Principles of Programming Languages Lecture 2: Syntax

Andrei Arusoaie¹

¹Department of Computer Science

October 10, 2017

Outline

Alphabet. Lexical analysis. Parsing.

Parse Trees

Abstract syntax trees

Sentences in a programming language

When designing a PL, one question is:

Which phrases are correct?

```
int x; x = x + 2
int x; x = x + 2;
if (a > 0) then x = 1; else x = -1;
(a > 0) ? x = 1 : x = -1;
```

Sentences in a programming language

When designing a PL, one question is:

Which phrases are correct?

```
int x; x = x + 2
int x; x = x + 2;
if (a > 0) then x = 1; else x = -1
(a > 0) ? x = 1 : x = -1;
```

Sentences in a programming language

When designing a PL, one question is:

Which phrases are correct?

```
int x; x = x + 2
int x; x = x + 2;
if (a > 0) then x = 1; else x = -1;
(a > 0) ? x = 1 : x = -1;
```

Overview: alphabet, lexical analysis, syntax.

- Alphabet: set of (allowed) symbols
- Lexical analysis: identify the sequence of symbols constituting the words (or tokens)
 - Lexical rules
- Syntax: describes which sequences of words constitute "legal" phrases
 - Grammar

Overview: alphabet, lexical analysis, syntax.

- Alphabet: set of (allowed) symbols
- Lexical analysis: identify the sequence of symbols constituting the words (or tokens)
 - Lexical rules
- Syntax: describes which sequences of words constitute "legal" phrases
 - Grammar

Overview: alphabet, lexical analysis, syntax.

- Alphabet: set of (allowed) symbols
- Lexical analysis: identify the sequence of symbols constituting the words (or tokens)
 - Lexical rules
- Syntax: describes which sequences of words constitute "legal" phrases
 - Grammar

Alphabet

The Alphabet of C from the Standard has 96 symbols:

- a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,
 u,v,w,x,z
- A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T, U,V,W,X,Y,Z
- ▶ 0,1,2,3,4,5,6,7,8,9
- ▶ ! " # % & ' () * + , . /
- ▶ : ; < = > ? [\] ^ _ { | } ~
- Separators: space, horizontal and vertical tab, form feed, newline

Problem: Given a sequence of characters, find the pieces with assigned meaning from that sequence: words or *tokens*

Example:

- ▶ Input: if (a > 0) then x = 1; else x = -1;
- ▶ Output: if, (, a, >, 0,), then, x, =, 1,;, else, x, =, -1,;
- ► Tokens = pieces with assigned/identified meaning exical analyzer (lexer) = a program that implements an Igorithm that solves the problem above

Problem: Given a sequence of characters, find the pieces with assigned meaning from that sequence: words or *tokens*

Example:

- ▶ Input: if (a > 0) then x = 1; else x = -1;
- ▶ Output: if, (, a, >, 0,), then, x, =, 1,;, else, x, =, -1,;
- Tokens = pieces with assigned/identified meaning Lexical analyzer (lexer) = a program that implements an algorithm that solves the problem above

Problem: Given a sequence of characters, find the pieces with assigned meaning from that sequence: words or *tokens*

Example:

- ▶ Input: if (a > 0) then x = 1; else x = -1;
- ▶ Output: if, (, a, >, 0,), then, x, =, 1,;, else, x, =, -1,;
- Tokens = pieces with assigned/identified meaning

Lexical analyzer (lexer) = a program that implements an algorithm that solves the problem above

Problem: Given a sequence of characters, find the pieces with assigned meaning from that sequence: words or *tokens*

Example:

- ▶ Input: if (a > 0) then x = 1; else x = -1;
- ▶ Output: if, (, a, >, 0,), then, x, =, 1,;, else, x, =, -1,;
- ► Tokens = pieces with assigned/identified meaning

Lexical analyzer (lexer) = a program that implements an algorithm that solves the problem above

- ► Integers: 6, 0, -2, +3
- ▶ The alphabet $A = \{+, -\} \cup \mathbb{N}$
- Lexical rules: used to describe atomic language constructions: numbers, identifiers, . . .
- Lexical rules are expressed using regular grammars (see LFAC course)
- In practice we use regular expressions, a.k.a regex
 - ► Regex for integers: [\+-]?\d+
 - ► In K: syntax Int ::= r"[\\+-]?[0-9]+"

- ► Integers: 6, 0, -2, +3
- ▶ The alphabet $A = \{+, -\} \cup \mathbb{N}$
- Lexical rules: used to describe atomic language constructions: numbers, identifiers, ...
- Lexical rules are expressed using regular grammars (see LFAC course)
- ▶ In practice we use regular expressions, a.k.a regex
 - ▶ Regex for integers: [\+-]?\d+
 - ▶ In K: syntax Int ::= r"[\\+-]?[0-9]+"

- ► Integers: 6, 0, −2, +3
- ▶ The alphabet $A = \{+, -\} \cup \mathbb{N}$
- Lexical rules: used to describe atomic language constructions: numbers, identifiers, ...
- Lexical rules are expressed using regular grammars (see LFAC course)
- ► In practice we use regular expressions, a.k.a regex
 - ► Regex for integers: [\+-]?\d+
 - ▶ In K: syntax Int ::= r"[\\+-]?[0-9]+"

- ► Integers: 6, 0, −2, +3
- ▶ The alphabet $A = \{+, -\} \cup \mathbb{N}$
- Lexical rules: used to describe atomic language constructions: numbers, identifiers, ...
- Lexical rules are expressed using regular grammars (see LFAC course)
- ► In practice we use regular expressions, a.k.a regex
 - ► Regex for integers: [\+-]?\d+
 - ▶ In K: syntax Int ::= r"[\\+-]?[0-9]+'

- ► Integers: 6, 0, −2, +3
- ▶ The alphabet $A = \{+, -\} \cup \mathbb{N}$
- Lexical rules: used to describe atomic language constructions: numbers, identifiers, . . .
- Lexical rules are expressed using regular grammars (see LFAC course)
- ► In practice we use regular expressions, a.k.a regex
 - ▶ Regex for integers: [\+-]?\d+
 - ▶ In K: syntax Int ::= r"[\\+-]?[0-9]+"

- Answer: we define the grammar of the language
- Grammars allow us to transform a program given as an sequence of characters into a syntax tree
- Parser = program which attempts to do this transformation
- Only valid programs can be parsed!

- Answer: we define the grammar of the language
- Grammars allow us to transform a program given as an sequence of characters into a syntax tree
- Parser = program which attempts to do this transformation
- Only valid programs can be parsed!

- Answer: we define the grammar of the language
- Grammars allow us to transform a program given as an sequence of characters into a syntax tree
- Parser = program which attempts to do this transformation
- Only valid programs can be parsed!

- Answer: we define the grammar of the language
- Grammars allow us to transform a program given as an sequence of characters into a syntax tree
- Parser = program which attempts to do this transformation
- Only valid programs can be parsed!

- Answer: we define the grammar of the language
- Grammars allow us to transform a program given as an sequence of characters into a syntax tree
- Parser = program which attempts to do this transformation
- Only valid programs can be parsed!

- ► Language of palindromic strings using symbols *a* and *b*
- ► The alphabet A = {a, b}
- Can we describe palindromes using regex?

- ► Language of palindromic strings using symbols *a* and *b*
- ► The alphabet A = {a, b}
- Can we describe palindromes using regex?

- Language of palindromic strings using symbols a and b
- ► The alphabet A = {a, b}
- Can we describe palindromes using regex?

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - Base: a and b are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- \blacktriangleright Fix: add the empty string to base, hereafter denoted by ϵ

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - Base: a and b are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- ► Fix: add the empty string to base, hereafter denoted by expression

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - ▶ Base: *a* and *b* are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba",
- Fix: add the empty string to base, hereafter denoted by expression

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - ▶ Base: *a* and *b* are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- Fix: add the empty string to base, hereafter denoted by expression

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - ▶ Base: *a* and *b* are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- Fix: add the empty string to base, hereafter denoted by expression

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - Base: a and b are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- ► Fix: add the empty string to base, hereafter denoted by €

- How do we "mathematically" describe palindromic strings?
 - First, observe that there is a simple recursion of a palindromic string
 - Base: a and b are palindromic strings
 - Recursion: if s is a palindromic string then so are asa and bsb
- Examples: "aba", "aabaa", "bab", etc
- Problem? yes: "aa", "abba".
- ightharpoonup Fix: add the empty string to base, hereafter denoted by ϵ

► Base case:

- $P \rightarrow e$
- ightharpoonup P
 ightarrow a
 - $P \rightarrow k$

Recursion:

- ▶ P → aPa
- ▶ P → bPb
- Context-free grammar (see LFAC course for details)

► Base case:

- $P \rightarrow \epsilon$
- P → a
 - $P \rightarrow k$
- Recursion:
 - ightharpoonup P
 ightharpoonup aPa
 - ightharpoonup P
 ightharpoonup bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - $P \rightarrow k$
- ► Recursion
 - ightharpoonup P
 ightharpoonup aPa
 - ightharpoonup P
 ightarrow bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - P → b
- ► Recursion
 - ightharpoonup P
 ightarrow aPa
 - ightharpoonup P
 ightharpoonup bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - P → b
- Recursion:
 - P → aPa
 - ightharpoonup P
 ightarrow bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - P → b
- Recursion:
 - ightharpoonup P
 ightarrow aPa
 - ightharpoonup P
 ightharpoonup bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - ▶ P → b
- Recursion:
 - P → aPa
 - P → bPb
- Context-free grammar (see LFAC course for details)

- ► Base case:
 - $P \rightarrow \epsilon$
 - P → a
 - P → b
- Recursion:
 - P → aPa
 - P → bPb
- Context-free grammar (see LFAC course for details)

- Meta-language introduced by Backus and Naur to define ALGOL60
- Vocabulary:
 - Terminals: simple language strings; typically: tokens or symbols
 - Non-terminals: complex language constructions
- How BNF rules look like:
 - Bool ::= "true" | "false"
 (we can use lexical rules to define "basic" non-terminals)
 - ▶ Exp ::= Int | Exp "+" Exp | ...

- Meta-language introduced by Backus and Naur to define ALGOL60
- Vocabulary:
 - Terminals: simple language strings; typically: tokens or symbols
 - Non-terminals: complex language constructions
- How BNF rules look like:
 - Bool ::= "true" | "false"
 (we can use lexical rules to define "basic" non-terminals)
 - ▶ Exp ::= Int | Exp "+" Exp | ...

- Meta-language introduced by Backus and Naur to define ALGOL60
- Vocabulary:
 - Terminals: simple language strings; typically: tokens or symbols
 - Non-terminals: complex language constructions
- How BNF rules look like:
 - Bool ::= "true" | "false"
 (we can use lexical rules to define "basic" non-terminals)
 - ▶ Exp ::= Int | Exp "+" Exp | ...

- Meta-language introduced by Backus and Naur to define ALGOL60
- Vocabulary:
 - Terminals: simple language strings; typically: tokens or symbols
 - Non-terminals: complex language constructions
- How BNF rules look like:
 - Bool ::= "true" | "false"
 (we can use lexical rules to define "basic" non-terminals)
 - ► Exp ::= Int | Exp "+" Exp | ...

- Meta-language introduced by Backus and Naur to define ALGOL60
- Vocabulary:
 - Terminals: simple language strings; typically: tokens or symbols
 - Non-terminals: complex language constructions
- How BNF rules look like:
 - Bool ::= "true" | "false" (we can use lexical rules to define "basic" non-terminals)
 - ▶ Exp ::= Int | Exp "+" Exp | ...

BNF - example

Simple expressions language:

► In K:

BNF - example

Simple expressions language:

► In K:

Derivation

```
Exp \rightarrow^{(p_2)}

Exp + Exp \rightarrow^{(p_3)}

Exp + (Exp) \rightarrow^{(p_3)}

Exp + (Exp + Exp) \rightarrow^{(p_1)}

Exp + (Exp + Int) \rightarrow^{(p_1)}

Exp + (Int + Int) \rightarrow^{(p_1)}

Int + (Int + Int) \rightarrow^{(i_1)}

Int + (Int + 6) \rightarrow^{(i_1)}

Int + (4 + 6) \rightarrow^{(i_1)}
```

Derivation

Exp
$$\rightarrow$$
 ($^{\circ}2$)
Exp + Exp \rightarrow ($^{\circ}2$)
Exp + (Exp) \rightarrow ($^{\circ}2$)
Exp + (Exp + Exp) \rightarrow ($^{\circ}2$)
Exp + (Exp + Int) \rightarrow ($^{\circ}2$)
Exp + (Int + Int) \rightarrow ($^{\circ}2$)
Int + (Int + Int) \rightarrow ($^{\circ}1$)
Int + ($^{\circ}4$ + 6)
 \rightarrow ($^{\circ}1$)

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

Exp
$$\rightarrow$$
 (62)
Exp + Exp \rightarrow (64)
Exp + (Exp) \rightarrow (62)
Exp + (Exp + Exp) \rightarrow (61)
Exp + (Int + Int) \rightarrow (61)
Int + (Int + Int) \rightarrow (61)
Int + (Int + 6) \rightarrow (61)
Int + (4 + 6) \rightarrow (61)
2 + (4 + 6)

Derivation

Derivation

```
EXP \rightarrow (e_2)

EXP + EXP \rightarrow (e_3)

EXP + (EXP) \rightarrow (e_1)

EXP + (EXP + EXP) \rightarrow (e_1)

EXP + (Int + Int) \rightarrow (e_1)

Int + (Int + Int) \rightarrow (i_1)

Int + (Int + 6) \rightarrow (i_1)

Int + (4 + 6) \rightarrow (i_1)

2 + (4 + 6)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

```
EXP (e_2)

EXP + EXP (e_3)

EXP + (EXP) (e_2)

EXP + (EXP + EXP) (e_1)

EXP + (EXP + Int) (e_1)

EXP + (Int + Int) (e_1)

Int + (Int + Int) (e_1)

Int + (Int + 6) (e_1)

Int + (4 + 6) (e_1)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

```
Exp = (e_2)

Exp + (e_3)

Exp + (e_4)

Exp + (e_5)

Exp + (e_4)

Exp + (e_1)

Int + (e_1)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

```
Exp \rightarrow (\theta_2)

Exp + Exp \rightarrow (\theta_3)

Exp + (Exp) \rightarrow (\theta_3)

Exp + (Exp + Exp) \rightarrow (\theta_1)

Exp + (Exp + Int) \rightarrow (\theta_1)

Exp + (Int + Int) \rightarrow (\theta_1)

Int + (Int + Int) \rightarrow (i_1)

Int + (Int + 6) \rightarrow (i_1)

Int + (4 + 6) \rightarrow (i_1)

2 + (4 + 6)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

```
\rightarrow (e<sub>3</sub>)
Exp + Exp
                               \rightarrow (e_2)
Exp + (Exp)
                              \rightarrow(e_1)
Exp + (Exp + Exp)
                             \rightarrow(e_1)
Exp + (Exp + Int)
                             \rightarrow(e_1)
Exp + (Int + Int)
                             \rightarrow(i_1)
Int + (Int + Int)
                              \rightarrow(i_1)
Int + (Int + 6)
                                \rightarrow(i_1)
Int + (4 + 6)
2 + (4 + 6)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Derivation

```
\rightarrow (e_2)
Ехр
                                 \rightarrow (e<sub>3</sub>)
Exp + Exp
                                \rightarrow^{(e_2)}
Exp + (Exp)
                               \rightarrow(e_1)
Exp + (Exp + Exp)
                              \rightarrow(e_1)
Exp + (Exp + Int)
                              \rightarrow(e_1)
Exp + (Int + Int)
                              \rightarrow(i_1)
Int + (Int + Int)
                               \rightarrow^{(i_1)}
Int + (Int + 6)
                                  \rightarrow(i_1)
Int + (4 + 6)
2 + (4 + 6)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

```
Exp \rightarrow (^{\circ}2)
Exp + Exp \rightarrow (^{\circ}3)
Exp + (Exp) \rightarrow (^{\circ}2)
Exp + (Exp + Exp) \rightarrow (^{\circ}2)
Exp + (Int + Exp) \rightarrow (^{\circ}2)
Exp + (Int + Int) \rightarrow (^{\circ}2)
Int + (Int + Int) \rightarrow (^{\circ}4)
Int + (4 + Int) \rightarrow (^{\circ}4)
Int + (4 + 6)
```

Exp
$$\rightarrow$$
 ($^{\circ}$ 2)
Exp + Exp \rightarrow ($^{\circ}$ 3)
Exp + (Exp) \rightarrow ($^{\circ}$ 9)
Exp + (Exp + Exp) \rightarrow ($^{\circ}$ 1)
Exp + (Int + Exp) \rightarrow ($^{\circ}$ 1)
Exp + (Int + Int) \rightarrow ($^{\circ}$ 1)
Int + (4 + Int) \rightarrow ($^{\circ}$ 1)
Int + (4 + 6) \rightarrow ($^{\circ}$ 1)

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

```
Exp \rightarrow (e<sub>2</sub>)

Exp + Exp \rightarrow (e<sub>3</sub>)

Exp + (Exp) \rightarrow (e<sub>2</sub>)

Exp + (Exp + Exp) \rightarrow (e<sub>1</sub>)

Exp + (Int + Exp) \rightarrow (e<sub>1</sub>)

Exp + (Int + Int) \rightarrow (f<sub>1</sub>)

Int + (4 + Int) \rightarrow (f<sub>1</sub>)

Int + (4 + 6) \rightarrow (f<sub>1</sub>)
```

```
Exp (e_2)
Exp + Exp (e_3)
Exp + (Exp) (e_4)
Exp + (Exp + Exp) (e_1)
Exp + (Int + Exp) (e_1)
Exp + (Int + Int) (e_1)
Int + (Int + Int) (e_1)
Int + (4 + Int) (e_1)
Int + (4 + 6) (e_1)
```

```
Exp (e_2)

Exp + Exp (e_3)

Exp + (Exp) (e_4)

Exp + (Exp + Exp) (e_1)

Exp + (Int + Exp) (e_1)

Exp + (Int + Int) (e_1)

Int + (Int + Int) (e_1)

Int + (4 + Int) (e_1)

Int + (4 + 6) (e_1)
```

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Exp
$$(e_2)$$

Exp + Exp (e_3)

Exp + (Exp) (e_4)

Exp + (Exp + Exp) (e_1)

Exp + (Int + Exp) (e_1)

Exp + (Int + Int) (e_1)

Int + (Int + Int) (e_1)

Int + (4 + Int) (e_1)

Int + (4 + 6) (e_1)

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Exp
$$(e_2)$$

Exp + Exp (e_3)

Exp + (Exp) (e_3)

Exp + (Exp + Exp) (e_1)

Exp + (Int + Exp) (e_1)

Exp + (Int + Int) (e_1)

Int + (Int + Int) (e_1)

Int + (4 + Int) (e_1)

Int + (4 + 6) (e_1)

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Exp
$$\rightarrow$$
 (θ_2)

Exp + Exp \rightarrow (θ_3)

Exp + (Exp) \rightarrow (θ_2)

Exp + (Exp + Exp) \rightarrow (θ_1)

Exp + (Int + Exp) \rightarrow (θ_1)

Exp + (Int + Int) \rightarrow (θ_1)

Int + (Int + Int) \rightarrow (i_1)

Int + (4 + Int) \rightarrow (i_1)

Int + (4 + 6) \rightarrow (i_1)

Int ::= [\+-]?[0-9]+ (
$$i_1$$
)
Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Exp
$$\rightarrow$$
 $(^{\circ}2)$

Exp + Exp \rightarrow $(^{\circ}2)$

Exp + (Exp) \rightarrow $(^{\circ}2)$

Exp + (Exp + Exp) \rightarrow $(^{\circ}2)$

Exp + (Int + Exp) \rightarrow $(^{\circ}2)$

Exp + (Int + Int) \rightarrow $(^{\circ}2)$

Int + (Int + Int) \rightarrow $(^{\circ}2)$

Int + (4 + Int) \rightarrow $(^{\circ}2)$

Int + (4 + 6) \rightarrow $(^{\circ}2)$

Int ::= [\+-]?[0-9]+
$$(\dot{h}_1)$$

Exp ::= Int (θ_1)
| Exp "+" Exp (θ_2)
| "(" Exp ")" (θ_3)

Exp
$$\rightarrow$$
 ($^{\circ}2$)

Exp + Exp \rightarrow ($^{\circ}3$)

Exp + (Exp) \rightarrow ($^{\circ}2$)

Exp + (Exp + Exp) \rightarrow ($^{\circ}2$)

Exp + (Int + Exp) \rightarrow ($^{\circ}2$)

Exp + (Int + Int) \rightarrow ($^{\circ}2$)

Int + (Int + Int) \rightarrow ($^{\circ}1$)

Int + ($^{\circ}4$ + Int) \rightarrow ($^{\circ}1$)

Int + ($^{\circ}4$ + 6)

Int ::= [\+-]?[0-9]+
$$(i_1)$$

Exp ::= Int (e_1)
| Exp "+" Exp (e_2)
| "(" Exp ")" (e_3)

Parse trees

Parse tree for 2 + (4 + 6):

Parse trees

Parse tree for 2 + (4 + 6):

Parse trees: simplified

Parse tree for 2 + (4 + 6):

Multiple parses available

Possible parse trees for 2 + 4 + 6:

Experiment with K!

Multiple parses available

Possible parse trees for 2 + 4 + 6:

Multiple parses available

Possible parse trees for 2 + 4 + 6:

Ambiguities

Possible parse trees for 2 + 4 + 6:

- Solutions?
 - ▶ Use the parentheses defined in the syntax: '(' and ')'
 - Use [bracket] attribute
 - Use associativity attributes: [left] or [right]

Ambiguities

Possible parse trees for 2 + 4 + 6:

- Solutions?
 - ▶ Use the parentheses defined in the syntax: '(' and ')'
 - Use [bracket] attribute
 - Use associativity attributes: [left] or [right]

Ambiguities

Possible parse trees for 2 + 4 + 6:

- Solutions?
 - Use the parentheses defined in the syntax: '(' and ')'
 - ► Use [bracket] attribute
 - Use associativity attributes: [left] or [right]

Extend the syntax of expressions

Append division:

Question: what's the parse tree of 4 / 2 + 6?

Possible parse trees for 4 / 2 + 6:

Is this what we want?

Possible parse trees for 4 / 2 + 6:

Is this what we want?

Possible parse trees for 4 / 2 + 6:

Is this what we want?

Extended BNF

- Extended BNF: ">"
- Solution:

Expected result:

Extended BNF

- Extended BNF: ">"
- Solution:

Expected result:

Extended BNF

- Extended BNF: ">"
- Solution:

Expected result:

Extend the syntax of expressions

Append minus:

Question: what's the parse tree of 4 - 2 + 6?

Operation associativity

Possible parse trees for 4 - 2 + 6:

▶ How can we avoid this?

Operation associativity

Possible parse trees for 4 - 2 + 6:

▶ How can we avoid this?

Operation associativity

Possible parse trees for 4 - 2 + 6:

How can we avoid this?

Associativity

Solution: use left or right

- Variants in K: left , right, non-assoc
- Experiment with K!

Extend the syntax again

Define boolean expressions and statements

```
syntax Exp ::= Id | Int
               | Exp "/" Exp
                                              [left]
               > left:
                  Exp "+" Exp
                                              [left]
                Exp "-" Exp
                                              [left]
                "(" Exp ")"
                                              [bracket]
             ::= Exp "<=" Exp
syntax BExp
              | "(" BExp ")"
                                              [bracket]
syntax Stmt
             ::= Id "=" Exp ";"
                 "if" BExp Stmt "else" Stmt
                  "if" BExp Stmt
```

Dangling else problem

Consider the following program:

```
if (x <= 0)
  if (y <= 0)
    y = y + 1;
  else x = x + 1;</pre>
```

- The else belongs to which if statement?
- Experiment with K!

Dangling else problem

Consider the following program:

```
if (x <= 0)
  if (y <= 0)
    y = y + 1;
  else x = x + 1;</pre>
```

- ► The else belongs to which if statement?
- Experiment with K!

Dangling else - Solution

Solution:

Lists in K

- ► EBNF notation: Ids ::= (Id, ",") *
 ► In K: syntax Ids ::= List{Id, ","}
- Experiment with K!

Abstract Syntax Trees - AST

- ▶ Parse trees are *concrete* representations of the programs
- Abstract Syntax Trees are abstract representations of programs
- Some advantages of ASTs compared to parse trees:
 - ASTs are "smaller" in size
 - ASTs do not contain useless details (e.g., bracket)
 - Takes less time to process them

Abstract Syntax Trees - AST

- Parse trees are concrete representations of the programs
- Abstract Syntax Trees are abstract representations of programs
- Some advantages of ASTs compared to parse trees:
 - ASTs are "smaller" in size
 - ASTs do not contain useless details (e.g., bracket)
 - Takes less time to process them

► Append labels:

Recall: 4 - 2 + 6

Parse Tree

Abstract Syntax Tree

- ▶ Typical ASCII representation: plus (minus (4, 2), 6)
- Experiment with K

Recall: 4 - 2 + 6

Parse Tree

Abstract Syntax Tree

- ► Typical ASCII representation: plus (minus (4, 2), 6)
- Experiment with K

Recall: 4 - 2 + 6

Parse Tree

Abstract Syntax Tree

- ► Typical ASCII representation: plus (minus (4, 2), 6)
- Experiment with K!

Bibliography

Sections 2.1-2.4 from the [Gabbrielli&Martini 2010].

Lab - this week

 Defining the syntax of an imperative programming language