

Figure 1B.

Figure 2A.

1105

FIGURE 2 🛢

THE MAINTO

No Inhibitor

Genistein

FIGURE 4 Å

Figure 4B.

Figure 6

Figure '

Figure 8.

Figure 9

FIGURE 10A

Very 1.5

Figure 11.

Figure 12.

Figure 13.

in the second of

FIGURE 14

1				50	0
AA834537	AAA	GCCCCATGGC	CCCAGCAGGC	CTCTGAGCCC	CACCATGGGC
AA804628		GCCCCATGGC			
AA827835	AGTTCTGAAA	GCCCCATGGC	CCCAGCAGGC	CTCTGAGCCC	CACCATGGGC
	51				100
AA834537		CGGAGTACCT			
AA804628		CGGAGTACCT			
AA827835	AGCTTGTACT	CGGAGTACCT	GAACCCCAAC	AAGGTCCAGG	AACACTATAA
	101				
77024525	101	G) G) GGGMGG	111000100		150
AA834537		GAGACGCTGG			
AA804628 AA827835		GAGACGCTGG			
AA62/633	TIATACCAAG	GAGACGCTGG	AAACGCAGGA	GACGACCTCC	CGCCAGGTGG
	151				200
AA834537		CATCGTCATC	CTCTGTTGCG	CCATTGTGGT	GGAAAACCTT
AA804628		CATCGTCATC			
AA827835		CATCGTCATC			
				04.1101001	GGMAAACCII
	201				250
AA834537	CTGGTGCTCA	TTGCGGTGGC	CCGAAACAGC	AAGTTCCACT	CGGCAATGTA
AA804628		TTGCGGTGGC			
AA827835		TTGCGGTGGC			
	251				300
AA834537		GGCAACCTGG			
AA804628		GGCAACCTGG			
AA827835	CCTGTTTCTG	GGCAACCTGG	CCGCCTCCGA	TCTACTGGCA	GGCGTGG.CT
	301				
AA834537		TACCTTGCTC	TOTOCOTOTO	TCACGCTGAG	350
AA804628		TACCTTGCTC		TCACGCTGAG	
AA827835		TACCTTGCTC		TCACGCTGAG	
12102 / 033	redindedan	INCCITACIC	rerederere	ICACGCIGAG	GCTGACGCCT
	351				400
AA834537	GTGCAGTGGT	TTGCCCGGGA	CGGTCTGCCT	TCATCACGCT	
AA804628	GTGCAGTGGT	TTGCCCGGGA		~~~~~~~	~~~~~~~
AA827835	GTGCAGTGGT	TTGCCCGGGA			~~~~~~
	401				450
AA834537	GTCTTCAGCC	TCCTGGCCAT	CGCCATTGAG	CGCCACGTGG	CCATTGCAAA
AA804628			~~~~~	~~~~~~~	
AA827835	~~~~~~	~~~~~~~			~~~~~~
33024535	451				
AA834537	GG				
AA804628	~~				
AA827835	~~				

FIGURE 15 A

1	M G S L Y S E Y AAAGCCCCATGGCCCCAGCAGGCCTCTGAGCCCCACCATGGGCAGCTTGTACTCGGAGTA	60
	L N P N K V Q E H Y N Y T K E T L E T Q	
61	CCTGAACCCCAACAAGGTCCAGGAACACTATAATTATACCAAGGAGACGCTGGAAACGCA+ GGACTTGGGGTTGTTCCAGGTCCTTGTGATATTAATATGGTTCCTCTGCGACCTTTGCGT	120
	E T T S R Q V A S A F I V I L C C A I V	
121	GGAGACGACCTCCCGCCAGGTGGCCTCGGCCTTCATCGTCATCCTCTGTTGCGCCATTGT+ CCTCTGCTGGAGGGCGGTCCACCGGAGCCGGAAGTAGCAGTAGGAGACAACGCGGTAACA	180
	V E N L L V L I A V A R N S K F H S A M	
181	GGTGGAAAACCTTCTGGTGCTCATTGCGGTGGCCCGAAACAGCAAGTTCCACTCGGCAAT	240
	Y L F L G N L A A S D L L A G V A F V A GTACCTGTTTCTGGGCAACCTGGCCGCCTCCGATCTACTGGCAGGCGTGGCCTTCGTAGC	
241	CATGGACAAAGACCCGTTGGACCGGCGGAGGCTAGATGACCGTCCGCACCGGAAGCATCG	300
301	N T L L S G S V T L R L T P V Q W F A R CAATACCTTGCTCTCTGGCTCTGTCACGCTGAGGCTGACGCCTGTGCAGTGGTTTGCCCG	360
	GTTATGGAACGAGACCGAGACAGTGCGACTCCGACTGCGGACACGTCACCAAACGGGC	
361	E G S A F I T L S A S V F S L L A I A I GGAGGGCTCTGCCTTCATCACGCTCTCGGCCATCGCCAT CCTCCCGAGACGAAGTAGTGCGAGAGCCGGAGACAGAAGTCGGAGGACCGGTAGCGGTA	420
	E R H V A I A K V K L Y G S D K S C R M TGAGCGCCACGTGGCCATTGCCAAGGTCAAGCTGTATGGCAGCGACAAGAGCTGCCGCAT	
421	ACTCGCGGTGCACCGGTAACGGTTCCAGTTCGACATACCGTCGCTGTTCTCGACGGCGTA	48
481	L L I G A S W L I S L V L G G L P I L GCTTCTGCTCATCGGGGGCCTCGTGGCTCATCCT	54
541	G W N C L G H L E A C S T V L P L Y A K TGGCTGGAACTGCCTGGGCCACCTCGAGGCCTGCTCCACTGTCCTCTCTACGCCAA	60
	ACCGACCTTGACGGACCCGGTGGAGCTCCGGACGAGGTGACAGGACGGAGAGATGCGGTT H Y V L C V V T I F S I I L L A I V A L	
601	GCATTATGTGCTGTGGTGACCATCTTCTCCATCATCCTGTTGGCCATCGTGGCCCT	66

	Y GTA		R GCG																_	T GAC	
661			.CGC																		720
721	GCT	'AGC		GCT	CAA	.GAC	GGT	CAC	CAT	CGT	GCT	AGG	CGT	CTT	TAT		CTG	CTG	GCT	P GCC	786
	CGA	TCC	GGA	CGA	GTT.	'CTG	CCA	.GTG	GTA	.GCA	CGA	TCC	:GCA	GAA	ATA	.GCA	.GAC	GAC	CGA	.CGG	
	CGC	CT1		CAT	CCI	CCT	TCI	GGA	CTA	TGC	CTG	TCC	CGT	CCA	CTC	CTG	ccc	GAT	CCI	CTA	
781				•																GAT	84
			H												_	N CAA	_		_	Y CTA	
841				+			-+-			+	. -			+			-+-			GAT	90
901	CAC	GT		CAC	ccc		CCT	GCG	GCC	GG₽	AGG1	GCI	TCC	+	GCI	GCA	GTG	CTG	GCG	P GCC + CCGG	96
961	GGG	GG'		3GG1	rgČ2	AAGG	FACC	GAC	GCC	3GG	CGC	GAC		GGC +	CC2	ACC	CC1	CCI	rgco	L CACT + STGA	10
021		GCA	GCT(- +	CT		rgg:	AGAG	GGG	GCAT	rgcz	ACA:	rgc	CAC	CGT	CACC	+-	GTT	TC:	E FGGA + ACCT	10
081		GCA.	ACA(-+-	rgg:	rct(+			- - -	+			-+-			+			GGTT + CCAA	11
141	CA	rgg	AAA(GGC(CAC'	rgg	GTG.	ACC(CCA.	AAT.	A. + :										

Strange Comment

Figure 15B

cDNA sequence of clone pC3-hedg4#36 encoding functional HEDG4 receptor protein.

1	ATGGGCAGCTTGTACTCGGAGTACCTGAACCCCAACAAGGTCCAGGAACACTATAATTAT	60
-	TACCCGTCGAACATGAGCCTCATGGACTTGGGGTTGTTCCAGGTCCTTGTGATATTAATA	00
61	ACCAAGGAGACGCTGGAAACGCAGGAGACGACCTCCCGCCAGGTGGCCTCGGCCTTCATC	120
01	TGGTTCCTCTGCGACCTTTGCGTCCTCTGCTGGAGGGGGGTCCACCGGAGCCGGAAGTAG	120
121	GTCATCCTCTGTTGCGCCATTGTGGTGGAAAACCTTCTGGTGCTCATTGCGGTGGCCCGA+ CAGTAGGAGACAACGCGGTAACACCACCTTTTGGAAGACCACGAGTAACGCCACCGGGCT	180
181	AACAGCAAGTTCCACTCGGCAATGTACCTGTTTCTGGGCAACCTGGCCGCCTCCGATCTA+ TTGTCGTTCAAGGTGAGCCGTTACATGGACAAAGACCCGTTGGACCGGCGGAGGCTAGAT	240
241	CTGGCAGGCGTGGCCTTCGTAGCCAATACCTTGCTCTCTGGCTCTGTCACGCTGAGGCTG+ GACCGTCCGCACCGGAAGCATCGGTTATGGAACGAGAGACCGAGACAGTGCGACTCCGAC	300
301	ACGCCTGTGCAGTGGTTTGCCCGGGAGGGCTCTGCCTTCATCACGCTCTCGGCCTCTGTC	360
361	TTCAGCCTCCTGGCCATCGCCATTGAGCGCCACGTGGCCATTGCCAAGGTCAAGCTGTAT+ AAGTCGGAGGACCGGTAGCGGTAACTCGCGGTGCACCGGTAACGGTTCCAGTTCGACATA	420
421	GGCAGCGACAAGAGCTGCCGCATGCTTCTGCTCATCGGGGGCCTCGTGGCTCATCTCGCTG+ CCGTCGCTGTTCTCGACGGCGTACGAAGACGAGTAGCCCCGGAGCACCGAGTAGAGCGAC	480
481	GTCCTCGGTGGCCTGCCCATCCTTGGCTGGAACTGCCTGGGCCACCTCGAGGCCTGCTCC+ CAGGAGCCACCGGACGGTAGGAACCGACCTTGACGGACCCGGTGGAGCTCCGGACGACGAGG	540
541	ACTGTCCTGCCTCTCTACGCCAAGCATTATGTGCTGTGC	600
601	ATCCTGTTGGCCGTCGTGGCCCTGTACGTGCGCATCTACTGCGTGGTCCGCTCAAGCCAC TAGGACAACCGGCAGCACCGGGACATGCACGCGTAGATGACGCACCAGGCGAGTTCGGTG	660
661	GCTGACATGGCCGCCCGCAGACGCTAGCCCTGCTCAAGACGGTCACCATCGTGCTAGGC	720
721	GTCTTTATCGTCTGCTGGCTGCCCGCCTTCAGCATCCTCCTTCTGGACTATGCCTGTCCC	780

Stry Commence

	CAGAAATAGCAGACGACCGACGGGCGGAAGTCGTAGGAGGAAGACCTGATACGGACAGGG	
781	GTCCACTCCTGCCCGATCCTCTACAAAGCCCACTACCTTTTCGCCGTCTCCACCCTGAAT	840
841	TCCCTGCTCAACCCCGTCATCTACACGTGGCGCAGCCGGGACCTGCGGCGGGAGGTGCTT+ AGGGACGAGTTGGGGCAGTAGATGTGCACCGCGTCGGCCCTTGGACGCCCCTCCACGAA	900
901	CGGCCGCTGCAGTGCTGGCGGCCGGGGGTGGGGGTGCAAGGACGGAGGCGGGGCGGGACC	960
961	CCGGGCCACCACCTCCTGCCACTCCGCAGCTCCAGCTCCCTGGAGAGGGGCATGCACATG+ GGCCCGGTGGTGGAGGACGGTGAGGCTCGAGGGACCTCTCCCCGTACGTGTAC	1020
1021	CCCACGTCACCCACGTTTCTGGAGGGCAACACGGTGGTCTGA	

FIGURE 16 A

```
1 MGSLYSEYLN PNKVQEHYNY TKETLETQET TSRQVASAFI VILCCAIVVE
     51 NLLVLIAVAR NSKFHSAMYL FLGNLAASDL LAGVAFVANT LLSGSVTLRL
    101 TPVOWFAREG SAFITLSASV FSLLAIAIER HVAIAKVKLY GSDKSCRMLL
    151 LIGASWLISL VLGGLPILGW NCLGHLEACS TVLPLYAKHY VLCVVTIFSI
    201 ILLAIVALYV RIYCVVRSSH ADMAAPQTLA LLKTVTIVLG VFIVCWLPAF
    251 SILLLDYACP VHSCPILYKA HYXFAVSTLN SLLNPVIYTW RSRDLRREVL
    301 RPLQCWRPGV GVQGRRRGGT PGHHLLPLRS SSSLERGMHM PTSPTFLEGN
    351 TVV*
Conserved features of G-protein coupled receptors include:
      N-terminal extracellular domain: Residues 1 - 36
                                       Residues 37 - 57
      TM-I:
      Intracellular loop 1:
                                      Residues 58 - 68
      TM-II:
                                      Residues 69 - 92
                                      Residues 93 - 111
      Extracellular loop 1:
                                       Residues 112 - 130
      TM-III:
      Intracellular loop 2:
                                       Residues 131 - 149
      TM-IV:
                                       Residues 150 - 168
                                       Residues 169 - 185
      Extracellular loop 2:
                                      Residues 186 - 210
      TM-V:
                                      Residues 211 - 232
      Intracellular loop 3:
      TM-VI:
                                      Residues 233 - 254
                                      Residues 255 - 266
      Extracellular loop 3:
                                       Residues 267 - 285
      TM-VII:
      C-terminal cytoplasmic domain: Residues 286 - 353
```

Potential post-transcriptional modification sites:

N-glycosylation: Residues 19

Phosphorylation: Residues 142, 145, 219, 289,332, 345

Myristylation: Residues 141, 318

Figure 16B

Predicted amino acid sequence of HEDG4 polypeptide encoded by pC3-hedg4#36.

1	MGSLYSEYLN	PNKVQEHYNY	TKETLETQET	TSRQVASAFI	VILCCAIVVE
51	NLLVLIAVAR	NSKFHSAMYL	FLGNLAASDL	LAGVAFVANT	LLSGSVTLRL
101	TPVQWFAREG	SAFITLSASV	FSLLAIAIER	HVAIAKVKLY	GSDKSCRMLL
151	LIGASWLISL	VLGGLPILGW	NCLGHLEACS	TVLPLYAKHY	VLCVVTIFSI
201	ILLAVVALYV	RIYCVVRSSH	ADMAAPQTLA	LLKTVTIVLG	VFIVCWLPAF
251	SILLLDYACP	VHSCPILYKA	HYLFAVSTLN	SLLNPVIYTW	RSRDLRREVL
301	RPLQCWRPGV	GVQGRRRGGT	PGHHLLPLRS	SSSLERGMHM	PTSPTFLEGN
351	TVV				

FIGURE 17 A

Human	1	MGSLYSEYLNPNKVQEHYNYTKETLETQETTSRQVASAFIVILCCAIVVE	50
Rat	1	MGGLYSEYLNPEKVQEHYNYTKETLDMQETPSRKVASAFIIILCCAIVVE	50
Human	51	NLLVLIAVARNSKFHSAMYLFLGNLAASDLLAGVAFVANTLLSGSVTLRL	100
Rat	51	NLLVLIAVARNSKFHSAMYLFLGNLAASDLLAGVAFVANTLLSGPVTLSL	100
Human	101	TPVQWFAREGSAFITLSASVFSLLAIAIERHVAIAKVKLYGSDKSCRMLL	150
Rat	101	TPLOWFAREGSAFITLSASVFSLLAIAIERQVAIAKVKLYGSDKSCRMLM	150
Human	151	LIGASWLISLVLGGLPILGWNCLGHLEACSTVLPLYAKHYVLCVVTIFSI	200
Rat	151	LIGASWLISLILGGLPILGWNCLDHLEACSTVLPLYAKHYVLCVVTIFSV	200
Human	201	ILLAIVALYVRIYCVVRSSHADMAAPQTLALLKTVTIVLGVFIVCWLPAF	250
Rat	201	ILLAIVALYVRIYFVVRSSHADVAGPQTLALLKTVTIVLGVFIICWLPAF	250
Human	251	SILLLDYACPVHSCPILYKAHYXFAVSTLNSLLNPVIYTWRSRDLRREVL	300
Rat	251	SILLLDSTCPVRACPVLYKAHYFFAFATLNSLLNPVIYTWRSRDLRREVL	300
Human	301	RPLQCWRPGVGVQGRRRGGTPGHHLLPLRSSSSLERGMHMPTSPTFLEGN	350
Rat	301	RPLLCWRQGKGATG.RRGGNPGHRLLPLRSSSSLERGLHMPTSPTFLEGN	345
Human	351	TVV* 353	
Rat	350	TVV* 352	

Acres 1 1 to 1

Figure 17B

Alignment of HEDG4 with pC3-hedg4#36 translation product and rat H218 (REDG4). Differences between pC3-hedg4#36 translation product and previously determined HEDG4 polypeptide are indicated in reverse text. Differences between rat and human edg-4 polypeptide sequences are shown in bold, shaded text.

HEDG4	1 MGSLYSEYLN	PNKVQEHYNY	TKETLETQET		
HEDG4#36	MGSLYSEYLN		TKETLETQET		VILCCAIVVE
REDG4	MGGLYSEYLN	PEKVQEHYNY	TKETL DM QET	PSRKVASAFI	F ILCCAIVVE
	51				100
HEDG4	NLLVLIAVAR	NSKFHSAMYL	FLGNLAASDL	LAGVAFVANT	LLSGSVTLRI.
HEDG4#36	NLLVLIAVAR	NSKFHSAMYL	FLGNLAASDL	LAGVAFVANT	LLSGSVTLRI.
REDG4	NLLVLIAVAR	NSKFHSAMYL	FLGNLAASDL	LAGVAFVANT	LLSGPVTLSL
	101				150
HEDG4	TPVOWFAREG	SAFITLSASV	FSLLAIAIER	HVATAKVKT.V	CCDVCCDMIT
HEDG4#36	TPVOWFAREG	SAFITLSASV	FSLLAIAIER	HVATAKVKIV	GSDKSCRMLL
REDG4	TPLQWFAREG	SAFITLSASV	FSLLAIAIER	QVAIAKVKLY	GSDKSCRMLL GSDKSCRMLM
	151				
HEDG4		VI.CCI.DII.CW	NCLGHLEACS	TUT DI VA MINI	200
HEDG4#36	I.TGASWI.TSI.	VI CCI PII CW	NCLGHLEACS	TATALTATA	VLCVVTIFS1
REDG4	T.T.CA SWILTSI	TI CCI PII CW	NCLOHLEACS	TULPLYAKHY	VLCVVTIFSI
REDG4	HIGASWEISE	TinggraingM	MCThureacs	TVLPLYAKHY	VLCVVTIFSW
	201				250
HEDG4	ILLAVVALYV	RIYCVVRSSH	ADMAAPQTLA	LLKTVTIVLG	
HEDG4#36	ILLAVVALYV	RIYCVVRSSH	ADMAAPQTLA	LLKTVTIVLG	VEIVCWLPAF
REDG4			ADVAGPOTLA		
	251				300
HEDG4	SILLLDYACP	VHSCPILYKA	HYXFAVSTLN	SLLNPVIYTW	
HEDG4#36	SILLLDYACP	VHSCPILYKA	HYLFAVSTLN	SLLNPVIYTW	RSRDLRREVL
REDG4			hy r fa ra tln		
	301				350
HEDG4	RPLOCWRPGV	GVOGRRRGGT	PGHHLLPLRS	SSSLERGMHM	
HEDG4#36			PGHHLLPLRS		
REDG4			PGHRLLPLRS		
	351				
HEDG4	TVV~				
HEDG4 HEDG4#36	TVV~				
REDG4#36	TVV-				
KEDG4	T A A -				

Figure 18A.

territoria.

SRE Reporter Response (Fold)

Figure 19.

Figure 20.

Figure	21.	Human	Edg-6	Amino	Acid	Sequence.
--------	-----	-------	-------	-------	------	-----------

1	MVIMGQCYYNETIGFFYNNSGKELSSHWRPKDVVVVALGLTVSVLVLLTNLLVIAAIASN	60
61	RRFHQPIYYLLGNLAAADLFAGVAYLFLMFHTGPRTARLSLEGWFLRQGLLDTSLTASVA	120
121	TLLAIAVERHRSVMAVQLHSRLPRGRVVMLIVGVWVAALGLGLLPAHSWHCLCALDRCSR	180
181	MAPLLSRSYLAVWALSSLLVFLLMVAVYTRIFFYVRRRVQRMAEHVSCHPRYRETTLSLV	240
241	KTVVIILGAFVVCWTPGQVVLLLDGLGCESCNVLAVEKYFLLLAEANSLVNAAVYSCRDA	300
301	EMRRTFRRLLCCACLRQSTRESVHYTSSAQGGASTRIMLPENGHPLMDSTL*	

Figure 22. Human Edg-6 Sequence

1	ATGGTCATCATGGGCCAGTGCTACTACAACGAGACCATCGGCTTCTTCTATAACAACAGT	
_	TACCAGTAGTACCCGGTCACGATGATGTTGCTCTGGTAGCCGAAGAAGATATTGTTGTCA	
1	GGCAAAGAGCTCAGCTCCCACTGGCGGCCCAAGGATGTGGTCGTGGTGGCACTGGGGCTG	
_	CCGTTTCTCGAGTCGAGGGTGACCGCGGGGTTCCTACACCAGCACCACCGTGACCCCGAC	
,	ACCGTCAGCGTGCTGGTGCTGACCAATCTGCTGGTCATAGCAGCCATCGCCTCCAAC	
1	TGGCAGTCGCACGACCACGACGACTGGTTAGACGACCAGTATCGTCGGTAGCGGAGGTTG	
_	CGCCGCTTCCACCAGCCCATCTACTACCTGCTCGGCAATCTGGCCGCGGCTGACCTCTTC	
L	GCGGCGAAGGTGGTCGGGTAGATGATGGACGAGCCGTTAGACCGGCGCCGACTGGAGAAG	
	GCGGGCGTGGCCTACCTCTTCCTCATGTTCCACACTGGTCCCCGCACAGCCCGACTTTCA	
L	CGCCCGCACCGGATGGAGAAGGAGTACAAGGTGTGACCAGGGGCGTGTCGGGCTGAAAGT	
	CTTGAGGGCTGGTTCCTGCGGCAGGCTTGCTGGACACAAGCCTCACTGCGTCGGTGGCC	
_	GAACTCCCGACCAAGGACGCCGTCCCGAACGACCTGTGTTCGGAGTGACGCACCAGCCACCGG	
	ACACTGCTGGCCATCGCCGTGGAGCGGCACCGCAGTGTGATGGCCGTGCAGCTGCACAGC	
	TGTGACGACCGGTAGCGGCACCTCGCCGTGGCGTCACACTACCGGCACGTCGACGTGTCG	
	CGCCTGCCCGTGGCCGCGTGTCATGCTCATTGTGGGCGTGTGGGTGG	
	GCGGACGGGGCACCAGTACGAGTAACACCCGCACCCACCGACGGGACCCG	
	CTGGGGCTGCTGCCCACTCCTGGCACTGCTCTGTGCCCTGGACCGCTGCTCACGC	
	GACCCCGACGACGGACGGGGACCGTGACGGAGACACGGGACCTGGCGACGAGTGCG	
	ATGGCACCCCTGCTCAGCCGCTCCTATTTGGCCGTCTGGGCTCTGTCGAGCCTGCTTGTC	
	TACCGTGGGGACGAGTCGGCGGAGACAGCTCGGACGACAG	
	TTCCTGCTCATGGTGGCTGTGTACACCCGCATTTTCTTCTACGTGCGGCGGCGAGTGCAG	
	AAGGACGAGTACCACCGACACATGTGGGCGTAAAAGAAGATGCACGCCGCCGCTCACGTC	
	CGCATGGCAGAGCATGTCAGCTGCCACCCCGCTACCGAGAGACCACGCTCAGCCTGGTC	
	GCGTACCGTCTCGTACAGTCGACGGTGGGGGCGATGGCTCTCTGGTGCGAGTCGGACCAG	
	AAGACTGTTGTCATCATCCTGGGGGCGTTCGTGGTCTGCTGGACACCAGGCCAGGTGGTA	
	TTCTGACAACAGTAGTAGGACCCCCGCAAGCACCAGACGACCTGTGGTCCGGTCCACCAT	•
	', CTGCTCCTGGATGGTTAGGCTGTGAGTCCTGCAATGTCCTGGCTGTAGAAAAGTACTTC	
	GACGAGGACCTACCAAATCCGACACTCAGGACGTTACAGGACCGACATCTTTTCATGAAG	1

Not within th

841	CTACTGCTGGCCGAGGCCAACTCACTGGTCAATGCTGCTGTGTACTCTTGCCGAGATGCT						
	GATGACGACCGGCTCCGGTTGAGTGACCAGTTACGACGACACATGAGAACGGCTCTACGA	900					
901	GAGATGCGCCGCACCTTCCGCCGCCTTCTCTGCTGCGCGTGCCTCCGCCAGTCCACCCGC	960					
	CTCTACGCGGCGTGGAAGGCGCGGAAGAGACGACGCGCACGGAGGCGGTCAGGTGGGCG						
961 1021	GAGTCTGTCCACTATACATCCTCTGCCCAGGGAGGTGCCAGCACTCGCATCATGCTTCCC	1020					
	CTCAGACAGGTGATATGTAGGAGACGGGTCCCTCCACGGTCGTGAGCGTAGTACGAAGGG						
	GAGAACGGCCACCGATGGACTCCACCCTTTAG						
	CTCTTGCCGGTGGCTGACCTGAGGTGGGAAATC						

And the second s

Figure 24.

is. Pranamijist

