CS146: Data Structures and Algorithms Lecture 9

LINEAR TIME SORTING
LOWER BOUNDS

INSTRUCTOR: KATERINA POTIKA
CS SJSU

Sorting So Far – 1st Algorithm

2)

• Insertion sort:

- Easy implementation
- Fast on small inputs (less than ~50 elements)
- Fast on nearly-sorted inputs
- O(n²) worst case
- O(n²) average (equally-likely inputs) case
- \bullet O(n²) reverse-sorted case

Sorting So Far -2^{nd} Algorithm

3

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - ◆ Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

Sorting So Far – 3rd Algorithm

 $\left(4\right)$

• Heap sort:

- Uses the heap data structure
 - Complete binary tree
 - ◆ Heap property: parent key > children's keys
- O(n lg n) worst case
- Sorts in place
- Fair amount of shuffling memory around

Sorting So Far – 4th Algorithm

5)

• Quick sort:

- Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - ◆ All elements of first subarray < all elements of second subarray
 - ◆ No merge step needed!
- O(n lg n) average case
- Fast in practice
- O(n²) worst case
 - ◆ Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it
 - by playing a different game
- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the **pairwise comparison of two elements**
 - *Theorem*: all comparison sorts are $\Omega(n \log n)$
 - A comparison sort must do $\Omega(n)$ comparisons (why?)
 - What about the gap between $\Omega(n)$ and $\Omega(n \log n)$

Decision Trees

7

- Decision trees provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by a comparison sort. Everything else is ignored
- What do the leaves represent?
 - leaf is labeled by the permutation of orders that the algorithm determines
- How many leaves must there be?
 - There are \geq n! leaves, because every permutation appears at least once.

Note: Permutations (Appendix C)

• A *permutation* of a finite set S is an ordered sequence of all the elements of S, each element appearing exactly once.

- For example, if S= {a, b, c}, then S has 6 permutations: abc, acb, bac, bca, cab, cba
- There are n! permutations of a set of n elements
 - we can choose the first element of the sequence in n ways, the second in n-1 ways, the third in n-2 ,etc.

Example: insertion sort for 3 numbers

Decision Trees

- Decision trees can model comparison sorts. For a given algorithm:
 - One tree for each *n*
 - Tree paths are all possible execution traces
 - What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \log n)$ (proof follows)

Lower Bound For Comparison Sorting

- Thm: Any decision tree that sorts n elements has height $\Omega(n \log n)$
- What's the maximum # of leaves of a binary tree of height h?
- Lemma: Any binary tree of height h has $k \le 2^h$, where k: # of leaves (proof by induction)

Lower Bound For Comparison Sorting

• So we have...

$$n! <= 2^h$$

• Taking logarithms:

$$\lg (n!) <= h$$

• Stirling's approximation tells us:

$$n! > \left(\frac{n}{e}\right)^n$$

• Thus:

$$h \ge \log\left(\frac{n}{e}\right)^n$$

Lower Bound For Comparison Sorts

13

So we have

$$h \ge \log\left(\frac{n}{e}\right)^n$$

$$= n \log n - n \log e$$

$$= \Omega(n \log n)$$

• Thus the minimum height of a decision tree is $\Omega(n \log n)$

Lower Bound For Comparison Sorts

- Thus the time to comparison sort n elements is $\Omega(n \log n)$
- Corollary: Heapsort and Mergesort are asymptotically optimal comparison sorts
- "Sorting in linear time" (?)
 - How can we do better than $\Omega(n \log n)$?

Sorting In Linear Time

- Counting sort
 - No comparisons between elements!
 - **But**...depends on assumption about the numbers being sorted
 - We assume numbers are in the range 1...k
 - The algorithm:
 - ◆Input: A[1..*n*], where A[j] \in {1, 2, 3, ..., *k*}
 - ◆Output: B[1..n], sorted (notice: not sorting in place)
 - \bullet Also: Array C[1..*k*] for auxiliary storage

----- (16

```
CountingSort(A, B, k)
      for i=1 to k
            C[i] = 0;
      for j=1 to n
            C[A[j]] += 1;
      for i=2 to k
            C[i] = C[i] + C[i-1];
      for j=n downto 1
            B[C[A[j]]] = A[j];
10
                  C[A[j]] -= 1;
```

```
CountingSort(A, B, k)
      for i=1 to k
                                        Takes time O(k)
             C[i] = 0;
      for j=1 to n
             C[A[j]] += 1;
      for i=2 to k
             C[i] = C[i] + C[i-1];
                                                 Takes time O(n)
      for j=n downto 1
             B[C[A[j]]] = A[j];
10
                   C[A[j]] -= 1;
```

What will be the running time?

Example

(d)

(b)

(f)

- Total time: O(n + k)
 - Usually, k = O(n)
 - Thus counting sort runs in O(n) time
- But sorting is $\Omega(n \log n)$
 - No contradiction--this is **not a comparison** sort (in fact, there are *no* comparisons at all!)
 - Notice that this algorithm is *stable* (what is that?)
- Stable: keys with same value appear in same order in output as they did in input

- Cool! Why don't we always use counting sort?
- Because it depends on range *k* of elements
- Could we use counting sort to sort 32 bit integers?
 Why or why not? How many possible (distinct) numbers can we have?
- Answer: no, k too large ($2^{3^2} = 4,294,967,296$)

- How did IBM get rich originally?
- Answer: punched card readers for census tabulation in early 1900's.
 - In particular, a *card sorter* that could sort cards into different bins
 - Each column can be punched in 12 places
 - ◆ Decimal digits use 10 places
 - Problem: only one column can be sorted on at a time

Radix Sort

- Intuitively, you might sort on the most significant digit, then the second msd, etc.
- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the *least* significant digit first

```
RadixSort(A, d)
for i=1 to d
StableSort(A) on digit i
```

Example of Radix Sort

23

329	720		720		3	29
457	355		329		3	55
657	436		436		4	36
839	 457	jjp-	839)])>-	4	57
436	657	1	355		6	57
720	329		457		7	20
355	839		657		8	39

Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
 - Assume lower-order digits {j: j<i} are sorted
 - Show that sorting next digit i leaves array correctly sorted
 - ◆ If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
 - ◆ If they are the same, numbers are already sorted on the lower-order digits. Since we use a **stable** sort, the numbers stay in the right order

Radix Sort

- What sort will we use to sort on digits?
- Counting sort is obvious choice:
 - \blacksquare Sort *n* numbers on digits that range from 1..k
 - Time: O(n + k)
- Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
 - When d is constant and k=O(n), takes O(n) time
- How many bits in a computer word?

- *n* words
- b bits/word
- Break into *r*-bit digits. Have $d = \lceil b/r \rceil$ digits
- Use counting sort with $k = 2^r 1$
- Example: 32-bit words, 8-bit digits. b = 32, r = 8, d = 32/8 = 4, $k = 2^8 1 = 255$.
- Time = $\Theta(b/r(n+2^r))$.
- Choose $r \approx \log n$ gives: $\Theta(bn/\log n)$.

Bucket Sort

27

• Assumes the input is generated by a random process that distributes elements uniformly over [0, 1).

Idea:

- Divide [0, 1) into *n* equal-sized *buckets*.
- Distribute the *n* input values into the buckets.
- Sort each bucket.
- Then go through buckets in order, listing elements in each one.

Input: A[1 ... n], where $0 \le A[i] < 1$ for all i.

Auxiliary array: B[0..n-1] of linked lists, each list initially empty.

Bucket sort Code

(28)

```
BUCKET-SORT(A, n)
for i ← 1 to n
   insert A[i ] into list B[[n • A[i]]]
for i ← 0 to n - 1
   sort list B[i ] with insertion sort
   concatenate lists B[0], B[1], . . . , B[n
- 1] together in order
return the concatenated lists
```

Bucket Sort Example

Correctness

- Consider A[i], A[j].
- Assume without loss of generality that $A[i] \le A[j]$. Then $|n| \cdot A[i]| \le |n| \cdot A[j]|$.
- Case1: A[i] is placed into the same bucket as A[j] or
- Case2: into a bucket with a lower index (Case 2).

If same bucket (Case1), insertion sort fixes up.

If earlier bucket (Case2), concatenation of lists fixes up.

Analysis:

- Relies on *no bucket* getting too many values.
- All lines of algorithm except insertion sorting take $\Theta(n)$ altogether.
- Intuitively, if each bucket gets a constant number of elements, it takes O(1) time to sort each bucket $\Rightarrow O(n)$ sort time for all buckets.
- We "expect" each bucket to have few elements, since the average is 1 element per bucket.
- Uniform input distribution has O(1) bucket size and expected time is O(n)
- Later in Hash Tables again the same idea

Structures...

Done with sorting and order statistics

- Next part is data structures Ch 10 (skim)
- Ch 11