Funktionalanalysis

Prof. Dr. Lutz Weis

Wintersemester 2015

Martin Belica

Einleitung

Die Funktionalanalysis liefert den begrifflichen Rahmen sowie allgemeine Methoden, die in weiten Teilen der modernen Analysis verwendet werden. Zum Beispiel ist es möglich Integralund Differentialgleichungen als lineare Gleichungen in einem geeigneten unendlichdimensionalen Vektorraum (wie z.B. einem Raum stetiger oder integrierbarer Funktionen) aufzufassen. Will
man nun auf diese unendlichdimensionalen Gleichungen Ideen der linearen Algebra anwenden,
so treten Konvergenz- und Kompaktheitsprobleme auf, die wir in dieser Vorlesung behandeln
wollen. Zu den Themen gehören:

- Beschränkte und abgeschlossene Operatoren auf normierten Räumen
- Stetigkeit und Kompaktheit auf metrischen Räumen
- Geometrie und Operatorentheorie in Hilberträumen
- Der Satz von Hahn-Banach und Dualität von Banachräumen

Die allgemeinen Aussagen werden durch konkrete Beispiele von Räumen und Operatoren der Analysis illustriert.

Erforderliche Vorkenntnisse

Analysis I-III, Lineare Algebra I-II

Inhaltsverzeichnis

1	Einführung	2
	1.1 Räume	2
	1.2 Operatoren	
	1.3 Anwendungen	3
2	Normierte Räume	5
3	Beschränkte und lineare Operatoren	10
4	Metrische Räume	18
	okürzungsverzeichnis Stichwortverzeichnis	24 25

1 Einführung

1.1 Räume

Sei X ein Vektorraum, $dim X < \infty$ und sei $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$

$$||x||_2 := \left(\sum_{k=1}^n ||x_i^2||\right)^{\frac{1}{2}}$$
$$||x||_{\infty} := \max_{i=1}^n ||x_i||$$

Diese Normen sind äquivalent, denn: $\|x\|_{\infty} \leq \|x\|_2 \leq n^{\frac{1}{2}} \|x\|_{\infty}$

Satz 1 (Bolzano-Weierstraß)

 $A \subset \mathbb{R}$ beschränkt. Dann hat jede Folge $(x_n)_{n \in \mathbb{N}} \subset A$ eine konvergente Teilfolge.

Beispiel 1.1

 $X=C[0,1]=\{f:[0,1]\to\mathbb{R}: \text{ stetig auf } [0,1]\}$

$$||f||_2 := \left(\int_0^1 ||f(t)||^2 dt \right)^{\frac{1}{2}}$$
$$||f||_{\infty} := \max_{t \in [0,1]} ||f(t)||$$

Dabei gilt $||f||_{\infty} \le ||f||_2$, aber mit folgender Funktion folgt zum Beispiel: $f_n(t) =$

gilt
$$||f_n||_{\infty} = 1$$
, $||f_n||_2 \xrightarrow[n \to \infty]{} 0$ $||f_n - f_m|| = 1$ für $n \neq m$

 \Rightarrow Satz von Bolzano-Weierstraß gilt im ∞ -dimensionalen i.A. nicht!

1.2 Operatoren

Sei N = dim X, M = dim Y und seien (e_n) bzw. (f_n) Basen von X bzw. Y. Sei $T: X \to Y$ gegeben durch:

$$X \xrightarrow{T} Y$$

$$\alpha_n \to \sum \alpha_n e_n \downarrow \qquad \qquad \downarrow \beta_n \to \sum \beta_n f_n$$

$$\mathbb{R}^N \xrightarrow{A} \mathbb{R}^n$$

wobei $x = \sum \alpha_n e_n$, $Tx = \sum \beta_n f_n$, $\beta_m = \sum_{n=1}^N a_{mn} \alpha_n$.

Daraus folgt:

- T ist stetig
- $X = Y \iff T$ injektiv $\iff T$ surjektiv (Dimensionsformel) (Die Gleichung Tx = y ist eindeutig lösbar \iff Gleichung hat für alle $y \in Y$ eine Lösung.)
- Falls A selbstadjungiert ist, d.h. $A = A^*$, gibt es eine Basis aus Eigenvektoren (e_n) von A, d.h. $T(\sum_{n=1}^{N} \alpha_n e_n) = \sum_{n=1}^{N} n = 1^{N} \lambda_n \alpha_n e_n$, wobei λ_n Eigenwerte sind $A = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \end{pmatrix}$

Beispiel 1.2

 $X = C^{1}[0,1] = \{f : [0,1] \to \mathbb{R} : \text{ stetig auf } [0,1]\}$ $Tf = f', T: X \to Y$ stetig. (Aber: $T: C[0,1] \to C[0,1]$, hier ist T nicht definiert.)

T ist nicht stetig bzgl. $\|\cdot\|_{\infty}$ -Norm, da:

$$f_n(t) = \frac{1}{\sqrt{n}}e^{int}, \quad \text{dann: } ||f_n|| \to 0 \text{ für } t \to \infty$$

$$Tf_n(t) = i\sqrt{n}e^{int}$$
, mit: $||Tf_n||_{\infty} \to \infty$, für $n \to \infty$

Beispiel 1.3
$$X = L_2 = \{(a_n) : \left(\sum_{n\geq 1}^{\infty} \|a_n\|\right)^{\frac{1}{2}} < \infty\}$$
 $T(a_1, a_2, a_3, ...) = (0, a_1, a_2, a_3, ...)$

T ist injektiv, aber nicht surjektiv

1.3 Anwendungen

(1) Fredholm'sche Integralglechungen $X = C[0,1], k : [0,1] \times [0,1] \to \mathbb{R}$ stetig

$$Tf(t) = \int_0^1 k(t,s)f(s)ds$$

Analogie zum endlich dim. ('Verallg. der Matrixmultiplikation'): $T(f_j)(i) = \sum_{j=1}^n a_{ij} f_j$

T ist in diesem Fall linear und stetig und es gilt die Fredholm'sche Alternative:

$$\lambda \in R \setminus \{0\} : (\lambda Id - T)(f) = y, \quad f, g \in C[0, 1]$$

Dann existiert eine Lösung genau dann, wenn diese eindeutig ist.

(2) Dirichletproblem

 $\Omega \subset \mathbb{R}^n$ Gebiet, offen, beschränkt, glatter Rand. Sei $g: \partial \Omega \to \mathbb{R}$ stetig Gesucht ist ein $f \in C(\bar{\Omega}) \cap C^{(\Omega)}$, so dass $\nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} = 0$ in Ω und $f_{|\partial \Omega} = g$

Beispiel: Durch Wärmeverteilung auf dem Rand auf WV im Inneren schließen.

Lösung: Dirichletintegral $J(u)=\int_{\Omega}(\nabla u)^2dx$, wobei $u\in M=\{v\in C^1(\bar{\Omega})|\ v_{\big|\partial\Omega}=g\}$ Sei v_0 das absolute Minimum von J, d.h. $J(v_0)=\inf\{J(w):w\in M\}$ $v\in C^1(\bar{\Omega})$ mit v=0 in einer Umgebung von $\partial U.\ \epsilon\to J(u_0+\epsilon v)$

$$\frac{d}{d\epsilon}J(u_0+\epsilon v) = \int_{\Omega} \frac{d}{d\epsilon}(\nabla u_0+\epsilon \nabla v)^2 dx = 2\int_{\Omega} (\nabla u_0+\epsilon \nabla v)(\nabla v) dx\Big|_{\epsilon=0} = 2\int_{\Omega} (\nabla u_0)(\nabla v) dx$$

Mit $0 \ge J(u_0 + \epsilon v) - J(u_0) \ge 0$: $\int (\nabla u_0)(\nabla v) dx \stackrel{\text{P.I.}}{=} - \int (\nabla u_0)v dx = 0$

$$\Rightarrow \nabla u_0 = 0,$$
außerdem $u_0 \mid_{\partial \Omega} = g$ (s.o.)

Im allgemeinen exisitert da absolute Minimum $u_0 \in J$ aber nicht. Ausweg: $X = \{f \in L^2(\Omega), f' \in L^2(\Omega)\} \supset \{f \in C(\bar{\Omega}), f' \in C(\bar{\Omega})\}$ In diesem Raum X (Sobolevräume) gibt es ein Minimum u_0 von J.

(3) Sturm-Liouville Problem

 $X = C^2([0,1]), Tu = (pu')' + qu, \text{ mit } q \in C[0,1], p \in C^1[0,1]$ Problem: bei gegebenen $f \in C[0,1]$ find $u \in X$ mit Tu = f, v(0) = 0, v'(1) = 0

 $Y=\{f\in L^2[0,1], f'\in L^2[0,1]\}$ Hilbertraum. Orthonormalbais (e_n) von Y wäre: $\|e_n\|_2=1, \int e_n(x)e_m(x)dx=0$ für $m\neq m$ $f\in Y: f=\sum_{n=1}^\infty \alpha_n e_n$ mit $\|f\|^2=\sum |\alpha_n|^2$ Die (e_n) sind außerdem Eigenvektoren des Operatoren T, d.h. $Te_n=\lambda_n e_n$

$$Ty = f \Rightarrow \int Ty(x)e_n(x)dx = \int f(x)e_n(x)dx, y = \sum_{n=1}^{\infty} \alpha_n e_n$$

Gesucht sind die Koeffizienten α_n

$$\int f(x)e_n(x)dx = \sum_m \lambda_m \alpha_m \int Te_n(x)e_m(x)dx$$
$$= \lambda_n \alpha_n \int e_n(x)e_n(x)dx$$
$$\iff \alpha_n = \frac{1}{\lambda_n} \int f(x)e_n(x)dx$$

2 Normierte Räume

Definition 2.1

Sei X ein Vektorraum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$

Eine Abbildung $\|\cdot\|:X\to\mathbb{R}_+$ heißt eine **Norm**, wenn

- (1) $||x|| \ge 0, ||x|| = 0 \iff x = 0$
- $(2) \quad |\lambda x|| = |\lambda||x||$
- (3) $||x + y|| \le ||x|| + ||y||$

Bemerkung:

Falls $\|\cdot\|$ all die oben genannten Eigenschaften erfüllt außer $\|x\|=0 \Rightarrow x=0$, dann heißt $\|\cdot\|$ Halbnorm

Vereinbarung:

Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heißt **Einheitskugel**.

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls $||x_n - x|| \xrightarrow[n \to \infty]{} 0$.

Bemerkung:

Für zwei Elemente $x, y \in (X, \|\cdot\|)$ in normierten Räumen gilt auch die umgekehrte Dreiecksungleichung $(\|\|x\| + \|y\|\| \le \|x + y\|)$

Beispiel 2.2

Sei $X = \mathbb{K}^n$, $X = (X_1, \dots, X_n)$, $X_i = \mathbb{K}$

$$||x||_p = \left(\sum_{j=1}^n |x_j^p|\right)^{\frac{1}{p}}, 1 \le p < \infty(p=2: \text{ Euklidische Norm})$$
$$||x||_{\infty} = \sup_{j=1}^n |x_j|$$

Beh: $\|\cdot\|$ ist Norm auf \mathbb{K}^n für $1 \leq p \leq \infty$

 $||x+y||_{\infty} = \sup_{j=1}^k |x_j+y_j| \le ||x||_{\infty} + ||y||_{\infty}$ Für $p \in (1,\infty), p \ne 2$: siehe Übungsaufgabe (Fall p=2 läuft über Cauchy-Schwarz)

Beachte: $||x||_{\infty} \le ||x||_{p} \le n^{\frac{1}{p}} ||x||_{\infty} \le n ||x||_{\infty}$

Definition 2.3

Zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ heißen äquivalent auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

$$m\|x\|_2 \le \|x\|_1 \le M\|x\|_2$$

Satz 2.4

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Beweis

Wähle eine algebraische Basis (e_1, \ldots, e_n) von X, wobei $n = \dim X < \infty$.

Definiere
$$|||x||| = (\sum_{i=1}^{n} |x_i|^2)^{\frac{1}{2}}$$
, wobei $x = \sum_{i=1}^{n} x_i e_i$

z. z. die gegeben Norm $||| \cdot ||$ ist äquivalent zu $|| \cdot ||$.

Beweis:

In der einen Richtung betrachte:

$$||x|| = ||\sum_{i=1}^{n} x_i e_i|| \le \sum_{i=1}^{n} |x_i|| ||e_i||$$

$$\le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} ||e_i||^2\right)^{\frac{1}{2}}$$

$$=: \nu \qquad |||x|||$$

Für die Umkehrung benutze die Funktion $J: \mathbb{K}^n \to X, \ J(x_1, \dots, x_n) = \sum_{i=1}^n x_i e_i$

Die Abbildung $y \in \mathbb{K}^n \to ||Jy||$ ist stetig, denn

$$||Jy|| - ||y||_{\mathbb{K}^n} = \left(\sum_{i=1}^n |y_i|^2\right)^{\frac{1}{2}}, y = (y_1, \dots, y_n)$$
und $||Jy|| - ||Jz|| \le ||Jy - Jz|| \le ||J(y - z)||$

$$\le M||J(y - z)|||$$

$$= M||y - z||_{\mathbb{K}^n}$$

Daraus folgt die Stetigkeit von $Jy \to \|Jy\| \in \mathbb{R}$

Sei $S = \{y \in \mathbb{K}^n : ||y||_2 = 1\}$. Dann ist S abgeschlossen und beschränkt. Die Abbildung $N := y \in S \to ||Jx|| > 0$ ist wie in (*) gezeigt stetig. Nach Analysis nimmt N sein Minimum in einem Punkt $y_0 \in S$ an. Setze

$$m = \inf\{||x|| : |||x||| = 1\} = \inf\{||Jy|| : y \in S\}$$
$$= ||Jy_0|| > 0$$

Also
$$m \leq \|\frac{x}{|||x|||}\| = \frac{\|x\|}{|||x|||} \Rightarrow |||x||| \leq m\|x\|$$

Proposition 2.5

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n) \subset X$, $x \in X$ gilt $||x_m x||_1 \to 0 \iff ||x_m x||_2 \to 0$
- c) Für alle $(x_n) \subset X$ gilt $||x_m||_1 \to 0 \iff ||x_m||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass $mU_{(X,\|\cdot\|_1)} \le U_{(X,\|\cdot\|_2)} \le MU_{(X,\|\cdot\|_1)}$

Beweis

- $(a) \Rightarrow (b) \Rightarrow (c)$ folgt direkt durch die Definition von äquivalenten Normen.
- $c)\Rightarrow d)$ Annahme: Es existiert kein M mit $U_{(X,\|\cdot\|_2)}\subset MU_{(X,\|\cdot\|_1)}.$ Dann gibt es eine Folge $x_n\in U_{(X,\|\cdot\|_2)}$ mit $\|x_n\|_1\geq n^2$ Setze $y_n=\frac{1}{n}x_n.$ Dann gilt $\|y_n\|_1\to 0$ und $\|y_n\|_2\to\infty.$ Widerspruch zu c).
- $$\begin{split} d) &\Rightarrow a) \text{ Gegeben ist } U_{(X,\|\cdot\|_2)} \subset MU_{(X,\|\cdot\|_1)} \\ &\text{ Das ist "aquivalent zu } \|x\|_2 \leq M\|x\|_1 \\ &\text{ Analog folgt aus } mU_{(X,\|\cdot\|_1)} \subset U_{(X,\|\cdot\|_2)} \text{ dann } m\|x\|_1 \leq \|x\|_2. \\ &\text{ Also } m\|x\|_1 \leq \|x\|_2 \leq M\|x\|_1 \end{split}$$

Vereinbarung:

Sei $\mathbb{F} = \{(x_n) \in \mathbb{K}^N : x_i = 0 \text{ bis auf endlich viele } n \in N\}$ der **Folgenraum** und $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ der Einheitsvektor, wobei die 1 an j-ter Stelle steht.

Beispiel 2.6

- $l^p = \{x = (x_n) \in \mathbb{K}^n : ||x||_p = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} < \infty \}$
- $l^{\infty} = \{x = (x_n) \in \mathbb{K}^n : ||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n| < \infty\}$
- $c_0 = \{x = (x_n) \in l^{\infty} : \lim_{n \to \infty} |x_n| = 0\}$

Gültigkeit der Dreiecksungleichung beweist man ähnlich wie bei $(\mathbb{K}^n, \|\cdot\|_p)$.

Lemma 2.7

Minkowskii-Ungleichung:
$$(\sum_{i=1}^{\infty} |x_i + y_i|^p)^{\frac{1}{p}} \leq (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^p)^{\frac{1}{p}}$$

Hölder-Ungleichung: mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt $\sum_{i=1}^{\infty} |x_i| |y_i| \leq (\sum_{i=1}^{\infty} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |y_i|^{p'})^{\frac{1}{p'}}$

Bemerkung:

Im unendlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf \mathbb{F} nicht äquivalent.

Beweis

Sei p > q, setze

$$X_n := \sum_{j=2^n+1}^{2^{n+1}} j^{-\frac{1}{p}} e_j, \quad e_j = (\delta_{ij})_{u \in \mathbb{N}}$$

Damit gilt $x_n \in \mathbb{F}$ und weiter

$$||x_n||_p = \left(\sum_{j=2^n}^{2^{n+1}} \frac{1}{j}\right)^{\frac{1}{p}} \simeq (ln(2))^{\frac{1}{p}}$$

aber $||x_n||_q \to \infty$, also sind $||\cdot||_p$, $||\cdot||_q$ keine äquivalente Normen.

Beispiel 2.8

- a) Raum der stetigen Funktionen $\Omega \subset \mathbb{R}^n, \ C(\Omega) = \{f: \Omega \to \mathbb{R} \mid f \text{ stetig}\}, \quad \|f\| = \sup_{u \in \Omega} |f(u)| \\ \Rightarrow \|f f_n\| \to 0 \text{ bedeutet gleichmäßige Konvergenz von } f_n \text{ gegen } f \text{ auf } \Omega.$
- b) Raum der differentierbaren Funktionen $\Omega \subset \mathbb{R}^n$ offen, $f: \Omega \to \mathbb{R}$, $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}_0^m$ $D^{\alpha}f(x) = \frac{\delta^{|\alpha|}}{\delta x_1^{\alpha_1} \dots \delta x_n^{\alpha_n}} f(x)$, wobei $|\alpha| = \alpha_1 + \dots + \alpha_n$

Definition 2.9

Wir nennen $C_b^m(\Omega) = \{f : \Omega \to \mathbb{R} | D^{\alpha}f \text{ sind stetig in } \Omega, \text{ beschränkt auf } \Omega \text{ für alle } \alpha \in \mathbb{N}^n, |\alpha| \le n \}$ den Raum der beschränkten, m-fach stetig differenzierbaren Funktionen. Auf C_b^m definieren wir die Norm: $\|f\|_{C_b^m} = \sum_{|\alpha| \le m} \|D^{\alpha}f\|_{\infty}$

Bemerkung:

Auf $C_h^m[0,1]$ ist eine äquivalente Norm zu $||f||_{C_t^m}$ gegeben durch

$$\|f\|_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + \|f^{(m)}\|_{\infty}$$
 Denn $f^{(i)}(t) = f^{(i)}(0) + \int_0^t f^{(i+1)}(s) ds$ und damit $\|f^{(i)}\|_0 \le |f^{(i)}(0)| + \|f^{(i+1)}\|_{\infty}$

Beispiel 2.10

 $X = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt.

Definiere $||f||_{\mathbb{L}^p} = \left(\int_{\Omega} |f(u)|^p du\right)^{\frac{1}{p}}$ und betrachte $f_k(t) = t^k, t \in [0, 1]$, dann gilt:

$$||f||_{\mathbb{L}^p} = \left(\frac{1}{kp+1}\right)^{\frac{1}{p}} \xrightarrow[k \to \infty]{} 0, \quad p < \infty$$

Definition 2.11 (Quotientenräume)

Sei $(X, \|\cdot\|)$ ein normierter Raum. $M \subset X$ sei abgeschlossener, linearer Unterraum.

(abgeschlossen: d.h. für alle
$$(x_n) \in M, ||x_n - x|| \to 0 \Rightarrow x \in M$$
)

Definiere $\hat{X} = X/M$, $\hat{x} \in X/M$: $\hat{x} = \{y \in X : y - x \in M\} = x + M$ Dabei gilt unter anderem $\hat{x}_1 + \hat{x}_2 = x_1 + x_2$ und $\hat{x}_1 = \hat{x}_1$; \hat{X} bildet somit einen Vektorraum. Definieren wir eine Norm für die Äquivalenzklassen mittels $\|\hat{x}\|_{\hat{X}} := \inf\{\|y\|_X : y \in \hat{X}\}$

Behauptung: $(\hat{X}, \|\cdot\|_{\hat{X}})$ ein normierter Raum.

Beweis: Sei $\hat{x} \in \hat{X}$ beliebig mit $\|\hat{x}\|_{\hat{X}} = 0$

dann existiert ein $y_n \in \hat{X}$ mit $||y_n|| \to 0$ und $x - y_n \in M$

$$\Rightarrow x \in M, \hat{x} = 0$$

Zu $\epsilon < 0$ wähle für $\hat{x}_1, \hat{x}_2 \in \hat{X}, y_1, y_2 \in M$ mit

$$\|\hat{x}_1\| \ge \|x_i - y_i\| - \epsilon$$

Damit folgt:

$$||x + y|| \le ||x_1 + x_2 - y_1 - y_2||$$

$$\le ||x_1 - y_1|| + ||x_2 - y_2||$$

$$\le ||\hat{x}_1|| + ||\hat{x}_2|| + 2\epsilon$$

Bemerkung:

Ist $\|\cdot\|$ nur eine Halbnorm auf X, so ist $M=\{x:\|x\|=0\}$ ein abgeschlossener, linearer Teilraum von X und der Quotientenraum $(\hat{X},\|\cdot\|_{\hat{X}})$ ist ein normierter Raum.

Beispiel 2.12

• Hölderstetige Funktionen

Wenn $h_{\alpha}(f) = \sup_{u,v \in \mathbb{R}, u \neq v} \frac{\|f(u) - f(v)\|}{\|u - v\|^{\alpha}} < \infty \quad (\alpha \in (0,1]), \text{ dann nennt man } f \text{ h\"olderstetig.}$

$$C^{\alpha}(\Omega) := \{ f : \Omega \to \mathbb{R} : h_{\alpha}(f) < \infty \} \quad \Omega \subset \mathbb{R}^n,$$

Im Moment ist $h_{\alpha}(\cdot)$ eine Halbnorm. Unter der Voraussetzung Ω zusammenhängend gilt aber weiter:

$$h_{\alpha}(f) = 0 \iff f \equiv c \text{ konstant}$$

Wenn z.B. $M = \{1\Omega\}$ und $V = C^{\alpha}/M$ ist oben genanntes sogar ein normierter Raum.

• Lebesgues-Integrierbare Funktionen Sei $\Omega \subset \mathbb{R}^n$ offen, $\mathcal{L}^p(\Omega) = \{f : \Omega \to \mathbb{R} : |f|^p \text{ ist lesbesgue-integrierbar auf } \Omega \}$. Wir definieren $||f||_p := \left(\int_{\Omega} |f(x)|^p d\mu\right)^{\frac{1}{p}}$, wobei $||\cdot||_p$ hier eine Halbnorm bildet.

$$||f||_p = 0 \iff f(x) = 0$$
 fast überall auf Ω

Wähle $M = \{l : \Omega \to \mathbb{R} : f = 0 \text{ fast "uberall auf } \Omega\}.$

Dann ist

$$\mathbb{L}^p(\Omega) := \frac{\mathcal{L}^p(\Omega)}{M}$$
ein normierter Raum.

3 Beschränkte und lineare Operatoren

Definition 3.1

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heißt **beschränkt**, falls

$$c := \sup_{x \in V} \|x\| < \infty$$
, und damit auch $V \subset cU_{(X,\|\cdot\|)}$

Bemerkung:

Eine konvergente Folge $(x_n) \in X, x_n \to x$ ist beschränkt, denn $x_m \in \{y : ||x - y|| \le 1\}$ für fast alle m.

Satz 3.2

Seien X, Y normierte Räume. Füreinen linearen Operator $S: X \to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

Beweis

- $a) \Rightarrow b)$ klar, ist ein Spezialfall.
- $(b) \Rightarrow (c)$ Wäre (c) falsch, dann gibt es ein (c) mit

$$||Tx_n \ge \frac{1}{n^2}||$$

Setze $y_n = \frac{1}{n}x_n$, dann gilt

$$||y_n|| \le \frac{1}{n} ||x_n|| \to 0, ||T(y_n)|| = n^2 ||T(x_n)|| \ge \frac{n^2}{n} \to \infty$$

Widerspruch zur Voraussetzung.

$$(c) \Rightarrow d$$
) Sei $T(U_X) \subset U_Y$
Für $x \in X \setminus \{0\}, \frac{x}{\|x\|} \in U_X$ folgt:

$$T\left(\frac{x}{\|x\|}\right) \in cU_Y$$

$$\Rightarrow \|T\left(\frac{x}{\|x\|}\right)\| \le c \Rightarrow \|Tx\|_Y \le c\|x\|_X$$

 $(d) \Rightarrow a)$ Für $x_n \to x$ in X folgt:

$$||Tx_n - Tx|| = ||T(x_n - x)||$$

$$\leq c||x_n - x|| \to 0$$

$$\Rightarrow Tx_n \to Tx \text{ in } Y$$

Definition 3.3

Seien X, Y normierte Räume. Mit B(X, Y) bezeichnen wir den **Vektorraum der beschränkten**, linearen Operatoren $T: X \to Y$. Ist X = Y schreiben wir auch kurz B(X) := B(X, X).

Für $T \in B(X, Y)$ setze

$$||T|| = \sup\{\frac{||Tx||}{||x||} : x \in X \ 0\}$$
$$= \sup\{||Tx|| : ||x|| \le 1\}$$

Die Norm ||T|| von T ist die kleinste Konstante c, für welche die Gleichung $||Tx|| \le c||x||$ für alle $x \in X$ gilt.

Satz 3.4

 $(B(X,Y),\|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$||S \cdot T|| \le ||S|| ||T||$$

Beweis

$$||T|| \ge 0, \ ||T|| = 0 \ \Rightarrow ||Tx|| = 0$$
 für $||x|| \le 1 \ \Rightarrow \ Tx = 0 \ \Rightarrow \ T = 0$

$$||(T+S)(x)|| = ||Tx + Sx|| \le ||Tx||_Y + ||Sx||_Y$$

 $\le ||T|| + ||S||$

Nehme das Supremum über $||x|| \le 1$:

$$||T + S|| \le ||T|| + ||S||$$

$$||(S \cdot T)(x)||_{Y} = ||S(Tx)||_{Y} \le ||S|| ||Tx||$$

$$\le ||S|| ||T|| ||x||$$

$$\Rightarrow ||ST|| \le ||S|| ||T||$$

Beispiel 3.5

- a) Idx = x, ||Id|| = 1
- b) Falls $dim X = n < \infty, Y$ normierter Raum, dann sind alle linearen Operatoren $T: X \to Y$ beschränkt.

Beweis

Wähle die Basis e_1, \ldots, e_n von XFür $x = \sum_{i=1}^{n} x_i e_i$ gilt:

$$||Tx|| = ||\sum_{i=1}^{n} x_i Te_i|| \le \sum_{i=1}^{n} |x_i| ||Te_i||$$

$$\le \max_{i=1}^{n} ||Te_i||_Y \sum_{i=1}^{n} |x_i|$$

$$\le c||x||, \text{ da } ||x|| = \sum_{i=1}^{n} |x_i|$$

Aber: Wenn $dim X = \infty, dim Y < \infty$ so gibt es viele unbeschränkte, lineare Operatoren von X nach Y.

c)
$$X = C^{\infty}(0,1), ||f||_{\infty} = \sup_{u \in (0,1)} |f(u)|$$

 $T: X \to X, Tf = f', f_k(t) = e^{i2\pi kt} \in X, Tf_k(t) = 2\pi i k f_k(t)$
 $||f_k|| = 1, ||Tf_k|| = 2\pi k \to \infty$

d) $\mathbb{F} = \{(x_n) \in \mathbb{R}^n : x_n = 0 \text{ bis auf endlich viele } n\}$

$$T: \mathbb{F} \to \mathbb{R}, T((x_n)) = \sum_{n \in \mathbb{N}} nx_n \in \mathbb{R} ||Te_n|| = n \to \infty$$

Beispiel 3.6 (Integral operator)

 $X = Y = C(\bar{\Omega}), \Omega \subset \mathbb{R}^n$ offen, beschränkt. Gegeben sei $k \in \bar{\Omega} \times \bar{\Omega} \to \mathbb{R}$

Für
$$f \in C(\bar{\Omega})$$
 setze: $Tf(u) = \int_{\Omega} k(u,v)f(v)dv$, $(A(f_j)_i = \sum_{j=1}^n a_{ij}f_j, A = (a_{ij})_{i,j=1,\dots,n})$

Dann ist $Tf \in C(\bar{\Omega})$ (nach Lebesguesschem Konvergenzsatz)

$$|Tf(u)| \le \int_{\Omega} |k(u, v)| |f(u)| dz$$

$$\le \int_{\Omega} |k(u, v)| du \sup_{u \in \Omega} |f(u)|$$

sup über $u \in \Omega$ liefert dann:

$$||Tf||_{\infty} \le \sup_{u \in \Omega} \int |k(u, v)| dv ||f||_{\infty}$$

$$\Rightarrow ||T|| = \sup_{u \in \Omega} \int |k(u, v)| dv < \infty,$$

Die Abbildung $u \in \bar{\Omega} \to \int |k(u,v)| dv \in \mathbb{R}$ ist stetig nach dem Konvergenzsatz von Lebesgue.

Beweis

" \leq " ist klar " \geq " Falls $k(u,v)\geq 0$ dann ist $T\cdot\mathbbm{1}(u)=\int k(u,v)dv=\int |k(u,v)|dv$

$$\|T\cdot\mathbb{1}\|=\sup_{u\in\Omega}\int|k(u,v)|dv\leq\|T\|,\,\mathrm{d.h.}\ \|\mathbb{1}\|=1$$

Skizze:

$$\sup \int |k(u,v)| dv \sim \int |k(u_0,v)| dv = \int k(u_0,v)g(v) dv$$

mit $g(v) = sign(v)k(u_0, v)$, g ist aber nicht stetig.

Ggf. Approximation des Signums durch stetige Funktionen.

Beispiel 3.7 (Kompositionsoperator)

 $\Omega \subset \mathbb{R}^n$ offen.

$$\sigma: \bar{\Omega} \to \bar{\Omega}$$
 stetig, für $f \in C(\bar{\Omega}): Tf(u) = f(\sigma(u))$

z.B.: σ als Transposition der Elemente in Ω

$$||Tf||_{\infty} \le ||f||_{\infty}, \quad ||T|| = 1$$

Beispiel 3.8 (Differentialoperatoren)

 $\Omega \subset \mathbb{R}^n$ offen, $m \in \mathbb{N}$, $X = C^m(\bar{\Omega})$, $Y = C_b(\Omega)$,

$$T: X \to Y, \ Tf(u) = \sum_{|\alpha| < m} a_{\alpha} D^{\alpha} f(u), u \in \mathbb{R}, a_{\alpha} \in C\bar{\Omega}$$

damit $||Tf||_{\infty} \le \sum_{|\alpha| \le m} ||a_{\alpha}||_{\infty} ||D^{\alpha} f||_{\infty} \le c||f||_{\infty}$

Beispiel 3.9 (Matrizenmultiplikation)

Für $p \in [1, \infty]$ und $T \in B(l^p)$ setzen wir

$$e_l := (0, \dots, 0, 1, 0, \dots, 0), l \in \mathbb{N},$$
 wobei die 1 an l-ter Stelle steht.

und $a_{kl} = (Te_l)_k$, sowie $A = (a_{kl})_{k,l \in \mathbb{N}}$

$$\Rightarrow (Tx)_k = (\sum_{l=1}^{\infty} x_l Te_l)_k = \sum_{l=1}^{\infty} a_{kl} k_l, \quad k \in \mathbb{N} \Rightarrow Tx = Ax \text{ (unendliches Matrixprodukt)}$$

a) Die Hills-Tanerkin-Bedingung (nur Hinreichend) Sei $p \in (1, \infty)$ und $\frac{1}{p} + \frac{1}{q} = 1$. Setze

$$c := \left(\sum_{k \ge 1} \left(\sum_{l \ge 1} |a_{kl}|^q \right)^{\frac{p}{q}} \right)^{\frac{1}{p}} < \infty$$

so definiert T einen Operator $T \in B(l^p)$ mit $||T|| \leq c$

Beweis

(i) Wohldefiniertheit: (und Beschränktheit) Für $x \in l^p$ folgt

$$||Tx||_{l^{p}}^{p} = \sum_{k \geq 1} |(Tx)_{k}|^{p}$$

$$= \sum_{k \geq 1} |\sum_{l \geq 1} |a_{kl}x_{l}|^{p}$$

$$\leq \sum_{k \geq 1} \left(\sum_{l \geq 1} |a_{kl}|^{q}\right)^{\frac{p}{q}} \left(\sum_{l \geq 1} |x_{l}|^{p}\right)^{\frac{p}{q}}$$

$$= c^{p} ||x||_{l^{p}}^{p} < \infty$$

3 Beschränkte und lineare Operatoren

(ii) Linearität

Wegen $c < \infty$ ist $\left(\sum_{l} |a_{kl}|^q\right)^{\frac{1}{q}} < \infty, \ \forall k \in \mathbb{N}$ Für $x \in l^p$ konvergiert die Reihe nach Hölder. Damit ist T offensichtlich linear.

b) Der Fall l^1 :

Es ist $T \in B(l^1)$ genau dann, wenn

$$c_1 := \sup_{1} \sum_{k} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_1$.

Beweis

" \Rightarrow " Sei $T \in B(l^1)$. Dann gilt für $l \in \mathbb{N}$

$$\sum_{k} |a_{kl}| = \sum_{k} |(Te_{l})_{k}|$$

$$= ||Te_{l}||_{l^{1}}$$

$$\leq ||T|| ||e_{l}||_{l^{1}} = ||T|| < \infty$$

" \Leftarrow " folgt genau wie in a) mit Hölder. Außerdem gilt $\|T\| < c_1$

c) Der Fall l^{∞} :

Es ist $T \in B(l^{\infty})$ genau dann, wenn

$$c_{\infty} := \sup_{k} \sum_{l} |a_{kl}| < \infty$$

und in diesem Fall ist $||T|| = c_{\infty}$

Beweis "
$$\Rightarrow$$
 " Sei $T \in B(l^{\infty})$. Für $k \in \mathbb{N}$ setze dann $x^{(k)} = \begin{cases} \frac{|a_{kl}|}{a_{kl}} & a_{kl} \neq 0 \\ 0 & a_{kl} = 0 \end{cases}$

dann ist $x^{(k)} \in l^{\infty}$ mit $||x^{(k)}||_{l^{\infty}} = 1$ und weiter

$$\sum_{l} |a_{kl}| = |\sum_{l=1}^{\infty} a_{nl} x_l^{(k)}|$$

$$= |(T x^{(k)})_k|$$

$$\leq ||T x^{(k)}||_{\infty}$$

$$\leq ||T|| ||x^{(k)}||_{l^{\infty}} = ||T||$$

$$\Rightarrow c_{\infty} \leq ||T||$$

" \Leftarrow " folgt genau wie in a) mit Hölder. Außerdem gilt $||T|| < \infty$

d) Interpolation

Ist $T \in B(l^1) \cap B(l^\infty)$, dann ist $T \in B(l^p)$ für alle $p \in (1, \infty)$ mit $||T|| \leq c_1^{\frac{1}{p}} c_\infty^{\frac{1}{q}}$, wobei $\frac{1}{n} + \frac{1}{q} = 1$

Beweis

Für $x \in l^p$ setzen wir $y_k := |(Tx)_k|^{p-1}, k \in \mathbb{N}$

$$\Rightarrow \|y\|_{l^q} = \left(\sum_{k \ge 1}\right)^{\frac{1}{q}}$$

Damit folgt

$$||Tx||_{l^{p}}^{p} = \sum_{k\geq 1} y_{k}|(Tx)_{k}| \leq \sum_{k\geq 1} \sum_{l\geq 1} y_{k}|a_{kl}||x_{l}|$$

$$= \sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}|^{\frac{1}{p}}|a_{kl}|^{\frac{1}{q}}|y_{k}||x_{l}|$$

$$\leq \left(\sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}||y_{k}|^{q}\right)^{\frac{1}{q}} \left(\sum_{k\geq 1} \sum_{l\geq 1} |a_{kl}||x_{l}|^{p}\right)^{\frac{1}{p}}$$

$$\leq c_{\infty}^{\frac{1}{q}}||y||_{l^{q}} c_{1}^{\frac{1}{p}}||x||_{l^{p}}$$

$$= c_{\infty}^{\frac{1}{q}} c_{1}^{\frac{1}{p}}||x||_{l^{p}}||Tx||_{l^{p}}^{p-1}$$

$$\Rightarrow ||Tx||_{l^{p}} \leq c_{1}^{\frac{1}{p}} c_{\infty}^{\frac{1}{q}}||x||_{l^{p}} \text{ und } ||T|| \leq c_{1}^{\frac{1}{p}} c_{\infty}^{\frac{1}{q}}$$

Definition 3.10

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

- a) T heißt **Isometrie**, falls $||Tx||_Y = ||x||_X \ \forall x \in X$
- b) T heißt stetige Einbettung, falls T stetig und injektiv ist
- c) T heißt isomorphe Einbettung, falls T injektiv ist und ein c > 0 existiert mit

$$\frac{1}{c} \|x\|_{X} \le \|Tx\|_{Y} \le c \|x\|_{x}$$

In diesem Fall identifizieren wir oft X mit dem Bild von T in $Y, X \cong T(X) \subset Y$

d) T heißt **Isomorphismus**, falls T bijektiv und stetig ist und $T^{-1}: Y \to X$ ebenfalls stetig ist. (d.h. falls $\exists c > 0: \frac{1}{c} \|Y\|_Y \le \|T^{-1}y\|_X \le c\|y\|_Y$) In diesem Fall Identifizieren wir $X \cong Y$ und sagen X und Y sind isomorph. (da X, Y normierte Vektorräume sind, fordern wir T, T^{-1} stetig)

Beispiel 3.11

a) Seien $(X, \|\cdot\|_1)$ und $(X, \|\cdot\|_2)$ normierte Vektorräume. Dann gilt

$$\|\cdot\|_1 \sim \|\cdot\|_2 \iff I: (X, \|\cdot\|_1) \to (X, \|\cdot\|_2), Ix = x \text{ ist isomorph}$$

b) $I: c_0 \hookrightarrow l^{\infty}, Ix = x$ ist isometrische Einbettung

Definition 3.12

Sei X ein normierter Vektorreaum der Raum

$$X' = B(X, \mathbb{K})$$

heißt **Dualruam** von X oder Raum der linearen Funktionalen.

Beispiel 3.13

Sei $X = l^p$ für $p \in (1, \infty)$ und $\frac{1}{p} + \frac{1}{q} = 1$ Die Abbildung

$$\Phi_p: l^p \to (l^p)', \quad [\Phi_p(x)](y) = \sum_{n=1}^{\infty} x_n y_n, \quad x \in l^p, y \in l^q$$

Ist ein isometrischer Isomorphismus, d.h. $(l^p)' \cong l^q$, (insbesondere $(l^2)' \cong l^2$)

Beweis

Nach Hölder konvergiert die Reihe $[\Phi_p(x)](y)$ absolut mit

$$|[\Phi_p(x)](y)| \le \sum_n |x_n y_n| \le ||x||_{l^q} ||y||_{l^p}$$

Da $\Phi_p(x)$ linear in Y ist, folgt $\Phi_p(x) \in (l^p)'$ mit

$$\|\Phi_p(x)\|_{(l^p)'} \le \|x\|_{l^q}$$

Es bleibt zu zeigen, dass $\|\Phi_p(x)\|_{(l^p)'} \ge \|x\|_{l^q}$ und Φ_p surjektiv ist. Sei $Y \in (l^p)'$, dann setze $x_n := y'(e_n), n \in \mathbb{N}$ und $x = (x_n)_{n \ge 1}$ Setze außerdem

$$z_n := \begin{cases} \frac{|x_n|}{x_n} & x_n \neq 0 \\ 0 & x_n = 0 \end{cases}, \quad n \in \mathbb{N}$$

Dann gilt

$$\sum_{n=1}^{N} |x_n|^q = \sum_{n=1}^{N} x_n z_n$$

$$= \sum_{n=1}^{N} y'(e_n) z_n = y' \left(\sum_{n=1}^{N} z_n e_n\right)$$

$$\leq \|y'\|_{(l^p)'} \|\sum_{n=1}^{N} z_n e_n\|_{l^p}$$

$$= \left(\sum_{n=1}^{N} |x_n|^{(q-1)p}\right)^{\frac{1}{p}}$$

$$= \left(\sum_{n=1}^{N} |x_n|^q\right)^{\frac{1}{p}}$$

$$\Rightarrow \left(\sum_{n=1}^{N} |x_n|^q\right)^{1-\frac{1}{p}} \leq \|y\|_{(l^p)'}, \text{ wobei } 1 - \frac{1}{p} = \frac{1}{q}$$

$$\xrightarrow{n \to \infty} \|x\|_{l^q} \leq \|y'\|_{l^\infty} < \infty, \text{ d.h. } x \in l^q$$

Da für $y \in l^p$

$$||y - \sum_{n=1}^{N} y_n e_n||_{l^p}^p = \sum_{n \ge N+1} |y_n|^p \to 0 \text{ für } N \to \infty$$

folgt

$$|y'(y) - \sum_{n=1}^{N} y'(y_n e_n)| \le ||y'|| ||y - \sum_{n=1}^{\infty} y_n e_n||_{l^p} \to 0 \quad (N \to \infty)$$

und damit

$$[\Phi_p(x)](y) = \sum_{n=1}^{\infty} x_n y_n$$
$$= \sum_{n=1}^{\infty} y'(y_n e_n) \quad \forall y \in l^p$$
$$= y'(y)$$

d.h. $\Phi_p(x) = y'$ und damit Φ_p surjektiv. Außerdem gilt nach (12)

$$\|\Phi_p(x)\|_{(l^p)'} \ge \|x\|_{(l^q)'}$$

womit die Behauptung gezeigt ist.

Bemerkung:

- a) Analog zu obigem zeigt man $(l^1)' \cong l^{\infty}$ und $(c_0)' \cong l^1$
- b) Eine ähnliche Aussage gilt auch für \mathcal{L}^p -Räumen auf einem Maßraum $(\Omega, \mathcal{A}, \mu)$: Hier gilt:

$$\mathcal{L}^p(\Omega,\mu)' \cong \mathcal{L}^q(\Omega,\mu)$$

wobei $p \in [1, \infty), \quad \frac{1}{p} + \frac{1}{q} = 1$ bezüglich der Dualität: $[\Phi_p(f)](g) (= < f, g >) = \int_{\Omega} f(x) g(x) d\mu(x)$

Beispiel 3.14

a) Sei $K \subset \mathbb{R}^n$ kompakt, $x \in K$. Dann definieren wir

$$\delta_x(f) := f(x) \text{ für } f \in C(K)$$

Wir versetzen C(X) mit der Supremumsnorm. Dann gilt:

$$|\delta_x(f)| = |f(x)| \le ||f||_{\infty}$$

und offensichtlich ist δ_x linear, d.h. $\delta_x \in (C(K))'$ mit $\|\delta_x\| \leq 1$

b) Sei $K \subset \mathbb{R}^n$ kompakt und μ ein endliches Maß auf $\mathcal{B}(K)$. Dann definieren wir

$$\delta_{\mu}(f) = \int_{K} f(x) d\mu(x) \text{ für } f \in C(K)$$

Dann gilt

$$|\delta_{\mu}(f)| \leq \mu(K) ||f||_{\infty}$$

Da δ_{μ} linear ist, gilt $\delta_{\mu} \in (C(K))'$ mit $\delta_{\mu} \leq \|\mu(K)\|$. In diesem Sinne sind Maße Elemente von (C(K))'

Bemerkung:

Man kann zeigen, dass $(C(K))' \cong M(K)$, wobei M(K) die Menge der 'regulären' Borelmaße versehen mit der Variationsnorm ist. Die Dualität ist gegeben durch

$$(Tu)(f) = \int_{K} f(x)d\mu(x)$$

4 Metrische Räume

Definition 4.1

Sei M eine nichtleere Menge. Eine Abbildung $d: M \times M \to \mathbb{R}$ heißt **Metrik** auf M, falls $\forall x, y, z \in M$:

- (M1) $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$ (positive Definitheit)
- (M2) d(x,y) = d(y,x) (Symmetrie)
- (M3) $d(x,z) \le d(x,y) + d(y,z)$ (Dreiecksungleichung)

Das Tupel (M, d) nennen wir dann einen metrischen Raum.

Lemma 4.2

Eine Folge $(x_n)_{n\geq 1}\subset M$ konvergiert gegen $x\in M$, falls

$$d(x_n, x) \to 0$$
 für $n \to \infty$

Notation: $x = \lim_{n \to \infty} x_n$ (in M)

Bemerkung:

Der Grenzwert einer konvergenten Folge ist stets eindeutig, denn:

Sei $(x_n)_{n\geq 1}\subset M$ mit $\lim_{n\to\infty}x_n=x\in M$ und $\lim_{n\to\infty}x_n=y\in M$, dann folgt:

$$d(x,y) \le d(x,x_n) + d(x_n,y)$$

 $\to 0 \text{ für } n \to \infty$

d.h. $d(x, y) = 0 \Rightarrow x = y$

Beispiel 4.3

- a) Sei X ein normierter Vektorraum und $M \subset X$ (nichtleere) Teilmenge. Dann definieren wir $d(x,y) := \|x-y\|, \ x,y \in M$ eine Metrik auf MEin Unterschied hier: Eine Norm setzt eine lineare Struktur auf X voraus, eine Metrik macht auch Sinn auf nicht-linearen Teilmengen.
- b) Sei M eine nichtleere Menge, dann definieren wir die **diskrete Metrik** auf M durch

$$d(x,y) := \begin{cases} 1 & , x \neq y \\ 0 & , x = y \end{cases}$$

Dann ist (M, d) ein metrischer Raum und es gilt:

$$x_n \to x \text{ in } M \iff \exists N \in \mathbb{N} \text{ mit } x_n = x \ \forall n \ge N$$

Beispiel 4.4

a) Sei X ein Vektorraum und p_j für $j \in \mathbb{N}$ Halbnormen auf X mit der Eigenschaft, dass für jedes $x \in X$ 0 ein $K \in \mathbb{N}$ exisitert mit $p_K > 0$. Dann definiert

$$p := \sum_{j>1} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X$$

eine Metrik auf X mit

$$d(x_n, x) \to 0 \iff p_j(x_n, x) \to 0 \ (n \to \infty) \ \forall j \in \mathbb{N}$$

Beweis siehe Übung

b) Für $X = \mathbb{K}^{\mathbb{N}} = \{(x_n)_{n \geq 1} : x_n \in \mathbb{K}\}$ und $p_j(x) := |x_j|, j \in \mathbb{N}$ definiert also $d(x,y) = \sum_{j=1}^{\infty} 2^{-j} \frac{|x_j - y_j|}{1 + |x_j - y_j|}$ gerade die komponentenweise Konvergenz auf X

c) In l^{∞} entspricht die Konvergenz bezüglich $\|\cdot\|_{l^{\infty}}$ gerade der gleichmäßigen Konvergenz der Folge $x_n := (x_{n_i})_i \in \mathbb{N}$) gegen $x := (x_i)_i \in \mathbb{N}$)

$$||x_n - x||_{l^{\infty}} = \sup |x_{n_i} - x_i| \to 0 \quad (n \to \infty)$$

d.h. in C[a,b] entspricht die Konvergenz bezüglich $\|\cdot\|_{\infty}$ ebenfalls die gleichmäßige Konvergenz von Funktionen

$$f_n \to f \text{ in } [a, b] \iff ||f_n - f||_{\infty} = \sup_{t \in [a, b]} |f_n(t) - f(t)| \to 0$$

 $\iff f_n \to f \text{ gleichmäßig.}$

Definition 4.5

Sei (M, d) ein metrischer Raum

- a) Eine Teilmenge $A \subset M$ heißt **abgeschlossen** (in M), falls für alle in M konvergenten Folgen $(x_n)_{n\geq 1} \subset A$ der Grenzwert von (x_n) in A liegt
- b) Eine Teilmenge $U \subset M$ heißt **offen** (in M), falls zu jedem $x \in U$ ein $\epsilon > 0$ exisitert, sodass

$$\{y \in M : d(x,y) < \epsilon\} \subset U$$

Bemerkung:

a) Wir benutzen die Bezeichnungen

$$K(x,r) := \{y \in M : d(x,y) < r\}$$
 offene Kugel $\bar{K}(x,r) := \{y \in M : d(x,y) \le r\}$ abgeschlossene Kugel

für $x \in M, r > 0$. Man sieht leicht, dass K(x, r) offen und $\bar{K}(x, r)$ abgeschlossen ist.

Beweis

(i) Sei $y \in K(x,r)$ und wähle $\rho := r - d(x,y) > 0$ Wir zeigen: $K(y,\rho) \subset K(x,r)$ (Dann ist K(x,r) offen). Sei dazu $z \in K(y,\rho)$. Dann folgt

$$d(x,y) \le d(x,z) + d(z,y) \le r - \rho + d(z,y)$$

$$\le r - \rho + \rho = r$$

$$\Rightarrow z \in K(x,r)$$

Da z beliebig war, folgt die Behauptung.

(ii) Sei $(y_n)_{n\geq 1}\subset \bar{K}(x,r)$ eine beliebige Folge mit $\lim_{n\to\infty}y_n=y\in M$. Wir müssen zeigen, dass $y\in \bar{K}(x,r)$ (Dann ist $\bar{K}(x,r)$ abgeschlossen).

$$d(x,y) \le d(x,y_n) + d(y_n,y)$$

$$\le r + d(y_n,y) \to r$$

$$\Rightarrow d(x,y) \le r, \text{ d.h.} y \in \bar{K}(x,r).$$

- b) \emptyset, M sind so wohl offen, als auch abgeschlossen (in M)
- c) Bezüglich der diskreten Metrik d aus Beispiel (a) ist $\{x\} \subset M$ offen für jedes $x \in M$, da

$$K(x,r) = \{x\} \subset \{x\} \text{ für } r \in (0,1]$$

Wir fassen als nächstes die grundlegenden Eigenschaften offener und abgeschlossener Mengen zusammen.

Proposition 4.6

Sei (M,d) ein metrischer Raum und I eine beliebige Indexmenge

- a) $A \subset M$ ist abgeschlossen in M genau dann, wenn U = M A offen ist
- b) Für eine beliebige Familie von abgeschlossenen Mengen $(A_i)_{i\in I}$ sind

$$A := \bigcap_{i \in I} A_i$$
 und $A_{i_1} \cup \ldots \cup A_{i_N}$ $(i_1, \ldots, i_N \in I)$

abgeschlossen in M.

c) Für eine beliebige Familie offenere Mengen $(U_i)_{i \in I}$ sind

$$U := \bigcup_{i \in I} U_i$$
 und $U_{i_1} \cap \ldots \cap U_{i_N}$ $(i_1, \ldots, i_N \in I)$

offen in M.

Beweis

- a) Todo: missing in my notes if you have it just send me an email
- b) folgt aus a) & c), da

$$M \bigcap_{i \in I} A_i = \bigcup_{i \in I} M A_i$$

c) Sei $x \in U$. Dann exisitert ein U_{i_0} mit $x \in U_{i_0}$

$$\Rightarrow \exists r > 0 : K(x,r) \subset U_{i_0} \subset U$$
, d.h. U ist offen.

Sei $x \in U_{i_1} \cap \ldots \cap U_{i_N}$. Dann existieren $r_1, \ldots, r_N > 0$ mit

$$K(x, r_n \subset U_{i_n} \quad n = 1, \dots, N$$

Setze
$$r := \min\{r_1, \dots, r_n\} > 0$$
. Dann ist $K(x, r) \subset U_{i_n} \ \forall n \in \{1, \dots, N\}$
 $\Rightarrow K(x, r) \subset U_{i_1} \cap \dots \cap U_{i_N}$ ist offen.

Definition 4.7

Sei (M, d) ein metrischer Raum und $V \subset M$. Dann heiSSt

- a) $\bar{V} := \bigcap \{A \subset M : A \text{ ist abgeschlossen mit } V \subset A\} \text{ der } \mathbf{Abschluss} \text{ von } V.$
- b) $\mathring{V} := \bigcup \{U \subset M : U \text{ ist offen mit } U \subset V\} \text{ das Innere von } V.$
- c) $\partial V := \bar{V} \stackrel{\circ}{V} \operatorname{der} \mathbf{Rand} \operatorname{von} V$.

Hierfür gelten die folgenden Eigenschaften:

Proposition 4.8

Sei (M,d) ein metrischer Raum und $V\subset M$

- a) (i) \bar{V} ist die kleinste abgeschlossene Menge, die V enthält
 - (ii) V ist abgeschlossen $\iff V = \bar{V}$
 - (iii) $\bar{V} = \{x \in M : \exists (x_n) \subset V \text{ mit } \lim_{n \to \infty} x_n = x\} =: \tilde{V}$
- b) (i) \mathring{V} ist die größte offene Teilmenge von V.
 - (ii) V ist offen $\iff V = \mathring{V}$
 - (iii) $\mathring{V} = \{x \in M : \exists \epsilon > 0 \text{ mit } K(x, \epsilon) \subset V\} =: \mathring{V}$
- c) (i) ∂V ist abgeschlossen
 - (ii) $\partial V = \{x \in M : \exists (x_n) \subset V, (y_n) \subset M \ V \text{ mit } \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = x\}$

Beweis

- a) (i) Nach Definition gilt
 - (ii) folgt aus (i)
 - (iii)
- b) (i) zeigt man wie a) (i)
 - (ii) folgt aus (i)
 - (iii)
- c) (i)
 - (ii)

Definition 4.9

Sei (M, d) ein metrischer Raum

- a) Eine Menge $V \subset M$ heißt **dicht** in M, falls $\bar{V} = M$, d.h. jeder Punkt in M ist Grenzwert einer Folge aus V.
- b) M heißt **seperabel**, falls es eine abzählbare Teilmenge $V \subset M$ gibt, die dicht in M liegt.

Bemerkung:

a) All die Begriffe und Bezeichnungen aus TODO: Verweise werden wir auch in normieren Räumen benutzen bzgl. der kanonischen Metrik d(x,y) = ||x-y||

b) Sei (M,d) ein metrischer Rauam, $U \subset M$. Dann ist auch (U,d) ein metrischer Raum. Für $V \subset U$ muss man dann aber unterscheiden bzgl. Abgeschlossenheit (bzw. Offenheit) von V in U oder in M. Man sagt dann, dass V relativ offen bzw. relativ abeschlossen in U ist.

Beispiel 4.10

a) Sei X ein normierter Vektorraum, $x \in X, r > 0$. Dann gilt

$$\bar{K}(x,r) = \overline{K(x,r)}$$

$$\bar{K}(x,r) = K(x,r)$$

$$\partial \bar{K}(x,r) = \partial K(x,r) (= \{ y \in X : ||x-y|| = r \})$$

Beweis

Da $\bar{K}(x,r)$ abgeschlossen ist mit $K(x,r) \subset \bar{K}(x,r)$ folgt aus Proposition 4.8 a) (i) $\bar{K}(x,r) \subset \bar{K}(x,r)$.

Sei umgekehrt $y \in \overline{K}(x,r)$ und $y_n = y - \frac{1}{n}(y-x), n \in \mathbb{N}$. Dann ist $y_n \in K(x,r)$ mit $\lim_{n\to\infty} y_n = y$, d.h. $y \in \overline{K}(x,r)$ nach Proposition 4.8 a) (iii).

b) Da K(x,r) offen ist mit $K(x,r) \subset \bar{K}(x,r)$ folgt mit Proposition 4.9 b) (ii):

$$K(x,r) \subset \bar{K}(x,r)$$

Sei umgekehrt

- c) 3
- d) 4

Definition 4.11

Seien $(M, d_M), (N, d_N)$ metrische Räume.

Eine Abbildung $f: M \to N$ heißt **stetig in** $x_0 \in M$, falls für alle $(x_n) \subset M$ gilt

$$x_n \to x_0 \text{ in } M \Rightarrow f(x_n) \to f(x_0) \text{ in } N$$

$$(d(x_n, x_0) \to 0 \ (n \to \infty) \quad \Rightarrow \quad d_N(f(x_n), f(x_0)) \to \ (n \to \infty))$$

Die Abbildung f heißt **stetig auf** M, falls f in jedem Punkt von M stetig ist.

Hierfür gelten folgende Eigenschaften:

Proposition 4.12

Sei $(K, d_K), (M, d_M)$ und (N, d_N) metrische Räume und $f: M \to N, g: K \to M$. Dann gilt:

a) Ist g stetig in x_0 , f stetig in $g(x_0)$, dann ist auch

$$f \circ g: K \to N$$
 stetig in x_0

b) f ist stetig in $x_0 \in M$ genau dann, wenn

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in M \ \text{mit} \ d_M(x, x_0) < \delta \ \text{gilt} \ d_N(f(x), f(x_0)) < \epsilon$$

- c) Die folgenden Aussagen sind äquivalent:
 - (i) f ist stetig auf M
 - (ii) Ist $U \subset N$ offen, so ist auch $f^{-1}(U)$ offen in M
 - (iii) Ist $A \subset N$ abgeschlossen, so ist auch $f^{-1}(A)$ abgeschlossen in M.

Beweis

Beispiel 4.13

a) Sind $(M_1, d_1 \text{ und } (M_2, d_2) \text{ metrische Räume, so definieren wir$

$$d(x,y) := d_1(x_1,y_1) + d_2(x_2,y_2)$$

für $x = (x_1, x_2), y = (y_1, y_2) \in M_1 \times M_2$ mit

$$d(x_n, x) \to 0 \iff d_1(x_{n,1}, x_1) \to 0, d_2(x_{n,2}, x_2) \to 0$$

In diesem Sinne ist jede Metrik $d: M \times M \to \mathbb{R}$ stetig. Denn: Sei $(x_n, y_n) \to (x, y)$ in $M \times M$, d.h.

$$d(x_n, x) \to 0$$
 und $d(y_n, y) \to 0$ $(n \to \infty)$

$$d(x_n, y_n) - d(x, y) \le d(x_n, x) + d(x, y_n) - d(x, y)$$

$$\le d(x_n, x) + d(x, y) + d(y, y_n) - d(x, y)$$

$$d(x,y) - d(x_n, y_n) \le \dots \le d(x, x_n) + d(y_n, y)$$

$$\Rightarrow |d(x,y) - d(x_n, y_n)| \le d(x, x_n) + d(y_n, y) \to 0 \quad (n \to \infty)$$

b) Sei X ein normierter Vektorraum und

$$A: \mathbb{K} \times X \to X, \quad A(\alpha, x) = \alpha x$$

 $S: X \times X \to X, \quad S(x, y) = x + y$

Dann sind A und S stetig.

c) Sei $X = C[0,1], t_0 \in [0,1], \psi : X \to \mathbb{K}, \psi(f) = f(t_0)$ Nach Beispiel 3.15 ist ψ stetig. D.h. ist $A \subset \mathbb{K}$ offen (abgeschlossen), so ist $\psi(A)$ offen (abgeschlossen) nach Prop 4.13.

Abkürzungsverzeichnis

Beh. Behauptung

Bew. Beweis

bzgl. bezüglich

bzw. beziehungsweise

ca. circa

d. h. das heißt

Def. Definition

etc. et cetera

ex. existieren

Hom. Homomorphismus

i. A. im Allgemeinen

o. B. d. A. ohne Beschränkung der Allgemeinheit

Prop. Proposition

sog. sogenannte

Vor. Voraussetzung

vgl. vergleiche

z. B. zum Beispiel

zhgd. zusammenhängend

z. z. zu zeigen

Stichwortverzeichnis

Abschluss, 21
beschränkt, 10 Bolzano-Weierstrass, 2
c_0 -Raum, 7
dicht, 21 Differentialoperatoren, 13 Dirichletproblem, 4 diskrete Metrix, 18 Dualraum, 15
Einheitskugel, 5
Folgenraum, 7 Fredholm'sche Integralglechung, 3
Hölder-Ungleichung, 7 Hölderstetige Funktionen, 9
Innere, 21 Integraloperator, 12 Isometrie, 15 isomorphe Einbettung, 15 Isomorphismuss, 15
Kompositionsoperator, 13 Konvergenz, 5
l [∞] -Raum, 7 l ^p -Raum, 7 Lebesgues-Integrierbare Funktionen, 9
Matrizenmultiplikation, 13 Metrik, 18 Minkowskii-Ungleichung, 7
Norm, 5
offen, 19
Quotientenräume, 8

Rand, 21

```
Raum der beschränkten, m-fach stetig differenzierbaren Funktionen, 8
Raum der differentierbaren Funktionen, 8
Raum der stetigen Funktionen, 8
relative Abgeschlossenheit, 21
relative Offenheit, 21
seperabel, 21
stetig, 22
stetige Einbettung, 15
Sturm-Liouville Problem, 4
Vektorraum der beschränkten, linearen Operatoren, 11
Äquivalenz von Normen, 5
```