Statistical Inference

Homework Sheet 1

Prof. Dr. Christian Heumann, Nurzhan Sapargali, Esteban Garces Arias

Deadline 28^{th} of April 2023 23:59

Question 1: Application of your knowledge of the exponential family

- (a) Let the random variable X follow a Poisson distribution with paramter $\lambda > 0$. Show that the distribution of X belongs to the exponential family.
- (b) Let X_1, \ldots, X_n be i.i.d. distributed random variables with $X_i \sim \text{Po}(\lambda)$, $\lambda > 0$, for $i = 1, \ldots, n$. Let $\boldsymbol{X} = (X_1, \ldots, X_n)^{\top}$. Show that the distribution of \boldsymbol{X} belongs to the exponential family.

Question 2: Application of your knowledge of the location- and scale family

Let X be logistically distributed with parameters $a \in \mathbb{R}$ and $b \in \mathbb{R}_+$. The density of the logistic distribution is defined as follows

$$f(x) = \frac{\exp\left(-\frac{x-a}{b}\right)}{b\left(1 + \exp\left(-\frac{x-a}{b}\right)\right)^2}$$

for $x \in \mathbb{R}$. It is given that $\mathbb{E}(X) = a$ and $Var(X) = b^2\pi^2/3$. Show that the logistic distribution is part of the location-and scale family.

Question 3: Extending your knowledge of the exponential family

Show that in general it is true that:

If the distribution of real random variable X belongs to the exponential family with parameter vector $\boldsymbol{\theta} \in \mathbb{R}^p$ and $g : \mathbb{R} \to \mathbb{R}$ is a continuous, differentiable function with a continuous, differentiable inverse g^{-1} , then it follows that the distribution of Z = g(X) also belongs to an exponential family.

Hint: In our situation, the rule of transformation in densities is applied to the distribution of Z. It is defined in the following way:

$$f_Z(z|\boldsymbol{\theta}) = \left| (g^{-1})'(z) \right| \cdot f_X(g^{-1}(z)|\boldsymbol{\theta})$$