Relação Entre Velocidade e Distância de Frenagem para Carros de Passeio

Aluno Consultor 1^{a,b}, Aluno Consultor 2^{a,b}, Consulente^{c,d} e Marcus A. Nunes^{a,e}

^aDepartamento de Estatística - UFRN; ^bConsultor; ^cOutro Departamento - UFRN; ^dConsulente; ^eOrientação

13 de Março de 2018

Este trabalho estuda a relação entre a velocidade de carros (mph) e a distância (pés) que eles levaram para parar completamente. Utilizamos regressão linear simples para determinar se há relação entre estas duas variáveis.

regressão linear | automobilismo | segurança | trânsito

1. Objetivos

Diversos autores já publicaram estudos referentes à segurança no trânsito. McKenna *et al.* (1991), por exemplo, estuda a relação entre as habilidades dos motoristas e a percepção que eles possuem sobre estas habilidades. Além desta característica, existem diversas outras que, se estudadas, podem aumentar a segurança no trânsito. Uma destas características é a distância mínima necessária para que um carro pare completamente após seus freios serem acionados.

Neste trabalho estamos interessados em verificar qual é a relação que existe entre a velocidade de um carro (em milhas por hora) e a distância que ele levou para parar completamente (em pés). Este conjunto de dados foi fornecido pelo programa R: A Language and Environment for Statistical Computing (R Core Team (2017)). A hipótese com a qual trabalhamos é a de que existe uma relação positiva entre estas variáveis. Isto é, quanto mais rápido um carro estiver trafegando, maior vai ser a distância necessária para que este carro pare completamente.

Além de verificar se há correlação entre estas variáveis, desejamos obter uma relação capaz de prever o quanto uma variável varia em relação a outra. Ou seja, gostaríamos de poder estimar a distância necessária para um carro parar completamente se soubermos qual a sua velocidade de tráfego no momento em que os freios foram acionados.

2. Metodologia

Os dados aqui analisados foram obtidos a partir de uma amostra de 50 carros. As medições foram realizadas na década de 1920 e disponibilizadas originalmente por Ezekiel (1930). Não há informações a respeito dos modelos dos carros utilizados neste experimento.

Utilizaremos um método estatístico chamado regressão linear a fim de verificar se há relação entre a distância necessária para um carro parar completamente e sua velocidade. Este é um método bastante popular, capaz de descrever com bastante precisão a relação entre as variáveis que nos interessam.

Sejam x_1, x_2, \dots, x_n as observações referentes à velocidade dos carros em questão. Considere y_1, y_2, \dots, y_n as observações referentes à distância necessária para os carros pararem. De acordo com Kutner *et al.* (2004), podemos expressar a dependência entre y e x através da equação

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

onde β_0 e β_1 são coeficientes estimados pelas equações

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\widehat{\beta}_{0} = \overline{y} - \widehat{\beta}_{1} \overline{x}$$
(2.1)

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x} \tag{2.2}$$

As quantidades \overline{x} e \overline{y} são, respectivamente, as médias amostrais de x_1, x_2, \cdots, x_n e y_1, y_2, \cdots, y_n . Estas médias amostrais são dadas por

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Determinamos se o coeficiente β_1 é estatisticamente significante através de um teste t. Sob a hipótese nula, assumimos que o estimador possui distribuição t com n-1 graus de liberdade.

3. Resultados

A fim de verificar visualmente se há algum tipo de relação entre as variáveis consideradas neste estudo, exibimos o gráfico de dispersão dos dados na Figura 3.1. Note que é possível perceber uma forte tendência linear positiva na relação entre estas variáveis. Quanto maior o valor da velocidade, maior a distância necessária para o carro parar completamente.

Fig. 3.1. Gráfico de dispersão da distância de parada completa (pés) versus velocidade (mph) dos carros.

Fig. 3.2. Gráfico de dispersão da distância de parada completa (pés) versus velocidade (mph) dos carros com a reta que melhor se ajusta a estes dados.

Além disso, adicionamos ao gráfico exibido na Figura 3.2 a reta que melhor descreve a relação entre estas variáveis. Esta reta foi obtida através do método descrito na seção anterior, fazendo uso das fórmulas (2.1) e (2.2). Explicitamente, a equação representada na Figura 3.2 é dada por

$$\widehat{y}_i = -17,5791 + 3,9324x_i. \tag{3.1}$$

Entretanto, precisamos testar se os coeficientes estimados e apresentados na relação (3.1) são, de fato, estatisticamente significantes. Para isto, testaremos as hipóteses

$$H_0: \beta_0 = 0$$

 $H_1: \beta_0 \neq 0$

e

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 \neq 0$

Os resultados destes testes estão apresentados na Tabela 3.1.s

Note que, em ambos os casos, o p-valor encontrado é inferior a $\alpha = 0.05$. Portanto, podemos rejeitar ambas as hipóteses nulas e β_0 e β_1 são estatisticamente diferentes de zero.

Tabela 3.1. Resultados dos testes de hipóteses realizados para a análise de regressão.

Coeficiente	Estimativa	Erro Padrão	t	p-valor
$\frac{\beta_0}{\beta_1}$	-17,5791	6,7584	-2,601	0,0123
$oldsymbol{eta}_1$	3,9324	0,4155	9,464	<0,0001

Fig. 3.3. Análise de resíduos do modelo de regressão linear ajustado.

Para finalizar a análise, devemos verificar se o modelo ajustado não viola as hipóteses do modelo de regressão linear. Para verificar isto, exibimos a análise de resíduos na Figura 3.3.

Note que na parte superior esquerda da imagem, embora o gráfico dos resíduos versus valores ajustados não apresente tendência, a variância não é constante. Note que os pontos próximos de zero estão mais próximos entre si do que os pontos mais à direita no gráfico. Portanto, há uma violação das hipóteses da regressão linear neste caso.

Assim, podemos sugerir uma transformação nestes dados ou a utilização de outro método de análise, como um modelo linear generalizado.

Referências

Ezekiel M (1930). Methods of Correlation Analysis. Wiley, New York.

Kutner M, Nachtsheim C, Neter J, Li W (2004). Applied Linear Statistical Models - Fifth Edition. McGraw-Hill/Irwin, New York.

McKenna FP, Stanier RA, Lewis C (1991). "Factors underlying illusory self- assessment of driving skill in males and females." Accident Analysis and Prevention, 23(1), 45-52.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.