Tutorial T12

- **T12.1** Let us consider the down-conversion mixer in figure and assume that the MOSFETs have threshold $V_T=0.5 \text{V}$, constant $1/2\mu C_{OX}=0.2 \text{mA/V}^2$ and thermal noise coefficients $\gamma=2/3$ and $\alpha=1$. Let $V_{dd}=2.5 \text{V}$, $(W/L)_1=125$, $(W/L)_2=400$, $R_1=200\Omega$, $R_2=150\Omega$, $I_{bias}=6 \text{mA}$, $C_2=1 \text{pF}$, $(W/L)_3=750$.
 - a) Set the value of C_1 which guarantees a resonance frequency (f_0) of 2GHz for the output network $(R_2, C_1, C_2 \text{ and } M_3)$.
 - b) Let us assume a sinusoidal wave with offset voltage of 1V and frequency $f_{RF}=10 {\rm GHz}$ at the RF port, a square wave with offset voltage of 1.5V, single-ended zero-peak amplitude of
 - 300mV, with frequency $f_{LO}=8{\rm GHz}$, at the LO port. Compute the conversion gain from RF to IF.
 - c) Consider now $f_{RF}=f_{LO}=8 {\rm GHz}$. Compute the noise figure of the mixer considering all the noise sources, referred to a source resistance of $R_{S}=50 \Omega$ and assuming abrupt switching of theM2 pair.

[Sol. a)
$$C_1 = 2.5 \text{pF}$$
, b) $A_v = -12 \text{dB}$, c) NF = 4.91 dB]

- **T12.2** Let V_S be a sinusoid at $f_{RF}=2.0\,\mathrm{GHz}$, and V_{2+} and V_{2-} two square-waves $0-V_{dd}$ at $f_{LO}=2.1\,\mathrm{GHz}$. The MOSFETs have threshold $V_T=0.5V$, constant $1/2\mu\mathcal{C}_{OX}=0.1mA/V^2$ and thermal noise coefficients $\gamma=2/3$ and $\alpha=1$.
 - a) Derive the bias point of the circuit. Evaluate the RF to IF conversion gain from the input V_{rf} to the output port V_{out} .
 - b) Calculate the power gain from the RF port to output port.
 - c) Compute the noise figure of the circuit referred to source resistance R_s , considering just the thermal noise of M1 and R_s .

[Sol. a) A_V = 22dB, b) G_P = 6dB, c) NF = 2.2dB].

- T12.3 Let us consider the mixer in figure, where $V_{dd}=2.5 \text{V}$, $R_d=200\Omega$. Let us assume that the MOSFETs have threshold $V_T=0.5 \text{V}$, constant $1/2\mu C_{\text{ox}}=0.2 \text{mA/V}^2$, and V_{rf} is a sinusoid with offset voltage of 1V. Let the impedance of the RLC network have its resonance frequency around the image frequency at $f_{IM}=(f_{LO}-f_{IF})$.
 - a) Derive the mathematical expression of the image rejection ratio of the stage, computing the ratio between the conversion gain of an input RF signal at $f_{RF} = (f_{LO} + f_{IF})$ and the conversion gain of an input RF signal at f_{IM} .

b) Size $(W/L)_1$ and R to get IIR equal to 30dB and conversion gain at f_{RF} equal to 10dB.

[Sol. a) IRR = $(1+g_{m1}R)$; b) $(W/L)_1 = 124$, R = $1.2k\Omega$]