Лабораторна робота № 1. Отримання навичок роботи в середовищі Python

Недашківська Н.І.

1 Варіанти завдань

Увага! При написанні коду використовувати, там де це доречно, спеціалізовані функції бібліотеки NumPy, універсальні функції, функції транслювання (broadcasting).

1. Дано масив T, який складається з N рядків, які відповідають прикладам, і m стовпчиків, які відповідають ознакам. Відомо, що ознака x_h приймає значення з множини $\{c_{h1}, c_{h2}, ..., c_{hq_h}\}$. Дано вектор y розмірності N, елементи якого приймають значення з множини $S = \{s_1, s_2, ..., s_v\}$ (мітки класів для прикладів). Знайти ознаку x_h^* , для якої наступний вираз приймає мінімальне значення:

$$G(x_h) = \sum_{i=1}^{q_h} \frac{|T_i|}{N} H(T_i, S),$$

де T_i - підмножина прикладів, для яких ознака x_h приймає значення c_{hi} , |A| - потужність множини A, H(A,S) - ентропія множини A по відношенню до властивості S:

$$H(A, S) = -\sum_{i=1}^{v} \frac{k_i}{|A|} \log_2 \frac{k_i}{|A|},$$

де властивість S може приймати v різних значень, кожне з яких - в k_i випадках.

2. Дано масив T, який складається з N рядків, які відповідають прикладам, і m стовпчиків, які відповідають ознакам. Відомо, що ознака x_h приймає значення з множини $\{c_{h1}, c_{h2}, ..., c_{hq_h}\}$. Дано вектор y розмірності N, елементи якого приймають значення з множини $S = \{s_1, s_2, ..., s_v\}$ (мітки класів для прикладів). Знайти ознаку x_h^* , для якої наступний вираз приймає мінімальне значення:

$$G(x_h) = \sum_{i=1}^{q_h} \frac{|T_i|}{N} H(T_i, S),$$

де T_i - підмножина прикладів, для яких ознака x_h приймає значення c_{hi} , |A| - потужність множини A, H(A,S) - індекс Джині множини A по відношенню до властивості S:

$$H(A, S) = 1 - \sum_{i=1}^{v} \left(\frac{k_i}{|A|}\right)^2,$$

де властивість S може приймати v різних значень, кожне з яких - в k_i випадках.

3. Дано масив T, який складається з N рядків, які відповідають прикладам, і m стовпчиків, які відповідають ознакам. Відомо, що ознака x_h приймає значення з множини $\{c_{h1}, c_{h2}, ..., c_{hq_h}\}$. Дано вектор y розмірності N, елементи якого приймають значення з множини $S = \{s_1, s_2, ..., s_v\}$ (мітки класів для прикладів). Знайти ознаку x_h^* та значення цієї ознаки c_{hi}^* :

$$c_{hi}^* = \arg\max_{h,i} \frac{p_2(y = s_j | x_h = c_{hi})}{p_1(x_h = c_{hi})},$$

де s_j - задано, $p_1(x_h = c_{hi})$ - кількість прикладів, для яких ознака x_h приймає значення c_{hi} , $p_2(y = s_j | x_h = c_{hi})$ - кількість прикладів, які належать класу s_j і ознака x_h приймає значення c_{hi} .

4. Дано масив T, який складається з N рядків, які відповідають прикладам, і m стовпчиків, які відповідають ознакам. Відомо, що ознака x_h приймає значення з множини $\{c_{h1}, c_{h2}, ..., c_{hq_h}\}$. Дано вектор y розмірності N, елементи якого приймають значення з множини $S = \{s_1, s_2, ..., s_v\}$ (мітки класів для прикладів). Знайти ознаку x_h^* та значення цієї ознаки c_{hi}^* :

$$c_{hi}^* = \arg\min_{h,i} Er(h,i),$$

$$Er(h,i) = \frac{p_3(y \neq s_j^* | x_h = c_{hi})}{p_1(x_h = c_{hi})},$$

$$s_j^* = \arg\max_{i} p_2(y = s_j | x_h = c_{hi}),$$

де $p_1(x_h = c_{hi})$ - кількість прикладів, для яких ознака x_h приймає значення c_{hi} , $p_2(y = s_j | x_h = c_{hi})$ - кількість прикладів, які належать класу s_j і ознака x_h приймає значення c_{hi} , s_j^* - найбільш імовірний клас за умови що ознака x_h приймає значення c_{hi} .

5. Дано масив T, який складається з N рядків, які відповідають прикладам, і m стовпчиків, які відповідають ознакам. Відомо, що ознака x_h приймає значення $\{c_{h1}, c_{h2}, ..., c_{hq_h}\}$. Дано вектор y розмірності N, елементи якого приймають значення з множини $S = \{s_1, s_2, ..., s_v\}$ (мітки класів для прикладів). Знайти значення s_k^* (найбільш імовірний клас) для нового

прикладу, який характеризується заданими значеннями ознак $x_1=a_1,$ $x_2=a_2,$..., $x_m=a_m$:

$$s_k^* = \arg\max_{s_k \in S} p(y = s_k) \prod_{i=1}^N p(x_i = a_i | y = s_k),$$

де a_i - задані, $p(y=s_k)$ - кількість прикладів, які належать класу s_k , $p(x_i=a_i|y=s_k)$ - кількість прикладів, у яких ознака x_i приймає значення a_i , серед тих, що належать класу s_k .

Захист: Знайти ознаку x_h^* та значення цієї ознаки c_{hi}^* :

$$c_{hi}^* = \arg\max_{h,i} \frac{p_2(y = s_j | x_h = c_{hi})}{p_1(x_h = c_{hi})},$$

де s_j - задано, $p_1(x_h = c_{hi})$ - кількість прикладів, для яких ознака x_h приймає значення c_{hi} , $p_2(y = s_j | x_h = c_{hi})$ - кількість прикладів, які належать класу s_j і ознака x_h приймає значення c_{hi} .

6. Дано масив $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}, x_{ik} \in R$, де приклад t_i характеризується m ознаками. Для цих даних розрахувати матриці відстаней: евклідової D_2 , хемінга D_H , чебишева D_{∞} , пікову D_P та махаланобіса D_M :

$$D_2(t_p, t_q) = \sqrt{\sum_{k=1}^{m} (x_{pk} - x_{qk})^2}$$

$$D_H(t_p, t_q) = \sum_{k=1}^{m} |x_{pk} - x_{qk}|$$

$$D_{\infty}(t_p, t_q) = \max_{k=1,\dots,m} |x_{pk} - x_{qk}|$$

$$D_P(t_p, t_q) = \frac{1}{m} \sum_{k=1}^{m} \frac{|x_{pk} - x_{qk}|}{x_{pk} + x_{qk}}$$

$$D_M(t_p, t_q) = \sqrt{(t_p - t_q)^T S^{-1}(t_p - t_q)},$$

де S - матриця коваріації.

- 7. Дано масив $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}, x_{ik} \in R$, де приклад t_i характеризується m ознаками. Об'єднати приклади в кластери за наступним алгоритмом:
 - 1) C := T, множина кластерів C співпадає з початковою множиною прикладів,
 - (2) Поки в (C) більше одного елементу:

- ullet вибираємо два кластери $c_p, c_q \in C,$ відстань між якими мінімальна,
- ullet об'єднуємо c_p і c_q у новий кластер c_{pq} , змінюємо C за правилом:

$$C := C \cup c_{pq} \setminus \{c_p, c_q\},\$$

Відстань між кластерами:

$$d_{rs} = \frac{d_{ps} + d_{qs}}{2},$$

де d_{rs} - відстань від нового кластера c_r , який утворено об'єднанням c_p і c_q , до іншого кластера c_s .

Надрукувати множину кластерів C і матрицю відстаней між отриманими кластерами.

8. Розглянути умову попередньої задачі. Надрукувати множину кластерів C і матрицю відстаней між отриманими кластерами, якщо відстань між кластерами розраховується за формулою:

$$d_{rs} = \frac{d_{ps} + d_{qs}}{2} - \frac{|d_{ps} - d_{qs}|}{2},$$

де d_{rs} - відстань від нового кластера c_r , який утворено об'єднанням c_p і c_q , до іншого кластера c_s .

9. Дано масив $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}, x_{ij} \in R$, де приклад t_i характеризується m ознаками. Задано кількість кластерів $2 \le g \le N$. Розрахувати центри кластерів за формулою (класичний метод к-середніх):

$$c_k = \frac{\sum_{i=1}^{N} u_{ki} t_i}{\sum_{i=1}^{N} u_{ki}}, k = 1, ..., g,$$

де $U = \{(u_{ki})|k=1,...,g,i=1,...,N\}$ - випадковим чином задана матриця початкового розбиття, $u_{ki} \in \{0,1\}, \; \sum_{k=1}^g u_{ki} = 1, \; \sum_{i=1}^N u_{ki} < N.$

Перерахувати матрицю розбиття:

 $u_{ki} = 1$ якщо $d(t_i, c_k) = \min_{l=1,...,q} d(t_i, c_l),$

 $u_{ki} = 0$ в іншому випадку,

за умови, що $d(t_i, c_k)$ - евклідова відстань між векторами.

Виконати декілька ітерацій з уточнення центрів кластерів.

10. Задано неорієнтовний граф G з V вершинами, де ваги дуг d_{ij} відомі для $\forall i,j=1,...,V,\ i\neq j$ і позначають відстані між об'єктами. Задано поріг близькості $\sigma\in [\min d_{ij},\max d_{ij}]$. Знайти множину кластерів на основі графу G, використовуючи алгоритм:

- 1) Вилучити з графа ребра, ваги яких перевищують заданий поріг близькості $\sigma.$
- 2) Компонента зв'язності графу підмножина вершин графу, в якій будь-які вершини можна поєднати шляхом, який цілком належить цій підмножині.

Знайти компоненти зв'язності отриманого графа, вони і будуть шуканими кластерами.

- 11. Задано неорієнтовний граф G з V вершинами, де ваги дуг d_{ij} відомі для $\forall i,j=1,...,V,\ i\neq j.$ Побудувати мінімальне покриваюче дерево підграф J графу G, використовуючи алгоритм Крускала:
 - 1) Відсортувати ребра в порядку зростання їх ваг. $J := \emptyset$.
 - 2) Додавати по одному ребру до J, якщо це ребро не утворює цикл з наявними ребрами.

Пояснення: першим додається ребро мінімальної ваги, далі наступне із списку відсортованих ребер і т.д. Якщо деяке ребро утворює цикл з наявними ребрами, то воно пропускається (не додається до J) і здійснюється перехід до наступного ребра в списку відсортованих ребер.

- 3) Виконувати крок 2 до тих пір поки до J не буде додано V-1 ребро.
- 12. Задано неорієнтовний граф G з V вершинами, де ваги дуг d_{ij} відомі для $\forall i,j=1,...,V,\ i\neq j.$ Побудувати мінімальне покриваюче дерево підграф J графу G, використовуючи алгоритм Прима:
 - 1) Вибрати будь-яку вершину графу G і додати її до J.
 - 2) Додати до J ребро з найменшою вагою, яке з'єднує вершину підграфу J з вершиною, яка не належить J.
 - 3) Виконувати крок 2 до тих пір поки до J не буде додано V-1 ребро.
- 13. Розглянути критерій якості кластеризації коефіцієнт розбиття:

$$PC = \frac{\sum_{j=1}^{N} \sum_{k=1}^{g} u_{kj}^{2}}{N}.$$

Задати: N - кількість об'єктів, які кластеризуються, $1 \le g \le N$ - кількість кластерів, $U = \{(u_{kj})|k=1,...,g,j=1,...,N\}$ - матриця розбиття на кластери (використовується у нечіткому методі к-середніх), $u_{kj} \in [0,1]$ - це ступінь належності j-го об'єкту k-му кластеру, причому $u_{kj} = 1$ означає повну приналежність, $u_{kj} = 0.5$ означає приналежність до k-го кластеру зі ступенем 0.5, $\sum_{k=1}^g u_{kj} = 1$, $\sum_{j=1}^N u_{kj} < N$.

Використовуючи результати моделювання великої кількості матриць розбиття, показати, що

$$PC \in \left[\frac{1}{g}, 1\right].$$

14. Розглянути критерій якості кластеризації - ентропію розбиття:

$$PE = -\frac{\sum_{j=1}^{N} \sum_{k=1}^{g} u_{kj} \ln u_{kj}}{N}.$$

Задати: N - кількість об'єктів, які кластеризуються, $1 \le g \le N$ - задана кількість кластерів, $U = \{(u_{kj})|k=1,...,g,j=1,...,N\}$ - матриця розбиття на кластери (використовується, наприклад, у нечіткому методі ксередніх), $u_{kj} \in [0,1]$ - це ступінь належності j-го об'єкту k-му кластеру, причому $u_{kj} = 1$ означає повну приналежність, $u_{kj} = 0.5$ означає приналежність до k-го кластеру зі ступенем 0.5, $\sum_{k=1}^g u_{kj} = 1$, $\sum_{j=1}^N u_{kj} < N$.

Використовуючи результати моделювання великої кількості матриць розбиття, показати, що

$$PE \in [0, \ln g].$$

15. Згенерувати N точок в R^2 так, щоб вони утворювали віддалені один від одного скупчення, $1 \leq g^* \leq N$ - задана кількість кластерів. Для цих точок згенерувати $U^* = \{(u_{kj})|k=1,...,g^*,j=1,...,N\}$ - матрицю розбиття точок на кластери (використовується, наприклад, у нечіткому методі к-середніх), $u_{kj} \in [0,1]$ - це ступінь належності j-ї точки k-му кластеру, причому $u_{kj} = 1$ означає повну приналежність, $u_{kj} = 0.5$ означає приналежність до k-го кластеру зі ступенем 0.5, $\sum_{k=1}^{g^*} u_{kj} = 1$, $\sum_{j=1}^{N} u_{kj} < N$.

Розглянути декілька результатів кластеризації точок, які задаються матрицями розбиття:

- еталонна кластеризація, яка задається U^* і відповідає початковим правилам генерування точок,
- зашумлені кластеризації, в яких окремі точки віднесені до інших кластерів. Розглянути також випадки коли кількість кластерів g не співпадає з початково згенерованою g^* .

Показати, що на найкращому розбитті U^* індекс чіткості CI приймає найбільше значення:

$$CI = \frac{gPC - 1}{g - 1},$$

$$PC = \frac{\sum_{j=1}^{N} \sum_{k=1}^{g} u_{kj}^{2}}{N}.$$

16. Розглянути умову попереднього варіанту. Дослідити, яке значення при-

$$PE_M = \frac{PE}{\ln a},$$

ймає модифікована ентропія розбиття PE_M на найкращому розбитті U^* :

$$PE = -\frac{\sum_{j=1}^{N} \sum_{k=1}^{g} u_{kj} \ln u_{kj}}{N}.$$

17. Розрахувати індекс ефективності кластеризації:

$$PI = \sum_{j=1}^{N} \sum_{k=1}^{g} u_{kj}^{2} (d^{2}(\bar{t}, c_{k}) - d^{2}(t_{j}, c_{k})),$$

- $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}$ множина об'єктів, які кластеризуються, $x_{ik} \in R$,
- \bar{t} вибіркове середнє об'єктів $t_i \in T$,
- $2 \le g \le N$ задана кількість кластерів,
- $U = \{(u_{kj})|k=1,...,g,j=1,...,N\}$ задана матриця розбиття згідно з класичним методом к-середніх, яка задовольняє умовам $u_{kj} \in \{0,1\}$, причому $u_{kj}=1$ означає приналежність j-го об'єкту k-му кластеру, $\sum_{k=1}^g u_{kj}=1, \sum_{j=1}^N u_{kj} < N$,
- $\{c_k|k=1,...,g\}$ задані центри кластерів,
- \bullet $d^2(t_j, c_k)$ квадрат евклідової відстані між векторами.
- 18. Дано масив $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}$ об'єктів, які потрібно кластеризувати, $x_{ik} \in R$. Задано параметр $\rho > 0$. В якості міри близькості вибрано евклідову відстань $d(t_i, t_j)$. Знайти множину кластерів за наступними етапами (алгоритм Форел):
 - 1) Ініціалізувати множину некластеризованих точок U := T.
 - 2) Поки є некластеризовані точки, тобто $U \neq \varnothing$:
 - випадковим чином вибрати $t_0 \in U$,
 - повторювати:
 - утворити кластер сферу з центром t_0 і радіусом ρ :

$$C_0 := \{t_i \in T | d(t_i, t_0) < \rho\},\$$

– помістити центр сфери в центр мас кластера:

$$t_0 := \frac{1}{|C_0|} \sum_{t_i \in C_0} t_i,$$

- поки центр t_0 не стабілізується,
- ullet відмітити всі точки множини C_0 як кластеризовані: $U:=U\setminus C_0$.
- 19. Дано масив $T = \{(t_i)|t_i = (x_{i1}, x_{i2}, ..., x_{im}), i = 1, ..., N\}, x_{ij} \in R$, де приклад t_i характеризується m ознаками. Задано кількість кластерів $2 \le g \le N$ та параметр w > 1 показник нечіткості, який показує розмитість кластерів. Розрахувати центри кластерів за формулою (нечіткий метод к-середніх):

$$c_k = \frac{\sum_{i=1}^{N} (u_{ki})^w \cdot t_i}{\sum_{i=1}^{N} (u_{ki})^w}, k = 1, ..., g,$$

де $U=\{(u_{ki})|k=1,...,g,i=1,...,N\}$ - випадковим чином задана матриця початкового розбиття, $u_{kj}\in[0,1]$ - це ступінь належності j-ї точки k-му кластеру, де $u_{kj}=1$ означає повну приналежність, $u_{kj}=0.7$ означає приналежність до k-го кластеру зі ступенем $0.7, \sum_{k=1}^g u_{ki}=1, \sum_{i=1}^N u_{ki} < N$.

Перерахувати матрицю розбиття:

$$u_{ki} = \frac{1}{\sum_{v=1}^{g} \left(\frac{d^2(t_i, c_k)}{d^2(t_i, c_v)}\right)^{\frac{1}{w-1}}},$$

використати $d^2(t_i,c_k)$ - квадрат евклідової відстані між векторами.

Виконати декілька ітерацій з уточнення центрів кластерів.

- 20. Задано неорієнтовний граф J з V вершинами, де ваги дуг d_{ij} відомі для $\forall i, j = 1, ..., V$. Побудувати підграф G графу J за наступними етапами (алгоритм Борувки):
 - 1) Ініціалізувати граф G := T з множиною ребер $E := \emptyset$.
 - 2) Поки G не зв'язний:
 - Ініціалізувати допоміжну множину ребер $U := \varnothing$.
 - ullet Для кожної компоненти зв'язності графу G:
 - Ініціалізувати допоміжну множину ребер $S := \varnothing$.
 - Для кожної вершини вибраної компоненти зв'язності додати в Ѕ найкоротше ребро, яке поєднує цю вершину з якою-небудь вершиною другої компоненти.
 - Додати в U найкоротше ребро з S.
 - $E := E \cup U$.

Надрукувати граф G.

21. Нехай n - кількість альтернатив моделей, m - кількість показників якості, за якими ці моделі оцінюються. Задано матрицю V значень пріоритетів або величин виконання альтернатив моделей за показниками, де $v_{i,j} \in R^+$ - пріоритет (величина виконання) i-ої моделі за j-м показником. Задано вектор нормованих ваг показників якості $w_j^q \in [0,1], \sum_{j=1}^m w_j^q = 1$.

Розрахувати w_i^{aggr} агрегований пріоритет i-ої моделі, i=1,...,n за множиною показників, використовуючи наступні формули.

Дистрибутивний метод:

$$w_i^{aggr} = \sum_{j=1}^m r_{i,j} w_j^q,$$

де
$$r_{i,j} = \frac{v_{i,j}}{\sum_{k=1}^n v_{k,j}}$$
 для $\forall j = 1,..,m.$

Модифікований дистрибутивний метод:

$$v_i^{aggr} = \sum_{j=1}^m r_{i,j} w_j^q,$$

де
$$r_{i,j} = \frac{v_{i,j}}{\max_{k=1,...,n} v_{k,j}}$$
 для $\forall j=1,..,m.$

Мультиплікативний метод:

$$v_i^{aggr} = \prod_{j=1}^m (v_{i,j})^{w_j^q}.$$

Метод на основі функції мінімуму:

$$v_i^{aggr} = \min_{j=1,\dots,m} v_{i,j} w_j^q.$$

Нормувати отримані пріоритети:

$$w_i^{aggr} = \frac{v_i^{aggr}}{\sum_{k=1}^n v_k^{aggr}}.$$

22. Нехай n - кількість альтернативних моделей, m - кількість показників якості, за якими ці моделі оцінюються. Задано матрицю W значень пріоритетів або величин виконання альтернатив моделей за показниками, де $w_{i,j} \in [0,1]$ - нормований пріоритет (величина виконання) i-ої моделі за j-м показником так що $\sum_{i=1}^n w_{i,j} = 1$ для кожного j = 1, ..., m. Задано також вектор нормованих ваг показників якості $w_j^q \in [0,1], \sum_{j=1}^m w_j^q = 1$.

Знайти величини стійкості SI_j множини альтернатив моделей по кожному j-му показнику якості, j=1,...,m:

$$SI_{j} = \min_{i,k=1,\dots,n,i < k} (|\delta_{i,k,j}|),$$

$$\delta_{i,k,j} = \frac{w_{k}^{aggr} - w_{i}^{aggr}}{(w_{k,j} - w_{i,j})w_{j}^{q}}$$

$$w_{i}^{aggr} = \sum_{j=1}^{m} w_{i,j}w_{j}^{q}.$$

Знайти величини стійкості $SI_{i,k}^{model}$ для кожної пари моделей (i,k) за множиною показників якості:

$$SI_{i,k}^{model} = \min_{j=1,...,m} (|\delta_{i,k,j}|), i, k = 1,...,n,$$

де $\delta_{i,k,j}$ розраховуються за наведеною вище формулою.

- 23. Нехай n кількість альтернативних моделей, m кількість показників якості, за якими ці моделі оцінюються. Задано матрицю W значень пріоритетів або величин виконання альтернатив моделей за показниками, де $w_{i,j} \in [0,1]$ нормований пріоритет (величина виконання) i-ої моделі за j-м показником так що $\sum_{i=1}^n w_{i,j} = 1$ для кожного j = 1, ..., m. Задано також вектор нормованих ваг показників якості $w_j^q \in [0,1], \sum_{j=1}^m w_j^q = 1$. Зобразити графічно на одній координатній площині, див. приклад нижче:
 - значення пріоритетів $w_{i,j}$ моделей за показниками якості (критеріями рішень) лініями різних кольорів, кожній альтернативі відповідає свій колір,
 - значення ваг показників якості (критеріїв) w_j^q стовпчиковою діаграмою на тій самій координатній площині,
 - агреговані пріоритети (глобальні ваги) кожної моделі $w_i^{aggr} = \sum_{j=1}^m w_{i,j} w_j^q$, i=1,...,n точками відповідного кольору.

Таким чином, умову і результати агрегування представляємо графічно для подальшого візуального аналізу чутливості.

Рис. 1: Задача підтримки прийняття рішень: три альтернативи a1, a2, a3, чотири критерії рішень

24. Нехай n - кількість альтернативних моделей, m - кількість показників якості, за якими ці моделі оцінюються. Задано матрицю W значень пріоритетів або величин виконання альтернатив моделей за показниками,

де $w_{i,j} \in [0,1]$ - нормований пріоритет (величина виконання) i-ої моделі за j-м показником так що $\sum_{i=1}^n w_{i,j} = 1$ для кожного j=1,...,m. Задано також вектор нормованих ваг показників якості $w_j^q \in [0,1], \sum_{j=1}^m w_j^q = 1$. Зобразити графічно **для кожної пари** (i,k) альтернативних моделей у вигляді діаграми, див. приклад нижче:

- значення різниць пріоритетів $w_{i,j} w_{k,j}$ обраних моделей за кожним j-м показником якості,
- значення різниці агрегованих пріоритетів (глобальних ваг) $w_i^{aggr}-w_k^{aggr}$ обраних моделей, $w_i^{aggr}=\sum_{j=1}^m w_{i,j}w_j^q$.

Таким чином, можемо візуально оцінити відмінності між виконанням двох обраних моделей за кожним показником якості, а також якими є відмінності у результатах - агрегованих пріоритетах цих двох моделей. Кількість рисунків з діаграмами дорівнює кількості пар альтернативних моделей.

Рис. 2: Приклад різницевого аналізу чутливості для задачі підтримки прийняття рішень з чотирма критеріями рішень та двома альтернативами: Π І Φ та депозит

- 25. Нехай n кількість альтернативних моделей, m кількість показників якості, за якими ці моделі оцінюються. Задано матрицю W значень пріоритетів або величин виконання альтернатив моделей за показниками, де $w_{i,j} \in [0,1]$ нормований пріоритет (величина виконання) i-ої моделі за j-м показником так що $\sum_{i=1}^n w_{i,j} = 1$ для кожного j=1,...,m. Задано також вектор нормованих ваг показників якості $w_j^q \in [0,1], \sum_{j=1}^m w_j^q = 1$. Розглянути по черзі кожний показник якості (критерій рішень). Нехай зафіксовано j-й критерій. Зобразити графічно залежності агрегованих пріоритетів (глобальних ваг) моделей від ваги цього j-го критерію, див. приклад нижче.
 - (a) по осі абсцис вказується значення ваги w_j^{q*} j-го критерію з діапазону [0,1], крок дискретизації 0.1 або 0.01,

- (б) по осі ординат значення агрегованих пріоритетів (глобальних ваг) кожної моделі: $w_i^{aggr} = \sum_{j=1}^m w_{i,j} w_j^{q*}, \ i=1,...,n,$ що розраховані для встановленого на кроці (а) значення ваги $w_j^{q*},$
- (в) червоною вертикальною лінією позначити реальне значення w_j^q ваги j-го показника якості.

Таким чином, ми відображаємо яким буде агрегований пріоритет кожної моделі, якщо б вага обраного показника якості (критерію) дорівнювала б нулю, 0.1, 0.2, ..., 0.9, 1.0. В подальшому ці графіки використовуються для градієнтного аналізу чутливості моделей. Зверніть увагу, що при зміні ваги критерію і встановлені її рівною w_j^{q*} на кроці (а), на наступному кроці (б) потрібно пропорційно перенормувати ваги всіх інших критерії для забезпечення умови $\sum_{j=1}^m w_j^q = 1$ перед розрахунком агрегованих значень.

Рис. 3: Приклад градієнтного аналізу чутливості для задачі підтримки прийняття рішень з альтернативами a1, a2, a3

26. Задача аналізу ринкових кошиків. Задано множину товарів $I = \{i_1, i_2, ..., i_n\}$ та множину транзакцій $D = \{T_1, T_2, ..., T_m\}$, де $T = \{i_k | i_k \in I\} \subseteq I$ транзакція - це множина товарів, які були куплені разом в одному чеку. Підтримкою довільного набору $F \subseteq I$ називається число

$$Supp(F) = \frac{|D_F|}{|D|},$$

де D_F - множина транзакцій, які містять набір F:

$$D_F = \{T_j | F \subseteq T_j\},\$$

|D| - кількість елементів у множині D.

Знайти множину частих наборів товарів, використовуючи наступний алгоритм:

(а) Побудувати множину одноелементних частих наборів:

$$L_1 = \{i | i \in I, Supp(i) \ge Supp_{min}\},\$$

де $Supp_{min}$ - заданий параметр - поріг мінімальної підтримки.

(б) Для всіх k = 2, ..., n:

Побудувати множини k-елементних частих наборів

$$L_k = \{F \cup \{i\} | F \in L_{k-1}, i \in L_1 \setminus F, Supp(F \cup \{i\}) \ge Supp_{min}\}.$$

- (в) Якщо $L_k = \emptyset$, то вихід із циклу по k.
- (Γ) $\{L_1 \cup L_2 \cup ... \cup L_k\}$ результуюча множина частих наборів.
- 27. Задача аналізу ринкових кошиків. Задано множину товарів $I=\{i_1,i_2,...,i_n\}$ та множину транзакцій $D=\{T_1,T_2,...,T_m\}$, де $T=\{i_k|i_k\in I\}\subseteq I$ транзакція це множина товарів, які були куплені разом в одному чеку.

Перевести множину D до вертикального формату (TID-множини) S:

$$S = \{\{i, D_i\} | i \in I, D_i = \{T_i | i \in T_i\}\}.$$

Наприклад, $I = \{$ хліб, масло, сік, вода, ковбаса $\}$.

Горизонтальний формат представлення множини D:

Номер транзакції	Товари
1	хліб, масло, сік
2	сік, вода
3	хліб, масло, ковбаса
4	хліб, масло, вода

Вертикальний формат представлення:

Номер транзакції	Товари
хліб	1, 3, 4
масло	1, 3, 4
сік	1, 2
вода	2, 4
ковбаса	3

28. Задача аналізу ринкових кошиків. Задано множину товарів $I = \{i_1, i_2, ..., i_n\}$ та S_1 - множину транзакцій у вертикальному форматі представлення (див. попередній варіант).

Підтримкою довільного набору $F \subseteq I$ називається число

$$Supp(F) = \frac{|D_F|}{|D|},$$

де D_F - множина транзакцій, які містять набір F:

$$D_F = \{T_i | F \subseteq T_i\},\$$

|D| - кількість елементів у множині D.

Знайти множину частих наборів товарів, використовуючи наступний алгоритм:

(а) Побудувати множину одноелементних частих наборів:

$$L_1 = \{i | i \in I, Supp(i) \ge Supp_{min}\},\$$

де $Supp_{min}$ - заданий параметр - поріг мінімальної підтримки.

(б) Для всіх k = 2, ..., n:

Побудувати кандидатів у множину k-елементних частих наборів: Для всіх $F_a, F_b \in L_{k-1}$:

$$S_k = \{\{F^*, M_{F^*}^*\} | F^* = F_a \cup F_b, M_{F^*}^* = \{M_{F_a} \cap M_{F_b}\}, a < b, M_{F_a}, M_{F_b} \in S_{k-1}\}.$$

Відбір частих наборів:

$$L_k = \{F^* | F^* \in S_k, Supp(F^*) > Supp_{min} \}.$$

- (в) Якщо $L_k = \emptyset$ то вихід із циклу по k.
- (г) $\{L_1 \cup L_2 \cup ... \cup L_k\}$ результуюча множина частих наборів.

2 Контрольні питання для захисту роботи

- 1. Типи даних в Python.
- 2. Основи роботи в бібліотеці NumPy.
 - Масиви NumPy:
 - Індексація масива. Доступ до окремих елементів багатовимірних масивів.
 - numpy.reshape. Навести приклади.
 - numpy.newaxis. Навести приклади.

- Зрізи масивів: доступ до підмасивів.
- Маскування з використанням булевих масивів.
- numpy.concatenate. Навести приклади для одновимірного та двовимірного масивів.
- numpy.vstack i numpy.hstack. Навести приклади.
- numpy.split, numpy.hsplit, numpy.vsplit. Навести приклади.
- Операція reduce. Навести приклади.
- numpy.sum. Навести приклади.
- numpy.prod. Навести приклади.
- numpy.mean. Навести приклади.
- numpy.var. Навести приклади.
- numpy.amin, numpy.amax. Навести приклади.
- Універсальні функції над масивами в NumPy:
 - Поняття універсальної функції. Навіщо вони потрібні.
 - Арифметичні універсальні функції для масивів.
 - Правила транслювання (broadcasting).
 - Сортування масивів з використанням np.sort.
- Створення структурованих масивів в NumPy.

3. Оперування даними за допомогою Pandas

- Створення об'єкту Series бібліотеки Pandas.
- Об'єкт Series як словник.
- Об'єкт Series як одновимірний масив.
- Створення об'єкту DataFrame бібліотеки Pandas.
- Об'єкт DataFrame як словник.
- Об'єкт DataFrame як двовимірний масив.
- Застосування універсальних функцій до об'єктів Series і DataFrame.
- Застосування функцій агрегування до об'єктів Series і DataFrame.

4. Візуалізація за допомогою Matplotlib

- Побудова графіків із сценарію. Функція matplotlib.pyplot.show()
- Побудова графіків із блокноту IPython. Функція matplotlib.pyplot.plot().
- Побудова графіку функції y = f(x) за допомогою matplotlib.pyplot.
- Налаштування кольору, стилю ліній, міток на графіках, легенди засобами matplotlib.pyplot.