- 1. Provar que em triângulo esférico as três medianas têm um ponto em comum.
- 2. Voando do ponto $(0^{\circ}, 0^{\circ})$ ao ponto $(60^{\circ}, 60^{\circ})$ pelo caminho mais curto um avião caiu no ponto médio do percurso. Achar latitude e longitude do acidente.
- 3. Determinar (latitude,longitude) do ponto equidistante dos pontos $(0^{\circ}, 0^{\circ})$, $(0^{\circ}, 60^{\circ})$, $(60^{\circ}, 60^{\circ})$ na superfície da Terra.
- 4. As cidades $A(0^{\circ},0^{\circ})$, $B(60^{\circ},60^{\circ})$, $C(x^{\circ},y^{\circ})$ equdistam e C fica no hemisfério Sul. Determinar x,y.
- 5. Determinar o volume do tetraedro A_1B_2KL onde $K = \frac{B_1 + C_1}{2}$, $L = \frac{A_2 + C_2}{2}$, A_1A_2 , B_1B_2 , C_1C_2 são diagonais de octaedro regular de aresta 1.
- 6. Duas arestas opostas de tetraedro T têm comprimentos x e y e localizam-se nas retas reversas r e s respectivamente. Provar que o volume de T não depende da posição destas arestas.
- 7. Plano α intercecta arasta lateral AB de prisma \mathcal{P} e não intercecta as bases de \mathcal{P} . Provar: volume(\mathcal{P}) = área($\alpha \cap \mathcal{P}$) · |AB| se $\alpha \perp AB$.
- 8. Encontrar o volume de paralelepípedo sabendo comprimentos a, b, c de arestas e os ângulos α, β, γ num vértice.
- 9. O plano α paralelo às arestas AB e CD de tetraedro regular ABCD de aresta a passa pelo baricentro da face ABC. Determinar volumes de sólidos em quais α divide o tetraedro.
- 10. Determinar o lugar geométrico dos pontos X dentro de um triedro T tais que a soma de distâncias de X ás faces de T é 1. $\{$ dica: volume $\}$
- 11. Provar que o volume de tetraedro é igual a $\frac{lab \cdot sen\theta}{6}$ onde a, b são comprimentos de arestas opostas, θ é o ângulo entre essas arestas e l é distância entre essas arestas.
- 12. Quatro satélites de uma rede de telecomunicação estão em vértices de tetraedro regular em alcance visual um de outro na altitude mínima possível. Determinar a área do território coberto pela rede (de onde um satélite é visível). O raio da Terra é 6362km.
- 13. Calcular o volume da cruz formada por dois cilindros de raio r cujos eixos de comprimento a (a > r) são as diagonais de um quadrado. (Dica: princípio de Cavalieri)
- 14. Uma panela cilíndrica com altura h e raio r>h sheia dágua foi inclinada até 45°. Determinar o volume de agua que decorreu da panela.