página 1/5



# Universidade de Aveiro Departamento de Matemática

### **Matrizes**

1. Considere a matriz identidade  $I_2$  e as matrizes

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 2 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 2 \end{bmatrix}, \qquad E = \begin{bmatrix} 3 \\ -2 \end{bmatrix}.$$

Calcule

- (a) A + B:

- (b)  $D^{\top} 2A$ ; (c) AD; (d) DA; (e) ACD; (f)  $\frac{1}{5} (I_2 (DA)^2)$ ;

(g) o produto das matrizes A, C, D e E, considerando estas matrizes ordenadas de forma adequada.

2. Indique, justificando, se as afirmações seguintes são verdadeiras ou falsas.

- (a) Se A e B são matrizes de ordem n, então  $(A+B)^2 = A^2 + 2AB + B^2$ .
- (b) Se A e B são matrizes de ordem n, então  $(AB)^2 = A^2B^2$ .
- (c) Se A, B, C são matrizes tais que A + C = B + C, então A = B.
- (d) Se A, B, C são matrizes tais que AB = AC, então A = O (matriz nula) ou B = C.
- (e) Se A é uma matriz de ordem n tal que  $AA^T = O$ , então A = O (sendo O a matriz nula de ordem
- (f) Para  $k \in \mathbb{N}_0$ ,

$$\begin{bmatrix} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n \end{bmatrix}^k = \begin{bmatrix} \mu_1^k & 0 & \cdots & 0 \\ 0 & \mu_2^k & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mu_n^k \end{bmatrix}.$$

- 3. Seja A uma matriz quadrada.
  - (a) Mostre que  $A + A^T$  é uma matriz simétrica.
  - (b) Em que condições é que a matriz  $A A^T$  é simétrica?
- 4. Considere as seguintes matrizes:

- (a) Indique as matrizes que estão na forma escalonada e as que estão na forma escalonada reduzida.
- (b) Determine matrizes equivalentes por linhas às matrizes dadas que estejam:
  - i. na forma escalonada;
  - ii. na forma escalonada reduzida.

página 2/5

# Sistemas de equações lineares

5. Resolva os seguintes sistemas usando o método de eliminação de Gauss (ou o método de eliminação de Gauss-Jordan).

(a) 
$$\begin{cases} 3x_1 - x_2 = 4 \\ 2x_1 - \frac{1}{2}x_2 = 1 \end{cases}$$
 (b) 
$$\begin{cases} 2x_1 - 3x_2 = 4 \\ x_1 - 3x_2 = 1 \\ x_1 + 3x_2 = 2 \end{cases}$$
 (c) 
$$\begin{cases} x_1 + 2x_3 = 0 \\ -x_1 + x_2 + 3x_3 = 2 \\ 2x_1 - x_2 + x_3 = 2 \end{cases}$$
 (d) 
$$\begin{cases} x_1 - 2x_2 + 2x_3 = 4 \\ -2x_1 + x_2 + x_3 = 1 \\ x_1 - 5x_2 + 7x_3 = -1 \end{cases}$$
 (e) 
$$\begin{cases} 4x_1 + 3x_2 + 2x_3 = 1 \\ x_1 + 3x_2 + 5x_3 = 1 \\ 3x_1 + 6x_2 + 9x_3 = 2 \end{cases}$$
 (f) 
$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

6. Para cada sistema, determine os valores de  $\alpha$  para os quais o sistema

(a) 
$$\begin{cases} \alpha x + y = 1 \\ x + \alpha y = 1 \end{cases}$$
; (b) 
$$\begin{cases} x + (\alpha - 1)y + \alpha z = \alpha - 2 \\ (\alpha - 1)y = 1 \end{cases}$$
; (c) 
$$\begin{cases} x + \alpha y + \alpha z = 0 \\ \alpha x + y + z = 0 \\ x + y + \alpha z = \alpha^2 \end{cases}$$
.

- i. não tem solução; ii. tem exatamente uma solução; iii. tem uma infinidade de soluções.
- 7. Considere o sistema de equações lineares

$$\begin{cases} x - y - z = a \\ x + y + z = a, \\ x - by + z = -b \end{cases}$$

onde a e b são parâmetros reais.

- (a) Determine os valores de a e b para os quais o sistema é:
  i. possível e determinado; ii. possível e indeterminado; iii. impossível.
- (b) Sabendo que (1, -1, 1) é uma solução do sistema, determine o conjunto de todas as soluções.
- 8. Considere a matriz A de dimensão  $3 \times 5$ , o vetor B de dimensão  $5 \times 1$  e o sistema AX = B, onde X é o vetor das incógnitas. Sabendo que a caraterística de A é 3, determine a caraterística da matriz ampliada do sistema (matriz [A|B]) e a nulidade de A. Classifique o sistema.
- 9. Seja A uma matriz qualquer e B uma coluna de A. Mostre que o sistema AX = B é possível e indique uma solução.

# Posição relativa de retas e planos

- 10. Considere os sistemas dos exercícios 5-(c,d,e). Suponha que as duas primeiras equações de cada sistema são equações cartesianas de uma reta r e a terceira equação é uma equação geral de um plano  $\mathcal{P}$ . Em cada alínea, determine a posição relativa da reta r e do plano P e descreva a interseção de r e  $\mathcal{P}$ .
- 11. Considere os planos  $\mathcal{P}$  e  $\mathcal{P}_{a,b}$  de equações x+y+2z=3 e ax+2y+4z=b, respectivamente, com  $a,b\in\mathbb{R}$ . Discuta a posição relativa dos planos  $\mathcal{P}$  e  $\mathcal{P}_{a,b}$  em função dos parâmetros reais a e b.

página 3/5

12. Considere que cada uma das seguintes matrizes é uma matriz obtida por aplicação do método de eliminação de Gauss à matriz de um sistema formado por equações cartesianas que definem duas retas r e s:

$$\text{(a)} \ \begin{bmatrix} 1 & 0 & 2 & -5 \\ 0 & 15 & -5 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \ \text{(b)} \ \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \ \text{(c)} \ \begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 2 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 2 \end{bmatrix}; \ \text{(d)} \ \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Para cada matriz, indique qual é a posição relativa das retas r e s. Justifique.

13. Considere a reta r definida por x=2y+z=1 e a familia de retas  $s_{a,b}$  de equação vetorial

$$(x, y, z) = (a, 0, 1) + \alpha(0, 2, b), \quad \alpha \in \mathbb{R},$$

 $com \ a, b \in \mathbb{R}.$ 

- (a) Determine as equações cartesianas de  $s_{a,b}$ .
- (b) Discuta a posição relativa das retas r e  $s_{a,b}$ , em função dos parâmetros a e b.

# Matriz Inversa

14. Averigue se as seguintes matrizes são invertíveis (não singulares) e, em caso afirmativo, determine a respectiva inversa:

(a) 
$$\begin{bmatrix} 3 & 2 \\ -6 & -4 \end{bmatrix}$$
; (b)  $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ ; (c)  $\begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix}$ ; (d)  $\begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 \end{bmatrix}$ .

15. Considere as matrizes

$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}, \qquad B = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}, \qquad C = \begin{bmatrix} 17 & -6 \\ 35 & -12 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

- (a) Mostre que C = ADB.
- (b) Verifique que B é a matriz inversa de A.
- (c) Calcule  $C^5$ , usando as alíneas anteriores.
- (d) Resolva a equação matricial AXD = B, relativamente à matriz X.

16. Considere a matriz invertível  $M = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ -1 & -4 & 2 \end{bmatrix}$ .

- (a) Verifique que M satisfaz a equação  $M^3-4M^2-I_3=0$ .
- (b) Prove, sem calcular o seu valor, que  $M^{-2} = M 4I_3$ .
- (c) Calcule  $M^{-1}$  pela equação da alínea anterior e verifique o resultado obtido.
- 17. (a) Seja A uma matriz arbitrária  $n \times n$ . Suponhamos que existe um número natural k tal que  $A^k = O$  (matriz nula  $n \times n$ ). Mostre que  $I_n A$  é invertível e que

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{k-1}.$$

(b) Usando a alínea anterior, calcule a inversa da matriz  $M=\begin{bmatrix}1 & -1 & 0\\0 & 1 & -1\\0 & 0 & 1\end{bmatrix}$ .

página 4/5

18. Considerando as matrizes

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 4 & 0 \\ -4 & 8 \end{bmatrix},$$

resolva as seguintes equações matriciais relativamente à matriz X:

(a) 
$$((B^{-1})^T X)^{-1} A^{-1} = I;$$

(b) 
$$(C^T D^T X)^T = E$$
.

19. Considere o sistema de equações lineares

$$\begin{cases} y + 3z = 1 \\ x + y + 3z = 0 \\ 2x + y + 4z = 1 \end{cases}$$

- (a) Mostre que a matriz dos coeficientes do sistema é invertível e calcule a sua inversa.
- (b) Justifique que o sistema é possível e determinado. Calcule a sua solução recorrendo à inversa da matriz dos coeficientes do sistema.

# Algumas aplicações

20. Uma companhia aérea serve quatro cidades,  $C_1$ ,  $C_2$ ,  $C_3$  e  $C_4$ , cujas ligações podem ser representadas por um grafo orientado:



- existem voos de  $C_1$  para  $C_2$  e  $C_3$ ;
- existem voos de  $C_2$  para  $C_1$  e  $C_3$ ;
- existem voos de  $C_3$  para  $C_1$  e  $C_4$ ;
- existem voos de  $C_4$  para  $C_2$  e  $C_3$ .
- (a) Escreva a matriz  $A = [a_{ij}]_{4\times 4}$ , chamada a matriz de adjacência associada ao grafo, tal que

$$a_{ij} = \begin{cases} 1, & \text{se existe um voo de } C_i \text{ para } C_j, \\ 0, & \text{caso contrário.} \end{cases}$$

(b) A matriz  $A^r = [a_{ij}^{(r)}]$  (onde  $A^r$  é a matriz que resulta da multiplicação de r matrizes iguais a A) é tal que a entrada  $a_{ij}^{(r)}$  representa o número de itinerários diferentes de ligação da cidade  $C_i$  à cidade  $C_j$  utilizando r voos. Determine quantos itinerários diferentes existem para irmos da cidade  $C_4$  para a cidade  $C_1$  utilizando:

i. apenas um voo;

ii. dois voos;

iii. três voos.

Para cada uma das alíneas anteriores, determine explicitamente todos os itinerários.

página 5/5

# 21. Considere o circuito eléctrico representado na figura seguinte:



constituído por dois geradores de tensão  $V_A=7\,V$  e  $V_B=5\,V$  e três resistências  $R_1=10\,k\Omega,\,R_2=5\,k\Omega$  e  $R_3=15\,k\Omega$ . Determine a intensidade das correntes que passam pelas três resistências.

Observação: Para resolver o exercício é preciso aplicar as Leis de Kirchhoff:

- (lei dos nós) a soma das correntes que entram num nó é igual à soma das correntes que dele saem (ou seja, um nó não acumula carga);
- (lei das malhas) a soma da diferença de potencial eléctrico ao longo de qualquer caminho fechado (malha) é nula.

A direção escolhida para percorrer a malha determina o cálculo das diferenças de potencial consoante as seguintes convenções:

$$V_{A} \stackrel{\frown}{\biguplus} V = -V_{A} \qquad V_{A} \stackrel{\frown}{\biguplus} V = V_{A} \qquad R \stackrel{\frown}{\biguplus} V = RI \qquad R \stackrel{\frown}{\biguplus} V = -RI$$

- Num gerador de tensão, a diferença de potencial eléctrico medida do polo positivo para o polo negativo é positiva; caso contrário é negativa.
- Numa resistência R percorrida por uma corrente I, a diferença de potencial eléctrico, medida com o mesmo sentido que a corrente, é dada pela Lei de Ohm, isto é, V = RI; caso contrário, V = -RI.

Sugestão: comece por determinar um sistema de equações lineares que resulta da aplicação das leis de Kirchhoff e aplique o método de eliminação de Gauss (ou de Gauss-Jordan) ao sistema.

página 1/2

1. (a) 
$$\begin{bmatrix} 2 & 0 \\ 4 & 4 \\ 7 & 9 \end{bmatrix}$$
; (b)  $\begin{bmatrix} -2 & 5 \\ -3 & 0 \\ -4 & -4 \end{bmatrix}$ ; (c)  $\begin{bmatrix} -2 & -1 & -4 \\ 0 & -1 & 0 \\ 3 & -2 & 6 \end{bmatrix}$ ; (d)  $\begin{bmatrix} -1 & 0 \\ 5 & 4 \end{bmatrix}$ ; (e)  $\begin{bmatrix} -3 & 1 & -6 \\ 1 & 1 & 2 \\ 8 & 2 & 16 \end{bmatrix}$ ; (f)  $\begin{bmatrix} 0 & 0 \\ -3 & -3 \end{bmatrix}$ ; (g)  $DACE = \begin{bmatrix} 5 \\ -41 \end{bmatrix}$  ou  $CDAE = \begin{bmatrix} 10 \\ 14 \end{bmatrix}$ .

- 2. (a) Falsa (b) Falsa (c) Verdadeira; (d) Falsa; (e) Verdadeira; (f) Verdadeira.
- 3. (b) Quando A é uma matriz simétrica e neste caso  $A A^{\top} = 0$  (matriz nula).
- 4. (a) Forma escalonada: B e D; forma escalonada reduzida: D.

(b) i. Forma escalonada: 
$$A_e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
;  $C_e = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ .

ii. Forma escalonada reduzida: 
$$A_r = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \ B_r = \begin{bmatrix} 1 & \frac{4}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \ C_r = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix};$$

- 5. (a)  $x_1=-2,\ x_2=-10;$  (b) impossível; (c)  $x_1=-4,\ x_2=-8,\ x_3=2;$  (d) impossível; (e)  $x_1=t,\ x_2=\frac{1}{3}-2t,\ x_3=t,\ t\in\mathbb{R};$  (f)  $x_1=\frac{3}{17}t_1-\frac{13}{17}t_2,\ x_2=\frac{19}{17}t_1-\frac{20}{17}t_2,\ x_3=t_1,\ x_4=t_2,\ t_1,t_2\in\mathbb{R};$
- 6. (a) i.  $\alpha = -1$ , ii.  $\alpha \in \mathbb{R} \setminus \{-1, 1\}$ , iii.  $\alpha = 1$ ; (b) i.  $\alpha \in \{0, 1\}$ , ii.  $\alpha \in \mathbb{R} \setminus \{0, 1\}$ ; (c) i.  $\alpha = 1$ , ii.  $\alpha \in \mathbb{R} \setminus \{-1, 1\}$ , iii.  $\alpha = -1$ .
- 7. (a) i.  $a \in \mathbb{R} \ e \ b \in \mathbb{R} \setminus \{-1\}$ ; ii.  $a = 1 \ e \ b = -1$ ; iii.  $a \in \mathbb{R} \setminus \{1\} \ e \ b = -1$ . (b)  $\{(1, -z, z) : z \in \mathbb{R}\}$ .
- 8. Seja n = 5 o número de colunas de A. car([A|B]) = 3 e nul(A) = n car(A) = 2. O sistema é possível e indeterminado porque car(A) = car([A|B]) = 3 < n = 5. O grau de indeterminação do sistema é igual a nul(A) = 2.
- 9. Se B é a coluna i de A, então  $X=[0\cdots 1\cdots 0]^T$ , com 1 na linha i e as restantes entradas nulas, é uma solução.
- 10. (c) A reta r e o plano  $\mathcal{P}$  são concorrentes. Intersetam-se no ponto (-4, -8, 2);
  - (d) A reta r e o plano  $\mathcal P$  são paralelos. A interseção é o conjunto vazio.
  - (e) A reta r está contida no plano  $\mathcal{P}$ . A interseção é a  $r=\{(x_1,x_2,x_3)\in\mathbb{R}^3:\ x_1=t,\ x_2=\frac{1}{3}-2t,\ x_3=t,\ t\in\mathbb{R}\},$  isto é,  $r=\{(x_1,x_2,x_3)\in\mathbb{R}^3:\ (x_1,x_2,x_3)=(0,\frac{1}{3},0)+t(1,-2,1),\ t\in\mathbb{R}\}.$
- 11.  $\mathcal{P}$  e  $\mathcal{P}_{a,b}$  são coincidentes se a=2 e b=6; estritamente paralelos se a=2 e  $b\neq 6$ ; concorrentes se  $a\neq 2$  e  $b\in \mathbb{R}$ .
- 12. (a) Retas concorrentes; (b) retas coincidentes; (c) retas enviesadas; (d) retas estritamente paralelas.
- 13. (a) Equações cartesianas de  $s_{a,b}$ : x = a, by 2z = -2.
  - (b) As retas r e  $s_{a,b}$  são coincidentes se a=1 e b=-4; estritamente paralelas se  $a\neq 1$  e b=-4; concorrentes se a=1 e  $b\neq -4$ ; enviesadas se  $a\neq 1$  e  $b\neq -4$ .

14. (a) Matriz singular; (b) 
$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
; (c) 
$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
; (d) 
$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -\frac{4}{5} \end{bmatrix}$$
.

15. (c) 
$$C^5 = AD^5B = \begin{bmatrix} 3197 & -1266 \\ 7385 & -2922 \end{bmatrix}$$
; (d)  $X = \begin{bmatrix} 32 & -9 \\ -\frac{45}{2} & \frac{19}{3} \end{bmatrix}$ .

16. (c) 
$$M^{-1} = MM^{-2} = M(M - 4I) = \begin{bmatrix} 2 & 0 & 1 \\ -4 & 1 & -2 \\ -7 & 2 & -3 \end{bmatrix}$$
.

soluções 1

matrizes e sistemas de equações lineares

página 2/2

17. (a) 
$$(I_n + A + A^2 + \dots + A^{k-1})(I_n - A) = I_n - A^k = I_n$$
.  
(b)  $M = I - A \operatorname{com} A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ , sendo  $A^3 = O$ . Logo,  $M^{-1} = (I - A)^{-1} = I + A + A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ .

18. (a) 
$$X = B^T A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$
; (b)  $X = (E(DC)^{-1})^T = \begin{bmatrix} -1 & 4 \\ 0 & 4 \end{bmatrix}$ .

19. (a) 
$$\begin{bmatrix} -1 & 1 & 0 \\ -2 & 6 & -3 \\ 1 & -2 & 1 \end{bmatrix}$$
. (b)  $x = -1, y = -5, z = 2$ .

20. (i) 0 itinerários; (ii) 2: 
$$C_4 \rightarrow C_2 \rightarrow C_1$$
,  $C_4 \rightarrow C_3 \rightarrow C_1$ ; (iii) 1:  $C_4 \rightarrow C_2 \rightarrow C_3 \rightarrow C_1$ .

21. 
$$I_1=600\,\mu\mathrm{A}$$
 (esquerda–direita),  $I_2=200\,\mu\mathrm{A}$  e  $I_3=400\,\mu\mathrm{A}$  (cima–baixo).