Machine Learning-Based Predictive Analytics for Aircraft Engine Literature Survey

IBM Team

Team Leader: S. Sakthivel

Team Members: Ayaan Gouse (142219104011),

M. Bhubesh (142219104014).

M. Sasitharan (142219104111),

Domain: Applied Data Science

Use case Name: Machine Learning-Based Predictive Analytics for Aircraft Engine

Paper 1

Authors: Xiaofeng Liu, Siqi An

Year: 2014

Title: Failure Propagation Analysis of Aircraft Engine Systems Based on Complex Network

<u>Methodology</u>: To find the failure propagation mechanism from the complex system of aircraft engine, this paper used the topological structure to describe the coupling relations, discussing the role of topological geometry method in the failure propagation. The topological structure statistical properties of the system were analysed with small world net theory, and a failure propagation model based on the small world clustering was proposed, and the failure propagation paths and relevant key nodes with high pervasion ability were found with the Dijkstra algorithm. The results verify that this method can effectively find the weak point in the system, and provide an important basis for design improvements and failure prevention.

Paper 2

Authors: Arunvinthan Shan

Year: 2015

<u>Title</u>: Aircraft Engine Failure Detection and Resumption Artifice <u>Methodology</u>: Ensuring a proper operation of the engines over their lifetime is an important air safety aspect. Even though the recent engines are highly reliable the number of accidents due to an incorrect crew response following an Engine malfunction has remained constant for many years. This prompted this study and it reveals that flight crews are not always able to identify and understand engine malfunctions precisely which leads to needless engine shutdowns, incidents, and accidents. The scope of this Book is to provide basic guidelines to identify Engine failures/malfunctions and to give operational recommendations in case of Engine malfunction. This can be accomplished using SOM maps. Clustering the various engine parameters based on the parametric variations influenced by the faults, SOM maps are generated and they are stored as the failure template. In addition to their traditional tool based quantitative inspection of some measured variables to detect any deviation from the normal behaviour making it possible to anticipate possible faults. By proper detection of the faults suitable malfunction response for the crew will be displayed for their crew assistance. It ensures further reliability and passenger safety.

Paper 3

Author: Dubravko Miljković

Year: 2019

<u>Title</u>: Detecting Aircraft Piston Engine Problems by Analysis of Engine Parameters

<u>Methodology</u>: Most general aviation aircrafts use piston engines that are considerably less reliable than turbine engines. Most problems of aircraft piston engines are reflected in engine temperature parameters like cylinder head temperature (CHT) and exhaust gas temperature (EGT) that are recorded by engine monitor. Three approaches for detection of engine problems are presented. Many problems may be detected by comparison of statistical distributions of CHTs and EGTs from individual cylinders. Incipient exhaust valve failure may be detected from temporal EGT pattern containing low frequency fluctuations. The life of the exhaust valve depends on its operating temperature. Because EGT is the major contributor to the overheating of the exhaust valve and it's cooling mostly depends on the CHT, the remaining life of exhaust valve may be assessed from cumulative sum of EGT and CHT during the period of use.

Paper 4

Authors: Veer Kumar, Madhura Mokashi

Year: 2021

Title: Predicting Aircraft Equipment Failure using Machine Learning Classification Algorithms

<u>Methodology</u>: Enormous amount of information and maintenance data exists in the aviation industry that can be utilized to draw meaningful insights in forecasting the future course of action. In this study, our prime objective is to use machine learning classification models to perform feature selection and predictive analysis to predict failures of aircraft systems. Maintenance and failure data for aircraft equipment across a period of two years were collected, and cleaned, which was followed by application feature engineering and feature election techniques before model building and evaluation. We compute a metric known as Remaining Useful Life (RUL) to predict the failure of aircraft equipment, since this is a continuous variable, we then convert it into a binary classification problem by setting a threshold RUL value to indicate an impending failure so that our classification model flags a warning well in advance to the point of breakdown, thereby giving response teams sufficient time to act upon the warning. Experimental results of our classification model demonstrate the effectiveness of our model to forecast the failure of aircraft equipment.

Paper 5

Authors: Xiao Du, Jiajie Chen, Haibo Zhang and Jiqiang Wang

Year: 2022

<u>Title</u>: Fault Detection of Aero-Engine Sensor Based on Inception-CNN

<u>Methodology</u>: The aero-engine system is complex, and the working environment is harsh. As the fundamental component of the aero-engine control system, the sensor must monitor its health status. Traditional sensor fault detection algorithms often have many parameters, complex architecture, and low detection accuracy. Aiming at this problem, a convolutional neural network (CNN) whose basic unit is an inception block composed of convolution kernels of different sizes in parallel is proposed.

The network fully extracts redundant analytical information between sensors through different size convolution kernels and uses it for aero-engine sensor fault detection. On the sensor failure dataset generated by the Monte Carlo simulation method, the detection accuracy of Inception-CNN is 95.41%, which improves the prediction accuracy by 17.27% and 12.69% compared with the best-performing non-neural network algorithm and simple BP neural networks tested in the paper, respectively. In addition, the method simplifies the traditional fault detection unit composed of multiple fusion algorithms into one detection algorithm, which reduces the complexity of the algorithm. Finally, the effectiveness and feasibility of the method are verified in two aspects of the typical sensor fault detection effect and fault detection and isolation process.

S. No	Author	Title of the Paper	Methodology
1	Dubravko Miljković	Detecting Aircraft Piston Engine Problems by Analysis of Engine Parameters	Most general aviation aircrafts use piston engines that are considerably less reliable than turbine engines. Most problems of aircraft piston engines are reflected in engine temperature parameters like cylinder head temperature (CHT) and exhaust gas temperature (EGT) that are recorded by engine monitor. Three approaches for detection of engine problems are presented. Many problems may be detected by comparison of statistical distributions of CHTs and EGTs from individual cylinders. Incipient exhaust valve failure may be detected from temporal EGT pattern containing low frequency fluctuations. The life of the exhaust valve depends on its operating temperature. Because EGT is the major contributor to the overheating of the exhaust valve and it's cooling mostly depends on the CHT, the remaining life of exhaust valve may be assessed from cumulative sum of EGT and CHT during the period of use.
2	Xiaofeng Liu, Siqi An	Failure Propagation Analysis of Aircraft Engine Systems Based on Complex Network	To find the failure propagation mechanism from the complex system of aircraft engine, this paper used the topological structure to describe the coupling relations, discussing the role of topological geometry method in the failure propagation. The topological structure statistical properties of the system were analysed with small world net theory, and a failure

			propagation model based on the small
			world clustering was proposed, and
			the failure propagation paths and relevant key nodes with high
			,
			pervasion ability were found with the
			Dijkstra algorithm. The results verify
			that this method can effectively find
			the weak point in the system, and
			provide an important basis for design
			improvements and failure prevention.
3	Veer Kumar,	Predicting Aircraft	Enormous amount of information and
	Madhura Mokashi	Equipment Failure using	maintenance data exists in the
		Machine Learning	aviation industry that can be utilized
		Classification Algorithms	to draw meaningful insights in
			forecasting the future course of
			action. In this study, our prime
			objective is to use machine learning
			classification models to perform
			feature selection and predictive
			analysis to predict failures of aircraft
			systems. Maintenance and failure data
			for aircraft equipment across a period
			of two years were collected, and
			cleaned, which was followed by
			application feature engineering and
			feature election techniques before
			model building and evaluation. We
			compute a metric known as Remaining
			Useful Life (RUL) to predict the failure
			of aircraft equipment, since this is a
			continuous variable, we then convert
			it into a binary classification problem
			by setting a threshold RUL value to
			indicate an impending failure so that
			our classification model flags a
			warning well in advance to the point of
			breakdown, thereby giving response
			teams sufficient time to act upon the
			warning. Experimental results of our
			classification model demonstrate the
			effectiveness of our model to forecast
			the failure of aircraft equipment.
4	Arunvinthan Shan	Aircraft Engine Failure	Ensuring a proper operation of the
		Detection and Resumption	engines over their lifetime is an
		Artifice	important air safety aspect. Even
			though the recent engines are highly
			reliable the number of accidents due
			to an incorrect crew response
			following an Engine malfunction has
			remained constant for many years.
			This prompted this study and it reveals
			This prompted this study and it reveals

			that flight crews are not always able to identify and understand engine
			malfunctions precisely which leads to
			needless engine shutdowns, incidents,
			and accidents. The scope of this Book
			is to provide basic guidelines to
			identify Engine failures/malfunctions
			and to give operational
			recommendations in case of Engine
			malfunction. This can be accomplished
			using SOM maps. Clustering the
			various engine parameters based on
			the parametric variations influenced
			by the faults, SOM maps are
			generated and they are stored as the
			failure template. In addition to their
			traditional tool based quantitative
			inspection of some measured
			variables to detect any deviation from the normal behaviour making it
			possible to anticipate possible faults.
			By proper detection of the faults
			suitable malfunction response for the
			crew will be displayed for their crew
			assistance. It ensures further reliability
			and passenger safety.
5	Xiao Du, Jiajie Chen,	Fault Detection of Aero-	The aero-engine system is complex,
	Haibo Zhang and	Engine Sensor Based on	and the working environment is harsh.
	Jiqiang Wang	Inception-CNN	As the fundamental component of the
			aero-engine control system, the
			sensor must monitor its health status.
			Traditional sensor fault detection
			algorithms often have many
			parameters, complex architecture,
			and low detection accuracy. Aiming at
			this problem, a convolutional neural network (CNN) whose basic unit is an
			inception block composed of
			convolution kernels of different sizes
			in parallel is proposed. The network
			fully extracts redundant analytical
			information between sensors through
			different size convolution kernels and
			uses it for aero-engine sensor fault
			detection. On the sensor failure
			dataset generated by the Monte Carlo
			simulation method, the detection
			accuracy of Inception-CNN is 95.41%,
			which improves the prediction
1		1	
			accuracy by 17.27% and 12.69% compared with the best-performing

non-neural network algorithm and
simple BP neural networks tested in
the paper, respectively. In addition,
the method simplifies the traditional
fault detection unit composed of
multiple fusion algorithms into one
detection algorithm, which reduces
_
the complexity of the algorithm.
Finally, the effectiveness and
feasibility of the method are verified in
two aspects of the typical sensor fault
detection effect and fault detection
and isolation process
and isolation process.