Буфер (тип FIFO)

<u>Pasted image 2025031314275</u>0%20darkmode.png

Адресные запоминающие устройства

Постоянные ЗУ (ПЗУ)

- МПЗУ (MROM)
- ППЗУ (PROM)
- РПЗУ-УФ (EPROM)
- ОПРПЗУ-УФ (EPROM-ОТР)
- РПЗУ-ЭС (EEPROM)
- Flash

ЗУ с произвольным доступом (RAM)

- Динамические ЗУПД
 - Использующие кучность адресов
 - FPM DRAM
 - EDO DRAM
 - BEDO DRAM
 - SDRAM
 - DDR SDRAM
 - RDRAM
 - Не использующие кучность адресов
 - DRAM
 - RLDRAM

Статические ЗУПД (SRAM)

- Синхронные
- Асинхронные

"Переход от асинхронности - это хорошо. Положительно 👍"

© Попов 2025

Организация запоминающих массивов адресных ЗУ

Структура 3M 2D

Pasted image 20250313143536%20darkmode.png
Количество выходов DC = количеству слов в памяти (2^n) Применима только для малоразмерных ЗУ

Структура 3M 3D

Адрес делится на две части (двухкоординатная выборка) - буквально выбор запоминающей ячейки по координатам

Количество выходов DC - $2^{n/2} + 2^{n/2}$

- Pasted image 20250313143735%20darkmode.png
- Pasted image 20250313143752%20darkmode.png

Структура 3M 2DM

Мультиплексоры дают выбирать один из $2^{n/2}$ разрядов в каждом из запоминающих массивов

- Размеры массивов близки к оптимальным
- Количество линий чтения/записи минимально
- Pasted image 20250313144610%20darkmode.png

<u>Расслоение</u> памяти

Видимо в попытках ускорить память производится расслоение памяти - разделение на несколько кусков, называемых банками, а дальше как в морском бою по "координатам" выбирается ячейка

Блочное разделение адреса

Циклическое разделение адреса

Номер банка определяется младшей частью адреса Pasted image 20250313152003%20darkmode.png

Блочно-циклическое разделение адреса

Обеспечивает возможность пакетной передачи и ускоряет доступ при кучности адресов

- Pasted image 20250313153330%20darkmode.png
- Пример разделения адреса в SDRAM (PIII, P4)
- Pasted image 20250313152113%20darkmode.png