

博士开题答辩

基于AGV的"货到人"仓储拣选系统调度优化模型与算法研究

汇报人: 刘腾博

导师: 李昆鹏教授

2023-05

- **O1** 研究背景及意义
 Research background and significance
- **02** 国内外研究现状
 Research status and progress
- **O3** 研究内容及创新点
 Research content and innovations
- **O4** 研究方案 Research program
- **UDD** 进度安排 Time schedule

01 研究背景及意义

- 电商企业的日处理订单量呈现爆炸式增长
- > 客户需求多样化、人工成本居高不下
- 传统物流方式已无法在 控制物流成本的同时, 快速响应客户订单需求
- ▶ 在电商配送中心,拣选作业成本约占90%, 直接参与分拣操作的人力约占50%,拣选时 间在总作业时间中占比高达30%~40%
- ➤ 亚马逊在2012年斥资7亿多美元研发了 仓储机器人Kiva用于拣选作业。工作效 率提升2-4倍,准确率高达99.99%
- ⇒ 纷纷布局 AGV 实现 "货到人"拣选作业

京东、阿里、苏宁...

- 目前,国内对应用AGV的"货到人"拣选系统的研究仍 处于探索阶段,在企业规模化应用中仍存在很多问题。
- 如何对"货到人"拣选系统各环节进行优化?
- ▶ 如何利用AGV优势,从整体提高订单拣选效率?

- 1. 订单分批:对于一定时间内的电商订单,按照一定规则将其划分为不同批次;
- **货架选择**:将批次分配至拣选站台,根据商品需求和库存确定需要搬运的货架;
- 3. 任务分配:将货架搬运任务分配至AGV,生成每台AGV的搬运任务序列;
- 4. AGV路径规划:规划AGV运送货架到工作站台的行驶路线,获得全局无碰撞路径。

电商配送 中心特点

- □ 订单商品呈现多品种、少批量;商品库存分布在多个货架;
- □ AGV由电力驱动行驶;数百台AGV同时工作;AGV可能存在冲突。

研

问

题

究

随着订单处理数量和AGV运行数量的增多,"货到人"拣选系统的调度优化问题更加复杂

① 订单分批:多品种、小批量的订单需求,分散存储的商品库存,需考虑订单与货架的供需关系;

② **协同调度**: 订单分批与AGV任务调度相互联系、相互制约,需将二者结合进行协同优化;

③ AGV充电管理: AGV在搬运货架过程中存在电量不足的情况,需考虑AGV电量决策任务序列;

4 AGV路径:多个AGV在执行货架搬运任务时可能存在碰撞,需识别不同冲突类型并避免碰撞。

研 究

意

义

针对基于AGV的"货到人"拣选系统不同环节调度优化,建立优化决策模型,设计高效的求解算法,为订单分批、任务调度、AGV路径规划等方面的研究提供理论支撑。

实践

意义

研究问题来源于实际智能仓库中遇到的调度难题,针对不同环节设计合理的优化方案,可以 降低运营成本,提高订单拣选效率和客户满意度。

02 国内外研究现状

战略层(仓库建设时的决策)

工作站设置 存储区大小

策略层(以周/日为单位的决策)

每种SKU的货架数 拣选站台和补货站台的数量 AGV数量

操作层 (实时决策)

I. 订单分配

- ① 拣选订单分配/分批
- ② 补货订单分配

II. 任务调度

- ①货架选择
- ② AGV调度

III. 路径规划

- ① 主动避撞
- ② 被动调整

作者	研究问题	解决方法
Boysen et al. (2017)	订单分批与排序, 货架排序	CPLEX以及仿真方法
Xiang et al. (2018)	商品储位指派、订单分批	可变邻域搜索、自适应算法
Gils et al. (2019)	订单分批、拣货员调度和路径	迭代局部搜索算法
Borrás et al. (2021)	多拣选员在线订单分批问题	可变邻域下降元启发式算法
Kuhn et al. (2021)	订单分批、车辆配送路径	大邻域搜索算法
Jiang et al. (2022)	订单分批和排序	基于情境的种子算法
Wagner et al. (2023)	人工拣货系统订单分批问题	可变邻域搜索方法
Xie et al. (2023)	订单分批、AGV路径	变邻域搜索算法

任务分配与调度

- ✓ 订单需求被哪些货架满足?
- ✓ 货架搬运任务**分配至哪个**AGV?
- ✓ AGV搬运货架**到哪个工作站台?**
- ✓ 货架到达顺序、AGV搬运顺序。

作者	研究问题	解决方法
Yuan et al. (2017)	搬运 AGV 共享分配问题	共享协议策略、排队网络
Zou et al. (2017)	RMFS 分配规则问题	基于规则的方法、邻域搜索方法
Ghassemi et al. (2018)	多 AGV 任务分配问题	分散多主体任务分配算法、仿真
袁瑞萍等 (2018)	拣货过程任务调度	共同进化遗传算法
Roy et al. (2019)	AGV 分配策略	两阶段随机模型、Arena仿真
Yoshitake et al. (2019)	AGV 调度	实时全息调度方法
Zhou et al. (2020)	多 AGV 任务分配问题	平衡启发式机制与仿真
Dou et al. (2020)	任务调度和路径规划协同优化	遗传算法、强化学习
Zhang et al. (2020)	RMFS 多 AGV 分配问题	改进的遗传算法
Teck et al. (2022)	工作站与 AGV 的综合排序问题	双层模因算法

| AGV充电管理、路径规划

- ✓ AGV行驶过程中**是否需要充电?**
- ✓ AGV**去往哪个充电站?**
- ✓ AGV**执行搬运和充电任务的顺序**。
- ✓ AGV行驶过程中**是否发生碰撞?**
- ✓ 不同冲突类型如何主动避撞?
- ✓ 突发情况如何被动避撞?

作者	研究问题	解决方法
Abderrahim et al. (2020)	基于 AGV 的作业车间调度问题	变邻域下降算法
Dang et al. (2021)	多负载AGV 的运输调度问题	混合自适应大邻域搜索方法
Manafi et al. (2021)	任务调度与AGV路径问题	基于质心对抗的珊瑚礁算法
Singh et al. (2022)	具有电池约束的 AGV 调度问题	自适应大邻域搜索算法
Jun et al. (2022)	AGV部分和完全充电策略	启发式算法

作者	研究问题	解决方法
Kumar et al. (2018)	RMFS 路径规划问题	无冲突路径规划算法
Zhang et al. (2018)	多 AGV 无冲突路径规划	改进的Dijkstra算法、避碰规则
Lee et al. (2019)	多 AGV 无冲突路径规划	改进的A*算法以及避碰规则
于赫年等 (2020)	多 AGV 路径规划问题	自调优A*算法、主动避障规则
Dou et al. (2020)	任务调度和路径规划协同优化	遗传算法、强化学习

研究现状分析

订单分配

- 文献多在"人到货" 拣选模式下研究订单 分批问题;
- ② 文献多在订单与货 架对应关系已知的情 况下求解, 假设每种 商品只能存储在一个 货架上;
- ③ 极少学者同时考虑 人工拣货成本和AGV 搬运成本两种因素。

任务分配与调度

- ① 多数研究只考虑 最小化AGV行驶距 离,而没有明确 AGV、货架的位置。
- 多数文献基于有 限数量的AGV和特 殊的仓库布局。
- ③ 部分文献中缺乏 对任务执行顺序的 决策。

AGV充电管理

- 对大规模复杂 AGV系统充电管理 的研究有限。
- 多数决策集中于 充电或电池更换策 略,忽视了AGV和 充电站的位置。
- 多数文献研究完 全和部分充电策略, 忽略了任务调度。

AGV路径规划

- 多数文献以生产 领域为研究背景。
- ② 文献多在已知障 碍物等信息的静态 环境下设计算法。
- 较少文献基于配 送中心规划AGV路 径,且极少文献涉 及"货到人"拣选 系统。

03 研究内容及创新点

- ◆ 实际中, **商品库存分布在多个货架上**,已知订单所需商品及数量,分批时应**首先根据订单需** 求选择供应货架。
- ◆ 每个订单通常由AGV搬运多个货架才能满足, 再由人工拣取订单所需商品放入对应周转箱。
- ◆ 如果**将目标货架和商品需求相似的订单合并为 批次**,则AGV搬运一次货架可供应多个订单需 求,人工拣取一次商品可放入多个订单周转箱。

- ➤ 本课题分别考虑**两个目标**:最小化AGV搬运货架 次数,最小化人工拣选成本和AGV搬运成本之和。
- ▶ 考虑订单需求多样化、商品库存多货架分布、订单与货架供需关系未知等实际情况,将订单分为不同批次,为批次选择货架,并决策供需数量。
- ➤ 不仅要考虑**订单的货架选取方法**,还要设计**批次** 标准及分批策略,是一个复杂的NP-Hard问题。

- ◆ 订单分批影响货架数,货架分配及搬运顺序决 定AGV总行驶时间,两个决策互相影响。
- ◆ 如果能**将所需商品相似的订单合并为批次**,则 AGV搬运货架一次可供应多个订单需求。
- ◆ 每台AGV、每个货架位置均不同,AGV从停 靠点出发搬运货架的顺序,影响总行驶时间。

- ➤ 本课题以**最小化AGV的总行驶时间**为目标。
- ▶ 考虑商品多货架存储、货架具有多个储位、 订单与货架的匹配关系未知等实际情况,及 AGV停靠点和货架位置均不同的仓库布局。
- ➤ 决策订单在批次的分配、批次与货架的供需、AGV与货架的指派、AGV的搬运序列,得到合理的**订单分批与AGV调度方案**。

问题3:考虑AGV电量消耗,基于AGV、货架、充电站位置均不同的仓库布局,研究<mark>带电量约束的AGV调度问题</mark>

- ◆ 配备了电力驱动的AGV, 能源消耗不可忽视。
- ◆ 实际中, **AGV可能出现电量不足**, 需在电量耗 尽前到达充电区, 充电结束后才能继续完成任务。
- ◆ AGV、货架、充电站的各自位置均不相同, AGV从其停靠点出发访问不同任务点,在任务 调度中应考虑充电需求。

- ➤ 本课题以**最小化所有AGV的总行驶距离**为目标, 设计AGV充电方案。
- 在满足AGV最大工作时间的条件下,对于不同停靠点的AGV,需决策其任务点访问顺序,即 货架搬运任务,以及电量不足时的充电任务, 并判断到哪个充电站充电。

- ◆ 系统生成拣货补货任务指令,将所对应货架的 搬运任务分配至AGV,由AGV沿算法规划的 路线将其搬运至作业平台,再将货架运回原位, 随后AGV返回停靠区或继续完成下次搬运任务。
- ◆ AGV作为关键设备, **行走时间直接影响拣货和 补货速度**, 进而影响整个仓库的作业效率。

- ➤ 本课题以**最小化AGV的任务完成时间**为目标。
- > 考虑拣选和补货任务下达至AGV的分配策略, 设计每台AGV的行走路线,及多台AGV间的 碰撞避免策略。
- 设计主动避撞机制得到无碰撞的可行路径,设计被动避撞机制对突发状况实时重调度。

04 研究方案

"货到人"拣选系统特点,提炼出4个优化问题,分别 建立数学模型,采用智能优化算法和机器学习技术求解。

- 订单分批问题,分别以最小化AGV搬运货架次数,以及 最小化人工拣货成本和AGV搬运成本之和为目标,设计 两阶段启发式算法求解;
- 订单分批与AGV协同调度问题,以AGV完成所有任务时 间最短为目标,设计启发式算法求解;
- 带电量约束的AGV调度问题,以最小化AGV总行走时间。 为目标,设计基于机器学习的超启发式算法求解;
- AGV任务分配、路径规划与碰撞避免问题,以最小化所 有AGV的总行驶距离为目标,设计两阶段算法求解。

针对以上4个优化问题,基于不同的算例规模和仓库布局, 采用CPLEX验证模型有效性,通过仿真实验比较所提算法与 其他算法的性能,并对设备数量进行灵敏度分析。

05 进度安排

已掌握的相关方法

- □ 能够构建符合问题特性的**线性规划模型**,已基本掌握设计**高效启发式算法**的能力。
- □目前,正在探索超启发式算法(Hyper-Heuristics, HH),将机器学习与HH相结合指导底层算子选择。 主要聚焦于RL的应用,如MAB、Q-learning和DQN。已利用RLHH求解问题,取得了初步效果。

已发表研究成果和探索方向

- □ 目前,已初步探索了订单分批(问题1)、AGV路径规划(问题4),发表了4篇相关文章。
- □ 关于订单分批与AGV协同调度(问题2)、带电量约束的AGV调度(问题3),已提出了解决思路。
- □接下来,将进一步探索基于策略的RL、更复杂的DRL以及第三代神经网络脉冲神经网络(Spiking Neural Network, SNN),作为HH的高层策略,提高整体性能。

已发表研究成果和探索方向

	问题	题 目	求解方法	期刊
研究成果	订单分批	"货到人"拣选系统中电商订单分批优化研究	两阶段算法	运筹与管理
		改进自适应遗传算法求解"货到人"拣选系统订单分批问题	自适应遗传算法	机械工程学报
	AGV路径规划及碰撞避免	"货到人"拣选系统中AGV路径规划与调度研究	两阶段算法	中国管理科学
		半导体生产车间智能AGV路径规划与调度	两阶段算法	计算机集成制造系统
探索方向	订单分批与AGV协同调度	"货到人"拣选系统中订单分批与AGV调度协同 优化研究	双层模拟退火算法	/
	AGV任务调度 (无电量约束)	A reinforcement learning based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses	MAB-HH (已完成)	/
	带电量约束的AGV调度	A deep reinforcement learning based hyper-heuristic for AGV scheduling problem with battery constraints in parts-to-picker system	DQN-HH	/
	AGV路径规划问题	A spiking neural network-based hyper-heuristic for AGV routing problem	SNN-HH	/

进度安排

时间	计划	节点
2023.05-2023.06	梳理研究思路,撰写选题报告	开题报告
2023.06-2023.09	完成MAB-HH 求解 AGV 任务调度问题 的文章 完成DQN-HH 求解带电量约束 AGV 调度问题 的文章	
2023.10-2024.02	完成 订单分批与AGV协同调度问题 的文章 探索基于策略的强化学习、更复杂的深度强化学习、SNN 采用上述新技术结合超启发式算法求解AGV路径规划问题	
2024.03-2024.09	完成SNN-HH求解AGV路径规划问题的文章 从整体角度思考"货到人"拣选系统优化思路	中期报告
2024.10-2025.01	形成整体优化框架,完成 一篇文献综述 毕业论文撰写	
2025.02-2025.06	准备结题答辩 完成毕业论文	毕业论文

谢谢观看

希望各位老师多提宝贵意见

汇报人: 刘腾博

导师: 李昆鹏教授

2023-05

