

Código:	MADO-52
Versión:	01
Página	29/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería Área/Departamento: Laboratorio de Geomática

La impresión de este documento es una copia no controlada

Práctica 6 Nivelación de perfil

Código:	MADO-52	
Versión:	01	
Página	30/36	
Sección ISO	8.3	
Fecha de	19 de enero de 2018	
emisión	19 de elleio de 2016	

Facultad de Ingeniería

Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o fuente de energía	Riesgo asociado
1	Manipulación de instrumentos.	Daños internos y externos al equipo manipulado.
2	Terreno accidentado.	Lesiones principalmente en piernas y brazos.
3	Falta de vigilancia a los instrumentos.	Robo o extravío de los instrumentos.

2. Objetivos de aprendizaje

- I. Objetivos generales: El alumno aplicará los fundamentos de la Geomática requeridos en la práctica de la Ingeniería Civil
- II. Objetivos específicos: El alumno aplicará técnicas de medición con equipos electrónicos en forma directa y simultánea para ser empleadas en el levantamiento de información de campo para el desarrollo de proyectos.

3. Introducción

Nivelación de perfil es la operación, usualmente por nivelación directa, de determinar las elevaciones de puntos a cortos intervalos a lo largo de una línea localizada tal como el centro para una carretera o tubería. Es también usada para determinar elevaciones de cortes o secciones, contornos y gradientes. El proceso de determinar las elevaciones de puntos a cortos intervalos medidos a lo largo de un alinea fijada es llamado levantamiento de perfil. Durante la localización o construcción de autopistas, líneas férreas, canales, drenajes, etc., son colocadas estacas a intervalos regulares sobre esta línea, usualmente la línea central.

El intervalo escogido es uno conveniente de acuerdo a la longitud del perfil, tal como 100, 50, 25 mts. Las elevaciones por medio de las cuales el perfil se construyen son levantadas tomando lectura de nivelación sobre las estacas o en puntos intermedios donde ocurren cambios de pendientes.

.

Código:	MADO-52
Versión:	01
Página	31/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018
emision	

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

4. Material y Equipo

- Nivel fijo
- Estadales
- Libreta de campo
- Tripie

5. Desarrollo

I. Actividad 1

- Seleccionar el banco de nivel de referencia (BNR) y asignarle una cota conocida o arbitraria.
- Colocar el nivel entre el BNR y el primer punto de liga (PL1).
- Colocar en el BNR, en los detalles cuya elevación nos interesa y el PL1 un estadal completamente vertical, para ello revisar que la burbuja nivelante este centrada.
- Realizar las lecturas del hilo medio del punto atrás (BNR), lecturas intermedias (detalles) y el punto adelante. (PL1) Registrar los datos.
- Cambiar el aparato haciendo estación en el PL1 y realizar de nuevo el procedimiento anterior, siendo ahora el PL1 el punto atrás y el PL2 el punto adelante.
- Repetir lo anterior hasta llegar al segundo banco de nivel de referencia (BNR2).
- Llenar el registro de campo.

ESTACION	(+)	Al	INTERMEDIA	(-)	Cota	Observaciones
BNR1						
PL1						
PL2						
PLn						
BNR2						

Código:	MADO-52
Versión:	01
Página	32/36
Sección ISO	8.3
Fecha de emisión	19 de enero de 2018

Facultad de Ingeniería Área/Departamento:

Laboratorio de Geomática

La impresión de este documento es una copia no controlada

6. Bibliografía

- BANNISTER A., Raymond. S. Técnicas modernas en topografía 1. México. Alfaomega, 2004.
- KEATES, J. S. Global Positioning System 4. Washington. The Institute of Navigation, 1986.
- KEATES, J. S. Cartographic Design & Production 3. New York. Longman, 1989
- LEVALLOIS, J. J. Géodésie Générale 2. París. Eyrolles, 1971. Tomos I y II
- LILLESAND, Thomas M., KIEFFER, Ralph. Remote Sensing and Image Interpretation 6. 6th edition. New York. John Willey & Son, 2008
- STARR, Jeffrey, ESTES, John. Geographic Information Systems an Introduction 6. New Jersey. Prentice Hall, 1990