

COMPUTATIONAL FLUID DYNAMICS

Project: CFD Simulation around pickup truck

Name: Nikhilesh Sandela

Matriculation number: 224677

Under the supervision of

Dr. Gabor Janiga

Pickup Truck

Task

- 1. Import the provided geometry (adjust the dimension of the geometry if necessary).
- 2. Create a computational domain with a sufficient size.
- 3. Generate a computational mesh of sufficient quality and define the boundary conditions.
- 4. Simulate a steady state three-dimensional flow with inflow-velocities of 75 km/h and 150 km/h.
- 5. Understand and discuss the relevant flow characteristics, such as flow velocity and pressure, drag and lift coefficients such as drag and lift forces.

For the truck dimensions I have taken the following reference https://www.dimensions.com/collection/pickup-trucks

Domain and Model selection

Continuity Criteria

Model selection:

Steady, Liquid,

Segregated Flow, Gradients,

Constant Density, Turbulent,

Reynolds-Averaged

Navier Stokes, K-Omega

Turbulence, SST (Menter)

K-Omega,

All y+ Wall Treatment

models are enabled.

Gas Model is selected.

Geometry and mesh scenes

Geometry and mesh scenes

Scalar Scene

The model was studied for two wind speeds (75 km/h and 150 km/h) that simulate city and highway driving.

Results and discussion

For a maximum velocity – 150 km/h

Residuals

Lift monitor plot

Drag monitor plot

The drag coefficient is computed as $C_D = \frac{F_x}{\frac{1}{2}\rho v^2 A}$

Residuals

Star 1 × star 2 × drag Report ×	
Totals:	[1.232677e-01, -7.722705e-05, 1.961014e-01] [3.500414e-03, 1.311149e-04, 5.335054e-04] [1.267681e-01, 5.388785e-05, 1.966349e-01]
Component in direction: [1.000000e+00, 0.000000e+00, 0.000000e+00] in Laboratory coordinate system Part Pressure() Shear() Net()	
Surface Wrapper.put.Surface	1.232677e-01 3.500414e-03 1.267681e-01
Totals:	1.232677e-01 3.500414e-03 1.267681e-01
Monitor value: 0.12676807643645835	

Lessons Learned

- This project exposed me to CFD simulation principles currently used in the industry.
- Now I have a better understanding of fluid dynamics and heat transfer.
- Able to conceptualize a CFD problem.
- Learnt the process of mesh generation.
- Able to define and solve a fluid flow CFD problem.
- Use the results for making design decisions.

Thank You