TEAM SPARKS

TEAM ID: IM-ML0063

TEAM LEADER: HRISHIKESH POTNIS

BRANCH: BTECH STREAM: CSE

YEAR: II

TEAM MEMBER 1: SARTHAK PITHE

BRANCH: BTECH

STREAM: CSE YEAR: II

TEAM MEMBER 2: SOHAM S. NIMALE

BRANCH: BTECH STREAM: CSE YEAR: II TEAM MEMBER3: MADHUR P. VAIDYA

BRANCH: BTECH STREAM: CSE YEAR: II

PROJECT GUIDE: PROF. SHITAL SOBALE

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

CONTENTS

- Problem Statement
- Motivation
- Existing Solution
- Our Solution
- Demonstration
- Comparison
- Innovative Feature
- Future Direction
- FAQs

INTRODUCTION

- Postcards scanning
- US Postal Dept saves \$90M every year using automatic systems
- Postcard Scanning project
- Marathi language?
- No good Marathi Dataset

MOTIVATION

- 50.88% Indians Devanagari based Mother Tongue.
- 617 million speakers of Devanagari based languages
- Very less research about Marathi / Devanagari
- Root problem no standardized high-quality Dataset
- Many applications possible

PROBLEM STATEMENT

Creating a high-quality dataset for **Devanagari** numbers

CREATING DATASETS

- Started creating dataset
- Very lengthy process
- Not practical, especially in short time
- Research GAN Generative Networks
- Used for creating Datasets

LITERATURE REVIEW

Title	Authors	Key Takeaways	
Synthetic Data Augmentation Using GAN For Improved Automated Visual Inspection	Jože M. Rožanec, Patrik Zajec, Spyros Theodoropoulos, Erik Koehorst, Blaž Fortuna, Dunja Mladenić	Used GANs for data augmentation to enhance the classifiers' discriminative performance	
Multi-scale multi-class conditional generative adversarial network for handwritten character generation	Jin Liu, Chenkai Gu, Jin Wang, Geumran Youn & Jeong-Uk Kim	Used MSMC-CGAN for Chinese handwriting generation with mean opinion score (MOS) as evaluation method	

GEAD: generating and evaluating handwritten Eastern Arabic digits using generative adversarial networks	Tarik Alafif, Rawan Alharbi, Nujood Almajnooni,Maani Albishry	Used four different types of GANs for native Arabic handwritten digit generation and Fréchet Inception Distance (FID) for performance measurement
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data	Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, R. Venkatesh Babu	Proposed a novel DeLiGAN model for data generation with limited amounts of data.
Augmenting Historical Alphabet Datasets Using Generative Adversarial Networks	David Franc, Adéla Hamplová & Ondřej Svojše	Used GAN for augmenting a small dataset of Palmyrene letters claiming that the results improved by 120%

Data augmentation for handwritten digit recognition using generative adversarial networks

Ganesh Jha & Hubert Cecotti

Concluded that GAN based generated images for digits in Bangla, Devanagari, Latin and Oriya improved the accuracy of classifier Results

Data Collection

Collecting Handwritten Digits

OUR APPROACH

Preprocessing

Data Augmentation

Generating Synthetic Images

This involves training of GAN models
i. Simple GAN
ii. Conditional GAN

Compilation of Final Dataset

Proof of Concept
Training a classifier model
based of
resultant dataset

SUMMING UP THE SOLUTION

Accuracy of CNN Classifiers

96

People contributed to the Dataset

INNOVATIVE FEATURES

- Software based Optimal Pipeline
- High Resolution 128 x 128
- Enormous size 2,00,000 individual digits
- Open Source dataset
- Saved GAN models for future synthetic data generation
- Huge Potential in a spectrum of fields

APPLICATIONS

Historical Archives

Banking Operations

OCR

Handwritten Bills

ROADMAP

CONTRIBUTING AREAS

- GAN for all Devanagari characters
- GAN for Devanagari words

FAQ

- How much data do you think the GAN is capable of generating?
- What other options did you have, and why did you choose GAN?
- Why open source?
- Does GAN generate new unseen images or only copies of the original dataset?
- How do you know if a model is trained enough to generate good quality images?

THANK YOU

EXTRA SLIDES

HUMAN GENERATED DATASET COLLECTION

- Novel software-based approach
- 128x128 sized images
- 1200 images per class
- 96 people contributed

DATA PREPROCESSING

GAN - GENERATIVE ADVERSIAL NETWORKS

Generator

Discriminator

The generator and discriminator are trained adversarially to generate realistic data

SYNTHETIC DATA GENERATION

20,000 images of each digit from ○ to ९.

2,00,000 images in the dataset with 128 * 128 resolution images

PROOF OF CONCEPT

GAN based classifiers can be used in these areas:

- Digit Recognition
- Post Card PIN detection
- Photo

Data DUMP

RESULTS OF PAPER [6]

