DUE: 2022-03-28

Digital System Design 2022 Spring

- total 104 pts (8 pts each) = maximum 100 pts + 4 bonus pts
- Extension limit = { png , jpg , heic , zip , pdf }
- ▲ You must hand your answer in at the board before due time (2022-03-28 11:00 AM KST).

The problems start from the next page.

Name

Student ID

20210774 8 digits

1. List the octal and hexadecimal numbers from 50_{10} to 64_{10} . Using A, B, C, and D for the last four digits, list the numbers from 11_{10} to 30_{10} in base 14.

$$8 \underbrace{150}_{6} \cdot \cdot \cdot 2 \implies 62$$

$$\frac{16(50..2}{3..3} \Rightarrow 32$$

< dectmal>	<octal></octal>	<hexadecimal></hexadecimal>
50	62	32
<u></u> 5(63	33
52	64	34
53	65	35
54	66	36
55	67	31
56	70	38
57	71	3 9
58	72	3A
59	13	3в
60	14	зC
61	15	30
62	16	3 <i>€</i>
63	77	35
64	100	40

•		
:0~9,	A.B.	C. D
	1011	12 13

< dectmal>	<base 14=""/>
	В
12	С
13	D
14	10
15	11
16	12
17	13
	14
19	15
20	16
21	17
22	18
23	19
24	/A
25	IB
26	1C
2)	ID
28	20
29	21
30	22

2. Convert the following numbers with the <u>indicated bases to decimal</u>: (4pts each)

(a)
$$(9922)_{14}$$

(b)
$$(248)_9$$

(b)
$$8x1 + 4x9 + 2x9^2 = (206)_{10}$$

3. What is the largest binary number that can be expressed with 12 bits? What are the equivalent decimal, octal, and hexadecimal numbers?

$$\frac{1}{2-1} = \frac{1096}{100} = \frac{1}{2}$$

$$\therefore || decimal = || (4095)||_{10}$$

octal:
$$[1]$$
 $[1]$ $[1]$ $[1]$ $[1]$ = 7.777 $[...octal $\Rightarrow (7777)_8$]$

hexadecimal: |||| |||| = FFF : hexadecimal = (FFF)₁₆

$$2^3+2^2+2^1+2^0$$

= $8+4+2+1=15=7$

- 4. Determine the base of the numbers in each case for the following operations to be correct: (4pts each)
 - (a) $12 \times 4 = 52$
 - (b) 123 + 120 = 303
 - (a) 12 <u>× 4</u> 인 경우라고 불수 있다. 2×4는 함께 8이지만 12가 된 것으로 받아서 base가 6분 52 발 있다. (:: 6×1+1×2=&) -: 6
 - (b) 123 +120 1294 2+2=4012112 baset 4004. (:4x1+1x0=4) 303

5. Convert the decimal number 253 to binary in two ways: (a) convert directly to binary; (b) convert <u>first to hexadecimal</u> and then <u>from hexadecimal to binary</u>. Which method is faster?

(a)
$$2[253 \cdots 1]$$
 $2[26 \cdots 0]$
 $2[63 \cdots 1]$
 $2[15 \cdots 1]$
 $2[15 \cdots 1]$
 $2[7 \cdots 1]$
 $2[3 \cdots 1]$

(b)
$$16[253..13] \rightarrow (FD)_{16} \rightarrow (11111101)_{2}$$
 FD

6. Express the following numbers in decimal. (4pts each)

(a)
$$(51DE.C)_{16}$$

T 1514

(b) (110011.001)₂

(a)
$$5x \cdot 6^3 + 1x \cdot 16^2 + 13x \cdot 16 + 14x \cdot 1 + 12x \cdot 16^{-1} = (20958.75)_{10}$$

(b)
$$2^{5} + 2^{4} + 2^{1} + 1 + 2^{-3} = (51.125)_{10}$$

7. Represent the decimal number 6,428 in (a) BCD, (b) excess-3 code, (c) 2421 code, and (d) 6311 code. (2pts each)

(a)
$$BCD - 6:0110$$
4:0100
2:0010
8:1000

8. Simplify the following Boolean expressions to a minimum number of literals: (4pts each)

(a)
$$(a + b + c')(a'b' + c)$$

(b) a'bc + abc' + abc + a'bc'

(a)
$$(\underline{a+b}+c')(\underline{a'b'}+c) = \underline{(a+b)c+a'b'c'}$$

Consensus
theorem

(b)
$$a'bc+abc'+abc+a'bc'=bc(a+a')+bc'(a+a')=b(c+c')=b$$

9. <u>Draw logic diagrams of the circuits</u> that implement the original and simplified expressions in Problem 8 (a) and (b). (4pts each)

10. Find the complement of the following expressions: (4pts each)

(a)
$$(x + y')(y + z')(z + x')$$

(b)
$$w'x' + w(x + y + z)$$

(a)
$$f(x+y')(y+z')(z+x')'y'$$

= $(x+y')' + (y+z')' + (z+x')' = x'y + y'z + z'x$

(b)
$$\forall \omega' x' + \omega(x+y+z)y' = (\omega + x)\{\omega(x+y+z)y' = (\omega + x)(\omega' + x'y'z')'\}$$

$$= (\omega + x)(\omega' + x'y'z')$$

$$= (\omega + x)(\omega' + x'z')$$

$$= (\omega$$

11. List the truth table of the function: (4pts each)

(a)
$$F = x'z' + xy + yz$$

(b)
$$F = a'b'c' + a'bc + ab'c' + abc$$

(a)
$$F = x'z' + xy + yz$$

X	4	7	×′	2'	X'Z'	хy	y z	X'Z'+XY+gZ
0	> 0	0	1		1	0	0	/
0	0	/	/	0	6	0	0	0
0	/	0	1	1	1	0	0	1
Ó	/	/	/	0	0	0	1	/
/	0	0	0	1	0	0	0	0
1	D	1	0	0	D	D	0	0
/	/	0	0	1	D	/	0	/
/	1	1	Ø	0	0	1	1	/

(b)
$$F = \alpha'b'c' + \alpha'bc + \alpha bc' + \alpha bc$$

L	0\	b	С	o ′	b'	c′	ablc'	a'bc	ab'c'	abc	a'b'c'+a'bc+ab'c'+abc
	0	0	0	1	/	/	/	0	0	0	/
	0	0	/	/	/	D	0	0	O	0	0
	0	/	0	/	0	1	0	0	0	O	0
	Ó	/	/	/	0	0	D	/	0	0	1
Ī	/	0	0	0	/	1	0	0	/	0	/
	1	D	/	0	1	0	D	0	0	D	0
	/	/	0	0	0	/	0	0	0	0	0
	/	(1	O	b	0	0	0	0	/	/

12. Draw logic diagrams to implement the following Boolean expressions: (4pts each)

(a)
$$F = u + yz + uxy$$

(b)
$$F = u + x + x'(u + y')$$

13. Implement the Boolean function F = x'y + xy' + xz

- (a) With NAND and inverter gates. (4pts) ⇒ NAND, not
- (b) With NOR and inverter gates. (4pts) → MOR, not

(a)
$$F = x'y + xy' + x \neq x$$

(b)
$$x'y+xy'+xz=((x'y+xy'+xz)'y'=((x+y')(x'+y)(x'+z')y')$$

