Co-clustering sous différentes approches

Exercice 1 (10 points): Dans une question à deux réponses, une mauvaise réponse est pénalisée : si la question vaut 1, une réponse fausse implique -0.5. Plusieurs bonnes réponses sont possibles pour certaines questions.

1.	Le co-clustering est utilisé pour rechrcher	A –des blocs homogènes B –une partition de l'ensemble des lignes C –une partition de l'ensemble des colonnes	
2.	Le co-clustering est particulièrement efficace sur des	A-tables binaires B-tables données continues comparables C-tables de contingences	
3.	Le modèle de Bernoulli par blocs est un cas particulier du modèle multinomial	A – Vrai B – Faux	
4.	L'algorithme Crobin permet de réaliser une classification sur des données de type	A – binaire B – continu C – qualitatif	
5.	Quel le modèle de mélanges par blocs associé à Crobin ?	A –gaussien B –de Bernoulli C– mutinomial	
6.	L'approche CML consiste à maximiser	A – la log-vraisemblance B – la log-vraisemblance classifiante C – ni l'une ni l'autre	
7.	L'approche ML s'appuie sur l'algorithme	A – block EM B – block CEM C – double k-means	
8.	La sparsité souvent présente dans les tables de co-occurrences est surmontée du fait que dans la classification croisée on travaille sur	A – des données positives B – des matrices intermédiaires non sparses	
9.	Croeuc est un simple double k-means appliqué	A – sur des matrices intermédiaires réduites B – sur la matrice d'origine C – sur une matrice sparse	
10.	Croeuc est basé sur une utilisation alternée de l'algorithme	A – spherical k-means B – k-means C – k-modes	
11.	Dans le modèle de mélange de Bernoulli par blocs, si pour un block (kl) le paramètre α_{kl} est égal à 0.75 cela signifie que pour ce bloc on a	$\begin{array}{l} A - a_{kl} = 1 \text{ et } \epsilon_{kl} = 0.75 \\ B - a_{kl} = 0 \text{ et } \epsilon_{kl} = 0.25 \\ C - a_{kl} = 1 \text{ et } \epsilon_{kl} = 0.25 \end{array}$	
12.	Dans le modèle de Bernoulli par blocs, le paramètre ϵ_{kl} représente	A – le degré d'hétérogénéité B – le degré d'homogénéité C – la moyenne du bloc	
13.	Le critère Croki2 est associé approximativement à un modèle	A – Bernoulli par blocs B – Poisson par blocs C – gaussiens par blocs	
14.	En appliquant Croki2, il est judicieux de projeter les classes à l'aide des coordonnées d'une	A –ACP B –AFC C – AFCM	
15.	Soit X la matrice de données de taille 1000x500 de type binaire, quel est le nombre de paramètres à estimer si l'on considère le modèle de Bernoulli à 3x2 composants dont les tailles sont supposées différentes.		
16.	Même question, mais cette fois ci- en considérant le modèle gaussien général		
17.	Même question mais en considérant le modèle de Poisson		
18.	Soit un modèle de mélange de Bernoulli par blocs. Si on suppose que ϵ_{11} =0.25, quelle la proportion des 1 dans le bloc (11)	A – 0.25 B – 0.75	
19.	Dans le package {Blockcluster}, block EM est initialisé	A – par CAH B – au hasard C – par block CEM	
20.	Appliqué sur une matrice de taille (n*p), Croeuc, Crobin et Croki2, cherchant un partitionnement en (g*m) blocs, consistent à travailler sur des matrices intermédiaires qui sont de taille	A - n*p B - n*m C - g*p	

Exercice 2 : Soit $X = (x_{ij})$ de taille $n \times p$. Dans le modèle de Bernoulli par blocs $[a_{kl}, \varepsilon]$ on a

$$f(x_{ij}, a_{kl}, \varepsilon) = \varepsilon^{|x_{ij} - a_{kl}|} (1 - \varepsilon)^{1 - |x_{ij} - a_{kl}|}$$

- 1. Définir la log-vraisemblance classifiante à maximiser ?
- 2. Ecrire les étapes de l'algorithme Block CEM.
- 3. Ecrire le code **R** permettant de lancer chacun des algorithmes à l'aide du package {blocluster}.

Exercice 3: Sur le tableau 8x6 ci-dessous on applique l'algorithme Croeuc optmisant le critère

$$\sum_{i,j,k,l} z_{ik} w_{jl} (x_{ij} - \mu_{kl})^2$$
 (1)

	1	2	3	4	5	6
A	0.9	2.9	2.9	3.0	3.0	2.9
В	0.9	2.9	2.9	3.1	3.0	2.9
С	2.8	0.9	1.0	1.1	1.0	0.9
D	3.0	1.0	0.9	1.0	0.9	0.9
Е	2.8	0.9	0.9	1.1	0.9	1.0
F	0.9	3.0	2.9	3.0	3.1	2.9
G	2.9	0.8	0.9	1.0	1.1	1.0
Н	1.1	3.0	2.9	3.0	3.1	3.1

- 1. A partir d'un couple de partition tiré au hasard $\mathbf{z}^{(0)} = (1,1,1,2,1,2,2,1)^{\mathrm{T}}$ et $\mathbf{w}^{(0)} = (1,1,2,2,1,1)^{\mathrm{T}}$, calculer la valeur du critère (1) après avoir réorganisé cette table.
- 2. Que représentent les termes suivants : $w_l = \sum_{j=1}^6 w_{jl}$ et $z_k = \sum_{i=1}^8 z_{ik}$, 3. Que représentent les termes suivants : $u_{il} = \frac{1}{w_l} \sum_{j=1}^6 w_{jl} x_{ij}$ et $v_{kj} = \frac{1}{z_k} \sum_{i=1}^8 z_{ik} x_{ij}$ 4. Montrer que $\sum_{j=1}^6 w_{jl} (x_{ij} u_{il}) = 0$ et $\sum_{i=1}^8 z_{ik} (x_{ij} v_{kj}) = 0$

5. En déduire que minimiser
$$\sum_{i,j,k,l} z_{ik} w_{jl} (x_{ij} - \mu_{kl})^2$$
 revient à minimiser à
$$\sum_{i,k} z_{ik} \sum_{l} w_{l} (u_{il} - \mu_{kl})^2 = \sum_{i,l} w_{jl} \sum_{k} z_{k} (v_{kj} - \mu_{kl})^2$$

- 6. L'algorithme Croeuc alterne les deux minimisations. À la convergence on obtient $\mathbf{z} = (1,1,2,2,2,1,2,1)^T$, $\mathbf{w} = (1,2,2,2,2,2)^{\mathrm{T}}$, calculer la valeur du critère (1).
- Ecrire le code **R** permettant de réaliser ce co-clustering.

Exercice 4: En appliquant BEM (Block EM) sur une matrice DATA on obtient les résultats et les figures ci-après.

- 1. De quel type de données s'agit-il : binaire, continu ou table de contingence ?
- 2. Quel est le modèle utilisé et le paramétrage employé ?
- 3. Quelle est la valeur du critère à la convergence ?
- 4. Quel est le bloc le plus homogène ? Quel est le bloc le moins homogène ?
- 5. Quel type de méthode de visualisation est approprié pour projeter les classes des lignes ?
- 6. Interpréter les distributions obtenues
- 7. Ecrire le code **R** permettant d'obtenir tous ces résultats.

Model Family : Gaussian Latent block model Model Name : pik_rhol_sigma2kl Co-Clustering Type : Unsupervised

Model Parameters..

Class Mean:

[,1] [,2] [,3] [1,] -0.0113171870 9.933649 -9.975353 [2,] 0.0008994504 -9.966978 10.031539

Class Variance:

[,1] [1,] 20.79533 [,2] [,3] 9.854607 10.02493 [2,] 10.00552 19.958878 19.79938

Row proportions: 0.5 0.5 Column proportions: 0.28 0.32 0.4 Pseudo-likelihood: -1.847052

