Nombre de la asignatura: Programación

LGAC: Asignatura básica

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	Dr. Ricardo Francisco Martínez González	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. Carlos Roberto González Escarpeta	

2. Prerrequisitos y correquisitos.

Ninguno relacionado con las asignaturas del programa de posgrado.

Sin embargo es recomendable que el estudiante tenga las siguientes competencias:

- Conoce y aplica correctamente conceptos relacionados con temas de Matemáticas y Física.
- Tiene pensamiento lógico, algorítmico para interpretar y representar conceptos e ideas a través de un lenguaje de programación de alto nivel.

3. Objetivo de la asignatura.

Aplicar técnicas de programación a objetos para la resolución de problemas de ingeniería y análisis de la eficiencia de los algoritmos desarrollados.

4. Aportaciones al perfil del graduado.

Proporciona al egresado competencias para el diseño e implementación de programas (no triviales) que apoyan en la solución de problemas de ingeniería.

5. Contenido temático.

UNIDAD	TEMA	SUBTEMAS
1	Introducción al	1.1 Antecedentes
	paradigma orientado	1.2 Conceptos, Abstracción, Encapsulación, Modularidad,
	a objetos	Jerarquización.
		1.3 Diseño orientado a objetos
2	Estructuras de	2.1 Estáticas
	programación (datos)	2.2 Dinámicas
3	Programación	3.1 Modelo de programación orientado a objetos
	orientada a objetos	3.2 Clases y objetos, atributos, metodos
		3.3 Herencia
		3.4 Polimorfismo
		3.5 Interacción entre objetos
4	Análisis de algoritmos	4.1 Medidas de eficiencia: O grande; o chica, Omega, Theta

		 4.2 Análisis del peor caso típico, promedio 4.3 Recurrencias 4.4 Tipos principales de algoritmos: Flujos en grafos, algoritmos voraces (greedy), dividir y conquistar 4.5 Diseño de algoritmos
5	Introducción a la complejidad computacional	5.1 Análisis P, NP, y Completitud NP 5.2 Ejemplos de algoritmos en diferentes áreas de aplicación 5.3 Problemas no tratables

6. Metodología de desarrollo del curso.

El docente impartirá la materia promoviendo comprensión de la teoría al paradigma orientado a objetos y el diseño orientado a objetos, el funcionamiento de las estructuras de datos a través de ejmplos y estudio de casos, promoverá la lectura de artículos y bibliografía seleccionada tal que el estudiante realice implementación de programas que solucionen problemas.

El curso se complementa con un resumen del análisis de algoritmos y de la complejidad. Se estudian los métodos de diseño y de evaluación de la eficiencia de los algoritmos.

7. Sugerencias de evaluación.

La evaluación de la asignatura se hará con base en el siguiente desempeño:

- El alumno desarrollará diseño orientado a objetos e implementación en lenguaje de programación que permita solucionar problemas relacionados a su línea de investigación.
- El alumno implementará las estructuras de datos en el modelo orientado a objetos.
- El estudiante analizará algoritmos típicos en términos de las herramientas estandarizadas.
- Elaborará reportes intermedios durante el semestre para evaluar el avance de su trabajo.
- Un examen general y representativo al final del curso para evaluar sus conocimientos.

8. FUENTES DE INFORMACIÓN

Lecturas obligatorias:

- Thomas H. Cornen, Charles E. Leiserson, Ronald L. Riverst, Clifford Stein; Introduction to Algorithms; MIT Press
- Grady Booch; Object-oriented Analysis and Design with Applications; Addison-Wesley
- James Rumbaugh et al.; Object-oriented modeling and design; Prentice Hall
- David Harel. Algorithmics. The Spirit of Computing. Third Edition. Pearson Education Limited,
 2004

Lecturas complementarias:

• Voss greg; Object-oriented programming; an introduction; Mc-Graw Hill.

9. Actividades propuestas

Realización de prácticas de laboratorio por cada unidad temática.

Dr. Ricardo Francisco Martínez González	
M.C. Carlos Roberto González Escarpeta	
·	