Kapitel 5

Fourier-Transformation

- Globale Bildtransformationen
- 1D Fourier-Reihen
- 1D Fourier-Transformation
- 1D diskrete Fourier-Transformation
- 2D diskrete Fourier-Transformation
- Fast Fourier Transform (FFT)

Globale Bildtransformationen

Bisherige Operatoren: Bearbeitung *lokaler* Informationen aus örtlicher Umgebung eines Bildpunktes; kein *globaler* Kontext erfassbar

Bildrepräsentation:

- Räumliche Repräsentation (Originalbild)
- Repräsentation in einem transfomierten Raum (Frequenzraum)

Beide Darstellungen repräsentieren die Bildinformation vollständig und sind äquivalent (ineinander konvertierbar)

Globale Bildtransformationen

Bisherige Operatoren: Bearbeitung *lokaler* Informationen aus örtlicher Umgebung eines Bildpunktes; kein *globaler* Kontext erfassbar

Bildrepräsentation:

- Räumliche Repräsentation (Originalbild)
- Repräsentation in einem transfomierten Raum (Frequenzraum)

Beide Darstellungen repräsentieren die Bildinformation vollständig und sind äquivalent (ineinander konvertierbar)

Wichtigste globale Bildtransformationen:

- Fourier-Transformation
- Kosinus-Transformation
- Wavelet-Transformation

Fourier-Transformation: mathematisches Hilfsmittel, das weitergehende Einsicht in innere Zusammenhänge von Signalen erlaubt. In der Bildverarbeitung spielt die diskrete 2D Fourier-Transformation eine zentrale Rolle.

1D Fourier-Reihen

Jean Baptiste Joseph Fourier (1822): Funktionen reeller Variablen werden als Überlagerung von Schwingungen unterschiedlicher Frequenz und Amplitude aufgefasst; im einfachsten Fall Sinus- oder Kosinusschwingungen

1D periodische Funktion f(x) mit Periode T: f(x) = f(x+kT) Beispiel: $\sin(x)$ und $\cos(x)$ mit Periodenlänge T von 2π

1D periodische Funktion f(x) mit Periode $T=2\pi$ lässt sich beschreiben:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \sin(kx)]$$

Koeffizienten a_k und b_k : Amplituden der einzelnen Sinus- und Kosinusschwingungen

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x)dx$$

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x)\cos(kx)dx, \quad k > 0$$

$$b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(x)\sin(kx)dx, \quad k > 0$$

Die Fourier-Transfomierte im Frequenzbereich enthält exakt die gleiche Information wie das Signal im Zeitbereich; sie unterscheiden sich nur in der Darstellung

1D Fourier-Reihen: Herleitung (1)

Zur Bestimmung von a_k und b_k werden folgende Ergebnisse benötigt:

$$\int_0^{2\pi} \sin(kx) dx = 0, \text{ für alle } k$$

$$\int_0^{2\pi} \cos(kx) dx = 0, \text{ für alle } k$$

$$\int_0^{2\pi} \sin(kx) \cos(lx) dx = 0, \text{ für alle } k \text{ und } l$$

$$\int_0^{2\pi} \sin(kx) \sin(lx) dx = \begin{cases} \pi, & \text{falls } k = l \\ 0, & \text{falls } k \neq l \end{cases}$$

$$\int_0^{2\pi} \cos(kx) \cos(lx) dx = \begin{cases} \pi, & \text{falls } k = l \\ 0, & \text{falls } k \neq l \end{cases}$$

1D Fourier-Reihen: Herleitung (2)

Multiplikation der Fourier-Reihe mit $\cos(lx)$ auf beiden Seiten und anschliessende Integration über die Periode 2π ergibt:

$$\int_0^{2\pi} f(x) \cos(lx) dx$$

$$= \frac{a_0}{2} \cdot \int_0^{2\pi} \cos(lx) dx + \sum_{k=1}^{\infty} \left[a_k \cdot \int_0^{2\pi} \cos(kx) \cos(lx) dx + b_k \cdot \int_0^{2\pi} \sin(kx) \cos(lx) dx \right]$$

$$= a_l \cdot \int_0^{2\pi} \cos(lx) \cos(lx) dx$$

$$= \pi a_l$$

Daraus folgt:

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx, \quad k > 0$$

Analog die Herleitung für a_0 und b_k

1D Fourier-Reihen: Beispiel (1)

Periodische Funktion mit $T=2\pi$:

$$\begin{split} f(x) &= \begin{cases} &1, & \text{für } 2k\pi \leq x \leq (2k+1)\pi, \ k=0,1,2,\dots \\ &-1, & \text{für } (2k+1)\pi < x < 2(k+1)\pi, \ k=0,1,2,\dots \end{cases} \\ a_0 &= &\frac{1}{\pi} \int_0^{2\pi} f(x) dx = 0 \\ a_k &= &\frac{1}{\pi} \big[\int_0^{\pi} \cos(kx) dx - \int_{\pi}^{2\pi} \cos(kx) dx \, \big] = 0 \\ b_k &= &\frac{1}{\pi} \big[\int_0^{\pi} \sin(kx) dx - \int_{\pi}^{2\pi} \sin(kx) dx \, \big] \\ &= &\frac{1}{k\pi} \big[\ 1 + \cos(2k\pi) - 2\cos(k\pi) \, \big] \\ &= &\begin{cases} 0, & \text{für } k=2,4,6,\dots \\ \frac{4}{k\pi}, & \text{für } k=1,3,5,\dots \end{cases} \end{split}$$

1D Fourier-Reihen: Beispiel (2)

Fourier-Reihe:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(kx) + b_k \sin(kx) \right]$$

$$= \frac{4}{\pi} \sin(x) + \frac{4}{3\pi} \sin(3x) + \frac{4}{5\pi} \sin(5x) + \cdots$$

$$= \sum_{k=1}^{\infty} \frac{4}{(2k-1)\pi} \sin[(2k-1)x]$$

$$\approx \frac{4}{\pi} \sin(x) + \frac{4}{3\pi} \sin(3x) + \cdots + \frac{4}{(2n-1)\pi} \sin[(2n-1)x]$$

Die periodische Rechteckfunktion wird durch eine Reihe von Sinus-Termen mit zunehmender Frequenz dargestellt, welche die Oberwellen der Rechteckschwingung repräsentieren

1D Fourier-Reihen: Beispiel (3)

Abbruch der Reihe nach einigen Gliedern \Longrightarrow Näherung für f(x) (mehr Glieder: bessere Näherung)

1D Fourier-Reihen: Komplexe Schreibweise (1)

Kompakte Darstellung mit komplexwertigen Exponentialschwingungen

Grundlage: Euler-Identität

$$e^{ikx} = \cos(kx) + i \cdot \sin(kx)$$

 $e^{-ikx} = \cos(kx) - i \cdot \sin(kx)$

Komplexe Schreibweise:

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}$$

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx = \begin{cases} \frac{a_0}{2}, & k = 0\\ \frac{1}{2} \cdot (a_k - ib_k), & k > 0\\ \frac{1}{2} \cdot (a_{-k} + ib_{-k}), & k < 0 \end{cases}$$

1D Fourier-Reihen: Komplexe Schreibweise (2)

Beweis:

$$f(x) = c_0 + \sum_{k=1}^{\infty} (c_k e^{ikx} + c_{-k} e^{-ikx})$$

Es gilt:

$$c_k e^{ikx} + c_{-k} e^{-ikx}$$

$$= \frac{1}{2} (a_k - ib_k) \cdot (\cos(kx) + i\sin(kx)) + \frac{1}{2} (a_k + ib_k) \cdot (\cos(kx) - i\sin(kx))$$

$$= a_k \cos(kx) + b_k \sin(kx)$$

Daraus ergibt sich:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [(a_k \cos(kx) + b_k \sin(kx))]$$

Koeffizienten c_k i.A. komplexe Zahlen; Die aus c_k rekonstruierte Funktion f(x) aber reell

1D Fourier-Reihen: Allgemeiner Fall (Periode $T \neq 2\pi$)

Fourier-Reihe:
$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos \frac{2\pi kx}{T} + b_k \sin \frac{2\pi kx}{T})$$

Koeffizienten a_k und b_k : Amplitude der einzelnen Sinus- und Kosinusschwingungen

$$a_{0} = \frac{2}{T} \int_{0}^{T} f(x)dx$$

$$a_{k} = \frac{2}{T} \int_{0}^{T} f(x) \cos \frac{2\pi kx}{T} dx, \quad k > 0; \quad b_{k} = \frac{2}{T} \int_{0}^{T} f(x) \sin \frac{2\pi kx}{T} dx, \quad k > 0$$

Komplexe Schreibweise:

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{\frac{i2\pi kx}{T}}$$

$$c_k = \frac{1}{T} \int_0^T f(x)e^{-\frac{i2\pi kx}{T}} dx = \begin{cases} \frac{a_0}{2}, & k = 0\\ \frac{1}{2} \cdot (a_k - ib_k), & k > 0\\ \frac{1}{2} \cdot (a_{-k} + ib_{-k}), & k < 0 \end{cases}$$

Zusammenfassung: Ein periodisches Signal f(x) wird durch die entsprechende Fourier-Reihe in ein diskretes Frequenzspektrum c_k transformiert. Aus c_k lässt sich f(x) rekonstruieren.

1D Fourier-Transformation

Grenzübergang $T \Rightarrow \infty$; Darstellung für alle reellen, nicht periodischen Funktionen

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx \quad \text{(Fourier-Transformation)}$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi xu}du \quad \text{(inverse Fourier-Transformation)}$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi xu}du$$
 (inverse Fourier-Transformation)

1D Fourier-Transformation

Grenzübergang $T \Rightarrow \infty$; Darstellung für alle reellen, nicht periodischen Funktionen

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx \quad \text{(Fourier-Transformation)}$$

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi xu}du \quad \text{(inverse Fourier-Transformation)}$$

Beispiel:
$$f(x) = \begin{cases} 1, & \text{für } -a \leq x \leq a \\ 0, & \text{sonst} \end{cases}$$

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx = \int_{-a}^{a} e^{-i2\pi ux}dx = \left[\frac{-1}{i2\pi u}e^{-i2\pi ux}\right]|_{-a}^{a}$$
$$= \frac{-1}{i2\pi u}\left[e^{-i2\pi ua} - e^{i2\pi ua}\right] = \frac{\sin(2\pi ua)}{\pi u} \quad (\text{weil } e^{-ix} - e^{ix} \equiv -2i\sin x)$$

Fourier-Reihe: diskretes Frequenzspektrum c_k

Fourier-Transformation: kontinuierliches Frequenzspekturm F(u)

1D diskrete Fourier-Transformation (1)

Kontinuierliche Form der Fourier-Transformation ungeeignet für BV

Abgetastete Funktion eines Siganls f(x) an x = 0, 1, ..., N - 1:

$$f_d(x) = f(0) \cdot \delta(x) + f(1) \cdot \delta(x-1) + \dots + f(N-1) \cdot \delta(x-(N-1))$$

$$= \sum_{k=0}^{N-1} f(k) \cdot \delta(x-k) \quad \text{(Delta-Funktion: } \delta(x) = \begin{cases} 1, & \text{für } x = 0 \\ 0, & \text{für } x \neq 0 \end{cases}$$

Daraus lässt sich die diskrete Fourier-Transformation für das abgetastete Signal f(x) ableiten (implizit: Signalwiederholung)

Fourier-Transformation:
$$F(u) = \frac{1}{N} \cdot \sum_{x=0}^{N-1} f(x) e^{-\frac{i2\pi ux}{N}}, \quad u = 0, 1, \dots, N-1$$

Inverse Fourier-Transformation:
$$f(x) = \sum_{u=0}^{N-1} F(u) e^{\frac{i2\pi xu}{N}}, \quad x = 0, 1, \dots, N-1$$

Je dichter die Stützstellen f(k) (Auflösung), desto besser wird die tatsächliche kontinuierliche Funktion f(x) approximiert

1D diskrete Fourier-Transformation (2)

Beweis: [
$$f(x) = \sum_{u=0}^{N-1} F(u)e^{\frac{i2\pi xu}{N}}$$
, $x = 0, 1, ..., N-1$]?

$$\sum_{u=0}^{N-1} F(u)e^{\frac{i2\pi xu}{N}} = \sum_{u=0}^{N-1} \left[\frac{1}{N} \cdot \sum_{k=0}^{N-1} f(k)e^{-\frac{i2\pi uk}{N}} \right] e^{\frac{i2\pi xu}{N}}$$

$$= \frac{1}{N} \cdot \sum_{u=0}^{N-1} \sum_{k=0}^{N-1} f(k)e^{\frac{i2\pi(x-k)u}{N}}$$

$$= \frac{1}{N} \cdot \sum_{k=0}^{N-1} f(k) \cdot \sum_{u=0}^{N-1} e^{\frac{i2\pi(x-k)u}{N}}$$

$$= \sum_{k=0}^{N-1} f(k) \cdot \delta(x-k)$$

$$= \int_{k=0}^{N-1} f(k) \cdot \delta(x-k)$$

$$= f(x) \quad (x=0,1,\ldots,N-1)$$

1D diskrete Fourier-Transformation (3)

Beweis:
$$S(x) = \sum_{u=0}^{N-1} e^{\frac{i2\pi(x-k)u}{N}} = N \cdot \delta(x-k)$$

Fall 1: x = k, S(k) = N

Fall 2: $x \neq k$

$$S(x) = 1 + e^{\frac{i2\pi(x-k)}{N}} + \left[e^{\frac{i2\pi(x-k)}{N}}\right]^2 + \dots + \left[e^{\frac{i2\pi(x-k)}{N}}\right]^{N-1}$$

$$= \frac{\left[e^{\frac{i2\pi(x-k)}{N}}\right]^N - 1}{e^{\frac{i2\pi(x-k)}{N}} - 1} \quad (\text{weil } 1 + a + a^2 + \dots + a^{N-1} = \frac{a^N - 1}{a - 1})$$

$$= \frac{e^{i2\pi(x-k)} - 1}{e^{\frac{i2\pi(x-k)}{N}} - 1} = \frac{\cos(2\pi(x-k)) + i\sin(2\pi(x-k)) - 1}{e^{\frac{i2\pi(x-k)}{N}} - 1}$$

$$= 0$$

Unter Berücksichtigung beider Fälle gilt:

$$S(x) = N \cdot \delta(x - k)$$

1D diskrete Fourier-Transformation (4)

Beispiel: N = 10, $f(k) = \{1, 2, 3, 4, 5, 5, 3, 3, 1, 1\}$

$$F(0) = 2.80 + i \cdot 0.00$$
 $F(1) = -0.90 - i \cdot 0.46$
 $F(2) = 0.05 + i \cdot 0.04$ $F(3) = -0.00 - i \cdot 0.11$
 $F(4) = 0.05 + i \cdot 0.15$ $F(5) = -0.20 - i \cdot 0.00$
 $F(6) = 0.05 - i \cdot 0.15$ $F(7) = -0.00 + i \cdot 0.11$
 $F(8) = 0.05 - i \cdot 0.04$ $F(9) = -0.90 + i \cdot 0.46$

Inverse Fourier-Transformation mit unterschiedlicher Zahl N von F(u):

1D diskrete Fourier-Transformation (5)

Amplituden- und Phasenspektrum:

Fourier-Transformierte F(u) i.A. komplex

$$F(u) = R(u) + i \cdot I(u)$$

Für Visualisierung von F(u) häufig das Amplitudenspektrum:

$$|F(u)| = \sqrt{R^2(u) + I^2(u)}, \ u = 0, 1, \dots, N-1$$

und das *Phasenspektrum*:

$$\phi(u) = \tan^{-1} \frac{I(u)}{R(u)}, \ u = 0, 1, \dots, N - 1$$

1D diskrete Fourier-Transformation (6)

Amplituden- und Phasenspektrum: Hintergrund

$$f(x) = \sum_{u=0}^{N-1} F(u)e^{\frac{i2\pi xu}{N}} = \sum_{u=0}^{N-1} (R(u) + i \cdot I(u)) \cdot (\cos\frac{2\pi xu}{N} + i \cdot \sin\frac{2\pi xu}{N})$$

$$= \sum_{u=0}^{N-1} \left[(R(u)\cos\frac{2\pi xu}{N} - I(u)\sin\frac{2\pi xu}{N}) + i \cdot \sum_{u=0}^{N-1} \left[R(u)\sin\frac{2\pi xu}{N} + I(u)\cos\frac{2\pi xu}{N} \right] \right]$$

$$= 0 \text{ für } x=0,1,...,N-1$$

$$= \sum_{u=0}^{N-1} [R(u)\cos\frac{2\pi xu}{N} - I(u)\sin\frac{2\pi xu}{N}]$$

$$= \sum_{u=0}^{N-1} |F(u)| \cdot [\cos(\phi(u))\cos\frac{2\pi xu}{N} - \sin(\phi(u))\sin\frac{2\pi xu}{N}]$$

$$= \sum_{u=0}^{N-1} |F(u)| \cdot \cos(\frac{2\pi xu}{N} + \phi(u))$$

Signal f(x) ist Summe von N Kosinus-Funktionen mit Amplitude |F(u)| und Phase $\phi(u)$

2D diskrete Fourier-Transformation (1)

Fourier-Transformation:

$$F(u,v) = \frac{1}{MN} \cdot \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} f(r,c)e^{-i2\pi(\frac{ru}{M} + \frac{cv}{N})}$$
$$u = 0, 1, \dots, M-1; \ v = 0, 1, \dots, N-1$$

Inverse Fourier-Transformation:

$$f(r,c) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v)e^{i2\pi(\frac{ru}{M} + \frac{cv}{N})}$$
$$r = 0, 1, \dots, M-1; \ c = 0, 1, \dots, N-1$$

Amplitudenspektrum:

$$|F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

Phasenspektrum:

$$\phi(u,v) = \tan^{-1} \frac{I(u,v)}{R(u,v)}$$

2D diskrete Fourier-Transformation (2)

Visualisierung des Amplitudenspektrums |F(u,v)|: lineare Abbildung [$\min(|F(u,v)|), \max(|F(u,v)|)$] \to [0,255]

$$|F(0,0)| = \frac{1}{MN} \cdot \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} f(r,c)$$
: Durchschnittsgrauwert von $f(r,c)$

Die anderen Amplituden nehmen mit steigendem u und v sehr stark ab \Longrightarrow Häufig logarithmische Abbildung zur Hervorhebung kleinerer Amplituden

2D diskrete Fourier-Transformation (3)

Eigenschaft der Fourier-Transformation:

Periodizität:

$$F(u,v) = F(kM+u,v) = F(u,lN+v) = F(kM+u,lN+v), \ k,l \ge 1$$

Symmetrie:

$$F(u,v) = F^*(kM - u, lN - v), \quad k, l \ge 1$$
$$|F(u,v)| = |F(kM - u, lN - v)|, \quad k, l \ge 1$$

 $F^*(u,v)$: Konjugierte von F(u,v)

2D diskrete Fourier-Transformation (4)

Eigenschaft der Fourier-Transformation:

Symmetrie: (Fort.)

Fourier-Transformation eines Bildes f(r, c):

$$F(u,v) = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

Fourier-Transformation des Bildes $(-1)^{r+c} \cdot f(r,c)$: um $F(0,0) \equiv F(M,N)$ zentrierte Version für grafische Darstellung des Amplitudenspektrums

$$\left[\begin{array}{cc} D & C \\ B & A \end{array}\right]$$

2D diskrete Fourier-Transformation (5)

Beispiel:

Die mit steigender Frequenz schnell sinkende Amplitude bedeutet, dass in den meisten Bildern offenbar ein erhebliches Kompressionspotential steckt. Da niedrige Amplituden im Ortsbereich geringe Grauwertvariationen bedeuten, ist der Informationsverlust durch Streichung von Wellen mit geringer Amplitude möglicherweise kaum wahrnehmbar.

2D diskrete Fourier-Transformation (6)

Eigenschaft der Fourier-Transformation:

Frequenz und Richtung

Jeweils drei große Werte: Durchschnittsgrauwert |F(0,0)| in der Mitte und zwei um den Mittelpunkt symmetrische Punkte

2D diskrete Fourier-Transformation (7)

Beispiel:

Man erkennt deutlich eine Richtungspräferenz nach Ausführung der Fourier-Transformation auf den beiden Bildern mit Quadraten. Genau wie bei der eindimensionalen Funktion erfordert die Repräsentation von scharfen Kanten auch hier sehr viele hohe Frequenzenanteile. Nur im Bild rechts aussen, das keine harte Kante zwischen Vordergrund und Hintergrund besitzt, sinken die Werte im Frequenzraum rasch mit steigender Frequenz.

2D diskrete Fourier-Transformation (8)

Beispiel:

Das Bild enthält Komponenten vieler Frequenzen. Aber die Amplitude nimmt mit steigenden Frequenzen ab. Zwei dominante Richtungen (horizontal und vertikal): vertikale und horizontale Linienstrukturen im Bild.

2D diskrete Fourier-Transformation (9)

Eigenschaft der Fourier-Transformation:

Translation: Verschiebung einer Funktion um (d_x, d_y) im Ortsraum \Longrightarrow Veränderung der Phasen

2D diskrete Fourier-Transformation (10)

Eigenschaft der Fourier-Transformation:

■ Rotation: Rotation einer Funktion im Ortsraum

⇒ gleiche Rotation der Amplituden

2D diskrete Fourier-Transformation (11)

Beispiel: Wichtigkeit der Phaseninformation

2D diskrete Fourier-Transformation (12)

Anwendung: Detektion der Hauptrichung im Bild

Amplituden kleiner als 5% der größten Amplitude |F(0,0)| gelöscht

Fast Fourier Transform (FFT) (1)

Make no mistake, the FFT is simply a faster way to compute the Fourier transform, and is not a new or different transform in its own right. The optimizations needed to speed up the calculation are partly standard programming tricks (such as computing some of the values in advance outside of the loop) and partly mathematical techniques.

J.R. Parker

Direkte Realisierung: $O(N^4)$ für Bilder der Größe $N \times N$

2D FFT:

Separierbarkeit:

$$F(u,v) = \frac{1}{MN} \cdot \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} f(r,c) e^{-i2\pi(\frac{ru}{M} + \frac{cv}{N})}$$

$$= \frac{1}{MN} \cdot \sum_{r=0}^{M-1} \left[\sum_{c=0}^{N-1} f(r,c) e^{-i2\pi \frac{cv}{N}} \right] e^{-i2\pi \frac{ru}{M}}$$

1D Fourier-Transformation auf allen Zeilen und dann auf allen Spalten $(O(2N^3);$ Beschleunigungsfaktor: $\frac{N}{2})$

Anwendung von 1D FFT

Fast Fourier Transform (FFT) (2)

Beschleunigungsfaktor von 1D FFT: $N={\sf Anzahl}$ Signalwerte

\overline{N}	direkt	FFT	Beschleunigung
4	16	8	2.0
8	84	24	2.7
16	256	64	4.0
32	1024	160	6.4
64	4096	384	10.7
128	16384	896	18.3
256	65536	2048	32.0
512	262144	4608	56.9
1024	1048576	10240	102.4