Differences between Three Levels of ANSI-SPARC Architecture

Data Independence

- Logical Data Independence
 - Refers to immunity of external schemas to changes in conceptual schema.
 - Conceptual schema changes (e.g. addition/removal of entities).
 - Should not require changes to external schema or rewrites of application programs.

Data Independence

- Physical Data Independence
 - Refers to immunity of conceptual schema to changes in the internal schema.
 - Internal schema changes (e.g. using different file organizations, storage structures/devices).
 - Should not require change to conceptual or external schemas.

Data Independence and the ANSI-SPARC Three-level Architecture

Data Model

- Data Model comprises:
 - A structural part
 - A manipulative part
 - Possibly a set of integrity rules

Data Model

- Purpose
 - To represent data in an understandable way.

Relational Systems

- Then, in 1970,E. F. Codd wrote "A Relational Model of Data for Large Shared Databanks" and introduced the relational model
- Information is stored as tuples or records in relations or tables
- Most modern DBMS are based on the relational model
- The relational model covers 3 areas:
 - Data structure
 - Data manipulation
 - Data integrity

Relational Model Terminology

A relation is a table with columns and rows.

Attribute is a named column of a relation.

 Domain is the set of allowable values for one or more attributes.

Relational Model Terminology

- Tuple is a row of a relation.
- Degree is the number of attributes in a relation.
- Cardinality is the number of tuples in a relation.
- Relational Database is a collection of relations with distinct relation names.

Instances of Branch and Staff Relations

Examples of Attribute Domains

Attribute	Domain Name	Meaning	Domain Definition
branchNo street city postcode sex	BranchNumbers StreetNames CityNames Postcodes Sex	The set of all possible branch numbers The set of all street names in Britain The set of all city names in Britain The set of all postcodes in Britain The sex of a person	character: size 4, range B001–B999 character: size 25 character: size 15 character: size 8 character: size 1, value M or F
DOB salary	DatesOfBirth Salaries	Possible values of staff birth dates Possible values of staff salaries	date, range from 1-Jan-20, format dd-mmm-yy monetary: 7 digits, range 6000.00–40000.00

Alternative Terminology for Relational Model

Table 3.1 Alternative terminology for relational model terms.

Formal terms	Alternative 1	Alternative 2
Relation Tuple Attribute	Table Row Column	File Record Field

Properties of Relations

- Relation name is distinct from all other relation names in relational schema.
- Each cell of relation contains exactly one atomic (single) value.
- Each attribute has a distinct name.
- Values of an attribute are all from the same domain.

Properties of Relations

 Each tuple is distinct; there are no duplicate tuples.

Order of attributes has no significance.

Order of tuples has no significance.

Candidate Keys

- A set of attributes in a relation is called a candidate key if, and only if,
 - Every tuple has a unique value for the set of attributes (uniqueness)
 - No proper subset of the set has the uniqueness property (minimality)

ID Fire	stLast	
S139	John	Smith
S140	Mary	Jones
S141	John	Brown
S142	Jane	Smith

Candidate key: {ID}; {First,Last} looks reasonable but we may get people with the same name

{ID, First}, {ID, Last} and {ID, First, Last} satisfy uniqueness, but are not minimal {First} and {Last} do not give a unique identifier for each row

Choosing Candidate Keys

- Important: don't look just on the data in the table to determine what is a candidate key
- The table may contain just one tuple, so anything would do!
- Use knowledge of the real world what is going to stay unique!

Primary Keys

- One Candidate Key is usually chosen to be used to identify tuples in a relation
- This is called the *Primary Key*
- Often a special ID attribute is used as the Primary Key

NULLs and Primary Keys

- Missing information can be represented using NULLs
- A NULL indicates a missing or unknown value
- More on this later...

Entity Integrity: Primary
Keys cannot contain
NULL values

Foreign Keys

- Foreign Keys are used to link data in two relations. A set of attributes in the first (referencing) relation is a Foreign Key if its value always either
 - Matches a Candidate Key value in the second (referenced) relation, or
 - Is wholly NULL
- This is called Referential Integrity

Foreign Keys - Example

Department

DID DIN	ame
	rketing counts rsonnel

{DID} is a Candidate Key for Department - Each entry has a unique value for DID

Employee

EID	Εľ	Name	DID	
15	Jo	hn Smith	13	
16	M	ary Brown	14	
17	M	ark Jones	13	
18	Ja	ne Smith	NULL	

{DID} is a Foreign Key in Employee - each Employee's DID value is either NULL, or matches an entry in the Department relation. This links each Employee to (at most) one Department

Foreign Keys - Example

Employee

ID Nar	ne Mar	nage	er
E1496 E1497 E1498 E1499	John Smith Mary Brown Mark Jones Jane Smith	E14	498 499

{ID} is a Candidate Key for Employee, and {Manager} is a Foreign Key, which refers to the same relation - every tuple's Manager value is either NULL or matches an ID value

Referential Integrity

- When relations are updated, referential integrity can be violated
- This usually occurs when a referenced tuple is updated or deleted

- There are a number of options:
 - RESTRICT stop the user from doing it
 - CASCADE let the changes flow on
 - NULLIFY make values NULL

Referential Integrity - Example

- What happens if
 - Marketing's DID is changed to 16 in Department?
 - The entry for Accounts is deleted from Department?

Department

DID	DName
13	Marketing
14	Accounts
15	Personnel

EID	Εľ	Name	DID	
15	Jo	hn Smith	13	
16	M	ary Brown	14	
17	M	ark Jones	13	
18	Ja	ne Smith	NULL	

RESTRICT

- RESTRICT stops any action that violates integrity
 - You cannot update or delete
 Marketing or Accounts
 - You can change Personnel as it is not referenced

Department

DName
Marketing
A¢counts
Personnel

EID	EI	Name	DID	
15	Jo	hn Smith	13	
16	M	ary Brown	14	
17	M	ark Jones	13	
18	Ja	ne Smith	NULL	

CASCADE

- CASCADE allows the changes made to flow through
 - If Marketing's DID is changed to 16 in Department, then the DIDs for John Smith and Mark Jones also change
 - If Accounts is deleted then so is Mary Brown

Department

DID DI	Name	
73 16M	arketing	
14 Ad	counts	
15 Pe	rsonnel	

EID	Εľ	Name	DID		
15	Jo	hn Smith	13	\ 16	
16	M	arv Brown	14		
17	M	ark Jones	13	\ 16	
18	Ja	ne Smith	NULL	•	

NULLIFY

- NULLIFY sets problem values to NULL
 - If Marketing's DID changes then
 John Smith's and Mark Jones'
 DIDs are set to NULL
 - If Accounts is deleted, Mary Brown's DID becomes NULL

Department

	DID) DI	Name	
	32/1	16/1	arketing	
=	14	Ą	COUNTS	
	15	Pe	ersonnel	

EID	Εľ	lame	DID		
15	Jo	hn Smith	13	/ NUI	
16	M	ary Brown	14		
17	M	ark Jones	13	NUI	LL
18	Ja	ne Smith	NULL	•	
	15 16 17	15 Jo 16 Ma 17 Ma	16 Mary Brown 17 Mark Jones	EID EName DID 15 John Smith 13 16 Mary Brown 14 17 Mark Jones 13 18 Jane Smith NULL	15 John Smith 13 16 Mary Brown 14 17 Mark Jones 13

Views

Base Relation

 Named relation corresponding to an entity in conceptual schema, whose tuples are physically stored in database.

View

 Dynamic result of one or more relational operations operating on base relations to produce another relation.

Views

- A virtual relation that does not necessarily actually exist in the database but is produced upon request, at time of request.
- Contents of a view are defined as a query on one or more base relations.
- Views are dynamic, meaning that changes made to base relations that affect view attributes are immediately reflected in the view.

Purpose of Views

- Provides powerful and flexible security mechanism by hiding parts of database from certain users.
- Permits users to access data in a customized way, so that same data can be seen by different users in different ways, at same time.
- Can simplify complex operations on base relations.

Updating Views

 All updates to a base relation should be immediately reflected in all views that reference that base relation.

• If view is updated, underlying base relation should reflect change.