Astronomía Avanzada I (Semester 1 2024)

Stellar Atmospheres (2) Introduction to Radiative Transfer

Nina Hernitschek Centro de Astronomía CITEVA Universidad de Antofagasta

May 7, 2024

Recap: Flux

Stellar Atmospheres

Recap: Flux

Flux (or radiant flux), F, is the total amount of energy that crosses a unit area per unit time. Flux is usually given in watts per square meter (W/m^2) .

The flux of an astronomical source depends on the luminosity of the object and its distance from the Earth, according to the inverse square law:

$$F = \frac{L}{4\pi r^2}$$

where F = flux measured at distance r.

L =luminosity of the source,

r = distance to the source.

flux F is the amount of energy crossing the unit area in unit time

perpendicular to direction of photons

Recap: Flux

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summary

Radiative Transfer (II

Understandir

ummary

example: The luminosity of the Sun is $L_{\odot}=3.839\times10^{26}~\mathrm{W}.$ At a distance of $1~\mathrm{AU}=1.496\times10^{11}~\mathrm{m},$ Earth receives a radiant flux above its absorbing atmosphere of

$$F = \frac{L}{4\pi r^2} = 1365 \text{ W m}^{-2}.$$

Recap: Magnitudes and Broad-Band Filters

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (

Julilliar

Radiative Transfer (II

Understanding Spectra

Summary

We often measure the flux F from astronomical objects via a **logarithmic** magnitude scale.

Magnitudes almost universally involve a set of **broad-band filters**, e.g. Johnson *UBVRI* or Sloan *ugriz*:

Recap: Magnitudes and Broad-Band Filters

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (

Summa

Radiative Transfer (II)

Understanding Spectra

ummar

We often measure the flux F from astronomical objects via a logarithmic magnitude scale.

Magnitudes almost universally involve a set of **broad-band filters**, e.g. Johnson *UBVRI* or Sloan *ugriz*:

We then calculate:

$$m = -2.5 \log \int_0^\infty F_{\nu} W(\nu) d\nu + \text{const}$$

with:

 F_{ν} a star's spectral energy distribution (SED) $W(\nu)$ a filter passband

Recap: The Black Body

Stellar Atmospheres (2)

The Black Body

Interaction Radiation Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

We have already seen:

Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by an idealized black body (opaque, non-reflective).

For a black body, the **Stefan-Boltzmann law** states that the total energy radiated per unit area per unit time (also known as the flux) is directly proportional to the fourth power of the black body's temperature:

$$F = \sigma_{\rm SB} T^4$$
.

The Black Body

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -

Radiative Transfer (

Summary

Radiative Transfer (II)

Understanding Spectra

Summary

Imagine a box which is completely closed except for a small hole.

Any light entering the box will have a very small likelihood of escaping, and will eventually be absorbed by the gas or walls.

For constant temperature walls, this is in thermodynamic equilibrium.

The Black Body

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Radiation Matter

Radiative Transfer (I

Summanı

Radiative Transfer (II)

Understanding Spectra

ummary

Imagine a box which is completely closed except for a small hole.

Any light entering the box will have a very small likelihood of escaping, and will eventually be absorbed by the gas or walls.

For constant temperature walls, this is in thermodynamic equilibrium.

If this box is **heated**, the walls will emit photons, filling the inside with radiation. A small fraction of the radiation will leak out of the hole, but so little that the gas within it remains in equilibrium.

The emitted radiation is that of a **black body**. Stars share properties of the black-body emitter, in the sense that a negligibly small fraction of the radiation escapes from each.

Stellar Atmospheres (2)

ecap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summa

Radiative Transfer (II)

Understandin Spectra

Summar

Comparison of black body spectrum vs. stellar spectrum:

This spectrum of a solar-like star shows just how far a typical star's spectrum (red) deviates from the ideal blackbody (blue). credit: Michael Richmond.

https://aasnova.org/2018/10/31/perfect-blackbodies-in-the-sky/)

Recap: Flu
The Black
Body

Interaction Radiation Matter

Radiative Transfer (

Summan

Radiative Transfer (II)

Understanding Spectra

Summai

How close to black bodies are real stars? It depends...

For relatively cool stars (e.g. a K7 dwarf), a black body is a pretty good model, whereas for hot stars, the spectrum differs very strongly from a black body in the near-UV:

Stellar Atmospheres (2)

Recap: Flu
The Black
Body

Interaction Radiation Matter

Radiative Transfer (

Summanı

Radiative Transfer (II)

Understanding Spectra How close to black bodies are real stars? It depends...

For relatively cool stars (e.g. a K7 dwarf), a black body is a pretty good model, whereas for hot stars, the spectrum differs very strongly from a black body in the near-UV:

The reason for this difference: sources of continuous and line opacity in the stellar photospheres.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -

Radiative Transfer (

Summary

Radiative Transfer (II)

Understandi Spectra

Summary

Stellar Atmospheres (2)

The Black Body

Radiation Matter

Radiative Transfer (I

Summar

Radiative Transfer (II

Understanding Spectra

Summary

The outer parts of stellar atmospheres are largely H. In the red of the optical, H is nearly transparent, allowing blackbody radiation to escape. However, in the blue and near-UV, strong H absorption lines lead to absorption below 3650 Å. The energy is re-emitted as less-energetic photons at longer wavelengths.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation
Matter

Radiative Transfer (I

Summar

Radiative Transfer (II

Understandin Spectra

Summar

What's the difference?

The outer parts of stellar atmospheres are largely H. In the red of the optical, H is nearly transparent, allowing blackbody radiation to escape. However, in the blue and near-UV, strong H absorption lines lead to absorption below 3650 Å. The energy is re-emitted as less-energetic photons at longer wavelengths.

This effect, called **line-blanketing**, redistributes much of the UV energy of the star into the visible and IR

Recap: The Stefan-Boltzmann Law

Stellar Atmospheres (2)

Blackbody radiation is continuous and isotropic, with the intensity only varying with wavelength and temperature.

The Black Body Following empirical (Josef Stefan in 1879) and theoretical (Ludwig Boltzmann in 1884) studies of black bodies, there is a relation between flux and temperature, known as the Stefan-Boltzmann law:

Radiation Matter

$$F = \sigma T^4$$

Transfer

with the Boltzmann constant $\sigma_{\rm SB} = 5.6705 \times 10^{-5}~\text{erg/cm}^2/\text{s/K}^4$

Radiative

Despite stars not being black bodies, the **effective temperature** is calculated using the above equation:

Understanding Spectra

$$L = 4\pi R^2 = \sigma_{\rm SB} T^4$$

Summary

The effective temperature is the temperature which a black body would need to radiate the same amount of energy as the star.

The Planck Formula

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

ummary

The **black body intensity** is defined (following discovery by Max Planck in 1900) as either

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda kT) - 1}$$

or

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$$

where $c = 2.99 \times 10^{10}$ cm, $h = 6.67 \times 10^{-27}$ erg s, $k = 1.38 \times 10^{-16}$ erg/s.

We can use this to compute the bolometric flux:

$$F = \pi \int_0^\infty B_{\nu}(T) d\nu = \pi \int_0^\infty \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1} d\nu$$
$$= \pi \frac{2h}{c^2} \left(\frac{kT}{h}\right)^4 \int_0^\infty \frac{x^3}{e^x - 1} dx = \pi \frac{2h}{c^5} \left(\frac{kT}{h}\right)^4 \frac{\pi^4}{15} = \sigma_{\text{SB}} T^4$$

Wien's Displacement Law

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

For increasing temperatures, the black body intensity increases over all λ , and the maximum in the energy distribution shifts to shorter λ .

Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength peaks at the wavelength $\lambda_{\rm max}$ given by:

$$\lambda_{\max} = rac{b}{T}$$

where T is the absolute temperature and b is Wien's displacement constant, $b=2.897771955\times 10^3~{
m m\,K}.$

Wien's Displacement Law

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

For increasing temperatures, the black body intensity increases over all λ , and the maximum in the energy distribution shifts to shorter λ .

Wien's displacement law states that the spectral radiance of black-body radiation per unit wavelength peaks at the wavelength $\lambda_{\rm max}$ given by:

$$\lambda_{\max} = rac{b}{T}$$

where T is the absolute temperature and b is Wien's displacement constant, $b=2.897771955\times 10^3~{
m m\,K}.$

example: $\lambda_{\text{max}} = 5175\text{Å}$ for the Sun

Rayleigh-Jeans and Wien approximations

Stellar Atmospheres (2)

At long wavelengths $\lambda\gg\lambda_{\rm max}$ (small frequencies $\nu\ll\nu_{\rm max}$), the Planck equation can be approximated by the Rayleigh-Jeans law:

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II

Understandir

ummary

Rayleigh-Jeans and Wien approximations

Stellar Atmospheres (2)

At long wavelengths $\lambda\gg\lambda_{\rm max}$ (small frequencies $\nu\ll\nu_{\rm max}$), the Planck equation can be approximated by the Rayleigh-Jeans law:

ecap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding

ummary

$$B_{
u}(T) \sim 2 rac{
u^2}{c^2} kT, \quad B_{\lambda}(T) \sim 2 c kT \lambda^{-4}$$

At short wavelengths $\lambda \leq \lambda_{\max}$ (large frequencies $\nu \geq \nu_{\max}$) the Wien law is a good approximation:

$$B_{
u}(T) \sim 2 rac{h
u^3}{c^2} \exp\left(-rac{h
u}{k T}
ight), \quad B_{\lambda}(T) \sim 2 rac{h c^2}{\lambda^5} \exp\left(-rac{h c}{\lambda k T}
ight)$$

Interaction Radiation - Matter

Stellar Atmospheres (2)

When radiation interacts with matter, energy can be removed from, or delivered to, the radiation field.

We can distinguish different forms of interaction:

True emission: The photon is generated, it extracts kinetic energy from the gas.

True absorption: The photon is destroyed (thermalized), energy is transferred into kinetic energy of the gas.

Scattering: The photon interacts with a scatterer - the direction is changed, the energy slightly changed, there is no energy exchange with the gas.

Recap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summary

Radiative Transfer (II)

Understanding Spectra

Summa

Interaction Radiation - Matter

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II

Understanding

ummary

Among them, there are two physical processes that contribute to the opacity κ_{λ} (the subscript means the absorption is depending on the photon wavelength):

true absorption and scattering.

True Absorption and True Emission

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

........

Radiative Transfer (II)

Understanding Spectra

Summar

The following are examples for **true absorption**:

photoionization (bound-free): Excess energy is transferred into kinetic energy of the released electron ⇒ effect on local temperature

The electron will interact with photons by means of electronic transitions (and spectral lines) only if is bound to the atom. If the medium is able to deliver enough energy to separate it from the nucleus, "photo- ionization" will occur.

photoexcitation (bound-bound): Followed by electron collisional de-excitation; excitation energy is transferred to the electron \Rightarrow effect on local temperature

photoionization (bound-bound): Followed by collisional ionization.

The **reverse** processes are examples for true emission.

Scattering

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

The following are examples for **scattering processes**:

A **2-level atom** absorbs photon with frequency ν_1 , re-emits photon with frequency ν_2 . The frequencies differ slightly because:

- levels a and b have non-vanishing energy width
- Doppler effect because atom moves

The scattering of photons by free electrons:

Compton- or Thomson scattering (inelastic vs. elastic), collision of a photon with free electron.

The Absorption Coefficient

Stellar Atmospheres (2)

ecap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summa

Radiative Transfer (II

Understanding Spectra

ummary

Absorption: any process that removes photons from a beam of light.

The change in the intensity, $\mathrm{d}I_{\lambda}$, of a ray of wavelength λ as it travels through a gas (i.e.: stellar atmosphere) can be expressed as

$$\mathrm{d} I_{\lambda} = -\kappa_{\lambda} \rho I_{\lambda} \, \mathrm{d} s$$

where κ_{λ} is the so-called **absorption coefficient (opacity)** $\left[\mathrm{cm}^2\ g^{-1}\right]$, ρ is the density (in mass per unit volume), and $\mathrm{d}s$ is a length. The distance s is measured along the path traveled by the ray and increases in the direction that the ray travels.

It can also be interpreted as $\alpha_{\lambda} = \kappa_{\lambda} \rho$ where α_{λ} is the absorption coefficient $[\mathrm{cm}^{-1}]$.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II

Understandii Spectra

Summary

The **mean free path** is the average distance a particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy, typically as a result of one or more collisions with other particles.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

The **mean free path** is the average distance a particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy, typically as a result of one or more collisions with other particles.

We can calculate the mean free path of the photons:

$$\ell = \frac{1}{\rho \kappa_{\lambda}} = \frac{1}{\textit{n}\sigma_{\lambda}}$$

Define an optical depth, τ_{λ} , back along a light ray by

$$d\tau_{\lambda} = -\rho \kappa_{\lambda} ds$$

where s is the distance measured along a photon's path in its direction of motion. Note that when observing the light from a star, we are looking back along the path traveled by the photon.

Stellar Atmospheres (2)

Recap: Flux

The Blac Body

Interaction Radiation -Matter

Radiative Transfer (

Summary

Radiative Transfer (II)

Understanding Spectra

Summar

The **mean free path** is the average distance a particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy, typically as a result of one or more collisions with other particles.

We can calculate the mean free path of the photons:

$$\ell = \frac{1}{\rho \kappa_{\lambda}} = \frac{1}{\textit{n}\sigma_{\lambda}}$$

Define an optical depth, τ_{λ} , back along a light ray by

$$d\tau_{\lambda} = -\rho \kappa_{\lambda} ds$$

where s is the distance measured along a photon's path in its direction of motion. Note that when observing the light from a star, we are looking back along the path traveled by the photon.

The difference in optical depth between a light ray's initial position (s=0) and its final position after traveling a distance s is

$$\Delta \tau_{\lambda} = \tau_{\lambda,f} - \tau_{\lambda,0} = -\int_{0}^{s} \rho \kappa_{\lambda} \, \mathrm{d}s$$

Stellar Atmospheres (2)

ecap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summai

Radiative Transfer (II)

Understanding Spectra

Summary

Let the outermost layers of a star to be at $au_{\lambda}=0$ for all wavelengths. We then have

$$0 - \tau_{\lambda,0} = -\int_0^s \rho \kappa_\lambda \, \mathrm{d}s$$
$$\tau_\lambda = \int_0^s \rho \kappa_\lambda \, \mathrm{d}s$$

with

 $\tau_{\lambda}{=}0$ light ray $\tau_{\lambda}{=}0$ observer's line of sight $\tau_{\lambda}{>}0$ increasing s

Note that τ_{λ} is the optical depth of the ray's initial position, a distance s>0 from the top of the stellar atmosphere. Furthermore,

$$I_{\lambda} = I_{\lambda,0} = e^{-\tau_{\lambda}}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Julilliai

Radiative Transfer (II)

Understandin Spectra

Summary

The photon diffusion process follows a path called **random walk**, which can be described by a net vector displacement \mathbf{d} as the result of making a large number N of randomly directed steps, each of length ℓ (the mean free path):

$$d=\ell_1+\ell_2+...+\ell_N$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summa

Radiative Transfer (II)

Understandi Spectra

Summary

We find that

$$\begin{split} \mathbf{d} \odot \mathbf{d} = & \ell_1 \odot \ell_1 + \ell_2 \odot \ell_2 + \ldots + \ell_1 \odot \ell_{\mathsf{N}} + \\ & \ell_2 \odot \ell_1 + \ell_2 \odot \ell_2 + \ldots + \ell_2 \odot \ell_{\mathsf{N}} + \\ & \ldots + \\ & \ell_{\mathsf{N}} \odot \ell_1 + \ell_{\mathsf{N}} \odot \ell_2 + \ldots + \ell_{\mathsf{N}} \odot \ell_{\mathsf{N}} \\ = & \sum_{i=1}^N \sum_{j=1}^N \ell_i \odot \ell_j \end{split}$$

or

$$d^2 = N\ell^2 + \ell^2 \sum_{i=1}^{N} \sum_{j=1}^{N} \cos \theta_{ij}$$

Stellar Atmospheres (2)

ap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summa

Radiative Transfer (II

Understanding Spectra

Summary

We find that

$$\begin{split} \mathbf{d} \odot \mathbf{d} = & \ell_1 \odot \ell_1 + \ell_2 \odot \ell_2 + \ldots + \ell_1 \odot \ell_{\mathsf{N}} + \\ & \ell_2 \odot \ell_1 + \ell_2 \odot \ell_2 + \ldots + \ell_2 \odot \ell_{\mathsf{N}} + \\ & \ldots + \\ & \ell_{\mathsf{N}} \odot \ell_1 + \ell_{\mathsf{N}} \odot \ell_2 + \ldots + \ell_{\mathsf{N}} \odot \ell_{\mathsf{N}} \\ = & \sum_{i=1}^N \sum_{j=1}^N \ell_i \odot \ell_j \end{split}$$

or

$$d^2 = N\ell^2 + \ell^2 \sum_{i=1}^{N} \sum_{i=1}^{N} \cos \theta_{ij}$$

Since

$$d^2 = N\ell^2 + \ell^2 \sum_{i=1}^{N} \sum_{j=1}^{N} \cos \theta_{ij} \simeq N\ell^2$$

when $N \ll 1$, the displacement d for a random walk is related to the length of the mean free path I by $d = \ell \sqrt{N}$.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Transfer (II)

Understanding Spectra

Summar

Because the optical depth au is roughly the number of photon mean free paths to the stellar surface, the distance to the surface can also be written as

$$d = \tau_{\lambda} \ell = \ell \sqrt{N}$$

with $N = \tau_{\lambda}^2$.

When $au_{\lambda} \sim$ 1, a photon may escape from that level of the star.

More careful analysis shows that the average level from which photons of wavelength λ can escape is at a characteristic optical depth of $\tau \simeq 2/3$. Looking into a star at any angle, we look back to an optical depth of about $\tau_{\lambda} \simeq 2/3$, as measured back along the line of sight.

Opacity and Optical Depth

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II

Understanding Spectra

ummary

An optical depth of au=0 corresponds to no reduction in intensity, i.e. the top of a star's photosphere.

An optical depth of $\tau=1$ corresponds to a reduction in intensity by a factor of e=2.7.

If the optical depth is large ($au\gg 1$), negligible intensity reaches the observer.

In stellar atmospheres, typical photons originate from $\tau = 2/3$.

Radiation: Terms

Stellar Atmospheres (2)

ecap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding

ummary

For correctly describing how light interacts with the material in a stellar atmosphere, we need a carefully defined **terminology**.

What we will consider here is the **net flow of energy** in a given direction, instead of the specific path taken by individual photons.

Radiation: Terms

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

For correctly describing how light interacts with the material in a stellar atmosphere, we need a carefully defined **terminology**.

What we will consider here is the **net flow of energy** in a given direction, instead of the specific path taken by individual photons.

We start with defining **Specific and Mean Intensity**.

Solid Angle in Spherical Coordinates

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Spectra

oummar

Put the center at a given point of a stellar atmosphere, with the polar axis along the star's radius.

Area of a patch on a unit radius sphere limited by $(\theta, \theta + \Delta \theta)$ and $(\phi, \phi + \Delta \phi)$ is $\Delta \Omega = \sin \theta \Delta \theta \Delta \phi$.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understandir Spectra

Summary

Define $\mathrm{d} E_\lambda$ as the amount of energy carried by a ray of light with a wavelength between λ and $\lambda+\mathrm{d}\lambda$ (frequency between ν and $\nu+\mathrm{d}\nu$) passing through a surface of area $\mathrm{d} A$ at an angle θ into a cone of solid angle $\mathrm{d}\Omega$ in a time interval $\mathrm{d} t$.

The **specific intensity** of the ray is defined as

$$I_{\lambda} \equiv \frac{\mathrm{d}E_{\lambda}}{\mathrm{d}\lambda\,\mathrm{d}t\,\mathrm{d}A\,\hat{\mathbf{n}}\cdot\mathrm{d}\Omega}, \ I_{\nu} \equiv \frac{\mathrm{d}E_{\nu}}{\mathrm{d}\nu\,\mathrm{d}t\,\mathrm{d}A\,\hat{\mathbf{n}}\cdot\mathrm{d}\Omega}$$

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

Define $\mathrm{d} E_\lambda$ as the amount of energy carried by a ray of light with a wavelength between λ and $\lambda+\mathrm{d}\lambda$ (frequency between ν and $\nu+\mathrm{d}\nu$) passing through a surface of area $\mathrm{d} A$ at an angle θ into a cone of solid angle $\mathrm{d}\Omega$ in a time interval $\mathrm{d} t$.

The specific intensity of the ray is defined as

$$I_{\lambda} \equiv \frac{\mathrm{d} E_{\lambda}}{\mathrm{d} \lambda \, \mathrm{d} t \, \mathrm{d} A \, \hat{\boldsymbol{n}} \cdot \mathrm{d} \Omega}, \ I_{\nu} \equiv \frac{\mathrm{d} E_{\nu}}{\mathrm{d} \nu \, \mathrm{d} t \, \mathrm{d} A \, \hat{\boldsymbol{n}} \cdot \mathrm{d} \Omega}$$

The specific intensity I_{λ} is then a measure of brightness with units of $\mathrm{erg}/(\mathrm{s\,cm^2\,rad^2\,\mathring{A}})$. I_{λ} is independent of distance from the source, and can only be measured directly if we resolve the radiating surface (e.g. Sun, nebulae, planets).

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

Theorem: Specific intensity is conserved (is constant) along any ray in empty space.

This follows directly from geometry. Let $d\sigma_1$ and $d\sigma_2$ be two infinitesimal surfaces along a ray of length r:

Let $d\Omega_1\ll 1~{\rm rad}$ be the solid angle subtended by $d\sigma_2$ as seen from the center of the surface $d\sigma_1$ and $d\Omega_2\ll 1~{\rm rad}$ be the solid angle subtended by $d\sigma_1$ as seen from the center of the surface $d\sigma_2$. Then

$$\mathrm{d}\Omega_1 = rac{\cos heta_2\,\mathrm{d}\sigma_2}{r^2}, \quad \mathrm{d}\Omega_2 = rac{\cos heta_1\,\mathrm{d}\sigma_1}{r^2}$$

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understand Spectra

Summary

The power dP_1 in the frequency range ν to $\nu+d\nu$ flowing through the area $d\sigma_1$ in solid angle $d\Omega_1$ is

$$\begin{split} \mathrm{d}P_1 &= \frac{dE_1}{dt} \\ &= (I_{\nu})_1 \cos\theta_1 \mathrm{d}\Omega_1 \mathrm{d}\sigma_1 \mathrm{d}\nu \\ &= (I_{\nu})_1 \cos\theta_1 \left(\frac{\cos\theta_2 \, \mathrm{d}\sigma_2}{r^2}\right) \mathrm{d}\sigma_1 \, \mathrm{d}\nu \\ &= (I_{\nu})_1 \left(\frac{\cos\theta_1 \cos\theta_2 \, \mathrm{d}\sigma_1 \, \mathrm{d}\sigma_2}{r^2}\right) \, \mathrm{d}\nu \end{split}$$

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

ummary

The power dP_1 in the frequency range ν to $\nu+d\nu$ flowing through the area $d\sigma_1$ in solid angle $d\Omega_1$ is

$$\begin{split} \mathrm{d}P_1 &= \frac{dE_1}{dt} \\ &= (I_{\nu})_1 \cos\theta_1 \mathrm{d}\Omega_1 \mathrm{d}\sigma_1 \mathrm{d}\nu \\ &= (I_{\nu})_1 \cos\theta_1 \left(\frac{\cos\theta_2 \, \mathrm{d}\sigma_2}{r^2}\right) \mathrm{d}\sigma_1 \, \mathrm{d}\nu \\ &= (I_{\nu})_1 \left(\frac{\cos\theta_1 \cos\theta_2 \, \mathrm{d}\sigma_1 \, \mathrm{d}\sigma_2}{r^2}\right) \, \mathrm{d}\nu \end{split}$$

Likewise

$$dP_2 = \frac{dE_2}{dt} = (I_{\nu})_2 \cos\left(\frac{\cos\theta_1 d\sigma_1}{r^2}\right) d\sigma_2 d\nu$$
$$= (I_{\nu})_2 \left(\frac{\cos\theta_1 \cos\theta_2 d\sigma_1 d\sigma_2}{r^2}\right) d\nu$$

Stellar Atmospheres (2)

ap: Flu:

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understandin Spectra

Summar

The power $\mathrm{d}P_1$ in the frequency range ν to $\nu+\mathrm{d}\nu$ flowing through the area $\mathrm{d}\sigma_1$ in solid angle $\mathrm{d}\Omega_1$ is

$$dP_1 = \frac{dE_1}{dt}$$

$$= (I_{\nu})_1 \cos \theta_1 d\Omega_1 d\sigma_1 d\nu$$

$$= (I_{\nu})_1 \cos \theta_1 \left(\frac{\cos \theta_2 d\sigma_2}{r^2}\right) d\sigma_1 d\nu$$

$$= (I_{\nu})_1 \left(\frac{\cos \theta_1 \cos \theta_2 d\sigma_1 d\sigma_2}{r^2}\right) d\nu$$

Likewise

$$dP_2 = \frac{dE_2}{dt} = (I_{\nu})_2 \cos\left(\frac{\cos\theta_1 d\sigma_1}{r^2}\right) d\sigma_2 d\nu$$
$$= (I_{\nu})_2 \left(\frac{\cos\theta_1 \cos\theta_2 d\sigma_1 d\sigma_2}{r^2}\right) d\nu$$

Radiation energy is conserved in free space (where there is no absorption or emission), so $dE_1 = dE_2$ and $(I_{\nu})_1 = (I_{\nu})_2$. Q.E.D.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding

ummary

The conservation of specific intensity has two important consequences:

1. Brightness is independent of distance. Thus the camera setting for a good exposure of the Sun would be the same, regardless of being close to the Sun (e.g. near Venus) or far away from the Sun (e.g. near Mars).

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

Summary

The conservation of specific intensity has two important consequences:

- 1. Brightness is independent of distance. Thus the camera setting for a good exposure of the Sun would be the same, regardless of being close to the Sun (e.g. near Venus) or far away from the Sun (e.g. near Mars).
- 2. Brightness is the same at the source and at the detector. Thus you can think of brightness in terms of energy flowing out of the source or as energy flowing into the detector.

No passive optical system (e.g., a telescope) can increase the specific intensity of an extended source. Astronomical objects appear much brighter on photographs than to the eye (with or without a telescope) only as a long photographic exposure accumulates more light.

Flux

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understandi Spectra

ummary

We can express $d\Omega$ by means of θ and ϕ :

$$F_{\lambda} = \oint I_{\lambda} \cos \theta \, \mathrm{d}\omega = \int_{0}^{2\pi} \, \mathrm{d}\phi \int_{0}^{\pi} I_{\lambda} \cos \theta \sin \theta \, \mathrm{d}\theta$$

If no flux enters the surface, and if there is no azimuthal dependence for I_{λ} , then

$$F_{\lambda} = \oint I_{\lambda} \cos \theta \, \mathrm{d}\omega = 2\pi \int_{0}^{\pi} I_{\lambda} \cos \theta \sin \theta \, \mathrm{d}\theta = -2\pi \int_{0}^{\pi} I_{\lambda} \cos \theta \, \mathrm{d}(\cos \theta)$$

Intensity vs. Flux

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understandii

Summary

The **mean intensity** J_{λ} (sometimes also written $\langle I_{\lambda} \rangle$) is the directional average of the specific intensity (over 4π steradians):

$$J_{\lambda} \equiv \frac{1}{4\pi} \oint I_{\lambda} d\omega$$
$$= \frac{1}{4\pi} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \sin \theta d\theta d\phi$$

Intensity vs. Flux

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Radiation -Matter

Radiative Transfer (I)

Transfer (

Radiative

Transfer (II)

Understanding Spectra

Summary

The **mean intensity** J_{λ} (sometimes also written $\langle I_{\lambda} \rangle$) is the directional average of the specific intensity (over 4π steradians):

$$J_{\lambda} \equiv rac{1}{4\pi} \oint I_{\lambda} d\omega$$

= $rac{1}{4\pi} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \sin \theta d\theta d\phi$

integrated over the whole unit sphere centered on the point of interest $% \left(1\right) =\left(1\right) \left(1\right) \left($

Intensity vs. Flux

Stellar Atmospheres (2)

an: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summa

Radiative Transfer (II

Understanding Spectra

ummar

The **mean intensity** J_{λ} (sometimes also written $\langle I_{\lambda} \rangle$) is the directional average of the specific intensity (over 4π steradians):

$$J_{\lambda} \equiv rac{1}{4\pi} \oint I_{\lambda} \, \mathrm{d}\omega$$

= $rac{1}{4\pi} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\phi$

integrated over the whole unit sphere centered on the point of interest

The **flux** F_{λ} is the projection of the specific intensity in the radial direction (integrated over all solid angles):

$$J_{\lambda} = \oint \underbrace{I_{\lambda} \cos \theta \, \mathrm{d}\Omega}_{}$$

The amount of energy going through 1 cm^2 per second per 1 Å into the solid angle $d\Omega$ in the direction inclined by the angle θ to the normal of the area.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understanding

ummarv

Specific radiation flux or **flux density** $F_{\lambda} d\lambda$ is the net energy having a wavelength between λ and $\lambda + d\lambda$ that passes each second through a unit area in the direction of the z axis:

$$\begin{split} F_{\lambda} \, \mathrm{d}\lambda &= \int I_{\lambda} \, \mathrm{d}\lambda \hat{\mathbf{n}} \cdot \mathrm{d}\Omega \\ &= \int I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \mathrm{d}\Omega \\ &= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \end{split}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

Specific radiation flux or **flux density** $F_{\lambda} d\lambda$ is the net energy having a wavelength between λ and $\lambda + d\lambda$ that passes each second through a unit area in the direction of the z axis:

$$\begin{split} F_{\lambda} \, \mathrm{d}\lambda &= \int I_{\lambda} \, \mathrm{d}\lambda \hat{\mathbf{n}} \cdot \mathrm{d}\Omega \\ &= \int I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \mathrm{d}\Omega \\ &= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \end{split}$$

Note: The factor $\cos \theta$ allows the **cancelation** of oppositely directed rays.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

ummar

Specific radiation flux or **flux density** $F_{\lambda} d\lambda$ is the net energy having a wavelength between λ and $\lambda + d\lambda$ that passes each second through a unit area in the direction of the z axis:

$$\begin{split} F_{\lambda} \, \mathrm{d}\lambda &= \int I_{\lambda} \, \mathrm{d}\lambda \hat{\mathbf{n}} \cdot \mathrm{d}\Omega \\ &= \int I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \mathrm{d}\Omega \\ &= \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \, \mathrm{d}\lambda \, \cos\theta \, \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \end{split}$$

Note: The factor $\cos\theta$ allows the cancelation of oppositely directed rays.

For an isotropic radiation field, there is no net transport of energy and $F_{\lambda}=0$.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

ummary

Radiation flux is the netto energy going through the area perpendicular to the z-axis.

It can be decomposed into two half-spaces:

$$F = -2\pi \int_0^{\pi} I_{\lambda} \cos \theta \, d(\cos \theta) = 2\pi \int_{-1}^{1} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu + 2\pi \int_{-1}^{0} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu - 2\pi \int_0^1 I(-\mu) \mu \, d\mu$$
$$= F^+ - F^-$$

with $\mu = \cos \theta$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II)

Understanding Spectra

Summar

Radiation flux is the netto energy going through the area perpendicular to the z-axis.

It can be decomposed into two half-spaces:

$$F = -2\pi \int_0^{\pi} I_{\lambda} \cos \theta \, d(\cos \theta) = 2\pi \int_{-1}^{1} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu + 2\pi \int_{-1}^{0} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu - 2\pi \int_0^1 I(-\mu) \mu \, d\mu$$
$$= F^+ - F^-$$

with $\mu = \cos \theta$

Netto = Outwards - Inwards

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II)

Understanding Spectra

ummary

Radiation flux is the netto energy going through the area perpendicular to the z-axis.

It can be decomposed into two half-spaces:

$$F = -2\pi \int_0^{\pi} I_{\lambda} \cos \theta \, d(\cos \theta) = 2\pi \int_{-1}^{1} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu + 2\pi \int_{-1}^{0} I(\mu) \mu \, d\mu$$
$$= 2\pi \int_0^1 I(\mu) \mu \, d\mu - 2\pi \int_0^1 I(-\mu) \mu \, d\mu$$
$$= F^+ - F^-$$

with $\mu = \cos \theta$

Netto = Outwards - Inwards **Special case**: isotropic radiation field: F=0 (An isotropic radiator is a theoretical point source of waves which radiates the same intensity of radiation in all directions.)

How much energy is contained within the radiation field?

Recap: Flu

The Black Body

Interaction Radiation -

Radiative Transfer (I)

Summary

Radiative Transfer (II)

Understanding Spectra

Summary

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

How much energy is contained within the radiation field?

Use a "trap" consisting of a small cyliner of length $\mathrm{d}L$, open at both ends, with perfect reflecting inside walls. The energy inside the trap is the same as what would e present at that location if the trap were removed.

The radiation travels through the trap in a time $dt = dL/(c\cos\theta)$.

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understandi Spectra

Summary

The specific energy density u_{λ} is the energy per unit volume with a wavelength between λ and $\lambda + \mathrm{d}\lambda$

$$u_{\lambda} d\lambda = \frac{E_{\lambda} d\lambda}{dA dL} = \frac{I_{\lambda} d\lambda dA d\Omega dL}{c dA dL} = \frac{1}{c} \int I_{\lambda} \lambda d\Omega$$
$$= \frac{1}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} d\lambda \sin \theta d\theta d\phi = \frac{4\pi}{c} \langle I_{\lambda} \rangle d\lambda$$

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understanding

Summary

The specific energy density u_{λ} is the energy per unit volume with a wavelength between λ and $\lambda+\mathrm{d}\lambda$

$$u_{\lambda} d\lambda = \frac{E_{\lambda} d\lambda}{dA dL} = \frac{I_{\lambda} d\lambda dA d\Omega dL}{c dA dL} = \frac{1}{c} \int I_{\lambda} \lambda d\Omega$$
$$= \frac{1}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} d\lambda \sin \theta d\theta d\phi = \frac{4\pi}{c} \langle I_{\lambda} \rangle d\lambda$$

For an isotropic radiation field,

$$u_{\lambda} \, \mathrm{d}\lambda = \frac{4\pi}{c} I_{\lambda} \, \mathrm{d}\lambda$$

Stellar Atmospheres (2)

ecap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

The specific energy density u_{λ} is the energy per unit volume with a wavelength between λ and $\lambda + d\lambda$

$$u_{\lambda} d\lambda = \frac{E_{\lambda} d\lambda}{dA dL} = \frac{I_{\lambda} d\lambda dA d\Omega dL}{c dA dL} = \frac{1}{c} \int I_{\lambda} \lambda d\Omega$$
$$= \frac{1}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} d\lambda \sin \theta d\theta d\phi = \frac{4\pi}{c} \langle I_{\lambda} \rangle d\lambda$$

For an isotropic radiation field,

$$u_{\lambda} \, \mathrm{d}\lambda = \frac{4\pi}{c} I_{\lambda} \, \mathrm{d}\lambda$$

and for blackbody radiation

$$u_{\lambda} d\lambda = \frac{4\pi}{c} B_{\lambda} d\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$

Total Energy Density

Stellar Atmospheres (2)

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understandin

Summary

The **total energy density** of a radiation field is found by integrating over all wavelengths or frequencies:

$$u = \int_0^\infty u_\lambda \, \mathrm{d}\lambda$$
$$= \int_0^\infty u_\nu \, \mathrm{d}\nu.$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II)

Understanding Spectra

Summary

We define the (mass) emission coefficient as the amount of radiation emitted per second, per unit wavelength interval, per unit mass, per unit solid angle, in certain direction.

So in the case of **pure emission**, one finds the change in specific intensity

$$\mathrm{d} I_{\lambda} = \rho j_{\lambda} \, \mathrm{d} s$$

with

 I_{λ} specific intensity

s is distance traveled in direction of propagation

 j_{λ} the emission coefficient (erg cm⁻³ s⁻¹ sr⁻¹ Å⁻¹).

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

Define the (mass) emission coefficient as the amount of radiation emitted per second, per unit wavelength interval, per unit mass, per unit solid angle, in certain direction.

So in the case of pure emission, one finds the change in specific intensity

$$\mathrm{d}I_{\lambda} = \rho j_{\lambda} \, \mathrm{d}s$$

with

 I_{λ} specific intensity

 \boldsymbol{s} is distance traveled in direction of propagation

 j_{λ} the emission coefficient (erg cm⁻³ s⁻¹ sr⁻¹ Å⁻¹).

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

Define the (mass) emission coefficient as the amount of radiation emitted per second, per unit wavelength interval, per unit mass, per unit solid angle, in certain direction.

So in the case of **pure emission**, one finds the change in specific intensity

$$\mathrm{d}I_{\lambda} = \rho j_{\lambda} \, \mathrm{d}s$$

with

 I_{λ} specific intensity

 \boldsymbol{s} is distance traveled in direction of propagation

 j_{λ} the emission coefficient (erg cm⁻³ s⁻¹ sr⁻¹ Å⁻¹).

This is the equation of radiative transfer for a purely emitting medium.

Stellar Atmospheres (2)

lecap: Flu

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understanding Spectra

ummai

Define the (mass) emission coefficient as the amount of radiation emitted per second, per unit wavelength interval, per unit mass, per unit solid angle, in certain direction.

So in the case of **pure emission**, one finds the change in specific intensity

$$\mathrm{d} I_\lambda = \rho j_\lambda \, \mathrm{d} s$$

with

 I_{λ} specific intensity

s is distance traveled in direction of propagation

 j_{λ} the emission coefficient (erg cm⁻³ s⁻¹ sr⁻¹ Å⁻¹).

This is the equation of radiative transfer for a purely emitting medium.

on units:

An $\rm erg$ is equal to one gram centimeter-squared per second-squared (g $\rm cm^2~s^{-2}).$ This is equal to 10^{-7} joules or 100 nanojoules (nJ) in SI units. Steradian (ster) is the unit of solid angle in the International System of Units (SI). The entire sphere has a solid angle of $4\pi~\rm sr.$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understandin

Summary

In the case of **pure absorption**, we find for the number of photons in a beam N_p to obey the following differential equation:

$$\frac{\mathrm{d}N_p}{\mathrm{d}s} = -N_p n\sigma = -N_p \kappa \rho$$

where s is te distance traveled in the direction of propagation.

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

In the case of **pure absorption**, we find for the number of photons in a beam N_p to obey the following differential equation:

$$\frac{\mathrm{d}N_p}{\mathrm{d}s} = -N_p n\sigma = -N_p \kappa \rho$$

where s is te distance traveled in the direction of propagation.

The same applies to specific intensity:

$$\mathrm{d}I_{\lambda} = -I_{\lambda}\kappa_{\lambda}\rho\;\mathrm{d}s$$

with the wavelength-dependent monochromatic opacity $\kappa_{\lambda}.$

This is the equation of radiative transfer in a purely absorbing medium.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding

ummary

The primary mode of energy transport through the surface layers of a star is by radiation.

The **radiative transfer equation** describes how the physical properties of the material are coupled to the spectrum we ultimately measure.

As a beam of light moves through the gas in the stellar atmosphere, photons are not only added by emission from the surrounding material (the case we saw so far), but are also removed from the beam by absorption or scattering.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

summar

The primary mode of energy transport through the surface layers of a star is by radiation.

The radiative transfer equation describes how the physical properties of the material are coupled to the spectrum we ultimately measure.

As a beam of light moves through the gas in the stellar atmosphere, photons are not only added by emission from the surrounding material (the case we saw so far), but are also removed from the beam by absorption or scattering.

Incorporating both absorption and emission, one obtains

$$\mathrm{d}I_{\lambda} = -\rho \kappa_{\lambda} I_{\lambda} \, \mathrm{d}s + \rho j_{\lambda} \, \mathrm{d}s$$

The **opacity** κ_{λ} has units of ${\rm cm}^2\,{\rm g}^{-1}$. The change in the intensity of the beam is determined by the rates at which the competing process of emission and absorption occur.

Radiative Transfer Equation

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

The **competition** between the rates at which photons are removed from the beam by absorption, and added to the beam by emission describes how rapidly the intensity of the light beam changes. To introduce the **ratio of emission to absorption**, we rewrite the previous equation

$$-\frac{1}{\rho\kappa_{\lambda}}\frac{\mathrm{d}I_{\lambda}}{\mathrm{d}s}=I_{\lambda}-\frac{j_{\lambda}}{\kappa_{\lambda}}.$$

Now, define the ratio of the emission coefficient to the absorption coefficient as the **source function**, $S_{\lambda} \equiv j_{\lambda}/\kappa_{\lambda}$, which has the same units as the intensity, $\operatorname{ergs} \operatorname{s}^{-1} \operatorname{cm}^{-3} \operatorname{ster}^{-1}$.

Radiative Transfer Equation

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

C

Radiative Transfer (II)

Understanding Spectra

Summar

The **competition** between the rates at which photons are removed from the beam by absorption, and added to the beam by emission describes how rapidly the intensity of the light beam changes. To introduce the **ratio of emission to absorption**, we rewrite the previous equation

$$-\frac{1}{\rho\kappa_{\lambda}}\frac{\mathrm{d}I_{\lambda}}{\mathrm{d}s}=I_{\lambda}-\frac{j_{\lambda}}{\kappa_{\lambda}}.$$

Now, define the ratio of the emission coefficient to the absorption coefficient as the **source function**, $S_{\lambda} \equiv j_{\lambda}/\kappa_{\lambda}$, which has the same units as the intensity, ${\rm ergs~s^{-1}~cm^{-3}~ster^{-1}}$.

We obtain the radiative transfer equation (RTE):

$$-\frac{1}{\rho\kappa_{\lambda}}\frac{\mathrm{d}I_{\lambda}}{\mathrm{d}s}=I_{\lambda}-S_{\lambda}$$

The intensity of the light tends to become equal to the local value of the source function.

Physical Interpretation of Source Function S_{λ}

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

In the Thermodynamic Equilibrium (TE), nothing changes with time.

A beam of light passing through such a gas volume will not change either:

$$\mathrm{d}I_{\lambda}/\mathrm{d}\tau_{\lambda}=0\Rightarrow S_{\lambda}=I_{\lambda}=B_{\lambda}$$

In TE, the source function equals the Planck function.

In the theory of stellar atmospheres, we make the assumption of **local** thermodynamic equilibrium (LTE) where $S_{\lambda}=B_{\lambda}$. This does not necessarily mean that $S_{\lambda}=I_{\lambda}$.

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding Spectra

ummary

Often, when describing radiative transfer, we use the **optical depth**.

The optical depth is a dimensionless quantity related to the absorption coefficient or opacity.

We find it by answering the **question**: What is the ratio of the final intensity to the original intensity?

Stellar Atmospheres (2)

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

Often, when describing radiative transfer, we use the **optical depth**.

The optical depth is a dimensionless quantity related to the absorption coefficient or opacity.

We find it by answering the **question**: What is the ratio of the final intensity to the original intensity?

There are several factors which must affect the intensity in obvious ways:

- the greater the distance the beam travels, the more light will be removed from it
- \blacksquare the greater the density of material ρ , the more light will be scattered or absorbed
- the composition of the material; some atoms are much more efficient at absorbing light than others

Stellar Atmospheres (2)

We can put all this together in a mathematical equation:

$$dI = -\rho \kappa I ds$$

p: Flux with

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

ummary

I the incoming intensity of the light

 ${
m d}I$ the amount of light added to the beam (hence the negative sign) ${
m d}s$ the distance the light travels

 ρ the density of the material

 κ the opacity or absorption coefficient.

Stellar Atmospheres (2)

We can put all this together in a mathematical equation:

$$dI = -\rho \kappa I ds$$

p: Flux with

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Transfer (II)

Understanding Spectra

ummary

I the incoming intensity of the light

 $\mathrm{d}\mathit{I}$ the amount of light added to the beam (hence the negative sign)

 $\mathrm{d}s$ the distance the light travels

ho the density of the material

 κ the opacity or absorption coefficient.

 κ serves two purposes: first, it is a constant of proportionality which serves to make the units match on both sides of the equation; second, it expresses the efficiency with which this particular sort of material (hydrogen, or helium, or electrons, or ...) absorbs and scatters light.

The wavelength-depending spectral optical depth au_{λ} is given similarly by

$$d\tau_{\lambda} = -\rho \kappa_{\lambda} ds$$

$$dI = -\rho \kappa_{\lambda} I ds$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understandin Spectra

ummary

Let's **solve** the equation of radiative transfer.

Consider radiation passing through material in which opacity and emissivity are known functions of s. We attempt to solve the RTE through use of an integrating factor:

Rewrite the transfer equation with the optical depth, au_{λ} ,

$$\frac{\mathrm{d}\,I_\lambda}{\mathrm{d}\,\tau_\lambda}=I_\lambda-S_\lambda$$

$$\frac{\mathrm{d}}{\mathrm{d}\,\tau_\lambda} I_\lambda e^{-\tau_\lambda} = S_\lambda e^{-\tau_\lambda}$$

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understandir Spectra

ummary

Integrate from front of slab (s = 0) to s:

$$I_{\lambda}e^{-\tau_{\lambda}} = I_{\lambda,0}e^{-\tau_{\lambda},0} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda}e^{-t} d\tau$$

where $I_{\lambda,0}$ and $\tau_{\lambda,0}$ are intensity and optical depth at front of slab (optical depth decreases as we travel through slab), and t is a dummy variable. In terms of I_{λ} and S_{λ} , the solution can be written as

$$I_{\lambda} = I_{\lambda,0} e^{\tau_{\lambda} - \tau_{\lambda,0}} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda} e^{\tau_{\lambda} - t} dt$$

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

Integrate from front of slab (s = 0) to s:

$$I_{\lambda}e^{-\tau_{\lambda}} = I_{\lambda,0}e^{-\tau_{\lambda},0} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda}e^{-t} d\tau$$

where $I_{\lambda,0}$ and $\tau_{\lambda,0}$ are intensity and optical depth at front of slab (optical depth decreases as we travel through slab), and t is a dummy variable. In terms of I_{λ} and S_{λ} , the solution can be written as

$$I_{\lambda} = I_{\lambda,0} e^{\tau_{\lambda} - \tau_{\lambda,0}} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda} e^{\tau_{\lambda} - t} dt$$

This allows us to calculate the radiation field once we know source function S_{λ} as a function of optical depth τ_{λ} .

Stellar Atmospheres (2)

ap: Flu

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understanding Spectra Integrate from front of slab (s = 0) to s:

$$I_{\lambda}e^{-\tau_{\lambda}} = I_{\lambda,0}e^{-\tau_{\lambda},0} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda}e^{-t} d\tau$$

where $I_{\lambda,0}$ and $\tau_{\lambda,0}$ are intensity and optical depth at front of slab (optical depth decreases as we travel through slab), and t is a dummy variable. In terms of I_{λ} and S_{λ} , the solution can be written as

$$I_{\lambda} = I_{\lambda,0} e^{\tau_{\lambda} - \tau_{\lambda,0}} + \int_{\tau_{\lambda}}^{\tau_{\lambda,0}} S_{\lambda} e^{\tau_{\lambda} - t} dt$$

This allows us to calculate the radiation field once we know source function S_{λ} as a function of optical depth τ_{λ} .

The problem: Despite it looks simple - in many situations S_{λ} (and κ_{λ}) depend on I_{λ} !

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II

Understanding

ummary

There are some simple RTE cases:

Emission, no absorption: $\kappa_{\lambda} \rightarrow 0$

$$I_{\lambda} = I_{\lambda,0} + \int\limits_0^s j_{\lambda} \rho \,\mathrm{d}s$$

interpretation: The intensity at s is the incoming intensity plus the sum of contributions from emitting material in the interval (0, s).

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summar

Radiative Transfer (II)

Understanding Spectra

Summar

There are some simple RTE cases:

Emission, no absorption: $\kappa_{\lambda} \rightarrow 0$

$$I_{\lambda} = I_{\lambda,0} + \int\limits_0^s j_{\lambda} \rho \,\mathrm{d}s$$

interpretation: The intensity at s is the incoming intensity plus the sum of contributions from emitting material in the interval (0, s).

Constant source function:

$$I_{\lambda} = I_{\lambda,0}e^{-\Delta \tau} + S_{\lambda}(1 - e^{-\Delta \tau})$$

interpretation: The intensity at s is the incoming intensity attenuated by factor $e^{-\Delta \tau}$, plus contributions from emitting material, also attenuated.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I)

Summary

Radiative Transfer (II

Understanding Spectra

ummary

There are some **simple** RTE cases:

Homogeneous radiation field:

$$I_{\lambda} = I_{\lambda,0} = S_{\lambda}$$

In the special case of a black body:

Since $I_{\lambda}=B_{\lambda}$ (Planck function), $S_{\lambda}=B_{\lambda}$, and $j_{\lambda}=\kappa B_{\lambda}$.

interpretation: most emission at wavelengths where opacity is high; good absorber is also good emitter

Summary

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summary

Radiative Transfer (II

Understanding Spectra

ummary

The Stefan-Boltzmann law ($F = \sigma_{\rm SB} T^4$) defines a star's effective temperature, i.e. the temperature which a black body would need in order to radiate the same amount of energy as the star.

The specific intensity (I_{λ} or I_{ν}) is distance independent.

The flux $(F_{\lambda} \text{ or } F_{\nu})$ is the angular integral over the projection of the specific intensity in the radial direction and obeys he inverse square law.

The Planck function is monotropic in temperature.

Recap: Flux and Brightness

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summa

Radiative Transfer (II)

Understanding Spectra

Summary

The **(specific) intensity** I_{λ} is a measure of brightness:

$$I_{\lambda} = \frac{E_{\lambda}}{\cos\theta \, \mathrm{d}\lambda \, \mathrm{d}\sigma \, \mathrm{d}\omega \, \mathrm{d}t}$$

The flux F_{λ} is the projection of the specific intensity in the radial direction, integrated over all solid angles:

$$F_{\lambda} = \oint I_{\lambda} \cos \theta \, \mathrm{d}\omega$$

 \emph{I}_{λ} is independent of the distance from the source. \emph{F}_{λ} obeys the inverse square law.

Recap: Flux and Brightness

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

Flux is related to the **intensity**:

The flux F_{λ} is a measure of the net energy flow across an area $d\sigma$, over a time dt, in a $d\lambda$. The only directional significance is whether the energy crosses $d\sigma$ from the top or from the bottom.

Then we can write:

$$F_{\lambda} = \frac{\oint dE_{\lambda}}{d\lambda \, d\sigma \, dt}$$
$$= \oint I_{\lambda} \cos \theta \, d\alpha$$

The solid angle $d\omega$ appears for I_{λ} but not for F_{λ} .

Mean Intensity and Energy Density

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer

Summa

Radiative Transfer (II)

Understanding Spectra

ummary

The mean intensity

$$J_{\lambda} = \frac{1}{4\pi} \oint I_{\lambda} \,\mathrm{d}\Omega$$

is related to the energy density u_{λ} :

$$\mathrm{d}E_{\lambda} = I_{\lambda}\,\mathrm{d}\lambda\,\mathrm{d}\sigma\,\mathrm{d}\Omega\,\mathrm{d}t$$

with
$$I = c dt$$
: $dV = I d\sigma = c dt d\sigma$

Hence, the energy contained in the volume element $\mathrm{d}V$ per wavelength interval, the **energy density**, is

$$\begin{split} u_{\lambda} \, \mathrm{d} V \, \mathrm{d} \lambda &= \oint I_{\lambda} \, \mathrm{d} \Omega \, \mathrm{d} \lambda \, \mathrm{d} \sigma \, \mathrm{d} t = 4\pi J_{\lambda} \frac{\mathrm{d} V}{c} \, \mathrm{d} \lambda \\ u_{\lambda} &= \frac{4\pi}{c} J_{\lambda} \left[\frac{\mathrm{erg}}{\mathrm{cm}^{3} \, \mathring{\mathrm{A}}} \right] \end{split}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summai

Radiative Transfer (II)

Understanding Spectra

Summary

Because a photon possesses an energy E, it also carries a **momentum** $p_{\lambda}=E_{\lambda}/c$ and can exert a **radiation pressure**:

Consider photons transfering momentum to a solid wall. We get the force:

$$F = \frac{\mathrm{d}p_{\lambda,\perp}}{\mathrm{d}t} = \frac{1}{c} \frac{\mathrm{d}E\lambda}{\mathrm{d}t} \cos\theta$$

The pressure is:

$$\mathrm{d}P_{\lambda} = \frac{F}{\mathrm{d}\sigma} = \frac{1}{c} \frac{\mathrm{d}E_{\lambda}}{\mathrm{d}t} \frac{\cos\theta}{\mathrm{d}\sigma} = \frac{1}{c} I_{\lambda} \cos^2\theta \,\mathrm{d}\Omega \,\mathrm{d}\lambda$$

with

$$I_{\lambda} = \frac{\mathrm{d}E_{\lambda}}{\cos\theta\,\mathrm{d}\lambda\,\mathrm{d}\sigma\,\mathrm{d}\Omega\,\mathrm{d}t}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understandi Spectra

Summary

The change in the z component of the momentum of photons with wavelengths between λ and $\lambda+\mathrm{d}\lambda$ that are reflected from the area $\mathrm{d}A$ in a time interval $\mathrm{d}t$ is

$$\begin{split} \Delta p_{\lambda} \, \mathrm{d}\lambda &= [p_{\lambda,z}^{\mathrm{final}} - p_{\lambda,z}^{\mathrm{initial}}] \, \mathrm{d}\lambda \\ &= \left[\frac{E_{\lambda} \cos \theta}{c} - \left(-\frac{E_{\lambda} \cos \theta}{c} \right) \right] \, \mathrm{d}\lambda \\ &= \frac{2E_{\lambda} \cos \theta}{c} \, \mathrm{d}\lambda \\ &= \frac{2}{c} I_{\lambda} \, \mathrm{d}\lambda \, \mathrm{d}t \, \mathrm{d}A \, \cos^{2}\theta \, \mathrm{d}\Omega \end{split}$$

Stellar Atmospheres (2)

ecap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

From Newton's 2nd and 3rd laws, the radiation pressure exerted by these photons with wavelengths between λ and $\lambda+\mathrm{d}\lambda$ in the case of reflection:

$$P_{\lambda}^{\rm rad} = \frac{2}{c} \int_{\rm hemisphere} \emph{I}_{\lambda} \, \mathrm{d}\lambda \, \cos^2\theta \, \mathrm{d}\Omega = \frac{2}{c} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} \emph{I}_{\lambda} \, \mathrm{d}\lambda \cos^2\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$$

Imagine removing the reflecting surface $\mathrm{d}A$ and replacing it with a mathematical surface. Instead of being reflected, photons will be streaming through $\mathrm{d}A$ from the other side. We have:

$$\begin{split} P_{\lambda}^{\mathrm{rad}} \, \mathrm{d}\lambda &= \frac{1}{c} \int I_{\lambda} \, \mathrm{d}\lambda \, \cos^{2}\theta \, \mathrm{d}\Omega \quad \text{(transmission)} \\ &= \frac{1}{c} \int_{\pi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{\lambda} \, \mathrm{d}\lambda \, \cos^{2}\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi \\ &= \frac{4\pi}{3c} I_{\lambda} \, \mathrm{d}\lambda \quad \text{(istropic radiation field)} \end{split}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summary

Radiative Transfer (II)

Understanding Spectra

ummary

The total radiation pressure produced by photons with all wavelengths is

$$P_{
m rad} = \int_0^\infty P_{\lambda}^{
m rad} \, {
m d} \lambda.$$

Stellar Atmospheres (2)

Recap: Flu:

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summary

Radiative Transfer (II)

Understandi Spectra

ummary

The total radiation pressure produced by photons with all wavelengths is

$$P_{
m rad} = \int_0^\infty P_\lambda^{
m rad} \, {
m d} \lambda.$$

For blackbody radiation, the total radiation pressure can be expressed as

$$P_{\text{rad}} = \frac{4\pi}{3c} \int_0^\infty B_{\lambda}(T) \, d\lambda$$
$$= \frac{4\sigma_{\text{SB}} T^4}{3c} = \frac{1}{3} u$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understandin Spectra

Summary

Despite photon's *random walk* journey to the stellar surface, the energy from the deep interior of the star manages to escape into space.

The temperature in the stellar atmosphere decreases outward, the radiation pressure is smaller at larger radii. This gradient in the radiation pressure causes a **net flow of radiation energy moving outward** from the center of the star and eventually emerging at the stellar surface. This process can be described by

$$\frac{\mathrm{d}P_{\mathrm{rad}}}{\mathrm{d}r} = -\frac{\rho\bar{\kappa}}{c}F_{\mathrm{rad}}$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding Spectra

ummary

Despite photon's *random walk* journey to the stellar surface, the energy from the deep interior of the star manages to escape into space.

The temperature in the stellar atmosphere decreases outward, the radiation pressure is smaller at larger radii. This gradient in the radiation pressure causes a **net flow of radiation energy moving outward** from the center of the star and eventually emerging at the stellar surface. This process can be described by

$$\frac{\mathrm{d}P_{\mathrm{rad}}}{\mathrm{d}r} = -\frac{\rho\bar{\kappa}}{c}F_{\mathrm{rad}}$$

The transfer of radiation energy is a subtle process involving the slow outward diffusion of randomly walking photons, drifting towards the surface in response to small differences in the radiation pressure.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding

ummary

Assume a **grey atmosphere**, whose opacity is independent of wavelength and is described by the Rosseland mean opacity $\bar{\kappa}$, and ignore all the remaining wavelength dependencies by integrating over all wavelengths

$$I = \int_0^\infty I_\lambda \, \mathrm{d}\lambda$$

and

$$S = \int_0^\infty S_\lambda \, \mathrm{d}\lambda$$

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understandir Spectra

Summary

The transfer equation for a plane-parallel gray atmosphere is

$$\mu \frac{\mathrm{d} I}{\tau_{\perp}} = I - S$$

Integrating over all solid angles and recalling that S is isotropic, we have

$$egin{split} rac{\mathrm{d}}{\mathrm{d} au_\perp} \int I \mu \, \mathrm{d}\Omega &= \int I \, \mathrm{d}\Omega - \int S \, \mathrm{d} = \Omega \ & rac{\mathrm{d}F_{\mathrm{rad}}}{\mathrm{d} au_\perp} = 4\pi (\langle I
angle - S) \end{split}$$

Stellar Atmospheres (2)

cap: Flu

The Black Body

Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

Furthermore, multiplying the transfer equation by $\mu=\cos\theta$ and integrating over all solid angles, we find

$$\frac{\mathrm{d}}{\mathrm{d}\tau_{\perp}} \underbrace{\int I\mu^2 \,\mathrm{d}\Omega}_{=cP_{\mathrm{rad}}} = \underbrace{\int I\mu \,\mathrm{d}\Omega}_{=F_{\mathrm{rad}}} - \underbrace{\int \int \mu \,\mathrm{d}\Omega}_{=0}$$

Recall that

$$F_{\lambda} d\lambda = \int I_{\lambda} d\lambda \, \mu \, d\Omega$$

and

$$P_{\lambda,\mathrm{rad}} \, \mathrm{d}\lambda = \frac{1}{c} \int I_{\lambda} \, \mathrm{d}\lambda \mu^2 \, \mathrm{d}\Omega$$

Therefore, we have

$$\frac{\mathrm{d} P_{\mathrm{rad}}}{\mathrm{d} \tau_{\perp}} = \frac{1}{c} F_{\mathrm{rad}}.$$

Stellar Atmospheres (2)

Recap: Flu>

The Black Body

Interaction Radiation -Matter

Radiative Transfer (I

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

A photon has **momentum** $p_{\lambda} = E_{\lambda}/c$.

We consider photons hittig a solid wall, transferring momentum. We have the **force**

$$F = \frac{\mathrm{d}p_{\lambda \perp}}{\mathrm{d}t}$$
$$= \frac{1}{c} \frac{\mathrm{d}E_{\lambda}}{\mathrm{d}t} \cos \theta$$

This generates radiation pressure:

$$dP_{\lambda} = \frac{F}{d\sigma} = \frac{1}{c} \frac{dE_{\lambda}}{dt} \frac{\cos \theta}{d\sigma} = \frac{1}{c} I_{\lambda} \cos^{2} \theta d\omega d\lambda$$
$$\Rightarrow P(\lambda) = \frac{1}{c} \oint_{4\pi} I_{\lambda} \cos^{2} \theta d\omega = \frac{4\pi}{c} K_{\lambda}$$

Where K_{λ} is the K-integral

$$K_{\lambda} = \frac{1}{4\pi} \oint I_{\lambda} \cos^2 \theta \, \mathrm{d}\omega.$$

Understanding Spectra

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation -Matter

Radiative Transfer (

C

Radiative Transfer (II

Understanding Spectra

ummar

credit: https://webbtelescope.org/

Emisson Nebula

Stellar Atmospheres (2)

Recap: Flu The Black Body

Interaction Radiation Matter

Radiative

C.....

Radiative Transfer (II)

Understanding Spectra

ummary

An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy UV photons emitted from a nearby hot star.

Emission nebulae exist in three main forms: as diffuse nebulae, planetary nebulae, and supernova remnants.

left: IR image of emission nebula NGC 2174, Spitzer Space Telescope right: Ring Nebula as seen in IR and visible light by a multiple exposure of images from the James Webb Space Telescope's NIRCam, showing an outer layer of hydrogen that is very faint in visible light

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

Nebular emission lines fall into two basic types: permitted recombination lines and forbidden (collisional) lines.

Analysis of line strength allows the determination of nebular temperature, density, and chemical composition.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (

c

Radiative Transfer (II)

Understanding Spectra

Summary

Nebular emission lines fall into two basic types: permitted recombination lines and forbidden (collisional) lines.

Analysis of line strength allows the determination of nebular temperature, density, and chemical composition.

Recombination lines are caused when atoms in a nebula are ionized by absorbing energy from the UV radiated by a hot star. When free electrons are re-captured by various ions, they can land on any energy level, radiating emission lines as they skip downward. H and He produce only recombination lines, as do atoms and ions of oxygen, nitrogen, carbon, neon, and others.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (I

Summani

Radiative Transfer (II

Understanding Spectra

ummary

Nebular emission lines fall into two basic types: permitted recombination lines and forbidden (collisional) lines.

Analysis of line strength allows the determination of nebular temperature, density, and chemical composition.

Recombination lines are caused when atoms in a nebula are ionized by absorbing energy from the UV radiated by a hot star. When free electrons are re-captured by various ions, they can land on any energy level, radiating emission lines as they skip downward. H and He produce only recombination lines, as do atoms and ions of oxygen, nitrogen, carbon, neon, and others.

Forbidden lines are not really forbidden, just difficult to produce from energy levels that do not readily interact with each other. They are caused when energetic free electrons collide with atoms or ions whose electrons are in the bottom level and excite these bound electrons to higher levels, from which they eventually drop downward to radiate emission lines. They are indicated by square brackets.

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Radiation -Matter

Radiative Transfer (

Summa

Radiative Transfer (II

Understanding Spectra

umman

The producing ion is indicated by Roman numeral, "I" for neutral, "II" for single ionization (one electron missing), "III" for double ionization (two missing), and so on. The full spectrum is at the bottom. The inset above it shows a vertically expanded view. Hydrogen and helium produce recombination lines. Square brackets indicate collisional (forbidden) lines, which include those of nitrogen, oxygen, neon, argon, and sulphur.

Absorption vs. Emission

Stellar Atmospheres (2)

Recap: Flux

The Black Body

Interaction Radiation Matter

Radiative Transfer (

Summar

Radiative Transfer (II)

Understanding Spectra

Summary

Emission line spectra:

- optically thin volume of gas with no background illumination (emission nebula)
- optically thick gas in which the source function increases outwards (UV solar spectrum)

Absorption line spectra:

- optically thin gas in which the source function declines outward, generally T decreases outward (Stellar photospheres)
- optically thin gas penetrated by background radiation (ISM along the line of sight)

Summary

Stellar Atmospheres (2)

Recap: Flu

The Black Body

Interaction Radiation Matter

Radiative Transfer (

Summar

Transfer (II)
Understanding

Spectra

Summary

Things we learned about:

- Radiation density and pressure are defined.
- The optical depth is a dimensionless quantity related to the absorption coefficient or opacity.
- The source function is defined as the ratio of emission to absorption coefficients.
- The source function equals the Planck function in LTE.
- Radiative transfer equation and its formal solution.
- Absorption and emission line spectra.