

SCHOOL OF GEOPHYSICS AND INFORMATION TECHNOLOGY · CHINA UNIVERSITY OF GEOSCIENCES (BEIJING) · CHINA

29 Xueyuan Road, Haidian District, 100083, Beijing, China

□ (+86) 188-1040-2821 | **■** xwu@cugb.edu.cn, xwu0011@gmail.com

Education

CUGB (China University of Geosciences, Beijing)

Beijing, China

M.S. IN GEOPHYSICS - SPACE PHYSICS

Sep. 2020 - Now

- Average score: 91.3/100.0
- Main courses: Numerical Analysis / Geophysical Information Processing / Progress in Space Physics / Scientific Paper Writing / Theory of Geophysical Inversion / Progress in Geophysics / Machine Learning

UAH (The University of Alabama in Huntsville)

Huntsville, USA

Non-Degree Student in Geophysics – Space Physics

Jan. 2020 - Jun. 2020

- GPA: 4.0/4.0
- Main courses: Thermal and Statistical Physics / Physics Practicum / Intro to C Programming / English for Academic Purposes Program

CUGB (China University of Geosciences, Beijing)

Beijing, China

B.S. IN GEOPHYSICS

Sep. 2016 - Jun. 2020

- GPA: 3.73/4.0
- Average score: 90.34/100.0
- Rank: 2/26
- Main courses: Higher Mathematics / Linear Algebra / College Physics / Probability and Statistics / Complex Variable Function and Integral Transform / Mathematical Physical Equation / Digital Signal Processing / Calculation Methods in Geophysics / Space Physics / Geomagnetism / Geoelectrics / Computer Language Programming / MATLAB Programming and Application / Mathematical Modeling

Research Experience

School of Geophysics and Information Technology, CUGB

Beijing, China

STATISTICAL STUDY OF RELEASE TIME AND ITS ENERGY DEPENDENCE OF IN SITU ENERGETIC ELECTRONS

Oct. 2021 - Now

- Based on our previous works, We performed a statistical study of the release time and its energy dependence of energetic electrons in 29 impulsive SEE events (2002 2016). In situ and remote hard X-ray observations are from the Wind and the RHESSI and/or Fermi spacecraft, respectively.
- Our results suggest, for all events, the delay between upward- and downward-propagating near-relativistic electrons is distinct, mainly distributed between 0-1000 s. 26 of the 29 events ($\sim 90\%$) show clear energy-dependent release for outward electrons, and only 3 events ($\sim 10\%$) have outward electrons of different energies released within 1 minute, showing no energy dependence according to our criteria.
- · We also discussed the implication of the energy-dependent release on the MHD turbulence property at the acceleration site.
- One paper was submitted to JGR: Space Physics [1]. Keywords: SEPs, Particle acceleration, Solar flares, Turbulence
- My contribution: Look for jointly observed events, Data Processing(In-situ electrons, FVDA method, HXR, Fitting), Plot the figures, Writing.

School of Geophysics and Information Technology, CUGB

Beijing, China

CONSTRAINTS ON THE ELECTRON ACCELERATION PROCESS IN SOLAR FLARE: A CASE STUDY

Feb. 2021 - Sep. 2021

- We examined the release times of energetic electrons in an impulsive event on 2016-07-23. The releases of in situ energetic electrons from the Sun were delayed from those downward, derived from the recently developed Fractional Velocity Dispersion Analysis (FVDA).
- Furthermore, the release time of in situ electrons was a function of electron energy. Assuming the acceleration mechanism for the upward-propagating electrons is of Fermi-type and controlled by an energy-dependent diffusion coefficient, we fitted in situ electron release times by a simple functional form, related to turbulence spectral index.
- We proposed a procedure to probe the MHD turbulence spectrum in flare sites from in situ electron observations. The possible solar flare scenario of this event was also discussed.
- One paper was published on Geophysical Research Letters [2]. Keywords: Particle acceleration, SEPs, Solar flares, Turbulence
- My contribution: Data processing & Analysis(In-situ electrons, FVDA method, HXR, Type III radio burst), Plot the figures.

The Center for Space Plasma and Aeronomic Research (CSPAR), UAH

Huntsville, USA Apr. 2020 - Nov. 2020

OUTWARD-PROPAGATING AND MIRRORING OF THE SAME ENERGETIC ELECTRONS

- We reported an energetic electron event occurred on 2012-09-27. Wind/3DP observed two episodes of energetic electrons within 1 hour: one being impulsive and propagating away from the Sun, and the other slightly gradual and back toward the Sun.
- Applying the recently developed Fractional Velocity Dispersion Analysis (FVDA) to both episodes, we found the impulsive one had a shorter
 path length, and the slightly gradual one was almost twice as long. Interestingly, the inferred release times for both populations were the
 same, within uncertainty.
- We suggested the second time observation was due to reflection beyond 1 au. The possible magnetic field configuration was also discussed.
- One paper was published on The Astrophysical Journal Letters [3]. Keywords: SEPs, Interplanetary magnetic fields, Solar coronal mass ejection shocks, CME
- My contribution: Data processing & Analysis(In-situ electrons, FVDA method, SXR & HXR), Plot the figures.

OCTOBER 11, 2022 XIANGYU WU · CURRICULUM VITAE

IDENTIFICATION OF TWO ELECTRON POPULATIONS IN AN IMPULSIVE SEE EVENT

Jan. 2020 - May. 2020

- We examined the release times of energetic electrons in an impulsive Solar Energetic Electron(SEE) event occurred on 2001 April 25.
- The hard X-ray(HXR) observation times from Yohkoh are used as a proxy for the release time of downward-propagating electrons, and the release time of outward-propagating electrons is obtained from Wind in situ electrons($>\sim 25 keV$) observation, using Fractional Velocity Dispersion Analysis(FVDA) method.
- We found the release times of in situ electrons were clearly delayed from those downward, and discussed the implication of this delay on the electron acceleration and trapping process.
- One paper was published on The Astrophysical Journal Letters [4]. Keywords: SEPs, Solar flares, Solar magnetic reconnection
- My contribution: Process GOES/SXR data, Plot synoptic figures(Fig.1 & Fig.2), Practice using the FVDA method.

Publications & Conferences

PUBLICATIONS

[1] **Xiangyu Wu**, Gang Li, Lulu Zhao, Frederic Effenberger, Linghua Wang, Shuo Yao. Statistical study of release time and its energy dependence of in-situ energetic electrons in impulsive solar flares[J]. Submitted to *JGR: Space Physics*. **Under Review**.

[2] Gang Li, **Xiangyu Wu**, Frederic Effenberger, Lulu Zhao, S. Lesage, N. Bian, L. Wang. Constraints on the Electron Acceleration Process in Solar Flare: A Case Study. *Geophysical Research Letters*, *48*, e2021GL095138. **Published**.

[3] Gang Li, **Xiangyu Wu**, Lulu Zhao, Shuo Yao. Observations of Outward-propagating and Mirroring of the Same Energetic Electrons by Wind. *APJL*, 905, L1. **Published**.

[4] Gang Li, Lulu Zhao, Linghua Wang, Wei Liu, **Xiangyu Wu**. Identification of Two Distinct Electron Populations in an Impulsive Solar Energetic Electron Event. *APJL*, 900, L16. **Published**.

CONFERENCES

[1] **Xiangyu Wu**, Gang Li, Shuo Yao. A Statistical study of the release time difference between upward and downward propagating energetic electrons in impulsive SEP event. *44th COSPAR Scientific Assembly*, 2022-July-19, D1.6-0030-22.

[2] **Xiangyu Wu**, Gang Li, Shuo Yao, et al. A Study on Electron Energy-dependent Release in Solar Energetic Electron Events. 19th AOGS Annual Meeting, 2022-Aug-01, ST01-A025.

[3] **Xiangyu Wu**, Gang Li, Lulu Zhao, et al. Application of Fractional Velocity Dispersion Analysis to Solar Energetic Electron events. *3rd Advanced Space-based Solar Observatory(ASO-S) Scientific Assembly*, 2020-Nov-26.

Awards & Honors

AWARDS

2019	Honorable Mention, the COMAP's Mathematical Contest in Modeling, USA	Beijing, China
2018	First prize in Beijing, Contemporary Undergraduate Mathematical Contest in Modeling	Beijing, China
2018	Second prize in School-level, the 13th Physics Experiment Competition	Beijing, China

HONORS

2019	National Student Innovation and Entrepreneurship Outstanding Project, CUGB	Beijing, China
2019	Outstanding Student in Innovation Class of CUGB, China University of Geosciences	Beijing, China
2018	Third Prize for Excellent Team in Summer Volunteering Activities, China University of Geosciences	Beijing, China

Skills, Certifications & Others

Languages: Chinese (Native) & English (IELTS 6.5)

Programming language: Python | Matlab | C++ | Java

Software: sswIDL | LaTex | Photoshop | Lightroom

Interests: Photography | Drawing.