

Large deviations of active work in systems of active Brownian particles

Yann-Edwin Keta

supervised by Robert Jack

StatMech meeting, Department of Chemistry, University of Cambridge 20/02/2020

yketa/DAMTP_MSC_2019_Wiki

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Cloning algorithm
- 3 Large deviations of active work
 - PSA and CM transitions
 - Brownian rotors
- 4 Conclusion

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Cloning algorithm
- Large deviations of active work
 - PSA and CM transitions
 - Brownian rotors
- 4 Conclusion

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance.

Ludovic Berthier and Jorge Kurchan. "Lectures on non-equilibrium active systems". In: arXiv preprint arXiv:1906.04039 (2019).

Michael E Cates and Julien Tailleur. "Motility-induced phase separation". In: Annu. Rev. Condens. Matter Phys. 6.1 (2015), pp. 219–244.

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

Systems relaxing towards equilibrium.

Example

Thermal system adapting to its thermostat, glasses.

Ludovic Berthier and Jorge Kurchan. "Lectures on non-equilibrium active systems". In: arXiv preprint arXiv:1906.04039 (2019).

Michael E Cates and Julien Tailleur. "Motility-induced phase separation". In: Annu. Rev. Condens. Matter Phys. 6.1 (2015), pp. 219–244.

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.

Example

Sheared liquid, metal rod between two thermostats.

Ludovic Berthier and Jorge Kurchan. "Lectures on non-equilibrium active systems". In: arXiv preprint arXiv:1906.04039 (2019).

Michael E Cates and Julien Tailleur. "Motility-induced phase separation". In: Annu. Rev. Condens. Matter Phys. 6.1 (2015), pp. 219–244.

Non-equilibrium dynamics breaks time-reversal symmetry and thus detailed balance. We can identify 3 general classes:

- Systems relaxing towards equilibrium.
- Systems with boundary conditions imposing steady currents.
- Active matter.

Definition

System composed of self-driven units, *active particles*, each capable of converting stored or ambient free energy into systematic movement.

M Cristina Marchetti et al. "Hydrodynamics of soft active matter". In: Reviews of Modern Physics 85.3 (2013), p. 1143.

Example

Cell tissues, swarms of bacteria, schools of fish, flocks of birds.

Ludovic Berthier and Jorge Kurchan. "Lectures on non-equilibrium active systems". In: arXiv preprint arXiv:1906.04039 (2019).

Michael E Cates and Julien Tailleur. "Motility-induced phase separation". In: Annu. Rev. Condens. Matter Phys. 6.1 (2015), pp. 219–244.

Non-equilibrium phenomenon in active matter: swarming

→ Aligning self-propelled disks with repulsive interactions (Vicsek model).

$$\underline{\dot{r}}_{i} = v_{0} \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} - \mu \sum_{j=1}^{N} \nabla U_{ij}, \ \dot{\theta}_{i} = \frac{1}{\tau} (\varphi_{i} - \theta_{i}) + \xi_{i}, \ \varphi_{i} = \arg(\underline{\dot{r}}_{i})$$

Tamás Vicsek et al. "Novel type of phase transition in a system of self-driven particles". In: *Physical review letters* 75.6 (1995), p. 1226.

Balint Szabo et al. "Phase transition in the collective migration of tissue cells: experiment and model". In: *Physical Review E* 74.6 (2006), p. 061908.

Non-equilibrium phenomenon in active matter: MIPS

→ Active Brownian particles with repulsive soft interactions.

$$\underline{\dot{r}}_{i} = v_{0} \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} - \mu \sum_{j=1}^{N} \nabla U_{ij}, \ \dot{\theta}_{i} = \sqrt{2\tau^{-1}} \xi_{i}$$

N = 2.00e + 03, $\phi = 0.50$, $\tilde{v} = 1.00e - 02$, $\tilde{v}_r = 5.00e - 06$, L = 1.128e + 02t = 0.00000e + 00, $\Delta t = 5.00000e + 02$

Yann-Edwin Keta and Jörg Rottler. "Cooperative motion and shear strain correlations in dense 2D systems of self-propelled soft disks". In: EPL (Europhysics Letters) 125.5 (2019), p. 58004.

 \rightarrow For $\{\underline{r}_i,\underline{u}_i\}_0^{\tau}$ a translational and orientational trajectory...

$$\begin{split} \dot{\mathcal{S}}_{N}\left[\{\underline{r}_{i},\underline{u}_{i}\}_{0}^{\tau}\right] &= \frac{1}{\tau}\log\frac{\mathcal{P}_{N}\left[\{\underline{r}_{i},\underline{u}_{i}\}_{0}^{\tau}\right]}{\mathcal{P}_{N}^{R}\left[\{\underline{r}_{i},\underline{u}_{i}\}_{0}^{\tau}\right]},\\ \dot{\mathcal{S}}_{N} &= \lim_{\tau \to \infty}\left\langle\dot{\mathcal{S}}_{N}\left[\{\underline{r}_{i},\underline{u}_{i}\}_{0}^{\tau}\right]\right\rangle, \end{split}$$

ightarrow ... defines a distance to equilibrium which cancels at equilibrium.

$$\dot{S}_N\left[\{\underline{r}_i,\underline{u}_i\}_0^{\tau}\right]\propto \frac{1}{\tau}\Delta F\Rightarrow \dot{S}_N=0.$$

Étienne Fodor et al. "How far from equilibrium is active matter?" In: *Physical review letters* 117.3 (2016), p. 038103.

Cesare Nardini et al. "Entropy production in field theories without time-reversal symmetry: quantifying the non-equilibrium character of active matter". In: *Physical Review X* 7.2 (2017), p. 021007.

Active Brownian particles

→ N ABPs with evolution

$$\begin{split} \underline{\dot{r}}_{i} &= -\mu \sum_{j=1}^{N} \nabla U_{ij} + v_{0} \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{2D} \underline{\eta}_{i}, \\ \dot{\theta}_{i} &= \sqrt{2D_{r}} \xi_{i}, \end{split}$$

 \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\sigma \equiv$ diameter, $\phi \equiv$ packing fraction.

Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605.

Active Brownian particles

→ N ABPs with evolution

$$\underline{\dot{r}}_{i} = -\mu \sum_{j=1}^{N} \nabla U_{ij} + \mathbf{v}_{0} \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{2D\underline{\eta}}_{i},$$

$$\dot{\theta}_{i} = \sqrt{2D_{r}}\xi_{i},$$

 \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\sigma \equiv$ diameter, $\phi \equiv$ packing fraction.

7 control parameters: N, ϕ , σ , μ , v_0 , D, D_r .

Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605.

→ N ABPs with evolution

$$\underline{\dot{r}}_{i} = -\mu \sum_{j=1}^{N} \nabla U_{ij} + \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{2 \underline{D}} \underline{\eta}_{i},
\dot{\theta}_{i} = \sqrt{2 \underline{D}_{r}} \xi_{i},$$

 \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\phi \equiv$ packing fraction.

5 control parameters: N, ϕ , μ , D, D_r .

ightarrow units of space and time: $\sigma=1$, $\sigma/v_0=1$

Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605.

→ N ABPs with evolution

$$\underline{\dot{r}}_{i} = -\mu \sum_{j=1}^{N} \nabla U_{ij} + \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{2 \frac{D}{\eta}}_{i},$$

$$\dot{\theta}_{i} = \sqrt{2 \frac{\sigma}{I_{p}}} \xi_{i},$$

- \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\phi \equiv$ packing fraction.
- 5 control parameters: N, ϕ , μ , D, $\frac{I_p}{\sigma} = D_r^{-1}$.
 - ightarrow units of space and time: $\sigma=1$, $\sigma/v_0=1$

Active Brownian particles

→ N ABPs with evolution

$$\begin{split} \underline{\dot{r}}_{i} &= -\mu \sum_{j=1}^{N} \nabla U_{ij} + \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{\frac{2}{3} \frac{\sigma}{I_{p}}} \underline{\eta}_{i}, \\ \dot{\theta}_{i} &= \sqrt{2 \frac{\sigma}{I_{p}}} \xi_{i}, \end{split}$$

- \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\phi \equiv$ packing fraction.
- 4 control parameters: N, ϕ , μ , $\frac{I_p}{\sigma} = D_r^{-1}$.
 - ightarrow units of space and time: $\sigma=$ 1, $\sigma/\emph{v}_0=$ 1
 - \rightarrow Stokes-Einstein-Debye relation: $D = \frac{1}{3}D_r$

Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605.

Active Brownian particles

→ N ABPs with evolution

$$\begin{split} \underline{\dot{r}}_{i} &= -\frac{1}{3} \frac{\sigma}{l_{p}} \sum_{j=1}^{N} \nabla U_{ij} + \begin{pmatrix} \cos \theta_{i} \\ \sin \theta_{i} \end{pmatrix} + \sqrt{\frac{2}{3} \frac{\sigma}{l_{p}}} \underline{\eta}_{i}, \\ \dot{\theta}_{i} &= \sqrt{2 \frac{\sigma}{l_{p}}} \xi_{i}, \end{split}$$

- \rightarrow $U_{ij} \equiv$ WCA potential, $\underline{\eta}_i$, $\xi_i \equiv$ Gaussian white noises with unit variance and zero mean, $\phi \equiv$ packing fraction.
- 3 control parameters: N, ϕ , $\frac{l_p}{\sigma} = D_r^{-1}$.
 - ightarrow units of space and time: $\sigma=1$, $\sigma/v_0=1$
 - \rightarrow Stokes-Einstein-Debye relation: $D = \frac{1}{3}D_r$
 - $\rightarrow \mu = D$

Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605.

$$\begin{split} \dot{\mathcal{S}}_{N} &= \lim_{\tau \to \infty} \left\langle \frac{1}{\tau} \log \frac{\mathcal{P}_{N} \left[\left\{ \underline{r}_{i}, \underline{u}_{i} \right\}_{0}^{\tau} \right]}{\mathcal{P}_{N}^{R} \left[\left\{ \underline{r}_{i}, \underline{u}_{i} \right\}_{0}^{\tau} \right]} \right\rangle = 3 \frac{I_{p}}{\sigma} N \lim_{\tau \to \infty} \left\langle w_{\tau} \right\rangle \\ w_{\tau} &= \frac{1}{N\tau} \int_{0}^{\tau} \sum_{i=1}^{N} \underline{\dot{r}}_{i}(t) \cdot \underline{u}(\theta_{i}(t)) \, \mathrm{d}t \\ &= \frac{1}{N\tau} \int_{0}^{\tau} \sum_{i=1}^{N} \left(1 - \frac{1}{3} \frac{\sigma}{I_{p}} \sum_{j=1}^{N} \underline{u}(\theta_{i}) \cdot \nabla U_{ij} + \sqrt{\frac{2}{3} \frac{\sigma}{I_{p}}} \underline{u}(\theta_{i}) \cdot \underline{\eta}_{i} \right) \, \mathrm{d}t \end{split}$$

$$\dot{\mathcal{S}}_{N} = \lim_{\tau \to \infty} \left\langle \frac{1}{\tau} \log \frac{\mathcal{P}_{N}\left[\left\{ \underline{r}_{i}, \underline{u}_{i} \right\}_{0}^{\tau} \right]}{\mathcal{P}_{N}^{R}\left[\left\{ \underline{r}_{i}, \underline{u}_{i} \right\}_{0}^{\tau} \right]} \right\rangle = 3 \frac{I_{p}}{\sigma} N \lim_{\tau \to \infty} \left\langle w_{\tau} \right\rangle$$

$$w_{\tau} = \frac{1}{N\tau} \int_{0}^{\tau} \sum_{i=1}^{N} \underline{\dot{r}}_{i}(t) \cdot \underline{u}(\theta_{i}(t)) dt$$

$$= \frac{1}{N\tau} \int_{0}^{\tau} \sum_{i=1}^{N} \left(1 - \frac{1}{3} \frac{\sigma}{I_{p}} \sum_{j=1}^{N} \underline{u}(\theta_{i}) \cdot \nabla U_{ij} + \sqrt{\frac{2}{3} \frac{\sigma}{I_{p}}} \underline{u}(\theta_{i}) \cdot \underline{\eta}_{i} \right) dt$$

Flocking

$$\nabla U_{ii} = 0 \Rightarrow w_{\tau} \approx 1$$

Jamming

$$\underline{\dot{r}}_i \approx 0 \Rightarrow w_\tau \approx 0$$

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Cloning algorithm
- Large deviations of active work
 - PSA and CM transitions
 - Brownian rotors
- 4 Conclusion

Large deviation principle

 $\rightarrow X_1, \dots, X_n$ a sequence of random numbers and its sample average

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

$$S_n$$
 satisfies a LDP $\Leftrightarrow \lim_{n \to \infty} -\frac{1}{n} \log P(S_n = s) = I(s)$

 $I \equiv \text{ rate function of } S_n \Leftrightarrow P(S_n = s) \times \exp(-nI(s))$

Hugo Touchette. "The large deviation approach to statistical mechanics". In: *Physics Reports* 478.1-3 (2009), pp. 1–69.

LDP example: sample mean of Gaussian random variables

 $\to X_1, \dots, X_n$ random numbers from a Gaussian distribution (μ, σ) .

$$S_n = \frac{1}{n} \sum_{i=1}^N X_i,$$

$$P(S_n = s) = \sqrt{\frac{n}{2\pi\sigma^2}}e^{-n(s-\mu)^2/(2\sigma^2)}.$$

$$\lim_{n \to \infty} -\frac{1}{n} \log P(S_n = s) = (s - \mu)^2 / (2\sigma^2) = I(s).$$

 \Rightarrow S_n satisfies a large deviation principle.

LDP example: mean of random bits

 $\rightarrow B_1, \dots, B_n$ random bits, taking value 0 or 1 with equal probability.

$$R_n = \frac{1}{n} \sum_{i=1}^n B_i$$

$$P(R_n = r) \approx \exp(-nI(r)), \ I(r) = \log 2 + r \log r + (1-r) \log(1-r).$$

LDP example: mean of random bits

 $\rightarrow B_1, \dots, B_n$ random bits, taking value 0 or 1 with equal probability.

$$R_n = \frac{1}{n} \sum_{i=1}^n B_i$$

$$P(R_n = r) \approx \exp(-nI(r)), \ I(r) = \log 2 + r \log r + (1-r) \log(1-r).$$

ightarrow Deviations from the Gaussian fluctuations predicted by the Central Limit Theorem \Rightarrow *large* deviations.

Scaled cumulant generating function (SCGF)

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \log \int e^{nka} P(A_n = a) da = \lim_{n \to \infty} \frac{1}{n} \log \left\langle e^{nkA_n} \right\rangle.$$

$$\lambda$$
 is differentiable $\Rightarrow I(a) = \sup_{k} \{ka - \lambda(k)\} = k(a)a - \lambda(k(a))$

Figure: [from: Hugo Touchette. "The large deviation approach to statistical mechanics". In: *Physics Reports* 478.1-3 (2009), pp. 1–69]

Analogy with equilibrium statistical mechanics: free energy

$$E_n \equiv \text{energy of } n \text{ particles} \Rightarrow P_\beta(\omega) = \frac{e^{-\beta n E_n(\omega)}}{Z_n(\beta)} \equiv \text{Boltzmann distribution}$$

$$\psi(\Delta\beta) = \lim_{n \to \infty} \frac{1}{n} \log \int e^{\Delta\beta n E_n(\omega)} P_{\beta}(\omega) d\omega = \lim_{n \to \infty} \frac{1}{n} \log \frac{Z_n(\beta - \Delta\beta)}{Z_n(\beta)}$$
$$= \beta F(\beta) - (\beta - \Delta\beta) F(\beta - \Delta\beta)$$
$$F(\beta) = -\frac{1}{\beta} \lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta) \equiv \text{free energy density}$$

Analogy with equilibrium statistical mechanics: entropy

$$\psi$$
 is differentiable \Longrightarrow $P_{\beta}(E_n) \simeq \exp(-nI_{\beta}(E_n))$

$$P_{eta}(E_n)symp \exp(n(\underbrace{s(E_n)}_{ ext{entropy}}-\widehat{eta}E_n+\underbrace{eta F(eta)}_{ ext{partition}}))$$
 $= \text{number of states}$
 $I_{eta}(E_n)=-s(E_n)-eta E_n+eta F(eta)$
 $I_{eta}(E_n)=0\Leftrightarrow F(eta)=E_n-rac{1}{eta}s(E_n)$

Application to trajectories: dynamical phase transitions

 \rightarrow d-dimensional system of size N, quantities $a_i(t)$ over trajectories.

$$A_{N\tau} = \frac{1}{N\tau} \int_0^{\tau} \sum_{i=1}^{N} a_i(t) \, \mathrm{d}t$$

$$I_N(a) = \lim_{\tau \to \infty} -\frac{1}{\tau} \log P(A_{\tau} = a), \ \psi_N(s) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \left\langle e^{sN\tau A_{\tau}} \right\rangle$$

Quantity	Equilibrium counterpart
a _i	Microstates of $(d+1)$ -dimensional system
$A_{N au}$	Mean energy
S	Inverse temperature (conjugate to the energy)
$\psi_{ extsf{N}}$	Free energy difference
I_N	$-s(E_n) - \beta E_n + \beta F(\beta)$

Application to trajectories: dynamical phase transitions

 \rightarrow d-dimensional system of size N, quantities $a_i(t)$ over trajectories.

$$A_{N\tau} = \frac{1}{N\tau} \int_0^{\tau} \sum_{i=1}^{N} a_i(t) \, \mathrm{d}t$$

$$I_N(a) = \lim_{\tau \to \infty} -\frac{1}{\tau} \log P(A_{\tau} = a), \ \psi_N(s) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \left\langle e^{sN\tau A_{\tau}} \right\rangle$$

Quantity	Equilibrium counterpart
a _i	Microstates of $(d+1)$ -dimensional system
$A_{N au}$	Mean energy
S	Inverse temperature (conjugate to the energy)
$\psi_{ extsf{N}}$	Free energy difference
I_N	$-s(E_n) - \beta E_n + \beta F(\beta)$

 \Rightarrow Singularities in I_N/N and ψ_N/N in the limit $\tau \to \infty$ and $N \to \infty \Rightarrow$ dynamical phase transitions.

Cloning algorithm

$$Z_{ au}(s) = \left\langle e^{sN_{ au}A_{N_{ au}}}
ight
angle \equiv rac{dynamical}{ ext{of a Boltzmann-like measure}}$$

 $\rightarrow s \neq 0 \Rightarrow$ average dominated by trajectories with rare events.

Cloning algorithm

$$Z_{ au}(s) = \left\langle \mathrm{e}^{sN_{ au}A_{N_{ au}}}
ight
angle \equiv rac{dynamical}{\mathrm{of a \; Boltzmann-like \; measure}}$$

- $\rightarrow s \neq 0 \Rightarrow$ average dominated by trajectories with rare events.
- ⇒ Cloning algorithm to generate the biased measure.

Figure: $Z_{\tau}(s) = \left\langle \exp\left(s \int_0^{\tau} x(t)(1+x(t)) \, \mathrm{d}t\right) \right\rangle$. [from: Takahiro Nemoto et al. "Population-dynamics method with a multicanonical feedback control". In: *Physical Review E* 93.6 (2016), p. 062123]

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Cloning algorithm
- 3 Large deviations of active work
 - PSA and CM transitions
 - Brownian rotors
- 4 Conclusion

Method

How does the active work (i.e. dissipation) control emerging behaviours?

 \Rightarrow Cloning algorithm \rightarrow generate trajectories of systems of ABPs where large deviations of the active work are typical.

How does the active work (i.e. dissipation) control emerging behaviours?

- \Rightarrow Cloning algorithm \rightarrow generate trajectories of systems of ABPs where large deviations of the active work are typical.
 - \rightarrow Compute SCGF...

$$\psi_{N}(s,\tau) = \frac{1}{\tau} \log \left\langle e^{-sN\tau w_{\tau}} \right\rangle,$$

 $s > 0 \Leftrightarrow \text{large } \mathbf{negative} \text{ fluctuations of } w(s)$

... biased average of the active work...

$$w(s) = \langle w \rangle_s = -\psi_N'(s)/N,$$

... and rate function.

$$I_N(w) = \sup_{s} \left\{ -sNw - \psi_N(s) \right\} = -s(w)Nw - \psi_N(s(w)).$$

How does the active work (i.e. dissipation) control emerging behaviours?

- \Rightarrow Cloning algorithm \rightarrow generate trajectories of systems of ABPs where large deviations of the active work are typical.
 - → Compute SCGF...

$$\psi_{N}(s,\tau) = \frac{1}{\tau} \log \left\langle e^{-sN\tau w_{\tau}} \right\rangle,$$

 $s > 0 \Leftrightarrow \text{large } \mathbf{negative} \text{ fluctuations of } w(s)$

... biased average of the active work...

$$w(s) = \langle w \rangle_s = -\psi_N'(s)/N,$$

... and rate function.

$$I_N(w) = \sup_{s} \left\{ -sNw - \psi_N(s) \right\} = -s(w)Nw - \psi_N(s(w)).$$

 \rightarrow Look for singularities in I_N/N and $\psi_N/N \Rightarrow$ fundamental changes in the mechanisms to produce the associated fluctuations of the active work.

Figure: (Movie) Unbiased trajectory for $\phi=0.65$, $I_p/\sigma=40$. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]

Figure: (Movie) Biased trajectories for N=64, $\phi=0.65$, $I_p/\sigma=40$. (left) s=-3.2. (right) s=0.8. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]

Figure: (a) Rescaled rate function $\mathcal{I} = I_N/N$. (b) Biased average of active work $w(s) = \langle w \rangle_s$. $\phi = 0.65$, $I_p/\sigma = 40$. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]

Analysis of the CM transition

$$\hat{\nu} = \left| \frac{1}{N} \sum_{i=1}^{N} \underline{u}_i \right| \equiv ext{global order parameter}, \
u_{ au} = \frac{1}{ au} \int_{0}^{ au} \hat{
u}(t) \, \mathrm{d}t$$

Figure: Biased average of global order parameter $\nu(s) = \langle \nu \rangle_s$. $\phi = 0.65$, $I_p/\sigma = 40$. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]

Two limits to this study of the CM transition:

- (1) Only two high persistence lengths have been considered.
- (2) No claim on the locus of the CM transition.

Figure: Biased average of global order parameter $\nu(s)=\langle \nu \rangle_s$. $\phi=0.65$. (a) $I_p/\sigma=40$ (d) $I_p/\sigma=6.7$. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]

 \rightarrow Yet there is evidence that this locus may be affected by $I_p/\sigma!$

Significance of the locus of the CM transition

⇒ Important to disentangle active work and the coupling of orientation, and to understand the relation between them.

Evidence for a CM transition at finite s^*

Figure: $\phi=0.65$, $n_c=10^2$, $t_{\rm obs}=10^2$. $D_r^{-1}=l_p/\sigma$. (left) Biased average of active work. (right) Biased average of the global order parameter.

$$s^* pprox - (I_p/\sigma)^{-1}$$

Independent Brownian rotors

→ N independent Brownian rotors

$$\dot{\theta}_i = \sqrt{2D_r}\xi_i,$$

which trajectories we bias with respect to

$$\epsilon_{ au}[f] = rac{1}{ au} \int_0^{ au} f(
u(t)) \, \mathrm{d}t.$$

 $\epsilon_{ au}[f] \equiv$ mean energy of microstates (trajecories)

Choice of the bias

$$egin{aligned} \epsilon_{ au}^{(1)} &= rac{1}{ au} \int_0^ au
u(t) \, \mathrm{d}t = rac{1}{N au} \int_0^ au \sum_{i=1}^N \cos(heta_i(t) - arphi(t)) \, \mathrm{d}t \ &pprox rac{1}{N au} \int_0^ au \sum_{i=1}^N \cos(heta_i(t)) \, \mathrm{d}t \end{aligned}$$

⇒ Coupling to an external field.

 $[\]theta_i$ relax significantly faster than φ when $N \to \infty \Rightarrow \varphi$ treated as fixed external parameter.

Choice of the bias

$$egin{aligned} \epsilon_{ au}^{(1)} &= rac{1}{ au} \int_0^ au
u(t) \, \mathrm{d}t = rac{1}{N au} \int_0^ au \sum_{i=1}^N \cos(heta_i(t) - arphi(t)) \, \mathrm{d}t \ &pprox rac{1}{N au} \int_0^ au \sum_{i=1}^N \cos(heta_i(t)) \, \mathrm{d}t \end{aligned}$$

⇒ Coupling to an external field.

$$\epsilon_{ au}^{(2)} = rac{1}{ au} \int_{0}^{ au}
u^{2}(t) dt = rac{1}{N^{2} au} \int_{0}^{ au} \sum_{i,i=1}^{N} \cos(\theta_{i}(t) - \theta_{j}(t)) dt$$

⇒ Coupling between each couples of rotors.

 $[\]theta_i$ relax significantly faster than φ when $N \to \infty \Rightarrow \varphi$ treated as fixed external parameter.

$$\frac{\partial}{\partial t} P[\{\theta_i\}] = D_r \sum_{i=1}^N \frac{\partial^2}{\partial \theta_i^2} P[\{\theta_i\}] = \mathcal{L}P[\{\theta_i\}] \equiv \text{Fokker-Planck equation}$$

$$N\psi_{N,f}(s) = \lim_{t \to \infty} \frac{1}{\tau} \log \left\langle e^{-sN\tau\epsilon_{\tau}[f]} \right\rangle$$

 $W_{s,f} = \mathcal{L} - sNf(\nu) \equiv \text{tilted generator}, \ W_{s,f}P[\{\theta_i\}] = N\psi_{N,f}(s)P[\{\theta_i\}]$

$$\psi_{N,f}(s) = \frac{1}{N} \sup_{P} \frac{\int d^{N}\{\theta_{i}\} P[\{\theta_{i}\}] \mathscr{W}_{s,f} P[\{\theta_{i}\}]}{\int d^{N}\{\theta_{i}\} P[\{\theta_{i}\}] P[\{\theta_{i}\}]}$$

Robert L Jack. "Ergodicity and large deviations in physical systems with stochastic dynamics". In: arXiv preprint arXiv:1910.09883 (2019).

Hugo Touchette. "Introduction to dynamical large deviations of Markov processes". In: *Physica A: Statistical Mechanics and its Applications* 504 (2018), pp. 5–19.

Ansatz for the joint distribution of orientations

$$P[\{\theta_i\}] \propto \exp\left(h(s)\sum_i \cos\theta_i\right) \equiv \text{distribution ansatz}$$

$$\psi_{N,f}(s) \geq \frac{1}{N} \sup_{h(s) \in \mathbb{R}} \frac{\int \mathsf{d}^N \{\theta_i\} \, P[\{\theta_i\}] \mathscr{W}_{s,f} P[\{\theta_i\}]}{\int \mathsf{d}^N \{\theta_i\} \, P[\{\theta_i\}] P[\{\theta_i\}]} = \sup_{h(s) \in \mathbb{R}} B_{s,f}(h(s))$$
$$\langle f(\nu) \rangle_s \approx -\frac{\partial}{\partial s} \sup_{h(s) \in \mathbb{R}} B_{s,f}(h(s)) \equiv \text{approximate order parameter}$$

Figure: (left) Biasing with respect to polarisation. (right) Biasing with respect to squared polarisation. Numerical results from cloning with $n_c = 10^3$, $t_{\rm obs} = 10^2$.

Contents

- Active matter
 - Non-equilibrium systems
 - Active Brownian particles
- 2 Large deviation theory
 - Concepts and applications
 - Cloning algorithm
- 3 Large deviations of active work
 - PSA and CM transitions
 - Brownian rotors
- 4 Conclusion

• Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.
- Large negative fluctuations of the active work are associated with a transition to an arrested clustered phase.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.
- Large negative fluctuations of the active work are associated with a transition to an arrested clustered phase.
- Large positive fluctuations of the active work are associated with a transition to a state with global polar order.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.
- Large negative fluctuations of the active work are associated with a transition to an arrested clustered phase.
- Large positive fluctuations of the active work are associated with a transition to a state with global polar order.
- ullet This transition towards the CM state happens at finite biasing towards higher active work in the $N o \infty$ limit.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.
- Large negative fluctuations of the active work are associated with a transition to an arrested clustered phase.
- Large positive fluctuations of the active work are associated with a transition to a state with global polar order.
- This transition towards the CM state happens at finite biasing towards higher active work in the $N \to \infty$ limit.
- Study of independent Brownian rotors shows that this picture is consistent with the emergence of coupling between individual particles.

- Large deviation theory is a powerful theoretical tool enabling us to transpose concepts from equilibrium statistical mechanics to trajectories of non-equilibrium systems.
- Active work quantifies dissipation in our model system of active Brownian particles.
- Large negative fluctuations of the active work are associated with a transition to an arrested clustered phase.
- Large positive fluctuations of the active work are associated with a transition to a state with global polar order.
- ullet This transition towards the CM state happens at finite biasing towards higher active work in the $N o \infty$ limit.
- Study of independent Brownian rotors shows that this picture is consistent with the emergence of coupling between individual particles.
- An explicit link between active work and global polar order remains to be found.

Thank you!

Contraction principle

Consider a sequence of random variables A_n satisfying a LDP with rate function I_A and an other sequence $B_n = h(A_n)^1$. We then have

$$P(B_n = b) = \int_{a:h(a)=b} P(A_n = a) da,$$

therefore with Laplace's approximation we can write

$$P(B_n = b) \simeq \exp\left(-n \inf_{a:h(a)=b} I_A(a)\right),$$

which is equivalent to saying that B_n satisfies a LDP with a rate function

$$I_B(b) = \inf_{a:h(a)=b} I_A(a).$$

→ Since probabilities are measured on the exponential scale, the probability of any large fluctuation should be approximated by the probability of the least improbable event leading to this fluctuation.

¹ h is continuous and called a contraction of A_n .

Dissipation and structure

Figure: $\dot{w} \sim -w_{f,\tau}$. $\mathcal{I} = [(\nabla v)^2 - T\nabla^2 v](g - g_{eq})$. [from: Laura Tociu et al. "How Dissipation Constrains Fluctuations in Nonequilibrium Liquids: Diffusion, Structure, and Biased Interactions". In: *Physical Review X* 9.4 (2019), p. 041026]

Figure: $1-\mathcal{E} \sim w$. [from: Étienne Fodor, Takahiro Nemoto, and Suriyanarayanan Vaikuntanathan. "Dissipation controls transport and phase transitions in active fluids: Mobility, diffusion and biased ensembles". In: New Journal of Physics (2019)]

Cloning algorithm

Consider n_c copies of a system, $A_{N\tau,i}^{\beta}$ the value of observable $A_{N\tau}$ for copy i on interval $[(\beta-1)\tau, \beta\tau]$, and

$$\Upsilon_{i}^{\beta} = e^{sN\tau A_{N\tau,i}^{\beta}}, \ \Upsilon^{\beta} = \frac{1}{n_{c}} \sum_{i=1}^{n_{c}} \Upsilon_{i}^{\beta}, \ \omega_{i}^{\beta} = \frac{\Upsilon_{i}^{\beta}}{\Upsilon^{\beta}},$$

the associated weight factors. At each cloning time step τ , we clone each copies ω_i^β times, so that we get the probability of observing a given trajectory with this algorithm²

$$P_{\mathsf{clo}}(\{A_{N\tau,i}^{\beta}\}_{\beta=1}^{\gamma}) = P_{\mathsf{0}}(\{A_{N\tau,i}^{\beta}\}_{\beta=1}^{\gamma}) \frac{\prod_{\beta=1}^{\gamma} \Upsilon_{i}^{\beta}}{\prod_{\beta=1}^{\gamma} \Upsilon^{\beta}} = \frac{P_{\mathsf{s}}(\{A_{N\tau,i}^{\beta}\}_{\beta=1}^{\gamma})}{\prod_{\beta=1}^{\gamma} \Upsilon^{\beta}},$$

then for $n_c\gg 1$

$$\prod_{\beta=1}^{\gamma} \Upsilon^{\beta} \approx \int P_s(A_{N\gamma\tau}) \, \mathrm{d}A_{N\gamma\tau} \Rightarrow \psi_N(s,\gamma\tau) \approx \frac{1}{\gamma\tau} \sum_{\beta=1}^{\gamma} \log \left(\frac{1}{n_c} \sum_{i=1}^{n_c} \Upsilon^{\beta}_i \right).$$

²Tobias Brewer et al. "Efficient characterisation of large deviations using population dynamics". In: *Journal of Statistical Mechanics: Theory and Experiment* 2018.5 (2018), p. 053204, Thibault Lestang. "Numerical simulation and rare events algorithms for the study of extreme fluctuations of the drag force acting on an obstacle immersed in a turbulent flow". PhD thesis. 2018.

$$J(\overline{\nu}) = \lim_{\tau \to \infty} -\frac{1}{\tau} \log P\left(\int_0^{\tau} \nu(t) dt = \overline{\nu}\right),$$

$$I(w) = \inf_{\nu} I_2(w, \nu) = I_2(w, \nu(s(w))) \ge \inf_{w'} I_2(w', \nu(s(w))) = J(\nu(s(w)))$$

Figure: Difference of rate functions of active work and corresponding global order parameter. $\phi = 0.65$, $I_p/\sigma = 40$. We recall $\langle w \rangle_0 \approx 0.4 - 0.45$. [from: Takahiro Nemoto et al. "Optimizing active work: Dynamical phase transitions, collective motion, and jamming". In: *Physical Review E* 99.2 (2019), p. 022605]