Convex Optimization for Blind Source Separation on Statistical Manifolds

Simon Luo¹², Lamiae Azizi¹² and Mahito Sugiyama³⁴

¹ School of Mathematics and Statistics, The University of Sydney ² Data Analytics for Resources and Environments (DARE), Australian Research Council

³ National Institute of Informatics

⁴ JST, PRESTO

Thirty-fourth Annual Conference on Neural Information Processing Systems (NeurIPS 2020) Workshop on Differential Geometry meets Deep Learning

- Formulated Blind Source Separation as a Convex Optimization
- Uses graph structure to represent interactions between source signals
- Graph Structure (poset) allows for more complex interactions between source signals (e.g., higher-order interaction effects between source signals)
- Recovers the sign of the signal
- Minimizes KL-Divergence from a set of received signals to our poset structure

Cocktail Party Problem

Independent Component Analysis (ICA)

$$X = AZ$$

- X Received "mixed" signal
- A Mixing matrix (constrained to be an orthogonal matrix)
- **Z** Source signal or Reconstructed signal

ICA attempts to learn W and Z, where W is constrained to be an orthonormal matrix

$$Z = A^{-1}X = WX$$

Such that $\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$

Log-Linear Model on a Partially Ordered Set (poset)

The log-linear model is defined over a partial order set (poset) (S, \leq)

Dual coordinate system (θ, η) of a statistical manifold

- • η Expectation parameter
- • θ Natural parameter in the exponential family

$$\eta_{\omega} = \sum_{S \in \Omega} \mathbf{1}_{S \geqslant \omega} p(S), \qquad \log p(\omega) = \sum_{S \in \Omega} \mathbf{1}_{S \leqslant \omega} \theta_S.$$

Solving a convex optimization by minimizing KL divergence with gradient,

$$\frac{\partial}{\partial \theta_{s}} D_{KL}(\widehat{P} \parallel P) = \eta - \widehat{\eta} = \Delta \eta$$

Converged once $\frac{\partial}{\partial \theta_c} D_{KL}(\hat{P} \parallel P) = 0$, that means $\eta = \widehat{\eta}$

Information Geometric Blind Source Separation

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$

Updating the Received Layer

$$\log p(x) = \sum_{z \in \mathcal{Z}} \mathbf{1}_{z \le x} \theta_z + \sum_{a \in \mathcal{A}} \mathbf{1}_{a \le x} \theta_a + \theta_{\perp}, \qquad \eta_x = \sum_{x' \in \mathcal{X}} \mathbf{1}_{x \le x'} p(x') = p(x)$$

Updating the Source Layer

$$\log p(z) = \theta_z + \sum_{a \in \mathcal{A}} \mathbf{1}_{a \leqslant z} \theta_a + \theta_{\perp}, \qquad \eta_z = \sum_{x' \in \mathcal{X}} \mathbf{1}_{z \leqslant x} p(x) + p(z)$$

$$\frac{\partial}{\partial \theta_Z} D_{KL}(\hat{p} || p) = \sum_{x \in \mathcal{X}} \mathbf{1}_{z \leq x} (p(x) - \hat{p}(x)) + p(z)$$

Updating the Mixing Layer

$$\log p(a) = \theta_a + \theta_{\perp}, \qquad \eta_a = \sum_{x' \in \mathcal{X}} \mathbf{1}_{a \leq x'} p(x) + \sum_{z \in \mathcal{Z}} \mathbf{1}_{a \leq z} p(z) + p(a')$$

$$\frac{\partial}{\partial \theta_a} D_{KL}(\hat{p} || p) = \sum_{x \in \mathcal{X}} \mathbf{1}_{a \leq x} (p(x) - \hat{p}(x)) + \sum_{z \in \mathcal{Z}} \mathbf{1}_{a \leq z} p(z) + p(a)$$

Including Higher-Order Feature Interactions

$$x_{lm} = \sum_{n} a_{ln} z_{nm} + \sum_{n_1} \sum_{n_2 > n_1} a_{\ln_1 n_2} z_{n_1 m} z_{n_2 m} + \sum_{n_1} \sum_{n_2 > n_1} \sum_{n_3 > n_2} a_{\ln_1 n_2 n_3} z_{n_1 m} z_{n_2 m} z_{n_3 m} + \dots + \sum_{n_1} \sum_{n_k > n_{k-1}} a_{\ln_1 \dots n_k} z_{n_1 m} \dots z_{n_k m}$$

NEURAL INFORMATION

PROCESSING SYSTEMS

Results

Experiment with Third Order Mixing

Root Mean Squared Error Between Reconstructed Signal and Source Signal

Ехр	Order	IGBSS	FastICA	DictLearn	NMF
USC-SPIP Dataset 1	1	0.252 ± 0.000	0.300 ± 0.089	0.394 ± 0.041	0.622 ± 0.000
	2	0.260 ± 0.000	0.285 ± 0.096	0.441 ± 0.080	0.662 ± 0.000
	3	0.252 ± 0.000	0.260 ± 0.111	0.362 ± 0.030	0.612 ± 0.000
USC-SPIP Dataset 2	1	0.133 ± 0.000	0.284 ± 0.064	0.474 ± 0.067	0.591 ± 0.000
	2	0.256 ± 0.000	0.263 ± 0.066	0.576 ± 0.008	0.684 ± 0.000
	3	0.282 ± 0.000	0.239 ± 0.056	0.593 ± 0.007	0.665 ± 0.000
USC-SPIP Dataset 3	1	0.155 ± 0.000	0.699 ± 0.047	0.478 ± 0.121	0.628 ± 0.000
	2	0.200 ± 0.000	0.280 ± 0.049	0.515 ± 0.007	0.709 ± 0.000
	3	0.203 ± 0.000	0.239 ± 0.056	0.536 ± 0.006	0.682 ± 0.000

References

- Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. **Tensor** balancing on statistical manifold, ICML 2017.
- Simon Luo and Mahito Sugiyama, Bias-variance trade-off in hierarchical probabilistic models using higher-order feature interactions, AAAI 2019.
- http://sipi.usc.edu/database/

