06.10.2004

REC'D 2 8 OCT 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年10月 7日

出 願 番 号
Application Number:

特願2003-348461

[ST. 10/C]:

[JP2003-348461]

出 願 人
Applicant(s):

花王株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 7月 1日

1)

11]

特願2003-348461

特許願 【書類名】 103K0207 【整理番号】

平成15年10月 7日 【提出日】 特許庁長官 殿 【あて先】 CO4B 24/00 【国際特許分類】

【発明者】

花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】

小柳 幸司 【氏名】

【発明者】

花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】

宮本 定治 【氏名】

【発明者】

花王株式会社研究所内 和歌山県和歌山市湊1334 【住所又は居所】

山室 穂高 【氏名】

【特許出願人】

000000918 【識別番号】 花王株式会社 【氏名又は名称】

【代理人】

【識別番号】 100087642

【弁理士】

【氏名又は名称】 古谷 聡 03 (3663) 7808 【電話番号】

【選任した代理人】

100076680 【識別番号】

【弁理士】

溝部 孝彦 【氏名又は名称】

【選任した代理人】

100091845 【識別番号】

【弁理士】

持田 信二 【氏名又は名称】

【選任した代理人】

100098408 【識別番号】

【弁理士】

【氏名又は名称】 義経 和昌

【手数料の表示】

【予納台帳番号】 200747 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 要約書 1 【物件名】

【書類名】特許請求の範囲

【請求項1】

カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族化合物及び臭 化化合物からなる群より選ばれる1種以上の化合物(以下、化合物(B)という)と、カ チオン性ポリマー(C)とを含有するスラリーレオロジー改質剤であって、

化合物 (A) と化合物 (B) の組み合わせが、化合物 (A) の水溶液 S』 (20℃での 粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が1 00mPa·s以下のもの)とを50/50の重量比で混合した水溶液の20℃における 粘度が、混合前のいずれの水溶液(20℃)の粘度よりも少なくとも2倍高くなる組み合 わせであるスラリーレオロジー改質剤。

【請求項2】

カチオン性ポリマー (C) のカチオン化密度が 0.5~10 me q/gである請求項1記 載のスラリーレオロジー改質剤。

【請求項3】

化合物 (A) 100重量部に対し、カチオン性ポリマー (C) を1~500重量部含有す る請求項1又は2記載のスラリーレオロジー改質剤。

【請求項4】

請求項1~3いずれか記載のスラリーレオロジー改質剤と、水と、水硬性粉体及び/又は 粘土以外のフィラーと、粘土とを含有するスラリー。

【請求項5】

さらに高性能減水剤又は高性能AE減水剤を含有する請求項4記載のスラリー。

【請求項6】

さらに骨材を含有する請求項4又は5記載のスラリー。

【請求項7】

推進工法用の掘削添加材に使用される請求項4~6何れか記載のスラリー。

【書類名】明細書

【発明の名称】スラリーレオロジー改質剤

【技術分野】

[0001]

本発明は、スラリー粘性を制御するレオロジー改質剤に関するものであり、更に詳しく は、土木・建築材料、二次製品材料及び補修材料等として使用される粉体を含有してなる 水-粉体スラリーに、粘性等の優れた性状を与えることのできるレオロジー改質剤、及び 該改質剤を含有するスラリーに関する。

【背景技術】

[0002]

一般に、水と粉体からなるスラリーにおいて粘性等のレオロジー物性を制御するには、 水と粉体の比率を調節したり、pH調整剤などにより粒子の分散状態を変えたり、あるい は、吸水性ポリマーを添加して余剰水量を制御したりする等の技術が使われてきた。

[0003]

特に、水溶性高分子化合物をスラリー系に添加して高分子の絡み合いによる増粘作用を 利用する技術は、安価に大きな増粘効果を得られるため、土木・建築分野を中心として幅 広い用途で実用化されている。例えば、特許文献1ではメチルセルロース、ヒドロキシエ チルセルロース等のセルロース誘導体や、特許文献2ではポリ(エチレンオキサイド)の 様な水溶性高分子化合物が、材料の分離抵抗性を高めるために、ペースト、モルタルや水 中コンクリート及び高流動コンクリートなどに使用されている。

[0004]

しかしながら、水溶性高分子化合物を使用して効率的な増粘効果を得るためには、ある 程度以上の分子量の化合物を用いる必要があり、実際に使用されている化合物は分子量が 数十万以上のものがほとんどである。これら分子量の大きい水溶性高分子化合物は、水、 粉体と一緒に添加し、時間をかけて混練しないと十分な粘性が発現しにくく、迅速に増粘 効果が得られず、また、予め水溶液として使用すると、水溶液の粘度が高く、添加操作等 の点で作業性が低下する等の問題がある。

[0005]

また、水溶性高分子をペースト、モルタル及びコンクリートに使用する場合は、粉体の 比率が小さい配合(水粉体比30%以上)が多く、水粉体比が大きい配合になるほど経時 的な粘性の安定性が低下し、ブリージング水が出る等の材料分離が起りやすい。

[0006]

推進工法は、工場で製造された推進管(鉄筋コンクリート管、硬質塩化ビニル管、鋼管 、鋳鉄管等)の先端に掘削機を取り付け、ジャッキの推進力等で管を地中に圧入して、管 渠を築造する工法である。推進工法は、「刃口推進工法」、「密閉型推進工法」、「小口 径管推進工法」の3つの工法に大別される。特に、「密閉型推進工法」の中に、泥土圧式 推進工法と呼ばれる工法が有り、これは掘削土砂の塑性流動化を促進させる「掘削添加材 」を注入しながら、掘削ヘッドで掘削土砂と混合して、元押しジャッキの推進力で加圧し 、その泥土圧を切羽全体に作用させて、切羽の安定を図りながら、スクリューコンベアで 排土しつつ掘進する工法である。この時、「掘削添加材」は、 掘削地盤の透水係数が大 きく、湧水量が多く地山の粘土、シルト分(細粒分ともいう、粒径0.075mm以下の 土)が少ない地盤の推進において、掘削土と水が混合されても細粒分が不足しているため スムーズな排土ができない場合等に使用され、また、間隙比が大きく、粒度バランスが悪 い掘削土を塑性流動性と不透水性を持つ泥土に改造させるといった役目がある。

[0007]

一般に知られている掘削添加材は、材料分離抵抗性や潤滑性を付与するために、水に粒 径の異なる数種類の粘土、増粘剤としての水溶性高分子、透水抑制のための繊維状物質、 滑材等、5~10種類の材料や添加剤から構成されているが、現状の技術では水中不分離 性や粘弾性に乏しく、十分な性能が得られていないのが実状である。さらに、5~10種 類以上の材料から調製しなければならず、添加材調製が非常に複雑となり、また各材料の 性能の変動幅を考慮すると最終的な添加材の品質管理も困難となっている。

[0008]

一方、特に水硬性組成物に関して、特許文献3には、コンクリート等の粘性及び流動性 を高め、且つ骨材、セメント、水の材料分離抵抗性に優れた性状を与えることのできる水 硬性組成物用添加剤として、特定の第1、第2の化合物を組み合わせてなる水硬性組成物 用添加剤が記載されている。

【特許文献1】特公平5-39901号

【特許文献2】特開平11-189452号

【特許文献3】特開2003-238222号

【発明の開示】

【発明が解決しようとする課題】

[0009]

特許文献3の添加剤は、スラリーである水硬性組成物に、優れた分離抵抗性を付与でき るものであるとされているが、本発明者のその後の検討により、粘土がスラリー中に存在 すると、充分な改質効果が得られない場合があることが判明した。

[0010]

そこで、本発明は、粘土を含むスラリーに対しても、優れたレオロジー改質効果が得ら れるスラリーレオロジー改質剤を提供することを課題とする。

【課題を解決するための手段】

[0011]

本発明は、カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族 化合物及び臭化化合物からなる群より選ばれる1種以上の化合物(以下、化合物(B) と いう)と、カチオン性ポリマー(C)とを含有するスラリーレオロジー改質剤であって、

化合物 (A) と化合物 (B) の組み合わせが、化合物 (A) の水溶液 Sa (20℃での 粘度が100mPa・s以下のもの)と化合物(B)の水溶液SB(20℃での粘度が1 00mPa・s以下のもの)とを50/50の重量比で混合した水溶液の20℃における 粘度が、混合前のいずれの水溶液 (20℃) の粘度よりも少なくとも 2 倍高くなる組み合 わせであるスラリーレオロジー改質剤に関する。

[0012]

また、本発明は、上記本発明のスラリーレオロジー改質剤と、水と、水硬性粉体及び/ 又は粘土以外のフィラーと、粘土とを含有するスラリーに関する。

【発明の効果】

[0013]

本発明によれば、粘土を含むスラリー、例えば水硬性組成物に対しても、優れたレオロ ジー改質効果が得られるスラリーレオロジー改質剤を提供することができる。

【発明を実施するための最良の形態】

[0014]

<化合物(A)>

化合物 (A) のうち、カチオン性界面活性剤から選ばれるものとして、4級塩型カチオ ン性界面活性剤が好ましく、4級塩型のカチオン性界面活性剤としては、構造中に、10 から26個の炭素原子を含む飽和又は不飽和の直鎖又は分岐鎖アルキル基を、少なくとも 1つ有しているものが好ましい。例えば、アルキル(炭素数10~26)トリメチルアン モニウム塩、アルキル(炭素数 $10\sim26$)ピリジニウム塩、アルキル(炭素数 $10\sim2$ 6) イミダゾリニウム塩、アルキル (炭素数10~26) ジメチルベンジルアンモニウム 塩等が挙げられ、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、ヘキサ **デシルトリメチルアンモニウムプロマイド、ヘキサデシルトリメチルアンモニウムメトサ** ルフェート、オクタデシルトリメチルアンモニウムクロライド、オクタデシルトリメチル アンモニウムブロマイド、タロートリメチルアンモニウムクロライド、タロートリメチル アンモニウムブロマイド、水素化タロートリメチルアンモニウムクロライド、水素化タロ ートリメチルアンモニウムブロマイド、ヘキサデシルエチルジメチルアンモニウムクロラ イド、オクタデシルエチルジメチルアンモニウムクロライド、ヘキサデシルプロピルジメ チルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド、1, 1ージメチル - 2 - ヘキサデシルイミダゾリニウムクロライド、ヘキサデシルジメチルベンジルアンモ ニウムクロライド等が挙げられ、これらを2種以上併用してもよい。水溶性と増粘効果の 観点から、具体的には、ヘキサデシルトリメチルアンモニウムクロライド、オクタデシル トリメチルアンモニウムクロライド、ヘキサデシルピリジニウムクロライド等が好ましい 。また、増粘性能の観点から上記のアルキル鎖長の異なるカチオン界面活性剤を2種以上 併用して用いてもよい。

[0015]

<化合物(B)>

化合物(B)のうち、アニオン性芳香族化合物から選ばれるものとして、芳香環を有す るカルボン酸及びその塩、ホスホン酸及びその塩、スルホン酸及びその塩が挙げられ、具 体的には、サリチル酸、pートルエンスルホン酸、スルホサリチル酸、安息香酸、mース ルホ安息香酸、p-スルホ安息香酸、4-スルホフタル酸、5-スルホイソフタル酸、p ーフェノールスルホン酸、mーキシレンー4ースルホン酸、クメンスルホン酸、メチルサ リチル酸、スチレンスルホン酸、クロロ安息香酸等であり、これらは塩を形成していても 良く、これらを2種以上併用してもよい。ただし、重合体である場合は、重量平均分子量 500未満であることが好ましい。

[0016]

また、化合物(B)のうち、臭化化合物から選ばれるものとして、無機塩が好ましく、 臭化ナトリウム、臭化カリウム、臭化水素等が挙げられる。

[0017]

<カチオン性ポリマー(C)>

カチオン性ポリマー (C) としては、分子中に4級塩構造を有するポリマーが挙げられ 、具体的には、ポリ(ジアリルジメチルアンモニウム塩)、ポリメタクリロイルオキシエ チルジメチルエチルアンモニウム塩、ポリメタクリルアミドプロピルトリメチルアンモニ ウム塩、カチオン化でん粉、カチオン化セルロース、カチオン化ヒドロキシエチルセルロ ース等であり、これらは4級塩構造を有するモノマーを重合して得ても、対応するポリマ ーを4級化剤で4級化して得ても良い。これらは、ホモポリマーでなくてもよく、必要に 応じて共重合可能なモノマーとの共重合物としても良い。具体的には、ジアリルジメチル アンモニウム塩-SO2コポリマー、ジアリルジメチルアンモニウム塩-アクリルアミド コポリマー、ジアリルジメチルアンモニウム塩-アクリル酸-アクリルアミド共重合物、 メタクリロイルオキシエチルジメチルエチルアンモニウム塩-ビニルピロリドンコポリマ ー、メタクリルアミドプロピルトリメチルアンモニウム塩ービニルピロリドンコポリマー 、等が挙げられる。これらは、未反応モノマー、副生物、異なるカチオン化密度のポリマ ーを含んでいてもよい。これらは2種以上併用することができる。

[0018]

カチオン性ポリマー (C) の分子量は、1000以上が好ましく、1000~300万 が更に好ましく、この点で化合物(A)とは区別される。この分子量は、ゲル・パーミエ ーション・クロマトグラフィーにより、以下の条件で測定された重量平均分子量である。

カラム: α-M (東ソー製) 2本連結

溶離液: 0. 15 m o l / L 硫酸 N a 、 1 %酢酸 水溶液

流速 :1.0mL/min

温度 :40℃ 検出器:RI

分子量標準はプルランを使用

[0019]

カチオン性ポリマー (C) は、カチオン化密度が $0.5\sim10\,\mathrm{me}\,\mathrm{q/g}$ 、更に $1\sim9$ meq/g、特に $3\sim8meq/g$ であることが、スラリー調製直後及び経時的な粘弾性 維持の点から好ましい。カチオン化密度は、後述の実施例の方法により測定することがで きる。

[0020]

<スラリーレオロジー改質剤>

本発明のスラリーレオロジー改質剤に用いられる化合物(A)と化合物(B)は、化合 物 (A) の粘度100mPa・s以下 (20℃) の水溶液 Saと化合物 (B) の粘度10 0mPa·s以下 (20℃) の水溶液 SBとを混合すると、その粘度が混合前のいずれの 水溶液の粘度 (20℃) よりも少なくとも 2倍高くすることができる性質を有することが 必要で、好ましくは少なくとも5倍、より好ましくは少なくとも10倍、更に好ましくは 少なくとも100倍、特に好ましくは少なくとも500倍高くすることができることであ る。

[0021]

ここで、粘度は、20℃の条件でB型粘度計(Cローター [No. 表記の場合はNo. 3ローター]、1.5 r.p. mから12 r.p. m) で測定されたものをいう。この場 合、前記の粘度挙動は、1.5 r.p.m.から12 r.p.m.の回転数の何れかで発 現されればよい。以下、特記しない限り、粘度はこの条件で測定されたものをいう。また 、混合はそれぞれの水溶液を50/50の重量比で混合する。更に、本発明のスラリーレ オロジー改質剤をスラリー系に添加するときの操作性の観点から、混合前の化合物(A) 及び化合物 (B) の水溶液の20℃における粘度が、それぞれ好ましくは50mPa·s 以下、更に好ましくは10mPa・s以下で、両液を混合したときに同様の増粘効果を発 現することが望ましい。また、化合物(A)と化合物(B)とを混合した水溶液は、室温 において、水中に、単分子又は会合体・ミセル・液晶等の構造体を形成した状態又はそれ らの混在した状態であることが好ましい。

[0022]

本発明においては、化合物(A)と化合物(B)とが会合体を形成し易いという観点か ら、化合物(A)が4級塩型カチオン性界面活性剤から選ばれるものであり、化合物(B) がアニオン性芳香族化合物から選ばれるものである組合わせが特に好ましい。この組合 わせでは、それぞれが濃厚な水溶液でも粘性が低く、また、スラリーが水硬性組成物であ る場合、該水硬性組成物中の化合物 (A) 又は化合物 (B) の有効分濃度が 1 0 重量 %以 下でも優れた粘性を発現し、また、それぞれが濃厚な水溶液でも粘性が低く、添加時の作 業性からも好ましい。この組み合わせでは、低い添加量で水硬性組成物の材料分離抵抗性 を達成することができる。

[0023]

また、化合物(A)がアルキル(炭素数10~26)トリメチルアンモニウム塩であり 、化合物(B)が芳香環を有するスルホン酸塩である組み合わせが特に好ましく、スラリ ーが水硬性組成物である場合、該水硬性組成物の水相中の有効分濃度が5重量%以下でも 効果を発現する。特に、これらの中でも硬化遅延を起こさない観点から、化合物(B)と してはトルエンスルホン酸、キシレンスルホン酸、クメンスルホン酸、スチレンスルホン 酸又はこれらの塩が好ましく、特に、p-トルエンスルホン酸又はその塩が好ましい。

[0024]

本発明に係るスラリーレオロジー改質剤において、化合物(A)と化合物(B)とカチ オン性ポリマー(C)とを併用することで、粘土を含むスラリーに対しても優れたレオロ ジー改質効果が得られるのは、以下の理由によると考えられる。すなわち、粘土の存在す るスラリー中では、化合物(A)が粘土に吸着してレオロジー改質の役割を果たす紐状ミ セルの形成が阻害される場合がある。しかし、本発明のようにカチオン性ポリマー(C) が存在すると、該カチオン性ポリマー(C)の方が化合物(A)よりも粘土に吸着しやす いため化合物(A)の粘土への吸着を防止できる。且つカチオン性ポリマー(C)の吸着 により、粘土粒子の凝集が起こり、粘土の表面積も減少して、粘土に吸着される化合物(A) の量をより低減できる。その結果、化合物(A) と化合物(B) により生じる紐状ミ セル(巨大なミセル会合体)が充分に形成され、化合物(A)と化合物(B)の本来の効 果が維持されるものと考えられる。

[0025]

本発明は、化合物(A)の粘土への吸着により、充分なレオロジー改質効果が得られな い場合に、カチオン性ポリマー(C)により化合物(A)の粘土への吸着を防止できるの で、粘土以外に化合物(A)を吸着する能力を有する物質が存在する場合にも、レオロジ -改質が可能と考えられる。化合物 (A) を吸着する能力の指標として、100g当たり の化合物 (A) との化学当量が 0. 1 m e q 以上 (0. 1 m e q / 1 0 0 g 以上) である 物質に適用することが好ましく、特に1~10meq/100gの物質は、化合物(A) の添加量を著しく増大させても所定のレオロジー改質効果を得にくいので、本発明が好適 である。なお、この化合物(A)との化学当量は、後述の実施例の方法により測定するこ とができる。

[0026]

本発明のスラリーレオロジー改質剤は、例えば、化合物(A)、化合物(B)又はカチ オン性ポリマー (C) を、各々好ましくは0.1~100重量%、より好ましくは1~1 00重量%、特に好ましくは5~100重量%含有する製剤を調製し、それらを、各化合 物が後述する比率となるようにスラリーに添加して用いることができる。更に、カチオン 性ポリマー (C) は、化合物 (A) 又は化合物 (B) と混合しても粘性が高くならないの で、予め化合物(A)又は化合物(B)と混合することができ、同種の電荷を有する点で 、化合物(A)と混合することが好ましい。

[0027]

化合物(A)、化合物(B)は、各化合物単独の濃厚な水溶液でも粘性が低いので、水 溶液とすることが好ましい。スラリー系への添加前の水溶液の各々の有効濃度を好ましく は10重量%以上、より好ましくは20重量%以上、更に好ましくは30重量%以上、最 も好ましくは40重量%以上にしておくことにより、貯蔵タンクを小型化できる等の生産 性を向上することができる。

[0028]

本発明のレオロジー改質剤には、界面活性剤を併用することができる。界面活性剤とし ては、両性界面活性剤や非イオン性界面活性剤が好ましい。特にベタイン系化合物、アル コールにアルキレンオキサイドを付加した化合物が好ましい。

[0029]

本発明のレオロジー改質剤には、粘度調整等の為、溶剤を併用することができる。溶剤 としては、アルコールやセルソルブ系溶剤が好ましく、レオロジー改質効果や引火点の観 点から、プロピレングリコールが好ましい。

[0030]

本発明のレオロジー改質剤には、本改質剤の性能に支障がなければ他の成分、例えば、 分散剤、AE剤、遅延剤、早強剤、促進剤、気泡剤、発泡剤、消泡剤、防錆剤、着色剤、 防黴剤、ひび割れ低減剤、膨張剤、染料、顔料、スケール防止剤、スライム処理薬剤、防 腐剤、乳化剤等を含有していてよい。

[0031]

化合物 (A) と化合物 (B) とカチオン性ポリマー (C) とをスラリーに添加すればレ オロジーが改質されたスラリーが得られるので、本発明に係るレオロジー改質剤の添加形 態は特に限定されない。

[0032]

本発明に係るレオロジー改質剤は、化合物(A)及び(B)がそれぞれ極めて低粘度の 水溶液の状態のものでも、混合すると大きな粘性を発現する。従って、化合物(A)と化 合物 (B) は水溶液で用い、カチオン性ポリマー (C) を適当な箇所で添加することが好 ましい。その際、操作性の観点から、スラリー系に添加するときに、化合物(A)の水溶 液、化合物(B)の水溶液それぞれが、使用する温度において100mPa・s以下、好 ましくは50mPa・s以下、より好ましくは10mPa・s以下の粘度の水溶液の状態 で使用することが好ましい。

[0033]

本発明のレオロジー改質剤においては、化合物(A)と化合物(B)のモル比(有効分モル比)は、目的とする増粘の程度に応じて適宜決めればよいが、得られる粘度と会合体の形状の観点から、化合物(A)/化合物(B)= $1/20\sim4/1$ 、好ましくは $1/3\sim2/1$ 、特に好ましくは $1/1\sim2/3$ が適している。ここでのモル比は、[化合物(A)に属する全ての化合物のモル数の合計]/[化合物(B)に属する全ての化合物のモル数の合計]のように算出する。

[0034]

また、カチオン性ポリマー(C)は、化合物(A) 100重量部に対し、 $1\sim500$ 重量部、更に $5\sim400$ 重量部、特に $8\sim300$ 重量部の割合で用いられることが好ましい

[0035]

本発明における化合物(A)、化合物(B)及びカチオン性ポリマー(C)は、それぞれ水溶液又は粉末のどちらの状態でも使用してよく、特に、本発明のレオロジー改質剤ではどちらの形態でも良好なスラリーレオロジー特性を付与することができる。化合物(A)、化合物(B)及びカチオン性ポリマー(C)を予め粉末状にして使用すれば、プレミクス用途等における作業性が良好となる。ただし、スラリーを所望の粘性に調整できるようにすることを考慮すると、化合物(A)、化合物(B)及びカチオン性ポリマー(C)をスラリーの構成粉体であるフィラー等に予め表面処理しない使用方法が好ましい。

[0036]

本発明によれば、本発明のスラリーレオロジー改質剤と、水と、水硬性粉体及び/又は 粘土以外のフィラーと、粘土とを含有するスラリーが提供される。

[0037]

水硬性粉体とは、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏等が挙げられる。例えば、普通ポルトランドセメント、中庸熱セメント、早強セメント、超早強セメント、高ビーライト含有セメント、高炉セメント、フライアッシュセメント、アルミナセメント、シリカフュームセメントなどの水硬性粉体セメントや石膏が挙げられる。

[0038]

また、フィラーとしては、例えば炭酸カルシウム、フライアッシュ、高炉スラグ、シリカフュームが挙げられる。これらの粉体は単独でも、混合されたものでもよい。更に、必要に応じてこれらの粉体に骨材として砂や砂利、及びこれらの混合物が添加されてもよい。また、酸化チタン等の上記以外の無機酸化物系粉体や土に適用することもできる。

[0039]

また、粘土としては、層状構造をもった含水珪酸塩鉱物(以降、粘土鉱物と呼ぶ)を主体としたものであり、この粘土中に微粒の鉱物として含まれる粘土鉱物としては、カオリン鉱物(カオリナイト、ディッカイトおよびナクライト)、蛇紋石(リザーダイト、アンチゴライト、クリソタイル)、雲母粘土鉱物(イライト、セリサイト、海緑石、セラドナイト)、クロライト、バーミキュライト、スメクタイト(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト)が挙げられる。これら粘土鉱物からなる粘土として、フラーズアース、ボールクレー、耐火粘土、陶石、タルク、パイロフィライトが挙げられる。また、化学処理、例えば、熱処理、アルカリ処理された酸性白土や、Naベントナイト、Caベントナイトなども挙げられる。産生地では、用途別にも、化・品に使用される精製ベントナイト、人工的につくられる粘土としては、合成マイカ、合成カオリナイト、合成スメクタイトが挙げられる。他にも、土木材料で使用される笠間粘土(商品名:カネサン工業株式会社製)が挙げられる。これら粘土は単独でも、各種粘土を組合わせても使用しても良い。本発明でいう粘土は、上記粘土鉱物を主成分とするものに加えて、粘土以外のフィラーと共存するものや、砂等の骨材中に存在するものを含む。

[0040]

土とは、粘土分の少ない砂質土と、粘土分が多い粘性土に大別され、前述の粘土等の無

機物と腐植や生物などの有機物とが混合した物である。土は多種多様であり、対象とする 学問によってもそ 義は異なるが、本願でいう土とは、地質学的には残積土や運搬土で あり、土壌学的に 成帯性土壌、非成帯性土壌、間帯性土壌である。また、身近な例と して、園芸用の「富士砂」、「鹿沼土」、「赤玉」などが土として挙げられる。

[0041]

本発明のスラリーは、減水剤を含有することができ、一般の減水剤のほか、高性能減水剤、高性能AE減水剤が好ましい。高性能減水剤および高性能AE減水剤(以下、高性能減水剤等という)として、ナフタレン系(花王(株)製:マイテイ150)、メラミン系(花王(株)製:マイテイ150)、メラミン系(花王(株)製:マイテイ150Vー2)、ポリカルボン酸系(花王(株)製:マイテイ3000、NMB製:レオビルドSP、日本触媒社製:アクアロックFC600、アクアロックFC900)が挙げられる。これら高性能減水剤等としては、化合物(A)および化合物(B)と共存した時に、コンクリートの粘性および分散性に及ぼす影響が小さいという観点から、ポリカルボン酸系が望ましい。高性能減水剤等の使用量としては、水硬性粉体に対して合計で0.1~5重量%、更に1~3重量%が好ましい。

[0042]

また、本発明のスラリーは、骨材を含有することができる。骨材は、粗骨材、細骨材が有り、それぞれ水硬性組成物の分野で通常使用されるものであれば使用できる。骨材の配合量は特に限定はないが、スラリー1000L中に粗骨材 $250\sim400$ L、細骨材 $250\sim400$ Lが好適である。また、水硬性組成物の分野で通常使用される細骨材の他に、土木分野で使用される化合物(A)を吸着し得る上述の粘土を含有しているような、土砂、礫、砂礫、砂、シルト等を骨材として用いた場合でも、本発明の改質剤により、それら骨材の粘弾性を損なうことなく使用することができる。

[0043]

該スラリーは、水粉体比〔スラリー中の水と粉体の重量百分率(重量%)〕 30~300%が好ましい。特に水硬性組成物の場合は、35~250%、更に40~200重量%が好ましい。また、スラリーに用いられる粉体は、単独でも、混合されたものでもよい。

[0044]

また、本発明における化合物 (A)、化合物 (B) 及びカチオン性ポリマー (C) から選ばれる1種以上の化合物と水硬性粉体とをプレミクスし、本発明のレオロジー改質剤を含有する水硬性粉体組成物を調製することもできる。

[0045]

本発明のスラリー改質剤をスラリーに添加する場合、化合物(A)と化合物(B)とカチオン性ポリマー(C)はスラリーに任意の順番で添加できるが、化合物(A)と化合物(B)のいずれか一方の化合物をスラリーに添加し、該スラリーに他方の化合物を添加し、カチオン性ポリマー(C)は任意の箇所で添加することができる。例えば、化合物(A)と化合物(B)の一方の化合物をスラリー中に適当な段階で添加し、粘性が必要となる段階で該スラリーに他方を添加し、カチオン性ポリマー(C)は化合物(A)又は化合物(B)と共に添加するのが作業性の観点から好ましい。また、カチオン性ポリマー(C)は、化合物(A)及び化合物(B)の一方又は両方と予め混合して用いても良い。スラリーに添加するときの化合物(A)、化合物(B)、カチオン性ポリマー(C)の状態は、液状でも粉末状でもよい。

[0046]

また、本発明のレオロジー改質剤を、スラリー製造時に添加することもできる。例えば、まず、化合物(A)又は(B)の一方の化合物と、カチオン性ポリマー(C)と、粉体、例えばセメント等の水硬性粉体と、水とを含むスラリーを調製し、次いで該スラリーに前記化合物(A)又は(B)の他方の化合物を添加する方法が挙げられる。

[0047]

特に本発明のレオロジー改質剤を、セメントなどの水硬性粉体を使用したスラリー系に使用する場合には、セメント粒子の水和反応を制御でき、スラリー攪拌時の巻込み気泡を抑制する観点から、化合物 (B) とカチオン性ポリマー (C) とをスラリー中に先に添加

し、後から化合物(A)を添加するのが好適である。

[0048]

何れの場合も、化合物(A)及び化合物(B)の有効分の合計がスラリーの水相中の有 効濃度で0.01~20重量%、更に0.1~15重量%、特に0.1~10重量%にな るように用いることが好ましい。カチオン性ポリマー(C)は、スラリーの水相中で、化 合物 (A) 100重量部に対して、1~500重量部、更に5~400重量部、特に8~ 300重量部になるように用いることが好ましい。

[0049]

本発明のスラリーは、粉体により種々の用途に用いることができるが、推進掘削工法用 の掘削添加材に使用されるのが好ましく、そのスラリーの組成は、粘土以外のフィラー、 特に、フライアッシュが好ましく、そのスラリー密度は1.055~1.385g/cm ³ (水粉体比970~100) 、更に、1.161~1.318g/cm³ (水粉体比30 $0\sim130$)が好ましい(例えば、フライアッシュの密度 $2.25\,\mathrm{g/c\,m^3}$ として計算) 。

[0050]

本発明のスラリーは、上記の様な添加材に適用できる。特に、本発明による優れた粘弾 性による掘削地盤の崩壊防止効果、逸水防止効果、水中不分離性、砂利の閉塞防止による 排泥効率向上が可能となる。また、本発明のスラリーは、化合物(A)が吸着される粘土 が多く含まれた場合でもカチオン性ポリマー(C)の効果により施工中その効果を持続す る。また、本発明のスラリーを使用した添加材は、本添加材単独で、高い材料分離抵抗性 、増粘性、潤滑性、透水抑制効果を有しているため、材料の種類が少なくてすむ。配合例 として、水と、粘土以外のフィラー、例えば、フライアッシュ、炭酸カルシウム、高炉ス ラグ、シリカフュームから選ばれる1種類の粉体と、本発明のスラリーレオロジー改質剤 とで、掘削添加材として十分な性能を発揮するスラリーが得られる。

【実施例】

[0051]

<実施例1>

(1) スラリー原料

スラリー原料として以下のものを用いた。

- ・水硬性粉体:普通ポルトランドセメント、密度3.16g/cm³、太平洋セメント株 式会社
- · 化合物 (A): ヘキサデシルトリメチルアンモニウムクロライド/オクタデシルトリメ チルアンモニウムクロライド=50/50(重量比)混合物〔29重量%水溶液(20℃ での粘度18mPa・s)として用いた〕
- ・化合物 (B) :pートルエンスルホン酸ナトリウム〔20重量%水溶液(20℃での粘 度2.5mPa・s)として用いた]
- ・粘土:笠岡粘土(カネサン工業株式会社)
- ・添加剤:表1のもの

なお、化合物 (A) の29重量%水溶液と化合物 (B) の20重量%水溶液を50/5 0 の重量比で混合した水溶液の 2 0 ℃での粘度は、 2 0 万 m P a · s であった。

[0052]

(2) スラリーの調製

セメント400gと、粘土20gと、化合物(B)及び表1の添加剤を含む水400g [化合物 (B) の水溶液 8 g (水の合計重量に対して 2 重量%) と表 1 に示す量の添加剤 を含む〕とを、ハンドミキサーで30秒混合し、次いでこれに化合物(A)の水溶液8g (前記水の合計重量2重量%)を混合し、ハンドミキサーで60秒混合した。

[0053]

(3)評価

得られたスラリーについて、調製直後(0分後)、60分後、120分後の粘度を測定 した。粘度は、リオン社製ビスコテスター (No. 1ローター使用)を使用して20℃で 測定した。結果を表1に示す。 【0054】

【表1】

		添加剤		粘度	(mPa·s/2	0°C)
	Ì	種類	重量%	0分後	60分後	120分後
	1	カチオン性ポリマー(1)	34.5	6100	7000	7500
	2	カチオン性ポリマー(2)	34.5	7000	7800	6900
	3	カチオン性ポリマー(3)	34.5	7400	7400	7400
本	4	カチオン性ポリマー(4)	34.5	7400	6800	6100
発明	5	カチオン性ポリマー(5)	34.5	6500	6800	5500
品品	6	カチオン性ポリマー(6)	34.5	6000	6500	6000
	7	カチオン性ポリマー(7)	34.5	6000	6000	6000
1	8	カチオン性ポリマー(8)	34.5	6000	6000	6000
	9	カチオン性ポリマー(1)	13.8	6000	6500	7100
	1	カチオン化合物	34.5	6000	4500	3000
	2	CaCl ₂ •2H ₂ O	172.5	6000	1500	分離
比	3	CaCl ₂ •2H ₂ O	69	4900	1500	分離
較品	4	ホ°リマー(1)	34.5	2000	分離	分離
	5	ホ°リマー(2)	34.5	4000	9000	分離
	6	なし		2400	700	分離

[0055]

- (注)表中の添加剤の重量%は、化合物(A)の有効分に対する添加剤の有効分の重量%である。また、各ポリマーは以下のものである。
- ・カチオン性ポリマー (1) :ポリ (ジアリルジメチルアンモニウムクロライド) 、低分子量品 (重量平均分子量 5 0 0 0 ~ 2 0 0 0 0) 、カチオン化密度 6. 1 3 m e q/g (4 0 重量%水溶液として用いた)
- ・カチオン性ポリマー (2):ポリ (ジアリルジメチルアンモニウムクロライド)、重量 平均分子量10万~20万、カチオン化密度6.19meq/g (20重量%水溶液として用いた)
- ・カチオン性ポリマー (3) :ポリ (ジアリルジメチルアンモニウムクロライド)、重量 平均分子量40万~50万、カチオン化密度6.15meq/g (20重量%水溶液として用いた)
- ・カチオン性ポリマー (4):ポリメタクリロイルオキシエチルジメチルエチルアンモニウム塩、カチオン化密度3.63meq/g(36.5重量%水溶液として用いた)
- ・カチオン性ポリマー (5) :ジアリルジメチルアンモニウムクロライドーS〇2コポリマー、重量平均分子量4000、商品名PAS-A-5 (日東紡績株式会社)、カチオン化密度4.33meg/g
- ・カチオン性ポリマー(6):商品名アキュラック41(三井サイテック株式会社)、重量平均分子量4万、カチオン化密度7.10meq/g(50重量%水溶液として用いた)

- ・カチオン性ポリマー(7):商品名アキュラック35(三井サイテック株式会社)、重 量平均分子量7万、カチオン化密度7.11me q/g(50重量%水溶液として用いた)
- ・カチオン性ポリマー(8):商品名アキュラック57(三井サイテック株式会社)、重 量平均分子量25万、カチオン化密度7.27meq/g(50重量%水溶液として用い
- ・カチオン化合物:テトラメチルアンモニウムクロライド (試薬)
- ・ポリマー (1) :カルボキシメチルセルロース、商品名СMС1190 (ダイセル化学 工業株式会社)
- ・ポリマー (2) :ポリビニルピロリドン、商品名K-60 (ISP TECHNOLO GIES INC.)

[0056]

なお、カチオン性ポリマーのカチオン化密度測定(コロイド滴定)は下記のように行っ た。

まず、カチオン性ポリマー(形態は純分でも溶液でも良い)を、リン酸でpH 3.0に調製 した水に溶解させる。トルイジンブルー指示薬を加え、1/400Nのポリビニル硫酸カリウム 溶液で滴定し、変色したところを終点とした。カチオン化密度は、下記計算式で求めた。 カチオン化密度(meq/g)=1/400×f×(mL)/1000×1000×1/[(g)×(%)/100]

f:1/400Nのポリビニル硫酸カリウム溶液のファクター

(配):ポリビニル硫酸カリウム溶液の滴下量

(g):サンプル量

(%):サンプル濃度

[0057]

<実施例2>

実施例1で用いた化合物 (A)、化合物 (B)、添加剤を用いて、推進工法用の掘削添 加材として好適なスラリーを調製した。すなわち、フライアッシュ〔市販品(関西電力製)、密度2.25g/cm³〕100gと、化合物(B)及び表2に示す添加剤を含む水 155g [化合物 (B) の水溶液2.33g (水の合計重量に対して1.5重量%) と表 2に示す量の添加剤を含む〕とを、ハンドミキサーで30秒混合し、次いでこれに化合物 (A) の水溶液2.33g (前記水の合計重量に対して1.5重量%) を混合し、ハンド ミキサーで60秒混合しスラリーを得た。該スラリーの水粉体比は150%、密度は1. 286 g/c m^3 であった。

[0058]

笠岡粘土と千葉県君津産山砂を重量比で1:3の割合で混合した砂質土を想定としたモ デル土 (嵩密度1.087g/c m^3) を作成した。得られたスラリーとモデル土とを、 スラリー/モデル土の重量比が1.0又は2.0の割合となるように混合し、ハンドミキ サーで60秒間攪拌した。該混合物の調製直後(0分後)、60分後の20℃での粘度を B型粘度計(回転数6rpm)で測定した。結果を表2に示す。

[0059]

【表2】

		添加剤		スラリー/モテ・ル土	粘度(mPa·	s∕20°C)
	ŀ	種類	重量%	重量比	0分後	60分後
	2-1	カチオン性ポリマー(6)	85.3	1.0	7400	10300
	2-2	カチオン性ポリマー(6)	170.6	1.0	8600	12500
*	2-3	カチオン性ポ [°] リマー(1)	170.6	1.0	9000	13000
本発明	2-4	カチオン性ポリマー(6)	85.3	2.0	9600	5000
品品	2-5	カチオン性ポリマー(6)	170.6	2.0	11500	15000
	2-6	カチオン性ポリマー(1)	170.6	2.0	13000	15000
	2-7	カチオン性ホッリマー(6)	341.2	2.0	19200	32400
比	2-1	無し	·-	1.0	1300	1100
較品	2-2	無し	T -	2.0	2000	1400

[0060]

<実施例3>

(1) コンクリート配合

[0061]

【表3】

W/C	W/P	w	С	石粉	S	3	高性能減水剤
(%)	(%)	(g)	(g)	(g)	砂1(g)	砂2(g)	(対P重量%)
479	39	206	43	491	210	489	3. 25

注)P:セメント(C)と石粉の合計重量

[0062]

セメント (C) :普通ポルトランドセメント (市販品、密度3.16g/cm³)

石粉:炭酸カルシウム粉末(清水工業製、密度2.72g/cm³)

砂1:兵庫県産砕砂(密度2.57g/cm³)

砂2:佐賀県産海砂 (密度2.57g/cm³)

高性能減水剤:ポリカルボン酸系高性能減水剤「マイテイ3000」〔花王(株)製〕

[0063]

(2) モルタルの調製

表3に示す配合条件で、モルタルミキサーを用いて、セメント(C)、細骨材(S)、 を投入し、空練りを10秒行い、実施例1で用いた化合物(B)と高性能減水剤と実施例 1で用いた添加剤を含む練り水 (W) を加え30秒間攪拌した後、実施例1で用いた化合 物 (A) を添加し、90秒間混練りした。得られたモルタルの調製直後(0分後)、20 、40、60分後の流動性及び粘度を測定した。流動性は、モルタルコーンに調製したモ ルタルを詰め、垂直に引き上げ、静止したモルタルの直径を測定した。粘度は、リオン製 ビスコテスター (No. 1ローター使用) を使用し20℃で測定した。尚、化合物 (A) 及び化合物 (B) は、練り水の合計重量に対して4.0重量%とし、添加剤の量は表4に 示す通りとした。また、本実施例で使用した砂1、砂2は、何れも粘土等の微粒分を多く 含む細骨材であり、化合物(A)を吸着する能力〔以下、化合物(A)吸着能という〕は 、それぞれ1.3meg/100g、1.2meg/100gであった。ここで、化合物 (A) 吸着能は次の様に求めた。

[0064]

化合物(A)としてヘキサデシルトリメチルアンモニウムクロライドとオクタデシルト リメチルアンモニウムクロライドとの混合物(重量比50:50、分子量330.71) の29重量%水溶液を用いた。この化合物(A)水溶液8.2gを水で希釈して200m Lに調整し、試験物質(砂) 400gと共に、800mLフタ付ガラス瓶(星硝株式会社 製)中に入れ、10秒間手で振り混ぜた。その後50秒間静置し、上澄み液を分取した。 TOC(全有機炭素分析計)にて検量線法により、この上澄み液中の化合物(A)の残存 濃度を求めた。その残存濃度 α (mg/L) から下記計算式より、化合物 (A) 吸着能を求

化合物(A)吸着能 $[meq/100g] = [(8.2 \times 0.29 \times 1000) - \alpha \times 0.2] \div 400 \div 330.71 \times 100$ [0065]

【表 4】

				j	流動性(mm)	(mm)			粘度(mPa·s/20°C)	s/20°C)	
		種類	重量%	0分後	20分後	40分後	60分後	0分後	20分後	40分後	60分後
-	3-1	カチオン1生ホッフマー(1)	8.6	235	238	229	221	15000	17000	17000	17000
本発明	3-2	カチオン性ホッマー(1)	17.4	230	235	225	218	15500	18000	18000	17000
品	3-3	カチオン/性ホッリマー(6)	8.6	230	233	225	215	15000	18500	18000	17000
光	3-1	なし	1	242	261	285	324	8000	3900	3500	3400
鞍品	3-2	本りマー(1)	17.4	245	270	295	340	. 8000	3500	3000	2500

[0066]

比較品 3-1、3-2 は、いずれも 20 分以後で材料分離が観察された。一方、本発明品 $3-1\sim3-3$ では、経時的な材料分離は生じず、且つ流動性、粘度の経時的な変動も少ないため、例えば推進工法用の掘削添加材として有用である。

【要約】

【課題】 粘土を含むスラリーに対しても、優れたレオロジー改質効果が得られるスラリーレオロジー改質剤を提供する。

【解決手段】 カチオン性界面活性剤(以下、化合物(A)という)と、アニオン性芳香族化合物及び臭化化合物からなる群より選ばれる 1 種以上の化合物(以下、化合物(B)という)と、カチオン性ポリマー(C)をと含有し、化合物(A)の水溶液 S_A と化合物(B)の水溶液 S_B とを等量混合した水溶液の 20 Cにおける粘度が、混合前のいずれの水溶液(20 C)の粘度よりも少なくとも 2 倍高くなる組み合わせであるスラリーレオロジー改質剤。

【選択図】 なし

特願2003-348461

出願人履歴情報

識別番号

[000000918]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住所

東京都中央区日本橋茅場町1丁目14番10号

氏 名

花王株式会社