TRIE

0_____

Kahoot

Discuții Examen

- Ca de obicei, mă găsiți online, unde răspund la întrebări
- Poate facem un Q&A? Cam cand ati vrea? Nu promit nimic inca... Incercam pe 8
- Puteți pune întrebări <u>aici</u> și eventual eu voi răspunde la ele

- Aveți voie cu materiale scrise (imi pare rau pt natura)! Mobilele pe catedra! Daca aveti mobil la voi dupa ce incepe examenul -> frauda -> restanta & posibila exmatriculare!
- Doua parti:
 - Exemplificare cum funcționează structuri de date/algoritmi
 - Probleme ca la seminar
 - Pauza 15 minute între ele

- Exemplificare cum funcționează structuri de date/algoritmi & Complexitati
 - □ Count Sort, radix sort, quick sort, merge sort
 - □ Cozi, Stive, Deque
 - Hashuri
 - Inserare/Cautare/Stergere
 - Tratarea coliziunilor: Inlantuire/Adresare Directa
 - Functii de dispersie: metoda diviziunii/metoda multiplicarii
 - Rabin Karp
 - Heapuri, Heapuri Binomiale, Heapuri Fibonacci

- Exemplificare cum funcționează structuri de date/algoritmi & Complexitati
 - Arbori binari de cautare
 - Inserare, Stergere, Cautare, Succesor, Predesor, k-th element
 - Parcugeri Preordine, Inordine, Postordine
 - Arbori binari de cautare echilibrati:
 - o inserare, stergere, cautare, succesor, k-lea cel mai mare...
 - La alegere din
 - □ AVL/Red Black/Skip lists/B-arbori/Treaps
 - Arbori de Intervale/ Batog
 - Inserare/Cautare min/Stegere/Sortare/ Calcularea suma pe interval/Update pe interval
 - RMQ&LCA&LA
 - ce rezolva, cum functioneaza pe un exemplu, complexitate...
 - Trie

- Desenati un arbore binar complet de inaltime 2
- Desenati un heap cu 5 noduri
- Desenati un arbore binar de cautare cu 6 noduri. Ce inaltimi poate sa aiba?
- Inserati pe rand intr-un heap fibonacii de minim valorile 1, 2, 9, 5, 7, 3
- Cum folosim un arbore de intervale sa sortam un vector?
- Se da un arbore, care este LA intre 3 si 9, dar 2 si 8, cum se calculeaza ? Ce complexitate are ?
- Cum gasim succesorul intr-un arbore binar de cautare
- Construiti un TRIE cu cuvintele : ala, bala, portocala
- Bonus:
 - Demonstrati ca orice algoritm care construieste un arbore binar de cautare cu n numere ruleaza in timp $\Omega(n \log n)$.

- Probleme ca la seminar
 - □ 3-4 probleme in o ora (o sa fac un mic test la ultimul seminar)
 - O sa va dau la fiecare grupa o problema in 15-20 minute la seminarul 7 si o sa incerc sa va dau feedback ulterior... Daca o rezolvati bine -> puncte activitate...
 - □ Va trebui sa scrieti cum o rezolvati si ce complexitate are solutia voastra:
 - Gen: Se dau n numere, cate perechi de numere au suma un patrat perfect

- Gen: Se dau n numere, cate perechi de numere au suma un patrat perfect
 - Iau toate numerele de la 1 la max le calculez patratul, apoi iau toate perechile de la
 1 la n si le fac suma si vad daca da fix patratul la care sunt
 - Nota 2,
 - Daca adaug si complexitate corect ??
 - \Box O(n²*max) -> nota 3
 - □ Iau toate numere de la 1 la sqrt max * 2 si la fel -> nota 3, respectiv 4
 - \Box O(n^2* sqrt(max)
 - Iau toate perechile de numere le fac suma si vad daca rezultatul e un patrat perfect in O(1) (gen sqrt(x) * sqrt(x) == x)... ->5 cu complexitate $O(n^2)$ 7
 - Iau toate numerele si toate patratele <= max1 + max2 si vad daca Patrat-nr exista intre numerele mele cu hashuri O(n*sqrt(x)) ->5 cu complexitate O(n*sqrt(max)) 7
 - □ Impreuna 10...

- Am mai multe cuvinte pe care le tin minte şi apoi am întrebări de genul:
 - este cuvântul dat in aceea lista sau nu?
- Cum putem rezolva?
 - Hash-uri!
 - Cât mă costă un query?
 - O(l), unde l e lungimea cuvântului
 - Câtă memorie mă costă să rețin hash-ul?
 - O(n*l)
 - Ce credeți că am putea optimiza?
 - Memoria (poate)
 - Timpul pentru query-uri nereușite ... oarecum

- Am mai multe cuvinte şi apoi am întrebări de genul:
 - este cuvântul în dicționar sau nu?
 - care este cel mai lung prefix al cuvântului în dicționar?
- Mai merge cu hash-uri?
 - □ Nu prea ...
- Alte soluții?
 - Sortăm toate cuvintele lexicografic și apoi căutăm binar
 - Tinem toate cuvintele într-un arbore binar de căutare echilibrat
- Ambele soluții au O(n*l) memorie și O(logn *l) complexitate pe search
- Arborele binar permite, totuși, și inserări și ștergeri!!

- Dacă avem cuvintele **anima, animal, animație, animator, animare,** reținem, pentru fiecare, prefixul **anim** comun
- Cum credeți că putem îmbunătăți memoria folosită?
 - Am putea, când le ținem sortate, să le ținem ceva de genul
 - o anima
 - o 51
 - o 5tie
 - Adică, să ținem lungimea prefixului față de elementul anterior
 - Putem duce o idee similară şi spre arbori binari de căutare, dar să nu ne mai complicăm :)

Trie cu cuvintele ana, animator, animație, animal

Trie cu cuvintele ana, animator, animație, animal, anima

vizualizare trie

Trie - Memorare

- Cum îl reținem?
 - Fiecare nod are un vector cu 26 de vecini, una pentru fiecare literă (sau mărimea alfabetului)
 - Ce facem dacă alfabetul e mare?
 - Fiecare nod ține un hash_map care pentru fiecare literă tine pointerul catre nodul cu acea litera

Trie - Inserare

Pornim din rădăcină și, la fiecare literă, mergem în nodul corespunzător literei, eventual creăm acel nod

https://www.cs.usfca.edu/~galles/visualization/Trie.html

Trie - Inserare

Inserăm anestezie

Trie - Inserare

Complexitate: O(l)

Trie - Căutare

Pornim din rădăcină și mergem, la fiecare pas, pe litera corespunzătoare

Complexitate O(l) pentru căutare reușită În practică, mai rapid pentru căutare nereușită

Căutare prefix maxim:

Căutăm elementul până nu găsim nod corespunzător acelei litere

Succes în sesiune :)