Analysis of Algorithm

Reductions Among Classic NP-Complete Problems: 3SAT, MIS, MVC, and 3-Colorability

Instructor: Dr. Mudassir Shabbir

ITU

May 10, 2025

Scribe: Abdul Basit

Muhammad Okasha Khan

What is Reduction?

Definition

Reduction in algorithms is a technique where one problem is **translated into another problem** in such a way that a solution to the second problem can be used to solve the first one.

Reduction should be:

- Polynomial Time
- Translates yes instance to yes
- Translates no instance to no
- In \rightarrow input of A, Out \rightarrow input of B

As we did 3-SAT \leq_p MIS

Reduction Direction Matters

Key Insight: The difficulty of a reduction depends on its direction.

- Sorting \leq_p 3SAT is easy.
- 3SAT \leq_p Sorting would imply P = NP. (which is a big deal)

Computational Complexity Principle

If $A \leq_p B$ and B is in P, then A is in P. But if A is NP-complete and B is in P, then P = NP!

Applications of Reduction

Commonly Used In:

- Algorithm Design
- Complexity Theory
- Problem Classification

Key Benefit

Helps break complex problems into simpler or already-solved problems.

Reduction in Algorithm Design

Example: Sorting \rightarrow Selection

- If you can repeatedly find the smallest element (selection)
- You can sort the entire list by:
 - Select minimum element
 - Remove it from list
 - Repeat until list is sorted

Implementation

SelectionSort directly uses this reduction approach!

May 10, 2025

Reduction in Complexity Theory

Proving Problem Hardness

Used to compare difficulty of problems, especially for :

- NP-completeness proofs
- Undecidability proofs

Standard Proof Technique

To show **Problem A** is hard:

- Take a known hard problem (e.g., SAT)
- Reduce it to A in polynomial time
- Show solution to A solves SAT
- Onclude: A is at least as hard as SAT

Why Reduction Matters

Practical Benefits

- Algorithm Reuse: Leverage existing solutions
- Optimal Design: Build on proven strategies
- Code Efficiency: Avoid reinventing the wheel

Theoretical Importance

 Hardness Proofs: Classify problem difficulty
 Completeness: Identify

fundamental problems

Computability: Establish decidability limits

3-SAT Problem Definition

What is 3-SAT?

A special case of the Boolean satisfiability problem (SAT), and one of the most famous **NP-complete** problems.

Key Characteristics

- Boolean formula in CNF (Conjunctive Normal Form)
- Each clause has exactly 3 literals
- NP-complete (can verify solutions quickly, but no known efficient solution)

Decision Problem: "Is there a True/False assignment to variables that makes the entire formula evaluate to True?"

Formal Definition of 3-SAT

Mathematical Representation

Given a formula ϕ in 3-CNF form:

$$\phi = \bigwedge_{i=1}^{m} (I_{i1} \vee I_{i2} \vee I_{i3})$$

where:

- m = number of clauses
- Each l_{ij} is a **literal** (variable or its negation)
- $\wedge = AND$ (conjunction) $\vee = OR$ (disjunction)

Computational Challenge

The problem remains NP-complete even when:

- No clause contains duplicate literals
- Each variable appears in at most 3 clauses

3-SAT Example

Sample 3-CNF Formula

$$(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_4) \wedge (\neg x_3 \vee \neg x_4 \vee x_5)$$

Components

- Variables: x_1, x_2, x_3, x_4, x_5
- Clauses: 3
- Literals: 9 (3 per clause)

Satisfying Assignment

One possible solution:

- $x_1 = \text{True}$
- $x_2 = \text{False}$
- $x_3 = \text{True}$
- $x_4 = \text{True}$
- $x_5 = \text{True}$

Why 3-SAT Matters

Theoretical Significance

- Canonical NP-complete problem
- Used as starting point for thousands of NP-completeness proofs
- Fundamental in computational complexity theory

Practical Applications

- Circuit design verification
- Al planning problems
- Software verification
- Cryptography

3-SAT vs. General SAT

3-SAT

- Every clause has exactly 3 literals
- Still NP-complete
- Often easier to reduce to
- Standard benchmark problem

General SAT

- Clauses can have any number of literals
- First problem proven
 NP-complete (Cook-Levin)
- More general but often reduced to 3-SAT

Key Theorem

Any NP problem can be **polynomially reduced** to 3-SAT while preserving satisfiability.

3-SAT Example Walkthrough

Given Formula

$$(x \vee y \vee z) \wedge (\neg x \vee \neg y) \wedge (x \vee \neg y \vee z)$$

Variables: x, y, z

Clauses: 3 (corrected from original)

Verification Process:

Try assignment: x = True, y = False, z = True

Result: All clauses satisfied Formula is satisfiable

Note on Original Example:

The original formula contained a 4-literal clause $(y \lor x \lor y \lor z)$ which violates 3-SAT rules. This has been corrected.

Vertex Cover Problem

Definition

A **vertex cover** of a graph G = (V, E) is a subset $C \subseteq V$ such that:

$$\forall (u, v) \in E, u \in C \lor v \in C$$

Decision Problem

Input: Graph G and integer k **Question:** Does G have a vertex

cover of size $\leq k$?

Vertex Cover Properties

Simple Algorithm

- While edges remain:
 - Pick any edge (u, v)
 - Add both u and v to cover
 - Remove all edges incident to u or v
- Output the selected vertices

Note

This greedy algorithm doesn't give minimal cover but guarantees $|\mathcal{C}| \leq 2 \times$ optimal

Vertex Cover Example

Graph Instance

- {2,3,4} (size 3)
- {1,3,4} (size 3)
- {2,3,5} (size 3)

Types of Vertex Cover Problems

Decision Problem

Input:

- Graph G = (V, E)
- Integer k

Question:

Does G have a vertex cover of size $\leq k$?

Optimization Problem

Input: Graph

$$G=(V,E)$$

Goal: Find the

minimum vertex cover

C*

Equivalence: The decision version is NP-complete \iff The optimization version is NP-hard

Maximum Independent Set (MIS)

Definition

Given an undirected graph G = (V, E), an **independent set** is a subset $S \subset V$ where:

$$\forall u, v \in S, (u, v) \notin E$$

The Maximum Independent Set is the largest such S.

Decision Problem

Optimization Problem

Input: Graph G, integer k **Question:** Does G have an independent set of size > k?

Find the independent set with maximum cardinality: $S^* = \arg\max_{S \subset V} |S|$

Maximum Independant Set

One possible MIS: $\{1,3,5,7,10,14,15\}$

Reduction: MIS \leq_p MVC

Objective

Transform any MIS instance into an MVC instance such that:

S is MIS of
$$G \iff V \setminus S$$
 is MVC of G

Reduction Steps

- Start with graph G = (V, E) for MIS
- Use same graph for MVC
- Let k = |V| t (where t is target MIS size)
- \bigcirc Solve MVC(G, k)
- **9** Return $V \setminus C$ as MIS

MIS: {1,4},{2,3} MVC: {2,3},{1,4}

Proof of Correctness

Key Lemma:

For any graph G = (V, E) and subset $S \subseteq V$:

S is independent set $\iff V \setminus S$ is vertex cover

An independent set is a set of vertices with no two adjacent.

A vertex cover is a set of vertices that touches every edge (i.e. every edge has at least one endpoint in the set).

Proof:

- (\Rightarrow) If S is independent, every edge has ≥ 1 endpoint in $V \setminus S$ (else S wouldn't be independent)
- (\Leftarrow) If $V \setminus S$ is vertex cover, no edge connects two vertices in S (else $V \setminus S$ wouldn't cover it)

Implications:

Instructor: Dr. Mudassir Shabbir (ITU)

- Size relationship: |S| = |V| |C|
- S is maximum independent set $\iff C$ is minimum vertex cover I
- Reduction preserves optimality

Example Reduction

Original Graph *G*

MIS Instance:

- $V = \{1, 2, 3, 4, 5\}$
- Target size t = 2

Reduced MVC Instance

Parameters:

- Same graph G
- k = |V| t = 3

Solution Mapping

- MVC solution: {2,4,5} (size 3)
- MIS solution: $V \setminus \{2,4,5\} = \{1,3\}$
- Verification: $\{1,3\}$ is indeed an independent set

Complexity Implications

Reduction Properties

- **Time:** O(1) (graph remains unchanged)
- Space: No additional memory needed
- Approximation: Preserves approximation ratios

Theoretical Consequences

- Since MIS is NP-hard, MVC must also be NP-hard
- MVC inherits inapproximability results from MIS
- Any algorithm for MVC can solve MIS via this reduction

Graph Colorability Problem

Definition A graph G = (V, E) is k-colorable if there exists a function:

$$c: V \rightarrow \{1, 2, \ldots, k\}$$

such that:

$$\forall (u,v) \in E, \ c(u) \neq c(v)$$

Decision Problem

Input: Graph G, integer k **Question:** Is G k-colorable?

Optimization Version Find the chromatic number $\chi(G)$: The smallest k for which G is k-colorable

Colorability Examples

2-Colorable Graphs

- Bipartite graphs
- Trees
- Even-length cycles

Non-2-Colorable

- Odd-length cycles
- Complete graphs (K_n needs n colors)

Testing 2-Colorability

Equivalent to checking if the graph is **bipartite** - solvable in O(|V| + |E|) time using BFS/DFS

Graph Coloring Complexity

Theoretical Status

- **2-Coloring**: Polynomial time (bipartite check)
- **3-Coloring**: NP-complete (reducible from 3-SAT)
- k-Coloring ($k \ge 3$): NP-complete
- **Approximation**: No constant factor approximation unless P=NP

Greedy Coloring Algorithm

- Order vertices arbitrarily
- For each vertex:
 - Assign smallest available color not used by neighbors
- $\textbf{ Uses} \leq \Delta + 1 \text{ colors } \big(\Delta = \mathsf{maximum} \\ \mathsf{degree}\big)$

Brooks' Theorem:

Any connected graph is Δ -colorable, except complete graphs and odd cycles

Special Cases and Variants

Edge Coloring

- Color edges instead of vertices
- No adjacent edges share color
- Vizing's Theorem:

$$\Delta \leq \chi'(G) \leq \Delta + 1$$

List Coloring

- Each vertex has its own set of allowed colors
- More general than classic coloring

Perfect Graphs

- $\chi(G) = \omega(G)$ (clique number)
- Includes:
 - Bipartite graphs
 - interval graphs
 - Chordal graphs

Four Color Theorem:

Every planar graph is 4-colorable (famous mathematical result proved in 1976)

$3-SAT \leq_p 3-Coloring Reduction$

Objective

Given a 3-CNF formula Φ , construct graph G_{Φ} such that:

 Φ is satisfiable \iff G_{Φ} is 3-colorable

Color Semantics:

- ▼ (True)
- F (False)
- N (Base)

Key Components:

- Variable gadgets
- Clause gadgets
- Coloring constraints

Color triangle

Variable Gadget Construction

For each variable x_i

- Create triangle: x_i , $\neg x_i$, and common vertex N
- Forces x_i and $\neg x_i$ to be T/F (opposite colors)
- Base vertex enforces constraints

Coloring Implications

- If $x_i = \mathsf{T}$, then $\neg x_i = \mathsf{F}$
- If $x_i = F$, then $\neg x_i = T$

Example Assignment

Clause Gadget Construction

For each clause $(l_1 \lor l_2 \lor l_3)$

- Create triangle connecting literals to new vertex C
- Add edge to base vertex B
- Ensures at least one literal is T

Satisfaction Condition A clause gadget is properly colored iff at least one literal vertex is \top

Valid Coloring: Clause satisfied by l_2

Full Construction Example

For formula $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_4)$

- **1** Build variable gadgets for x_1 to x_4
- Connect literals to clause gadgets
- Add base vertex connections

Correctness Proof

Key Observation

Any valid 3-coloring corresponds to a satisfying assignment, and vice versa.

$$(\Rightarrow)$$
 Satisfiable \implies 3-colorable (\Leftarrow) 3-colorable \implies Satisfiable

- Set True variables to T. False to F
- Color clauses using remaining color for C
- All constraints satisfied

- Extract assignment from variable colors
- Each clause has at least one T literal
- Formula satisfied

Correctness Proof

Polynomial Time

Construction is O(n+m) where:

- \bullet n = number of variables
- \bullet m = number of clauses

NP-Completeness

Proves 3-Coloring is NP-complete via reduction from 3-SAT

Dr. Mudassir Shabbir's Figure (3-SAT \leq_p 3-Coloring)

Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F