

Deep Learning School

онлайн.

фундаментально.

Razvorotnev Ivan

MLE in Audio Team, Zvuk HSE and Skoltech graduate Self-Supervised Learning in Audio

3rd week

What is Self-Supervised Learning (SSL)?

No labels? — use cheap domain knowledge to generate pretext tasks with pseudo labels

Computer Vision

Augment image x to get different views x_i^+ :

(Chen et al., 2020a)

Sample negatives x_k^- Attract positives, repel negatives

Natural Language Processing

Sample context as words around position Learn to predict context

Why Self-supervised Learning?

- Huge amount of unlabeled data
- Labeling is expensive and error-prone
- Solve many tasks at once
- Improved downstream task performance through feature generalization

Why Self-supervised Learning?

Storing knowledge from solving one problem and applying it to a different problem.

Pretraining on Imagenet-1k, evaluation on 12 datasets

	Food	CIFAR10	CIFAR 100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-10	1 Flowers
Linear Eval												
SimCLR	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	<i>7</i> 5.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned												
SimCLR	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

SSL Pipeline

Phase 1: Pre-train

Types of SSL methods:

- Predictive predict missing or corrupted parts (e.g., BERT, MAE, wav2vec)
- Contrastive pull positives together, push negatives apart (e.q., SimCLR, MoCo)
- Non-contrastive learn invariances without negatives (e.g., BYOL, Barlow Twins)
- Clustering / Prototype group features into clusters, predict assignments (e.g., SwAV, DINO)
- 5. **Generative** generate realistic data (e.g., GANs, diffusion, autoregressive models)
- 6. Cross-modal align different modalities (e.g., CLIP, audio-text, video-text)

Self-supervised Learning in Audio

SSL Framework

Predictive SSL framework (a), contrastive (d), non-contrastive (d), clustering (c)

Contrastive Learning

Contrastive Predictive Coding(CPC)

Given context c, predict observation x without directly modelling conditional p(x|c)

Maximally preserve MI between x and c: $I(x,c) = \sum_{x,c} p(x,c) \log \frac{p(x|c)}{p(x)}$

CPC (Oord et al., 2018):

- 1. Encode $z_t = g_{ ext{enc}}(x_t)$; summarize context $c_t = g_{ ext{ar}}(z_{\leq t})$
- 2. Model density ratio $f_k(x_{t+k},c_t) \propto \frac{p(x_{t+k}|\ c_t)}{p(x_{t+k})}$ as $f_k(x_{t+k},c_t) \coloneqq \exp(z_{t+k}^{\top}W_kc_t)$
- 3. Noise-Contrastive Estimation:

$$\mathcal{L}_{\text{InfoNCE}} = -\mathbb{E}_{X} \left[\log \frac{f_{k}(x_{t+k}, c_{t})}{\sum_{x_{j} \in X} f_{k}(x_{j}, c_{t})} \right]$$

InfoNCE loss

The InfoNCE loss optimizes the negative log probability of classifying the positive sample correctly

The probability of detecting the positive sample correctly is:

$$p(C = \text{pos} \mid X, \mathbf{c}) = \frac{p(x_{\text{pos}} \mid \mathbf{c}) \prod_{i=1,...,N; i \neq \text{pos}} p(\mathbf{x}_i)}{\sum_{j=1}^{N} \left[p(\mathbf{x}_j \mid \mathbf{c}) \prod_{i=1,...,N; i \neq j} p(\mathbf{x}_i) \right]} = \frac{\frac{p(\mathbf{x}_{\text{pos}} \mid c)}{p(\mathbf{x}_{\text{pos}})}}{\sum_{j=1}^{N} \frac{p(\mathbf{x}_j \mid \mathbf{c})}{p(\mathbf{x}_j)}} = \frac{f(\mathbf{x}_{\text{pos}}, \mathbf{c})}{\sum_{j=1}^{N} f(\mathbf{x}_j, \mathbf{c})}$$

where the scoring function is $f(\mathbf{x}, \mathbf{c}) \propto \frac{b(\mathbf{x}|\mathbf{c})}{p(\mathbf{x})}$.

Wav2Vec 2.0

Non-Contrastive Learning

Update online network θ at each training step, use EMA updates for target network ξ :

$$\theta \leftarrow \text{optimizer}(\theta, \nabla_{\theta} \mathcal{L}_{\theta, \xi}^{\text{BYOL}}, \eta),$$

 $\xi \leftarrow \tau \xi + (1 - \tau)\theta,$

Intuitions behind absense of collapse:

- ξ updates are **not** in the direction of $\nabla_{\xi} \mathcal{L}_{\theta,\xi}^{\mathrm{BYOL}}$
- Collapsed constant solutions are unstable due to variance induced by asymmetric design / training dynamics
- With stop-grad, the trivial solution has zero gradient w.r.t.
 encoder weights, but it's a saddle point, not a stable minimum.
- Any noise or SGD fluctuation pushes the model away, and the predictor-stopgrad asymmetry amplifies differences instead of collapsing them.
 - The predictor plays the same role as BYOL's EMA target: introducing an asymmetry so the system can't just synchronize into trivial constant vectors.

BYOL

-SimSiam

jonathanbgn.com

Data2Vec $\mathcal{L}(y_{t}, f_{t}(x)) = \begin{cases} (y_{t} - f_{t}(x))^{2} / (2\beta) \\ (|y_{t} - f_{t}(x)| - \beta/2) \end{cases}$

$$C(y_t, f_t(x)) = \begin{cases} (y_t - f_t(x))^2 / (2\beta) \\ (|y_t - f_t(x)| - \beta/2) \end{cases}$$

 $|y_t - f_t(x)| \le \beta$ otherwise

Trains by masking parts of the input and forcing a student network to regress the continuous latent representations produced by an EMA teacher

Teacher model (Transformer)

$$y_t = \frac{1}{K} \sum_{l=L-K+1}^{L} \hat{a}_t^l$$

Cross-Model learning

2. Use pretrained encoders for zero-shot prediction in a new dataset or task

Razvorotnev Ivan

Thank you for attention!

tg: @razvor