

Lab+4+Data +Sheet_bl...

Lab No. 4 Data Sheet

Experiment 1

Name: Will Brziau

Partners: Toni Peruins

Partners: Bremn Elis Partners:

y_{bias} = 1.748

Peak No.	LOG DECREMENT						
	Time (s)	Δt (s)	$y_i(V)$	δ	5		
1	· <i>0</i> 33	N/A	3.687	N/A	N/A		
2	1317	.1084	3.477	.0255	.007		
3	.2563	.1246	3.237	.081_	.0087		
4	.3761	-1196	2.969	.0375	.0106		
5	. 4844	.1133	2.798	.025.8	· @ 23		
6	-6159	.1265	2.427	.062	.07		
7	-7276	•(// 9	2376	.0089	.0015		
	- 3408	-1/3	2.202	. 032	.009		

$$\delta_{i+1} = \ln\left(\frac{y_i}{y_{i+1}}\right)$$

$$\zeta_{i+1} = \frac{\delta_{i+1}}{\sqrt{\delta_{i+1}^2 + 4\pi^2}}$$

$$T_d = \overline{\Delta t} =$$

$$\omega_d = 2\pi / T_d = 53.81$$

$$\omega_n = \omega_d / \sqrt{1 - \overline{\zeta}^2} = 53.84$$

1

Lab No. 4 Data Sheet

Experiment 2

peak-peak amplitude (use data cursor on the DFT figure)

Input: sine wave, $A_{input} = 5V$

f_i (Hz)	f _{meas} (Hz)	A _{out} (V)	M _{meas} =A _{i, out} / A _{3Hz, out}	M _{theory}	ε
3	3	. 4973		15.73	1
4	4	.5566	1.1232		-92.56
5	5	.5586	1.277		-91.66
6	6	. 2095	1.6776		-18.65
7	ネ	1.228	2.469		-84.309
8	4	3.257	6.549		-56.4
9	9	3.393	4.823		.56.6
10	10	1.09	2.191		-84-07
12	12	. 4043	. 513		-94.63
15	K	-1794	. 3607		-97.702
20	ro	.07009	.1409		1-99.low
30	> 0	-02114	.0425		-99.73

$$\varepsilon = \frac{M_{meas} - M_{theory}}{M_{theory}} \times 100\%$$