Record: Int. compane: int * int > order insertion sort for hits O chi, n = length of hit [9.7.5.4.3] [3.4.5.7.9] t Ir4 I C 4.7 I Ochyn) steps. Din nerging at each step [9,5,5] [3,9] [9,3] [5] [7] [4] [9] [3] W(n) = C·n + 2·W(=) => W(n) = O(n hogn) Merga Sort (List) (* msort: int hit -> int hit REQUIRES: true ENSURES: most (1) returns a sorted permutation of L *) fun most (23: int hat): int hat = = =] moort ([x]) = [x] | msort (1) = let val (A.B): int list + int hist = split L merge (most A, most B) (* split: int list + int list REQ: time ENS: sqlit L = (A.B) s.t. L = permuto tim of A@B & | length A - length B | = 1 for split ([]: int list): int list x int list = ([], []) W(n) 1 split ([*]) = ([*]. []) 1 split (x:: y:: 2) = let W (0) = Co val (A.B): not hat x not but = split L W (1) = C1 (1: A . y : B) W (n) = Cr + W (n-2) = Cr + Cr + Cr + ... + { co } = \frac{h}{2} \cdot Cr + \left\{ co \} is in Om) => 0 m) (* merge: int hit x int hit - int hit RER: A. B. and sorted ENS: marga (A.B) = L. L is a sorted permutation of A @ B for marge (T): and hit, B: int hit): int hit = B make code more general (we can use any type t. compane) | mergo (A, []) = A meteod of Mey I marge (* :: A, y :: B) = (corse Int. compone (Y. y) of LESS => x:: nege (A. y:: B) Wwenge (n, m) | FOUAL => x :: y :: merge (A.B) W10, m) = Co for on m 20 | GREATER => y:: merge (x:: A. B)) W (n, o) = a for ou n > 0 => O(n) throw away 1/2 element(1) every iteration W (u, m) = (C+ W(n-1, m) if LESS Cy + W (n-1, m-1) if EQUAL

C+ + W (n. m-1) if GREATER

When 2 (5)

S = M + M

S > 0 but one of m or n is D --- W(5) = k.

S > 0 & m > 0 & n > 0 --- Worst case W(5) < k. + W(5-1)

Merge Sort (True)

Span: O(d)

destritype tree = [Impty | Noole of tree * int * tree

T :3 sorted if either T :3 empty or T is Noole (1. x. r) with 1 sorted & every element in 1 :3 LESS/EQUAL to X & every element in 1 :3 GREATER/EQUAL to X

(* Ins; int * tree => tree

REO: Tis sorted

ENS: Ins (X:T) is a sorted tree containing exactly & & all ele in T

*)

fun Inc (X: ind, Empty: tree): true = Node (Empty, X. Empty)

| Ins (X, Node (L, y, r) = (case Int. compare (X, y) of

GKEATER => Node (L, y, Inc (X r))

| _____ => Node (Ins (X, l), y, r))

Work: O(d) sorting by inserting; up to O(h)

Recoll list insertion: $O(n^2)$ [n = # dements? true insert: work O(d) [d = # depth] We will do here today: $O((\log n)^3)$ span.

(* Mart: true => true

REO: true

ENS: MartiTi returns a gorted tree containing exactly the elements of T

*)

fun Moort (Empty: tree : Empty

| Moort (Node (d. N. r)) = Ins (N. Maya (Moort d. Marge r))

balanced: O(n log n)

(* Menga: tree * tree -> tree

REQ: to * to and Sorted

ENS: Menga (to. to) returns a Sorted tree consisting of exactly all the elements to and to together

*)

fun Merge (Empty: tree, t: tree): tree = tr

+,

	, , , , , , , , , , , , , , , , , , ,
€ 5M5ort (d-1) + cd + cd	(1) } + Surge (dr. dr) + Sins (dr) = cd' = cd
= S (d³)	
Since we are balancing the tree ((log ") 3)	
T . T. had come Countd's a Pod.	
Ins (T) how span Sourter (d) in Ocd) Split At (T) how span Sourter (d) in Ocd)	
Merge (T) has span Source (de. dr.) in O (dr.ds.)	
Moort (T) has span Sment (d) in O ((lagn))	
idterm: Work in Span (every sae	P)