

Week 3: Stochasticity

Dr. Rachel Sippy University of Cambridge

Week 3 Overview

- Monday, August 9:
 - Guest lecture & R session by Megan O'Driscoll
 - Stochastic models
 - Guided practice in R
- Tuesday, August 10:
 - Step-by-step model building
 - Building a COVID-19 model
 - Guided practice in R
- Wednesday, August 11:
 - Comparing models to data & evaluating models
 - Guided practice in R

Post Questions in the Chat!

(or ask over microphone)

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	Guest lecture: COVID-19 with Megan O'Driscoll
3:00-3:10 pm	Break
3:10-4:00 pm	Stochasticity
4:00-4:10 pm	Break
4:00-5:00 pm	R Session

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	Guest lecture: COVID-19 with Megan O'Driscoll
3:00-3:10 pm	Break
3:10-4:00 pm	Stochasticity
4:00-4:10 pm	Break
4:00-5:00 pm	R Session

Stochasticity

Objectives

- Understand the difference between deterministic and stochastic models
- Understand options for adding stochasticity to a model

Deterministic Stochastic

Deterministic

- Describe what happens "on average" in a population
- Use average (single) value/transition rates in models

Deterministic

- Describe what happens "on average" in a population
- Use average (single) value/transition rates in models

Deterministic

- Describe what happens "on average" in a population
- Use average (single) value/transition rates in models

- Describes range of possible outcomes by incorporating chance
- Use many (distribution) values/transition rates in models

Deterministic

- Describe what happens "on average" in a population
- Use average (single)
 value/transition rates in models

- Describes range of possible outcomes by incorporating chance
- Use many (distribution) values/transition rates in models

Deterministic

- Describe what happens "on average" in a population
- Use average (single)
 value/transition rates in models

Stochastic - Random!

- Describes range of possible outcomes by incorporating chance
- Use many (distribution) values/transition rates in models

• Where does randomness/stochasticity come from in epidemiological data?

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error
 - we don't observe all cases
 - some cases may be incorrectly classified
 - we don't record all cases (data errors)

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error
 - we don't observe all cases
 - some cases may be incorrectly classified
 - we don't record all cases (data errors)
 - incorporated into many statistical analyses/models

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error
 - we don't observe all cases
 - some cases may be incorrectly classified
 - we don't record all cases (data errors)
 - incorporated into many statistical analyses/models
 - randomness of infection → process stochasticity
 - random error

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error
 - we don't observe all cases
 - some cases may be incorrectly classified
 - we don't record all cases (data errors)
 - incorporated into many statistical analyses/models
 - randomness of infection → process stochasticity
 - random error
 - infection event is a random event
 - will a susceptible contact an infected? will transmission occur?

- Where does randomness/stochasticity come from in epidemiological data?
 - we cannot observe/measure perfectly → observational stochasticity/randomness
 - measurement error
 - we don't observe all cases
 - some cases may be incorrectly classified
 - we don't record all cases (data errors)
 - incorporated into many statistical analyses/models
 - randomness of infection → process stochasticity
 - random error
 - infection event is a random event
 - will a susceptible contact an infected? will transmission occur?
 - can have profound impact on epidemic dynamics

$$I_t = \rho C_t$$

I_t: number infectedρ: reporting rateC_t: case count

Process Stochasticity

- Infection events are random events!
 - number of individuals you are in contact with
 - whether disease is transmitted during a contact
- These events can have a major impact on an epidemic
 - we want to build this uncertainty into our model

Probability of infection=50%

Starting population

This is what the outcome will be no matter how many times we run the model!

Probability of infection=50%

Starting population

Starting population

Probability of infection=50%

Starting population

Starting population

Average # infected will be 5

Deterministic

Stochastic

Starting population

If we have many people, variance will be small - in this case deterministic predictions approximate reality

Starting population

Process Stochasticity in Models

 Depends on modeling methods being used, multiple ways to include in models

Process Stochasticity in Models

- Depends on modeling methods being used, multiple ways to include in models
- Model able to produce different results - even without changing our input values
 - adding stochasticity causes this

Process Stochasticity in Models

- Depends on modeling methods being used, multiple ways to include in models
- Model able to produce different results - even without changing our input values
 - adding stochasticity causes this

- Why do we want to add stochasticity?
 - adds variability to each simulation/modeling run
 - demonstrate extremes of disease dynamics
 - more realistic, more robust

 Instead of using a single value for our model parameters, we can use a distribution of values

- Instead of using a single value for our model parameters, we can use a distribution of values
- What are distributions?

- Instead of using a single value for our model parameters, we can use a distribution of values
- What are distributions?
 - represents probability that different outcomes will occur

Histogram of heights of 100 men

- Histogram of heights of 100 men
- Approximately normal!
- $Height \sim N(170,30)$

Histogram of daily number of contacts

- Histogram of daily number of contacts
- Lognormal distribution!
- $C \sim LogNormal(0.2)$

 Histogram of time to infection

- Histogram of time to infection
- Gamma distribution!
- $tInf \sim Gamma(2, rate = 1)$

- Instead of using a single value for our model parameters, we can use a distribution of values
- What are distributions?
 - represents probability that different outcomes will occur
- We can tell the model to select one of the values from the distribution for each run/simulation
- We can include a distribution when making calculations/estimates

- Example: modeling force of infection (λ)
 - $\lambda(t) = \beta S(t)I(t)$
 - I(t+1) = $\sim NegBin(\lambda(t), S(t))$

Comparison

Deterministic

- Use average (single) transition rates in models
 - $\beta = 1$

Stochastic - Random!

- Use many (distribution) transition rates in models
 - $\beta \sim N(1,0.25)$

Modeling with Stochasticity

- Important part of infectious disease dynamics
- Can impact trajectory of disease
- Many ways to integrate stochasticity
 - directly add chance to your equations

Questions?

10 minute break

Workshop Schedule

Time	Topics
2:00-2:10 pm	Greetings
2:10-3:00 pm	Guest lecture: COVID-19 with Megan O'Driscol
3:00-3:10 pm	Break
3:10-4:00 pm	Stochasticity
4:00-4:10 pm	Break
4:00-5:00 pm	R Session