บทที่ 1

ฟังก์ชัน

สำหรับบทนี้ จะกล่าวถึงบทนิยาม สมบัติ และกราฟของฟังก์ชัน พีชคณิตของฟังก์ชัน ฟังก์ชัน ประกอบและฟังก์ชันผกผัน ซึ่งจะเป็นพื้นฐานที่สำคัญในวิชาแคลคูลัส

1.1 บทนิยายของฟังก์ชัน

บทนิยาม 1.1. กำหนดให้ A และ B เป็นเซตใดๆ ที่ไม่ใช่เซตว่าง ความสัมพันธ์ (relation) จาก เซต A ไปยังเซต B คือ เซตย่อยของผลคูณคาร์ทีเซียนของบนเซต A กับเซต B โดยที่ ผลคูณคาร์ ทีเซียน (Cartesian product) นิยามโดย $A \times B = \{(a,b)|a \in A$ และ $b \in B\}$

บทนิยาม 1.2. ฟังก์ชัน(function) คือความสัมพันธ์ซึ่งสำหรับคู่อันดับใดๆ ในความสัมพันธ์นั้น สมาชิกตัวแรกต้องจับคู่กับสมาชิกตัวหลังเพียงตัวเดียวเท่านั้น

นั่นคือ เมื่อ f เป็นความสัมพันธ์จากเชต A ไปยังเซต B ($f \subset A \times B$) ดังนั้น f เป็นฟังก์ชัน ก็ต่อเมื่อ สำหรับ x ใดๆ ใน A และ y,z ใดๆ ใน B ถ้า $(x,y) \in f$ และ $(x,z) \in f$ แล้ว y=z เมื่อ f เป็น ฟังก์ชัน $(x,y) \in f$ สามารถเขียนแทน ด้วย y=f(x) จากนิยาม 1.2 จะได้ สำหรับทุกค่าของ x จะ ทำให้ค่าของ f(x) มีเพียงค่าเดียว แล้ว y เป็นฟังก์ชันของ x เราสามารถเขียนสัญลักษณ์ $f:A \to B$ แทนฟังก์ชัน f จากเชต A ไปยังเซต B

ตัวอย่าง 1.1.1. กำหนดให้ฟังก์ชันคือ $f(x) = x^2 - 4x + 2ln(x^2)$ จงหาค่าของ

(1). f(0)

(2). f(-1)

(3). $f(\sqrt{2})$

วิธีทำ

ตัวอย่าง 1.1.2. กำหนดให้ฟังก์ชันคือ $f(x)=x^2-4$ จงหาค่าของ

(1).
$$f(2a)$$

(2).
$$f(m-2)$$

(3).
$$\frac{f(x+h) - f(x)}{h}, h \neq 0$$

ต่อไปนี้จะกล่าวถึง โดเมนและเรนจ์ของฟังก์ชัน (Domain and Range)

จากนิยาม 1.3 จะกล่าวได้ว่า โดเมนของฟังก์ชัน f คือ เซตของจำนวน x ทั้งหมดซึ่งฟังก์ชัน f ให้ค่า f(x) และเรนจ์ของฟังก์ชัน f คือ เซตของจำนวนที่เป็นค่าของฟังก์ชันทั้งหมด

ตัวอย่างต่อไปนี้จะกล่าวถึงการหาโดเมนและเรนจ์ของฟังก์ชัน

ตัวอย่าง 1.1.3. จงหาโดเมนและเรนจ์ของฟังก์ชันต่อไปนี้

(1)
$$f(x) = x^2$$

(2)
$$f(x) = \sqrt{x-2}$$

(3)
$$f(x) = \frac{1}{x-3}$$

ตัวอย่าง 1.1.4. จงหาโดเมนและเรนจ์ของฟังก์ชันต่อไปนี้

1.
$$f(x) = \frac{x+2}{3x-2}$$

2.
$$f(x) = 2 - \sqrt{x-1}$$
 3. $f(x) = \ln(x-4)$

3.
$$f(x) = ln(x-4)$$

พีชคณิตของฟังก์ชัน (Arithmetic Operations on Functions) 1.2

บทนิยาม 1.4. กำหนดให้ f(x) และ g(x) เป็นฟังก์ชันใดๆ พีชคณิตของฟังก์ชันกำหนดดังนี้

- 1. (f+g)(x) = f(x) + g(x)

- 2. (f g)(x) = f(x) g(x)3. $(f \cdot g)(x) = f(x) \cdot g(x)$ 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}; g(x) \neq 0$

โดยที่ โดเมนของ $(f+g)(x), (f-g)(x), (f\cdot g)(x)$ มีค่าเท่ากับ $D_f\cap D_g$ เมื่อ D_f แทนโดเมนของ ฟังก์ชัน f และ D_g แทนโดเมนของฟังก์ชัน g และ โดเมนของฟังก์ชัน $\left(\frac{f}{g}\right)(x)$ จะมีค่าเท่ากับ $D_{\frac{f}{g}} = \{x \in D_f \cap D_g | g(x) \neq 0\} = D_f \cap D_g - \{x | g(x) = 0\}$

ตัวอย่าง 1.2.1. กำหนดให้ $f(x)=1+x^2$ และ $g(x)=x^2-3x$ จงหา f+g,f-g,fg,f/gวิธีทำ

ตัวอย่าง 1.2.2. กำหนดให้ $f(x)=\sqrt{x-2}$ และ g(x)=x+4 จงหา

(1). f + g

(3). *fg*

(2). f - g

(4). f/g

พร้อมทั้งหาโดเมนของแต่ละฟังก์ชัน

1.3 ฟังก์ชันประกอบ (Composite function)

บทนิยาม 1.5. กำหนดให้ f และ g เป็นฟังก์ชันใดๆ โดยที่ $R_g \cap D_f \neq \emptyset$ ฟังก์ชันประกอบ (Composite function) ของ f และ g เขียนแทนด้วย $f \circ g$ ซึ่งฟังก์ชันประกอบ $f \circ g$ นิยาม โดย

$$(f \circ g)(x) = f(g(x))$$

และโดเมนของฟังก์ชันประกอบ $f\circ g$ คือ

$$D_{(f\circ g)}=\{x|x\in D_g$$
 และ $g(x)\in D_f\}$

รูป 1.1: ฟังก์ชันประกอบ ดัดแปลงจาก Ron Larson, Bruce H. Edwards (2010). Calculus, 9th ed.

นอกจากนี้

กำหนดให้ $f,\,g$ และ h เป็นฟังก์ชันใดๆ ฟังก์ชันประกอบ $f\circ (g\circ h)$ นิยามโดย

$$(f\circ (g\circ h))(x)=f(g(h(x)))$$

ตัวอย่าง 1.3.1. กำหนดให้ $f(x)=x^2+5$ และ $g(x)=\sqrt{x}$ จงหา $(f\circ g)(x)$ และ $(g\circ f)(x)$ พร้อม ทั้งหา $D_{(f\circ g)}$

ตัวอย่าง 1.3.2. กำหนดให้ $f(x)=\sqrt{x}$ และ g(x)=x+1 จงหา

(1) $(f \circ g)(x)$

(3) $(g \circ f)(x)$

(2) $(f \circ g)(1)$

(4) $(g \circ f)(0)$

วิธีทำ

ตัวอย่าง 1.3.3. กำหนดให้ f(x)=5x-7 และ g(x)=ln(x) จงหา $(f\circ g)(x)$ และ $(g\circ f)(x)$ วิธีทำ

ตัวอย่าง 1.3.4. กำหนดให้ $f(x)=rac{1}{x}$ $g(x)=x^2+1$ และ $h(x)=\sqrt{2-x}$ จงหา $f\circ g$ และ $(g\circ f)(0)$ วิธีทำ

1.4 ฟังก์ชันผกผัน (Inverse of Functions)

บทนิยาม 1.6. ฟังก์ชัน f จะถูกเรียกว่า *ฟังก์ชันหนึ่งต่อหนึ่ง (one-to-one)* ถ้า $f(x_1) = f(x_2)$ แล้ว $x_1 = x_2$ สำหรับทุกๆ x_1 , x_2 ที่เป็นสมาชิกในโดเมนของฟังก์ชัน f

พิจารณาจากกราฟของฟังก์ชัน ถ้ามีเส้นตรงแนวนอนที่ขนานกับแกน x ตัดกับกราฟของฟังก์ชัน y=f(x) มากกว่าหนึ่งจุด แล้ว ฟังก์ชันนั้นไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง

ตัวอย่าง 1.4.1. จงพจิารณาว่า ฟังก์ชันต่อไปนี้เป็นฟังก์ชันหนึ่งต่อหนึ่งหรือไม่

(1)
$$f(x) = 3x + 2$$

(2)
$$f(x) = x^2$$

(3)
$$f(x) = x^3$$

(4)
$$f(x) = \frac{2x-4}{3x+5}$$

ต่อไปนี้จะกล่าวถึงฟังก์ชันผกพัน (inverse function)

บทนิยาม 1.7. กำหนดให้ฟังก์ชัน f เป็นฟังก์ชันหนึ่งต่อหนึ่ง (one-to-one) ที่มีโดเมนเท่ากับ X และ เรนจ์เท่ากับเท่ากับ Y แล้ว *ฟังก์ชันผกพัน (inverse function)* ของ f เขียนแทนด้วย f^{-1} นิยามโดย $f^{-1}(y)=x$ ก็ต่อเมื่อ f(x)=y สำหรับทุกๆ y ใน B

ข้อสังเกต 1.4.1. สำหรับทุกๆ x ที่เป็นสมาชิกในโดเมนของฟังก์ชัน f จะได้ $f^{-1}(f(x))=x$ และ สำหรับทุกๆ x ที่เป็นสมาชิกในโดเมนของฟังก์ชัน f^{-1} จะได้ $f(f^{-1}(x))=x$

ต่อไปนี้จะกล่าวถึงชั้นตอนการหาฟังก์ชันผกผันของฟังก์ชัน f

ชั้นตอนการหาฟังก์ชันผกผันของฟังก์ชัน f

- (1) ตรวจสอบว่า f เป็นฟังก์ชันหนึ่งต่อหนึ่ง
- (2) กำหนดให้ y = f(x)
- (3) หาค่า x ในเทอมของ y
- (4) เขียน $x = f^{-1}(y)$
- (5) เปลี่ยน y เป็น x จะได้ $f^{-1}(x)$

ตัวอย่าง 1.4.2. จงหาฟังก์ชันผกผันของฟังก์ชันต่อไป

(1)
$$f(x) = 3x + 2$$

(2)
$$f(x) = x^3$$

(3)
$$f(x) = \frac{2x-4}{3x+5}$$

ตัวอย่าง 1.4.3. กำหนดให้ $f(x)=rac{x-4}{x+4}, x
eq -4$ จงหาฟังก์ชันพกผันของฟังก์ชัน f วิธีทำ

แบบฝึกหัดท้ายบท

- 1. กำหนดให้ฟังก์ชันคือ $f(x) = x^2 + 9$ จงหาค่าของ
 - 1.1. f(0)

1.3. f(3c)

1.2. $f(\sqrt{3})$

- 1.4. $\frac{f(x+h)-f(x)}{h}, h \neq 0$
- 2. กำหนดให้ฟังก์ชันคือ f(x) = ln(2x) + 4x จงหาค่าของ
 - 2.1. f(0)

2.3. f(2)

- 2.2. $f(\frac{1}{2})$
- 3. จงหาโดเมนและเรนจ์ของฟังก์ชันต่อไปนี้

3.1.
$$f(x) = 5x + 3$$

3.4.
$$f(x) = \sqrt{4-x}$$

3.2.
$$f(x) = 2x^2 + 1$$

3.5.
$$f(x) = \frac{5}{x+2}$$

3.3.
$$f(x) = \frac{5x-1}{x(x+2)}$$

4. กำหนดให้ f(x)=2x-1 และ $g(x)=x^2+x-2$ จงหาค่าของฟังก์ชันต่อไปนี้

4.1.
$$(f+g)(x)$$
 4.2. $(f-g)(x)$ 4.3. $(fg)(x)$

4.2.
$$(f-g)(x$$

4.3.
$$(fg)(x)$$

4.4.
$$\left(\frac{f}{g}\right)(x)$$

5. จากแบบฝึกหัดข้อที่ 4 จงหาโดเมนของฟังก์ชันต่อไปนี้

5.1.
$$D_{f+e}$$

5.1.
$$D_{f+g}$$
 5.2. D_{f-g} 5.3. D_{fg}

5.4.
$$D_{f/g}$$

6. กำหนดให้ f(x) = 3x - 4 และ $g(x) = x^2 - 2x + 6$ จงหา

6.1.
$$(f \circ g)(x)$$

6.2.
$$(g \circ f)(x)$$

7. จงหาฟังก์ชันพกผันของฟังก์ชันต่อไป

7.1.
$$f(x) = \frac{2x-7}{3x+5}$$
 7.2. $f(x) = \ln(2x-1)$ 7.3. $f(x) = 3^{5x-1}$

7.2.
$$f(x) = \ln(2x - 1)$$

7.3.
$$f(x) = 3^{5x-3}$$