

INTRODUCTION TO DATABASE SYSTEMS IS211

Dr. Noha Nagy

amazon.com.

Definitions

Database:

- Collection of related data.
- A database contains a model of something!
- A Database Management System (DBMS): is a software system designed to store, manage and facilitate access to the database

Users

Components of a Database System

Example

Stud	Student Registration		
ID			
Name Mobile			
Address			
City DOB			
Submit	Reset		

Application

DB

DBMS

ID	Name	Mobile	Address	City	DOB
20110021	Mohsan	01110054487	55 Mohandseen	Giza	22-2-2002
20110032	Ahmed	01110056577	5 s1 October	Giza	2-9-2002

Data Independence

- Does data have to be part of programs?
- Do we need to change one if the other changes?
- Three-tier architecture of databases

Three-Schema Architecture

Levels of Abstraction

□ Views

define how users see the data

(use of data)

- Conceptual schema
 defines logical structure
 (meaning of data)
- Physical schema
 describes the files and indexes used.

(storage of data)

Three-Schema Architecture

- Defines DBMS schemas at three levels:
 - Internal schema is used to describe physical storage structures and access paths (e.g indexes).
 - ■Typically uses a physical data model.
 - Conceptual schema is used to describe the structure and constraints for the whole database for a community of users.
 - **External schemas** is used to describe the various user views.

Data Models

A Map is a Model of Reality

Data Models

- A collection of tools for describing
 - data
 - data relationships
 - data constraints
- Models:
 - Relational Model
 - object-oriented model
 - semi-structured data models
 - Older models: network model and hierarchical model

History of Relational Model

- Introduced by Ted Codd in 1970 in a classic paper
- □ Ted Codd was an IBM Researcher
- Many database concepts & products based on this model

Relational Model

Relations

- A relational database is a set of relations
- Relations are basically tables of data
- Each row represents a record in the relation
- Each relation has a unique name in the database

Each row in the table specifies a relationship between the values in that

row

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550

Example :

The account relation

The account ID "A-307", branch name "Seattle", and balance "275" are all related to each other

Relation in RDB

Student

Attribute

Table Heading

SID	Name	City	Phone
012520	Rana	Cairo	01225928765
875466	Nawal	Giza	01228796457
897555	Omar	Cairo	01110097564
987458	Ali	Cairo	01110968874

Definition Summary

<u>Informal Terms</u>	<u>Formal Terms</u>
Table	Relation
Column Header	Attribute
All possible Column Values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populated Table	State of the Relation

Relation Example

The attributes and tuples of a relation STUDENT.

Degree =7
Cardinality=5

Relations and Attributes

- Each relation has some number of attributes Sometimes called "columns"
- Each attribute has a domain Specifies the set of valid values for the attribute

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550

The account relation

- The account relation:
 - 3 attributes
 - Domain of balance is the set of nonnegative integers
 - Domain of branch_name is the set of all valid branch names in the bank

DOMAINS

- A domain D is a set (pool) of values, from which one or more attributes takes their values.
- Example

CITY = {London, Paris, Doha, Cairo, Athens, Rome, Dobai, Madrid}

CITY is a pool of cities from which The attributes Supplier.City, Customer.City take their own values.

DATE = (DAY, MONTH, YEAR)

Where:

 $DAY = \{1..31\}, MONTH = \{1..12\}, YEAR = \{1990..2100\}$

CITY is a simple domain, but DATE is a composite Domain

Tuples and Attributes

- Each row is called a tuple
 - A fixed-size, ordered set of name-value pairs
- Each attribute in the tuple has a unique name

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550

The account relation

Tuples and Relations

- □ A relation is a set of tuples
- □ Each tuple appears exactly once
- ☐ The order of tuples in a relation is not relevant

Instructor

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Schema VS Instance

- the name of the relation and the set of attributes is called the schema
- the current values contained in the relation represent an instance

Relation Schemas

- Every relation has a schema
- □ A relation schema includes:
 - an ordered set of attributes
 - the domain of each attribute

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550

The account relation

- □ The relation schema of account is:
- Account_schema = (acct_id, branch_name, balance)
- Database schema is a collection of relation schemas

COMPANY Database Schema

31

