1 PMFs and CDFs

- 1. To get X=k+1, we need no matches among k people and then a match with the (k+1)st person, so $P(X=k+1)=\frac{365}{365}\frac{364}{365}\cdots\frac{365-k+1}{365}\frac{k}{365}$.
- 2. (a) To get X = k + 1, we need k failures and one success, so $P(X = k + 1) = \frac{1}{2^{k+1}}$.
 - (b) The first trial is success or failure with equal probability. After the first trial, the situation is the same as the previous problem, so $P(X = k + 2) = \frac{1}{2k+1}$.
- 3. $P(Y \le y) = P(\mu + \sigma X \le y) = P(X \le \frac{y-\mu}{\sigma}) = F(\frac{y-\mu}{\sigma}).$
- 4. The floor function is increasing and right-continuous, so F has the same properties. F(x) = 0 for $x \le 0$ and F(x) = 1 for $x \ge n$, so F also has the correct limiting behavior. The corresponding PMF is $f(x) = \frac{1}{n}$ if $x \in \{1, ..., n\}$.
- 5. (a) This can be realized as the PMF of the random variable X defined as the number of heads before the first tail if we flip a coin until we see heads.
 - (b) $F(X \le k) = \sum_{i=0}^{k} \frac{1}{2^{i+1}} = \frac{1}{2} \frac{1 .5^{k+1}}{.5}$
- 6. Since 1 + 1/j is greater than 1, then $\log(1 + 1/j)$ is positive. Adding these all together gives $\log(2/1 * 3/2 * \cdots * 10/9) = \log(10) = 1$.
- 7. To reach level j as the highest, Bob must reach levels $1, \ldots, j$ and not j+1 (if it exists). $P(X=j)=p_1\cdots p_{j-1}(1-p_j)$ for $1\leq j\leq 6$ and $P(X=7)=p_1\cdots p_6$.
- 8. The most valuable prize is the max of the five chosen. Then $P(X=j) = \frac{\binom{j-1}{4}}{\binom{100}{5}}$.
- 9. (a) Right-continuity and increasing follow from the corresponding facts for F_1 and F_2 . The limiting behavior follows because $F_1, F_2 \xrightarrow{x \to -\infty} 0, F_1, F_2 \xrightarrow{x \to \infty} 1$ and p + (1 p) = 1.
 - (b) Let X be the random variable described in the problem. Then $P(X \le x) = P(X \le x|H)P(H) + P(X \le x|T)P(T) = pF_1(x) + (1-p)F_2(x)$.
- 10. (a) No, since the sum $\sum_{i\geq 1}\frac{1}{i}$ diverges, there is no constant we could multiply by to rescale the total probability to be 1.
 - (b) Yes, since the sum of the inverse squares is finite, $\sum_{i\geq 1} \frac{1}{n^2} \leq 1 + \int_1^\infty \frac{1}{x^2} dx = 1 \frac{1}{x}|_1^\infty = 2$.
- 11. If x is not an integer, then $P(X < x) = P(X \le x)$. If x is an integer, then $P(X < x) = P(X \le x) P(X = x)$.
- 12. (a) If X < Y are constants (i.e. X = x and Y = y with probability 1), then the same inequality holds for their CDFs.
 - (b) It is impossible due to the summation condition, since then the probabilities for X will not sum to 1.

- 13. $P(X = a) = \sum_{z} P(X = a | Z = z) P(Z = z) = \sum_{z} P(Y = a | Z = z) P(Z = z) = P(Y = a).$
- 14. (a) $P(X \ge 1) = 1 P(X = 0) = 1 e^{-\lambda}$. $P(X \ge 2) = 1 P(X = 1) P(X = 0) = 1 e^{-\lambda}\lambda e^{-\lambda}$.
 - (b) $P(X = k | X \ge 1) = P(X = k) / P(X \ge 1) = (e^{-\lambda} \lambda^k / k!) / (1 e^{-\lambda})$

2 Named distributions

- 15. The CDF is $F(x) = \frac{|x|}{n}$ for $0 \le x \le n$, 0 for $x \le 0$ and 1 for $x \le n$.
- 16. $P(X = x | X \in B) = 0$ if $x \notin B$ and $\frac{1}{|B|}$ if $x \in B$.
- 17. There must be at least 10 people who don't show up, so $\sum_{i=10}^{110} {110 \choose i} (1-p)^i p^{110-i}$.
- 18. (a) A must win at least four games, so $\sum_{i=4}^{7} {7 \choose i} p^i (1-p)^{7-i}$.
 - (b) It does not matter, since if a team wins 4 games, then no matter what the remaining games result in, that team has already one. (This is why we can compute the probability as in the previous problem.)
- 19. Let X be the number of drawn games. Then X is distributed as Bin(n, .6) so the PMF is $P(X = k) = \binom{n}{k} .6^k .4^{n-k}$.
- 20. (a) The number of winning tickets is distributed as Bin(3, p).
 - (b) The probability of at least one ticket winning is probability of each ticket winning, minus probability of two tickets winning, plus probability of three tickets winning $3p 3p^2 + p^3$.
 - The probability of at least one winning ticket is 1 minus the probability of no ticket winning, so $1 (1 p)^3 = 1 (1 3p + 3p^2 p^3) = 3p 3p^2 + p^3$.
 - (c) If p is small, then $p^2, p^3 \approx 0$, so the probability of having at least one winning ticket is $\approx 3p$.
- 21. X Y can have negative values, so it is not binomial.
- 22. (a) $P(X = k) = P(X = k|C_1)P(C_1) + P(X = k|C_2)P(C_2) = \frac{1}{2} \binom{n}{k} (p_1^k (1 p_1)^{n-k} + p_2^k (1 p_2)^{n-k}).$
 - (b) If $p_1 = p_2$, then the above reduces to $\binom{n}{k} p^k (1-p)^{n-k}$.
 - (c) When n is very large, there will be two distinct "local maxima" of the PMF of X, whereas a binomial distribution would only have one maximum probability at $\frac{n}{2}$.
- 23. Let I_j be the indicator of the j^{th} person voting for Kodos, V_j be the indicator of the j^{th} person voting, R_j be the indicator of the j^{th} person registering, and $X = \sum_j I_j$. Then $P(I_j = 1) = P(I_j = 1|V_j = 1)P(V_j = 1) = p_3P(V_j = 1|R_j = 1)P(R_j = 1) = p_3p_2p_1$. We have simplifications in each case since if a person does not vote, then they

- cannot vote for Kodos and if a person does not register, then they cannot vote. Thus $X \sim \text{Bin}(n, p_1 p_2 p_3)$.
- 24. (a) Let Y be the number of heads in 8 fair coin tosses. Then P(X = k|HH) = P(Y = k-2).
 - (b) Let H_2 be at least two heads. $P(X = k) = P(X = k|H_2)P(H_2) + P(X = k|H_2^c)P(H_2^c)$. If $k \geq 2$, then $P(X = k|H_2^c) = 0$ so $p(X = k|H_2) = P(X = k)/P(H_2)$. $P(H_2) = 1 \frac{11}{2^{10}}$. Else, if $k \leq 1$, then $P(X = k|H_2) = 0$.
- 25. (a) X and n-X are identically distributed and Y and n+1-Y are identically distributed. Thus the two probabilities are equal.
 - (b) $P(X < Y) = P(X + 1 > Y) = P(X \ge Y)$. Furthermore, $P(X < Y) + P(X \ge Y) = 1$ since X < Y and $X \ge Y$ are disjoint an exhaustive. Thus $P(X < Y) = \frac{1}{2}$.
- 26. From the story proof, n X is the number of black balls, so n X is distributed as HGeom(b, w, n).
- 27. If I_j is the indicator variable of the j^{th} card being in the correct position, then it is Bernoulli with probability $\frac{1}{n}$. However, the I_j are not independent, so X is not Binomial. X is also not hypergeometric, for example it is impossible to have X = n-1 while it is possible to have X + n 2 or X = n.
- 28. Let H be the number of hatches. Then $H \sim \text{Bin}(n,p)$. Let S be number of survives and I_j the indicator of whether the j^{th} chick survives (so $S = \sum_j I_j$). Then $P(I_j = 1) = P(I_j = 1|H_j = 1)P(H_j) = pr$. Thus $S \sim \text{Bin}(n,pr)$.
- 29. Given a fixed number of successes k, the probability of any outcome with k successes is p^kq^{n-k} . Then P(outcome|ksuccesses) = P(ksuccesses, outcome)/P(ksuccesses) = <math>P(outcome)/P(ksuccesses).
- 30. (a) There are m men and n women, and we select t random employees and see how many women are among them. This is HGeom(n, m, t).
 - (b) The number of women promoted is distributed as Bin(n, p), the number of women who are not promoted is distributed as Bin(n, 1 p), and the distribution of the number of employees who are promoted is Bin(m + n, p).
 - (c) Let X be the number of women promoted and Y be the number of men promoted, both of which are binomially distributed by the previous part. Then the conditional distribution of X given X + Y = t is HGeom(n, m, t).
- 31. (a) If she has no ability, then all $\binom{6}{3}$ choices are equally likely. In order to get at least 2 correct, there are $\binom{3}{2}\binom{3}{1}+\binom{3}{3}$ ways, so the probability is $10/20=\frac{1}{2}$. (I guess this makes sense, at least 2/3 correct means at most 1/3 incorrect and at most 1 correct means at least 2/3 incorrect.)
 - (b) Let A be milk first and B be lady says milk first. Then $\frac{P(A|B)}{P(A^c|B)} = \frac{P(B|A)P(A)}{P(B|A^c)P(A^c)} = p_1/(1-p_2)$.

- 32. (a) The key terms have two taggings: first by whether they appear on the exam and second by whether Evan studies them. Then $X \sim \mathrm{HGeom}(10,90,s) = \mathrm{HGeom}(s,100-s,10)$.
 - (b) $P(X \ge 7) = P(X = 7) + \dots + P(X = 10) = \frac{1}{\binom{100}{75}} {\binom{10}{7}} {\binom{90}{68}} + {\binom{10}{8}} {\binom{90}{67}} + {\binom{10}{9}} {\binom{90}{66}} + {\binom{10}{10}} {\binom{90}{65}}) = 0.7853844(R) = 0.7853843668965791(python)$
- 33. (a) Let I_j be the indicator of at least one proofreader catching the j^{th} typo. Then $P(I_j = 1) = 1 P(I_j = 0) = 1 (1 p_1)(1 p_2) = 1 (1 p_1 p_2 + p_1 p_2) = p_1 + p_2 p_1 p_2$. Then $X \sim \text{Bin}(n, p_1 + p_2 p_1 p_2)$.
 - (b) In this situation, we can consider tagging the typos both with who is reading as well as whether they are caught by Prue. Thus $X_1 \sim \mathrm{HGeom}(n,n,t)$.
- 34. (a) Let Y be the number of statistics majors in the sample. Since X is binomial, each student has independent probability p of being a statistics major, so $Y \sim \text{Bin}(m,p)$. (If I_j is the indicator of student j being a statistics major, then $X = \sum_j I_j$ and $Y = \sum_{j \in S} I_j$ where S is the sample of size m.)
 - (b) See previous part.
- 35. (a) Let A be the number of questions A gets right. Then $A \sim \text{Bin}(m, p_1)$.
 - (b) Let B be the number of questions B gets right. Then $B \sim \text{Bin}(n, p_2)$. The total number is A + B which has PMF $P(A + B = k) = \sum_{i=0}^{k} P(A = i)P(B = k i)$. This is a binomial distribution if and only if $p_1 = p_2$ or m = 0 or n = 0.
 - (c) Let A be A wins. If A gets the first question right, then A wins. If A gets the first question wrong, then A loses if B gets the second question right and returns to the original scenario if A gets the second question wrong. Thus $P(A) = p_1 + (1 p_1)(1 p_2)P(A) \implies P(A) = \frac{p_1}{p_1 + p_2 p_1 p_2}$.
- 36. (a) $X \sim \text{Bin}(n, .5)$, so the probability of a tie is $\binom{n}{n/2} . 5^n$.
 - (b) $n!/(n/2)!^2 * .5^n \approx \sqrt{2\pi n} (n/e)^n / \sqrt{\pi n^2} (n/2e)^n * 2^n = 1/\sqrt{(\pi/2)n}$
- 37. (a) This method only detects an odd number of errors, so there are undetected errors if and only if there are 2 errors or 4 errors: $\binom{5}{2}$. $1^2 \cdot 9^3 + \binom{5}{4}$. $1^4 \cdot 9^1$.
 - (b) $\sum_{i=1}^{\lfloor n/2 \rfloor} {n \choose 2i} p^{2i} (1-p)^{n-2i}$.
 - (c) Let b be as suggested. Then $(a + (1-p)^n) + b = (p + (1-p))^n = 1$ and $(a + (1-p)^n) b = (1-p-p)^n = (1-2p)^n$. Thus $b = 1 (a + (1-p)^n)$ so $(a + (1-p)^n) (1 (a + (1-p)^n)) = 2a + 2(1-p)^n 1 = (1-2p)^n \implies a = \frac{1+(1-2p)^n}{2} (1-p)^n$.

3 Independence of r.v.s

38. (a) *X* is any RV and Y = X + 1.

- (b) X is negative number of heads and Y is number of heads plus one.
- 39. X be discrete uniform, and Y be an arbitrary permutation of X. If X and Y are independent, then it is impossible since $P(X = Y) = \sum_{i=1}^{10} P(X = i) P(Y = i) > 0$.
- 40. (a) If P(X = Y) = 1, then P(X = i) = P(Y = i) for all *i*.
 - (b) It is not possible unless X and Y are trivial, since if $j \neq k$ but j in support of X and k in support of Y, then $0 = P(X = j, Y = k) \neq P(X = j)P(Y = k)$.
- 41. No, for example if Z = X.
- 42. X and Y have the same distribution, but X < Y with probability $\frac{6}{7}$.
- 43. (a) Yes, to have $P(X < Y) \ge \frac{b-1}{b}$, we can set n = b, or let n be infinite.
 - (b) Yes, the answers change. Since for independent random variables with the same distribution, $P(X < Y) = P(Y < X) \le \frac{1}{2}$.
- 44. (a) $X \oplus Y = 0$ if X = Y (which has probability $\frac{p+q}{2} = \frac{1}{2}$) and $X \oplus Y = 1$ if $X \neq Y$ (which has probability $\frac{p+q}{2} = \frac{1}{2}$), so $X \oplus Y \sim \text{Bern}(.5)$.
 - (b) $P(X \oplus Y = i | X = j) = P(j \oplus Y = i) = \frac{1}{2} = P(X \oplus Y = i)$ so $X \oplus Y$ and X are independent no matter what p is. $P(X \oplus Y = i | Y = j) = P(X \oplus j = i) \neq \frac{1}{2}$ so $X \oplus Y$ and Y are not independent unless $p = \frac{1}{2}$.
 - (c) Iinduction on (a) shows that $Y_J \sim \text{Bern}(1/2)$. For any $Y_J, Y_{J'}$, we can write $Y_J = (Y_J \oplus Y_{J'}) \oplus Y_{J'}$ and $Y_J \oplus Y_{J'}$ is of the form $Y_{J''}$ for $J'' = J\Delta J'$ denoting the symmetric difference. Thus by (b) Y_J and $Y_{J'}$ are independent. However, not all the Y_J are independent since knowing $Y_{\{i\}}$ for all i determines all the Y_J .

4 Mixed practice

45. (a) Let B be new treatment better. Then

$$P(B|15) = \frac{P(15|B)P(B)}{P(15)} = \frac{2\binom{20}{15}.6^{15}.4^5}{2\binom{20}{15}.6^{15}.4^5 + \binom{20}{15}.5^{20}}$$

- (b) We update to use p and 1-p instead of 2/3. Let I_j be the indicator of whether the treatment is more effective on patient j. Then $P(I_j = 1|15) = P(I_j = 1|B,15)P(B|15) + P(I_j = 1|B^c,15)P(B^c|15) = .6p + .5(1-p) = .5 + .1p$. Thus the desired random variable is a mixture of $Y = pX_1 + (1-p)X_2$ where $X_1 \sim \text{Bin}(20,.6)$ and $X_2 \sim \text{Bin}(20,.5)$.
- 46. (a) p_k is the probability of A having k more losses than twice the number of wins. Each gamble can be thought of as an experiment, and we stop if we ever reach 0 but otherwise keep going forever. Thus the union of all the events $\bigcup_{i\geq 1} A_i$ is the probability that we have more than twice as many losses as wins, and the union is contained within A_1 .

- (b) $p_0 = 1$. $2p_k = p_{k-1} + p_{k+2}$. This difference equation has the characteristic equation $x^3 2x + 1 = 0$, which factors as $(x 1)(x^2 + x 1)$, thus whose roots are $x = 1, \frac{-1 \pm \sqrt{5}}{2}$. Thus the general solution is $p_k = a(1)^n + b(\frac{-1 + \sqrt{5}}{2})^n + c(\frac{-1 \sqrt{5}}{2})^n$. When n = 0, we have a + b + c = 1.

 As $n \to \infty$, we have $(\frac{-1 + \sqrt{5}}{2})^n \to 0$ and $|(\frac{-1 \sqrt{5}}{2})^n| \to \infty$. In particular, since $a(1)^n + b(\frac{-1 + \sqrt{5}}{2})^n$ is finite and probabilities must lie between 0 and 1, then c = 0. Furthermore, since $p_n \to 0$, then a = 0 since otherwise p_n will converge to a nonzero constant. Thus b = 1.
- (c) $p_1 = \varphi 1$.
- 47. (a) The probability is 0 for $m < \frac{n}{2}$ and 1 for m > n. If we consider a success as taking from tray 1 and a failure as taking from tray 2, then we want the probability that $X \sim \text{Bin}(n,.5)$ lies between $a = \max(n-m,0)$ and $b = \min(n,m)$ (inclusive), so pbinom(b,n,.5) pbinom(a-1,n,.5).
 - (b) 8, 60, 531, 5098 for n = 10, 100, 1000, 10000.