1a)

R(A, B, C, D, E) $S = \{AB \rightarrow D, AB \rightarrow E, BC \rightarrow D, C \rightarrow A, CD \rightarrow B\}$

$A^+=A$	AB⁺= ABDE	ABC+= ABCDE	ABCD+= ABCDE
B+= B	$AC^+ = AC$	ABD⁺= ABDE	BCDE ⁺ = ABCDE
C+= AC	$AD^+=AD$	ACD ⁺ = ABCDE	
$D^+=D$	AE ⁺ = AE	ABE⁺= ABDE	
E*= E	BC+= ABCDE	ACE⁺= ACE	
	CD+= ABCDE	ADE⁺= ADE	
	BD⁺= BD	BCD ⁺ = ABCDE	
	BE⁺= BE	BCE ⁺ = ABCDE	
	CE⁺= ACE	BDE⁺= BDE	
	DE⁺= DE	CDE ⁺ = ABCDE	

trivial super

BC, CD are candidate keys

1b)

CD->B is in BCNF because CD is a candidate key, C->A violates BCNF because C is not a candidate key, BC->D is in BCNF because BC is a candidate key, AB->E and AB->D violate BCNF because AB is not a candidate key

1c)

CD->B is already in BCNF, move to the left

C->A is not in BCNF, decompose:

 $C^+ = AC$

Key is {C}

 $R_{11}(A,C)$, with dependencies C->A, key is C so R_{11} is in BCNF. Also $R_{11}(A,C)$ only has 2 attributes, so by definition it is in BCNF.

 $A^+ = A$ (trivial)

C⁺ = AC (candidate key)

 $AC^+ = AC \text{ (trivial)}$

C is the candidate key of this relation

ABCDE - AC + C = BCDE Key is {BC,CD} $R_{12}(B,C,D,E)$, with dependencies BC-> D, BC-> E, CD->B, CD->E, this is in BCNF because candidate keys BC or CD are on the left of every FD

B⁺= B (trivial)

 $C^+ = C$ (trivial)

D⁺= D (trivial)

E⁺=E (trivial)

BC⁺ =BCDE

BD⁺= BD (trivial)

BE⁺= BE (trivial)

CD+=BCDE

CE⁺= CE (trivial)

DE⁺= DE (trivial)

BC, CD are the candidate keys

AB->E, not in BCNF because AB is not a super key

 $AB^+ = ABDE$

Key{AB}

 $R_{21}(A,B,D,E)$, with dependencies AB->D, AB->E, this is in BCNF because each dependency contains the candidate key AB on the left

A⁺=trivial

B⁺= trivial

 $C^+ = AC$

D⁺= trivial

E⁺=trivial

$AB^+ = ABDE$

AC⁺=trivial

AD⁺=trivial

AE+=trivial

BC+ =ABDE

BD*= trivial

BE⁺= trivial

CD+=ABDE

CE⁺= trivial

DE⁺=trivial

C is not in R_{21} , so AB is the only candidate key

ABCDE - ABDE + AB = ABC

Key{BC}

 $R_{22}(A,B,C),\ BC->A,\ this$ is in BCNF because all FDs contain a candidate key

A⁺=trivial

B⁺= trivial

 $C^+ = AC$

D⁺= trivial

E⁺=trivial

 AB^+ = trivial

AC⁺=trivial

AD+=trivial

AE⁺=trivial

BC+ =ABC

BD+= trivial

BE⁺= trivial

CD+=ABC

CE⁺= ACE

DE⁺=trivial

D is not in R_{22} , so BC is the only candidate key

Final Answer:

 $R_{11}(A,C) \{C->A\}$ $R_{12}(B,C,D,E) \{BC-> D, BC-> E, CD->B, CD->E\}$ $R_{21}(A,B,D,E) \{AB->D, AB->E\}$ $R_{22}(A,B,C) \{BC->A\}$

1d)

Combine AB->D, AB->E to make AB->DE BC->D is redundant

Minimal basis for S = S' = {AB->DE, C->A, CD->B}

1e) FD in S' that violate 3NF

Relation in 3NF if the left side has a candidate key or the right side has attribute that is part of candidate key

Candidate keys are BC, CD

AB->DE can be rewritten as:

AB->D, does not violate 3NF because the FD is prime

AB->E, violates 3NF because AB is not a primary key and FD is not prime

C->A violates 3NF because C is not a super key and FD is not prime

CD->B does not violate 3NF because CD is a candidate key

1f)
R1(A,B,D,E), with FD AB->DE
R2(A,C), with FD C->A
R3(B,C,D), with FD CD->B
BC is a candidate key in R3, so no need to rewrite

2a)

$R(A, B, C, D, E) S = \{BE \rightarrow A, CD \rightarrow E, AD \rightarrow C\}$

$A^+=A$	$AB^+=AB$	ABC+= ABC	ABCD+= ABCDE
B⁺= B	$AC^+ = AC$	ABD+= ABCDE	BCDE ⁺ = ABCDE
$C_{+} = C$	AD⁺= ACDE	ACD⁺= ACDE	
$D^+=D$	AE+= AE	ABE ⁺ = ABE	
E+= E	BC⁺= BC	ACE+= ACE	
	CD⁺= CDE	ADE⁺= ACDE	
	BD+= BD	BCD⁺= ABCDE	
	BE+= ABE	BCE⁺= ABCE	
	CE+= CE	BDE+= ABCDE	
	DE ⁺ = DE	CDE⁺= CDE	

trivial super

Candidate keys are ABD, BCD, BDE

2b) BE->A, CD->E, AD->C

None of these FD meet BCNF because they do not contain candidate keys on the left side

2c)

Dependencies not in BCNF: BE->A, CD->E, AD->C

Start with left-most violation: BE+ = ABE

Key {BE}

R1(A,B,E) using dependency BE->A

ABE is in BCNF because BE in this FD is the candidate key

 $A^+=A$ (triv)

B+=B (triv)

E+=E (triv)

 $AB^+ = AB (triv)$

 $AE^+ = AE (Triv)$

 $BE^+ = ABE$

ABCDE - ABE + BE = BCDE

```
Key {BDE,BCD}
R2(B,C,D,E) using dependency BDE->C, BCD->E, CD -> E
CD -> E violates BCNF, as CD is not a key
B<sup>+</sup>=B (triv)
C<sup>+</sup>=(triv)
D^+=D (triv)
E+=E (triv)
BC+=BC (triv)
BD^+ = BD (triv)
BE^+ = BE (triv)
CD+=CDE
CE<sup>+</sup> = CE
DE^+ = DE
BCE^+ = BCE
BDE*=BCDE
BCD<sup>+</sup>=BCDE
CDE^+ = CDE
CD->E
CD⁺=CDE
Key{CD}
R3(C,D,E), using dependency CD->E, in BCNF because every dependency has a candidate
key
C<sup>+</sup>=(triv)
D<sup>+</sup>=(triv)
E<sup>+</sup>=(triv)
CD+=CDE
CE<sup>+</sup> = CE
DE^+ = DE
ABCDE - CDE + CD = ABCD
Key {ABD, BCD}
R4(A,B,C,D), using dependencies ABD->C, BCD->A, AD -> C
AD -> C violates BCNF, as AD is not a candidate key
A<sup>+</sup>=(triv)
B+=B (triv)
C<sup>+</sup>=(triv)
D^+=D (triv)
AB^+ = AB
AC^+ = AC
AD^+ = ACD
BC+=BC (triv)
```

```
CD<sup>+</sup>=CD
ABC^+ = ABC (triv)
ABD^{+} = ABCD
BCD*=ABCD
AD->C
AD⁺=ACDE
Key{AD}
R5(A,C,D,E), using dependency AD->C, AD->E, in BCNF because every dependency has a
candidate key
A+=(triv)
B<sup>+</sup>=(triv)
C+=(triv)
D^+=D (triv)
E+=E (triv)
AB^+ = A
AC^+ = AC \text{ (triv)}
AD^+ = ACDE
AE^+ = AE \text{ (triv)}
BC+=C
CD⁺=CDE
BE^+ = AE
CE^+ = CE (triv)
DE^+ = DE (triv)
ABC^+ = AC
ABD<sup>+</sup> = ACDE
BDE<sup>+</sup>=ACDE
BCD⁺=ACDE
ABCDE - ACDE + AD = ABD
Key {ABD}
R6(A,B,D),{}
A<sup>+</sup>=(triv)
B+=B (triv)
D^+=D (triv)
AB^+ = AB (triv)
AD^+ = AD (triv)
BD^+ = BD (triv)
ABD^+ = ABD
```

Final answer:

R1(A,B,E) using dependency BE->A R2(B,C,D,E) {BDE->C, BCD->E} R3(C,D,E), {CD->E} R4(A,B,C,D), {ABD->C, BCD->A} R5(A,C,D,E), {AD->C, AD->E} R6(A,B,D)

2d)

S is already a minimal basis, can't cancel out attributes or combine dependencies Minimal basis S' = S = BE->A, CD->E, AD->C

2e)

If the candidate keys are ABD, BCD, BDE, all functional dependencies of S' (BE->A, CD->E, AD->C) satisfy 3NF because the attributes on the right are all parts of candidate keys