

An Introduction to Intersection Cuts and Their Applications

Akang Wang

Dept. of Chemical Engineering
Carnegie Mellon University

PSE Seminar November 30, 2018

Outline

- ☐ Intersection Cuts
 - Problem Definition
 - Derivation
 - Geometric Interpretation
- Applications
 - Mixed Integer Linear Programming
 - Reverse Convex Programming
 - Polynomial Programming
- ☐ Comments

Problem Definition

☐ Optimization problem:

$$\begin{array}{ll}
\text{minimize} & c^T x\\
\text{subject to} & x \in P \cap Q
\end{array}$$

 $P \coloneqq \{x \in \mathbb{R}^n, Ax \le b, x \ge 0\}$ is a polyhedral set, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n$ $Q \subseteq \mathbb{R}^n$ represents a non-convex, "complicated" set, such as integrality, reverse convex, etc.

☐ A polyhedral relaxation:

Assume the LP optimality is achieved at \bar{x}

Q: How to generate a valid cut H such that $P \cap Q \subseteq H$ and $\bar{x} \notin H$?

Standard Form of an LP

☐ Introduce slack variables s and let t := (x, s) represent the variables in LP for convenience

minimize
$$c^T x$$
 minimize $\tilde{c}^T t$ subject to $Ax + s = b$ subject to $\tilde{A}t = b$ $x, s \ge 0$ $t \ge 0$

- Notation
 - N index set of **structural** variables x, |N| = n
 - I index set of basic variables, |I| = m
 - J index set of **non-basic** variables, |J| = n

Intersection Cuts

 \checkmark A convex set S contains \overline{x} but no any feasible point within its interior

- \bullet S is a convex set
- $\bar{x} \in int(S)$
- $int(S) \cap (P \cap Q) = \emptyset$

 \checkmark Follow the extreme rays at \overline{x} and find the intersection points

✓ Obtain the intersection cut that goes through all intersection points

Extreme Rays

- Find its neighboring extreme point x^j , then $r^j := x^j \overline{x}$
- Move from one extreme point \overline{x} to its neighboring extreme point x^{j} when a non-basic variable enters the basis and a basic variable leaves the basis

Simple tableau

Basic Non-basic

Focus on structural variables x rows

$$\begin{bmatrix} 1 & & & & * & & * \\ & 1 & & & & & * \\ & & 1 & & * & \bar{a}_{ij} & * \\ & & \vdots & & & & \\ & & 1 & * & & * \end{bmatrix} \begin{bmatrix} t_I \\ t_J \end{bmatrix} = \begin{bmatrix} \bar{t}_I \\ \bar{t}_J \end{bmatrix} \qquad x_i = \begin{bmatrix} \bar{x}_i \\ \bar{t}_J \end{bmatrix} - \sum_{j \in J} \bar{a}_{ij} t_j \quad \forall i \in I \cap N \quad \text{Basic}$$

$$\forall i \in J \cap N \quad \text{Non-basic}$$

Extreme Rays

Choose a non-basic variable (structural or slack) t_i for some $j \in J$ and let

 t_i enter the basis (assume non-degeneracy)

Other non-basic variables will stay unchanged (still at 0)

$$x_{i} = \bar{x}_{i} - \sum_{j \in J} \bar{a}_{ij} t_{j} \quad \forall i \in I \cap N$$

$$x_{i} = 0$$

$$x_{i} = 0$$

$$x_{i} = \bar{x}_{i} - \bar{a}_{ij} \xi$$

$$x_{i} = 0$$

$$\forall i \in I \cap N$$

$$\forall i \in J \cap N \setminus \{j\}$$

$$x_{j} = \xi$$
No need to track

No need to track slack variables s rows

 \Box An extreme ray $\mathbf{r}^{j} = x^{j} - \bar{x}$

$$\begin{aligned}
 r_i^j &= -\bar{a}_{ij}\xi & \forall i \in I \cap N \\
 r_i^j &= 0 & \forall i \in J \cap N \setminus \{j\} & \xrightarrow{\xi > 0} & r_i^j &= -\bar{a}_{ij} \\
 r_j^j &= \xi & \text{if } j \in N & r_j^j &= 1
 \end{aligned}$$

Simplicial Conic Relaxation

- \square # of extreme rays = # of non-basic variables = |J| = n
- ☐ These extreme rays are linearly independent
- \square Define a set $C \coloneqq \{x | x = \overline{x} + \sum_{j \in I} \lambda_j r^j, \lambda_j \ge 0 \ \forall j \in J\}$, then $P \subseteq C$

Intersection Points

The convex set S is intersected by a halfline $\eta^j = \overline{x} + \lambda_j r^j$, where $\lambda_j \geq 0$ at some point

$$\begin{array}{ll}
\text{maximize} & \lambda_j \\
\lambda_j \ge 0
\end{array} \tag{*}$$

$$\text{subject to} \quad \bar{x} + \lambda_j r^j \in S$$

$$\forall \lambda_j \geq 0$$

- This problem (*) can be solved in **polynomial time** (e.g. line search) and two cases will arise:
 - (*) has a unique solution $\bar{\lambda}_i > 0$ J_1
 - The obj. is **unbounded** $(r^j \in \text{Rec}(S), \text{ set } \bar{\lambda}_i = +\infty)$ J_2

Intersection Cuts

The intersection cut $\beta^T x \leq \beta_0$ is the halfspace whose boundary contains each intersection point $(j \in J_1)$ and that is parallel to each extreme ray $(j \in J_2)$ in Rec(S)

$$\beta^{T}(\bar{x} + \bar{\lambda}_{j}r^{j}) = \beta_{0} \quad \forall j \in J_{1}$$
$$\beta^{T}r^{j} = 0 \quad \forall j \in J_{2}$$

- ☐ A system of linear equalities
 - $|J_1| + |J_2| = n$ equations and n + 1 variables $(\beta \in \mathbb{R}^n, \beta_0 \in \mathbb{R})$
 - a unique solution (except for a constant factor) since $\{r^j|j\in J\}$ are linearly independent
 - analytical solution: $\beta_0 = \sum_{\mathbf{i} \in \mathbf{J}} \frac{\mathbf{1}}{\bar{\lambda}_\mathbf{i}} \mathbf{b_i} \mathbf{1}$ $\beta_{\mathbf{j}} = \sum_{\mathbf{i} \in \mathbf{J}} \frac{\mathbf{1}}{\bar{\lambda}_\mathbf{i}} \mathbf{a_{ij}} \ \ \forall \mathbf{j} \in \mathbf{N}$
- An equivalent but more popular version in the literature

$$\sum_{j \in J} \frac{1}{\bar{\lambda}_j} t_j \ge 1$$

Geometric Interpretation

The larger $S \rightarrow$ the deeper cut

The intersection cut is parallel to an extreme ray in Rec(S)

Degeneracy

- ☐ The degeneracy will not affect the correctness of the intersection cut formula
- ☐ The choice of a basis will lead to different (and valid) intersection cuts
- ☐ In general, no dominance relationship among these cuts is guaranteed

Implementation Details

- \checkmark $\bar{\lambda}_i$ should be approximated below for numerical validity
 - a valid approximation to the intersection cut
- ✓ Scale a cut and perform reduction on small coefficients if necessary for numerical stability
- ✓ For a more generic LP as follows, the derivation for intersection cut has to be updated
 - extreme rays r^j
 - intersection cut formula

$$\sum_{j \in J^L} \frac{1}{\bar{\lambda}_j} t_j + \sum_{j \in J^U} \frac{-1}{\bar{\lambda}_j} t_j \ge 1$$

$$\underset{x}{\text{minimize}} \quad c^T x$$

subject to
$$Ax \leq b$$

$$x^L \le x \le x^U$$

 J^L : index set of non-basic variables at lower bounds J^U : index set of non-basic variables at upper bounds

Mixed Integer Linear Programming

- ☐ The hypersphere can be selected as a valid convex set S
 - \bullet S is a convex set

• $\bar{x} \in int(S)$

• $int(S) \cap (P \cap Q) = \emptyset$

- \Box Hard to find the "optimal" set S
- \Box $\bar{\lambda}_i$ can be identified analytically

Reverse Convex Programming

A constraint $g(x) \ge 0$ is called **reverse convex** if g is convex

where $f_k(x)$ and $g_l(x)$ are both convex on \mathbb{R}^n

- $f_k(x) \le 0$ can be outer-approximated by linear inequalities
- $g_l(x) \ge 0$ represent the "complicated" constraints

Reverse Convex Programming

minimize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$

- \square Define $S = \{x \in \mathbb{R}^n : g_{\bar{l}}(x) \le 0\}$ for some \bar{l} such that $g_{\bar{l}}(\bar{x}) < 0$
 - \bullet S is a convex set

• $\bar{x} \in int(S)$

• $int(S) \cap (P \cap Q) = \emptyset$

 $oldsymbol{\Box}$ $ar{\lambda}_j$ can be identified via solving $g_{ar{l}}ig(ar{x}+\lambda_j r^jig)=0$ with $\lambda_j\geq 0$

Polynomial Programming

minimize
$$p_0(x)$$

subject to $p_i(x) \le 0$ $\forall i = 1, 2..., m$

where $p_i(x)$ is a polynomial function with respect to $x \in \mathbb{R}^n$

- e.g.
$$p_i(x) = 2 + 3x_1 - 3.2x_1x_2^2 + 4x_2^4$$
, $d = 4$

Define
$$m_r(x) \coloneqq [1, x_1, x_2 \dots x_n, x_1^2, x_1 x_2, \dots, x_n^2, \dots, x_n^r]^T$$
, where $r = \begin{bmatrix} d_{max}/2 \end{bmatrix}$
$$p_i(x) = m_r^T(x) A_i m_r(x) \leq 0 \iff \langle A_i, m_r(x) \cdot m_r^T(x) \rangle \leq 0$$

Bienstock, D., Chen, C. and Munoz, G., 2016. Outer-product-free sets for polynomial optimization and oracle-based cuts. arXiv preprint arXiv:1610.04604.

Polynomial Programming

 $X_{ii} \ge 0 \qquad \forall i = 2..., n$

consistency

 $X_{11} = 1$

Oracle Ball Cut

- lacktriangle Define S as a ball $B(\bar{X},r)$ centering at \bar{X} with a radius r
 - \bullet S is a convex set
 - $\bar{X} \in int(S)$
 - $int(S) \cap (P \cap Q) = \emptyset$

minimize
$$||\bar{X} - Y||_F$$
 (#) subject to $Y \succeq 0$

- lacktriangle Problem (#) : calculate the shortest distance between $ar{X}$ and a point from Q
 - it can be analytically solved $(\overline{\lambda}_i = r = (\#) \text{ opt. val.})$
- This convex set S can be enlarged (strengthened cut)

2×2 Cut

Theorem: $X \ge 0$ and rank(X) = 1 iff all the 2×2 principle minors of X are zero

zero
$$\bar{X} = \begin{bmatrix} \bar{X}_{11} & \bar{X}_{12} & \bar{X}_{13} & \bar{X}_{14} & \bar{X}_{15} & \bar{X}_{16} \\ \bar{X}_{21} & \bar{X}_{22} & \bar{X}_{23} & \bar{X}_{24} & \bar{X}_{25} & \bar{X}_{26} \\ \bar{X}_{31} & \bar{X}_{32} & \bar{X}_{33} & \bar{X}_{34} & \bar{X}_{35} & \bar{X}_{36} \\ \bar{X}_{41} & \bar{X}_{42} & \bar{X}_{43} & \bar{X}_{44} & \bar{X}_{45} & \bar{X}_{46} \\ \bar{X}_{51} & \bar{X}_{52} & \bar{X}_{53} & \bar{X}_{54} & \bar{X}_{55} & \bar{X}_{56} \\ \bar{X}_{61} & \bar{X}_{62} & \bar{X}_{63} & \bar{X}_{64} & \bar{X}_{65} & \bar{X}_{66} \end{bmatrix}$$

 $X_{[i,j]}$: submatrix induced by i,j

$$det(X_{[i,j]}) = 0$$

If $\overline{X}_{[i,j]} > 0$ for some i, j ($1 \le i < j \le n$), define $S := \{X \in \mathbb{S}^{n \times n} | X_{[i,j]} \succeq 0\}$

 \bullet S is a convex set

• $\bar{x} \in int(S)$

• $int(S) \cap (P \cap Q) = \emptyset$

$$int(S): X_{[i,j]} \succ 0 \Rightarrow det(X_{[i,j]}) > 0$$

$$Q:=\{X\in\mathbb{S}^{n\times n}|X\succeq 0, rank(X)\leq 1\}$$

$$\det(X_{[i,j]}) = 0$$

 $\forall X \in Q$

2×2 Cut

How to find the intersection points?

- If $R_{[i,j]} \ge 0$, no intersection point (set $\bar{\lambda} = +\infty$)
- Else, $ar{\lambda}$ can be analytically computed

Computational Results

- ☐ Implementation: Python 2.7.13 / Gurobi 7.0.1
- ☐ Instances:
 - 26 Quadratically Constrained Quadratic Programs (QCQP) from GLOBALLib, $n=6{\sim}63$
 - 99 BoxQP (non-convex quadratic objective, bound constraints), $n=12{\sim}126$
- Compare the root node bound

$$OPT = 100$$

- McCormick estimator and RLT (Reformulation Linearization Technique) RLT = 80 relaxation GLB = 90
- ☐ Stopping conditions:
 - Time limit 600 sec
 - No improvement in obj. val. (10 iter)
 - No violated cut
 - LP becomes numerically unstable

Initial Gap =
$$\frac{OPT - RLT}{|OPT| + \epsilon}$$
 20/100

End Gap =
$$\frac{OPT - GLB}{|OPT| + \epsilon}$$
 10/100

Gap Closed =
$$\frac{GLB - RLT}{OPT - RLT}$$
 10/20

Computational Results

OB: Oracle Ball Cuts SO: Strengthened OB

OA: Outer Approximation cuts for $X \ge 0$ 2x2: 2×2 cuts

Cut Family	Initial Gap	End Gap	Closed Gap	# Cuts	Iters	Time (s)	LPTime $(\%)$
OB	1387.92%	1387.85%	1.00%	16.48	17.20	2.59	2.06%
SO		1387.83%	8.77%	18.56	19.52	4.14	2.29%
OA		1001.81%	8.61%	353.40	83.76	33.25	7.51%
2x2 + OA		1003.33%	32.61%	284.98	118.08	30.40	15.03%
SO+2x2+OA		1069.59%	31.91%	174.79	107.16	29.55	12.56%

Averages for GLOBALLib instances

Cut Family	Initial Gap	End Gap	Closed Gap	# Cuts	Iters	Time (s)	LPTime (%)
OB	103.59%	103.56%	0.04%	12.84	13.62	127.15	0.40%
SO		103.33%	0.34%	14.34	15.45	132.07	0.49%
OA		30.88%	75.55%	676.90	137.52	459.28	31.80%
2x2 + OA		32.84%	74.52%	349.21	140.40	473.18	28.76%
SO+2x2+OA		33.43%	74.03%	227.39	136.93	475.38	26.59%

Averages for BoxQP instances

Comments

- \Box The intersection cut is quite **generic** and **computationally cheap** to generate if a set S is given
- \square How to find a valid set S for your problem? **NO GENERIC** ANSWER
- ☐ Research opportunities
 - Find a valid set S in your application
 - Strengthen the intersection cut

THANK YOU!