LA MOLINA NATIONAL AGRARIAN UNIVERSITY

FACULTY OF ECONOMICS AND PLANNING DEPARTMENT OF STATISTICS AND INFORMATICS

version 1.1-8

PRACTICAL MANUAL

Statistical Engineer Felipe de Mendiburu Master in Systems Engineering

February - 2014

INDEX

			Page
PF	REFAC	CE	1
1.	INST	1	
	1.1	INSTALLATION	1
	1.2	USE IN R	2
2.	DES	CRIPTIVE STATISTICS	3
	2.1	HISTOGRAM	3
	2.2	HANDLING SCALES	5
	2.3	FREQUENCY TABLES AND STATISTICS	5
	2.4	REPRODUCING HISTOGRAMS AND USE OF hist()	6
	2.5	HISTOGRAM BASED ON GROUPED DATA	7
	2.6	JOINING CLASSES	7
3.	EXP	ERIMENT DESIGNS	8
	3.1	COMPLETELY RANDOMIZED DESIGNS	9
	3.2	RANDOMIZED COMPLETE BLOCK DESIGN	9
	3.3	LATIN SQUARE DESIGNS	10
	3.4	GRAECO-LATIN DESIGNS	11
	3.5	BALANCED INCOMPLETE BLOCK DESIGNS	11
	3.6	CYCLIC DESIGNS	12
	3.7	LATTICE DESIGNS	14
	3.8	ALPHA DESIGNS	16
	3.9	AUGMENTED BLOCK DESIGNS	17
	3.10	SPLIT-PLOT DESIGNS	19
	3.11	STRIP-PLOT DESIGNS	20
	3.12	FACTORIAL	22

	4.	MUL	TIPLE COMPARISONS	23
		4.1	THE LEAST SIGNIFICANT DIFFERENCE (LSD)	23
		4.2	BONFERRONI	25
		4.3	DUNCAN'S NEW MULTIPLE-RANGE TEST	26
		4.4	STUDENT-NEWMAN-KEULS	27
		4.5	TUKEY'S W PROCEDURE (HSD)	28
		4.6	WALLER-DUNCAN'S BAYESIAN K-RATIO t-TEST	29
		4.7	SCHEFFE'S TEST	30
		4.8	MULTIPLE COMPARISON IN FACTORIAL TREATMENTS	31
		4.9	GRAPHICS OF THE MULTIPLE COMPARISON	33
		4.10	ANALYSIS OF BALANCED INCOMPLETE BLOCKS	34
		4.11	PARTIALLY BALANCED INCOMPLETE BLOCKS	37
		4.12	AUGMENTED BLOCKS	43
		4.13	NON-PARAMETRIC COMPARISONS	46
		4.14	KRUSKAL-WALLIS	47
		4.15	FRIEDMAN	48
		4.16	WAERDEN	48
		4.17	DURBIN	50
	5.	STA	BILITY ANALYSIS	51
		5.1	PARAMETRIC STABILITY	51
		5.2	NON-PARAMETRIC STABILITY	53
		5.3	AMMI	54
	6.	SPE	CIAL FUNCTIONS	56
		6.1	CONSENSUS OF DENDROGRAM	56
		6.2	MONTECARLO	58
		6.3	RE-SAMPLING IN LINEAR MODEL	59
		6.4	SIMULATION IN LINEAR MODEL	60
		6.5	PATH ANALYSIS	61
		6.6	LINE X TESTER	61
		6.7	SOIL UNIFORMITY	63
		6.8	CONFIDENCE LIMITS IN BIODIVERSITY INDICES	64
		6.9	CORRELATION	65
		6.10	OTHER FUNCTIONS	66
		DEE	EDENCES	72

PREFACE

R is a functional programming system exclusive to manage data in statistics and related sciences, such as mathematics, in environments like Windows, Linux and MAC. 'Agricolae' is a package of functions for R applied to agricultural research.

The package 'agricolae' offers a broad functionality in the design of experiments, especially for experiments in agriculture and improvements of plants, which can also be used for other purposes. It contains the following designs: lattice, alpha, cyclic, balanced incomplete block designs, complete randomized blocks, Latin, Graeco-Latin, augmented block designs, divided parcels, divided blocks. It also has several procedures of experimental data analysis, such as the comparisons of treatments of Waller-Duncan, Bonferroni, Duncan, Student-Newman-Keuls, Scheffe, or the classic LSD and Tukey; and non-parametric comparisons, such as Kruskal-Wallis, Friedman, Durbin and Waerden, stability analysis, and other procedures applied in genetics, as well as procedures in biodiversity and descriptive statistics.

For more details on the use of 'agricolae', see the reference manual and the aid system in HTML, which can be found in the menu of R.

1 INSTALLATION OF AGRICOLAE AND USE IN R

1.1 INSTALLATION

The main program of R should be already installed in the platform of your computer (Windows, Linux or MAC). If it is not installed yet, you can download it from the R project (www.r-project.org) of a repository CRAN (R Development Core Team, 2013). As it is a free program, no identification is required. The packages can be incorporated through an installation process, directly from the platform of R.

'Agricolae' is a package for R, and as such its installation is just like any other package of R.

For Windows, the R program (version 3.0.0 or higher) is required.

If the R program is already installed in Windows or in another platform, the installation of 'agricolae' can be done directly from the console of R through Internet, that is

install.packages("agricolae)

A repository should be selected and the system is installed automatically.

If there is no Internet connection, it is necessary to copy the file agricolae_x.x-x. zip for Windows from the page of the R project.

The file agricolae_x.x-x. zip (De Mendiburu, 2014) can be downloaded from the R repository in the following addresses: www.r-project.org or http://cran.at.r-project.org/web/packages/agricolae/index.html

The file can be directly incorporated into R installing from the console with the following instruction set if the file is located in the address E: install.packages("E:/agricolae x.x-x.zip)

It can also be installed from the R menu:

Packages, Install package(s) from local zip files.... Selecting the file zip does not require any unpacking.

For a complete functionality, 'agricolae' requires other packages.

MASS: for the generalized inverse used in the function PBIB.test()

nlme: for the methods REML and LM in PBIB.test

klaR: for the function triplot() used in the function AMMI()

akima: for the use of the function interpp() used in grid3p() for interpolation

Cluster: for the use of the function consensus()

1.2 USE IN R

Since 'agricolae' is a package of functions, these are operational when they are called directly from the console of R and are integrated to all the base functions of R.

The following orders are frequent:

Load the package to the memory: library(agricolae)

Download: detach(package:agricolae)

Once the package is loaded, you can:

List the database: data(package="agricolae") Load the sweet potato data: data(sweetpotato)

List data: head(sweetpotato)
See its structure: str(sweetpotato)
Edit its content: fix(sweetpotato)

In order to continue with the command line, do not forget to close the open windows with any R order.

For help: help(sweetpotato); ? sweetpotato To search any functions: apropos("design")

[1] "design.ab"	"design.alpha"	"design.bib"	"design.crd"
[5] "design.cyclic"	"design.dau"	"design.graeco"	"design.lattice"
[9] "desian.lsd"	"design.rcbd"	"desian.split"	"design.strip"

For the use of symbols that do not appear in the keyboard in Spanish, such as: \sim , [,], &, $^{\wedge}$, |. <, >, {, }, $^{\otimes}$ or others, use the table 6.10.

2 DESCRIPTIVE STATISTICS

The package 'agricolae' provides some complementary functions to the R program, specifically for the management of the histogram.

2.1 HISTOGRAM

The histogram is constructed with the function graph.freq() and is associated to other functions: polygon.freq, table.freq, stat.freq, intervals.freq, sturges.freq, join.freq, ojiva.freq, and normal.freq.

Example 1.1 Data generated in R. (students' weight). Figure 2.1

```
c(68, 53, 69.5, 55, 71, 63, 76.5, 65.5, 69, 75, 76, 57, 70.5, 71.5, 56, 81.5, 69, 59, 67.5, 61, 68, 59.5, 56.5, 73, 61, 72.5, 71.5, 59.5, 74.5, 63) -> weight
```

Load the package 'agricolae':

```
library(agricolae)
par(mfrow=c(2,2))
h1<- graph.freq(weight,col="yellow",frequency=1, main="Absolute
frequency \nh1")
h2<- graph.freq (weight, frequency =2, axes= FALSE, main="Polygon of
frequency \nh2")
polygon.freq(h2, col="blue", lwd=2, frequency =2)
TIC<- h2$breaks[2]- h2$breaks[1]
axis(1,c(h2$mids[1]-TIC, h2$mids, h2$mids[6]+TIC),cex=0.6)
axis(2, cex=0.6,las=1)
h3<- graph.freq (weight, col="brown", frequency =3,
main="Density\nh3")
h4<- graph.freq(weight, col="blue", frequency =3, main="Density
normal\nh4", density=4)
normal.freq(h4, col="red", lty=4,lwd=2, frequency=3)</pre>
```


Figure 2.1 Histograms, polygon and density

```
# Comparison graf.freq() with hist(),
# output en Figura 2.2

set.seed(seed=71)
WEIGHT <-rnorm(30,66.45,7.42)
par(mfrow=c(2,1),mar=c(3,3,2,0),cex=0.7)
H1<-graph.freq(WEIGHT,frequency=3,main="R-agricolae\ngraph.freq()")
lines(density(WEIGHT),col="blue")
round(summary(H1),2)
H2<-hist(WEIGHT,freq=FALSE, main="R-base\nhist()")
lines(density(WEIGHT),col="brown")
round(table.freq(H2),2)</pre>
```


Figure 2.2 Histogram and density

```
> summary(WEIGHT)
   Min. 1st Qu.
                  Median
                             Mean 3rd Qu.
                                               Max.
           60.65
                   64.78
                            64.69
                                     69.25
                                              78.87
  51.74
> round(summary(H1),2)
  Lower Upper Main freq relative CF
                                         RCF
         55.7 53.35
   51.0
                         4
                               0.13
                                      4 0.13
         60.4 58.05
   55.7
                         4
                               0.13
                                      8 0.27
   60.4
         65.1 62.75
                         8
                               0.27 16 0.53
   65.1
         69.8 67.45
                         8
                               0.27 24 0.80
   69.8
         74.5 72.15
                                0.13 28 0.93
                         4
   74.5
         79.2 76.85
                         2
                               0.07 30 1.00
> round(table.freq(H2),2)
  Lower Upper Main freq relative CF
     50
            55 52.5
                                     4 0.13
                        4
                              0.13
     55
                        3
            60 57.5
                              0.10 7 0.23
     60
            65 62.5
                        9
                              0.30 16 0.53
                        8
                              0.27 24 0.80
     65
            70 67.5
     70
            75 72.5
                        4
                              0.13 28 0.93
     75
            80 77.5
                        2
                              0.07 30 1.00
```

2.2 HANDLING SCALES

It refers to the scale changes in the axes. Figure 2.2

```
par(mfrow=c(2,2))
h5<- graph.freq(weight, frequency =1, main=" Absolute
frequency\nh5")
h6<- graph.freq(weight, nclass=5, main=" frecuency with 5 classes
\nh6")
normal.freq(h6,col="red")
h7<- graph.freq(weight, density=6, col="blue", frequency =3, main="
density \nh7")
lines(density(weight),col="brown",lwd=2)
h8<- graph.freq(weight, border=0, frequency =3, main=" polygon and
density \nh8")
polygon.freq(h8,col="blue", frequency =3)
lines(density(weight),col="brown",lwd=2)</pre>
```


Figure 2.3. Scale change of the axes of coordinates

2.3 FREQUENCY TABLES AND STATISTICS

Rounded off to two decimals:							stat.f	req(h6)	
								nce	
round(table.freg(h6), 2)							[1] 50.42133		
		-					\$mean		
Lower	Upper	Main	freq	relative	CF	RCF	[1] 66	.72667	
	58.8		_				\$media	ın	
58.8	64.6	61.7	7	0.23	12	0.40		.08571	
64.6	70.4	67.5	7	0.23	19	0.63	\$mode		
70.4	76.2	73.3	9	0.30	28	0.93	[-	-]	mode
76.2	82.0	79.1	2	0.07	30	1.00	70.4	76.2	71.68889

2.4 REPRODUCING HISTOGRAMS AND USE OF hist()

The class of graph.freq() is graph.freq. Figure 2.3

Reproducing the histogram h6 (5 classes)

```
round(summary(h6),2)
```

```
Lower Upper Main freq relative CF RCF 53.0 58.8 55.9 5 0.17 5 0.17 58.8 64.6 61.7 7 0.23 12 0.40 64.6 70.4 67.5 7 0.23 19 0.63 70.4 76.2 73.3 9 0.30 28 0.93 76.2 82.0 79.1 2 0.07 30 1.00
```

The class types of the functions hist() and graph.freq() are 'histogram' and 'graph.freq', respectively. However, it is possible to establish compatibility between both functions.

```
par(mfrow=c(1,2))
h9<-ojiva.freq(h5, type="b", main="Ojiva de h5\nh9", col="red")
h10<-plot(h6, main=" Five classes\nh10",xlab="weight")
normal.freq(h6,col="red")
#hh <- hist(weight,nclass=5) # 7 classes
#hh <- graph.freq(weight,nclass=5,density=8) # 5 classes
#h11<-graph.freq(hh, frequency=2,main="relative\nh11",
#xlab="weight", col=colors()[467])</pre>
```


Figure 2.4. Ojiva and normal.freq()

In order to show the relative frequencies, you can use graph.freq() with the object hh created by hist(), without modifying the classes.

```
See the summaries: summary (hh), summary (h11)
```

The functions of 'agricolae' for the management of histograms function correctly on the objects created by the function hist() of R.

82.0

76.2

2.5 HISTOGRAM BASED ON GROUPED DATA

If there are grouped data, you can graphic and obtain the histogram summaries with the function graph.freq(), as, for example, in the following table:

```
<u>10-20</u> <u>20-30</u> <u>30-40</u> <u>40-50</u>
In R we have:
classes \leftarrow c(0, 10, 20, 30, 40, 50)
frec <- c(3, 8, 15, 18, 6)
h12 <- graph.freq(classes,counts=frec, xlab="Classes",</pre>
main="Classes")
summary (h12)
  Lower Upper Main freq relative CF RCF
                5 3
                               0.06 3 0.06
            10
     10
            20
                  15
                        8
                                0.16 11 0.22
     20
            30
                  25
                                0.30 26 0.52
                       15
     30
            40
                  35
                       18
                                0.36 44 0.88
     40
            50
                  45
                         6
                                0.12 50 1.00
```

All the functions of 'agricolae' can be applied, including plot().

2.6 JOINING CLASSES

Knowing the students' weight, the original intervals can be changed, joining, for example:

interv	vals.fr	eq(h12)	h13<- join.freq(h12,1:2)	h13<- join.freq(h12,1:2)				
	lower u	pper	intervals.freq(h13)	intervals.freq(h13)				
[1,]	0	10	lower upper					
[2,]	10	20	[1,] 0 20					
[3,]	20	30	[2,] 20 30					
[4,]	30	40	[3,] 30 40					
[5,]	40	50	[4,] 40 50					

```
par(mfrow=c(1,2))
plot(h12, xlab="Original Class", main="target")
plot(h13, xlab="Changes in class", main="join.freq")
```


Figure 2.5 Classes new for the histogram

3 EXPERIMENT DESIGNS

The package 'agricolae' presents special functions for the creation of the field book for experimental designs. Due to the random generation, this package is quite used in agricultural research.

For this generation, certain parameters are required, as for example the name of each treatment, the number of repetitions, and others, according to the design (Cochran, 1992; Kuehl, 2000; Montgomery, 2002; LeClerg, 1962). There are other parameters of random generation, as the seed to reproduce the same random generation or the generation method (See the reference manual of agriculture http://cran.at.r-project.org/web/packages/agricolae/agricolae.pdf).

Important parameters in the generation of design:

Series: A constant that is used to set numerical tag blocks, eg number = 2, the labels will be: 101, 102, for the first row or block, 201, 202, for the following, in the case of completely randomized design, the numbering is sequencial.

design: Some features of the design requested agricolae be applied specifically to design.ab(factorial) or design.split (split plot) and their possible values are: "rcbd", "crd " and "lsd".

seed: The seed for the random generation and its value is any real value, if the value is zero, it has no reproducible generation, in this case copy of value of the outdesign\$parameters.

Kinds: the random generation method, by default "Super-Duper".

first: For some designs is not required random the first repetition, especially in the block design, if you want to switch to random, change to TRUE.

Output design:

parameters: the input to generation design, include the seed to generation random, if seed=0, the program generate one value and it is possible reproduce the design.

book: field book

statistics: the information statistics the design for example efficiency index, number of treatments..

sketch: distribution of treatments in the field.

The enumeration of the plots:

zigzag is a function that allows you to place the numbering of the plots in the direction of serpentine:

Before: After:

1	2	3	4	1	2	3	4
5	6	7	8	8	7	6	5
9	10	11	12	9	10	11	12
13	14	15	16	16	15	14	13

The zigzag(outdesign) function has one parameter:

<u>outdesign</u>: is output generated by one design: blocks, Latin square, graeco, split plot, strip plot, into blocks factorial, balanced incomplete block, cyclic lattice, alpha and augmented blocks.

fieldbook: output zigzag, contain field book.

3.1 COMPLETELY RANDOMIZED DESIGNS

They only require the names of the treatments and the number of their repetitions and its parameters are:

```
> args(design.crd)
function (trt, r, serie = 2, seed = 0, kinds = "Super-Duper")
trt <- c("A", "B", "C")
repeticion \leftarrow c(4, 3, 4)
outdesign <- design.crd(trt,r=repeticion,seed=777,serie=0)</pre>
book1 <- outdesign$book
  plots r trt
     1 1
1
2
      2 1
            Α
3
      3 2
            Α
4
      4 1
            С
5
      5 2
            С
      6 3
6
            Α
      7 2
7
            В
      8 3
8
            С
      9 3
9
            В
10
     10 4
     11 4
11
```

EXCel: write.csv(plan1, "plan1.csv", row.names=FALSE)

3.2 RANDOMIZED COMPLETE BLOCK DESIGN

They require the names of the treatments and the number of blocks and its parameters are:

```
> args(design.rcbd)
function (trt, r, serie = 2, seed = 0, kinds = "Super-Duper",
    first = FALSE)

trt <- c("A", "B", "C")
repeticion <- 4
outdesign <- design.rcbd(trt,r=repeticion, seed=543, serie=2)
book2 <- outdesign$book
t(matrix(book2[,3],c(3,4)))
       [,1] [,2] [,3]
[1,] "A" "B" "C"
[2,] "B" "A" "C"
[3,] "B" "C" "A"
[4,] "C" "B" "A"</pre>
```

The plan can be sent to excel as a field book.

La numeración de las parcelas:

```
> t(matrix(book2[,1],c(3,4)))
     [,1] [,2] [,3]
[1,] 101 102
                103
[2,] 201 202
                203
[3,] 301 302
                303
[4,] 401 402 403
> book <- zigzag(outdesign)</pre>
> t(matrix(book[,1],c(3,4)))
      [,1] [,2] [,3]
[1,] 101 102 103
[2,] 203 202 201
[3,] 301 302 303
[4,] 403 402 401
> t(matrix(book[,3],c(3,4)))
     [,1] [,2] [,3]
           "B"
[1,] "A"
                "C"
[2,] "B"
           "A"
                "C"
[3,] "B"
           "C"
                "A"
[4,] "C" "B" "A"
```

3.3 LATIN SQUARE DESIGNS

They require the names of the treatments and its parameters are:

```
> args(design.lsd)
function (trt, serie = 2, seed = 0, kinds = "Super-Duper", first =
FALSE)
NULL
trt <- c("A", "B", "C", "D")
outdesign <- design.lsd(trt, seed=543, serie=2)</pre>
book3 <- outdesign$book</pre>
t(matrix(book3[,4],c(4,4)))
     [,1] [,2] [,3] [,4]
[1,] "A" "B" "C" "D"
[2,] "B"
          "C"
               "D"
                     "A"
[3,] "D"
          "A"
               "B"
                     "C"
[4,] "C"
          "D"
               "A"
                     "B"
```

Serpentine enumeration:

```
t(matrix(book,c(4,4)))

[,1] [,2] [,3] [,4]

[1,] 101 102 103 104

[2,] 204 203 202 201

[3,] 301 302 303 304

[4,] 404 403 402 401
```

book <- zigzag(outdesign)</pre>

3.4 GRAECO-LATIN DESIGNS

They require the names of the treatments of each factor of study and its parameters are:

Serpentine enumeration:

```
book <- zigzag(outdesign)
t(matrix(book[,1],c(4,4)))

       [,1] [,2] [,3] [,4]
[1,] 101 102 103 104
[2,] 204 203 202 201
[3,] 301 302 303 304
[4,] 404 403 402 401</pre>
```

3.5 BALANCED INCOMPLETE BLOCK DESIGNS

They require the names of the treatments and the size of the block and its parameters are:

```
> args(design.bib)
function (trt, k, serie = 2, seed = 0, kinds = "Super-Duper")

trt <- c("A", "B", "C", "D", "E" )
k <- 4
outdesign <- design.bib(trt,k, seed=543, serie=2)

Parameters BIB
==========
Lambda : 3
treatments : 5
Block size : 4
Blocks : 5
Replication: 4

Efficiency factor 0.9375

<<< Book >>>
```

book5 <- outdesign\$book outdesign\$statistics lambda treatmeans blockSize blocks r Efficiency values 3 5 4 5 4 0.9375 outdesign\$parameters \$design [1] "bib" [1] "A" "B" "C" "D" "E" \$k [1] 4 \$serie [1] 2 \$seed [1] 543 \$kinds

According to the produced information, they are five blocks of size 4, being the matrix:

[1] "Super-Duper"

It can be observed that the treatments have four repetitions. The parameter lambda has three repetitions, which means that a couple of treatments are together on three occasions. For example, B and E are found in the blocks I, III and V.

Serpentine enumeration:

```
book <- zigzag(outdesign)

t(matrix(book[,1],c(4,5)))
      [,1] [,2] [,3] [,4]
[1,] 101 102 103 104
[2,] 201 202 203 204
[3,] 301 302 303 304
[4,] 401 402 403 404
[5,] 501 502 503 504</pre>
```

3.6 CYCLIC DESIGNS

They require the names of the treatments, the size of the block and the number of repetitions. This design is used for 6 to 30 treatments. The repetitions are a multiple

of the size of the block; if they are six treatments and the size is 3, then the repetitions can be 6, 9, 12, etc. and its parameters are:

```
> args(design.cyclic)
function (trt, k, r, serie = 2, rowcol = FALSE, seed = 0, kinds =
"Super-Duper")
trt <- c("A", "B", "C", "D", "E", "F")
outdesign <- design.cyclic(trt,k=3, r=6, seed=543, serie=2)</pre>
cyclic design
Generator block basic:
1 2 4
1 3 2
Parameters
_____
treatments : 6
Block size : 3
Replication: 6
book6 <- outdesign$book
> outdesign$sketch[[1]]
   [,1] [,2] [,3]
[1,] "A"
         "E"
              "D"
[2,] "D"
         "F"
              "C"
[3,] "A"
         "D"
              "B"
[4,] "A"
         "C"
              "F"
[5,] "C" "B"
              "E"
[6,] "B" "E" "F"
> outdesign$sketch[[2]]
    [,1] [,2] [,3]
[1,] "B" "D" "C"
[2,] "C"
         "A" "B"
[3,] "F"
         "A" "B"
[4,] "C"
         "D"
              "E"
              "F"
[5,] "E"
         "A"
         "E"
              "D"
[6,] "F"
```

12 blocks of 4 treatments each have been generated.

Serpentine enumeration:

```
book <- zigzag(outdesign)
array(book$plots,c(3,6,2))->X
> t(X[,,1])
       [,1] [,2] [,3]
[1,] 101 102 103
[2,] 106 105 104
[3,] 107 108 109
[4,] 112 111 110
[5,] 113 114 115
[6,] 118 117 116
```

```
> t(X[,,2])

[,1] [,2] [,3]

[1,] 201 202 203

[2,] 206 205 204

[3,] 207 208 209

[4,] 212 211 210

[5,] 213 214 215

[6,] 218 217 216
```

3.7 LATTICE DESIGNS

They require a number of treatments of a perfect square; for example 9, 16, 25, 36, 49, etc. and its parameters are:

```
> args(design.lattice)
function (trt, r = 3, serie = 2, seed = 0, kinds = "Super-Duper")
```

They can generate a simple lattice (2 rep.) or a triple lattice (3 rep.)

generating a triple lattice design for 9 treatments 3x3

book7 <- outdesign\$book

> outdesign\$parameters

```
$design
[1] "lattice"
$type
[1] "triple"
$trt
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i"
$r
[1] 3
$serie
[1] 2
$seed
[1] 33
$kinds
[1] "Super-Duper"
```

> outdesign\$sketch

```
$rep1
[,1] [,2] [,3]
[1,] "F" "A" "B"
[2,] "I" "E" "G"
[3,] "D" "C" "H"
```

```
$rep2
     [,1] [,2] [,3]
[1,] "I" "D" "F"
[2,] "G"
          "H"
                "B"
[3,] "E"
          "C"
                "A"
$rep3
     [,1] [,2] [,3]
[1,] "I"
          "H"
                "A"
[2,] "E"
          "D"
                "B"
          "C"
               "F"
[3,] "G"
> book7
   plots r block trt
     101 1
            1
2
     102 1
                    d
                1
3
     103 1
               1
                    а
4
     104 1
                2
                   b
5
     105 1
                2
                   С
6
     106 1
                2
                    е
7
     107 1
                3
                   h
8
     108 1
                3
                   f
9
     109 1
                3
10
     201 2
                4
                    е
11
     202 2
                4
                   g
12
     203 2
                4
                    а
     204 2
                5
13
                    С
                   f
                5
14
     205 2
15
     206 2
                5
                    d
16
     207 2
                   b
17
     208 2
                6
                   h
18
     209 2
                   i
                7
19
     301 3
20
                7
     302 3
                   h
                7
21
     303 3
22
     304 3
                   С
23
     305 3
                    g
24
     306 3
                    i
25
     307 3
                    b
26
     308 3
                    f
27
     309 3
```

Serpentine enumeration:

```
book <- zigzag(outdesign)
> array(book$plots,c(3,3,3)) -> X
> t(X[,,1])
        [,1] [,2] [,3]
[1,] 101 102 103
[2,] 106 105 104
[3,] 107 108 109
> t(X[,,2])
        [,1] [,2] [,3]
[1,] 201 202 203
[2,] 206 205 204
[3,] 207 208 209
```

```
> t(X[,,3])
     [,1] [,2] [,3]
[1,] 301 302 303
[2,] 306 305 304
[3,] 307 308 309
```

3.8 ALPHA DESIGNS

These designs are generated by the alpha arrangements (Patterson & Williams, 1976). They are similar to the lattice designs, but the tables are rectangular, with s blocks x k treatments. The number of treatments should be equal to s*k and all the experimental units, r*s*k and its parameters are:

```
> args(design.alpha)
function (trt, k, r, serie = 2, seed = 0, kinds = "Super-Duper")
trt <- letters[1:15]</pre>
outdesign <- design.alpha(trt,k=3,r=2,seed=543)</pre>
alpha design (0,1) - Serie I
Parameters Alpha design
_____
treatmeans : 15
Block size : 3
Blocks
Replication: 2
Efficiency factor
(E) 0.6363636
<<< Book >>>
book8 <- outdesign$book
outdesign$statistics
     treatments blocks Efficiency
           15 5 0.6363636
outdesign$sketch
$rep1
    [,1] [,2] [,3]
[1,] "l" "m" "e"
         "c" "i"
[2,] "g"
[3,] "o" "k" "d"
[4,] "h" "f" "j"
[5,] "a" "n" "b"
$rep2
    [,1] [,2] [,3]
[1,] "o" "a" "m"
[2,] "1"
         "k"
              "g"
[3,] "d" "n" "h"
[4,] "j" "b" "c"
[5,] "f" "i" "e"
```

```
# codificacion de las parcelas
> A<-array(book8[,1], c(3,5,2))
> t(A[,,1])
     [,1] [,2] [,3]
[1,]
     101
          102
                103
[2,]
     104
           105
                106
[3,]
     107
           108
                109
     110 111
113 114
[4,]
                112
[5,]
               115
> t(A[,,2])
     [,1] [,2] [,3]
     201 202
[1,]
     204
          205
                206
[2,]
[3,]
     207
           208
                209
[4,]
      210
           211
                212
[5,] 213 214
                215
```

Serpentine enumeration:

```
book <- zigzag(outdesign)</pre>
A < -array(book[,1], c(3,5,2))
> t(A[,,1])
     [,1] [,2] [,3]
[1,]
     101
          102
     106 105
[2,]
                104
[3,]
     107
           108
     112 111
                110
[4,]
[5,]
     113 114
               115
> t(A[,,2])
    [,1] [,2] [,3]
[1,] 201 202
               203
[2,] 206 205
               204
[3,] 207 208 209
[4,] 212 211
               210
[5,] 213 214
               215
```

3.9 AUGMENTED BLOCK DESIGNS

These are designs for two types of treatments: the control treatments (common) and the increased treatments. The common treatments are applied in complete randomized blocks, and the increased treatments, at random. Each treatment should be applied in any block once only. It is understood that the common treatments are of a greater interest; the standard error of the difference is much smaller than when between two increased ones in different blocks. The function design.dau() achieves this purpose and its parameters are:

```
attach (book9)
by(trt, block,as.character)
block: 1
[1] "D" "C" "A" "u" "B" "t"
[1] "D" "z" "C" "A" "v" "B"
block: 3
[1] "C" "w" "B" "A" "D"
                    -----
block: 4
[1] "A" "C" "D" "B" "y"
-----
block: 5
[1] "C" "B" "A" "D" "x"
detach (book9)
Serpentine enumeration:
book <- zigzag(outdesign)</pre>
attach (book)
by(plots, block, as.character)
block: 1
[1] "101" "102" "103" "104" "105" "106"
block: 2
[1] "206" "205" "204" "203" "202" "201"
block: 3
[1] "301" "302" "303" "304" "305"
block: 4
[1] "405" "404" "403" "402" "401"
block: 5
[1] "501" "502" "503" "504" "505"
detach (book)
print(book)
> print(book)
  plots block trt
    101 1 D
102 1 C
103 1 A
104 1 u
3
. . .
27
    505
            5
```

For augmented randomized complete block designs, use the function design.crd().

3.10 SPLIT-PLOT DESIGNS

These designs have two factors, one is applied in plots and is defined as A in a randomized complete block design; and a second factor, which is applied in the subplots of each plot applied at random. The function design.split() permits to find the experimental plan for this design and its parameters are:

```
> args(design.split)
function (trt1, trt2, r = NULL, design = c("rcbd", "crd", "lsd"),
    serie = 2, seed = 0, kinds = "Super-Duper", first = FALSE)
trt1<-c("A","B","C","D")
trt2<-c("a","b","c")
outdesign <-design.split(trt1, trt2, r=3, serie=2, seed=543)</pre>
book10 <- outdesign$book
print(book10)
   plots splots block trt1 trt2
             1
                       A
     101
                  1
              2
2
     101
                    1
                         Α
3
              3
     101
                    1
                         Α
                              b
4
     102
              1
                    1
                         В
                              b
5
              2
     102
                        В
                    1
                              С
6
              3
     102
                    1
                         В
7
              1
     103
                    1
                         С
                              b
8
              2
     103
                    1
                         С
                              С
9
     103
              3
                    1
                         С
                              а
10
     104
              1
                    1
                         D
                              а
11
     104
              2
                    1
                         D
                              b
12
     104
              3
                    1
                         D
                              С
13
     201
              1
                    2
                         Α
                              b
14
     201
              2
                         Α
                              а
. . .
     304
              3
36
                         D
                              b
p<-book10$trt1[seq(1,36,3)]</pre>
q<-NULL
for(i in 1:12)
q \leftarrow c(q,paste(book10$trt2[3*(i-1)+1],book10$trt2[3*(i-1)+2],
book10$trt2[3*(i-1)+3]))
In plots:
print(t(matrix(p,c(4,3))))
    [,1] [,2] [,3] [,4]
[1,] "A" "B" "C"
                   "D"
[2,] "A"
                    "D"
         "C" "B"
[3,] "A" "C" "B" "D"
Ind sub plots (split plot)
print(t(matrix(q,c(4,3))))
     [,1]
           [,2] [,3]
                             [,4]
[1,] "cab" "b ca" "b ca" "a b c"
[2,] "b a c" "a b c" "a c b" "b c a"
[3,] "a b c" "a c b" "a c b" "c a b"
```

Serpentine enumeration:

book <- zigzag(outdesign)
print(book)</pre>

	plots	splots	block	trt1	trt2
1	101	1	1	A	С
2	101	2	1	A	a
3	101	3	1	A	b
4	102	1	1	В	b
5	102	2	1	В	С
12	104	3	1	D	С
13	204	3	2	A	b
14	204	2	2	A	a
15	204	1	2	A	С
16	203	3	2	С	a
17	203	2	2	С	b
18	203	1	2	С	С
34	304	1	3	D	С
35	304	2	3	D	a
36	304	3	3	D	b

3.11 STRIP-PLOT DESIGNS

These designs are used when there are two types of treatments (factors) and are applied separately in large plots, called bands, in a vertical and horizontal direction of the block, obtaining the divided blocks. Each block constitutes a repetition and its parameters are:

```
> args(design.strip)
function (trt1, trt2, r, serie = 2, seed = 0, kinds = "Super-Duper")
trt1<-c("A","B","C","D")
trt2<-c("a","b","c")
outdesign <-design.strip(trt1,trt2,r=3,serie=2,seed=543)</pre>
book11 <- outdesign$book</pre>
print(book11)
  plots block trt1 trt2
    101 1 A
                     а
2
    102
            1
                 Α
                      b
                   С
3
    103
           1
                Α
. . .
         2
13
    201
                D
                      а
           2
                D
14
    202
                     b
15
    203
            2
                D
                    С
           2
    204
                A a
16
17
           2
    205
               A b
. . .
36
    312
            3
              А
                      а
t3<-paste(book11$trt1, book11$trt2)
B1<-t(matrix(t3[1:12],c(4,3)))
B2<-t(matrix(t3[13:24],c(3,4)))
B3<-t(matrix(t3[25:36],c(3,4)))
```

```
[,1] [,2] [,3] [,4]
[1,] "A a" "A b" "A c" "D a"
[2,] "D b" "D c" "B a" "B b"
[3,] "B c" "C a" "C b" "C c"
> print(B2)
[,1] [,2] [,3] [1,] "D a" "D b" "D c"
[2,] "A a" "A b" "A c"
[3,] "B a" "B b" "B c"
[4,] "C a" "C b" "C c"
> print(B3)
     [,1] [,2] [,3]
[1,] "B b" "B c" "B a"
[2,] "D b" "D c" "D a"
[3,] "C b" "C c" "C a"
[4,] "A b" "A c" "A a"
Serpentine enumeration:
book <- zigzag(outdesign)</pre>
print(book)
   plots block trt1 trt2
     101
            1
                  Α
                        а
2
     102
             1
                  Α
                        b
3
     103
             1
                  Α
                        С
4
     106
             1
                  D
                        а
     105
             1
                  D
                        b
6
     104
                  D
                        С
7
     107
             1
                  В
                        а
8
     108
             1
                  В
                        b
36
     310
             3
                  Α
                        а
array(book\$plots,c(3,4,3)) \rightarrow X
> t(X[,,1])
     [,1] [,2] [,3]
[1,] 101 102 103
[2,] 106 105 104
[3,] 107 108 109
[4,] 112 111 110
> t(X[,,2])
    [,1] [,2] [,3]
[1,] 201 202 203
[2,] 206 205 204
[3,] 207 208 209
[4,] 212 211 210
> t(x[,,3])
     [,1] [,2] [,3]
[1,] 301 302 303
[2,] 306 305 304
[3,] 307 308 309
[4,] 312 311 310
```

> print(B1)

3.12 FACTORIAL

The full factorial of n factors applied to an experimental design (CRD, RCBD and LSD) is common and this pocedimiento in agricolae applies the factorial to one of these three designs and its parameters are:

To generate the factorial, you need to create a vector of levels of each factor, the method automatically generates up to 25 factors and "r" repetitions.

trt <- c (4,2,3) # three factors with 4,2 and 3 levels.

to crd and rcbd designs, it is necessary to value "r" as the number of repetitions, this can be a vector if unequal to equal or constant repetition (recommended).

```
library(agricolae)
trt<-c(3,2) # factorial 3x2
outdesign <-design.ab(trt, r=3, serie=2)</pre>
book12 <- outdesign$book
print(book12) # print of the field book
  plots block A B
         1 1 1
    101
2
    102
            1 1 2
    103
            1 2 1
    104
            1 2 2
5
    105
            1 3 1
           1 3 2
6
    106
           2 1 2
    201
           2 3 2
8
    202
    203
           2 1 1
9
           2 2 2
10
   204
```

Serpentine enumeration:

```
book <- zigzag(outdesign)</pre>
print(book)
   plots block A B
     101
           1 1 1
2
              1 1 2
     102
              1 2 1
3
     103
              1 2 2
4
     104
5
              1 3 1
     105
          1 3 2
6
     106
     206 2 1 2
8
     205
             2 1 1
2 3 1
2 2 1
     204
10
     203
11
     202
            2 3 2
3 2 2
12
     201
13
     301
              3 3 1
14
     302
```

```
15
    303
            3 1 2
             3 1 1
16
     304
17
     305
             3 3 2
18
     306
             3 2 1
> # factorial 2 x 2 x 2 with 5 replications in completely randomized
design.
> trt<-c(2,2,2)
> crd<-design.ab(trt, r=5, serie=2,design="crd")</pre>
> print(crd)
   plots r A B C
     101 1 2 1 2
     102 1 2 2 2
     103 2 2 2 2
     104 1 1 2 2
. . .
```

4 MULTIPLE COMPARISONS

For the analyses, the following functions of 'agricolae' are used: LSD.test(), HSD.test(), duncan.test(), scheffe.test, waller.test, SNK.test() (Steel, 1996) and durbin.test(), kruskal(), friedman() and waerden.test (Conover, 1999).

For every statistical analysis, the data should be organized in columns. For the demonstration, the 'agricolae' database will be used.

The 'sweetpotato' data correspond to a completely random experiment in field with plots of 50 sweet potato plants, subjected to the virus effect and to a control without virus (See the reference manual of the package).

```
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)

cv.model(model)
[1] 17.16660
attach(sweetpotato)
mean(yield)
[1] 27,625</pre>
```

Model parameters: Degrees of freedom and variance of the error: df<-df.residual(model)
MSerror<-deviance(model)/df

4.1 THE LEAST SIGNIFICANT DIFFERENCE (LSD)

It includes the multiple comparison through the method of the minimum significant difference (Least Significant Difference), (Steel, 1997).

```
# comparison <- LSD.test(yield,virus,df,MSerror)
LSD.test(model, "virus",console=TRUE)

LSD t Test for yield

Mean Square Error: 22.48917</pre>
```

```
UCL Min. Max.
      yield std.err r
                              LCL
cc 24.40000 2.084067 3 19.594134 29.20587 21.7 28.5
fc 12.86667 1.246774 3 9.991602 15.74173 10.6 14.9
ff 36.33333 4.233727 3 26.570341 46.09633 28.0 41.8
00 36.90000 2.482606 3 31.175100 42.62490 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Value of t: 2.306004
Least Significant Difference 8.928965
Means with the same letter are not significantly different.
Groups, Treatments and means
                 36.9
         00
         ff
                 36.33
b
                 24.4
         C.C.
                 12.87
         fc
In the function LSD.test(), the multiple comparison was carried out. In order to obtain
the probabilities of the comparisons, it should be indicated that groups are not
required; thus:
# comparison <- LSD.test(yield, virus,df, MSerror, group=F)</pre>
comparison <-LSD.test(model, "virus", group=F,console=TRUE)</pre>
LSD t Test for yield
Mean Square Error: 22.48917
virus, means and individual ( 95 %) CI
     yield std.err r
                                    UCL Min. Max.
                           LCL
cc 24.40000 2.084067 3 19.594134 29.20587 21.7 28.5
fc 12.86667 1.246774 3 9.991602 15.74173 10.6 14.9
ff 36.33333 4.233727 3 26.570341 46.09633 28.0 41.8
oo 36.90000 2.482606 3 31.175100 42.62490 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Value of t: 2.306004
Comparison between treatments means
        Difference
                                          LCL
                        pvalue sig
cc - fc 11.5333333 0.0176377595 *
                                    2.604368 20.462299
                                * -20.862299 -3.004368
cc - ff -11.9333333 0.0150730851
fc - ff -23.4666667 0.0003023690 *** -32.395632 -14.537701
fc - oo -24.0333333 0.0002574929 *** -32.962299 -15.104368
ff - oo -0.5666667 0.8872673216
                                   -9.495632
                                              8.362299
```

virus, means and individual (95 %) CI

The significance code "sig" is interpreted as:

```
***: p.valor < 0.001
** : 0.001 <p.valor < 0.01
* : 0.01 < p.valor < 0.05
. : 0.05 < p.valor < 0.10
> comparison
$statistics
            CV MSerror
   Mean
  27.625 17.1666 22.48917
$parameters
  Df ntr t.value
  8 4 2.306004
$means
      yield std.err r LCL
                                  UCL Min. Max.
cc 24.40000 2.084067 3 19.594134 29.20587 21.7 28.5
fc 12.86667 1.246774 3 9.991602 15.74173 10.6 14.9
ff 36.33333 4.233727 3 26.570341 46.09633 28.0 41.8
00 36.90000 2.482606 3 31.175100 42.62490 32.1 40.4
$comparison
        Difference
                         pvalue sig
                                           LCL
                                                     UCL
cc - fc 11.5333333 0.0176377595 *
                                    2.604368 20.462299
cc - ff -11.9333333 0.0150730851 * -20.862299 -3.004368
                                * -21.428965 -3.571035
cc - oo -12.5000000 0.0120884239
fc - ff -23.4666667 0.0003023690 *** -32.395632 -14.537701
fc - oo -24.0333333 0.0002574929 *** -32.962299 -15.104368
ff - oo -0.5666667 0.8872673216
                                    -9.495632 8.362299
$groups
NULL
```

4.2 BONFERRONI

With the function LSD.test() we can make adjustments to the probabilities found, as for example the adjustment by Bonferroni.

```
LSD.test(model, "virus", group=F, p.adj= "bon",console=TRUE)

LSD t Test for yield

P value adjustment method: bonferroni

alpha: 0.05; Df Error: 8

Critical Value of t: 3.478879
```

Comparison between treatments means

```
Difference pvalue sig LCL UCL cc - fc 11.5333333 0.105827 -1.937064 25.0037305 cc - ff -11.9333333 0.090439 . -25.403730 1.5370638 cc - oo -12.5000000 0.072531 . -25.970397 0.9703971 fc - ff -23.4666667 0.001814 ** -36.937064 -9.9962695 fc - oo -24.0333333 0.001545 ** -37.503730 -10.5629362 ff - oo -0.56666667 1.000000 -14.037064 12.9037305
```

Other comparison tests can be applied, such as "duncan", "Student-Newman-Keuls", "tukey", and "waller-duncan."

For "duncan", use the function duncan.test(); for "Student-Newman-Keuls", the function SNK.test(); for "tukey", the function HSD.test(); for "scheffe", the function scheffe.test(); and for "waller-duncan", the function waller.test(). The parameters are the same. "Waller" also requires the value of F-calculated of the ANOVA treatments. If the model is used as a parameter, this is no longer necessary.

4.3 DUNCAN'S NEW MULTIPLE-RANGE TEST

It corresponds to the Duncan's Test (Steel, 1997).

Mean Square Error: 22.48917

```
duncan.test(model, "virus",console=TRUE)
Duncan's new multiple range test
for yield
Mean Square Error: 22.48917
virus, means
     yield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
00 36.90000 2.482606 3 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Range
      2
               3
8.928965 9.304825 9.514910
Means with the same letter are not significantly different.
Groups, Treatments and means
             36.9
        00
        ff
                36.33
                24.4
b
        CC
        fс
               12.87
duncan.test(model, "virus", group=FALSE,console=TRUE)
Duncan's new multiple range test
for yield
```

```
alpha: 0.05; Df Error: 8
Critical Range
       2
                3
8.928965 9.304825 9.514910
Comparison between treatments means
                    pvalue sig
         Difference
                                        LCL
cc - fc 11.5333333 0.017638 * 2.604368 20.462299
                              * -20.862299 -3.004368
* -21.804825 -3.195175
cc - ff -11.9333333 0.015073
cc - oo -12.5000000 0.014544
fc - ff -23.4666667 0.000388 *** -32.771492 -14.161842
fc - oo -24.0333333 0.000387 *** -33.548244 -14.518423
ff - oo -0.5666667 0.887267
                                 -9.495632 8.362299
```

4.4 STUDENT-NEWMAN-KEULS

Student, Newman and Keuls helped to improve the Newman-Keuls test of 1939, which was known as the Keuls method (Steel, 1997).

```
SNK.test(model, "virus", alpha=0.05,console=TRUE)
Student Newman Keuls Test
for yield
Mean Square Error: 22.48917
virus, means
      yield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
00 36.90000 2.482606 3 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Range
 8.928965 11.064170 12.399670
Means with the same letter are not significantly different.
Groups, Treatments and means
                 36.9
         00
         ff
                 36.33
а
b
         CC
                 24.4
         fc
                12.87
SNK.test(model, "virus", group=FALSE,console=TRUE)
Student Newman Keuls Test
for yield
Mean Square Error: 22.48917
```

```
alpha: 0.05; Df Error: 8
Critical Range
       2
                 3
 8.928965 11.064170 12.399670
Comparison between treatments means
      Difference
                 pvalue sig
                                    LCL
cc-fc 11.5333333 0.017638 * 2.604368 20.462299
                          * -20.862299
cc-ff -11.9333333 0.015073
                                         -3.004368
                          * -23.564170 -1.435830
cc-oo -12.5000000 0.029089
fc-ff -23.4666667 0.000777 *** -34.530836 -12.402497
fc-oo -24.0333333 0.001162 ** -36.433003 -11.633664
ff-oo -0.5666667 0.887267
                              -9.495632
                                         8.362299
```

4.5 TUKEY'S W PROCEDURE (HSD)

This studentized range test, created by Tukey in 1953, is known as the Tukey's HSD (Honestly Significant Differences) Test (Steel, 1997).

```
comparison1 <- HSD.test(model, "virus",console=TRUE)</pre>
HSD Test for yield
Mean Square Error: 22.48917
virus, means
      yield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
00 36.90000 2.482606 3 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Value of Studentized Range: 4.52881
Honestly Significant Difference: 12.39967
Means with the same letter are not significantly different.
Groups, Treatments and means
             36.9
        00
        ff
                36.33
ab
                24.4
bc
         CC
        fc
                12.87
> comparison1
$statistics
             CV MSerror
   Mean
  27.625 17.1666 22.48917 12.39967
$parameters
  Df ntr StudentizedRange
                  4.52881
```

```
$means
yield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
oo 36.90000 2.482606 3 32.1 40.4
$comparison
NULL

$groups
trt means M
1 oo 36.90000 a
2 ff 36.33333 ab
3 cc 24.40000 bc
4 fc 12.86667 c
```

4.6 WALLER-DUNCAN'S BAYESIAN K-RATIO t-TEST

In 1975, Duncan continued the multiple comparison procedures, introducing the criterion of minimizing both experimental errors; for this, he used the Bayes' theorem, obtaining one new test called Waller-Duncan (Steel, 1997).

```
# variance analysis:
anova (model)
Analysis of Variance Table
Response: yield
          Df Sum Sq Mean Sq F value
                                         Pr(>F)
          3 1170.21 390.07 17.345 0.0007334 ***
virus
Residuals 8 179.91
                      22.49
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The value of calculated F is 17,345. For the comparetive treatment analysis, it is
required that 'sweetpotato' be active, thus:
attach (sweetpotato)
then:
waller.test(yield,virus,df,MSerror,Fc= 17.345, group=F,console=TRUE)
In another case with only invoking the model object:
comparison2 <- waller.test(model, "virus", group=FALSE,console=TRUE)</pre>
Waller-Duncan K-ratio t Test for yield
This test minimizes the Bayes risk under additive
loss and certain other assumptions.
K ratio
                         100.00000
Error Degrees of Freedom 8.00000
Error Mean Square
                          22.48917
                          17.34478
Critical Value of Waller 2.23600
```

```
virus, means
      yield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
00 36.90000 2.482606 3 32.1 40.4
Minimum Significant Difference 8.657906
Comparison between treatments means
        Difference significant
cc - fc 11.5333333
ff - cc 11.9333333
                          TRUE
oo - cc 12.5000000
                         TRUE
ff - fc 23.4666667
                         TRUE
oo - fc 24.0333333
                         TRUE
oo - ff 0.5666667
                        FALSE
```

It is indicated that the virus effect "ff" is not significant to the control "oo."

The found object "compare" has information to make other procedures.

4.7 SCHEFFE'S TEST

This method, created by Scheffe in 1959, is very general for all the possible contrasts and their confidence intervals. The confidence intervals for the averages are very broad, resulting in a very conservative test for the comparison between treatment averages (Steel, 1997).

```
alpha: 0.05; Df Error: 8
Critical Value of F: 4.066181

Minimum Significant Difference: 13.52368

Means with the same letter are not significantly different.

Groups, Treatments and means
a oo 36.9
a ff 36.33
ab cc 24.4
b fc 12.87
```

The minimum significant value is very high.

If you require the approximate probabilities of comparison, you can use the option Group=FALSE.

```
comparison3 <- scheffe.test(model,"virus", group=FALSE,</pre>
console=TRUE)
Study:
Scheffe Test for yield
Mean Square Error : 22.48917
virus, means
     vield std.err r Min. Max.
cc 24.40000 2.084067 3 21.7 28.5
fc 12.86667 1.246774 3 10.6 14.9
ff 36.33333 4.233727 3 28.0 41.8
00 36.90000 2.482606 3 32.1 40.4
alpha: 0.05; Df Error: 8
Critical Value of F: 4.066181
Comparison between treatments means
        Difference
                     pvalue sig
                                   LCL
cc - fc 11.5333333 0.097816 . -1.000348 24.0670149
cc - ff -11.9333333 0.085487
                              . -24.467015
                                           0.6003483
cc - oo -12.5000000 0.070607
                                           0.0336816
                              . -25.033682
fc - ff -23.4666667 0.002331 ** -36.000348 -10.9329851
fc - oo -24.0333333 0.001998 ** -36.567015 -11.4996517
                                -13.100348 11.9670149
ff - oo -0.5666667 0.999099
```

4.8 MULTIPLE COMPARISON IN FACTORIAL TREATMENTS

In a factorial combined effects of the treatments. Comparetive tests: LSD, HSD, Waller-Duncan, Duncan, Scheffé, SNK can be applied.

```
# model <-aov (y ~ A * B * C, data)
# compare <-LSD.test (model, c ("A", "B", "C"), console=TRUE)
```

The comparison is the combination of A:B:C.

Data RCBD design with a factorial clone x nitrogen. The response variable yield:

```
yield <-scan (text =
 "6 7 9 13 16 20 8 8 9
  7 8 8 12 17 18 10 9 12
  9 9 9 14 18 21 11 12 11
  8 10 10 15 16 22 9 9 9 "
)
block \leftarrowgl (4, 9)
clone <-rep (gl (3, 3, labels = c ("c1", "c2", "c3")), 4)
nitrogen <-rep (gl (3, 1, labels = c ("n1", "n2", "n3")), 12)</pre>
A <-data.frame (block, clone, nitrogen, yield)
head (A)
 block clone nitrogen yield
1
     1
          с1
                   n1
                           6
2
      1
          с1
                    n2
                           7
3
      1
          с1
                    n3
                           9
4
      1
          c2
                    n1
                          13
5
      1
          c2
                    n2
                          16
                    n3
6
      1
           c2
                          20
model <-aov (yield ~ block + clone * nitrogen, data = A)
anova (model)
Analysis of Variance Table
Response: yield
               Df Sum Sq Mean Sq F value
                3 20.75
                           6.917
                                  5.8246 0.0038746 **
block
               2 497.72 248.861 209.5673 6.370e-16 ***
clone
nitrogen
               2 54.06 27.028 22.7602 2.865e-06 ***
clone:nitrogen 4 43.28 10.819
                                   9.1111 0.0001265 ***
Residuals
              24 28.50
                          1.187
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
out <-LSD.test (model, c("clone", "nitrogen"), main = "Yield ~ block +
nitrogen + clone + clone:nitrogen",console=TRUE)
Study: Yield ~ block + nitrogen + clone + clone:nitrogen
LSD t Test for yield
Mean Square Error: 1.1875
clone:nitrogen, means and individual ( 95 %) CI
      yield
            std.err r
                              LCL
                                        UCL Min. Max.
c1:n1 7.50 0.6454972 4 6.167759 8.832241
                                              6
c1:n2 8.50 0.6454972 4 7.167759 9.832241
                                               7
                                                   10
c1:n3 9.00 0.4082483 4 8.157417
                                               8
                                                  10
                                  9.842583
c2:n1 13.50 0.6454972 4 12.167759 14.832241
                                                  15
                                              12
c2:n2 16.75 0.4787136 4 15.761984 17.738016
                                                  18
                                              16
c2:n3 20.25 0.8539126 4 18.487611 22.012389
                                                   22
                                              18
```

```
c3:n1 9.50 0.6454972 4 8.167759 10.832241
                                                     11
c3:n2 9.50 0.8660254 4 7.712611 11.287389
                                                     12
c3:n3 10.25 0.7500000 4 8.702076 11.797924
                                                     12
alpha: 0.05; Df Error: 24
Critical Value of t: 2.063899
Least Significant Difference 1.590341
Means with the same letter are not significantly different.
Groups, Treatments and means
а
         c2:n3
                 20.25
b
         c2:n2
                 16.75
         c2:n1
                 13.5
С
d
         c3:n3
                 10.25
                 9.5
de
         c3:n1
de
         c3:n2
                 9.5
def
         c1:n3
                 9
                 8.5
ef
         c1:n2
f
         c1:n1
                 7.5
par(mar=c(3,3,2,0))
pic1<-bar.err(out$means, variation="range", ylim=c(5,25),</pre>
bar=FALSE,col=0,las=1)
points(pic1$index,pic1$means,pch=18,cex=1.5,col="blue")
axis(1,pic1$index,labels=FALSE)
title(main="average and range\nclon:nitrogen")
```


Figure 4.1 Combined clone:nitrogen

4.9 GRAPHICS OF THE MULTIPLE COMPARISON

The results of a comparison can be graphically seen with the functions bar.group() and bar.err().

The found object of one comparison is the entry for these functions, Figure 4.2. The objects compare1 and compare2 are used in the following exercise:

comparison1, for the functions bar.group() and bar.err() comparison2, for the function bar.err()

```
par(mfrow=c(2,2))
c1<-colors()[480]; c2=colors()[65]; c3=colors()[15];
c4=colors()[140]
G1<-bar.group(comparison1$groups, ylim=c(0,45),
main="Tukey\nG1",col=c1)
G2<-bar.group(comparison1$groups, horiz=T, xlim=c(0,45),
main="Tukey\nG2",col=c2)
G3<-bar.err(comparison2$means, variation="range",ylim=c(0,45),
col=c3, main="Range\nG3")
G4<-bar.err(comparison2$means, horiz=T, xlim=c(0,45), col=c4,
variation="SE",,main="Standard error \nG4")</pre>
```


Figure 4.2 Comparison between treatments

4.10 ANALYSIS OF BALANCED INCOMPLETE BLOCKS

This analysis can come from balanced or partially balanced designs. The function BIB.test() is for balanced designs, and PBIB.test(), for partially balanced designs. In the following example, the 'agricolae' data will be used.

```
#Example linear estimation and design of experiments. (Joshi, 1987)
# Profesor de Estadistica, Institute of Social Sciences Agra, India
# 6 variedades de trigo en 10 bloques de 3 parcelas cada una.
block<-gl(10,3)
variety<-c(1,2,3,1,2,4,1,3,5,1,4,6,1,5,6,2,3,6,2,4,5,2,5,6,3,4,5,3,4,6)
y<-c(69,54,50,77,65,38,72,45,54,63,60,39,70,65,54,65,68,67,57,60,62,59,65,63,75,62,61,59,55,56)

BIB.test(block, variety, y,console=TRUE)

ANALYSIS BIB: y
Class level information

Block: 1 2 3 4 5 6 7 8 9 10
Trt : 1 2 3 4 5 6 7 8 9 10
```

```
Number of observations: 30
Analysis of Variance Table
Response: y
           Df Sum Sq Mean Sq F value Pr(>F)
block.unadj 9 466.97 51.885 0.9019 0.54712
            5 1156.44 231.289 4.0206 0.01629 *
trt.adj
           15 862.89 57.526
Residuals
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \'.' 0.1 \' 1
coefficient of variation: 12.6 %
y Means: 60.3
variety, statistics
                     SE r std.err Min. Max.
     y mean.adj
1 70.2 75.13333 3.728552 5 2.267157 63 77
2 60.0 58.71667 3.728552 5 2.190890
                                     54
                                          65
3 59.4 58.55000 3.728552 5 5.537147
                                     4.5
                                          75
4 55.0 54.96667 3.728552 5 4.404543
                                     38 62
5 61.4 60.05000 3.728552 5 2.014944
                                     54 65
6 55.8 54.38333 3.728552 5 4.810405
                                     39 67
LSD test
Std.diff : 5.363111
Alpha
        : 0.05
LSD
          : 11.4312
Parameters BIB
Lambda
treatmeans : 6
Block size : 3
Blocks
       : 10
Replication: 5
Efficiency factor 0.8
<<< Book >>>
Means with the same letter are not significantly different.
Comparison of treatments
Groups, Treatments and means
               75.13
        1
         5
                60.05
b
         2
                58.72
b
b
        3
                58.55
                54.97
b
        4
         6
                54.38
b
```

function (block, trt, y, test = c("lsd", "tukey", "duncan", "waller", "snk"), alpha = 0.05, group = TRUE). LSD, Tukey Duncan, Waller-Duncan and SNK, can be used. The probabilities of the comparison can also be obtained. It should only be indicated: group=FALSE, thus:

```
out <-BIB.test(block, trt=variety, y, test="tukey", group=FALSE,
console=TRUE)
ANALYSIS BIB: y
Class level information
Block: 1 2 3 4 5 6 7 8 9 10
Trt : 1 2 3 4 5 6
Number of observations: 30
Analysis of Variance Table
Response: y
            Df Sum Sq Mean Sq F value Pr(>F)
block.unadj 9 466.97 51.885 0.9019 0.54712
trt.adj 5 1156.44 231.289 4.0206 0.01629 *
          15 862.89 57.526
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coefficient of variation: 12.6 %
y Means: 60.3
variety, statistics
                      SE r std.err Min. Max.
     y mean.adj
1 70.2 75.13333 3.728552 5 2.267157 63 77
2 60.0 58.71667 3.728552 5 2.190890
                                      54
3 59.4 58.55000 3.728552 5 5.537147
                                      45 75
4 55.0 54.96667 3.728552 5 4.404543
                                      38 62
                                      54 65
5 61.4 60.05000 3.728552 5 2.014944
6 55.8 54.38333 3.728552 5 4.810405
                                      39 67
Tukey
Alpha
          : 0.05
Std.err
          : 3.792292
          : 17.42458
Parameters BIB
Lambda
         : 2
treatmeans: 6
Block size: 3
Blocks
        : 10
Replication: 5
Efficiency factor 0.8
<<< Book >>>
Comparison between treatments means
     Difference pvalue sig
1 - 2 16.4166667 0.070509
1 - 3 16.5833333 0.066649
1 - 4 20.1666667 0.019092
1 - 5 15.0833333 0.109602
1 - 6 20.7500000 0.015510
2 - 3 0.1666667 1.000000
2 - 4 3.7500000 0.979184
```

2 - 5 -1.3333333 0.999840

```
2 - 6 4.3333333 0.961588
3 - 4 3.5833333 0.982927
3 - 5 -1.5000000 0.999715
3 - 6 4.1666667 0.967375
4 - 5 -5.0833333 0.927273
4 - 6 0.5833333 0.999997
5 - 6 5.6666667 0.890815
```

The found "outl" object can be used for the functions bar.group() and bar.err() for the bar graphics, in the same way as previously.

```
names(out)
[1] "parameters" "statistics" "comparison" "means" "groups"
bar.group: out$groups
bar.err: out$means
```

4.11 PARTIALLY BALANCED INCOMPLETE BLOCKS

The function PBIB.test() (Joshi, 1987) can be used for the lattice and alpha designs.

Consider the following case: Construct the alpha design with 30 treatments, 2 repetitions, and a block size equal to 3.

```
library(agricolae)
library (MASS)
library(nlme)
# alpha design
Genotype<-paste("geno",1:30,sep="")</pre>
r<-2
k < -3
plan<-design.alpha(Genotype,k,r,seed=5)</pre>
alpha design (0,1) - Serie I
Parameters Alpha design
_____
treatmeans : 30
Block size : 3
Blocks : 10
Replication: 2
Efficiency factor
(E ) 0.6170213
<<< Book >>>
```

The generated plan is plan\$book.

Suppose that the corresponding observation to each experimental unit is:

```
  yield <-c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,2,4,6,7,9,8,7,6,4,3,2,2,1,1,2,1,1,2,4,5,6,7,8,6,5,4,3,1,1,2,5,4,2,7,6,6,5,6,4,5,7,6,5,5,4)
```

The data table is constructed for the analysis. In theory, it is presumed that a design is applied and the experiment is carried out; subsequently, the study variables are observed from each experimental unit.

```
data<-data.frame(plan$book, yield)
rm(yield,Genotype)
The analysis:
attach (data)
model <- PBIB.test(block, Genotype, replication, yield, k=3,</pre>
group=TRUE,console=TRUE)
detach (data)
ANALYSIS PBIB: yield
Class level information
block : 20
Genotype: 30
Number of observations: 60
Estimation Method: REML
Parameter Estimates
                     Variance
block:replication 2.834033e+00
replication 8.045359e-09
Residual
                  2.003098e+00
                      Fit Statistics
-2 Res Log Likelihood
                         -73.82968
                           213.65937
AIC
                           259.89888
BIC
Analysis of Variance Table
Response: yield
         Df Sum Sq Mean Sq F value Pr(>F)
Genotype 29 72.006 2.4830 1.2396 0.3668
Residuals 11 22.034 2.0031
coefficient of variation: 31.2 %
yield Means: 4.533333
Parameters PBIB
                  30
Genotype
block size
                  3
block/replication 10
replication
Efficiency factor 0.6170213
```

Comparison test lsd $$\operatorname{Means}$$ with the same letter are not significantly different.

Groups, Treatments and mean	
a 20 7.729	
ab 13 6.715	
ab 1 6.505	
abc 8 6.192	
abcd 24 6.032	
abcd 24 0.032 abcd 23 5.735	
abcd 23 5.733 abcd 10 5.473	
abcd 16 5.455	
abcd 21 5.14	
abcd 22 5.069	
abcd 4 4.874	
abcd 3 4.794	
abcd 14 4.742	
abcd 15 4.587	
abcd 27 4.563	
abcd 7 4.424	
abcd 5 4.286	
abcd 19 4.198	
abcd 6 4.165	
abcd 25 3.978	
abcd 17 3.943	
bcd 2 3.628	
bcd 28 3.495	
bcd 11 3.379	
bcd 26 3.341	
bcd 9 3.052	
bcd 30 3	
bcd 12 2.879	
cd 29 2.44	
d 18 2.186	

Comparison between treatments means and its name $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

 $<\!<$ to see the objects: means, comparison and groups. $>\!>$

The adjusted averages can be extracted from the model.

model\$means

	yield	trt	mean.adj	SE	r	std.err	Min.	Max.	
geno1	7.5		_	1.313644		1.5	6	9	
geno10	4.5	2	3.628197	1.313644	2	0.5	4	5	
geno11	5.5	3	4.793620	1.310727	2	0.5	5	6	
geno12	4.0	4	4.873878	1.313644	2	3.0	1	7	
geno8	3.0	29	2.439879	1.310727	2	1.0	2	4	
geno9	3.5	30	2,999639	1.310727	2	1.5	2	5	

Figure 4.3. Treatment Groups.

The comparisons:

model\$comparison

The data on the adjusted averages and their standard error can be illustrated (figure 4.2), since the created object is very similar to the objects generated by the multiple comparisons.

```
par(mfrow=c(2,2),cex=0.6)
C1<-bar.err(model$means[1:7, ], ylim=c(0,9), col=0, main="C1",
variation="range",border=3)
C2<-bar.err(model$means[8:15,], ylim=c(0,9), col=0, main="C2",
variation="range", border =4)
C3<-bar.err(model$means[16:22,], ylim=c(0,9), col=0, main="C3",
variation="range",border =2)
C4<-bar.err(model$means[23:30,], ylim=c(0,9), col=0, main="C4",
variation="range", border =6)</pre>
```


Figure 4.4. Range in each treatment.

Analysis of balanced lattice 3x3, 9 treatments, 4 repetitions.

Create the data in a text file: latice3x3.txt and read with R:

sqr	block	trt yie	eld							
1	1	1 48.76	5 1	1	4	14.46	1	1	3	19.68
1	2	8 10.83	1	2	6	30.69	1	2	7	31.00
1	3	5 12.54	1	3	9	42.01	1	3	2	23.00
2	4	5 11.07	2	4	8	22.00	2	4	1	41.00
2	5	2 22.00	2	5	7	42.80	2	5	3	12.90
2	6	9 47.43	2	6	6	28.28	2	6	4	49.95
3	7	2 27.67	3	7	1	50.00	3	7	6	25.00
3	8	7 30.00	3	8	5	24.00	3	8	4	45.57
3	9	3 13.78	3	9	8	24.00	3	9	9	30.00
4	10	6 37.00	4	10	3	15.42	4	10	5	20.00
4	11	4 42.37	4	11	2	30.00	4	11	8	18.00
4	12	9 39.00	4	12	7	23.80	4	12	1	43.81

```
library(agricolae)
library(MASS)
library(nlme)
A<-read.table("latice3x3.txt", header=T)
attach(A)
mode12<-PBIB.test(block,trt,sqr,yield,k=3,console=TRUE)
detach(A)

ANALYSIS PBIB: yield

Class level information
block: 12
trt: 9</pre>
```

```
Number of observations: 36
Estimation Method: Residual (restricted) maximum likelihood
Parameter Estimates
              Variance
block:sqr 1.604257e-08
          1.668375e-07
sqr
Residual 5.693724e+01
                      Fit Statistics
-2 Res Log Likelihood
                          -99.11599
AIC
                           222.23197
BIC
                           237.78201
Analysis of Variance Table
Response: yield
          Df Sum Sq Mean Sq F value
                                     Pr(>F)
          8 3749.4 468.68 8.2315 0.0001987 ***
t.rt.
Residuals 16 911.0 56.94
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
coefficient of variation: 25.9 %
yield Means: 29.16167
Parameters PBIB
trt
block size 3
block/sqr 3
sqr
Efficiency factor 0.75
Comparison test 1sd
Means with the same letter are not significantly different.
Groups, Treatments and means
                45.89
        1
                39.61
         9
ab
                38.09
         4
ab
         7
                31.9
bс
        6
                30.24
bс
         2
                 25.67
cd
                18.71
d
         8
         5
                 16.9
d
         3
                 15.45
d
Comparison between treatments means and its name
<<< to see the objects: means, comparison and groups. >>>
par(mar=c(3,3,0,0))
```

bar.group(model2\$group,ylim=c(0,52),density=10)

Figure 4.5. Treatment Groups.

model2\$means

```
yield trt mean.adj
                             SE r std.err Min.
               45.8925 3.772839 4 2.108860 41.00 50.00
1 45.8925
            1
2 25.6675
            2
               25.6675 3.772839 4 1.900585 22.00 30.00
               15.4450 3.772839 4 1.505133 12.90 19.68
3 15.4450
            3
               38.0875 3.772839 4 8.027584 14.46 49.95
4 38.0875
            4
5 16.9025
               16.9025 3.772839 4 3.068910 11.07 24.00
            5
6 30.2425
            6
               30.2425 3.772839 4 2.536390 25.00 37.00
7
            7
               31.9000 3.772839 4 3.966947 23.80 42.80
  31.9000
8 18.7075
               18.7075 3.772839 4 2.906984 10.83 24.00
            8
9 39.6100
              39.6100 3.772839 4 3.647335 30.00 47.43
```

model2\$comparison

```
Difference stderr pvalue
1 - 2 20.2250 5.335599 0.001604
1 - 3 30.4475 5.335599 0.000032
1 - 4 7.8050 5.335599 0.162884
.....
8 - 9 -20.9025 5.335599 0.001228
```

4.12 AUGMENTED BLOCKS

The function DAU.test() can be used for the analysis of the augmented block design.

The data should be organized in a table, containing the blocks, treatments, and the response.

```
block<-c(rep("I",7),rep("II",6),rep("III",7))
trt<-c("A", "B", "C", "D", "g", "k", "1", "A", "B", "C", "D", "e", "i", "A", "B",
"C", "D", "f", "h", "j")
yield<-c(83,77,78,78,70,75,74,79,81,81,91,79,78,92,79,87,81,89,96,
82)
data.frame(block, trt, yield)
  block trt yield
     I A
2
              77
      I
         В
              78
3
      I
         С
              78
4
      I
         D
        g
5
      I
              70
6
     I
         k
              75
7
     I
         1
              74
8
     II A
              79
9
     II B
              81
10
    II C
             81
11
             91
    II D
             79
12
    II e
13
    II i
              78
14
   III A 92
             79
1.5
   III B
16
   III C 87
17
   III D 81
   III f 89
18
   III h 96
19
20
   III j 82
The treatments are in each block:
by(trt,block,as.character)
block: I
[1] "A" "B" "C" "D" "q" "k" "l"
-----
block: II
[1] "A" "B" "C" "D" "e" "i"
_____
block: III
[1] "A" "B" "C" "D" "f" "h" "j"
With their respective responses:
by(yield,block,as.character)
block: I
[1] 83 77 78 78 70 75 74
block: II
[1] 79 81 81 91 79 78
block: III
[1] 92 79 87 81 89 96 82
model<- DAU.test(block,trt,yield,method="lsd",console=TRUE)</pre>
ANALYSIS DAU: yield
Class level information
Block: I II III
```

```
Trt: ABCDefghijkl
```

Number of observations: 20

ANOVA, Treatment Adjusted Analysis of Variance Table

Response: yield

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
block.unadj	2	360.07	180.036		
trt.adj	11	285.10	25.918	0.9609	0.5499
Control	3	52.92	17.639	0.6540	0.6092
<pre>Control + control.VS.aug.</pre>	8	232.18	29.022	1.0760	0.4779
Residuals	6	161.83	26.972		

ANOVA, Block Adjusted Analysis of Variance Table

Response: yield

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
trt.unadj	11	575.67	52.333		
block.adj	2	69.50	34.750	1.2884	0.3424
Control	3	52.92	17.639	0.6540	0.6092
Augmented	7	505.88	72.268	2.6793	0.1253
Control vs augmented	1	16.88	16.875	0.6256	0.4591
Residuals	6	161.83	26.972		

coefficient of variation: 6.4 $\mbox{\$}$

yield Means: 81.5

Critical Differences (Between) Std Error Diff.

Two Control Treatments	4.240458
Two Augmented Treatments (Same Block)	7.344688
Two Augmented Treatments (Different Blocks)	8.211611
A Augmented Treatment and A Control Treatment	ment 6.360687

Means with the same letter are not significantly different.

Groups, Treatments and means h 93.5 f 86.5 ab 84.67 ab Α 83.33 ab D С 82 ab 79.5 j ab В 79 ab 78.25 ab е 78.25 ab k 77.25 i ab

1

g

ab

b

Comparison between treatments means

77.25

73.25

<<< to see the objects: pvalue and means >>>

model\$means

```
std.err r Min. Max. mean.adj
    yield
                                            SE block
A 84.66667 11.532563 3 79 92 84.66667 2.998456
в 79.00000 3.464102 3
                     77 81 79.00000 2.998456
C 82.00000 7.937254 3 78 87 82.00000 2.998456
D 83.33333 11.789826 3 78 91 83.33333 2.998456
                NA 1 79 79 78.25000 5.193479
e 79.00000
                                                  ΙI
                NA 1
                      89 89 86.50000 5.193479
f 89.00000
                                                 III
                NA 1
q 70.00000
                       70
                           70 73.25000 5.193479
h 96.00000
                NA 1
                       96
                           96 93.50000 5.193479
                                                 III
i 78.00000
                NA 1
                       78
                           78 77.25000 5.193479
                                                 ΙI
j 82.00000
                NA 1
                      82
                           82 79.50000 5.193479
                                                 III
                NA 1
k 75.00000
                       75
                           75 78.25000 5.193479
                NA 1 74 74 77.25000 5.193479
1 74.00000
```

model<- DAU.test(block,trt,yield,method="lsd",group=F,console=TRUE) > head(model\$comparison,8)

```
Difference pvalue sig
A - B 5.666667 0.229886
A - C 2.666667 0.552612
A - D 1.333333 0.763840
A - e 6.416667 0.352008
A - f -1.833333 0.782870
A - g 11.416667 0.122820
A - h -8.833333 0.214268
A - i 7.416667 0.287856
```

4.13 NON-PARAMETRIC COMPARISONS

The functions for non-parametric multiple comparisons included in 'agricolae' are: kruskal(), waerden.test(), friedman() and durbin.test() (Conover, 1999).

The function kruskal() is used for N samples (N>2), populations or data coming from a completely random experiment (populations = treatments).

The function waerden.test(), similar to kruskal-wallis, uses a normal score instead of ranges as kruskal does.

The function friedman() is used for organoleptic evaluations of different products, made by judges (every judge evaluates all the products). It can also be used for the analysis of treatments of the randomized complete block design, where the response cannot be treated through the analysis of variance.

The function durbin.test() for the analysis of balanced incomplete block designs is very used for sampling tests, where the judges only evaluate a part of the treatments.

Montgomery book data (Montgomery, 2002) Included in the 'agricolae' package

```
library(agricolae)
data(corn)
attach(corn)
```

str(corn)

```
'data.frame': 34 obs. of 3 variables:

$ method : int 1 1 1 1 1 1 1 1 2 ...

$ observation: int 83 91 94 89 89 96 91 92 90 91 ...

$ rx : num 11 23 28.5 17 17 31.5 23 26 19.5 23 ...
```

For the examples, the 'agricolae' package data will be used.

4.14 KRUSKAL-WALLIS

```
out<-kruskal(observation,method,group=TRUE, main="corn",</pre>
console=TRUE)
Study: corn
Kruskal-Wallis test's
Ties or no Ties
Value: 25.62884
degrees of freedom: 3
Pvalue chisq : 1.140573e-05
method, means of the ranks
  observation r
     21.83333
     15.30000 10
     29.57143
      4.81250 8
t-Student: 2.042272
Alpha : 0.05
LSD
        : 4.9175
Harmonic Mean of Cell Sizes 8.351284
Means with the same letter are not significantly different
Groups, Treatments and mean of the ranks
         3
              29.57
         1
                 21.83
b
         2
                 15.3
С
                 4.812
```

The object "compares" has the same structure of the comparisons (figure 4.3).

```
par(cex=0.8,mar=c(3,3,1,0))
bar.group(out$groups,ylim=c(0,35),col=colors()[55],las=1)

35
30
25
20
15
10
6
```

Figure 4.6. Comparison according to Kruskal-Wallis.

4.15 FRIEDMAN

```
friedman()
rm(list=ls())
library(agricolae)
data(grass)
attach (grass)
out<-friedman(judge,trt, evaluation,alpha=0.05, group=FALSE,
main="Data of the book of Conover",console=TRUE)
Study: Data of the book of Conover
trt, Sum of the ranks
  evaluation r
       38.0 12
t1
         23.5 12
t2
         24.5 12
t3
t4
         34.0 12
Friedman's Test
==========
Adjusted for ties
Value: 8.097345
Pvalue chisq : 0.04404214
F value : 3.192198
Pvalue F: 0.03621547
Alpha
          : 0.05
t-Student : 2.034515
Comparison between treatments
Sum of the ranks
        Difference pvalue sig LCL UCL
14.5 0.014896 * 3.02 25.98
13.5 0.022602 * 2.02 24.98
4.0 0.483434 -7.48 15.48
-1.0 0.860438 -12.48 10.48
-10.5 0.071736 . -21.98 0.98
t1 - t2
t1 - t3
t1 - t4
t2 - t3
t2 - t4
t3 - t4
                -9.5 0.101742
                                      -20.98 1.98
```

4.16 WAERDEN

waerden.test(), with the sweet potato data in the 'agricolae' basis.

```
data(sweetpotato)
attach(sweetpotato)
out<-waerden.test(yield,virus,alpha=0.01,group=TRUE,console=TRUE)
Study:
Van der Waerden (Normal Scores) test's

Value: 8.409979
Pvalue: 0.03825667
Degrees of freedom: 3</pre>
```

```
yield std.err r
cc -0.2328353 0.1748697 3
fc -1.0601764 0.2002213 3
ff 0.6885684 0.4396858 3
00 0.6044433 0.2160981 3
t-Student: 3.355387
Alpha
        : 0.01
LSD
        : 1.322487
Means with the same letter are not significantly different
Groups, Treatments and means of the normal score
        ff
             0.6886
        00
                0.6044
а
                -0.2328
ab
        CC
        fc
                -1.06
The comparison probabilities are obtained with the parameter group=FALSE.
> names (out)
[1] "statistics" "parameters" "means" "comparison" "groups"
To see out$comparison
out<-waerden.test(yield,virus,group=F,console=TRUE)</pre>
detach(sweetpotato)
Study:
Van der Waerden (Normal Scores) test's
Value: 8.409979
Pvalue: 0.03825667
Degrees of freedom: 3
virus, means of the normal score
       yield std.err r
cc -0.2328353 0.1748697 3
fc -1.0601764 0.2002213 3
ff 0.6885684 0.4396858 3
00 0.6044433 0.2160981 3
Comparison between treatments means
mean of the normal score
       Difference pvalue sig.
                                       LCL
cc - fc 0.8273411 0.069032 . -0.08154345 1.73622564
cc - ff -0.9214037 0.047582
                             * -1.83028827 -0.01251917
cc - oo -0.8372786 0.066376 . -1.74616316 0.07160593
fc - ff -1.7487448 0.002176 ** -2.65762936 -0.83986026
fc - oo -1.6646197 0.002902 ** -2.57350426 -0.75573516
ff - oo 0.0841251 0.836322
                               -0.82475944 0.99300965
```

virus, means of the normal score

4.17 DURBIN

E - F

E - G

F - G

-3 0.204420

0 1.000000

3 0.204420

```
durbin(); example: Myles Hollander (p. 311) Source: W. Moore and C.I. Bliss. (1942)
days <-gl(7,3)
chemical<-c("A","B","D","A","C","E","C","D","G","A","F","G",
"B", "C", "F", "B", "E", "G", "D", "E", "F")
toxic<-c(0.465,0.343,0.396,0.602,0.873,0.634,0.875,0.325,0.330,
0.423, 0.987, 0.426, 0.652, 1.142, 0.989, 0.536, 0.409, 0.309,
0.609,0.417,0.931)
out<-durbin.test(days,chemical,toxic,group=F,console=TRUE,
main="Logarithm of the toxic dose")
Study: Logarithm of the toxic dose
chemical, Sum of ranks
 sum
A 5
   5
В
С
    9
   5
D
Ε
    5
F
    8
G
   5
Durbin Test
========
Value : 7.714286
Df 1 : 6
P-value : 0.2597916
Alpha
          : 0.05
          : 8
Df 2
t-Student : 2.306004
Least Significant Difference
between the sum of ranks: 5.00689
Parameters BIB
        : 1
Lambda
treatmeans : 7
Block size : 3
Blocks : 7
Replication: 3
Comparison between treatments sum of the ranks
      Difference pvalue sig
A - B
              0 1.000000
A - C
              -4 0.102688
A - D
              0 1.000000
A - E
              0 1.000000
A - F
              -3 0.204420
A - G
              0 1.000000
. . . .
```

5 STABILITY ANALYSIS

In 'agricolae' there are two methods for the study of stability and the AMMI model. These are: a parametric model for a simultaneous selection in yield and stability "SHUKLA'S STABILITY VARIANCE AND KANG'S", and a non-parametric method of Haynes, based on the data range.

5.1 PARAMETRIC STABILITY

Use the parametric model, function stability.par().

Prepare a data table where the rows and the columns are the genotypes and the environments, respectively. The data should correspond to yield averages or to another measured variable. Determine the variance of the common error for all the environments and the number of repetitions that was evaluated for every genotype. If the repetitions are different, find a harmonious average that will represent the set. Finally, assign a name to each row that will represent the genotype. We will consider five environments in the following example:

```
v1 <- c(10.2, 8.8, 8.8, 9.3, 9.6, 7.2, 8.4, 9.6, 7.9, 10, 9.3, 8.0, 10.1, 9.4, 10.8, 6.3, 7.4)

v2 <- c(7, 7.8, 7.0, 6.9, 7, 8.3, 7.4, 6.5, 6.8, 7.9, 7.3, 6.8, 8.1, 7.1, 7.1, 6.4, 4.1)

v3 <- c(5.3, 4.4, 5.3, 4.4, 5.5, 4.6, 6.2, 6.0, 6.5, 5.3, 5.7, 4.4, 4.2, 5.6, 5.8, 3.9, 3.8)

v4 <- c(7.8, 5.9, 7.3, 5.9, 7.8, 6.3, 7.9, 7.5, 7.6, 5.4, 5.6, 7.8, 6.5, 8.1, 7.5, 5.0, 5.4)

v5 <- c(9, 9.2, 8.8, 10.6, 8.3, 9.3, 9.6, 8.8, 7.9, 9.1, 7.7, 9.5, 9.4, 9.4, 10.3, 8.8, 8.7)
```

For 17 genotypes, the identification is made by letters.

```
study <- data.frame(v1, v2, v3, v4, v5)
rownames(study) <- LETTERS[1:17]</pre>
```

An error variance of 2 and 4 repetitions is assumed.

```
stability <- stability.par(study, rep=4, MSerror=2)</pre>
```

INTERACTIVE PROGRAM FOR CALCULATING SHUKLA'S STABILITY VARIANCE AND KANG'S

```
YIELD - STABILITY (YSi) STATISTICS
```

Environmental index - covariate

Analysis of Variance

	d.f.	Sum o	f Squares	Mean Squares	F	p.value
TOTAL	84		1035.6075			
GENOTYPES	16		120.0875	7.5055	2.65	0.003
ENVIRONMENTS	4		734.2475	183.5619	91.78	<0.001
INTERACTION	64		181.2725	2.8324	1.42	0.033
HETEROGENEITY	16		52.7128	3.2945	1.23	0.281
RESIDUAL	48		128.5597	2.6783	1.34	0.0815
POOLED ERROR	240			2		

Genotype. Stability statistics Mean Sigma-square . s-square . Ecovalence A 7.86 1.671833 ns 2.209084 ns 6.567031 B 7.22 1.822233 ns 1.977299 ns 7.097855 C 7.44 1.492208 0.233967 ns 0.134103 ns D 7.42 4.079567 ns 1.443859 ns 15.064913 E 7.64 2.037967 ns 2.369090 ns 7.859266 F 7.14 5.161967 * 6.763106 * 18.885149 G 7.90 1.759300 ns 1.058092 ns 6.875737 н 7.68 1.757167 ns 2.028880 ns 6.868208 5.495300 * 0.423680 ns I 7.34 20.061619 J 7.54 4.129967 ns 5.125514 ns 15.242796 K 7.12 3.848900 ns 4.360772 ns 14.250796 L 7.30 2.675300 ns 3.610982 ns 10.108678 M 7.66 3.473167 ns 2.198229 ns 12.924678 N 7.92 0.806233 ns 1.097156 ns 3.511972 0 8.30 1.951300 ns 1.459578 ns 7.553384 P 6.08 3.647833 ns 4.919102 ns 13.541149 Q 5.88 3.598500 ns 4.353030 ns 13.367031 Signif. codes: 0 '**' 0.01 '*' 0.05 'ns' 1 Simultaneous selection for yield and stability (++) Yield Rank Adj.rank Adjusted Stab.var Stab.rating YSi ... A 7.86 1 14 15 1.671833 0 15 B 7.22 5 0 -1 4 1.822233 4 0 10 С 7.44 9 1 10 0.233967 8 D 7.42 1 9 4.079567 -2 7 1 E 7.64 11 12 2.037967 0 12 F 7.14 4 -1 3 5.161967 -4 -17.90 15 1 16 1.759300 0 16 н 7.68 13 1 14 1.757167 0 14 Ι 7.34 7 -1 6 5.495300 -4 J 7.54 10 1 11 4.129967 -2 9 K 7.12 3 -1 2 3.848900 0 2 7.30 -1 0 L 6 5 2.675300 5 1 M 7.66 12 13 3.473167 0 13 N 7.92 16 1 17 0.806233 0 17 0 8.30 17 2 19 1.951300 0 19 P 6.08 2 -2 0 3.647833 0 0 0 5.88 -3 -2 3.598500 0 -2 1 Yield Mean: 7.378824 Mean: 8.352941

+ selected genotype ++ Reference: Kang, M. S. 1993. Simultaneous selection for yield and stability: Consequences for growers. Agron. J. 85:754-757.

LSD (0.05): 0.7384513

The selected genotypes are: A, C, E, G, H, J, M, N and O. These genotypes have a higher yield and a lower variation. According to the ANOVA, the interaction is significant.

If for example there is an environmental index, it can be added as a covariate. For this case, the altitude of the localities is included.

```
altitude<-c(1200, 1300, 800, 1600, 2400)
stability <- stability.par(study,rep=4,MSerror=2, cova=TRUE,
name.cov= "altitude", file.cov= altitude)</pre>
```

5.2 NON-PARAMETRIC STABILITY

For non-parametric stability, the function in 'agricolae' is stability.nonpar(). The names of the genotypes should be included in the first column, and in the other columns, the response by environments.

```
data <- data.frame(name=row.names(study), study)</pre>
out<-stability.nonpar(data, "YIELD", ranking=TRUE)
Nonparametric Method for Stability Analysis
-----
Estimation and test of nonparametric measures
Variable: YIELD
Ranking...
  v1 v2 v3 v4 v5
A 16.0 8.0 9 14.0 8.0
B 7.5 14.0 5 5.5 10.0
C 7.5 8.0 9 9.0 6.0
D 9.5 6.0 5 5.5 17.0
E 12.5 8.0 11 14.0 3.0
F 2.0 17.0 7 7.0 11.0
G 6.0 13.0 16 16.0 15.0
н 12.5 3.0 15 10.5 6.0
I 4.0 4.5 17 12.0 2.0
J 14.0 15.0 9 2.5 9.0
K 9.5 12.0 13 4.0 1.0
L 5.0 4.5 5 14.0 14.0
M 15.0 16.0 3 8.0 12.5
N 11.0 10.5 12 17.0 12.5
0 17.0 10.5 14 10.5 16.0
P 1.0 2.0 2 1.0 6.0
Q 3.0 1.0 1 2.5 4.0
Statistics...
 Mean Rank s1 Z1 s2
A 7.86 14 5.4 0.02 21.5 0.04
       5 6.2 0.12 25.7 0.02
в 7.22
        9 3.0 2.73 7.5 1.83
C 7.44
D 7.42
        8 7.4 1.20 36.5 1.05
      11 5.6 0.00 21.8 0.03
E 7.64
F 7.14
        4 7.8 1.81 39.2 1.55
G 7.90 15 5.2 0.08 18.7 0.19
H 7.68 13 6.2 0.12 25.3 0.01
I 7.34
        7 8.8 3.87 51.5 5.08
J 7.54 10 7.2 0.94 34.3 0.71
K 7.12 3 7.8 1.81 43.0 2.43
L 7.30
        6 7.4 1.20 34.7 0.77
M 7.66 12 7.6 1.49 38.2 1.36
```

```
N 7.92 16 4.2 0.82 14.8 0.57
0 8.30 17 7.0 0.71 31.7 0.40
P 6.08 2 6.6 0.35 27.7 0.09
Q 5.88 1 7.0 0.71 32.3 0.46
Sum of Z1: 17.97158
Sum of Z2: 16.59462
______
The Z-statistics are measures of stability. The test for the
significance
of the sum of Z1 or Z2 are compared to a Chi-Square value of
chi.sum.
individual Z1 or Z2 are compared to a Chi-square value of chi.ind.
                           vs1 vs2 chi.ind chi.sum
     MEAN
              es1 es2
1 7.378824 5.647059 24 2.566667 148.8 8.843605 27.58711
expectation and variance: es1, es2, vs1, vs2
```

5.3 AMMI

The model AMMI uses the biplot constructed through the principal components generated by the interaction environment-genotype. If there is such interaction, the percentage of the two principal components would explain more than the 50% of the total variation; in such case, the biplot would be a good alternative to study the interaction environment-genotype.

The data for AMMI should come from similar experiments conducted in different environments. Homogeneity of variance of the experimental error, produced in the different environments, is required. The analysis is done by combining the experiments.

The data can be organized in columns, thus: environment, genotype, repetition, and variable.

The data can also be the averages of the genotypes in each environment, but it is necessary to consider a harmonious average for the repetitions and a common variance of the error. The data should be organized in columns: environment, genotype, and variable.

When performing AMMI, this generates the BIPLOT graphics; see figure 5.1.

For the application, we consider the data used in the example of parametric stability (study):

```
par(mar=c(4,4,0,0))
rdto <- c(study[,1], study[,2], study[,3], study[,4], study[,5])
environment <- gl(5,17)
genotype <- rep(rownames(study),5)
model<-AMMI(ENV=environment, GEN=genotype, REP=4, Y=rdto, MSE=2,
ylim=c(-2,2), xlim=c(-2,2), number=FALSE)</pre>
```

```
ANALYSIS AMMI: rdto
Class level information
ENV:
     1 2 3 4 5
GEN:
     ABCDEFGHIJKLMNOPQ
REP:
Number of means: 85
Dependent Variable: rdto
Analysis of variance
               Sum Sq
           Df
                           Mean Sq
                                    F value
                                                   Pr(>F)
ENV
            4 734.2475 183.561882
REP (ENV)
           15
GEN
           16 120.0875
                          7.505471 3.752735 3.406054e-06
                          2.832382 1.416191 3.279630e-02
ENV:GEN
           64 181.2725
                          2.000000
Residuals 240 480.0000
Coeff var
                Mean rdto
19.16584
                 7.378824
Analysis
    percent acum Df
                       Sum.Sq Mean.Sq F.value
                                           1.81 0.0225
       38.0 38.0 19 68.96258 3.629609
PC2
       29.8 67.8 17 54.02864 3.178155
                                           1.59 0.0675
       22.5 90.3 15 40.84756 2.723170
PC3
                                          1.36 0.1680
        9.6 99.9 13 17.43370 1.341054
PC4
                                           0.67 0.7915
PC5
        0.0 99.9 11 0.00000 0.000000
                                           0.00 1.0000
require(klaR)
par(mar=c(4,4,0,0))
model<-AMMI(ENV=environment,</pre>
                               GEN=genotype,
                                               REP=4,
                                                        Y=rdto,
                                                                  MSE=2,
graph="triplot", number=F)
    α
PC2(29.8)
                                                             PC 3 (22.5)
    0
                   М
                           Α
    7
    Ņ
       -2
                -1
                                         2
                                                        PC 1 (38)
                      PC 1 (38)
```

Figure 5.1. Biplot and Triplot

In this case, the interaction is significant. The first two components explain 67.8%; then the biplot can provide information about the interaction genotype-environment. With the triplot, 90.3% would be explained.

6 SPECIAL FUNCTIONS

6.1 CONSENSUS OF DENDROGRAM

Consensus is the degree or similarity of the vertexes of a tree regarding its branches of the constructed dendrogram. The function to apply is consensus().

The data correspond to a table, with the name of the individuals and the variables in the rows and columns respectively. For the demonstration, we will use the "pamCIP" data of 'agricolae', which correspond to molecular markers of 43 entries of a germplasm bank (rows) and 107 markers (columns).

The program identifies duplicates in the rows and can operate in both cases. The result is a dendrogram, in which the consensus percentage is included, figure 6.1.

```
data(pamCIP)
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
par(cex=0.8)
output<-consensus(pamCIP,distance="binary", method="complete",
nboot=500)</pre>
```

Cluster Dendrogram

distancia hclust (*, "complete")

Figure 6.1. Dendrogram, production by consensus()

Duplicates: 18

New data : 25 Records

Consensus hclust

Method distance: binary
Method cluster : complete
rows and cols : 25 107
n-bootstrap : 500

Run time : 20.469 secs

When the dendrogram is complex, it is convenient to extract part of it with the function hcut(), figure 6.2.

```
hcut(output,h=0.4,group=8,type="t",edgePar = list(lty=1:2,
col=colors()[c(42,84)]),main="group 8"
,col.text="blue",cex.text=1,las=1)
```


Figure 6.2. Dendrogram, production by hcut()

The obtained object "output" contains information about the process:
names(output)

[1] "table.dend" "dendrogram" "duplicates"

This means that we can know the duplicates, reconstruct the tree diagram and maintain the interactions.

output\$table.dend

```
X1 X2 xaxis height percentage groups
1 -6 -24 7.500000 0.02857143 64.0 6-24
2 -3 -4 19.500000 0.03571429 64.2 3-4
. . . .
24 21 23 5.099609 0.93617021 100.0 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25
```

Reproduce the dendrogram:

dend<-output\$dendrogram
data<-output\$table.dend
plot(dend)
text(data[,3],data[,4],data[,5])</pre>

Construct a classic dendrogram, figure 6.3

```
par(mar=c(4,3,1,1))
dend<-as.dendrogram(output$dendrogram)
plot(dend,type="r",edgePar = list(lty=1:2, col=colors()[c(42,84)])
,las=1)
text(data[,3],data[,4],data[,5],col="blue",cex=1)</pre>
```


Figure 6.3. Classic dendrogram

6.2 MONTECARLO

It is a method for generating random numbers of an unknown distribution. It uses a data set and, through the cumulative behavior of its relative frequency, generates the possible random values that follow the data distribution. These new numbers are used in some simulation process.

The probability density of the original and simulated data can be compared, figure 6.4.

```
data(soil)
set.seed(9473)
simulated <- montecarlo(soil$pH,1000)
par(mar=c(3,0,2,1))
plot(density(soil$pH),axes=F,main="pH density of the soil\ncon
Ralstonia",xlab="",lwd=4)
lines(density(simulated), col="blue", lty=4,lwd=4)
h<-graph.freq(simulated,plot=F)
axis(1,0:12)
legend("topright",c("Original","Simulated"),lty=c(1,4),col=c("black", "blue"), lwd=4)</pre>
```


Figure 6.4. Distribution of the simulated and the original data

1000 data have been generated, being the frequency table:

```
round(table.freq(h),2)
 Lower Upper Main freq relative
                                   CF RCF
                                   12 0.01
   2.00 2.79 2.40
                     12
                            0.01
   2.79 3.58 3.19
                     50
                            0.05
                                   62 0.06
   9.11 9.90 9.51
                     49
                            0.05 989 0.99
   9.90 10.69 10.30
                            0.01 1000 1.00
                     11
Some statistics:
summary(soil$pH)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
        4.700
                 6.100
  3.800
                         6.154 7.600
                                         8.400
summary(simulated)
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                7.762
  1.443
         4.698
                 6.022
                          6.209
                                        10.950
```

6.3 RE-SAMPLING IN LINEAR MODEL

It uses the permutation method for the calculation of the probabilities of the sources of variation of ANOVA according to the linear regression model or the design used. The principle is that the Y response does not depend on the averages proposed in the model; hence, the Y values can be permutated and many model estimates can be constructed. On the basis of the patterns of the random variables of the elements under study, the probability is calculated in order to measure the significance.

For a variance analysis, the data should be prepared similarly. The function to use is: resampling.model()

```
data(potato)
potato[,1]<-as.factor(potato[,1])
potato[,2]<-as.factor(potato[,2])
model<-"cutting~variety + date + variety:date"
analysis<-resampling.model(model, potato, k=1000)</pre>
```

The function resampling.model() can be used when the errors have a different distribution from normal.

6.4 SIMULATION IN LINEAR MODEL

Under the assumption of normality, the function generates pseudo experimental errors under the proposed model, and determines the proportion of valid results according to the analysis of variance found.

The function is: simulation.model(). The data are prepared in a table, similarly to an analysis of variance.

Considering the example proposed in the previous procedure:

```
model <- simulation.model(model, potato, k=1000)</pre>
Simulation of experiments
Under the normality assumption
Proposed model: cutting~variety + date + variety:date
Analysis of Variance Table
Response: cutting
              Df Sum Sq Mean Sq F value Pr(>F)
variety
                1 25.087 25.087 7.2580 0.01952 *
           2 13.892 6.946 2.0096 0.17671
date
variety:date 2 4.853 2.427 0.7020 0.51484
Residuals 12 41.477 3.456
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Validation of the analysis of variance for the proposed model
Simulations: 1000
                Df F value % Acceptance % Rejection Criterion

      variety
      1
      7.2580377
      51.5
      48.5 acceptable

      date
      2
      2.0095604
      61.1
      38.9 acceptable

      variety:date
      2
      0.7020312
      67.5
      32.5 acceptable
```

The validation is referred to the percentage of decision results equal to the result of the ANOVA decision. Thus, 67.5% of the results simulated on the interaction variety*date gave the same result of acceptance or rejection obtained in the ANOVA.

6.5 PATH ANALYSIS

It corresponds to the "path analysis" method. The data correspond to correlation matrices of the independent ones with the dependent matrix (XY) and between the independent ones (XX).

It is necessary to assign names to the rows and columns in order to identify the direct and indirect effects.

```
corr.x < -matrix(c(1,0.5,0.5,1),c(2,2))
corr.y<- rbind(0.6,0.7)
names<-c("X1","X2")
dimnames(corr.x)<-list(names, names)</pre>
dimnames(corr.y)<-list(names, "Y")</pre>
output<-path.analysis(corr.x,corr.y)</pre>
Direct (Diagonal) and indirect effect path coefficients
______
        X1 X2
X1 0.3333333 0.2666667
X2 0.1666667 0.5333333
Residual Effect^2 = 0.4266667
> output
$Coeff
                 Х2
         X1
X1 0.3333333 0.2666667
X2 0.1666667 0.5333333
$Residual
[1] 0.4266667
```

6.6 LINE X TESTER

It corresponds to a crossbreeding analysis of a genetic design. The data should be organized in a table. Only four columns are required: repetition, females, males, and response. In case it corresponds to progenitors, the females or males field will only be filled with the corresponding one. See the heterosis data.

Example with the heterosis data, locality 2.

```
where <NA> is empty.
If it is a progeny, it comes from a "Female" and a "Male."
If it is a progenitor, it will only be "Female" or "Male."
The following example corresponds to data of the locality 2:
24 progenies
8 females
3 males
3 repetitions
They are 35 treatments (24, 8, 3) applied to three blocks.
data(heterosis)
site2<-subset(heterosis,heterosis[,1]==2)</pre>
site2<-subset(site2[,c(2,5,6,8)],site2[,4]!="Control")
attach(site2)
output1<-lineXtester(Replication, Female, Male, v2)
detach(site2)
ANALYSIS LINE x TESTER: v2
ANOVA with parents and crosses
_____
                   Df Sum Sq Mean Sq F value Pr(>F)
                   2 0.519190476 0.259595238 9.801 0.0002
Replications
Treatments
                   34 16.101605714 0.473576639 17.879 0.0000
Parents
                   10 7.731490909 0.773149091 29.189 0.0000
Parents vs. Crosses 1 0.005082861 0.005082861 0.192 0.6626
                   23 8.365031944 0.363697041 13.731 0.0000
Crosses
Error
                   68 1.801142857 0.026487395
Total
                  104 18.421939048
ANOVA for line X tester analysis
_____
                   Sum Sq Mean Sq F value Pr(>F)
               7 4.9755431 0.71079187 3.632 0.0191
Lines
Testers
               2 0.6493861 0.32469306 1.659 0.2256
Lines X Testers 14 2.7401028 0.19572163
                                     7.389 0.0000
              68 1.8011429 0.02648739
Error
ANOVA for line X tester analysis including parents
______
                   Df Sum Sq Mean Sq F value Pr(>F)
                   2 0.519190476 0.259595238 9.801 0.0002
Replications
                   34 16.101605714 0.473576639 17.879 0.0000
Treatments
                   10 7.731490909 0.773149091 29.189 0.0000
Parents
                   1 0.005082861 0.005082861
                                              0.192 0.6626
Parents vs. Crosses
                   23 8.365031944 0.363697041 13.731 0.0000
Crosses
                    7 4.975543056 0.710791865
Lines
                                              3.632 0.0191
                   2 0.649386111 0.324693056 1.659 0.2256
Testers
Lines X Testers 14 2.740102//0 0.120.1

Error 68 1.801142857 0.026487395
                  14 2.740102778 0.195721627
                                              7.389 0.0000
                 104 18.421939048
```

```
GCA Effects:
_____
Lines Effects:
Achirana LT-8
               MF-I MF-II Serrana
                                       TPS-2 TPS-25
                                                        TPS-7
                      -0.449
                              0.058 -0.047
0.022 -0.338 0.199
                                                0.414
                                                        0.141
Testers Effects:
TPS-13 TPS-67 TS-15
0.087 0.046 -0.132
SCA Effects:
_____
        Testers
       TPS-13 TPS-67 TS-15
Lines
 Achirana 0.061 0.059 -0.120
LT-8 -0.435 0.519 -0.083
 MF-I
         -0.122 -0.065 0.187
 MF-II -0.194 0.047 0.148
 Serrana 0.032 -0.113 0.081
         0.197 -0.072 -0.124
 TPS-2
 TPS-25
          0.126 -0.200 0.074
 TPS-7
         0.336 -0.173 -0.162
Standard Errors for Combining Ability Effects:
_____
S.E. (gca for line) : 0.05424983
S.E. (gca for tester) : 0.0332211
S.E. (sca effect) : 0.09396346
S.E. (gi - gj)line : 0.07672084
S.E. (gi - gj) tester : 0.04698173
S.E. (sij - skl)tester: 0.1328844
Genetic Components:
===========
Cov H.S. (line) : 0.05723003
Cov H.S. (tester): 0.00537381
Cov H.S. (average): 0.003867302
Cov F.S. (average): 0.1279716
F = 0, Adittive genetic variance: 0.01546921
F = 1, Adittive genetic variance: 0.007734604
F = 0, Variance due to Dominance: 0.1128228
F = 1, Variance due to Dominance: 0.05641141
Proportional contribution of lines, testers
and their interactions to total variance
_____
Contributions of lines : 59.48026
Contributions of testers: 7.763104
Contributions of lxt : 32.75663
```

6.7 SOIL UNIFORMITY

The Smith index is an indicator of the uniformity, used to determine the parcel size for research purposes. The data correspond to a matrix or table that contains the response per basic unit, a number of n rows x m columns, and a total of n*m basic units.

For the test, we will use the rice file. The graphic is a result with the adjustment of a model for the parcel size and the coefficient of variation, figure 6.5.

```
data(rice)
table<-index.smith(rice,
main="Interaction between the CV and the parcel size" ,col="red",
type="l",xlab="Size")
uniformity <- data.frame(table$uniformity)</pre>
uniformity
      Size Width Length plots
                                    Vx
                   1
                         648 9044.539 13.0
            1
2
                    2
                          324 7816.068 12.1
            1
3
      2
            2
                   1
                          324 7831.232 12.1
40 162
            Q
                  18
                            4 4009.765 8.6
```

The size is the product of the width x the length of the parcel, and the rectangle size is the product of the width x the length.

Figure 6.5. Adjustment curve for the optimal size of parcel

6.8 CONFIDENCE LIMITS IN BIODIVERSITY INDICES

The biodiversity indices are widely used for measuring the presence of living things in an ecological area. Many programs indicate their value. The function of 'agricolae' is also to show the confidence intervals, which can be used for a statistical comparison. Use the bootstrap procedure. The data are organized in a table; the species are placed in a column; and in another one, the number of individuals. The indices that can be calculated with the function index.bio() of 'agricolae' are: "Margalef", "Simpson.Dom", "Simpson.Div", "Berger.Parker", "McIntosh", and "Shannon."

In the example below, we will use the data obtained in the locality of Paracsho, district of Huasahuasi, province of Tarma in the department of Junín.

The evaluation was carried out in the parcels on 17 November 2005, without insecticide application. The counted specimens were the following:

```
data(paracsho)
species <- paracsho[79:87,4:6]
species</pre>
```

```
Family Number.of.specimens
        Order
                TIPULIDAE
79
      DIPTERA
80 LEPIDOPTERA
                NOCTUIDAE
                                             1
                PYRALIDAE
81
   NOCTUIDAE
                                             3
    HEMIPTERA ANTHOCORIDAE
82
                                             1
                                            16
8.3
     DIPTERA
               TACHINIDAE
      DIPTERA ANTHOCORIDAE
84
                                             3
85
      DIPTERA SCATOPHAGIDAE
                                             5
86
      DIPTERA SYRPHIDAE
                                             1
87
      DIPTERA
                  MUSCIDAE
                                             3
```

The Shannon index is:

```
output <- index.bio(species[,3],method="Shannon",level=95,nboot=200)
Method: Shannon
Index: 3.52304
95 percent confidence interval:
    3.088775; 4.286088</pre>
```

6.9 CORRELATION

The function correlation() of 'agricolae' makes the correlations through the methods of Pearson, Spearman and Kendall for vectors and/or matrices. If they are two vectors, the test is carried out for one or two lines; if it is a matrix one, it determines the probabilities for a difference, whether it is greater or smaller.

For its application, consider the soil data: data(soil)

```
data(soil)
correlation(soil[,2:4],method="pearson")
Correlation Analysis
Method
          : pearson
Alternative: two.sided
$correlation
       pH EC CaCO3
      1.00 0.55 0.73
      0.55 1.00 0.32
CaCO3 0.73 0.32 1.00
$pvalue
              рН
                        EC
                                  CaCO3
      1.000000000 0.0525330 0.004797027
      0.052532997 1.0000000 0.294159813
CaCO3 0.004797027 0.2941598 1.000000000
$n.obs
[1] 13
attach(soil)
correlation(pH,soil[,3:4],method="pearson")
```

```
Correlation Analysis
Method
         : pearson
Alternative: two.sided
$correlation
    EC CaCO3
pH 0.55 0.73
$pvalue
      EC CaCO3
рН 0.0525 0.0048
$n.obs
[1] 13
correlation(pH,CaCO3,method="pearson")
Pearson's product-moment correlation
data: pH and CaCO3
t = 3.520169 , df = 11 , p-value = 0.004797027
alternative hypothesis: true rho is not equal to 0
sample estimates:
cor
0.7278362
```

6.10 OTHER FUNCTIONS

Desirability functions that facilitate the data management:

tapply.stat() Calculation of statesmen and mathematical operations in columns of a table in relation to grouped factors.

Factor and variable table

Application with 'agricolae' data:

```
data(RioChillon)
attach(RioChillon$babies)
tapply.stat(yield,farmer,function(x) max(x)-min(x))
detach(RioChillon$babies)
           farmer yield
1 AugustoZambrano 7.5
       Caballero 13.4
3
      ChocasAlto 14.1
      FelixAndia 19.4
5
     Huarangal-1 9.8
6
     Huarangal-2 9.1
7
     Huarangal-3 9.4
         Huatocay 19.4
9 IgnacioPolinario 13.1
```

It corresponds to the range of variation in the farmers' yield.

The function "tapply" can be used directly or with function.

If A is a table with columns 1,2 and 3 as category, and 5,6 and 7 as variables, then the following procedures are valid:

```
tapply.stat(A[,5:7], A[,1:3],mean)
tapply.stat(A[,5:7], A[,1:3],function(x) mean(x,na.rm=TRUE))
tapply.stat(A[,c(7,6)], A[,1:2],function(x) sd(x)*100/mean(x))
```

Coefficient of variation of an experiment

If "model" is the object resulting from an analysis of variance of the function aov() or Im() of R, then the function cv.model() calculates the coefficient of variation.

```
data(sweetpotato)
model <- model<-aov(yield ~ virus, data=sweetpotato)
cv.model(model)
[1] 17.16660</pre>
```

Skewness and curtosis

The skewness and curtosis results, obtained by 'agricolae', are equal to the ones obtained by SAS, MiniTab, SPSS, InfoStat, and Excel.

```
If x represents a data set:
> x<-c(3,4,5,2,3,4,5,6,4,NA,7)
skewness is calculated with:
> skewness(x)
[1] 0.3595431
and curtosis with:
> kurtosis(x)
[1]-0.1517996
```

Tabular value of Waller-Duncan

The function Waller determines the tabular value of Waller-Duncan. For the calculation, value F is necessary, calculated from the analysis of variance of the study factor, with its freedom degrees and the estimate of the variance of the experimental error. Value K, parameter of the function is the ratio between the two types of errors (I and II). To use it, a value associated with the alpha level is assigned. When the alpha level is 0.10, 50 is assigned to K; for 0.05, K=100; and for 0.01, K=500. K can take any value.

Figure 6.6 illustrates the function for different values of K with freedom degrees of 5 for the numerator and 15 for the denominator, and values of calculated F, equal to 2, 4, and 8.

```
q<-5
f<-15
K<-seq(10,1000,100)
n<-length(K)
y<-rep(0,3*n)
dim(y)<-c(n,3)
for(i in 1:n) y[i,1]<-waller(K[i],q,f,Fc=2)
for(i in 1:n) y[i,2]<-waller(K[i],q,f,Fc=4)</pre>
```

```
for(i in 1:n) y[i,3]<-waller(K[i],q,f,Fc=8)
plot(K,y[,1],type="1",col="blue",ylab="waller")
lines(K,y[,2],type="1",col="red",lty=2,lwd=2)
lines(K,y[,3],type="1",col="green",lty=4,lwd=2)
legend("topleft",c("2","4","8"),col=c("blue","red","green"),lty=c(1,8,20),lwd=2,title="Fc")
title(main="Waller in function of K")</pre>
```

Waller en función de K

Figure 6.6. Function of Waller to different value of parameters K and Fc

AUDPC

The area under the disease progress curve (AUDPC), (see figure 6.7), calculates the absolute and relative progress of the disease. It is required to measure the disease in percentage terms during several dates, preferably equidistantly.

```
days<-c(7,14,21,28,35,42)
evaluation<-data.frame(E1=10,E2=40,E3=50,E4=70,E5=80,E6=90)
par(mar=c(4,4,1,1))
plot(days, evaluation,type="h",ylim=c(0,100),axes=F,col=
colors()[42],xlab="Days", ylab="Evaluation")
lines(days,evaluation,col= colors()[42])
axis(1,days)
axis(2,seq(0,100,20),las=2)
rect(7,0,42,100)
audpc(evaluation,days)
audpc(evaluation,days,"relative")
text(15,80,"Audpc Absolute = 2030")
text(15,70,"Audpc Relative = 0.58")</pre>
```


Figure 6.7. AUDPC: Area under the curve

NON-ADDITIVITY

Tukey's test for non-additivity is used when there are doubts about the additivity veracity of a model. This test confirms such assumption and it is expected to accept the null hypothesis of the non-additive effect of the model.

For this test, all the experimental data used in the estimation of the linear additive model are required.

Use the function nonadditivity() of 'agricolae'. For its demonstration, the experimental data "potato", of the package 'agricolae', will be used. In this case, the model corresponds to the randomized complete block design, where the treatments are the varieties.

```
data (potato)
potato[,1]<-as.factor(potato[,1])</pre>
model<-lm(cutting ~ date + variety,potato)</pre>
df<-df.residual(model)
MSerror<-deviance (model) /df
attach (potato)
analysis<-nonadditivity(cutting, date, variety, df, MSerror)
detach (potato)
Tukey's test of non-additivity
cutting
P: 15.37166
Q: 77.4444
Analysis of Variance Table
Response: residual
              Df Sum Sq Mean Sq F value Pr(>F)
Non-additivity 1 3.051
                           3.051
                                    0.922 0.3532
Residuals
              14 46.330
                           3.309
```

According to the results, the model is additive because the p.value 0.35 is greater than 0.05.

LATEBLIGHT

LATEBLIGHT is a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage.

LATEBLIGHT Version LB2004 was created in October 2004 (Andrade-Piedra et al., 2005a, b and c), based on the C-version written by B.E. Ticknor ('BET 21191 modification of cbm8d29.c'), reported by Doster et al. (1990) and described in detail by Fry et al. (1991) (This version is referred as LB1990 by Andrade-Piedra et al. [2005a]). The first version of LATEBLIGHT was developed by Bruhn and Fry (1981) and described in detail by Bruhn et al. (1980).

```
library(agricolae)
f <- system.file("external/weather.csv", package="agricolae")</pre>
weather <- read.csv(f,header=FALSE)</pre>
f <- system.file("external/severity.csv", package="agricolae")</pre>
severity <- read.csv(f)
weather[,1]<-as.Date(weather[,1],format = \%m/%d/%Y")
# Parameters dates
dates<-c("2000-03-25","2000-04-09","2000-04-12","2000-04-16","2000-
04 - 22")
dates <- as. Date (dates)
EmergDate <- as.Date('2000/01/19')</pre>
EndEpidDate <- as.Date("2000-04-22")</pre>
dates<-as.Date(dates)
NoReadingsH<- 1
RHthreshold <- 90
WS<-weatherSeverity(weather, severity, dates, EmergDate, EndEpidDate,
NoReadingsH, RHthreshold)
# Parameters Lateblight
InocDate<-"2000-03-18"
LGR <- 0.00410
IniSpor <- 0
SR <- 292000000
IE <- 1.0
LP <- 2.82
InMicCol <- 9
Cultivar <- 'NICOLA'
ApplSvs <- "NOFUNGICIDE"
main<-"Cultivar: NICOLA"
model<-lateblight(WS, Cultivar, ApplSys, InocDate, LGR, IniSpor, SR, IE,
LP, MatTime='LATESEASON', InMicCol, main=main, type="1", xlim=c(65,95), lw
d=1.5,xlab="Time (days after emergence)", ylab="Severity
(Percentage)")
> head(model$Gfile)
           dates nday MeanSeverity StDevSeverity
                                                   MinObs
                                                              Max0bs
                              0.1 0.000000 0.100000
Eval1 2000-03-25 66
                                                            0.10000
Eval2 2000-04-09 81
                                       24.722459 -3.922459 45.52246
                              20.8
                 84
                                      32.710854 24.289146 89.71085
Eval3 2000-04-12
                             57.0
Eval4 2000-04-16 88
                             94.0
                                       7.968689 86.031311 101.96869
                         97.0
                                      4.000000 93.000000 101.00000
                 94
Eval5 2000-04-22
```


Figure 6.8. lateblight: LATESEASON

```
# reproduce graph
x<- model$Ofile$nday
y<- model$Ofile$SimSeverity
w<- model$Gfile$nday
z<- model$Gfile$MeanSeverity
Min<-model$Gfile$MinObs
Max<-model$Gfile$MaxObs
plot(x,y,type="l",xlim=c(65,95),lwd=1.5,xlab="Time (days after
emergence)",
ylab="Severity (Percentage)")
points(w,z,col="red",cex=1,pch=19)
npoints <- length(w)</pre>
for ( i in 1:npoints) {
segments(w[i],Min[i],w[i],Max[i],lwd=1.5,col="red")
legend("topleft",c("Disease progress curves","Weather-Severity"),
title="Description",lty=1,pch=c(3,19),col=c("black","red"))
```


Figure 6.9. lateblight: LATESEASON

Table 6.10. ASCII Character Code Reference for the use of symbols

ASCII Codes Table used in R									
Code	Symbol	Code	Symbol	Code	Symbol				
92	}	124	ı	64	@				
47	1	60	<	94	۸				
91	[62	>	35	#				
93]	61	=	36	\$				
40	(34	"	37	%				
41)	126	~	38	&				
123	{	58	:	39	4				
125	}	59	;		1				

REFERENCES

- Cochran and Cox. (1992). Experimental Design. Second edition. Wiley Classics Library Edition published. John Wiley & Sons, INC.
- Conover, W.J. (1999). Practical Nonparametrics Statistics. John Wiley & Sons, INC, New York.
- 3. De Mendiburu, Felipe (2009). Una herramienta de análisis estadístico para la investigación agrícola. Tesis. Universidad Nacional de Ingeniería (UNI).
- 4. Joshi, D.D. (1987). Linear Estimation and Design of Experiments. WILEY EASTERN LIMITED, New Delhi, India.
- 5. Kang, M. S. (1993). Simultaneous Selection for Yield and Stability: Consequences for Growers. Agron. J. 85:754-757.
- 6. Kuehl, Robert (2000). Design of Experiments. 2nd ed., Duxbury.
- 7. LeClerg, Erwin (1962). Field Plot Technique, Burgess Publishing Company.
- 8. Montgomery (2002). Diseño y Análisis de Experimentos (2ª Ed) WILEY.
- Patterson, H.D. and Williams, E.R. Biometrika (1976). A New Class of Resolvable Incomplete Block Designs. Printed in Great Britain.
- R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- 11. Steel & Torry & Dickey (1997). Principles and Procedures of Statistics. A Biometrical Approach. Third Edition.