MSp

Conf. univ., dr. Elena COJUHARI

elena.cojuhari@mate.utm.md
Technical University of Moldova

Introduction to Complex Analysis

- Series and Residues
 - Sequences and Series
 - Taylor Series
 - Laurent Series
 - Zeros and Poles
 - Residues and Residue Theorem

Subsection 1

Sequences and Series

Sequences

- A **sequence** $\{z_n\}$ is a function whose domain is the set of positive integers and whose range is a subset of the complex numbers \mathbb{C} .
- Example: The sequence $\{1+i^n\}$ is $1+i, 0, 0, 1-i, 2, 1-i, 1-i, \dots$
- If $\lim_{n\to\infty} z_n = L$, we say the sequence $\{z_n\}$ is **convergent**, i.e., $\{z_n\}$ converges to the number L if, for each positive real number ε , an N can be found, such that $|z_n L| < \varepsilon$, whenever n > N.
- Since $|z_n L|$ is distance, the terms z_n of a sequence that converges to L can be made arbitrarily close to L. In a different way, when a sequence $\{z_n\}$ converges to L, then all but a finite number of the terms of the sequence are within every ε -neighborhood of L.

• A sequence that is not convergent is said to be **divergent**. Example: The sequence $\{1+i^n\}$ is divergent since the general term $z_n = 1+i^n$ does not approach a fixed complex number as $n \to \infty$.

An Example of a Convergent Sequence

• The sequence $\left\{\frac{i^{n+1}}{n}\right\}$ converges since $\lim_{n\to\infty}\frac{i^{n+1}}{n}=0$. As we see from

$$-1, -\frac{i}{2}, \frac{1}{3}, \frac{i}{4}, -\frac{1}{5}, \dots,$$

the terms of the sequence spiral in toward the point z = 0 as n increases.

Criterion for Convergence

Theorem (Criterion for Convergence)

A sequence $\{z_n\}$ converges to a complex number L=a+ib if and only if $Re(z_n)$ converges to Re(L)=a and $Im(z_n)$ converges to Im(L)=b.

• Example: Consider the sequence $\left\{\frac{3+ni}{n+2ni}\right\}$.

$$z_n = \frac{3+ni}{n+2ni} = \frac{(3+ni)(n-2ni)}{n^2+4n^2} = \frac{2n^2+3n}{5n^2} + i\frac{n^2-6n}{5n^2}.$$

Thus, we get

$$Re(z_n) = \frac{2n^2 + 3n}{5n^2} = \frac{2}{5} + \frac{3}{5n} \to \frac{2}{5}$$

$$\operatorname{Im}(z_n) = \frac{n^2 - 6n}{5n^2} = \frac{1}{5} - \frac{6}{5n} \to \frac{1}{5}.$$

By the theorem, the given sequence converges to $a + ib = \frac{2}{5} + \frac{1}{5}i$.

Series and Geometric Series

- An **infinite series** or **series** of complex numbers $\sum_{k=1}^{\infty} z_k = z_1 + z_2 + z_3 + \cdots + z_n + \cdots$ is **convergent** if the sequence of partial sums $\{S_n\}$, where $S_n = z_1 + z_2 + z_3 + \cdots + z_n$ converges. If $S_n \to L$ as $n \to \infty$, we say that the series **converges to** L or that the **sum** of the series is L.
- Geometric Series: A **geometric series** is any series of the form $\sum_{k=1}^{\infty} az^{k-1} = a + az + az^2 + \cdots + az^{n-1} + \cdots$ The *n*-th term of the sequence of partial sums is $S_n = a + az + az^2 + \cdots + az^{n-1}$. To get a formula for S_n , multiply by z: $zS_n = az + az^2 + az^3 + \cdots + az^n$. Subtract this from S_n : $S_n zS_n = (a + az + az^2 + \cdots + az^{n-1}) (az + az^2 + az^3 + \cdots + az^{n-1} + az^n) = a az^n$. Thus, $(1-z)S_n = a(1-z^n)$, and, hence, $S_n = \frac{a(1-z^n)}{1-z}$.
 - If |z| < 1, $z^n \to 0$ as $n \to \infty$. So $S_n \to \frac{a}{1-z}$. I.e., for |z| < 1, $\frac{a}{1-z} = a + az + az^2 + \cdots + az^{n-1} + \cdots$.
 - If $|z| \ge 1$, a geometric series diverges.

Special Geometric Series

Recall the sum formulas

$$S_n = \frac{a(1-z^n)}{1-z}, \quad \frac{a}{1-z} = a + az + az^2 + \cdots + az^{n-1} + \cdots.$$

• If we set a = 1, we get

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots.$$

• If we then replace z by -z:

$$\frac{1}{1+z} = 1-z+z^2-z^3+\cdots$$

• For the finite sum, we have $\frac{1-z^n}{1-z}=1+z+z^2+z^3+\cdots+z^{n-1}$. Rewriting the left side of the above equation as $\frac{1-z^n}{1-z}=\frac{1}{1-z}+\frac{-z^n}{1-z}$, we get

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots + z^{n-1} + \frac{z^n}{1-z}.$$

A Convergent Geometric Series

The infinite series

$$\sum_{k=1}^{\infty} \frac{(1+2i)^k}{5^k} = \frac{1+2i}{5} + \frac{(1+2i)^2}{5^2} + \frac{(1+2i)^3}{5^3} + \cdots$$

is a geometric series.

It has the standard form, with $a=\frac{1}{5}(1+2i)$ and $z=\frac{1}{5}(1+2i)$. Since $|z|=\frac{\sqrt{5}}{5}<1$, the series is convergent and its sum is given by:

$$\sum_{k=1}^{\infty} \frac{\left(1+2i\right)^k}{5^k} = \frac{\frac{1+2i}{5}}{1-\frac{1+2i}{5}} = \frac{1+2i}{4-2i} = \frac{1}{2}i.$$

Necessary Condition for Convergence

 We turn to some important theorems about convergence and divergence of an infinite series:

Theorem (A Necessary Condition for Convergence)

If $\sum_{k=1}^{\infty} z_k$ converges, then $\lim_{n\to\infty} z_n = 0$.

• Let L denote the sum of the series. Then $S_n \to L$ and $S_{n-1} \to L$ as $n \to \infty$. By taking the limit of both sides of $S_n - S_{n-1} = z_n$ as $n \to \infty$, we obtain the desired conclusion.

Theorem (The *n*-th Term Test for Divergence)

If $\lim_{n\to\infty} z_n \neq 0$, then $\sum_{k=1}^{\infty} z_k$ diverges.

• Example: The series $\sum_{k=1}^{\infty} \frac{ik+5}{k}$ diverges, since $z_n = \frac{in+5}{n} \to i \neq 0$ as $n \to \infty$.

The geometric series $\sum_{k=1}^{\infty} az^k$ diverges if $|z| \ge 1$ because even in the case when $\lim_{n\to\infty} |z^n|$ exists, the limit is not zero.

Absolute and Conditional Convergence

Definition (Absolute and Conditional Convergence)

An infinite series $\sum_{k=1}^{\infty} z_k$ is said to be **absolutely convergent** if $\sum_{k=1}^{\infty} |z_k|$ converges. An infinite series $\sum_{k=1}^{\infty} z_k$ is said to be **conditionally convergent** if it converges but $\sum_{k=1}^{\infty} |z_k|$ diverges.

- In elementary calculus a real series of the form $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is called a *p*-series and
 - converges for p > 1;
 - diverges for $p \le 1$.
- Example: The series $\sum_{k=1}^{\infty} \frac{i^k}{k^2}$ is absolutely convergent: The series $\sum_{k=1}^{\infty} \left| \frac{i^k}{k^2} \right|$ is the same as the real convergent p-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$.
- As in real calculus, absolute convergence implies convergence.
- Example: The series $\sum_{k=1}^{\infty} \frac{i^k}{k^2} = i \frac{1}{2^2} \frac{i}{3^2} + \cdots$ converges, because it is was shown to be absolutely convergent.

Tests for Convergence

Theorem (The Ratio Test)

Let $\sum_{k=1}^{\infty} z_k$ be a series of nonzero terms, with $\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = L$.

- (i) If L < 1, then the series converges absolutely.
- (ii) If L > 1 or $L = \infty$, then the series diverges.
- (iii) If L = 1, the test is inconclusive.

Theorem (The Root Test)

Let $\sum_{k=1}^{\infty} z_k$ be a series of complex terms, with $\lim_{n \to \infty} \sqrt[n]{|z_n|} = L$.

- (i) If L < 1, then the series converges absolutely.
- (ii) If L > 1 or $L = \infty$, then the series diverges.
- (iii) If L = 1, the test is inconclusive.
 - We are interested primarily in applying these tests to power series.

Power Series and Circle of Convergence

- An infinite series of the form $\sum_{k=0}^{\infty} a_k (z-z_0)^k = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots$, where the coefficients a_k are complex constants, is called a **power series** in $z-z_0$.
- The power series is said to be **centered at** z_0 and the complex point z_0 is referred to as the **center** of the series.
- It is also convenient to define $(z z_0)^0 = 1$ even when $z = z_0$.
- Every complex power series has a radius of convergence and a circle of convergence: It is the circle centered at z_0 of largest radius R > 0 for which the series converges at every point within the circle $|z z_0| = R$.

A power series converges absolutely at all points z satisfying $|z - z_0| < R$, and diverges at all points z, with $|z - z_0| > R$.

Possibilities for Radius of Convergence

- The radius of convergence can be:
 - (i) R = 0 (series converges only at its center $z = z_0$);
 - (ii) R a finite positive number (series converges in interior of $|z z_0| = R$);
 - (iii) $R = \infty$ (series converges for all z).

A power series may converge at some, all, or at none of the points on the actual circle of convergence. $\frac{1}{2^{n+2}}$

• Example: Consider $\sum_{k=1}^{\infty} \frac{z^{k+1}}{k}$. By the ratio test, $\lim_{n\to\infty} \left| \frac{z^{n+2}}{\frac{z^{n+1}}{n}} \right| = \lim_{n\to\infty} \frac{n}{n} |z| = |z|$. Thus, the series converges absolutely for

 $\lim_{n \to \infty} \frac{n}{n+1} |z| = |z|$. Thus, the series converges absolutely for |z| < 1. The circle of convergence is |z| = 1 and the radius of convergence is R = 1. On the circle |z| = 1, the series does not converge absolutely since $\sum_{k=1}^{\infty} \frac{1}{k}$ is the well-known divergent harmonic series. This does not mean that the series diverges on the circle of convergence. In fact, at z = -1, $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ is the convergent alternating harmonic series. It can be shown that the series converges at all points on the circle |z| = 1 except at z = 1.

Dependence of the Radius on the Coefficients

For a power series

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k,$$

the limit depends only on the coefficients a_k . Thus:

- (i) if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L \neq 0$, the radius of convergence is $R = \frac{1}{L}$;
- (ii) if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$, the radius of convergence is $R = \infty$;
- (iii) if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, the radius of convergence is R = 0.
- Similar conclusions can be made for the root test by utilizing $\lim_{n\to\infty}\sqrt[n]{|a_n|}$. E.g., if $\lim_{n\to\infty}\sqrt[n]{|a_n|}=L\neq 0$, then $R=\frac{1}{L}$.

Finding Radius of Convergence Using Ratio Test

• Consider the power series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} (z-1-i)^k.$

With the identification $a_n = \frac{(-1)^{n+1}}{n!}$, we have

$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+2}}{(n+1)!}}{\frac{(-1)^{n+1}}{n!}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0.$$

Hence, the radius of convergence is ∞ . The power series with center $z_0 = 1 + i$ converges absolutely for all z, i.e., for $|z - 1 - i| < \infty$.

Finding Radius of Convergence Using Root Test

- Consider the power series $\sum_{k=1}^{\infty} \left(\frac{6k+1}{2k+5} \right)^k (z-2i)^k$.
- With $a_n = \left(\frac{6n+1}{2n+5}\right)^n$, the root test gives

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left(\frac{6n+1}{2n+5}\right) = 3.$$

We conclude that the radius of convergence of the series is $R=\frac{1}{3}$. The circle of convergence is $|z-2i|=\frac{1}{3}$; the power series converges absolutely for $|z-2i|<\frac{1}{3}$.

The Arithmetic of Power Series

- Some facts concerning power-series stated informally:
 - A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ can be multiplied by a nonzero complex constant c without affecting its convergence or divergence.
 - A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converges absolutely within its circle of convergence. As a consequence, within the circle of convergence the terms of the series can be rearranged and the rearranged series has the same sum L as the original series.
 - Two power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ and $\sum_{k=0}^{\infty} b_k (z-z_0)^k$ can be added and subtracted by adding or subtracting like terms:

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k \pm \sum_{k=0}^{\infty} b_k (z-z_0)^k = \sum_{k=0}^{\infty} (a_k \pm b_k) (z-z_0)^k.$$

- If both series have the same nonzero radius R of convergence, the radius of convergence of $\sum_{k=0}^{\infty} (a_k \pm b_k)(z-z_0)^k$ is R.
- If one series has radius of convergence r > 0 and the other R > 0, where $r \neq R$, then $\sum_{k=0}^{\infty} (a_k \pm b_k)(z-z_0)^k$ has radius of convergence the smaller of r and R.
- Two power series can (with care) be multiplied and divided.

Final Remarks on Series and Power Series

- If $z_n = a_n + ib_n$ then the *n*-th term of the sequence of partial sums for $\sum_{k=1}^{\infty} z_k$ is $S_n = \sum_{k=1}^n (a_k + ib_k) = \sum_{k=1}^n a_k + i \sum_{k=1}^n b_k$. Thus, $\sum_{k=1}^{\infty} z_k$ converges to L = a + ib if and only if $\text{Re}(S_n) = \sum_{k=1}^n a_k$ converges to a and $\text{Im}(S_n) = \sum_{k=1}^n b_k$ converges to b.
- In summation notation a geometric series need not start at k = 1 nor does the general term have to appear precisely as az^{k-1} .
- Example: Consider $\sum_{k=3}^{\infty} 40 \frac{j^{k+2}}{2^{k-1}}$. It does not appear to match the form $\sum_{k=1}^{\infty} az^{k-1}$ of a geometric series. By writing out three terms, $\sum_{k=3}^{\infty} 40 \frac{j^{k+2}}{2^{k-1}} = 40 \frac{j^5}{2^2} + 40 \frac{j^6}{2^3} + 40 \frac{j^7}{2^4} + \cdots$ we see $a = 40 \frac{j^5}{2^2}$ and $z = \frac{i}{2}$. Since $|z| = \frac{1}{2} < 1$, the sum is $\sum_{k=3}^{\infty} 40 \frac{j^{k+2}}{2^{k-1}} = \frac{40 \frac{j^5}{2^2}}{1 \frac{j}{2}} = -4 + 8i$.
- A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ always possesses a radius of convergence R. The ratio and root tests lead to $\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ and $\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ assuming the appropriate limit exists.

Subsection 2

Taylor Series

Differentiation of Power Series

Theorem (Continuity)

A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ represents a continuous function f within its circle of convergence $|z-z_0|=R$.

Theorem (Term-by-Term Differentiation)

A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ can be differentiated term by term within its circle of convergence $|z-z_0|=R$.

• Differentiating a power series term-by-term gives,

$$\frac{d}{dz}\sum_{k=0}^{\infty}a_k(z-z_0)^k = \sum_{k=0}^{\infty}a_k\frac{d}{dz}(z-z_0)^k = \sum_{k=1}^{\infty}a_kk(z-z_0)^{k-1}.$$

- Using the ratio test, it can be shown that the original series and the differentiated series have the same circle of convergence.
- Since the derivative of a power series is another power series, the first series can be differentiated as many times as we wish.

Integration of Power Series

Theorem (Term-by-Term Integration)

A power series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ can be integrated term-by-term within its circle of convergence $|z-z_0|=R$, for every contour C lying entirely within the circle of convergence.

The theorem states that

$$\int_{C} \sum_{k=0}^{\infty} a_{k} (z - z_{0})^{k} dz = \sum_{k=0}^{\infty} a_{k} \int_{C} (z - z_{0})^{k} dz,$$

whenever C lies in the interior of $|z - z_0| = R$.

• Indefinite integration can also be carried out term by term:

$$\int \sum_{k=0}^{\infty} a_k (z-z_0)^k dz = \sum_{k=0}^{\infty} a_k \int (z-z_0)^k dz = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z-z_0)^{k+1} + K.$$

• The ratio test can be used to prove that both series have the same circle of convergence.

Analyticity

- Suppose a power series represents a function f within $|z-z_0|=R$, i.e., $f(z)=\sum_{k=0}^{\infty}a_k(z-z_0)^k=a_0+a_1(z-z_0)+a_2(z-z_0)^2+a_3(z-z_0)^3+\cdots$
- Then, the derivatives of f are the series

$$f'(z) = \sum_{\substack{k=1 \ \infty}}^{\infty} a_k k(z - z_0)^{k-1} = a_1 + 2a_2(z - z_0) + 3a_3(z - z_0)^2 + \cdots$$

$$f''(z) = \sum_{\substack{k=2 \ \infty}}^{\infty} a_k k(k-1)(z - z_0)^{k-2} = 2 \cdot 1a_2 + 3 \cdot 2a_3(z - z_0) + \cdots$$

$$f'''(z) = \sum_{\substack{k=3 \ \infty}}^{\infty} a_k k(k-1)(k-2)(z - z_0)^{k-3} = 3 \cdot 2 \cdot 1a_3 + \cdots$$

$$\vdots$$

• Since the power series represents a differentiable function f within its circle of convergence $|z - z_0| = R$, it represents an analytic function within its circle of convergence.

Taylor Series and Maclaurin Series

• Evaluating the derivatives at $z = z_0$ gives

$$f(z_0) = a_0, \ f'(z_0) = 1!a_1, \ f''(z_0) = 2!a_2, \ f'''(z_0) = 3!a_3.$$

- In general, $f^{(n)}(z_0) = n! a_n$, or $a_n = \frac{f^{(n)}(z_0)}{n!}$, $n \ge 0$.
- When n = 0, we interpret the zero-order derivative as $f(z_0)$ and 0! = 1, so that the formula gives $a_0 = f(z_0)$.
- Substituting into the series yields

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k.$$

This series is called the **Taylor series** for f centered at z_0 .

• A Taylor series with center $z_0 = 0$,

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^k$$

is referred to as a Maclaurin series.

Taylor's Theorem

• Since a power series converges in a circular domain, and a domain *D* is generally not circular, the following question arises:

Can we expand f in one or more power series that are valid, i.e., a power series that converges at z and the number to which the series converges is f(z), in circular domains that are all contained in D?

Theorem (Taylor's Theorem)

Let f be analytic within a domain D and let z_0 be a point in D. Then f has the series representation $f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$ valid for the largest circle C with center at z_0 and radius R that lies entirely within D.

• Let z be a fixed point within the circle C and let s denote the variable of integration. The circle C is then described by $|s-z_0|=R$. We use the Cauchy integral formula to obtain the value of f at z:

Proof of Taylor's Theorem I

•
$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(s)}{s-z} ds = \frac{1}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)-(z-z_0)} ds = \frac{1}{2\pi i} \oint_C \frac{f(s)}{s-z_0} \left(\frac{1}{1-\frac{z-z_0}{s-z_0}}\right) ds$$
. By the power series for $\frac{1}{1-z}$, we get
$$\frac{1}{1-\frac{z-z_0}{s-z_0}} = 1 + \frac{z-z_0}{s-z_0} + \left(\frac{z-z_0}{s-z_0}\right)^2 + \dots + \left(\frac{z-z_0}{s-z_0}\right)^{n-1} + \frac{(z-z_0)^n}{(s-z)(s-z_0)^{n-1}},$$
 whence, we get
$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(s)}{s-z_0} ds + \frac{z-z_0}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)^2} ds + \frac{(z-z_0)^2}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)^3} ds + \dots + \frac{(z-z_0)^{n-1}}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)^n} ds + \frac{(z-z_0)^n}{2\pi i} \oint_C \frac{f(s)}{(s-z)(s-z_0)^n} ds$$
. By Cauchy's integral formula for derivatives, $f(z) = f(z_0) + \frac{f'(z_0)}{1!} (z-z_0) + \frac{f''(z_0)}{2!} (z-z_0)^2 + \dots + \frac{f^{(n-1)}(z_0)}{(n-1)!} (z-z_0)^{n-1} + R_n(z),$ where $R_n(z) = \frac{(z-z_0)^n}{2\pi i} \oint_C \frac{f(s)}{(s-z)(s-z_0)^n} ds$. This is called **Taylor's formula with remainder** R_n . The goal now is to show that $R_n(z) \to 0$ as $n \to \infty$.

Proof of Taylor's Theorem II

• To see that $R_n(z) = \frac{(z-z_0)^n}{2\pi i} \oint_C \frac{f(s)}{(s-z)(s-z_0)^n} ds \to 0$, it suffices to show that $|R_n(z)| \to 0$ as $n \to \infty$. Since f is analytic in D, we know that |f(z)| has a maximum value M on the contour C. In addition, since z is inside C, $|z - z_0| < R$ and, consequently, $|s-z| = |s-z_0-(z-z_0)| \ge |s-z_0| - |z-z_0| = R-d$, where $d = |z - z_0|$ is the distance from z to z_0 . The ML-inequality then gives $|R_n(z)| = \left| \frac{(z-z_0)^n}{2\pi i} \oint_C \frac{f(s)}{(s-z)(s-z_0)^n} ds \right| \le \frac{d^n}{2\pi} \cdot \frac{M}{(R-d)R^n} \cdot 2\pi R = \frac{MR}{R-d} \left(\frac{d}{R}\right)^n.$ Because d < R, $\left(\frac{d}{R}\right)^n \to 0$ as $n \to \infty$, we conclude that $|R_n(z)| \to 0$ as $n \to \infty$. It follows that the infinite series $f(z_0) + \frac{f'(z_0)}{11}(z-z_0) + \frac{f''(z_0)}{21}(z-z_0)^2 + \cdots$ converges to f(z).

Isolated Singularities and Important Maclaurin Series

• An **isolated singularity** of a function f is a point at which f fails to be analytic but is, nonetheless, analytic at all other points throughout some neighborhood of the point.

Example: $f(z) = \frac{1}{z-5i}$ has an isolated singularity at z = 5i.

- The radius of convergence R of a Taylor series for f is the distance from the center z_0 of the series to the nearest isolated singularity of f.
- Thus, if the function f is entire, then the radius of convergence of a Taylor series centered at any point z_0 is necessarily $R = \infty$.
- We summarize some Important Maclaurin Series:

$$\begin{array}{rcl} e^z & = & 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!} \\ \sin z & = & z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} \\ \cos z & = & 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} \end{array}$$

Finding Radius of Convergence

Suppose the function f(z) = 3-i / (1-i+z) is expanded in a Taylor series with center z₀ = 4 - 2i. What is its radius of convergence R?
 Observe that the function is analytic at every point except at z = -1 + i, which is an isolated singularity of f. The distance from z = -1 + i to z₀ = 4 - 2i is

$$|z-z_0| = \sqrt{(-1-4)^2 + (1-(-2))^2} = \sqrt{34}.$$

Thus, the radius of convergence for the Taylor series centered at 4-2i is $R=\sqrt{34}$.

Uniqueness of the Series Expansion

• If two power series with center z_0 ,

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k \quad \text{and} \quad \sum_{k=0}^{\infty} b_k (z-z_0)^k$$

represent the same function f and have the same nonzero radius R of convergence, then $a_k = b_k = \frac{f^{(k)}(z_0)}{k!}$, $k = 0, 1, 2, \ldots$

- Stated in another way, the power series expansion of a function, with center z_0 , is unique.
- Thus, a power series expansion of an analytic function f centered at z_0 , irrespective of the method used to obtain it, is the Taylor series expansion of the function.

Finding a Maclaurin Series

• Find the Maclaurin expansion of $f(z) = \frac{1}{(1-z)^2}$. Recall that for |z| < 1,

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots.$$

If we differentiate both sides of the last result with respect to z,

$$\frac{d}{dz}\frac{1}{1-z} = \frac{d}{dz}1 + \frac{d}{dz}z + \frac{d}{dz}z^2 + \frac{d}{dz}z^3 + \cdots$$

or

$$\frac{1}{(1-z)^2} = 0 + 1 + 2z + 3z^2 + \dots = \sum_{k=1}^{\infty} kz^{k-1}.$$

The radius of convergence of the last power series is the same as the original series R=1.

Finding a Taylor Series

• Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_0 = 2i$.

We use again $\frac{1}{1-z}=1+z+z^2+\cdots$. By adding and subtracting 2i in the denominator, $\frac{1}{1-z}=\frac{1}{1-z+2i-2i}=\frac{1}{1-2i-(z-2i)}=\frac{1}{1-2i}\cdot\frac{1}{1-\frac{z-2i}{1-2i}}$.

We now write $\frac{1}{1-\frac{z-2i}{1-\frac{2i}{2}}}$ as a power series:

$$\frac{1}{1-z} = \frac{1}{1-2i} \left[1 + \frac{z-2i}{1-2i} + \left(\frac{z-2i}{1-2i} \right)^2 + \left(\frac{z-2i}{1-2i} \right)^3 + \cdots \right] \text{ or }$$

$$\frac{1}{1-z} = \frac{1}{1-2i} + \frac{1}{(1-2i)^2} (z-2i) + \frac{1}{(1-2i)^3} (z-2i)^2 + \frac{1}{(1-2i)^4} (z-2i)^3 + \cdots.$$

Because the distance from the center $z_0=2i$ to the nearest singularity z=1 is $\sqrt{5}$, we conclude that the circle of convergence is $|z-2i|=\sqrt{5}$.

Power Series for the Same Function

• We have represented the same function $f(z) = \frac{1}{1-z}$ by two different power series; one with center $z_0 = 0$ and radius of convergence R = 1; another with center $z_0 = 2i$ and radius of convergence $R = \sqrt{5}$.

The interior of the intersection of the two circles is the region where both series converge, i.e., at a specified point z^* in this region, both series converge to same value $f(z^*) = \frac{1}{1-z^*}$. Outside the colored region at least one of the two series must diverge.

Subsection 3

Laurent Series

Isolated Singularities

- Suppose that $z = z_0$ is a singularity of a complex function f, i.e., a point at which f fails to be analytic.
- The point $z=z_0$ is said to be an **isolated singularity** of the function f if there exists some deleted neighborhood, or punctured open disk, $0<|z-z_0|< R$ of z_0 throughout which f is analytic. Example: The points z=2i and z=-2i are singularities of $f(z)=\frac{z}{z^2+4}$. Both 2i and -2i are isolated singularities since f is analytic at every point in the neighborhood defined by |z-2i|<1, except at z=2i, and at every point in the neighborhood defined by |z-(-2i)|<1, except at z=2i. In other words, f is analytic in the deleted neighborhoods 0<|z-2i|<1 and 0<|z+2i|<1.
- A singular point $z=z_0$ of a function f is **nonisolated** if every neighborhood of z_0 contains at least one singularity of f other than z_0 . Example: The branch point z=0 is a nonisolated singularity of Lnz since every neighborhood of z=0 contains points on the negative real axis.

A New Kind of Series

- If $z = z_0$ is a singularity of a function f, then certainly f cannot be expanded in a power series with z_0 as its center.
- About an isolated singularity $z = z_0$, it is still possible to represent f by a series involving both negative and nonnegative integer powers of $z z_0$, i.e.,

$$f(z) = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

• Example: Consider the function $f(z) = \frac{1}{z-1}$. The point z=1 is an isolated singularity of f and, consequently, the function cannot be expanded in a Taylor series centered at that point. Nevertheless, f can expanded in a series of the previous form that is valid for all z near 1: $f(z) = \cdots + \frac{0}{(z-1)^2} + \frac{1}{z-1} + 0 + 0 \cdot (z-1) + 0 \cdot (z-1)^2 + \cdots$. This series representation is valid for $0 < |z-1| < \infty$.

Principal Part and Analytic Part

Using summation notation, we can rewrite

$$f(z) = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k.$$

- The part with negative powers $\sum_{k=1}^{\infty} a_{-k} (z-z_0)^{-k} = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z-z_0)^k}$ is called the **principal part** of the series. It converges for $\left|\frac{1}{z-z_0}\right| < r^*$ or, equivalently, for $|z-z_0| > \frac{1}{r^*} = r$.
- The part consisting of the nonnegative powers $\sum_{k=0}^{\infty} a_k (z-z_0)^k$, is called the **analytic part** of the series. It converges for $|z-z_0| < R$.
- Thus, the sum converges when z satisfies both $|z z_0| > r$ and $|z z_0| < R$, i.e., when z is a point in an annular domain defined by $r < |z z_0| < R$.
- By summing over negative and nonnegative integers, we can rewrite $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$.

An Example

- The function $f(z) = \frac{\sin z}{z^4}$ is not analytic at the isolated singularity z = 0 and hence cannot be expanded in a Maclaurin series.
- However, sin z is an entire function having Maclaurin series

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \frac{z^9}{9!} - \cdots,$$

which converges for $|z| < \infty$.

• By dividing this power series by z^4 we obtain a series for f with negative and positive integer powers of z:

$$f(z) = \frac{\sin z}{z^4} = \underbrace{\frac{1}{z^3} - \frac{1}{31z} + \frac{z}{51} - \frac{z^3}{71} + \frac{z^5}{91} - \cdots}_{\text{analytic part}}$$

- The analytic part converges for $|z| < \infty$.
- The principal part is valid for |z| > 0.
- The series converges for all z, but z = 0, i.e., is valid for $0 < |z| < \infty$.

Laurent Series and Laurent's Theorem

• A series representation of a function f consisting of both negative and nonnegative powers of $z-z_0$ is called a **Laurent series** or a **Laurent expansion** of f about z_0 on the annulus $r < |z-z_0| < R$.

Theorem (Laurent's Theorem)

Let f be analytic within the annulus D defined by $r < |z - z_0| < R$. Then f has the series representation $f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$ valid for $r < |z - z_0| < R$.

The coefficients a_k are given by

$$a_k = \frac{1}{2\pi i} \oint_C \frac{f(s)}{(s-z_0)^{k+1}} ds,$$

 $k=0,\pm 1,\pm 2,\ldots$, where C is a simple closed curve that lies entirely within D and has z_0 in its interior.

Proof of Laurent's Theorem I

• Let C_1 and C_2 be concentric circles with center z_0 and radii r_1 and R_2 , where $r < r_1 < R_2 < R$. Let z be a fixed point in D that satisfies $r_1 < |z - z_0| < R_2$. By introducing a crosscut between C_2 and C_1 , Cauchy's formula gives $f(z) = \frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{s-z} ds - \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{s-z} ds$.

We can write
$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{s-z} ds = \sum_{k=0}^{\infty} a_k (z-z_0)^k$$
, where $a_k = \frac{1}{2\pi i} \oint_{C_2} \frac{f(s)}{(s-z_0)^{k+1}} ds$, $k = 0, 1, 2, \dots$ We have $-\frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{s-z} ds = \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{(z-z_0)-(s-z_0)} ds = \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{z-z_0} \left(\frac{1}{1-\frac{s-z_0}{z-z_0}}\right) ds = \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{z-z_0} \left(1 + \frac{s-z_0}{z-z_0} + \dots + \left(\frac{s-z_0}{z-z_0}\right)^{n-1} + \frac{(s-z_0)^n}{(z-s)(z-z_0)^{n-1}}\right) ds = \sum_{k=1}^{n} \frac{a_{-k}}{(z-z_0)^k} + R_n(z), \ a_{-k} = \frac{1}{2\pi i} \oint_{C_1} \frac{f(s)}{(s-z_0)^{-k+1}} ds, \\ R_n(z) = \frac{1}{2\pi i (z-z_0)^n} \oint_{C_1} \frac{f(s)(s-z_0)^n}{z-s} ds.$

Proof of Laurent's Theorem II

- Now let $d=|z-z_0|$ and let M denote the maximum value of |f(z)| on C_1 . Using $|s-z_0|=r_1$ and $|z-s|=|z-z_0-(s-z_0)|$ $\geq |z-z_0|-|s-z_0|=d-r_1$, the ML-inequality gives: $|R_n(z)|=\left|\frac{1}{2\pi i(z-z_0)^n}\oint_{C_1}\frac{f(s)(s-z_0)^n}{z-s}ds\right|\leq \frac{1}{2\pi d^n}\frac{Mr_1^n}{d-r_1}2\pi r_1=\frac{Mr_1}{d-r_1}\left(\frac{r_1}{d}\right)^n$. Because $r_1< d$, $\left(\frac{r_1}{d}\right)^n\to 0$ as $n\to\infty$, and so $|R_n(z)|\to 0$ as $n\to\infty$. Thus we have shown that $-\frac{1}{2\pi i}\oint_{C_1}\frac{f(s)}{s-z}ds=\sum_{k=1}^\infty a_{-k}(z-z_0)^k$.
- Therefore, overall we have

$$f(z) = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^k + \sum_{k=0}^{\infty} a_k (z - z_0)^k.$$

By summing over all integer powers,

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$$
, $a_k = \oint_C \frac{f(z)}{(z-z_0)^{k+1}} dz$, $k = 0, \pm 1, \pm 2, \dots$

Remarks

- In the case when $a_{-k} = 0$ for k = 1, 2, ..., the principal part is zero and the Laurent series reduces to a Taylor series.
- The annular domain $r < |z z_0| < R$ need not have a "ring" shape. Some other possible annular domains are:
 - (i) r = 0, R finite; In this case, the series converges in $0 < |z z_0| < R$, i.e., the domain is a punctured open disk.
 - (ii) $r \neq 0$, $R = \infty$; In this case, the annular domain is $r < |z z_0|$ and consists of all points exterior to the circle $|z z_0| = r$.
 - (iii) r = 0, $R = \infty$; In this case, the domain is defined by $0 < |z z_0|$. This represents the entire complex plane except the point z_0 .
- Finding the Laurent series of a function in a specified annular domain is generally difficult, but in many instances we can obtain a desired Laurent series by either
 - employing a known power series expansion of a function; or by
 - creative manipulation of a suitably chosen geometric series.

Finding Laurent Expansions I

- Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for the following annular domains.
 - (a) 0 < |z| < 1 (b) 1 < |z| (c) 0 < |z 1| < 1 (d) 1 < |z 1|.
- In parts (a) and (b) we want only powers of z, whereas in parts (c) and (d) we want powers of z-1.
- (a) $f(z) = -\frac{1}{z} \frac{1}{1-z} = -\frac{1}{z} \left(1 + z + z^2 + z^3 + \cdots\right)$. The infinite series in the brackets converges for |z| < 1, but after we multiply this expression by $\frac{1}{z}$, the resulting series $f(z) = -\frac{1}{z} 1 z z^2 z^3 \cdots$ converges for 0 < |z| < 1.
- (b) To obtain a series that converges for 1<|z|, we start by constructing a series that converges for |1/z|<1. We write the given function $f(z)=\frac{1}{z^2}\frac{1}{1-\frac{1}{z}}=\frac{1}{z^2}\left(1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}+\cdots\right)$. The series in the brackets converges for $|\frac{1}{z}|<1$ or equivalently for 1<|z|. Thus, the required Laurent series is $f(z)=\frac{1}{z^2}+\frac{1}{z^3}+\frac{1}{z^4}+\frac{1}{z^5}+\cdots$.

Finding Laurent Expansions I

- (c) We add and subtract 1 in the denominator: $f(z) = \frac{1}{(1-1+z)(z-1)} = \frac{1}{z-1}\frac{1}{1+(z-1)} = \frac{1}{z-1}\left(1-(z-1)+(z-1)^2-(z-1)^3+\cdots\right) = \frac{1}{z-1}-1+(z-1)-(z-1)^2+\cdots$. The requirement that $z\neq 1$ is equivalent to 0<|z-1|, and the geometric series in brackets converges for |z-1|<1. Thus, the last series converges for z satisfying 0<|z-1|<1.
- (d) As in part (b), $f(z) = \frac{1}{z-1} \frac{1}{1+(z-1)} = \frac{1}{(z-1)^2} \frac{1}{1+\frac{1}{z-1}} = \frac{1}{(z-1)^2} \left(1 \frac{1}{z-1} + \frac{1}{(z-1)^2} \frac{1}{(z-1)^3} + \cdots\right) = \frac{1}{(z-1)^2} \frac{1}{(z-1)^3} + \frac{1}{(z-1)^4} \frac{1}{(z-1)^5} + \cdots$. Because the series within the brackets converges for $|\frac{1}{z-1}| < 1$, the final series converges for 1 < |z-1|.

More Laurent Series Expansions I

- Expand $f(z) = \frac{1}{(z-1)^2(z-3)}$ in a Laurent series valid for
 - (a) 0 < |z 1| < 2 (b) 0 < |z 3| < 2.
- (a) We need to express z-3 in terms of z-1. This can be done by writing $f(z)=\frac{1}{(z-1)^2(z-3)}=\frac{1}{(z-1)^2}\frac{1}{-2+(z-1)}=\frac{-1}{2(z-1)^2}\frac{1}{1-\frac{z-1}{2}}=\frac{-1}{2(z-1)^2}\left(1+\frac{z-1}{2}+\frac{(z-1)^2}{2^2}+\frac{(z-1)^3}{2^3}+\cdots\right)=\frac{1}{2(z-1)^2}-\frac{1}{4(z-1)}-\frac{1}{8}-\frac{1}{16}(z-1)-\cdots$
- (b) To obtain powers of z-3, we write z-1=2+(z-3) and $f(z)=\frac{1}{(z-1)^2(z-3)}=\frac{1}{z-3}[2+(z-3)]^{-2}=\frac{1}{4(z-3)}[1+\frac{z-3}{2}]^{-2}=\frac{1}{4(z-3)}\left(1+\frac{(-2)}{1!}\left(\frac{z-3}{2}\right)+\frac{(-2)(-3)}{2!}\left(\frac{z-3}{2}\right)^2+\frac{(-2)(-3)(-4)}{3!}\left(\frac{z-3}{2}\right)^3+\cdots\right).$

The series in the brackets is valid for $\left|\frac{z-3}{2}\right| < 1$ or |z-3| < 2. Multiplying by $\frac{1}{4(z-3)}$ gives a series that is valid for 0 < |z-3| < 2: $f(z) = \frac{1}{4(z-3)} - \frac{1}{4} + \frac{3}{16}(z-3) - \frac{1}{8}(z-3)^2 + \cdots$

More Laurent Series Expansions II

• Expand $f(z) = \frac{8z+1}{z(1-z)}$ in a Laurent series valid for 0 < |z| < 1. By partial fractions we can rewrite f as $f(z) = \frac{8z+1}{z(1-z)} = \frac{1}{z} + \frac{9}{1-z}$. Now we have

$$\frac{9}{1-z} = 9 + 9z + 9z^2 + \cdots$$

The foregoing geometric series converges for |z| < 1, but after we add the term $\frac{1}{2}$ to it, the resulting Laurent series

$$f(z) = \frac{1}{z} + 9 + 9z + 9z^2 + \cdots$$

is valid for 0 < |z| < 1.

More Laurent Series Expansions III

- Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for 1 < |z-2| < 2. The center z=2 is a point of analyticity of the function f. Our goal now is to find two series involving integer powers of z-2, one converging for 1 < |z-2| and the other converging for |z-2| < 2. Decompose f into partial fractions: $f(z) = \frac{-1}{z} + \frac{1}{z-1} = f_1(z) + f_2(z)$.
 - $f_1(z) = \frac{-1}{z} = \frac{-1}{2+z-2} = \frac{-1}{2} \frac{1}{1+\frac{z-2}{2}} = \frac{-1}{2} \left(1 \frac{z-2}{2} + \frac{(z-2)^2}{2^2} \cdots \right) = \frac{-1}{2} + \frac{z-2}{2^2} \frac{(z-2)^2}{2^3} + \frac{(z-2)^3}{2^4} \cdots$. This series converges for $|\frac{z-2}{2}| < 1$ or |z-2| < 2.
 - $f_2(z) = \frac{1}{z-1} = \frac{1}{1+z-2} = \frac{1}{z-2} \frac{1}{1+\frac{1}{z-2}} = \frac{1}{z-2} \left(1 \frac{1}{z-2} + \frac{1}{(z-2)^2} \cdots\right) = \frac{1}{z-2} \frac{1}{(z-2)^2} + \frac{1}{(z-2)^3} \frac{1}{(z-2)^4} + \cdots$. It converges for $\left|\frac{1}{z-2}\right| < 1$ or 1 < |z-2|.

Thus, we get $f(z) = \cdots - \frac{1}{(z-2)^4} + \frac{1}{(z-2)^3} - \frac{1}{(z-2)^2} + \frac{1}{z-2} - \frac{1}{2} + \frac{z-2}{2^2} - \frac{(z-2)^2}{2^3} + \frac{(z-2)^3}{2^4} - \cdots$. This representation is valid for z satisfying 1 < |z-2| < 2.

More Laurent Series Expansions IV

• Expand $f(z) = \frac{e^3}{z}$ in a Laurent series valid for $0 < |z| < \infty$. We know that for $|z| < \infty$,

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$

We obtain the Laurent series for f by simply replacing z by $\frac{3}{z}$, when $z \neq 0$:

$$e^{3/z} = 1 + \frac{3}{z} + \frac{3^2}{2!z^2} + \frac{3^3}{3!z^3} + \cdots$$

This series is valid for $z \neq 0$, that is, for $0 < |z| < \infty$.

Remarks

(i) Replacing the complex variable s with the usual symbol z, we see that when k=-1, the formula for the Laurent series coefficients yields

$$a_{-1} = \frac{1}{2\pi i} \oint_C f(z) dz,$$

or more important,

$$\oint_C f(z)dz = 2\pi i a_{-1}.$$

(ii) Regardless how a Laurent expansion of a function f is obtained in a specified annular domain it is the Laurent series; i.e., the series we obtain is unique.

Subsection 4

Zeros and Poles

Review of Laurent Series

• Suppose $z=z_0$ is an isolated singularity of a complex function f, and that

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

is the Laurent series representation of f valid for the punctured open disk $0 < |z - z_0| < R$.

• The part of the series with the negative powers of $z - z_0$, i.e.,

$$\sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k}$$

is the principal part of the series.

• We will classify the isolated singularity $z = z_0$ according to the number of terms in the principal part.

Classification of Isolated Singular Points

• An isolated singular point $z=z_0$ of a complex function f is given a classification depending on whether the principal part of its Laurent expansion

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

contains zero, a finite number, or an infinite number of terms:

- (i) If the principal part is zero, that is, all the coefficients a_{-k} are zero, then $z = z_0$ is called a **removable singularity**.
- (ii) If the principal part contains a finite number of nonzero terms, then $z=z_0$ is called a **pole**. If, in this case, the last nonzero coefficient in $\sum_{k=1}^{\infty} \frac{a_{-k}}{(z-z_0)^k}$ is a_{-n} , $n\geq 1$, then $z=z_0$ is called a **pole of order** n. If $z=z_0$ is a pole of order 1, then the principal part contains exactly one term with coefficient a_{-1} and the pole is called a **simple pole**.
- (iii) If the principal part contains infinitely many nonzero terms, then $z=z_0$ is called an **essential singularity**.

Form of Laurent Series Based on Classification

• The form of a Laurent series for a function f, when $z=z_0$ is one of the various types of isolated singularities is summarized below:

$z = z_0$	Laurent Series for $0 < z - z_0 < R$
Removable Singularity	$a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$
Pole of Order n	$\begin{vmatrix} \frac{a_{-n}}{(z-z_0)^n} + \frac{a_{-(n-1)}}{(z-z_0)^{n-1}} + \dots + \frac{a_{-1}}{z-z_0} \\ +a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots \end{vmatrix}$
Simple Pole	$\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\cdots$
Essential Singularity	$ \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} $ $ + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots $

A Removable Singularity

• Recall the Maclaurin series for $\sin z$: $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$. Divide by z to get

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots$$

Thus, all the coefficients in the principal part of the Laurent series are zero. Hence, z=0 is a removable singularity of the function $f(z)=\frac{\sin z}{z}$.

• If a function f has a removable singularity at $z = z_0$, then we can supply an appropriate definition for the value of $f(z_0)$ so that f becomes analytic at $z = z_0$.

Example: Since the right-hand side of the series above is 1 when we set z=0, it makes sense to define f(0)=1. Hence the function $f(z)=\frac{\sin z}{z}$ is now defined and continuous at every complex number z. Indeed, f is also analytic at z=0 because it is represented by the Taylor series $1-\frac{z^2}{3!}+\frac{z^4}{5!}-\cdots$ centered at 0 (a Maclaurin series).

Poles and Essential Singularities

(a) Dividing $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots$ by z^2 shows that, for $0 < |z| < \infty$,

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \cdots$$

Since $a_{-1} \neq 0$, z = 0 is a simple pole of the function $f(z) = \frac{\sin z}{z^2}$. Similarly, z = 0 is a pole of order 3 of the function $f(z) = \frac{\sin z}{z^4}$.

(b) The Laurent series of $f(z) = \frac{1}{(z-1)^2(z-3)}$ for 0 < |z-1| < 2:

$$f(z) = \overbrace{-\frac{1}{2(z-1)^2} - \frac{1}{4(z-1)}}^{\text{principal part}} - \frac{1}{8} - \frac{z-1}{16} - \cdots$$

Since $a_{-2}=-\frac{1}{2}\neq 0$, we conclude that z=1 is a pole of order 2.

(c) The principal part of the Laurent expansion of $f(z)=e^{3/z}$ valid for $0<|z|<\infty$ contains an infinite number of nonzero terms. This shows that z=0 is an essential singularity of f.

Zeros and Multiplicities

- A number z_0 is a **zero** of a function f if $f(z_0) = 0$.
- We say that an analytic function f has a **zero of order** n at $z=z_0$ if z_0 is a zero of f and of its first n-1 derivatives, but not of its n-th derivative, i.e., $f(z_0)=0$, $f'(z_0)=0$, $f''(z_0)=0$, ..., $f^{(n-1)}(z_0)=0$, but $f^{(n)}(z_0)\neq 0$.
- A zero of order n is also referred to as a **zero of multiplicity** n. Example: Consider $f(z) = (z 5)^3$.

$$f(5) = 0$$
, $f'(5) = 0$, $f''(5) = 0$, but $f'''(5) = 6 \neq 0$.

Thus, f has a zero of order (or multiplicity) 3 at $z_0 = 5$.

• A zero of order 1 is called a simple zero.

Order of Zeros

Theorem (Zero of Order n)

A function f that is analytic in some disk $|z-z_0| < R$ has a zero of order n at $z=z_0$ if and only if f can be written $f(z)=(z-z_0)^n\phi(z)$, where ϕ is analytic at $z=z_0$ and $\phi(z_0)\neq 0$.

Partial Proof ("only if" Part): Given that f is analytic at z_0 , it can be expanded in a Taylor series that is centered at z_0 and is convergent for $|z-z_0| < R$. Since, in a Taylor series $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$, $a_k = \frac{f^{(k)}(z_0)}{k!}$, $k = 0, 1, \ldots$, it follows that the first n terms are zero. So $f(z) = a_n(z-z_0)^n + a_{n+1}(z-z_0)^{n+1} + a_{n+2}(z-z_0)^{n+2} + \cdots = (z-z_0)^n \left(a_n + a_{n+1}(z-z_0) + a_{n+2}(z-z_0)^2 + \cdots\right)$. Letting $\phi(z) = a_n + a_{n+1}(z-z_0) + a_{n+2}(z-z_0)^2 + \cdots$, we conclude $f(z) = (z-z_0)^n \phi(z)$, where ϕ is an analytic function, such that $\phi(z_0) = a_n \neq 0$ because $a_n = \frac{f^{(n)}(z_0)}{n!} \neq 0$.

Computing the Order of a Zero Using a Power Series

• The analytic function $f(z) = z \sin z^2$ has a zero at z = 0. If we replace z by z^2 in the Maclaurin series for $\sin z$, we obtain

$$\sin z^2 = z^2 - \frac{z^6}{3!} + \frac{z^{10}}{5!} - \cdots$$

Then, by factoring z^2 out, we can rewrite f as

$$f(z) = z \sin z^2 = z^3 \phi(z),$$

where $\phi(z) = 1 - \frac{z^4}{3!} + \frac{z^8}{5!} - \cdots$ and $\phi(0) = 1$. This shows that z = 0 is a zero of order 3 of f.

Poles of Order n

 A pole of order n may be characterized analogously to the characterization of zeros:

Theorem (Pole of Order n)

A function f analytic in a punctured disk $0 < |z - z_0| < R$ has a pole of order n at $z = z_0$ if and only if f can be written $f(z) = \frac{\phi(z)}{(z-z_0)^n}$, where ϕ is analytic at $z = z_0$ and $\phi(z_0) \neq 0$.

• Partial Proof ("only if" Part): Since f is assumed to have a pole of order n at z_0 , it can be expanded in a Laurent series $f(z) = \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \cdots$, valid in some punctured disk $0 < |z-z_0| < R$. By factoring out $\frac{1}{(z-z_0)^n}$, $f(z) = \frac{\phi(z)}{(z-z_0)^n}$, where $\phi(z) = a_{-n} + \cdots + a_{-2}(z-z_0)^{n-2} + a_{-1}(z-z_0)^{n-1} + a_0(z-z_0)^n + a_1(z-z_0)^{n+1} + \cdots$. This is a power series valid for the open disk $|z-z_0| < R$. Since $z=z_0$ is a pole of order n of f, $a_{-n} \neq 0$.

Zeros and Poles

- A zero $z=z_0$ of an analytic function f is isolated in the sense that there exists some neighborhood of z_0 for which $f(z) \neq 0$ at every point z in that neighborhood except at $z=z_0$.
- As a consequence, if z_0 is a zero of a nontrivial analytic function f, then the function $\frac{1}{f(z)}$ has an isolated singularity at the point $z=z_0$.

Theorem (Pole of Order n)

If the functions g and h are analytic at $z=z_0$ and h has a zero of order n at $z=z_0$ and $g(z_0)\neq 0$, then the function $f(z)=\frac{g(z)}{h(z)}$ has a pole of order n at $z=z_0$.

• Because h has a zero of order n, $h(z)=(z-z_0)^n\phi(z)$, where ϕ is analytic at $z=z_0$ and $\phi(z_0)\neq 0$. Thus, f can be written $f(z)=\frac{g(z)/\phi(z)}{(z-z_0)^n}$. Since g and ϕ are analytic at $z=z_0$ and $\phi(z_0)\neq 0$, it follows that the function g/ϕ is analytic at z_0 and $g(z_0)/\phi(z_0)\neq 0$. We conclude that the function f has a pole of order f at f and f are concluded that the function f has a pole of order f and f and f and f are concluded that the function f has a pole of order f and f and f are concluded that the function f has a pole of order f and f are concluded that the function f has a pole of order f and f are concluded that the function f has a pole of order f and f are concluded that the function f has a pole of order f and f are concluded that the function f has a pole of order f and f are concluded that f and f are concluded that the function f has a pole of order f and f are concluded that f and f are concluded that f are concluded that f and f are concluded that f and f are concluded that f and f are concluded that f are concluded that f are concluded that f and f are concluded that f and f are concluded that f are concluded that f are concluded that f are concluded that f and f are concluded that f and f are concluded that f are concluded that f and f are concluded that f are concluded that f are concluded that f and f are concluded that f are con

Examples

(a) Inspection of the rational function

$$f(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}$$

shows that the denominator has zeros of order 1 at z=1 and z=-5, and a zero of order 4 at z=2. Since the numerator is not zero at any of these points, it follows from the theorem that f has simple poles at z=1 and z=-5, and a pole of order 4 at z=2.

(b) z = 0 is a zero of order 3 of $z \sin z^2$. The reciprocal function

$$f(z) = \frac{1}{z \sin z^2}$$

has a pole of order 3 at z = 0.

Remarks

- (i) If a function f has a pole at $z=z_0$, then $|f(z)|\to\infty$ as $z\to z_0$ from any direction. Thus, we can write $\lim_{z\to z_0} f(z)=\infty$.
- (ii) A function f is **meromorphic** if it is analytic throughout a domain D, except possibly for poles in D. It can be proved that a meromorphic function can have at most a finite number of poles in D.

E.g., the rational function

$$f(z) = \frac{1}{z^2 + 1}$$

is meromorphic in the complex plane.

Subsection 5

Residues and Residue Theorem

Residue

- If a complex function f has an isolated singularity at a point z_0 , then f has a Laurent series representation $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1(z-z_0) + \cdots$, which converges for all z in some deleted neighborhood $0 < |z-z_0| < R$ of z_0 .
- We now focus on the coefficient a_{-1} and its importance in the evaluation of contour integrals.
- The coefficient a_{-1} is called the **residue** of the function f at the isolated singularity z_0 and denoted

$$a_{-1}=\operatorname{Res}(f(z),z_0).$$

• Recall, if the principal part of the series valid for $0 < |z - z_0| < R$ contains a finite number of terms with a_{-n} the last nonzero coefficient, then z_0 is a pole of order n; if the principal part contains an infinite number of terms with nonzero coefficients, then z_0 is an essential singularity.

Examples of Residues

(a) We have seen that z=1 is a pole of order two of the function $f(z)=\frac{1}{(z-1)^2(z-3)}$. The Laurent series valid for the deleted neighborhood 0<|z-1|<2 is

$$f(z) = -\frac{1/2}{(z-1)^2} + \frac{-1/4}{z-1} - \frac{1}{8} - \frac{z-1}{16} - \cdots$$

Thus, the coefficient of $\frac{1}{z-1}$ is $a_{-1} = \operatorname{Res}(f(z), 1) = -\frac{1}{4}$.

(b) We also saw that z=0 is an essential singularity of $f(z)=e^{3/z}$. Its Laurent series is

$$e^{3/z} = 1 + \frac{3}{z} + \frac{3^2}{2!z^2} + \frac{3^3}{3!z^3} + \cdots, \ 0 < |z| < \infty.$$

Hence, the coefficient of $\frac{1}{z}$ is $a_{-1} = \text{Res}(f(z), 0) = 3$.

Residue at a Simple Pole

- We examine ways of obtaining a_{-1} when z_0 is a pole of a function f, without the necessity of expanding f in a Laurent series at z_0 .
- We begin with the residue at a simple pole:

Theorem (Residue at a Simple Pole)

If f has a simple pole at $z = z_0$, then

$$Res(f(z), z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$

• Since f has a simple pole at $z=z_0$, its Laurent expansion convergent on a punctured disk $0<|z-z_0|< R$ has the form

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots,$$

where $a_{-1} \neq 0$. By multiplying both sides of this series by $z - z_0$ and then taking the limit as $z \to z_0$ we obtain $\lim_{z \to z_0} (z - z_0) f(z) = \lim_{z \to z_0} [a_{-1} + a_0(z - z_0) + a_1(z - z_0)^2 + \cdots] = a_{-1} = \text{Res}(f(z), z_0)$.

Residue at a Pole of Order n

Theorem (Residue at a Pole of Order n)

If f has a pole of order n at $z = z_0$, then

$$\operatorname{Res}(f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z).$$

• Since f has a pole of order n at $z=z_0$, its Laurent expansion, convergent on a punctured disk $0<|z-z_0|< R$, has the form $f(z)=\frac{a_{-n}}{(z-z_0)^n}+\cdots+\frac{a_{-2}}{(z-z_0)^2}+\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+\cdots$, where $a_{-n}\neq 0$. We multiply by $(z-z_0)^n$, $(z-z_0)^nf(z)=a_{-n}+\cdots+a_{-2}(z-z_0)^{n-2}+a_{-1}(z-z_0)^{n-1}+a_0(z-z_0)^n+a_1(z-z_0)^{n+1}+\cdots$ and then differentiate n-1 times:

$$\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^n f(z) = (n-1)!a_{-1} + n!a_0(z-z_0) + \cdots$$

Therefore, as $z \to z_0$, $\lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z) = (n-1)! a_{-1}$.

Finding Residue at a Pole

• The function $f(z) = \frac{1}{(z-1)^2(z-3)}$ has a simple pole at z=3 and a pole of order 2 at z=1. Use the theorems to find the residues. Since z=3 is a simple pole,

$$Res(f(z),3) = \lim_{z \to 3} (z-3)f(z) = \lim_{z \to 3} \frac{1}{(z-1)^2} = \frac{1}{4}.$$

At the pole of order 2,

$$\operatorname{Res}(f(z),1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} (z-1)^2 f(z) = \lim_{z \to 1} \frac{d}{dz} \frac{1}{z-3}$$
$$= \lim_{z \to 1} \frac{-1}{(z-3)^2} = -\frac{1}{4}.$$

Second Method for Computing a Residue at a Simple Pole

• Suppose a function f can be written as a quotient $f(z) = \frac{g(z)}{h(z)}$, where g and h are analytic at $z = z_0$. If $g(z_0) \neq 0$ and if the function h has a zero of order 1 at z_0 , then f has a simple pole at $z = z_0$ and

$$Res(f(z), z_0) = \frac{g(z_0)}{h'(z_0)}.$$

• Since h has a zero of order 1 at z_0 , we must have $h(z_0)=0$ and $h'(z_0)\neq 0$. By definition of the derivative, $h'(z_0)=\lim_{z\to z_0}\frac{h(z)-h(z_0)}{z-z_0}=\lim_{z\to z_0}\frac{h(z)}{z-z_0}.$ Therefore, $\operatorname{Res}(f(z),z_0)=\lim_{z\to z_0}(z-z_0)\frac{g(z)}{h(z)}=\lim_{z\to z_0}\frac{g(z)}{h(z)}=\frac{g(z_0)}{h'(z_0)}.$

Applying the Second Method

• The polynomial $z^4 + 1$ can be factored as

$$(z-z_1)(z-z_2)(z-z_3)(z-z_4),$$

where z_1 , z_2 , z_3 , and z_4 are the four distinct roots of the equation $z^4+1=0$ (or, equivalently, the four fourth roots of -1). It follows that the function $f(z)=\frac{1}{z^4+1}$ has four simple poles. By the root formula $z_1=e^{\pi i/4}$, $z_2=e^{3\pi i/4}$, $z_3=e^{5\pi i/4}$, and $z_4=e^{7\pi i/4}$. We compute the residues:

$$\begin{aligned} & \operatorname{Res}(f(z), z_1) = \frac{1}{4z_1^3} = \frac{1}{4}e^{-3\pi i/4} = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i \\ & \operatorname{Res}(f(z), z_2) = \frac{1}{4z_2^3} = \frac{1}{4}e^{-9\pi i/4} = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i \\ & \operatorname{Res}(f(z), z_3) = \frac{1}{4z_3^3} = \frac{1}{4}e^{-15\pi i/4} = \frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i \\ & \operatorname{Res}(f(z), z_4) = \frac{1}{4z_4^3} = \frac{1}{4}e^{-21\pi i/4} = -\frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i. \end{aligned}$$

Using the Original Formula

- We could have calculated each of the residues of $f(z) = \frac{1}{z^4+1}$ using $\operatorname{Res}(f(z), z_i) = \lim_{z \to z_i} (z z_i) f(z)$.
- E.g., at z₁,

$$\operatorname{Res}(f(z), z_1) = \lim_{z \to z_1} (z - z_1) \frac{1}{(z - z_1)(z - z_2)(z - z_3)(z - z_4)} \\
= \frac{1}{(z_1 - z_2)(z_1 - z_3)(z_1 - z_4)} \\
= \frac{1}{(e^{\pi i/4} - e^{3\pi i/4})(e^{\pi i/4} - e^{5\pi i/4})(e^{\pi i/4} - e^{7\pi i/4})}.$$

In simplifying the denominator of the last expression considerably more algebra is involved than using the second method.

Cauchy's Residue Theorem

• Complex integrals $\oint_C f(z)dz$ can sometimes be evaluated by summing the residues at the isolated singularities of f within C:

Theorem (Cauchy's Residue Theorem)

Let D be a simply connected domain and C a simple closed contour lying entirely within D. If a function f is analytic on and within C, except at a finite number of isolated singular points z_1, z_2, \ldots, z_n within C, then

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n \text{Res}(f(z), z_k).$$

• Suppose C_1, C_2, \ldots, C_n are circles centered at z_1, z_2, \ldots, z_n , respectively, such that C_k has a radius r_k small enough so that C_1, C_2, \ldots, C_n are mutually disjoint and are interior to the simple closed curve C. We saw that $\oint_{C_k} f(z)dz = 2\pi i \mathrm{Res}(f(z), z_k)$, whence, we have $\oint_C f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z)dz = 2\pi i \sum_{k=1}^n \mathrm{Res}(f(z), z_k)$.

Evaluation by the Residue Theorem I

- Evaluate $\oint_C \frac{1}{(z-1)^2(z-3)} dz$, where
 - (a) the contour C is the rectangle defined by x = 0, x = 4, y = -1, y = 1;
 - (b) the contour C is the circle |z| = 2.
- (a) Since both z=1 and z=3 are poles within the rectangle, we have $\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i [\operatorname{Res}(f(z),1) + \operatorname{Res}(f(z),3)].$ We found these residues already: $\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i (-\frac{1}{4} + \frac{1}{4}) = 0.$
- (b) Since only the pole z=1 lies within the circle |z|=2, we have $\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i \mathrm{Res}(f(z),1) = 2\pi i (-\frac{1}{4}) = -\frac{\pi}{2}i.$

Evaluation by the Residue Theorem II

Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$, where the contour C is the circle |z-i|=2. By factoring the denominator $z^2+4=(z-2i)(z+2i)$, we see that the integrand has simple poles at -2i and 2i. Only 2i lies within the contour C. Thus, $\oint_C \frac{2z+6}{z^2+4} dz = 2\pi i \text{Res}(f(z),2i)$. But $\text{Res}(f(z),2i) = \lim_{z\to 2i} (z-2i) \frac{2z+6}{(z-2i)(z+2i)} = \frac{6+4i}{4i} = \frac{3+2i}{2i}$. Hence, $\oint_C \frac{2z+6}{z^2+4} dz = 2\pi i \left(\frac{3+2i}{2i}\right) = \pi(3+2i)$.

Evaluation by the Residue Theorem III

• Evaluate $\oint_C \frac{e^z}{z^4 + 5z^3} dz$, where the contour C is the circle |z| = 2.

Writing the denominator as $z^4 + 5z^3 = z^3(z+5)$ reveals that the integrand f(z) has a pole of order 3 at z=0 and a simple pole at z=-5. Only the pole z=0 lies within the given contour. Thus, we have

$$\oint_C \frac{e^z}{z^4 + 5z^3} dz = 2\pi i \operatorname{Res}(f(z), 0) = 2\pi i \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} z^3 \cdot \frac{e^z}{z^3 (z+5)} = \pi i \lim_{z \to 0} \frac{d}{dz} \frac{e^z (z+4)}{(z+5)^2} = \pi i \lim_{z \to 0} \frac{(z^2 + 8z + 17)e^z}{(z+5)^3} = \frac{17\pi}{125} i.$$

Evaluation by the Residue Theorem IV

• Evaluate $\oint_C \tan z dz$, where the contour C is the circle |z|=2. The integrand $f(z)=\tan z=\frac{\sin z}{\cos z}$ has simple poles at the points where $\cos z=0$. We saw that the only zeros of $\cos z$ are the real numbers $z=\frac{(2n+1)\pi}{2}$, $n=0,\pm 1,\pm 2,\ldots$ Only $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ are within the circle |z|=2. Thus, we have

$$\oint_C \tan z dz = 2\pi i [\text{Res}(f(z), -\frac{\pi}{2}) + \text{Res}(f(z), \frac{\pi}{2})]. \text{ With } f(z) = \frac{g(z)}{h(z)},$$
 where $g(z) = \sin z$, $h(z) = \cos z$, and $h'(z) = -\sin z$, we get
$$\text{Res}(f(z), -\frac{\pi}{2}) = \frac{\sin(-\frac{\pi}{2})}{-\sin(-\frac{\pi}{2})} = -1. \text{ Res}(f(z), \frac{\pi}{2}) = \frac{\sin(\frac{\pi}{2})}{-\sin(\frac{\pi}{2})} = -1.$$
 Therefore, $\oint_C \tan z dz = 2\pi i [-1 - 1] = -4\pi i$.

Evaluation by the Residue Theorem V

• Evaluate $\oint_C e^{3/z} dz$, where the contour C is the circle |z| = 1.

We saw that z=0 is an essential singularity of the integrand $f(z)=e^{3/z}$. So we cannot use the formulas

$$\operatorname{Res}(f(z),z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

or

$$\operatorname{Res}(f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z)$$

to find the residue of f at that point. Nevertheless, the Laurent series of f at z=0 gives

$$Res(f(z), 0) = 3.$$

Hence, we have

$$\oint_C e^{3/z} dz = 2\pi i \text{Res}(f(z), 0) = 2\pi i (3) = 6\pi i.$$