Counterexamples related to the Sato-Tate conjecture

Daniel Miller

25 April 2017

Cornell University

Outline

Motivation and background

Discrepancy and Dirichlet series

Main theorem

Idea of the proof

Motivation and background

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$.

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$.

Fact:
$$a_p = \text{tr } \rho_I(\text{fr}_p) = p + 1 - \#E(\mathbf{F}_p),$$

$$E_{/\mathbf{Q}}$$
 non-CM elliptic curve, I prime, $\rho_I \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$.

Fact:
$$a_p = \operatorname{tr} \rho_l(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), \ |a_p| \leqslant 2\sqrt{p}.$$

$$E_{/\mathbf{Q}}$$
 non-CM elliptic curve, I prime, $\rho_I \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$.

Fact:
$$a_p = \operatorname{tr} \rho_l(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), \ |a_p| \leqslant 2\sqrt{p}.$$
 (Hasse)

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I : G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$.

Fact:
$$a_p = \operatorname{tr} \rho_I(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), \ |a_p| \leqslant 2\sqrt{p}.$$
 (Hasse)

Satake parameter:
$$\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$$
.

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$.

Fact: $a_p = \operatorname{tr} \rho_I(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), \ |a_p| \leqslant 2\sqrt{p}.$ (Hasse)

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I : G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$.

Fact: $a_p = \operatorname{tr} \rho_l(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), \ |a_p| \leqslant 2\sqrt{p}.$ (Hasse)

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on $SU(2)^{\natural}$).

3

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I : G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$.

Fact: $a_p = \operatorname{tr} \rho_I(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), |a_p| \leqslant 2\sqrt{p}$. (Hasse)

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on $SU(2)^{\natural}$).

Theorem (Taylor et. al.)

 $\{\theta_p\}$ is equidistributed with respect to ST.

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I : G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$.

Fact: $a_p = \operatorname{tr} \rho_I(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), |a_p| \leqslant 2\sqrt{p}$. (Hasse)

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on $SU(2)^{\natural}$).

Theorem (Taylor et. al.)

 $\{\theta_p\}$ is equidistributed with respect to ST.

Quantify rate of convergence of $\frac{1}{\pi(N)} \sum_{p \leqslant N} \delta_{\theta_p}$ to ST.

 $E_{/\mathbf{Q}}$ non-CM elliptic curve, I prime, $\rho_I : G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_I)$.

Fact: $a_p = \operatorname{tr} \rho_l(\operatorname{fr}_p) = p + 1 - \#E(\mathbf{F}_p), |a_p| \leqslant 2\sqrt{p}$. (Hasse)

Satake parameter: $\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$.

Sato–Tate measure: $ST = \frac{2}{\pi} \sin^2 \theta \, d\theta$ (Haar measure on $SU(2)^{\natural}$).

Theorem (Taylor et. al.)

 $\{\theta_p\}$ is equidistributed with respect to ST.

Quantify rate of convergence of $\frac{1}{\pi(N)} \sum_{p \leqslant N} \delta_{\theta_p}$ to ST.

Use discrepancy (Kolmogorov-Smirnov statistic).

$$D_{N} = \sup_{x \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0,x)}(\theta_{p}) - \int 1_{[0,x)}(\theta) \, \mathrm{d} \operatorname{ST}(\theta) \right|.$$

$$D_N = \sup_{\mathbf{x} \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{\rho \leqslant N} \mathbf{1}_{[0,\mathbf{x})}(\theta_\rho) - \int \mathbf{1}_{[0,\mathbf{x})}(\theta) \, \mathrm{d} \, \mathsf{ST}(\theta) \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$

$$D_{N} = \sup_{\mathbf{x} \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{\rho \leqslant N} \mathbf{1}_{[0,\mathbf{x})}(\theta_{\rho}) - \int \mathbf{1}_{[0,\mathbf{x})}(\theta) \, \mathrm{d} \operatorname{ST}(\theta) \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$
.

There is a variant of this conjecture for CM elliptic curves.

$$D_{N} = \sup_{\mathbf{x} \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{\rho \leqslant N} \mathbf{1}_{[0,\mathbf{x})}(\theta_{\rho}) - \int \mathbf{1}_{[0,\mathbf{x})}(\theta) \, \mathrm{d} \, \mathsf{ST}(\theta) \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$
.

There is a variant of this conjecture for CM elliptic curves.

Theorem (Akiyama-Tanigawa)

Akiyama–Tanigawa conjecture \Rightarrow Riemann hypothesis for E.

$$D_{N} = \sup_{\mathbf{x} \in [0,\pi]} \left| \frac{1}{\pi(N)} \sum_{\rho \leqslant N} \mathbf{1}_{[0,\mathbf{x})}(\theta_{\rho}) - \int \mathbf{1}_{[0,\mathbf{x})}(\theta) \, \mathrm{d} \operatorname{ST}(\theta) \right|.$$

Conjecture (Akiyama-Tanigawa)

$$D_N \ll N^{-\frac{1}{2}+\epsilon}$$
.

There is a variant of this conjecture for CM elliptic curves.

Theorem (Akiyama-Tanigawa)

Akiyama–Tanigawa conjecture \Rightarrow Riemann hypothesis for E.

Theorem (Mazur)

Akiyama–Tanigawa conjecture \Rightarrow Riemann hypothesis for sym^k E

Theorem (Bucar–Kedlaya). Assume analytic continuation of $L(\operatorname{sym}^k E, s)$, GRH, and functional equation for all $k \geqslant 1$. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Bucar–Kedlaya). Assume analytic continuation of $L(\operatorname{sym}^k E, s)$, GRH, and functional equation for all $k \ge 1$. Then $D_N \ll N^{-\frac{1}{4}+\epsilon}$.

Theorem (Thorner). Same result (with explicit constants) for a modular form of arbitrary weight .

Theorem (Bucar–Kedlaya). Assume analytic continuation of $L(\operatorname{sym}^k E, s)$, GRH, and functional equation for all $k \geqslant 1$. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Thorner). Same result (with explicit constants) for a modular form of arbitrary weight .

Theorem (Niederreiter). Let $E_{/F}$, where F is a function field. Then $D_N \ll N^{-\frac{1}{4}+\epsilon}$.

Theorem (Bucar–Kedlaya). Assume analytic continuation of $L(\operatorname{sym}^k E, s)$, GRH, and functional equation for all $k \ge 1$. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Thorner). Same result (with explicit constants) for a modular form of arbitrary weight .

Theorem (Niederreiter). Let $E_{/F}$, where F is a function field. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Rosengarten). For G = ST(M) over a function field, $D_N \ll N^{-\alpha_G + \epsilon}$, where $\alpha \to 0$ as $\mathsf{rk} \ G \to \infty$.

Theorem (Bucar–Kedlaya). Assume analytic continuation of $L(\operatorname{sym}^k E, s)$, GRH, and functional equation for all $k \ge 1$. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Thorner). Same result (with explicit constants) for a modular form of arbitrary weight .

Theorem (Niederreiter). Let $E_{/F}$, where F is a function field. Then $D_N \ll N^{-\frac{1}{4} + \epsilon}$.

Theorem (Rosengarten). For G = ST(M) over a function field, $D_N \ll N^{-\alpha_G + \epsilon}$, where $\alpha \to 0$ as rk $G \to \infty$.

Common ingredient. Erdös–Turán–Koksma inequality: from a bound on $\left|\sum_{p\leqslant N}\operatorname{tr}\rho(x_p)\right|$ to a bound on D_N .

A. Pande: is the Sato-Tate conjecture a Galois-theoretic result?

A. Pande: is the Sato-Tate conjecture a Galois-theoretic result?

Theorem (Pande)

Let $\epsilon > 0$. Then there exists an infinitely ramified representation $\rho \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$ such that $\theta_p \in B_{\epsilon}(\pi/2)$ for a density one set of primes.

A. Pande: is the Sato-Tate conjecture a Galois-theoretic result?

Theorem (Pande)

Let $\epsilon > 0$. Then there exists an infinitely ramified representation $\rho \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$ such that $\theta_p \in B_{\epsilon}(\pi/2)$ for a density one set of primes.

Theorem (Khare-Rajan)

Any $\rho: G_{\mathbf{Q}} \to GL_2(\mathbf{Z}_l)$ is ramified at a density zero set of primes.

A. Pande: is the Sato-Tate conjecture a Galois-theoretic result?

Theorem (Pande)

Let $\epsilon > 0$. Then there exists an infinitely ramified representation $\rho \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$ such that $\theta_p \in B_{\epsilon}(\pi/2)$ for a density one set of primes.

Theorem (Khare-Rajan)

Any $\rho \colon G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathbf{Z}_I)$ is ramified at a density zero set of primes.

Question (Serre): can you a priori control the ratio $\frac{\pi_{\text{ram}(\rho)}(x)}{\pi(x)}$?

6

A. Pande: is the Sato-Tate conjecture a Galois-theoretic result?

Theorem (Pande)

Let $\epsilon > 0$. Then there exists an infinitely ramified representation $\rho \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{Z}_I)$ such that $\theta_p \in B_{\epsilon}(\pi/2)$ for a density one set of primes.

Theorem (Khare-Rajan)

Any $\rho \colon G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathbf{Z}_I)$ is ramified at a density zero set of primes.

Question (Serre): can you a priori control the ratio $\frac{\pi_{\text{ram}(\rho)}(x)}{\pi(x)}$?

Answer (Khare-Larsen-Ramakrishna): no!

6

Q1. Can Pande's results be strengthened to yield equidistribution?

- Q1. Can Pande's results be strengthened to yield equidistribution?
- Q2. If so, can the measure be specified?

- Q1. Can Pande's results be strengthened to yield equidistribution?
- Q2. If so, can the measure be specified?
- **Q3.** Can the rate of convergence of empirical measures to the true measure be specified?
- **Q4.** Can the growth of $\pi_{\mathsf{ram}(\rho)}(x)$ be controlled?

- Q1. Can Pande's results be strengthened to yield equidistribution?
- Q2. If so, can the measure be specified?
- **Q3.** Can the rate of convergence of empirical measures to the true measure be specified?
- **Q4.** Can the growth of $\pi_{\mathsf{ram}(\rho)}(x)$ be controlled?
- **Q5.** Can anything be said about the *L*-functions associated with ρ ?

- Q1. Can Pande's results be strengthened to yield equidistribution?
- Q2. If so, can the measure be specified?
- **Q3.** Can the rate of convergence of empirical measures to the true measure be specified?
- **Q4.** Can the growth of $\pi_{\mathsf{ram}(\rho)}(x)$ be controlled?
- **Q5.** Can anything be said about the *L*-functions associated with ρ ?

Answer: Yes! to Q1-Q5.

Discrepancy and Dirichlet series

Discrepancy

Definition

Let $\{\theta_p\}$ be a sequence in $[0,\pi]$, μ a measure on $[0,\pi]$. The discrepancy is

$$D_{N}(\{\theta_{p}\}, \mu) = \sup_{x \in [0, \pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0, x)}(\theta_{p}) - \int_{0}^{x} d\mu \right|.$$

8

Discrepancy

Definition

Let $\{\theta_p\}$ be a sequence in $[0,\pi]$, μ a measure on $[0,\pi]$. The discrepancy is

$$D_{N}(\{\theta_{p}\}, \mu) = \sup_{x \in [0, \pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0, x)}(\theta_{p}) - \int_{0}^{x} d\mu \right|.$$

Fact: $\{\theta_p\}$ are μ -equidistributed if and only if $D_N \to 0$.

Discrepancy

Definition

Let $\{\theta_p\}$ be a sequence in $[0,\pi]$, μ a measure on $[0,\pi]$. The discrepancy is

$$D_{N}(\{\theta_{p}\}, \mu) = \sup_{x \in [0, \pi]} \left| \frac{1}{\pi(N)} \sum_{p \leqslant N} 1_{[0, x)}(\theta_{p}) - \int_{0}^{x} d\mu \right|.$$

Fact: $\{\theta_p\}$ are μ -equidistributed if and only if $D_N \to 0$.

Fact: $\frac{\log N}{N} \ll D_N$. The van der Corput sequence achieves this.

Dirichlet series

Definition

For $k \geqslant 1$,

$$L(\operatorname{\mathsf{sym}}^k
ho, s) = \prod_{p} \det \left(1 - \operatorname{\mathsf{sym}}^k \left(\begin{smallmatrix} \mathrm{e}^{i heta_p} & 0 \\ 0 & \mathrm{e}^{-i heta_p} \end{smallmatrix} \right) p^{-s}
ight)^{-1}$$

Dirichlet series

Definition

For $k \geqslant 1$,

$$L(\operatorname{sym}^k \rho, s) = \prod_{p} \det \left(1 - \operatorname{sym}^k \left(\begin{smallmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{smallmatrix} \right) p^{-s} \right)^{-1}$$

Definition

For $f: [0, \pi] \to \mathbf{C}$ of bounded variation with $\mu(f) = 0$,

$$L_f(s) = \prod_{p} \left(1 - f(\theta_p)p^{-s}\right)^{-1}$$

9

Dirichlet series

Definition

For $k \geqslant 1$,

$$L(\operatorname{sym}^k \rho, s) = \prod_{p} \det \left(1 - \operatorname{sym}^k \left(\begin{smallmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{smallmatrix} \right) p^{-s} \right)^{-1}$$

Definition

For $f: [0,\pi] \to \mathbf{C}$ of bounded variation with $\mu(f) = 0$,

$$L_f(s) = \prod_p \left(1 - f(\theta_p)p^{-s}\right)^{-1}$$

Example (Ramakrishna): $L_{sgn}(s) = \prod_{p} (1 - sgn(a_p)p^{-s})^{-1}$.

9

Theorem

If
$$\left|\sum_{p\leqslant N} f(\theta_p)\right| \ll N^{\alpha+\epsilon}$$
, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Theorem

If $\left|\sum_{p\leqslant N} f(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Corollary

If $D_N \ll N^{-\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Theorem

If $\left|\sum_{p\leqslant N} f(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Corollary

If $D_N \ll N^{-\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Definition

$$U_k(\theta) = \frac{\sin((k+1)\theta)}{\sin \theta} = \operatorname{tr} \operatorname{sym}^k \begin{pmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{pmatrix}.$$

Theorem

If $\left|\sum_{p\leqslant N} f(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Corollary

If $D_N \ll N^{-\alpha+\epsilon}$, then $L_f(s)$ admits a nonvanishing analytic continuation to $\Re > \alpha$.

Definition

$$U_k(\theta) = \frac{\sin((k+1)\theta)}{\sin \theta} = \operatorname{tr} \operatorname{sym}^k \left(\begin{smallmatrix} e^{i\theta_p} & 0 \\ 0 & e^{-i\theta_p} \end{smallmatrix} \right).$$

Theorem

If $\left|\sum_{p\leqslant N} U_k(\theta_p)\right| \ll N^{\alpha+\epsilon}$, then L(sym^k ρ, s) admits a nonvanishing analytic continuation to $\Re > \alpha$.

Main theorem

1. Fix a rational prime $l \geqslant 7$.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation
- $\bar{\rho} \colon G_{\mathbf{Q}} \to \mathsf{GL}_2(\mathbf{F}_l). \ \rho \text{ will be a lift of } \bar{\rho}.$
- 3. Fix a function $h \colon \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h: \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h \colon \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$.
- 4. Fix an absolutely continuous probability measure μ on $[0,\pi]$, with bounded probability density function.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h \colon \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$.
- 4. Fix an absolutely continuous probability measure μ on $[0,\pi]$, with bounded probability density function. The angles $\{\theta_p\}$ will be μ -equidistributed.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h: \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\varrho)}(x) \ll h(x)$.
- 4. Fix an absolutely continuous probability measure μ on $[0,\pi]$, with bounded probability density function. The angles $\{\theta_p\}$ will be μ -equidistributed.
- 5. Fix $\alpha \in \left(0, \frac{1}{3}\right)$.

- 1. Fix a rational prime $l \geqslant 7$.
- 2. Fix an odd, absolutely irreducible, weight 2 representation $\bar{\rho} \colon G_{\mathbf{Q}} \to \operatorname{GL}_2(\mathbf{F}_I)$. ρ will be a lift of $\bar{\rho}$.
- 3. Fix a function $h \colon \mathbf{R}^+ \to \mathbf{R}_{\geqslant 1}$ which increases slowly to infinity. We will have $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$.
- 4. Fix an absolutely continuous probability measure μ on $[0,\pi]$, with bounded probability density function. The angles $\{\theta_p\}$ will be μ -equidistributed.
- 5. Fix $\alpha \in (0, \frac{1}{3})$. The discrepancy D_N will decay like $\pi(N)^{-\alpha}$.

Let I, $\bar{\rho}$, h, μ , and α be as above. Then there exists $\rho\colon G_{\mathbf{Q}}\to \mathrm{GL}_2(\mathbf{Z}_I)$ such that

1. $\rho \equiv \bar{\rho} \pmod{l}$.

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$.

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4.

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$,

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\text{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$,

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.
- 4. $D_N(\{\theta_p\}, \mu) = \Theta(\pi(x)^{-\alpha}).$

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.
- 4. $D_N(\{\theta_p\}, \mu) = \Theta(\pi(x)^{-\alpha})$. (Yes to Q1–Q3.)

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.
- 4. $D_N(\{\theta_p\}, \mu) = \Theta(\pi(x)^{-\alpha})$. (Yes to Q1–Q3.)
- 5. If $(\theta \mapsto \pi \theta)_* \mu = \mu$, then for each odd k, $L(\operatorname{sym}^k \rho, s)$ satisfies the Riemann hypothesis.

- 1. $\rho \equiv \bar{\rho} \pmod{l}$.
- 2. $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$. (Yes to Q4. $\log x$, $\log^{10^{10}} x$, $A^{-1}(x)$)
- 3. For each unramified p, $a_p = \operatorname{tr} \rho(\operatorname{fr}_p) \in \mathbf{Z}$ and satisfies the Hasse bound.
- 4. $D_N(\{\theta_p\}, \mu) = \Theta(\pi(x)^{-\alpha})$. (Yes to Q1–Q3.)
- 5. If $(\theta \mapsto \pi \theta)_* \mu = \mu$, then for each odd k, $L(\operatorname{sym}^k \rho, s)$ satisfies the Riemann hypothesis. (Yes to Q5.)

Idea of the proof

Theorem

If $\alpha \in (0, \frac{1}{3})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

Theorem

If $\alpha \in (0, \frac{1}{3})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

(Can have $x_p=rac{a_p}{2\sqrt{p}}$ for $a_p\in \mathbf{Z}$ satisfying the Hasse bound.)

Theorem

If $\alpha \in (0, \frac{1}{3})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

(Can have $x_p = \frac{a_p}{2\sqrt{p}}$ for $a_p \in \mathbf{Z}$ satisfying the Hasse bound.)

Fact: Discrepancy is invariant under pushforward by \cos and \cos^{-1} .

Theorem

If $\alpha \in (0, \frac{1}{3})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

(Can have $x_p=rac{a_p}{2\sqrt{p}}$ for $a_p\in \mathbf{Z}$ satisfying the Hasse bound.)

Fact: Discrepancy is invariant under pushforward by \cos and \cos^{-1} .

Idea: Construct ρ so that $\frac{a_p}{2\sqrt{p}} \approx x_p$.

Theorem

If $\alpha \in (0, \frac{1}{3})$, there exists a sequence (x_2, x_3, x_5, \dots) in [-1, 1] such that $|D_N - \pi(N)^{-\alpha}| \ll \pi(N)^{-1}$.

(Can have $x_p = \frac{a_p}{2\sqrt{p}}$ for $a_p \in \mathbf{Z}$ satisfying the Hasse bound.)

Fact: Discrepancy is invariant under pushforward by \cos and \cos^{-1} .

Idea: Construct ρ so that $\frac{a_p}{2\sqrt{p}} \approx x_p$.

Fact: If $(x_p^{(1)})$ is a sequence with $|x_p - x_p^{(1)}| \ll p^{-1/2 + \epsilon}$, then $D_N^{(1)} = \Theta(\pi(N)^{-\alpha})$.

Lifting Galois representations

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to \operatorname{GL}_2(\mathbf{Z}/I^n)$.

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to GL_2(\mathbf{Z}/I^n)$.

For all n, require $\det \rho_n \equiv \kappa \pmod{I^n}$

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$.

For all n, require det $\rho_n \equiv \kappa \pmod{I^n}$ (I-adic cyclotomic character)

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to GL_2(\mathbf{Z}/I^n)$.

For all n, require det $\rho_n \equiv \kappa \pmod{I^n}$ (I-adic cyclotomic character)

Passage from ρ_n to ρ_{n+1} is governed by $H^i(G_{\mathbb{Q},R_n},\operatorname{Ad}^0\bar{\rho})$, i=1,2

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathsf{GL}_2(\mathbf{Z}/I^n)$.

For all n, require det $\rho_n \equiv \kappa \pmod{I^n}$ (I-adic cyclotomic character)

Passage from ρ_n to ρ_{n+1} is governed by $H^i(G_{\mathbf{Q},R_n},\operatorname{Ad}^0\bar{\rho}),\ i=1,2$

Theorem (K–L–R). Fix a finite set U of primes. Then there exists a finite set N of primes such that

$$\mathsf{H}^1(\mathit{G}_{\mathbf{Q},R\cup N},\mathsf{Ad}^0\,\bar{\rho}) \xrightarrow{\sim} \prod_{\rho\in R} \mathsf{H}^1(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho}) \times \prod_{\rho\in U} \mathsf{H}^1_{\mathrm{nr}}(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho})$$

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to \operatorname{GL}_2(\mathbf{Z}/I^n)$.

For all n, require det $\rho_n \equiv \kappa \pmod{I^n}$ (I-adic cyclotomic character)

Passage from ρ_n to ρ_{n+1} is governed by $H^i(G_{\mathbf{Q},R_n},\operatorname{Ad}^0\bar{\rho})$, i=1,2

Theorem (K–L–R). Fix a finite set U of primes. Then there exists a finite set N of primes such that

$$\mathsf{H}^1(\mathit{G}_{\mathbf{Q},R\cup N},\mathsf{Ad}^0\,\bar{\rho})\stackrel{\sim}{\to} \prod_{\rho\in R} \mathsf{H}^1(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho})\times \prod_{\rho\in U} \mathsf{H}^1_{\mathrm{nr}}(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho})$$

Corollary: Given $\rho_n \colon G_{\mathbb{Q},R_n} \to \operatorname{GL}_2(\mathbb{Z}/I^n)$, can choose $\operatorname{tr} \rho_{n+1}(\operatorname{fr}_p)$ for all p in a finite set.

Construct ρ as $\varprojlim \rho_n$, where $\rho_n \colon G_{\mathbf{Q},R_n} \to \operatorname{GL}_2(\mathbf{Z}/I^n)$.

For all n, require det $\rho_n \equiv \kappa \pmod{l^n}$ (l-adic cyclotomic character)

Passage from ρ_n to ρ_{n+1} is governed by $H^i(G_{\mathbf{Q},R_n},\operatorname{Ad}^0\bar{\rho})$, i=1,2

Theorem (K–L–R). Fix a finite set U of primes. Then there exists a finite set N of primes such that

$$\mathsf{H}^1(\mathit{G}_{\mathbf{Q},R\cup N},\mathsf{Ad}^0\,\bar{\rho})\stackrel{\sim}{\to} \prod_{\rho\in R} \mathsf{H}^1(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho})\times \prod_{\rho\in U} \mathsf{H}^1_{\mathrm{nr}}(\mathit{G}_{\mathbf{Q}_\rho},\mathsf{Ad}^0\,\bar{\rho})$$

Corollary: Given $\rho_n \colon G_{\mathbb{Q},R_n} \to \operatorname{GL}_2(\mathbb{Z}/I^n)$, can choose $\operatorname{tr} \rho_{n+1}(\operatorname{fr}_p)$ for all p in a finite set. (Finitely many more ramified primes.)

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Each $p \in N$ is chosen from a positive-density set of primes.

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Each $p \in N$ is chosen from a positive-density set of primes.

So p can be arbitrarily large!

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Each $p \in N$ is chosen from a positive-density set of primes.

So p can be arbitrarily large!

If $\pi_R(x) \leqslant h(x) (\forall x)$, can force this for $\pi_{R \cup N}(x)$.

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Each $p \in N$ is chosen from a positive-density set of primes.

So p can be arbitrarily large!

If $\pi_R(x) \leqslant h(x) (\forall x)$, can force this for $\pi_{R \cup N}(x)$.

 $\pi_{\mathsf{ram}(\bar{\rho})}(x) \leqslant h(x)$ may not hold—scale h to make this true!

Given $\rho_n \colon G_{\mathbf{Q},R_n} \to \mathrm{GL}_2(\mathbf{Z}/I^n)$ and choices of $\mathrm{tr} \, \rho_{n+1}(\mathrm{fr}_p)$ (mod I^{n+1}), need to add finite set N to R_n .

Each $p \in N$ is chosen from a positive-density set of primes.

So p can be arbitrarily large!

If $\pi_R(x) \leqslant h(x) (\forall x)$, can force this for $\pi_{R \cup N}(x)$.

 $\pi_{\mathsf{ram}(\bar{\rho})}(x) \leqslant h(x)$ may not hold—scale h to make this true!

Fact: constant in $\pi_{\mathsf{ram}(\rho)}(x) \ll h(x)$ only depends on $\bar{\rho}$.

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Fix a large finite set U_1 of primes.

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Fix a large finite set U_1 of primes.

For $p \in U_1$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_1(\operatorname{fr}_p) \pmod{l}$.

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Fix a large finite set U_1 of primes.

For $p \in U_1$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_1(\operatorname{fr}_p) \pmod{l}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{l}{2\sqrt{p}}$.

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Fix a large finite set U_1 of primes.

For $p \in U_1$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_1(\operatorname{fr}_p) \pmod{l}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{l}{2\sqrt{p}}$.

For $N \leq \max U_1$, $D_N(\{\theta_p\}, \mu) = \Theta(\pi(N)^{-\alpha})$.

Lift from \mathbf{Z}/I to \mathbf{Z}/I^2 .

Fix a large finite set U_1 of primes.

For $p \in U_1$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_1(\operatorname{fr}_p) \pmod{l}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{1}{2\sqrt{p}}$.

For $N \leq \max U_1$, $D_N(\{\theta_p\}, \mu) = \Theta(\pi(N)^{-\alpha})$.

Make U_1 so large that for $p > \max U_1$, $l^2 < \log p$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

```
Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1}.
```

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

For $p \in U_{n+1} \setminus U_n$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_n(\operatorname{fr}_p) \pmod{I^n}$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

For $p \in U_{n+1} \setminus U_n$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_n(\operatorname{fr}_p)$ (mod I^n).

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{I^n}{2\sqrt{p}}$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

For $p \in U_{n+1} \setminus U_n$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_n(\operatorname{fr}_p) \pmod{I^n}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{I^n}{2\sqrt{p}}$. $(I^n \ll \log p)$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

For $p \in U_{n+1} \setminus U_n$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leqslant 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_n(\operatorname{fr}_p) \pmod{I^n}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{I^n}{2\sqrt{p}}$. $(I^n \ll \log p)$.

For $N \leq \max U_{n+1}$, $D_N(\{\theta_p\}, \mu) = \Theta(\pi(N)^{-\alpha})$.

Lift from \mathbf{Z}/I^n to \mathbf{Z}/I^{n+1} .

Have already chosen a_p for $p \in U_n$. (1–5 hold)

Fix a really huge $U_{n+1} \supset U_n$.

For $p \in U_{n+1} \setminus U_n$, can choose $a_p \in \mathbf{Z}$ subject only to $|a_p| \leq 2\sqrt{p}$ and $a_p \equiv \operatorname{tr} \rho_n(\operatorname{fr}_p) \pmod{I^n}$.

We can ensure $\left|\frac{a_p}{2\sqrt{p}} - x_p\right| \leqslant \frac{I^n}{2\sqrt{p}}$. $(I^n \ll \log p)$.

For $N \leq \max U_{n+1}$, $D_N(\{\theta_p\}, \mu) = \Theta(\pi(N)^{-\alpha})$.

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

Enumerate the primes $p_1 = 2, q_1 = 3, p_2 = 5, q_2 = 7, ...$

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

Enumerate the primes $p_1 = 2, q_1 = 3, p_2 = 5, q_2 = 7, ...$

If
$$heta_{q_i} pprox \pi - heta_{p_i}$$
, then $U_k(heta_{q_i}) pprox - U_k(heta_{p_i})$

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

Enumerate the primes $p_1 = 2, q_1 = 3, p_2 = 5, q_2 = 7, ...$

If
$$\theta_{q_i} \approx \pi - \theta_{p_i}$$
, then $U_k(\theta_{q_i}) \approx -U_k(\theta_{p_i})$ (within $p_i^{-1/2}$).

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

Enumerate the primes $p_1 = 2, q_1 = 3, p_2 = 5, q_2 = 7,...$

If
$$\theta_{q_i} \approx \pi - \theta_{p_i}$$
, then $U_k(\theta_{q_i}) \approx -U_k(\theta_{p_i})$ (within $p_i^{-1/2}$).

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|=\left|\sum_{p_i,q_i\leqslant N}\left(U_k(\theta_{p_i})+U_k(\theta_{q_i})\right)\right|\ll\sum_{n\leqslant N}n^{-1/2}$$

How can we make $L(\operatorname{sym}^k \rho, s)$, k odd, satisfy the Riemann hypothesis?

$$\left|\sum_{p\leqslant N}U_k(\theta_p)\right|\ll N^{\frac{1}{2}+\epsilon}$$
 implies RH for $L(\operatorname{sym}^k
ho,s)$.

When k is odd, $U_k(\pi - \theta) = -U_k(\theta)$.

Enumerate the primes $p_1 = 2, q_1 = 3, p_2 = 5, q_2 = 7, ...$

If
$$\theta_{q_i} \approx \pi - \theta_{p_i}$$
, then $U_k(\theta_{q_i}) \approx -U_k(\theta_{p_i})$ (within $p_i^{-1/2}$).

$$\left| \sum_{p \leqslant N} U_k(\theta_p) \right| = \left| \sum_{p_i, q_i \leqslant N} \left(U_k(\theta_{p_i}) + U_k(\theta_{q_i}) \right) \right| \ll \sum_{n \leqslant N} n^{-1/2}$$

 $\ll N^{\frac{1}{2}}$.

Consequences

If $f \in C([0,\pi])$, $f \circ \cos^{-1}: [-1,1] \to \mathbf{C}$ is Lipschitz, and $f(\pi - \theta) = -f(\theta)$, then $L_f(\rho,s)$ has a nonvanishing analytic continuation to $\Re > \frac{1}{2}$ (Riemann hypothesis).

Consequences

If $f \in C([0,\pi])$, $f \circ \cos^{-1}: [-1,1] \to \mathbf{C}$ is Lipschitz, and $f(\pi - \theta) = -f(\theta)$, then $L_f(\rho,s)$ has a nonvanishing analytic continuation to $\Re > \frac{1}{2}$ (Riemann hypothesis).

For μ any "bump measure," there exits ρ with $\{\theta_p\}$ μ -equidistributed.

Consequences

If $f \in C([0,\pi])$, $f \circ \cos^{-1}: [-1,1] \to \mathbf{C}$ is Lipschitz, and $f(\pi - \theta) = -f(\theta)$, then $L_f(\rho,s)$ has a nonvanishing analytic continuation to $\Re > \frac{1}{2}$ (Riemann hypothesis).

For μ any "bump measure," there exits ρ with $\{\theta_{\it p}\}$ $\mu\text{-equidistributed}.$

Can get equidistribution with respect to $\boldsymbol{\mu}$ with non-continuous probability distribution functions.

Questions?