WITQ Story Book

CONTENTS

. 1

주제선정 배경

. 2

문제 인식

. 3

문제 해결 방안

. 4

아이디어 전환

. 5

새로운 해결 방안

. 6

프로토타입 소개

서울 미세먼지 농도의 지속적 증가 전 세계 주요도시에 비해 1.5배

미세먼지의 위험성이 심각한 수준에 이르렀다.

팀원 심층 인터뷰 결과:

- Q1. 미세먼지의 위험성을 인지하고 그에 대한 대처를 하는가?
 - → 미세먼지의 위험성을 인식하고 있음에도 적절한 대처 (Ex 마스크 착용)를 하지 않는다.
 - Why? → 실내 체류 시간이 길어 마스크의 필요성을 느끼지 못함.
- Q2. 실내공기가 실외공기보다 깨끗할까?
 - → 실내공기가 오염되더라도 실외공기보다는 깨끗할 것이다.

미세먼지에 대한 적절한 대처는 하지않고, 실내공기가 청정하다는 사고방식을 가지고 있음.

환경부에서는 미세먼지가 농도가 높은 날 건강생활수칙으로 창문을 닫아 외부의 미세먼지 유입 차단을 권고한다.

→ 그러나 실내에서도 심각한 수준의 미세먼 지가 발생.

> 또한 그 외의 오염물질들 또한 유해하여 꾸 준한 환기가 필요하다.

만약 미세먼지가 높은 날, 실내 미세먼지가 발생한다면, 창문은 닫아야 할까? 열어야 할까? 실내 미세먼지 농도가 높아짐

실외 미세먼지 농도 때문에 환기를 할 수 없다면?

실외와 실내의 미세먼지 농도를 비교하여 자동으로 환기를 시켜주자!

자동으로 환기를 시켜주는 <창문자동개폐장치> 제안

기존의 설치된 창문에도 적용이 가능한 장치여야 한다.

실내 미세먼지 농도를 측정하고 실시간으로 실외 미세먼지 농도와 비교할 수 있어야한다.

.3 문제해결방안

1. 한국 환경공단의 실시간 실외 미세먼지 수치 Crawling

```
crawlPrac5.py
from urllib.request import urlopen
from bs4 import BeautifulSoup
import datetime
datetimeNow = datetime.datetime.now()
print(datetimeNow)
print("Real time Fine dust alarm")
seoulLocations ="'[서울]강남구', '[서울]강동구', '[서울]강북구', '[서울]강서구', '[서울]관악구', '[서울]광진구', '[서울]구로구', '[서울]금천두
print(seoulLocations)
data = []
def crawlMise(date):
   url = "http://www.airkorea.or.kr/pmRelaySub?strDateDiv=1&searchDate="+date+"&district=02&itemCode=10007&searchDate_f=201705"
   soup = BeautifulSoup(html.read(), "html.parser")
   soup.prettify()
   table = soup.find('table')
   table_body = table.find('tbody')
   rows = table_body.find_all('tr')
    for row in rows:
       cols = row.find_all('td')
                                                                                               결과화면
       cols = [ele.text.strip() for ele in cols]
       data.append([ele for ele in cols if ele])
   return data
                                                                 2017-06-02 22:21:08.625962
def showResult(getLocation):
                                                                 Real time Fine dust alarm
   locations=[]
                                                                 '[서울]강남구', '[서울]강동구', '[서울]강북구', '[서울]강서구', '[서울]관악구',
서울]도봉구', '[서울]동대문구', '[서울]동작구', '[서울]마포구', '[서울]서대
', '[서울]양천구', '[서울]영등포구', '[서울]용산구', '[서울]은평구', '[서울]
   latestdata=[]
   dict1={}
   for i in range(len(data)):
                                                                     강변북로', '[서울]공항대로', '[서울]도산대로', '[서울]동작대로 중앙차로',
       locations.append(data[i][1])
                                                                     서울]천호대로', '[서울]청계천로', '[서울]한강대로', '[서울]홍릉로', '[서울]호
       if data[i][-1] == "-":
                                                                 Enter the date of today [ex:2017-06-01]: 2017-06-02
           latestdata.append(0)
                                                                 Enter the location you want to search(without quotation mark): [서울]송파구
                                                                 [서울]송파구 : 33
            latestdata.append(int(data[i][-1]))
```

Python을 활용하여 한국환경공단(airkorea.or.kr)의 미세먼지 농도 Crawling한 화면

2. 수집한 미세먼지 수치에 반응하여 창문 자동 개폐

<미세먼지 농도 나쁨>

창문을 닫아 외부로부터 미세먼지 유입 최소화 <미세먼지 농도 좋음>

창문을 열어 환기 실시

기대효과 : 실외 미세먼지 유입을 최소화하고,

효율적 환기를 통해 실내 미세먼지 농도를 낮출 수 있을 것으로 예상

1차 발표회 Feedback

실내 공기는 공기청정기가 관리해줄 수 있지 않을까요? 대학생다운, 세상에 존재하지 않던 혁신적인 아이디어를 기대합니다.

미세먼지에 대한 문제제기에는 공감하나 창문 자동개폐장치 자체는 매력이 부족합니다.

기술적 해결방법에 집착하지 않았으면 좋겠습니다.

아이디어 전환점

해결방안의 한계 인식

실내 미세먼지를 효과적으로 해결하는 장치들이 이미 존재

*2014년 2월 26~27일(미세먼지 나쁨 시점) 전국 성인 608명 조사 결과

* (1, 2)는 전문가 권고사항, (3)는 비권고사항, (4)의 효과에 대해서는 의학적 연구나 근거 없음 자료: 한국 갤럽 오피니언

미세먼지로 인해 실질적인 피해가 있음 에도 대처방안을 실천하는 사람이 적다.

대중들이 미세먼지의 폐해를 인식함에도 실 천하지 않는다.

미세먼지를 회피 또는 방지하는 것이 아닌, 근본적인 생성을 막는 방안이 필요하다.

근본적인 생성 방지사례

노후 경유차 운행 제한 화력발전소 가동중단

기존의 방식에서 벗어나 새로운 관점으로 미세먼지를 바라보자!

발상의 전환

미세먼지 자원화

미세먼지를 통해 새로운 가치 창출 (Ex. 반지, 벽돌 등) 실용 목적이 아닌 예술 혹은 캠페인 목적

상용화가 어려움

Membrane을 이용한 미세먼지 정화 및 에너지 생산 기술

활용가능성이 높다

Prof. Verbruggen 논문 인용

Photoelectrochemical cell that converts volatile organic pollutants to CO₂ at a TiO₂ photoanode. Simultaneously, energy is recovered as hydrogen gas at a dark Pt cathode. Air remediation is coupled to energy recuperation in a stand-alone device.

휘발성 유기화합 오염물을 TiO, 광전지 화학전지를 통해 CO, 로 전환한다. 동 시에,

에너지는 어두운 백금(Pt black: 촉매용으로 쓰이는 백금흑)음극에서 수소가스

로 전환된다. 공기정화는 독립형 에너지 회수와 결합된다.
* Dark Pt cathode : Platinum Black. 촉매용으로 쓰이는 백금흑으로 Membrane 연료 세포에 촉매로 활용된다.

-Reference-

수소 에너지

수소(H) + 산소(O) = 물(H₂O)

→ NO 공해물질

전기에너지로 쉽게 전환 가능

→ 직접연소, 연료전지

자동차 연료로 쓰일 경우 소음이 적음

수소는 활용 가능성이 높은 에너지원!

-Reference-

수소 발전소 및 수소자동차

수소발전소 설립을 통해 수소에너지 개발

개발된 수소에너지를 활용한 수소자동차

맑은 서울 프로젝트

미세먼지 없는 맑은 서울을 위한 "맑은 서울 프로젝트" 제안 수소 발전 → 수소에너지 개발 → 수소자동차 → 맑은 서울

서울 도시 속 수소 발전소

미세먼지를 걸러 생성된 수소가스를 발전하는 발전소 추가적으로 수소에너지 충전기능이 있다.

#.6 프로토 타입 소개

라즈베리파이를 이용한 실시간 미세먼지 농도 측정

```
m urllib.request import urlopen
              t BeautifulSoup
   om bs4 im
     t datetime
datetimeNow = datetime.datetime.now()
print(datetimeNow)
print("Real time Fine dust alarm")
seoullocations ="'[서울]강남구', '[서울]강동구', '[서울]강북구', '[서울]강서구', '[서울]관악구', '[서울]광진구', '[서울]구로구', '[서울]금천-
print(seoulLocations)
    url = "http://www.airkorea.or.kr/pmRelaySub?strDateDiv=1&searchDate="+date+"&district=02&itemCode=10007&searchDate_f=201705"
    soup = BeautifulSoup(html.read(), "html.parser")
    soup.prettify()
    table = soup.find('table')
    table_body = table.find('tbody')
    rows = table_body.find_all('tr')
       row in rows:
        cols = row.find_all('td')
        cols = [ele.text.strip() for ele in cols]
        data.append([ele for ele in cols if ele])
    return data
def showResult(getLocation):
    locations=[]
    latestdata=[]
    dict1={}
     for i in range(len(data)):
        locations.append(data[i][1])
if data[i][-1] == "-":
            latestdata.append(0)
            latestdata.append(int(data[i][-1]))
```


라즈베리파이를 이용해 서울시 미세먼지 데이터 수집 미세먼지 농도에 따라 LED램프 색이 변함 미세먼지 위험성을 알리고, 발전소 가동률을 조절