The transfer decomposition	MATHS 1	(2)) Find max/min of a function
(4) Find eigenvector decomposition	10	0.4	with equality constraint
14.1) Find eigenvalues; use (8)	Calculation.	Algorithms	21.1) Create L(x, x) = f(x) + lini,
14.2) Find eigenvectors: use (3)	(16) Calculate	inner product:	21.1) Create L(x, x) = f(x) + lini, where ni -> constraint type
14.3) Put eigenvalues into diagonal mutoix: D=(1,0) 0: la	in cuitature	Tu	
matrix: D= (n)	$\langle \vec{x}, \vec{y} \rangle = x'$		22.2) Solve \$L(x, x) = 0 use 18)
14.4) Put eigenvectors / as columns	17 Find projecti	ion Kony	this gives you stationary
14.4) Put eigenvectors (as columns and in the same order as eigenve- lues in D) in matrix T T= (e.vect e.vec2 e.vecn)	$P_{y}(x) = \frac{\langle x, y \rangle}{\langle y, y \rangle}$	-	21.3) Find Ht use 19 in Vstat. point
- level ever- e.veen	•		
	18 Compute Of	(Tradient)	22.4) Define definithess of Hf in V stat point; use 22
	$\Delta t = \left(\frac{\Im x}{\Im t}\right)$		21.5) Conclude it it max or min
14.5) Find T -1 use 2			or nothing
	- Din	(2)	A is positive definite
14.6) A=TDT-1			A is positive definite it and only it all eigenvalues it >0
1	13 Compute H4 (Hessian)	or >> mi >0, where mi - principal
(15) Create orthonormal system from	$Hf = \left \frac{\partial f}{\partial x_1 \partial x_1} \right $	JX JX	minors [min & convex]
	a .	1	A is positive - semi-definite
15.1) Use Frand-Schmidt orthogon lightion process:			di 30 [min & convex]
$(15.1.1)$ $N_1 = V_1$	DXn dx,	JXn JXn	-Ais negative definite (=> \li <0
$\int 15.1.2 \int n_2 = V_2 - \frac{\langle V_2, n_1 \rangle}{\langle n_1, n_1 \rangle} \cdot n_1$		6	A is negative semidet (=> hi =0
	(20)	ODE	max & concave
15.1.3) nx = V_ = < Vx, n, > n, <	VK, NX-1> MK-1 20.1)	Separable case:	20.2) Other cases;
(15.1.3) $n_k = V_k - \frac{\langle V_k, n_1 \rangle}{\langle n_1, n_1 \rangle} n_1 - \frac{\langle n_k \rangle}{\langle n_k \rangle}$	-1, hk-1>	20.1.1) y'(t) = dy	Use link
		co.1.2) Separate yan	dt
15.2) Normalize Ri: Ri Inill	20	0.1.3/ Integrate bo	th perts
	20	0.1.4) Find constant	from