

ĆWICZENIE

8

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

Instrukcja wykonawcza

1. Wykaz przyrządów

- Naczynie cylindryczne z badaną cieczą
- Areometr
- Zestaw kulek
- Waga
- Śruba mikrometryczna
- Linijka z podziałką milimetrową
- Stoper
- Wiskozymetr Höpplera

2. Cel ćwiczenia

- Obserwacja ruchu ciał spadających w ośrodku ciągłym.
- Wyznaczenie współczynnika lepkości cieczy.

3. Przebieg pomiarów

3.1. Pomiar lepkości cieczy metodą Stokesa za pomocą szerokiego cylindrycznego naczynia szklanego

Rys.1. Urządzenie do pomiaru współczynnika lepkości cieczy metodą Stokesa:

- 1 ciecz
- 2 cylinder szklany
- 3 pierścienie
- h odległość między pierścieniami
- a) pomiary wykonać dla kilku kulek wskazanych przez prowadzącego ćwiczenia;
- b) kulki dokładnie oczyścić, wysuszyć i każdą z nich zważyć na wadze;
- c) zmierzyć śrubą mikrometryczną średnicę kulek; pomiaru średnicy *d* każdej kulki dokonać co najmniej 10 razy w różnych kierunkach;
- d) za pomocą linijki z podziałką milimetrową zmierzyć odległość h między pierścieniami nałożonymi na naczynie; górny pierścień powinien znajdować się w odległości nie mniej niż 6 cm od powierzchni cieczy; odległość między pierścieniami jest równa drodze h przebytej przez kulkę ruchem jednostajnym;

- e) zmierzyć wielokrotnie (nie mniej niż 10 razy) czas spadania *t* każdej kulki na drodze *h*; kulkę puszczać swobodnie tuż nad powierzchnią cieczy tak, aby jej tor w przybliżeniu pokrywał się z osią naczynia;
- f) wyznaczyć areometrem gęstość ρ_c badanej cieczy.
- 3.2. Pomiar współczynnika lepkości cieczy metodą Stokesa za pomocą wiskozymetru Höpplera

Rys.2. Wiskozymetr Höpplera:

- 1 rurka
- 2 kulka
- 3 kreski, między którymi mierzy się czas spadania kulki
- 4 osłona termostatyczna
- 5 urządzenie aretujące

Nie rozkręcać wiskozymetru !!! Do wiskozymetru nie wrzucać żadnych kulek !!!

- a) wypoziomować wiskozymetr;
- przyjąć temperaturę badanej cieczy jako temperaturę otoczenia; dla danej kulki zamkniętej w rurce z badaną cieczą kilkakrotnie zmierzyć stoperem czas t spadania kulki na drodze między skrajnymi kreskami znaczącymi;
- c) kulkę wprawić w ruch przez odaretowanie rurki wraz z osłoną termostatyczną i jej obrót wokół osi o 180°.

5. Opracowanie wyników

a) dla szerokiego naczynia cylindrycznego

- 1. Obliczyć wartości średnie średnicy kulek \bar{d} oraz ich niepewności pomiarowe u(d).
- 2. Obliczyć wartości średnie czasów opadania kulek \bar{t} między pierścieniami oraz ich niepewności pomiarowe u(t).
- 3. Obliczyć gęstość kulki ρ_k korzystając ze wzoru (1) oraz jej niepewność $u_c(\rho_k)$.

$$\rho_k = \frac{6m}{\pi \cdot d^3} \tag{1}$$

4. Obliczyć współczynnik lepkości cieczy η korzystając z poniższego wzoru i jego niepewność pomiarową $u_c(\eta)$.

$$\eta = \frac{d^2 \cdot g \cdot t \cdot (\rho_k - \rho_c)}{18h} \tag{2}$$

- 5. Wyznaczyć wartość średnią $\stackrel{-}{\eta}$ ze wszystkich pomiarów.
- 6. Oszacować niepewność pomiaru współczynnika lepkości $u(\bar{\eta})$ (stosując odchylenie standardowe).

b) dla wiskozymetru Höpplera

- 1. Obliczyć średni czas opadania kulki \bar{t} i jego niepewność u(t).
- 2. Obliczyć współczynnik lepkości badanej cieczy, dla danej temperatury pomiaru, korzystając
- z poniższego wzoru oraz jego niepewność.

$$\eta = k \cdot (\rho_k - \rho_c) \cdot t \tag{3}$$

Dane potrzebne do obliczeń:

Wiskozymetr 8/1	Wiskozymetr 8/3	Wiskozymetr 8/5		
$k = 0.1228 \cdot 10^{-6} \text{ m}^2/\text{s}^2$	$k = 1,193225 \cdot 10^{-6} \text{ m}^2/\text{s}^2$	$k = 10,06 \cdot 10^{-6} \text{ m}^2/\text{s}^2$		
$\rho_k = (8,14 \pm 0,01) \text{ g/cm}^3$	$\rho_k = (8,14 \pm 0,01) \text{ g/cm}^3$	$\rho_k = (7,74 \pm 0,01) \text{ g/cm}^3$		
$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$	$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$	$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$		
Wiskozymetr 8/2	Wiskozymetr 8/4	Wiskozymetr 8/6		
$k = 0.7941 \cdot 10^{-6} \text{ m}^2/\text{s}^2$	$k = 0.7805 \cdot 10^{-6} \mathrm{m}^2/\mathrm{s}^2$	$k = 5,431 \cdot 10^{-6} \text{ m}^2/\text{s}^2$		
$\rho_k = (2.41 \pm 0.01) \text{ g/cm}^3$	$\rho_k = (2,41 \pm 0,01) \text{ g/cm}^3$	$\rho_k = (2,413 \pm 0,001) \text{ g/cm}^3$		
$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$	$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$	$\rho_c = (1,261 \pm 0,005) \text{ g/cm}^3$		

6. Informacje dodatkowe

Należy ocenić czas reakcji studenta przy włączaniu i wyłączaniu stopera i uwzględnić go w obliczeniach niepewności czasu u(t).

7. Proponowane tabele (do zatwierdzenia u prowadzącego)

Tabela 1. Pomiary parametrów oraz czasów opadania dla kulki 1 wraz z obliczonym

współczynnikiem lepkości cieczy

lp.	m 10 ⁻³ [kg]	d 10⁻³[m]	h [m]	t [s]	ρ_k [kg/m ³]	ρ_c [kg/m ³]	n [Ns/m²]
1							
2							
3							
:							
n							
\bar{X}							
ΔX							
u(X)							
$u_c(X)$							

$$\bar{\eta} = u(\bar{\eta}) =$$

Tabela 2. Pomiary parametrów i czasów opadania dla kulki w wiskozymetrze Höpplera wraz z obliczonym współczynnikiem lepkości cieczy

lp.	t [s]	k [m²/s²]	ρ_k [kg/m ³]	ρ_c [kg/m ³]	η [Ns/m²]
1					
2					
3					
n					
\bar{X}					
ΔX					
u(X)					
$u_c(X)$					