

VIC DATA INPUTS AND OPTIONAL PROCESSES

Kel Markert

NASA-SERVIR Mekong Regional Associate
University of Alabama in Huntsville | Earth System Science Center
6 March 2017

VIC/BCSPP Training
Huntsville, AL

VIC MODEL INPUTS

- The VIC model is complex requiring large amount of data in stored in multiple files
- Much of the data can be acquired from remote sensing/GIS data sets

GLOBAL PARAMETER FILE

- Main input file for VIC
- Sets some model parameters and options
- Points VIC to the locations of other input/output file
- Sets parameters that govern the simulation
 - Start/end dates
 - Model modes
 - Physical processes

```
# VIC Model Parameters - 4.2.x
# $Id$
# Simulation Parameters
NLAYER 3 # number of soil layers
NODES
          10 # number of soil thermal nodes
TIME STEP
         24 # model time step in hours (set to 24 if FULL ENERGY = F/
SNOW_STEP
         24 # time step in hours for which to solve the snow model (s
STARTYEAR 1980 year model simulation starts
STARTMONTH 01 # month model simulation starts
STARTDAY
          01 # day model simulation starts
STARTHOUR
         00 # hour model simulation starts
ENDYEAR
          2010 year model simulation ends
          12 # month model simulation ends
ENDDAY 31 # day model simulation ends
# Energy Balance Parameters
FULL ENERGY
                   # TRUE = calculate full energy balance; FALSE = 0
                  # TRUE = all energy balance calculations (canopy
CLOSE ENERGY
                    # and ground surface) are iterated to minimize the
```

 Global parameter file documentation: <u>http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/GlobalParam/</u>

SOIL PARAMETER FILE

- Defines the spatial representation of the model
 - Grid cell ID
 - Latitude/longitude
- Model links the rest of data inputs through soil file by using grid cell ID
- Defines soil parameters at surface and each depth
- Defines initial soil moisture conditions when no state file is used

	1	4373	15.6058 107.0932	0.125	0.325	94.0823	0.96	2 1	3.6	13.6	13.6
Dunavalua	1	4374	15.6058 107.3454	0.125	0.325	60.8905	0.96	2 1	3.6	13.6	13.6
Run value	1	4411	15.3546 101.5466	0.1 0.3	8.8226	0.95	2 20.3	32 1	9.04	19.04	576.0
	1	4412	15.3546 101.7987	0.15	0.35	2.9614	0.975	2 1	3.6	19.04	19.04
Crid coll ID	1	4413	15.3546 102.0509	0.1 0.3	3.4251	0.95	2 20.3	32 1	9.04	19.04	576.0
Grid cell ID	1	4414	15.3546 102.3030	0.1 0.3	3 2.7713	0.95	2 20.3	32 1	9.04	19.04	576.0
	1	4415	15.3546 102.5551	0.15	0.35	2.0940	0.975	2 1	3.6	19.04	19.04
Lot/Lon	1	4416	15.3546 102.8072	0.15	0.35	1.8068	0.975	2 1	3.6	19.04	19.04
Lat/Lon	1	4417	15.3546 103.0593	0.15	0.35	1.7430	0.975	2 1	3.6	19.04	19.04
,	1	4418	15.3546 103.3115	0.15	0.35	1.2203	0.975	2 1	3.6	19.04	19.04
Sail narameters	1	4419	15.3546 103.5636	0.15	0.35	0.9377	0.975	2 1	3.6	19.04	19.04
Soil parameters	1	4420	15.3546 103.8157	0.15	0.35	1.0616	0.975	2 1	3.6	19.04	19.04
•	1	4421	15.3546 104.0678	0.15	0.35	1.2873	0.975	2 1	3.6	19.04	19.04

 Soil parameter file documentation: <u>http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/SoilParam/</u>

SOIL DATA

- Soil information is poorly know
- Harmonized World Soil Database (HWSD)
 - 30 arc-second (~1km) raster database
 - Classified raster grid with database look-up information
 - http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
- Contains over 15,000 different soil mapping units
 - Has multiple soil parameters per mapping unit
 - Used for soil pedotransfer functions
- Accuracy and mapping information differs by region
 - Example: Lower vs Upper Mekong

VEGETATION PARAMETER FILE

Defines land cover types present and fractional areas for a grid cell

Also define rooting depths and rooting distributions for each land

cover type

Optional parameter setting:

- Blowing snow
- LAI
- Vegetation cover
- Albedo

```
2 1 1 10 1.0000 0.1 0.1 1.0 0.65 0.5 0.25 3 1 10 1.0000 0.1 0.1 1.0 0.65 0.5 0.25 4 3 1 10 0.9759 0.1 0.1 1.0 0.65 0.5 0.25 15 0.0238 0.1 0.1 0.5 0.8 0.25 0.1 16 0.0003 0.1 0.1 0.75 0.8 0.25 0.1
```

Grid cell ID

Number of vegetation classes

Vegetation class

Fractional cover

Rooting depths

Root distribution

 Vegetation parameter file documentation: <u>http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/VegParam/</u>

LAND COVER DATA AND PARAMETERIZATION

- Can use whichever land cover dataset/classification best fits your needs
 - Create vegetation parameter file
 - Extract information for vegetation library
- MODIS Combined Land Cover Product (MCD12Q1) IGBP classification
 - Fairly accurate mapping at global scale
 - Existing land cover parameterizations for land surface models
 - https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
- Create your own land surface parameterization scheme or use existing
 - NCAR NOAH LSM parameterizations
 - http://www.ral.ucar.edu/research/land/technology/noahmp/ HRLDAS-v3.6/VEGPARM.TBL

VEGETATION LIBRARY FILE

- Defines land parameterization for model
 - Parameterization provided for each possible land cover class
 - Library file referenced by vegetation parameter file

#Cl	ass	0vr	Strv	Rarc	Rmin	JAN-LAI	FEB-LAI	MAR-LAI	APR-LAI	MAY-LAI	JUN-LAI	JUL-LAI
0	0	2	100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
1	1	25	125	1.5961	2.1136	2.0729	1.9686	2.1282	5.6069	4.2471	5.1727	2.8051
Z	ì	25	שכנ	4.4807	4.2909	4.2895	4.5333	4.8890	1800.0	7.7333	0.2093	5.4424
3	1	40	150	2.2937	2.3407	2.4277	2.4511	2.6480	3.3034	3.9435	4.0696	3.1522
4	1	40	100	2.1418	1.9763	1.9232	2.3924	3.5952	4.5133	5.7999	4.8241	4.0229
5	1	30	125	1.3690	1.3749	1.4390	1.8477	2.5444	3.3740	4.2285	4.0718	3.2090
6	1	5	300	1.2059	1.2159	1.2265	1.3351	1.5659	1.8995	2.4379	2.3064	2.1375
7	0	5	300	2.2195	2.6237	2.4234	2.5169	1.9013	2.3658	2.8642	4.0304	2.5215
8	1	3	300	2.0767	1.8409	1.8251	2.1473	2.6409	3.3774	4.9482	4.1420	3.6329
9	0	3	70	2.3547	2.1610	2.1781	2.3227	2.6348	3.1140	3.8399	3.2703	3.3249
10	0	2	40	1.1553	1.2717	1.3669	1.4002	1.3733	1.8452	2.4907	2.6893	1.8668
11	0	2	70	4.5140	4.4848	4.2690	4.3764	4.5761	4.8642	5.3228	4.9195	4.7831
12	0	2	40	1.3742	1.3760	1.4028	1.5861	1.7493	2.0283	2.3606	2.2641	2.1590
13	0	2	200	3.7206	3.5631	3.2303	3.4365	3.2502	3.7628	4.4424	4.4719	4.0467
14	0	2	40	1.7629	1.6556	1.6839	1.8319	2.0875	2.4213	2.8160	2.5959	2.6465
15	a	2	qqq	7.8138	9.0695	8.9222	8.0405	3.8058	4.0207	3.4044	6.7843	3.9934
16	0	2	999	4.5344	4.6429	4.1192	4.2679	3.9064	4.3898	4.6674	4.7253	4.2931

Header information
Class 1 parameterization
Class 2 parameterization
Class n parameterization

Vegetation library file documentation:

http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/VegLib/

LAND SURFACE PARAMETERIZATION

- Use observed remote sensing datasets to create your own land surface parameterizations
 - Need monthly climatology information for albedo and LAI parameters
- MODIS LAI and albedo products (2000-present)
 - LAI:
 - https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2
 - Albedo: http://modis-atmos.gsfc.nasa.gov/ALBEDO/index.html
- Can use remote sensing datasets for vegetation height, surface roughness, etc.
 - Large errors with derived data
 - Can lead to errors in model
- Should you use observed remote sensing data or existing parameterization?

ELEVATION BAND FILE

- Not a required input
- Used to partition grid cell into different elevation for more accurate orographic effects
- Set maximum number of elevation band
 - Each grid needs the maximum number of bands specified (fill non-existant bands with zeros)

7	0.7139	0.2561	0.0263	0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	1256.9296	1335.9584	1427.7449	1531.3063	0.0000 0.		
8	0.1918	0.5602	0. 1446	0.0907	0.0126	טטטט.ט	טטטט.ט	טטטט.ט	טטטט.ט	1282.4463	1342.8496	1446.609/	1539.5243	1629.3/16		
9	0.3913	0.4651	0.1265	0.0171	0.0000	0.0000	0.0000	0.0000	0.0000	1377.0970	1437.1366	1540.3333	1633.3934	1703.0000		
10	0.2079	0.3771	0.2244	0.1097	0.0519	0.0185	0.0101	0.0003	0.0000							
11	0.0022	0.0744	0.1235	0.1223	0.2079	0.3223	0.1405	0.0069	0.0000	Grid cell ID						
13	0.1778	0.2938	0.3229	0.1657	0.0399	0.0000	0.0000	0.0000	0.0000							
14	0.0369	0.1398	0.7016	0.1212	0.0005	0.0000	0.0000	0.0000	0.0000	Band percent coverage						
15	0.0002	0.2228	0.3332	0.3470	0.0968	0.0000	0.0000	0.0000	0.0000	Danu percent coverage						
16	0.0413	0.6030	0.2201	0.1247	0.0108	0.0000	0.0000	0.0000	0.0000		Λ		ar a raine a	or and		
17	0.0338	0.4448	0.4322	0.0891	0.0000	0.0000	0.0000	0.0000	0.0000	Average band elevation						

 Elevation band file documentation: <u>http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/SnowBand/</u>

ELEVATION DATASETS

- Plethora of DEM datasets available
 - SRTM, GMTED, HydroSheds, NED, etc.
 - http://www2.jpl.nasa.gov/srtm/
 - https://lta.cr.usgs.gov/GMTED2010
 - http://www.hydrosheds.org/
 - https://lta.cr.usgs.gov/NED
- STRM has relatively high accuracy, but also relatively high spatial resolution compared to model resolution
 - Trade-offs between resolution and accuracy
- Elevation data used to:
 - Create snow bands file
 - Prepare routing model inputs
 - Parameterize soils inputs

METEOROLOGICAL FORCING

- VIC requires four meteorological variable inputs as a time series for each grid cell:
 - Daily maximum temperature (°C)
 - Daily minimum temperature (°C)
 - Surface wind speed (m/s)
 - Precipitation (mm)
- Other meteorological inputs are supported:
 - Sub-daily temperature(°C)
 - Surface albedo (fraction)
 - Atmospheric density (kg/m³)
 - Downward short and longwave radiation (W/m²)
 - etc.

Precipitation time series*

Max temperature time series
Min temperature time series
Wind speed time series

* Each row (space delimited) is a time step specified in the global parameter file

 Sub-daily meteorological data is needed for energy balance equations!

METEOROLOGICAL FORCING (2 of 2)

- Meteorological forcing data is used to drive the model processes
- High degree of accuracy is needed for these datasets, otherwise model will not capture correct conditions
- Meteorological forcing input data needs to be mapped to model grid cells
 - Need to interpolate station data
- Global datasets
 - Temperature
 - ERA-Interim, http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
 - MERRA-2, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
 - CSFR, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2#CFS
 - Princeton dataset, http://hydrology.princeton.edu/data.pgf.php
 - Reanalysis
 - Precipitation
 - Next slide...

METEOROLOGICAL FORCING (1 of 2)

- Global datasets (continued)
 - Precipitation:
 - CHIRPS, http://chg.geog.ucsb.edu/data/chirps/
 - IMERG, https://disc.gsfc.nasa.gov/datareleases/imerg_data_release
 - CMORPH, http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
 - GPCC, https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
 - Reanalysis
 - Wind: Reanalysis
 - Station data:
 - GSOD, https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod
 - GHCN, https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
 - Typically lack spatial resolution but have required variables and temporal resolution

VIC MODELING OPTIONS

- VIC supports a wide variety of modeling applications
 - Open source nature of model development
 - You can contribute!
- Can specify which model modes/components you would like to use for your own applications
 - For example: Water balance mode vs full energy balance mode
 - Most often needs additional data inputs

Example: http://hydro.washington.edu/forecast/monitor_west/

SPATIAL DISTRIBUTION OF PRECIPITATION

- Distributes precipitation throughout grid cell as a function of rain intensity
 - Can account for orographic effects with small scale precipitation
 - Parameterize using climatology
- Fractional coverage is based on exponential relationship
- Soil moisture is averaged for grid cell before a new storm occurs

Spatially distributing rain is parameterized within the snow bands file

FROZEN SOIL SIMULATIONS

- Important component in cold regions (high elevations or high latitudes)
- Frozen soils can impede the infiltration of water content
- Can alter spring soil moisture content and timing of streamflow
- Has impact of the energy balance
 - Energy balance is solved at each node within the soil and iterated for convergence

VIC Frozen Soil Algorithm

Image from Open Access VIC Documentation: http://vic.readthedocs.io/en/master/Overview/ModelOverview/

LAKE AND WETLAND MODEL

- Solves lake energy balance at different layers
 - Incorporates lake ice coverage, more realistic representation of surface processed over lakes
 - Takes into account water in/outflow
 - Assumes "one" lake per grid cell
- Wetland model allows for season inundation of wetlands
 - Better models the inter-annual water balance for wetland areas
 - Channel/soil recharge depending on flux demand

Image from Open Access VIC Documentation: http://vic.readthedocs.io/en/master/Overview/ModelOverview/

CARBON CYCLE MODEL

- Allows for the simulation of vegetation photosynthesis and respiration
- Plant phenology is not dynamic
 - Based on land surface parameterization (monthly LAI climatology)
- Vegetative biomass is not simulated
 - Total carbon storage in plants
- Calculates yearly Net Primary Productivity (NPP) based on vegetation type and meteorological conditions

HYDROLOGIC STATE FILES

- Users can save last model conditions (specifically soil moisture conditions) to file
- Important if using the model for hydrologic forecasts
 - Minimum model spin-up time is 1 year
- Saves computation time
- Model outputs are not consistent when using state files
 - Small differences in soil moisture results between using and not using a state file

THANK YOU

Kel Markert kel.markert@nasa.gov

> VIC/BCSPP Training Huntsville, AL

