אלגברה ב' - גיליון תרגילי בית 4 העתקות נילפוטנטיות וצורת ז'ורדן

תאריך הגשה: 05.05.2021

ותהי $n \in \mathbb{N}_+$ ותהי ממימד מרחב V יהי ותהי

$$0 < n_1 < n_2 < \ldots < n_{k-1} < n_k = n$$

סדרת מספרים.

- $n_i=n_i$ עבורה עתקה (לאו דווקא ממש). הראו שיש העתקה $T\in \mathsf{End}_{\mathbb{F}}(V)$ מונוטונית יורדת (לאו דווקא ממש). הראו שיש העתקה $i\in [k]$ לכל dim $\mathsf{ker}\left(T^i\right)$
- $n_i=n_i$ עבורה $T\in \mathsf{End}_{\mathbb{F}}(V)$ עבורה שאין העתקה $n_{i+1}-n_i>n_i-n_{i-1}$ עבורה $i\in [k]$ עבורה . $i\in [k]$ לכל dim ker (T^i)

 $T\in \mathsf{End}_{\mathbb F}(V)$. יהי $\mathbb F$ שדה סגור אלגברית ותהי (**Jordan-Chevalley תרגיל 2** (פירוק T_n בילפטנטית ומתקיים T_s כך שר T_s כך שר T_s כלפסינה, T_s בילפוטנטית ומתקיים

$$T = T_s + T_n$$

וגם

$$T_sT_n=T_nT_s$$

- Span (e_1,\ldots,e_k) הם \mathbb{C}^m שמורים של T- שמורים מרחבים הT- הראו כי כל התת־מרחבים T- הראו כי כל התת־מרחבים ה $T:=L_{J_m(0)}\in \mathrm{End}_{\mathbb{C}}\left(\mathbb{C}^m\right)$ הם $0\leq k\leq m$ עבור
- $w\in$ רמז: הניחו כי W תת־מרחב T-שמור. מצאו וקטור עצמי של הניחו כי W תת־מרחב T-שמור. מצאו וקטור עצמי של Span $(e_1,\ldots,e_{k+1})\subseteq W$ אז $W\setminus {\sf Span}\,(e_1,\ldots,e_k)$
 - . הראו כי $W \leq \mathbb{C}^n$ שמור אם ורק אם הוא $L_{J_m(0)}$ הראו כי $W \leq \mathbb{C}^n$ ויהי $\lambda \in \mathbb{C}$ יהי .2
- בסיס ז'ורדן עבור $B=(v_1,\ldots,v_n)$ ויהי ויהי T מריבוי גיאומטרי לערך עצמי של $T\in \operatorname{End}_{\mathbb C}(V)$ 3. תהי (כלומר, בסיס עבורו $[T]_B$ מטריצת בלוקים כך שכל בלוק הוא בלוק ז'ורדן). מצאו את כל התת־מרחבים ה־T-שמורים של T

תרגיל 4. עבור מטריצה בלוקי 1/16 (גיד שמטריצת ז'ורדן) נגיד שמטריצת לורדן (מטריצה $A\in M_n\left(\mathbb{F}\right)$ הם בלוקי היורדן היא פיכה עבורה $P^{-1}AP=J$ הפיכה עבורה $P\in M_n\left(\mathbb{F}\right)$

מצאו את צורת ז'ורדן של המטריצות **המרוכבות** הבאות. השתמשו בכך שמספר הבלוקים בצורת ז'ורדן של T מגודל לפחות λ ועם ערך עצמי λ הוא

$$.\dim \ker \left(\left(T - \lambda \operatorname{Id}_{V} \right)^{i} \right) - \dim \ker \left(\left(T - \lambda \operatorname{Id}_{V} \right)^{i-1} \right)$$

$$\begin{pmatrix} -2 & -3 & 0 \\ 6 & 7 & 0 \\ 1 & 1 & 4 \end{pmatrix} .1$$

$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} .2$$

$$\begin{pmatrix}
-2 & 1 & 0 & 0 \\
-1 & -1 & -1 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 7 & 7
\end{pmatrix}
.3$$

 $J_{n}\left(\lambda
ight)^{t}$ על 5. מצאו צורת ובסיס ז'ורדן של 1. מצאו

רמז: אפשר לקחת שינוי סדר של הבסיס הסטנדרטי, שיהיה מורכב משרשראות ז'ורדן עבור $J_n\left(\lambda\right)^t$. כדאי קודם לחשוב על המקרה $\lambda=0$ בשביל פשטות.

 $A\in M_{n}\left(\mathbb{C}
ight)$ לכל $A\sim A^{t}$ כי .2

 $.ig(P^{-1}ig)^t=ig(P^tig)^{-1}$ רמז: עבור P הפיכה מתקיים

תרגיל 6.

 $n\in\mathbb{N}_{+}$ לכל $\left(J_{n}\left(0
ight)
ight)^{2}$ מצאו בסיס וצורת ז'ורדן עבור