

HACETTEPE UNIVERSITY DEPARTMENT OF GEOMATICS ENGINEERING

ADJUSTMENT COMPUTATION & PARAMETER ESTIMATION 2021-2022 SPRING TERM ASSIGNMENT 6

ABDULSAMET TOPTAŞ - 21905024

Adjust the mesh whose direction and side dimensions are given below, using the indirect measures method. For the directions, take the antecedent mean-square error as $so=\pm 10^{cc}$.

NN	X Cm)	yc~>
E	xact coordina	ites
102	7869,474	164,526
103	7931,373	608,285
APP	oximate Coord	dinates .
107	7969,948	719,676
108	8404, 160	342,243

ÞΝ	BN	Side (m)	Ms (mm)
102	103	459,192	±3
103	107	263,297	±5
67	108	575,324	± 4

DN	BN	Direction	mg ("c)
102	108	0,00000	+10
	107	66,65613	±10
	103	96,81793	+10

Number of measures => n=6 (3 directions and 3 side measures) Number of unknowns \Rightarrow u=5 (Two coordinate pairs and one footing unknown) Degrees of Freedom \Rightarrow $f=n-u=6-5=1>0 <math>\Rightarrow$ so, There is adjustment $u_1 k_1 o_0 w_1 s=d_{102}$, d_{104} , d_{104} , d_{108} , d_{108}

$$t_{12}^{\circ} = \arctan\left(\frac{y_{2}^{\circ} - y_{1}^{\circ}}{x_{2}^{\circ} - x_{1}^{\circ}}\right)$$
 $S_{12}^{\circ} = \int (y_{2}^{\circ} - y_{1}^{\circ})^{2} + (x_{2}^{\circ} - x_{1}^{\circ})^{2}$

$$a_{12} = \frac{\sin(t_{12}^0)}{\sin(t_{12}^0)} \times \frac{200}{\pi} \cdot 10000$$

$$b_{12} = \frac{\cos(t_{12}^0)}{\sin(t_{12}^0)} \times \frac{200}{\pi} \cdot 10000$$

$$b_{12} = \frac{\cos(t_{12}^0)}{\sin(t_{12}^0)} \times \frac{200}{\pi} \cdot 10000$$

$$c_{12} = \frac{c_{12} - c_{12}}{\sin(t_{12}^0)} \times \frac{200}{\pi} \cdot 10000$$

DN	ري دي	Direction (1 (9)	tik (9)	51/2 (m)	111-1-	- (1/2 (CC)	all cc/mm	c/mm
		N	19,73894	582,460	19,73894		0,3335	-1,0409
102		_,==	86,39556	568,072	19,73943	-3,9	1,0952	-0,2377
	107	66,65613		-	19,74109	12.7	1,3397	0,3565
	103	96,81793	116, 33902	P 102	19,73982		6 - 5 - 10 - 4	1 TOOTAS

Abdolfonet TOPTAS 21905024

```
I will write the Correction equations in the following format. 3
   Vik = -dz, + aiz - dx, + biz . dy, - aik -dxe - bik . dye - fix
  Vioz-108 = -dz, 102 +0,3335.dx102 - 1,0409.dy102 -0,3335.dx68+1,0409.dy108 - 8,8
  402-107 = -d2102 +1,0952-dx102-0,2377.dy102-1,0952.dx107+0,2377.dy107-3,9
  Vioz-103 = -d2102 +1,7397. dx102 +0,3565.dy102 -1,3397.dx103 -0,3565.dy103 +12,7
- Points 102 and 103 are the reference points, I will subtract the coefficients
for these points from the correction equations and rewrite the equations?
 V102-108 = -d2102 - 0,3335. dx108 + 1,0409. dy 108 -8,8
 VIOZ-107 = -d2102 -1,0952 .dx107 + 0,2377 - dy107 -3,9
 V102-103 = -02102
- let's rearrange these equations for the unknown and eliminate the
  deior routing unknown,
 VIOZ-108 = - dzloz + O . dxloz + O. dyloz - 0,3377. dxlog + 1,0409 - dylog -8,8
 V102-107 = - d2102 - 1,0952-dx107 + 0,2377.dy107 + 0.dx08 + 0.dy108 - 3,9
 Vioz-103 = -d2102 + 0. dx107 + 0. dy107 +0. dx108 +0. dy108 +12,7
            dzioz dxioz dylot
                            9×108
                           -0,3335
  VIOR-108 = -1
                                    1,0409
                  0
                       0
                                            -3,9
  V102-107 = -1 -1,0952 92377
                                            12,7
  V102-103 = -1
                                                    (divide n=3
           -3 -1,0952 91377 -0,3735 1,0405
                                            0,00
                0,3651 -0,0792 0,1112 -0,3470 0,00
 - Orientation unknown equation ;
  1. dzioz + 0,3651-dxioz -0,0792-dxioz +0,1112-dxioz -0,3470.dyioz =0
- delor routing unknown correction equations =
```

07:02 -108 = 0,3651 -0,0752 -0,2223 0,6939 -8,8 VIOZ-107 = -0,7301 0,1584 0,1112 -0,3490 -3,9 VIOZ-103 = 0,3651 -0,0792 0,1112 -0,7490 12,2

Abdulsamet TOPTAS
21905024

- currection equations for directions in the format
$$y = A \cdot x = \frac{1}{2}$$

Violing | Co, 3651 -0,792 -0,7173 -0,69357 | Cd viot | Cd vio

Functional Model

- 1 will combine the Y=A.X-1 matrices I wroke for directors and sides.

Stochastic model & Using the definition of weight
$$P = \frac{5^2}{m_i^2} = \frac{10^2}{m_i^2}$$

$$P_{d_1} = \frac{50^2}{m_{d_1}^2} = \frac{10^2}{40^2} = 1$$

$$P_{s_1} = \frac{5^2}{m_{s_1}^2} = \frac{10^2}{m_{s_1}^2} = \frac{10^2}{m_{s_2}^2} = \frac{10^2}{m_{s_1}^2} = \frac{10^2}{m_{s_2}^2} = \frac{10^2}{m_{s_1}^2} = \frac{10^2}{m_{s_2}^2} = \frac{10^2}{m_{s_1}^2} = \frac{10^2}{m_{s_2}^2} = \frac{10^$$

$$r_{d1} = \frac{s_0^2}{m_{d1}^2} = \frac{10^2}{40^2} = 1$$

$$r_{d2} = \frac{s_0^2}{m_{d1}^2} = \frac{10^2}{10^2} = 1$$

$$r_{d3} = \frac{s_0^2}{m_{d2}^2} = \frac{10^2}{10^2} = 1$$

$$r_{d3} = \frac{s_0^2}{m_{d2}^2} = \frac{10^2}{10^2} = 1$$

$$m_{1}^{2} = \frac{40^{2}}{m_{1}^{2}} = \frac{10^{2}}{10^{2}} = 1$$

$$= \frac{50^{2}}{m_{1}^{2}} = \frac{10^{2}}{10^{2}} =$$

$$\underline{n} = \underline{A}^{T} \underline{P} \underline{l} = \begin{bmatrix}
-127013 \\
574925 \\
574593 \\
2,1235
\end{bmatrix}$$

Gract value of the unknown

* Colculated by matheb

Abdulsmet TOPTAS 21905024

ADSUSTMENT
$$Y = K \cdot X = 1$$

$$\begin{bmatrix}
V_{102-108} \\
V_{101-107}
\\
V_{102-103}
\end{bmatrix} = \begin{bmatrix}
0,3651 & -0,0792 & -0,223 & 0,6939 \\
-0,4361 & 0,4182 & 0,4112 & -0,3470 \\
0,3651 & -0,0792 & 0,4112 & -0,3470 \\
0,3651 & -0,0792 & 0,4112 & -0,3470 \\
V_{5102-103}
\end{bmatrix} = \begin{bmatrix}
0,300 \\
-124 \\
-137 \\
-1,3 \\
1,71
\end{bmatrix} = \begin{bmatrix}
0,000 \\
0,000 \\
12,77 \\
-1,3 \\
1,71
\end{bmatrix}$$

$$V_{5102-108}$$

$$\begin{bmatrix}
\hat{c}_{1} \\
\hat{c}_{2} \\
\hat{c}_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{1} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{1} \\
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{5}
\end{bmatrix} + \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{5}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{5}
\end{bmatrix} + \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{2}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{3} \\
c_{4}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{3}
\end{bmatrix} + \begin{bmatrix}
c_{2} \\
c_{4}
\end{bmatrix} = \begin{bmatrix}
c_{1} \\
c_{4}
\end{bmatrix} + \begin{bmatrix}
c_{1$$

Control of Adjusted Direction Measures

- orientation unknown equation

-with Motrix Notation
$$dz_{102} = -\left[0.3651 - 0.0792 \quad 0.1412 - 0.5470\right] \cdot \begin{bmatrix} dx_0 + dy_1 - 0.0792 \\ dy_1 - 0.0792 \\ dy_1 - 0.0792 \end{bmatrix} \cdot \begin{bmatrix} dx_0 + dy_1 - 0.0792 \\ dy_1 - 0.0792 \\ dy_1 - 0.0792 \end{bmatrix} \cdot \begin{bmatrix} -10.8 \\ 20.1 \\ -11.1 \\ 17.1 \end{bmatrix} = 12.70^{\circ\circ}$$

DN 6	Bu	1	District from adjusted directions				from Adjusted	100 00
		(3)	V; (cc)	f; =01+Y1	262	tiz=?; + 2102		D'Herace
102	108	0,00000	0,00	0,2000	19,7409	15,74109	19,74109	0,00
102	107	66,65613	0,00	66,65613	19,74109	86,39722	86,39722	0,00
te le	103	36,81793	0,00	96,81797	19,7469	116,55902	116,55902	0,00

Acalaubted by Motlab

Abdulsamet TOPTAS

Adjusted Side Dimensions

$$\hat{S}_1 = S_1 + Y_{S_1}$$

$$\begin{bmatrix} \hat{S}_1 \\ \hat{S}_2 \\ \hat{S}_3 \end{bmatrix} = \begin{bmatrix} \hat{S}_1 \\ \hat{S}_2 \\ \hat{S}_3 \end{bmatrix} + \begin{bmatrix} Y_{S_1 \times \cdots \times S_n} \\ Y_{S_1 \times \cdots \times S_n} \\ Y_{S_1 \times \cdots \times S_n} \end{bmatrix}$$

$$\begin{bmatrix} \hat{s}_{1} \\ \hat{s}_{2} \\ \hat{s}_{3} \end{bmatrix} = \begin{bmatrix} 459, 192 \\ 263, 297 \\ 575, 324 \end{bmatrix} + \begin{bmatrix} 13,72 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 459, 206 \\ 263, 297 \\ 575, 324 \end{bmatrix}$$

checking the Adjusted side Dimensions

00	BN	(w) \D×	(W)	From Adjusted Coordinates	From Adjusted side	72: am)	71 m
(02	103	-118, 101	443, 759	459,206	455, 206	13,72	459,192
103	107	238, 564	111, 411	263, 257	263, 297		173,172
107	108	434,212	-377, 436			0100	263,297
		1724,212	217, 436	575,324	575,324	0100	575,324

Square Mean Error

$$m_0 = \pm \sqrt{\frac{y^7 Py}{n-v}} = \pm \sqrt{\frac{2092,53}{6-y}} \neq \pm 45.7 \text{ mm}$$

Mean Error of Unknown

$$Q \times X = N^{-1} = \begin{bmatrix} 0.8048 & -1.5232 & 2.2332 & 0.4166 \\ -1.5232 & 4.2160 & -5.6451 & -0.5260 \\ 2.2332 & -5.6451 & 10.2535 & 3.1338 \\ 0.1166 & -0.5260 & 3.1338 & 2.8016 \end{bmatrix}$$

mx107 = +mo. Jaxx107 = +45,7. J0,8078 = +41,1 mm Mylot = tmo. Jamos = + 45,7, J4,2160 = + 93,9 mm mx10g = ± mo Jax10g = ± 45,7, J10,2535 = ± 146,5 mm mylos = + mo Jayrog = + 45,7. J2,8016 = +76,6 mm

Mean Groot of measures

$$\int_{0}^{1} = \begin{cases}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 11.11 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.15
\end{cases}$$

$$M_{i} = \frac{1}{M_{0}} M_{0}$$

$$M_{i} = \frac{1}{M_{0}} M_{0}$$

$$M_{i} = \frac{1}{M_{0}} M_{0}$$

$$m_i = \pm \frac{m_0}{\sqrt{P_i}} m_i$$

Abdulsomet ToptAs 21505024

$$m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 45.7^{cc}$$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 13.7^{cc}$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 45.7^{cc}$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 45.7^{cc}$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 45.7^{cc}$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 18.7^{cc}$
 $m_{13} = \pm \frac{45.7}{\sqrt{11}} = \pm 18.7^{cc}$

Avarage Error of Adjusted Measures

m; =tmo. Jeir Avarage error of adjusted measures

$$m_{\tilde{r}_1} = \pm 45, 7$$
, $J_{0,6667} = \pm 37, 4$ ce $m_{\tilde{s}_1} = \pm 45, 7$, $J_{0,00} = \pm 0,0$ cm $m_{\tilde{s}_2} = \pm 45, 7$, $J_{0,6667} = \pm 37, 4$ ce $m_{\tilde{s}_1} = \pm 45, 7$, $J_{0,75} = \pm 22,9$ cm $m_{\tilde{s}_2} = \pm 45, 7$, $J_{0,6667} = \pm 37, 4$ ce $m_{\tilde{s}_1} = \pm 45, 7$, $J_{0,16} = \pm 18,3$ cm

Average Error of Corrections

$$Q_{N} = Q_{N} - Q_{N}^{2}$$
 Covariance matrix of corrections

A Calculated by Motlab

Abollamet Toptas 21905024

 $m_{V1} = \pm m_0 \cdot \sqrt{Q_{VV}}$. Average errors of corrections $m_{V1} = \pm 45.7 \times \sqrt{0.3373} = \pm 26.4 \text{ mm}$ $m_{V2} = \pm 45.7 \times \sqrt{0.3373} = \pm 26.4 \text{ mm}$ $m_{V3} = \pm 45.7 \times \sqrt{0.3373} = \pm 26.4 \text{ mm}$ $m_{V4} = \pm 45.7 \times \sqrt{0.3973} = \pm 26.4 \text{ mm}$ $m_{V4} = \pm 45.7 \times \sqrt{0.0000} = \pm 13.7 \text{ mm}$ $m_{V5} = \pm 45.7 \times \sqrt{0.0000} = \pm 0.0$ $m_{V6} = \pm 45.7 \times \sqrt{0.0000} = \pm 0.0$

Abdulsamet TOPTAS
21905024