478 | Integral Calculus & Differential Equations

also given that
$$\frac{dx}{dt} = 0$$
 when $t = \frac{\pi}{2\sqrt{\mu}}$

from (ii)

$$0 = (-A\sin\frac{\pi}{2} + B\cos\frac{\pi}{2})\sqrt{\mu}$$

$$0 = -A\sqrt{\mu}$$

$$A = 0(: \mu > 0)$$

:. the required solution is

$$x = a \sin \sqrt{\mu} t$$

11.5 Particular Integral

From Art 11.3 we know that the general solution of the equation $(D^2 + P_1D + P_2)y = Q$. $Q \neq 0$ is the sum of two parts: (i) complementary function and (ii) particular integral.

The Complementary function is the solution of the above equation when Q = 0 i.e of f(D)y = 0. Now we will try to find the particular integral of f(D)y = Q.

We define $\frac{1}{f(D)}Q$ as a function of x which is free from any arbitray constant and when it is operated on by f(D), it gives Q.

i.e.
$$f(D)\left[\frac{1}{f(D)}Q\right] = Q$$

Thus the equation f(D) y = Q is satisfied when we put $y = \frac{1}{f(D)}Q$ in it. In other words, $\frac{1}{f(D)}Q$ is solution of the equation and is therefore called the particular integral of the equation.

11.6 To prove:
$$\frac{1}{(D-\alpha)}Q = e^{\alpha x} \int Q e^{-\alpha x} dx$$
 where α is a constant

Let
$$\frac{1}{(D-\alpha)}Q = y$$

Now we will give some special methods to find the particular integral of f(D)y = Q when Q has some special forms

11.7
$$\frac{1}{f(D)} e^{\alpha x}$$
 when $\alpha \neq 0$

$$\frac{1}{f(D)} e^{\alpha x} = \frac{1}{f(\alpha)} e^{\alpha x} Provided f(\alpha) \neq 0$$

Thus P.I is obtained if we simply put a for D in $\frac{1}{f(D)}e^{ax}$

11.8 The case of $\frac{1}{f(d)}e^{ax}$ when f(a) = 0

If $f(a) = 0 \cdot \frac{1}{f(a)} e^{ax}$ has no meaning and hence the above method fails.

$$\frac{1}{f(D)}e^{ax} = \frac{xe^{ax}}{f'(a)} = x\frac{1}{f'(D)}e^{ax}$$
(ii) if $f(D) = (D - a)^2 + b - a^{2x}$

Case (ii) if $f(D) = (D - a)^2$, then f'(a) = 0

Using the above result once again, $\frac{1}{f(D)}e^{ax} = x^2 \frac{1}{f''(D)}e^{ax}$

Working Rule

To find $\frac{1}{f(D)}e^{ax}$ when f(a) = 0, differentiate f(D) with respect to D and put D = a and get the denominator. Then multiply the numerator by x.

If the denominator becomes 0 again, repeat the process once again and get the result.

Note: We can also apply Art.11.12 when f(a) = 0

11.9
$$\frac{1}{f(D)} \sin ax$$
 and $\frac{1}{f(D)} \cos ax$ when $f(-a^2) \neq 0$

$$\sin ax = f(-a^2) \frac{1}{f(D^2)} \sin ax$$

$$\therefore \frac{1}{f(D^2)} \sin ax = \frac{1}{f(-a^2)} \sin ax, Provided f(-a^2) \neq 0$$

480 | Integral Calculus & Differential Equations
Similarly,
$$\frac{1}{f(D^2)}\cos ax = \frac{1}{f(-a^2)}\cos ax$$
,
 $\frac{1}{f(D^2)}\sin(ax+b) = \frac{1}{f(-a^2)}\sin(ax+b)$,
and $\frac{1}{f(D^2)}\cos(ax+b) = \frac{1}{f(-a^2)}\cos(ax+b)$ Provided $f(-a^2) \neq 0$

Thus we put $-a^2$ for D^2 and get the result in all these cases. If $\frac{1}{f(D)}$ contains both the first and the second powers of D, we proceed as in Ex. 3 below.

11.10 The case of
$$\frac{1}{F(D^2)} \sin ax$$
 and $\frac{1}{F(D^2)} \cos ax$ when $f(-a^2) = 0$.

If
$$f(-a^2) = 0$$
, $\frac{1}{f(-a^2)} \sin ax$ and $\frac{1}{f(-a^2)} \cos ax$ have no

meaning and hence the above method fails. Such a linear equation of the second order is of the type $(D^2 + a^2) y = \sin ax$ or $(D^2 + a^2) y = \sin ax$. We may find their P.I., by the method given below.

Equating real parts, $u = x \frac{1}{2D} \cos ax$ and equating imaginary part.

$$V = x \frac{1}{2D} \sin ax.$$

Working Rule

To find $\frac{1}{D^2 + a^2} \sin ax$ and $\frac{1}{D^2 + a^2} \cos ax$, when $D^2 = -a^2$, differentiate $D^2 + a^2$ with respect to D so that it is 2D and multiply the result of $\frac{1}{2D} \sin ax$ or $\frac{1}{2D} \cos ax$ by x.

Note: We can also apply art. 11.12 when $f(-a^2) = 0$.

11.11 $\frac{1}{f(D)}x^m$, where m is a positive integer

Use Binomial theorem and expand $[f(D)]^{-1}$ in ascending nower of D and then operate on xm with each term of the expansion. The power of D beyond m need not be retained because the $(m+1)^{th}$ and higher derivatives of x^m are zero.

The following expansions should also be remembered:

$$(1 + D)^{-1} = 1 - D + D^{2} = D^{3} + \dots$$

$$(1 - D)^{-1} = 1 + D + D^{2} + D^{3} + \dots$$

$$(1 + D)^{-2} = 1 - 2D + 3D^{2} - 4D^{3} + \dots$$

$$(1 - D)^{-2} = 1 + 2D + 3D^{2} + 4D^{3} + \dots$$

11.12 $\frac{1}{f(D)}$ eaxV, where V is a function of x or a

constant

$$\frac{1}{f(D)} e^{ax} V = e^{ax} \frac{1}{f(D+a)} V.$$

Thus we take out e^{ax} , write D + a for D so that $\frac{1}{f(D+a)}$

operates on V.

We can also use this method to calculate 21 eax when f(D) = 0

f(a) = 0.

The rule is:

Put D = a in that factor of f(D) which does not become 0 x = a. Then find the particular integral of e^{ax} . 1 by the above 1 2 3 1 4 1 5 1 5 1 6 1 6 method.

482 | Integral Calculus & Differential Equations

The method can also be used to calculate $\frac{1}{D^2 + a^2}$ e^{iax} then deduce the value of $\frac{1}{D^2 + a^2}$ cos ax and $\frac{1}{D^2 + a^2}$ sin ax easily by equating the real and imaginary parts respectively.

The methods will be illustrated below.

11.13
$$\frac{1}{f(D)} x^m \cos(ax + b)$$
 and $\frac{1}{f(D)} x^m \sin(ax + b)$
 $\frac{1}{f(D)} x^m \cos(ax + b) = \frac{1}{f(D)} [\text{real part of } x^m e^{i(ax + b)}]$
 $\frac{1}{f(D)} x^m \sin(ax + b) = \frac{1}{f(D)}$

$$\frac{1}{f(D)}x^{m}\sin(ax+b) = \frac{1}{f(D)}$$
[coefficient of i in $x^{m}e^{i(ax+b)}$]

11.14 $\frac{1}{f(D)}xV$ where V is a function of x

Here we use the formula

$$\frac{1}{f(D)}xV = x \frac{1}{f(D)}V - \frac{f'(D)}{(f(D))^2}V \text{ without proof.}$$

11.15 Method of Partial Fractions

It is sometimes possible to express $\frac{1}{f(D)}$ into partial fractions so that $\frac{1}{f(D)}Q = \left(\frac{A_1}{D_1 - \alpha_1} + \frac{A_2}{D - \alpha_2} + \cdots\right)Q$.

Using the result
$$\frac{1}{D-\alpha}Q = e^{\alpha x} \int Q e^{-\alpha x} dx \text{ of art } 11.5 \text{ we get}$$

$$\frac{1}{f(D)}Q = A_1 e^{\alpha_1 x} \int e^{-\alpha_1 x} Q dx + A_2 e^{\alpha_2 x} \int e^{-\alpha_2 x} Q dx + \cdots$$