HoTT as a logical framework for the Minimalist Foundation

Michele Contente † (j.w.w. Maria Emilia Maietti ‡)

Scuola Normale Superiore †- University of Padua ‡

CCC 2021, Birmingham, 22 September 2021

The main goal is to show that HoTT can be regarded as a logical framework for MF

HoTT has enough constructors to define both the intensional and extensional levels of MF.

The main goal is to show that HoTT can be regarded as a logical framework for MF

HoTT has enough constructors to define both the intensional and extensional levels of MF.

- Constructive mathematics \implies (implicit) computational mathematics
- proofs are programs!
- They appear to be intensional entities.

- Constructive mathematics \implies (implicit) computational mathematics
- proofs are programs!
- They appear to be intensional entities.

- Constructive mathematics \implies (implicit) computational mathematics
- proofs are programs!
- They appear to be intensional entities.

- Constructive mathematics \implies (implicit) computational mathematics
- proofs are programs!
- They appear to be intensional entities.

- Martin-Löf type theory is an example of intensional theory.
- It enjoys a lot of nice computational properties:
 - Church-Rosser
 - Decidability of Type-Checking
 - Normalisation
- It allows for different styles of definitions (inductive, inductive-recursive).

But working at the intensional level might be cumbersome:

⇒ many familiar mathematical notions (e.g. quotients) are not available.

⇒ good computational properties, but not practical for everyday mathematics

But working at the intensional level might be cumbersome:

⇒ many familiar mathematical notions (e.g. quotients) are not available.

⇒ good computational properties, but not practical for everyday

But working at the intensional level might be cumbersome:

⇒ many familiar mathematical notions (e.g. quotients) are not available.

⇒ good computational properties, but not practical for everyday mathematics.

There exists also an extensional version of Martin-Löf type theory:

- Reflection rule for propositional equality
- ⇒ extensional rules break normalization.
- → type checking is not decidable.
- ⇒ extensional MLTT is inconsistent with formal CT

$$(\forall f \in \mathbb{N} \to \mathbb{N})(\exists e \in \mathbb{N})(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(T(e, x, y)\&U(y) =_{\mathbb{N}} f(x))$$

There exists also an extensional version of Martin-Löf type theory:

- Reflection rule for propositional equality
 - ⇒ extensional rules break normalization.
 - ⇒ type checking is not decidable.
 - ⇒ extensional MLTT is inconsistent with formal CT

$$(\forall f \in \mathbb{N} \to \mathbb{N})(\exists e \in \mathbb{N})(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(T(e, x, y)\&U(y) =_{\mathbb{N}} f(x))$$

There exists also an extensional version of Martin-Löf type theory:

- Reflection rule for propositional equality
 - ⇒ extensional rules break normalization.
 - ⇒ type checking is **not** decidable.
 - ⇒ extensional MLTT is inconsistent with formal CT

$$(\forall f \in \mathbb{N} \to \mathbb{N})(\exists e \in \mathbb{N})(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})(T(e, x, y) \& U(y) =_{\mathbb{N}} f(x))$$

The Minimalist Foundation

Ideally, a constructive foundation should integrate a user-friendly language for doing mathematics with a formal-intensional level supporting computer-assisted proof checking and well-behaved computational features.

More formally, the intensional setting should satisfy the *Proofs-as-Programs* paradigm:

T satisfies P-as-P iff T is consistent with AC and CT

where AC is $(\forall x \in A)(\exists y \in B)R(x,y) \longrightarrow (\exists f : A \to B)(\forall x \in A)R(x,f(x))$

Δ M.E.Maietti & G.Sambin, Toward a minimalist foundation for constructive mathematics, in

The Minimalist Foundation

Ideally, a constructive foundation should integrate a user-friendly language for doing mathematics with a formal-intensional level supporting computer-assisted proof checking and well-behaved computational features.

More formally, the intensional setting should satisfy the *Proofs-as-Programs* paradigm:

T satisfies P-as-P iff T is consistent with AC and CT

where AC is
$$(\forall x \in A)(\exists y \in B)R(x, y) \longrightarrow (\exists f : A \rightarrow B)(\forall x \in A)R(x, f(x))$$

[△] M.E.Maietti & G.Sambin, Toward a minimalist foundation for constructive mathematics, in Crosilla & Schuster (eds.), (2005)

- The Minimalist Foundation (MF) consists of:
 - an intensional level **mTT** which is a language for computer formalized proofs (and has all the desirable computational properties)
 - an extensional level **emTT** which is a kind of predicative local set theory and thus a practical language for developing math.
- **emTT** is a fragment of the internal language of the **quotient** completion of the intensional level.

- ⇒ emTT is interpreted via a quotient model in mTT.
- ⇒ extensional sets = quotients of intensional sets = Bishop's setoids.
- ⇒ Informally, moving from **mTT** to **emTT** amounts to an abstraction process, while moving from **emTT** to **mTT** via the setoid model corresponds to restoring computational information.

- ⇒ emTT is interpreted via a quotient model in mTT.
- ⇒ extensional sets = quotients of intensional sets = Bishop's setoids.
- ⇒ Informally, moving from **mTT** to **emTT** amounts to an abstraction process, while moving from **emTT** to **mTT** via the setoid model corresponds to restoring computational information.

- ⇒ emTT is interpreted via a quotient model in mTT.
- ⇒ extensional sets = quotients of intensional sets = Bishop's setoids.
- ⇒ Informally, moving from **mTT** to **emTT** amounts to an abstraction process, while moving from **emTT** to **mTT** via the setoid model corresponds to restoring computational information.

A third level for program extraction:

- Kleene Realizability interpretation for **mTT**.

emTT
$$\xrightarrow{Quotient}$$
 mTT $\xrightarrow{Realizability}$ computational level.

The actual foundation consists just of the first two levels!

Δ H.Ishihara, M.E.Maietti, S.Maschio & T.Streicher, Consistency of the intensional level of the Minimalist Foundation with Church's Thesis and the Axiom of Choice, *Arch. for Math.Log.*, (2018)

[△] M.E.Maietti, S.Maschio, M.Rathjen, A Realizability Semantics for Inductive Formal Topologies, Church's Thesis and Axiom of Choice, *LMCS*, (202 b) ← ⟨𝑛⟩ ← ⟨𝑛⟩ ← (𝑛) → (𝑛)

A third level for program extraction:

- Kleene Realizability interpretation for **mTT**.

emTT
$$\xrightarrow{Quotient}$$
 mTT $\xrightarrow{Realizability}$ computational level.

The actual foundation consists just of the first two levels!

Δ H.Ishihara, M.E.Maietti, S.Maschio & T.Streicher, Consistency of the intensional level of the Minimalist Foundation with Church's Thesis and the Axiom of Choice, *Arch. for Math.Log.*, (2018)

[△] M.E.Maietti, S.Maschio, M.Rathjen, A Realizability Semantics for Inductive Formal Topologies, Church's Thesis and Axiom of Choice, *LMCS*, (2021)

- Another important feature of MF is that it constitutes the common core among the most relevant existing foundations.
- MF is compatible with classical as well as constructive theories (and with predicative and impredicative ones).
- A theory \mathcal{T} is compatible with another theory \mathcal{S} iff there is a translation $\phi: \mathcal{T} \to \mathcal{S}$ which preserves the meaning of logical and set-theoretical constructors.

⇒ Our aim is to show that MF is compatible with HoTT ←

HoTT can be regarded as a logical framework for MF

→ HoTT has enough constructors to interpret both levels of MF.

⇒ Our aim is to show that MF is compatible with HoTT ←

HoTT can be regarded as a logical framework for MF

→ HoTT has enough constructors to interpret both levels of MF.

⇒ Our aim is to show that MF is compatible with HoTT ←

HoTT can be regarded as a logical framework for MF

⇒ HoTT has enough constructors to interpret both levels of MF.

- HoTT is an extension of Intensional MLTT with the Univalence Axiom and with Higher Inductive Types (HIT).
- Stratification of types in h-levels:
 - Types of h-level 1 are called mere propositions or h-propositions
 - Types of h-level 2 are called h-sets
- The hierarchy of h-levels is cumulative.

 \implies computational interpretation of HoTT \implies cubical type theory.

Sterling & Angiuli (2021): cubical TT enjoys normalisation!

cf. *prop as monotypes* in \triangle M.E.Maietti, Modular Correspondence between Dependent Type Theories and Categories including Pretopoi and Topoi, *MSCS*, (2005)

[△] J.Sterling & C.Angiuli, Normalization for cubical type theory, £ICS (3021) > 4 ≥ > ≥ 200

- HoTT is an extension of Intensional MLTT with the Univalence Axiom and with Higher Inductive Types (HIT).
- Stratification of types in h-levels:
 - Types of h-level 1 are called mere propositions or h-propositions
 - Types of h-level 2 are called h-sets
- The hierarchy of h-levels is cumulative.

 \implies computational interpretation of HoTT \implies cubical type theory.

Sterling & Angiuli (2021): cubical TT enjoys normalisation!

cf. *prop as monotypes* in \triangle M.E.Maietti, Modular Correspondence between Dependent Type Theories and Categories including Pretopoi and Topoi, *MSCS*, (2005)

[△] J.Sterling & C.Angiuli, Normalization for cubical type theory, *LICS* (2021)

- a type \mathcal{H} is an instance of HIT if it has constructors not only for its elements, but also for elements of its identity type.
- Quotient sets can be formalized as HIT.
- Let $R: A \to A \to h$ Prop be an equivalence relation. Then we can form the quotient of A as follows:
 - $[]:A \rightarrow A/R$
 - For all $a, b : A, R(a, b) \to [a] =_{A/R} [b]$
 - For all x, y : A/R and $p, q : x =_A y$, then p = q, i.e. A/R is an h-set.
- Coquand, Huber & Mortberg (2019) → cubical model of HoTT +HIT with closure under universes level
 - → The quotient lives in the same universe as the carrier set.

[△] T.Coquand, S.Huber & A.Mortberg, On Higher Inductive Types in Cubical Type Theory, *LICS*. (2019)

- a type \mathcal{H} is an instance of HIT if it has constructors not only for its elements, but also for elements of its identity type.
- Quotient sets can be formalized as HIT.
- Let $R: A \to A \to h$ Prop be an equivalence relation. Then we can form the quotient of A as follows:
 - $[]:A \rightarrow A/R$
 - For all $a, b : A, R(a, b) \to [a] =_{A/R} [b]$
 - For all x, y : A/R and $p, q : x =_A y$, then p = q, i.e. A/R is an h-set.
- Coquand, Huber & Mortberg (2019) → cubical model of HoTT +HIT with closure under universes level
 - ⇒ The quotient lives in the same universe as the carrier set.

[△] T.Coquand, S.Huber & A.Mortberg, On Higher Inductive Types in Cubical Type Theory, *LICS*. (2019)

• The Minimalist Foundation has four sorts:

collections, sets, propositions, small propositions.

$$S\text{-}prop \hookrightarrow \longrightarrow Set$$

$$\downarrow \qquad \qquad \downarrow$$

$$Prop \hookrightarrow \longrightarrow Col$$

- Thanks to the new machinery available in HoTT we can define the constructors for all the four sorts of MF.
- Further, we can interpret both the levels of MF in HoTT.
- The translation will make use just of the first two levels of the homotopical hierarchy, namely h-prop and h-sets.

- In **mTT** we have the usual judgement forms:
 - i) A is a type
 - ii) A = B (the types A and B are definitionally equal)
 - iii) a:A (a is a term of type A)
 - iv) a = b : A (a and b are definitionally equal terms of type A)
- \implies but type ranges over {*s-prop*, *prop*, *set*, *col*}.

- In **mTT** we have the usual judgement forms:
 - i) A is a type
 - ii) A = B (the types A and B are definitionally equal)
 - iii) a: A (a is a term of type A)
 - iv) a = b : A (a and b are definitionally equal terms of type A)
- \implies but type ranges over $\{s\text{-prop}, prop, set, col\}$.

The translation of **mTT** in HoTT works as follows:

- s-prop \rightsquigarrow h-prop in \mathcal{U}_0
- prop \rightsquigarrow h-prop in \mathcal{U}_i with i > 0
- set \sim h-set in \mathcal{U}_0
- col \rightsquigarrow h-set in \mathcal{U}_i with i > 0
- ⇒ Let ()* be the mapping from **mTT** to HoTT. Then this mapping preserves the derivability of judgements.
 - \implies the universe of small proposition Prop_s is interpreted as PROP₀.

The translation of **mTT** in HoTT works as follows:

- s-prop \rightsquigarrow h-prop in \mathcal{U}_0
- prop \rightsquigarrow h-prop in \mathcal{U}_i with i > 0
- set \sim h-set in \mathcal{U}_0
- col \rightsquigarrow h-set in \mathcal{U}_i with i > 0
- \implies Let ()* be the mapping from **mTT** to HoTT. Then this mapping preserves the derivability of judgements.
 - \implies the universe of small proposition Prop_s is interpreted as PROP₀.

The translation of **mTT** in HoTT works as follows:

- s-prop \rightsquigarrow h-prop in \mathcal{U}_0
- prop \rightsquigarrow h-prop in \mathcal{U}_i with i > 0
- set \sim h-set in \mathcal{U}_0
- col \sim h-set in \mathcal{U}_i with i > 0
- \implies Let ()* be the mapping from **mTT** to HoTT. Then this mapping preserves the derivability of judgements.
- \implies the universe of small proposition Prop_s is interpreted as PROP₀.

- In emTT are available some constructors and rules which are not in mTT:
 - Quotient of the collection of s-props under equiprovability, denoted by $\wp(1)$.
 - Propositions are mono \implies proof-irrelevant.
 - η -rules for sets and congruence rules for all constructors.
 - reflection rule for propositional equality.
 - Quotient sets (which are effective)

- The translation has to account for these additional elements.
- Main problem: **emTT** is an extensional type theory, hence the relation of judgemental equality is **undecidable**.
- We have to convert judgemental equalities into propositional ones in a intensional type theory.
- Undecidable equalities → decidable equalities.

- The clauses of the translation for judgements containing judgemental equalities need to be modified.
- $\bullet \equiv \sim Id$
- Quotient sets are interpreted as HoTT-quotients in the first universe
 HIT closed under universe levels
- $\wp(1)$ is interpreted as **PROP**₀.

- The clauses of the translation for judgements containing judgemental equalities need to be modified.
- $\bullet \equiv \sim Id$
- Quotient sets are interpreted as HoTT-quotients in the first universe
- ⇒ HIT closed under universe levels
- $\wp(1)$ is interpreted as **PROP**₀.

- The clauses of the translation for judgements containing judgemental equalities need to be modified.
- $\bullet \equiv \sim Id$
- Quotient sets are interpreted as HoTT-quotients in the first universe
 HIT closed under universe levels
- $\wp(1)$ is interpreted as **PROP**₀.

Summing up:

- The translation works thanks to the new machinery available in HoTT.
- Univalence and its consequences to interpret extensional judgemental equalities
- HIT to interpret quotients
- Universe levels and h-levels to faithfully interpret MF-sorts

⇒ HoTT can interpret both levels of MF, in contrast with intensional MLTT which interprets only **mTT**.

Summing up:

- The translation works thanks to the new machinery available in HoTT.
- Univalence and its consequences to interpret extensional judgemental equalities
- HIT to interpret quotients
- Universe levels and h-levels to faithfully interpret MF-sorts

⇒ HoTT can interpret both levels of MF, in contrast with intensional MLTT which interprets only **mTT**.

- If $\Gamma \vdash_{\mathbf{MF}} \mathcal{J}$, then $\Gamma^* \vdash_{\mathbf{HoTT}} \mathcal{J}^*$.
- HoTT has enough constructors to interpret both levels of MF.
 - ⇒ HoTT can be seen as a logical framework for MF.

- \implies MF is compatible with HoTT! \iff
- Problem: can we extend Sterling & Angiuli's normalization theorem for cubical type theory to MF?

- If $\Gamma \vdash_{\mathbf{MF}} \mathcal{J}$, then $\Gamma^* \vdash_{\mathbf{HoTT}} \mathcal{J}^*$.
- HoTT has enough constructors to interpret both levels of MF.
 - ⇒ HoTT can be seen as a logical framework for MF.

- ⇒ MF is compatible with HoTT! ←
- Problem: can we extend Sterling & Angiuli's normalization theorem for cubical type theory to MF?

- If $\Gamma \vdash_{\mathbf{MF}} \mathcal{J}$, then $\Gamma^* \vdash_{\mathbf{HoTT}} \mathcal{J}^*$.
- HoTT has enough constructors to interpret both levels of MF.
 - ⇒ HoTT can be seen as a logical framework for MF.

- \implies MF is compatible with HoTT! \iff
- Problem: can we extend Sterling & Angiuli's normalization theorem for cubical type theory to MF?

- If $\Gamma \vdash_{\mathbf{MF}} \mathcal{J}$, then $\Gamma^* \vdash_{\mathbf{HoTT}} \mathcal{J}^*$.
- HoTT has enough constructors to interpret both levels of MF.
 - ⇒ HoTT can be seen as a logical framework for MF.

- \implies MF is compatible with HoTT! \iff
- Problem: can we extend Sterling & Angiuli's normalization theorem for cubical type theory to MF?