$$g^2 = (1)(1) = (1)$$
 $g^2 = (1-1)(1-1) = (1)$

$$\exp\left(\frac{i\theta}{2}\sigma_{i}\right) = \underbrace{\left(\frac{i\theta}{2}\sigma_{i}\right)^{2} + \left(\frac{i\theta}{2}\sigma_{i}\right)^{2} + \left(\frac{i\theta}{2}\sigma_{i}\right)^{2} + \left(\frac{i\theta}{2}\sigma_{i}\right)^{2} + \left(\frac{i\theta}{2}\sigma_{i}\right)^{2} + \cdots}_{2!}$$

$$= \left(\frac{3}{2}\right)^{\frac{1}{2}} + \left(\frac{70}{2}\right)^{\frac{1}{2}} = \left(\frac{1}{2}\right)^{\frac{3}{2}} + \left(\frac{1}{2}\right)^{\frac{3}{2}} = \left$$

$$\cos \frac{\theta}{2} = \frac{1}{0!} - \frac{(\theta/2)^2}{2!} + \frac{(\theta/2)^2}{4!} - \frac{(\theta/2)^2}{6!} + \dots$$

$$SM_{\frac{4}{2}} = \frac{\theta/2}{1!} - \frac{(\theta/2)^3}{3!} + \frac{(\theta/2)^5}{5!} - \cdots$$

$$\Rightarrow exp(\frac{16}{2}6;) = cos(\frac{6}{2}) 1 + 75in(\frac{6}{2}) 6;$$