Lecture 11: Linear Algebra

Sets of simultaneous equations

Eigenvalue problem

Revisiting the Schrodinger equation without the shooting method

Simultaneous Sets of Linear Equations

Linear algebra (scipy.linalg)

Linear algebra functions.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3$$

$$a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = b_4$$

N linear equations, N unknowns (solvable for linearly independent equations)

Many solvers depending on properties of matrix **A**.

<pre>solve(a, b[, sym_pos, lower, overwrite_a,])</pre>	Solves the linear equation set $a * x = b$ for the unknown x for square a matrix.
<pre>solve_banded(I_and_u, ab, b[, overwrite_ab,])</pre>	Solve the equation a x = b for x, assuming a is banded matrix.
solveh_banded(ab, b[, overwrite_ab,])	Solve equation a $x = b$.
<pre>solve_circulant(c, b[, singular, tol,])</pre>	Solve C $x = b$ for x , where C is a circulant matrix.
<pre>solve_triangular(a, b[, trans, lower,])</pre>	Solve the equation $a x = b$ for x , assuming a is a triangular matrix.

You want to pick the solver which is the *least* general for your matrix.

If Matrix has symmetry, can be taken advantage of to speed up solution.

$/a_{11}$	a_{12}	a_{13}	$a_{14} \setminus$	$/x_1$		$/b_1\setminus$	
a_{21}	a_{22}	a_{23}	a_{24}	$\langle x_2 \rangle$	_	b_2 b_3	
a_{31}	a_{32}	a_{33}	a_{34}	x_3	_		
$\setminus a_{41}$	a_{42}	a_{43}	$\begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \\ a_{44} \end{pmatrix}$	$\langle x_4 \rangle$		$\backslash b_4 /$	

Eigenvalue Problem

Linear algebra (scipy.linalg)

Linear algebra functions

- Input
 - matrix

- Output
 - Eigenvalues
 - Eigenvectors

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

eig(a[, b, left, right, overwrite_a,])	Solve an ordinary or generalized eigenvalue problem of a square matrix.
eigvals(a[, b, overwrite_a, check_finite,])	Compute eigenvalues from an ordinary or generalized eigenvalue problem.
eigh(a[, b, lower, eigvals_only,])	Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eigvalsh(a[, b, lower, overwrite_a,])	Solves a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eig_banded(a_band[, lower, eigvals_only,])	Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
eigvals_banded(a_band[, lower,])	Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
eigh_tridiagonal(d, e[, eigvals_only,])	Solve eigenvalue problem for a real symmetric tridiagonal matrix.
eigvalsh_tridiagonal(d, e[, select,])	Solve eigenvalue problem for a real symmetric tridiagonal matrix.

Tridiagonal matrix

tridag.h void tridag(VecDoub_I &a, VecDoub_I &b, VecDoub_I &c, VecDoub_I &r, VecDoub_O &u)
Solves for a vector u[0..n-1] the tridiagonal linear set given by equation (2.4.1). a[0..n-1],
b[0..n-1], c[0..n-1], and r[0..n-1] are input vectors and are not modified.

$$\begin{bmatrix} b_0 & c_0 & 0 & \cdots & & & & \\ a_1 & b_1 & c_1 & \cdots & & & & \\ & & \cdots & & & & & \\ & & \cdots & a_{N-2} & b_{N-2} & c_{N-2} & \\ & & \cdots & 0 & a_{N-1} & b_{N-1} \end{bmatrix} \cdot \begin{bmatrix} u_0 \\ u_1 \\ \cdots \\ u_{N-2} \\ u_{N-1} \end{bmatrix} = \begin{bmatrix} r_0 \\ r_1 \\ \cdots \\ r_{N-2} \\ r_{N-1} \end{bmatrix}$$

Need only store vectors a,b,c, and r.

The tridiagonal matrix algorithm scales as O(N), instead of $O(N^3)$.

Band-diagonal

This is stored in a compact form

$\int X$	x	3	1
\boldsymbol{x}	4	1	5
9	2	6	5 5 9
3	5	8	9
7		3	2
3	8	4	
2	4	4	x

Example from SciPy

scipy.linalg.solve_banded

scipy.linalg.Solve_banded(*l_and_u*, ab, b, overwrite_ab=False, overwrite_b=False, debug=None, check_finite=True)

[source]

Solve the equation a x = b for x, assuming a is banded matrix.

The matrix a is stored in *ab* using the matrix diagonal ordered form:

```
ab[u + i - j, j] == a[i,j]
```

Examples

Solve the banded system a x = b, where:

```
 \begin{bmatrix} 5 & 2 & -1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 & 4 & 2 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} 
 a = \begin{bmatrix} 0 & 1 & 3 & 2 & -1 \end{bmatrix} \qquad b = \begin{bmatrix} 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 3 \end{bmatrix}
```

There is one nonzero diagonal below the main diagonal (I = 1), and two above (u = 2). The diagonal banded form of the matrix is:

```
\begin{bmatrix} * & * & -1 & -1 & -1 \\ ab = \begin{bmatrix} * & 2 & 2 & 2 & 2 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 1 & 1 & * \end{bmatrix}
```

Linear Algebra and HPC

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	706,304	64,590.0	89,794.5	2,528

Lapack (linear algebra package) BLAS (basic linear algebra subprograms)

Highly optimized linear algebra Routines for C/Fortran

From mathematics to computer: finite differences

real space grid: $f(x) \rightarrow f_i$

Forward Formula:

$$\Delta x$$

$$\frac{\partial f(x)}{\partial x} = \frac{f(x+h) - f(x)}{h} + o(h)$$

$$\frac{\partial f(x)}{\partial x} = \frac{f_{i+1} - f_i}{\Delta x}$$

Centered Formulas:

$$\frac{\partial f(x)}{\partial x} = \frac{f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)}{h} + o(h^2) \longrightarrow \frac{\partial f(x)}{\partial x} = \frac{\partial f_i}{\partial x} = \frac{f_{i+1} - f_{i-1}}{2\Delta x}$$

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} + o(h^2) \longrightarrow \frac{\partial^2 f(x)}{\partial x^2} = \frac{f_{i+1} + f_{i-1} - 2f_i}{\Delta x^2}$$

Application to PDEs

$$\frac{\partial f(x)}{\partial x} = \frac{f_{i+1} - f_i}{\Delta x} \quad (FD)$$

$$\frac{\partial f(x)}{\partial x} = \frac{f_{i+1} - f_{i-1}}{2\Delta x} \text{ (CD)}$$

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{f_{i+1} + f_{i-1} - 2f_i}{\Delta x^2}$$

Wave Equation

$$\nabla^2 U(x,t) = \frac{1}{c^2} \frac{\partial^2 U}{\partial^2 t}$$

$$\frac{\partial^2 U(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2}$$

$$\frac{\mathbf{U_{i+1,j}} + \mathbf{U_{i-1,j}} - 2\mathbf{U_{i,j}}}{\Delta x^2} = \frac{1}{c^2} \frac{\mathbf{U_{i,j+1}} + \mathbf{U_{i,j-1}} - 2\mathbf{U_{i,j}}}{\Delta t^2}$$

Poisson Equation: $U(x, y) \rightarrow U_{i,j}$

$$\nabla^2 U(x,y) = -4\pi \rho(x,y)$$

$$\frac{\partial^2 U(x,y)}{\partial x^2} + \frac{\partial^2 U(x,y)}{\partial y^2} = -4\pi \rho(x,y)$$

$$\frac{U_{i+1,j} + U_{i-1,j} - 2U_{i,j}}{\Delta x^2} + \frac{U_{i,j+1} + U_{i,j-1} - 2U_{i,j}}{\Delta y^2}$$
$$= -4\pi \rho_{i,j}$$

Heat Equation

$$\nabla^2 U(x,t) = \frac{a\partial U}{\partial t}$$

$$\frac{\partial^2 U(x,t)}{\partial x^2} = \frac{a\partial U}{\partial t}$$

$$\frac{f_{i+1,j} + f_{i-1,j} - 2f_{i,j}}{\Delta x^2} = a \frac{f_{i,j+1} - f_{i,j}}{\Delta t}$$

Poisson Equation:

$$\frac{U_{i+1,j} + U_{i-1,j} - 2U_{i,j}}{\Delta x^2} + \frac{U_{i,j+1} + U_{i,j-1} - 2U_{i,j}}{\Delta y^2} = -4\pi \rho_{i,j} \qquad (\Delta x = \Delta y = \Delta)$$

$$\frac{1}{4}(U_{i+1,j} + U_{i-1,j} + U_{i,j+1} + U_{i,j-1}) - U_{i,j} = -4\pi\Delta^2 \rho_{i,j} \qquad (\rho = 0 \rightarrow Laplace\ equation)$$

boundary conditions: blue points unknown potential: red points

$$\begin{aligned} U_{11} &= 1/4(U_{10} + U_{12} + U_{01} + U_{21}) \\ U_{21} &= 1/4(U_{20} + U_{22} + U_{31} + U_{11}) \\ U_{12} &= 1/4(U_{11} + U_{13} + U_{02} + U_{22}) \\ U_{22} &= 1/4(U_{21} + U_{23} + U_{12} + U_{32}) \end{aligned}$$

Use matrix solver to simultaneously solve for the potential at each grid point.

Schrodinger equation (1D)

$$-\frac{1}{2}\frac{\partial^2 \Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)$$

$$-\frac{1}{2}\frac{(\Psi_{i+1} + \Psi_{i-1} - 2\Psi_i)}{\Delta x^2} + V_i \Psi_i = E \Psi_i$$
(equation for each grid point \rightarrow N equations)

$$f(x) \to f_i$$

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{f_{i+1} + f_{i-1} - 2f_i}{\Delta x^2}$$

$$i = 0$$
: $-\frac{1}{2} \frac{(\Psi_1 + \Psi_{-1} - 2\Psi_0)}{\Delta x^2} + V_0 \Psi_0 = E \Psi_0$

$$i = 1$$
: $-\frac{1}{2} \frac{(\Psi_2 + \Psi_0 - 2\Psi_1)}{\Delta x^2} + V_1 \Psi_1 = E \Psi_1$

$$i = 2$$
: $-\frac{1}{2} \frac{(\Psi_3 + \Psi_1 - 2\Psi_2)}{\Delta x^2} + V_2 \Psi_2 = E \Psi_2$

$$i = 3$$
: $-\frac{1}{2} \frac{(\Psi_4 + \Psi_2 - 2\Psi_3)}{\Delta x^2} + V_3 \Psi_3 = E \Psi_3$

What is the matrix form of this set of equations??

...

Kinetic Energy

$$-\frac{1}{2\Delta x^{2}}\begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}\begin{pmatrix} \Psi_{0} \\ \Psi_{1} \\ \Psi_{2} \\ \Psi_{3} \\ \Psi_{4} \end{pmatrix} + \begin{pmatrix} V_{0} & 0 & 0 & 0 & 0 \\ 0 & V_{1} & 0 & 0 & 0 \\ 0 & 0 & V_{2} & 0 & 0 \\ 0 & 0 & 0 & V_{3} & 0 \\ 0 & 0 & 0 & V_{4} \end{pmatrix}\begin{pmatrix} \Psi_{0} \\ \Psi_{1} \\ \Psi_{2} \\ \Psi_{3} \\ \Psi_{4} \end{pmatrix} = E\begin{pmatrix} \Psi_{0} \\ \Psi_{1} \\ \Psi_{2} \\ \Psi_{3} \\ \Psi_{4} \end{pmatrix}$$

$$i = 0$$
: $-\frac{1}{2} \frac{(\Psi_1 + \Psi_{-1} - 2\Psi_0)}{\Delta x^2} + V_0 \Psi_0 = E \Psi_0$

$$i = 1$$
: $-\frac{1}{2} \frac{(\Psi_2 + \Psi_0 - 2\Psi_1)}{\Delta x^2} + V_1 \Psi_1 = E \Psi_1$

$$i = 2$$
: $-\frac{1}{2} \frac{(\Psi_3 + \Psi_1 - 2\Psi_2)}{\Delta x^2} + V_2 \Psi_2 = E \Psi_2$

$$i = 3$$
: $-\frac{1}{2} \frac{(\Psi_4 + \Psi_2 - 2\Psi_3)}{\Delta x^2} + V_3 \Psi_3 = E \Psi_3$

• • •

Eigenvalue problem:

$$\widehat{H}\Psi = E\Psi$$

Hamiltonian matrix is tridiagonal and Hermitian.

In 1-D, with a real space basis, the Laplacian ∇^2 can be represented as:

$$\frac{1}{\Delta x^2} \begin{pmatrix}
-2 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -2
\end{pmatrix}$$

Setting up matrix

for N=5

```
-\frac{1}{2\Delta x^2} \begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}
```

[0., 0., 1., 0., 0.],

[0., 0., 0., 1., 0.],

[0., 0., 0., 0., 1.],

[0., 0., 0., 0., 0.]])

```
np.diag(np.ones(N-1),k=0)
 np.diag(np.ones(N-1),k=-1)
                                                                        np.diag(np.ones(N-1),k=1)
 array([[0., 0., 0., 0., 0.],
                                                                         array([[0., 1., 0., 0., 0.],
                                    array([[1., 0., 0., 0.].
         [1., 0., 0., 0., 0.],
                                         [0., 1., 0., 0.],
         [0., 1., 0., 0., 0.],
                                            [0., 0., 1., 0.],
         [0., 0., 1., 0., 0.],
                                             [0., 0., 0., 1.]])
         [0., 0., 0., 1., 0.]
                     np.diag(np.ones(N-1), k=-1)+np.diag(-2*np.ones(N), k=0)+np.diag(np.ones(N-1), k=1)
                     array([[-2., 1., 0., 0., 0.],
                          [ 1., -2., 1., 0., 0.],
[ 0., 1., -2., 1., 0.],
[ 0., 0., 1., -2., 1.],
                            [0., 0., 0., 1., -2.]])
L=1 #actual Length of x domain
N=10 #number of x grid points
dx= L/(N-1) # space between grid points
KE=(np.diag(-2*np.ones(N))+np.diag(np.ones(N-1),k=1)+np.diag(np.ones(N-1),k=-1))
KE=-0.5*KE/(dx**2)
print(KE)
[[ 81. -40.5 -0.
       81. -40.5
      -40.5 81. -40.5 -0. -0. -0. -0. -0.
       -0. -40.5 81. -40.5 -0. -0. -0. -0.
      -0. -0. -40.5 81. -40.5 -0. -0. -0.
[-0. -0. -0. -0. -40.5 81. -40.5 -0. -0.
 [ -0. -0. -0. -0. -40.5 81. -40.5 -0.
[-0. -0. -0. -0. -0. -40.5 81. -40.5
      -0. -0. -0. -0. -0. -0. -40.5 81. -40.5]
      -0. -0. -0. -0. -0. -0. -0. -40.5 81. ]]
```

No potential \rightarrow infinite square well

Solving

```
(N=10)
```

```
from scipy import linalg

xs=delta*np.arange(N)
w,v=linalg.eigh(KEmatrix) # w=eigenvalues, v = eigenvectors
```

```
W
```

array([3.28106914, 12.85846384, 27.95628055, 47.35138395, 69.4724981, 92.5275019, 114.64861605, 134.04371945, 149.14153616, 158.71893086])

```
plt.plot(xs,v[:,0])
plt.show()
```



```
print(N)
print(w[0])
plt.plot(xs,v[:,0])
plt.show()
```

100 4.7409172562290305

print(N)
print(w[0])
plt.plot(xs,v[:,0])
plt.show()

1000 4.915098376750613

print(N)
print(w[0])
plt.plot(xs,v[:,0])
plt.show()

10000 4.915098376750613


```
print(N)
print(N)
                                                                                                                   print(N)
                                                          print(w[1])
print(w[0])
                                                                                                                   print(w[2])
                                                          plt.plot(xs,v[:,1])
                                                                                                                   plt.plot(xs,v[:,2])
plt.plot(xs,v[:,0])
                                                          plt.show()
                                                                                                                   plt.show()
plt.show()
                                                                                                                   1000
                                                          1000
1000
                                                                                                                   44.235594911021856
                                                          19.66034509328222
4.915098376750613
                                                                                                                     0.04
                                                            0.04
 0.04
                                                                                                                     0.02
                                                            0.02
 0.03
                                                                                                                     0.00
                                                            0.00
 0.02
                                                                                                                    -0.02
                                                           -0.02
 0.01
                                                                                                                    -0.04
                                                           -0.04
 0.00
                                                                                                                                  0.2
                                                                                                                                                           0.8
                                                                                                                          0.0
                                                                                                                                           0.4
                                                                                                                                                   0.6
                                                                                                                                                                    1.0
                                                                 0.0
                                                                                                             1.0
                                                                          0.2
                                                                                   0.4
                                                                                            0.6
                                                                                                    0.8
```

0.0

0.2

0.4

0.6

0.8

1.0