

SOURCE DC 1 3V - 4.2V 10.0A max Suppl 1 1.77A TPS81088 SUPPL 2 1.77A TPS81230A EV. 2.0A LOAD_2 By TPS81230A

WEBENCH® Power Architect

Project Report

Project : 4653448/4 : PA_Project_303 (modified from 301)

Created: 2017-03-11 17:00:20.940 Optimize project optFactor=3

Project Summary

Total System Efficiency
 Total System BOM Count
 Total System BOM Count
 Total System Footprint
 Total System BOM Cost
 Total System BOM Cost
 Total System Power Dissipation
 970.6 mW

--> Launch WEBENCH Power Architect.

My Comments

No comments

Sequencer Flag Table

Supply	Sequencer Flag	Load	Load Name
SUPPLY_1	0	LOAD_1	Motors
SUPPLY_2	0	LOAD_2	5v

Power Supplies

#	Name	NSID	Description	Vout	lout	Efficiency	Foot- print	Cost	Design F	Page
1.	SUPPLY_1	TPS61088	Switcher: TPS61088 10-A Fully- Integrated Synchronous Boost Converter	6 V	2.0 A	94.9%	189	\$2.64	31	4
2.	SUPPLY_2	TPS61230A	Switcher : High Efficiency Boost Converter	5 V	1.0 A	93.9%	165	\$1.12	32	10

Power Loads

#	Name	VLoad	ILoad	Description
1.	Motors	6 V	2 A	VoutRipple=10%
2.	5v	5 V	1 A	

Project Diagram

Electrical Procurement BOM

Manufacturer	Part Number	Description	Quantity	Budgetary Price	Footprint (mm²)
AVX	08053C104KAT2A	0805	1	\$0.01	7
Kemet	C0201C560J3GACTU	0201	1	\$0.01	2
Kemet	C0603C100K3GACTU	0603	1	\$0.01	5
TDK	C3216X5R1A686M160AC	1206_190	1	\$0.47	11
Vishay-Dale	CRCW0402100KFKED	0402	1	\$0.01	3
Vishay-Dale	CRCW0402118KFKED	0402	1	\$0.01	3
Vishay-Dale	CRCW0402147KFKED	0402	1	\$0.01	3
Vishay-Dale	CRCW040222K1FKED	0402	1	\$0.01	3
Vishay-Dale	CRCW0402261KFKED	0402	1	\$0.01	3
Vishay-Dale	CRCW0402316KFKED	0402	1	\$0.01	3
MuRata	GRM033R71C122KA01D	0201	1	\$0.01	2
MuRata	GRM155R60J103KA01D	0402	1	\$0.01	3
MuRata	GRM155R60J104KA01D	0402	1	\$0.01	3
MuRata	GRM155R71C822KA01D	0402	1	\$0.01	3
MuRata	GRM188R61A105KA61D	0603	1	\$0.01	5
MuRata	GRM21BR60J226ME39L	0805	1	\$0.04	7
MuRata	GRM31CR61A226KE19L	1206_190	2	\$0.07	11
MuRata	GRM32ER61C476ME15L	1210_280	1	\$0.24	15
Yageo America	RC0603FR-07470KL	0603	1	\$0.01	5
Bourns	SRN8040-1R5Y	SRN8040	1	\$0.22	100
Texas Instruments	TPS61088RHLR	RHL0020A	1	\$1.60	25
Texas Instruments	TPS61230ARNSR	RNS0007A	1	\$0.68	9
TDK	VLP8040T-1R0N	VLP8040	1	\$0.22	113
Total			24	\$342 6409	9999999997

Vout = 6.0V lout = 2.0A

Device = TPS61088RHLR Topology = Boost Created = 3/11/17 5:00:19 PM BOM Cost = \$2.64 BOM Count = 15 Total Pd = 0.65W

WEBENCH® Design Report

Design: 4653448/31 TPS61088RHLR TPS61088RHLR 3.0V-4.2V to 6.00V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	MuRata	GRM033R71C122KA01D Series= X7R	Cap= 1.2 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
3.	Ccomp2	Kemet	C0201C560J3GACTU Series= C0G/NP0	Cap= 56.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
4.	Cin	TDK	C3216X5R1A686M160AC Series= X5R	Cap= 68.0 uF ESR= 3.494 mOhm VDC= 10.0 V IRMS= 3.8813 A	1	\$0.47	1206_190 11 mm ²
5.	Cin2	MuRata	GRM155R60J104KA01D Series= X5R	Cap= 100.0 nF VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
6.	Cout	MuRata	GRM32ER61C476ME15L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 16.0 V IRMS= 4.59346 A	1	\$0.24	1210_280 15 mm ²
7.	Css	MuRata	GRM155R71C822KA01D Series= X7R	Cap= 8.2 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
3.	Cvcc	MuRata	GRM188R61A105KA61D Series= X5R	Cap= 1.0 uF ESR= 6.065 mOhm VDC= 10.0 V IRMS= 1.30675 A	1	\$0.01	0603 5 mm ²
9.	L1	Bourns	SRN8040-1R5Y	L= 1.5 μH DCR= 11.0 mOhm	1	\$0.22	SRN8040 100 mm ²
10.	Rcomp	Vishay-Dale	CRCW040222K1FKED Series= CRCWe3	Res= 22.1 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
11. Rfbb	Vishay-Dale	CRCW0402118KFKED Series= CRCWe3	Res= 118.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
12. Rfbt	Yageo America	RC0603FR-07470KL Series= ?	Res= 470.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²
13. Rlim	Vishay-Dale	CRCW0402147KFKED Series= CRCWe3	Res= 147.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
14. Rt	Vishay-Dale	CRCW0402261KFKED Series= CRCWe3	Res= 261.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
15. U1	Texas Instruments	TPS61088RHLR	Switcher	1	\$1.60	RHL0020A 25 mm ²

Operating Values

_				
#	Name	Value	Category	Description
1.	Cin IRMS	501.34 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	2.094 A	Current	Output capacitor RMS ripple current
3.	IC lpk	4.994 A	Current	Peak switch current in IC
4.	lin Avg	4.215 A	Current	Average input current
5.	L lpp	1.737 A	Current	Peak-to-peak inductor ripple current
6.	BOM Count	15	General	Total Design BOM count
7.	FootPrint	189.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	595.681 kHz	General	Switching frequency
9.	Mode	BOOST CCM	General	PWM/PFM Mode
10.	Pout	12.0 W	General	Total output power
11.	Total BOM	\$2.64	General	Total BOM Cost
12.	Low Freq Gain	92.477 dB	Op_Point	Gain at 10Hz
13.	Vout Actual	6.0 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
14.	Cross Freq	26.508 kHz	Op_point	Bode plot crossover frequency
15.	Duty Cycle	51.726 %	Op_point	Duty cycle
16.	Efficiency	94.893 %	Op_point	Steady state efficiency
17.	Gain Marg	-11.3 dB	Op_point	Bode Plot Gain Margin
18.	IC Tj	47.135 degC	Op_point	IC junction temperature
19.	ICThetaJA	38.8 degC/W	Op_point	IC junction-to-ambient thermal resistance
20.	IOUT_OP	2.0 A	Op_point	lout operating point
21.	Phase Marg	57.343 deg	Op_point	Bode Plot Phase Margin
22.	VIN_OP	3.0 V	Op_point	Vin operating point
23.	Vout p-p	48.822 mV	Op_point	Peak-to-peak output ripple voltage
24.	Cin Pd	878.188 μW	Power	Input capacitor power dissipation
25.	Cout Pd	13.315 mW	Power	Output capacitor power dissipation
26.	Coutx Pd	0.0 W	Power	Output capacitor_x power loss
27.	IC Pd	441.637 mW	Power	IC power dissipation
28.	L Pd	189.976 mW	Power	Inductor power dissipation
29.	Total Pd	645.826 mW	Power	Total Power Dissipation
30.	Vout Tolerance	4.273 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	4.2	Maximum input voltage
3.	VinMin	3.0	Minimum input voltage
4.	Vout	6.0	Output Voltage
5.	base_pn	TPS61088	Base Product Number
6.	source	DC	Input Source Type
7.	Ta	30.0	Ambient temperature

Design Assistance

 $1. \ \textbf{TPS61088} \ \textbf{Product Folder: http://www.ti.com/product/TPS61088: contains the data sheet and other resources.}$

Vout = 5.0V Iout = 1.0A

Device = TPS61230ARNSR Topology = Boost Created = 3/11/17 5:00:20 PM BOM Cost = \$1.12 BOM Count = 9 Total Pd = 0.32W

WEBENCH® Design Report

Design: 4653448/32 TPS61230ARNSR TPS61230ARNSR 3.0V-4.2V to 5.00V @ 1.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	MuRata	GRM155R60J103KA01D Series= X5R	Cap= 10.0 nF VDC= 6.3 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
2.	Cff	Kemet	C0603C100K3GACTU Series= C0G/NP0	Cap= 10.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
3.	Cin	MuRata	GRM21BR60J226ME39L Series= X5R	Cap= 22.0 uF ESR= 9.0 mOhm VDC= 6.3 V IRMS= 3.5 A	1	\$0.04	0805 7 mm ²
4.	Cout	MuRata	GRM31CR61A226KE19L Series= X5R	Cap= 22.0 uF ESR= 3.637 mOhm VDC= 10.0 V IRMS= 3.56456 A	2	\$0.07	1206_190 11 mm ²
5.	L1	TDK	VLP8040T-1R0N	L= 1.0 μH DCR= 11.0 mOhm	1	\$0.22	VLP8040 113 mm ²
6.	Rfbb	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	Rfbt	Vishay-Dale	CRCW0402316KFKED Series= CRCWe3	Res= 316.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
8.	U1	Texas Instruments	TPS61230ARNSR	Switcher	1	\$0.68	RNS0007A 9 mm ²

Operating Values

-				
#	Name	Value	Category	Description
1.	Cin IRMS	310.869 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	870.087 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	2.239 A	Current	Peak switch current in IC
4.	lin Avg	1.775 A	Current	Average input current
5.	L lpp	1.077 A	Current	Peak-to-peak inductor ripple current
6.	BOM Count	9	General	Total Design BOM count
7.	FootPrint	165.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	1.125 MHz	General	Switching frequency
9.	Mode	BOOST PWM CCM	General	PWM/PFM Mode
10.	Pout	5.0 W	General	Total output power
11.	Total BOM	\$1.12	General	Total BOM Cost
12.	Vout Actual	4.971 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
13.	Duty Cycle	41.185 %	Op_point	Duty cycle
14.	Efficiency	93.9 %	Op_point	Steady state efficiency
15.	IC Tj	46.219 degC	Op_point	IC junction temperature
16.	ICThetaJA	56.0 degC/W	Op_point	IC junction-to-ambient thermal resistance
17.	IOUT_OP	1.0 A	Op_point	lout operating point
18.	VIN_OP	3.0 V	Op_point	Vin operating point
19.	Vout p-p	11.759 mV	Op_point	Peak-to-peak output ripple voltage
20.	Cin Pd	869.756 μW	Power	Input capacitor power dissipation
21.	Cout Pd	1.377 mW	Power	Output capacitor power dissipation
22.	IC Pd	289.629 mW	Power	IC power dissipation
23.	L Pd	32.862 mW	Power	Inductor power dissipation
24.	Total Pd	324.807 mW	Power	Total Power Dissipation
25.	Vout Tolerance	1.255 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	1.0	Maximum Output Current
2.	VinMax	4.2	Maximum input voltage
3.	VinMin	3.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS61230A	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

 $1. \ \textbf{TPS61230A} \ Product \ Folder: http://www.ti.com/product/TPS61230A: contains \ the \ data \ sheet \ and \ other \ resources.$

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.