Lecture 11: Distributions as Models

STAT GR5206 Statistical Computing & Introduction to Data Science

Linxi Liu Columbia University

November 16, 2018

Linxi Liu Lecture 11: Distributions November 16, 2018 1 / 45

Course Notes

Linxi Liu Lecture 11: Distributions November 16, 2018 2 / 45

Last Time

- Permutation test. Testing if two distributions are the same.
- In-class example: Non-parametric version of the two-sample t-test.
- Empirical size. Simulation based validation of the classic 2-sample t-sample.
- Lab: Sampling distribution, distribution of p-value, empirical size and power.

Linxi Liu Lecture 11: Distributions November 16, 2018 3 / 45

This Time

- Distributions as Models:
- The Method of Moments
- Maximum Likelihood Estimation

Linxi Liu Lecture 11: Distributions November 16, 2018 4 / 45

Distributions as Models

Linxi Liu Lecture 11: Distributions November 16, 2018 5 / 45

Cats

The cats dataset includes the heart and body weights of samples of male and female cats. All the cats are adults and over 2 kg in body weight.

```
> # install.packages("MASS")
> library(MASS)
> head(cats)
```

```
Sex Bwt Hwt

1 F 2.0 7.0

2 F 2.0 7.4

3 F 2.0 9.5

4 F 2.1 7.2

5 F 2.1 7.3

6 F 2.1 7.6
```

We've studied how to visually inspect the distribution of a continuous random variable.

> hist(cats\$Hwt)

Histogram of cats\$Hwt

Linxi Liu Lecture 11: Distributions November 16, 2018 7 / 45

R Functions to study the Data's Distribution

quantile(x, probs) calculates the quantiles at probs from x.

```
> quantile(cats$Hwt, c(0.25, 0.5, 0.75))
```

```
25% 50% 75%
8.950 10.100 12.125
```

Linxi Liu Lecture 11: Distributions November 16, 2018 8 / 45

R Functions to study the Data's Distribution

ecdf(): **e**mprical **c**umulative **d**istribution **f**unction. No assumptions but also no guess about the distribution beyond the observations.

- In math ECDF is written as \hat{F} or \hat{F}_n
- Conceptually, quantile() and ecdf() are inverses to each other.

Linxi Liu Lecture 11: Distributions November 16, 2018 9 / 45

```
> plot(ecdf(cats$Hwt),
+ main = "Empirical CDF of Cat Heart Weights")
```

Empirical CDF of Cat Heart Weights

Linxi Liu

R Functions to study the Data's Distribution

density(x): estimates the density of x by counting how many observations fall in a little window around each point, then smoothing.

- "Bandwidth" = width of window around each point
- AKA calculates a 'kernal density estimate'
- density() returns a collection of x, y values suitable for plotting

Linxi Liu Lecture 11: Distributions November 16, 2018

R Functions to study the Data's Distribution

density(x): estimates the density of x by counting how many observations fall in a little window around each point, then smoothing.

- "Bandwidth" = width of window around each point
- AKA calculates a 'kernal density estimate'
- density() returns a collection of x, y values suitable for plotting

Note, density() is an *estimate* of the pdf, not the truth.

Lecture 11: Distributions

- > hist(cats\$Hwt, probability = TRUE, ylim = c(0, 0.17))
- > lines(density(cats\$Hwt), lty = "dashed")

Histogram of cats\$Hwt

Lecture 11: Distributions

Why Do We Care About the Distribution of the Data?

- The data itself is too much information and overly detailed. Don't need to keep around every single data point.
- Plus, the exact data would never repeat itself if we re-sampled anyways.

Linxi Liu Lecture 11: Distributions November 16, 2018 13 / 45

Why Do We Care About the Distribution of the Data?

- The data itself is too much information and overly detailed. Don't need to keep around every single data point.
- Plus, the exact data would never repeat itself if we re-sampled anyways.
- **Goal**: Store information that *summarizes* what will *generalize* to other situations.
 - Can do this by using a model and only keeping the model's parameters.

Linxi Liu Lecture 11: Distributions November 16, 2018 13 / 45

How Do We Fit Distributional Models to Data?

Recall that most models are defined by *parameters* (like (μ, σ^2) for the normal). So *fitting* a model to data means finding those parameters such that the model best fits the data.

How Do We Fit Distributional Models to Data?

Recall that most models are defined by parameters (like (μ, σ^2) for the normal). So *fitting* a model to data means finding those parameters such that the model best fits the data.

- Match moments (mean, variances, etc.).
- Match other summary statistics.
- Maximize the likelihood.

Recall the Gamma Distribution

 The gamma distributions are a family of probability distributions defined by the density functions,

$$f(x) = \frac{x^{a-1}e^{-x/s}}{s^a\Gamma(a)},$$

where the gamma function $\Gamma(a) = \int_0^\infty u^{a-1} e^{-u} du$ is chosen so that the total probability of all non-negative x is 1.

- Parameter a is the **shape**, and s is the **scale**.
- The expected value is as, and the variance as^2 .

- Pick enough moments that they *identify* the parameters. At least one moment per parameter.
- Write equations for the moments in terms of the parameters.
 - · E.g. for gamma,

$$\mu = as, \quad \sigma^2 = as^2.$$

- Solve the moment equations for the parameters (usually done by hand).
 - E.g. for gamma,

$$a = \frac{\mu^2}{\sigma^2}, \quad s = \frac{\sigma^2}{\mu}.$$

Tasks

- Write a function gamma.MMest that takes as input a data vector and returns estimates of the scale parameters a and s using the moment equations from the previous slide.
- Plug cat heart weights into your function to get estimates of a and s.

Linxi Liu Lecture 11: Distributions November 16, 2018 17 / 45

Tasks

- Write a function gamma.MMest that takes as input a data vector and returns estimates of the scale parameters a and s using the moment equations from the previous slide.
- Plug cat heart weights into your function to get estimates of a and s.

Tasks

```
> gamma.MMest <- function(data) {
+    m <- mean(data)
+    v <- var(data)
+    return(c(a = m^2/v, s = v/m))
+ }</pre>
```

Tasks

- Write a function gamma.MMest that takes as input a data vector and returns estimates of the scale parameters *a* and *s*.
- Plug cat heart weights into your function to get estimates of a and s.

Tasks

```
> gamma.MMest(cats$Hwt)
```

a s 19.0653121 0.5575862

Linxi Liu

```
> hist(cats$Hwt, probability = TRUE, ylim = c(0, 0.17))
> lines(density(cats$Hwt), lty = "dashed")
> cat.MM <- gamma.MMest(cats$Hwt)
> curve(dgamma(x, shape = cat.MM["a"], scale = cat.MM["s"]),
+ add = TRUE, col = "blue")
```

Histogram of cats\$Hwt

Linxi Liu Lecture 11: Distributions November 16, 2018 19 / 45

- Sometimes we can't solve the moment equations for the parameters by hand. In that case, do it numerically.
- Set up a difference function between the data and the model and then minimize this function.

Linxi Liu Lecture 11: Distributions November 16, 2018 20 / 45

- Sometimes we can't solve the moment equations for the parameters by hand. In that case, do it numerically.
- Set up a difference function between the data and the model and then minimize this function.

Cats Example

- Sometimes we can't solve the moment equations for the parameters by hand. In that case, do it numerically.
- Set up a difference function between the data and the model and then minimize this function.

Cats Example

```
> nlm(gamma.diff, c(19, 1), data = cats$Hwt)[1:3]
```

```
$minimum
```

[1] 1.899648e-13

\$estimate

[1] 19.0653140 0.5575862

\$gradient

[1] -5.338805e-09 -2.119918e-07

Linxi Liu Lecture 11: Distributions

More generally...

Cats Example

- Nothing special about moments. Could match other data summaries too.
 - Examples: the median, quantiles...
- Try to solve for parameters exactly by hand. If you can't set up a discrepancy function and minimize it.

Linxi Liu Lecture 11: Distributions November 16, 2018 22 / 45

More generally...

Cats Example

- Nothing special about moments. Could match other data summaries too.
 - Examples: the median, quantiles...
- Try to solve for parameters exactly by hand. If you can't set up a discrepancy function and minimize it.
- Just make sure your summaries converge to the population values.
 - How? Simulate then estimate and estimates should converge as the sample grows.

Linxi Liu Lecture 11: Distributions November 16, 2018 22 / 45

Check Yourself: Checking Your Estimator

Task

- Simulate 100 random variables from a gamma distribution with shape parameter equal to 19 and scale parameter equal to 45. Run the gamma. MMest with these values as the input.
- Do the same thing but simulate 10,000 random variables. Next, 1,000,000 random variables.
- Does it seem like our estimates are converging to the truth?

Linxi Liu Lecture 11: Distributions November 16, 2018 23 / 45

Check Yourself: Checking Your Estimator

Solutions

```
> gamma.MMest(rgamma(100, shape = 19, scale = 45))
```

a s 17.59889 46.80859

> gamma.MMest(rgamma(10000, shape = 19, scale = 45))

a s 18.79622 45.39333

> gamma.MMest(rgamma(1000000, shape = 19, scale = 45))

a s 18.96468 45.08403

Maximum Likelihood

• Usually we think of parameters, θ , as fixed and consider the probability of different outcomes $f(x, \theta)$ with θ constant and x changing.

25 / 45

Maximum Likelihood

- Usually we think of parameters, θ , as fixed and consider the probability of different outcomes $f(x,\theta)$ with θ constant and x changing.
- **Likelihood** of a parameter value is given by $L(\theta)$: what probability does θ give the data?
 - For continuous variables, use the probability density.
 - Calculate $f(x, \theta)$ letting θ change with data constant.
 - Not the probability of θ .

Maximum Likelihood

- Usually we think of parameters, θ , as fixed and consider the probability of different outcomes $f(x,\theta)$ with θ constant and x changing.
- **Likelihood** of a parameter value is given by $L(\theta)$: what probability does θ give the data?
 - For continuous variables, use the probability density.
 - Calculate $f(x, \theta)$ letting θ change with data constant.
 - *Not* the probability of θ .
- Maximum likelihood is the guess that the parameter is whatever makes the data most likely.
- Most likely parameter value is the maximum likelihood estimate or the MLE.

Linxi Liu Lecture 11: Distributions November 16, 2018

25 / 45

Coding the Likelihood Function

• With independent data points x_1, x_2, \dots, x_n the likelihood is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta).$$

Multiplying lots of small numbering is bad, so we usually take the log:

$$\ell(\theta) = \sum_{i=1}^{n} \log f(x_i, \theta).$$

• Note the maximizer is the same for both (though the maximum value will be different).

Linxi Liu Lecture 11: Distributions

Tasks

- Write a function gamma.11 which takes as input a parameter vector (with shape and scale) and a data vector and from that returns the log likelihood assuming the data are independent draws from a gamma distribution with scale and shape indicated by the input parameter vec. HINT: Use dgamma().
- Test your function on the cats heart weight data and parameter values scale equals 19 and shape equals 0.5.

Solution

[1] -21598.19

How do we maximize it?

- Sometimes, like for the normal distribution, we can do this by hand with calculus.
- Other times we need to use numerical methods... minimize the negative log likelihood.

Linxi Liu Lecture 11: Distributions November 16, 2018 29 / 45

How do we maximize it?

- Sometimes, like for the normal distribution, we can do this by hand with calculus.
- Other times we need to use numerical methods... *minimize* the negative log likelihood.

```
> nlm(gamma.ll, c(19, 1), data = cats$Hwt)[1:3]

$minimum
```

[1] -1334280770

\$estimate
[1] 409228.0 469356.4

\$gradient

[1] -3404.4834 -125.5524

```
[1] 325.5476
```

```
> nlm(neg.gamma.ll, c(19, 1), data = cats$Hwt)$estimate
```

[1] 20.299930 0.523674

```
[1] 325.5476
```

```
> nlm(neg.gamma.ll, c(19, 1), data = cats$Hwt)$estimate
```

[1] 20.299930 0.523674

```
> cat.MM <- gamma.MMest(cats$Hwt)
> neg.gamma.ll(cat.MM, cats$Hwt)
```

```
> hist(cats$Hwt, probability = TRUE, ylim = c(0, 0.17))
> lines(density(cats$Hwt), lty = "dashed")
> cat.MLE <- nlm(neg.gamma.ll, c(19, 1), data = cats$Hwt)$estimate
> curve(dgamma(x, shape = cat.MM["a"], scale = cat.MM["s"]),
+ add = TRUE, col = "blue")
> curve(dgamma(x, shape = cat.MLE[1], scale = cat.MLE[2]),
+ add = TRUE, col = "red")
```


Why the MLE?

- Usually *consistent*: converges to the truth as we get more data.
- Usually *efficient*: converges to the truth as least as fast as anything else.

Linxi Liu Lecture 11: Distributions November 16, 2018 33 / 45

Checking Fit

- Plot the data with your estimates (like in the last slide).
- Calculate summary statistics not used in fitting and compare with those of the fitted model.
 - Some plotting tools to help with this.
- Use statistical tests.

```
> # Model quantiles
> qgamma(c(0.01, 0.05, 0.95, 0.99), shape = cat.MM["a"],
+ scale = cat.MM["s"])
```

```
[1] 5.795333 6.966974 14.926292 17.097730
```

```
> # Data quantiles:
> quantile(cats$Hwt, c(0.01, 0.05, 0.95, 0.99))
```

```
1% 5% 95% 99% 6.500 7.300 14.885 17.028
```

Quantile-Quantile (Q-Q) Plots

- Plots theoretical vs. actual quantiles.
- Ideally, a straight line when the distributions are the same.
- qqnorm() and qqline() are specialized for checking normality.
- Could also plot quantiles of two samples against each other.
- qqplot(x,y) gives a Q-Q plot of one vector against another.

Linxi Liu Lecture 11: Distributions November 16, 2018

Quantile-quantile Plot

```
> a <- cat.MM["a"]; s <- cat.MM["s"]
> qqplot(cats$Hwt, qgamma((1:99)/100, shape = a, scale = s),
+     ylab = "Theoretical Quantiles")
> abline(0, 1, col = "red")
```


Linxi Liu

Calibration Plots

- If the distribution is right, 50% of data should be below the median, 90% should be below the 90th percentile, etc.
- Calibration probabilities: events with probability p% should happen about p% of the time, not more or less.
- Can look at calibration by calculating the (empirical) CDF and the (theoretical) CDF and plotting.
 - Ideal calibration is a straight line up the diagonal.
 - Systematic deviations should be a warning sign.

Linxi Liu Lecture 11: Distributions November 16, 2018

Calibration Plots

```
> plot(ecdf(pgamma(cats$Hwt, shape = a, scale = s)),
+     main = "Calibration of gamma distribution for cat hearts")
> abline(0, 1, col = "red")
```

Calibration of gamma distribution for cat hearts

Linxi Liu

• How much should Q-Q or calibration plot wiggle around the diagonal?

- How much should Q-Q or calibration plot wiggle around the diagonal?
- Answer a different question: define the biggest gap between theoretical and empirical CDF

$$D_{KS} = \max_{x} \left| F(x) - \hat{F}(x) \right|$$

- D_{KS} always has the same distribution if the theoretical CDF is fixed and correct.
- Also works for comparing empirical CDF of two samples to see if they come from the same distribution.

Lecture 11: Distributions November 16, 2018 40 / 45

```
> ks.test(cats$Hwt, pgamma, shape = a, scale = s)
```

One-sample Kolmogorov-Smirnov test

data: cats\$Hwt

D = 0.068637, p-value = 0.5062

alternative hypothesis: two-sided

Warning

- More complicated and not properly handled by built-in R if parameters are estimated by the data.
 - Fit looks better than it really is.
- Hack: estimate the model using 90% of the data and check the fit using the K-S test using the other 10% (feels a little bit like cross-validation).

Lecture 11: Distributions November 16, 2018 42 / 45

```
> n <- length(cats$Hwt)
> train <- sample(1:n, size = round(.9*n))
> cat.MM <- gamma.MMest(cats$Hwt[train])
> a <- cat.MM["a"]
> s <- cat.MM["s"]
> a
```

```
> s
s
0.5900368
```

Linxi Liu

```
> ks.test(cats$Hwt[-train], pgamma, shape = a, scale = s)
```

One-sample Kolmogorov-Smirnov test

data: cats\$Hwt[-train]

D = 0.20497, p-value = 0.5988

alternative hypothesis: two-sided

Linxi Liu Lecture 11: Distributions November 16, 2018

two sample

Can also test whether two samples come from the same distribution.

```
> ks.test(cats$Hwt[cats$Sex == "F"],
+ cats$Hwt[cats$Sex == "M"])
```

```
Two-sample Kolmogorov-Smirnov test
```

```
data: cats$Hwt[cats$Sex == "F"] and cats$Hwt[cats$Sex == "M"
D = 0.49419, p-value = 3.847e-07
alternative hypothesis: two-sided
```