BORDER SECURITY

EN.600.444/644

Spring 2019

Dr. Seth James Nielson

"SPACES"

"Space" is not a technical term.

I use it to represent the concept of separation

MACRO PHYSICAL SPACES

MICRO PHYSICAL SPACES

WHY DO WE SEPARATE PHYSICAL THINGS?

CONTEXT

- Countries have different
 - Social Models
 - Legal Frameworks
 - Rights and Responsibilities
- Binders, bins, and office "spaces"
 - Importance
 - Meaning

ACCESS

Most physical spaces try to control the flow from one space to another

CYBER SPACES

- Often tied to a physical space and/or organization
 - All the people, equipment, data, etc. belonging to an entity
 - For example, a corporate network
- But there are far more conceptual spaces
 - Media piracy
 - Hacking communities
- Everything inbetween

LAN'S AS NATURAL SPACES

- LAN's have historically creates cyber spaces very naturally
- Typically tied to an entity, the LAN is
 - Hosted by the entity in physical space
 - Provides resources on behalf of the entity in cyber space
- Access is typically limited to individuals with physical relationships to the entity
 - Insiders typically have increased access to resources across the LAN
 - Outsiders typically have limited access to published resources on specific servers

LAN'S CREATE "BORDERS" ON THE INTERNET

GATEWAYS: NATURAL BARRIERS

- Data can only get into a LAN via router
- We call the routers at the "edges" of a LAN gateways
- Gateways are, therefore, natural chokepoints for data

GATEWAYS: SPACE TRANSITION

CONTEXT IS EVERYTHING

- Security is all about <u>context</u> (REPEAT AFTER ME!)
- Security has no meaning without context
- What is secure within one context may not be within another
- Data on different networks is assumed to have a different contexts
- It is reasonable and natural to examine data transitioning context

GATEWAYS: CONTEXT CHANGE

FIREWALL: GATEWAY SECURITY

- What is a "firewall"?
- Informally, it's security within a network connector, such as a gateway

FIREWALL MARKETING

- If you read marketing, it's Super Man.
 - Juniper: "control over applications, users, and content to stop advanced cyber-threats"
 - PAN: "Instantly find and stop attacks with a fully automated platform"
 - Cisco: "Prevent breaches, get deep visibility to detect and stop threats fast"

IGNORE MARKETING. THINK ENGINEERING

Ross Anderson proposed a framework for <u>Security Engineering</u>

Policy: <u>WHAT</u> you're supposed to achieve

Mechanism: <u>HOW</u> you're supposed to achieve it

• Assurance: **RELIABILITY** of the mechanism

• Incentives: MOTIVES of defenders and attackers

CORE CONCEPTS: POLICY AND MECHANISM

- This is not a security engineering class
- But we will use it to help us frame how we look at security
- PAY SPECIAL ATTENTION TO POLICY vs. MECHANISM
 - Policy is WHAT you want
 - Mechanism is HOW you do it
- Most "Policy" you see elsewhere, including CISSP, certifications, is different

EXAMPLE: TLS

- What is the <u>POLICY?</u>
 - Authentication: a party can claim an identity ONLY if they're authorized to do so
 - Confidentiality: only authorized parties can READ the communications
- What is the <u>MECHANISM?</u>
 - Authentication is enforced by certificates, signatures, and trusted authorities
 - Confidentiality is enforced by encryption
- ENCRYPTION IS MECHANISM NOT POLICY

FIREWALLS: POLICY AND MECHANISM

- Firewalls are MECHANISMS for enforcing certain network security POLICIES
 - Borders are natural places to want a policy
 - Borders are also, conveniently, an easy place to enforce some policies
 - BUT DON'T CONFUSE THE TWO!

"SECURITY" IS A MEANINGLESS WORD

- Firewalls, like every other mechanism, don't "create security"
- Consider the marketing descriptions
 - What is a "threat"?
 - What does it mean to "block"?
 - What is an "attack"?
- As a security professional, how would you even evaluate these claims?

ENFORCING POLICY

- Firewalls are ONLY useful to the extent they can enforce a policy
- Corollary: Policies come BEFORE firewalls
- What security policies might you like to have?
 - Example I: No malware can enter the network
 - Example 2: No unauthorized external network services
 - Example 3: External network services accessible only by authorized users
- Once you have a policy, you can start looking for enforcement mechanisms.

COMMON POLICIES: ACCESS CONTROL

- Policy #I: Only authorized LAN services are accessible outside the LAN
- Policy #2: Only authorized users from outside the LAN can access LAN resources
- Policy #3: Only authorized users on the LAN can access authorized services outside the LAN

EARLY FIREWALLS: LAYER-3 MECHANISMS

- The first firewalls were LAYER 3 (IP level)
- Layer-3 filtering can partially enforce all three policies:
 - Policy #I by blocking access to computers without authorized services
 - Policy #2 by blocking access from computers without authorized IP's
 - Policy #3 by blocking outbound requests to unauthorized IP's

HOW DOES LAYER-3 ENFORCEMENT WORK?

LAYER-4 FIREWALL (PACKET FILTER ONLY)

- Firewall developers quickly realized that IP-layer info was insufficient
- Examining TCP packets made it policy enforcement better
 - TCP ports typically represented a specific service
- Policy enforcement mechanism improvements:
 - Policy #1 by blocking access to ports not related to required services
 - Policy #3 by blocking outbound requests to unauthorized IP's or ports.

LAYER-4 FIREWALL (STATEFUL)

- In addition to examining ports, layer-4 packets also reveal connection state
- Some malicious packets violate TCP session rules, for example
- Layer-4 firewalls could also keep track of TCP sessions
- Better enforcement mechanism improvements:
 - Out-of-session packets almost certainly represent a violation of all three policies
 - Servers should not START an out-bound connection

LAYER-4 STILL LAYER-3 ROUTING

- Important.
- Just because a router is doing L3 routing doesn't mean it cant look at L4 data

Router/Firewall can examine <u>any</u> data, not just data used for routing

YOU CAN ALSO HAVE AN L2 FIREWALL

Firewalls can go here too!

In this case, L2 refers to the routing, not the inspection!

LAYER 2 FIREWALLS

- Might be better for enforcing different policies
 - Insider threat policies
 - Different types of devices on the same LAN (e.g., wireless, wired)
- Have some neat defensive properties
 - If only a switch, HAS NO IP ADDRESS!!! HARDER TO ATTACK!!!
 - Called "bump in the wire"

L7 FIREWALLS

- Probably to confuse you personally, L7 refers to the inspection, not the routing
- L7 firewalls examine application data
- Even more "stateful"