Inatel Instituto Nacional de Telecomunicações	12ª Aula de exercícios de M008		Turma: M008 A
	M008 – Probabilidade e Processos Estocásticos		
Professor: Renan Sthel Duque	Monitor: Igor Gonçalves de Souza		s de Souza
Assunto(s): Potência do processo estocástico e ruído gaussiano branco			
Conteúdo: Enunciado para as questões			
Nome:			Data:

1) Um par de ruídos $N_1(t)$ e $N_2(t)$ são relacionados pela função de autocorrelação a seguir:

$$R_{N_2}(t_1, t_2) = R_{N_1}(t_1, t_2) \cdot \cos[2\pi \cdot 10^3(t_1 - t_2)]$$

O processo $N_1(t)$ é estacionário e sua densidade espectral de potências é ilustrada na figura a seguir. Pede-se:

(a) Determine a potência média do processo estocástico $N_1(t)$.

Resposta:
$$P_{N_1} = 400 \ \mu W$$

- (b) Determine a equação da densidade espectral de potências e esboce o gráfico para a componente de ruído $N_2(t)$.
- 2) Um processo ruído gaussiano branco com $N_0=20\frac{nW}{Hz}$ é inserido na entrada de um filtro linear invariante no tempo com resposta ao impulso $h(t)=4\pi10^6\cdot e^{-4\pi10^6t}~u(t)$. Pede-se:
 - (a) A densidade espectral de potências na entrada do filtro.

Resposta:
$$S_X(f) = 10 \left[\frac{nW}{Hz} \right]$$

(b) A densidade espectral de potências na saída do filtro.

Resposta:
$$S_Y(f) = \frac{16\pi^2 \cdot 10^4}{(4\pi \cdot 10^6)^2 + (2\pi f)^2} \left[\frac{W}{Hz} \right]$$

- (c) A função de autocorrelação do processo na saída do filtro.
- (d) A potência média do ruído na entrada e na saída do filtro.

Resposta:
$$P_X \rightarrow \infty$$
 e $P_Y = 2\pi \cdot 10^{-2}$ [W]