TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Monte-Carlo Markov Chain (MCMC) Sampling

Sampling From the Model

For back-propagation of $-\ln P_s(\mathcal{Y})$ through the exponential softmax defined by $P_s(\mathcal{Y}) = \frac{1}{Z}e^{s(\mathcal{Y})}$ we have

$$s^{N}$$
.grad $[n, y] = P_{\mathcal{Y}' \sim P_{s}}(\mathcal{Y}'[n] = y)$
 $-\mathbf{1}[\mathcal{Y}[n] = y]$

$$s^{E}$$
.grad $[\langle n, m \rangle, y, y'] = P_{\mathcal{Y}' \sim P_{S}}(\mathcal{Y}'[n] = y \wedge \mathcal{Y}'[m] = y')$
 $-\mathbf{1}[\mathcal{Y}[n] = y \wedge \mathcal{Y}[m] = y']$

MCMC Sampling

The model marginals, such as the node marginals $P_s(\mathcal{Y}[n] = y)$, can be estimated by sampling \mathcal{Y} from $P_s(\mathcal{Y})$.

There are various ways to design a Markov process whose states are node labelings \mathcal{Y} and whose stationary distribution is P_s .

Given such a process we can sample \mathcal{Y} from P_s by running the process past its mixing time.

We will consider Metropolis MCMC and the Gibbs MCMC. But there are more (like Hamiltonian MCMC).

Metroplis MCMC

We assume a neighbor relation on node assignments and let $N(\mathcal{Y})$ be the set of neighbors of assignment \mathcal{Y} .

For example, $N(\mathcal{Y})$ can be taken to be the set of assignments \mathcal{Y}' that differ form \mathcal{Y} on exactly one node.

For the correctness of Metropolis MCMC we need that all states have the same number of neighbors and that the neighbor relation is symmetric — $\mathcal{Y}' \in N(\mathcal{Y})$ if and only if $\mathcal{Y} \in N(\mathcal{Y}')$.

Metropolis MCMC

Pick an initial state \mathcal{Y}_0 and for $t \geq 0$ do

- 1. Pick a neighbor $\mathcal{Y}' \in N(\mathcal{Y}_t)$ uniformly at random.
- 2. If $s(\mathcal{Y}') > s(\mathcal{Y}_t)$ then $\mathcal{Y}_{t+1} = \mathcal{Y}'$
- 3. If $s(\mathcal{Y}') \leq s(\mathcal{Y})$ then with probability $e^{-\Delta s} = e^{-(s(\mathcal{Y}) s(\mathcal{Y}'))}$ do $\mathcal{Y}_{t+1} = \mathcal{Y}'$ and otherwise $\mathcal{Y}_{t+1} = \mathcal{Y}_t$

The Metropolis Markov Chain

We need to show that $P_s(\mathcal{Y}) = \frac{1}{Z}e^{s(\mathcal{Y})}$ is a stationary distribution of this process.

Let $Q(\mathcal{Y})$ be the distribution on states defined by drawing a state from P_s and applying one stochastic transition of the Metropolis process.

We must show that $Q(\mathcal{Y}) = P_s(\mathcal{Y})$.

The Stationary Distribution

Let $P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$ denote the probability of transitioning from \mathcal{Y} to \mathcal{Y}' , or more formally,

$$P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}') = P(\mathcal{Y}_{t+1} = \mathcal{Y}' \mid \mathcal{Y}_y = \mathcal{Y})$$

We can then write $Q(\mathcal{Y}')$ as

$$Q(\mathcal{Y}') = \sum_{\mathcal{Y}} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$$

The Stationary Distribution

$$Q(\mathcal{Y}') = \sum_{\mathcal{Y}} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$$

$$= P_s(\mathcal{Y}') P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}') + \sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$$

$$= \begin{cases} P_s(\mathcal{Y}') \left(1 - \sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}) \right) \\ + \sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}') \end{cases}$$

The Stationary Distribution

$$Q(\mathcal{Y}') = \begin{cases} P_s(\mathcal{Y}') \left(1 - \sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}) \right) \\ + \sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}') \end{cases}$$

$$= \begin{cases} P_s(\mathcal{Y}') \\ -\sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_s(\mathcal{Y}') P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}) \\ +\sum_{\mathcal{Y} \in N(\mathcal{Y}')} P_s(\mathcal{Y}) P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}') \end{cases}$$

$$= P_s(\mathcal{Y}') - \text{flow out} + \text{flow in}$$

Detailed Balance

Detailed balance means that for each pair of neighboring assignments \mathcal{Y} , \mathcal{Y}' we have equal flows in both directions.

$$P_s(\mathcal{Y}')P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}) = P_s(\mathcal{Y})P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$$

If we can show detailed balance we have that the flow out equals the flow in and we get $Q(\mathcal{Y}') = P_s(\mathcal{Y}')$ and hence P_s is the stationary distribution.

Detailed Balance

To show detailed balance we can assume without loss generality that $s(\mathcal{Y}') \geq s(\mathcal{Y})$.

We then have

$$P_{s}(\mathcal{Y}')P_{\text{Trans}}(\mathcal{Y}' \to \mathcal{Y}) = \frac{1}{Z}e^{s(\mathcal{Y}')} \left(\frac{1}{N}e^{-\Delta s}\right)$$
$$= \frac{1}{Z}e^{s(\mathcal{Y})} \frac{1}{N}$$
$$= P_{s}(\mathcal{Y})P_{\text{Trans}}(\mathcal{Y} \to \mathcal{Y}')$$

Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed moves.

Gibbs sampling avoids this move rejection.

In Gibbs sampling we select a node n at random and change that node by drawing a new node value conditioned on the current values of the other nodes.

We let $\mathcal{Y} \setminus n$ be the assignment of labels given by \mathcal{Y} except that no label is assigned to node n.

We let $\mathcal{Y}[N(n)]$ be the assignment that \mathcal{Y} gives to the nodes (pixels) that are the neighbors of node n (connected to n by an edge.)

Gibbs Sampling

Markov Blanket Property:

$$P_s(\mathcal{Y}[n] \mid \mathcal{Y} \setminus n) = P_s(\mathcal{Y}[n] \mid \mathcal{Y}[N(n)])$$

Gibbs Sampling, Repeat:

- \bullet Select n at random
- draw y from $P_s(\mathcal{Y}[n] \mid \mathcal{Y} \setminus n) = P_s(\mathcal{Y}[n] \mid \mathcal{Y}[N(n)])$
- $\bullet \mathcal{Y}[n] = y$

This algorithm does not require knowledge of Z.

The stationary distribution is P_s .

\mathbf{END}