

অধ্যায় ৯ পিথাগোরাসের উপপাদ্য

মূল বিষয়

গ্রিক দার্শনিক পিথাগোরাস

খ্রিস্টপূর্ব ষষ্ঠ শতাব্দীর গ্রিক দার্শনিক পিথাগোরাস সমকোণী ত্রিভুজ এর একটি বিশেষ বৈশিষ্ট্য নিরূপণ করেন। সমকোণী ত্রিভুজ এর এ বৈশিষ্ট্য পিথাগোরাসের বৈশিষ্ট্য বলে পরিচিত। বলা হয় পিথাগোরাসের জন্মের আগে মিসরীয় ও ব্যবিলনীয় যুগেও সমকোণী ত্রিভুজের এ বৈশিষ্ট্যের ব্যবহার ছিল।

পিথাগোরাসের উপপাদ্য

এই অধ্যায় জানার আগে তোমাকে সমকোণী ত্রিভুজ সম্পর্কে ধারণা থাকতে হবে।
চলো সমকোণী ত্রিভুজ সম্পর্কে জানা যাক :

 ΔABC একটি সমকোণী ত্রিভুজ যেখানে $\angle BAC =$ সমকোণ এবং BC অতিভুজ এবং বাহুগুলো a,b,c এই অধ্যায়ে পিথাগোরাসের উপপাদ্য সম্পর্কে জানবো যা তোমাদের পরবর্তী উচ্চশ্রেণীতে অনেক কাজে প্রয়োজন হবে।

যেমন:

সংক্ষিপ্ত ভাবে যদি বলা হয় তাহলে,

$$AC =$$
 অতিভুজ

$$AB = \overline{a}$$

$$BC = \overline{2}$$
মি

যদি,
$$AC = 5$$
, $AB = 3$ $BC = 4$ হয়

$$AC^2 = AB^2 + BC^2$$

$$5^2 = 3^2 + 4^2$$

যে ত্রিভুজের অভ্যন্তরীণ কোণগুলির একটি কোণ সমকোণ বা ৯০ ডিগ্রি হয় তাকে সমকোণী ত্রিভুজ বলে।

ওপরের ছবিতে, ABC হলো এ<mark>কটি</mark> সমকোণী ত্রিভূজা B কোণের মান ৯০ ডিগ্রি তাই এটি একটি সমকোণী ত্রিভূজ।

সমকোণী ত্রিভুজের বৈশিষ্ট্য:

- সমকোণী ত্রিভুজের একটি কোণ ৯০ ডিগ্রি হবে।
- সমকোণী ত্রিভুজের সমকোণ ছাড়া অবশিষ্ট দুইটি কোণের প্রত্যেকটি কোণই এক একটি সূক্ষকোণ।
- ত্রিভুজের সমকোণ ছাড়া সৃক্ষকোণ দুইটির সমষ্টি অবশ্যই ৯০°।
- ত্রিভুজের তিনটি কোণের সমষ্টি দুই সমকোণ বা ১৮০° হওয়ার কারণে কোনো ত্রিভুজের একাধিক সমকোণ থাকতে পারে না।
- সমকোণের বিপরীত বাহুকে অতিভূজ বলে।
- সমকোণী ত্রিভুজের অতিভুজই বৃহত্তম বাহু।
- সমকোণ সংলগ্ন বাহুদ্বয়ের যে কোন একটিকে লম্ব এবং অপরটিকে ভূমি ধরতে বলা হয়। অর্থাৎ লম্ব ভূমি নির্দিষ্ট নয়।
- সমকোণী ত্রিভুজের অতিভুজ সংলগ্ন বাহুদ্বয় সূক্ষ্মকোণ হয়।
- সমকোণী ত্রিভুজের সূক্ষকোণ পরস্পর পূরক।
- কোন ত্রিভুজের একটি কোন যদি অপর দুইটি কোণের সমষ্টির সমান হয়, তবে ত্রিভুজটি সমকোণী।

সমকোণী ত্রিভুজের প্রকারভেদ:

- 1. সমকোণী সমদ্বিবাহু ত্রিভুজ
- 2. সমকোণী বিষমবাহু ত্রিভুজ

সমকোণী সমদ্বিবাহু ত্রিভুজ কাকে বলে?

যে ত্রিভুজের একটি কোণ সমকোণ বা ৯০ ডিগ্রী এবং ৩ টি বাহুর মধ্যে ২টি সমান ওই ত্রিভুজকে সমকোণী সমদ্বিবাহু ত্রিভুজ বলে।

ওপরের ছবিতে,

 $\angle A = 90^\circ$ (A কোণ হলো ৯০ ডিগ্রি অর্থাৎ সমকোণ)

 $\angle B=45^\circ$ (B কোণ হলো ৪৫ ডিগ্রি)

∠C = 45° (C কোণ হলো ৪৫ ডিগ্রি)

 $\angle A + \angle B + \angle C = 180^\circ$ (ত্রিভুজের তিনটি কোণের সমষ্টি দুই সমকোণ বা ১৮০°)

সমকোণী বিষমবাহু ত্রিভুজ কাকে বলে?

যখন তিনটি কোণের একটি 90 ডিগ্রী পরিমাপ করে এবং অন্য দুটি বাহুর কোণ বা দৈর্ঘ্য সমান হয় না, তাকে সমকোণী বিষমবাহু ত্রিভুজ বলে।

পিথাগোরাসের উপপাদ্য

কোনো সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল অপর দুই বাহুর অপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান

পিথাগোরাসের উপপাদ্য নিম্নোক্তভাবে প্রমাণ করা যায় :

পিথাগোরাসের উপপাদ্য

সাধারণ নির্বচন :

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান।

বিশেষ নির্বচন :

মনে করি, ABC সমকোণী ত্রিভুজের $\angle B=90^\circ$ । অতিভুজ AC=b, AB=c ও BC=a. প্রমাণ করতে হবে যে, $AC^2=AB^2+BC^2$, অর্থাৎ $b^2=c^2+a^2$

অঙ্কন:

BC কে D পর্যন্ত বর্ধিত করি, যেন CD=AB=c হয়। D বিন্দুতে বর্ধিত BC এর উপর DE লম্ব আঁকি, যেন DE=BC=a হয়। C, E ও A, E যোগ করি।

প্রমাণ:

ধাপ

(১) ΔABC ও ΔCDE এ AB = CD = C, BC = DE = a
 এবং অন্তর্ভুক্ত ∠ABC = অন্তর্ভুক্ত ∠CDE
 সুতরাং, ΔABC ≅ ΔCDE.
 ∴ AC = CE = b এবং ∠BAC = ∠ECD.

যথাৰ্থতা

[বাহু-কোণ-বাহু উপপাদ্য] [প্রত্যেকে সমকোণ]

10 MINUTE SCHOOL

ধাপ

যথাৰ্থতা

- (২) আবার, $AB \perp BD$ এবং $ED \perp BD$ বলে $AB \parallel ED$. সূতরাং, ABDE একটি ট্রাপিজিয়াম।
- (৩) তদুপরি, $\angle ACB + \angle BAC = \angle ACB + \angle ECD =$ এক সমকোণ।

 $[:: \angle BAC = \angle ECD]$

- ∴ ∠ACE = এক সমকোণ।
- ∴ $\triangle ACE$ সমকোণী ত্রিভুজ।

এখন ABDE ট্রাপিজিয়ামক্ষেত্রের ক্ষেত্রফল

 $= (\Delta$ ক্ষেত্র $ABC + \Delta$ ক্ষেত্র $CDE + \Delta$ ক্ষেত্র ACE)

বা,
$$\frac{1}{2}BD(AB + DE) = \frac{1}{2}ac + \frac{1}{2}ac + \frac{1}{2}b^2$$

বা,
$$\frac{1}{2}(BC + CD)(AB + DE) = \frac{1}{2}[2ac + b^2]$$

বা,
$$(a+c)(a+c) = 2ac + b^2$$
 [2 দ্বারা গুণ করে]

$$a^2 + 2ac + c^2 = 2ac + b^2$$

বা, $b^2 = c^2 + a^2$ (প্রমাণিত)

[ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল

 $=\frac{1}{2}$ সমান্তরাল বাহুদ্বয়ের

যোগফল × সমান্তরাল

বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(সদৃশকোণী ত্রিভুজের সাহায্যে)

সাধারণ নির্বচন :

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান।

বিশেষ নির্বচন :

মনে করি, ABC সমকোণী ত্রিভুজের $\angle C=90^\circ$ অতিভুজ AB=c, BC=a, AC=b. প্রমাণ করতে হবে যে, $AB^2=AC^2+BC^2$, অর্থাৎ $c^2=a^2+b^2$.

অঙ্কন :

C বিন্দু থেকে অতিভুজ AB এর এর উপর লম্ব CH অঙ্কন করি। AB অতিভুজ H বিন্দুতে d ও e অংশে বিভক্ত হলো।

প্রমাণ:

ধাপ

যথাৰ্থতা

[প্রত্যেকেই সমকোণ সাধারণ কোণ]

(২) অনুরূপভাবে ΔΑ*CH* ও <mark>ΔΑ</mark>Β*C* সদৃশ।

$$\therefore \frac{b}{c} = \frac{d}{b} \dots (2)$$

 $\therefore \frac{a}{c} = \frac{e}{a} \dots (1)$

- [(i) উভয় ত্রিভুজ সমকোণী
- (ii) ∠A কোণ সাধারণ]

(৩) অনুপাত দুইটি থেকে পাই,
$$a^2 = c \times e, b^2 = c \times d$$
অতএব, $a^2 + b^2 = c \times e + c \times d = c(e+d) = c \times c = c^2$
 $\therefore c^2 = a^2 + b^2$ [প্রমাণিত]

 $[\because c = e + d]$

পিথাগোরাসের উপপাদ্যের বিকল্প প্রমাণ

(বীজগণিতের সাহায্যে)

সাধারণ নির্বচন :

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান।

বিশেষ নির্বচন :

মনে করি, একটি সমকোণী ত্রিভুজের অতিভুজ c এবং a, b যথাক্রমে অন্য দুই বাহু। প্রমাণ করতে হবে যে, $c^2=a^2+b^2$.

অঙ্কন:

প্রদত্ত ত্রিভুজটির সমান করে চারটি ত্রিভুজ চিত্রে প্রদর্শিত উপায়ে আঁকি।

প্রমাণ:

ধাপ

- **(১)** অঙ্কিত বড় ক্ষেত্রটি বর্গক্ষেত্র। এর ক্ষেত্রফল $(a+b)^2$
- (২) ছোট চতুর্ভুজ ক্ষেত্রটি বর্গক্ষেত্র। এর ক্ষেত্রফল c^2
- (৩) অঙ্কনানুসারে, বড় বর্গক্ষেত্রের ক্ষেত্রফল চারটি ত্রিভুজক্ষেত্র ও ছোট বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টির সমান। অর্থাৎ,

$$(a+b)^2 = 4 \times \frac{1}{2} \times a \times b + c^2$$

বা, $a^2 + 2ab + b^2 = 2ab + c^2$
বা, $c^2 = a^2 + b^2$ [প্রমাণিত]

যথাৰ্থতা

[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য a+b এবং কোণগুলো সমকোণ]

[বাহুগুলোর প্রত্যেকটির দৈর্ঘ্য c]

কাজ: পাঠ্যবইয়ের পৃষ্ঠা-১৪১

১) একটি সমকোণ আঁক এবং এর বাহু দুইটির উপর যথাক্রমে 3 সে.মি. ও 4 সে.মি. দূরত্বে দুইটি বিন্দু চিহ্নিত কর। বিন্দু দুইটি যোগ করে একটি সমকোণী ত্রিভুজ আঁক। ত্রিভুজটির অতিভুজের দৈর্ঘ্য পরিমাপ কর। দৈর্ঘ্য 5 সে.মি হয়েছে কি ?

সমাধান : প্রথমে OC যে কোনো একটি রশ্মি আঁকি । OC এর উপর OD লম্ব আঁকি।

তাহলে $\angle COD =$ এক সমকোণ।

এখন OC রিশ্ন থেকে 3 সে.মি. এর সমান করে OA অংশ কেটে নেই এবং OD থেকে 4 সে.মি এর সমান করে OB অংশ কেটে নেই। A, B যোগ করি।

ΔΟΑΒ একটি সমকোণী ত্রিভুজ।

এখন স্কেল দিয়ে, ΔOAB এর অতিভুজ AB এর দৈর্ঘ্য মেপে দেখি।

দেখা যাচ্ছে AB= 5 সে.মি.

মন্তব্য : ΔOAB এর ভূমি OA=3 সে.মি. , লম্ব OB=4 সে.মি. এবং অতিভুজ AB=5 সে.মি.

$$∴ OA^2 + OB^2 = AB^2$$
 বা, $3^2 + 4^2 = 5^2$

অর্থ্যাৎ ত্রিভুজটি পিথাগোরাসের উপপাদ্যকে সিদ্ধ করে।

কাজ: পাঠ্যবইয়ের পৃষ্ঠা-১৪৪

১) $(a-b)^2$ এর বিস্তৃতির সাহায্যে পিথাগোরাসের উপপাদ্যটি প্রমাণ কর।

সমাধান:

সাধারণ নির্বচন : $(a-b)^2$ এর বিস্তৃতির সাহায্যে পিথাগোরাসের উপপাদ্য প্রমাণ করতে হবে।

বিশেষ নির্বচন :

মনে করি, একটি সমকোণী ত্রিভুজের অতিভুজ c এবং a ও b যথাক্রমে অন্য দুই বাহু। $(a-b)^2$ এর বিস্তৃতির সাহায্যে প্রমাণ করতে হবে যে, $c^2=a^2+b^2$

অঙ্কন :

প্রদত্ত ত্রিভুজটির সমান করে চারটি ত্রিভুজ চিত্রে প্রদর্শিত উপায়ে আঁকি।

10 MINUTE SCHOOL

প্রমাণ:

ধাপ যথাৰ্থতা

- (১) বড় বর্গক্ষেত্রটির বাহুর দৈর্ঘ্য = cবড় বর্গক্ষেত্রটির ক্ষেত্রফল $= c^2$ বর্গ একক
- (২) ছোট বর্গক্ষেত্রটির বাহুর দৈর্ঘ্য = a b
 ছোট বর্গক্ষেত্রটির ক্ষেত্রফল = (a b)² বর্গ একক
 প্রত্যেকটি সমকোণী ত্রিভুজের লম্ব = a ভূমি = b
 ও অতিভুজ = c
- (৩) যেকোন একটি সমকোণী ত্রিভুজের ক্ষেত্রফল $= \left(\frac{1}{2} \times ভূমি \times উচ্চতা\right) বর্গএকক \qquad \qquad [ধাপ (২) হতে]$ $= \frac{1}{2}ab \quad বর্গএকক$
- (8) অঙ্কনানুসারে, $= 4 \times \frac{1}{2}ab + (a-b)^2 = c^2$ বা, $2ab + a^2 2ab + b^2 = c^2$ $\therefore a^2 + b^2 = c^2$ (প্রমানিত)

[বড় ক্ষেত্রটির ক্ষেত্রফল চার ত্রিভুজক্ষেত্র ও ছোট বর্গক্ষেত্রে ক্ষেত্রফলের সমান]

পিথাগোরাসের উপপাদ্যের বিপরীত উপপাদ্য

সাধারণ নির্বচন :

যদি কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান হয়, তবে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে।

বিশেষ নির্বচন :

মনে করি, $\triangle ABC$ এর $AB^2=AC^2+BC^2$ । প্রমাণ করতে হবে যে, $\angle C=$ এক সমকোণ।

অঙ্কন :

এমন একটি ত্রিভুজ DEF আঁকি, যেন $\angle F$ এক সমকোণ, EF=BC এবং DF=AC হয়।

প্রমাণ:

ধাপ

যথাৰ্থতা

(3)
$$DE^2 = EF^2 + DF^2$$

 $= BC^2 + AC^2$
 $= AB^2$
 $\therefore DE = AB$

এখন $\triangle ABC$ ও $\triangle DEF$ এ BC=EF, AC=DF এবং AB=DE

[কারণ ΔDEF এ $\angle F$ এক সমকোণ]

[কল্পনা]

বা, $\therefore \triangle ABC \cong \triangle DEF \quad \therefore \angle C = \angle F$ কিন্তু $\angle F = \triangle ABC \cong \triangle DEF \quad \therefore \angle C = \triangle CBC$

[বাহু-বাহু-বাহু সর্বসমতা]

[প্রমাণিত]

সৃজনশীল প্রশ্ন

- ১. চিত্রে XZ = b, YZ = c এবং XZ > YZ
- ক) চিত্রে PY=3 সে.মি. ZY=5 সে.মি. হলে ZP এর মান বের কর।
- খ) চিত্রে থেকে প্রমান কর যে, $a^2 + b^2 = c^2$ ।
- গ) O , ZP এর উপর যে কো<mark>নো</mark> বিন্দু প্রমাণ কর যে, $ZX^2-YZ^2=XO^2-YO^2$ ।

সমাধান

ক) ΔZPY সমকোণী ত্রিভুজ।

$$\therefore ZY^2 = PY^2 + ZP^2$$

বা,
$$ZP^2 = ZY^2 - PY^2$$

বা,
$$ZP^2 = 5^2 - 3^2$$
 [দেওয়া আছে, $ZY = 5cm$, $PY = 3cm$]

বা,
$$ZP^2 = 16$$

$$\therefore ZP = 4$$

খ) মনে করি, XZY সমকোণী ত্রিভুজ $\angle Z=90^\circ$ এবং অতিভুজ XY=c , ZY=a এবং XZ=b ; XY অতিভুজ P বিন্দুতে d ও c অংশে বিভক্ত হলো। প্রমাণ করতে হবে যে, $a^2+b^2=c^2$ ।

প্রমাণ:

ধাপ

যথাৰ্থতা

3) $\Delta ZPY \circ \Delta XZY \circ$

$$\angle YPZ = \angle XZY$$

 $\angle ZYP = \angle XYZ$

$$\Delta ZPY$$
 ও ΔXZY সদৃশ

$$\therefore \frac{YZ}{XY} = \frac{PY}{YZ}$$

$$\therefore \frac{a}{c} = \frac{c}{a} \dots \dots (i)$$

২) একইভাবে ΔXZP ও ΔXZY সদৃশ

[উভয় কোণ সমকোণী ∠A সাধারণ

$$\therefore \frac{b}{c} = \frac{d}{b} \dots \dots (ii)$$

কোণ]

৩) অনুপাত দুইটি থেকে পাই,

$$a^2 = e \times c$$
, $b^2 = e \times d$
 $\therefore a^2 + b^2 = c \times e + e \times d$

$$= c(e+d)$$
$$= c \times c$$

$$=c^2$$

$$[\because c = e + d]$$

২. চিত্রে ΔDEF এ $EF^2 = DE^2 + DF^2$

- ক) একটি ঘনকের ধার 5.5 সে.মি. হলে এর সমগ্র তলের ক্ষেত্রফল নির্ণয় কর।
- খ) উদ্দীপকের আলোকে প্রমাণ কর যে, $\angle D = 90^\circ$
- গ) উদ্দীপকের P ও Q যথাক্রমে DE ও EF এর মধ্যবিন্দু হয় হবে প্রমাণ কর যে , $PQ=rac{1}{2}DF$

সমাধান

- ক) ঘনকের ধার a হলে সমগ্রতলের ক্ষেত্রফল $6a^2$
 - \therefore 5.5 সে.মি. ধার বিশিষ্ট ঘনকের সমগ্রতলের ক্ষেত্রফল $=6(5.5)^2$ বর্গ সে.মি
 - = 181.5 বর্গ সে.মি.

খ.

বিশেষ নির্বচন : মনে করি, ΔDEF এ $EF^2 = DE^2 + DF^2$ প্রমাণ করতে হবে যে, $\angle D = 90^\circ$

আন্ধন: এমন একটি ত্রিভুজ ABC আঁকি যেন $\angle A=90^{\circ}AB=DE$ এবং AC=DF হয়।

প্রমাণ:

যথাৰ্থতা

5)
$$BC^2 = AB^2 + AC^2 = DE^2 + DF^2 = EF^2$$

BC = EF

ি কারণ ∆ABC এক

∠A = 90° সমকোণ]

এখন, ΔDEF ও ΔABC এ DE = AB; DF = AC

এবং EF = BC

 $\therefore \Delta DEF \cong \Delta ABC$

[বাহু-বাহু-বাহু সর্বসমতা]

$$\therefore \angle D = \angle A$$

কিন্তু $\angle A = 90^{\circ}$ হওয়ায় $\angle D = 90^{\circ}$ (প্রমানিত)

গ.

বিশেষ নির্বচন : মনে করি একটি ত্রিভুজ $EDF \circ P \circ Q$ যথাক্রমে ত্রিভুজটি $ED \circ EF$ বাহুর মধ্যবিন্দু \circ তাহলে প্রমাণ করতে হবে যে, $PQ \parallel DF$ এবং $PQ = \frac{1}{2}DF$

অন্ধন : P ও Q যোগ করে বর্ধিত করি যেন QR = PQ হয়। F,R যোগ করি।

প্রমাণ:

ধাপ-১. ΔEPQ ও ΔFQR এর মধ্যে EQ=QF

$$PQ = QR$$

[অঙ্কনানুসারে]

$$\angle EQP = \angle FQR$$
 [বিপ্রতীপ কোণ]

$$\Delta EPQ \cong \Delta QRF$$
 [বাহু-কোণ-বাহু উপপাদ্য]

$$\angle EPQ = \angle QRF$$
 এবং $\angle PEQ = \angle QFR$ [একান্তর কোণ]

∴ EP || FR বা, ED || FR

আবার, DP = EP = FR এবং, $DP \parallel FR$

সূতরাং, DPRF একটি সমান্তরিক

∴ PR || DF বা, PQ || DF

ধাপ-২. আবার PR = DF বা, PQ + QR + DF

বা,
$$PQ + PQ = DF$$

বা,
$$2PQ = DF$$

বা,
$$PQ = \frac{1}{2}DF$$

$$\therefore PQ = \frac{1}{2}DF$$

(প্রামানিত)

- ৩. চিত্রে, $\angle B = \angle D = 90^\circ$, AB = CD, BC = DE এবং M, CE এর মধ্যবিন্দু।
- ক) প্রমাণ কর যে, $\triangle ABC \cong \triangle CDE$
- খ) প্রমাণ কর যে, $AC^2 = AB^2 + BC^2$
- গ) দেখাও যে, $AE^2 + CM^2 = AM^2 + CE^2$

সমাধান

$$BC = DE$$
 এবং $\angle B =$ অন্তর্ভক্ত $\angle D = 90^{\circ}$

$$\therefore \Delta ABC \cong \Delta CDE$$
 [বাহু-কোণ-বাহু উপপাদ্য] (প্রমাণিত)

খ)

মনে করি, ABC সমকোণী ত্রিভুজের $\angle B=90^\circ$ অতিভুজ AC=b, AB=c, BC=a প্রমাণ করতে হবে যে, $AC^2=AB^2+BC^2$ অর্থাৎ $b^2=a^2+c^2$

প্রমাণ :

ধাপ

যথাৰ্থতা

১) △ABC ଓ △CDE ④

$$AB = CD = c, BC = DE = a$$

এবং অন্তর্ভূক্ত ∠ABC = অন্তর্ভূক্ত ∠CDE

সূতরাং, $\triangle ABC \cong \triangle CDE$

$$\therefore AC = CE = b$$
 এবং $\angle BAC = \angle ECD$

২) আবার, A $B \perp BD$ এবং ED \perp

BD বল *AB* ∥ *ED*

সুতরাং ABDE একটি ট্রপিজিয়াম।

৩) তদুপরি $\angle ACB + \angle BAC = \angle AC +$

∠ECD = এক সমকোণ

 $\therefore \angle ACE$ এক সমকোণ

∴ ΔACE সমকোণী ত্রিভুজ

এখন ABDE ট্রাপিজিয়ামের ক্ষেত্রফল =

(Δ কেত্র $ABC + \Delta$ কেত্র $CDE + \Delta$ কেত্র ACE)

 $[:: \angle BAC = \angle ECD]$

[ABDE ট্রাপিজিয়ামের ক্ষেত্রফল= $\frac{1}{2}$ × সমান্তরাল বাহুদ্বয়ের যোগফল × সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]

ধাপ

যথাৰ্থতা

[2 দ্বারা গুণ করে]

বা, $b^2 = c^2 + a^2$ (প্রমাণিত)

গ)
$$\triangle ACE$$
 এ $AC = CE$ এবং $\angle ACE = 90^{\circ}$

[খহতে]

$$\therefore AE^2 = AC^2 + CE^2 \dots (i)$$

আবার, $\triangle ACM$ এ $\angle ACM = 90^\circ$

$$\therefore AM^2 = AC^2 + CE^2 \dots \dots (ii)$$

(i) নং সমীকরণের উভয়পক্ষে CM² যোগ করে পাই

$$\therefore AE^2 + CM^2 = AC^2 + CE^2 + CM^2$$

বা,
$$AE^2 + CM^2 = AC^2 + CM^2 + CE^2$$

$$\therefore AE^2 + CM^2 = AM^2 + CE^2$$
 [(ii) হতে $AM^2 = AC^2 + CM^2$]

(প্রমাণিত)

8. ΔPQR এ PQ>PR এবং $PD\perp QR$

- ক) স্কেল ও কম্পাসের সাহায্যে 30° কোণ আঁক।
- খ) প্রমাণ কর যে, $PQ^2 = PD^2 + QD^2$
- গ) M,PD এর উপর যে কোনো বিন্দু হলে প্রমাণ কর যে, $QM^2-RM^2=PQ^2-PR^2$

সমাধান

ক)

চিত্ৰে ∠BAD = 30°

খ) প্রমাণ করতে হবে যে, $PQ^2 = PD^2 + QD^2$

আঙ্কন : D থেকে PQ এর উপর লম্ব DE আঁকি। PQ অতিভুজ E বিন্দুতে d ও c অংশে বিভক্ত হলো। প্রমাণ:

১) ADEQ ও APDQ এ

$$\angle QED = \angle PDQ$$

$$\angle DQE = \angle DQP$$

ΔDEQ ও ΔPDQ সদৃশ

$$\therefore \frac{BC}{AC} = \frac{CE}{BC}$$

$$\therefore \frac{a}{c} = \frac{c}{a} \dots \dots (ii)$$

২) একইভাবে ΔPDE ও ΔPDQ সদৃশ

$$\therefore \frac{b}{C} = \frac{d}{b}$$

৩) অনুপাত দুইটি থেকে পাই,

$$a^2 = c \times c$$
, $b^2 = c \times d$

$$\therefore a^2 + b^2 = c \times c + c \times d$$

$$= c(c+d) = c \times c = c^2 \qquad [\because c = c+d]$$

$$[: c = c + d]$$

 $[\angle Q$ সাধারণ কোণ]

ধাপ

যথাৰ্থতা

বা,
$$a^2 = b^2 = c^2$$
 [:: $c = c + d$]
:: $PQ^2 = PD^2 + DQ^2$ (প্রামাণিত)

গ)

বিশেষ নির্বচন : মনে করি PQR ত্রিভূজে PQ>PR এবং PD \perp QR, M, PD এর উপর যেকোনো বিন্দু। প্রমাণ করতে হবে যে , $QM^2-RM^2=PQ^2-PR^2$

অঙ্কন: Q, M ও R, M যোগ করি।

প্রমাণ:

ধাপ

যথাৰ্থতা

১) ΔQDM এবং ΔRDM সমকোণী ত্রিভুজ যাদের $[\because PD \perp QR]$

$$\angle QDM = 90^\circ$$
 এবং $\angle RDM = 90^\circ$

 ΔQDM হতে পাই,

$$AM^2 = QD^2 + MD^2 \dots (i)$$

[পীথাগোরাসের উপপাদ্য]

 ΔRDM হতে পাই,

[অনুরূপ]

$$RM^2 = RD^2 + MD^2 \dots \dots (ii)$$

২) (i) থেকে (ii) হতে বিয়োগ করে পাই.

$$QM^2 - RM^2 = QD^2 - RD^2 \dots \dots (iii)$$

ধাপ

যথাৰ্থতা

৩) অনুরূপভাবে , ΔQDP এবং ΔRDP

সমকোণী ত্রিভুজ হতে পাই,

$$PQ^2-PR^2=QD^2-RD^2\dots\dots(iv)$$

8) (iii) ও (iv) হতে পাই,

$$QM^2 - RM^2 = PQ^2 - PR^2$$
 (প্রমানিত)

16 MINUTE SCHOOL

৫. $\triangle ABC$ এ $\angle A=90^\circ, BP$ এবং CQ দুইটি মধ্যমা।

- ক) পেন্সিল কম্পাসের সাহায্যে $\angle A$ কে সমদ্বিখন্ডিত কর।
- খ) প্রমাণ কর যে, $BC^2 = CQ^2 + 3AQ^2$
- গ) প্রমাণ কর যে, $5BC^2 = 4(BP^2 + CQ^2)$

ক)

খ) বিশেষ নির্বচন : ABC ত্রিভুজের $\angle A$ সমকোণ এবং CQ একটি মধ্যমা। প্রমাণ করতে হবে যে, $BC^2 = CQ^2 + 3AQ^2$

প্রমাণ:

ধাপ

১) Δ*ABC* এর CQ মধ্যমা

$$\therefore AQ = BQ$$

যথাৰ্থতা

[ত্রিভুজের যে কোনো শীর্ষ বিন্দু থেকে অঙ্কিত মধ্যমা তার বিপরীত বাহুকে সমদ্বিখন্ডিত করে।]

ধাপ

যথাৰ্থতা

২) চিত্র থেকে

$$AB = AQ + BQ$$
$$= AQ + AQ = 2AQ$$

৩) এখন, $\triangle ABC$ এ $\angle A=$ এক সমকোণ

8) আবার, ΔAQC এ $\angle A=$ এক সমকোণ

$$AC^2 + AQ^2 = CQ^2$$

বা, $BC^2 - 4AQ^2 + AQ^2 = CQ^2$
বা, $BC^2 - 3AQ^2 = CQ^2$
 $\therefore BC^2 = CQ^2 + 3AQ^2$ (প্রমানিত)

[ধাপ (১) থেকে প্রাপ্ত]

[পিথাগোরাস সূত্রানুসারে] [ধাপ ২ থেকে]

[পক্ষান্তর করে]

[পিথাগোরাসের সূত্রানুসারে] [ধাপ (৩) থেকে প্রাপ্ত]

গ) বিশেষ নির্বচন : ABC ত্রিভুজের $\angle A$ সমকোণ, BP ও CQ দুইটি মধ্যমা। প্রমাণ করতে হবে যে, $5BC^2=4(BP^2+CQ^2)$

প্রমাণ:

ধাপ

১) ΔABC এর BP ও CQ দুইটি মধ্যমা

$$\therefore AP = \frac{1}{2}AC$$
 এবং $AQ = \frac{1}{2}AB$

২) $\triangle ABC$ এ $\angle A$ সমকোণ

$$\therefore AB^2 + AC^2 = BC^2 \dots \dots (i)$$

ullet) আবার $\triangle ABP$ এ $\angle A$ সমকোণ।

$$\therefore AB^2 + AP^2 = BP^2 \dots \dots (ii)$$

8) তদ্রুপ $\triangle ACQ$ এ $\angle A$ সমকোণ

$$\therefore AC^2 + AQ^2 = CQ^2 \dots \dots (iii)$$

৫) এখন.

$$AB^2 + AP^2 + AC^2 + AO^2 = BP^2 + CO^2$$

বা,
$$AB^2 + AC^2 + \frac{1}{4}AB^2 + \frac{1}{2}AC^2 = BP^2 + CQ^2$$

বা,
$$(AB^2 + AC)^2 + \frac{1}{4}(AB^2 + AC^2) = BP^2 + CQ^2$$

বা,
$$BC^2 + \frac{1}{4}BC^2 = BP^2 + CQ^2$$

বা,
$$5BC^2 = 4(BP^2 + CQ^2)$$

যথাৰ্থতা

[ত্রিভুজের যে কোনো শীর্ষ বিন্দু থেকে অঙ্কিত মধ্যমা তার বিপরীত বাহুকে সমদ্বিখন্ডিত করে।]

[পিথাগোরাসের সূত্রানুসারে]

[অনুরূপ]

[(i) ও (ii) যোগ করে] [ধাপ ১ হতে]

৬. চিত্রে
$$PQ=12$$
 সে.মি. $PR=13$ সে.মি.

- ক) QR এর মান নির্ণয় কর।
- খ) M, QR এর মধ্যবিন্দু হলে প্রমাণ কর যে, $PR^2 = PM^2 + 3RM^2$
- গ) QS PR হলে প্রমাণ কর যে, $PQ^2 QR^2 = PS^2 RS^2$

সমাধান

ক) চিত্ৰে ∠*PQR* = 90°

পিথাগোরাসের উপপাদ্য অনুসারে,

$$PR^2 = PQ^2 + QR^2$$

$$\boxed{13^2 = 12^2 + QR^2}$$

বা,
$$169 - 144 = QR^2$$

বা,
$$25 = QR^2$$

$$\therefore QR = 5$$
 সে.মি.

খ. PRQ ত্রিভুজের $\angle Q$ সমকোণ এবং P ও RQ বাহুর মধ্যবিন্দু M যোগ করি। প্রমাণ করতে হবে যে, $PR^2=PM^2+3RM^2$

প্রমাণ:

ধাপ >: ΔPRQ এর RQ বাহুর মধ্যবিন্দু Μ অর্থ্যৎ PM মধ্যমা

$$\therefore QM = RM$$

ধাপ ২: চিত্র থেকে RQ = QM + RM

$$= QM + QM$$

$$= 2QM$$

[ধাপ ১ থেকে]

[ধাপ ২ থেকে]

ধাপ ৩: ΔPRQ এ $\angle Q=$ এক সমকোণ

$$\therefore PR^2 = RQ^2 + PQ^2$$

$$= (2QM)^2 + PQ^2 = 4QM^2 + PQ^2$$

বা,
$$PR^2 - 4QM^2 = PQ^2$$

ধাপ 8: আবার ∆PMQ

$$\therefore PQ^2 + QM^2 = PM^2$$

বা,
$$PR^2 - 4QM^2 + QM^2 = PM^2$$

বা,
$$PR^2 - 3QM^2 = PM^2$$

[ধাপ ৩ থেকে]

$$\therefore PR^2 = PM^2 + 3QM^2$$

$$\therefore PR^2 = PM^2 + 3RM^2$$
 (প্রমানিত)

গ. বিশেষ নির্বচন : দেওয়া আছে, $\triangle {
m QPR}$ এ ${
m PR}$ এর উপর লম্ব ${
m QS}$ এবং ${
m QP}>{
m QR},$ প্রমাণ করতে হবে যে, ${
m QP}^2-{
m QR}^2={
m PS}^2-{
m RS}^2$.

প্রমাণ: ধাপ

যথাৰ্থতা

- (১) যেহেতু $QS \perp PR$ \therefore QPS ও QRS ত্রিভূজদ্বয় সমকোণী।
- (২) সমকোণী \triangle QPS হতে পাই, $QP^2 = QS^2 + PS^2$ (i)

[পিথাগোরাসের উপপাদ্য অনুযায়ী]

- (৩) সমকোণী \triangle QRS হতে পাই, $QR^2=QS^2+RS^2$ (ii)
- (8) এখন, (i) নং হতে (ii) নং বিয়োগ করে পাই,

$$QP^{2} - QR^{2} = QS^{2} + PS^{2} - QS^{2} - RS^{2}$$

= $PS^{2} - RS^{2}$

$$\therefore QP^2 - QR^2 = PS^2 - RS^2$$
 (প্রমাণিত)

٩.

- ক. একটি আয়তাকার ঘনবস্তুর দৈর্ঘ্য প্রস্থ ও উচ্চতা যথাক্রমে 6 সে.মি. , 5 সে.মি. এবং 4 সে.মি. । ঘনবস্তুটির সমগ্রতলের ক্ষেত্রফল নির্ণয় কর।
- খ, উদ্দীপকের আলোকে পিথাগোরাসের উপপাদ্যটি প্রমাণ কর।
- গ. যদি QR বাহুর মধ্যবিন্দু S হয়, তবে প্রমাণ কর যে, $PR^2 = PS^2 + 3SR^2$.

সমাধান

ক. দেওয়া আছে আয়তাকার ঘনবস্তুর দৈর্ঘ্য, a = 6 সে.মি.

আয়তাকার ঘনবস্তুর প্রস্থ b=5 সে.মি. আয়তাকার ঘনবস্তুর উচ্চতা c=4 সে.মি.

আমরা জানি,

আয়তাকার ঘনবস্তুর সমগ্রতলের ক্ষেত্রফল = 2(ab + bc + ca)

$$= 2(6 \times 5 + 5 \times 4 + 4 \times 6)$$

$$= 2(30 + 20 + 24)$$

$$= 2 \times 74$$

= 148 বৰ্গ সে.মি. (Ans.)

- খ. পাঠ্যবইয়ের অনুশীলনী ৯ এর উপপাদ্য ৯.২ দ্রষ্টব্য । পৃষ্ঠা ১৪১
- গ্ৰু অনুশীলনীর প্রশ্ন ও সমাধান অংশের ৩ নং এর অনুরূপ।

b.

- ক. 12 মিটার ব্যাসবিশিষ্ট একটি বৃত্তাকার বাগানের ক্ষেত্রফল নির্ণয় কর।
- খ, উদ্দীপকের আলোকে পিথাগোরাসের উপপাদ্যটি প্রমাণ কর।
- গ. উদীপকের চিত্রে N, , QR এর উপরস্থ একটি বিন্দু হলে প্রমাণ কর যে, $PR^2 + QN^2 = PN^2 + QR^2$

সমাধান

- ক. দেওয়া আছে, বাগানের ব্যাস = 12 মিটার
 - \therefore বাগানের ব্যাসার্ধ, $r=rac{12}{2}$ মিটার =6 মিটার
 - \therefore বাগানটির ক্ষেত্রফল = πr^2 বর্গমিটার = $3.1416 \times (6)^2$ বর্গ মিটার = 113.0976 বর্গমিটার (প্রায়) (Ans.)
- খ. পাঠ্যবইয়ের অনুশীলনী ৯ এর উপপাদ্য ৯.২ দ্রষ্টব্য। পৃষ্ঠা ১৪১

গ. দেওয়া আছে , PQR ত্রিভূজের $\angle Q=$ এক সমকোণ । N , QR এর উপরস্থ একটি বিন্দু । P , N যোগ করি। প্রমাণ করতে হবে যে, $PR^2+QN^2=PN^2+QR^2$

প্রমাণ :

ধাপ

যথাৰ্থতা

(১) PQR সমকোণী ত্রিভূজের অতিভুজ [পিথাগোরাসের উপপাদ্য হতে]

PR, :
$$PR^2 = PQ^2 + QR^2$$
.....(i)

(২) আবার, PQN সমকোণী ত্রিভূজের অতিভুজ PN,

∴
$$PN^2 = PQ^2 + QN^2$$

 $\forall PN^2 = PN^2 - PQ^2 \dots \dots (ii)$

(৩) এখন (i) ও (ii) নং যোগ করে পাই,

$$PR^2 + QN^2 = PQ^2 + QR^2 + PN^2 - PQ^2$$

 $\therefore PR^2 + QN^2 = PN^2 + QR^2$ (প্রমাণিত)

[পিথাগোরাসের উপপাদ্য হতে]

- ৯. চিত্রে $\triangle PQR$ এ $PR^2 = PQ^2 + QR^2$
- ক. একটি সমকোণী ত্রিভূজের সমকোণ সংলগ্ন দুইটি বাহুর দৈর্ঘ যথাক্রমে 5 সে. মি. ও 6 সে. মি. হলে ত্রিভূজের ক্ষেত্রফল নির্ণয় কর।
- খ. উদ্দীপকের আলোকে প্রমাণ কর যে, $\angle PQR = 90^\circ$
- গ. $\triangle PQR$ এ $\angle Q=$ এক সমকোণ এবং D ও E যথাক্রমে PQ ও QR এর মধ্যবিন্দু হলে , প্রমাণ কর যে, $5PR^2=4(PE^2+RD^2)$

সমাধান

- ক. দেওয়া আছে, সমকোণী ত্রিভূজের সমকোণ সংলগ্ন দুটি বাহু অর্থাৎ ভূমি = 5 সে. মি. ও উচ্চতা = 6 সে. মি.
- ∴ ত্রিভূজের ক্ষেত্রফল = $\frac{1}{2}$ ×ভূমি \times উচ্চতা

$$=\frac{1}{2}\times5\times6=15$$
 বৰ্গ সে. মি. (Ans)

খ. দেওয়া আছে, \triangle PQR এ $PR^2 = PQ^2 + QR^2$,

প্রমাণ করতে হবে যে, $\angle PQR = 90^\circ$

সমকোণ]

আঙ্কন : এমন একটি ত্রিভূজ ABC আঁকি যেন $\angle B$ এক সমকোণ, BC = QR এবং AB = PQ হয়।

প্রমাণ:

ধাপ

যথাৰ্থতা

[::AB = PQ এবং BC = QR]

[কারণ △ABC এ ∠B এক

$$AC^{2} = AB^{2} + BC^{2}$$
$$= PQ^{2} + QR^{2} = PR^{2}$$

$$\therefore AC = PR$$

এখন $\triangle PQR$ ও $\triangle ABC$ এ PQ=AB,QR=BC

এবং
$$PR = AC$$

$$\therefore \triangle PQR \cong \triangle ABC \therefore \angle Q = \angle B$$

কিন্তু $\angle B$ এক সমকোণ হওয়ায় $\angle Q$ ও এক সমকোণ ।

গ. অনুশীলনীর প্রশ্ন ও সমাধান অংশের ৪ নং এর অনুরূপ।

প্রশ্ন-১০। PQR একটি সমকোণী ত্রিভুজ , যেখানে $\angle PQR = 90^\circ$ ।

- ক. 6 সে.মি. , 8 সে.মি. ও 10 সে.মি. বাহুবিশিষ্ট ত্রিভুজটি সমকোণী কিনা যাচাই কর।
- খ, উদ্দীপক অনুযায়ী পিথাগোরাসের উপপাদ্য প্রমান কর ।
- গ. PE এবং RF ত্রিভুজটির দুইটি মধ্যমা হলে প্রমান কর যে , $5PR^2$ = $4(PE^2 + RF^2)$

সমাধান

ক. পিথাগোরাসের উপপাদ্য অনুসারে আমরা জানি , একটি ত্রিভুজ সমকোণী হবে যদি $c^2=a^2+b^2$ হয়। [যেখানে ত্রিভুজের তিন বাহুর দৈর্ঘ্য]

এখানে ,
$$(10)^2 = (6)^2 + (8)^2 = 36 + 84 = 100$$

- $\therefore (10)^2 = (6)^2 + (8)^2$ অর্থাৎ, ত্রিভুজটি সমকোনী ত্রিভুজ
- খ্, পাঠ্যবইয়ের অধ্যায় ৯ এর উপপাদ্য ৯,২ দ্রষ্টব্য। পৃষ্ঠা-১৪১
- গ্, অনুশীলনীর প্রশ্ন ও সমাধান অংশের ৮ নং এর অনুরুপ।

১১। চিত্রে, $\triangle ABC$ –এ $\angle C = 90^{\circ}$

ক.সমকোণী ত্রিভুজের দুইটি বৈশিষ্ট্য লেখ।

খ.প্রমান কর যে, $AB^2 = AC^2 + BC^2$

গ. AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে P ও Q হলে প্রমান কর যে $PQ \parallel BC$ এবং $PQ \frac{1}{2}BC$

সমাধান

- ক. সমকোণী ত্রিভুজের দুইটি বৈশিষ্ট্য নিম্নরূপ:
 - (i) সমকোণী ত্রিভুজের 1 টি কোণ এক সমকোণ অর্থাৎ 90° হবে
 - (ii) ক্ষুদ্রতর বাহুদ্বয়ের বর্গের সমষ্টি বৃহত্তম বাহুর বর্গের সমান হবে অর্থাৎ (অতিহুজ) 2 = (লম্ব) 2 +(ভূমি) 2
- খ. পাঠ্যবয়ের অধ্যায় ৯ এর উপপাদ্য ৯.২ এর অনুরুপ। পৃষ্ঠা ১৪১

গ. বিশেষ নির্বচনঃ মনে করি, AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে P Q । যোগ করি। প্রমান করতে হবে যে $PQ \parallel BC$ এবং $PQ\frac{1}{2}BC$

আঙ্কনঃ QP কে G পর্যন্ত বর্ধিত করি এবং $BG \parallel QC$ আঁকি। QP এর বর্ধিতাংশ BG কে G বিন্দুতে ছেদ করে।

প্রমানঃ

ধাপ

$$(\mathfrak{D})\Delta APQ$$
 ও ΔBPG — এ

$$\angle APQ = \angle BPG$$

AP=PB

$$\angle QAP = \angle PBG$$

$$\therefore \Delta AQP \cong \Delta BPG$$

$$\therefore QP = PG , AQ = BG$$

যথাৰ্থতা

[বিপ্রতীপ কোণ সমান]

[P, AB এর মধ্যবিন্দু]

 $[\because AQ \parallel BG$ এবং AB এদের ছেদক]

[ত্রিভুজের কোণ-বাহু-কোণ উপপাদ্য]

(2) CQ = AQ

 $\therefore CQ = BG$

সুতরাং CQGB একটি আয়তক্ষেত্র।

 \therefore $CQ \parallel BG$ এবং $QG \parallel CB$

অর্থাৎ 2PQ = BC এবং $PQ \parallel BC$

 $\therefore PQ = \frac{1}{2}BC$ এর $PQ \parallel BC$ (প্রমানিত)

[: Q, AC এর মধ্যবিন্দু]

 $[\because CQ = BG$ এবং $CQ \parallel BG]$

16 MINUTE SCHOOL

অনুশীলনী ৯

বহুনির্বাচনী প্রশ্ন

ABC ত্রিভুজের ক্ষেত্রফল কত ?

- ক. 24 বর্গ সে.মি.
- খ. 36 বৰ্গ সে.মি
- গ. 48 বর্গ সে.মি
- ঘ. 60 বর্গ সে.মি

[তথ্য/ব্যাখ্যা : $BC = \sqrt{10^2 - 6^2} = 8$ সে.মি. $\therefore \Delta ABC$ এর ক্ষেত্রফল $\frac{1}{2} \times 6 \times 8 = 24$ বর্গ সে.মি.]

- ২. একটি ত্রিভুজের বাহুগুলোর অনুপাত $x:x:x\sqrt{2}$ হলে, এর বৃহত্তম কোণটির মান কত ?
- ক. 80°
- খ. 36°
- ₹ 90°
- ঘ. 120°

[তথ্য/ব্যাখ্যা : $x^2 + x^2 = 2x^2 = (x\sqrt{2})^2$]

৩. বর্গাকার বাগানের ক্ষেত্রফল 1600 বর্গমিটার হলে এর একটি কর্ণের দৈর্ঘ্য কত ?

ক. 40 মি.

গ. 80 মি.

ঘ. ৪০√2 মি.

্রতথ্য/ব্যাখ্যা : বর্গাকার বাগানের প্রতি বাহুর দৈর্ঘ্য, $a=\sqrt{$ ক্ষেত্রফল $=\sqrt{1600}=40$ মি. ∴বর্গের কর্ণের দৈর্ঘ্য $=a\sqrt{2}=40\sqrt{2}$

8. কোন তিনটি বাহুর দৈর্ঘ্য দ্বা<mark>রা সম</mark>কোণী ত্রিভুজ আঁকা সম্ভব ?

ক. 6 সে.মি., 8 সে.মি., 9 সে.মি.

খ. 6 সে.মি., 7 সে.মি., 8 সে.মি.

গ. 5 সে.মি., 11 সে.মি., 12 সে.মি.

য় 5 সে.মি., 12 সে.মি., 13 সে.মি.

₢.

চিত্রে $AB \perp BC$, $BC = 3 \ cm$ এবং $AC = 5 \ cm$ হলে AB এর মান নিচের কোনটি ?

ক. 3 সে.মি.

গ. 5 সে.মি

ঘ. 6 সে.মি

৬. একটি বর্গের প্রতি বাহুর দৈর্ঘ্য 5 সে.মি. হলে এর কর্ণের উপর অঙ্কিত বর্গের ক্ষেত্রফল কত বর্গ সে.মি. ?

- ক. 20 বর্গ সে.মি.
- খ. 25 বর্গ সে.মি
- গ. 40 বর্গ সে.মি
- হ. 50 বর্গ সে.মি

 $\boxed{$ তথ্য/ব্যাখ্যা : বর্গের এক বাহ 5 হলে কর্ণের দৈর্ঘ্য $= \sqrt{2} \times 5$

৭. একটি আয়তের সন্নিহিত বাহুর দৈর্ঘ্য 6 সে.মি. এবং 8 সে.মি. হলে এর কর্ণের দৈর্ঘ্য কত সে.মি. হবে ?

ক. 56

খ. 48

গ. 28

₹. 10

[তথ্য/ব্যাখ্যা : আয়তের কর্ণের দৈর্ঘ্য = $\sqrt{($ দৈর্ঘ্য $)^2$ + (প্রস্থ $)^2$ সে. মি. = $\sqrt{8^2+6^2}$ সে. মি. = 10 সে. মি.]

৮. একটি সমকোণী ত্রিভুজের অতিভুজ 10 মি. এবং অপর বাহুদ্বয়ের একটি 6 মি. হলে, অপরটি কত মি. ?

ক. 136

খ. 64

গ. 60

₹. 8

[তথ্য/ব্যাখ্যা : সমকোণী ত্রিভূজের একটি বাহু A হলে,

বা, $(10)^2 = A^2 + 6^2$ বা, $A = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = 8$]

৯. $\triangle ABC$ এ $\angle B=$ এক সমকোণ। AC=10 সে.মি. ত্রিভুজটির বাহুগুলির দৈর্ঘ্যের বর্গের সমষ্টি কত বর্গ সে.মি. ?

ক. 24

খ. 100

ঘ. 480

১০. একটি সমকোণী ত্রিভুজের লম্ব ৬ সে.মি. ও অতিভুজ ৯ সে.মি. হলে ভূমির দৈর্ঘ্য কত ?

খ. √54 সে.মি

গ. 4√5 সে.মি

ঘ. √117 সে.মি

[তথ্য/ব্যাখ্যা : আমরা জানি , অতিভুজ $^{>}=$ লম্ব $^{>}+$ ভূমি $^{>}$ বা, $^{2}=6^{2}+$ ভূমি $^{>}$ বা, $^{3}-36=$ ভূমি $^{>}$ $^{>}$ ভূমি $^{>}=3\sqrt{5}$ সে.মি.]

33.

 ΔPQR এর ক্ষেত্রে নিচের কোনটি সঠিক ?

$$\overline{\Phi}. PQ^2 = PR^2 + QR^2.$$

$$\forall. OR^2 = PR^2 + PO^2$$

$$5.0R^2 = PR^2 - PO^2$$

ঘ.
$$PR^2 = PO^2 - OR^2$$

১২. কোন তিনটি বাহু দ্বারা ত্রিভুজ আঁকা সম্ভব ?

- খ. 3,5,8
- গ. 4,3,9
- ঘ. 5,5,10

٥٥.

ΔABC এর ক্ষেত্রফল কত বর্গ একক ?

- ক. 156 বর্গ একক
- খ. 78 বর্গ একক
- গ. 60 বর্গ একক
- য় 30 বর্গ একক

$$[$$
 তথ্য/ব্যাখ্যা : ক্ষেত্রফল $=\frac{1}{2} \times$ ভূমি \times উচ্চতা $=\frac{1}{2} \times 12 \times 5 \ [\because উচ্চতা $= \sqrt{13^2 - 12^2} = 30$ বর্গ একক $] \]$$

১৪. তিনটি বাহুর দৈর্ঘ্য দেওয়া আছে। নিচের ক্ষেত্রে ত্রিভুজ আঁকা সম্ভব ?

- ক. 4 সে.মি., 7 সে.মি., 13 সে.মি.
- খ. 3 সে.মি., 5 সে.মি., 8 সে.মি
- গ. 3 সে.মি., 6 সে.মি., 10 সে.মি
- যু 6 সে.মি., 8 সে.মি., 10 সে.মি

্রতথ্য/ব্যাখ্যা : ত্রিভুজ হতে হলে যেকোনো দুই বাহুর যোগফল তৃতীয় বাহু অপেক্ষায় বৃহত্তর হতে হবে 6+8>10

১৫. এক-একক বাহুবিশিষ্ট বর্গের কর্ণের দৈর্ঘ্য কত ?

ক. 1.00 একক

গ. 2.01 একক

ঘ. 4.00 একক

[তথ্য/ব্যাখ্যা : কর্ণ AC = $\sqrt{1^2 + 1^2} = 1.41$ একক]

১৬.

নিচের কোন বাহুগুলো দ্বারা একটি সমকোণী ত্রিভুজ আঁকা সম্ভব ?

খ. 4,4,5

গ. 6,7,8

ঘ. 1,6,7

[তথ্য/ব্যাখ্যা : সমকোণী ত্রিভূজের ক্ষেত্রে, $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.]

١٩.

চিত্রে AB এর মান নিচের কোনটি?

ক. 2 সে.মি.

খ. 3 সে.মি

থ. 4 সে.মি

ঘ.৪ সে.মি

b.

ত্রিভুজের ক্ষেত্রফল কত বর্গ সে.মি. ?

[তথ্য/ব্যাখ্যা : ক্ষেত্রফল $=\frac{1}{2} \times 8 \times 6 = 24$ বর্গ সে.মি.]

১৯.

উপরের ত্রিভুজের পরিসীমা 12 মিটার হলে নিচের কোনটি সঠিক ?

$$\overline{\Phi}$$
. $p-q=6$

$$3p + 2q = 12$$

গ.
$$p - 2q = 6$$

ঘ.
$$2p - q = 12$$

[তথ্য/ব্যাখ্যা : ABC ত্রিভূজের পরিসীমা, q+p+q+2p=12 2 3p+2q=12]

২০. সমকোণী ত্রিভুজের সৃক্ষকোণদ্বয়ের পার্থক্য 25° হলে ক্ষুদ্রতম কোণটির মান কত ডিগ্রি ?

- ক. 65
- খ. 57.5
- **3.** 32.5
- ঘ. 45

[তথ্য/ব্যাখ্যা : ধরি , বৃহত্তম কোণ =x, ক্ষুদ্রতম কোণ =y

$$\therefore x - y = 25^{\circ} \dots (i) \therefore x + y + 90^{\circ} = 180^{\circ} \text{ d}, x + y = 90^{\circ} \dots (ii)$$

∴
$$x = 57.5^{\circ}$$
 এবং $y = 32.5^{\circ}$]

২১.

উপরের চিত্রে $BC = \infty$ সে.মি.?

- ব্ৰ. 6 সে.মি.
- খ. 12 সে.মি
- গ. 13 সে.মি
- ঘ. 14 সে.মি

[
$$BC = \sqrt{AC^2 - AB^2} = \sqrt{(10)^2 - (8)^2} = \sqrt{100 - 64} = \sqrt{36} = 6$$
 সে. মি.]

২২. নিচের কোন পরিমাপ দ্বারা সমকোণী ত্রিভুজ আঁকা সম্ভব ?

- ₹. 4,5,6
- **4.** 6,8,10
- গ. 7,9,11
- ঘ. 5,10,15

[তথ্য/বাখ্যা :
$$6^2 + 8^2 = 36 + 64 = 100 = 10^2$$
]

5 cm 13 cm C

BC বাহুর দৈর্ঘ্য কত সে.মি. ?

- ক. ৪ সে.মি.
- খ 12 সে.মি
- গ. 18 সে.মি
- ঘ. 144 সে.মি

[তথ্য/ব্যাখ্যা :
$$BC = \sqrt{AC^2 - AB^2} - \sqrt{13^2 - 5^2} = \sqrt{144} = 12$$
 সে.মি]

২৪. অর্ধবৃত্তস্থ কোণের মান কত ?

- ক. 180°
- খ. 120°
- গ. 100°

২৫. ΔPQR এ $\angle R=90^\circ$ হলে -

- i. অতিভুজ pq
- ii. ক্ষেত্রফল $\frac{1}{2}pr \times qr$
- iii. $pr^2 = pq^2 qr^2$

নিচের কোনটি সঠিক?

[তথ্য/ব্যাখ্যা : ∴ অতিভুজ pq

ক্ষেত্রফল
$$=\frac{1}{2} imes$$
 ভূমি $imes$ উচ্চতা

$$=\frac{1}{2} \times rq \times pr = \frac{1}{2} \times pr \times qr$$

এবং
$$pq^2 = pr^2 + qr^2$$

$$\therefore pr^2 = pq^2 - qr^2$$

২৬ . পাশের চিত্রে -

- i. BC এর দৈর্ঘ্য 4 সে.মি.
- ii. ΔΑΒC এর ক্ষেত্রফল 12 বর্গ সে.মি.
- iii. $\angle BAC + \angle BCA = 90^{\circ}$

নিচের কোনটি সঠিক?

২৭. *১ABC* এর-

i. ক্ষেত্ৰফল 10 বৰ্গ একক

ii.
$$AC = \sqrt{41}$$
 একক

iii.
$$AB^2 = AC^2 + BC^2$$

নিচের কোনটি সঠিক?

গ. ii ও iii

[তথ্য/ব্যাখ্যা : (i) \triangle ABC এর ক্ষেত্রফল $=\frac{1}{2}\times4\times5=10$ বর্গ একক

(ii)
$$AC = \sqrt{4^2 + 5^2} = \sqrt{41}$$
 একক

(ii)
$$AC = \sqrt{4^2 + 5^2} = \sqrt{41}$$
 একক
(iii) $AC^2 = AB^2 + BC^2$: (iii) সঠিক নয়.]

২৮. উপরের চিত্রে-

- i. $\angle PQR = 45^{\circ}$
- ii. $PQ = 4\sqrt{2}$ সে.মি.
- $iii.~\Delta PQR$ এর ক্ষেত্রফল 16 বর্গ একক

নিচের কোনটি সঠিক?

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

২৯.

চিত্রে PQRS একটি আয়তক্ষেত্র যার-

- i. কর্ণের দৈর্ঘ্য 5 সে.মি.
- ii. ক্ষেত্রফল 12 বর্গ সে.মি.
- iii. পরিসীমা = 14 সে.মি.

নিচের কোনটি সঠিক?

ক. i ও ii

খ. i ও iii

গ. ii ও iii

₹i, ii ଓ iii

ি তথ্য/ব্যাখ্যা : কর্ণ = $\sqrt{4^2 + 3^2} = 5$

ক্ষেত্ৰফল = 3×4 = 12 বৰ্গ সে. মি.

পরিসীমা = $2 \times (4 + 3) = 14$ সে. মি .]

90.

চিত্রে D, E যথাক্রমে AB ও BC বাহুর মধ্যবিন্দু হলে -

- i. $DE \parallel AC$
- ii. $DE = \frac{1}{2}AC$
- iii. BD = BE

নিচের কোনটি সঠিক?

খ. i ও iii

গ. ii ও iii

ঘ.i, ii ও iii

৩১. পাশের চিত্র অনুসারে-

- i. ∠BAC এর পূরক ∠ACB
- ii. AC বৃহত্তম বাহু

iii.
$$BC^2 = AB^2 + AC^2$$

নিচের কোনটি সঠিক?

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

৩২. পাশের চিত্রে ABCD একটি আয়তক্ষেত্র। E,AD এর মধ্যবিন্দু হলে-

- i. $\triangle ABE \cong \triangle CDE$
- ii. □ABCD = 2×ΔBEC
- iii. $\Delta BCE = 25$ বর্গ মি.

ক. i ও ii

খ. i ও iii

গ. ii ও iii

্রতথ্য/ব্যাখ্যা : i. \triangle ABC ও \triangle CDE -এ , AB = CD [আয়তক্ষেত্রের বিপরীত বাহুদ্বয় সমান] AE=DE [E, AD এর মধ্যবিন্দু]

 $\angle BAE = \angle CDE :: \triangle ABE \cong \triangle CDE :: BE=CE$

ii. □ ABCD = BC × CD = 10 × 5 = 50 বৰ্গ সে.মি.

আবার $BE = CE = \sqrt{AB^2 + AE^2} = \sqrt{5^2 + 5^2} = 5\sqrt{2}$

 \triangle BEC এর ক্ষেত্রফল $= \frac{BC}{4} \sqrt{4BE^2 - BC^2} = \frac{10}{4} \sqrt{4 \times 50 - 10^2}$ $= \frac{10}{4} \times 10 = 25$ বর্গ সে. মি.

 $\therefore \Box ABCD = 50 = 2 \times 25 = 2 \times \triangle BEC$

iii. সঠিক। কারণ, △BEC এর ক্ষেত্রফল 25 বর্গ সে. মি.]

••. $\Delta PQR \triangleleft PQ > PR$

i.
$$PQ + PR = QR$$

ii.
$$QR + PR > PQ$$

iii.
$$PQ - PR < RQ$$

নিচের কোনটি সঠিক?

ক. i ও ii খ. i ও iii ঘ. i, ii ও iii

নিচের তথ্যের আলোকে (৩৪ ও ৩৫) নং প্রশ্নের উত্তর দাও :

ABCD বর্গক্ষেত্রের কর্ণদ্বয় 'O' বিন্দুতে মিলিত হয়েছে এবং BC=6~cm

৩৪. ∠AOB = কত ?

ক. 30°

খ. 45°

গ. 60°

₹, 90°

৩৫. AC এর দৈর্ঘ্য কত ?

ক. 6 সে.মি.

₹.6√2 সে.মি

গ. 9√2 সে.মি

ঘ. 12 সে.মি

নিচের তথ্যের আলোকে (৩৬ ও ৩৭) নং প্রশ্নের উত্তর দাও :

এখানে CD = 2AB

৩৬. BC এর দৈর্ঘ্য কত ?

季. 34

খ. 16

গ. 8

৩৭. ΔACD এর ক্ষেত্রফল কত ?

ক. 12

* 15

গ. 21

ঘ. 24

নিচের তথ্যের আলোকে (৩৮ ও ৩৯) নং প্রশ্নের উত্তর দাও :

চিত্রে AB=6 সে.মি. ΔAQP এর ক্ষেত্রফল 6 বর্গ সে.মি.

৩৮. PQ এর মান কত ?

ক. 2

1. 4

গ. 6

ঘ. ৪

[তথ্য/ব্যাখ্যা : \triangle AQP এর ক্ষেত্রফল, $\frac{1}{2} \times PQ \times AQ = 6$ বা, $\frac{1}{2} \times PQ \times 3 = 6$ $\therefore PQ = 4$]

৩৯. AC এর মান কত ?

- ক. 2
- খ. 4
- গ. 6
- **J**. 10

[তথ্য/ব্যাখ্যা :
$$AP = \sqrt{PQ^2 + AQ^2} = \sqrt{4^2 + 3^2} = 5$$

 $\therefore AC = 2 \cdot AP = 2 \times 5 = 10$]

নিচের তথ্যের আলোকে (৪০ ও ৪১) নং প্রশ্নের উত্তর দাও :

80. ON বাহুর দৈর্ঘ্য কত ?

ক. 9 মি.

খ 10 মি.

গ. 14 মি.

ঘ. 17 মি.

8১. MNOP এর ক্ষেত্রফল কত ?

ক. 44 বর্গ মি.

খ. 76 বর্গ মি.

ব√114 বর্গ মি..

ঘ. 228 বর্গ মি.

নিচের তথ্যের আলোকে (৪২ ও ৪৩) নং প্রশ্নের উত্তর দাও :

৪২. AC এর দৈর্ঘ্য কত ?

ক. 1

એ. 2

গ. 3

ঘ. 4

[তথ্য/ব্যাখ্যা : ABC সমকোণী ত্রিভূজে পিথাগোরাসের উপপাদ্য প্রয়োগ করে পাই,

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{(1)^2 + (\sqrt{3})^2} = 2$$

৪৩. ΔΑΒC এর ক্ষেত্রফল কত ?

ক.
$$\frac{1}{2\sqrt{3}}$$

খ.
$$\frac{2}{\sqrt{3}}$$

গ.
$$\frac{1}{\sqrt{3}}$$

$$\frac{\sqrt{3}}{2}$$

[তথ্য/ব্যাখ্যা : ত্রিভূজের ক্ষেত্রফল $=\frac{1}{2} imes$ ভূমি imes উচ্চতা

$$\therefore$$
 ABC এর ক্ষেত্রফল $=\frac{1}{2} \times$ BC \times AB $=\frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$ বর্গ একক।]

নিচের তথ্যের আলোকে (৪৪ ও ৪৫) নং প্রশ্নের উত্তর দাও :

চিত্রে AD || BC AD = BE

88. ΔDEC এর ক্ষেত্রফল কত বর্গ মি. ?

[তথ্য/ব্যাখ্যা : CE = BC - BE = BC - AD = 20 - 10 = 10 মি.

∴
$$\triangle$$
 DEC এর ক্ষেত্রফল $=\frac{1}{2}\times EC\times DE=\frac{1}{2}\times 10\times 12=60$ বর্গ মি.]

10 MINUTE SCHOOL

৪৫. ABCD এর ক্ষেত্রফল কত বর্গ মি. ?

ক. 100

খ. 60

4. 180

ঘ. 360

[তথ্য/ব্যাখ্যা : ABCD ক্ষেত্রটি একটি ট্রাপিজিয়াম।

∴ ক্ষেত্রফল =
$$\frac{1}{2}(BC + AD) \times DE = \frac{1}{2}(20 + 10) \times 12 = 180$$
 বর্গ মি.]

নিচের তথ্যের আলোকে (৪৬ ও ৪৭) নং প্রশ্নের উত্তর দাও :

 ΔABC এ AB=BC=AC=6 সে.মি. এবং $AD\perp BC$?

৪৬. AD এর দৈর্ঘ্য কত সে.মি. ?

খ. 6.71

গ. 8.49

ঘ. 9.23

[তথ্য/ব্যাখ্যা : ABD সমকোণী ত্রিভূজে, $AB^2=BD^2+AD^2$

∴ AD=√27 = 5.196 সে.মি.]

8৭. $\angle ABE + \angle ACF + \angle CAG = \overline{\Phi}$ ত ?

- ক. 90°
- খ. 120°
- গ. 180°
- য়, 360°

নিচের তথ্যের আলোকে (৪৮ ও ৪৯) নং প্রশ্নের উত্তর দাও :

চিত্রে E ও F যথাক্রমে AB ও AC এর মধ্যবিন্দু।

8৮. $\angle AEF = 50^{\circ}$ হলে $\angle ABC = \overline{\bullet \circ}$?

- ক. 25°
- খ. 40°
- ช. 50°
- ঘ. 100°

৪৯. চিত্রে-

ii.
$$EF = 2BC$$

i.
$$EF \parallel BC$$
 ii. $EF = 2BC$ iii. $\frac{AE}{AB} = \frac{EF}{BC}$

নিচের কোনটি সঠিক?

নিচের তথ্যের আলোকে (৫০ ও ৫১) নং প্রশ্নের উত্তর দাও :

৫০. ∠ABC এর মান কত ?

[তথ্য/ব্যাখ্যা :
$$3^2+4^2=5^2$$
 বা, লম্ব $^2+$ ভূমি $^2=$ অতিভুজ 2 \therefore $\angle ABC=90^\circ$]

৫১. ABC ত্রিভুজের ক্ষেত্রফল কত বর্গ সে.মি. ?

$$[$$
 তথ্য/ব্যাখ্যা : ক্ষেত্রফল $=\frac{1}{2} \times BC \times AB = \frac{1}{Z} \times 3 \times 4 = 6$ $]$

নিচের তথ্যের আলোকে (৫২ - ৫৪) নং প্রশ্নের উত্তর দাও:

৫২. AB = BE হলে ABCD ধরনের চতুর্ভূজ?

- ক. বর্গক্ষেত্র খ. সামন্তরিক গ. রম্বস
- য ট্রাপিজিয়াম

৫৩. $\angle B = 90^{\circ}$ হলে ABED এর ক্ষেত্রফল কত বর্গ সে.মি.?

- ক. 22
- 3,30

গ. 44

ঘ. 60

িতথ্য∕ব্যাখ্যা : ∠B = 90° হওয়ায় ABED একটি আয়তক্ষেত্র।

$$\therefore$$
 ABED এর ক্ষেত্রফল = দৈর্ঘ্য \times প্রস্থ = (6×5) বর্গ সে. মি.

৫৪. CD এর দৈর্ঘ্য কত সে.মি.?

- ক. √11
- খ. $\sqrt{15}$
- গ. $\sqrt{30}$

$$\sqrt{61}$$

[তথ্য/ব্যাখ্যা :
$$EC = BC - BE = BC - AD = 10 - 5 = 5$$
 সে. মি.

$$\therefore CD^2 = DE^2 + EC^2 = 6^2 + 5^2 = 61 \quad \therefore CD = \sqrt{61}$$

নিচের তথ্যের আলোকে (৫৫ - ৫৭) নং প্রশ্নের উত্তর দাও :

চিত্রে ABCD একটি রম্বস যার AB = 5 সে.মি. এবং BD = 6 সে.মি.

৫৫. $\angle AOB = \overline{\Phi} \overline{\Phi}$?

क. 35°

খ. 45° গ. 60°

য়, 90°

[তথ্য/ব্যাখ্যা : যেহেতু রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখন্ডিত কর। ∴∠AOB=90°]

৫৬. ABCD রম্বসের AC কর্ণের দৈর্ঘ্য কত ?

ঘ. 15 সে.মি

ি তথ্য/ব্যাখ্যা : $\triangle AOB$ এ $AO^2 + OB^2 = AB^2$

বা,
$$AO^2 = 5^2 - \left(\frac{BD}{2}\right) = 25 - \left(\frac{6}{2}\right)^2 = 25 - 9 = 16$$

বা,
$$AO = 4$$
 $2AC = 240 = 2 \times 4 = 8$ সে. মি.

৫৭. ABCD রম্বসের ক্ষেত্রফল কত ?

[তথ্য/ব্যাখ্যা : রম্বসের ক্ষেত্রফল $=\frac{1}{2} \times AC \times BD = \frac{1}{2} \times 8 \times 6 = 24$ বর্গ সে. মি.]