

FÍSICA II

LISTA DE EXERCÍCIOS DAS AULAS 1-10

Ivan Ramos Pagnossin

EXERCÍCIO 1

(a) Determine a força gravitacional que atrai um homem de 65 kg a uma mulher de 50 kg quando eles estão afastados de 0,5 m (considere-os partículas pontuais). (b) Qual é a energia potencial gravitacional dessa interação?

EXERCÍCIO 2 (portfólio)

Qual é a aceleração de queda livre de um corpo a uma altitude correspondente à órbita de um veículo espacial, a cerca de 400 km acima da superfície da Terra?

EXERCÍCIO 3

Determine a velocidade de escape na superfície de Mercúrio, que possui massa de $3,31 \times 10^{23}$ kg e raio de 2440 km.

EXERCÍCIO 4

Europa é um satélite do planeta Júpiter, cujo raio é 1569 km e a aceleração da gravidade, na sua superfície, de 1,39 m/s².

- (a) Calcule a velocidade de escape de Europa.
- (b) Que altura um objeto alcançaria se fosse lançado para cima com uma velocidade de 1,01 km/s?
- (c) Com que velocidade um objeto atingiria o satélite se ele fosse largado

de uma altura de 1000 km?

(d) Calcule a massa de Europa.

EXERCÍCIO 5

Um projétil é lançado em linha reta para cima, a partir da superfície da Terra, com velocidade 15 km/s. Determine a velocidade do projétil quando ele estiver bem afastado da Terra (ignore a resistência do ar. O raio da Terra é 6370 km).

EXERCÍCIO 6

O asteróide Eros, um dos "planetas menores" que orbitam o Sol na região entre Marte e Júpiter, tem raio de 7 km e massa 5×10^{15} kg.

- (a) Se você estivesse em Eros, poderia levantar uma caminhonete de 2000 kg?
- (b) Você poderia correr rápido o suficiente para escapar da atração gravitacional de Eros?¹

EXERCÍCIO 7

Duas partículas puntiformes, cada uma com massa M, são fixadas sobre o eixo y em y=+a e y=-a. Determine o campo gravitacional \vec{g} para todos os pontos sobre o eixo x, como função de x.

EXERCÍCIO 8

Considere um sistema isolado formado por três esferas. Duas delas, de massas $m_1 = 7,16 \,\mathrm{kg}$ e $m_2 = 2,53 \,\mathrm{kg}$, são separadas por uma distância de centro a centro de 1,56 m. A terceira, de massa $m_3 = 212 \,\mathrm{g}$, está posicionada a 42 cm do centro da esfera m_2 , ao longo da linha que liga os centros.

- (a) Quanto trabalho deve ser realizado por um agente externo para mover a esfera m_3 ao longo da linha que liga os centros e posicioná-la a 42 cm do centro da esfera m_1 .
- (b) Se m_3 fosse levado à sua posição final por outro caminho, esse resul-

¹Nota: os recordes olímpicos de tempo para a corrida de 400 m é de 43,49 s para homens (Michael Johnson — EUA, 1996) e de 48,26 s para mulheres (Marie-José Pérec — França, 1996).

tado seria diferente? Por quê?

EXERCÍCIO 9

Desafio: mostre que a energia total de um objeto em órbita circular é igual à metade de sua energia potencial gravitacional. Nota: numa órbita circular, a velocidade orbital permanece constante.

EXERCÍCIO 10

O semi-eixo maior da órbita de Júpiter é 5,2 UA (unidades astronômicas).² Sabendo que o semi-eixo maior da órbita da Terra é 1 UA, qual é o período de translação de Júpiter, em anos terrestres?

EXERCÍCIO 11

O período de Netuno é de 164,8 anos terrestres. Qual é o valor de sua distância média ao Sol, em unidades astronômicas (UA)?

EXERCÍCIO 12

Procure na Internet pelo período T de translação e pelo semi-eixo maior a da órbita de cada planeta do Sistema Solar.³

- (a) Faça um gráfico de $T \times a$.
 - Dica: utilize UA como unidade de distância e "anos terrestres" como unidade de tempo.
- **(b)** Faça um gráfico de $T^2 \times a^3$.
 - Dica: ao invés de um gráfico, faça dois: um para os planetas Mercúrio, Vênus, Terra e Marte; e o outro para Júpiter, Saturno, Urano, Netuno e Plutão.
- (c) No gráfico do item anterior, os pontos alinham-se. Qual é o valor do coeficiente angular, no Sistema Internacional de Unidades (SI)? Compare-o com a constante $4\pi^2/(GM_{\odot})$. $G=6,67\times10^{-11}\,\mathrm{N\,m^2/kg^2}$ é a constante universal da gravidade e $M_{\odot}=1,99\times10^{30}\,\mathrm{kg}$ é a massa do Sol.

EXERCÍCIO 13

A Estação Espacial Internacional move-se segundo uma órbita aproxi-

²1 UA = 149 597 871 km. Note, entretanto, que você não precisa dessa informação para resolver o exercício.
³Ao invés do semi-eixo maior da órbita, você também pode utilizar a distância média entre o planeta e o Sol.

madamente circular em torno da Terra. Considerando que ela esteja a 385 km acima da superfície da Terra, qual é o período da órbita?

EXERCÍCIO 14 (portfólio)

Júpiter é o maior planeta do Sistema Solar. Sua massa é de aproximadamente $M_{\uparrow\downarrow}=1,9\times10^{27}\,\mathrm{kg}$ (318 vezes mais massivo que a Terra) e possui mais de cinquenta luas (satélites naturais) conhecidas. As quatro maiores delas, visíveis da Terra com um pequeno telescópio e descobertas por Galileu Galilei no século XVII, são: Io, Europa, Ganimedes e Calisto. Você, ao reproduzir a observação de Galileu, mediu os seguintes períodos de revolução em torno de Júpiter: 42,5 h para lo, 85,2 h para Europa, 171,6 h para Ganimedes e 400,6 h para Calisto. Com esses dados *apenas* e conhecendo a constante universal da gravidade, monte o gráfico $T^2\times a^3$ desse sistema planetário.

GABARITO

EXERCÍCIO 1

(a)
$$8,67 \times 10^{-7} \text{ N}$$
; (b) $-4,33 \times 10^{-7} \text{ J}$.

EXERCÍCIO 2 (portfólio)

 $8,7 \, \text{m/s}^2$

EXERCÍCIO 3

4,25 km/s.

EXERCÍCIO 4

(a) 2,09 km/s; (b) 478,9 km/s; (c) 1,303 km/s; (d) $5,13 \times 10^{22}$ kg.

EXERCÍCIO 5

10 km/s.

EXERCÍCIO 6

(a) Sim; (b) Não.

EXERCÍCIO 7

$$\vec{g} = -\frac{2GMx}{(x^2+a^2)^{3/2}}\hat{i}$$

EXERCÍCIO 8

(a) $9,845 \times 10^{-11}$ J; (b) Não.

EXERCÍCIO 9

Dica: a aceleração centrípeta que sustenta a órbita circular é devida à gravidade.

EXERCÍCIO 10

11,9 anos terrestres.

EXERCÍCIO 11

30,1 UA.

EXERCÍCIO 12

(a)

(c) O coeficiente angular é igual a $4\pi^2/(GM_{\odot}) = 2,97 \times 10^{-19} \, \text{s}^2/\text{m}^3$.

EXERCÍCIO 13

92,1 min.

EXERCÍCIO 14 (portfólio)

GABARITO DO MEDIADOR

EXERCÍCIO 1

(a) O módulo da força de interação gravitacional entre dois corpos puntiformes é dado pela lei da gravitação universal de Newton:

$$F = \frac{Gm_{\odot} m_{\varphi}}{r^2} = \frac{6,67 \times 10^{-11} \cdot 65 \cdot 50}{(0,5)^2} = 8,67 \times 10^{-7} \,\text{N}.$$

(b) A energia potencial gravitacional, por outro lado, é igual ao trabalho da força gravitacional, desde a posição r até o infinito. Sua expressão é:

$$U_g = -\frac{Gm_{\odot} m_{\odot}}{r} = -\frac{6,67 \times 10^{-11} \cdot 65 \cdot 50}{0,5} = -4,33 \times 10^{-7} \text{J}.$$

EXERCÍCIO 2 (portfólio)

O módulo da força gravitacional entre um corpo de massa m e a Terra (massa é $M=5,98\times10^{24}\,\mathrm{kg}$) é dada pela lei da gravitação universal de Newton: $F=GmM/r^2$, onde r é a distância entre esse corpo e o centro da Terra. Essa força causa uma aceleração em m, dada pela segunda lei de Newton:

$$a = \frac{F}{m} = \frac{GM}{r^2}.$$

Mas r = R + h, onde $R = 6370 \,\mathrm{km}$ é o raio da Terra e $h = 400 \,\mathrm{km}$, a altitude da órbita. Então,

$$a = \frac{GM}{(R+h)^2} = \frac{6,67 \times 10^{-11} \cdot 5,98 \times 10^{24}}{(6,37 \times 10^6 + 0,4 \times 10^6)^2} = 8,7 \,\text{m/s}^2,$$

que é a aceleração de queda livre (aquela associada à gravidade).

EXERCÍCIO 3

A velocidade de escape v_e de Mercúrio é, por definição, a velocidade mínima que um corpo deve ter, na superfície, para conseguir livrar-se se sua atração gravitacional. "Livrar-se da sua atração gravitacional" significa que, no infinito, sua energia cinética terá toda ela sido convertida em energia potencial gravitacional. Ou seja, no infinito temos K=0 (energia cinética nula). Mas no infinito, também a energia potencial gravitacional

é nula:

$$U_g = -\frac{GMm}{r} \quad \Rightarrow \quad \lim_{r \to \infty} U_g = 0.$$

Ou seja, a energia mecânica do corpo é nula no infinito: $E=U_g+K=0$. Mas a força gravitacional é conservativa, de modo que E=0 a qualquer distância r do planeta, inclusive na sua superfície, onde r=R. Nessa posição, a energia mecânica do corpo é:

$$E = -\frac{GMm}{R} + \frac{1}{2}mv_e^2 = 0.$$

Resolvendo essa igualdade para ν_e obtemos a expressão da velocidade de escape de Mercúrio:

$$v_e = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2 \cdot 6,67 \times 10^{-11} \cdot 3,31 \times 10^{23}}{2,44 \times 10^6}} = 4,25 \,\mathrm{km}\,\mathrm{s}^{-1}.$$

EXERCÍCIO 4

(a) A força gravitacional entre Europa e um corpo de massa m na sobre a sua superfície é dada pela lei da gravitação universal de Newton: $F = GMm/R^2$, onde R é o raio de Europa. Pela segunda lei de Newton, essa força causa uma aceleração $g = F/m = GM/R^2$ que, pelo enunciado do exercício, é igual a 1,39 m/s². Por outro lado, a velocidade de escape é dada por $\sqrt{\frac{2GM}{R}}$, que pode então ser reescrita assim:

$$v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2\left(\frac{GM}{R^2}\right)R} = \sqrt{2gR} = \sqrt{2 \cdot 1,39 \cdot 1,569 \times 10^6}$$

= 2,09 km s⁻¹.

(b) A única força considerada no problema é a gravitacional, entre o objeto e Europa. Como essa interação conserva a energia mecânica, podemos determiná-la nos dois pontos de interesse, A e B, e usar o princípio da conservação da energia mecânica: $E_A = E_B$.

A situação A é aquela na qual o objeto está na superfície ($r_A = R$), com velocidade inicial $v_A = 1,01 \,\mathrm{km\,s^{-1}}$; a situação B é aquela na qual toda a energia cinética do objeto foi convertida em energia potencial gravitacional: $r_B = R + h$ e $v_B = 0$. h é a altura, acima da superfície de

Europa, que o objeto atinge. Deste modo, temos:

$$E_A = U_g(r_A) + K(v_A) = -\frac{GMm}{R} + \frac{1}{2}mv_A^2$$

 $E_B = U_g(r_B) + K(v_B) = -\frac{GMm}{R+h}$.

Usando $E_A = E_B$ e isolando h:

$$\begin{split} E_A &= E_B \quad \Rightarrow \quad -\frac{GM\,m}{R} + \frac{1}{2}m\nu_A^2 = -\frac{GM\,m}{R+h} \quad \Rightarrow \\ &\Rightarrow \quad \left(\frac{GM}{R^2}\right)R - \frac{1}{2}\nu_A^2 = \left(\frac{GM}{R^2}\right)\frac{R^2}{R+h} \quad \Rightarrow \\ &\Rightarrow \quad gR - \frac{1}{2}\nu_A^2 = g\frac{R^2}{R+h} \quad \Rightarrow \quad h = \frac{gR^2}{gR - \nu_A^2/2} - R. \end{split}$$

Manipulando um pouco mais essa expressão para h, obtemos um resultado equivalente, mas que requer menos contas:

$$h = \left(\frac{2g}{v_A^2} - \frac{1}{R}\right)^{-1} = \left[\frac{2 \cdot 1,39}{(1,01 \times 10^3)^2} - \frac{1}{1,569 \times 10^6}\right]^{-1} = 478 \,\mathrm{km}.$$

(c) Conceitualmente, esse problema é análogo ao anterior: a energia mecânica na situação inicial é:

$$E_A = -\frac{GMm}{R+h},$$

já que o objeto parte do repouso. Durante sua queda livre em direção à superfície do planeta, parte dessa energia potencial gravitacional é convertida em energia cinética. Assim ele atinge a superfície com velocidade v_R tal que:

$$E_B = -\frac{GMm}{R} + \frac{1}{2}mv_B^2.$$

Como $E_A = E_B$, obtemos daí que:

$$v_B^2 = \frac{2gRh}{R+h} = \frac{2 \cdot 1,39 \cdot 1,569^6 \cdot 10^6}{1,569 \times 10^6 + 10^6} \Rightarrow v_B = 1,303 \,\mathrm{km} \,\mathrm{s}^{-1}.$$

(d) Como $g = GM/R^2$, obtemos imediatamente que:

$$M = \frac{gR^2}{G} = \frac{1,39 \cdot (1,569 \times 10^6)^2}{6,67 \times 10^{-11}} = 5,13 \times 10^{22} \,\mathrm{kg}.$$

EXERCÍCIO 5

Considere as duas situações A e B: em A o projétil está na superfície da Terra ($r = R = 6,37 \times 10^6 \,\mathrm{m}$) e sua velocidade é $v_A = 1,5 \times 10^4 \,\mathrm{m \, s^{-1}}$; em B

o projétil está muito afastado da Terra ($r \to \infty$) e sua velocidade é ν_B , que queremos descobrir. Mas como a única força presente nesse problema é a gravitacional, que é conservativa, a energia mecânica em A e em B deve ser a mesma. Ou seja,

$$\begin{split} E_A &= E_B \quad \Rightarrow \quad -\frac{GMm}{R} + \frac{1}{2}mv_A^2 = -\lim_{r \to \infty} \frac{GMm}{r} + \frac{1}{2}mv_B \quad \Rightarrow \\ & \Rightarrow \quad -\frac{GM}{R} + \frac{1}{2}v_A^2 = \frac{1}{2}v_B^2 \quad \Rightarrow \\ & \Rightarrow \quad v_B^2 = v_A^2 - 2\frac{GM}{R} = v_A^2 - 2gR \quad \Rightarrow \quad v_B = 10 \, \mathrm{km} \, \mathrm{s}^{-1}, \end{split}$$

onde utilizamos $g = GM/R^2 = 9,81 \,\text{m/s}^2$, a aceleração da gravidade na superfície da Terra, para simplificar.

EXERCÍCIO 6

(a) A intensidade da força necessária para levantar a caminhonete é igual à força-peso dela, que é dada pela lei da gravitação universal de Newton:

$$F = \frac{GMm}{R^2} = \frac{6,67 \times 10^{-11} \cdot 5 \times 10^{15} \cdot 2 \times 10^3}{(7 \times 10^3)^2} = 13,6 \,\text{N}.$$

Na Terra, F equivale à força-peso de um objeto cuja massa é $F/g = 1,39\,\mathrm{kg}$, com $g = 9,81\,\mathrm{m/s^2}$. Ou seja, em Eros essa caminhonete pesaria tanto quanto um haltere de academia, de modo que você conseguiria levantá-la facilmente!

(b) Para desvencilhar-se da atração gravitacional de Eros, você precisaria correr tão ou mais rapidamente que a velocidade de escape dele:

$$v_e = \sqrt{2GM/R} = \sqrt{2 \cdot 6,67 \times 10^{-11} \cdot 5 \times 10^{15}/7 \times 10^3} = 9.8 \,\mathrm{m \, s^{-1}}.$$

O recorde masculino (feminino) dos $400\,\mathrm{m}$ é de $43,49\,\mathrm{s}$ ($48,25\,\mathrm{s}$), o que corresponde à velocidade de $9,2\,\mathrm{m}\,\mathrm{s}^{-1}$ ($8,3\,\mathrm{m}\,\mathrm{s}^{-1}$), que é menor que v_e . Portanto, nem mesmo o mais rápido corredor é capaz de correr rapidamente o suficiente para escapar da atração gravitacional de Eros.

EXERCÍCIO 7

Cada partícula produz um campo gravitacional, \vec{g}_1 e \vec{g}_2 , cuja intensidade é:

$$g_1 = g_2 = \frac{GM}{r^2},$$

onde r é a distância da partícula até o ponto P onde queremos determinar o campo gravitacional resultante (veja a figura abaixo). Pela simetria do problema, vemos que a componente y de \vec{g}_1 contrapõe-se precisamente à de \vec{g}_2 . Deste modo, a componente y do campo gravitacional resultante é nula. Por outro lado, a componente x de \vec{g}_1 e de \vec{g}_2 somamse e apontam no sentido negativo de x (vetorialmente, representamos por $-\hat{i}$). Assim,

$$\vec{g} = \vec{g}_1 + \vec{g}_2 = -2g_1 \cos(\theta)\hat{i}$$
,

onde θ é o ângulo associado ao ponto P (figura). Mas pelo triânguloretângulo OPM, $\cos(\theta) = x/r$ e $r = \sqrt{x^2 + a^2}$. Então,

$$\vec{g} = -\frac{2GM}{r^2} \frac{x}{r} \hat{i} = -\frac{2GMx}{(x^2 + a^2)^{3/2}} \hat{i}.$$

Outra forma de resolver esse problema é partir da energia potencial gravitacional: se houvesse um objeto de massa m em P, teríamos $U_g = -2GMm/r$, onde $r = \sqrt{x^2 + a^2}$ é a distância entre os corpos M e m. Como a força gravitacional é derivada da energia potencial gravitacional, temos:

$$\vec{F} = -\frac{dU}{dx}\hat{i} = -\frac{d}{dx}\left(-\frac{2GMm}{r}\right)\hat{i} = -\frac{2GMmx}{\left(x^2 + a^2\right)^{3/2}}\hat{i}.$$

Pela segunda lei de Newton, essa força gravitacional causaria em $\it m$ uma aceleração

$$\vec{g} = \frac{\vec{F}}{m} = -\frac{2GMx}{(x^2 + a^2)^{3/2}}\hat{i},$$

que é o resultado desejado.

EXERCÍCIO 8

(a) Considere que A seja a posição inicial e B, a final. Ao longo do deslocamento entre A e B, há duas forças agindo sobre m_3 : a força gravitacional $F_g(x)$ resultante da interação com m_1 e m_2 e a força externa F_e . Deste modo, o trabalho *total* realizado sobre m_3 é:

$$W_{A \to B} = \int_A^B \left(F_g + F_e \right) dx = \int_A^B F_g dx + \int_A^B F_e dx$$
$$= W_{A \to B}^g + W_{A \to B}^e,$$

onde $W_{A\to B}^g$ é o trabalho da força gravitacional apenas e $W_{A\to B}^e$, da força externa apenas. Mas $W_{A o B} = \Delta K$ (teorema trabalho-energia cinética), onde ΔK é a variação da energia cinética entre A e B. Contudo, como a esfera m_3 parte do repouso (em A) e termina em repouso (em B), $\Delta K = 0$. Ou seja, o trabalho total (ie, das forças gravitacional e externa) deve ser nulo:

$$W_{A\to B} = W_{A\to B}^g + W_{A\to B}^e = 0 \quad \Rightarrow \quad W_{A\to B}^e = -W_{A\to B}^g. \tag{1}$$

Em palavras: o trabalho da força externa, que interessa-nos conhecer, é o oposto do trabalho realizado pela força gravitacional. Resta determinar $W_{A\rightarrow B}^g$. Há duas formas de fazer isso: a primeira delas é calcular diretamente o trabalho da força gravitacional ao longo do deslocamento considerado:

$$W_{A\to B}^g = \int_A^B F_g(x) \, dx.$$

A outra forma, mais simples, é lembrar que a força gravitacional é conservativa e que, por isso, vale $W_{A \to B}^g = -\Delta U_g$. Isto é, o trabalho da força gravitacional em levar a esfera m_3 de A até B é igual ao oposto da variação da energia potencial gravitacional U_g . Mas as energias potenciais gravitacional em A e em B são:

$$U_g(A) = -\frac{Gm_1m_3}{d} - \frac{Gm_2m_3}{D-d}$$
 $U_g(B) = -\frac{Gm_1m_3}{D-d} - \frac{Gm_2m_3}{d}$

$$U_g(B) = -\frac{Gm_1m_3}{D-d} - \frac{Gm_2m_3}{d}$$

onde $D=1,56\,\mathrm{m}$ é a distância entre as esferas m_1 e m_2 e $d=42\,\mathrm{cm}$.

Assim,

$$\begin{split} W_{A \to B}^g &= -\Delta U_g = -\left[U_g(B) - U_g(A)\right] \\ &= -\left[\left(-\frac{Gm_1m_3}{D-d} - \frac{Gm_2m_3}{d}\right) - \left(-\frac{Gm_1m_3}{d} - \frac{Gm_2m_3}{D-d}\right)\right] \\ &= -Gm_3(m_2 - m_1)\left(\frac{1}{D-d} - \frac{1}{d}\right) \\ &= -9,845 \times 10^{-11} \, \text{J}. \end{split}$$

Finalmente, levando esse resultado em (1), obtemos a resposta desejada:

$$W_{A\to R}^e = 9,845 \times 10^{-11} \text{ J}.$$

(b) Como a força gravitacional é conservativa, seu trabalho sobre m_3 é independente do percurso. De fato, $W_{A\to B}^g = U_g(A) - U_g(B)$. Como consequência da análise no item anterior, também $W_{A\to B}^e$ será independente do percurso.

EXERCÍCIO 9

Suponha que a órbita em questão tenha raio a. Neste caso, a energia potencial gravitacional entre o objeto em órbita, de massa m, e o objeto no centro da órbita, de massa M, é constante: $U_g = -GMm/a$. Nessa órbita circular, a velocidade orbital v do objeto não muda (isso decorre da conservação do momento angular) e a força centrípeta necessária para sustentar esse movimento é dada pela força gravitacional:

$$\begin{split} F_{\text{centrípeta}} &= \frac{mv^2}{a} = \frac{GMm}{a^2} = \left(\frac{GMm}{a}\right)\frac{1}{a} = -\frac{U_g}{a} \quad \Rightarrow \\ &\Rightarrow \quad mv^2 = -U_g \quad \Rightarrow \quad 2K = -U_g \quad \Rightarrow \quad K = -U_g/2. \end{split}$$

Mas a energia mecânica é $E=U_{\rm g}+K=U_{\rm g}-U_{\rm g}/2=U_{\rm g}/2$, como queríamos demonstrar.

EXERCÍCIO 10

Pela terceira lei de Kepler,

$$\frac{T_{\gamma_{+}}^{2}}{a_{\gamma_{+}}^{3}} = \frac{T_{\circlearrowleft}^{2}}{a_{\circlearrowleft}^{3}} \quad \Rightarrow \quad T_{\gamma_{+}} = T_{\circlearrowleft} \left(\frac{a_{\gamma_{+}}}{a_{\circlearrowleft}}\right)^{3/2} = 1 \cdot \left(\frac{5,2}{1}\right)^{3/2} \approx 11,9 \, \text{anos}.$$

Na expressão acima, T representa o período, a é o semi-eixo maior e os símbolos 9 e 1 representam Júpiter e a Terra, respectivamente.

EXERCÍCIO 11

Pela terceira lei de Kepler,

$$\frac{T_{\mathbb{Y}}^2}{a_{\mathbb{Y}}^3} = \frac{T_{\mathbb{T}}^2}{a_{\mathbb{T}}^3} \quad \Rightarrow \quad a_{\mathbb{Y}} = a_{\mathbb{T}} \left(\frac{T_{\mathbb{Y}}}{T_{\mathbb{T}}}\right)^{2/3} = 1 \cdot \left(\frac{164,8}{1}\right)^{2/3} \approx 30,1 \, \text{UA}.$$

Na expressão acima, T representa o período, a é o semi-eixo maior e os símbolos \S e \S representam Netuno e a Terra, respectivamente.

EXERCÍCIO 12

(a) O período e o semi-eixo maior dos planetas do Sistema Solar são:

Planeta	T (anos)	a (UA)
Mercúrio	0.387	0.241
Vênus	0.723	0.615
Terra	1	1
Marte	1.523	1.88
Júpiter	5.203	11.867
Saturno	9.539	29.461
Urano	19.185	84.03
Netuno	30.061	164.815
Plutão	39.479	248.057

obs.: há alguns anos, a União Astronômica Internacional criou uma definição formal de planeta, visando classificar diversos outros objetos que orbitam o Sol. Como consequência dela, Plutão deixou de ser considerado um planeta. Hoje ele é um "planeta anão".

(b) O gráfico de $T^2 \times a^3$ é mais complicado de fazer, pois a escala varia muito. Note, por exemplo, que no gráfico à direita, a abscissa e a ordenada têm um fator mil multiplicando os valores. Por isso separamos os planetas em dois grupos: Mercúrio a Marte e Júpiter a Plutão.

(c) Tome, por exemplo, o período de translação e o semi-eixo maior da Terra: $T_{\circ} = 3,1536 \times 10^7 \, \text{s}$ e $a = 1,495\,978\,71 \times 10^{11} \, \text{m}$. O coeficiente angular do gráfico $T^2 \times a^3$ é:

$$\frac{\left(3,1536\times10^{7}\,\mathrm{s}\right)^{2}}{\left(1,495\,978\,71\times10^{11}\,\mathrm{m}\right)^{3}} = 2,97\times10^{-19}.$$

Esse cálculo pode ser feito para qualquer planeta do Sistema Solar (na verdade, para qualquer astro em órbita do Sol), e o resultado será sempre o mesmo. Por outro lado,

$$\frac{4\pi^2}{M_{\odot}G} = \frac{4\pi^2}{1,99 \times 10^{30} \cdot 6,67 \times 10^{-11}} = 2,97 \times 10^{-19}.$$

Deste modo vemos como Newton conseguiu deduzir, com sucesso, a terceira lei de Kepler (as outras duas também) partindo apenas de sua lei da gravitação universal e das três leis da dinâmica (com isso, Newton demonstrou ainda que as leis que governam o movimento dos astros, na época tidos como domínio do divino, eram as mesmas que valiam na Terra). Dito de outra forma, Kepler percebeu que T^2/a^3 é o mesmo para todos os planetas do Sistema Solar, mas não sabia explicar o motivo. Newton, partindo dos trabalhos de Kepler, compreendeu que esse fator depende exclusivamente da massa do Sol, e deste modo é possível estender a terceira lei de Kepler para qualquer sistema solar ou planetário, como você verá no exercício 14.

EXERCÍCIO 13

Segundo a versão de Newton da terceira lei de Kepler, $T^2=\frac{4\pi^2}{GM_{\stackrel{}{\bigcirc}}}a^3$, onde T é o período da órbita da estação espacial, $M_{\stackrel{}{\bigcirc}}$ é a massa da Terra e a

é o semi-eixo maior da órbita da estação espacial. Mas $a=R_{\circ}+h$, onde h é a altura da órbita (medida a partir da superfície da Terra e dada no enunciado do exercício). Então,

$$T^{2} = \frac{4\pi^{2}}{GM_{\odot}}a^{3} = \frac{4\pi^{2}}{GM_{\odot}}(R_{\odot} + h)^{3} = \frac{4\pi^{2}}{gR_{\odot}^{2}}(R_{\odot} + h)^{3},$$

onde na última passagem utilizamos $g=GM_{\mbox{$\stackrel{\perp}{\circlearrowleft}$}}/R_{\mbox{$\stackrel{\perp}{\circlearrowleft}$}}^2$, a aceleração da gravidade na superfície da Terra. Agora resta fazer a conta:

$$T = \frac{2\pi}{\sqrt{g}R_{\dot{\uparrow}}} (R_{\dot{\uparrow}} + h)^{3/2} = 5529 \,\mathrm{s} = 92,1 \,\mathrm{min}.$$

EXERCÍCIO 14 (portfólio)

Para o sistema planetário de Júpiter, vale $T^2 = 4\pi^2 a^3/(GM_{\uparrow\downarrow})$, onde T é o período orbital de qualquer satélite (natural ou artificial) e a, seu semieixo maior.

$$C = \frac{4\pi^2}{GM} = \frac{4\pi^2}{6.67 \times 10^{-11} \cdot 1.9 \times 10^{27}} = 3,11 \times 10^{-16}.$$

Agora, tendo C e os períodos das luas de Júpiter, podemos determinar o semi-eixo maior de cada uma:

$$a_{\text{lo}}^3 = \frac{T_{\text{lo}}^2}{C} = \frac{(42.5 \cdot 60 \cdot 60)^2}{3,11 \times 10^{-16}} \implies a_{\text{lo}} \approx 422\,000\,\text{km} = 0,422 \times 10^9\,\text{m}$$

Fazendo o mesmo para os outros satélites, obtemos:

Satélite	T (dias)	$a (1 \times 10^9 \mathrm{m})$
lo	1,77	0,422
Europa	3,55	0,671
Ganimedes	7,15	1,071
Calisto	16,69	1,884

Assim, o gráfico de $T^2 \times a^3$ fica assim:

Note que, para melhorar a apresentação do gráfico, o período foi expresso em dias terrestres e o semi-eixo maior, em 1×10^9 m.