# Finite Samplings on [0,1]"

Task: Find a set of points & XK3k=1 in [0,1]" satisfying

- 1) { xx xx= are uniformly distributed.
- 2 & XK3 == are iniformly distributed for all r<P.
- 3 The process is repeatable.
- 4) The process is independent of computing platform.

#### Motivation:

- · I have a total budget of P function evaluations and sampling these points will be my entire algorithm.
- · my algorithm needs p points to initiate (e.g. Nelder mead) and it would be good to Start with a good sampling.
- · Every so often, I would like to check P points in my domain to help me escape local minimizer basins.
- · I need non-stochastic methods for repeatability and testing purposes.
- · If I try for P points, but only get r<P points, I want the sampling to still be uniform (useful).

There are many strategies and research is ongoing. We will consider only three options - not all of which satisfy our desired Properties. (example: h=2, p=24)

| Random Generator | Latin Hypercube | Halton Sequence |  |  |  |  |  |  |
|------------------|-----------------|-----------------|--|--|--|--|--|--|
|                  |                 |                 |  |  |  |  |  |  |
|                  |                 |                 |  |  |  |  |  |  |
|                  |                 |                 |  |  |  |  |  |  |
|                  |                 |                 |  |  |  |  |  |  |
| •••••            |                 |                 |  |  |  |  |  |  |
|                  |                 |                 |  |  |  |  |  |  |

# Random Generator

Given: n, P, 5

Set random number generator seed to s.

Request 1 \* P random values miformly drawn from (0,1).

Arrange the values (by Predetermined order) into nxp array A.

The ordered columns of A represent & XK3P = (0,1).

- · Ropeatable through seed s
- · May not be platform independent
- · uniform in large p limit



62 points on [0,1]2

- distributed across domain
- not visually uniform with large empty spaces and point clusters:

Same size spheroid but containing 12 points.

### Latin Hypercube Sampling

Given: n,p,s

Set random humber generator seed to s.

Create n random permutations of [1,2,3,..., P].

Arrange these row vectors, by predetermined order, into nxp array B.

Create (by previous algorithm) nxp array R.

Compute  $A = \frac{1}{P}(B-R)$ .

The ordered columns of A represent \$ xk3p = (0,1).

This algorithm partitions [0,1]" into a pxpxpx...xp hyper Rubik's Cube and grarantees that each column contains one point, each row contains one point, each hyperrow contains one point. Then in each small subcube, a random point is chosen

Example: (n=2, p=5) Five points on unit square

$$B = \begin{bmatrix} 2 & 3 & 5 & 1 & 4 \\ 3 & 1 & 4 & 2 & 5 \end{bmatrix}$$

represents:



The columns of  $A = \frac{B-R}{P}$  are then the points:

(for some random values R)



- · repeatable through seeds
- · may not be platform independent
- · better initermity enforced by B
- Samples individual coordinates initionly.
- · any coordinate hyperplane projection exhibits the same uniformity.



largest empty

62 points on [0,1]?

- -distributed across domain
- better visual uniformity
  with more diffuse clusters
- Smaller largest empty Spheroid

#### Halton Sequence

A Halton Sequence 13 defined on (0,1) with Integer seed 9 = 2.

The Halton vector sequence shown here is composed of n Halton sequences each with a distinct prime number seed.

Halton sequence for seed 9=2:

Halton sequence for seed q=3:

=> Halton Vector Sequence for n=2 and seeds 213:

$$\begin{pmatrix} 1/2 \\ 1/3 \end{pmatrix}$$
,  $\begin{pmatrix} 1/4 \\ 2/3 \end{pmatrix}$ ,  $\begin{pmatrix} 3/4 \\ 1/q \end{pmatrix}$ ,  $\begin{pmatrix} 1/8 \\ 4/q \end{pmatrix}$ ,  $\begin{pmatrix} 5/8 \\ 7/q \end{pmatrix}$ , ...

Interesting method for finding a sequence with seed g (example: g=z

| jn | dex. | k. | • | K | base | 9 | • | reflect b | its | de | Cimal | • | • |          | •         | •       | •  |
|----|------|----|---|---|------|---|---|-----------|-----|----|-------|---|---|----------|-----------|---------|----|
| ٠  |      | ۰  | ۰ | ۰ | 1    | ۰ | ۰ | 1         | ۰   |    | 1/2   | 0 | 0 | ۰        |           | ٠       | ۰  |
| •  | ·2 · |    |   |   | 10   | • |   | . ,01     | •   |    | 1/4   | • |   | HS<br>No | 170<br>4M | ۷.<br>ا |    |
| •  | 3    | •  |   |   | 11   | • |   | 01.       | •   | •  | 3/4   | • | • | HO       | egv       | 'nл     | O. |
| ٠  | .4.  | ٠  | ٠ | ٠ | 1.00 | ٠ | ٠ | . 1001 .  | ٠   |    | 1/8   | ٠ | ٠ | ٠        | •         | ٠       | ٠  |
|    | 5    |    |   |   | 101  |   |   | ,10!      |     |    | 5/8   |   |   |          |           |         |    |
| ٠  | -6-  | ۰  | ۰ | ٠ | 110  | ۰ | ۰ | 011 -     | ۰   |    | 3/8   | ۰ |   |          |           |         |    |
| ٠  | 7    | ٠  | ٠ | ۰ | 111  | ٠ | ٠ | 111       | ٠   |    | 7/8   | ٠ | ٠ | ٠        | ٠         | ۰       | ٠  |

- · no random number generation
- · platform independent
- maintains good uniformity at all r.



62 points on [011]2

- distributed across domain
- excellent risual uniformity
- exhibits correlation structure If  $9_1 \approx 9_2 \gg 1$ .