

Data Types

Cryptographic Hash Functions

- SHA256RIPEMD160
 - Arbitrarily long data

Fixed sized hash/digest

Cryptographic Hash Function

B

- Cryptographic Hash Functions
 - Takes any byte sequence as input
 - Fixed size output
 - Efficiently computable
- Security Properties:
 - Collision-resistance
 - Second pre-image resistance
 - Pre-image resistance
 - Hiding
 - Puzzle-friendly

Example: https://www.pelock.com/products/hash-calculator

Pre-image Resistance

 For any given h in the output space of the hash function, it is hard to find x, s.t. H(x)=h

Second Pre-image Resistance

 For a given message x, it is hard to find y s.t. x ≠ y and H(x) = H(y)

Collision Resistance

It is hard to find a pair of values,
x ≠ y and H(x) = H(y)

Hiding

 A hash function H is hiding when a secret value r is chosen from a high min-entropy probability distribution, then given H(r || x), it is hard to find x.

Puzzle-friendly

• A hash function H is puzzle friendly if for every possible n-bit output value h, if k is chosen from a distribution with high min-entropy, then it is infeasible to find x such that H(k || x) = h in time significantly less than 2^n .

Search puzzle

- A hash function H
- A value, id, chosen from a high min-entropy distribution
- A target set Y

A solution to the puzzle is a value x, s.t.

$$H(id||x) \in Y$$

Data Types

Data Types

- ECDSA (secp256k1 curve) is used to
 - Sign transactions
 - Verify the signature of transactions
- Nothing in Bitcoin is encrypted

Elliptic Curve Signature Algorithm (ECDSA)