Распределенная система мониторинга и диспетчеризации процессов гетерогенной среды

студент Костюков В.В., профессор к.ф-м.н Крючкова Е.Н., АлтГТУ / ПОВТ

Требования

отказоустойчивость

расширяемость

масштабируемость

применимость

эффективность

Классификация

Базовая терминология

Узел - программно-аппаратное устройство, способное исполнять код службы мониторинга.

Служба - активная сущность, непрерывно наблюдающая за состоянием узла и сохраняющая сообщения об изменении этого состояния в хранилище данных.

Хранилище данных - пассивная сущностью, предоставляющая службам ресурсы для приема сообщений их последующей обработки и хранения.

Задача мониторинга - шаблонная проблема получения и анализа некоторой информации о состоянии удаленного узла.

Абстракция модуля

Модуль – это пятерка вида **M= {X, Di, Do, I, C}**, где

• **X** ∈ {True, False} (возможность исполнения в ОС),

• **Di и Do** = {a₀, a₁, ..., a_n}, a_i – объект (входные и выходные данные),

• I = {b₀, b₁, ..., b_m}, b_i – метод (интерфейс модуля),

• C — программный код (реализация модуля)

Состояние системы

Состояние распределенной системы определяется: графом связности узлов, расположением запущенных экземпляров модулей и нагрузкой на узлы;

PS 54 AS PS 36

P1 P2 72 PS 36

AS P4 PS

PS 24 PS

P6 40 OCO

Состояние системы

Роль распределенного модуля играет **служба мониторинга**, нагрузки на узел — **индекс производительности**;

Особенности службы мониторинга:

- масштабируемость;
- сериализуемость;
- переносимость;

Структура системы

Служба мониторинга

Функции службы мониторинга:

- обеспечение работы основных подсистем;
- распределенная коммуникация;
- планирование и запуск модулей;

Подсистемы службы мониторинга:

- платформа (ядро);
- транспортная;
- исполнительная;

Ядро службы мониторинга

Ядро — набор примитивов и механизмов используемых подсистемами службы.

- управление драйверами;
- генерация событий;
- управление адаптерами;
- инициализация сессий;
- синхронизация потоков;

Драйвер – сущность расширяющая функционал ядра.

Событие -

- унифицированный протокол обмена данными между драйверами;
- меманизм изменения состояния ядра;

Состояния ядра

- неопределенное;
- сетевое;
- автономное;
- активное;
- пассивное;

Транспортная подсистема

- управление сессиями;
- мониторинг сетевой активности;
- именование объектов;
- адресация;
- балансировка нагрузки;
- выбор лидеров;

Алгоритм выбора лидера

Подсистема исполнения

- планирование запусков;
- запуск модулей мониторига;
- обработка результатов;
- развертывание модулей;

Планировщик подсистемы исполнения

Планировщик — запускаемый драйвер ядра, обеспечивающий автономный запуск модулей мониторинга.

- запуск по расписанию;
- принудительный запуск;
- делигирование;
- сериализуемость;

Менеджер модулей мониторинга

Архитектура службы мониторинга

Итоги

• разработана модель;

Модель распределенной системы с динамически расширяемым функционалом;

• спроектированна архитектура;

Архитектура высоконагруженной распределенной системы мониторинга;

• реализованы приложения;

Кросплатформенное сервисное приложение распределенной службы мониторинга состоящее из:

- ядра / платформы;
- подсистемы исполнения;
- транспортной подсистемы;

Встраиваемое приложение менеджера модулей мониторинга состоящее из:

- кодогенератора;
- подсистемы ввода/вывода;
- исполнителя;

Пути развития проекта

- разработка шаблонных модулей мониторинга для решения круга повседневных задач (анализ сетевого трафика, загрузка и температура процессора, количество свободной памяти и т.д.);
- оформление технической документации и спецификаций программного кода;
- совершенствование компонентов и оптимизация алгоритмов базовой платформы;
- полномасштабное **внедрение** и нагрузочное тестирование системы на базе существующей инфраструктуры предприятия, например лаборатории МикроЭВМ АлтГТУ;

Спасибо! Вопросы?