IN THE CLAIMS:

Please cancel claim 30 without prejudice or disclaimer as to the subject matter contained therein

Please amend the claims as shown in the following claims listing.

1-6. (Cancelled)

7. (Currently amended) A <u>multi-node</u> system, comprising:

- a node including a plurality of active devices and an interface coupled by an address network configured to convey address packets between the interface and the plurality of active devices, and a data network configured to convey data packets between the interface and the plurality of active devices, wherein the address network and the data network are separate networks;
- an inter-node network configured to convey coherency messages between the interface in the node and an additional interface in an additional node, wherein the additional interface is configured to send a coherency message requesting a read access right to a coherency unit on the inter-node network, wherein a given active device of the plurality of active devices has an ownership responsibility for the coherency unit;
- wherein the interface is configured to respond to the coherency message by sending a proxy address packet on the address network;
- wherein a different active device of the plurality of active devices is configured to request a read access right to another coherency unit by sending an address packet on the address network;
- wherein the given active device of the plurality of active devices has an ownership responsibility for the another coherency unit, wherein the given active device is configured to not transition the ownership responsibility for the another coherency unit in response to the address packet and to

transition the ownership responsibility for the coherency unit in response to the proxy address packet.

- 8. (Original) The system of claim 7, wherein the additional interface in the additional node is configured to send the coherency message in response to an additional active device included in the additional node requesting a read access right to the coherency unit.
- 9. (Original) The system of claim 8, wherein the additional active device is configured to request the read access right to the coherency unit by sending an additional address packet on an additional address network included in the additional node.
- 10. (Currently amended) The system of claim 8, wherein the given active device is configured to send a data packet corresponding to the coherency unit on the data network in response to receiving the proxy address packet, wherein the interface included in the node is configured to send data corresponding to the coherency unit to the additional interface via the inter-node network in response to the data packet on the data network.
- 11. (Original) The system of claim 10, wherein the additional interface is configured to send an additional data packet corresponding to the coherency unit on an additional data network included in the additional node in response to receiving the data via the inter-node network.
- 12. (Original) The system of claim 11, wherein the additional active device is configured to gain the read access right to the coherency unit in response to receiving the additional data packet from the additional data network.
- 13. (Currently amended) The system of claim 10, wherein the given active device is configured to transition an access right to the coherency unit in response to sending the data packet on the data network.

- 14. (Original) The system of claim 7, wherein the address packet is a read-to-share packet and wherein the proxy address packet is a proxy read-to-share-modified packet.
- 15. (Previously presented) The system of claim 7, wherein no other active device in any-node has an ownership responsibility for the coherency unit subsequent to receipt of the proxy address packet by the active device.
- 16. (Previously presented) The system of claim 7, wherein if any active device in any node has an ownership responsibility for a particular coherency unit, no other active device in any other node has a valid access right to the particular coherency unit.
- 17. (Previously presented) The system of claim 16, wherein if any active device in any node has a read access right to the particular coherency unit, no active device in any other node has a write access right to the particular coherency unit.
- 18. (Currently amended) A node for use in a multi-node system, the node comprising: an address network <u>configured to convey address packets</u> and a <u>separate</u> data network configured to convey data packets:
 - a plurality of active devices coupled to send and receive <u>address</u> packets on the address network and <u>data packets on</u> the data network, wherein a given active device of the plurality of active devices has an ownership responsibility for a coherency unit; and
 - an interface coupled to additional nodes in the multi-node system via an internode network, wherein the interface is configured to send and receive

 address packets on the address network and data packets on the data
 network, wherein the interface is configured to receive a coherency
 message from a given additional node via the inter-node network, wherein
 the coherency message requests a read access right to the coherency unit;
 - wherein the interface is configured to respond to the coherency message by sending a proxy address packet on the address network;

- wherein a different active device of the plurality of active devices is configured to request a read access right to another coherency unit by sending an address packet on the address network;
- wherein the given active device of the plurality of active devices has an ownership responsibility for the other another coherency unit, wherein the given active device is configured to not transition the ownership responsibility for the other another coherency unit in response to the address packet and to transition the ownership responsibility for the coherency unit in response to the proxy address packet.
- 19. (Previously presented) The node of claim 18, wherein the given active device is configured to send a data packet corresponding to the coherency unit on the data network in response to receiving the proxy address packet, wherein the interface included in the node is configured to send data corresponding to the coherency unit to the given additional node via the inter-node network in response to the data packet on the data network.
- 20. (Previously presented) The node of claim 19, wherein the given active device is configured to transition an access right to the coherency unit in response to sending the data packet on the data network.
- 21. (Original) The node of claim 18, wherein the address packet is a read-to-share packet and wherein the proxy address packet is a proxy read-to-share-modified packet.
- 22. (Currently amended) A method for use in a multi-node system comprising a node and an additional node coupled by an inter-node network, the method comprising:
 - the additional node sending a coherency message requesting a read access right to a coherency unit on the inter-node network;
 - in response to receiving the coherency message, an interface included in the node sending a proxy address packet on an address network included in the node;

- an active device included in the node losing an ownership responsibility for the coherency unit in response to receiving the proxy address packet;
- a different active device included in the node requesting a read access right to another coherency unit by sending an address packet on the address network:
- the active device maintaining an ownership responsibility for the other another coherency unit in response to the address packet.
- 23. (Original) The method of claim 22, further comprising an additional interface included in the additional node sending the coherency message in response to an additional active device included in the additional node requesting the read access right to the coherency unit.
- 24. (Original) The method of claim 23, wherein said additional node requesting comprises the additional active device sending an additional address packet on an additional address network included in the additional node.
- 25. (Original) The method of claim 23, further comprising:
 - the active device sending a data packet corresponding to the coherency unit on a data network included in the node in response to receiving the proxy address packet; and
 - the interface included in the node sending data corresponding to the coherency unit to the additional interface via the inter-node network in response to the data packet on the data network.
- 26. (Original) The method of claim 25, further comprising the additional interface sending an additional data packet corresponding to the coherency unit on an additional data network included in the additional node in response to receiving the data via the inter-node network.

- 27. (Original) The method of claim 26, further comprising the additional active device gaining the read access right to the coherency unit in response to receiving the additional data packet from the additional data network.
- 28. (Original) The method of claim 25, further comprising the active device transitioning an access right to the coherency unit in response to sending the data packet on the data network.
- (Original) The method of claim 22, wherein the address packet is a read-to-share packet and wherein the proxy address packet is a read-to-share-modified packet.
- 30. (Cancelled)