

(30) Unionspriorität: (32) (33) (31)

04.12.81 DK 5368-81

(71) Anmelder:

Radiometer A/S, 2400 København, DK

(74) Vertreter:

Grünecker, A., Dipl.-Ing.; Kinkeldey, H., Dipl.-Ing. Dr.-Ing.;
 Stockmair, W., Dipl.-Ing. Dr.-Ing. Ae.E. Cal Tech;
 Schumann, K., Dipl.-Phys. Dr.rer.nat.; Jakob, P., Dipl.-Ing.;
 Bezold, G., Dipl.-Chem. Dr.rer.nat.; Meister, W., Dipl.-Ing.;
 Hilgers, H., Dipl.-Ing.; Meyer-Plath, H., Dipl.-Ing. Dr.-Ing.,
 Pat.-Anw., 8000 München

(21) Aktenzeichen: P 32 44 881.3

3. 12. 82

16. 6. 83

(72) Erfinder:

Aas, Flemming, 2860 Soborg, DK; Andersen, Willy
 Lindegaard, 3060 Espergaerde, DK

(54) **Verfahren und System zum Analysieren einer Vielzahl von Flüssigkeitsproben**

Ein System zum Analysieren von Flüssigkeitsproben bezüglich wenigstens einer ihrer Komponenten umfaßt eine Vielzahl von Probenbehältern zur Aufnahme der Flüssigkeitsproben, ein Probenentnahmeglied zum Übertragen von Proben aus den Behältern zu einer Analysiereinrichtung, wie z.B. ein Analysiergerät für Flüssigkeiten, und eine Einrichtung zum aufeinanderfolgenden Bewegen des Probenentnahmegliedes von einem Probenbehälter zu einem anderen. Jeder Probenbehälter weist einen Entnahmedurchlaß auf, welcher eine unterhalb des Flüssigkeitspegels der enthaltenen Probe angeordnete Einlaßöffnung und eine oberhalb des Flüssigkeitspegels angeordnete und von einer Berührungsfläche umschlossene Auslaßöffnung aufweist, wobei die Berührungsfläche trichterförmig sein kann. Das freie Ende oder die Spitze des Probenentnahmegliedes weist eine entsprechende Berührungsfläche auf, welche in abdichtenden Eingriff mit der Berührungsfläche eines jeden Probenbehälters gebracht werden kann, wodurch jedem Probenbehälter eine Probe durch das Probenentnahmeglied hindurch entnommen werden kann, ohne daß eine Berührung zwischen der Probe und den äußeren Oberflächenbereichen des Probenentnahmegliedes auftritt. (32 44 881)

DE 3244881 A1

3244881

GRÜNECKER, KINKELDEY, STOCKMAIR & PARTNER

1

PATENTANWÄLTE
FIRMA ANTONIUS ALTMAYER

A GRÜNECKER, DR. POL.
DR. H. KINKELDEY, DR. POL.
DR. W. STOCKMAIR, DR. PATENTANWÄLTE
DR. K. EICHMANN, DR. POL.
DR. H. JAKOB, DR. POL.
DR. G. EILZOLD, DR. POL.
W. MEISTER, DR. POL.
H. HILGERS, DR. POL.
DR. H. MEYER-PLATH, DR. POL.

5

8000 MÜNCHEN 22
MAXIMILIANSSTRASSE 43

10

PH 17 675-46/L

Radiometer A/S

Emdrupvej 72, DK-2400 Copenhagen, Dänemark

15

"Verfahren und System zum Analysieren
einer Vielzahl von Flüssigkeitsproben"

20

P a t e n t a n s p r ü c h e

25 1) Verfahren zum Analysieren einer Vielzahl von Flüssig-
keitsproben, welche aufeinanderfolgend durch eine in
einem Probenentnahmegerüst enthaltene Öffnung zu einer
Stelle zum Analysieren einer jeden Probe hindurchgehen,
wobei jede der Flüssigkeitsproben in einem entsprechenden
30 Probenbehälter enthalten ist, dadurch gekenn-
zeichnet, daß ein Probenbehälter verwandt wird,
der einen Entnahmedurchlaß mit einer unterhalb des Flüssig-
keitspegels der Probe angeordneten Einlaßöffnung und
einer oberhalb des Flüssigkeitspegels angeordneten und
35 von einer ersten Berührungsfläche umschlossenen Auslaß-
öffnung aufweist, daß

BAD ORIGINAL

1

aufeinanderfolgend eine zweite Berührungsfläche, welche an einem freien Ende des Probenentnahmegliedes angeordnet ist und das anschließende Ende der in ihm vorgesehenen 5 Öffnung umgibt, in abdichtenden Eingriff mit der ersten Berührungsfläche der Probenbehälter gebracht wird und daß wenigstens ein Teil der Probe einem jeden Behälter entnommen und durch den Entnahmedurchlaß des Behälters und die Öffnung des Probenentnahmegliedes hindurch zu 10 der Analysierstelle gebracht wird.

2. System zum Durchführen des Verfahrens nach Anspruch 1, mit einer Flüssigkeitselektrolyseinrichtung, einer Vielzahl von Probenbehältern zur Aufnahme der Flüssigkeitsproben, einem Probenentnahmegerüst, welches eine Öffnung zum Überführen von Proben von den Probenbehältern zu der Analysierinrichtung aufweist, und einer Einrichtung zum Bewegen des Probenentnahmegerüstes und der Probenbehälter in bezug aufeinander, dadurch gekennzeichnet, daß jeder Probenbehälter (12) einen Entnahmedurchlaß (34) mit einer unterhalb des Flüssigkeitspegels der Probe in dem Behälter positionierten Einlaßöffnung und einer oberhalb des Flüssigkeitspegels positionierten und von einer ersten Berührungsfläche (3,25) umgebenen Auslaßöffnung aufweist und daß das Probenentnahmegerüst (30) eine zweite Berührungsfläche (32) aufweist, welche das offene Ende der Öffnung (33) umgibt, wobei die Bewegungsmittel (52,55) geeignet sind, das Probenentnahmegerüst so zu bewegen, daß aufeinanderfolgend seine zweite Berührungsfläche in abdichtenden Eingriff mit der ersten Berührungsfläche der Probenbehälter steht. während Probenflüssigkeit von dem entsprechenden Behälter in die Öffnung des Probenentnahmegerüstes überführt wird.

- 1 3. System nach Anspruch 2, dadurch gekennzeichnet, daß das Probenentnahmegerüst eine Spitze aufweist, an der die zweite Berührungsfläche ausgebildet ist, wobei die Spitze mit einem Querschnittsbereich ausgebildet ist, 5 welcher in Richtung zu ihrer Berührungsfläche abnimmt.
- 10 4. System nach Anspruch 3, dadurch gekennzeichnet, daß die Spitze des Probenentnahmegerüstes eine kegelstumpfförmige Form aufweist.
- 15 5. System nach Anspruch 4, dadurch gekennzeichnet, daß der Öffnungswinkel des Kegels ungefähr 60° beträgt.
- 20 6. System nach Anspruch 2, dadurch gekennzeichnet, daß die erste Berührungsfläche eines jeden Probenbehälters verglichen mit den anschließenden oberen, Oberflächenbereichen des Probenbehälters zurückgenommen ist.
- 25 7. System nach Anspruch 2, dadurch gekennzeichnet, daß jede der ersten Berührungsflächen Teil einer trichterförmigen Fläche bildet, vorzugsweise einer kegelstumpfförmigen Fläche, welche in einer oberen Fläche des Behälters festgelegt ist.
- 30 8. System nach Anspruch 7, dadurch gekennzeichnet, daß der Öffnungswinkel des Kegels ungefähr 80° beträgt.
- 35 9. System nach Anspruch 2, dadurch gekennzeichnet, daß die zweite Berührungsfläche an dem Probenentnahmegerüst eine ringförmige Kante festlegt.
10. System nach irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß durch die Bewegungsmittel die erste und die zweite Berührungsfläche

ORIGINAL

1 aneinander drückbar sind, vorzugsweise durch eine Kraft
in der Größenordnung von 3 N.

11. System nach Anspruch 1, dadurch gekennzeichnet, daß jeder Probenbehälter einen Behälterteil und
5 ein getrenntes Überdeckungsteil (1) umfaßt.

12. Probenbehälter zur Verwendung in einem System nach
Anspruch 2, dadurch gekennzeichnet, daß
10 der Behälter eine Bodenwand aufweist und einen Entnahmedurchlaß festlegt, welcher eine Einlaßöffnung nahe der inneren Oberfläche der Bodenwand und eine Auslaßöffnung am oberen Teil des Behälters aufweist, wobei eine ringförmige Berührungsfläche die Auslaßöffnung des Entnahmedurchlasses umgibt und nahe der Auslaßöffnung festgelegt
15 ist.

13. Probenbehälter nach Anspruch 12, dadurch gekennzeichnet, daß der Probenbehälter ein Körperteil
20 und ein Überdeckungsteil aufweist, welches entfernbar an dem Körperteil des Behälters befestigbar ist.

14. Probenbehälter nach Anspruch 12, dadurch gekennzeichnet, daß der Probenbehälter einen Körperteil
25 und ein einstückig mit diesem ausgebildetes Überdeckungsteil aufweist.

15. Probenbehälter nach Anspruch 13, dadurch gekennzeichnet, daß das Überdeckungsteil eine sich von
30 dessen innerer Oberfläche nach unten erstreckende Eintauchröhre aufweist, wobei die Öffnung der Eintauchröhre den Entnahmedurchlaß festlegt.

16. Probenbehälter nach Anspruch 15, dadurch gekennzeichnet, daß das Überdeckungsteil einen Führungs-

BAD ORIGINAL

00-00-00

3244881

5

1 oberflächenteil festlegt, welcher um die Auslaßöffnung des Entnahmedurchlasses zum Zusammenwirken mit einem entsprechenden Oberflächenteil an dem Probenentnahmegerüst des Analysiersystems angeordnet ist.

5

17. Probenbehälter nach Anspruch 16, dadurch gekennzeichnet, daß die Führungsfläche trichterförmig ist.

18. Probenbehälter nach Anspruch 17, dadurch gekennzeichnet, daß die Führungsfläche kegelstumpfförmig ist.

15

20

25

30

35

BAD ORIGINAL

6.

1

"Verfahren und System zum Analysieren
einer Vielzahl von Flüssigkeitsproben"

5

B e s c h r e i b u n g

10 Die Erfindung betrifft ein Verfahren und ein System zum Analysieren einer Vielzahl von Flüssigkeitsproben, von denen eine jede in einem besonderen einer entsprechenden Anzahl von Probenbehältern oder Probenbechern enthalten ist, von welchen die Proben nacheinander mittels eines

15 Probenentnahmegeräts entnommen und einer Analysiereinrichtung, wie z.B. einem Analysiergerät, zugeführt werden, um eine oder mehrere Komponenten einer jeden Probe zu bestimmen.

20 Solche Systeme zum Analysieren von Flüssigkeitsproben, bei denen die Proben durch Probenmittel aus einer Vielzahl von Probenbechern herausgesogen werden, sind seit Jahren bekannt.

25 Bei den bekannten Systemen wird eine Saugsonde in die Probe eingetaucht, welche in einem der Probenbecher enthalten ist, und wenn eine erwünschte Probenmenge in die Saugsonde eingesaugt worden ist, wird die Sonde entfernt und in eine Probe eingetaucht, welche in dem nächsten

30 Probenbecher enthalten ist, usw.

Die Patentliteratur, welche sich auf solche Systeme bezieht ist verständlich und ein großer Teil der bisherigen Patente behandelt die Schwierigkeit, die Saugsonden zwischen aufeinanderfolgenden Proben Überführungsvorgängen

BAD ORIGINAL

2.7.

1 zu spülen. Es ist offensichtlich, daß an der äußeren Sondenfläche anhaftende Reste einer Probe zu einer bedenklichen Verunreinigung der folgenden Probe führen können, es sei denn, solche Reste sind vor dem Eintauchen in die folgende Probe entfernt worden oder sie werden auf andere Weise kompensiert.

Zu den Patenten, die sich mit diesen Schwierigkeiten auseinandersetzen, gehören die US-PSen 3,960,020, 4,000,973, 10 4,000,974, und 4,121,466, sowie die DE-ASen 25 38 451 und 30 33 680.

Andere Patente, die sich auf die Probenbecher und deren Ausgestaltung beziehen, sind die US-PS 3,545,932 und die 15 GB-PS 1,218,750. Jedoch betreffen diese Patente als Reaktionsbecher zu verwendende Probenbecher und enthalten keine Hinweise darüber, wie die Probe durch eine Sonden- einrichtung zu einem Analysiergerät entnommen werden kann.

20 Die vorhergehend genannten Patente, welche sich mit dem Problem beschäftigen, eine Verunreinigung zwischen Proben zu vermeiden, geben hierfür die folgenden Lösungen zu diesem Problem an:

25 Eintauchen der Sonde in einen Behälter mit einer Wasch- flüssigkeit (DE-PS 25 38 451).

Beschichtung der Außenfläche der Sonde mit einer dünnen Schicht einer Flüssigkeit, welche mit den einzusaugenden 30 Flüssigkeiten nicht vermischbar ist (US-PS 4,121,466).

Vorsehen eines Mantels, welcher die Sondenspitze umgibt und mit Leitungen zum Zuführen von Waschflüssigkeit verbunden ist. Dadurch, daß die Waschflüssigkeit durch die Saugsonde 35 abgezogen wird, werden sowohl deren Innen- als auch Außen-

BAD-ORIGINAL

3. 8.

1 flüche gespült (US-PS 3,960,020 und DE-AS 30 33 680).

Im Zusammenhang mit Sonden zum Einsaugen einer Probe und anschließendem Ausstoßen der Probe in ein Reagenz ist 5 vorgeschlagen worden, die Sonde in das Reagenz während einer Zeitdauer einzutauchen, welche für das Reagenz ausreichend ist, um jegliche Reste einer am Äußeren der Sonde anhaftenden Probe aufzunehmen. Anschließend wird die zu analysierende Probe aus der Sonde in das Reagenz 10 ausgestoßen und die sich ergebende Reaktion zwischen der Probe und dem Reagenz wird gemessen (US-PS 4,000,973 und US-PS 4,000,974).

15 Schließlich betrifft die Forschungsmittelung 19 817 eine Kappe für einen Probenbecher, welche das Verdunsten von Fluid aus dem Becher begrenzt und auch das Ansaugen von Fluid aus dem Becher ermöglicht. Die Kappe ist mit drei Schlitzten in einer oberen Wand ausgebildet. Die drei Slitzte schneiden sich an ein und demselben Punkt. Wenn die Sonden- 20 spitze die Wand an der Stelle des Schnittpunktes berührt, trennen sich die Wandbereiche in sechs Segmente, so daß die Sonde in Berührung mit der Probe in dem Probenbecher bewegt werden kann. Während des Herausziehens der Sonde aus dem Probenbecher dienen die Segmente dazu, Probenfluid 25 vom Äußeren der Probenspitze abzuwischen.

30 Eine Zielsetzung der Erfindung besteht darin, ein verbessertes Verfahren und System von der vorhergehend beschriebenen Art zur Analyse von Flüssigkeitsproben zu schaffen, wobei die bisher auftretende Ungenauigkeit, nämlich ob eine wirkungsvolle Reinigung der Sondenspitze erhalten worden ist, ausgeschlossen ist. Infolgedessen werden die bisher verwandten Verfahren im Zusammenhang 35 mit dem Reinigen der Sondenspitze zum Entfernen von äußerem Probenresten von jener vollkommen ausgeschlossen.

BAD ORIGINAL

9.

1 Die Erfindung betrifft ein Verfahren zum Analysieren
einer Vielzahl von Flüssigkeitsproben, welche aufeinander-
folgend durch eine in einem Probenentnahmeglied begrenzte
Bohrung zu einer Stelle zum Analysieren einer jeden Probe
hindurchgehen, wobei jede der Flüssigkeitsproben in einem
5 einzelnen Probenbehälter enthalten ist, welcher einen
Entnahmedurchlass mit einer unterhalb des Flüssigkeits-
pegels der enthaltenen Probe angeordneten Einlaßöffnung
und einer oberhalb derselben angeordneten und von einer
ersten Berührungsfläche umgebenen Auslaßöffnung aufweist,
10 wobei das Verfahren umfaßt, daß aufeinanderfolgend eine
zweite an dem freien Ende des Probenentnahmegliedes aus-
gebildete ist und das benachbarte Ende der darin vorge-
sehenen Öffnung umgebende Berührungsflächen in dichtendem
15 Eingriff mit den ersten Berührungsflächen der Probenbe-
hälter gebracht wird, und daß wenigstens ein Teil der
Probe in jedem Behälter entnommen und durch den Ent-
nahmedurchlass des Behälters und die Öffnung des Proben-
entnahmegliedes zu der Analysierstelle hindurchgeführt
20 wird. Somit kann jede der Proben von ihrem jeweiligen
Probenbehälter zu der Analysierstelle, wie z.B. zu einem
Analysiergerät, übergeführt werden, ohne in Berührung
mit der Außenfläche des Probenentnahmegliedes zu kommen.

25 Die Erfindung schafft ein System zum Durchführen des
vorhergehend beschriebenen Verfahrens, wobei dieses
System umfaßt:

30 eine Analysiereinrichtung für eine Flüssigkeit,
eine Vielzahl von Probenbehältern zur Aufnahme von Flüssig-
keitsproben, wobei jeder einen Entnahmedurchlaß mit einer
unterhalb des Flüssigkeitspegels der enthaltenden Probe
angeordneten Einlaßöffnung und einer oberhalb des Flüssig-
keitspegels und von einer ersten Berührungsfläche einge-
35 schlossenen Auslaßöffnung aufweist,

BAD ORIGINAL

10.

1 ein Probenentnahmeglied, in dem eine Öffnung festgelegt ist, um Proben von den Probenbehältern zu der Analysier-
5 einrichtung zu überführen, und welches eine zweite Be-
rührungsfläche aufweist, die ein offenes Ende der Öffnung umgibt, und

10 Mittel, um das Probenentnahmeglied in bezug zu den Proben-
behältern so zu bewegen, daß die zweite Berührungsfläche des Probenentnahmegliedes nacheinander mit den ersten Be-
rührungsflächen der Probenbehälter in dichtenden Eingriff bringbar ist, während Probenflüssigkeit von dem Behälter in die Öffnung des Probenentnahmegliedes überführt wird.

15 Die den einzelnen Probenbehältern entnommenen Proben können dann aufeinanderfolgend zu einem Analysiergerät oder einer anderen Analysiereinrichtung gebracht werden.

20 Bei einer bevorzugten Ausführungsform des Systems nach der Erfindung ist die erste Berührungsfläche eines jeden Probenbehälters verglichen zu anschließenden, oberen Oberflächenteilen des Probenbehälters zurückgezogen. Hier-
durch wird die Gefahr einer seitlichen Verschiebung des Proben-
entnahmegliedes relativ zu dem Probenbehälter verringert.

25 Ferner wird bevorzugt, daß jede der ersten Berührungs-
flächen einen Teil einer trichterförmigen Oberfläche, vorzugsweise einer kegelstumpfförmigen Oberfläche bildet, welche in einer oberen Oberfläche des Behälters festge-
legt ist. Ferner umfaßt bei einer bevorzugten Ausführungsform das Probenentnahmeglied eine Spitze, an der die zweite Be-
30 rührungsfläche ausgebildet ist, wobei die Spitze einen Querschnittsbereich aufweist, der in Richtung zu ihrer Berührungsfläche abnimmt. Dadurch, daß das Probenglied mit einer solchen abgeschrägten Spitze ausgebildet wird und daß die Probenbehälter mit trichterförmigen Berührungs-
35 flächen vorschen sind, wird der beabsichtigte Eingriff

BAD ORIGINAL

11.

1 zwischen dem Probenentnahmegerüst und den Berührungsflächen der
Probenbehälter ohne weiteres erhalten und es ist nicht
erforderlich, daß die Ähnlichkeit bezüglich der Ab-
messungen zwischen den Probenbehältern so genau ist, wie
5 in dem Fall mit anderen Ausgestaltungen der Berührungs-
flächen.

10 Ein Öffnungswinkel für die trichterförmigen, ersten Be-
rührungsflächen von ungefähr 80° und ein Öffnungswinkel
für die Spitze des Probenentnahmegerüstes von ungefähr 60° haben
sich als im Zusammenhang mit dem System nach der Erfindung
geeignet erwiesen.

15 Offensichtlich soll der Öffnungswinkel der Spitze des Proben-
entnahmegerüstes vorzugsweise nicht den Öffnungswinkel der
trichterförmigen Berührungsfläche der Probenbehälter
überschreiten, damit ein glatter Durchgang in dem Be-
rührungsreich sichergestellt ist.

20 Um eine zuverlässige Abdichtungsberührung zwischen den
ersten und den zweiten Berührungsflächen, d.h. zwischen
der Berührungsfläche der Probenbehälter und der Berührungs-
fläche der Probengliedspitze zu erzielen, wird bevorzugt,
25 die zwei Flächen gegeneinander zu drücken. Im Falle einer
vorgegebenen Druckkraft hängt der dadurch erzielte spezi-
fische Berührungsdruck von dem Berührungsreich ab und
es wird bevorzugt, daß die zweite Berührungsfläche an
dem Probenglied eine relativ scharfe, ringförmige Kante
bzw. Rand festlegt. Eine Druckkraft in der Größenordnung
30 von 3 N hat sich als geeignet herausgestellt.

35 Die Erfindung betrifft auch einen Probenbehälter zur
Verwendung mit einem Analysiersystem, wie es vorhergehend
beschrieben worden ist, wobei der Behälter eine Bodenwand
umfaßt und einen Entnahmedurchlaß festlegt, der eine nahe

12.

1 der inneren Oberfläche der Bodenwand angeordnete Einlaß-
öffnung und eine im oberen Teil des Behälters ange-
ordnete Auslaßöffnung aufweist, wobei eine ringförmige
5 Berührungsfläche die Auslaßöffnung des Durchlasses umgibt
und anschließend an die Auslaßöffnung festgelegt ist.
Die nahe der Auslaßöffnung definierte Berührungsringfläche
kann dann mit einer entsprechenden Berührungsfläche zu-
10 sammenwirken, welche an dem freien Ende des Probenentnahmegliedes
des Analysiersystems ausgebildet ist, wie es vorhergehend
beschrieben wurde. Der Probenbehälter ist vorzugsweise
von der Art, welcher einen Behälterkörperteil und einen
Überdeckungsteil umfaßt, welcher als getrennter Teil aus-
15 gebildet sein kann, der entfernbar an dem Behälterkörperteil
befestigt oder einstückig mit dem Behälterkörperteil
ausgebildet ist. Ferner kann der Entnahmedurchlaß in der
Umfangswand des Behälterkörperteils ausgebildet sein; oder
20 der Durchlaß kann durch die Öffnung eines Rohres gebildet
sein, welches sich von der Bodenwand des Behälters nach
oben und nach außerhalb durch eine Öffnung in dem Über-
deckungsteil erstreckt. Ein solches Rohr kann entfernbar
25 von einem Sockel aufgenommen werden, welcher an der Innen-
seite der Bodenwand des Behälters ausgebildet ist oder es
kann einstückig mit der Bodenwand ausgebildet sein.
Der Erfindungsgegenstand kann im Zusammenhang mit allen
Arten von automatisierter Analyse verwandt werden, bei der
Flüssigkeitsproben analysiert werden, die von Probenbe-
hältern entweder zu Leitungen eines Analysiergerätes oder
30 zu einem anderen Probenbehältern zur Analyse in diesen
überführt wird. Elektrochemische Analysesysteme und
optische Analysesysteme sind Beispiele von Systemen, in
denen ein hohes Maß an Automatisierung angestrebt wird
und bei denen die Probenüberführung die Analysenergebnisse
35 bedeutend stören kann.

BAD ORIGINAL

13.

1 Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigt:

5 Fig. 1 eine Schnittdarstellung eines Überdeckungssteils eines Probenbechers,

10 Fig. 2 eine Unteransicht des Überdeckungsteils, wenn man es in durch die Pfeile II-II in Fig. 1 angezeigter Richtung ansieht,

15 Fig. 3 eine Teilschnittansicht längs der Linie III-III in Fig. 2,

20 Fig. 4 bis 8 andere der der Fig. 2 entsprechenden Schnittansichten anderer Ausführungsformen des Überdeckungsteils.

25 Fig. 9 eine Schnittdarstellung eines Probenbechers nach der Erfindung,

30 Fig. 10 eine Schnittdarstellung eines Probenbechers mit integriertem Überdeckungsteil,

35 Fig. 11 eine Schnittdarstellung eines Probenbechers, welcher mit einem Überdeckungsteil und einer mit diesem zusammenwirkenden Probenröhre oder Sonde versehen ist,

Fig. 12 eine Draufsicht auf eine Halteplatte zur Verwendung in einem System nach der Erfindung,

Fig. 13 eine schematische Aufsicht auf ein System nach der Erfindung, und

35

BAD ORIGINAL

14.

1 Fig. 14 eine schematische Aufrißdarstellung
5 eines Teils des Systems nach Fig. 13.

Fig. 1 zeigt einen senkrechten Schnitt durch ein allgemein mit 1 bezeichnetes Überdeckungsteil nach der Erfindung und zur Verwendung mit einem in Fig. 9 gezeigten Probenbecher. Das Überdeckungsteil weist eine obere Fläche 2 mit einem Berührungsreich 3 auf.

10 Ein Tauchrohr 4 erstreckt sich von dem Berührungsreich 3 in den Behälterteil (dargestellt in Fig. 9) des zusammengesetzten Probenbechers. Ein wandförmiger Rand 5 ist längs der oberen Oberflächenkante vorgesehen. Der Rand dient dazu, den Überdeckungsteil 1 an dem Behälterteil des 15 Probenbechers (dieser ist nicht dargestellt) zu befestigen. Der Rand 5 ist mit Rippen 6 ausgebildet, um die Berührung mit der Wand des Behälterteils zu schaffen. Ferner sind Vorsprünge 7 an der unteren Oberfläche 8 des Überdeckungs- 20 teils 1 vorgesehen, um die Berührung mit der oberen Kante der Seitenwand des Behälterteils hervorzurufen.

Fig. 2 zeigt eine Unteransicht des Überdeckungsteils, 25 welches in Fig. 1 dargestellt ist, wobei eine Eintauchröhre 4, die Rippen 6 und die Vorsprünge 7 sowie die Unterfläche 8 gezeigt sind.

Fig. 3 ist ein senkrechter Schnitt durch den Überdeckungsteil 1 längs der Linie III - III in Fig. 2 und zeigt die Rippen 6 und die Vorsprünge 7. 30

Die Fig. 4 bis 8 zeigen alle Schnittdarstellungen anderer Ausführungsformen des Überdeckungsteils 1 nach Fig. 1. In den Fig. 1 und 4 bis 8 bezeichnen die gleichen Bezugsszeichen die gleichen Teile. Die in diesen Figuren dargestellten, unterschiedlichen Ausführungsformen unterscheiden 35

BAD ORIGINAL

10
15.

1 sich lediglich in bezug auf die Ausgestaltung des Berührungs-
bereiches 3.

5 Die in den Fig. 1 und 5 bis 7 gezeigten Ausführungsformen
weisen alle Berührungsberiche 3 auf, welche verglichen
mit der oberen Oberfläche 2 eingezogen sind, während die
Ausführungsform gemäß Fig. 2 einen ebenen Berührungsberich
3 aufweist, welcher in der gleichen Ebene wie die obere
10 Oberfläche 2 liegt und somit nicht von der oberen Ober-
fläche 2 unterschieden werden kann. Die eingezogenen Be-
rührungsberiche 3 sind die bevorzugten, da diese Be-
rührungsberiche die Gefahr einer seitlichen Verschiebung
der Sondenspitze ausschließen, vorausgesetzt, daß eine
geeignet geformte Sondenspitze verwandt wird.

15
20 Die trichterförmigen Berührungsberiche gemäß den Fig. 1,
5 und 6 sind besonders geeignet, da mit solchen Berührungs-
berichen eine stabile bzw. beständige Berührung mit einer
geeignet geformten Proben spitze ("schlanker" als der Trichter)
auf allen Höhen des Berührungsberiches erhalten werden
kann.

25 Der Berührungsberich 3, der in Fig. 7 gezeigt ist, sollte
vorzugsweise zum Eingriff mit einem Probenrohr oder einer
Sondenspitze 15 verwandt werden, die einen Berührungsrand
mit einer Dicke aufweist, welcher der Weite des ebenen
Teils 14 des Berührungsberiches 3 entspricht. Der in
Fig. 8 gezeigte Berührungsberich steht von der oberen
30 Oberfläche 2 hervor und ist zum Eingriff mit einer Sonden-
spitze 15 in der Art geeignet, daß die Sondenspitze den
hervorstehenden Berührungsberich umgibt, wie es in Fig. 8
dargestellt ist.

35 Fig. 9 zeigt einen senkrechten Schnitt durch einen
Probenbecher nach der Erfindung mit einem Überdeckungs teil,
wie es in Fig. 1 dargestellt ist. Der Probenbecher umfaßt

1 ferner einen allgemein mit 12 bezeichneten Behälterteil.
Der Behälterteil ist zylindrisch symmetrisch und weist
eine Seitenwand 10 mit einem oberen Rand 9 auf, welcher
die Vorsprünge 7 an dem Überdeckungsteil 1 berührt. Die
5 Seitenwand 10 ist abgestuft, wie es bei 22 angegeben ist,
wobei der Rand 13 geeignet ist, den Probenbecher in einer
Halteplatte zurückzuhalten, wie es in Fig. 11 dargestellt
ist.

10 Fig. 10 zeigt einen senkrechten Schnitt durch einen
allgemein mit 20 bezeichneten Probenbecher, welcher einen
integrierten Überdeckungsteil und Behälterteil aufweist.
Der Probenbecher besitzt Seitenwände 21 mit einem Rand
22 und einer oberen Wand 23, welche eine obere Oberfläche
15 24 mit einem trichterförmigen Berührungsreich 25 zeigt.
Eine Eintauchröhre 26 erstreckt sich in dem Probenbecher
von dem Berührungsreich nach innen. Ein Auslaßventil
(dieses ist nicht dargestellt) ist in der oberen Wand
23 vorgesehen. Der Probenbecher kann über die Eintauch-
20 röhre 26 gefüllt werden.

Fig. 11 zeigt einen senkrechten Schnitt durch den Proben-
becher der Fig. 9, welcher von einer Halteplatte 38 ge-
halten wird, sowie eine Sondeneinrichtung oder ein all-
25 gemein mit 30 bezeichnetes Probenrohr in einer Stellung
zum Entnehmen der Probe (in Einsaugstellung). Die Sonden-
einrichtung 30 weist einen spitzen Bereich 31 mit einem
Berührungsrand 32 auf. Eine Öffnung 33 in der Einsaug-
sonde ist zu der Öffnung 34 ausgerichtet und die zwei
30 Öffnungen haben im wesentlichen den gleichen Durchmesser.
Der Berührungsrand 32 weist eine gebogene Kante mit einem
Krümmungsradius von ungefähr 0,2 mm auf. Der Krümmungs-
radius wird vorzugsweise so klein wie möglich gewählt,
um die Ausbildung von Taschen in der Flüssigkeitsüber-
35 tragungsleitung zu vermeiden, welche die Eintauchröhre

12
17.

1 und die Einsaugsonde umfaßt. Jedoch wird ein gewisses Maß an Krümmung bevorzugt, um ein Eindringen der Berührungs-kante in den Überdeckungsteil zu vermeiden.

5 10 15 20 25 30 35 Die Sondeneinrichtung 30 wird gegen den Berührungs-bereich 36 des Überdeckungsteils 37 durch in der Zeichnung nicht dargestellte Mittel gedrückt. Um den Berührungsdruck bei einer vorgegebenen, auf die Sondeneinrichtung ausgeübten Kraft möglichst groß zu machen, wird der Berührungsrand so schmal wie möglich ausgebildet. Bei einer bevorzugten Ausführungsform der Erfindung beträgt diese Kraft in der Größenordnung von 3 N. Es sollte auch erwähnt werden, daß bei der bevorzugten Ausführungsform der Erfindung die Sondeneinrichtung 30 aus rostfreiem Stahl und das Über-deckungsteil 37 aus Polyäthylen hergestellt ist. Jedoch liegt die Auswahl eines geeigneten Materials im normalen Können eines Fachmannes.

Fig. 12 zeigt eine Aufsicht auf eine Halteplatte 38 der Fig. 11. Die Halteplatte 38 ist mit kreisförmigen Löchern ausgebildet, in welche Probenbecher 1 - 14 und ein Ab-fallbecher befestigt werden können. Die Halteplatte 38 ist eine mit drei nicht dargestellten Beinen und mit einer Auskerbung ausgebildete Metallplatte. Die Halteplatte 38 soll leicht in ein Drehteil, welches in den Fig. 13 und 14 gezeigt ist, eingeführt und aus diesen herausgenommen werden können. Ein Führungsmittel 54 (Fig. 13) zum Eingriff mit der Kerbe 39 ist an dem allgemein mit 55 bezeichneten Drehteil vorgesehen. Dadurch wird die richtige Ausrichtung der Halteplatte 38 in bezug auf das Drehteil 54 sichergestellt.

Die Fig. 13 und 14 zeigen ein System, bei dem die Erfindung eingesetzt werden kann, wobei gleiche Bezugs-zeichen verwandt werden, um gleiche Teile in den beiden

13. 18.

1 Figuren zu bezeichnen. Das in den Fig. 13 und 14 gezeigte System umfaßt eine allgemein mit 40 bezeichnete Probenzuführeinheit, welche über Leitungen 41 und 42 in Verbindung mit einem Analysegerät 43 steht, d.h. mit einem 5 Gerät zum Messen von ionisirtem Kalzium und pH in Körperfluiden (ein Gerät ICA1 hergestellt von Radiometer A/S, Kopenhagen). In fester Beziehung zu dem Rahmen 46 der Probenzuführeinheit 40 ist eine allgemein mit 56 bezeichnete Sondenhaltestruktur befestigt. Die Sondenhaltestruktur 56 umfaßt einen Sondenhaltearm 45, der mittels einer Feder 47 befestigt ist. Eine Sonde 44 wird von dem Sondenhaltearm gehalten. Die Feder 47 ermöglicht eine gewisse Verschiebung des Sondenhaltearms 45 in allen 10 Richtungen. In Fig. 14 befindet sich die Sonde 44 in der 15 Ruhelage.

In der Einsaugstellung wird die Sonde 44 gegen das Überdeckungsstück 48 des Probenbehälters 49 mittels einer magnetischen Kraft gedrückt, die durch einen elektrischen Strom 20 hervorgerufen wird, welcher in einem Solenoidteil 52 fließt. In der Öffnung des Teils 52 ist ein Anker 57 vorgesehen, der mit einem Element 51 verbunden ist, welches wiederum mit dem Sondenhaltearm 45 verbunden ist. Unter dem Einfluß des elektrischen Stromes wird der Anker 57 nach unten 25 bewegt, wobei die Bewegung des Ankers 57 zusammen mit der Wirkung der Feder zu einer Schwenkbewegung des Sondenhaltearms 45 führt. Dadurch wird die Sondeneinrichtung 47 in die Einsaugstellung mittels einer ziemlich einfachen Konstruktion gebracht.

30.

Der Betrieb der Probenzuführeinheit wird mittels einer Programmeinrichtung in dem Analysiergerät 43 gesteuert, wie z.B. durch einen Mikrorechner.

14
19.

1 Die von dem System durchgeführten Arbeitsschritte werden unter besonderer Hervorhebung der Überführung der Proben von den Probenbechern zu dem Analysiergerät im folgenden unter Bezugnahme auf die Fig. 13 und 14 beschrieben.

5 Eine Anzahl von zu analysierenden Proben wird in die Probenbecher eingebracht und die Überdeckungsteile werden befestigt. Die Probenbecher werden in einer Halteplatte 38 angeordnet, welche in das motorgetriebene Drehteil 55 der Probenzuführeinheit 40 eingesetzt wird, wobei die Ausrichtung der Halteplatte 38 durch die Kerbe 39 und die Führungseinrichtung 54 vorbestimmt ist, wie es vorhergehend angegeben wurde. Beim Einschalten des Systems rückt das Drehteil vor, so daß der Probenbecher 1 in die Probennahmestellung unterhalb der Sondeneinrichtung 44 gelangt. Anschließend wird die auf den Sondenhaltearm 45 wirkende Magnetkraft hervorgerufen und die Sondeneinrichtung 44 wird in Berührung mit dem Überdeckungsteil 48 gebracht.

10 Ein geringer Bruchteil der Probe (z.B. 50 µl verglichen mit einem gesamten Probenvolumen von ungefähr 250 µl) wird aus dem Probenbecher herausgesaugt. Anschließend wird die magnetische Wirkung unterbrochen, wodurch der Sondenhaltearm 45 in seine Ausgangsstellung zurückkehrt. Nun wird der kleine Bruchteil der Probe in das Analysiergerät einge-25 zogen, um die Einlaßleitungen zu spülen. Die magnetische Kraft an dem Sondenhaltearm 45 wird wieder erregt und ein größerer Teil der Probe wird angesaugt. Die Menge der angesaugten Probe wird mittels eines Probenfühlers gesteuert, wie es in der dänischen Patentveröffentlichung

20 Nr. 229/80 offenbart ist. Der Probenfühler ist in dem Einlaßsystem an einer Stelle angeordnet, welche durch die Menge der in das Analysiergerät einzuführenden Probe bestimmt wird. Zu dem Zeitpunkt, zu dem das Fühlersignal

25 den Übergang von Luft zur Probenflüssigkeit anzeigt, wird die magnetische Wirkung des Sondenhaltearmes erneut unterbrochen und der Arm kehrt in seine Ausgangsstellung

30

35

BAD ORIGINAL

1 zurück. Der angesaugte Probenanteil wird nun in dem Ein-
10 laßleitungssystem vorwärtsbewegt, bis der Probenfühler
15 das Vorhandensein von Luft anzeigt. Bei der hier be-
schriebenen, besonderen Ausführungsform befindet sich
20 die Probe nun in einem Teil des Einlaßleitungssystems,
25 welches in Fig. 13 nicht dargestellt ist. Dieser Teil des
Leitungssystems ist in einem allgemein mit 53 bezeichneten
30 Behälter für den Ausgleich der Probe mit CO_2 -Gas unter-
getaucht, welches in die Probe durch die Silikongummiwand
35 der Leitung difundiert. Das so erhaltene Gleichgewicht
40 ist von Bedeutung im Zusammenhang mit aerob behandelten
45 Proben zum Bestimmen des ionisierten Kalziums, wobei in den
50 Proben eine pH-Verschiebung stattgefunden haben kann, da
55 eine solche pH-Verschiebung das Ergebnis der Kalzium-
60 messung beeinflußt. Das Gleichgewicht mit einem CO_2 -Gas
65 (5,7% CO_2 , Ausgleich mit atmosphärischer Luft(v/v))
70 führt zu einem pH-Wert von ungefähr 7,4 für die Probe,
75 was der normale pH-Wert von Blut ist. Zu dem gleichen
80 Zeitpunkt, zu dem die Probe mit CO_2 -Gas ausgeglichen wird,
85 wird ein Spülprogramm in dem Analysegerät durchgeführt,
90 wobei eine wässrige Spülflüssigkeit verwandt wird, die
95 Natriumchloride und Kalziumchloride enthält. Nach Beendigung
100 des Spülprogramms wird die nun ausgeglichene Probe durch
105 Saugwirkung in das Analysegerät durch den Teil des mit
110 42 bezeichneten Einlaßleitungssystems eingebracht. Nach
115 Beendigung des Analysenvorganges werden die Meßergebnisse
120 ausgedruckt, woraufhin das Drehteil 55 weitergedreht wird,
125 so daß der Probenbecher Nr. 2 in die Probenentnahmestellung
130 unterhalb der Sondeneinrichtung 44 gelangt. Nun wird ein
135 vollständiger Analysevorgang erneut durchgeführt, der
140 mit dem Ansaugen eines kleinen Probenbruchteils beginnt.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852

16
21.

1 durchgeführt wird, wobei Spülflüssigkeit von dem Analysegerät 43 durch das Einlaßleitungssystem (41,42 und die in dem Ausgleichsbchälter untergetauchten Teile) und durch die Einrichtung 44 zu dem Abfallbecher gepumpt wird.

5

10

15

20

25

30

35

BAD ORIGINAL

3244881

NACH

25

Nummer:

Int. Cl. 3

Anmeldetag:

Offenlegungstag:

3244881

G 01 N 35/00

3. Dezember 1982

16. Juni 1983

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

BAD ORIGINAL

- 24 -

ANALYSE-GERÄT

FIG. 13

FIG. 14

BAD ORIGINAL

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (11SPT01)