CS335A: Assignment 3

Udit Prasad (201055)

Question 1

${\bf Solution:}$

(a) CFG is as follows:

$$S \to \alpha(P) \tag{0}$$

$$S \to \beta(P_1, P_2) \tag{1}$$

$$S \to \gamma(P_1, P_2, P_3) \tag{2}$$

$$P \to S \tag{3}$$

$$P \to x \tag{4}$$

$$P \to y \tag{5}$$

(b) Given, type(x) = A and type(y) = B

Using this information and the CFG from part(a), following is the SDT,

Production	Semantic Rule
$S \to \alpha(P)$	$\left \{ if(P.type == A) \right $
	then $S.type = A$
	else print("Type error")
	}
$S \to \beta(P_1, P_2)$	$\{if(P_1.type == B \text{ and } P_2.type == B)$
	then $S.type = B$
	else print("Type error")
	}
$S \to \gamma(P_1, P_2, P_3)$	$\{if(P_1.type == P_2.type and P_2.type == P_3.type)$
	then $S.type = B$
	else print("Type error")
	}
$P \rightarrow S$	$\{P.type = S.type\}$
$P \rightarrow x$	$\{P.type = A\}$
$P \rightarrow y$	$\{P.type = B\}$
(c)	

1

Figure 1: Annotated Parse Tree

Question 2

Solution: (a) CFG is as follows:

$P \to S$	(0)
$P \rightarrow P; S$	(1)
$S \to x = E$	(2)
$E \to E + T$	(3)
E o T	(4)
$T \to T * F$	(5)
T o F	(6)
$F \to 1$	(7)
$F \to x$	(8)
	(9)

(b) following is the SDT,

Production	Semantic Rule
$P \rightarrow S$	$\{S.xval = 0; P.val = S.val;\}$
$P \to P_1; S$	${P_1.\text{xval} = 0; \text{S.xval} = P_1.\text{val}; \text{P.val} = \text{S.val};}$
$S \to x = E$	${S.val = E.val; E.xval = S.xval;}$
$E \to E_1 + T$	$\{E.\text{val} = E_1.\text{val} + \text{T.val}; E_1.\text{xval} = \text{E.xval}; \text{T.xval} = \text{E.xval}; \}$
$E \to T$	$\{E.val = T.val; T.xval = E.xval;\}$
$T \to T_1 * F$	$\{T.val = T_1.val * F.val; T_1.xval = T.xval; F.xval = T.xval;\}$
$T \to F$	${T.val = F.val; F.xval = T.xval;}$
$F \rightarrow 1$	$\{F.val = 1; \}$
$F \to x$	$\{F.val = F.xval; \}$

(c) Following table tells about all the attributes of different terminals:

Terminal	attribute	Type
S	val	synthesized
S	xval	inherited
P	val	synthesized
P	xval	inherited
E	val	synthesized
E	xval	inherited
T	val	synthesized
T	xval	inherited
F	val	synthesized
F	xval	inherited

3

Question 3

Solution:

following is the SDT,

Production	Semantic Rule
$stmt \rightarrow var = expr$	$\{if(stmt.indefs \cap expr.refd == stmt.indefs)\}$
	then stmt.outdefs = stmt.indefs \cup var.name
	else print("undefined variable") }
$stmt \rightarrow stmt_1 \; ; \; stmt_2$	$\{stmt_1.indefs = stmt.indefs ; stmt_2.indefs = stmt_1.outdefs;$
	$stmt.outdefs = stmt_2.outdefs; $
$stmt \rightarrow if expr then stmt_1 else stmt_2 fi$	$\{if(stmt.indefs \cap expr.refd == stmt.indefs)\}$
	then $\{ stmt_1.indefs = stmt.indefs; \}$
	$stmt_1.indefs = stmt.indefs;$
	$stmt.outdefs = stmt_1.outdefs \cap stmt_2.outdefs$
	}
	else print("undefined variable")}
$expr \rightarrow expr_1 + expr_2$	$\{\text{expr.refd} = expr_1.\text{refd} \cup expr_2.\text{refd};\}$
$expr \rightarrow expr_1 < expr_2$	$\{\text{expr.refd} = expr_1.\text{refd} \cup expr_2.\text{refd};\}$
expr o var	$\{expr.refd = \{var.name\};\}$
$expr \rightarrow int_const$	{}

Question 4

Solution: Following is the IR generated:

$$t_1 = k * 28$$

$$t_2 = j * 4$$

$$t_3 = t_1 + t_2$$

$$t_4 = B[t_3]$$

$$t_5 = i * 20$$

$$t_6 = k * 4$$

$$t_7 = t_4 + t_5$$

$$t_8 = A[t_7]$$

$$t_9 = t_4 * t_8$$

$$t_{10} = i * 28$$

$$t_{11} = j * 4$$

$$t_{12} = t_{10} + t_{11}$$

$$t_{13} = C[t_{12}]$$

$$t_{14} = t_{13} + t_9$$

Figure 2: Annotated Parse Tree