

SIM7600CE_SIM7600C 硬件设计手册__V1.01

文档名称:	SIM7600CE_SIM7600C 硬件设计手册
版本:	1.01
日期:	2016-07-27
状态:	发布
文档控制号:	SIM7600CE_SIM7600C 硬件设计手册_V1.01

前言

感谢使用 SIMCom 提供的 SIM7600Cx 系列模块。本产品具有标准 AT 命令接口,可以提供 GSM 语音、短消息等业务。使用前请仔细阅读用户手册,您将领略其完善的功能和简洁的操作方法。

此模块主要用于语音或者数据通讯,本公司不承担由于用户不正常操作造成的财产损失或者人身伤害责任。请用户按照手册中的技术规格和参考设计开发相应的产品。同时注意使用移动产品应该关注的一般安全事项。

在未声明之前,本公司有权根据技术发展的需要对本手册内容进行修改。

版权声明

本手册版权属于 SIMCom, 任何人未经我公司书面同意复制、引用或者修改本手册都将承担法律责任。

目录

目录		3
表格索	륏	5
图片雾	-	6
版本月	史	7
	花	
1.1	· 模块综述	
1.1	接口概述	
1.3	模块框图	
1.3	主要特性	
	工女们 [
2.	装信息 脚分布図	<u>12</u>
2.1	脚分布图	1 4
2.2	机械尺寸	
2.3 2.4	推荐 PCB 封装尺寸	
2.4	推存 PCB 到表八寸	19
3.	拉用接口 供电输入	20
	供电输入	20
	. 1 供电参考设计	21
	. 2 推荐外部电源电路	21
	. 3 电源监测	22
3.2	开机/关机/复位	22
3.2	1 模块开机	22
3.2	2 模块关机	24
3.2	3 模块复位 串口	24
3.3	串口	25
	1. 串口参考设计	
	2. RI 和 DTR 描述	
	USB 接口	
	1. USB 参考设计	
3.5	USIM 卡接口	
	1. USIM 参考设计	
	2. USIM 卡座的选择	
3.6	PCM 接口	
	1. PCM 时序	
	2. PCM 参考设计	
3.7	SD 卡接口	
3.8	I2C 总线	
	1. I2C 参考设计	
3.9	SDIO 接口	
3.10	SPI 接口	
3.11	网络状态指示	
3.12	飞行模式控制	
3.13	其他接口	
	3.1. ISINK	
3.	3.2. 模数转换器(ADC)	36

3.13.	3. LDO	37
4. 射	频参数	38
4.1.	GSM/CDMA 1X/UMTS/LTE 射频参数	38
4.2.	GSM/CDMA 1X/UMTS/LTE 天线参考设计	40
4.3.	GNSS	41
4.3.1	. GNSS 参数	41
4.3.2	. GNSS 参考设计	41
5. 电	气参数	43
5.1.	极限参数	43
5.2.	正常工作条件	
5.3.	工作模式	44
5.3.1		
5.3.2	77 - 18 - 1	
5.3.3	. 最小功能模式	45
5.4.	耗流	46
5.5.	静电防护	48
6. 贴	片生产	49
6.1.	模块的顶视图和底视图	49
6.2.	标签信目	50
6.3.	典型焊接炉温曲线	51
6.4.	湿敏特性	51
6.5.	推荐钢网设计	52
7. 包	装	53
I.	参考原理图	55
II.	编码方式及最大数据速率	56
III.	参考文档	58
IV.	术语和解释	
V	安全整生	62

表格索引

表	1:	SIM7600CX 系列模块频段列表	8
表	2:	模块主要特性	10
表	3:	引脚定义列表	13
表	4:	引脚参数缩写	14
表	5:	引脚描述	14
表	6:	VBAT 引脚电气参数	20
		推荐的齐纳二极管列表	
表	8:	开机时序参数	23
表	9:	关机时序参数	24
表	10:	RESET 引脚电参数	25
表	11:	1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)	28
表	12:	3.0V 模式时 USIM 接口电气参数(USIM_VDD=2.95V)	28
表	13:	AMPHENOL USIM 卡座引脚描述	30
表	14:	PCM 参数表	31
表	15:	PCM 时序参数	32
表	16:	SD 卡接口电参数(SD_DATA0-SD_DATA3,SD_CLK 和 SD_CMD)*	33
表	17:	NETLIGHT 工作状态	35
表	18:	FLIGHTMODE 引脚状态	36
表	19:	ISINK 电气参数	36
衣	20:	ADCI 和 ADC2 电气特性	3 /
表	21:	VDD_EXT 电气特性	37
表	22:	传导发射功率	38
表	23:	频段信息	38
表	24:	E-UTRA 频段信息	39
表	25:	传导接收灵敏度	39
表	26:	参考灵敏度(OPSK)	39
表	27:	走线损耗推荐值	40
表	28:	TVS 推荐型号列表	40
表	29:	极限参数	43
表	30:	模块推荐工作电压	43
		1.8V 数字接口特性*	
		模块工作温度	
表	33:	工作模式定义	44
表	34:	VBAT 耗流(VBAT=3.8V)	46
表	35:	ESD 性能参数 (温度: 25℃, 湿度: 45%)	48
表	36:	模块信息描述	50
表	37:	模块湿敏特性	51
表	38:	托盘尺寸信息	54
表	39:	小卡通箱尺寸信息	54
表	40:	大卡通箱尺寸信息	54
		编码方式和最大数据速率	
表	42:	参考文档	58
表	43:	术语和解释	60
表	44:	安全警告	62

图片索引

图	1:	模块框图	10
图	2:	模块引脚图(顶视图)	12
图	3:	三维尺寸(单位:毫米)	18
图	4:	推荐 PCB 封装尺寸(单位:毫米)	19
图	5:	突发电流时 VBAT 的跌落	20
图	6:	VBAT 输入参考电路	21
图	7:	线性电源推荐电路	22
图	8:	开关电源推荐电路	22
图	9:	开关机参考电路	23
图	10:	PWRKEY 开机时序	23
		PWRKEY 关机时序	
图	12:	复位推荐电路	25
图	13:	串口连接图(全功能模式)	25
图	14:	串口连接图(NULL 模式)	26
图	15:	推荐电平转换电路	26
图	16:	RI 上的电平变化(短信, URC)	27
图	17:	RI 上的电平变化(语音呼入)	27
图	18:	USB 连接图	27
图	19:	USIM 接口推荐电路	29
ы	20.	11411 TET (OE C/0/ 101/1000 312 OBIN1 下)上) (1 国	50
冬	21:	PCM SYNC 时序	31
图	22:	-	31
图	23:	模块到外部 CODEC 的时序	31
图	24:	PCM 推荐电路	32
图	25:	SD 卡连接图	33
图	26:	I2C 接口参考电路	34
图	27:	NETLIGHT 参考电路	35
图	28:	飞行模式控制参考电路	35
图	29:	ISINK 参考电路	36
图	30:	天线接口连接电路(主天线)	40
图	31:	天线接口连接电路(分集天线)	41
图	32:	GNSS 有源天线参考电路	42
图	33:	GNSS 无源天线参考电路	42
图	34:	模块项视图和底视图	49
图	35:	标签信息	50
图	36:	推荐焊接炉温曲线图(无铅工艺)	51
图	37:	模块包装示意图	53
图	38:	托盘尺寸图	53
图	39:	小卡通箱尺寸图	54
图	40:	大卡通箱尺寸图	54
タ	41.	参考设计原理图	55

版本历史

日期	版本	变更描述	作者
2016-07-06	1.00	初版	马洪刚、滕丽丽
2016-07-27	1.01	修改文档名称; 更新图三和图四; 更新表 20, 更改 ADC 的输入电压范围; 修正图 41 中 USB_VBUS 的输入范围描述;	马洪刚

1. 绪论

本文档描述了模块的硬件接口,可以帮助用户快速的了解模块的接口定义、电气性能和结构尺寸的详细信息。结合本文档和其他的应用文档,用户可以快速的使用模块来设计移动通讯应用方案。

1.1 模块综述

SIM7600Cx模块可支持GSM, TD-SCDMA, CDMA, WCDMA, TDD-LTE和FDD-LTE。 用户可以灵活选用不同型号的模块以满足多样化的市场需求。详细的频段描述请参考下表:

表 1: SIM7600Cx 系列模块频段列表

网络米利	基本 61.	系统	別
网络类型	频段	SIM7600C	SIM7600CE
GSM	EGSM900MHz	✓	✓
GSM	DCS1800MHz	✓	✓
CDMA2000/ EVDO	BC0		✓
WCDMA	BAND1	✓	✓
WCDMA	BAND8	✓	✓
TD-SCDMA	TD-SCDMA 1.9G	✓	✓
ID-SCDMA	TD- SCDMA 2G	✓	✓
	LTE-FDD B1	✓	✓
LTE-FDD	LTE-FDD B3	✓	✓
	LTE-FDD B8	✓	✓
	LTE TDD B38	✓	✓
TTT TDD	LTE TDD B39	✓	✓
LTE-TDD	LTE TDD B40	✓	✓
	LTE TDD B41	✓	✓
Category		CAT4	CAT4
GNSS		✓	✓

模块的尺寸只有30*30*2.9 mm,几乎可以满足所有用户应用中的对空间尺寸的要求。

1.2 接口概述

SIM7600Cx提供了如下的硬件接口:

- 一路电源输入
- 一路USB 2.0 接口
- 一路全功能串口
- 两路SDIO接口,一路专用于MMC/SD卡,一路专用于WIFI接口
- 一路USIM卡接口
- 多个可编程的通用输入输出接口(GPIO)
- 两路ADC接口
- 两路供电输出
- 一路电流源输出
- 一路PCM数字音频接口
- 一路SPI接口
- 一路I2C接口

1.3 模块框图

下图列出了模块内部主要功能构架:

图 1: 模块框图

1.4 主要特性

表 2: 模块主要特性

特性	说明
供电	电压范围: 3.4V ~4.2V, 推荐值4.0V
省电	休眠模式下的耗流: 小于 5mA
频段	请参考表1
发射功率	GSM/GPRS功率等级:
	EGSM900: 4 (2W)
	DCS1800: 1 (1W)
	EDGE功率等级:
	EGSM900: E2 (0.5W)
	DCS1800: E1 (0.4W)
	CDMA 1X功率等级: 3 (0.25W)
	UMTS功率等级:
	WCDMA: 3 (0.25W):
	EVDO: 3 (0.25W)
	TD-SCDMA: 2 (0.25W)
	LTE功率等级 3 (0.25W)

数据传输	GPRS 多时隙 等级 12 EDGE 多时隙 等级 12 UMTS R99: 384 kbps DL/UL HSPA+: 5.76 Mbps(UL), 42 Mbps(DL) TD-HSDPA/HSUPA: 2.2 Mbps(UL), 2.8 Mbps(DL) CDMA EVDO: Rev-0,Rev-A, Rev-B LTE 类别 4: 150 Mbps (DL) LTE 类别 4: 50 Mbps (UL)
天线接口	GSM/UMTS/LTE 主天线接口 UMTS/LTE 分集天线接口 GNSS 天线接口
GNSS	GNSS (GPS/GLONASS/BeiDou) 协议: NMEA
短消息(SMS)	MT, MO, CB, Text 和 PDU 模式 短消息(SMS)存储设备: USIM 卡和ME(默认) 支持CS域和PS域短信
USIM卡接口	支持的 1.8V/3V USIM卡
USIM应用工具包	支持 SAT 等级 3, GSM 11.14 版本 99 支持 USAT
通讯录管理	支持类型: DC,MC,RC,SM,ME,FD,ON,LD,EN
数字音频	支持PCM数字音频接口 仅支持PCM主模式
串口	默认支持一路标准的全功能串口 波特率支持从 300bps到 4Mbps(默认 115200bps) 支持从 9600bps,19200,38400,57600,115200bps 的自动波特率检测功能 可以通过串口发送AT命令和数据 支持RTS/CTS硬件流控 支持符合GSM 07.10 协议的串口复用功能
MMC/SD/SDIO	两路SDC接口,最高速率可达 50MHz SD1 接口支持 2.95V MMC和SD卡 SD2 接口支持 1.8V SDIO设备
USB接口	符合USB 2.0 规范
软件升级	通过USB口升级软件
物理尺寸	尺寸: 30*30*2.9mm 重量: 5.7g
温度范围	工作温度: -30℃ ~ +80℃ 扩展工作温度: -40℃ ~ +85℃* 存储温度: -45℃ ~ +90℃

^{*}备注:在扩展工作温度范围内,模块可以正常工作,但不保证完全符合3GPP测试规范。

2. 封装信息

2.1 脚分布图

模块共有87个引脚,提供了模块的所有硬件接口。

图 2: 模块引脚图(顶视图)

表 3: 引脚定义列表

引脚序号	引脚名称	引脚序号	引脚名称
1	GND	2	GND
3	PWRKEY	4	RESET
5	GND	6	SPI_CLK
7	SPI_MISO	8	SPI_MOSI
9	SPI_CS	10	GND
11	USB_VBUS	12	USB_DN
13	USB_DP	14	GND
15	VDD_1V8	16	USB_ID
17	USIM_DATA	18	USIM_RST
19	USIM_CLK	20	USIM_VDD
21	SD_CMD	22	SD_DATA0
23	SD_DATA1	24	SD_DATA2
25	SD_DATA3	26	SD_CLK
27	SDIO_DATA1	28	SDIO_DATA2
29	SDIO_CMD	30	SDIO_DATA0
31	SDIO_DATA3	32	SDIO_CLK
33	GPIO3	34	GPIO6
35	HSIC_STROBE	36	HSIC_DATA
37	GND	38	VBAT
39	VBAT	40	GND
41	GND	42	NC
43	GND	44	VDD_EXT
45	ISINK	46	ADC2
47	ADC1	48	SD_DET
49	STATUS	50	GPIO43*
51	NETLIGHT	52	GPIO41
53	USIM_DET	54	FLIGHTMODE
55	SCL	56	SDA
57	GND	58	GND
59	AUX_ANT	60	GND
61	GND	62	VBAT
63	VBAT	64	GND
65	GND	66	RTS
67	CTS	68	RXD
69	RI	70	DCD

71	TXD	72	DTR
73	PCM_OUT	74	PCM_IN
75	PCM_SYNC	76	PCM_CLK
77	GND	78	GND
79	GNSS_ANT	80	GND
81	GND	82	MAIN_ANT
83	COEX1*	84	COEX2
85	BOOT_CFG0*	86	COEX3*
87	GPIO77		

注意: 在正常开机前, GPIO43, COEX1, COEX3 和BOOT_CFG0 这些引脚不能上拉, 否则 会影响模块正常开机!

2.2 引脚描述

表 4: 引脚参数缩写

缩写	描述
PI	电源输入
PO	电源输出
AI	模拟输入
AIO	模拟输出
I/O	输入或输出
DI	数字输入
DO	数字输出
DOH	默认输出高电平
DOL	默认输出低电平
PU	上拉
PD	下拉

表 5: 引脚描述

引脚名称	引脚序号	I/O	描述	备注
供电				
VBAT	38,39,62,6 3	PI	模块供电输入,输入电压范围从 3.4V~4.2V。	
VDD_EXT	44	РО	LDO 输出,可以为 SD 卡或其他电路供电。输出电流最大 150mA,输出电压可配(默认关闭)。	如不使用,悬空即可。
VDD_1V8	15	РО	内部 1.8V 电源输出,输出电流最大 50mA,可为电平转换电路等提供电源。	如不使用,悬空即可。
GND	1,2,5,10,1 4,37,40,41 ,43,57,58,		接地	

	60,61,64,6 5,77,78,80 ,81			
系统控制	,			
PWRKEY	3	DI,PU	开关机控制输入,低电平有效	开机键默认高电平 0.8V。
RESET	4	DI,PU	硬件复位控制输入,低电平有效	模块内部已通过 40KΩ电阻上拉至 1.8V。
SD 接口				
SD_CMD	21	DO	SDIO 总线命令输出	
SD_DATA0	22	I/O		使用时不需要外
SD_DATA1	23	I/O	SDIO 总线数据	部上拉电阻。如不
SD_DATA2	24	I/O		使用,悬空即可。
SD_DATA3	25	I/O		
SD_CLK	26	DO	SDIO 总线时钟输出	
USIM 接口				
USIM_DATA	17	I/O,PU	USIM 总线数据, 内部有 100KΩ 电阻上 拉到 USIM_VDD	
USIM_RST	18	DO	USIM 总线复位输出	
USIM_CLK	19	DO	USIM 总线时钟输出	
USIM_VDD	20	РО	USIM 卡供电输出,输出电压可根据外接卡片类型动态改变,输出电流最大50mA	
SPI 接口				
SPI_CLK	6	DO	SPI 总线时钟输出	/n -+-++
SPI_MISO	7	DI	SPI 总线主控输入	仅支持主控模式。 如不使用, 悬空即
SPI_MOSI	8	DO	SPI 总线主控输出	可。
SPI_CS	9	DO	SPI 总线片选输出	7 0
USB 接口				
USB_VBUS	11	DI,PD	USB 插入检测输入, 高电平有效 (3.6~5.85V)	
USB_DN	12	I/O	USB总线差分负极	
USB_DP	13	I/O	USB总线差分正极	
USB_ID	16	DI	USB总线主从识别	必须保持悬空状 态。
串口				
RTS	66	DOH	请求发送	
CTS	67	DI,PU	清除发送	
RXD	68	DI,PU	数据接收	加不使用 且应用
RI	69	DOH	振铃指示	如不使用,悬空即可。
DCD	70	DOH	数据载波检测	
TXD	71	DOH	数据发送	
DTR	72	DI,PU	数据终端准备	

15

12C					
SCL	55	DO	I2C 总线时钟输出	如不使用,悬空即	
SDA	56	I/O	I2C 总线数据输入/输出	可。使用时需加 4.7KΩ上拉电阻 到 1.8V 电源。	
SDIO 接口					
SDIO_DATA1	27	I/O	SDIO data1		
SDIO_DATA2	28	I/O	SDIO data2		
SDIO_CMD	29	DO	SDIO command	用于 WLAN 使用	
SDIO_DATA0	30	I/O	SDIO data0	/ij 1 WE/IIV X/ij	
SDIO_DATA3	31	I/O	SDIO data3		
SDIO_CLK	32	DO	SDIO clock		
HSIC 接口					
HSIC_STROB E	35	DO	HSIC strobe wakeup	预留	
HSIC_DATA	36	I/O	HSIC data		
PCM 接口					
PCM_OUT	73	DO	PCM 总线数据输出		
PCM_IN	74	DI	PCM 总线数据输入	如不使用,悬空即	
PCM_SYNC	75	DO	PCM 总线同步输出	可。	
PCM_CLK	76	DO	PCM 总线时钟输出		
通用输入输出接	₹ □				
NETLIGHT	51	DO	网络状态指示		
FLIGHTMODE	54	DI,PU	飞行模式控制输入: 高电平(悬空):正常模式 低电平:飞行模式		
STATUS	49	DO	开机状态指示输出: 低电平: 掉电或初始化过程中 高电平: 上电后软件初始化完成		
GPIO41	52	IO	通用输入/输出口	如不使用,悬空即	
GPIO43	50	IO	通用输入/输出口	可。	
GPIO3	33	IO	通用输入/输出口	在正常开机前,不	
GPIO6	34	IO	通用输入/输出口	能上拉GPIO43!	
GPIO77	87	IO	通用输入/输出口	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SD_DET	48	Ю	默认功能:通用输入/输出口可选功能:SD 卡插入检测输入高电平:SD 卡已拔出;低电平:SD 卡已插入		
USIM_DET	53	Ю	USIM 卡插入检测输入 高电平: USIM 卡已拔出; 低电平: USIM 卡已插入		
天线接口	天线接口				
MAIN _ANT	82	AIO	主天线接口		
GNSS_ANT	79	AI	GNSS 天线接口		
AUX_ANT	59	AI	分集天线接口		
其他功能引脚					
ISINK	45	PO	恒流源输出	如不使用,悬空即	
DIM	73	10	157000分割口	州 7 区 7 7 1 区 7 1 1 1 1 1 1 1 1 1 1 1 1 1	

ADC1	47	AI	通用模拟数字转换器接口1	可。
ADC2	46	AI	通用模拟数字转换器接口 2	
COEX1	83	I/O		如不使用,悬空即
COEX2	84	I/O		可。在正常开机
COEX3	86	I/O	Wi-Fi 与 LTE 频段同步信号	前,不能上拉 COEX1 和 COEX2!
BOO_CFG0	85	DI	代码引导控制输入,上电时拉高到1.8V, SIM7600 将进入 USB 下载模式	建议放置测试点, 方便调试及升级。 在正常开机前,不 能 上 拉 BOOT_CFG0!
NC	42		无连接	推荐悬空。

17

2.3 机械尺寸

以下图片描述了 SIM7600Cx 的封装尺寸。

图 3: 三维尺寸(单位:毫米)

2.4 推荐 PCB 封装尺寸

图 4: 推荐 PCB 封装尺寸(单位:毫米)

3. 应用接口

3.1 供电输入

SIM7600Cx使用单一电源供电,共有4个引脚(38,39,62和63引脚)作为VBAT电源输入。SIM7600Cx通过这4个引脚给内部的射频和基带电路供电。

当模块在GSM模式下以最大功率发射时,电流峰值瞬间最高可达到2A,从而导致在VBAT上有较大的电压跌落。为保证电压跌落小于300mV,必须保证外部电源供电能力不小于2A。

下图是VBAT电压跌落的示意图。

图 5: 突发电流时 VBAT 的跌落

注意: 测试条件: VBAT 供电 3.8V, Cd=100 μF 钽电容(ESR 等于 0.7Ω), Cf=100nF。(电路请参考图 6)

表 6: VBAT 引脚电气参数

符号	符号描述	最小	典型	最大	单位
VBAT	模块供电输入电压	3.4	3.8	4.2	V
I _{VBAT(peak)}	模块峰值耗流	-	2	-	A
I _{VBAT(average)}	模块平均耗流 (正常模式)	连会型	表格 34		
$I_{VBAT(sleep)}$	模块平均耗流 (休眠模式)	用 多勺	水俗 34	0	
$I_{VBAT(power-off)}$	模块平均耗流 (关机状态)	-	-	20	uA

3.1.1 供电参考设计

在用户的设计中,必须特别注意电源部分的设计,确保即使在模块耗电流达到2A时,VBAT的跌落也不要低于3.4V。如果电压跌落低于3.4V,模块射频性能将会受到影响。

注意: 当电源能够提供2A的峰值电流时,外部供电电容总容值,建议不小于300uF; 若不能提供2A的峰值电流,则建议外部电容总容值不小于1000uF,以保证任何时候VBAT引脚上电压跌落不超过300mV。

建议靠近VBAT放置2个0.1/1μF陶瓷电容。以改善射频性能及系统稳定性。与此同时,建议PCB上供电电源到模块间的VBAT走线宽度至少2mm。参考设计推荐如下:

图 6: VBAT 输入参考电路

此外,为防止浪涌及过压对SIM7600Cx的损坏,建议在模块VBAT引脚上并联一个5.1V/500mW的齐纳二极管。

表 7: 推荐的齐纳二极管列表

编号	厂家	料号	功率	封装
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	Prisemi	PZ3D4V2H	500mW	SOD323
3	Vishay	MMSZ4689-V	500mW	SOD123
4	Crownpo	CDZ55C5V1SM	500mW	0805

3.1.2 推荐外部电源电路

线性电源推荐电路如下图所示:

21

图 7: 线性电源推荐电路

开关电源推荐电路如下图所示:

图 8: 开关电源推荐电路

3.1.3 电源监测

AT 命令"AT+CBC"可以用来监测 VBAT 电源电压。

AT 命令"AT+CVALARM"可以设置高/低压报警电压,当实际电压超出预设值范围时,会通过 AT 口上报警告信息。

使用"AT+CPMVT"可以设置高/低压关机电压,当实际电压超出预设值范围时,模块将直接自动关闭。

注意:过压报警及过压关机功能默认关闭。相关AT 命令的详细信息,请参考文档【1】。

3.2 开机/关机/复位

3.2.1 模块开机

用户通过拉低 PWRKEY 引脚使模块开机。此引脚已在模块内部上拉到 1.8V。

推荐客户在设计时,模块引脚处增加 100nf 电容, TVS 管和一颗 220ohm@100Mhz 的 0603 封装磁珠,可以有效的增强模块的抗静电能力。

推荐电路如下图:

图 9: 开关机参考电路

注意: PWRKEY引脚通过0欧姆电阻连接到地时,模块自动开机。

图 10: PWRKEY 开机时序

表 8: 开机时序参数

符号	描述	最小值	典型值	最大值	单位
Ton	开机低电平脉冲宽度	100	500	-	ms
T _{on(status)}	开机时间(根据 STATUS 引脚判断)	22	-	-	S
$T_{on(uart)}$	开机时间(根据 UART 判断)	-	20	-	S
T _{on(usb)}	开机时间(根据 USB 判断)	-	20	-	S
V_{IH}	PWRKEY 引脚输入高电平电压	0.6	0.8	1.8	V
V_{IL}	PWRKEY 引脚输入低电平电压	-0.3	0	0.5	V

3.2.2 模块关机

SIM7600Cx 模块有以下几种关机方法:

- 使用 PWRKEY 引脚关机
- 使用 "AT+CPOF"命令关机
- 高/低压过压关机,使用"AT+CPMVT"设置电压范围。
- 高低温过温关机

注意:

当温度超过-30~+80 ℃范围时,SIM7600Cx 会通过 AT 口上报警告信息。当温度超过-40~+85 ℃范围时,SIM7600Cx 自动关机。"AT+CPOF"和"AT+CPMVT"的详细描述,请参考文档【1】。

用户可以通过把PWRKEY信号拉低来关机,关机时序图如下图所示:

图 11: PWRKEY 关机时序

表 9: 关机时序参数

符号	描述	最小值	典型值	最大值	单位
$T_{\rm off}$	关机机低电平脉冲宽度	2.5	-	-	S
$T_{\text{off(status)}}$	关机时间(根据 STATUS 引脚判断)	22	-	-	S
T _{off(uart)}	关机时间(根据 UART 判断)	15	-	-	S
T _{off(usb)}	关机时间(根据 USB 判断)	15	-	-	S
T _{off-on}	关机-开机缓冲时间	0	-	-	S

注意: STATUS 引脚可以用来判断是否已开机,当模块已上电且初始化完成后,STATUS 输出高电平,否则一直维持低电平。

3.2.3 模块复位

SIM7600Cx可以通过拉低模块的RESET引脚来重启模块。

注意:建议仅在紧急情况,比如模块无响应时,使用RESET引脚。此外,模块关机状态下RESET引脚是 无效的。

在模块内部已经有40KΩ上拉电阻,所以外部无需再加上拉电阻,推荐电路如下:

图 12: 复位推荐电路

表 10: RESET 引脚电参数

参数	描述	最小值	典型值	最大值	单位
T_{reset}	重启低电平脉冲宽度	50	100	500	ms
V_{IH}	RESET 引脚输入高电平电压	1.17	1.8	2.1	V
V_{IL}	RESET 引脚输入低电平电压	-0.3	0	0.8	V

3.3 串口

SIM7600Cx默认提供一个用于通讯的全功能串口。模块是DCE (Data Communication Equipment)设备。

3.3.1. 串口参考设计

当用户使用全功能串口时,可以参考下图连接方式:

图 13: 串口连接图(全功能模式)

使用2线串口时可以参考下图连接方式:

图 14: 串口连接图 (NULL 模式)

SIM7600Cx 串口电平是1.8V,如果需要接3.3V电平的串口时,建议增加一颗电平转换芯片。推荐电路如下图:

图 15: 推荐电平转换电路

注意: SIM7600Cx支持如下波特率: 300,600,1200,2400,4800,9600,19200,38400,57600,115200,230400,460800,921600,3200000,3686400,4000000bps. 默认波特率为115200bps.

3.3.2. RI 和 DTR 描述

RI引脚可以作为一个中断唤醒主机。

RI通常情况下保持高电平输出,当收到短消息,或URC上报时,RI会输出低电平。RI在输出低电平后,会一直保持低电平,直到主机使用"AT+CRIRS"命令清除此事件为止。

图 16: RI 上的电平变化(短信, URC)

RI通常情况下保持高电平输出,当语音呼入时,RI会输出周期为6S的矩形波(低电平持续5900ms,高电平持续100ms)。只有语音呼入被接听或被挂断,此矩形波才会消失。

图 17: RI 上的电平变化(语音呼入)

注意:如需更多关于串口的AT命令信息,请参考文档【1】和.【22】。

DTR可以作为SIM7600Cx的休眠唤醒引脚。当SIM7600Cx进入休眠模式后,拉低DTR可以唤醒SIM7600Cx。

3.4 USB接口

SIM7600Cx拥有一路USB2.0接口,支持从设备模式,但不支持USB充电功能。

3.4.1. USB 参考设计

SIM7600Cx可以作为USB从设备,支持USB休眠及唤醒机制,连接电路图推荐如下:

图 18: USB 连接图

客户在使用时应该注意D3器件的选型,建议选择防静电和防浪涌二合一器件,也可以放置一颗TVS管加一颗齐纳二极管用于防浪涌,推荐齐纳二极管型号可参考表7:

注意: USB数据线必须严格按 90Ω +/-10%差分形式走线,数据线上的IVS器件D1和D2必须选用等效电容值小于IpF的。

3.5 USIM 卡接口

SIM7600Cx支持1.8V和3.0V 的USIM卡。USIM卡的接口电源由模块内部的电压稳压器提供,正常电压值为3V或者1.8V。

表 11: 1.8V 模式时 USIM 接口电气参数(USIM_VDD=1.8V)

符号	描述	最小值	典型值	最大值	单位
USIM_VDD	输出给 USIM 卡的电源电压	1.75	1.8	1.95	V
V_{IH}	输入高电平电压	0.65*USIM_VDD	-	USIM_VDD +0.3	V
$V_{\rm IL}$	输入低电平电压	-0.3	0	0.35*USIM_VDD	V
V_{OH}	输出高电平电压	USIM_VDD -0.45	-	USIM_VDD	V
V _{OL}	输出低电平电压	0	0	0.45	V

表 12: 3.0V 模式时 USIM 接口电气参数(USIM_VDD=2.95V)

符号	描述	最小值	典型值	最大值	单位
USIM_VDD	输出给 USIM 卡的电源电压	2.75	2.95	3.05	V
V_{IH}	输入高电平电压	0.65*USIM_VDD	-	USIM_VDD +0.3	V
V_{IL}	输入低电平电压	-0.3	0	0.25*USIM_VDD	V
V_{OH}	输出高电平电压	USIM_VDD -0.45	-	USIM_VDD	V
V _{OL}	输出低电平电压	0	0	0.45	V

3.5.1. USIM 参考设计

下图是USIM卡推荐接口电路。为了保护USIM卡,建议使用ST(www.st.com)公司的ESDA6V15W器件或者ON SEMI (www.onsemi.com)公司的SMF15C器件来做静电保护。USIM卡的外围电路器件应该靠近USIM卡座放置。6引脚USIM卡座的推荐电路如下图:

28

图 19: USIM 接口推荐电路

注意: USIM_DATA 已通过20KΩ 电阻上拉到USIM_VDD,外部电路不需要上拉。另外,在USIM_VDD 上的100nF 去耦电容建议必须保留。如需更多关于USIM 卡操作的AT 命令,请参考文档【1】。

SIM卡电路比较容易受到干扰,引起不识卡或掉卡等情况,所以在设计时请遵循以下原则:

- 在 PCB 布局阶段一定要将 USIM 卡座远离主天线;
- USIM 卡走线要尽量远离 RF 线、VBAT 和高速信号线,同时 USIM 卡走线不要太长。
- USIM 卡座的 GND 要和模块的 GND 保持良好的联通性, 使二者 GND 等电位;
- 为防止 USIM_CLK 对其他信号干扰,建议将 USIM_CLK 做单独包地保护处理。
- 建议在 USIM_VDD 信号线上靠近 USIM 卡座放置一个 220nF 电容;
- 在靠近 USIM 卡座的地方放置 TVS,该 TVS 的寄生电容不应大于 50pF 的,在 USIM 卡座和模块之间串联 51Ω 电阻可以增强 ESD 防护性能。

3.5.2. USIM 卡座的选择

6引脚的USIM卡座推荐使用Amphenol公司的C707 10M006 512。请浏览 http://www.amphenol.com 网页了解更多信息!

图 20: Amphenol C707 10M006 512 USIM 卡座尺寸图

表 13: Amphenol USIM 卡座引脚描述

引脚名称	信号	描述
C1	USIM_VDD	USIM 卡供电引脚
C2	USIM_RST	USIM 卡复位引脚
C3	USIM_CLK	USIM 卡时钟引脚
C5	GND	接地
C6	VPP	不连接
C7	USIM_DATA	USIM 卡数据输入/输出引脚

3.6 PCM 接口

SIM7600Cx提供一组PCM音频接口,可以外接音频编解码芯片,只支持主模式,16位线性短帧格式。 具体参数如下:

表 14: PCM 参数表

特性	描述
编码格式	线性(固定)
数据位	16bits(固定)
主从模式	主模式(固定)
PCM时钟	2048kHz(固定)
PCM帧同步	短帧(固定)
数据格式	MSB(固定)

注意: 用户可以通过AT 命令来控制PCM 接口,相关信息请参考文档【1】。

3.6.1. PCM 时序

相关PCM时序如下图所示:

图 21: PCM_SYNC 时序

图 22: 外部 CODEC 到模块的时序

图 23: 模块到外部 CODEC 的时序

表 15: PCM 时序参数

参数	描述	最小值	典型值	最大值	单位
T(sync)	PCM_SYNC 周期	-	125	-	μs
T(synch)	PCM_SYNC 高电平持续时间	-	488	-	ns
T(syncl)	PCM_SYNC 低电平持续时间	-	124.5	_	μs
T(clk)	PCM_CLK 周期	-	488	-	ns
T(clkh)	PCM_CLK 高电平持续时间	-	244	-	ns
T(clkl)	PCM_CLK 低电平持续时间	-	244	_	ns
T(susync)	PCM_SYNC 建立时间	-	122	-	ns
T(hsync)	PCM_SYNC 保持时间	-	366	-	ns
T(sudin)	PCM_IN 建立时间	60	_	_	ns
T(hdin)	PCM_IN 保持时间	60	-	-	ns
T(pdout)	PCM_CLK 上升沿到 PCM_OUT 数据有效延时	-	-	60	ns
T(zdout)	PCM_CLK 下降沿到 PCM_OUT 高阻态延时	_	_	60	ns

3.6.2. PCM 参考设计

PCM推荐电路如下图:

图 24: PCM 推荐电路

3.7 SD 卡接口

SIM7600Cx提供一路4位SD/MMC接口,时钟频率可达50MHz,最高容量支持32GB,接口电压域为2.95V。

表 16: SD 卡接口电参数 (SD_DATA0-SD_DATA3,SD_CLK 和 SD_CMD) *

参数	描述	最小值	典型值	最大值	单位
VDD_EXT	SD 卡电源电压**	2.75	2.95	3.05	V
V_{IH}	输入高电平电压	0.65 VDD_EXT	-	VDD_EXT+0.3	V
V_{IL}	输入低电平电压	-0.3	0	0.25 VDD_EXT	V
V_{OH}	输出高电平电压	VDD_EXT-0.4	2.95	VDD_EXT	V
V _{OL}	输出低电平电压	0	0	0.45	V

注意:

- *不同于SD_DATA0-SD_DATA3, SD_CLK 和 SD_CMD, SD_DET 的电源域是 1.8V
- **VDD EXT 可配置的低压差线性电源输出,使用其为SD 卡供电时,必须将其配置成2.95V 输出。

下图中的SD卡为3V电源,可以使用模块自带的VDD EXT。

图 25: SD 卡连接图

注意: SD_DATA0-SD_DATA3, SD_CLK 和 SD_CMD 信号线上已内置上拉电阻。

SD 卡走线注意事项:

- 注意保护其他敏感信号线,使其远离SD卡信号。
- 保护SD卡信号线,使其远离其他可能引起干扰的信号(如时钟信号,开关电源灯)。
- SD卡的时钟频率高达 200MHZ, 走线需要做 50 欧姆阻抗控制。
- SD卡的时钟CLK信号走线长度与DATA/CMD的信号长度差要控制在 1mm以内。
- 在时钟信号上串入 15-24 欧姆的电阻,靠近模块端。
- 走线长度应控制在 50mm以内。
- 各信号线的走线间距要求2倍线宽。
- 信号线的负载电容要求小于 15pf

3.8 I2C 总线

模块提供一组硬件 I2C 5.0 协议接口,时钟速率为 400KHZ,工作电压为 1.8V。

3.8.1. I2C 参考设计

I2C参考电路如下图:

图 26: I2C 接口参考电路

注意: SCL和SDA引脚内部无上拉电阻,因此使用时必须外加上拉电阻到1.8V。

3.9 SDIO 接口

SIM7600Cx提供了一路SDIO3.0协议的接口,用于WLAN扩展。

模块默认支持的WLAN方案为QCA9377,并且需要特殊版本的软件支持,目前该功能还处于开发阶段,如有进一步需要,请与SIMCom销售联系。

3.10 SPI 接口

SIM7600Cx提供一路SPI接口,最高时钟速率可达26MHz。此外,SIM7600Cx只能作主控,接口电压域为1.8V。

注意: 更多关于SPI的详细信息请参考文档【1】。

3.11 网络状态指示

NETLIGHT 可以指示当前网络状态,通常用来驱动指示网络状态的 LED 灯,其参考电路如下图:

图 27: NETLIGHT 参考电路

注意: 上图中电阻R的阻值需依赖于VBAT及LED的具体参数而定。

NETLIGHT信号用来控制指示网络状态的LED灯,该引脚的工作状态如下表:

表 17: NETLIGHT 工作状态

网络灯状态	模块工作状况
常亮	正在找网,或正在通话
200ms 亮/ 200ms 熄灭	数据连接已建立
800ms 亮/ 800ms 熄灭	网络已注册
熄灭	关机,或休眠模式

3.12 飞行模式控制

FLIGHTMODE 引脚可以用来控制SIM7600Cx进入或退出飞行模式。在飞行模式下,SIM7600Cx内部的射频电路被关闭。FLIGHTMODE 参考电路如下图所示:

图 28: 飞行模式控制参考电路

注意: 上图中双向TVS 管建议靠近模块放置,以增强抗ESD性能。

表 18: FLIGHTMODE 引脚状态

FLIGHTMODE 状态	模块工作状况
输入低电平	飞行模式:内部 RF 电路被关闭
输入高电平(或悬空)	工作模式由 AT 命令决定
	AT+CFUN=0: 射频电路关闭
	AT+CFUN=1:射频电路工作

3.13 其他接口

3.13.1. ISINK

SIM7600Cx提供一路LED驱动接口电路,最高输出电流40mA。

表 19: ISINK 电气参数

符号	描述	最小值	典型值	最大值	单位
V _{ISINK}	电压容限	0.5	-	VBAT	V
I_{ISINK}	电流容限	0	-	40	mA

ISINK 可以接供电为VBAT LED 的设备 模块 电流控制

图 29: ISINK 参考电路

注意: 使用"AT+ CLEDITST=<0>,<value>" 可以设置ISINK 的输出电流。输出电流值可以以 5mA 步长,从 0mA 设置到 40mA,分别对应 value 的 0 到 8。更多信息请参考文档【1】。

3.13.2. 模数转换器 (ADC)

SIM7600Cx提供了2路ADC, 其电气特性如下:

表 20: ADC1 和 ADC2 电气特性

特性	最小值	典型值	最大值	单位
ADC分辨率	-	15	-	bits
转换时间	-	442	-	ms
输入电压范围	0.1	-	1.7	V
输入电阻	1	-	-	ΜΩ

注意:使用 "AT+CADC"和 "AT+CADC2"可以读取ADC1和ADC2引脚上的电压值。更多信息请参考文档【1】。

3.13.3. LDO

VDD_EXT 可以作为SIM7600的LDO电源输出,输出电压可配置,默认输出电压0V。

表 21: VDD EXT 电气特性

参数	描述	最小值	典型值	最大值	单位
V_{VDD_EXT}	输出电压	1.7	2.95	3.05	V
I_{O}	输出电流	-	-	150	mA

注意: "AT+CVAUXS"可以打开和关闭VDD_EXT的电源输出,"AT+CVAUXV"可以配置VDD_EXT输出电源的电压值。更多信息请参考文档【1】。

4. 射频参数

4.1. GSM/CDMA 1X/UMTS/LTE 射频参数

表 22: 传导发射功率

频率	功率	最小值
EGSM900	33dBm ±2dB	5dBm ±5dB
DCS1800	30dBm ±2dB	0dBm ±5dB
EGSM900 (8-PSK)	27dBm ±3dB	5dBm ±5dB
DCS1800 (8-PSK)	26dBm +3/-4dB	0dBm ±5dB
WCDMA B1	24dBm +1/-3dB	<-50dBm
WCDMA B8	24dBm + 1/-3dB	<-50dBm
CDMA BC0	24dBm + 1/-3dB	<-50dBm
TDSCDMA 1900	24dBm + 1/-3dB	<-50dBm
TDSCDMA 2000	24dBm + 1/-3dB	<-50dBm
LTE-FDD B1	23dBm +/-2.7dB	<-40dBm
LTE-FDD B3	23dBm +/-2.7dB	<-40dBm
LTE-FDD B8	23dBm +/-2.7dB	<-40dBm
LTE-TDD B38	23dBm +/-2.7dB	<-40dBm
LTE-TDD B39	23dBm +/-2.7dB	<-40dBm
LTE-TDD B40	23dBm +/-2.7dB	<-40dBm
LTE-TDD B41	23dBm +/-2.7dB	<-40dBm

表 23: 频段信息

频段名	接收频段	发送频段
EGSM900	925~960MHz	880~915 MHz
DCS1800	1805~1880 MHz	1710∼1785 MHz
WCDMA B1	2110~2170 MHz	1920~1980 MHz
WCDMA B8	925~960 MHz	880~915 MHz
TDSCDMA 1.9G	1880~1920 MHz	1880∼1920 MHz
TDSCDMA 2G	2010~2025 MHz	2010~2025 MHz
CDMA BC0	869~894 MHz	824~849 MHz
LTE 频段信息请参考表 24	0	
注意: SIM7600Cx的LTE T	TDD B41 频段带宽是 100MHz(25	55~2655 MHz)。
GPS L1 BAND	1574.4 ∼1576.44 MHz	-
GLONASS	1598 ∼1606 MHz	-
BD	1559 ∼1563 MHz	

表 24: E-UTRA 频段信息

E-UTRA 频段编号	上行操作频段	下行操作频段	双工模式
1	1920 ~1980 MHz	2110 ~2170 MHz	FDD
3	1710 ~1785 MHz	1805 ~1880 MHz	FDD
8	880 ~915 MHz	925 ~960 MHz	FDD
38	2570 ~2620 MHz	2570 ~2620 MHz	TDD
39	1880 ~1920 MHz	1880 ~1920 MHz	TDD
40	2300 ~2400 MHz	2300 ~2400 MHz	TDD
41	2496 ~2690 MHz	2496 ~2690 MHz	TDD

表 25: 传导接收灵敏度

Frequency	Receive sensitivity(Typical)	Receive sensitivity(MAX)
EGSM900	<-109dBm	3GPP
DCS1800	<-109dBm	3GPP
WCDMA 2100	<-110dBm	3GPP
WCDMA 900	<-110dBm	3GPP
TDSCDMA 1900	<-110dBm	3GPP
TDSCDMA 2000	<-110dBm	3GPP
CDMA BC0	<-110dBm	3GPP
LTE FDD/TDD	参考表 26	3GPP

表 26: 参考灵敏度(QPSK)

E-UTRA	3GPP 标》	E			实测值 3GPP 标准		实测值 3GPP 标准		1	双工
频段编号	1.4 MHz	3MHz	5MHz	10MHz	10 MHz	15 MHz	20 MHz	模式		
1	-	-	-100	-97	-101	-95.2	-94	FDD		
3	-101.7	-98.7	-97	-94	-99	-92.2	-91	FDD		
8	-102.2	-99.2	-97	-94	-102			FDD		
38	-	-	-100	-97	-101	-95.2	-94	TDD		
39	-	-	-100	-97	-101.5	-95.2	-94	TDD		
40	-	-	-100	-97	-101	-95.2	-94	TDD		
41	-	-	-99	-96	-101	-94.2	-93	TDD		

4.2. GSM/CDMA 1X/UMTS/LTE 天线参考设计

在天线电路设计时,在模块和天线之间的走线必须保证50Ω 走线阻抗,且其插入损耗必须满足以下要求:

表 27: 走线损耗推荐值

频率范围	走线损耗
700MHz-960MHz	<0.5dB
1710MHz-2170MHz	<0.9dB
2300MHz-2650MHz	<1.2dB

推荐增加射频测试座以便于校准及测试,增加射频匹配电路以便于天线调试。推荐电路如下图:

图 30: 天线接口连接电路(主天线)

上图中匹配电路中的R1,C1,C2和R2的具体值,通常由天线厂提供,由天线优化而定。其中,R1和R2默认贴0 Ω ,C1和C2默认不贴。D1为一双向TVS器件,建议选贴,以避免模块内部器件损坏。推荐的TVS型号如下表;

表 28: TVS 推荐型号列表

封装	型号	供应商
0201	LXES03AAA1-154	村田
0402	LXES15AAA1-153	村田

图 31: 天线接口连接电路(分集天线)

上图中匹配电路中的R3,C3,C4和R4的具体值,通常由天线厂提供,由天线优化而定。其中,R3和R4默认贴0 Ω ,C3和C4默认不贴。D2为一双向TVS器件,建议选贴,以避免模块内部器件损坏。推荐的TVS型号见表28:

注意: LTE 分集天线建议保留, 更多信息请参考文档【25】。

4.3. GNSS

SIM7600Cx 的 GNSS(GPS/GLONASS/BD)提供了一个高可用性解的定位决方案,拥有业界领先的性能和精度。

4.3.1. GNSS 参数

- 跟踪定位灵敏度: -159 dBm (GPS) /-158 dBm (GLONASS) /TBD (BD)
- 冷启动灵敏度: -148 dBm
- 定位精度 (开阔地): 2.5m (CEP50)
- TTFF (开阔地): 热启动 <1s, 冷启动<35s
- 接受类型: 16-channel, C/A Code
- GPS L1 频段: 1575.42±1.023MHz
- GLONASS频段: 1597.5~1605.8 MHz
- BeiDou频段: 1559.05~1563.14 MHz
- 更新频率: Default 1 Hz
- GNSS 数据格式: NMEA-0183
- GNSS 耗流: 100mA (GSM/CDMA 1X/UMTS/LTE 休眠, VBAT引脚)
- GNSS天线:有源/无源天线

注意:如果使用有源天线,天线的电源需要另外提供,SIM7600Cx 的 GNSS_ANT 不提供电源。如果使用无源天线建议外加 LNA 以提高性能。

4.3.2. GNSS 参考设计

SIM7600Cx 配套天线可以使用无源或者有源天线。有源天线参考设计如下图:

图 32: GNSS 有源天线参考电路

上图匹配电路中的L1,L2默认不贴,C1默认贴0欧姆,具体值在天线调试完成后由天线厂提供。C2默认贴33PF,是隔直电容。有源天线供电VDD需和应用的有源天线匹配,且推荐客户使用LDO/DCDC给有源天线供电,这样在不使用GNSS功能时,可以通过关闭LDO/DCDC来达到减小耗流的作用。

无源天线参考设计如下图:

图 33: GNSS 无源天线参考电路

上图匹配电路中的L1,L2默认不贴,C1默认贴0欧姆,具体值在天线调试完成后由天线厂提供。L3是LNA的匹配器件,由使用的LNA特性决定, V_LNA需和使用的LNA匹配,且推荐客户使用LDO/DCDC给LNA供电,这样在不使用GNSS功能时,可以通过关闭LDO/DCDC来达到减小耗流的作用。

SIM7600Cx可以通过UART和USB来使用GNSS。

注意:GNSS 默认情况下是关闭的,可以通过"AT+CGPS"来打开。更多关于AGPS 的信息请参考文档【24】。

5. 电气参数

5.1. 极限参数

下表显示了在非正常工作情况下绝对最大值的状态。超过这些极限值将可能会导致模块永久性损坏。

表 29: 极限参数

参数	最小值	典型值	最大值	单位
VBAT 引脚极限电压	-0.5	-	6.0	V
USB_VBUS 引脚极限电压	-0.5	-	6.3	V
IO 口极限电压: RESET, SPI, Keypads, GPIO, I2C, UART 和 PCM	-0.3	-	2.1	V
IO 口极限电压: SD 和 USIM	-0.3	-	3.05	V
PWRKEY	-0.3	-	1.8	

5.2. 正常工作条件

表 30: 模块推荐工作电压

参数	最小值	典型值	最大值	单位
VBAT 引脚工作电压	3.4	3.8	4.2	V
USB_VBUS 引脚工作电压	3.6	5.0	5.85	V

表 31: 1.8V 数字接口特性*

	A 12				
参数	描述	最小值	典型值	最大值	单位
V_{IH}	输入高电平电压	1.17	1.8	2.1	V
V_{IL}	输入低电平电压	-0.3	0	0.63	V
V_{OH}	输出高电平电压	1.35	-	1.8	V
V_{OL}	输出低电平电压	0	-	0.45	V
I _{OH}	高电平输出电流 (模块未配置下拉电阻时)	-	2	-	mA
I_{OL}	低电平输出电流 (模块未配置上拉拉电阻时)	-	-2	-	mA
I_{IH}	高电平输入电流(模块未配置下拉电阻时)	-	-	1	uA
I_{IL}	低电平输入电流 (模块未配置上拉拉电阻时)	-1	-	-	uA

注意:*以上参数适用于: 键盘, SPI, GPIO (NETLIGHT, FLIGHTMODE, STATUS, USIM_DET, SD_DET), 12C, UART, PCM, COEXn 和 BOOT_CFGn.

表 32: 模块工作温度

参数	最小值	典型值	最大值	单位
普通工作温度	-30	25	80	$^{\circ}$ C
扩展工作温度	-40	25	85	$^{\circ}$ C
存储温度	-45	25	+90	$^{\circ}$ C

注意:*在扩展工作温度下工作时,模块射频指标可能不能满足3GPP规范。

5.3. 工作模式

5.3.1. 工作模式定义

下表简要介绍了后续章节将要提到的多种工作模式。

表 33: 工作模式定义

模式功能		定义
正常工作模式	GSM/CDMA 1X /UMTS/LTE休眠	在这种状态下,模块的电流消耗会降到最低,模块仍能接收寻呼信息和SMS。
	GSM/CDMA 1X /UMTS/LTE空闲	软件正常运行,模块已经注册到网络上,并可以随时发送和接收数据。
	GSM/CDMA 1X /UMTS/LTE通话	两个用户处于连接中,在这种情况下模块的功耗和网络及模块的配置有关。
	GSM/CDMA 1X /UMTS/LTE待机	模块随时准备着数据传输,但是当前没有发送或接收数据。这种情况下,功耗取决于网络状况和配置。
	GPRS/EDGE/ UMTS/LTE数据传输	数据正在传输中。在这种情况下,功耗取决于网络状况(例如:功率控制等级),上下行数据链路的数据速率,以及网络配置(例如:使用多时隙配置)。
最小功能模式		在不断电的情况下,可以使用"AT+CFUN=0"命令把模块配置成最小功能模式。在这种情况下, RF部分和USIM卡部分都不工作,但串口和USB仍可以使用,此时功耗比正常工作模式低。
飞行模式		在不断电的情况下,使用 "AT+CFUN=4" 命令或拉低 FLIGHTMODE引脚,可把模块配置成飞行模式。在这种情况下, RF部分不工作,但串口和USB仍可以使用,此时功耗比正常工作模式低。
关机模式		通过 "AT+CPOF"命令或拉低PWRKEY引脚可关闭SIM7600。此时,模块内部的各个电源均被关闭,软件也停止运行。串口和USB均不可用。

5.3.2. 休眠模式

在休眠模式下,模块的电流消耗会降到最低,但模块仍能接收寻呼信息和 SMS。 当模块满足以下软硬件条件时,SIM7600Cx可自动进入休眠模式:

- UART条件
- USB条件
- 软件设置条件

有关休眠模式的详细信息, 请参考文档 【26】。

5.3.3. 最小功能模式

可以通过命令 "AT+CFUN=<fun>"把模块设置到该模式下,这条命令提供三种选择,用于以设置不同功能。

- AT+CFUN=0: 最小功能模式;
- AT+CFUN=1: 全功能模式(默认);
- AT+CFUN=4: 飞行模式。

设置"AT+CFUN=0"后,模块进入最小功能模式,关闭射频功能和USIM卡的功能。在这种情况下, 串口和USB仍然可以继续使用,但是与射频和USIM卡相关的功能以及部分AT命令不能使用。

设置"AT+CFUN=4"后,模块进入飞行模式,关闭射频功能。在这种情况下,模块的串口和USB仍然可以使用,但是与射频相关的功能以及部分AT命令不可使用。

当模块进入最小功能模式或者进入飞行模式后,都可以通过命令"AT+CFUN=1"使之返回全功能模式。

有关"AT+CFUN"命令详细信息,请参考文档【1】。

5.4. 耗流

表 34: VBAT 耗流(VBAT=3.8V)

GNSS	
GNSS耗流	
(AT+CFUN=0, 带USB连接)	@ -140dBm, 定位状态, 典型值: 72mA
GSM 休眠/空闲	
GSM/GPRS 耗流	休眠模式 @ BS_PA_MFRMS=2 典型值: 2.8mA
(GNSS 关闭,不带USB连接)	空闲模式 @ BS_PA_MFRMS=2 典型值: 18mA
UMTS 休眠/空闲	
WCDMA耗流	休眠模式 @DRX=9 典型值: 3.3mA
(GNSS 关闭,不带USB连接)	空闲模式 @DRX=9 典型值: 17.5mA
TD-SCDMA 耗流	休眠模式 典型值: 2.3mA
(GNSS 关闭,不带USB连接)	空闲模式 典型值: 17.5mA
EVDO 耗流	休眠模式 典型值: 2.0mA
(GNSS 关闭,不带USB连接)	空闲模式 典型值: 17.8mA
LTE休眠/空闲	
LTE supply current	休眠模式 典型值: 4.6mA
(GNSS 关闭,不带USB连接)	空闲模式 典型值: 17.5mA
GSM 通话	
EGSM 900	@功率等级 #5 典型值: 220mA
DCS1800	@功率等级 #0 典型值: 162mA
UMTS 通话	
WCDMA B1	@功率 24dBm 典型值: 540mA
WCDMA B8	@功率 24dBm 典型值: 385mA
TD-SCDMA 1900	@功率 24dBm 典型值: 118mA
TD-SCDMA 2000	@功率 24dBm 典型值: 117mA
CDMA BC0	@功率 24dBm 典型值: 400mA
GPRS 数据传输	
EGSM 900 (1 收,4 发)	@功率等级 #5 典型值: 230mA
DCS1800 (1 收,4 发)	@功率等级 #0 典型值: 195mA
EGSM 900 (3 收, 2 发)	@功率等级 #5 典型值: 370mA
DCS1800 (3收,2发)	@功率等级 #0 典型值: 275mA
EDGE数据传输	
EGSM 900 (1 收,4 发)	@功率等级 #8 典型值: 400mA
DCS1800 (1 收,4 发)	@功率等级 #2 典型值: 300mA
EGSM 900 (3 收, 2 发)	@功率等级 #8 典型值: 320mA
DCS1800 (3 收, 2 发)	@功率等级 #2 典型值: 230mA
HSDPA 数据传输	
WCDMA B1	@功率 24dBm 典型值: 487mA
WCDMA B8	@功率 24dBm 典型值: 430mA
TD-SCDMA 数据传输	

TDSCDMA 1900	@功率 24dBm 典型值: 141mA
TDSCDMA 2000 EVDO 数据传输	@功率 24dBm 典型值: 150mA
BC0	@功率 24dBm 典型值: 490mA
LTE 数据传输	
LTE-FDD B1	@5Mbps 典型值: 577mA@10Mbps 典型值: 590mA@20Mbps 典型值: 630mA
LTE-FDD B3	@5Mbps 典型值: 479mA @10Mbps 典型值: 498mA @20Mbps 典型值: 530mA
LTE-FDD B8	@5Mbps 典型值: 644mA @10Mbps 典型值: 646mA
LTE-TDD B38	@5Mbps 典型值: 370mA @10Mbps 典型值: 380mA @15Mbps 典型值: 403mA
LTE-TDD B39	@5Mbps 典型值: 270mA @10Mbps 典型值: 280mA @15Mbps 典型值: 305mA
LTE-TDD B40	@5Mbps 典型值: 407mA @10Mbps 典型值: 416mA @15Mbps 典型值: 444mA
LTE-TDD B41	@5Mbps 典型值: 390mA@10Mbps 典型值: 396mA@15Mbps 典型值: 420mA

5.5. 静电防护

SIM7600Cx是静电敏感器件,因此,用户在生产、装配和操作模块时必须注意静电防护。模块的静电性能参数如下表:

表 35: ESD 性能参数 (温度: 25℃, 湿度: 45%)

引脚	接触放电	空气放电
VBAT,GND	+/-6K	+/-12K
天线端口	+/-5K	+/-10K
USB接口	+/-4K	+/-8K
UART接口	+/-3K	+/-6K
其它引脚	+/-3K	+/-6K

6. 贴片生产

6.1. 模块的顶视图和底视图

图 34: 模块顶视图和底视图

6.2. 标签信息

图 35: 标签信息

表 36: 模块信息描述

项次	描述
A	LOGO
В	1 脚标识
С	项目名字
D	产品代码
Е	模块 SN 号
F	模块 IMEI 号
G	二维码

6.3. 典型焊接炉温曲线

图 36: 推荐焊接炉温曲线图(无铅工艺)

注意: 更多二次贴片介绍请参考文档【21】。

6.4. 湿敏特性

SIM7600Cx 模块的湿敏特性为3级。

如果满足如下二个条件的任何一条,SIM7600Cx模块在进行回流焊前应该进行充分的烘烤,否则模块可能在回流焊过程中造成永久性的损坏。

- 拆封或真空包装破损漏气后,在温度<30度和相对湿度<60%的环境条件下,SIM7600Cx模块需168小时内进行SMT贴片。如不满足上述条件需进行烘烤。
 - 真空包装未拆封,但超过保质期的,也需要进行烘烤。

烘烤条件: 在湿度小于5%,温度40+5/-0 $\mathbb C$ 条件下需要烘烤192 小时; 在湿度小于5%,温度85+5/-0 $\mathbb C$ 条件下需要烘烤72小时(如果使用托盘,请注意托盘是否抗热变形)。

表 37: 模块湿敏特性

等级	车间寿命(工厂环境≦+30℃/60%RH)
1	无限期保质在环境≦+30℃/85% RH 条件下
2	1 年
2a	4 周
3	168 小时
4	72 小时
5	48 小时
5a	24 小时
6	强制烘烤后再使用。经过烘烤,模块必须在标签上规定的时限内贴片。

注意:产品搬运、存储、加工过程必须遵循 IPC/JEDEC J-STD-033。

51

6.5. 推荐钢网设计

推荐锡膏厚度为0.10mm。

7. 包装

SIM7500C 包装是在自动流水线处理,模块支持托盘包装。

图 37: 模块包装示意图

下面是 SIM7500C 托盘(Module tray)尺寸图:

图 38: 托盘尺寸图

表 38: 托盘尺寸信息

托盘长度(±3mm)	托盘宽度(±3mm)	标准包装数
242.0	161.0	15

下面是托盘小卡通箱(Small carton)尺寸图:

图 39: 小卡通箱尺寸图

表 39: 小卡通箱尺寸信息

盒长(±10mm)	盒宽(±10mm)	盒高(±10mm)	标准包装数
270	180	120	15*20=300

下面是托盘大卡通箱(Big carton)尺寸图:

图 40: 大卡通箱尺寸图

表 40: 大卡通箱尺寸信息

盒长(±10mm)	盒宽(±10mm)	盒高(±10mm)	标准包装数
380	280	280	300*4=1200

附录

I. 参考原理图

图 41: 参考设计原理图

II. 编码方式及最大数据速率

表 41: 编码方式和最大数据速率

Slot class	DL slot number	UL slot number	Active slot number
1	1	1	2
2	2	1	3
3	2	2	3
1	3	1	4
5	3	2 2	4
7	3	3	4
3	4	1	5
)	3	2	5
10	4	2	5
11	4	3	5
12 GDDG 11	4	4	5
GPRS coding scheme	Max data rata (4	slots)	Modulation type
CS 1 = 9.05 kb/s / time slot			GMSK
CS 2 = 13.4 kb/s / time slot	53.6 kb/s		GMSK
CS 3 = 15.6 kb/s / time slot	62.4 kb/s		GMSK
CS 4 = 21.4 kb/s / time slot	85.6 kb/s	85.6 kb/s	
EDGE coding scheme	Max data rata (4	Max data rata (4 slots)	
MCS $1 = 8.8 \text{ kb/s/time slot}$	35.2 kb/s	35.2 kb/s	
MCS 2 = 11.2 kb/s/ time slo	ot 44.8 kb/s	44.8 kb/s	
MCS 3 = 14.8 kb/s/ time slo	ot 59.2 kb/s		GMSK
MCS 4 = 17.6 kb/s/ time slo	ot 70.4 kb/s		GMSK
MCS 5 = 22.4 kb/s/ time slo	ot 89.6 kb/s		8PSK
MCS 6 = 29.6 kb/s/ time slo	ot 118.4 kb/s		8PSK
MCS 7 = 44.8 kb/s/ time slo	ot 179.2 kb/s		8PSK
MCS $8 = 54.4$ kb/s/ time slo	ot 217.6 kb/s		8PSK
MCS $9 = 59.2 \text{ kb/s/ time slo}$	ot 236.8 kb/s		8PSK
HSDPA device category	Max data rate (p	eak)	Modulation type
Category 1	1.2Mbps		16QAM,QPSK
Category 2	1.2Mbps	•	
Category 3	1.8Mbps		16QAM,QPSK
Category 4	1.8Mbps	•	
Category 5	3.6Mbps		16QAM,QPSK
Category 6	3.6Mbps	•	
Category 7	7.2Mbps	7.2Mbps	
Category 8	7.2Mbps	7.2Mbps	
Category 9	10.00.0	10.2Mbps	

Category 10	14.4Mbps	16QAM,QPSK
Category 11	0.9Mbps	QPSK
Category 12	1.8Mbps	QPSK
Category 13	17.6Mbps	64QAM
Category 14	21.1Mbps	64QAM
Category 15	23.4Mbps	16QAM
Category 16	28Mbps	16QAM
Category 17	23.4Mbps	64QAM
Category 18	28Mbps	64QAM
Category 19	35.5Mbps	64QAM
Category 20	42Mbps	64QAM
Category 21	23.4Mbps	16QAM
Category 22	28Mbps	16QAM
Category 23	35.5Mbps	64QAM
Category 24	42.2Mbps	64QAM
HSUPA device category	Max data rate (peak)	Modulation type
Category 1	0.96Mbps	QPSK
Category 2	1.92Mbps	QPSK
Category 3	1.92Mbps	QPSK
Category 4	3.84Mbps	QPSK
Category 5	3.84Mbps	QPSK
Category 6	5.76Mbps	QPSK
LTE-FDD device category (Downlink)	Max data rate (peak)	Modulation type
Category 1	10Mbps	QPSK/16QAM/64QAM
Category 2	50Mbps	QPSK/16QAM/64QAM
Category 3	100Mbps	QPSK/16QAM/64QAM
Category 4	150Mbps	QPSK/16QAM/64QAM
LTE-FDD device category (Uplink)	Max data rate (peak)	Modulation type
Category 1	5Mbps	QPSK/16QAM
Category 2	25Mbps	QPSK/16QAM
Category 3	50Mbps	QPSK/16QAM
Category 4	50Mbps	QPSK/16QAM

III.参考文档

表 42: 参考文档

序号	文档名称	注释
[1]	SIM7X00 Series_AT Command Manual_V1.xx	AT Command Manual
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification
[10]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[11]	3GPP TS 34.124	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[12]	3GPP TS 34.121	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[13]	3GPP TS 34.123-1	Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD)
[14]	3GPP TS 34.123-3	User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.
[15]	EN 301 908-02 V2.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive
[16]	EN 301 489-24 V1.2.1	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment
[17]	IEC/EN60950-1(2001)	Safety of information technology equipment (2000)
[18]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification

[10]	CCE CC V2 22 1	
[19]	GCF-CC V3.23.1	Global Certification Forum - Certification Criteria
[20]	2002/95/EC	Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
[21]	Module secondary-SMT-UGD-V1.xx	Module secondary SMT Guidelines
[22]	SIM7X00 Series_UART_Application Note_V1.xx	This document describes how to use UART interface of SIMCom modules.
	SIM7X00 Series_USB	
[23]	AUDIO_Application Note_V1.xx	USB AUDIO Application Note
[24]	SIM7X00 Series_GPS_Application Note_V1.xx	GPS Application Note
[25]	Antenna design guidelines for diversity receiver system	Antenna design guidelines for diversity receiver system
[26]	SIM7X00 Series_Sleep Mode_ Application Note_V1.xx	Sleep Mode Application Note

IV.术语和解释

表 43: 术语和解释

术语	解释
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FR	Full Rate
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
IMEI	International Mobile Equipment Identity
Li-ion	Lithium-Ion
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Broadcast Control Channel
PCB	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter

URC	Unsolicited Result Code	
USSD	Unstructured Supplementary Service Data	
电话本缩写		
FD	SIM fix dialing phonebook	
LD	SIM last dialing phonebook (list of numbers most recently dialed)	
MC	Mobile Equipment list of unanswered MT calls (missed calls)	
ON	SIM (or ME) own numbers (MSISDNs) list	
RC	Mobile Equipment list of received calls	
SM	SIM phonebook	
NC	Not connect	

61

V. 安全警告

在使用或者维修任何包含模块的终端或者手机的过程中要留心以下的安全防范。终端设备上应当告知用户以下的安全信息。否则 SIMCom 将不承担任何因用户没有按这些警告操作而产生的后果。

表 44: 安全警告

标识

要求

当在医院或者医疗设备旁,观察使用手机的限制。如果需要请关闭终端或者手机,否则医疗设备可能会因为射频的干扰而导致误操作。

登机前关闭无线终端或者手机。为防止对通信系统的干扰,飞机上禁止使用无线通信设备。 忽略以上事项将违反当地法律并有可能导致飞行事故。

不要在易燃气体前使用移动终端或者手机。当靠近爆炸作业、化学工厂、燃料库或者加油站时要关掉手机终端。在任何潜在爆炸可能的电器设备旁操作移动终端都是很危险的。

手机终端在开机的状态时会接收或者发射射频能量。当靠近电视、收音机、电脑或者其它电 器设备时会对其产生干扰。

道路安全第一! 在驾驶交通工具时不要用手持终端或手机,请使用免提装置。在使用手持终端或手机前应先停车。

GSM手机终端在射频信号和蜂窝网下操作,但不能保证在所用的情况下都能连接。例如,没有话费或者无效的SIM卡。当处于这种情况而需要紧急服务,记得使用紧急电话。为了能够呼叫和接收电话,手机终端必须开机而且要在移动信号足够强的服务区域。当一些确定的网络服务或者电话功能在使用时不允许使用紧急电话,例如功能锁定,键盘锁定。在使用紧急电话前,要解除这些功能。一些网络需要有效的SIM卡支持。

62

联系地址:

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号 晨讯科技大楼 A 座

邮编: 200335

电话: +86 21 3235 3300 传真: +86 21 3235 3020

网址: www.simcomm2m.com

