SpaceLab ADCS Module - PDR

Rebecca Q. Do Ó, Bruno Benedetti, Caique S. de M. Gomes, Gabriel M. Marcelino, André M. P. de Mattos, Matheus Wagner 2022 August 2

SpaceLab - UFSC

Summary

Project Overview

Related Projects and References

Preliminary Design

Management

Project Overview

Overview

- Attitude Determination and Control System (ADCS) module for small satellites (Cubesat)
- Custom made project
- Fully open source

Overview

- Main objective: Create a module with basic instrumentation for an active magnetic ADCS
- Three-axis actuators: two magnetorquers with magnetic core and one with air core; Nominal dipole strength: 0.2Am² TBC.
- Current, Voltage and Temperature sensors for each magnetorquer;

Related Projects and References

Comercial ADCS modules for CubeSats

A few commercial ADCS modules for CubeSats are available in the market:

- ISIS iMTQ Magnetorquer Board
- GomSpace NanoTorque GST-600
- NanoAvionics CubeSat Magnetorquer SatBus MTQ
- <u>...</u>

Comercial ADCS: ISIS - iMTQ Magnetorquer Board

- Three-axis actuators: two magnetorquers with magnetic core and one with air core; Nominal dipole strength: 0.2Am²;
- Current and temperature sensors for each magnetorquer;
- Suitable to detumble up to 12U (24kg) CubeSats.

Comercial Coils: GomSpace - NanoTorque GST-600

- 3-axis magnetorquer;
- Torque $> 0.3Am^2$ per axis;
- Build-in temperature sensor;
- High torque and low residual dipole.

Comercial Coils: NanoAvionics - CubeSat Magnetorquer MTQ

- 2 magnetorquer rods with soft magnetic cores and 1 coil with air core;
- Dipole magnetic moment strength: 0.3Am² (X/Y axis), 0.34Am² (Z axis);
- Supply voltage: up to 5 V;
- Power consumption: 0.4 W.

Preliminary Design

Specifications

- Microcontroller: STM32F303xxxxx TBC
- Sensors:
 - Voltage sensor (4x)
 - Current sensor (4x)
 - Temperature sensor (4x)
 - Gyroscope (3-axis)
 - Magnetometer (3-axis)
 - Sun sensors (?x)
- H-bridge (3x)
- Interfaces: CAN and SPI TBC
- Mass: TBD
- PC-104 compatible

Features

Module Capabilities

- Detumbling
- Pointing
- Idle

Electrical Block Diagram

Magnetorquer Loop Control Diagram

Detumbling Loop Control Diagram

Pointing Loop Control Diagram

Possible Hardware for the mission

- Voltage and current sensor ina226 (4x)
- Temperature sensor TMP100 (4x)
- Gyroscope (3-axis) L3G4200D (1x)
- Magnetometer (3-axis) HMC5983 (1x)
- H-bridge DRV8834PWP (3x) TBC
- Sun sensors (?x) TBC

Bill of Materials¹

Component	Description	Partnumber	Quantity	
Microcontroller	-	STM32F303xxxxx	2	
CAN Transceiver	-	TCAN330GD	2	
Voltage and Current Sensors	-	ina226	8	
Temperature Sensors	-	TMP100	8	
Gyroscope	-	L3G4200D	2	
Magnetometer	-	HMC5983	2	
Sun sensors	-	TBD	TBD	
H-Bridge	-	TBD	6	
Copper wire	TBD -		1	
Magnetic core	TBD	-	4	

¹2 units.

Dimensions

Dimensioning: ADCS structure

- Limiting factors:
- 3U cubesat
- The sizing must take in account the Z axle for the dimensioning limits
- Estimated space available: (90x90x40mm)

Dimensioning: Magnetic Core

- Only two coils with magnetic core
- Magnetic core with low coercive force and high relative permeability (>2000).
- Torque = $0.2Am^2$ TBC.

Dimensioning: Magnetorquer Material

 Magnetorquer core Material TBD

Dimensioning: Magnetorquer Sizing (X; Y; Z)

- Coil in axle X: D: TBD L: TBD
- Coil in axle Y: D: TBD L: TBD
- Coil in axle Z: D: TBD L:
 TBD

Final result

Management

Project Management

- Activities and tasks: GitHub issues/project
- Periodic meetings
- Source files and versioning control: Git/GitHub repository (https://github.com/spacelab-ufsc/adcs) with five development branches:
 - dev_doc: Documentation
 - dev_hardware: Hardware project
 - dev_firmware: Firmware project
 - dev_mechanical: Mechanical project

Documentation

- User manual (PDF)
- This presentation
- Schematics

Product Tree

Schedule

	Week											
Activity	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12
Project definition	Х											
Bibliographical review	X											
Project dimensioning		X	X									
Component selection		X	X									
PDR			Х									
Mechanical design			Χ	Χ								
Controller schematics			X	X	Χ							
Components aquisiton				Χ	Χ	X	X	X				
Controller PCB layout				Χ	Χ	X	X					
Mockup fabrication							X					
CDR							Х					
Controller PCB fabrication								Χ	Χ	X	Χ	
Case fabrication								Χ	X			
User manual preparation									X	X	Χ	
Preliminary Electrical tests											Χ	
Mechanical integration											X	
AR												Х

Schedule changes from the original presentation (besides PDR, CDR, and AR):

5.3:W2, 5.5:W5, 5.7:W9, 5.9:W13

Team

Role	Name
Management/Support	André M. P. de Mattos Gabriel M. Marcelino
Dimensioning	Matheus Wagner
Hardware design	Rebecca Q. Do Ó Bruno Benedetti Caique S. de M. Gomes
Mechanical design	Caique S. de M. Gomes

Cost Estimation³

Item	Unit (US\$)	Quantity	Total (US\$)
STM32F303xxxxx	8	2	16
TCAN330GD	3.89	2	7.78
ina226	9.24	8	73.92
TMP100	2.68	8	21.44
L3G4200D	19.99	2	39.98
HMC5983	3,16	2	6.32
DRV8834PWP	3.62	6	28.96
Copper wire	-	1	-
Magnetic core	-	4	-
Passive components	5.00	1	5.00
PCB	0.50	10	5.00
Total		204.04 ²	

³2 units.

 $^{^2\}mathsf{Prices}$ in August 2022, without delivery rates or taxes.

Thanks!

