Operacijska istraživanja

7. predavanje: Mrežno planiranje

Sažetak predavanja

- Metoda kritičnog puta (CPM)
- CPM i analiza troškova

Operacijska istraživanja 8. predavanje: Mrežno planiranje

Metoda kritičnog puta

Primjene CPM-a (engl. Critical Path Method)

"Uspješno upravljanje velikim projektima umnogome zavisi o pažljivom planiranju, terminiranju i koordinaciji brojnih povezanih aktivnosti."

(Kalpić, Mornar, 1996.)

- građevinski zahvati (zgrade, tvornice, mostovi, ceste),
- proizvodnja i sastavljanje velikih strojeva, aviona, brodova, elektroničkih računala,
- znanstvena istraživanja,
- razvoj novih proizvoda, oružja, informacijskih sustava.

Važnost CPM-a

- nalaženje kritičnog puta najvažniji je dio praćenja projekta
- aktivnosti na kritičnom putu predstavljaju zadatke čija odgoda produljuje cijeli projekt
- menadžer postiže fleksibilnost identificiranjem nekritičnih aktivnosti i ponovnim planiranjem, raspoređivanjem, i realociranjem resursa poput osoblja i strojeva

Projektna mreža

- projektna mreža je model aktivnosti po redoslijedu izvođenja
- strelice = aktivnosti
- čvorovi = početak/kraj aktivnosti
- kritični put
 - = slijed aktivnosti bez vremenske rezerve (engl. zero slack)
 - = **najdulji** put u projektnoj mreži

Crtanje projektne mreže

- izvođenje aktivnosti prikazuje se strelicom: zadatak koji koristi vrijeme ili drugi resurs
- čvor = događaj, prikazuje se krugom: početak ili kraj aktivnosti, označen brojem radi identifikacije njegove lokacije.
- primjer: aktivnost A na slici

 slika predstavlja da aktivnost A počinje u čvoru 1, a završava u čvoru 2, te traje ukupno 3 sata

Proces CPM analize

- identificirati aktivnosti i odrediti prioritete među aktivnostima
- identificirati koje aktivnosti MORAJU biti gotove prije drugih
- EST identificirati najraniji početak aktivnosti (engl. earliest start time)
- LFT identificirati najkasniji završetak aktivnosti (engl. latest finish time)
- identificirati vremensku rezervu (engl. float) zadatke koji se mogu završiti izvan kritičnog puta
- identificirati kritični put točke koje povezuju ESTs i LFTs (gdje su ove iste)

Nalaženje kritičnog puta: 1. korak

- 1. korak: proći od početka do kraja kroz mrežu na sljedeći način; za svaku aktivnost i, počevši od početnog čvora, izračunati:
 - najraniji početak (engl. Earliest Start Time ES) = maksimum između najranijih završetaka svih aktivnosti koje su neposredno prije aktivnosti i. (0 za aktivnost bez prethodnika); ovo je najranije vrijeme kad aktivnost može započeti bez narušavanja zahtjeva svojih prethodnika
 - najraniji završetak (engl. Earliest Finish Time EF) = ES + vrijeme potrebno za završiti aktivnost I; ovo je najranije vrijeme završetka aktivnosti
- završetak projekta je maksimum od svih EF u završnom čvoru

2. korak

- 2. korak: proći unazad od kraja do početka kroz mrežu na sljedeći način; za svaki čvor j, uzeti sve aktivnosti koje završavaju u čvoru j i za svaku od njih (i, j) izračunati:
 - najkasniji završetak (engl. Latest Finish Time LF) = minimum između najkasnijih početaka iz čvora j (za čvor N, ovo je vrijeme završetka projekta); ovo je najkasniji završetak aktivnosti bez produljenja cijelog projekta
 - najkasniji početak (engl. Latest Start Time LS) = (LF) (vrijeme da se završi aktivnost (i, j)); ovo je najkasniji početak aktivnosti bez produljenja cijelog projekta

Pronalazak kritičnog puta

• 3. korak: izračunati rezervu (engl. slack time) svake aktivnosti:

$$rezerva = (LS) - (ES)$$
, ili
= (LF) - (EF)

<u>kritični put</u> = put aktivnosti, od početnog do završnog, s 0 rezervi

1. primjer: zadane su aktivnosti projekta

aktivnost	preduvjet	trajanje
Α	-	6
В	-	4
С	Α	3
D	Α	5
Е	Α	1
F	В, С	4
G	В, С	2
Н	E, F	6
Ĩ	E, F	5
J	D, H	3
K	G, I	5

EF = ES + t, LS = LF - t, rezerva = LF - EF = LS - ES

aktivnost	preduvjeti	trajanje	ES	EF	LS	LF	rezerva
Α	-	6	0	6	0	6	0*
В	-	4	0	4	5	9	5
С	Α	3	6	9	6	9	0*
D	Α	5	6	11	15	20	9
Е	Α	1	6	7	12	13	6
F	B, C	4	9	13	9	13	0*
G	B, C	2	9	11	16	18	7
Н	E, F	6	13	19	14	20	1
1	E, F	5	13	18	13	18	0*
J	D, H	3	19	22	20	23	1
K	G, I	5	18	23	18	23	0*

2. primjer

aktivnost	preduvjet	trajanje
Α	-	15
В	-	20
С	Α	25
D	Α	10
Е	В	15
F	В	20
G	D, E	20
Н	D, E	30
I	D, E	15
J	C, G	10
K	F, I	20

Najdulji put = max. $\sum_{i} \sum_{j} c_{ij} X_{ij}$

• $X_{ij} = 1$, ako je u kritičnom putu, 0 u protivnome; c_{ij} , trajanje aktivnosti (i, j) uz ograničenja:

$$X_{12} + X_{13} = 1$$
 $-X_{12} + X_{24} + X_{25} = 0$
 $-X_{13} + X_{34} + X_{36} = 0$
 $-X_{24} - X_{34} + X_{45} + X_{46} + X_{47} = 0$
 $-X_{25} - X_{45} + X_{57} = 0$
 $-X_{36} - X_{46} + X_{67} = 0$
 $-X_{47} + X_{57} + X_{67} = -1$

Dual najduljeg puta = min. $w_1 - w_7$

$$W_1 - W_2 \ge 15$$

$$W_1 - W_3 \ge 20$$

$$W_2 - W_4 \ge 10$$

$$W_2 - W_5 \ge 25$$

$$W_3 - W_4 \ge 15$$

$$W_3 - W_6 \ge 20$$

$$W_4 - W_5 \ge 20$$

$$W_4 - W_6 \ge 15$$

$$W_4 - W_7 \ge 30$$

$$W_5 - W_7 \ge 10$$

$$W_6 - W_7 \ge 20$$

13. prosinca 2017.

$$w'_{2} - w'_{1} \ge 15$$

$$w'_3 - w'_1 \ge 20$$

$$w'_4 - w'_2 \ge 10$$

$$w'_5 - w'_2 \ge 25$$

$$w'_4 - w'_3 \ge 15$$

$$w'_{6} - w'_{3} \ge 20$$

$$w'_{5} - w'_{4} \ge 20$$

$$w'_{6} - w'_{4} \ge 15$$

$$w'_7 - w'_4 \ge 30$$

$$w'_7 - w'_5 \ge 10$$

$$w'_7 - w'_6 \ge 20$$
 *

$$w'_{7} = 70$$

 $w'_{6} = 50$

 $w'_{5} = 55$

 $w'_{1} = 0, w'_{2} = 15$ $w'_{3} = 20$ $w'_{4} = 35$

3. primjer: izgradnja tvornice

aktivnost	preduvjeti	trajanje
Α	-	25
В	-	30
С	Α	60
D	Α	1
E	Α	50
F	B, C	4
G	B, C	6

Projektna mreža

Linearno programiranje: simpleksna metoda

- t_i, vrijeme događaja i, tj. trenutak u kojem može započeti aktivnost a_{ij}
- min. $z = t_7 t_1$
- $t_2 t_1 \ge 25$
- $t_3 t_2 \ge 30$
- $t_4 t_2 \ge 1$
- $t_5 t_4 \ge 50$
- $t_6 t_5 \ge 4$
- $t_7 t_6 \ge 6$
- ako $t_1 = 30$, $t_2 = 25$, $t_3 = 55$, $t_4 = 26$, $t_5 = 76$, $t_6 = 115$, $t_7 = 121$

Rješenje analizom mreža

- $ES_{ij} = U_i$
- $LS_{ij} = V_j t_{ij}$
- $EF_{ij} = U_i + t_{ij}$
- $LF_{ij} = V_j$
- $R_{ij} = LF_{ij} ES_{ij} t_{ij}$
- aktivnost je kritična ako je $R_{ij} = 0$, odnosno $LF_{ij} ES_{ij} = t_{ij}$

CPM i analiza troškova: primjer

aktivnost	preduvjeti	trajanje	skraćeno trajanje	jedinični trošak skraćenja
Α	-	7	5	5
В	Α	8	3	3
С	В	6	4	5
D	Α	5	2	2
E	D	9	6	5
F	C, E	5	2	5
G	F	4	3	4
Н	C, E	8	6	6

Projektna mreža

Rješavanje primjera

- fiksni trošak iznosi 6NJ za svaku vremensku jedinicu trajanja projekta
- ukupni trošak: $T_u = f \cdot t + T_s = 6 \cdot 30 + 0 = 180$
- T, trajanje projekta
- T_s, troškovi skraćivanja
- uz max. skraćivanje: $T_U = 6 \cdot 19 + (7-5) \cdot 5 + (8-3) \cdot 3 + (6-4) \cdot 5 + (5-2) \cdot 2 + (9-6) \cdot 5 + (5-2) \cdot 5 + (4-3) \cdot 4 + (8-6) \cdot 6 = 201$

Analiza troškova matematičkim programiranjem

- n_{ii} normalno trajanje aktivnosti (i, j)
- s_{ii} skraćeno trajanje aktivnosti (i, j)
- c_{ii} jedinični trošak skraćenja aktivnosti (i, j)
- t_{ii} trajanje aktivnosti (i, j)
- T_{ij} trošak skraćenja = $c_{ij} \cdot (n_{ij} t_{ij})$ za $s_{ij} \le t_{ij} \le n_{ij}$
- ukupni troškovi skraćenja cijelog projekta: $\sum_{(i,j)} c_{ij} \cdot (n_{ij} t_{ij})$
- ako je f fiksni trošak po jedinici trajanja projekta, t_i najranije vrijeme događaja i,1 prvi, a n posljednji događaj projekta tada su fiksni troškovi:

$$T_f = f \cdot (t_n - t_1)$$

Model linearnog programiranja

- ukupni troškovi suma su fiksnih troškova i troškova skraćenja: $T_u = T_f + T_s$
- minimizirati $T_{U} = f \cdot (t_{n} t_{1}) + \sum_{(i,j)} c_{ij} \cdot (n_{ij} t_{ij})$
- uz ograničenja
- t_j t_i ≥ t_{ij} za sve aktivnosti (i, j)
- $s_{ij} \le t_{ij} \le n_{ij}$ za sve aktivnosti (i, j)
- t_i ≥ 0 za svaki događaj i

Rješenje primjera

• Min.
$$6 \cdot (t_7 - t_1) + 5 \cdot (7 - t_{12}) + 3 \cdot (8 - t_{23}) + 5 \cdot (6 - t_{35}) + 2 \cdot (5 - t_{24}) + 5 \cdot (9 - t_{45}) + 5 \cdot (5 - t_{56}) + 4 \cdot (4 - t_{67}) + 6 \cdot (8 - t_{57})$$

uz ograničenja

•
$$t_2 - t_1 \ge t_{12}$$
 $5 \le t_{12} \le 7$

•
$$t_3 - t_2 \ge t_{23}$$
 $3 \le t_{23} \le 8$

•
$$t_4 - t_2 \ge t_{24}$$
 $4 \le t_{35} \le 6$

•
$$t_5 - t_3 \ge t_{35}$$
 $2 \le t_{24} \le 5$

•
$$t_5 - t_4 \ge t_{45}$$
 $6 \le t_{45} \le 9$

•
$$t_6 - t_5 \ge t_{56}$$
 $2 \le t_{56} \le 5$

•
$$t_7 - t_6 \ge t_{67}$$
 $3 \le t_{67} \le 4$

•
$$t_7 - t_5 \ge t_{57}$$
 $6 \le t_{57} \le 8$

	aktivnost	trajanje	skraćeno	jedinični trošak	
			trajanje	skraćenja	
	1 - 2	2	1	300	
	2 - 3	4	3	200	
Analiza	3 - 4	10	7	300	
troškova:	4 – 5	4	2	350	
2. primjer	4 – 6	6	4	150	
	4 - 7	7	5	100	
	5 - 7	5	3	150	
	5 - 8	-	-	-	
	6 – 8	7	4	200	
	7 - 9	8	6	100	
	8 - 10	9	5	100	
	9 - 11	4	3	100	
	9 - 12	5	3	150	
	10 - 13	2	1	100	
	11 - 12	-	-	-	
13. prosinca 2017.	12 - 13	6	3	133.3	

Projekt prikazan grafom

Postupak modeliranja

- fiksni trošak f trajanja projekta jest 200 novčanih jedinica po jedinici vremenatrajanja projekta
- trajanje aktivnosti t_{ij}: s_{ij} ≤ t_{ij} ≤ n_{ij} za sve aktivnosti (i, j)
- t_j t_i ≥ t_{ij} za sve aktivnosti (i, j)
- $R_{ij} = t_i t_i t_{ij} \ge 0$
- TROŠAK = $f \cdot (t_n t_1) + \sum_{(i,j)} c_{ij} \cdot (n_{ij} t_{ij}) = 200 \cdot t_{13} + 13400 \sum_{(i,j)} c_{ij} \cdot t_{ij}$