Successioni di numeri reali, convergenze e divergenze #Analisi1

Definizione: una successione (di numeri reali) è una funzione $f: \{n \in N : n \ge n_0\}$ ->R $\forall n_0 \in N$

Esempio: f(n) = 1/(n-5) $n \ge 6$ $f(n) = \log(n - 73)$ $n \ge 74$

Osservazione: a livello di notazione scriveremo a_n , $\{a_n\}$, $\{a_n\}_{n\geq n}$ invece di f(n)

Osservazione: il grafico di una successione a_n è dato da una sequenza di punti R^2 , della forma (n, a_n) , $n \in N$

Definizione: una successione a_n si dice

- Limitata dall'alto (o superiormente) se $\exists M \in R \ t.c. \ a_n \leq M \ \forall n \in N$
- Limitata dal basso (o inferiormente) se $\exists m \in R \ t.c. \ a_n \ge m \ \forall n \in N$
- Limitata se è limitata sia dal basso che dall'alto se $\exists m,M \in R \ t.c. \ m \le a_n$ ≤ $M \ \forall n \in N$ equivalentemente, $\exists M \ >0 \ t.c. \ |a_n| \le M \ \forall n \in N$

Definizione: diremo che una successione a_n soddisfa una certa proprietà P definitivamente (in $n \in N$) se esiste $n_1 \in N$ t.c. che a_n definisce $P \forall n \geq n_1$

Esempio: $a_n = 1/n$ è definitivamente minore di $1/2\pi \ \forall n \ge 2\pi$ (se si preferisce $n \ge 7$) (la proprietà falsa n = 1,2,3,4,5,6)

Definizione: diremo che una successione a_n converge a $I \in R$ e scriveremo:

 $\lim_{n\to\infty} a_n = 1$

se $\forall \epsilon > 0$ (soglia di tolleranza) $\exists n_1 \in N \ t.c. \ |a_n - I| < \epsilon \ \forall n \in N$

o equivalentemente I - ϵ < a $_n$ < I + ϵ $\forall n \in N$

Osservazione: $\lim_{n\to\infty} a_n = 1 <=> \lim_{n\to\infty} |a_n - 1| = 0$

Osservazione: non tutte le successioni ammettono limite

Esempio: $a_n = (-1)^n$ non ammette limite

Teorema (unicità del limite): data una successione $a_{n'}$ se esiste $I = Lim_{n->\infty} a_n$ $\in \mathbb{R}$, Allora esso è unico Dimostrazione (per assurdo):

da n_1 in poi a_n deve essere in due insiemi $[l_1 - \epsilon, l_1 + \epsilon]$ e $[l_2 - \epsilon, l_2 + \epsilon]$ la cui intersezione è vuota

per assurdo supponiamo esistano I₁, I₂ \in R, I₁ > I₂ t.c. I₁ = Lim_{n->∞} a_n I₂ = Lim_{n->∞} a_n

scegliamo nella definizione di limite $\epsilon=|l_1-l_2|$ / $3l_1>l_2->\epsilon*$ (l_1-l_2)/3 allora

 $\exists n_1 \in \mathbb{N} \text{ t.c. } n \ge n_1 \quad l_1 - \epsilon < a_n < l_1 + \epsilon$

 $\exists n_2 \in \mathbb{N} \text{ t.c. } n \ge n_2 \mid_1 - \epsilon < a_n < l_1 + \epsilon$

Quindi $\forall n \geq \max\{n_1, n_2\}$ $a_n \in [l_1 - \epsilon, l_1 + \epsilon] \cap [l_2 - \epsilon, l_2 + \epsilon] \quad abbiamo$ l'assurdo perché $[l_1 - \epsilon, l_1 + \epsilon] \cap [l_2 - \epsilon, l_2 + \epsilon] = \emptyset$

Definizione: data una successione a_n

diremo che essa diverge a $+\infty$ e scriveremo $\lim_{n\to\infty} a_n = +\infty$

se $\forall M > 0 \exists n_1 \in N \text{ t.c. } a_n > M \text{ } n \geq n_1$ da n_1 in poi la successione è sempre > M (non n_1 ottimale)

diremo che essa diverge a $-\infty$ e scriveremo $\lim_{n\to\infty} a_n = -\infty$

se $\forall M > 0 \exists n_1 \in N \text{ t.c. } a_n < -M \text{ } n \geq n_1$ da n_1 in poi la successione è sempre $< M \text{ (non } n_1 \text{ ottimale)}$

Definizione:

se $\lim_{n\to\infty} a_n = I \in \mathbb{R}$ diremo che converge (a $I \in \mathbb{R}$)

se $\lim_{n\to\infty} a_n = \pm \infty$ diremo che diverge (a $\pm \infty$)

In entrambi i casi diremo che a_n è regolare

Se a_n non converge né diverge diremo che essa è irregolare, indeterminata o oscillante ($\nexists Lim_{n->\infty} a_n$)

Esempio: $a_n = (-1)^n$ è irregolare, limitata $a_n = (-2)^n$ è irregolare, illimitata

Definizione: chiamiamo retta reale estesa (R esteso) l'insieme $\underline{R} = R^* = R U$ $\{\pm\infty\}$

Teorema: se esiste $\lim_{n\to\infty} a_n = I \in \mathbb{R}$ allora tale limite è unico

Definizione:

se esiste $\lim_{n\to\infty} a_n = 0$ diremo che la successione a_n è infinitesima se esiste $\lim_{n\to\infty} a_n = \pm \infty$ diremo che la successione a_n è infinita

Definizione: diremo che a_n converge a $I \in R$ per eccesso (o per difetto) se $\lim_{n \to \infty} a_n = I$ ed inoltre $a_n \ge I$ (o $a_n \le I$) definitivamente per $n \in N$ scriveremo $\lim_{n \to \infty} a_n = I^+$ (o $\lim_{n \to \infty} a_n = I^-$)

Osservazione:

$$\lim_{n\to\infty} a_n = I^+ \ \forall \epsilon > 0 \ \exists n_1 \in \mathbb{N} \ \text{t.c.} \ I < a_n < I + \epsilon \ \forall n \ge n_1$$

$$\lim_{n\to\infty} a_n = I^- \ \forall \epsilon > 0 \ \exists n_1 \in \mathbb{N} \ \text{t.c.} \ I - \epsilon < a_n < I \ \forall n \ge n_1$$