Shortest Path II: Bellman-Ford

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 11

OUTLINE

- Algorithms on Weighted Graphs
 - Dijkstra
 - Bellman-Ford
 - Floyd-Warshall
- Time Complexity Analysis

Bellman-Ford Algorithm

- Bellman-Ford can solve SSSP as well
- Slower than Dijkstra but can handle negative weights
- Bellman-ford performs at $\mbox{most}\,n$ iterations, where n is the number of nodes/vertices

Bellman-Ford Algorithm

Algorithm 1 Bellman-Ford algorithm.

```
1: function BELLMANFORD(weighted digraph(G, c); node s \in V(G))
          array dist[0..n-1]
2:
          for u \in V(G) do
3:
               dist[u] \leftarrow \infty
4:
          dist[s] \leftarrow 0
5:
          for i from 0 to n-1 do
6:
               for x \in V(G) do
                    for v \in V(G) do
8:
9:
                         dist[v] \leftarrow \min\{dist[v], dist[x] + c[x, v]\}
10:
          return dist
```


Bellman-Ford algorithm

Start at (A)

$$i = 0$$
$$i = 1$$

Bellman-Ford algorithm

Bellman-Ford algorithm

Start at (A)

$$i = 3$$
 $i = 4$
 \vdots
 $i = n - 1$

Bellman-Ford Algorithm

- Slower than Dijkstra's algorithm when all arcs are nonnegative.
- Similar idea as in Dijkstra's: to find the single-source shortest paths(SSSP) under progressively relaxing restrictions.
 - Dijkstra's: one node a time based on their current distance estimate.
 - Bellman-Ford: all nodes at "level" 0,1,...,n-1 in turn.
 - Level of a node v– the minimum possible number of arcs in a minimum weight path to that node from the source s.

Bellman-Ford Algorithm

• **Theorem**. If a graph G contains no negative weight cycles, then after the ith iteration of the outer for-loop, the element dist[v] contains the minimum weight of a path to v for all nodes v with level at most i.

Why Bellman-Ford algorithm Works

Just as for Dijkstra's, the update ensures *dist[v]* never increases.

Induction by the level *i* of the nodes:

- Base case: i=0; the result is true due to initialization: dist[s] = 0; $dist[v] = \infty$; $v \in V \setminus s$.
- Induction hypothesis: dist[v]; $v \in V$, are true for i-1.
- **Induction step** for a node v at level i:
- Due to no negative weight cycles, a min-weight s-to-v path, γ , has i arcs.
- If y is the last node before v and γ_1 the subpath to y, then $dist[y] \leq |\gamma_1|$ by the induction hypothesis.
- Thus by the update rule: $dist[v] \le dist[y] + c(y,v) \le |\gamma_1| + c(y,v) \le |\gamma|$ as required at level i.

Bellman-Ford Algorithm

- Fact. This (non-greedy) algorithm handles negative weight arcs but not negative weight cycles.
- Runs in time O(nm) since the two inner-most for loops can be replaced with: for(x, v) $\in E(V)$.
- Can be modified to detect negative weight cycle.

Cycles of Negative Weights

 SSSP problem makes no sense if we allow digraphs with cycles of negative total weight.

$$S-C-A-B-X: 1 + (-10) + 2 + 1 = -6$$

S-C-A-B-C-A-B-X:
$$1 + (-10) + 2 + 3 + (-10) + 2 + 1 = -11$$

Cycles of Negative Weights (Contd.)

• Suppose the input to the Bellman–Ford algorithm is a digraph with a negative weight cycle. How could the algorithm detect this, so it can exit gracefully with an error message?

Run outer for loop for one more iteration. If dist[v] changes for some vertex v in the last iteration, then the graph has a negative weight cycle.

 1^{st} iteration : dist[s] = -3

 2^{nd} iteration : dist[s] = -6

 3^{rd} iteration : dist[s] = -9

Example. An application of Bellman–Ford algorithm with starting node 4 wnen the nodes are processed in the <u>order from 0 to 4.</u>

Example. Execute the Bellman–Ford algorithm on the graph below with starting vertex 0. Process nodes in the order from 0 to 5.

We have 6 vertices which means that at most we will do 5 iterations

S	0, S
Α	8
В	8
С	8
D	8
E	8

S	0, S
Α	8
В	8
С	8
D	8
E	8

1st Iteration

S	0, S
Α	20, S
В	10, S
С	8
D	8
E	15, S

1st Iteration

S	0, S
A	20, S
В	10, S
С	8
D	8
E	15, S

1st Iteration

From S we can get to A with a cost of 20 From A we can get to C with a cost of 10 So we can get from A to C with a total cost of 30

S	0, S
A	20, S
В	10, S
С	30, A
D	8
E	15, S

1st Iteration

From S we can get to A with a cost of 20 From A we can get to C with a cost of 10 So we can get from A to C with a total cost of 30

S	0, S
A	20, S
В	10, S
С	30, A
D	26, A
E	15, S

1st Iteration

Similarly, we can reach D from S through A with a total cost of 26

S	0, S
Α	20, S
В	10, S
С	30, A
D	26, A
E	15, S

1st Iteration

We know that we can reach B from S with a cost of 10.

From B we can reach D with a cost 3.

So via B, the total cost is 13 which is less than the current total cost from S to D via A

S	0, S
Α	20, S
В	10, S
С	30, A
D	13, B
E	15, S

1st Iteration

We update D entry with the new total cost

S	0, S
Α	20, S
В	10, S
C	30, A
D	13, B
E	15, S

1st Iteration

From S we can reach C with cost 30 Via C, we can reach D from S with a total cost of 28 (30 - 2) But because the current total cost to D (13) is less than this new value via C we do not update it

S	0, S
Α	20, S
В	10, S
С	30, A
D	13, B
E	15, S

1st Iteration

D is a sink so we just skip it

S	0, S
Α	20, S
В	10, S
С	30, A
D	13, B
E	15, S

1st Iteration

From E we can reach C with cost -10 and D with cost -5

S	0, S
Α	20, S
В	10, S
С	30, A
D	13, B
E	15, S

1st Iteration

This means that the total cost from S to C via E is 5 so we can update the value for C in the table

S	0, S
Α	20, S
В	10, S
С	5, E
D	13, B
E	15, S

1st Iteration

This means that the total cost from S to C via E is 5 so we can update the value in the table

S	0, S
Α	20, S
В	10, S
С	5, E
D	10, E
E	15, S

1st Iteration

The total cost from S to D via E is 10 so we can also update D.

S	0, S
Α	20, S
В	10, S
С	5, E
D	10, E
E	15, S

1st Iteration

Our first iteration is now concluded. We can move to our second iteration.

S	0, S
Α	20, S
В	10, S
С	5, E
D	10, E
E	15, S

2nd Iteration

We start again from S and we see that we cannot improve the costs for A, B and E.

S	0, S
A	20, S
В	10, S
С	5, E
D	10, E
E	15, S

2nd Iteration

We select A and we can see that we can reach C and D. But again we cannot do better than what we have already in the table

S	0, S
Α	20, S
В	10, S
С	5, E
D	10, E
E	15, S

2nd Iteration

We select B and from B we can reach D. But again we cannot do better than what is in the table.

S	0, S
Α	20, S
В	10, S
\bigcirc	5, E
D	10, E
E	15, S

2nd Iteration

From C we can reach D with a cost -2.

The cost from S to C is 5. So the total cost from S to D through C is 3.

This is better than what we have in the table so we update D cost .

S	0, S
Α	20, S
В	10, S
C	5, E
D	3, C
E	15, S

2nd Iteration

From C we can reach D with a cost -2.

The cost from S to C is 5. So the total cost from S to D through C is 3.

This is better than what we have in the table so we update the cost of D.

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

2nd Iteration

We move on to D. But again we cannot reach other nodes from D.

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

2nd Iteration

We move on to E. From E we can reach C and D. But again we cannot do better than what in the table so no update needed

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

2nd Iteration

This concludes our second iteration. We move on to the third.

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

We start the iteration again from S. And again we cannot do better than what in the table.

S	0, S
A	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

We move on to A and also in this case we cannot do better so we move on

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

We select B and also here we cannot do better.

S	0, S
Α	20, S
В	10, S
C	5, E
D	3, C
E	15, S

3rd Iteration

We select C and also in this case we cannot improve so we move on

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

We select D but we cannot reach other nodes. So we move on

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

Finally we select E. Again we cannot improve.

Because during this last iteration, our table has not changed, so we can **stop** here.

S	0, S
Α	20, S
В	10, S
С	5, E
D	3, C
E	15, S

3rd Iteration

The costs in the table represent the best total costs from S to any other nodes in the digraph

Time Complexity: Bellman-Ford (Contd.)

- For sparse graphs and adjacency lists: $\Theta(n)\Theta(e) = \Theta(ne)$
- For dense graphs we have $\Theta(e) = O(n^2)$, so Bellman-Ford is $\Theta(n)O(n^2) = O(n^3)$
- With an adjacency matrix: $\Theta(n^3)$.
- Conclusion: Dijkstra is faster but doesn't give the right answers when we have negative weight edges/arcs

• In this example graph, assuming that **A** is the source and edges are processed in the worst order, from right to left, it requires the full |V|-1 or 4 iterations for the distance estimates to converge.

• Conversely, if the edges are processed in the best order, from left to right, the algorithm converges in a single iteration. Source – Wikipedia

SUMMARY

- Algorithms on Weighted Graphs
 - Dijkstra
 - Bellman-Ford
 - Floyd-Warshall
- Time Complexity Analysis

