Fayoum University
Faculty of Computers & Information
Second Year
Digital Signal Processing
Year 2020 / 2021

Sheet 1

1-

2-

3.2								
a.								
n	0	1	2	3	4	5	6	7
x(n)	1.000	0.5000	0.2500	0.1250	0.0625	0.0313	0.0156	0.0078

b.				_	_	_		
n	0	1	2	3	4	5	6	7
x(n)	0.0000	2.9389	4.7553	4.7553	2.9389	0.0000	-2.9389	-4.7553

The arrow (brace) indicates the zeroth sample (n = 0).

 $x[n] = \begin{bmatrix} 2 & 0 & 3 & 1 & 1 & -1 \end{bmatrix}$

a) x[n-2]

 $x[n+\beta]$ means shifting x[n] by β samples to the left if $\beta>0$, or to the right if $\beta<0$.

b) x[n/2]

 $x[\alpha n]$ means scaling the time axis by a factor of α so that the signal samples are brought closer together if $|\alpha| > 1$, and spaced further apart if $|\alpha| < 1$ (with the insertion of zeros in-between samples). The signal is mirrored relative to the y-axis if $\alpha < 0$.

c) [-2n+3]

Obtaining $x[\alpha n + \beta]$ from x[n] involves 3 consecutive steps:

- 1- Shifting the signal by eta samples to the left if eta>0 , or to the right if eta<0
- 2- Scaling the time axis by a factor of α so that the signal samples are brought closer together if $|\alpha| > 1$, and spaced further apart if $|\alpha| < 1$ (with the insertion of zeros in-between samples)
- 3- Mirroring the signals samples relative to the y-axis if $\alpha < 0$.

d) $3x[n-2]\delta[n-4]$

Multiplying a signal x[n] by $\delta[n+k]$ zeros all samples except that at n=-k.

e) x[n]u[2-n]

First, u[-n+2] is obtained from u[n] through a left shift by 2 samples then mirroring the signal relative to the yaxis. The two signals x[n], u[2-n] are then multiplied together on a sample-by-sample basis.

Through simple substitution:

$$y[-2] = x[4] = 0$$
 , $y[-1] = x[1] = 1$, $y[0] = x[0] = 3$, $y[1] = x[1] = 1$, $y[2] = x[4] = 0$

