Интегралы

Интеграл	Определение	Как вычислять	Свойства	+
Криволинейный интеграл 1	$\int_{lpha}^{eta}f(x(t),y(y),z(t)) ec{r}'(t) dt=\int_{\Gamma}fdl$	Параметризовать кривую и тупо вычислить	Не зависит от параметризации кривой Не зависит от направления кривой Линейность Аддитивность	\int — масса кривой, если f — её плотность
	$\int_{lpha}^{eta} \overline{F} \cdot \overline{r}'(t) dt = \int_{lpha}^{eta} (P(x,y,z)x'(t) + Q(x,y,z)y'(t) + R(x,y,z)z'(t))$ Обозначение: $\int_{\Gamma} \overline{F} d\overline{r} = \int_{\Gamma} P dx + Q dy + R dz$	Либо так же, как первого рода(параметризовать кривую) Либо TODO	Всё то же самое, но зависит от направления кривой	F — векторное поле, тогда \int его работа вдоль кривой
Поверхностный интеграл 1	$\int\int_{\Omega}f(x,y,z) \overline{r}_{u} imes\overline{r}_{v} dudv=\int\int_{\Sigma}f(x,y,z)ds$	Либо параметризовать поверхность и вычислить через двойной Либо, через формулу Стокса		Как бы масса поверхности, если f — функция плотности
Поверхностный интеграл 2	$\int\!\int_\Sigma \overline{F}\cdot \overline{n}_0 ds = \int\!\int_\Sigma P dy dz + Q dz dx + R dx dy$	$\int \int_{\Sigma} P dy dz + Q dz dx + R dx dy =$ $\pm \int \int_{\Sigma_{yz}} P(x(y,z),y,z) dy dz$ $\pm \int \int_{\Sigma_{zz}} P(x,y(x,z),z) dz dx$ $\pm \int \int_{\Sigma_{zy}} P(x,y,z(x,y)) dx dy$ что касается знаков, берём "+", если угол между нормалью и осью, не фигурирующей в дифференциале острый, ичаче "-" Либо через формулу Гаусса-Остроградского		Поток векторного поля через двусторонюк поверхность

Фигня, с ними связанная

Поле скалярное

TODO

Поле векторное

TODO

Ротор, дивергенция и набла

$$\begin{split} \nabla &= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \\ & \operatorname{grad} f = \nabla f \operatorname{div} \bar{a} = \nabla \cdot \bar{a} \\ & \operatorname{rot} \bar{a} = \nabla \times \bar{a} \end{split}$$

Свойства $ abla$:						
$ abla (c_1 f + c_2 g) = c_1 abla f + c_2 abla g$						
abla (fg) = f abla g + g abla f						
$ abla \cdot (\overline{f} imes \overline{g}) = (abla, \overline{f}, \overline{g}) =$						
$egin{pmatrix} rac{\partial}{\partial x} \ f_x \ g_x \end{pmatrix}$	$rac{\partial}{\partial y} \ f_y \ g_y$	$\left. egin{array}{c} rac{\partial}{\partial z} \ f_z \ g_z \end{array} ight) =$				
$egin{pmatrix} g_x \ rac{\partial}{\partial x} \ f_x \end{pmatrix}$	$egin{array}{c} g_y \ rac{\partial}{\partial y} \ f_y \end{array}$	$egin{array}{c} g_z \ rac{\partial}{\partial z} \ f_z \end{array} igg) - egin{pmatrix} f_x \ rac{\partial}{\partial x} \ g_x \end{array}$	$egin{array}{c} f_y \ rac{\partial}{\partial y} \ g_y \end{array}$	$\left. egin{array}{c} f_z \ rac{\partial}{\partial z} \ g_z \end{array} ight) =$		
$= \bar{g}(\nabla$	$\times f)$ –	$\overline{f}(abla imes \overline{g})$				

Из СР по матану: $\nabla \times (c \times a) = c \cdot (\nabla \cdot a) - (c \cdot \nabla) \cdot a$ Подумаем, шо ж такое слева написано. $\frac{\partial}{\partial x}(\Sigma) + \frac{\partial}{\partial y}(\Sigma) + \frac{\partial}{\partial z}(\Sigma)$. Сейчас не важно, что это за суммы. Важно лишь то, что они имеют вид $\sum_i \frac{\partial}{\partial t} c_i a_i$. Это значит, что под оператором дифференцирования есть одна константа и одна функция! Значит, с дифференцировением можно делать всё, что угодно, но только не переставлять правее, чем a_i . Забудем, что это оператор дифференцирования и применим формулу "BAC-CAB". Понятно, что в доказательстве (доступно по последней ссылке) никто не переставлял дифференцирование с a_i и мы можем применить эту формулу.

Теперь и формула (12) со страницы 14 <u>отсюда</u> [та, которую Родина не смогла доказать] , теряет свой мистический облик. Рассмотрим $\nabla \times (f \times g)$. Формула имеет почти тот же вид, но под оператором дифференцирования теперь произведение функций. Но мы знаем, что для каждого слагаемого выполнены правила дифференцирования, то есть (ab)'=ab' [считаем а константой] +ba' [считаем b константой] . Значит, и для всей суммы они выполнены. Применим это сюда: $\nabla \times (f \times g) = \nabla \times (\hat{f} \times g) + \nabla \times (f \times \hat{g})$ /"треугольной шапочкой" обозначено то, что мы интерпретируем функцию как константу/ $= \nabla \times (\hat{f} \times g) - \nabla \times (\hat{g} \times f) = /$ по предыдущей формуле/ $= f \cdot (\nabla \cdot g) - (f \cdot \nabla) \cdot g - (g \cdot \nabla) \cdot f - (g \cdot \nabla) \cdot f - (g \cdot \nabla) \cdot f - (g \cdot \nabla) \cdot f$

Формула Гаусса-Остроградского

TODO

Формула Стокса

TODO

Поле потенциальное

TODO

Поле соленоидальное