Introduction

- Supervised learning right answers are given
 - Algorithm is given the correct/expected answer
 - Regression predict continuous valued output
 - Classification predict results to a discrete output
 - * Can have more than 2 classifications
 - * Models may require infinite number of attributes or features, is done with SVM (support vector machine)
- Unsupervised learning dataset is not classified, a structure must be predicted
 - Example cluster classification of news articles
 - Approach problems without an idea of the results or knowledge of effect of variables
 - Derived from clustering data based on variable relationships
 - No feedback

Model and Cost Function

- Linear regression algorithm
 - Fitting a line to data supervised learning
 - * Predicting a real-valued output
- Notation
 - m is number of training examples
 - -x represents the input variable/features
 - -y represents output/target variable
 - -(x,y) represents a single training example
 - $-(x_i, y_i)$ refers to ith training example

Linear Regression

- Process flow
 - Training set -> learning algorithm -> h
 - -h is the hypothesis, function which takes input x and outputs estimated y
 - * Maps $x \to y$
- $h_{\theta}(x) = \theta_0 + \theta_1 x$ is the cost function
 - θ_i are parameters that correspond to the regression line
 - * Choose θ_0, θ_1 so $h_{\theta}(x)$ is close to y for examples in training data (x,y)
- $\bullet \quad \text{Minimizing } \theta_0, \theta_1 \text{ distance to true values which is minimizing } \boxed{J\left(\theta_0, \theta_1\right) = \frac{1}{2m} \sum_{i=1}^m \left(\hat{y}_i y_i\right)^2 = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta\left(x_i\right) y_i\right)^2}$
 - or the average of training set residuals
 - -m is the training set size
 - Is the squared error cost function goal is to minimize
 - Halving the mean is for convenience as derivative will cancel it
- Hypothesis is a function of x for some fixed θ_1 and $J(\theta_1)$ is a function of θ_1

Contour plots

- 2 parameters $\theta_0, \theta_1 \rightarrow 3D$ plot paraboloid
 - Height is J
- Can find minimum from contour plot
 - Closer to minimum on a contour plot means better fit

Gradient Descent Algorithm

- Outline
- $\begin{array}{l} \bullet \quad \text{ Outline} \\ \quad \quad \text{Want } \min_{\theta_0,\theta_1} J(\theta_0,\theta_1) \\ \quad \quad \text{Start with some } \theta_0,\theta_1 \\ \quad \quad \text{Keep changing } \theta_0,\theta_1 \text{ to reduce } J \text{ until a minimum is reached} \\ \bullet \quad \text{Gradient } -\nabla J \text{ points in direction of steepest } \operatorname{descent} \\ \end{array}$

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J\left(\theta_0, \theta_1\right) \quad (\text{ for } j=0 \text{ and } j=1) }
```