Exercice 1

Soit A et B deux événements d'un espace probabilisé tels que $\mathbf{P}(A) = \mathbf{P}(B) = \frac{3}{4}$. Déterminer le meilleur encadrement pour $\mathbf{P}(A \cap B)$.

Exercice 2

Soit A, B et C trois événements d'un espace probabilisé tels que

$$\mathbf{P}(A) = \frac{1}{2}, \quad \mathbf{P}(B) = \frac{3}{5}, \quad \mathbf{P}(A \cap B) = \frac{1}{5}, \quad \mathbf{P}(C|A) = \mathbf{P}(C|B) = \frac{1}{2}.$$

Calculer P(C) sous l'hypothèse additionnelle que cette valeur est l'inverse d'un entier.

Exercice 3

Soit $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé fini, $A \subset \Omega$, A_1, \ldots, A_n une partition de A d'événements de probabilités non nulles, et $B \subset \Omega$, telle que la probabilité $\mathbf{P}(B|A_k)$ ne dépende pas de k. Montrer que, pour tout $k \in [1, n]$, $\mathbf{P}(B|A_k) = \mathbf{P}(B|A)$.

Exercice 4

Soit un espace probabilisé $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ tel que $|\Omega|$ est un nombre premier p et \mathbf{P} est la probabilité uniforme. Montrer que deux événements A et B non triviaux ne peuvent pas être indépendants.

Exercice 5 Inégalités de Boole-Fréchet

Soit A_1, \ldots, A_n des événements d'un espace probabilisé fini $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$.

- 1. Montrer que $P(A_1 \cap ... \cap A_n) \ge \sum_{i=1}^n P(A_i) (n-1)$.
- 2. Montrer que $\mathbf{P}(A_1 \cap ... \cap A_n) \leq \min_{1 \leq i \leq n} \mathbf{P}(A_i)$. Étudier le cas d'égalité.

Exercice 6

Soit $(\Omega, \mathcal{P}(\Omega), \mathbf{P})$ un espace probabilisé, A et B deux événements tels que $\mathbf{P}(A) > 0$. Montrer que

$$\mathbf{P}(A \cap B | A \cup B) \leq \mathbf{P}(A \cap B | A)$$
.