

OpenHPCv2上での 機械学習アプリケーション環境の構築

2022年3月25日

佐賀 一繁

国立情報学研究所 クラウド基盤研究開発センター

背景と目的

■ 背景

■ 学認クラウドオンデマンド構築サービスでは、利用者の利便性向上のため、アプリケーション 環境の構築テンプレートを公開している(まだ、僅かですが... ^^;) https://github.com/nii-gakunin-cloud/ocs-templates/

■ 目的

■ 単なる OCS の使用法ではなく、公開テンプレートによる実用的な環境の構築をハンズオンで体験していただく

■ 今回のハンズオン

- 公開テンプレートの1つである HPC-v2 テンプレートにより、クラウド上に OpenHPC 環境を構築する
- OpenHPC 環境で機械学習アプリケーションを実行可能とするため、GPU と TensorFlow をサポートする
- OpenHPC 環境で動作する機械学習アプリケーションとして、MNIST データによる手書き数字認識を実行する。この時、単に学習だけでなく総合的な認識システム構築例を示す

機械学習によるアプリケーション実行環境(一般論)

- 学習とアプリ実行(推論)のシステムを分けることが多い
 - 理由1: 必要な計算性能、メモリ・ストレージ容量、コスト、消費電力...
 - ■学習 >> 推論
 - ■例:パターン認識システム(画像認識、文字認識...)
 - 通常はアプリ実行システムで推論(認識)を実行
 - 誤認識が多くなったら、学習システムで追加学習し、アプリシステムに反映
 - 理由2: 学習データの置き場所の問題
 - ■学習データは秘密性が高いため、一時的にでもアプリ利用者が利用する環境に置きたくない
 - 大規模な学習には月単位の時間を要する場合もある。追加学習時に問題となる

本ハンズオンで構築する環境

■ 手書き数字認識システム

構築する環境の内容

- 学習システム
 - OpenHPC-v2 による GPU ノード環境、NGC/TensorFlow コンテナが動作
- 認識システム(推論システム)
 - CPU のみの環境、TensorFlowコンテナが動作
- フロントエンド
 - JupyterNotebook上に下記機能を実装、手書き数字認識が動作
 - ■学習ジョブ投入 学習システムに MNIST の学習ジョブを投入、学習モデルと学習結果としての重みを回収
 - ■認識システムへの学習結果展開 学習モデルと学習結果を認識システムに転送し展開
 - 手書き数字入力認識システム 手書き数字の入力しイメージファイル化して認識システムに転送、認識指示

テンプレートとハンズオンの流れ

- 1.HPC-v2(改)
 - OpenHPC 環境をクラウド上に構築するテンプレート
 - 公開中の HPC v2 テンプレートをハン ズオン環境用に微修正したもの
 - 流れ
 - ■学習システムの構築
 - ■プロバイダ: AWS
 - ジョブマネージャ: Slurm
 - ノード: GPU ノード(g3s.xlarge) x 1
 - 機械学習フレームワーク: TensorFlow (NGCコンテナ)

■ 2.認識システム

- 本ハンズオンのためのテンプレート
- ■流れ
 - ■認識システムの構築
 - プロバイダ: AWS
 - ノード: CPU ノード(g3s.xlarge) x 1
 - 機械学習フレームワーク: TensorFlow(コンテナ)
 - ■学習システムで MNIST データの学習
 - ■フロントエンドで手書き数字認識
 - 手書き数字入力の設定
 - 手書き数字入力と認識システムでの認識
 - 認識精度向上、コスト低減のための取り組 み

■ 両システムの削除

■ 両テンプレートの削除機能を利用

大学共同利用機関法人 情報・システム研究機構

国立情報学研究所

National Institute of Informatics