CSK4002 Datasheet V2.3

AndesCore V3 32-bit MCU, up to 8 MB Flash, 8M SRAM,

QFN64

Datasheet - production data

Core

- AndesV3 N10, Maxim speed: 250MHz
- Hardware accelerator inside: MVA
- Hardware multiplier and hardware divider
- 5-stage pipeline
- Support 2wire and 5 wire debug port

Memory

- 8MB Flash
- 8MB PSRAM
- 1MB internal SRAM

Clock

- Programmable clock source select
 - External 12.288Mhz high speed crystal
 - Internal 3.072MHz high speed oscillator
 - Internal 32KHz low speed oscillator
 - PLL up to 250Mhz

Interrupt

- Internal Vectored Interrupt Controller(IVIC)
- Support watch breakpoint

General IO

■ Up to 50 general IO

Communication interface

- 3 UART standard communication port
- 2 SPI standard communication port
- 2 I2C standard communication port
- 1 I2S standard communication port
- 4 DMIC Input
- USB1.1 full speed Device
- SDIO standard communication port
- Touch function support
- 2 CLASSD output

PDMA

- Support 18 channels DAM for automatic data transfer between SRAM and peripherals
- Support external DMA through SPI

PIT

- 2 programmable interval timer
- Each of them supports up to 4 timer channels

IWDG

- 32KHz low speed oscillator
- 32 bit free running counter

UART

- 3 UART interface
- Support hardware flow control
- Support the hardware handshake for DMA
- Support by 8 or by 16 over-sampling frequency

Working Condition

- Voltage between 2.7V to 3.6V
- Core voltage 1.15V±5%
- Working temperature: -40°C to +85°C

Development tools

- Full function embedded debugging environment
- Package: QFN64

Contents

CC	ontents .	3					
L	General Description 5						
2	IC Mai	n Function 5					
:	2.1	Core5					
	2.2	Memory5					
:	2.3	Clock Control5					
	2.4	PDMA6					
	2.5	IO Port6					
	2.6	PIT6					
	2.7	IWDG6					
:	2.8	UART6					
:	2.9	SPI					
:	2.10	12C7					
:	2.11	RTC7					
:	2.12	MVA7					
:	2.13	FCC ram controller7					
:	2.14	PDM2PCM8					
	2.15	ADPCM8					
	2.16	CRYPTO8					
	2.17	EFUSE controller8					
	2.18	PSRAM interface8					
	2.19	True random number generator8					
	2.20	PWM interface for class D amplifier8					
	2.21	12S interface8					
	2.22	Reset Sequence controller9					
	2.23	USB2.0 full speed Device9					
:	2.24	SDIO9					
į	2.25	Power Management Unit9					
	2.26	Touch9					
	2.27	Analog Top9					

3	Mem	ory mapping	10
4	Block	Diagram	11
	4.1	Block diagram	11
4	4.2	External interface	11
5	PIN m	napping and Description	12
!	5.1	Pin mapping	12
!	5.2	Pin descriptions	12
6	Electr	rical characteristics	19
(6.1	Test condition	19
(6.2	Absolute maximum rating	19
(6.3	Operating conditions	
	6.3.1	POR validity vs Power on sequence of Vcore and VIO	20
	6.3.2	ESD	20
	6.3.3	IO port characteristics	20
	6.3.4	CLASS D	21
7	Packa	age	22
•	7.1	CSK4002 NSxxxxxxG	22
•	7.2	CSK4002 NAxxxxxxG	23
•	7.3	CSK4002 NHxxxxxxG	24
8	Reflo	w profile	25
;	8.1	Reflow graph	25
:	8.2	SMT Reflow condition	26
9	Silk-S	creen	26
10)	Weight	27
11		Application Diagram	27

1 General Description

CSK4002 is a medium-cost 32-bit microcontroller with embedded Andes D1088 core. CSK4002 is designed for 32-bit microcontroller applications, offering performance, low power, simple instruction set and addressing together with reduced code size compared to exiting solutions. With CPU running at high speed and dedicated DSP for audio processing, it can support the sampling and processing of eight channel audio inputs.

Target applications: Bluetooth speaker, smart home appliance, automobile electronic application

The CSK4002 can run up to 250MHz. Thus it can afford to support a variety of industrial control and applications which need high CPU performance. The CSK4002 has up to 1M bytes internal data SRAM and can support large external flash through QSPI and OPI interface. A parallel PSRAM can be packaged together with CSK4002 to support large memory application such as Linux.

Many system level peripheral functions, such as IO port, Timer, Watchdog Timer, UART, SPI, I2C, DMA, PLL, USB1.1 (Full speed), RTC, Quad SPI, SDIO are supported. Additionally, CSK4002 is equipped with Flash Memory Controller, which allows the user to update the program memory without removing the chip from the actual end product.

2 IC Main Function

2.1 Core

- AndesCore D1088 core runs up to 250 MHz
- Internal Vectored Interrupt Controller (IVIC)
- Hardware multiplier and hardware divider.
- Embedded Debug Module (EDM) supports serial debug port(2-wire) and JTAG debug
- port(5-wire).

2.2 Memory

- External flash through QSPI interface
- Totally 256KB SRAM+80KB cache configurable according to the following different configurations
- Additional 640KB SRAM shared between CPU and MVA block
- Dedicated 128KB SRAM for MVA block

	Instruction cache	Data cache	Instruction RAM	Data RAM
Configuration 1	64KB	16KB	128K	128KB
Configuration 2	64KB	16KB		256KB
Configuration 3		16KB	64KB	256KB

2.3 Clock Control

- Programmable system clock source.
- External 12.288 MHz high speed crystal input to provide reference clock for both RF and system.
- Internal 3.072MHz high speed oscillator with calibration (\pm 2% @ 25 $^{\circ}$ C)
- Internal 32 KHz low speed oscillator with calibration.
- PLL allows CPU operation up to 250MHz with the system oscillator.

2.4 PDMA

- Support 18 channels DMA for automatic data transfer between SRAM and peripherals. 3 SPI TX, 3 SPI RX, 3 UART TX, 3 UART RX, 2 I2C, 1PDM2PCM, 1 ADPCM TX,
 - 1ADPCM RX, 1 I2S TX, 1 I2S RX, 1 ClassD.
- Reception frame error detection
- Support external DMA through SPI

2.5 IO Port

- Up to 50 general-purpose I/O(GPIO) pins.
- GPIO configuration:
- Quasi-bidirectional (Pull-up Enable)
- Push-pull (Output)
- Input only (high-impedance)
- I/O pin can be configured as interrupt source with edge/level setting.
- Flexible IO function select.
- 4 GPIO can be configured to support wake up and interrupt

2.6 PIT

The multi-function timer provides the following 6 usage scenarios depending on the ChMode register bit configurations

- one 32-bit timer.
- two 16-bit timers.
- four 8-bit timers.
- one 16-bit PWM.
- one 16-bit timer and one 8-bit PWM.
- two 8-bit timers and one 8-bit PWM

The features of the PIT controller include:

- Supports AMBA 2.0 APB bus.
- Each multi-function timer provides 6 usage scenarios (combinations of timer and PWM).
- Supports up to 4 multi-function timers.
- Programmable source of timer clock.

2.7 IWDG

- Clocked from an internal 32 KHz low speed oscillator or from 32768HZ crystal if available
- 32-bit free running counter
- Selectable timer-out interval

2.8 UART

- Three UART interface(1 for debug)
- Compatible to the 16C550A register structure.
- One UART Support the hardware flow control (CTS/RTS) so that WIFI can be supported through UART interface.
- Supports the hardware handshake for DMA.
- Supports by 8 or by 16 over-sampling frequency.
- Configurable 16/32/64/128 entry transmit/receive FIFOs.

2.9 SPI

- Three SPI interfaces (1 QSPI for flash, the other two SPI to share with UART and PWM)
- One can be used to support QSPI for external flash
- The other two can be configured to 3 wire SPI and share IO with UART and PWM
- Supports the master mode and the slave mode.
- Supports memory mapped access (read-only) through AHB bus.
- Supports memory mapped access (read-only) through EILM bus.
- Supports the hardware handshake for DMA.
- Supports the dual I/O and quad I/O modes.
- Supports the 3-line mode.

2.10 I2C

- Two I2C interface is available.
- Programmable to be a master or a slave device.
- Programmable clock/data timing.
- Supports the I2C-bus Standard-mode (100 kb/s), Fast-mode (400 kb/s) and Fast-mode plus (1 Mb/s).
- Supports the hardware handshake for DMA.
- Supports the master-transmit, master-receive, slave-transmit and slave-receive modes.
- Supports the multi-master mode.
- Supports 7-bit and 10-bit addressing.
- Supports general call addressing.
- Supports auto clock stretch.

2.11 RTC

- Supports software compensation by setting frequency compensate register (FCR)
- The frequency of clock source (before the clock divider) for the counter is 32.768KHz.
- Separate second, minute, hour and day counters.
- Periodic interrupts: half-second, second, minute, hour and day interrupts.
- Programmable alarm interrupt with specified second, minute and hour numbers.

2.12 MVA

- Matrix and vector operation accelerator
- AHB master interface for data read and write
- APB interface for register configuration
- Has interrupt signals
- Support reverse order storage, overflow detection, shift location

2.13 FCC ram controller

- Arbitrate the data access request from CPU, MVA and DMAC
- Partition the MVA memory into several spaces
- If the access from different agents are in different spaces, all of them can be done without wait
- If the accesses from different agents are in the same space, CPU has the highest priority and other agents would wait. (MVA is aware of the wait needed while CPU do not know)

2.14 PDM2PCM

- Support data conversion of PDM data from digital microphone to standard PCM data
- CIC filter in always on domain, half-band and memory in main power domain

2.15 ADPCM

- Support data conversion of PCM data to ADPCM data to save storage area and speed up data transmission.
- APB interface for register and data operations
- Interrupt signal to notify CPU

2.16 CRYPTO

- Support inside chip AES128 + SHA256 for secure communication
- AHB master interface for data read and write
- APB interface for register configuration
- Interface with eFuse control to get the eFuse configuration directly

2.17 EFUSE controller

- Read EFuse content after receiving reset release signal from the reset sequence control
- Provide the data to Crypto engine for encryption/decryption usage
- Provide the data to QSPI encrypt wrapper to protect the content of NOR flash

2.18 PSRAM interface

- Support the access of SQPI PSRAM
- Register is configurable through APB bus
- Reading and writing PSRAM data is processed through AHB bus
- Support SPI/QPI mode
- SPI clock is divisible (divided by 2,3,4,5,6,7)

2.19 True random number generator

- True random generator with mixed analog digital implementation to provide true random number
- Register configuration and generated random number can be accessed through APB bus

2.20 PWM interface for class D amplifier

- Two signal PWM data output to class D amplifier to boost performance
- Register configuration and data operation through APB bus
- GPIO pins configurable as PWM output

2.21 I2S interface

- Support extended microphone inputs
- Support I2S audio outputs
- Four outputs signal and two inputs signal supported
- Input signal can be TDM extended to support more microphone inputs
- Register configuration and data operation through APB bus

2.22 Reset Sequence controller

- Generate reset signal to EFuse controller to read the EFuse data out, configure analog IP registers before CPU execute the ROM boot code
- Generate reset signal to CPU for it to start executing boot code from ROM
- Delay Brown-Out Detection (BOD) signal for enough time to generate global reset signal to all the blocks

2.23 USB2.0 full speed Device

- One set of USB 2.0 FS Device 12 Mbps
- On-chip USB Transceiver
- Supports Control, ISO in/out, Bulk in/out, Interrupt in/out transfers
- Provides 6 programmable endpoints
- Supports maximum 512 Bytes for isochronous transfer and maximum 64 Bytes for Bulk and interrupt transfer
- Each endpoint is configurable

2.24 SDIO

- Compliant with SD host controller standard specification, version 3.0
- Supports both DMA and non-DMA data transfers
- Compliant with SD physical layer specification, version 3.0
- Supports UHS50/UHS104 SD cards
- Supports configurable SD bus modes: 4-bit mode and 8-bit mode
- Compliant with SDIO card specification, version 3.0
- Compliant with eMMC card specification, version 5.1 mandatory part
- Supports configurable 1-bit/4-bit SD card bus and 1-bit/4-bit/8-bit EMMC card bus
- Configurable CPRM function for security
- Built-in generation and check for 7-bit and 16-bit CRC data
- Card detection (Insertion/Removal)

2.25 Power Management Unit

- Supports Sleep mode to reduce power consumption
- Supports the wake up through RTC, USB, SPI and Key-in from IO

2.26 Touch

- Supports up to 6 touch point detection
- Supports system wakeup through touch

2.27 Analog Top

- Control Analog IP registers
- Control through APB bus

3 Memory mapping

4 Block Diagram

4.1 Block diagram

4.2 External interface

As shown in figure, the chip uses single 3.3V power supply. Digital core uses 1.15V power supply.

The LDO need external capacitance. The chip supports RTC clock through internal 32K ROSC. 12.288MHZ crystal is also needed for internal PLL to generate inside clocks. The chip accepts input from digital microphone, does processing and then communicate with other devices through USB, I2S, ClassD, SDIO and other interfaces. There are also general programmable IOs to communicate with other devices.

5 PIN mapping and Description

5.1 Pin mapping

VDD_RTC						
	V	OUT11		:		
	VD	D_CORE		1		
PWM_CH0	TXD2	I2C2_SCL	USBDP	١.		
PWM_CH1	RXD2	I2C2_SDA	USBDM	1		
NC (
NC .						
NC						
RXD0	PC0	TXD0	XOUT] :		
	PC1	RXD0	XIN	1		
	PWM_CH5	I2S_DOUT3	PA3	1		
SDIO_CLK	SPI2_CLK	PWM_CH0	PA4	1		
SDIO_IO1	SPI2_CS	PWM_CH1	PA5	1		
SDIO_IO0	SPI2_MISO	PWM_CH2	PA6	1		
SDIO_CMD	SPI2_MOSI	PWM_CH3	PA7	1		
		VCC		1		

63 62 61 60 60 60 60 60 60 60 60 60 60 60 60 60					
	48		V	DD_CORE	
OFNC 4 (O+O)	47	SWDIO	PB4	PWM_CH1	RXD2
QFN64 (9*9mm)	46	SWCLK	PB3	PWM_CH0	CTS1
	45	PB2	SDIO_CMD	I2S_DIN1	SPI3_MOSI
	44	PB1	SDIO_CLK	I2S_DOUT1	SPI3_CLK
	43	PB0	SDIO_IO0	I2S_DOUT2	SPI3_MISO
	42	PA31	SDIO_IO1	RXD2	SPI3_CS
	41			NC	
	40			NC	
	39			NC	
	38	PA27	TXD1	PWM_CH5	I2C2_SDA
	37	PA26	I2S_MCLK	I2S_DIN1	I2C2_SCL
	36	PA25	I2S_DINO	PWM_CH5	SPI3_MOSI
	35	PA24	I2S_DOUT0	PWM_CH4	SPI3_MISO
	34	PA23	I2S_BCLK	PWM_CH3	SPI3_CS
	33	PA22	I2S_FCLK	PWM_CH2	SPI3_CLK

SPI2 CLK		SDIO_CLK	PA8	7
SPI2_CS	12S_DOUT1	SDIO_CMD	PA9	8
SPI2_MISO	RXD2	SDIO_IO0	PA10	61
12S_MCLK SPI2_MOSI	12S_MCLK	RXD1	PA11	80
	VDD_CORE	ַם לוע		21
PWM_CH3 SPI3_MOSI	PWM_CH3	QSPI_D0	PA12	22
SPI3_CLK	PWM_CH4	QSPI_CLK	PA13	$\ddot{\omega}$
SPI3_CS	PWM_CH5	QSPI_D3	PA14	24
SPI3_MISO	SDIO_IO1	QSPI_D2	PA15	25
I2C2_SDA	SDIO_IO2	QSPI_D1	PA16	26
12C2_SCL	SDIO_IO3	QSPI_CS	PA17	27
	VCC	V		82
SDIO_IO3	12C2_SCL	pwm_ch0 l2C2_SCL	PA18	29
SDIO_IO2	12C2_SDA	pwm_ch1	PA19	õ
I2S_DIN1	PWM_CHO	12C1_SCL	PA20	21
12S_DOUT1	PWM_CH1 I2S_DOUT1	12C1_SDA	PA21	8

5.2 Pin descriptions

PIN name	IOMUX options	QFN64 Pin number	Descriptions
VDD_DDR	VDD_DDR	63	VDD 1.8V internal LDO out for OPI PSRAM
VDD_FUSE	VDD_FUSE,	64	VDD 2.5V internal LDO out for Efuse Burn.
	RESET		During POR, it is reset input.
			After POR, software can program it to disconnect from
			internal reset logic.
			The connected capacitor is suggested to be 2.2uF.
VCC_RTC	VCC_RTC	1	
VOUT_11	VOUT_11	2	

VDD_CORE	VDD_CORE	3	
USBDP	0: *USBDP	4	
	1: I2C2_SCL		
	2: TXD2		
	3: PWM_CH0		
USBDM	0: *USBDM	5	
	1: I2C2_SDA		
	2: RXD2		
	3: PWM_CH1		
NC	NC	6	NC
NC	NC	7	NC
NC	NC	8	NC
XOUT	0: *XOUT	9	If external crystal is used, it must be used as XOUT.
	1: TXD0		If internal RCOSC or active external OSC is used, it can be
	2: PC0		muxed to be other functions.
	3: RXD0		(The iomux control and PC0 read/write is in analogtop
			module XTAL_REG)
XIN	0: *XIN	10	If external crystal is used, it must be used as XIN.
	1: RXD0		If internal RCOSC is used, it can be muxed to be other
	2: PC1		functions.
			(The iomux control and PC1 read/write is in analogtop
			module XTAL_REG)
PA3	0: *PA3	11	
	1: I2S_DOUT3		
	2: PWM_CH5		
PA4	0: *PA4	12	
	1: PWM_CH0		
	2: SPI2_CLK		
	3: SDIO_CLK		
PA5	0: *PA5	13	
	1: PWM_CH1		
	2: SPI2_CS		
	3: SDIO_IO1		
PA6	0: *PA6	14	
	1: PWM_CH2		
	2: SPI2_MISO		
	3: SDIO_IO0		
PA7	0: *PA7	15	
	1: PWM_CH3		
	2: SPI2_MOSI		
	3: SDIO_CMD		
VCC	VCC	16	VCC 3.3 input
PA8	0: *PA8	17	

	1: SDIO_CLK		
	1: SDIO_CLK 2:		
DAO	3: SPI2_CLK	10	
PA9	0: *PA9	18	
	1: SDIO_CMD		
	2: I2S_DOUT1		
	3: SPI2_CS		
PA10	0: *PA10	19	
	1: SDIO_IO0		
	2: RXD2		
	3: SPI2_MISO		
PA11	0: *PA11	20	
	1: SDIO_IO0		
	2: RXD1		
	3: SPI2_MISO		
VDD_CORE	VDD_CORE	21	VDD 1.15V input
PA12	0: *PA12	22	
	1: QSPI_D0		
	2: PWM_CH3		
	3: SPI3_MOSI		
PA13	0: *PA13	23	
	1: QSPI_CLK		
	2: PWM_CH4		
	3: SPI3_CLK		
PA14	0: *PA14	24	
	1: QSPI_D3		
	2: PWM_CH5		
	3: SPI3_CS		
PA15	0: *PA15	25	
	1: QSPI_D2		
	2: SDIO_IO1		
	3: SPI3_MISO		
PA16	0: *PA16	26	
	1: QSPI_D1		
	2: SDIO_IO2		
	3: I2C2_SDA		
PA17	0: *PA17	27	
1,11,	1: QSPI_CS		
	2: SDIO_IO3		
	2: SDIO_IO3 3: I2C2_SCL		
VCC	VCC	28	VCC 2 2V input
			VCC 3.3V input
PA18	0: *PA18	29	
	1: PWM_CH0		

	2: I2C2_SCL		
	3: SDIO_IO3		
PA19	0: *PA19	30	
1713	1: PWM_CH1	30	
	2: I2C2_SDA		
	3: SDIO_IO2		
PA20	0: *PA20	31	
PAZU		31	
	1: I2C1_SCL		
	2: PWM_CH0		
	3: I2S_DATAIN1		
PA21	0: *PA21	32	This is BOOT LED pin used by ROM code.
	1: I2C1_SDA		(The LED is connected in common anode mode.)
	2: PWM_CH1		
	3:		
	I2S_DATAOUT1		
PA22	0: *PA22	33	
	1: I2S_FCLK		
	2: PWM_CH2		
	3: SPI3_CLK		
PA23	0: *PA23	34	
	1: I2S_BCLK		
	2: PWM_CH3		
	3: SPI3_CS		
PA24	0: *PA24	35	
	1: I2S_DOUT0		
	2:		
	3: SPI3_MISO		
PA25	0: *PA25	36	
	1: I2S_DIN0		
	2: PWM_CH5		
	3: SPI3_MOSI		
PA26	0: *PA26	37	
	1: I2S_MCLK		
	2: I2S_DIN1		
	3: I2C2_SCL		
PA27	0: *PA27	38	
	1: TXD1		
	2: PWM_CH5		
	3: I2C2_SDA		
NC		39	NC
NC		40	NC
NC		41	NC
PA31	0: *PA31	42	

	1 0010 101		
	1: SDIO_IO1		
	2: RXD2		
	3: SPI3_CS		
PB0	0: *PB0	43	
	1: SDIO_IO0		
	2: I2S_DOUT2		
	3: SPI3_MISO		
PB1	0: *PB1	44	
	1: SDIO_CLK		
	2: I2S_DOUT1		
	3: SPI3_CLK		
PB2	0: *PB2	45	
	1: SDIO_CMD		
	2: I2S_DIN1		
	3: SPI3_MOSI		
SWCLK	0: *SWCLK	46	When debug via ICE is not used, this pin can
	1: PB3		be used by software as functional pin
	2: PWM_CH0		
	3: CTS1		
SWDIO	0: *SWDIO	47	When debug via ICE is not used, this pin can
3415.0	1: PB4		be used by software as functional pin
	2: PWM_CH1		be used by software as functional pin
	3: RXD2		
VDD_CORE	VDD_CORE	48	VDD 1.1V input.
PB5	0: *PB5	49	VDD 1.1 V Input.
PB3		49	
	1: CLASSD0_P		
	2: PWM_CH2		
	3: CTS1		
PB6	0: *PB6	50	
	1: CLASSD0_M		
	2: PWM_CH3		
	3: RXD2		
VCC	VCC	51	VCC 3.3V input
PB7	0: *PB7	52	
	1: CLASSD1_M		
	2: PWM_CH4		
	3: CTS1		
PB8	0: *PB8	53	
	1: CLASSD1_P		
	2: PWM_CH5		
	3: RXD2		
	3. KAD2		
PB9	digital:	54	This pad is a mixed signal pad. When the

	1: DMIC_D3		POWER_CTRL[TOUCH_EN_REG] is 1' b1,
	1: DMIC_D3 2: TXD2		
			it is used as analog pad as TOUCH5
	3: PWM_CH0		
	analog:		
	TOUCH5		
PB10	digital:	55	This pad is a mixed signal pad. When the
	0: *PB10		corresponding control in
	1: DMIC_D2		POWER_CTRL[TOUCH_EN_REG] is 1' b1,
	2: TXD1		it is used as analog pad as TOUCH4
	3: PWM_CH1		
	analog:		
	TOUCH4		
PB11	digital:	56	This pad is a mixed signal pad. When the
	0: *PB11		corresponding control in
	1: DMIC_D1		POWER_CTRL[TOUCH_EN_REG] is 1' b1,
	2: RXD1		it is used as analog pad as TOUCH3
	3: PWM_CH2		
	analog:		
	TOUCH3		
PB12	digital:	57	This pad is a mixed signal pad. When the
	0: *PB12		corresponding control in
	1: DMIC_D3		POWER_CTRL[TOUCH_EN_REG] is 1' b1,
	2: RTS1		it is used as analog pad as TOUCH2
	3: PWM_CH3		
	analog:		
	TOUCH2		
PB13	digital:	58	This pad is a mixed signal pad. When the corresponding
	0: *PB13		control in
	1: DMIC_D1		POWER_CTRL[TOUCH_EN_REG] is 1' b1, it is used as
	2: PWM_CH0		analog pad as TOUCH1
	3: I2C2_SCL		
	analog:		
	TOUCH1		
PB14	digital:	59	This pad is a mixed signal pad. When the corresponding
	0: *PB14		control in
	1: DMIC_D2		POWER_CTRL[TOUCH_EN_REG] is 1' b1, it is used as
	2: PWM_CH1		analog pad as TOUCH0
	3: I2C2_SDA		
	analog:		
	TOUCH0		
PB15	0: *PB15	60	PB15 can also be used to trigger external PMIC for wakeup
-	1: TXD2		from low-power mode.
	2: RXD2		Active low to wake up.
	2. KAD2		Active low to wake up.

PB16	0: *PB16	61	
	1: RXD0		
	2: DMIC_CLK		
	3: DMIC_CLK		
PB17	0: *PB17	62	
	1: TXD0		
	2: DMIC_DATA0		
	3: DMIC_DATA0		
GND	GND	65	The common ground

Notes:

 $1.\ All\ GPIO\ pads\ can\ only\ be\ pulled\ up,\ and\ they\ cannot\ be\ pulled\ down.$

6 Electrical characteristics

6.1 Test condition

Beside special notification, all of voltages are based on V_{SS}

6.2 Absolute maximum rating

Stresses above the absolute maximum ratings listed in *Table 1. Voltage Characteristics*, *Table 2. Current Characteristics*, and *Table 3. Thermal Characteristics* may cause permanent damage to the device.

Table 1. Voltage Characteristics

Symbol	Ratings	Min	Max	Unit
$V_{DD1V1} - V_{SS}$	External 1.15 V supply voltage (including VDDA and	- 0.3	1.21	V
	VDD) (1)			
V _{DD3V3} - V _{SS}	External 3.3 V supply voltage (including VDDA and	- 0.3	3.63	V
	VDD) (2)			
V _{IL}	Input Low Voltage on signal pin	-0.3	0.8	V
V _{IH}	Input High Voltage on signal pin	2	3.63	V
V _{OL}	Output Low Voltage on signal pin		0.4	V
V _{OH}	Output High Voltage on signal pin	2.4		

^{1.} All 1.15 V power (V_{DD1V1}) and ground (V_{SS}) pins must always be connected to the external 1.15 V supply.

Table 3. Std. IO Pad Resistor Characteristics

Symbol	Rating	Min	Nom	Max	Unit
R _{pu}	Pull-Up Resistor of std IOs	58K	86K	133K	Ω
R _{pd}	Pull-Down Resistor of std IOs	52K	78K	128K	Ω

Table3. Thermal Characteristics

Symbol	Rating	Value	Unit
T _{STG}	Storage temperature range	-55 to +150	° C
Ta	Maximum ambient temperature	- 40 to +85	° C
Tj	Working junction temperature	105	°C
θ ЈΑ	Package Thermal Resistance	27	°C/W
	Conditon: Four layer PCB, zero airflow		

Table 4. external crystal Characteristics

Symbol	Rating	Min	Nom	Max	Unit
F _{HS}	Clock Source Frequency(1)	10	12.288	40	MHz
Ducy _{HS}	Duty Cycle	40	50	60	%

^{2.} All 3.3 V power (V_{DD3V3}) and ground (V_{SS}) pins must always be connected to the external 3.3V supply.

6.3 Operating conditions

6.3.1 POR validity vs Power on sequence of Vcore and VIO

The power on sequence of Vcore and VIO do not affect the POR's validity. Below pictures show the relationship between Vcore and VIO, no matter the core voltage rises up to the target value faster or slower than the IO voltage, the CSK4002 Power On Reset succeed. Usually recommended that the core voltage reach to the setting value faster than the IO voltage's.

6.3.2 ESD

Symbol	Ratings	Conditions	Class	Maximum Value	Unit
VESD(HBM)	Electrostatic discharge voltage	T _A = 25 °C		4000	٧
	(human body model)				
VESD(CDM)	Electrostatic discharge voltage	T _A = 25 °C		2000	V
	(charge device model				

6.3.3 IO port characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Standard IO Input low level voltage			TBD		
	IO FT input low level voltage			TBD		
V _{IH}	Standard IO input high level voltage			TBD		
	IO FT input high level voltage			TBD		
V _{OL}	Low level output voltage Sink Current			TBD		
V _{OH}	High level output voltage Source Current			TBD		
V _{hys}	Standard IO Schmitt trigger voltage hysteresis			TBD		

	IO FT Schmitt trigger voltage hysteresis		TBD	
I_{lkg}	Input leakage current		1uA	

6.3.4 CLASS D

测试项目	Frequency(Hz)		RMS Level(Vrms)		THD+N(%)		SNR(dB)	
	Channel1	Channel2	Channel1	Channel2	Channel1	Channel2	Channel1	Channel2
CLASSD 信号	1000	1000	1.72	1.71	3.10	3.00	120	116
100%幅输出								
CLASSD 信号	1000	1000	0.88	0.87	0.27	0.23	114	110
50%幅度输出								
CLASSD 信号	1000	1000	0.44	0.43	0.31	0.27	106	104
25%幅度输出								

7 Package

CSK4002 有三种封装形式,对应的尺寸再 EPAD 上有差异,具体的尺寸区别可以参考下图所示,同时,对应的不同封装型号的差异,是在芯片的丝印第三行可以看到差异。

7.1 CSK4002 NSxxxxxxG

	Dime	ension in	mm	Dime	ension in i	inch
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3		0.20 REF		(0.008 REF	
b	0.18	0.25	0.30	0.007	0.010	0.012
D/E	8.90	9.00	9.10	0.350	0.354	0.358
D2	4.89	4.99	5.09	0.193	0.196	0.200
E2	4.37	4.47	4.57	0.172	0.176	0.180
е		0.50 BSC	,	0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
R	0.09		0.14	0.004		0.006
K	0.20			0.008		
aaa		0.15			0.006	
bbb		0.10		0.004		
ccc	0.10			0.004		
ddd	0.05				0.002	
eee	0.08			0.003		
fff		0.10			0.004	

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER

2. REFERENCE DOCUMENT: JEDEC MO-220.

7.2 CSK4002 NAxxxxxG

FOR CUSTOMER ONLY					
PACKAGE TYPE		QFN			
PIN COUNT		6	4		
DESCRIPTION	SYMBOL	1	<i>I</i> ILLIMETER	?	
DESCRIPTION	SIMBUL	MIN	NOM	MAX	
TOTAL THICKNESS	А	0.80	0.85	0.90	
STAND OFF	A1	0	0.035	0.050	
MOLD THICKNESS	A2	-	0.65	0.67	
MATERIAL THICKNESS	A3	_	0.203 _{REF}	-	
PACKAGE SIZE	D	8.90	9.00	9.10	
PACKAGE SIZE	Е	8.90	9.00	9.10	
EP SIZE	D1	5.90	6.00	6.10	
EP SIZE	E1	5.90	6.00	6.10	
LEAD LENGTH	L	0.30	0.40	0.50	
LEAD PITCH	е		0.5 BS		
LEAD WIDTH	b	0.20	0.25	0.30	
LEAD POSITION OFFSET	aaa		0.10		
LEAD COPLANARITY	bbb		0.08		
PACKAGE EDGE PROFILE	ccc	0.15			
MOLD FLATNESS	ddd	0.10			
EP POSITION OFFSET	eee	0.10			
	fff		0.05		
	L1	0.171	0.271	0.371	

7.3 CSK4002 NHxxxxxG

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
	0.70	0. 75	0.80
A	0.80	0. 85	0. 90
	0.85	0. 90	0. 95
A1	_	0. 02	0. 05
ь	0.18	0. 25	0.30
С	0. 18	0. 20	0. 25
D	8. 90	9. 00	9. 10
D2	7. 00	7. 10	7. 20
е	0. 50BSC		
Ne	7. 50BSC		
Nd	7. 50BSC		
Е	8. 90	9. 00	9. 10
E2	7. 00	7. 10	7. 20
L	0.35	0. 40	0. 45
h	0.30	0.35	0. 40
载体尺寸 (mil)	289*289/ 311*311		

8 Reflow profile

8.1 Reflow graph

8.2 SMT Reflow condition

Parameter	Requirement		
N2 purge reflow usage	Yes		
O2 ppm level	<1500 ppm		
Temperature Min(T _{smin})	150℃		
Temperature Max(T _{smax})	200℃		
Time(t _s)from(T _{smin} to T _{smax})	60-120 seconds		
Ramp-up rate(T _L to T _P)	3℃/second max		
Liquidous temperature(T _L)	217℃		
Time(t _L) maintained above T _L	60-150 seconds		
Peak package body temperature(T _P)	Tp must not exceed the Classification temp (Tc) in table		
	below		
Time(t_p)within 5 $^{\circ}$ C of the specified classification	30 seconds max		
temperature(T _C)			
Ramp-down rate(T_P to T_L)	6°C/second max		
Time 25℃ to peak temperature	8 minutes max		

Package Thickness	Volume mm3 <350	Volume mm3 350-2000	Volume mm3 >2000
<1.6mm	260℃	260℃	260℃
1.6mm-2.5mm	260℃	250℃	245℃
>2.5mm	250℃	245℃	245℃

9 Silk-Screen

Description:

- Orepresents Pin1 Mark position
- NHYYWWXXG is batch number
- N: reserved
- H: package factory
- YY: year
- WW: week
- XX: lot number
- G: environmental protection level--Green

10 Weight

240mg

11 Application Diagram

