CityU-EE Gifted Education Fund Programme:

AloT Coding, Engineering and Entrepreneurial Skills Education for Gifted Students

Music Score Page Turner

Scan and perform!

Team Members (Project ID: 4)

06 Chan Yat Long Ariel | 08 Edward Cheung

Introduction

An automatic music score page turner for musicians. Uses Optical Music Recognition (OMR) and Dynamic Time Warping (DTW)

Demo Video:

https://www.youtube.com/watch?v=qrnlEPvXHVU

Background & Motivation

- As music enthusiasts, we like to find sheet music from the internet to learn and play.
- However, it is annoying to manually turn a page of the score as it greatly interrupts the flow of our hands
- This problem is amplified by scores with poor typesetting. Imagine this is the end of page in a violin
 - score

What is the target market?

- Any casual musicians who plays an instrument
- Plans to expand the target market to professional ensembles/ orchestras as well as new learners

Existing solution 1 — Enote3

- Enote3: A software that targets professional musicians
- Great features for professional musicians
- Automated page turning (Coming soon)
- Can't import scores
- Expensive subscription fees

Existing solution 2 — Page turner pedals

- Active user input
- Not suitable for instruments that already has need of using legs e.g. piano, organ
- Expensive (At least 44.99 Euros for a pedal with reasonable quality) <u>Best Page Turners for Sheet Music</u> <u>in 2022: the complete review</u>

Existing solution 3 — OMR Apps

- Good examples: PlayScore 2, Sheet Music Scanner
- Both doesn't include realtime page turning functionality
- PlayScore 2:
 - Subscription needed (USD4.99 per month) for scanning whole pages of sheet music
- Sheet Music Scanner:
 - Less expensive (USD4.99, one time purchase), but the set of recognisable music characters is incomplete

Existing solution 4a — Realtime Audio-to-Audio (A2A) Alignment Systems

- Github open source repositories e.g.
 https://github.com/Sma1033/Realtime-audio2audio-alignment
- Hard to setup for non-programmers
- Requires reference audio which might not exist for every single music scores
- Additional programming is needed for page turning functionality

Existing solution 4b — Music Score to Audio + Realtime Audio-to-Audio (A2A) Alignment

- File formats for music scores include MusicXML, mscx, mscz ... → Troublesome conversion and audio synthesis as specific software are needed
- Can't directly synthesize audio from images of music score/ inaccurate conversion (e.g. scan-score)
 - ⇒ Unreliable/ extremely inconvenient for musicians, and they would still face countless headaches in the A2A alignment part

Existing solution 5 — Page turning using eye-tracking technology

- Millie's Library and other e-book applications uses eye-tracking for page turning
- When the user glances at a certain part of the screen, the application turns a page
 - ⇒ Troublesome for musicians who likes to look around during their performance, which is common for professional musicians

Problems to address

- There is no easily available software that conveniently and automatically turns a page of any given music score
- Impromptu improvisations (e.g. transposition of melody) or unintentional mistakes by musicians during the performance may affect the accuracy of the audio alignment systems

Our solution – Part I (OMR)

- 1. Using Optical Music Recognition (OMR) to extract music information from images of music scores
 - Uses <u>GitHub cal-pratt/SheetVision</u>: <u>Read sheet</u>
 <u>music and convert to midi</u>, a GitHub Repository that
 runs a template matching algorithm using the OpenCV
 Library, generates a .mid file
 - The user can use other software to edit the generated .mid file to correct any mistakes from the OMR output
- 2. The .mid files are converted to a .wav files, which are used as a 'reference audio'

Our solution - Part II (Real time page turning)

- 3. Real-time score following:
 - The chroma features of the 'reference audio' and real-time microphone input are extracted
 - Use the Dynamic Time Warping (DTW) algorithm, to compare sliding windows of the extracted chroma features, hence 'tracking' which part of the score is the musician at
 - When the DTW algorithm reaches the end of the reference audio of the page, the software turns a page

Technical details to our solution — OMR

- Optical Music Recognition (OMR) is a superset of Optical Character Music Recognition (OCR). The goal of OMR is to teach the computer to read and interpret music scores — Wikipedia
- https://github.com/cal-pratt/SheetVision uses a template matching algorithm to locate musical symbols on the music score
- Other feasible methods include using a neural network (*More in related publications – OMR)

Technical details to our solution — Audio Feature Extraction

- Chroma-based features are pitch-based audio
 features
- In this software, 12 Chroma classes are extracted, representing 12 pitch classes in most modern western musical instruments (C, C#, D, ...)
- Chroma features captures the harmonic and melodic characteristics of music while being robust to changes on tone quality. Therefore theoretically this software works for multiple types of instruments

Technical details to our solution — DTW

- Dynamic time warping (DTW) is an algorithm that measures the similarity between 2 temporal sequences, which may vary in speed — Wikipedia
- DTW is an efficient algorithm, hence suitable for real-time applications
- Parts of code in this software originates from <u>https://www.audiolabs-erlangen.de/resources/MIR/</u>
 FMP/C3/C3_MusicSynchronization.html

Complete pipeline of our solution

Timeline

Christmas Holiday

Completion of individual sections

Start assembling and testing

Deciding on whether need to change to other plans

Pitching Deck
Final calibration Final Version

Filiming + editing for demo video

Completion of

- The SheetVision repository only recognizes a handful of musical symbols classes and is quite slow
- Noisy images of music score as well as loud background noises in real-time microphone input leads to low accuracy in page turning
- Right now the software can only turn 1 page, i.e. only 2-page music sheets can be fed into the software

Future work/directions

- Research on methods to increase the variety of recognisable musical symbol with improved accuracy and speed
- Research on improving the accuracy of DTW score following
- Preprocessing of real-time audio input e.g. noise reduction
- iOS/ Android app, with
 - Score annotation functionality,
 - In-app audio recording and playback functions, and
 - Marking and listing out mistakes during practice/ performance
- In-sync multi-device page turning for ensembles/ orchestras

Thanks!

Any questions?

Contact details:

- Email: cyla.hk@gmail.com
- GitHub: https://github.com/CYL-Ariel