Practical Machine Learning Course Project

Ong Kwee Hian Saturday, August 22, 2015

Introduction

In this project, the goal is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants who were asked to perform barbell lifts correctly and incorrectly in 5 different ways as training data set to develop a model, and finally use it to predict the manner in which they did the exercise in the 20 test data set observations.

Load and prepare/clean Training data

Attempt to first investigate the characteristics of raw training data set.

```
library(lattice)
library(ggplot2)
library(caret)

rawTrainData <- read.csv("pml-training.csv") # Training data set
rawTestData <- read.csv("pml-testing.csv") # Test data set

str(rawTrainData)</pre>
```

```
## 'data.frame':
                 19622 obs. of 160 variables:
   $ X
                              : int 1 2 3 4 5 6 7 8 9 10 ...
##
                              : Factor w/ 6 levels "adelmo", "carlitos", ...: 2 2 2 2 2 2 2 2 2 2 ...
  $ user_name
##
                              : int 1323084231 1323084231 1323084231 1323084232 1323084232 132308423
   $ raw_timestamp_part_1
2 1323084232 1323084232 1323084232 ...
   $ raw timestamp part 2
                              : int 788290 808298 820366 120339 196328 304277 368296 440390 484323 4
84434 ...
##
   $ cvtd_timestamp
                             : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 ...
   $ new_window
                              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
##
                              : int 11 11 11 12 12 12 12 12 12 12 ...
##
   $ num_window
                              : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
   $ roll belt
##
   $ pitch_belt
                              : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##
   $ yaw_belt
                              : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##
   $ total accel belt
                              : int 3 3 3 3 3 3 3 3 3 ...
##
                              : Factor w/ 397 levels "","-0.016850",..: 1 1 1 1 1 1 1 1 1 1 ...
   $ kurtosis_roll_belt
##
                              : Factor w/ 317 levels "","-0.021887",..: 1 1 1 1 1 1 1 1 1 1 ...
   $ kurtosis_picth_belt
##
                              : Factor w/ 2 levels "", "#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
   $ kurtosis yaw belt
##
                              : Factor w/ 395 levels "","-0.003095",..: 1 1 1 1 1 1 1 1 1 1 1 ...
   $ skewness_roll_belt
```

```
: Factor w/ 338 levels "","-0.005928",..: 1 1 1 1 1 1 1 1 1 1 1 ...
##
   $ skewness_roll_belt.1
##
   $ skewness_yaw_belt
                            : Factor w/ 2 levels "", "#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
   $ max_roll_belt
                                  NA NA NA NA NA NA NA NA NA ...
##
                            : num
##
   $ max picth belt
                                  NA NA NA NA NA NA NA NA NA ...
                            : int
##
   $ max_yaw_belt
                            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##
   $ min_roll_belt
                                  NA NA NA NA NA NA NA NA NA ...
##
   $ min pitch belt
                            : int
                                  NA NA NA NA NA NA NA NA NA ...
                            : Factor w/ 68 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
##
   $ min_yaw_belt
                                  NA NA NA NA NA NA NA NA NA ...
##
   $ amplitude_roll_belt
##
   $ amplitude pitch belt
                                  NA NA NA NA NA NA NA NA NA ...
                            : Factor w/ 4 levels "", "#DIV/0!", "0.00", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
   $ amplitude yaw belt
##
##
   $ var_total_accel_belt
                            : num
                                  NA NA NA NA NA NA NA NA NA ...
   $ avg_roll_belt
                                  NA NA NA NA NA NA NA NA NA ...
##
                            : num
                                  NA NA NA NA NA NA NA NA NA ...
##
   $ stddev_roll_belt
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ var_roll_belt
                            : num
##
   $ avg_pitch_belt
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ stddev_pitch_belt
                            : num
##
                                  NA NA NA NA NA NA NA NA NA ...
   $ var_pitch_belt
                            : num
##
   $ avg_yaw_belt
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ stddev_yaw_belt
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ var_yaw_belt
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ gyros_belt_x
                            : num
                                   ##
   $ gyros_belt_y
                            : num
                                   0 0 0 0 0.02 0 0 0 0 0 ...
                                   -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##
   $ gyros belt z
                            : num
                                   -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##
   $ accel belt x
                            : int
##
   $ accel_belt_y
                            : int
                                  4 4 5 3 2 4 3 4 2 4 ...
##
   $ accel belt z
                            : int
                                   22 22 23 21 24 21 21 21 24 22 ...
                                   -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##
   $ magnet_belt_x
                            : int
                                   599 608 600 604 600 603 599 603 602 609 ...
##
   $ magnet_belt_y
                            : int
##
   $ magnet_belt_z
                            : int
                                   -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##
   $ roll_arm
                            : num
                                   ##
                                   22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
   $ pitch_arm
                            : num
                                   ##
   $ yaw_arm
                            : num
                                   34 34 34 34 34 34 34 34 34 ...
##
   $ total_accel_arm
                            : int
##
   $ var_accel_arm
                                   NA NA NA NA NA NA NA NA NA ...
                            : num
##
   $ avg roll arm
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ stddev_roll_arm
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ var_roll_arm
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ avg pitch arm
                                   NA NA NA NA NA NA NA NA NA ...
                            : num
   $ stddev_pitch_arm
                                   NA NA NA NA NA NA NA NA NA ...
##
                            : num
   $ var_pitch_arm
                                   NA NA NA NA NA NA NA NA NA ...
##
                            : num
##
   $ avg yaw arm
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
   $ stddev_yaw_arm
                            : num
                                   NA NA NA NA NA NA NA NA NA ...
##
                                   NA NA NA NA NA NA NA NA NA ...
   $ var_yaw_arm
                            : num
##
                                   $ gyros_arm_x
                            : num
##
                                   0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
   $ gyros_arm_y
                            : num
                                  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##
   $ gyros_arm_z
                            : num
```

```
##
    $ accel_arm_x
                                     -288 -290 -289 -289 -289 -289 -289 -288 -288 ...
##
    $ accel_arm_y
                                    109 110 110 111 111 111 111 111 109 110 ...
    $ accel_arm_z
                                     -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##
                              : int
##
    $ magnet arm x
                                     -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
                              : int
##
    $ magnet_arm_y
                              : int
                                    337 337 344 344 337 342 336 338 341 334 ...
##
    $ magnet_arm_z
                                    516 513 513 512 506 513 509 510 518 516 ...
                              : Factor w/ 330 levels "","-0.02438",..: 1 1 1 1 1 1 1 1 1 1 ...
##
    $ kurtosis roll arm
                              : Factor w/ 328 levels "","-0.00484",...: 1 1 1 1 1 1 1 1 1 1 1 ...
##
    $ kurtosis picth arm
                              : Factor w/ 395 levels "","-0.01548",...: 1 1 1 1 1 1 1 1 1 1 1 ...
    $ kurtosis_yaw_arm
##
                              : Factor w/ 331 levels "","-0.00051",..: 1 1 1 1 1 1 1 1 1 1 ...
##
    $ skewness roll arm
                              : Factor w/ 328 levels "","-0.00184",..: 1 1 1 1 1 1 1 1 1 1 ...
    $ skewness pitch arm
##
                              : Factor w/ 395 levels "","-0.00311",..: 1 1 1 1 1 1 1 1 1 1 ...
##
    $ skewness_yaw_arm
    $ max roll arm
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ max_picth_arm
                                     NA NA NA NA NA NA NA NA NA ...
##
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ max_yaw_arm
                              : int
##
    $ min_roll_arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
    $ min_pitch_arm
                                     NA NA NA NA NA NA NA NA NA ...
##
                              : num
##
    $ min_yaw_arm
                              : int
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ amplitude roll arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ amplitude_pitch_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
                              : int
##
    $ amplitude yaw arm
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ roll dumbbell
                              : num
                                     13.1 13.1 12.9 13.4 13.4 ...
##
    $ pitch_dumbbell
                              : num
                                     -70.5 -70.6 -70.3 -70.4 -70.4 ...
    $ yaw_dumbbell
##
                              : num
                                     -84.9 -84.7 -85.1 -84.9 -84.9 ...
                             : Factor w/ 398 levels "","-0.0035","-0.0073",..: 1 1 1 1 1 1 1 1 1 1
    $ kurtosis roll dumbbell
##
    $ kurtosis picth dumbbell : Factor w/ 401 levels "","-0.0163","-0.0233",..: 1 1 1 1 1 1 1 1 1 1
                              : Factor w/ 2 levels "","#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##
    $ kurtosis_yaw_dumbbell
    $ skewness_roll_dumbbell : Factor w/ 401 levels "","-0.0082","-0.0096",..: 1 1 1 1 1 1 1 1 1 1
##
##
    $ skewness_pitch_dumbbell : Factor w/ 402 levels "","-0.0053","-0.0084",..: 1 1 1 1 1 1 1 1 1 1
                              : Factor w/ 2 levels "", "#DIV/0!": 1 1 1 1 1 1 1 1 1 1 ...
##
    $ skewness_yaw_dumbbell
##
    $ max_roll_dumbbell
                              : num NA NA NA NA NA NA NA NA NA ...
##
    $ max picth dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
    $ max yaw dumbbell
##
##
    $ min_roll_dumbbell
                              : num NA NA NA NA NA NA NA NA NA ...
##
    $ min pitch dumbbell
                                    NA NA NA NA NA NA NA NA NA ...
                              : Factor w/ 73 levels "","-0.1","-0.2",..: 1 1 1 1 1 1 1 1 1 1 ...
    $ min yaw dumbbell
##
    $ amplitude roll dumbbell : num NA ...
##
##
     [list output truncated]
```

There a quite a large number of NA and also variable not useful for analysis. To clean away unnecessary variables, i will remove variables with nearly zero variance, variables that has NA, and variables that are irrelevant for prediction e.g. user name, time stanp, etc.

```
# remove near zero variance variables
nzv <- nearZeroVar(rawTrainData)
rawTrainData <- rawTrainData[, -nzv]

# remove NA variables
NAs <- apply(rawTrainData, 2, function(x) { sum(is.na(x)) })
rawTrainData <- rawTrainData[, which(NAs == 0)]

# remove first five irrlevant variables (X, user_name, raw_timestamp_part_1, raw_timestamp_part_2, cv
td_timestamp)
rawTrainData <- rawTrainData[, -(1:5)]

str(rawTrainData)</pre>
```

```
'data.frame':
                  19622 obs. of 54 variables:
##
   $ num window
                       : int 11 11 11 12 12 12 12 12 12 12 ...
##
   $ roll_belt
                             1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##
   $ pitch_belt
                              8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
   $ yaw belt
                              -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##
                       : num
   $ total_accel_belt
                              3 3 3 3 3 3 3 3 3 ...
##
                       : int
                              ##
   $ gyros_belt_x
                       : num
##
   $ gyros_belt_y
                              0 0 0 0 0.02 0 0 0 0 0 ...
                       : num
                              -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##
   $ gyros_belt_z
                       : num
                             -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##
   $ accel belt x
                       : int
                       : int 4453243424 ...
##
   $ accel_belt_y
                       : int 22 22 23 21 24 21 21 21 24 22 ...
   $ accel_belt_z
##
                             -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
   $ magnet belt x
##
                       : int
                       : int 599 608 600 604 600 603 599 603 602 609 ...
##
   $ magnet belt y
   $ magnet_belt_z
                             -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##
                       : int
                              ##
   $ roll arm
                       : num
                              22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
   $ pitch_arm
##
                       : num
##
   $ yaw_arm
                       : num
                              $ total_accel_arm
                             34 34 34 34 34 34 34 34 ...
##
                       : int
                              ##
   $ gyros_arm_x
                       : num
                              0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##
   $ gyros_arm_y
                       : num
##
   $ gyros_arm_z
                       : num
                              -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
                              -288 -290 -289 -289 -289 -289 -289 -288 -288 ...
##
   $ accel_arm_x
                       : int
##
   $ accel_arm_y
                       : int
                             109 110 110 111 111 111 111 111 109 110 ...
                             -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##
   $ accel_arm_z
                       : int
                             -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##
   $ magnet_arm_x
                       : int
                             337 337 344 344 337 342 336 338 341 334 ...
   $ magnet arm y
##
                       : int
   $ magnet_arm_z
                       : int 516 513 513 512 506 513 509 510 518 516 ...
##
##
   $ roll dumbbell
                       : num
                             13.1 13.1 12.9 13.4 13.4 ...
                              -70.5 -70.6 -70.3 -70.4 -70.4 ...
##
   $ pitch dumbbell
                       : num
##
   $ yaw dumbbell
                             -84.9 -84.7 -85.1 -84.9 -84.9 ...
                       : num
   $ total_accel_dumbbell: int 37 37 37 37 37 37 37 37 37 37 ...
```

```
##
   $ gyros_dumbbell_x
                        : num
                              00000000000...
##
   $ gyros_dumbbell_y
                              -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
                        : num
   $ gyros_dumbbell_z
                              0 0 0 -0.02 0 0 0 0 0 0 ...
##
                        : num
##
   $ accel dumbbell x
                              -234 -233 -232 -232 -233 -234 -232 -234 -232 -235 ...
                        : int
                        : int 47 47 46 48 48 48 47 46 47 48 ...
##
   $ accel_dumbbell_y
                              -271 -269 -270 -269 -270 -269 -270 -272 -269 -270 ...
##
   $ accel_dumbbell_z
                        : int
   $ magnet dumbbell x
                              -559 -555 -561 -552 -554 -558 -551 -555 -549 -558 ...
##
                        : int
   $ magnet dumbbell y
##
                        : int
                              293 296 298 303 292 294 295 300 292 291 ...
   $ magnet_dumbbell_z
                              -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
##
                        : num
   $ roll forearm
                              28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.7 ...
##
                        : num
   $ pitch forearm
                              -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 ...
##
##
   $ yaw_forearm
                        : num
                              $ total_accel_forearm : int
                              36 36 36 36 36 36 36 36 36 ...
##
   $ gyros_forearm_x
                              ##
                        : num
   $ gyros_forearm_y
##
                              0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
                        : num
##
   $ gyros_forearm_z
                        : num
                              -0.02 -0.02 0 0 -0.02 -0.03 -0.02 0 -0.02 -0.02 ...
   $ accel_forearm_x
                        : int 192 192 196 189 189 193 195 193 193 190 ...
##
   $ accel_forearm_y
                              203 203 204 206 206 203 205 205 204 205 ...
##
                        : int
##
   $ accel_forearm_z
                        : int
                              -215 -216 -213 -214 -214 -215 -215 -213 -214 -215 ...
##
   $ magnet_forearm_x
                        : int
                              -17 -18 -18 -16 -17 -9 -18 -9 -16 -22 ...
   $ magnet forearm y
##
                        : num
                              654 661 658 658 655 660 659 660 653 656 ...
   $ magnet forearm z
                        : num 476 473 469 469 473 478 470 474 476 473 ...
##
                        : Factor w/ 5 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 1 1 ...
##
  $ classe
```

To be able to estimate the out-of-sample error, I will make use of this training set by splitting the Full training data set (rawTrainData) into 2 smaller sets for use, one for training purpose (rawTrainData1) and the other for validation purpose (rawTrainData2):

```
set.seed(082015)
inTrain <- createDataPartition(y=rawTrainData$classe, p=0.7, list=F)
rawTrainData1 <- rawTrainData[inTrain, ] # For training
rawTrainData2 <- rawTrainData[-inTrain, ] # For testing</pre>
```

Build Model

Applying Random Forest model on rawTrainData1, and "train" using 3-fold cross-validation to select optimal tuning parameters for acceptable performance for the model.

```
# Use 3-fold cross-validation to select optimal tuning parameters
modControl <- trainControl(method="cv", number=3, verboseIter=FALSE)

# fit model on rawTrainData1
modFit <- train(classe ~ ., data=rawTrainData1, method="rf", trControl=modControl)</pre>
```

```
## Loading required package: randomForest
```

```
## Warning: package 'randomForest' was built under R version 3.1.3
```

```
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
```

```
# print tuning parameters choosen in final model
modFit$finalModel
```

```
##
## Call:
##
    randomForest(x = x, y = y, mtry = param$mtry)
##
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 27
##
           OOB estimate of error rate: 0.2%
##
## Confusion matrix:
             В
                  C
       Α
                           E class.error
##
## A 3904
             1
                  0
                       0
                            1 0.0005120328
        6 2650
                       0
                            0 0.0030097818
## B
                  2
            6 2389
                            0 0.0029215359
## C
                       1
             0
                  6 2246
                            0 0.0026642984
## D
## E
            1
                       4 2520 0.0019801980
```

The result return is 500 trees and try 27 variables at each split.

Model Evaluation and Selection

This model is used to predict the label ("classe") in rawTrainData2, and confusion matrix is used to compare the predicted versus the actual labels:

```
# Predict classe label in validation set (rawTrainData2) using model
predictions <- predict(modFit, newdata=rawTrainData2)

# Print confusion matrix to understand out-of-sample error
confusionMatrix(rawTrainData2$classe, predictions)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
                                       Ε
## Prediction
                 Α
                            C
                                 D
            A 1674
##
                       0
                            0
                                 0
                                       0
            В
                 1 1135
                                 0
                                       0
##
                            3
##
                       0 1026
##
            D
                 0
                       0
                            3
                               961
                                       0
##
                                 1 1081
##
## Overall Statistics
##
##
                   Accuracy: 0.9986
                     95% CI: (0.9973, 0.9994)
##
##
       No Information Rate: 0.2846
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.9983
    Mcnemar's Test P-Value : NA
##
##
##
   Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9994
                                     1.0000
                                              0.9942
                                                        0.9990
                                                                 1.0000
## Specificity
                           1.0000
                                     0.9992
                                              1.0000
                                                        0.9994
                                                                 0.9998
## Pos Pred Value
                           1.0000
                                     0.9965
                                              1.0000
                                                        0.9969
                                                                 0.9991
## Neg Pred Value
                           0.9998
                                     1.0000
                                              0.9988
                                                        0.9998
                                                                 1.0000
## Prevalence
                           0.2846
                                     0.1929
                                              0.1754
                                                        0.1635
                                                                 0.1837
## Detection Rate
                           0.2845
                                     0.1929
                                              0.1743
                                                        0.1633
                                                                 0.1837
## Detection Prevalence
                           0.2845
                                     0.1935
                                              0.1743
                                                        0.1638
                                                                 0.1839
## Balanced Accuracy
                           0.9997
                                     0.9996
                                              0.9971
                                                        0.9992
                                                                 0.9999
```

The accuracy is 99.8%, thus my predicted accuracy for the out-of-sample error with cross validation is 0.2%, which is very good.

Re-training the Model using Full training data

As the result is very good, Random Forests will be used to predict labels for the test set (20 test cases) provided. I will now retrain the model using the Full training set (rawTrainData) before predicting on the test set given.

```
# re-model using full training set (rawTrainData)
modControl <- trainControl(method="cv", number=3, verboseIter=F)
modFit <- train(classe ~ ., data=rawTrainData, method="rf", trControl=modControl)
# print tuning parameters choosen in final model
modFit$finalModel</pre>
```

```
##
## Call:
##
    randomForest(x = x, y = y, mtry = param$mtry)
                  Type of random forest: classification
##
                        Number of trees: 500
##
## No. of variables tried at each split: 27
##
           OOB estimate of error rate: 0.13%
##
## Confusion matrix:
             В
                  C
##
        Α
                             E class.error
## A 5578
                  0
                       0
                             1 0.0003584229
## B
        6 3788
                  2
                            0 0.0023702923
## C
             4 3418
                       0
                            0 0.0011689071
                             1 0.0027985075
## D
                  8 3207
## E
                  0
                        2 3605 0.0005544774
```

Using the model for Test Set Predictions

The new model fit is applied on activity monitors in rawTestData to predict the activity quality label, and output to files:

```
# predict on test set
predictions <- predict(modFit, newdata=rawTestData)

# convert predictions to list of vector
predictions <- as.character(predictions)

# create function to write predictions to files
pml_write_files <- function(x) {
    n <- length(x)
    for(i in 1:n) {
        filename <- paste0("problem_id_", i, ".txt")
            write.table(x[i], file=filename, quote=F, row.names=F, col.names=F)
    }
}

# create prediction files to submit
pml_write_files(predictions)</pre>
```

The created result file input are used for project submission. As the model take a long time to generate, the model output are only show in html file.