3D Detector Response Calculations Using **B**oundary **E**lement **M**ethod

Brett Viren

Physics Department

BROOKHAVEN
NATIONAL LABORATORY

BNL- μ Boone 10 Aug 2016

Overview

• Status report with focus on active, technical problems.

MicroBooNE Geometry Patch

- Wires parameterized by pitch, angle, bounding box, radius.
- ullet Single 40 imes 40mm plane at +20mm for drift potential
- Wire planes fill a $20 \times 20 \times 6$ mm box

V-plane \vec{E}_{weight} Slices

- Slices in X-Z and X-Y planes.
- Note: mismatchs between evaluated voxel grid and wire mesh.

Paraview stepping from line source

- Line source 2mm in front of U-plane, paths colored by drift potential.
- U-plane transparency violated due to imprecision right near U-wire.
- Likely, voxelization is mostly to blame. Finite mesh size and gradient not respecting wire boundary are 2nd order culprits.

Mesh Sampling Precision Reminder

A particularly egregious example.

6 / 16

- BEM++ allows setting "Gaussian Quadrature Order".
- 3 knobs: number of samples of boundary conditions on each mesh triangle for "near", "middle" and "far" ranges.
- Large scale discontinuity artificats due to shifting between these ranges.

Initial Response Functions (given known issues)

Preliminary and Subject to Change!

Collection and U and V Induction. Central and nearest neighbor wires.

Data inspired and 2D Garfield calculations.

Stepping with on-demand field eval

- ~20cm paths, color is drift potential, 1mm grid starting points
- Uses on-demand field evaluations
- Still **point-and-shoot** stepping (every 0.1us).
- Still low Gaussian Quadrature precision.
- Still ignores wire hits.

To Do - fix/tune/optimize/test

- Change from voxelized φ_{driff} to on-demand. (done)
 - Requires much less RAM and CPU for given spatial resolution.
 - But, does evaluation + stepping together (no eval result caching)
 - Each point uses 7 drift-potential evaluations to get gradient for \dot{E}_{drift} .
- Replace point-and-shoot with Runge-Kutta 5th order (ready)
 - ∼ 6× more CPU needed, tradeoffs to consider:
 - Force step size to desired (eg, $0.1\mu s$ steps in time): Slow!
 - Use adaptive error control, bigger steps in general but then, spline fit and sample: Fast but is it accurate, especially at the wires?
- Increase Gaussian-quadrature order. (cfg parameter)
 - Requires a "few" × more CPU (I've not carefully measured)
 - Hopefully fixes the abrupt shifts in field.
- Geometry. Need to:
 - be able to query geometry at step time to stop "hit" paths.
 - enlarge geometry to +/- 10 wires (Yichen+Xin's work).
 - enlarge "cathode" even more to provide more parallel drift field.

Leon's Advances with FEM

DocDB 6236

2D comparison with garfield

- Good looking current waveforms
- Found a time offset difference.
- Wants Garfield's steps (\vec{r}, t) for detailed comparison (Yichen, help?)

3D uBoone

- Can do drifts over "unit cell" ($\sim 3 \times 6$ mm)
- Drift paths look good and "less weird" than my current ones.
 - le, straight and parallel in region away from wires

FIN

Boundary Element Method (BEM) Overview

- 1 Discretize (mesh) boundary electrode surfaces.
- Define (Dirichlet) scalar potential on each mesh element (triangle).
- 3 Fit (Neumann) surface-normal boundary field.
- **4** Integrate Laplace equation $\nabla^2 \phi = 0$, evaluate at boundary.
- **6** Evaluate solution at points in the volume.

Compare BEM and FEM:

	BEM	FEM
domain:	2D surface mesh	3D volume mesh
easy:	away from surface	near to surface
fits:	boundary-normal field	volumetric field
eval:	arb. volume point	volume mesh points
both:	CPU and memory intensive, limited geometries	
external:	stepping and averaging current responses	

General Calculation Overview

High-level steps:

- Drift fields: $\phi_{\textit{clrift}} \to \vec{E}_{\textit{clrift}} \to \mu \to \vec{V}_{\textit{clrift}} \to \textbf{paths}$: $\{p\}$
 - $\vec{V}_{driff} = \mu(E_{driff})\vec{E}_{driff}(\vec{r}(t))$
 - Get path $\vec{r}_p(t)$ by stepping through velocity field \vec{v}_{drift} .
- Shockley-Ramo "weighting" potential for electrode k
 - $\phi_{\text{weight},k} o \vec{E}_{\text{weight},k}$
 - Electrode k at 1V, all others at 0V.
- Current on wire k due to charge moving along path p:
 - $i_{k,p}(t) = q\vec{E}_{weight,k} \cdot \vec{V}_{driff}|_{p}$
- **Response function** for wire *k* is average over paths:
 - $< i_k(t) > = \frac{1}{N} \sum_{p=1}^{N} i_{k,p}(t)$
- \rightarrow for now: paths start on 1mm grid, 16mm in front of U-plane,
- → response is average over paths in half-pitch "wire region"

Wire Meshes

"Parallel": 3mm pitch and gap all wires parallel

"MicroBooNE": 3mm pitch and gap 60° angles for U/V.

"DUNE": 5mm pitch and gap 35.7° angles for U/V.

14 / 16

- "Parallel" used to reproduce 2D calculations.
- Geometry parameterized to facilitate exploring different configurations.

Parallel Wires - Slice Through Weighting Potentials

- U and W (left) and V (above) planes.
- X-Z slices through plane of symmetry.
- Lines: 5%, 10%, 20%, 40% weights.
- Initial qualitative agreement with Garfield 2D calculations.
- more exhaustive comparisons needed, but satisfactory enough to push on.

15 / 16

The Software

https://github.com/brettviren/larf

- Expect a name change!
- Ready for other users and developers, welcome!
- Interfaces: simple command line program or Python modules.
- Supports fantastic Paraview visualization app.
- Provides various "management systems": configuration, data storage, result provenance, workflow.
- \rightarrow Warning: documentation is trailing code development so let me know if you are interested in using/developing and I'll do some freshening.