

I. Overview

TM1620 is a special IC for LED (light emitting diode display) drive control, integrated with MCU digital interface and data latch

Circuits such as the device, LED drive, etc. This product has reliable quality, good stability and strong anti-interference ability. Mainly suitable for home appliances (smart therm Water heaters, microwave ovens, washing machines, air conditioners, induction cookers), set-top boxes, electronic scales, smart meters and other digital tubes or LED display

2. Features

- Using CMOS process
- Idisgida)y mode (8 segments × 6 digits ~ 10 segments × 4
- Padigitatiable) adjustment circuit (8-level duty cycle
- Serial interface (CLK, STB, DIN)
- Oscillation mode: built-in RC
- Built-in power-on reset circuit
- Built-in data latch circuit
- Hight-prophemization circuit for LED reverse bias leakage caused dim
- Saturbity anti-interference
- Package form: SOP20

3. Pin definition:

©Titan Micro Electronics

	VDD	1 0	20	STB
	SEG1	2	19	CLK
	SEG2	3	18	DIN
	SEG3	4 TM1620 17		GRID1
	SEG4	5 (TOP VIEW) 16		GRID2
	SEG5	6	15	GND
	SEG6	7	14	GRID3
	SEG7	8	13	GRID4
	SEG8	9	12	GND
SEG13/GF	RID6	10	11	GRID5/SEG14

-1-

www.titanmec.com

4. Pin function definition:

symbol	Pin name	Pin number	Description
DIN	data input	18	Input serial data on the rising edge of the clock, from the low bit Start.
CLK	Clock input	19	Read serial data on rising edge and output on falling edge data.
STB	Chip select input	20	Initialize the serial interface on the falling edge, then wait Receive instructions. The first byte after STB is low Is an instruction, when the instruction is processed, the current other process Was terminated. When STB is high, CLK is ignored.
SGE1~SEG8	Output (segment)	2~9	Segment output, P tube open drain output
GRID1 ~ GRID4	Output (bit)	16~17 13~14	Bit output, N tube open drain output
SEG13/DRID6 ~ SEG14/GRID5	Output (segment/position)	10~11	Segment/bit multiplexed output, only select segment or bit output
VDD	Logic power	1	Power supply
GND	Logically	12, 15	Systematically

5. Instructions:

Instructions are used to set the display mode and the status of the LED driver.

The first byte input by DIN after the falling edge of STB is used as a command. After decoding, take the highest B7 and B6 two bits to distinguish different commands.

В7	В6	instruction				
0	0	Display mode command settings				
0	1	Data command settings				
1	0	Display control command settings				
1	1	Address command settings				

If STB is set to high level during command or data transmission, serial communication is initialized, and the command or data being transmitted is invalid.

The instructions or data remain valid).

(Previously sent

(1) Display mode command settings:

This instruction is used to set the number of selected segments and bits (4~6 bits, 8~10 segments). When this command is executed, the display is forcibly closed. On display When the display mode is unchanged, the data in the video memory will not be changed, and the display control command controls the display switch.

MSB							LSB	
В7	В6	B5	B4	В3	B2	B1	В0	Display mode
0	0					0	0	4 digits 10 segments
0	0		Irrelevant	items, fill in 0		0	1	5 digits 9 segments
0	0					1	0	6 bits 8 segments

(2) Data command setting:

This instruction is used to set data write and read, B1 and B0 bits are not allowed to set 01 or 11.

MSB

В7	B6	B5	B4	В3	B2	B1	В0	Features	Description
0	1					0	0	Data mode setting	Write data to display register
0	1	Irrelevant items,			0			Address increase mode	Automatic address increase
0	1				1			Set up	Fixed address
0	1	Fill	U	0				Test mode setting	Normal mode
0	1			1			·	(internal use)	Test mode

(3) Display control command settings:

This command is used to set the display switch and display brightness adjustment. There are 8 levels of brightness to choose from for adjustment.

MSB	LSB

В7	В6	B5	B4	В3	B2	B1	В0	Features	Description
1	0				0	0	0		Set the pulse width to 1/16
1	0	Irrelevant items,			0	0	1	Extinction number setting	Set the pulse width to 2/16
1	0				0	1	0		Set the pulse width to 4/16
1	0				0	1	1		Set the pulse width to 10/16
1	0				1	0	0		Set the pulse width to 11/16
1	0				1	0	1		Set the pulse width to 12/16

LED drive control dedicated circuit

TM1620

1	0		1	1	0		Set the pulse width to 13/16
1	0		1	1	1		Set the pulse width to 14/16
1	0	0					Display off
1	0	1				Display switch settings	Show on

(4) Address command setting:

This instruction is used to set the address of the display register. The most effective address is 12 bits (00H-0BH). When power on, the address is set to 00H by default.

MSB							LSB			
В7	В6	B5	B4	В3	B2	B1	В0	Show address		
1	1			0	0	0	0	00H		
1	1			0	0	0	1	01H		
1	1			0	0	1	0	02H		
1	1			0	0	1	1	03H		
1	1			0	1	0	0	04H		
1	1	Irreleva	ant items,	0	1	0	1	05H		
1	1	Fill	Fill 0		1	1	0	06H		
1	1			0	1	1	1	07H		
1	1			_		1	0	0	0	08H
1	1			1	0	0	1	09H		
1	1			1	0	1	0	0AH		
1	1			1	0	1	1	0BH		

6. Display register address:

This register stores the data received from the external device to the TM1620 through the serial interface, the most effective address is from 00H-0BH, a total of 12 byte units, Correspond to the SEG and GRID pins of the chip respectively, and the specific allocation is shown in Figure (2):

write led When displaying data, follow the display address from low to high, and data byte from low to high.

	х	x	SEG14	SEG13	х	x	х	х	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
		sition)	HU (high p	xxl	:)	r four digits	xHL (lower	>		h four)	kHU (hig	x		our digits)	L (lower fo	xxH
	B7	В6	B5	B4	В3	B2	B1	В0	В7	В6	B5	B4	В3	B2	B1	В0
GRID1			01H			⊣L	01H			НU	001			I L	00H	
GRID2			03H			03HL				HU	02H			I L	02H	
GRID3			05H		05HL			04HU				I L	04H			
GRID4		07HU				07HL			06HU				I L	06H		
GRID5			09H			I L	09H		08HL 08HU			08H				
GRID6	_		0BH		•	HL	0BI			HU U	0Al			HL	0AH	

figure 2)

[•]Attention: The value stored in the chip display register at the moment of power-on may be random and uncertain. At this time, the customer directly sends the screen-opening command.

Garbled characters may appear. Therefore, our company recommends that customers perform a power-on reset operation on the display register, that is, to the 12-bit video memory address after power-on (00H-0BH) all write data 0x00.

Seven, display:

Drive common cathode digital tube:

Figure (7)

Figure 7 shows the connection diagram of the common cathode digital tube. If the digital tube displays "0", you only need to switch to 00H (GRID1) address from the low position.

Just write 0x3F data. At this time, 00H corresponds to the data of each SEG1-SEG8 in the following table.

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	GRID1(00H)
В7	В6	B5	B4	В3	B2	B1	В0	

8. Serial data transmission format:

Both reading and receiving a BIT operate on the rising edge of the clock.

Figure 5)

11. Serial data transmission during application :

(1) Address increase mode

Using the automatic address plus 1 mode, the setting address is actually the starting address where the data stream to be transmitted is stored. The start address command word is sent After that, "STB" does not need to be set high and then the data is transmitted, up to 14 BYTE, and "STB" is set high after the data transmission is completed.

CLK						ШШШ		
DIN	Command 1	Command2	Command3	Data1	Data2	 Data n	Command4	_
STB								

Command1: Set the display mode
Command2: Set data command
Command3: Set the display address

Data1 ~ n: Transmit display data to Command3 address and the following address (maximum 12bytes)

Command4: Display control commands

(2) Fixed address mode

Using the fixed address mode, setting the address is actually setting the address where the 1BYTE data to be transmitted is stored. Address sent", STB"

There is no need to set high, immediately after transmitting 1BYTE data, the "STB" is set high after the data transmission is completed. Then reset the address where the second data needs to be stored.

After the transmission of up to 12 bytes of data is complete, "STB" is set high.

Command1: Set the display mode
Command2: Set data command
Command3: Set display address 1

Data1: Transmit display data 1 to the Command3 address

Command4: Set display address 2

Data2: Transmit display data 2 to the Command4 address

Command5: Display control commands

(4) The program design flow chart adopting the address automatic increment and fixed address method:

Program design flow chart with automatic address plus one :

Program design flow chart with fixed address:

12. Application circuit:

TM1620 drive common cathode digital screen hardware circuit diagram (18)

*Attention: 1. The filter capacitor between VDD and GND should be placed as close as possible to the TM1620 chip on the PCB board to enhance the filtering effect.

- 2. Connecting three 100pF capacitors on the DIN, CLK, and STB communication ports can reduce the interference to the communication ports.
- 3. Since the turn-on voltage of the blue digital tube is about 3V, the TM1620 power supply should be 5V.

13. Electrical parameters:

Limit parameters (Ta = 25°C, Vss = 0V)

parameter	symbol	range	unit
Logic supply voltage	VDD	-0.5 ~ +7.0	V
Logic input voltage	VI1	-0.5 ~ VDD + 0.5	V
LED SEG drive output current	IO1	-50	mA
LED GRID driver output current	IO2	+ 200	mA
Power loss	PD	400	mW
Operating temperature	Topt	-40 ~ +80	°C
Storage temperature	Tstg	-65 ~+150	°C

Normal working range (Ta = -20 ~ +80°C, Vss = 0V)

parameter	symbol	The smallest	typical	maximum	unit	Test Conditions
Logic supply voltage	VDD		5	-	V	-
High level input voltage	VIH	0.7 VDD	-	VDD	V	-
Low-level input voltage	VIL	0	ı	0.3 VDD	V	-

Electrical characteristics (Ta = -20 \sim +80°C, VDD = 5V, V ss = 0V)

parameter	symbol	The smalles	t typical	maximum	unit	Test Conditions
High level output current	loh1	20	35	60	mA	SEG1~SEG8 Vo = VDD -3V
Low-level input current	lol	80	120	ı	mA	GRID1 ~ GRID6 Vo=0.3V
Low-level output current	ldout	3	-	-	mA	Vo = 0.4V,Dout
High level output current capacity A lot	Itolsg	-	-	5	%	Vo = VDD – 3V, SEG1 ~ SEG8
High level input voltage	VIH	0.7 VDD	-		V	CLK, DIN, STB
Low-level input voltage	VIL	-	-	0.3 VDD	V	CLK, DIN, STB

Switching characteristics (Ta = -20 \sim +80°C, VDD = 5V)

parameter	symbol	The smalle:	st typical	maximum	unit	Test Conditions	
	t PLZ		-	300	ns		CLK → DIN
Transmission delay time	t PZL	1		100	ns	CL = 15pF, RL = 10K Ω	
	t тzн 1	1	-	2	μs		SEG1~SEG8
Rise Time	t тzн 2	-	-	0.5	μs	CL = 300p F	GRID1 ~ GRID4 SEG13/GRID6 ~ SEG14/GRID5
Fall time	t тнz	-	-	1.5	μs	CL = 300pF, SEGn, GRIDn	
Maximum input clock frequence	y Fmax	-	_	1	MHz	50% duty cycle	
Input capacitance	CI	-	-	15	pF		-

©Titan Micro Electronics www.titanmec.com

-11-

Timing characteristics (Ta = -20 \sim +80°C, VDD = 5V)

parameter	symbol	The smalle	st Typical r	naximum ເ	ınit	Test Conditions
Clock pulse width	PW clk	500	-	-	ns	-
Strobe pulse width	PW STB	1	-	-	μs	-
Data establishment time	t SETUP	100	-	-	ns	-
Data retention time	t HOLD	100	-	-	ns	-
CLK →STB time	t CLK-STB	1	-	-	μs	CLK↑→STB↑

Timing waveform diagram:

14. IC package diagram:

Symbol	Dimensions In Millimeters		Dimensions In	Inches
	Min	Max	Min	Max
Α	2. 350	2. 650	0. 093	0. 104
A1	0. 100	0. 300	0.004	0. 012
A2	2. 100	2. 500	0. 083	0. 098
b	0. 330	0. 510	0. 013	0. 020
С	0. 204	0. 330	0.008	0. 013
D	12. 520	13. 000	0. 493	0. 512
E	7. 400	7. 600	0. 291	0. 299
E1	10. 210	10. 610	0. 402	0. 418
е	1. 270	(BSC)	0. 050 (BS	C)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

All specs and applications shown above subject to change without prior notice.

(The above circuit and specifications are for reference only. If our company makes amendments without notice.)

V1.0