# Линейные методы классификации и регрессии: метод опорных векторов

Воронцов Константин Вячеславович vokov@forecsys.ru http://www.MachineLearning.ru/wiki?title=User:Vokov

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

МФТИ • 2 октября 2021

### Содержание

- 1 Метод опорных векторов SVM
  - Принцип оптимальной разделяющей гиперплоскости
  - Двойственная задача
  - Понятие опорного вектора
- Обобщения линейного SVM
  - Ядра и спрямляющие пространства
  - SVM как двухслойная нейронная сеть
  - SVM-регрессия
- Регуляризация
  - Регуляризаторы для отбора признаков
  - Методы SFM и RFM
  - Метод релевантных векторов RVM

# Задача обучения линейного классификатора

#### Дано:

Обучающая выборка  $X^\ell=(x_i,y_i)_{i=1}^\ell$ 

 $x_i$  — объекты, векторы из множества  $X=\mathbb{R}^n$ ,

 $y_i$  — метки классов, элементы множества  $Y = \{-1, +1\}.$ 

#### Найти:

Параметры  $w \in \mathbb{R}^n$ ,  $w_0 \in \mathbb{R}$  линейной модели классификации

$$a(x; w, w_0) = \operatorname{sign}(\langle x, w \rangle - w_0).$$

Критерий — минимизация эмпирического риска:

$$\sum_{i=1}^{\ell} [a(x_i; w, w_0) \neq y_i] = \sum_{i=1}^{\ell} [M_i(w, w_0) < 0] \rightarrow \min_{w, w_0}.$$

где  $M_i(w, w_0) = (\langle x_i, w \rangle - w_0) y_i - \sigma \tau c \tau y \pi \text{ (margin)}$  объекта  $x_i$ ,

#### Аппроксимация и регуляризация эмпирического риска

Эмпирический риск — это кусочно-постоянная функция. Заменим его оценкой сверху, непрерывной по параметрам:

$$Q(w, w_0) = \sum_{i=1}^{\ell} [M_i(w, w_0) < 0] \le$$

$$\le \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

- Аппроксимация штрафует объекты за приближение к границе классов, увеличивая зазор между классами
- Регуляризация штрафует неустойчивые решения в случае мультиколлинеарности



#### Оптимальная разделяющая гиперплоскость

Линейный классификатор:  $a(x, w) = \text{sign}(\langle w, x \rangle - w_0)$ 

Пусть выборка  $X^\ell=(x_i,y_i)_{i=1}^\ell$  линейно разделима:

$$\exists w, w_0 : M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, \quad i = 1, ..., \ell$$

Нормировка:  $\min_{i=1,...,\ell} M_i(w,w_0) = 1$ 

Разделяющая полоса (разделяющая гиперплоскость посередине):

$$\begin{cases} x: -1 \leqslant \langle w, x \rangle - w_0 \leqslant 1 \\ \exists x_+: \quad \langle w, x_+ \rangle - w_0 = +1 \\ \exists x_-: \quad \langle w, x_- \rangle - w_0 = -1 \end{cases}$$

Ширина полосы:

$$\frac{\langle x_+ - x_-, w \rangle}{\|w\|} = \frac{2}{\|w\|} \to \max$$



#### Обоснование кусочно-линейной функции потерь

Линейно разделимая выборка

$$\begin{cases} \frac{1}{2} \|w\|^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \geqslant 1, \quad i = 1,\ldots,\ell. \end{cases}$$

Переход к линейно неразделимой выборке (эвристика)

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ \xi_i \geqslant 1 - M_i(w, w_0), \quad i = 1, \dots, \ell; \\ \xi_i \geqslant 0, \quad i = 1, \dots, \ell. \end{cases}$$

Эквивалентная задача безусловной минимизации:

$$C\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2} ||w||^2 \rightarrow \min_{w, w_0}.$$

### Напоминание. Условия Каруша-Куна-Таккера

Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x}; \\ g_{i}(x) \leqslant 0, \quad i = 1, \dots, m; \\ h_{j}(x) = 0, \quad j = 1, \dots, k. \end{cases}$$

Необходимые условия. Если x — точка локального минимума, то существуют множители  $\mu_i$ ,  $i=1,\ldots,m$ ,  $\lambda_j$ ,  $j=1,\ldots,k$ :

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial x} = 0, & \mathscr{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^m \mu_i g_i(x) + \sum_{j=1}^k \lambda_j h_j(x); \\ g_i(x) \leqslant 0; & h_j(x) = 0; \text{ (исходные ограничения)} \\ \mu_i \geqslant 0; & \text{ (двойственные ограничения)} \\ \mu_i g_i(x) = 0; & \text{ (условие дополняющей нежёсткости)} \end{cases}$$

# Применение условий ККТ к задаче **SV**M

Функция Лагранжа:  $\mathscr{L}(w, w_0, \xi; \lambda, \eta) =$ 

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C),$$

 $\lambda_i$  — переменные, двойственные к ограничениям  $M_i\geqslant 1-\xi_i$ ;  $\eta_i$  — переменные, двойственные к ограничениям  $\xi_i\geqslant 0$ .

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial w} = 0, & \frac{\partial \mathscr{L}}{\partial w_0} = 0, & \frac{\partial \mathscr{L}}{\partial \xi} = 0; \\ \xi_i \geqslant 0, & \lambda_i \geqslant 0, & \eta_i \geqslant 0, & i = 1, \dots, \ell; \\ \lambda_i = 0 & \text{либо} & M_i(w, w_0) = 1 - \xi_i, & i = 1, \dots, \ell; \\ \eta_i = 0 & \text{либо} & \xi_i = 0, & i = 1, \dots, \ell; \end{cases}$$

### Необходимые условия седловой точки функции Лагранжа

Функция Лагранжа:  $\mathscr{L}(w, w_0, \xi; \lambda, \eta) =$ 

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C),$$

Необходимые условия седловой точки функции Лагранжа:

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{\ell} \lambda_i y_i x_i = 0 \implies w = \sum_{i=1}^{\ell} \lambda_i y_i x_i;$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = -\sum_{i=1}^{\ell} \lambda_i y_i = 0 \implies \sum_{i=1}^{\ell} \lambda_i y_i = 0;$$

$$\frac{\partial \mathcal{L}}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 \implies \eta_i + \lambda_i = C, \quad i = 1, \dots, \ell.$$

# Понятие опорного вектора и типизация объектов

Система условий ККТ:

$$\begin{cases} w = \sum_{i=1}^{\ell} \lambda_i y_i x_i; & \sum_{i=1}^{\ell} \lambda_i y_i = 0; \quad M_i(w, w_0) \geqslant 1 - \xi_i; \\ \xi_i \geqslant 0, \quad \lambda_i \geqslant 0, \quad \eta_i \geqslant 0, \quad \eta_i + \lambda_i = C; \\ \lambda_i = 0 \quad \text{либо} \quad M_i(w, w_0) = 1 - \xi_i; \\ \eta_i = 0 \quad \text{либо} \quad \xi_i = 0; \end{cases}$$

Определение. Объект  $x_i$  называется опорным, если  $\lambda_i \neq 0$ .

Типизация объектов  $x_i$ ,  $i=1,\ldots,\ell$ :

- 1.  $\lambda_i = 0$ ;  $\eta_i = C$ ;  $\xi_i = 0$ ;  $M_i \geqslant 1$  периферийный.
- $2. \ 0 < \lambda_i < C; \ 0 < \eta_i < C; \ \xi_i = 0; \ M_i = 1$ опорный-граничный
- 3.  $\lambda_i = C$ ;  $\eta_i = 0$ ;  $\xi_i > 0$ ;  $M_i < 1$  опорный-нарушитель

#### Двойственная задача

$$\begin{cases} -\mathscr{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle & \to & \min; \\ 0 \leqslant \lambda_i \leqslant C, \quad i = 1, \dots, \ell; \\ \sum_{i=1}^{\ell} \lambda_i y_i = 0. \end{cases}$$

Решение прямой задачи выражается через решение двойственной:

$$egin{cases} w = \sum\limits_{i=1}^\ell \lambda_i y_i x_i; \ w_0 = \langle w, x_i 
angle - y_i, \end{cases}$$
 для любого  $i$ :  $\lambda_i > 0$ ,  $M_i = 1$ .

Линейный классификатор с признаками  $f_i(x) = \langle x, x_i \rangle$ :

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{\ell} \lambda_i y_i \langle x, x_i \rangle - w_0\right).$$

# Двойственная задача. Нелинейное обобщение с ядром K

$$\begin{cases} -\mathscr{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \frac{\mathsf{K}(\mathsf{x}_i, \mathsf{x}_j)}{\lambda} \to \min; \\ 0 \leqslant \lambda_i \leqslant \mathsf{C}, \quad i = 1, \dots, \ell; \\ \sum_{i=1}^{\ell} \lambda_i y_i = 0. \end{cases}$$

Решение прямой задачи выражается через решение двойственной:

$$egin{cases} w = \sum\limits_{i=1}^\ell \lambda_i y_i x_i; \ w_0 = \langle w, x_i 
angle - y_i, \quad$$
 для любого  $i$ :  $\lambda_i > 0, \; M_i = 1.$ 

Линейный классификатор с признаками  $f_i(x) = K(x, x_i)$ :

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{\ell} \lambda_i y_i K(x, x_i) - w_0\right).$$

# Нелинейное обобщение SVM

Идея: заменить  $\langle x, x' 
angle$  нелинейной функцией  $\mathcal{K}(x, x')$ .

Переход к спрямляющему пространству,

как правило, более высокой размерности:  $\psi\colon X o H$ .

# Определение

Функция  $K: X \times X \to \mathbb{R}$  — ядро, если  $K(x,x') = \langle \psi(x), \psi(x') \rangle$  при некотором  $\psi: X \to H$ , где H — гильбертово пространство.

#### Теорема

Функция K(x,x') является ядром тогда и только тогда, когда она симметрична: K(x,x')=K(x',x);

и неотрицательно определена:

$$\int_X \int_X K(x,x')g(x)g(x')dxdx'\geqslant 0$$
 для любой  $g\colon X o \mathbb{R}$ .

#### Конструктивные методы синтеза ядер

- $\bullet$   $K(x,x')=\langle x,x'\rangle$  ядро;
- ② константа K(x, x') = 1 ядро;
- lacktriangledown произведение ядер  $K(x,x') = K_1(x,x')K_2(x,x')$  ядро;
- $lackbox{0} \ \ orall \psi:X
  ightarrow\mathbb{R}$  произведение  $K(x,x')=\psi(x)\psi(x')$  ядро;
- lacktriangledown  $\forall arphi: X {
  ightarrow} X$  если  $K_0$  ядро, то  $K(x,x') = K_0(arphi(x),arphi(x'))$  ядро;
- $m{0}$  если  $s\colon X imes X o \mathbb{R}$  симметричная интегрируемая функция, то  $K(x,x')=\int_X s(x,z)s(x',z)\,dz$  ядро;
- lacktriangledown если  $K_0$  ядро и функция  $f: \mathbb{R} \to \mathbb{R}$  представима в виде сходящегося степенного ряда с неотрицательными коэффициентами, то  $K(x,x')=f(K_0(x,x'))$  ядро;

# Пример: спрямляющее пространство для квадратичного ядра

Пусть 
$$X=\mathbb{R}^2$$
,  $K(u,v)=\langle u,v\rangle^2$ , где  $u=(u_1,u_2)$ ,  $v=(v_1,v_2)$ .

**Задача:** найти пространство H и преобразование  $\psi \colon X \to H$ , при которых  $K(x, x') = \langle \psi(x), \psi(x') \rangle_H$ .

Разложим квадрат скалярного произведения:

$$K(u,v) = \langle u,v \rangle^2 = \langle (u_1, u_2), (v_1, v_2) \rangle^2 =$$

$$= (u_1v_1 + u_2v_2)^2 = u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1u_2v_2 =$$

$$= \langle (u_1^2, u_2^2, \sqrt{2}u_1u_2), (v_1^2, v_2^2, \sqrt{2}v_1v_2) \rangle.$$

Таким образом,

$$H = \mathbb{R}^3, \quad \psi \colon (u_1, u_2) \mapsto (u_1^2, u_2^2, \sqrt{2}u_1u_2),$$

Линейной поверхности в пространстве H соответствует квадратичная поверхность в исходном пространстве X.

### Примеры ядер

- $K(x,x') = \langle x,x' \rangle^2$  квадратичное ядро,  $\dim H = \frac{1}{2}n(n+1)$
- $(x,x')=\langle x,x'
  angle^d$  полиномиальное с мономами степени d,  $\dim H=C^d_{n+d-1}$
- $K(x,x') = (\langle x,x' \rangle + 1)^d$  полиномиальное с мономами степени  $\leqslant d$
- $K(x,x') = \operatorname{th} (k_1 \langle x,x' \rangle k_0), \ k_0,k_1 \geqslant 0$  нейросеть с сигмоидными функциями активации
- $K(x,x') = \exp(-\gamma ||x-x'||^2)$  сеть радиальных базисных функций (RBF ядро)

#### Классификация с различными ядрами

Гиперплоскость в спрямляющем пространстве соответствует нелинейной разделяющей поверхности в исходном.

Примеры с различными ядрами K(x,x')



# Влияние константы C на решение SVM

SVM — аппроксимация и регуляризация эмпирического риска:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

большой *С* слабая регуляризация

малый *С* сильная регуляризация



# SVM: двухслойная нейросеть и метрический классификатор

Перенумеруем объекты так, чтобы  $x_1, \ldots, x_h$  были опорными.

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{h} \lambda_{i} y_{i} K(x, x_{i}) - w_{0}\right).$$

$$x^{1} - x_{1}^{1} \longrightarrow K(x, x_{1})$$

$$x_{h}^{1} \longrightarrow K(x, x_{h})$$

$$x^{n} - x_{h}^{n} \longrightarrow K(x, x_{h})$$

$$x^{n} - x_{h}^{n} \longrightarrow K(x, x_{h})$$

$$x^{n} - x_{h}^{n} \longrightarrow K(x, x_{h})$$

Первый слой вместо скалярных произведений вычисляет ядра Веса первого слоя — это сами опорные объекты Метрический классификатор, если K — функция близости

# Преимущества и недостатки SVM

#### Преимущества SVM перед двухслойными нейронными сетями:

- Задача выпуклого квадратичного программирования имеет единственное решение.
- Число нейронов скрытого слоя определяется автоматически — это число опорных векторов.

#### Недостатки классического SVM:

- ullet Нет общих подходов к оптимизации K(x,x') под задачу.
- На больших данных SVM обучается медленнее SG
- Нет «встроенного» отбора признаков.
- Приходится подбирать константу С.

#### SVM-регрессия

Модель регрессии:  $a(x) = \langle x, w \rangle - w_0, \ w \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$ 

Функция потерь:  $\mathscr{L}(\varepsilon) = (|\varepsilon| - \delta)_+$  в сравнении с  $\mathscr{L}(\varepsilon) = \varepsilon^2$ :



Постановка задачи:

$$\sum_{i=1}^{\ell} \left( |\langle w, x_i \rangle - w_0 - y_i| - \delta \right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

Задача решается путём замены переменных и сведения к задаче квадратичного программирования

#### SVM-регрессия

Замена переменных:

$$\xi_{i}^{+} = (\langle w, x_{i} \rangle - w_{0} - y_{i} - \delta)_{+};$$
  

$$\xi_{i}^{-} = (-\langle w, x_{i} \rangle + w_{0} + y_{i} - \delta)_{+};$$

Постановка задачи SVM-регрессии:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} (\xi_i^+ + \xi_i^-) \to \min_{w, w_0, \xi^+, \xi^-}; \\ y_i - \delta - \xi_i^- \leqslant \langle w, x_i \rangle - w_0 \leqslant y_i + \delta + \xi_i^+, \quad i = 1, \dots, \ell; \\ \xi_i^- \geqslant 0, \quad \xi_i^+ \geqslant 0, \quad i = 1, \dots, \ell. \end{cases}$$

Это задача квадратичного программирования с линейными ограничениями-неравенствами, решается также сведением к двойственной задаче.

# 1-norm SVM (LASSO SVM)

Аппроксимация эмпирического риска с  $L_1$ -регуляризацией:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \mu \sum_{j=1}^{n} |w_j| \rightarrow \min_{w, w_0}.$$

- $\oplus$  Отбор признаков с параметром селективности  $\mu$ : чем больше  $\mu$ , тем меньше признаков останется
- igoplus По мере увеличения  $\mu$  значимые признаки могут отбрасываться, когда ещё не все шумовые отброшены
- $\ominus$  Нет эффекта группировки (grouping effect): значимые зависимые признаки должны отбираться вместе и иметь примерно равные веса  $w_i$

Bradley P., Mangasarian O. Feature selection via concave minimization and support vector machines // ICML 1998.

# 1-norm SVM (LASSO SVM)

Аппроксимация эмпирического риска с  $L_1$ -регуляризацией:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \mu \sum_{j=1}^{n} |w_j| \rightarrow \min_{w, w_0}.$$

Почему  $L_1$ -регуляризатор приводит  $\check{\kappa}$  отбору признаков?

Замена переменных:  $u_j=\frac{1}{2}\big(|w_j|+w_j\big),\ v_j=\frac{1}{2}\big(|w_j|-w_j\big).$  Тогда  $w_j=u_j-v_j$  и  $|w_j|=u_j+v_j$ ;

$$\begin{cases} \sum_{i=1}^{\ell} (1 - M_i(u - v, w_0))_+ + \mu \sum_{j=1}^{n} (u_j + v_j) \to \min_{u,v} \\ u_j \geqslant 0, \quad v_j \geqslant 0, \quad j = 1, \dots, n; \end{cases}$$

чем больше  $\mu$ , тем больше индексов j таких, что  $u_j = v_j = 0$ , но тогда  $w_i = 0$ , значит, признак не учитывается.

# Сравнение $L_2$ и $L_1$ регуляризации

Зависимость весов  $w_j$  от коэффициента  $\frac{1}{\mu}$ 





Задача из UCI: prostate cancer (диагностика рака)

T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. 2001.

# Doubly Regularized SVM (Elastic Net SVM)

$$C\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \mu \sum_{j=1}^{n} |w_j| + \frac{1}{2} \sum_{j=1}^{n} w_j^2 \rightarrow \min_{w, w_0}.$$

- Отбор признаков с параметром селективности  $\mu$ : чем больше  $\mu$ , тем меньше признаков останется
- Есть эффект группировки
- ⊖ Шумовые признаки также группируются вместе; по мере увеличения  $\mu$  группы значимых признаков могут отбрасываться, когда ещё не все шумовые отброшены

# Doubly Regularized SVM (Elastic Net SVM)

Elastic Net менее жёстко отбирает признаки. Зависимости весов  $w_j$  от коэффициента  $\log \frac{1}{\mu}$ :



Пример из Python SkLearn:

scikit-learn.org/0.5/auto\_examples/glm/plot\_lasso\_coordinate\_descent\_path.html

# Support Features Machine (SFM)

$$C \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \sum_{j=1}^{n} R_{\mu}(w_j) \rightarrow \min_{w, w_0} R_{\mu}(w_j) = \begin{cases} 2\mu |w_j|, & |w_j| \leqslant \mu \\ \mu^2 + w_i^2, & |w_j| \geqslant \mu \end{cases}$$



- Отбор признаков с параметром ceлeктивности  $\mu$
- Есть эффект группировки
- $\oplus$  Значимые зависимые признаки  $(|w_i| > \mu)$  группируются и входят в решение совместно (как в Elastic Net),
- $\oplus$  Шумовые признаки  $(|w_i| < \mu)$  не группируются и подавляются независимо друг от друга (как в LASSO)

Tatarchuk A., Urlov E., Mottl V., Windridge D. A support kernel machine for supervised selective combining of diverse pattern-recognition modalities. 2010.

# Relevance Features Machine (RFM)

$$C\sum_{i=1}^{\ell}ig(1-M_i(w,w_0)ig)_+ + \sum_{j=1}^n igl(w_j^2 + rac{1}{\mu}ig) 
ightarrow \min_{w,w_0} R(w) = igl(w^2 + rac{1}{\mu}igr)$$
 при  $\mu = 0.1, 1, 100$ 



- $\oplus$  Отбор признаков с параметром селективности  $\mu$ : чем больше  $\mu$ , тем меньше признаков останется
- Есть эффект группировки
- Лучше отбирает набор значимых признаков, когда они только совместно обеспечивают хорошее решение

Tatarchuk A., Mottl V., Eliseyev A., Windridge D. Selectivity supervision in combining pattern recognition modalities by feature- and kernel-selective Support Vector Machines. 2008.

# Метод релевантных векторов RVM (Relevance Vector Machine)

Положим, как и в SVM, при некоторых  $\lambda_i\geqslant 0$ 

$$w = \sum_{i=1}^{\ell} \lambda_i y_i x_i,$$

причём опорным векторам  $x_i$  соответствуют  $\lambda_i \neq 0$ .

**Проблема:** Какие из коэффициентов  $\lambda_i$  лучше обнулить?

Идея: пусть регуляризатор зависит не от w, а от  $\lambda_i$ .

Пусть  $\lambda_i$  независимые, гауссовские, с дисперсиями  $\alpha_i$ :

$$p(\lambda) = \frac{1}{(2\pi)^{\ell/2} \sqrt{\alpha_1 \cdots \alpha_\ell}} \exp\left(-\sum_{i=1}^{\ell} \frac{\lambda_i^2}{2\alpha_i}\right);$$

$$\sum_{i=1}^{\ell} \left(1 - M_i(w(\lambda), w_0)\right)_+ + \frac{1}{2} \sum_{i=1}^{\ell} \left(\ln \alpha_i + \frac{\lambda_i^2}{\alpha_i}\right) \to \min_{\lambda, \alpha}.$$

# Преимущества и недостатки RVM

#### Преимущества:

- Опорных векторов, как правило, меньше (более «разреженное» решение).
- Шумовые выбросы уже не входят в число опорных.
- $\oplus$  Не надо искать параметр регуляризации (вместо этого  $\alpha_i$  оптимизируются в процессе обучения).
- ⊕ Аналогично SVM, можно использовать ядра.

#### Недостатки:

⊖ Не всегда есть преимущество по качеству классификации.

M. E. Tipping. The relevance vector machine. 2000.

C. M. Bishop, M. E. Tipping. Variational relevance vector machine. 2000

#### Резюме по линейным классификаторам

- SVM лучший метод линейной классификации
- *SVM* изящно обобщается для нелинейной классификации, для линейной и нелинейной регрессии
- Аппроксимация пороговой функции потерь  $\mathscr{L}(M)$  увеличивает зазор и повышает качество классификации
- Регуляризация устраняет мультиколлинеарность и уменьшает переобучение
- Негладкость функции потерь приводит к отбору объектов
- Негладкость регуляризатора приводит к отбору признаков

В. Н. Вапник, А. Я. Лернер. Узнавание образов при помощи обобщенных портретов. 1963.

C. Cortes, V. Vapnik. Support vector networks. 1995.