Infinite Computations – WS 2015/2016

Exercises – Series 7

December 4, 2015

Exercise 32. (Bachelor)

2+2 *points*

Consider the following ω -language:

 $L = \{\alpha \in \{a, b, c\}^{\omega} \mid \text{in } \alpha, \text{ between every two occurrences of } b, \text{ the letter } c \text{ occurs at least once} \}$

- (a) Give a deterministic A-automaton recognizing *L*.
- (b) Give a deterministic Staiger-Wagner automaton recognizing *L*.

Exercise 33. (Bachelor + Master)

3 points

A *deterministic weak Büchi automaton (DWBA)* is a deterministic Büchi automaton with the property that each strongly connected component (SCC) contains either only accepting states or only non-accepting states.

Show that every ω -language L that is recognized by a DWBA is also recognized by a deterministic Staiger-Wagner automaton.

Exercise 34. (Bachelor + Master)

3 points

We say that the acceptance component \mathcal{F} of a Muller automaton is *closed under co-reachable loops* if for every two loops S, S' with $S \rightsquigarrow S'$ (that means, S' is reachable from S), the following holds: if $S' \in \mathcal{F}$ then also $S \in \mathcal{F}$.

Let $\mathcal{M} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a deterministic Muller automaton. Show that $L(\mathcal{M})$ is A-recognizable iff \mathcal{F} is closed under co-reachabe loops.

Hint: There is an analogy to a proof presented in the lecture (characterization of co-Büchi recognizability).

We consider the class of \star -regular ω -languages over an alphabet Σ , which is inductively defined as follows (as in the lecture):

- Σ^{ω} and \emptyset are \star -regular,
- if *L* is \star -regular, then also \overline{L} is \star -regular,
- if L_1 and L_2 are \star -regular, then also $L_1 \cap L_2$ and $L_1 \cup L_2$ are \star -regular,
- if *L* is \star -regular and $W \subseteq \Sigma^*$ is a regular language of finite words, then $W \cdot L$ is \star -regular.

Show that for every ω -language $L \subseteq \Sigma^{\omega}$, it holds that

L is regular \Leftrightarrow *L* is \star -regular.

Hints:

- Recall that L is Muller recognizable (that means, regular) iff L is a Boolean combination of ω -languages of the form $\lim(U)$ where $U \subseteq \Sigma^*$ is a regular language.
- At some point it is useful to consider $\overline{\lim(U)}$ rather than $\lim(U)$.