wykład 10: Procesy dualne

Procesy dualne

Często zdarza się, że wartość oczekiwaną związaną z jednym skomplikowany procesem jesteśmy w stanie wyrazić jako wartość oczekiwaną związaną z innym procesem, który jest o wiele poostrzy. Tego typu relacje pozwalają na przydatne reprezentacje wielkości występujących w procesach Fellera.

Definicja 0.1. Niech $X_1 = (X_1(t))_{t \in \mathbb{R}}$ i $X_2 = (X_2(t))_{t \in \mathbb{R}}$ będą procesami Fellera odpowiednio na przestrzeniach S_1 i S_2 . Dla mierzalnej i ograniczonej funkcji H na $S_1 \times S_2$, procesy te są nazywane dualnymi względem H, jeśli

$$\mathbf{E}_{x_1}[H(X_1(t), x_2)] = \mathbf{E}_{x_2}[H(x_1, X_2(t))] \tag{0.1}$$

dla każdego $t \geq 0$ oraz $x_i \in S_i$.

Powyższe pojęcie w zupełnej ogólności jest problematyczne. Naturalnym jest oczekiwać, że (??) mówi coś o relacji między X_1 oraz X_2 . Zauważmy, że każde dwa procesy są dualne względem funkcji stałej. Jednakże charakter relacji między X_1 a X_2 zależy bardzo mocno od konteksty i podyktowany jest prze funkcję H

Przyklad 0.2. Niech X_a oraz X_r będą ruchami Browna na $S_1 = S_2 = [0, +\infty)$ odpowiednio zabitymi i odbitymi w zerze. Procesy te są dualne względem funkcji

$$H(x,y) = \mathbf{1}_{\{x < y\}}.$$

Wówczas relacja (??) zapisuje się jako

$$\mathbf{P}_{x_1}[X_1(t) \le x_2] = \mathbf{P}_{x_2}[x_1 \le X_2(t)].$$

W przypadku wspomnianych wersji ruchu Browna

$$\mathbf{P}_x[X_a(t) \le y] = \mathbf{P}_y[x \le X_r(t)].$$

Oba prawdopodobieństwa sa równe

$$\mathbb{P}[B_t \ge x - y] + \mathbb{P}[B_t \ge x + y],$$

gdzie $B = (B_t)_{t \in \mathbb{R}_+}$ jest standardowym ruchem Browna na \mathbb{R} . Dokładne sprawdzenie wspomnianej równości pozostawiamy jako zadanie.

Załóżmy teraz, że H jest ciągła. W świetle definicji procesy Fellera X_1 oraz X_2 z półgrupami Fellera odpowiednio $T_1=(T_1(t))_{t\in\mathbb{R}_+}$ oraz $T_2=(T_2(t))_{t\in\mathbb{R}_+}$ są H-dualne wtedy i tylko wtedy, gdy

$$T_1(t)H(\cdot, s_2)(s_1) = T_2(t)H(s_1, \cdot)(s_2)$$

dla wszystkich $t \geq 0$, $s_1 \in S_1$ oraz $s_2 \in S_2$. W przypadku, gdy definiujemy procesy Fellera przez ich opis infinitezymalny wygodniejsze jest kryterium wyrażone w terminach generatorów.

Twierdzenie 0.3. Niech X_1 i X_2 będą generowane odpowiednio przez $(L_1, \mathcal{D}(L_1))$ oraz $(L_2, \mathcal{D}(L_2), \text{Załóżmy}, że dla każdych <math>s_1 \in S_1$ oraz $s_2 \in S_2$

$$H(\cdot, s_2) \in \mathcal{D}(L_1)$$
 oraz $H(s_1, \cdot) \in \mathcal{D}(L_2)$.

Jeżeli dodatkowo

$$L_1H(\cdot, s_2)(s_1) = L_2H(s_1, \cdot)(s_2)$$

dla wszystkich $x_1 \in S_1$ oraz $x_2 \in S_2$. Wówczas X_1 i X_2 są dualne względem H.

Dowód.Rozumowanie przeprowadzimy jedynie w przypadku przeliczalnej S_2 i ograniczonego $L_2.$ Wówczas X_2 jest łańcuchem Markowa z q-macierzą $q=(q(x,y))_{x,y\in S_2}.$ Przypomnijmy, że wówczas

$$T_2(t)f(s_2) = \mathbf{E}_{s_2}[f(X_2(t))] = \sum_{y \in S_2} \mathbf{P}_{s_2}[X_2(t) = y]f(y).$$

Generator L_2 zadany jest wówczas przez

$$L_2 f(s_2) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} T_2(t) f(s_2) = \sum_{y \in S_2} \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \mathbf{P}_{s_2}[X_2(t) = y] f(y) = \sum_{y \in S_2} q(s_2, y) f(y).$$

Rozważmy

$$u(t, x_1, x_2) = \mathbf{E}_{x_1} H(X_1(t), x_2) = T_1(t) H(\cdot, x_2)(x_1)$$
(0.2)

Na mocy Twierdzenia ??,

$$\frac{\mathrm{d}}{\mathrm{d}t}u(t,x_1,x_2) = T_1(t)L_1H(\cdot,x_2)(x_1) = T_1(t)L_2H(x_1,\cdot)(x_2)$$

$$= \sum_{y \in S_2} q(x_2,y)T_1(t)H(\cdot,y)(x_1) = \sum_y q(x_2,y)u(t,x_1,y) = L_2u(t,x_1,\cdot)(x_2).$$
(0.3)

Dodatkowo $u(0, x_1, x_2) = H(x_1, x_2)$. Z drugiej strony funkcja

$$v(t, x_1, x_2) = T_2(t)H(x_1, \cdot)(x_2)$$

również spełnia $v(0, x_1, x_2) = H(x_1, x_2)$. Wystarczy zatem uzasadnić jedyność tego zagadnienia. Rozważmy w tym celu h = v - u. Wówczas

$$h(t, x_1, x_2) = \int_0^t L_2 h(s, x_1, \cdot) ds$$

Niech

$$h^*(t, x_1) = \sup_{s < t, x_2 \in S_2} h(s, x_1, x_2).$$

Wówczas

$$h^*(t, x_1) \le \int_0^t ||L_2||h^*(s, x_1) ds.$$

Powyższa nierówność zwija się do

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-\|L_2\|t} \int_0^t h^*(s, x_1) \mathrm{d}s \right) \le 0.$$

Co po całkowaniu daje

$$e^{-\|L_2\|t} \int_0^t h^*(s, x_1) ds \le 0.$$

Skoro lewa strona jest niewątpliwie nieujemna, to $h \equiv 0$ za co za tym idzie $u \equiv v$. Ostatnie równość jest równoważna z dowodzoną tezą.

Przyklad 0.4. Niech X_1 i X_2 będą spacerami losowymi na \mathbb{Z} z q-macierzami odpowiednio

$$q_1(x, x + 1) = \beta, \quad q_1(x, x - 1) = \delta$$

oraz

$$q_2(x, x + 1) = \delta, \quad q_1(x, x - 1) = \beta$$

1 The Voter model

Niech V będzie przeliczalnym zbiorem z topologia dyskretną. Chcemy modelować proces rozwoju opinii wśród osobników reprezentowanych przez elementy V. Zakładać będziemy, że w każdej chwili czasu $t \geq 0$ każdy osobnik $x \in V$ reprezentuje jedną z dwóch opinii $\eta_t(x) \in \{0,1\}$ na zadany temat. Załóżmy, że dane są nieujemne liczby q(x,y) dla $x \neq y$. Wielkość q(x,y) będzie intensywnością z jaką x przejmuje opinię y o ile oba osobniki reprezentują różne opinie. Zakładać będziemy, że

$$M = \sup_{x \in V} \sum_{u: u \neq x} q(x, u) < \infty.$$

Model głosowania (the Voter model) η_t to system spinowy z

$$c(x,\eta) = \sum_{y: \eta(y) \neq \eta(x)} q(x,y).$$

Innymi słowy jest to proces Fellera generowany przez

$$Lf(\eta) = \sum_{x \in V} c(x, \eta) \left(f\left(\eta^{(x)}\right) - f(\eta) \right).$$

Techniczne szczegóły związane z dziedziną L zostały przedyskutowane w poprzednim rozdziale. Najważniejsze jest, że z Twierdzenia ?? wiemy, że proces ten jest dobrze określony (domkniecie L jest generatorem infinitezymalnym).

Przyklad 0.5. Załóżmy, że V jest wyposażone w strukturę grafu o ograniczonym stopniu. Chcemy modelować przypadek w którym każdy z wierzchołków $x \in V$ może wchodzić w interakcję jedynie ze swoimi bezpośrednimi sąsiadami (i to od nich zapożycza opinie). Rozważmy $q(x, y) = \mathbf{1}_{x \sim y}$. Wówczas

$$M = \sup_{x \in V} \sum_{u: u \neq x} q(x, u) = \sup_{x \in V} \deg(x) < \infty.$$

Zauważmy, że model głosowania posiada dwa stany stacjonarne $\eta\equiv 1$ oraz $\eta\equiv 0$. Naszym głównym celem jest sprawdzenie, czy istnieją inne (nietrywialne) rozkłady stacjonarne.

Aby tego dokonać posłużymy się procesem dualnym do $(\eta_t)_t$. Ustalmy $t \ge 0$ i $x \in V$. Skoro przy zmianach opinia w x jest zapożyczana od innych osobników, chcąc zbadać wartość $\eta_t(x)$ rozważmy t_1 -moment ostatniej zmiany opinii przez x, czyli

$$t_1 = \sup_{s \le t} \{ \eta_{s-}(x) \ne \eta_s(x) \}$$

Jeżeli zbiór czasów pod kresem górnym jest pusty, to x nie zmienił zdania na odcinku czasu [0,t], więc $\eta_t(x)=\eta_0(x)$. W chwili t_1 , x przyjął tę samą opinię co pewien x_1 (co się dzieje z intensywnością $q(x,x_1)$), czyli $\eta_t(x)=\eta_{t_1}(x_1)$. Chcąc ustalić wartość $\eta_{t_1}(x_1)$ rozważamy ostatni moment, w którym x_1 zmienił opinię

$$t_2 = \sup_{s < t} \{ \eta_{s-}(x_1) \neq \eta_s(x_1) \}$$

Jeżeli zbiór pod kresem górnym jest pusty, to x_1 na przedziałe czasowym $[0, t_1]$ nie zmienił zdania i $\eta_t(x) = \eta_{t-1}(x_1) = \eta_0(x_1)$. Postępując iteracyjne dostajemy ciąg czasów $t \geq t_1 > t_2 > \ldots > t_N$ taki, że

$$\eta_t(x) = \eta_{t_1}(x_1) = \dots = \eta_{t_N}(x_N) = \eta_0(x_N).$$

Przy czym przejście z x_k do x_{k+1} dzieje się z intensywnością $q(x_k, x_{k+1})$. Skonstruowana w ten sposób ścieżka (x, x_1, \ldots, x_N) ma taki sam rozkład jak ścieżka łańcucha Markowa $Y_x = (Y_x(t))_{t \in \mathbb{R}_+}$ z q-macierzą $(q(x, y))_{x,y \in V}$. Oznacza to, że

$$\eta_t(x) \stackrel{d}{=} \eta_0(Y_x(t)).$$

Chcąc zbadać teraz rozkład łączny $(\eta_t(x), \eta_t(y))$ dla $x, y \in V$ możemy wykonać podobną konstrukcję na podstawie zmian opinii któregokolwiek z elementów pary. Dostaniemy w ten sposób ciąg czasów $t \geq s_1 > s_2 > \ldots > s_M \geq 0$ taki, że

$$\eta_t(x) = \eta_{s_1}(x_1) = \ldots = \eta_{s_M}(x_M) = \eta_0(x_M).$$

oraz

$$\eta_t(y) = \eta_{s_1}(y_1) = \ldots = \eta_{s_M}(y_M) = \eta_0(y_M).$$

Kluczowa jest następująca własność. Jeżeli $x_j=y_j$ dla pewnego $j\geq 1$, to $x_k=y_k$ dla wszystkich $k\geq j$. Istotnie, jeżeli j jest najmniejszą taką liczbą,

że $x_j=y_j$, to oznacza to że x_{j-1} przejął opinię x_j . Po czym zanim x_j zmienił opinię, to y_{j-1} przejął opinię x_j . Oznacza to, że

$$(\eta_t(x), \eta_u(y)) \stackrel{d}{=} (\eta_0(Y_x(t)), \eta_0(Y_u(t))),$$

gdzie Y_x i Y_y są łańcuchami Markowa na V z zadaną q-macierzą takimi, że jeżeli w pewnym momencie się spotkają, to od tego momentu zaczynają się poruszać się razem. Podobny komentarz możemy napisać dla wektora $\eta_x(t)$ dowolnej długości: jego rozkład będziemy mogli wyrazić przez kolekcję spacerów losowych na V, które się zlewają w momencie spotkania. Aby wprowadzić ten proces bardziej formalnie, rozważmy $S_2(N)$ - zbiór wszystkich $A\subseteq V$ o liczebności nie większej niż N. Rozważmy $\{Q(A,B)\}_{A,B\in S_2}$ dane przez

$$Q(A, (A \setminus \{x\}) \cup \{y\}) = q(x, y), \quad x \in A, y \notin A;$$

oraz

$$Q(A,A\setminus\{x\})=\sum_{y\in A,y\neq x}q(x,y),\quad x\in A.$$

Taki wybór instancyjności przejść odpowiada dokładnie zlewającym się spacerom losowym. Generator takiego procesu jest ograniczony z normą

$$\sum_{B \neq A} Q(A,B) = \sum_{x \in A} \sum_{y \neq x} q(x,y) \leq MN.$$

Pokażemy, że zlewające się spacery losowe $A = (A_t)_{t \in \mathbb{R}}$ (proces o intensywnościach danych powyżej) jest dualny do modelu głosowania $(\eta_t)_{t \in \mathbb{R}}$ z funkcją

$$H(\eta, A) = \prod_{x \in A} \eta(x) = 1_{\{\eta = 1 \text{ on } A\}},$$

Trajektorie $|A_t|$ są nierosnące, co czyni go bardzo użytecznym w badaniu modelu głosowania,

Twierdzenie 0.6. Procesy $(\eta_t)_t$ i $(A_t)_t$ są dualne względem $H(\eta, A)$.

Dowód. Sprawdzimy, że zachodzą założenia Twierdzenia ??. Niech L będzie generatorem modelu głosowania. Ponieważ $H(\eta,A)$ zależy od η tylko poprzez $\{\eta(x), x \in A\}$,

$$LH(\cdot, A)(\eta) = \sum_{\substack{x \in A, y \in S \\ \eta(y) \neq \eta(x)}} q(x, y)[H(\eta_x, A) - H(\eta, A)]$$

$$= \sum_{\substack{x \in A, y \in S \\ \eta(y) \neq \eta(x)}} q(x, y)[1 - 2\eta(x)]H(\eta, A \setminus \{x\})$$

$$= \sum_{x \in A, y \in S} q(x, y)H(\eta, A \setminus \{x\})[\eta(y) - \eta(x)]$$

$$= \sum_{x \in A, y \in S} q(x, y)[H(\eta, (A \setminus \{x\}) \cup \{y\}) - H(\eta, A)]$$

$$= \sum_{x \in A, y \in S} q(x, y)[H(\eta, (A \setminus \{x\}) \cup \{y\}) - H(\eta, A)]. \quad (1.1)$$