Artificial Intelligence with Python

Lab Report 03: PANDAS

Name: Ghulam SarwarCMS ID: 033-16-0017

Instructor: Dr. Gulsher Ali

1- Load the Titanic Dataset in Kaggle notebook from given link below: https://www.kaggle.com/hesh97/titanicdataset-traincsv

(https://www.kaggle.com/hesh97/titanicdataset-traincsv) Use the bar plot to show following plots:

PART_01

Plot the Number of people survived and did not survive. Hint: Plot the counts values of "Survived" column of dataset.

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
titanic_data = pd.read_csv('../input/titanicdataset-traincsv/train.csv')
sb.countplot(x = 'Survived', data=titanic_data)
titanic_data
```

Out[1]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450
		•••		•••	•••			•••	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376

891 rows × 12 columns

PART_02

Also plot survived comparison by class and by gender

```
In [2]:
```

```
import pandas as pd
import seaborn as sb
titanic_data = pd.read_csv('../input/titanicdataset-traincsv/train.csv')
sb.countplot(x='Survived',data=titanic_data,palette = "Set2",hue='Sex')
sb.countplot(x='Survived',data=titanic_data,hue='Pclass')
```

Out[2]:

<AxesSubplot:xlabel='Survived', ylabel='count'>

PART_03

Use the "groupby" function of Pandas to group the mean values (of all features) of passengers" gender and class.

```
In [3]:
import pandas as pd
import seaborn as sb
titanic_data = pd.read_csv('../input/titanicdataset-traincsv/train.csv')
titanic_data.groupby('Sex').mean(),titanic_data.groupby('Pclass').mean()
 Out[3]:
        PassengerId Survived Pclass
                                            Age
                                                    SibSp
Parch \
 Sex
 female 431.028662 0.742038 2.159236 27.915709 0.694268 0.
649682
 male
       454.147314 0.188908 2.389948 30.726645 0.429809
235702
             Fare
 Sex
 female 44.479818
 male
        25.523893 ,
        PassengerId Survived Age
                                           SibSp
                                                    Parch
Fare
Pclass
 1
         461.597222 0.629630 38.233441 0.416667 0.356481 8
4.154687
2
         445.956522 0.472826 29.877630 0.402174 0.380435 2
0.662183
 3
         439.154786 0.242363 25.140620 0.615071 0.393075 1
3.675550)
```

Explore how to add and delete column from a data frame, explain and illustrate with an example. Also define concept of axis in pandas.

Answer:

• Using DataFrame.insert() to add a column

df.insert(2, "Age", [21, 23, 24, 21], True),"2" is the position of the column, then column name and its data and set the inplace argument is True. If we change the inplace argument to False then we can't rename it.

- Remove column name 'A', we use the drop() method. i.e. df.drop(['A'], axis = 1)
- The axis argument is either 0 when it indicates rows and 1 when it is used to drop columns.

Generate a random data frame of 20 rows and 04 columns and change their columns names.

```
In [4]:
```

```
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.rand(20,4))
data.columns = ['A','B','C','D']
data
```

Out[4]:

	А	В	С	D
0	0.069831	0.447289	0.025863	0.828246
1	0.084170	0.138675	0.323775	0.118306
2	0.714977	0.575612	0.948237	0.258701
3	0.997996	0.073606	0.776104	0.289549
4	0.663651	0.305138	0.950782	0.321370
5	0.545764	0.397225	0.824474	0.743121
6	0.172301	0.025188	0.229278	0.505008
7	0.781613	0.081253	0.981055	0.788419
8	0.012391	0.865172	0.426999	0.083712
9	0.603591	0.666125	0.991409	0.967289
10	0.905258	0.681688	0.680799	0.826976
11	0.717693	0.828127	0.077290	0.263329
12	0.241906	0.470108	0.515302	0.370586
13	0.598966	0.180303	0.856625	0.885775
14	0.952100	0.646428	0.972059	0.909470
15	0.481727	0.703221	0.070683	0.968710
16	0.431279	0.713759	0.678772	0.125264
17	0.916120	0.701345	0.578164	0.437985
18	0.713053	0.775857	0.525952	0.070901
19	0.675262	0.323636	0.788212	0.560643

Apply logical conditions to print values greater than 0.5 in any one column.

```
In [5]:
```

```
import pandas as pd
import numpy as np
Data = pd.DataFrame(np.random.rand(20,4))
Data = Data[Data > 0.5]
Data
```

Out[5]:

	0	1	2	3
0	NaN	0.681447	0.523002	NaN
1	NaN	0.915859	NaN	NaN
2	0.925745	NaN	NaN	NaN
3	NaN	0.689410	0.712809	0.791262
4	0.806964	0.905816	0.695568	NaN
5	NaN	NaN	NaN	NaN
6	0.610038	NaN	NaN	NaN
7	0.887043	0.840946	NaN	NaN
8	NaN	NaN	0.541174	0.798168
9	0.594403	0.660719	0.850070	0.819968
10	0.976767	NaN	NaN	0.696168
11	0.828213	0.657629	0.716942	0.724564
12	0.717707	0.532712	0.804777	0.908158
13	NaN	0.894761	NaN	0.948371
14	0.549902	0.679874	NaN	NaN
15	NaN	0.871706	NaN	NaN
16	0.548290	NaN	NaN	0.597293
17	NaN	0.828756	NaN	0.760227
18	NaN	0.864193	0.842092	NaN
19	NaN	NaN	NaN	0.754899

Explore sort function in Pandas, apply ascending and descending sorting according.

In [6]:

```
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.rand(20,4))
data.columns = ['A','B','C','D']
#data of column A is sort in ascending Order and Column B sort in descending orde
r.
data.sort_values(by='A', ascending=True),data.sort_values(by='B',ascending=False))
```

Out[6]:

(А	В	С	D
17	0.031138	0.517919	0.793281	0.657622
18	0.102630	0.369786	0.731633	0.700404
0	0.118831	0.491025	0.738283	0.969084
10	0.146729	0.120487	0.269104	0.383900
16	0.176165	0.751997	0.190086	0.940886
14	0.205057	0.415023	0.379708	0.816027
5	0.217516	0.835165	0.071027	0.608958
3	0.235302	0.853471	0.053725	0.622969
9	0.390502	0.941143	0.852058	0.032018
1	0.408124	0.211590	0.735392	0.585510
8	0.492108	0.919017	0.553552	0.212700
4	0.500963	0.060900	0.573474	0.342855
15	0.668436	0.783976	0.158918	0.137596
11	0.702004	0.991834	0.378603	0.625031
7	0.748709	0.251168	0.937220	0.589441
6	0.783395	0.095850	0.248631	0.224988
19	0.800210	0.343622	0.928233	0.197981
2	0.825349	0.319851	0.851632	0.945442
13	0.898191	0.942837	0.503853	0.443568
12	0.968203	0.139958	0.533965	0.808591
	Α	В	С	D
11	0.702004	0.991834	0.378603	0.625031
13	0.898191	0.942837	0.503853	0.443568
9	0.390502	0.941143	0.852058	0.032018
8	0.492108	0.919017	0.553552	0.212700
3	0.235302	0.853471	0.053725	0.622969
5	0.217516	0.835165	0.071027	0.608958
15	0.668436	0.783976	0.158918	0.137596
16	0.176165	0.751997	0.190086	0.940886
17	0.031138	0.517919	0.793281	0.657622
0	0.118831	0.491025	0.738283	0.969084
14	0.205057	0.415023	0.379708	0.816027
18	0.102630	0.369786	0.731633	0.700404
19	0.800210	0.343622	0.928233	0.197981
2	0.825349	0.319851	0.851632	0.945442
7	0.748709	0.251168	0.937220	0.589441
1	0.408124	0.211590	0.735392	0.585510
12	0.968203	0.139958	0.533965	0.808591
10	0.146729	0.120487	0.269104	0.383900
6	0.783395	0.095850	0.248631	0.224988
4	0.500963	0.060900	0.573474	0.342855

Loc and iloc are two functions of pandas for accessing the data from the data frame. Define the difference between them and use them each in at least 2 example

- loc is label-based, which means that we have to specify the name of the rows and columns that we need to filter out.
- On the other hand, iloc is integer index-based. So here, we have to specify rows and columns by their integer index.

```
loc[row_label, column_label]

iloc[row_position, column_position]
```

Example 01: LOC[]

```
In [7]:

import pandas as pd

Data = pd.DataFrame({'A':[1,23,4,12],'B':[34,14,62,14],'C':["Asif","Sarwar",2,31
],'D':[2,44,52,1.2]})
index = ['A','B','C','D']
Data.loc[:,'A']
Out[7]:
```

```
0 1
1 23
2 4
3 12
Name: A, dtype: int64
```

Example 02: LOC[]

In [8]:

```
import pandas as pd
data = pd.read_csv('../input/world-happiness/2019.csv')
data.loc[1,'Score'],data
```

Out[8]:

(7.6,				
	Overall rank	Country or region	Score GDP per	capita
\				
0	1	Finland	7.769	1.340
1	2	Denmark	7.600	1.383
2	3	Norway	7.554	1.488
3	4	Iceland	7.494	1.380
4	5	Netherlands	7.488	1.396
		0 0		
151	152	Rwanda	3.334	0.359
152	153	Tanzania	3.231	0.476
153	154	Afghanistan	3.203	0.350
154	155	Central African Republic	3.083	0.026
155	156	South Sudan	2.853	0.306
	Social support	Healthy life expectancy	Freedom to mak	e life
choice	es \			
0	1.587	0.986		
0.596				
1	1.573	0.996		
0.592				
2	1.582	1.028		
0.603				
3	1.624	1.026		
0.591				
4	1.522	0.999		
0.557				
151	0.711	0.614		
0.555				
152	0.885	0.499		
0.417				
153	0.517	0.361		
0.000				
154	0.000	0.105		
0.225				
155	0.575	0.295		
0.010				
		rceptions of corruption		
0	0.153	0.393		
1	0.252	0.410		

```
10/26/21, 3:15 PM
                                                      notebook
    2
                0.271
                                               0.341
    3
                0.354
                                               0.118
    4
                0.322
                                               0.298
                  . . .
                                                 . . .
                0.217
    151
                                               0.411
    152
                0.276
                                               0.147
    153
                0.158
                                               0.025
    154
                0.235
                                               0.035
    155
                0.202
                                               0.091
    [156 rows x 9 columns])
   4
```

Example 01: iloc[]

In [9]:

```
import pandas as pd
import numpy as np
Data = pd.read_csv('../input/world-happiness/2019.csv')
Data.iloc[:,1]
 Out[9]:
0
                         Finland
                         Denmark
1
2
                          Norway
3
                         Iceland
                     Netherlands
4
151
                          Rwanda
152
                        Tanzania
153
                     Afghanistan
```

Example 02: iloc[]

154

155

Central African Republic

South Sudan Name: Country or region, Length: 156, dtype: object

In [10]:

```
import pandas as pd
Data = pd.read_csv('../input/world-happiness/2019.csv')
Data.iloc[1,2],Data
```

Out[10]:

(7.6,			
	Overall rank	Country or region	Score GDP per capita
\			
0	1	Finland	7.769 1.340
1	2	Denmark	7.600 1.383
2	3	Norway	7.554 1.488
3	4	Iceland	7.494 1.380
4	5	Netherlands	
			• • • • • • • • • • • • • • • • • • • •
151	152	Rwanda	
152	153	Tanzania	
153	154	Afghanistan	
154		Central African Republic	
155	156	South Sudan	2.853 0.306
	Social suppor	t Healthy life expectancy	Freedom to make life
choic	es \		
0	1.58	7 0.986	
0.596			
1	1.57	3 0.996	
0.592			
2	1.58	2 1.028	
0.603			
3	1.62	4 1.026	
0.591			
4	1.52	2 0.999	
0.557			
151	0.71	1 0.614	
0.555			
152	0.88	5 0.499	
0.417			
153	0.51	7 0.361	
0.000			
154	0.00	0 0.105	
0.225			
155	0.57	5 0.295	
0.010			
	0		
		erceptions of corruption	
0	0.153	0.393	
1	0.252	0.410	

10/26/21, 3:15 PM		_	_notebook
2	0.271	0.341	
3	0.354	0.118	
4	0.322	0.298	
• •			
151	0.217	0.411	
152	0.276	0.147	
153	0.158	0.025	
154	0.235	0.035	
155	0.202	0.091	

[156 rows x 9 columns])