CS 228 : Logic in Computer Science

Krishna. S

First-Order Logic : Semantics

▶ A structure A of signature τ consists of

3/1:

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A

3/13

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A

3/13

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A
 - ▶ The structure \mathcal{A} is finite if A (or $u(\mathcal{A})$) is finite

Examples of Structures : A Graph

 $ightharpoonup au = \{E\}$, with E binary.

Examples of Structures : A Graph

- $ightharpoonup au = \{E\}$, with E binary.
 - A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe $u(\mathcal{G})$ is the set of vertices V
 - ▶ The relation *E* is the edge relation

Examples of Structures : A Graph

- $ightharpoonup au = \{E\}$, with E binary.
 - A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe $u(\mathcal{G})$ is the set of vertices V
 - ▶ The relation *E* is the edge relation
 - $\mathcal{G} = (V = \{1, 2, 3, 4\}, E^{\widehat{\mathcal{G}}} = \{(1, 2), (2, 3), (3, 4), (1, 1)\})$. We could just as well draw the graph for convenience.

 $au = \{<, S\}$ with <, S binary.

- $ightharpoonup au = \{<, S\}$ with <, S binary.
 - ▶ A finite order structure over τ is $\mathcal{O} = (O, <^{\mathcal{O}}, S^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O

- $ightharpoonup au = \{<, S\}$ with <, S binary.
 - A finite order structure over τ is $\mathcal{O} = (O, <^{\mathcal{O}}, S^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O
 - $\mathcal{O} = (O = \{1, 2, 4\}, <^{\mathcal{O}} = \{(1, 2), (1, 4), (2, 4)\}, S^{\mathcal{O}} = \{(1, 2)\})$

▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.

- $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - ▶ A word structure $W = (u(W), <^W, S^W, Q_a^W, Q_b^W)$

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W

- $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S \rangle$ are binary, Q_a, Q_b are unary relations.
 - ▶ A word structure $W = (u(W), <^W, S^W, Q_a^W, Q_b^W)$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $S^{\mathcal{W}}$ is the successor relation on the positions of W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - ▶ A word structure $W = (u(W), <^W, S^W, Q_a^W, Q_b^W)$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $ightharpoonup S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $ightharpoonup Q_a^{\mathcal{W}}$ is the set of positions labeled a in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $ightharpoonup S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $ightharpoonup Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - \triangleright $Q_b^{\mathcal{W}}$ is the set of positions labeled b in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - ► The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W
 - \triangleright $Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - \triangleright $Q_b^{\mathcal{W}}$ is the set of positions labeled b in W
 - ► The structure with $u(W) = \{0, 1, 2, ..., 8\}$, $Q_b^W = \{0, 1, 4, 6, 8\}$, $Q_b^W = \{2, 3, 5, 7\}$,
 - $< ^{\mathcal{W}} = \{(0,1),(0,2),\ldots,(7,8)\}, S^{\mathcal{W}} = \{(0,1),(1,2),\ldots,(7,8)\}$ uniquely defines the word W = aabbababa.
 - For convenience, we can just write the word instead of the structure.

► For a wff $\varphi = \forall x\psi$ or $\exists x\psi$, ψ is said to be the scope of the quantifier x

- ► For a wff $\varphi = \forall x \psi$ or $\exists x \psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ or $\exists x\psi$ is bound
- ► Any occurrence of x which is not bound is called free

X captured by quantifiers are bound and which are not captured by any quantifier are unbound.

- ► For a wff $\varphi = \forall x\psi$ or $\exists x\psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ or $\exists x\psi$ is bound
- ► Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
 - \triangleright x is free in P(x, y), and bound in Q(x, y), R(x, y)

- ► For a wff $\varphi = \forall x\psi$ or $\exists x\psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ or $\exists x\psi$ is bound
- ► Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
 - \triangleright x is free in P(x, y), and bound in Q(x, y), R(x, y)
- ▶ Given φ , denote by $\varphi(x_1, \ldots, x_n)$, that x_1, \ldots, x_n are the free variables of φ , also $free(\varphi)$
- \triangleright A sentence is a formula φ none of whose variables are free

$P(x,y) \rightarrow \forall x((\forall y R(x,y)) \rightarrow Q(x,y))$

$P(x, y) \rightarrow \forall x((\forall y R(x, y)) \rightarrow Q(x, y))$

See no quantifier in front of P, thus variables of P are free.

$$\varphi(s,t) = P(s,t) \rightarrow \forall x((\forall yR(x,y)) \rightarrow Q(x,t))$$

$\forall x (R(x,y) \rightarrow \forall y P(y))$

10/13

$\forall x (R(x,y) \rightarrow \forall y P(y))$

$$\varphi(t) = \forall x (R(x, t) \rightarrow \forall y P(y))$$

Rename the free var if it is same as bound one.

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a function $\alpha: \mathcal{V} \to u(\mathcal{A})$ that assigns every variable $x \in \mathcal{V}$ a value $\alpha(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha(t)$ is $c^{\mathcal{A}}$

12/1:

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a function $\alpha: \mathcal{V} \to u(\mathcal{A})$ that assigns every variable $x \in \mathcal{V}$ a value $\alpha(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha(t)$ is $c^{\mathcal{A}}$

Binding on a Variable

For an assignment α over \mathcal{A} , $\alpha[x \mapsto a]$ is the assignment

$$\alpha[\mathsf{x}\mapsto\mathsf{a}](\mathsf{y})=\left\{\begin{array}{c}\alpha(\mathsf{y}),\mathsf{y}\neq\mathsf{x},\\\mathsf{a},\mathsf{y}=\mathsf{x}\end{array}\right.$$

It is just put "a" at position x.

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

13/1

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

 $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$

13/13

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $ightharpoonup \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- ▶ $A \models_{\alpha} R(t_1, ..., t_k)$ iff $(\alpha(t_1), ..., \alpha(t_k)) \in R^A$

If the assignment's are in domain then R is true in A under assignment alpha

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- \blacktriangleright $\mathcal{A} \models_{\alpha} R(t_1, \ldots, t_k)$ iff $(\alpha(t_1), \ldots, \alpha(t_k)) \in R^{\mathcal{A}}$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1, \ldots, t_k) \text{ iff } (\alpha(t_1), \ldots, \alpha(t_k)) \in R^A$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $ightharpoonup \mathcal{A} \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1, \ldots, t_k) \text{ iff } (\alpha(t_1), \ldots, \alpha(t_k)) \in R^A$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\exists x) \varphi$ iff there is some $a \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$

Last two cases, α has no effect on the value of x. Thus, assignments matter only to free variables.