University of Texas at Austin Prof. Nur Touba

Student Name: Yonatan Teshome

Student EID: YH23572 Date: July 30, 2025

Report Section: UT Network

a) Minimum Cost to Connect to UT (Dijkstra)

- 1. Function findMinimumStudentCost (start, dest):
 - a. For each student s in students:
 - i. S.minCost = infinity
 - b. Start.minCost = 0
 - c. H = buildHeap(students)
 - d. While H is not empty:
 - i. If current == dest:
 - 1. Return current.minCost
 - ii. For each neighbor v of current with edge cost c:
 - 1. If current.minCost + c < v.mincost:
 - a. V.minCost = current.minCost + c
 - b. changeKey(H, v, v.minCost)
 - e. return -1 since destination is unreachable

RunTime: $V = \text{students } E = \text{wires } O((V+E) \log V)$

b) Minimum Cost to Connect Entire Class to UT (Prim's)

- 2. Function findMinimumClassCost():
 - a. For each student s in students:
 - i. S.minCost = infinity
 - b. start = UT looking for the last student in the list
 - c. start.minCost = 0
 - d. visited = array[v] intiailized to false
 - e. totalcost = 0
 - f. heap = buildHeap(students)
 - g. visitedCount = 0
 - h. while heap is not empty:
 - i. current = extractMin(heap)
 - ii. if visited[current.name]: continue
 - iii. visited[current.name] = true
 - iv. visitedCount += 1
 - v. total Cost += current.minCost
 - vi. for each neighbor v of current with edge cost c:
 - 1. if not visited[v.name] and c < v.minCost:
 - a. v.minCost = c
 - b. changeKey(heap, v, c)
 - i. if visitedCount < v:
 - i. return -1 disconnected graph
 - i. return total cost

RunTime: $V = \text{students } E = \text{wires } O((V+E) \log V)$

EE360C Algorithms
University of Texas at Austin
Prof. Nur Touba
Student Name: Yonatan Teshome

Programming Assignment #2

Student EID: YH23572 Date: July 30, 2025

c) Notes on Heap Usage

- 1. buildHeap = O(V)
- 2. extractMin = O(log V)
- 3. changeKey = O(log V)
- Dijkstra finds the minCost to connect to UT
- Prim's MST finds the min total cost to connect the entire class
- Both algorithms rely on a minheap to effectively select the next cheapest student. Tie breakers are done using the student ID in minCost is equal
- Both run in O((V+E) log V)