Exercise. Prove that in the definition of field extension by radicals (before Thm. 9.6) we ay assume that $L_k \subseteq L_0$ is Galois.

The definition of field extension by radicals given during the lecture goes as follow:

 $K \subseteq L$ is e.b.r. if there exists k and

$$[\mathsf{L}\subseteq]\mathsf{L}_0\supseteq\mathsf{L}_1\supseteq...\supseteq\mathsf{L}_k=\mathsf{K}$$

such that for every $i < k L_i$ is the splitting field of one of the following polynomials:

- $x^{n_i} b_i$, $b_i \in L_{i+1}$ ($p \nmid n_i$ when char(K) = p)
- $x^p x b_i$, $b_i \in L_{i+1}$

Theorem 9.6 states that:

Assume that $K \subseteq L$ is a finite field extension. Then $K \subseteq L$ is an extension by radicals \iff there exists $L' \supseteq L$ such that $K \subseteq L'$ is solvable.

In the proof of this theorem we assumed that $K \subseteq L_0$ is Galois so now I have to prove that we did not lie.

Firstly, I am going to say that any splitting field is algebraic. Then, $L_k \subseteq L_0$ is a splitting field and so is algebraic. Hence, to show that $L_k \subseteq L_0$ is Galois I only need to show that it is normal and separable.

NORMAL:

I know that $K \subseteq L$ is normal \iff every $f \in K[X]$ splits into linear polynomials in L[X] Take any $f \in L_k[X]$ (= K[X]).

SEPARABLE:

TO BE CONTINUED