

Demostración

Como B es una base, se puede escribir \mathbf{v} de manera única como $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_n \mathbf{u}_n$. Entonces

$$\mathbf{v} \cdot \mathbf{u}_i = c_1(\mathbf{u}_1 \cdot \mathbf{u}_i) = c_2(\mathbf{u}_2 \cdot \mathbf{u}_i) + \cdots + c_i(\mathbf{u}_i \cdot \mathbf{u}_i) + \cdots + c_n(\mathbf{u}_n \cdot \mathbf{u}_i) = c_i$$

ya que los vectores \mathbf{u}_i son ortonormales. Como esto se cumple para i = 1, 2, ..., n, la demostración queda completa.

EJEMPLO 6.1.8 Expresión de un vector en términos de una base ortonormal

Escriba el vector
$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
 en \mathbb{R}^3 en términos de la base ortonormal $\left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}$

Antes de continuar, es necesario que una proyección ortogonal esté claramente definida, lo que significa que la definición de $\operatorname{proy}_H \mathbf{v}$ es independiente de la base ortonormal elegida en H. El siguiente teorema se hace cargo de este problema.

Teorema 6.1.5

Sea H un subespacio de \mathbb{R}^n . Suponga que H tiene dos bases ortonormales, $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ y $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$. Sea \mathbf{v} un vector en \mathbb{R}^n . Entonces

$$(\mathbf{v} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2) \mathbf{u}_2 + \dots + (\mathbf{v} \cdot \mathbf{u}_k) \mathbf{u}_k$$

= $(\mathbf{v} \cdot \mathbf{w}_1) \mathbf{w}_1 + (\mathbf{v} \cdot \mathbf{w}_2) \mathbf{w}_2 + \dots + (\mathbf{v} \cdot \mathbf{w}_k) \mathbf{w}_k$ (6.1.21)