CS6462 Probabilistic and Explainable AI

Lesson 18
Bayesian Networks
*

Construction of Bayesian Networks

Building Bayesian Networks

Stages:

• *Stage 1*: build a directed acyclic graph

DAG: $G = \langle V, E \rangle$ - nodes V and edges E

- V = {A, B, C}, E = {(a,b), (a,c), (b,c)}
- every node V is associated with a random variable X

$$V -> X = \{X_A, X_B, X_C\}, A -> X_A, B -> X_B, C -> X_C\}$$

- Stage 2: assess the conditional probability distribution for every random variable
 - $P(X_{\Delta})$, $P(X_{B} \mid X_{\Delta})$, $P(X_{C} \mid X_{B} \cap X_{\Delta})$
- Stage 3: assess arbitrary joint distribution over the random variables
 - $P(X_A \cap X_B \cap X_C) = P(X_A) * P(X_B \mid X_A) * P(X_C \mid X_B \cap X_A)$ holds for any value of X_A , X_B and X_C
- Stage 4: represent joint distribution in a simple graphical model:
 - 1) introduce a node for each of the random variables
 - 2) associate each node with the corresponding conditional distribution factor from the joint distribution
 - 3) for each conditional distribution we add directed links to the graph from the nodes corresponding to the variables on which the distribution is conditioned

Bayesian network: Student's Recommendation Letter

- student's grade depends on intelligence and module difficulty
- student asks for a recommendation letter based on the student's grade
- G(V, E): $V = \{D(\text{module difficulty}), I(\text{intelligence}), G(\text{grade}), S(\text{SAT}), L(\text{letter})\}$
- X ={X_D, X_I, X_G, X_S, X_L}
 module difficulty: X_D = {easy, hard}
 intelligence: X_I = {low, high}
 grade: X_G = {A, B, C}
 SAT result: X_S = {high, low}
 letter: X_I = {weak, strong}


```
*
```

```
G(V, E): V = \{D \text{ (module difficulty)}, I \text{ (intelligence)}, G \text{ (grade)}, S \text{ (SAT)}, L \text{ (letter)} \}
```

- generative sampling process:
- variable's values selected using distribution that depends on its parents
- X a stochastic function of its parents

```
X = \{X_D, X_I, X_G, X_S, X_L\}
module difficulty: X_D = \{easy, hard\}
intelligence: X_I = \{low, high\}
grade: X_G = \{A, B, C\}
SAT: X_S = \{high, low\}
letter: X_L = \{weak, strong\}
```


$$X = \{X_D, X_I, X_G, X_S, X_L\}$$

module difficulty: $X_D = \{easy, hard\}$
intelligence: $X_I = \{low, high\}$
grade: $X_G = \{A, B, C\}$
SAT: $X_S = \{low, high\}$
letter: $X_L = \{weak, strong\}$

local probability models

$$P(X_I) = \{0.7, 0.3\}$$

 $P(X_D) = \{0.6, 0.4\}$
 $P(X_G | X_I \cap X_D)$
 $P(X_G = A | X_I = high \cap X_D = easy) = 0.9$
 $P(X_G = B | X_I = high \cap X_D = easy) = 0.08$
 $P(X_G = C | X_I = high \cap X_D = easy) = 0.02$

local probability models

$$P(X_G | X_I \cap X_D)$$

$$P(X_G = A | X_I = high \cap X_D = hard) = 0.5$$

$$P(X_G=B|X_I=high \cap X_D=hard) = 0.3$$

$$P(X_G=C|X_I=high \cap X_D=hard) = 0.2$$

$$P(X_G = A | X_I = low \cap X_D = hard) = 0.05$$

$$P(X_G = B | X_I = low \cap X_D = hard) = 0.25$$

$$P(X_G=C|X_I=low \cap X_D=hard) = 0.7$$

$$P(X_G = A | X_I = low \cap X_D = easy) = 0.3$$

$$P(X_G=B | X_I=low \cap X_D=easy) = 0.4$$

$$P(X_G = C | X_I = low \cap X_D = easy) = 0.3$$

 $X = \{X_D, X_I, X_G, X_S, X_L\}$

module difficulty: $X_D = \{easy, hard\}$

intelligence: X₁ = {low, high}

grade: $X_G = \{A, B, C\}$ SAT: $X_S = \{low, high\}$

letter: X_L= {weak, strong}

	91	92	g ₃
$i_1 \cap d_1$	0.3	0.4	0.3
$i_1 \cap d_2$	0.05	0.25	0.7
$i_2 \cap d_1$	0.9	0.08	0.02
$i_2 \cap d_2$	0.5	0.3	0.2

- conditional probability distribution
 P(X_G | X_I ∩ X_D) given joint probability of its parents
- marginal distribution no parents

$$P(X_1) = \{0.7, 0.3\}$$

$$P(X_D) = \{0.6, 0.4\}$$

Bayesian Network for

Student's Recommendation Letter:

network structure (DAG) + conditional probability models per node (variable)

joint distribution over random variables?

module difficulty: $X_D = \{easy, hard\}$

intelligence: X_I = {low, high}

grade: $X_G = \{A, B, C\}$ SAT: $X_S = \{low, high\}$

letter: X_I = {weak, strong}

0.99 0.01

Joint distribution

$$P(X_D \cap X_I \cap X_G \cap X_S \cap X_L)$$

$$P(X_{D} \cap X_{I} \cap X_{G} \cap X_{S} \cap X_{L}) = P(X_{D}) * P(X_{I} | X_{D}) * P(X_{G} | X_{I} \cap X_{D}) * P(X_{S} | X_{G} \cap X_{I} \cap X_{D}) * P(X_{L} | X_{S} \cap X_{G} \cap X_{I} \cap X_{D}) = P(X_{D}) * P(X_{I}) * P(X_{G} | X_{I} \cap X_{D}) * P(X_{S} | X_{I}) * P(X_{L} | X_{G})$$

• Example: d₁, i₂, g₁, s₂, l₂ (easy, high, A, high, strong)

$$P(X_{D}=d_{1} \cap X_{I}=i_{2} \cap X_{G}=g_{1} \cap X_{S}=s_{2} \cap X_{L}=I_{2}) = P(X_{D}=d_{1})*P(X_{I}=i_{2})*P(X_{G}=g_{1} | X_{I}=i_{2} \cap X_{D}=d_{1})*P(X_{S}=s_{2} | X_{I}=i_{2})*P(X_{L}=I_{2} | X_{G}=g_{1}) = I_{1}$$

$$0.6*0.3*0.9*0.8*0.9 = 0.116 = 11.6\%$$

module difficulty: $X_D = \{easy, hard\}$

intelligence: X_I = {low, high}

grade: $X_G = \{A, B, C\}$ SAT: $X_S = \{low, high\}$

letter: X_L= {weak, strong}

Summary

Bayesian Networks – *Construction of Bayesian Networks*

Stages

- Stage 1: build a directed acyclic graph
 - V = {A, B, C}, E = {(a,b), (a,c), (b,c)}
 - every node V is associated with a random variable X

$$V \rightarrow X = \{X_A, X_B, X_C\}, A \rightarrow X_A, B \rightarrow X_B, C \rightarrow X_C$$

- Stage 2: assess the conditional probability distribution for every random variable
 - $P(X_A)$, $P(X_B | X_A)$, $P(X_C | X_B \cap X_A)$
- Stage 3: assess arbitrary joint distribution over the random variables
 - $P(X_A \cap X_B \cap X_C) = P(X_A) * P(X_B \mid X_A) * P(X_C \mid X_B \cap X_A)$ holds for any value of X_A , X_B and X_C
- Stage 4: represent joint distribution in a simple graphical model

Next Lesson:

Bayesian Neural Networks - Bayesian Inference

 $P(X_C \mid X_B \cap X_A)$

Thank You!

Questions?