# 2020年CCF全国信息学奥林匹克联赛复赛提高组 CCF CSP-S 2020

## 模拟赛 day1

时间: 2020 年 9 月 6 日 08:30~12:30

| 题目名称    | 异或帽子    | 传话游戏       | 全球覆盖      | 幂次序列         |
|---------|---------|------------|-----------|--------------|
| 题目类型    | 传统型     | 传统型        | 传统型       | 传统型          |
| 目录      | hat     | string     | globe     | sequence     |
| 可执行文件名  | hat     | string     | globe     | sequence     |
| 输入文件名   | hat.in  | string.in  | globe.in  | sequence.in  |
| 输出文件名   | hat.out | string.out | globe.out | sequence.out |
| 每个测试点时限 | 1.0 秒   | 1.0 秒      | 2.0 秒     | 4.0 秒        |
| 内存限制    | 512 Mib | 512 MiB    | 512 MiB   | 512 MiB      |
| 子任务数目   | 20      | 20         | 20        | 20           |
| 测试点是否等分 | 是       | 是          | 是         | 是            |

#### 提交源程序文件名

| 对于 C++ 语言 hat.cpp | string.cpp | globe.cpp | sequence.cpp |
|-------------------|------------|-----------|--------------|
|-------------------|------------|-----------|--------------|

#### 编译选项

| 对于 C++ 语言 | -lm -O2 -std=c++11 |
|-----------|--------------------|
|-----------|--------------------|

#### 注意事项与提醒(请选手务必仔细阅读)

- 1. 提交的程序代码文件的放置位置请参照各省的具体要求。
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. C++ 中函数 main() 的返回值类型必须是 int, 值为 0。
- 5. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 6. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 7. 只提供 windows 格式附加样例文件。
- 8. 上述时限均以本次评测配置为准。

## 异或帽子(hat)

#### 【题目描述】

小黑的老师给他们班的同学做了一个小游戏。老师给班里n个同学(由于小黑班上男女生人数一样,所以n一定是偶数)每人戴上了一顶帽子,第i个同学的帽子上写有一个数字 $A_i$ 。每个人只能看到其他人帽子上的数字,而看不到自己的。每个同学都把其他所有人的数字的二进制异或和算了出来,并记录了下来,第i个同学记下来的数字是 $B_i$ 。根据这些消息,老师让同学们试着算出自己帽子上的数字,小黑很聪明,所以一下子就算出来了。

回家的路上,小黑向小白说了这个游戏,并只把所有的 $B_i$ 告诉了小白,让小白猜出来每个人的数字 $A_i$ 是多少。但是小白不会算,所以她来向你求助,请你告诉她所有 $A_i$ 的值。

#### 【输入格式】

从文件 hat.in 中读入数据。

第一行一个整数n,表示小黑班上有n个同学,保证是偶数。

接下来一行n个数字,第i个数字表示 $B_i$ 。

#### 【输出格式】

输出到文件 hat.out 中。

一行n个数字,第i个数字表示你求出来的 $A_i$ 。

#### 【样例 1 输入】

4

20 11 9 24

【样例 1 输出】

26 5 7 22

#### 【样例 1 解释】

我们用⊕表示异或运算

 $5 \oplus 7 \oplus 22 = 20$ 

 $26 \oplus 7 \oplus 22 = 11$ 

 $26 \oplus 5 \oplus 22 = 9$ 

 $26 \oplus 5 \oplus 7 = 24$ 

## 【样例 2】

见下发文件中的hat2.in和hat2.ans。

## 【数据范围】

对于前10%的数据,  $n \leq 5$ 。

对于前30%的数据,  $n \le 5000$ 。

对于另10%的数据,保证 $A_i, B_i < 32$ 。

对于100%的数据, $n \leq 200000$ , $0 \leq A_i, B_i < 2^{30}$ 。

## 传话游戏 (string)

#### 【题目描述】

小白和小黑在做一个游戏。小白先在纸条上写下一个由n个<u>只包含小写字母的</u>单词组成的句子,让小黑把它记下来,然后小白收回纸条,小黑凭着记忆向小白复述这个句子。

小白发现小黑的记忆力不是很好,经常把单词的顺序记错,但凭借脑海中的印象,小黑复述的句子一定也包含n个只包含小写字母的单词,且其组成的可重集合与原来的句子完全相同。同时,对于某个单词S,其在原句子和小黑复述的句子中第i次出现的位置不会相差超过1。小白很好奇,小黑可能复述出多少种不同的句子,因此找你来帮忙计算。

两个句子被认为是不同的,当且仅当存在某个数*i*满足两个句子的第*i*个单词不同。注意,原句子也应被纳入统计,因为显然小黑可以复述出相同的句子。答案可能很大,请输出答案对100000007取模的结果。

#### 【输入格式】

从文件 string.in 中读入数据。

第一行一个整数n,表示句子中包含n个单词。

接下来一行n个字符串, 第i个字符串表示第i个单词。

#### 【输出格式】

输出到文件 string.out 中。

一行,一个整数,表示答案对100000007取模的结果。

#### 【样例 1 输入】

3

it is me

#### 【样例 1 输出】

3

#### 【样例 1 解释】

小黑复述的3种句子可以是:

it is me

is it me

it me is

## 【样例 2 输入】

13

yi yi si wu yi si yi jiu yi jiu ba yao ling

## 【样例 2 输出】

233

## 【样例 3】

见下发文件中的string3.in和string3.ans。

#### 【数据范围】

对于前20%的数据,  $n \leq 20$ 。

对于前50%的数据,  $n \leq 5000$ 。

对于另10%的数据,所有单词长度均为1。

对于100%的数据, $n \le 100000$ ,所有单词总长不超过2000000。

## 全球覆盖 (globe)

#### 【题目描述】

小黑正在研发一款全球定位软件,想用它来定位小白的坐标。具体来说,地球可以看做一个 $X \times Y$ 的网格矩阵,横纵坐标范围分别是[0,X)和[0,Y),由于地球是球形结构,网格的上边界和下边界是相通的,左边界和右边界也是相通的。

现在小黑获得了n组坐标对,每组坐标对含有两个点的坐标 $(x_{i,0},y_{i,0})$ , $(x_{i,1},y_{i,1})$ ,表示地球上一个**两边平行于坐标轴的**矩形的两个对角顶点,而小白就在这个矩形内部。

然而,由于地球是球形结构,确定了坐标对后仍然有多种可能的"矩形"(如下图所示)。小黑想知道最多可能有多少面积的网格出现在所有"矩形"的交集之中,以方便他确定小白的位置。每个单元格的面积为1。

于是他把这个问题交给你了。







#### 【输入格式】

从文件 globe.in 中读入数据。

第一行三个正整数n, X, Y,含义如题目描述。

接下来n行,每行四个正整数 $x_{i,0}$ ,  $y_{i,0}$ ,  $x_{i,1}$ ,  $y_{i,1}$ ,描述一组坐标对。所有数据始终保证有 $x_{i,0} < x_{i,1}$ ,  $y_{i,0} < y_{i,1}$ 。

#### 【输出格式】

输出到文件 globe.out 中。

一行,一个整数,表示所求的答案。

#### 【样例 1 输入】

2 10 7

2 1 8 6

4 2 5 4

#### 【样例 1 输出】

15

#### 【样例 1 解释】

样例中的情况和题目中图片一致,其中第三种情况的面积最大。

## 【样例 2】

见下发文件中的globe2.in和globe2.ans。

## 【数据范围】

对于前10%的数据,  $n \le 10$ 。

对于前20%的数据,  $n \le 20$ 。

对于另50%的数据,  $n \le 3000$ 。

对于100%的数据, $n \leq 500000, 2 \leq X, Y \leq 10^9, 0 \leq x_0, x_1 < X, 0 \leq y_0, y_1 < Y$ 。

## 幂次序列 (sequence)

#### 【题目描述】

小黑和小白又在玩游戏。小黑有一个序列,每个元素都形如2<sup>x</sup>,其中x是整数。小白每次可以选择序列里连续的一段,然后计算这段区间内所有元素的总和,记为s,也就是将这段区间合并为一个数。为了让游戏更有难度,小黑要求小白合并时必须保证s也是2<sup>x</sup>形式的数。

然而,小白不擅长计算,因此她很难找到一个合法的区间。于是她向你求助,想 知道对于给定的初始序列,有多少区间可以保证合并后产生的s也是2\*形式的数。

注意,如果一个区间只有1个数,也被视为是合法的区间。

#### 【输入格式】

从文件 sequence.in 中读入数据。

第一行一个正整数n,表示序列的长度。

接下来一行n个整数 $a_i$ ,表示序列的第i个元素为 $2a_i$ 。

#### 【输出格式】

输出到文件 sequence.out 中。

一行,一个整数,表示所求的答案。

### 【样例 1 输入】

3

1 1 2

#### 【样例 1 输出】

5

#### 【样例 1 解释】

一共有5个合法区间,[1,1],[2,2],[3,3],[1,2],[1,3]。

#### 【样例 2】

见下发文件中的sequence2.in和sequence2.ans。

#### 【样例 3】

见下发文件中的sequence3.in和sequence3.ans。

#### 【数据范围】

对于前10%的数据,  $n \leq 100$ 。

对于前20%的数据, n < 1000。

对于前50%的数据,  $n \leq 5000$ 。

对于前80%的数据,  $n \leq 50000$ 。

前80% 的数据中,有4个测试点满足 $a_i \le 2$ ,还有另外4个测试点满足 $a_i \le 30$ 。 对于100% 的数据, $n \le 200000$ ,  $1 \le a_i \le 10^9$ 。