Appendix

A Empirical Estimates

Lemma 1. As $|\mathcal{D}| \to \infty$, if $\mathcal{W}_1(p_S, p_{S_a}) < \infty$ for all \boldsymbol{a} , the empirical barycenter satisfies $\lim \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_a}) \to \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_a})$ almost surely⁷.

Proof. By triangle inequality:

$$\sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, p_{S_{\boldsymbol{a}}}) \le \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}) + \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}),$$
(4)

$$\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}) \le \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) + p_{\boldsymbol{a}} \mathcal{W}_1(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}).$$
 (5)

Since $p_{\bar{S}}$ and $\hat{p}_{\bar{S}}$ are the weighted barycenters of $\{p_{S_a}\}$ and $\{\hat{p}_{S_a}\}$ respectively:

$$\sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) \le \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, p_{S_{\boldsymbol{a}}}),$$
(6)

$$\sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}) \le \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}). \tag{7}$$

Combining Eqs. (4) and (6), and (5) and (7):

$$\begin{split} \sum_{\pmb{a}} p_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}}) &\leq \sum_{\pmb{a}} p_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}}) + p_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}) \\ &\leq \sum_{\pmb{a}} \hat{p}_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}}) + |\hat{p}_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}}) - p_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}})| + p_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}) \\ &\leq \sum_{\pmb{a}} \hat{p}_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}}) + |\hat{p}_{\pmb{a}} - p_{\pmb{a}}| \cdot |\mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}})| + p_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}) \\ &\sum_{\pmb{a}} \hat{p}_{\pmb{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\pmb{a}}}) \leq \sum_{\pmb{a}} \hat{p}_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}}) + \hat{p}_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}) \\ &\leq \sum_{\pmb{a}} p_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}}) + |p_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}}) - \hat{p}_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}})| + \hat{p}_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}) \\ &\leq \sum_{\pmb{a}} p_{\pmb{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}}) + |p_{\pmb{a}} - \hat{p}_{\pmb{a}}| \cdot |\mathcal{W}_1(p_{\bar{S}}, p_{S_{\pmb{a}}})| + \hat{p}_{\pmb{a}} \mathcal{W}_1(p_{S_{\pmb{a}}}, \hat{p}_{S_{\pmb{a}}}). \end{split}$$

Therefore the following inequality holds almost surely:

$$\begin{split} \Big| \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_{1}(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) - \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}) \Big| &\leq \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}) + |p_{\boldsymbol{a}} - \hat{p}_{\boldsymbol{a}}| \cdot \mathcal{W}_{1}(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) \\ &\leq \sum_{\boldsymbol{a}} \mathcal{W}_{1}(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}) + |p_{\boldsymbol{a}} - \hat{p}_{\boldsymbol{a}}| \cdot \mathcal{W}_{1}(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) \\ &\leq \sum_{\boldsymbol{a}} \mathcal{W}_{1}(p_{S_{\boldsymbol{a}}}, \hat{p}_{S_{\boldsymbol{a}}}) + |p_{\boldsymbol{a}} - \hat{p}_{\boldsymbol{a}}| \cdot \mathcal{W}_{1}(p_{S}, p_{S_{\boldsymbol{a}}}) \,. \end{split}$$

Since $W_1(p_{S_a},\hat{p}_{S_a})\to 0$ almost surely for all \boldsymbol{a} (see Weed and Bach (2017)), and $\hat{p}_{\boldsymbol{a}}\to p_{\boldsymbol{a}}$ almost surely (by the strong law of large numbers) and $W_1(p_S,p_{S_a})<\infty$ for all \boldsymbol{a} , the result follows:

$$\lim \sum_{\boldsymbol{a}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, \hat{p}_{S_{\boldsymbol{a}}}) \to \sum_{\boldsymbol{a}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{\bar{S}}, p_{S_{\boldsymbol{a}}}) ,$$

almost surely.

⁷See Klenke (2013) for a formal definition of almost sure convergence of random variables.

B Generalization

The following lemma addresses generalization of the Wasserstein-1 objective. Assume $\mathcal{W}_1(p_{S_{\boldsymbol{a}}},p_{\bar{S}}) \leq L$ for all $\boldsymbol{a} \in \mathcal{A}$. If $\mathcal{W}_1(p,q) \leq \sqrt{H(p|q)}$, where $H(p|q) = \int \frac{dp}{dq} \log \left(\frac{dp}{dq}\right) dq$ for all $p \in \{p_S,p_{\bar{S}}\} \cup \{p_{S_{\boldsymbol{a}}}\}_{\boldsymbol{a} \in \mathcal{A}}$ and any measure q then:

Lemma 5. Let $\epsilon, \delta > 0$. If $\min\left[\bar{N}, \min_{\boldsymbol{a}}\left[N_{\boldsymbol{a}}\right]\right] \geq 4M_0 \max\left[\frac{1}{\epsilon^{3.1}}, \frac{8\log(2|\mathcal{A}|/\delta)|\mathcal{A}|^2 \max[1,L]^2}{\epsilon^2}, 1\right]$ for some constant $M_0 \geq 1$ depending solely on the moments of $\{p_S, p_{\bar{S}}\} \cup \{p_{S_{\boldsymbol{a}}}\}_{\boldsymbol{a} \in \mathcal{A}}$, then with probability $1 - \delta$:

$$\sum_{\boldsymbol{a}\in\mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_1(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}) \leq \sum_{\boldsymbol{a}\in\mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}) + \epsilon.$$

In other words, provided access to sufficient samples, a low value of $\sum_{a} \hat{p}_{a} \mathcal{W}_{1}(\hat{p}_{S_{a}}, \hat{p}_{\bar{S}})$ implies a low value for $\sum_{a} p_{a} \mathcal{W}_{1}(p_{S_{a}}, p_{\bar{S}})$ with high probability and therefore good performance at test time.

Proof. We start with the case when $p_{\bar{S}} = p_S$. By the triangle inequality for Wasserstein-1 distances, for all $a \in A$:

$$\hat{p}_{\boldsymbol{a}} \mathcal{W}_1(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}) \le \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}) + \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, p_{\bar{S}}) + \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{\boldsymbol{a}}}). \tag{8}$$

Since $W_1(p,q) \leq \sqrt{H(p|q)}$ for $p \in \{p_S, p_{\bar{S}}\} \cup \{p_{S_a}\}_{a \in \mathcal{A}}$ and any measure q, all measures in $\{p_S, p_{\bar{S}}\} \cup \{p_{S_a}\}_{a \in \mathcal{A}}$ satisfy a $T_1(2)^8$ inequality as a consequence of Theorem 1.1 in Bolley et al. (2007), and a union bound, with probability $\geq 1 - \frac{\delta}{2}$ the following inequalities hold simultaneously for all $a \in \mathcal{A}$:

$$\hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{\bar{S}}, p_{\bar{S}}) \le \frac{\hat{p}_{\boldsymbol{a}} \epsilon}{4}, \quad \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{\boldsymbol{a}}}) \le \frac{\hat{p}_{\boldsymbol{a}} \epsilon}{4}. \tag{9}$$

Summing Eq. (8) over a and applying the last observation yields

$$\sum_{\boldsymbol{a}\in\mathcal{A}}\hat{p}_{\boldsymbol{a}}\mathcal{W}_1(p_{S_{\boldsymbol{a}}},p_{\bar{S}})\leq\sum_{\boldsymbol{a}\in\mathcal{A}}\hat{p}_{\boldsymbol{a}}\mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}},\hat{p}_{\bar{S}})+\frac{\epsilon}{2}.$$

Recall that we assume $\forall a \in \mathcal{A}$,

$$\mathcal{W}_1(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}) \leq L$$
.

By concentration of measure of Bernoulli random variables, with probability $\geq 1 - \frac{\delta}{2}$ the following inequality holds simultaneously for all $a \in A$:

$$|p_{\mathbf{a}} - \hat{p}_{\mathbf{a}}| \le \frac{\epsilon}{4|\mathcal{A}| \max[L, 1]}. \tag{10}$$

Consequently the desired result holds:

$$\sum_{\boldsymbol{a} \in A} p_{\boldsymbol{a}} \mathcal{W}_1(p_{S_{\boldsymbol{a}}}, p_{\bar{S}}) \leq \sum_{\boldsymbol{a} \in A} \hat{p}_{\boldsymbol{a}} \mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}) + \epsilon.$$

If $p_{\bar{S}}$ equals the weighted barycenter of the population level distributions $\{p_{S_a}\}$, then

$$\sum_{\boldsymbol{a}\in\mathcal{A}}p_{\boldsymbol{a}}\mathcal{W}_1(p_{S_a},p_{\bar{S}})\leq \sum_{\boldsymbol{a}\in\mathcal{A}}p_{\boldsymbol{a}}\mathcal{W}_1(p_{S_a},\hat{p}_{\bar{S}}).$$

Since $\hat{p}_{\boldsymbol{a}}\mathcal{W}_1(p_{S_{\boldsymbol{a}}},\hat{p}_{\bar{S}}) \leq \hat{p}_{\boldsymbol{a}}\mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}},\hat{p}_{\bar{S}}) + \hat{p}_{\boldsymbol{a}}\mathcal{W}_1(\hat{p}_{S_{\boldsymbol{a}}},p_{S_{\boldsymbol{a}}})$, with probability $1 - \delta$:

$$\begin{split} \sum_{\boldsymbol{a} \in \mathcal{A}} p_{\boldsymbol{a}} \mathcal{W}_{1}(p_{S_{a}}, p_{\bar{S}}) &\leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(p_{S_{a}}, p_{\bar{S}}) + \frac{\epsilon}{2} \\ &\leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}) + \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(\hat{p}_{S_{\boldsymbol{a}}}, p_{S_{\boldsymbol{a}}}) + \frac{\epsilon}{2} \\ &\leq \sum_{\boldsymbol{a} \in \mathcal{A}} \hat{p}_{\boldsymbol{a}} \mathcal{W}_{1}(\hat{p}_{S_{\boldsymbol{a}}}, \hat{p}_{\bar{S}}) + \epsilon \end{split}$$

The first inequality follows from Eq. (10), and the third one by Eq. (9). The result follows.

⁸See Bolley et al. (2007) for a discussion on $T_p(\lambda)$ inequalities and other references.

Figure 3: Integrating $|f^{-1} - g^{-1}|$ along the x axis (left) and integrating |f - g| along the y axis (right) both compute the area of the same shaded region, thus the equality in Eq. (11).

C Inverse CDFs

Lemma 6. Given two differentiable and invertible cumulative distribution functions f, g over the probability space $\Omega = [0, 1]$, thus $f, g : [0, 1] \rightarrow [0, 1]$, we have

$$\int_{s=0}^{1} |f^{-1}(s) - g^{-1}(s)| ds = \int_{\tau=0}^{1} |f(\tau) - g(\tau)| d\tau.$$
 (11)

Intuitively, we see that the left and right side of Eq. (11) correspond to two ways of computing the same shaded area in Figure 3. Here is a complete proof.

Proof. Invertible CDFs f,g are strictly increasing functions due to being bijective and non-decreasing. Furthermore, we have f(0)=0, f(1)=1 by definition of CDFs and $\Omega=[0,1]$, since $P(X\leq 0)=0, P(X\leq 1)=1$ where X is the corresponding random variable. The same holds for the function g. Given an interval $(x_1,x_2)\subset[0,1]$, let $y_1=f(x_1),y_2=f(x_2)$. Since f is differentiable, we have

$$\int_{x=x_1}^{x_2} f(x)dx + \int_{y=y_1}^{y_2} f^{-1}(y)dy = x_2y_2 - x_1y_1.$$
 (12)

The proof of Eq. (12) is the following (see also Laisant (1905)).

$$f^{-1}(f(x)) = x$$

$$\Rightarrow f'(x)f^{-1}(f(x)) = f'(x)x \qquad \text{(multiply both sides by } f'(x))$$

$$\Rightarrow \int_{x=x_1}^{x_2} f'(x)f^{-1}(f(x))dx = \int_{x=x_1}^{x_2} f'(x)xdx \qquad \text{(integrate both sides)}$$

$$\Rightarrow \int_{y=y_1}^{y_2} f^{-1}(y)dy = \int_{x=x_1}^{x_2} f'(x)xdx \qquad \text{(apply change of variable } y = f(x) \text{ on the left side)}$$

$$\Rightarrow \int_{y=y_1}^{y_2} f^{-1}(y)dy = xf(x) \Big|_{x=x_1}^{x_2} - \int_{x=x_1}^{x_2} f(x)dx \qquad \text{(integrate by parts on the right side)}$$

$$\Rightarrow \int_{y=y_1}^{y_2} f^{-1}(y)dy + \int_{x=x_1}^{x_2} f(x)dx = x_2y_2 - x_1y_1.$$

Define a function h := f - g on [0,1]. Then h is differentiable and thus continuous. Define the set of roots $A := \{x \in [0,1] \mid h(x) = 0\}$. Define the set of open intervals on which either h > 0 or h < 0 by $B := \{(a,b) \mid b = 0\}$.

inf $\{s \in A \mid a < s\}, 0 \le a < b \le 1, a \in A\}$. By continuity of h, for any $(a,b) \in B$, we have $b \in A$, i.e. b is also a root of h. Since there are no other roots of h in (a,b), by continuity of h, we must have either h > 0 or h < 0 on (a,b). For any two elements $(a,b),(c,d) \in B$, we argue that they must be disjoint intervals. Without loss of generality, we assume a < c. Since $b = \inf\{s \in A \mid a < s\} \le c$, i.e. $b \le c$, then $(a,b) \cap (c,d) = \emptyset$. For any open interval $(a,b) \in B$, there exists a rational number $q \in \mathbb{Q}$ such that a < q < b. We pick such a rational number and call it $q_{(a,b)}$. Since all elements of B are disjoint, for any two intervals $(a_0,b_0),(a_1,b_1)$ containing $q_{(a_0,b_0)},q_{(a_1,b_1)} \in \mathbb{Q}$ respectively, we must have $q_{(a_0,b_0)} \ne q_{(a_1,b_1)}$. We define the set $Q_B := \{q_{(a,b)} \in \mathbb{Q} \mid (a,b) \in B\}$. Then $Q_B \subset \mathbb{Q}$ and $|Q_B| = |B|$. Since the set of rational numbers \mathbb{Q} is countable, the set B must also be countable. Let $B = \{(a_i,b_i)\}_{i=0}^N$ where $N \in \mathbb{N}$ or $N = \infty$. Recall that h = f - g on $[0,1], h(a_i) = 0, h(b_i) = 0$ and either h < 0 or h > 0 on (a_i,b_i) for $\forall i > 0$.

Consider the interval (a_i, b_i) for some i > 0, by Eq.12 we have

$$\int_{\tau=a_i}^{b_i} f(\tau)d\tau + \int_{s=f(a_i)}^{f(b_i)} f^{-1}(s)ds = b_i f(b_i) - a_i f(a_i)$$

$$= b_i g(b_i) - a_i g(a_i) = \int_{\tau=a_i}^{b_i} g(\tau)d\tau + \int_{s=g(a_i)}^{g(b_i)} g^{-1}(s)ds.$$

Thus

$$\int_{\tau=a_i}^{b_i} f(\tau) - g(\tau)d\tau = \int_{s=f(a_i)}^{f(b_i)} g^{-1}(s) - f^{-1}(s)ds.$$

Notice that if f>g on $[a_i,b_i]$, then $f^{-1}< g^{-1}$ on $[f(a_i),f(b_i)]$. This is due to the following. Given any $y\in [f(a_i),f(b_i)]=[g(a_i),g(b_i)]$, we have $g^{-1}(y)\in [a_i,b_i]$ and $f(g^{-1}(y))>g(g^{-1}(y))=y=f(f^{-1}(y))$. Thus $g^{-1}>f^{-1}$ since f is strictly increasing. The contrary holds by the same reasoning, i.e. if f< g on $[a_i,b_i]$, then $f^{-1}>g^{-1}$ on $[f(a_i),f(b_i)]$. Therefore,

$$\int_{\tau=a_i}^{b_i} |f(\tau) - g(\tau)| d\tau = \int_{s=f(a_i)}^{f(b_i)} |g^{-1}(s) - f^{-1}(s)| ds,$$

which holds for all intervals (a_i, b_i) . Summing over i on both sides, we have

$$\sum_{i=0}^{N} \int_{\tau=a_{i}}^{b_{i}} |f(\tau) - g(\tau)| d\tau = \sum_{i=0}^{N} \int_{s=f(a_{i})}^{f(b_{i})} |g^{-1}(s) - f^{-1}(s)| ds,$$

or equivalently,

$$\int_{s-0}^{1} |f^{-1}(s) - g^{-1}(s)| ds = \int_{\tau-0}^{1} |f(\tau) - g(\tau)| d\tau.$$