שיעור 9 מימד ובסיס

9.1 בסיס של מרחב ווקטורי

הגדרה 9.1 בסיס

ימת: מקיימת אם אם דסיס על נקראת נקראת יקר..., $\mathbf{v}_n \in V$ אם היא קבוצת קבוצת נקראת אם יימת:

בלתי תלוים לינארית. $\mathbf{v}_1,\ldots,\mathbf{v}_n$ (1

.span $(\mathbf{v}_1,\ldots,\mathbf{v}_n)=V$ (2

דוגמה 9.1

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 , $e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, ..., $e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$.

.(בסיס הסטנדרטי) \mathbb{F}^n של

הוכחה:

ל. בת"ל. e_1, \ldots, e_n בת"ל.

$$k_1 e_1 + k_2 e_2 + \dots + k_n e_n = \bar{0}$$

$$k_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + k_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 \Downarrow

$$\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \Rightarrow \qquad k_1 = 0, k_2 = 0, \quad k_n = 0 \ .$$

לכן e_1,\ldots,e_n לכן

 $.\mathrm{span}(e_1,\ldots,e_n)=\mathbb{F}^n$ צ"ל כי (2

$$\mathbf{v} = \mathrm{span}(e_1,\dots,e_n)$$
 צ"ל $\mathbf{v} = egin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{F}^n$ נקח ווקטור שרירותי

$$k_1e_1 + \dots k_ne_n = \mathbf{v}$$

 $\downarrow \downarrow$

$$\begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \Rightarrow \quad k_1 = x_1, k_2 = x_2, \dots, \quad k_n = x_n .$$

דוגמה 9.2

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, ..., $E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, .

.(הבסיס הסטנדרטי) $\mathbb{F}^{2 imes 3}$ של

הוכחה:

נוכיח כי E_1, \dots, E_6 בת"ל.

$$k_1 E_1 + k_2 E_2 + \dots + k_6 E_6 = \overline{0}$$

$$k_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \dots + k_6 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 \Downarrow

$$\begin{pmatrix} k_1 & k_2 & k_3 \\ k_4 & k_5 & k_6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \Rightarrow \qquad k_1 = 0, k_2 = 0, \quad k_6 = 0 \ .$$

לכן E_1, \dots, E_6 בת"ל.

 $\operatorname{span}(E_1,\ldots,E_6)=\mathbb{F}^{2 imes 3}$ נוכיח כי (2

,v
$$= egin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \in \mathbb{F}^{2 imes 3}$$
 לכל ווקטור

 $v = aE_1 + bE_2 + cE_3 + dE_4 + eE_5 + fE_6.$

ז"א

$$v \in span(E_1, \ldots, E_6)$$

דוגמה 9.3

ווקטורים

$$e_1 = 1$$
, $e_2 = x$, ..., $e_n = x^n$

 $\mathbb{F}_n[x]$ בסיס הבסיס הסטנדרטי) של מהווים בסיס (הבסיס

הוכחה:

ל. בת"ל. $1, x, \dots, x^n$ בת"ל.

$$k_1 \cdot 1 + k_2 x + \ldots + k_n x^n = \bar{0} = 0 \cdot 1 + 0 \cdot x + \ldots + 0 \cdot x^n$$

לכל x כאשר

$$k_1 = 0, k_2 = 0, \ldots, k_n = 0.$$

לכן $1, x, \ldots, x^n$ לכן

 $\operatorname{span}(1,x,\ldots,x^n)=\mathbb{F}_n[x]$ נוכיח כי (2

לכל
$$p(x)=a_1+a_2x+\ldots+a_nx^n\in\mathbb{F}_n[x]$$
 מתקיים

$$p(x) = a_1 e_1 + a_2 e_2 + \ldots + a_n e_n$$

$$p(x) = \operatorname{span}(e_1, \dots, e_n)$$
 א"ז

דוגמה 9.4

בדקו כי הווקטורים

$$\begin{pmatrix} -1\\0\\5 \end{pmatrix} , \qquad \begin{pmatrix} 1\\1\\1 \end{pmatrix} , \qquad \begin{pmatrix} 2\\1\\4 \end{pmatrix} .$$

 \mathbb{R}^3 מהווה בסיס של

פתרון:

בת"ל. u_1, u_2, u_3 צ"ל (1

$$k_1 u_1 + k_2 u_2 + k_3 u_3 = \bar{0}$$

זאת מערכת משוואות הומוגניות:

$$\begin{pmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 5 & 1 & 4 & 0 \end{pmatrix} \xrightarrow{R_3 \to R_3 + 5R_1} \begin{pmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 6 & 14 & 0 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 6R_2} \left(\begin{array}{ccc|c} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 8 & 0 \end{array} \right)$$

 $k_1=0, k_2=0, k_3=0$ יחיד: פתרון יחיד

לכן u_1, u_2, u_3 בת"ל.

.span $(u_1,u_2,u_3)=\mathbb{R}^3$ צ"ל (2

$$\mathbf{v} = \mathrm{span}(u_1, u_2, u_3)$$
 צ"ל $\mathbf{v} = egin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$ נקח

:1 דרך

 $v \in \text{span}(u_1, u_2, u_3)$ למערכת יש פתרון, לכן

:2 דרך

9.1 משפט

אם במרחב ווקטורי V יש בסיס סופי, אז לכל בסיס של V יש את אותו מספר הווקטורים.

הגדרה 9.2

V מרחב ווקטורי. למספר הווקטורים בבסיס של V קוראים המימד של גניח של מרחב ווקטורי יסומן

 $\dim(V)$.

דוגמה 9.5

$$\dim(\mathbb{F}^n) = n$$

$$\dim(\mathbb{F}^n[x]) = n + 1$$

$$\dim(\mathbb{F}^{m \times n}) = m \cdot n .$$

משפט 9.2 מימד ובסיס של קבוצת ווקטורים

נניח כי V מרחב ווקטורי, $\dim(V)=n$. אז

- . כל n+1 ווקטורים של V הם תלוים לינארית (1
- N טל קבוצה של n ווקטורים בלתי תלויה לינארית, היא בסיס של (2
- V כל קבוצה של ווקטורים שהיא בלתי תלויה לינארית, ניתן להשלים לבסיס של V

דוגמה 9.6

הוכיחו שהווקטורים

$$u_1 = 1 + x + x^2$$
, $u_2 = 2x + 3x^2$, $u_3 = -3x - 4x^2$

 $\mathbb{R}_2[x]$ מהווים בסיס של מרחב

פתרון:

נוכיח כי u_1, u_2, u_3 בת"ל.

$$k_1 u_1 + k_2 u_2 + k_3 u_3 = \bar{0}$$

$$k_1 (1 + x + x^2) + k_2 (2x + 3x^2) + k_3 - 3x - 4x^2 = 0 + 0x + 0x^2$$

$$k_1 (k_1 + 2k_2 - 3k_3)x + (k_1 + 3k_2 - 4k_3)x^2 = 0 + 0x + 0x^2$$

$$k_1 = 0$$

$$k_1 + 2k_2 - 3k_3 = 0$$

$$k_1 + 2k_2 - 3k_3 = 0$$

$$k_1 + 3k_2 - 4k_3 = 0$$

$$\Rightarrow k_1 = 0, k_2 = 0, k_3 = 0$$

לכן u_1, u_2, u_3 בת"ל.

 $\dim(\mathbb{R}_2[x])$ לכן שלושה ווקטורים בת"ל מהווים בסיס של, $\dim(\mathbb{R}_2[x])=3$

9.2 מציאת בסיס ומימד של תת מרחב

הגדרה 9.3 עמודה מובילה ושורה מובילה

A -מטריצה המדורגת ותהי ותהי $A \in \mathbb{F}^{m imes n}$ נניח כי

- . אומרים כי עמודה ה- i של A עמודה מובילה אם בעמודה ה- i של B יש איבר מוביל.
 - . שורה ה- i של B יש איבר מובילה אם בשורה ה- i של B יש איבר מוביל.

משפט 9.3 עמודות מובילות מהוות בסיס של תת-מרחב

 \mathbb{F}^n נניח כי של מרחב ווקטורים $S=\{u_1,\ldots,u_k\}\in\mathbb{F}^n$ נניח כי

$$A = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_k \\ | & | & & | \end{pmatrix}$$
 נגדיר

- . בת"ל. S בת"ל אם הקבוצת ווקטורים בת"ל. בת"ל.
 - S מהווים בסיס של (2 העמודות המובילות של A
 - S מספר עמודות מובילות ב- A שווה למימד של

הוכחה: (להעשרה בלבד)

נרשום

$$x_1u_1 + \dots + x_ku_k = \bar{0} \tag{*1}$$

.A -ם המטריצה המדורגת המחB -ש נניח ש- $X=\begin{pmatrix}x_1\\ \vdots\\ x_k\end{pmatrix}\in\mathbb{F}^k$ המעקבלת המחקבלת $x_1,\cdots,x_k\in\mathbb{F}$ כאשר

נניח כי S בת"ל.

$$x_1 = x_2 = \cdots = x_k = 0$$
 אז \Leftarrow

$$.X=0$$
 יש פתרון יחיד: $AX=0$ למערכת \Leftarrow

$$B$$
 יש איבר מוביל בכל עמודה של \Leftarrow

.כל העמודות של
$$A$$
 מובילות \Leftarrow

נניח שכל העמודות של A מובילות.

$$B$$
 יש איבר מוביל בכל עמודה של \leftarrow

$$X=0$$
 הפתרון היחיד הינו \Leftarrow

. בת"ל.
$$S \Leftarrow x_1 = \cdots = x_k = 0$$
 בת"ל. בהסקלרים ב- עבור הסקלרים \Leftarrow

- S אם (א) היא בת"ל ו (ב) אם אם תהיה בסיס של A תהיה מובילות של (ב) קבוצת העמודות המובילות של
- . בת"ל. A' המטריצה המתקבלת מהעמודות המובילות של A' לפי (1) כל העמודות של
 - $\{u_1,\dots,u_p\}$ נניח שמתוך הp יש של ווקטורים של ווקטורים גווקטור הווקטרים לכן, אפשר לרשום כל ווקטור של S כצירוף ליניארי של הווקטרים לרשום כל ווקטור אפ

$$\{u_1,\ldots,u_p\}$$
 לכן S נפרש ע"י הווקטורים

$$A=egin{pmatrix} \mid & \mid & \mid & \mid & \mid \ u_1 & \cdots & u_p & u_{p+1} & \cdots & u_k \ \mid & \mid & \mid & \mid \end{pmatrix}$$
 נרשום

. מובילות אל מובילות הראשונות ה- עמודות לכן בת"ל בת"ל בת"ל בת"ל מובילות u_1,\cdots,u_p

(אין יותר מ-p עמודות מובילות כי אז יהיו יותר מ-p ווקטורין בת"ל ונגיע לסתירה).

 ${\cal S}$ לפיכך העמודות המובילות פורשות

.S של בסיס מהווה א מהוות מובילות לפי (2) לפי (3

מימד שווה למספר ווקטורים בבסיס.

A -בילות המובילות למספר עמודות המובילות ב

דוגמה 9.7

(1

כאשר $S = \mathrm{span}\left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}$ כאשר של ומימד של ומימד בסיס

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} , \quad \mathbf{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} , \quad \mathbf{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} .$$

פתרון:

(2

$$A = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & 3 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

S בסיס של $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ בסיס של

 $.\dim(S) = 3$

$$A = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

S עמודות 1 ו- 2 מובילות. לכן הווקטורים $\mathbf{v}_1,\mathbf{v}_2$ מהווים בסיס של

 $.\dim(S) = 2$

דוגמה 9.8

מצאו בסיס ואת המימד של תת מרחב הנפרש ע"י הווקטורים

$$\mathbf{v}_1 = \begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$, $\mathbf{v}_4 = \begin{pmatrix} 1 & -7 \\ -5 & 1 \end{pmatrix}$.

. בטאו את ווקטור לינארי כצירוף לינארי עו $u = \begin{pmatrix} 4 & -14 \\ -13 & 11 \end{pmatrix}$ בטאו את בטאו בטאו

פתרון:

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3 + k_4 \mathbf{v}_4 = \bar{0}$$

 \Downarrow

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ -5 & 1 & -4 & -7 \\ -4 & -1 & -5 & -5 \\ 2 & 5 & 7 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 5R_1 \atop R_3 \to R_3 + 4R_1 \atop R_4 \to R_4 - 2R_1} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 6 & 6 & -2 \\ 0 & 3 & 3 & -1 \\ 0 & 3 & 3 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 3 & 3 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

S של בסיס מהווים ע \mathbf{v}_2 , א \mathbf{v}_1 הווקטורים לפיכך מובילות, מובילות וו2ו- מובילות עמודות וו

 $.\dim(S)=2$

נרשום על הבסיס ליניארי ליניארי כצירוף כצירוף כצירוף ליניארי \boldsymbol{u}

$$u = x\mathbf{v}_1 + y\mathbf{v}_2 .$$

$$\begin{pmatrix} 1 & 1 & 4 \\ -5 & 1 & 14 \\ -4 & -1 & -13 \\ 2 & 5 & 11 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 5R_1 \atop R_3 \to R_3 + 4R_1 \atop R_4 \to R_4 - 2R_1} \begin{pmatrix} 1 & 1 & 4 \\ 0 & 6 & 6 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Leftarrow k_1 = 3, k_2 = 1$$

$$u = 3\mathbf{v}_1 + \mathbf{v}_2 \ .$$

במרחב $\mathbb{R}_{\leq 3}[x]$ נתונים ווקטורים

$$p_1(x) = 2 - x + x^2$$
, $p_2(x) = 2x - 3x^2 + x^3$, $p_3(x) = 1 - x^2$, $p_4(x) = 3x - 6x^2 + x^3$.

- א) בדקו אם כן, רשמו צירוף לינארי תלוים לינארית. אם כן, רשמו צירוף לינארי לינארי לינארי שווה לווקטור האפס. טריוויאלי שלהם ששווה לווקטור האפס.
 - $p_1(x), p_2(x), p_3(x), p_4(x)$ מצאו בסיס ואת המימד של תת מרחב הנפרש ע"י הווקטורים
 - בטאו כל ווקטור מתוך $p_1(x), p_2(x), p_3(x), p_4(x)$ כצירוף לינרי של הבסיס המצאתם בסעיף ב'.

פתרון:

 $:E=\{e_1=1,e_2=x,e_3=x^2,e_4=x^3\}$, $\mathbb{R}_{\leq 3}[x]$ של הבסיס הסטנדרטי לפי הבסיס את הווקטורים את גרשום את את הווקטורים לפי

$$p_1(x) = 2e_1 - e_2 + e_3 + 0e_4 = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}_E$$

$$p_2(x) = 0e_1 + 2e_2 - 3e_3 + e_4 = \begin{pmatrix} 0 \\ 2 \\ -3 \\ 1 \end{pmatrix}_E$$

$$p_3(x) = 1e_1 + 0e_2 - e_3 + 0e_4 = \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}_E$$

$$p_4(x) = 0e_1 + 3e_2 - 6e_3 + e_4 = \begin{pmatrix} 0\\3\\-6\\1 \end{pmatrix}_E$$
.

$$A = \begin{pmatrix} 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 3 \\ 1 & -3 & -1 & -6 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 4 & 1 & 6 \\ 0 & 6 & 3 & 12 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 4 \\ 0 & 4 & 1 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{cccc} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccccc} 2 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

לא כל העמודות מובילות, לכן $p_1(x), p_2(x), p_3(x), p_4(x)$ ת"ל.

נרשום את הצירוף הליניארי

$$k_1p_1 + k_2p_2 + k_3p_3 + k_4p_4 = \bar{0} .$$

לפי המדורגת שמצאנו הפתרון הינו

$$k_1 = k_4$$
, $k_2 = -k_4$, $k_3 = -2k_4$, $k_4 \in \mathbb{R}$.

 $\Leftarrow k_4 = 1$ נציב

$$k_1 = 1$$
, $k_2 = -1$, $k_3 = -2$.
 $p_1 - p_2 - 2p_3 + p_4 = \bar{0}$

(1

 $\dim(\operatorname{span}\{p_1,p_2,p_3,p_4\}=$ מספר העמודות המובילות = 3 .

. העמודות p_1, p_2, p_3 מהווים לפיכך מובילות לפיכך מהווים מובילות p_1, p_2, p_3

()

$$p_1 = 1 \cdot p_1 + 0 \cdot p_2 + 0 \cdot p_3$$

$$p_2 = 0 \cdot p_1 + 1 \cdot p_2 + 0 \cdot p_3$$

$$p_3 = 0 \cdot p_1 + 0 \cdot p_2 + 1 \cdot p_3$$

 $p_4 = -p_1 + p_2 + 2 \cdot p_3$.

9.4 משפט

יהי $B=\{u_1,\cdots,u_m\}$ ותהי ווקטורי כי U=m נניח כי U נניח אמרחב של המרחב של המרחב של המרחב ווקטורים. ווקטורים.

U אם ורק אם B פורשת את B

הוכחה:

U את פורשת את B -ניח כי B בת"ל

. $\dim(U)=m$ -ש בסתירה לכך של בסיס אל לבסיס לבסיס אז ניתן להשלים או לבסיס אל

נניח כי B פורשת את U אבל B לא בת"ל.

 $\operatorname{dim}(U)=m$ -אז ניתן להקטין את B לבסיס של פחות מm ווקטורים בסתירה לכך ש