Advanced Statistical Inference Refresher on Probabilities

Maurizio Filippone Maurizio.Filippone@eurecom.fr

Department of Data Science FURECOM

Outline

Syntax of Probabilities

Sum Rule

Product Rule

Baves' Rule

Random variables

A random variable [...] refers to a "part" of the world whose "status" is initially unknown. [...]

S.Russell, P.Norvig, "Artificial Intelligence. A Modern Approach", Prentice Hall (2003)

Boolean random variables

- Propositional or Boolean random variables
- ▶ Two possible values: *True* or *False*
- Examples:
 - Cavity (do I have a cavity?)
 - Earthquake (is there an earthquake?)
 - ► ¬Earthquake ∨ Cavity

Multivalued variables

- Discrete or Multivalued random variables
- Values must be exhaustive and mutually exclusive
- Examples:
 - Weather is one of (sunny, rainy, cloudy, snowy)
 - Face of a die roll is one of (1, 2, 3, 4, 5, 6)

Prior Probabilities

- Prior or unconditional probabilities of propositions, e.g.,
 - ▶ P(Cavity = T) = 0.1 (also denoted by P(Cavity))
 - ightharpoonup P(Weather = sunny) = 0.72
- Correspond to belief prior to arrival of any (new) evidence

Probability distribution

- Probability distribution gives values for all possible assignments:
 - ightharpoonup P(Weather) = (0.72, 0.1, 0.08, 0.1)
 - Array of numbers with one index: array[index]
- ▶ Normalized, i.e., sums to 1

$$P(sunny \lor rainy \lor cloudy \lor snowy) = 1$$

Multiple variables - Joint distribution

- ▶ Joint probability distribution for a set of variables gives values for each possible assignment to all the variables
 - ▶ $P(Cavity, Weather) = a 2 \times 4 array$
 - Array of numbers with multiple indices: array[index1, index2,...]

Multiple variables - Joint distribution

Sum of all values is 1

		Weather			
		sunny	rainy	cloudy	snowy
Cavity	T	0.10	0.20	0.05	0.05
	F	0.25	0.15	0.02	0.18

Continuous variables

- ▶ What about continuous variables?
- How do we specify an array of infinite numbers?

Answer: Probability Density Function

Discrete vs continuous variables

- ▶ If X takes values in D discrete
- ightharpoonup Sum expressed by the symbol \sum

$$\sum_{v \in D} \mathbf{P}(X = v) = 1$$

- ▶ If X takes values in C continuous
- ▶ Sum expressed by the symbol \int

$$\int_C p(x)dx = 1$$

Probability density function - Examples

Gaussian probability density function

Probability density function - Examples

Uniform density function

Probability density function - Examples

Uniform density function - look at the *y*-axis!

Probability density vs distribution

- Are probabilities not supposed to be between zero and one? Yes
- ▶ Is there anything wrong with the last plot? No
- ▶ The probability of an event being in a given interval *I*:

$$0 \le \int_I p(x) dx \le 1$$

Why?

Probability density vs distribution

Let's see for the Gaussian

- Conditional or posterior probabilities
- Denoted by the "|" symbol
- Belief updated after evidence is gathered
 - ► P(Cavity|Toothache) = 0.8, i.e., given that Toothache is all I know
 - ► **P**(Weather|Earthquake) = two arrays of 4 elements (one for each state of Earthquake)

- ▶ New evidence may be irrelevant, allowing simplification, e.g.,
 - ▶ P(Cavity|Toothache, LotteryDraw) = P(Cavity|Toothache) = 0.8
- ► This kind of inference, sanctioned by domain knowledge, is crucial

Define:

Action A_t : leave for airport t minutes before flight

Question:

Will A_t get me there on time?

 \triangleright A_{25} will get me to the airport on time with probability 0.04:

$$P(A_{25}) = 0.04$$

Probabilities change with new evidence

$$P(A_{25}|\text{no reported accidents}) = 0.06$$

$$P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|...) = 0.04

P(A_{90} \text{ gets me there on time}|...) = 0.70

P(A_{120} \text{ gets me there on time}|...) = 0.95

P(A_{1440} \text{ gets me there on time}|...) = 0.9999
```

Which action to choose?

Making decisions under uncertainty

- ▶ Depends on my preferences for missing flight vs. airport cuisine, . . .
- Utility theory is used to represent and infer preferences

▶ We are not covering this in ASI...

From prior to posterior probabilities

Question:

How can we update our belief about a random variable?

Answer:

Bayesian inference

Outline

Syntax of Probabilities

Sum Rule

Product Rule

Baves' Rule

Normalization of probabilities

- Possible outcomes of a random variable are mutually exclusive
- For example, in the case of the roll of a die

$$P(Face = 1 \land Face = 2) = 0$$

Possible outcomes are exhaustive:

Face =
$$1 \lor \cdots \lor Face = 6$$
 is true
hence $\sum_{i} P(Face = i) = 1$

Normalization for joint distributions

Example:

► Suppose that **P**(*Cavity*, *Toothache*) is:

$$\begin{array}{c|cccc} & Toothache \\ \hline T & F \\ \hline Cavity & F & 0.04 & 0.06 \\ F & 0.01 & 0.89 \\ \hline \end{array}$$

▶ Again, sum over all possible outcomes is 1

- Given a joint distribution over a set of variables we can compute the distribution for a subset of variables
- ► This is sometimes called marginal distribution

- ▶ Suppose we are interested in P(Cavity = T)
- Can we compute it from the joint distribution?

$$\begin{array}{c|cccc} & & Toothache \\ \hline T & F \\ \hline Cavity & F & 0.04 & 0.06 \\ \hline & & & 0.01 & 0.89 \\ \end{array}$$

► Yes! - How?

▶ Sum the row corresponding to *Cavity* = *T*

- ▶ Therefore P(Cavity = T) = 0.1
- ► Why?

- We are interested in P(Cavity = T) regardless of any evidence about Toothache
- ▶ Sum across all possible states of *Toothache* ensures this

Outline

Syntax of Probabilities

Sum Rule

Product Rule

Baves' Rule

Definition of conditional probability:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 if $P(B) \neq 0$

Why? It's about normalization

Example:

Suppose we are interested in

$$P(Cavity = T | Toothache = T)$$

$$\begin{array}{c|cccc} & & Toothache \\ \hline T & F \\ \hline Cavity & F & 0.04 & 0.06 \\ \hline & F & 0.01 & 0.89 \\ \hline \end{array}$$

We need to ensure that

$$\sum_{Cavity=T,F} \mathbf{P}(Cavity|Toothache=T)=1$$

In this example:

$$P(Toothache = T) = 0.05$$

 $P(Cavity, Toothache = T) = (0.04, 0.01)$

Applying the definition of conditional probability

$$P(Cavity = T | Toothache = T) = \frac{0.04}{0.05} = 0.8$$

Product rule

The definition of conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 if $P(B) \neq 0$

Implies the so called product rule:

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

► Easy to remember: product turns "|" into ","

General version holds for whole distributions

$$\textbf{P}(\textit{Weather}, \textit{Cavity}) = \textbf{P}(\textit{Weather}|\textit{Cavity}) \textbf{P}(\textit{Cavity})$$

Viewed as a 4×2 set of equations

Conditional probability - Chain Rule

▶ The same idea applies to multiple variables

$$P(A, B, C) = P(A, B|C)P(C)$$

$$P(A, B|C) = P(A|B, C)P(B|C)$$

Conditional probability - Chain Rule

► Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_1,\ldots,X_n) = \mathbf{P}(X_n|X_1,\ldots,X_{n-1})\mathbf{P}(X_1,\ldots,X_{n-1})$$

$$= \mathbf{P}(X_n|X_1,\ldots,X_{n-1}) \times \mathbf{P}(X_{n-1}|X_1,\ldots,X_{n-2})\mathbf{P}(X_1,\ldots,X_{n-2})$$

$$= \ldots$$

$$= \prod_{i=1}^n \mathbf{P}(X_i|X_1,\ldots,X_{i-1})$$

Outline

Syntax of Probabilities

Sum Rule

Product Rule

Bayes' Rule

Bayes' Rule

Product rule

$$P(A,B) = P(A|B)P(B) = P(B|A)P(A)$$

► Implies Bayes' rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

► Why is this useful?

Bayes' Rule

► For assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Bayes' Rule

Example

▶ Let *M* be meningitis, *S* be stiff neck:

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

▶ Note: posterior probability of meningitis still very small!

Bayes' Rule - Normalization

- ▶ Suppose we wish to compute a posterior distribution over A given B = b, and suppose A has possible values $a_1 \dots a_m$
- ▶ We can apply Bayes' rule for each value of A

$$P(A = a_1|B = b) = \frac{P(B = b|A = a_1)P(A = a_1)}{P(B = b)}$$

. . .

$$P(A = a_m | B = b) = \frac{P(B = b | A = a_m)P(A = a_m)}{P(B = b)}$$

Bayes' Rule - Normalization

Adding these up, and noting that:

$$\sum_{i} P(A = a_i | B = b) = 1,$$

we obtain:

$$\frac{1}{P(B=b)} = \frac{1}{\sum_{i} P(B=b|A=a_{i}) P(A=a_{i})}$$

▶ This is the normalization factor, constant wrt i, denoted α :

$$P(A|B = b) = \alpha P(B = b|A)P(A)$$

Bayes' Rule - Normalization

- Typically compute an unnormalized distribution, normalize at end
- For example, suppose

$$P(B = b|A)P(A) = (0.4, 0.2, 0.2)$$

then

$$\mathbf{P}(A|B=b) = \alpha(0.4, 0.2, 0.2)$$

$$= \frac{1}{0.4 + 0.2 + 0.2}(0.4, 0.2, 0.2)$$

$$= (0.5, 0.25, 0.25)$$