TITLE: Principles of Physics I I

MARKS: 20

TIME: 20 MINUTES

Name:

Student ID:

Section:

- A 2.00nF capacitor with an initial charge of 5.10 μC is discharged through a 1.30 $k\Omega$ resistor. 1. (a) (3 marks) Calculate the current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor.
 - (b) (2 marks) What charge remains on the capacitor after 8.00 μ s?
 - (c) (2 marks) What is the maximum current in the resistor?
- Consider the circuit shown in Figure.
 - (a) (3 marks) Find the voltage across each of the resistors.
 - (b) (3 marks) Find the current through each of the resistors.
 - (c) (2 marks) Find the energy stored in the 3.00Ω resistor.

$$\boxed{1}_{a} ? 1 = \frac{Q_{o}}{RC} e^{-t/RC}$$

$$= \frac{5.1 \times 10^{-6}}{1.3 \times 10^{3} \times 2 \times 10^{-9}} e^{-\frac{9 \times 10^{-6}}{1.3 \times 10^{3} \times 2 \times 10^{9}}} \boxed{2} \quad \text{Reg} = 2 + \frac{1.3 \times 10^{3} \times 2 \times 10^{9}}{1.3 \times 10^{3} \times 2 \times 10^{9}}$$

b)
$$Q = Q_0 e^{-t/RC} - \frac{8 \times 10^{-6}}{1.3 \times 10^{3} \times 2 \times 10^{-9}}$$

= $5.1 \times 10^{6} \times Q$
= $2.35 \times 10^{-7} C$

b)
$$Q = Q_0 e^{-t/RC} - \frac{8 \times 10^{-6}}{1.3 \times 10^{3} \times 2 \times 10^{-9}}$$

= 2.35×10^{-7} C

e)
$$I_{max} = \frac{x_0}{Rc}$$

$$= \frac{5.1 \times 10^{-6}}{1.3 \times 10^{3} \times 2 \times 10^{-9}}$$

$$= 1.96 \text{ Amp.}$$
(Ans.)

2 Reg = 2 +
$$\frac{1}{7.33} + \frac{1}{3} = 4.13.5$$

$$V_{10,5,4,3} = 1.94 A = I_2 = I_{10,5,4,3}$$
 $V_{10,5,4,3} = 2.13.2 \times 1.94 = 4.13 V$
 $= V_3 = V_{10,5,4}$

$$T_{10,5,4} = 0.56A = T_4 = T_{10,5}$$

 $V_{10,5} = 3.3312 \times 0.56 = 1.86 \text{ V}$

$$T_{10} = 0.186 A$$
 $V_{2} = 3.88 V$

$$T_{10} = 0.186 A$$
 $V_{10} = 1.66 V$

$$T_{5} = 0.37 A$$
 $V_{5} = 1.86 V$

c)
$$P_3 = T_3 P_3 = (1.38)^2 \times 3$$

= 5.7 W

- 3. The ideal batteries have emfs $\varepsilon_1 = 10V$ and $\varepsilon_2 = 0.50\varepsilon_1 V$. The values of resistances in each resistors 4Ω . What is the current in
 - (a) (3 marks) resistance 2 and
 - (b) (2 marks) resistance 3?

$$T_1 + T_2 = T_3$$

 $\xi_1 - T_1 R_1 - T_3 R_3 = 0$
 $\xi_2 - T_2 R_2 - T_3 R_3 = 0$

$$T_1 + T_2 - T_3 = 0$$
 — ①

$$-4T_{1} - 4T_{3} = -10 - 0$$

$$0 - 4T_{2} - 4T_{3} = -5 - 0$$

CHD

COURSE CODE: PHY 112

TITLE: Principles of Physics I I

MARKS: 20

Name:

Student ID:

- 1. Consider the circuit shown in Figure.
 - (a) (3 marks) Find the voltage across each of the
 - (b) (3 marks) Find the current through each of the resistors.
 - (c) (2 marks) Find the energy stored in the 3.00Ω resistor.

A 4.00nF capacitor with an initial charge of 7.10 μ C is discharged through a 2.30 $k\Omega$ resistor. (a) (3 marks) Calculate the current in the resistor 8.00 μ s after the resistor is connected

across the terminals of the capacitor.

- (b) (2 marks) What charge remains on the capacitor after 7.00 μ s?
- (c) (2 marks) What is the maximum current in the resistor?

1
$$T_1 + T_2 = T_3 - T_1$$

 $12 - 2T_1 + 5T_2 + T_2 - 4 = 0$
 $\Rightarrow -4T_1 + 6T_2 = -8 - T_1$
 $4 - T_2 - 5T_2 - 8T_3 = 0$
 $\Rightarrow -6T_2 - 8T_3 = -4$
 $T_1 + T_2 - T_3 = 0$
 $-4T_1 + 6T_2 + 0 = -8$

13 = 0.846 Amp.

0 -6 I2 -8 I3 = -4

- a) V across 81 = 8 x 0.846 = 6.77 V u 50=5×0.46= 2.3√ 1 12=1x0,46=0,46V 31=3×1,3= 3.9 V. 12=1x1.3=1.3V
- b) I1 = 1.3A; I2 = -0.46 A; Pacross 3 1 = [1:3] x 3

b)
$$Q = Q_0 e$$

$$= 7.1 \times 10^{6} \times e$$

$$= 3.32 \times 10^{6} C$$

c)
$$I_{max} = \frac{Q_0}{RC}$$

$$= \frac{7.1 \times 10^{-6}}{2.3 \times 10^{-2} \times 4 \times 10^{-9}}$$

$$= 0.77 \quad Amp.$$

3. Calculate:

(a) (3 marks) the current in 2Ω resistor.

(b) (2 marks) the current in ΘΩ resistor?

$$T_1 = T_2 + T_3$$

$$8 - 6T_2 + 2T_3 = 0$$

$$T_1 - T_2 - T_3 = 0$$
 — (i)
 $-4T_1$ — $2T_3 = -12$ — (ii)
 $-6T_2 + 2T_3 = -8$ — (iii)

$$T_3 = (0.91 \text{ Amp.})$$

across 62

across 21

(Ans.)

