STAT 305 Quiz III Reference Sheet

Basic Probability

Definitions

Random experiment A series of actions that lead to an observable result.

The result may change each time we perform the experiment.

Outcome The result(s) of a random experiment.

Sample Space (S)A set of all possible results of a random experiment.

Event (A)Any subset of sample space.

Probability of an event (P(A))the likelihood that the observed outcome of

a random experiment is one of the outcomes in the event.

 A^C The outcomes that are not in A.

 $A \cap B$ The outcomes that are both in A and in B. $A \cup B$ The outcomes that are either A or B.

General Rules

Probability A given B $P(A|B) = P(A \cap B)/P(B)$

Probability A and B $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

Probability A or BP(A or B) = P(A) + P(B) - P(A, B)

Independence

Two events are called independent if $P(A, B) = P(A) \cdot P(B)$. Clever students will realize this also means that if A and B are independent then P(A|B) = P(A) and P(B|A) = P(B).

Joint Probability

Joint Probability The probability an outcome is in event A and in event B = P(A, B).

Marginal Probability If $A \subseteq B \cup C$ then $P(A) = P(A \cap B) + P(A \cap C)$.

Conditional Probability For events A and B, if $P(B) \neq 0$ then $P(A|B) = P(A \cap B)/P(B)$.

Discrete Random Variables

General Rules

 $f_{\mathbf{Y}}(x) = P(X = x)$ Probability function

Cumulative probability function $F_X(x) = P(X \le x)$

 $\mu = E(X) = \sum_{x} x f_X(x)$ Expected Value

 $\sigma^2 = Var(X) = \sum_{x} (x - \mu)^2 f_X(x)$ Variance

 $\sigma = \sqrt{Var(X)}$ Standard Deviation

Joint Probability Functions

Joint Probability Function $f_{XY}(x,y) = P[X=x,Y=y]$

 $f_X(x) = \sum_y f_{XY}(x, y)$ $f_Y(y) = \sum_x f_{XY}(x, y)$ Marginal Probability Function

Conditional Probability Function $f_{X|Y}(x|y) = f_{XY}(x,y)/f_Y(y)$

 $f_{Y|X}(y|x) = f_{XY}(x,y)/f_X(x)$

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values $x = 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = p(1-p)^{x-1}$

 $\mu = E(X) = \frac{1}{n}$ Expected Value

 $\sigma^2 = Var(X) = \frac{1-p}{r^2}$ Variance

 $F(x) = 1 - (1 - p)^x$ CDF

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values $x = 0, 1, 2, \dots, n$

Probability function $P[X=x] = f_X(x) = \frac{n!}{(n-x)!x!} p^x (1-p)^{n-x}$

Expected Value $\mu = E(X) = np$

 $\sigma^2 = Var(X) = np(1-p)$ Variance

Poisson Random Variables

X is the number of times a rare event occurs over a predetermined interval (an area, an amount of time, etc.) where the number of events we expect is λ .

Possible Values $x = 0, 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$

Expected Value $E(X) = \lambda$

Variance $Var(X) = \lambda$

Continuous Random Variables

General Rules

Probability density function
$$P[a \le X \le b] = \int_a^b f_X(x) dx$$

Cumulative density function
$$P[X \le x] = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Expected Value
$$\mu = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance
$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Standard Deviation
$$\sigma = \sqrt{Var(X)}$$

Joint Probability Density Functions

Joint Probability Density Function
$$f_{XY}(x,y)$$
 is the joint density of both X and Y.

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{XY}(x, y) dy dx$$

Marginal Probability Density Function
$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y)dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

Conditional Probability Density Function
$$f_{X|Y}(x|y) = f_{XY}(x,y)/f_Y(y)$$

$$f_{Y|X}(y|x) = f_{XY}(x,y)/f_X(x)$$

Uniform Random Variables

Used when we believe an outcome could be anywhere between two values a and b but have no other beliefs.

Probability density function
$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \\ 0 & o.w. \end{cases}$$

Cumulative density function
$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{1}{b-a}x - \frac{a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Expected Value
$$E(X) = \frac{1}{2}(b+a)$$

Variance
$$Var(X) = \frac{1}{12}(b-a)^2$$

Exponential Random Variables

Used when we an outcome could be anything greater than 0 but the likelihood is concentrated on smaller values.

Probability density function
$$f_X(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & x \geq 0 \\ 0 & o.w. \end{cases}$$

Cumulative density function
$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1 - \exp\left(-\frac{x}{\alpha}\right) & x \ge 0 \end{cases}$$

Expected Value
$$E(X) = \alpha$$

Variance
$$Var(X) = (\alpha)^2$$

Normal Random Variables

Used when we believe an outcome could be above or below a certain value μ but we also believe it is more likely to be close to μ than it is to be far away.

Probability density function
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Cumulative density function There is no general formula.

Expected Value
$$E(X) = \mu$$

Variance
$$Var(X) = \sigma^2$$

Standard Normal Random Variables (Z)

A normal random variable with mean 0 and variance σ^2 .

Probability density function
$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Cumulative density function There is no general formula.

Expected Value
$$E(Z) = 0$$

Variance
$$Var(Z) = 1$$

Relationship with
$$X \sim N(\mu, \sigma^2)$$
 If X is normal (μ, σ^2) then $P[a \le X \le b] = P\left[\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right]$

Functions of Random Variables

Linear Combinations of Independent Random Variables

For X_1, X_2, \ldots, X_n independent random variables and $a_0, a_1, a_2, \ldots, a_n$ constants if $U = a_0 + a_1 X_1 + \ldots + a_n X_n$:

•
$$E(U) = a_0 + a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$$

•
$$Var(U) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + \dots + a_n^2 Var(X_n)$$