WO 2004/110982

PCT/SE2004/000966

- 10 1420 Madel Gratte 10 DEC 2005

Claims:

1. A process for the preparation of a compound of formula I

in which a compound of formula II

in which R is H or OR represents a protecting group for a carboxylic hydroxy group is reacted with a compound of formula III

 $C_6H_{13}X$

Ш

wherein X is a leaving group, in the presence of a base in the presence of an inert solvent at a

- temperature in the range -25°C to 150°C and optionally, when OR represents a protecting group, removal of the protecting group.
 - 2. A process for the preparation of a compound of formula I

$$(CH_2)_2 - N_1 - O_1 -$$

20 comprising reacting a compound of formula IV

with a compound of formula III

 $C_6H_{13}X$

IV

Ш

wherein X is a leaving group in the presence of a base in the presence of an inert solvent at a temperature in the range -25°C to 150°C.

10 3. A compound of formula II

in which OR represents a protecting group for a carboxylic hydroxy group.

- A compound according to claim 3 in which OR represents a C₁₋₆alkoxy group.
 - 5. A compound according to either claim 3 or 4 which is the 2S enantiomer.
- 20 6. The compound (2S)-2-ethoxy-3-(4-{2-oxo-2-[(2-phenylethyl)amino]ethoxy}phenyl)-propanoic acid.
 - 7. A process according to claim 1 to produce the (2S) enantiomer of the compound of formula I by using the 2S enantiomer of the compound of formula II.