Komplexität von Code-Problemen

Vortrag zum Seminar
"Komplexität"
FG Theoretische Informatik/Formale Methoden

Ahmad Lowejatan Noori

FB Elektrotechnik/Informatik, Universität Kassel

SoSe 2024

Codes

- Große Rolle in der Datenübertragungs- bzw. Nachrichtentechnik
- Digitalisierung analoger Signale
- Umwandlung von Daten in Bitstrings (Codewörtern)
- Fehlerkorrekturverfahren
- Minimaler Code: höhere Bit-Tiefe Überdeckender Code: Abdecken vieler Fehlerzustände

Code und Hamming-Ball

Eine Menge $C \subseteq \{0,1\}^n, n \in \mathbb{N}$ von *n*-stelligen Binärstrings bezeichnen wir als Code.

Def.: $B_n(u, r)$ ist die Menge aller n-stelligen Binärstrings, die mit höchstens Hamming-Distanz r von einem zentralen Binärstring u erreicht werden können. (=Hamming-Ball um u)

Minimum Radius Problem

Der Radius von Code C, R(C), ist das kleinste $r \in \mathbb{N}$, sodass gilt: $C \subseteq B_n(u, r)$ für irgendeinen Binärstring u.

Problem:

Eingabe: ein Code $C \subseteq \{0,1\}^n$

und $k \in \mathbb{N}$

Frage: Ist $R(C) \leq k$?

Abbildung: Beispiel für $C \subseteq \{0,1\}^3$, $B_3(101,1)$

Minimum Radius Problem

Der Radius von Code C, R(C), ist das kleinste $r \in \mathbb{N}$, sodass gilt: $C \subseteq B_n(u, r)$ für irgendeinen Binärstring u.

Problem:

Eingabe: ein Code $C \subseteq \{0,1\}^n$

und $k \in \mathbb{N}$

Frage: Ist $R(C) \leq k$?

Abbildung: Beispiel für $C \subseteq \{0,1\}^3$, $B_3(101,1)$

Maximum Covering Radius Problem

Der Covering Radius von Code C, CR(C), ist das kleinste $r \in \mathbb{N}$, sodass gilt $\{0,1\}^n = \bigcup_{u \in C} B_n(u,r)$

Problem:

Eingabe: ein Code $C \subseteq \{0,1\}^n$

und $k \in \mathbb{N}$

Frage: Ist $CR(C) \ge k$?

Code C	2-Ball		
101	000, 001, 011,		
	100, 101, 110		
	111		
100	000, 001, 010		
	100, 101, 110,		
	111		
111	001, 010, 011		
	100, 101, 110		
	111		

Abbildung: Beispiel für $C \subseteq \{0,1\}^3$ und alle $v \in B_3(u,2)$ für ein $u \in C$

MR und MCR

Minimum Radius Problem (MR)

Eingabe: ein Code $C \subseteq \{0,1\}^n$ und $k \in \mathbb{N}$

Frage: Ist $R(C) \leq k$?

Maximum Covering Radius Problem (MCR)

Eingabe: ein Code $C \subseteq \{0,1\}^n$ und $k \in \mathbb{N}$

Frage: lst CR(C) > k?

Theorem 1: für alle $C \neq \emptyset$, $C \subseteq \{0,1\}^n$: R(C) + CR(C) = n Beweisidee über die Form vom CR:

- Sei r_{max} das größte r, sodass es ein $v \in \{0,1\}^n$ gibt mit $B_n(v,r) \cap C = \emptyset$
- Mit $r_{max}+1$ existiert nun ein Vektor $u\in C$, sodass dieser mit höchstens Hamming-Distanz $r_{max}+1$ jeden Vektor aus $\{0,1\}^n\setminus C$ überdeckt, und damit gilt

$$CR(C) = r_{max} + 1$$

= $max\{r \mid \exists v : C \cap B_n(v, r) = \emptyset\} + 1$

$$R(C) + CR(C) = min\{t \mid \exists u : C \subseteq B_n(u, t)\} + (max\{r \mid \exists v : C \cap B_n(v, r) = \emptyset\} + 1)$$

- Sei $v \in \{0,1\}^n$, dann ist $B_n(v^c, n-r-1)$ das Komplement von $B_n(v,r)$ in $\{0,1\}^n$
- Durch Bitflipping hat v^c einen Abstand n zum Zentrum v, und erreicht mit höchstens Distanz n-r-1 die restlichen Vektoren des Raums
- Mit Maximierung des Hamming-Balls $B_n(v,r)$ mit $B_n(v,r) \cap C = \emptyset$, verkleinert sich also auch der komplementäre Hamming Ball $B_n(v^c, n-r-1)$, wobei $C \subseteq B_n(v^c, n-r-1)$

$$= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} + \max\{r \mid \exists v : C \subseteq B_n(v, n - r - 1)\} + 1$$

```
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      \max\{r \mid \exists v : C \subseteq B_n(v, n-r-1)\} + 1
Ersetze r mit n-r'-1:
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      \max\{n-r'-1\mid \exists v: C\subseteq B_n(v,r')\}+1
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      n-1-\min\{r'\mid \exists v: C\subseteq B_n(v,r')\}+1
= n
```

```
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      \max\{r \mid \exists v : C \subseteq B_n(v, n-r-1)\} + 1
Ersetze r mit n-r'-1:
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      \max\{n-r'-1\mid \exists v: C\subseteq B_n(v,r')\}+1
= \min\{t \mid \exists u : C \subseteq B_n(u, t)\} +
      n-1-\min\{r'\mid \exists v: C\subseteq B_n(v,r')\}+1
= n
```

Beh.: MR und MCR sind äquivalent

Bew.: Aus
$$R(C) + CR(C) = n$$
 folgt $R(C) \le k \Leftrightarrow CR(C) \ge n - k$

- MCR und MR aufeinander reduzierbar
- Reduktionen offensichtlich polynomiell-zeitbeschränkt
- ⇒ Über MR wird die NP-Vollständigkeit von MCR bewiesen

Eigenschaften von Doppelvektoren

Doppelvektoren sind Vektoren $v = (v_1 v_1 v_2 v_2 \dots v_n v_n) \in \{0, 1\}^{2n}$

Solche Vektoren haben eine spezielle Eigenschaft, die sich für die spätere Reduktion $3SAT \leq_p MR$ im Zuge der NP-Schwere als nützlich erweisen:

Eigenschaften von Doppelvektoren

Doppelvektoren sind Vektoren $v = (v_1v_1v_2v_2...v_nv_n) \in \{0,1\}^{2n}$

Solche Vektoren haben eine spezielle Eigenschaft, die sich für die spätere Reduktion $3SAT \leq_p MR$ im Zuge der NP-Schwere als nützlich erweisen:

Lemma 2: Für alle n > 0 existiert eine Menge $Y \subseteq \{0,1\}^{2n}$, sodass für alle $v \in \{0,1\}^{2n}$ gilt: v ist ein Doppelvektor $\Leftrightarrow Y \subseteq B_{2n}(v,n)$

$$Y := \{(01)^n, (10)^n\} \cup \bigcup_{i=1}^n \{(01)^{i-1}10(01)^{n-i}\} \cup \bigcup_{i=1}^n \{(10)^{i-1}01(10)^{n-i}\}$$

Doppelvektor ist Ball-Zentrum von Y

Lemma 2: v ist ein Doppelvektor $\Leftrightarrow Y \subseteq B_{2n}(v, n)$ *Bew.*:

 \Rightarrow : Sei v ein Doppelvektor. Dann besteht dieser aus einer n-fachen Konkatenation von 00- und 11-Blöcken. Die Vektoren aus Y sind gleich lang und bestehen aus 01- oder 10-Blöcken. D.h. Hamming-Distanzen zum Doppelvektor sind 1 für jeden Block, also insgesamt n.

 \Leftarrow : Beweisidee: Über Untermenge von Y zeigen, dass zwei Bits von v gleich sein müssen, dann verallgemeinern

Definiere $Y^i := \{(01)^n, (10)^n, (01)^{i-1}10(01)^{n-i}, (10)^{i-1}01(10)^{n-i}\}$

Beh. 1: Wenn $Y^1 \subseteq B_{2n}(v,n)$ für $v \in \{0,1\}^{2n}$, dann sind die ersten zwei Bits gleich. Beweisskizze:

- Die maximale Distanz von $v = (v_1 v_2 \dots v_{2n}) \in \{0,1\}^{2n}$ zu jedem Element aus Y^1 ist höchstens n
- max. Distanz setzt sich zusammen aus:
 - (1) max. Distanz der ersten zwei Bits von $v \in \{0,1\}^{2n}$ und ein $y \in Y^1$
 - (2) max. Distanz der restlichen 2n-2 Bits beider Vektoren

Beh. 1: Wenn $Y^1 \subseteq B_{2n}(v, n)$ für $v \in \{0, 1\}^{2n}$, dann sind die ersten zwei Bits gleich. Beweisskizze:

- Die maximale Distanz von $v = (v_1 v_2 \dots v_{2n}) \in \{0,1\}^{2n}$ zu jedem Element aus Y^1 ist höchstens n
- max. Distanz setzt sich zusammen aus:
 - (1) max. Distanz der ersten zwei Bits von $v \in \{0,1\}^{2n}$ und ein $y \in Y^1$
 - (2) max. Distanz der restlichen 2n 2 Bits beider Vektoren

Y^1	Erste zwei Bits	Letzte $2n - 2$ Bits		
<i>y</i> ₀	01	01 010101		
<i>y</i> ₁	10	10 101010		
<i>y</i> ₂	01	10 101010		
<i>y</i> ₃	10	01 010101		

Beh. 1: Wenn $Y^1 \subseteq B_{2n}(v, n)$ für $v \in \{0, 1\}^{2n}$, dann sind die ersten zwei Bits gleich. Beweisskizze:

- Die maximale Distanz von $v = (v_1 v_2 \dots v_{2n}) \in \{0,1\}^{2n}$ zu jedem Element aus Y^1 ist höchstens n
- max. Distanz setzt sich zusammen aus:
 - (1) max. Distanz der ersten zwei Bits von $v \in \{0,1\}^{2n}$ und ein $y \in Y^1$
 - (2) max. Distanz der restlichen 2n 2 Bits beider Vektoren

Y^1	Erste zwei Bits	Letzte $2n - 2$ Bits		
<i>y</i> ₀	01	01 <mark>01</mark> 0101		
<i>y</i> ₁	10	10 <mark>10</mark> 1010		
<i>y</i> ₂	01	10 <mark>10</mark> 1010		
<i>y</i> ₃	10	01 01 0101		

Beh. 1: Wenn $Y^1 \subseteq B_{2n}(v, n)$ für $v \in \{0, 1\}^{2n}$, dann sind die ersten zwei Bits gleich. Beweisskizze:

- Die maximale Distanz von $v = (v_1 v_2 \dots v_{2n}) \in \{0,1\}^{2n}$ zu jedem Element aus Y^1 ist höchstens n
- max. Distanz setzt sich zusammen aus:
 - (1) max. Distanz der ersten zwei Bits von $v \in \{0,1\}^{2n}$ und ein $y \in Y^1$
 - (2) max. Distanz der restlichen 2n 2 Bits beider Vektoren

Y^1	Erste zwei Bits	Letzte $2n - 2$ Bits		
<i>y</i> ₀	01	0101 0101		
<i>y</i> ₁	10	1010 <mark>10</mark> 10		
<i>y</i> ₂	01	1010 <mark>10</mark> 10		
<i>y</i> ₃	10	0101 0101		

Beh. 1: Wenn $Y^1 \subseteq B_{2n}(v, n)$ für $v \in \{0, 1\}^{2n}$, dann sind die ersten zwei Bits gleich. Beweisskizze:

- Die maximale Distanz von $v = (v_1 v_2 \dots v_{2n}) \in \{0,1\}^{2n}$ zu jedem Element aus Y^1 ist höchstens n
- max. Distanz setzt sich zusammen aus:
 - (1) max. Distanz der ersten zwei Bits von $v \in \{0,1\}^{2n}$ und ein $y \in Y^1$
 - (2) max. Distanz der restlichen 2n-2 Bits beider Vektoren

Y^1	Erste zwei Bits	Letzte $2n - 2$ Bits		
<i>y</i> ₀	01	0101 0101		
<i>y</i> ₁	10	1010 <mark>10</mark> 10		
<i>y</i> ₂	01	1010 <mark>10</mark> 10		
<i>y</i> ₃	10	0101 0101		

Offensichtlich gilt für (2) mindestens n-1, da bei jedem 2-Bit-Block von v zu einem 2-Bit-Block von y eine Distanz von mindestens 1 entsteht.

D.h. für **(1)** gilt höchstens 1, und die ersten 2 Bits von *v* sind 00 bzw. **11**.

Alle Zwei-Bit-Blöcke sind gleich

Beh. 2: Wenn $Y^i \subseteq B_{2n}(v,n)$ für $v \in \{0,1\}^{2n}$, dann ist $v_{2i} = v_{2i-1}$ Beweisskizze: Gilt über Beh. 1 und entsprechender zirkulärer Bitverschiebung nach rechts.

Definiere $Y = Y^1 \cup Y^2 \cup ... \cup Y^n$. Da $Y^i \subseteq B_{2n}(v, n)$ für alle i mit $1 \le i \le n$ gilt nach Beh. 2, dass v ein Doppelvektor sein muss, wenn Y im Raum $\{0, 1\}^{2n}$ Teil eines Hamming-Balls mit Radius n ist.

Alle Zwei-Bit-Blöcke sind gleich

Beh. 2: Wenn $Y^i \subseteq B_{2n}(v,n)$ für $v \in \{0,1\}^{2n}$, dann ist $v_{2i} = v_{2i-1}$ Beweisskizze: Gilt über Beh. 1 und entsprechender zirkulärer Bitverschiebung nach rechts.

Definiere $Y = Y^1 \cup Y^2 \cup ... \cup Y^n$.

Da $Y^i \subseteq B_{2n}(v, n)$ für alle i mit $1 \le i \le n$ gilt nach Beh. 2, dass v ein Doppelvektor sein muss, wenn Y im Raum $\{0,1\}^{2n}$ Teil eines Hamming-Balls mit Radius n ist.

Y kann in poly. Zeit konstruiert werden, da

$$|Y| = |\{(01)^n, (10)^n\} \cup \bigcup_{i=1}^n \{(01)^{i-1} 10(01)^{n-i}\} \cup \bigcup_{i=1}^n \{(10)^{i-1} 01(10)^{n-i}\}| = 2n + 2$$

MR ist NP-Vollständig

Theorem 2: Das Minimum Radius Problem ist NP-Vollständig

- 1. MR ∈ **NP**:
 - Zeuge: $v \in \{0,1\}^n$ als Zentrum eines Radius-k Balls, der C enthält
 - offensichtlich polynomiell-längenbeschränkt in der Größe der Eingabe $\langle C, k \rangle$
 - Verifizierer rechnet und prüft Distanzen zum Zeugen durch in $\mathcal{O}(|C|)$

MR ist NP-Vollständig

Theorem 2: Das Minimum Radius Problem ist NP-Vollständig

- 1. MR ∈ **NP**:
 - Zeuge: $v \in \{0,1\}^n$ als Zentrum eines Radius-k Balls, der C enthält
 - offensichtlich polynomiell-längenbeschränkt in der Größe der Eingabe $\langle C, k \rangle$
 - Verifizierer rechnet und prüft Distanzen zum Zeugen durch in $\mathcal{O}(|C|)$
- 2. MR ist NP-schwer

Wir zeigen: 3SAT ≤ MR

Idee:

- Jede Klausel aus 3CNF φ durch einen Vektor in $\{0,1\}^{2n}$ repräsentieren
- Erfüllende Belegung als Hamming-Ball-Zentrum: Doppelvektor
- Zusammenhänge zwischen Klauselvektoren und Zentrum so kodieren, dass der Code C mit minimalem Radius k einer erfüllenden Belegung von φ entspricht

Kodierung der Klauseln

Für eine Klausel c über den Variablen $x_1, ..., x_n$ definieren wie den Vektor $\hat{c} \in \{0, 1\}^{2n}$ folgendermaßen:

$$\text{ für alle } i=1,...,n, \ \hat{c}_{2i-1}\hat{c}_{2i} = \begin{cases} 00 & \text{wenn } c \text{ das Literal } \neg x_i \text{ enthält,} \\ 11 & \text{wenn } c \text{ das Literal } x_i \text{ enthält,} \\ 01 & \text{sonst.} \end{cases}$$

Definiere $\Pi: \{0,1\}^n \to \{0,1\}^{2n}$; $v_1v_2...v_n \mapsto v_1v_1v_2v_2...v_nv_n$.

Beh. 3: Sei $\varphi = c_1 \wedge ... \wedge c_t$ eine 3CNF Formel über die Variablen $x_1, ..., x_n$, dann gilt für beliebige $v \in \{0, 1\}^n$

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow \text{die Belegung }v\text{ erfüllt }\varphi$$

Hierbei wird Belegung v mit T = 1 und L = 0 kodiert.

Beh. 3: Sei $\varphi = c_1 \wedge ... \wedge c_t$ eine 3CNF Formel über die Variablen $x_1, ..., x_n$, dann gilt für beliebige $v \in \{0, 1\}^n$

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow \text{die Belegung }v\text{ erfüllt }\varphi$$

Intuition:

• Jeder Vektor \hat{c} hat drei 11- oder 00-Blöcke und n-3 01-Blöcke

Beh. 3: Sei $\varphi = c_1 \wedge ... \wedge c_t$ eine 3CNF Formel über die Variablen $x_1, ..., x_n$, dann gilt für beliebige $v \in \{0, 1\}^n$

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow \text{die Belegung }v\text{ erfüllt }\varphi$$

Intuition:

- Jeder Vektor \hat{c} hat drei 11- oder 00-Blöcke und n-3 01-Blöcke
- Hamming-Distanz von $\Pi(v)$ zu den n-3 01-Blöcken: n-3

$\varphi' = (\neg x)$	$\varphi' = (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee x_4 \vee \neg x_5)$						
φ'	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅		
\hat{c}_0	00	00	11	01	01		
\hat{c}_1	01	11	01	11	00		
$\Pi(v)$	00	11	00	00	11		
$\mathcal{I}(\varphi')$		T	上	工	T		

Beh. 3: Sei $\varphi = c_1 \wedge ... \wedge c_t$ eine 3CNF Formel über die Variablen $x_1, ..., x_n$, dann gilt für beliebige $v \in \{0, 1\}^n$

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow ext{die Belegung }v ext{ erfüllt }arphi$$

Intuition:

- Jeder Vektor \hat{c} hat drei 11- oder 00-Blöcke und n-3 01-Blöcke
- Hamming-Distanz von $\Pi(v)$ zu den n-3 01-Blöcken: n-3
- Ein Block von Π(ν) muss mit mindestens einem der drei 11- oder 00-Blöcke übereinstimmen

$\varphi' = (\neg x)$	$\varphi' = (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_4 \lor \neg x_5)$						
φ'	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5		
\hat{c}_0	00	00	11	01	01		
\hat{c}_1	01	11	01	11	00		
$\Pi(v)$	00	11	00	00	11		
$\mathcal{I}(arphi')$	上	T	1		Τ		

Beh. 3: Sei $\varphi=c_1\wedge...\wedge c_t$ eine 3CNF Formel über die Variablen $x_1,...,x_n$, dann gilt für beliebige $v\in\{0,1\}^n$

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow \text{die Belegung }v \text{ erfüllt }\varphi$$

Intuition:

- Jeder Vektor ĉ hat drei 11- oder 00-Blöcke und n – 3 01-Blöcke
- Hamming-Distanz von $\Pi(v)$ zu den n-3 01-Blöcken: n-3
- Ein Block von Π(ν) muss mit mindestens einem der drei 11- oder 00-Blöcke übereinstimmen
- Hamming-Distanz von Π(v) zu den drei 11- oder 00-Blöcken: höchstens 4

$\varphi' \stackrel{\cdot}{=} (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee x_4 \vee \neg x_5)$						
arphi'	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	
\hat{c}_0	00	00	11	01	01	
\hat{c}_1	01	11	01	11	00	
$\Pi(v)$	00	11	00	00	11	
$\mathcal{I}(arphi')$	上	T	上	上	T	

Von 3CNF zu Code

- 3CNF $\varphi = c_1 \wedge ... \wedge c_t$, Variablen $x_1, ..., x_n$
- Sei unser konstruiertes Y nun aus $\{0,1\}^{2(n+1)}$

Wir definieren Code $C_{\varphi} \subseteq \{0,1\}^{2(n+1)}$ wie folgt: $C_{\varphi} = Y \cup \{\hat{c}_1 00, ..., \hat{c}_t 00\}$

Erinnerung

Beh. 3: $\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)\Leftrightarrow$ die Belegung v erfüllt φ

Lemma 2: v ist ein Doppelvektor $\Leftrightarrow Y \subseteq B_{2n}(v, n)$

 C_{φ} ist offensichtlich berechenbar in **poly**. **Zeit** aus φ .

Von 3CNF zu Code

3SAT
$$\leq$$
 MR: φ ist erfüllbar $\Leftrightarrow R(C_{\varphi}) \leq n+1$

⇒:

Sei φ erfüllbar. Dann existiert eine erfüllende Belegung $v \in \{0,1\}^n$.

• Nach Lemma 2:

$$Y \subseteq B_{2(n+1)}(\Pi(v)00, n+1)$$

• Nach Beh. 3:

$$\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)$$

• also auch $\{\hat{c}_100, ..., \hat{c}_t00\}$ $\subseteq B_{2(n+1)}(\Pi(v)00, n+1)$

Folglich
$$C_{\varphi} = Y \cup \{\hat{c}_100,...,\hat{c}_t00\} \subseteq B_{2(n+1)}(\Pi(v)00,n+1)$$
, also $R(C_{\varphi}) \le n+1$

⇐:

Sei $b \in \{0,1\}^{2(n+1)}$ Zentrum eines Balls mit Radius n+1, in dem C_{ω} enthalten ist.

- $Y \subseteq B_{2(n+1)}(b, n+1)$
- Nach Lemma 2:
 b ist also Doppelvektor
- Sei $b' \in \{0,1\}^{2n}$ wie b ohne den letzten 00/11-Block, dann existiert $v \in \{0,1\}^n$ mit $\Pi(v) = b'$
- $\{\hat{c}_100,...,\hat{c}_t00\}\subseteq B_{2(n+1)}(b,n+1)$
- also auch $\{\hat{c}_1,...,\hat{c}_t\}\subseteq B_{2n}(\Pi(v),n+1)$

Folglich ist v nach Beh. 3 eine erfüllende Belegung und damit φ erfüllbar.

MCR ist NP-Vollständig

Beh.: Das Maximum Covering Radius Problem ist NP-Vollständig

Bew.: folgt sofort aus Äquivalenz von MCR und MR und NP-Vollständigkeit von MR

Ausblick

- Weiteres Anwendungsgebiet:
 Consensussequenz in der Genetik
- Def.: Funktionell wichtige DNA- oder Proteinsequenz, die bei verschiedenen Organismen weitgehend übereinstimmt, aber nicht identisch ist
- Viele "effiziente" Algorithmen sind metaheuristisch

Beispiele für Metaheuristiken

- 1. Bestimme eine Startlösung L
- 2. Definiere eine *Nachbarschaft* von zu L "ähnlichen" Lösungen
- 3. Suche diese Nachbarschaft vollständig ab und bestimme die beste Lösung

Literatur

Festa, P., Pardalos, P.M. Efficient solutions for the far from most string problem. Ann Oper Res 196, 663–682 (2012). https://doi.org/10.1007/s10479-011-1028-7

Hamming-Distanz

- Codes sind nicht nur auf binärem Alphabet beschränkt
- $\Sigma = \{c_1, c_2, ..., c_k\}, u, v \in \Sigma^m$
- $d(u, v) = \sum_{i=1}^{m} \Phi(u_i, v_i)$
- $\Phi: \Sigma \times \Sigma \to \{0,1\}, \Phi(a,b) = \begin{cases} 0 & \text{wenn } a = b, \\ 1 & \text{sonst.} \end{cases}$

Fakten über Hamming-Distanzen

- 1. Seien u_1, u_2 und v_1, v_2 Binärstrings mit $|u_1| = |u_2|$ und $|v_1| = |v_2|$, dann gilt $d(u_1v_1, u_2v_2) = d(u_1, u_2) + d(v_1, v_2)$
- 2. Für beliebige $u, v \in \{0, 1\}^n : d(u, v) + d(u^c, v) = n$

Hamming-Ball Komplement

Beh.: Sei $v \in \{0,1\}^n$, dann ist $B_n(v^c, n-r-1)$ das Komplement von $B_n(v,r)$ in $\{0,1\}^n$ Bew.:

$$v \notin B_n(v,r) \Leftrightarrow d(u,v) > r$$
 (1)

$$\Leftrightarrow d(u^c, v) < n - r \tag{2}$$

$$\Leftrightarrow v \in B_n(u^c, n-r-1) \tag{3}$$

(2) folgt aus
$$d(u, v) + d(u^c, v) = n$$

Zirkuläre Rechtsverschiebung

Sei $S_i: \{0,1\}^{2n} \to \{0,1\}^{2n}$ die zirkuläre Rechtsverschiebung eines Vektors um 2i-2 Bits. Für i=1,...,n definieren wir $Y^i=S_i(Y^1)$.

Beh. 2: Wenn $Y^i \subseteq B_{2n}(v,n)$ für $v \in \{0,1\}^{2n}$, dann ist $v_{2i} = v_{2i-1}$ Bew.:

- S_i ist ein Isomorphismus, also auch eine bijektive (distanzen-erhaltende) Abbildung
- Folglich gilt für alle i: $Y^i \subseteq B_{2n}(v, n) \Leftrightarrow Y^1 \subseteq B_{2n}(S_i^{-1}(v), n)$
- Es gilt also auch für beliebige $v \in \{0,1\}^{2n} : v_{2i-1} = v_{2i} \Leftrightarrow (S_i^{-1}(v))_1 = (S_i^{-1}(v))_2$. (nach Beh. 1)

Beispiel: 2-Bit-Verschiebung

	-		1	U
0	1	0	1	1
1	0	1	0	1

Erinnerung

$$Y^{i} = \{(01)^{n}, (10)^{n}, (01)^{i-1}10(01)^{n-i}, (10)^{i-1}01(10)^{n-i}\}$$