Repurposing of Approved Drugs for Alzheimer's Disease

Devaraja Mudeppa Data Scientist04/16/2024

Table of contents

01

Introduction

Alzheimer's Disease

04

ML model

Vectorize, Trian & test Predict 02

Drug target

Intro to target Retrieve molecules

05

Docking

Molecular modelling Docking with inhibitors

03

EDA

Retrieved inhibitors Approved drugs

06

Summary

Key takeaways Strategic outlook

Alzheimer's Disease

- A brain disorder affects older people
- Gradually declines memory and cognitive abilities
- 55 million cases worldwide, 7 million in the USA
- 10 million new cases each year
- 1.3 trillion USD global economic burden
- Memory and thinking task based diagnosis
- No cure

https://www.who.int/news-room/fact-sheets/detail/dementia

β-Secretase(BACE1) is a validated drug target

The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer's disease | Alzheimer's Research & Therapy (springer.com)

IJMS | Free Full-Text | Natural Products Targeting Amyloid Beta in Alzheimer's Disease (mdpi.com)

Retrieve BACE1 inhibitors and approved drugs

chEMBL database

- Over 2.4 million molecules
- From early stage inhibitors to approved drugs
- Bioactivities, targets, assays
- User friendly download options

- 3336 approved drugs
- 10619 BACE1 inhibitors
- Simplified Molecular Input Line Entry System SMILES

Acetylsalicylic Acid (Aspirin)
CC(=0)0c1ccccc1C(=0)0

EDA: Approved Drugs

Lipinski rule of 5:

- 1. Mol. weight ≤ 500 Da
- 2. H-bond donors ≤ 5
- 3. H-bond acceptors ≤ 10
- 4. logP ≤ 5
- Good absorption & permeation

Physicochemical properties of approved drugs

EDA: BACE1 inhibitors

Physicochemical properties of BACE1 inhibitors

Table of contents

01

Introduction

Alzheimer's Disease

04

ML model

Vectorize, Trian & test Predict 02

Drug target

Intro to target Retrieve molecules

05

Docking

Molecular modelling Docking with inhibitors 03

EDA

Retrieve inhibitors
Approved drugs

06

Summary

Key takeaways Strategic outlook

Vectorization of molecules for ML

- Molecular ACCess Systems keys (MACCSkeys) fingerprint
- 167-bit morgan fingerprints
- Each bit is either on(1) or off(0)
- Commonly used for molecular similarity Search

Convolutional architectures for virtual screening | BMC Bioinformatics (springer.com)

Convolutional neural net model

- X : Molecular Fingerprints
- y : Activity(pIC50)
- Split the data

```
model = Sequential([
    Conv1D(32, 3, activation = 'relu', input_shape = (167, 1)),
    MaxPooling1D(2),
    Conv1D(64, 3, activation = 'relu'),
    MaxPooling1D(2),
    Flatten(),
    Dense(64, activation = 'relu'),
    Dense(1, activation = 'linear')
])
```

```
model.compile(
    loss = 'mean_squared_error',
    optimizer = 'adam',
    metrics = ['mse', 'mae']
)
```

Performance of CNN model

MSE: 0.71; MAE: 0.86

Correlation of true vs predicted values

Top 5 hits as BACE1 inhibitors from approved drugs

Bottom 5 hits as BACE1 inhibitors from approved drugs

Table of contents

01

Introduction

Alzheimer's Disease

04

ML model

Vectorize, Trian & test Predict 02

Drug target

Intro to target Retrieve molecules

05

Docking

Molecular modelling Docking with inhibitors 03

EDA

Retrieved inhibitors Approved drugs

06

Summary

Key takeaways Strategic outlook

Acquisition of BACE1 structure from PDB

Parameters to fetch BACE1 structures:

Uniport ID: P56817

Deposition date: Upto date

Experimental method: X-ray diffraction

Maximum resolution: 2.0 Angstrom

Number of chains:

Minimum ligand MW: 100.0

Total structures: 431

Structures met parameters: 143

Picked for molecular modeling: 5

Align BACE1 structures to visualize inhibitor binding sites

Aligned BACE1 structures

Aligned BACE1-inhibitor structures

OpenCADD from Volkamer Lab

Rdkit and other routine python modules

Protein-inhibitor docking

Inhibitors stripped from BACE1(PDBQT)
Inhibitors extracted(PDBQT) from BACE1 structures
AutoDock Vina

BACE1 docking with an inhibitor

```
output text = run smina(
    DATA / "ligand.pdbqt",
    DATA / "protein.pdbqt",
    DATA / "docking poses.sdf",
    pocket center,
    pocket size,
print(output_text)
smina is based off AutoDock Vina. Please cite appropriately.
Weights
             gauss(o=0, w=0.5, c=8)
-0.035579
            gauss(0=3, w=2, c=8)
-0.005156
0.840245
             repulsion(o=0, c=8)
            hydrophobic(g=0.5,_b=1.5,_c=8)
-0.035069
             non dir h bond(g=-0.7, b=0, c=8)
-0.587439
1.923
             num tors div
Using random seed: 828557488
```

```
|----|----|----|----|
        affinity | dist from best mode
mode
      (kcal/mol) | rmsd l.b. | rmsd u.b.
       -9.7
                 0.000
                           0.000
       -9.2
                 2.724
                           7.743
       -8.7
                 2.742
                           7.685
       -8.6
                 2.208
                           3.425
       -8.5
                 2.713
                           4.033
       -7.6
                 3.320
                           4.870
       -6.7
                           1.911
                 1.305
Refine time 10.179
Loop time 10.842
```

BACE1 docking with proven inhibitors

Inhibitors stripped from BACE1

Inhibitors extracted from BACE1 structures

AutoDock Vina

BACE1 docking with predicted approved drugs

Summary

- There is urgent need to find a cure to Alzheimer's Disease
- Virtual screening offers cost-effective option to test molecules against target
- Docking molecules to target validates the selected molecules
- Significant efforts are underway to improve the predictions using neural nets
- Molecular graphs are considered to better represent chemical structures

THANKS!!!!

Questions?