Exploration of the lexical capacity of recurrent neural networks

Gaël Le Godais^{1,2}, Tal Linzen¹, Emmanuel Dupoux¹

April 12, 2017

 $^{^{1}}$ École Normale Supérieure / PSL Research University / EHESS / CNRS, France

²ENSIMAG, Grenoble

Outline

Text generating RNNs

How to mesure the lexicon size of any system?

Lexical capacity of various neural networks

Recurrent neural networks

Training neural networks

$$loss = loss_function(output, objective)$$

Training a character-level language model

Nearly a century before, a group of ordinary men s_

Training a character-level language model

early a century before, a group of ordinary men st_

Character-level language model using RNNs

An example from Karpathy

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

Credit: karpathy.github.io

Outline

Text generating RNNs

How to mesure the lexicon size of any system?

Lexical capacity of various neural networks

The human case

Lexical decision task

fish

Lexical decision task

wug

The neural network case

Lexical indicator

 $\textit{indicator}: \mathsf{word} \to \textit{numerical score}$

Evaluation of a lexical indicator

ROC Curve

$$TPR = \frac{\text{number of actual words classified as words}}{\text{number of words}}$$

$$FPR = \frac{\text{number of non words classified as words}}{\text{number of non words}}$$

Choice of lexical indicator

$$indicator(wug) = -\log p(_wug_)$$

Lexical decision: 3-letter words

Lexical decision: 8-letter words

Spot-the-Word[1]

clear knick

Lexical capacity

$$accuracy = \frac{correct\ decisions}{total\ number\ of\ decisions}$$

$$\textit{lexical capacity} = 100*(2*\textit{accuracy} - 1)$$

Lexicon size

$$lexical\ capacity = 100*(2*accuracy - 1)$$

lexicon size = lexical capacity * total number of words encountered

Outline

Text generating RNNs

How to mesure the lexicon size of any system?

Lexical capacity of various neural networks

Networks

Corpus subset of the moviebook project[5]

Architecture RNN, LSTM

Layers 1, 2, 3

Hidden units 2, 4, 8, 16, 32, 64, 128, 256, 512

Nonwords generation with Wuggy[3]

Word	Match	Forced_Choice	Word_Freq	Dist	Word_Prob
tearing	fleaing	Right	6.69	3	7.81e-08
tearing	wooling	Wrong	6.69	4	7.81e-08
tearing	wresing	Right	6.69	4	7.81e-08
tearing	sureing	Right	6.69	4	7.81e-08
tearing	scabing	Wrong	6.69	3	7.81e-08
clear	strep	Right	234	5	9.50e-05
clear	psych	Right	234	5	9.50e-05
clear	splen	Right	234	4	9.50e-05
clear	stran	Right	234	4	9.50e-05

Raw data

architecture	units	layers	accuracy	lex_cap	n_params	loss
lstm	16	3	72	45	16470	1.582
lstm	256	1	88	77	356822	1.149
lstm	4	3	61	22	7350	2.104
lstm	512	2	92	85	3332566	1.136
rnn	32	2	73	46	13654	1.598
lstm	8	3	65	30	9750	1.882
lstm	32	3	80	61	37590	1.357
lstm	16	2	69	39	14326	1.636
lstm	256	2	93	86	882646	1.13

Baselines

Baselines

Breakdown

Effect of the number of parameters

Accuracy vs Perplexity

Memory capacity

Generative capacity

Effect of the number of parameters

Effect of the number of parameters

Effect of the number of units per layer

Effect of the number of units per layer

Noise

Effect of word frequency

References I

A. Baddeley, H. Emslie, and I. Nimmo-Smith.

The spot-the-word test: A robust estimate of verbal intelligence based on lexical decision.

British Journal of Clinical Psychology, 32(1):55-65, 1993.

R. F.

The perceptron-a perceiving and recognizing automaton.

Report 85-460-1, Cornell Aeronautical Laboratory., 1957.

E. Keuleers and M. Brysbaert.

Wuggy: A multilingual pseudoword generator.

Behavior Research Methods, 42(3):627–633, 2010.

References II

Early language acquisition: cracking the speech code. *Nature Reviews Neuroscience*, 5:186–197, 2004.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.

Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In arXiv preprint arXiv:1506.06724, 2015.