MA106: All Propositions and Theorems

Shubh Kumar

IIT-B, Spring Semester 2021

1 Collection

Proposition

Let $m, n, p, q \in \mathbb{N}$. If $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ and $\mathbf{C} \in \mathbb{R}^{p \times q}$, then $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$ (which we shall write as \mathbf{ABC}).

Proposition

Let $m, n, p \in \mathbb{N}$. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, then $(\mathbf{AB})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$.

Proposition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be in REF with r nonzero rows. Then the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the zero solution if and only if r = n. In particular, if m < n, then $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a nonzero solution.

Proposition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the zero solution if and only if any REF of \mathbf{A} has n nonzero rows. In particular, if m < n, then $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a nonzero solution.

Proposition

Let **A** be a square matrix. Then **A** is invertible if and only if A^T is invertible. In this case, $(A^T)^{-1} = (A^{-1})^T$.

Corollary

Let $A \in \mathbb{R}^{n \times n}$. If there is $B \in \mathbb{R}^{n \times n}$ such that either BA = I or AB = I, then A is invertible, and $A^{-1} = B$.

Proposition

Let **A** and **B** be square matrices. Then **AB** is invertible if and only if **A** and **B** are invertible, and then $(AB)^{-1} = B^{-1}A^{-1}$.

Proposition

An $n \times n$ matrix is invertible if and only if it can be transformed to the $n \times n$ identity matrix by EROs.

Proposition

An $n \times n$ matrix is invertible if and only if it can be transformed to the $n \times n$ identity matrix by EROs.

A set S of vectors is called **linearly dependent** if there is $m \in \mathbb{N}$, there are (distinct) vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ in S and there are scalars $\alpha_1, \ldots, \alpha_m$, not all zero, such that

$$\alpha_1 \mathbf{a}_1 + \cdots + \alpha_m \mathbf{a}_m = \mathbf{0}.$$

It can be seen that S is linearly dependent \iff either $\mathbf{0} \in S$ or a vector in S is a linear combination of other vectors in S.

Proposition

Let S be a set of s vectors, each of which is a linear combination of elements of a (fixed) set of r vectors. If s > r, then the set S is linearly dependent.

Corollary

Let $n \in \mathbb{N}$ and S be a set of vectors of length n. If S has more than n elements, then S is linearly dependent.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The **row rank** of \mathbf{A} is the maximum number of linearly independent row vectors of \mathbf{A} . Thus the row rank of \mathbf{A} is equal to r if and only if there is a linearly independent set of r rows of \mathbf{A} and any set of r+1 rows of \mathbf{A} is linearly dependent.

Proposition

If a matrix A is transformed to a matrix A' by elementary row operations, then the row ranks of A and A' are equal, that is, EROs do not alter the row rank of a matrix.

Proposition

Let a matrix \mathbf{A}' be in REF. Then the nonzero rows of \mathbf{A}' are linearly independent, and so the row rank of \mathbf{A}' is equal to the number of nonzero rows of \mathbf{A}' .

Proposition

The row rank of a matrix is equal to the number of nonzero rows in any row echelon form of the matrix.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The column rank of \mathbf{A} is the maximum number of linearly independent column vectors of \mathbf{A} .

Clearly, column-rank(\mathbf{A}) = row-rank(\mathbf{A}^T).

Proposition

The column rank of a matrix is equal to its row rank.

Definition

A nonempty subset V of $\mathbb{R}^{n\times 1}$ is called a vector subspace, or simply a subspace of $\mathbb{R}^{n\times 1}$ if

- (i) $\mathbf{a}, \mathbf{b} \in V \implies \mathbf{a} + \mathbf{b} \in V$, and
- (ii) $\alpha \in \mathbb{R}$, $\mathbf{a} \in V \implies \alpha \mathbf{a} \in V$.

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Definition

The **null space** of **A** is

$$\mathcal{N}(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{R}^{n \times 1} : \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

Definition

The **column space** of **A** is

 $C(\mathbf{A}) :=$ the set of all linear combinations of columns of \mathbf{A} .

Definition

A subset S of V is called a basis of V if S is linearly independent and S has maximum possible number of elements among linearly independent subsets of V.

Clearly, a basis of V has at most n elements, and any two bases of V have the same number of elements.

Definition

The dimension of V is defined as the number of elements in a basis of V. It is denoted by dim V.

Definition

Let $S \subset \mathbb{R}^{n \times 1}$. The set of all linear combinations of elements of S is denoted by span S and called the span of S.

Proposition

Let V be a subspace of $\mathbb{R}^{n\times 1}$, and let $S\subset V$. Then S is a basis for $V\iff S$ is linearly independent and span S=V.

Corollary

Let V be a subspace of $\mathbb{R}^{n\times 1}$. Every linearly independent subset of V can be enlarged to a basis for V.

Proposition

Let $S := \{\mathbf{c}_1, \dots, \mathbf{c}_r\}$ be a basis for a subspace V of $\mathbb{R}^{n \times 1}$, and let $\mathbf{x} \in V$. Then there are unique $\alpha_1, \dots, \alpha_r \in \mathbb{R}$ such that $\mathbf{x} = \alpha_1 \mathbf{c}_1 + \dots + \alpha_r \mathbf{c}_r$.

Proposition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let rank $\mathbf{A} = r$. Then dim $\mathcal{C}(\mathbf{A}) = r$ and dim $\mathcal{N}(\mathbf{A}) = n - r$.

Theorem (Fundamental Theorem for Linear Systems: FTLS)

Let $m, n \in \mathbb{N}$ and \mathbf{A} be an $m \times n$ matrix with real entries. Suppose rank $\mathbf{A} = r$.

(i) Homogeneous Linear System : Ax = 0

(H)

The solution space $\{\mathbf{x} \in \mathbb{R}^{n \times 1} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$ of (H) is a subspace of $\mathbb{R}^{n \times 1}$ of dimension n - r.

In particular, r = n if and only if $\mathbf{0}$ is the only solution of (H). If r < n, then there are linearly independent solutions $\mathbf{x}_1, \ldots, \mathbf{x}_{n-r}$ of (H) and every solution of (H) is a unique linear combination of these $\mathbf{x}_1, \ldots, \mathbf{x}_{n-r}$.

- (ii) General Linear System: $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{b} \in \mathbb{R}^{m \times 1}$
- (G) has a solution if and only if $rank[\mathbf{A}|\mathbf{b}] = r$. In this case, let \mathbf{x}_0 be a particular solution of (G). If \mathbf{x} is a solution of (G), then $\mathbf{x} = \mathbf{x}_0 + \mathbf{x}_h$, where \mathbf{x}_h is a solution of (H) above.

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The row space of A, denoted $\mathcal{R}(\mathbf{A})$, is defined as the subspace of $\mathbb{R}^{1 \times m}$ spanned by the row vectors of \mathbf{A} .

Proposition

If **A** is lower triangular, then the determinant of **A** is the product of its diagonal entries.

Proposition

Let **A** be a square matrix. Then $\det \mathbf{A}^{\mathsf{T}} = \det \mathbf{A}$.

Corollary

If **A** is upper triangular, then the determinant of **A** is the product of its diagonal entries.

Proposition

Let **A** be a square matrix.

- (i) If two columns of **A** are interchanged, then det **A** gets multiplied by -1.
- (ii) Addition of a multiple of a column to another column of **A** does not alter det **A**.
- (iii) Multiplication of a column of $\bf A$ by a scalar α results in the multiplication of det $\bf A$ by α .

Corollary

Let **A** be a square matrix.

- (i) If two rows of $\bf A$ are interchanged, then det $\bf A$ gets multiplied by -1.
- (ii) Addition of a multiple of a row to another row of **A** does not alter det **A**.
- (iii) Multiplication of a row of **A** by a scalar α results in the multiplication of det **A** by α .

Proposition

A square matrix **A** is invertible if and only if det $\mathbf{A} \neq 0$.