CH-231-A Algorithms and Data Structures ADS

Lecture 37

Dr. Kinga Lipskoch

Spring 2020

Correctness (i)

Lemma:

- Initializing d[s] = 0 and $d[v] = \infty$ for all $v \in V \setminus \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$.
- ► This invariant is maintained over any sequence of relaxation steps.

Proof:

Suppose the Lemma is not true, then let v be the first vertex for which $d[v] < \delta(s,v)$ and let u be the vertex that caused d[v] to change by d[v] = d[u] + w(u,v). Then,

$$d[v] < \delta(s, v)$$
 supposition
 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality
 $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Contradiction.

Correctness (ii)

Lemma:

- \blacktriangleright Let u be v's predecessor on a shortest path from s to v.
- ► Then, if $d[u] = \delta(s, u)$, we have $d[v] = \delta(s, v)$ after the relaxation of edge (u, v).

Proof:

- ▶ Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$.
- ▶ Suppose that $d[v] > \delta(s, v)$ before relaxation (else: done).
- ► Then, $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$ (if clause in the algorithm).
- ▶ Thus, the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

◆ロ > ◆昼 > ◆ 差 > ・ 差 ・ り Q (

Correctness (iii)

Theorem:

Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof:

- It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S.
- ▶ Suppose u is the first vertex added to S with $d[u] > \delta(s, u)$.
- Let y be the first vertex in V \ S along the shortest path from s to u, and let x be its predecessor.
- ▶ Then, $d[x] = \delta(s, x)$ and $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$.
- ▶ But we chose u such that $d[u] \le d[y]$. Contradiction.

Complexity Analysis

times
$$\begin{cases} \textbf{while } Q \neq \varnothing \\ \textbf{do } u \leftarrow \text{Extract-Min}(Q) \\ S \leftarrow S \cup \{u\} \\ \textbf{for } \text{each } v \in Adj[u] \\ \textbf{do if } d[v] > d[u] + w(u, v) \\ \textbf{then } d[v] \leftarrow d[u] + w(u, v) \end{cases}$$

➤ Similar to Prim's minimum spanning tree algorithm, we get the computation time

$$\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-KEY}})$$

▶ Hence, depending on what data structure we use, we get the same computation times as for Prim's algorithm.

→□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ * り Q ○

Unweighted Graphs

- Suppose that we have an unweighted graph, i.e., the weights w(u, v) = 1 for all $(u, v) \in E$.
- Can we improve the performance of Dijkstra's algorithm?
- ▶ Observation: The vertices in our data structure *Q* are processed following the FIFO principle.
- ▶ Hence, we can replace the min-priority queue with a queue.
- ► This leads to a breadth-first search.

ADS Spring 2020 6 / 15

BFS Algorithm

```
d[s] := 0
for each v e V\{s}
  d[v] := infinity
Enqueue (Q,s)
while O != Ø
  u := Dequeue(Q)
  for each v e Adj [u]
      if d[v] = infinity
      then d[v] := d[u] + 1
          pi[v] :=u
          Enqueue (0, v)
```

ADS Spring 2020 7 / 15

Analysis: BFS Algorithm

Correctness:

- ► The FIFO queue *Q* mimics the min-priority queue in Dijkstra's algorithm.
- Invariant: If v follows u in Q, then d[v] = d[u] or d[v] = d[u] + 1.
- \triangleright Hence, we always dequeue the vertex with smallest d.

Time complexity:

$$O(|V|T_{Dequeue} + |E|T_{Enqueue}) = O(|V| + |E|)$$

ADS Spring 2020 8 / 15

Example: BFS Algorithm

Q: a b d c e g i f h

ADS Spring 2020 9/15

Negative Weights

- We had postulated that all weights are nonnegative.
- ► How can we extend the algorithm to also handle negative entries?
- The problems are caused by negative weight cycles.

▶ Goal: Find shortest-path lengths from a source vertex $s \in V$ to all vertices $v \in V$ or determine the existence of a negative-weight cycle.

Bellmann-Ford Algorithm

```
d[s] := 0
for each v e V\{s}
 d[v] := infinity
for i:=1 to |V|-1
    for each (u,v) \epsilon E
        if d[v] > d[u] + w(u,v)
        then d[v] := d[u] + w(u,v)
              pi[v] :=u
for each (u.v) e E
  if d[v] > d[u] + w(u,v)
    report existence of negative-weight cycle
```

Time complexity: $O(|V| \cdot |E|)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Bellman-Ford Algorithm

then d[v] := d[u] + w(u,v)pi[v] :=u

Bellmann-Ford Algorithm: Correctness (1)

Theorem:

If G=(V,E) contains no negative-weight cycles, then the Bellman-Ford algorithm terminates with $d[v]=\delta(s,v)$ for all $v\in V$.

Proof:

Let $v \in V$ be any vertex.

Consider a shortest path $p = (v_0, ..., v_k)$ from s to v.

Then, $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$ for i = 1, ..., k.

Bellmann-Ford Algorithm: Correctness (2)

Initially, $d[v_0] = 0 = \delta(s, v_0)$.

According to our Lemma from Dijkstra's algorithm we have $d[v] \ge \delta(s, v)$, i.e., $d[v_0]$ is not changed.

After the 1st pass, we have $d[v_1] = \delta(s, v_1)$.

After the 2nd pass, we have $d[v_2] = \delta(s, v_2)$.

. . .

After the k^{th} pass, we have $d[v_k] = \delta(s, v_k)$.

Since G has no negative-weight cycles, p is a simple path, i.e., it has $\leq |V| - 1$ edges.

$$p: v_0$$
 v_1 v_2 v_3 ... v_k

Detecting Negative-Weight Cycles

Corollary:

If a value d[v] fails to converge after |V|-1 passes, there exists a negative-weight cycle in G reachable from s.