

वास्तविक संख्याएँ

1

1.1 भूमिका

कक्षा 9 में, आपने वास्तविक संख्याओं की खोज प्रारंभ की और इस प्रक्रिया से आपको अपरिमेय संख्याओं को जानने का अवसर मिला। इस अध्याय में, हम वास्तविक संख्याओं के बारे में अपनी चर्चा जारी रखेंगे। यह चर्चा हम अनुच्छेद 1.2 तथा 1.3 में धनात्मक पूर्णांकों के दो अति महत्वपूर्ण गुणों से प्रारंभ करेंगे। ये गुण हैं: यूक्लिड विभाजन एल्गोरिथ्म (कलन विधि) (Euclid's division algorithm) और अंकगणित की आधारभूत प्रमेय (Fundamental Theorem of Arithmetic)।

जैसा कि नाम से विदित होता है, यूक्लिड विभाजन एल्गोरिथ्म पूर्णांकों की विभाज्यता से किसी रूप में संबंधित है। साधारण भाषा में कहा जाए, तो एल्गोरिथ्म के अनुसार, एक धनात्मक पूर्णांक a को किसी अन्य धनात्मक पूर्णांक b से इस प्रकार विभाजित किया जा सकता है कि शेषफल r प्राप्त हो, जो b से छोटा (कम) है। आप में से अधिकतर लोग शायद इसे सामान्य लंबी विभाजन प्रक्रिया (long division process) के रूप में जानते हैं। यद्यपि यह परिणाम कहने और समझने में बहुत सरल है, परंतु पूर्णांकों की विभाज्यता के गुणों से संबंधित इसके अनेक अनुप्रयोग हैं। हम इनमें से कुछ पर प्रकाश डालेंगे तथा मुख्यत: इसका प्रयोग दो धनात्मक पूर्णांकों का महत्तम समापवर्तक (HCF) परिकलित करने में करेंगे।

दूसरी ओर, अंकगणित की आधारभूत प्रमेय का संबंध धनात्मक पूर्णांकों के गुणन से है। आप पहले से ही जानते हैं कि प्रत्येक भाज्य संख्या (Composite number) को एक अद्वितीय रूप से अभाज्य संख्याओं (prime numbers) के गुणनफल के रूप में व्यक्त किया जा सकता है। यही महत्वपूर्ण तथ्य अंकगणित की आधारभूत प्रमेय है। पुन:, यह परिणाम कहने और समझने में बहुत सरल है, परंतु इसके गणित के क्षेत्र में बहुत व्यापक और सार्थक अनुप्रयोग हैं। यहाँ, हम अंकगणित की आधारभूत प्रमेय के दो मुख्य अनुप्रयोग देखेंगे। एक

2

तो हम इसका प्रयोग कक्षा IX में अध्ययन की गई कुछ संख्याओं, जैसे $\sqrt{2}$, $\sqrt{3}$ और $\sqrt{5}$ आदि की अपिरमेयता सिद्ध करने में करेंगे। दूसरे, हम इसका प्रयोग यह खोजने में करेंगे कि किसी पिरमेय संख्या, मान लीजिए $\frac{p}{q}(q\neq 0)$, का दशमलव प्रसार कब सांत (terminating) होता है तथा कब असांत आवर्ती (non-terminating repeating) होता है। ऐसा हम $\frac{p}{q}$ के हर q के अभाज्य गुणनखंडन को देखकर ज्ञात करते हैं। आप देखेंगे कि q के अभाज्य गुणनखंडन से $\frac{p}{q}$ के दशमलव प्रसार की प्रकृति का पूर्णतया पता लग जाएगा। अतः, आइए अपनी खोज प्रारंभ करें।

1.2 अंकगणित की आधारभूत प्रमेय

आप पिछली कक्षाओं में देख चुके हैं कि किसी भी प्राकृत संख्या को उसके अभाज्य गुणनखंडों के एक गुणनफल के रूप में लिखा जा सकता है। उदाहरणार्थ, 2=2, $4=2\times2$, $253=11\times23$, इत्यादि। अब, आइए प्राकृत संख्याओं पर एक अन्य दृष्टिकोण से विचार करने का प्रयत्न करें। अर्थात् यह देखें कि क्या अभाज्य संख्याओं को गुणा करके, एक प्राकृत संख्या प्राप्त की जा सकती है। आइए इसकी जाँच करें।

कुछ अभाज्य संख्याओं, मान लीजिए 2, 3, 7, 11 और 23 का कोई संग्रह लीजिए। यदि हम इन संख्याओं में से कुछ या सभी संख्याओं को इस प्रकार गुणा करें कि इन संख्याओं की हम जितनी बार चाहें पुनरावृत्ति कर सकते हैं, तो हम धनात्मक पूर्णांकों का एक बड़ा संग्रह बना सकते हैं (वास्तव में, अपरिमित रूप से अनेक)। आइए इनमें से कुछ की सूची बनाएँ:

$$7 \times 11 \times 23 = 1771$$
, $3 \times 7 \times 11 \times 23 = 5313$, $2 \times 3 \times 7 \times 11 \times 23 = 10626$, $2^3 \times 3 \times 7^3 = 8232$, $2^2 \times 3 \times 7 \times 11 \times 23 = 21252$ इत्यादि।

अब मान लीजिए कि आपके संग्रह में, सभी संभव अभाज्य संख्याएँ सिम्मिलत हैं। इस संग्रह की आमाप (size) के बारे में आप क्या अनुमान लगा सकते हैं? क्या इसमें पिरिमित संख्या में पूर्णांक सिम्मिलत हैं अथवा अपिरिमित रूप से अनेक पूर्णांक सिम्मिलत हैं? वास्तव में, अभाज्य संख्याएँ अपिरिमित रूप से अनेक हैं। इसिलए, यदि हम इन अभाज्य संख्याओं को सभी संभव प्रकारों से संयोजित करें तो हमें सभी अभाज्य संख्याओं और अभाज्य संख्याओं के सभी संभव गुणनफलों का एक अनंत संग्रह प्राप्त होगा। अब प्रश्न उठता है, क्या हम इस प्रकार से सभी भाज्य संख्याएँ (composite numbers) प्राप्त कर सकते हैं? आप क्या सोचते

वास्तविक संख्याएँ

हैं? क्या आप सोचते हैं कि कोई ऐसी भाज्य संख्या हो सकती है जो अभाज्य संख्याओं की घातों (powers) का गुणनफल न हो? इसका उत्तर देने से पहले, आइए धनात्मक पूर्णांकों के गुणनखंडन करें, अर्थात् अभी तक जो हमने किया है उसका उल्टा करें।

हम एक गुणनखंड वृक्ष (factor tree) का प्रयोग करेंगे जिससे आप पूर्व परिचित हैं। आइए, एक बड़ी संख्या, मान लीजिए 32760, लें और उसके गुणनखंड नीचे दर्शाए अनुसार करें:

इस प्रकार, हमने 32760 को अभाज्य संख्याओं के एक गुणनफल के रूप में गुणनखंडित कर लिया है, जो $2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 13$ है। अर्थात् $32760 = 2^3 \times 3^2 \times 5 \times 7 \times 13$ है, जो अभाज्य संख्याओं की घातों के रूप में हैं। आइए एक अन्य संख्या, मान लीजिए 123456789 लेकर उसके गुणनखंड लिखें। इसे $3^2 \times 3803 \times 3607$ के रूप में लिखा जा सकता है। नि:संदेह, आपको इसकी जाँच करनी होगी कि 3803 और 3607 अभाज्य संख्याएँ हैं। (ऐसा ही अनेक अन्य प्राकृत संख्याएँ लेकर स्वयं करने का प्रयत्न करें।) इससे हमें यह अनुमान या कंजेक्चर (conjecture) प्राप्त होता है कि प्रत्येक भाज्य संख्या को अभाज्य संख्याओं की घातों के गुणनफल के रूप में लिखा जा सकता है। वास्तव में, यह कथन सत्य है तथा पूर्णांकों के अध्ययन में यह मूलरूप से एक अित महत्वपूर्ण स्थान रखता है। इसी कारण यह कथन

अंकगणित की आधारभूत प्रमेय (Fundamental Theorem of Arithmetic) कहलाता है। आइए इस प्रमेय को औपचारिक रूप से व्यक्त करें।

प्रमेय 1.1 (अंकगणित की आधारभूत प्रमेय): प्रत्येक भाज्य संख्या को अभाज्य संख्याओं के एक गुणनफल के रूप में व्यक्त (गुणनखंडित) किया जा सकता है तथा यह गुणनखंडिन अभाज्य गुणनखंडों के आने वाले क्रम के बिना अद्वितीय होता है।

अंकगणित की आधारभूत प्रमेय के रूप में विख्यात होने से पहले, प्रमेय 1.2 का संभवतया सर्वप्रथम वर्णन यूक्लिड के एलीमेंट्स की पुस्तक IX में साध्य (proposition) 14 के रूप में हुआ था। परंतु इसकी सबसे पहले सही उपपित्त कार्ल फ्रैड्रिक गॉस (Carl Friedrich Gauss) ने अपनी कृति डिसक्वीशंस अरिथिमेटिकी (Disquisitions Arithmeticae) में दी। कार्ल फ्रैड्रिक गॉस को प्राय: 'गणितज्ञों का राजकुमार' कहा जाता है तथा उनका नाम सभी समयकालों के तीन महानतम गणितज्ञों में लिया जाता है, जिनमें आर्किमिडीज़ (Archimedes) और न्यूटन (Newton) भी सम्मिलित हैं। उनका गणित और विज्ञान दोनों में मौलिक योगदान है।

कार्ल फ्रैड्रिक गॉस (1777 - 1855)

अंकगणित की आधारभूत प्रमेय कहती है कि प्रत्येक भाज्य संख्या अभाज्य संख्याओं के एक गुणनफल के रूप में गुणनखंडित की जा सकती है। वास्तव में, यह और भी कुछ कहती है। यह कहती है कि एक दी हुई भाज्य संख्या को अभाज्य संख्याओं के एक गुणनफल के रूप में, बिना यह ध्यान दिए कि अभाज्य संख्याएँ किस क्रम में आ रही हैं, एक **अद्वितीय** प्रकार (Unique way) से गुणनखंडित किया जा सकता है। अर्थात् यदि कोई भाज्य संख्या दी हुई है, तो उसे अभाज्य संख्याओं के गुणनफल के रूप में लिखने की केवल एक ही विधि है, जब तक कि हम अभाज्य संख्याओं के आने वाले क्रम पर कोई विचार नहीं करते। इसलिए, उदाहरणार्थ, हम $2 \times 3 \times 5 \times 7$ को वही मानते हैं जो $3 \times 5 \times 7 \times 2$, को माना जाता है। इसी प्रकार, इन्हीं अभाज्य संख्याओं के गुणनफल के किसी अन्य क्रम को भी हम $2 \times 3 \times 5 \times 7$ जैसा ही मानेंगे। इस तथ्य को निम्नलिखित रूप में भी व्यक्त किया जाता है:

एक प्राकृत संख्या का अभाज्य गुणनखंडन, उसके गुणनखंडों के क्रम को छोड़ते हुए अद्भितीय होता है। वास्तविक संख्याएँ 5

व्यापक रूप में, जब हमें एक भाज्य संख्या x दी हुई हो, तो हम उसे $x=p_1p_2\dots p_n$, के रूप में गुणनखंडित करते हैं, जहाँ p_1,p_2,\dots,p_n इत्यादि आरोही क्रम में लिखी अभाज्य संख्याएँ हैं। अर्थात् $p_1 \leq p_2 \leq \dots \leq p_n$ है। यदि हम समान अभाज्य संख्याओं को एक साथ (मिला) लें, तो हमें अभाज्य संख्याओं की घातें (powers) प्राप्त हो जाती हैं।

उदाहरणार्थ, 32760 = 2 × 2 × 2 × 3 × 3 × 5 × 7 × 13 = 2³ × 3² × 5 × 7 × 13

एक बार यह निर्णय लेने के बाद कि गुणनखंडों का क्रम आरोही होगा तो दी हुई संख्या के अभाज्य गुणनखंड अद्वितीय होंगे।

अंकगणित की आधारभूत प्रमेय के गणित तथा अन्य क्षेत्रों में भी अनेक अनुप्रयोग हैं। आइए इनके कुछ उदाहरण को देखें।

उदाहरण 1 : संख्याओं 4^n पर विचार कीजिए, जहाँ n एक प्राकृत संख्या है। जाँच कीजिए कि क्या n का कोई ऐसा मान है, जिसके लिए 4^n अंक शून्य (0) पर समाप्त होता है।

हल: यदि किसी n के लिए, संख्या 4^n शून्य पर समाप्त होगी तो वह 5 से विभाज्य होगी। अर्थात् 4^n के अभाज्य गुणनखंडन में अभाज्य संख्या 5 आनी चाहिए। यह संभव नहीं है क्योंकि $4^n = (2)^{2n}$ है। इसी कारण, 4^n के गुणनखंडन में केवल अभाज्य संख्या 2 ही आ सकती है। अंकगणित की आधारभूत प्रमेय की अद्वितीयता हमें यह निश्चित कराती है कि 4^n के गुणनखंडन में 2 के अतिरिक्त और कोई अभाज्य गुणनखंड नहीं है। इसिलए ऐसी कोई संख्या n नहीं है, जिसके लिए 4^n अंक 0 पर समाप्त होगी।

आप पिछली कक्षाओं में, यह पढ़ चुके हैं कि दो धनात्मक पूर्णांकों के HCF और LCM अंकगणित की आधारभूत प्रमेय का प्रयोग करके किस प्रकार ज्ञात किए जाते हैं। ऐसा करते समय, इस प्रमेय के नाम का उल्लेख नहीं किया गया था। इस विधि को अभाज्य गुणनखंडन विधि (prime factorisation method) भी कहते हैं। आइए, एक उदाहरण की सहायता से इस विधि को पुन: याद करें।

उदाहरण 2: संख्याओं 6 और 20 के अभाज्य गुणनखंडन विधि से HCF और LCM ज्ञात कीजिए। हल: यहाँ $6=2^1\times 3^1$ और $20=2\times 2\times 5=2^2\times 5^1$ है।

जैसािक आप पिछली कक्षाओं में कर चुके हैं, आप HCF (6, 20) = 2 तथा LCM $(6, 20) = 2 \times 2 \times 3 \times 5 = 60$, ज्ञात कर सकते हैं।

ध्यान दीजिए कि HCF $(6, 20) = 2^1 =$ संख्याओं में प्रत्येक उभयनिष्ठ अभाज्य गुणनखंड की सबसे छोटी घात का गुणनफल तथा

 $LCM(6, 20) = 2^2 \times 3^1 \times 5^1 =$ संख्याओं में संबद्ध प्रत्येक अभाज्य गुणनखंड की सबसे बड़ी घात का गुणनफल

उपरोक्त उदाहरण से आपने यह देख लिया होगा कि HCF $(6,20) \times LCM$ $(6,20) = 6 \times 20$ है। वास्तव में, अंकगणित की आधारभूत प्रमेय का प्रयोग करके हम इसकी जाँच कर सकते हैं कि किन्हीं दो धनात्मक पूर्णांकों a और b के लिए, HCF $(a,b) \times LCM$ $(a,b) = a \times b$ होता है। इस परिणाम का प्रयोग करके, हम दो धनात्मक पूर्णांकों का LCM ज्ञात कर सकते हैं, यदि हमने उनका HCF पहले ही ज्ञात कर लिया है।

उदाहरण 3 : अभाज्य गुणनखंडन विधि द्वारा 96 और 404 का HCF ज्ञात कीजिए और फिर इनका LCM ज्ञात कीजिए।

हल: 96 और 404 के अभाज्य गुणनखंडन से हमें प्राप्त होता है कि

$$96 = 2^5 \times 3, \ 404 = 2^2 \times 101$$

इसलिए, इन दोनों पूर्णांकों का $HCF = 2^2 = 4$

साथ ही $LCM (96, 404) = \frac{96 \times 404}{HCF(96, 404)} = \frac{96 \times 404}{4} = 9696$

उदाहरण 4 : संख्या 6, 72 और 120 का अभाज्य गुणनखंडन विधि द्वारा HCF और LCM ज्ञात कीजिए।

हल: हमें प्राप्त है:

21 और 31 प्रत्येक उभयनिष्ठ अभाज्य गुणनखंड की सबसे छोटी घातें हैं।

अत:,
$$HCF(6, 72, 120) = 2^1 \times 3^1 = 2 \times 3 = 6$$

 2^3 , 3^2 और 5^1 प्रत्येक अभाज्य गुणनखंड की सबसे बड़ी घातें हैं, जो तीनों संख्याओं से संबद्ध हैं। अत:, $LCM(6,72,120) = 2^3 \times 3^2 \times 5^1 = 360$

टिप्पणी: ध्यान दीजिए कि 6 × 72 × 120 ≠ HCF (6, 72, 120) × LCM (6, 72, 120), अर्थात् तीन संख्याओं का गुणनफल उनके HCF और LCM के गुणनफल के बराबर नहीं होता है।

प्रश्नावली 1.1

- 1. निम्नलिखित संख्याओं को अभाज्य गुणनखंडों के गुणनफल के रूप में व्यक्त कीजिए:
 - (i) 140
- (ii) 156
- (iii) 3825
- (iv) 5005
- (v) 7429

वास्तविक संख्याएँ

2. पूर्णांकों के निम्नलिखित युग्मों के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल=HCF × LCM है।

- (i) 26 और 91
- (ii) 510 और 92
- (iii) 336 और 54
- 3. अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:

 - (i) 12, 15 और 21 (ii) 17, 23 और 29
- (iii) 8,9 और 25
- 4. HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
- 5. जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए, संख्या 6^n अंक 0 पर समाप्त हो सकती है।
- **6.** व्याख्या कीजिए कि $7 \times 11 \times 13 + 13$ और $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$ भाज्य संख्याएँ क्यों हैं।
- 7. किसी खेल के मैदान के चारों ओर एक वत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबिक इसी मैदान का एक चक्कर लगाने में रिव को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारंभ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुन: प्रांरिभक स्थान पर मिलेंगे?

1.3 अपरिमेय संख्याओं का पुनर्भ्रमण

कक्षा IX में, आपको अपरिमेय संख्याओं एवं उनके अनेक गुणों से परिचित कराया गया था। आपने इनके अस्तित्व के बारे में अध्ययन किया तथा यह देखा कि किस प्रकार परिमेय और अपरिमेय संख्याएँ मिलकर वास्तविक संख्याएँ (real numbers) बनाती हैं। आपने यह भी सीखा था कि संख्या रेखा पर किस प्रकार अपरिमित संख्याओं के स्थान निर्धारित करते हैं। तथापि हमने यह सिद्ध नहीं किया था कि ये संख्याएँ अपरिमेय (irrationals) हैं। इस अनुच्छेद में, हम यह सिद्ध करेंगे कि $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ तथा, व्यापक रूप में, \sqrt{p} अपरिमेय संख्याएँ हैं, जहाँ p एक अभाज्य संख्या है। अपनी उपपत्ति में, हम जिन प्रमेयों का प्रयोग करेंगे उनमें से एक है अंकगणित की आधारभृत प्रमेय।

याद कीजिए कि एक, संख्या 's' अपरिमेय संख्या कहलाती है, यदि उसे $\frac{p}{q}$ के रूप में नहीं लिखा जा सकता हो, जहाँ p और q पूर्णांक हैं और $q \neq 0$ है। अपिरमेय संख्याओं के कुछ उदाहरण, जिनसे आप परिचित हैं, निम्नलिखित हैं:

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{15}$, π , $-\frac{\sqrt{2}}{\sqrt{3}}$, 0.10110111011110..., इत्यादि।

इससे पहले कि हम $\sqrt{2}$ को अपरिमेय संख्या सिद्ध करें, हमें निम्नलिखित प्रमेय की आवश्यकता पड़ेगी, जिसकी उपपत्ति अंकगणित की आधारभूत प्रमेय पर आधारित है।

प्रमेय 1.2 : मान लीजिए p एक अभाज्य संख्या है। यदि p, a^2 को विभाजित करती है, तो p, a को भी विभाजित करेगी, जहाँ a एक धनात्मक पूर्णांक है।

*उपपत्ति: मान लीजिए a के अभाज्य गुणनखंडन निम्निलिखित रूप के हैं: $a=p_1p_2\dots p_n$ जहाँ $p_1,p_2,\dots p_n$ अभाज्य संख्याएँ हैं, परंतु आवश्यक रूप से भिन्न-भिन्न नहीं हैं। अतः, $a^2=(p_1p_2\dots p_n)\;(p_1p_2\dots p_n)=p_1^2p_2^2\dots p_n^2$

अब, हमें दिया है कि p, a^2 को विभाजित करती है। इसिलए, अंकगणित की आधारभूत प्रमेय के अनुसार; p, a^2 का एक अभाज्य गुणनखंड है। परंतु अंकगणित की आधारभूत प्रमेय की अद्वितीयता के गुण का प्रयोग करने पर, हम पाएँगे कि a^2 के अभाज्य गुणनखंड केवल p_1 , p_2, \ldots, p_n हैं। इसिलए p को p_1, p_2, \ldots, p_n में से ही एक होना चाहिए। अब, चूँकि $a = p_1, p_2, \ldots, p_n$ है, इसिलए p, p को विभाजित अवश्य करेगा।

अब हम इसकी उपपत्ति दे सकते हैं कि $\sqrt{2}$ एक अपरिमेय संख्या है।

यह उपपत्ति उस तकनीक पर आधारित है जिसे 'विरोधोक्ति द्वारा उपपत्ति' (proof by contradiction) कहते हैं (इस तकनीक की कुछ विस्तृत रूप से चर्चा परिशिष्ट 1 में की गई है)।

प्रमेय $1.3:\sqrt{2}$ एक अपरिमेय संख्या है।

उपपत्ति: हम इसके विपरीत यह मान लेते हैं कि $\sqrt{2}$ एक परिमेय संख्या है। अतः, हम दो पूर्णांक r और s ऐसे ज्ञात कर सकते हैं कि $\sqrt{2}=\frac{r}{s}$ हो तथा $s~(\neq 0)$ हो। मान लीजिए r और s में, 1 के अतिरिक्त, कोई उभयनिष्ठ गुणनखंड है। तब, हम इस उभयनिष्ठ गुणनखंड से r और s को विभाजित करके $\sqrt{2}=\frac{a}{b}$ प्राप्त कर सकते हैं, जहाँ a

और b सहअभाज्य (co-prime) हैं।

अतः $b\sqrt{2} = a$ हुआ।

दोनों पक्षों का वर्ग करने तथा पुनव्यविस्थित करने पर, हमें प्राप्त होता है:

$$2b^2=a^2$$

अतः 2, a^2 को विभाजित करता है। इसलिए प्रमेय 1.2 द्वारा 2, a को विभाजित करेगा।

^{*} यह परीक्षा की दृष्टि से नहीं है।

वास्तविक संख्याएँ 9

अतः हम a=2c लिख सकते हैं, जहाँ c कोई पूर्णांक हैं।

a का मान प्रतिस्थापित करने पर हमें $2b^2 = 4c^2$, अर्थात् $b^2 = 2c^2$ प्राप्त होता है।

इसका अर्थ है कि $2, b^2$ को विभाजित करता है और इसीलिए 2, b को भी विभाजित करेगा (प्रमेय 1.2 द्वारा p=2 लेने पर)।

अतः a और b में कम से कम एक उभयनिष्ठ गुणनखंड 2 है।

परंतु इससे इस तथ्य का विरोधाभास प्राप्त होता है कि a और b में, 1 के अतिरिक्त, कोई उभयनिष्ठ गुणनखंड नहीं है।

यह विरोधाभास हमें इस कारण प्राप्त हुआ है, क्योंकि हमने एक त्रुटिपूर्ण कल्पना कर ली है कि $\sqrt{2}$ एक परिमेय संख्या है।

अतः, हम निष्कर्ष निकालते हैं कि $\sqrt{2}$ एक अपरिमेय संख्या है।

उदाहरण $5: \sqrt{3}$ एक अपरिमेय संख्या है।

हुल: आइए हम इसके विपरीत यह मान लें कि $\sqrt{3}$ एक परिमेय संख्या है।

अर्थात्, हम ऐसे दो पूर्णांक a और $b \neq 0$ प्राप्त कर सकते हैं कि $\sqrt{3} = \frac{a}{b}$ है।

यदि a और b में, 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड हो, तो हम उस उभयनिष्ठ गुणनखंड से भाग देकर a और b को सहअभाज्य बना सकते हैं।

अतः $b\sqrt{3} = a$ है।

दोनों पक्षों का वर्ग करने तथा पुनर्व्यवस्थित करने पर, हमें $3b^2 = a^2$ प्राप्त होता है।

अत: a^2 , 3 से विभाजित है। इसलिए, प्रमेय 1.2 द्वारा 3, a को भी विभाजित करेगा।

अतः हम a=3c लिख सकते हैं, जहाँ c एक पूर्णांक है।

a के इस मान को $3b^2 = a^2$ में प्रतिस्थापित करने पर, हमें प्राप्त होता है:

$$3b^2 = 9c^2$$
 अर्थात् $b^2 = 3c^2$

इसका अर्थ है कि b^2 , 3 से विभाजित हो जाता है। इसलिए प्रमेय 1.3 द्वारा b भी 3 से विभाजित होगा।

अतः a और b में कम से कम एक उभयनिष्ठ गुणनखंड 3 है।

परंतु इससे इस तथ्य का विरोधाभास प्राप्त होता है कि a और b सहअभाज्य हैं।

हमें यह विरोधाभास अपनी त्रुटिपूर्ण कल्पना के कारण प्राप्त हुआ है कि $\sqrt{3}$ एक परिमेय संख्या है। अतः हम निष्कर्ष निकालते हैं कि $\sqrt{3}$ एक अपरिमेय संख्या है। कक्षा IX में हमने बताया था किः

- एक परिमेय संख्या और एक अपिरमेय संख्या का योग या अंतर एक अपिरमेय संख्या होती है तथा
- एक शून्येतर पिरमेय संख्या और एक अपिरमेय संख्या का गुणनफल या भागफल एक अपिरमेय संख्या होती है।

यहाँ, हम उपरोक्त की कुछ विशिष्ट स्थितियाँ सिद्ध करेंगे।

उदाहरण 6: दर्शाइए कि $5-\sqrt{3}$ एक अपरिमेय संख्या है।

हल : आइए इसके विपरीत मान लें कि $5-\sqrt{3}$ एक परिमेय संख्या है।

अर्थात् हम सहअभाज्य ऐसी संख्याएँ a और b ($b \neq 0$) ज्ञात कर सकते हैं कि $5 - \sqrt{3} = \frac{a}{b}$ हो।

अत: $5 - \frac{a}{b} = \sqrt{3} \ \ \dot{\overline{\epsilon}} \, |$

इस समीकरण को पुनर्व्यवस्थित करने पर हमें प्राप्त होता है:

$$\sqrt{3} = 5 - \frac{a}{b}$$

चूँकि a और b पूर्णांक हैं, इसलिए $5-\frac{a}{b}$ एक परिमेय संख्या है अर्थात् $\sqrt{3}$ एक परिमेय संख्या है। परंतु इससे इस तथ्य का विरोधाभास प्राप्त होता है कि $\sqrt{3}$ एक अपिरमेय संख्या है। हमें यह विरोधाभास अपनी गलत कल्पना के कारण प्राप्त हुआ है कि $5-\sqrt{3}$ एक पिरमेय संख्या है।

अत:, हम निष्कर्ष निकालते हैं कि $5-\sqrt{3}$ एक अपरिमेय संख्या है।

उदाहरण 7 : दर्शाइए कि $3\sqrt{2}$ एक अपरिमेय संख्या है। हल : आइए इसके विपरीत मान लें कि $3\sqrt{2}$ एक परिमेय संख्या है। वास्तविक संख्याएँ 11

अर्थात् हम ऐसी सहअभाज्य संख्याएँ a और b ($b \neq 0$) ज्ञात कर सकते हैं कि $3\sqrt{2} = \frac{a}{b}$ हो। पुनर्व्यवस्थित करने पर, हमें $\sqrt{2} = \frac{a}{3b}$ प्राप्त होगा।

चूँिक 3, a और b पूर्णांक हैं, इसिलए $\frac{a}{3b}$ एक परिमेय संख्या होगी। इसिलए $\sqrt{2}$ भी एक परिमेय संख्या होगी।

परंतु इससे इस तथ्य का विरोधाभास प्राप्त होता है कि $\sqrt{2}$ एक अपरिमेय संख्या है। अतः, हम यह निष्कर्ष निकालते हैं कि $3\sqrt{2}$ एक अपरिमेय संख्या है।

प्रश्नावली 1.2

- 1. सिद्ध कीजिए कि $\sqrt{5}$ एक अपरिमेय संख्या है।
- 2. सिद्ध कीजिए कि $3 + 2\sqrt{5}$ एक अपरिमेय संख्या है।
- 3. सिद्ध कीजिए कि निम्नलिखित संख्याएँ अपरिमेय हैं:

(i)
$$\frac{1}{\sqrt{2}}$$

(ii)
$$7\sqrt{5}$$

(iii)
$$6 + \sqrt{2}$$

1.4 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

- 1. अंकगणित की आधारभूत प्रमेय:
 - प्रत्येक भाज्य संख्या को अभाज्य संख्याओं के एक गुणनफल के रूप में व्यक्त (गुणनखंडित) किया जा सकता है तथा यह गुणनखंडन अद्वितीय होता है, इस पर कोई ध्यान दिए बिना कि अभाज्य गुणनखंड किस क्रम में आ रहे हैं।
- **2.** यदि p कोई अभाज्य संख्या है और p, a^2 को विभाजित करता है तो p, a को भी विभाजित करेगा, जहाँ a एक धनात्मक पूर्णांक है।
- 3. उपपत्ति कि $\sqrt{2}$, $\sqrt{3}$ इत्यादि अपरिमेय संख्याएँ हैं।

पाठकों के लिए विशेष

आपने देखा कि:

HCF $(p,q,r) \times \text{LCM } (p,q,r) \neq p \times q \times r$, जहाँ p,q,r धनात्मक पूर्णांक हैं (उदाहरण 8 देखिए)। जबिक निम्न परिणाम तीन संख्याओं p,q और r पर लागू होता है:

$$LCM(p, q, r) = \frac{p \cdot q \cdot r \cdot HCF(p, q, r)}{HCF(p, q) \cdot HCF(q, r) \cdot HCF(p, r)}$$

$$HCF(p, q, r) = \frac{p \cdot q \cdot r \cdot LCM(p, q, r)}{LCM(p, q) \cdot LCM(q, r) \cdot LCM(p, r)}$$

बहुपद

2

2.1 भूमिका

कक्षा IX में, आपने एक चर वाले बहुपदों (polynomials) एवं उनकी घातों (degree) के बारे में अध्ययन किया है। याद कीजिए कि चर x के बहुपद p(x) में x की उच्चतम घात (power) **बहुपद की घात (degree)** कहलाती है। उदाहरण के लिए, 4x+2 चर x में घात 1 का बहुपद है, $2y^2-3y+4$ चर y में घात 2 का बहुपद है, $5x^3-4x^2+x-\sqrt{2}$ चर x में घात 3 का बहुपद है और $7u^6-\frac{3}{2}u^4+4u^2+u-8$ चर u में घात 6 का बहुपद है। व्यंजक $\frac{1}{x-1}$, $\sqrt{x}+2$, $\frac{1}{x^2+2x+3}$ इत्यादि बहुपद नहीं हैं।

घात 1 के बहुपद को **रैखिक बहुपद** (linear polynomial) कहते हैं। उदाहरण के लिए, 2x-3, $\sqrt{3}x+5$, $y+\sqrt{2}$, $x-\frac{2}{11}$, 3z+4, $\frac{2}{3}u+1$, इत्यादि सभी रैखिक बहुपद हैं। जबिक $2x+5-x^2$, x^3+1 , आदि प्रकार के बहुपद रैखिक बहुपद नहीं हैं।

घात 2 के बहुपद को **द्विधात बहुपद (quadratic polynomial)** कहते हैं। द्विधात (quadratic) शब्द क्वाड्रेट (quadrate) शब्द से बना है, जिसका अर्थ है 'वर्ग'। $2x^2 + 3x - \frac{2}{5}$, $y^2 - 2$, $2 - x^2 + \sqrt{3}x$, $\frac{u}{3} - 2u^2 + 5$, $\sqrt{5}v^2 - \frac{2}{3}v$, $4z^2 + \frac{1}{7}$, द्विघात बहुपदों के कुछ उदाहरण हैं (जिनके गुणांक वास्तविक संख्याएँ हैं)। अधिक व्यापक रूप में, x में कोई द्विघात बहुपद $ax^2 + bx + c$, जहाँ a, b, c वास्तविक संख्याएँ हैं और $a \neq 0$ है, के प्रकार का होता है। घात 3 का बहुपद **त्रिधात बहुपद (cubic polynomial)** कहलाता है। त्रिघात बहुपद के कुछ उदाहरण हैं:

$$2-x^3$$
, x^3 , $\sqrt{2}x^3$, $3-x^2+x^3$, $3x^3-2x^2+x-1$

वास्तव में, त्रिघात बहुपद का सबसे व्यापक रूप है:

$$ax^3 + bx^2 + cx + d,$$

जहाँ a, b, c, d वास्तविक संख्याएँ हैं और $a \neq 0$ है।

अब बहुपद $p(x)=x^2-3x-4$ पर विचार कीजिए। इस बहुपद में x=2 रखने पर हम $p(2)=2^2-3\times 2-4=-6$ पाते हैं। x^2-3x-4 में, x को 2 से प्रतिस्थापित करने से प्राप्त मान '-6', x^2-3x-4 का x=2 पर मान कहलाता है। इसी प्रकार p(0), p(x) का x=0 पर मान है, जो -4 है।

यदि p(x), x में कोई बहुपद है और k कोई वास्तविक संख्या है, तो p(x) में x को k से प्रतिस्थापित करने पर प्राप्त वास्तविक संख्या p(x) का x = k पर मान कहलाती है और इसे p(k) से निरूपित करते हैं।

$$p(x) = x^2 - 3x - 4$$
 का $x = -1$ पर क्या मान है? हम पाते हैं :
$$p(-1) = (-1)^2 - \{3 \times (-1)\} - 4 = 0$$

साथ ही, ध्यान दीजिए कि $p(4) = 4^2 - (3 \times 4) - 4 = 0$ है।

क्योंकि p(-1)=0 और p(4)=0 है, इसलिए -1 और 4 द्विघात बहुपद x^2-3x-4 के शून्यक (zeroes) कहलाते हैं। अधिक व्यापक रूप में, एक वास्तविक संख्या k बहुपद p(x) का शून्यक कहलाती है, यदि p(k)=0 है।

आप कक्षा IX में पढ़ चुके हैं कि किसी रैखिक बहुपद का शून्यक कैसे ज्ञात किया जाता है। उदाहरण के लिए, यदि p(x)=2x+3 का शून्यक k है, तो p(k)=0 से, हमें 2k+3=0 अर्थात् $k=-\frac{3}{2}$ प्राप्त होता है।

व्यापक रूप में, यदि p(x) = ax + b का एक शून्यक k है, तो p(k) = ak + b = 0, अर्थात्

$$k = \frac{-b}{a}$$
 होगा। अत:, रैखिक बहुपद $ax + b$ का शून्यक $\frac{-b}{a} = \frac{-(3 = 3 + 4)}{x}$ है।

इस प्रकार, रैखिक बहुपद का शून्यक उसके गुणांकों से संबंधित है। क्या यह अन्य बहुपदों में भी होता है? उदाहरण के लिए, क्या द्विघात बहुपद के शून्यक भी उसके गुणांकों से संबंधित होते हैं?

इस अध्याय में, हम इन प्रश्नों के उत्तर देने का प्रयत्न करेंगे। हम बहुपदों के लिए विभाजन कलन विधि (division algorithm) का भी अध्ययन करेंगे।

2.2 बहुपद के शून्यकों का ज्यामितीय अर्थ

आप जानते हैं कि एक वास्तविक संख्या k बहुपद p(x) का एक शून्यक है, यदि p(k)=0 है। परंतु किसी बहुपद के शून्यक इतने आवश्यक क्यों हैं? इसका उत्तर देने के लिए, सर्वप्रथम हम रैखिक और द्विघात बहुपदों के **आलेखीय** निरूपण देखेंगे और फिर उनके शून्यकों का ज्यामितीय अर्थ देखेंगे।

पहले एक रैखिक बहुपद ax + b, $a \ne 0$ पर विचार करते हैं। आपने कक्षा IX में पढ़ा है कि y = ax + b का ग्राफ (आलेख) एक सरल रेखा है। उदाहरण के लिए, y = 2x + 3 का ग्राफ बिंदुओं (-2, -1) तथा (2, 7) से जाने वाली एक सरल रेखा है।

x	-2	2
y = 2x + 3	-1	7

आकृति 2.1 से आप देख सकते हैं कि y=2x+3 का ग्राफ x—अक्ष को x=-1 तथा x=-2 के बीचो बीच, अर्थात् बिंदु $\left(-\frac{3}{2},0\right)$ पर प्रतिच्छेद करता है। आप यह भी जानते हैं कि 2x+3 का शून्यक $-\frac{3}{2}$ है। अतः बहुपद 2x+3 का शून्यक उस बिंदु का x-निर्देशांक है, जहाँ y=2x+3 का ग्राफ x-अक्ष को प्रतिच्छेद करता है।

आकृति 2.1

व्यापक रूप में, एक रैखिक बहुपद ax+b, $a\neq 0$ के लिए, y=ax+b का ग्राफ एक सरल रेखा है, जो x-अक्ष को ठीक एक बिंदु $\left(\frac{-b}{a},0\right)$ पर प्रतिच्छेद करती है। अत:, रैखिक बहुपद ax+b, $a\neq 0$ का केवल एक शून्यक है, जो उस बिंदु का x-निर्देशांक है, जहाँ y=ax+b का ग्राफ x-अक्ष को प्रतिच्छेद करता है।

अब आइए हम द्विघात बहुपद के किसी शून्यक का ज्यामितीय अर्थ जाने। द्विघात बहुपद $x^2 - 3x - 4$ पर विचार कीजिए। आइए देखें कि $y = x^2 - 3x - 4$ का ग्राफ* किस प्रकार

^{*} द्विघात या त्रिघात बहुपदों के ग्राफ खींचना विद्यार्थियों के लिए अपेक्षित नहीं है और न ही इनका मुल्यांकन से संबंध है।

का दिखता है। हमx के कुछ मानों के संगत $y = x^2 - 3x - 4$ के कुछ मानों को लेते हैं, जैसे सारणी 2.1 में दिए हैं।

सारणी 2.1

x	- 2	-1	0	1	2	3	4	5
$y = x^2 - 3x - 4$	6	0	- 4	- 6	- 6	-4	0	6

यदि हम उपर्युक्त बिंदुओं को एक ग्राफ पेपर पर अंकित करें और ग्राफ खींचें, तो यह आकृति 2.2 में दिए गए जैसा दिखेगा।

वास्तव में किसी द्विघात बहुपद $ax^2 + bx + c$, $a \ne 0$ के लिए संगत समीकरण $y = ax^2 + bx + c$ के ग्राफ का आकार या तो ऊपर की ओर खुला \bigvee की तरह अथवा नीचे की ओर खुला \bigwedge की तरह का होगा, जो इस पर निर्भर करेगा कि a > 0 है या a < 0 है (इन वक्रों को **परवलय** (parabola) कहते हैं)।

सारणी 2.1 से आप देख सकते हैं कि द्विघात बहुपद के शून्यक -1 तथा 4 हैं। इस पर भी ध्यान दीजिए कि -1 तथा 4 उन बिंदुओं के x-निर्देशांक हैं, जहाँ $y = x^2 - 3x - 4$ का ग्राफ x-अक्ष को प्रतिच्छेद करता है। इस प्रकार, द्विघात बहुपद $x^2 - 3x - 4$ के शून्यक उन बिंदुओं के

आकृति 2.2

x—निर्देशांक हैं, जहाँ $y=x^2-3x-4$ का ग्राफ x—अक्ष को प्रतिच्छेद करता है।

यह तथ्य सभी द्विघात बहुपदों के लिए सत्य है, अर्थात् द्विघात बहुपद $ax^2 + bx + c$, $a \neq 0$ के शून्यक उन बिंदुओं के x-निर्देशांक हैं, जहाँ $y = ax^2 + bx + c$ को निरूपित करने वाला परवलय x-अक्ष को प्रतिच्छेद करता है।

बहुपद 17

 $y = ax^2 + bx + c$ के ग्राफ के आकार का प्रेक्षण करने से तीन निम्नलिखित स्थितियाँ संभावित हैं।

स्थिति (i) : यहाँ ग्राफ x-अक्ष को दो भिन्न बिंदुओं A और A' पर काटता है।

इस स्थिति में, A और A' के x—िनर्देशांक द्विघात बहुपद ax^2+bx+c के दो शून्यक हैं (देखिए आकृति 2.3)।

स्थिति (ii): यहाँ ग्राफ x-अक्ष को केवल एक बिंदु पर, अर्थात् दो संपाती बिंदुओं पर काटता है। इसलिए, स्थिति (i) के दो बिंदु A और A' यहाँ पर संपाती होकर एक बिंदु A हो जाते हैं (देखिए आकृति 2.4)।

इस स्थिति में, A का x-निर्देशांक द्विघात बहुपद ax^2+bx+c का केवल एक शून्यक है।

स्थिति (iii) : यहाँ ग्राफ या तो पूर्ण रूप से x-अक्ष के ऊपर या पूर्ण रूप से x-अक्ष के नीचे है। इसलिए, यह x-अक्ष को कहीं पर नहीं काटता है (देखिए आकृति 2.5)।

अत:, इस स्थिति में द्विघात बहुपद $ax^2 + bx + c$ का कोई शून्यक नहीं है।

इस प्रकार, आप ज्यामितीय रूप में देख सकते हैं कि किसी द्विघात बहुपद के दो भिन्न शून्यक, या दो बराबर शून्यक (अर्थात् एक शून्यक) या कोई भी शून्यक नहीं, हो सकते हैं। इसका यह भी अर्थ है कि घात 2 के किसी बहुपद के अधिकतम दो शून्यक हो सकते हैं।

अब आप एक त्रिघात बहुपद के शून्यकों के ज्यामितीय अर्थ के बारे में क्या आशा कर सकते हैं? आइए इसे ज्ञात करें। त्रिघात बहुपद x^3-4x पर विचार कीजिए। इसे देखने के लिए कि $y=x^3-4x$ का ग्राफ कैसा लगता है, आइए x के कुछ मानों के संगत y के कुछ मानों को सारणी 2.2 में सूचीबद्ध करें।

सारणी 2.2

x	-2	-1	0	1	2
$y = x^3 - 4x$	0	3	0	-3	0

सारणी के बिंदुओं को एक ग्राफ पेपर पर अंकित करने और ग्राफ खींचने पर, हम देखते हैं कि $y=x^3-4x$ का ग्राफ वास्तव में आकृति 2.6 जैसा दिखता है।

बहुपद 19

उपर्युक्त सारणी से हम देखते हैं कि त्रिघात बहुपद $x^3 - 4x$ के शून्यक -2, 0 और 2 हैं। ध्यान दीजिए कि -2, 0 और 2 वास्तव में उन बिंदुओं के x—िनर्देशांक हैं, जहाँ $y = x^3 - 4x$ का ग्राफ x—अक्ष को प्रतिच्छेद करता है। क्योंकि वक्र x—अक्ष को केवल इन्हीं तीन बिंदुओं पर काटता है, इसलिए बहुपद के शून्यक केवल इन्हीं बिंदुओं के x—िनर्देशांक हैं।

अब हम कुछ अन्य उदाहरण लेते हैं। त्रिघात बहुपदों x^3 और $x^3 - x^2$ पर विचार कीजिए। हम $y = x^3$ तथा $y = x^3 - x^2$ के ग्राफ क्रमशः आकृति 2.7 और आकृति 2.8 में खींचते हैं।

ध्यान दीजिए कि बहुपद x^3 का केवल एक शून्यक 0 है। आकृति 2.7 से भी आप देख सकते हैं कि 0 केवल उस बिंदु का x-निर्देशांक है, जहाँ $y=x^3$ का ग्राफ x-अक्ष को प्रतिच्छेद करता है। इसी प्रकार, क्योंकि $x^3-x^2=x^2(x-1)$ है, इसिलए बहुपद x^3-x^2 के शून्यक केवल 0 और 1 हैं। आकृति 2.8 से भी ये मान केवल उन बिंदुओं के x-निर्देशांक हैं, जहाँ $y=x^3-x^2$ का ग्राफ x-अक्ष को प्रतिच्छेद करता है।

उपर्युक्त उदाहरणों से हम देखते हैं कि किसी त्रिघात बहुपद के अधिक से अधिक 3 शून्यक हो सकते हैं। दूसरे शब्दों में, घात 3 के किसी बहुपद के अधिक से अधिक तीन शून्यक हो सकते हैं।

टिप्पणी: व्यापक रूप में, घात n के दिए गए बहुपद p(x) के लिए, y = p(x) का ग्राफ x—अक्ष को अधिक से अधिक n बिंदुओं पर प्रतिच्छेद करता है। अतः घात n के किसी बहुपद के अधिक से अधिक n शून्यक हो सकते हैं।

उदाहरण 1 : नीचे दी गई आकृति 2.9 में, ग्राफों को देखिए। प्रत्येक आकृति y = p(x), जहाँ p(x) एक बहुपद है, का ग्राफ है। ग्राफों से प्रत्येक के लिए, p(x) के शून्यकों की संख्या ज्ञात कीजिए।

आकृति 2.9

बहुपद 21

हल:

(i) शून्यकों की संख्या 1 है, क्योंकि ग्राफ x-अक्ष को केवल एक बिंदु पर प्रतिच्छेद करता है।

- (ii) शून्यकों की संख्या 2 है, क्योंकि ग्राफ x-अक्ष को दो बिंदुओं पर प्रतिच्छेद करता है।
- (iii) शून्यकों की संख्या 3 है। (क्यों?)
- (iv) शून्यकों की संख्या 1 है। (क्यों?)
- (v) शून्यकों की संख्या 1 है। (क्यों?)
- (vi) शून्यकों की संख्या 4 है। (क्यों?)

प्रश्नावली 2.1

1. किसी बहुपद p(x) के लिए, y = p(x) का ग्राफ नीचे आकृति 2.10 में दिया है। प्रत्येक स्थिति में, p(x) के शून्यकों की संख्या ज्ञात कीजिए।

आकृति 2.10

2.3 किसी बहुपद के शून्यकों और गुणांकों में संबंध

आप पहले ही देख चुके हैं कि रैखिक बहुपद ax + b का शून्यक $-\frac{b}{a}$ होता है। अब हम किसी द्विघात बहुपद के शून्यकों और उसके गुणांकों के संबंध में अनुच्छेद 2.1 में

उठाए गए प्रश्न का उत्तर देने का प्रयत्न करेंगे। इसके लिए एक द्विघात बहुपद माना $p(x) = 2x^2 - 8x + 6$ लीजिए। कक्षा IX में, आप सीख चुके हैं कि मध्य पद को विभक्त करके कैसे किसी द्विघात बहुपद के गुणनखंड किए जाते हैं। इसलिए, यहाँ हमें मध्य पद '-8x' को दो ऐसे पदों के योग के रूप में विभक्त करना है जिनका गुणनफल $6 \times 2x^2 = 12x^2$ हो। अत:, हम लिखते हैं:

$$2x^2 - 8x + 6 = 2x^2 - 6x - 2x + 6 = 2x(x - 3) - 2(x - 3)$$
$$= (2x - 2)(x - 3) = 2(x - 1)(x - 3)$$

इसलिए, $p(x) = 2x^2 - 8x + 6$ का मान शून्य है, जब x - 1 = 0 या x - 3 = 0 है, अर्थात् जब x = 1 या x = 3 हो। अत:, $2x^2 - 8x + 6$ के शून्यक 1 और 3 हैं। ध्यान दीजिए:

शून्यकों का योग
$$= 1 + 3 = 4 = \frac{-(-8)}{2} = \frac{-(x \text{ का } 1) \text{ प्राप्त}}{x^2 \text{ का } 1}$$

शून्यकों का गुणनफल =
$$1 \times 3 = 3 = \frac{6}{2} = \frac{33}{x^2}$$
 का गुणांक

आइए, एक और द्विघात बहुपद, माना $p(x) = 3x^2 + 5x - 2$ लें। मध्य पद के विभक्त करने की विधि से,

$$3x^{2} + 5x - 2 = 3x^{2} + 6x - x - 2 = 3x(x+2) - 1(x+2)$$
$$= (3x-1)(x+2)$$

अत:, $3x^2 + 5x - 2$ का मान शून्य होगा यदि या तो 3x - 1 = 0 हो या x + 2 = 0 हो, अर्थात्

जब $x = \frac{1}{3}$ हो या x = -2 हो। इसलिए, $3x^2 + 5x - 2$ के शून्यक $\frac{1}{3}$ और -2 हैं। ध्यान दीजिए:

शून्यकों का योग
$$= \frac{1}{3} + (-2) = \frac{-5}{3} = \frac{-(x \text{ का गुणांक})}{x^2 \text{ का गुणांक}}$$
 शून्यकों का गुणनफल
$$= \frac{1}{3} \times (-2) = \frac{-2}{3} = \frac{3}{x^2 \text{ का गुणांक}}$$

व्यापक रूप में, यदि * α , β द्विघात बहुपद $p(x)=ax^2+bx+c, a\neq 0$ के शून्यक हों, तो आप जानते हैं कि $x-\alpha$ और $x-\beta, p(x)$ के गुणनखंड होते हैं। अत:,

$$ax^2 + bx + c = k(x - \alpha) (x - \beta)$$
, जहाँ k एक अचर है
$$= k[x^2 - (\alpha + \beta)x + \alpha \beta]$$
$$= kx^2 - k(\alpha + \beta)x + k \alpha \beta$$

^{*} α , β यूनानी भाषा के अक्षर हैं, जिन्हें क्रमश: अल्फा, बीटा द्वारा उच्चरित किया जाता है। बाद में हम एक और अक्षर γ का प्रयोग करेंगे, जिसे 'गामा' से उच्चरित किया जाता है।

दोनों ओर के x^2 , x के गुणांकों तथा अचर पदों की तुलना करने पर, हम पाते हैं:

$$a = k, b = -k(\alpha + \beta)$$
 और $c = k\alpha\beta$
 $\alpha + \beta = \frac{-b}{k}$

इससे प्राप्त होता है:

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

अर्थात

शून्यकों का योग =
$$\alpha + \beta = -\frac{b}{a} = \frac{-(x \text{ का } \text{ गुणांक})}{x^2 \text{ का } \text{ गुणांक}}$$

शून्यकों का गुणनफल =
$$\alpha\beta = \frac{c}{a} = \frac{3}{x^2} \frac{3}{5}$$
 का गुणांक

आइए कुछ उदाहरणों पर विचार करें।

उदाहरण 2: द्विघात बहुपद $x^2 + 7x + 10$ के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए।

हल: हम पाते हैं:

$$x^2 + 7x + 10 = (x + 2)(x + 5)$$

इसलिए $x^2 + 7x + 10$ का मान शून्य है, जब x + 2 = 0 है या x + 5 = 0 है, अर्थात् जब x = -2 या x = -5 हो। इसलिए, $x^2 + 7x + 10$ के शून्यक -2 और -5 हैं। अब,

शून्यकों का योग =
$$-2 + (-5) = -(7) = \frac{-(7)}{1} = \frac{-(x \text{ का } 1)}{x^2 \text{ an } 1}$$

शून्यकों का गुणनफल =
$$(-2) \times (-5) = 10 = \frac{10}{1} = \frac{3}{x^2}$$
 का गुणांक

उदाहरण 3: बहुपद x^2-3 के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए।

हल: सर्वसिमका $a^2 - b^2 = (a - b)(a + b)$ का स्मरण कीजिए। इसे प्रयोग कर, हम लिख सकते हैं:

$$x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})$$

इसलिए, x^2-3 का मान शून्य होगा, जब $x=\sqrt{3}$ हो या $x=-\sqrt{3}$ हो।

अत:, $x^2 - 3$ के शून्यक $\sqrt{3}$ और $-\sqrt{3}$ हैं। अब,

शून्यकों का योग =
$$\sqrt{3} - \sqrt{3} = 0 = \frac{-(x \text{ का गुणांक})}{x^2 \text{ का गुणांक}}$$

शून्यकों का गुणनफल =
$$(\sqrt{3})(-\sqrt{3}) = -3 = \frac{-3}{1} = \frac{3}{x^2}$$
 का गुणांक

उदाहरण 4: एक द्विघात बहुपद ज्ञात कीजिए, जिसके शून्यकों का योग तथा गुणनफल क्रमश: –3 और 2 हैं।

हल : माना द्विघात बहुपद $ax^2 + bx + c$ है और इसके शून्यक α और β हैं।

हम पाते हैं:

$$\alpha + \beta = -3 = \frac{-b}{a}$$

और

$$\alpha\beta = 2 = \frac{c}{a}$$

यदि a=1 है, तो b=3 और c=2 होगा।

अत:, एक द्विघात बहुपद, जिसमें दी गई शर्तें संतुष्ट होती हैं, $x^2 + 3x + 2$ है।

आप जाँच कर सकते हैं कि अन्य कोई द्विघात बहुपद, जो इन शर्तों को संतुष्ट करता हो, $k(x^2 + 3x + 2)$ की तरह का होगा, जहाँ k एक वास्तविक संख्या है।

आइए अब हम त्रिघात बहुपद की ओर दृष्टिपात करें। क्या आप सोचते हैं कि त्रिघात बहुपद के शून्यकों और उसके गुणांकों के बीच इसी प्रकार का संबंध होता है?

आइए
$$p(x) = 2x^3 - 5x^2 - 14x + 8$$
 पर विचार करें।

आप इसकी जाँच कर सकते हैं कि x=4, -2 और $\frac{1}{2}$ के लिए p(x)=0 है। क्योंकि p(x) के अधिक से अधिक तीन शून्यक हो सकते हैं, इसलिए $2x^3-5x^2-14x+8$ के यही शून्यक हैं। अब,

शून्यकों का योग =
$$4 + (-2) + \frac{1}{2} = \frac{5}{2} = \frac{-(-5)}{2} = \frac{-(x^2 \text{ का गुणांक})}{x^3 \text{ का गुणांक}}$$

शून्यकों का गुणनफल =
$$4 \times (-2) \times \frac{1}{2} = -4 = \frac{-8}{2} = \frac{-34}{x^3}$$
 का गुणांक

परंतु, यहाँ एक और संबंध भी है। दो शून्यकों को एक साथ लेकर उनके गुणनफलों के योग पर विचार करें। हम पाते हैं:

$${4 \times (-2)} + {(-2) \times \frac{1}{2}} + {\frac{1}{2} \times 4}$$

$$= -8 - 1 + 2 = -7 = \frac{-14}{2} = \frac{x \text{ का गुणांक}}{x^3 \text{ का गुणांक}}$$

व्यापक रूप में, यह सिद्ध किया जा सकता है कि यदि α , β , γ त्रिघात बहुपद $ax^3 + bx^2 + cx + d$ के शून्यक हों, तो

$$\alpha + \beta + \gamma = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-d}{a}$$

तथा

आइए एक उदाहरण पर विचार करें।

उदाहरण 5*: जाँच कीजिए कि त्रिघात बहुपद $p(x) = 3x^3 - 5x^2 - 11x - 3$ के शून्यक 3, -1 और $-\frac{1}{3}$ हैं। इसके पश्चात् शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए।

हला : दिए हुए बहुपद की $ax^3 + bx^2 + cx + d$ से तुलना करने पर, हम पाते हैं: a = 3, b = -5, c = -11, d = -3 है। पुन:, $p(3) = 3 \times 3^3 - (5 \times 3^2) - (11 \times 3) - 3 = 81 - 45 - 33 - 3 = 0$ $p(-1) = 3 \times (-1)^3 - 5 \times (-1)^2 - 11 \times (-1) - 3 = -3 - 5 + 11 - 3 = 0$ $p\left(-\frac{1}{3}\right) = 3 \times \left(-\frac{1}{3}\right)^3 - 5 \times \left(-\frac{1}{3}\right)^2 - 11 \times \left(-\frac{1}{3}\right) - 3$ $= -\frac{1}{9} - \frac{5}{9} + \frac{11}{3} - 3 = -\frac{2}{3} + \frac{2}{3} = 0$

अत:, $3x^3 - 5x^2 - 11x - 3$ के शून्यक 3, -1 और $-\frac{1}{3}$ हैं।

^{*} यह परीक्षा की दृष्टि से नहीं है।

इसलिए, हम
$$\alpha=3$$
, $\beta=-1$ और $\gamma=-\frac{1}{3}$ लेते हैं। अब,
$$\alpha+\beta+\gamma=3+(-1)+\left(-\frac{1}{3}\right)=2-\frac{1}{3}=\frac{5}{3}=\frac{-(-5)}{3}=\frac{-b}{a}$$

$$\alpha\beta+\beta\gamma+\gamma\alpha=3\times(-1)+(-1)\times\left(-\frac{1}{3}\right)+\left(-\frac{1}{3}\right)\times 3=-3+\frac{1}{3}-1=\frac{-11}{3}=\frac{c}{a}$$

और
$$\alpha\beta\gamma = 3 \times (-1) \times \left(-\frac{1}{3}\right) = 1 = \frac{-(-3)}{3} = \frac{-d}{a}$$
 है।

प्रश्नावली 2.2

1. निम्न द्विघात बहुपदों के शून्यक ज्ञात कीजिए और शून्यकों तथा गुणांकों के बीच के संबंध की सत्यता की जाँच कीजिए :

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x^2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

2. एक द्विघात बहुपद ज्ञात कीजिए, जिसके शून्यकों के योग तथा गुणनफल क्रमश: दी गई संख्याएँ हैं:

(i)
$$\frac{1}{4}$$
, -1

(ii)
$$\sqrt{2}$$
, $\frac{1}{3}$

(iii)
$$0, \sqrt{5}$$

(v)
$$-\frac{1}{4}, \frac{1}{4}$$

2.4 सारांश

इस अध्याय में, आपने निम्न तथ्यों का अध्ययन किया है:

- 1. घातों 1, 2 और 3 के बहुपद क्रमश: रैखिक बहुपद, द्विघात बहुपद एवं त्रिघात बहुपद कहलाते हैं।
- 2. एक द्विघात बहुपद $ax^2 + bx + c$, जहाँ a, b, c वास्तिवक संख्याएँ हैं और $a \neq 0$ है, के रूप का होता है।
- 3. एक बहुपद p(x) के शून्यक उन बिंदुओं के x-निर्देशांक होते हैं जहाँ y = p(x) का ग्राफ x-अक्ष को प्रतिच्छेद करता है।
- 4. एक द्विघात बहुपद के अधिक से अधिक दो शून्यक हो सकते हैं और एक त्रिघात बहुपद के अधिक से अधिक तीन शून्यक हो सकते हैं।

5. यदि द्विघात बहुपद ax^2+bx+c के शून्यक α और β हों, तो

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

6. यदि α , β , γ त्रिघात बहुपद ax^3+bx^2+cx+d के शून्यक हों, तो

$$\alpha + \beta + \gamma = \frac{-b}{a}$$

$$\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$$

और

$$\alpha \beta \gamma = \frac{-d}{a}$$

दो चर वाले रैखिक समीकरण युग्म

3

3.1 भूमिका

आपने इस प्रकार की स्थिति का सामना अवश्य किया होगा, जैसी नीचे दी गई है:

अखिला अपने गाँव के एक मेले में गई। वह एक चरखी (Giant wheel) की सवारी करना चाहती थी और हूपला (Hoopla) [एक खेल जिसमें आप एक स्टाल में रखी किसी वस्तु पर एक वलय (ring) को फेंकते हैं और यदि वह वस्तु को पूर्णरूप से घेर ले, तो आपको वह वस्तु मिल जाती है] खेलना चाहती थी। जितनी बार उसने हूपला खेल खेला उससे आधी बार उसने चरखी की सवारी की। यदि प्रत्येक बार की सवारी के लिए उसे ₹3 तथा हूपला खेलने के लिए ₹4 खर्च करने पड़े, तो आप कैसे ज्ञात करेंगे कि उसने कितनी बार चरखी की सवारी की और कितनी बार हूपला खेला, जबिक उसने इसके लिए कुल ₹20 खर्च किए?

हो सकता है कि आप इसे ज्ञात करने के लिए अलग-अलग स्थितियाँ लेकर चलें। यदि उसने एक बार सवारी की, क्या यह संभव है? क्या यह भी संभव है कि उसने दो बार

सवारी की? इत्यादि। अथवा आप कक्षा IX के ज्ञान का उपयोग करते हुए, इन स्थितियों को दो चरों वाले रैखिक समीकरणों द्वारा निरूपित कर सकते हैं। आइए इस प्रक्रिया को समझें।

अखिला द्वारा सवारी करने की संख्या को x तथा उसके द्वारा हूपला खेल खेलने की संख्या को y से निरूपित कीजिए। अब दी हुई स्थिति को दो समीकरणों द्वारा व्यक्त किया जा सकता है :

$$y = \frac{1}{2}x\tag{1}$$

$$3x + 4y = 20\tag{2}$$

क्या हम इस समीकरण युग्म का हल ज्ञात कर सकते हैं? इन्हें ज्ञात करने की कई विधियाँ हैं, जिनका हम इस अध्याय में अध्ययन करेंगे।

इसिलए, हमने कई स्थितियाँ देखी हैं जिन्हें एक रैखिक समीकरण युग्म द्वारा प्रदर्शित किया जा सकता है। हमने उनके बीजगणितीय और ज्यामितीय निरूपण देखे। अगले कुछ अनुच्छेदों में हम चर्चा करेंगे कि कैसे इन निरूपणों को एक रैखिक समीकरण युग्म के हल ज्ञात करने में उपयोग किया जा सकता है।

3.2 रैखिक समीकरण युग्म का ग्राफीय विधि से हल

एक रैखिक समीकरण युग्म, जिसका कोई हल नहीं होता, रैखिक समीकरणों का असंगत (inconsistent) युग्म कहलाता है। एक रैखिक समीकरण युग्म, जिसका हल होता है, रैखिक समीकरणों का संगत (consistent) युग्म कहलाता है। तुल्य रैखिक समीकरणों के एक युग्म के अपिरिमित रूप से अनेक हल होते हैं। इस युग्म को दो चरों के रैखिक समीकरणों का आश्रित (dependent) युग्म कहते हैं। ध्यान दीजिए कि रैखिक समीकरणों का आश्रित युग्म सदैव संगत होता है।

अब हम दो चरों में एक रैखिक समीकरण युग्म द्वारा निरूपित रेखाओं के व्यवहार को तथा हल के अस्तित्व होने को निम्न प्रकार से एक सारांश के रूप में व्यक्त कर सकते हैं:

- (i) रेखाएँ एक बिंदु पर प्रतिच्छेद कर सकती हैं। इस स्थिति में, समीकरण युग्म का अद्वितीय हल होता है (अविरोधी समीकरण युग्म)।
- (ii) रेखाएँ समांतर हो सकती हैं। इस स्थिति में, समीकरणों का कोई हल नहीं होता है (असंगत समीकरण युग्म)।

(iii) रेखाएँ संपाती हो सकती हैं। इस स्थिति में, समीकरणों के अपरिमित रूप से अनेक हल होते हैं [आश्रित (संगत) समीकरण युग्म]।

आइए अब हम निम्नलिखित रैखिक समीकरण युग्मों पर विचार करें।

(i)
$$x - 2y = 0$$
 और $3x + 4y - 20 = 0$ (रेखाएँ प्रतिच्छेद करती हैं)

(ii)
$$2x + 3y - 9 = 0$$
 और $4x + 6y - 18 = 0$ (रेखाएँ संपाती हैं)

(iii)
$$x + 2y - 4 = 0$$
 और $2x + 4y - 12 = 0$ (रेखाएँ समांतर हैं)

अब आइए सभी तीनों उदाहरणों में, $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ और $\frac{c_1}{c_2}$ के मान लिखें और उनकी तुलना करें। यहाँ a_1 , b_1 , c_1 और a_2 , b_2 , c_2 व्यापक रूप में दिए गए समीकरणों के गुणांक को व्यक्त करते हैं।

सारणी 3.1

क्र. सं.	रेखा युग्म	$\frac{a_1}{a_2}$	$\frac{b_1}{b_2}$	$\frac{c_1}{c_2}$	अनुपातों की तुलना	ग्राफीय निरूपण	बीजगणितीय निरूपण
2	x-2y=0 $3x+4y-20=0$ $2x+3y-9=0$ $4x+6y-18=0$ $x+2y-4=0$ $2x+4y-12=0$	$\frac{1}{3}$ $\frac{2}{4}$ $\frac{1}{2}$	$\frac{-2}{4}$ $\frac{3}{6}$ $\frac{2}{4}$		$a_2 = b_2$ $a_1 = b_1 = c_1$ $a_2 = c_1$	करती हुई रेखाएँ संपाती रेखाएँ	केवल एक हल (अद्वितीय) अपरिमित रूप से अनेक हल कोई हल नहीं

सारणी 3.1 से आप देख सकते हैं कि

$$a_1 x + b_1 y + c_1 = 0$$

और

$$a_2x + b_2y + c_2 = 0$$
 से निरूपित रेखाएँ:

(i) प्रतिच्छेद करती हैं, तो
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 है।

(ii) संपाती हैं, तो
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 है।

(iii) समांतर हैं, तो
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 है।

वास्तव में, इसका विलोम भी किसी भी रेखा युग्म के लिए सत्य है। आप कुछ और उदाहरण लेकर इसकी जाँच कर सकते हैं।

आइए अब इसको स्पष्ट करने के लिए कुछ उदाहरण लें।

उदाहरण 1: ग्राफ द्वारा जाँच कीजिए कि समीकरण युग्म

$$x + 3y = 6 \tag{1}$$

और
$$2x - 3y = 12 \tag{2}$$

संगत है। यदि ऐसा है, तो उन्हें ग्राफ द्वारा हल कीजिए।

हल: आइए समीकरणों (1) और (2) के ग्राफ खींचें। इसके लिए, हम प्रत्येक समीकरण के दो हल ज्ञात करते हैं, जो सारणी 3.2 में दिए हैं:

सारणी 3.2

х	0	6
$y = \frac{6-x}{3}$	2	0

x	0	3
$y = \frac{2x - 12}{3}$	-4	-2

एक ग्राफ पेपर पर बिंदुओं A(0,2), B(6,0), P(0,-4) और Q(3,-2) को आलेखित कीजिए, और बिंदुओं को मिलाकर रेखा AB और PQ आकृति 3.1 के अनुसार बनाइए।

हम देखते हैं कि रेखाओं AB और PQ में एक उभयनिष्ठ बिंदु B(6,0) है। इसलिए, रैखिक समीकरण युग्म का एक हल x=6,y=0 है, अर्थात् समीकरण युग्म संगत है।

आकृति 3.1

32

उदहारण 2 : ग्राफ द्वारा ज्ञात कीजिए कि निम्न समीकरण युग्म का हल नहीं है, अद्वितीय हल है अथवा अपरिमित रूप से अनेक हल हैं:

$$5x - 8y + 1 = 0 \tag{1}$$

$$3x - \frac{24}{5}y + \frac{3}{5} = 0 ag{2}$$

हल: समीकरण (2) को $\frac{5}{3}$ से गुणा करने पर, हम पाते हैं:

$$5x - 8y + 1 = 0$$

परंतु यह वही है जो समीकरण(1) है। अत:, समीकरणों(1) और(2) से निरूपित रेखाएँ संपाती हैं। इसलिए, समीकरणों(1) और(2) के अपरिमित रूप से अनेक हल हैं।

ग्राफ पर कुछ बिंदु अंकित कीजिए और स्वयं जाँच कर लीजिए।

उदाहरण 3: चंपा एक 'सेल' में कुछ पैंट और स्कर्ट खरीदने गई। जब उसकी सहेलियों ने पूछा कि प्रत्येक के कितने नग खरीदे, तो उसने उत्तर दिया, "स्कर्ट की संख्या खरीदी गई पैंटों की संख्या की दो गुनी से दो कम है। स्कर्ट की संख्या खरीदी गई पैंटों की संख्या की चार गुनी से भी चार कम है।" सहेलियों की यह जानने के लिए सहायता कीजिए कि चंपा ने कितनी पैंट और स्कर्ट खरीदीं।

हल: आइए हम पैंटों की संख्या को x तथा स्कर्ट की संख्या को y से निरूपित करें। तब, इनसे बनी समीकरण हैं:

$$y = 2x - 2 \tag{1}$$

$$y = 4x - 4 \tag{2}$$

अब आइए समीकरणों (1) और (2) के ग्राफ खींचने के लिए, प्रत्येक समीकरण के दो हल ज्ञात करें। ये सारणी 3.3 में दिए हैं:

सारणी 3.3

x	2	0
y = 2x - 2	2	- 2

х	0	1
y = 4x - 4	- 4	0

बिंदुओं को आलेखित कीजिए और समीकरणों को निरूपित करने के लिए उनसे जाने वाली रेखाएँ खींचिए, जैसा आकृति 3.2 में दिखाया गया है।

ये दोनों रेखाएँ बिंदु (1,0) पर प्रतिच्छेद करती हैं। इसलिए x=1,y=0 रैखिक समीकरण युग्म का अभीष्ट हल है, अर्थात् उसके द्वारा खरीदी गई पैंटों की संख्या 1 है और उसने कोई स्कर्ट नहीं खरीदी है।

आकृति 3.2

जाँच: (1) और (2) में x=1 और y=0 रखने पर हम पाते हैं कि दोनों समीकरण संतुष्ट हो जाती हैं।

प्रश्नावली 3.1

- निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए।
 - (i) कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़िकयों की संख्या लड़कों की संख्या से 4 अधिक हो, तो प्रतियोगिता में भाग लिए लड़कों और लड़िकयों की संख्या ज्ञात कीजिए।
 - (ii) 5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है, जबिक 7 पेंसिल तथा 5 कलमों का कुल मूल्य ₹ 46 है। एक पेंसिल का मूल्य तथा एक कलम का मूल्य ज्ञात कीजिए।
- 2. अनुपातों $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ और $\frac{c_1}{c_2}$ की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपित रेखाएँ एक बिंदू पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं :

(i)
$$5x-4y+8=0$$

 $7x+6y-9=0$

(ii)
$$9x + 3y + 12 = 0$$

 $18x + 6y + 24 = 0$

(iii)
$$6x-3y+10=0$$

 $2x-y+9=0$

3. अनुपातों $\frac{a_1}{a_2}$, $\frac{b_1}{b_2}$ और $\frac{c_1}{c_2}$ की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरणों के युग्म

संगत हैं या असंगत:

(i)
$$3x + 2y = 5$$
; $2x - 3y = 7$

(ii)
$$2x - 3y = 8$$
; $4x - 6y = 9$

(iii)
$$\frac{3}{2}x + \frac{5}{3}y = 7$$
; $9x - 10y = 14$

(iv)
$$5x-3y=11$$
; $-10x+6y=-22$

(v)
$$\frac{4}{3}x + 2y = 8$$
; $2x + 3y = 12$

4. निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल जात कीजिए।

(i)
$$x+y=5$$
, $2x+2y=10$

(ii)
$$x - y = 8$$
, $3x - 3y = 16$

(iii)
$$2x+y-6=0$$
, $4x-2y-4=0$

(iv)
$$2x-2y-2=0$$
, $4x-4y-5=0$

- 5. एक आयताकार बाग, जिसकी लंबाई, चौड़ाई से 4 m अधिक है, का अर्धपरिमाप 36 m है। बाग की विमाएँ ज्ञात कीजिए।
- 6. एक रैखिक समीकरण 2x + 3y 8 = 0 दी गई है। दो चरों में एक ऐसी और रैखिक समीकरण लिखिए ताकि प्राप्त युग्म का ज्यामितीय निरूपण जैसा कि
 - (i) प्रतिच्छेद करती रेखाएँ हों।
- (ii) समांतर रेखाएँ हों।

- (iii) संपाती रेखाएँ हों।
- 7. समीकरणों x-y+1=0 और 3x+2y-12=0 का ग्राफ खींचिए। x-अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।

3.3 एक रैखिक समीकरण युग्म को हल करने की बीजगणितीय विधि

पिछले अनुच्छेद में, हमने एक रैखिक समीकरण युग्म को हल करने के लिए ग्राफीय विधि की चर्चा की। ग्राफीय विधि उस स्थिति में सुविधाजनक नहीं होती है, जब रैखिक समीकरणों के हलों को निरूपित करने वाले बिंदुओं के निर्देशांक पूर्णांक न हों, जैसे $(\sqrt{3},2\sqrt{7})$,

 $(-1.75, 3.3), \left(\frac{4}{13}, \frac{1}{19}\right)$ आदि। इस प्रकार के बिंदुओं को पढ़ने में आवश्यक रूप से त्रुटि होने की संभावना रहती है। क्या हल ज्ञात करने की कोई अन्य विधि भी है? इसकी कई बीजगणितीय (बीजीय) विधियाँ हैं, जिनकी हम अब चर्चा करेंगे।

3.3.1 प्रतिस्थापन विधि: हम प्रतिस्थापन विधि को कुछ उदाहरण लेकर समझाएँगे।

उदाहरण 7 : प्रतिस्थापना विधि द्वारा निम्न रैखिक समीकरण युग्म को हल कीजिए :

$$7x - 15y = 2 (1)$$

$$x + 2y = 3 \tag{2}$$

हल:

चरण 1: हम किसी एक समीकरण को लेते हैं और किसी एक चर को दूसरे के पदों में लिखते हैं। आइए समीकरण (2)

$$x + 2y = 3,$$

को लें और इसे
$$x = 3 - 2y के रूप में लिखें।$$
 (3)

चरण 2:x का यह मान समीकरण (1) में प्रतिस्थापित कीजिए। हम पाते हैं:

$$7(3-2y) - 15y = 2$$
 अर्थात्
$$21 - 14y - 15y = 2$$
 अर्थात्
$$-29y = -19$$
 इसलिए
$$y = \frac{19}{29}$$

चरण 3:y का यह मान समीकरण (3) में प्रतिस्थापित करने पर, हम पाते हैं:

$$x = 3 - 2\left(\frac{19}{29}\right) = \frac{49}{29}$$
$$x = \frac{49}{29}, y = \frac{19}{29}$$

अतः हल है:
$$x = \frac{49}{29}, y = \frac{19}{29}$$

सत्यापन : $x = \frac{49}{29}$ और $y = \frac{19}{29}$ को प्रतिस्थापित करने पर, आप जाँच कर सकते हैं कि दोनों समीकरण (1) और (2) संतुष्ट हो जाते हैं।

प्रतिस्थापन विधि को और अधिक स्पष्ट रूप से समझने के लिए, आइए इस पर चरणबद्ध रूप से विचार करें।

उ6 गणित

चरण 1: एक चर का मान, माना y को दूसरे चर, माना x के पदों में किसी भी समीकरण से ज्ञात कीजिए, जो सुविधाजनक हो।

चरण 2: y के इस मान को दूसरे समीकरण में प्रतिस्थापित कीजिए और इसको एक चर x के समीकरण के रूप में बदलिए, जिसको हल किया जा सकता है। कभी-कभी, जैसा कि निम्न उदाहरणों 9 तथा 10 में है, आप बिना किसी चर के कथन प्राप्त कर सकते हैं। यदि यह कथन सत्य है, तो आप यह निर्णय कर सकते हैं कि रैखिक समीकरण युग्म के अपिरिमित रूप से अनेक हल हैं। यदि चरण 2 में प्राप्त कथन असत्य है, तो रैखिक समीकरण युग्म विरोधी है।

चरण 3: चरण 2 से प्राप्त x (अथवा y) का मान उस समीकरण, जिसे चरण 1 में प्रयोग किया है, में प्रतिस्थापित करके दूसरे चर का मान प्राप्त कीजिए।

टिप्पणी: हमने एक चर का मान दूसरे चर के पद में व्यक्त करके, रैखिक समीकरण युग्म को हल करने के लिए प्रतिस्थापित किया है। इसलिए इस विधि को प्रतिस्थापन विधि कहते हैं।

उदाहरण 5 : निम्नलिखित प्रश्न को प्रतिस्थापन विधि से हल कीजिए।

आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा।' (क्या यह मनोरंजक है?) इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।

हल: माना आफ़ताब और उसकी पुत्री की आयु (वर्षों में) क्रमश: s और t हैं। तब, उस स्थिति को निरूपित करने के लिए. रैखिक समीकरण यग्म है:

$$s-7=7$$
 $(t-7)$, अर्थात् $s-7t+42=0$ (1)

तथा

$$s+3=3(t+3)$$
, अर्थात् $s-3t=6$ (2)

समीकरण (2) का प्रयोग करने पर, हम पाते हैं: s = 3t + 6

समीकरण (1) में s का मान रखने पर, हम पाते हैं:

$$(3t+6)-7t+42=0$$

अर्थात्

4t = 48, जिससे t = 12 प्राप्त होता है।

t के इस मान को समीकरण (2) में रखने पर, हमें प्राप्त होता है:

$$s = 3(12) + 6 = 42$$

अत:, आफ़ताब और उसकी पुत्री क्रमश: 42 वर्ष और 12 वर्ष के हैं।

इस उत्तर की पुष्टि के लिए, यह जाँच कर लीजिए कि यह दी हुई समस्या के प्रतिबंधों को संतुष्ट करता है या नहीं।

उदाहरण 6: एक दुकान में, 2 पेंसिल और 3 रबडों का मुल्य ₹ 9 है और 4 पेंसिल और 6 रबड़ों का मूल्य ₹ 18 है। प्रत्येक पेंसिल और प्रत्येक रबड़ का मूल्य ज्ञात कीजिए। हल: रैखिक समीकरण युग्म जो बने थे वे हैं:

$$2x + 3y = 9 \tag{1}$$

$$4x + 6y = 18 (2)$$

हम पहले समीकरण 2x + 3y = 9 से, x का मान y के पदों में व्यक्त करते हैं और पाते हैं:

$$x = \frac{9 - 3y}{2} \tag{3}$$

अब हम x के इस मान को समीकरण (2) में प्रतिस्थापित करके प्राप्त करते हैं:

$$\frac{4(9-3y)}{2} + 6y = 18$$

अर्थात् अर्थात्

$$18 - 6y + 6y = 18$$

$$18 = 18$$

यह कथन y के सभी मानों के लिए सत्य है। यद्यपि, इससे y का कोई मान हल के रूप में नहीं प्राप्त होता है। इसलिए हम x का कोई निश्चित मान नहीं पाते हैं। यह स्थिति इसलिए पैदा हुई है कि दोनों दिए गए समीकरण एक ही हैं। अत: समीकरणों (1) और (2) के अपरिमित रूप से अनेक हल हैं। हम एक पेंसिल तथा एक रबड का अद्वितीय मुल्य नहीं प्राप्त कर सकते हैं, क्योंकि दी हुई स्थिति में बहुत से सार्व (सर्वनिष्ठ) हुल हैं।

उदाहरण 7 : दो रेल पटरियाँ, समीकरणों x + 2y - 4 = 0 और 2x + 4y - 12 = 0 द्वारा निरूपित की गई है। क्या रेल पटरियाँ एक दूसरे को काटेंगी?

हल: इसमें बनाए गए रैखिक समीकरण थे:

$$x + 2y - 4 = 0 (1)$$

$$2x + 4y - 12 = 0 (2)$$

समीकरण (1) से x को y के पदों में व्यक्त करके, हम पाते हैं:

$$x = 4 - 2y$$

अब,x के इस मान को समीकरण (2) में प्रतिस्थापित करके हम पाते हैं:

$$2(4-2y) + 4y - 12 = 0$$
$$8 - 12 = 0$$

अर्थात् अर्थात् -4 = 0 38

जो कि एक असत्य कथन है। अत:, दिए गए समीकरणों का कोई सार्व हल नहीं है। इसलिए, दोनों पटरियाँ एक दूसरे को नहीं काटेंगी।

प्रश्नावली 3.2

1. निम्न रैखिक समीकरण युग्म को प्रतिस्थापन विधि से हल कीजिए:

(i)
$$x+y=14$$

 $x-y=4$

(ii)
$$s - t = 3$$

 $\frac{s}{3} + \frac{t}{2} = 6$

(iii)
$$3x - y = 3$$

 $9x - 3y = 9$

(iv)
$$0.2x + 0.3y = 1.3$$

 $0.4x + 0.5y = 2.3$

(vi) $\frac{3x}{2} - \frac{5y}{3} = -2$

$$(v) \quad \sqrt{2}x + \sqrt{3}y = 0$$

$$\sqrt{3}x - \sqrt{8}y = 0$$

- 2x + 3y = 11 और 2x 4y = -24 को हल कीजिए और इससे 'm' का वह मान ज्ञात कीजिए जिसके लिए y = mx + 3 हो
- निम्न समस्याओं में रैखिक समीकरण युग्म बनाइए और उनके हल प्रतिस्थापन विधि द्वारा ज्ञात कीजिए:
 - (i) दो संख्याओं का अंतर 26 है और एक संख्या दूसरी संख्या की तीन गुनी है। उन्हें ज्ञात कीजिए।
 - (ii) दो संपूरक कोणों में बड़ा कोण छोटे कोण से 18 डिग्री अधिक है। उन्हें ज्ञात कीजिए।
 - (iii) एक क्रिकेट टीम के कोच ने 7 बल्ले तथा 6 गेदें ₹3800 में खरीदीं। बाद में, उसने 3 बल्ले तथा 5 गेंदें ₹1750 में खरीदी। प्रत्येक बल्ले और प्रत्येक गेंद का मूल्य ज्ञात कीजिए।
 - (iv) एक नगर में टैक्सी के भाड़े में एक नियत भाड़े के अतिरिक्त चली गई दूरी पर भाड़ा सिम्मिलित किया जाता है। 10 km दूरी के लिए भाड़ा ₹105 है तथा 15 km के लिए भाड़ा ₹155 है। नियत भाड़ा तथा प्रति km भाड़ा क्या है? एक व्यक्ति को 25 km यात्रा करने के लिए कितना भाड़ा देना होगा?
 - (v) यदि किसी भिन्न के अंश और हर दोनों में 2 जोड़ दिया जाए, तो वह $\frac{9}{11}$ हो जाती है। यदि अंश और हर दोनों में 3 जोड़ दिया जाए, तो वह $\frac{5}{6}$ हो जाती है। वह भिन्न ज्ञात कीजिए।
 - (vi) पाँच वर्ष बाद जैकब की आयु उसके पुत्र की आयु से तीन गुनी हो जाएगी। पाँच वर्ष पूर्व जैकब की आयु उसके पुत्र की आयु की सात गुनी थी। उनकी वर्तमान आयु क्या हैं?

3.3.2 विलोपन विधि

अब आइए एक और विधि पर विचार करें जिसे एक चर को विलुप्त करने की विधि कहा जाता है। यह कभी-कभी प्रतिस्थापन विधि से अधिक सुविधाजनक रहती है। आइए अब देखें कि यह विधि कैसे की जाती है।

उदाहरण 8: दो व्यक्तियों की आय का अनुपात 9: 7 है और उनके खर्चों का अनुपात 4:3 है। यदि प्रत्येक व्यक्ति प्रति महीने में 2000 रु बचा लेता है, तो उनकी मासिक आय ज्ञात कीजिए।

हल: आइए दोनों व्यक्तियों की मासिक आय को क्रमश: 9x रु तथा 7x रु से निरूपित करें और उनके खर्चों को क्रमश: 4y रु और 3y रु से निरूपित करें। तब, उस स्थिति में बने समीकरण हैं:

$$9x - 4y = 2000 \tag{1}$$

और

$$7x - 3y = 2000 (2)$$

चरण 1:y के गुणकों को समान करने के लिए समीकरण (1) को 3 से तथा समीकरण (2) को 4 से गुणा कीजिए। तब हम निम्नलिखित समीकरण प्राप्त करते हैं:

$$27x - 12y = 6000 \tag{3}$$

$$28x - 12y = 8000 \tag{4}$$

चरण 2:y को विलुप्त करने के लिए समीकरण (3) को समीकरण (4) में से घटाइए, क्योंकि y के गुणांक समान हैं, इसलिए हम पाते हैं:

$$(28x - 27x) - (12y - 12y) = 8000 - 6000$$

अर्थात्

$$x = 2000$$

चरण 3: x का मान (1) में प्रतिस्थापित करने पर, हम पाते हैं:

$$9(2000) - 4y = 2000$$

अर्थात्

$$y = 4000$$

अत: समीकरणों के युग्म का हल x = 2000, y = 4000 है। इसलिए, व्यक्तियों की मासिक आय क्रमश: ₹ 18000 तथा ₹ 14000 हैं।

सत्यापन: 18000: 14000 = 9: 7 है। साथ ही, उनके खर्चों का अनुपात

18000 – 2000 : 14000 – 2000 = 16000 : 12000 = 4 : 3 है।

टिप्पणी:

1. उपर्युक्त उदाहरण को हल करने में, उपयोग की गई विधि को विलोपन विधि (elimination method) कहते हैं, क्योंकि हम सर्वप्रथम एक चर को विलुप्त करके, एक चर में एक रैखिक समीकरण प्राप्त करते हैं। उपर्युक्त उदाहरण में, हमने y को विलुप्त किया है। हम x को भी विलुप्त कर सकते थे। इस प्रकार भी समीकरणों को हल करने का प्रयत्न कीजिए।

2. आप इसको हल करने के लिए प्रतिस्थापन विधि या ग्राफीय विधि का प्रयोग भी कर सकते थे। इन विधियों से भी हल कीजिए और देखिए कौन-सी विधि सबसे उपयुक्त है। आइए अब हम विलोपन विधि के प्रयोग के विभिन्न चरण बताएँ:

चरण 1: सर्वप्रथम दोनों समीकरणों को उपयुक्त शून्येतर अचरों से, किसी एक चर (x अथवा y) के गुणांकों को संख्यात्मक रूप में समान करने के लिए, गुणा कीजिए।

चरण 2 : पुन: एक समीकरण को दूसरे में जोड़ें या उसमें से घटाएँ जिससे कि एक चर विलुप्त हो जाए। यदि आप एक चर में समीकरण पाते हैं, तो चरण 3 में जाइए।

यदि चरण 2 में, हमें चर रहित एक सत्य कथन प्राप्त हो, तो मूल समीकरण युग्म के अपरिमित रूप से अनेक हल हैं।

यदि चरण 2 में, हमें एक चर रहित असत्य कथन मिले, तो मूल समीकरण युग्म का कोई हल नहीं है, अर्थात् यह असंगत है।

चरण 3: इस प्रकार एक चर $(x \times x)$ में प्राप्त समीकरण को, उस चर का मान ज्ञात करने के लिए. हल कीजिए।

चरण 4:x (या y) के इस मान को मूल समीकरणों में से किसी एक में, दूसरे चर का मान ज्ञात करने के लिए. प्रतिस्थापित कीजिए।

अब इसे समझाने के लिए, हम कुछ और उदाहरण हल करते हैं:

उदाहरण 9 : विलोपन विधि का प्रयोग करके, निम्न रैखिक समीकरण युग्म के सभी संभव हल ज्ञात कीजिए:

$$2x + 3y = 8 \tag{1}$$

$$4x + 6y = 7 \tag{2}$$

हल:

चरण 1: समीकरण (1) को 2 से तथा समीकरण (2) को 1 से, x के गुणांकों को समान करने के लिए, गुणा किरए। तब हम निम्न समीकरण पाते हैं:

$$4x + 6y = 16 (3)$$

$$4x + 6y = 7 \tag{4}$$

चरण 2: समीकरण (4) को समीकरण (3) में से घटाने पर,

(4x - 4x) + (6y - 6y) = 16 - 7

अर्थात्

0 = 9, जो एक असत्य कथन है।

अत:, समीकरणों के युग्म का कोई हल नहीं है।

उदाहरण 10: दो अंकों की एक संख्या एवं उसके अंकों को उलटने पर बनी संख्या का योग 66 है। यदि संख्या के अंकों का अंतर 2 हो, तो संख्या ज्ञात कीजिए। ऐसी संख्याएँ कितनी हैं?

हल: माना प्रथम संख्या की दहाई तथा इकाई के अंक क्रमश: x और y हैं। इसिलए, प्रथम संख्या को प्रसारित रूप में 10x + y लिख सकते हैं [उदाहरण के लिए, 56 = 10(5) + 6]।

जब अंक उलट जाते हैं, तो x इकाई का अंक बन जाता है तथा y दहाई का अंक। यह संख्या प्रसारित रूप में 10y + x है [उदाहरण के लिए, जब 56 को उलट दिया जाता है, तो हम पाते हैं: 65 = 10(6) + 5]।

दिए हुए प्रतिबंधों के अनुसार,

(10x + y) + (10y + x) = 66

अर्थात्

11(x+y) = 66

अर्थात

 $x + y = 6 \tag{1}$

हमें यह भी दिया गया है कि अंकों का अंतर 2 है। इसलिए,

या तो $x - y = 2 \tag{2}$

y-x=2 (3)

यदि x-y=2 है, तो (1) और (2) को विलोपन विधि से हल करने पर, x=4 और y=2 प्राप्त होता है। इस स्थिति में, हमें संख्या 42 प्राप्त होती है।

यदि y-x=2 है, तो (1) और (3) को विलोपन विधि से हल करने पर, हमें x=2 और y=4 प्राप्त होता है। इस स्थिति में, हमें संख्या 24 प्राप्त होती है। इस प्रकार ऐसी दो संख्याएँ 42 और 24 हैं।

सत्यापन : यहाँ 42 + 24 = 66 और 4 - 2 = 2 है तथा 24 + 42 = 66 और 4 - 2 = 2 है।

प्रश्नावली 3.3

1. निम्न समीकरणों के युग्म को विलोपन विधि तथा प्रतिस्थापना विधि से हल कीजिए। कौन-सी विधि अधिक उपयुक्त है?

(i)
$$x+y=5$$
 और $2x-3y=4$

(ii)
$$3x + 4y = 10$$
 और $2x - 2y = 2$

गणित

(iii)
$$3x - 5y - 4 = 0$$
 और $9x = 2y + 7$

(iii)
$$3x - 5y - 4 = 0$$
 और $9x = 2y + 7$ (iv) $\frac{x}{2} + \frac{2y}{3} = -1$ और $x - \frac{y}{3} = 3$

- 2. निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) विलोपन विधि से ज्ञात कीजिए:
 - (i) यदि हम अंश में 1 जोड़ दें तथा हर में से 1 घटा दें, तो भिन्न 1 में बदल जाती है। यदि हर में 1 जोड़ दें, तो यह $\frac{1}{2}$ हो जाती है। वह भिन्न क्या है?
 - (ii) पाँच वर्ष पूर्व नूरी की आयु सोनू की आयु की तीन गुनी थी। दस वर्ष पश्चात्, नूरी की आयु सोनू की आयु की दो गुनी हो जाएगी। नूरी और सोनू की आयु कितनी है।
 - (iii) दो अंकों की संख्या के अंकों का योग 9 है। इस संख्या का नौ गना, संख्या के अंकों को पलटने से बनी संख्या का दो गुना है। वह संख्या ज्ञात कीजिए।
 - (iv) मीना ₹ 2000 निकालने के लिए एक बैंक गई। उसने खजाँची से ₹ 50 तथा ₹ 100 के नोट देने के लिए कहा। मीना ने कुल 25 नोट प्राप्त किए। ज्ञात कीजिए कि उसने ₹ 50 और ₹ 100 के कितने-कितने नोट प्राप्त किए।
 - (v) किराए पर पुस्तकें देने वाले किसी पुस्तकालय का प्रथम तीन दिनों का एक नियत किराया है तथा उसके बाद प्रत्येक अतिरिक्त दिन का अलग किराया है। सरिता ने सात दिनों तक एक पुस्तक रखने के लिए ₹ 27 अदा किए, जबिक सूसी ने एक पुस्तक पाँच दिनों तक रखने के ₹ 21 अदा किए। नियत किराया तथा प्रत्येक अतिरिक्त दिन का किराया ज्ञात कीजिए।

3.4 सारांश

इस अध्याय में, आपने निम्न तथ्यों का अध्ययन किया है:

- 1. एक रैखिक समीकरण युग्म को ग्राफीय रूप में निरूपित किया जा सकता है और हल किया जा सकता है
 - (i) ग्राफीय विधि द्वारा
 - (ii) बीजगणितीय विधि द्वारा

2. ग्राफीय विधिः

दो चरों में एक रैखिक समीकरण युग्म का ग्राफ दो रेखाएँ निरूपित करता है।

- (i) यदि रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं तो, वह बिंदु दोनों समीकरण का अद्वितीय हल होता है। इस स्थिति में, समीकरण युग्म संगत होता है।
- (ii) यदि रेखाएँ संपाती हैं, तो उसके अपरिमित रूप से अनेक हल होते हैं—रेखा पर स्थित प्रत्येक बिंदु हल होता है। इस स्थिति में, समीकरण युग्म आश्रित (संगत) होता है।
- (iii) यदि रेखाएँ समांतर हैं, तो समीकरण युग्म का कोई हल नहीं होता है। इस स्थिति में, समीकरण युग्म असंगत होता है।
- बीजगणितीय विधि : हमने एक रैखिक समीकरण युग्म के हल ज्ञात करने के लिए निम्न विधियों की चर्चा की है:
 - (i) प्रतिस्थापन विधि
 - (ii) विलोपन विधि
 - (iii) वज्र-गुणन विधि
- **4.** यदि दिए गए रैखिक समीकरण $a_1x+b_1y+c_1=0$ और $a_2x+b_2y+c_2=0$ एक रैखिक समीकरण युग्म को प्रदर्शित करते हैं, तो निम्न स्थितियाँ उत्पन्न हो सकती हैं:
 - (i) $\frac{a_1}{a_2} \neq \frac{b_1}{b_1}$: इस स्थिति में, रैखिक समीकरण युग्म संगत होता है।
 - (ii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$: इस स्थिति में, रैखिक समीकरण युग्म असंगत होता है।
 - (iii) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$: इस स्थिति में, रैखिक समीकरण युग्म आश्रित (संगत) होता है।
- 5. अनेक स्थितियाँ हैं जिन्हें गणितीय रूप में ऐसी दो समीकरणों से प्रदर्शित किया जा सकता है, जो प्रारंभ में रैखिक नहीं हों। परंतु हम उन्हें परिवर्तित कर एक रैखिक समीकरण युग्म में बदल सकते हैं।

द्विघात समीकरण

4

4.1 भूमिका

अध्याय 2 में, आपने विभिन्न प्रकार के बहुपदों का अध्ययन किया है। $ax^2 + bx + c$, $a \neq 0$ एक प्रकार का द्विघात बहुपद था। जब हम इस बहुपद को शून्य के तुल्य कर देते हैं, तो हमें एक द्विघात समीकरण प्राप्त हो जाती है। वास्तिवक जीवन से संबंधित कई समस्याओं को हल करने में हम द्विघात समीकरणों का प्रयोग करते हैं। उदाहरणार्थ, मान लीजिए कि एक धर्मार्थ

ट्रस्ट 300 वर्ग मीटर क्षेत्रफल का प्रार्थना कक्ष बनाना चाहता है, जिसकी लंबाई उसकी चौड़ाई के दो गुने से एक मीटर अधिक हो। कक्ष की लंबाई और चौड़ाई क्या होनी चाहिए? माना कक्ष की चौड़ाई x मीटर है। तब, उसकी लंबाई (2x+1) मीटर होनी चाहिए। हम इस सूचना को चित्रीय रूप में आकृति 4.1 जैसा दिखा सकते हैं।

आकृति 4.1

अब

कक्ष का क्षेत्रफल = (2x + 1). $x m^2 = (2x^2 + x) m^2$

इसलिए

 $2x^2 + x = 300$ (दिया है)

अत:

$$2x^2 + x - 300 = 0$$

इसलिए, कक्ष की चौड़ाई, समीकरण $2x^2+x-300=0$, जो एक द्विघात समीकरण है, को संतुष्ट करना चाहिए।

अधिकांश लोग विश्वास करते हैं कि बेबीलोनवासियों ने ही सर्वप्रथम द्विघात समीकरणों को हल किया था। उदाहरण के लिए, वे जानते थे कि कैसे दो संख्याओं को ज्ञात किया जा सकता है, जिनका योग तथा गुणनफल दिया हो। ध्यान दीजिए कि यह समस्या द्विघात समीकरण 45

 $x^2-px+q=0$ के प्रकार के समीकरण को हल करने के तुल्य है। यूनानी गणितज्ञ यूक्लिड ने लंबाइयाँ ज्ञात करने की एक ज्यामितीय विधि विकसित की जिसको हम वर्तमान शब्दावली में द्विघात समीकरण के हल कहते हैं। व्यापक रूप में, द्विघात समीकरणों को हल करने का श्रेय बहुधा प्राचीन भारतीय गणितज्ञों को जाता है। वास्तव में, ब्रह्मगुप्त (सा.यु. 598-665) ने $ax^2+bx=c$ के रूप के द्विघात समीकरण को हल करने का एक स्पष्ट सूत्र दिया था। बाद में, श्रीधराचार्य (सा.यु. 1025) ने एक सूत्र प्रतिपादित किया, जिसे अब द्विघाती सूत्र के रूप में जाना जाता है, जो पूर्ण वर्ग विधि से द्विघात समीकरण को हल करने पर प्राप्त हुआ (जैसा भास्कर II ने लिखा)। एक अरब गणितज्ञ अल-ख्वारिज़्मी (लगभग सा.यु. 800) ने भी विभिन्न प्रकार के द्विघात समीकरणों का अध्ययन किया। अब्राह्म बार हिय्या हा–नासी यूरो ने 1145 में छपी अपनी पुस्तक 'लिबर इंबाडोरम' में विभिन्न द्विघात समीकरणों के पूर्ण हल दिए।

इस अध्याय में, आप द्विघात समीकरणों और उनके हल ज्ञात करने की विभिन्न विधियों का अध्ययन करेंगे। दैनिक जीवन की कई स्थितियों में भी आप द्विघात समीकरणों के कुछ उपयोग देखेंगे।

4.2 द्विघात समीकरण

चर x में एक द्विघात समीकरण $ax^2 + bx + c = 0$ के प्रकार की होती है, जहाँ a, b, c वास्तविक संख्याएँ हैं तथा $a \neq 0$ है। उदाहरण के लिए, $2x^2 + x - 300 = 0$ एक द्विघात समीकरण है। इसी प्रकार, $2x^2 - 3x + 1 = 0$, $4x - 3x^2 + 2 = 0$ और $1 - x^2 + 300 = 0$ भी द्विघात समीकरण हैं।

वास्तव में, कोई भी समीकरण p(x)=0, जहाँ p(x), घात 2 का एक बहुपद है, एक द्विघात समीकरण कहलाती है। परंतु जब हम p(x) के पद घातों के घटते क्रम में लिखते हैं, तो हमें समीकरण का मानक रूप प्राप्त होता है। अर्थात् $ax^2+bx+c=0$, $a\neq 0$, द्विघात समीकरण का मानक रूप कहलाता है।

द्विघात समीकरण हमारे आसपास के परिवेश की अनेक स्थितियों एवं गणित के विभिन्न क्षेत्रों में प्रयुक्त होते हैं। आइए हम कुछ उदाहरण लें।

उदाहरण 1 : निम्न स्थितियों को गणितीय रूप में व्यक्त कीजिए :

- (i) जॉन और जीवंती दोनों के पास कुल मिलाकर 45 कंचे हैं। दोनों पाँच-पाँच कंचे खो देते हैं और अब उनके पास कंचों की संख्या का गुणनफल 124 है। हम जानना चाहेंगे कि आरंभ में उनके पास कितने-कितने कंचे थे।
- (ii) एक कुटीर उद्योग एक दिन में कुछ खिलौने निर्मित करता है। प्रत्येक खिलौने का मूल्य(₹ में) 55 में से एक दिन में निर्माण किए गए खिलौने की संख्या को घटाने से

प्राप्त संख्या के बराबर है। किसी एक दिन, कुल निर्माण लागत ₹ 750 थी। हम उस दिन निर्माण किए गए खिलौनों की संख्या ज्ञात करना चाहेंगे।

हल:

(i) माना कि जॉन के कंचों की संख्या x थी। तब जीवंती के कंचों की संख्या = 45 - x (क्यों?) जॉन के पास, 5 कंचे खो देने के बाद, बचे कंचों की संख्या = x - 5 जीवंती के पास, 5 कंचे खोने के बाद, बचे कंचों की संख्या = 45 - x - 5 = 40 - x

अत: उनका गुणनफल
$$= (x - 5) (40 - x)$$
$$= 40x - x^2 - 200 + 5x$$
$$= -x^2 + 45x - 200$$

अब
$$-x^2 + 45x - 200 = 124$$
 (दिया है कि गुणनफल = 124)

अर्थात्
$$-x^2 + 45x - 324 = 0$$

अर्थात्
$$x^2 - 45x + 324 = 0$$

अत: जॉन के पास जितने कंचे थे, जो समीकरण

$$x^2 - 45x + 324 = 0$$

को संतुष्ट करते हैं।

(ii) माना उस दिन निर्मित खिलौनों की संख्या x है।

इसलिए, उस दिन प्रत्येक खिलौने की निर्माण लागत (रुपयों में) = 55 - x

अत:, उस दिन कुल निर्माण लागत (रुपयों में) = x(55-x)

इसलिए
$$x(55-x) = 750$$

अर्थात्
$$55x - x^2 = 750$$

अर्थात्
$$-x^2 + 55x - 750 = 0$$

अर्थात्
$$x^2 - 55x + 750 = 0$$

अत: उस दिन निर्माण किए गए खिलौनों की संख्या द्विघात समीकरण

$$x^2 - 55x + 750 = 0$$

को संतुष्ट करती है।

द्विघात समीकरण 47

उदाहरण 2 : जाँच कीजिए कि निम्न द्विघात समीकरण हैं या नहीं:

(i)
$$(x-2)^2 + 1 = 2x - 3$$

(i)
$$(x-2)^2 + 1 = 2x - 3$$
 (ii) $x(x+1) + 8 = (x+2)(x-2)$

(iii)
$$x(2x+3) = x^2 + 1$$

(iv)
$$(x+2)^3 = x^3 - 4$$

हल:

(i) बायाँ पक्ष = $(x-2)^2 + 1 = x^2 - 4x + 4 + 1 = x^2 - 4x + 5$

इसलिए $(x-2)^2+1=2x-3$ को

 $x^2 - 4x + 5 = 2x - 3$ लिखा जा सकता है।

$$x^2 - 6x + 8 = 0$$

यह $ax^2 + bx + c = 0$ के प्रकार का है।

अत: दिया गया समीकरण एक द्विघात समीकरण है।

(ii) $\frac{3}{4}$ $\frac{3}{4}$

इसलिए

$$x^2 + x + 8 = x^2 - 4$$

अर्थात

$$x + 12 = 0$$

यह $ax^2 + bx + c = 0$ के प्रकार का समीकरण नहीं है। इसलिए, दिया हुआ समीकरण एक द्विघात समीकरण नहीं है।

बायाँ पक्ष = $x(2x + 3) = 2x^2 + 3x$ (iii) यहाँ

अत:

$$x(2x+3) = x^2 + 1$$
 को लिखा जा सकता है:

$$2x^2 + 3x = x^2 + 1$$

इसलिए

$$x^2 + 3x - 1 = 0$$
 हमें प्राप्त होता है।

यह $ax^2 + bx + c = 0$ के प्रकार का समीकरण है।

अत: दिया गया समीकरण एक द्विघात समीकरण है।

बायाँ पक्ष = $(x + 2)^3 = x^3 + 6x^2 + 12x + 8$ (iv) यहाँ

 $(x+2)^3 = x^3 - 4$ को लिखा जा सकता है:

$$x^3 + 6x^2 + 12x + 8 = x^3 - 4$$

अर्थात

$$6x^2 + 12x + 12 = 0$$
 या $x^2 + 2x + 2 = 0$

यह $ax^2 + bx + c = 0$ के प्रकार का समीकरण है।

अत: दिया गया समीकरण एक द्विघात समीकरण है।

टिप्पणी: ध्यान दीजिए कि उपर्युक्त (ii) में, दिया गया समीकरण देखने में द्विघात समीकरण लगता है, परंतु यह द्विघात समीकरण नहीं है।

उपर्युक्त (iv) में, समीकरण देखने में त्रिघात (घात 3 का समीकरण) लगता है और द्विघात नहीं लगता है। परंतु वह द्विघात समीकरण निकलता है। जैसा आप देखते हैं समीकरण को यह तय करने कि वह द्विघात है अथवा नहीं, हमें उसका सरलीकरण करना आवश्यक है।

प्रश्नावली 4.1

1. जाँच कीजिए कि क्या निम्न द्विघात समीकरण हैं:

(i)
$$(x+1)^2 = 2(x-3)$$

(ii)
$$x^2 - 2x = (-2)(3 - x)$$

(iii)
$$(x-2)(x+1) = (x-1)(x+3)$$

(iv)
$$(x-3)(2x+1) = x(x+5)$$

(v)
$$(2x-1)(x-3) = (x+5)(x-1)$$

(vi)
$$x^2 + 3x + 1 = (x - 2)^2$$

(vii)
$$(x+2)^3 = 2x(x^2-1)$$

(viii)
$$x^3 - 4x^2 - x + 1 = (x - 2)^3$$

- 2. निम्न स्थितियों को द्विघात समीकरणों के रूप में निरूपित कीजिए:
 - (i) एक आयताकार भूखंड का क्षेत्रफल 528 m² है। क्षेत्र की लंबाई (मीटरों में) चौड़ाई के दुगुने से एक अधिक है। हमें भूखंड की लंबाई और चौड़ाई ज्ञात करनी है।
 - (ii) दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 306 है। हमें पूर्णांकों को ज्ञात करना है।
 - (iii) रोहन की माँ उससे 26 वर्ष बड़ी है। उनकी आयु (वर्षों में) का गुणनफल अब से तीन वर्ष पश्चात् 360 हो जाएगी। हमें रोहन की वर्तमान आयु ज्ञात करनी है।
 - (iv) एक रेलगाड़ी 480 km की दूरी समान चाल से तय करती है। यदि इसकी चाल 8 km/h कम होती, तो वह उसी दूरी को तय करने में 3 घंटे अधिक लेती। हमें रेलगाडी की चाल ज्ञात करनी है।

4.3 गुणनखंडों द्वारा द्विघात समीकरण का हल

द्विघात समीकरण $2x^2-3x+1=0$ पर विचार कीजिए। यदि हम इस समीकरण के बाएँ पक्ष में x को 1 से प्रतिस्थापित करें, तो हमें प्राप्त होता है: $(2\times 1^2)-(3\times 1)+1=0=$ समीकरण का दाँया पक्ष। हम कहते हैं कि 1 द्विघात समीकरण $2x^2-3x+1=0$ का एक मूल है। इसका यह भी अर्थ है कि 1 द्विघात बहुपद $2x^2-3x+1$ का एक शून्यक है।

व्यापक रूप में, एक वास्तविक संख्या α द्विघात समीकरण $ax^2 + bx + c = 0$, $a \neq 0$ का एक मूल कहलाती है, यदि a $\alpha^2 + b\alpha + c = 0$ हो। हम यह भी कहते हैं कि $x = \alpha$ द्विघात समीकरण का एक हल है अथवा α द्विघात समीकरण को संतुष्ट करता है। ध्यान दीजिए कि द्विघात बहुपद $ax^2 + bx + c$ के शून्यक और द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल एक ही हैं।

द्विघात समीकरण 49

आपने अध्याय 2 में, देखा है कि एक द्विघात बहुपद के अधिक से अधिक दो शून्यक हो सकते हैं। अत:, किसी द्विघात समीकरण के अधिक से अधिक दो मूल हो सकते हैं।

आपने कक्षा IX में सीखा है कि कैसे मध्य पद को विभक्त करके एक द्विघात बहुपद के गुणनखंड किए जा सकते हैं। हम इस ज्ञान का प्रयोग द्विघात समीकरण के मूल ज्ञात करने में करेंगे। आइए देखें कैसे।

उदाहरण 3: गुणनखंडन द्वारा समीकरण $2x^2 - 5x + 3 = 0$ के मूल ज्ञात कीजिए। हल: सर्वप्रथम, हम मध्य पद -5x को -2x - 3x [क्योंकि $(-2x) \times (-3x) = 6x^2 = (2x^2) \times 3$] के रूप में विभक्त करते हैं।

अत:, $2x^2 - 5x + 3 = 2x^2 - 2x - 3x + 3 = 2x(x - 1) - 3(x - 1) = (2x - 3)(x - 1)$ इसलिए, $2x^2 - 5x + 3 = 0$ को (2x - 3)(x - 1) = 0 के रूप में पुन: लिखा जा सकता है। अत:, x के वे मान जिनके लिए $2x^2 - 5x + 3 = 0$ वही है, जो (2x - 3)(x - 1) = 0 से प्राप्त है, अर्थात् 2x - 3 = 0 या x - 1 = 0 से प्राप्त होंगे।

अब, 2x-3=0, $x=\frac{3}{2}$ देता है और x-1=0, x=1 देता है।

अत:, $x = \frac{3}{2}$ और x = 1 दिए हुए समीकरण के हल हैं।

दूसरे शब्दों में, 1 और $\frac{3}{2}$ समीकरण $2x^2 - 5x + 3 = 0$ के मूल हैं।

जाँच कीजिए कि ये ही दिए गए समीकरण के मूल हैं।

ध्यान दीजिए कि हमने समीकरण $2x^2 - 5x + 3 = 0$ के मूलों को $2x^2 - 5x + 3$ के दो रैखिक गुणनखंडों में गुणनखंडित करके और प्रत्येक गुणनखंड को शून्य के बराबर करके प्राप्त किए हैं।

उदाहरण 4 : द्विघात समीकरण $6x^2 - x - 2 = 0$ के मूल ज्ञात कीजिए। **हल** : हमें प्राप्त है:

$$6x^{2} - x - 2 = 6x^{2} + 3x - 4x - 2$$
$$= 3x (2x + 1) - 2 (2x + 1)$$
$$= (3x - 2)(2x + 1)$$

 $6x^2 - x - 2 = 0$ के मूल x के वे मान हैं, जिनके लिए (3x - 2)(2x + 1) = 0 हो।

इसलिए
$$3x - 2 = 0$$
 या $2x + 1 = 0$ अर्थात् $x = \frac{2}{3}$ या $x = -\frac{1}{2}$

अत:
$$6x^2 - x - 2 = 0$$
 के मूल $\frac{2}{3}$ और $-\frac{1}{2}$ हैं।

हम मूलों के सत्यापन के लिए यह जाँच करते हैं कि $\frac{2}{3}$ और $-\frac{1}{2}$ समीकरण $6x^2-x-2=0$ को संतुष्ट करते हैं या नहीं।

उदाहरण 5 : द्विघात समीकरण $3x^2 - 2\sqrt{6}x + 2 = 0$ के मूल ज्ञात कीजिए।

$$3x^{2} - 2\sqrt{6}x + 2 = 3x^{2} - \sqrt{6}x - \sqrt{6}x + 2$$

$$= \sqrt{3}x(\sqrt{3}x - \sqrt{2}) - \sqrt{2}(\sqrt{3}x - \sqrt{2})$$

$$= (\sqrt{3}x - \sqrt{2})(\sqrt{3}x - \sqrt{2})$$

अतः समीकरण के मूल x के वे मान हैं, जिनके लिए

$$\left(\sqrt{3}\,x - \sqrt{2}\right)\left(\sqrt{3}\,x - \sqrt{2}\right) = 0$$

अब
$$x = \sqrt{\frac{2}{3}}$$
 के लिए, $\sqrt{3}x - \sqrt{2} = 0$ है।

अत: यह मूल, गुणनखंड $\sqrt{3}x-\sqrt{2}$ के दो बार आने के कारण, दो बार आता है, अर्थात् इस मूल की पुनरावृत्ति होती है।

इसलिए
$$3x^2 - 2\sqrt{6}x + 2 = 0$$
 के मूल $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$ हैं।

उदाहरण 6: अनुच्छेद 4.1 में दिए गए प्रार्थना कक्ष की विमाएँ ज्ञात कीजिए।

हल: अनुच्छेद 4.1 में हमने ज्ञात किया था कि यदि कक्ष की चौड़ाई x m हो, तो x समीकरण $2x^2 + x - 300 = 0$ को संतुष्ट करता है। गुणनखंडन विधि का प्रयोग कर, हम इस समीकरण को निम्न प्रकार से लिखते हैं:

$$2x^2 - 24x + 25x - 300 = 0$$

या $2x(x-12) + 25(x-12) = 0$
अर्थात् $(x-12)(2x+25) = 0$

द्विघात समीकरण 51

अतः, दिए गए समीकरण के मूल x=12 या x=-12.5 हैं। क्योंकि x कक्ष की चौड़ाई है, यह ऋणात्मक नहीं हो सकती।

इसलिए, कक्ष की चौड़ाई 12 m है। इसकी लंबाई = 2x + 1 = 25 m होगी।

प्रश्नावली 4.2

1. गुणनखंड विधि से निम्न द्विघात समीकरणों के मूल ज्ञात कीजिए:

(i)
$$x^2 - 3x - 10 = 0$$

(ii)
$$2x^2 + x - 6 = 0$$

(iii)
$$\sqrt{2} x^2 + 7x + 5\sqrt{2} = 0$$

(iv)
$$2x^2 - x + \frac{1}{8} = 0$$

(v)
$$100x^2 - 20x + 1 = 0$$

- 2. उदाहरण 1 में दी गई समस्याओं को हल कीजिए।
- 3. ऐसी दो संख्याएँ ज्ञात कीजिए, जिनका योग 27 हो और गुणनफल 182 हो।
- 4. दो क्रमागत धनात्मक पूर्णांक ज्ञात कीजिए जिनके वर्गों का योग 365 हो।
- एक समकोण त्रिभुज की ऊँचाई इसके आधार से 7 cm कम है। यदि कर्ण 13 cm का हो, तो अन्य दो भुजाएँ ज्ञात कीजिए।
- 6. एक कुटीर उद्योग एक दिन में कुछ बर्तनों का निर्माण करता है। एक विशेष दिन यह देखा गया कि प्रत्येक नग की निर्माण लागत (₹ में) उस दिन के निर्माण किए बर्तनों की संख्या के दुगुने से 3 अधिक थी। यदि उस दिन की कुल निर्माण लागत ₹ 90 थी, तो निर्मित बर्तनों की संख्या और प्रत्येक नग की लागत ज्ञात कीजिए।

4.4 मुलों की प्रकृति

समीकरण $ax^2 + bx + c = 0$ के मूल

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

द्वारा देय होते हैं। यदि $b^2 - 4ac > 0$ है, तो हम दो भिन्न वास्तविक मूल $-\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}$

और
$$-\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$
 प्राप्त करते हैं।

यदि
$$b^2 - 4ac = 0$$
 है तो $x = -\frac{b}{2a} \pm 0$, अर्थात् $x = -\frac{b}{2a}$ या $-\frac{b}{2a}$ है।

अत:, समीकरण
$$ax^2 + bx + c = 0$$
 के दोनों मूल $\frac{-b}{2a}$ हैं।

इसलिए, हम कहते हैं कि इस स्थिति में द्विघात समीकरण $ax^2 + bx + c = 0$ के दो बराबर वास्तविक मूल हैं।

यदि $b^2 - 4ac < 0$ है, तो ऐसी कोई वास्तविक संख्या नहीं है, जिसका वर्ग $b^2 - 4ac$ हो। अत: दिए हुए द्विघात समीकरण के इस स्थिति में कोई वास्तविक मूल नहीं हैं।

क्योंकि $b^2 - 4ac$ यह निश्चित करता है कि द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल वास्तविक हैं अथवा नहीं, $b^2 - 4ac$ को इस द्विघात समीकरण का विविक्तकर (Discriminant) कहते हैं।

अत:, द्विघात समीकरण $ax^2 + bx + c = 0$ के

- (i) दो भिन्न वास्तविक मूल होते हैं, यदि $b^2 4ac > 0$ हो
- (ii) दो बराबर वास्तविक मूल होते हैं, यदि $b^2 4ac = 0$ हो
- (iii) कोई वास्तविक मूल नहीं होता, यदि $b^2 4ac < 0$ हो आइए कुछ उदाहरणों पर विचार करें।

उदाहरण 7 : द्विघात समीकरण $2x^2 - 4x + 3 = 0$ का विविक्तकर ज्ञात कीजिए और फिर मूलों की प्रकृति ज्ञात कीजिए।

हल: दिया गया समीकरण $ax^2 + bx + c = 0$ के प्रकार का है, जहाँ a = 2, b = -4 और c = 3 है। इसलिए, विविक्तकार

$$b^2 - 4ac = (-4)^2 - (4 \times 2 \times 3) = 16 - 24 = -8 < 0$$
 है।

अत:, दिए गए समीकरण के कोई वास्तविक मूल नहीं हैं।

उदाहरण 8:13 मीटर व्यास वाले एक वृत्ताकार पार्क की परिसीमा के एक बिंदु पर एक खंभा इस प्रकार गाड़ना है कि इस पार्क के एक व्यास के दोनों अंत बिंदुओं पर बने फाटकों A और B से खंभे की दूरियों का अंतर 7 मीटर हो। क्या ऐसा करना संभव है? यदि है, तो दोनों फाटकों से कितनी दूरियों पर खंभा गाड़ना है?

हल: आइए सर्वप्रथम एक चित्र बनाएँ (देखिए आकृति 4.2)।

माना खंभे की अभीष्ट स्थिति P है। माना खंभे की फाटक B से दूरी x m है अर्थात् BP = x m है। अब खंभे की दोनों फाटकों की दूरियों का अंतर = AP - BP (या BP - AP) = 7 m है। इसलिए, AP = (x + 7) m होगा।

साथ ही, AB = 13m है। चूँिक AB व्यास है, इसलिए

$$\angle APB = 90^\circ$$
 (क्यों?)
इसलिए $AP^2 + PB^2 = AB^2$ (पाइथागोरस प्रमेय द्वारा)
अर्थात् $(x+7)^2 + x^2 = 13^2$
अर्थात् $x^2 + 14x + 49 + x^2 = 169$
अर्थात् $2x^2 + 14x - 120 = 0$

अत: खंभे की फाटक B से दूरी 'x' समीकरण $x^2 + 7x - 60 = 0$ को संतुष्ट करती है। यह देखने के लिए कि ऐसा संभव है अथवा नहीं, आइए इसके विविक्तकर पर विचार करें। विविक्तकर है:

$$b^2 - 4ac = 7^2 - 4 \times 1 \times (-60) = 289 > 0$$

अत:, दिए गए द्विघात समीकरण के दो वास्तविक मूल हैं और इसीलिए खंभे को पार्क की परिसीमा पर गाड़ा जा सकना संभव है।

द्विघात समीकरण $x^2 + 7x - 60 = 0$ को द्विघाती सूत्र से हल करने पर, हम पाते हैं:

$$x = \frac{-7 \pm \sqrt{289}}{2} = \frac{-7 \pm 17}{2}$$

इसलिए.x = 5 या -12 है।

चूँकि x खंभे और फाटक B के बीच की दूरी है, यह धनात्मक होना चाहिए। इसिलए, x=-12 को छोड़ देते हैं। अत:, x=5 है।

इस प्रकार, खंभे को पार्क की परिसीमा पर फाटक B से 5m और फाटक A से $\sqrt{13^2-5^2}=12m$ की दूरी पर गाड़ना है।

उदाहरण 9: समीकरण $3x^2 - 2x + \frac{1}{3} = 0$ का विविक्तकर ज्ञात कीजिए और फिर मूलों की प्रकृति ज्ञात कीजिए। यदि वे वास्तविक है, तो उन्हें ज्ञात कीजिए।

हल: यहाँ
$$a = 3, b = -2, c = \frac{1}{3}$$
 है।

इसलिए विविक्तकर $b^2 - 4ac = (-2)^2 - 4 \times 3 \times \frac{1}{3} = 4 - 4 = 0$ है।

अत: द्विघात समीकरण के दो बराबर वास्तविक मूल हैं।

ये मूल
$$\frac{-b}{2a}, \frac{-b}{2a}$$
, अर्थात् $\frac{2}{6}, \frac{2}{6}$, अर्थात् $\frac{1}{3}, \frac{1}{3}$ हैं।

प्रश्नावली 4.3

- 1. निम्न द्विघात समीकरणों के मूलों की प्रकृति ज्ञात कीजिए। यदि मूलों का अस्तित्व हो तो उन्हें ज्ञात कीजिए:
 - (i) $2x^2 3x + 5 = 0$

(ii) $3x^2 - 4\sqrt{3}x + 4 = 0$

(iii) $2x^2 - 6x + 3 = 0$

2. निम्न प्रत्येक द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।

(i) $2x^2 + kx + 3 = 0$

(ii) kx(x-2)+6=0

- 3. क्या एक ऐसी आम की बिगया बनाना संभव है जिसकी लंबाई, चौड़ाई से दुगुनी हो और उसका क्षेत्रफल 800 m² हो? यदि है, तो उसकी लंबाई और चौडाई ज्ञात कीजिए।
- क्या निम्न स्थिति संभव है? यदि है तो उनकी वर्तमान आयु ज्ञात कीजिए।
 दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।
- 5. क्या परिमाप 80 m तथा क्षेत्रफल 400 m² के एक पार्क को बनाना संभव है? यदि है, तो उसकी लंबाई और चौड़ाई ज्ञात कीजिए।

4.5 सारांश

इस अध्याय में, आपने निम्न तथ्यों का अध्ययन किया है:

- 1. चर x में एक द्विघात समीकरण $ax^2 + bx + c = 0$ के प्रकार का होता है, जहाँ a, b, c वास्तविक संख्याएँ हैं और $a \neq 0$ है।
- 2. एक वास्तिवक संख्या α द्विघात समीकरण $ax^2 + bx + c = 0$ का एक मूल कहलाती है, यिद $a\alpha^2 + b\alpha + c = 0$ हो। द्विघात बहुपद $ax^2 + bx + c$ के शून्यक और द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल एक ही होते हैं।
- 3. यदि हम $ax^2 + bx + c$, $a \neq 0$ के दो रैखिक गुणकों में गुणनखंड कर सकें, तो द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल, प्रत्येक गुणक को शून्य के बराबर करके, प्राप्त कर सकते हैं।
- 4. द्विघाती सूत्र: द्विघात समीकरण $ax^2 + bx + c = 0$ के मूल $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$ द्वारा देय होते हैं, यदि $b^2 4ac \ge 0$ हो।

द्विघात समीकरण 55

- 5. एक द्विघात समीकरण $ax^2 + bx + c = 0$, $a \neq 0$ में,
 - (i) दो भिन्न वास्तविक मूल होते हैं, यदि $b^2 4ac > 0$ हो।
 - (ii) दो बराबर मूल (अर्थात् संपाती वास्तविक मूल) होते हैं, यदि $b^2-4ac=0$ हो और
 - (iii) कोई वास्तविक मूल नहीं होते हैं, यदि $b^2 4ac < 0$ हो।

समांतर श्रेढ़ियाँ

5

5.1 भूमिका

आपने इस पर अवश्य ध्यान दिया होगा कि प्रकृति में, अनेक वस्तुएँ एक निश्चित प्रतिरूप (pattern) का अनुसरण करती हैं, जैसे कि सूरजमुखी के फूल की पंखुड़ियाँ, मधु-कोष (या मधु-छत्ते) में छिद्र, एक भुट्टे पर दाने, एक अनन्नास और एक पाइन कोन (pine cone) पर सर्पिल, इत्यादि

अब हम अपने दैनिक जीवन में आने वाले प्रतिरूपों की ओर देखते हैं। ऐसे कुछ उदाहरण हैं:

- (i) रीना ने एक पद के लिए आवेदन किया और उसका चयन हो गया। उसे यह पद ₹ 8000 के मासिक वेतन और ₹ 500 वार्षिक की वेतन वृद्धि के साथ दिया गया। उसका वेतन (₹ में) पहले वर्ष, दूसरे वर्ष, तीसरे वर्ष, इत्यादि के लिए क्रमश: 8000, 8500, 9000,...होगा।
- (ii) एक सीढ़ी के डंडों की लंबाइयाँ नीचे से ऊपर की ओर एक समान रूप से 2 cm घटती जाती हैं। (देखिए आकृति 5.1)। सबसे नीचे वाला डंडा लंबाई में 45 cm है। नीचे से, पहले, दूसरे, तीसरे, . . . डंडों की लंबाइयाँ (cm में) क्रमश: 45.43.41.39.37.35.33 और 31 हैं।

आकृति 5.1

(iii) किसी बचत योजना में, कोई धनराशि प्रत्येक 3 वर्षों के बाद स्वयं की $\frac{5}{4}$ गुनी हो जाती

है। ₹8000 के निवेश की 3, 6, 9 और 12 वर्षों के बाद परिपक्वता राशियाँ (रुपयों में) क्रमश:

10000, 12500, 15625, और 19531.25 हैं।

(iv) भुजाओं 1, 2, 3, . . . मात्रकों (units) वाले वर्गों में मात्रक वर्गों की संख्याएँ (देखिए आकृति 5.2) क्रमश: 1², 2², 3², . . . हैं।

आकृति 5.2

(v) शकीला अपनी पुत्री की गुल्लक में ₹ 100 तब डालती है, जब वह एक वर्ष की हो जाती है तथा प्रत्येक वर्ष इसमें ₹ 50 की वृद्धि करती जाती है। उसके पहले, दूसरे, तीसरे, चौथे, ... जन्म दिवसों पर उसकी गुल्लक में डाली गई राशियाँ (रुपयों में) क्रमश:

100, 150, 200, 250, ... होंगी।

(vi) खरगोशों का एक युग्म अपने पहले महीने में प्रजनन करने के योग्य नहीं है। दूसरे और प्रत्येक आने वाले महीने में वे एक नए युग्म का प्रजनन करते हैं। प्रत्येक नया युग्म अपने दूसरे महीने और प्रत्येक आने वाले महीने में एक नए युग्म का प्रजनन करता है (देखिए आकृति 5.3)। यह मानते हुए कि किसी खरगोश की मृत्यु नहीं होती है, पहले, दूसरे, तीसरे, . . ., छठे महीने के प्रारंभ में खरगोशों के युग्मों की संख्या क्रमश: 1, 1, 2, 3, 5 और 8 होगी।

58

उपरोक्त उदाहरणों में, हम कुछ प्रतिरूप देखते हैं। कुछ में, हम देखते हैं कि उत्तरोत्तर पद अपने से पहले पद में एक स्थिर संख्या जोड़ने से प्राप्त होते हैं; कुछ में ये पद अपने से पहले पद को एक निश्चित संख्या से गुणा करके प्राप्त होते हैं तथा कुछ अन्य में हम यह देखते हैं कि ये क्रमागत संख्याओं के वर्ग हैं, इत्यादि।

इस अध्याय में, हम इनमें से एक प्रतिरूप का अध्ययन करेंगे जिसमें उत्तरोत्तर पद अपने से पहले पदों में एक निश्चित संख्या जोड़ने पर प्राप्त किए जाते हैं। हम यह भी देखेंगे कि इनके nवें पद और n क्रमागत पदों के योग किस प्रकार ज्ञात किए जाते हैं तथा इस ज्ञान का प्रयोग कुछ दैनिक जीवन की समस्याओं को हल करने में करेंगे।

5.2 समांतर श्रेढ़ियाँ

संख्याओं की निम्नलिखित सूचियों (lists) पर विचार कीजिए:

- (i) 1, 2, 3, 4, ...
- (ii) 100, 70, 40, 10, . . .
- (iii) -3, -2, -1, 0, . . .
- (iv) 3, 3, 3, 3, ...
- (v) -1.0, -1.5, -2.0, -2.5, . . .

सूची की प्रत्येक संख्या एक पद (term) कहलाता है।

उपरोक्त सूचियों में से प्रत्येक सूची में, यदि आपको एक पद दिया हो, तो क्या आप उसका अगला पद लिख सकते हैं? यदि हाँ, तो आप ऐसा कैसे करेंगे? शायद, किसी प्रतिरूप या नियम का अनुसरण करते हुए, आप ऐसा करेंगे। आइए, उपरोक्त सूचियों को देखें और इनमें संबद्ध नियम को लिखें।

- (i) में प्रत्येक पद अपने पिछले पद से 1 अधिक है।
- (ii) में प्रत्येक पद अपने पिछले पद से 30 कम है।
- (iii) में प्रत्येक पद अपने पिछले पद में 1 जोड़ने से प्राप्त होता है।
- (iv) में सभी पद 3 हैं, अर्थात् प्रत्येक पद अपने पिछले पद में शून्य जोड़कर (या उसमें से शून्य घटा कर प्राप्त होता है।)
- (v) में प्रत्येक पद अपने पिछले पद में 0.5 जोड़कर (अर्थात् उसमें से 0.5 घटाकर) प्राप्त होता है।

उपरोक्त सूचियों में से प्रत्येक में हम देखते हैं कि उत्तरोत्तर पदों को इनसे पहले पदों

में एक निश्चित संख्या जोड़कर प्राप्त किया जाता है। संख्याओं की ऐसी सूची को यह कहा जाता है कि वे एक समांतर श्रेढ़ी (Arithmetic Progression या A.P.) बना रहे हैं।

अतः, एक समांतर श्रेढ़ी संख्याओं की एक ऐसी सूची है जिसमें प्रत्येक पद (पहले पद के अतिरिक्त) अपने पद में एक निश्चित संख्या जोड़ने पर प्राप्त होता है।

यह निश्चित संख्या A.P. का **सार्व अंतर (common difference)** कहलाती है। याद रखिए, यह सार्व अंतर **धनात्मक, ऋणात्मक या शून्य** हो सकता है।

आइए एक A.P. के पहले पद को a_1 दूसरे पद को a_2,\ldots,n वें पद को a_n तथा सार्व अंतर को d से व्यक्त करें। तब, A.P., a_1,a_2,a_3,\ldots,a_n हो जाती है।

अत:
$$a_2 - a_1 = a_3 - a_2 = \ldots = a_n - a_{n-1} = d$$
 है।

A.P. के कुछ अन्य उदाहरण निम्नलिखित हैं:

- (a) किसी स्कूल की प्रात:कालीन सभा में एक पंक्ति में खड़े हुए कुछ विद्यार्थियों की ऊँचाइयाँ (cm में) 147, 148, 149, . . ., 157 हैं।
- (b) किसी शहर में, जनवरी मास में किसी सप्ताह में लिए गए न्यूनतम तापमान (डिग्री सेल्सियस में) आरोही क्रम में लिखने पर

$$-3.1, -3.0, -2.9, -2.8, -2.7, -2.6, -2.5$$
 हैं।

- (c) ₹ 1000 के एक ऋण में से प्रत्येक मास 5% ऋण की राशि वापिस करने पर शेष राशियाँ (₹ में) 950,900,850,800,...,50 हैं।
- (d) किसी स्कूल द्वारा कक्षाओं I से XII तक के सर्वाधिक अंक पाने वाले विद्यार्थियों को दिए जाने वाले नकद पुरस्कार (₹ में) क्रमश: 200, 250, 300, 350, . . . , 750 हैं।
- (e) जब प्रति मास ₹ 50 की बचत की जाती है, तो 10 मास के लिए, प्रत्येक मास के अंत में कुल बचत की राशियाँ (₹ में) 50, 100, 150, 200, 250, 300, 350, 400, 450 और 500 हैं।

यह आपके अभ्यास के लिए छोड़ा जा रहा है कि आप स्पष्ट करें कि उपरोक्त में प्रत्येक सूची एक A.P. क्यों है।

आप यह देख सकते हैं कि

$$a, a + d, a + 2d, a + 3d, \dots$$

एक समांतर श्रेढ़ी को निरूपित करती है, जहाँ a पहला पद है और d सार्व अंतर है। **इसे A.P.** का व्यापक रूप (general form) कहते हैं।

विव

ध्यान दीजिए कि उपरोक्त उदाहरणों (a) से (e) में, पदों की संख्या परिमित (finite) है। ऐसी A.P. को एक **परिमित A.P.** कहते हैं। आप यह भी देख सकते हैं कि इनमें से प्रत्येक A.P. का एक **अंतिम पद (last term)** है। इसी अनुच्छेद के उदाहरणों (i) से (v) में दी हुई A.P. परिमित A.P. नहीं हैं। ये **अपरिमित A.P.** (Infinite Arithmetic Progressions) कहलाती है। ऐसी A.P. में अंतिम पद नहीं होते।

अब एक A.P. के बारे में जानने के लिए आपको न्यूनतम किस सूचना की आवश्यकता होती है? क्या इसके प्रथम पद की जानकारी पर्याप्त है? या क्या इसके केवल सार्व अंतर की जानकारी पर्याप्त है? आप पाएँगे कि आपको इन दोनों अर्थात् प्रथम पद a और सार्व अंतर d की जानकारी होना आवश्यक है।

उदाहरणार्थ, यदि प्रथम पद a=6 है और सार्व अंतर d=3 है तो $6,9,12,15,\ldots$ A.P. है।

तथा यदि a=6 है और d=-3 है तो

इसी प्रकार, जब

$$a = -7,$$
 $d = -2,$ $\overrightarrow{\text{ril}} - 7, -9, -11, -13, \dots A.P. \overrightarrow{\text{gl}}$
 $a = 1.0,$ $d = 0.1,$ $\overrightarrow{\text{ril}} 1.0, 1.1, 1.2, 1.3, \dots A.P. \overrightarrow{\text{gl}}$
 $a = 0,$ $d = 1\frac{1}{2},$ $\overrightarrow{\text{ril}} 0, 1\frac{1}{2}, 3, 4\frac{1}{2}, 6, \dots A.P. \overrightarrow{\text{gl}}$
 $a = 2,$ $d = 0,$ $\overrightarrow{\text{ril}} 2, 2, 2, 2, \dots A.P. \overrightarrow{\text{gl}}$

अत: यदि आपको a और d ज्ञात हों तो A.P. लिख सकते हैं। इसकी विपरीत प्रक्रिया के बारे में आप क्या कह सकते हैं? अर्थात् यदि आपको संख्याओं की एक सूची दी हुई है, तो क्या आप कह सकते हैं कि यह एक A.P. है और फिर इसके a और d ज्ञात कर सकते हैं? क्योंकि a प्रथम पद है, इसलिए इसे सरलता से लिखा जा सकता है। हम जानते हैं कि एक A.P. में, प्रत्येक उत्तरोत्तर पद अपने से पहले पद में d जोड़कर प्राप्त होता है। अत:, एक A.P. के लिए, उसके प्रत्येक पद को उससे अगले पद में से घटाने से प्राप्त d सभी पदों के लिए एक ही होगा। उदाहरणार्थ, संख्याओं की सूची

के लिए हमें प्राप्त है:
$$a_2 - a_1 = 9 - 6 = 3$$

$$a_3 - a_2 = 12 - 9 = 3$$

$$a_4 - a_3 = 15 - 12 = 3$$

यहाँ, प्रत्येक स्थिति में, किन्हीं दो क्रमागत पदों का अंतर 3 है। अत:, संख्याओं की उपरोक्त दी हुई चर्चा सूची एक A.P. है, जिसका प्रथम पद a=6 है तथा सार्व अंतर d=3 है।

संख्याओं की सूची :
$$a_2-a_1=3-6=-3$$

$$a_3-a_2=0-3=-3$$

$$a_4-a_3=-3-0=-3$$

अतः यह भी एक A.P. है जिसका प्रथम पद 6 है और सार्व अंतर -3 है। व्यापक रूप में, A.P. a_1, a_2, \ldots, a_n के लिए,

$$d = a_{k+1} - a_k$$

जहाँ a_{k+1} और a_k क्रमशः (k+1)वें और kवें पद हैं।

एक दी हुई A.P. का d ज्ञात करने के लिए, हमें $a_2-a_1, a_3-a_2, a_4-a_3, \ldots$ में से सभी को ज्ञात करने की आवश्यकता नहीं है। इनमें से किसी एक का ज्ञात करना ही पर्याप्त है।

संख्याओं की सूची 1, 1, 2, 3, 5, . . . पर विचार कीजिए। केवल देखने से ही यह पता चल जाता है कि किन्हीं दो क्रमागत पदों का अंतर सदैव समान नहीं है। अत: यह एक A.P. नहीं है।

ध्यान दीजिए कि A.P.: $6,3,0,-3,\ldots$ का d ज्ञात करने के लिए, हमने 3 में से 6 को घटाया था, 6 में से 3 को नहीं घटाया था। अर्थात् d ज्ञात करने के लिए हमें (k+1) वें पद में से, kवें पद को ही घटाना चाहिए, चाहे (k+1) वाँ पद छोटा ही क्यों न हो।

आइए कुछ उदाहरणों की सहायता से इन अवधारणाओं को और अधिक स्पष्ट करें।

उदाहरण 1 : A.P. : $\frac{3}{2}$, $\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{3}{2}$, . . ., के लिए प्रथम पद a और सार्व अंतर d लिखिए।

हल: यहाँ
$$a = \frac{3}{2}, d = \frac{1}{2} - \frac{3}{2} = -1$$
 है।

याद रिखए कि यदि हमें यह ज्ञात हो जाए कि संख्याएँ A.P. में हैं, तो हम किन्हीं भी दो क्रमागत पदों का प्रयोग करके d ज्ञात कर सकते हैं।

उदाहरण 2: संख्याओं की निम्नलिखित सूचियों में से कौन-कौन से A.P. नहीं हैं? यदि इनसे कोई A.P. है तो उसके अगले दो पद लिखिए।

(ii)
$$1, -1, -3, -5, \dots$$

(iii)
$$-2, 2, -2, 2, -2, \ldots$$

(iv)
$$1, 1, 1, 2, 2, 2, 3, 3, 3, \dots$$

(i)
$$a_2 - a_1 = 10 - 4 = 6$$

 $a_3 - a_2 = 16 - 10 = 6$
 $a_4 - a_3 = 22 - 16 = 6$

अर्थात्, प्रत्येक बार $a_{k+1}-a_k$ एक ही है।

अत:, दी हुई संख्याओं की सूची एक A.P. है जिसका सार्व अंतर d=6 है। इसके अगले दो पद 22+6=28 और 28+6=34 हैं।

(ii)
$$a_2 - a_1 = -1 - 1 = -2$$

 $a_3 - a_2 = -3 - (-1) = -3 + 1 = -2$
 $a_4 - a_3 = -5 - (-3) = -5 + 3 = -2$

अर्थात्, प्रत्येक बार $a_{k+1}-a_k$ एक ही है।

अत:, संख्याओं की दी हुई सूची एक A.P. है जिसका सार्व अंतर d=-2 है। इसके अगले दो पद

$$-5 + (-2) = -7$$
 और $-7 + (-2) = -9$ हैं।

(iii)
$$a_2 - a_1 = 2 - (-2) = 2 + 2 = 4$$

 $a_2 - a_2 = -2 - 2 = -4$

चूँिक $a_2 - a_1 \neq a_3 - a_2$ हैं, इसिलिए दी हुई संख्याओं की सूची से एक A.P. नहीं है।

(iv)
$$a_2 - a_1 = 1 - 1 = 0$$
, $a_3 - a_2 = 1 - 1 = 0$, $a_4 - a_3 = 2 - 1 = 1$
यहाँ, $a_2 - a_1 = a_3 - a_2 \neq a_4 - a_3$ है।

अत:, दी हुई संख्याओं की सूची से एक A.P. नहीं है।

प्रश्नावली 5.1

- 1. निम्नलिखित स्थितियों में से किन स्थितियों में संबद्ध संख्याओं की सूची A.P. है और क्यों?
 - (i) प्रत्येक किलो मीटर के बाद का टैक्सी का किराया, जबकि प्रथम किलो मीटर के लिए किराया ₹ 15 है और प्रत्येक अतिरिक्त किलो मीटर के लिए किराया ₹ 8 है।

- (ii) किसी बेलन (cylinder) में उपस्थित हवा की मात्रा, जबिक वायु निकालने वाला पंप प्रत्येक बार बेलन की शेष हवा का $\frac{1}{4}$ भाग बाहर निकाल देता है।
- (iii) प्रत्येक मीटर की खुदाई के बाद, एक कुँआ खोदने में आई लागत, जबिक प्रथम मीटर खुदाई की लागत ₹ 150 है और बाद में प्रत्येक मीटर खुदाई की लागत ₹ 50 बढ़ती जाती है।
- (iv) खाते में प्रत्येक वर्ष का मिश्रधन, जबिक ₹10000 की राशि 8% वार्षिक की दर से चक्रवृद्धि ब्याज पर जमा की जाती है।
- 2. दी हुई A.P. के प्रथम चार पद लिखिए, जबिक प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:

(i)
$$a = 10$$
, $d = 10$

(ii)
$$a = -2$$
, $d = 0$

(iii)
$$a = 4$$
, $d = -3$

(iv)
$$a = -1$$
, $d = \frac{1}{2}$

(v)
$$a = -1.25$$
, $d = -0.25$

3. निम्नलिखित में से प्रत्येक A.P. के लिए प्रथम पद तथा सार्व अंतर लिखिए:

(i)
$$3, 1, -1, -3, \dots$$

(ii)
$$-5, -1, 3, 7, \dots$$

(iii)
$$\frac{1}{3}$$
, $\frac{5}{3}$, $\frac{9}{3}$, $\frac{13}{3}$, ...

4. निम्नलिखित में से कौन-कौन A.P. हैं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए।

(ii)
$$2, \frac{5}{2}, 3, \frac{7}{2}, \dots$$

(iii)
$$-1.2, -3.2, -5.2, -7.2, \dots$$

(iv)
$$-10, -6, -2, 2, \dots$$

(v)
$$3, 3 + \sqrt{2}, 3 + 2\sqrt{2}, 3 + 3\sqrt{2}, \dots$$

(vii)
$$0, -4, -8, -12, \dots$$

(viii)
$$-\frac{1}{2}$$
, $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$, ...

(ix)
$$1, 3, 9, 27, \dots$$

(x)
$$a, 2a, 3a, 4a, \dots$$

(xi)
$$a, a^2, a^3, a^4, \dots$$

(xii)
$$\sqrt{2}$$
, $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, ...

(xiii)
$$\sqrt{3}$$
, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, ...

(xiv)
$$1^2$$
, 3^2 , 5^2 , 7^2 , ...

(xv)
$$1^2$$
, 5^2 , 7^2 , 73 , ...

5.3 A.P. का *n*वाँ पद

आइए अनुच्छेद 5.1 में दी हुई उस स्थिति पर पुन: विचार करें जिसमें रीना ने एक पद के लिए आवेदन किया था और वह चुन ली गई थी। उसे यह पद ₹ 8000 के मासिक वेतन और ₹ 500 वार्षिक की वेतन वृद्धि के साथ दिया गया था। पाँचवें वर्ष में उसका मासिक वेतन क्या होगा?

इसका उत्तर देने के लिए, आइए देखें कि उसका मासिक वेतन दूसरे वर्ष में क्या होगा। यह (₹ 8000 + ₹ 500) = ₹ 8500 होगा। इसी प्रकार, हम तीसरे, चौथे और पाँचवें वर्षों के लिए, उसके मासिक वेतन, पिछले वर्ष के वेतन में ₹ 500 जोड कर ज्ञात कर सकते हैं। अत:. उसका तीसरे वर्ष का वेतन = ₹ (8500 + 500)

चौथे वर्ष का वेतन = ₹ (9000 + 500)

$$= 7(8000 + 500 + 500 + 500)$$

$$=$$
 ₹ $(8000 + 3 \times 500)$

= ₹ 9500

पाँचवें वर्ष का वेतन = ₹ (9500 + 500)

$$= \ \column{2}{7} \ \column{2} \column{2}{7} \column{2} \column{2} \column{2} \column{2} \column{2} \column{2} \column{2} \c$$

$$=$$
 ₹ $(8000 + 4 \times 500)$

ध्यान दीजिए कि यहाँ हमें संख्याओं की निम्नलिखित सूची मिल रही है:

8000, 8500, 9000, 9500, 10000, . . .

ये संख्याएँ एक A.P. बना रही हैं। (क्यों?)

समांतर श्रेढियाँ 65

अब ऊपर बनने वाले प्रतिरूप को देखकर क्या आप उसका छठे वर्ष का मासिक वेतन ज्ञात कर सकते हैं? क्या 15वें वर्ष का मासिक वेतन ज्ञात कर सकते हैं? साथ ही, यह मानते हुए कि वह इस पद पर आगे भी कार्य करती रहेगी, 25वें वर्ष के लिए उसके मासिक वेतन के विषय में आप क्या कह सकते हैं? इसका उत्तर देने के लिए, आप पिछले वर्ष के वेतन में ₹ 500 जोड़कर वांछित वेतन परिकलित करेंगे। क्या आप इस प्रक्रिया को कुछ संक्षिप्त कर सकते हैं? आइए, देखें। जिस प्रकार हमने इन वेतनों को ऊपर प्राप्त किया है, उनसे आपको कुछ आभास तो लग गया होगा।

15वें वर्ष के लिए वेतन

$$= ₹ \left[8000 + \frac{500 + 500 + 500 + \dots + 500}{13 \text{ बार}} \right] + ₹ 500$$

= ₹
$$[8000 + (15 - 1) \times 500]$$
 = ₹ 15000

अर्थात्

इसी प्रकार 25वें साल में उसका वेतन होगा:

₹
$$[8000 + (25 - 1) \times 500] = ₹ 20000$$

इस उदाहरण से, आपको कुछ आभास तो अवश्य हो गया होगा कि एक A.P. के 15वें पद, 25वें पद और व्यापक रूप में, nवें पद को किस प्रकार लिखा जा सकता है।

मान लीजिए a_1, a_2, a_3, \dots एक A.P. है, जिसका प्रथम पद a है और सार्व अंतर d है। तब

दूसरा पद
$$a_2 = a + d = a + (2 - 1) d$$

तीसरा पद $a_3 = a_2 + d = (a + d) + d = a + 2d = a + (3 - 1) d$
चौथा पद $a_4 = a_3 + d = (a + 2d) + d = a + 3d = a + (4 - 1) d$

र्गणित

इस प्रतिरूप को देखते हुए, हम कह सकते हैं कि nवाँ पद $a_n = a + (n-1) d$ है। अत:, प्रथम पद a और सार्व अंतर d वाली एक A.P. का nवाँ पद $a_n = a + (n-1) d$ द्वारा प्राप्त होता है।

 a_n को A.P. का व्यापक पद (general term) भी कहते हैं। यदि किसी A.P. में m पद हैं, तो a_m इसके अंतिम पद को निरूपित करता है, जिसे कभी-कभी l द्वारा भी व्यक्त किया जाता है।

आइए अब कुछ उदाहरणों पर विचार करें।

उदाहरण 3: A.P.: 2, 7, 12, ... का 10वाँ पद ज्ञात कीजिए।

हल: यहाँ a = 2, d = 7 - 2 = 5 और n = 10 है।

चूँकि $a_n = a + (n-1) d$ है, इसलिए

$$a_{10} = 2 + (10 - 1) \times 5 = 2 + 45 = 47$$

अतः दी हुई A.P. का 10वाँ पद 47 है।

उदाहरण 4: A.P.: 21, 18, 15, ... का कौन-सा पद -81 है? साथ ही क्या इस A.P. का कोई पद शून्य है? सकारण उत्तर दीजिए।

हल : यहाँ, $a=21,\ d=18-21=-3$ और $a_n=-81$ है। हमें n ज्ञात करना है।

चুঁি $a_n = a + (n-1) d$,

अत: -81 = 21 + (n-1)(-3)

या -81 = 24 - 3n

या -105 = -3n

अत: n = 35

इसलिए दी हुई A.P. का 35वाँ पद – 81 है।

आगे, हम यह जानना चाहते हैं कि क्या कोई n ऐसा है कि $a_{_n}=0$ हो। यदि ऐसा कोई n है तो

$$21 + (n-1)(-3) = 0,$$

अर्थात् 3(n-1) = 21

समांतर श्रेढ़ियाँ

67

या

$$n = 8$$

अत:, 8वाँ पद 0 है।

उदाहरण 5: वह A.P. निर्धारित कीजिए जिसका तीसरा पद 5 और 7वाँ पद 9 है।

हल: हमें प्राप्त है

$$a_3 = a + (3 - 1) d = a + 2d = 5$$
 (1)

और

$$a_7 = a + (7 - 1) d = a + 6d = 9$$
 (2)

समीकरणों (1) और (2) के युग्म को हल करने पर, हमें प्राप्त होता है:

$$a = 3, d = 1$$

अत: वांछित A.P.: 3, 4, 5, 6, 7, ... है।

उदाहरण 6: क्या संख्याओं की सूची 5, 11, 17, 23, . . . का कोई पद 301 है? क्यों? हल: हमें प्राप्त है:

$$a_2 - a_1 = 11 - 5 = 6$$
, $a_3 - a_2 = 17 - 11 = 6$, $a_4 - a_3 = 23 - 17 = 6$

चूँकि k=1,2,3, आदि के लिए, $a_{k+1}-a_k$ एक समान संख्या होती है, इसलिए दी हुई सूची एक A.P. है।

यहाँ

$$a = 5$$
 और $d = 6$

मान लीजिए इस A.P. का nवाँ पद 301 है।

हम जानते हैं कि

$$a_n = a + (n-1) d$$

इसलिए

$$301 = 5 + (n-1) \times 6$$

अर्थात्

$$301 = 6n - 1$$

अत:

$$n = \frac{302}{6} = \frac{151}{3}$$

परंतु n एक धनात्मक पूर्णांक होना चाहिए (क्यों?)। अतः, 301 संख्याओं की दी हुई सूची का पद नहीं है।

उदाहरण 7 : दो अंकों वाली कितनी संख्याएँ 3 से विभाज्य हैं?

हल: 3 से विभाज्य होने वाली दो अंकों की संख्याओं की सूची है:

$$12, 15, 18, \ldots, 99$$

क्या यह एक A.P. है? हाँ, यह है। यहाँ $a=12,\ d=3$ और $a_{..}=99$ है।

चुँकि $a_n = a + (n-1) d,$ $99 = 12 + (n-1) \times 3$ इसलिए

अर्थात् $87 = (n-1) \times 3$

 $n-1=\frac{87}{3}=29$ अर्थात

अर्थात n = 29 + 1 = 30

अत:, 3 से विभाज्य दो अंकों वाली 30 संख्याएँ हैं।

उदाहरण 8: A.P.: 10, 7, 4, ..., -62 का अंतिम पद से (प्रथम पद की ओर) 11वाँ पद ज्ञात कीजिए।

हल: यहाँ, a = 10, d = 7 - 10 = -3, l = -62, l = a + (n - 1) dजहाँ

अंतिम पद से 11वाँ पद ज्ञात करने के लिए, हम इस AP के कुल पदों की संख्या ज्ञात करेंगे।

-62 = 10 + (n-1)(-3)अत:

-72 = (n-1)(-3)n-1 = 24या

अर्थात्

या

अत:, दी हुई A.P. में 25 पद हैं।

अंतिम पद से 11वाँ पद AP का 15वाँ पद होगा। (ध्यान दीजिए कि यह 14वाँ पद नहीं होगा। क्यों?)

 $a_{15} = 10 + (15 - 1)(-3) = 10 - 42 = -32$ अत:.

इसलिए, अंतिम पद से 11वाँ पद – 32 है।

वैकल्पिक हलः

यदि हम A.P. को विपरीत ओर से देखें, तो इसका प्रथम पद a=-62 है और सार्व अंतर d=3 है। (क्यों?)

अब, प्रश्न यह बन जाता है कि इस AP का 11वाँ पद ज्ञात किया जाए।

अत: $a_{11} = -62 + (11 - 1) \times 3 = -62 + 30 = -32$

अत: अंतिम पद से 11वाँ वांछित पद – 32 है।

उदाहरण 9: ₹ 1000 की एक धनराशि 8% वार्षिक साधारण ब्याज पर निवेश की जाती है। प्रत्येक वर्ष के अंत में ब्याज परिकलित कीजिए। क्या ये ब्याज एक A.P. बनाते हैं? यदि ऐसा है, तो इस तथ्य का प्रयोग करते हुए 30 वर्षों के अंत में ब्याज परिकलित कीजिए। हल: हम जानते हैं कि साधारण ब्याज परिकलित करने के लिए सूत्र निम्नलिखित है:

साधारण ब्याज =
$$\frac{P \times R \times T}{100}$$

अत:, प्रथम वर्ष के अंत में ब्याज = ₹ $\frac{1000 \times 8 \times 1}{100}$ = ₹ 80

दूसरे वर्ष के अंत में ब्याज = ₹ $\frac{1000 \times 8 \times 2}{100}$ = ₹ 160

तीसरे वर्ष के अंत में ब्याज = ₹ $\frac{1000 \times 8 \times 3}{100}$ = ₹ 240

इसी प्रकार, हम चौथे, पाँचवें, इत्यादि वर्षों के अंत में ब्याज परिकलित कर सकते हैं। अत:, पहले, दूसरे, तीसरे, ... वर्षों के अंत में ब्याज (₹ में) क्रमश: हैं:

यह एक A.P. है, क्योंकि किन्हीं दो क्रमागत पदों का अंतर 80 है, अर्थात् d=80 है। साथ ही, इसमें a=80 है।

अतः, 30 वर्षों के अंत में ब्याज ज्ञात करने के लिए हम a_{30} ज्ञात करेंगे।

স্ত্ৰ $a_{30} = a + (30 - 1) d = 80 + 29 \times 80 = 2400$

अत: 30 वर्षों के अंत में ब्याज ₹ 2400 होगा।

उदाहरण 10: फूलों की एक क्यारी की पहली पंक्ति में 23 गुलाब के पौधे हैं, दूसरी पंक्ति में 21 गुलाब के पौधे हैं, तीसरी पंक्ति में 19 गुलाब के पौधे हैं, इत्यादि। उसकी अंतिम पंक्ति में 5 गुलाब के पौधे हैं। इस क्यारी में कुल कितनी पंक्तियाँ हैं?

हल: पहली, दूसरी, तीसरी, ... पंक्तियों में गुलाब के पौधों की संख्याएँ क्रमश: निम्नलिखित हैं:

ये एक A.P. बनाती हैं (क्यों?)। मान लीजिए पंक्तियों की संख्या n है।

तब

$$a = 23$$
, $d = 21 - 23 = -2$ और $a_n = 5$ है।

चुँकि

$$a_n = a + (n-1) d$$

इसलिए

$$5 = 23 + (n-1)(-2)$$

अर्थात्

$$-18 = (n-1)(-2)$$

या

$$n = 10$$

अत: फूलों की क्यारी में 10 पंक्तियाँ हैं।

प्रश्नावली 5.2

1. निम्नलिखित सारणी में, रिक्त स्थानों को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद a_n है:

	a	d	n	a_{n}
(i)	7	3	8	
(ii)	-18		10	0
(iii)	X	-3	18	-5
(iv)	-18.9	2.5		3.6
(v)	3.5	0	105	

- 2. निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
 - (i) A.P.: 10, 7, 4, . . . , का 30वाँ पद है: (A) 97
 - (B) 77
- (C) -77
- (D) -87

- (ii) A.P.: -3, $-\frac{1}{2}$, 2, ..., का 11वाँ पद है:
 - (A) 28
- (B) 22
- (C) -38
- (D) $-48\frac{1}{2}$

3. निम्नलिखित समांतर श्रेढ़ियों में, रिक्त खानों (boxes) के पदों को ज्ञात कीजिए:

- (i) 2, _____, 26
- (ii) , 13, , 3
- (iii) 5, \square , $9\frac{1}{2}$
- (iv) -4, , , , , 6
- **4.** A.P.: 3, 8, 13, 18, ... का कौन सा पद 78 है?
- 5. निम्नलिखित समांतर श्रेढियों में से प्रत्येक श्रेढ़ी में कितने पद हैं?
 - (i) 7, 13, 19, ..., 205

- (ii) $18, 15\frac{1}{2}, 13, \dots, -47$
- **6.** क्या A.P., 11, 8, 5, 2 . . . का एक पद − 150 है? क्यों?
- 7. उस A.P. का 31वाँ पद ज्ञात कीजिए, जिसका 11वाँ पद 38 है और 16वाँ पद 73 है।
- 8. एक A.P. में 50 पद हैं, जिसका तीसरा पद 12 है और अंतिम पद 106 है। इसका 29वाँ पद ज्ञात कीजिए।
- 9. यदि किसी A.P. के तीसरे और नौवें पद क्रमश: 4 और -8 हैं, तो इसका कौन-सा पद शून्य होगा?
- 10. किसी A.P. का 17वाँ पद उसके 10वें पद से 7 अधिक है। इसका सार्व अंतर ज्ञात कीजिए।
- 11. A.P.: 3, 15, 27, 39, ... का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
- 12. दो समांतर श्रेढ़ियों का सार्व अंतर समान है। यदि इनके 100वें पदों का अंतर 100 है, तो इनके 1000वें पदों का अंतर क्या होगा?
- 13. तीन अंकों वाली कितनी संख्याएँ 7 से विभाज्य हैं?
- 14. 10 और 250 के बीच में 4 के कितने गुणज हैं?
- **15.** *n* के किस मान के लिए, दोनों समांतर श्रेढ़ियों 63,65,67,... और 3,10,17,... के *n*वें पद बराबर होंगे?
- 16. वह A.P. ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
- 17. A.P.: 3, 8, 13, ..., 253 में अंतिम पद से 20वाँ पद ज्ञात कीजिए।

18. किसी A.P. के चौथे और 8वें पदों का योग 24 है तथा छठे और 10वें पदों का योग 44 है। इस A.P. के प्रथम तीन पद ज्ञात कीजिए।

- 19. सुब्बा राव ने 1995 में ₹ 5000 के मासिक वेतन पद कार्य आरंभ किया और प्रत्येक वर्ष ₹ 200 की वेतन वृद्धि प्राप्त की। किस वर्ष में उसका वेतन ₹ 7000 हो गया?
- 20. रामकली ने किसी वर्ष के प्रथम सप्ताह में ₹ 50 की बचत की और फिर अपनी साप्ताहिक बचत ₹ 17.5 बढ़ाती गई। यदि nवें सप्ताह में उसकी साप्ताहिक बचत ₹ 207.50 हो जाती है, तो n ज्ञात कीजिए।

5.4 A.P. के प्रथम n पदों का योग

आइए अनुच्छेद 5.1 में दी हुई स्थिति पर पुन: विचार करें, जिसमें शकीला अपनी पुत्री की गुल्लक में, उसके 1 वर्ष की हो जाने पर ₹ 100 डालती है, उसके दूसरे जन्म दिवस पर ₹ 150, तीसरे जन्म दिवस पर ₹ 200 डालती है और ऐसा आगे जारी रखती है। जब उसकी पुत्री 21 वर्ष की हो जाएगी, तो उसकी गुल्लक में कितनी धनराशि एकत्रित हो जाएगी?

यहाँ, उसके प्रथम, दूसरे, तीसरे, चौथे, ... जन्म दिवसों पर, उसकी गुल्लक में डाली गई राशियाँ (₹ में) क्रमश: 100, 150, 200, 250, ... हैं तथा यही क्रम उसके 21वें जन्म दिवस तक चलता रहा। 21वें जन्म दिवस तक एकत्रित हुई कुल धनराशि ज्ञात करने के लिए, हमें उपरोक्त सूची की संख्याओं को जोड़ने की आवश्यकता है। क्या आप यह नहीं सोचते कि यह एक जटिल प्रक्रिया होगी और इसमें समय भी अधिक लगेगा? क्या हम इस प्रक्रिया को संक्षिप्त बना सकते हैं? यह तभी संभव होगा, जब हम इसका योग निकालने की कोई विधि ज्ञात कर लें। आइए देखें।

हम गॉस (जिसके बारे में आप अध्याय 1 में पढ़ चुके हैं) को दी गई समस्या पर विचार करते हैं, जो उसे हल करने के लिए उस समय दी गई थी, जब वह केवल 10 वर्ष का था। उससे 1 से 100 तक के धन पूर्णांकों का योग ज्ञात करने को कहा गया। उसने तुरंत उत्तर दिया कि योग 5050 है। क्या आप अनुमान लगा सकते हैं कि उसने ऐसा कैसे किया था? उसने इस प्रकार लिखा:

$$S = 1 + 2 + 3 + \ldots + 99 + 100$$

फिर, उसने उल्टे क्रम संख्याओं को इस प्रकार लिखा:

$$S = 100 + 99 + \dots + 3 + 2 + 1$$

उपरोक्त को जोडने पर उसने प्राप्त किया:

2S =
$$(100 + 1) + (99 + 2) + \dots + (3 + 98) + (2 + 99) + (1 + 100)$$

= $101 + 101 + \dots + 101 + 101$ (100 बार)

अत:

$$S = \frac{100 \times 101}{2} = 5050$$
, अर्थात् योग = 5050

अब, हम इसी तकनीक का उपयोग करते हुए, एक A.P. के प्रथम n पदों का योग ज्ञात करेंगे। मान लीजिए यह A.P. है:

$$a, a + d, a + 2d, \dots$$

इस A.P. का nवाँ पद a+(n-1) d है। माना S इस A.P. के प्रथम n पदों के योग को व्यक्त करता है। तब

$$S = a + (a + d) + (a + 2d) + \dots + [a + (n - 1) d]$$
 (1)

पदों को विपरीत क्रम में लिखने पर हमें प्राप्त होता है:

$$S = [a + (n-1) d] + [a + (n-2) d] + ... + (a+d) + a$$
 (2)

अब,(1) और (2) को पदों के अनुसार जोड़ने पर, हमें प्राप्त होता है:

$$2S = \underbrace{[2a + (n-1)d] + [2a + (n-1)d] + \dots + [2a + (n-1)d] + [2a + (n-1)d]}_{n \text{ GIV}}$$

या 2S = n [2a + (n-1) d] (चूँिक इसमें n पद हैं)

या
$$S = \frac{n}{2} [2a + (n-1) d]$$

अत: किसी A.P. के प्रथम n पदों का योग S निम्नलिखित सूत्र से प्राप्त होता है:

$$S = \frac{n}{2} [2a + (n-1) d]$$

हम इसे इस रूप में भी लिख सकते हैं

$$S = \frac{n}{2} [a + a + (n - 1) d]$$

अर्थात्
$$S = \frac{n}{2} (a + a_n)$$
 (3)

अब, यदि किसी A.P. में केवल n ही पद हैं, तो a_n अंतिम पद l के बराबर होगा। अत: (3) से हम देखते हैं कि

$$S = \frac{n}{2} (a + l) \tag{4}$$

परिणाम का यह रूप उस स्थिति में उपयोगी है, जब A.P. के प्रथम और अंतिम पद दिए हों तथा सार्व अंतर नहीं दिया गया हो।

अब हम उसी प्रश्न पर वापस आ जाते हैं, जो प्रारंभ में हमसे पूछा गया था। शकीला की पुत्री की गुल्लक में उसके पहले, दूसरे, तीसरे,..., जन्म दिवसों पर डाली गई धनगशियाँ (₹ में) क्रमश: 100, 150, 200, 250,..., हैं।

यह एक A.P. है। हमें उसके 21वें जन्मदिवस तक एकत्रित हुई कुल धनराशि ज्ञात करनी है, अर्थात् हमें इस A.P. के प्रथम 21 पदों का योग ज्ञात करना है।

यहाँ a = 100, d = 50 और n = 21 है। सूत्र

$$S = \frac{n}{2} [2a + (n-1)d]$$
 का प्रयोग करने पर,

$$S = \frac{21}{2} [2 \times 100 + (21-1) \times 50] = \frac{21}{2} [200 + 1000]$$

$$= \frac{21}{2} \times 1200 = 12600$$

अत: उसके 21वें जन्म दिवस तक एकत्रित हुई गुल्लक में धनराशि ₹ 12600 है। क्या सूत्र के प्रयोग से प्रश्न हल करना सरल नहीं हो गया है?

किसी A.P. के n पदों के योग को व्यक्त करने के लिए, हम S के स्थान पर S_n का भी प्रयोग करते हैं। उदाहरणार्थ, हम A.P. के 20 पदों के योग को व्यक्त करने के लिए S_{20} का प्रयोग करते हैं। प्रथम n पदों के योग के सूत्र में, चार राशियाँ S, a, d और n संबद्ध हैं। यदि इनमें से कोई तीन राशियाँ ज्ञात हों, तो चौथी राशि ज्ञात की जा सकती है।

टिप्पणी : किसी A.P. का nवाँ पद उसके प्रथम n पदों के योग और प्रथम (n-1) पदों के योग के अंतर के बराबर है। अर्थात् $a_n = S_n - S_{n-1}$ है।

समांतर श्रेढियाँ 75

आइए कुछ उदाहरणों पर विचार करें।

उदाहरण 11 : A.P. : $8, 3, -2, \ldots$ के प्रथम 22 पदों का योग ज्ञात कीजिए। हल : यहाँ a = 8, d = 3 - 8 = -5 और n = 22 है।

हम जानते हैं कि

$$S = \frac{n}{2} \left[2a + (n-1) d \right]$$

अत:

$$S = \frac{22}{2} [16 + 21 (-5)] = 11(16 - 105) = 11(-89) = -979$$

इसलिए दी हुई A.P. के प्रथम 22 पदों का योग -979 है।

उदाहरण 12: यदि किसी A.P. के प्रथम 14 पदों का योग 1050 है तथा इसका प्रथम पद 10 है तो 20वाँ पद ज्ञात कीजिए।

हल : यहाँ $S_{14} = 1050, \ n = 14$ और a = 10 है।

चूँकि
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

इसलिए
$$1050 = \frac{14}{2} [20 + 13d] = 140 + 91d$$

अर्थात् 910 = 91*d*

या d=10

अत: $a_{20} = 10 + (20 - 1) \times 10 = 200$

अर्थात् 20वाँ पद 200 है।

उदाहरण 13: A.P.: 24, 21, 18, ... के कितने पद लिए जाएँ, ताकि उनका योग 78 हो?

हल : यहाँ $a=24,\ d=21-24=-3$ और $S_n=78$ है। हमें n ज्ञात करना है।

हम जानते हैं कि $S_n = \frac{n}{2} [2a + (n-1)d]$

अत: $78 = \frac{n}{2} [48 + (n-1)(-3)] = \frac{n}{2} [51 - 3n]$

$$3n^2 - 51n + 156 = 0$$

या
$$n^2 - 17n + 52 = 0$$

या
$$(n-4)(n-13) = 0$$

अत: n = 4 या 13

n के ये दोनों मान संभव हैं और स्वीकार किए जा सकते हैं। अत:, पदों की वांछित संख्या या तो 4 है या 13 है।

टिप्पणी:

- 1. इस स्थिति में, प्रथम 4 पदों का योग = प्रथम 13 पदों का योग = 78 है।
- 2. ये दोनों उत्तर संभव हैं, क्योंकि 5वें से 13वें पदों तक का योग शून्य हो जाएगा। यह इसलिए है कि यहाँ *a* धनात्मक है और *d* ऋणात्मक है, जिससे कुछ पद धनात्मक और कुछ पद ऋणात्मक हो जाते हैं तथा परस्पर कट जाते हैं।

उदाहरण 14: निम्नलिखित का योग ज्ञात कीजिए:

(i) प्रथम 1000 धन पूर्णांक (ii) प्रथम n धन पूर्णांक

हल:

(i) मान लीजिए $S = 1 + 2 + 3 + \ldots + 1000$ है।

A.P. के प्रथम n पदों के योग के सूत्र $S_n = \frac{n}{2}(a+l)$ का प्रयोग करने पर हमें प्राप्त होता है:

$$S_{1000} = \frac{1000}{2} (1 + 1000) = 500 \times 1001 = 500500$$

अत:, प्रथम 1000 धन पूर्णांकों का योग 500500 है।

(ii) मान लीजिए $S_n = 1 + 2 + 3 + \ldots + n$ है। यहाँ a = 1 और अंतिम पद l = n है।

अत:
$$S_n = \frac{n(1+n)}{2}$$
 या $S_n = \frac{n(n+1)}{2}$

इस प्रकार, प्रथम n धन पूर्णांकों का योग सूत्र

$$S_n = \frac{n(n+1)}{2}$$

से प्राप्त किया जाता है।

समांतर श्रेढियाँ 77

उदाहरण 15: संख्याओं की उस सूची के प्रथम 24 पदों का योग ज्ञात कीजिए, जिसका nवाँ पद $a_n = 3 + 2n$ से दिया जाता है।

हल:

चूँकि
$$a_n = 3 + 2n \ \mbox{$\stackrel{\circ}{\rm E}$}$$
 इसिलिए
$$a_1 = 3 + 2 = 5$$

$$a_2 = 3 + 2 \times 2 = 7$$

$$a_3 = 3 + 2 \times 3 = 9$$
 :

इस प्रकार प्राप्त संख्याओं की सूची 5, 7, 9, 11, . . . है।

यहाँ
$$7-5=9-7=11-9=2$$
 इत्यादि हैं।

अत: इनसे एक A.P. बनती है, जिसका सार्व अंतर 2 है।

 S_{24} ज्ञात करने के लिए, हमें प्राप्त है: n = 24, a = 5, d = 2

अत:
$$S_{24} = \frac{24}{2} [2 \times 5 + (24 - 1) \times 2] = 12 [10 + 46] = 672$$

इसलिए संख्याओं की दी हुई सूची के प्रथम 24 पदों का योग 672 है।

उदाहरण 16: टी.वी. सेटों का निर्माता तीसरे वर्ष में 600 टी.वी. तथा 7वें वर्ष में 700 टी.वी. सेटों का उत्पादन करता है। यह मानते हुए कि प्रत्येक वर्ष उत्पादन में एक समान रूप से एक निश्चित संख्या में वृद्धि होती है, ज्ञात कीजिए:

(i) प्रथम वर्ष में उत्पादन

- (ii) 10वें वर्ष में उत्पादन
- (iii) प्रथम 7 वर्षों में कुल उत्पादन

हल: (i) चूँिक प्रत्येक वर्ष उत्पादन में समान रूप से एक निश्चित संख्या में वृद्धि होती है, इसलिए पहले, दूसरे, तीसरे, ... वर्षों में उत्पादित टी.वी. सेटों की संख्याएँ एक AP में होंगी। आइए nवें वर्ष में उत्पादित टी.वी. सेटों की संख्या को a, से व्यक्त करें।

अत:
$$a_3 = 600$$
 और $a_7 = 700$
या $a + 2d = 600$
और $a + 6d = 700$

इन्हें हल करने पर, हमें d=25 और a=550 प्राप्त होता है। अत: प्रथम वर्ष में उत्पादित टी.वी. सेटों की संख्या 550 है।

(ii) अब

$$a_{10} = a + 9d = 550 + 9 \times 25 = 775$$

अत: 10वें वर्ष में उत्पादित टी.वी. सेटों की संख्या 775 है।

(iii) साथ ही

$$S_7 = \frac{7}{2} [2 \times 550 + (7 - 1) \times 25]$$
$$= \frac{7}{2} [1100 + 150] = 4375$$

अत: प्रथम 7 वर्षों में कुल उत्पादित हुए सभी टी.वी. सेटों की संख्या 4375 है।

प्रश्नावली 5.3

- 1. निम्नलिखित समांतर श्रेढियों का योग ज्ञात कीजिए:
 - (i) 2, 7, 12, ..., 10 पदों तक
- (ii) $-37, -33, -29, \dots, 12$ पदों तक
- (iii) 0.6, 1.7, 2.8, ..., 100 पदों तक (iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, ..., 11$ पदों तक
- 2. नीचे दिए हुए योगफलों को ज्ञात कीजिए:

(i)
$$7 + 10\frac{1}{2} + 14 + ... + 84$$
 (ii) $34 + 32 + 30 + ... + 10$

(ii)
$$34 + 32 + 30 + \ldots + 10$$

(iii)
$$-5 + (-8) + (-11) + \dots + (-230)$$

- 3. एक A.P. में.
 - (i) a = 5, d = 3 और $a_n = 50$ दिया है। n और S_n ज्ञात कीजिए।
 - (ii) a = 7 और $a_{13} = 35$ दिया है। d और S_{13} ज्ञात कीजिए।
 - (iii) $a_{12} = 37$ और d = 3 दिया है। a और S_{12} ज्ञात कीजिए।
 - (iv) $a_3 = 15$ और $S_{10} = 125$ दिया है। d और a_{10} ज्ञात कीजिए।
 - (v) d = 5 और $S_0 = 75$ दिया है। a और a_0 ज्ञात कीजिए।
 - (vi) a = 2, d = 8 और $S_n = 90$ दिया है। n और a_n ज्ञात कीजिए।
 - (vii) a = 8, $a_n = 62$ और $S_n = 210$ दिया है। n और d ज्ञात कीजिए।
 - (viii) $a_n = 4, d = 2$ और $S_n = -14$ दिया है। n और a ज्ञात कीजिए।
 - (ix) a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
 - (x) l = 28, S = 144 और कल 9 पद हैं। a ज्ञात कीजिए।
- 4. 636 योग प्राप्त करने के लिए, A.P.: 9, 17, 25, ... के कितने पद लेने चाहिए?

- 5. किसी A.P. का प्रथम पद 5, अंतिम पद 45 और योग 400 है। पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
- 6. किसी A.P. के प्रथम और अंतिम पद क्रमश: 17 और 350 हैं। यदि सार्व अंतर 9 है, तो इसमें कितने पद हैं और इनका योग क्या है?
- 7. उस A.P. के प्रथम 22 पदों का योग ज्ञात कीजिए, जिसमें d=7 है और 22वाँ पद 149 है।
- 8. उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमश: 14 और 18 हैं।
- 9. यदि किसी A.P. के प्रथम 7 पदों का योग 49 है और प्रथम 17 पदों का योग 289 है, तो इसके प्रथम n पदों का योग ज्ञात कीजिए।

साथ ही, प्रत्येक स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।

- 11. यदि किसी A.P. के प्रथम n पदों का योग $4n-n^2$ है, तो इसका प्रथम पद (अर्थात् S_1) क्या है? प्रथम दो पदों का योग क्या है? दूसरा पद क्या है? इसी प्रकार, तीसरे, 10वें और nवें पद ज्ञात कीजिए।
- 12. ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
- 13. 8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
- 14. 0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
- 15. निर्माण कार्य से संबंधित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलंब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार है: पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उतरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी पड़ेगी, यदि वह इस कार्य में 30 दिन का विलंब कर देता है?
- 16. किसी स्कूल के विद्यार्थियों को उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गई है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
- 17. एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अंदर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1 पेड़ लगाएगा, कक्षा

II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?

18. केंद्र A से प्रारंभ करते हुए, बारी-बारी से केंद्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, $1.0 \, \mathrm{cm}, 1.5 \, \mathrm{cm}, 2.0 \, \mathrm{cm}, \dots$ वाले उतरोत्तर अर्धवृत्तों को खींचकर एक सर्पिल (spiral) बनाया गया है, जैसािक आकृति 5.4 में दर्शाया गया है। तेरह क्रमागत अर्धवृत्तों से बने इस सर्पिल की कुल

लंबाई क्या है? $(\pi = \frac{22}{7}$ लीजिए।)

[संकेत: क्रमश: केंद्रों A, B, A, B, ... वाले अर्धवृत्तों की लंबाइयाँ l_1, l_2, l_3, l_4 हैं।]

19. 200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है: सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति 5.5)। ये 200 लट्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?

20. एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति 5.6)।

आकृति 5.6

प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?

[**संकेत** : पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी $=2 \times 5 + 2 \times (5+3)$ है।]

प्रश्नावली 5.4 (ऐच्छिक)*

- A.P.: 121, 117, 113, ..., का कौन-सा पद सबसे पहला ऋणात्मक पद होगा?
 [संकेत: a_n < 0 के लिए n ज्ञात कीजिए।]
- 2. किसी A.P. के तीसरे और सातवें पदों का योग 6 है और उनका गुणनफल 8 है। इस A.P. के प्रथम 16 पदों का योग ज्ञात कीजिए।
- 3. एक सीढ़ी के क्रमागत डंडे परस्पर 25 cm की दूरी पर हैं (देखिए आकृति 5.7)। डंडों की लंबाई एक समान रूप से घटती जाती हैं तथा सबसे निचले डंडे की लंबाई 45 cm है और सबसे ऊपर वाले डंडे की लंबाई 25 cm है। यदि ऊपरी और निचले डंडे के बीच की दूरी 2 1/2 m है, तो डंडों को बनाने के लिए लकड़ी की कितनी लंबाई की आवश्यकता होगी?

[संकेत : डंडों की संख्या =
$$\frac{250}{25} + 1$$
 है।]

आकृति 5.7

^{*} यह प्रश्नावली परीक्षा की दृष्टि से नहीं है।

82

4. एक पंक्ति के मकानों को क्रमागत रूप से संख्या 1 से 49 तक अंकित किया गया है। दर्शाइए कि x का एक ऐसा मान है कि x से अंकित मकान से पहले के मकानों की संख्याओं का योग उसके बाद वाले मकानों की संख्याओं के योग के बराबर है। x का मान ज्ञात कीजिए।

5. एक फुटबाल के मैदान में एक छोटा चबूतरा है जिसमें 15 सीढ़ियाँ बनी हुई हैं। इन सीढ़ियों में से प्रत्येक की लंबाई $50 \, \mathrm{m} \, \mathrm{\bar{t}} \, \mathrm{$ और वह ठोस कंक्रीट (concrete) की बनी है। प्रत्येक सीढ़ी में $\frac{1}{4} \, \mathrm{m} \, \mathrm{m} \, \mathrm{f} \, \mathrm{d} \, \mathrm{e}$ और $\frac{1}{2} \, \mathrm{m} \, \mathrm{f} \, \mathrm{f} \, \mathrm{e}$ फैलाव (चौड़ाई) है। (देखिए आकृति 5.8)। इस चबूतरे को बनाने में लगी कंक्रीट का कुल आयतन परिकलित कीजिए।

[संकेत: पहली सीढ़ी को बनाने में लगी कंक्रीट का आयतन = $\frac{1}{4} \times \frac{1}{2} \times 50 \text{ m}^3$ है।]

5.5 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

 एक समांतर श्रेढ़ी संख्याओं की ऐसी सूची होती है, जिसमें प्रत्येक पद (प्रथम पद के अतिरिक्त) अपने से ठीक पहले पद में एक निश्चित संख्या d जोड़कर प्राप्त होता है। यह निश्चित संख्या d इस समांतर श्रेढ़ी का सार्व अंतर कहलाती है।

एक A.P. का व्यापक रूप a, a+d, a+2d, a+3d, ... है।

- 2. संख्याओं को एक दी हुई सूची A.P. होती है, यदि अंतरों $a_2-a_1, a_3-a_2, a_4-a_3, \ldots$, से एक ही (समान) मान प्राप्त हो, अर्थात् k के विभिन्न मानों के लिए $a_{k+1}-a_k$ एक ही हो।
- 3. प्रथम पद a और सार्व अंतर d वाली A.P. का nवाँ पद (या व्यापक पद) a_n निम्नलिखित सूत्र द्वारा प्राप्त होता है:

$$a_n = a + (n-1) d$$

4. किसी A.P. के प्रथम n पदों का योग S सूत्र

$$S = \frac{n}{2} [2a + (n-1)d]$$
 से प्राप्त होता है।

5. यदि एक परिमित A.P. का अंतिम पद (मान लीजिए n वाँ पद) l है, तो इस A.P. के सभी पदों का योग S सूत्र

$$S = \frac{n}{2}(a+l)$$
 से प्राप्त होता है।

पाठकों के लिए विशेष

यदि a, b, c, A.P. में हैं तब $b = \frac{a+c}{2}$ और b, a तथा c का समांतर माध्य कहलाता है।

त्रिभुज

6

6.1 भूमिका

आप अपनी पिछली कक्षाओं से, त्रिभुजों और उनके अनेक गुणधर्मों से भली भाँति परिचित हैं। कक्षा IX में, आप त्रिभुजों की सर्वांगसमता के बारे में विस्तृत रूप से अध्ययन कर चुके हैं। याद कीजिए कि दो त्रिभुज सर्वांगसम तब कहे जाते हैं जब उनके समान आकार (shape) तथा समान आमाप (size) हों। इस अध्याय में, हम ऐसी आकृतियों के बारे में अध्ययन करेंगे जिनके आकार समान हों परंतु उनके आमाप का समान होना आवश्यक नहीं हो। दो आकृतियाँ जिनके समान आकार हों (परंतु समान आमाप होना आवश्यक न हो) समरूप आकृतियाँ (similar figures) कहलाती हैं। विशेष रूप से, हम समरूप त्रिभुजों की चर्चा करेंगे तथा इस जानकारी को पहले पढ़ी गई पाइथागोरस प्रमेय की एक सरल उपपत्ति देने में प्रयोग करेंगे।

क्या आप अनुमान लगा सकते हैं कि पर्वतों (जैसे माऊंट एवरेस्ट) की ऊँचाईयाँ अथवा कुछ दूरस्थ वस्तुओं (जैसे चन्द्रमा) की दूरियाँ किस प्रकार ज्ञात की गई हैं? क्या आप सोचते हैं कि इन्हें एक मापने वाले फीते से सीधा (प्रत्यक्ष) मापा गया है? वास्तव में, इन सभी ऊँचाई और दूरियों को अप्रत्यक्ष मापन (indirect measurement) की अवधारणा का प्रयोग करते हुए ज्ञात किया गया है, जो आकृतियों की समरूपता के सिद्धांत पर आधारित है (देखिए उदाहरण 7, प्रश्नावली 6.3 का प्रश्न 15 तथा साथ ही इस पुस्तक के अध्याय 8 और 9)।

6.2 समरूप आकृतियाँ

कक्षा IX में, आपने देखा था कि समान (एक ही) त्रिज्या वाले सभी वृत्त सर्वांगसम होते हैं, समान लंबाई की भुजा वाले सभी वर्ग सर्वांगसम होते हैं तथा समान लंबाई की भुजा वाले सभी समबाहु त्रिभुज सर्वांगसम होते हैं।

अब किन्हीं दो (या अधिक) वृत्तों पर विचार कीजिए [देखिए आकृति 6.1 (i)]। क्या ये सर्वांगसम हैं? चूँकि इनमें से सभी की त्रिज्या समान नहीं है, इसलिए ये परस्पर सर्वांगसम नहीं हैं। ध्यान दीजिए कि इनमें कुछ सर्वांगसम हैं और कुछ सर्वांगसम नहीं हैं, परंतु इनमें से सभी के आकार समान हैं। अत:, ये सभी वे आकृतियाँ हैं जिन्हें हम समरूप (similar) कहते हैं। दो समरूप आकृतियों के आकार समान होते हैं परंतु इनके आमाप समान होने आवश्यक नहीं हैं। अत:, सभी वृत्त समरूप होते हैं। दो (या अधिक) वर्गों के बारे में अथवा दो

(या अधिक) समबाहु त्रिभुजों के बारे में आप क्या सोचते हैं [देखिए आकृति 6.1 (ii) और (iii)]? सभी वृत्तों की तरह ही, यहाँ सभी वर्ग समरूप हैं तथा सभी समबाहु त्रिभुज समरूप हैं।

उपरोक्त चर्चा से, हम यह भी कह सकते हैं कि सभी सर्वांगसम आकृतियाँ समरूप होती हैं, परंतु सभी समरूप आकृतियों का सर्वांगसम होना आवश्यक नहीं है।

क्या एक वृत्त और एक वर्ग समरूप हो सकते हैं? क्या एक त्रिभुज और एक वर्ग समरूप हो सकते हैं? इन आकृतियों को देखने मात्र से ही आप प्रश्नों के उत्तर दे सकते हैं (देखिए आकृति 6.1)। स्पष्ट शब्दों में, ये आकृतियाँ समरूप नहीं हैं। (क्यों?)

आप दो चतुर्भुजों ABCD और PORS के बारे में क्या कह सकते हैं (देखिए आकृति 6.2)? क्या ये समरूप हैं? ये आकृतियाँ समरूप-सी प्रतीत हो रही हैं, परंत हम इसके बारे में निश्चित रूप से कुछ नहीं कह सकते। इसलिए, यह

आकृति 6.2

आवश्यक हो जाता है कि हम आकृतियों की समरूपता के लिए कोई परिभाषा ज्ञात करें तथा इस परिभाषा पर आधारित यह सुनिश्चित करने के लिए कि दो दी हुई आकृतियाँ समरूप हैं या नहीं, कुछ नियम प्राप्त करें। इसके लिए, आइए आकृति 6.3 में चित्रों को देखें:

आकृति 6.3

आप तुरंत यह कहेंगे कि ये एक ही स्मारक (ताजमहल) के चित्र हैं, परंतु ये भिन्न-भिन्न आमापों (sizes) के हैं। क्या आप यह कहेंगे कि ये चित्र समरूप हैं? हाँ, ये हैं। आप एक ही व्यक्ति के एक ही आमाप वाले उन दो चित्रों के बारे में क्या कह सकते हैं. जिनमें से एक उसकी 10 वर्ष की आयु का है तथा दूसरा उसकी 40 वर्ष की आयु का है? क्या ये दोनों चित्र समरूप हैं? ये चित्र समान आमाप के हैं. परंत निश्चित रूप से ये समान आकार के नहीं हैं। अत: ये समरूप नहीं हैं।

जब कोई फ़ोटोग्राफर एक ही नेगेटिव से विभिन्न मापों के फ़ोटो प्रिंट निकालती है, तो वह क्या करती है? आपने स्टैंप साइज़, पासपोर्ट साइज़ एवं पोस्ट कार्ड साइज़ फ़ोटो (या चित्रों) के बारे में अवश्य सुना होगा। वह सामान्य रूप से एक छोटे आमाप (साइज) की फ़िल्म (film). मान लीजिए जो 35 mm आमाप वाली फ़िल्म है, पर फ़ोटो खींचती है और फिर उसे एक बडे आमाप, जैसे 45 mm (या 55 mm) आमाप, वाली फ़ोटो के रूप में आवर्धित

त्रिभुज 87

करती है। इस प्रकार, यदि हम छोटे चित्र के किसी एक रेखाखंड को लें, तो बड़े चित्र में इसका संगत रेखाखंड, लंबाई में पहले रेखाखंड का $\frac{45}{35}$ $\left(\text{या } \frac{55}{35} \right)$ गुना होगा। वास्तव में इसका अर्थ यह है कि छोटे चित्र का प्रत्येक रेखाखंड 35:45 (या 35:55) के अनुपात में आवर्धित हो (बढ़) गया है। इसी को इस प्रकार भी कहा जा सकता है कि बड़े चित्र का प्रत्येक रेखाखंड 45:35 (या 55:35) के अनुपात में घट (कम हो) गया है। साथ ही, यदि आप विभिन्न आमापों के दो चित्रों में संगत रेखाखंडों के किसी भी युग्म के बीच बने झुकावों [अथवा कोणों] को लें, तो आप देखेंगे कि ये झुकाव (या कोण) सदैव बराबर होंगे। यही दो आकृतियों तथा विशेषकर दो बहुभुजों की समरूपता का सार है। हम कहते हैं कि:

भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि (i) उनके संगत कोण बराबर हों तथा(ii) इनकी संगत भुजाएँ एक ही अनुपात में (अर्थात् समानुपाती) हों।

ध्यान दीजिए कि बहुभुजों के लिए संगत भुजाओं के इस एक ही अनुपात को स्केल गुणक (scale factor) [अथवा प्रतिनिधित्व भिन्न (Representative Fraction)] कहा जाता है। आपने यह अवश्य सुना होगा कि विश्व मानचित्र [अर्थात् ग्लोबल मानचित्र] तथा भवनों के निर्माण के लिए बनाए जाने वाली रूप रेखा एक उपयुक्त स्केल गुणक तथा कुछ परिपाटियों को ध्यान में रखकर बनाए जाते हैं।

आकृतियों की समरूपता को अधिक स्पष्ट रूप से समझने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 1: अपनी कक्षा के कमरे की छत के किसी बिंदु O पर प्रकाश युक्त बल्ब लगाइए तथा उसके ठीक नीचे एक मेज रखिए। आइए एक समतल कार्डबोर्ड में से एक बहुभुज, मान लीजिए चतुर्भुज ABCD, काट लें तथा इस कार्डबोर्ड को भूमि के समांतर मेज और जलते हुए बल्ब के बीच में रखें। तब, मेज पर ABCD की एक छाया (shadow) पड़ेगी। इस छाया की बाहरी रूपरेखा को A'B'C'D' से चिह्मित की जिए (देखिए आकृति 6.4)।

ध्यान दीजिए कि चतुर्भुज A'B'C'D' चतुर्भुज

ABCD का एक आकार परिवर्धन (या आवर्धन) है। यह प्रकाश के इस गुणधर्म के कारण है कि प्रकाश सीधी रेखा में चलती है। आप यह भी देख सकते हैं कि A' किरण OA पर स्थित है, B' किरण OB पर स्थित है, C' किरण OC पर स्थित है तथा D' किरण OD पर स्थित है। इस प्रकार, चतुर्भुज A'B'C'D' और ABCD समान आकार के हैं; परंतु इनके माप भिन्न-भिन्न हैं।

अत: चतुर्भुज A'B'C'D' चतुर्भुज ABCD के समरूप है। हम यह भी कह सकते हैं कि चतुर्भुज ABCD चतुर्भुज A'B'C'D' के समरूप है।

यहाँ, आप यह भी देख सकते हैं कि शीर्ष A' शीर्ष A के संगत है, शीर्ष B' शीर्ष B के संगत है, शीर्ष C' शीर्ष C के संगत है तथा शीर्ष D' शीर्ष D के संगत है। सांकेतिक रूप से इन संगतताओं (correspondences) को $A' \leftrightarrow A$, $B' \leftrightarrow B$, $C' \leftrightarrow C$ और $D' \leftrightarrow D$ से निरूपित किया जाता है। दोनों चतुर्भुजों के कोणों और भुजाओं को वास्तविक रूप से माप कर, आप इसका सत्यापन कर सकते हैं कि

(i)
$$\angle$$
 A = \angle A', \angle B = \angle B', \angle C = \angle C', \angle D = \angle D' और

(ii)
$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CD}{C'D'} = \frac{DA}{D'A'}.$$

इससे पुन: यह बात स्पष्ट होती है कि भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि(i) उनके सभी संगत कोण बराबर हों तथा(ii) उनकी सभी संगत भुजाएँ एक ही अनुपात (समानुपात) में हों।

उपरोक्त के आधार पर, आप सरलता से यह कह सकते हैं कि आकृति 6.5 में दिए गए चतुर्भुज ABCD और PQRS समरूप हैं।

त्रिभुज

टिप्पणी: आप इसका सत्यापन कर सकते हैं कि यदि एक बहुभुज किसी अन्य बहुभुज के समरूप हो और यह दूसरा बहुभुज एक तीसरे बहुभुज के समरूप हो, तो पहला बहुभुज तीसरे बहुभुज के समरूप होगा।

आप यह देख सकते हैं कि आकृति 6.6 के दो चतुर्भुजों (एक वर्ग और एक आयत) में, संगत कोण बराबर हैं, परंतु इनकी संगत भुजाएँ एक ही अनुपात में नहीं हैं। अत:, ये दोनों चतुर्भुज समरूप नहीं हैं।

इसी प्रकार आप देख सकते हैं कि आकृति 6.7 के दो चतुर्भुजों (एक वर्ग और एक समचतुर्भुज) में, संगत भुजाएँ एक ही अनुपात में हैं, परंतु इनके संगत कोण बराबर नहीं हैं। पुन:, दोनों बहुभुज (चतुर्भुज) समरूप नहीं हैं।

इस प्रकार, आप देख सकते हैं कि दो बहुभुजों की समरूपता के प्रतिबंधों (i) और (ii) में से किसी एक का ही संतुष्ट होना उनकी समरूपता के लिए पर्याप्त नहीं है।

प्रश्नावली 6.1

कोष्ठकों में दिए शब्दों में से सही शब्दों का प्रयोग करते हुए, रिक्त स्थानों को भरिए:
 सभी वृत्त — होते हैं। (सर्वांगसम, समरूप)

- (ii) सभी वर्ग होते हैं। (समरूप, सर्वांगसम)
- (iii) सभी त्रिभुज समरूप होते हैं। (समद्विबाहु, समबाहु)
- (iv) भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि (i) उनके संगत कोण ——हों तथा (ii) उनकी संगत भुजाएँ ——हों। (बराबर, समानुपाती)
- 2. निम्नलिखित युग्मों के दो भिन्न-भिन्न उदाहरण दीजिए:
 - (i) समरूप आकृतियाँ

- (ii) ऐसी आकृतियाँ जो समरूप नहीं हैं।
- 3. बताइए कि निम्नलिखित चतुर्भुज समरूप हैं या नहीं:

6.3 त्रिभुजों की समरूपता

आप दो त्रिभुजों की समरूपता के बारे में क्या कह सकते हैं?

आपको याद होगा कि त्रिभुज भी एक बहुभुज ही है। इसलिए, हम त्रिभुजों की समरूपता के लिए भी वहीं प्रतिबंध लिख सकते हैं, जो बहुभुजों की समरूपता के लिए लिखे थे। अर्थात्

दो त्रिभुज समरूप होते हैं, यदि

- (i) उनके संगत कोण बराबर हों तथा
- (ii) उनकी संगत भुजाएँ एक ही अनुपात में (अर्थात् समानुपाती) हों।

ध्यान दीजिए कि यदि दो त्रिभुजों के संगत कोण बराबर हों, तो वे समानकोणिक त्रिभुज (equiangular triangles) कहलाते हैं। एक प्रसिद्ध यूनानी गणितज्ञ थेल्स (Thales) ने दो समानकोणिक त्रिभुजों से संबंधित एक महत्वपूर्ण तथ्य प्रतिपादित किया, जो नीचे दिया जा रहा है:

त्रिभुज 91

दो समानकोणिक त्रिभुजों में उनकी संगत भुजाओं का अनुपात सदैव समान रहता है। ऐसा विश्वास किया जाता है कि इसके लिए उन्होंने एक परिणाम का प्रयोग किया जिसे आधारभृत समानुपातिकता प्रमेय (आजकल थेल्स प्रमेय) कहा जाता है।

आधारभूत समानुपातिकता प्रमेय (Basic Proportionality Theorem) को समझने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 2: कोई कोण XAY खींचिए तथा उसकी एक भुजा AX पर कुछ बिंदु (मान लीजिए पाँच बिंदु) P, Q, D, R और B इस प्रकार अंकित कीजिए कि AP = PQ = QD = DR = RB हो।

आकृति 6.10

अब, बिंदु B से होती हुई कोई एक रेखा खींचिए, जो भुजा AY को बिंदु C पर काटे (देखिए आकृति 6.9)।

साथ ही, बिंदु D से होकर BC के समांतर एक रेखा खींचिए, जो AC को E पर काटे। क्या आप अपनी रचनाओं से यह देखते हैं कि $\frac{AD}{DB} = \frac{3}{2}$ हैं? AE और EC मापिए। $\frac{AE}{EC}$ क्या है? देखिए $\frac{AE}{EC}$ भी $\frac{3}{2}$ के बराबर है। इस प्रकार, आप देख सकते हैं कि त्रिभुज ABC में,

 $DE \parallel BC$ है तथा $\frac{AD}{DB} = \frac{AE}{EC}$ है। क्या यह संयोगवश है? नहीं, यह निम्नलिखित प्रमेय के कारण है (जिसे आधारभूत समानुपातिकता प्रमेय कहा जाता है):

प्रमेय 6.1: यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए एक रेखा खींची जाए, तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

उपपत्ति: हमें एक त्रिभुज ABC दिया है, जिसमें भुजा BC के समांतर खींची गई एक रेखा अन्य दो भुजाओं AB और AC को क्रमश: D और E पर काटती हैं (देखिए आकृति 6.10)।

हमें सिद्ध करना है कि $\frac{\mathrm{AD}}{\mathrm{DB}} = \frac{\mathrm{AE}}{\mathrm{EC}}$

आइए B और E तथा C और D को मिलाएँ और फिर DM \perp AC एवं EN \perp AB खीचें।

92

अब, \triangle ADE का क्षेत्रफल (= $\frac{1}{2}$ आधार \times ऊँचाई) = $\frac{1}{2}$ AD \times EN

कक्षा IX से याद कीजिए कि △ ADE के क्षेत्रफल को ar (ADE) से व्यक्त किया जाता है।

अत:
$$ar(ADE) = \frac{1}{2} AD \times EN$$

इसी प्रकार
$$\operatorname{ar}\left(\mathrm{BDE}\right) = \frac{1}{2} \; \mathrm{DB} \times \mathrm{EN},$$
 $\operatorname{ar}\left(\mathrm{ADE}\right) = \frac{1}{2} \; \mathrm{AE} \times \mathrm{DM} \; \; \mathrm{तथा} \; \mathrm{ar}(\mathrm{DEC}) = \frac{1}{2} \; \mathrm{EC} \times \mathrm{DM}$

अत:
$$\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(BDE)} = \frac{\frac{1}{2} \operatorname{AD} \times \operatorname{EN}}{\frac{1}{2} \operatorname{DB} \times \operatorname{EN}} = \frac{\operatorname{AD}}{\operatorname{DB}}$$
 (1)

तथा $\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(DEC)} = \frac{\frac{1}{2} AE \times DM}{\frac{1}{2} EC \times DM} = \frac{AE}{EC}$ (2)

ध्यान दीजिए कि Δ BDE और Δ DEC एक ही आधार DE तथा समांतर रेखाओं BC और DE के बीच बने दो त्रिभुज हैं।

अत:
$$ar(BDE) = ar(DEC)$$
 (3)

इसलिए (1), (2) और (3), से हमें प्राप्त होता है:

$$\frac{AD}{DB} = \frac{AE}{EC}$$

क्या इस प्रमेय का विलोम भी सत्य है (विलोम के अर्थ के लिए परिशिष्ट 1 देखिए)? इसकी जाँच करने के लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 3: अपनी अभ्यासपुस्तिका में एक कोण XAY खींचिए तथा किरण AX पर बिंदु B_1 , B_2 , B_3 , B_4 और B इस प्रकार अंकित कीजिए कि $AB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B$ हो।

इसी प्रकार, किरण AY, पर बिंदु C_1 , C_2 , C_3 , C_4 और C इस प्रकार अंकित कीजिए कि $AC_1=C_1C_2=C_2C_3=C_3C_4=C_4C$ हो। फिर B_1C_1 और BC को मिलाइए (देखिए आकृति 6.11)।

ध्यान दीजिए कि $\frac{AB_1}{B_1B} = \frac{AC_1}{C_1C}$ (प्रत्येक $\frac{1}{4}$ के बराबर है)

आप यह भी देख सकते हैं कि रेखाएँ $\mathbf{B}_1\mathbf{C}_1$ और $\mathbf{B}\mathbf{C}$ परस्पर समांतर हैं, अर्थात्

$$B_{1}C_{1} \parallel BC \tag{1}$$

इसी प्रकार, क्रमश: B2C2, B3C3 और B4C4 को मिलाकर आप देख सकते हैं कि

$$\frac{AB_2}{B_2B} = \frac{AC_2}{C_2C} \left(= \frac{2}{3} \right) \text{ and } B_2C_2 \parallel BC$$
 (2)

$$\frac{AB_3}{B_3B} = \frac{AC_3}{C_3C} \left(= \frac{3}{2} \right) \text{ and } B_3C_3 \parallel BC,$$
 (3)

$$\frac{AB_4}{B_4B} = \frac{AC_4}{C_4C} \left(= \frac{4}{1} \right) \text{ और } B_4C_4 \parallel BC \tag{4}$$

(1), (2), (3) और (4) से, यह देखा जा सकता है कि यदि कोई रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो वह रेखा तीसरी भुजा के समांतर होती हैं।

आप किसी अन्य माप का कोण XAY खींचकर तथा भुजाओं AX और AY पर कितने भी

समान भाग अंकित कर, इस क्रियाकलाप को दोहरा सकते हैं। प्रत्येक बार, आप एक ही परिणाम पर पहुँचेंगे। इस प्रकार, हम निम्नलिखित प्रमेय प्राप्त करते हैं, जो प्रमेय 6.1 का विलोम है:

प्रमेय 6.2: यदि एक रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो वह तीसरी भुजा के समांतर होती है।

इस प्रमेय को सिद्ध किया जा सकता है, यदि हम एक रेखा DE इस प्रकार लें कि $\frac{AD}{DB} = \frac{AE}{EC}$ हो तथा DE भुजा BC के समांतर न हो (देखिए आकृति 6.12)।

अब यदि DE भुजा BC के समांतर नहीं है, तो BC के समांतर एक रेखा DE' खींचिए।

अतः
$$\frac{AD}{DB} = \frac{AE'}{E'C} \qquad (क्यों?)$$
 इसलिए
$$\frac{AE}{EC} = \frac{AE'}{E'C} \qquad (क्यों?)$$

उपरोक्त के दोनों पक्षों में 1 जोड़ कर, आप यह देख सकते हैं कि E और E' को अवश्य ही संपाती होना चाहिए (क्यों?)। उपरोक्त प्रमेयों का प्रयोग स्पष्ट करने के लिए आइए कुछ उदाहरण लें।

उदाहरण 1 : यदि कोई रेखा एक \triangle ABC की भुजाओं AB और AC को क्रमश : D और E पर प्रतिच्छेद करे तथा भुजा BC के समांतर हो, तो सिद्ध कीजिए कि $\frac{AD}{AB} = \frac{AE}{AC}$ होगा (देखिए आकृति 6.13)।

(दिया है)

हल :
$$DE \parallel BC$$
अत: $\frac{AD}{DB} = \frac{AE}{EC}$
अर्थात् $\frac{DB}{AD} = \frac{EC}{AE}$
या $\frac{DB}{AD} + 1 = \frac{EC}{AE} + 1$
या $\frac{AB}{AD} = \frac{AC}{AE}$

(प्रमेय 6.1) **B B C 311कृति 6.13**

अत: $\frac{\overline{AB}}{\overline{AB}} = \frac{\overline{AC}}{\overline{AC}}$ उदाहरण 2 : ABCD एक समलंब है जिसमें $\overline{AB} \parallel DC$

उदाहरण 2 : ABCD एक समलंब है जिसमें AB \parallel DC है। असमांतर भुजाओं AD और BC पर क्रमश: बिंदु E और F इस प्रकार स्थित हैं कि EF भुजा AB के समांतर है (देखिए आकृति 6.14)। दर्शाइए कि $\frac{AE}{ED} = \frac{BF}{FC}$ है।

हल : आइए A और C को मिलाएँ जो EF को G पर प्रतिच्छेद करे (देखिए आकृति 6.15)।

 $AB \parallel DC$ और $EF \parallel AB$ (दिया है) इसिलए $EF \parallel DC$ (एक ही रेखा के समांतर रेखाएँ परस्पर समांतर होती हैं) D

त्रिभुज 95

अब ∆ ADC में,

EG || DC (क्योंकि EF || DC)

अत:
$$\frac{AE}{ED} = \frac{AG}{GC}$$
 (प्रमेय 6.1) (1)

इसी प्रकार, ∆ CAB में

$$\frac{CG}{AG} = \frac{CF}{BF}$$

अर्थात्

$$\frac{AG}{GC} = \frac{BF}{FC} \tag{2}$$

अत: (1) और (2) से

$$\frac{AE}{ED} = \frac{BF}{FC}$$

उदाहरण 3 : आकृति 6.16 में $\frac{PS}{SQ} = \frac{PT}{TR}$ है तथा

 \angle PST = \angle PRQ है। सिद्ध कीजिए कि \triangle PQR एक समद्विबाहु त्रिभुज है।

हल: यह दिया है कि, $\frac{PS}{SQ} = \frac{PT}{TR}$

(1)

अत:

ST || QR

(प्रमेय 6.2)

इसलिए

$$\angle PST = \angle PQR$$
 (संगत कोण)

साथ ही यह दिया है कि

$$\angle PST = \angle PRQ$$
 (2)

अत:

$$\angle PRQ = \angle PQR [(1) और (2) से]$$

इसलिए

$$PO = PE$$

PQ = PR (समान कोणों की सम्मुख भुजाएँ)

अर्थात् ∆PQR एक समद्विबाह् त्रिभुज है।

प्रश्नावली 6.2

1. आकृति 6.17 (i) और (ii) में, DE || BC है। (i) में EC और (ii) में AD ज्ञात की जिए:

आकृति 6.17

2. किसी △ PQR की भुजाओं PQ और PR पर क्रमश: बिंदु E और F स्थित हैं। निम्नलिखित में से प्रत्येक स्थिति के लिए, बताइए कि क्या EF ∥ OR है:

- (i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm $\Re FR = 2.4 \text{ cm}$
- (ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm 3 RF = 9 cm

आकृति 6.18

- (iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm $\Re PF = 0.36 \text{ cm}$
- 3. आकृति 6.18 में यदि LM || CB और LN || CD हो तो सिद्ध कोजिए कि $\frac{AM}{AB} = \frac{AN}{AD}$ है।

- 4. आकृति 6.19 में DE || AC और DF || AE है। सिद्ध कीजिए िक $\frac{BF}{FF} = \frac{BE}{FC}$ है।
- 5. आकृति 6.20 में DE || OQ और DF || OR है। दर्शाइए कि EF || QR है।
- 6. आकृति 6.21 में क्रमश: OP, OQ और OR पर स्थित बिंदु A, B और C इस प्रकार हैं कि AB || PQ और AC || PR है। दर्शाइए कि BC || QR है।

7. प्रमेय 6.1 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की एक भुजा के मध्य-बिंदु से होकर दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है। (याद कीजिए कि आप इसे कक्षा IX में सिद्ध कर चुके हैं।)

- 8. प्रमेय 6.2 का प्रयोग करते हुए सिद्ध कीजिए कि एक त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाली रेखा तीसरी भुजा के समांतर होती है। (याद कीजिए कि आप कक्षा IX में ऐसा कर चुके हैं)।
- 9. ABCD एक समलंब है जिसमें AB \parallel DC है तथा इसके विकर्ण परस्पर बिंदु O पर प्रतिच्छेद करते हैं। दर्शाइए कि $\frac{AO}{BO} = \frac{CO}{DO}$ है।
- 10. एक चतुर्भुज ABCD के विकर्ण परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि $\frac{AO}{BO} = \frac{CO}{DO}$ है। दर्शाइए कि ABCD एक समलंब है।

6.4 त्रिभुजों की समरूपता के लिए कसौटियाँ

पिछले अनुच्छेद में हमने कहा था कि दो त्रिभुज समरूप होते हैं यदि (i) उनके संगत कोण बराबर हों तथा (ii) उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती हों)। अर्थात्

यदि \triangle ABC और \triangle DEF में,

(i)
$$\angle$$
 A = \angle D, \angle B = \angle E, \angle C = \angle F है तथा

(ii)
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$
 है तो दोनों त्रिभुज समरूप होते हैं (देखिए आकृति 6.22)।

यहाँ आप देख सकते हैं कि A, D के संगत है; B, E के संगत है तथा C, F के संगत है। सांकेतिक रूप से, हम इन त्रिभुजों की समरूपता को ' Δ $ABC \sim \Delta$ DEF' लिखते हैं तथा 'त्रिभुज ABC समरूप है त्रिभुज DEF के' पढ़ते हैं। संकेत ' \sim ' 'समरूप' को प्रकट करता है। याद कीजिए कि कक्षा IX में आपने 'सर्वांगसम' के लिए संकेत ' \cong ' का प्रयोग किया था।

इस बात पर अवश्य ध्यान देना चाहिए कि जैसा त्रिभुजों की सर्वांगसमता की स्थिति में किया गया था त्रिभुजों की समरूपता को भी सांकेतिक रूप से व्यक्त करने के लिए, उनके शीर्षों की संगतताओं को सही क्रम में लिखा जाना चाहिए। उदाहरणार्थ, आकृति 6.22 के त्रिभुजों ABC और DEF के लिए, हम Δ ABC \sim Δ EDF अथवा Δ ABC \sim Δ FED नहीं लिख सकते। परंतु हम Δ BAC \sim Δ EDF लिख सकते हैं।

अब एक प्रश्न यह उठता है: दो त्रिभुजों, मान लीजिए ABC और DEF की समरूपता की जाँच के लिए क्या हम सदैव उनके संगत कोणों के सभी युग्मों की समानता (\angle A = \angle D, \angle B = \angle E, \angle C = \angle F) तथा उनकी संगत भुजाओं के सभी युग्मों के अनुपातों की समानता $\left(\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}\right)$ पर विचार करते हैं? आइए इसकी जाँच करें। आपको याद होगा कि कक्षा IX में, आपने दो त्रिभुजों की सर्वांगसमता के लिए कुछ ऐसी कसौटियाँ (criteria) प्राप्त की थीं जिनमें दोनों त्रिभुजों के संगत भागों (या अवयवों) के केवल तीन युग्म ही निहित थे। यहाँ भी, आइए हम दो त्रिभुजों की समरूपता के लिए, कुछ ऐसी कसौटियाँ प्राप्त करने का प्रयत्न करें, जिनमें इन दोनों त्रिभुजों के संगत भागों के सभी छ: युग्मों के स्थान पर, इन संगत भागों के कम युग्मों के बीच संबंध ही निहित हों। इसके लिए, आइए निम्नलिखित क्रियाकलाप करें:

क्रियाकलाप 4: भिन्न-भिन्न लंबाइयों, मान लीजिए $3\,\mathrm{cm}$ और $5\,\mathrm{cm}$ वाले क्रमश: दो रेखाखंड BC और EF खींचिए। फिर बिंदुओं B और C पर क्रमश: \angle PBC और \angle QCB किन्हीं दो मापों, मान लीजिए 60° और 40° , के खींचिए। साथ ही, बिंदुओं E और F पर क्रमश: \angle REF = 60° और \angle SFE = 40° खींचिए (देखिए आकृति 6.23)।

मान लीजिए किरण BP और CQ परस्पर बिंदु A पर प्रतिच्छेद करती हैं तथा किरण ER और FS परस्पर बिंदु D पर प्रतिच्छेद करती हैं। इन दोनों त्रिभुजों ABC और DEF में, आप देख सकते हैं कि \angle B = \angle E, \angle C = \angle F और \angle A = \angle D है। अर्थात् इन त्रिभुजों के संगत कोण बराबर

हैं। इनकी संगत भुजाओं के बारे में आप क्या कह सकते हैं? ध्यान दीजिए कि $\frac{BC}{EF} = \frac{3}{5} = 0.6$ है। $\frac{AB}{DE}$ और $\frac{CA}{FD}$ के बारे में आप क्या कह सकते हैं? AB, DE, CA और FD को मापने पर, आप पाएँगे कि $\frac{AB}{DE}$ और $\frac{CA}{FD}$ भी 0.6 के बराबर है (अथवा लगभग 0.6 के बराबर हैं, यदि मापन में कोई त्रुटि है)। इस प्रकार, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ है। आप समान संगत कोण वाले त्रिभुजों के अनेक युग्म खींचकर इस क्रियाकलाप को दुहरा सकते हैं। प्रत्येक बार, आप यह पाएँगे कि उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) हैं। यह क्रियाकलाप हमें दो त्रिभुजों की समरूपता की निम्नलिखित कसौटी की ओर अग्रसित करता है:

प्रमेय 6.3 : यदि दो त्रिभुजों में, संगत कोण बराबर हों, तो उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) होती हैं और इसीलिए ये त्रिभुज समरूप होते हैं।

उपरोक्त कसौटी को दो त्रिभुजों की समरूपता की AAA (कोण-कोण-कोण) कसौटी कहा जाता है।

इस प्रमेय को दो ऐसे त्रिभुज ABC और DEF लेकर, जिनमें \angle A = \angle D, \angle B = \angle E और \angle C = \angle F हो, सिद्ध किया जा सकता है (देखिए आकृति 6.24)।

DP = AB और DQ = AC काटिए तथा P और Q को मिलाइए।

अत:
$$\Delta ABC \cong \Delta DPQ$$
 (क्यों?)

इससे
$$\angle B = \angle P = \angle E$$
 और $PQ \parallel EF$ प्राप्त होता है (कैसे?)

अत:
$$\frac{DP}{PE} = \frac{DQ}{QF}$$
 (क्यों?)

अर्थात्
$$\frac{AB}{DE} = \frac{AC}{DF}$$
 (क्यों?)

इसी प्रकार,
$$\frac{AB}{DE} = \frac{BC}{EF}$$
 और इसीलिए $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

टिप्पणी: यदि एक त्रिभुज के दो कोण किसी अन्य त्रिभुज के दो कोणों के क्रमश: बराबर हों, तो त्रिभुज के कोण योग गुणधर्म के कारण, इनके तीसरे कोण भी बराबर होंगे। इसीलिए, AAA समरूपता कसौटी को निम्नलिखित रूप में भी व्यक्त किया जा सकता है:

यदि एक त्रिभुज के दो कोण एक अन्य त्रिभुज के क्रमशः दो कोणों के बराबर हों, तो दोनों त्रिभुज समरूप होते हैं।

उपरोक्त को दो त्रिभुजों की समरूपता की AA कसौटी कहा जाता है।

ऊपर आपने देखा है कि यदि एक त्रिभुज के तीनों कोण क्रमश: दूसरे त्रिभुज के तीनों कोणों के बराबर हों, तो उनकी संगत भुजाएँ समानुपाती (एक ही अनुपात में) होती हैं। इस कथन के विलोम के बारे में क्या कह सकते हैं? क्या यह विलोम सत्य है? दूसरे शब्दों में, यदि एक त्रिभुज की भुजाएँ क्रमश: दूसरे त्रिभुज की भुजाओं के समानुपाती हों, तो क्या यह सत्य है कि इन त्रिभुजों के संगत कोण बराबर हैं? आइए, एक क्रियाकलाप द्वारा जाँच करें। क्रियाकलाप 5: दो त्रिभुज ABC और DEF इस प्रकार खींचिए कि AB = 3 cm, BC = 6 cm, CA = 8 cm, DE = 4.5 cm, EF = 9 cm और FD = 12 cm हो (देखिए आकृति 6.25)।

तब, आपको प्राप्त है:

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$
 (प्रत्येक $\frac{2}{3}$ के बराबर हैं)

अब, \angle A, \angle B, \angle C, \angle D, \angle E और \angle F को मापिए। आप देखेंगे कि \angle A = \angle D, \angle B = \angle E और \angle C = \angle F है, अर्थात् दोनों त्रिभुजों के संगत कोण बराबर हैं।

इसी प्रकार के अनेक त्रिभुजों के युग्म खींचकर (जिनमें संगत भुजाओं के अनुपात एक ही हों), आप इस क्रियाकलाप को पुन: कर सकते हैं। प्रत्येक बार आप यह पाएँगे कि इन त्रिभुजों के संगत कोण बराबर हैं। यह दो त्रिभुजों की समरूपता की निम्नलिखित कसौटी के कारण हैं:

प्रमेय 6.4: यदि दो त्रिभुजों में एक त्रिभुज की भुजाएँ दूसरे त्रिभुज की भुजाओं के समानुपाती (अर्थात् एक ही अनुपात में) हों, तो इनके संगत कोण बराबर होते हैं, और इसीलिए दोनों त्रिभुज समरूप होते हैं।

इस कसौटी को दो त्रिभुजों की *समरूपता* की SSS (भुजा-भुजा-भुजा) *कसौटी* कहा जाता है।

उपरोक्त प्रमेय को ऐसे दो त्रिभुज ABC और DEF लेकर, जिनमें $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ हो, सिद्ध किया जा सकता है (देखिए आकृति 6.26):

 Δ DEF में DP = AB और DQ = AC काटिए तथा P और Q को मिलाइए।

यहाँ यह देखा जा सकता है कि $\frac{DP}{PE} = \frac{DQ}{QF}$ और $PQ \parallel EF$ है (कैसे?) अत: $\angle P = \angle E \quad \text{और} \quad \angle Q = \angle F.$ इसलिए $\frac{DP}{DE} = \frac{DQ}{DF} = \frac{PQ}{EF}$ जिससे $\frac{DP}{DE} = \frac{DQ}{DF} = \frac{BC}{EF} \quad (\text{क्यों?})$ अत: $BC = PQ \qquad (\text{क्यों?})$ इस प्रकार $\triangle ABC \cong \triangle DPQ \qquad (\text{क्यों?})$ अत: $\angle A = \angle D, \angle B = \angle E \quad \text{और} \quad \angle C = \angle F \quad (\text{कैसे?})$

टिप्पणी: आपको याद होगा कि दो बहुभुजों की समरूपता के दोनों प्रतिबंधों, अर्थात् (i) संगत कोण बराबर हों और (ii) संगत भुजाएँ एक ही अनुपात में हों, में से केवल किसी एक का ही संतुष्ट होना उनकी समरूपता के लिए पर्याप्त नहीं होता। परंतु प्रमेयों 6.3 और 6.4 के आधार पर, अब आप यह कह सकते हैं कि दो त्रिभुजों की समरूपता की स्थिति में, इन दोनों प्रतिबंधों की जाँच करने की आवश्यकता नहीं है, क्योंकि एक प्रतिबंध से स्वत: ही दूसरा प्रतिबंध प्राप्त हो जाता है।

102

आइए अब दो त्रिभुजों की सर्वांगसमता की उन कसौटियों को याद करें, जो हमने कक्षा IX में पढ़ी थीं। आप देख सकते हैं कि SSS समरूपता कसौटी की तुलना SSS सर्वांगसमता कसौटी से की जा सकती है। इससे हमें यह संकेत मिलता है कि त्रिभुजों की समरूपता की ऐसी कसौटी प्राप्त करने का प्रयत्न किया जाए जिसकी त्रिभुजों की SAS सर्वांगसमता कसौटी से तुलना की जा सके। इसके लिए, आइए एक क्रियाकलाप करें।

क्रियाकलाप 6: दो त्रिभुज ABC और DEF इस प्रकार खींचिए कि AB = 2 cm, \angle A = 50° , AC = 4 cm, DE = 3 cm, \angle D = 50° और DF = 6 cm हो (देखिए आकृति 6.27)।

यहाँ, आप देख सकते हैं कि $\frac{AB}{DE} = \frac{AC}{DF}$ (प्रत्येक $\frac{2}{3}$ के बराबर हैं) तथा $\angle A$ (भुजाओं AB और AC के अंतर्गत कोण) = $\angle D$ (भुजाओं DE और DF के अंतर्गत कोण) है। अर्थात् एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर है तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में (समानुपाती) हैं। अब, आइए $\angle B$, $\angle C$, $\angle E$ और $\angle F$ को मापें।

आप पाएँगे कि \angle B = \angle E और \angle C = \angle F है। अर्थात्, \angle A = \angle D, \angle B = \angle E और \angle C = \angle F है। इसलिए, AAA समरूपता कसौटी से \triangle ABC \sim \triangle DEF है। आप ऐसे अनेक त्रिभुजों के युग्मों को खींचकर, जिनमें एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में (समानुपाती) हों, इस क्रियाकलाप को दोहरा सकते हैं। प्रत्येक बार, आप यह पाएँगे कि दोनों त्रिभुज समरूप हैं। यह त्रिभुजों की समरूपता की निम्नलिखित कसौटी के कारण हैं:

प्रमेय 6.5 : यदि एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ समानुपाती हों, तो दोनों त्रिभुज समरूप होते हैं। त्रिभुज

इस कसौटी को दो त्रिभुजों की समरूपता की SAS (भुजा-कोण-भुजा) कसौटी कहा जाता है।

पहले की ही तरह, इस प्रमेय को भी दो त्रिभुज ABC और DEF ऐसे लेकर कि $\frac{AB}{DE} = \frac{AC}{DF}$ (< 1) हो तथा \angle A = \angle D हो (देखिए आकृति 6.28) तो सिद्ध किया जा सकता है। Δ DEF में DP = AB और DQ = AC काटिए तथा P और Q को मिलाइए।

अब
$$PQ \parallel EF$$
 और $\triangle ABC \cong \triangle DPQ$ (कैसे?)

अतः
$$\angle A = \angle D, \angle B = \angle P$$
 और $\angle C = \angle Q$ है

इसलिए
$$\Delta ABC \sim \Delta DEF$$
 (क्यों?)

आइए अब हम इन कसौटियों के प्रयोग को प्रदर्शित करने के लिए, कुछ उदाहरण लें। उदाहरण 4: आकृति 6.29 में, यदि $PQ \parallel RS$ है, तो सिद्ध कीजिए कि $\Delta POQ \sim \Delta SOR$ है।

हल:	PQ ∥ RS	(दिया है)
अत:	$\angle P = \angle S$	(एकांतर कोण)
और	$\angle Q = \angle R$	(एकांतर कोण)
साथ ही	$\angle POQ = \angle SOR$	(शीर्षाभिमुख कोण)
इसलिए	Δ POQ \sim Δ SOR	(AAA समरूपता कसौटी)

उदाहरण 5 : आकृति 6.30 में ∠ P ज्ञात कीजिए।

हल: $\triangle ABC$ और $\triangle PQR$ में,

$$\frac{AB}{RQ} = \frac{3.8}{7.6} = \frac{1}{2}, \frac{BC}{QP} = \frac{6}{12} = \frac{1}{2}$$
 shit $\frac{CA}{PR} = \frac{3\sqrt{3}}{6\sqrt{3}} = \frac{1}{2}$

अर्थात

$$\frac{AB}{RQ} = \frac{BC}{QP} = \frac{CA}{PR}$$

इसलिए

$$\Delta$$
 ABC $\sim \Delta$ RQP

(SSS समरूपता)

इसलिए

$$\angle C = \angle P$$

(समरूप त्रिभुजों के संगत कोण)

परंतू

$$\angle$$
 C = 180° – \angle A – \angle B(त्रिभुज का कोण योग गुणधर्म)

 $= 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ}$

अत:

$$\angle P = 40^{\circ}$$

उदाहरण 6: आकृति 6.31 में,

दर्शाइए कि

हल:

$$OA \cdot OB = OC \cdot OD$$
 (दिया है)

अत:

$$\frac{OA}{OC} = \frac{OD}{OB}$$
 (1)

साथ ही, हमें प्राप्त है:
$$\angle AOD = \angle COB$$

(शीर्षाभिमुख कोण)

आकृति 6.31

अत: (1) और (2) से

$$\Delta$$
 AOD \sim Δ COB

(SAS समरूपता कसौटी)

B

इसलिए

$$\angle$$
 A = \angle C और \angle D = \angle B (समरूप त्रिभुजों के संगत कोण)

त्रिभुज 105

उदाहरण 7:90 cm की लंबाई वाली एक लड़की बल्ब लगे एक खंभे के आधार से परे 1.2 m/s की चाल से चल रही है। यदि बल्ब भूमि से 3.6cm की ऊँचाई पर है, तो 4 सेकंड बाद उस लडकी की छाया की लंबाई ज्ञात कीजिए।

 $\angle B = \angle D$

हल: मान लीजिए AB बल्ब लगे खंभे को तथा CD लडकी द्वारा खंभे के आधार से परे 4 सेकंड चलने के बाद उसकी स्थिति को प्रकट करते हैं (देखिए आकृति 6.32)।

आकृति से आप देख सकते हैं कि DE लड़की की छाया की लंबाई है। मान लीजिए DE. x m है।

अब, $BD = 1.2 \text{ m} \times 4 = 4.8 \text{ m}$ ध्यान दीजिए कि ∆ ABE और ∆ CDE में.

आकृति 6.32

तथा $\angle E = \angle E$ \triangle ABE \sim \triangle CDE अत: इसलिए DE. अर्थात अर्थात 4.8 + x = 4xअर्थात् 3x = 4.8

(प्रत्येक 90° का है, क्योंकि बल्ब लगा खंभा और लड़की दोनों ही भूमि से ऊर्ध्वाधर खड़े हैं) (समान कोण)

(AA समरूपता कसौटी)

(समरूप त्रिभुजों की संगत भुजाएं)

 $(90 \text{ cm} = \frac{90}{100} \text{ m} = 0.9 \text{ m})$

अत: 4 सेकंड चलने के बाद लडकी की छाया की लंबाई 1.6 m है।

x = 1.6

उदाहरण 8: आकृति 6.33 में CM और RN क्रमश: Δ ABC और Δ PQR की माध्यिकाएँ हैं। यदि $\Delta \, ABC \sim \Delta \, PQR \, \hat{\epsilon} \,$ तो सिद्ध कीजिए कि

- (i) \triangle AMC \sim \triangle PNR

अर्थात्

(iii) Δ CMB $\sim \Delta$ RNQ

हल: (i)
$$\triangle ABC \sim \triangle PQR$$
 (दिया है) अत: $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$ (1) तथा $\triangle A = 2P$, $\triangle B = 2Q$ और $\triangle C = 2R$ (2) परंतु $\triangle AB = 2AM$ और $\triangle C = 2R$ (2) परंतु $\triangle AB = 2AM$ और $\triangle C = 2R$ (2) $\triangle C = 2R$ (2) $\triangle C = 2R$ (3) $\triangle C = 2R$ (4) $\triangle C = 2R$ (5) $\triangle C = 2R$ (6) $\triangle C = 2R$ (7) $\triangle C = 2R$ (8) $\triangle C = 2R$ (9) $\triangle C = 2R$ (1) $\triangle C = 2R$ (1) $\triangle C = 2R$ (2) $\triangle C = 2R$ (3) $\triangle C = 2R$ (4) $\triangle C = 2R$ (3) $\triangle C = 2R$ (4) $\triangle C = 2R$ (3) $\triangle C = 2R$ (4) $\triangle C = 2R$ (5) $\triangle C = 2R$ (6) $\triangle C = 2R$ (6) $\triangle C = 2R$ (1) \triangle

प्रश्नावली 6.3

1. बताइए कि आकृति 6.34 में दिए त्रिभुजों के युग्मों में से कौन-कौन से युग्म समरूप हैं। उस समरूपता कसौटी को लिखिए जिसका प्रयोग आपने उत्तर देने में किया है तथा साथ ही समरूप त्रिभुजों को सांकेतिक रूप में व्यक्त कीजिए।

- 2. आकृति 6.35 में,∆ ODC ~ ∆ OBA, ∠ BOC = 125° और ∠ CDO = 70° है। ∠ DOC, ∠ DCO और ∠ OAB ज्ञात कीजिए।
- 3. समलंब ABCD, जिसमें AB \parallel DC है, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं। दो त्रिभुजों की समरूपता कसौटी का प्रयोग करते हुए, दर्शाइए कि $\frac{OA}{OC} = \frac{OB}{OD}$ है।

107

108

4. आकृति 6.36 में, $\frac{QR}{QS} = \frac{QT}{PR}$ तथा $\angle 1 = \angle 2$ है। दर्शाइए कि $\triangle POS \sim \triangle TOR$ है।

- 5. \triangle PQR की भुजाओं PR और QR पर क्रमश: बिंदु S और T इस प्रकार स्थित हैं कि \angle P = \angle RTS है। दर्शाइए कि \triangle RPQ \sim \triangle RTS है।
- **6.** आकृति 6.37 में, यदि \triangle ABE \cong \triangle ACD है, तो दर्शाइए कि \triangle ADE \sim \triangle ABC है।
- आकृति 6.38 में, △ABC के शीर्षलंब AD और CE परस्पर बिंदु P पर प्रतिच्छेद करते हैं। दर्शाइए कि:
 - (i) $\triangle AEP \sim \triangle CDP$
 - (ii) $\triangle ABD \sim \triangle CBE$
 - (iii) ΔAEP~ΔADB
 - (iv) $\triangle PDC \sim \triangle BEC$
- 8. समांतर चतुर्भुज ABCD की बढ़ाई गई भुजा AD पर स्थित E एक बिंदु है तथा BE भुजा CD को F पर प्रतिच्छेद करती है। दर्शाइए कि ΔABE~ΔCFB है।
- आकृति 6.39 में, ABC और AMP दो समकोण त्रिभुज हैं, जिनके कोण B और M समकोण हैं। सिद्ध कीजिए कि:
 - (i) \triangle ABC \sim \triangle AMP

(ii)
$$\frac{CA}{PA} = \frac{BC}{MP}$$

- 10. CD और GH क्रमश: ∠ACB और ∠EGF के ऐसे समद्विभाजक हैं कि बिंदु D और H क्रमश: ∆ABC और ∆FEG की भुजाओं AB और FE पर स्थित हैं। यदि ∆ABC ~ ∆ FEG है, तो दर्शाइए कि:
 - (i) $\frac{CD}{GH} = \frac{AC}{FG}$
 - (ii) ΔDCB~ΔHGE
 - (iii) ΔDCA~ΔHGF

त्रिभुज 109

11. आकृति $6.40\,$ में,AB = AC वाले, एक समद्विबाहु त्रिभुज ABC की बढ़ाई गई भुजा CB पर स्थित E एक बिंदु है। यदि $AD \perp BC\,$ और $EF \perp AC$ है तो सिद्ध कीजिए कि $\triangle ABD \sim \triangle ECF\,$ है।

12. एक त्रिभुज ABC की भुजाएँ AB और BC तथा माध्यिका AD एक अन्य त्रिभुज PQR की क्रमश: भुजाओं PQ और QR तथा माध्यिका PM के समानुपाती हैं (देखिए आकृति 6.41)। दर्शाइए कि Δ ABC \sim Δ PQR है।

- 13. एक त्रिभुज ABC की भुजा BC पर एक बिंदु D इस प्रकार स्थित है कि \angle ADC = \angle BAC है। दर्शाइए कि CA² = CB.CD है।
- 14. एक त्रिभुज ABC की भुजाएँ AB और AC तथा माध्यिका AD एक अन्य त्रिभुज की भुजाओं PQ और PR तथा माध्यिका PM के क्रमशः समानुपाती हैं। दर्शाइए कि △ABC ~ △ PQR है।
- 15. लंबाई 6 m वाले एक ऊर्ध्वाधर स्तंभ की भूमि पर छाया की लंबाई 4 m है, जबिक उसी समय एक मीनार की छाया की लंबाई 28 m है। मीनार की ऊँचाई ज्ञात कीजिए।
- 16. AD और PM त्रिभुजों ABC और PQR की क्रमश: माध्यिकाएँ हैं, जबिक \triangle ABC \sim \triangle PQR है। सिद्ध कीजिए कि $\frac{AB}{PQ} = \frac{AD}{PM}$ है।

6.5 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

- दो आकृतियाँ जिनके आकार समान हों, परंतु आवश्यक रूप से आमाप समान न हों, समरूप आकृतियाँ कहलाती हैं।
- 2. सभी सर्वांगसम आकृतियाँ समरूप होती हैं परंतु इसका विलोम सत्य नहीं है।
- 3. भुजाओं की समान संख्या वाले दो बहुभुज समरूप होते हैं, यदि(i) उनके संगत कोण बराबर हों तथा(ii) उनकी संगत भुजाएँ एक ही अनुपात में (समानुपाती) हों।
- 4. यदि किसी त्रिभुज की एक भुजा के समांतर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिए, एक रेखा खींची जाए, तो ये अन्य दो भुजाएँ एक ही अनुपात में विभाजित हो जाती हैं।

5. यदि एक रेखा किसी त्रिभुज की दो भुजाओं को एक ही अनुपात में विभाजित करे, तो यह रेखा तीसरी भुजा के समांतर होती है।

- 6. यदि दो त्रिभुजों में, संगत कोण बराबर हों, तो उनकी संगत भुजाएँ एक ही अनुपात में होती हैं और इसीलिए दोनों त्रिभुज समरूप होते हैं (AAA समरूपता कसौटी)।
- 7. यदि दो त्रिभुजों में, एक त्रिभुज के दो कोण क्रमश: दूसरे त्रिभुज के दो कोणों के बराबर हों, तो दोनों त्रिभुज समरूप होते हैं (AA समरूपता कसौटी)।
- 8. यदि दो त्रिभुजों में, संगत भुजाएँ एक ही अनुपात में हों, तो उनके संगत कोण बराबर होते हैं और इसीलिए दोनों त्रिभुज समरूप होते हैं (SSS समरूपता कसौटी)।
- 9. यदि एक त्रिभुज का एक कोण दूसरे त्रिभुज के एक कोण के बराबर हो तथा इन कोणों को अंतर्गत करने वाली भुजाएँ एक ही अनुपात में हों, तो दोनों त्रिभुज समरूप होते हैं(SAS समरूपता कसौटी)।

पाठकों के लिए विशेष

यदि दो समकोण त्रिभुजों में एक त्रिभुज का कर्ण तथा एक भुजा, दूसरे त्रिभुज के कर्ण तथा एक भुजा के समानुपाती हो तो दोनों त्रिभुज समरूप होते हैं। इसे RHS समरूपता कसौटी कहा जा सकता है।

यदि आप इस कसौटी को अध्याय 8 के उदाहरण 2 में प्रयोग करते हैं तो उपपति और भी सरल हो जाएगी।

निर्देशांक ज्यामिति

7

7.1 भूमिका

कक्षा IX में, आप पढ़ चुके हैं कि एक तल पर किसी बिंदु की स्थिति निर्धारित करने के लिए, हमें निर्देशांक अक्षों के एक युग्म की आवश्यकता होती है। किसी बिंदु की y-अक्ष से दूरी उस बिंदु का x-निर्देशांक या भुज (abscissa) कहलाती है। किसी बिंदु की x-अक्ष से दूरी, उस बिंदु का y-निर्देशांक या कोटि (ordinate) कहलाती है। x-अक्ष पर स्थित किसी बिंदु के निर्देशांक (x, x) के रूप के होते हैं तथा y-अक्ष पर स्थित किसी बिंदु के निर्देशांक (x, x) के रूप के होते हैं।

यहाँ आपके लिए एक खेल दिया जा रहा है। एक आलेख कागज़ पर लांबिक अक्षों (perpendicular axes) का एक युग्म खींचिए। अब निम्नलिखित बिंदुओं को आलेखित कीजिए और दिए गए निर्देशों के अनुसार उन्हें मिलाइए। बिंदु A(4,8) को B(3,9) से, B को C(3,8) से, C को D(1,6) से, D को E(1,5) से, E को F(3,3) से, E को E(6,3) से, E को E के E के E को E को

साथ ही, आप यह भी देख चुके हैं कि ax + by + c = 0 (जहाँ a और b एक साथ शून्य न हों) के रूप की दो चरों वाली एक समीकरण को जब आलेखीय रूप से निरूपित करते हैं, तो एक सरल रेखा प्राप्त होती है। साथ ही, अध्याय 2 में आप देख चुके हैं कि

 $y = ax^2 + bx + c$ ($a \neq 0$) का आलेख एक परवलय (parabola) होता है। वस्तुत:, आकृतियों की ज्यामिति का अध्ययन करने के लिए, निर्देशांक ज्यामिति (coordinate geometry) एक बीजीय साधन (algebraic tool) के रूप में विकसित की गई है। यह बीजगणित का प्रयोग करके ज्यामिति का अध्ययन करने में सहायता करती है तथा बीजगणित को ज्यामिति द्वारा समझने में भी सहायक होती है। इसी कारण, निर्देशांक ज्यामिति के विभिन्न क्षेत्रों में व्यापक अनुप्रयोग हैं, जैसे भौतिकी, इंजीनियरिंग, समुद्री-परिवहन (या नौ-गमन) (navigation), भूकंप शास्त्र संबंधी (seismology) और कला।

इस अध्याय में, आप यह सीखेंगे कि दो बिंदुओं, जिनके निर्देशांक दिए हुए हों, के बीच की दूरी किस प्रकार ज्ञात की जाती है तथा तीन दिए हुए बिंदुओं से बने त्रिभुज का क्षेत्रफल किस प्रकार ज्ञात किया जाता है। आप इसका भी अध्ययन करेंगे कि दिए हुए दो बिंदुओं को मिलाने से बने रेखाखंड को एक दिए गए अनुपात में विभाजित करने वाले बिंदु के निर्देशांक किस प्रकार ज्ञात किए जाते हैं।

7.2 दूरी सूत्र

आइए निम्नलिखित स्थिति पर विचार करें:

एक शहर B एक अन्य शहर A से 36 km पूर्व (east) और 15 km उत्तर (north) की ओर है। आप शहर B की शहर A से दूरी बिना वास्तविक मापन के किस प्रकार ज्ञात कर सकते हैं? आइए देखें। इस स्थिति को, आलेखीय रूप से, आकृति 7.1 की तरह दर्शाया जा सकता है। अब, आप वांछित दूरी ज्ञात करने के लिए, पाइथागोरस प्रमेय का प्रयोग कर सकते हैं।

अब, मान लीजिए दो बिंदु x—अक्ष पर स्थित हैं। क्या हम इनके बीच की दूरी ज्ञात कर सकते हैं? उदाहरणार्थ, आकृति 7.2 के दो बिंदुओं A(4,0) और B(6,0) पर विचार कीजिए। बिंदु A और B,x-अक्ष पर स्थित है।

आकृति से आप देख सकते हैं कि OA = 4 मात्रक (इकाई) और OB = 6 मात्रक हैं।

अत:, A से B की दूरी AB = OB - OA = (6-4) मात्रक = 2 मात्रक है।

निर्देशांक ज्यामिति 113

इस प्रकार, यदि दो बिंदु x—अक्ष पर स्थित हों, तो हम उनके बीच की दूरी सरलता से जात कर सकते हैं।

अब, मान लीजिए, हम y—अक्ष पर स्थित कोई दो बिंदु लेते हैं। क्या हम इनके बीच की दूरी ज्ञात कर सकते हैं? यदि बिंदु C(0,3) और D(0,8), y—अक्ष पर स्थित हों, तो हम दूरी ऊपर की भाँति ज्ञात कर सकते हैं अर्थात् दूरी CD = (8-3) मात्रक = 5 मात्रक है (देखिए आकृति 7.2)।

पुन:, क्या आप आकृति 7.2 में, बिंदु C से बिंदु A की दूरी ज्ञात कर सकते हैं? चूँिक OA = 4 मात्रक और OC = 3 मात्रक हैं, इसलिए C से A की दूरी $AC = \sqrt{3^2 + 4^2} = 5$ मात्रक है। इसी प्रकार, आप D से B की दूरी BD = 10 मात्रक ज्ञात कर सकते हैं।

अब, यदि हम ऐसे दो बिंदुओं पर विचार करें, जो निर्देशांक अक्षों पर स्थित नहीं हैं, तो क्या हम इनके बीच की दूरी ज्ञात कर सकते हैं? हाँ! ऐसा करने के लिए, हम पाइथागोरस प्रमेय का प्रयोग करेंगे। आइए एक उदाहरण लेकर देखें।

स्पष्ट है कि QT = 2 मात्रक और PT = RS = 2 मात्रक।

अब, पाइथागोरस प्रमेय के प्रयोग से, हमें प्राप्त होता है:

$$PQ^{2} = PT^{2} + QT^{2}$$

= $2^{2} + 2^{2} = 8$
 $PQ = 2\sqrt{2}$ मात्रक हुआ।

अत:

आप दो भिन्न-भिन्न चतुर्थांशों में स्थित बिंदुओं के बीच की दूरी कैसे ज्ञात करेंगे?

बिंदुओं P(6,4) और Q(-5,-3) पर विचार कीजिए (देखिए आकृति 7.4)। x-अक्ष पर लंब QS खींचिए। साथ ही, बिंदु P से बढ़ाई हुई QS पर PT लंब खींचिए जो y-अक्ष को बिंदु R पर प्रतिच्छेद करे।

आकृति 7.3

तब, PT = 11 मात्रक और QT = 7 मात्रक है (क्यों?)

समकोण त्रिभुज PTQ में, पाइथागोरस प्रमेय के प्रयोग से, हमें प्राप्त होता है:

$$PQ = \sqrt{11^2 + 7^2} = \sqrt{170}$$
 मात्रक

अत:

आइए, अब किन्हीं दो बिंदुओं $P(x_1, y_1)$ और $Q(x_2, y_2)$ के बीच की दूरी ज्ञात करें। x-अक्ष पर लंब PR और QS खींचिए। P से QS पर एक लंब खींचिए, जो उसे T पर प्रतिच्छेद करे (देखिए आकृति 7.5)।

तब, $OR = x_1$, $OS = x_2$ है। अतः, $RS = x_2 - x_1 = PT$ है। साथ ही, $SQ = y_2$ और $ST = PR = y_1$ है। अतः, $QT = y_2 - y_1$ है। अब, Δ PTQ में, पाइथागोरस प्रमेय के प्रयोग से, हमें प्राप्त होता है:

Q(x₂, y₂) T (x₁, y₁) R S X आकृति 7.5

$$PQ^{2} = PT^{2} + QT^{2}$$

$$= (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$

$$PQ = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

ध्यान दें कि चूँकि दूरी सदैव ऋणेतर होती है, हम केवल धनात्मक वर्गमूल लेते हैं।

अतः $P(x_1, y_1)$ और $Q(x_2, y_2)$ के बिंदुओं के बीच की दूरी है

PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

जो दूरी सूत्र (distance formula) कहलाता है।

टिप्पणियाँ :

1. विशेष रूप से, बिंदु P(x, y) की मूल बिंदु O(0, 0) से दूरी

$$OP = \sqrt{x^2 + y^2}$$
 होती है।

2. हम PQ = $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ भी लिख सकते हैं (क्यों?)

उदाहरण 1 : क्या बिंदु (3, 2), (-2, -3) और (2, 3) एक त्रिभुज बनाते हैं? यदि हाँ, तो बताइए कि किस प्रकार का त्रिभुज बनता है।

हल: आइए PQ, QR और PR ज्ञात करने के लिए दूरी सूत्र का प्रयोग करें, जहाँ P(3, 2), Q(-2, -3) और R(2, 3) दिए हुए बिंदु हैं। हमें प्राप्त होता है:

$$PQ = \sqrt{(3+2)^2 + (2+3)^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 7.07$$
 (लगभग)
 $QR = \sqrt{(-2-2)^2 + (-3-3)^2} = \sqrt{(-4)^2 + (-6)^2} = \sqrt{52} = 7.21$ (लगभग)
 $PR = \sqrt{(3-2)^2 + (2-3)^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2} = 1.41$ (लगभग)

चूँिक इन तीन दूरियों में से किन्हीं दो का योग तीसरी दूरी से अधिक है, इसलिए इन बिंदुओं P, Q और R से एक त्रिभुज बनता है।

साथ ही, यहाँ $PQ^2 + PR^2 = QR^2$ है। अत:, पाइथागोरस प्रमेय के विलोम से, हमें ज्ञात होता है कि $\angle P = 90^{\circ}$ है।

इसलिए, PQR एक समकोण त्रिभुज है।

उदाहरण 2: दर्शाइए कि बिंदु (1,7), (4,2), (-1,-1) और (-4,4) एक वर्ग के शीर्ष हैं। हल: मान लीजिए दिए हुए बिंदु A(1,7), B(4,2), C(-1,-1) और D(-4,4) हैं। ABCD को एक वर्ग दर्शाने की एक विधि यह है कि उसका गुणधर्म जैसा कि वर्ग की सभी भुजाएँ बराबर तथा दोनों विकर्ण बराबर होती हैं, का प्रयोग किया जाए। अब,

AB =
$$\sqrt{(1-4)^2 + (7-2)^2} = \sqrt{9+25} = \sqrt{34}$$

BC =
$$\sqrt{(4+1)^2 + (2+1)^2} = \sqrt{25+9} = \sqrt{34}$$

CD = $\sqrt{(-1+4)^2 + (-1-4)^2} = \sqrt{9+25} = \sqrt{34}$
DA = $\sqrt{(1+4)^2 + (7-4)^2} = \sqrt{25+9} = \sqrt{34}$
AC = $\sqrt{(1+1)^2 + (7+1)^2} = \sqrt{4+64} = \sqrt{68}$
BD = $\sqrt{(4+4)^2 + (2-4)^2} = \sqrt{64+4} = \sqrt{68}$

यहाँ, AB = BC = CD = DA है और AC = BD है, अर्थात् चतुर्भुज ABCD की चारों भुजाएँ बराबर हैं और दोनों विकर्ण भी बराबर हैं। अत: चतुर्भुज ABCD एक वर्ग है।

वैकल्पिक हल: हम चारों भुजाएँ और एक विकर्ण, मान लीजिए AC ऊपर की तरह ज्ञात करते हैं। यहाँ $AD^2 + DC^2 = 34 + 34 = 68 = AC^2$ है। अत:, पाइथागोरस प्रमेय के विलोम द्वारा $\angle D = 90^\circ$ है। चारों भुजाएँ बराबर होने और एक कोण समकोण होने से चतुर्भुज एक वर्ग हो जाता है। अत: ABCD एक वर्ग है।

उदाहरण 3: आकृति 7.6 किसी कक्षा में रखे डेस्कों (desks) की व्यवस्था दर्शाती है। आशिमा, भारती और कैमिला क्रमश: A(3, 1), B(6, 4) और C(8, 6) पर बैठी हैं। क्या आप सोचते हैं कि वे एक ही सीध (in a line) में बैठी हैं? सकारण उत्तर दीजिए।

आकृति 7.6

हल: दूरी सूत्र के प्रयोग से, हमें प्राप्त होता है:

$$AB = \sqrt{(6-3)^2 + (4-1)^2} = \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$$

BC =
$$\sqrt{(8-6)^2 + (6-4)^2} = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$

निर्देशांक ज्यामिति 117

$$AC = \sqrt{(8-3)^2 + (6-1)^2} = \sqrt{25+25} = \sqrt{50} = 5\sqrt{2}$$

चूँकि AB + BC = $3\sqrt{2}$ + $2\sqrt{2}$ = $5\sqrt{2}$ = AC है, अतः हम कह सकते हैं कि A, B और C सरेखी (collinear) हैं। अर्थात्, वे तीनों एक ही सीध में बैठी हैं।

उदाहरण 4:x और y में एक संबंध ज्ञात कीजिए, तािक बिंदु (x,y) बिंदुओं (7,1) और (3,5) से समदूरस्थ (equidistant) हो।

हल: मान लीजिए P(x, y) बिंदुओं A(7, 1) और B(3, 5) से समदूरस्थ है।

हमें AP = BP दिया है। अत: $AP^2 = BP^2$ है।

अर्थात्
$$(x-7)^2 + (y-1)^2 = (x-3)^2 + (y-5)^2$$

अर्थात्
$$x^2 - 14x + 49 + y^2 - 2y + 1 = x^2 - 6x + 9 + y^2 - 10y + 25$$

अर्थात्
$$x-y=2$$

यही x और y में वांछित संबंध है।

टिप्पणी: ध्यान दीजिए कि समीकरण x-y=2 का आलेख एक रेखा होता है। आप अपने पिछले अध्ययन से यह जानते हैं कि वह बिंदु जो दो दिए हुए बिंदुओं A और B से समदूरस्थ होता है रेखाखंड AB के लंब समद्विभाजक पर स्थित होता है। अत:, x-y=2 का आलेख रेखाखंड AB का लंब समद्विभाजक है (देखिए आकृति 7.7)।

उदाहरण 5 : y-अक्ष पर एक ऐसा बिंदु ज्ञात कीजिए, जो बिंदुओं A(6, 5) और B(– 4, 3) से समदूरस्थ हो।

हल: हम जानते हैं कि y-अक्ष पर स्थित कोई भी बिंदु (0, y) के रूप का होता है। अत:, मान लीजिए कि बिंदु P(0, y) बिंदुओं A और B से समदूरस्थ है। तब,

आकृति 7.7

या
$$(6-0)^2 + (5-y)^2 = (-4-0)^2 + (3-y)^2$$

$$36 + 25 + y^2 - 10y = 16 + 9 + y^2 - 6y$$

या 4v = 36या y = 9

अत:, वांछित बिंदु (0, 9) है।

आइए अपने हल की जाँच करें: $AP = \sqrt{(6-0)^2 + (5-9)^2} = \sqrt{36+16} = \sqrt{52}$

BP =
$$\sqrt{(-4-0)^2 + (3-9)^2} = \sqrt{16+36} = \sqrt{52}$$

टिप्पणी: ऊपर दी गई टिप्पणी का प्रयोग करने से, हम देखते हैं कि (0, 9), y-अक्ष और रेखाखंड AB के लंब समद्विभाजक का प्रतिच्छेद बिंदु है।

प्रश्नावली 7.1

1. बिंदुओं के निम्नलिखित युग्मों के बीच की दूरियाँ ज्ञात कीजिए:

(i) (2,3),(4,1)

(ii) (-5,7), (-1,3) (iii) (a,b), (-a,-b)

- 2. बिंदुओं (0,0) और (36,15) के बीच की दूरी ज्ञात कीजिए। क्या अब आप अनुच्छेद 7.2 में दिए दोनों शहरों A और B के बीच की दूरी ज्ञात कर सकते हैं?
- 3. निर्धारित कीजिए कि क्या बिंदु (1, 5), (2, 3) और (-2, -11) संरेखी हैं।
- **4.** जाँच कीजिए कि क्या बिंदु (5, -2), (6, 4) और (7, -2) एक समद्विबाहु त्रिभुज के शीर्ष हैं।
- 5. किसी कक्षा में, चार मित्र बिंदुओं A. B. C और D पर बैठे हए हैं. जैसाकि आकृति 7.8 में दर्शाया गया है। चंपा और चमेली कक्षा के अंदर आती हैं और कुछ मिनट तक देखने के बाद, चंपा चमेली से पूछती है, 'क्या तुम नहीं सोचती हो कि ABCD एक वर्ग है?' चमेली इससे सहमत नहीं है। दरी सत्र का प्रयोग करके, बताइए कि इनमें कौन सही है।
- 6. निम्नलिखित बिंदुओं द्वारा बनने वाले चतुर्भुज का प्रकार (यदि कोई है तो) बताइए तथा अपने

उत्तर के लिए कारण भी दीजिए:

- (i) (-1,-2), (1,0), (-1,2), (-3,0)
- (ii) (-3,5), (3,1), (0,3), (-1,-4)
- (iii) (4,5), (7,6), (4,3), (1,2)
- 7. x-अक्ष पर वह बिंदु ज्ञात कीजिए जो (2, -5) और (-2, 9) से समदूरस्थ हैं।
- y का वह मान ज्ञात कीजिए, जिसके लिए बिंदु P(2, -3) और Q(10, y) के बीच की दूरी 10 मात्रक है।
- 9. यदि Q(0,1) बिंदुओं P(5,-3) और R(x,6) से समदूरस्थ है, तो x के मान ज्ञात कीजिए। दूरियाँ QR और PR भी ज्ञात कीजिए।
- x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (-3, 4) से समदूरस्थ हो।

7.3 विभाजन सूत्र

आइए अनुच्छेद 7.2 में दी हुई स्थिति को याद करें। मान लीजिए कि टेलीफोन कंपनी शहरों A और B के बीच में एक प्रसारण टॉवर (relay tower) ऐसे स्थान P पर स्थापित करना चाहती है कि टॉवर की B से दूरी उसकी A से दूरी की दुगुनी हो। यदि P रेखाखंड AB पर स्थित

है, तो यह AB को 1:2 के अनुपात में विभाजित करे। (देखिए आकृति 7.9)। यदि हम A को मूलिंबंदु O मानें तथा 1 km को दोनों अक्षों पर 1 मात्रक मानें, तो B के निर्देशांक (36, 15) होंगे। P की स्थिति जानने के लिए हमें P के निर्देशांक ज्ञात करने चाहिए। ये निर्देशांक हम किस प्रकार ज्ञात करें?

मान लीजिए P के निर्देशांक (x, y) हैं। P और B से x-अक्ष पर लंब खींचिए जो इसे क्रमशः D और E पर मिलें। BE पर लंब PC खींचिए जो उससे C पर मिले। तब, अध्याय 6 में, पढ़ी गई AA समरूपता कसौटी के प्रयोग से, Δ POD और Δ BPC समरूप हैं।

अत:
$$\frac{OD}{PC} = \frac{OP}{PB} = \frac{1}{2}$$
 तथा $\frac{PD}{BC} = \frac{OP}{PB} = \frac{1}{2}$ है।

अत:
$$\frac{x}{36-x} = \frac{1}{2}$$
 तथा $\frac{y}{15-y} = \frac{1}{2}$ है।

इन समीकरणों से x = 12 और y = 5 प्राप्त होता है।

आप इसकी जाँच कर सकते हैं कि P(12,5) प्रतिबंध OP: PB = 1:2 को संतुष्ट करता है।

आइए अब उपरोक्त उदाहरण से प्राप्त की गई समझ के आधार पर विभाजन का व्यापक सूत्र प्राप्त करने का प्रयत्न करें।

किन्हीं दो बिंदुओं $A(x_1,y_1)$ और $B(x_2,y_2)$ पर विचार कीजिए और मान लीजिए बिंदु P(x,y) रेखाखंड AB को $m_1:m_2$ के अनुपात में आंतरिक रूप से (internally) विभाजित करता है, अर्थात्

$$\frac{\text{PA}}{\text{PB}} = \frac{m_1}{m_2}$$
 है (देखिए आकृति 7.10)।

x-अक्ष पर AR, PS और BT लंब खींचिए। x-अक्ष के समांतर AQ और PC खींचिए। तब AA समरूपता कसौटी से.

$$\Delta$$
 PAQ $\sim \Delta$ BPC

अत:
$$\frac{PA}{BP} = \frac{AQ}{PC} = \frac{PQ}{BC}$$
 (1)

अब

$$AQ = RS = OS - OR = x - x_1$$

$$PC = ST = OT - OS = x_2 - x$$

$$PQ = PS - QS = PS - AR = y - y_1$$

$$BC = BT - CT = BT - PS = y_2 - y$$

इन मानों को (1) में प्रतिस्थापित करने पर, हमें प्राप्त होता है:

$$\frac{m_1}{m_2} = \frac{x - x_1}{x_2 - x} = \frac{y - y_1}{y_2 - y}$$

$$\frac{m_1}{m_2} = \frac{x - x_1}{x_2 - x} \ \vec{en} \vec{h} \ \ \text{पर हम} \ \ \dot{x} = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \ \ \text{प्राप्त होता है}$$
 इसी प्रकार
$$\frac{m_1}{m_2} = \frac{y - y_1}{y_2 - y} \ \vec{en} \vec{h} \ \ \text{पर हम} \ \ \dot{y} = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \ \ \text{प्राप्त होता है}$$

अत:, दो बिंदुओं $A(x_1, y_1)$ और $B(x_2, y_2)$ को जोड़ने वाले रेखाखंड AB को $m_1: m_2$ के अनुपात में आंतरिक रूप से विभाजित करने वाले बिंदु P(x, y) के निर्देशांक हैं:

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right) \tag{2}$$

उपरोक्त को विभाजन सूत्र (section formula) कहते हैं।

इसी सूत्र को A, P और B से y-अक्ष पर लंब डालकर और ऊपर की भाँति प्रक्रिया अपनाकर भी प्राप्त किया जा सकता है।

यदि P रेखाखंड AB को k:1 के अनुपात में विभाजित करे, तो बिंदु P के निर्देशांक

$$\left(\frac{kx_2+x_1}{k+1}, \frac{ky_2+y_1}{k+1}\right)$$
 होंगे।

विशिष्ट स्थिति: एक रेखाखंड का मध्य-बिंदु उसे 1:1 के अनुपात में विभाजित करता है। अत:, बिंदुओं $A(x_1, y_1)$ और $B(x_2, y_2)$ को जोड़ने वाले रेखाखंड AB के मध्य-बिंदु के निर्देशांक

$$\left(\frac{1 \cdot x_1 + 1 \cdot x_2}{1+1}, \frac{1 \cdot y_1 + 1 \cdot y_2}{1+1}\right) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 होंगे।

आइए अब विभाजन सूत्र पर आधारित कुछ उदाहरण हल करें।

उदाहरण 6: उस बिंदु के निर्देशांक ज्ञात कीजिए जो बिंदुओं (4, – 3) और (8, 5) को जोड़ने वाले रेखाखंड को आंतरिक रूप से 3:1 के अनुपात में विभाजित करता है।

हल: मान लीजिए P(x, y) वांछित बिंदु है। विभाजन सूत्र का प्रयोग करने पर हमें

$$x = \frac{3(8) + 1(4)}{3 + 1} = 7$$
, $y = \frac{3(5) + 1(-3)}{3 + 1} = 3$

प्राप्त होता है। अत: (7, 3) ही वांछित बिंदु है।

उदाहरण 7 : बिंदु (-4, 6), बिंदुओं A(-6, 10) और B(3, -8) को जोड़ने वाले रेखाखंड को किस अनुपात में विभाजित करता है?

हल: मान लीजिए (-4,6) रेखाखंड AB को आंतरिक रूप से $m_1:m_2$ के अनुपात में विभाजित करता है। विभाजन सूत्र के प्रयोग से, हमें प्राप्त होता है:

$$(-4, 6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right) \tag{1}$$

याद कीजिए कि यदि (x, y) = (a, b) हो, तो x = a और y = b होता है।

अत:
$$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2} \quad \text{और} \quad 6 = \frac{-8m_1 + 10m_2}{m_1 + m_2} \quad \stackrel{\bullet}{\text{ह}} \, \text{I}$$

अब $-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$ से प्राप्त होता है:

$$-4m_1 - 4m_2 = 3m_1 - 6m_2$$
$$7m_1 = 2m_2$$

या $m_1: m_2 = 2:7$

अर्थात्

आपको इसकी जाँच कर लेनी चाहिए कि यह अनुपात y-निर्देशांक को भी संतुष्ट करता है।

अब $\frac{-8m_1 + 10m_2}{m_1 + m_2} = \frac{-8\frac{m_1}{m_2} + 10}{\frac{m_1}{m_2} + 1} \qquad (m_2 \text{ से ऊपर नीचे भाग देने पर})$

$$= \frac{-8 \times \frac{2}{7} + 10}{\frac{2}{7} + 1} = 6$$

अत: बिंदु (– 4, 6), बिंदुओं A(– 6, 10) और B(3, – 8) को जोड़ने वाले रेखाखंड को 2 : 7 के अनुपात में विभाजित करता है।

वैकल्पिक हल : अनुपात $m_1:m_2$ को $\frac{m_1}{m_2}:1,\;$ या k:1 के रूप में लिखा जा सकता है। मान

लीजिए बिंदु (-4,6) रेखाखंड AB को आंतरिक रूप से k:1 के अनुपात में विभाजित करता है। विभाजन सूत्र द्वारा, हमें प्राप्त होता है:

$$(-4, 6) = \left(\frac{3k - 6}{k + 1}, \frac{-8k + 10}{k + 1}\right) \tag{2}$$

निर्देशांक ज्यामिति 123

अत:
$$-4 = \frac{3k-6}{k+1}$$
या
$$-4k-4 = 3k-6$$
या
$$7k = 2$$
या
$$k: 1 = 2:7$$

आप y-निर्देशांक के लिए भी इसकी जाँच कर सकते हैं।

अत:, बिंदु (-4,6), बिंदुओं A(-6,10) और B(3,-8) को जोड़ने वाले रेखाखंड को 2:7 के अनुपात में विभाजित करता है।

टिप्पणी: आप इस अनुपात को दूरियाँ PA और PB ज्ञात करके और फिर उनके अनुपात लेकर भी प्राप्त कर सकते हैं, जबकि आपको यह जानकारी हो कि बिंदु A, P और B संरेखी हैं।

उदाहरण 8 : बिंदुओं A(2, -2) और B(-7, 4) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।

हल: मान लीजिए रेखाखंड AB को सम-त्रिभाजित (2,-2) (-7,4) करने वाले बिंदु P और Q हैं, अर्थात् AP = PQ = Fig. 7.11 QB है (देखिए आकृति 7.11)।

अत:, P रेखाखंड AB को आंतरिक रूप से 1 : 2 के अनुपात में विभाजित करता है। अत:, P के निर्देशांक सूत्र द्वारा, निम्नलिखित हैं:

$$\left(\frac{1(-7)+2(2)}{1+2}, \frac{1(4)+2(-2)}{1+2}\right)$$
, अर्थात् $(-1,0)$

अब, Q रेखाखंड AB को आंतरिक रूप से 2:1 के अनुपात में विभाजित करता है। अत: Q के निर्देशांक हैं:

$$\left(\frac{2(-7)+1(2)}{2+1}, \frac{2(4)+1(-2)}{2+1}\right)$$
, अर्थात् $(-4, 2)$

अत:, बिंदुओं A और B को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक (-1, 0) और (-4, 2) हैं।

टिप्पणी: हम Q के निर्देशांक उसे PB का मध्य-बिंदु मानते हुए भी ज्ञात कर सकते थे। इसमें हमें मध्य-बिंदु वाले सूत्र का प्रयोग करना पडता।

उदाहरण 9 : बिंदुओं (5, -6) और (-1, -4) को जोड़ने वाले रेखाखंड को y-अक्ष किस अनुपात में विभाजित करती है? इस प्रतिच्छेद बिंदु के निर्देशांक भी ज्ञात कीजिए।

हल: मान लीजिए वांछित अनुपात k:1 है। तब, विभाजन सूत्र द्वारा, उस रेखाखंड को

k:1 के अनुपात में विभाजित करने वाले बिंदु के निर्देशांक हैं : $\left(\frac{-k+5}{k+1}, \frac{-4k-6}{k+1}\right)$

यह बिंदु y-अक्ष पर स्थित है और हम जानते हैं कि y-अक्ष पर भुज 0 होता है।

अत:
$$\frac{-k+5}{k+1} = 0$$
 इसलिए
$$k = 5 \ \hat{\epsilon}$$
।

अर्थात् वांछित अनुपात 5:1 है। k का मान 5 रखने पर हमें प्रतिच्छेद बिंदु $\left(0,\frac{-13}{3}\right)$ प्राप्त होता है।

उदाहरण 10 : यदि बिंदु A(6, 1), B(8, 2), C(9, 4) और D(p, 3) एक समांतर चतुर्भुज के शीर्ष इसी क्रम में हों, तो p का मान ज्ञात कीजिए।

हल: हम जानते हैं कि समांतर चतुर्भुज के विकर्ण परस्पर समद्विभाजित करते हैं। अत:, विकर्ण AC के मध्य बिंदु के निर्देशांक = विकर्ण BD के मध्य-बिंदु के निर्देशांक

अर्थात्
$$\left(\frac{6+9}{2}, \frac{1+4}{2}\right) = \left(\frac{8+p}{2}, \frac{2+3}{2}\right)$$
 या
$$\left(\frac{15}{2}, \frac{5}{2}\right) = \left(\frac{8+p}{2}, \frac{5}{2}\right)$$
 अत:
$$\frac{15}{2} = \frac{8+p}{2}$$
 या
$$p = 7$$

प्रश्नावली 7.2

- 1. उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2:3 के अनुपात में विभाजित करता है।
- 2. बिंदुओं (4,-1) और (-2,-3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।

निर्देशांक ज्यामिति 125

3. आपके स्कूल में खेल-कूद क्रियाकलाप आयोजित करने के लिए, एक आयताकार मैदान ABCD में, चूने से परस्पर 1m की दूरी पर पंक्तियाँ बनाई गई हैं। AD के अनुदिश परस्पर 1m की दूरी पर 100 गमले रखे गए हैं, जैसा कि आकृति 7.12 में दर्शाया गया है। निहारिका दूसरी पंक्ति में AD के चूरी बनाई मों के बराबर की दूरी दौड़ती है और वहाँ एक हरा झंडा गाड़ देती है। प्रीत आठवीं पंक्ति में AD के 1/5 भाग के बराबर की दूरी दौड़ती है और वहाँ एक हरा झंडा गाड़ देती है। प्रीत आठवीं पंक्ति में AD के 1/5 भाग के बराबर की दूरी दौड़ती है और वहाँ एक लाल झंडा गाड देती है।

दोनों झंडों के बीच की दूरी

क्या है? यदि रिश्म को एक नीला झंडा इन दोनों झंडों को मिलाने वाले रेखाखंड पर ठीक आधी दूरी (बीच में) पर गाड़ना हो तो उसे अपना झंडा कहाँ गाड़ना चाहिए?

- **4.** बिंदुओं (-3, 10) और (6, -8) को जोड़ने वाले रेखाखंड को बिंदु (-1, 6) किस अनुपात में विभाजित करता है।
- 5. वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1,-5) और B(-4,5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
- **6.** यदि बिंदु (1, 2), (4, y), (x, 6) और (3, 5), इसी क्रम में लेने पर, एक समांतर चतुर्भुज के शीर्ष हो तो x और y ज्ञात कीजिए।
- 7. बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1,4) हैं।
- 8. यदि A और B क्रमश: (-2, -2) और (2, -4) हो तो बिंदु P के निर्देशांक ज्ञात कीजिए तािक $AP = \frac{3}{7} AB$ हो और P रेखाखंड AB पर स्थित हो।
- 9. बिंदुओं A(-2,2) और B(2,8) को जोड़ने वाले रेखाखंड AB को चार बराबर भागों में विभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
- 10. एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में,(3,0),(4,5),(-1,4) और (-2,-1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल= $\frac{1}{2}$ (उसके विकर्णों का गुणनफल)]

7.4 सारांश

इस अध्याय में. आपने निम्नलिखित तथ्यों का अध्ययन किया है:

- **1.** $P(x_1, y_1)$ और $Q(x_2, y_2)$ के बीच की दूरी $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ है।
- 2. बिंदु P(x, y) की मूलबिंदु से दूरी $\sqrt{x^2 + y^2}$ होती है।
- 3. उस बिंदु P(x,y) के निर्देशांक जो बिंदुओं $A(x_1,y_1)$ और $B(x_2,y_2)$ को जोड़ने वाले रेखाखंड को $m_1:m_2$ के अनुपात में आंतरिक रूप से विभाजित करता है, निम्नलिखित होते हैं:

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

4. बिंदुओं $P(x_1, y_1)$ और $Q(x_2, y_2)$ को जोड़ने वाले रेखाखंड PQ के मध्यबिंदु के निर्देशांक $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ होते हैं।

पाठकों के लिए विशेष

अनुभाग 7.3 में किसी बिंदु P के लिए जिसके निर्देशांक (x,y) हैं तथा यदि यह बिंदु किन्हीं दो बिंदुओं $A(x_1,y_1)$ और $B(x_2,y_2)$ को मिलाने वाले रेखाखंड को आंतरिक रूप में $m_1:m_2$ के अनुपात में विभाजित करता है तो

$$x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}$$
, $y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$

ध्यान दीजिए कि $PA : PB = m_1 : m_2$

तथापि यदि बिंदु P बिंदुओं A और B के बीच स्थित नहीं है, परंतु यह रेखाखंड के वाह्य में स्थित है जहाँ $PA: PB = m_1: m_2$ है तब हम कहते हैं कि P बिंदुओं A और B को मिलाने वाले रेखाखंड को वाह्यत: विभाजित करता है। ऐसी स्थितियों से संबंधित विभाजन सूत्र का अध्ययन आप उच्चतर कक्षाओं में करेंगे।

त्रिकोणमिति का परिचय

8

There is perhaps nothing which so occupies the middle position of mathematics as trigonometry. (संभवत: त्रिकोणमिति के अतिरिक्त गणित की कोई ऐसी शाखा नहीं है, जो उसकी मध्य स्थिति का स्थान ले सके।)

- J.F. Herbart (1890)

8.1 भूमिका

आप अपनी पिछली कक्षाओं में त्रिभुजों, विशेष रूप से समकोण त्रिभुजों के बारे में अध्ययन कर चुके हैं। आइए हम अपने आस-पास के परिवेश से कुछ ऐसे उदाहरण लें, जहाँ समकोण त्रिभुजों के बनने की कल्पना की जा सकती है। उदाहरण के लिए:

1. मान लीजिए एक स्कूल के छात्र कुतुबमीनार देखने गए हैं। अब, यदि कोई छात्र मीनार के शिखर को देख रहा हो, तो एक समकोण त्रिभुज बनने की कल्पना की जा सकती है जैसाकि आकृति 8.1 में दिखाया गया है। क्या वास्तव में मापे बिना ही छात्र मीनार की ऊँचाई ज्ञात कर सकता है?

2. मान लीजिए एक लड़की नदी के किनारे स्थित अपने मकान की बालकनी पर बैठी हुई है और वह इस नदी के दूसरे किनारे पर स्थित पास ही के मंदिर की एक निचली सीढ़ी पर रखे गमले को देख रही है। इस स्थिति में, एक समकोण त्रिभुज बनने की

कल्पना की जा सकती है जैसाकि आकृति 8.2 में दिखाया गया है. यदि आपको वह ऊँचाई ज्ञात हो, जिस पर लडकी बैठी हुई है, तो क्या आप नदी की चौडाई ज्ञात कर सकते हैं?

3. मान लीजिए एक गर्म हवा वाला गुब्बारा हवा में उड़ रहा है। आसमान में उड़ने पर इस गुब्बारे को एक लडकी देख लेती है और इस बात को बताने के लिए वह अपनी माँ के पास दौड़कर जाती है। गुब्बारे को देखने के लिए उसकी माँ तुरंत घर से बाहर निकल आती है। अब मान लीजिए कि जब पहले-पहल लडकी गुब्बारे को देखती है, तब गुब्बारा बिंदु A पर था। जब माँ-बेटी दोनों ही गुब्बारे को देखने के

आकृति 8.2

आकृति 8.3

लिए बाहर निकलकर आती हैं तब तक गुब्बारा एक अन्य बिंदु B तक आ चुका होता है। क्या आप जमीन के उस स्थान से, जहाँ माँ और बेटी दोनों खड़ी हैं, B की ऊँचाई जात कर सकते हैं?

ऊपर बताई गई सभी स्थितियों में दूरियाँ अथवा ऊँचाईयाँ कुछ गणितीय तकनीकों को, जो त्रिकोणमिति नामक गणित की एक शाखा के अंतर्गत आते हैं, लागू करके ज्ञात किया जा सकता है। अंग्रेजी शब्द 'trigonometry' की व्यत्पत्ति ग्रीक शब्दों 'tri' (जिसका अर्थ है तीन), 'gon' (जिसका अर्थ है, भूजा) और 'metron' (जिसका अर्थ है माप) से हुई है। वस्तृत: त्रिकोणिमिति में एक त्रिभुज की भुजाओं और कोणों के बीच के संबंधों का अध्ययन किया जाता है। प्राचीन काल में त्रिकोणिमिति पर किए गए कार्य का उल्लेख मिस्र और बेबीलॉन में मिलता है। प्राचीन काल के खगोलविद् त्रिकोणिमति का प्रयोग पृथ्वी से तारों और ग्रहों की दुरियाँ मापने में करते थे। आज भी इंजीनियरिंग और भौतिक विज्ञान में प्रयुक्त अधिकांश प्रौद्योगिकीय उन्नत विधियाँ त्रिकोणिमतीय संकल्पनाओं पर आधारित हैं।

इस अध्याय में हम एक समकोण त्रिभुज की भुजाओं के कुछ अनुपातों का उसके न्युन कोणों के सापेक्ष अध्ययन करेंगे जिन्हें कोणों के त्रिकोणिमतीय अनुपात कहते हैं। यहाँ हम अपनी चर्चा केवल न्यून कोणों तक ही सीमित रखेंगे। यद्यपि इन अनुपातों का विस्तार दूसरे कोणों के लिए भी किया जा सकता है। यहाँ हम 0° और 90° के माप वाले कोणों के त्रिकोणिमतीय अनुपातों को भी पिरभाषित करेंगे। हम कुछ विशिष्ट कोणों के त्रिकोणिमतीय अनुपात पिरकलित करेंगे और इन अनुपातों से संबंधित कुछ सर्वसिमकाएँ (identities), जिन्हें त्रिकोणिमतीय सर्वसिमकाएँ कहा जाता है, स्थापित करेंगे।

8.2 त्रिकोणिमतीय अनुपात

अनुच्छेद 8.1 में आप विभिन्न स्थितियों में बने कुछ समकोण त्रिभुजों की कल्पना कर चुके हैं।

आइए हम एक समकोण त्रिभुज ABC लें, जैसािक आकृति 8.4 में दिखाया गया है।

यहाँ, \angle CAB (या संक्षेप में कोण A) एक न्यून कोण है। कोण A के सापेक्ष भुजा BC की स्थिति पर ध्यान दीजिए। यह भुजा कोण A के सामने है। इस भुजा को हम कोण A की सम्मुख भुजा कहते हैं, भुजा AC समकोण त्रिभुज का कर्ण है और भुजा AB, \angle A का एक भाग है। अतः इसे हम कोण A की संलग्न भुजा कहते हैं।

ध्यान दीजिए कि कोण A के स्थान पर कोण C लेने पर भुजाओं की स्थिति बदल जाती है। (देखिए आकृति 8.5)

पिछली कक्षाओं में आप "अनुपात" की संकल्पना के बारे में अध्ययन कर चुके हैं। यहाँ अब हम समकोण त्रिभुज की भुजाओं से संबंधित कुछ अनुपातों को, जिन्हें हम त्रिकोणमितीय अनुपात कहते हैं, परिभाषित करेंगे।

समकोण त्रिभुज ABC (देखिए आकृति 8.4) के कोण A के त्रिकोणिमतीय अनुपात निम्न प्रकार से परिभाषित किए जाते हैं:

$$\angle A$$
 का sine = $\frac{\text{कोण A की }}{\text{कण}} = \frac{\text{BC}}{AC}$

$$\angle A$$
 का cosine = $\frac{\text{and } A \text{ and } \text{times } \text{4} \text{4}}{\text{and}} = \frac{AB}{AC}$

आकृति 8.4

आकृति 8.5

$$\angle$$
 A का tangent = $\dfrac{\text{कोण A की }}{\text{कोण A की }} \dfrac{\text{सम्मुख }}{\text{संलग्न }} \dfrac{\text{भुजा}}{\text{H}} = \dfrac{\text{BC}}{\text{AB}}$

$$\angle A$$
 का cosecant = $\frac{1}{\angle A}$ का sine = $\frac{\text{and}}{\text{कोण A}}$ की सम्मुख भुजा = $\frac{AC}{BC}$

$$\angle A$$
 का secant = $\frac{1}{\angle A$ का cosine = $\frac{\text{arf}}{\text{कोण A की सम्मुख भुजा}} = \frac{AC}{AB}$

$$\angle A$$
 का cotangent = $\frac{1}{\angle A$ का tangent = $\frac{\text{aniv } A}{\text{ani } \text{rangent}} = \frac{\text{aniv } A}{\text{aniv } A}$ को सम्मुख भुजा = $\frac{AB}{BC}$

ऊपर परिभाषित किए गए अनुपातों को संक्षेप में क्रमश: $\sin A$, $\cos A$, $\tan A$, $\csc A$, $\sec A$ और $\cot A$ लिखा जाता है। ध्यान दीजिए कि अनुपात $\csc A$, $\sec A$ और $\cot A$ अनुपातों $\sin A$, $\cos A$ और $\tan A$ के क्रमश: व्युत्क्रम होते हैं।

और आप यहाँ यह भी देख सकते हैं कि $\tan A = \frac{BC}{AB} = \frac{\overline{AC}}{\overline{AB}} = \frac{\sin A}{\cos A}$ और $\cot A = \frac{\cos A}{\sin A}$

अत: एक समकोण त्रिभुज के एक न्यून कोण के **त्रिकोणिमतीय अनुपात** त्रिभुज के कोण और उसकी भुजाओं की लंबाई के बीच के संबंध को व्यक्त करते हैं।

क्यों न यहाँ आप एक समकोण त्रिभुज के कोण C के त्रिकोणिमतीय अनुपातों को परिभाषित करने का प्रयास करें (देखिए आकृति 8.5)?

शब्द "sine" का सबसे पहला प्रयोग जिस रूप में आज हम करते हैं उसका उल्लेख 500 ई. में आर्यभृट्ट द्वारा लिखित पुस्तक आर्यभटीयम में मिलता है। आर्यभृट्ट ने शब्द अर्ध-ज्या का प्रयोग अर्ध-जीवा के लिए किया था जिसने समय-अंतराल में ज्या या जीवा का संक्षिप्त रूप ले लिया। जब पुस्तक आर्यभटीयम का अनुवाद अरबी भाषा में किया गया, तब शब्द जीवा को यथावत रख लिया गया। शब्द जीवा को साइनस (Sinus) के रूप में अनूदित किया गया, जिसका अर्थ वक्र है, जबकि अरबी रूपांतर को लैटिन में अनूदित किया

आर्यभट्ट 476 – 550 सा.यु.

गया। इसके तुरंत बाद sine के रूप में प्रयुक्त शब्द sinus भी पूरे यूरोप में गणितीय पाठों में प्रयुक्त होने लगा। खगोलविद् के एक अंग्रेजी प्रोफ़ेसर एडमंड गुंटर (1581-1626) ने पहले-पहल संक्षिप्त संकेत 'sin' का प्रयोग किया था।

शब्दों 'cosine' और 'tangent' का उद्गम बहुत बाद में हुआ था। cosine फलन का उद्गम पूरक कोण के sine का अभिकलन करने को ध्यान में रखकर किया गया था। आर्यभट्ट ने इसे कोटिज्या का नाम दिया था। नाम cosinus का उद्गम एडमंड गुंटर के साथ हुआ था। 1674 में अंग्रेज गणितज्ञ सर जोनास मूरे ने पहले-पहल संक्षिप्त संकेत 'cos' का प्रयोग किया था।

टिप्पणी: ध्यान दीजिए कि प्रतीक $\sin A$ का प्रयोग कोण A' के \sin के संक्षिप्त रूप में किया गया है। यहाँ $\sin A$, \sin और A का गुणनफल नहीं है। A से अलग रहकर ' \sin ' का कोई अर्थ ही नहीं होता। इसी प्रकार $\cos A$, ' \cos ' और A का गुणनफल नहीं है। इस प्रकार की व्याख्या अन्य त्रिकोणिमतीय अनुपातों के साथ भी की जाती है।

अब, यदि हम समकोण त्रिभुज ABC के कर्ण AC पर एक बिंदु P लें या बढ़ी हुई भुजा AC पर बिंदु Q लें और AB पर लंब PM डालें और बढ़ी हुई भुजा AB पर लंब QN डालें (देखिए आकृति 8.6), तो Δ PAM के \angle A के त्रिकोणिमतीय अनुपातों और Δ QAN के \angle A के त्रिकोणिमतीय अनुपातों में क्या अंतर होगा?

इस प्रश्न का उत्तर ज्ञात करने के लिए आइए पहले हम इन त्रिभुजों को देखें। क्या Δ PAM और Δ CAB समरूप हैं? आपको याद होगा कि अध्याय 6 में आप AA समरूपता कसौटी के बारे में अध्ययन कर चुके हैं। इस कसौटी को लागू करने पर आप पाएँगे कि त्रिभुज PAM और CAB समरूप हैं। अत: समरूप त्रिभुजों के गुणधर्म के अनुसार इन त्रिभुजों की संगत भुजाएँ आनुपातिक हैं।

अत:
$$\frac{AM}{AB} = \frac{AP}{AC} = \frac{MP}{BC}$$
 इससे हमें यह प्राप्त होता है
$$\frac{MP}{AP} = \frac{BC}{AC} = \sin A$$

इसी प्रकार $\frac{AM}{AP} = \frac{AB}{AC} = \cos A, \ \frac{MP}{AM} = \frac{BC}{AB} = \tan A \ \ \text{आदि-आदि}$

इससे यह पता चलता है कि Δ PAM के कोण A के त्रिकोणिमतीय अनुपात और Δ CAB के कोण A के त्रिकोणिमतीय अनुपातों में कोई अंतर नहीं होता।

इसी प्रकार आप यह जाँच कर सकते हैं कि $\Delta \, QAN \, \dot{H}$ भी sinA का मान (और अन्य त्रिकोणमितीय अनुपातों का मान) समान बना रहता है।

अपने प्रेक्षणों से अब यह स्पष्ट हो जाता है कि यदि कोण समान बना रहता हो, तो एक कोण के त्रिकोणिमतीय अनुपातों के मानों में त्रिभुज की भुजाओं की लंबाइयों के साथ कोई परिवर्तन नहीं होता।

टिप्पणी: सुविधा के लिए $(\sin A)^2$, $(\cos A)^2$, आदि के स्थान पर हम क्रमश: $\sin^2 A$, $\cos^2 A$ आदि लिख सकते हैं। परंतु $\csc A = (\sin A)^{-1} \neq \sin^{-1} A$ (इसे साइन इनवर्स A कहा जाता है)। $\sin^{-1} A$ का एक अलग अर्थ होता है जिस पर चर्चा हम उच्च कक्षाओं में करेंगे। इसी प्रकार की परंपराएँ अन्य त्रिकोणिमतीय अनुपातों पर भी लागू होती हैं। कभी-कभी ग्रीक अक्षर θ (थीटा) का प्रयोग कोण को प्रकट करने के लिए किया जाता है।

यहाँ हमने एक न्यून कोण के छ: त्रिकोणिमतीय अनुपात परिभाषित किए हैं। यदि हमें कोई एक अनुपात ज्ञात हो, तो क्या हम अन्य अनुपात प्राप्त कर सकते हैं? आइए हम इस पर विचार करें।

यदि एक समकोण त्रिभुज ABC में $\sin A = \frac{1}{3}, \text{ तब इसका अर्थ यह है कि } \frac{BC}{AC} = \frac{1}{3},$ अर्थात् त्रिभुज ABC की भुजाओं BC और AC की लंबाइयाँ 1:3 के अनुपात में हैं (देखिए आकृति

8.7)। अतः यदि BC, k के बराबर हो, तो AC, 3k के बराबर होगी, जहाँ k एक धन संख्या है। कोण A के अन्य त्रिकोणिमतीय अनुपात ज्ञात करने के लिए हमें तीसरी भुजा AB की लंबाई ज्ञात करनी होती है। क्या आपको पाइथागोरस प्रमेय याद है? आइए हम पाइथागोरस प्रमेय की सहायता से अपेक्षित लंबाई AB ज्ञात करें।

$$AB^2 = AC^2 - BC^2 = (3k)^2 - (k)^2 = 8k^2 = (2\sqrt{2} k)^2$$

अत: $AB = \pm 2\sqrt{2} k$

अत: हमें प्राप्त होता है $AB = 2\sqrt{2} k$ $(AB = -2\sqrt{2} k$ क्यों नहीं है?)

$$\cos A = \frac{AB}{AC} = \frac{2\sqrt{2} k}{3k} = \frac{2\sqrt{2}}{3}$$

इसी प्रकार, आप कोण A के अन्य त्रिकोणमितीय अनुपात प्राप्त कर सकते हैं।

टिप्पणी: क्योंकि समकोण त्रिभुज का कर्ण, त्रिभुज की सबसे लंबी भुजा होता है, इसलिए sin A या cos A का मान सदा ही 1 से कम होता है (या विशेष स्थिति में 1 के बराबर होता है।)

आइए अब हम कुछ उदाहरण लें।

उदाहरण 1: यदि $\tan A = \frac{4}{3}$, तो कोण A के अन्य त्रिकोणमितीय अनुपात ज्ञात कीजिए।

हल: आइए सबसे पहले हम एक समकोण △ ABC खींचें (देखिए आकृति 8.8)।

अब, हम जानते हैं कि
$$\tan A = \frac{BC}{AB} = \frac{4}{3}$$

अत: यदि BC = 4k, तब AB = 3k, जहाँ k धन संख्या है।

अब पाइथागोरस प्रमेय लागू करने पर हमें यह प्राप्त होता है

$$AB = 3k$$
, जहा k धन संख्या ह।

गू करने पर हमें यह प्राप्त होता है

 $AC^2 = AB^2 + BC^2 = (4k)^2 + (3k)^2 = 25k^2$
 $AC = 5k$

इसलिए

अब हम इनकी परिभाषाओं की सहायता से सभी त्रिकोणमितीय अनुपात लिख सकते हैं।

$$\sin A = \frac{BC}{AC} = \frac{4k}{5k} = \frac{4}{5}$$

$$\cos A = \frac{AB}{AC} = \frac{3k}{5k} = \frac{3}{5}$$

अत: $\cot A = \frac{1}{\tan A} = \frac{3}{4}$, $\csc A = \frac{1}{\sin A} = \frac{5}{4}$ और $\sec A = \frac{1}{\cos A} = \frac{5}{3}$

उदाहरण 2 : यदि ∠ B और ∠ Q ऐसे न्यूनकोण हों जिससे कि sin B = sin Q, तो सिद्ध कीजिए कि $\angle B = \angle O$

हल: आइए हम दो समकोण त्रिभुज ABC और PQR लें, जहाँ sin B = sin Q (देखिए आकृति 8.9)।

4k

3k

यहाँ
$$\sin B = \frac{AC}{AB}$$
 और
$$\sin Q = \frac{PR}{PQ}$$
 तब
$$\frac{AC}{AB} = \frac{PR}{PQ}$$
 अत:
$$\frac{AC}{PR} = \frac{AB}{PQ} = k \text{ (मान लीजिए)}$$
 (1)

अब, पाइथागोरस प्रमेय लागू करने पर हमें ये प्राप्त होते हैं

$$BC = \sqrt{AB^2 - AC^2}$$

$$QR = \sqrt{PQ^2 - PR^2}$$

और

अत:
$$\frac{BC}{QR} = \frac{\sqrt{AB^2 - AC^2}}{\sqrt{PQ^2 - PR^2}} = \frac{\sqrt{k^2PQ^2 - k^2PR^2}}{\sqrt{PQ^2 - PR^2}} = \frac{k\sqrt{PQ^2 - PR^2}}{\sqrt{PQ^2 - PR^2}} = k$$
 (2)

(1) और (2) से हमें यह प्राप्त होता है

$$\frac{AC}{PR} = \frac{AB}{PQ} = \frac{BC}{QR}$$

तब प्रमेय 6.4 का प्रयोग करने पर \triangle ACB \sim \triangle PRQ प्राप्त होता है। अत: \angle B = \angle Q

उदाहरण $3:\Delta$ ACB लीजिए जिसका कोण C समकोण है जिसमें AB = 29 इकाई, BC = 21 इकाई और \angle ABC = θ (देखिए आकृति 8.10) हैं तो निम्नलिखित के मान ज्ञात कीजिए।

- (i) $\cos^2 \theta + \sin^2 \theta$
- (ii) $\cos^2 \theta \sin^2 \theta$.

हल: Δ ACB में हमें यह प्राप्त होता है

AC =
$$\sqrt{AB^2 - BC^2} = \sqrt{(29)^2 - (21)^2}$$

= $\sqrt{(29 - 21)(29 + 21)} = \sqrt{(8)(50)} = \sqrt{400} = 20$ इकाई

त्रिकोणमिति का परिचय 135

अत:
$$\sin \theta = \frac{AC}{AB} = \frac{20}{29}, \cos \theta = \frac{BC}{AB} = \frac{21}{29}$$

अब, (i)
$$\cos^2\theta + \sin^2\theta = \left(\frac{20}{29}\right)^2 + \left(\frac{21}{29}\right)^2 = \frac{20^2 + 21^2}{29^2} = \frac{400 + 441}{841} = 1,$$

और (ii)
$$\cos^2\theta - \sin^2\theta = \left(\frac{21}{29}\right)^2 - \left(\frac{20}{29}\right)^2 = \frac{(21+20)(21-20)}{29^2} = \frac{41}{841}$$

उदाहरण 4: एक समकोण त्रिभुज ABC में, जिसका कोण B समकोण है, यदि $\tan A = 1$ तो सत्यापित कीजिए कि $2 \sin A \cos A = 1$

हल:
$$\Delta$$
 ABC में $\tan A = \frac{BC}{AB} = 1$ (देखिए आकृति 8.11) अर्थात् $BC = AB$

मान लीजिए AB = BC = k, जहाँ k एक धन संख्या है।

B ☐ C आकृति 8.11

$$AC = \sqrt{AB^2 + BC^2}$$
$$= \sqrt{(k)^2 + (k)^2} = k\sqrt{2}$$

$$\sin A = \frac{BC}{AC} = \frac{1}{\sqrt{2}}$$
 और $\cos A = \frac{AB}{AC} = \frac{1}{\sqrt{2}}$

इसलिए

$$2 \sin A \cos A = 2 \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) = 1$$
, जो कि अपेक्षित मान है।

उदाहरण $5:\Delta$ OPQ में, जिसका कोण P समकोण है, OP = 7 cm और OQ – PQ = 1 cm (देखिए आकृति 8.12), \sin Q और \cos Q के मान ज्ञात कीजिए।

हल : \triangle OPQ से हमें यह प्राप्त है कि

$$OQ^2 = OP^2 + PQ^2$$
 अर्थात्
$$(1 + PQ)^2 = OP^2 + PQ^2 \qquad \text{(क्यों?)}$$
 अर्थात्
$$1 + PQ^2 + 2PQ = OP^2 + PQ^2$$
 अर्थात्
$$1 + 2PQ = 7^2 \qquad \text{(क्यों?)}$$

आकृति 8.12

अर्थात् PQ = 24 cm और OQ = 1 + PQ = 25 cm अतः $\sin Q = \frac{7}{25} \text{ और } \cos Q = \frac{24}{25}$

प्रश्नावली 8.1

- 1. \triangle ABC में, जिसका कोण B समकोण है, AB = 24 cm और BC = 7 cm है। निम्नलिखित का मान ज्ञात कीजिए :
 - (i) sin A, cos A
 - (ii) sin C, cos C
- 2. आकृति 8.13 में, $\tan P \cot R$ का मान ज्ञात कीजिए।
- 3. यदि $\sin A = \frac{3}{4}$, तो $\cos A$ और $\tan A$ का मान परिकलित कीजिए।

- 6. यदि $\angle A$ और $\angle B$ न्यून कोण हो, जहाँ $\cos A = \cos B$, तो दिखाइए कि $\angle A = \angle B$
- 7. यदि $\cot \theta = \frac{7}{8}$, तो (i) $\frac{(1 + \sin \theta)(1 \sin \theta)}{(1 + \cos \theta)(1 \cos \theta)}$, (ii) $\cot^2 \theta$ का मान निकालिए?
- **8.** यदि $3 \cot A = 4$, तो जाँच कोजिए कि $\frac{1 \tan^2 A}{1 + \tan^2 A} = \cos^2 A \sin^2 A$ है या नहीं।
- 9. त्रिभुज ABC में, जिसका कोण B समकोण है, यदि $\tan A = \frac{1}{\sqrt{3}}$, तो निम्निखित के मान ज्ञात कीजिए:
 - (i) $\sin A \cos C + \cos A \sin C$
- (ii) cos A cos C sin A sin C

13 cm

12 cm

- **10.** △ PQR में, जिसका कोण Q समकोण है, PR + QR = 25 cm और PQ = 5 cm है। sin P, cos P और tan P के मान ज्ञात कीजिए।
- 11. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।
 - (i) tan A का मान सदैव 1 से कम होता है।
 - (ii) कोण A के किसी मान के लिए $\sec A = \frac{12}{5}$
 - (iii) cos A, कोण A के cosecant के लिए प्रयुक्त एक संक्षिप्त रूप है।
 - (iv) cot A, cot और A का गुणनफल होता है।
 - (v) किसी भी कोण θ के लिए $\sin\theta = \frac{4}{3}$

8.3 कुछ विशिष्ट कोणों के त्रिकोणिमतीय अनुपात

ज्यामिति के अध्ययन से आप 30°, 45°, 60° और 90° के कोणों की रचना से आप अच्छी तरह से परिचित हैं। इस अनुच्छेद में हम इन कोणों और साथ ही 0° वाले कोण के त्रिकोणिमतीय अनुपातों के मान ज्ञात करेंगे।

45° के त्रिकोणमितीय अनुपात

 Δ ABC में, जिसका कोण B समकोण है, यदि एक कोण 45° का हो, तो अन्य कोण भी 45° का होगा अर्थात् \angle A = \angle C = 45° (देखिए आकृति 8.14)।

अब मान लीजिए BC = AB = a

तब पाइथागोरस प्रमेय के अनुसार $AC^2 = AB^2 + BC^2 = a^2 + a^2 = 2a^2$

इसलिए
$$AC = a\sqrt{2}$$
.

त्रिकोणमितीय अनुपातों की परिभाषाओं को लागू करने पर हमें यह प्राप्त होता है:

$$\sin 45^\circ = \frac{45^\circ \text{ के कोण की सम्मुख भुजा}}{\text{कर्ण}} = \frac{\text{BC}}{\text{AC}} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\cos 45^\circ = \frac{45^\circ$$
 के कोण की संलग्न भुजा $= \frac{AB}{AC} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$\tan 45^{\circ} = \frac{45^{\circ}}{45^{\circ}}$$
 के कोण की सम्मुख भुजा $= \frac{BC}{AB} = \frac{a}{a} = 1$

और
$$\csc 45^\circ = \frac{1}{\sin 45^\circ} = \sqrt{2}$$
, $\sec 45^\circ = \frac{1}{\cos 45^\circ} = \sqrt{2}$, $\cot 45^\circ = \frac{1}{\tan 45^\circ} = 1$

30° और 60° के त्रिकोणिमतीय अनुपात

आइए, अब हम 30° और 60° के त्रिकोणिमतीय अनुपात परिकलित करें। एक समबाहु त्रिभुज ABC पर विचार करें। क्योंकि समबाहु त्रिभुज का प्रत्येक कोण, 60° का होता है, इसलिए $\angle A = \angle B = \angle C = 60°$

A से भुजा BC पर लंब AD डालिए (देखिए आकृति 8.15)।

आकृति 8.14

अब
$$\Delta$$
 ABD \cong Δ ACD (क्यों?)
इसलिए BD = DC
और \angle BAD = \angle CAD (CPCT)

अब आप यह देख सकते हैं कि:

 Δ ABD एक समकोण त्रिभुज है जिसका कोण D समकोण है, और जहाँ \angle BAD = 30° और \angle ABD = 60° (देखिए आकृति 8.15)।

जैसा कि आप जानते हैं, कि त्रिकोणिमतीय अनुपातों को ज्ञात करने के लिए हमें त्रिभुज की भुजाओं की लंबाइयाँ ज्ञात करने की आवश्यकता होती है। आइए, हम यह मान लें कि AB = 2a

तब
$$BD = \frac{1}{2}BC = a$$
 और
$$AD^2 = AB^2 - BD^2 = (2a)^2 - (a)^2 = 3a^2$$
 इसलिए
$$AD = a\sqrt{3}$$
 अब
$$\sin 30^\circ = \frac{BD}{AB} = \frac{a}{2a} = \frac{1}{2}, \cos 30^\circ = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}$$

$$\tan 30^\circ = \frac{BD}{AD} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\operatorname{cosec} 30^\circ = \frac{1}{\sin 30^\circ} = 2, \ \sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}$$

$$\cot 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3}$$

इसी प्रकार

$$\sin 60^\circ = \frac{AD}{AB} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2}, \cos 60^\circ = \frac{1}{2}, \tan 60^\circ = \sqrt{3}$$

$$\csc 60^\circ = \frac{2}{\sqrt{3}}, \sec 60^\circ = 2 \text{ sint } \cot 60^\circ = \frac{1}{\sqrt{3}}$$

0° और 90° के त्रिकोणमितीय अनुपात

आइए, हम देखें कि यदि समकोण त्रिभुज ABC के कोण A को तब तक और छोटा किया जाए जब तक कि यह शून्य नहीं हो जाता है, तब इस स्थित में कोण A के त्रिकोणिमतीय अनुपातों पर क्या प्रभाव पड़ता है (देखिए आकृति 8.16)। जैसे–जैसे $\angle A$ छोटा होता जाता है, वैसे–वैसे भुजा BC की लंबाई कम होती जाती है। बिंदु C, बिंदु B के निकट आता जाता है और अंत में, जब $\angle A$, 0° के काफी निकट हो जाता है तब AC लगभग वही हो जाता है जो कि AB है (देखिए आकृति 8.17)।

जब \angle A, 0° के अत्यधिक निकट होता है तब BC, 0 के अत्यधिक निकट आ जाता है। तब $\sin A = \frac{BC}{AC}$ का मान 0 के अत्यधिक निकट आ जाता है। और, जब \angle A, 0° के अत्यधिक निकट होता है, तब AC लगभग वहीं होता है जो कि AB होता है और $\cos A = \frac{AB}{AC}$ का मान 1 के अत्यधिक समीप होता है।

इसकी सहायता से हम उस स्थिति में $\sin A$ और $\cos A$ के मान परिभाषित कर सकते हैं जबिक $A=0^\circ$, हम $\sin 0^\circ=0$ और $\cos 0^\circ=1$ परिभाषित करते हैं।

इनका प्रयोग करने पर हमें ये प्राप्त होते हैं:

$$\tan 0^{\circ} = \frac{\sin 0^{\circ}}{\cos 0^{\circ}} = 0$$
, $\cot 0^{\circ} = \frac{1}{\tan 0^{\circ}}$, जो कि परिभाषित नहीं है (क्यों?)
$$\sec 0^{\circ} = \frac{1}{\cos 0^{\circ}} = 1 \text{ तथा } \csc 0^{\circ} = \frac{1}{\sin 0^{\circ}}$$
, और यह भी परिभाषित नहीं है। (क्यों?)

आइए अब हम उस स्थिति में देखें कि $\angle A$ के त्रिकोणिमतीय अनुपातों के साथ क्या होता है जबिक $\triangle ABC$ के इस कोण को तब तक बड़ा किया जाता है, जब तक िक 90° का नहीं हो जाता। $\angle A$ जैसे-जैसे बड़ा होता जाता है, $\angle C$ वैसे-वैसे छोटा होता जाता है। अत: ऊपर वाली स्थिति की भाँति भुजा AB की लंबाई कम होती जाती है। बिंदु A, बिंदु B के निकट होता जाता है और, अंत में जब $\angle A$, 90° के अत्यधिक निकट आ जाता है, तो $\angle C$, 0° के

अत्यधिक निकट आ जाता है और भुजा AC भुजा BC के साथ लगभग संपाती हो जाती है (देखिए आकृति 8.18)।

जब $\angle C$, 0° के अत्यधिक निकट होता है तो $\angle A$, 90° के अत्यधिक निकट हो जाता है और भुजा AC लगभग वही हो जाती है, जो भुजा BC है। अत: $\sin A$, 1 के अत्यधिक निकट हो जाता है और, जब $\angle A$, 90° के अत्यधिक निकट होता है, तब $\angle C$, 0° के अत्यधिक निकट हो जाता है और भुजा AB लगभग शून्य हो जाती है। अत: $\cos A$, 0 के अत्यधिक निकट हो जाता है।

अत: हम यह परिभाषित करते हैं: $\sin 90^\circ = 1$ और $\cos 90^\circ = 0$ अब आप क्यों नहीं 90° के अन्य त्रिकोणिमतीय अनुपात ज्ञात करते हैं?

अब हम तुरंत संदर्भ के लिए एक सारणी 8.1 के रूप में 0°, 30°, 45°, 60° और 90° के सभी त्रिकोणिमतीय अनुपातों के मान प्रस्तुत करेंगे।

सारणी 8.1

∠ A	0°	30°	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	अपरिभाषित
cosec A	अपरिभाषित	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	अपरिभाषित
cot A	अपरिभाषित	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

टिप्पणी : उपर्युक्त सारणी से आप देख सकते हैं कि जैसे–जैसे $\angle A$ का मान 0° से 90° तक बढ़ता जाता है, $\sin A$ का मान 0 से बढ़कर 1 हो जाता है और $\cos A$ का मान 1 से घटकर 0 हो जाता है।

आइए, अब हम कुछ उदाहरण लेकर ऊपर की सारणी में दिए गए मानों के प्रयोग को प्रदर्शित करें।

उदाहरण $6: \Delta ABC$ में जिसका कोण B समकोण है, AB = 5 cm और $\angle ACB = 30^{\circ}$ (देखिए आकृति 8.19)। भुजाओं BC और AC की लंबाइयाँ ज्ञात करें।

हल: भुजा BC की लंबाई ज्ञात करने के लिए हम उस त्रिकोणिमतीय अनुपात को लेंगे जिसमें BC और दी हुई भुजा AB हो। क्योंकि BC कोण C की संलग्न भुजा है, और AB कोण C की सम्मुख भुजा है, इसलिए

$${AB\over BC}=\tan C$$
 अर्थात् ${5\over BC}=\tan 30^\circ={1\over \sqrt{3}}$ जिससे $BC=5\sqrt{3}$ cm प्राप्त होता है।

भुजा AC की लंबाई ज्ञात करने के लिए हम

$$\sin 30^\circ = {AB\over AC}$$
 लेते हैं (क्यों?)
अर्थात् ${1\over 2} = {5\over AC}$
अर्थात् $AC = 10~{\rm cm}$

ध्यान दीजिए कि ऊपर के उदाहरण में तीसरी भुजा की लंबाई ज्ञात करने के लिए विकल्प के रूप में हम पाइथागोरस प्रमेय को लागू कर सकते थे,

अर्थात्
$$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + (5\sqrt{3})^2} \text{ cm} = 10 \text{ cm}$$

142

<mark>उदाहरण 7 :</mark> ∆ PQR में, जिसका कोण Q समकोण है (देखिए आकृति 8.20), PQ = 3 cm और PR = 6 cm है। ∠ QPR और ∠ PRQ ज्ञात कीजिए।

हल: दिया हुआ है PQ = 3 cm और PR = 6 cm

इसलिए
$$\frac{PQ}{PR} = \sin R$$

$$\sin R = \frac{3}{6} = \frac{1}{2}$$

$$\angle$$
 PRQ = 30°

$$\angle QPR = 60^{\circ}$$
 (क्यों?)

आप यहाँ यह देख सकते हैं कि यदि एक समकोण त्रिभुज की एक भुजा और कोई एक अन्य भाग (जो या तो न्यून कोण हो या कोई एक भुजा हो) ज्ञात हो, तो त्रिभुज की शेष भुजाएँ और कोण ज्ञात किए जा सकते हैं।

उदाहरण 8: यदि $\sin (A - B) = \frac{1}{2}$, $\cos (A + B) = \frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ}$, A > B, तो A और B ज्ञात कीजिए।

हल: क्योंकि
$$\sin (A - B) = \frac{1}{2}$$
, इसलिए, $A - B = 30^{\circ}$ (क्यों?) (1)

और, क्योंकि
$$\cos{(A+B)} = \frac{1}{2}$$
, इसलिए, $A+B=60^{\circ}$ (क्यों?) (2)

(1) और (2) को हल करने पर हमें $A = 45^{\circ}$ और $B = 15^{\circ}$ प्राप्त होता है।

प्रश्नावली 8.2

- 1. निम्नलिखित के मान निकालिए:
 - (i) $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$

(ii)
$$2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

(iv)
$$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \csc 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}}$$

(v)
$$\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

त्रिकोणमिति का परिचय 143

2. सही विकल्प चुनिए और अपने विकल्प का औचित्य दीजिए:

(i)
$$\frac{2 \tan 30^{\circ}}{1 + \tan^{2} 30^{\circ}} =$$
(A) $\sin 60^{\circ}$ (B) $\cos 60^{\circ}$ (C) $\tan 60^{\circ}$ (D) $\sin 30^{\circ}$
(ii)
$$\frac{1 - \tan^{2} 45^{\circ}}{1 + \tan^{2} 45^{\circ}} =$$

(C) sin 45°

(C) tan 60°

- (B) 1 (iii) $\sin 2A = 2 \sin A$ तब सत्य होता है, जबिक A बराबर है:
- (A) 0° (B) 30° (C) 45° (D) 60°
- (iv) $\frac{2 \tan 30^{\circ}}{1 \tan^2 30^{\circ}}$ बराबर है:

(A) tan 90°

- (A) $\cos 60^{\circ}$ (B) $\sin 60^{\circ}$ 3. यदि $\tan (A+B) = \sqrt{3}$ और $\tan (A-B) = \frac{1}{\sqrt{3}}$; $0^{\circ} < A+B \le 90^{\circ}$; A > B तो A और B का मान ज्ञात कीजिए।
- 4. बताइए कि निम्नलिखित में कौन-कौन सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
 - (i) $\sin (A + B) = \sin A + \sin B$.
 - (ii) θ में वृद्धि होने के साथ sin θ के मान में भी वृद्धि होती है।
 - (iii) θ में वृद्धि होने के साथ cos θ के मान में भी वृद्धि होती है।
 - (iv) θ के सभी मानों पर $\sin \theta = \cos \theta$
 - (v) $A = 0^\circ$ पर $\cot A$ परिभाषित नहीं है।

8.4 त्रिकोणमितीय सर्वसमिकाएँ

आपको याद होगा कि एक समीकरण को एक सर्वसिमका तब कहा जाता है जबकि यह संबंधित चरों के सभी मानों के लिए सत्य हो। इसी प्रकार एक कोण के त्रिकोणमितीय अनुपातों से संबंधित सर्वसमिका को **त्रिकोणमितीय सर्वसमिका** कहा जाता है। जबिक यह संबंधित कोण (कोणों) के सभी मानों के लिए सत्य होता है।

इस भाग में, हम एक त्रिकोणिमतीय सर्वसिमका सिद्ध करेंगे और इसका प्रयोग अन्य उपयोगी त्रिकोणमितीय सर्वसमिकाओं को सिद्ध करने में करेंगे।

(D) 0

 Δ ABC में, जो B पर समकोण है (देखिए आकृति 8.21)

हमें यह प्राप्त है
$$AB^2 + BC^2 = AC^2$$
 (1)

(1) के प्रत्येक पद को AC2 से भाग देने पर हमें यह प्राप्त होता है

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$
या
$$\left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = \left(\frac{AC}{AC}\right)^2$$
अर्थात्
$$(\cos A)^2 + (\sin A)^2 = 1$$
अर्थात्
$$\cos^2 A + \sin^2 A = 1$$
 (2)

यह सभी A के लिए, जहाँ $0^{\circ} \le A \le 90^{\circ}$, सत्य होता है। अत: यह एक त्रिकोणिमतीय सर्वसिमका है।

आइए, अब हम (1) को AB^2 से भाग दें। ऐसा करने पर हमें यह प्राप्त होता है

$$\frac{AB^2}{AB^2} + \frac{BC^2}{AB^2} = \frac{AC^2}{AB^2}$$
या
$$\left(\frac{AB}{AB}\right)^2 + \left(\frac{BC}{AB}\right)^2 = \left(\frac{AC}{AB}\right)^2$$
अर्थात्
$$1 + \tan^2 A = \sec^2 A \tag{3}$$

क्या यह समीकरण, $A=0^\circ$ के लिए सत्य है? हाँ, यह सत्य है। क्या यह $A=90^\circ$ के लिए भी सत्य है? $A=90^\circ$ के लिए $\tan A$ और $\sec A$ परिभाषित नहीं है। अत: (3), ऐसे सभी A के लिए सत्य होता है, जहाँ $0^\circ \le A < 90^\circ$

आइए हम यह देखें कि (1) को BC² से भाग देने पर हमें क्या प्राप्त होता है।

$$\frac{AB^2}{BC^2} + \frac{BC^2}{BC^2} = \frac{AC^2}{BC^2}$$
अर्थात्
$$\left(\frac{AB}{BC}\right)^2 + \left(\frac{BC}{BC}\right)^2 = \left(\frac{AC}{BC}\right)^2$$
अर्थात्
$$\cot^2 A + 1 = \csc^2 A \tag{4}$$

ध्यान दीजिए कि $A=0^\circ$ के लिए $\csc A$ और $\cot A$ परिभाषित नहीं है। अत: ऐसे सभी A के लिए (4) सत्य होता है जहाँ $0^\circ < A \le 90^\circ$

इन सर्वसिमकाओं का प्रयोग करके हम प्रत्येक त्रिकोणिमतीय अनुपात को अन्य त्रिकोणिमतीय अनुपातों के पदों में व्यक्त कर सकते हैं अर्थात् यदि कोई एक अनुपात ज्ञात हो, तो हम अन्य त्रिकोणिमतीय अनुपातों के मान भी ज्ञात कर सकते हैं।

आइए हम यह देखें कि इन सर्वसिमकाओं का प्रयोग करके इसे हम कैसे ज्ञात कर सकते हैं। मान लीजिए हमें $\tan A = \frac{1}{\sqrt{3}}$ ज्ञात है। तब $\cot A = \sqrt{3}$

क्योंकि
$$\sec^2 A = 1 + \tan^2 A = 1 + \frac{1}{3} = \frac{4}{3}$$
, $\sec A = \frac{2}{\sqrt{3}}$, और $\cos A = \frac{\sqrt{3}}{2}$

और, क्योंकि
$$\sin A = \sqrt{1-\cos^2 A} = \sqrt{1-\frac{3}{4}} = \frac{1}{2}$$
. इसलिए $\csc A = 2$

उदाहरण 9: अनुपातों cos A, tan A और sec A को sin A के पदों में व्यक्त कीजिए।

हल: क्योंकि

$$\cos^2 A + \sin^2 A = 1$$
, इसलिए

$$\cos^2 A = 1 - \sin^2 A$$
, अर्थात् $\cos A = \pm \sqrt{1 - \sin^2 A}$

इससे यह प्राप्त होता है

$$\cos A = \sqrt{1 - \sin^2 A}$$
 (क्यों?)

अत:
$$\tan A = \frac{\sin A}{\cos A} = \frac{\sin A}{\sqrt{1-\sin^2 A}}$$
 और $\sec A = \frac{1}{\cos A} = \frac{1}{\sqrt{1-\sin^2 A}}$

उदाहरण 10 : सिद्ध कीजिए कि sec A (1 – sin A) (sec A + tan A) = 1 हल :

बाम पक्ष =
$$\sec A (1 - \sin A)(\sec A + \tan A) = \left(\frac{1}{\cos A}\right)(1 - \sin A)\left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)$$
$$= \frac{(1 - \sin A)(1 + \sin A)}{\cos^2 A} = \frac{1 - \sin^2 A}{\cos^2 A}$$
$$= \frac{\cos^2 A}{\cos^2 A} = 1 = \text{दाया} \quad \text{पक्ष}$$

उदाहरण 11 : सिद्ध कोजिए कि
$$\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\csc A - 1}{\csc A + 1}$$

हल : वाम पक्ष =
$$\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\frac{\cos A}{\sin A} - \cos A}{\frac{\cos A}{\sin A} + \cos A}$$

$$\frac{\cos A \left(\frac{1}{\sin A} - 1\right)}{\cos A \left(\frac{1}{\sin A} + 1\right)} = \frac{\left(\frac{1}{\sin A} - 1\right)}{\left(\frac{1}{\sin A} + 1\right)} = \frac{\csc A - 1}{\csc A + 1} =$$
द्या पक्ष

उदाहरण 12 : सर्वसिमका $\sec^2\theta = 1 + \tan^2\theta$ का प्रयोग करके सिद्ध कीजिए कि $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sec\theta - \tan\theta}$

हल: क्योंकि हमें $\sec \theta$ और $\tan \theta$ से संबंधित सर्वसिमका प्रयुक्त करनी है, इसिलए आइए हम सबसे पहले सर्वसिमका के वाम पक्ष के अंश और हर को $\cos \theta$ से भाग देकर वाम पक्ष को $\sec \theta$ और $\tan \theta$ के पदों में रूपांतरित करें।

वाम पक्ष =
$$\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \frac{\tan \theta - 1 + \sec \theta}{\tan \theta + 1 - \sec \theta}$$

$$= \frac{(\tan \theta + \sec \theta) - 1}{(\tan \theta - \sec \theta) + 1} = \frac{\{(\tan \theta + \sec \theta) - 1\} (\tan \theta - \sec \theta)}{\{(\tan \theta - \sec \theta) + 1\} (\tan \theta - \sec \theta)}$$

$$= \frac{(\tan^2 \theta - \sec^2 \theta) - (\tan \theta - \sec \theta)}{\{\tan \theta - \sec \theta + 1\} (\tan \theta - \sec \theta)}$$

$$= \frac{-1 - \tan \theta + \sec \theta}{(\tan \theta - \sec \theta + 1) (\tan \theta - \sec \theta)}$$

$$= \frac{-1}{\tan \theta - \sec \theta} = \frac{1}{\sec \theta - \tan \theta},$$

जो सिद्ध की जाने वाली अपेक्षित सर्वसिमका का दाँया पक्ष है।

प्रश्नावली 8.3

- 1. त्रिकोणमितीय अनुपातों sin A, sec A और tan A को cot A के पदों में व्यक्त कीजिए।
- 2. ∠A के अन्य सभी त्रिकोणमितीय अनुपातों को sec A के पदों में लिखिए।
- 3. सही विकल्प चुनिए और अपने विकल्प की पुष्टि कीजिए:
 - (i) 9 sec² A − 9 tan² A बराबर है:
 - (A) 1
- (B) 9
- (C) 8
- (D) 0
- (ii) $(1 + \tan \theta + \sec \theta) (1 + \cot \theta \csc \theta)$ बराबर है:
 - $(A) \quad 0$
- (B) 1
- (C) 2
- (D) -1

- (iii) (sec A + tan A) (1 sin A) बराबर है:
 - (A) sec A
- (B) sin A
- (C) cosec A
- (D) cos A

- (iv) $\frac{1 + \tan^2 A}{1 + \cot^2 A}$ बराबर है:
 - (A) $\sec^2 A$ (B) -1
- (C) cot² A
- 4. निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
 - (i) $(\csc \theta \cot \theta)^2 = \frac{1 \cos \theta}{1 + \cos \theta}$
 - (ii) $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$
 - (iii) $\frac{\tan \theta}{1 \cot \theta} + \frac{\cot \theta}{1 \cot \theta} = 1 + \sec \theta \csc \theta$

[संकेत: व्यंजक को $\sin \theta$ और $\cos \theta$ के पदों में लिखिए]

(iv) $\frac{1 + \sec A}{\sec A} = \frac{\sin^2 A}{1 - \cos A}$

[संकेत: वाम पक्ष और दाँया पक्ष को अलग-अलग सरल कीजिए।]

(v) सर्वसमिका $\csc^2 A = 1 + \cot^2 A$ को लागू करके $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \csc A + \cot A$

(vi)
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

(vii)
$$\frac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta - \cos \theta} = \tan \theta$$

(viii)
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$

(ix)
$$(\operatorname{cosec} A - \sin A)(\operatorname{sec} A - \cos A) = \frac{1}{\tan A + \cot A}$$

[संकेत: वाम पक्ष और दाँया पक्ष को अलग-अलग सरल कीजिए]

(x)
$$\left(\frac{1+\tan^2 A}{1+\cot^2 A}\right) = \left(\frac{1-\tan A}{1-\cot A}\right)^2 = \tan^2 A$$

8.5 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

1. समकोण त्रिभुज ABC में, जिसका कोण B समकोण है,

$$\sin A = \dfrac{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray$$

2.
$$\operatorname{cosec} A = \frac{1}{\sin A}$$
; $\operatorname{sec} A = \frac{1}{\cos A}$; $\tan A = \frac{1}{\cot A}$, $\tan A = \frac{\sin A}{\cos A}$

3. यदि एक न्यून कोण का एक त्रिकोणमितीय अनुपात ज्ञात हो, तो कोण के शेष त्रिकोणमितीय अनुपात सरलता से ज्ञात किए जा सकते हैं। त्रिकोणमिति का परिचय 149

- **4.** $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ और 90° के कोणों के त्रिकोणिमतीय अनुपातों के मान।
- 5. $\sin A = \cos A$ का मान कभी भी 1 से अधिक नहीं होता, जबिक $\sec A = \cos A$ का मान सदैव 1 से अधिक या 1 के बराबर होता है।
- 6. $\sin^2 A + \cos^2 A = 1$ $\sec^2 A - \tan^2 A = 1$ জলাঁ $0^\circ \le A < 90^\circ$ $\csc^2 A = 1 + \cot^2 A$ জলাঁ $0^\circ < A \le 90^\circ$

त्रिकोणमिति के कुछ अनुप्रयोग

9

9.1 ऊँचाइयाँ और दूरियाँ

आइए हम अध्याय 8 में दी गई आकृति 8.1 पर विचार करें, जिसे नीचे आकृति 9.1 में पन: खींचा गया है।

आकृति 9.1

इस आकृति में, छात्र की आँख से मीनार के शिखर तक खींची गई रेखा AC को **दृष्टि-रेखा** (line of sight) कहा जाता है। छात्र मीनार के शिखर की ओर देख रहा है। दृष्टि-रेखा और क्षैतिज रेखा से बने कोण BAC को छात्र की आँख से मीनार के शिखर का **उन्नयन कोण** (angle of elevation) कहा जाता है।

इस प्रकार, **दृष्टि-रेखा** प्रेक्षक की आँख के उस वस्तु के बिंदु को मिलाने वाली रेखा होती है जिसे प्रेक्षक देखता है। देखे गए बिंदु का उन्नयन कोण उस स्थिति में, दृष्टि-रेखा और क्षैतिज रेखा से बना कोण होता है, जबिक देखा जा रहा बिंदु क्षैतिज स्तर से ऊपर होता है अर्थात् वह स्थिति जबिक वस्तु को देखने के लिए हमें अपना सिर उठाना होता है। (देखिए आकृति 9.2)।

आइए अब हम आकृति 8.2 में दी गई स्थिति पर विचार करें। बालकनी में बैठी लड़की मंदिर की सीढ़ी पर रखे गमले को नीचे की ओर देख रही है। इस स्थिति में, दृष्टि-रेखा क्षैतिज स्तर से नीचे है। दृष्टि-रेखा और क्षैतिज रेखा से इस प्रकार बने कोण को अवनमन कोण (angle of depression) कहा जाता है।

अत: देखी जा रही वस्तु पर स्थित बिंदु का **अवनमन कोण** उस स्थिति में दृष्टि-रेखा और क्षैतिज रेखा से बना कोण होता है जबिक बिंदु क्षैतिज रेखा से नीचे होता है अर्थात् वह स्थिति जबिक देखे जाने वाले बिंदु को देखने के लिए हमें अपना सिर नीचे झुकाना होता है (देखिए आकृति 9.3)।

आकृति 9.3

अब आप आकृति 8.3 में बनी दृष्टि-रेखाएँ और इस तरह बने कोणों को पहचान सकते हैं। ये कोण उन्नयन कोण हैं या अवनमन कोण?

आइए हम आकृति 9.1 को पुन: देखें। यदि आप सही मायने में बिना मापे ही मीनार की ऊँचाई CD ज्ञात करना चाहते हैं तो इसके लिए आपको किस जानकारी की आवश्यकता होती है? इसके लिए निम्नलिखित तथ्यों का ज्ञान होना आवश्यक होता है:

(i) दूरी DE जहाँ छात्र मीनार के पाद-बिंदु से इस दूरी पर खड़ा है।

- (ii) मीनार के शिखर का उन्नयन कोण∠ BAC
- (iii) छात्र की ऊँचाई AE

यह मानकर कि ऊपर बतायी गयीं तीनों जानकारियाँ हमें ज्ञात हैं तो हम किस प्रकार मीनार की ऊँचाई ज्ञात कर सकते हैं?

आकृति में CD = CB + BD यहाँ BD = AE है जो कि छात्र की ऊँचाई है। BC ज्ञात करने के लिए हम $\angle BAC$ या $\angle A$ के त्रिकोणिमिति अनुपातों का प्रयोग करेंगे।

 $\Delta \, ABC \, \dot{H}$, भुजा BC ज्ञात कोण $\angle \, A$ के संबंध में सम्मुख भुजा है। यहाँ हम किन-किन त्रिकोणिमिति अनुपातों का प्रयोग कर सकते हैं? इनमें से किसके दो मान हमें ज्ञात है और हमें किसका मान ज्ञात करने की आवश्यकता होती है? $\tan A$ या $\cot A$ का प्रयोग करने से हमारी खोज का क्षेत्र कम हो जाता है, क्योंकि इन अनुपातों में AB और BC का प्रयोग होता है।

अतः $\tan A = \frac{BC}{AB}$ या $\cot A = \frac{AB}{BC}$, जिसे हल करने पर हमें BC प्राप्त हो जाएगा। BC और AE जोडने पर मीनार की ऊँचाई प्राप्त हो जाएगी।

आइए अब हम कुछ उदाहरण हल करके अभी-अभी चर्चित किए गए प्रक्रम की व्याख्या करें।

उदाहरण 1: धरती पर एक मीनार ऊर्ध्वाधर खड़ी है। धरती के एक बिंदु से, जो मीनार के पाद-बिंदु से 15 m दूर है, मीनार के शिखर का उन्नयन कोण 60° है। मीनार की ऊँचाई ज्ञात कीजिए।

हल: आइए पहले हम प्रश्न को निरूपित करने के लिए एक सरल आरेख बनाएँ (देखिए आकृति 9.4)। यहाँ AB मीनार को निरूपित करता है, CB मीनार से बिंदु की दूरी है और $\angle ACB$ उन्नयन कोण है। हम मीनार की ऊँचाई अर्थात् AB ज्ञात करना चाहते हैं और, यहाँ ACB एक त्रिभुज है जो B पर समकोण है।

प्रश्न को हल करने के लिए हम त्रिकोणिमतीय अनुपात $\tan 60^\circ$ (या $\cot 60^\circ$) लेते हैं, क्योंकि इस अनुपात में AB और BC दोनों होते हैं

अब
$$an 60^\circ = rac{AB}{BC}$$

अर्थात् $\sqrt{3} = rac{AB}{15}$
अर्थात् $an B = 15\sqrt{3}$

अत: मीनार की ऊँचाई 15√3 m है।

उदाहरण 2: एक बिजली मिस्त्री को एक 5m ऊँचे खंभे पर आ गई खराबी की मरम्मत करनी है। मरम्मत का काम करने के लिए उसे खंभे के शिखर से 1.3m नीचे एक बिंदु तक वह पहुँचना चाहती है (देखिए आकृति 9.5)। यहाँ तक पहुँचने के लिए प्रयुक्त सीढ़ी की लंबाई कितनी होनी चाहिए जिससे कि क्षैतिज से 60° के कोण से झुकाने पर वह अपेक्षित स्थिति तक पहुँच जाए? और यह भी बताइए कि खंभे का पाद-बिंदु कितनी दूरी पर सीढ़ी के पाद-बिंदु से होना चाहिए? (यहाँ आप $\sqrt{3} = 1.73$ ले सकते हैं।)

हल: आकृति 9.5 में, बिजली मिस्त्री को खंभे AD पर बिंदु B तक पहुँचना है।

अत:
$$BD = AD - AB = (5 - 1.3)m = 3.7 m$$

यहाँ BC सीढ़ी को प्रकट करता है। हमें इसकी लंबाई अर्थात् समकोण त्रिभुज BDC का कर्ण ज्ञात करना है।

अब, क्या आप यह बता सकते हैं कि हमें किस त्रिकोणिमिति अनुपात का प्रयोग करना चाहिए? यह त्रिकोणिमिति अनुपात $\sin 60^\circ$ होना चाहिए।

अत:
$$\frac{BD}{BC} = \sin 60^{\circ} \text{ या } \frac{3.7}{BC} = \frac{\sqrt{3}}{2}$$

इसलिए
$$BC = \frac{3.7 \times 2}{\sqrt{3}} = 4.28 \text{ m} \text{ (लगभग)}$$

अर्थात् सीढ़ी की लंबाई 4.28 m होनी चाहिए।

সৰ
$$\frac{DC}{BD} = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$$

अर्थात्
$$DC = \frac{3.7}{\sqrt{3}} = 2.14 \text{ m} (लगभग)$$

अत: उसे सीढ़ी के पाद को खंभे से 2.14 m की दूरी पर रखना चाहिए।

उदाहरण 3: 1.5 m लंबा एक प्रेक्षक एक चिमनी से 28.5 m की दूरी पर है। उसकी आँखों से चिमनी के शिखर का उन्नयन कोण 45° है। चिमनी की ऊँचाई बताइए। हल: यहाँ AB चिमनी है, CD प्रेक्षक है और ∠ ADE उन्नयन कोण है (देखिए आकृति 9.6)। यहाँ ADE एक त्रिभुज है जिसमें कोण E समकोण है और हमें चिमनी की ऊँचाई ज्ञात करनी है।

यहाँ

$$AB = AE + BE = (AE + 1.5) \text{ m}$$

और

$$DE = CB = 28.5 \text{ m}$$

AE ज्ञात करने के लिए हमें एक ऐसा त्रिकोणमिति अनुपात लेना चाहिए जिसमें AE और DE दोनों हो। इसके लिए आइए हम उन्नयन कोण का tangent लें।

সৰ
$$\tan 45^\circ = \frac{AE}{DE}$$

अर्थात् $1 = \frac{AI}{28}$

इसलिए AE = 28.5

अत: चिमनी की ऊँचाई (AB) = (28.5 + 1.5) m = 30 m

उदाहरण 4: भूमि के एक बिंदु P से एक 10 m ऊँचे भवन के शिखर का उन्नयन कोण 30° है। भवन के शिखर पर एक ध्वज को लहराया गया है और P से ध्वज के शिखर का उन्नयन कोण 45° है। ध्वजदंड की लंबाई और बिंदु P से भवन की दूरी ज्ञात कीजिए। (यहाँ आप $\sqrt{3} = 1.732$ ले सकते हैं।)

हल: आकृति 9.7 में, AB भवन की ऊँचाई प्रकट करता है, BD ध्वजदंड प्रकट करता है और P दिया हुआ बिंदु प्रकट करता है। ध्यान दीजिए कि यहाँ दो समकोण त्रिभुज PAB और PAD हैं। हमें ध्वजदंड की लंबाई अर्थात् DB और बिंदु P से भवन की दूरी अर्थात् PA P € ज्ञात करना है।

क्योंकि हमें भवन की ऊँचाई AB ज्ञात है इसलिए पहले हम समकोण A PAB लेंगे।

आकृति 9.7

यहाँ
$$an 30^\circ = rac{AB}{AP}$$
 अर्थात् $rac{1}{\sqrt{3}} = rac{10}{AP}$ इसलिए $ext{AP} = 10\sqrt{3}$

अर्थात् P से भवन की दूरी $10\sqrt{3}$ m = 17.32 m आइए अब हम यह मान लें कि DB = x m है तब AD = (10 + x) m

अब समकोण
$$\triangle$$
 PAD में
$$\tan 45^\circ = \frac{\mathrm{AD}}{\mathrm{AP}} = \frac{10+x}{10\sqrt{3}}$$
 इसलिए
$$1 = \frac{10+x}{10\sqrt{3}}$$
 अर्थात्
$$x = 10\left(\sqrt{3}-1\right) = 7.32$$

अत: ध्वजदंड की लंबाई 7.32 m है।

उदाहरण 5: एक समतल जमीन पर खड़ी मीनार की छाया उस स्थिति में 40 m अधिक लंबी हो जाती है जबिक सूर्य का उन्नतांश (altitude) 60° से घटकर 30° हो जाता है अर्थात् छाया के एक सिरे से मीनार के शिखर का उन्नयन कोण 60° है और DB छाया की लंबाई है

जबिक उन्नयन कोण 30° है। मीनार की ऊँचाई ज्ञात कीजिए।

हल: मान लीजिए कि AB की लंबाई h मीटर है और BC, x मीटर है। प्रश्न के अनुसार DB, BC से 40m अधिक लंबा है।

$$DB = (40 + x) m$$

अब, यहाँ दो समकोण त्रिभुज ABC और ABD है।

$$\Delta \, ABC \, \dot{H}$$
 $an 60^\circ = \frac{AB}{BC}$ या $\sqrt{3} = \frac{h}{x}$ $\Delta \, ABD \, \dot{H}$ $an 30^\circ = \frac{AB}{BD}$ अर्थात् $\frac{1}{\sqrt{5}} = \frac{h}{AD}$

 $\frac{1}{\sqrt{3}} = \frac{h}{x+40} \tag{2}$

(1) से हमें यह प्राप्त होता है

$$h = x\sqrt{3}$$

इस मान को (2) में प्रतिस्थापित करने पर हमें यह प्राप्त होता है $(x\sqrt{3})\sqrt{3} = x + 40$, अर्थात् 3x = x + 40

अर्थात्

$$x = 20$$

इसलिए

$$h = 20\sqrt{3}$$

[(1) से]

अतः मीनार की ऊँचाई 20√3 m है।

उदाहरण 6: एक बहुमंजिल भवन के शिखर से देखने पर एक 8 m ऊँचे भवन के शिखर और तल के अवनमन-कोण क्रमश: 30° और 45° हैं। बहुमंजिल भवन की ऊँचाई और दो भवनों के बीच की दूरी ज्ञात कीजिए।

हल: आकृति 9.9 में PC बहुमंजिल भवन को और AB, 8 m ऊँचे भवन को प्रकट करता है। हम बहुमंजिल भवन की ऊँचाई, अर्थात् PC और दो भवनों के बीच की दूरी अर्थात् AC जात करना चाहते हैं।

आकृति को अच्छी तरह देखिए। आप यहाँ देखेंगे कि PB समांतर रेखाओं PQ और BD की एक तिर्यक-छेदी रेखा है। अत: \angle QPB और \angle PBD एकांतर कोण हैं और इसलिए बराबर हैं।

D

30° 45°

आकृति 9.9

अतः \angle PBD = 30°, इसी प्रकार, \angle PAC = 45°

समकोण 🛆 PBD में

$$\frac{PD}{BD}$$
 =tan 30° = $\frac{1}{\sqrt{3}}$ या BD = PD $\sqrt{3}$

समकोण Δ PAC में हम पाते हैं

$$\frac{PC}{AC} = \tan 45^{\circ} = 1$$

अर्थात्

$$PC = AC$$

और

$$PC = PD + DC$$

इसलिए PD + DC = AC

В

इससे यह प्राप्त होता है: PD =
$$\frac{8}{\sqrt{3}-1} = \frac{8(\sqrt{3}+1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = 4(\sqrt{3}+1)m$$

अतः बहुमंजिल भवन की ऊँचाई $\left\{4\left(\sqrt{3}+1\right)+8\right\}m=4\left(3+\sqrt{3}\right)m$ है और दो भवनों के बीच की दूरी भी $4\left(3+\sqrt{3}\right)m$ है।

उदाहरण 7: एक नदी के पुल के एक बिंदु से नदी के सम्मुख किनारों के अवनमन कोण क्रमश: 30° और 45° हैं। यदि पुल किनारों से 3 m की ऊँचाई पर हो तो नदी की चौड़ाई ज्ञात कीजिए।

आकृति 9.10

हल: आकृति 9.10 में, A और B नदी के सम्मुख किनारों के बिंदुओं को प्रकट करते हैं, जिससे कि AB नदी की चौड़ाई है। 3~m की ऊँचाई पर बने पुल पर एक बिंदु P है अर्थात् DP = 3~m है। हम नदी की चौड़ाई ज्ञात करना चाहते हैं जो कि Δ APB की भुजा AB की लंबाई है।

সৰ
$$AB = AD + DB$$

समकोण \triangle APD में \angle A = 30°

अत:
$$\tan 30^\circ = \frac{PD}{AD}$$

अर्थात्
$$\frac{1}{\sqrt{3}} = \frac{3}{AD} \text{ un } AD = 3\sqrt{3} \text{ m}$$

अत: समकोण \triangle PBD में, \angle B = 45° है। इसलिए BD = PD = 3 m

সৰ AB = BD + AD = 3 +
$$3\sqrt{3}$$
 = 3 (1 + $\sqrt{3}$) m

इसलिए नदी की चौड़ाई $3(\sqrt{3}+1)m$ है।

प्रश्नावली 9.1

1. सर्कस का एक कलाकार एक 20m लंबी डोर पर चढ़ रहा है जो अच्छी तरह से तनी हुई है और भूमि पर सीधे लगे खंभे के शिखर से बंधा हुआ है। यदि भूमि स्तर के साथ डोर द्वारा बनाया गया कोण 30° का हो तो खंभे की ऊँचाई ज्ञात कीजिए (देखिए आकृति 9.11)।

- 2. आँधी आने से एक पेड़ टूट जाता है और टूटा हुआ भाग इस तरह मुड़ जाता है कि पेड़ का शिखर जमीन को छूने लगता है और इसके साथ 30° का कोण बनाता है। पेड़ के पाद-बिंदु की दूरी, जहाँ पेड़ का शिखर जमीन को छूता है, 8m है। पेड़ की ऊँचाई ज्ञात कीजिए।
- 3. एक ठेकेदार बच्चों को खेलने के लिए एक पार्क में दो फिसलनपट्टी लगाना चाहती है। 5 वर्ष से कम उम्र के बच्चों के लिए वह एक ऐसी फिसलनपट्टी लगाना चाहती है जिसका शिखर 1.5 m की ऊँचाई पर हो और भूमि के साथ 30° के कोण पर झुका हुआ हो, जबिक इससे अधिक उम्र के बच्चों के लिए वह 3m की ऊँचाई पर एक अधिक ढाल की फिसलनपट्टी लगाना चाहती है, जो भूमि के साथ 60° का कोण बनाती हो। प्रत्येक स्थिति में फिसलनपट्टी की लंबाई क्या होनी चाहिए?
- 4. भूमि के एक बिंदु से, जो मीनार के पाद-बिंदु से $30 \mathrm{m}$ की दूरी पर है, मीनार के शिखर का उन्नयन कोण 30° है। मीनार की ऊँचाई ज्ञात कीजिए।

- 5. भूमि से 60 m की ऊँचाई पर एक पतंग उड़ रही है। पतंग में लगी डोरी को अस्थायी रूप से भूमि के एक बिंदु से बांध दिया गया है। भूमि के साथ डोरी का झुकाव 60° है। यह मानकर कि डोरी में कोई ढील नहीं है, डोरी की लंबाई ज्ञात कीजिए।
- 6. 1.5 m लंबा एक लड़का 30 m ऊँचे एक भवन से कुछ दूरी पर खड़ा है। जब वह ऊँचे भवन की ओर जाता है तब उसकी आँख से भवन के शिखर का उन्नयन कोण 30° से 60° हो जाता है। बताइए कि वह भवन की ओर कितनी दूरी तक चलकर गया है।
- 7. भूमि के एक बिंदु से एक 20 m ऊँचे भवन के शिखर पर लगी एक संचार मीनार के तल और शिखर के उन्नयन कोण क्रमश: 45° और 60° है। मीनार की ऊँचाई ज्ञात कीजिए।
- 8. एक पेडस्टल के शिखर पर एक 1.6 m ऊँची मूर्ति लगी है। भूमि के एक बिंदु से मूर्ति के शिखर का उन्नयन कोण 60° है और उसी बिंदु से पेडस्टल के शिखर का उन्नयन कोण 45° है। पेडस्टल की ऊँचाई ज्ञात कीजिए।
- 9. एक मीनार के पाद-बिंदु से एक भवन के शिखर का उन्नयन कोण 30° है और भवन के पाद-बिंदु से मीनार के शिखर का उन्नयन कोण 60° है। यदि मीनार 50m ऊँची हो, तो भवन की ऊँचाई ज्ञात कीजिए।
- 10. एक 80 m चौड़ी सड़क के दोनों ओर आमने-सामने समान लंबाई वाले दो खंभे लगे हुए हैं। इन दोनों खंभों के बीच सड़क के एक बिंदु से खंभों के शिखर के उन्नयन कोण क्रमश: 60° और 30° है। खंभों की ऊँचाई और खंभों से बिंदु की दूरी ज्ञात कीजिए।
- 11. एक नहर के एक तट पर एक टीवी टॉवर कथ्वीधरत: खड़ा है। टॉवर के ठीक सामने दूसरे तट के एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 60° है। इसी तट पर इस बिंदु से 20 m दूर और इस बिंदु को मीनार के पाद से मिलाने वाली रेखा पर स्थित एक अन्य बिंदु से टॉवर के शिखर का उन्नयन कोण 30° है। (देखिए आकृति 9.12)। टॉवर की ऊँचाई और नहर की चौड़ाई ज्ञात कीजिए।

- 12. 7 m ऊँचे भवन के शिखर से एक केबल टॉवर के शिखर का उन्नयन कोण 60° है और इसके पाद का अवनमन कोण 45° है। टॉवर की ऊँचाई ज्ञात कीजिए।
- 13. समुद्र-तल से 75 m ऊँची लाइट हाउस के शिखर से देखने पर दो समुद्री जहाजों के अवनमन कोण 30° और 45° हैं। यदि लाइट हाउस के एक ही ओर एक जहाज दूसरे जहाज के ठीक पीछे हो तो दो जहाजों के बीच की दूरी ज्ञात कीजिए।

14. 1.2 m लंबी एक लड़की भूमि से 88.2 m की ऊँचाई पर एक क्षैतिज रेखा में हवा में उड़ रहे गुब्बारे को देखती है। किसी भी क्षण लड़की की आँख से गुब्बारे का उन्नयन कोण 60° है। कुछ समय बाद उन्नयन कोण घटकर 30° हो जाता है (देखिए आकृति 9.13)। इस अंतराल के दौरान गुब्बारे द्वारा तय की गई दूरी ज्ञात कीजिए।

आकृति 9.13

15. एक सीधा राजमार्ग एक मीनार के पाद तक जाता है। मीनार के शिखर पर खड़ा एक आदमी एक कार को 30° के अवनमन कोण पर देखता है जो कि मीनार के पाद की ओर एक समान चाल से जाता है। छ: सेकेंड बाद कार का अवनमन कोण 60° हो गया। इस बिंदु से मीनार के पाद तक पहुँचने में कार द्वारा लिया गया समय ज्ञात कीजिए।

9.2 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

- 1. (i) **दृष्टि-रेखा** प्रेक्षक की आँख से प्रेक्षक द्वारा देखी गई वस्तु के बिंदु को मिलाने वाली रेखा होती है।
 - (ii) देखी गई वस्तु का **उन्नयन कोण** दृष्टि-रेखा और क्षैतिज रेखा से बना कोण होता है जबिक यह क्षैतिज स्तर से ऊपर होता है अर्थात् वह स्थिति जबिक वस्तु को देखने के लिए हमें अपने सिर को ऊपर उठाना होता है।
 - (iii) देखी गई वस्तु का अवनमन कोण दृष्टि-रेखा और क्षैतिज रेखा से बना कोण होता है जबिक क्षैतिज रेखा क्षैतिज स्तर से नीचे होती है अर्थात् वह स्थिति जबिक वस्तु को देखने के लिए हमें अपने सिर को झुकाना पड़ता है।
- 2. त्रिकोणिमतीय अनुपातों की सहायता से किसी वस्तु की ऊँचाई या लंबाई या दो सुदूर वस्तुओं के बीच की दूरी ज्ञात की जा सकती है।

वृत्त 10

10.1 भूमिका

आपने कक्षा IX में पढ़ा है कि वृत्त एक तल के उन बिंदुओं का समूह होता है जो एक नियत बिंदु (केंद्र) से अचर दूरी (त्रिज्या) पर होते हैं। आपने वृत्त से संबंधित अवधारणाओं जैसे जीवा, वृत्तखंड, त्रिज्यखंड, चाप आदि के बारे में भी पढ़ा है। आइए अब एक तल में स्थित एक वृत्त तथा एक रेखा की विभिन्न स्थितियों पर विचार करें।

आइए, हम एक वृत्त तथा एक रेखा PQ पर ध्यान दें। दी गई निम्न आकृति 10.1 में तीन संभावनाएँ हो सकती हैं।

आकृति 10.1 (i) में, रेखा PQ तथा वृत्त में कोई उभयनिष्ठ बिंदु नहीं है। इस दशा में PQ को वृत्त के सापेक्ष **अप्रतिच्छेदी रेखा** कहते हैं। आकृति 10.1 (ii) में रेखा PQ और वृत्त में दो उभयनिष्ठ बिंदु A और B हैं। इस दशा में हम रेखा PQ को वृत्त की **छेदक रेखा** कहते हैं। आकृति 10.1 (iii) में रेखा PQ और वृत्त में एक और केवल एक उभयनिष्ठ बिंदु A है। इस दशा में रेखा वृत्त की **स्पर्श रेखा** कहलाती है।

आपने कुएँ के ऊपर स्थिर की हुई एक घिरनी को देखा होगा जिसका उपयोग कुएँ से पानी निकालने के लिए किया जाता है। आकृति 10.2 को देखिए। यहाँ घिरनी के दोनों ओर की रस्सी को यदि किरण की तरह समझें तो वह घिरनी द्वारा निरूपित वृत्त पर स्पर्श रेखा की तरह होगी।

ऊपर दी गई स्थितियों के अतिरिक्त क्या वृत्त के सापेक्ष रेखा की कोई अन्य स्थिति हो सकती है? आप देख सकते हैं कि इन

आकृति 10.2

स्थितियों के अतिरिक्त रेखा की वृत्त के सापेक्ष कोई अन्य स्थिति नहीं हो सकती है। इस अध्याय में हम वृत्त की स्पर्श रेखा के अस्तित्व के बारे में पढ़ेंगे तथा उनके कुछ गुणों का भी अध्ययन करेंगे।

10.2 वृत्त की स्पर्श रेखा

पिछले परिच्छेद में आपने देखा है कि किसी वृत्त की स्पर्श रेखा वह रेखा है जो वृत्त को केवल एक बिंदु पर प्रतिच्छेद करती है।

वृत्त के किसी बिंदु पर स्पर्श रेखा के अस्तित्व को समझने के लिए आइए हम निम्न क्रियाकलाप करें।

क्रियाकलाप 1: एक वृत्ताकार तार लीजिए तथा वृत्ताकार तार के एक बिंदु P पर एक सीधा तार AB इस प्रकार जोड़िए कि वह बिंदु P के परित: एक समतल में घूम सके। इस प्रणाली को एक मेज़ पर रखिए तथा तार AB को बिंदु P के परित: धीमे-धीमे घुमाइए जिससे सीधे तार की विभिन्न अवस्थाएँ प्राप्त हो सकें [देखिए आकृति 10.3(i)]।

विभिन्न स्थितियों में तार, वृत्ताकार तार को बिंदु P एवं एक अन्य बिंदु Q_1 या Q_2 या Q_3 आदि पर प्रतिच्छेदित करता है। एक स्थिति में, आप देखेंगे कि वह वृत्त को केवल एक बिंदु P पर ही प्रतिच्छेदित करेगा (AB की स्थिति A'B' को देखिए)। ये यह दर्शाता है कि वृत्त के एक बिंदु पर एक स्पर्श रेखा का अस्तित्व है। पुन: घुमाने पर आप प्रेक्षण कर सकते हैं कि AB की अन्य सभी स्थितियों में वह वृत्त को बिंदु P तथा एक अन्य बिंदु R_1 या R_2 या R_3 आदि पर प्रतिच्छेद करता है। इस प्रकार आप प्रेक्षण कर सकते हैं कि **वृत्त के एक बिंदु पर एक और केवल एक स्पर्श रेखा होती है।**

वृत्त 163

उपर्युक्त क्रियाकलाप करते हुए आपने अवश्य प्रेक्षण किया होगा कि जैसे-जैसे स्थिति AB से स्थिति A'B' की ओर बढ़ती है, रेखा AB और वृत्त का उभयनिष्ठ बिंदु Q_1 , उभयनिष्ठ बिंदु P की ओर निकट आता जाता है। अंतत:,AB की स्थिति A'B' में वह बिंदु P के संपाती हो जाता है। पुन: ध्यान दीजिए कि क्या होता है जब A''B'', P के परित: दक्षिणावर्त घुमाया जाता है? उभयनिष्ठ बिंदु R_3 धीरे-धीरे बिंदु P की ओर अग्रसर होता है तथा अंतत: P से संपाती हो जाता है। इस प्रकार हम देखते हैं:

किसी वृत्त की स्पर्श रेखा छेदक रेखा की एक विशिष्ट दशा है जब संगत जीवा के दोनों सिरे संपाती हो जाएँ।

क्रियाकलाप 2: एक कागज पर एक वृत्त और वृत्त की छेदक रेखा PQ खींचिए। छेदक रेखा के समांतर दोनों ओर अनेक रेखाएँ खींचिए। आप पाएँगे कि कुछ चरणों के बाद रेखाओं द्वारा काटी गई जीवा की लंबाई धीरे-धीरे कम हो रही है अर्थात् रेखा तथा वृत्त के दोनों प्रतिच्छेद बिंदु पास आ रहे हैं [देखिए आकृति 10.3(ii)]। एक स्थिति में छेदक रेखा के एक ओर यह लंबाई तथा दूसरी स्थिति में यह दूसरी ओर शून्य हो जाती है। छेदक रेखा की स्थितियों P'Q' तथा P"Q'' की

आकृति 10.3(ii)

आकृति 10.3 (ii) में अवलोकन कीजिए। ये दोनों रेखाएँ दी गयी छेदक रेखा PQ के समांतर दो स्पर्श रेखाएँ हैं इससे आपको यह जानने में सहायता मिलती है कि एक छेदक रेखा के समांतर वृत्त की दो से अधिक स्पर्श रेखाएँ नहीं होती हैं।

इस क्रियाकलाप से यह निष्कर्ष भी निकलता है कि स्पर्श रेखा छेदक रेखा की एक विशेष स्थिति है जब उसकी संगत जीवा के दोनों सिरे संपाती हो जाएँ।

स्पर्श रेखा और वृत्त के उभयनिष्ठ बिंदु को स्पर्श बिंदु [आकृति $10.1 \, (iii)$ में बिंदु A] कहते हैं तथा स्पर्श रेखा को वृत्त के उभयनिष्ठ बिंदु पर स्पर्श करना कहते हैं।

अब आप अपने चारों ओर देखिए। क्या आपने एक साइकिल अथवा एक बैलगाड़ी को चलते देखा है? इनके पहियों की ओर देखिए। एक पहिए की सभी तीलियाँ इसकी त्रिज्याओं के अनुरूप हैं। अब पहिए की स्थिति का धरती पर गित करने के सापेक्ष व्याख्या कीजिए। क्या आपको कहीं स्पर्श रेखा दिखती है? (देखिए आकृति 10.4)। वास्तव

में पिहया एक रेखा के अनुिदश गित करता है जो पिहिये को निरूपित करने वाले वृत्त पर स्पर्श रेखा है। यह भी देखिए कि सभी स्थितियों में आकृित 10.4 धरती के स्पर्श बिंदु से जाने वाली क्रिज्या स्पर्श रेखा पर लंब दृष्टिगोचर होती है (देखिए आकृित 10.4)। अब हम स्पर्श रेखा के इस गुण को सिद्ध करेंगे।

प्रमेय 10.1: वृत्त के किसी बिंदु पर स्पर्श रेखा स्पर्श बिंदु से जाने वाली त्रिज्या पर लंब होती है।

उपपत्ति: हमें केंद्र O वाला एक वृत्त दिया है और एक बिंदु P पर स्पर्श रेखा XY दी है। हमें सिद्ध करना है कि OP, XY पर लंब है।

XY पर P के अतिरिक्त एक बिंदु Q लीजिए और OQ को मिलाइए (देखिए आकृति 10.5)।

बिंदु Q वृत्त के बाहर होना चाहिए (क्यों? ध्यान दींजिए कि यदि Q वृत्त के अंदर है तो XY वृत्त की एक छेदक रेखा हो जाएगी और वह वृत्त की स्पर्श रेखा नहीं होगी)। अत:, OQ त्रिज्या OP से बड़ी है। अर्थात्

क्योंकि यह बिंदु P के अतिरिक्त XY के प्रत्येक बिंदु के लिए सत्य है, OP बिंदु O से XY के अन्य बिंदुओं की न्यूनतम दूरी है। इसलिए OP, XY पर लंब है (जैसा कि प्रमेय A1.7 में दर्शाया गया है)।

टिप्पणी:

- 1. उपर्युक्त प्रमेय से हम यह भी निष्कर्ष निकाल सकते हैं कि वृत्त के किसी बिंदु पर एक और केवल एक स्पर्श रेखा होती है।
- 2. स्पर्श बिंदु से त्रिज्या को समाहित करने वाली रेखा को वृत्त के उस बिंदु पर 'अभिलंब' भी कहते हैं।

प्रश्नावली 10.1

- 1. एक वृत्त की कितनी स्पर्श रेखाएँ हो सकती हैं?
- 2. रिक्त स्थानों की पूर्ति कीजिए:
 - (i) किसी वृत्त की स्पर्श रेखा उसे बिंदुओं पर प्रतिच्छेद करती है।
 - (ii) वृत्त को दो बिंदुओं पर प्रतिच्छेद करने वाली रेखा को कहते हैं।
 - (iii) एक वृत्त की समांतर स्पर्श रेखाएँ हो सकती हैं।
 - (iv) वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिंदु को _____ कहते हैं।

वृत्त 165

3. 5 सेमी त्रिज्या वाले एक वृत्त के बिंदु P पर स्पर्श रेखा PQ केंद्र O से जाने वाली एक रेखा से बिंदु Q पर इस प्रकार मिलती है कि OQ = 12 सेमी। PQ की लंबाई है:

- (A) 12 सेमी
- (B) 13 सेमी
- (C) 8.5 सेमी
- (D) $\sqrt{119}$ सेमी
- 4. एक वृत्त खींचिए और एक दी गई रेखा के समांतर दो ऐसी रेखाएँ खींचिए कि उनमें से एक स्पर्श रेखा हो तथा दूसरी छेदक रेखा हो।

10.3 एक बिंदु से एक वृत्त पर स्पर्श रेखाओं की संख्या

किसी बिंदु से वृत्त पर खींची गई स्पर्श रेखाओं की संख्या के बारे में जानने के लिए निम्न क्रियाकलाप करें:

क्रियाकलाप 3: एक कागज़ पर एक वृत्त खींचिए। एक बिंदु P इसके अंदर लीजिए। उस बिंदु से वृत्त पर स्पर्श रेखा खींचने का प्रयत्न कीजिए। आप क्या पाते हैं? आप पाते हैं कि इससे खींची गई प्रत्येक रेखा वृत्त को दो बिंदुओं पर परिच्छेद करती है इसलिए इन रेखाओं में से कोई स्पर्श रेखा नहीं हो सकती [देखिए आकृति 10.6 (i)]।

पुन:, वृत्त पर एक बिंदु P लीजिए तथा इस बिंदु से स्पर्श रेखाएँ खींचिए। आपने पहले से ही प्रेक्षण किया है कि वृत्त के इस बिंदु पर एक ही स्पर्श रेखा होती है [देखिए आकृति 10.6 (ii)]।

अंत में वृत्त के बाहर एक बिंदु P लीजिए और वृत्त पर इस बिंदु से स्पर्श रेखाएँ खींचने का प्रयत्न करिए। आप क्या प्रेक्षण करते हैं? आप पाएँगे कि इस बिंदु से वृत्त पर दो और केवल दो स्पर्श रेखाएँ खींच सकते हैं (देखिए आकृति 10.6 (iii)]।

संक्षेप में हम इन यथार्थों को निम्न स्थितियों में प्रकट कर सकते हैं।

स्थिति 1 : वृत्त के अंदर स्थित किसी बिंदु से जाने वाली वृत्त पर कोई स्पर्श रेखा नहीं है।

स्थिति 2 : वृत्त पर स्थित किसी बिंदु से वृत्त पर एक और केवल एक स्पर्श रेखा है। स्थिति 3 : वृत्त के बाहर स्थित किसी बिंदु से जाने वाली वृत्त पर दो और केवल दो स्पर्श रेखाएँ हैं।

आकृति 10.6 (iii) में स्पर्श रेखाओं PT_1 तथा PT_2 के क्रमश: T_1 तथा T_2 स्पर्श बिंदु हैं। वाह्य बिंदु P से वृत्त के स्पर्श बिंदु तक स्पर्श रेखा खंड की लंबाई को बिंदु P से वृत्त पर स्पर्श रेखा की लंबाई कहते हैं।

ध्यान दीजिए कि आकृति 10.6 (iii) में PT_1 और PT_2 बिंदु P से वृत्त पर स्पर्श रेखाओं की लंबाइयाँ हैं। लंबाइयों PT_1 और PT_2 में एक उभयनिष्ठ गुण है। क्या आप इसे प्राप्त कर सकते हैं? PT_1 और PT_2 को मापिए। क्या ये बराबर हैं? वास्तव में सदैव ऐसा ही है। आइए इस तथ्य की एक उपपत्ति निम्न प्रमेय में दें।

प्रमेय 10.2 : वाह्य बिंदु से वृत्त पर खींची गई स्पर्श रेखाओं की लंबाइयाँ बराबर होती है।

उपपत्ति: हमें केंद्र O वाला एक वृत्त, वृत्त के बाहर का एक बिंदु P तथा P से वृत्त पर दो स्पर्श रेखाएँ PQ, PR दी है (देखिए आकृति 10.7)। हमें सिद्ध करना है कि PO = PR

इसके लिए हम OP, OQ और OR को मिलाते हैं। तब ∠ OQP तथा ∠ ORP समकोण हैं क्योंकि ये त्रिज्याओं और स्पर्श रेखाओं के बीच के कोण हैं और प्रमेय 10.1 से ये समकोण है। अब समकोण त्रिभुजों OQP तथा ORP में,

Fig. 10.7

OQ = OR
$$OP = OP$$
 अत:
$$\Delta \ OQP \cong \Delta \ ORP$$
 इससे प्राप्त होता है
$$PQ = PR$$

(एक ही वृत्त की त्रिज्याएँ) (उभयनिष्ठ) (RHS सर्वांगसमता द्वारा) (CPCT)

टिप्पणी :

- 1. प्रमेय को पाइथागोरस प्रमेय का प्रयोग करके भी निम्न प्रकार से सिद्ध किया जा सकता है: $PQ^2 = OP^2 OQ^2 = OP^2 OR^2 = PR^2$ (क्योंकि OQ = OR) जिससे प्राप्त होता है कि PQ = PR
- 2. यह भी ध्यान दीजिए कि \angle OPQ = \angle OPR । अत: OP कोण QPR का अर्धक है, अर्थात् वृत्त का केंद्र स्पर्श रेखाओं के बीच के कोण अर्धक पर स्थित होता है।

आइए, अब कुछ उदाहरण लें।

उदाहरण 1: सिद्ध कीजिए कि दो सकेंद्रीय वृत्तों में बड़े वृत्त की जीवा जो छोटे वृत्त को स्पर्श करती है, स्पर्श बिंदु पर समद्विभाजित होती है।

हल: हमें केंद्र O वाले दो सकेंद्रीय वृत्त C_1 और C_2 तथा बड़े वृत्त C_1 की जीवा AB, जो छोटे वृत्त C_2 को बिंदु P पर स्पर्श करती है, दिए हैं (देखिए आकृति 10.8)।

आकृति 10.8

हमें सिद्ध करना है कि AP = BP

आइए OP को मिलाएँ। इस प्रकार AB, C_2 के बिंदु P पर स्पर्श रेखा है और OP त्रिज्या है। अतः प्रमेय 10.1 से

$$OP \perp AB$$

अब AB वृत्त C_1 की एक जीवा है और $OP \perp AB$ है। अत:, OP जीवा AB को समद्विभाजित करेगी क्योंकि केंद्र से जीवा पर खींचा गया लंब उसे समद्विभाजित करता है,

अर्थात्
$$AP = BP$$

उदाहरण 2: केंद्र O वाले वृत्त पर बाह्य बिंदु T से दो स्पर्श रेखाएँ TP तथा TQ खींची गई हैं। सिद्ध कीजिए कि $\angle PTQ = 2 \angle OPQ$ है।

हल: हमें केंद्र O वाला एक वृत्त, एक बाह्य बिंदु T तथा वृत्त पर दो स्पर्श रेखाएँ TP और TQ, जहाँ P, Q स्पर्श बिंदु हैं, दिए हैं (देखिए आकृति 10.9)। हमें सिद्ध करना है कि

आकृति 10.9

$$\angle PTQ = 2 \angle OPQ$$

 $\angle PTQ = \theta$

अब प्रमेय 10.2 से TP = TQ । अत: TPQ एक समद्विबाहु त्रिभुज है।

इसलिए
$$\angle TPQ = \angle TQP = \frac{1}{2} (180^{\circ} - \theta) = 90^{\circ} - \frac{1}{2}\theta$$

प्रमेय 10.1 से ∠ OPT = 90° है।

माना

अतः
$$\angle \text{OPQ} = \angle \text{OPT} - \angle \text{TPQ} = 90^{\circ} - \left(90^{\circ} - \frac{1}{2}\theta\right) = \frac{1}{2}\theta = \frac{1}{2}\angle \text{PTQ}$$
 इससे $\angle \text{PTQ} = 2\angle \text{OPQ}$ प्राप्त होता है।

उदाहरण 3:5 cm त्रिज्या के एक वृत्त की 8 cm लंबी एक जीवा PQ है। P और Q पर स्पर्श रेखाएँ परस्पर एक बिंदु T पर प्रतिच्छेद करती हैं (देखिए आकृति 10.10)। TP की लंबाई ज्ञात कीजिए। T हल: OT को मिलाएँ। माना यह PQ को बिंदु R पर प्रतिच्छेदित करती है। तब Δ TPQ समद्विबाहु है और TO, \angle PTQ का कोणार्धक है। इसलिए $OT \perp PQ$ और इस प्रकार OT, PQ का अर्धक है जिससे प्राप्त होता है PR = RO = 4 cm

साथ ही
$$OR = \sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2}$$
 cm = 3 cm

अब
$$\angle TPR + \angle RPO = 90^{\circ} = \angle TPR + \angle PTR$$
 (क्यों?)

अत: ∠ RPO = ∠ PTR

इसलिए समकोण त्रिभुज TRP और समकोण त्रिभुज PRO, AA समरूपता द्वारा समरूप

हैं। इससे
$$\frac{TP}{PO} = \frac{RP}{RO}$$
 प्राप्त होता है। अर्थात् $\frac{TP}{5} = \frac{4}{3}$ अर्थात् $TP = \frac{20}{3}$ cm

टिप्पणी: TP को पाइथागोरस प्रमेय द्वारा निम्न प्रकार से भी प्राप्त कर सकते हैं:

माना

$$TP = x$$
 और $TR = y$ तो

$$x^2 = y^2 + 16$$
 (समकोण Δ PRT लेकर) (1)

$$x^2 + 5^2 = (y + 3)^2$$
 (समकोण Δ OPT लेकर) (2)

(1) को (2) में से घटाकर, हम पाते हैं

$$25 = 6y - 7 \quad \text{u} \quad y = \frac{32}{6} = \frac{16}{3}$$

इसलिए

$$x^2 = \left(\frac{16}{3}\right)^2 + 16 = \frac{16}{9}(16+9) = \frac{16\times25}{9}$$
 [(1) \text{\text{\text{\text{\text{\text{4}}}}}

या

$$x = \frac{20}{3}$$
 cm

O

प्रश्नावली 10.2

प्रश्न सं. 1, 2, 3 में सही विकल्प चुनिए एवं उचित कारण दीजिए।

- 1. एक बिंदु Q से एक वृत्त पर स्पर्श रेखा की लंबाई 24 cm तथा Q की केंद्र से दूरी 25 cm है। वृत्त की त्रिज्या है:
 - (A) 7 cm

(B) 12 cm

(C) 15 cm

- (D) 24.5 cm
- 2. आकृति 10.11 में, यदि TP, TQ केंद्र O वाले किसी वृत्त पर दो स्पर्श रेखाएँ इस प्रकार हैं कि $\angle POQ = 110^{\circ}$, तो $\angle PTQ$ बराबर है:
 - (A) 60°

(B) 70°

(C) 80°

(D) 90°

आकृति 10.11

110°

- 3. यदि एक बिंदु P से O केंद्र वाले किसी वृत्त पर PA, PB स्पर्श रेखाएँ परस्पर 80° के कोण पर झुकी हों, तो \angle POA बराबर है :
 - (A) 50°

- (B) 60° (C) 70°
- 4. सिद्ध कीजिए कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखाएँ समांतर होती हैं।
- 5. सिद्ध कीजिए कि स्पर्श बिंदु से स्पर्श रेखा पर खींचा गया लंब वृत्त के केंद्र से होकर जाता है।
- 6. एक बिंदु A से, जो एक वृत्त के केंद्र से 5 cm दूरी पर है, वृत्त पर स्पर्श रेखा की लंबाई 4 cm है। वृत्त की त्रिज्या ज्ञात कीजिए।
- 7. दो संकेंद्रीय वृत्तों की त्रिज्याएँ 5 cm तथा 3 cm हैं। बड़े वृत्त की उस जीवा की लंबाई ज्ञात कीजिए जो छोटे वृत्त को स्पर्श करती हो।
- एक वृत्त के परिगत एक चतुर्भुज ABCD खींचा गया है (देखिए आकृति 10.12)। सिद्ध कीजिए:

$$AB + CD = AD + BC$$

9. आकृति 10.13 में XY तथा X'Y', O केंद्र वाले किसी वृत्त पर दो समांतर स्पर्श रेखाएँ हैं और स्पर्श बिंदु C पर स्पर्श रेखा AB, XY को A तथा X'Y' को B पर प्रतिच्छेद करती है। सिद्ध कीजिए कि ∠AOB = 90° है।

आकृति 10.12

आकृति 10.13

10. सिद्ध कीजिए कि किसी बाह्य बिंदु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिंदुओं को मिलाने वाले रेखाखंड द्वारा केंद्र पर अंतरित कोण का संपूरक होता है।

- 11. सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।
- 12. 4 cm त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिंदु D द्वारा BC विभाजित है) की लंबाइयाँ क्रमश: 8 cm और 6 cm हैं (देखिए आकृति 10.14)। भुजाएँ AB और AC ज्ञात कीजिए।
- 13. सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने-सामने की भुजाएँ केंद्र पर संपूरक कोण अंतरित करती हैं।

10.4 सारांश

इस अध्याय में, आपने निम्न तथ्यों का अध्ययन किया है:

- 1. वृत्त की स्पर्श रेखा का अर्थ।
- 2. वृत्त की स्पर्श रेखा स्पर्श बिंदु से जाने वाली त्रिज्या पर लंब होती है।
- 3. बाह्य बिंदु से किसी वृत्त पर खींची गई दोनों स्पर्श रेखाओं की लंबाइयाँ समान होती हैं।

वृत्तों से संबंधित क्षेत्रफल

11

11.1 त्रिज्यखंड और वृत्तखंड के क्षेत्रफल

आप पिछली कक्षाओं में शब्दों त्रिज्यखंड (sector) और वृत्तखंड (segment of a circle) से पूर्व परिचित हैं। आपको याद होगा कि एक वृत्तीय क्षेत्र का वह भाग जो दो त्रिज्याओं और संगत चाप से घरा (परिबद्ध) हो, उस वृत्त का एक त्रिज्यखंड कहलाता है तथा वृत्तीय क्षेत्र का वह भाग जो एक जीवा और संगत चाप के बीच में परिबद्ध हो एक वृत्तखंड कहलाता है। इस प्रकार, आकृति 11.1 में, छायांकित भाग OAPB केंद्र O वाले वृत्त का एक त्रिज्यखंड है। ∠AOB इस त्रिज्यखंड का कोण कहलाता है। ध्यान दीजिए कि इसी आकृति में अछायांकित भाग OAQB भी वृत्त का त्रिज्यखंड है। स्पष्ट कारणों से OAPB एक लघु त्रिज्यखंड (minor sector) कहलाता है तथा OAQB एक दीर्घ त्रिज्यखंड (major sector) कहलाता है। आप यह भी देख सकते हैं कि इस दीर्घ त्रिज्यखंड का कोण 360° – ∠AOB है।

अब आकृति 11.2 को देखिए, जिसमें AB केंद्र O वाले वृत्त की एक जीवा है। अत: छायांकित भाग APB एक वृत्तखंड है। आप यह भी देख सकते हैं कि अछायांकित भाग AQB भी जीवा AB द्वारा निर्मित एक अन्य वृत्तखंड है। स्पष्ट कारणों से, APB लघु वृत्तखंड कहलाता है तथा AQB दीर्घ वृत्तखंड कहलाता है।

टिप्पणी: जब तक अन्यथा न कहा जाए, 'वृत्तखंड' और 'त्रिज्यखंड' लिखने से हमारा तात्पर्य क्रमश: लघु वृत्तखंड और लघु त्रिज्यखंड से होगा।

आइए उपरोक्त ज्ञान के आधार पर, इनके क्षेत्रफलों के परिकलित करने के कुछ संबंध (या सूत्र) ज्ञात करने का प्रयत्न करें।

मान लीजिए OAPB केंद्र O और त्रिज्या r वाले वृत्त का एक त्रिज्यखंड है (देखिए आकृति 11.3)। मान लीजिए \angle AOB का अंशीय (degree) माप θ है।

आप जानते हैं कि एक वृत्त [वस्तुत: एक वृत्तीय क्षेत्र या चकती (disc)] का क्षेत्रफल πr^2 होता है।

एक तरीके से, हम इस वृत्तीय क्षेत्र को केंद्र O पर 360° का कोण बनाने वाला (अंशीय माप 360) एक त्रिज्यखंड मान सकते हैं। फिर ऐकिक विधि (Unitary Method) का प्रयोग करके, हम त्रिज्यखंड OAPB का क्षेत्रफल नीचे दर्शाए अनुसार ज्ञात कर सकते हैं:

जब केंद्र पर बने कोण का अंशीय माप 360 है, तो त्रिज्यखंड का क्षेत्रफल = πr^2 अतः, जब केंद्र पर बने कोण का अंशीय माप 1 है, तो त्रिज्यखंड का क्षेत्रफल = $\frac{\pi r^2}{360}$ इसिलए जब केंद्र पर बने कोण का अंशीय माप θ है, तो त्रिज्यखंड का क्षेत्रफल

$$=\frac{\pi r^2}{360}\times\theta=\frac{\theta}{360}\times\pi r^2$$

इस प्रकार, हम वृत्त के एक त्रिज्यखंड के क्षेत्रफल के लिए, निम्नलिखित संबंध (या सूत्र) प्राप्त करते हैं:

कोण θ वाले त्रिज्यखंड का क्षेत्रफल = $\frac{\theta}{360} \times \pi r^2$,

जहाँ r वृत्त की त्रिज्या है और θ त्रिज्यखंड का अंशों में कोण है। अब एक स्वाभाविक प्रश्न उठता है: क्या हम इस त्रिज्यखंड की संगत चाप APB की लंबाई ज्ञात कर सकते हैं। हाँ, हम ऐसा कर सकते हैं। पुन:, ऐकिक विधि का प्रयोग करने तथा संपूर्ण वृत्त (360° कोण वाले) की लंबाई $2\pi r$ लेने पर, हम चाप APB की

आकृति 11.4

वांछित लंबाई $\frac{\theta}{360} \times 2\pi r$ प्राप्त करते हैं।

अतः कोण θ वाले त्रिज्यखंड के संगत चाप की लंबाई $=\frac{\theta}{360} \times 2\pi r$

आइए अब केंद्र O और त्रिज्या r वाले वृत्तखंड APB के क्षेत्रफल पर विचार करें (देखिए आकृति 11.4)। आप देख सकते हैं कि

वृत्तखंड APB का क्षेत्रफल = त्रिज्यखंड OAPB का क्षेत्रफल - Δ OAB का क्षेत्रफल

$$=\frac{\theta}{360} \times \pi r^2 - \Delta \text{OAB}$$
 का क्षेत्रफल

टिप्पणी : क्रमश : आकृति 11.3 और आकृति 11.4 से, आप देख सकते हैं कि दीर्घ त्रिज्यखंड OAQB का क्षेत्रफल = πr^2 – लघु त्रिज्यखंड OAPB का क्षेत्रफल तथा दीर्घ वृत्तखंड AQB का क्षेत्रफल = πr^2 – लघु वृत्तखंड APB का क्षेत्रफल अब आइए इन अवधारणाओं (या परिणामों) को समझने के लिए कुछ उदाहरण लें।

उदाहरण 1: त्रिज्या 4 cm वाले एक वृत्त के त्रिज्यखंड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण 30° है। साथ ही, संगत दीर्घ त्रिज्यखंड का क्षेत्रफल भी ज्ञात कीजिए। ($\pi = 3.14$ का प्रयोग कीजिए)।

हल : दिया हुआ त्रिज्यखंड OAPB है (देखिए आकृति 11.5)।

त्रिज्यखंड का क्षेत्रफल =
$$\frac{\theta}{360} \times \pi r^2$$

$$= \frac{30}{360} \times 3.14 \times 4 \times 4 \text{ cm}^2$$

$$= \frac{12.56}{3} \text{ cm}^2 = 4.19 \text{cm}^2 \text{ (लगभग)}$$

आकृति 11.5

संगत दीर्घ त्रिज्यखंड का क्षेत्रफल

=
$$\pi r^2$$
 – त्रिज्यखंड OAPB का क्षेत्रफल
= $(3.14 \times 16 - 4.19) \text{ cm}^2$
= $46.05 \text{ cm}^2 = 46.1 \text{ cm}^2$ (लगभग)

वैकल्पिक रूप से,

दीर्घ त्रिज्यखंड का क्षेत्रफल =
$$\frac{(360-\theta)}{360} \times \pi r^2$$

= $\left(\frac{360-30}{360}\right) \times 3.14 \times 16 \text{ cm}^2$
= $\frac{330}{360} \times 3.14 \times 16 \text{ cm}^2 = 46.05 \text{ cm}^2$
= $46.1 \text{ cm}^2 \left(\overline{\text{लगभग}}\right)$

उदाहरण 2: आकृति 11.6 में दर्शाए गए वृत्तखंड का क्षेत्रफल ज्ञात कीजिए, यदि वृत्त की त्रिज्या $21~\mathrm{cm}$ है और $\angle AOB = 120^\circ$ है। $[\pi = \frac{22}{7}$ लीजिए]

आकृति 11.6

हल: वृत्तखंड AYB का क्षेत्रफल

अब, त्रिज्यखंड OAYB का क्षेत्रफल =
$$\frac{120}{360} \times \frac{22}{7} \times 21 \times 21 \text{ cm}^2 = 462 \text{ cm}^2$$
 (2)

∆ OAB का क्षेत्रफल ज्ञात करने के लिए OM ⊥ AB खींचिए, जैसाकि आकृति 11.7 में दिखाया गया है।

ध्यान दीजिए कि OA = OB है। अतः, RHS सर्वांगसमता से, \triangle AMO \cong \triangle BMO है।

इसलिए M जीवा AB का मध्य-बिंदु है तथा \angle AOM = \angle BOM = $\frac{1}{2} \times 120^\circ = 60^\circ$ है।

मान लीजिए
$$OM = x \text{ cm } \frac{8}{6} \text{I}$$
 इसलिए \triangle OMA से,
$$\frac{OM}{OA} = \cos 60^{\circ}$$
 या
$$\frac{x}{21} = \frac{1}{2} \left(\cos 60^{\circ} = \frac{1}{2}\right)$$
 आकृति 11.7

अत:
$$OM = \frac{21}{2} \text{ cm}$$
साथ ही
$$\frac{AM}{OA} = \sin 60^\circ = \frac{\sqrt{3}}{2}$$
अत:
$$AM = \frac{21\sqrt{3}}{2} \text{ cm}$$
इसलिए
$$AB = 2 \text{ AM} = \frac{2 \times 21\sqrt{3}}{2} \text{ cm} = 21\sqrt{3} \text{ cm}$$
अत:
$$\Delta \text{ OAB का क्षेत्रफल} = \frac{1}{2} \text{ AB} \times \text{OM} = \frac{1}{2} \times 21\sqrt{3} \times \frac{21}{2} \text{ cm}^2$$

$$= \frac{441}{4} \sqrt{3} \text{ cm}^2$$

$$= \frac{441}{4} \sqrt{3} \text{ cm}^2$$

$$= \frac{441}{4} \sqrt{3} \text{ cm}^2$$

$$= \frac{21}{4} (88 - 21\sqrt{3}) \text{ cm}^2$$

$$= \frac{21}{4} (88 - 21\sqrt{3}) \text{ cm}^2$$

$$= \frac{21}{4} (88 - 21\sqrt{3}) \text{ cm}^2$$

(जब तक अन्यथा न कहा जाए, $\pi = \frac{22}{7}$ का प्रयोग कीजिए।)

- 1. 6 cm त्रिज्या वाले एक वृत्त के एक त्रिज्यखंड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण 60° है।
- 2. एक वृत्त के चतुर्थांश (quadrant) का क्षेत्रफल ज्ञात कीजिए, जिसकी परिधि 22 cm है।
- 3. एक घड़ी की मिनट की सुई जिसकी लंबाई 14 cm है। इस सुई द्वारा 5 मिनट में रचित क्षेत्रफल ज्ञात कीजिए।
- 4. 10 सेमी त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर एक समकोण अंतरित करती है। निम्नलिखित के क्षेत्रफल ज्ञात कीजिए:
 - (i) संगत लघु वृत्तखंड (ii) संगत दीर्घ त्रिज्यखंड (π=3.14 का प्रयोग कीजिए)।
- 5. त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60° का कोण अंतरित करता है। ज्ञात कीजिए:
 - (i) चाप की लंबाई (ii) चाप द्वारा बनाए गए त्रिज्यखंड का क्षेत्रफल
 - (iii) संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल
- 6. 15 cm त्रिज्या वाले एक वृत्त की कोई जीवा केंद्र पर 60° का कोण अंतरित करती है। संगत लघु और दीर्घ वृत्तखंडों के क्षेत्रफल ज्ञात कीजिए। $(\pi = 3.14 \,\text{और}\,\sqrt{3} = 1.73 \,\text{का प्रयोग कीजिए})$

7. त्रिज्या 12 cm वाले एक वृत्त की कोई जीवा केंद्र पर 120° का कोण अंतरित करती है। संगत वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।

 $(\pi = 3.14$ और $\sqrt{3} = 1.73$ का प्रयोग कीजिए।)

- 8. 15 m भुजा वाले एक वर्गाकार घास के मैदान के एक कोने पर लगे खूँटे से एक घोड़े को 5 m लंबी रस्सी से बाँध दिया गया है (देखिए आकृति 11.8)। ज्ञात कीजिए:
 - (i) मैदान के उस भाग का क्षेत्रफल जहाँ घोड़ा घास चर सकता है।
 - (ii) चरे जा सकने वाले क्षेत्रफल में वृद्धि, यदि घोड़े को 5 m लंबी रस्सी के स्थान पर 10 m लंबी रस्सी से बाँध दिया जाए। (π = 3.14 का प्रयोग कीजिए।)
- 9. एक वृत्ताकार ब्रूच (brooch) को चाँदी के तार से बनाया जाना है जिसका व्यास 35 mm है। तार को वृत के 5 व्यासों को बनाने में भी प्रयुक्त किया गया है जो उसे 10 बराबर त्रिज्यखंडों में विभाजित करता है जैसा कि आकृति 11.9 में दर्शाया गया है। तो ज्ञात कीजिए:
 - (i) कुल वांछित चाँदी के तार की लंबाई
 - (ii) ब्रूच के प्रत्येक त्रिज्यखंड का क्षेत्रफल
- 10. एक छतरी में आठ ताने हैं, जो बराबर दूरी पर लगे हुए हैं (देखिए आकृति 11.10)। छतरी को 45 cm त्रिज्या वाला एक सपाट वृत्त मानते हुए, इसकी दो क्रमागत तानों के बीच का क्षेत्रफल ज्ञात कीजिए।
- 11. किसी कार के दो वाइपर (Wipers) हैं, परस्पर कभी आच्छादित नहीं होते हैं। प्रत्येक वाइपर की पत्ती की लंबाई

12. जहाजों को समुद्र में जलस्तर के नीचे स्थित चट्टानों की चेतावनी देने के लिए, एक लाइट हाउस (light house) 80° कोण वाले एक त्रिज्यखंड में 16.5 km की दूरी तक लाल रंग का प्रकाश फैलाता है। समुद्र के उस भाग का क्षेत्रफल ज्ञात कीजिए जिसमें जहाजों को चेतावनी दी जा सके। (π = 3.14 का प्रयोग कीजिए।)

आकृति 11.8

आकृति 11.9

आकृति 11.10

- 13. एक गोल मेज़पोश पर छ: समान डिजाइन बने हुए हैं जैसािक आकृति 11.11 में दर्शाया गया है। यदि मेजपोश की त्रिज्या 28 cm है, तो ₹ 0.35 प्रति वर्ग सेंटीमीटर की दर से इन डिजाइनों को बनाने की लागत ज्ञात कीजिए। $(\sqrt{3} = 1.7 \text{ का प्रयोग कीजिए})$
- 14. निम्नलिखित में सही उत्तर चुनिए: त्रिज्या R वाले वृत्त के उस त्रिज्यखंड का क्षेत्रफल जिसका कोण p° है. निम्नलिखित है:

(A)
$$\frac{p}{180} \times 2\pi R$$
 (B) $\frac{p}{180} \times \pi R^2$ (C) $\frac{p}{720} \times 2\pi R^2$ (D) $\frac{p}{360} \times 2\pi R$

(C)
$$\frac{p}{720} \times 2\pi R^2$$

(D)
$$\frac{p}{360} \times 2\pi R$$

11.2 सारांश

इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:

- 1. त्रिज्या r वाले वृत्त के एक त्रिज्यखंड, जिसका कोण अंशों में θ है, के संगत चाप की लंबाई $\frac{\theta}{360} \times 2\pi r$ होती है।
- 2. त्रिज्या r वाले वृत्त के एक त्रिज्यखंड, जिसका कोण अंशों में θ है, का क्षेत्रफल $\frac{\theta}{360} \times \pi r^2$ होता है।
- 3. एक वृत्तखंड का क्षेत्रफल = संगत त्रिज्यखंड का क्षेत्रफल संगत त्रिभुज का क्षेत्रफल

पृष्ठीय क्षेत्रफल और आयतन

12

12.1 भूमिका

कक्षा IX से, आप कुछ ठोस आकृतियों जैसे घनाभ, शंकु, बेलन और गोला से परिचित हो चुके हैं (देखिए आकृति 12.1)। आप यह भी पढ़ चुके हैं कि इन आकृतियों के पृष्ठीय क्षेत्रफल और आयतन किस प्रकार ज्ञात किए जाते हैं।

अपने दैनिक जीवन में हमें ऐसे अनेक ठोस देखने को मिलते हैं जो उपरोक्त दो या अधिक आधारभूत ठोसों के संयोजनों से (अर्थात् इनको मिलाकर) बनते हैं।

आपने एक ट्रक के पीछे रखे बड़े कंटेनर (container) को अवश्य ही देखा होगा (देखिए आकृति 12.2), जिसमें एक स्थान से दूसरे स्थान तक तेल या पानी ले जाया जाता है। क्या इसका आकार उपरोक्त चारों ठोसों में से किसी एक के आकार जैसा है? आप यह अनुमान लगा सकते हैं कि यह ठोस एक बेलन और उसके दोनों सिरों पर दो अर्धगोले लगने पर बना है।

आकृति 12.2

पुन:, आपने ऐसी वस्तु भी अवश्य देखी होगी जो आकृति 12.3 में दर्शाई गई है। क्या आप इसका नाम बता सकते हैं? यह निश्चय ही एक परख नली (test tube) है। आपने इसे अपनी विज्ञान प्रयोगशाला में प्रयोग किया होगा। यह परखनली भी एक बेलन और एक अर्धगोले से मिलकर बनी है। इसी प्रकार, यात्रा करते समय भी उपरोक्त ठोसों के संयोजनों से बने अनेक बड़े और सुंदर भवनों अथवा स्मारकों को आपने देखा होगा।

यदि किन्हीं कारणवश, आप इन ठोसों के पृष्ठीय

क्षेत्रफल या आयतन या धारिता ज्ञात करना चाहें तो आप ऐसा किस प्रकार करेंगे? आप ऐसे ठोसों को अब तक पढ़ी हुई चारों ठोस आकृतियों में से किसी एक के रूप में वर्गीकृत नहीं कर सकते।

इस अध्याय में आप यह देखेंगे कि इस प्रकार के ठोसों के पृष्ठीय क्षेत्रफल और आयतन किस प्रकार ज्ञात किए जाते हैं?

12.2 ठोसों के संयोजन का पृष्ठीय क्षेत्रफल

आइए उस कंटेनर पर विचार करें जो हमने आकृति 12.2 में देखा था। इस प्रकार के ठोस का पृष्ठीय क्षेत्रफल हम कैसे ज्ञात करें? अब, जब भी हमारे सम्मुख कोई नई समस्या आती है तो हम सर्वप्रथम यह देखने का प्रयत्न करते हैं कि क्या हम इसे ऐसी छोटी समस्याओं में तोड़ सकते हैं जिन्हें हम पहले हल कर चुके हैं। हम देख सकते हैं कि यह ठोस एक बेलन के दोनों सिरों पर एक-एक अर्धगोला लगाने से बना है। यह आकृति 12.4 में दिखाए ठोस जैसा लगेगा, जबिक हम सभी टुकडों को एक साथ मिला लेते हैं।

यदि हम नयी बनी हुई वस्तु को देखें, तो हमें केवल दोनों अर्धगोलों तथा बेलन के केवल वक्रपृष्ठ दिखाई देंगे।

इसलिए इस ठोस का संपूर्ण पृष्ठीय क्षेत्रफल तीनों भागों के वक्र पृष्ठीय क्षेत्रफलों के योग के बराबर होगा। इससे हमें प्राप्त होता है:

ठोस का संपूर्ण पृष्ठीय क्षेत्रफल (TSA) = एक अर्धगोले का वक्र पृष्ठीय क्षेत्रफल (CSA) + बेलन का वक्र पृष्ठीय क्षेत्रफल + दुसरे अर्धगोले का वक्र पृष्ठीय क्षेत्रफल

आइए एक अन्य स्थिति पर विचार करें। मान लीजिए हम अर्धगोले और एक शंकु को जोड़कर एक खिलौना बना रहे हैं। आइए हम उन चरणों को देखें जिनका हम अनुसरण करेंगे।

पहले हम एक शंकु और एक अर्धगोला लेंगे और फिर उनके सपाट पृष्ठों को साथ-साथ लाने का प्रयत्न करेंगे। निस्संदेह, खिलौने के पृष्ठ को चिकना रखने के लिए हम शंकु के आधार की त्रिज्या अर्धगोले की त्रिज्या के बराबर लेंगे। इस खिलौने के बनाने में संबद्ध चरण आकृति 12.5 में दर्शाए अनुसार होंगे:

आकृति 12.5

अपने प्रयत्न के फलस्वरूप हमें एक गोल आधार वाला सुंदर खिलौना प्राप्त हो जाता है। अब, हम यदि यह जानना चाहें कि इस खिलौने के पृष्ठ पर रंग करवाने के लिए कितने पेंट की आवश्यकता होगी, तो हमें क्या जानकारी होनी चाहिए? हमें इस खिलौने के पृष्ठीय क्षेत्रफल को ज्ञात करने की आवश्यकता है, जो अर्धगोले के CSA और शंकु के CSA को मिलाकर बनता है।

अत:, हम कह सकते हैं कि

खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल = अर्धगोले का CSA + शंकु का CSA अब, आइए कुछ उदाहरण लें।

उदाहरण 1: रशीद को जन्मदिन के उपहार के रूप में एक लट्टू मिला, जिस पर रंग नहीं किया गया था। वह इस पर अपने मोमिया रंगों (Crayons) से रंग करना चाहता है। यह लट्टू एक शंकु के आकार का है जिसके ऊपर एक अर्धगोला अध्यारोपित है (देखिए आकृति 12.6)। लट्टू की पूरी ऊँचाई 5 cm है और इसका व्यास 3.5 cm है।

उसके द्वारा रंग किया जाने वाला क्षेत्रफल ज्ञात कीजिए। $(\pi = \frac{22}{7} \text{ लीजिए})$

हल: यह लट्टू बिल्कुल उस वस्तु जैसा है जिसकी चर्चा हमने आकृति 12.5 में की थी। अत:, हम वहाँ पर प्राप्त परिणाम को सुविधाजनक रूप से यहाँ प्रयोग कर सकते हैं। अर्थात्

आकृति 12.6

लट्टू का TSA = अर्धगोले का CSA + शंकु का CSA

अब, अर्धगोले का वक्र पृष्ठीय क्षेत्रफल = $\frac{1}{2}(4\pi r^2) = 2\pi r^2$

$$= \left(2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}\right) \text{cm}^2$$

साथ ही, शंकु की ऊँचाई = लट्टू की ऊँचाई – अर्धगोलीय भाग की ऊँचाई (त्रिज्या)

$$=\left(5-\frac{3.5}{2}\right)$$
 cm $= 3.25$ cm

अत: शंकु की तिर्यक ऊँचाई $(l) = \sqrt{r^2 + h^2} = \sqrt{\left(\frac{3.5}{2}\right)^2 + (3.25)^2}$ cm = 3.7 cm (लगभग)

इसलिए शंकु का पृष्ठीय क्षेत्रफल = $\pi rl = \left(\frac{22}{7} \times \frac{3.5}{2} \times 3.7\right) \text{cm}^2$

इससे लट्टू का प्राप्त पृष्ठीय क्षेत्रफल

$$= \left(2 \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2}\right) cm^2 + \left(\frac{22}{7} \times \frac{3.5}{2} \times 3.7\right) cm^2$$

$$=\frac{22}{7}\times\frac{3.5}{2}\left(3.5+3.7\right)$$
 cm² $=\frac{11}{2}\times(3.5+3.7)$ cm² $=39.6$ cm² (लगभग)

आप देख सकते हैं कि लट्टू का संपूर्ण पृष्ठीय क्षेत्रफल अर्धगोले और शंकु के संपूर्ण पृष्ठीय क्षेत्रफलों के योग के बराबर नहीं है। 182

उदाहरण 2: आकृति 12.7 में दर्शाया गया सजावट के लिए प्रयोग होने वाला ब्लॉक दो ठोसों से मिलकर बना है। इनमें से एक घन है और दूसरा अर्धगोला है। इस ब्लॉक (block) का आधार 5 cm कोर या किनारे (edge) वाला एक घन है और उसके ऊपर लगे हुए अर्धगोले का व्यास 4.2 cm है। इस ब्लॉक का संपूर्ण

पृष्ठीय क्षेत्रफल ज्ञात कीजिए। ($\pi = \frac{22}{7}$ लीजिए।)

हल: घन का संपूर्ण पृष्ठीय क्षेत्रफल = 6 × (कोर)² = 6 × 5 × 5 cm² = 150 cm² अब, घन का वह भाग जिस पर अर्धगोला लगा हुआ है पृष्ठीय क्षेत्रफल में सम्मिलित नहीं होगा।

अत: ब्लॉक का पृष्ठीय क्षेत्रफल= घन का TSA – अर्धगोले के आधार का क्षेत्रफल + अर्धगोले का CSA

=
$$150 - \pi r^2 + 2 \pi r^2 = (150 + \pi r^2) \text{ cm}^2$$

$$= 150 \text{ cm}^2 + \left(\frac{22}{7} \times \frac{4.2}{2} \times \frac{4.2}{2}\right) \text{ cm}^2$$

$$= 150 \text{ cm}^2 + 13.86 \text{ cm}^2 = 163.86 \text{ cm}^2$$

उदाहरण 3: लकड़ी का एक खिलौना रॉकेट (rocket) एक शंकु के आकार का है जो एक बेलन पर अध्यारोपित है, जैसािक आकृति 12.8 में दर्शाया गया है। संपूर्ण रॉकेट की ऊँचाई 26 cm है, जबिक शंक्वाकार भाग की ऊँचाई 6 cm है। शंक्वाकार के भाग के आधार का व्यास 5 cm और बेलनाकार भाग के आधार का व्यास 3 cm है। यदि शंक्वाकार भाग पर नारंगी रंग किया जाना है और बेलनाकार भाग पर पीला रंग किया जाना है, तो प्रत्येक रंग द्वारा रॉकेट का रॅंग जाने वाले भाग का क्षेत्रफल ज्ञात कीजिए। ($\pi = 3.14 \text{ ली}$ जिए।)

Rationalised 2023-24

हल: शंकु की त्रिज्या को r से, शंकु की तिर्यक ऊँचाई को l से, शंकु की ऊँचाई को h से, बेलन की त्रिज्या को r' से, बेलन की ऊँचाई को h' से व्यक्त कीजिए। तब, r=2.5 cm, h=6 cm, r'=1.5 cm, h'=26-6=20 cm तथा

$$l = \sqrt{r^2 + h^2} = \sqrt{2.5^2 + 6^2}$$
 cm = 6.5 cm

यहाँ, शंक्वाकार भाग का वृत्तीय आधार बेलन के आधार पर टिका हुआ है परंतु शंकु का आधार बेलन के आधार से बड़ा है। अत:, शंकु के आधार के एक भाग [वलय (ring)] को भी रँगा जाएगा।

अत:,नारंगी रंग से रँगे भाग का क्षेत्रफल = शंकु का CSA + शंकु के आधार का क्षेत्रफल

$$= \pi r l + \pi r^2 - \pi (r')^2$$

=
$$\pi[(2.5 \times 6.5) + (2.5)^2 - (1.5)^2]$$
 cm²

$$= \pi[20.25] \text{ cm}^2 = 3.14 \times 20.25 \text{ cm}^2$$

$$= 63.585 \text{ cm}^2$$

अब, पीले रंग से रंगे जाने वाले भाग का क्षेत्रफल = बेलन का CSA +

बेलन के एक आधार का क्षेत्रफल

$$= 2\pi r'h' + \pi(r')^2$$

$$= \pi r' (2h' + r')$$

$$= 3.14 \times 1.5 [2 \times 20 + 1.5] \text{ cm}^2$$

$$= 4.71 \times 41.5 \text{ cm}^2$$

$$= 195.465 \text{ cm}^2$$

उदाहरण 4: मयंक ने अपने बगीचे के लिए एक पक्षी-स्नानागार (bird-bath) बनाया जिसका आकार एक खोखले बेलन जैसा है जिसके एक सिरे पर अर्धगोलाकार बर्तन बना हुआ है (देखिए आकृति 12.9)। बेलन की ऊँचाई 1.45 m है और उसकी त्रिज्या 30 cm है। इस पक्षी-स्नानागार का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

हल: मान लीजिए कि बेलन की ऊँचाई h है तथा बेलन और अर्धगोले की उभयनिष्ठ त्रिज्या r है। तब,

पक्षी-स्नानागार का संपूर्ण पृष्ठीय क्षेत्रफल = बेलन का CSA + अर्धगोले का CSA = $2\pi rh + 2\pi r^2 = 2\pi r(h+r)$ = $2 \times \frac{22}{7} \times 30(145+30) \text{ cm}^2$ = $33000 \text{ cm}^2 = 3.3 \text{ m}^2$

प्रश्नावली 12.1

जब तक अन्यथा न कहा जाए, $\pi = \frac{22}{7}$ लीजिए।

- 1. दो घनों, जिनमें से प्रत्येक का आयतन 64 cm³ है, के संलग्न फलकों को मिलाकर एक ठोस बनाया जाता है। इससे प्राप्त घनाभ का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 2. कोई बर्तन एक खोखले अर्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्याारोपित है। अर्धगोले का व्यास 14 cm है और इस बर्तन (पात्र) की कुल ऊँचाई 13 cm है। इस बर्तन का आंतरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 3. एक खिलौना त्रिज्या 3.5 cm वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्धगोले पर अध्यारोपित है। इस खिलौने की संपूर्ण ऊँचाई 15.5 cm है। इस खिलौने का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 4. भुजा 7 cm वाले एक घनाकार ब्लॉक के ऊपर एक अर्धगोला रखा हुआ है। अर्धगोले का अधिकतम व्यास क्या हो सकता है? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 5. एक घनाकार ब्लॉक के एक फलक को अंदर की ओर से काट कर एक अर्धगोलाकार गड्ढा इस प्रकार बनाया गया है कि अर्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 6. दवा का एक कैप्सूल (capsule) एक बेलन के आकार का है जिसके दोनों सिरों पर एक-एक अर्धगोला लगा हुआ है (देखिए आकृति 12.10)। पूरे कैप्सूल की लंबाई 14 mm है और उसका व्यास 5 mm है। इसका पृष्ठीय क्षेत्रफल जात कीजिए।

7. कोई तंबू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमश: 2.1 m और 4 m है तथा शंकु की तिर्यक ऊँचाई 2.8 m है तो इस तंबू को बनाने में प्रयुक्त कैनवस (canvas) का क्षेत्रफल ज्ञात कीजिए। साथ ही,₹500 प्रति m² की दर से इसमें प्रयुक्त कैनवस की लागत ज्ञात कीजिए। (ध्यान दीजिए कि तंबू के आधार को कैनवस से नहीं ढका जाता है।)

- 8. ऊँचाई 2.4 cm और व्यास 1.4 cm वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल (cavity) काट लिया जाता है। शेष बचे ठोस का निकटतम वर्ग सेंटीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
- 9. लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्धगोला खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसािक आकृति 12.11 में दर्शाया गया है। यदि बेलन की ऊँचाई 10 cm है और आधार की त्रिज्या 3.5 cm है तो इस वस्तु का संपूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीिजए।

आकृति 12.11

12.3 ठोसों के संयोजन का आयतन

पिछले अनुच्छेद में हमने यह चर्चा की है कि दो आधारभूत ठोसों के संयोजन से बने ठोसों के पृष्ठीय क्षेत्रफल किस प्रकार ज्ञात किए जाते हैं। अब हम देखेंगे कि इस प्रकार के ठोसों के आयतन किस प्रकार परिकलित किए जाते हैं। ध्यान दीजिए कि पृष्ठीय क्षेत्रफल परिकलित करने में हमने दोनों घटकों (ठोसों) के पृष्ठीय क्षेत्रफलों को जोड़ा नहीं था क्योंकि इनको मिलाने की प्रक्रिया में पृष्ठीय क्षेत्रफल का कुछ भाग लुप्त हो गया था। परंतु आयतन परिकलित करने की स्थित में ऐसा नहीं होगा। दो आधारभूत ठोसों के संयोजन से बने ठोस का आयतन वास्तव में दोनों घटकों के आयतनों के योग के बराबर होता है, जैसािक हम नीचे दिए उदाहरण में देखेंगे।

उदाहरण 5: शांता किसी शेड (shed) में एक उद्योग चलाती है। यह शेड एक घनाभ के आकार का है जिस पर एक अर्धबेलन आरोपित है (देखिए आकृति 12.12)। यदि इस शेड के आधार की विमाएँ 7 m × 15 m हैं तथा घनाभाकार भाग की 8 m ऊँचाई 8 m है तो शेड में समावेशित हो सकने वाली हवा का आयतन ज्ञात कीजिए। पुन: यदि यह मान लें कि शेड में रखी मशीनरी 300 m³ स्थान घेरती है तथा शेड

आकृति 12.12

के अंदर 20 श्रिमिक हैं जिनमें से प्रत्येक $0.08~\text{m}^3$ के औसत से स्थान घेरता है तब शेड में कितनी हवा होगी? ($\pi=\frac{22}{7}$ लीजिए।)

हल: शेड के अंदर हवा का आयतन (जब इसमें कोई व्यक्ति या मशीनरी नहीं है) घनाभ के अंदर की हवा और अर्धबेलन के अंदर की हवा के आयतनों को मिला कर प्राप्त होगा। अब, घनाभ की लंबाई, चौड़ाई और ऊँचाई क्रमश: 15 m, 7 m और 8 m हैं। साथ ही, अर्धबेलन का व्यास 7 m और ऊँचाई 15 m है। इसलिए वांछित आयतन = घनाभ का आयतन + $\frac{1}{2}$ बेलन का आयतन

$$= \left[15 \times 7 \times 8 + \frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15\right] m^3 = 1128.75 m^3$$

आगे, मशीनरी द्वारा घेरा गया स्थान = 300 m³

तथा 20 श्रिमिकों द्वारा घेरा गया स्थान = $20 \times 0.08~\text{m}^3 = 1.6~\text{m}^3$ अत:, शेड में उस समय हवा का आयतन, जब उसमें मशीनरी और श्रिमिक हैं

=
$$1128.75 - (300.00 + 1.60) = 827.15 \text{ m}^3$$

उदाहरण 6: एक जूस (juice) बेचने वाला अपने ग्राहकों को आकृति 12.13 में दर्शाए गिलासों से जूस देता था। बेलनाकार गिलास का आंतरिक व्यास 5 cm था, परंतु गिलास के निचले आधार (तली) में एक उभरा हुआ अर्धगोला था, जिससे गिलास की धारिता कम हो जाती थी। यदि एक गिलास की ऊँचाई 10 cm थी, तो गिलास की आभासी (apparent) धारिता तथा उसकी वास्तविक धारिता ज्ञात कीजिए। ($\pi = 3.14$ लीजिए।)

आकृति 12.13

हल: चूँकि गिलास का आंतरिक व्यास = $5~{
m cm}$ है और ऊँचाई = $10~{
m cm}$ है, इसलिए गिलास की आभासी धारिता = $\pi r^2 h$

$$= 3.14 \times 2.5 \times 2.5 \times 10 \text{ cm}^3 = 196.25 \text{ cm}^3$$

परंतु इसकी वास्तविक धारिता उपरोक्त धारिता से आधार में बने अर्धगोले के आयतन के बराबर कम है।

अर्थात् कमी बराबर है
$$\frac{2}{3}$$
 $\pi r^3 = \frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \text{ cm}^3 = 32.71 \text{ cm}^3$

अत: गिलास की वास्तविक धारिता = आभासी धारिता – अर्धगोले का आयतन

$$= (196.25 - 32.71) \text{ cm}^3$$

 $= 163.54 \text{ cm}^2$

उदाहरण 7: एक ठोस खिलौना एक अर्धगोले के आकार का है जिस पर एक लंब वृत्तीय शंकु आरोपित है। इस शंकु की ऊँचाई 2 cm है और आधार का व्यास 4 cm है। इस खिलौने का आयतन निर्धारित कीजिए। यदि एक लंब वृत्तीय बेलन इस खिलौने के परिगत हो तो बेलन और खिलौने के आयतनों का अंतर ज्ञात कीजिए। $(\pi = 3.14 \text{ लीजिए}))$

आकृति 12.14

हल: मान लीजिए BPC अर्धगोला है तथा ABC अर्धगोले के आधार पर खड़ा एक शंकु है (देखिए आकृति 12.14)। अर्धगोले (और शंकु की भी) की त्रिज्या = $\frac{1}{2} \times 4$ cm = 2 cm इसलिए खिलौने का आयतन = $\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$

$$= \left[\frac{2}{3} \times 3.14 \times (2)^3 + \frac{1}{3} \times 3.14 \times (2)^2 \times 2\right] \text{cm}^3 = 25.12 \text{ cm}^3$$

अब, मान लीजिए कि दिए गए ठोस के परिगत लंब वृत्तीय बेलन EFGH है। इस लंब वृत्तीय बेलन के आधार की त्रिज्या = HP = BO = 2 cm है तथा इसकी ऊँचाई

$$EH = AO + OP = (2 + 2) cm = 4 cm \frac{2}{6}$$

अत:, वांछित आयतन = लंब वृत्तीय बेलन का आयतन – खिलौने का आयतन = $(3.14 \times 2^2 \times 4 - 25.12) \text{ cm}^3$ = 25.12 cm^3

इस प्रकार, दोनों आयतनों का अंतर = 25.12 cm³ है।

प्रश्नावली 12.2

(जब तक अन्यथा न कहा जाए, $\pi = \frac{22}{7}$ लीजिए।)

- 1. एक ठोस एक अर्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ $1~{\rm cm}$ हैं तथा शंकु की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन π के पदों में ज्ञात कीजिए।
- 2. एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास 3 cm है और इसकी लंबाई 12 cm है। यदि प्रत्येक शंकु की ऊँचाई 2 cm हो तो रचेल द्वारा बनाए गए मॉडल में अंतर्विष्ट हवा का आयतन ज्ञात कीजिए। (यह मान लीजिए कि मॉडल की आंतरिक और बाहरी विमाएँ लगभग बराबर हैं।)

188

उ. एक गुलाबजामुन में उसके आयतन की लगभग 30% चीनी की चाशनी होती है। 45 गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्धगोलाकार हैं तथा इसकी लंबाई 5 cm और व्यास 2.8 cm है (देखिए आकृति 12.15)।

आकृति 12.15

आकृति 12.16

- 5. एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई 8 cm है और इसके ऊपरी सिरे (जो खुला हुआ है) की त्रिज्या 5 cm है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक 0.5 cm त्रिज्या वाला एक गोला है, डाली जाती हैं, तो इसमें से भरे हुए पानी का एक चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
- 6. ऊँचाई 220 cm और आधार व्यास 24 cm वाले एक बेलन, जिस पर ऊँचाई 60 cm और त्रिज्या 8 cm वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तंभ बना है। इस स्तंभ का द्रव्यमान ज्ञात कीजिए, जबिक दिया है 1 cm³ लोहे का द्रव्यमान लगभग 8 g होता है। (π=3.14 लीजिए))
- 7. एक ठोस में, ऊँचाई 120 cm और त्रिज्या 60 cm वाला एक शंकु सम्मिलित है, जो 60 cm त्रिज्या वाले एक अर्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लंब वृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या 60 cm है और ऊँचाई 180 cm है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए।
- 8. एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लंबाई 8 cm है और व्यास 2 cm है जबिक गोलाकार भाग का व्यास 8.5 cm है। इसमें भरे जा सकने वाली पानी की मात्रा माप कर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन 345 cm^3 है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपरोक्त मापन आंतरिक मापन है और $\pi = 3.14$ ।

12.4 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

- आधारभूत ठोसों घनाभ, बेलन, शंकु और गोले और अर्धगोले में से किन्हीं दो ठोसों के संयोजन (को मिलाने से) से बने ठोसों के पृष्ठीय क्षेत्रफल निर्धारित करना।
- 2. ठोसों घनाभ, बेलन, शंकु, गोले और अर्धगोले में से किन्हीं दो ठोसों के संयोजन से बने ठोसों के आयतन ज्ञात करना।

13.1 भूमिका

कक्षा IX में, आप दिए हुए आँकड़ों को अवर्गीकृत एवं वर्गीकृत बारंबारता बंटनों में व्यवस्थित करना सीख चुके हैं। आपने आँकड़ों को चित्रीय रूप से विभिन्न आलेखों, जैसे दंड आलेख, आयत चित्र (इनमें असमान चौड़ाई वाले वर्ग अंतराल भी सिम्मिलित थें) और बारंबारता बहुभुजों के रूप में निरूपित करना भी सीखा था। तथ्य तो यह है कि आप अवर्गीकृत आँकड़ों के कुछ संख्यात्मक प्रतिनिधि (numerical representives) ज्ञात करके एक कदम आगे बढ़ गए थे। इन संख्यात्मक प्रतिनिधियों को केंद्रीय प्रवृत्ति के मापक (measures of central tendency) कहते हैं। हमने ऐसे तीन मापकों अर्थात् माध्य (mean), माध्यक (median) और बहुलक (mode) का अध्ययन किया था। इस अध्याय में, हम इन तीनों मापकों, अर्थात् माध्य, माध्यक और बहुलक, का अध्ययन अवर्गीकृत आँकड़ों से वर्गीकृत आँकड़ों के लिए आगे बढ़ाएँगे। हम संचयी बारंबारता (cumulative frequency) और संचयी बारंबारता सारणी की अवधारणाओं की चर्चा भी करेंगे तथा यह भी सीखेंगे कि संचयी बारंबारता वक्रों (cumulative frequency curves), जो तोरण (ogives) कहलाती हैं, को किस प्रकार खींचा जाता है।

13.2 वर्गीकृत आँकड़ों का माध्य

जैसािक हम पहले से जानते हैं, दिए हुए प्रेक्षणों का माध्य (या औसत) सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की कुल संख्या से भाग देकर प्राप्त किया जाता है। कक्षा IX से, याद की जिए कि यदि प्रेक्षणों x_1, x_2, \ldots, x_n की बारंबारताएँ क्रमश: f_1, f_2, \ldots, f_n हों, तो इसका अर्थ है कि प्रेक्षण x_1, f_1 बार आता है; प्रेक्षण x_2, f_2 बार आता है, इत्यादि।

अब, सभी प्रेक्षणों के मानों का योग= $f_1x_1+f_2x_2+\ldots+f_nx_n$ है तथा प्रेक्षणों की संख्या $f_1+f_2+\ldots+f_n$ है।

अतः, इनका माध्य \bar{x} निम्नलिखित द्वारा प्राप्त होगाः

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{f_1 + f_2 + \dots + f_n}$$

याद कीजिए कि उपरोक्त को संक्षिप्त रूप में एक यूनानी अक्षर Σ [बड़ा सिगमा (capital sigma)] से व्यक्त करते हैं। इस अक्षर का अर्थ है जोड़ना (summation) अर्थात्

$$\overline{x} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

इसे और अधिक संक्षिप्त रूप में, $\overline{x}=\frac{\sum f_i x_i}{\sum f_i}$ लिखते हैं, यह समझते हुए कि i का मान 1 से n तक विचरण करता है।

आइए इस सूत्र का निम्निलिखित उदाहरण में माध्य ज्ञात करने के लिए उपयोग करें। 3 दाहरण 1: किसी स्कूल की कक्षा X के 30 विद्यार्थियों द्वारा गणित के एक पेपर में, 100 में से प्राप्त किए गए अंक, नीचे एक सारणी में दिए गए हैं। इन विद्यार्थियों द्वारा प्राप्त अंकों का माध्य ज्ञात कीजिए।

प्राप्तांक (x _i)	10	20	36	40	50	56	60	70	72	80	88	92	95
विद्यार्थियों की संख्या (f_i)	1	1	3	4	3	2	4	4	1	1	2	3	1

हल: याद कीजिए कि माध्य ज्ञात करने के लिए, हमें प्रत्येक x_i से उसकी संगत बारंबारता f_i द्वारा गुणनफल की आवश्यकता है। अत:, आइए इन गुणनफलों को सारणी 13.1 में दर्शाए अनुसार एक स्तंभ में रखें।

192

सारणी 13.1

प्राप्तांक (x_i)	विद्यार्थियों की संख्या (f_i)	$f_i x_i$
10	1	10
20	1	20
. 36	3	108
40	4	160
50	3	150
56	2	112
60	4	240
70	4	280
72	1	72
80	1	80
88	2	176
92	3	276
95	1	95
योग	$\Sigma f_i = 30$	$\Sigma f_i x_i = 1779$

अब

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1779}{30} = 59.3$$

अत:, प्राप्त किया गया माध्य अंक 59.3 है।

हमारे दैनिक जीवन की अधिकांश स्थितियों में, आँकड़े इतने बड़े होते हैं कि उनका एक अर्थपूर्ण अध्ययन करने के लिए उन्हें समूहों में बाँट कर (वर्गीकृत करके) छोटा किया जाता है। अत:, हमें दिए हुए अवर्गीकृत आँकड़ों को, वर्गीकृत आँकड़ों में बदलने की आवश्यकता होती है तथा इन आँकड़ों के माध्य ज्ञात करने की विधि निकालने की आवश्यकता होती है।

आइए उदाहरण 1 के अवर्गीकृत आँकड़ों को चौड़ाई, मान लीजिए, 15 के वर्ग अंतराल बनाकर वर्गीकृत आँकड़ों में बदलें। याद रखिए कि वर्ग अंतरालों की बारंबारताएँ निर्दिष्ट करते समय, किसी उपिर वर्ग सीमा (upper class limit) में आने वाले प्रेक्षण अगले वर्ग अंतराल में लिए जाते हैं। उदाहरणार्थ, अंक 40 प्राप्त करने वाले 4 विद्यार्थियों को वर्ग अंतराल 25-40 में न लेकर अंतराल 40-55 में लिया जाता है। इस परंपरा को ध्यान में रखते हुए, आइए इनकी एक वर्गीकृत बारंबारता सारणी बनाएँ (देखिए सारणी 13.2)।

सारणी 13.2

वर्ग अंतराल	10 - 25	25 - 40	40 - 55	55 - 70	70 - 85	85 - 100
विद्यार्थियों की संख्या	2	3	7	6	6	6

अब, प्रत्येक वर्ग अंतराल के लिए, हमें एक ऐसे बिंदु (मान) की आवश्यकता है, जो पूरे अंतराल का प्रतिनिधित्व करे। यह मान लिया जाता है कि प्रत्येक वर्ग अंतराल की बारंबारता उसके मध्य-बिंदु के चारों ओर केंद्रित होती है। अत:, प्रत्येक वर्ग के मध्य-बिंदु (mid-point) [या वर्ग चिह्न (class mark)] को उस वर्ग में आने वाले सभी प्रेक्षणों का प्रतिनिधि (representative) माना जा सकता है। याद कीजिए कि हम एक वर्ग अंतराल का मध्य बिंदु (या वर्ग चिह्न) उसकी उपरि और निचली सीमाओं का औसत निकालकर ज्ञात करते हैं। अर्थात्

वर्ग चिह्न =
$$\frac{3$$
परि वर्ग सीमा + निचली वर्ग सीमा 2

सारणी 13.2 के संदर्भ में, वर्ग 10-25 का वर्ग चिह्न $\frac{10+25}{2}$, अर्थात् 17.5 है। इसी प्रकार, हम अन्य वर्ग अंतरालों के वर्ग चिह्न ज्ञात कर सकते हैं। हम इन वर्ग चिह्नों को सारणी 13.3 में रखते हैं। ये वर्ग चिह्न x_i 's का काम करते हैं। व्यापक रूप में वर्ग अंतराल के वर्ग चिह्न x_i के संगत बारंबारता f_i लिखी जाती है। अब हम उदाहरण 1 की ही तरह, माध्य परिकलित करने की प्रक्रिया की ओर आगे बढ सकते हैं।

सारणी 13.3

वर्ग अंतराल	विद्यार्थियों की संख्या (f_i)	वर्ग चिह्न (x _i)	$f_i x_i$
10 - 25	2	17.5	35.0
25 - 40	3	32.5	97.5
40 - 55	7	47.5	332.5
55 - 70	6	62.5	375.0
70 - 85	6	77.5	465.0
85 – 100	6	92.5	555.0
योग	$\Sigma f_i = 30$		$\sum f_i x_i = 1860.0$

अंतिम स्तंभ में दिए मानों के योग से हमें $\Sigma f_i x_i$ प्राप्त होता है। अतः, दिए हुए आँकड़ों का माध्य \bar{x} , नीचे दर्शाए अनुसार प्राप्त होता है:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{1860.0}{30} = 62$$

माध्य ज्ञात करने की इस नयी विधि को **प्रत्यक्ष विधि (direct method)** कहा जा सकता है।

हम देखते हैं कि सारिणयों 13.1 और 13.3 में, समान आँकड़ों का प्रयोग किया गया है तथा इनमें माध्य परिकलित करने के लिए एक ही सूत्र का प्रयोग किया गया है। परंतु इन दोनों में हमें परिणाम (माध्य) भिन्न-भिन्न प्राप्त हुए हैं। क्या आप सोच सकते हैं कि ऐसा क्यों हुआ है और इनमें से कौन-सा माध्य अधिक सही है? दोनों मानों के अंतर का कारण सारणी 13.3 में की गई मध्य-बिंदु कल्पना है। 59.3 सही माध्य है, जबिक 62 एक सिन्नकट माध्य है।

कभी-कभी जब x_i और f_i के मान बड़े होते हैं, तो x_i और f_i के गुणनफल ज्ञात करना जटिल हो जाता है तथा इसमें समय भी अधिक लगता है। अत:, ऐसी स्थितियों के लिए, आइए इन परिकलनों को सरल बनाने की विधि सोचें।

हम f_i के साथ कुछ नहीं कर सकते, परंतु हम प्रत्येक x_i को एक छोटी संख्या में बदल सकते हैं, जिससे हमारे परिकलन सरल हो जाएँगे। हम ऐसा कैसे करेंगे? प्रत्येक x_i में से एक निश्चित संख्या घटाने के बारे में आपका क्या विचार है? आइए यह विधि अपनाने का प्रयत्न करें।

इसमें पहला चरण यह हो सकता है कि प्राप्त किए गए सभी x_i में से किसी x_i को किल्पत माध्य (assumed mean) के रूप में चुन लें तथा इसे 'a' से व्यक्त करें। साथ ही, अपने परिकलन कार्य को और अधिक कम करने के लिए, हम 'a' को ऐसा x_i ले सकते हैं जो x_1, x_2, \ldots, x_n के मध्य में कहीं आता हो। अत:, हम a=47.5 या a=62.5 चुन सकते हैं। आइए a=47.5 चुनें।

अगला चरण है कि a और प्रत्येक x_i के बीच का अंतर d_i ज्ञात किया जाए, अर्थात् प्रत्येक x_i से 'a' का विचलन (deviation) ज्ञात किया जाए।

अर्थात्
$$d_i = x_i - a$$
$$= x_i - 47.5$$

तीसरा चरण है कि प्रत्येक d_i और उसके संगत f_i का गुणनफल ज्ञात करके सभी $f_i d_i$ का योग ज्ञात किया जाए। ये परिकलन सारणी 13.4 में दर्शाए गए हैं।

सारणी 13.4

वर्ग अंतराल	विद्यार्थियों की	वर्ग चिह्न	$d_i = x_i - 47.5$	$f_i d_i$
	संख्या (f_i)	(x_i)		
10 - 25	2	17.5	-30	-60
25 - 40	3	32.5	-15	-45
40 - 55	7	47.5	0	0
55 - 70	6	62.5	15	90
70 - 85	6	77.5	30	180
85 - 100	6	92.5	45	270
योग	$\Sigma f_i = 30$			$\Sigma f_i d_i = 435$

अतः, सारणी 13.4 से, विचलनों का माध्य
$$\overline{d} = \frac{\sum f_i d_i}{\sum f_i}$$

आइए, अब \overline{d} और \overline{x} में संबंध ज्ञात करने का प्रयत्न करें।

चूँकि d_i ज्ञात करने के लिए हमने प्रत्येक x_i में से a को घटाया है, इसलिए माध्य \overline{x} ज्ञात करने के लिए, हम \overline{d} में a जोड़ते हैं। इसे गणितीय रूप से, नीचे दर्शाए अनुसार स्पष्ट किया जा सकता है:

विचलनों का माध्य
$$\overline{d} = \frac{\sum f_i d_i}{\sum f_i}$$
 अत:
$$\overline{d} = \frac{\sum f_i (x_i - a)}{\sum f_i}$$

$$= \frac{\sum f_i x_i}{\sum f_i} - \frac{\sum f_i a}{\sum f_i}$$

$$= \overline{x} - a \frac{\sum f_i}{\sum f_i}$$

$$= \overline{x} - a$$
 अत:
$$\overline{x} = a + \overline{d}$$
 अर्थात्
$$\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i}$$

अब सारणी 13.4 से, $a, \Sigma f_i d_i$ और Σf_i के मान रखने पर, हमें प्राप्त होता है

$$\overline{x} = 47.5 + \frac{435}{30} = 47.5 + 14.5 = 62$$

अत:, विद्यार्थियों द्वारा प्राप्त किए गए अंकों का माध्य 62 है।

माध्य ज्ञात करने की उपरोक्त विधि **कल्पित माध्य विधि (assumed mean method)** कहलाती है।

क्रियाकलाप 1: सारणी 13.3 से, प्रत्येक x_i (17.5, 32.5, इत्यादि) को 'a' मानकर माध्य परिकलित कीजिए। आप क्या देखते हैं? आप पाएँगे कि प्रत्येक स्थिति में माध्य एक ही, अर्थात् 62 आता है। (क्यों?)

अत:, हम यह कह सकते हैं कि प्राप्त किए गए माध्य का मान चुने हुए 'a' के मान पर निर्भर नहीं करता।

ध्यान दीजिए कि सारणी 13.4 के स्तंभ में दिए सभी मान 15 के गुणज (multiples) हैं। अत:, यदि हम स्तंभ 4 के सभी मानों को 15 से भाग दे दें, तो हमें f_i से गुणा करने के लिए छोटी संख्याएँ प्राप्त हो जाएँगी। [यहाँ 15, प्रत्येक वर्ग अंतराल की वर्ग माप (साइज) है।]

अतः, आइए मान लें कि $u_i = \frac{x_i - a}{h}$ है, जहाँ a किल्पित माध्य है और h वर्गमाप है।

अब हम सभी u_i परिकलित करते हैं और पहले की तरह ही प्रक्रिया जारी रखते हैं (अर्थात् f_iu_i ज्ञात करते हैं और फिर Σf_iu_i ज्ञात करते हैं। आइए h=15 लेकर, सारणी 13.5 बनाएँ।

सारणी 13.5

वर्ग अंतराल	f_i	x_{i}	$d_i = x_i - a$	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
10 - 25	2	17.5	-30	-2	-4
25 - 40	3	32.5	-15	-1	-3
40 - 55	7	47.5	0	0	0
55 - 70	6	62.5	15	1	6
70 - 85	6	77.5	30	2	12
85 - 100	6	92.5	45	3	18
योग	$\Sigma f_i = 30$				$\Sigma f_i u_i = 29$

मान लीजिए

$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i}$$
 है।

यहाँ भी हम \overline{u} और \overline{x} में संबंध ज्ञात करेंगे।

हमें प्राप्त है

$$u_i = \frac{x_i - a}{h}$$

अत:

$$\overline{u} = \frac{\sum f_i \frac{(x_i - a)}{h}}{\sum f_i} = \frac{1}{h} \left[\frac{\sum f_i x_i - a \sum f_i}{\sum f_i} \right]$$

$$= \frac{1}{h} \left[\frac{\sum f_i x_i}{\sum f_i} - a \frac{\sum f_i}{\sum f_i} \right]$$

$$= \frac{1}{h} [\overline{x} - a]$$

$$h\overline{u} = \overline{x} - a$$

$$\overline{x} = a + h\overline{u}$$

या

अर्थात्

अत:

$$\overline{x} = a + h \left(\frac{\sum f_i u_i}{\sum f_i} \right)$$

अब, सारणी 14.5 से $a,h,\ \Sigma f_i u_i$ और Σf_i के मान प्रतिस्थापित करने पर, हमें प्राप्त होता है:

$$\overline{x} = 47.5 + 15 \times \left(\frac{29}{30}\right)$$

$$= 47.5 + 14.5 = 62$$

अत:, विद्यार्थियों द्वारा प्राप्त किया गया माध्य अंक 62 है।

माध्य ज्ञात करने की उपरोक्त विधि पग-विचलन विधि (step deviation method) कहलाती है।

ध्यान दीजिए कि

- ullet पग-विचलन विधि तभी सुविधाजनक होगी, जबिक सभी d_i में कोई सार्व गुणनखंड है।
- तीनों विधियों से प्राप्त माध्य एक ही है।

198

 किल्पत माध्य विधि और पग-विचलन विधि प्रत्यक्ष विधि के ही सरलीकृत रूप हैं।

• सूत्र $\overline{x}=a+h\overline{u}$ का तब भी प्रयोग किया जा सकता है, जबिक a और h ऊपर दी हुई संख्याओं की भाँति न हों, बिल्क वे शून्य के अतिरिक्त ऐसी वास्तविक संख्याएँ हों तािक $u_i=\frac{x_i-a}{h}$ हो।

आइए इन विधियों का प्रयोग एक अन्य उदाहरण से करें।

उदाहरण 2 : नीचे दी हुई सारणी भारत के विभिन्न राज्यों एवं संघीय क्षेत्रों (union territories)

के ग्रामीण क्षेत्रों के प्राथिमक विद्यालयों में, महिला शिक्षकों के प्रतिशत बंटन को दर्शाती है। इस अनुच्छेद में चर्चित तीनों विधियों से महिला शिक्षकों का माध्य प्रतिशत ज्ञात कीजिए।

महिला शिक्षकों	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65	65 - 75	75 - 85
का प्रतिशत							
राज्यों ⁄ संघीय	6	11	7	4	4	2	1
क्षेत्रों की संख्या							

(स्रोत: एन.सी.ई.आर.टी द्वारा किया गया सातवाँ अखिल भारतीय स्कूल शिक्षा सर्वे)

हल: आइए प्रत्येक वर्ग अंतराल का x_i ज्ञात करें और उन्हें एक स्तंभ में रखें (देखिए सारणी 13.6)।

सारणी 13.6

महिला शिक्षकों का प्रतिशत	राज्यों \checkmark संघीय क्षेत्रों \mathbf{a} ी संख्या (f_i)	x_{i}
15 - 25	6	20
25 - 35	11	30
35 - 45	7	40
45 - 55	4	50
55 - 65	4	60
65 - 75	2	70
75 - 85	1	80

यहाँ, हम $a=50,\,h=10,\,$ लेते हैं। तब $d_i=x_i-50$ और $u_i=\frac{x_i-50}{10}$ होगा। अब हम d_i और u_i ज्ञात करते हैं और इन्हें सारणी 13.7 में रखते हैं।

सारणी 13.7

महिला शिक्षकों	राज्यों ⁄ संघीय	x_{i}	$d_i = x_i - 50$	$u_i = \frac{x_i - 50}{10}$	$f_i x_i$	$f_i d_i$	$f_i u_i$
का	क्षेत्रों की					_ >	
प्रतिशत	संख्या (f_i)						ア
15 - 25	6	20	-30	-3	120	-180	-18
25 - 35	11	30	-20	-2	330	-220	-22
35 - 45	7	40	-10	-1	280	-70	– 7
45 - 55	4	50	0	0	200	0	0
55 - 65	4	60	10	1	240	40	4
65 - 75	2	70	20	2	140	40	4
75 - 85	1	80	30	3	80	30	3
योग	35	1	30	7	1390	-360	-36

उपरोक्त सारणी से, हमें $\Sigma f_i = 35$, $\Sigma f_i x_i = 1390$, $\Sigma f_i d_i = -360$, $\Sigma f_i u_i = -36$ प्राप्त होता है। प्रत्यक्ष विधि का प्रयोग करने से, $\overline{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{1390}{35} = 39.71$

$$\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i} = 50 + \frac{(-360)}{35} = 39.71$$

पग-विचलन विधि के प्रयोग से,

$$\overline{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h = 50 + \left(\frac{-36}{35}\right) \times 10 = 39.71$$

अत:, ग्रामीण क्षेत्रों के प्राथमिक विद्यालयों में महिला शिक्षकों का माध्य प्रतिशत 39.71 है।

टिप्पणी: सभी तीनों विधियों से प्राप्त परिणाम एक ही समान है। अतः, माध्य ज्ञात करने की विधि चुनना इस बात पर निर्भर करता है कि x_i और f_i के मान क्या हैं। यदि x_i और f_i पर्याप्त रूप से छोटे हैं, तो प्रत्यक्ष विधि ही उपयुक्त रहती है। यदि x_i और f_i के मान संख्यात्मक रूप से बड़े हैं, तो हम किल्पत माध्य विधि या पग-विचलन विधि का प्रयोग कर सकते हैं। यदि वर्गमाप असमान हैं और x_i संख्यात्मक रूप से बड़े हैं, तो भी हम सभी d_i का एक उपयुक्त सर्वनिष्ठ गुणनखंड h लेकर, पग-विचलन विधि का प्रयोग कर सकते हैं।

उदाहरण 3: नीचे दिया हुआ बंटन एकदिवसीय क्रिकेट मैचों में, गेंदबाज़ों द्वारा लिए गए विकिटों की संख्या दर्शाता है। उपयुक्त विधि चुनते हुए, लिए गए विकिटों का माध्य ज्ञात कीजिए। यह माध्य क्या सूचित करता है?

विकिटों की	20 - 60	60 - 100	0 100 - 150 150 - 250 250		250 - 350	350 - 450
सख्या				,		
गेंदबाज़ों की	7	5	16	12	2	3
संख्या						

हल: यहाँ वर्ग माप भिन्न-भिन्न हैं तथा x_i संख्यात्मक रूप से बड़े हैं। आइए a=200 और h=20 लेकर पग-विचलन विधि का प्रयोग करें। तब, हम सारणी 13.8 में दर्शाए अनुसार आँकडे प्राप्त करते हैं:

सारणी 13.8

लिए गए विकिटों की संख्या	गेंदबाज़ों की संख्या (f_i)	x_{i}	$d_i = x_i - 200$	$u_i = \frac{d_i}{20}$	$u_i f_i$
20 - 60	7	40	-160	-8	-56
60 - 100	5	80	-120	-6	-30
100 - 150	16	125	-75	-3.75	-60
150 - 250	12	200	0	0	0
250 - 350	2	300	100	5	10
350 - 450	3	400	200	10	30
योग	45				-106

अत:,
$$\overline{u} = \frac{-106}{45}$$
 है। इसलिए, $\overline{x} = 200 + 20 \left(\frac{-106}{45} \right) = 200 - 47.11 = 152.89$ है।

यह हमें बताता है कि उपरोक्त 45 गेंदबाज़ों ने एकदिवसीय क्रिकेट मैचों में 152.89 की औसत से विकिट लिए हैं।

आइए देखें कि इस अनुच्छेद में पढ़ी अवधारणाओं को आप किस प्रकार अनुप्रयोग कर सकते हैं।

क्रियाकलाप 2:

अपनी कक्षा के विद्यार्थियों को तीन समूहों में बाँटिए और प्रत्येक समूह से निम्नलिखित में से एक क्रियाकलाप करने को कहिए:

- आपके स्कूल द्वारा हाल ही में ली गई परीक्षा में, अपनी कक्षा के सभी विद्यार्थियों द्वारा गणित में प्राप्त किए गए अंक एकत्रित कीजिए। इस प्रकार प्राप्त आँकड़ों का एक वर्गीकृत बारंबारता बंटन सारणी बनाइए।
- 2. अपने शहर में 30 दिन का रिकॉर्ड किए गए दैनिक अधिकतम तापमान एकत्रित कीजिए। इन आँकडों को एक वर्गीकृत बारंबारता बंटन सारणी के रूप में प्रस्तृत कीजिए।
- 3. अपनी कक्षा के सभी विद्यार्थियों की ऊँचाइयाँ (cm में) मापिए और उनका एक वर्गीकृत बारंबारता बंटन सारणी बनाइए।

जब सभी समूह आँकड़े एकत्रित करके उनकी वर्गीकृत बारंबारता बंटन सारणियाँ बना लें, तब प्रत्येक समूह से अपने बारंबारता बंटन का माध्य निकालने को कहिए। इसमें वे जो विधि उपयुक्त समझें उसका प्रयोग करें।

प्रश्नावली 13.1

1. विद्यार्थियों के एक समूह द्वारा अपने पर्यावरण संचेतना अभियान के अंतर्गत एक सर्वेक्षण किया गया, जिसमें उन्होंने एक मोहल्ले के 20 घरों में लगे हुए पौधों से संबंधित निम्नलिखित आँकड़े एकत्रित किए। प्रति घर माध्य पौधों की संख्या ज्ञात कीजिए।

पौधों की संख्या	0-2	2-4	4-6	6-8	8 - 10	10-12	12-14
घरों की संख्या	1	2	1	5	6	2	3

माध्य ज्ञात करने के लिए आपने किस विधि का प्रयोग किया और क्यों?

2. किसी फैक्टरी के 50 श्रमिकों की दैनिक मज़दूरी के निम्नलिखित बंटन पर विचार कीजिए:

दैनिक मज़दूरी (रुपयों में)	500 - 520	520 - 540	540 - 560	560 - 580	580 - 600
श्रमिकों की संख्या	12	14	8	6	10

एक उपयुक्त विधि का प्रयोग करते हुए, इस फैक्ट्री के श्रिमिकों की माध्य दैनिक मज़दूरी ज्ञात कीजिए।

 निम्नलिखित बंटन एक मोहल्ले के बच्चों के दैनिक जेबखर्च दर्शाता है। माध्य जेबखर्च ₹ 18 है। लुप्त बारंबारता f ज्ञात कीजिए :

दैनिक जेब भत्ता	11 - 13	13 - 15	15 - 17	17 - 19	19-21	21-23	23 - 25
(रुपयों में))
बच्चों की संख्या	7	6	9	13	f	5	4

4. किसी अस्पताल में, एक डॉक्टर द्वारा 30 महिलाओं की जाँच की गई और उनके हृदय स्पंदन (beat) की प्रति मिनट संख्या नोट करके नीचे दर्शाए अनुसार संक्षिप्त रूप में लिखी गई। एक उपयुक्त विधि चुनते हुए, इन महिलाओं के हृदय स्पंदन की प्रति मिनट माध्य संख्या ज्ञात कीजिए:

हृदय स्पंदन की प्रति मिनट संख्या	65 - 68	68 - 71	71 - 74	74-77	77 - 80	80 - 83	83 - 86
महिलाओं की संख्या	2	4	3	8	7	4	2

5. किसी फुटकर बाज़ार में, फल विक्रेता पेटियों में रखे आम बेच रहे थे। इन पेटियों में आमों की संख्याएँ भिन्न-भिन्न थीं। पेटियों की संख्या के अनुसार, आमों का बंटन निम्नलिखित था :

आमों की संख्या	50 - 52	53 - 55	56-58	59-61	62 - 64
पेटियों की संख्या	15	110	135	115	25

एक पेटी में रखे आमों की माध्य संख्या ज्ञात कीजिए। आपने माध्य ज्ञात करने की किस विधि का प्रयोग किया है?

6. निम्नलिखित सारणी किसी मोहल्ले के 25 परिवारों में भोजन पर हुए दैनिक व्यय को दर्शाती है:

दैनिक व्यय	100-150	150-200	200-250	250-300	300-350
(रुपयों में)					
परिवारों की संख्या	4	5	12	2	2

एक उपयुक्त विधि द्वारा भोजन पर हुआ माध्य व्यय ज्ञात कीजिए।

7. वायु में सल्फर डाई-ऑक्साइड (SO₂) की सांद्रता (भाग प्रति मिलियन में) को ज्ञात करने के लिए, एक नगर के 30 मोहल्लों से आँकड़े एकत्रित किए गए, जिन्हें नीचे प्रस्तुत किया गया है:

$\mathrm{SO}_{\scriptscriptstyle 2}$ की सांद्रता	बारंबारता
0.00 - 0.04	4
0.04 - 0.08	9
0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 - 0.24	2

वायु में SO, की सांद्रता का माध्य ज्ञात कीजिए।

8. किसी कक्षा अध्यापिका ने पूरे सत्र के लिए अपनी कक्षा के 40 विद्यार्थियों की अनुपस्थिति निम्नलिखित रूप में रिकॉर्ड (record) की। एक विद्यार्थी जितने दिन अनुपस्थित रहा उनका माध्य ज्ञात कीजिए:

दिनों की संख्या	0-6	6-10	10 - 14	14-20	20-28	28-38	38-40
विद्यार्थियों की संख्या	11	10	7	4	4	3	1

9. निम्नलिखित सारणी 35 नगरों की साक्षरता दर (प्रतिशत में) दर्शाती है। माध्य साक्षरता दर ज्ञात कीजिए :

साक्षरता दर (% में)	45 - 55	55 - 65	65 - 75	75 - 85	85-95
नगरों की संख्या	3	10	11	8	3

13.3 वर्गीकृत आँकड़ों का बहुलक

कक्षा IX से याद कीजिए कि बहुलक (mode) दिए हुए प्रेक्षणों में वह मान है जो सबसे अधिक बार आता है, अर्थात् उस प्रेक्षण का मान जिसकी बारंबारता अधिकतम है। साथ ही, हमने अवर्गीकृत आँकड़ों के बहुलक ज्ञात करने की भी चर्चा कक्षा IX में की थी। यहाँ, हम वर्गीकृत आँकड़ों का बहुलक ज्ञात करने की विधि की चर्चा करेंगे। यह संभव है कि एक

से अधिक मानों की एक ही अधिकतम बारंबारता हो। ऐसी स्थितियों में, आँकड़ों को बहुबहुलकीय (multi modal) आँकड़े कहा जाता है। यद्यपि, वर्गीकृत आँकड़े भी बहुबहुलकीय हो सकते हैं, परंतु हम अपनी चर्चा को केवल एक ही बहुलक वाली समस्याओं तक ही सीमित रखेंगे।

आइए पहले एक उदाहरण की सहायता से यह याद करें कि अवर्गीकृत आँकड़ों का बहुलक हमने किस प्रकार ज्ञात किया था।

उदाहरण 4 : किसी गेंदबाज़ द्वारा 10 क्रिकेट मैचों में लिए गए विकिटों की संख्याएँ निम्नलिखित हैं :

इन ऑंकड़ों का बहुलक ज्ञात कीजिए।

हल: आइए उपरोक्त आँकड़ों के लिए, एक बारंबारता बंटन सारणी बनाएँ, जैसा कि नीचे दर्शाया गया है:

विकिटों की संख्या	0	1	2	3	4	5	6
क्रिकेट मैचों की संख्या	1	1	3	2	1	1	1

स्पष्ट है कि गेंदबाज़ ने अधिकतम मैचों (3) में 2 विकिट लिए हैं। अत:, इन आँकड़ों का बहुलक 2 है।

एक वर्गीकृत बारंबारता बंटन में, बारंबारताओं को देखकर बहुलक ज्ञात करना संभव नहीं है। यहाँ, हम केवल वह वर्ग (class) ज्ञात कर सकते हैं जिसकी बारंबारता अधिकतम है। इस वर्ग को **बहुलक वर्ग** (modal class) कहते हैं। बहुलक इस बहुलक वर्ग के अंदर कोई मान है, जिसे निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है:

बहुलक =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

जहाँ l= बहुलक वर्ग की निम्न (निचली) सीमा

h = वर्ग अंतराल की माप (यह मानते हुए कि सभी अंतराल बराबर मापों के हैं)

 f_1 = बहुलक वर्ग की बारंबारता

 $f_0 =$ बहुलक वर्ग से ठीक पहले वर्ग की बारंबारता तथा

 $f_2 = a$ बहुलक वर्ग के ठीक बाद में आने वाले वर्ग की बारंबारता है।

इस सूत्र का प्रयोग दर्शाने के लिए, आइए एक उदाहरण लें।

उदाहरण 5 : विद्यार्थियों के एक समूह द्वारा एक मोहल्ले के 20 परिवारों पर किए गए सर्वेक्षण के परिणामस्वरूप विभिन्न परिवारों के सदस्यों की संख्या से संबंधित निम्नलिखित आँकड़े प्राप्त हुए :

परिवार माप	1 - 3	3 - 5	5 - 7	7 - 9	9 - 11
परिवारों की संख्या	7	8	2	2	10

इन ऑंकड़ों का बहुलक ज्ञात कीजिए।

हल: यहाँ, अधिकतम वर्ग बारंबारता 8 है तथा इस बारंबारता का संगत वर्ग 3-5 है। अत:, बहुलक वर्ग 3-5 है।

अब,

बहुलक वर्ग = 3 - 5, बहुलक वर्ग की निम्न सीमा (l) = 3 तथा वर्ग माप (h) = 2 है। बहुलक वर्ग की बारंबारता (f_1) = 8

बहुलक वर्ग से ठीक पहले वाले वर्ग की बारंबारता $(f_0) = 7$ तथा बहुलक वर्ग के ठीक बाद में आने वाले वर्ग की बारंबारता $(f_0) = 2$ है।

आइए इन मानों को सूत्र में प्रतिस्थापित करें। हमें प्राप्त होता है:

बहुलक =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $3 + \left(\frac{8 - 7}{2 \times 8 - 7 - 2}\right) \times 2 = 3 + \frac{2}{7} = 3.286$

अत:, उपरोक्त आँकड़ों का बहुलक 3.286 है।

उदाहरण 6: गणित की एक परीक्षा में 30 विद्यार्थियों द्वारा प्राप्त किए गए अंकों का बंटन उदाहरण 1 की सारणी 13.3 में दिया गया है। इन आँकड़ों का बहुलक ज्ञात कीजिए। साथ ही, बहुलक और माध्य की तुलना कीजिए और इनकी व्याख्या कीजिए।

हल: उदाहरण 1 की सारणी 13.3 को देखिए। चूँकि अधिकतम विद्यार्थियों की संख्या (7) वाला अंतराल 40-55 है, इसलिए बहुलक वर्ग 40-55 है। अत:,

बहुलक वर्ग की निम्न सीमा (l) = 40 है,

वर्ग माप (h) = 15 है,

बहुलक वर्ग की बारंबारता $(f_1) = 7$ है,

बहुलक वर्ग से ठीक पहले आने वाले वर्ग की बारंबारता $(f_0) = 3$ है,

तथा बहुलक वर्ग के ठीक बाद में आने वाले वर्ग की बारंबारता $(f_2)=6$ है। अब, सूत्र का प्रयोग करने पर, हमें प्राप्त होता है :

बहुलक =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $40 + \left(\frac{7 - 3}{14 - 6 - 3}\right) \times 15 = 52$

अत:, बहुलक अंक 52 है।

अब. उदाहरण 1 से आप जानते हैं कि माध्य अंक 62 है।

अत:, अधिकतम विद्यार्थियों का अंक 52 है तथा औसत के रूप में प्रत्येक विद्यार्थी ने 62 अंक प्राप्त किए हैं।

टिप्पणी:

- 1. उदाहरण 6 में, बहुलक माध्य से छोटा है। परंतु किन्हीं और समस्याओं (प्रश्नों) के लिए यह माध्य के बराबर या उससे बड़ा भी हो सकता है।
- 2. यह स्थिति की माँग पर निर्भर करता है कि हमारी रुचि विद्यार्थियों द्वारा प्राप्त किए गए औसत अंकों में है या फिर अधिकतम विद्यार्थियों द्वारा प्राप्त किए गए औसत अंकों में है। पहली स्थिति में, माध्य की आवश्यकता होगी तथा दूसरी स्थिति में बहुलक की आवश्यकता होगी।

क्रियाकलाप 3: क्रियाकलाप 2 में बनाए गए समूहों और उनको निर्दिष्ट किए कार्यों के साथ क्रियाकलाप जारी रिखए। प्रत्येक समूह से आँकड़ों का बहुलक ज्ञात करने को किहए। उनसे इसकी तुलना माध्य से करने को किहए तथा दोनों के अर्थों की व्याख्या करने को किहए। टिप्पणी: असमान वर्ग मापों वाले वर्गीकृत आँकड़ों का बहुलक भी परिकलित किया जा सकता है। परंतु यहाँ हम इसकी चर्चा नहीं करेंगे।

प्रश्नावली 13.2

1. निम्नलिखित सारणी किसी अस्पताल में एक विशेष वर्ष में भर्ती हुए रोगियों की आयु को दर्शाती है:

आयु (वर्षों में)	5 - 15	15-25	25 - 35	35 - 45	45 - 55	55 - 65
रोगियों की संख्या	6	11	21	23	14	5

उपरोक्त आँकड़ों के बहुलक और माध्य ज्ञात कीजिए। दोनों केंद्रीय प्रवृत्ति की मापों की तुलना कीजिए और उनकी व्याख्या कीजिए।

2. निम्नलिखित आँकड़े, 225 बिजली उपकरणों के प्रेक्षित जीवन काल (घंटों में) की सूचना देते हैं :

जीवनकाल (घंटों में)	0-20	20-40	40 - 60	60 - 80	80 - 100	100 - 120
बारंबारता	10	35	52	61	38	29

उपकरणों का बहुलक जीवनकाल ज्ञात कीजिए।

3. निम्नलिखित आँकड़े किसी गाँव के 200 परिवारों के कुल मासिक घरेलू व्यय के बंटन को दर्शाते हैं। इन परिवारों का बहुलक मासिक व्यय ज्ञात कीजिए। साथ ही, माध्य मासिक व्यय भी ज्ञात कीजिए।

व्यय (₹ में)	परिवारों की संख्या
1000 - 1500	24
1500 - 2000	40
2000 - 2500	33
2500 - 3000	28
3000 - 3500	30
3500 - 4000	22
4000 - 4500	16
4500 - 5000	7

4. निम्नलिखित बंटन भारत के उच्चतर माध्यमिक स्कूलों में, राज्यों के अनुसार, शिक्षक-विद्यार्थी अनुपात को दर्शाता है। इन आँकड़ों के बहुलक और माध्य ज्ञात कीजिए। दोनों मापकों की व्याख्या कीजिए।

208

प्रति शिक्षक विद्यार्थियों की संख्या	राज्य⁄संघीय क्षेत्रों की संख्या
15-20	3
20-25	8
25-30	9
30-35	10
35-40	3
40 - 45	0
45 - 50	0
50 - 55	2

5. दिया हुआ बंटन विश्व के कुछ श्रेष्ठतम बल्लेबाजों द्वारा एकदिवसीय अंतर्राष्ट्रीय क्रिकेट मैचों में बनाए गए रनों को दर्शाता है:

बनाए गए रन	बल्लेबाज़ों की संख्या
3000-4000	4
4000 - 5000	18
5000 - 6000	9
6000 - 7000	7
7000 - 8000	6
8000 - 9000	3
9000 - 10,000	1
10,000 - 11,000	1

इन आँकड़ों का बहुलक ज्ञात कीजिए।

6. एक विद्यार्थी ने एक सड़क के किसी स्थान से होकर जाती हुई कारों की संख्याएँ नोट की और उन्हें नीचे दी हुई सारणी के रूप में व्यक्त किया। सारणी में दिया प्रत्येक प्रेक्षण 3 मिनट के अंतराल में उस स्थान से होकर जाने वाली कारों की संख्याओं से संबंधित है। ऐसे 100 अंतरालों पर प्रेक्षण लिए गए। इन आँकड़ों का बहुलक ज्ञात कीजिए।

कारों की संख्या	0 - 10	10-20	20-30	30-40	40 - 50	50 - 60	60 - 70	70 - 80
बारंबारता	7	14	13	12	20	11	15	8

13.4 वर्गीकृत आँकड़ों का माध्यक

जैसािक आप कक्षा IX में पढ़ चुके हैं, माध्यक (median) केंद्रीय प्रवृत्ति का ऐसा मापक है, जो आँकड़ों में सबसे बीच के प्रेक्षण का मान देता है। याद कीिजए कि अवर्गीकृत आँकड़ों का माध्यक ज्ञात करने के लिए, पहले हम प्रेक्षणों के मानों को आरोही क्रम में व्यवस्थित करते हैं। अब, यदि n विषम है, तो माध्यक $\left(\frac{n+1}{2}\right)$ वें प्रेक्षण का मान होता है। यदि n सम है, तो माध्यक $\frac{n}{2}$ वें और $\frac{n}{2}$ +1 वें प्रेक्षणों के मानों का औसत (माध्य) होता है।

माना, हमें निम्नलिखित आँकड़ों का माध्यक ज्ञात करना है जो एक परीक्षा में 100 विद्यार्थियों द्वारा 50 में से प्राप्त अंक देते हैं।

प्राप्तांक	20	29	28	33	42	38	43	25
विद्यार्थियों की संख्या	6	28	24	15	2	4	1	20

पहले प्राप्त अंकों का आरोही क्रम तैयार करें और बारंबारता सारणी को निम्न प्रकार से बनाएँ।

सारणी 13.9

प्राप्तांक	विद्यार्थियों की संख्या
	बारंबारता
20	6
25	20
28	24
29	28
33	15
38	4
42	2
43	1
योग	100

210

यहाँ n=100 है जो सम संख्या है। माध्यक प्रेक्षण $\frac{n}{2}$ वें तथा $\left(\frac{n}{2}+1\right)$ वें प्रेक्षण का औसत होगा। अर्थात् 50 वें तथा 51 वें प्रेक्षणों का औसत। इन प्रेक्षणों को ज्ञात करने के लिए, हम निम्न प्रकार बढ़ते हैं।

सारणी 13.10

प्राप्तांक	विद्यार्थियों की संख्या
20	6
25 तक	6 + 20 = 26
28 तक	26 + 24 = 50
29 तक	50 + 28 = 78
33 तक	78 + 15 = 93
38 तक	93 + 4 = 97
42 तक	97 + 2 = 99
43 तक	99 + 1 = 100

अब हम इस सूचना को दर्शाता एक नया स्तंभ उपरोक्त बारंबारता सारणी में जोड़ते हैं तथा उसे संचयी बारंबारता स्तंभ का नाम देते हैं।

सारणी 13.11

प्राप्तांक	विद्यार्थियों की संख्या	संचयी बारंबारता
20	6	6
25	20	26
28	24	50
29	28	78
33	15	93
38	4	97
42	2	99
43	1	100

उपरोक्त सारणी से हम पाते हैं:

50वाँ प्रेक्षण 28 है (क्यों?)
51वाँ प्रेक्षण 29 है
इसलिए, माध्यक =
$$\frac{28+29}{2}$$
 = 28.5

टिप्पणी: सारणी 13.11 के भाग में सिम्मिलित स्तंभ 1 और 3 संचयी बारंबारता सारणी के नाम से जाना जाता है। माध्यक अंक 28.5 सूचित करता है कि लगभग 50 प्रतिशत विद्यार्थियों ने 28.5 से कम अंक और दूसरे अन्य 50 प्रतिशत विद्यार्थियों ने 28.5 से अधिक अंक प्राप्त किए।

आइए देखें कि निम्नलिखित स्थिति में समूहित आँकड़े का माध्यक कैसे प्राप्त करते हैं। निम्नानुसार एक निश्चित परीक्षा में 100 में 53 विद्यार्थियों द्वारा प्राप्त अंकों का समूहित बारंबारता बंटन पर विचार करें।

•	
	1 1 2 1 2
सारणा	3 1 /
/44 / - 41	

प्राप्तांक	विद्यार्थियों की संख्या
0 - 10	5
10 - 20	3
20 - 30	4
30 - 40	3
40 - 50	3
50 - 60	4
60 - 70	7
70 - 80	9
80 - 90	7
90 - 100	8

उपरोक्त सारणी से निम्नलिखित प्रश्नों का उत्तर देने का प्रयास करें।

कितने विद्यार्थियों ने 10 से कम अंक प्राप्त किए हैं? स्पष्टतया, उत्तर 5 है।

कितने विद्यार्थियों ने 20 से कम अंक प्राप्त किए हैं? ध्यान दीजिए कि 20 से कम अंक प्राप्त करने वाले विद्यार्थियों में वे विद्यार्थी सम्मिलित हैं, जिन्होंने वर्ग 0 - 10 में अंक प्राप्त किए हैं और वे विद्यार्थी भी सिम्मिलित हैं जिन्होंने वर्ग 10 - 20 में अंक प्राप्त किए हैं। अत:, 20

से कम अंक प्राप्त करने वाले विद्यार्थियों की कुल संख्या 5 + 3 अर्थात् 8 है। हम कहते हैं कि वर्ग 10 - 20 की संचयी बारंबारता (cumulative frequency) 8 है।

इसी प्रकार, हम अन्य वर्गों की संचयी बारंबारताएँ भी ज्ञात कर सकते हैं, अर्थात् हम यह ज्ञात कर सकते हैं कि 30 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं, 40 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं, ..., 100 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं। हम इन्हें नीचे एक सारणी 13.13 के रूप में दे रहे हैं:

सारणी 13.13

प्राप्तांक	विद्यार्थियों की संख्या (संचयी बारंबारता)
10 से कम	5
20 से कम	5 + 3 = 8
30 से कम	8 + 4 = 12
40 से कम	12 + 3 = 15
50 से कम	15 + 3 = 18
60 से कम	18 + 4 = 22
70 से कम	22 + 7 = 29
80 से कम	29 + 9 = 38
90 से कम	38 + 7 = 45
100 से कम	45 + 8 = 53

उपरोक्त बंटन से **कम प्रकार का संचयी बारंबारता बंटन** कहलाता है। यहाँ 10, 20, 30, . . . 100, संगत वर्ग अंतरालों की *उपरि सीमाएँ* हैं।

हम इसी प्रकार उन विद्यार्थियों की संख्याओं के लिए भी जिन्होंने 0 से अधिक या उसके बराबर अंक प्राप्त किए हैं, 10 से अधिक या उसके बराबर अंक प्राप्त किए हैं, 20 से अधिक या उसके बराबर अंक प्राप्त किए हैं, इत्यादि के लिए एक सारणी बना सकते हैं। सारणी 13.12 से हम देख सकते हैं कि सभी 53 विद्यार्थियों ने 0 से अधिक या 0 के बराबर अंक प्राप्त किए हैं। चूँिक अंतराल 0-10 में 5 विद्यार्थी हैं, इसलिए 53-5=48 विद्यार्थियों ने 10 से अधिक या उसके बराबर अंक प्राप्त किए हैं। इसी प्रक्रिया को जारी रखते हुए हम 20 से अधिक या उसके बराबर 48-3=45,30 से अधिक या उसके बराबर 45-4=41, इत्यादि विद्यार्थी प्राप्त करते हैं. जिन्हें सारणी 13.14 में दर्शाया गया है।

सारणी 13.14

प्राप्तांक	विद्यार्थियों की संख्या (संचयी बारंबारता)
0 से अधिक या उसके बराबर	53
10 से अधिक या उसके बराबर	53 - 5 = 48
20 से अधिक या उसके बराबर	48 - 3 = 45
30 से अधिक या उसके बराबर	45 - 4 = 41
40 से अधिक या उसके बराबर	41 - 3 = 38
50 से अधिक या उसके बराबर	38 - 3 = 35
60 से अधिक या उसके बराबर	35 - 4 = 31
70 से अधिक या उसके बराबर	31 - 7 = 24
80 से अधिक या उसके बराबर	24 - 9 = 15
90 से अधिक या उसके बराबर	15 – 7 = 8

उपरोक्त सारणी या बंटन **अधिक प्रकार का संचयी बारंबारता बंटन** कहलाता है। यहाँ 0, 10, 20, . . . , 90 संगत वर्ग अंतरालों की *निम्न सीमाएँ* हैं।

अब, वर्गीकृत आँकड़ों का माध्यक ज्ञात करने के लिए, हम उपरोक्त दोनों प्रकार के संचयी बारंबारता बंटनों में से किसी बंटन का प्रयोग कर सकते हैं।

हम सारणी 13.12 और सारणी 13.13 को मिलाकर एक नयी सारणी 13.15 बना लें जो नीचे दी गई है:

सारणी 13.15

प्राप्तांक	विद्यार्थियों की संख्या (f)	संचयी बारंबारता (cf)
0 - 10	5	5
10 - 20	3	8
20 - 30	4	12
30 - 40	3	15
40 - 50	3	18
50 - 60	4	22
60 - 70	7	29
70 - 80	9	38
80 - 90	7	45
90 - 100	8	53

अब, वर्गीकृत आँकड़ों के सबसे मध्य के प्रेक्षण को हम केवल संचयी बारंबारताएँ देख कर ही नहीं ज्ञात कर सकते, क्योंकि सबसे मध्य का प्रेक्षण किसी अंतराल में होगा। अत:, यह आवश्यक है कि इस मध्य प्रेक्षण को उस वर्ग अंतराल में खोजा जाए, जो आँकड़ों को दो बराबर भागों में विभक्त करता है। परंतु यह वर्ग अंतराल कौन-सा है?

इस अंतराल को ज्ञात करने के लिए, हम सभी वर्गों की संचयी बारंबारताएँ और $\frac{n}{2}$ ज्ञात करते हैं। अब, हम वह वर्ग खोजते हैं जिसकी संचयी बारंबारता $\frac{n}{2}$ से अधिक और उसके निकटतम है। इस वर्ग को *माध्यक वर्ग* (median class) कहते हैं। उपरोक्त बंटन में, n=53 है। अत:, $\frac{n}{2}=26.5$ हुआ। अब,60-70 ही वह वर्ग है जिसकी संचयी बारंबारता 29,

 $\frac{n}{2}$ अर्थात् 26.5 से अधिक और उसके निकटतम है।

अत:, 60 - 70 **माध्यक वर्ग** है।

माध्यक वर्ग ज्ञात करने के बाद, हम निम्निलिखित सूत्र का प्रयोग करके माध्यक ज्ञात करते हैं:

माध्यक =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$
,

जहाँ

l = माध्यक वर्ग की निम्न सीमा

n = प्रेक्षणों की संख्या

cf = माध्यक वर्ग से ठीक पहले वाले वर्ग की संचयी बारंबारता

f =माध्यक वर्ग की बारंबारता

 $h = a \sqrt{1} + a \sqrt{1$

अब $\frac{n}{2} = 26.5$, l = 60, cf = 22, f = 7, h = 10

को सूत्र में प्रतिस्थापित करने पर, हमें प्राप्त होता है:

माध्यक =
$$60 + \left(\frac{26.5 - 22}{7}\right) \times 10 = 60 + \frac{45}{7}$$
$$= 66.4$$

अत:, लगभग आधे विद्यार्थियों ने 66.4 से कम अंक प्राप्त किए हैं और शेष आधे विद्यार्थियों ने 66.4 से अधिक या उसके बराबर अंक प्राप्त किए हैं।

उदाहरण 7: किसी स्कूल की कक्षा X की 51 लड़िकयों की ऊँचाइयों का एक सर्वेक्षण किया गया और निम्नलिखित आँकड़े प्राप्त किए गए:

ऊँचाई (cm में)	लड़िकयों की संख्या
140 से कम	4
145 से कम	11
150 से कम	29
155 से कम	40
160 से कम	46
165 से कम	51

माध्यक ऊँचाई ज्ञात कीजिए।

हल: माध्यक ऊँचाई ज्ञात करने के लिए, हमें वर्ग अंतराल और उनकी बारंबारताओं की आवश्यकता है।

चूँिक दिया हुआ बंटन कम प्रकार का है, इसलिए हमें वर्ग अंतरालों की उपिर सीमाएँ $140, 145, 150, \ldots, 165$ प्राप्त होती हैं तथा इनके संगत वर्ग अंतराल क्रमश: 140 से कम, $140-145, 145-150, \ldots...160-165$ हैं। दिए हुए बंटन से, हम देखते हैं कि ऐसी 4 लड़िकयाँ हैं जिनकी ऊँचाई 140 से कम है, अर्थात् वर्ग अंतराल 140 से कम की बारंबारता 4 है। अब 145 cm से कम ऊँचाई वाली 11 लड़िकयाँ हैं और 140 cm से कम ऊँचाई वाली 4 लड़िकयाँ हैं। अत:, अंतराल 140 - 145 में ऊँचाई रखने वाली लड़िकयों की संख्या 11 - 4 = 7 होगी। अर्थात् वर्ग अंतराल 140 - 145 की बारंबारता 7 है। इसी प्रकार, 145 - 150 की बारंबारता 29 - 11 = 18 है, 150 - 155 की बारंबारता 40 - 29 = 11 है, इत्यादि। अत: संचयी बारंबारताओं के साथ हमारी बारंबारता बंटन सारणी निम्नलिखित रूप की हो जाती है:

सारणी 13.16

वर्ग अंतराल	बारंबारता	संचयी बारंबारता
140 से कम	4	4
140 - 145	7	11
145 - 150	18	29
150 - 155	11	40
155 - 160	6	46
160 - 165	5	51

अब n=51 है। अत:, $\frac{n}{2}=\frac{51}{2}=25.5$ है। यह प्रेक्षण अंतराल 145 - 150 में आता है। तब, l (निम्न सीमा) = 145,

माध्यक वर्ग 145 - 150 के ठीक पहले वर्ग की संचयी बारंबारता (cf) = 11, माध्यक वर्ग 145 - 150 की बारंबारता f = 18 तथा वर्ग माप h = 5 है।

सूत्र, माध्यक =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$
 का प्रयोग करने पर, हमें प्राप्त होता है :

माध्यक =
$$145 + \left(\frac{25.5 - 11}{18}\right) \times 5$$

= $145 + \frac{72.5}{18} = 149.03$

अत:, लड़िकयों की माध्यक ऊँचाई 149.03 cm है।

इसका अर्थ है कि लगभग 50% लड़िकयों की ऊँचाइयाँ 149.03 cm से कम या उसके बराबर है तथा शेष 50% की ऊँचाइयाँ 149.03 cm से अधिक है।

उदाहरण 8 : निम्नलिखित ऑंकड़ों का माध्यक 525 है। यदि बारंबारताओं का योग 100 है, तो x और y का मान ज्ञात कीजिए।

वर्ग अंतराल	बारंबारता
0 - 100	2
100 - 200	5
200 -300	x
300 - 400	12
400 - 500	17
500 - 600	20
600 - 700	у
700 - 800	9
800 - 900	7
900 - 1000	4

सांख्यिकी 217

हल:

वर्ग अंतराल	बारंबारता	संचयी बारंबारता
0 - 100	2	2
100 - 200	5	7
200 - 300	\boldsymbol{x}	7 + x
300 - 400	12	19 + <i>x</i>
400 - 500	17	36 + x
500 - 600	20	56 + x
600 - 700	у	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y

यह दिया है कि n = 100 है।

अत:,
$$76 + x + y = 100$$
 अर्थात् $x + y = 24$ (1)
माध्यक 525 है, जो वर्ग 500–600 में स्थित है।
अत:, $l = 500$, $f = 20$, $cf = 36 + x$, $h = 100$ है।

सूत्र माध्यक = $l + \left(\frac{\frac{n}{2} - cf}{f}\right)h$, का प्रयोग करने पर, हमें प्राप्त होता है :

$$525 = 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100$$

या $525 - 500 = (14 - x) \times 5$
या $25 = 70 - 5x$
या $5x = 70 - 25 = 45$
अत: $x = 9$

इसलिए (1) से हमें प्राप्त होता है कि 9+y=24

218

अर्थात् y = 15

अब जब हमने तीनों केंद्रीय प्रवृत्ति के मापकों का अध्ययन कर लिया है, तो आइए इस बात की चर्चा करें कि एक विशिष्ट आवश्यकता के लिए, कौन-सा मापक अधिक उपयुक्त रहेगा।

केंद्रीय प्रवृत्ति का अधिकतर प्रयोग होने वाला मापक माध्य है, क्योंकि यह सभी प्रेक्षणों पर आधारित होता है तथा दोनों चरम मानों के बीच में स्थित होता है। अर्थात्, यह संपूर्ण आँकड़ों में सबसे बड़े और सबसे छोटे प्रेक्षणों के बीच में स्थित होता है। यह हमें दो या अधिक दिए हुए बंटनों की तुलना करने में भी सहायक है। उदाहरणार्थ, किसी परीक्षा में, विभिन्न स्कूलों के विद्यार्थियों द्वारा प्राप्त किए गए अंकों के औसत (माध्य) की तुलना करके हम यह निष्कर्ष निकाल सकते हैं कि किस स्कूल का प्रदर्शन बेहतर रहा।

परंतु आँकड़ों के चरम मान माध्य पर प्रभाव डालते हैं। उदाहरणार्थ, लगभग एक-सी बारंबारताओं वाले वर्गों का माध्य दिए हुए आँकड़ों का एक अच्छा प्रतिनिधि होगा। परंतु यदि एक वर्ग की बारंबारता मान लीजिए 2 हो और शेष पाँच वर्गों की बारंबारताएँ 20, 25, 20, 21 और 18 हों, तो इनका माध्य आँकड़ों का सही प्रतिबिंब प्रदान नहीं करेगा। अत: ऐसी स्थितियों के लिए, माध्य आँकड़ों का एक अच्छा प्रतिनिधित्व नहीं करेगा।

उन समस्याओं में, जहाँ व्यक्तिगत प्रेक्षण महत्वपूर्ण नहीं होते और हम एक 'प्रतीकात्मक' (typical) प्रेक्षण ज्ञात करना चाहते हैं, तो माध्यक अधिक उपयुक्त रहता है। उदाहरणार्थ, किसी राष्ट्र के श्रिमिकों की प्रतीकात्मक उत्पादकता दर, औसत मज़दूरी, इत्यादि के लिए माध्यक एक उपयुक्त मापक रहता है। ये ऐसी स्थितियाँ हैं जिनमें चरम (अर्थात् बहुत बड़े या बहुत छोटे) मान संबद्ध हो सकते हैं। अत:, इन स्थितियों में, हम माध्य के स्थान पर, केंद्रीय प्रवृत्ति का मापक माध्यक लेते हैं।

ऐसी स्थितियों में, जहाँ अधिकतर आने वाला मान स्थापित करना हो या सबसे अधिक लोकप्रिय वस्तु का पता करना हो, तो बहुलक सबसे अधिक अच्छा विकल्प होता है। उदाहरणार्थ, सबसे अधिक देखे जाने वाला लोकप्रिय टीवी प्रोग्राम ज्ञात करने, उस उपभोक्ता वस्तु को ज्ञात करने, जिसकी माँग सबसे अधिक है, लोगों द्वारा वाहनों का सबसे अधिक पसंद किए जाने वाला रंग ज्ञात करने, इत्यादि में बहुलक उपयुक्त मापक है।

टिप्पणियाँ:

1. इन तीनों केंद्रीय प्रवृत्ति के मापकों में एक आनुभाविक संबंध है, जो निम्नलिखित है:

3 माध्यक = बहुलक + 2 माध्य

सांख्यिकी 219

2. असमान वर्गमापों वाले वर्गीकृत आँकड़ों के माध्यक भी परिकलित किए जा सकते हैं। परंतु यहाँ हम इनकी चर्चा नहीं करेंगे।

प्रश्नावली 13.3

1. निम्नलिखित बारंबारता बंटन किसी मोहल्ले के 68 उपभोक्ताओं की बिजली की मासिक खपत दर्शाता है। इन आँकड़ों के माध्यक, माध्य और बहुलक ज्ञात कीजिए। इनकी तुलना कीजिए।

मासिक खपत (इकाइयों में)	उपभोक्ताओं की संख्या
65-85	4
85 - 105	5
105 - 125	13
125 - 145	20
145 - 165	14
165 - 185	8
185 - 205	4

2. यदि नीचे दिए हुए बंटन का माध्यक 28.5 हो तो x और y के मान ज्ञात कीजिए :

वर्ग अंतराल	बारंबारता
0 - 10	5
10-20	x
20-30	20
30-40	15
40 - 50	у
50-60	5
योग	60

3. एक जीवन बीमा एजेंट 100 पॉलिसी धारकों की आयु के बंटन के निम्नलिखित आँकड़े ज्ञात करता है। माध्यक आयु परिकलित कीजिए, यदि पॉलिसी केवल उन्हीं व्यक्तियों को दी जाती है, जिनकी आयु 18 वर्ष या उससे अधिक हो, परंतु 60 वर्ष से कम हो।

220

आयु (वर्षों में)	पॉलिसी धारकों की संख्या
20 से कम	2
25 से कम	6
30 से कम	24
35 से कम	45
40 से कम	78
45 से कम	89
50 से कम	92
55 से कम	98
60 से कम	100

4. एक पौधे की 40 पत्तियों की लंबाइयाँ निकटतम मिलीमीटरों में मापी जाती है तथा प्राप्त आँकड़ों को निम्नलिखित सारणी के रूप में निरूपित किया जाता है:

लंबाई (mm में)	पत्तियों की संख्या
118-126	3
127 - 135	5
136-144	9
145 - 153	12
154 - 162	5
163 - 171	4
172 - 180	2

पत्तियों की माध्यक लंबाई ज्ञात कीजिए।

संकेत: माध्यक ज्ञात करने के लिए, आँकड़ों को सतत वर्ग अंतरालों में बदलना पड़ेगा, क्योंकि सूत्र में वर्ग अंतरालों को सतत माना गया है। तब ये वर्ग 117.5 - 126.5, 126.5 - 135.5, ..., 171.5 - 180.5 में बदल जाते हैं।

5. निम्नलिखित सारणी 400 नियॉन लैंपों के जीवन कालों (life time) को प्रदर्शित करती है:

जीवन काल (घंटों में)	लैंपों की संख्या
1500 - 2000	14
2000 - 2500	56
2500 - 3000	60
3000 - 3500	86
3500 - 4000	74
4000 - 4500	62
4500 - 5000	48

एक लैंप का माध्यक जीवन काल ज्ञात कीजिए।

6. एक स्थानीय टेलीफ़ोन निर्देशिका से 100 कुलनाम (surnames) लिए गए और उनमें प्रयुक्त अंग्रेज़ी वर्णमाला के अक्षरों की संख्या का निम्नलिखित बारंबारता बंटन प्राप्त हुआ:

अक्षरों की संख्या	1 - 4	4-7	7-10	10 - 13	13 - 16	16-29
कुलनामों की संख्या	6	30	40	16	4	4

कुलनामों में माध्यक अक्षरों की संख्या ज्ञात कीजिए। कुलनामों में माध्य अक्षरों की संख्या ज्ञात कीजिए। साथ ही, कुलनामों का बहुलक ज्ञात कीजिए।

7. नीचे दिया हुआ बंटन एक कक्षा के 30 विद्यार्थियों के भार दर्शा रहा है। विद्यार्थियों का माध्यक भार ज्ञात कीजिए।

भार (किलोग्राम में)	40-45	45 - 50	50-55	55-60	60-65	65 - 70	70 - 75
विद्यार्थियों की संख्या	2	3	8	6	6	3	2

13.5 सारांश

इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:

- 1. वर्गीकृत आँकड़ों का माध्य निम्नलिखित प्रकार ज्ञात किया जा सकता है:
 - (i) प्रत्यक्ष विधि: $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$

- (ii) कल्पित माध्य विधि $\overline{x} = a + \frac{\sum f_i d_i}{\sum f_i}$
- (iii) पग–विचलन विधि: $\bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$

इनमें यह मान लिया जाता है कि प्रत्येक वर्ग की बारंबारता उसके मध्य-बिंदु, अर्थात् वर्ग चिह्न पर केंद्रित है।

2. वर्गीकृत आँकड़ों का बहुलक निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है:

ৰहুলक =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

जहाँ संकेत अपना स्वाभाविक अर्थ रखते हैं।

- 3. किसी बारंबारता बंटन में किसी वर्ग की संचयी बारंबारता उस वर्ग से पहले वाले सभी वर्गों की बारंबारताओं का योग होता है।
- 4. वर्गीकृत आँकड़ों का माध्यक निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है:

माध्यक =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

जहाँ संकेत अपना स्वाभाविक अर्थ रखते हैं।

पाठकों के लिए विशेष

वर्गीकृत आँकड़ों के बहुलक और माध्यक का परिकलन करने के लिए, सूत्र का प्रयोग करने से पहले यह सुनिश्चित किया जाना चाहिए कि वर्ग अंतराल सतत हैं। इसी प्रकार का प्रतिबंध का प्रयोग तोरण की संरचना के लिए भी करते हैं। अग्रतः, तोरण की स्थिति में प्रयुक्त पैमाना दोनों अक्षों पर समान नहीं भी हो सकता है।

The theory of probabilities and the theory of errors now constitute a formidable body of great mathematical interest and of great practical importance

(प्रायिकताओं के सिद्धांत और त्रुटियों के सिद्धांत अब अति गणितीय रुचि का तथा अति व्यावहारिक महत्व का एक विशाल समूह स्थापित करते हैं।)

- R.S. Woodward

14.1 प्रायिकता — एक सैद्धांतिक दृष्टिकोण

आइए निम्नलिखित स्थिति पर विचार करें:

मान लीजिए एक सिक्के को यादूच्छया उछाला जाता है।

जब हम एक सिक्के की बात करते हैं, तब हम यह कल्पना करते हैं कि वह न्यायसंगत (fair) है। अर्थात् वह सममित (symmetrical) है, ताकि कोई कारण न हो कि वह एक ही ओर, दूसरी ओर की अपेक्षा, अधिक गिरे। हम सिक्के के इस गुण को उसका अपक्षपातपूर्ण (unbiased) होना कहते हैं। 'यादृच्छया उछाल' (random toss) से हमारा तात्पर्य है कि सिक्के को बिना किसी पक्षपात (bias) या रुकावट के स्वतंत्रतापूर्वक गिरने दिया जाता है।

हम पहले से जानते हैं कि सिक्का दो संभव विधियों में से केवल एक ही विधि से गिर सकता है — या तो चित ऊपर होगा या फिर पट ऊपर होगा [हम सिक्के के, उसके किनारे (edge) के अनुदिश गिरने की संभावना को अस्वीकार करते हैं, जो उदाहरणार्थ, तब संभव है जब सिक्का रेत पर गिरे]। हम यह तर्कसंगतरूप से मान सकते हैं कि प्रत्येक

परिणाम, चित या पट, का प्रकट होना उतनी ही बार हो सकता है जितना कि अन्य परिणाम का। दूसरे शब्दों में हम कहते हैं कि परिणाम चित और पट समप्रायिक (equally likely) हैं। समप्रायिक परिणामों के एक अन्य उदाहरण के लिए मान लीजिए कि हम एक पासे को फेंकते हैं। हमारे लिए, एक पासे का अर्थ सदैव एक न्यायसंगत पासे से होगा। संभव परिणाम क्या है? ये 1, 2, 3, 4, 5, 6 हैं। प्रत्येक संख्या के ऊपर आने की समान संभावना है। अत:, पासे को फेंकने से प्राप्त होने वाले समप्रायिक परिणाम 1, 2, 3, 4, 5 और 6 हैं।

क्या प्रत्येक प्रयोग के परिणाम समप्रायिक होते हैं? आइए देखें।

मान लीजिए एक थैले में 4 लाल गेंदें और 1 नीली गेंद है तथा आप इस थैले में से, बिना थैले के अंदर कुछ देखें, एक गेंद निकालते हैं। इसके क्या परिणाम हैं? क्या एक लाल गेंद और एक नीली गेंद के परिणाम समप्रायिक हैं? चूँिक यहाँ 4 लाल गेंदें हैं और नीली गेंद केवल एक ही, अत: आप यह अवश्य स्वीकार करेंगे कि आपके द्वारा एक नीली गेंद की अपेक्षा एक लाल गेंद निकालने की संभावना अधिक है। अत: ये परिणाम (एक लाल गेंद और एक नीली गेंद) समप्रायिक नहीं हैं। परंतु थैले में से किसी भी रंग की गेंद निकालने के परिणाम समप्रायिक हैं।

अत:, सभी प्रयोगों के परिणामों का समप्रायिक होना आवश्यक नहीं है। परंतु, इस अध्याय में, हम आगे यह मानकर चलेंगे कि सभी प्रयोगों के परिणाम समप्रायिक हैं।

कक्षा IX में, हमने एक घटना E की **प्रयोगात्मक या आनुभविक** प्रायिकता P(E) को निम्निलिखित रूप में परिभाषित किया था :

$P(E) = \frac{3 \frac{1}{2} (E)}{3 \frac{1}{2} (E)} = \frac{3 \frac{1}{2} (E)}{3 \frac{1}{2} (E)$

प्रायिकता की आनुभविक व्याख्या का बड़ी संख्या में दोहराए जा सकने वाले किसी भी प्रयोग से जुड़े प्रत्येक घटना के लिए अनुप्रयोग किया जा सकता है। किसी प्रयोग को दोहराने की आवश्यकता एक गंभीर परिसीमा है, क्योंकि अनेक स्थितियों में यह अधिक व्यय वाला हो सकता है या यह भी हो सकता है कि ऐसा करना संभव ही न हो। निस्संदेह, सिक्का उछालने या पासा फेंकने के प्रयोगों में, इसमें कोई कठिनाई नहीं हुई। परंतु एक उपग्रह (satellite) छोड़ने के प्रयोग को यह परिकलित करने के लिए बार-बार दोहराने की छोड़ते समय उसकी असफलता की आनुभवित प्रायिकता क्या है, के बारे में आप क्या सोचते हैं अथवा यह कि एक भूकंप के कारण कोई बहुमंजिली इमारत नष्ट होगी या नहीं, की आनुभविक प्रायिकता परिकलित करने के लिए भूकंप की परिघटना के दोबारा घटित होने के बारे में आप क्या कह सकते हैं?

ऐसे प्रयोगों में, जहाँ हम कुछ कल्पनाओं को सही मानने को तैयार हो जाएँ, हम एक प्रयोग के दोहराने से बच सकते हैं, क्योंकि वे कल्पनाएँ सीधे सही (सैद्धांतिक) प्रायिकता परिकलित करने में हमारी सहायता करती हैं। परिणामों के समप्रायिक होने की कल्पना (जो अनेक प्रयोगों में मान्य होती है, जैसे कि ऊपर सिक्का उछालने और पासा फेंकने के दोनों उदाहरणों में है) इन कल्पनाओं में से एक है जो हमें किसी घटना की प्रायिकता की निम्नलिखित परिभाषा की ओर अग्रसर करती है।

किसी घटना E की *सैद्धांतिक प्रायिकता (theoretical probability)* [जिसे **परंपरागत प्रायिकता (classical probability)** भी कहा जाता है।] P(E) निम्नलिखित रूप में परिभाषित की जाती है

$P(E) = \frac{E \hat{a} + 3 - 3}{y^2 + 2} \hat{a} + \frac{1}{y^2 + 2} \hat{a} + \frac{1}{y^$

यहाँ हम यह कल्पना करते हैं कि प्रयोग के परिणाम समप्रायिक हैं। हम संक्षिप्त रूप में, सैद्धांतिक प्रायिकता को केवल प्रायिकता ही कहेंगे।

प्रायिकता की उपरोक्त परिभाषा 1795 में पियरे-साइमन लाप्लास (Pierre-Simon Laplace) ने दी थी।

प्रायिकता सिद्धांत का सूत्रपात 16वीं शताब्दी में हुआ, जब एक इतालवी भौतिकशास्त्री एवं गणितज्ञ जे. कार्डन ने इस विषय पर पहली पुस्तक लिखी, जिसका नाम था: The Book on Games of Chance अपने प्रादुर्भाव से ही, प्रायिकता के अध्ययन को महान गणितज्ञों का ध्यान अपनी ओर आकर्षित किया। इन गणितज्ञों में जेम्स बर्नूली (1654-1705), ए.ड्री मोइवरे (1667-1754) और पियरे-साइमन लाप्लास ऐसे लोग हैं जिन्होंने इस क्षेत्र में एक सार्थक योगदान दिया। लाप्लास द्वारा 1812 में लिखी गई कृति (Theorie Analytiquedes Probabilities) को एक अकेले व्यक्ति द्वारा प्रायिकता के सिद्धांत के लिए किया गया

पियरे-साइमन लाप्लास (1749 - 1827)

सबसे बड़ा योगदान माना जाता है। हाल ही के कुछ वर्षों में, प्रायिकता का अनेक क्षेत्रों, जैसे कि जैविकी, अर्थशास्त्र, वंश संबंधी शास्त्र (genetics), भौतिकी, समाजशास्त्र इत्यादि क्षेत्रों में प्रचुर मात्रा में उपयोग किया जा रहा है।

आइए ऐसे प्रयोगों से संबंधित कुछ घटनाओं की प्रायिकता ज्ञात करें, जिनमें समप्रायिक होने की कल्पना मान्य है।

उदाहरण 1: एक चित प्राप्त करने की प्रायिकता ज्ञात कीजिए, जब एक सिक्के को एक बार उछाला जाता है। साथ ही, एक पट प्राप्त करने की भी प्रायिकता ज्ञात कीजिए।

हल: एक सिक्के को एक बार उछालने के प्रयोग में, संभव परिणामों की संख्या 2 है – चित (H) और पट (T) । मान लीजिए घटना E 'चित प्राप्त करना' है। तब, E के अनुकूल (अर्थात् चित प्राप्त करने के अनुकूल) परिणाम 1 है। अत:,

$$P(E) = P$$
 (चित) = $\frac{E \ \hat{a} \ \text{अनुकूल परिणामों की संख्या}}{\text{सभी संभव परिणामों की संख्या}} = \frac{1}{2}$

इसी प्रकार, यदि घटना F पट प्राप्त करना है, तो

$$P(F) = P(TZ) = \frac{1}{2}$$
 (क्यों?)

उदाहरण 2: एक थैले में एक लाल गेंद, एक नीली गेंद और एक पीली गेंद है तथा सभी गेंदे एक ही साइज की हैं। कृतिका बिना थैले के अंदर झाँके, इसमें से एक गेंद निकालती है। इसकी क्या प्रायिकता है कि वह गेंद

(i) पीली होगी?

(ii) लाल होगी?

(iii) नीली होगी?

हल: कृतिका थैले में से, उसमें बिना झाँके, गेंद निकालती है। अत:, उसके द्वारा कोई भी गेंद निकालना समप्रायिक है।

माना 'पीली गेंद निकालना' घटना Y है, 'लाल गेंद निकालना' घटना R है तथा 'नीली गेंद निकालना' घटना B है।

अब, सभी संभव परिणामों की संख्या = 3 है।

(i) घटना Y के अनुकूल परिणामों की संख्या = 1

अत:

$$P(Y) = \frac{1}{3}$$

इसी प्रकार, $P(R) = \frac{1}{3}$ और $P(B) = \frac{1}{3}$

टिप्पणी:

(1) किसी प्रयोग की वह घटना जिसका केवल एक ही परिणाम हो **प्रारंभिक घटना** (elementary event) कहलाती है। उदाहरण 1 में दोनों घटनाएँ E और F प्रारंभिक घटनाएँ हैं।

इसी प्रकार, उदाहरण 2 में, घटना Y, R और B में प्रत्येक एक प्रारंभिक घटना है।
(2) उदाहरण 1 में, हम देखते हैं कि P(E) + P(F) = 1
उदाहरण 2 में, हम देखते हैं कि P(Y) + P(B) + P(R) = 1

ध्यान दीजिए कि किसी प्रयोग की सभी प्रारंभिक घटनाओं की प्रायिकताओं का योग 1 है। यह व्यापक रूप में भी सत्य है।

उदाहरण 3: मान लीजिए हम एक पासे को एक बार फेंकते हैं।(i) 4 से बड़ी संख्या प्राप्त होने की प्रायिकता क्या है?(ii) 4 से छोटी या उसके बराबर संख्या प्राप्त होने की प्रायिकता क्या है? हल:(i) यहाँ मान लीजिए कि '4 से बड़ी संख्या प्राप्त करना' घटना E है। सभी संभव परिणाम ϖ : हैं, ये 1, 2, 3, 4, 5 और 6 हैं। स्पष्टत:, घटना E के अनुकूल परिणाम 5 और 6 हैं। अत: E के अनुकूल परिणामों की संख्या 2 है। इसलिए

$$P(E) = P(4 \text{ से बड़ी संख्या}) = \frac{2}{6} = \frac{1}{3}$$

(ii) मान लीजिए '4 से छोटी या उसके बराबर संख्या प्राप्त करना' घटना F है। सभी संभव परिणाम = 6 हैं। घटना F के अनुकूल परिणाम 1, 2, 3 और 4 हैं। अतः F के अनुकूल परिणामों की संख्या 4 है।

इसलिए

$$P(F) = \frac{4}{6} = \frac{2}{3}$$

क्या उपरोक्त उदाहरण में दी हुई घटना E और F प्रारंभिक घटनाएँ हैं? नहीं, ये प्रारंभिक घटनाएँ नहीं हैं, क्योंकि घटना E के 2 परिणाम हैं तथा घटना F के 4 परिणाम हैं।

टिप्पणी: उदाहरण 1 से, हम देखते हैं कि

$$P(E) + P(F) = \frac{1}{2} + \frac{1}{2} = 1$$
 (1)

जहाँ घटना E 'एक चित प्राप्त करना' है तथा घटना F 'एक पट प्राप्त करना' है। उदाहरण 3 के (i) और (ii) से भी हम देखते हैं कि

$$P(E) + P(F) = \frac{1}{3} + \frac{2}{3} = 1$$
 (2)

जहाँ घटना E '4 से बड़ी संख्या प्राप्त करना'तथा घटना F '4 के बराबर या कम संख्या प्राप्त करना' है।

ध्यान दीजिए कि 4 से बड़ी संख्या नहीं प्राप्त करने का अर्थ वही है जो 4 से छोटी या उसके बराबर संख्या प्राप्त करने का है और इसी प्रकार इसका विलोम भी यही प्रकट करता है।

उपरोक्त (1) और (2) में, क्या घटना 'F', 'E नहीं' (not E) के समान नहीं है। हाँ, ऐसा ही है। हम घटना 'E नहीं ' को \overline{E} से व्यक्त करते हैं।

अत:, $P(E) + P(E - \pi E) = 1$

अर्थात् $P(E) + P(\overline{E}) = 1$ है, जिससे $P(\overline{E}) = 1 - P(E)$ प्राप्त होता है।

व्यापक रूप में, किसी घटना E के लिए यह सत्य है कि

$$P(\overline{E}) = 1 - P(E)$$

घटना 'E नहीं' को निरूपित करने वाली घटना \overline{E} घटना E की $\ref{equ:property}$ घटना कहलाती है। हम यह भी कहते हैं कि E और \overline{E} परस्पर $\ref{equ:property}$ हैं।

आगे बढ़ने से पहले, आइए निम्नलिखित प्रश्नों के उत्तर ज्ञात करने का प्रयत्न करें:

- (i) पासे को एक बार फेंकने पर संख्या 8 प्राप्त करने की क्या प्रायिकता है?
- (ii) पासे को एक बार फेंकने पर 7 से छोटी संख्या प्राप्त करने की क्या प्रायिकता है? आइए (i) का उत्तर दें:

हम जानते हैं कि पासे को एक बार फेंकने पर केवल छ: ही संभावित परिणाम हैं। ये परिणाम 1, 2, 3, 4, 5 और 6 हैं। चूँकि पासे के किसी भी फलक पर 8 अंकित नहीं है, इसलिए 8 के अनुकूल कोई भी परिणाम नहीं है, अर्थात् ऐसे परिणामों की संख्या शून्य (0) है। दूसरे शब्दों में, पासे को एक बार फेंकने पर, संख्या 8 प्राप्त करना असंभव (impossible) है। अत: P(8 प्राप्त करना) = $\frac{0}{6} = 0$

अर्थात् उस घटना, जिसका घटित होना असंभव है, की प्रायिकता 0 होती है। ऐसी घटना को एक **असंभव घटना (impossible event)** कहते हैं।

आइए (ii) का उत्तर दें:

चूँिक पासे के प्रत्येक फलक पर ऐसी संख्या लिखी है जो 7 से छोटी है, इसलिए पासे को एक बार फेंकने पर यह निश्चित है कि प्राप्त संख्या सदैव 7 से छोटी होगी। अत:, घटना के अनुकूल परिणामों की संख्या सभी संभावित परिणामों की संख्या के बराबर होगी, जो 6 है।

इसलिए

$$P(E) = P(7 \text{ से छोटी संख्या प्राप्त करना}) = \frac{6}{6} = 1$$

अत: उस घटना, जिसका घटित होना निश्चित (sure) है, की प्रायिकता 1 होती है। ऐसी घटना को एक निश्चित (sure) या निर्धारित (certain) घटना कहते हैं।

टिप्पणी : प्रायिकता P(E) की परिभाषा से, हम देखते हैं कि अंश (घटना E के अनुकूल परिणामों की संख्या) सदैव हर (सभी संभव परिणामों की संख्या) से छोटा होता है या उसके बराबर होता है। अत:,

$$0 \le P(E) \le 1$$

आइए अब एक उदाहरण, ताशों (playing cards) से संबंधित लें। क्या आपने ताशों की एक गड्डी देखी है? इसमें 52 पत्ते (cards) होते हैं, जो 4 समूहों में बँटे होते हैं। प्रत्येक समूह में 13 पत्ते होते हैं। ये 4 समूह हुकुम (spades) (♠), पान (hearts) (♥), ईंट (diamonds) (♦) और चिड़ी (clubs) (♣) हैं। चिड़ी और हुकुम काले रंग के होते हैं तथा पान और ईंट लाल रंग के होते हैं। प्रत्येक समूह के पत्ते : इक्का (ace), बादशाह (king), बेगम (queen), गुलाम (jack), 10, 9, 8, 7, 6, 5, 4, 3 और 2 होते हैं। बादशाह, बेगम और गुलाम वाले पत्ते फेस कार्ड (face cards) कहलाते हैं।

उदाहरण 4: अच्छी प्रकार से फेटी गई 52 पत्तों की एक गड्डी में से एक पत्ता निकाला जाता है। इसकी प्रायिकता परिकलित कीजिए कि यह पत्ता:

- (i) एक इक्का होगा।
- (ii) एक इक्का नहीं होगा।

हल: गड्डी को अच्छी प्रकार से फेटने से परिणामों का समप्रायिक होना सुनिश्चित हो जाता है।

(i) एक गड़ी में 4 इक्के होते हैं। मान लीजिए घटना E'एक इक्का होना' है।

E के अनुकूल परिणामों की संख्या = 4

सभी संभव परिणामों की संख्या = 52 (क्यों?)

अत:
$$P(E) = \frac{4}{52} = \frac{1}{13}$$

(ii) मान लीजिए घटना F 'एक इक्का नहीं' है।
 माना F के अनुकूल परिणामों की संख्या = 52 - 4 = 48 (क्यों?)
 सभी संभव परिणामों की संख्या = 52

अत:
$$P(F) = \frac{48}{52} = \frac{12}{13}$$

टिप्पणी: ध्यान दीजिए कि F और कुछ नहीं बल्कि \overline{E} ही है। अत:, हम P(F) को इस प्रकार भी परिकलित कर सकते हैं: $P(F) = P(\overline{E}) = 1 - P(E) = 1 - \frac{1}{13} = \frac{12}{13}$

उदाहरण 5: दो खिलाड़ी संगीता और रेशमा टेनिस का एक मैच खेलते हैं। यह ज्ञात है कि संगीता द्वारा मैच जीतने की प्रायिकता 0.62 है। रेशमा के जीतने की क्या प्रायिकता है? हल: मान लीजिए S और R क्रमश: संगीता के जीतने और रेशमा के जीतने की घटनाएँ व्यक्त करते हैं।

संगीता के जीतने की प्रायिकता = P(S) = 0.62 (दिया है) रेशमा के जीतने की प्रायिकता = P(R) = 1 - P(S) [चूँिक घटनाएँ R और S पूरक हैं] = 1 - 0.62 = 0.38

उदाहरण 6: सविता और हमीदा दो मित्र हैं। इसकी क्या प्रायिकता है कि दोनों (i) के जन्म-दिन भिन्न-भिन्न हों? (ii) का जन्मदिन एक ही हो? [लीप का वर्ष (Leap year)को छोड़ते हुए]

हल: दोनों मित्रों में से किसी एक लड़की, मान लीजिए, सिवता का जन्मिदन वर्ष का कोई भी दिन हो सकता है। इसी प्रकार, दूसरी लड़की हमीदा का जन्मिदन भी वर्ष के 365 दिनों में से कोई एक दिन हो सकता है।

(i) यदि हमीदा का जन्मदिन सविता के जन्मदिन से भिन्न है, तो उसके जन्मदिन के अनुकूल परिणामों की संख्या 365 – 1 = 364 होगी।

अतः P (हमीदा का जन्मदिन सिवता के जन्मदिन से भिन्न है) = $\frac{364}{365}$

(ii) P(सविता और हमीदा का जन्मदिन एक ही हो)

$$= 1 - P$$
 (दोनों का जन्मिदन भिन्न है)
 $= 1 - \frac{364}{365}$ $[P(\overline{E}) = 1 - P(E)$ के प्रयोग से]
 $= \frac{1}{365}$

उदाहरण 7: किसी स्कूल की कक्षा X में 40 विद्यार्थी हैं जिनमें से 25 लड़िकयाँ हैं और 15 लड़के हैं। कक्षा अध्यापिका को एक विद्यार्थी कक्षा-प्रतिनिधि के रूप में चुनना है। वह प्रत्येक विद्यार्थी का नाम एक अलग कार्ड पर लिखती है, जबिक कार्ड एक जैसे हैं। फिर वह इन कार्डों को एक थैले में डालकर अच्छी तरह से हिला देती है। इसके बाद वह थैले

में से एक कार्ड निकालती है। इसकी क्या प्रायिकता है कि कार्ड पर लिखा हुआ नाम एक (i) लड़की का है? (ii) लड़के का है?

हल: कुल 40 विद्यार्थी हैं और इनमें से केवल एक नाम का कार्ड चुनना है।

(i) सभी संभव परिणामों की संख्या = 40 कार्ड पर लड़की का नाम होने के अनुकूल परिणामों की संख्या = 25 (क्यों?) अब, P (कार्ड पर लड़की का नाम है) = P(लड़की) = $\frac{25}{40} = \frac{5}{8}$

(ii) कार्ड पर लड़के का नाम होने के अनुकूल परिणामों की संख्या = 15 (क्यों?)

अत:,
$$P(\text{ ans } \forall \text{ v. ms}, P(\text{ ans } \Rightarrow \text{ v. ms}) = \frac{15}{40} = \frac{3}{8}$$

टिप्पणी: हम P(लड़का) को इस प्रकार भी निर्धारित कर सकते हैं:

$$P(\text{लंडुका}) = 1 - P(\text{लंडुका नहीं}) = 1 - P(\text{लंडुकी}) = 1 - \frac{5}{8} = \frac{3}{8}$$

उदाहरण 8: एक बक्से में 3 नीले, 2 सफेद और 4 लाल कंचे (marbles) हैं। यदि इस बक्से में से एक कंचा यादृच्छया निकाला जाता है तो इसकी क्या प्रायिकता है कि यह कंचा

(i) सफेद है? (ii) नीला है? (iii) लाल है?

हल: यह कहना कि कंचा यादृच्छया रूप से निकाला गया है, संक्षिप्त में यह कहने के बराबर है कि सभी परिणाम समप्रायिक हैं। अत:

सभी संभव परिणामों की संख्या = 3 + 2 + 4 = 9 (क्यों?)

मान लीजिए घटना W 'कंचा सफेद है' को, घटना B 'कंचा नीला है' को तथा घटना R 'कंचा लाल है' को व्यक्त करता है।

(i) घटना W के अनुकूल परिणामों की संख्या = 2

अत:
$$P(W) = \frac{2}{9}$$

इसी प्रकार, (ii) $P(B) = \frac{3}{9} = \frac{1}{3}$ और (iii) $P(R) = \frac{4}{9}$ ध्यान दीजिए कि P(W) + P(B) + P(R) = 1 है।

232

उदाहरण 9: हरप्रीत दो भिन्न-भिन्न सिक्कों को एक साथ उछालती है (मान लीजिए एक सिक्का ₹ 1 का है और दूसरा सिक्का ₹ 2 का है)। इसकी क्या प्रायिकता है कि वह कम से कम एक चित प्राप्त करेगी?

हल: हम 'चित' के लिए H और 'पट' के लिए T लिखते हैं। जब दो सिक्कों को एक साथ उछाला जाता है, तो संभावित परिणाम (H, H), (H, T), (T, H), (T, T) हैं तथा ये सभी समप्रायिक हैं। यहाँ (H, H) का अर्थ है कि पहले सिक्के (मान लीजिए \ref{thm} के सिक्के) पर 'चित' आएगा और दूसरे सिक्के (\ref{thm} 2 के सिक्के) पर 'चित' आएगा। इसी प्रकार, (H, T) का अर्थ है कि पहले सिक्के पर 'चित' आएगा और दूसरे सिक्के पर 'पट' आएगा, इत्यादि।

घटना E 'कम से कम एक चित आना' के अनुकूल परिणाम (H, H), (H, T) और (T, H) हैं। (\overrightarrow{axi})

अत: E के अनुकूल परिणामों की संख्या = 3

इसलिए
$$P(E) = \frac{3}{4}$$

अर्थात् हरप्रीत द्वारा कम से कम एक चित प्राप्त करने की प्रायिकता $\frac{3}{4}$ है।

टिप्पणी : आप P(E) इस प्रकार भी ज्ञात कर सकते हैं:

$$P(E) = 1 - P(\overline{E}) = 1 - \frac{1}{4} = \frac{3}{4}$$
 (चूँिक $P(\overline{E}) = P(\overline{a})$) चित नहीं $P(E) = P(\overline{b})$

क्या आपने यह देखा कि अब तक के सभी उदाहरणों में, प्रत्येक प्रयोग के सभी संभव परिणामों की संख्या परिमित थी? यदि नहीं, तो अब इसकी जाँच कर लीजिए।

अनेक प्रयोग ऐसे हैं, जहाँ परिणाम दो संख्याओं के बीच में कोई भी संख्या हो सकती है या जिनमें परिणाम एक वृत्त या आयत के अंदर का प्रत्येक बिंदु होता है, इत्यादि। क्या अब आप सभी संभव परिणामों को गिन सकते हैं? जैसािक आप जानते हैं, यह संभव नहीं है, क्योंिक दो संख्याओं के बीच में अपरिमित रूप से अनेक संख्याएँ होती हैं, या यह कि एक वृत्त के अंदर अपरिमित रूप से अनेक बिंदु होते हैं। अत:, आपके द्वारा अध्ययन की

गई (सैद्धांतिक) प्रायिकता की परिभाषा को वर्तमान रूप में यहाँ प्रयोग नहीं किया जा सकता। इस समस्या का फिर हल क्या है? इसके उत्तर के लिए, आइए निम्नलिखित उदाहरण पर विचार करें।

उदाहरण 10*: एक म्यूज़िकल चेयर (musical chair) खेल में, जो महिला संगीत बजा रही थी उसे सलाह दी गई कि वह संगीत प्रारंभ करने के बाद 2 मिनट के अंदर कभी भी संगीत बंद कर दे। इसकी क्या प्रायिकता है कि संगीत प्रारंभ होने के पहले आधे मिनट के अंदर बंद हो जाएगा?

हुल: यहाँ संभव परिणाम 0 और 2 के बीच की सभी संख्याएँ हैं। यह संख्या रेखा का 0 से 2 तक का भाग है (देखिए आकृति 14.1)।

मान लीजिए घटना E 'संगीत प्रारंभ होने के पहले आधे मिनट में बंद हो जाता है'। E के अनुकूल परिणाम संख्या रेखा पर 0 से $\frac{1}{2}$ के बीच के सभी बिंदु हैं। चूँिक सभी परिणाम समप्रायिक हैं, इसिलए हम यह तर्क दे सकते हैं कि कुल दूरी 2 में से दूरी $\frac{1}{2}$ घटना E के अनुकूल है।

क्या हम उदाहरण 10 की अवधारणा को किसी घटना की प्रायिकता उसके अनुकूल क्षेत्रफल और संपूर्ण क्षेत्रफल के अनुपात के रूप में विस्तृत कर सकते हैं।

उदाहरण 11*: एक लापता हेलीकॉप्टर के बारे में सूचना मिलती है कि वह आकृति 14.2 में दर्शाए आयताकार क्षेत्र में कहीं गिर गया है। इसकी क्या प्रायिकता है कि वह आकृति में दर्शाई गई झील में गिरा है?

^{*} यह परीक्षा की दृष्टि से नहीं है।

आकृति 14.2

हल: हेलीकॉप्टर का आयताकार क्षेत्र में कहीं भी गिरना समप्रायिक है। संपूर्ण क्षेत्र का क्षेत्रफल, जहाँ हेलीकॉप्टर गिर सकता है = $(4.5 \times 9) \text{ km}^2 = 40.5 \text{ km}^2$

झील का वास्तविक क्षेत्रफल = $(2.5 \times 3) \text{ km}^2 = 7.5 \text{ km}^2$

अत:, P (हेलीकॉप्टर झील में गिरा है) =
$$\frac{7.5}{40.5} = \frac{75}{405} = \frac{5}{27}$$
 है।

उदहारण 12: एक डिब्बे में 100 कमीजें हैं, जिसमें से 88 अच्छी हैं तथा 8 में थोड़ी सी खराबी है और 4 में अधिक खराबी है। एक व्यापारी जिम्मी वे ही कमीजें स्वीकार करता है जो अच्छी हैं, जबिक एक अन्य व्यापारी सुजाता उन्हीं कमीजों को अस्वीकार करती है जिनमें खराबी अधिक है। इस डिब्बे में से एक कमीज को यादृच्छया रूप से निकाला जाता है। इसकी क्या प्रायिकता है कि वह कमीज

(i) जिम्मी को स्वीकार हो?

(ii) सुजाता को स्वीकार हो?

हल: 100 कमीजों के डिब्बे में से एक कमीज यादृच्छया रूप से निकाली जाती है। अत: यहाँ 100 समप्रायिक परिणाम हैं।

(i) जिम्मी के अनुकूल (को स्वीकार) परिणामों की संख्या = 88 (क्यों?) अत:, P (कमीज जिम्मी को स्वीकार है) = $\frac{88}{100}$ = 0.88

(ii) सुजाता के अनुकूल परिणामों की संख्या = 88 + 8 = 96 (क्यों?) अत:, P (कमीज सुजाता को स्वीकार है) = $\frac{96}{100}$ = 0.96

उदाहरण 13: एक सलेटी पासे और एक नीले पासे को एक साथ फेंका जाता है। सभी संभावित परिणामों को लिखिए। इसकी क्या प्रायिकता है कि दोनों पासों की संख्याओं का योग (i) 8 है। (ii) 13 है। (iii) 12 से छोटी या उसके बराबर है। हल: जब नीला पासा '1' दर्शाता है, तो सलेटी पासे पर संख्याओं 1, 2, 3, 4, 5, 6 में से कोई भी संख्या हो सकती है। यही तब भी होगा, जब नीले पासे पर '2', '3', '4', '5' या '6' होगा। इस प्रयोग के संभावित परिणामों को नीचे सारणी में दिया गया है। प्रत्येक क्रमित युग्म की पहली संख्या नीले पासे पर आने वाली संख्या है।

				6	5	गलेटी		
		1	2	3	4	5	6	
	1	(1, 1)	(1, 2)	(1,3)	(1, 4)	(1,5)	(1,6)	
4	2	(2, 1)	(2, 2)	(2,3)	(2,4)	(2,5)	(2,6)	
$\begin{bmatrix} 6 & 5 \end{bmatrix}$	3	(3, 1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3, 6)	
नीला	4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	
	5	(5, 1)	(5,2)	(5, 3)	(5, 4)	(5,5)	(5, 6)	
	6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	

आकृति 14.3

ध्यान दीजिए कि युग्म (1, 4) युग्म (4, 1) से भिन्न है (क्यों?) अत:, संभावित परिणामों की संख्या = $6 \times 6 = 36$ है।

(i) E द्वारा व्यक्त घटना 'संख्याओं का योग 8 है' के अनुकूल परिणाम (2,6), (3,5), (4,4), (5,3) और (6,2) हैं (देखिए आकृति 15.3)। अर्थात् E के अनुकूल परिणाम =5

इसलिए $P(E) = \frac{5}{36}$

(ii) जैसा कि आप आकृति 15.3 से देख सकते हैं, घटना F, 'संख्याओं का योग 13 है' के अनुकूल कोई भी परिणाम नहीं है।

अत: $P(F) = \frac{0}{36} = 0$

(iii) जैसा कि आप आकृति 14.3 से देख सकते हैं, घटना G 'संख्याओं का योग ≤12 से छोटा या उसके बराबर है' के अनुकूल सभी परिणाम हैं।

अत: $P(G) = \frac{36}{36} = 1$

प्रश्नावली 14.1

- 1. निम्नलिखित कथनों को पूरा कीजिए:
 - (i) घटना E की प्रायिकता + घटना 'E नहीं' की प्रायिकता = _____ है।
 - (ii) उस घटना की प्रायिकता जो घटित नहीं हो सकती _____ है। ऐसी घटना _____ कहलाती है।
 - (iii) उस घटना की प्रायिकता जिसका घटित होना निश्चित है _____ है। ऐसी घटना _____ कहलाती है।
 - (iv) किसी प्रयोग की सभी प्रारंभिक घटनाओं की प्रायिकताओं का योग ______है।
 - (v) किसी घटना की प्रायिकता _____ से बड़ी या उसके बराबर होती है तथा _____ से छोटी या उसके बराबर होती है।
- 2. निम्नलिखित प्रयोगों में से किन-किन प्रयोगों के परिणाम समप्रायिक हैं? स्पष्ट कीजिए।
 - (i) एक ड्राइवर कार चलाने का प्रयत्न करता है। कार चलना प्रारंभ हो जाती है या कार चलना प्रारंभ नहीं होती है।
 - (ii) एक खिलाड़ी बास्केटबॉल को बास्केट में डालने का प्रयत्न करती है। वह बास्केट में बॉल डाल पाती है या नहीं डाल पाती है।
 - (iii) एक सत्य-असत्य प्रश्न का अनुमान लगाया जाता है। उत्तर सही है या गलत होगा।
 - (iv) एक बच्चे का जन्म होता है। वह एक लड्का है या एक लड्की है।
- 3. फुटबॉल के खेल को प्रारंभ करते समय यह निर्णय लेने के लिए कि कौन-सी टीम पहले बॉल लेगी, इसके लिए सिक्का उछालना एक न्यायसंगत विधि क्यों माना जाता है?

- 4. निम्नलिखित में से कौन सी संख्या किसी घटना की प्रायिकता नहीं हो सकती?
 - (A) $\frac{2}{3}$
- (B) -1.5
- (C) 15%
- (D) 0.7
- **5.** $2 = P(E) = 0.05 \, \text{ह}$. $2 = 1.05 \, \text{g}$. $2 = 1.05 \, \text{g}$.
- 6. एक थैले में केवल नीबू की महक वाली मीठी गोलियाँ हैं। मालिनी बिना थैले में झाँके उसमें से एक गोली निकालती है। इसकी क्या प्रायिकता है कि वह निकाली गई गोली
 - (i) संतरे की महक वाली है?
 - (ii) नीबू की महक वाली है?
- 7. यह दिया हुआ है कि 3 विद्यार्थियों के एक समूह में से 2 विद्यार्थियों के जन्मदिन एक ही दिन न होने की प्रायिकता 0.992 है। इसकी क्या प्रायिकता है कि इन 2 विद्यार्थियों का जन्मदिन एक ही दिन हो?
- 8. एक थैले में 3 लाल और 5 काली गेंदे हैं। इस थैले में से एक गेंद यादृच्छया निकाली जाती है। इसकी प्रायिकता क्या है कि गेंद(i) लाल हो? (ii) लाल नहीं हो?
- 9. एक डिब्बे में 5 लाल कंचे, 8 सफेद कंचे और 4 हरे कंचे हैं। इस डिब्बे में से एक कंचा यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि निकाला गया कंचा (i) लाल है? (ii) सफेद है? (iii) हरा नहीं है?
- 10. एक पिग्गी बैंक (piggy bank) में, 50 पैसे के सौ सिक्के हैं, ₹ 1 के पचास सिक्के हैं, ₹ 2 के बीस सिक्के और ₹ 5 के दस सिक्के हैं। यदि पिग्गी बैंक को हिलाकर उल्टा करने पर कोई एक सिक्का गिरने के परिणाम समप्रायिक हैं, तो इसकी क्या प्रायिकता है कि वह गिरा हुआ सिक्का (i) 50 पैसे का होगा?(ii) ₹ 5 का नहीं होगा?
- 11. गोपी अपने जल-जीव कुंड (aquarium) के लिए एक दुकान से मछली खरीदती है। दुकानदार एक टंकी, जिसमें 5 नर मछली और 8 मादा मछली हैं, में से एक मछली यादृच्छया उसे देने के लिए निकालती है (देखिए आकृति 14.4)। इसकी क्या प्रायिकता है कि निकाली गई मछली नर मछली है?
- 12. संयोग (chance) के एक खेल में, एक तीर को घुमाया जाता है, जो विश्राम में आने के बाद संख्याओं 1, 2, 3, 4, 5, 6, 7 और 8 में से किसी एक संख्या को इंगित करता है (देखिए आकृति 14.5)। यदि ये सभी परिणाम समप्रायिक हों तो इसकी क्या प्रायिकता है कि यह तीर इंगित
 - (i) 8 को करेगा?
 - (ii) एक विषम संख्या को करेगा?
 - (iii) 2 से बड़ी संख्या को करेगा?
 - (iv) 9 से छोटी संख्या को करेगा?

आकृति 14.4

आकृति 14.5

13. एक पासे को एक बार फेंका जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिए:

- (i) एक अभाज्य संख्या (ii) 2 और 6 के बीच स्थित कोई संख्या (iii) एक विषम संख्या
- 14. 52 पत्तों की अच्छी प्रकार से फेटी गई एक गड्डी में से एक पत्ता निकाला जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिए:
 - (i) लाल रंग का बादशाह
- (ii) एक फेस कार्ड अर्थात् तस्वीर वाला पत्ता
- (iii) लाल रंग का तस्वीर वाला पत्ता
- (iv) पान का गुलाम

(v) हुकुम का पत्ता

- (vi) एक ईट की बेगम
- 15. ताश के पाँच पत्तों—ईंट का दहला, गुलाम, बेगम, बादशाह और इक्का—को पलट करके अच्छी प्रकार फेटा जाता है। फिर इनमें से यादच्छया एक पत्ता निकाला जाता है।
 - (i) इसकी क्या प्रायिकता है कि यह पत्ता एक बेगम है?
 - (ii) यदि बेगम निकल आती है, तो उसे अलग रख दिया जाता है और एक अन्य पत्ता निकाला जाता है। इसकी क्या प्रायिकता है कि दूसरा निकाला गया पत्ता(a) एक इक्का है?(b) एक बेगम है?
- 16. किसी कारण 12 खराब पेन 132 अच्छे पेनों में मिल गए हैं। केवल देखकर यह नहीं बताया जा सकता है कि कोई पेन खराब है या अच्छा है। इस मिश्रण में से, एक पेन यादृच्छया निकाला जाता है। निकाले गए पेन की अच्छा होने की प्रायिकता ज्ञात कीजिए।
- 17. (i) 20 बल्बों के एक समूह में 4 बल्ब खराब हैं। इस समूह में से एक बल्ब यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब होगा?
 - (ii) मान लीजिए(i) में निकाला गया बल्ब खराब नहीं है और न ही इसे दुबारा बल्बों के साथ मिलाया जाता है। अब शेष बल्बों में से एक बल्ब यादृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब नहीं होगा?
- 18. एक पेटी में 90 डिस्क (discs) हैं, जिन पर 1 से 90 तक संख्याएँ अंकित हैं। यदि इस पेटी में से एक डिस्क यादृच्छया निकाली जाती है तो इसकी प्रायिकता ज्ञात कीजिए कि इस डिस्क पर अंकित होगी: (i) दो अंकों की एक संख्या (ii) एक पूर्ण वर्ग संख्या (iii) 5 से विभाज्य एक संख्या।
- 19. एक बच्चे के पास ऐसा पासा है जिसके फलकों पर निम्नलिखित अक्षर अंकित हैं:

A B C D E A

इस पासे को एक बार फेंका जाता है। इसकी क्या प्रायिकता है कि (i) A प्राप्त हो? (ii) D प्राप्त हो?

20.* मान लीजिए आप एक पासे को आकृति 14.6 में दर्शाए आयताकार क्षेत्र में यादृच्छया रूप से गिराते हैं। इसकी क्या प्रायिकता है कि वह पासा 1m व्यास वाले वृत्त के अंदर गिरेगा?

^{*} यह परीक्षा की दृष्टि से नहीं है।

- 21. 144 बॉल पेनों के एक समूह में 20 बॉल पेन खराब हैं और शेष अच्छे हैं। आप वही पेन खरीदना चाहेंगे जो अच्छा हो, परंतु खराब पेन आप खरीदना नहीं चाहेंगे। दुकानदार इन पेनों में से, यादृच्छया एक पेन निकालकर आपको देता है। इसकी क्या प्रायिकता है कि
 - (i) आप वह पेन खरीदेंगे?
 - (ii) आप वह पेन नहीं खरीदेंगे?
- 22. उदाहरण 13 को देखिए।(i) निम्नलिखित सारणी को पूरा कीजिए :

घटना दोनों पासों की संख्याओं का योग	2	3	4	5	6	7	8	9	10	11	12
प्रायिकता	1/36	1	1		(V)	7	5 36				1/36

- (ii) एक विद्यार्थी यह तर्क देता है कि 'यहाँ कुल 11 परिणाम 2,3,4,5,6,7,8,9,10,11 और
 12 हैं। अत:, प्रत्येक की प्रायिकता 1 है। क्या आप इस तर्क से सहमत हैं? सकारण उत्तर दीजिए।
- 23. एक खेल में एक रुपए के सिक्के को तीन बार उछाला जाता है और प्रत्येक बार का परिणाम लिख लिया जाता है। तीनों परिणाम समान होने पर, अर्थात् तीन चित या तीन पट प्राप्त होने पर, हनीफ खेल में जीत जाएगा, अन्यथा वह हार जाएगा। हनीफ के खेल में हार जाने की प्रायिकता परिकलित कीजिए।
- 24. एक पासे को दो बार फेंका जाता है। इसकी क्या प्रायिकता है कि
 - (i) 5 किसी भी बार में नहीं आएगा? (ii) 5 कम से कम एक बार आएगा? [संकेत: एक पासे को दो बार फेंकना और दो पासों को एक साथ फेंकना एक ही प्रयोग माना जाता है।]

25. निम्नलिखित में से कौन से तर्क सत्य हैं और कौन से तर्क असत्य हैं? सकारण उत्तर दीजिए।

- (i) यदि दो सिक्कों को एक साथ उछाला जाता है, तो इसके तीन संभावित परिणाम- दो चित, दो पट या प्रत्येक एक बार हैं। अतः, इनमें से प्रत्येक परिणाम की प्रायिकता $\frac{1}{3}$ है।
- (ii) यदि एक पासे को फेंका जाता है, तो इसके दो संभावित परिणाम—एक विषम संख्या या एक सम संख्या हैं। अत: एक विषम संख्या ज्ञात करने की प्रायिकता $\frac{1}{2}$ है।

14.2 सारांश

इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है:

1. घटना E की सैद्धांतिक (या परंपरागत) प्रायिकता P(E) को निम्नलिखित रूप में परिभाषित किया जाता है:

जहाँ हम कल्पना करते हैं कि प्रयोग के सभी परिणाम समप्रायिक हैं।

- 2. एक निश्चित (या निर्धारित) घटना की प्रायिकता 1 होती है।
- 3. एक असंभव घटना की प्रायिकता 0 होती है।
- 4. घटना E की प्रायिकता एक ऐसी संख्या P(E) है कि

$$0 \le P(E) \le 1$$

- 5. वह घटना जिसका केवल एक ही परिणाम हो एक प्रारंभिक घटना कहलाती है। किसी प्रयोग की सभी प्रारंभिक घटनाओं की प्रायिकता का योग 1 होता है।
- 6. किसी भी घटना E के लिए $P(E) + P(\overline{E}) = 1$ होता है, जहाँ E घटना ' E नहीं' को व्यक्त करता है। E और E पूरक घटनाएँ कहलाती हैं।

पाठकों के लिए विशेष

एक घटना की प्रायोगिक या आनुभविक प्रायिकता वास्तविक रूप से घटना के घटित होने पर आधारित होती है, जबिक उस घटना की सैद्धांतिक प्रायिकता में कुछ कल्पनाओं के आधार पर यह प्रागुक्ति की जाती है कि क्या घटना घटेगी। जैसे-जैसे एक प्रयोग में अभिप्रयोगों की संख्या बढ़ती जाती है, वैसे-वैसे प्रायोगिक और सैद्धांतिक प्रायिकताओं की लगभग बराबर होने की प्रत्याशा की जा सकती है।