

SMART ANTENNA FOR BRAIN TUMOUR APPLICATIONS

A PROJECT REPORT

Submitted by

BALAJI R 211715106018 BALAJI V 211715106019 BUVANESH G 211715106022

In partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATION ENGINEERING

RAJALAKSHMI INSTITUTE OF TECHNOLOGY CHENNAI

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2019

ANNA UNIVERSITY CHENNAI: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this Report "SMART ANTENNA FOR BRAIN TUMOR APPLICATION" is the bonafidework of Balaji R (211715106018), Balaji V (211715106019) and Buvanesh G (211715106022) who carried out the work under my supervision

SIGNATURE Dr. R. RAJESWARI, M.E., Ph.D., HEAD OF THE DEPARTMENT

Professor
Department of Electronics and
Communication Engineering
Rajalakshmi Institute of Technology
Kuthambakkam Post
Chennai-600124

SIGNATURE S.Kalaivani, M.E, SUPERVISOR

Professor
Department of Electronics and
Communication Engineering
Rajalakshmi Institute of Technology
Kuthambakkam Post
Chennai-600124

CERTIFICATE OF EVALUTION

College Name : 2117- Rajalakshmi Institute of Technology

Branch & Semester : Electronics and Communication Engineering. VIII sem.

Subject : EC6811 PROJECT WORK

TITLE OF THE PROJECT:

Smart Antenna for Brain Tumour Application.

NAME OF THE STUDENT:

BALAJI.R 211715106018 BALAJI.V 211715106019 BUVANESH.G 211715106022

The report on the project work submitted by the above students in partial fulfilment for the award of the degree of Bachelor of Engineering in ELECTRONICS AND COMMUNICATION ENGINEERING of Anna University, reported the work done by the above students and then evaluated.

The University Viva-voice was held on	The University	Viva-voice v	was held on	
---------------------------------------	----------------	--------------	-------------	--

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We wish express our hearty and sincere gratitude to our chairman **Dr.S.MEGANATHAN. B.E.,F.I.E,** for his sincere endeavor in educating us in his premier institution.

We wish to express our deep gratitude to our beloved chairperson **Dr.HAREE SHANKAR, MBBS,** for his enthusiastic motivation which helped us a lot in completing the project.

We express our thankfulness to **Dr.M.VELAN**, **M.E.**, **Ph.D.**, Principal, Rajalakshmi Institute of Technology for their kind support and the facilities provided to complete our work in time.

With profound since and regards, we acknowledge with great pleasure **Dr.R.RAJESWARI.M.E., Ph.D.,** Head of the Department, Department of Electronics and Communication Engineering for his valuable suggestions and guidance for the development and completion of our project.

We express our sincere thanks to our guide **S.KALAIVANI.**, **M.E.**, Professor, Department of Electronics and Communication Engineering, for leading us on the project.

We expend our gratitude to Mr.K.SIVAKUMAR,M.E.,(Ph.D)., Assistant Professor(SS), project coordinator for their timely organization of reviews and their support throughout the project work.

We also thanks our review committee members **Dr.R.RAJESWARI**, professor and **Dr.G.NIRMALA PRIYA**, professor, Department of Electronics and Communication Engineering for her valuable suggestions and guidance for the development and completion of our project.

Finally, we express our deep sense of gratitude to our parents, all our faculty members, technical staff and all our friends for their constant encouragement and moral support.

ABSTRACT

In this method of detection of Brain Tumour using Smart Antenna, a 3D model of the human brain is taken as the input so that the exact shape of the tumour can be identified. This detection in Tumour is very important in many diagnostic and therapeutic applications. Because of high quantity data in MRI images and blurred boundaries, tumour identification, segmentation and classification are very hard. This model proposes a brain tumour detection method to increase the accuracy and decrease the diagnosis time as well as reducing the side effects of radiation. Accurate detection of brain tumour is done by Specific Absorption Rate of the normal cells and tumour cells plays a vital role in the diagnosis of tumour. The diagnosis method consists of three stages, Antenna testing and error calculation, Sam Phantom without tumour, Sam Phantom with tumour.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
NO.		NO.
	ABSTRACT	v
	LIST OF TABLES	Ix
	LIST OF FIGURES	X
	LIST OF ABBREVIATONS	xi
1.	INTRODUCTION	1
	1.1 BRAIN CANCER STATISTICS	1
	1.2 TYPES OF BRAIN TUMOUR	5
	1.2.1 PRIMARY BRAIN TUMOUR	6
	1.2.2 SECONDARY BRAIN TUMOUR	8
	1.3 ORGANISATION OF THE REPORT	9
2.	LITERATURE REVIEW	10
	2.1 INTRODUCTION	10
	2.2 WORK PROPOSED BY VARIOUS AUTHORS	10
3.	PROPOSED METHODOLOGY	14
	3.1 INTRODUCTION	14
	3.2 SIMULATION SOFTWARE-CST	14
	3.2.1 CST SOFTWARE DESCRIPTION	14
	3.2.2 FEATURES OF CST	15
	3.2.3 ADVANTAGES OF CST	16
	3.3 HARDWARE DESCRIPTION	16
	3.3.1 CORROSION RESISTANT	17
	3.3.2 ANTIBACTERIAL	18

	3.3.3 GOOD CONDUCTOR	18
	3.3.4 SUBSTRATE	18
	3.4 BLOCK DIAGRAM	19
	3.5 FREQUENCY SELECTION	20
	3.6 ANTENNA TYPE AND DESIGN	20
	3.7 CALIBRATION	21
	3.7.1 LOAD	21
	3.7.2 SHORT	22
	3.7.3 OPEN	22
	3.8 ANTENNA	22
	3.9 WORKING AND ERROR CHECK	22
	3.10 SAM PHANTOM WITHOUT TUMOUR	23
	3.10.1 SAR REPORT	24
	3.11 SAM PHANTOM WITH TUMOUR	24
	3.11.1 SAR REPORT	25
4.	EXPERIMENTAL RESULTS AND	26
	DISCUSSION	
	4.1 INTRODUCTION	26
	4.2 EXPERIMENT	26
	4.2.1 ANTENNA ERROR CHECK	26
	4.2.2 SAM PHANTOM WITHOUT TUMOUR	28
	4.2.3 SAM PHANTOM WITH TUMOUR	30
	4.3 FABRICATED ANTENNA	32
	4.3.1 FRONT VIEW OF ANTENNA	32
	4.3.2 BACK VIEW OF ANTENNA	32

	4.4 RETURN LOSS	33
	4.5 PHASE	34
	4.6 SMITH CHART	35
	4.7 SWR	36
5.	RESULTS AND CONCLUTION	37
	5.1 CONCLUSION	37
	5.2 FUTURE WORK	37
	REFERENCES	38

LIST OF TABLES

TABL	Æ	TITLE	PAGE
NO.			NO.
4.1	Return loss		33

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		NO.
1.1	Tumour development stages	2
1.2	Brain Cancer Statistics	4
1.3	Brain Tumour Images	5
3.1	Microstrip Patch Antenna	20
3.2	Types of Calibration	21
3.3	Sam Phantom without tumour	23
3.4	SAR report without tumour	24
3.5	Sam Phantom with tumour	25
3.6	SAR report with tumour	25
4.1	Stimulated Antenna	27
4.2	S Parameter graph	27
4.3	Sam Phantom without tumour	28
4.4	Sam phantom without tumour's S Parameter graph	28
4.5	Sam Phantom with tumour	30
4.6	Sam phantom with tumour's S Parameter graph	30
4.7	Front view of antenna	32
4.8	Back view of antenna	32
4.9	Return loss graph	33
4.10	Phase shift graph	34
4.11	Smith chart graph	35
4.12	SWR graph	36

LIST OF ABBREVIATONS

ABBREVIATION EXPANSION

1D One Dimensions

2D Two Dimensions

RMS Root Mean Square

dB Decibel

dBi Decibel Isotropic

ISM Industrial Scientific Medical

MHz Mega Hertz

GHz Giga Hertz

CST Computer Stimulation Technology

SAR Specific Absorption Rate

MRI Magnetic Resonance Imaging

W Weber

Kg Kilogram

XML Extensive Mark up Language

XPS XML Paper Specification

PDF Portable Document Format