МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Курсова робота з курсу "Чисельні методи" на тему: "Мінімаксна апроксимація функцій многочленами"

> Виконав: ст. гр. ПМ-41 Левантович Богдан Перевірив: доц. каф. ПМ Пізюр Я.В.

Зміст

Вступ	3
Способи задання функцій. Норма похибки	4
Найкраще чебишовське наближення	5 7
Схема Ремеза побудови чебишоського наближення	7
Алгоритм Валле-Пуссена заміни точок альтернансу	8
Опис програми	11
Вхідні дані	11
Вихідні дані	11
Текст програми	12
Приклади виконання програми	16
$f(x) = ln(x) \dots \dots$	16
$f(x) = e^x$	18
Висновки	20
Список використаної літератури	21

Вступ

Багатьом із тих, хто стикається з науковими та інженерними розрахунками часто доводиться оперувати наборами значень, отриманих експериментальним шляхом чи методом випадкової вибірки. Як правило, на підставі цих наборів потрібно побудувати функцію, зі значеннями якої могли б з високою точністю збігатися інші отримувані значення. Така задача називається апроксимацією кривої. Інтерполяцією називають такий різновид апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних.

Способи задання функцій. Норма похибки

Наближувана функція f(x) у практичних обчисленнях найчастіше задається або в аналітичному вигляді або у вигляді дискретних значень (табличне задання функції). Таблично задану функцію можна представити у вигляді

$$y_k = f_k = f(x_k), k = \overline{1, N}$$

де значення аргумента $X = \{x_k\}_1^N \in [a,b]$. Далі припускатимемо, що аргументи упорядковані за зростанням:

$$a \le x_1 < x_2 < \ldots < x_N \le b$$

При використанні наближених методів на ЕОМ неможливо врахувати значення функції f(x) у всіх точках [a,b], бо кількість N чисел, що може бути представлена на ЕОМ обмежена. Тому обчислювальні методи повинні бути побудовані так, щоб розв'язок задачі на проміжку [a,b] був еквівалентний її розв'язку на характерній підмножині $X_0 \subset X \subset [a,b]$, що складається з обмеженої кількості точок.

Для наближення функції f(x) використовуємо простіший вираз

$$F(A, x) = F(a_0, a_1, \dots, a_m; x)$$
(1)

з m+1 параметром. Частинним випадком виразу (1) є многочлен степеня m

$$P_m(x) = a_0 + a_1 x + \ldots + a_m x^m \tag{2}$$

Якість наближення функції f(x) за допомогою виразу (1) на проміжку [a,b] характерезується віддалю між цими функціями. Спосіб виміру цієї віддалі визначає норму похибки наближення функції f(x) за допомогою виразу (1) на проміжку [a,b] (або на множині X). Для більшої загальності у виразах для похибки часто використовують зважену віддаль (зважену різниця)

$$\rho(x) = \frac{f(x) - F(A, x)}{W(x)} \tag{3}$$

де вага W(x)>0 при $x\in [a,b],\, W_k=W(x_k), k=\overline{1,N}$

Використання тієї чи іншої норми похибки залежить передусім від конкретних задач, що стоять при наближенні функцій. У теоретичних дослідженнях чато використовується норма похибки L_p

$$||f - F||_{L_p} = \left(\int_a^b \left| \frac{f(x) - F(A, x)}{W(x)} \right|^p dx \right)^{\frac{1}{p}} = \left(\sum_{k=1}^N \left| \frac{y_k - F(A, x_k)}{W_k} \right|^p \right)^{\frac{1}{p}}$$

Найбільш вживані частинні випадки цієї норми L_1 , L_2 та L_∞ . Норму L_1 слід вживати там, де необхідно зменшити суму площ, що обмежуються кривими y = f(x) та y = F(A, x).

$$||f - F||_{L_1} = \int_a^b \frac{|f(x) - F(A, x)|}{W(x)} dx = \sum_{k=1}^N \frac{|y_k - F(A, x_k)|}{W_k}$$

Норму L_2 або середньо квадратичну похибку найчастіше використовують при обробці дослідних даних

$$||f - F||_{L_2} = \left(\int_a^b \left(\frac{f(x) - F(A, x)}{W(x)} \right)^2 dx \right)^{1/2} = \left(\sum_{k=1}^N \left(\frac{y_k - F(A, x_k)}{W_k} \right)^2 \right)^{1/2}$$

Норму L_{∞} (її часто називають чебишовською нормою або нормою C) використовують, щоб найточніше представити кожне значення наближуваної функції f(x). Припускається, що ця остання відома достатньо точно:

$$||f - F||_{L_{\infty}} = ||f - F||_{C} = \max_{x \in [a,b]} \frac{|f(x) - F(A,x)|}{W(x)} = \max_{x_k \in X} \frac{|y_k - F(A,x)|}{W_k}$$

При обчисленнях з чебишовською нормою, функцію (3) звуть функцією похибки, її графік - кривою похибки.

Найкраще чебишовське наближення

За теоремою Вейєрштрасса для довільних неперервних на обмеженому проміжку [a,b] функцій f(x) та W(x)>0 і довільного $\epsilon>0$ можна знайти такий многочлен $P_m(x)$, що

$$|\rho(x)| = \frac{|f(x) - P_m(x)|}{W(x)} < \epsilon, \quad x \in [a, b]$$

Ясно, що найменше при цьому значення степеня m многочлена $P_m(x)$ суттєво залежить від способу наближення. Серед усіх способів наближення функцій найменшу похибку а, значить, і найменше m при заданому ϵ , дає найкраще чебишовське наближення.

Вираз $F(A,x) \in F(B,x)$, для якого максимальне значення абсолютної величини зваженої похибки (3) досягає на проміжку [a,b] найменшого значення

$$\min_{c \in B} \max_{x \in [a,b]} \frac{|f(x) - F(C,x)|}{W(x)} = \max_{x \in [a,b]} \frac{|f(x) - F(A,x)|}{W(x)},\tag{4}$$

звемо найкращим чебишовським зваженим (з вагою W(x)) наближенням функції f(x) за допомогою виразу виду F(A,x) на проміжку [a,b].

У цій курсові розглянуто лише найкращі чебишовські наближення. Слова "чебишовські" і "зважені" будемо часом пропускати. При W(x)=1 маємо найкраще абсолютне наближення, при W(x)=f(x) - найкраще відносне.

Величину (4) називатимемо мінімальним (зваженим) відхиленням і позначаємо $E(f,W) \equiv \mu_0; E(f,1) \equiv E(f) \equiv \Delta_0$ - vмінімальне абсолютне відхилення; $E(f,f) \equiv \delta_0$ - мінімальне відхилення.

Далі розглянемо властивості найкращих наближень многочленом.

Теорема 1 Для будь-яких неперервних на проміжку [a,b] функцій f(x) та W(x) > 0 і довільного існує єдиний многочлен $P_m(x)$ степеня m, що має найменше відхилення E(f,w)

Теорема 2 Нехай на проміжку [a,b] задано неперервні функції f(x) та W(x) > 0. Тоді для того, щоб деякий многочлен $P_m(x)$ степеня не вище т був многочленом найкращого чебишовського зваженого наближення функції f(x) на проміжку [a,b] необхідно і достатньо, щоб на цьому проміжку знайшлась принаймні одна система з m+2 точок $T = \{t_k\}_{k=0}^{m+1} \quad a \leq t_0 < t_1 < t_2 < \ldots \leq t_{m+1}, \ y$ яких зважена різниця (3) почергово набувала значень різних знаків і досягала за модулем найбільшого на [a,b] значення тобто:

$$\rho(t_0) = -\rho(t_1) = \rho(t_2) = \dots = (-1)^{m+1} \rho(t_{m+1}) = \pm E(f, W)$$
 (5)

Система точок T із теореми 2 зветься системою точок (чебишовського альтернансу). Для побудови многочлена найкращого наближення необхідно визначити ці точки. Точно визначити їх значення можна тільки у часткових випадках.

Схема Ремеза побудови чебишоського наближення

У загальному випадку процес знаходження точок T побудовано на ітераційних методах. Найбільше практичне значення мають методи розроблені українським математиком $\mathfrak{C}.\mathfrak{A}$. Ремезом. Коротко розглянемо один з методів. Він складається з таких етапів.

1. З проміжку [a, b] вибираємо початкове наближення T_0 до альтернансу

$$T: t_0^{(0)} < t_1^{(0)} < t_2^{(0)} < \ldots < t_{m+1}^{(0)}$$

Можна, наприклад, прийняти $t_k^{(0)} = a + \frac{(b-a)k}{m+1}$

2. Здійснюємо чебишовську інтерполяцію для множини точок $T_j = \{t_k\}_{k=0}^{m+1}, t_k^{(j)} < t_{k+1}^{(j)}, k = \overline{0,m}$, тобто визначаємо коефіцієнти многочлена $P_m^i(x)$ і величину μ_j , для яких виконуються умови $\rho(t_k^{(j)}) = (-1)^k \mu_k$ $k = \overline{0,m+1}$. Для знаходження вказаних величин розв'язуємо систему рівнянь:

$$\begin{cases}
f(t_0^{(j)}) - a_0 - a_1 t_0^{(j)} - \dots - a_m (t_0^{(j)})^m = \mu_j W(t_0^{(j)}) \\
f(t_1^{(j)}) - a_0 - a_1 t_1^{(j)} - \dots - a_m (t_1^{(j)})^m = -\mu_j W(t_1^{(j)}) \\
\dots \dots \dots \dots \\
f(t_{m+1}^{(j)}) - a_0 - a_1 t_{m+1}^{(j)} - \dots - a_m (t_{m+1}^{(j)})^m = (-1)^{m+1} \mu_j W(t_{m+1}^{(j)})
\end{cases}$$
(6)

Система є системою m+2 алгебраїчних рівнянь з m+2 невідомими: a_0,a_1,\ldots,a_m та μ

3. Перевіряємо виконання рівності

$$|\mu_j| = \max_{x \in [a,b]} |f(x) - P_m^{(j)}(x)| / W(x) \equiv \rho_j$$
 (7)

Якщо рівність виконується, то у відповідності з теоремою 2 многочлен $P_m^{(j)}(x)$ і є шуканий многочлен найкращого наближення. При машинній реалізації алгоритму перевірку рівності заміняють перевіркою нерівності

$$\rho_j - |\mu_j| \le \epsilon |\mu_j| \tag{8}$$

де ϵ - допустима відносна помилка у визначенні похибки наближення. Можна, наприклад, прийняти $\epsilon=10^{-2}$ чи $\epsilon=10^{-3}$.

4. Якщо умова 7 чи 8 не викокується, то приймаємо j := j+1 і вибираємо наступне (уточнене) наближення до точок чебишовського альтернансу (наступний V-альтернанс). Далі виконання алгоритму повторюється починаючи з п.2.

При обчисленнях на EOM у цьому пункті іноді додатково перевіряються умови

$$\left| t_k^{(j-1)} - t_k^j \right| < \eta, \quad k = \overline{0, m+1}$$

де η - допустима помилка у визначенні точок альтернансу. Якщо остання нерівність справедлива для всіх точок $k=\overline{0,m+1}$, то вважаємо, що многочлен найкращого наближення знайдено.

Алгоритм Валле-Пуссена заміни точок альтернансу

Існує кілька методів заміни точок альтернансу. Можлива заміна одної або кількох точок одночасно. Найпростішим алгоритмом є алгоритм Є.Я. Ремеза з одноточковою заміною (алгоритм Валлє-Пуссена). Опишемо цей алгоритм.

Нехай при виконанні п.3 знайдена точка \tilde{x} , для якої справедливо $\rho_j = |\rho(\tilde{x})|$. Можливі три випадки взаємного розміщення точок V-альтернансу та точки \tilde{x}

1.
$$t_0^{(j)} < \tilde{x} < t_{m+1}^{(j)}$$

2.
$$\tilde{x} < t_0^{(j)}$$

3.
$$\tilde{x} > t_{m+1}^{(j)}$$

Розгянемо спосіб заміни точок V-альтернансу у кожному випадку.

- 1. Знайдемо ціле число v таке, що $t_v^{(j)} < \tilde{x} < t_{v+1}^{(j)}$. Якщо $\mathrm{sign}(\rho(\tilde{x})) = \mathrm{sign}(\rho(t_{m+1}^{(j)}))$, то приймаємо $t_v^{(j+1)} := \tilde{x}$, у протилежному випадку $t_{v+1}^{(j+1)} := \tilde{x}$. Решту точок V-альтеранансу не змінюємо.
- 2. Якщо $\operatorname{sign} \rho(\tilde{x}) = \operatorname{sign} \rho(t_0^{(j)})$, то приймаємо $t_0^{(j+1)} := \tilde{x}$, а решту точок V-альтернансу не змінюємо. Якщо це не так, то заміняємо усі точки альтернансу за формулами:

$$t_0^{(j+1)} := \tilde{x}; \quad t_k^{(j+1)} := t_{k-1}^{(j)}, \quad k = \overline{1, m+1}$$

У цьому випадку із V-альтернансу виключається точка $t_{m+1}^{(j)}$

3. Якщо $\mathrm{sign}\,\rho(\tilde{x})=\mathrm{sign}\,\rho(t_{m+1}^{(j)}),$ то приймаємо $t_{m+1}^{(j)}:=\tilde{x}$ і решту точок V-альтернансу не змінюємо. Якщо це не так, то замінюємо усі точки V-альтернансу за формулами:

$$t_k^{(j+1)} := t_{k+1}^{(j)}, \quad k = \overline{0, m}; \quad t_{m+1}^{(j+1)} := \tilde{x}$$

У цьому випадку із V-альтернансу виключається точка $t_0^{(j)}$

Отже черговий V-альтернанс відрізняєтся від попереднього тим, що точка \tilde{x} , у якій досягається максимум абсолютної величини зваженої похибки, вводиться у V-альтернанс замість однієї із старих точок. Відомо, що алгоритм Валле-Пуссена для заміни точок альтернансу при знаходженні найкращого наближення попередньої функції многочленом на проміжку [a,b] збігається незалежно від початкового наближення до точок альтернансу. Більш того у цьому випадку цей алгоритм збігається зі швидкість гометричної прогресії у тому сенсі, що знайдуться такі числа A та 0 < q < 1, що відхилення $E^{(k)}(f,W)$ многочлена $P_m^{(k)}(x)$ від функції f(x) будуть задовольняти нерівності

$$E^{(k)}(f, W) - E(f, W) \le Aq^k; \quad k = 1, 2, \dots$$

Фактична швидкість збіжності залежить від диференціальних властивостей функції та використовуваного алгоритму заміни точок альтернансу. Відомо, що коли $f(x) \in C^{m+1}[a,b], W(x)=1$ або W(x)=f(x) і $f^{(m+1)}(x)$ не змінює знак при $x \in [a,b]$, то граничні точки проміжку [a,b] є точками альтернансу. Тому у цьому випадку алгоритм Валле-Пуссена для наближення многочленами невисоких степенів $m=\overline{0,2}$ практично не програє у швижкості порівняно з іншими алгоритмами типу Є.Я. Ремеза. Зазначимо, що всі перелічені властивості найкращого чебишовського наближення непервної при $x \in [a,b]$ функції f(x) многочленом справедливі також і для наближення табличної функції. Більш того, при заміні неперервної функції її значенями в точках $x_k=a+\frac{(b-a)k}{N}$ різниця між відповідними відхиленнями при $N \to \infty$ прямує до нуля.

Опис програми

Мата програми: знаходження найкращого чебишовського наближення для заданої функції

Програма написана на мові програмування Python з використанням таких бібліотек: $Sympy,\ Numpy,\ Plotly$

Вхідні дані:

- 1. Початок інтервалу
- 2. Кінець інтервалу
- 3. Степінь многочлена
- 4. Функція для апроксимації
- 5. Точність (за замовчуванням 10^{-2})

Вихідні дані:

- 1. Коефіцієнти многочлена
- 2. Графіки похибок на кожній ітерації
- 3. Графік многочлена і функції

Текст програми

```
1 import plotlys
<sup>2</sup> from plotly graph objs import Scatter, Layout
3 import numpy as np
4 import sympy
6 plotly.offline.init notebook mode()
7 x = \text{sympy.Symbol}('x')
9
  sympy.init_printing()
_{11} start = 1 \# start
end = 4 \# end
  degree = 3 # degree of polynomial
  error on iteration = 0 \# error on each iteration
  precision = 1e-2
16
18 # first alternance
  alternance = [start + (end-start) * k / float(degree + 1) \
                    for k in range (degree +2)
20
21
  f = np.e**x # function to approximate
22
23
  def make eq(coefs, point):
24
25
       _{f} = sympy.lambdify(x, f)
      eq = _f(point)
26
      for i, c in enumerate (coefs):
27
           eq -= c*point**i
28
      return eq
29
  def pol(t):
31
      global error on iteration
32
      e = sympy.Symbol('e')
33
      vars str = ' '.join(['a' + str(i) for i in range(degree+1)])
34
      variables = sympy.symbols(vars str)
35
      eqs = |
36
37
      for i in range (degree +2):
38
           eqs.append(make_eq(variables, t[i]) + e)
39
           e *= -1
40
      if (degree + 2) \% 2 == 1:
           e *= -1
42
43
      solution = sympy.solve(eqs, variables + (e,))
44
45
      error_on_iteration = solution[e]
46
      polynom = x - x
47
      for i, v in enumerate (variables):
48
```

```
polynom += solution[v] * x**i
49
50
51
       return polynom
  def max error():
53
       polyn = pol(alternance)
54
       err_fun = np.vectorize(sympy.lambdify(x, f - polyn))
       x_vals = np.linspace(start, end, (end - start) * 1000)
       y \text{ vals} = err \text{ fun}(x \text{ vals})
57
58
       neg err = min(y vals)
59
       pos\_err = max(y\_vals)
60
61
       if abs(neg err) > pos err:
           e \max = neg err
63
       else:
64
           e_{max} = pos_{err}
65
       return e max
66
67
  def x of max error():
       polyn = pol(alternance)
69
       err fun = np. vectorize(sympy.lambdify(x, f - polyn))
70
       x_vals = np.linspace(start, end, (end - start) * 10000)
71
       y_vals = err_fun(x_vals)
72
73
       absolute y vals = list(map(lambda x: abs(x), y vals))
74
       e_{max} = max(absolute_y_vals)
75
76
       i = list(absolute_y_vals).index(e_max)
77
78
       return x vals[i]
79
80
  def error():
81
       return np. vectorize (sympy.lambdify(x, f - pol(alternance)))
82
83
  def plot error function (plot max err=False, title="Error"):
84
85
       x = sympy.Symbol('x')
86
       f = np.vectorize(sympy.lambdify(x, f))
       p = np.vectorize(sympy.lambdify(x, pol(alternance)))
88
       x_vals = np.linspace(start, end, (end - start) * 1000)
89
90
       if plot max err = False:
           data = [Scatter(x=x\_vals, y = \_f(x\_vals) - p(x\_vals))]
92
93
       else:
94
           y_{err} = max_{error}()
95
           x = rr = x \text{ of } max = error()
96
           data = [Scatter(x=x vals, y = f(x vals) - p(x vals)),
97
           Scatter (x=[x \text{ err for i in } range(100)], y=np. linspace(0, y \text{ err}, 100))]
98
99
```

```
plotly.offline.iplot({
100
            "data": data,
            "layout": Layout(title=title)
       })
104
   def plot approximation (plot max error=False):
107
108
       x = sympy.Symbol('x')
        _{f} = \text{np.vectorize}(\text{sympy.lambdify}(x, f))
       p = np.vectorize(sympy.lambdify(x, pol(alternance)))
110
       x_vals = np. linspace(start, end, (end - start) * 1000)
111
       data = [Scatter(x=x_vals, y=f(x_vals), name='f(x)'),
       Scatter(x = x_vals, y = p(x_vals), name='p(x)')
113
114
       if plot max error = True:
            y_{err} = max_{error}()
            x \text{ err} = x \text{ of } \max \text{ error}()
117
            data.append(Scatter(x=[x\_err for i in range(100)],
118
                y=np.linspace(_f(x_err), p(x_err), 100), name='Error'))
120
        plotly.offline.iplot({
121
            "data": data,
            "layout": Layout(title="Function and polynomial")
124
   plot_approximation(True)
126
127
   plot_error_function(plot_max_err=True)
128
129
   def sign(x):
130
       if x > 0: return '+'
131
        elif x < 0: return '-'
       else: return 0
133
   sign = np. vectorize(sign)
136
   def change alternance():
       global alternance
138
       x_{err} = x_{of}_{max_{error}}()
       temp = alternance [:]
140
       temp.append(x_err)
141
       temp.sort()
       index_of_x_err = temp.index(x_err)
143
       if index_of_x_err != 0 and index_of_x_err != (len(temp)-1):
144
            if sign(error()(temp[index_of_x_err])) == \
145
            sign(error()(temp[index of x err-1])):
146
                del temp[index_of_x_err-1]
147
148
            else: del temp[index of x = rr+1]
149
```

```
alternance = temp[:]
       else: print('Index {}'.format(index_of_x_err))
153
   alternance = [start + (end-start) * k / float(degree + 1) for k in range(
154
      degree+2)
   iterations = 0
   while abs(abs(max error()) - abs(error on iteration)) / 
       abs(error_on_iteration) > precision:
157
       print('Alternance before: {}'.format(alternance))
158
       print('Signs of alternance: {}'.format(sign(error()(alternance))))
159
       print('Max error: {}'.format(max error()))
160
       print('Error on interation: {}'.format(error_on_iteration))
161
       print('X in which max error: {}'.format(x_of_max_error()))
162
       change alternance()
163
164
       print('Alternance after: {}'.format(alternance))
165
       print('Signs of Alternance: {}'.format(sign(error()(alternance))))
       plot error function (True, title="Error on {} iteration ".format(iterations
167
      +1))
       print(' \setminus n \setminus n')
       iterations += 1
170
   print('Max error: {}'.format(max error()))
   print('Error on iteration: {}'.format(error_on_iteration))
   print('Difference of errors: {}'.format(abs(abs(max_error()) - \\
    abs(error on iteration)) / abs(error on iteration)))
   print('Iterations: {}'.format(iterations))
176
pol(alternance) # polynomial of best Chebyshev's approximation
```

Приклади виконання програми

$$f(x) = ln(x)$$

Для демонстрації роботи програми знайдемо чебишоське наближення для функції ln(x) на проміжку [1,4]. Степінь многочлена 2

Функція і наближення многочленом

Многочлен найкращого наближення: $-0.104738802795409x^2 + 0.968261355515689x - 0.837226384468305$

Похибка на 1 ітерації

Похибка на 2 ітерації

Цьому алгоритму знадобилося лише дві ітерації щоб знайти найкраще чебишовське наближення з точністю ($\epsilon=10^{-2}$)

$$f(x) = e^x$$

Для демонстрації роботи програми знайдемо чебишоське наближення для функції e^x на проміжку [-1,4]. Степінь многочлена 3

Функція і наближення многочленом

Многочлен найкращого наближення: $1.16655577968963x^3 - 1.59181343051662x^2 + 0.456269273979323x + 2.27459066233514$

Похибка на 1 ітерації

Похибка на 4 ітерації

Цьому алгоритму знадобилося чотири ітерації щоб знайти найкраще чебишовське наближення з точністю ($\epsilon=10^{-2}$)

Висновки

У цій курсовій я розглянув найкраще чебишовське наближення многочленами. Написав програму для знаходження коефіцієнтів такого многочлена. Також в програмі реалізув побудову графіків похибок на кожній ітерації, вивід максимальної похибки та значення аргументу при якому ця похибка досягається.

Список використаної літератури

- 1. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. -М.: Наука, 1972.-368 с.
- 2. Попов Б.А. Равномерное приближение сплайнами. -Киев: Наук. дум- ка, 1989. 272 с.
- 3. Попов Б.А., Теслер Г.С. Приближение функций для технических приложений. Киев: Наук. думка, 1980. 352 с.
- 4. Ремез Е.Я. Основы численных методов чебышовского приближения. Киев: Наук. думка, 1969, — 623 с.
- 5. Попов Б.О. Чисельні методи рівномірного наближення сплайнами. Конспект лекцій. -Львів: ЛДУ, 1992. 92 с.
- 6. Самарский А.А., Гулин А.В. Численные методы. -М.: Наука, 1989. 432 с.
- 7. https://plot.ly/ для побудови графіків
- 8. http://www.sympy.org/ для розв'язування систем
- 9. http://www.numpy.org/ для наукових розрахунків