Quality

A quality arithmetic expression consists of brackets, number and operations of multiplication and addition.

A quality arithmetic expression is defined recursively in the following way:

- An expression consisting of only one positive real number smaller than or equal to Z₁ is of good quality. Such expression is of the following form:

(x)

For example, if $Z_1 = 5$, then (4) is a quality expression.

- If A_1 , A_2 , ..., A_k are quality expressions such that $2 \le k \le K$ the sum of these expressions is at most Z_k , then the following expressions are of good quality:

$$(A_1+A_2+...+A_k)$$

 $(A_1 *A_2 *...*A_k)$

You are given a quality expression where the numbers are replaced by question marks. Determine the maximal possible value that the expression could have had.

Input

The first line of input contains integer K ($2 \le K \le 50$). The second line of input contains integers Z_1 , ..., Z_K , separated by space ($1 \le Z_1$, ..., $Z_K \le 50$). The third line of input contains one quality arithmetic expression in the described format. Arithmetic expression consists of: '?', '*', '+', '(', ')', and its length is 1 000 000 characters, at most.

Output

You must output the maximal possible value of the expression. A solution is considered correct if the absolute or relative deviation from the official solution is less than 10⁻³.

Sample input

Sample output

2 10 6 ((?)+(?))	6.00000
3 253 (((?)+(?))*(?))	6.00000
3 2 10 6 ((?)*(?)*(?))	8.00000000

Clarification of the first test case

The expression ((3)+(3)) satisfies the conditions, so it is a quality expression, and it is easy to check that 6 is the maximal value.

Clarification of the second test case

The maximum is achieved for, for instance, the expression $(((1)+(2))^*(2))$.

Clarification of the third test case

The maximum is achieved for, for instance, the expression $((2)^*(2)^*(2))$.