Image Gradients and Edge Detection Dr. Mohamed Waleed Fakhr 2023

Edges

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels

Reduced images

Reduced images

Origin of edges

Edges are caused by a variety of factors:

Source: Steve Seitz

Edge Detection

Basic idea: look for a neighborhood with strong signs of change.

Problems:

- neighborhood size
- how to detect change

```
81 82 26 24
82 33 25 25
81 82 26 24
```

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Source: S. Lazebnik

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Differential Operators

- Differential operators when applied to the image returns some derivatives.
- Model these "operators" as masks/kernels that compute the image gradient function.
- Threshold the this gradient function to select the edge pixels.
- Which brings us to the question:

Image gradient

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial f}, \frac{\partial f}{\partial f}\right]$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right] \qquad \nabla f = \left[0, \frac{\partial f}{\partial y}\right] \qquad \boxed{\theta} \qquad \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid increase in intensity

Image gradient

The gradient of an image:
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

The *edge strength* is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Differentiation and convolution

Recall, for 2D function, f(x,y):

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y)}{\varepsilon} - \frac{f(x, y)}{\varepsilon} \right) \qquad \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

This is linear and shift invariant, so must be the result of a convolution.

We could approximate this as

$$\frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}, y) - f(x_n, y)}{\Delta x}$$

(which is obviously a convolution)

Partial derivatives of an image

-1 1

 $\partial f(x,y)$

 ∂y

(correlation filters)

Partial derivatives of an image

-1 1

 $\partial f(x,y)$

 ∂y

(correlation filters)

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_z = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Matlab does gradients

```
filt = fspecial('sobel')

filt =

1     2    1
     0    0    0
     -1    -2    -1

outim = imfilter(double(im), filt);
imagesc(outim);
colormap gray;
```


Matlab Example

```
clear all,
```

```
x = imread('person.bmp');
xg = rgb2gray(x);

filt1 = fspecial('sobel');  %the vertical-gradient filter
filt2 = filt1';  %the horizontal-gradient filter
```

XV = imfilter(double(xg), filt1); XH = imfilter(double(xg), filt2);

figure(),
subplot(1,2,1), imagesc(XV);
subplot(1,2,2), imagesc(XH);
colormap gray;


```
%Now we get the gradient strength at each point:
LL = size(xg);
L1=LL(1);
L2=LL(2);
                                           20
for i=1:L1
                                           40
  for j=1:L2
    XX(i,j) = sqrt(XH(i,j)^2 + XV(i,j)^2);
  end
                                           80
end
                                          100
figure, colormap gray,
                                          120
imagesc(XX);
                                          140
                                          160
                                          180
```

Finite differences: example

Which one is the gradient in the x-direction (resp. y-direction)?

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

When noise is added: top 0.1, bottom 0.2

Effects of noise

- Finite difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What is to be done?
 - Smoothing the image should help, by forcing pixels different from their neighbors (=noise pixels?) to look more like neighbors

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Source: S. Seitz

When noisy image is smoothed first, we get the good edges back ©

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter in 2D

Which one finds horizontal/vertical edges?

Effect of σ

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Implementation issues

- The gradient magnitude is large along a thick "trail" or "ridge," so how do we identify the actual edge points?
- How do we link the edge points to form curves?

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signalto-noise ratio and localization
- MATLAB: edge(image, 'canny')

Canny Edge Detector

Steps:

- 1. Apply directional derivatives of Gaussian
- 2. Compute gradient magnitude and gradient direction
- 3. Non-maximum suppression
 - thin multi-pixel wide "ridges" down to single pixel width
- 4. **Linking** and thresholding
 - Low, high edge-strength thresholds
 - Accept all edges over low threshold that are connected to edge over high threshold

original image (Lena)

magnitude of the gradient

thresholding

thinning (non-maximum suppression)

Non-maxima Suppression

Forsyth & Ponce (1st ed.) Figure 8.11

Select the image maximum point across the width of the edge

Non-maxima Suppression

Value at q must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Non-maxima Suppression

Value at q must be larger than interpolated values at p and r

Forsyth & Ponce (2nd ed.) Figure 5.5 left

Linking Edge Points

Forsyth & Ponce (2nd ed.) Figure 5.5 right

Assume the marked point is an **edge point**. Take the normal to the gradient at that point and use this to predict continuation points (either *r* or *s*)