Experiments....Ablation Study Observations

Method	Accuracy	Precision	Recall	F1
MVNN	0.846	0.809	0.857	0.832
w/o frequency domain	0.794	0.792	0.728	0.758
w/o pixel domain	0.737	0.698	0.717	0.708
w/o attention	0.827	0.778	0.853	0.814
w/o Bi-GRU	0.828	0.772	0.841	0.805
w/o branches	0.803	0.752	0.830	0.789

- Multiple domains: The frequency and pixel domain both are important, the accuracy drops by 5.2% and 10.9% without the frequency and pixel domain sub-network. <u>Pixel</u> domain plays a major role and the frequency domain is auxiliary.
- Network Components:
 - remove attention the accuracy is drops by 1.9%, which means that the attention mechanism better than simply concatenating
 - remove the Bi-GRU reduces 1.8%; remove the branches drops by 4.3%.
- Incorporating different levels of features and considering the dependencies between these features both help capture the semantic characteristics of visual contents

Experiments..... visualize the visual features

- t-SNE show separability of the feature representations: MVNN > pixel > frequency
 - frequency domain: positive and negative feature samples overlap a lot
 - pixel domain: can learn discriminable features, but the learned features are still twisted together
 - MVNN: there is a relatively visible boundary between samples with different labels
- Pixel domain is more effective than frequency domain in distinguishing
- Fuses information of multiple domains can more distinctive feature representations, better than single domain