Polynomial Basis

1 Reducing Perceptron-Not-Through-Origin to Perceptron-Through-Origin

As promised earlier, the problem of perceptron-not-through-origin can be reduced to the problem of perceptron-through-origin. The key lies in transforming the dataset used from the \mathbb{R}^d space to a \mathbb{R}^D space when D > d.

Recall that the parameters of a separator not through the origin are $\theta = [\theta_1,...\theta_d]$ and θ_0 , a scalar. Say that these two parameters are taken to create a single one called θ_{new} : $\theta_{new} = [\theta_1,...\theta_d,\theta_0]$. θ_{new} is basically just θ with θ_0 put in as the last entry. Now, each x value vector in the dataset must also be modified. Say that $x_{new} = [x_1,...,x_d,1]$. x_{new} is basically just x with 1 put in as the last entry. $\theta_{new}^T x_{new} = \theta_1 x_1 + ... + \theta_d x_d + (1)\theta_0 = \theta_1 x_1 + ... + \theta_d x_d + \theta_0 = \theta^T x + \theta_0$. A classifier-not-through-origin in d dimensions can be turned into a classifier-through-origin in d+1 dimensions. Thus, even though the perceptron convergence theorem from before was only proved for perceptron through origin, transformation shows that the theorem also applies to perceptron-not-through-origin.

2 Polynomial Basis

The same concept can be applied to a dataset that is not linearly separable in d dimensions. By moving the dataset into d + 1, d + 2, or more generally,

d+n dimensions, one can make it linearly separable.

A systematic way of transforming data into higher dimensions exists. It is called polynomial basis.

order	in general
0	[1]
1	$[1, x_1, x_d]$
2	$[1, x_1, x_d, x_1^2, x_1 x_2,$ all two way products
3	$[1, x_1,x_d, x_1^2, x_1x_2,$ all two way products, $x_1^3,$ all three way products

For an example, take $[x_1,x_2]$. Using polynomial basis to transform it to the second degree yields $[1,x_1,x_2,x_1^2,x_1x_2,x^2]$.