S10 1 PN=JP 56163447 ? t 10/9

10/9/1

DIALOG(R) File 347: JAPIO

(c) 1998 JPO & JAPIO. All rts. reserv.

00843147

ENZYME ELECTRODE

PUB. NO.: 56-163447 [JP 56163447 A] PUBLISHED: December 16, 1981 (19811216)

INVENTOR(s): NANKAI SHIRO

NAKAMURA KENICHI IIJIMA TAKASHI

APPLICANT(s): MATSUSHITA ELECTRIC IND CO LTD [000582] (A Japanese Company

or Corporation), JP (Japan)

APPL. NO.: 55-068348 [JP 8068348] FILED: May 22, 1980 (19800522)

INTL CLASS: [3] G01N-027/30; C12Q-001/00; G01N-027/40

JAPIO CLASS: 46.2 (INSTRUMENTATION -- Testing); 14.5 (ORGANIC CHEMISTRY --

Microorganism Industry)

JAPIO KEYWORD: R014 (MICROFILTERS); R125 (CHEMISTRY -- Polycarbonate Resins)

; R127 (CHEMISTRY -- Fixed Enzymes)

JOURNAL: Section: P, Section No. 107, Vol. 06, No. 46, Pg. 145, March

24, 1982 (19820324)

ABSTRACT

PURPOSE: To obtain the enzyme electrode having quick response by providing a platinum layer on a conductive substrate as an electrode for detecting hydrogen and directly fixing enzyme on said electrode.

CONSTITUTION: The pellet shaped conductive substrate 3 is formed by compressing the mixture of 10pts.wt. of fluororesin powder as a binding agent and 90pts.wt. of graphite. Then the platinum layer 2 is provided on the surface of said conductive substrate 3 by the electrolysis of aqueous rolution of chloroplatinic acid and the electrode for detecting hydrogen peroxide is obtained. On said electrode, is applied aqueous solution of glucose oxidase. After it has been dried, the device is reacted at 25 deg.C for about one hour in the vapor of alutaric aldehyde, and bridging and fixing are made. Thereafter, the device is well washed, the material not reacted is removed, and an enzyme fixed layer 1 is formed. The enzyme electrode obtained in this way indicates quick response, and its characteristics will not change for a long time even though it is repeatedly measured and washed.

(19) 日本国特許庁 (JP)

⑪特許出願公開

⑩ 公開特許公報(A)

昭56-163447

⑤Int. Cl.³ G 01 N 27/30 C 12 Q 1/00 G 01 N 27/40 識別記号

庁内整理番号 7363-2G

Υ,

43公開 昭和56年(1981)12月16日

7363—2G 7349—4B 7363—2G

発明の数 1 審査請求 未請求

(全 3 頁)

國酵素電極

願 昭55-68348

②特②出

願 昭55(1980)5月22日。

⑫発 明 者 南海史朗

門真市大字門真1006番地松下電

器産業株式会社内

饱発 明 者 中村研一

門真市大字門真1006番地松下電 器産業株式会社内

⑪発 明 者 飯島孝志

門真市大字門真1006番地松下電

器産業株式会社内

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

仰代 理 人 弁理士 中尾敏男 外1名

明細書

1、発明の名称

酵素電極

- 2、特許請求の範囲
 - (1) 導電性基体上に白金層を設けてなる過酸化水 素検知用の電極と、この電極上に直接固定化して なる酸化還元酵素層とを備えたことを特徴とする 酵素電極。
 - (2) 導電性基体が、カーボンを主成分とする加圧 成型体あるいは導電性被膜形成体からなる特許請求の範囲第1項記載の酵素電極。
- 3、発明の詳細な説明

本発明は、酵素の特異的触媒作用を利用し、基質濃度を迅速かつ簡便に測定することができ、しかも連続使用、繰り返し使用の可能な高選択性の 酵素電極を得ることを目的とする。

近年、酵素固定化技術の進歩に伴い、酵素反応 と電気化学反応を組み合わせることにより、酵素 と特異的に反応する物質である基質の濃度を検出 することが各種試みられている。その一例として、 酵素反応で生成した過酸化水素(H_2O_2)を電気化学的に検知する方式がある。すなわち以下の(1)、(2)式に例を示す様に、まず酸素を水素受容体とする酸化還元酵素(例えばグルコースオキシダーゼ)の作用により基質(グルコース)が酸化されて H_2O_2 が生成する。次に、この生成した H_2O_2 を白金電極などを用いて酸化し、この時得られる酸化電流値から基質(グルコール)の濃度を知ることができる。

グルコース+02

- - - - - (1)

 $H_2O_2 \rightarrow 2H^+ + 2e + O_2 \cdot \cdot \cdot \cdot \cdot (2)$

しかしながら酵素は水溶性であるので、高価な酵素の繰り返し使用を可能ならしめるためには、適当な方法により酵素を過酸化水素検知用電極の近傍に固定化(不溶化)する必要がある。従来、過酸化水素検知方式の酵素電極の構成としては、検知用電極として白金板を用い、この電極近傍

本発明者らは、上記諸点について種々検討した 結果、優れた特性を有する酵素電極を見出した。 本発明による酵素電極の一構成例の断面模式図を 第1図に示す。図中、1はグルコースオキンダー ゼなどの酸化還元酵素を固定化してなる層、2は 過酸化水素検知用の白金層、3は例えばグラファ イト等のカーボンを主体とする加圧成型体からな る導電性基体である。

本発明の特徴は、導電性基体上に白金層を設け て過酸化水素検知用の電極を構成し、この電極上

定化することにより、応答特性に優れ、かつ連続 使用,繰り返し使用の可能な酵素電極を得ること ができる。

以下、本発明の一実施例について説明する。

まず、グラファイト9〇重量部に結着剤としてフッ素樹脂粉末1〇重量部を混合したものを加圧成型してベレット状の導電性基体を構成し、次に塩化白金酸水溶液から電解法で前記基体表面に白金層を設けて過酸化水素検知用電極とした。この電極上にグルコースオキシダーゼ水溶液を塗布し、少し乾燥した後、グルタルアルデヒド蒸気中にて25℃で約1時間反応させて架橋固定化し、この後、十分水洗して未反応物を除去した。こうして得られた本発明の酵素電極をAとする。

比較のための従来の酵素電極として次のものを作製した。酵素固定化用担体膜として、ポリカーポネート多孔膜(膜厚 $8\,\mu$ m ,孔径 $1\,O\,\mu$ m ,孔密度 $1\,\times\,1\,O^5\,$ 個 $/\,c$ m)を用い、この膜にグルコースオキシダーゼ水溶液を塗布し、少し乾燥させた後、前記と同様にして架橋固定化した。得られた

に酵素を直接固定化した点にある。すたわち、本発明の酵素電極においては、必要最小限の白金層を設けることにより過酸化水素を検知し、かつ導電性基体は白金層に対する電気的接続を得るとともに、酵素固定化用担体をも兼ねるものである。この様に構成することにより、酵素の含着固定化は容易となり、膜を用いないため迅速な応答が得られる。

酵素固定化膜を白金板からなる過酸化水素検知用電極に密着固定し、酵素電極とした。この電極を Bとする。

上記で得られたA,Bの酵素電極を用いて、第2図に示す測定系により、グルコースの漫度変化に対する応答特性を測定した。第2図において、4は記録計、5はポテンショスタット、6は飽和カロメル参照極、7は下端部に酵素電医を装着した樹脂製の電極ホルダーであり、リードを介してポテンショスタットに接続されている。8は基である。

酵素電極を液中に浸漬し、 H_2O_2 を酸化するに十分な電位に設定した後、攪拌しながらグルコースを添加して所定の濃度とじ、このときの電流変化を測定した。

・グルコースを添加し、濃度を 1×10⁻¹モル/ 2 としたときの A , B 各 酵素電極の応答の経時変化 を第3図に示す。本発明の酵素電極 A は電流の増 加量も大きく、しかも 5 秒程度で定常値に達する など迅速な応答を示しており、優れた特性を有することがわかる。さらに、第4図に示すごとく、 グルコース濃度変化に対しても、直線性を失うことなく大きな応答が得られるなど、その応答特性 の向上は著しい。また、本発明の酵素電極は、測 定洗浄の繰り返し使用に対しても長期間その応答 特性を維持するなど優れたものであった。

適用可能な酵素としては、グルコースオキシダーゼの他に、キサンチンオキシダーゼ,アミノ酸オキンダーゼ,コレステロールオキンダーゼ,アルコールオキンダーゼを登案反応でH₂O₂を生成する酸化還元酵素であれば良い。さらにはこれらの酵素を含む複合酵素系にも適用できる。

以上述べたごとく、本発明の酵素電極は応答の 迅速性,感度に優れ、繰り返し使用が可能である など、その工業的価値は大である。

4、図面の簡単な説明

 \mathcal{O}

第1図は本発明の酵素電極の一構成例を示す断 面模式図、第2図は測定系を示す図、第3図はグ ルコース添加に対する応答の経時変化を示す図、

第 1 図

第 2 図

第4図はグルコース濃度に対する応答特性を示す 図である。

1 ······ 酵素固定化層、2 ······ 白金層、3 ······· 導電性基体。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 3 図

第 4 図

