

Matemática A

Abril de 2010

Matemática A

Itens – 10.º Ano de Escolaridade – Soluções

Itens de Matemática A - 10º Ano de Escolaridade

Soluções

1.2.
$$P(3,2)$$
 e $Q(3,-1)$ ou $P(1,-2)$ e $Q(1,1)$

1.3.
$$a \in]-\infty, -2[\cup]6, +\infty[$$

1.5.1.
$$T(-2a+6, 2a-4)$$

- **2.1.** O ponto de tangência tem coordenadas (2,3)
- **2.2.3.** Se a=0, a região sombreada é um triângulo, de base $\overline{AB}=4$ e altura igual à ordenada do vértice da parábola, que também é 4. A sua área é, portanto, igual a 8

Substituindo na expressão $8 + 4a - 2a^2 - a^3$, a por 0, também se obtém 8

2.2.4. $a \approx 0.67$

- **3.1.** 467,3 litros
- 3.2. $354\,956\,cm^3$

3.3.1.
$$D_f = D_g = [0, 1]$$
 e $D_f' = D_g' = \left[0, \frac{12 - \pi}{12}\right]$

3.3.3. 54 cm

3.3.4. Se
$$k = 0$$
, tem-se $a = b = 0$ e, se $k = \frac{12 - \pi}{12}$, tem-se $a = b = 1$

Se $k \in \left]0, \frac{12-\pi}{12}\right[$, tem-se b>a, atendendo a que, quando os dois recipientes têm o mesmo volume de líquido, o líquido no recipiente B atinge maior altura, visto que a parte do cone imersa neste recipiente tem maior volume do que no outro.

- **4.1.** 1, porque o resto da divisão de f(x) por $x + \frac{1}{2}$ é igual a $f\left(-\frac{1}{2}\right)$
- **4.2.** A área do quadrilátero [OABC] pode ser obtida, por exemplo, somando as áreas dos triângulos [CAB] e [CAO]

Considerando, nos dois triângulos, [AC] como base, e designando por I o ponto de intersecção de AC com o eixo das ordenadas, tem-se :

$$\frac{\overline{AC} \times \overline{BI}}{2} + \frac{\overline{AC} \times \overline{OI}}{2} \, = \frac{\overline{AC} \times \left(\overline{BI} + \overline{OI}\right)}{2} \, = \frac{\overline{AC} \times \overline{OB}}{2}$$

- **4.3.** 1
- **5.1.** A ordenada do ponto $B \notin 2$ e h(x) = x + 1
- **5.2.** A abcissa do ponto $A \in -1 \in g(x) = x^2 + x$
- **5.3.** $]-1,2[\cup]4,+\infty[$
- **5.4.** 8
- **6.1.** $Q\left(\frac{1+\sqrt{13}}{2}, \frac{1+\sqrt{13}}{2}\right)$
- **6.3.** Q(1,87; 3,25)