Important probability distribu-	Likelihood:	Loglikelihood:	$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	Cov(X,Y) = Cov(Y,X)
Binomial Parameters <i>p</i> and <i>n</i> , discrete. Describes the number of successes in n independent	$p_X(x) = \prod_{j=1}^n p_j^{T_j}$, where $T^j = \mathbb{1}(X_i = j)$ is the count how often an outcome is seen in trials.	$\ell_n(\lambda) = n ln(\lambda) - \lambda \sum_{i=1}^n (X_i)$ MLE:	Canonical exponential form: Gaussians are invariant under affine	$Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_d^2) = 2d$	Covariance with of r.v. with itself is variance:
dent Bernoulli trials.	Loglikelihood: $\ell_n = \sum_{j=2}^{n} T_j \ln(p_j)$	$\hat{\lambda}_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$	transformation: $aX + b \sim N(X + b, a^2\sigma^2)$	Student's T Distribution $T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z and V are independent	$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$
$\mathbb{E}[X] = np$	Poisson	Fisher Information:	Sum of independent gaussians:	Expectation Total expectation theorem:	Useful properties:
Var(X) = np(1-p)	Parameter λ . discrete, approximates the binomial PMF when n is large, p is small,	$I(\lambda) = \frac{1}{\lambda^2}$ Canonical exponential form:	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$	$\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X Y = y] dy$	Cov(aX + h, bY + c) = abCov(X, Y)
Likelihood:	and $\lambda = np$.	$f_{\theta}(y) = \exp(y\theta - (-\ln(-\theta)) + 0)$	If $Y = X + Z$, then $Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$	Law of iterated expectation:	Cov(X, X + Y) = Var(X) + cov(X, Y)
$\begin{split} L_n(X_1,\dots,X_n,\theta) &= \\ &= \left(\prod_{i=1}^n {X_i \choose X_i}\right) \theta^{\sum_{i=1}^n X_i} (1-\theta)^{nK-\sum_{i=1}^n X_i} \end{split}$	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda)\frac{\lambda^{k}}{k!}$ for $k = 0, 1,,$	$b(\theta)$ $c(y,\phi)$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y X]]$	Cov(aX+bY,Z) = aCov(X,Z)+bCov(Y,Z)
$-\left(\prod_{i=1}^{n} \left(\chi_{i}^{n}\right)\right)^{O} - 1 - \left(\prod_{i=0}^{n} \left$	$\mathbb{E}[X] = \lambda$	$\theta = -\lambda = -\frac{1}{\mu}$	Symmetry: If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	Product of dependent r.vs <i>X</i> and <i>Y</i> :	
$\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta +$	$Var(X) = \lambda$	$\phi = 1$ Shifted Exponential	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$ $\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	$\mathbb{E}[X\cdot Y]\neq \mathbb{E}[X]\cdot \mathbb{E}[Y]$	If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are independent their Covariance in Theorem
	Likelihood: $L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}$	Parameters $\lambda, a \in \mathbb{R}$, continuous $\lambda = \lambda \exp(-\lambda(x-a))$, $\lambda = \lambda \exp(-\lambda(x-a))$	Standardization:	$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	dent, their Covariance is zero. The converse is not always true. It is only true if <i>X</i> and <i>Y</i> form a gaussian vector, ie. any
MLE:	Loglikelihood:	$f_X(x) = \begin{cases} 0, & x <= a \end{cases}$	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	Linearity of Expectation where a and c are given scalars:	linear combination $\alpha X + \beta Y$ is gaussian for all $(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$.
Fisher Information:	$\ell_n(\lambda) = \\ = -n\lambda + \log(\lambda)(\sum_{i=1}^n x_i)) - \log(\prod_{i=1}^n x_i!)$	$F_X(x) = \begin{cases} 1 - exp(-\lambda(x-a)), & if \ x >= a \\ 0, & x <= a \end{cases}$	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t - \mu}{\sigma}\right)$	$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	correlation coefficient
$I(p) = \frac{n}{p(1-p)}$	MLE:	$\mathbb{E}[X] = a + \frac{1}{\lambda}$	Higher moments: $\mathbb{E}[Y^2] = u^2 + \sigma^2$	If Variance of <i>X</i> is known:	$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$
Canonical exponential form:	$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	$Var(X) = \frac{1}{\lambda^2}$	$\begin{split} \mathbb{E}[X^2] &= \mu^2 + \sigma^2 \\ \mathbb{E}[X^3] &= \mu^3 + 3\mu\sigma^2 \\ \mathbb{E}[X^4] &= \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 \end{split}$	$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]^2$	$\sqrt{Var(XVar(Y))}$
$f_p(y) = exp(y(\ln(p) - \ln(1-p)) + n\ln(1-p) + \ln(\binom{n}{y})))$	Fisher Information:	Likelihood:	Quantiles:	Variance	Covariance Matrix
θ $-b(\theta)$ $c(y,\phi)$	$I(\lambda) = \frac{1}{\lambda}$	$\begin{array}{ll} L(X_1 \dots X_n; \lambda, \theta) &= \\ \lambda^n \exp \left(-\lambda \sum_{i=1}^n (X_i - a) \right) 1_{\min_{i=1, \dots, n} (X_i) \geq a}. \end{array}$	Uniform	Variance is the squared distance from the mean.	Let <i>X</i> be a random vector of dimension $d \times 1$ with expectation μ_X .
Geometric Number of <i>T</i> trials up to (and including)	Canonical exponential form:	Loglikelihood:	Parameters a and b , continuous. $\mathbf{f_x}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ & \text{or } w \end{cases}$	$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	Matrix outer products!
the first success. $p_T(t) = (1-p)^{t-1}, t = 1, 2,$	$f_{\theta}(y) = \exp\left(y\theta - \underbrace{e^{\theta} - \ln y!}_{b(\theta)}\right)$	$\begin{split} &\ell(\lambda,a) := n \ln \lambda - \lambda \sum_{i=1}^n X_i + n \lambda a \\ &\text{MLE:} \\ &\hat{\lambda}_{MLE} = \frac{1}{\overline{X}_n - \hat{a}} \end{split}$	(0, 0.w.	Variance of a product with constant <i>a</i> :	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T]$
$\mathbb{E}[T] = \frac{1}{p}$ $var(T) = \frac{1-p}{p^2}$	$\theta = \ln \lambda$ $\phi = 1$	$\lambda_{MLE} - \overline{\overline{X}_{n} - \hat{a}}$ $\hat{a}_{MLE} = \min_{i=1,\dots,n}(X_i)$	$\mathbf{F}_{\mathbf{x}}(x) = \begin{cases} 0, & forx \le a \\ \frac{x-a}{b-a}, & x \in [a,b) \end{cases}$	$Var(aX) = a^2 Var(X)$	$= \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T$ = $\mathbb{E}[XX^T] - \mu_X \mu_X^T$
Pascal	Poisson process:	Univariate Gaussians	$\begin{cases} 1, & x \ge b \\ \mathbb{E}[X] = \frac{a+b}{2} \end{cases}$	Variance of sum of two dependent r.v.:	Statistical models
tion is a generalization of the geometric	k arrivals in t slots $\mathbf{p}_{\mathbf{x}}(k,t) = \mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k}$	Parameters μ and $\sigma^2 > 0$, continuous $f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	$Var(X) = \frac{(b-a)^2}{12}$	Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)	
distribution. It relates to the random ex- periment of repeated independent trials	$\mathbb{E}[N_t] = \lambda t$	$\mathbb{E}[X] = \mu$ $Var(X) = \sigma^2$	Likelihood: $L(x_1 x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$	Variance of sum/difference of two independent r.v.:	$E, \{P_{\theta}\}_{\theta \in \Theta}$
until observing m successes. I.e. the time of the kth arrival. $Y_k = T_1 + T_k$	$Var(N_t) = \lambda t$	CDF of standard gaussian:	$L(x_1 x_n; \theta) = \frac{1}{b^n}$ Loglikelihood:	Var(X + Y) = Var(X) + Var(Y)	<i>E</i> is a sample space for <i>X</i> i.e. a set that contains all possible outcomes of <i>X</i>
$T_i \sim iidGeometric(p)$	Exponential Parameter λ , continuous	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$	Cauchy	Var(X - Y) = Var(X) + Var(Y)	$\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on E .
$\mathbb{E}[Y_k] = \frac{k}{p}$	$f_X(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$	Likelihood:	continuous, parameter m , $f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$	Covariance The Covariance is a measure of how	Θ is a parameter set, i.e. a set consisting of some possible values of Θ . θ is the true parameter and unknown.
$Var(Y_k) = \frac{k(1-p)}{p^2}$	$P(X > a) = exp(-\lambda a)$	$L(x_1X_n; \mu, \sigma^2) =$ $= \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$	$\mathbb{E}[X] = notdefined!$	much the values of each of two correla- ted random variables determine each	In a parametric model we assume that $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$.
$p_{Y_k}(t) = {t-1 \choose k-1} p^k (1-p)^{t-k}$	$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$	$ \left(\sigma \sqrt{2\pi} \right)^n \stackrel{\text{c.p.}}{=} \left(2\sigma^2 \stackrel{\text{c.p.}}{=} 1^{(N_1 - P_1)} \right) $ Loglikelihood:	Var(X) = notdefined!	other	Identifiability
$t = k, k + 1, \dots$ Multinomial	$\mathbb{E}[X] = \frac{1}{1}$	$\ell_n(\mu, \sigma^2) =$	med(X) = P(X > M) = P(X < M) = 1/2 = $\int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	$Cov(X,Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$	
Parameters $n > 0$ and p_1, \ldots, p_r .	$\mathbb{E}[X^2] = \frac{2}{12}$	$=-nlog(\sigma\sqrt{2\pi})-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2$ MLE:	Chi squared The χ_d^2 distribution with d degrees of	$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	$\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$
$p_X(x) = \frac{n!}{x_1! \dots x_n!} p_1, \dots, p_r$ $\mathbb{E}[X_i] = n * p_i$	$Var(X) = \frac{\lambda^2}{\lambda^2}$	$\hat{\mu}_M LE = \overline{X}_n$	freedom is given by the distribution of	Possible notations: $Cov(X,Y) = \sigma(X,Y) = \sigma_{(X,Y)}$	$\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$
$E[X_i] = n * p_i$ $Var(X_i) = np_i(1 - p_i)$	Likelihood: $L(X_1X_n; \lambda) = \lambda^n \exp(-\lambda \sum_{i=1}^n X_i)$	$\widehat{\sigma^2}_M LE = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ Fisher Information:	$Z_1^2 + Z_2^2 + \dots + Z_d^2$, where $Z_1, \dots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0,1)$ If $V \sim \chi_k^2$:	$Cov(X, Y) = \sigma(X, Y) = \sigma_{(X,Y)}$ Covariance is commutative:	A Model is well specified if:
$r \approx (24) = np_1(1 - p_1)$	$\sum_{i=1}^{N_1 \dots N_{n_i}, N_i} - N \exp\left(-N \sum_{i=1}^{N_i} N_i\right)$	Tioner information.		Covariance is commutative.	$\exists \theta \; s.t. \; \mathbb{P} = \mathbb{P}_{\theta}$

Estimators

calculated with the data $(\overline{X_n}, max(X_i),$ An **estimator** $\hat{\theta}_n$ of θ is any statistic

A statistic is any measurable function

which does not depend on θ . Estimators are random variables if they

depend on the data (= realizations of random variables).

An estimator $\hat{\theta}_n$ is weakly consistent if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow[n\to\infty]{P} \mathbb{E}[g(X)]$. If the convergence is almost surely it is strongly consistent.

Asymptotic normality of an estimator:

$$\sqrt{(n)}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$$

 σ^2 is called the **Asymptotic Variance** of the estimator $\hat{\theta}_n$. In the case of the sample mean it is the same variance as as the single X_i .

If the estimator is a function of the sample mean the Delta Method is needed to compute the asymptotic variance. Asymptotic Variance ≠ Variance of an estimator.

Bias of an estimator:

$$Bias(\hat{\theta}_n) = \mathbb{E}[\hat{\theta_n}] - \theta$$

Ouadratic risk of an estimator

$$R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2]$$
$$= Bias^2 + Variance$$

LLN and CLT

Let $X_1,...,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for all i = 1, 2, ..., n and $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$. Law of large numbers:

$$\overline{X_n} \xrightarrow[n \to \infty]{P,a.s.} \mu$$

 $\frac{1}{n}\sum_{i=1}^{n}g(X_i)\xrightarrow{P,a.s.}\mathbb{E}[g(X)]$

Central Limit Theorem for Mean:

$$\sqrt(n) \frac{\overline{X_n} - \mu}{\sqrt(\sigma^2)} \xrightarrow[n \to \infty]{(d)} N(0, 1)$$

 $\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$

Central Limit Theorem for Sums:

 $\sum X_{i=1}^n \xrightarrow[n \to \infty]{(d)} N(n\mu, \sqrt{(n)}\sqrt{(\sigma^2)})$ $\frac{\sum X_{i=1}^{n} - n\mu}{\sqrt{(n)\sqrt{(\sigma^2)}}} \xrightarrow[n \to \infty]{(d)} N(0,1)$

Variance of the Mean:

$$Var(\overline{X_n}) = (\frac{\sigma^2}{n})^2 Var(X_1 + X_2, ..., X_n)$$
$$= \frac{\sigma^2}{n}$$

Expectation of the mean:

Expectation of the mean:
$$E[\overline{X_n}] = \frac{1}{n} E[X_1 + X_2, ..., X_n]$$
$$= \mu.$$
$$\hat{\theta}_n$$

Quantiles of a Distribution

Let α in (0,1). The quantile of order $1-\alpha$ of a random variable *X* is the number q_{α} such that:

$$\mathbb{P}\left(X\leq q_{\alpha}\right)=q_{\alpha}=1-\alpha$$

$$\mathbb{P}(X\geq q_{\alpha})=\alpha$$

$$F_{X}(q_{\alpha})=1-\alpha$$

$$F_{X}^{-1}(1-\alpha)=\alpha$$
 If the distribution is **standard normal**

$$\mathbb{P}(|X| > q_{\alpha}) = \alpha$$

$$= 2\Phi(q_{\alpha/2})$$

Use standardization if a gaussian has unknown mean and variance $X \sim N(\mu, \sigma^2)$ to get the quantiles by using Z-tables (standard normal tables).

$$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t-\mu}{\sigma}\right)$$
$$= \mathbf{\Phi}\left(\frac{t-\mu}{\sigma}\right)$$
$$Z = \frac{X-\mu}{\sigma} \sim N(0,1)$$
$$q_{\alpha} = \frac{t-\mu}{\sigma}$$

Confidence intervals

Confidence Intervals follow the form:

(statistic) ± (critical value)(estimated standard deviation of statistic)

Let $(E,(\mathbb{P}_{\theta})_{\theta\in\Theta})$ be a statistical model based on observations $X_1, ... X_n$ and assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$.

Non asymptotic confidence interval of level $1 - \alpha$ for θ :

Any random interval I, depending on the sample $X_1, ..., X_n$ but not at θ and such that:

 $\mathbb{P}_{\theta}[\mathcal{I}\ni\theta]\geq 1-\alpha,\ \forall\theta\in\Theta$ Confidence interval of asymptotic level

Any random interval I whose boundaries do not depend on θ and such that: $\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$

Two-sided asymptotic CI

Let $X_1, ..., X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A twosided CI is a function depending on \tilde{X} giving an upper and lower bound in which the estimated parameter lies $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probability $\mathbb{P}(\theta \in \mathcal{I}) \geq 1 - q_{\alpha}$ and conversely $\mathbb{P}(\theta \notin \mathcal{I}) \leq \alpha$

Since the estimator is a r.v. depending on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a mean $\mathbb{E}[\hat{\theta}_n]$. Since the CLT is valid for every distribution standardizing the distributions and massaging the expression yields an an asymptotic CI:

$$\mathcal{I} = [\hat{\theta}_n - \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}},$$
$$\hat{\theta}_n + \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}]$$

This expression depends on the real variance $Var(X_i)$ of the r.vs, the variance has to be estimated.

Three possible methods: plugin (use sample mean or empirical variance), solve (solve quadratic inequality), conservative (use the theoretical maximum of the variance). Sample Mean and Sample Variance

Let $X_1,...,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 \text{ for all } i = 1, 2, ..., n$ Sample Mean:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Sample Variance:

$$S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

= $\frac{1}{n} (\sum_{i=1}^n X_i^2) - \overline{X}_n^2$

Unbiased estimator of sample variance:

$$\tilde{S}_n = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2$$
$$= \frac{n}{n-1} S_n$$

Delta Method

To find the asymptotic CI if the estimator is a function of the mean. Goal is to find an expression that converges a function of the mean using the CLT. Let Z_n be a sequence of r.v. $\sqrt(n)(Z_n-\theta) \xrightarrow[n\to\infty]{(d)} N(0,\sigma^2)$ and let $g: R \longrightarrow R$ be continuously differentiable at θ , then:

$$\sqrt{n}(g(Z_n) - g(\theta)) \frac{(d)}{n \to \infty}$$

$$\mathcal{N}(0, \sigma'(\theta)^2 \sigma^2)$$

Example: let $X_1,...,X_n$ $exp(\lambda)$ where $\lambda >$ 0. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ denote the sample mean. By the CLT, we know that $\sqrt{n}\left(\overline{X}_n - \frac{1}{\lambda}\right) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$ for some value of σ^2 that depends on λ . If we set $g : \mathbb{R} \to \mathbb{R}$ and $x \mapsto 1/x$, then by the Delta method:

$$\sqrt{n} \left(g(\overline{X}_n) - g\left(\frac{1}{\lambda}\right) \right) \\
\xrightarrow{n \to \infty} N(0, g'(E[X])^2 \text{Var} X) \\
\xrightarrow{(d)} \sum_{n \to \infty} N(0, g'\left(\frac{1}{\lambda}\right)^2 \frac{1}{\lambda^2}) \\
\xrightarrow{(d)} \sum_{n \to \infty} N(0, \lambda^2)$$

Asymptotic Hypothesis tests

Two hypotheses (Θ_0 disjoint set from Θ_1): $\begin{cases} H_0 : \theta \epsilon \Theta_0 \end{cases}$. Goal is to reject H_0 $H_1: \theta \epsilon \Theta_1$ using a test statistic.

A test ψ has **level** α if $\alpha_{\psi}(\theta) \leq$ $\alpha, \forall \theta \in \Theta_0$. and asymptotic level α if $\lim_{n\to\infty} P_{\theta}(\psi=1) \leq \alpha$.

A hypothesis-test has the form

for some test statistic T_n and threshold $c \in \mathbb{R}$. Threshold c is usually $q_{\alpha/2}$ Rejection region:

 $\psi = \mathbf{1}\{T_n \ge c\}$

Region interval:

$$\psi = \mathbf{1}\{|T_n| - c > 0\}.$$

Where β_{1b} is the probability of making a Type2 Error and *inf* is the maximum. Two-sided test:

$$H_1: \theta \neq \Theta_0$$
$$\mathbf{1}(|T_n| > q_{\alpha/2})$$

One-sided tests:

$$H_1: \theta > \Theta_0$$

 $\mathbf{1}(T_n < -q_\alpha)H_1 : \theta < \Theta_0$
 $\mathbf{1}(T_n > q_\alpha)$

Test rejects null hypothesis $\psi = 1$ but it

is actually true $H_0 = TRUE$ also known as the level of a test. Type2 Error: Test does not reject null hypothesis

 $\psi = 0$ but alternative hypothesis is true $H_1 = TRUE$

Ouestion: is $p^* = 1/2$. $H_0: p^* = 1/2; H_1: p^* \neq 1/2$

$$T_n = \sqrt{n} \frac{|X_n - 0.5|}{\sqrt{0.5(1 - 0.5)}}$$

$$\psi_n = \mathbf{1} (T_n > q_{\alpha/2})$$

where $q_{\alpha/2}$ denotes the $q_{\alpha/2}$ quantile of a standard Gaussian, and α is determined by the required level of ψ . Note the absolute value in T_n for this two sided test.

Pivot:

Let T_n be a function of the random samples $X_1, ..., X_n, \theta$. Let $g(T_n)$ be a random variable whose distribution is the same for all θ . Then, g is called a pivotal quantity or a pivot. **Example:** let X be a random variable

with mean
$$\mu$$
 and variance σ^2 . Let $X_1, ..., X_n$ be iid samples of X . Then,
$$g_n \triangleq \frac{\overline{X_n} - \mu}{\sigma}$$

is a pivot with $\theta = \left[\mu \ \sigma^2\right]^T$ being the parameter vector (not the same set of paramaters that we use to define a statistical model).

P-Value

is the smallest (asymptotic) level α at which ψ_{α} rejects H_0 . It is random since it depends on the sample. It can also interpreted as the probability that the test-statistic T_n is realized given the null hypothesis.

The (asymptotic) p-value of a test ψ_{α}

If $pvalue \le \alpha$, H_0 is rejected by ψ_{α} at the (asymptotic) level α

The smaller the p-value, the more confidently one can reject H_0 . Left-tailed p-values: $pvalue = \mathbb{P}(X \le x|H_0)$

$$= \mathbf{P}(Z < T_{n,\theta_0}(\overline{X}_n)))$$

$$= \Phi(T_{n,\theta_0}(\overline{X}_n))$$

$$Z \sim \mathcal{N}(0,1)$$

Right-tailed p-values:

$$pvalue = \mathbb{P}(X \ge x|H_0)$$

Two-sided p-values: If asymptotic, create normalized T_n using parameters from H_0 . Then use T_n to get to probabilities. $pvalue = 2min\{\mathbb{P}(X \le x|H_0), \mathbb{P}(X \ge x|H_0)\}$

 $\mathbb{P}(|Z| > |T_{n,\theta_0}(\overline{X}_n)| = 2(1 - \Phi(T_n))$ $Z \sim N(0.1)$

Comparisons of two proportions

 $H_0: p_x = p_v; H_1: p_x \neq p_v$

Let $X_1,...,X_n \stackrel{iid}{\sim} Bern(p_x)$ and $Y_1, \dots, Y_n \stackrel{iid}{\sim} Bern(p_v)$ and be X independent of Y. $\hat{p}_x = 1/n \sum_{i=1}^n X_i$ and $\hat{p}_x = 1/n \sum_{i=1}^n Y_i$

To get the asymptotic Variance use multivariate Delta-method. Consider $\hat{p}_x - \hat{p}_y =$ $g(\hat{p}_x, \hat{p}_y); g(x, y) = x - y$, then $\sqrt{(n)}(g(\hat{p}_x,\hat{p}_y) - g(p_x - p_y))$ $N(0, \nabla g(p_x - p_v)^T \Sigma \nabla g(p_x - p_v))$

$$\Rightarrow N(0, p_x(1-px) + p_y(1-py))$$
Non-asymptotic Hypothesis

Non-asymptotic

Chi squared

The χ_d^2 distribution with d degrees of freedom is given by the distribution of $Z_1^2 + Z_2^2 + \dots + Z_d^2$, where $Z_1, \dots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0,1)$

$$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$$

 $Var(V) = Var(Z_1^2) + Var(Z_2^2) + ... +$ $Var(Z_d^2) = 2d$

Cochranes Theorem:

If $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$, then sample mean \overline{X}_n and the sample variance S_n are independent. The sum of squares of n variables follows a chi squared distribution with (n-1) degrees of freedom:

$$\frac{nS_n}{\sigma^2} \sim \chi_{n-1}^2$$

$$\frac{(n-1)3n}{\sigma^2} \sim \chi_{n-1}^2$$

If formula for unbiased sample variance

Student's T Test

is used:

Non-asymptotic hypothesis test for small samples (works on large samples too), data must be gaussian.

Student's T distribution with d degrees of freedom: $t_d := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi_{L}^{2}$ are independent. Student's T test (one sample + two-

sided): Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$ and suppose we want to test $H_0: \mu = \mu_0 = 0$ vs.

Test statistic follows Student's T distri-

$$T_n = \frac{Z}{S}$$

$$= \frac{\overline{X} - \mu}{\frac{\delta}{\sqrt{n}}}$$

$$= \frac{\sqrt{n} \frac{\overline{X}_n - \mu_0}{\sigma}}{\sqrt{\frac{\overline{S}_n}{\sigma^2}}}$$

$$\sim \frac{N(0.1)}{\sqrt{\frac{\chi_{n-1}^2}{n-1}}}$$

$$\sim t_{n-1}$$
Works bc. under H_0 the numera-

 $\frac{\tilde{S}_n}{\sigma^2} \sim \frac{1}{n-1} \chi_{n-1}^2$ are independent by Cochran's Theorem.

Student's T test at level α :

$$\psi_{\alpha} = \mathbf{1}\{|T_n| > q_{\alpha/2}(t_{n-1})\}$$
 Student's T test (one sample, one-

tor N(0,1) and the denominator

$$\psi_\alpha=\mathbf{1}\{T_n>q_\alpha(t_{n-1})\}$$

Student's T test (two samples, two-

Let $X_1,...,X_n \stackrel{iid}{\sim} N(\mu_X,\sigma_X^2)$ and $Y_1,...,Y_n \stackrel{iid}{\sim} N(\mu_Y,\sigma_Y^2)$, suppose we want to test $H_0: \mu_X = \mu_Y \text{ vs } H_1: \mu_X \neq \mu_Y$.

$$T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m}{\sqrt{\frac{\hat{\sigma^2}_X}{n} + \frac{\hat{\sigma^2}_Y}{m}}}$$

Welch-Satterthwaite formula:

When samples are different sizes we need to finde the Student's T distribution of: $T_{n,m} \sim t_N$

 $R_{ib} = \{T_n > c\}$

Power of the test:

$$\pi_{\psi} = \inf_{\theta \in \Theta_1} (1 - \beta_{\psi}(\theta))$$

$$\mathbf{1}(|T_n| > q_{\alpha/2})$$

$$1(T_n < -q_\alpha)H_1 \qquad : \theta < \Theta_0$$

$$1(T_n > q_\alpha)$$

Type1 Error:

Example: Let $X_1, ..., X_n \stackrel{i.i.d.}{\sim} Ber(p^*)$.

If asymptotic level α then we need to standardize the estimated parameter $\hat{p} = \overline{X}_n$ first.

$$T_n = \sqrt{n} \frac{\left| \overline{X}_n - 0.5 \right|}{\sqrt{0.5(1 - 0.5)}}$$

Calculate the degrees of freedom for t_N Kolmogorov-Smirnov test Kolmogorov-Lilliefors test QQ plots

$$N = \frac{\left(\frac{\sigma^2 X}{n} + \frac{\sigma^2 Y}{m}\right)^2}{\frac{\sigma^2 X}{n^2(n-1)} + \frac{\sigma^2 Y}{m^2(m-1)}} \ge \min(n, m)$$

$$\text{QQ plots}$$

$$\text{Heavier tails: below > above the diagonal.}$$

$$\text{Lighter tails: above > below the}$$

N should be rounded down.

Walds Test

using the fisher information $I(\widehat{\theta}_n^{MLE})$ as Let $X_1,...,X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$ for some true

Squared distance of $\widehat{\theta}_n^{MLE}$ to true θ_0

parameter $\theta^* \in \mathbb{R}^d$ and the maximum likelihood estimator $\widehat{\theta}_{n}^{MLE}$ for θ^{*} .

Test
$$H_0: \theta^* = \mathbf{0}$$
 vs $H_1: \theta^* \neq \mathbf{0}$
Under H_0 , the asymptotic normality of

the MLE $\widehat{\theta}_n^{MLE}$ implies that:

$$\left\|\sqrt{n}\mathcal{I}(\mathbf{0})^{1/2}(\widehat{\theta}_n^{MLE} - \mathbf{0})\right\|^2 \xrightarrow[n \to \infty]{(d)} \chi_d^2$$
Test statistic:

$T_n = n(\widehat{\theta}_n^{MLE} - \theta_0)^{\top} I(\widehat{\theta}_n^{MLE})(\widehat{\theta}_n^{MLE} - \theta_0)$

$$I_n = n(\theta_n^{n+2}) - \frac{1}{2}$$

$$\xrightarrow[n\to\infty]{(d)}\chi_d^2$$

Wald test of level α : $\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_A^2)\}\$

Parameter space $\Theta \subseteq \mathbb{R}^d$ and H_0 is that

parameters θ_{r+1} through θ_d have values θ_c^{r+1} through θ_d^c leaving the other r unspecified. That is:

 $H_0: (\theta_{r+1}, ..., \theta_d)^T = \theta_{r+1} \quad d = \theta_0$

Construct two estimators:

$$\widehat{\theta}_n^{MLE} = argmax_{\theta \in \Theta}(\ell_n(\theta))$$

$$\widehat{\theta}_n^c = argmax_{\theta \in \Theta_0}(\ell_n(\theta))$$

Test statistic:

 $T_n = 2(\ell(X_1, ... X_n | \widehat{\theta}_n^{MLE}) - \ell(X_1, ... X_n | \widehat{\theta}_n^c)))$ **Wilk's Theorem:** under H_0 , if the MLE conditions are satisfied:

$$T_n \xrightarrow[n \to \infty]{(d)} \chi^2_{d-r}$$

Likelihood ratio test at level α :

$\psi_{\alpha} = \mathbf{1}\{T_n > q_{\alpha}(\chi_{d-r}^2)\}\$

Implicit Testing

Goodness of Fit Discrete Distributions Let $X_1,...,X_n$ be iid samples from a categorical distribution. Test $H_0: p = p^0$ against $H_1: p \neq p^0$. Example: against the uniform distribution $p^0 = (1/K, ..., 1/K)^{\top}$.

Test statistic under H_0 :

Test at level alpha:

$$T_n = n \sum_{k=1}^K \frac{(\hat{p}_k - p_k^0)^2}{p_k^0} \xrightarrow[n \to \infty]{} \chi_{K-1}^2$$

Estimator of KL divergence:

evel alpha:
$$KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[\ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right]$$
$$\psi_{\alpha} = \mathbb{E} \{ T_n > q_{\alpha}(\chi_{K-1}^2) \} \qquad \widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^n \log(q_i)$$

Lighter tails: above > below the diagonal.

Right-skewed: above > below > above the diagonal. Left-skewed: below > above > below

the diagonal.

Distances between distributions Total variation distance The total variation distance TV between

the propability measures P and Q with a sample space *E* is defined as: $TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} |\mathbf{P}(A) - \mathbf{Q}(A)|,$ Calculation with f and g:

 $TV(\mathbf{P}, \mathbf{Q}) =$

$$\begin{cases} \frac{1}{2} \sum_{x \in E} |f(x) - g(x)|, \text{discr} \\ \frac{1}{2} \int_{x \in E} |f(x) - g(x)| dx, \text{cont} \end{cases}$$

 $TV(\mathbf{P}, \mathbf{Q}) + TV(\mathbf{Q}, \mathbf{V})$ If the support of **P** and **Q** is disjoint:

Definite: $TV(\mathbf{P}, \mathbf{O}) = 0 \iff \mathbf{P} = \mathbf{O}$

Symmetry: $TV(\mathbf{P}, \mathbf{Q}) = TV(\mathbf{Q}, \mathbf{P})$

Positive: $TV(\mathbf{P}, \mathbf{Q}) \ge 0$

$$TV(\mathbf{P}, \mathbf{V}) = 1$$

TV between continuous and discrete r.v:

$$TV(\mathbf{P},\mathbf{V})=1$$

KL divergence The KL divergence (aka relative entropy)

KL between between probability measures P and Q with the common sample space E and pmf/pdf functions f and gis defined as:

$$KL(\mathbf{P}, \mathbf{Q}) = (\nabla - \mathbf{p}(\mathbf{v})) \mathbf{p}(\mathbf{v})$$

$$\begin{cases} \sum_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right), & \text{discr} \\ \int_{x \in E} p(x) \ln \left(\frac{p(x)}{q(x)} \right) dx, & \text{cont} \end{cases}$$

The KL divergence is not a distance measure! Always sum over the support Asymetric in general: $KL(P,Q) \neq$

 $KL(\mathbf{Q}, \mathbf{P})$ Nonnegative: $KL(\mathbf{P}, \mathbf{O}) \ge 0$ Definite: if P = Q then KL(P, Q) = 0Does not satisfy triangle inequality in general: $KL(\mathbf{P}, \mathbf{V}) \leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$

Maximum likelihood estimation Let $\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical model as-

sociated with a sample of i.i.d. random variables X_1, X_2, \dots, X_n . Assume that there exists $\theta^* \in \Theta$ such that $X_i \sim \mathbf{P}_{\theta^*}$. The likelihood of the model is the product of the n samples of the pdf/pmf:

$$L_n(X_1, X_2, \dots, X_n, \theta) = \begin{cases} \prod_{i=1}^n p_{\theta}(x_i) & \text{if } E \text{ is discrete} \\ \prod_{i=1}^n f_{\theta}(x_i) & \text{if } E \text{ is continous} \end{cases}$$

is the (unique) θ that minimizes $\widehat{\mathrm{KL}}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$ over the parameter space. (The minimizer of the KL divergence is unique due to it being strictly convex in the space of distributions once is fixed.) $\widehat{\theta}_{n}^{MLE} = \operatorname{argmin}_{\theta \in \Theta} \widehat{KL}_{n} (\mathbf{P}_{\theta^{*}}, \mathbf{P}_{\theta})$

 $= \operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i)$

=
$$\operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_i) \right)$$

Since taking derivatives of products is hard but easy for sums and $exp()$ is very common in pdfs we usually take the log of the likelihood function before maximum.

Triangle inequality: $TV(\mathbf{P}, \mathbf{V}) \leq$ $=\sum_{i=1}^{n} ln(L_i(X_i,\theta))$

Cookbook: set up the likelihood functi-

solve for the parameter. discontinuity in the loglikelihood function. The maximum/minimum of the X_i is

Fisher Information

mizing it.

The Fisher information is the covaof the loglikelihood function.

of the distribution P_{θ} . Then, the Fisher

$$\begin{split} &\mathcal{I}(\theta) = Cov(\nabla \ell(\theta)) = \\ &= \mathbb{E}[\nabla \ell(\theta)) \nabla \ell(\theta)^T] - \mathbb{E}[\nabla \ell(\theta)] \mathbb{E}[\nabla \ell(\theta)] = \\ &= -\mathbb{E}[\mathbb{H}\ell(\theta)] \end{split}$$

a $d \times d$ matrix. The definition when the distribution has a pmf $p_{\theta}(\mathbf{x})$ is also the same, with the expectation taken with respect to the pmf.

Let $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous statistical model. Let $f_{\Theta}(x)$ denote the pdf (probability density function) of the continuous distribution P_{θ} . Assume that $f_{\Omega}(x)$ is twice-differentiable as a function of the parameter θ . Formula for the calculation of Fisher

Information of *X*:

$$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$$
Models with one parameter (ie. Bernul-

Models with multiple parameters (ie.

$$\mathcal{I}(\theta) = \mathsf{Var}(\ell'(\theta))$$

$$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$$

Gaussians): $\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$

Better to use 2nd derivative.

- · Find loglikelihood
- Take second derivative (=Hessian if multivariate)
- · Massage second derivative or Hessian (isolate functions of X_i to use with $-\mathbf{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)].$ • Find the expectation of the func-

tions of X_i and substitute them

- back into the Hessian or the second derivative. Be extra careful to subsitute the right power back. $\mathbb{E}[X_i] \neq \mathbb{E}[X_i^2]$.
- · Don't forget the minus sign!

Asymptotic normality of the maximum likelihood estimator Under certain conditions the MLE is

asymptotically normal and consistent. This applies even if the MLE is not the sample average. Let the true parameter $\theta^* \in \Theta$. Necessary assumptions:

- The parameter is identifiable • For all $\theta \in \Theta$, the support \mathbb{P}_{θ}
- does not depend on θ (e.g. like in $Unif(0,\theta)$); • θ^* is not on the boundary of Θ ;
- Fisher information $\mathcal{I}(\theta)$ is invertible in the neighborhood of θ^*
- · A few more technical conditions

The asymptotic variance of the MLE is the inverse of the fisher information. $\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$

Method of Moments

Let $X_1, ..., X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{P_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$,

for some $d \ge 1$ Population moments:

$$m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$$

Empirical moments:

$$\widehat{m_k}(\theta) = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Convergence of empirical moments:

$$m_k \xrightarrow[n \to \infty]{} m_k$$

 $(\widehat{m_1},\ldots,\widehat{m_d}) \xrightarrow[n \to \infty]{P,a.s.} (m_1,\ldots,m_d)$ MOM Estimator M is a map from the pa-

rameters of a model to the moments of

its distribution. This map is invertible,

(ie. it results into a system of equations that can be solved for the true parameter vector θ^*). Find the moments (as many as parameters), set up system of equations, solve for parameters, use empirical moments to estimate. where $I(\theta)$ is the Fisher information. This prior is invariant by reparamete- $\psi: \Theta \to \mathbb{R}^d$

$$M^{-1}(m_1(\theta^*), m_2(\theta^*), \dots, m_d(\theta^*))$$

 $\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$

The MOM estimator uses the empirical $M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2},...,\frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$ The change of parameter follows the following formula:

Assuming
$$M^{-1}$$
 is continuously differentiable at $M(0)$, the asymptotical variance of the MOM estimator is:

 $\sqrt{(n)}(\widehat{\theta_n^{MM}} - \theta) \xrightarrow{(d)} N(0,\Gamma)$

where,
$$(\theta)$$

$$\begin{bmatrix} \frac{\partial M^{-1}}{\partial \theta}(M(\theta)) \end{bmatrix}^T \Sigma(\theta) \begin{bmatrix} \frac{\partial M^{-1}}{\partial \theta}(M(\theta)) \end{bmatrix}$$

$$\Gamma(\theta) = \nabla_{\theta}(M^{-1})^T \Sigma \nabla_{\theta}(M^{-1})$$

 Σ_{θ} is the covariance matrix of the random vector of the moments $(X_1^1, X_1^2, ..., X_1^d).$

Bayesian Statistics

frequentist approach.

Bayesian inference conceptually amounts to weighting the likelihood $L_n(\theta)$ by a prior knowledge we might have on θ . Given a statistical model we technically model our parameter θ as if it were a random variable. We therefore define the prior distribution (PDF):

(MAP): Let $X_1,...,X_n$. We note $L_n(X_1,...,X_n|\theta)$ the joint probability distribution of $X_1,...,X_n$ conditioned on θ where $\theta \sim \pi$. This is exactly the likelihood from the The MAP is equivalent to the MLE, if the

Bayes' formula

. The posterior distribution verifies:

$$\forall \theta \in \Theta, \pi(\theta|X_1, ..., X_n) \propto$$
$$\pi(\theta)L_n(X_1, ..., X_n|\theta)$$

The constant is the normalization factor

tion, and does not depend on θ : $\pi(\theta|X_1,...,X_n) = \frac{\pi(\theta)L_n(X_1,...,X_n|\theta)}{\int_{\Omega} \pi(\theta)L_n(X_1,...,X_n|\theta)d\theta}$

to ensure the result is a proper distribu-

gives the likelihood as a posterior. Jeffreys Prior

and still get a proper posterior. For ex-

ample, the improper prior $\pi(\theta) = 1$ on Θ

$\pi_I(\theta) \propto \sqrt{detI(\theta)}$

rization, which means that if we have $\eta = \phi(\theta)$, then the same prior gives us a probability distribution for η verifying:

$$ilde{\pi}_{I}(\eta) \propto \sqrt{det} ilde{I}(\eta)$$

 $\tilde{\pi}_I(\eta) = det(\nabla \phi^{-1}(\eta)) \pi_I(\phi^{-1}(\eta))$

 $\mathcal{R} \subset \Theta$ depending on $X_1,...,X_n$ (and the prior π) such that: $P[\theta \in \mathcal{R}|X_1,...,X_n] \ge 1 - \alpha$

Let $\alpha \in (0,1)$. A *Bayesian confidence re-

gion with level α^* is a random subset

Bayesian confidence region and confidence interval are distinct notions. The Bayesian framework can be used to estimate the true underlying parameter. In that case, it is used to build a new class of estimators, based on the posterior distribution.

Bayes estimator

$$\hat{\theta}_{(\pi)} = \int_{\Theta} \theta \pi(\theta|X_1,...,X_n) d\theta$$
 Maximum a posteriori estimator

 $\hat{\theta}_{(\pi)}^{MAP} = argmax_{\theta \in \Theta} \pi(\theta | X_1, ..., X_n)$

$$\sigma(\pi) = m \operatorname{smax}_{\theta \in \Theta} \kappa(\sigma | X_1, ..., X_n)$$

prior is uniform.

$$KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[\ln \left(\frac{p_{\theta^*}}{p_{\theta}(X)} \right) \right]$$

$$\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$$

The maximum likelihood estimator

Since taking derivatives of products is hard but easy for sums and exp() is very common in pdfs we usually take the log

 $\ell((X_1, X_2, \dots, X_n, \theta)) = ln(L_n(X_1, X_2, \dots, X_n, \theta))$

on, take log of likelihood function. Take the partial derivative of the loglikelihood function wrt. the parameter(s) Set the partial derivative(s) to zero and If an indicator function on the pdf/pmf does not depend on the parameter, it can be ignored. If it depends on the parameter it can't be ignored because there is an

then the maximum likelihood estimator.

riance matrix of the gradient of the loglikelihood function. It is equal to the negative expectation of the Hessian of the loglikelihood function and captures the negative of the expected curvature

Let $\theta \in \Theta \subset \mathbb{R}^d$ and let $(E, \{P_\theta\}_{\theta \in \Theta})$ be a statistical model. Let $f_{\theta}(\mathbf{x})$ be the pdf information of the statistical model is.

Where $\ell(\theta) = \ln f_{\theta}(\mathbf{X})$. If $\nabla \ell(\theta) \in \mathbb{R}^d$ it is

OLS

Given two random variables X and Y, how can we predict the values of Y given Let us consider $(X_1, Y_1), \dots, (X_n, Y_n) \sim^{iid}$ P where P is an unknown joint distribu-

tion. P can be described entirely by: $g(X) = \int f(X, y) dy$

$$h(Y|X = x) = \frac{f(x, y)\mu y}{g(x)}$$

$$h(Y|X = x) = \frac{f(x, Y)}{g(x)}$$
where f is the joint PDF, g the marginal

density of X and h the conditional density. What we are interested in is h(Y|X). Regression function: For a partial description, we can consider instead the conditional expection of Y given X = x:

$$x \mapsto f(x) = \mathbb{E}[Y|X=x] = \int yh(y|x)dy$$

We can also consider different descriptions of the distribution, like the median,

quantiles or the variance. Linear regression: trying to fit any function to $\mathbb{E}[Y|X = x]$ is a nonparametric problem; therefore, we restrict the problem to the tractable one of linear func-

$$f: x \mapsto a + bx$$

Theoretical linear regression: let X, Ybe two random variables with two moments such as $\mathbb{V}[X] > 0$. The theoretical linear regression of Y on X is the line

 $a^* + b^*x$ where

 $(a^*, b^*) = \operatorname{argmin}_{(a,b) \in \mathbb{R}^2} \mathbb{E}[(Y - a - bX)^2]$

 $b^* = \frac{Cov(X,Y)}{\mathbb{V}[X]}, \quad a^* = \mathbb{E}[Y] - b^*\mathbb{E}[X]$ Noise: we model the noise of Y around the regression line by a random variable

$$\varepsilon = Y - a^* - b^* X$$
, such as:

$$\mathbb{E}[\varepsilon] = 0, \quad Cov(X, \varepsilon) = 0$$
 We have to estimate a^* and b^* from the data. We have n random pairs

 $(X_1, Y_1), ..., (X_n, Y_n) \sim_{iid} (X, Y)$ such as: $Y_i = a^* + b^* X_i + \varepsilon_i$

The Least Squares Estimator (LSE) of (a^*, b^*) is the minimizer of the squared

 $(\hat{a}_n, \hat{b}_n) = argmin_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - a - bX_i)^2$ that:

The estimators are given by:

 $\hat{b}_n = \frac{\overline{XY} - \overline{XY}}{\overline{XZ}}, \quad \hat{a}_n = \overline{Y} - \hat{b}_n \overline{X}$

space spanned by the columns of *X*:

* The design matrix X is deterministic and rank(X) = p. * The model is **homo-

is Gaussian: $\epsilon \sim N_n(0, \sigma^2 I_n)$.

We therefore have:

 $X\hat{\beta} = PY$ where $P = X(X^{T}X)^{-1}X^{T}$ is the expression of the projector. **Statistic inference**: let us suppose

The Multivariate Regression is given

 $Y_i = \sum_{j=1}^p X_i^{(j)} \beta_j^* + \varepsilon_i = \underbrace{X_i^\top}_{1 \times p} \underbrace{\beta^*}_{p \times 1} + \varepsilon_i$

We can assuming that the $X_{:}^{(1)}$ are 1 for

• If $\beta^* = (a^*, b^* \top)^\top$, $\beta_1^* = a^*$ is the

• the ε_i is the noise, satisfying

The Multivariate Least Squares Estima-

tor (LSE) of β^* is the minimizer of the

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - X_i^\top \beta)^2$

Matrix form: we can rewrite these ex-

pressions. Let $Y = (Y_1, ..., Y_n)^{\top} \in \mathbb{R}^n$, and

X is called the **design matrix**. The

 $Y = X\beta^* + \epsilon$

 $\hat{\beta} = argmin_{\beta \in \mathbb{R}^p} \|Y - X\beta\|_2^2$

Let us suppose $n \ge p$ and rank(X) = p. If

 $F(\beta) = ||Y - X\beta||_2^2 = (Y - X\beta)^{\top} (Y - X\beta)$

 $\nabla F(\beta) = 2X^{\top}(Y - X\beta)$

Least squares estimator: setting $\nabla F(\beta) =$

 $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$

Geometric interpretation: $X\hat{\beta}$ is the

orthogonal projection of Y onto the sub-

0 gives us the expression of $\hat{\beta}$:

 $Cov(X_i, \varepsilon_i) = 0$

sum of square errors:

 $\epsilon = (\varepsilon_1, \dots, \varepsilon_n)^{\top}$.

regression is given by:

and the LSE is given by:

we write:

the intercept.

scedastic**: $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. * The noise

 $\P_{H_0}\left[R_{\alpha}^{(S)}\right] \le \sum_{i \in S} \P_{H_0}\left[R_{\alpha/K}^{(j)}\right] = \alpha$ This test also works for implicit testing (for example, $\beta_1 \ge \beta_2$).

 $\hat{\beta} \sim N_n(\beta^*, \sigma^2(X^\top X)^{-1})$ The quadratic risk of $\hat{\beta}$ is given by:

 $\mathbb{E}\left[\|\hat{\beta} - \beta^*\|_2^2\right] = \sigma^2 Tr\left((X^\top X)^{-1}\right)$ The prediction error is given by:

 $Y \sim N_n(X\beta^*, \sigma^2 I_n)$

Properties of the LSE:

 $\mathbb{E}\left[\|Y - X\hat{\beta}\|_{2}^{2}\right] = \sigma^{2}(n-p)$

The unbiased estimator of σ^2 is:

 $\hat{\sigma^2} = \frac{1}{n-p} \|Y - X\hat{\beta}\|_2^2 = \frac{1}{n-p} \sum_{i=1}^n \hat{\varepsilon}_i^2$ By **Cochran's Theorem**:

 $(n-p)\frac{\hat{\sigma^2}}{2} \sim \chi_{n-p}^2, \quad \hat{\beta} \perp \hat{\sigma^2}$ **Significance test**: let us test $H_0: \beta_i =$ 0 against $H_1: \beta_i \neq 0$. Let us call

 $\gamma_i = ((X^T X)^{-1})_{i,i} > 0$

then:

test:

given by:

 $\frac{\beta_j - \beta_j}{\sqrt{\hat{\sigma}^2 \gamma_j}} \sim t_{n-p}$

We can define the test statistic for our

 $T_n^{(j)} = \frac{\beta_j}{\sqrt{\hat{\sigma}^2 \gamma_i}}$ The test with non-asymptotic level α is

 $\psi_{\alpha}^{(j)} = \mathbf{1}\{|T_n^{(j)}| > q_{\alpha/2}(t_{n-p})\}$

Bonferroni's test: if we want to test

the significance level of multiple tests at the same time, we cannot use the same level α for each of them. We must use

a stricter test for each of them. Let us consider $S \subseteq \{1, ..., p\}$. Let us consider $H_0: \forall j \in S, \beta_i = 0, \quad H_1: \exists j \in S, \beta_i \neq 0$ The *Bonferroni's test* with significance

level α is given by: $\psi_{\alpha}^{(S)} = \max_{j \in S} \psi_{\alpha/K}^{(j)}$

 $R_{\alpha}^{(S)} = \bigcup_{j \in S} R_{\alpha/K}^{(j)}$ This test has nonasymptotic level at most

where K = |S|. The rejection region there-

fore is the union of all rejection regions:

 $g(\mu(\mathbf{x})) = \mathbf{x}^T \boldsymbol{\beta}$ The function g is assumed to be known, and is referred to as the link function. It

Generalized Linear Models

for some function *g*:

and

We relax the assumption that μ is linear.

Instead, we assume that $g \circ \mu$ is linear,

Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)Variance of sum/difference of two maps the domain of the dependent vaindependent r.v.: riable to the entire real Line. Var(X + Y) = Var(X) + Var(Y)

it has to be strictly increasing, it has to be continuously differentiable

its range is all of R The Exponential Family A family of distribution $\{P_{\theta} : \theta \in \Theta\}$,

where the parameter space $\Theta \subset \mathbb{R}^k$ is

-k dimensional, is called a k-parameter exponential family on \mathbb{R}^1 if the pmf or pdf $f_{\theta}: \mathbb{R}^q \to \mathbb{R}$ of P_{θ} can be written in the form:

 $f_{\theta}(\mathbf{y})$ $h(\mathbf{y}) \exp (\boldsymbol{\eta}(\boldsymbol{\theta}) \cdot \mathbf{T}(\mathbf{y}) - B(\boldsymbol{\theta}))$ where $: \mathbb{R}^k \to \mathbb{R}^k$

 $(T_1(\mathbf{y}))$

 $: \mathbb{R}^k \to \mathbb{R}$ $B(\boldsymbol{\theta})$ $h(\mathbf{y})$ $: \mathbb{R}^q \to \mathbb{R}.$ if k = 1 it reduces to:

Expectation Total expectation theorem:

 $\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X|Y = y] dy$

Law of iterated expectation:

 $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$

 $f_{\theta}(y) = h(y) \exp(\eta(\theta)T(y) - B(\theta))$

Product of **dependent** r.vs *X* and *Y* : $\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$

 $\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X|Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X|Y]]$

Linearity of Expectation where a and c

If Variance of *X* is known:

 $\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]^2$

 $Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$

Variance

the mean.

are given scalars: $\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$

Variance is the squared distance from

Binomial

 $\mathbb{E}[X] = np$

Var(X) = np(1-p)

tions

Parameters p and n, discrete. Describes the number of successes in n independent Bernoulli trials.

 $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, \dots, n$

MLE: Fisher Information:

Variance of a product with constant a:

Variance of sum of two dependent r.v.:

ted random variables determine each

Var(X - Y) = Var(X) + Var(Y)

 $Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$

 $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

 $Cov(X, Y) = \sigma(X, Y) = \sigma_{(X, Y)}$

Covariance is commutative:

Covariance with of r.v. with itself is

 $Cov(X, X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$

Cov(aX + h.bY + c) = abCov(X, Y)

Cov(X, X + Y) = Var(X) + cov(X, Y)

Cov(aX+bY,Z) = aCov(X,Z)+bCov(Y,Z)

If Cov(X, Y) = 0, we say that X and Y are

uncorrelated. If X and Y are indepen-

verse is not always true. It is only true if

X and Y form a gaussian vector, ie. any

linear combination $\alpha X + \beta Y$ is gaussian

Important probability distribu-

for all $(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$.

correlation coefficient

 $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$

dent, their Covariance is zero. The con- $p_{Y_k}(t) = \binom{t-1}{k-1} p^k (1-p)^{t-k}$

Cov(X, Y) = Cov(Y, X)

Useful properties:

variance:

Possible notations:

Covariance

 $Var(aX) = a^2 Var(X)$

 $I(p) = \frac{n}{p(1-p)}$ The Covariance is a measure of how much the values of each of two correla-Canonical exponential form:

> $exp(y(\ln(p) - \ln(1-p)) + n \ln(1-p) + \ln(\binom{n}{y})$ Geometric

 $f_p(y) =$

Likelihood:

 $L_n(X_1,\ldots,X_n,\theta) =$

Loglikelihood:

 $(nK - \sum_{i=1}^{n} X_i) \log(1-\theta)$

 $= \left(\prod_{i=1}^{n} {K \choose X_i}\right) \theta^{\sum_{i=1}^{n} X_i} (1-\theta)^{nK-\sum_{i=1}^{n} X_i}$

 $\ell_n(\theta) = C + \left(\sum_{i=1}^n X_i\right) \log \theta +$

Number of T trials up to (and including) the first success. $p_T(t) = (1-p)^{t-1}, t = 1, 2, ...$

 $var(T) = \frac{1-p}{r^2}$ Pascal

 $\mathbb{E}[T] = \frac{1}{n}$

The negative binomial or Pascal distribu-

tion is a generalization of the geometric

distribution. It relates to the random experiment of repeated independent trials until observing m successes. I.e. the time

of the kth arrival.

 $Y_k = T_1 + ... T_k$

 $T_i \sim iidGeometric(p)$

 $\mathbb{E}[Y_k] = \frac{k}{n}$ $Var(Y_k) = \frac{k(1-p)}{r^2}$

t = k, k + 1, ...

Multinomial

Parameters n > 0 and p_1, \dots, p_r .

 $p_X(x) = \frac{n!}{r_1! r_2!} p_1, \dots, p_r$

 $p_X(x) = \prod_{i=1}^{n} p_i^{T_j}$, where $T^j = 1(X_i = j)$

is the count how often an outcome is

 $\mathbb{E}[X_i] = n * p_i$

 $Var(X_i) = np_i(1 - p_i)$

seen in trials Loglikelihood:

 $\ell_n = \sum_{i=2}^n T_i \ln(p_i)$

Likelihood:

Poisson Parameter λ . discrete, approximates the	$I(\lambda) = \frac{1}{\lambda^2}$	Sum of independent gaussians:	Useful to know Min of iid exponential r.v	PDF of X : joint distribution of its components $X^{(1)},, X^{(d)}$.	$\begin{split} \Sigma &= \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T = \\ &= \mathbb{E}[XX^T] - \mu_X \mu_X^T \end{split}$
binomial PMF when n is large, p is small, and $\lambda = np$.	•	Let $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$	Let $X_1,,X_nn$ be i.i.d. $Exp(\lambda)$ random variables.	CDF of X:	Let the random vector $X \in \mathbb{R}^d$ and A and
$\mathbf{p_x}(k) = exp(-\lambda) \frac{\lambda^k}{k!} \text{ for } k = 0, 1, \dots,$		If $Y = X + Z$, then $Y \sim N(\mu_X + \mu_Y, \sigma_X + \sigma_Y)$	Distribution of $min_i(Xi)$	$\mathbb{R}^d \to [0,1]$	<i>B</i> be conformable matrices of constants.
	$b(\theta) \qquad c(y,\phi)$ $\theta = -\lambda = -\frac{1}{u}$	If $U = X - Y$, then $U \sim N(\mu_X - \mu_Y, \sigma_X + \sigma_Y)$	$\mathbf{P}(\min_i(X_i) \le t) =$	$\mathbf{x} \mapsto \mathbf{P}(X^{(1)} \le x^{(1)}, \dots, X^{(d)} \le x^{(d)}).$	$Cov(AX + B) = Cov(AX) = ACov(X)A^{T} = A\Sigma A^{T}$
$\mathbb{E}[X] = \lambda$	$\phi = 1$	Symmetry:	$= 1 - \mathbf{P}(\min_{\mathbf{Y}}(\mathbf{Y}) > t)$, – , , – ,	Every Covariance matrix is positive
$Var(X) = \lambda$	φ = 1 Shifted Exponential	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	$=1-(\mathbf{P}(X_1\geq t))(\mathbf{P}(X_2\geq t))$	The sequence $X_1, X_2,$ converges in pro- bability to X if and only if each compo-	definite.
Likelihood: $\sum_{i=1}^{n} x_i$	Parameters λ , $a \in \mathbb{R}$, continuous	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$		λ_1^{k} nent of the sequence $X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability to $X^{(k)}$.	$\Sigma < 0$
$L_n(x_1,,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}$	Parameters $\lambda, a \in \mathbb{R}$, continuous $f_X(x) = \begin{cases} \lambda exp(-\lambda(x-a)), & x >= a \\ 0, & x <= a \end{cases}$	Standardization:	Differentiate w.r.t x to get the pdf of $min_i(Xi)$:	Expectation of a random vector	Gaussian Random Vectors
$\ell_{-}(\lambda) =$	$(1 - exp(-\lambda(x - a)), if x >= a$	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$		The expectation of a random vector is	A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ is
$= -n\lambda + \log(\lambda)(\sum_{i=1}^{n} x_i)) - \log(\prod_{i=1}^{n} x_i!)$	$F_x(x) = \begin{cases} 1 - exp(-\lambda(x-a)), & if \ x >= a \\ 0, & x <= a \end{cases}$	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t-\mu}{\sigma}\right)$	$f_{\min}(x) = (n\lambda)e^{-(n\lambda)x}$	the elementwise expectation. Let X be a random vector of dimension $d \times 1$.	a Gaussian vector, or multivariate Gaussian or normal variable, if any linear
MLE:	$\mathbb{E}[X] = a + \frac{1}{\lambda}$	$P(X \le t) = P(Z \le \frac{t}{\sigma})$ Higher moments:	Counting Commitees	$(\mathbb{E}[X^{(1)}])$	combination of its components is a (univariate) Gaussian variable or a constant
$\hat{\lambda}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} (X_i)$	$Var(X) = \frac{1}{\lambda^2}$	$\mathbb{E}[X^2] = u^2 + \sigma^2$	Out of $2n$ people, we want to choose a committee of n people, one of whom will	$\mathbb{E}[\mathbf{X}] = $.	(a "Gaussian" variable with zero varian-
Fisher Information:	Likelihood:	$\begin{split} \mathbb{E}[X^2] &= \mu^2 + \sigma^2 \\ \mathbb{E}[X^3] &= \mu^3 + 3\mu\sigma^2 \\ \mathbb{E}[X^4] &= \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 \end{split}$	be its chair. In how many different ways can this be done?"	$\left(egin{array}{c} \cdot \ \mathbb{E}[X^{(d)}] \end{array} ight)$	ce), i.e., if $\alpha^T \mathbf{X}$ is (univariate) Gaussian or constant for any constant non-zero
	$L(X_1X_n;\lambda,\theta)$ =	$\mathbb{E}[X^{+}] = \mu^{+} + 6\mu^{2}\sigma^{2} + 3\sigma^{+}$		The expectation of a random matrix	vector $\alpha \in \mathbb{R}^d$.
$I(\lambda) = \frac{1}{\lambda}$	$\lambda^n \exp\left(-\lambda \sum_{i=1}^n (X_i - a)\right) 1_{\min_{i=1,\dots,n}(X_i) \geq a}.$	Quantiles:	$n\binom{2n}{n} = 2n\binom{2n-1}{n-1}.$	is the expected value of each of its elements. Let $X = \{X_{ij}\}$ be an $n \times p$	Multivariate Gaussians The distribution of, <i>X</i> the <i>d</i> -dimensional
Canonical exponential form:	Loglikelihood:	Uniform	"In a group of 2n people, consisting of n	random matrix. Then $\mathbb{E}[X]$, is the $n \times p$ matrix of numbers (if they exist):	Gaussian or normal distribution, is
$f_{\theta}(y) = \exp\left(y\theta - \underbrace{e^{\theta}}_{b(\theta)} \underbrace{-\ln y!}_{c(y,\phi)}\right)$	$\ell(\lambda, a) := n \ln \lambda - \lambda \sum_{i=1}^{n} X_i + n \lambda a$	Parameters <i>a</i> and <i>b</i> , continuous. $\begin{pmatrix} \frac{1}{a} & \text{if } a < x < b \end{pmatrix}$	boys and n girls, we want to select a committee of n people. In how many ways	$\mathbb{E}[X]$ =	completely specified by the vector mean $\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and
	MLE: $\hat{\lambda}_{MLE} = \frac{1}{\overline{X}_{n} - \hat{a}}$	$\mathbf{f_x}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$	can this be done?"	$\mathbb{E}[X_{11}]$ $\mathbb{E}[X_{12}]$ $\mathbb{E}[X_{1p}]$	the $d \times d$ covariance matrix Σ . If Σ is invertible, then the pdf of X is:
$\theta = \ln \lambda$ $\phi = 1$	$\hat{a}_{MLE} = \min_{i=1,\dots,n} (X_i)$	$0, for x \leq a$	$\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i}$	$\mathbb{E}[X_{21}]$ $\mathbb{E}[X_{22}]$ $\mathbb{E}[X_{2p}]$	invertible, then the par of X is.
Poisson process:	Univariate Gaussians	$\mathbf{F}_{\mathbf{X}}(x) = \begin{cases} 0, & for x \le a \\ \frac{x-a}{b-a}, & x \in [a,b) \\ 1, & x \ge b \end{cases}$	i=0	$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}[X_{n1}] & \mathbb{E}[X_{n2}] & \dots & \mathbb{E}[X_{np}] \end{bmatrix}$	$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)},$
k arrivals in t slots $\mathbf{p}_{\mathbf{x}}(k,t) = \mathbb{P}(N_t = k) =$	Parameters μ and $\sigma^2 > 0$, continuous	$\mathbb{E}[X] = \frac{a+b}{2}$	"How many subsets does a set with 2n elements have?"	Let X and Y be random matrices of the	$\frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-2\lambda t}$
$e^{-\lambda t} \frac{(\lambda t)^k}{k!}$	$f(x) = \frac{1}{\sqrt{(2\pi\sigma^2)}} exp(-\frac{(x-\mu)}{2\sigma^2})$	$Var(X) = \frac{(b-a)^2}{12}$	$\frac{2n}{2}$	same dimension, and let <i>A</i> and <i>B</i> be conformable matrices of constants.	$\mathbf{x} \in \mathbb{R}^d$
$\mathbb{E}[N_t] = \lambda t$	$\mathbb{E}[X] = \mu$ $Var(X) = \sigma^2$	Likelihood:	$2^{2n} = \sum_{i=0}^{2n} \binom{2n}{i}$		Where $det(\Sigma)$ is the determinant of Σ ,
$Var(N_t) = \lambda t$	CDF of standard gaussian:	$L(x_1 \dots x_n; b) = \frac{1(\max_i (x_i \le b))}{b^n}$	"Out of <i>n</i> people, we want to form a com-	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$	which is positive when Σ is invertible. If $\mu = 0$ and Σ is the identity matrix, then
Exponential		Loglikelihood:	mittee consisting of a chair and other members. We allow the committee size	Covariance Matrix	X is called a standard normal random vector.
Parameter λ , continuous $\lambda \exp(-\lambda x), \text{if } x >= 0$	$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ Likelihood:	Cauchy	to be any integer in the range $1, 2,, n$. How many choices do we have in selec-	Let <i>X</i> be a random vector of dimension	If the covariant matrix Σ is diagonal,
$f_X(x) = \begin{cases} f_X(x), & \text{if } x > 0 \\ 0, & \text{o.w.} \end{cases}$		continuous, parameter <i>m</i> ,	ting a committee-chair combination?"	$d \times 1$ with expectation μ_X . Matrix outer products!	the pdf factors into pdfs of univariate Gaussians, and hence the components
$P(X > a) = exp(-\lambda a)$	$L(x_1x_n;\mu,\sigma^2) = \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right)$	$f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$	$\sum_{n=1}^{n-1} \sum_{n=1}^{\infty} (n)$.	$\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$	are independent.
$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{o.w.} \end{cases}$		$\mathbb{E}[X] = notdefined!$ Var(X) = notdefined!	$n2^{n-1} = \sum_{i=0}^{n} \binom{n}{i} i.$		The linear transform of a gaussian
m(m) 1	Loglikelihood:		Finding Joint PDFS	$\mathbb{E} \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \dots \\ X_d - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d]$	$X \sim N_d(\mu, \Sigma)$ with conformable matrices A and B is a gaussian:
$\mathbb{E}[X] = \frac{1}{\lambda}$	$\ell_n(\mu, \sigma^2) =$ $= -nlog(\sigma\sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$ MIF:	med(X) = P(X > M) = P(X < M) = 1/2 = $\int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	$f_{X,Y}(x,y) = f_X(x)f_{Y X}(y \mid x)$ Random Vectors	$\begin{bmatrix} \dots \\ X_d - \mu_d \end{bmatrix}^{[1]}$	$AX + B = N_d (A\mu + b, A\Sigma A^T)$
	$-mog(\sigma \sqrt{2\pi}) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (X_i - \mu)$ MLE:	Chi squared	A random vector $\mathbf{X} = (X^{(1)},, X^{(d)})^T$	$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \end{bmatrix}$	Multivariate CLT
$Var(X) = \frac{1}{\lambda^2}$	$\hat{\mu}_M LE = \overline{X}_n$	The χ_d^2 distribution with d degrees of	of dimension $d \times 1$ is a vector-valued	$\Sigma = Cov(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$	Let $X_1,,X_d \in \mathbb{R}^d$ be independent
Likelihood: $L(X_1X_n; \lambda) = \lambda^n \exp(-\lambda \sum_{i=1}^n X_i)$	$\widehat{\sigma^2}_M LE = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ Fisher Information:	freedom is given by the distribution of $Z_1^2 + Z_2^2 + \cdots + Z_d^2$, where $Z_1, \ldots, Z_d \stackrel{iid}{\sim} \mathcal{N}(0,1)$	function from a probability space ω to \mathbb{R}^d :	$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$	copies of a random vector X such that $\mathbb{E}[x] = \mu \ (d \times 1 \text{ vector of expectations})$
(/	Fisher Information:	$ \frac{1}{\mathcal{N}(0,1)} = \frac{1}{a} \times \frac{1}{a} \times \frac{1}{a} $ If $V \sim \chi_L^2$:	$\mathbf{X}:\Omega\longrightarrow\mathbb{R}^d$	The covariance matrix Σ is a $d \times d$ matrix.	and $Cov(X) = \Sigma$
Loglikelihood:	$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$	T T[2] T[2]	$(X^{(1)}(\omega))$	It is a table of the pairwise covariances of the elements of the random vector.	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \Sigma)$
$\ell_n(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^n (X_i)$	$\begin{pmatrix} 0 & \frac{1}{2\sigma^4} \end{pmatrix}$ Canonical exponential form:	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$	$X^{(2)}(\omega)$	Its diagonal elements are the variances of the elements of the random vector, the	
MLE:	Coussians are invested under affin	$\mathbb{E} = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_d^2] = d$ $Var(V) = Var(Z_1^2) + Var(Z_2^2) + \dots + Var(Z_d^2) = 2d$	$\omega \longrightarrow$.	off-diagonal elements are its covariances.	$\sqrt{(n)}\Sigma^{-1/2}\overline{X_n} - \mu \xrightarrow[n \to \infty]{(d)} N(0, I_d)$
$\hat{\lambda}_{MLE} = \frac{n}{\sum_{i=1}^{n} (X_i)}$	Gaussians are invariant under affine transformation:	$Var(Z_{\overline{d}}) = Za$ Student's T Distribution	$(X^{(d)}(\omega))$	Note that the covariance is commutative e.g. $\sigma_{12} = \sigma_{21}$	Where $\Sigma^{-1/2}$ is the $d \times d$ matrix such that
$\sum_{i=1}^{N} (X_i)$ Fisher Information:	$aX + b \sim N(X + b, a^2\sigma^2)$	$T_n := \frac{Z}{\sqrt{V/n}}$ where $Z \sim \mathcal{N}(0,1)$, and Z	where each $X^{(k)}$, is a (scalar) random variable on Ω .	Alternative forms:	$\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^1$ and I_d is the identity matrix.
	, ,	and V are independent			

Multivariate Delta Method

Algebra Absolute Value Inequalities: $|f(x)| < a \Rightarrow -a < f(x) < a$ $|f(x)| > a \Rightarrow f(x) > a$ or f(x) < -a

Matrixalgebra

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T(\mathbf{A}\mathbf{x}) = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}$$

Calculus

Differentiation under the integral sign $\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \mathrm{d}t \right) = f(x,b(x))b'(x) - f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t) \mathrm{d}t.$

Concavity in 1 dimension

if and only if $g''(x) \le 0$ for all $x \in I$

if and only if $g''(x) \ge 0$ for all $x \in I$

strictly concave:

strictly convex if:

g''(x) > 0 for all $x \in I$

if g''(x) < 0 for all $x \in I$

If $g: I \to \mathbb{R}$ is twice differentiable in the interval I:

Concave:

The Gradient ∇ of a twi function f is defined as: $\nabla f: \mathbb{R}^d \to \mathbb{R}^d$

$$\nabla f: \mathbb{R}^d \to \mathbb{R}^d$$

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \mapsto \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial f}{\partial \theta_d} \end{pmatrix}_{\ell}$$

Hessian

The Hessian of f is a symmetric matrix of second partial derivatives of f

Multivariate Calculus

The Gradient
$$\nabla$$
 of a twice differntiable function f is defined as:
$$\nabla f: \mathbb{R}^d \to \mathbb{R}^d \qquad \qquad \begin{pmatrix} hh(\theta) = \nabla^2 h(\theta) = \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) \\ \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) \end{pmatrix}.$$

$$\begin{bmatrix} \frac{\partial^2 h}{\partial \theta_d \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_d \partial \theta_d}(\theta) \end{bmatrix}$$

$$\mathbb{R}^{d \times d}$$

A symmetric (real-valued) $d \times d$ matrix **A** is:

Positive semi-definite: $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^d$.

Positive definite:

 $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^d$

Negative semi-definite (resp. negative definite):

 $\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{\mathbf{0}\}$.

Positive (or negative) definiteness implies positive (or negative) semi-definiteness.

If the Hessian is positive definite then f attains a local minimum at a (convex).

If the Hessian is negative definite at *a*, then f attains a local maximum at *a* (concave).

ative

If the Hessian has both positive and negative eigenvalues then a is a saddle point for f.

Covariance Matrix

Let *X* be a random vector of dimension $d \times 1$ with expectation μ_X . Matrix outer products!

$$\begin{split} \boldsymbol{\Sigma} &= \mathbb{E}[(\boldsymbol{X} - \boldsymbol{\mu}_{\boldsymbol{X}})(\boldsymbol{X} - \boldsymbol{\mu}_{\boldsymbol{X}})^T] \\ &= \mathbb{E}[\boldsymbol{X}\boldsymbol{X}^T] - \mathbb{E}[\boldsymbol{X}]\mathbb{E}[\boldsymbol{X}]^T \\ &= \mathbb{E}[\boldsymbol{X}\boldsymbol{X}^T] - \boldsymbol{\mu}_{\boldsymbol{X}}\boldsymbol{\mu}_{\boldsymbol{X}}^T \end{split}$$