Sheaves on Manifolds Exercise II.1 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.1, KS02] の解答です。

II Sheaves

問題 II.1. $\mathbb N$ を自然数の集合で、 $\{0,\cdots,n\}, n\geq -1$ たちが開となる最も粗い位相を入れる。このとき、 $\mathbb N$ 上の前層 F は各 n に対するアーベル群 $F_n \stackrel{\mathrm{def}}{:=} F(\{0,\cdots,n\})$ と $n\geq m$ に対する開集合の包含 $\{0,\cdots,m\}\subset\{0,\cdots,n\}$ により引き起こされる制限写像 $F_n\to F_m$ の族に唯一のアーベル群 $F_\infty \stackrel{\mathrm{def}}{:=} F(\mathbb N)$ を添加したものと同一視される。

- (0) 前層 F が層であるための必要十分条件は $\Gamma(\mathbb{N},F)\cong \lim_n F_n$ であることを示せ。
- (1) 各 $j \neq 0,1$ に対して $H^{j}(\mathbb{N}, F) = 0$ であることを示せ。
- (2) $H^1(\mathbb{N},F)\cong (\prod_n F_n)/I$ であることを示せ。ただし I の定義は、 $f_{i,j}:F_i\to F_j$ を層 F の制限写像とするとき、以下で定義される:

$$I : \stackrel{\text{def}}{=} \left\{ (x_n)_{n \in \mathbb{N}} \in \prod_n F_n \middle| \forall n \in \mathbb{N}, \exists y_n \in F_n, x_n = y_n - f_{n+1,n}(y_{n+1}) \right\}.$$

証明. (0) は自明。(1) を示す。 $G_n : \stackrel{\mathrm{def}}{=} \prod_{i \leq n} F_i$ と置く。射影 $G_n \to G_{n-1}$ らにより定まる $\mathbb N$ 上の層を G と置くと、構成からただちに G が脆弱層であることがわかる。各 $n \geq i$ に対して制限写像 $F_n \to F_i$ の族が単射 $F_n \to \prod_{i \leq n} F_i = G_n$ を引き起こす。これは制限写像 $F_n \to F_{n-1}$ と射影 $G_n \to G_{n-1}$ と可換し、よって層の単射 $F \to G$ を得る。

層 G/F の構造を決定する。層 F の制限写像を $f_{i,j}: F_i \to F_j$ と置く。

$$\varphi_n((x_i)_{i \le n}) : \stackrel{\text{def}}{=} (x_i - f_{n,i}(x_n))_{i < n}$$

で定まる射 $\varphi_n:G_n\to H_n:\stackrel{\mathrm{def}}{=}\prod_{i< n}F_i$ は全射であり、核はちょうど $\mathrm{Im}(F_n\to G_n)$ である。また、 $m\le n$ に対して $h_{n,m}:H_n\to H_m$ を

$$h_{n,m}((x_i)_{i < n}) : \stackrel{\text{def}}{=} (x_i - f_{m,i}(x_m))_{i < m}$$

と定めれば、各i < m < nに対して

$$(x_i - f_{n,i}(x_n)) - (f_{m,i}(x_m - f_{n,m}(x_n))) = x_i - f_{m,i}(x_m)$$

となるので、図式

$$G_n \xrightarrow{\varphi_n} H_n$$

$$\text{proj.} \downarrow \qquad \qquad \downarrow^{h_{n,m}}$$

$$G_m \xrightarrow{\varphi_m} H_m$$

は可換である。これらの H_n により定まる層 H は G/F に他ならないが、各 $h_{n,m}$ は全射であるから、H は 脆弱層である。以上より $\mathbb N$ 上の層の完全列

$$0 \, \longrightarrow \, F \, \longrightarrow \, G \, \longrightarrow \, H \, \longrightarrow \, 0$$

で G,H が脆弱層となるものが構成できた。このことは $H^j(\mathbb{N},F)=0, j\geq 2$ を示している。以上で (1) の証明を完了する。

(2) を示す。(1) の証明中に得られた層 H の大域切断を決定する。それは $\lim_n H_n$ であるから、このアーベル群を計算する。 $\lim_n H_n$ は $\prod_{n\in N} H_n$ の部分加群で、

$$\left\{ (x^n : \stackrel{\text{def}}{=} (x_i^n)_{i < n})_{n \in \mathbb{N}} \middle| x^n \in H_n, \forall (m \le n), h_{n,m}(x^n) = x^m \right\}$$

となるものと自然に同型である。従って各 $i < m \le n$ に対して $x_i^m = x_i^n - h_{m,i}(x_m^n)$ となる。従って、このような元の族 $x^n \in H_n$ は $x_{n-1}^n \in F_{n-1}$ によって $x_i^n = x_i^{n-1} + h_{n-1,i}(x_{n-1}^n)$ の形で一意的に決定される。すなわち、射影 $H_n \to F_{n-1}$ を並べて得られる射影 $\prod_{n \in \mathbb{N}} H_n \to \prod_{n \in \mathbb{N} \ge 1} F_{n-1} = \prod_{n \in \mathbb{N}} F_n$ を $\lim_n H_n \subset \prod_{n \in \mathbb{N}} H_n$ へ制限すると同型射となる。従って $\Gamma(\mathbb{N}, H) \cong \prod_{n \in \mathbb{N}} F_n$ となる。以上より、アーベル群の完全列

$$0 \longrightarrow H^0(\mathbb{N}, F) \longrightarrow \prod_{n \in \mathbb{N}} F_n \xrightarrow{\varphi} \prod_{n \in \mathbb{N}} F_n$$
$$\longrightarrow H^1(\mathbb{N}, F) \longrightarrow 0$$

を得る。問われていることは、 φ の像を決定することである。各 n について、 $\varphi_n:G_n\to H_n$ の像の F_{n-1} の成分を見ればそれは決定できる。 $(x_n)_{n\in\mathbb{N}}\in\Gamma(\mathbb{N},G)\cong\prod_{n\in\mathbb{N}}F_n$ を任意にとると、 $\varphi_n((x_i)_{i\leq n})=(x_i-f_{n,i}(x_n))_{i< n}$ であるから、 F_{n-1} の成分は $x_{n-1}-f_{n,n-1}(x_n)$ である。従って、

$$\varphi((x_n)_{n\in\mathbb{N}}) = (x_n - f_{n+1,n}(x_{n+1}))_{n\in\mathbb{N}}$$

となる。従って ${\rm Im}(\varphi)=I$ がわかる。よって $H^1(\mathbb{N},F)\cong (\prod_{n\in\mathbb{N}}F_n)/I$ が示された。以上で解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.