Readme

Introduction

The HOGM_CoMatch program finds the common pattern between two datasets and outputs the association matrix between them. Let D_1 be a $n \times m_1$ matrix $[m_1$ features, n samples] and D_2 be a $n \times m_2$ matrix $[m_2$ features, n samples]. HOGM_CoMatch returns the association matrix X_{HOGM} of size $m_2 \times m_1$.

The following instructions are for running the program in iOS. However, it can be easily adapted for Windows as well.

The code in HOGM_CoMatch is a modified version of the HOGMMNC program introduced in the paper:

Chen, H. Peng, G. Han, H. Cai, and J. Cai, "HOGMMNC: a higher order graph matching with multiple network constraints model for gene–drug regulatory modules identification," *Bioinformatics*, vol. 35, no. 4, pp. 602–610, Feb. 2019, doi: 10.1093/bioinformatics/bty662.

Input

It requires 2 files as input:

- 1. D1.csv
- 2. D2.csv

The name and format of your files should match those of the provided sample files. That is the names of the files need to be "D1" and "D2". Each file should have both row and column names and should be of ".csv" type.

Running the program

Use the following steps to run the code.

- 1. Download the folder HOGM_CoMatch.
- 2. Edit files mexComputeFeature_angle_distance_sample.cpp and mexComputeFeature_angle_distance_sample.h files in the HOGM_CoMatch/mexSource/ folder.
 - a. Open file *mexComputeFeature_angle_distance_sample.h* in Matlab.
 - b. Edit line 29 within function computeFeatureSimple() with the number of samples in your D1 or D2 data.
 - c. Open file *mexComputeFeature_angle_distance_sample.cpp* in Matlab.
 - d. Edit lines 18 and 19 within function mexFunction() with the number of samples in your D1 or D2 data.
 - e. Run mex mexComputeFeature_angle_distance_sample.cpp in Matlab.

- f. Place the newly created *mexComputeFeature_angle_distance_sample* .*mexmaci64* file in HOGM_CoMatch/mex/ folder.
- 3. Copy your D1.csv and D2.csv to the HOGM_CoMatch/input/ folder.
- 4. Run the file *do_our_experiment.m* in Matlab.
- 5. Your results will be generated in the HOGM_CoMatch/result/ folder.

You can customize the program as needed. The following are some simple examples:

- 1. Change the name of the directory where results will be stored in line 3 of *do our experiment.m.*
- 2. Instead of using "HOGM_CoMatch/input/" folder, you can specify the full path of your own folder containing your input files in line 3 of *do_our_experiment.m*.

Output

The program generates 4 output files:

- 1. D1.jpg: Visual representation of D1.csv
- 2. D2.jpg: Visual representation of D2.csv
- 3. X HOGM.csv: Association matrix between D1 and D2
- 4. X_HOGM.jpg: Visual representation of the transpose of the matrix in X_HOGM.csv

We use the output X_HOGM.csv in subsequent steps of the CoMatch algorithm.