

Computer & Robot Vision

Konzeption

Projekt Rubiks Cube

Gruppe: Rubiks Cube

Namen: Lukas Gerstlauer, 205293, lgerstla@stud.hs-heilbronn.de

Tim Söns, 204453, tsoens@stud.hs-heilbronn.de

Fach: Computer & Robot Vision Dozent: Prof. Dr. Dieter Maier

Abgabe: 22.11.2024

Studiengang: MAS Fakultät: T1

Vorgehen

- 1. Vorbereitung
 - a. Ermitteln der RGB-Werte des grauen Rahmens in den Referenzbildern
 - b. Festlegen der Farbschwellen in den Referenzbildern
- 2. Kalibrierung
 - a. Suchen nach grauem Rahmen durch Kantendetektion
 - b. Berechnung der durchschnittlichen RBG-Werte des grauen Rahmens
 - c. Berechnung der Korrekturwerte c_r , c_a , c_b , c_0
 - d. Rekalibrierung des Eingangsbilds
- 3. Flächendetektion
 - a. Filterung nach schwarz zur Detektion der Außenkante des Würfels
 - b. Zuschneiden auf ROI des Würfels
 - c. Kantendetektion der einzelnen Flächen
 - d. Ermittlung der Position der Flächen und Sortierung
 - e. Fehlerkorrektur bei fehlenden oder zu vielen Flächen
- 4. Farbdetektion
 - a. Konvertierung der einzelnen Würfelflächen in HSV-Farbraum
 - b. Ermitteln der Durchschnittswerte HSV der einzelnen Fläche
 - c. Vergleich mit Schwellwerten aller Farben
 - d. Entscheidung der Farbe der Fläche
- 5. Datenverarbeitung und Visualisierung
 - a. Speichern der Koordinaten, Größe, Farbe, Farbwerte der Flächen in einem Array
 - b. Einzeichnen der Farbe der jeweiligen Flächen im Ausgabebild
- 6. Weitergehend (optional)
 - a. Einbindung in ROS
 - b. Ansteuern der Roboterarme zum Drehen des Würfels
 - c. Erkennung der Farben auf allen Seiten

Zeitplan bis Weihnachten:

