A curious discovery of Poisson

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k}p^k = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k}p^k = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k = \frac{(np)^k}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\times\cdots\times\left(1-\frac{k-1}{n}\right)$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k}p^k = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k = \frac{(np)^k}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\times\cdots\times\left(1-\frac{k-1}{n}\right)\approx \frac{\lambda^k}{k!}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k}p^k = \frac{n(n-1)\cdots(n-k+1)}{k!}p^k = \frac{(np)^k}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\times\cdots\times\left(1-\frac{k-1}{n}\right)\approx \frac{\lambda^k}{k!}$$

$$(1-p)^{n-k} = (1-p)^n (1-p)^{-k}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k = \frac{(np)^k}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right) \approx \frac{\lambda^k}{k!}$$

$$(1-p)^{n-k} = (1-p)^n (1-p)^{-k} = \left(1 - \frac{\lambda}{n}\right)^n (1-p)^{-k}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k = \frac{(np)^k}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \times \dots \times \left(1 - \frac{k-1}{n}\right) \approx \frac{\lambda^k}{k!}$$

$$(1-p)^{n-k} = (1-p)^n (1-p)^{-k} = \left(1 - \frac{\lambda}{n}\right)^n (1-p)^{-k} \approx e^{-\lambda} \cdot 1 = e^{-\lambda}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k = \frac{(np)^k}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \times \cdots \times \left(1 - \frac{k-1}{n}\right) \approx \frac{\lambda^k}{k!}$$

$$(1-p)^{n-k} = (1-p)^n (1-p)^{-k} = \left(1 - \frac{\lambda}{n}\right)^n (1-p)^{-k} \approx e^{-\lambda} \cdot 1 = e^{-\lambda}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k}$$

Binomial probabilities when $p \ll 1$ and $n \gg 1$

$$\binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k = \frac{(np)^k}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \times \cdots \times \left(1 - \frac{k-1}{n}\right) \approx \frac{\lambda^k}{k!}$$

$$(1-p)^{n-k} = (1-p)^n (1-p)^{-k} = \left(1 - \frac{\lambda}{n}\right)^n (1-p)^{-k} \approx e^{-\lambda} \cdot 1 = e^{-\lambda}$$

$$b_n(k;p) := \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda} =: Po(k;\lambda)$$

Testing the quality of the approximation

$b_n(k;p) =$	$\binom{n}{k} p^k (1-p)^{n-k}$
--------------	--------------------------------

$$Po(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

k	0	1	2	3	4
b ₂₀ (k; 0.15)	0.039	0.137	0.229	0.243	0.182
b ₆₀ (k; 0.05)	0.046	0.145	0.226	0.230	0.172
b ₁₀₀ (k; 0.03)	0.048	0.147	0.225	0.227	0.171
Po(k; 3)	0.050	0.149	0.224	0.224	0.168

$$\lambda = np = 3$$