Chapter 2

Exercise 1

Prove that the empty set is a subset of every set.

Let A be any set, \emptyset be the empty set and assume the opposite. Then there exists at least one element $x \in \emptyset$ such that $x \notin A$. But the empty set does not contain any elements and no such x can therefore be found. This is a contradiction and hence $\emptyset \subset A$ must be true.

Exercise 2

Prove that the set of all algebraic numbers is countable.

Let $\alpha=(a_0,...,a_n)\in B_{n+1}$ be an n+1-tuple of integers. Example 2.5 shows that the set of all integers $\mathbb Z$ is countable. Using Theorem 2.13 with $A=\mathbb Z$ shows that the set of n+1-tuples B_{n+1} is countable.

For particular choice of integers $a_0, ..., a_n$ we may construct an equation of the form

$$a_n z^n + \dots + a_1 z + a_0 = 0.$$

This polynomial has at most n solutions. Let E_{α} be the set of all complex numbers z that is a solution to that polynomial. Hence E_{α} is a finite subset of $\mathcal A$ with at most n elements. If S_n is a set such that

$$S_n = \bigcup_{\alpha \in B_{n+1}} E_\alpha$$

then it is the union of a countable collection of finite sets. It follows from Theorem 2.12 that S_n is at most countable. Since the union of a countable collection of at most countable sets is at most countable (follows from Theorem 2.12 again); the union

$$S = \bigcup_{n=1}^{\infty} S_n,$$

is at most countable.

We shall show that $\mathcal{A} \subset S$. For any $z \in \mathcal{A}$ there exist integers $a_0, ..., a_k$ such that $a_k z^k + \cdots + a_1 z + a_0 = 0$. For these integers there is a k+1-tuple $\alpha = (a_0, ..., a_k)$ which is associated with exactly one set E_{α} . Hence there exists at least one α for which $z \in E_{\alpha}$ and therefore it

follows that $\mathcal{A} \subset S$. This means that \mathcal{A} is at most countable since it is a subset of S.

Lastly we need to show that $\mathcal A$ is infinite. The set of rational numbers $\mathbb Q$ is countable by the corollary to Theorem 2.13. For any $q\in\mathbb Q$ there are integers m,n such that $q=\frac{n}{m}$. Now choose $a_1=m$ and $a_0=-n$, then

$$a_1q+a_0=m\frac{n}{m}-n=0,$$

which means that q is algebraic. Since q is arbitrary it follows that $\mathbb{Q} \subset \mathcal{A}$. This shows that \mathcal{A} has an infinite subset and must therefore itself be infinite. \mathcal{A} is an infinite set that is at most countable, and therefore it is countable as desired.

Exercise 3

Prove that there are real numbers which are not algebraic.

Suppose not. Let \mathcal{A} be the set of all algebraic numbers. Since we assume the opposite any real number is algebraic and it follows that $\mathbb{R} \subset \mathcal{A}$.

From Exercise 2.2 we know that \mathcal{A} is countable. By Theorem 2.8 this would entail that \mathbb{R} is countable, since it is an infinite subset of a countable set. But this is a contradiction since Theorem 2.43 shows that \mathbb{R} is uncountable. Hence our assumption is false and there exists real numbers $x \in \mathbb{R}$ such that $x \notin \mathcal{A}$.

Exercise 4

Is the set of all irrational real numbers countable?

Denote the set of irrational numbers by \mathbb{I} . According to Theorem 2.13 \mathbb{Q} is countable. Now suppose \mathbb{I} is countable. We already know that

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

which means that \mathbb{R} is countable by Theorem 2.12. But this is a contradiction since by Theorem 2.43 the set of real numbers \mathbb{R} is uncountable. If \mathbb{I} is assumed to be finite, then that still would make \mathbb{R} countable. Hence, \mathbb{I} must be uncountable.

Exercise 5

Construct a bounded set of real numbers with exactly three limit points.

Let k be a natural number and consider the set E_k of numbers $k+\frac{1}{n}$ where $n=1,2,3,\ldots$. Clearly $E_k\subset (k,k+1]$ and is therefore bounded.

We need to show that E_k does not contain any limit points. For any natural numbers n,m we have that

$$d\left(k+\frac{1}{n},k+\frac{1}{m}\right) = \left|k+\frac{1}{n}-\left(k+\frac{1}{m}\right)\right| = \left|\frac{1}{n}-\frac{1}{m}\right| = d\left(\frac{1}{n},\frac{1}{m}\right).$$

For a fixed n we want to show that

$$d\left(\frac{1}{n},\frac{1}{m}\right) \ge d\left(\frac{1}{n},\frac{1}{n+1}\right),$$

holds with any natural number $m \neq n$.

If $m \ge n + 1$, then

$$d\left(\frac{1}{n}, \frac{1}{m}\right) = \left|\frac{1}{n} - \frac{1}{m}\right| \ge \left|\frac{1}{n} - \frac{1}{n+1}\right| = d\left(\frac{1}{n}, \frac{1}{n+1}\right).$$

If $m \leq n-1$, then

$$d\left(\frac{1}{n}, \frac{1}{m}\right) = \left|\frac{1}{n} - \frac{1}{m}\right| = \frac{1}{m} - \frac{1}{n} \ge \frac{1}{n-1} - \frac{1}{n}$$
$$= \frac{1}{n(n-1)} > \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$
$$= \left|\frac{1}{n} - \frac{1}{n+1}\right| = d\left(\frac{1}{n}, \frac{1}{n+1}\right),$$

which gives us the result. Hence any neighborhood $N_r \left(k+\frac{1}{n}\right)$ with radius $0 < r < \left|\frac{1}{n} - \frac{1}{n+1}\right| = \frac{1}{n(n+1)}$ will contain no other points of E_k except $k+\frac{1}{n}$. This means that $k+\frac{1}{n}$ cannot be a limit point of E_k . We now show that $k \notin E_k$ is a limit point of E_k . For any radius

We now show that $k \notin E_k$ is a limit point of E_k . For any radius r > 0 we can find a natural number N such that $\frac{1}{N} < r$ by using the Archemdian property of \mathbb{R} (Thm. 1.20)

$$d\left(k, k + \frac{1}{N}\right) = \left|k - \left(k + \frac{1}{N}\right)\right| = \frac{1}{N} < r,$$

which means that $k + \frac{1}{N} \in N_r(k)$.

The desire is to construct a set that is bounded with exactly three limit points. We accomplish this by choosing the set E such that

$$E=E_1\cup E_2\cup E_3.$$

Specifically, the limit points to E are 1,2,3 and E_1, E_2, E_3 are all bounded which makes E bounded as well.

Exercise 6

Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

We first prove that E' is closed. Suppose not, then there exists a limit point x of E' such that $x \notin E'$. For any neighborhood $N_r(x)$ with radius r>0 there is a $y\in E'$ such that $y\in N_r(x)$. Since $y\in E'$ we know that y is a limit point of E. Hence, we can find a $z \in E$ such that $z \in N_{r-h}(y)$ with 0 < h < r. We have that

$$d(z, x) \le d(z, y) + d(y, x) < r - h + h = r,$$

which means that $z \in N_r(x)$. Since r > 0 is arbitrary it follows that x is a limit point to E. But this is a contradiction since it would imply $x \in$ E'. Therefore our assumption is wrong and E' must be closed.

Next we show that \overline{E} and E have the same limit points. If x is a limit point of \overline{E} , then since $\overline{E} = E' \cup E$, it must be the case that x is a limit point of E' or E. Assuming x is a limit point of E leaves us with nothing to prove. So we suppose that x is a limit point of E' alone. We already have established that E' is closed, and therefore $x \in E'$. This in turn directly implies that x is a limit point of E because the members of E' are all limit points of E.

Conversely, if y is a limit point of E then we know that $y \in E'$. Since $\overline{E} = E' \cup E$ it follows that $y \in \overline{E}$ and is a limit point of \overline{E} .

Lastly, we show that E and E' do not always have the same limit points. Let $E = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ and note 0 is the only limit point of E. This means that $E' = \{0\}$. We know by Corollary to Thm. 2.20 that E' has no limit points. This shows the result by example.

Exercise 7

Let $A_1, A_2, A_3, ...$ be subsets of a metric space.

- (a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\overline{B}_n = \bigcup_{i=1}^n \overline{A}_i$. (b) If $B = \bigcup_{i=1}^\infty A_i$, prove that $\overline{B} \supset \bigcup_{i=1}^\infty \overline{A}_i$.

(a) We first need to show that for any sets A and B it is true that $(A \cup B)' = A' \cup B'$. If $x \in (A \cup B)'$, then for every neighborhood $N_r(x)$ with a radius r > 0 there exists at least one point $p \in N_r(x)$ such that $p \in A \cup B$. Thus, $p \in A$ or $p \in B$ which implies that $x \in A'$ or $x \in B'$ so that $x \in A' \cup B'$.

Suppose now that $x \in A' \cup B'$, then for any neighborhood $N_r(x)$ with a radius r > 0 there is a point $p \in N_r(x)$ such that $p \in A$ or $p \in B$. This means that $p \in A \cup B$ and it follows that $x \in (A \cup B)'$.

We now turn to the question at hand. This will be a proof by induction. The base case for n=1 is clearly true. Assume the statement holds for n, then

$$\begin{split} \overline{B}_{n+1} &= \overline{\bigcup_{i=1}^{n+1} A_i} = \overline{\bigcup_{i=1}^n A_i \cup A_{n+1}} = \overline{B_n \cup A_{n+1}} \\ &= B_n \cup A_{n+1} \cup \left(B_n \cup A_{n+1}\right)' \\ &= B_n \cup B'_n \cup A_{n+1} \cup A'_{n+1} \\ &= \overline{B}_n \cup \overline{A}_{n+1} = \bigcup_{i=1}^n \overline{A}_i \cup \overline{A}_{n+1} \\ &= \bigcup_{i=1}^{n+1} \overline{A}_i, \end{split}$$

where we have used the induction hypothesis in the penultimate equality.

(b) If $x\in\bigcup_{i=1}^\infty\overline{A}_i$, then there is an $n\in\mathbb{N}$ such that $x\in\overline{A}_n$. We have that

$$\overline{B} = \overline{\bigcup_{i=1}^{\infty} A_i} \supset \overline{\bigcup_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A}_i \supset \overline{A}_n,$$

where we used the result in (a) to get the second equality. This implies that $x \in \overline{B}$. Since x is arbitrary it follows that $\bigcup_{i=1}^{\infty} \overline{A}_i \subset \overline{B}$ as desired.

We shall conclude by showing that this subset can indeed be proper. Let $A_i = \left\{\frac{1}{2}, \frac{1}{3}, ..., \frac{1}{i}\right\}$ and note that there exists no $k \in \mathbb{N}$ such that $0 \in A_k$. Thus $0 \notin \bigcup_{i=1}^{\infty} A_i$. Furthermore, each set A_i has no limit points which is why $\overline{A_i} = A_i$, and therefore $\bigcup_{i=1}^{\infty} \overline{A_i} = \bigcup_{i=1}^{\infty} A_i$. It follows then that $0 \notin \bigcup_{i=1}^{\infty} \overline{A_i}$. Now let's consider \overline{B}

$$\overline{B} = \overline{\bigcup_{i=1}^{\infty} A_i} = \overline{\left\{\frac{1}{2}, \frac{1}{3}, \ldots\right\}} = \left\{0, \frac{1}{2}, \frac{1}{3}, \ldots\right\},$$

which implies that $0 \in \overline{B}$. Since $0 \notin \bigcup_{i=1}^{\infty} \overline{A_i}$ we've shown that the inclusion can be proper.

Exercise 8

Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2 .

We first show that every point in every open set $E \subset \mathbb{R}^2$ is a limit point of E. Suppose not. Then there exists an open set $E \subset \mathbb{R}^2$ with a point $x \in E$ that is not a limit point of E. It follows that there exists an r > 0 such that the neighborhood $N_r(x)$ contains no point of E except x.

Since E is an open set, x must be an interior point. Hence, there is a neighborhood with radius s>0 such that $N_s(x)\subset E$. Neighborhoods in \mathbb{R}^2 are non-empty interiors of circles, which makes N_s and N_r circles centered at x.

Consider the cases for r and x:

- 1. If r > s then N_s is a circle inscribed in a larger circle N_r which means that $N_s \subset N_r$. It follows that there exists points $y \in N_s \subset N_r \subset E$ where $y \neq x$. But this is impossible due to our assumption.
- 2. If $r \leq s$ then N_r is inscribed in N_s . Since $N_s \subset E$ that would make $N_r \subset E$ which is also impossible given our assumption.

Since none of the relations r < s, r = s and r > s can be true, such an r cannot exists. We've reached a contradiction and the assumption is wrong. Hence, each point of E is a limit point of E.

Now we show that the case does not hold true in general for closed sets. Consider the set of all natural numbers $\mathbb{N} \subset \mathbb{R}^2$. This set is closed, yet every point in this set is not a limit point of it.

Exercise 9

Let E° be the set of all interior points of E.

- (a) Prove that E° is always open.
- (b) Prove that E is open if and only if $E^{\circ} = E$.
- (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
- (d) Prove that the complement of E° is the closure of the complement of E.
- (e) Do E and \overline{E} always have the same interiors?
- (f) Do E and E° always have the same closures?

- (a) If $p \in E^{\circ}$ then p is an interior point of E. This means that there exists some neighborhood N(p) with r > 0 such that $N(p) \subset E$. By Theorem 2.19 N(p) is an open set, implying that every point in N(p) is an interior point. Hence, $N(p) \subset E^{\circ}$ and it follows E° is an open set.
- (b) If E is open then for every point $x \in E$ we can find a neighborhood N(x) with r > 0 such that $N \subset E$. This implies that every point $x \in E$ is an interior point of E and it is therefore true that $x \in E^{\circ}$. This shows that $E \subset E^{\circ}$. Since by construction $E^{\circ} \subset E$ we have that $E^{\circ} = E$.

Conversely, if $E^{\circ} = E$ then all points in E are interior points of E. This is true since E° is the set of all interior points of E. Thus, by definition 2.18 (f), E is an open set.

- (c) If G is open, then for every point $p \in G$ we can find a neighborhood N(p) with r > 0 such that $N(p) \subset G$. Since $G \subset E$, we have that $N(p) \subset E$, which shows that p is an interior point of E. Hence, $p \in E^{\circ}$. Therefore, $G \subset E^{\circ}$ since p was arbitrary chosen from G.
- (d) Let x be any point in $(E^{\circ})^c$. First we show that $(E^{\circ})^c \subset \overline{E^c}$. Suppose that $x \notin E$. Then

$$x \in E^c \subset E^c \cup E^{c'} = \overline{E^c}$$
.

Now let $x \in E$. Since x is in the complement of E° , we know that x is not an interior point of E. Therefore, for every neighborhood N(x) with radius r > 0, we have that $N(x) \not\subset E$. This means that N(x) always has points in E^c , which makes x a limit point of E^c . Thus, $x \in E^{c'} \subset \overline{E^c}$. This shows that $(E^{\circ})^c \subset \overline{E^c}$.

Conversely, let $p \in \overline{E^c} = E^c \cup E^{c'}$. Then it is clear that either $p \in E^c$ or $p \in E^{c'}$. Assume $p \in E^c$. Then we know that p is not an interior point to E, so $p \notin E^\circ$, which implies that $p \in (E^\circ)^c$. If $p \in E^{c'}$, then it is a limit point of E^c , and therefore every neighborhood N(p) with radius r > 0 have points (other than p) from E^c . Hence, there is no neighborhood such that $N(p) \subset E$ which means that p cannot be an interior point of E. Therefore, $p \in (E^\circ)^c$, and we have now shown that $\overline{E^c} \subset (E^\circ)^c$.

(e) Let $E=(0,1)\cup(1,2)$ be a set consisting of line segments in \mathbb{R} . Since E is open we have that $E^\circ=E$ by (b). The set of limit points of E are $\{0,1,2\}$, so the closure \overline{E} is the closed interval [0,2]. From here we can see that $(\overline{E})^\circ=(0,2)$, which shows that $E^\circ\neq(\overline{E})^\circ$. Therefore, E and \overline{E} do not always have the same interiors.

(f) Consider the set $E = \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ as subset of \mathbb{R} . Since 0 is the only limit point of E, we have that its closure is $\overline{E} = E \cup \{0\}$. However, none of the points in E are interior points, and therefore $E^{\circ} = \emptyset$. This means that $\overline{E}^{\circ} = \emptyset$. We have shown that $\overline{E} \neq \overline{E}^{\circ}$ as desired.

Exercise 10

Let X be an infinite set. For $p \in X$ and $q \in X$, define

$$d(p,q) = \begin{cases} 1 & \text{ (if } p \neq q) \\ 0 & \text{ (if } p = q). \end{cases}$$

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

We begin by showing that d is a metric. Conditions 2.15 (a) and (b) are clearly satisfied. We show (c) also is true. Suppose $p \neq q$ so that d(p,q) = 1. For any $r \in X$ we have two cases, either r equals one of p, q or neither.

Suppose WLOG that r=p. Then we have that d(p,r)=0 and d(r,q)=1. It follows that

$$\underbrace{d(p,q)}_{=1} \leq \underbrace{d(p,r)}_{=0} + \underbrace{d(r,q)}_{=1} = 1.$$

Now let $r \neq p \neq q$ be true. Then d(p,r) = d(r,q) = 1, and we can show that

$$\underbrace{d(p,q)}_{=1} < \underbrace{d(p,r)}_{=1} + \underbrace{d(r,q)}_{=1} = 2.$$

Lastly, if p = q then d(p, q) = 0 and any point $r \in X$ will satisfy (c) since the distance function is non-negative. This shows that X is a metric with distance function d.

We shall now show that any subset $E\subset X$ is open. Let p be any point in E and consider the neighborhood $N_r(p)$ with radius r=1. Given the metric, this neighborhood contains only p itself so that $N_r(p)\subset E$. Hence, every point in E is an interior point and E is open.

We now show that every subset in X is closed. Let E be any subset of X. Since every subset of X is open, the complement E^c is also open. By Thm. 2.33 E is closed.

Lastly, we show that only finite sets of X are compact (by Definition 2.32). Suppose not, then we have a compact set $K \subset X$ that is infinite. For every $p \in K$ let G_p be the open neighborhood around p with radius r=1. Since every $p \in K$ is associated with an open set G_p , the collection $\left\{G_p\right\}$ is an open cover of K. Because K is compact, there exists a finite number of indices such that

$$K\subset G_{p_1}\cup\cdots\cup G_{p_m}.$$

Every subset G_{p_n} is an open neighborhood around p_n with radius 1. From before we know that these sets only contain a single point, namely p_n . But that is absurd, since it would make K finite.

Exercise 11

For $x \in \mathbb{R}$ and $y \in \mathbb{R}$, define

$$\begin{split} d_1(x,y) &= (x-y)^2, \\ d_2(x,y) &= \sqrt{|x-y|}, \\ d_3(x,y) &= |x^2-y^2|, \\ d_4(x,y) &= (x-2y), \\ d_5(x,y) &= \frac{|x-y|}{1+|x-y|}. \end{split}$$

Determine, for each of these, whether it is a metric or not.

 d_1 Condition 2.15 (c) is not satisfied, which therefore is not a metric. We give an example,

$$d_1(10,0) > d_1(10,4) + d_1(4,0).$$

 d_2 Both 2.15 (a) and (b) are clearly true. We show that (c) is also satisfied. Assume not, then there exists points $x,\,y$ and r such that

$$d_2(x,y) > d_2(x,r) + d_2(r,y), \\$$

which in this particular case is

$$\sqrt{|x-y|} > \sqrt{|x-r|} + \sqrt{|r-y|}.$$

If 0 < q < p then $q^2 < p^2$ for any $p, q \in \mathbb{R}$ so that

$$|x - y| = \sqrt{|x - y|^2} > \left(\sqrt{|x - r|} + \sqrt{|r - y|}\right)^2$$

$$= |x - r| + 2\sqrt{|x - r||r - y|} + |r - y|$$

$$> |x - r| + |r - y|,$$

where the last inequality comes from the fact that $\sqrt{|x-r||r-y|} \ge 0$. The above shows that d(p,q) = |p-q| cannot be a metric. But that is a contradiction, since Theorem 1.37 shows that |p-q| satisfies 2.15 (c). Hence, d_2 is a metric.

 d_3 Condition 2.15 (a) is not satisfied. We show an example

$$d_3(2,-2) = |2^2 - (-2)^2| = 4 - 4 = 0.$$

We have found $x \neq y$ such that $d_3(x,y) = 0$. This shows that $d_3(x,y)$ is not a metric.

 d_4 We show that d_4 is not a metric since condition (a) of Definition 2.15 is not satisfied. If $x\neq 0$ then

$$d_A(x,y) = |x - 2x| = |x| > 0.$$

 d_5) Conditions in (a), (b) are clearly satisfied so we focus on (c). Throughout this exercise WLOG assume $x \leq y$. Suppose $x \leq r \leq y$, we have that

$$\begin{split} d_5(x,y) &= \frac{|x-y|}{1+|x-y|} = \frac{|x-r+r-y|}{1+|x-y|} \\ &\leq \frac{|x-r|}{1+|x-y|} + \frac{|r-y|}{1+|x-y|} \\ &\leq \frac{|x-r|}{1+|x-r|} + \frac{|r-y|}{1+|r-y|} \\ &\leq d_5(x,r) + d_5(r,y), \end{split}$$

where we used Theorem 1.37 in the first inequality. Since $x \le r \le y$ we know that $|x-r| \le |x-y|$ and $|r-y| \le |x-y|$, both of which we used to get the second inequality.

Now assume $x \leq y < r$. First we show that for any $\varepsilon > 0$

$$\frac{|w|}{1+|w|} < \frac{|w|+\varepsilon}{1+|w|+\varepsilon},\tag{1}$$

holds. The statement is clearly true for w = 0. If |w| > 0, then

$$\frac{|w|}{1+|w|}=\frac{1}{1+\frac{1}{|w|}}<\frac{1}{1+\frac{1}{|w|+\varepsilon}}=\frac{|w|+\varepsilon}{1+|w|+\varepsilon},$$

which shows that (1) is true.

Since $x \le y < r$, we have that |x - y| < |x - r|. This means we can use (1) to get the first inequality below,

$$\begin{split} d_5(x,y) &= \frac{|x-y|}{1+|x-y|} < \frac{|x-r|}{1+|x-r|} \\ &\leq \frac{|x-r|}{1+|x-r|} + \frac{|r-y|}{1+|r-y|} \\ &= d_5(x,r) + d_5(r,y). \end{split}$$

The last inequality is due to the last term being non-negative. Similar argument can be made for $r < x \le y$ because |x-y| < |r-y| which allows us to use (1) again. This shows that $d_5(x,y)$ is a metric.

Exercise 12

Let $K \subset \mathbb{R}$ consist of 0 and the numbers 1/n, for $n = 1, 2, 3, \dots$. Prove that K is compact directly from the definition (without using the Heine-Borel theorem).

Let $\{G_{\alpha}\}$ be any open cover of K. Then we know that there is an index α_0 such that $0 \in G_{\alpha_0}$. Since G_{α_0} is an open set, we know that there exists a neighborhood $N_r(0)$ with radius r > 0 where $N_r \subset G_{\alpha_0}$.

If $r \geq 1$, then G_{α_0} covers K and there is nothing to prove. Assume therefore that r < 1. By Archimedean property of $\mathbb R$ we can find positive integers p such that $r \geq 1/p$. Let m be the smallest integer such that r > 1/m. It follows that if q is an integer where q > m, then r > 1/q so that $1/q \in N_r(0)$. This shows that there are at most m-1 points in E that are not in N_r ,

$$\frac{1}{m-1}, \frac{1}{m-2}, ..., \frac{1}{2}, 1.$$

Let G_{α_k} denote an open set in the collection $\{G_{\alpha}\}$ such that $1/k \in G_{\alpha_k}$ (k=1,2,3,...). Because $\{G_{\alpha}\}$ is an open cover of K, each of the above m-1 points can be associated this way to at least one index (not necessarily distinct) in the collection. Therefore

$$K\subset G_{\alpha_0}\cup G_1\cup \dots \cup G_{\alpha_{m-1}}.$$

We have shown that any open cover of K has a finite sub-cover which implies that K is compact as desired.

Exercise 13

Construct a compact set of real numbers whose limit points form a countable set.

Let n be a natural number and construct a sequence $\{x_k\}$ as follows. Define x_1 as the midpoint between $\frac{1}{n+1}$ and $\frac{1}{n}$

$$x_1 = \frac{\frac{1}{n+1} + \frac{1}{n}}{2}.$$

Having chosen $x_1,...,x_{k-1}$ (for k=2,3,4,...), define x_k as the midpoint between x_{k-1} and $\frac{1}{n}$

$$x_k = \frac{x_{k-1} + \frac{1}{n}}{2}.$$

Hence, the sequence $\{x_k\}$ is generated by successively taking midpoints between the previous term x_{k-1} and $\frac{1}{n}$. Let E_n be the set of all numbers generated by the sequence $\{x_k\}$. For example, for n=2 we have

$$E_2 = \left\{ \frac{5}{12}, \frac{11}{24}, \frac{23}{48}, \ldots \right\}.$$

Since the sequence $\{x_k\}$ is constructed by repeatedly taking midpoints between the previous term and $\frac{1}{n}$, the sequence will approach the value $\frac{1}{n}$, making it a limit point of E_n .

We can show that any other point $y \in \mathbb{R}$ such that $y \neq \frac{1}{n}$ cannot be a limit point of E_n . Since E_n is a countable set, there is a smallest number $x_k \neq y$ in E_n such that $d(y, x_k)$ is minimized. Then the neighborhood with $0 < r < d(y, x_k)$ will have no point of E_n (other than possibly y). Hence, $\frac{1}{n}$ is the only limit point of E_n and its closure is

$$\overline{E}_n = E_n \cup \left\{ \frac{1}{n} \right\}.$$

Since $\overline{E}_n \subset \left(\frac{1}{n+1}, \frac{1}{n}\right]$ we see that \overline{E}_n is bounded.

By construction of E_n , since we take midpoints $E_n \cap E_m = \emptyset$ if $m \neq n$.

Let E be the set

$$E=\bigcup_{n=1}^{\infty}\overline{E}_{n}.$$