

1/46

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 2B

4/46

FIG. 3A

5/46

FIG. 3B

6/46

FIG. 4A**FIG. 4B**

FIG. 5

FIG. 5A

FIG. 6

FIG. 6A

FIG. 7

FIG. 8

13/46

FIG. 8A

14/46

FIG. 9A

15/46

FIG. 9B

16/46

FIG. 9C $F_0 = 203.9$ Frame #2278/3925 "Views Only"

17/46

FIG. 9D

FIG. 10

FIG. 11

20/46

FIG. 12

FIG. 13

22/46

FIG. 14

Unnamed Plot

Compressed Amplitudes

Square-law likelihood function

23/46

FIG. 15

24/46

FIG. 16

Unnamed Plot

25/46

FIG. 17

26/46
FIG. 18
Unnamed Plot

27/46
FIG. 19
Unnamed Plot

FIG. 20

29/46

FIG. 21

FIG. 21A

$$\hat{AS}(i) = \sum_{j=1}^{i-1} a_{ij} = \tilde{AS}(j)$$

$$\begin{bmatrix} \hat{AS}(1) \\ \hat{AS}(2) \\ \vdots \\ \hat{AS}(12) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ a_{21} & 0 & & & \\ a_{31} & a_{32} & & & \\ \vdots & & & & \\ a_{12,1} & a_{12,2} & \dots & a_{12,11} & \end{bmatrix} \begin{bmatrix} \tilde{AS}(1) \\ \tilde{AS}(2) \\ \vdots \\ \tilde{AS}(11) \end{bmatrix}$$

12x1 12x11 1x1

Fixed Store

FIG. 22A

$$\text{Phase Residual} = \theta - \bar{\theta}$$

w_{-1} = Frequency at Previous Frame

w = Frequency at Current Frame

θ_{-1} = Quantized Phase at Previous Frame

$\bar{\theta}$ = Predicted Phase at Current Frame

θ = Measured Phase at Current Frame

FIG. 22B
Scatter Plot of 20ms Phase and 10ms Phase
Prediction Error

FIG. 23A**FIG. 23B**

FIG. 24A

Scatter plot (gray dots) of 4th pair of ASIN(dc) intra-frame prediction error, the histogram along each direction, and the corresponding 1st-stage 5-bit VQ codebook and Voronoi regions.

35/46

FIG. 24B

36/46

FIG. 24C

Scatter plot of 1st pair of ASIN(k) (gray dots) and
1st-stage VQ codebook (small circles) and the
corresponding voronoi cells

37/46

FIG. 25

Without hand-tuned rotation angles
inner cells 1st-stage VQ of 1st pair of ASIN(k)

38/46

FIG. 26

With hand-tuned rotation angles
inner cells of 1st-stage VQ of 1st pair ASIN(k)

39/46

FIG. 27

Inner-cell 1st-stage VQ error vector distribution (gray dots)
(hand tuning) and corresponding 2nd stage VQ
codebook (small circles) for 1st pair of ASIN(k)

40/46

FIG. 28

Outer-cell 1st-stage VQ error vector distribution
and corresponding 2nd-stage VQ codebook (small circle)
for 1st pair of ASIN(k)

FIG. 29

 $\{A_k\} = k^{\text{th}}$ Sine-Wave Amplitude $W_k = k^{\text{th}}$ Sine-Wave Frequency $O_k = k^{\text{th}}$ Sine-Wave Phase $\tilde{A}_k = k^{\text{th}}$ Post-Filtered Sine-Wave Amplitude

42/46

FIG. 30

FIG. 31

44/46

FIG. 32

 $C_m = m^{\text{th}}$ Cepstral Coefficient $E(w) = \text{Amplitude Envelope}$ $\tilde{E}(w) = \text{Post-Filtered Amplitude Envelope}$

FIG. 33

$C_m = m^{\text{th}}$ Cepstral Coefficient
 $g_k = k^{\text{th}}$ DCT Coefficient = k^{th} Channel Gain

$\tilde{g}_k = k^{\text{th}}$ post-Filtered Channel Gain

$\tilde{C}_m = m^{\text{th}}$ post-Filtered Cepstral Coefficient

$\tilde{E}(w) = \text{post-Filtered Amplitude Envelope}$

46/46

FIG. 34

FIG. 35

