<u>Turma:</u>	Nota:

MA 327 Álgebra Linear

Segundo Semestre de 2008

EXAME

Nome:	RA:

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
$T \ o \ t \ a \ l$	

Questão 1. (2.5 Pontos)

Considere o subconjunto U do espaço vetorial real $M_n(\mathbb{R})$ dado por:

$$U = \{ A \in \mathbb{M}_n(\mathbb{R}) / A^t = A \in tr(A) = 0 \}.$$

- (a) Mostre que U é um subespaço vetorial de $\mathbb{M}_n(\mathbb{R})$.
- (b) No caso particular do espaço vetorial $M_3(\mathbb{R})$, exiba uma base para o subespaço U.

Questão 2. (2.5 Pontos)

Considere os subespaços W_1 e W_2 do espaço vetorial real \mathbb{R}^3 dados por:

$$W_1 = \{(x, y, z) / 3x - 2y + z = 0\}$$
 e $W_2 = \{(x, y, z) / 2x + y - 4z = 0\}.$

- (a) Determine a dimensão dos subespaços $W_1 + W_2$ e $W_1 \cap W_2$.
- (b) Encontre uma base de \mathbb{R}^3 que contenha uma base do subespaço W_1 e também uma base do subespaço W_2 .

Questão 3. (2.5 Pontos)

Considere o operador linear $T: \mathcal{P}_1(\mathbb{R}) \longrightarrow \mathcal{P}_1(\mathbb{R})$ dado por:

$$T(p(x)) = p'(x) + (x + 1)p(1).$$

Sejam $\beta = \{1, 7-4x\}$ e $\gamma = \{q(x), 2x-1\}$ bases para $\mathcal{P}_1(\mathbb{R})$ tais que

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 3 & s \\ -1 & 1 \end{bmatrix}.$$

- (a) Determine o polinômio q(x) e o parâmetro $s \in \mathbb{R}$.
- (b) T é um automorfismo? Em caso afirmativo, determine o automorfismo inverso.

Questão 4. (Turma E)

(2.5 Pontos)

Seja W o subespaço de \mathbb{R}^4 dado por:

$$W = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y = 0 \text{ e } 2x - y + z = 0 \}.$$

Determine uma base ortogonal para cada um dos subespaços $W \in W^{\perp}$, com relação ao produto interno usual de \mathbb{R}^4 .

Questão 4. $(Turmas\ C\ e\ D)$ (2.5 Pontos)

Considere o espaço vetorial real $\mathcal{P}_2(\mathbb{R})$. Determine os autovalores e os autovetores do operador linear T sobre $\mathcal{P}_2(\mathbb{R})$ definido por:

$$T(p(x)) = p(x) + (x+1)p'(x)$$
.