复习

■ 上下文无关文法变换

- ■消无用符号
- 消 ε 产生式
- ■消单产生式
- ■消除左递归

算法1: 找出有用准終結符 (図示) N''= No U {B|B→α且α∈(TUN')*} N' = { A | A→ω 且 ω∈T*} B₁ A₂ B₂

一层层向外扩展,直至最外两层相等为止。所得集合 告符)

-层层外扩,找出从S可达的所有符号(含非终结符科

College of Computer Science & Technology, BUPT

Ч

算法3: 生成无ε文法

算法步骤:

- (1) 利用算法1, 找出N'= {A | A∈N且A=>+ε} (找出能推导出ε的所有非终结符A)
- (2) 用以下两步组成P₁

而对于 $0\le j\le n$,没有 β_j 在N'内(β_i 也可能是终结符)则 P_1 应加入 $A \rightarrow \beta_0 Y_1 \beta_1 Y_2 \beta_2 ... Y_n \beta_n$ 其中 Y_k 是 C_k 或 ϵ (即所有的可能组合)但是 $A \rightarrow \epsilon$ 不加入 P_1

即是算法1的有用符号。Computer Science & Technology, BUPT

算法步骤 (读):

(2) 构造P₁:

如果B→α∈P且不是单生成式,则对于B∈N_A的所有A,把A→α加入到P₁中

(即对每个B ∈ N_A (意味着A=>+ B)的非单生成式B→ α ∈P, 直接将 α 与 N_A 的A连接,构成新产生式A→ α 加入到 P_1 中)

(3) 得到G₁=(N₁, T₁, P₁, S)

消除直接左递归

引理2: 消除直接左递归

设G = (N, T, P, S), P中有A生成式

 $A \rightarrow A\alpha_1 | A\alpha_2 | \dots | A\alpha_m | \beta_1 | \beta_2 | \dots | \beta_n$

其中β_i的第一个字符不是非终结符A (可以是其它非终结符)

可构成 G_1 = ($N \cup \{A'\}$, T, P_1 , S), A'为新引入的非终结符

G₁中的P₁为,将P中的A生成式用以下生成式取代

 $A \rightarrow \beta_1 | \beta_2 | \dots | \beta_n | \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$

 $A' \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_m | \alpha_1 A' | \alpha_2 A' | \dots | \alpha_m A'$

证明思路:

G和G₁二者的正则式都是(β₁+β₂+...+β_n)(α_1 +...+ α_m)*

§ 4.3 Chomsky范式和Greibach范式

- Chomsky范式定义:
 - 2型文法G=(N, T, P, S), 若生成式形式都是A→BC和A→a, A、B、C∈N, a∈T, 则G是Chomsky范式。若ε∈L(G),则S→ε是P的一个生成式,但S不能在任何其它生成式的右边。
 - 每个上下文无关文法都具有等效的CNF(定理 4.3.1)

CNF 的构成步骤

- 1. 用算法1、2、3、4消除ε生成式、单生成式、无用符号
- 2. 对生成式 $A \rightarrow D_1 D_2 \dots D_n$ $n \ge 2$

若 D_i ∈T,则引入新生成式 B_i → D_i , B_i 是新非终结符

若 D_i ∈N,则令 B_i = D_i ,从而将原生成式变化为

$$A \rightarrow B_1 B_2 \dots B_n \quad n \ge 2$$

当n>2 时,再将其变为

 $A \rightarrow B_1C_1$, $C_1 \rightarrow B_2C_2$, $C_2 \rightarrow B_3C_3$,…, $C_{n-1} \rightarrow B_{n-1}B_n$ C_i 是新引入的非终结符。

定理证明——自学

CNF 的构成例

例: 设G=({A, B, S}, {a, b}, P, S)是无ε、无循环、 无无用符号、无单生成式的文法。

P:S→aAB|BA A→BBB|a B→AS|b 求等效的CNF G₁

解: ∵ S→BA, A→a, B→AS, B→b已是CNF

∴ 加入到P₁中

对S→aAB,将其变换为

 $S \rightarrow C_a C_1$, $C_a \rightarrow a$, $C_1 \rightarrow AB$ 将 $A \rightarrow BBB$ 变换为

 $A \rightarrow BC_2$, $C_2 \rightarrow BB$.

CNF 的构成例

解:

$$S \rightarrow C_b A \mid C_a B$$
,增加 $C_b \rightarrow b$, $C_a \rightarrow a$ $A \rightarrow C_b D \mid C_a S \mid a$,增加 $D \rightarrow AA$ $B \rightarrow C_a E \mid C_b S \mid b$,增加 $E \rightarrow BB$

Greibach范式

- Greibach范式 (GNF)定义:
 - 2型文法G= (N, T, P, S), 若生成式的形式 都是A→aβ, A∈N, a∈T, β∈N*, 且G不含 ε 生成式, 则称G为Greibach范式, 记为GNF。

■ 任何2型文法都具有等效的GNF(定理4.3.2)

GNF 的构成步骤

- 1. 将2型文法变换为CNF。(A→a, A→BC形式)
- 2. 将非终结符排序, 再进行代换。

对形如 A_i → A_i β (j<i) 的生成式进行代换,直至使 $A_i \rightarrow A_1 \beta$ (1>i).

3. 消左递归。

对最高的An→Anγ进行变换,使An生成式变为终结符开头。

4. 回代。

将An生成式回代入Anni生成式,使其右部首符为终结符, 将An-1生成式回代入An-2生成式,使其右部首符为终结符 ...

5. 最后将消直接左递归时引入的A₁'、 A₂'、...A_n'生成式右部进行 代换。使其首符变为终结缔 Computer Science & Technology, BUPT

GNF 的构成例

例: (\$P111 例2)

设已有CNF: A→BC,

1

 $B \rightarrow CA \mid b$,

2

C→AB | a, 3

3 将其变换为GNF。

解:(1) 按其非终结符排列为A、B、C, A是低位, C是高位。

(2) : ①、②中,右部首符序号高于左部的非终结符

∴ 无需变换。

对③,需要变换,

将①代入③得 C→BCB | a ④, 仍需变换,

将②代入④得 C→CACB | bCB | a ⑤

GNF 的构成例

(3) 对上述变换后所得结果消直接左递归

对C→CACB | bCB | a 変換为

$$\alpha_1$$
 β_1 β_2
C→ β_1 | β_2 | β_1 C' | β_2 C'

 $C' \rightarrow \alpha_1 \mid \alpha_1 C'$

GNF 的构成例

(4) 回代

将C的生成式⑥回代入B的生成式②

B→<u>C</u>A | b 被变换为

B→bCBA | aA | bCBC'A | aC'A | b

将新的B生成式®回代入A的生成式①

A→BC 被变换为

A→bCBAC | aAC | bCBC'AC | aC'AC | bC 9

再将新的A生成式⑨代入新引入的C'生成式⑦

C'→ACB | ACBC' 被变换为

... (略)

注意:新引入的A_i'相当于排在最低位。

§ 4.4 下推自动机 (PDA)

- 主要内容
 - PDA的基本概念。
 - PDA的构造举例。
 - ■用终态接受语言和用空栈接受语言的等价性。
 - PDA是上下文无关语言的接收器。
- ■重点
 - PDA的基本定义及其构造
 - PDA与上下文无关语言等价
- 难点
 - ■根据PDA构造上下文无关文法。

问题

- 写出识别anbn的文法,并指出是文法类型。
- 是否是正则文法,为什么?

问题的引出

◆类似于an bn 的语言无法由一般的有限自动机识别。

识别anbn的无限状态自动机

- → 有限状态识别器中必须有无限个状态 (不允许!)
 - : 需要扩充机器的能力。

下推自动机的结构

- 扩充办法: 引入一个下推栈
 - 1 足够简单
 - (2) 可解决许多有意义的问题, 如识别有效的程序
- 下推自动机PDA (Push Down Automaton)
 - 由一条输入带,一个有限状态控制器和一个下推栈组成
- PDA的动作

在有限状态控制器的控制下根据它的当前状态、栈顶符号、以 及输入符号作出相应的动作。有时,不需要考虑输入符号(空 转移)。

■ 栈:后进先出表 对栈的操作(压college of ciliplital Science a feeth to tagging 进行。

下推自动机的定义

■ NPDA的形式定义:

七元组 $M=(Q, T, \Gamma, \delta, q_0, z_0, F)$

其中: Q: 有限控制器的状态集合

T: 有限输入字母表

Γ: 有限下推栈字母表

 $\delta: Q \times (\underline{T \cup \epsilon}) \times \Gamma \rightarrow \underline{Q \times \Gamma^*}$

当前状态 当前输入 当前栈顶符号 有限子集

 q_0 : 初始状态, $q_0 \in Q$

 z_0 : 下推栈的起始符号, $z_0 \in \Gamma$

F: 终态集合, $F \subseteq Q$

下推自动机的转换函数

- 转换函数 δ (q, a, Z)={ (p, α) }
 q、p∈Q, a∈T, Z∈Γ, α∈Γ*
 表示在状态q, 输入字符a, 且栈顶符Z时, 转入状态p, 栈顶符Z由α代替, 同时读头右移一格。
- 约定:

α的最左符号放在栈顶。

α=ε表示下推栈的顶符被弹出

如
$$\delta$$
 (q, a, Z) ={(p, ϵ)}

δ (q, ε, Z) ={ (p, α)} 称为ε转换。

即不考虑当前输入字符,读头不移动,但控制器状态可以改变且栈顶符可以调整。

下推自动机的格局

- 格局:用于描述PDA的瞬时工作状况 PDA格局 (q, ω, α) 其中 $\omega \in \Gamma^*$, $\alpha \in \Gamma^*$
 - q一当前状态
 - ω— 待输入串 (ω=ε时,表示输入字符已读完)
 - α 下推栈中的内容 (α = ϵ 时表示栈已弹空)
- δ (q, a, Z) = { (p, r) } 用格局可表示为 (q, aω, Zα) \vdash (p, ω, rα)

对PDA而言,

初始格局为 (q_0, ω, z_0)

终止格局为 (q, ε, α) q ∈ F, α ∈ Γ*

下推自动机接受的语言

- 两种接受方式
 - 终态接受:

$$L(M)=\{\omega \mid (q_0, \omega, z_0) \mid \forall (q, \epsilon, \alpha), q \in F, \alpha \in \Gamma^*\}$$

■ 空栈接受:

$$L(M)=\{\omega \mid (q_0, \omega, z_0) \mid -* (q, \epsilon, \epsilon), q \in Q\}$$

(当空栈接受时,终止状态可为Q中任意状态,换言之,终止状态集是与状态无关的。此时,取F=φ)

下推自动机例

- 例: 构造PDA M,接受语言L(M)={ aⁿbⁿ | n≥1}
- 思路: 把输入的字符a入栈, 当开始输入b时, 从栈中弹出a, 若a、b个数相同,则到达终态,且栈中空。
- 解: 设PDA M= (Q, T, Γ, δ, q₀, z₀, F), $Q = \{q_0, q_1, q_2\}$ $q_0 初态; 接受a q_1 状态; 接受b q_2 状态; 输入ε 回到q₀$ $T = \{a, b\}, \qquad Γ = \{z_0, a\}, \qquad F = \{q_0\}$ δ 定义为:

$$\delta (q_0, a, z_0) = \{(q_1, a z_0)\}$$

 $\delta (q_1, a, a) = \{(q_1, aa)\}$
 $\delta (q_1, b, a) = \{(q_2, \epsilon)\}$
 $\delta (q_2, \epsilon, z_0) = \{(q_0, \epsilon)\}$
 $\delta (q_2, b, a) = \{(q_2, \epsilon)\}$

下推自动机的图形表示

$$(q)$$
 a, Z/ω (p) 表示 $(p, \omega) \in \delta$ (q, a, Z)

■ 上例的图形表示:

注: 栈空就不能再移动了

用格局表示aabb的识别过程: $(q_0, aabb, z_0)$ $\vdash (q_1, abb, az_0)$ $\vdash (q_1, bb, aaz_0)$ $\vdash (q_2, b, az_0)$ $\vdash (q_2, \epsilon, z_0)$ $\vdash (q_0, \epsilon, \epsilon) \#$ 终态接受

确定的下推自动机(DPDA)

若对于每个输入字符,其后续状态都是确定的,就是DPDA (如前例)。

- DPDA必须满足下述二个条件之一: $\forall q \in Q, \forall z \in \Gamma, \forall a \in T \neq T$
- (1) δ (q, a, z)最多含一个后续选择且 δ (q, ϵ , Z) = ϕ 或者
- (2) $\delta(q, a, z) = \Phi \, \underline{l} \, \delta(q, \epsilon, z) \, \underline{l} \, \underline{s} \,$

这两个限制防止了在 ε 动作和包含一个输入符号的动作之间做选择的可能性(即在同样状态,同样栈顶符号下最多只能有一个选择。)

确定的下推自动机(DPDA)

例: 构造PDA M,接受语言L(M) = {ωcω^T | ω∈ {a, b}*}. **解题思路:**

- ① 从状态q₀接受句子ω,将输入存到栈中,状态不变,直到看到中心标记c。
- ② 当达到c时,将状态变为q₁,栈不变。
- ③ 将输入与下推栈匹配,状态不变,退栈,直至栈空。 采用格局写出abcba的识别过程

非确定的下推自动机(NPDA)

例: 构造PDA M,接受语言L(M) = $\{\omega\omega^T \mid \omega \in \{a, b\}^*\}$. (与前面的例子类似,区别在于中间没有标志" c")

解:

把 "c, z/z"改为 "ε, z/z"就引进了非确定性。因为 机器可在任何时刻进行这种 ε 转换。

非确定的下推自动机(NPDA)

例: 构造PDA M,接受语言L(M) = { aⁱ b^j c^k | i = j 或 i = k}。

解题思路:

与前例类似,利用不确定性,PDA可以猜想a应与b匹配还是与c匹配。 所构造的NPDA M利用两个不确定的分支实现不同的猜想。

解:

空栈接受与终态接受的等价

定理4.4.1 如果 L_f 是PDA M_f 以终态接受的语言,必存在一个PDA M_{ϕ} 以空栈接受语言 L_{ϕ} ,使 L_{ϕ} = L_f

证明: 设 M_f = (Q, T, Γ , δ , q_0 , z_0 , F)

构造PDA $M_{\phi} = (Q \cup \{q_e,q_1\}, T, \Gamma \cup \{z_1\}, \delta_1, q_1, z_1, \phi)$

用 M_{ϕ} 模拟 M_{f}

 \mathbf{M}_{Φ} 1 \vdots

② 对所有 $q \in Q$, $a \in T \cup \{\epsilon\}, z \in \Gamma$

 $\Leftrightarrow \delta_1(q, a, z) = \delta(q, a, z)$

③ 对所有 $qf \in F和z \in \Gamma \cup \{z1\}$

 δ_1 定义:

 $\{(q_e, \epsilon)\}$

① $\delta_1(q_1, \epsilon, z_1) = \{(q_0, z_0z_1)\}$

,用ε转换进入qe状态,弹出栈顶)

 $(将z_1$ 作为栈底符,进入 M_f 的起始状态) 写栈个为 ε

营栈不为 ε ,则不断弹出栈顶符,直至栈

空栈接受与终态接受的等价

定理4.4.2 如果 L_{ϕ} 是PDA M_{ϕ} 以空栈接受的语言,必存在一个PDA M_{f} 以 终态接受语言 L_{o} ,使 $L_{f} = L_{o}$

证明: 设 $M_{\phi} = (Q, T, \Gamma, \delta_{\phi}, q_0, z_0, \Phi)$

构造PDA $M_f = (Q \cup \{q_{0f},q_f\}, T, \Gamma \cup \{z_1\}, \delta_f, q_{0f}, z_1, \{q_f\})$

δ_f 定义:

①
$$\delta_{f}(q_{0f}, \epsilon, z_{1}) = \{(q_{0}, z_{0}z_{1})\}$$

$$2\delta_f(q, a, z) = \delta_{\phi}(q, a, z)$$

作业: ch4习题.

25:1-3