Approximation Algorithms

Vertex Cover

Simple Greedy Algorithm

```
Approximate-Vertex-Cover(G=(V,E), k) C \leftarrow \emptyset E' = G.E while E' \neq \emptyset do e = (u,v) \leftarrow \text{arbitrary edge from } E C = C \cup \{u,v\} Remove from E' every edge incident on u or v return C
```

▶ This does not achieve the minimum Vertex Cover.

Approximation Algorithms

Vertex Cover

How bad can it be?

- ▶ Let C be the cover returned
- ▶ Let *C** be optimal cover
- ▶ Let A be the set of edges chosen by algorithm

$$|A| \leq |C^*|$$

$$|C| = 2|A| \leq 2|C^*| \implies \frac{|C|}{|C^*|} \leq \frac{2}{|C^*|}$$

$$2 - approx$$

Approximation Algorithms

Load Balancing

Simple Greedy Algorithm

► Assign "next" job to least loaded machine

Approximation Algorithms

Load Balancing

Simple Greedy Algorithm

- Assign "next" job to least loaded machine
- ► Three machines, $\{6, 4, 3, 2, 2, 2\}$?

M, 6 M2

Approximation Algorithms

Load Balancing

Let's reason about OPT

T = MaxiTi

T *: OPT makespan

▶ Why is *T** at least this?

$$T^* \ge \frac{1}{m} \sum_{j} t_j$$
equal division: $T^* = \frac{1}{m} \sum_{j} t_j$
else $T^* > \frac{1}{m} \sum_{j} t_j$

__Approximation Algorithms

Load Balancing

Let's reason about OPT

Why is it also true that $T^* \geq \max_j t_j$?

☐ Approximation Algorithms

Load Balancing

How bad could our algorithm be?

Ti: Mi's finish time

What was last job placed on machine with max makespan? Machine i, job j at the time, Ti-ti was minimal

Approximation Algorithms

Load Balancing

How pessimistic is that?

2 - approx. can we get 2 as worst?

$$M = 3$$
:

 $M = 3$:

Approximation Algorithms

Load Balancing

What if we sort first?

$$\frac{1}{m} \sum_{k} t_{k} \leq T^{*}$$

L Approximation Algorithms

Traveling Salesperson with Triangle Inequality

Simple approximation

not true for all inputs Triangle Inequality: $c(u, w) \le c(u, v) + c(v, w)$ Approximate-Traveling-Salesperson(G=(V,E)) Select arbitrary $r \in V$ as starting point $M \leftarrow \mathsf{MST}(G)$ $T \leftarrow$ preorder traversal of Mreturn T

► Does this return a valid tour? Yes

Simple approximation

Triangle Inequality: $c(u, w) \le c(u, v) + c(v, w)$ Approximate-Traveling-Salesperson(G=(V,E))

Select arbitrary $r \in V$ as starting point $C(M) \le C(H^*)$ $M \leftarrow MST(G)$ $T \leftarrow \text{ preorder traversal of } M$ $C(M) = C(H^*)$ Phow bad could this be? C(W) = 2C(M) $C(H^*)$ C(W) = 2C(M) $C(H^*)$ C(W) = 2C(M)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕○○

Approximation Algorithms

Traveling Salesperson without Triangle Inequality

How necessary is triangle inequality?

Suppose we have a ρ -approximate general TSP

L Approximation Algorithms

Traveling Salesperson without Triangle Inequality

What does that mean?

▶ What does the previous prove about solving general TSP?

Limits of Computability

L_{Set Theory}

Set Equality

- 1. For any set S, if S can be put into 1:1 correspondence with the set $\{1, 2, \ldots n\}$, then we say S has *cardinality* n. Two sets are the same size if they can be put into 1:1 correspondence.
- 2. The Schröder-Bernstein theorem states that if there exist injective functions $f:A\to B$ and $g:B\to A$, then there exists a bijective function $h:A\to B$

Limits of Computability

LSet Theory

Let $\mathbb{N}=\{0,1,2,\ldots\}$. This is the set of *natural numbers*. We say this set is *countably infinite* in size. We denote $|\mathbb{N}|=\aleph_0$. Any set S for which a bijective function $f:S\leftrightarrow\mathbb{N}$ exists is also countably infinite in size.

Limits of Computability

LSet Theory

Let $\mathbb{N}=\{0,1,2,\ldots\}$. This is the set of *natural numbers*. We say this set is *countably infinite* in size. We denote $|\mathbb{N}|=\aleph_0$. Any set S for which a bijective function $f:S\leftrightarrow\mathbb{N}$ exists is also countably infinite in size.

$$\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2 \ldots\}$$
, the set of all integers. How large is \mathbb{Z} ?

Limits of Computability

LSet Theory

Let $\mathbb{N}=\{0,1,2,\ldots\}$. This is the set of *natural numbers*. We say this set is *countably infinite* in size. We denote $|\mathbb{N}|=\aleph_0$. Any set S for which a bijective function $f:S\leftrightarrow\mathbb{N}$ exists is also countably infinite in size.

► Let *E* be the set of *even* natural numbers (2, 4, 6, etc). How large is *E*?

f(x)=2x

L_{Set Theory}

- ▶ ①, the set of rational numbers; that is, all numbers that can be expressed as the ratio of two natural numbers. We can say that $\mathbb{Q} \subseteq \mathbb{N} \times \mathbb{N}$.
- lacktriangle Use Schröder-Bernstein to show that $|\mathbb{Q}|=|\mathbb{N}|$

hröder-Bernstein to show that
$$|\mathbb{Q}| = |\mathbb{N}|$$

$$f: N \to Q \qquad f(x) = (x,1)$$

$$g: Q \to N \qquad g(n,d) = 2 \cdot 3$$

Limits of Computability

L_{Set Theory}

- ▶ \mathbb{Q} , the set of rational numbers; that is, all numbers that can be expressed as the ratio of two natural numbers. We can say that $\mathbb{Q} \subseteq \mathbb{N} \times \mathbb{N}$.
- Give an explicit bijection to show that $|\mathbb{Q}| = |\mathbb{N}|$ • partition \mathbb{Q} into $\mathbb{P}_i^{\mathbb{N}} = \{(n,d) \in \mathbb{Q} \mid n+d = i\}$ • sort each $\mathbb{P}_i^{\mathbb{N}}$ by χ coord

Limits of Computability

L_{Set Theory}

How many elements in
$$P_n$$
 appear before (x,y) ?

if (x,y) is in P_n ,

 x elements appear before it

Limits of Computability

LSet Theory

Limits of Computability

L_{Set Theory}

Rational Numbers

What's the bijection?

$$f(x,y) = \frac{(x+y)(x+y+1)}{2} + x$$

▶ Note that this is bijective between $\mathbb Q$ and $\mathbb N$.

- ▶ It's starting to look like all infinite sets are the same size
- ▶ What about \mathbb{R} , the set of real numbers?
- ▶ Suppose $|\mathbb{R}| = |\mathbb{N}|$.
 - ▶ Then there is a $f(x) : \mathbb{N} \to \mathbb{R}$

before dec:
not same asflo

ith after dec

ith after dec

both: if D=6,7

◆□ → ◆□ → ◆ = → ◆ = → へ ○

Limits of Computability

L_{Set Theory}

The Barber Paradox

- ▶ There is a barber in a small village.
- ► The barber cuts the hair of exactly the villagers who do not cut their own hair.
- ► What is the paradox?
- ► Is this really a paradox?

Limits of Computability

└Set Theory

Computer Programs

► How many computer programs can exist? Does your answer change if we include programs that don't compile? **Hint**: Every computer program can be represented as a finite string with each character drawn from some character set.

Countably infinite

How many possible inputs are there to computer programs?
Countably infinite

Limits of Computability

LSet Theory

Let's define behavior...

	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3	
P_0	(F)	$\overline{\bigcirc}$	F	F	•••
P_1	Т		T	F	
P_2	Т	Τ	(E)	F	
P_3	F	F	F	٠Ę	
P_4	T	F	F	T	٠. ٠
:	:	÷	:	:	

- ▶ Table entry (i,j) is true if:
 - $ightharpoonup P_i$ is a program that compiles and runs,
 - AND P_i enters into an infinite loop if x_j is provided as input.

 's false otherwise

 P_i doesn't compile
- ▶ It's false otherwise
 - $ightharpoonup P_i$ doesn't compile
 - \triangleright OR P_i has finite running time \bigcirc

CSCI 570 Summer 2016 Limits of Computability

L_{Set Theory}

Halting

- Let's define Halts(P,x) to be a boolean function that returns true or false according to whether or not program P will eventually halt, given x as input.
- ► A return value of "true" indicates that yes, the program will halt.

Suppose this can be implemented. Are there any programs that cannot be?

the

if (Halts (Pi, Xi)) +rue

return true false