

CKMR: models and designs for fisheries and bycatch

Mark Bravington, CSIRO: June 2021

O&A www.csiro.a

CKMR is...

Biopsies from juves & adults (dead OK) over a few years Some idea about age/sizes

You have 1 mother

Chance it's this φ

1/N_o

This formula is *too simple* for realistic situations...

$$\hat{N}_{ad} = \frac{2 \times \#comps}{\#POPs}$$

Parent-Offspring Pair

Also: Half-Sibling Pair, HSP

(MOP or FOP)

CKMR is...

Biopsies from juves & adults (dead is OK) over a few years Some idea about age/sizes

You have 1 mother Chance it's this 9 = 1/2

Check genetics...

... repeat for all pairs in sample

... estimate adult ♀ abundance!

... ditto for ♂ adults

This formula is too simple for realistic situations, but can be adjusted eg time, age, size, mortality

CKMR models/designs: fisheries 2021

- 1. Intro
- ideas / projects / history
- kinship probs and mind-check
- putting them together--- "The Framework"
- sample size & scope
- 2. Realistic POP examples--- mammal
 - can we break it?
 - different sampling issues
- 3. Super-simple POPs
- 4. HSP examples--- mammalesque sharks
 - genetics in a nutshell
- 5. Fish time! POPs + HSPs
 - what does CKMR really tell us?
- 6. Spatial stuff
- 7. Design

By the end, you should...

CKMR is a 4-letter word...

MAGICAL RESULTS ...

come from
CAREFUL
ENGINEERING!

CKMR is...

cross-cohort half-sibs

Parents are "marked" by their sampled offspring Direct recapture (POPs) and Indirect (XHSPs)

HSPs: abundance* and mortality* info

Pr[Lucy's mum is also Zelda's mum]

CKMR is...

cross-cohort half-sibs

Parents are "marked" by their sampled offspring

Direct recapture (POPs) and Indirect (XHSPs)

- Lots of comparisons
- Different prob formulae
- More parameters than just "N"

Don't *have* to use *all* possible types of comparison

Fitting a CKMR model

Chassis: a standard-ish Age- and Sex- structured Pop Dyn model

PARAMETERS: "populate" the Pop Dyn Model

$$N_{a+1,t+1,s} = N_{ats}e^{-z} \; ; \; a \geqslant 8, \; t \geqslant 2002$$

$$\log N_{8t} \sim N(\mu, \sigma^2)$$

$$\log N_{2002,a} \sim N(\mu e^{-z'(a-8)}, \sigma^2)$$

COVARIATES: for each pair of samples (eg "Mary" and "Simon"),

use ERRO to work out POP and HSP probabilities, e.g.

Pr[Mary is Simon's mother | Mary's covariates, and Simon's]

RESPONSE DATA: the kinship of each pair: POP, HSP, UP (unrelated) inferred from their genotypes

LOG-LIKELIHOOD: *lots* of Bernoulli (yes-no) comparisons

Can put in other data too

CKMR is...

Biopsies from juves & adults (dead is OK) over a few years Some idea about age/sizes

Two assumptions:

- 1. At birth, everything had 1 living mother and 1 living father
- 2. Reliably find Parent-Offspring-Pairs and Half-Sibling-Pairs with genetics

The rest is just planning; logistics; maths; and a lot of FOR-loops

Absolute abundance --- and almost entire stock assessment for adults --- just from biopsying a few % of catch

- no \$urvey\$, no CPUE, no live-relea\$e, no dodgy assumptions...

CLOSE-KIN TREE OF LIFE

simplified version!

adults grow a lot

adult fecundity does not change

more options for sampling

demanding! only one good way to sample

breed-and-die

CLOSE-KIN TREE OF LIFE

simplified version!

adults grow a lot

adult fecundity does not change

more options for sampling

demanding!
only one good
way to sample

breed-and-die

ETC ETC

"CKMR needs validation"

"CKMR needs validation"

That is NONSENSE! The basic assumptions are:

- everything had 1 mother and 1 father at birth;
- genetics lets you find POPs and HSPs

The rest follows by ironclad laws of mathematics...

That said:

of course people could completely stuff up any particular CKMR study

So: check each study carefully! can't "validate" directly-- against what???

But that has nothing to do with "validating CKMR" in general

CKMR needs validation

"It's got to be done exactly like SBT c. 2014"

CKMR needs validation

"It's got to be done exactly like SBT c. 2014"

- No it doesn't! CKMR is fairly flexible.
- EG ideally you don't want to sample spawning grounds...
- you don't absolutely need adults-and-juves well-mixed tho' it is best
- you do need POPs and HSPs for fish but not necessarily sharks
 - we had to use a special trick in SBT mk I POPs-only...
 - ... which won't work in other species...
 - ... and turned out not to be fully valid ...
 - ... when we did mk II POPs+HSPs. But it's all good now!

CKMR needs validation

It's got to be done exactly like SBT c. 2014

"I've seen the cartoon. That 2/N formula will be biased if..."

CKMR needs validation

It's got to be done exactly like SBT c. 2014

"I've seen the cartoon. That 2/N formula will be biased if..."

Of course it won't work! You're not meant to use 2/N for real...

CKMR theory tells you how to adapt the idea for real situations. Need a qualitative understanding of the biology and sampling, plus (a bit of) maths.

So, do that instead !!! And then you will avoid bias.

CKMR needs validation

It's got to be done exactly like SBT c. 2014

I've seen the cartoon. That 2/N formula will be biased if...

"It's expensive..."

CKMR needs validation

It's got to be done exactly like SBT c. 2014

I've seen the cartoon. That 2/N formula will be biased if...

"It's expensive..."

It is NOT^* ! You sample a *tiny fraction* of the catch that happens anyway; each one is cheap to genotype (<\$ \blacksquare).

Much cheaper than dedicated surveys or normal MR if those even apply Sure--- CPUE is free. Super! You totally get what you pay for there. Plus, co\$t of mi\$management due to mi\$leading conventional data.

May be uneconomic for small pop'ns of low-unit-value short-lived spp.

CKMR needs validation

It's got to be done exactly like SBT c. 2014

I've seen the cartoon. That 2/N formula will be biased if...

It's expensive...

"It needs really careful attention-to-detail and a lot of know-how"

CKMR needs validation

It's got to be done exactly like SBT c. 2014

I've seen the cartoon. That 2/N formula will be biased if...

It's expensive...

"It needs really careful attention-to-detail and a lot of know-how"

This one is **not** a myth! If you blunder into CKMR without a clear plan and without the right team, things will end badly. So: don't do that!

"DNAge" (methylation-based epigenetic ageing)

To date, worst problems are from lousy age and/or length data

- DNAge devel ongoing at CSIRO and elsewhere
 - prelim results 4 spp: from decent to amazing!
 - relative errors, ie better for younger
- Cheap! Under \$ per sample and low setup cost
- A(nother) game-changer and useful beyond CKMR
- Needs calibration per species, then
- All you'll need: a quick jab and a length measurement

(some) CKMR projects c. 2020

Species		Source	Geno	Motive	POP	HSP	Model	"Stocks"?	$N_{ m adult}$	#Samples
SBTuna	1	Dead	usat	\$	√	_	Full pop-dyn	-	■ ,000,000	15,000
	2	D	Cap		√	√				20,000
School Shark		D	Cap	\$ (choke)	(-)	✓	"	_	00,000	3,000
White Sh.	Е	Live+D	Seq	!	_	✓	N, z, ρ	_	■00	200
	W	L+D	Seq		(-)	√		_	■000	200
Grey Nurse Sh.		L+D	Seq	!	\checkmark	√	Stable-age	_	■000	400
Speartooth Sh.		L	Cap	!?	_	√	N, z, ρ	(√)	■000	300
Different speartooth Sh.		L	Seq	!?	-	√	N, z, ρ	(✓)	■000	300

A long and winding road...

A(nother) bit of history

1990s: Norway establishes DNA register of commercial minke whale catch

Schweder: Aha-- CK for abundance!

2001: Skaug publishes one method on Norway minkes

- right idea, wrong example, too early!
- genotypes inadequate, model not general enough
- and Nilssen notes in passing (but needs triads)

2005: CSIRO starts SBT CKMR

Rawding et al 2014: "Transgenerational MR" (semelparous)

2011-13: ... starts other T (hreatened) EPS projects

2013: General demography framework (MVB & HJSkaug)

2017-18: framework for design

Other work to date: some stock structure

Individual MR (gene-tagging) now fairly common

What you can get from CKMR ...

Biopsies from juves and adults eg from landings plus some size/age info:

absolute abundance of adults

relative **fecundity-at-size** \Rightarrow and \Rightarrow

And if you also know catch-at-age, and have growth curve

natural mortality averaged across adults

And

connectivity on management timescale (1 generation)

Provided that...

you do everything properly:)

Thus endeth the kinspiel...

... time to buckle up!

ERRO: the key to it all

Expected **R**elative **R**eproductive **O**utput

P [Amy is Julian's mum|stuff about A & J]

$$= \mathbb{E}\left[\frac{\text{\#A's J-like offspring @ }b_J}{\text{Total \# J-like offs @ }b_J}|\text{stuff about A}\right]$$

LEXIGRAM GOES HERE...

b: birth-year

y: when yanked from the sea

a: **a**ge (usually at y)

t: time in general

Factors to always consider for ERRO

TIME

SEX of "adult"

AGE of "juve"

AGE and maybe SIZE of "adult"

PLACE

QUIRKS

"adult": potential parent
(seen in POP, unseen in HSP)

"juve": potential offspring (in POP or in HSP)

"I didn't measure it" doesn't imply that "it doesn't matter"

... see Examples!

Fred is born first; Lucy later

P [Fred & Lucy are MHSP | stuff about F & L]

 $= \mathbb{P} [Lucy \text{ has same Mum as Fred } | \text{ stuff}]$

Fred is born first; Lucy later

```
\mathbb{P}\left[\text{Fred \& Lucy are MHSP} \mid \text{stuff about F \& L}\right] \\ = \mathbb{P}\left[\text{Lucy has same Mum as Fred} \mid \text{stuff}\right] \\ = \sum_{\text{"Mary"} \in \text{Fred's possible mothers}} \mathbb{P}\left[\text{Fred's Mum was "Mary"} \mid \times \dots \right] \\ \mathbb{P}\left[\text{"Mary" survived til } b_{\text{Lucy}}\right] \times \dots \\ \mathbb{P}\left[\text{Lucy's Mum was "Mary"} \mid \text{"Mary" alive at } b_{\text{Lucy}}\right]
```


Fred is born first; Lucy later

```
\mathbb{P}\left[\text{Fred \& Lucy are MHSP | stuff about F \& L}\right] \\ = \mathbb{P}\left[\text{Lucy has same Mum as Fred | stuff}\right] \quad \text{ERRO} \\ = \sum_{\text{"Mary"} \in \text{Fred's possible mothers}} \mathbb{P}\left[\text{Fred's Mum was "Mary"}\right] \times \dots \\ \mathbb{P}\left[\text{"Mary" survived til } b_{\text{Lucy}}\right] \times \dots \quad \mathbb{ERRO} \\ \mathbb{P}\left[\text{Lucy's Mum was "Mary"}\right] \quad \mathbb{ERRO} \\ \mathbb{P}\left[\text{ERRO-weighted average of ERROs}\right]
```


Fred is born first; Lucy later

$$\mathbb{P}\left[\text{Fred \& Lucy are MHSP} \mid \text{stuff about F \& L}\right] \\ = \mathbb{P}\left[\text{Lucy has same Mum as Fred} \mid \text{stuff}\right] \quad \mathbb{E}\text{RRO} \\ = \sum_{\text{"Mary"} \in \text{Fred's possible mothers}} \mathbb{P}\left[\text{Fred's Mum was "Mary"} \mid \times \dots \right] \\ \dots \mathbb{P}\left[\text{"Mary" survived til } b_{\text{Lucy}}\right] \times \dots \quad \mathbb{E}\text{RRO} \\ \mathbb{P}\left[\text{Lucy's Mum was "Mary"} \mid \text{"Mary" alive at } b_{\text{Lucy}}\right]$$

... breaks down if F & L in same cohort

ie ERRO-weighted average of ERROs

"Will it be biased?"

The Great Mind-Check

Stat theory says: as long as ERRO formula is OK, no bias

$$= \mathbb{E}\left[\frac{\text{\#A's J-like offspring }(@b_J)}{\text{Total \# J-like offs }(@b_J)}|\text{stuff (ie covariates) of A,J}\right]$$

"Will it be biased?"

The Great Mind-Check

Stat theory says: as long as ERRO formula is OK, no bias

P [Amy is Julian's mum|stuff about A & J]

$$= \mathbb{E}\left[\frac{\text{\#A's J-like offspring }(@b_J)}{\text{Total \# J-like offs }(@b_J)}|\text{stuff (ie covariates) of A,J}\right]$$

OK, as long as there's no missing property of "Amys" that affects both:

- (i) Amy's ERRO of J-likes among A-likes, and
- (ii) Amy's sampling prob relative to other A-likes

after allowing for "Stuff" (which is already included in the model)

"Will it be biased?"

The Great Mind-Check

Stat theory says: as long as ERRO formula is OK, no bias

P [Amy is Julian's mum|stuff about A & J]

=
$$\mathbb{E}\left[\frac{\text{\#A's J-like offspring }(@b_J)}{\text{Total \# J-like offs }(@b_J)}|\text{stuff (ie covariates) of A,J}\right]$$

OK, as long as there's no missing property of "Amys" that affects both:

- (i) Amy's ERRO of J-likes among A-likes, and
- (ii) Amy's sampling prob relative to other A-likes

after allowing for "Stuff" (which is already included in the model)

- "not measured" does not imply "I can ignore it"!
- heritable or non-heritable
- "Stuff" includes: fact of sampledness, and circumstances

"Will it be biased?" *HSP* Mind-Check

Stat theory says: as long as ERRO formula is OK, no bias

$$= \sum_{\text{"Mary"} \in poss F-mums} (Mary's ERRO \text{ of F-likes})] \times$$

(Mary's future ERRO of L-likes)

OK, as long as there's no missing property of "Marys" that leads to correlated ERROs of F-likes and L-likes

Fitting a CKMR model

Chassis: a standard-ish Age- and Sex- structured Pop Dyn model

PARAMETERS: "populate" the Pop Dyn Model

$$N_{a+1,t+1,s} = N_{ats}e^{-z} \; ; \; a \geqslant 8, \; t \geqslant 2002$$

$$\log N_{8t} \sim N(\mu, \sigma^2)$$

$$\log N_{2002,a} \sim N(\mu e^{-z'(a-8)}, \sigma^2)$$

COVARIATES: for each pair of samples (eg "Mary" and "Simon"),

use ERRO to work out POP and HSP probabilities, e.g.

Pr[Mary is Simon's mother | Mary's covariates, and Simon's]

RESPONSE DATA: the kinship of each pair: POP, HSP, UP (unrelated) inferred from their genotypes

LOG-LIKELIHOOD: *lots* of Bernoulli (yes-no) comparisons

Can put in other data too

Fitting a CKMR model

Chassis: a standard-ish Age- and Sex- structured Pop Dyn model

PARAMETERS: "populate" the Pop Dyn Model

$$N_{a+1,t+1,s} = N_{ats}e^{-z} \; ; \; a \geqslant 8, \; t \geqslant 2002$$

$$\log N_{8t} \sim N(\mu, \sigma^2)$$

$$\log N_{2002,a} \sim N(\mu e^{-z'(a-8)}, \sigma^2)$$

COVARIATES: for each pair of samples (eg "Mary" and "Simon"),

use ERRO to work out POP and HSP probabilities, e.g.

Pr[Mary is Simon's mother | Mary's covariates, and Simon's]

RESPONSE DATA: the kinship of each pair: POP, HSP, UP (unrelated)

inferred from their genotypes

$$LGLK + = \begin{cases} \log p_{Mary,Simon are xxP} & M\&S \text{ really are } xxP \\ \log 1 - p & \text{if not} \end{cases}$$

LOG-LIKELIHOOD: lots of Bernoulli (yes-no) comparisons

"The Framework"

 $p \sim O(1/N)$ Binomial with tiny p = PoissonPoissons add up, to give Poisson

```
lglk <- function( params) {</pre>
  # data prep already done & known about here...
  unpack(); # split and de-transform parameters
 popdyn();
  calc pure kinprobs(); # true kins, ideal covars eg true age
  calc obs kinprobs(); # distinguishable kins, available covars
  L := 0;
  for( K in distinct kintypes) {
    L += sum( log dpoisson( nkins[[K]], mean=ncomps[[K]]*kinprobs[[K]] ));
  };
  L += posthoc pairs(); # extra info on known kinpairs, eg mtDNA
  L += other lglks(); # age-at-length; etc; priors; CPUEeeeuggggh...
return(L)
```

