VECTOR FIELDS

- Vector Fields
- Gradient Fields

VECTOR FIELDS

VECTOR FIELDS

DEFINITION

A vector field is a function

$$\overrightarrow{\mathbf{F}} = (F_1, \dots, F_n): \mathbb{R}^n o \mathbb{R}^n$$

VECTOR FIELDS EXAMPLES

- ullet Position Vector: $\overrightarrow{\mathbf{F}}(x,y,z)=(x,y,z)=r$
- ullet Rotation Field: $\overrightarrow{\mathbf{F}}(x,y)=(-y,x)$
- ullet Inverse Square Law: $\overrightarrow{\mathbf{F}}(r) = rac{C}{|r|^2} rac{r}{|r|}$

GRADIENT FIELDS

GRADIENT FIELDS

DEFINITION

A vector field of the form $\overrightarrow{\mathbf{F}}(r) =
abla f(r)$ is called a gradient vector field.

Here
$$r=(x_1,\ldots,x_n)$$

GRADIENT FIELDS EXAMPLES

$$ullet f(r)=rac{|r|^2}{2}$$

$$\bullet \ f(r) = x^2 y^2$$

UNIQUENESS OF GRADIENT FIELDS

LEMMA

$$abla f =
abla g$$
 if and only if $g(r) = f(r) + C$.

LEVEL SETS

THEOREM

Let f be a function with $\nabla f \neq 0$. Then ∇f is perpendicular to the level sets of f.