BALANCED STAFF ROUTING FOR MAINTENANCE

Đinh Nguyễn Công Quý - 20214927 Vũ Tuấn Minh - 20210597 Hoàng Tú Quyên - 20214929 Lê Tuấn Anh - 20214874 + • •

01.
Problem
Description

Give details about idea of the problem

02.

Modelling

Give using variables, constrains and objective function

03.
Proposed
Algorithms

Offer some algorithms to solve the problem

04. Experimental Result

Show experimental result

05.
Conclusion

Summarize project, future work

PROBLEM DESCRIPTION

Customer

+ N customers
+Each customer
served by
only one employee
+Maintenance time (d)

Employee

+M employees
+Depot=>Customers=>Depot
+Travelling time (t)
+Working time (c) = Travelling
time + Maintenance time

Minimize the longest working time of an employee

• INTEGER PROGRAMMING

Variables

- $\mathbf{x[i, k]} = \begin{cases} 1, & \text{if customer } \mathbf{i} \text{ is served by employee } \mathbf{k} \\ 0, & \text{otherwise} \end{cases}$ with: $1 <= \mathbf{i} <= \mathbf{N}; \ 1 <= \mathbf{k} <= \mathbf{M}.$
 - $\mathbf{y[i, j, k]} = \begin{cases} 1, & \textit{if employee } \mathbf{k} \textit{ travels directly from } \mathbf{i} \textit{ to } \mathbf{j} \\ 0, & \textit{otherwise} \end{cases}$ with: $0 <= i, j <= N; \ 1 <= k <= M$
 - **c**[k]: positive integer variable indicate the working time of employee k with: 1<=k<=M
 - **z**: positive integer variable which represents the maximum working time among the employees

INTEGER PROGRAMMING

Constraints

(1)
$$\sum_{j=1}^{N} y[0,j,k] = \sum_{i=1}^{N} y[i,0,k] = 1$$

(2)
$$\sum_{j=1}^{N} y[i,j,k] = \sum_{j=1}^{N} y[j,i,k] = x[i,k]$$

(3)
$$\sum_{k=1}^{K} x[i,k] = 1$$

(4)
$$c[k] = \sum_{i=1}^{N} x[i,k] * d[i] + \sum_{i=0}^{N} \sum_{j=0}^{N} y[i,j,k] * t[i][j]$$
 (1)

$$(5) c[k] \le z$$

$$(1 \le k \le M)$$

$$(1 \leq i \leq N; i \neq j; 1 \leq k \leq M)$$

$$(1 \le i \le N)$$

$$(1 \le k \le M)$$

$$(1 \le k \le M)$$

INTEGER PROGRAMMING

Sub-tour elimination Constraint [1]

(6)
$$\sum_{(i,j)\in S} y[i,j,k] \ge 2 \ (1 \le k \le K; \ \forall S \subseteq \{1,2,...,N\}; 2 \le |S| \le N-2$$

INTEGER PROGRAMMING

The objective function:

Minimizing the maximum working time among the employees:

EXACT ALGORITHMS

Applying 2 solvers

Employ a combination of branching, cutting plane algorithms, and heuristics [2]

SCIP solver

Utilizes SAT (Satisfiability) method [3]

CP-SAT solver

=> CP-SAT gives faster performance than SCIP solver

HEURISTICS

Method 1

Greedy algorithm

Method 2

Local search algorithm

Method 3

Hybrid of Greedy and Local search algorithm

Method 1: Greedy

The algorithm involves the following steps:

Method 1: Greedy

Result for sorted and unsorted maintenance time

	f_min	f_max	f_avg	std_dev
Unsorted	3410	4080	3750.6	147.8
Sorted in ascending order	3450	4180	3788.4	163.6
Sorted in descending order	3380	4090	3757.2	133.1

Method 2: Local Search

Idea: Utilizes the 2-opt algorithm and its expansion (CROSS-exchange)

2-opt algorithm [4]

Swaping in 2-opt [6]

CROSS-exchange algorithm [5]

Method 2: Local Search

Two operators created for the initial solution:

- + Move: Move a city from the tour has maximum cost to the tour has minimum cost.
- + Swap: Swap randomly two locations from maximum tours and minimum tours to find the best neighborhood.
- => In general, local search methods cannot find optimal solutions due to the local minimum problem.

Method 3: Greedy + Local Search

Purpose: reduce the number of times the swapping and moving operators are called

Idea:

- 1. Using the greedy algorithm to create initial feasible solution.
- 2. Once the initial solution is obtained from the greedy algorithm, the local search algorithm starts by exploring its neighbors.
- 3. The local search algorithm looks for a neighbor that satisfies all the constraints, and also has a higher objective function value than the current solution
 - 4. This process is repeated until a local optimum is reached

EXPERIMENTAL RESULT

EXPERIMENTAL RESULT

■ Greedy ■ LS ■ LS+Greedy

RUNNING TIME

CONCLUSION

SHORTEST TIME; Greedy Algorithm

- -> Recommended in reality, suitable for enormous datasets
- -> its failure rate is high when N and M are close to each other

Exact algorithms:

- -> With small datasets: Both solvers returns the solutions in a nearly equal amount of time. The CP-SAT gives a more slow and steady increase in running time than the SCIP.
- -> When N and M get larger (N > 50, M > 10), the solver cannot return the solution due to the overflow problem

CONCLUSION

Local Search:

- -> Gives more stable performance than Greedy Algorithm. The performance gap gets narrower when M increases
- -> Depends much on the initial solution. If using the Greedy initial solution, the running time could be much faster, and the standard deviation doesn't rise much.
- -> The slow running time is probably due to the programming language.

REFERENCES

•••

[1] "Explicit Dantzig-Fulkerson-Johnson formulation" https://how-to.aimms.com/Articles/332/332-Explicit-Dantzig-Fulkerson-Johnson-formulation.html

[2], [3] "OR-Tools Guides" https://developers.google.com/optimization/introduction

[3] Qing Guo, Jian Peng, Wenzheng Xu, "Minimizing the Longest Tour Time Among a Fleet of UAVs for Disaster Area Surveillance"

http://users.cecs.anu.edu.au/~Weifa.Liang/papers/GPXLJXYW20.pdf

[4], [5] Takafumi Matsuura, Kazumiti Numata, "Solving Min-Max Multiple Traveling Salesman Problems by Chaotic Neural Network"

https://www.ieice.org/nolta/symposium/archive/2014/articles/B1L-C1-6137.pdf

[6] https://en.wikipedia.org/wiki/2-opt

