First Recitation Class Linear Algebra

YAO Shaoxiong

UM-SJTU Joint Institute

March 5, 2019

Table of contents

From Linear Equations to Matrices

Review of Vectors in \mathbb{R}^n

From Linear Equations to Matrices

For a system of linear equations of *real* numbers,

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1m}x_m = b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2m}x_m = b_2$
 \vdots
 $a_{n1}x_1 + a_{n2}x_2 + ... + a_{nm}x_m = b_n$

here a_{ij} , b_i are coefficients and x_i are unknowns. We write it as in the matrix form.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

Two ways to understand linear system

Method 1. Intersection of n "planes" in \mathbb{R}^m .

For n = 2 and m = 2

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

The solution is the intersection of two lines defined by two equations.

Method 2. Span m vectors of in \mathbb{R}^n .

We rewrite the equation,

$$\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} x_1 + \begin{pmatrix} a_{21} \\ a_{22} \end{pmatrix} x_2 = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Solution is the appropriate coefficients to make two vectors span the third vector.

Matrices

Definition

We call

$$A := \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$

a $n \times m$ matrix. We can also write $A = (a_{ii}), i = \overline{1, n}, j = \overline{1, m}$.

Notice:

There are several types of important matrices.

- ▶ If n = m, A is a square matrix.
- ▶ If $a_{ii} = 0$ for $i \neq j$, A is diagonal.
- ▶ If $a_{ii} = 0$ for $i \ge j$, A is upper triangle.

Note:

A $n \times m$ matrix has n rows and m columns. It come from n◆□ → ◆問 → ◆ ■ → ◆ ■ → ◆ ○ ○ equations and m unknowns.

Vectors

Definition

We define vectors as $n \times 1$ matrices,

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

We denote the space of all vectors

$$\mathbb{R}^n := \{\overline{a} = (a_1, ..., a_n) : a_i \in \mathbb{R}, \forall i \in \overline{1, n}\}.$$

A $1 \times m$ matrix is called a **row** vector.

Vectors and Matrices

Notice:

We here define the product between appropriate matrix and vectors.

$$\begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + \cdots + a_{1m}x_m \\ \vdots \\ a_{n1}x_1 + \cdots + a_{nm}x_m \end{bmatrix}$$

A special type of $n \times n$ matrices is called identity matrix:

$$I = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}.$$

When they operate on vectors $x \in \mathbb{R}^n$, we have

$$Ix = x$$
.

Solution set of a system of linear equations

Definition.

For a system of linear equations, the set of all solutions is called the solution set,

$$S = \{x \in \mathbb{R}^n : x \text{ is a solution}\}\$$

Claim.

There are only three possible cases for the solution set,

- \triangleright $S = \emptyset$,
- S contains only one element,
- S is infinite.

Question.

Why there are only three possible cases?

Gaussian-Jordan Elimination

Restrictions.

To solve a system, we can only apply following types of operations.

- ▶ Times an equation with a constant.
- Add an equation to another.
- Exchange two rows.

Motivation.

For $n \times n$ case, the identity form can be solved.

We want to transform a system to this form.

$$x + 0 + 0 = b_1$$

 $0 + y + 0 = b_2$
 $0 + 0 + z = b_3$

Gaussian-Jordan Elimination

Solution.

Our solution contains two steps:

Gaussian: eliminate the lower triangle,

$$a_{11}x + a_{12}y + a_{13}z \Rightarrow x + \star + \star \Rightarrow$$

$$a_{21}x + a_{22}y + a_{23}z \Rightarrow 0 + y + \star \Rightarrow$$

$$a_{31}x + a_{32}y + a_{33}z \Rightarrow 0 + 0 + z \Rightarrow$$

Jordan: eliminate the upper triangle,

$$x + \star + \star = \diamond \qquad x + 0 + 0 = \diamond$$

$$0 + y + \star = \diamond \Rightarrow 0 + y + 0 = \diamond$$

$$0 + 0 + z = \diamond \Rightarrow 0 + 0 + 0 + 0 = \diamond$$

Gaussian-Jordan Elimination

Example.

$$\begin{bmatrix} 2 & 4 & 1 & 2 \\ 2 & 5 & 4 & 4 \\ 4 & 9 & 5 & 11 \\ 2 & 4 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Additional operations and failure

If we have zero at the leading position, we need to exchange rows. If all lower elements are zeros, we fail.

Gaussian-Jordan Algorithm

We apply this method to $n \neq m$.

Example.

$$\begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

Notice:

Although we cannot get to the identity form, the result system is easy to solve.

Reduced Row Echelon Form

Definiotion

- (i) If a row is non-zero and the first non-zero element is 1, this element is called *leading 1* in this row.
- (ii) If a column contains a *leading 1*, all other entries are 0.
- (iii) If a row contains a *leading 1*, all *leading 1*s of the above rows are on the left.

We will write rref(A) to refer the reduced row echelon form of A.

Question:

Why this form is easy to solve?

Rank

Definition

The number of leading 1's in rref(A) is called the *rank* of the matrix A.

Notice:

We can exchange columns (rename variables in the equations) to write rref(A) as follows,

$$rref(A) = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}.$$

We denote rank A = r. I is the $r \times r$ identity matrix and F is a $r \times (m-r)$ matrix.

Rank

We summarize all situations,

- (i) rankA = n = m, rref(A) = I, the system will have one solution.
- (ii) rankA = n < m, rref(A) = [I F], the system will have infinitely many solutions.
- (iii) rankA = m < n, $rref(A) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the system will either be inconsistent or have one solution.
- (iv) rankA < m, rankA < n, $rref(A) = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$, the system will either be inconsistent or have infinitely many solutions.

Review of Vectors in \mathbb{R}^n

$$\mathbb{R}^n = \{\overline{x} = (x_1, ..., x_n) : x_i \in \mathbb{R}^n, i = \overline{1, n}\}$$

Stanard Representation

For $x \in \mathbb{R}^n$, we can write it as

$$x = x_1e_1 + \cdots + x_ne_n,$$

where

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
, 1 at ith entry.

Properties of Vectors

Definition

For $\overline{a}, \overline{b}, \overline{c} \in \mathbb{R}^n$ and $k_1, k_2 \in \mathbb{R}$,

1. Addition between vectors

(i)
$$\overline{a} + \overline{b} = \overline{b} + \overline{a}$$
,

(ii)
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$$

2. Scalar product

- (i) $k_1(k_2\overline{a}) = (k_1k_2)\overline{a}$,
- (ii) $k(1)(\overline{a} + \overline{b}) = k_1\overline{a} + k_1\overline{b}$,
- (iii) $(k(1) + k(2))\overline{a} = k_1\overline{a} + k_2\overline{a}$.

Comment:

Vector space is a more general concept, functions and sequences with appropriate definition can also be vectors.

An important question is to find basis for these spaces. Can you find a basis in $C^{\infty}[a,b]$?

Projection and Dot Product

Deifnition

Geometrically, we define the projection of *a vector on a line* as a vector,

$$proj_L \overline{AB} = \overline{O_A O_B}.$$

The projection of *a vector on a vectro* as a number,

$$proj_{\overline{I}} = \pm |\overline{O_A O_B}|.$$

Definition

We define the dot product as

$$\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos(\overline{a}, \overline{b}).$$

Note that $\overline{a} \cdot \overline{b} = |\overline{a}| proj_{\overline{a}} \overline{b} = |\overline{b}| proj_{\overline{b}} \overline{a}$.

Properties of Dot Product

Geometrically, we have projection is linear, then we can prove

$$\overline{a}\cdot \left(\overline{b}+\overline{c}\right)=|\overline{a}|\textit{proj}_{\overline{a}}\left(\overline{b}+\overline{c}\right)=|\overline{a}|\textit{proj}_{\overline{a}}\overline{b}+|\overline{a}|\textit{proj}_{\overline{a}}\overline{c}.$$

For standard basis, we have

$$e_i \cdot e_j = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}.$$

With standard representation, we have

$$\overline{a} \cdot \overline{b} = a_1 b_1 + a_2 b_2.$$

Properties of Dot Product

Perpendicular

Vectors $\overline{a}, \overline{b}$ are perpendicular if $\overline{a} \cdot \overline{b} = 0$.

Euclidean Norm

The length of a vector is

$$\|\overline{a}\| = \sqrt{\overline{a} \cdot \overline{a}}.$$

Definition

A vector $\overline{w} \in \mathbb{R}^n$ is called a unit vector is $\|\overline{a}\| = 1$. For $\overline{a} \in \mathbb{R}^n$ with $\overline{a} \neq 0$, vector $\frac{\overline{a}}{\|\overline{a}\|}$ is called the normalized vector of \overline{a} .

Cross Product

Definition

The cross product $\overline{a} \times \overline{b}$ of two vectors $\overline{a}, \overline{b} \in \mathbb{R}^3$ is a vector $\overline{c} \in \mathbb{R}^3$ that satisfies:

- (i) $\overline{c}\bot\overline{a}$, $\overline{c}\bot\overline{b}$,
- (ii) $\|\overline{c}\| = \|\overline{a}\| \cdot \|\overline{b}\| \cdot \sin(\overline{a}, \overline{b}),$
- (iii) the ordered tuple $(\overline{a}, \overline{b}, \overline{c})$ is right-handed.

Notice:

We notice that $\overline{a} \times \overline{a} = 0$ and $\overline{a} \times \overline{b} = ||\overline{a}|| \cdot ||\overline{b}||$ for $\overline{a} \perp \overline{b}$.

We can then use basis representation to calculate cross product.