#### Maxwell's Equations

The complete equations in differential form:

$$\nabla \cdot \mathbf{D}(\mathbf{R}, t) = \rho_{V}(\mathbf{R}, t), \qquad \nabla \times \mathbf{E}(\mathbf{R}, t) = -\frac{\partial \mathbf{B}(\mathbf{R}, t)}{\partial t},$$

$$\nabla \cdot \mathbf{B}(\mathbf{R}, t) = 0, \qquad \nabla \times \mathbf{H}(\mathbf{R}, t) = \mathbf{J}(\mathbf{R}, t) + \frac{\partial \mathbf{D}(\mathbf{R}, t)}{\partial t}$$

with the constitutive relations:

$$\mathbf{D}(\mathbf{R},t) = \varepsilon(\mathbf{R})\mathbf{E}(\mathbf{R},t), \qquad \mathbf{B}(\mathbf{R},t) = \mu(\mathbf{R})\mathbf{H}(\mathbf{R},t)$$

Other important forms that we will see:

- (1) Integral form (using Stokes and Gauss's theorems)
- (2) Phasor/Frequency domain form



8.1

## Maxwell's Equations

Time-independent (Static) Forms:

$$\begin{split} \nabla \cdot \mathbf{D}(\mathbf{R},t) &= \rho_{\mathrm{V}}(\mathbf{R},t), & \nabla \times \mathbf{E}(\mathbf{R},t) = 0, \\ \nabla \cdot \mathbf{B}(\mathbf{R},t) &= 0, & \nabla \times \mathbf{H}(\mathbf{R},t) &= \mathbf{J}(\mathbf{R},t) \end{split}$$

The electric and magnetic fields decouple; they can be treated independently!

This observation is the starting point for electrostatics and magnetostatics

When can we neglect the time variations?

In the same limit that circuit theory holds



## Maxwell's Equations

Time-independent (Static) Forms:

$$\nabla \cdot \mathbf{D}(\mathbf{R}, t) = \rho_{V}(\mathbf{R}, t), \qquad \nabla \times \mathbf{E}(\mathbf{R}, t) = 0,$$

$$\nabla \cdot \mathbf{B}(\mathbf{R}, t) = 0,$$
  $\nabla \times \mathbf{H}(\mathbf{R}, t) = \mathbf{J}(\mathbf{R}, t)$ 

The electric and magnetic fields decouple; they can be treated independently!

This observation is the starting point for electrostatics and magnetostatics

So, why bother with statics?

(1) **Important applications:** near fields of radiating systems; inductors and capacitors; electrostatic discharge



(2) **Visualizing fields:** The full system is complex; it contains radiative contributions; charge contributions; current contributions. It is important to learn about each of them separately.

8.3

#### **Constitutive Relations**

$$\mathbf{D}(\mathbf{R},t) = \varepsilon(\mathbf{R})\mathbf{E}(\mathbf{R},t), \qquad \mathbf{B}(\mathbf{R},t) = \mu(\mathbf{R})\mathbf{H}(\mathbf{R},t)$$

Where do they come from?

There are two kinds of charge:

**free** (these flow in conductors) [This charge is included in  $\rho_V$ ] **bound** (these are dipole charges in dielectrics)

[This charge is what determines  $\varepsilon$ !]

In statics, the bound charges always tend to cancel the free charges.

Thus, we have:

$$\varepsilon > \varepsilon_0$$
,  $|\mathbf{D}| > |\mathbf{E}|$ 

NOTE:



- $\mathbf{D}$  = field response to free charge
- $\mathbf{E}$  = field response to total charge



#### **Constitutive Relations**

$$\mathbf{D}(\mathbf{R},t) = \varepsilon(\mathbf{R})\mathbf{E}(\mathbf{R},t),$$

 $\mathbf{B}(\mathbf{R},t) = \mu(\mathbf{R})\mathbf{H}(\mathbf{R},t)$ 

Where do they come from?

#### There are two kinds of charge:

free (these flow in conductors) [This charge is included in  $\rho_{\rm V}$ ] **bound** (these are dipole charges in dielectrics)

[This charge is what determines  $\varepsilon$ !]

• Approximate calculations of  $\varepsilon$  are possible semi-classically

#### **BUT**

• Exact calculations usually require quantum mechanics



An important exception is plasmas, which can be treated classically



Ulaby Figure 1-6

#### **Constitutive Relations**

$$\mathbf{D}(\mathbf{R},t) = \varepsilon(\mathbf{R})\mathbf{E}(\mathbf{R},t),$$

 $\mathbf{B}(\mathbf{R},t) = \mu(\mathbf{R})\mathbf{H}(\mathbf{R},t)$ 

Where do they come from?

#### There are also two kinds of current:

**free** (these flow in conductors) [This current is included in J ] **bound** (in magnetic materials)

#### Important note: Static current always flows in loops!

That is a consequence of  $\nabla \cdot \mathbf{B} = 0$ 

#### NOTE:

 $\mathbf{H}$  = field response to free current

 $\mathbf{B}$  = field response to total current





#### **Constitutive Relations**

$$\mathbf{D}(\mathbf{R},t) = \varepsilon(\mathbf{R})\mathbf{E}(\mathbf{R},t),$$

 $\mathbf{B}(\mathbf{R},t) = \mu(\mathbf{R})\mathbf{H}(\mathbf{R},t)$ 

Where do they come from?

There are also two kinds of current:

**free** (these flow in conductors) [This current is included in J] **bound** (in magnetic materials)

BUT: the behavior of magnetic materials is complicated even in the static limit!

There are three kinds of magnetic materials

- Ferromagnetic (permanent magnets)
- Paramagnetic
- Diamagnetic





#### **Constitutive Relations**

#### Ferromagnetism: $\mathbf{B} \neq \mu \mathbf{H}$

These materials are highly nonlinear and have hysteresis

Quantum mechanics must be used to explain this phenomenon; no semi-classical explanation is possible



#### Paramagnetism: $\mathbf{B} \approx \mu \mathbf{H}$

A small amount of hysteresis may be present

The bound flow is in the same direction as the free flow and enhances it (  $\mu > \mu_0$  )

Semi-classical explanation is not possible





#### **Constitutive Relations**

Diamagnetism:  $\mathbf{B} = \mu \mathbf{H}$ 

No hysteresis is present

The bound flow is in the opposite direction from the free flow and decreases it ( $\mu_r < 1$ )

Semi-classical explanation is possible

Fortunately, in almost all dielectric materials:  $\mathbf{B} = \mu_0 \mathbf{H}$ 





#### **Charge and Current Distributions**

Volume charge density

$$\rho_{\rm V} = \lim_{\Delta v \to 0} \frac{\Delta q}{\Delta v} = \frac{dq}{dv}$$
, where  $\Delta q$  is the charge is a small volume  $\Delta v$ 

Conversely, we have in a finite volume v:

$$Q = \int_{V} \rho_{V} dv$$

It is useful to define analogous surface and line charge densities

Surface and line charge densities

$$\rho_{\rm S} = \lim_{\Delta s \to 0} \frac{\Delta q}{\Delta s} = \frac{dq}{ds}, \ \rho_{l} = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta l} = \frac{dq}{dl}$$



The converses are:

$$Q = \int_{S} \rho_{S} ds$$
,  $Q = \int_{l} \rho_{l} dl$ 

Surface Charge Distribution: Ulaby et al. Example 4-2

Question: A circular disk of electric charge is azimuthally symmetric and increases linearly with r from 0 to 6 C/m<sup>2</sup> at r = 3 cm. What is the total charge on the surface?

Answer: We have

$$\rho_{\rm S} = \frac{6r}{3 \times 10^{-2}} = 2 \times 10^2 r$$

$$Q = \int_{s} \rho_{S} ds = \int_{\phi=0}^{2\pi} \int_{r=0}^{3\times 10^{-2}} (2\times 10^{2} r) r dr d\phi$$

$$= 2\pi \times 2 \times 10^2 \frac{r^3}{3} \bigg|_{0}^{3 \times 10^{-2}} = 11.3 \text{ mC}$$



Surface charge distribution Ulaby Figure 4-1(b)

# **Charge and Current Distributions**

## Current density

The increment of current that flows through a surface  $\Delta s$  in a time  $\Delta t$ is given by:

$$\Delta I = \frac{\Delta q}{\Delta t} = \rho_{V} \mathbf{u} \cdot \Delta \mathbf{s} = \mathbf{J} \cdot \Delta \mathbf{s}, \text{ where } \mathbf{J} = \rho_{V} \mathbf{u}$$

The converse is:

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$







Coulomb's Law:

1) An isolated charge q induces an electric field  $\mathbf{E}$  at every point in space and at the point P, the field  $\mathbf{E}$  is given by

$$\mathbf{E} = \hat{\mathbf{R}} \frac{q}{4\pi\varepsilon R^2}$$
, where

 $\hat{\mathbf{R}}$  = unit vector pointing from q to P.

R = distance between q and P.

 $\varepsilon$  = dielectric constant





# **Charge and Current Distributions**

Coulomb's Law:

2) An electric field  $\mathbf{E}$  at a point P in space, which may be due to one charge or many charges, induces a force on a charge q' that is given by

$$\mathbf{F} = q' \mathbf{E}$$

NOTE: The only way to detect the presence of a field (electric or magnetic) is by the force that it exerts on charges.

— In this sense, the fields are an abstraction, albeit a very useful one



Multiple Point Charges:

When we have multiple point charges, we add the field contributions from each of them vectorially

$$\mathbf{E} = \frac{1}{4\pi\varepsilon} \sum_{i=1}^{N} \frac{q_i (\mathbf{R} - \mathbf{R}_i)}{|\mathbf{R} - \mathbf{R}_i|^3}, \text{ where}$$

N = the total number of charges

 $q_i$  = amount of the *i*-th charge

 $\mathbf{R}_i$  = position vector of the *i*-th charge

IMPORTANT NOTE: A charge does not contribute to the electric field at its own location!



# **Charge and Current Distributions**

Electric Field Due to Two Point Charges: Ulaby et al. Example 4-3

**Question:** Two point charges with  $q_1 = 2 \times 10^{-5}$  C and  $q_2 = -4 \times 10^{-5}$  C are located at (1, 3, -1) and (-3, 1, -2), respectively, in a Cartesian coordinate system. Find (a) the electric field  $\mathbf{E}$  at (3, 1, -2) and (b) the force on a charge  $q_3$  $= 8 \times 10^{-5}$  C located at that point.

**Answer:** (a) Since  $\varepsilon = \varepsilon_0$  and there are two charges, we have

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \left[ \frac{q_1(\mathbf{R} - \mathbf{R}_1)}{|\mathbf{R} - \mathbf{R}_1|^3} + \frac{q_2(\mathbf{R} - \mathbf{R}_2)}{|\mathbf{R} - \mathbf{R}_2|^3} \right]$$

with

$$\mathbf{R}_1 = \hat{\mathbf{x}} + \hat{\mathbf{y}} 3 - \hat{\mathbf{z}}$$

$$\mathbf{R}_2 = -\hat{\mathbf{x}}3 + \hat{\mathbf{y}} - \hat{\mathbf{z}}2$$



 $\mathbf{R} = \hat{\mathbf{x}}3 + \hat{\mathbf{y}} - \hat{\mathbf{z}}2$ 

Electric Field Due to Two Point Charges: Ulaby et al. Example 4-3 **Answer:** (a) [continued] After substitution, we find

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \left[ \frac{2(\hat{\mathbf{x}}2 - \hat{\mathbf{y}}2 - \hat{\mathbf{z}})}{27} - \frac{4(\hat{\mathbf{x}}6)}{216} \right] \times 10^{-5} = \frac{\hat{\mathbf{x}} - \hat{\mathbf{y}}4 - \hat{\mathbf{z}}2}{108\pi\varepsilon_0} \times 10^{-5} \text{ V/m}$$

(b) Using the force equation, we have

$$\mathbf{F} = q_3 \mathbf{E} = 8 \times 10^{-5} \times \frac{\hat{\mathbf{x}} - \hat{\mathbf{y}} 4 - \hat{\mathbf{z}} 2}{108 \pi \varepsilon_0} \times 10^{-5} = \frac{\hat{\mathbf{x}} 2 - \hat{\mathbf{y}} 8 - \hat{\mathbf{z}} 4}{27 \pi \varepsilon_0} \times 10^{-10} \text{ N}$$



8.17

# **Charge and Current Distributions**

#### Continuous Charge Distributions:

When we have a continuous charge density, each increment of charge  $dq = \rho_V dv'$  contributes

$$d\mathbf{E} = \hat{\mathbf{R}}' \frac{dq}{4\pi\varepsilon R'^2} = \hat{\mathbf{R}}' \frac{\rho_{\rm V} dv'}{4\pi\varepsilon R'^2}$$
, where

 $\mathbf{R}'$  = vector from differential volume dv' to point P

Integrating over a complete volume, we obtain:

$$\mathbf{E} = \int_{v'} d\mathbf{E} = \frac{1}{4\pi\varepsilon} \int_{v'} \hat{\mathbf{R}}' \frac{\rho_{\rm V} \, dv'}{{R'}^2}$$

For surface and line distributions, these become



$$\mathbf{E} = \frac{1}{4\pi\varepsilon} \int_{s'} \hat{\mathbf{R}}' \frac{\rho_{\rm S} \, ds'}{R'^2} \quad \text{(surface)}$$

$$\mathbf{E} = \frac{1}{4\pi\varepsilon} \int_{l'} \hat{\mathbf{R}}' \frac{\rho_l \, dl'}{R'^2} \text{ (line)}$$



Example: An Infinite Charge Sheet

Question: An infinite plane of charge is located on the x-y plane. What is the electric field at the point P(0, 0, h)?

Answer: We will build up the answer in two parts. The first part is to integrate over a ring of charge (Ulaby et al., Example 4-4) and then integrate over many rings.

*Integration over the ring:* 

$$\mathbf{R}_1' = -\hat{\mathbf{r}}b + \hat{\mathbf{z}}h = -\hat{\mathbf{x}}b\cos\phi - \hat{\mathbf{y}}b\sin\phi + \hat{\mathbf{z}}h$$



**UMBC** 

**Charge and Current Distributions** 

Example: An Infinite Charge Sheet

**Answer (continued):** *Integration over the ring:* 

$$\begin{split} \mathbf{E} &= \frac{1}{4\pi\varepsilon_0} \int_{l'} \hat{\mathbf{R}}' \frac{\rho_l \, dl'}{R'^2} \\ &= \frac{\rho_l \, b}{4\pi\varepsilon_0} \int_{\phi=0}^{2\pi} \frac{-\hat{\mathbf{x}}b\cos\phi - \hat{\mathbf{y}}b\sin\phi + \hat{\mathbf{z}}h}{\left(b^2 + h^2\right)^{3/2}} \, d\phi \\ &= \hat{\mathbf{z}} \frac{\rho_l \, bh}{2\varepsilon_0 \left(b^2 + h^2\right)^{3/2}} \end{split}$$

Due to the symmetry,

only the z-component appears!





When h < 0, the answer is the same

Example: An Infinite Charge Sheet

**Answer (continued):** *Integration over a circle:* Making the replacements,  $b \rightarrow r$  and  $\rho_l \rightarrow \rho_S dr$  and integrating from r = 0 to r = a, we find

$$\mathbf{E} = \hat{\mathbf{z}} \frac{\rho_{\rm S} h}{2\varepsilon_0} \int_{r=0}^{a} \frac{r}{\left(r^2 + h^2\right)^{3/2}} dr$$

 $= \hat{\mathbf{z}} \frac{\rho_{\rm S}}{2\varepsilon_0} \left[ 1 - \frac{h}{\sqrt{a^2 + h^2}} \right] \quad (h > 0)$ 

with the opposite sign P(0,0,h) h  $dq = 2\pi p_s r dr$ 

*Integration over the plane:* When  $a \to \infty$ , we find



IN MARYLAND

$$\mathbf{E} = \hat{\mathbf{z}} \frac{\rho_{\rm S}}{2\varepsilon_0}$$

NOTE: This simple, yet important result can also be obtained directly from Gauss's law

Ulaby Figure 4-7