CHAPTER 3: BAYESÍAN DECISION THEORY

Probability and Inference

- □ Result of tossing a coin is ∈ {Heads, Tails}
- □ Random variable $X \subseteq \{1,0\}$, where 1 = Heads, 0 = tails

Bernoulli:
$$P \{X=1\} = p_o$$

 $P \{X=0\} = (1-p_o)$

□ Sample: $X = \{x^t\}_{t=1}^{N}$

Estimation: p_o = # {Heads}/#{Tosses} = $\sum_t x^t / N$

Prediction of next toss:

Heads if $p_o > \frac{1}{2}$, Tails otherwise

Classification

- Example: Credit scoring
 - Inputs are income and savings
 - Output is low-risk vs high-risk
- □ Input: $x = [x_1, x_2]^T$ Output: C belongs to $\{0, 1\}$

Prediction:

$$\begin{array}{l}
\text{C} = 1 & \text{if } P(C = 1 \mid x_1, x_2) > 0.5 \\
\text{C} = 0 & \text{otherwise}
\end{array}$$

or

choose
$$\begin{cases} C = 1 & \text{if } P(C = 1 \mid x_1, x_2) > P(C = 0 \mid x_1, x_2) \\ C = 0 & \text{otherwise} \end{cases}$$

Bayes' Rule

For the case of 2 classes, C = 0 and C = 1:

$$P(C = 0) + P(C = 1) = 1$$

 $p(\mathbf{x}) = p(\mathbf{x} | C = 1)P(C = 1) + p(\mathbf{x} | C = 0)P(C = 0)$
 $p(C = 0 | \mathbf{x}) + P(C = 1 | \mathbf{x}) = 1$

Bayes' Rule: K>2 Classes

$$P(C_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_i)P(C_i)}{p(\mathbf{x})}$$
$$= \frac{p(\mathbf{x} \mid C_i)P(C_i)}{\sum_{k=1}^{K} p(\mathbf{x} \mid C_k)P(C_k)}$$

$$P(C_i) \square 0$$
 and $\sum_{i=1}^{K} P(C_i) = 1$

To classify \mathbf{x} : choose C_i if $P(C_i \mid \mathbf{x}) = \max_k P(C_k \mid \mathbf{x})$

Losses and Risks

- \square Actions: α_i : choose class C_i
- \square Loss of α_i when the actual class is C_k : λ_{ik}
- Expected risk (Duda and Hart, 1973)

$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k \mid \mathbf{x})$$

given \mathbf{x} , choose action α_i if $R(\alpha_i | \mathbf{x}) = \min_k R(\alpha_k | \mathbf{x})$

Losses and Risks: 0/1 Loss

$$\lambda_{ik} = \begin{cases} 0 \text{ if } i = k \\ 1 \text{ if } i \neq k \end{cases}$$

$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k \mid \mathbf{x})$$

$$= \sum_{k \neq i} P(C_k \mid \mathbf{x})$$

$$= 1 - P(C_i \mid \mathbf{x})$$

For minimum risk, choose the most probable class

Losses and Risks: Misclassification Cost

What class C_i to pick or to Reject all classes?

Assume:

- there are K classes
- there is a loss function: cost of making a misclassification λ_{ik} : cost of misclassifying an instance as class C_i when it is actually of class C_k
- there is a "Reject" option (i.e., not to classify an instance in any class) Let the cost of "Reject" be λ .

$$\lambda_{ik} = \begin{cases} 0 & \text{if } i = k \\ \lambda & \text{if } i = K+1, \quad 0 < \lambda < 1 \\ 1 & \text{otherwise} \end{cases}$$

For minimum risk, choose most probable class, unless is better to reject

choose
$$C_i$$
 if $P(C_i | \mathbf{x}) > P(C_k | \mathbf{x})$ $\forall k \neq i$ and $P(C_i | \mathbf{x}) > 1 - \lambda$ reject otherwise

Example: Exercise 4 from Chapter 4

Assume 2 classes: C₁ and C₂

Case 1: Assume the two misclassifications are equally costly, and there is no reject option:

$$\lambda_{11} = \lambda_{22} = 0$$
, $\lambda_{12} = \lambda_{21} = 1$

Case 2: Assume the two misclassifications are not equally costly, and there is no reject option:

$$\lambda_{11} = \lambda_{22} = 0$$
, $\lambda_{12} = 10$, $\lambda_{21} = 5$

□ Case 3: Like Case 2 but with a reject option:

$$\lambda_{11} = \lambda_{22} = 0$$
, $\lambda_{12} = 10$, $\lambda_{21} = 5$, $\lambda = 1$

See optimal decision boundaries on the next slide

Different Losses and Reject

See calculations for these plots on solutions to Exercise 4

Equal losses

Unequal losses

the boundary shifts toward the class that incurs the most cost when misclassified

With reject

Discriminant Functions

Classification can be seen as implementing a set of discriminant functions $g_i(x)$:

choose
$$C_i$$
 if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$

$$g_i(\mathbf{x}) = P(C_i \mid \mathbf{x}) \approx p(\mathbf{x} \mid C_i)P(C_i)$$

K decision regions $R_1,...,R_K$

$$\mathbf{R}_{i} = \{\mathbf{x} \mid \mathbf{g}_{i}(\mathbf{x}) = \max_{k} \mathbf{g}_{k}(\mathbf{x})\}$$

K=2 Classes

see Chapter 3 Exercises 2 and 3

Some alternative ways of combining discriminant functions $g_1(\mathbf{x}) = P(C_1 | \mathbf{x})$ and $g_2(\mathbf{x}) = P(C_2 | \mathbf{x})$ into just one $g(\mathbf{x})$:

■ define
$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$
 choose
$$\begin{cases} C_1 \text{ if } g(\mathbf{x}) > 0 \\ C_2 \text{ otherwise} \end{cases}$$

□ In terms of log odds: $log[P(C_1|\mathbf{x})/P(C_2|\mathbf{x})]$

define
$$g(\mathbf{x}) = \log \frac{P(C_1 | \mathbf{x})}{P(C_2 | \mathbf{x})}$$
 choose $\begin{cases} C_1 \text{ if } g(\mathbf{x}) > 0 \\ C_2 \text{ otherwise} \end{cases}$

define
$$g(\mathbf{x}) = \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})} = \frac{P(\mathbf{x} \mid C_1)}{P(\mathbf{x} \mid C_2)} \frac{P(C_1)}{P(C_2)}$$
 choose
$$\begin{cases} C_1 \text{ if } g(\mathbf{x}) > 1 \\ C_2 \text{ otherwise} \end{cases}$$

if the priors are equal, $P(C_1) = P(C_2)$, then the discriminant = likelihood ratio