1 Úvod

Poznámka (Aplikace)

Transfinitní indukce, axiom výběru (= princip maximality = Zornovo lemma)

Poznámka (Cíl)

Vybudování matematiky na pevných základech. Porozumění nekonečen. Důkaz existence nealgebraických (= transcendentních) reálných čísel. Princip kompaktnosti. Banach-Tarského paradox.

Poznámka (Literatura)

Balcar, Štěpánek – Teorie množin

Seriál PraSete

Hrbáček, Jech – Introduction to set theory

Olšák – Esence teorie množin (videa)

Poznámka (Historie)

Bernard Bolzano (český matematik, 1781-1848, pojem množina), George Cantor (německý matematik, 1845 - 1918, zavedení aktuálního nekonečna, diagonální metoda, kardinální čísla, uzavřená množina), Bertrand Russell (1902, Russellův paradox = paradox holiče = holí holič holící všechny lidi, kteří se neholí sami, sebe?) + Berriho paradox (nechť m je nejmenší přirozené číslo, které nejde definovat méně než 100 znaky), Zermelo-Fraenkel (zavedli axiomatickou teorii množin).

Definice 1.1 (Symboly)

Proměnné pro množiny – $x, y, z, x_1, x_2, \ldots$

Binární predikátorový symbol = a bin. relační symbol \in .

Logické spojky $\neg, \lor, \land, \Longrightarrow, \Leftrightarrow$.

Kvantifikátory \forall , \exists .

Závorky () {} []

Definice 1.2 (Formule)

Atomické $(x=y,\,x\in y)$. Jsou-li φ a ψ formule, pak $\neg \varphi,\, \varphi \lor \psi,\, \varphi \land \psi,\, \varphi \implies \psi,\, \varphi \Leftrightarrow \psi$ jsou formule. Je-li φ formule, x proměnná, pak $(\forall x)\varphi,\, (\exists x)\varphi$ jsou formule. (Vázané vs. volné proměnné – proměnné formule, které do ní lze dosadit jsou volné, proměnné formule, které do ní nelze dosadit jsou vázané). Každou formuli lze dostat konečnou posloupností aplikací výše zmíněného.

Definice 1.3 (Rozšíření jazyka)

 $x \neq y$ značí $\neg (x = y), x \notin y$ znamená $\neg (x \in y), x \subseteq y$ znamená $(\forall u)(u \in x \implies u \in y), x \subseteq y$ značí $x \subseteq y \land x \neq y$. Dále uvidíme $\cup, \cap, \setminus, \{x_1, \dots, x_n\}, \emptyset, \{x \in a | \varphi(x)\}.$

Definice 1.4 (Axiomy logiky)

Vysvětlují, jak se chovají implikace, kvantifikátory, rovnost, ...

Definice 1.5 (Axiomy TEMNA)

Říkají, jak se chová \in a jaké množiny existují. Budeme používat Zermelo-Fraenkelovu teorii (ZF), tedy 9 axiomů (7 + 2 schémata). (Není minimální, tj. lze některé odvodit z jiných) + axiom výběru (AC) s ním se pak ZF značí ZFC.

Definice 1.6 (Axiomy ZFC)

- 1. Axiom existence množiny: $(\exists x)(x = x)$.
- 2. Axiom extensionality: $(\forall z)(z \in x \Leftrightarrow z \in y) \implies x = y$.