PATENT ABSTRACTS OF JAPAN

(11)Publication number :

11-130513

(43)Date of publication of application: 18.05.1999

(51)Int.Cl.

CO4B 33/13 B09B 3/00 3/00

(21)Application number: 10-236986 (22)Date of filing:

24.08.1998

(71)Applicant : OZAWA TAKAMICHI

(72)Inventor: OZAWA TAKAMICHI

(30)Priority

Priority number: 09227984

Priority date: 25.08.1997

Priority country : JP

(54) SINTERED COMPACT

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a sintered compact capable of retaining a fixed shape and strength, by reusing a waste material.

substance, formed into a fixed shape and sintered to form the objective sintered compact.

SOLUTION: This sintered compact comprises abraded powder of metal as a waste material, a ground material of old tile obtained by sintering a raw material containing a clay and a clay substance. Preferably the ratio of the abraded powder mixed is 20-40 wt.% based on the raw material, that of the ground material of old tile is 10-30 wt.% and that of the clay substance is 40-60 wt.%. The particle diameter of the ground material of old tile is preferably 1-3 mm. These materials are mixed, incorporated with 15-20 wt.% based on the mixture of water, formed into a fixed shape and sintered to form a sintered compact. Otherwise, the abraded powder is mixed with the clay substance, sintered to give a primary sintered compact and then the ground material of the primary sintered compact is mixed with the clay

LEGAL STATUS

Date of request for examination

26.05.1999

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

Date of final disposal for application

[Patent number]

2975013

Date of registration

03.09.1999

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-130513

(43)公開日 平成11年(1999)5月18日

(51) Int.Cl.*	微別記号	FI		
C 0 4 B 33/13		C 0 4 B 33/13	D	
			c	
В 0 9 В 3/00	ZAB	B 0 9 B 3/00 ZAB		
			301F	
			303A	
		審査請求 未請求	き 請求項の数4 OL (全 7 頁)	
(21)出願番号	特顯平10-236986	1,	(71)出願人 597121212 小澤 孝漢	
(22)出胸日	平成10年(1998) 8 月24日		男子 - 関市志津野2488番地	
		(72)発明者 小澤		
(31)優先権主張番号	特顯平9-227984	岐阜県関市志津野2488番地		
(32) 優先日	平 9 (1997) 8 月25日	(74)代理人 炸理士 恩田 博宣		

(54) 【発明の名称】 焼結体

(33)優先権主張国

(57)【要約】

【課題】 所定形状及び強度を保つことができ、廃材を 再利用してなる焼結体を提供する。

日本 (JP)

【解決手段】 焼結体は、原体である金属の所燃粉と、粘土物 能士を含む原料を焼結してなる古瓦の粉砕物と、粘土物 質とから様成される。研磨粉砕の混合率は、取料に対して 20~40 室盤外、瓦の粉砕物の混合率は、10~30 起電粉、粘土物質の混合容は、40~80 8 重雪がが好ま しい。また、瓦の粉砕物の粒子径は、1~3 mmがさら に好ましい。以上の材料を混合して、混合物に対し水分 を15~20 東重が加えた後、所定形状に賦形し、焼結 することで、焼結体は生成される。又は、金属の所磨粉 及び粘土物質を混合し、焼結して一次焼結体を得た後、 この一次焼結体の粉砕物及び粘土物質を混合し、所定形 状に膨形して焼結することで焼結体は生成される。 【特許請求の範囲】

【請求項1】 金属の研磨粉と、粘土を含む原料を焼結 してなる瓦の粉砕物と、粘土物質とを混合して所定形状 に賦形し、焼結してなる焼結体。

1

【請求項2】 前記研磨粉、瓦の粉砕物及び粘土物質の 混合割合が、研磨粉20~40重量%、瓦の粉砕物10 ~30重量%及び粘土物質40~60重量%である請求 項1 に記載の焼結体。

【請求項3】 前記瓦の粉砕物の粒子径が1~3mmで ある請求項1又は請求項2に記載の焼結体。

【請求項4】 金属の研磨粉及び粘土物質を混合し、焼 結してなる一次焼結体の粉砕物と、粘土物質とを混合し て所定形状に賦形し、焼結してなる焼結体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、金属製品の研磨加 工の際に生じる研磨粉等の廃材を再利用してなる焼結体 に関するものである。

[0002]

【従来の技術】従来、刃物等の金属製品は、所定の刃物 20 形状に形成後、その表面が磨き粉等により研磨されて市 場に出荷される。このとき生成される研磨粉は、埋め立 てにより処分されていた。しかし、この方法では、埋め 立て場所の確保が困難であり、しかも雨天の際その埋め 立て場所から異臭がする等の問題があった。

【0003】そこで近年、研磨紛等の廃材を焼結体とし て再利用するという方法が提案されている。このような 焼結体としては次のようなものがある。すなわち、スク ラップ粉材と、焼結用の金属粉とからなる2成分を混合 し、焼結してなるものである。この焼結体を製造するに 30 は、切粉等のスクラップ粉材と、焼結用金属粉とを混合 し、所定形状に加圧成形して圧粉成形体となし、次いで 加熱することにより圧粉成形体を焼結するものである。 [0004]

【発明が解決しようとする課題】ところが、 上記焼結体 においては、圧粉成形体の主成分は鉄であることから加 圧成形し、焼結するだけでは互いの成分のつながりが弱 いという問題がある。さらに、2成分をつなぎ合わせる 物質が圧粉成形体中に存在しないため、焼結後の焼結体 は所定形状及び強度を保つことができず、製品として輸 40 いという問題があった。また、焼結体を新たな焼結体の 構成材料としてさらに再利用を図る場合には、構成材料 としての焼結体が元々脆いことから、新たな焼結体も所 定形状及び強度を保つことができず、焼結体を構成材料 として再利用することができないという問題があった。 【0005】との発明は、とのような従来の技術に存在 する問題点に着目してなされたものである。その目的と するところは、廃材を再利用し、所定形状及び強度を保 つととができる焼結体を提供するととにある。その他の

利用することができる焼結体を提供することにある。 [00006]

【課題を解決するための手段】上記の目的を達成するた めに、請求項1に記載の発明の焼結体は、金属の研磨粉 と、粘土を含む原料を焼結してなる瓦の粉砕物と、粘土 物質とを混合して所定形状に賦形し、焼結してなるもの である。

【0007】請求項2に記載の発明の焼結体は、請求項 1 に記載の発明において、前記研磨粉、瓦の粉砕物及び 10 粘土物質の混合割合が、研磨粉20~40重量%、瓦の 粉砕物10~30重量%及び粘土物質40~60重量%

【0008】請求項3に記載の発明の焼結体は、請求項 1又は請求項2に記載の発明において、前記瓦の粉砕物 の粒子径が1~3mmであるものである。請求項4に記 載の発明の焼結体は、金属の研磨粉及び粘土物質を混合 し、焼結してなる一次焼結体の粉砕物と、粘土物質とを 混合して所定形状に賦形し、焼結してなるものである。 [0009]

【発明の実施の形態】

であるものである。

(第1実施形態)以下、この発明の焼結体の第1実施形 態について詳細に説明する。

【0010】第1実施形態の焼結体は、金属の研磨粉 と、粘土を含む原料を焼結してなる瓦の粉砕物と、粘土 物質とを混合し、得られた3成分の混合物に水分を加え た原料を所定形状に成形し、焼結してなる。

【0011】前記金属の研磨粉は、例えば刃物等の金属 製品を研磨する工程において生成されるバフ粉等であ り、成分として鉄(Fe)、クロム(Cr)、亜鉛(Z

n)、銅(Cu)等の金属を含む微粉末である。金属の 研磨粉の3成分の混合物に対する混合比率は、20~4 0重量%の範囲が望ましく、30重量%前後が最も望ま しい。金属の研磨粉の混合物に対する混合比率が20重 量%より低い場合は、焼結体が所定の強度を保てなくな る。また、3成分の混合物に対する混合比率が40重量 %より高い場合は、原料を焼結する際に、金属成分が酸 化されガスが発生することによって、原料が膨らみ焼結 体を所定形状に保つことができなくなる。

【0012】前記瓦の粉砕物は、粘土を含む原料から形 成される粘土瓦を、粒子径が1~3mmとなるようにク ラッシャー等で破砕することによって形成されている。 粒子径が1 mmより小さい場合は、金属の研磨粉と粉砕 物とが形成する間隙に粘土物質が含浸されず、との2成 分の結合が弱くなり熔結体が脆くなる。また、粒子径が 3 mmより大きい場合には、金属の研磨粉と粉砕物とが 形成する間隙が大きなものとなり、焼結体の表面に細か い凹凸が形成され、焼結体の外観を損なうこととなる。 粉砕物の3成分の混合物に対する混合比率は、10~3 0重量%の範囲が望ましく、20重量%前後が最も望ま 目的とするところは、新たな焼結体の構成材料として再 50 しい。粉砕物の混合比率が10重量%より低い場合は、

金属の研磨粉と粉砕物とが形成する間隙が必要量だけ形 成されず、焼結体は脆くなる。また、混合比率が40重 量%より高い場合は、他の2成分の混合率が低くなり、 焼結体は所定の強度を維持することができなくなる。

【0013】粘土物質は、金属の研磨粉と、瓦の粉砕物 との間に形成される間隙に含浸され、この2成分を結合 する役割を果たすものである。そして、ゼーゲルコーン 耐火度(SK)が1~4(溶倒温度1100~1160 °C) のものが好ましく、成形後にその形状を保つために 可塑性を有するものが特に好ましい。粘土物質の3成分 10 の混合物に対する混合比率は、40~60重量%の範囲 が望ましく、50重量%前後が最も望ましい。粘土物質 の混合比率が40重量%より低い場合は、金属の研磨粉 と瓦の粉砕物とを結合させる役割を果たすことができな くなる。また、混合比率が60重量%より高い場合は、 金属の研磨粉の含有率が下がるため、焼結体の強度が維 持できなくなるとともに、瓦の粉砕物の含有率が下がる ため、焼結体が脆くなる。

【0014】上記3成分よりなる混合物に、さらに、お が粉、紙粉等の可燃性物質が混合される場合もある。 20 って、新たな焼結体の構成原料としてさらに再利用する れら可燃性物質は、原料を焼結する際に全て燃え尽き、 焼結体の内部に空孔を形成する。そして、この空孔によ り、焼結体は透水性を付与される。

【0015】上記の各成分は、混練機等を使用して粒子 が均一となるように混合され、得られた混合物に水を加 えることにより原料が調整される。このとき、原料に対 して水分は、15~20重量%の範囲となるように調整 される。水分が15重量%より低い場合、原料は砂状と なり、後に所定の形状に成形する際に、成形機にかかる 負荷が増大し成形機が停止するという問題が起こる。ま 30 た、20重量%より多い場合には、原料は適度な可塑性 を有さず、原料を所定の形状に成形することができな

【0016】上記過程によって調整された原料は、所望 の形状にプレス成形様又は直空十練機によって成形され る。本実施形態においては、真空土練機によって原料を 成形している。真空土練機による原料の所定形状への成 形は、形状ごとに型枠を用意する必要がなく、土練機の 口金の形状を変えることにより行われる。そして、土練 機の口金より押し出された原料は、所定長さにカッター 40 等で切断されることで、所望の形に容易に成形される。 【0017】その後、所定形状に成形された原料は、3 5℃で30時間自然乾燥した後、焼結炉によって115 0℃で24時間高温焼結される。このようにして得られ た焼結体は、製品として市場に出荷される。

【0018】この焼結過程において、いふし工程が加え られる場合もある。いぶし工程は、原料を1150℃で 24時間高温焼成した後、焼結炉の温度が900~95 0℃に低下したときに行われる。いふし工程とは、灯油 体に接触させる機化と呼ばれる工程である。この工程を 加えることによって、焼結体の表面は、いぶし銀色に着 色される。

【0019】前記第1実施形態によって発揮される効果 について、以下に記載する。

 第1実施形態の焼結体によれば、原料の互の粉砕物 と金属の研磨粉に粘土物質を混合したことから、粘土物 質が他の2つの成分を結合させる役割を果たすため、 焼 結体は所定形状及び強度を保つことができる。

【0020】・第1実施形態の焼結体によれば、原料 として、古瓦の粉砕物及び金属の研磨粉等の廃材が再利 用されている。このため、埋め立て問題などの廃材処理 に関する問題を解決することができるとともに、 摩材を 再利用したことから低コストの焼結体を消費者に提供す ることができる。

【0021】・第1実施形態の焼結体によれば、原料 としての瓦の粉砕物が、40~60重量%の粘土物管を 含有し、さらに結合材としての粘土物質が含有されてい る。このため、使用後の焼結体は粉砕物にすることによ

ことができる。

【0022】・ 第1実施形態の焼結体によれば、3成 分の混合物となる金属の研磨粉、瓦の粉砕物及び粘土物 質の混合割合が、研磨粉20~40重量%、瓦の粉砕物 10~30重量%及び粘土物質40~60重量%に設定 される。このため、焼結体の形状を所定形状に保持で き、焼結体の強度を安定して保つことができる。

【0023】・第1実施形態の焼結体によれば、原料 の瓦の粉砕物の粒子径は1~3 mmに設定される。この ため、焼結体の外表面をきめの細かい良好なものとする ことができるとともに、焼結体の強度を効果的に保つこ とができる。

【0024】・第1実施形態の焼結体によれば、原料 の粘土物質は、耐火度の高いものであり、可塑性を有す るものが使用されている。このため、原料を所定形状に 成形しやすくできるとともに、耐寒性に優れ、凍害を防 止することができる。

【0025】・ 第1実施形態の焼結体によれば、原料 中の水分は、15~20重量%の範囲となるように調整 されている。このため、成形機にかかる負荷を低減し、 原料を所定の形状に安定した状態で成形することができ

【0028】・第1実施形態の焼結体によれば、原料 は、真空土練機によって所定形状に成形される。そし で、焼結体の形状を変える際には、土錬機の口金の形状 を変えるだけで良いため、形状を変えた焼結体を容易に 成形することができる。

【0027】 (第2実施形態) 以下、この発明の第2実 施形態を、詳細に説明する。なお、この第2実施形態に に水を混入した乳化液(炭化水素)を高温焼成後の焼結 50 おいては、前記第1零施形態と異なる点を中心に説明す。 **3.**

【0028】との第2実施形態の焼結体においては、万 の粉砕物が省略され構成されるとともに、2回の焼結過 程を経て焼結体が形成される。すなわち、まず、金属の 研磨粉と、粘土物質とを混合し、得られた2成分の混合 物に水分を加えた一次原料を所定の形状に形成し、焼結 することによって一次焼結体が形成される.

【0029】前記研磨粉の2成分の混合物に対する混合 比率は、40~60重量%の範囲が望ましく、50重量 %前後が最も望ましい。また、粘土物質の2成分の混合 10 物に対する混合比率は、60~40重量%の範囲が望ま しく、50重量%前後が最も望ましい。

【0030】研磨粉の混合比率が40重量%より低く、 粘土物質の混合比率が60重量%より高い場合は、研磨 粉の含有窓が下がるため、一次焼結体の強度が低下し、 一次焼結体が脆くなる。また、研磨粉の混合比率が60 重量%より高く、粘土物質の混合比率が40重量%より 低い場合は、粘土物質が研磨粉間土を結合させる役割を 十分に果たすことができなくなり、一次焼結体は所定の 輪摩を保てなくなる。

【0031】上記の2成分は、混合され、得られた2成 分の混合物に水が加えられ、一次原料が調製される。と のとき、一次原料に対して水分は15~20重量%の範 囲となるように調整される。

【0032】そして、一次原料を、例えば板状、四角柱 状、円柱状等の形状に成形し、35℃で30時間自然数 燥した後、焼結炉によって1150℃で24時間高温焼 結することによって一次焼結体が得られる。

【0033】この焼結過程において、研磨粉中に含有さ れる金属以外の不純物は、その大半が焼却され、消滅す 30 る。このとき、研磨粉中の不純物が焼却されて一次焼結 体が発泡することにより、一次焼結体の体積は実質的に 変化しない。

【0034】次いで、一次焼結体が粉砕機で粉砕され る。との一次焼結体の粉砕物は、その粒子径が1mm以 下となるように形成されることが望ましく、0.8mm 以下となるように形成されることが最も望ましい。粒子 径が1mmより大きい場合には、焼結体の表面に細かい 凹凸が形成され、焼結体の外観を損なうこととなる。

【0035】上記過程によって得られた一次焼結体の粉 40 砕物と、粘土物質とを混合し、得られた2成分の混合物 に水分を加えた二次原料を所定形状に成形し、焼結する ことによって焼結体が形成される。

【0036】粉砕物の2成分の混合物に対する混合比率 は、10~40重量%の筋囲が望ましく、20重量%前 後が最も望ましい。また、粘土物質の2成分の混合物に 対する混合比率は、90~60重量%の範囲が望まし く、80重量%前後が最も望ましい。

【0037】粉砕物の混合比率が10重量%より低く、

物の含有率が下がるため、焼結体の強度が低下し、焼結 体が脆くなる。また、粉砕物の混合比率が40重量%よ り高く、粘土物質の混合比率が60重量%より低い場合 は、粘土物質が粉砕物同士を結合させる役割を十分に果 たすことができなくなり、粉砕物同十の結合力が弱くな

【0038】上記の2成分は、混合され、得られた2成 分の混合物に水が加えられ、二次原料が調製される。と のとき、二次原料に対して水分は、一次原料と同様に1 5~20重量%の範囲となるように調整される。

【0039】上記過程によって調製された二次原料は、 真空土練機によって所定形状に成形される。その後、成 形された二次原料は、35°Cで30時間自然乾燥した 後、焼結炉によって1150℃で24時間高温焼結され る。このようにして2回の焼結過程を経て目的とする焼 結体が得られる。

【0040】なお、本実施形態においては、2回目の焼 結過程の際、第1実施形態と同様のいぶし工程が加えら れる場合もある。前記第2実施形態によって発揮される 20 効果について、以下に記載する。

【0041】・ 第2実施形態の焼結体によれば、ま ず、金属の研磨粉と粘土物質とを混合し、焼結すること によって一次焼結体を形成した後、一次焼結体の粉砕物 と粘土物質とを混合し、再度焼結することによって焼結 体が成形されている。このため、一次焼結体を形成した ときに金属の研磨粉中に含有される不純物が焼却され、 消滅することから、不純物による細かい凹凸等の焼結体 表面の荒れを防止し、焼結体の外表面をさらにきめの細 かい良好なものとすることができる。

【0042】・ 第2実施形態の焼結体によれば、一次 焼結体の原料を構成する2成分の混合物となる金属の研 磨粉及び粘土物質の混合割合が、研磨粉40~60重量 %及び粘土物質60~40重量%に設定される。このた。 め、一次焼結体の強度を安定して確保することができ **3**.

【0043】・ 第2実施形態の焼結体によれば、二次 原料を構成する2成分の混合物となる一次焼結体の粉砕 物及び粘土物質の混合割合が、粉砕物10~40重量% 及び粘土物質90~60重量%に設定される。このた

め、焼結体の形状を所定形状に保持しつつ、焼結体の強 度を安定して確保することができる。

【0044】・ 第2実施形態の焼結体によれば、一次 焼結体の粉砕物の粒子径は1mm以下に設定される。と のため、焼結体の外表面をきめの細かい良好なものに保 持することができる。

[0045]

【実施例】以下、前記実施形態をさらに具体化した実施 例について説明する。

(実施例1)次のような各成分を所定の組成で混合し 粘土物質の混合比率が90重量%より高い場合は、粉砕 50 て、原料を調製し、焼結体を焼結した。すなわち、原料

は、金属の研磨粉であるバフ粉 24重量%、瓦の粉砕 物 16重量%、粘土物質 40重量%、水 20重量 %を含有する。この原料を真空土練機によって煉瓦の形 状に成形し、35℃で30時間自然乾燥の後、1150 ℃で24時間焼結炉にて焼結した。このようにして、所 望とする煉瓦を得た。

(実施例2)次のような各成分を所定の組成で混合し て、原料を調製し、焼結体を焼結した。すなわち、原料 は、金属の研磨粉であるバフ粉 24重量%、瓦の粉砕 物 16重量%、粘土物質 40重量%、水 20重量 10 %を含有する。この原料を真空土練機によって瓦の形状 に成形し、35℃で30時間自然乾燥した。その後、実 施例 1 と同様にして焼結を行った。この焼結過程におい ていぶし工程を加え、焼結した。つまり、1150℃で 24時間焼成した後、焼結炉の温度がほぼ900~10 00°Cに低下したとき灯油に水を混入した乳化液を加 え、爆化した。このようにして、表面がいぶし銀色のい ぶし耳を得た。

(実施例3)次のような各成分を所定の組成で混合し て、原料を調製し、焼結体を焼結した。すなわち、原料 20 (焼結体の性能試験)次に、前記実施例1~3につい は、金属の研磨粉であるバフ粉 19重量%、瓦の粉砕 物 13重量%、粘土物質 32重量%、紙粉であるス ラッジ 16重量%、水 20重量%を含有する。この 原料を真空土練機にて直方体状に成形し、自然乾燥の 後、焼結炉にて焼結した。このようにして、公園の舗道 として使用するインターロッキング(動石) を得た

* (実施例4及び5)次のような各成分を所定の組成で混 合して、一次原料を調製し、焼結して一次焼結体を得 た。すなわち、一次原料は、金属の研磨粉であるバフ粉 40重量%、粘土物質 40重量%、水 20重量% を含有する。との原料を真空土線機によって瓦の形状に 成形し、35°Cで30時間自然乾燥した後、実施例1と 同様にして焼結を行った。その後、この一次焼結体を粉 砕機によってその粒径が0.8mm以下になるまで粉砕

【0046】次いで、各成分を所定の組成で混合して、 二次原料を調製し、焼結して焼結体を得た。すなわち、 二次原料は、一次焼結体の粉砕物質 16重量%、粘土 物質64重量%、水 20重量%を含有する。この二次 原料を真空土練機によって実施例4は煉瓦。実施例5は 瓦の形状に成形し、35℃で30時間自然乾燥した。そ の後、実施例4においては、実施例1と同様にして焼結 を行った。また、実施例5 においては、この焼結過程で 実施例2と同様にしていふし工程を加え、表面がいぶし 銀色のいぶし瓦を得た。

て、それぞれ性能試験を行った。すなわち、焼結後の各 実施例における特有の効果を観察した。この結果を表 1

[0047] 【表1】

サンプルNO.	実施例1	実施例 2	実施例3
パフ紛	2 4 重量%	24重量%	19重量%
瓦の粉砕物質	16重量%	16重量%	13重量%
粘土物質	40重量%	40重量%	3 2 重量%
スラッジ	なし	なし	16重量%
水分	20重量%	20重量%	20重量%
烧結方法	通常	いぶし工程を加 える	通常
効果	赤褐色の焼結体 が生成	いぶし銀の焼結 体が生成	透水性に優れた 焼結体が生成

この結果、実施例1においては、焼結過程においてバフ 粉が酸化されることにより、赤褐色となった。これに対 し、実施例2では、いぶし工程を加えたことにより、い 40 例4及び5における特有の効果を観察した。この結果を ぶし銀色となった。また、実施例3においては、焼結過 程において混合されたスラッジが燃え、内部に孔を有 し、実施例1及び実施例2と比較して透水性の高い焼結 体が得られた。

【0048】さらに、前記実施例4及び5について、上 記と同様の性能試験を行った。すなわち、焼結後の実施 表2に示す。

[0049]

【表2】

サンプルNO.	実施例4		実施例5	
原料	一次原料	二次原料	一次原料	二次原料
粉砕物質	-	16重量%	-	16萬量%
粘土物質	40重量%	64重量%	40重量%	64重量%
パフ粉	40重量%		40重量%	
水分	20重量%	20重量%	20重量%	20重量%
焼結方法	通常	通常	通常	いぶし工程 を加える
効果	外表面がきる	か細かい赤褐 が生成	外表面がき	め細かいいぶ

との結果、実施例4及び5においては、実施例1及び2 と比較して外表面がきめ細かく、外観の美しい焼結体が 得られた。

- 【0050】なお、本実施形態は、以下のように変更し て具体化することも可能である。
- 第1実施形態の焼結体において、使用後の焼結体を 新たな焼結体の構成原料としてさらに再利用することに 代えて、例えばアスファルトの下の砕石又はコンクリー ト打設時に混合される土砂等の建築材料として再利用を 20 製造方法。 図るとと。
- 【0051】とのようにして再利用した場合、埋め立て 問題などの廃材処理に関する問題を効果的に解決すると とができる.
- 各実施形態の焼結体において、顔料を加え、所要の 色に着色すること。
- 【0052】とのように構成することにより、消費者の 所望の色彩に合わせた焼結体を提供することができる。 各実施形態の焼結体において、廃材としてのガラス
- 粉砕物等を混合すること。

【0053】とのように構成することにより、焼結時に ガラス成分が溶融することによって各成分がより強く結 合され、焼結体の強度を効果的に上げることができると ともに、焼結体の外観を良好な物とすることができる。 【0054】さらに、前記実施形態より把握できる技術 的思想について以下に記載する。

- 前記研算粉、互の粉砕物及び粘土物質に対して15 ~20重量%の水を混合して所定形状に賦形する請求項 1~請求項3のいずれかに記載の焼結体。
- 【0055】 このように構成することにより、原料を良 40 好な粘性状態にして所定形状に成形することができる。
- 前記研磨粉、瓦の粉砕物及び粘土物質に、可燃件の 物質を混合して所定形状に賦形する請求項1~請求項3 のいずれかに記載の焼結体。
- 【0056】とのように構成することにより、焼結体に 透水性を付与することができる。
- 金属の研磨粉と、粘土を含む原料を焼結してなる瓦 の粉砕物と、粘土物質とを混合して所定形状に賦形した 後、焼結して製造する焼結体の製造方法。

等の粉砕物を再利用することができるとともに、所定形 状及び強度を保つことができる焼結体を容易に製造する ことができる。また、新たな焼結体の原料としてさらに 再利用を図ることができる焼結体を製造することができ る。

【0058】・ 金属の研磨粉及び粘土物質を混合し、 焼結してなる一次焼結体の粉砕物と、粘土物質とを混合 して所定形状に賦形した後、焼結して製造する焼結体の

【0059】とのようにすることで、金属の研磨粉中に 含有される不純物が焼却され、消滅することから、不純 物による表面の荒れを防止し、外表面がさらにきめ細か く良好な焼結体を製造することができる。

【0060】・ 前記研磨粉及び粘土物質の混合割合 が、研磨粉40~60重量%及び粘土物質60~40重 量%である請求項4に記載の焼結体。このように構成す ることにより、一次焼結体の強度を安定して確保すると とができる。

30 【0061】・ 前記一次焼結体の粉砕物及び粘土物管 の混合割合が、一次焼結体の粉砕物10~40重量%及 び粘土物質90~60重量%である請求項4に記載の嫌 結体.

【0062】このように構成することにより、焼結体の 形状を所定形状に保持しつつ、焼結体の強度を安定して 確保することができる。

前記一次焼結体の粉砕物の粒子径が1mm以下であ る請求項4に記載の焼結体。

【0063】とのように構成することにより、焼結体の 外表面をきめの細かい良好なものに保持することができ る。

[0064]

【発明の効果】以上詳述したように、この発明によれ ば、次のような効果を奏する。請求項1に記載の発明の 焼結体によれば、研磨粉あるいは瓦等の粉砕物を再利用 することができるとともに、所定形状及び強度を保つこ とができる。また、焼結体を新たな焼結体の原料として さらに再利用を図ることができる。

【0065】請求項2に記載の発明の焼結体によれば、 【0057】 このようにすることで、研磨粉あるいは瓦 50 請求項1に記載の発明の効果に加えて、配合物をバラン 11

ス良く混合させることによって、所定形状及び強度を良好に保つことができる。また、機結体を新たな規結体の材料として第8以に利用することができる。 [0068] 消決項3 公記載の発明の機結体によれば、縮取項1 以は請求項2 (記載の発明の機能体に表して、動かい粒子が超音されることがなく、所定様状況で強度を

効果的に保つことができる。

【0067】請求項4に記載の発明の焼結体によれば、 全属の研磨物中に含有される不純物が無却され、消滅することから、不純物による焼結体表面の荒れを防止し、 機結体の外表面をさらにきめの細かい良好なものとする ことができる。