Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

3 Lecture 3 May 07th 2018

3.1 Groups

3.1.1 *Groups*

Definition 6 (Groups)

Let G be a set and * an operation on $G \times G$. We say that G = (G, *) is a group if it satisfies¹

- 1. *Closure*: $\forall a, b \in G$ $a * b \in G$
- 2. Associativity: $\forall a, b, c \in G$ a * (b * c) = (a * b) * c
- 3. *Identity*: $\exists e \in G \ \forall a \in G \ a * e = a = e * a$
- 4. *Inverse*: $\forall a \in G \ \exists b \in G \ a * b = e = b * a$

¹ If you wonder why the uniqueness is not specified for **Identity** and **Inverse**, see Proposition 4.

Definition 7 (Abelian Group)

A group G is said to be abelian if $\forall a, b \in G$, we have a * b = b * a.

Proposition 4 (Group Identity and Group Element Inverse)

Let G *be a group and* $a \in G$.

- 1. The identity of G is unique.
- 2. The inverse of a is unique.

Proof

1. If $e_1, e_2 \in G$ are both identities of G, then we have

$$e_1 \stackrel{(1)}{=} e_1 * e_2 \stackrel{(2)}{=} e_2$$

where (1) is because e_2 is an identity and (2) is because e_1 is an identity.

2. Let $a \in G$. If $b_1, b_2 \in G$ are both the inverses of a, then we have

$$b_1 = b_1 * e = b_1 * (a * b_2) \stackrel{(1)}{=} e * b_2 = b_2$$

where (1) is by associativity.

Example 3.1.1

The sets $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are all abelian, wehre the additive identity is 0, and the additive inverse of an element r is (-r).

Note

 $(\mathbb{N},+)$ is not a group for neither does it have an identity nor an inverse for any of its elements.

Example 3.1.2

The sets (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) and (\mathbb{C},\cdot) are **not** groups, since 0 has no multiplicative inverse in \mathbb{Q},\mathbb{R} or \mathbb{C} .

We may define that for a set S, let $S^* \subseteq S$ contain all the elements of S that has a multiplicative inverse. For example, $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. Then, (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) and (\mathbb{C}, \cdot) are groups and are in fact abelian, where the multiplicative identity is 1 and the multiplicative of an element r is $\frac{1}{r}$.

Example 3.1.3

The set $(M_n(\mathbb{R}), +)$ is an abelian group, where the additive identity is the zero matrix, $0 \in M_n(\mathbb{R})$, and the additive inverse of an element $M = [a_{ij}] \in M_n(\mathbb{R})$ is $-M = [-a_{ij}] \in M_n(\mathbb{R})$.

Consider the set $M_n(\mathbb{R})$ under the matrix mutiplication operation that we have introduced in Lecture 1 May 02nd 2018. We found that

the identity matrix is

$$I = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & & dots \ 0 & 0 & \dots & 1 \end{bmatrix} \in M_n(\mathbb{R}).$$

But since not all elements of $M_n(\mathbb{R})$ have a multiplicative inverse², $(M_n(\mathbb{R}), \cdot)$ is not a group.

² The multiplicative inverse of a matrix does not exist if its determinant is 0.

WE CAN TRY to do something similar as to what we did before: by excluding the elements that do not have an inverse. In this case, we exclude elements whose determinant is 0. We define the following set

Definition 8 (General Linear Group)

The general linear group of degree n over \mathbb{R} is defined as

$$GL_n(\mathbb{R}) := \{ M \in M_n(\mathbb{R}) : \det M \neq 0 \}$$

Note that : det $I = 1 \neq 0$, we have that $I \in GL_n(\mathbb{R})$. Also, $\forall A, B \in GL_n(\mathbb{R})$, we have that $: \det A \neq 0 \land \det B \neq 0$,

$$\det AB = \det A \det B \neq 0$$
,

and therefore $AB \in GL_n(\mathbb{R})$. Finally, $\forall M \in GL_n(\mathbb{R}), \exists M^{-1} \in GL_n(\mathbb{R})$ such that

$$MM^{-1} = I = M^{-1}M$$

since det $M \neq 0$. \therefore ($GL_n(\mathbb{R})$, ·) is a group.

SINCE we have introduced permutations in Lecture 2 May 04th 2018, we shall formalize the purpose of its introduction below.

Example 3.1.4

Consider S_n , the set of all permutations on $\{1, 2, ..., n\}$. By Proposition 2, we know that S_n is a group. We call S_n the symmetry group of degree n. For $n \geq 3$, the group S_n is not abelian³.

Now that we have a fairly good idea of the basic concept of a

³ Let us make this an exercise.

Exercise 3.1.1

For $n \geq 3$, prove that the group S_n is not abelian.

group, we will now proceed to look into handling multiple groups. One such operation is known as the <u>direct product</u>.

Example 3.1.5

Let G and H be groups. Their direct product is the set $G \times H$ with the component-wise operation defined by

$$(g_1, h_1) * (g_2, h_2) = (g_1 *_G g_2, h_1 *_H h_2)$$

where $g_1, g_2 \in G$, $h_1, h_2 \in H$, $*_G$ is the operation on G, and $*_H$ is the operation on H.

The closure and associativity property follow immediately from the definition of the operation. The identity is $(1_G, 1_H)$ where 1_G is the identity of G and 1_H is the identity of H. The inverse of an element $(g_1, h_1) \in G \times H$ is (g_1^{-1}, h_1^{-1}) .

By induction, we can show that if G_1 , G_2 , ..., G_n are groups, then so is $G_1 \times G_2 \times ... \times G_n$.

To facilitate our writing, use shall use the following notations:

Notation

Given a group G and $g_1, g_2 \in G$, we often denote its identity by 1, and write $g_1 * g_2 = g_1g_2$. Also, we denote the unique inverse of an element $g \in G$ as g^{-1} .

We will write $g^0 = 1$. Also, for $n \in \mathbb{N}$, we define

$$g^n = \underbrace{g * g * \dots * g}_{n \text{ times}}$$

and

$$g^{-n} = (g^{-1})^n$$

With the above notations,

Proposition 5

Let G be a group and $g,h \in G$. We have

1.
$$(g^{-1})^{-1} = g$$

2.
$$(gh)^{-1} = h^{-1}g^{-1}$$

Exercise 3.1.2

Prove Proposition 5 as an exercise.

3.
$$g^n g^m = g^{n+m}$$
 for all $n, m \in \mathbb{Z}$

4.
$$(g^n)^m = g^{nm}$$
 for all $n, m \in \mathbb{Z}$

Warning

In general, it is not true that if $g,h \in G$, then $(gh)^n = g^nh^n$. For example,

$$(gh)^2 = ghgh$$
 but $g^2h^2 = gghh$.

The two are only equal if and only if G is abelian.