1. Invitation to numerical analysis

What is the course about?

- Alternative names:
 - Numerical methods
 - Numerical computation
 - Technical computing
 - Scientific computing
 - Computational science and engineering
- Numerical: Calculate numbers (with a computer)
- Analyse / calculate in a numerical way
- Or: analyse a numerical computation

So what is the course actually about?

- Solving problems
- That arise in science, engineering, economics, mathematics, ...
- Problem: mathematical description of something to calculate

How is this different from computer science?

- What kind of objects will we be dealing with?
- lacksquare Functions $\mathbb{R} o \mathbb{R}$
- \blacksquare $\mathbb R$ is the set of all **real numbers**
- Calculus: differentation, integration
- \blacksquare Solution of a differential equation $\dot{x}=f(x)$ is a continuous function $t\mapsto x(t)$ for $t\in\mathbb{R}$
- Computer science: Discrete objects

Problems

- lacktriangle Given input data x, calculate output data y
- I.e. problem is defined by a function

$$y = f(x)$$

- Our goal: "solve the problem"
- \blacksquare I.e. given input data x, calculate output y
- Mathematics does not always (or usually) tell us how to calculate
- How sensitive is output to variations in input?
 Conditioning of a problem

Example: Eigenvalues

- Problem: Given a matrix M (the input x), find the eigenvalues of M (the output y)
- $\begin{tabular}{ll} \bf Mathematics: "just find roots of characteristic polynomial of $M"$ \\ \end{tabular}$
- How can we actually find those roots? Is that even possible?
- Is that even the right approach to calculate?

How do we solve problems numerically?

- Need to represent input data in computer
- How deal with real numbers?
- Must (usually) approximate them
- lacktriangle Need to find a **numerical method** or **algorithm** corresponding to the problem f
- Can only calculate approximation to output

How good is our solution?

- lacksquare Approximate input x by \tilde{x}
- $\begin{tabular}{ll} \blacksquare & \textbf{Approximate problem } f \ \textbf{by algorithm } f \end{tabular}$
- lacktriangle Get approximate output \tilde{y}
- How close is \tilde{y} to the true solution y?
- We need to analyse the approximations to understand how good the solution might be.
- Note that usually we do not have access to the true solution to compare to

Example: Modelling a fluid

- Suppose we want to model a fluid (simulation)
- Simplest naive model: Colliding hard spheres (3D) or discs (2D)
- Want to simulate this system, i.e. reproduce its behaviour in the computer
- Which (mathematical) problems arise?

Collision of two discs

- Main component of simulation: collision of two discs
- Input:
 - \blacksquare positions x_1 , x_2
 - lacktriangle velocities v_1 , v_2
- Problem: Calculate collision time
- How can we solve this problem?

Time stepping

- lacktriangle One possible algorithm: Take small time steps δt
- $\blacksquare \text{ Advance } x_i \leftarrow x_i + \delta t \, v_i$
- After each step, check for overlap
- Overlap condition: distance $(x_i, x_j) \leq 2r$
- How calculate distance?
- lacksquare If overlap, backtrack to find t when f=0

Event-driven algorithm

- Alternative event-driven algorithm:
- Find the event of interest: collision
- Find collision time t^* directly by solving an equation problem set 1
- Find that we need to solve a quadratic equation $at^2 + bt + c = 0$.

Solving a quadratic equation

- Suppose that $f(t) := at^2 + bt + c = 0$.
- \blacksquare How can we **solve** this equation, i.e. find the values of t for which f(t)=0?
- In the particular case of quadratic equations, we are lucky and happy: there is an analytical solution that we can use:

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

■ NB: Usually we do *not* know an analytical solution!

Questions about the quadratic formula

- Can we plug in "machine numbers" and get correct answer?
- lacksquare Suppose can calculate **discriminant** $d:=b^2-4ac$
- How calculate \sqrt{d} ?
- Need an algorithm for square root

Can we calculate square root

- $lue{}$ Problem: "Find the positive square root of d"
- Input: d = 3
- Impossible to calculate $y = \sqrt{d}$ exactly using +, -, *, / starting from integers
- Since $\sqrt{3}$ is **irrational** number
- Infinite number of digits ($\sqrt{3} = 1.732050...$); will take infinite time!
- So what can we do?

Approximation algorithms for square root

- **Approximate** \sqrt{d} up to some **tolerance** (distance from true value)
- Use a variant of "guess and check":
- Often easier to verify a solution than find the solution
- How check that candidate s is close to \sqrt{d} ?

Verification for square root

- $\mathbf{x} = \sqrt{d}$ satisfies the equation $f(x) := x^2 d = 0$
- \blacksquare Given a candidate \tilde{y} , find residual $f(\tilde{x}) = \tilde{x}^2 d$
- \blacksquare Different from $\operatorname{error} x \tilde{x}$ usually unknown
- \blacksquare If residual "small enough" then \tilde{x} is "good" approximation

Finding a square root

- We know more information: not only distance but also sign of residual
- \blacksquare So can know if \tilde{x} is too low or too high
- In this way we can bracket the root
- Then search for solutions
- $lacksquare 1 < \sqrt{3} < 2 \ {
 m since} \ 1^2 < 3 < 2^2$
- Now try 1.1^2 and 1.9^2 etc.
- What is efficient way to do this search?

Bisection

- Use bisection search
- $\qquad \text{Input: } a \text{ and } b \text{ such that } f(a) < 0 < f(b)$
- Find midpoint $m:=\frac{1}{2}(a+b)$
- $\hfill \hfill \Box$ Check ${\rm sign}(f(m))$ and choose correct half of interval
- Repeat with new interval
- Code

- \blacksquare A particular way to do this is as follows. Suppose x_0 is a candidate for $\sqrt{d}.$
- \blacksquare How can we find another, different candidate? We are looking for something such that $x_0y_0=d,$ i.e. $y_0=d/x_0$
- lacksquare This is on the opposite side of x_0 .
- Now take the mean

$$x_1 := \frac{1}{2} \left(x_0 + \frac{d}{x_0} \right)$$

Comparing algorithms

- We have described two approximation algorithms.
- In principle they can produce a result that is as good as we would like, i.e. such that it is as close as desired to $\sqrt{3}$
- Which of these two approximation algorithms is **better**?
- What does better mean? We would like to produce the answer as quickly as possible. So we need to know how fast each method approaches the true solution.
- Rate of convergence.

Summary

- We can only solve problems approximately
- We want to know how good the approximate solution is: Sensitivity = conditioning
- Different algorithms can have different rates of convergence