Titre: Théorème de Burnside

Recasages: 106,150,151,153,154

Thème: Algèbre linéaire, théorie des groupes.

Références : Francinou, Gianella, Nicolas - Oraux X-Ens (p.185)

<u>Théorème</u> 1. Soit $n \in \mathbb{N}^*$ et G un sous-groupe de $Gl_n(\mathbb{C})$ d'exposant fini (il existe $N \in \mathbb{N}$ tel que, pour tout $g \in G$, $g^N = 1$). Alors G est un groupe fini.

On commence par montrer un lemme classique sur les matrices nilpotentes :

Lemme 2. Pour $A \in \mathcal{M}_n(\mathbb{C})$, si $tr(A^k) = 0$ pour $k \in \mathbb{N}^*$, alors A est nilpotente.

 $D\acute{e}monstration$. Comme A est une matrice complexe, elle est semblable à une matrice triangulaire T. Notons $\lambda_1, \dots, \lambda_r$ les valeurs propres non nulles de A, et n_1, \dots, n_r leurs multiplicités respectives. Pour $k \in \mathbb{N}^*$, on a alors

$$tr(A^k) = tr(T^k) = \sum_{i=1}^r n_i \lambda_i^k = 0$$

Le vecteur (n_1, \dots, n_r) de \mathbb{C}^r est donc solution du système linéaire AX = 0, avec

$$A = \begin{pmatrix} \lambda_1 & \cdots & \lambda_r \\ \lambda_1^2 & \cdots & \lambda_r^2 \\ \vdots & \ddots & \vdots \\ \lambda_1^r & \cdots & \lambda_r^r \end{pmatrix}$$

On reconnait une matrice de Vandermonde (presque) dont le déterminant est donné par $\prod_{i=1}^r \lambda_i V(\lambda_1, \dots, \lambda_r) \neq 0$ par construction, c'est une contradiction car $(n_1, \dots, n_r) \neq 0$.

Soit G un sous-groupe de $Gl_n(\mathbb{C})$, on pose V = Vect(G), qui est un sous-espace de $\mathcal{M}_n(\mathbb{C})$ de dimension $m \leq n^2$. Soit $(M_i)_{i \in [\![1,m]\!]}$ une base de V constituée d'éléments de G, on pose

$$f: G \longrightarrow \mathbb{C}^m$$

$$A \longmapsto (tr(AM_i))_{i \in \llbracket 1,m \rrbracket}$$

Soient $A, B \in G$ telles que f(A) = f(B), par linéarité de la trace, on a tr(AM) = tr(BM) pour tout $M \in V$ (en particulier pour tout $M \in G$. On pose $D = AB^{-1} \in G$, pour $k \ge 1$, on a

$$tr(D^k) = tr(AB^{-1}D^{k-1}) = tr(BB^{-1}D^{k-1}) = tr(D^{k-1})$$

Par une récurrence immédiate, on a $tr(D^k) = tr(I_n) = n$ pour $k \in \mathbb{N}$, et donc

$$tr((D-I_n)^k) = \sum_{i=0}^k \binom{k}{i} tr(D^i(-I^{k-i})) = \sum_{i=0}^k \binom{k}{i} (-1)^{k-i} tr(D^i) = n(1-1)^k = 0$$

pout $k \ge 1$, par notre lemme, $D - I_n$ est nilpotente. En particulier, si G est constitué d'éléments diagonalisables, alors $D - I_n$ l'est également, donc $D - I_n = 0$ et donc A = B : f est alors injective.

Si maintenant G est d'exposant fini N, tout élément de G est annulé par le polynôme X^N-1 , qui est scindé à racines simples sur $\mathbb C$ (ses racines sont les racines N-èmes de l'unité). Donc l'application f est injective dans ce cas. Cependant, par construction, f est à valeurs dans T^r , ou T désigne l'image de G par la trace, qui est un ensemble fini (les sommes de n racines N-èmes de l'unité), donc G est d'ordre fini.