Exam - Computer Architecture Unit I [18/01/2023] (B) - Solution

Esercizio 1 (8 punti) Design a sequential circuit with an input x and two outputs z1 and z0. The output z1 must be equal to 1 if the last three bits on input are all equal to 0, whereas z0 must be equal to 1 if the last three bits contain at least two 1s. Do not consider overlaps. Draw the sequential circuit (use a ROM for the combinational part).

Example x 000001011100 z1 001000000000 z0 00000010010

States encoding:

R	000
SOX	001
S1X	010
S00	011
S01	100
S10	101
S11	110

Outputs and next state table:

CS	S ₂	S ₁	S ₀	х	NS	S ₂ '	S ₁ '	S ₀ '	z1	z0
R	0	0	0	0	SOX	0	0	1	0	0
R	0	0	0	1	S1X	0	1	0	0	0
SOX	0	0	1	0	S00	0	1	1	0	0
SOX	0	0	1	1	S01	1	0	0	0	0
S1X	0	1	0	0	S10	1	0	1	0	0
S1X	0	1	0	1	S11	1	1	0	0	0
S00	0	1	1	0	R	0	0	0	1	0
S00	0	1	1	1	S01	1	0	0	0	0
S01	1	0	0	0	S10	1	0	1	0	0
S01	1	0	0	1	R	0	0	0	0	1
S10	1	0	1	0	S00	0	1	1	0	0
S10	1	0	1	1	R	0	0	0	0	1
S11	1	1	0	0	R	0	0	0	0	1
S11	1	1	0	1	R	0	0	0	0	1

Circuit:

Same as track A, but with different dots on the ROM.

Exercise 2 (1+2+1+2 points) Consider the PLA shown below.

- Write the boolean expressions for functions g ed h
- Transform the boolean expression $f=g\oplus h$, using boolean algebra's axiom, rules, and theorems, in canonical SOP form
- Write down the truth table for *f*
- Write down the minimal SOP and POS expressions for *f*

$$h = \bar{a}\bar{c}$$

 $g = \bar{a}b + \bar{c}d$
Canonical SOP form

$$f = \bar{a}\bar{c} \oplus (\bar{a}b + \bar{c}d) = \overline{(\bar{a}\bar{c})}(\bar{a}b + \bar{c}d) + (\bar{a}\bar{c})\overline{(\bar{a}b + \bar{c}d)}$$

$$= (a+c)(\bar{a}b + \bar{c}d) + (\bar{a}\bar{c})(\overline{(\bar{a}b)} \cdot \overline{(\bar{c}d)}) = \bar{a}bc + a\bar{c}d + (\bar{a}\bar{c})\left((a+\bar{b})(c+\bar{d})\right)$$

$$= \bar{a}bc + a\bar{c}d + (\bar{a}\bar{c})(ac + \bar{b}c + a\bar{d} + \bar{b}\bar{d}) = a\bar{c}d + \bar{a}bc + \bar{a}\bar{b}\bar{c}\bar{d}$$

$$= ab\bar{c}d + a\bar{b}\bar{c}d + \bar{a}bcd + \bar{a}bc\bar{d} + \bar{a}\bar{b}\bar{c}\bar{d}$$

Truth table for f:

а	b	С	d	f
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Minimal SOP:

∖a b						
D /	00	01	11	10		
00	1	0	0	0		
01	0	0	1	1		
11	0	1	0	0		
10	0	1	0	0		
$f = \overline{a}\overline{b}\overline{c}\overline{d} + a\overline{c}d + \overline{a}bc$						

Minimal POS:

$$f = (\bar{a}+d)(b+\bar{c})(\bar{a}+\bar{c})\big(a+\bar{b}+c\big)\big(a+c+\bar{d}\big)$$

Exercise 3 (4 points) Describe the following circuit using SystemVerilog:

Exercise 4 (3 points)

A circuit receives the boolean inputs a, b, c, d and produces an output y such that:

y=1 if
$$a \cdot \bar{b} = 1$$
 or $b + \bar{d} = 0$ or $\bar{a}b\bar{d} = 1$

- Write down the truth table
- Implement y with a 4-to-1 MUX using inputs a e b as control variables
- Draw the circuit corresponding to the NAND-NAND equation for the given circuit

а	b	С	d	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

NAND-NAND

Minimal POS: B'D + A'BD' + AB'

NAND-NAND: ((B'D)'(A'BD')'(AB')')'

Exercise 5 (1+2+1 points)

Represent A= 3.75 using the IEEE half-precision floating point standard. Sum A and B (using the algorithm for summing IEEE floating point numbers), with B = 1100_0110_1100_0000 and represent the result as a IEEE half-precision floating point number. Last, represent the 16-bits of the result in hexadecimal format.

A =
$$3.75 \rightarrow 11.11_2 = 1*2^{1*}1.111_2$$

Sign = 0 (positive)
Exponent = 1
Exponent+bias = $1+15 = 16 = 10000_2$
Mantissa = 1110000000
A = $0100_0011_1000_0000$
B:
Sign = 1 (negative)
Exponent+bias = $10001_2 = 17$
Exponent = $17-15 = 2$
Mantissa = 10110000000_2

$$B = -1*2^2*1.1011_2 = 110.11_2 \rightarrow -6.75$$

A+B - Shift and sum mantissas

$$00.1111 + (x 2^{2})$$

$$10.0101 = (x 2^{2})$$

$$11.0100 (x 2^{2})$$

=
$$-00.11_2 \times 2^2 = -11.0_2 = -3_{10} = -1.100_2 \times 2^1$$

Sign = 1 (negative)
Exponent = 1
Exponent+bias=1+15=16=10000₂
Mantissa=1000000000

IEEE representation = 1100 0010 0000 0000 = 0xC200

Exercise 6 (5 points) Given the function

$$f = \bar{b}c \oplus (\bar{a}b + ad)$$

Represent it in POS form using Boolean algebra axiom, rules, and theorems.

$$f = (\bar{b}c) \oplus (\bar{a}b + ad) =$$

$$\bar{b}c(\bar{a}b + ad) + \bar{b}c(\bar{a}b + ad) = \bar{b}c \cdot (\bar{a}\bar{b}) \cdot (\bar{a}\bar{d}) + (b + \bar{c})(\bar{a}b + ad) =$$

$$c \cdot \bar{b} \cdot (a + \bar{b}) \cdot (\bar{a} + \bar{d}) + (b + \bar{c})(\bar{a}b + ad) =$$

$$c \cdot \bar{b} \cdot (\bar{a} + \bar{d}) + (b + \bar{c})(\bar{a} + d)(a + b)(b + d) =$$

$$= (\bar{a} + c + d)(a + b + c)(b + c + d)(\bar{a} + \bar{b} + d)(\bar{a} + b + \bar{c} + \bar{d})$$