DIN based Look-Alike model

Workflow

- Necessary steps

Inactive user elimination (user prescreen)

"Prefined threshold" is defined as a range of normal traffic (with low and high bounds) to eliminate:

1. users with consistent low traffic (inactive user, traffic < low bound)

*

2. users with extremely high traffic for some specific period (robot user, traffic > high bound)

DIN Model

- user vs keyword correlation (user profile generation)

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄	 Keyword _m	
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄	 score _{1m}	
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	 score _{2m}	DIN
		•••	•••	•••	 	
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	 score _{nm}	

user profile normalization

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄		Keyword _m
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄		score _{1m}
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	•••	score _{2m}
						•••
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	nu .	score _{nm}

Normalization constant

C.

 C_2

•••

C

Score normalization

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄	 Keyword _m
User ₁	norm_score ₁₁	norm_score ₁₂	norm_score ₁₃	norm_score ₁₄	 norm_score _{1m}
User ₂	norm_score ₂₁	norm_score ₂₂	norm_score ₂₃	norm_score ₂₄	 norm_score _{2m}
•••		•••	•••	•••	 •••
User _n	normScore _{n1}	norm_score _{n2}	norm_score _{n3}	norm_score _{n4}	 norm_score _{nm}

$$norm_score_{ij} = \frac{score_{ij}}{C_i}$$

$$C_i = \sqrt{\sum_{j=1}^m score_{ij}^2}$$

user similarity measurement

User's normalized profile:

$$S_i = \{norm_score_{i1}, norm_score_{i2}, \dots norm_score_{im}\}$$

Cross user similarity:

$$Similarity(S_i, S_j) = S_i \cdot S_j = \sum_{k=1}^{m} norm_score_{ik} \times norm_score_{jk}$$

DIN based Look-Alike model

– seed_user vs non-seed_user similarity measure

	Seed_user ₁	Seed_user ₂	•••••	Seed_user _m
Nonseed_user ₁	Similary ₁₁	Similary ₁₂	•••••	Similary _{1m}
Nonseed_user ₂	Similary ₂₁	Similary ₂₂	•••••	Similary _{2m}
Nonseed_user ₃	Similary ₃₁	Similary ₃₂		Similary _{3m}
Nonseed_user ₄	Similary ₄₁	Similary ₄₂	•••••	Similary _{4m}
	•••••	•••••		
Nonseed_user _n	Similary _{n1}	Similary _{n2}	•••••	Similary _{nm}

Parallel computed and only maximum value for each row need to be stored

All Seed Users

 $mean(top10 similarity_{1i})$

 $mean(top_i 10 similarity_{2i})$

 $mean(top_{i}10 similarity_{3i})$

 $mean(top10 similarity_{4i})$

.....

 $mean(top10 similarity_{ni})$

sort

Rank₁ nonseed_user

Rank₂ nonseed_user

Rank₃ nonseed_user

Rank₄ nonseed_user

• • •

Rank_n nonseed user

Similarity computation estimation

$$M_{seed} = \begin{bmatrix} norm_score_{1,1} & \cdots & norm_score_{1,m} \\ \cdots & \cdots & \cdots \\ norm_score_{n_{seed},1} & \cdots & norm_score_{n_{seed},m} \end{bmatrix}$$

$$M_{nonseed} = \begin{bmatrix} norm_score_{1,1} & \cdots & norm_score_{1,m} \\ \cdots & \cdots & \cdots \\ norm_score_{n_{nonseed},1} & \cdots & norm_score_{n_{nonseed},m} \end{bmatrix}$$

$$M_{similarity} = M_{seed} \times M_{nonseed}^{T}$$

Similarity computation estimation

non-targeting user elimination

	Keyword ₁	Keyword ₂	Keyword ₃	Keyword ₄	 Keyword _m	
User ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄	 score _{1m}	
User ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	 score _{2m}	D
		•••	•••	•••	 	
User _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	 score _{nm}	

 $User_{i}'s\ profile:\ S_{i} = \{score_{i1},\ score_{i2},\ ...\ score_{im}\}$ Eliminate $max(S_{i}) = \max_{j} score_{ij} < prefined\ threshold$ $targeting\ users$

* The purpose is to eliminate users that have no interest of any keywords (ineffective traffic)

user clustering

DIN based Look-Alike model

– group-wise seed_user vs non-seed_user similarity measure (active user only)

	Seed user in grp ₁	Seed user in grp ₂		Seed user in grp _m
Nonseed user in grp ₁	similarity matrix ₁₁	0		0
Nonseed user in grp ₂	0	similarity matrix ₂₂	•••••	0
•••••		•••••	*****	0
Nonseed user in grp _m	0	0	•••••	similarity matrix _{mm}

DIN based Look-Alike model

within group seed_user vs non-seed_user similarity measure

Similarity matrix_{ii}

		• "		
	Seed_user _{grpi,1}	Seed_user _{grpi} ,2	•••••	Seed_user _{grpi} , _m
Nonseed_user _{grpi} ,1	Similary ₁₁	Similary ₁₂	*****	Similary _{1m}
Nonseed_userg _{rpi} ,2	Similary ₂₁	Similary ₂₂	•••••	Similary _{2m}
Nonseed_user _{grpi} , ₃	Similary ₃₁	Similary ₃₂		Similary _{3m}
Nonseed_user _{grpi} ,4	Similary ₄₁	Similary ₄₂		Similary _{4m}
Nonseed_user _{grpi} ,	Similary _{n1}	Similary _{n2}		Similary _{nm}

Parallel computed and top 10 values for each row need to be stored

All Seed Users in grpi $mean(top10 \, similarity_{1i})$ $mean(top10 \, similarity_{2i})$ $mean(top10 \, similarity_{3i})$ $mean(top10 \, similarity_{4i})$ $mean(top10 \, similarity_{4i})$ $mean(top10 \, similarity_{ni})$ sort

Rank₁ nonseed_user

Rank₂ nonseed_user

Rank₃ nonseed_user

Rank₄ nonseed_user

...

Rank_n nonseed_user

Log preprocessing steps for DIN model training/validation

DIN model test performance

Keyword traffic contribution (impression)

keyword	% of total traffic
video	44.83%
shopping	21.21%
info	18.13%
social	6.53%
reading	3.27%
travel	2.15%
entertainment	0.91%
Total	97.03%

Keyword traffic contribution (click)

keyword	% of click traffic
video	46.69%
info	18.41%
shopping	11.14%
social	9.16%
reading	5.73%
travel	5.27%
entertainment	2.09%
Total	98.48%

User profile generation (DIN model output)

	keyword ₁	keyword ₂	keyword ₃	keyword ₄	keyword ₅	•••••	keyword _m
Sample ₁	score ₁₁	score ₁₂	score ₁₃	score ₁₄	score ₁₅		score _{1m}
Sample ₂	score ₂₁	score ₂₂	score ₂₃	score ₂₄	score ₂₅		score _{2m}
Sample ₃	score ₃₁	score ₃₂	score ₃₃	score ₃₄	score ₃₅		score _{3m}
Sample ₄	score ₄₁	score ₄₂	score ₄₃	score ₄₄	score ₄₅		score _{4m}
Sample _n	score _{n1}	score _{n2}	score _{n3}	score _{n4}	score _{n5}		score _{nm}
Profile	$\overline{\{score_{1n,1}\}}$	$\overline{\{score_{1n,2}\}}$	$\overline{\{score_{1n,3}\}}$	$\overline{\{score_{1n,4}\}}$	$\overline{\{score_{1n,5}\}}$	•••••	$\overline{\{score_{1n,m}\}}$

Validation

LookAlike model test results - expected

Test scenario illustration (Definable audience)

Seed user % in total extendable users:10% -> 90%

Scenario 2: heterogeneous seed users (across multiple groups)

Seed user % in total extendable users:10% -> 90%

User clusters

Test scenario illustration (non-definable audience)

User clusters

Scenario 1: matched homogeneous seed users (focused within single group)

Seed user % in total extendable users: 10% -> 90%

Scenario 2: matched heterogeneous seed users (across multiple groups)

Seed user % in total extendable users: 10% -> 90%

Scenario 3: random seed users (mismatch between advertiser's user definition and system user definition, may include non-targeting seed users)

Scenario 1- same group seed users

- Test case 1:
 - All users clicked on keyword 26 at least one time in the last 10 days

• Total number of users in this groups: 5325

# of seed users = 1000 did % of seed users : 18.77 %	2X extension = 2000 dids	3X extension = 3000 dids
#Click – based on model	17	20
#Click – based on random selection	7	12

Scenario 1- same group seed users

• Test case 2:

 All seed users clicked on keyword 28 at least one time in the last 10 days

• The total number of users in this group is 250. With selecting 100 as a seed users the chance of model selecting the 150 users is extremely low.

# of seed users = 100 did % of seed users = 40%	2X extension = 200 dids	3X extension = 300 dids
#Click – based on model	1	1
#Click – based on random selection	0	0

Scenario 1- same group seed users

- Test case 3:
 - All users clicked on both keyword 26 and keyword
 29 at least once in the last 10 days
 - Total number of users in these groups : 6485

# of seed users = 500 did	2X extension = 1000 dids	3X extension = 1500 dids
% of seed users = 7.71 %		
#Click – based on model	109	153
#Click – based on random selection	78	140

Scenario 2- different groups seed users

- Test case 1:
 - Seed users are from three different groups:
 - 1. Seed users who clicked on keyword 26
 - 2. Seed users who clicked on keyword 14
 - 3. Seed users who clicked on keyword 29
 - Total number of users in these groups : 12562

# of seed users = 800 did	2X extension = 1600 dids	3X extension = 2400 dids
#Click – based on model	201	304
#Click – based on random selection	151	207

Scenario 2- different groups seed users

- Test case 2:
 - Seed users are from three different groups:
 - 1. Seed users who clicked on keyword 26
 - 2. Seed users who clicked on keyword 29
 - Total number of users in these groups: 11301

# of seed users = 1000 did	2X extension = 2000 dids	3X extension = 3000 dids
#Click – based on model	196	289
#Click – based on random selection	165	244

Scenario 3 – Random seed users

 When the seed users are chosen randomly there is no specific behavior pattern. In this scenario, the model is not expected to perform well.

• These is a test case with random seed users which shows mixed result compare to random extension.

Scenario 3 – Random seed users

• The click result for Random users is also random

	2X extension = 2000 dids		
# of seed users = 1000 did	Keyword = 26	keyword = 29	keyword = 14
Click – based on model	7	235	13
Click – based on random selection	28	207	26

Conclusion

- The look alike model, similar to any other AI based model needs a quality input data.
- The higher the quality of the input data, the better the result of the model.
- In the first scenario when all seed users are from one cluster, the result of look alike extension users has higher click rate.
- In the last scenario when users are picked randomly, there is no ground choose to evaluate the performance.