DFT Approach into the Physical Properties of MTe₃(M=Hf, Zr): A Comprehensive Study

Faiza Rahman¹, M. M. Hossain^{1*}, M. A. Ali¹, M. M. Uddin¹, A. K. M. A. Islam^{2,3}, S. H. Naqib²

- ¹Department of Physics, Chittagong University of Engineering and Technology (CUET), Chattogram-4349, Bangladesh
- ²Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh
- ³Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh

*Corresponding authors: mukter_phy @cuet.ac.bd

INTRODUCTION

- *Transition-metal trichalcogenide compounds, MTe₃ (M=Hf, Zr) have recently piqued interest due to its mechanical, chemical and dynamical stability and also their prospective applications in various electronic and optoelectronic devices.
- **The appearance of superconductivity with** \sim Tc = 2 K of HfTe₃ has been confirmed experimentally.
- **These compounds have a great prospect as a coating materials due to its high value of reflectivity.**

Theoretical Methodology

- DFT calculations are performed using the Cambridge Serial Total Energy Package (CASTEP).
- The generalized gradient approximation (GGA) is used for electron exchange correlation function with the Perdew-Burke-Ernzerhof (PBE) type to perform geometry optimization. Elastic constants were calculated by the 'stress-strain' method using CASTEP program.
- The bulk modulus, B, shear modulus G and Young modulus, Y were obtained from the calculated elastic constants C_{ii}.

Structural Properties

Fig. 1: Optimized crystal structure of M Ie ₃ (M= Hf, Zr)								
Optimized parameters	a	b	c	V	Ref.			
HfTe ₃	5.883	3.988	10.649	247.882	This			
	5.8845	3.9026	10.0551	228.70	Ref. 1			
ZrTe ₃	5.89480	3.926400	10.1040	231.62421	This			
	5.1339	3.6363	9.0032	•••••	Ref. 2			

Table 1: Optimized lattice parameters, a, b and c (Å), unit cell volume V (Å³) of MTe₃ (M =Hf and Zr) compounds

- The obtained structural parameters, such as lattice parameters, angles, and volume, agree with the previous study.
- The crystal system is monoclinic with space group P_{21}/m (No. 11)

Electronic Properties

- Electronic band structure profile demonstrates that the studied compounds are metallic in nature.
- The Partial density of states (PDOS) confirms that the prime contribution to the conductivity comes from the Te-p orbital electrons.

Mechanical Properties

Compounds	C ₁₁	C_{12}	C_{13}	C_{23}	C_{22}	C_{33}	C ₄₄	C ₅₅	C ₆₆	CP
HfTe ₃	94	94	11	18	87	41	28	16	22	66
ZrTe ₃	105	16	14	17	82	49	34	9	22	-18

Table 2: The calculated single crystal elastic constants Cij (GPa) and Cauchy pressure (CP) for MTe₃ (M =Hf and Zr).

Compounds	В	G	\mathbf{Y}	G/B	υ
HfTe ₃	28	21	50	0.74	0.20
ZrTe ₃	35	22	55	0.63	0.23

Table 3: The calculated bulk modulus, B (GPa), shear modulus, G (GPa), Young's modulus, Y (GPa), Pugh ratio G/B, and Poisson ratio, vfor MTe₃ (M =Hf and Zr).

- The title compounds are mechanically stable, which is confirmed from the stiffness constants.
- The value of Pugh's ratio (ratio of shear and bulk modulus) indicates that ZrTe₃ is less brittle in nature compared to HfTe₃.
- The title compounds are predicted to be highly soft and anisotropic in nature.

- 1. S. Li, J. Peng, S. Zhang and G. Chen Phys. Rev. B96, 174510 (2017)
- 2. D. S. Muratov, V. O. Vanyushin, N.S. Vorobeva, P. Jukova,
- A. Lipatov, E. A. Kolesnikov, D. karpenkov, D. V. Kuznetsov, and A. Sinitskii J. Alloys Compd.815, 152316 (2020)

Conclusions

- The obtained structural parameters, such as lattice parameters, angles, and volume, agree with the previous study.
- Electronic band structure demonstrates that there are no band gaps between the valence and conduction bands, making the material metallic.
- The mechanical properties that are technologically important (stiffness constant, elastic moduli, brittle/ductile behavior, Poisson's ratio, anisotropy, and hardness) are thoroughly examined and addressed. When compared to HfTe₃, the value of Pugh's ratio (ratio of shear and bulk modulus) indicates that ZrTe₃ is less brittle in nature. The title compounds are projected to be highly soft and anisotropic in nature.