Print Test

https://assessment.casa.uh.edu/Assessment/Print

Quiz 15

Question 1

Determine whether or not the given function is one-to-one and, if so, find the inverse. If f(x) = 6x - 5 has an inverse, give the domain of f^{-1} .

$$f(x)=6>0 \Rightarrow f(s)=1$$
 (1) Let $y=f(x)=6x-5$

a) Not one-to-one. (2) Switches $2y \Rightarrow x=6y-5$

b)
$$f^{-1}(x) = \frac{1}{6}x + \frac{5}{6}$$
; domain: $(-\infty, \infty)$ Solve \mathcal{G} . $\mathcal{G} = X+5$

c)
$$f^{-1}(x) = -\frac{1}{6}x - \frac{5}{6}$$
; domain: $(-5, \infty)$

d)
$$f^{-1}(x) = 6x - 5$$
; domain: $(-\infty, \infty)$

e)
$$f^{-1}(x) = 6x + 5$$
; domain: $(-\infty, -5)$

Question 2

Determine whether or not the given function is one-to-one and, if so, find the inverse. If $f(x) = x^2 - 4x + 1$ has an inverse, give the domain of f^{-1}

a)
$$= f^{-1}(x) = \sqrt{x+3} + 2;$$
 domain: $(-3, \infty)$

b) Not one-to-one.

c)
$$= f^{-1}(x) = \sqrt{x} - \frac{1}{4}$$
; domain: $\left(\frac{1}{4}\infty\right)$ \Rightarrow f is NOT monotone. \Rightarrow f is NOT $1-1$.

d)
$$\bigcirc f^{-1}(x) = -\sqrt{x+3} - 2$$
; domain: $(-3, \infty)$

3,
$$f'(x) = 4(-3x+5) \cdot (-3x+5)'$$

= -12(-3x+5)³

Test
$$f(X) > 0$$
 as $X > \frac{5}{3}$, $f(X) < 0$ as $X < \frac{5}{3}$ e) $f^{-1}(x) = \sqrt{x} + \frac{1}{4}$; domain: $(-\infty, 0)$

Determine whether or not the given function is one-to-one and, if so, find the NOT (-1 inverse. If $f(x) = (-3x - 5)^4$ has an inverse, give the domain of f^{-1} .

a)
$$f^{-1}(x) = \frac{x^{1/4} - 5}{3}$$
; domain: $(-\infty, \infty)$ 4. $f(x) = 3(1-4x)(1-4x)$

b) Not one-to-one

c)
$$f^{-1}(x) = (5+3x)^{1/4}$$
; domain: $\left(-\infty, \frac{5}{3}\right) = -48\chi^3 \left(1-4\chi^4\right)^2$

 $=3(-16x^3)(1-4x^4)^2$

d)
$$f^{-1}(x) = \frac{5 - x^{1/4}}{3}$$
; domain: $\left(\frac{5}{3}, \infty\right)$

e)
$$f^{-1}(x) = \frac{5 - x^{1/4}}{3}$$
; domain: $(0, \infty)$
 $f(x) < 0$ as $x > 0$
 $f(x) < 0$ as $x > 0$
 $f(x) < 0$ as $x > 0$

Determine whether or not the given function is one-to-one and, if so, find the inverse. If $f(x) = (1 - 4x^4)^3$ has an inverse, give the domain of f^{-1} .

a)
$$f^{-1}(x) = \left(-\frac{1}{4}x^{1/3} + \frac{1}{4}\right)^{1/4}$$
; domain: $(0, \infty)$

b) Not one-to-one

Question 4

c)
$$f^{-1}(x) = (1 - 4x^4)^{1/3}$$
; domain: $(-\infty, \infty)$

d)
$$f^{-1}(x) = (1 - 4x^4)^{1/3}$$
; domain: $(0,)$

e)
$$f^{-1}(x) = \left(-\frac{1}{4}x^{1/3} + \frac{1}{4}\right)^{1/4}$$
; domain: $(-\infty, \infty)$

Question 5

Determine whether or not the given function is one-to-one and, if so, find the inverse: $f(x) = \frac{3}{2}\cos(x)$ with $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

f(x)=-Msin(x)

=> NOT mono tone

a)
$$= f^{-1}(x) = \arccos\left(\frac{2}{3}x\right)$$

d)
$$f^{-1}(x) = \frac{3}{2}\sin(x)$$
 \Rightarrow NoT 1-1.

e)
$$f^{-1}(x) = \sec\left(\frac{2}{3}x\right)$$

Question 6

Given the following function, with k as a constant, find the values of k for which $f(x) = \frac{1}{3}x^3 - 2x^2 - kx$ is one-to-one.

$$f(x) = x^2 - 4x + k$$

a)
$$k \ge -4$$
 = $(\chi^2 + 4\chi + 4) - 4 + \kappa$

b)
$$k \le \frac{1}{4}$$
 = $(X-2)^2 - 4+k$

$$= f(x) > 0 \text{ on } R \text{ if } 4tk > 0$$

$$= f(x) > 0 \text{ on } R \text{ if } 4tk > 0$$

d)
$$-\frac{1}{4} \le k \le \frac{1}{4}$$

e)
$$-4 \le k \le 4$$

Ouestion 7

Suppose that
$$f$$
 has an inverse and $f(4) = -1$, $f'(4) = \frac{4}{11}$. What is
$$(f^{-1})'(-1)? \qquad \qquad a \qquad b \qquad \Rightarrow f^{-1}(-1)=4$$

$$a) \qquad \frac{11}{2} \qquad (f^{-1})'(-1)= \frac{1}{4} \qquad \frac{1}{4} \qquad$$

b)
$$=\frac{1}{11}$$

c)
$$-\frac{4}{11}$$

d)
$$\bigcirc \frac{11}{4}$$

e)
$$-\frac{15}{4}$$

$$f'(5)=1, f(x)=-3x^2-3$$

$$g(5)=1, f(x)=-3x^2-3$$

$$g(5)=1, f(x)=-3x^2-3$$

$$g(5)=1, f(5)=-3x^2-3$$

$$g(5)=1, f(5)=1, f(5)=-3x^2-3$$

$$g(5)=1, f(5)=1, f(5)=1$$

Question 8

Suppose that $f(x) = -x^3 - 3x - 1$ is differentiable and has an inverse and

a)
$$0 - \frac{1}{12}$$

b)
$$-\frac{1}{6}$$

c)
$$U - \frac{1}{3}$$

b) -2

c) -4

d) = -1

e) 4

Question 9

Suppose that $f(x) = 8x - 3\cos x$ is differentiable and has an inverse and

Suppose that
$$f(x) = 8x + 3\cos x$$
 is differentiable and has an inverse and $f\left(\frac{\pi}{2}\right) = 4\pi$. Find $\left(f^{-1}\right)'(4\pi)$.

A B $\Rightarrow f'(4\pi) = \frac{\pi}{2}$

a) $-\frac{1}{5}$
 $f(X) = \frac{\pi}{2} - 3\sin X$
 $f(X) = \frac{\pi}{2} - 3\sin X$

b)
$$\frac{1}{10}$$
 \Rightarrow $\left(f^{-1}\right)\left(4\pi\right) = \frac{1}{f\left(I\right)} = \frac{1}{f}$

b)
$$\frac{1}{10}$$
 $(f)(41) = \frac{2}{f(\frac{1}{2})} = \frac{5}{5}$

$$f(3) = 2 \Rightarrow f'(2) = 3, & f(x) = \frac{x-1-(x+1)}{(x-1)^2} = \frac{-2}{(x-1)^2} \text{ and } f'(3) = \frac{-2}{4} = -\frac{1}{2}$$

$$\frac{e}{2} = \frac{2}{5}$$
Question 10
$$\frac{2}{5} = \frac{1}{5} = -2$$

Suppose that $f(x) = \frac{x+1}{x-1}$ is differentiable and has an inverse for x > 1

and
$$f(3) = 2$$
. Find $(f^{-1})'(2)$.

a) 2