Electrónica para IoT

Circuito Eléctrico

Se denomina circuito eléctrico al conjunto de elementos eléctricos conectados entre sí que permiten generar,transportar y utilizar la energía eléctrica con la finalidad de transformarla en otro tipo de energía como, por ejemplo, energía calorífica (estufa), energía lumínica (bombilla) o energía mecánica (motor). Los elementos utilizados para conseguirlo son los siguientes:

- Generador. Parte del circuito donde se produce la electricidad, manteniendo una diferencia de tensión entre sus extremos.
- Conductor. Hilo por donde circulan los electrones impulsados por el generador.
- Resistencias. Elementos del circuito que se oponen al paso de la corriente eléctrica
- Interruptor. Elemento que permite abrir o cerrar el paso de la corriente eléctrica. Si el interruptor está abierto no circulan los electrones, y si está cerrado permite su paso.

Componentes básicos

Los componentes electrónicos son partes fundamentales de un circuito eléctrico, de estos depende el buen funcionamiento del circuito y le dan la lógica de funcionamiento.

Uso del protoboard

El protoboard es una placa de prueba donde poder realizar nuestros prototipos, la lógica de funcionamiento es la siguiente:

Circuito electrónica en un protoboard, donde se respetan los puntos de conexión.

Circuitos Básicos con la NodeMCU

Blink Led

Empezaremos conectando un led, para poder probar el funcionamiento de la tarjeta, recordar que también la nodemcu cuenta con 1 led integrado GPIO16.

Esquema

Tuniot

```
Main loop

DigitalWrite PIN# D1 STAT HIGH

Delay Ms 1000

DigitalWrite PIN# D1 STAT LOW

Delay Ms 1000

Diagrama de bloques de la programación.
```

Arduino

```
blink | Arduino 1.8.3
                                                                    <u>F</u>ile <u>E</u>dit <u>S</u>ketch <u>T</u>ools <u>H</u>elp
                  Verify
  blink
    //GPI05 --> D1
 3 void setup()
 4⊟{
 5
      pinMode(5, OUTPUT);
 8 void loop()
 9⊟{
         digitalWrite(5,HIGH);
10
         delay (1000);
11
         digitalWrite(5,LOW);
12
         delay (1000);
13
14 }
                      Código exportado de TUNIOT.
```

DHT11

Los sensores de la familia DHT. Nos proporcionan de forma digital la temperatura y la humedad, con diferente precisión según el modelo. Básicamente hay dos variantes DHT11 y DHT22.

las características del DHT11 son:

- Muy barato, sobre 2€
- Funciona con 3,3 y 5V de alimentación
- Rango de temperatura: de 0º a 50º con 5% de precisión (pero solo mide por grados, no fracciones)
- Rango de humedad: de 20% al 80% con 5% de precisión
- 1 Muestra por segundo (No es el más rápido del oeste)
- Bajo consumo
- Devuelva la medida en °C

En cuanto al DHT22:

- Barato, entre 4 y 5 €
- Funciona con 3,3 y 5V de alimentación
- Rango de temperatura: de -40° a 125° ±0.5°C
- Rango de humedad: de 0% al 100% con 5% de precisión.
- Lee 2 veces por segundo.
- Bajo consumo.
- Devuelva la medida en °C

Esquema

El protocolo con el que transmite la data el dht11 se llama OneWire, es muy parecido al protocolo I2c, para este ejemplo lo conectaremos al D1.

TUNIOT


```
/dev/ttyUSB0
    // Generated with a lot of love//
// with TUNIOT FOR ESP8266 //
    // Website: Easycoding.tn
                                                                                               23.10
23.10
23.10
23.10
23.10
 //DHT dht5(5,DHT22);
DHT dht5(5,DHT11);
                                                                                               23.10
23.10
23.10
23.10
23.10
23.10
23.10
23.10
23.10
23.10
23.10
23.10
10
    void setup()
12⊟{
       Serial.begin(9600);
dht5.begin();
Serial.println("Empezamos");
13
17 }
18
19 void loop()
20⊟{
                                                                                                23.10
          Serial.println((dht5.readTemperature( )));
delay(2000);
21
                                                                                                23.10
22
23 }
                                                                                                23.10

✓ Autoscroll

                                 Data mostrandose en el monitor Serial.
```

OLED I2C

Pantalla LCD OLED Azul de 128×64, 0.96" con I2C 4 pines.

Especificaciones

Voltaje de operación:3 ~ 5 VCD

Comunicación: I2C
Driver IC: SSD1306
Angulo de visión: 160°
Tamaño pantalla:96"

Resolución: 128 x 64

Color: Azul

Temperatura de operación: -30 ~ 80 °C

Terminales

• VCC:3 ~ 5 VCD

• GND:Tierra

SCL: Serial ClockSDA: Serial Data

Información de la OLED I2C

Conexión

TUNIOT

```
Setup

SETUP OLED ADDRESS 0x3C SCK D1 SDA D2 SOLUTION SDA D2 S
```

Arduino

```
oled
   // Generated with a lot of love//
   // with TUNIOT FOR ESP8266
                              11
  // Website: Easycoding.tn
                              11
  #include <Wire.h>
 7
   #include "SSD1306.h"
 8
9
   SSD1306 display(0x3C, 4, 5);
10
   void setup()
11
12⊟{
     Serial.begin(9600);
13
14
     display.init();
15
     display.setTextAlignment(TEXT ALIGN LEFT);
16
     display.setFont(ArialMT_Plain_10);
17
18
     display.drawString(0, 0, "Hello World!");
19
     display display();
20
21
   }
22
23
         Código en arduino de la OLED con la nodemcu.
```