2022-PH-14-26

EE24BTECH11004 - ANKIT JAINAR

- 1) What is the maximum number of free independent real parameters specifying an n-dimensional orthogonal matrix?
 - a) n(n-2)
 - b) $(n-1)^2$ c) $\frac{n(n-1)}{2}$

 - d) $\frac{n(n+1)}{2}$
- 2) An excited state of Ca atom is $[Mg]3p^54s^23d^1$. The spectroscopic terms corresponding to the total orbital angular momentum are
 - a) S, P, and D
 - b) P, D, and F
 - c) P and D
 - d) S and P
- 3) On the surface of a spherical shell enclosing a charge-free region, the electrostatic potential values are as follows: One quarter of the area has potential ϕ_0 , another quarter has potential $2\phi_0$, and the rest has potential $4\phi_0$. The potential at the centre of the shell is (You can use a property of the solution of Laplace's equation.)

 - a) $\frac{11}{4}\phi_0$ b) $\frac{11}{2}\phi_0$ c) $\frac{7}{3}\phi_0$
- 4) A point charge q is performing simple harmonic oscillations of amplitude A at angular frequency ω . Using Larmor's formula, the power radiated by the charge is proportional to
 - a) $q \omega^2 A^2$
 - b) $q \omega^4 A^2$
 - c) $q^2\omega^2A^2$
 - d) $q^2 \omega^4 A^2$
- 5) Which of the following relationships between the internal energy U and the Helmholtz free energy F is true?
 - a) $U = -T^2 \begin{bmatrix} \frac{\partial}{\partial T} \left(\frac{F}{T} \right) \end{bmatrix}_V$ b) $U = +T^2 \begin{bmatrix} \frac{\partial}{\partial T} \left(\frac{F}{T} \right) \end{bmatrix}_V$ c) $U = +T \begin{bmatrix} \frac{\partial F}{\partial T} \end{bmatrix}_V$ d) $U = -T \begin{bmatrix} \frac{\partial F}{\partial T} \end{bmatrix}_V$
- 6) If nucleons in a nucleus are considered to be confined in a three-dimensional cubical box, then the first four magic numbers are
 - a) 2, 8, 20, 28
 - b) 2, 8, 16, 24
 - c) 2, 8, 14, 20
 - d) 2, 10, 16, 28
- 7) Consider the ordinary differential equation y'' 2xy' + 4y = 0 and its solution $y(x) = a + bx + cx^2$. Then

- a) a = 0, $c = -2b \neq 0$
- b) $c = -2a \neq 0, b = 0$
- c) $b = -2a \neq 0$, c = 0
- d) $c = 2a \neq 0, b = 0$
- 8) For an Op-Amp based negative feedback, non-inverting amplifier, which of the following statements are true?
 - a) Closed loop gain < Open loop gain
 - b) Closed loop bandwidth < Open loop bandwidth
 - c) Closed loop input impedance > Open loop input impedance
 - d) Closed loop output impedance < Open loop output impedance
- 9) From the pairs of operators given below, identify the ones which commute. Here l and j correspond to the orbital angular momentum and the total angular momentum, respectively.
 - a) l^2, j^2
 - b) j^2, j_z
 - c) j^2 , l_z
 - d) l_z, j_z
- 10) For normal Zeeman lines observed \parallel and \perp to the magnetic field applied to an atom, which of the following statements are true?
 - a) Only π -lines are observed || to the field
 - b) σ -lines \perp to the field are plane polarized
 - c) π -lines \perp to the field are plane polarized
 - d) Only σ -lines are observed \parallel to the field
- 11) Pauli spin matrices satisfy
 - a) $\sigma_{\alpha}\sigma_{\beta} \sigma_{\beta}\sigma_{\alpha} = i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$
 - b) $\sigma_{\alpha}\sigma_{\beta} \sigma_{\beta}\sigma_{\alpha} = 2i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$
 - c) $\sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = \epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$
 - d) $\sigma_{\alpha}\sigma_{\beta} + \sigma_{\beta}\sigma_{\alpha} = 2\delta_{\alpha\beta}$
- 12) For the refractive index $n = n_r(\omega) + in_{im}(\omega)$ of a material, which of the following statements are correct?
 - a) n_r can be obtained from n_{im} and vice versa
 - b) n_{im} could be zero
 - c) n is an analytic function in the upper half of the complex ω plane
 - d) n is independent of ω for some materials
- 13) Complex function $f(z) = z + |z a|^2$ (a is a real number) is
 - a) continuous at (a, a)
 - b) complex-differentiable at (a, a)
 - c) complex-differentiable at (a, 0)
 - d) analytic at (a, 0)