Laboratorium 11

Identyfikacja obiektu regulacji

Janusz Pawlicki

1. Wstęp

Celem ćwiczenia jest identyfikacja parametrów modelu rzeczywistego obiektu regulacji. Obiekt rzeczywisty jest obiektem nieskończenie wymiarowym, ale dla celów sterowania może być opisany poniższymi modelami transmitancyjnymi:

A	$G(s) = \frac{ke^{-s\theta}}{Ts + 1}$	obiekt inercyjny I rzędu z opóźnieniem
В	$G(s) = \frac{ke^{-s\theta}}{(T_1s+1)(T_2s+1)}$	obiekt inercyjny II rzędu z opóźnieniem (aproksymacja Kupfmuellera)
C	$G(s) = \frac{k}{(Ts+1)^n}$	obiekt wieloinercyjny bez opóźnienia (aproksymacja Strejca)

Parametry modelu:

$$k, T, \theta$$
 (model A);

$$k, T_1, T_2, \theta$$
 (model B);

$$k, T, n \pmod{C}$$

2. Przebieg laboratorium

2.1 Model A

$$G(s) = \frac{ke^{-s\theta}}{Ts+1}$$

Metoda 2.1

Model_A_1

Metoda 2.4

[parametry_a, blad_a] = fminsearch('ident',[2,25.5,(25.5/4),7]);
Model_A_4

2.2 Model B

$$G(s) = \frac{ke^{-s\theta}}{(T_1s+1)(T_2s+1)}$$

Metoda 2.3

$$[x, y] = ginput(1)$$

x = 29.2396y = 1.5860

$$T3 = x/1.3 \% (T1 + T2)$$

T3 = 22.4920

$$T4 = T3/2$$

T4 = 11.2460

x1 = 10.5760y1 = 0.3965

```
% dla y 0.3615, T1/(T1 + T2) = 0.9
% T1/22.3857 = 0.9
T1 = 0.9 * T3
```

T1 = 20.2428

T2 = T3 - T1

T2 = 2.2492

Model_B_3

Metoda 2.4

```
[parametry_b, blad_b] = fminsearch('Identyfikacja_ModelB',[2,25.5,(25.5/4),7]);
Model_B_4
```


2.3 Model C

$$G(s) = \frac{k}{(Ts+1)^n}$$

% Dla n = 4
[parametry_c, blad_c] = fminsearch('Identyfikacja_ModelC',[2.155,16.2]);

Model_C_4

