maxon motor

maxon motor control

4-Q-DC Servo Control LSC 30/2

Order number 250521

Operating Instructions

April 2002 edition

The LSC 30/2 (Linear Servo Controller) is a linear 4-Q servoamplifier used to control DC motors up to approx. 50 W that are powered by permanent magnets. It allows the following operating modes:

- IxR compensation
- Voltage regulator
- · Digital encoder control
- DC tacho control
- Current control

The required operating mode is easily selected using a DIP switch.

There are also several ways of choosing the set value input:

- ± 10 V to connect to layout systems, such as a positioning controller
- auxiliary voltages \pm 3.9 V are already provided by the LSC for use with external potentiometer
- well suited for fixed speed adjustment using internal potentiometer

Its wide input voltage, ranging from 12 - 30 VDC, makes the LSC very flexible for use with different voltage sources. The modular-style aluminium housing offers several fastening options, notably plugging into a 19" rack (3HE).

Separable screw terminal strips and a robust controller design make the amplifier ideal for immediate use.

Table of contents

1	Safety Instructions	2
	Technical Data	
	Minimum External Wiring	
	Start-up Procedure	
5	Inputs and Outputs	8
6	Operating Status Display	12
7	Error Handling	13
8	EMC-compliant Installation	13
10	Blockage Diagram	14

The latest edition of these operating instructions can be found on the Internet at http://www.maxonmotor.com under 'Service', sub-directory 'Downloads'.

1 Safety Instructions

Skilled personnel

Only skilled, experienced personnel should install and start the equipment

Statutory regulations

The user must ensure that the amplifier and the components belonging to it are assembled and connected according to local statutory regulations.

Load disconnected

For initial operation, the motor should be free running, i.e. with the load disconnected.

Additional safety equipment

Any electronic equipment is, in principle, not fail-safe. Machines and apparatus must therefore be fitted with independent monitoring and safety equipment. If the equipment breaks down, if it is operated incorrectly, if the control unit breaks down or if the cables break etc., it must be ensured that the drive or the complete apparatus is kept in a safe operating mode.

Repairs

Repairs may only be carried out by authorised personnel or the manufacturer. It is dangerous for the user to open the unit or carry out any repairs.

Danger

Ensure that no apparatus is connected to the electrical supply during installation of the LSC 30/2! After switching on, do not touch any live parts!

Max. supply voltage

Make sure that the supply voltage is between 12 and 30 VDC. Voltages higher than 32 VDC or of the wrong polarity will destroy the unit.

Electrostatic sensitive device (ESD)

2 Technical Data

2.1	Electrical d	lata		
		Supply voltage V _{CC}		12 – 30 VDC
		Max. output voltage		
		Max. output current I _{max}		
		Max. power output		
		It is advisable to consider mounting there is a high power loss in the LSC		f ambient temperature is high and
2.2	Inputs			
		Set value "+Set / -Set"	configurable	-10 +10 V or -3 9 +3 9 V
		Disable "Dis IN"		
				max. Gnd + 1 V
		DC tacho "+T / -T"		
		Encoder signals "Ch A / Ch B"		
2.3	Outputs			
		Status reading "Ready"		
			Error	"Ready" = high impedant
			Ready	"Ready" = Gnd
2.4	Voltage out	tput		
		Auxiliary voltages "+Vaux / -Vaux" Encoder supply voltage '+Venc'		
2.5	Motor conn	nections		
		Motor + ; Motor -		
2.6	Trim potent	tiometers		
		n _{max}		
		IxR compensation		
		Offset		
		I _{max}		
		gain		
2.7	Protection			
		Heat monitoring of power stage		T > 85°C
2.8	LED indica			
		green LEDred LED		
2.0	Ambient to			
2.9	Ambient te	mperature / humidity range		0 .45°0
		OperationStorage		
		No condensation		
2.10	Mechanical	l data		
		Weight		approx. 330 q
		Mounting plate		
2.11	Terminals			
		separable PCB terminals		
				3.5 mm
			suitable for wire cross-s	section AWG 28-18 anded; 0.14 1.3 mm ² single wire
			o. 14 i mini munipie-su	anasa, o. 14 1.3 mm Single wile

3 Minimum External Wiring

3.1 Operating mode

3.2 Set value input

Start-up Procedure

4.1 Power supply layout

Any available power supply can be used as long as it meets the minimum requirements set out below.

During set-up and adjustment phases, we recommend separating the motor mechanically from the machine to prevent damage from uncontrolled motion.

Power supply requirements

Output voltage	V _{cc} min. 12 VDC; V _{cc} max. 30 VDC
Ripple	< 5 %
Output current	depending on load, continuous max. 2A

The required voltage can be calculated as follows:

Known values:

- Operating torque M_B [mNm]
- Operating speed n_B [rpm]
- Nominal motor voltage U_N [V]
- Motor no-load speed at U_N, n₀ [rpm]
- Speed/torque gradient of motor $\Delta n/\Delta M$ [rpm / mNm⁻¹]

Sought values:

Supply voltage V_{cc} [V]

Solution:

$$V_{CC} = \frac{U_N}{n_0} \cdot (n_B + \frac{\Delta n}{\Delta M} \cdot M_B) + 5V$$

Choose a power supply capable of supplying this calculated voltage under load. The formula takes into account a 5 V maximum voltage drop at the power stage.

4.2 **Function of potentiometers**

Potentiometer		Function	Turning direction	
			left 🕥	right 🗪
P1	n _{max}	maximum speed at maximum set value	Speed lower	Speed higher
P2	IxR	IxR compensation	weak compensation	strong compensation
P3	Offset 1	Adjustment = 0 rpm at 0 V set value	Motor turns CCW	Motor turns CW
P4	I _{max}	Current limit	lower min. approx. 0 A	higher max. approx. 2 A
P5	gain	Speed control gain	lower	higher

¹ P3 can also be used for the set value input (see 5.1.1)

4.3 Adjusting the potentiometers

4.3.1 Pre-adjustment

With pre-adjustment, the potentiometers are set in a preferred position. Units in the original packing are already pre-set.

Pre-adjustment of potentiometers		
P1	n _{max}	50 %
P2	IxR	0 %
P3	Offset	50 %
P4	I _{max}	50 %
P5	gain	10 %

4.3.2 Adjustment

Encoder operation
DC tacho operation
Voltage regulator
IxR compensation

- 1. Apply max. set value (10 V or 3.9 V) and turn potentiometer **P1** n_{max} until required max. speed is reached.
- Adjust potentiometer P4 I_{max} to required limit value.
 Limited current in the 0...2 A range can be adjusted in linear fashion with the P4 potentiometer.
 Important: The limit value I_{max} should be below the max. permissible
- Slowly increase potentiometer P5 gain until the gain is set sufficiently high.
 Important: If the motor is unsteady, vibrates or makes noises, the selected amplification is too high.

continuous current as per motor data sheet.

4. Apply 0 V set value and adjust the motor to speed 0 rpm with potentiometer P3 Offset.
Important: DIP switch 9 must be set in the "ON ♥" position for offset adjustment.

Applicable to IxR compensation only:

 Slowly increase potentiometer P2 IxR until compensation is set sufficiently high so that the motor speed does not drop or only drops very slightly at higher motor load. *Important:* If the motor is unsteady, vibrates or makes noises, the selected compensation is too high.

Current regulator

- Adjust potentiometer **P4** I_{max} to required limit value.

 Limited current in the 0...2 A range can be adjusted in linear fashion with the P4 potentiometer. *Important:* The limit value I_{max} should be below the max. permissible continuous current as per motor data sheet.
- Apply 0 V set value and adjust the motor to current 0 A with potentiometer P3 Offset.
 Important: DIP switch 9 must be set in the "ON ♥" position for offset adjustment.

Note 1: DIP switch 10 in position:

"ON ullet":set value range -3.9 ... +3.9 V equivalent to approx. -2 ... +2 A motor current "OFF ullet":set value range -10 ... +10 V equivalent to approx. -2 ... +2 A motor current

Note 2:

In current regulator operation, potentiometers P1 n_{max} , P2 IxR and P5 gain are not active.

5 Inputs and Outputs

5.1 Inputs

5.1.1 Set value "Set"

The set value can be applied externally via an analogue voltage or internally using potentiometer P3.

If the set value is applied externally using the "+Set" and "-Set" connections, DIP switch 9 must be in the "ON♥" position.

Two different ranges can be selected to apply an external analogue set value. The required range is determined by the position of DIP switch 10.

Set value range -10 ... +10 V

Input voltage range	-10 +10V
Input wiring	differential
Input impedance	200 kΩ (differential)
positive set value	(+Set) > (-Set) positive motor voltage or current
negative set value	(+Set) < (-Set) negative motor voltage or current
DIP switch 10	OFF♠
DIP switch 9	ON ↓

Use of external potentiometer

Set value range -3.9 ... +3.9 V

Input voltage range	-3.9 +3.9 V
Input wiring	differential
Input impedance	200 kΩ (differential)
positive set value	(+Set) > (-Set)
	positive motor voltage or current
negative set value	(+Set) < (-Set)
	negative motor voltage or current
DIP switch 10	ON ↓
DIP switch 9	ON ↓
recommended potentiometer	50 kΩ (linear)

Use of internal potentiometer P3

If the set value is adjusted internally via potentiometer P3, DIP switch 9 must be in the "OFF $^{\uparrow}$ " position.

P3 = 50 100 % (right end stop)	positive motor voltage or current
P3 = 50 0 % (left end stop)	negative motor voltage or current
Input wiring	(+Set) = (-Set) short-circuited
DIP switch 10	optional
DIP switch 9	OFF↑

5.1.2 "Disable"

Enabling or disabling the power stage.

If the 'Dis IN' connection is not connected or at Gnd potential,

the power stage is activated (Enable).

Release "Enable"

minimum input voltage	Gnd
maximum input voltage	+1 VDC referenced to Gnd
maximum input current	2 mA

If the 'Dis IN' terminal is connected with 'Dis+V' or

the voltage is higher than V_{cc} -1V, the power stage becomes high impedant and the motor shaft freewheels and slows down (Disable).

Block "Disable"

minimum input voltage	V _{cc} - 1 VDC
maximum input voltage	V_{cc}
maximum input current	2 mA

Wiring examples:

a) Switch open = "Disable"; switch closed = "Enable"

b) Switch open = "Enable"; switch closed = "Disable"

5.1.3 DC tacho

+T -T	positive tacho voltage	terminal [14]
	negative tacho voltage	terminal [13]
	minimum input voltage	2.0 V
	maximum input voltage	50.0 V
	Input impedance	approx. 20 kΩ

Speed control range:

The speed range is set using Potentiometer P1 n_{max} (max. speed at maximum set value).

For full speed control with \pm 10 V or \pm 3.9 V, the tacho input voltage range must be at least \pm 2 V.

Example for a DC-tacho with 0.52 V / 1000 rpm:

2.0 V tacho voltage is equivalent to a speed of approx 3850 rpm. If the full set value range has been used, the lowest adjustable speed with the n_{max} potentiometer is 3850 rpm.

Lower speed ranges can be reached through a reduced set value range or by using a DC tacho with a higher output voltage, such as $5\ V\ /\ 1000\ rpm$.

5.1.4 Encoder

ChA	Channel A	terminal [13]	
ChB	Channel B	terminal [14]	
	Encoder supply voltage +Venc	+5 VDC, max. 80 mA	
	max. encoder input frequency	DIP switch 8 OFF ↑ : DIP switch 8 ON ↓ :	100 kHz 6 kHz
	Voltage level	TTL low high	max. 0.8 V min. 2.0 V

The maximum encoder input frequency can be selected with DIP switch 8. Standard adjustment is max. encoder frequency of 100 kHz.

DIP switch 8 OFF [↑] : "high"		
Max. input frequency is 100 kHz		
Encoder pulses maximum motor		
per revolution speed		
1000	6 000 rpm	
512	11 719 rpm	
500 12 000 rpm		
256 23 437 rpm		
128	46 874 rpm	

DIP switch 8 ON Ψ : "low"		
Max. input frequency is 6 kHz		
Encoder pulses maximum motor		
per revolution speed		
128	2 812 rpm	
64 5 625 rpm		
32 11 250 rpm		
16	22 500 rpm	

Note:

To achieve good control characteristics, encoders should be operated at a small number of pulses per revolution with the dip-switch 8 in position $ON\Psi$ 'low'.

5.2 Outputs

5.2.1 Auxiliary voltage "+Vaux" and "-Vaux"

Auxiliary voltage for supplying an external potentiometer (50 k Ω).

+Vaux	positive auxiliary voltage	terminal [5]
	Output voltage	+3.9 VDC referenced to Sig_Gnd
	Max. output current	2 mA

-Vaux	negative auxiliary voltage	terminal [6]
	Output voltage	-3.9 VDC referenced to Sig_Gnd
	Max. output current	2 mA

5.2.2 Encoder supply "+Venc"

Auxiliary voltage for supplying the encoder

+Venc	Encoder supply voltage	terminal [16]
	Output voltage	+5.0 VDC referenced to Gnd
	Max. output current	80 mA

5.2.3 Status reading 'Ready'

The readiness or error status can be reported to a higher level control through the 'Ready signal'. In normal circumstances, i.e. with no errors, the "Open Collector" output is switched to Gnd.

In the event of an error (overheating), the output transistor is blocked.

Input voltage range	max. 30 VDC
max. load current	20 mA

6 Operating Status Display

A red and green LED shows the operating mode.

6.1 No LED

Reason:

- No supply voltage
- Fuse faulty
- · Wrong polarity of supply voltage

6.2 Green LED

- Supply voltage applied
- No error status (overheating)

6.3 Red LED

If the power stage temperature exceeds a limit of approx. 85°C, the power stage is switched off. (Disable - status). The red LED comes on and the green LED goes out.

If the power stage temperature falls below approx. 60°C, the motor is restarted. (Enable - status)

The red LED goes out and the green LED comes on.

Reason:

- High ambient temperature
- High power loss in the LSC
- Bad convection
- Heat sinking surface too small

max	con motor
Operating Instructions	4-Q-DC Servo Control LSC 30/2

7 Error Handling

Error	Possible cause of error	Action
Motor does not turn	Supply voltage V _{cc} < 12 VDC	Check terminal [3] voltage "V _{cc} "
	Disable not activated	Check terminal [10] "Dis IN"
	Overheating disconnection active	Loss output in the LSC too high
	Set value input 0 V	Check terminal [7] "-Set" and [8] "+Set"
	Incorrect operating mode selected	Check adjustments at DIP switch
	Bad contact	Check terminals
	Incorrect wiring	Check wiring
	Current limit too low	Check adjustment Poti P4 I _{max}
Speed not controlled	Encoder mode: encoder signals	Check "ChA" [13] "ChB" [14] sequence
	Tacho mode: tacho signals	Check polarity "-T" [13] and "+T" [14]
	IxR mode: compensation incorrect	Check adjustment Poti P2 IxR

8 EMC-compliant Installation

HF blocking

HF current blocking generally improves resistance to interference compared to external interference couplings by means of a ferrite toroidal core in a line (power or signal line).

Shield earthing

The earth impedance must have the lowest possible resistance.

Connecting cable

Power and signal lines must generally be installed as screened lines on a low-coupling basis and without looping.

Signal lines

Signal lines for sensitive analogue signals must also be screened. The signal lines' screen should be earthed on one side, the amplifier's side.

In practical terms, only the complete equipment, comprising all individual components (motor, amplifier, power supply unit, EMC filter, cabling etc) can be subjected to an EMC test in order to ensure noise-free and CE-approved operation.

9 Blockage Diagram

10 Dimension Drawing

Dimensions in [mm]

