Un problema de Producción:

Una empresa de maquinaria produce en una de sus plantas 3 tipos de máquinas de precisión.

La planta de fabricación está dividida en dos secciones que son:

Sección 1: Mecanizado

Sección 2: Montaje

Para producir cada una de las máquinas de precisión, el número de horas necesario en cada

sección y la capacidad de cada sección (en horas) es el siguiente:

	Sección Mecanizado (horas/unidad)	Sección Montaje (horas/unidad)
Máquina de precisión 1	4	6
Máquina de precisión 2	1	1
Máquina de precisión 3	2	2
Capacidad (horas)	160	180

Los beneficios unitarios por máquina son de 50, 25 y 20 unidades monetarias respectivamente.

Sabiendo que la empresa puede vender toda su producción semanal, determinar cuántas unidades de cada máquina debe fabricar semanalmente la empresa para maximizar su beneficio.

Modelo matemático del problema

```
X1 = Nº de máquinas tipo 1 a fabricar
 X2 = Nº de máquinas tipo 2 a fabricar
 X3 = Nº de máquinas tipo 3 a fabricar
En forma general:
 MAX = 50*X1 + 25*X2 + 20*X3:
 s.a:
 [MEC] 4*X1 + X2 + 2*X3 \le 160;
 [MONT] 6*X1 + X2 + 2*X3 \le 180;
En forma estándar:
 MAX = 50*X1 + 25*X2 + 20*X3 + 0*X4 + 0*X5:
 s.a:
 [MEC] 4*X1 + X2 + 2*X3 + 1*X4 + 0*X5 = 160;
 [MONT] 6*X1 + X2 + 2*X3 + 0*X4 + 1*X5 = 180;
```

MAX = 50*X1 + 25*X2 + 20*X3 + 0*X4 + 0*X5; s.a.: [MEC] 4*X1 + X2 + 2*X3 + 1*X4 + 0*X5 = 160; [MONT] 6*X1 + X2 + 2*X3 + 0*X4 + 1*X5 = 180;

SOLUCIÓN BASICA 3:

VB (X2, X5) VNB (X4, X3, X1)

v.básicas	B-1		X _B
X2	1	0	160
X5	-1	1	20
C _B ^t B ⁻¹	25	0	Z = 4000

Cx1-Zx1 = -50Cx3-Zx3 = -30

CX4-Zx4 = -25

SB₃: (0,160,0,0,20); Z=4000

SOLUCIÓN ÓPTIMA

$Z_{x1} = (25 \ 0) (4 \ 6)^t = 100$

$$Z_{x3} = (25 \ 0) (2 \ 2)^t = 50$$

$$Z_{x4} = (25 \ 0) (1 \ 0)^t = 25$$

Caso 1:

Si el beneficio de cada máquina de tipo 3 aumenta en 20 u.m., la solución óptima ¿cambia? Y el valor de la función objetivo? Justifica las respuestas

Y si el cambio supone un aumento del beneficio en 40 u.m., la solución óptima ¿cambia? Y el valor de la función objetivo? Justifica las respuestas.

Como $Z_{x3} \le 50$, ni la solución óptima ni la función objetivo cambian.

Análisis de sensibilidad de C_{x2}:

$$c_{B}^{t}B^{-1} = (C_{x2} 0)B^{-1} = (C_{x2} 0)$$

$$Z_{x1} = (C_{x2} 0) (4 6)t = 4C_{x2}$$

$$Z_{x3} = (C_{x2} 0) (2 2)t = 2C_{x2}$$

$$Z_{x4} = (C_{x2} 0) (1 0)t = C_{x2}$$

$$C_{x1}Z_{x1} = 50 - 4C_{x2} <= 0 -> C_{x2} >= 12.5.$$

$$C_{x3}Z_{x3} = 20 - 2X_{x2} <= 0 -> C_{x2} >= 10.$$

$$C_{x4}Z_{x4} = -C_{x2} <= 0 -> C_{x2} >= 0.$$

MAX = 50*X1 + 25*X2 + 20*X3 + 0*X4 + 0*X5; s.a.: [MEC] 4*X1 + X2 + 2*X3 + 1*X4 + 0*X5 = 160; [MONT] 6*X1 + X2 + 2*X3 + 0*X4 + 1*X5 = 180;

SOLUCIÓN BASICA 3:

VB (X2, X5) VNB (X4, X3, X1)

v.básicas	B-1		X _B
X2	1	0	160
X5	-1	1	20
C _B ^t B ⁻¹	25	0	Z = 4000

Cx1-Zx1= -50 Cx3-Zx3= -30 CX4-Zx4= -25

SB₃: (0,160,0,0,20); Z=4000

SOLUCIÓN ÓPTIMA

Caso 2:

¿Qué efecto tendría sobre la solución óptima actual un aumento en la capacidad de mecanizado de 15 horas? Calcula el nuevo valor de las variables y de la función objetivo.

MAX = 50*X1 + 25*X2 + 20*X3 + 0*X4 + 0*X5; s.a.: [MEC] 4*X1 + X2 + 2*X3 + 1*X4 + 0*X5 = 160; [MONT] 6*X1 + X2 + 2*X3 + 0*X4 + 1*X5 = 180;

SOLUCIÓN BASICA 3:

VB (X2, X5) VNB (X4, X3, X1)

v.básicas	B-1		X _B
X2	1	0	160
X5	-1	1	20
C _B ^t B ⁻¹	25	0	Z = 4000

Cx1-Zx1= -50 Cx3-Zx3= -30

CX4-Zx4 = -25

SB₃: (0,160,0,0,20); Z=4000

SOLUCIÓN ÓPTIMA

Caso 3:

¿Qué efecto tendría sobre la solución óptima actual un aumento en la capacidad de mecanizado de 30 horas? Calcula el nuevo valor de las variables y de la función objetivo.