Flight-Dynamics, Flutter, and Active-Flutter-Suppression Analyses of a Flexible Flying-Wing Research Drone

Dr. David K. Schmidt dschmidt@uccs.edu

Professor Emeritus University of Colorado

Principal D.K. Schmidt, & Associates

As presented at the

NASA Armstrong Flight Research Center Edwards AFB, CA

June 15, 2015

Copyright © 2015 by David K. Schmidt

The Overall Research Project

Lightweight Adaptive Aeroelastic Wing

Funded Under the NASA AATT Program

The Team

University of Minnesota Pete Seiler (Gary Balas)

Systems Technology Inc. Brian Danowsky

VPI&SU - Rakesh Kapania

Aurora Flight Sciences Jeremy Hollman

CM Soft Inc. – Charbel Farhat

D.K. Schmidt & Associates

D. K. Schmidt & Associates

Project Overview

Goal: Actively Optimize Wing Shape - Transport Aircraft

Approach: Use Flexibility to an Advantage, MDAO, active control

- Active flutter suppression is a key enabling technology
- Critical PAAW program components –

Three different vehicles will be developed and flight tested

The first will be very similar to Lockheed Martin's FFAD - which is the vehicle being discussed here

Weight Wing Span
12 lb 10 ft

"Rigid" center body – flex wings

Outline

- Objectives and motivation
- The modeling methodology
- The vehicle's attitude dynamics Rigid and Elastic
- Flutter analysis
- Active flutter suppression
- Summary and conclusions

Objectives of this Investigation

- Assess the flutter and flight-dynamics characteristics of FFAD vehicle
- Synthesize integrated SAS/Active Flutter Suppression CLAWS (with no a priori knowledge of LM's CLAWS)
- Develop dynamic nDOF model early in design cycle
- Although several modeling approaches will be utilized in project, this task was is to-

Explore the use of a "Flight-Dynamics" model, as opposed to a more traditional "Flutter" model

Consider use of beam-element FEM and quasi-steady aero initially

- Feedback and suggestions sought
- NOTE: Longitudinal axis only, so far

"Flutter" vs. "Flight-Dynamics" nDOF Models

Flutter Based

Expand flutter model (elastic DOFs) to incorporate RB DOFs

EOMs in inertial frame

Linear

Familiar to aeroelasticians

Flight-Dynamics Based

Expand flight-dynamics model (RB DOFs) to incorporate elastic DOFs

EOMs in <u>vehicle-fixed</u> frame

Linear (with potential for non-linear RB EOMs)

Familiar to flight dynamicists

The "Flight-Dynamics" Modeling Formulation

- Based on mean-axis formulation of Milne (1964)*
- Mean axes replace the body-fixed axes used for rigid vehicles, as their motion describes the RB motion (DOFs), structure deforms relative to this mean axis
- EOMs expressed in "body-fixed" vs inertial axes and expressed in terms of aero coefficients - typical of flight-dynamics models of rigid vehicles.
- EOMs derived via Lagrange using method of assumed modes
- Uses free-free vibration mode shapes (NASTRAN) for the shape functions, thus satisfying Milne's mean-axis constraints
- Various aerodynamic modeling approaches wind tunnel, slender-wing, VLM, DLM
 - Milne, "Dynamics of the Deformable Airplane," UK Ministry of Aviation, Aero Res Council Rept. 1964.
 - Waszak and Schmidt, "Flight Dynamics of Aeroelastic Vehicles," Journ. of AC, 25 (6), June, 1988.
 - · Schmidt, Modern Flight Dynamics, McGraw Hill, 2012.

The Modeling Methodology

NDOF Model Structure

Longitudinal Dynamics

$$\mathbf{x}^{T} = \begin{bmatrix} u_{rig} & \alpha_{rig} & \theta_{rig} & q_{rig} & \eta_{1} & \eta_{1} & \eta_{2} & \eta_{3} & \eta_{3} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} X_u & X_{\alpha} & -g & X_q & 0 & 0 & \cdots & 0 & 0 \\ Z_u/U_0 & Z_{\alpha}/U_0 & 0 & 1 + Z_q/U_0 & Z_{\eta_1}/U_0 & Z_{\eta_1}/U_0 & \cdots & Z_{\eta_3}/U_0 & Z_{\eta_3}/U_0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ M_u & M_{\alpha} & 0 & M_q & M_{\eta_1} & M_{\eta_1} & \cdots & M_{\eta_3} & M_{\eta_3} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & \Xi_{1_{\alpha}} & 0 & \Xi_{1_q} & \Xi_{1_{\eta_1}} - \omega_1^2 & \Xi_{1_{\eta_1}} - 2\zeta_1\omega_1 & \cdots & \Xi_{1_{\eta_3}} & \Xi_{1_{\eta_3}} \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & \Xi_{3_{\alpha}} & 0 & \Xi_{3_q} & \Xi_{0_{\eta_1}} & \Xi_{3_{\eta_1}} & \cdots & \Xi_{3_{\eta_3}} - \omega_3^2 & \Xi_{3_{\eta_3}} - 2\zeta_3\omega_3 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{RR} & \mathbf{A}_{RE} \\ -\mathbf{A}_{ER} & \mathbf{A}_{EE} \end{bmatrix}$$

Rigid-Body Longitudinal Attitude Dynamics

35 kt

$$SM = 6\%$$

Conventional modes

$$\frac{\theta(s)}{-\delta_E(s)} = \frac{105.0 \ [0.049][6.66]}{[-0.01, 0.54][0.73, 12.4]} \ \text{deg/deg}$$

$$\frac{n_{Zcg}(s)}{-\delta_E(s)} = \frac{3.38 \ [0][-0.285][0.362][5.64]}{[-0.01, 0.54][0.73, 12.4]} \quad g/\text{deg}$$

 θ , rad α , r

Short-Period Mode Shape

q, rad/sec

-0.1

-0.3

-0.4

-0.6

Structural Dynamics

Symmetric Free-Free Vibration Modes

Data and Source	Sym 1 st Bending	Sym 1 st Torsion	Sym 2 nd Bending
Frequency, UMN (GVT)	34.6 r/s	117.8 r/s	145.6 r/s
Frequency, LM	35.4 r/s	123.4 r/s	147.3 r/s
Damping, UMN (GVT)	1.55%	2.06%	2.85%
Gen. Mass, UMN (FEM)	0.28950 sl-ft ²	0. 00772 sl-ft ²	0. 05239 sl-ft ²

Knowing The Mode Shapes Is Critical

Elastic Vehicle Attitude Dynamics 35 kt < V_{E1}

$$\frac{\theta_{cg}(s)}{-\delta_{E}(s)} = \frac{65.2 \ [0.0536][7.044] \ [0.22,41.2][0.05,101.7][0.05,165.3]}{[-0.01,0.61][0.59,18.1][0.15,30.9][0.07,103.7][0.08,146.0]} \ \text{deg/deg}$$

$$\frac{n_{\text{Zcg}}(s)}{-\delta_E(s)} = \frac{-0.228 \ [0][-0.0279][29.58][-25.58][0.24,42.3][0.07,104.1][-282.6][246]}{[-0.01,0.61][0.59,18.1]}$$

$$[0.15,30.9][0.07,103.7][0.08,146.0]$$

g/deg

Rigid $\frac{\theta(s)}{-\delta_E(s)} = \frac{105.0 \ [0.049][6.66]}{[-0.01, 0.54][0.73, 12.4]} \ \text{deg/deg}$ $\frac{n_{Zcg}(s)}{-\delta_E(s)} = \frac{3.38 \ [0][-0.285][0.362][5.64]}{[-0.01, 0.54][0.73, 12.4]} \ g/\text{deg}$

 $\dot{ heta}_{E1}$, rad/sec "Short-Period" Mode Shape θ_{RB} , rad θ_{E1} , rad q_{Rig} , rad/sec q_{Rig} , rad/sec

Elastic Vehicle Attitude Dynamics

35 kt < V_{F1}

No classical short-period mode "Elastic-short-period mode"

Pitch attitude highly coupled with aeroelastic response (1st bending/tors. vibr. mode)

"Short Period" –
Higher frequency,
lower damping

 $1/T_{\theta 2}$ Increased

 n_z Numerator dynamics affected

Higher-order elastic dipoles

Flutter Analysis - q Locus

From "Flight Dynamics" Model

BFF Vehicle Longitudinal Dynamics Sea Level

Two flutter conditions

BFF and BT flutter

BFF $V_{\text{flutter}} = 47 \text{ kt.}$

 $BT V_{flutter} = 57 kt.$

BFF genesis mode –

1st symmetric bending

BT genesis mode –

1st symmetric torsion

VFG Comparison

Comparison With LM Results*

Model/Test	BFF Flutter	BFF Flutter	BT Flutter	BT Flutter
Wiodel/Test	Speed	Frequency	Speed	Frequency
LM Analytical	43 kt	4.2 Hz	57 kt	10.5 Hz
LM Flight Test	46 kt	4.5 Hz	NA	NA
FD Model	47 kt	4.4 Hz	57 kt#	12.7 Hz
Residualized FD Model	47 kt	4.4 HZ	NA	NA
Truncated FD Model	No Flutter	No Flutter	NA	NA

- Correctly captured both flutter modes
- Matched both genesis flutter modes
- Matched BFF flutter speed # BT Adjusted
- Matched BFF Flutter frequency
- Torsion mode SE aero effects critical to BFF condition
- Burnett, Edward L., et al, "NDOF Simulation Model for Flight Control Development with Flight Test Correlation," Lockheed Martin Aeronautics Co., AIAA Modeling and Simulation Tech. Conf., 2010-7780, 2010.

Active Flutter Suppression and Stability Augmentation

Vehicle Sensors and Control Surfaces

OB Flaps L4 – R4

Control-Law Synthesis - ILAF

- Require integrated approach to SAS and active flutter suppression
- Seek robustness against vibration mode-shape uncertainty
- One approach concept of <u>ILAF</u> (Wykes*)
 "Identically Located Acceleration and Force"
- ILAF "A point force applied to a structure proportional to the velocity of the structure measured at the point of application of the force will increase the damping of <u>all</u> structural modes."
- Requires <u>no knowledge</u> of the vibration mode shapes robust If can implement true ILAF point force.
- Used to design active-structural-mode-control system on B-1 & XB-70

• Wykes, et al, "Design and Development of a Structural Mode Control System," NASA CR-143846, Rockwell Int.., 1977.

Conceptual Idea Behind ILAF

The EOM for the i'th elastic modal coordinate is

$$\ddot{\boldsymbol{\eta}}_i + 2\boldsymbol{\zeta}_i \boldsymbol{\omega}_i \dot{\boldsymbol{\eta}}_i + \boldsymbol{\omega}_i^2 \boldsymbol{\eta}_i = \boldsymbol{Q}_i / \boldsymbol{\mathcal{M}}_i$$

The generalized force from a force F applied at point P is

$$Q_i = \phi_i \left(x_P, y_P, z_P \right) \cdot \mathbf{F}$$

If the force is proportional to the negative local velocity then

$$\mathbf{F} = -K \frac{d\mathbf{d}_E}{dt} \bigg|_{Body} (x_P, y_P, z_P) = -K \sum_{i=1}^n \phi_i (x_P, y_P, z_P) \dot{\eta}_i$$

Hence the generalized force becomes

$$Q_i = -K\phi_i(x_P, y_P, z_P) \cdot \sum_{j=1}^n \phi_j(x_P, y_P, z_P) \dot{\eta}_j = -K'\dot{\eta}_i + \sum_{\substack{j=1\\j\neq i}}^n K_j \dot{\eta}_j$$

Where K' > 0

Substitution in to EOM yields increased damping

ILAF Applied to BFF Vehicle

Sensor-Actuator Selection

- BFF condition interactions between the vehicle <u>pitch-dominant</u> mode (elastic-short-period) and the first aeroelastic mode
- First aeroelastic mode involves <u>bending</u>, center-body <u>pitching</u>, and wing twist.
- "Rigid-body" pitching replaces wing twist in the conventional bending-torsion flutter mechanism.
- Second flutter mode is more classical bending-torsion max deflection at wing tips
- Corollaries to ILAF
 - 1. Apply pitching moment to location on the structure proportional to pitch rate measured at the same location.
 - 2. Apply wing torque at tips proportional to wing-tip twist.
- Approximate ILAF <u>feedback center-body pitch rate to body flaps</u> and feedback wing-tip twist to outboard flaps

Gain Root Locus - BFF Stabilized Pitch Rate to Body Flap Root Locus 150 0.07 0.14 0.32 0.22 140 Genesis - Second Bending/Torsion 120 50 kt, SL 0.42 Bare Airframe Imaginary Axis (seconds⁻¹) 100 Genesis 100 $\delta_{BF-Sym} = Kq_{cg}$ **First Torsion ₹** -0.5660 50 **BFF** Stabilized **Elastic Short Period** Genesis – First Bending/Torsion 0.9 Phugoid -40 -30 -20 -10 10 -50 Real Axis (seconds⁻¹)

Second Flutter-Mode Suppression

Wing-Tip Twist Accel. to Outboard Flaps

With Actuators - 50 kts

Open-Loop Bode Editor for Open Loop 1(OL1)

MATLAB's Control
Design Tool

Tip-Twist Loop Nyquist

Nyquist Diagram

Control-Law Architecture – ILAF

V = 50 and 60 kts

Center-body pitch rate to symmetric body flap – K_{BFF} ~ 0.2 deg/deg/sec

Symmetric blended accelerometer to symmetric outboard flap - $K_{Tip} \sim 0.0005 \text{ deg/deg/sec}^2$

Notes: Second flutter mode (torsion) suppression is actuator limited at 60 kt
Washout and low-pass filters also being considered

The Mode Shapes – 50 kts

Unstable

Elastic Short Period

$$\lambda = -28.5 \pm 24.1j$$

1st Aeroelastic - BFF

$$\lambda = 1.9 \pm 27.8j$$

2nd Aeroelastic – Torsion

$$\lambda = -4.0 \pm 88.3j$$

Mode Shapes – 50 kts Augmented

Former Elastic Short

$$\frac{\text{Period}}{\lambda = -33.6 \pm 35.7}$$

Stabilized BFF

New Elastic Short Period

$$\lambda = -12.1 \pm 16.1j$$

$$\dot{\theta}_{E2}$$
 q_{rig}
 $\dot{\theta}_{E1}$

$$\lambda = -17.3 \pm 83.1j$$

Closed-Loop Pitch-Rate Step Responses

 $\delta_E = -1 \deg$

Based on These Results, Addition Pitch Stability Augmentation May Not Be Required

Summary and Conclusions

- Longitudinal nDOF "Flight-Dynamics" model developed
- Good agreement with LM flutter predictions and flight test results
- Vehicle exhibits highly coupled "RB" pitch and 1st aeroelastic modes
- AFS stabilized both BFF and BT flutter modes, at both 50 and 60 kt.
- Reasonable margins achieved in all cases (> ± 12 dB, > ± 40 deg)
 Including effects of actuator bandwidth (125 rad/sec).
- Simple, two-loop, constant-gain architecture with sensor blending.
- Reasonable pitch responses similar to that for stable vehicle < V_{BFF}
- Modest control-surface demands
 - 1. Schmidt, MATLAB-Based Flight-Dynamics and Flutter Modeling of a Flexible Flying-Wing Research Drone," DKS PAAW Working Paper, January, 2015. Submitted to *Journal of Aircraft*.
 - 2. Schmidt, "Integrated Stability Augmentation and Active Body-Freedom-Flutter Suppression For a Flexible Flying-Wing Research Drone," DKS PAAW Working Paper, January, 2015. Submitted to *JGCD*.

Design-Cycle Time Line (Notional)

Preliminary Conceptual Design Final Manufacturing
Detail And
Design Assembly

Simplifications Employed to Obtain "Early" Model

- Use rigid-body aero data and model the rigid vehicle first
- Start with quasi-steady aero in aeroelastic analysis
- Use simple beam-element FEM for vibration analysis

Data Sources for This Task

FEM - UMN

Mass properties - UMN

Aerodynamics

Digital DATCOM (slender-wing, empirical)

Strip theory

VLM

DLM later

Third Symmetric Mode

Aero Stability Derivatives

Table 3, Rigid-Body Longitudinal Stability Derivatives

	,	•	0			
$C_{L_{lpha}}$ /rad	$C_{M_{\alpha}}$ /rad	C_{L_q} /rad	C_{M_q} /rad	$C_{D_{lpha}}$ /rad	$C_{L_{\delta_1}}$ /rad	$C_{M_{\delta_1}}$ /rad
4.074	-0.310	2.657	-3.830	0.129	0.774	-0.014
$C_{L_{\delta_2}}$ /rad	$C_{M_{\delta_2}}$ /rad	$C_{L_{\delta_3}}$ /rad	$C_{M_{\delta_3}}$ /rad	$C_{L_{\delta_4}}$ /rad	$C_{M_{\delta_4}}$ /rad	
0.630	-0.246	0.530	-0.410	0.301	-0.353	
$C_{D_{\delta_1}}$ /rad	$C_{D_{\delta_2}}$ /rad	$C_{D_{\delta_3}}$ /rad	$C_{D_{\delta_4}}$ /rad			•
0.0012	0.0015	0.0018	0.0012			

* From UMN UAV Lab

$$SM = \frac{-C_{M_{\alpha}}}{C_{L_{\alpha}}} = \frac{0.310}{4.074} = 7.6\%$$

$$\frac{\theta(s)}{-\delta_E(s)} = \frac{105.04 (s + 0.049)(s + 6.66)}{(s^2 - 0.0125s + 0.2964)(s^2 + 18.05s + 154.4)} \text{ rad/rad}$$

$$\frac{n_{Zcg}(s)}{-\delta_E(s)} = \frac{6245 \ s(s - 0.285)(s + 0.3617)(s + 5.64)}{(s^2 - 0.0125s + 0.2964)(s^2 + 18.05s + 154.4)}$$
 ft/sec²/rad