On Parity Game Preorders and the Logic of Matching Plays

SOFSEM 2016

Maciej Gazda and Tim Willemse*

Context

Parity games:

- machinery for deciding (bi)simulations and model checking
 - modal μ -calculus: $\mathcal{K} \models \nu X.\mu Y.(\langle a \rangle X \vee \langle b \rangle Y)$
 - same for first-order extensions of μ -calculus

Context

Parity games:

- machinery for deciding (bi)simulations and model checking
 - modal μ -calculus: $\mathcal{K} \models \nu X.\mu Y.(\langle a \rangle X \vee \langle b \rangle Y)$
 - same for first-order extensions of μ -calculus
- Provide semantics to fixpoint logics
 - BES: X in $(\mu X = (X \land Y) \lor Z)$ $(\mu Y = X)$ $(\nu Z = Z)$
 - LFP: [**Ifp** $Xst.sRt \lor \exists_u sRu \land Xut]s_0t_0$
 - PBES: $X(s_0, t_0)$ in $(\mu X(s, t) = s R t \lor \exists_u s R u \land X(u, t))$

Context

Parity games:

- machinery for deciding (bi)simulations and model checking
 - modal μ -calculus: $\mathcal{K} \models \nu X.\mu Y.(\langle a \rangle X \vee \langle b \rangle Y)$
 - same for first-order extensions of μ -calculus
- Provide semantics to fixpoint logics
 - BES: X in $(\mu X = (X \wedge Y) \vee Z)$ $(\mu Y = X)$ $(\nu Z = Z)$
 - LFP: [**Ifp** $Xst.sRt \lor \exists_u sRu \land Xut]s_0t_0$
 - PBES: $X(s_0, t_0)$ in $(\mu X(s, t) = s R t \lor \exists_u s R u \land X(u, t))$

Underlying motivation for this work

 understand how to automatically/cheaply 'simplify' LFP/(P)BES formulae

Parity games

- ► Two players: ◊ (Even) and □ (Odd)
- infinite duration
- played on a game graph

Definition

A parity game is a tuple $(V, E, p, (V_{\Diamond}, V_{\Box}))$ where

- ► (V, E) is a directed graph
- ▶ V a set of vertices partitioned into V_{\Diamond} and V_{\Box}
- ► E a total edge relation (i.e., at least one neighbour)
- ▶ $p: V \to \mathbb{N}$ a priority function (also called *colours*)

Rules of the game:

Rules of the game:

- 1. place a token on some vertex ν
- 2. owner of the vertex ν moves token to successor vertex ν'
- 3. Repeat step 2

Rules of the game:

- 1. place a token on some vertex ν
- 2. owner of the vertex ν moves token to successor vertex ν'
- 3. Repeat step 2

Play: infinite sequence of vertices visited by token

Rules of the game:

- 1. place a token on some vertex ν
- 2. owner of the vertex ν moves token to successor vertex ν'
- 3. Repeat step 2

Play: infinite sequence of vertices visited by token

Winner of a play $\pi = \nu_1 \nu_2 \nu_3 \dots$

Let $\inf(\pi)$ be the set of priorities occurring infinitely often in π

Play π is winning for player \Diamond iff min(inf(π)) is even.

A strategy for player \Diamond is a partial function $\varrho:V^*\times V_{\Diamond}\to V$

A strategy for player \Diamond is a partial function $\varrho:V^*\times V_{\Diamond}\to V$

$$\varrho(\underbrace{\nu_1 \dots \nu_{n-1}}_{\text{history}}, \underbrace{\nu_n}_{\text{currently}}) \in \underbrace{\{\nu \mid (\nu_n, \nu) \in E\}}_{\text{next position}}$$

A strategy for player \lozenge is a partial function $\varrho: V^* \times V_{\lozenge} \to V$

$$\varrho(\underbrace{v_1 \dots v_{n-1}}_{\text{history}}, \underbrace{v_n}_{\text{currently}}) \in \underbrace{\{v \mid (v_n, v) \in E\}}_{\text{next position}}$$

- Play $\pi = v_1 v_2 v_3 \dots$ is consistent with strategy ϱ iff $\varrho(v_1 \dots v_{i-1}, v_i) = v_{i+1}$ when $\varrho(v_1 \dots v_{i-1}, v_i)$ is defined.
- ▶ Strategy ϱ is winning for \Diamond from ν iff \Diamond wins all ϱ -consistent plays
- ▶ Player \lozenge wins $W \subseteq V$ iff from all $v \in W$ she has a winning strategy

Theorem (Positional determinacy)

- Every vertex is won by either ◊ or □.
- ► Player ◊ wins a vertex w iff she has a memoryless strategy that is winning from w

Theorem (Positional determinacy)

- Every vertex is won by either ◊ or □.
- ► Player ◊ wins a vertex w iff she has a memoryless strategy that is winning from w

Theorem (Positional determinacy)

- ► Every vertex is won by either ◊ or □.
- ► Player ◊ wins a vertex w iff she has a memoryless strategy that is winning from w

Simplifying parity games (if game is explicit)

- 1. Use a behavioural equivalence relation (e.g. bisimulation)
- 2. Compute quotient (minimise)
- 3. Solve quotient game

Simplifying parity games (if game is explicit)

- 1. Use a behavioural equivalence relation (e.g. bisimulation)
- 2. Compute quotient (minimise)
- 3. Solve quotient game

Naively, a parity game ≈ Kripke structure

- ▶ Atomic propositions $AP = \mathbb{N} \times \{\lozenge, \square\}$
- bisimulation (⇔) is 'sound':

 $v \leftrightarrow w$ implies v and w won by same player

Example: bisimulation minimisation of a parity game

'Game-based' (bi)simulations required to minimise:

Example: bisimulation minimisation of a parity game

'Game-based' (bi)simulations required to minimise:

Example: bisimulation minimisation of a parity game

'Game-based' (bi)simulations required to minimise:

- ► Various 'game-based' (bi)simulations, eg:
 - direct simulation
 - delayed simulation
 - governed stuttering bisimulation
- Definitions seem ad-hoc
- Horrible proofs of soundness and transitivity

A more generic approach:

Any Kripke structure preorder defined through matching paths induces a parity game preorder by relating matching plays

- ▶ Given a relation $R \subseteq S \times S$ on (states of) a Kripke structure
- ► Given a predicate Rel(R) which holds iff R is a Rel-relation
 - Think of $Rel(R) \equiv {}^{\iota}R$ is a simulation relation'

- ▶ Given a relation $R \subseteq S \times S$ on (states of) a Kripke structure
- ► Given a predicate Rel(R) which holds iff R is a Rel-relation
 - Think of Rel(R) ≡ 'R is a simulation relation'

Rel is characterised by a *path-matching* predicate Rel-match_R^L iff for all $R \subseteq S \times S$, Rel(R) holds iff for all s R t:

```
for all \pi_s \in \mathsf{Paths}(s) there is a \pi_t \in \mathsf{Paths}(t) such that \mathsf{Rel\text{-}match}_R^L(\pi_t, \pi_s)
```

- ▶ Given a relation $R \subseteq S \times S$ on (states of) a Kripke structure
- ► Given a predicate Rel(R) which holds iff R is a Rel-relation
 - Think of Rel(R) ≡ 'R is a simulation relation'

Rel is characterised by a *path-matching* predicate Rel-match_R^L iff for all $R \subseteq S \times S$, Rel(R) holds iff for all s R t:

for all $\pi_s \in \mathsf{Paths}(s)$ there is a $\pi_t \in \mathsf{Paths}(t)$ such that $\mathsf{Rel-match}_R^L(\pi_t, \pi_s)$

Example: for $Rel(R) \equiv 'R$ is a simulation relation', predicate Rel-match $_R^L(\pi, \pi')$ is given by $\forall_i : L(\pi'_i) = L(\pi_i)$ and $\pi'_i R \pi_i$.

Preorders through Matching Plays

Rel	$Rel-match^L_R(\pi,\pi')$
trace inclusion	for all i , $L(\pi_i') = L(\pi_i)$.
simulation	for all i , $L(\pi_i') = L(\pi_i)$ and $\pi_i' R \pi_i$.
bisimulation	for all i, $L(\pi_i') = L(\pi_i)$, $\pi_i' R \pi_i$ and $\pi_i R \pi_i'$.
stuttering simulation	there is a non-decreasing, unbounded function $f:\omega\to\omega$ with $f(1)=1$ such that for all i and all $j\in [f(i),f(i+1)),$ $L(\pi_i')=L(\pi_j)$ and π_i' R π_j
stuttering bisimulation	there is a non-decreasing, unbounded function $f: \omega \to \omega$ with $f(1) = 1$ such that for all i and all $j \in [f(i), f(i+1))$, $L(\pi_i') = L(\pi_j)$, $\pi_i' R \pi_j$ and $\pi_j R \pi_i'$.

Preorders through Matching Plays Parity game relations through matching plays

Assume Rel (on KS) is characterised through matching paths

 $R \subseteq V \times V$ is a parity game Rel-relation iff v R w implies

for all \lozenge -strategies σ_{ν} there is an \lozenge -strategy σ_{w} such that for all σ_{w} -plays π_{w} there is a σ_{ν} -play π_{ν} satisfying: Rel-match $_{R}^{p}(\pi_{w}, \pi_{\nu})$

 $v \sqsubseteq_{Rel} w$ iff v R w for some parity game Rel-relation R

Theorem (Transitivity)

Relation \sqsubseteq_{Rel} is transitive follows from:

- 1. Monotonicity (in R) of Rel-match $_R^p$
- 2. For preorders R s.t. Rel(R), Rel-match $_R^p$ is a preorder

Theorem (Transitivity)

Relation \sqsubseteq_{Rel} is transitive follows from:

- 1. Monotonicity (in R) of Rel-match $_R^p$
- 2. For preorders R s.t. Rel(R), Rel-match $_R^p$ is a preorder

Consequence

► Every $\sqsubseteq_{\mathsf{Rel}}$, for Rel in the previous table, is a preorder

Theorem (Soundness)

 $v \sqsubseteq_{Rel} w$ implies if \Diamond wins v then \Diamond wins w follows if:

• for all plays π_{ν} won by \Diamond and all plays π_{w} , if Rel-match $_{P}^{p}(\pi_{w}, \pi_{\nu})$ then also π_{w} is won by \Diamond .

Theorem (Soundness)

 $v \sqsubseteq_{Rel} w$ implies if \Diamond wins v then \Diamond wins w follows if:

• for all plays π_{ν} won by \Diamond and all plays π_{w} , if Rel-match $_{p}^{p}(\pi_{w},\pi_{\nu})$ then also π_{w} is won by \Diamond .

Consequence

▶ Every \sqsubseteq_{Rel} , for Rel in the previous table, is sound

Existing and new parity game preorders

Theorem

- direct simulation = $\sqsubseteq_{simulation}$
- governed bisimulation = \(\subseteq \text{bisimulation} \)
- governed stuttering bisimulation =

≡stuttering bisimulation

Existing and new parity game preorders

Theorem

- direct simulation = $\sqsubseteq_{simulation}$
- governed bisimulation = □_{bisimulation}
- governed stuttering bisimulation =

⊑stuttering bisimulation

New parity game relations:

- governed trace inclusion
- governed stuttering simulation
- **.**...

Conclusions/Future work

- Uniform way of obtaining parity game relations
- 'Easy' proof of soundness and transitivity

Conclusions/Future work

- Uniform way of obtaining parity game relations
- 'Easy' proof of soundness and transitivity
- Logics that characterise parity game preorders
 - We have them...
 - Some are straightforward adaptations of those from KS
 - Some are subtly different
 - Apparently no generic way to transfer KS logic to PG logic

Conclusions/Future work

- Uniform way of obtaining parity game relations
- 'Easy' proof of soundness and transitivity
- Logics that characterise parity game preorders
 - We have them...
 - Some are straightforward adaptations of those from KS
 - Some are subtly different
 - Apparently no generic way to transfer KS logic to PG logic
- Decidability and complexity

Logic characterising parity game preorders

Relation	Fragment	Grammar
⊑simulation	AHML≦	$\phi, \psi ::= \mathfrak{t} \mid \langle n \rangle_{\Diamond} \phi \mid \phi \wedge \psi \mid \phi \vee \psi$
⊑bisim	AHML∺	$\phi, \psi ::= \mathbf{t} \mid \neg \phi \mid \langle n \rangle_{\!\!\!\!/} \phi \mid \phi \wedge \psi \mid \frac{\phi}{\phi} \vee \psi$
⊑stut. sim	AHML≤₅	$\phi, \psi ::= \mathbf{t} \mid \phi \wedge \psi \mid \stackrel{\phi}{\phi} \vee \stackrel{\psi}{\psi} \mid \phi \left\langle\!\left\langle n \right\rangle\!\right\rangle\!\right\rangle \psi \mid \phi \left\langle\!\left\langle n \right\rangle\!\right\rangle\!\right\rangle^{\infty}_{\Diamond} \psi$
⊑ _{stut.} bisim	$AHML^{\ensuremath{igsigma} s}$	$\phi, \psi ::= \mathbf{t} \mid \neg \phi \mid \phi \land \psi \mid \textcolor{red}{\phi} \lor \textcolor{red}{\psi} \mid \phi \ \langle\!\langle n \rangle\!\rangle_{\!\lozenge} \ \psi \mid \phi \ \langle\!\langle n \rangle\!\rangle_{\!\lozenge}^{\!\infty} \ \psi$
⊑ _{stut.} sim	AHML [≤] s	$\phi, \psi ::= \mathfrak{t} \mid \phi \wedge \psi \mid \phi \vee \psi \mid \phi \langle \langle n \rangle \rangle_{\Diamond} \psi \mid \phi \langle \langle n \rangle \rangle_{\Diamond}^{\infty} \psi$

 $\phi, \psi ::= f \mid t \mid \neg \phi \mid \langle n \rangle_{\scriptscriptstyle \Theta} \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \langle \langle n \rangle \rangle_{\scriptscriptstyle \Theta} \psi \mid \phi \langle \langle n \rangle \rangle_{\scriptscriptstyle \Theta}^{\infty} \psi$

 AHML^{\leq_t}

AHML

Etrace inc

Logic characterising parity game preorders Arbitrary disjunctions are harmful in AHML[≤]t

 $v \sqsubseteq_{\mathsf{trace\ inc}} w \ \mathsf{and} \ w \sqsubseteq_{\mathsf{trace\ inc}} v.$

- $w \models \langle 1 \rangle_{\Diamond} (\langle 1 \rangle_{\Diamond} \langle 1 \rangle_{\Diamond} t \vee \langle 1 \rangle_{\Diamond} \langle 0 \rangle_{\Diamond} t)$
- $\qquad \qquad \nu \not\models \langle 1 \rangle_{\!\!\!\Diamond} (\langle 1 \rangle_{\!\!\!\Diamond} \langle 1 \rangle_{\!\!\!\Diamond} t \vee \langle 1 \rangle_{\!\!\!\Diamond} \langle 0 \rangle_{\!\!\!\Diamond} t)$

Games

Algorithms (n nr. of vertices m nr. of edges, d nr. of priorities):

•	1993:	Recursive alg	$\mathcal{V}(mn^{\mathbf{d}})$
•	2000:	Small Progress Measures alg $\mathcal{O}(d m (\frac{n}{\lfloor d/2 \rfloor}))$	$\left(\frac{1}{2}\right)^{\lfloor d/2\rfloor}$

▶ 2006: Deterministic Subexponential alg.....
$$\mathcal{O}(n^{\sqrt{n}})$$

▶ 2007: Bigstep alg.....
$$\mathcal{O}(n^{d/3})$$

Games

Algorithms (n nr. of vertices m nr. of edges, d nr. of priorities):

▶ 2000: Small Progress Measures alg.....
$$\mathcal{O}(d \, m \, (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$$

▶ 2006: Deterministic Subexponential alg.....
$$\mathcal{O}(n^{\sqrt{n}})$$

▶ 2007: Bigstep alg.....
$$\mathcal{O}(n^{d/3})$$

Exact complexity remains open