PROBLEM 21

GIVEN:

Load Info: D = kips L = 115 kips R= kips 65 kips |= 0 kips 0 kips W= 0 kips E= 0 kips Pu= 0 kips 0 kips Pa=

FIND:

METHOD: 1. Find loads according to AISC p2-10

SOLUTION: 1. Finding loads:

1.1) LRFD:

		Uniform Load Cases								
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum	
1	1.4D	35							35	
2	1.2D+1.6L+0.5(Lr or S or R)	42	184	0	32.5	0			258.5	
3	1.2D+1.6(Lr or S or R)+(L* or 0.5W)	42	57.5	0	104	0	0		203.5	
4	1.2D+1.0W+L*+0.5(Lr or S or R)	42	57.5	0	32.5	0	0		132	
5	1.2D+1.0E+L* + 0.2S	42	57.5		13			0	112.5	
6	0.9D+1.0W	31.5					0		31.5	
7	0.9D+1.0E	31.5						0	31.5	

*Note: Change Load Factor for 1 for public assembly, live loads in excess of 100 psf and for parking

The governing factored load for design is equal to: **258.5** kips

1.2.) ASD:

		Uniform Load Cases								
	Load Combinations	D	L+I	Lr	S	R	W	Ε	Sum	
1	D	35							35	
2	D+L	35	115						150	
3	D+(Lr or S or R)	35		0	65	0			100	
4	D+0.75L + 0.75(Lr or S or R)	35	86.25	0	48.75	0			170	
5	D+(0.6W OR 0.7E)	35					0	0	35	
6 (a)	D+0.75L+0.75(0.6W)+0.75(Lr/S/R)	35	86.25	0	48.75	0	0		170	
6 (b)	D+0.75L+0.75(0.7E)+0.75S	35	86.25		48.75			0	170	
7	0.6D+0.6W	21					96		117	
8	0.6D+0.7E	21						0	21	

The governing factored load for design is equal to: 170 kips

Pu= 258.5 kips Pa= 170 kips

PROBLEM 6

GIVEN:

		Plate		Memb	er	
	PI	L 5/8 x 1	12	PL 1 x 3	12	
	Width =	12	in.	12	in.	
	Thickness =	0.625	in.	1	in.	
?	Gross Area, Ag =	7 1/2	in.	12	in.	
	Yield Stress, Fy =	36	ksi.	36	ksi. Ta	ble 2-4
	Double Shear or Single?	2				

FIND:

METHOD:

1. General Equations for Yielding

Pn = Fy*Ag Eq D2--1

2. LRFD yield strength = $Pn*\phi$ $\phi = 0.9$ 3. ASD Yield Strength = Pn/Ω $\Omega = 1.67$

SOLUTION:

1. Nominal Yield Strength, Pn

A. Plate: *value is divided by 2 if double shear.

B. Member: 432 kips

2. LRFD Bearing Strength = ϕ *Rn

A. Plate 121.5 Kips B. Member 388.8 Kips

3. ASD Bearing Strength = Rn/Ω

A. Plate 80.84 Kips B. Member 258.7 Kips

PROBLEM 6

GIVEN:

Threads:

Type of Bolt: A325 N

Nominal Bolt Diameter, d1 3/4 in. No. Bolts 9 REF. AISC 14th ed

Nominal Bolt Hole Diameter, d 0.813 in.

Effective Hole diameter, de= 0.875 in.

	Plate	REF.	REF. Member		
Pl	L 5/8 x 1	12	PL1x	12	
Minimum Edge Distance =	2	in.	2	in.	
Minimum Spacing =	3	in.	3	in.	
Length of Connection, I=	6	in.	6	in.	
distance to centroid, x-bar =	0.313	in.	0.5	in.	
width, b =	12	in.	12	in.	
Thickness, tf =	0.625	in.	1	in.	
Area Gross, Ag =	7.5	in^2	12	in^2.	
Ultimate Stress, Fu =	58	ksi.	58	ksi.	Table 2-4
Double or single shear?	2				

FIND:

METHOD:

1. General Equations for Rupture:

Pn=Fu.Ae D2-2

2. LRFD yield strength = $Rn*\phi$ $\phi = 0.75$ 3. ASD Yield Strength = Rn/Ω $\Omega = 2$

A.1 Find Minimum Net Area, An An=Ag-holes

A.2 Find Effective Area, Ae Ae=An*U

A.2.1. Find Shear Lag Factor, U.

B.1 Solve for Rupture Strength (LRFD)

B.2 Solve for Rupture Strength (ASD)

SOLUTION:

A.1. Find minimum net area:

	Ag	Bolts	de	t	An
Plate	7.5	3	0.875	0.625	5.859
Member	12	3	0.875	1	9.375

A.2. Finding Effective Area

	<u>Snear Lag U:</u>									
	An	U	Ae			Plate	r	Membe	r	
Plate	5.859	1	5.859	Case 2:	U=	0.948		0.917		
Member	9.375	1	9.375	Case 1	U=	1		1	all parts connected	

2. Nominal Rupture Strength, Pn & Pu and Pa.

	Pn	LRFD	ASD
Plate	339.8	254.9	169.9
Member	543.8	407.8	271.9

PROBLEM 6

GIVEN:

Threads:

Type of Bolt:	A325	N			
Nominal Bolt Diameter, d1	3/4	in.	No. Bolts	9	REF. AISC 14th ed
Nominal Bolt Hole Diameter, d	0.813	in.			
Effective Hole diameter, de=	0.875	in.			

	Plate	<u>REF.</u>	Memb	er <u>REF.</u>
Р	L 5/8 x 1	12	PL 1 x 2	12
Minimum Edge Distance =	2	in.	2	in.
Minimum Spacing =	3	in.	3	in.
Length of Connection, I=	6	in.	6	in.
distance to centroid, x-bar =	0.313	in.	0.5	in.
width, b =	12	in.	12	in.
Thickness, tf =	0.625	in.	1	in.
Area Gross, Ag =	7.5	in^2	12	in^2.
Ultimate Stress, Fu =	58	ksi.	58	ksi.
Yield Stress, Fy=	36		36	
Double or single shear?	2			

FIND:

METHOD:

1. General Equations for Block Shear:

1.1. Shear + Tensile Rupture:	0.6*Fu*Anv + Ubs*Fu*Ant	CONDITION 1
1.2. Shear Yield + Tensile Rupture:	0.6*Fy*Agv + Ubs*Fu*Ant	CONDITION 2

2. Assume Load is uniform,	Ubs=	1
3. LRFD yield strength = Rn*φ	$\phi =$	0.75
4. ASD Yield Strength = Rn/Ω	$\Omega =$	2

A.1 Find Net Tensile Area, Ant

A.2 Find Net Shear Area, Anv

A.3 Find Gross Shear Area, Agv

B.1 Solve for Condition 1

B.2 Solve for Condition 2

B.3 Select minimum nominal strength

B.4 Calculate LRFD/ASD Block shear strengths

SOLUTION:

A.1. Find Net Tensile Area, Ant

Ant = [Length - no.bolt holes(eff hole diam)+df]t

										Plate	iviember
Section	Length	s	g	df = s^2/4g	# holes	Eff. Diam	Eff lengt	Plate t	Member t	An	An
AB	3	0	1	0	0.5	0.875	2.56	0.63	1	1.6	2.5625
ED	3	0	1	0	0.5	0.875	2.56	0.63	1	1.6	2.5625

PlateTotal Net Area AB+ED3.203MemberTotal Net Area AB+ED5.125

A.2. Find Net Shear Area, Anv

Anv = [Total Length - no.bolt holes(eff hole diam)]t

Plate /lember

Section	Length	# holes	Eff. Diam	Eff length	Plate t	Member t	An	An
AB	8			5.8125			3.63	5.81
ED	8	2.5	0.875	5.8125	0.63	1	3.63	5.81

Plate Total Net Area AB+ED 7.266 Member Total Net Area AB+ED 11.63

A.3. Gross Shear Area

Agv=L*t

					Plate	Memb	oei
	Section	Length	Plate t	Member t	An	An	
	AB	8	0.625	1	5	8	
	ED	8	7.5	12	60	96	
Plate	Total Gross Area AB+ED 65						
Member	Total Gross Area AB+ED 10						

	<u>Plate</u>	<u>Member</u>
B.1. Nominal Shear Rupture Strength	252.8	3619
B.1 Nominal Tensile Rupture Strength	185.8	297
Condition 1: Shear Rupture + Tensile:	438.6	3916
B.2. Nominal Shear Yield Strength	1404	2246
Condition 2: Shear Yield + Tensile	1590	2544
B.3 Nominal Block Shear Strength, Pn:	438.6	2544

STEEL DESIGN 14.452 HOMEWORK # 5 **B.4. LRFD Block Shear Strength:**

B.4. ASD Block Shear:

ANA CLARA R. GOUVEIA 7/13

1908

DUE: 9/30/13

CHAPTER 12

329 219.3

1272

PROBLEM 6

GIVEN:

FIND:

METHOD:

 General Equations for Bearing: Standard, Oversize, short-slot holes: 			AISC J3.10
a) Rn=1.2Lct.Fu <= 2.4dt.Fu		Deformation important (<0.25 in)	Eq. J3.6a
b) Rn=1.5Lct.Fu <= 3dt.Fu		Deformation not important	Eq. J3.6b
1.2. Long-slot holes perpendicular to force a) Rn=1.0Lct.Fu <= 2.0dt.Fu	:		Eq. J3.6c
2. LRFD yield strength = $Rn^*\phi$ 3. ASD Yield Strength = Rn/Ω		0.75	

SOLUTION:

1. Find minimum clear distance, Lc Plate Member Lc - (space from edge of hole to

STEEL DESIGN 14.452

HOMEWORK #5

ANA CLARA R. GOUVEIA 9/13

DUE: 9/30/13 CHAPTER 12

edge of hole)

A. interior $Lc = 9$	spacing - hole	diam -	1/16 in

2.125 in. 2 1/8 in. 1.563 in. 1.563 in.

B. Edge Lc = edge distance - (hole diam + 1/16 in)/2

1.563 in. 1.563 in. 1.563 in.

C. Min Lc

2. Nominal Strength, Rn

A. Plate:	Tear-out	Deformation	Control	
	(kips/bolt)	(kips/bolt)	(kips/bolt)	
Deformation important	67.97	65.25	65.25	Eq. J3.6a
Deformation not important	84.96	81.56	81.56	Eq. J3.6b
Long-slot holes	56.64	54.38	54.38	Eq. J3.6c
		Cont	trol: 65.25	

Nominal Plate Bearing Strength: 587.3 kips

B. Member:	Tear-oเ	ıt	Deform	nation	Control	
	(kips/bo	olt)	(kips/b	olt)	(kips/bo	olt)
Deformation important	108.8		104.4		104.4	Eq. J3.6a
Deformation not important	135.9		130.5		130.5	Eq. J3.6b
Long-slot holes	90.63		87		87	Eq. J3.6c
				Control:	104.4	

Nominal Member Bearing Strength 939.6 kips

3. LRFD Bearing Strength = ϕ *Rn

A. Plate 440.4 Kips B. Member 704.7 Kips

3. ASD Bearing Strength = Rn/Ω

A. Plate	293.6	Kips
B. Member	469.8	Kips

PROBLEM 6

GIVEN:

		Threads:			
Type of Bolt:	A325	N			
Nominal Bolt Diameter, d1	3/4	in.	No. Bolts	9	REF. AISC 14th ed
Nominal Bolt Hole Diameter, d	0.813	in.			
Nominal Bolt Area, Ab	0.442	in^2			
Threades Excluded:	1	1-yes 0- no)		
Nominal Shear Strength, A325X, Fnv=	68	ksi			Table J3.2
Nominal Shear Strength, A325N, Fnv=	54	ksi.			Table J3.2
Single or Double Shear?	2				

FIND:

METHOD:

1. General Equations for Shear: AISC J3.6

1.1 Rn=Fnv*Ab

2. LRFD yield strength = Rn*φ	$\phi =$	0.75
3. ASD Yield Strength = Rn/Ω	$\Omega =$	2

SOLUTION:

1. Nominal Bolt Shear Strength, Rn

A. Threads excluded	30.03 ki	ips/bolt	
B. Threads not excluded	23.84 ki	ips/bolt	
C. Nominal Shear Strength of bolted connection	270.2 ki	ips	Depend if either A/B
	540.5		

3. LRFD Bearing Strength = ϕ *Rn

Shear strength of bolted connection 405.4 Kips

3. ASD Bearing Strength = Rn/Ω

Shear strength of bolted connection 270.2 Kips

PROBLEM 6

GIVEN:

			Threads:	
	Type of Bolt:	A325	N	
	Nominal Bolt Diameter, d1	3/4	in. No. Bolts 9	REF. AISC 14th ed
1	Nominal Bolt Hole Diameter, d	0.813	in.	
S	Specified Pretension Force, Du	1.13	in^2	
N	lumber of Slip Planes/ bolt, ns	1		
Minim	um Bolt Pretension A325, Tb=	28	ksi	Table J3.1
What?	Faying Surfaces?	No.	ksi.	J3.8
What?	Hole Type	-		
	Filler Plate Factor, hf	1	No filler plates added	Eq. J3-4

FIND:

METHOD:

1. Slip Critical Nominal Strength, Rn = μ .Du.hf.Tb.ns

Eq J3-4

Depend 16.1-p126

2. LRFD yield strength = $Rn^*\phi$ $\phi = 1$ 3. ASD Yield Strength = Rn/Ω $\Omega = 2$

SOLUTION:

1. General Equations for Slip Critical Strength, Rn

A. Mean slip coefficient, μ 0.3 J3.8 B. Nominal strength per bolt 9.492 kips/bolt C. Nominal Strength of bolted connection 85.43 kips

3. LRFD Bearing Strength = ϕ *Rn

Shear strength of bolted connection 85.43 Kips

3. ASD Bearing Strength = Rn/Ω

STEEL DESIGN 14.452 HOMEWORK # 5 Shear strength of bolted connection ANA CLARA R. GOUVEIA 12/13

42.71 Kips

DUE: 9/30/13 CHAPTER 12

ANA CLARA R. GOUVEIA 13/13

DUE: 9/30/13 CHAPTER 12

PROBLEM 6

GIVEN:

Limit States		LRFD	ASD	
1. Yield	Plate	121.5		
	Member	388.8	258.7	
2. Rupture	Plate	254.9	169.9	
	Member	407.8	271.9	
2 Dlask				
3. Block	Plate	329	219.3	
<u>Shear</u>	Member	329 1908	1272	
	Member	1300	1414	
<u>4. Bolt</u>				
Bearing	Plate	440.4	293.6	
	Member	704.7	469.8	
<u>5. Bolt</u>				
<u>Shear</u>		405.4	270.2	
6 Slin				
<u>6. Slip</u> Critical		95 //3	42.71	
Critical		03.43	42./1	
Design Tensile Strength:		388.8	258.7	kips

Thus if, slip critical is not considered, yielding controls.