Exercices de mécanique

Martin Andrieux

Rembobinage d'un fil

Un fil inextensible et sans masse de longueur L est raccordé tangentiellement à une bobine circulaire plate de rayon R. À son extrémité libre est accroché un point matériel M de masse m. Le fil étant tendu, on lance M dans le plan de la bobine, avec une vitesse $\overrightarrow{v_0}$ prependiculaire au fil, et dans le sens correspondant à l'enroulement. On note θ l'angle correspondant au fil enroulé $(\theta = 0 \ \text{à } t = 0)1$. On néglige le poids de M. Il est conseillé d'utiliser pour les calculs la base $(\overrightarrow{u_\rho}, \overrightarrow{u_\theta})$ (cf. figure).

- b) Calculer la vitesse \vec{v} et l'accélération $\vec{\alpha}$ dans la base $(\vec{u_\rho}, \vec{u_\theta})$. Faire le lien avec la base de Frénet; quel est le centre de courbure de la trajectoire?
- c) Montrer que le mouvement est uniforome (ν constant).
- d) Calculer la durée τ du rembobinage.
- e) Calculer la tension $\overrightarrow{T}(t)$ du fil en fonction du temps. Commenter.

a)
$$L = \rho + \theta R$$

b)
$$\vec{\nu} = \rho \dot{\theta} \vec{u}_{\theta}$$

$$\overrightarrow{\alpha} = \frac{d}{dt} \left(\rho \dot{\theta} \right) \overrightarrow{u_{\theta}} - \rho \theta^2 \overrightarrow{u_{\rho}}$$

c)
$$\frac{dE_c}{dt} = \mathcal{P}_{\rm force} = 0$$
 d'où E_c constante.

$$\mathrm{d})~\tau = \frac{L^2}{2\nu_0 R}$$

e)
$$T(t) = \frac{m v_0^2}{L \sqrt{1 - \frac{t}{\tau}}}, \ {\rm la \ tension \ diverge \ quand \ } M$$
 devient proche de la bobine.