Familienname:

Vorname:

Matrikelnummer:

Studienkennzahl(en):

Reelle Analysis in mehreren und komplexe Analysis in einer Variable für LAK

Note:

Roland Steinbauer, Sommersemester 2013

4. Prüfungstermin (28.2.2014)

Gruppe A

- 1. Funktionenfolgen.
 - (a) Definiere den Begriff der Unendlich- oder Supremumsnorm für Funktionen $f: \mathbb{C} \supseteq A \to \mathbb{C}$. (1 Punkt)
 - (b) Zeige, dass für Funktionenfolgen (f_n) auf $A \subseteq \mathbb{C}$ gilt:

$$f_n \to f$$
 gleichmäßig \Leftrightarrow $||f_n - f||_{\infty} \to 0$.

Stelle die Situation graphisch dar. (2 Punkte)

- (c) Unter welchen Umständen vertauschen Limes und Ableitung einer Funktionenfolge? Formuliere und beweise das einschlägige Resultat aus der Vorlesung und begründe alle deine Beweisschritte. (5 Punkte)
- 2. Potenz- und Taylorreihen.
 - (a) Sei R der Konvergenzradius der (komplexen) Potenzreihe $\sum c_k(z-z_0)^k$. Zeige: Falls $\left|\frac{c_n}{c_{n+1}}\right|$ konvergiert, dann gilt (2 Punkte)

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| .$$

- (b) Bestimme den Konvergezradius von $\sum \frac{(-1)^n}{n} x^n.$ (1 Punkt)
- (c) Berechne die Taylorreihe der Funktion $f(x) = \log(1+x)$ mit Entwicklungspunkt x = 0. Bestimme für welche x diese Taylorreihe gegen die Funktion konvergiert. (6 Punkte)
- 3. Topologie des \mathbb{R}^n .
 - (a) Für $a \in \mathbb{R}^n$ und $\varepsilon > 0$ definiere den Begriff der ε -Umgebung $U_{\varepsilon}(a)$ und zeige, dass $U_{\varepsilon}(a)$ offen ist. Welche Eigenschaft der Norm geht hier essentiell ein? Fertige eine Skizze an! (4 Punkte)
 - (b) Gib eine einfache, anschauliche Formulierung des Prinzips der koordinatenweisen Konvergenz (PKK) im \mathbb{R}^n an und verdeutliche diese durch eine Skizze im \mathbb{R}^2 . (2 Punkte)

Bitte umblättern

4. Differentialrechnung.

- (a) Diskutiere für eine Funktion $f: G \to \mathbb{R}$ ($G \subseteq \mathbb{R}^n$ offen) die Beziehung zwischen den Begriffen \mathcal{C}^1 , Differenzierbarkeit, partieller Differenzierbarkeit und Setigkeit. Fertige dazu eine Skizze an, die alle einschlägigen (Nicht-)Implikationen enthält und begründe diese kurz. (3 Punkte)
- (b) Definiere den Begriff der Richtungsableitung $D_v f(\xi)$ einer Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ im Punkt ξ in Richtung v und fertige eine instruktive Skizze an. (2 Punkte)
- (c) Wie hängt die Richtungsableitung mit dem Gradienten zusammen? (2 Punkte)

5. Integralrechnung.

Betrachte das glatte Vektorfeld auf $G = \mathbb{R}^2 \setminus \{(0,0)\}$

$$v(x,y) = \left(\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}\right)$$

und bearbeite die folgenden Punkte (je 2 Punkte):

- (a) Zeige, dass auf G die Integrabilitätsbedingungen erfüllt sind.
- (b) Zeige, dass v kein Gradientenfeld ist.
- (c) Warum ergeben (a) und (b) keinen Widerspruch?

6. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel an. (Je 2 Punkte)

- (a) Der \mathbb{R}^n ist vollständig.
- (b) Der Graph eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ kann als "Landschaft" dargestellt werden.