Санкт – Петербургский политехничес	кий университет Петра Великого
Физико-механичес	ский институт
	**
Отчет по лабораторной работ	
Метод наименьших к	вадратов в Манав
Выполнил студент	
Группы 5030301/10002	Тугай В.В.
Преподаватель:	К.Н. Козлов
Санкт-Пе	erenovno
Cankt-116	crepoypi

Исследования, проводимые в ходе работы:

- 1. Исследование функции polyfit().
- 2. Исследование cftool.
- 3. Исследование сглаживающих сплайнов.
- 4. Исследование нелинейных моделей в cftool.

Вариант 21 y=2x^3-x^2-60x+1

Исследование функции polyfit()

Для исследования функции polyfit() для функции $y=2x^3-x^2-60x+1$ был выбран отрезок [-7;7] с шагом 0,1. В нашу функцию вносится шум, и уже для такой функции с помощью polyfit(x,y,i), где i=[1;4] – степень полинома, определяются коэффициенты этого самого полинома. С помощью polyval(pi,x) для каждой і степени полинома вычисляются значения у при коэффициентах, полученных ранее, и теперь строятся графики для вычисленных значений у при значениях x=[-7:0.1:7] вместе с графиками изначальной функции вместе с шумом. Так же строится график зависимости ошибки от x, где ошибка — разность значений у и значениями полинома pk.

Рисунок 1 Результат выполнения программы

Исследование cftool

В ходе работы с приложением cftool были построены полиномы 2 и 3 степеней без использования МНК (рисунок 2-3); полиномы 3 степеней с использованием взвешенного метода наименьших квадратов и метода наименьших модулей (рисунок 4-5).

Рисунок 2 Результат выполнения программы для полинома 2 степени

Рисунок 3 Результат выполнения программы для полинома 3 степени

Рисунок 4 Результат выполнения программы для полинома 3 степени с использованием взвешенного метода наименьших квадратов

Рисунок 4
Результат выполнения программы для полинома 3 степени с использованием метода наименьших модулей

Исследование сглаживающих сплайнов

В ходе работы с приложением cftool было построено 5 сплайнов с разным параметром сглаживания: 0.1; 0.5; 0.75; 0.9 (рисунок 5-8). Как видно из рисунков, с увеличением параметра уменьшается разница между значениями функции и значениями сплайна.

ниями сплаина. Формула для сглаживающего сплайна: $\sum_{i=1}^n \{Y_i - \hat{f}(x_i)\}^2 + \lambda \int \hat{f}''(x)^2 \ dx$,

где $\hat{f}(x)$ – функция, полученная из набора зашумленных наблюдений y_i цели $f(x_i)$; $Y_i = f(x_i) + \epsilon_i$, где ϵ_i – случайные значения; $\lambda \ge 0$ – параметр сглаживания.

Рисунок 5 Сглаживающий сплайн с параметром сглаживания равному 0.1

Сглаживающий сплайн с параметром сглаживания равному 0.5

Сглаживающий сплайн с параметром сглаживания равному 0.75

Сглаживающий сплайн с параметром сглаживания равному 0.9

Исследование нелинейных моделей в cftool

Для исследования нелинейных моделей для функции y=2x^3-x^2-60x+1 был выбран отрезок [-7;7] с шагом 0.1, и в эту функцию был внесен шум. Далее, зайдя в сftool и введя в поле для формулы функции "b*x^3-x^2-a*x+1", приложение выдало нам значения а= и b= (рисунок 9), основываясь на начальных приближениях (рисунок 10). После изменения начальных приближений (рисунок 11) приложение выдало нам нам значения а= и b= (рисунок 12), и, как итог, результат не изменился И в первом, и во втором случае, значения коэффициент крайне близки.

Рисунок 9 Значения начальных приближений до изменения

Значения коэффициентов до изменения начальных приближений

Coefficie	StartPoint	Lower	Upper
a	42.9019	-Inf	Inf
b	-25.2601	-Inf	Inf

Рисунок 11 Значения начальных приближений после изменения

Рисунок 12 Значения коэффициентов после изменения начальных приближений

Вывод

В ходе проделанной лабораторной работы нами было изучено приложение cftool и его настройки. Также нами были изучены функции polyfit() и polyval().