Sebastian, Basti, Wastl?! Recognizing Named Entities in Bavarian Dialectal Data

Siyao Peng, Zihang Sun, Huangyan Shan, Marie Kolm, Verena Blaschke. Ekaterina Artemova. Barbara Plank

MaiNLP & MCML, LMU Munich, Germany

LREC-COLING 2024

Named Entity Recognition (NER) is a fundamental task.

Problem: Lack of high-quality annotations on non-standard language varieties.

WikiAnn (Pan et al., 2017) silver annotations on 282 languages/dialects, including Bavarian, but on unnatural texts.

```
bar · 300 rows
Q Search this dataset
tokens
sequence
[ "'", "''", "Mongolei", "''", "'"]
[ "Dieter", "Hildebrandt", "(", "seit", "2005", ")" ]
[ "'", "''", "Heiliges", "Remisches", "Reich", "''", "'" ]
[ "Weiterleitung", "Josua", "(", "Buach", ")" ]
[ "***", "'", "''", "Ortenberg", "''", "'" ]
[ "'", "''", "Kina", "''", "'"]
[ "Israel", "Kamakawiwo'ole", "-", "Wejdbekannta", "Sänga" ]
[ "Clark", "County", ",", "Indiana" ]
[ "**", "Rudolph", "Moshammer", ",", "1940-2005" ]
[ "***", "'", "''", "Holland", "''", "'"]
[ "WEITERLEITUNG", "Gila", "County", ",", "Arizona" ]
[ "X", "Japan", "(", "1997", "aufgelöst", ",", "2007", "/",
"08", "wiedavaeinigt", ")" ]
[ "**", "'", "''", "Toskana", "''", "'"]
[ "Weiterleitung", "Johannes", "XXIII", "." ]
```

Paper Contributions

Named Entity Recognition Dialects Bavarian German

- The first dialectal NER dataset for German, BARNER;
- 161K tokens annotated on Bavarian Wikipedia articles (bar-wiki) and tweets (bar-tweet);
- Comparing lexical distribution, syntactic construction, and entity information with 3 German NER datasets on wiki, tweet and news;
- \bullet Incorporating German datasets to improve BarNER parsing;
- Multi-task learning with Bavarian-German Dialect Identification.

BARNER

First manually annotated NER dataset on a German dialect – Bavarian

Annotations and guidelines available: https://github.com/mainlp/BarNER

BARNER - Guidelines

CoNLL06 style (Tjong Kim Sang and De Meulder, 2003)

• Person, Location, Organization, Miscellaneous;

GermEval 2014/NoSta-D style (Benikova et al., 2014)

- -deriv/-part for nominal derivation and compounding;
- Italienroas_{LOCpart} 'tour of Italy';
- eiropäischn_{LOCderiv} 'European';

Others

- LANGuage, RELIGION, EVENT, work-of-art (WOA);
- Only flat and named entities, excluding common nouns, pronouns, overlapping, or nested NEs.

Tagset normalized to CoNLL06 for analyses and experiments.

BARNER - Genres

Wikipedia articles

- Carefully written and consistently updated;
- https://bar.wikipedia.org/wiki/Wikipedia:Hoamseitn.

Twitter (X) tweets

- noisier, less formal, and more dynamic;
- Snowballed from a list of 17 Bavarian 'seed users' (http://indigenoustweets.com/bar/) to their friends;
- Manually classified into bar/de/other/NA and only kept bar-items;
- Hashtags ([#minga]_{LOC}) and emojis (□_{LOC}) are annotated.

BARNER – Inter-Annotator Agreement (IAA)

- Three graduate students took five months to annotate BARNER;
- 53% of BARNER are double annotated for disagreement studies;
- 85+ typed span F1s;
- Entity span detection is harder for tweets but entity typing is easier.

BARNER - Statistics

- Both bar-wiki and bar-tweet reach 75K+ tokens;
- bar-tweet has much fewer entities due to informality and length.

Corpus	#Toks	#Sents	#Ents	Ents/Tok (in %)
bar-wiki	75.7k	3.6k	4.2k	5.5
bar-tweet	86.1k	7.5k	2.5k	2.9

Named Entities Diverge

Bavarian vs. German

>

Wikipedia vs. Tweets vs. News

Comparisons – Five German & Bavarian Datasets

	Bavarian	German					
wiki	bar-wiki	de-wiki					
		the wiki portion of NoSta-D					
		(Benikova et al., 2014)					
tweet	bar-tweet	de-tweet					
		MobIE transportation tweets					
		(Hennig et al., 2021)					
news	/	de-news					
		CoNLL 2006 news					
		(Tjong Kim Sang and De Meulder, 2003)					

Comparisons – Lexical Similarities

We use Jaccard Similarity (JS):

- shared (i.e., intersection) tokens concatenated (i.e., union) tokens between datasets;
- Compare surface strings to preserve variations;
- German wiki×news highest 0.417 formality and well-editedness;
- Similar between tweets and other same-dialect genres:
 - DE tweet×news 0.229;
 - DE tweet×wiki 0.195;
 - BAR tweet×wiki 0.181.

Comparisons – Entity Type Distributions

- Frequencies of NE types per 1K tokens (log-scaled);
- bar-wiki and de-wiki: similar type distributions;
- de-tweet: extreme LOC outlier (105.2) many routes/streets/cities;
- bar-tweet: least entities, esp. ORG; PER>LOC personal chats.

Comparisons – Top Entities

- Shared entities: Deutschland or Deitschland 'Germany';
- Most common city names differ between dialects: Minga 'Munich' in Bavarian vs. Berlin and Frankfurt in German:
- bar-wiki: document titles:
- de-wiki: city and country names;
- bar-tweet: tweet friends' names;
- de-tweet: railway lines, #S3, S3;
- de-news: currency Mark and political parties SPD or CDU.

bar-tweet

Comparisons – Annotators' Observations

Person entities:

- Family names come before given names,
 e.g., Dreßen is the family name in Dreßen Thomas;
- Shortened given names with diminutive suffixes (e.g., -l),
 Sebastian becomes Basti or Wastl;
- Given names are typically preceded by definite articles, e.g., d'Maria and da Michel.

Possessive constructions:

the genitive determiner in German is replaced by combining preposition *vo* 'from' with a dative determiner:

- 'Association of National Olympic Committees' in English
- Vaeinigung vo de Nationoin Olympischn Komitees in Bavarian
- Vereinigung der Nationalen Olympischen Komitees in German

NER results on Bavarian

Cross-domain, sequential, and joint training with German

Multi-task learning with dialect identification

Experiments – Setup

- MaChAmp (van der Goot et al., 2021) with masked CRF decoder;
- Datasets: five tag-normalized German and Bavarian datasets;
- German GBERT (Chan et al., 2020)
 https://huggingface.co/deepset/gbert-large;
- Multilingual XLM (Conneau et al., 2020)
 https://huggingface.co/xlm-roberta-large;
- 3-run average on Span F1.

Experiments – In-domain

- More difficult on bar-wiki, bar-tweet, and de-tweet smaller datasets and non-mainstream variations (Bavarian and/or tweet);
- XLM-R for later experiments higher F1s on BAR.

In-domain	bar-wiki bar-tweet		de-wiki	de-tweet	de-news	
		Corpus Stat	tistics			
#TrainToks #TrainEnts	61.4K 2.7K	71.8K 1.6K	232.4K 12.9K	47.0K 7.3K	207.0K 10.0K	
In-domain Results						
XLM-R GBERT	72.91 72.17	77.55 73.30	85.67 86.68	77.14 79.75	88.35 90.23	

Experiments – Out-of-domain (OOD)

- Models trained on the larger de-wiki and de-news perform badly on bar-wiki, bar-tweet, and de-tweet;
- Models trained on smaller but in-domain Bavarian data are better;
- However, cross-genre degradations between de-wiki and de-news are relatively small.

Experiments – Sequential

Motivation: bar-wiki/tweet suffer from smaller training size.

Sequential: train on another dataset \rightarrow train+evaluate on target.

- Improved performances on all five datasets;
- de-wiki → bar-wiki same genre but more data;
- ullet bar-wiki o bar-tweet same dialect but denser entities;
- de-tweet \rightarrow de-wiki & de-news topic-heavy entities;
- All other BAR/DE datasets \rightarrow *de-news* more diverse data.

${\sf Another} \backslash {\sf Target}$	bar-wiki	bar-tweet	de-wiki	de-tweet	de-news
bar-wiki	_	79.27	-	77.26	+
bar-tweet	_		-	-	+
de-wiki	73.67	+	_	-	+
de-tweet	_	-	86.08	_	88.89
de-news	_	+	-	-	_
In-domain	72.91	77.55	85.67	77.14	88.35

Experiments - Joint

Joint: train on all five \rightarrow dev/test on target.

Joint+seq: train on five \rightarrow train on target \rightarrow dev/test on target.

- Joint improves vastly on bar-wiki 8.82 ↑ & mildly on bar-tweet 0.62 ↑;
- Joint+seq improves *bar-wiki* by another $2.36 \uparrow$.

	bar-wiki	bar-tweet	de-wiki	de-tweet	de-news
joint	81.73	78.17	85.89	-	-
joint+seq	84.09	1			88.67
Joint+seq	04.09				00.07

Experiments – Multi-Task Learning (MTL)

Dialect Identification (DID): Classifying *tweet* and *wiki* as BAR or DE. **MTL with 5 NER and 2 DID tasks:** Vastly improve bar-wiki $11.26 \uparrow$.

Overall best results:

- bar-wiki by multi-task and other four by sequential;
- Still, Bavarian and tweets are more difficult.

	bar-wiki	bar-tweet	de-wiki	de-tweet	de-news
In-domain	72.91	77.55	85.67	77.14	88.35
Best model	multi-task	seq-bar-wiki	seq-de-tweet	seq-bar-wiki	seq-de-tweet
Improvement	11.26↑	1.72↑	0.41↑	0.12↑	0.54↑
Final result	84.17	79.27	86.08	77.26	88.89

Conclusion & Future Work

Conclusion

- BARNER manually annotated named entity corpus for Bavarian;
- Lexical and entity-level distinctions between DE and BAR;
- SOTA results from sequential training and multi-task learning;
- Diversity genres, topics, and dialects helps BAR and DE.

Future Work

- Alignments between mainstream languages and dialects;
- More fine-grained sub-dialectal (sub-regional) variations;
- Translation- vs. transfer-based approaches in dialectal NLP;
- Call for more dialectal datasets.

Also at LREC-COLING 2024: Bavarian Universal Dependencies (Blaschke et al., 2024) Slot Intent Detection (Winkler et al., 2024)

Questions? Comments?

Siyao Logan Peng MaiNLP & MCML, LMU Munich siyaopeng@cis.lmu.de

This project is supported by ERC Consolidator Grant DIALECT 101043235.

References I

- Darina Benikova, Chris Biemann, and Marc Reznicek. 2014. NoSta-D Named Entity Annotation for German: Guidelines and Dataset. *LREC* (2014).
- Verena Blaschke, Barbara Kovačić, Siyao Peng, Hinrich Schütze, and Barbara Plank. 2024. MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank. arXiv:2403.10293 [cs.CL]
- Branden Chan, Stefan Schweter, and Timo Möller. 2020. German's Next Language Model. In *Proceedings of the 28th International Conference on Computational Linguistics*, Donia Scott, Nuria Bel, and Chengqing Zong (Eds.). International Committee on Computational Linguistics, Barcelona, Spain (Online), 6788–6796.
 - https://doi.org/10.18653/v1/2020.coling-main.598
- Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learning at Scale. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics, Online, 8440–8451. https://doi.org/10.18653/v1/2020.acl-main.747
- Leonhard Hennig, Phuc Tran Truong, and Aleksandra Gabryszak. 2021. MoblE: A German Dataset for Named Entity Recognition, Entity Linking and Relation Extraction in the Mobility Domain. In *Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021)*. KONVENS 2021 Organizers, Düsseldorf, Germany, 223–227. https://aclanthology.org/2021.konvens-1.22

References II

- Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross-lingual Name Tagging and Linking for 282 Languages. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association for Computational Linguistics, Vancouver, Canada, 1946–1958. https://doi.org/10.18653/v1/P17-1178
- Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition. In *Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003*. 142–147. https://aclanthology.org/W03-0419
- Rob van der Goot, Ahmet Üstün, Alan Ramponi, Ibrahim Sharaf, and Barbara Plank. 2021. Massive Choice, Ample Tasks (MaChAmp): A Toolkit for Multi-task Learning in NLP. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations. Association for Computational Linguistics, Online, 176–197. https://doi.org/10.18653/v1/2021.eacl-demos.22
- Miriam Winkler, Virginija Juozapaityte, Rob van der Goot, and Barbara Plank. 2024. Slot and Intent Detection Resources for Bavarian and Lithuanian: Assessing Translations vs Natural Queries to Digital Assistants. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation.*