A Brief Shimmany of Laurent Series Let & be a holomosphic function on an annulus D={360; r<13-21<R}. Then f can be expanded luto a series of the form €a,(3-80)" + €a,(3-80), where both series converge on D and unformly on any & simple dosed contour in D concentrio with anting 2, and oneward once buth, countralockwise direction. an = 1 (6(8) ds, n=0, ±1, ±2, -. We call Za (8-80) + Za (8-80) the Laurent serves Theorem & Let Zang-30 and Zang-30 he series suly that © 2a(3-3) Converges in {3€ [: 13-3,1< R}, e \(\frac{2}{3} \) \(\frac{2} \) \(\frac{2} \) \(\frac{2}{3} \) \(\frac{2}{3} \ Then these exist a unique holomorphic function of on D= {360 & N < 13-30 < R} such that the lament sinds of & on Dis r<13-301<R. = a 18-80 + = a 18-80 1

Proof: Assum 3=0. Los 5= 3. Then 3 a 5" Converges on 35EC: 1515/ Let #(5)= = = a_5", 151< =. Then Hisholomorphic on & SEC: 15/5 =]. So the Butin h(8)= H(1/8) a holomorphic on 181>4} and b(3) = = = a, 3, 13/>1. Now the funtion g(3) = = a,3h, 18/5R, is holomorphie. as the funtion of squien by $\beta(8) = 3(8) + h(8)$ as hydromosphie even Do 336P o r<181<R ?

60 Za, 3" + Za, 3" is the larment service of f in Det 300. To do the, let Che a swiple charl Contour in D Enclosing o and mentid core in the Counter Cock color direction. Then for all j The sand of the sa = - 1 a 277 = aj.

Example of Final Ohe Convent series of f(3)= 32-23+3 0 = { 3 EC : |3-1) > 1 }. Solution & 301, VEI, RED. 60 f is holomosphie cm { 8 E @ 3 D < 13-11 < 00 } = 1 = 0 (8-1) = = = = = (8-1) hard. 8-28+3=8-28+1+2=(8-1)+2 = \((3-1) + 1 + \frac{1}{3-1} + \frac{2}{3-1} + \frac{2}{3-1} + \frac{2}{3-1} + \frac{2}{3-1} \} $= (3-1)+1+\frac{2}{5}\frac{3}{(3-1)^n}, 13-11>1.$ Example Finis du laurent series of e 3 et 3=0. Solution et = = = = 11 3" = 1+2-113, 3+0. Why Laurent Seris?

I solated Singulanties Definition à let co= 6(8) le a complex - valued fun clim Let 36 P be 3 Sf is not holomorphic on some puntined Then we say that 30 is an isoluted surgularity of for MANNAMAN let 30 be an I solated singularity of for Them file holomphie on & puntured diste [360:0013-301<R] = Three Possolutions on Sa(3-3) + Zangerson By a =0 fremel, 2, -, then we call 300 removable Amount on P. a If a to for some me W and a so for all signlanty of E. h > m, thin we call 30 & policy order m of 3. A poli eforder l'à called a simple pole. & & anto for infinitely many no Who then we Call 3 an essential sugularity of 6. Example & Classify the I solated surgularities Sentin o is the only isoluted singularity of f. 340 Also, es = 1+ 3+ 27 32 + ...

Now onto that I have a series of an= in to for all heM. Nov into that