Partiel Analyse 1

PEIP post-PACES

Décembre 2019

On prêtera une attention particulière à la rédaction. Les calculatrices sont interdites. Tout résultat sans justification sera pénalisé. Des schémas illustrant vos démonstrations sont encouragés.

Exercice 1 : calculs

(1) Calculer les sommes suivantes $(n \in \mathbb{N})$:

(a)
$$\sum_{i=1}^{n} \frac{3^{i}}{2^{3i-1}} \qquad (b) \qquad \sum_{k=0}^{n-1} (-1)^{k} \binom{n}{k+1} 3^{k}$$

(2) Calculer les limites des suites suivantes :

(a)
$$u_n = \frac{8^n}{n!}$$
 (b) $v_n = \frac{1+2+3+\ldots+n}{n^2}$

(3) Calculer les limites des fonctions suivantes :

(a)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$
 (b)
$$\lim_{x \to \infty} \frac{(x - \sin x)(x + \cos(x))}{x^2}$$

(4) On considère :

$$S_n = \sum_{k=2}^n \frac{1}{k^2 - 1}, \qquad n \ge 2$$

(a) Déterminer α, β tel que $\frac{1}{X^2-1} = \frac{\alpha}{X+1} + \frac{\beta}{X-1}$. (b) En déduire par somme télescopique une expression de S_n , puis déterminer sa limite.

Exercice 2 : suites récurrentes

On se propose d'étudier la suite : $u = (u_n)_{n \in \mathbb{N}}$ définie par :

$$u \colon \begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$$

1

où $f: \mathbb{R}_+^* \to \mathbb{R}$ est définie par $f(x) = 1 + \frac{2}{x}$.

Partie 1 : étude de la limite

(a) Étudier le sens de variation de la fonction f sur l'intervalle I = [1, 3]. Montrer que I est stable par f, c'est a dire $f(I) \subset I$.

On pose $v = (v_n), w = (w_n)$ les suites définies par $v_n = u_{2n}, w_n = u_{2n+1}$. On a alors:

$$v: \begin{cases} v_0 = u_0 \\ v_{n+1} = g(v_n) \end{cases} \quad w: \begin{cases} w_0 = u_1 \\ w_{n+1} = g(w_n) \end{cases}$$

avec g(x) = f(f(x)).

(b) Étudier le sens de variation de g sur I. On montrera que $g'(x) = \frac{4}{(x+2)^2}$

(c) Déduire du sens de variation de g que les suites (v_n) et (w_n) sont monotones. En calculant u_2 , montrer que v_n est croissante. En remarquant que $w_n = f(v_n)$, en déduire que (w_n) est décroissante.

(c) En déduire que ces deux suites sont convergentes. On note l_v, l_w leurs limites respectives.

(d) En résolvant l'équation g(x) = x, déterminer l_v, l_w

(e) En déduire la limite de (u_n) que l'on notera l.

Partie 2 : étude de la vitesse de convergence

(a) Montrer que $\forall x \in I, |g'(x)| \leq \frac{4}{9}$

(b) En déduire que $\forall x,y \in I, |g(x) - g(y)| \le \frac{4}{9}|x-y|$ (c) En déduire que pour tout n on a $|v_{n+1} - l_v| \le \frac{4}{9}|v_n - l_v|$, ainsi que $|w_{n+1} - l_w| \le \frac{4}{9}|w_n - l_w|.$

(d) En vérifiant que $|v_0 - l_v| \le 1$, $|w_0 - l_w| \le 1$, en déduire par récurrence que $|v_n - l_v| \leq (\frac{4}{9})^n$, ainsi que $|w_n - l_w| \leq (\frac{4}{9})^n$

(e) Pour $\epsilon > 0$ donné, résoudre l'inégalité $(\frac{4}{9})^n \leq \epsilon$. En déduire, en fonction de ϵ un entier $N \in \mathbb{N}$ tel que $\forall n \geq N, |\mathring{u_n} - l| \leq \epsilon$

Exercice 3 : une généralisation du théorème de Rolle

(1) Rappeler l'énoncé du théorème de Rolle.

(2) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = l$$

On pose g la fonction définie par :

$$g: \begin{cases}]-\pi/2; \pi/2[\to \mathbb{R} \\ x \mapsto f(\tan(x)) \end{cases}$$

(a)Montrer que g admet un prolongement par continuité \tilde{g} sur l'intervalle fermé $[-\pi/2;\pi/2]$.

(b) En déduire que \tilde{g} ainsi prolongé vérifie les hypothèses du théorème de Rolle

(c) Conclure que la dérivée de f s'annule en un point.

Exercice 4 : inégalité de Cauchy-Schwarz

Soit $f,g\colon [a,b]\to \mathbb{R},$ deux fonctions continues. Le but de l'exercice est de démontrer l'inégalité suivante :

$$(*): \qquad \left| \int_a^b f(t)g(t)\mathrm{d}t \right| \leq \sqrt{\int_a^b f^2(t)\mathrm{d}t} \, \times \, \sqrt{\int_a^b g^2(t)\mathrm{d}t}$$

(1) Soit $P(x) = ax^2 + bx + c$ un polynôme du second degré. Montrer que P est de signe constant sur $\mathbb R$ si et seulement si $b^2 \leq 4ac$. On considère la fonction suivante :

$$\phi(x) = \int_{a}^{b} (f(t) + xg(t))^{2} dt$$

- (2) Justifier que ϕ est bien définie sur \mathbb{R} et est positive.
- (2) En développant $(f(t) + xg(t))^2$, montrer que ϕ est un polynôme du second degré, on exprimera ses coefficients à l'aide des quantités :

$$\int_a^b f(t)g(t)dt, \qquad \int_a^b f^2(t)dt, \qquad \int_a^b g^2(t)dt$$

(3) En considérant le discriminant du polynôme ϕ , déduire (*)