

នឈ្មានទំនុងទី

មេដ្រីនិទី ១

នាះលោទាំពីប្រព័ន្ធបញ្ជា

មាតភា

- និយមន័យ
- សារៈប្រយោជន៍របស់ប្រព័ន្ធបញ្ហា
- ប្រភេទនៃប្រព័ន្ធបញ្ហា
- គោលដៅនៃការរចនា និងវិភាគប្រព័ន្ធ
- នីតិវិធីនៃការរចនាប្រព័ន្ធ

តិយមន័យ

• ប្រព័ន្ធបញ្ហាជាបណ្ដុំនៃ subsystems និង plant ដែលគោលបំណង នៃការដំឡើងគឺគ្រប់គ្រង outputs របស់ plants (យោងទៅតាម សៀវភៅរបស់លោក Norman S. Nise)

តិយមន័យ (គ)

- Subsystem ជាសមាសភាគនៃប្រព័ន្ធបញ្ហា
- Plant ជាសមាសភាគនៃប្រព័ន្ធបញ្ជាដែលបង្កើតឲ្យមាន output
- Controller ជាសមាសភាគនៃប្រព័ន្ធបញ្ហាដែលមានតួនាទីបញ្ហាដំណើរការរបស់ ប្រព័ន្ធ និងលៃតម្រូវតម្លៃ output
- Input ជាស៊ីញ៉ាល់ទាំងឡាយណាដែលអ្នកប្រើប្រាស់ចង់បាន
- Output ជាស៊ីញ៉ាល់ជាក់ស្តែងដែលប្រព័ន្ធបង្កើត

មារៈតែលេនខ្លុំរតម្អាំតែយ៉ូនិតយ៉ា

• បង្កើនអានុភាពរបស់ប្រព័ន្ធ

Radar antenna angle control system

សារៈព្រលោខនុរតអុវិតិយ្យនៃវិសិយ្យ (ង)

- បញ្ហាដំណើរការបរិក្ខារពីចម្ងាយ
- កាត់បន្ថយភាពរំខាននៅក្នុងប្រព័ន្ធ

1st Source Passive Noise Filter

Rover (remote control robot's long arm)

សារៈព្រៃលោខខ្លុំរត់អូវិតិប្តូំខ្លួនយ៉ា (ម)

• បំលែងទម្រង់របស់ input

Heat transfer system

ត្រែងេន្ធនៃត្របួនិតយ៉ា

• Open-Loop Systems ជាប្រព័ន្ធទាំងឡាយណាដែលមិនមានការលៃតម្រូវ Output ឲ្យថេរនៅពេលមានការរំខានដល់ប្រព័ន្ធ។ ជាទូទៅប្រព័ន្ធបែបនេះមានភាព ងាយស្រួលសិក្សាបង្កើត និងមានតម្លៃថោក។

ម្រដេននៃត្រប់និត្តវាល់ ង)

• Closed-Loop (Feedback Control) Systems ជាប្រព័ន្ធទាំងឡាយណាដែល មានការលៃតម្រូវ Output ឲ្យថេរនៅពេលមានការរំខានដល់ប្រព័ន្ធ។ ជាទូទៅប្រព័ន្ធ បែបនេះមានភាពលំបាកសិក្សាបង្កើត និងមានតម្លៃថ្លៃ។

គោលដៅនៃការចេនា និ១១ភាគប្រព័ន្ធ

- Transient Response ការសិក្សាផ្នែកនេះយើងអាចដឹងពីរយៈពេល ផ្ដើមដំណើរការរបស់ប្រព័ន្ធយូរ ឬឆាប់។
- Steady-State Response ការសិក្សាផ្នែកនេះយើងអាចដឹងពីតម្លៃ output ថាតើតូចជាង ស្មើ ឬធំជាងតម្លៃ input របស់ប្រព័ន្ធ។
- Stability ការសិក្សាផ្នែកនេះយើងអាចដឹងពីការផ្ដើមដំណើរ និង output របស់ប្រព័ន្ធប្រើកើត ឬមិនកើត។

Total response = Transient response + Steady-state response

គោលដៅនៃការចេល និ១១ភាគប្រព័ន្ធ (គ)

Elevator input and output

តិត១ឆីតៃអាមេធាប្រព័ន្ធ

• ជំហ៊ានទី ១៖ បំលែងតម្រូវការទៅជាប្រព័ន្ធរូប

• ជំហ៊ានទី ២៖ គូសដ្យាក្រាមប្រអប់ដែលពិពណ៌នាពីតួនាទីរបស់ផ្នែក នីមួយៗនៃប្រព័ន្ធ

• ជំហ៊ានទី ៣៖ បង្កើតសីម៉ារបស់ប្រព័ន្ធ

- ជំហ៊ានទី ៤៖ បំលែងសីម៉ារបស់ប្រព័ន្ធទៅជាគណិតវិទ្យា (ជាដ្យាក្រាម ប្រអប់)
- យើងអាចប្រើ៖
 - ច្បាប់តង់ស្យុង និងចរន្តរបស់គៀឆូវ
 - ច្បាប់ណតុន
 - ដំណោះស្រាយសមីការឌីជេរ៉ង់ស្យែល
 - Transfer Function (Laplace transform)
 - State Space Representation

• ជំហ៊ានទី ៥៖ បំរួមដ្យាក្រាមប្រអប់គណិតវិទ្យាឲ្យទៅជាប្រអប់តែមួយ

• ជំហ៊ានទី ៦៖ វិភាគ និងការរចនា

តិត១ឆីតៃការខេតាប្រព័ន្ធ (ត)

• ការប្រើប្រាស់ Input សម្រាប់តេស្តដំណើរការរបស់ប្រព័ន្ធ

Input	Function	Description	Sketch	Use
Impulse	$\delta(t)$	$\delta(t) = \infty \text{ for } 0 - < t < 0 +$ $= 0 \text{ elsewhere}$ $\int_{0-}^{0+} \delta(t) dt = 1$	$\delta(t)$ $\delta(t)$	Transient response Modeling
Step	u(t)	u(t) = 1 for t > 0 $= 0 for t < 0$	f(t)	Transient response Steady-state error

តិត១ឆីតៃភាអចឆាប្រព័ន្ធ (ត)

• ការប្រើប្រាស់ Input សម្រាប់តេស្តដំណើរការរបស់ប្រព័ន្ធ

Input	Function	Description	Sketch	Use	
Ramp	tu(t)	$tu(t) = t \text{ for } t \ge 0$ = 0 elsewhere	f(t)	Steady-state error	
Parabola	$\frac{1}{2}t^2u(t)$	$\frac{1}{2}t^2u(t) = \frac{1}{2}t^2 \text{ for } t \ge 0$ = 0 elsewhere	f(t)	Steady-state error	
4/03/23		បង្រៀនដោយ៖ សាស្ត្រាចារ្យ អ៊ិន សុខវ៉ាន			18

តិត១ឆីតៃការខេតាប្រព័ន្ធ (ត)

• ការប្រើប្រាស់ Input សម្រាប់តេស្តដំណើរការរបស់ប្រព័ន្ធ

Input	Function Description	Sketch	Use
Sinusoid	sin ωt	f(t)	Transient response Modeling Steady-state error