Московский государственный технический университет имени Н.Э. Баумана Факультет «Робототехника и комплексная автоматизация» Кафедра «Основы конструирования машин»

Пояснительная записка

к курсовому проекту на тему: «Привод индивидуальный»

Масный Д.И. РК9-64Б

Студент

Консультант проекта

Любченко M.A.

Утверждаю

Консультант

Подпись консультанта Любченко М.А.

ФИО консультанта

Оглавление

Гехническое задание							
Введение	4						
1. Кинематический расчет	5						
1.1 Выбор электродвигателя	5						
1.2 Уточнение передаточных чисел редуктора	5						
1.3 Расчет передачи на ЭВМ	6						
2. Эскизное проектирование	8						
2.1 Определение диаметров валов	8						
2.2 Определение расстояния между деталями передач	9						
2.3 Выбор типа подшипников	9						
2.4 Схемы установки подшипников	10						
2.5 Составление компоновочной схемы	10						
3. Расчет соединений	11						
3.1 Соединение с натягом	11						
3.2 Коническое соединение	13						
3.3 Резьбовое соединение	14						
3.4 Шлицевые соединения							
3.4.1. Промежуточный вал							
3.4.2 Тихоходный вал	16						
4. Подбор подшипников качения на заданный ресурс	18						
4.1 Подбор подшипников тихоходного вала	18						
4.2 Подбор подшипников промежуточного вала	22						
4.3 Подбор подшипников быстроходного вала	26						
5. Расчет валов на статическую прочность и сопротивлен	ние усталости 28						
5.1 Расчет тихоходного вала	28						
5.2 Расчет промежуточного вала	35						
5.3 Расчет быстроходного вала	41						
6. Выбор смазочных материалов и систем смазывания	42						
ЛМ МЛ ЛОТ. 3	1093.00.00 ПЗ						
Изм Лист № Докум Подп. Дата							
Разраб. Масный Д. Пров. Любченко М. Привод индивидиальны							
Привод индивидуальных Привод индивидуальных Пояснительная записки	МГТУ им. Н.Э.Баумана						
Утв.	I. кафедра РКЗ группа РК9-64						

6.1 Смазывание передач	42
6.2 Смазывание подшипников	42
6.3 Смазочные устройства	42
6.4 Уплотнительные устройства	43
7. Расчет муфт	44
7.1 Подбор упругой муфты	44
7.2 Расчет и конструирование комбинированной муфты	44
8. Проектирование рамы	47
Заключение	48
Список использованных источников	49
Приложения	

Техническое задание

МГТУ им. Н.Э. Баумана Кафедра РК-3 Студент Масмий Группа Ку-С Консультант Любченко М.А. Дата 10.02200 ЗАДАНИЕ НА ПРОЕКТ №МАЛ04 - 1093 СПРОЕКТИРОВАТЬ: привод индивидуальный с двухступенчатым двухпоточным соосным косозубым редуктором (вторая ступень с внутренним зацеплением) РАЗРАБОТАТЬ: 1. Общий вид привода. 2. Редуктор. 3 Чертежи деталей. 4. Муфту комбинированную. 5. Раму РАССЧИТАТЬ: Прочность валов, подшипники, соединения (по указанию консультанта) 1 - Электродвигатель 2 - Муфта 3 - Редуктор 4 - Муфта комбинированная 5 - Рама Технические требования 1. Типовой режим нагружения II (средний равновероятностный) 2. Расчетный ресурс, ч 10000 3. Объем выпуска, шт./год 300 (среднесерийный) Исходные данные Мощность электродвигателя $P_{\mathfrak{p}}$, кВт Число оборотов выходного вала n, мин⁻¹

					ΠΜ ΜΛ
Изм	Лист	№ Докум.	Подп.	Дата	ДІТ ІТА <i>І</i>

Введение

Цель курсового проекта – спроектировать привод индивидуальный.

Проектируемый индивидуальный привод состоит из асинхронного электродвигателя, цилиндрического двухступенчатого двухпоточного соосного косозубого редуктора, компенсирующей упругой муфты, комбинированной муфты.

Устройство привода следующее: вращающий момент передается с вала электродвигателя с помощью компенсирующей упругой муфты на входной вал редуктора; с выходного вала редуктора через комбинированную муфту передается потребителю механической энергии.

Требуется выполнить необходимые расчеты, выбрать наилучшие параметры схемы и разработать конструкторскую документацию, необходимую для изготовления привода:

- чертеж общего вида редуктора (на стадии эскизного проекта);
- сборочный чертеж редуктора (на стадии технического проекта);
- рабочие чертежи деталей редуктора;
- сборочный чертеж комбинированной муфты;
- сборочный чертеж сварной рамы;
- чертеж общего вида привода;
- расчетно-пояснительную записку и спецификации.

Лист	№ Докум.	Подп.	Дата
	Лист	Лист № Докум.	Лист № Дакум. Подп.

1. Кинематический расчет

1.1 Выбор электродвигателя

Определение предварительного передаточного отношения редуктора:

$$U'_{peo} = \frac{12,5+31,5}{2} = 22$$

Определение $n_{3.тр}$:

$$n_{_{9.mp.}} = n_{_T} * U'_{_{peo}} = 50 * 22 = 1100 \text{ MИН}^{-1}$$

По значениям $n_{3.тp}$ и P_3 выбирается ближайшую асинхронную частоту n_3 и подбирается электродвигатель [1, c.249].

Выбран электродвигатель 112М6/950.

1.2 Уточнение передаточных чисел редуктора

Определение U_{obu} :

$$U_{oби_4} = \frac{n_{_9}}{n_{_{obs}}} = \frac{950}{50} = 19$$

В схеме привода нет ременных и цепных передач, значит $U_{_{oбuq}} = U_{_{peo}}$

Определение $U_{\scriptscriptstyle B}$ и $U_{\scriptscriptstyle T}$ [1, c.9]:

$$U_{E} = 2 * \sqrt[3]{U_{o \delta u u}} = 2 * \sqrt[3]{19} = 5,3$$

$$U_{T} = \frac{U_{o \delta u u}}{U_{E}} = \frac{19}{5,3} = 4,6$$

Определение вращающих моментов Т на валах привода:

$$n_{2T} = 50 Mu H^{-1}; n_{1E} = n_{9} = 950 Mu H^{-1}$$

$$T_9 = 9550 * \frac{P_9}{n_3} = 9550 * \frac{4}{950} = 40,2 \text{ H*M}$$

					ЛМ МА ЛОГ 1002 00 00
					ДМ МАЛО4-1093.00.00
Изм	Лист	№ Докум.	Подп.	Дата	

$$T_{\rm B} = T_{\rm B} * \eta_{\rm M} = 40,2*0,98 = 39,4 \text{ H*M}$$

$$T_T = T_E * U_{peo} * \eta_{3T} * \eta_{3E} = 39,4*19*0,97*0,97 = 704,5 \text{ H*M}.$$

Полученные величины используются для расчета передачи на ЭВМ.

1.3 Расчет передачи на ЭВМ

Исходные данные для расчета цилиндрического двухступенчатого двухпоточного соосного косозубого редуктора:

Таблица 1.1 Исходные данные для расчета на ЭВМ

Вращающий момент на тихоходном валу, Н*М	704,5
Частота вращения тихоходного вала, об/мин	50
Ресурс, ч	10000
Режим нагружения	II
Передаточное отношение редуктора	19

Программа расчета деталей машин кафедры РК-3 предложила на выбор 9 вариантов параметров цилиндрических передач. Результаты расчета представлены в приложении **A**.

При выборе оптимального варианта необходимо стремиться к уменьшению массы механизма и снижению твердости колес, потому что, чем выше твердость колес, тем дороже их изготавливать. Так же должны выполняться условия:

 d_{f1} ≥1,25*d и d ≥ k* $\sqrt[3]{T_E}$. В качестве наиболее оптимального варианта был выбран вариант №4 (приложение Б). Проверка выполнения условий:

$$d \ge k * \sqrt[3]{T_{\scriptscriptstyle E}} \to d \ge 7 * \sqrt[3]{39,4} \to d \ge 23,82\,\mathrm{MM}$$
. Принимается d=24 мм

 $d_{f1} \ge 1,25*d \to 36,17 \ge 1,25*25 \to 36,17 > 30$ Условия выполнены.

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	6
Изм	Лист	№ Докум.	Подп.	Дата		U

Таблица 1.2 Результаты расчета передачи на ЭВМ

Межосевое расстояние, мм	95
Отношение передаточных чисел ступеней	0,7
Диаметр вершин Т-ступени, мм	233,55
Диаметр вершин Б-ступени, мм	153,08
Масса колес, кг	9,6
Масса механизма, кг	50,0

Изм	Лист	№ Докум.	Подп.	Дата

2. Эскизное проектирование

При эскизном проектировании определяется расположение деталей передач, расстояния между ними, ориентировочные размеры валов, выбирается тип подшипников и схемы их установки.

2.1 Определение диаметров валов

Быстроходный вал:

 $d \ge (7...8) * \sqrt[3]{T_B} = (7...8) * \sqrt[3]{37,6} = 23,5...26,8$ мм, где T_B — вращающий момент на быстроходном валу. Принимается d=25 мм.

 $d_{\Pi} \ge d + 2*t_{KOH} \to d_{\Pi} \ge 25 + 2*1,8 \to d_{\Pi} \ge 28,6$ мм, где d_{Π} — диаметр вала под подшипник. Принимается $d_{\Pi} = 30$ мм.

 $d_{\it B\Pi} \ge d_{\it \Pi} + 3*r \to d_{\it B\Pi} \ge 30 + 2*3 \to d_{\it B\Pi} \ge 36$ мм, где $d_{\it B\Pi} -$ диаметр бурта под подшипник. Принимается $d_{\it B\Pi} = 36$ мм.

Промежуточный вал:

Сначала определяется момент на промежуточном валу $T_{\Pi P}$. Учитывается, что нагрузка между потоками распределяется неравномерно: один поток передает 60% нагрузки, другой 40%

 $T_{\Pi P} = T_{E} * U_{E} * \eta_{3E} * 0,6 = 37,6 * 3,8 * 0,97 * 0,6 = 83,2$ Н*М, где $U_{E} -$ передаточное отношение быстроходной ступени, $\eta_{36} -$ КПД зубчатой передачи.

 $d_{K} \ge (6...7)^{*} \sqrt[3]{T_{IIP}} = (6...7)^{*} \sqrt[3]{83,2} = 26,2...30,6$ мм, где T_{IIP} — вращающий момент на промежуточном валу, d_{K} — диаметр вала под колесо. Принимается $d_{K} = 30$ мм.

 $d_{\mathit{BK}} \ge d_{\mathit{K}} + 3*f \to d_{\mathit{BK}} \ge 30 + 3*1 \to d_{\mathit{BK}} \ge 33\,\mathrm{MM}$, где $d_{\mathit{BK}} -$ диаметр борта колеса. Принимаем $d_{\mathit{BK}} = 35\,\mathrm{MM}$.

					7M MA 701 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	Q
Изм	Лист	№ Докум.	Подп.	Дата		Ü

 $d_{\Pi} \le d_{K}$. Принимается $\mathbf{d}_{\Pi} = 25$ мм.

$$d_{\it BH} \ge d_{\it H} + 3*r \to d_{\it BH} \ge 25 + 3*1 \to d_{\it BH} \ge 28$$
 мм. Принимается $d_{\it BH} = 30$ мм.

Тихоходный вал:

 $d \ge (5...6) * \sqrt[3]{T_T} = (5...6) * \sqrt[3]{704,5} = 44,5...53,4$ мм, где T_T — вращающий момент на тихоходном валу. Принимается d = 48 мм.

$$d_{\Pi} \ge d + 2 * t_{U\!U\!\Pi} \to d_{\Pi} \ge 48 + 2 * 4 \to d_{\Pi} \ge 56$$
 мм. Принимается $d_{\Pi} = 60$ мм.

$$d_{\it BH} \ge d_{\it H} + 3*r \rightarrow d_{\it BH} \ge 60 + 3*3, 5 \rightarrow d_{\it BH} \ge 70, 5$$
 мм. Принимается $d_{\it BH} = 72$ мм.

2.2 Определение расстояния между деталями передач

Зазор между вращающимися колесами и внутренними стенками корпуса:

$$L = d_{W1} + d_{W2} + d_{a2} = 39,916 + 150,084 + 153,084 = 343,084 \,\mathrm{MM}.$$

$$a \approx \sqrt[3]{L} + 3 = \sqrt[3]{343,084} + 3 \approx 10$$
 MM.

Расстояние между дном корпуса и колесом тихоходной передачи:

$$b_0 \ge 3*a = 3*10 \approx 30 \,\text{MM}.$$

2.3 Выбор типа подшипников

Тихоходный вал: возникают значительные радиальные и ограниченные осевые нагрузки, поэтому используются шариковые радиальные однорядные подшипники.

Промежуточный вал: возникают значительные осевые нагрузки и ограниченные радиальные, поэтому используются конические роликовые подшипники.

					ΠΜ ΜΛ ΛΟΙ. 1003 00 00	Лист
					ДМ МА/IU4-1U93.UU.UU	О
Изм	Лист	№ Докум.	Подп.	Дата		7

Быстроходный вал: применяются шариковые радиальные однорядные подшипники, как наиболее распространенные и дешевые в производстве.

2.4 Схемы установки подшипников

Поскольку валы должны быть зафиксированы в опорах от осевых перемещений, все опоры в редукторе выполняются фиксирующими. Подшипники устанавливаются по схеме – «враспор».

2.5 Составление компоновочной схемы

Длины тихоходного, промежуточного, быстроходного валов определяются графически и приводятся в соответствии с ГОСТ 6636-69. При вычерчивании эскизной компоновки уточняются размеры, полученные в ходе эскизного проектирования, опираясь на условие «собираемости» конструкции.

Изм	Лист	№ Докум.	Подп.	Дата

3. Расчет соединений

3.1 Соединение с натягом

Тихоходный вал:

Фиксация колеса на тихоходном валу осуществляется с помощью посадки с натягом.

Исходные данные:

$$T=704,5 \text{ H*M}$$
; L=60 mm; d=72 mm; d₁=0 mm;

$$d_2$$
= 120 мм; Ra_1 =0,8 мкм;

$$Ra_2=1,6$$
 MKM; $F_a=1600,2$ H;

Материал колеса – сталь 40ХН;

Материал вала – сталь 40Х.

Рис. 3.1 Расчетная схема для соединения с натягом

Расчет:

1) Требуемое нормально давление:

$$P = K * \frac{\sqrt{F_a^2 + (\frac{2*T}{d})^2}}{\pi^* d^* L^* f} = 3 * \frac{\sqrt{1600, 2^2 + (\frac{2*704, 5}{72*10^{-3}})^2}}{\pi^* 72*10^{-3}*60*10^{-3}*0, 08} = 54,3 \, \text{МПа}, \quad \text{где} \quad \text{K=3} \quad - \quad \text{коэффициент}$$

запаса сцепления, для колеса тихоходного вала редуктора [1 с. 88]; f — коэффициент сцепления (трения), для материала пары сталь-сталь и сборки запрессовкой f =0,08 [1, c. 88].

2) Определение деформации деталей:

$$\delta = p * d * (\frac{C_1}{E_1} + \frac{C_2}{E_2}) * 10^3$$

					7M MA 701 4002 00 00	Лист
					ДМ МАЛО4-1093.00.00	11
Изм	Лист	№ Докум.	Подп.	Дата		//

$$C_1 = \frac{d^2 + d_1^2}{d^2 - d_1^2} - \mu_1 = \frac{72^2}{72^2} - 0, 3 = 0, 7$$

$$C_2 = \frac{d_2^2 + d^2}{d_2^2 - d^2} + \mu_2 = \frac{120^2 + 72^2}{120^2 - 72^2} + 0,3 = 2,4$$

где C_1, C_2 - коэффициенты жесткости; E — модуль упругости, для стали $E_1 = E_2 = 2,1\cdot 10^5$ мПа; μ - коэффициент Пуассона, для стали $\mu_1 = \mu_2 = 0,3$.

$$\delta = p * d * (\frac{C_1}{E_1} + \frac{C_2}{E_2}) * 10^3 = 54,3 * 72 * 10^3 * (\frac{0,7}{2,1 * 10^5} + \frac{2,4}{2,1 * 10^5}) = 58,3 \text{ MKM}.$$

3) Поправка на обмятие микронеровностей:

$$U_R = 5.5*(Ra_1 + Ra_2) = 5.5*(0.8+1.6) = 13.2$$
 mkm,

где R_{a1} , R_{a2} - средние арифметические отклонения профиля поверхностей. Поскольку редуктор цилиндрический, то он не нагревается до высоких температур, поэтому поправка на температурную деформацию принимается равной 0.

- 4) Минимальный натяг, необходимый для передачи вращающего момента: $[N_{\min}] = \delta + U_R = 58, 3 + 13, 2 = 71, 5\,\mathrm{MKM}.$
 - 5) Максимальный натяг, допускаемый прочностью деталей:

$$[N]_{\max} = [\delta]_{\max} + U_R \qquad [\delta]_{\max} = \frac{[P]_{\max} * \delta}{P}$$

$$[P]_{\text{max}1} = 0.5 * \sigma_{T1} * (1 - (\frac{d_1}{d})^2)$$

$$[P]_{\text{max}2} = 0.5 * \sigma_{T2} * (1 - (\frac{d}{d_2})^2)$$

 $[\delta]_{\max}$ - максимальная деформация, допускаемая прочностью деталей соединения, $[P]_{\max}$ - максимальное давление, допускаемое прочностью охватывающей или охватываемой детали, меньшее из двух; σ_{T1} - предел текучести материала охватываемой детали. Материал сталь 40X, следовательно $\sigma_{T1} = 640$ МПа; σ_{T2} - предел текучести материала охватывающей детали. Материал сталь 40XH, следовательно $\sigma_{T2} = 400$ МПа.

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	12
Изм	Лист	№ Докум.	Подп.	Дата		12

$$[P]_{\text{max}1} = 0.5 * \sigma_{T1} * (1 - (\frac{d_1}{d})^2) = 0.5 * 640 * (1 - 0) = 320 \text{ M}\Pi a;$$

$$[P]_{\text{max 2}} = 0.5 * \sigma_{T2} * (1 - (\frac{d}{d_2})^2) = 0.5 * 400 * (1 - (\frac{72}{120})^2) = 128 \text{ M}\Pi\text{a};$$

$$[P]_{\text{max}} = \min([P]_{\text{max}1}; [P]_{\text{max}2}) = [P]_{\text{max}2} = 128 \,\text{M}\Pi a;$$

$$[\delta]_{\text{max}} = \frac{[P]_{\text{max}} * \delta}{P} = \frac{128 * 58,3}{54,3} = 137,4 \text{ MKM}; \quad [N]_{\text{max}} = [\delta]_{\text{max}} + U_R = 137,4 + 13,2 = 150,6 \text{ MKM};$$

6) Выбор посадки:

По значениям [N]_{max} и [N]_{min} выбирается посадка [1, с.88]. Выбрана посадка $\frac{H7}{u7}$.

7) Определение силы запрессовки:

$$F_{II} = \pi * d * L * P_{\text{max}} * f$$

$$P_{\text{max}} = \frac{(N_{\text{max}} - U_R) * P}{\delta} = \frac{(123 - 13, 2) * 54, 3}{58, 3} = 102, 3 \text{ M}\Pi a;$$

 $F_{_{\!\!\!\Pi}}=\pi^*d^*L^*P_{_{\!\!\!\!\!\text{max}}}^*f_{_{\!\!\!\Pi}}=\pi^*72^*60^*102,3^*0,2=27,8\,\mathrm{кH},$ где $f_{_{\!\!\!\Pi}}$ - коэффициент трения при прессовании, для пары сталь-сталь $f_{_{\!\!\!\Pi}}=0,2.$

Для промежуточного вала получено: $N_{max}=70,4\,$ мкм; $N_{min}=89\,$ мкм. По полученным параметрам невозможно подобрать посадку с натягом, необходим другой способ фиксации колеса на валу.

3.2 Коническое соединение

Для фиксации упругой компенсирующей муфты на быстроходном валу используется коническое соединение.

Исходные данные:

Т=37,6 Н*М; L=24 мм;

 $K=1:10=2tg(\alpha); d_m=22.9 \text{ MM};$

Изм	Лист	№ Докум.	Подп.	Дата

ДМ МАЛО4-1093.00.00

Расчет:

$$T*S = \frac{P*\pi*d_{_m}*L*f*d_{_m}}{2} \to p = \frac{2*T*S}{\pi*L*f*d_{_m}^2}, \text{ где S} = 1,4-\text{коэффициент запаса по сцепле-$$

нию, d_m – средний диаметр.

$$p = \frac{2*T*S}{\pi*L*f*d_m^2} = \frac{2*37,6*1,4*10^3}{\pi*24*0,1*22,9^2} = 26,6 \,\text{M}\Pi\text{a}, \ P < [\sigma]_{CM} = 80 \,\text{M}\Pi\text{a}.$$

$$F_{3AT} = \frac{2*T*S*(\sin(\alpha) + f*\cos(\alpha))}{f*d_m} = \frac{2*37,6*10^3*1,4*(\sin(2,86) + 0,1*\cos(2,86))}{0,1*22,9} = 6885,6 \text{ H}$$

Для передачи крутящего момента T с компенсирующей муфты на быстроходный вал должно быть обеспечено давление P=26,6 МПа. Это давление обеспечивается силой затяжки винта $F_{3AT}=6885,6$ H.

3.3 Резьбовое соединение

Для осевой фиксации компенсирующей муфты на быстроходном валу редуктора используется шайба, для создания необходимой силы затяжки конусного соединения используется винт М8.

Исходные данные:

Винт M8; d_3 =6,466 мм.

Класс прочность 5.8

Расчет:

$$\sigma_{3KB} = \frac{1,3*F_{3AT}*4}{\pi*d_3^2} = \frac{1,3*4*6885,6}{\pi*(6,466)^2} = 272,6 \text{ M}\Pi \text{a.}$$

Рис. 3.3 Расчетная схема резьбового соединения

_						
					714 144 704 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	1/.
Изм	Лист	№ Докум.	Подп.	Дата		14

 $[\sigma]_T = 5*8*10 = 400\,\mathrm{M\Pi}$ а; $\sigma_{\mathcal{H}B} < [\sigma]$, данный болт пригоден для резьбового соединения.

Определение максимальной силы затяжки:

$$F_{3ATMAX} = \frac{[\sigma]_T * \pi * d_3^2}{1.3*4} = \frac{400*\pi * 6,466^2}{1.3*4} = 10103,6 \text{ H}.$$

Определение момента завинчивания:

$$\begin{split} T_{3AB} &= T_T + T_P \\ T_T &= f * F_3 * r_{CP}; r_{CP} = \frac{D_1 + d_{OTB}}{4} \\ T_P &= 0.5 * F_{3AT} * d_2 * tg(\psi + \varphi_1) \\ T_{3AB} &= F_{3AT} * (0.5 * d_2 * tg(\psi + \varphi_1) + f * (\frac{D_1 + d_{OTB}}{4})) = \\ &= 6885, 6 * (0.5 * 7.188 * tg(2.5 + 11) + 0.1 * \frac{13 + 8}{4}) * 10^{-3} = 9.6 H * M \end{split}$$

Аналогично был определен максимальный момент завинчивания Т_{ЗАВМАКС}=14 Н*М.

3.4 Шлицевые соединения

3.4.1. Промежуточный вал

Фиксация колеса на промежуточном валу осуществляется с помощью шлицевого соединения. Для диаметра D =30 мм выбирается шлиц легкой серии с размерами $6\times26\times30$ согласно Γ OCT1139-80.

Исходные данные:

Материал вала – сталь 40Х.

D=30 mm; z=6; f=0,3 mm; d=26 mm; T=84 H*M

Рис. 3.4 Расчетная схема для шлицевого соединения

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	15
Изм	Лист	№ Докум.	Подп.	Дата		כו

Расчет:

$$d_{CP} = \frac{d+D}{2} = \frac{26+30}{2} = 28 \text{ MM};$$

$$h = 0.5*(D-d)-2*f = 0.5*(30-26)-2*0.3=1.4$$
 mm;

$$\sigma_{\scriptscriptstyle CM} = \! rac{2*10^3*T*K_{\scriptscriptstyle PH}}{d_{\scriptscriptstyle CP}} \! \le \! [\sigma_{\scriptscriptstyle CM}]$$
 , где

 $K_{PH}=1,3$ — коэффициент неравномерности распределения нагрузки между зубьями; d_{CP} — средний диаметр; h — высота зуба шлица, z — число зубьев шлица; L_P — рабочая длина шлицевого соединения; $[\sigma_{CM}]=80\,\mathrm{M\Pi a}$ — допускаемое напряжение смятия.

$$L_p \ge \frac{2*10^3*T*K_{_{PH}}}{d_{_{CP}}*z*h*[\sigma_{_{CM}}]} \to L_p \ge \frac{2*10^3*84*1,3}{28*6*1,4*80} \to L_p \ge 11,6\,\mathrm{MM}.$$
 Принимается $L_p = b_2 = 19\,\mathrm{MM},$ где

 b_2 – длина ступицы колеса быстроходной ступени.

Шлицевое соединение центрируется по внешнему диаметру, соединение неподвижное, передача реверсивная. Для фиксации колеса на промежуточном валу применяется шлиц D- $6\times26\times30$ H7/n 6×6 F8/js7.

3.4.2 Тихоходный вал

Для фиксации компенсирующей муфты на тихоходном валу применяется шлицевое соединение. Для диаметра D=48 мм выбирается шлиц средней серии с размерами 8×42×48 согласно ГОСТ1139-80.

Исходные данные:

Материал вала – сталь 40Х.

D=48 mm; z=8; f=0,4 mm; d=42 mm; T=704,5 H*M

Рис. 3.4 Расчетная схема для

					шлицевого соединения	IEM
					ДМ МА/IU4-1U93.UU.UU	16
Изм	Лист	№ Докум.	Подп.	Дата		16

$$d_{CP} = \frac{d+D}{2} = \frac{42+48}{2} = 45 \text{ MM};$$

$$h = 0.5*(D-d)-2*f = 0.5*(48-42)-2*0.4 = 2.2$$
 mm;

$$\sigma_{CM} = \frac{2*10^3 * T * K_{PH}}{d_{CP} * z * h * L_P} \le [\sigma_{CM}], [\sigma_{CM}] = 80 \text{ M}\Pi\text{a, K}_{PH} = 1,3,$$

$$L_{p} \ge \frac{2*10^{3}*T*K_{PH}}{d_{CP}*z*h*[\sigma_{CM}]} \to L_{p} \ge \frac{2*10^{3}*704,5*1,3}{45*8*2,2*80} \to L_{p} \ge 28,9 \,\mathrm{MM}.$$
 Принимается $L_{p} = 90 \,\mathrm{MM},$ по-

скольку длина шлица должна быть больше или равна длине крепежной части компенсирующей муфты, которая стандартизована L=82 мм.

Изм	Лист	№ Докум.	Подп.	Дата

ДМ	<i>MA/104-</i>	-1093.00.00

4. Подбор подшипников качения на заданный ресурс

4.1 Подбор подшипников тихоходного вала

Исходные данные:

$$T_T$$
=704 H*м, n_T =50 об/мин, d_W =235,934 мм, α_t =21,876°, β =15°

$$L_1 = 114 \text{ MM}; L_2 = 58 \text{ MM}; L_3 = 52 \text{ MM}; h = 118 \text{ MM}$$

Расчет:

Определение сил в зацеплении:

$$F_{t} = \frac{2*T_{T}*10^{3}}{d_{w}} = \frac{2*704,5*10^{3}}{235,934} = 5972 \text{ H} - \text{окружная сила}$$

$$F_a = F_t * tg(\beta) = 5972 * tg(15^\circ) = 1600,2 \text{ H} - \text{осевая сила}$$

$$F_r = F_t * tg(\alpha_t) = 5972 * tg(21,876^\circ) = 2397,8$$
 H — радиальная сила

Рассматриваем случай, когда один поток передает 60% нагрузки, а другой 40%. Тогда расчетная схема имеет вид:

Рис. 4.1 Расчетная схема для подбора подшипников тихоходного вала

					ЛМ МАЛОЛ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	10
Изм	Лист	№ Докум.	Подп.	Дата		10

$$F_{K} = 250 * \sqrt{T_{T}} = 250 * \sqrt{704.5} = 6635.6 \text{ H [1, c 108]}; F_{T} = 2397.8 \text{ H}; F_{T} = 1600.2 \text{ H}; F_{T} = 5972 \text{ H}$$

 $L_1 = 114 \text{ MM}; L_2 = 58 \text{ MM}; L_3 = 52 \text{ MM}; h = 118 \text{ MM}$

Определение реакций опор:

$$\sum M_{1\Gamma} = 0$$

$$\sum M_{1\Gamma} = 0$$

$$R_{2B} = \frac{0.2 * F_a * h - 0.2 * F_r * L_2}{L_2 + L_3} = \frac{0.2 * 1600.2 * 118 - 0.2 * 2397.8 * 58}{58 + 52} = 90.5$$

$$\sum M_{1B} = 0$$

$$R_{2\Gamma} = \frac{0.2 * F_t * L_2}{L_2 + L_3} = \frac{0.2 * 5972 * 58}{58 + 52} = 629.8 \text{ H}$$

$$\sum M_{2\Gamma} = 0$$

$$R_{1B} = \frac{-0.2 * F_a * h - 0.2 * F_r * L_3}{L_1 + L_2} = \frac{-0.2 * 1600.2}{L_2 + L_3}$$

$$\sum M_{2\Gamma} = 0$$

$$R_{1B} = \frac{-0.2 * F_a * h - 0.2 * F_r * L_3}{L_2 + L_3} = \frac{-0.2 * 1600.2 * 118 - 0.2 * 2397.8 * 52}{58 + 52} = -570 \text{ H}$$

$$\sum M_{2B} = 0$$

$$\sum M_{2B} = 0$$

$$R_{1\Gamma} = \frac{0.2 * F_t * L_3}{L_2 + L_3} = \frac{0.2 * 5972 * 52}{58 + 52} = 564,6 \text{ H}$$

$$\sum M_{1K} = 0$$

$$R_{2K} = \frac{-F_k * L_1}{L_2 + L_2} = \frac{-6635, 6*114}{58 + 52} = -6876, 9 \text{ H}$$

$$\sum M_{2K} = 0$$

$$\sum M_{1K} = 0$$

$$R_{2K} = \frac{-F_k * L_1}{L_2 + L_3} = \frac{-6635, 6*114}{58 + 52} = -6876, 9 \text{ H}$$

$$\sum M_{2K} = 0$$

$$R_{1K} = \frac{F_k * (L_1 + L_2 + L_{13})}{L_2 + L_3} = \frac{6635, 6*(114 + 58 + 52)}{58 + 52} = 13512, 5 \text{ H}$$

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	10
Изм	Лист	№ Докум.	Подп.	Дата		17

Определение суммарных реакций:

$$R_{1o\delta uq} = \sqrt{{R_{1B}}^2 + {R_{1\Gamma}}^2} = \sqrt{(-570)^2 + (564, 6)^2} = 802,3 \text{ H}$$

$$R_{2o6uq} = \sqrt{R_{2B}^2 + R_{2\Gamma}^2} = \sqrt{(90,5)^2 + (629,8)^2} = 636,3 \text{ H}$$

Реакции опор для расчета подшипников:

$$F_{r1\text{max}} = R_{1o\delta uq} + |R_{1K}| = 802,3 + 13512,5 = 14314,8 \text{ H}$$

$$F_{r2\text{max}} = R_{2o\delta uq} + |R_{2K}| = 636, 3 + 6876, 9 = 7513, 2 \text{ H}$$

$$F_{a \text{max}} = 1600, 2 \text{ H}$$

Для типового режима нагружения (II) коэффициент эквивалентности K_E =0,63:

$$F_{r1} = F_{r1\text{max}} * K_E = 14314,8*0,63 = 9018,3 \text{ H}$$

$$F_{r2} = F_{r2\text{max}} * K_E = 7513, 2*0, 63 = 4733, 3 \text{ H}$$

$$F_a = F_{a \text{max}} * K_E = 1600, 2*0, 63 = 1008, 1 \text{ H}$$

Предварительно назначаются шариковые радиальные однорядные подшипники серии диаметров 2:212, схема установки подшипников – «враспор».

Для принятых подшипников: C_r =52000 H, C_{0r} =31000 H, d=60 мм, D=110 мм, D_W =15,875 мм, α =0°.

Для радиальных подшипников из условия равновесия вала следует:

$$F_{a1}=0 H$$
, $F_{a2}=F_{a}=1008$,1 H.

$$D_{PW} = 0.5*(D+d) = 0.5*(60+110) = 85 \text{ MM}$$

					ЛМ МА ЛОГ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	20
Изм	Лист	№ Докум.	Подп.	Дата		20

Отношение
$$\frac{D_W * \cos(\alpha)}{D_{PW}} = \frac{15,875*1}{85} = 0,19$$
, тогда $f_0 = 14,2$.

$$e_{\rm l}=0,28*(rac{f_{\rm 0}*F_{\rm al}}{C_{\rm 0r}})^{\rm 0,23}=0$$
 , потому что ${\rm F_{al}}{=}0$ H

$$e_2 = 0.28* (\frac{f_0*F_{a2}}{C_{0r}})^{0.23} = 0.28* (\frac{14.2*1008.1}{31000})^{0.23} = 0.234$$

При V=1:

$$(\frac{F_{a1}}{V*F_{r1}})$$
 = 0, принимаются X₁=1, Y₁=0 [1, c.104]

$$(\frac{F_{a2}}{V*F_{r2}}) = (\frac{1008,1}{1*4733,3}) = 0,213 < e_2 = 0,234$$
, принимаются X₂=1, Y₂=0

Определение эквивалентной динамической нагрузки:

Принимаются $K_B=1,4$ и $K_T=1,4$:

$$P_{r1} = (V * X_1 * F_{r1} + Y_1 * F_{a1}) * K_E * K_T = (1*1*9018, 3+0)*1, 4*1 = 12625, 6 \text{ H}$$

$$P_{r2} = (V * X_2 * F_{r2} + Y_2 * F_{a2}) * K_B * K_T = (1*1*4733, 3+0)*1, 4*1 = 6626, 6 \text{ H}$$

Дальнейший расчет ведется для наиболее нагруженного подшипника – подшипника 1:

Определение расчетного скорректированного ресурса при a_1 =1, a_{23} =0,7, k=3 [1, c.117]:

$$L_{10ah} = a_1 * a_{23} * (\frac{C_r}{P_{r1}})^k * \frac{10^6}{60*n} = 1*0,7* (\frac{52000}{12625,6})^3 * \frac{10^6}{60*50} = 16301,6$$
 ч

Расчетный ресурс больше требуемого $L_{10ah} > L_{10ah}$ (16301,6 > 10000).

					ΠΜ ΜΛ ΛΟΙ. 1003 00 00	Лист
					ДМ МА/IU4-1U93.UU.UU	21
Изм	Лист	№ Докум.	Подп.	Дата		21

Проверка условия: $P_{r1max} \le 0.5 * C_r$:

$$e_{\!\scriptscriptstyle 1} = 0,28*(rac{f_0*F_{a1\mathrm{max}}}{C_{0r}})^{0,23} = 0$$
 , принимаются X=1 , Y=0

$$P_{r1\text{max}} = (V * X * F_{r1\text{max}} + Y * F_{a1\text{max}}) * K_{b} * K_{T} = (1 * 1 * 14314, 8 + 0) * 1, 4 * 1 = 20040, 7 \text{ H}$$

$$P_{r1max} < 0.5 * C_r (20040.7 < 26000)$$

Так как расчетный ресурс больше требуемого и выполнено условие $P_{r1max} \le 0.5*C_r$, то предварительно назначенные подшипники пригодны. При требуемом ресурсе надежность выше 90%.

4.2 Подбор подшипников промежуточного вала

Исходные данные:

$$n_{\text{пр}} = 257$$
 об/мин; $F_{r_1} = 1438,7 \,\text{H}$; $F_{a1} = 960,1 \,\text{H}$; $F_{t1} = 3583,2 \,\text{H}$

$$F_{r2} = 437.9 \,\mathrm{H}; \ F_{a2} = 412.3 \,\mathrm{H}; \ F_{t2} = 1130.4 \,\mathrm{H}$$

$$L_1 = 57 \text{ mm}$$
; $L_2 = 58 \text{ mm}$; $L_3 = 26 \text{ mm}$; $h_1 = 23 \text{ mm}$; $h_2 = 75 \text{ mm}$

Расчет:

Рис. 4.2 Расчетная схема для подбора подшипников промежуточного вала

					7M MA 707 4002 00 00	Лист
					ДМ МАЛО4-1093.00.00	22
Изм	Лист	№ Докум.	Подп.	Дата		22

Определение реакций опор:

$$\sum M_{1\Gamma} = 0$$

$$R_{2B} = \frac{-F_{a2} * h_2 - F_{r2} * L_2 - F_{a1} * h_1 - F_{r1} * L_1}{L_2 + L_3} = \frac{-412,3*75 - 437,9*58 - 960,1*23 - 1438,7*57}{58 + 26} = -1909.6H$$

$$\sum M_{1B} = 0$$

$$R_{2\Gamma} = \frac{F_{t1} * L_1 - F_{t2} * L_2}{L_2 + L_3} = \frac{3583, 2*57 - 1130, 4*58}{58 + 26} = 1650,9 \text{ H}$$

$$\sum M_{2\Gamma} = 0$$

$$\sum M_{2\Gamma} = 0$$

$$R_{1B} = \frac{F_{a1} * h_1 + F_{r1} * (L_1 + L_2 + L_3) - F_{r2} * L_3 + F_{a2} * h_2}{L_2 + L_3} =$$

$$= \frac{960,1*23 + 1438,7*(57 + 58 + 26) - 437,9*26 + 412,3*75}{58 + 26} = 2910,4H$$

$$\sum M_{2B} = 0$$

$$R_{1\Gamma} = \frac{-F_{t1}*(L_1 + L_2 + L_3) - F_{t2}*L_3}{L_2 + L_3} = \frac{-3583, 2*(57 + 58 + 26) - 1130, 4*26}{58 + 26} = -6364, 5 \text{ H}$$

Определение суммарных реакций:

$$R_{1o6uq} = \sqrt{R_{1B}^2 + R_{1\Gamma}^2} = \sqrt{(2910, 4)^2 + (-6364, 5)^2} = 6998, 4 \text{ H}$$

$$R_{2o\delta u_4} = \sqrt{R_{2B}^2 + R_{2\Gamma}^2} = \sqrt{(-1909, 6)^2 + (1650, 9)^2} = 2524,3 \text{ H}$$

Реакции опор для расчета подшипников:

$$F_{r1\max} = R_{1o\delta uq} = 6998,4 \text{ H}$$

					7M MA 701 1002 00 00	Лист
			a 2		ДМ МАЛО4-1093.00.00	23
Изм	Лист	№ Докум.	Подп.	Дата		23

$$F_{r2\max} = R_{2o\delta u_i} = 2524,3 \text{ H}$$

$$F_{a\text{max}} = F_{a1} - F_{a2} = 960, 1 - 412, 3 = 547, 8 \text{ H}$$
 (Направлена влево)

Для типового режима нагружения (II) коэффициент эквивалентности K_E =0,63:

$$F_{r1} = F_{r1\text{max}} * K_E = 6998, 4*0, 63 = 4409 \text{ H}$$

$$F_{r2} = F_{r2\text{max}} * K_E = 2524, 3*0, 63 = 1590, 3 \text{ H}$$

$$F_a = F_{a \text{max}} * K_E = 547,8*0,63 = 345,1 \text{ H}$$

Предварительно назначаем конические роликовые подшипники серии диаметров 2: для опоры 1-7207 A: C_r =48400 H, C_{0r} =32500 H, d=35 мм, D=72 мм, e=0,37, Y=1,6; для опоры 2-7205 A: C_r =29200 H, C_{0r} =21000 H, d=25 мм, D=52 мм, e=0,37, Y=1,6. Схема установки – «враспор».

Определение параметров осевого нагружения:

$$e_1' = 0.83 * e_1 = 0.83 * 0.37 = 0.307$$

$$e_2' = 0.83 * e_2 = 0.83 * 0.37 = 0.307$$

Определение минимальных необходимых осевых сил:

$$F_{a1\min} = e_1$$
 '* $F_{r1} = 0.307 * 4409 = 1353.6 \text{ H}$

$$F_{a2\min} = e_2$$
 * $F_{r2} = 0.307 * 1590.3 = 488.2 H$

Определение осевых сил:

$$F_{a1} = F_{a1 \text{min}} = 1353,6 \text{ H}$$

$$F_{a2} = F_{a1} - F_a = 1353, 6 - 345, 1 = 1008, 5 \text{ H} > F_{a2\text{min}}$$

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	2/.
Изм	Лист	№ Докум.	Подп.	Дата		24

При V=1:

$$(\frac{F_{a1}}{V*F_{r1}}) = (\frac{1353,6}{1*4409}) = 0,307 < e_1 = 0,37$$
 , принимаются X₁=1, Y₁=0

$$(\frac{F_{a2}}{V*F_{r2}}) = (\frac{1008,5}{1*1590,3}) = 0,634 > e_2 = 0,37$$
, принимаются X₂=0,4, Y₂=1,6

Определение эквивалентной динамической нагрузки:

Принимаются $K_B=1,4$ и $K_T=1,4$:

$$P_{r1} = (V * X_1 * F_{r1} + Y_1 * F_{a1}) * K_E * K_T = (1*1*4409 + 0)*1,4*1 = 6172,6 \text{ H}$$

$$P_{r2} = (V * X_2 * F_{r2} + Y_2 * F_{a2}) * K_B * K_T = (1*0, 4*1590, 3+1, 6*1008, 5)*1, 4*1 = 3149, 6 \text{ H}$$

Дальнейший расчет ведется для обоих подшипников, поскольку выбраны подшипники разных диаметров.

Определение расчетного скорректированного ресурса при $a_1=1$, $a_{23}=0.6$, k=10/3:

1)
$$L_{10ah} = a_1 * a_{23} * (\frac{C_{r1}}{P_{r1}})^k * \frac{10^6}{60*n} = 1*0, 6* (\frac{48400}{6172})^{\frac{10}{3}} * \frac{10^6}{60*257} = 37279, 1$$
 ч

$$2)L_{10ah} = a_1 * a_{23} * (\frac{C_{r2}}{P_{r2}})^k * \frac{10^6}{60*n} = 1*0,6* (\frac{29200}{3149,6})^{\frac{10}{3}} * \frac{10^6}{60*257} = 65136,6$$
ч

Расчетный ресурс больше требуемого $1L_{10ah} > L_{10ah}$ (37279,1 > 10000); $2L_{10ah} > L_{10ah}$ (65136,6 > 10000).

Проверка условий: $P_{r1max} \le 0.5 * C_{r1}$; $P_{r2max} \le 0.5 * C_{r2}$:

Определение минимальных необходимых осевых сил:

$$F_{a1\min} = e_1^{1*} F_{r1\max} = 0,307*6998,4 = 2148,5 \text{ H}$$

					ЛМ МА ЛОГ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	25
Изм	Лист	№ Докум.	Подп.	Дата		2.5

$$F_{a2\min} = e_2$$
 '* $F_{r2\max} = 0,307 * 2524,3 = 775$ H

Определение осевых сил:

$$F_{a1} = F_{a1\min} = 2148,5 \,\mathrm{H}$$

$$F_{a2} = F_{a1} - F_a = 2148, 5 - 547, 8 = 1600, 7 \text{ H} > F_{a2\text{min}}$$

При V=1:

$$(\frac{F_{a1}}{V*F_{r1}}) = (\frac{2148,5}{1*6998,4}) = 0,307 < e_1 = 0,37$$
 , принимаются X₁=1, Y₁=0

$$(\frac{F_{a2}}{V^*F_{r2}}) = (\frac{1600,7}{1^*2524,3}) = 0,634 > e_2 = 0,37$$
, принимаются $\mathbf{X}_2 = 0,4$, $\mathbf{Y}_2 = 1,6$

$$P_{r1\text{max}} = (V * X_1 * F_{r1\text{max}} + Y_1 * F_{a1\text{max}}) * K_B * K_T = (1 * 1 * 6998, 4 + 0) * 1, 4 * 1 = 9797, 8 \text{ H}$$

$$P_{r2\max} = (V * X_2 * F_{r2\max} + Y_2 * F_{a2\max}) * K_E * K_T = (1*0, 4*2524, 3+1, 6*1600, 7)*1, 4*1 = 3570, 8H$$

$$P_{r1max} < 0.5*C_{r1}$$
 (9797,8 < 24200); $P_{r2max} < 0.5*C_{r2}$ (3570,8 < 14600);

Так как расчетный ресурс больше требуемого и выполнено условие $P_{r1max} \le 0.5*C_{r1}$ и $P_{r2max} \le 0.5*C_{r2}$ то предварительно назначенные подшипники пригодны. При требуемом ресурсе надежность выше 90%.

4.3 Подбор подшипников быстроходного вала

Расчет подшипников быстроходного вала проведен аналогично расчету подшипников тихоходного вала. Полученные данные представлены в таблице 4.1.

					ЛМ МЛ ЛП/. 1003 ПП ПП
					ДМ МА/IU4-1U93.UU.UU
Изм	Лист	№ Докум.	Подп.	Дата	

Таблица 4.1 Результаты подбора подшипников

Вал	Подши пники	Расчетн ый ресурс, ч	Максимальная ЭКВ, динамическая нагрузка, Н	Схема установки подшипников
Тихоходный	212	16301,6	20040,7	F ₁₀ F ₂₀ F ₃₀
Промежуточный	7207A	37279,1	9797,8	E _ Fa E Fa E
	7205A	65136,6	3570,8	Fell No. 19
Быстроходный	206	60010,7	1359,4	F ₀

Изм	Лист	№ Докум.	Подп.	Дата

5. Расчет валов на статическую прочность и сопротивление усталости

5.1 Расчет тихоходного вала

Рис. 5.1 Расчетная схема для тихоходного вала

Внутренние силовые факторы определены разделе 4 при подборе подшипников.

Потенциально опасными являются сечения 1-1, 2-2, 3-3.

					ЛМ МАЛОЛ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	28
Изм	Лист	№ Докум.	Подп.	Дата		20

Расчет на статическую прочность

Коэффициент перегрузки КП=2,2. Материал вала – сталь 40Х.

Сечение 1-1: место установки полумуфты на вал. Сечение нагружено крутящим моментом, концентратор напряжений — прямобочные шлицы по ГОСТ1139-80 на концевом участке вала (внутренний диаметр d=42 мм, внешний диаметр D=48 мм, ширина b=8 мм, число зубьев z=8)

Крутящий момент: $T=T_T=704,5 \text{ H*M}.$

Геометрическая характеристика сечения [1, с.187]: $W_{1K}=2*W=2*8410=16820 \text{ мм}^3$

Напряжение кручения:
$$\tau_1 = \frac{10^3 * K_{II} * T}{W_{1K}} = \frac{10^3 * 2,2*704,5}{16820} = 92,2$$
 мПа

Общий коэффициент запаса прочности по пределу текучести: $S_{T1} = S_{\tau 1} = \frac{\tau_T}{\tau_1} = \frac{450}{92,2} = 4,9$

Сечение 2-2: место установки левого по рисунку подшипника на вал. Сечение нагружено изгибающим и крутящим моментом. Концентратор напряжений — посадка с натягом внутреннего кольца подшипника на вал.

Крутящий момент: $T=T_T=704,5 \text{ H*M}.$

Изгибающий момент: $M_{2K} = 10^{-3} * F_K * L_1 = 6635, 6*114*10^{-3} = 756,5 мПа.$

Геометрическая характеристика сечения:

$$W_2 = \frac{\pi * D^3}{32} = \frac{\pi * 60^3}{32} = 21205,8 \,\text{MM}^3$$

$$W_{2K} = \frac{\pi * D^3}{16} = \frac{\pi * 60^3}{16} = 42411,5 \,\text{MM}^3$$

Напряжение кручения:
$$\tau_2 = \frac{10^3 * K_{II} * T}{W_{2K}} = \frac{10^3 * 2, 2*704, 5}{42411, 5} = 36,6 \text{ м}$$
Па

					ЛМ МАЛОЛ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	20
Изм	Лист	№ Докум.	Подп.	Дата		27

Напряжение изгиба:
$$\sigma_2 = \frac{K_{II} * M_{2K} * 10^3}{W_2} = \frac{2,2*756,5*10^3}{21205,8} = 78,5$$
 мПа

Частные коэффициенты запаса прочности по нормальным и касательным напряжениям:

$$S_{T\sigma 2} = \frac{\sigma_T}{\sigma_2} = \frac{780}{78,5} = 9,9$$

$$S_{T\tau 2} = \frac{\tau_T}{\tau_2} = \frac{450}{36,6} = 12,3$$

Общий коэффициент запаса прочности по пределу текучести [1, с.188]: $S_{T2} = \frac{S_{T\tau2} * S_{T\sigma2}}{\sqrt{S_{T\tau2}^2 + S_{T\sigma2}^2}} = \frac{12,3*9,9}{\sqrt{12,3^2 + 9,9^2}} = 7,7$

Сечение 3-3: место установки зубчатого колеса на вал диаметром 72 мм. Сечение нагружено изгибающим и крутящим моментом, осевой силой. Концентратор напряжений — посадка с натягом колеса на вал.

Крутящий момент: $T=T_T=704,5 \text{ H*M}.$

Изгибающий момент:

$$M_{3K} = 10^{-3} * R_{2K} * L_3 = -6876, 9*52*10^{-3} = 357, 6 \text{ M}\Pi a.$$

$$M_{3BJI} = 10^{-3} * R_{1B} * L_2 = -570 * 58 * 10^{-3} = 33,1 \text{ M}\Pi a$$

$$M_{3BII} = 10^{-3} * R_{2B} * L_3 = 90,5*52*10^{-3} = 4,7 \text{ m}\Pi a$$

$$M_{_{3\Gamma}} = 10^{-3} * R_{_{2\Gamma}} * L_{_{3}} = 629,8*52*10^{-3} = 32,8 \text{ M}\Pi a$$

$$M_3 = \sqrt{{M_{3BJ}}^2 + {M_{3\Gamma}}^2} + M_{3K} = \sqrt{33,1^2 + 32,8^2} + 357,6 = 404,2$$
 m Π a

Осевая сила: F_a=960,1 H

Геометрическая характеристика сечения:

					7M MA 707 4003 00 00	Лист
//	7	A/0_17	//- 2-	7	ДМ МАЛО4-1093.00.00	30
Изм	Лист	№ Докум.	Подп.	Дата		30

$$W_3 = \frac{\pi * D^3}{32} = \frac{\pi * 72^3}{32} = 36643,6 \,\text{MM}^3$$

$$W_{3K} = \frac{\pi * D^3}{16} = \frac{\pi * 72^3}{16} = 73287,1_{\text{MM}}^3$$

$$A = \frac{\pi * D^2}{4} = \frac{\pi * 72^2}{4} = 4071,5_{\text{MM}^2}$$

Напряжение кручения:
$$\tau_3 = \frac{10^3 * K_{II} * T}{W_{3K}} = \frac{10^3 * 2,2*704,5}{73287,1} = 21,2$$
 мПа

Напряжение изгиба:
$$\sigma_3 = \frac{K_{_{I\!I}} * M_{_3} * 10^3}{W_3} + \frac{K_{_{I\!I}} * F_a}{A} = \frac{2,2 * 404,2 * 10^3}{36643,6} + \frac{960,1 * 2,2}{4071,5} = 24,8 \text{ м} \Pi a$$

Частные коэффициенты запаса прочности по нормальным и касательным напряжени-

$$S_{T\sigma 3} = \frac{\sigma_T}{\sigma_3} = \frac{780}{24,8} = 31,5$$

$$S_{T\tau 3} = \frac{\tau_T}{\tau_3} = \frac{450}{21,2} = 21,2$$

коэффициент прочности ПО пределу текучести:

$$S_{T3} = \frac{S_{T\tau3} * S_{T\sigma3}}{\sqrt{S_{T\tau3}^2 + S_{T\sigma3}^2}} = \frac{21,2*31,5}{\sqrt{21,2^2 + 31,5^2}} = 17,6$$

Статическая прочность вала обеспечена: во всех опасных сечениях $S>[S_T]=2,0$.

Расчет на сопротивление усталости

Сечение 1-1:

$$\tau_{a1} = \frac{T_T * 10^3}{2 * W_{1K}} = \frac{704,5 * 10^3}{2 * 16820} = 20,9 \text{ M}\Pi a$$

$$\tau_{m1} = \tau_{a1} = 20,9 \text{ M}\Pi a$$

$$\tau_{m1} = \tau_{a1} = 20,9 \text{ m}\Pi a$$

					714 144 704 4002 00 00	Лист
					ДМ МАЛО4-1093.00.00	21
Изм	Лист	№ Докум.	Подп.	Дата		וכ

Концентратор напряжений – прямобочный шлиц, наружная поверхность которого имеет шероховатость Ra=0,8 мкм, поэтому принимаются:

$$K_{\tau} = 2,65; K_{d\tau} = 0,7; K_{F\tau} = 0,95; K_{V} = 1$$

Коэффициент снижения предела выносливости [1, с.190]:

$$K_{\tau D} = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) / K_V = \left(\frac{2,65}{0,7} + \frac{1}{0,95} - 1\right) / 1 = 3,84$$

Предел выносливости вала в рассматриваемом сечении:

$$\tau_{-1D} = \frac{\tau_{-1}}{K_{\tau D}} = \frac{240}{3,84} = 62,5 \text{ M}\Pi a$$

Коэффициент влияния асимметрии цикла [1,с.191]:

$$\psi_{\tau D} = \frac{\psi_{\tau}}{K_{\tau D}} = \frac{0.10}{3.84} = 0.026$$

Коэффициент запаса прочности:

$$S_1 = S_{\tau} = \frac{\tau_{-1D}}{\tau_{a1} + \psi_{\tau D} \tau_{m1}} = \frac{62,5}{(20,9 + 0,026 * 20,9)} = 2,9$$

Сечение 2-2:

$$\tau_{a2} = \frac{T_T * 10^3}{2 * W_{2K}} = \frac{704,5 * 10^3}{2 * 42411,5} = 8,3 \text{ M}\Pi a$$

$$\tau_{m2} = \tau_{a2} = 8.3 \text{ M}\Pi a$$

$$\sigma_{a2} = \frac{M_{2K} * 10^3}{W_2} = \frac{756,5 * 10^3}{21205,8} = 35,7 \text{ M}\Pi a$$

Концентратор напряжений – посадка с натягом, потому что внутреннее кольцо подшипника посажено с натягом, шероховатость посадочной поверхности Ra=0,8, поэтому принимаются:

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	22
Изм	Лист	№ Докум.	Подп.	Дата		<i>J</i> 2

$$\frac{K_{\tau}}{K_{d\tau}} = 2.8; \frac{K_{\sigma}}{K_{d\sigma}} = 4.7; K_{V} = 1; K_{F\sigma} = 0.91; K_{F\tau} = 0.95$$

Коэффициенты снижения предела выносливости:

$$K_{\tau D} = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) / K_V = \left(2, 8 + \frac{1}{0,95} - 1\right) / 1 = 2,85$$

$$K_{\sigma D} = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right) / K_V = \left(4, 7 + \frac{1}{0,91} - 1\right) / 1 = 4,80$$

Предел выносливости вала в рассматриваемом сечении:

$$\tau_{-1D} = \frac{\tau_{-1}}{K_{\tau D}} = \frac{240}{2,85} = 84,2 \text{ m}\Pi a$$

$$\sigma_{-1D} = \frac{\sigma_{-1}}{K_{\sigma D}} = \frac{410}{4,80} = 85,4 \text{ m}\Pi a$$

Коэффициент влияния асимметрии цикла:

$$\psi_{\tau D} = \frac{\psi_{\tau}}{K_{\tau D}} = \frac{0.10}{2.85} = 0.035$$

Коэффициент запаса прочности:

$$S_{\tau} = \frac{\tau_{-1D}}{\tau_{a2} + \psi_{\tau D} \tau_{m2}} = \frac{84, 2}{(8, 3 + 0, 035 * 8, 3)} = 9, 8$$

$$S_{\sigma} = \frac{\sigma_{-1D}}{\sigma_{a2}} = \frac{85,4}{35,7} = 2,4$$

$$S_2 = \frac{S_\tau * S_\sigma}{\sqrt{S_\tau^2 + S_\sigma^2}} = \frac{9.8 * 2.4}{\sqrt{9.8^2 + 2.4^2}} = 2.3$$

$$\tau_{a3} = \frac{T_T * 10^3}{2 * W_{3K}} = \frac{704,5 * 10^3}{2 * 73287,1} = 4,8 \text{ M}\Pi a$$

$$\tau_{m3} = \tau_{a3} = 4,8 \text{ M}\Pi a$$

$$\tau_{m3} = \tau_{a3} = 4.8 \text{ M}\Pi a$$

					ДМ МАЛО4-1093.00.00	Лист
- //	a	A/Q. (7	<i>a</i> 2	П		33
Изм	Лист	№ Докум.	Подп.	Дата		33

$$\sigma_{a3} = \frac{M_3 * 10^3}{W_3} + \frac{F_a}{A} = \frac{404,2 * 10^3}{36643,6} + \frac{960,1}{4071,5} = 11,3 \text{ M}\Pi a$$

Концентратор напряжений — посадка с натягом, шероховатость посадочной поверхности Ra=0.8, поэтому принимаются:

$$\frac{K_{\tau}}{K_{d\tau}} = 2.9; \frac{K_{\sigma}}{K_{d\sigma}} = 4.86; K_{V} = 1; K_{F\sigma} = 0.91; K_{F\tau} = 0.95$$

Коэффициенты снижения предела выносливости:

$$K_{\tau D} = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) / K_V = \left(2, 9 + \frac{1}{0,95} - 1\right) / 1 = 2,95$$

$$K_{\sigma D} = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right) / K_V = \left(4,86 + \frac{1}{0,91} - 1\right) / 1 = 4,96$$

Предел выносливости вала в рассматриваемом сечении:

$$\tau_{-1D} = \frac{\tau_{-1}}{K_{\tau D}} = \frac{240}{2,95} = 81,4 \text{ M}\Pi a$$

$$\sigma_{-1D} = \frac{\sigma_{-1}}{K_{\sigma D}} = \frac{410}{4,96} = 82,7 \text{ M}\Pi a$$

Коэффициент влияния асимметрии цикла:

$$\psi_{\tau D} = \frac{\psi_{\tau}}{K_{\tau D}} = \frac{0.10}{2,95} = 0.034$$

Коэффициент запаса прочности:

$$S_{\tau} = \frac{\tau_{-1D}}{\tau_{a3} + \psi_{\tau D} \tau_{m3}} = \frac{81,4}{(4,8+0,034*4,8)} = 16,4 \qquad S_{\sigma} = \frac{\sigma_{-1D}}{\sigma_{a2}} = \frac{82,7}{11,3} = 7,3$$

$$S_3 = \frac{S_\tau * S_\sigma}{\sqrt{S_\tau^2 + S_\sigma^2}} = \frac{16,4*7,3}{\sqrt{16,4^2 + 7,3^2}} = 6,7$$

Сопротивление усталости вала обеспечено: во всех опасных сечениях S>[S]=2,0.

					ΠΜ ΜΑ ΛΟΙ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	2/
Изм	Лист	№ Докум.	Подп.	Дата)4

5.2 Расчет промежуточного вала

Рис 5.2 Расчет промежуточного вала

Внутренние силовые факторы определены в разделе 4 при подборе подшипников.

Потенциально опасными являются сечения 1-1, 2-2.

					ДМ МАЛО4-1093.00.00	Лист
						35
Изм	Nucm	№ Докум.	Подп.	Дата		ענ

Расчет на статическую прочность

Коэффициент перегрузки K_{Π} =2,2. Материал вала – сталь 40X.

Сечение 1-1: место установки левого по рисунку подшипника на вал. Сечение нагружено изгибающим и крутящим моментом, осевой силой. Концентратор напряжений – посадка с натягом внутреннего кольца подшипника на вал.

Крутящий момент: $T=T_{пр}=84,8 \text{ H*M}.$

Изгибающий момент:

$$M_{1B} = 10^{-3} * F_{t1} * L_1 = 3583, 2*57*10^{-3} = 204, 2 \text{ M}\Pi a$$

$$M_{1\Gamma} = 10^{-3} * (F_{r1} * L_1 + F_{a1} * h_1) = (1438, 7*57 + 960, 1*23) * 10^{-3} = 104, 1 \text{ M}\Pi a$$

$$M_1 = \sqrt{{M_{1B}}^2 + {M_{1\Gamma}}^2} = \sqrt{204, 2^2 + 104, 1^2} = 229, 2 \text{ M}\Pi a$$

Осевая сила: F_{a1}=2148,5 H

Геометрическая характеристика сечения:

$$W_1 = \frac{\pi * D^3}{32} = \frac{\pi * 35^3}{32} = 4209, 2 \text{ MM}^3$$

$$W_{1K} = 2*W_1 = 2*4209, 2 = 8418, 4 \text{ MM}^3$$

$$A = \frac{\pi * D^2}{4} = \frac{\pi * 35^2}{4} = 962,1$$
 MM²

Напряжение кручения:
$$\tau_1 = \frac{10^3 * K_{II} * T}{W_{1K}} = \frac{10^3 * 2,2*84,8}{4209,2} = 44,3$$
 мПа

Напряжение изгиба:
$$\sigma_1 = \frac{K_{II} * M_1 * 10^3}{W_1} + \frac{K_{II} * F_a}{A} = \frac{2,2 * 229,2 * 10^3}{4209,2} + \frac{2148,5 * 2,2}{962,1} = 124,7$$
 мПа

Частные коэффициенты запаса прочности по нормальным и касательным напряжениям:

					ЛМ МЛ ЛОЛ. 1003 00 00	Лист
					ДМ MA/IU4-1U93.UU.UU	36
Изм	Лист	№ Докум.	Подп.	Дата		30

$$S_{T\sigma 1} = \frac{\sigma_T}{\sigma_1} = \frac{780}{124,7} = 6,3$$
$$S_{T\tau 1} = \frac{\tau_T}{\tau_1} = \frac{450}{44,3} = 10,2$$

$$S_{T\tau 1} = \frac{\tau_T}{\tau_1} = \frac{450}{44,3} = 10,2$$

коэффициент пределу запаса прочности ПО текучести:

$$S_{T1} = \frac{S_{T\tau 1} * S_{T\sigma 1}}{\sqrt{S_{T\tau 1}^2 + S_{T\sigma 1}^2}} = \frac{10,2*6,3}{\sqrt{10,2^2 + 6,3^2}} = 5,4$$

Сечение 2-2: место установки зубчатого колеса на вал диаметром 30 мм. Сечение нагружено изгибающим и крутящим моментом, осевой силой. Концентратор напряжений – прямобочные шлицы по ГОСТ1139-80 (внутренний диаметр d=26 мм, внешний диаметр D=30 мм, ширина b=6 мм, число зубьев z=6).

Крутящий момент: $T=T_{пр}=84,8 \text{ H*M}.$

Изгибающий момент:

$$M_{2BII} = 10^{-3} * R_{2B} * L_3 = -1909, 6*26*10^{-3} = 49,7 \text{ M}\Pi a$$

$$M_{2\Gamma} = 10^{-3} * R_{2\Gamma} * L_3 = 1650, 9 * 26 * 10^{-3} = 42, 9 \text{ m}\Pi a$$

$$M_2 = \sqrt{M_{2BH}^2 + M_{2\Gamma}^2} = \sqrt{49,7^2 + 42,9^2} = 65,7 \text{ M}\Pi a$$

Осевая сила: F_{a2}=412,3 H

Геометрическая характеристика сечения:

$$W_2 = 1966 \text{ mm}^3$$

$$W_{2K} = 2*W_2 = 2*1966 = 3932 \text{ MM}^3$$

$$A = \frac{\pi^* d^2}{4} + \frac{b^* z^* (D - d)}{2} = \frac{\pi^* 26^2}{4} + \frac{6^* 6^* (30 - 26)}{2} = 602,9 \text{ MM}^2$$

Напряжение кручения:
$$\tau_2 = \frac{10^3 * K_{\Pi} * T}{W_{2K}} = \frac{10^3 * 2,2*84,8}{3932} = 47,5 \text{ м}$$
Па

					ЛМ МА ЛОГ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	<i>27</i>
Изм	Лист	№ Докум.	Подп.	Дата		27

Напряжение изгиба:

$$\sigma_2 = \frac{K_{II} * M_2 * 10^3}{W_2} + \frac{K_{II} * F_a}{A} = \frac{2,2*65,7*10^3}{1966} + \frac{412,3*2,2}{602,9} = 75,0 \text{ M}\Pi a$$

Частные коэффициенты запаса прочности по нормальным и касательным напряжениям:

$$S_{T\sigma 2} = \frac{\sigma_T}{\sigma_2} = \frac{780}{75,0} = 10,4$$

$$S_{T\tau 2} = \frac{\tau_T}{\tau_2} = \frac{450}{47.5} = 9.5$$

Общий коэффициент запаса прочности по пределу текучести:

$$S_{T2} = \frac{S_{T\tau2} * S_{T\sigma2}}{\sqrt{S_{T\tau2}^2 + S_{T\sigma2}^2}} = \frac{9,5 * 10,4}{\sqrt{9,5^2 + 10,4^2}} = 7,0$$

Статическая прочность вала обеспечена: во всех опасных сечениях $S>[S_T]=2,0$.

Расчет на сопротивление усталости

Сечение 1-1:

$$\tau_{a1} = \frac{10^3 * T}{W_{1K}} = \frac{10^3 * 84, 8}{4209, 2} = 20, 1 \text{ M}\Pi a$$

$$au_{\scriptscriptstyle m1} = au_{\scriptscriptstyle a1} = 20,1 \,\,\mathrm{M}\Pi\mathrm{a}$$

$$\sigma_{a1} = \frac{M_1 * 10^3}{W_1} + \frac{F_a}{A} = \frac{229, 2*10^3}{4209, 2} + \frac{2148, 5}{962, 1} = 56, 7 \text{ m}\Pi a$$

Концентратор напряжений – посадка с натягом, шероховатость посадочной поверхности Ra=0,8, поэтому принимаются:

$$\frac{K_{\tau}}{K_{d\tau}} = 2,4; \frac{K_{\sigma}}{K_{d\sigma}} = 4,0; K_{V} = 1; K_{F\sigma} = 0,91; K_{F\tau} = 0,95$$

Коэффициенты снижения предела выносливости:

					ЛМ МАЛОТ 1002 00 00	Лист
Изм	Лист	№ Докум.	Подп.	Дата	ДМ МАЛО4-1093.00.00	38

$$K_{\tau D} = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) / K_V = \left(2, 4 + \frac{1}{0,95} - 1\right) / 1 = 2,45$$

$$K_{\sigma D} = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right) / K_V = \left(4, 0 + \frac{1}{0,91} - 1\right) / 1 = 4,10$$

Предел выносливости вала в рассматриваемом сечении:

$$\tau_{-1D} = \frac{\tau_{-1}}{K_{\tau D}} = \frac{240}{2,45} = 98,0 \text{ m}\Pi a$$

$$\sigma_{-1D} = \frac{\sigma_{-1}}{K_{\sigma D}} = \frac{410}{4{,}10} = 100 \text{ m}\Pi a$$

Коэффициент влияния асимметрии цикла:

$$\psi_{\tau D} = \frac{\psi_{\tau}}{K_{\tau D}} = \frac{0.10}{2.45} = 0.041$$

Коэффициент запаса прочности:

$$S_{\tau} = \frac{\tau_{-1D}}{\tau_{a1} + \psi_{\tau D} \tau_{m1}} = \frac{98,0}{(20,1+0,041*20,1)} = 4,7$$

$$S_{\sigma} = \frac{\sigma_{-1D}}{\sigma_{a1}} = \frac{100}{56,7} = 1,8$$

$$S_1 = \frac{S_{\tau} * S_{\sigma}}{\sqrt{S_{\tau}^2 + S_{\sigma}^2}} = \frac{4,7 * 1,8}{\sqrt{4,7^2 + 1,8^2}} = 1,7$$

Сечение 2-2:

$$\tau_{a2} = \frac{10^3 * T}{W_{2K}} = \frac{10^3 * 84,8}{3932} = 21,6 \text{ M}\Pi a$$

$$\tau_{m2} = \tau_{a2} = 21,6 \text{ M}\Pi a$$

$$\sigma_{a2} = \frac{M_2 * 10^3}{W_2} + \frac{F_a}{A} = \frac{265,7 * 10^3}{1966} + \frac{412,3}{602,9} = 34,1 \text{ M}\Pi a$$

						714 144 704 4002 00 00	Лист
- /	13M	Лист	№ Докум.	Подп.	Дата	ДМ МАЛО4-1093.00.00	39
,	1311	/IULIII	т докуп.	110011.	дини		

Концентратор напряжений – прямобочный шлиц, наружная поверхность которого имеет шероховатость Ra=0,8 мкм, поэтому принимаются:

$$K_{\tau} = 2,65; K_{d\tau} = 0,77; K_{\sigma} = 1,7; K_{d\sigma} = 0,88; K_{F\tau} = 0,95; K_{V} = 1$$

Коэффициенты снижения предела выносливости:

$$K_{\tau D} = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) / K_V = \left(\frac{2,65}{0,77} + \frac{1}{0,95} - 1\right) / 1 = 3,49$$

$$K_{\sigma D} = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right) / K_V = \left(\frac{1,7}{0,88} + \frac{1}{0,95} - 1\right) / 1 = 1,98$$

Предел выносливости вала в рассматриваемом сечении:

$$\tau_{-1D} = \frac{\tau_{-1}}{K_{\tau D}} = \frac{240}{3,49} = 68,8 \text{ M}\Pi a$$

$$\sigma_{-1D} = \frac{\sigma_{-1}}{K_{\sigma D}} = \frac{410}{1,98} = 207,1 \text{ m}\Pi a$$

Коэффициент влияния асимметрии цикла:

$$\psi_{\tau D} = \frac{\psi_{\tau}}{K_{\tau D}} = \frac{0.10}{3.49} = 0.029$$

Коэффициент запаса прочности:

$$S_{\tau} = \frac{\tau_{-1D}}{\tau_{a1} + \psi_{\tau D}\tau_{m2}} = \frac{68,8}{(21,6+0,028*21,6)} = 3,1$$

$$S_{\sigma} = \frac{\sigma_{-1D}}{\sigma_{a2}} = \frac{207,1}{34,1} = 6,1$$

$$S_2 = \frac{S_\tau * S_\sigma}{\sqrt{S_\tau^2 + S_\sigma^2}} = \frac{3.1 * 6.1}{\sqrt{3.1^2 + 6.1^2}} = 2.8$$

Сопротивление усталости вала обеспечено: во всех опасных сечениях $S \ge [S_T] = 1,7.$

					ЛМ МА ЛОГ 1002 00 00	Лист
					ДМ МАЛО4-1093.00.00	1.0
Изм	Лист	№ Докум.	Подп.	Дата		40

5.3 Расчет быстроходного вала

Расчет на статическую прочность проводился аналогично расчету тихоходного вала, расчет на сопротивление усталости не проводился. Результаты расчета представлены в таблице 5.1.

Таблица 5.1 Результаты расчета

Вал	Минимальный	Минимальный	$[S_T]$	[S]
	S_{T}	S		
Тихоходный	4,9	2,3	2	2
Промежуточный	5,4	1,7	2	1,7
Быстроходный	11,7	Расчет не	2	Расчет не
		проводился		проводился

Изм	Лист	№ Докум.	Подп.	Дата

6. Выбор смазочных материалов и систем смазывания

6.1 Смазывание передач

Для смазывания передачи применяется картерную систему, поскольку окружные скорости колес не превышают значения 12,5 м/с. В корпус масло заливается так, чтобы венцы зубчатых колес были в него погружены. Колеса при вращении увлекают масло, разбрызгивая его внутри корпуса.

Выбор масла:

 $\sigma_H < 600\,\mathrm{M\Pi a}$ и $v = 4\,\mathrm{m/c}$, поэтому для смазывания передачи необходима смазка с вязкостью 28 мм²/с. Для смазки редуктора применяется масло И-Г-А-32 ГОСТ 20799-88 [1, с.198]. Перед испытанием в редуктор необходимо залить масло И-Г-А-32 в объеме 7 л. Замену смазочного материала производят примерно через 1000 ч работы.

6.2 Смазывание подшипников

Подшипники смазываются тем же маслом, что и детали передач. При картерном смазывании передач подшипники смазываются брызгами масла. Вследствие вращения колес брызгами масла покрыты все детали передачи и внутренние поверхности стенок корпуса. Стекающее с колес, валов и со стенок корпуса масло попадает в подшипник и смазывает его.

6.3 Смазочные устройства

Для замены масла в корпусе предусматриваем сливное отверстие, закрываемое пробкой с конической резьбой К1/2. Коническая резьба создает герметичное соединение, и пробки с этой резьбой дополнительного уплотнения не требуют. Для наблюдения за уровнем масла устанавливается фонарный маслоуказатель с глазком из прозрачной пластмассы.

При длительной работе в связи с нагревом воздуха повышается давление внутри корпуса, что при интенсивном тепловыделении приводит к просачиванию масла через уплотнения и стыки. Чтобы избежать этого, внутреннюю полость корпуса сообщаем с внешней средой путем установки отдушины в верхней части крышки

					7M MA 707 4002 00 00	Лист
					ДМ МАЛО4-1093.00.00	12
Изм	Лист	№ Докум.	Подп.	Дата		42

корпуса редуктора. Также отдушина используется в качестве пробки, закрывающей отверстие для заливки масла.

6.4 Уплотнительные устройства

Уплотнительные устройства применяют для предохранения от вытекания смазочного материала из подшипниковых узлов, а также для защиты их от попадания извне пыли и влаги. Для этих целей применяются манжетные уплотнения. Манжета устанавливается открытой стороной внутрь корпуса, что способствует удержанию смазочного материала в подшипниковом узле.

Манжетные уплотнения выбираются в соответствии с диаметрами валов.

Изм	Лист	№ Докум.	Подп.	Дата

7. Расчет муфт

7.1 Подбор упругой муфты

Для передачи вращающего момента с вала электродвигателя на быстроходный вал редуктора используется муфта с упругой торообразной оболочкой, у которой упругий элемент выполнен в виде внутреннего тора. Данная муфта имеет хорошие компенсирующие свойства, малые габариты и пространство внутри, необходимое для осевого крепления полумуфт на концах валов.

Исходные данные:

 $d=25\,$ мм — номинальный диаметр быстроходного конца вала; $d_1=32\,$ мм — диаметр вала электродвигателя; $T=37, 6\,$ H*M — вращающий момент на быстроходном валу.

По данным параметрам выбрана муфта 2ПС-250-32-1-25-2У2 ГОСТ Р 50896-96 [2, с.290]

7.2 Расчет и конструирование комбинированной муфты

Для передачи вращающего момента с тихоходного вала редуктора потребителю механической энергии используется комбинированная муфта. Комбинированная муфта состоит из трех полумуфт, одна из которых — полумуфта муфты упругой втулочно-пальцевой.

Исходные данные:

 $d=48\,$ мм - диаметр конца тихоходного вала; $T_K=1,2*704,5=845\,$ Н*М - вращающий момент на тихоходном валу; $n=50\,$ об/мин - частота вращения тихоходного вала.

Поскольку данная полумуфта стандартизована, то ее параметры выбираются из списка стандартных [2, с.293].

Выбрана полумуфта с параметрами:

L						
					714 144 704 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	//
Изм	Лист	№ Докум.	Подп.	Дата		44

T=1000~H*M — номинальный крутящий момент; d=45 — внутренний диаметр муфты; D=220~мм — диаметр муфты; L=170~мм — длина муфты; l=82~мм — длина шлица муфты; $n_{\text{max}}=3000~\text{об/мин}$.

Принимаются:

 d_0 = 35 mm; d_{Π} =24 mm; l_{BT} =36 mm

$$D_0=D-(1,5...1,6)d_0=190-(1,5...1,6)*35=135,5...134$$
 mm;

Принимается: $D_0=134$ мм; z=6; c=5 мм

Проверочный расчет упругой полумуфты

Расчет:

Рис. 7.1 Расчетная схема упругой полумуфты

$$\sigma_{CM} = \frac{2*10^3*T_K}{z*D_0*d_{\Pi}*l_{BT}} = \frac{2*10^3*845}{6*134*24*36} = 1,95 \text{ M}\Pi\text{a} < [\sigma]_{CM} = 2 \text{ M}\Pi\text{a}$$

$$\sigma_{II} = \frac{2*10^{3}*T*(0,5*l_{BT}+c)}{z*D_{0}*0,1*d_{II}^{3}} = \frac{2*10^{3}*845*(0,5*36+5)}{6*134*0,1*24^{3}} = 35,0 \,\mathrm{M}\Pi\mathrm{a} < [\sigma]_{II} = 200 \,\mathrm{M}\Pi\mathrm{a}$$

Для конструирования принимаются предварительно выбранные параметры упругой полумуфты.

					7M MA 707 4003 00 00	Лист
					ДМ МАЛО4-1093.00.00	/ [
Изм	Лист	№ Докум.	Подп.	Дата		43

Расчет предохранительной полумуфты

Расчет момента срабатывания

Исходные данные:

$$P_{\ni Д}$$
=4 кВт; $n_{\ni Д}$ =950 об/мин; $\frac{T_{HVCK}}{T_{HOM}}$ = 2; $\frac{T_{MAX}}{T_{HOM}}$ = 2,2

Расчет:

$$T_{3JJ} = 9550 * \frac{P_{3JJ}}{n_{3JJ}} = 9550 * \frac{4}{950} = 40,2 \text{ H*M}$$
 $T_{\Pi VCK.3JJ} = T_{3JJ} * \frac{T_{\Pi VCK}}{T_{HOM}} = 40,2 * 2 = 80,4 \text{ H*M}$

$$T_{_{B.M.\Pi.\Pi.\Im\mathcal{J}.}} = T_{_{\Pi VCK.\Im\mathcal{J}}} *U*\eta = 80,4*19*0,97^2*0,98 = 1408,6\,\mathrm{H^*M}$$

$$T_{CPAB.} = T_{JJ} * U * \eta * \frac{T_{HVCK}}{T_{HOM}} + \frac{T_{MAX}}{T_{HOM}} = 40,2*19*0,98*0,97^2 = 1479 \text{ H*M} < 1000 \text{ H} < 10000 \text{ H} < 1000 \text{ H} < 10000 \text{ H} < 1$$

<1,2* $T_{B.M.П.Л.ЭД.}$ =1,2*1408,6=1690 H*M, поэтому принимается T_{CPAB} = 1690 H*M.

Расчет диаметра штифта

Исходные данные:

$$\sigma_{BP} = 900 \,\mathrm{MHa}; \,\mathrm{c} = 0.75$$

Расчет:

Рис. 7.2 Расчетная схема для диаметра штифта

$$\tau_{BP.CP} = c * \sigma_{BP} = 0.75*900 = 675 \,\mathrm{M}\Pi a$$

$$\tau_{BP.CP} * \frac{\pi^* d_{III}^2}{4} * R * \frac{z}{k} = T_{CPAB} * 10^3 \rightarrow d_{III} = \sqrt{\frac{10^3 * T_{CPAB} * k * 4}{\pi^* R * z * \tau_{BP.CP}}} = \sqrt{\frac{10^3 * 1690 * 1 * 4}{\pi^* 675 * 1 * 70}} = 6,7_{\text{MM}}.$$

Принимается d_{III} =6 мм.

					7M MA 707 4003 00 00	Лист
Изм	Лист	№ Докум.	Подп.	Дата	ДМ МАЛО4-1093.00.00	46

$$R = \frac{T_{CPAB} * 10^3 * k * 4}{z * \pi * d_{III}^2 * \tau_{BP,CP}} = \frac{1690 * 10^3 * 1 * 4}{1 * \pi * 36 * 675} = 89 \,\text{MM}.$$

По полученным данным конструируется предохранительная полумуфта.

8. Проектирование рамы

Для установки привода на пол цеха необходимо спроектировать сварную раму. Для этого сначала строятся опорные поверхности электродвигателя и редуктора, затем графически определяются габаритные размеры рамы, по которым выбирается номер швеллера из ряда стандартных по ГОСТ8240-89. После чего прорабатывается конструкция рамы, которая должна быть простой в сборке и иметь наименьшее количество сварных соединений.

Расчет:

L=700 мм, H= (0,08...0,01)*L=(0,08...0,01)*700=56...70 мм. Для того, чтобы можно было разместить опорные платики на полке швеллера принимается швеллер №12 ГОСТ8240-89 [2, c.7].

Изм	Лист	№ Докум.	Подп.	Дата

Заключение

В ходе выполнения курсового проекта был разработан и спроектирован привод индивидуальный. Разработана конструкторская документация привода:

- чертеж общего вида редуктора (на стадии эскизного проекта);
- сборочный чертеж редуктора (на стадии технического проекта);
- рабочие чертежи деталей редуктора (тихоходный вал, цилиндрическое колесо);
 - сборочный чертеж комбинированной муфты;
 - сборочный чертеж сварной рамы;
 - чертеж общего вида привода;
 - расчетно-пояснительная записка и спецификации.

Основные параметры привода:

- -двигатель трехфазный асинхронный АИР112M6 мощностью 4 кВт, асинхронная частота вращения 950 об/мин;
 - -передаточное число редуктора $U_{peg}=19,313$;
- -вращающий момент с выходного вала редуктора на потребитель передается через комбинированную муфту, момент срабатывания которой $T_{\text{СРАБ}}$ =1690 H*M.

Изм	Лист	№ Докум.	Подп.	Дата

Список использованных источников

- 1. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин: Учебное пособие для студентов технических специальностей вузов/ П.Ф. Дунаев, О.П. Леликов. 9-е изд., перераб. и доп. М.: Издательский центр «Академия», 2006.
- 2. Атлас конструкций и деталей машин: Учебное пособие /Б.А. Байков, А.В. Клыпин, И.К. Ганулич и др.; под ред. О.А. Ряховского. М.: МГТУ им. Н.Э. Баумана, 2005.
- 3. Варламова Л.П., Методические указания по расчету и конструированию предохранительного устройства приводов в виде срезного штифта М.: МГТУ им. Н.Э. Баумана, 2011.

Изм	Лист	№ Докум.	Подп.	Дата

механизмы передаточные

РАСЧЕТ ПРОЕКТНЫЙ

программа и 50

Зубчатые цилиндрические двухступенчатые

По соосной схеме внутреннего зацепления косозубые двухпоточные

исходные данные	
Вращающий момент на тихоходном валу, Н.м 704.5	
Частота вращения тихоходного вала, об/мин 50.0	
Ресурс, час 10000.	
Режим нагружения	
Передаточное отношение редуктора 19.00	
Коэффициент ширины венца	
Степень точности	
Коэффициент запаса по изгибной прочности 2.20	
Твердость поверхности зубьев Шестерни, HRCэ	ВАРЬИРУЕТСЯ
Колеса, HRCэ0	ВАРЬИРУЕТСЯ
Минимальное допустимое число зубьев Шестерни . 12.	
Отношение передаточных чисел ступеней	ВАРЬИРУЕТСЯ
Угол наклона зибьев, град	

программа n 50 имя файла данных:rk9-64b

механизмы передаточные

РАСЧЕТ ПРОЕКТНЫЙ

Зубчатые цилиндрические двухступенчатые

По соосной сжеме внутреннего зацепления косозубые двухпоточные параметры для выбора варианта

Ba	Твердости, НКСэ		Коэф. Отнош ширин перед		вое рас	Диаметр впадин	Диаметры вершин Колес, мм			Массы кг	
р	Mecr.	Колес	венца	чисел стояние ступе мм	Б-Шестер	T.	-ступень	Б-ступень	межан.	колес	
1	28.5	24.8	.315	.70	120.00	47.68	1	295.96	191.57	70.	, 19.1
2	28.5	24.8	.315	1.00	110.00	37.50	1	283.72	181.75	67.	17.2
3	28.5	24.8	.315	1.30	130.00	37.62		350.27	221.38	89.	29.9
4	49.0	28.5	.315	.70	95.00	36.17	1	233.55	153.08	(50)	1/9.8
5	49.0	28.5	.315	1.00	105.00	35.72		270.77	173.53	61.	14.2
6	49.0	28.5	.315	1.30	105.00	31.51		283.19	177.74	64.	15.8
7	59.0	59.0	.315	.70	85.00	33.68	1	205.32	135.57	42.	6.7
8	59.0	59.0	.315	1.00	85.00	28.41	-/	218.19	140.84	44.	7.1
9	59.0	59.0	.315	1.30	85.00	24.58		229.06	144.67	46.	8.5

По соосной схеме винтреннего запеплени	Зубчатые цилиндрические двухступенчатые По соосной схеме внутреннего зацепления косозубые					
результаты			ные Вар	риант 4		
Характеристика						
			. 19.3	212		
Вращающий момент на Быстроходном вал				37.6		
Тихоходном валу,)4.5		
			. 965			
Частота вращения Быстроходного вала,						
Тихоходного вала, о				0.0		
Масса Механизма, кг				9.7		
Колес, кг			5-0.00	.56		
Степень точности			. 8.			
Ступень		Гихоходная	Быст	гроходна		
Передаточное число		5.13	6	3.760		
Коэффициент ширины венца		.31	5	.200		
Межосевое расстояние, мм		95.00		95.000		
Угол зацепления, град		21.87		21.177		
Угол наклона зубъев, град		15.00		20.037		
Модуль зацепления (нормальный), мм		2.00		1.500		
Силы в зацеплении, Н:		21.00		2.500		
Окружная (суммарная для шеврона)		3284.	6	1025.8		
Радиальная (суммарная для шеврона)	1318.	8	397.4		
Осевая		880.	1	374.1		
Вращающий момент на Шестерне, Н.м		77.	0	37.6		
Контактные напряжения, MПа: при номинальной нагрузке:						
расчетные		577.	7	529.3		
допускаемые		637.		594.6		
при максимальной нагрузке:						
расчетные		856.	8	785.0		
		1960.		1960.0		
допускаемые		1300.				
	Тихоко		Быстрохо	раная		
Ступень		дная				
Ступень Параметры зубчатого Колеса	Шестерня	дная Колесо	Шестерня	Колесо		
Ступень Параметры зубчатого Колеса исло зубьев	Шестерня	дная Колесо	Шестерня 25.	Колесо 94.		
Ступень Параметры зубчатого Колеса исло зубьев	Шестерня	дная Колесо	Шестерня	Колесо 94.		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм:	Шестерня 22. .500	дная Колесо 113. .906	25. .000	Жолесо 94. .000		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный	22. .500 45.552	дная Колесо 113. .906 233.972	25. .000	% молесо 94. .000		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный	22. .500 45.552 45.934	дная Колесо 113. .906 233.972 235.934	25. .000 39.916 39.916	94. .000 150.084 150.084		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин	22. .500 45.552 45.934 51.507	дная Колесо 113. .906 233.972 235.934 233.552	25. .000 39.916 39.916 42.916	94. .000 150.084 150.084 153.084		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин Впадин	22. .500 45.552 45.934 51.507 42.552	дная Колесо 113. .906 233.972 235.934 233.552 242.358	25. .000 39.916 39.916 42.916 36.166	94. .000 150.084 150.084 153.084 146.334		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный Начальный Вершин Впадин ирина зубчатого венца, мм	22. .500 45.552 45.934 51.507 42.552 33.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0	25. .000 39.916 39.916 42.916 36.166 21.0	94. .000 150.084 150.084 153.084 146.334 19.0		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, HRCэ	22. .500 45.552 45.934 51.507 42.552	дная Колесо 113. .906 233.972 235.934 233.552 242.358	25. .000 39.916 39.916 42.916 36.166	94. .000 150.084 150.084 153.084 146.334 19.0		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, HRCэ апряжения изгиба, МПа:	22. .500 45.552 45.934 51.507 42.552 33.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0	25. .000 39.916 39.916 42.916 36.166 21.0	94. .000 150.084 150.084 153.084 146.334 19.0		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, HRCэ	22. .500 45.552 45.934 51.507 42.552 33.0 49.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0	25. .000 39.916 39.916 42.916 36.166 21.0	94. .000 150.084 150.084 153.084 146.334 19.0		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, HRCэ апряжения изгиба, МПа:	22. .500 45.552 45.934 51.507 42.552 33.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0	25. .000 39.916 39.916 42.916 36.166 21.0	% молесо 94. .000 150.084 150.084 153.084 146.334 19.0 28.5		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный Начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, НRCэ апряжения изгиба, МПа: при номинальной нагрузке: расчетные	22. .500 45.552 45.934 51.507 42.552 33.0 49.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0 28.5	25. .000 39.916 39.916 42.916 36.166 21.0 49.0	% молесо 94. .000 150.084 150.084 153.084 146.334 19.0 28.5		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный Начальный Вершин Впадин ирина зубчатого венца, мм вердость поверхности зубьев, НRCэ апряжения изгиба, МПа: при номинальной нагрузке: расчетные допускаемые	22. .500 45.552 45.934 51.507 42.552 33.0 49.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0 28.5	25. .000 39.916 39.916 42.916 36.166 21.0 49.0	% молесо 94. .000 150.084 150.084 153.084 146.334 19.0 28.5		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный Начальный Вершин Впадин Ирина зубчатого венца, мм вердость поверхности зубьев, НRCэ апряжения изгиба, МПа: при номинальной нагрузке: расчетные допускаемые при максимальной нагрузке:	22. .500 45.552 45.934 51.507 42.552 33.0 49.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0 28.5 215.4 214.8	25. .000 39.916 39.916 42.916 36.166 21.0 49.0	% молесо 94. .000 150.084 150.084 153.084 146.334 19.0 28.5		
Ступень Параметры зубчатого Колеса исло зубьев оэффициент смещения исходного контура Диаметры, мм: Делительный Начальный Вершин Впадин Ирина зубчатого венца, мм вердость поверхности зубьев, НRCэ апряжения изгиба, МПа: при номинальной нагрузке: расчетные допускаемые	22. .500 45.552 45.934 51.507 42.552 33.0 49.0	дная Колесо 113. .906 233.972 235.934 233.552 242.358 30.0 28.5	25. .000 39.916 39.916 42.916 36.166 21.0 49.0	Колесо		