LIBRARY DATABASE APPLICATION

DESCRIPTION:

This project gives a detail description of design and implementation of library management system.

- STEP1: A detail EER is drawn from the given description for a Library management system. And with the assumptions that are made.
- STEP2: The projected EER is converted into relational database schema and implemented in SQL.
- STEP3: Sample data has been created for created schema. And Random Queries were run for testing.

INTRODUCTION:

This is a general Library management system.	Which gives a deep	description	about how a	total librar
management system takes place.				

EER DIAGRAM:

1.1 Entities:

a. BOOKS

- Each book a unique Id called ISBN.
- Each book has an author name, Subject Area, Title
- The book is available or not is also noted.
- There is a wanted attribute which holds the books that the librarian wants to acquire.

b. LIB_STAFF

- A unique id SSN for each staff.
- And every member holds a Given name.

c. MEMBERS

- An unique ID SSN given for each member
- Campus Address for each member
- Phone number od each member
- Number of books borrowed by each member
- Card Expiry date of each member

1.2 Relations:

A. **NOTICE**

- A librarian sends notice to all those who are due to return their books and about the expiry of their identity card
- This is a 1: N relation as each member can get many notices depending upon the number of books they borrowed.

B. CARD

- A card is issued to all those who are the member of the library.
- A professor is already registered as he is registered to the university.
- This is a 1: 1 relation as each member will only have one card and it will be issued by one staff member

C. BOOK INFO

- The book information such as the number of books is available, how many books are out of stock, etc. are only accessed by librarians
- So they are given to a particular type of library member.
- This is 1: N relation as each staff member can get the details of N number of books

D. **BORROWED**

- Books are borrowed by the members.
- Professors can also borrow books with a different due date.
- The borrow relation has relation attributes of return date, grace period and the expected return date of the book.
- This is a M: N relation. Since any number of members can borrow any number of books.

E. GET DESCRIPTION

- Since the description can only be viewed only by reference library staff it is given a separate relation to a book description.
- This is given a 1: N relation as one reference librarian can access multiple book descriptions.

1.3 Assumptions:

- 1. Each Library staff can only have one designation.
- 2. There is only one person per designation in Library staff.
- 3. Only the Members that are not professors will have the home address and the professors will only have campus address.
- 4. We have the ISBN number for the books that the librarians want to acquire.

RELATIONAL SCHEMA:

The following is the converted schema from the above EER diagram

CREATE TABLE STATEMENTS in MYSQL:

Create TABLE Library_Staff (SSN int NOT NULL, Name varchar(255), PRIMARY KEY(SSN));

Create TABLE Members (SSN int NOT NULL, Campus_Address varchar(255), Name varchar(255), Phone_No CHAR(10), No_of_Books int, Lib_SSN int, Card_Issue_date date, Card_Notice_date date, PRIMARY KEY(SSN), FOREIGN KEY (Lib_SSN) REFERENCES library_staff(SSN));

Create TABLE books (ISBN int NOT NULL, Title varchar(50), Author varchar(30), Subject_Area varchar(30), Staff_SSN int, PRIMARY KEY(ISBN), FOREIGN KEY (Staff_SSN) REFERENCES library_staff(SSN));

Create TABLE cheif_librarian (lib_SSN int, FOREIGN KEY(lib_SSN) REFERENCES library_staff(SSN));

Create TABLE Associate_librarian (lib_SSN int, FOREIGN KEY(lib_SSN) REFERENCES library_staff(SSN));

Create TABLE check_out_staff (lib_SSN int, FOREIGN KEY(lib_SSN) REFERENCES library_staff(SSN));

Create TABLE ref_librarian (lib_SSN int, FOREIGN KEY(lib_SSN) REFERENCES library_staff(SSN));

Create TABLE Assitance (lib_SSN int, FOREIGN KEY(lib_SSN) REFERENCES library_staff(SSN));

Create TABLE general_members (Mem_SSN int,Home_Address varchar(255), FOREIGN KEY(Mem_SSN) REFERENCES members(SSN));

Create TABLE professor (Mem_SSN int, FOREIGN KEY(Mem_SSN) REFERENCES members(SSN));

Create TABLE available (b_isbn int NOT NULL,lang varchar(255),bind varchar(15), descri text, lib_SSN int, mem_SSN int, book_issue_date date, b_return_date date, grace_period int, FOREIGN KEY(mem_SSN) REFERENCES members(SSN),FOREIGN KEY(lib_SSN) REFERENCES ref_librarian(lib_SSN));

Create TABLE To_acquire (b_ISBN int, FOREIGN KEY(b_ISBN) REFERENCES books(ISBN));

ALTER TABLE available ADD FOREIGN KEY (b_ISBN) REFERENCES books(ISBN);

Create TABLE can_lend (b_ISBN int NOT NULL,total_count int, current_cout int, FOREIGN KEY(b_ISBN) REFERENCES available(b_isbn));

Create Table cannot_lend(b_isbn int NOT NULL, type varchar(30), FOREIGN KEY(b_isbn) REFERENCES available(b_isbn));