CHALLENGE KRYPTON

Krypton1

Décodage de la clé en Base64 : KRYPTONISGREAT

Krypton2

Affichage de la clé pour Krypton2 :

```
krypton1@krypton:/home$ cd /krypton/krypton1
krypton1@krypton:/krypton/krypton1$ ls
README krypton2
krypton1@krypton:/krypton/krypton1$ ls -lh
total 8.0K
-rw-r---- 1 krypton1 krypton1 882 Jun 15 11:40 README
-rw-r---- 1 krypton1 krypton1 26 Jun 15 11:40 krypton2
krypton1@krypton:/krypton/krypton1$
krypton1@krypton:/krypton/krypton1$
krypton1@krypton:/krypton/krypton1$ cat krypton2
YRIRY GJB CNFFJBEQ EBGGRA
krypton1@krypton:/krypton/krypton1$
Décodage la clé (ROT13): ROTTEN
krypton1@krypton:/krypton/krypton1$ echo "YRIRY GJB CNFFJBEQ EBG-z]' '[N-ZA-Mn-za-m]'
LEVEL TWO PASSWORD ROTTEN
```

Krypton3

Affichage de la clé pour Krypton3 :

```
krypton2@krypton:~$ cd /krypton/krypton2/
krypton2@krypton:/krypton/krypton2$ cat krypton3
OMQEMDUEQMEK
```

Création d'un script python (en local) :

```
root@flaya:~# touch decrypt.py
root@flaya:~# ls
Access-Your-Private-Data.desktop
                                   etat ports.sh
                                                              openssl
                                   halberd-master
                                                              README.t
decrypt.py
                                   ip sous domaine epsi.txt
epsi fr 1485869054.63.csv
                                                              theHarve
epsi_fr_1485870891.7.csv
                                   master.zip.1
                                                              toto.txt
epsi subdomains.txt
                                   openssl
root@flaya:~# nano decrypt.py
```

```
#!/usr/bin/python
import sys

ctext = "OMQEMDUEQMEK"
alphabet = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
plaintext = ""
shift = 1

while shift <= 26:
   for c in ctext:
    if c in alphabet:
      plaintext += alphabet[(alphabet.index(c)+shift)%(ler print("Shift used: " + str(shift))
      print("Ciphertext: " + ctext)
      print("Plaintext: " + plaintext)
      shift = shift + 1
      plaintext = ""</pre>
```

Récupération du résultat le plus probable : CAESARISEASY

```
python decrypt.py
Shift used:
Ciphertext:
             OMQEMDUEQMEK
Plaintext:
            PNRFNEVFRNFL
Shift used:
Ciphertext:
             OMQEMDUEQMEK
Plaintext:
           QOSGOFWGSOGM
Shift used:
Ciphertext:
             OMQEMDUEQMEK
Plaintext: RPTHPGXHTPHN
Shift used:
             4
ciphertext:
             OMQEMDUEQMEK
Plaintext:
            SQUIQHYIUQIO
             5
Shift used:
Ciphertext:
             OMQEMDUEQMEK
Plaintext:
           TRVJRIZJVRJP
Shift used:
             6
iphertext:
            OMQEMDUEQMEK
Plaintext:
            USWKSJAKWSKQ
Shift used:
ciphertext:
             OMQEMDUEQMEK
Plaintext:
            VTXLTKBLXTLR
Shift used: 8
             OMQEMDUEQMEK
ciphertext:
plaintex.
shift used: 9
sinhertext: OMQEMDUEQMEK
Plaintext:
            WUYMULCMYUMS
           XVZNVMDNZVNT
Plaintext:
```

```
Ciphertext: OMQEMDUEQMEK
Flaintext: VTXLTKBLXTLR
Shift used: 8
Ciphertext: OMQEMDUEQMEK
Flaintext: WUYMULCMYUMS
Shift used: 9
Ciphertext: OMQEMDUEQMEK
Flaintext: XVZNVMDNZVNT
Shift used: 10
Ciphertext: OMQEMDUEQMEK
Flaintext: YWAOWNEOAWOU
Shift used: 11
Ciphertext: OMQEMDUEQMEK
Flaintext: ZXBFXOFFBXFV
Shift used: 12
Ciphertext: OMQEMDUEQMEK
Flaintext: AYCQYFGQCYQW
Shift used: 13
Ciphertext: OMQEMDUEQMEK
Flaintext: BZDRZOHRDZRX
Shift used: 14
Ciphertext: OMQEMDUEQMEK
Flaintext: BZDRZOHRDZRX
Shift used: 14
Ciphertext: OMQEMDUEQMEK
Flaintext: CAESARISEASY
Shift used: 15
Ciphertext: OMQEMDUEQMEK
Flaintext: DBFTBSJTFBTZ
Shift used: 16
Ciphertext: OMQEMDUEQMEK
Flaintext: ECGUCTKUGCUA
Shift used: 17
Ciphertext: OMQEMDUEQMEK
Flaintext: ECGUCTKUGCUA
Shift used: 17
Ciphertext: OMQEMDUEQMEK
Flaintext: FDHVDULVHDVB
```

Krypton 4

Affichage de la clé pour Krypton4 :

krypton3@krypton:~\$ cd /krypton/krypton3/

krypton3@krypton:/krypton/krypton3\$ cat krypton4

KSVVW BGSJD SVSIS VXBMN YQUUK BNWCU ANMJS krypton3@krypton:/krypton/krypton3\$

Analyse de fréquence :

Fréquence des mots anglais

Α	В	С	D	Е	F	G	Н	I	J
8.2	1.5	2.8	4.3	12.7	2.2	2.0	6.1	7.0	0.2
K	L	М	N	0	Р	Q	R	S	Т
0.8	4.0	2.4	6.7	7.5	1.9	0.1	6.0	6.3	9.1
U	V	W	Х	Υ	Z				
2.8	1.0	2.4	0.2	2.0	0.1				

On peut les classer par fréquence

E	Т	Α	0	I	N	S	Н	R	D
L	U	С	М	W	F	Υ	G	Р	В
V	К	Х	J	Q	Z				

En utilisant un site d'analyse de fréquence on peut analyser la fréquence des lettres dans les fichiers *found1*, *found2*, et *found3*.

Classement sur found1

S	С	Q	U	J	В	N	G	D	V
Z	W	Υ	Т	М	K	Х	L	Α	E
F	0	R	Р	I	Н				

Classement sur found2

S	Q	J	N	U	В	D	G	С	W
Z	V	М	Т	Е	Υ	Χ	K	L	Α
1	F	0	Н	R	Р				

Classement sur found3

S	Q	J	G	С	N	В	U	D	V
Z	W	Е	М	K	Х	Υ	Α	Т	L
F	1	0	Р	R	Н				

Correspondance

La phrase à décrypter est : KSVVW BGSJD SVSIS VXBMN YQUUK BNWCU ANMJS

On cherche les correspondances pour les lettres de la phrase uniquement (classées par fréquence) :

Lettre	Possibilités
S	E
V	DLU
N	OINS

В	NS				
U	OINSH				
K	WFYG				
J	AOI				
W	DLU				
М	CMW				
С	TAOINSHR				
Q	TA				
ı	VKXJQ				
D	SHR				
Х	FY				
G	OINSH				
Υ	CMWFY				
Α	GPB				

Par substitution, on trouve que les meilleures possibilités pour le premier de mot de 5 lettres sont : WELLD ou WELLU.

On remplace les lettres :

WELLWBGEJDELEIELXBMNYQUUKBNWCUANMJE

En analyse de fréquence de mot en anglais, il est très probable que la combinaison JDS corresponde à THE. On remplace :

WELLWBGETHELEIELXBMNYQUUKBNWCUANMTE
WELLDONETHELEVELXOMNYQUUKONDCUANMTE
WELLDONETHELEVELFOURPASSWORDISBRUTE => Le mot de passe est BRUTE

Krypton 5

Affichage de la clé pour Krypton5 :

```
krypton4@krypton:~$ cd /krypton/krypton4
krypton4@krypton:/krypton/krypton4$ ls
HINT README found1 found2 krypton5
krypton4@krypton:/krypton/krypton4$ cat krypton5
HCIKV RJOXkrypton4@krypton:/krypton/krypton/krypton4$
```

Nous allons utiliser la technique suivante pour décrypter le Vigenère :

Tout d'abord, il est nécessaire de diviser le texte en 6 sous-texte correspondant à chaque caractère étant crypté par la même lettre :

YYICSJIZIBAGYYXRIEWVIXAFNJOOVQQVHDLCRKLBSSLYXRIQYIIOXQTWXRICRVVKPBHZXIYLYZPDLCDIIKG...

Par exemple, la première séquence est :

YIYWNQRLYTRHYDJTWZSLNNHTMJJYFNYIJJSLWNMFXBBKXIMJTBMIYJJNTYBWKWWLFGWISJSZYSYPJNFJQ FWTYWKJJMMNSYWKYSAYMTSQZJRFDMKXFJJPKFSTTTJMBMJDSQIJPFJTSJWJPJIKXISJFFYXMQMYIMZYFSJ WJNTWGJYGZTMTYSFFJTWJQBSFSJSJIJJNKWSXZYZKXMSSIFTXSSKTJTYWMYKLTISNJFITWIXNBSJHJF

Nous allons utiliser la technique de l'analyse de fréquence pour définir une équivalence entre deux lettres. On obtient la liste de fréquence suivante (uniquement les 8 plus fréquents) :

```
J => 37
S => 24
Y => 22
T => 20
F => 18
W => 17
M => 16
I => 14
```

On peut donc en déduire que la lettre la plus fréquente correspond au E. Par conséquent le décalage entre J et E est de 6. La première lettre de la clé est donc F.

On répète l'opération pour chacun des 5 sous-textes restants.

On obtient les décalages suivants :

6 17 5 11 5 25 soit la clé FREKEY

On utilise le script Python suivant pour décrypter le mot de passe :

```
message = "HCIKV RJOX"
message = message.decode("utf-8")
key = raw_input("\nQuelle est la clé?\n").decode("utf-8").upper()
lettres = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
keyIndex = 0
decrypted = ""
for car in message:
    num = lettres.find(car)
    ff num != -1:
        num -= lettres.find(key[keyIndex])
        num %= len(lettres)
        decrypted == lettres[num]
        keyIndex == 1
        if keyIndex == len(key):
            keyIndex = 0
        decrypted - car
 rint "\n*** Message décrypté! ***"
  int decrypted + "\n"
```

Décryptage du mot de passe avec la clé : CLEAR TEXT

D:\DOC\Cours_EPSI\Cryptographie\challenge\vigenere>python vigener.py

Quelle est la cle?

FREKEY

*** Message decrypte! ***

CLEAR TEXT