

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1999年10月20日

出 願 番 号 Application Number:

平成11年特許願第297922号

RECEIVED

出 **類** Applicant (s):

日本ビクター株式会社

NOV 1 4 2000

Technology Center 2600

人

GERTIFIED COPY OF PRIORITY DOCUMENT

2000年 9月 1日

特 許 庁 長 官 Commissioner, Patent Office 及川耕

特平11-297922

【書類名】 特許願

【整理番号】 411001519

【提出日】 平成11年10月20日

【あて先】 特許庁長官殿

【国際特許分類】 G09G 3/20

G09G 3/28

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区守屋町3丁目12番地 日本ビ

クター株式会社内

【氏名】 增地 重博

【特許出願人】

【識別番号】 000004329

【氏名又は名称】 日本ビクター株式会社

【代表者】 守隨 武雄

【電話番号】 045-450-2423

【手数料の表示】

【予納台帳番号】 003654

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 表示装置の誤差拡散処理方法

【特許請求の範囲】

【請求項1】

第1のビット数を有するR, G, B信号を前記第1のビット数よりもビット数の小さい第2のビット数に削減するに際し、R, G, B信号のドットで構成されるそれぞれの注目画素における前記第1のビット数と前記第2のビット数との差分である前記第1のビット数の下位ビットの少なくとも一部に所定の誤差拡散係数を乗じた誤差データを前記注目画素の複数の周辺画素に拡散する表示装置の誤差拡散処理方法において、

前記注目画素におけるR, G, B信号の内の少なくとも1つの信号に対する誤差拡散に用いるビット数を、他の信号に対する誤差拡散に用いるビット数と異ならせたことを特徴とする表示装置の誤差拡散処理方法。

【請求項2】

誤差拡散に用いるビット数が共通の信号に対する両者の誤差拡散係数を互いに 異ならせたことを特徴とする請求項1記載の表示装置の誤差拡散処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、表示装置に用いられる誤差拡散処理方法に係り、特に、プラズマディスプレイパネル表示装置(PDP),フィールドエミッションディスプレイ装置(FED),デジタルマイクロミラーデバイス(DMD),エレクトロルミネッセンスディスプレイ(EL)等のように、デジタル的に限られた中間階調を表現する表示装置において、誤差拡散処理による多階調化処理に伴って発生する画質妨害を低減することができる表示装置の誤差拡散処理方法に関する。

[0002]

【従来の技術】

映像信号を表示する表示装置の内、例えば、1フィールドを複数のサブフィールドに分割して階調表示するPDPや、パルス幅変調(PWM)によって階調表

示するFED、さらにはDMD等のマトリクス型表示装置においては、駆動方法 によってはデジタル的に制限された階調数でしか映像を表現することができない 。また、ガンマ特性がかけられた映像信号に対し、逆ガンマ補正処理を施してリ ニアな階調に戻すことが必要である。

[0003]

これらの表示装置においては、入力信号の階調数(ビット数)が表示装置で表現できる階調数(ビット数)よりも大きい場合がある。また、表示装置で表現する階調数(ビット数)を意図的に入力信号の階調数(ビット数)よりも減らす場合がある。

[0004]

さらに、逆ガンマ補正回路によって逆ガンマ補正処理を施してリニアな階調に戻す際、表示装置で表現できるビット数よりも一旦ビット数を上げる場合がある。これは、次のような理由による。逆ガンマ補正処理を施してリニアな階調に戻す際、低輝度レベルの階調数が損なわれ、しばしば階調の連続性がなくなることに起因する画質妨害をもたらすことがある。特に、PDPの場合では、1フィールドを発光量の重み付けの異なる複数のサブフィールドによって構成し、そのサブフィールドを複数選択することによって階調を表現する。従って、サブフィールドの選択状況によっては、隣接階調に対する視覚的な輝度差が大きくなり、その結果、疑似輪郭状の画質妨害が発生してしまうことがある。そこで、極力階調が損なわれないようにするため、原信号のビット数よりも高いビット数で逆ガンマ補正処理を施し、ビット数を上げて出力することがある。

[0005]

このように、入力された映像信号のビット数もしくは逆ガンマ補正回路より出力された映像信号の階調数(第1のビット数)が、表示装置によって表現する階調数(第2のビット数)よりも大きい場合には、階調数(ビット数)を削減する必要が生じることとなる。階調数(ビット数)を削減すれば、階調が損なわれるので、誤差拡散法を用いて多階調化処理を行うようにしている。

[0006]

誤差拡散法による多階調化処理は、上記のデジタル的に制限された第2のビッ

ト数を超える第1のビット数に相当する映像を得るために、一例として次のように行う。図5において、Pは注目画素を構成する3つのドットの内の1つであり、第2のビット数ではそのまま表現できない階調数を有するドットである。Aは右隣のドット、Bは左下のドット、Cは真下のドット、Dは右下のドットである。図5に示すように、注目ドットPにおいて表現することができない第1のビット数一第2のビット数を複数の周辺ドットA~Dに一定の重みを付けて拡散することによって、見かけ上、第1のビット数に相当する映像となるように多階調化処理するのが一般的な方法である。

[0007]

例えば、表示装置が8ビットの階調能力しかなく、12ビットのドットデータの上位8ビットにより階調表示する場合は、残りの下位4ビット分のドットデータに一定の重みを付けて、周辺ドットA~Dに拡散することによって、視覚的な積分効果を利用して12ビット相当の階調表示を行う。図5において、周辺ドットA~Dに添えた7/16,3/16,5/16,1/16は、重み付けの程度を表す誤差拡散係数の一例である。なお、R,G,Bの3原色信号に対して、共通の誤差拡散係数を用いる。

[0008]

【発明が解決しようとする課題】

以上説明したような表示装置、特に、PDPの場合には、前述のような誤差拡散法による多階調化処理を施すことによって、見かけ上の階調数を増加させると共に、疑似輪郭状の画質妨害を低減するようにしている。ところが、従来においては、R,G,Bの3原色信号に対して誤差拡散に用いるビット数を共通のビット数とし、共通の誤差拡散係数を用いていたので、誤差拡散を行うことによって、特に固定パターン等を表示する際に、誤差拡散特有の周期的なパターンノイズ等の画質妨害が生じることがあるという問題点があった。

[0009]

本発明はこのような問題点に鑑みなされたものであり、誤差拡散処理を行った際に現れる周期的なパターンノイズ等の画質妨害を低減することができる表示装置の誤差拡散処理方法を提供することを目的とする。

[0010]

【課題を解決するための手段】

本発明は、上述した従来の技術の課題を解決するため、第1のビット数を有するR,G,B信号を前記第1のビット数よりもビット数の小さい第2のビット数に削減するに際し、R,G,B信号のドットで構成されるそれぞれの注目画素における前記第1のビット数と前記第2のビット数との差分である前記第1のビット数の下位ビットの少なくとも一部に所定の誤差拡散係数を乗じた誤差データを前記注目画素の複数の周辺画素に拡散する表示装置の誤差拡散処理方法において、前記注目画素におけるR,G,B信号の内の少なくとも1つの信号に対する誤差拡散に用いるビット数と、他の信号に対する誤差拡散に用いるビット数と異ならせたことを特徴とする表示装置の誤差拡散処理方法を提供するものである。

[0011]

【発明の実施の形態】

以下、本発明の表示装置の誤差拡散処理方法について、添付図面を参照して説明する。図1は本発明の誤差拡散処理方法を用いた表示装置の一実施例を示すブロック図、図2は図1中の誤差拡散処理回路3の具体的構成例を示すブロック図、図3は本発明の誤差拡散処理方法の一例を説明するための図、図4は本発明の誤差拡散処理方法の他の一例を説明するための図である。

[0012]

図1に示す本実施例では、デジタル的に制限された階調数でしか映像を表現することができないマトリクス型表示装置として、PDPを用いた場合について示している。勿論、本発明の表示装置としては、PDPに限定されるものではない。図1において、R,G,B信号よりなる3系統の映像信号は、映像信号処理回路1に入力される。映像信号処理回路1は、これらの映像信号に各種の映像信号処理を施し、逆ガンマ補正回路2に入力する。R,G,B信号は一例として8ビットのデジタル信号、即ち、256階調の信号である。

[0013]

逆ガンマ補正回路2は、入力されたR, G, B信号に対し、それぞれ同じ特性の逆ガンマ補正処理を施し、一例として12ビットのデジタル信号、即ち、40

96階調の信号として出力する。8ビットのデジタル信号を12ビットのデジタル信号として出力するのは、前述のように、逆ガンマ補正処理によって階調数が損なわれるのを防ぐためである。

[0014]

逆ガンマ補正回路2より出力されたR,G,B信号は、誤差拡散処理回路3に入力される。誤差拡散処理回路3は、R用誤差拡散処理回路3R,G用誤差拡散処理回路3Bより構成され、R,G,B信号はそれぞれの誤差拡散処理回路3R,3G,3Bに入力される。誤差拡散処理回路3R,3G,3Bは、入力されたR,G,B信号それぞれに対し、誤差拡散処理を施して出力する。即ち、12ビットのデジタル信号の内の例えば下位4ビットに一定の重みを付けた上で上位8ビットに拡散して、8ビットのデジタル信号として出力する。

[0015]

このとき、誤差拡散処理回路 3 R, 3 G, 3 Bは、共通の誤差拡散係数を用いるのではなく、少なくとも1 つの回路において誤差拡散に用いるビット数を異ならせる。例えば、B信号についてのみ、1 2 ビットのデジタル信号の内の下位 4 ビット目から下位 2 ビット目までの合計 3 ビットを上位 8 ビットに拡散して、8 ビットのデジタル信号として出力する。本発明は、R, G, B信号に対して共通の誤差拡散係数を用いるのではなく、いずれか1 つの信号に対する誤差拡散に用いるビット数、即ち、上位 8 ビットに拡散するビット数を他の信号に対する誤差拡散に用いるビット数と異ならせるか、R, G, B信号に対する誤差拡散に用いるビット数を全て異ならせることに特徴がある。

[0016]

誤差拡散処理回路3R,3G,3Bによって誤差拡散処理されたR,G,B信号はPDP4に入力される。PDP4は、サブフィールド処理等の駆動回路処理を施した上で、画面上にR,G,B信号を画像表示する。

[0017]

ここで、図2を用いて誤差拡散処理回路3の具体的構成について説明する。R 用誤差拡散処理回路3R, G用誤差拡散処理回路3G, B用誤差拡散処理回路3 Bは、全て同一の構成であるが、設定した誤差拡散に用いるビット数が異なっている。よって、G用誤差拡散処理回路3GとB用誤差拡散処理回路3Bの構成は、R用誤差拡散処理回路3Rと共通であるため、図示を簡略化すると共に、その動作説明を省略することとする。

[0018]

図2において、逆ガンマ補正回路2より入力された12ビットのR信号は、後述する加算器31,32を経て出力され、加算器32より出力された12ビットのデータの内、下位4ビットがR用誤差検出回路33Rに入力される。この下位4ビットは、12ビットのデジタル信号(4096階調)を8ビットのデジタル信号(256階調)に削減することにより失われる階調の差分に相当するものである。R用誤差検出回路33Rは、入力された下位4ビットのデータに対し、図3(A)に示す周辺ドットA′~D′に応じた誤差拡散係数を乗じて誤差データを発生するものである。

[0019]

[0020]

端子 a より出力された誤差データは加算器 3 2 に入力され、端子 b より出力された誤差データは加算器 3 5 に入力され、端子 c 及び d より出力された誤差データは加算器 3 4 に入力される。加算器 3 4 は、入力された端子 c 及び d からの誤差データを加算して加算器 3 5 に入力する。加算器 3 5 は、端子 b より出力された誤差データと加算器 3 4 の出力とを加算してラインメモリ 3 6 に入力する。ラインメモリ 3 6 は、加算器 3 5 の出力を 1 ライン分より若干短い時間だけ遅延して加算器 3 1 に入力する。

[0021]

加算器 3 1 は、入力された R 信号とラインメモリ 3 6 の出力とを加算して加算器 3 2 に入力する。入力された R 信号を図 3 (A) に示す注目ドット P' とすると、加算器 3 1 は、注目ドット P' に対し、略 1 ライン分過去に生じた誤差データであるラインメモリ 3 6 の出力、即ち、B' × 3 / 1 6 + C' × 5 / 1 6 + D' / × 1 / 1 6 を加算する動作を行うことになる。

[0022]

加算器32は、加算器31の出力とR用誤差検出回路33Rの端子aより出力された誤差データとを加算する。即ち、加算器32は、注目ドットP'に対して略1ライン分過去に生じた誤差データを加算した加算器31の出力に対し、さらに、1ドット過去に生じた誤差データであるA'×7/16を加算する動作を行うことになる。以上により、図3(A)に示す注目ドットP'に対し、周辺ドットA'~D'にそれぞれの誤差拡散係数を乗じた誤差データを加算する。加算器32より出力された12ビットのデータの内、さらに、下位4ビットがR用誤差検出回路33Rに入力され、以上の動作が繰り返される。

[0023]

加算器32より出力された12ビットのデータの内の上位8ビットは、リミッタ37に入力される。リミッタ37は、注目ドットP'に対する誤差データの加算処理によって得たデータの値が8ビットを超えた分(オーバーフロー)を制限して出力する。

[0024]

以上のように、注目ドットP'に対する誤差データの加算処理をドット毎に順次行うことは、結果として、図3(A)に示すように、注目ドットPにおける下位4ビット分のデータに7/16, 3/16, 5/16, 1/16なる誤差拡散係数を乗じて周辺ドットA~Dに拡散することを意味する。

[0025]

図2に示す例では、G用誤差拡散処理回路3G中のG用誤差検出回路33Gに 設定する誤差拡散係数をR用誤差検出回路33Rに設定する誤差拡散に用いるビット数と同一とし、B用誤差拡散処理回路3B中のB用誤差検出回路33Bに設 定する誤差拡散に用いるビット数をR用誤差検出回路33R及びG用誤差検出回 路33Gに設定する誤差拡散に用いるビット数と異ならせている。図3(B)に示すように、B信号に対しては、注目ドットPにおける下位4ビット目から下位2ビット目までの3ビット分のデータに4/8,1/8,2/8,1/8なる誤差拡散係数を乗じて周辺ドットA~Dに拡散するようにしている。

[0026]

なお、以上の実施例では、12ビットのB信号における下位4ビット目から下位2ビット目までの3ビットを用いて誤差拡散するようにしたが、B信号に対して、逆ガンマ補正回路2における逆ガンマ補正処理の段階で、R,G信号と同じ逆ガンマ補正特性で11ビットのデジタル信号、即ち、2048階調の信号として出力するよう構成し、下位3ビット分のデータに上記の誤差拡散係数を乗じて周辺ドットA~Dに拡散するようにしてもよい。

[0027]

この場合、B信号の逆ガンマ補正処理を、リード・オンリ・メモリ(ROM)を用いたルック・アップ・テーブル(LUT)にて実現している場合には、その分、ROMの容量が節約になるという効果がある。また、逆ガンマ補正処理が11ビットの場合、B用誤差拡散処理回路3Bにて行う処理が全て3ビット分の処理回路で済むので、回路容量の節約となる。ラインメモリ36での略1ライン分遅延も1ビット分少なくて済むという効果もある。

[0028]

このようにして、誤差拡散処理回路 3 R, 3 G, 3 Bは、R, G, B信号の 3 つのドットで構成する注目画素において、R, G, B信号における 1 つの信号もしくは全ての信号に対する誤差拡散に用いるビット数を異ならせて、R, G, B信号に誤差拡散処理を施すことにより、1 2 ビット(B信号は 1 1 ビット)のデータを 8 ビットのデータとして出力する。なお、誤差拡散に用いるビット数は、大幅に異ならせるよりも若干異ならせる程度の方がよい。

[0029]

以上のようにして本発明においては、8ビットの表示能力しかないPDP4においても、視覚的な積分効果を利用することにより、見かけ上、12ビット相当(B信号は11ビット相当)の表示画像として認識できる画像を表示することが

できる。そして、R, G, B信号に対する誤差拡散に用いるビット数を共通としないので、固定パターン等を表示する際においても、誤差拡散特有の周期的なパターンノイズ等の画質妨害が視覚上認識されにくい。よって、高画質の表示装置を提供することが可能となる。

[0030]

上記の実施例においては、B信号の誤差拡散に用いるビット数を3ビットとし、R,G信号の誤差拡散に用いるビット数を4ビットとしているが、誤差拡散に用いるビット数は3ビットや4ビットに限定されることはない。なお、第1のビット数と第2のビット数との差分である第1のビット数の下位ビットの全てを誤差拡散に用いるのではなく、その一部を誤差拡散に用いる場合には、好ましくは、上記のように、その下位ビットの最上位ビット(上記の例では、下位4ビット目)からの連続した上位ビットを用いる。

[0031]

また、上記の実施例においては、R, G信号の誤差拡散に用いるビット数を4ビットとし、それぞれの周辺ドットの誤差拡散係数は同一としているが、周辺ドットの誤差拡散係数を異ならせてもい。一例として、図4(A)に示すように、R信号に対しては、注目ドットPにおける下位4ビット分のデータに7/16,3/16,5/16,1/16なる誤差拡散係数を乗じて周辺ドットA~Dに拡散するようにし、図4(B)に示すように、G信号に対しては、注目ドットPにおける下位4ビット分のデータに9/16,2/16,4/16,1/16なる誤差拡散係数を乗じて周辺ドットA~Dに拡散するようにし、図4(C)に示すように、B信号に対しては、注目ドットPにおける下位4ビット目から下位2ビット目までの3ビット分のデータ(もしくは逆ガンマ補正処理が11ビットの場合は下位3ビット分のデータ)に4/8,1/8,2/8,1/8なる誤差拡散係数を乗じて周辺ドットA~Dに拡散するようにしてもよい。

[0032]

このようにして、誤差拡散処理回路 3 R, 3 G, 3 Bは、R, G, B信号の 3 つのドットで構成する注目画素において、R, G, B信号における 1 つの信号もしくは全ての信号に対する誤差拡散に用いるビット数を異ならせたり、さらに、

R, G, B信号における1つの信号もしくは全ての信号に対する誤差拡散係数も 異ならせたりして、R, G, B信号に誤差拡散処理を施すことにより、12ビットもしくは11ビットのデータを8ビットのデータとして出力する。なお、周辺ドットA~Dに対する誤差拡散係数の全てを異ならせてもいいし、一部のみを異ならせてもよい。図4の(A)と(B)の例では、周辺ドットDに対する誤差拡散係数は1/16で共通であり、他の周辺ドットA~Cに対する誤差拡散係数を異ならせている。なお、誤差拡散係数は、大幅に異ならせるよりも若干異ならせる程度の方がよい。

[0033]

【発明の効果】

以上詳細に説明したように、本発明の表示装置の誤差拡散処理方法は、注目画素におけるR, G, B信号の内の少なくとも1つの信号に対する誤差拡散に用いるビット数を、他の信号に対する誤差拡散に用いるビット数と異ならせたので、誤差拡散処理を行った際に現れる周期的なパターンノイズ等の画質妨害を低減することができる。また、逆ガンマ補正処理回路や誤差拡散処理回路の回路容量を節約することができるという副次的な効果も奏する。

【図面の簡単な説明】

【図1】

本発明を用いた表示装置の一実施例を示すブロック図である。

【図2】

図1中の誤差拡散処理回路3の具体的構成例を示すブロック図である。

【図3】

本発明の一例を説明するための図である。

【図4】

本発明の他の一例を説明するための図である。

【図5】

従来例を説明するための図である。

【符号の説明】

1 映像信号処理回路

特平11-297922

- 2 逆ガンマ補正回路
- 3 誤差拡散処理回路
- 3 R R用誤差拡散処理回路
- 3 G G用誤差拡散処理回路
- 3 B B用誤差拡散処理回路
- 4 プラズマディスプレイパネル表示装置 (PDP)

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

6

【書類名】 要約書

【要約】

【課題】 誤差拡散処理を行った際に現れる周期的なパターンノイズ等の画質妨害を低減することができる表示装置の誤差拡散処理方法を提供する。

【解決手段】 逆ガンマ補正回路2は、8ビットのR, G, B信号を12ビットで逆ガンマ補正する。誤差拡散処理回路3は、12ビットのR, G, B信号の下位ビットを誤差拡散して、12ビットもしくは11ビット相当の信号としてPDP4に入力する。誤差拡散処理回路3は、R, G信号に対しては、誤差拡散に用いるビット数を下位4ビットとし、B信号に対しては、誤差拡散に用いるビット数を下位4ビット目から下位2ビット目までの3ビットとする。

【選択図】 図1

出願人履歴情報

識別番号

[000004329]

1. 変更年月日

1990年 8月 8日

[変更理由]

新規登録

住 所

神奈川県横浜市神奈川区守屋町3丁目12番地

氏 名

日本ビクター株式会社