DDS 2

Les ptits devoirs du soir

Xavier Pessoles

Exercice 185 - Mouvement TT - *

B2-14

B2-15

Pas de corrigé pour cet exercice. C1-05

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1, et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de **2** et m_2 sa masse.

Un vérin électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par \overrightarrow{g} = $-g\overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 184 - Palettisation - Stabilité*

C2-03

Pas de corrigé pour cet exercice.

Une boucle de position est représentée ci-dessous. On

- $H(p) = \frac{\Omega_m(p)}{U_v(p)} = \frac{30}{1 + 5 \times 10^{-3} p}$; $K_r = 4 \text{V rad}^{-1}$: gain du capteur de position;
- Ka : gain de l'adaptateur du signal de consigne $\alpha_e(t)$;
- N = 200: rapport de transmission du réducteur (la réduction est donc de 1/N).
- le signal de consigne $\alpha_e(t)$ est exprimé en degré;
- le correcteur C(p) est à action proportionnelle de gain réglable K_c .

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180} k_r$ et que la FTBO est donnée par $T(p) = \frac{k_{BO}}{p(1 + \tau_m p)} (k_{BO} = \frac{k_c k_m k_r}{N})$. On souhaite une marge de phase de 45°.

1 Déterminer la valeur de K_{BO} permettant de satisfaire cette condition.

Question 2 En déduire la valeur du gain K_c du correcteur.

Question 3 Déterminer l'écart de position.

Éléments de corrigé :

- 1. $k_{BO} = \sqrt{2}\tau_m$.
- 2. $k_c = \frac{\sqrt{2N}}{\tau_m k_m k_r} = 471, 1.$ 3. $\varepsilon_s = 0.$

Corrigé voir ??.

Xavier Pessoles 1

Exercice 185 - Mouvement TT - *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Exercice 184 - Palettisation - Stabilité*

C2-03

Pas de corrigé pour cet exercice.

On montre que la fonction de transfert du réducteur est $R(p) = \frac{\alpha_r(p)}{\Omega_m(p)} = \frac{1}{Np}$, que $k_a = \frac{\pi}{180} k_r$ et que la FTBO est donnée par $T(p) = \frac{k_{BO}}{p\left(1 + \tau_m p\right)}$ $(k_{BO} = \frac{k_c k_m k_r}{N})$.

On souhaite une marge de phase de 45° . **Question 1** *Déterminer la valeur de K*_{BO} *permettant de satisfaire cette condition.*

Question 2 En déduire la valeur du gain K_c du correcteur.

Question 3 Déterminer l'écart de position.

Xavier Pessoles 2