

THE INVENTION CLAIMED IS:

1. A method for manufacturing an integrated circuit structure, comprising:
 - providing a semiconductor substrate;
 - forming a thyristor having at least four layers with three P-N junctions therebetween,
 - 5 at least two of the layers being formed horizontally on the semiconductor substrate and at least two of the layers being formed vertically on the semiconductor substrate;
 - forming a gate adjacent at least one of the vertically formed layers;
 - forming an access transistor on the semiconductor substrate; and
 - 10 forming an interconnect between the thyristor and the access transistor.
2. The method of claim 1 wherein providing the semiconductor substrate includes providing a semiconductor-on-insulator substrate.
3. The method of claim 1 wherein forming the thyristor includes forming at least two of the vertical layers in a vertical pillar on the semiconductor substrate.
4. The method of claim 3 wherein forming the gate includes forming a surround gate around the vertical pillar.
5. The method of claim 3 wherein forming the interconnect includes forming a local interconnect above the semiconductor substrate connecting the pillar and the access transistor.
- 20 6. A method for manufacturing an integrated circuit structure, comprising:
 - providing an underlying silicon semiconductor substrate;
 - forming a layer of buried silicon oxide on the underlying silicon semiconductor substrate;
 - forming an upper layer of silicon on the layer of buried silicon oxide;
 - implanting N- and P- regions in the upper layer of silicon;
 - 25 depositing at least one additional layer on the upper layer of silicon;
 - etching the additional layer to form a hole therein over the N- implantation region;
 - growing a vertical P-type silicon pillar in the hole by selective epitaxy;
 - stripping off the additional layer;
 - 30 growing gate oxide around the sides of the P- Si pillar and over the P- implantation region;
 - forming a polysilicon gate over the gate oxide in the P- implantation region;

forming and implanting a polysilicon gate adjacent the P- Si pillar;
implanting N- source/drain areas adjacent the polysilicon gate over the
P- implantation region;
depositing nitride spacers around at least one of the polysilicon gates and the P- Si
pillar;
5 forming N+ implantations in the N- source/drain areas, in the top of the P- Si pillar,
and in the top of the polysilicon gate over the P- implantation region;
forming a P+ implantation in the N- implantation adjacent the P- Si pillar, using the
nitride spacer around the P- Si pillar to self-align the P+ implantation
thereadjacent;
10 forming respective salicide layers over the N+ and P+ implantations; and
forming an interconnect between the salicide layer over the top of the P- Si pillar and
one of the salicide layers over the N- source/drain areas.

7. The method of claim 6 wherein forming the gate adjacent the P- Si pillar
15 includes forming a surround gate around the vertical P- Si pillar.

8. The method of claim 6 further comprising activating the implantations by
rapid thermal anneal.

9. The method of claim 6 wherein forming the interconnect includes forming a
local interconnect above the semiconductor substrate.

20 10. The method of claim 6 further comprising:
depositing an interlayer dielectric; and
forming electrical contacts through the interlayer dielectric to a plurality of the
salicide layers.

11. An integrated circuit structure, comprising:
25 a semiconductor substrate;
a thyristor having at least four layers with three P-N junctions therebetween, at least
two of the layers being formed horizontally on the semiconductor substrate
and at least two of the layers being formed vertically on the semiconductor
substrate;
30 a gate adjacent at least one of the vertically formed layers;
an access transistor on the semiconductor substrate; and
an interconnect between the thyristor and the access transistor.

12. The integrated circuit structure of claim 11 wherein the semiconductor substrate is a semiconductor-on-insulator substrate.

13. The integrated circuit structure of claim 11 wherein at least two of the vertical layers form a vertical pillar on the semiconductor substrate.

5 14. The integrated circuit structure of claim 13 wherein the gate is a surround gate around the vertical pillar.

15. The integrated circuit structure of claim 13 wherein the interconnect is a local interconnect above the semiconductor substrate connecting between the pillar and the access transistor.

10 16. An integrated circuit structure, comprising:
a silicon semiconductor substrate;
N- and P- implanted regions in the silicon semiconductor substrate;
a vertical P-type silicon pillar;
gate oxide around the sides of the P- Si pillar and over the P- implantation region;
15 a polysilicon gate over the gate oxide in the P- implantation region;
an implanted polysilicon gate adjacent the P- Si pillar;
implanted N- source/drain areas adjacent the polysilicon gate over the P- implantation region;
nitride spacers around at least one of the polysilicon gates and the P- Si pillar;
20 N+ implantations in the N- source/drain areas, in the top of the P- Si pillar, and in the top of the polysilicon gate over the P- implantation region;
a self-aligned P+ implantation in the N- implantation adjacent the P- Si pillar;
respective salicide layers over the N+ and P+ implantations; and
an interconnect between the salicide layer over the top of the P- Si pillar and one of
25 the salicide layers over the N- source/drain areas.

17. The integrated circuit structure of claim 16 wherein the silicon semiconductor substrate further comprises:

an underlying silicon semiconductor substrate;
a layer of buried silicon oxide on the underlying silicon semiconductor substrate; and
30 an upper layer of silicon on the layer of buried silicon oxide.

18. The integrated circuit structure of claim 16 wherein the gate adjacent the P- Si pillar is a surround gate around the vertical P- Si pillar.

19. The integrated circuit structure of claim 16 wherein the interconnect is a local interconnect above the semiconductor substrate.

5 20. The integrated circuit structure of claim 16 further comprising:
an interlayer dielectric; and
electrical contacts through the interlayer dielectric to a plurality of the salicide layers.