Bayesian Learning Lecture 4 - Predictions

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

Prediction

- Normal model
- ▶ More complex examples

Decision theory

- ▶ The elements of a decision problem
- The Bayesian way
- Point estimation as a decision problem

Prediction/Forecasting

Posterior predictive density for future \tilde{y} given observed y

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$$

If $p(\tilde{y}|\theta, \mathbf{y}) = p(\tilde{y}|\theta)$ [not true for time series], then

$$p(\tilde{\mathbf{y}}|\mathbf{y}) = \int_{\theta} p(\tilde{\mathbf{y}}|\theta) p(\theta|\mathbf{y}) d\theta$$

Parameter uncertainty in $p(\tilde{y}|\mathbf{y})$ by averaging over $p(\theta|\mathbf{y})$.

Prediction - Normal data, known variance

Under the uniform prior $p(\theta) \propto c$, then

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$
$$\theta|\mathbf{y} \sim N(\bar{y}, \sigma^2/n)$$
$$\tilde{y}|\theta \sim N(\theta, \sigma^2)$$

Prediction - Normal data, known variance

Under the uniform prior $p(\theta) \propto c$, then

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$
$$\theta|\mathbf{y} \sim N(\bar{y}, \sigma^2/n)$$
$$\tilde{y}|\theta \sim N(\theta, \sigma^2)$$

Simulation algorithm:

- **1** Generate a **posterior draw** of θ ($\theta^{(1)}$) from $N(\bar{y}, \sigma^2/n)$
- **2** Generate a predictive draw of \tilde{y} ($\tilde{y}^{(1)}$) from $N(\theta^{(1)}, \sigma^2)$
- **3** Repeat Steps 1 and 2 *N* times to output:
 - ▶ Sequence of posterior draws: $\theta^{(1)}$,, $\theta^{(N)}$
 - ▶ Sequence of predictive draws: $\tilde{y}^{(1)}$, ..., $\tilde{y}^{(N)}$.

Predictive distribution - Normal model

- $\theta^{(1)} = \bar{y} + \varepsilon^{(1)}$, where $\varepsilon^{(1)} \sim N(0, \sigma^2/n)$. (Step 1).
- $\tilde{y}^{(1)} = \theta^{(1)} + v^{(1)}$, where $v^{(1)} \sim N(0, \sigma^2)$. (Step 2).
- $\tilde{y}^{(1)} = \bar{y} + \varepsilon^{(1)} + v^{(1)}$.
- lacksquare $arepsilon^{(1)}$ and $v^{(1)}$ are independent.
- The sum of two normal random variables is normal so

$$\begin{split} E(\tilde{y}|\mathbf{y}) &= \bar{y} \\ V(\tilde{y}|\mathbf{y}) &= \frac{\sigma^2}{n} + \sigma^2 = \sigma^2 \left(1 + \frac{1}{n} \right) \\ \tilde{y}|\mathbf{y} \sim N \left[\bar{y}, \sigma^2 \left(1 + \frac{1}{n} \right) \right] \end{split}$$

Predictive distribution - Normal model and prior

- Easy to see that the predictive distribution is normal.
- The mean

$$E_{\tilde{\mathbf{y}}|\theta}(\tilde{\mathbf{y}}) = \theta$$

and then remove the conditioning on θ by averaging over θ

$$E(\tilde{y}|\mathbf{y}) = E_{\theta|\mathbf{y}}(\theta) = \mu_n$$
 (Posterior mean of θ).

The predictive variance of \tilde{y} (total variance formula):

$$\begin{split} V(\tilde{y}|\mathbf{y}) &= E_{\theta|\mathbf{y}}[V_{\tilde{y}|\theta}(\tilde{y})] + V_{\theta|\mathbf{y}}[E_{\tilde{y}|\theta}(\tilde{y})] \\ &= E_{\theta|\mathbf{y}}(\sigma^2) + V_{\theta|\mathbf{y}}(\theta) \\ &= \sigma^2 + \tau_n^2 \\ &= \text{(Population variance + Posterior variance of θ)}. \end{split}$$

In summary:

$$\tilde{\mathbf{y}}|\mathbf{y} \sim N(\mu_n, \sigma^2 + \tau_n^2).$$

Bayesian prediction for time series

Autoregressive process

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

Simulation algorithm. Repeat *N* times:

- I Generate a posterior draw of $\theta^{(1)} = (\phi_1^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$ from $p(\phi_1, ..., \phi_p, \mu, \sigma | \mathbf{y}_{1:T})$.
- **2** Generate a **predictive draw** of future time series by:
 - 1 $\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$
 - 2 $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
 - $\tilde{y}_{T+3} \sim p(y_{T+3}|\tilde{y}_{T+2},\tilde{y}_{T+1},y_T,...,y_{T-p},\theta^{(1)})$
 - 4 ..

Predicting auction prices on eBay

- Problem: Predicting the auctioned price in eBay coin auctions.
- Data: Bid from 1000 auctions on eBay.
 - ▶ The highest bid is not observed.
 - ➤ The lowest bids are also not observed because of the seller's reservation price.
- Covariates: auction-specific, e.g. Book value from catalog, seller's reservation price, quality of sold object, rating of seller, powerseller, verified seller ID etc
- Buyers are strategic. Their bids does not fully reflect their valuation. Game theory. Very complicated likelihood.

Simulating auction prices on eBay

- Simulate from posterior predictive distibution of the price in a new auction:
- **I** Simulate a draw $\theta^{(i)}$ from the posterior $p(\theta|\text{historical bids})$
- **2** Simulate the number of bidders conditional on $\theta^{(i)}$ (Poisson)
- 3 Simulate the bidders' valuations, $\mathbf{v}^{(i)}$
- 4 Simulate all bids, $\mathbf{b}^{(i)}$, conditional on the valuations
- **5** For $\mathbf{b}^{(i)}$, return the next to largest bid (proxy bidding).

Predicting auction prices on eBay

Decision Theory

- Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Disease.
- Let $a \in A$ be an action. Ex: Interest rate, Energy tax, Surgery.
- Choosing action a when state of nature is θ gives utility

$$U(a, \theta)$$

Alternatively loss $L(a, \theta) = -U(a, \theta)$.

Loss table:
$$\begin{array}{c|cccc} & \theta_1 & \theta_2 \\ \hline a_1 & L(a_1,\theta_1) & L(a_1,\theta_2) \\ a_2 & L(a_2,\theta_1) & L(a_2,\theta_2) \\ \end{array}$$

		Rainy	Sunny
Example:	Umbrella	20	10
	No umbrella	50	0

Decision Theory, cont.

- **Example loss functions** when both a and θ are continuous:
 - ▶ Linear: $L(a, \theta) = |a \theta|$
 - **Quadratic**: $L(a, \theta) = (a \theta)^2$
 - ► Lin-Lin:

$$L(a,\theta) = \begin{cases} c_1 \cdot |a - \theta| & \text{if } a \le \theta \\ c_2 \cdot |a - \theta| & \text{if } a > \theta \end{cases}$$

- Example:
 - \triangleright θ is the number of items demanded of a product
 - a is the number of items in stock
 - Utility

$$U(a, \theta) = \begin{cases} p \cdot \theta - c_1(a - \theta) & \text{if } a > \theta \text{ [too much stock]} \\ p \cdot a - c_2(\theta - a)^2 & \text{if } a \leq \theta \text{ [too little stock]} \end{cases}$$

Optimal decision

- Ad hoc decision rules: *Minimax*. *Minimax-regret* ...
- Bayesian theory: maximize the posterior expected utility:

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|y)}[U(a, \theta)],$$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

Using simulated draws $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ from $p(\theta|y)$:

$$E_{p(\theta|y)}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

- Separation principle:
- **1** First do inference, $p(\theta|y)$
- **2** then form utility $U(a, \theta)$ and finally
- **3** choose action a that maximes $E_{p(\theta|y)}[U(a,\theta)]$.

Choosing a point estimate is a decision

- Choosing a point estimator is a decision problem.
- Which to choose: posterior median, mean or mode?
- It depends on your loss function:
 - ▶ Linear loss → Posterior median
 - ► Quadratic loss → Posterior mean
 - **Zero-one loss** → Posterior mode
 - **Lin-Lin loss** $o c_2/(c_1+c_2)$ quantile of the posterior