Due: upload to Gradescope by Friday 8 November 2019 at 3pm.

Reading: Chapter 3.4 and 5.1 from the textbook.

Grading: 1 point per exercise for completeness. The exercises marked with a (\star) will also be graded for correctness, and will be assigned an additional 3 points each.

Submit written solutions to the following exercises:

 $\mathbf{Q1}(\star)$: Show that the zero vector in \mathbb{R}^n is linearly dependent. (Hint: use the characterization of linear independence in terms of the non-existence of non-trivial relations: vectors v_1, \ldots, v_m in \mathbb{R}^n are linearly independent if and only if the only relation between them is the trivial relation (i.e., the only solution to the equation $c_1v_1 + \cdots + c_mv_m = 0$ is $c_1 = \cdots = c_m = 0$).)

Q2: Give an example of a matrix A for which $\operatorname{im}(A) \neq \operatorname{im}(\operatorname{RREF}(A))$.

Submit your written solutions to the following questions from the textbook:

Chapter 3.4:

Ex. 22

Ex. $27(\star)$

Ex. 32

Ex. $37(\star)$

Ex. 50

Ex. 61

Chapter 5.1:

Ex. 1

Ex. 4

Ex. 10

Ex. 16

Ex. $17(\star)$

Ex. $28(\star)$