*Se tiene una grilla con $m \times n$ posiciones, cada una de las cuales tiene un número entero en [0,k), para un $k \in \mathbb{N}$ dado. Dado un valor objetivo $w \in \mathbb{N}$ y una posición inicial (x_1,y_1) , que tiene un valor inicial v_1 , queremos determinar la mínima cantidad de movimientos horizontales y verticales que transformen v_1 en w, teniendo en cuenta que el i-ésimo movimiento transforma a v_i por $v_{i+1} = (v_i + z)$ mód k, donde z es el valor que se encuentra en la casilla de destino del movimiento. Por ejemplo, para la siguiente grilla y k = 10, se puede transformar $v_1 = 1$ en w = 0 con tres movimientos $1 \to 6 \to 4 \to 9$, aunque la solución óptima es vía el camino $1 \to 3 \to 6$.

1	3	6
6	7	4
4	9	3

Modelar este problema como un problema de grafos que se resuelva usando BFS en O(kmn) tiempo.

Los nodos serán (x_i,y_i,v_i) tal que x,y es la posición en la grilla, $v_i\in[0,k),k\in\mathbb{N}$ es el valor actual. Suponiendo que $z_{i,j}$ es el valor asociado a su respectiva posición (x_i,y_j) en la grilla.

Las aristas son no pesadas, con nodos (x_i,y_i,v_i) hacia $(x_{i+1},y_i,(v_i+z) \bmod k)$ y $(x_i,y_{i+1},(v_i+z) \bmod k)$ con $x \le n,y \le m$ (si se va de rango no hay arista)

Para la complejidad, es la misma que en el primer taller, tenemos 2mn-m-n chances de ir vertical u horizontal, y nm casillas en total, por lo que esto es O(nm). Nosotros le agregamos además un parámetro k que en el peor caso nos suma k nodos por cada x,y, por lo que es O(knm).

El problema se resuelve haciendo BFS desde x_1, y_1 , devolviendo un vector de padres. Luego se itera sobre el vector de padres buscando uno con valor congruente a 0 módulo k, y desde ese reconstruimos hasta v usando el vector de padres.