Barış Malcıoğlu

mbaris@metu.edu.tr

Please fill out the consent & schedule form!!!

Instructors

- Zeki Seskir
- Cenk Tüysuz
- Berat Yenilen
- Barış Malcıoğlu

Important links:

- ODTÜClass
- obm.physics.metu.edu.tr
- metu-physics.github.io/ Quantum-Computing-101/
- metu-physics.github.io/ HPC/
- qiskit.org/textbook/

What this course is, what this course is not

Introduction

The COLOSSUS computer:

en.wikipedia.org/wiki/Colossus computer

First computer was built in 1943, kept a secret until 1970s. Used to decipher German communications.

The "Discrete logarithm problem" "RSA problem" (computationally intractable)

All truth passes through three stages. First, it is ridiculed. Second, it is violently opposed. Third, it is accepted as being self-evident.

Arthur Schopenhauer

Shor's algorithm: en.wikipedia.org/wiki/Shor's_algorithm

(Efficient factorization of Integer primes)

RSA / ECDSA

Quantum supremacy

The Sycamore Processor

RACE TO QUANTUM ADVANTAGE

US, Canada and China got to an early start

Quantum technology will address secure communications and database management linked to national security.

			(17.5%)
TP	%TP	тс	CPP
10,004	32.6%	169,012	16.9
5,388	17.5%	33,011	6.1
4,558	14.8%	32,803	7.2
3,583	11.7%	24,315	6.8
3,511	11.4%	40,940	11.7
1,140	3.7%	25,277	22.2
627	2.0%	36,606	58.4
383	1.2%	10,125	26.4
354	1.2%	9,177	25.9
291	0.9%	2,024	7.0
	10,004 5,388 4,558 3,583 3,511 1,140 627 383 354 291	10,004 32.6% 5,388 17.5% 4,558 14.8% 3,583 11.7% 3,511 11.4% 1,140 3.7% 627 2.0% 383 1.2% 354 1.2% 291 0.9%	10,004 32.6% 169,012 5,388 17.5% 33,011 4,558 14.8% 32,803 3,583 11.7% 24,315 3,511 11.4% 40,940 1,140 3.7% 25,277 627 2.0% 36,606 383 1.2% 10,125 354 1.2% 9,177 291 0.9% 2,024

IQM (Finland & Germany)

Fastest superconducting gates in the world

Pasqal (France)

World's leading neutral atom platform

Quantum Tech: Quantum computing

Different platforms and hardware **Advantages** Challenges **Graphics: Nathan Shammah** Superconducting Artificial atoms: defects, off-resonances. 15 years of exponential improvement in Wiring leads to gubit cross-talk. circuits extending dephasing time (x10 / 3vrs). Requires cooling @ micro K Temp. 'Perfect' qubits due to identical ions. Photonic link/ion shuttling needed to **Trapped ions** Long coherence time even @ room Temp. create entanglement between distant Long-range interaction: Full connectivity. modules. 'Flying' qubits for quantum internet. Small interaction hampers two-gubit gates. **Photonics** Gate-based Silicon integrated chips (CMOS industry). Hard to have identical photons on demand. Very long coherence time. Requires interface for storing memory. CMOS and SiMOS integration. Charge and nuclear spin noise. **Spins** Long coherence time. Weak interaction with controlling fields. Up to room temperature gubits. Atoms are identical components. Hard to trap atom and control qubit. **Neutral Atoms** Long-range interactions. Linear optics, low Temp required @ micro K. Recently: two-Rydberg-atom entanglement. Not a universal quantum computer. Encode optimization problems. Superconducting circuits **Annealing** No error correction required. Unclear implementation of adiabatic QC. Uncertain entanglement role and scalability.

Quantum Tech: Quantum Circuit Simulators

Open-Source Quantum Computing

	Language	Library	Quantum Hardware	Features
D-Wave	Python	qbsolv	Not a circuit-based computer	Optimization problems
IBM Q	Python	QISKit	20 qubits*** 53 qubits* ONLINE!	Thousands of experiments from the cloud by online users on the <i>IBM quantum experience</i>
Rigetti	Python ; pyquil	Forest toolkit Grove	19 qubits*** 128 qubits*	Open to research collaborations. Proof-of-concept: clustering
Google	Python	Cirq (simulation)	49 qubits*** 72-qubit SC chip: Bristlecone* 53-qubit SC chip: Sycamore*	Cirq: an open-source platform for noisy quantum computing Quantum supremacy
Microsoft	Python; Q#	Liquid Quantum Dev Kit	NA	Topological quantum computing with Majorana particles
Alibaba	NA	NA	11-qubit SC chip* unknown architecture	Cloud computing announced