Lógica

Mauro Polenta Mora

Ejercicio 7

Consigna

Considere el alfabeto $\sum = \{a, b, c\}$, y los lenguajes Δ y Γ definidos en el ejercicio 6. Demuestre, usando el principio de inducción que corresponda, que:

- (a) el largo de las palabras de Δ es múltiplo de tres.
- (b) todas las palabras de Δ tiene una cantidad par de ocurrencias de la letra b.
- (c) todas las palabras de Γ tiene una cantidad par de ocurrencias de la letra b.
- (d) en Γ no hay palabras de largo dos.

Resolución

Antes de empezar, enunciemos el PIP para ambos lenguajes:

LENGUAJE Γ

Sea P una propiedad para el lenguaje Γ , si:

- 1. $P(\varepsilon)$
- P(a)
- 3. Dados $\alpha, \beta \in \Gamma$; si $P(\alpha)$ y $P(\beta)$ entonces $P(b\alpha c\beta b)$

LENGUAJE Δ

Sea P una propiedad para el lenguaje Δ , si:

- 1. $P(\varepsilon)$
- 2. Dado $\alpha \in \Delta$; si $P(\alpha)$ entonces $P(b\alpha bc)$
- 3. Dado $\alpha \in \Delta$; si $P(\alpha)$ entonces $P(b\alpha ba)$

Ahora si, empecemos a demostrar las propiedades:

PARTE A

P: El largo de las palabras de Δ es múltiplo de 3

CASO BASE:

 $P(\varepsilon)$: Se cumple trivialmente porque el largo de una palabra vacía es $0=3\cdot 0$

PASO INDUCTIVO:

Dado $\alpha \in \Delta$, quiero probar:

- 1. Si $P(\alpha)$ entonces $P(b\alpha bc)$
- 2. Si $P(\alpha)$ entonces $P(b\alpha ba)$

Entonces asumo $P(\alpha)$; es decir que el largo de α es múltiplo de tres. Se observa trivialmente que en ambos casos estoy sumando tres letras, entonces obtendré un múltiplo de 3. Algebraicamente:

 $|\alpha| = 3 \cdot k$ para algún $k \in \mathbb{N} |b\alpha ba| = 3 \cdot (k+1)$ para algún $k \in \mathbb{N} |b\alpha bc| = 3 \cdot (k+1)$ para algún $k \in \mathbb{N} |b\alpha bc|$

Esto prueba la propiedad P: El largo de las palabras de Δ es múltiplo de 3

PARTE B

Casi análoga a la parte A, es exactamente el mismo razonamiento

PARTE C

P: Todas las palabras de Γ tienen una cantidad par de ocurrencias de la letra b

PASO BASE

Consta de dos pasos porque tenemos dos elementos base:

- $P(\varepsilon)$: Se cumple trivialmente pues al no tener b, tiene $0=2\cdot 0$ ocurrencias de b
- P(a): Se cumple por el mismo razonamiento.

Paso inductivo

Dado $\alpha, \beta \in \Delta$, quiero probar $P(b\alpha c\beta b)$ asumiendo lo siguiente:

- $P(\alpha)$: α tiene una cantidad de ocurrencias de b par.
- $P(\beta)$: β tiene una cantidad de ocurrencias de b par.

Llamemos $O(b, \alpha)$, $O(b, \beta)$ a las ocurrencias de b en α y β respectivamente. Podemos decir que:

$$O(b,\alpha) = 2 \cdot k_1 O(b,\beta) = 2 \cdot k_2$$

Para algunos $k_1,k_2\in\mathbb{N}$ Ahora, queremos hallar $O(b,b\alpha c\beta b)$, podemos ver que esto está dado por:

$$O(b,b\alpha c\beta b)=O(b,\alpha)+O(b,\beta)+2$$

Ya que entendemos que la cantidad de b para esta palabra será la suma entre la cantidad de b en α y β más las dos que se agregan en el paso de construcción. Sustituyendo con lo que hallamos anteriormente:

$$\begin{split} O(b,b\alpha c\beta b) &= 2\cdot k_1 + 2\cdot k_2 + 2 \\ &= 2\cdot (k_1 + k_2 + 1) \end{split}$$

Con esto concluimos que $b\alpha c\beta b$ tiene una cantidad de ocurrencias de b par. Por lo que probamos la propiedad: P: Todas las palabras de Γ tienen una cantidad par de ocurrencias de la letra b

PARTE D

Este ejercicio sale utilizando el PIP para Γ , quizás no es tan análogo a los anteriores, pero es muy sencillo de probar también