

Rapport de MT12 : Techniques mathématiques de l'ingénieur UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE

Printemps 2016

Alexandre BALLET et Simon LAURENT

Sujet du rapport :

Transformée de Fourier discrète

Département des étudiants :

Génie Informatique

Professeur:

M. Djalil KATEB

Table des matières

1	Déf	nition de la DFT	4
	1.1	Définition	4
	1.2	DFT d'une fonction	7
2	Une	famille de fonctions tests	9
	2.1	Procédure Scilab	9
3	App	lications de la DFT	11
	3.1	Approximation des coefficients de Fourier	11
	3.2	Résolution fréquentielle de signaux	13
		3.2.1 Mise en jambes	13
		3.2.2 Exercice	13
4	\mathbf{DF}'	et convolution	14
5	Phé	nomène de Gibbs	15
6	Eff€	t du fenêtrage	16

Définition de la DFT

1.1 Définition

Definition 1. On appelle transformée de Fourier discrète de la suite (y_k) , k = 0, ldots, N - 1 la suite (z_k) définie par

$$z_k = \frac{1}{N} \sum_{p=0}^{N-1} y_p \omega^{pk}$$

 $o\grave{u}\ \omega = e^{-2i\frac{\pi}{N}}.\ On\ notera\ z[k] = DFT[f]k],\ k=0,...,N-1.$

Nous cherchons à montrer que

$$\sum_{k=0}^{N-1} \omega^{k(p-p')} = \begin{cases} 0 & \text{si} \quad p \neq p' \\ N & \text{si} \quad p = p' \end{cases}$$

$$\tag{1.1}$$

D'une part, posons p = p':

$$\sum_{k=0}^{N-1} \omega^{k(p-p')} = \sum_{k=0}^{N-1} 1$$
$$= N$$

D'autre part, posons $p \neq p'$:

$$\begin{split} \sum_{k=0}^{N-1} \omega^{k(p-p')} &= \sum_{k=0}^{N-1} (\omega^{p-p'})^k \\ &= \frac{1 - \omega^{(p-p')^k}}{1 - \omega^{p-p'}} \\ &= \frac{1 - e^{-2i\pi(p-p')}}{1 - e^{-2i\frac{\pi}{N}(p-p')}} \\ &= \frac{1 - e^{-2i\frac{\pi}{N}(p-p')}}{1 - e^{-2i\frac{\pi}{N}(p-p')}} \quad , \text{ où } k \in \mathbb{Z} \\ &= \frac{1 - 1}{1 - e^{-2i\frac{\pi}{N}(p-p')}} \\ &= 0 \end{split}$$

Nous cherchons ensuite à montrer que $B=\sqrt{N}A$ est une matrice unitaire, c'est-à-dire :

$$\overline{B^T}B = I$$
 , où I est la matrice identité (1.2)

$$B = \sqrt{N} \frac{1}{N} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \dots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)^2} \end{pmatrix}$$

$$\overline{B^T}B = \frac{\sqrt{N}}{N} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & (\overline{\omega}) & (\overline{\omega})^2 & \dots & (\overline{\omega})^{N-1} \\ 1 & (\overline{\omega})^3 & (\overline{\omega})^6 & \dots & (\overline{\omega})^{3(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & (\overline{\omega})^{N-1} & (\overline{\omega})^{2(N-1)} & \dots & (\overline{\omega})^{(N-1)^2} \end{pmatrix} \frac{\sqrt{N}}{N} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \dots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & (\overline{\omega})^{N-1} & (\overline{\omega})^{2(N-1)} & \dots & (\overline{\omega})^{(N-1)^2} \end{pmatrix}$$

$$= \frac{1}{N} (1 + (\overline{\omega})^{p-1}(\omega)^{p'-1} + \dots + (\overline{\omega})^{(N-1)(p-1)}(\omega)^{(N-1)(p'-1)})$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(p'-p)}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(p'-p)}$$

$$= \frac{1}{N} N , \text{ d'après } (1.1)$$

D'où $B = \sqrt{N}A$ est une matrice unitaire. Nous cherchons à présent A^{-1} :

$$\overline{B^T}B = I
N\overline{A^T}A = I
A^{-1} = N\overline{A^T}
A^{-1} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \dots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)^2} \end{pmatrix}^T$$

 A^{-1} est la matrice associée à la transformation inverse de la DFT, que l'on peut retrouver :

$$z'_{k} = \sum_{p=0}^{N-1} y_{p} \omega^{-pk}$$
, où $\omega = e^{-2i\frac{\pi}{N}}$ (1.3)

1.2 DFT d'une fonction

Soit f définie sur une période T (périodique de période T) et soit (y_k) une suite d'échantillons de f en N points uniformément répartis sur une période. La DFT de f d'ordre N est l'application qui associe à la suite $(y_k)_{k=0,\dots,N-1}$ la suite constituée de la DFT appliquée au vecteur $y=(y_k)_{k=0,\dots,N-1}$. On note $(DFT[f](k))_{0,\dots,N-1}$ la suite obtenue et iDFT sa réciproque.

Nous cherchons à montrer que l'on peut approcher le coefficient de Fourier c_n à partir de l'approximation de l'intégrale la déffinissant par une somme de Riemann.

D'après la définition de c_n on a :

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-2i\pi \frac{n}{T}t} dt$$

Si nous discrètisons f(t) en divisant une période T en N segments, on obtient :

$$c_{n} = \frac{1}{T} \int_{0}^{T} f(t)e^{-2i\pi \frac{n}{T}t} dt$$

$$= \frac{1}{T} \sum_{k=0}^{N-1} f(t_{k})e^{-2i\pi \frac{n}{T}k \frac{T}{N}} \frac{T}{N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} y_{k}e^{-2i\pi n \frac{k}{N}}$$

$$= \frac{1}{N} \sum_{p=0}^{N-1} y_{p}e^{-2i\pi n \frac{p}{N}}$$

$$= \frac{1}{N} \sum_{p=0}^{N-1} y_{p}\omega^{np}$$

D'où

$$c_k = \frac{1}{N} \sum_{p=0}^{N-1} y_p \omega^{pk}$$

Nous pouvons en déduire que la DFT d'une suite (y_k) est équivalent au coefficient de Fourier c_k de cette série.

Une famille de fonctions tests

2.1 Procédure Scilab

```
_{1} _{T} = 1
  _{\mathtt{alpha}} = 1/3
  function [y] = f(x)
      x = [pmodulo(x + _T/2,_T) - _T/2]
      y = zeros(x)
      for i=1:length(x)
           if (x(i) < T*_alpha/2 & x(i)>-T*_alpha/2) then
               y(i)=1
            else
               y(i) = 0
           end
      end
16 endfunction
  N = 32
|x=[-3*_T/2:_T/N:3*_T/2]
  scf(0)
  clf
  plot(x,f(x),'xr')
```


Représentation pour N=4

Représentation pour N=8

Représentation pour N=32

Applications de la DFT

3.1 Approximation des coefficients de Fourier

```
//Calcul de la DFT
  //**********
  f0=312;
 N=1024; //numérisation
6 for Fe = 2000: -50:500
      //instants de mesure
      t = (0:N-1)/Fe;
      //signal temporel
      x=sin(2*\%pi*f0*t)+sin(2*\%pi*t*500)
      //calcul de la FFT du signal;
      X = fft(x);
      [mx, p] = max(abs(X(1:N/2)));
      //trace du spectre entre -Fe/2 et Fe/2
      f=(-fix(N/2):N-fix(N/2)-1)/N*Fe;
      figure (0)
      //Desactivation des commandes graphiques
      drawlater;
      clf();
   title (['spectre_sinusoide_de_freq'+string(f0)+'Hz_numer_a_'+string(Fe)+'Hz
      '])
21 h=gce();
  plot(f,abs(fftshift(X)))
  drawnow
  //xpause(200000)
```

x click
end

- 3.2 Résolution fréquentielle de signaux
- 3.2.1 Mise en jambes
- 3.2.2 Exercice

DFT et convolution

Phénomène de Gibbs

Effet du fenêtrage

Table des figures