif dari interaksi AI, memastikan keadilan dalam sistem gamifikasi berbasis blockchain, dan menjaga privasi pengguna dalam ekosistem terintegrasi memunculkan tantangan etika dan tata kelola yang kompleks dan memerlukan eksplorasi lebih lanjut [12, 19].

Penelitian ini diajukan untuk secara langsung menjawab celah-celah ini, dengan fokus pada perancangan artefak inovatif berupa platform terintegrasi dan evaluasi empiris awal terhadap potensi dampaknya.

2.2 Literature Review

Bagian ini memaparkan landasan konseptual dan teoritis yang relevan dengan komponen-komponen utama platform yang diusulkan. Pemahaman mendalam terhadap teori ini esensial untuk perancangan sistem yang efektif dan evaluasi yang valid. Sumber utama bagian ini adalah buku referensi, artikel tinjauan (*review articles*), dan publikasi ilmiah fundamental di bidang terkait.

2.2.1 AI Konversasional Hibrida (Hybrid Conversational AI)

Survey existing research on AI applications in university administration and management.

2.2.2 Gamifikasi dan Teori Motivasi

Review papers on Decision Support Systems (DSS) and Business Process Automation (BPA) in other industries.

2.2.3 Teknologi Blockchain dan Aplikasinya yang Relevan

Analyze existing systems for student support or mental health, highlighting their limitations (e.g., most are purely reactive chatbots).

2.2.4 Keterlibatan Pengguna (*User Engagement*) dan Kesejahteraan Mahasiswa (*Student Well-being*) dalam Konteks Digital

Conclude by identifying the research gap: the lack of a proactive, multi-agent framework for transforming the process of mental health support at an institutional level.

2.3 Analisis Perbandingan Metode

Di dalam tinjauan pustaka hasil akhirnya adalah analisis secara kualitatif atau pun secara kuantitatif kelebihan dan kekurangan metode jika dikaitkan dengan masalah, batasan-batasan masalah dan solusi yang dinginkan. Analisis kuantitatif tidak wajib teapi mempunyai nilai tambah di dalam tugas akhir saudara. Bagian ini menjelaskan kenapa metode tersebut dipilih dan uraikan dengan lebih jelas metode pelaksanaan tugas akhir yang ingin Anda lakukan.

2.4 Pertanyaan Tugas Akhir (Jika Perlu)

Pertanyaan tugas akhir bersifat opsional dan dapat ditambahkan untuk menekankan hal-hal yang hendak diketahui dari tugas akhir berdasar pada tujuan tugas akhir. Pertanyaan tugas akhir dikenal dengan RQ (*Research Question*) dan harus memiliki keterkaitan dengan RO (*Research Objective*). Satu RO dapat memiliki satu atau lebih dari satu RQ.

CHAPTER III

METODE PENELITIAN

3.1 Research Methodology: Design Science Research (DSR)

3.2 System Overview and Conceptual Design

Purpose: To provide a high-level, 10,000-foot view of the system's purpose and its main components, making it understandable before diving into technical specifics.

Elaboration Points:

Present a concise paragraph describing the conceptual model: "The proposed framework is an ecosystem of three collaborative, intelligent agents that work in concert to transform an institution's mental health support from a reactive to a proactive model..."

Include a high-level Context Diagram showing the main entities (Students, University Staff/Counselors) and systems (UGM-AICare User App, Agentic AI Backend, Admin Dashboard) and how they interact.

3.3 Functional Architecture: The Agentic Core

Purpose: To detail the "what" of the system. This section explains the specific roles and functions of each agent. This is the heart of your functional design.

Elaboration Points: Create a subsection for each of the three agents. For each, define its:

3.3.1 The Analytics Agent

Goal: To autonomously identify mental health trends from anonymized user data.

Perception (Inputs): Anonymized conversation logs from the PostgreSQL database.

Processing Logic: Describe the NLP tasks it performs: topic modeling, sentiment analysis, and summarization.

Action (Outputs): A structured weekly report (in JSON format) containing key insights (e.g., top 5 trending stress topics, overall sentiment score).

3.3.2 The Intervention Agent

Goal: To automate targeted, proactive outreach campaigns.

Perception (Inputs): The structured report from the Analytics Agent and a set of predefined "campaign rules."

Processing Logic: A rule-based engine that maps insights to actions (e.g., IF 'exam stress' > threshold THEN trigger 'time-management-workshop' campaign).

Action (Outputs): A signal sent to the orchestration layer (n8n) with target audience segment and message content.

3.3.3 The Triage Agent

Goal: To efficiently route a student to the most appropriate level of support in real-time.

Perception (Inputs): A user's live conversation with the chatbot.

Processing Logic: A real-time text classification model to determine the conversation's severity level (e.g., Level 1: Casual, Level 2: Moderate, Level 3: Red Flag).

Action (Outputs): A structured recommendation (e.g., suggest a self-help module, suggest booking a counselor, provide an emergency hotline).

Include a detailed Data Flow Diagram (DFD) showing how data moves between these three agents and the database.

3.4 Technical Architecture: The Hybrid System

Purpose: To detail the "how" of the system—the engineering blueprint, including justification for key technology choices.

Elaboration Points:

3.4.1 Overall System Architecture Diagram

A detailed diagram showing the interplay between all technologies: Next.js (Admin Dashboard), FastAPI (Backend), PostgreSQL, LangChain (as a library), and n8n (as a separate, orchestrated service). Show the communication protocols (e.g., REST API, direct DB connection).

3.4.2 The "Brain": FastAPI + LangChain Service

Justify the choice of FastAPI (for performance, async support) and LangChain (for LLM orchestration). Detail the API design, defining key endpoints (e.g., /api/agents/generate-report) and their request/response schemas.

3.4.3 The "Nervous System": n8n Workflows

Justify the choice of n8n for robust workflow automation. Provide screenshots or diagrams of the primary n8n workflows (e.g., the "Weekly Report Generation" workflow triggered by a Cron job).

3.5 Database Design

Purpose: To define the data persistence layer of the system.

Elaboration Points:

Present a clean Entity-Relationship Diagram (ERD).

Table 3.1. Key Columns and Data Types for conversation_logs Table

Column Name	Data Type	Description
id	SERIAL PRIMARY KEY	Unique identifier
user_id	UUID	Reference to user (anonymized)
timestamp	TIMESTAMP WITH TIME ZONE	Time of message
message	TEXT	User or agent message content
sender	VARCHAR(16)	'user' or 'agent'
sentiment_score	FLOAT	Sentiment analysis result
topic	VARCHAR(64)	NLP-inferred topic label

3.6 User Interface (UI) Design

Purpose: To show the design of the human interface for the system's administrative users.

Elaboration Points:

Define the primary user persona for the dashboard (e.g., "Dr. Astuti, Head of Counseling Services").

Present wireframes or high-fidelity mockups for the key screens of the Admin Dashboard (e.g., the main analytics view, the report history page).

3.7 Security and Privacy by Design

Purpose: To demonstrate that critical security and privacy considerations are integral to the architecture.

Elaboration Points:

Detail the Data Anonymization Pipeline: How is Personally Identifiable Information (PII) identified and redacted from chat logs before they are stored for analysis?

Describe the Role-Based Access Control (RBAC) mechanism for the admin dashboard.

Mention standard security practices like data encryption in transit (TLS) and at rest.

3.8 Alur Tugas Akhir

Menguraikan prosedur yang akan digunakan dan jadwal atau alur penyelesaian setiap tahap. Alur penelian ini dapat disajikan dalam bentuk diagram. Diagram dapat disusun dengan aturan yang baik semisal menggunakan *flowchart*. Aturan dan tutorial pembuatan *flowchart* dapat dilihat di http://ugm.id/flowcharttutorial. Setelah menggambarkannya, penulis wajib menjelaskan langkah-langkah setiap alur tugas akhir dalam sub bab tersendiri sesuai dengan kebutuhan.

3.9 Etika, Masalah, dan Keterbatasan Penelitian (Opsional))

Bagian ini membahas pertimbangan etis penelitian dan [potensi] masalah serta keterbatasannya. Jika menyangkut penelitian dengan makhluk hidup, maka dibutuhkan adanya *ethical clearance*, di bagian ini hal itu akan dibahas. Demikian juga tentang keterbatasan ataupun masalah yang akan timbul.

CHAPTER IV

HASIL DAN PEMBAHASAN

4.1 Pembahasan Hasil 1 (Ubah Judul Sesuai dengan Hal yang Hendak dibahas)

Poin pertama adalah membahas tujuan penelitian pertama. Dapat ditambahkan beberapa sub bab jika diperlukan.

4.2 Pembahasan Hasil 2 (Ubah Judul Sesuai dengan Hal yang Hendak dibahas)

Poin kedua adalah membahas tujuan penelitian kedua. Dapat ditambahkan beberapa sub bab jika diperlukan. Dapat juga diteruskan ke Sub Bab Pembahasan hasil 3 dan seterusnya, jika ada tiga atau lebih tujuan penelitian.

4.3 Perbandingan Hasil Penelitian dengan Hasil Terdahulu

Pembahasan penutup dapat menjelaskan mengenai kelebihan hasil pengembangan / penelitian dan kekurangan dibandingkan dengan skripsi atau penelitian terdahulu atau perbandingan terhadap produk lain yang ada di pasaran. Penulis dapat menggunakan tabel untuk membandingkan secara gamblang dan menjelaskannya.

CHAPTER V

TAMBAHAN (OPSIONAL)

Anda boleh menambahkan Bab jika diperlukan. Jumlah Bab tidak harus sesuai dengan *template*.

CHAPTER VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Kesimpulan dapat diawali dengan apa yang dilakukan dengan tugas akhir ini lalu dilanjutkan dengan poin-poin yang menjawab tujuan penelitian, apakah tujuan sudah tercapai atau belum, tentunya berdasarkan data ataupun hasil dari Bab pembahasan sebelumnya. Dalam beberapa hal, kesimpulan dapat juga berisi tentang temuan/findings yang Anda dapatkan setelah melakukan pengamatan dan atau analisis terhadap hasil penelitian.

6.2 Saran

Saran berisi hal-hal yang bisa dilanjutkan dari penelitian atau skripsi ini, yang belum dilakukan karena batasan permasalahan. Saran bukan berisi saran kepada sistem atau pengguna, tetapi saran diberikan kepada aspek penelitian yang dapat dikembangkan dan ditambahkan di penelitian atau skripsi selanjutnya.

REFERENCES

- [1] Anonymous, "Citation needed," 2025, placeholder reference. Please replace with actual citation.
- [2] A. Mohsen, S. Mehmood, and A. El-Sayed, "Using ai chatbots in education: Recent advances challenges and use case," *Algorithms*, vol. 17, no. 3, p. 99, 2024.
- [3] C. El Morr, G. Maupomé, and A. Jaramillo, "Empathic conversational agent platform designs and their evaluation in the context of mental health: Systematic review," *JMIR Mental Health*, vol. 11, p. e58974, 2024. [Online]. Available: https://mental.jmir.org/2024/1/e58974
- [4] M. Mustaji and M. Z. Fikri, "Chatbots as a tool for promoting student mental health," *Proceedings of the International Conference on Education, Society and Humanity (ICESH)*, 2024. [Online]. Available: https://ejournal.unuja.ac.id/index.php/icesh/article/viewFile/10077/3866
- [5] M. S. Rizvi *et al.*, "Ai-powered tutoring systems: A review of a revolution in education," *The Eurasia Proceedings of Educational & Social Sciences*, vol. 28, pp. 81–90, 2023. [Online]. Available: https://www.epess.net/en/download/article-file/2657627
- [6] K. Petrov and F. J. García-Peñalvo, "Exploring the effects of artificial intelligence on student and academic well-being in higher education: a mini-review," *Frontiers in Psychology*, vol. 16, p. 1498132, 2025.
- [7] J. López-Belmonte, A.-J. Moreno-Guerrero, J.-A. López-Núñez, and F.-J. Hinojo-Lucena, "Gamification as a strategy to increase motivation and engagement in higher education chemistry students," *Computers*, vol. 10, no. 10, p. 132, 2021.
- [8] M. Osei-Bonsu and F. Boateng, "Gamification in education: Boosting engagement and motivation," *Nanotechnology Perceptions*, vol. 20, pp. 31–41, 2025. [Online]. Available: https://nano-ntp.com/index.php/nano/article/download/4615/3571/8932
- [9] F. Rossi, P. Magnoler, and A. Formiconi, "Gamification in higher education. a systematic literature review," *Italian Journal of Educational Technology*, vol. 31, no. 3, pp. 60–78, 2023. [Online]. Available: https://ijet.itd.cnr.it/index.php/td/article/view/1335
- [10] E. D. Mekler, F. Brühlmann, A. N. Tuch, and K. Opwis, "Towards understanding the effects of individual gamification elements on intrinsic motivation and performance," in *Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY '15)*, 2015, pp. 199–209, sumber dari ResearchGate seringkali menunjuk ke paper CHI Play yang membahas SDT dalam gamifikasi.
- [11] S. Rohimah and M. A. Arifin, "The use of gamification-based duolingo application in increasing student motivation is reviewed from the theory of self-determin," *AL-WIJDÁN: Journal of Islamic Education Studies*, vol. 10, no. 1, pp. 79–90, 2025. [Online]. Available: https://ejournal.uniramalang.ac.id/index.php/alwijdan/article/download/5844/3709/37432

- [12] A. I. Zourmpakis, A. Kleftodimos, and I. Hatzilygeroudis, "Challenges with gamification in higher education: A narrative review with implications for educators and policymakers," *Education Sciences*, vol. 12, no. 11, p. 820, 2022, merujuk pada paper dari ResearchGate sebelumnya (Challenges with Gamification in Higher Education: A Narrative Review...) yang mengkaji tantangan gamifikasi, termasuk risiko superfisial.
- [13] M. D. Hanus and J. Fox, "Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance," *Computers & Education*, vol. 80, pp. 152–161, 2015.
- [14] N. Taşkın and E. Kılıç Çakmak, "Player/user types for gamification," *International Journal of Information Systems and Project Management*, pp. 33–56, 2022.
- [15] A. Alammary, S. H. Alhazmi, M. Almasri, and S. Gillani, "Blockchain security and privacy in education: A systematic mapping study," *Applied Sciences*, vol. 10, no. 9, p. 3175, 2020.
- [16] S. Alharthi, "Blockchain in education: Transforming learning, credentialing, and academic data management," *International Journal of Information and Communication Technology Education (IJICTE)*, 2024, sumber dari ResearchGate, perlu cek detail publikasi aslinya jika memungkinkan. [Online]. Available: https://www.researchgate.net/publication/385081605_Blockchain_in_Education_Transforming_Learning_Credentialing_and_Academic_Data_Management
- [17] A. Haleem, M. Javaid, R. P. Singh, and R. Suman, "Digital transformation of education: An integrated framework for metaverse, blockchain, and ai-driven learning," *SN Computer Science*, 2025, contoh paper yang membahas integrasi beberapa teknologi (meski bukan persis AI+Gamify+Blockchain), menunjukkan tren integrasi. Dapat dikutip di Latar Belakang atau Tinjauan Pustaka.
- [18] N. Xi, J. Chen, F. Gama, M. Riar, and J. Hamari, "The challenges of blockchain in gaming and gamification," *Games and Culture*, 2023, tinjauan hipotetis. Perlu dicari review aktual yang membahas secara spesifik tantangan dan peluang blockchain dalam gamifikasi, terutama untuk reward systems. Hasil pencarian sebelumnya belum sangat spesifik untuk ini.
- [19] P. Pinheiro, D. Abreu, J. Bernardino, and P. Furtado, "A survey of blockchain-based privacy applications: An analysis of consent management and self-sovereign identity approaches," *arXiv preprint arXiv:2411.16404*, 2024. [Online]. Available: https://arxiv.org/abs/2411.16404
- [20] Child Trends, "Building systems of integrated student support," *Child Trends*, April 2019, eRIC ED602237. Accessed May 20, 2025. [Online]. Available: https://files.eric.ed.gov/fulltext/ED602237.pdf
- [21] T. H. Borges, D. A. Ferreira, J. Martins, L. Laranjo, L. Antunes, C. Analide, A. Abelha, and M. F. Santos, "Digital well-being in higher education: A systematic review," *IEEE Access*, vol. 9, pp. 135 920–135 939, 2021.
- [22] A. H. M. Ng, Z. Y. S. Chan, M. H. R. Ho, T. L. H. Lee, E. K. Y. Tso, J. K. L. Yau, and J. W. Y. Chung, "Conceptualising and measuring social media engagement: a

- systematic literature review," *Italian Journal of Marketing*, vol. 2022, no. 3, pp. 267–292, 2022.
- [23] L. E. Nugroho, "E-book as a platform for exploratory learning interactions," *International Journal of Emerging Technologies in Learning (iJET)*, vol. 11, no. 01, pp. 62–65, 2016. [Online]. Available: http://www.online-journals.org/index.php/i-jet/article/view/5011
- [24] P. I. Santosa, "User?s preference of web page length," *International Journal of Research and Reviews in Computer Science*, pp. 180–185, 2011.
- [25] N. A. Setiawan, "Fuzzy decision support system for coronary artery disease diagnosis based on rough set theory," *International Journal of Rough Sets and Data Analysis (IJRSDA)*, vol. 1, no. 1, pp. 65–80, 2014.
- [26] C. P. Wibowo, P. Thumwarin, and T. Matsuura, "On-line signature verification based on forward and backward variances of signature," in *Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), 2014 4th Joint International Conference on.* IEEE, 2014, pp. 1–5.
- [27] D. A. Marenda, A. Nasikun, and C. P. Wibowo, "Digitory, a smart way of learning islamic history in digital era," *arXiv preprint arXiv:1607.07790*, 2016.
- [28] S. Wibirama, S. Tungjitkusolmun, and C. Pintavirooj, "Dual-camera acquisition for accurate measurement of three-dimensional eye movements," *IEEJ Transactions on Electrical and Electronic Engineering*, vol. 8, no. 3, pp. 238–246, 2013.
- [29] C. P. Wibowo, "Clustering seasonal performances of soccer teams based on situational score line," *Communications in Science and Technology*, vol. 1, no. 1, 2016.

Catatan: Daftar pustaka adalah apa yang dirujuk atau disitasi, bukan apa yang telah dibaca, jika tidak ada dalam sitasi maka tidak perlu dituliskan dalam daftar pustaka.

LAMPIRAN

L.1 Isi Lampiran

Lampiran bersifat opsional bergantung hasil kesepakatan dengan pembimbing dapat berupa:

- 1. Bukti pelaksanaan Kuesioner seperti pertanyaan kuesioner, resume jawaban responden, dan dokumentasi kuesioner.
- 2. Spesifikasi Aplikasi atau Sistem yang dikembangkan meliputi spesifikasi teknis aplikasi, tautan unduh aplikasi, manual penggunaan aplikasi, hingga screenshot aplikasi.
- 3. Cuplikan kode yang sekiranya penting dan ditambahkan.
- 4. Tabel yang terlalu panjang yang masih diperlukan tetapi tidak memungkinkan untuk ditayangkan di bagian utama skripsi.
- 5. Gambar-gambar pendukung yang tidak terlalu penting untuk ditampilkan di bagian utama. Akan tetapi, mendukung argumentasi/pengamatan/analisis.
- 6. Penurunan rumus-rumus atau pembuktian suatu teorema yang terlalu panjang dan terlalu teknis sehingga Anda berasumsi bahwa pembaca biasa tidak akan menelaah lebih lanjut. Hal ini digunakan untuk memberikan kesempatan bagi pembaca tingkat lanjut untuk melihat proses penurunan rumus-rumus ini.

LAMPIRAN

L.2 Panduan Latex

L.2.1 Syntax Dasar

L.2.1.1 Penggunaan Sitasi

Contoh penggunaan sitasi [23, 24] [25] [26] [27] [28, 29]

L.2.1.2 Penulisan Gambar

Figure 1. Contoh gambar.

Contoh gambar terlihat pada Gambar 1. Gambar diambil dari [29].

L.2.1.3 Penulisan Tabel

Table 1. Tabel ini

ID	Tinggi Badan (cm)	Berat Badan (kg)
A23	173	62
A25	185	78
A10	162	70

Contoh penulisan tabel bisa dilihat pada Tabel 1.

L.2.1.4 Penulisan formula

Contoh penulisan formula

$$L_{\psi_z} = \{ t_i \mid v_z(t_i) \le \psi_z \} \tag{1}$$

Contoh penulisan secara inline: PV = nRT. Untuk kasus-kasus tertentu, kita membutuhkan perintah "mathit" dalam penulisan formula untuk menghindari adanya jeda saat penulisan formula.

Contoh formula **tanpa** menggunakan "mathit": PVA = RTD

Contoh formula **dengan** menggunakan "mathit": PVA = RTD

L.2.1.5 Contoh list

Berikut contoh penggunaan list

- 1. First item
- 2. Second item
- 3. Third item

L.2.2 Blok Beda Halaman

L.2.2.1 Membuat algoritma terpisah

Untuk membuat algoritma terpisah seperti pada contoh berikut, kita dapat memanfaatkan perintah *algstore* dan *algrestore* yang terdapat pada paket *algcompatible*. Pada dasarnya, kita membuat dua blok algoritma dimana blok pertama kita simpan menggunakan *algstore* dan kemudian di-restore menggunakan *algrestore* pada algoritma kedua. Perintah tersebut dimaksudkan agar terdapat kesinamungan antara kedua blok yang sejatinya adalah satu blok.

Algorithm 1 Contoh algorima

- 1: **procedure** CREATESET(v)
- 2: Create new set containing v
- 3: end procedure

Pada blok algoritma kedua, tidak perlu ditambahkan caption dan label, karena sudah menjadi satu bagian dalam blok pertama. Pembagian algoritma menjadi dua bagian ini berguna jika kita ingin menjelaskan bagian-bagian dari sebuah algoritma, maupun untuk memisah algoritma panjang dalam beberapa halaman.

- 4: **procedure** ConcatSet(v)
- 5: Create new set containing v
- 6: end procedure

L.2.2.2 Membuat tabel terpisah

Untuk membuat tabel panjang yang melebihi satu halaman, kita dapat mengganti kombinasi *table + tabular* menjadi *longtable* dengan contoh sebagai berikut.

Table 2. Contoh tabel panjang

header 1	header 2
foo	bar

L.2.2.3 Menulis formula terpisah halaman

Terkadang kita butuh untuk menuliskan rangkaian formula dalam jumlah besar sehingga melewati batas satu halaman. Solusi yang digunakan bisa saja dengan memindahkan satu blok formula tersebut pada halaman yang baru atau memisah rangkaian formula menjadi dua bagian untuk masing-masing halaman. Cara yang pertama mungkin akan menghasilkan alur yang berbeda karena ruang kosong pada halaman pertama akan diisi oleh teks selanjutnya. Sehingga di sini kita dapat memanfaatkan *align* yang sudah diatur dengan mode *allowdisplaybreaks*. Penggunakan *align* ini memungkinkan satu rangkaian formula terpisah berbeda halaman.

Contoh sederhana dapat digambarkan sebagai berikut.

$$x = y^{2}$$

$$x = y^{3}$$

$$a + b = c$$

$$x = y - 2$$

$$a + b = d + e$$

$$x^{2} + 3 = y$$

$$a(x) = 2x$$

$$(2)$$

$$b_i = 5x$$

$$10x^2 = 9x$$

$$2x^2 + 3x + 2 = 0$$

$$5x - 2 = 0$$

$$d = \log x$$

$$y = \sin x$$

LAMPIRAN

L.3 Format Penulisan Referensi

Penulisan referensi mengikuti aturan standar yang sudah ditentukan. Untuk internasionalisasi DTETI, maka penulisan referensi akan mengikuti standar yang ditetapkan oleh IEEE (*International Electronics and Electrical Engineers*). Aturan penulisan ini bisa diunduh di http://www.ieee.org/documents/ieeecitationref.pdf. Gunakan Mendeley sebagai *reference manager* dan *export* data ke format Bibtex untuk digunakan di Latex.

Berikut ini adalah sampel penulisan dalam format IEEE:

L.3.1 Book

Basic Format:

[1] J. K. Author, "Title of chapter in the book," in Title of His Published Book, xth ed. City of Publisher, Country: Abbrev. of Publisher, year, ch. x, sec. x, pp. xxx–xxx.

Examples:

- [1] B. Klaus and P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.
- [2] L. Stein, "Random patterns," in Computers and You, J. S. Brake, Ed. New York: Wiley, 1994, pp. 55-70.
- [3] R. L. Myer, "Parametric oscillators and nonlinear materials," in Nonlinear Optics, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.
- [4] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions (Applied Mathematics Series 55). Washington, DC: NBS, 1964, pp. 32-33.
- [5] E. F. Moore, "Gedanken-experiments on sequential machines," in Automata Studies (Ann. of Mathematical Studies, no. 1), C. E. Shannon and J. Mc-Carthy, Eds. Princeton, NJ: Princeton Univ. Press, 1965, pp. 129-153.
- [6] Westinghouse Electric Corporation (Staff of Technology and Science, Aerospace Div.), Integrated Electronic Systems. Englewood Cliffs, NJ: Prentice-Hall, 1970.
- [7] M. Gorkii, "Optimal design," Dokl. Akad. Nauk SSSR, vol. 12, pp. 111-122, 1961 (Transl.: in L. Pontryagin, Ed., The Mathematical Theory of Optimal Processes. New York: Interscience, 1962, ch. 2, sec. 3, pp. 127-135).
- [8] G. O. Young, "Synthetic structure of industrial plastics," in Plastics, vol. 3,

Polymers of Hexadromicon, J. Peters, Ed., 2nd ed. New York: McGraw-Hill, 1964, pp. 15-64.

L.3.2 Handbook

Basic Format:

[1] Name of Manual/Handbook, x ed., Abbrev. Name of Co., City of Co., Abbrev. State, year, pp. xx-xx.

Examples:

- [1] Transmission Systems for Communications, 3rd ed., Western Electric Co., Winston Salem, NC, 1985, pp. 44-60.
- [2] Motorola Semiconductor Data Manual, Motorola Semiconductor Products Inc., Phoenix, AZ, 1989.
- [3] RCA Receiving Tube Manual, Radio Corp. of America, Electronic Components and Devices, Harrison, NJ, Tech. Ser. RC-23, 1992.

Conference/Prosiding

Basic Format:

[1] J. K. Author, "Title of paper," in Unabbreviated Name of Conf., City of Conf., Abbrev. State (if given), year, pp.xxx-xxx.

Examples:

[1] J. K. Author [two authors: J. K. Author and A. N. Writer] [three or more authors: J. K. Author et al.], "Title of Article," in [Title of Conf. Record as], [copyright year] © [IEEE or applicable copyright holder of the Conference Record]. doi: [DOI number]

Sumber Online/Internet

Basic Format:

[1] J. K. Author. (year, month day). Title (edition) [Type of medium]. Available: http://www.(URL)

Examples:

[1] J. Jones. (1991, May 10). Networks (2nd ed.) [Online]. Available: http://www.atm.com

Skripsi, Tesis dan Disertasi

Basic Format:

[1] J. K. Author, "Title of thesis," M.S. thesis, Abbrev. Dept., Abbrev. Univ., City of Univ., Abbrev. State, year.

[2] J. K. Author, "Title of dissertation," Ph.D. dissertation, Abbrev. Dept., Abbrev. Univ., City of Univ., Abbrev. State, year.

Examples:

[1] J. O. Williams, "Narrow-band analyzer," Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993. [2] N. Kawasaki, "Parametric study of thermal and chemical nonequilibrium nozzle flow," M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993

LAMPIRAN

L.4 Contoh Source Code

L.4.1 Sample algorithm

Algorithm 2 Kruskal's Algorithm

```
1: procedure MAKESET(v)
        Create new set containing v
 3: end procedure
 4:
 5: function FINDSET(v)
        return a set containing v
 7: end function
 9: procedure UNION(u,v)
        Unites the set that contain u and v into a new set
11: end procedure
12:
13: function KRUSKAL(V, E, w)
        A \leftarrow \{\}
14:
       for each vertex v in V do
15:
           MakeSet(v)
16:
       end for
17:
       Arrange E in increasing costs, ordered by w
18:
       for each (u,v) taken from the sorted list do
19:
           if FindSet(u) \neq FindSet(v) then
20:
               A \leftarrow A \cup \{(u, v)\}
21:
22:
               Union(u, v)
           end if
23:
       end for
24:
25:
       return A
26: end function
```

L.4.2 Sample Python code

```
1 import numpy as np
def incmatrix(genl1, genl2):
   m = len(gen11)
   n = len(gen12)
   M = None #to become the incidence matrix
   VT = np.zeros((n*m,1), int) #dummy variable
   #compute the bitwise xor matrix
   M1 = bitxormatrix (genl1)
   M2 = np.triu(bitxormatrix(genl2),1)
12
    for i in range (m-1):
13
      for j in range (i+1, m):
        [r,c] = np.where(M2 == M1[i,j])
        for k in range(len(r)):
         VT[(i)*n + r[k]] = 1;
         VT[(i)*n + c[k]] = 1;
         VT[(j)*n + r[k]] = 1;
         VT[(j)*n + c[k]] = 1;
   if M is None:
     M = np.copy(VT)
23
    else:
     M = np.concatenate((M, VT), 1)
25
   VT = np.zeros((n*m,1), int)
   return M
```

L.4.3 Sample Matlab code

```
function X = BitXorMatrix(A,B)
% function to compute the sum without charge of two vectors

% convert elements into usigned integers
A = uint8(A);
B = uint8(B);

ml = length(A);
m2 = length(B);
X = uint8(zeros(m1, m2));
for n1=1:m1
for n2=1:m2
X(n1, n2) = bitxor(A(n1), B(n2));
end
end
```