Licence L2

Mathématiques pour l'informatique Correction d'un exercice du TD 3

Exercice 21

1) Soit T un treillis, a et x deux éléments de T. Montrer que :

$$a \lor (x \land a) = a$$
 et $a \land (x \lor a) = a$ (propriété d'absoprtion)

Montrons que $a \lor (x \land a) = a$:

On sait que $a \leq a \vee (x \wedge a)$ et que $x \wedge a \leq a$. Donc $a \vee (x \wedge a) \leq a$

Ainsi
$$a \lor (x \land a) = \max(a, x \land a) = a$$

Montrons que $a \wedge (x \vee a) = a$:

On sait que $a \ge a \land (x \lor a)$ et que $x \lor a \ge a$. Donc $a \land (x \lor a) \ge a$

Ainsi
$$a \wedge (x \vee a) = \min(a, x \vee a) = a$$

2) $\forall x, y, z \in T$, montrer que :

$$x < z \Rightarrow x \lor (y \land z) < (x \lor y) \land z$$

Quand a-t-on l'égalité?

D'une part $x \wedge z \leq z$ et $x \leq z$ donc $x \vee (y \wedge z) \leq z$ (a).

D'autre part, $y \wedge z \leq y$ donc $x \vee (y \wedge z) \leq x \vee z$ (b).

Ainsi, d'après (a) et (b), on en déduit que $x \vee (y \wedge z) \leq (x \vee y) \wedge z$

3) Montrer les règles de distributivité "faibles" :

$$x \lor (y \land z) \le (x \lor y) \land (x \lor z)$$
 (a)

$$(x \land y) \lor (x \land z) \le x \land (y \lor z)$$
 (b)

a)
$$y \wedge z \leq y$$
 et $y \wedge z \leq z$ donc $x \vee (y \wedge z) \leq x \vee y$ et $x \vee (y \wedge z) \leq x \vee z$

Donc $x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z)$

b)
$$y \le y \lor z$$
 et $z \le y \lor z$ donc $x \land y \le x \land (y \lor z)$ et $x \land z \le x \land (y \lor z)$

Donc
$$(x \land y) \lor (x \land z) \le x \land (y \lor z)$$

4) Montrer que si

$$\forall x, y, z \in T, x \land (y \lor z) = (x \land y) \lor (x \land z)$$

alors on :

$$\forall x, y, z \in T, x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Soit $(x \lor y) \land (x \lor z) = \text{(D'après l'hypothèse)} ((x \lor y) \land x) \lor ((x \lor y) \land z)$

D'après 1) et également d'après l'hypothèse, on a :

$$=x\vee ((x\wedge z)\vee (y\wedge z))$$

Par association:

$$= (x \vee (x \wedge z)) \vee (y \wedge z)$$

Encore d'après 1), on a :

$$=x\vee (y\wedge z)$$