图算法篇: 图算法小结

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

图的背景

• 一笔画问题: 手机解锁图案需一笔画出

图的背景

柯尼斯堡七桥问题: 七座桥连接河岸和两个小岛,步行者怎样才能不重复、不遗漏地一次走完七座桥?

瑞士数学家 欧拉

图的背景

柯尼斯堡七桥问题: 七座桥连接河岸和两个小岛,步行者怎样才能不重复、不遗漏地一次走完七座桥?

瑞士数学家 欧拉

经过抽象之后,仅保留点和边的结构称为图

图的定义

- 图可以表示为一个二元组 $G = \langle V, E \rangle$,其中
 - V表示非空顶点集,其元素称为顶点(Vertex)
 - E表示边集,其元素称为边(Edge)
- e = (u, v)表示一条边,其中 $u \in V, v \in V, e \in E$

• 无向图与有向图

图的概念与表示

• 图的概念

- 图的定义、相邻与关联
- 顶点的度与图的度、握手定理
- 路径与环路
- 连通、连通分量
- 子图、生成子图、树
- 图的表示
 - 邻接链表与邻接矩阵

		а	b	c	d	f
		1	2	3	4	5
a	1	0	1	0	1	0
b	2	1	0	1	1	1
c	3	0	1	0	0	1
d	4	1	1	0	0	1
f	5	0	1	1	1	0

- 数组结构
 - 查询最大值:简单循环搜索所有元素,记录最大值

- 图结构
 - 查询相邻顶点:简单循环搜索各顶点关联的边
 - 查询可达顶点:简单循环搜索,不能找到全部可达顶点!是否存在有效算法?

按照什么次序搜索顶点?

广度优先搜索

深度优先搜索

• 算法思想

广度优先搜索: 步步为营

深度优先搜索: 勇往直前

• 算法应用

无权图的最短路径

广度优先搜索

算法应用

无权图的最短路径

强连通分量

(1) (2) (3) (4) (5)

环路的存在性判断

广度优先搜索

深度优先搜索

贪心策略的算法

• 最小生成树

$$A \leftarrow \emptyset$$
 while 没有形成最小生成树 do
 | 寻找 A 的安全边 (u,v)
 | $A \leftarrow A \cup (u,v)$
 end
 return A

通用框架	Prim算法	Kruskal算法			
成环判断	始终保持一棵树,不断扩展	森林合成一棵树,不相交集合			
轻边发现	优先队列	全部边排序			
求解视角	微观视角,基于当前点选边	宏观视角,基于全局顺序选边			
算法思想	都是采用贪心策略的图算法				

贪心策略的算法

• 单源最短路径

	广度优先搜索	Dijkstra算法	Bellman-Ford算法
适用范围	无权图	带权图 (所有边权为正)	带权图
松弛次数		<i>E</i> 次	V · E 次
数据结构	队列	优先队列	
运行时间	O(V + E)	$O(E \cdot \log V)$	$O(E \cdot V)$