

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych

Łukasz Tyl

PRACA DYPLOMOWA magisterska

Wykorzystanie algorytmu ławicowego do optymalizacji konstrukcji

Opiekun naukowy/prowadzący : prof. dr hab. inż. Mariusz Pyrz

Cel i zakres pracy

Stworzenie w środowisku Scilab programu wykorzystującego algorytm ławicowy do optymalizacji konstrukcji prętowych

Plan pracy

- ☐ zaprogramowanie algorytmu ławicowego i przetestowanie go na wybranych przykładach
- ☐ stworzenie w programu rozwiązującego zagadnienie równowagi statycznej konstrukcji prętowych metodą elementów skończonych
- ☐ przetestowanie działania programu MES
- ☐ optymalizacja konstrukcji prętowych przykłady obliczeniowe o różnym stopniu skomplikowania
- □ ocena efektywności procedury optymalizacji i wnioski

- ☐ Algorytm ławicowy zwany też optymalizacją rojem cząstek (PSO – Particle Swarm Optimization)
- ☐ po raz pierwszy zaprezentowany przez Eberhart'a i Kennedy'ego w 1995 r.

- □ inspiracja zachowanie zwierząt w grupach− ptaki poruszające się w kluczu, ławice ryb
- ☐ należy do grupy algorytmów niedeterministycznych, tj. generujących rozwiązanie z wykorzystaniem liczb losowych

Algorytmy ławicowe posługują się specyficzną terminologią, posiadającą jasne odpowiedniki w zagadnieniach klasycznej optymalizacji.

Algorytm ławicowy	Optymalizacja
Cząstka	Pojedyncze rozwiązanie
Współrzędne cząstki	Zmienne projektowe
Rój cząstek	Zbiór rozwiązań
Lider roju	Najlepsze rozwiązanie

Schemat działania algorytmu ławicowego

Prędkość i położenie cząstki są obliczane według następujących wzorów:

$$v_{k+1}^{i} = v_{k}^{i} + \left[c_{1}r_{1k}^{i}\left(p_{k}^{li} - x_{k}^{i}\right) + c_{2}r_{2k}^{i}\left(p_{k}^{g} - x_{k}^{i}\right)\right]$$

$$x_{k+1}^i = x_k^i + v_{k+1}^i$$

 x_k^l — wektor położenia i — tej cząstki, v_k^i — odpowiedni wektor prędkości, p_k^{Ii} — najlepsze dotąd znalezione położenie i — tej cząstki, p_k^g — najlepsze dotąd znalezione położenie lidera roju, c_1, c_2 — ustalone mnożniki wagowe, r_{1k}^i, r_{2k}^i — liczby losowe z przedziału (0,1).

Interpretacja graficzna aktualizacji ruchu cząstki

wersja algorytmu użyta w pracy - PSO z wagą inercji

$$v_{k+1}^{i} = w_{k}^{i} v_{k}^{i} + \left[c_{1} r_{1k}^{i} \left(p_{k}^{Ii} - x_{k}^{i} \right) + c_{2} r_{2k}^{i} \left(p_{k}^{g} - x_{k}^{i} \right) \right]$$

 $w_k^i - współczynnik wagi inercji, określany na poziomie i – tej cząstki$

$$w_k^i = w_{max} - \left(\frac{w_{max} - w_{min}}{it_{max}}\right) \cdot k$$

w_{max} – maksymalna wartość współczynnika wagi inercji
 w_{min} – minimalna wartość współczynnika wagi inercji
 it_{max} – maksymalna liczba iteracji
 i – nr cząstki
 k – nr iteracji

Pseudokod algorytmu ławicowego

```
Inicjalizacja początkowej populacji losowej
while nie osiągnieto kryterium stopu do
 for i=1 to rozmiar populacji do
  if f celu(xi)<f celu(pbesti) then</pre>
  pbesti=xi
  if f celu(xi)<f celu(gbest) then</pre>
  qbest=xi
  for d=1 to liczba wymiarów do
  aktualizacja prędkości
  aktualizacja położeń
```

W opisie procedur zastosowano następujące oznaczenia:

xi – współrzędne i-tej cząstki (położenie w przestrzeni poszukiwań),

pbesti – najlepsze dotychczas znalezione położenie i-tej cząstki,

gbest – najlepsze dotychczas znalezione położenie wśród całej populacji cząstek

(lidera roju).

9

Test algorytmu ławicowego

Do przetestowania działania algorytmu ławicowego, wpływu parametrów na wyniki obliczeń użyto funkcji Rastrigin'a o dwóch zmiennych. Jest to typowy przykład testowy z optymalizacji globalnej, niezwykle trudny do rozwiązania za pomocą klasycznych metod optymalizacji ze względu na wielomodalny (wiele minimów lokalnych) charakter funkcji.

$$f(x) = An + \sum_{i=1}^{n} [x_i^2 - A\cos(2\pi x_i)]$$

$$A = 10$$

 $x_i \in [-5,12:5,12]$
 $minimum\ lokalne - x = 0, f(x) = 0$

Test algorytmu ławicowego

Wyniki obliczeń (testu na funkcji Rastrigina) dla przykładowego zestawu parametrów

Parametry	wmax	wmin	itmax	c1	c2	N	D
Wartość	0,9	0,4	100	2	2	100	2

	Wartość funkcji celu	Współrzędne		
Nr uruchomienia	Fbest1	x1	x2	
1	0,000545800	0,000417500	0,001605200	
2	0,00001300	0,000036500	0,000073600	
3	0,994959100	0,000003000	0,994947900	
4	0,000000028	0,000007800	0,000008900	
5	0,00000000	-0,000000049	-0,00000010	
6	0,00000014	-0,000005200	-0,000006600	
7	0,007766700	0,005181100	0,003508200	
8	0,994959100	0,994958100	-0,00000100	
9	0,00000000	-0,000000300	0,000000700	
10	0,00000000	0,000001200	0,000000400	
Wartość średnia	0,199823204	0,100059965	0,100013819	

Program MES w środowisku Scilab

Modelowanie zagadnień statyki konstrukcji prętowych w przestrzeni dwuwymiarowej.

- ☐ Wczytanie danych (geometria i materiał).
- ☐ Budowa macierzy sztywności elementów prętowych.
- ☐ Agregacja globalnej macierzy sztywności konstrukcji.
- ☐ Wprowadzenie warunków brzegowych.
- ☐ Rozwiązanie układu równań.

$$K \cdot U = F$$

K – globalna macierz sztywności układu

U – wektor przemieszczeń w węzłach

F – wektor sił działających w węzłach

☐ Wyznaczanie odkształceń, naprężeń w elementach.

Program MES w środowisku Scilab

Funkcje programu:

- ☐ generowanie prostych rysunków konstrukcji przed i po obciążeniu,
- □ obliczanie sumy rzutów sił na osie X i Y oraz sumy momentów względem początku układu współrzędnych,
- □ obliczanie naprężeń w elementach skończonych,
- ☐ wyświetlanie komunikatu, gdy naprężenia lub przemieszczenia przekraczają dopuszczalne wartości,
- ☐ obliczanie masy konstrukcji,
- □ obliczanie funkcji celu (potrzebnej w procesie optymalizacji).

Program PSO w środowisku Scilab

Kod algorytmu ławicowego (PSO) napisany w środowisku Scilab można wykorzystywać do optymalizacji dowolnej funkcji celu. Docelowo program PSO połączono z modułem MES.

Rozwiązywany problem optymalizacji:					
funkcja celu F(x) → min masa M					
ograniczenia: g(x)<=0	dopuszczalne przemieszczenia g1 i naprężenia g2				
zmienne decyzyjne – wektor x	przekroje prętów				

Tryby pracy:

- (a) zmienne ciągłe (z przedziału <Amin:Amax> definiowanego przez użytkownika)
- **(b)** zmienne dyskretne (wartości znajdujące się w wektorze **katalogA** definiowanym przez użytkownika)

Sformułowanie zadania optymalizacji

- PSO rozwiązuje zadanie optymalizacji bez ograniczeń
- ☐ Konieczność przekształcenia początkowego problemu.
- Zastosowanie metody funkcji kary.

$$fcelu=(M/M_max) + (kara*g1) + (kara2*g2);$$

M/Mmax -stosunek obliczonej masy konstrukcji do masy maksymalnej (tj. masy konstrukcji zbudowanej z elementów o dopuszczalnym maksymalnym przekroju Amax).

kara*g1 –funkcja kary g1 dla ograniczeń przemieszczeniowych pomnożona przez odpowiedni współczynnik.

kara2*g2 – funkcja kary g2 dla ograniczeń naprężeniowych pomnożona przez odpowiedni współczynnik.

Przykłady optymalizacji konstrukcji prętowych za pomocą algorytmu PSO

Cel optymalizacji:

minimalizacja masy przy zachowaniu nałożonych na konstrukcje ograniczeń.

Optymalizacja z wykorzystaniem:

- □ zmiennych ciągłych,
- □ zmiennych dyskretnych.

Model płaski przęsła mostu

Kratownica płaska

Konstrukcja łukowa

Kratownica płaska

Przykład testowy z literatury (dane w jednostkach imperialnych):

$$P = 10^5 \, lbf$$

$$E = 10^7 \, \frac{lbf}{in^2} - moduł \, Young'a$$

$$\rho = 0,1 \cdot 10^{-3} \, \frac{lb}{in^3} - gęstość$$

$$\sigma_{dop} = 25000 \, \frac{lbf}{in^2} - naprężenia \, dopuszczalne$$

$$u_{dop} = 2 \, in - przemieszczenia \, dopuszczalne$$

liczba węzłów: 6; liczba elementów: 10

Zmienne projektowe (przekroje prętów):

-(c) - zmienne ciągłe mogą przyjmować wartość z przedziału <Amin:Amax>

$$Amin = 0.1 in^2$$
$$Amax = 36 in^2$$

-(d) zmienne dyskretne mogą przyjmować tylko wartości znajdujące się w wektorze kataloga (wartości w calach).

katalogA = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36]

Wyniki optymalizacji kratownicy płaskiej

Algorytm ławicowy

	Zesta	Zestaw nr 1		Zestaw nr 2		aw nr 3	Zest	taw nr 4	
	N=100	itmax=200	N=200	itmax=100	N=150	itmax=60	N=200	itmax=100	Bez malizacji
ograniczenia	•	ężenia, eszczenia	•	naprężenia, naprężenia, przemieszczenia przemieszczenia		naprężenia		5	
zmienne	ciągłe	dyskretne	ciągłe	dyskretne	ciągłe	dyskretne	ciągłe	dyskretne	opt
masa [lb]	5,112	5,485	5,118	5,291	5,118	5,331	1,848	2,167	8,27

Algorytm ewolucyjny

(wyniki z: *M. Pyrz*, Algorytmy ewolucyjne w optymalnym projektowaniu konstrukcji i identyfikacji parametrów materiałowych, 2012)

	p=100	e=200		
ograniczenia	naprężenia, przemieszczenia			
zmienne	ciągłe	dyskretne		
masa [lb]	5,061	5,111		
	p=100	e=200		
ograniczenia	naprężenia			
zmienne	ciągłe	dyskretne		
masa [lb]	1,593 1,688			

Model płaski przęsła mostu

Dane:

 $P = 115000 \ N$ $E = 210000 \ MPa - moduł \ Young'a$ $\rho = 7,86 \cdot 10^{-6} \ \frac{kg}{mm^3} - gęstość$ $\sigma_{dop} = 350 \ MPa - naprężenia \ dopuszczalne$ $u_{dop} = 30 \ mm - przemieszczenia \ dopuszczalne$

liczba węzłów: 14; liczba elementów: 26

Zmienne projektowe (przekroje prętów): -(c) zmienne ciągłe mogą przyjmować wartość z przedziału <Amin:Amax>

 $Amin = 20 mm^2$ $Amax = 4000 mm^2$

-(d) zmienne dyskretne mogą przyjmować tylko wartości znajdujące się w wektorze katalogA (wartości w mm²).

katalogA = [20, 120, 240, 320, 440, 560, 680, 760, 880, 1000, 1120, 1320, 1560, 1760, 2000, 2240, 2440, 2680, 2880, 3120, 3320, 3560, 3760, 4000] ₁₉

Wyniki optymalizacji modelu przęsła mostu

	Zn	Zmienne ciągłe			enne dyskr		
	Krok 1	Krok 2	Krok 3	Krok 1	Krok 2	Krok 3	Bez optymalizacji
Masa [kg]	1245,2	1232,9	1206	1220,2	1213,3	1193,2	1793,1
Czas obliczeń [s]	82	82	82	220	210	227	-

Graficzne przedstawienie wyników optymalizacji – najlepszy wynik dla zmiennych dyskretnych (grubość pręta proporcjonalna do pola przekroju)

Konstrukcja łukowa

liczba węzłów: 67; liczba elementów: 131

Dane:

$$P_1=3000~N$$
 $P_2=2000~N$
 $E=70000~MPa-moduł~Young'a$
 $ho=2.8\cdot 10^{-6}~\frac{kg}{mm^3}-g$ ęstość
 $\sigma_{dop}=250~MPa-napr$ ężenia dopuszczalne
 $u_{dop}=50~mm-przemieszczenia dopuszczalne$

Zmienne projektowe (przekroje prętów): -(c) zmienne ciągłe mogą przyjmować wartość z przedziału <Amin:Amax>

$$Amin = 10 mm^2$$
$$Amax = 230 mm^2$$

-(d) zmienne dyskretne mogą przyjmować tylko wartości znajdujące się w wektorze katalogA (wartości w mm²).

katalogA = [10, 12, 14, 18, 25, 32, 39, 44, 51, 58, 64, 76, 90, 101, 115, 129, 140, 154, 166, 179, 191, 205, 216, 230] 21

Wyniki optymalizacji konstrukcji łukowej

	Zm	Zmienne ciągłe			Zmienne dyskretne		
	Krok 1	Krok 2	Krok 3	Krok 1	Krok 2	Krok 3	Bez optymalizacji
Masa [kg]	40,56	37,47	34,55	44,51	41,44	32,86	47,4
Czas obliczeń [s]	684	668	668	1401	1634	1607	-

Graficzne przedstawienie wyników optymalizacji – najlepszy wynik dla zmiennych dyskretnych (grubość pręta proporcjonalna do pola przekroju)

Wnioski

Wykorzystanie algorytmu ławicowego do optymalizacji konstrukcji

