MA1012: Problem Sheet 3

Dr Manjil P. Saikia

March 2023

- 1. Determine in which directions the directional derivatives exists for the following functions $f: \mathbb{R}^2 \to \mathbb{R}$, where f(x, y) is given by
 - (a) $\sqrt{|xy|}$, and
 - (b) $\frac{x^2y}{x^2+y^2}$.
- 2. For $X \in \mathbb{R}^3$ and f(X) := ||X||, let $X_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$ and $||X_0|| = 1$, show that $\nabla f(X_0) = X_0$ and find the equation of the tangent plane of the sphere f(x, y, z) = 1 at X_0 .
- 3. Find a point on the surface $z = g(x, y) = x^2 2xy + 2y$ at which the surface has a horizontal tangent plane.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable and $M \in \mathbb{R}$ be such that $|f_x(X)| \leq M$ and $|f_y(X)| \leq M$ for all $X \in \mathbb{R}^2$, then show that for all $X, Y \in \mathbb{R}^2$ we have $|f(X) f(Y)| \leq 2M||X Y||$.
- 5. Prove the extended mean value theorem.
- 6. Let $D \subset \mathbb{R}^2$ and (x_0, y_0) be an interior point of D. Suppose that $f: D \to \mathbb{R}$ and f has a local maximum or minimum at (x_0, y_0) . Then,
 - (a) if $(u, v) \in \mathbb{R}^2$ with ||(u, v)|| = 1 and $D_{(x_0, y_0)} f(u, v)$ exists then $D_{(x_0, y_0)} f(u, v) = 0$, and
 - (b) if f is differentiable at (x_0, y_0) , then $f'(x_0, y_0) = 0$.
- 7. Examine the behaviour of the following functions at the point (0,0):
 - (a) $x^2 y^2$, and
 - (b) $x^2 2xy^2$.
- 8. Find a point on the surface z = xy + 1 that is nearest to the origin.
- 9. Find the points of global maximum and global minimum of the function $f(x,y) = x^2 + y^2 2x + 2$ on the region $\{(x,y): x^2 + y^2 \le 4, y \ge 0\}$.

1

10. Prove the second derivative test.