Deep Learning	
Ian Goodfellow Yoshua Bengio Aaron Courville	

Contents

W	ebsite		vii
Ac	cknow	$_{ m ledgments}$	viii
No	otatio	n	xi
1	1.1 1.2	Oduction Who Should Read This Book?	11
Ι	Appl	ied Math and Machine Learning Basics	28
2	Lines 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Scalars, Vectors, Matrices and Tensors Multiplying Matrices and Vectors Identity and Inverse Matrices Linear Dependence and Span Norms Special Kinds of Matrices and Vectors Eigendecomposition Singular Value Decomposition The Moore-Penrose Pseudoinverse The Trace Operator The Determinant Example: Principal Components Analysis	33 35 36 38 39 41 43 44 45 46
3	Pro b 3.1	Dability and Information Theory Why Probability?	52 53

CONTENTS

	6.2	Gradient-Based Learning	
	6.1	Example: Learning XOR	
6	Deer	Feedforward Networks	168
11	Dee	p Networks: Modern Practices	166
	5.11	Challenges Motivating Deep Learning	155
	5.10	Building a Machine Learning Algorithm	
	5.9	Stochastic Gradient Descent	
	5.8	Unsupervised Learning Algorithms	
	5.7	Supervised Learning Algorithms	. 140
	5.6	Bayesian Statistics	. 135
	5.5	Maximum Likelihood Estimation	
	5.4	Estimators, Bias and Variance	
	5.3	Hyperparameters and Validation Sets	
	5.2	Capacity, Overfitting and Underfitting	
	5.1	Learning Algorithms	
5	Macl	hine Learning Basics	97
	4.5	Example: Linear Least Squares	. 94
	4.4	Constrained Optimization	
	4.3	Gradient-Based Optimization	. 81
	4.2	Poor Conditioning	. 81
	4.1	Overflow and Underflow	. 79
4	Num	nerical Computation	79
	3.14	Structured Probabilistic Models	. 74
	3.13	Information Theory	
	3.12	Technical Details of Continuous Variables	. 70
	3.11	Bayes' Rule	. 69
	3.10	Useful Properties of Common Functions	. 66
	3.9	Common Probability Distributions	. 61
	3.8	Expectation, Variance and Covariance	
	3.7	Independence and Conditional Independence	
	3.6	The Chain Rule of Conditional Probabilities	
	3.5	Conditional Probability	
	3.4	Marginal Probability	
	3.3	Probability Distributions	
	3.2	Random Variables	. 55

CONTENTS

	6.3	Hidden Units
	6.4	Architecture Design
	6.5	Back-Propagation and Other Differentiation Algorithms 203
	6.6	Historical Notes
7	Regu	ılarization for Deep Learning 228
	7.1	Parameter Norm Penalties
	7.2	Norm Penalties as Constrained Optimization
	7.3	Regularization and Under-Constrained Problems
	7.4	Dataset Augmentation
	7.5	Noise Robustness
	7.6	Semi-Supervised Learning
	7.7	Multi-Task Learning
	7.8	Early Stopping
	7.9	Parameter Tying and Parameter Sharing
	7.10	Sparse Representations
	7.11	Bagging and Other Ensemble Methods
	7.12	Dropout
	7.13	Adversarial Training
	7.14	Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 269
8	Opti	mization for Training Deep Models 275
ľ	8.1	How Learning Differs from Pure Optimization
	8.2	Challenges in Neural Network Optimization
	8.3	Basic Algorithms
	8.4	Parameter Initialization Strategies
	8.5	Algorithms with Adaptive Learning Rates
	8.6	Approximate Second-Order Methods
	8.7	Optimization Strategies and Meta-Algorithms
9	Con	volutional Networks 332
ľ	9.1	The Convolution Operation
	9.2	Motivation
	9.3	Pooling
	9.4	Convolution and Pooling as an Infinitely Strong Prior 347
	9.5	Variants of the Basic Convolution Function
	9.6	Structured Outputs
	9.7	Data Types
	9.8	Efficient Convolution Algorithms
	9.9	Random or Unsupervised Features 364

	9.10	The Neuroscientific Basis for Convolutional Networks	366
	9.11	Convolutional Networks and the History of Deep Learning	372
10	Seque	ence Modeling: Recurrent and Recursive Nets	375
	10.1	Unfolding Computational Graphs	376
	10.2	Recurrent Neural Networks	380
	10.3	Bidirectional RNNs	396
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures	398
	10.5	Deep Recurrent Networks	400
	10.6	Recursive Neural Networks	402
	10.7	The Challenge of Long-Term Dependencies	403
	10.8	Echo State Networks	406
	10.9	Skip Connections through Time	408
	10.10	Leaky Units and a Spectrum of Different Time Scales	409
		The Long Short-Term Memory and Other Gated RNNs	
		Optimization for Long-Term Dependencies	
		Regularizing to Encourage Information Flow	
		Organizing the State at Multiple Time Scales	
		Explicit Memory	
11	Pract	tical methodology	423
	11.1	Performance Metrics	424
	11.2	Default Baseline Models	427
	11.3	Determining Whether to Gather More Data	428
	11.4	Selecting Hyperparameters	
	11.5	Debugging Strategies	
	11.6	Example: Multi-Digit Number Recognition	
12	Appl	ications	445
	12.1	Large Scale Deep Learning	445
	12.2	Computer Vision	
	12.3	Speech Recognition	460
	12.4	Natural Language Processing	462
	12.5	Other Applications	478
III	Dee	ep Learning Research	487
_			
13	Linea	r Factor Models	490

_			
	13.2	Independent Component Analysis (ICA)	492
	13.3	Slow Feature Analysis	495
	13.4	Sparse Coding	
	13.5	Manifold Interpretation of PCA	500
14	Auto	pencoders	503
	14.1	Undercomplete Autoencoders	503
	14.2	Regularized Autoencoders	
	14.3	Representational Power, Layer Size and Depth	
	14.4	Stochastic Encoders and Decoders	
	14.5	Denoising Autoencoders	
	14.6	Learning Manifolds with Autoencoders	
	14.7	Contractive Autoencoders	
	14.8	Predictive Sparse Decomposition	
	14.9	Applications of Autoencoders	
15	Repr	resentation Learning	527
	15.1	Greedy Layer-Wise Unsupervised Pretraining	
	15.2	Transfer Learning and Domain Adaptation	
	15.3	Semi-Supervised Disentangling of Causal Factors	
	15.4	Distributed Representation	
	15.5	Exponential Gains from Depth	
	15.6	What is a Good Representation?	
16	Stru	ctured Probabilistic Models for Deep Learning	560
	16.1	The Challenge of Unstructured Modeling	561
	16.2	Using Graphs to Describe Model Structure	
	16.3	Sampling from Graphical Models	
	16.4	Advantages of Structured Modeling	583
	16.5	Learning about Dependencies	
	16.6	Inference and Approximate Inference	
	16.7	The Deep Learning Approach to Structured Probabilistic Models	586
17	Mon	te Carlo Methods	592
	17.1	Sampling and Monte Carlo Methods	592
	17.2	Markov Chain Monte Carlo Methods	
	17.3	Gibbs Sampling	
	17.4	The Challenge of Mixing between Separated Modes	
l			

18	Conf	ronting the Partition Function	608
	18.1	The Log-Likelihood Gradient of Undirected Models	609
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	611
	18.3	Pseudolikelihood	619
	18.4	Score Matching and Ratio Matching	621
	18.5	Denoising Score Matching	623
	18.6	Noise-Contrastive Estimation	624
	18.7	Estimating the Partition Function	627
19	Appr	roximate inference	635
	19.1	Inference as Optimization	637
	19.2	Expectation Maximization	638
	19.3	MAP Inference and Sparse Coding	
	19.4	Variational Inference and Learning	642
	19.5	Learned Approximate Inference	655
20	Deep	Generative Models	658
	20.1	Boltzmann Machines	658
	20.2	Restricted Boltzmann Machines	- 1
	20.3	Deep Belief Networks	- 1
	20.4	Deep Boltzmann Machines	
	20.5	Boltzmann Machines for Real-Valued Data	
	20.6	Convolutional Boltzmann Machines	691
	20.7	Boltzmann Machines for Structured or Sequential Outputs	693
	20.8	Other Boltzmann Machines	
	20.9	Back-Propagation through Random Operations	696
	20.10	Directed Generative Nets	
	20.11	Auto-Regressive Networks	714
		Drawing Samples from Autoencoders	- 1
	20.13	Generative Stochastic Networks	723
		Other Generation Schemes	
	20.15	Evaluating Generative Models	726
		Conclusion	
Bil	oliogra	aphy	730
Inc	\mathbf{dex}		783
			- 1

Website	
www.deeplearningbook.org	
This hook is accompanied by the above website. The website provides of	
This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.	
vii	