Argomenti

- Il livello logico digitale:
 - algebra di Boole;
 - le trasformazioni nel dominio di Boole.
- · Circuiti logici digitali elementari:
 - circuiti Integrati;
 - circuiti combinatori e sequenziali;
 - circuiti combinatori:
 - Multiplexer;
 - Decoder;
 - · Comparatori;
 - · Programmable Logic Arrays.
 - Circuiti Aritmetici:
 - Shifter;
 - Adder;
 - · Arithmetic Logic Units.
 - Clock.

Obiettivi

- Conoscere il dominio di Boole e le operazioni sul dominio.
- Comprendere il funzionamento dei circuiti logici digitali.
- Analizzare il comportamento dei circuiti combinatori elementari.
- Studiare i circuiti che permettono di eseguire calcoli aritmetici ed operazioni logiche.

Il livello logico digitale

- Il livello logico digitale è l'hardware del calcolatore.
- È fatto di piccoli dispositivi elettronici chiamati porte logiche che lavorano con l'albegra di Boole.
- Utilizzando questi piccoli mattoncini si possono comporre funzioni complesse come sommatori, shifter, memorie,...

Algebra di Boole

- George Boole (1815–1864) è il matematico che ha ideato quest'algebra basata su un insieme (B) di due valori: true e false.
- Per convenzione al valore logico true corrisponde il simbolo 1 e a false il simbolo 0.

 Sul dominio B, si possono definire delle funzioni booleane:

funzioni binarie: $B \times B \longrightarrow B$

funzioni n-arie: $B \times ... \times B \longrightarrow B$

Funzioni Booleane come scatole nere

 Si possono immaginare le funzioni logiche come delle scatole nere che ricevono in ingresso e restituiscono in uscita variabili logiche.

Confronto tra funzioni booleane e funzioni reali

- Il comportamento di una funzione booleana è semplice da descrivere, perché gli ingressi/uscite variano in un insieme finito di valori.
- La tavola di verità è lo strumento che permette di esplorare esaustivamente tutte le possibili combinazioni.

L'insieme delle possibili funzioni booleane

• Con n ingressi si hanno 2^n combinazioni che originano 2^{2^n} possibili funzioni.

Unary Boolean functions

Le funzioni ad un solo operando sono 2²=4.

Negation (NOT operator)

- Esiste una stretta correlazione tra algebra booleana e circuiti digitali.
- La negazione è una funzione che inverte il valore della variabile in ingresso.

Segnali digitali

 La relazione che sussiste tra livelli logici digitali e reali segnali analogici:

L'insieme delle possibili funzioni booleane binarie

Proprietà dell'algebra di Boole

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Come verificare la validità di un'equivalenza?

$$A + AB \stackrel{?}{=} A$$

Utilizzando il metodo algebrico attraverso le proprietà:

$$A + A B = A (1 + B) = A$$

Utilizzando la tavola di verità con il metodo esaustivo:

Α	В	AB	A + AB	A	
0	0	0	0	0	La dua acpressioni
0	1	0	0	0	Le due espressioni sono identiche per
1	0	0	1	1	ogni combinazione
1	1	1	1	1	degli ingressi

 Utilizzando la logica e le definizioni: la variabile A è già presente a sinistra dell'operatore OR perciò la sua presenza nel gruppo di AND ha lo scopo di ridurre B ad A (quindi non aggiunge nulla a B).

Come verificare la validità di un'equivalenza?

$$A + \overline{A}B \stackrel{?}{=} A + B$$

 Utilizzando il metodo algebrico attraverso le proprietà (distributiva):

$$A + \overline{A} B = (A + \overline{A})(A + B) = A + B$$

Utilizzando la tavola di verità con il metodo esaustivo:

0 0 1 0 0 Le due espression		A	В	Ā	ĀB	$A + \overline{A}B$	A+B	
	I	0	0	1	0	0	0	Le due espressioni
Sono identiche de	١	0	1	1	1	1	1	sono identiche per
4 0 0 0 0 1 4 1 1 3 4 1	١	1	0	0	0	1	1	ogni combinazione
1 1 0 0 1 1 1 degli ingressi	ı	1	1	0	0	1	1	

 Utilizzando la logica e le definizioni: la variabile A è già presente a sinistra dell'operatore OR perciò la sua presenza nel gruppo di AND in forma negata ha lo scopo di ridurre B ad A negato (quindi se A è true l'espressione è true mentre se A è falsa il risultato è B).

Le trasformazioni nel dominio di Boole

Semplificazione dell'espressione

- Per ogni espressione logica c'è un circuito digitale equivalente e una colonna della tavola di verità.
- Per ogni colonna della tavola di verità c'è una espressione che la rappresenta e un corrispondente circuito digitale.
- Per ogni circuito digitale c'è una espressione che lo descrive ed una corrispondente colonna della tavola di verità.
- Ora si analizzeranno la trasformazione di una colonna della tavola di verità nella corrispondente espressione logica.

Tavola di verità → espressione logica

 Si vuole tradurre una colonna (X) della tavola di verità in funzione delle variabili $A \in B$, cioè X = F(A, B).

A	В	Χ
0	0	0
0	1	1
1	0	1
1	1	0

completamente dalla tavola di verità

- Si considerano il minor numero di valori 0 oppure 1:
- True 1: X è composta da un insieme di gruppi AND che contengono tutte le variabili (negate quelle che hanno il valore 0 nella riga corrispondente), legati con OR.
- False 0: X è composta da un insieme di gruppi OR che contengono tutte le variabili (negate quelle che hanno il valore 1 nella riga corrispondente), legati con AND.

Tavola di verità → espressione logica (1)

- X è composto da tanti gruppi AND quanti sono i valori true nella colonna della tavola di verità.
- Ogni gruppo di AND contiene tutte le variabili in ingresso, sono negate quelle che sono false nella riga corrispondente.

$$X = \overline{A} \cdot B + A \cdot \overline{B}$$

Tavola di verità → espressione logica (0)

- X è composto da tanti gruppi OR quanti sono i valori false nella colonna della tavola di verità.
- Ogni gruppo di OR contiene tutte le variabili in ingresso, sono negate quelle che sono **true** nella riga corrispondente.

 ...so any Boolean function can be implemented using NOT, AND, and OR gates.

Gli operatori universali

- Abbiamo visto come ogni funzione logica booleana (una colonna della tavola di verità) si possa realizzare con gli operatori AND, OR e NOT
- È facile dimostrare che questi tre operatori possano essere realizzati con una sola porta NAND o NOR.
- Quindi ogni funzione logica booleana può essere realizzata con un solo operatore detto universale.

Gli operatori universali

- Tutte le porte logiche possono essere realizzate utilizzando dolo porte NAND o NOR.
- La presenza di operatori universali è molto importante per la costruzione dei circuiti digitali.

