TD 6: Ensembles et fonctions

christina.boura@uvsq.fr

2 novembre 2020

1 Ensembles

Opérateurs On considère un univers $U = \{1, 2, 3, 4, 5, 6, 7\}$. Étant donnés les ensembles suivants

$$A=\{1,2,3,4\},\;B=\{4,5,6,7\},\;C=\{1,3,5,7\},\;D=\{2,3,4,5,6\},$$

calculer

- 1. $\overline{A}, A \cup C, \overline{A \cup C}, A \cap C, \overline{A \cap C}$
 - $\overline{A} = \{5, 6, 7\}$
 - $A \cup C = \{1, 2, 3, 4, 5, 7\}$
 - $\overline{A \cup C} = \{6\}$
 - $A \cap C = \{1, 3\}$
 - $\overline{A \cap C} = \{2, 4, 5, 6, 7\}$
- 2. $(A \cap B) \cup (C \cap D), (A \cup C) \cap (B \cup D)$
 - $(A \cap B) \cup (C \cap D) = \{4\} \cup \{3,5\} = \{3,4,5\}$
 - $(A \cup C) \cap (B \cup D) = \{1, 2, 3, 4, 5, 7\} \cap \{2, 3, 4, 5, 6, 7\} = \{2, 3, 4, 5, 7\}.$
- 3. $A \setminus D = \{1\}, D \setminus A = \{5, 6\}.$

Diagrammes de Venn On suppose que $A \cup B = B \cap C$ et que $C \subset E$. Dessiner les diagrammes de Venn de A, B, C et E.

- On suppose que $x \in A \Rightarrow x \in A \cup C \Rightarrow x \in B \cap C$. On a donc que $x \in B$ et $x \in C$. Ceci implique que $A \subset B$ et $A \subset C$.
- On suppose que $x \in B \Rightarrow x \in A \cup B \Rightarrow x \in B \cap C$. Ceci implique que $x \in C$. Par conséquent $B \subset C$.

On conclut alors que $A \subset B \subset C \subset E$.

- 1. de $\overline{A \cup B}$ et $\overline{A} \cap \overline{B}$;
- 2. de $\overline{A \cap B}$ et $\overline{A} \cup \overline{B}$.

On voit alors qu'on a bien $\overline{A \cup B} = \overline{A} \cap \overline{B}$ et $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Ensembles et calcul des propositions Soient A, B, C trois ensembles dans un univers U. Démontrer les propriétés suivantes.

Dans toute cette série d'exercices il s'agit de démontrer l'égalité de deux ensembles. Comme la relation \subset est une relation anti-symétrique, il suffit à chaque fois de montrer que le premier ensemble est un sous-ensemble du deuxième et inversement, ç.-à-d. si $A \subset B$ et $B \subset A$, alors A = B.

- 1. La distributivité : $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$: Soit $x \in A \cap (B \cup C)$. Alors $x \in A$ et $x \in B \cup C \Rightarrow x \in B$ ou $x \in C$.
 - Si $x \in B$, alors comme $x \in A$ on a que $x \in A \cap B$.
 - Si $x \in C$, alors comme $x \in A$ on a que $x \in A \cap C$.

On voit donc bien que $x \in A \cap B$ ou $x \in A \cap C$, ce qui implique que $x \in (A \cap B) \cup (A \cap C)$.

- $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$: Soit $x \in (A \cap B) \cup (A \cap C)$. Alors $x \in A \cap B$ ou $x \in A \cap C$.
 - Si $x \in A \cap B$, alors $x \in A$ et $x \in B \Rightarrow x \in A$ et $x \in B \cup C$ donc $x \in A \cap (B \cup C)$.
 - Si $x \in A \cap C$, alors $x \in A$ et $x \in C \Rightarrow x \in A$ et $x \in B \cup C$ donc $x \in A \cap (B \cup C)$.

On voit donc bien que $x \in A \cap B$ ou $x \in A \cap C$, ce qui implique que $x \in (A \cap B) \cup (A \cap C)$.

- 2. Les lois de de Morgan : $\overline{A \cup B} = \overline{A} \cap \overline{B}$ et $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
 - $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$: Soit $x \in \overline{A \cup B}$. Alors $x \notin A \cup B \Rightarrow x \notin A$ et $x \notin B \Rightarrow x \in \overline{A} \cap \overline{B}$.
 - $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$: Soit $x \in \overline{A} \cap \overline{B} \Rightarrow x \notin A$ et $x \notin B \Rightarrow x \notin A \cup B \Rightarrow x \in \overline{A \cup B}$.
 - $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$: Soit $x \in \overline{A \cap B}$. Alors $x \notin A \cap B \Rightarrow x \notin A$ ou $x \notin B \Rightarrow x \in \overline{A} \cup \overline{B}$.
 - $\overline{A} \cup \overline{B} \subset \overline{A \cap B}$: Soit $x \in \overline{A} \cup \overline{B} \Rightarrow x \notin A$ ou $x \notin B \Rightarrow x \notin A \cap B \Rightarrow x \in \overline{A \cap B}$.
- 3. $A \backslash B = A \cap \overline{B}$.
 - $A \setminus B \subset A \cap \overline{B}$: Soit $x \in A \setminus B$. Alors $x \in A$ et $x \notin B \Rightarrow A \cap \overline{B}$.
 - $A \cap \overline{B} \subset A \backslash B$: Soit $x \in A \cap \overline{B} \Rightarrow x \in A$ et $x \notin B \Rightarrow x \in A \backslash B$.
- 4. $A \cup B = (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
 - $A \cup B \subset (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$: Soit $x \in A \cup B$. Il y a donc trois possibilités pour x. Soit $x \in A \cap B$, soit $x \in (A \cap \overline{B})$ soit $x \in \overline{A} \cap B$. Ce qui montre que $x \in (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

- $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) \subset A \cup B$: La preuve inverse est immédiate comme chacun des trois ensembles et bien un sous-ensemble de $A \cup B$.
- 5. $A \cap B = A \cap C$ si et seulement si $A \cap \overline{B} = A \cap \overline{C}$.
 - On suppose que $A \cap B = A \cap C$ et on va montrer que $A \cap \overline{B} \subset A \cap \overline{C}$ et inversement. Soit $x \in A \cap \overline{B}$. Alors $x \in A$ et $x \notin B$. Forcément $x \in C$, car sinon puisque $A \cap B = A \cap C$, x devrait appartenir à $A \cap B$ donc à B. Alors, on a bien que $x \in A \cap \overline{C}$. Le cas inverse se montre de la même façon en inversant les rôles de B et de C.
 - On suppose que $A \cap \overline{B} = A \cap \overline{C}$ et il faut montrer que $A \cap B = A \cap C$. La même preuve qu'avant peut se répéter en remplaçant B par \overline{B} , et C par \overline{C} .

2 Fonctions

Rappel: Si $f: A \to B$ est une fonction, et si $C \subset B$ est un sous-ensemble de B, on note $f^{-1}(C)$ l'**image inverse de** C **par** f, c'est à dire l'ensemble des $x \in A$ tels que $f(x) \in C$.

Soit $f: E \to F$ une fonction. Soient A et B des sous-ensembles de E et soient C et D des sous-ensembles de F.

A-t-on nécessairement les relations suivantes? Justifier chaque cas par une preuve ou par un contre-exemple.

1. $f(A \cap B) = f(A) \cap f(B)$

Cette relation est fausse et voici un contre-exemple.

On prend $E = F = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$ et $B = \{2, 3, 4\}$. On suppose que f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 1 et f(5) = 5.

On a donc $f(A \cap B) = f(\{2,3\}) = \{2,3\}$ et $f(A) = f(B) = \{1,2,3\}$ donc $f(A) \cap f(B) = \{1,2,3\}$ et on voit bien que $f(A \cap B) \neq f(A) \cap f(B)$.

2. $f(A \cup B) = f(A) \cup f(B)$

Cette relation est juste. On va la démontrer en montrant que $f(A \cup B) \subseteq f(A) \cup f(B)$ et inversement.

- (⊆) Soit $y \in f(A \cup B)$. Alors il existe un $x \in A \cup B$ tel que f(x) = y. Si $x \in A$, alors $y = f(x) \in f(A) \Rightarrow y \in f(A \cup B)$. Autrement, si $x \in B$, alors $y = f(x) \in f(B) \Rightarrow y \in f(A \cup B)$. Dans les deux cas on a que $y \in f(A) \cup f(B)$, ce qui prouve que $f(A \cup B) \subseteq f(A) \cup f(B)$.
- (\supseteq) Soit $y \in f(A) \cup f(B)$. Si $y \in f(A)$, alors il existe un $x \in A$ tel que f(x) = y. Dans ce cas, comme $A \subseteq A \cup B$, alors $x \in A \cup B$ et donc $y \in f(A \cup B)$. Autrement, si $y \in f(B)$, alors il existe un $x \in B$ tel que f(x) = y. Dans ce deuxième cas, comme $B \subseteq A \cup B$, alors $x \in A \cup B$ et donc $y \in f(A \cup B)$. Dans les deux cas on a que $y \in f(A \cup B)$ ce qui prouve que $f(A) \cup f(B) \subseteq f(A \cup B)$.
- 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

Cette relation est juste. On va la démontrer en montrant que $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$ et inversement.

(\subseteq) Soit $x \in f^{-1}(C \cap D)$. Alors $f(x) \in C \cap D$. Donc $f(x) \in C$ et $f(x) \in D$. Par conséquent, $x \in f^{-1}(C)$ et $x \in f^{-1}(D)$, donc $x \in f^{-1}(C) \cap f^{-1}(D)$. Ceci montre que $f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D)$.

- (2) Inversement, soit $x \in f^{-1}(C) \cap f^{-1}(D)$. Alors, $x \in f^{-1}(C)$ et $x \in f^{-1}(D)$, donc $f(x) \in C$ et $f(x) \in D$. Par conséquent, $f(x) \in C \cap D$ et donc $x \in f^{-1}(C \cap D)$. Donc, on a bien que $f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D)$.
- 4. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$

Cette relation est juste. On va la démontrer en montrant que $f^{-1}(C \cup D) \subseteq f^{-1}(C) \cup f^{-1}(D)$ et inversement.

- (⊆) Soit $x \in f^{-1}(C \cup D)$. Alors $f(x) \in C \cup D$. Si $f(x) \in C$, alors $x \in f^{-1}(C) \Rightarrow x \in f^{-1}(C) \cup f^{-1}(D)$. Autrement, si $f(x) \in D$, alors $x \in f^{-1}(D) \Rightarrow x \in f^{-1}(C) \cup f^{-1}(D)$. Dans les deux cas on a bien que $x \in f^{-1}(C) \cup f^{-1}(D)$.
- (⊇) Soit $x \in f^{-1}(C) \cup f^{-1}(D)$. Si $x \in f^{-1}(C)$ alors $f(x) \in C \Rightarrow x \in C \cup D$ et si $x \in f^{-1}(D)$ alors $f(x) \in D \Rightarrow f(x) \in C \cup D$. Dans les deux cas on a que $f(x) \in C \cup D$ et donc que $x \in f^{-1}(C \cup D)$.
- 5. $f^{-1}(f(A)) = A$

Cette relation est fausse et voici un contre-exemple.

On prend $E=\{1,2,3,4\}$ et $A,B\subseteq E$ tels que $A=\{1,2,3\}$ et $B=\{4\}$. On suppose que f(1)=f(2)=f(3)=f(4)=1.

On a $f(A) = \{1\}$. De l'autre côté $f^{-1}(f(A)) = f^{-1}(1) = \{1, 2, 3, 4\} \neq f(A)$.

6. $f(f^{-1}(C)) = C$.

Cette relation est fausse et voici un contre-exemple.

On prend $C = \{1, 2\}$ et on suppose que f(1) = 1. On a $f^{-1}(C) = \{1\}$ et $f(f^{-1}(C)) = f(\{1\}) = \{1\} \neq \{1, 2\} = C$.

Injectivité et surjectivité

Rappel : si n est un nombre réel, la notation $\lfloor n \rfloor$ désigne la partie entière inférieure de n, c'est à dire le plus grand entier plus petit ou égal à n. La notation $\lceil n \rceil$ désigne la partie entière supérieure de n, c'est à dire le plus petit entier plus grand ou égal à n.

Déterminer si les fonctions suivantes sont injectives, surjectives ou aucune des deux.

1. $f: \mathbb{N} \to \mathbb{N}$ définie par $f(n) = \lfloor \frac{n}{2} \rfloor$.

Cette fonction n'est pas injective. Par exemple on a f(0) = f(1) = 0. Par contre, elle surjective. En effet, chaque $n \in \mathbb{N}$, 2n est une préimage pour n par f.

- 2. $f: \mathbb{N} \to \mathbb{N}$ définie par f(n) = 2n.
 - f(n) est injective. En effet, si $n_1, n_2 \in \mathbb{N}$ avec $n_1 \neq n_2$, alors $2n_1 \neq 2n_2 \Rightarrow f(n_1) \neq f(n_2)$. Par contre, elle n'est pas surjective. Par exemple n=3 n'a pas de préimage.
- 3. $f: \mathbb{N} \to \mathbb{Z}$ définie par $f(n) = (-1)^n \lceil \frac{n}{2} \rceil$. Cette fonction est injective et surjective à la fois. (Justifier).
- 4. $f: \mathbb{N} \to \mathbb{N}$ définie par f(x) = x + 1. Cette fonction est injective. En effet, si $x_1 \neq x_2$ alors $x_1 + 1 \neq x_2 + 1 \Rightarrow f(x_1) \neq f(x_2)$.

Par contre, elle n'est pas surjective. En effet, pour y=0, il n'existe pas de $x\in\mathbb{N}$ tel que f(x)=x+1=0.

5. $f: \mathbb{Z} \to \mathbb{Z}$ définie par f(x) = x + 1. Cette fonction est injective et surjective à la fois. Pour l'injectivité, la même preuve que toute à l'heure marche. Pour la surjectivité, on voit que pour $y \in \mathbb{Z}$, y - 1 est une préimage pour y par f. La fonction est donc bijective.

Interpréter les phrases suivantes en terme d'injectivité et de surjectivité.

1. Il existe des nombres entiers relatifs (i.e., dans \mathbb{Z}) différents qui ont le même carré.

La fonction

$$f: \mathbb{Z} \to \mathbb{N}$$
$$x \mapsto x^2$$

n'est pas injective.

2. Tout nombre réel positif a une racine carrée. La fonction

$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
$$x \mapsto x^2$$

est surjective.

3. Le nombre 3 n'est le sinus d'aucun nombre.

La fonction

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sin(x)$$

n'est pas surjective.

4. Un nombre complexe est caractérisé par ses parties réelle et imaginaire. La fonction

$$f: \mathbb{C} \to \mathbb{R} \times \mathbb{R}$$
$$z \mapsto (a, b)$$

tel que z = a + bi est injective et surjective, donc bijective.

Rappel : Si $f: A \to B$ et $g: B \to C$ sont deux fonctions, on note $g \circ f$ la **composée de** g **et de** f, i.e. la fonction $g \circ f: A \to C$ définie par $g \circ f(x) = g(f(x))$.

Soient $f: A \to B$ et $g: B \to C$ deux fonctions et $h = g \circ f$. Montrer les propositions suivantes.

1. Si h est surjective alors g est surjective.

On suppose que h est surjective. Alors pour tout tout $c \in C$ il existe un $a \in A$ tel que h(a) = c. $\Leftrightarrow g(f(a)) = c$. On note b = f(a). Alors, pour tout $c \in C$, il existe un $b \in B$ tel que g(b) = c. Ceci montre que la fonction g est surjective.

2. Si h est injective alors f est injective.

On suppose que h est injective. Alors pour tout $a_1, a_2 \in A$ avec $a_1 \neq a_1$ on a $h(a_1) \neq h(a_2)$. Supposons maintenant que f n'est pas injective. Alors il existe a_1, a_2 avec $a_1 \neq a_2$ et $f(a_1) = f(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow h(a_1) = h(a_2)$, contradiction puisque h est injective. Alors f est injective.

3. Si h est injective et f est surjective alors g est injective.

On raisonne par l'absurde. On suppose que g n'est pas injective. Alors, il existent $b_1, b_2 \in B$ avec $b_1 \neq b_2$ et $g(b_1) = g(b_2)$. Puisque f est surjective, il existe $a_1 \in A$ tel que $f(a_1) = b_1$ et $a_2 \in A$ tel que $f(a_2) = b_2$. Puisque $f(a_1) \neq f(a_2)$ et f est une fonction on a forcément que $a_1 \neq a_2$. On a donc $a_1 \neq a_2$ et $g(f(a_1)) = g(f(a_2)) \Rightarrow h(a_1) = h(a_2)$, contradiction puisque f0 est injective. Alors on conclut que f1 est injective.

4. Si h est surjective et g est injective alors f est surjective.

Soit $b \in B$ et on note $c = g(b) \in C$. Comme la fonction h est surjective, il existe un $a \in A$ tel que h(a) = g(f(a)) = c. On a alors g(b) = g(f(a)) et comme g est injective, alors forcément b = f(a). Ceci prouve que f est surjective.

Les implications réciproques sont-elles vraies?

3 Ensembles et induction

Soient A et B des ensembles finis, et soit $f:A\to B$ une fonction. Prouver que

- 1. Si f est injective, alors $|A| \leq |B|$
- 2. Si f est surjective, alors $|A| \ge |B|$.

Soit $f: E \to E$ une fonction. On définit par récurrence les applications f^n par $f^1 = f$ et $f^n = f \circ f^{n-1}$.

- 1. On suppose que f est injective. Montrer que pour tout entier n, f^n est injective.
- 2. On suppose que f est surjective. Montrer que pour tout entier n, f^n est surjective.