Алгебра 1 семестр ПИ, Лекция, 10/29/21

Собрано 1 ноября 2021 г. в 10:59

Содержание

1.	Комплексные числа	1
	1.1. Корни из единицы	1
	1.2. Показательная форма записи комплексного числа	9

1.1. Корни из единицы

Def. 1.1.1. Корень из 1 n-й степени ε_k называется первообразным, если он принадлежит показателю, $m.e.\ \forall m: 0 < m < n \to \varepsilon^m \neq 1$

Теорема 1.1.2 (О первообразном корне). Корень из 1 n-й степени является первообразным $\Leftrightarrow (k,n) = 1$.

Доказательство. " \Rightarrow ". ε_k — первообразный корень. Предположим, что $(k,n)=d>1, k=k_1d, n=n_1d, n_1< n$. Тогда

$$\varepsilon_k^{n_1} = \cos \frac{2\pi k n_1}{n} + i \sin \frac{2\pi k n_1}{n} = \cos \frac{2\pi k_1 d n_1}{n} + i \sin \frac{2\pi k_1 d n_1}{n} = 1?! \Rightarrow d = 1$$

" \leftarrow ". (k,n) = 1. Предположим, что ε_k^m = $1 \Rightarrow \cos \frac{2\pi km}{n}$ = $1,\sin \frac{2\pi km}{n}$ = 0

$$\Leftrightarrow \frac{2\pi km}{n} = 2\pi s \Rightarrow \frac{km}{n} \in \mathbb{Z} \Rightarrow n|m \Rightarrow m \geqslant n$$

Свойства:

1. α – корень из 1 степени n, β – корень из 1 степени $m \Rightarrow \alpha \cdot \beta$ – тоже корень из 1.

Доказательство.
$$(\alpha\beta)^{(m,n)}=1$$

2. Если α – корень из 1 степени n, то α^{-1} – корень из 1 степени n

Доказательство.
$$(\alpha^{-1})^n = \frac{1}{\alpha^n} = 1$$

3. $u_n=\{z\in\mathbb{C}:z^n=1\}$ — мультипликативная коммутативная группа. $u_n=\{\varepsilon_k,\varepsilon_k^2,...,\varepsilon_k^{n-1},1\},\varepsilon_k$ — первообразный корень.

Def. 1.1.3. Группа G называется циклической, если $G = \{a, a^2, a^3, ...\}$. Пишут $G = \langle a \rangle$ – группа G порождается элементом a.

Def. 1.1.4. G_1 – группа c операцией $*_1, G_2$ – группа c операцией $*_2$. Говорят, что группы G_1 и G_2 изоморфны, если $\exists \varphi : G_1 \to G_2$:

- \bullet φ биективно
- $\forall x, y \in G_1 \rightarrow \varphi(x *_1 y) = \varphi(x) *_2 \varphi(y)$

<u>Теорема</u> 1.1.5. $u_n \simeq \mathbb{Z}_n$

 \mathcal{A} оказательство. ε — первообразный корень, т.е. $u_n = \{\varepsilon^k\}, k = 0, ..., n-1$ $\varphi : \mathbb{Z}_n \to u_n, \varphi(k) = \varepsilon^k, \varphi$ — биекция

$$\varphi(k+m) = \varepsilon^k \cdot \varepsilon^m = \varphi(k) \cdot \varphi(m)$$

1.2. Показательная форма записи комплексного числа

Def. 1.2.1. $e^{i\varphi} = \cos \varphi + i \sin \varphi$ — показательная форма записи комплексного числа.

Def. 1.2.2 (Формула Эйлера). $e^{i\varphi} = \cos \varphi + i \sin \varphi, e^{-i\varphi} = \cos \varphi - i \sin \varphi$. Тогда

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$
$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

Свойства комплексных чисел:

- 1. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- 2. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- 3. $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$
- 4. $z + \overline{z} \in \mathbb{R}$
- 5. $i(z-\overline{z}) \in \mathbb{R}$