Econ 722 - Advanced Econometrics IV

Francis J. DiTraglia

University of Pennsylvania

Lecture #7 – High-Dimensional Regression I

QR Decomposition

Singular Value Decomposition

Ridge Regression

QR Decomposition

Result

Any $n \times k$ matrix A with full column rank can be decomposed as A = QR, where R is an $k \times k$ upper triangular matrix and Q is an $n \times k$ matrix with orthonormal columns.

Notes

- ► Columns of A are *orthogonalized* in Q via Gram-Schmidt.
- ▶ Since Q has orthogonal columns, $Q'Q = I_k$.
- ▶ It is *not* in general true that QQ' = I.
- ▶ If A is square, then $Q^{-1} = Q'$.

Different Conventions for the QR Decomposition

Thin aka Economical QR

Q is an $n \times k$ with orthonormal columns (qr_econ in Armadillo).

Thick QR

Q is an $n \times n$ orthogonal matrix.

Relationship between Thick and Thin

Let A = QR be the "thick" QR and $A = Q_1R_1$ be the "thin" QR:

$$A = QR = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1$$

My preferred convention is the thin QR...

Least Squares via QR Decomposition

Let
$$X = QR$$

$$\widehat{\beta} = (X'X)^{-1}X'y = [(QR)'(QR)]^{-1}(QR)'y$$

$$= [R'Q'QR]^{-1}R'Q'y = (R'R)^{-1}R'Qy$$

$$= R^{-1}(R')^{-1}R'Q'y = R^{-1}Q'y$$

In other words, $\widehat{\beta}$ solves $R\beta = Q'y$.

Why Bother?

Much easier and faster to solve $R\beta = Q'y$ than the normal equations $(X'X)\beta = X'y$ since R is upper triangular.

Back-Substitution to Solve $R\beta = Q'y$

The product Q'y is a vector, call it v, so the system is simply

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1,n-1} & r_{1k} \\ 0 & r_{22} & r_{23} & \cdots & r_{2,n-1} & r_{2k} \\ 0 & 0 & r_{33} & \cdots & r_{3,n-1} & r_{3k} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & r_{k-1,k-1} & r_{k-1,k} \\ 0 & 0 & \cdots & 0 & 0 & r_k \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \\ \beta_k \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_{k-1} \\ v_k \end{bmatrix}$$

 $\beta_k = v_k/r_k \Rightarrow$ substitute this into $\beta_{k-1}r_{k-1,k-1} + \beta_k r_{k-1,k} = v_{k-1}$ to solve for β_{k-1} , and so on.

Calculating the Least Squares Variance Matrix $\sigma^2(X'X)^{-1}$

- ► Since X = QR, $(X'X)^{-1} = R^{-1}(R^{-1})'$
- ► Easy to invert *R*: just apply repeated back-substitution:
 - ▶ Let $A = R^{-1}$ and \mathbf{a}_i be the *j*th column of A.
 - ▶ Let \mathbf{e}_j be the *j*th standard basis vector.
 - Inverting R is equivalent to solving $R\mathbf{a}_1 = \mathbf{e}_1$, followed by $R\mathbf{a}_2 = \mathbf{e}_2, \ldots, R\mathbf{a}_k = \mathbf{e}_k$.
- ▶ If you enclose a matrix in trimatu() or trimatl(), and request the inverse ⇒ Armadillo will carry out backward or forward substitution, respectively.

QR Decomposition for Orthogonal Projections

Let X have full column rank and define $P_X = X(X'X)^{-1}X'$

$$P_X = QR(R'R)^{-1}R'Q' = QRR^{-1}(R')^{-1}R'Q' = QQ'$$

It is *not* in general true that QQ'=I even though Q'Q=I since Q need not be square in the economical QR decomposition.

The Singular Value Decomposition (SVD)

Any $m \times n$ matrix A of arbitrary rank r can be written

$$A = UDV' = (orthogonal)(diagonal)(orthogonal)$$

- $V = m \times m$ orthog. matrix whose cols contain e-vectors of AA'
- $V = n \times n$ orthog. matrix whose cols contain e-vectors of A'A
- ▶ $D = m \times n$ matrix whose first r main diagonal elements are the *singular values* d_1, \ldots, d_r . All other elements are zero.
- ▶ The singular values $d_1, ..., d_r$ are the square roots of the non-zero eigenvalues of A'A and AA'.
- \blacktriangleright (E-values of A'A and AA' could be zero but not negative)

SVD for Symmetric Matrices

If A is **symmetric** then $A = Q\Lambda Q'$ where Λ is a diagonal matrix containing the e-values of A and Q is an orthonormal matrix whose columns are the corresponding e-vectors. Accordingly:

$$AA' = (Q \wedge Q')(Q \wedge Q')' = Q \wedge Q'Q \wedge Q' = Q \wedge^2 Q'$$

and similarly

$$A'A = (Q \wedge Q')'(Q \wedge Q') = Q \wedge Q'Q \wedge Q' = Q \wedge^2 Q'$$

using the fact that Q is orthogonal and Λ diagonal. Thus, when A is symmetric the SVD reduces to U=V=Q and $D=\sqrt{\Lambda^2}$ so that *negative* eigenvalues become *positive* singular values.

The Economical SVD

- ▶ Number of singular values is $r = Rank(A) \le max\{m, n\}$
- ▶ Some cols of *U* or *V* multiplied by zeros in *D*
- Economical SVD: only keep columns in U and V that are multiplied by non-zeros in D (Armadillo: svd_econ)
- ▶ Summation form: $A = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i'$ where $d_1 \leq d_2 \leq \cdots \leq d_r$
- ► Matrix form: A = U D V' $(n \times p) = (n \times r)(r \times r)(r \times p)$

In the economical SVD, U and V may no longer be square, so they are not orthogonal matrices but their *columns* are still orthonormal.

Ridge Regression – OLS with an L_2 Penalty

$$\widehat{\beta}_{\textit{Ridge}} = \operatorname*{arg\,min}_{\beta} \, (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \beta' \beta$$

- Add a penalty for large coefficients
- $lacktriangleright \lambda = ext{non-negative constant}$ we choose: strength of penalty
- \triangleright X and **y** assumed to be de-meaned (don't penalize intercept)
- ▶ Unlike OLS, Ridge Regression is not scale invariant
 - ▶ In OLS if we replace \mathbf{x}_1 with $c\mathbf{x}_1$ then β_1 becomes β_1/c .
 - ▶ The same is not true for ridge regression!
 - ► Typical to standardize *X* before carrying out ridge regression

Alternative Formulation of Ridge Regression Problem

$$\widehat{eta}_{\mathit{Ridge}} = \operatorname*{arg\,min}_{eta} \ (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta) \quad \text{subject to} \quad eta'eta \leq t$$

- ▶ Ridge Regression is like least squares "on a budget."
- ► Make one coefficient larger ⇒ must make another one smaller.
- ▶ One-to-one mapping from t to λ (data-dependent)

Ridge as Bayesian Linear Regression

If we ignore the intercept, which is unpenalized), Ridge Regression gives the posterior mode from the Bayesian regression model:

$$y|X, \beta, \sigma^2 \sim N(X\beta, \sigma^2 I_n)$$

 $\beta \sim N(\mathbf{0}, \tau^2 I_p)$

where σ^2 is assumed known and $\lambda = \sigma^2/\tau^2$. (In this example, the posterior is normal so the mode equals the mean)

Explicit Solution to the Ridge Regression Problem

Objective Function:

$$Q(\beta) = (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda\beta'\beta$$

$$= \mathbf{y}'\mathbf{y} - \beta'X\mathbf{y} - \mathbf{y}'X\beta + \beta'X'X\beta + \lambda\beta'I_{p}\beta$$

$$= \mathbf{y}'\mathbf{y} - 2\mathbf{y}'X\beta + \beta'(X'X + \lambda I_{p})\beta$$

Recall the following facts about matrix differentiation

$$\partial (\mathbf{a}'\mathbf{x})/\partial \mathbf{x} = \mathbf{a}, \quad \partial (\mathbf{x}'A\mathbf{x})/\partial \mathbf{x} = (A+A')\mathbf{x}$$

Thus, since $(X'X + \lambda I_p)$ is symmetric,

$$\frac{\partial}{\partial \beta} Q(\beta) = -2X' \mathbf{y} + 2(X'X + \lambda I_p)\beta$$

Explicit Solution to the Ridge Regression Problem

Previous Slide:

$$\frac{\partial}{\partial \beta}Q(\beta) = -2X'\mathbf{y} + 2(X'X + \lambda I_p)\beta$$

First order condition:

$$X'\mathbf{y} = (X'X + \lambda I_p)\beta$$

Hence,

$$\widehat{eta}_{Ridge} = (X'X + \lambda I_p)^{-1}X'\mathbf{y}$$

But is $(X'X + \lambda I_p)$ guaranteed to be invertible?

Ridge Regresion via OLS with "Dummy Observations"

Ridge regression solution is identical to

$$\arg\min_{\boldsymbol{\beta}} \left(\widetilde{\mathbf{y}} - \widetilde{X}\boldsymbol{\beta}\right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\boldsymbol{\beta}\right)$$

where

$$\widetilde{\mathbf{y}} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0}_p \end{bmatrix}, \qquad \widetilde{X} = \begin{bmatrix} X \\ \sqrt{\lambda} I_p \end{bmatrix}$$

since:

$$\left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right) = \left[(\mathbf{y} - X\beta)' (-\sqrt{\lambda}\beta)' \right] \left[\begin{array}{c} (\mathbf{y} - X\beta) \\ -\sqrt{\lambda}\beta \end{array} \right]$$

$$= (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda\beta'\beta$$

Ridge Regression Solution is Always Unique

Ridge solution is always unique, even if there are more regressors than observations! This follows from the preceding slide:

$$\begin{split} \widehat{\beta}_{\textit{Ridge}} &= \arg\min_{\beta} \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right)' \left(\widetilde{\mathbf{y}} - \widetilde{X}\beta \right) \\ \widetilde{\mathbf{y}} &= \left[\begin{array}{c} \mathbf{y} \\ \mathbf{0}_{p} \end{array} \right], \ \widetilde{X} = \left[\begin{array}{c} X \\ \sqrt{\lambda}I_{p} \end{array} \right] \end{split}$$

Columns of $\sqrt{\lambda}I_p$ are linearly independent, so columns of \widetilde{X} are also linearly independent, regardless of whether the same holds for the columns of X.

Efficient Calculations for Ridge Regression

QR Decomposition

Write Ridge as OLS with "dummy observations" with $\widetilde{X} = QR$ so

$$\widehat{\beta}_{\mathit{Ridge}} = (\widetilde{X}'\widetilde{X})^{-1}\widetilde{X}'\widetilde{\mathbf{y}} = R^{-1}Q'\widetilde{\mathbf{y}}$$

which we can obtain by back-solving the system $R\widehat{eta}_{Ridge} = Q'\,\widetilde{\mathbf{y}}.$

Singular Value Decomposition

If $p \gg n$, it's much faster to use the SVD rather than the QR decomposition because the rank of X will be n. For implementation details, see Murphy (2012; Section 7.5.2).

Comparing Ridge and OLS

Assumption

Centered data matrix $X \atop (n \times p)$ with rank p so OLS estimator is unique.

Economical SVD

- $igwedge X = igcup_{(n \times p)} D V' \text{ with } U'U = V'V = I_p, \ D \text{ diagonal}$
- ► Hence: $X'X = (UDV')'(UDV') = VDU'UDV' = VD^2V'$
- ▶ Since V is square it is an orthogonal matrix: $VV' = I_p$

Comparing Ridge and OLS – The "Hat Matrix"

Using X = UDV' and the fact that V is orthogonal,

$$H(\lambda) = X (X'X + \lambda I_p)^{-1} X' = UDV' (VD^2V + \lambda VV')^{-1} VDU'$$

$$= UDV' (VD^2V' + \lambda VV')^{-1} VDU'$$

$$= UDV' [V(D^2 + \lambda I_p)V']^{-1} VDU'$$

$$= UDV' (V')^{-1} (D^2 + \lambda I_p)^{-1} (V)^{-1} VDU'$$

$$= UDV'V (D^2 + \lambda I_p)^{-1} V'VDU'$$

$$= UD (D^2 + \lambda I_p)^{-1} DU'$$

Model Complexity of Ridge Versus OLS

OLS Case

Number of free parameters equals number of parameters p.

Ridge is more complicated

Even though there are p parameters they are constrained!

Idea: use trace of $H(\lambda)$

$$\mathsf{df}(\lambda) = \mathsf{tr}\left\{H(\lambda)\right\} = \mathsf{tr}\left\{X(X'X + \lambda I_p)^{-1}X'\right\}$$

Why? Works for OLS: $\lambda = 0$

$$df(0) = tr\{H(0)\} = tr\{X(X'X)^{-1}X'\} = p$$

Effective Degrees of Freedom for Ridge Regression

Using cyclic permutation property of trace:

$$\begin{split} \mathrm{df}(\lambda) &= \mathrm{tr} \left\{ H(\lambda) \right\} = \mathrm{tr} \left\{ X (X'X + \lambda I_p)^{-1} X' \right\} \\ &= \mathrm{tr} \left\{ U D \left(D^2 + \lambda I_p \right)^{-1} D U' \right\} \\ &= \mathrm{tr} \left\{ D U' U D \left(D^2 + \lambda I_p \right)^{-1} \right\} \\ &= \mathrm{tr} \left\{ D^2 \left(D^2 + \lambda I_p \right)^{-1} \right\} \\ &= \sum_{j=1}^p \frac{d_j^2}{d_j^2 + \lambda} \end{split}$$

- $df(\lambda) \rightarrow 0$ as $\lambda \rightarrow \infty$
- $df(\lambda) = p$ when $\lambda = 0$
- $df(\lambda) < p$ when $\lambda > 0$

Comparing OLS and Ridge Predictions

$$\widehat{y}(\lambda) = X\widehat{\beta}(\lambda) = X \left(X'X + \lambda I_p\right)^{-1} X' \mathbf{y}$$

$$= H(\lambda)\mathbf{y} = \left[UD \left(D^2 + \lambda I_p\right)^{-1} DU'\right] \mathbf{y}$$

$$= \left[\sum_{j=1}^{p} \mathbf{u}_j \left(\frac{d_j^2}{d_j^2 + \lambda}\right) \mathbf{u}_j'\right] \mathbf{y} = \sum_{j=1}^{p} \left(\frac{d_j^2}{d_j^2 + \lambda}\right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y}$$

Comparing OLS and Ridge Predictions

$$\widehat{y}(\lambda) = \sum_{j=1}^{p} \left(\frac{d_j^2}{d_j^2 + \lambda} \right) \mathbf{u}_j \mathbf{u}_j' \mathbf{y}$$

- ▶ Since X is centered, $\mathbf{z}_j = d_j \mathbf{u}_j$ is the jth sample PC
- ▶ d_j^2 is proportional to the variance of the *j*th sample PC
- Prediction from regression of y on z_i is:

$$\mathbf{z}_{j}(\mathbf{z}_{j}'\mathbf{z}_{j})^{-1}\mathbf{z}_{j}'\mathbf{y} = d_{j}\mathbf{u}_{j}\left(d_{j}^{2}\mathbf{u}_{j}'\mathbf{u}_{j}\right)^{-1}d_{j}\mathbf{u}_{j}'\mathbf{y} = \mathbf{u}_{j}\mathbf{u}_{j}'\mathbf{y}$$

- ▶ Ridge equivalent to regressing *y* on sample PCs of *X* but shrinking predictions to zero: higher variance PCs are shrunk less.
- OLS doesn't shrink.

Comparing the MSE of OLS and Ridge

Assumptions

 $y = X\beta + \varepsilon$, Fixed X, iid data, homoskedasticity

OLS Estimator: $\widehat{\beta}$

$$\widehat{\beta} = (X'X)^{-1}X'y \implies \mathsf{Bias}(\widehat{\beta}) = 0 \quad \mathsf{Var}(\widehat{\beta}) = \sigma(X'X)^{-1}$$

Ridge Estimator: $\widetilde{\beta}_{\lambda}$

$$\widehat{\beta}_{\lambda} = (X'X + \lambda I)^{-1}X'y \implies \mathsf{Bias}(\widetilde{\beta}_{\lambda}) = ? \quad \mathsf{Var}(\widetilde{\beta}_{\lambda}) = ?$$

Calculating The Bias of Ridge Regression

X fixed (or condition or X)

$$\begin{aligned} \operatorname{Bias}(\widetilde{\beta}_{\lambda}) &= \mathbb{E}\left[(X'X + \lambda I)^{-1}X'(X\beta + \varepsilon) - \beta \right] \\ &= (X'X + \lambda I)^{-1}X'X\beta + (X'X + \lambda I)^{-1}\underbrace{\mathbb{E}[X'\varepsilon]}_{0} - \beta \end{aligned}$$
$$&= (X'X + \lambda I)^{-1}\left[(X'X + \lambda I)\beta - \lambda\beta \right] - \beta$$
$$&= \beta - \lambda(X'X + \lambda I)^{-1}\beta - \beta$$
$$&= -\lambda(X'X + \lambda I)^{-1}\beta$$

Calculating The Variance of Ridge Regression

X fixed (or condition or X)

$$\begin{aligned} \operatorname{Var}(\widetilde{\beta}_{\lambda}) &= \operatorname{Var}\left[(X'X + \lambda I)^{-1} X'(X\beta + \varepsilon) - \beta \right] \\ &= \operatorname{Var}\left[(X'X + \lambda I)^{-1} X'\varepsilon \right] \\ &= \mathbb{E}\left[\left\{ (X'X + \lambda I)^{-1} X'\varepsilon \right\} \left\{ (X'X + \lambda I)^{-1} X'\varepsilon \right\}' \right] \\ &= \left[(X'X + \lambda I)^{-1} X' \right] \underbrace{\mathbb{E}[\varepsilon\varepsilon']}_{\sigma^{2}I} \left[(X'X + \lambda I)^{-1} X' \right]' \\ &= \sigma^{2} (X'X + \lambda I)^{-1} X' X \left(X'X + \lambda I \right)^{-1} \end{aligned}$$

Comparing the MSE of OLS and Ridge

$$\begin{split} \mathsf{MSE}(\widehat{\beta}) - \mathsf{MSE}(\widetilde{\beta}_{\lambda}) &= \left\{\mathsf{Bias}^2(\widehat{\beta}) + \mathsf{Var}(\widehat{\beta})\right\} - \left\{\mathsf{Bias}^2(\widetilde{\beta}_{\lambda}) + \mathsf{Var}(\widetilde{\beta}_{\lambda})\right\} \\ &\vdots \\ &= \lambda \underbrace{(X'X + \lambda I)^{-1}}_{M'} \underbrace{\left[\sigma^2 \left\{2I + \lambda (X'X)^{-1}\right\} - \lambda \beta \beta'\right]}_{A} \underbrace{\left(X'X + \lambda I\right)^{-1}}_{M} \end{split}$$

- $\lambda > 0$ and M is symmetric
- ▶ M is full rank $\implies Mv \neq 0$ unless v = 0
- ► Hence: $v'[\lambda M'AM]v = \lambda (Mv)'$

Lecture #8 – High-Dimensional Regression II

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO)

Bühlmann & van de Geer (2011); Hastie, Tibshirani & Wainwright (2015)

Assume that X has been centered: don't penalize intercept!

Notation

$$||\beta||_2^2 = \sum_{j=1}^p \beta_j^2, \quad ||\beta||_1 = \sum_{j=1}^p |\beta_j|$$

Ridge Regression – L_2 Penalty

$$\widehat{\beta}_{\textit{Ridge}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left| |\beta| \right|_{2}^{2}$$

LASSO – L_1 Penalty

$$\widehat{\beta}_{\textit{Lasso}} = \mathop{\arg\min}_{\beta} \; (\mathbf{y} - X\beta)'(\mathbf{y} - X\beta) + \lambda \left| \left| \beta \right| \right|_{1}$$

Other Ways of Thinking about LASSO

Constrained Optimization

$$rg \min_{eta} (\mathbf{y} - Xeta)'(\mathbf{y} - Xeta)$$
 subject to $\sum_{j=1}^p |eta_j| \leq t$

Data-dependent, one-to-one mapping between λ and t.

Bayesian Posterior Mode

Ignoring the intercept, LASSO is the posterior model for β under

$$\mathbf{y}|X, \beta, \sigma^2 \sim N(X\beta, \sigma^2 I_n), \quad \beta \sim \prod_{j=1}^{p} \mathsf{Lap}(\beta_j|0, \tau)$$

where $\lambda=1/ au$ and $\mathrm{Lap}(x|\mu, au)=(2 au)^{-1}\exp\left\{- au^{-1}|x-\mu|
ight\}$

Comparing Ridge and LASSO – Bayesian Posterior Modes

Figure: Ridge, at left, puts a normal prior on β while LASSO, at right, uses a Laplace prior, which has fatter tails and a taller peak at zero.

Comparing LASSO and Ridge – Constrained OLS

Figure: $\widehat{\beta}$ denotes the MLE and the ellipses are the contours of the likelihood. LASSO, at left, and Ridge, at right, both shrink β away from the MLE towards zero. Because of its diamond-shaped constraint set, however, LASSO favors a sparse solution while Ridge does not

No Closed-Form for LASSO!

Simple Special Case

Suppose that $X'X = I_p$

Maximum Likelihood

$$\widehat{\boldsymbol{\beta}}_{MLE} = (X'X)^{-1}X'\mathbf{y} = X'\mathbf{y}, \quad \widehat{\beta}_{j}^{MLE} = \sum_{i=1}^{n} x_{ij}y_{i}$$

Ridge Regression

$$\widehat{\boldsymbol{\beta}}_{Ridge} = (X'X + \lambda I_p)^{-1}X'\mathbf{y} = [(1+\lambda)I_p]^{-1}\widehat{\boldsymbol{\beta}}_{MLE}, \quad \widehat{\boldsymbol{\beta}}_{j}^{Ridge} = \frac{\widehat{\boldsymbol{\beta}}_{j}^{MLE}}{1+\lambda}$$

So what about LASSO?

LASSO when
$$X'X = I_p$$
 so $\widehat{\beta}_{MLE} = X'\mathbf{y}$

Want to Solve

$$\widehat{\boldsymbol{\beta}}_{LASSO} = \mathop{\arg\min}_{\boldsymbol{\beta}} \; (\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) + \lambda \left| \left| \boldsymbol{\beta} \right| \right|_1$$

Expand First Term

$$(\mathbf{y} - X\boldsymbol{\beta})'(\mathbf{y} - X\boldsymbol{\beta}) = \mathbf{y}'\mathbf{y} - 2\boldsymbol{\beta}'X'\mathbf{y} + \boldsymbol{\beta}'X'X\boldsymbol{\beta}$$

$$= (constant) - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{MLE} + \boldsymbol{\beta}'\boldsymbol{\beta}$$

Hence

$$\begin{split} \widehat{\boldsymbol{\beta}}_{LASSO} &= \underset{\boldsymbol{\beta}}{\arg\min} \left(\boldsymbol{\beta}'\boldsymbol{\beta} - 2\boldsymbol{\beta}'\widehat{\boldsymbol{\beta}}_{MLE}\right) + \lambda \left|\left|\boldsymbol{\beta}\right|\right|_{1} \\ &= \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j}\widehat{\boldsymbol{\beta}}_{j}^{MLE} + \lambda \left|\boldsymbol{\beta}_{j}\right|\right) \end{split}$$

LASSO when $X'X = I_p$

Preceding Slide

$$\widehat{\boldsymbol{\beta}}_{LASSO} \ = \ \arg\min_{\boldsymbol{\beta}} \sum_{j=1}^{p} \left(\beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{MLE} + \lambda \left| \beta_{j} \right| \right)$$

Key Simplification

Equivalent to solving j independent optimization problems:

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \left(\beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \left| \beta_{j} \right| \right)$$

- ▶ Sign of β_i^2 and $\lambda |\beta_j|$ unaffected by sign (β_j)
- $ightharpoonup \widehat{eta}_i^{MLE}$ is a function of data only outside our control
- ▶ Minimization requires matching sign(β_i) to sign($\widehat{\beta}_i^{MLE}$)

LASSO when $X'X = I_p$

Case I:
$$\widehat{\beta}^{MLE} > 0 \implies |\beta_j| = |\beta_j| = |\beta_j|$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \arg\min_{\beta_{j}} \, \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} + \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} - \frac{\lambda}{2}$$

Can't have
$$\beta_j < 0$$
: corner solution sets $\beta_j = 0$
$$\widehat{\beta}_j^{\textit{Lasso}} = \max \left\{ 0, \widehat{\beta}_j^{\textit{MLE}} - \frac{\lambda}{2} \right\}$$

LASSO when $X'X = I_p$

Case II:
$$\widehat{\beta}^{MLE} \leq 0 \implies \beta_j \leq 0 \implies |\beta_j| = -\beta_j$$

Optimization problem becomes

$$\widehat{\beta}_{j}^{\textit{Lasso}} = \mathop{\arg\min}_{\beta_{j}} \, \beta_{j}^{2} - 2\beta_{j} \widehat{\beta}_{j}^{\textit{MLE}} - \lambda \beta_{j}$$

Interior solution:

$$\widehat{\beta}_j = \widehat{\beta}_j^{MLE} + \frac{\lambda}{2}$$

Can't have
$$\beta_j > 0$$
: corner solution sets $\beta_j = 0$
$$\widehat{\beta}_j^{\textit{Lasso}} = \min \left\{ 0, \widehat{\beta}_j^{\textit{MLE}} + \frac{\lambda}{2} \right\}$$

Ridge versus LASSO when $X'X = I_p$

Figure: Horizontal axis in each plot is MLE

$$\begin{split} \widehat{\beta}_{j}^{\textit{Ridge}} &= \left(\frac{1}{1+\lambda}\right) \widehat{\beta}_{j}^{\textit{MLE}} \\ \widehat{\beta}_{j}^{\textit{Lasso}} &= \operatorname{sign}\left(\widehat{\beta}_{j}^{\textit{MLE}}\right) \max \left\{0, \left|\widehat{\beta}_{j}^{\textit{MLE}}\right| - \frac{\lambda}{2}\right\} \end{split}$$

Calculating LASSO – The Shooting Algorithm

Cyclic Coordinate Descent

```
Data: y, X, \lambda \ge 0, \varepsilon > 0
 Result: LASSO Solution
\beta \leftarrow \mathsf{ridge}(X, \mathbf{y}, \lambda)
repeat
   \beta^{prev} \leftarrow \beta
| \mathbf{for} \ j = 1, \dots, p \ \mathbf{do} 
| \ a_j \leftarrow 2 \sum_{i=1}^n x_{ij}^2 
| \ c_j \leftarrow 2 \sum_{i=1}^n x_{ij} (y_i - \mathbf{x}_i'\beta + \beta_j x_{ij}) 
| \ \beta_j \leftarrow \operatorname{sign}(c_j/a_j) \max \{0, |c_j/a_j| - \lambda/a_j\} 
           end
until \sum_{i=1}^{p} |\beta_i^{prev} - \beta_j| < \varepsilon;
```