

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 11 de junio de 2021

Quinta Práctica Dirigida

1. Se
afuna función convexa propia. Probar que
 f_{∞} es la menor función htal que

$$f(z) \le f(x) + h(z - x) \quad \forall z, \, \forall x.$$

- 2. Sea $f(x) = \ln(e^{x_1} + \dots + e^{x_n}), x = (x_1, \dots, x_n), n > 1$. Hallar f_{∞} .
- 3. Se
aCun conjunto convexo cerrado no vacío de $\mathbb{R}^n.$ Considere el problema de optimización

$$\min_{x \in C} f(x),$$

donde f es fuertemente convexa y sci. Demuestre que existe una única solución optimal.

4. Sea C un conjunto convexo cerrado no vacío y $x \notin C$. Probar que existe $a \neq 0$ tal que

$$\sup_{y \in C} \langle a, y \rangle < \langle a, x \rangle.$$

5. Sea K un cono convexo cerrado no vacío y $x \notin K$. Si existe $a \neq 0$ tal que $\sup_{y \in K} \langle a, y \rangle > 0$, entonces

$$\forall y \in K : \langle a, y \rangle \leq 0.$$

6. Sean C_1, C_2 subconjuntos convexos disjuntos no vacíos de \mathbb{R}^n . Si C_1 es compacto y C_2 es cerrado, entonces existen $a \neq 0$ y $b \in \mathbb{R}$ tal que

$$\forall x \in C_1, \forall y \in C_2 : \langle a, x \rangle < b < \langle a, y \rangle.$$

7. Sea C es convexo no vacío. Probar que

$$\sup_{x \in \overline{C}} \langle a, x \rangle = \sup_{x \in \mathrm{ri} \ C} \langle a, x \rangle.$$

8. Sea C un subconjunto convexo no vacío de \mathbb{R}^n . Si $0 \notin C$ y dim(aff C) < n entonces

$$\forall x \in C : \langle a, x \rangle > 0.$$

9. Si $K \subset \mathbb{R}^n$ es un cono probar que

$$K^{\circ} = \{ s \in \mathbb{R}^n : \langle s, x \rangle \le 1 \quad \forall x \in K \}.$$

10. Sea $0 \in K \subset \mathbb{R}^n$. Probar que

$$K^{\circ} = \{ s \in \mathbb{R}^n : \langle s, x \rangle \le 1 \quad \forall x \in K \}.$$

- 11. Si K es un cono entonces $(\operatorname{co} K)^{\circ} = K^{\circ}$.
- 12. Sea K un cono convexo. Probar que su polar K° es acotada si y solo si 0 es un punto interior de K.
- 13. Sea K un cono convexo no vacío. Probar que $K^{\circ\circ}=(\overline{K})^{\circ\circ}=\overline{K}.$
- 14. Dado $K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : ||x||_p \le t\}$. Probar que $K^* = \{(u, s) : ||u||_q \le s\}$. Donde $p \neq q$ son conjugados.