NPTEL MOOC, JAN-FEB 2015 Week 5, Module 1

DESIGNAND ANALYSIS OF ALGORITHMS

Union-Find data structure

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Kruskal's algorithm, minimum cost spanning tree

- * Process edges in ascending order of cost
- * If an edge (u,v) does not create a cycle, add it to the tree
 - * (u,v) can be added if u and v are in different components
 - * After adding (u,v) these components get merged
- * How can we keep track of components and merge them efficiently?

Union-Find data structure

- * A set of elements S partitioned into subsets, or components, {C₁,C₂,...,C_k}
 - * Each s in S belongs to exactly one Ci
- * Support the following operations
 - * MakeUnionFind(S) set up initial components, each s in S is a separate singleton component {s}
 - * Find(s) returns the component containing s
 - * Union(C,C') merges the components C and C'

Naming the components

- * Assign a label to each s in S to name its component
 - * Two elements are in the same component if they have the same label
- * Choice of labels is not important
- * Easy option: use S itself as the set of labels
 - * Initially, each s in S is assigned label s
 - * After Merge(u,u'), change all labels u to u' or vice versa

Naive implementation

- * Assume $S = \{1, 2, ..., n\}$
 - * Recall that this is our convention for nodes in a graph
- * Set up an array Component[1..n]
 - * MakeUnionFind(S): Set Component[i] = i, for all i
 - * Find(i): Return Component[i]
 - * Union(k,k'): For each i in 1..n, if Component[i] == k,
 update Component[i] = k'

Complexity ...

- * MakeUnionFind(S): Set Component[i] = i, for all i
 - * O(n)
- * Find(i): Return Component[i]
 - * O(1)
- * Union(k,k'): For each i in 1..n, if Component[i] == k, update Component[i] = k'
 - * O(n)
- * Sequence of m Union() operations: O(m²)

Improved implementation

- * As before, array Component[1..n]
- * Also, for each component k, a list Members[k] of its members
- * Array Size[k] records size of list Members[k]

Improved implementation

MakeUnionFind(S) * Set Component[i] = i, for all i

* Initialize Members[i] = [i], Size[i] = 1, for all i

Find(i) * Return Component[i]

- * Merge Members[k] and Members[k']
- * Update Size[k'] = Size[k] + Size[k']

- * List Members[k] allows us to update a component in time proportional to its size
 - * O(Size[k]) rather than O(n)
- * How can we make use of Size[k]?
 - * Always merge smaller set into larger set
 - * If Size[k] < Size[k'], relabel k as k' else relabel k' as k</p>

- * Always merge smaller set into larger set
 - * If Size[k] < Size[k'], relabel k as k' else relabel k' as k
- * Individual merge operation could still take time O(n)
 - * Both Size[k], Size[k'] could be about n/2
 - * Need to do more careful "accounting"

- * For each element s, size of Component[s] at least doubles each time it is relabelled
- * After a sequence of m Union() operations, at most 2m elements have been "touched"
 - * Size of Component[s] is at most 2m
- * Size of Component[s] grows as 1,2,4,..., so s is relabelled at most O(log m) times

- * After m Union() operations, at most O(m) elements have had their component updated, each at most O(log m) times
 - * Recall that the list Members[k] allows us to update component k in time O(Size[k])
- * Overall, m Union() operations take O(m log m) time
- * Works out to O(log m) steps per Union() operation
 - * Amortized complexity of Union() is O(log m)

Back to Kruskal's algorithm

- * Sort edges E = [e₁,e₂,...,e_m] in ascending order
- * MakeUnionFind(V)—each vertex j is labelled j
- * Add edge $e_k = (u, v)$, if e_k does not create a cycle
 - * Check that Find(u) != Find(v)
 - * If so, merge components: Union(Find(u),Find(v))

Back to Kruskal ...

- * Tree has n-1 edges, so O(n) Union() operations
 - * O(n log n) amortized cost overall
- * Sorting the edges initially takes time O(m log m), but m is at most n², so equivalently O(m log n)
- * Overall this gives O((m+n) log n), which is same as Prim's algorithm using heaps (to be done soon)

Summary

- * Implement Union-Find using array Component[1..n], lists Member[1..n] and array Size[1..n]
- * MakeUnionFind(S) is O(n)
- * Find(s) is O(1)
- * Amortized complexity of each Union(k,k') is O(log m) over a sequence of m operations