DAVTYAN, N. A.

Chemical composition of the fuel oils in Romashkino Region petroleum. Trudy IGI 17:220-234 62. (MIRA 15:10)

(Petroleum as fuel)

D'YAKOVA, M.K.; DAVTYAN, N.A.; ZHAROVA, M.N.; AVRAMENKO, V.I.; KARANDASHEVA, V.M.

1. Institut goryuchikh iskopayemykh AN SSSR. (Coke industry—By-products) (Solvents)

The street	IYAN, M.A.						
	Activity of experimental	Activity of aminotransferases in the heart muscle during experimental myocarditis. Vop. biokhim. 3:107-113 '63. (MIRA 17:12)					
	1. Institut	biologicheskoy	i meditsinskoy	khimii AMN	SSSR, Moskva.		
	No.						

DAVTYAN, N.A.; VASIL'YEV, S.F.

Investigating the liquid products of the oxidation pyrolysis of low-octane gasoline. Nefteper. i neftekhim. no.7:27-29 '64.

(MIRA 17:11)

1. Institut goryuchikh iskopayemykh AN SSSR.

YULIN, M.K.; VOL'-EPSHTEYN, A.B.; DAVTYAN, N.A.; LISYUTKINA, L.N.

Investigating the composition of the products of the alkylation of phenol with isobutyl alcohol and isobutene. Neftekhimiia 4 no.5:717-721 S-0 *64. (MIRA 18:1)

1. Institut goryuchikh iskopayemykh AN SSSR

Functional state of the adrenal cortex in the early stages of experimental silicosis. Probl. endkok. 1 gorm. 6 no. 1:26-32 Ja-F '60. (MIRA 14:1) (ADRENAL CORTEX) (LUNGS—DUST DISEASES)

DAVTYAN, N.K.

Characteristics of the lipolytic activity of fatty tissue. Biul. eksp.biol.i med. 54 no.11:63-64 N '62. (MIRA 15:12)

1. Iz kafedry patologicheskoy fiziologii (zav. - prof. S.M. Leytes) TSentral'nogo instituta usovershenstvovaniya vrachey (dir. - M.D.Kovrigina), Moskva. Predstavlena deystvitel'nym chlenom AMN SSSR A.V.Lebedinskim.

(ADIPOSE TISSUES) (LIPOLYSIS)

DAVTYAN, N.K.

Lipolytic activity of adipose tissue in experimental alloxan diabetes. Biul. eksp. biol. i med. 55 /i.e. 56/ no.10:29-32 (%63) (MIRA 17:8)

1. Iz kafedry patologicheskoy fiziologii (zav. - prof. S.M. leytes) Thentral nogo instituta usovershemstvovaniya vrachey, Moskva. Freistavlona deyatvitel nym chlenom FMN SSSR V.V. Parinym.

DAVTYAN, N.K. (Moskva) Lipopytic activity of fatty tissues in relation to their absorption

of glucose following the direct action of some hormone factors. Probl. endok. 1 gorm. 9 10.6:33-38 N-D 163.

1. Iz kafedry patologicheskoy fiziologii (zav. - prof. S.M. Leytes)
TSentral'nogo instituta usovershenstvovaniya vrachey.

DAVITAN, N.K.

Effect of some normanal factors on the lipolytic activity of the adipose tissue and on the serum content of non-esterified (free) higher facty acids under normal conditions and in allowan diabetes. Probl. endck. i gorm. 10 no.4484-89 Jl-Ag 164.

1. Kafedra patologisheskoy fiziologii (zav. prof. S.M. Leytes) TSentralinogo instituta usovershenstvovaniya vrachey, Moskva.

LEYTES, S.M.; DAVTYAN, N.K.

Permissive role of glucocorticoids in the mobilization of fats from the adipose tissue. Biul. eksp. biol. i med. 59 no.2:55-57 F 165. (MIRA 18:7)

1. Kafedra patologicheskoy fiziologii (zav. - prof. S.M. Leytes) TSentral'nogo instituta uscvershenstvovaniya vrachey, Moskva.

LEYTES, S.M.; DAVTYAN, N.K.

Effect of the absorption of glucose by adipose tissue on its lipolytic activity under the influence of some hormones and experimental diabetes. Vop.med.khim. 11 no.5:49-54 S-0 165.

1. Kafedra patologicheskoy fiziologii TSentral'nogo instituta usovershenstvovaniya vrachey, Moskva. Submitted May 6, 1964.

BABAYAN, A.T.; INDZHIKYAN, M.G.; DAVTYAN, N.M.

Alkaline cleavage of 1.2-diquaternary ammonium salts. Dokl. AN Arm. SSR 35 no.4:173-176 '62. (MIRA 17:1)

1. Institut organicheskoy khimii AN Armyanskoy SSR. 2. Chlen-korrespondent AN Armyanskoy SSR (for Babayan).

BABAYAN, A.T.; INDZHIKYAN, M.G.; BAGDASARYAN, G.B.; DAVTYAN, N.M.

Amines and ammonium compounds. Part 22: Rearrangement-cleavage of ammonium salts containing -chloroethyl and allyl-type groups taking place under the effect of aqueous alkali. Zhur.ob.khim. 34 no.2:416-421 F '64. (MIRA 17:3)

1. Institut organicheskoy khimii AN ArmSSR.

BABAYAN, A.T.; MARTIROSYAN, G.T.; INDZHIKYAN, M.G.; DAVTYAN, N.M. MINASYAN, R.B.

Chemism of the mineralization process of organically combined chlorine in the plkaline cleavage of quaternary ammonium salts. Dckl. AN Arm. SSR 39 no. 2:99-106 164. (MIRA 17:9)

1. Chlen-korrespondent AN ArmSSR (for Babayan).

DAVIYAN, O. [Davtian, O.], prof.

Electrochemical power engineering. Nauka i zhyttia 12 no.3:26-29
Mr '63. (MIRA 16:11)

建设设置的企业的运动的 1946年,全国企业的建筑企业企业的企业的,但企业的,则是企业中等并将的企业的企业的企业的企业的企业的企业。

- 1. PANCHENKOV, G.M., DAVTYAN, O. K.
- 2. USSR (600)

"Research on the Dielectric Losses of the Mixtures Nitrobenzene-Benzene and Ethyl Alcohol-Benzene," Zhur. Fiz. Khim., 13, No. 5, 1939. Moscow, Petroleum Institute imeni Acad I. M. Gubkin, Lab of Physical and Colloidal Chemistry. Received 22 June 1938.

9. Report U-1613, 3 Jan 1952.

DAVIYAM, O. K.

C. M. Krahizhanovskiy energy Inst., Acad. Sci. USSR (-1946-)
"Diffusion Processes in real solutions of Electrolytes."

Iz. Ak. Nauk, Otdel Tekh. Nauk, No. 4, 1946

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00050981

DAVTYAM, O. K.

G. M. Krzhizhanovskiy Energy Inst., Acad. Sci. SSSR, (-1946-)

"The Diffusion Potential of Real Solutions of Electrolytes."

Zhur. Fiz. Khim., No. 7, 1946.

DAVITAN, O. K.

PA 18775

USSR/Chemistry - Electrolytes
Chemistry - Electrochemistry

"The Diffusion of Electrolytes," O. K. Davtyan, 8 pp

"Zhur Fiz Khim" Vol XX, No 6

K Cl and NaCl were used as the electrolytes. Graphs and tables of results accompany the article. The theoretical dependence of the real solution of electrolyte on the concentration of the electrolyte

A 19775

FRADKINA, E.M.; SHIROKOV, M.F.; YEL'TSIN, I.A.; DAVITIAN. O.K.

Concerning the papers by O.K.Davtian on the dielectric permeability and conductivity of electrolytes. Emr.exsp. i teor.fiz. 17 no.4:375-376 (MERA 6:7)

(Electrolytes--Conductivity) (Davtian, O.K.)

DAVTYAN (1.K)

USSR/Kinetics - Combustion. Explosions. Topochemistry. Catalysis.

: Referat Zhur - Khimiya, No 6, 1957, 18631 Abs Jour

: Ye.N. Ovchinnikova. O.K. Davtyan.

Oxidation of Sulfur Dioxide on Activated Carbon by Author

Liquid Contact Method. Title

: Zh. fiz. khimii, 1956, 30, No 8, 1735-1738 Orig Pub

It is shown that oxidation of SO2 takes place on the surface of activated carbon (I) at the adsorption of the mix-Abstract

ture SO₂ O₂, as well as of SO₂ alone at indoor temperature and that the oxidation product can be washed off from the catalyst surface with water as H2SO4 (so-called liquid contact method) (RZhKhim, 1956, 32026). The superficial oxidized product dissociates at temperatures above 220° liberating SO₂ in gaseous phase. The amount of oxidized SO2 rises together with the moisture in carbon up . to a limit (0.25 g of H2SO4 per 1 g of carbon). The oxidation degree increases sharply, if I adsorbed 02 and H20

Card 1/2

_ 268 -

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R000509

USSR/Kinetics - Combustion. Explosions. Topochemistry. Catalysis.

: Referat Zhur - Khimiya, No 6, 1957, 18631 Abs Jour

> simultaneously. It is assumed that in absence of H2O, oxidation proceeds at the expense of superficial oxides on I. The speed of the liquid-contact formation of H2SO4 on I drops with the rise of concentration and, in case of a gas mixture of 20% of SO2 and 80% of air, the formation discontinues at 40% of H2SO4 in the liquid phase, which is explained by diffusion difficulties. The initial speed of acid formation is proportional to the square root from the product of the partial pressures of SO2 and O2.

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00050981

A Study of the Adsorption Properties of the Brown-Green Clays (Cont.)

clays were activated for two hours in 30 percent sulfuric acid or in ten clays were activated for two hours in 30 percent greater than that percent hydrochloric acid. On testing with sunflower oil this material gives a discoloration factor 20 percent greater than that material gives a discoloration factor 20 percent greater than that for the Zikeyevskiy tripoli. These results confirm the suitability for the Zikeyevskiy tripoli. These results confirm the suitability of using the Odessa brown-green clays for purifying vegetable oils.

S. P. Sh. Card 2/2

BURSHTEYN, S.I.; DAVTYAN, C.K.; TIKHONYUK, R.V.

Studying adsorptive capacity of Odessa brown-green clays.
Bent. gliny Ukr. no.2:128-135 '58. (MIRA 12:12)

1. Odesskiy gosudarstvennyy universitet.
(Odessa Province-Clay) (Adsorption)

AUTHOR:

Davtyan, O. K.

76-32-4-34/43

TITLE:

The Elaboration of a New Method of Leak Detection in Vacuum Systems and in High-Pressure Apparatus (Razrabotka novogo metoda obnaruzheniya techi v vakuumnykh sistemakh i v appa-

raturakh vysokogo davleniya)

PERIODICAL:

Zhurnal Fizicheskoy Khimii, 1958, Vol. 32, Nr 4, pp. 935-

-936 (USSR)

ABSTRACT:

The principle of the present method consists of the fact that the hydrogen used as test gas is oxidized on a palladium catalyst with oxygen and that the temperature rise is either recorded by ignition, or by measuring with thermocouples. Besides hydrogen also other compounds e.g. vapors of organic, low boiling compounds can be used. For the determination of leakages also a socalled indicator lamp can be constructed which in principle consists of a glass bulb with a platinum or palladium spiral. The platinum spiral has a diameter of o.1 mm and a length of from 5-10 cm and the oxidation of hydrogen is energetically carried out at a pressure above 10-3 torr, with the temperature of the wire strongly rising from

Card 1/2

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00050981

The Elaboration of a New Method of Leak Detection in Vacuum Systems and in High-Pressure Apparatus

76-32-4-34/43

450 to 800°C. In vacuum determinations a thermocouple is used in the indicator lamp, this is however, only rarely necessary. The lamp practically operates without inertia. There are 6

references, 1 of which is Soviet.

ASSOCIATION:

Odesskiy gosudarstvennyy universitet (Odessa State University)

SUBMITTED:

June 10, 1957

AVAILABLE:

Library of Congress

1. Vacuum apparatus--Leak detection 2. High pressure apparatus -- Leak detection 3. Hydrogen-- Applications 4. Explosimeters --Design

Card 2/2

DAVIYAN, O.K.; BURSHTEYN, S.I.

Adsorptive capacities of Odessa green clays and prospects

for their industrial use. Bent.gliny Ukr. no.3:149-157
(MIRA 12:12)

1. Odesskiy gosudarstvennyy universitet. (Odessa Province---Glay)

s/076/60/034/01/018/044 5 (4) B008/B014 Davtyan, O. K. AUTHOR: Application of the Group Theory in Quantum Chemistry TITLE: I. Simplification of the Method of the Group Theory Zhurnal fizicheskoy khimii, 1960, Vol 34, Nr 1, pp 108-116 PERIODICAL: (USSR) In this article it is shown that it is theoretically possible to simplify the method of the group theory without reducing ABSTRACT: accuracy. Two methods used to symmetrize the initial eigenfunction are discussed: one method makes use of the matrix properties, and the other is based on similarity transformation. The essential features of the principle underlying the simplification of the group-theory method are the following: 1) The incomplete eigenfunction of the general system is invariant in its ground state with respect to transformations by operations of the symmetry groups of the respective molecule. 2) The quantum-mechanical electron-density distribution in the closed molecule shells has the same symmetry as the field of the core of the nucleus. 3) The best molecular orbit φ_i which is a linear combination of atomic orbits, can only Card 1/3

Application of the Group Theory in Quantum Chemistry. I. Simplification of the Method of the Group Theory

S/076/60/034/01/018/044 B008/B014

be real. 4) As the symmetry of the nuclear field is invariant with respect to transformation operations of the symmetry groups of the respective molecule, also the square of the molecular orbit 912 must be invariant. On performing symmetrygroup operations on the molecule under consideration, the above principles allow to obtain all possible identical expressions of the initial variation function. With the aid of these identities all possible equalities of the variationfunction coefficients are determined. This leads in all cases to a decrease in the secular determinant. In many cases one obtains the same results by simplification of the secular equation as by the application of the ordinary group-theory method. To illustrate, the author calculates the energy of the six mobile electrons of the benzene molecule both by the localized electron pair and the molecular-orbital methods. In both cases, the data obtained and the degree of simplification of the secular equation do not differ from those resulting from the application of the ordinary group-theory method. The method suggested here does not fully replace the

Card 2/3

Application of the Group Theory in Quantum Chemistry. I. Simplification of the Method of the Group Theory

S/076/60/034/01/018/044 B008/B014

important group-theory method. It can be used only as one of the applications of this method. There are 4 references, 2 of which are Soviet.

ASSOCIATION:

Odesskiy gosudarstvennyy universitet im. I. I. Mechnikova (Odessa State University imeni I. I. Mechnikov)

SUBMITTED:

April 17, 1958

Card 3/3

DAVTYAN, O.K. (Odessa)

Application of group theory quantum chemistry. Part 2: Examples of problems solved by a simplified group theory method. Zhur. fiz. khim. 34 no.2:295-305 F '60. (MIRA 14:7)

1. Odesskiy gosudarstvennvv universitet im. I.I.Mechnikova. (Quantum theory) (Groups, Theory of)

DAVTYAN, O.K.; MANAKIN, B.A.; MISIUK, F.C.

Temperature dependence of the rate of formation of sulfurio acid in the catalytic exidation of sulfur district on activated coal by the liquid-contact method. Nauch. ezhegod. Khim. fak. Od. un. no.2:113-115 '61. (MIRA 17:8)

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00050981

DAVIYAN, C.K.; CVCHINNIKOVA, Ye.N.; GRIGOR'YFV!, C.A.

Catalytic activity of platinated nickel as related to sulfur dioxide oxidation. Nauch. ezhegod. Khim. fak. Od. un. no.2: (MIRA 17:8)

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00050981

EAVIYAN, O.K.; KUSKOVA, M.S.; MANAKIN, E.A.

Study of gulvanic cells by means of hydrogen percxide as a depolarizer. Nauch. ezhegod. Khim. fak. Od. un. no.2r117-120 (MIRA 17:8)

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00050981

DAVTYAN, O.K.; IZMAYLOVA-RATUSHNAYA, D.N.; MANAKIN, B.A. Study of an oxygen electrode on a chromium-nickel carrier. Nauch. ezhegod. Khim. fak. Cd. un. no.2:120-123 61. (MIRA 1728)

DAVTYAN, O.K.; BURSHTEYN, S.I.; R1 BOK SUN

Filtering and absorptive properties of Odessa green clays.

Filtering and knim. fak. Od. un. no.2:123-125 '61.

Nauch. ezheged. Khim. fak. Od. un. no.2:123-125 (MIRA 17:8)

DAVTYAN, O.K.; OVCHINNIKOVA, Ye.N.

Mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 1: Oxidation of sulfur dioxide on an activated carbon surface at 20°C in the presence of water vapor. Zhur. fiz. khim. 35 no. 4:713-718 Ap '61. (MIRA 14:5)

1. Odesskiý gosudarstvennyy universitet im. I.I. Mechnikova, kafedra fizicheskoy khimii.

(Sulfur dioxide) (Oxidation)

(Carbon, Activated)

DAVIYAN, O.K.; TKACH, Yu.A.

Machanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 2: Catalytic activity of surface "exides" on carbon. Zhur. fiz. khim. 35 no.5:992-998 (MIRA 16:7) My 161.

1. Odesskiy gosudarstvennyy universitet imeni Mechnikova, kafedra fizicheskoy khimii. (Sulfur dioxide) (Oxidation) (Catalysis)

DAVTYAN, O.K.; MANAKIN, B.A.; MISYUK, E.G.; POLISHCHUK, Yu.N.

Mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 3: Relation between depolarizing oxides on carbon and platinum and the catalytic effect of the latter in the oxidation of SO₂. Zhur.fiz.khim. 35 no.6:1186-1191 Je *61.

(MIRA 14:7)

1. Odesskiy gosudarstvennyy universitet imeni I.I.Mechnikova, kafedra fizicheskoy khimii. (Electrochemistry) (Catalysts)

S/076/61/035/009/001/015 B101/B110

AUTHORS:

Ovchinnikova, Ye. N., and Davtyan, O. K.

TITLE:

Study of the mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. IV. Low-

temperature oxidation on platinum

PERIODICAL: Zhurnal fizicheskoy khimii, v. 35, no. 9, 1961, 1907 - 1910

TEXT: The authors studied the oxidation of SO₂ on the surface of a platinum catalyst. Method and apparatus had been described for the use with activated carbon (Ref. 3: Zh. fiz. khimii, 35, 713, 1961). The catalyst was produced by electrochemical precipitation of platinum black from chloro platinic acid on a platinum wire net. The amount of precipitated platinum black was determined gravimetrically, and the activity of the catalyst was referred to 1 g of platinum black since the platinum net had no activity under experimental conditions (20°C). The apparatus with the net carrying the platinum black was evacuated. Cleaned air (140 mm Hg) and SO₂ (340 mm Hg) were filled in. After a certain time, the gas

Card 1/3

Study of the mechanism ...

s/076/61/035/009/001/015 B101/B110

was sucked off, the catalyst washed in boiling water, and the amount of resulting H2SO, determined titrimetrically. The catalyst was found to become poisoned by repeated treatment with SO2. In the first experiment, its activity was about 0.33 mmoles H_2SO_4/g_8 in the fourth one, only 0.1 mmoles/g. Control tests with chemically pure $S0_2$ produced from Na_2S0_3 proved that the SO, itself, and not any impurities, exerted the poisoning action. The degree of poisoning depends on the number of contacts between catalyst and SO2, not on their duration. The experimental results are explained as follows: Oxidation of SO, is performed by oxygen chemosorbed on the active centers of the catalyst. The catalyst is poisoned by chemosorption of SO, molecules on the active centers; thus, these centers are exempt from oxidation. The following tests are mentioned as a proof: (a) The platinum catalyst was degasified in vacuo for 2 hr at $100^{\circ}\mathrm{C}$, and subjected to the action of an SO₂ atmosphere for 2 hr at the same temperature. After cooling to 20°C, sucking-off of the SO2, degasification of Card 2/3

Study of the mechanism ...

S/076/61/035/009/001/015 B101/B110

the catalyst in vacuo, the catalyst had only an activity of 0.088 mmoles/g. Thus, the contact with SO_2 (without O_2) at 100° C produced a high degree of poisoning. (b) Two treatments of a freshly prepared catalyst with SO_2 (without O_2) reduced its activity to 1/10. A paper by 0. K. Davtyan et al. (Zh. fiz. khimii, 35, 1186, 1961) is mentioned. There are 2 figures and 5 Soviet references.

ASSOCIATION: Odesskiy gosudarstvennyy universitet im. I. I. Mechnikova (Odessa State University imeni I. I. Mechnikov)

SUBMITTED: April 20, 1959

Card 3/3

		1	Calculation of absolute reaction rates. 1944-1950 '61.										Zhur	(MIRA 14:10)					
		1	. •	Odes	ski	r go	eude (C)	rstv	onn al	yy u reac	nive tion	rsite , Rat	t imen e of)	1 T.)	. Me	chnik	. BYO		•
								,											
								٠.											
																		•	
																			. :
					•													-	
	•																		
		•						* * * * *											
																			•
						:													

DAVTYAN, O.K. (Odessa)

Mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 5: Origination of potentials of hydrogen and oxygen electrodes and the dependence of the potentials upon the degree of filling of active centers of the catalyst surface. Zhur.fiz.khim. 35 no.11:2582-2588 N '61. (MIR. 14:12)

1. Odesskiy gosudar stvennyy universitet.
(Catalysts)
(Electrochemiatry)

5.1190

31185

5/076/61/035/012/005/008

B138/B101

AUTHORS:

Tkach, Yu. A., and Davtyan, O. K.

TITLE:

Investigation of the mechanism of hydrogenation and electrochemical combustion on solid catalysts. VI. Active centers

and the appearance of the oxygen potential on carbon

PERIODICAL: Zhurnal fizicheskoy khimii, v. 35, no. 12, 1961, 2727 - 2735

TEXT: Only the oxygen adsorbed by carbon, and which can readily be evacuated in a vacuum at $20^{\circ}\mathrm{C}$, is active in the catalytic oxidation of SO_2

at low temperatures (Ref. 1: Zh. fiz. khimii, 35, 992, 1961; Ref. 2: ibid;, 35, 1186, 1961). Only the active centers of the carbon participate (the number of these has been calculated). In the chemisorption of 0, on

carbon, the positive potential depends on the coverage of these active centers. To explain these processes 0. K. Davtyan (Ref. 3: Zh. fiz. khimii, 35, 2582, 1961) made the following assumptions: 1) the chemical and electrochemical activity of the catalyst electrode is dependent, not on the total amount of chemisorbed substance, but on the amount adsorbed Card 1/4

Investigation of the mechanism of ...

31185 S/076/61/035/012/005/008 B138/B101

on the active centers; 2) surface migration, with the surmounting of the potential barrier, leads to mutual transfers between the particles chemisorbed on active and inactive centers. He derived the equation

$$\mathbf{g} = \mathbf{e_0} - \frac{\mathbf{e_0} - \mathbf{e'}}{\lg 2} \lg \frac{2Q_0}{Q_0 + Q}, \tag{1}$$

showing the dependence of the electrode potential on the amount of material chemisorbed on active centers. ξ = electrode potential at the coverage given, which corresponds to Q coulombs; ξ_0 = maximum electrode potential in the solution; Q_0 = maximum amount of active substance chemisorbed at ξ_0 ; ξ' = potential where Q = 0. For the number of active centers as a function of maximum potential the equation

$$Q_0 = \frac{Q}{2 \cdot 10^{-0.301 \, \Delta \epsilon / \Delta \epsilon} - 1}, \qquad (2)$$

was derived, where $\Delta E = E_0 - E$; $\Delta E' = E_0 - E'$, on the basis of the curve in Fig. 10. These equations and assumptions were examined experimentally in this work. Transfer of chemisorbed O_2 from inactive

to active centers was effected by the method described in Ref. 1. The carbon black electrode was heated in a vacuum Card 2/4

CIA-RDP86-00513R00050981

Investigation of the mechanism of ...

31185 S/076/61/035/012/005/008 B138/B101

for 12 1/2 hrs at 600° C. The electrode was oxidized for 2 1/2 hrs with 0_2 at 25° C and atmospheric pressure, and the reaction vessel was filled with 31% H_2SO_4 . After the cathode polarization current had been switched off the potential rose at a rate which increased with temperature. When the potential value had been restored and secondary cathodic polarization carried out, oxygen loss occurred, which also increased with temperature. In the first case it is assumed that there was 0_2 migration from inactive to active centers, and in the second, in the opposited direction. When polarization was repeated, lower potential values always appeared, gradually eliminating the 0_2 from the electrode. Anodic polarization at various current densities agreed with Davtyan's equation over a wide range. Using the second equation $0_0 = 131.64$ µcoulombs/cm² was found, which corresponds to $0_2 = 107.60$ µcoulombs/cm² the low temperature oxidation of $0_2 = 107.60$ µcoulombs/cm² card $0_2 = 107.60$ µcoulomb

Investigation of the mechanism of...

S/076617035/012/005/008
B138/B101

This makes the number of active centers 3.358·10¹⁸ per m². There are 11

ASSOCIATION: Odesskiy Gosudarstvennyy universitet im. I. I. Mechnikova (Odessa State University imeni I. I. Mechnikova)

SUBMITTED: April 4, 1960

Fig. 10. Curves for anodic polarization of the carbon black electrode at 0°C and different current densities.
(1) 1.06·10⁻⁹ a/cm²; (2) 1.41·10⁻⁸ a/cm²;
(3) calculated according to Eq. (1);
Legend: (a) µcoulomb/cm²; (b) potential, v.

Gard 4/4

\$/076/62/036/004/001/012 B101/B110

1.1190 AUTHORS:

Davtyan, O. K., and Misyuk, E. G.

TITLE:

Investigation of the mechanism of oxidation, hydrogenation and electrochemical burning on solid catalysts. VII. Problems of chemisorption. Formation mechanism of the hydrogen- and oxygen electrode potentials on platinized platinum

PERIODICAL: Zhurnal fizicheskoy khimii, v. 36, no. 4, 1962, 673-680

TEXT: In a previous study (Zh. fiz. khimii, 35, 2582, 1961), the following assumptions were made concerning the chemisorption of H₂ and O₂ on catalyst surfaces, as well as formation and change of the catalyst (or electrode) potential depending on the occupancy of the active centers (AC) by chemisorbed gas: (1) the electrode (or catalyst) surface is energetically inhomogeneous. It has (differently intensive) AC, across which all processes of chemisorption and desorption proceed. (2) The occupation of the total surface of an electrode takes place by migration of the chemisorbed gas from the AC to less active and inactive centers. This process is reversible and tends towards a dynamic equilibrium. Card 1/3

Investigation of the mechanism ...

S/076/62/036/004/001/012 B101/B110

(3) The change of the electrode potential, with change of the occupancy is based on concentration polarization. The number of occupied AC for a given potential is determined by the difference of the energy levels of the particles on the AC and in the solutions. For energetically varying AC the potential depends on the mean difference of the energy levels. (4) On the basis of these assumptions, $\mathcal{E} = \mathcal{E}_0 - \left[(\mathcal{E}_0 - \mathcal{E}') / \log 2 \right] \log \left[2Q / (Q_0 + Q) \right]$ (1), was derived for the electrode potential ε . ε_0 is the limit potential of the gas electrode; Qo is the quantity of electricity corresponding to electrode saturated to a maximum with gas; Q is the amount of electricity for a certain amount of chemisorbed gas; & is the potential corresponding to Q; & is the initial potential at the beginning of chemisorption. These assumptions were experimentally checked in the present study by means of a platinum-black platinized platinum wire electrode in KOH solution. I. A test of the H2 migration on the electrode showed the following (a) Cathodic polarisation of the electrode after the setting in of migration equilibrium was -0.76 v. Current was switched off after anodic polarization up to -0.137 v, and cathodic polarization only reached about 0.20 v. This could be repeated, and to each (lower) \$\tilde{H}_2\$ content of the electrode surface there corresponded a certain potential which Card 2/3

Investigation of the mechanism ...

S/076/62/036/004/001/012 B101/B110

develops by migration of H2 from inactive centers to AC. So far, this effect has been explained by diffusion. (b) The migration of H2 from AC to inactive centers is seen from the fact that (at 100°C) cathode polarization up to -0.08 v and cut-off is followed by rapid approach of the potential to an equilibrium value about 0.03 v. (c) By "freezing" the migration at 0° C, a wide range (0 to -0.565 v) of agreement with the values calculated from Eq. (1) was found for E. (d) The varying activity of the AC was proved by the dependence of the agreement between calculated and experimental $\mathcal E$ values on the initial occupancy. Since $\mathbf H_2$ is first sorbed at the most active AC and then at the less active centers, migration sets in more easily at a high occupancy and thus also deviation of the experimental value from the calculated one. II. Chemisorption of 0_2 produced similar results. O2 migration is slower than that of H2. III. The anodic polarization of Pt at 100°C was found to lead to its partial oxidation: the number of AC decreases with increasing temperature There are 7 figures.

ASSOCIATION:

Odesskiy gosudarstvennyy universitet im. I. I. Mechnikova

(Odessa State University imeni I. I. Mechnikov)

SUBMITTED: Card 3/3

May 26, 1960

42182

S/076/62/036/011/005/021 B101/B180

26.1610

AUTHORS:

Tkach, Yu. A., and Davtyan, O. K. (Odessa)

TITLE:

Mechanism of oxidation, hydrogenation and electrochemical combustion on solid catalysts. VIII. Migration kinetics of chemisorbed oxygen on a carbon electrode

PERIODICAL:

Zhurnal fizicheskoy khimii, v. 36, no. 11, 1962, 2374 - 2381

TEXT: Oxygen was adsorbed by anodic polarization at 0, 50, and 100° C, corresponding to 46.67 and 63.64 μ coulomb/cm² on a carbon black electrode degassed in vacuo at 600° C and electrochemically refined from oxygen at 100° C. The change in potential was plotted, due to oxygen migration from active to inactive centers after disconnecting the current. The values approached an equilibrium potential. At a total oxygen concentration of .46.67 μ coul/cm², this is 0.375 v at 0° C, 0.357 v at 50° C, and 0.335 v at 100° C. For an oxygen concentration of 63.64 μ coul/cm², the values are 0.505, 0.481, and 0.454 v, respectively. Based on the law of mass action and on formal kinetics, calculation of the oxygen migration velocity from Card 1/2

Mechanism of oxidation...

S/076/62/036/011/005/021 B101/B180

active to inactive centers, and vice versa gives oxygen concentration curves which do not agree with experimental data. On the other hand, the experimental curves are used to determine the equilibrium constants k_1 and k_2 for direct and inverse migration; and, using of the Van't Hoff and Arrhenius equation, it was found that log k was a linear function of 1/T is calculated as $E_1 = 716.81$ cal/mole for direct and $E_2 = 2833.02$ cal/mole for inverse migration. The passage of chemisorbed particles from active to inactive centers, and vice versa must thus occur by surface migration, a 4 tables.

ASSOCIATION: Odesskiy gosudarstvennyy universitet im. I. I. Mechnikova (Odessa State University imeni I. I. Mechnikov)

SUBMITTED: May 21, 1961

Card 2/2

V

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00050981

MENDER MANAGEMENT BEST HER PROPERTY HER PER SEA PLANTING

O.K. Daytyan

Mechanism and Kinstics of Current Producing Processes in the Electrochemical Oxydation of Gases

Report presented at the 14th meeting CITCE, Intl. Comm. of Electrochemical Thermodynamics and Kinetics, Moscow, 19-25 Aug 63.

Odessa University, Odessa, U.S.S.R.

DAVTYAN, O. K.

*Mechanism and Kinetics of Current Producing Processes in the Electro-

Deport presented at the 14th Annual Meeting of the International Committee on Electrochemical Thermodynamics and Kinetics (CITCE), Moscow, 19-25 Aug 63.

AM4008920

BOOK EXPLOITATION

S/.

Davtyan, Oganes Karapetovich

(huantum chemistry; lectures delivered at Odessa State University (Kvantovaya khimiya; kurs lektsiy, prochitany'ny v Odesskom gosudarstvennom universitete)
Moscow, "Vy'shaya shkola", 63. 0782 p. illus., biblio., index. Errata slip
inserted. 5,000 copies printed.

TOPIC TAGS: quantum chemistry, quantum theory, quantum statistics, chemical bond, intermolecular interaction, molecular orbital method, chemical reaction, reaction ability, reaction rate

PURPOSE AND COVERAGE: The book is based on a lecture course delivered by the author in the physical chemistry department of the Odesskiy gosudarstvenny by universitet (Odessa State University) and contains extensive systematized mathematical and quantum-mechanical material necessary for the understanding of the principles of quantum chemistry. Many of the methods used in quantum chemistry are explained in detail and are illustrated by numerous examples. These include the Hartree-Fok method, the Heitler-London method, the method of molecular orbitals and methods of valent bonds. The purpose of the book is to acquaint a large circle of chemists and physicists with modern quantum-chemical computation methods, and

Card 1/3

AM+008920 is intended for independent study. The author thanks Academician N. N. Boglyubov and Professors V. M. Tatevskiy and L. A. Nikolayev for reviewing the manuscript, critical remards, and for valuable advice. TABLE OF CONTENTS [abridged]: From the publisher - - 3 Foreword - - 5 Sec. 1. Main premised and mathematical formalism of quantum mechanics - - 10 (Deals with approximate quantum-calculation methods such as perturbation theory and the variational methods, the use of matrices and group theory, the use of statistical methods, the self consistent field method, etc.) Sec. 2. Complex systems and principal methods for their analysis - - 120 Sec. 3. Quantum theory of the chemical bond and intermolecular interation Sec. 4. Quantum theory of chemical reactions and reactivity - - 657 Appendix - - 758 Literature - - 760 Subject index - - 760 Subject index - - 766

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00050981

1. 18872-63 EWG(k)/EDS AFFTC/ASD Pz-4 ACCESSION NR: AP3006612 8/0076/63/037/009/1949/1957 AUTHOR: Daytyan, O. K. Aspects of the recent status of fuel cells SOURCE: Zh. fizicheskoy khimii, 37, no. 9, 1963, 1949-1957 TOPIC TAGS: fuel cell, electrochemical energy, thermal energy, automobile battery, automobile engine, gaseous fuel, photolysis ANSTRACT: The main advantage of electrochemical energy over Thermal energy is due to the high efficiency of fuel cells. This has been concluded not only from thermo-dynamic relationships but also has been proven under actual working conditions. Fuel cells also offer other advantages such as simplicity of design and absence of movable parts and noxious gases. They are considered to be ideally suited for various means of transportation, particularly for cars because fuel cells are not affected by short-circuiting which is extremely important in starting Also in temporary stopping a fuel cell battery will hardly use any fuel, whereas thermal conversion engines consume fuel even at idling speed. Thus fuel cell batteries will probably find use in cars and railroad engines. Fuel cells can

L 18872-63

ACCESSION NR: AP3006612

replace storage batteries as source of direct current in electroplating, refining of source metals, etc. Hydrogen-caygen batteries could be used in production of hydrogen isotopes. The author, who has been actively engaged in research on fuel cells since 1936, feels that most prominent fuels will be gases and liquids because coal will be limited exclusively to serve as raw material in chemical industry. Gaseous fuels will be available as by-products of coke and petroleum idustries and by reprocessing of natural gas. Hydrogen will be obtained from electrolysis of water with energy supplied by solar batteries or directly by energy for the manufacture of hydrogen. Consequently, electrochemical energy will because the primary source of power in future transportation, and eventually will be combined with atomic and solar energy. Orig. art. has: 1 table.

ASSOCIATION: Odesskiy gosudara tvennywy universitet im. I. I. Mechnikova (Odessa State University).

SURVITTED: 19May61

DATE ACC: 30Sep63

ENCL: 00

SUB CODE: CH

NO REF SIOV: 017

OTHER: 015

Card 2/2

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00050981(

ACCESSION NR: AP4034572 s/0076/64/038/004/0825/0832

AUTHOR: Davtyan, O. K. (Odessa)

TITIE: Study of oxidation, hydrogenation and electrochemical combustion on solid catalysts. IX Functioning of membrane electrodes (membrane type catalysts) in the electrochemical combustion of gases and in other homogeneous processes

SOURCE: Zhurnal fizicheskoy khimii, v. 38, no. 4, 1964, 825-832

TOPIC TAGS: membrane electrode, electrode, catalyst, surface catalysis, fuel cell, cell, heterogenious catalysis, catalysis, electrochemistry

ABSTRACT: One of the bases for the construction of gaseous elements end, consequently, the electrodes is that reacting gases and the electrolyte must have a free access to the surface of the catalyst or the electrodes in order to form an active contact of three phases: gas-catalyst-electrolyte. This article considered two methods of forming an active three phase boundary; which are (1) hydrophobization of the electrode and (2) formation of pressure drop between the reacting gases and the electrolyte. The hydrophobization of the electrode must be carried out in such a way that the electrode acquires a definite wetability gradient; the

ACCESSION NR: AP4034572

greatest concentration of hydrophobic substance must be on the gas side of the electrode. Investigation is made of the mechanisms of successive stages of current producing processes such as chemisorption of gas, migration of chemisorbed particles to the active sections of the three phase boundary and ionization of the chemisorbed particles. A precise definition is given for the three-phase active boundary concept. The reaction conditions considered are for functioning of the membrane type catalyst as fuel-cell electrodes with liquid electrolyte. These are applicable to any heterogeneous catalysis reactions in which the reactant is both in the gaseous and in the liquid phase. Orig. art. has: 3 figures.

BEN BERGIN BENERAL BENERAL

ASSOCIATION: Odeskiy Gosudarstvennyy Universitet (Odessa State University)

SUBMITTED: 19May62

DATE ACQ: 20May64

ENCL: 00

SUB CODE: GC, TP.

NO REF SOV: 005

OTHER: 002

Card 2/2

EN RECENTANT PER MANAGEMENT DE LE SENTIMENT DE LA PROPERTIE DE LA PROPERTIE DE LA PROPERTIE DE LA PROPERTIE DE

ACCESSION NRT AP4039614

S/0076/64/038/005/1077/1083

AUTHOR: Davtyan, O. K. (Odessa)

TITLE: Study of the mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. X. The oxygen electrode

SOURCE: Zhurnal fizicheskoy khimii, v. 38, no. 5, 1964, 1077-1083

TOPIC TAGS: electrochemical oxidation, oxygen electrode, oxidation catalyst, metal oxide catalyst, MOLi₂O catalyst, oxygen chemisorption oxide electrical conductivity

ABSTRACT: A theoretical study of the chemisorption of oxygen on a catalyst surface has been presented as the principal approach to the selection of catalyst-carriers for oxygen electrodes with predictable electrochemical activity. The metal oxides NiO, CoO, CuO, MnO, etc., and solid solutions of these oxides and lithium oxide have been examined from the aspect of their serving as oxygen electrode carriers. A relation between the hole-type conductivity of these oxides and lithium oxide and the chemisorption of oxygen on

Card 1/2

ACCESSION NR: AP4039614

their surface is given. It was shown that all factors leading to a decrease in the elastic forces of the crystal lattice of these oxides should lower the activation energy of electrical conductivity and chemisorption. The rate of the current generating processes on the oxygen electrode with a solid solution carrier of lithium oxide and NiO, CoO, CuO, MnO etc. depends upon the hole concentration, which is equivalent to the concentration of lithium. The electrochemical activity of the electrode increases with increased concentration of lithium in the solid solution passing through a maximum. The conclusions were confirmed experimentally. Orig. art. has: 17 formulas.

ASSOCIATION: Odesskiy gosudarstvenny*y universitet im. I. I. Mechnikova (Odessa State University)

SUBMITTED: 20Mar63

DATE ACQ: 19Jun64

ENCL: 00

SUB CODE: GC

NO REF SOV: 005

OTHER: 004

Cord 2/2

ACCESSION NR: AP4011755

s/0076/64/038/006/1594/1599

AUTHOR: Davtyon, O. K.

TITIE: Study of the mechanisms of oxidation, hydrogenation and electrochemical combustion on solid catalysts. XI. Potential of gas electrodes as a function of the nature of carrier

SOURCE: Zhurnal fizicheskoy khimii, v. 38, no. 6, 1964, 1594-1599

TOPIC TAGS: fuel cell, electrochemistry, adsorption, gas electrode, electrode potential, catalysis, surface catalysis, chemical potential

ABSTRACT: The themmodynamically reversible potential of a gas electrode is determined by the maximum work of conversion of a given gas at a given pressure from the molecular state into electrolytic solution in the form of ions. These processes of hydrogen and oxygen electrodes may be represented as follows:

2Ho(g):H'(1)+e"

 $\frac{1}{2}O_2(g):0^{-2}(1)-2e$ where g and 1 represent gaseous and ionic states respectively and thus for any gas

Cord 1/3

ACCESSION NR: AP4041755

$$Q = \frac{1}{ZF} \Delta Zg - 1 = \frac{1}{ZF} (\mu_B - \mu_1)$$

where ΔZ_{g} = Z_{g} = Z_{g} is the difference of the chemical potential of the system and μ is the chemical potential. The article considers the thermodynamically reversible potential of gas electrodes as a function of the nature of the carrier in the absence of contact with the gaseous phase and also in the presence of contact between the electrode and the gaseous phase. If the gaseous electrode is in equilibrium with the gaseous phase its equilibrium potential is independent of the nature of the carrier electrode and it is only determined by the changes of chemical potential during transition of substance from gaseous to ionic state. In the absence of contact with gaseous phase the magnitude of potential, depending on the nature of the carrier, is basically determined by the free energy of chemisorption of the considered gas. The electrode potential is a function of the number of active centers and their energy level only for electrodes with immobile chemisorbed layer in the absence of contact with the gaseous phase. In the general case the number of active centers and the extent of their activity determine only the kinetics of current producing processes. If the rate of these processes is very small these factors may also influence the electrode potential. The standard

Card 2/3

ACCESSION NR: AP4041755

free energy of chemisorption, which may be determined by the electrochemical methods, characterize the catalytic activity of the carrier electrode. Original control of the carrier electrode.

art. has: 1 table and 23 equations.

ASSOCIATION: Odesskiy gosudarstvennyy universitet (Odessa State University)

SURVITTED: 22Nov62 ENCL: 00

SUB CODE: GC NO REF BOY: 002 OTHER: COL

L 23897-65 F8S-2/EVT(1 /EW3(k)/EVI(m)/EPF(c)/EEC(k)-2/EPF(n)-2/T-2/T/ EED-2/FS(b) P2-6/Pr-4/Pu-4 RHH/WW

ACCESSION NR: AP5002572

5/0076/64/038/012/2812/2818

AUTHOR: Daylyan, O.K.

TITLE: Mechanism and kinetics of current generating processes in electrochemical gas combustion. 1. A working model of the porous structure and active surface of gas electrodes

SOURCE: Zhurnal fizicheskoj khimii, v. 38, no. 12, 1964, 2812-2818

TOPIC TAGS: gas combusticu, electro hemical combustion, current generation, gas electrode, electrode structura, electrode model

ABSTRACT: An approximate working model has been derived for the porous structure of gas electrodes to permit correlations between their structural parameters and experimental results. The model is based on previous studies and on assumptions of a continuous, interconnected and open pore structure, and of passage of capillaries through the electrode mass at an average angle of 45°. From these assumptions, and from the experimentally determined distribution function of pore radii, expressions are derived for the effective pore length and for the effective number of pore radii. The active pore surface, i.e. the locus

Cord 1/3

L 49453-65 | EPF(c)/ENT(m)/ENP(b)/ENA(d)/EMP(t) IJP(c) JW/JD/MB

ACCESSION NR: AP5009943

UR/0364/65/001/002/0207/0211

AUTHOR: Daviyan, O. K.; Tkach, Yu. A.

29 27 5

TITLE: Mechanism of exidation, hydrogenation and electrochemical combustion on solid catalysis. XIII. Study of the number of active charcoal centers as a function of the autivation temperature.

SOURCE: Elektrokhimiya, v. 1, no. 2, 1965, 207-211

TOPIC TAGS: |charcoal, surface activity electrochemistry

ABSTRACT: Different forms of carbon have a different number of surface-active centers depending on the pretreatment. The purpose of this work was to investigate one of the parameters which determine the surface activity, namely the activation temperature effect. A special device was designed and constructed for the investigation of electrodes made from powdered catalysts. The number of active centers was determined for different types of activated charcoals by the electrochemical method. The number of active centers calculated on the basis of amodic polarization data agrees quite well with the number obtained on the basis of cathodic polarization. The experimental amodic polarization data agree with the theoretical data

Card 1/3

49453-65 ACCESSION NR: AP5009943 based on calculations from previously derived equations relating electrode potential to the number of active sites on the surface. The data on the number of active centers in different types of chargoal, obtained from the experimental anodic and cathodic polarization curves are shown in table 1 of the Enclosure. The results show that the electrochemical method may be used for finding the number of active centers on different objects. "The experimental work was carried out with the participation of Ya. Sedlevskiy, Trainse from the Polish National Republic." Orig. art. has: 3 figures and 1 table. ASSOCIATION: Odesskiy gosudarutvernyy universitet im. I. I. Mechnikova (Odessa SUBMITTED: LLMay64 ENCL: 01 SUB CODE: GC, IFT NO REF SOV: 1005 OTH:R: 002 C. 8 2/3

ACCESSI	ION NR: AP500569D	\$/0076/65	/039/002/0313/0320	19
AUTHOR:	Daytyan, O. R.	4		B
	T compartion of Res	tics of the current les. II, Active sur	generating processes in face of gaseous electrod	the electro- les
Source	Zhurnal fizichesk	ry klimii, v. 39, no	. 2, 1965, 313-320	
800 774	AGS: active electrical pressure drop, chemical combustion	pore surface distrib	ctrode, porous structure ution, current generatio	theory,
surface	during incomplete	Dus actuature of gas. Wetting by the elect	imil, 38, 2818, 1964), t sous elements and their rolyte. The present pap ends it to the case of w	active
of elec cases w electro	trodes in cases when then the electrode s lyte. A method is	n the chemisorbed law urface is completely proposed for calculations	ends it to the case of we calculating the active so yer is stationary or mob or incompletely wetted ting the mean length of the optimum pressure	urfacearea ile and in by the

ACCESSION NR: AP5006690		
of the surface relative t as a function of the radi all cases, this maximum r	to the capillary radii, the us corresponding to the equal	perimental distribution curve active surface has a maximum uilibrium pressure drop. In e maximum distribution of the
ASSOCIATION: Odesskiy No	sudarstvennyy universitet i	
ASSOCIATION: Odesskiy go (Odessa state university)	sudarstvennyy universitet j	im. I. I. Mechnikova
ASSOCIATION: Odesskiy No	sudarstvennyy universitet i	
ASSOCIATION: Odesskiy po (Odessa state university) SURMITTED: 24Aug53	sudaratvenhyy universitet j	im. I. I. Mechnikova

EWP(k)/EWP(z]/EWP(m)/EWP(m)/EWP(b)/T/EWP(e)/EWP(t) I. 48984-65 Pf-L/Ped IJP(c) JD/RWH/HW UR/0076/65/039/004/0877/0883 ACCESSION NR: AF 5011467 B AUTHOR: Davtyan, O.K. TITLE: Shuly of the mechanism of exidation, hydrogenation, and electrochemical combustion on solid catalysts. XII. Porous structure and optimum operating conditions of gas electrodes SOURCE: Zhurnal fizicheskoy klimit, v. 39; no. 4, 1965, 877-883 TOPIC TACH: gais electrode, electrode structure, porous electrode, hydrogen electrode, nickel electrode, solid catalyst, mercury porometry ABSTRACT: Mercury porpinelry was used to study the structure of hydrogen electrodes. A low-pressure porosimeter designed by the authors and a low and high pressure porosimeter were employed. The electrodes were made of pressed and sintered bickel powder; they were activated by soaking in 70% nickel nitrate and reducing in H2 at 400C. Curves of the distribution of the pore surface versus the effective pore radii were plotted and found to go through a muximum, a Chussian distribution being observed. Several maxima are possible for the same sample, depending upon its porous structure, the highest maximum being associated with fine pores. The optimum condition of operation of such electrodes is the establishment of the three-phase boundary, i.e., the immersion Cord 1/2

EVT(m)/EPF(c)/EWG(in)/EWP(j)/T Pc-li/Pr-li RWH/WW/RK I 63567.-65 UR/0076/65/039/005/1098/1104 AP501352D ACCESSION MR: 541.13:541.124/.128 AUTHOR: Davtyan, O. K. TITLE: Kinetics and mechanism of current-producing processes in the electrochemical combustion of gases. Part 3. Electrochemical kinetics SOURCE: Zhurnal fizicheskoy khimii, v. 39, no. 5, 1965, 1098-1104 TOPIC TAGS: electrode polarization, electrochemical process ABSTRACT: On the basis of the theory of porous electrodes and the theory of absolute reaction rates, the authors examine the kinetics of electrode processes involving oxygen and hydrogen games, independently of the chmic potential drop of the electrode and of the diffusion processes. It was found that when the electrochemical polarisation (electrode polarization) n has low values, it is directly proportional to the current density. In the range of low gas pressures, the polarization should decrease sharply with increasing pressure; the change in n then becomes smoother and goes through a minimum. At high current densities, the electrochemical polarization is directly proportional to the log of the current density; n changes Card 1/2

ACCESSION NR: AP501			1 1 3			
relationship is loga it possible to deter chemical activity of	with the pressure in the same manner as in the case of low polarizations, but the relationship is logarithmic. The equations derived for the polarization n make it possible to determine the magnitude of the exchange current and the electrochemical motivity of the electrodes when the experimental values of the polarizations are known. Onig. art. hes: 42 equations.					
ASSOCIATIMI: ildesal State University)	kly gosudaretvennyy universitet		a .			
SUBILITED: +2Blov83	tilcli 00	SUB CODE: CC				
	- OTHER: OO1					
NO REP SOVE DOS						
NO REP SOVE DUS						
NO REP SOVE DUS						

UR/0076/65/039/006/1338/1344 ACCESSION NR: AP5015087 AUTHOR: Davtyan, O.K. TITLE: Kinetics and mechanism of current-producing processes in the electrochemical combustion of gases. Part 4. Electrode polarization caused by chmic drop in the capillaries SOURCE: Zhurnal fizicheskoy khimii, v. 39, no. 6, 1965, 1338-1344 TOPIC TACS: electrode polarization, electrochemical process, gas combustion, gas electrode ABSTRACT: The polarization of gas electrodes, determined by the limited rate of some process, is associated with a potential drop due to the ohmic resistance of the electrolyte in the pores of the electrode, and the total polarization always has two components: the electrochemical (or concentration) polarization and the ohmic drop in the pores. It is shown that at very high current densities, the ohmic potential drop in the capillaries of the electrode increases with decreasing thickness of the electrode and increasing length of its active portion. The optimum electrode thickness was found to be 1-2 mm; below 1 mm, the polarization rises sharply, and above 2 mm, the polarization drop is Cord 1/2

1. 58807-55 ACCESSION NR: AP501568	7		1
capillary passes through a was determined as a function of figures and 27 formulas.	minimum. On the one on of the other paramet	ctive length of the active portion is, the effective length of the cap ers of the electrode. Orig. art.	has:
State University) SUBMITTED: 25Nov63	iencl: 00	SUB CODE: GC, ME	
NO REF SOV: 003	OTHER: 001		

DAVTYAN, O.K.

Mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 10. Zhur. fiz. khim. 38 no.5:1077-1083 My '64. (MIRA 18:12)

1. Odesskiy gosudarstvennyy universitet imeni Mechnikova. Submitted March 20, 1963.

DAVTYAN, O.K.; Prinimali uchastiye: EPIMAKHOV, Yu.K.; MISYUK, E.G.;
BURSHTEYN, I.I.; SEMIZOROVA, N.F.

Mechanism of oxidation, hydrogenation, and electrochemical combustion on solid catalysts. Part 12. Zhur. fiz. khim. 39 no.4:877-883 Ap '65. (MIRA 19:1)

1. Odesskiy gosudarstvennyy universitet imeni Mechnikova. Submitted Aug. 17, 1963.

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00050981

EWT(m)/EWP(j)/T RM/DS 38164-66 UR/0364/66/002/003/0311/0318 SOURCE CODE: AP6019237 ACC NRI 70 29 Misyuk, E. G.; Davtyan, O. K.; Sofronkov, A. N.; Uminskiy, M. V. AUTHOR: 4 Odessa State University im. I. I. Mechnikov (Odesskiy gosudarstvennyy universi ORG: tet) TITLE: A study of electrode semiconducting catalyzers SOURCE: Elektrokhimiya, v. 2, no. 3, 1966, 311-318 TOPIC TAGS: electrode, semiconductor catalyst, lithium, nickel, oxide, electrochemistry, electric conductivity, defect structure, temperature dependence, lattice parameter, solid solution, activation energy, chemisorption ABSTRACT: The effect of fluctuations in hole concentration on electroconductivity, lattice parameters and activation energies was studied in solid solutions of LizNin-10. Equations are derived for the desorption and chemisorption of oxygen in LixNi(1-x)O, and for the formation of hole complexes essential to semiconducting oxides. The above oxides were formed by reacting nickel and lithium carbonates with acetic acid and decomposing the resulting acetates in air at 600°C. In this way, oxide mixtures containing 10, 20, 30, 40 and 50 at % lithium were produced. The solid solutions were produced by heating the mixtures at 700, 800, 1000 and 1200°C. The concentration of Ni3+, Li20 and Li in the solid solutions are given for various Li starting concentrations ([Li⁺]₀) and reaction temperatures. Lattice parameters varied linearly with UDC: 541.135.52-44 Card 1/2

L 38164-66

ACC NR: AP6019237

formation temperature from 4.16 Å at 700°C to 4.18 Å at 1000°C. Electrical conductivity (σ), [Ni³⁺] content and σ /[Ni³⁺] are given as a function of formation temperature for test temperatures ranging from 20 to 500°C. Maxima always occurred at 900°C (formation temperature) and the maxima was found to increase with test temperature. Maxima also occurred for [Ni³⁺], plotted as a function of [Li⁺]₀ at [Li⁺]₀ = 30%. Activation energies calculated for [Li⁺]₀ = 20% ranged from 0.83 to 4.37 kcal/mol depending on the formation and test temperatures. The electrical conductivity depended on the activation energy, lattice parameter and jump frequency of the transition holes; thus it possessed an electron hole nature as well as an ionic one. The latter was the cause of hole complex dissociation and the dissociation of "inert" interstitial lithium oxides into ions. Orig. art. has: 6 figures, 2 tables, 10 formulas.

SUB CODE: 07,11/ SUBM DATE: 01Feb65/ ORIG REF: 004/ OTH REF: 006

Card 2/2 MLP

L 42159-66 EWP(j)/EWT(m)/T/EWP(t)/ETI IJP(c) RM/DS/JW/JD/JG ACC NR. AP6022425 (A) SOURCE CODE: UR/0364/66/002/004/0451/0456
By C.: Daytyan, O. K.; Uminskiy, M. V.
ORG: Odessa State University imeni I. I. Mechnikov (Odesskiy gosudarstvennyy universitet)
TITIE: Study of <u>semiconductor electrodelectallysts</u> . Part 2: Dependence of the hole concentration and electrical conductivity of $\text{Li}_{\mathbf{x}}\text{Cu}_{(1-\mathbf{x})}^{0}$ solid solutions on the conditions of their formation
SOURCE: Elektrokhimiya, v. 2., no. 4, 1966, 451-456
ABSTRACT: In Cu (1-x) were studied. A marked dependence of the hole concentration on
the temperature of formation of the formation of the formation was noted. Under optimum conditions, 5.6 at. 8 lithium becomes incorporation of Li20 in NiO and CuO the solid solution. The difference in the maximum incorporation of Li20 in NiO and CuO
is explained by the close similarly in the close similarly is explained by the close similarly is explained by the close similarly is explained by the close similarly in the close similarly is explained by the close similarly in the close similarly in the close similarly in the close similarly in the close similarly
this must not be construed to indicate the absence of mobile charges of different only this must not be construed to indicate the absence of mobile charges of different only the charges
Card 1/2

nowever	, it is im Dereture (mpossible to dependence, ures and 3	conduction so distinguish since their tables.	these two activation	energies	conduction are nearly	the same.	Orig.
SUB COD	E: 07,20	/ SUBM DAT	E: 01Feb65/	ORIG REF:	002/ OT	H REF: 00	2	
							•	
				•		•	•	
, was a	••		• . •		•	•		
						•	•	
		•		. '		•		•