Solutions of Tutorial Sheet 9

Improper Integral

- 1. (a) $\int_0^\infty e^{-x} \cos x dx = \lim_{b \to \infty} \int_0^b e^{-x} \cos x dx$ Now take $I = \int_0^b e^{-x} \cos x dx = \frac{1}{2} (1 \cos b e^{-b} + \sin b e^{-b}). \text{ So } \lim_{b \to \infty} I = \frac{1}{2}.$ $\Rightarrow \int_0^\infty e^{-x} \cos x dx \text{ is convergent.}$
 - (b) $\int_{1}^{\infty} \frac{dx}{x^2(1+e^x)} \le \int_{1}^{\infty} \frac{dx}{x^2}$ which is convergent .Hence by comparison test given improper integral is convergent.
 - (c) $\int_1^\infty \frac{(x+1)dx}{x^{\frac{3}{2}}} = \int_1^\infty \frac{1}{\sqrt{x}} dx + \int_1^\infty x^{-3/2} dx$. The first integral on the right side diverges. Hence given integral diverges.
- 2. (a) Take $\ln x = t$ then $x = e^t$ and the integral becomes $\int_0^{\ln 2} \frac{e^{t/2}}{t}$. It is easy to see that integrand is $\geq \frac{1}{t}$ and the integral $\int_0^{\ln 2} \frac{1}{t}$ diverges.
 - (b) $f(x) = \frac{\sin(\frac{1}{x})}{\sqrt{x}}$ and Take $g(x) = \frac{1}{\sqrt{x}}$. Then using comparison test, since $\int_0^1 \frac{dx}{\sqrt{x}}$ is convergent, we have $\int_0^1 \frac{\sin(\frac{1}{x})}{\sqrt{x}} dx$ is convergent.
 - (c) Take $f(x) = \frac{\tan(x)}{x^{3/2}}$ and $g(x) = \tan x$. Then $\lim_{x \to \frac{\pi}{2}} \frac{f(x)}{g(x)} \in (0, \infty)$. Also as $\int_{1}^{\frac{\pi}{2}} \tan(x) dx$ is divergent so $\int_{1}^{\frac{\pi}{2}} \frac{\tan(x)}{x^{3/2}} dx$ is divergent.
- 3. (a) $\int_0^\infty x^{\frac{-1}{2}} e^{x^2} dx = \int_0^1 \frac{e^{x^2} dx}{\sqrt{x}} + \int_1^\infty \frac{e^{x^2} dx}{\sqrt{x}} dx. \text{ Now } \int_0^1 \frac{e^{x^2} dx}{\sqrt{x}} \text{ is convergent, Since if we take } g(x) = \frac{1}{\sqrt{x}} \text{ then } \lim_{x \to 0} \frac{f(x)}{g(x)} = 1 \text{ and } \int_0^1 \frac{dx}{\sqrt{x}} \text{ is convergent But } \int_1^\infty \frac{e^{x^2} dx}{\sqrt{x}} \text{ is divergent. Since if we take } g(x) = \frac{1}{\sqrt{x}} \text{ then } \lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \text{ and } \int_1^\infty \frac{dx}{\sqrt{x}} \text{ is divergent. Hence the given integral is divergent.}$

(b) Note that

$$\int_{-\infty}^{\infty} \frac{x \ dx}{(x^2+1)} = \int_{-\infty}^{0} \frac{x \ dx}{(x^2+1)} + + \int_{0}^{\infty} \frac{x \ dx}{(x^2+1)}.$$

Now take $g(x) = \frac{1}{x}$ for both the integrals. Then use limit comparison test.

- (c) Let $g(x) = \frac{1}{1+x^2}$ Then $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$. Since $\int_0^\infty g(x)dx$ converges. So, by limit test $\int_0^\infty g(x)dx$ converges.
- 4. Clearly, for $p \le 0$, $\int_0^1 \frac{\sin x}{x^p} dx$ exists as Riemann integrals. So, let p > 0. Then for x > 0, we have

$$\left| \frac{\sin x}{x^p} \right| = \left| \frac{\sin x}{x} \right| \frac{1}{x^{p-1}} \le \frac{1}{x^{p-1}}.$$

From comparison test, it follows that $\int_0^1 \frac{\sin x}{x^p} dx$ converges for p < 2.

Now we will show that $\int_0^1 \frac{\sin x}{x^p} dx$ diverges for $p \ge 2$. Since $\frac{\sin x}{x}$ is decreasing in (0,1], then for all $x \in (0,1]$, we have

$$\frac{\sin x}{x^{p}} = \frac{\sin x}{x} \frac{1}{x^{p-1}} \ge \frac{\sin 1}{x^{p-1}}.$$

Also, $\int_0^1 \frac{1}{x^p} dx$ diverges for $p-1 \ge 1$. Therefore, by Comparision test, it follows that $\int_0^1 \frac{\sin x}{x^p}$ diverges for $p \ge 2$.

5. Leibniz formula is to be used.

(a) Let
$$f(t) = \int_0^1 \frac{x^t - 1}{\ln x} dx$$
, then $\frac{df}{dt} = \int_0^1 x^t dx = \frac{1}{t+1}$.

$$\implies f(t) = \ln(t+1) + c.$$

Now $f(0) = 0 \Rightarrow c = 0$.

$$\Rightarrow \int_0^1 \frac{x^t - 1}{\ln x} dx = \ln(t + 1).$$

(b) Let
$$f(t) = \int_0^\infty e^{-tx} \frac{\sin x}{x} dx$$
. Then $\frac{df}{dt} = -\int_0^\infty e^{-tx} \sin x dx = \frac{-1}{1+t^2}$. (since

$$\begin{split} I &= -\int_0^\infty e^{-tx} \sin x dx \\ &= -\left[-\sin x e^{-tx} \frac{1}{t} \Big|_0^\infty + \int_0^\infty e^{-tx} \frac{1}{t} \cos x dx \right] \\ &= -\frac{1}{t} \int_0^\infty e^{-tx} \cos x dx \\ &= -\frac{1}{t} \left[\cos x e^{-tx} \frac{1}{-t} \Big|_0^\infty + \int_0^\infty \frac{1}{t} e^{-tx} (-\sin x) dx \right] \\ &= -\frac{1}{t^2} - \frac{I}{t^2}. \end{split}$$

$$\therefore I = -\frac{1}{1+t^2} = f'(t).$$

$$\implies f(t) = -\tan^{-1} t + c.$$

By the second fundamental theorem, $f(a) - f(0) = \int_0^a f'(t)dt = \int_0^a \frac{-1}{1+t^2}dt$, taking $a \to \infty$, $\lim_{a \to \infty} f(a) - f(0) = -\pi/2$. Also,

$$0 \le |f(a)| = \left| \int_0^\infty e^{-ax} \frac{\sin x}{x} dx \right| \le C_1 \int_0^\infty e^{-ax} dx \text{ as } a \to \infty.$$

Therefore, $\lim_{a\to\infty} f(a) = 0$. Using this we get $c = \frac{\pi}{2}$ and hence $f(t) = \frac{\pi}{2} - \tan^{-1} t$.

6. (a)
$$I = \int_0^\infty e^{-x^2} dx$$
. Put $x^2 = t \Rightarrow 2x dx = dt$.

$$\implies I = \int_0^\infty \frac{1}{2} e^{-t} t^{-\frac{1}{2}} dt$$

$$\therefore I = \frac{1}{2}\Gamma\left(\frac{1}{2}\right).$$

(b)
$$I = \int_0^{\frac{\pi}{2}} \sqrt{\tan x} dx = \int_0^{\frac{\pi}{2}} \sin^{\frac{1}{2}} x \cos^{-\frac{1}{2}} x dx = \frac{1}{2} \beta \left(\frac{3}{4}, \frac{1}{4}\right)$$

(c) Let
$$I = \int_0^\infty x^{2/3} e^{-\sqrt{x}} dx$$
. Substitute $\sqrt{x} = t$.

$$\implies I = 2 \int_0^\infty t^{\frac{7}{3}} e^{-t} dt.$$

Comparing it with the gamma function, $\Gamma(p)=\int_0^\infty x^{p-1}e^{-x}dx$, we have $p=\frac{10}{3}$.

$$I = \Gamma\left(\frac{10}{3}\right).$$

- 7. Use $\Gamma(n+1) = n\Gamma(n)$, recursively.
 - (a) $\frac{3}{4}\sqrt{\pi}$
 - (b) $\frac{105}{16}\sqrt{\pi}$
 - (c) Use Euler's reflection formula:

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(\pi p)}.$$

Choose $p = -\frac{1}{2}$, so the answer is $-2\sqrt{\pi}$.