Mixture-based Feature Space Learning for Few-shot Image Classification

Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné

Mixture-based Feature Space Learning for Few-shot Image Classification

Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné

Few-shot image classification

Infinite mixture prototypes

Kelsey R. Allen, Evan Shelhamer, Hanul Shin, Joshua B. Tenenbaum, ICML 2019.

- uses DP-means in non-differentiable way
- temporary clustering inside each batch in offline manner

We propose a multimodal method that is

- fully differentiable
- trainable in an **end-to-end** manner
- without any clustering algorithm

Mixture-based Feature Space Learning

Mixture-based Reixtures Space Learning

Phase 1: Initial training

Phase 2: Progressive following

Phase 1: Initial training

Training only with assignment loss

Training with both assignment and diversity losses:

Phase 1: Initial training

Phase 2: Progressive following

training time (epoch)

training time (epoch)

(a) after initial training

(b) after progressive following

Evaluations

Datasets

MinilmageNet

TieredImageNet

FC100

CUB

Backbones

Conv4

ResNet-12

WideResNet

ResNet-18

minilmageNet

ResNet-12

Method	1-shot	5-shot
DNS [62]	62.64	78.83
Var.FSL [87]	61.23	77.69
MTL [66]	61.20	75.50
SNAIL [46]	55.71	68.88
AdaResNet [48]	56.88	71.94
TADAM [49]	58.50	76.70
MetaOptNet [37]	62.64	78.63
Simple [69]	62.02	79.64
TapNet [83]	61.65	76.36
Neg-Margin [41]	63.85	81.57
MixtFSL (ours)	63.98	82.04

tieredImageNet

Method	Backbone	1-shot	5-shot	
DNS [62]	RN-12	66.22	82.79	`
MetaOptNet [37]	RN-12	65.99	81.56	
Simple [69]	RN-12	69.74	84.41	
TapNet [83]	RN-12	63.08	80.26	
Arcmax* [1]	RN-12	68.02	83.99	
MixtFSL (ours)	RN-12	70.97	86.16	,
Arcmax [1]	RN-18	65.08	83.67	
ProtoNet [64]	RN-18	61.23	80.00	
MixtFSL (ours)	RN-18	68.61	84.08	

tieredImageNet

Backbone	1-shot	5-shot	
RN-12	66.22	82.79	`
RN-12	65.99	81.56	
RN-12	69.74	84.41	
RN-12	63.08	80.26	
RN-12	68.02	83.99	
RN-12	70.97	86.16	,
RN-18	65.08	83.67	
RN-18	61.23	80.00	
RN-18	68.61	84.08	
	RN-12 RN-12 RN-12 RN-12 RN-12 RN-12	RN-12 66.22 RN-12 65.99 RN-12 69.74 RN-12 63.08 RN-12 68.02 RN-12 70.97 RN-18 65.08 RN-18 61.23	RN-12 66.22 82.79 RN-12 65.99 81.56 RN-12 69.74 84.41 RN-12 63.08 80.26 RN-12 68.02 83.99 RN-12 70.97 86.16 RN-18 65.08 83.67 RN-18 61.23 80.00

FC100

Method	Backbone	1-shot	5-shot
TADAM [49]	RN-12	40.1	56.1
MetaOptNet [37]	RN-12	41.1	55.5
ProtoNet [†] [64]	RN-12	37.5	52.5
MTL [66]	RN-12	43.6	55.4
MixtFSL (ours)	RN-12	44.89	60.70
Arcmax [1]	RN-18	40.84	57.02
MixtFSL (ours)	RN-18	41.50	58.39

CUB and cross domain

	CUB		miniIN → CUB
Method	1-shot	5-shot	5-shot
GNN-LFT ^{\$} [70]	51.51	73.11	_
Robust-20 [13]	58.67	75.62	_
RelationNet [‡] [67]	67.59	82.75	57.71
MAML [‡] [18]	68.42	83.47	51.34
ProtoNet [‡] [64]	71.88	86.64	62.02
Baseline++ [8]	67.02	83.58	64.38
Arcmax [1]	71.37	85.74	64.93
Neg-Margin [41]	72.66	89.40	67.03
MixtFSL (ours)	73.94	86.01	68.77

Extension with associative alignment

Afrasiyabi et al. ECCV 2020.

minilmageNet

Method	1-shot	5-shot
Cent. Align.* [1]	63.44	80.96
MixtFSL-Align. (ours)	64.38	82.45

tieredImageNet

Method	1-shot	5-shot
Cent. Align.* [1]	71.08	86.32
MixtFSL-Align. (ours)	71.83	88.20

MixtFSL in summary

MixtFSL in summary

We introduce a fully differentiable end-to-end representation learning method

We present a robust two-stage algorithm for training such a model

Our method achieves the state-of-the-art results on four datasets with four backbones

Mixture-based Feature Space Learning for Few-shot Image Classification

Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné

Thank you for your attention!

Visit our project webpage at https://lvsn.github.io/MixtFSL/

