游戏中的数学

David

January 24, 2021

Contents

Chapter 1

Vector

1.1 Defination

- 一般Vector翻译为:
- 向量 代数
- 矢量 几何

1.1.1 代数定义

行向量 (Row Vector):

$$\mathbf{V} = \vec{v} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}$$

列向量 (Column Vector):

$$\mathbf{V} = \vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

1.1.2 几何定义

• 大小 (Magnitude):

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{\vec{v} \cdot \vec{v}}$$

• 方向 (Direction) : 可以用单位向量表示 (Normalized)

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

1.1.3 用途

- 位移 (Displacement)
- 速度 (Velocity)
- ...

1.2 Vector vs. Point

意义的区别:

- Point 空间绝对位置
- Vector 空间相对位置

等价关系:

尽管代数上是等价的,几何要进行区分理解:

- \vec{v} , 给出列从原点到点p(x,y,z)的位移
- p(x,y,z),则是从原点开始沿着 \vec{v} 指定的量进行移动,最终到达的位置

1.3 运算及其几何意义

分两个角度来看:一个代数(计算)角度,一个几何(图形)解释。 向量运算有:

- 加法: 几何运算满足三角规则 (Triangle Rule)
 - 减法: 减法是加法的逆运算
 - 逆元: \vec{v} 的逆元是 $-\vec{v}$, 几何意识是反方向
- 数乘: 缩放向量 \vec{v}
- 点积: 可用两种几何视角来看, 当作投影或向量夹角
- 叉积: 计算相交两条线的法线

1.3.1 +

代数定义

$$\vec{a} + \vec{b} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} + \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = \begin{bmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{bmatrix}$$

满足规则:

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $\vec{a} \vec{b} = \vec{a} + (-\vec{b}) = -(\vec{b} \vec{a})$

几何解释

满足三角形法则(Triangle Rule):

常见用途

• 加法: 多次位移的计算

• 减法: 从一个点到另一个点的位移矢量

1.3.2 k

代数定义

$$k\vec{v} = k \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} kv_x \\ kv_y \\ kv_z \end{bmatrix}$$

满足规则:

• $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$

几何解释

可以用于向量的缩放:

1.3.3 dot

代数定义

$$\vec{a} \cdot \vec{b} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \cdot \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = a_x b_x + a_y b_y + a_z b_z$$

满足规则:

• 点积交換律: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

• 点积数乘分配律: $(k\vec{b})\cdot\vec{a}=k(\vec{b}\cdot\vec{a})=\vec{b}\cdot(k\vec{a})$

• 点积加法分配律: $(\vec{b} + \vec{c}) \cdot \vec{a} = \vec{b} \cdot \hat{a} + \vec{c} \cdot \vec{a}$

几何解释 - 投影

投影视角解释 (Projection):

点积 $\vec{a} \cdot \vec{b}$ 等于 \vec{b} 投影到平行于 \vec{a} 的任何一条线上的有符号长度(Singed Distance),乘以 \vec{a} 的长度。

有符号投影长度:

缩放(数乘分配律):

分配和筛选(加法分配律):

矢量分解:

几何解释 - 夹角

$$\cos\theta = \frac{adjacent}{hypotenuse} = \frac{\vec{b} \cdot \vec{a}}{|\vec{b}||\vec{a}|} = \frac{\vec{b} \cdot \hat{a}}{|\vec{b}|} = \hat{a} \cdot \hat{b}$$

$$\theta = \arccos(\frac{\vec{b} \cdot \vec{a}}{|\vec{b}||\vec{a}|}) = \arccos(\hat{a} \cdot \hat{b})$$

不考虑 θ 值时,可以通过点积知道两个向量之间的夹角关系:

$\vec{a} \cdot \vec{b}$	θ	角度	描述
> 0	$[0, \pi/2)$	锐角	主要指向通一方向
=0	$\pi/2$	直角	垂直
< 0	$(\pi/2,\pi]$	钝角	主要指向相反方向

常见用途

- 投影计算、坐标筛选计算 $(\vec{b} \cdot \hat{x})$
- 垂直判定: $\vec{a} \cdot \vec{b} = 0$
- 半空间判定: 求为空间任意一点, 术平面法向量
 - 平面上半空间: $\vec{x} \cdot \vec{n} > 0$
 - 平面内: $\vec{x} \cdot \vec{n} = 0$
 - 平面下半空间: $\vec{x} \cdot \vec{n} < 0$
- 计算向量大小: $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$
- 矢量分解: $\vec{b} = \vec{b}_{\parallel} + \vec{b}_{\perp}$
- 夹角计算: $\theta = \arccos(\frac{\vec{b} \cdot \vec{a}}{|\vec{b}||\vec{a}|}) = \arccos(\hat{a} \cdot \hat{b})$

1.3.4 cross

代数定义

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_x \\ a_y \\ a_y \end{bmatrix} \times \begin{bmatrix} b_x \\ b_y \\ b_y \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}$$

满足规律:

- 叉积反交换律: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- $\vec{a} \times \vec{a} = 0$
- $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b})$
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

几何解释

叉积向量的大小:包含ā和i的平行四边形面积,为0则两条线平行

$$|\vec{a} imes \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$

叉积向量的方向:

A、右手法则情况下

B、左手法则情况下

坐标基向量的叉积(左右手系不影响计算结果):

$$\begin{split} \hat{x} \times \hat{y} &= \hat{z} \quad \hat{y} \times \hat{x} = -\hat{z} \\ \hat{y} \times \hat{z} &= \hat{x} \quad \hat{z} \times \hat{y} = -\hat{x} \\ \hat{z} \times \hat{x} &= \hat{y} \quad \hat{x} \times \hat{z} = -\hat{y} \end{split}$$

1.4 note

Chapter 2

Matrix

- 2.1 Rotation
- 2.2 Scale
- 2.3 Transform

Chapter 3

Rotation

- 3.1 Axis angle
- 3.2 Euler angle
- 3.3 Quaterrnion
- 3.4 Convertion