

Vorlesung "Logik"

10-201-2108-1

3. Folgerung und Äquivalenz

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

24. April 2025 Leipzig

In der letzten Vorlesung

Interpretationen und Modelle Wahrheitswertetabelle Erfüllbarkeit, Falsifizierbarkeit und mehr Koinzidenzlemma Modellierung (Detektivarbeit)

Fahrplan für diese Vorlesung

Folgerung
Deduktionstheorem
Semantische Äquivalenz
Ersetzungstheorem
DNF und KNF

Bis jetzt: Modellbegriff für Formeln

Eine Interpretation I heißt Modell von ϕ , sofern $I(\phi) = 1$.

$$Mod(\phi) = \{I \in \mathcal{B} \mid I \text{ ist Modell von } \phi\}$$

jetzt: Modellbegriff für Mengen von Formeln Eine Interpretation I heißt Modell von T, sofern $I(\phi)$ = 1 für alle $\phi \in T$. Demzufolge

$$Mod(T) = \bigcap_{\phi \in T} Mod(\phi)$$

Es gilt:

- Falls T endlich, dann $Mod(T) = Mod(\land T)$. (Formel)

- Falls $S \subseteq T$, dann $Mod(T) \subseteq Mod(S)$. (Antimonotonie)

Eine Interpretation I heißt Modell von T, sofern $I(\phi)$ = 1 für alle $\phi \in T$. Demzufolge

$$Mod(T) = \bigcap_{\phi \in T} Mod(\phi)$$

Es gilt:

- Falls T endlich, dann $Mod(T) = Mod(\land T)$. (Formel)

Beweis:

$$Mod(\varnothing) = \bigcap_{\psi \in \varnothing} Mod(\psi)$$

= $\{I \in \mathcal{B} \mid \text{für alle } \psi \in \varnothing : I \in Mod(\psi)\}$
= \mathcal{B}

Eine Interpretation I heißt Modell von T, sofern $I(\phi)$ = 1 für alle $\phi \in T$. Demzufolge

$$Mod(T) = \bigcap_{\phi \in T} Mod(\phi)$$

Es gilt:

- Falls T endlich, dann $Mod(T) = Mod(\land T)$. (Formel)

Beweis:

$$Mod(S \cup T) = \bigcap_{\phi \in S \cup T} Mod(\phi)$$
$$= \bigcap_{s \in S} Mod(s) \cap \bigcap_{t \in T} Mod(t)$$
$$= Mod(S) \cap Mod(T)$$

Eine Interpretation I heißt Modell von T, sofern $I(\phi)$ = 1 für alle $\phi \in T$. Demzufolge

$$Mod(T) = \bigcap_{\phi \in T} Mod(\phi)$$

Es gilt:

- Falls T endlich, dann $Mod(T) = Mod(\wedge T)$. (Formel)

- 4 Falls $S \subseteq T$, dann $Mod(T) \subseteq Mod(S)$. (Antimonotonie) Beweis: Übungsblatt 2

Folgerung

Definition

Sei $T \subseteq \mathcal{F}$ und $\phi \in \mathcal{F}$. Wir sagen, ϕ folgt (logisch) aus T, falls $Mod(T) \subseteq Mod(\phi)$ und schreiben: $T \models \phi$

Anmerkungen/Konventionen:

- T ist Menge von Formeln, ϕ ist eine einzelne Formel
- T kann auch unendlich sein
- Wir schreiben:

$$\phi_1, \dots, \phi_n \vDash \psi$$
 statt $\{\phi_1, \dots, \phi_n\} \vDash \psi$
 $T, \phi \vDash \psi$ statt $T \cup \{\phi\} \vDash \psi$
 $\vDash \psi$ statt $\varnothing \vDash \psi$

Beispiele:

$$A_1 \wedge A_2 \vDash A_1$$
 $A_1, A_1 \rightarrow A_2 \vDash A_2$ $\vDash A_1 \vee \neg A_1$
 $A_1 \wedge A_2 \not\vDash A_3$ $A_1, A_2 \rightarrow A_1 \not\vDash A_2$ $\not\vDash A_1 \wedge \neg A_1$

Folgerung

Definition

Sei $T \subseteq \mathcal{F}$ und $\phi \in \mathcal{F}$. Wir sagen, ϕ folgt (logisch) aus T, falls $Mod(T) \subseteq Mod(\phi)$ und schreiben: $T \models \phi$

Anmerkungen/Konventionen:

- T ist Menge von Formeln, ϕ ist eine einzelne Formel
- T kann auch unendlich sein
- Wir schreiben:

$$\phi_1, \dots, \phi_n \vDash \psi$$
 statt $\{\phi_1, \dots, \phi_n\} \vDash \psi$
 $T, \phi \vDash \psi$ statt $T \cup \{\phi\} \vDash \psi$
 $\vDash \psi$ statt $\varnothing \vDash \psi$

ScaDS.All

Beweis für A_1 , $A_1 \rightarrow A_2 \models A_2$:

Z.z. $Mod(\{A_1, A_1 \rightarrow A_2\}) \subseteq Mod(\{A_2\})$. Sei dazu $I(\{A_1, A_1 \rightarrow A_2\}) = 1$. Somit $I(\{A_1\}) = 1$ und $I(\{A_1 \rightarrow A_2\}) = 1$. Somit muss per Wahrheitsbedingung der Implikation auch $I(A_2) = 1$, d.h. $I \in Mod(\{A_2\})$.

Deduktionstheorem

Theorem

Seien $T \subseteq \mathcal{F}$ und $\phi, \psi \in \mathcal{F}$. Es gilt:

$$T, \phi \vDash \psi$$
 gdw. $T \vDash \phi \rightarrow \psi$

Beweis:

- (\Rightarrow) Gegeben $T, \phi \models \psi$. Zu zeigen: $T \models \phi \rightarrow \psi$. Sei $I \in Mod(T)$. Fall 1: $I \notin Mod(\phi)$. Dann sofort $I \in Mod(\phi \rightarrow \psi)$. Fall 2: $I \in Mod(\phi)$. Folglich $I \in Mod(T \cup \{\phi\})$. Nach Voraussetzung $I \in Mod(\psi)$ und somit wiederum $I \in Mod(\phi \rightarrow \psi)$.
- (\Leftarrow) Gegeben $T \models \phi \rightarrow \psi$. Zz: $T, \phi \models \psi$. Sei $I \in Mod(T \cup \{\phi\})$. Somit $I \in Mod(T)$ und $I \in Mod(\phi)$. Nach Voraussetzung $Mod(T) \subseteq Mod(\phi \rightarrow \psi)$. Also $I \in Mod(\phi \rightarrow \psi)$. Da schon $I \in Mod(\phi)$ bekannt, muss $I \in Mod(\psi)$.

Deduktionstheorem

Theorem

Seien $T \subseteq \mathcal{F}$ und $\phi, \psi \in \mathcal{F}$. Es gilt:

$$T, \phi \models \psi$$
 gdw. $T \models \phi \rightarrow \psi$

insbesondere ergibt sich für T = ∅:

• für $T = \{\phi_1, \dots, \phi_n\}$ gilt $Mod(T) = Mod(\underbrace{\bigwedge_{i=1}^n \phi_i})$. Somit

$$T \vDash \psi$$
 gdw. $\vDash \left(\bigwedge_{i=1}^{n} \phi_i \right) \rightarrow \psi$

Aussagenlogische Formeln können syntaktisch verschieden sein, und dennoch genau die selben Modelle besitzen.

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

Nützliche Äquivalenzen:

(Idempotenz)

(Kommutativität)

•
$$(\phi \land \psi) \land \xi \equiv \phi \land (\psi \land \xi)$$

 $(\phi \lor \psi) \lor \xi \equiv \phi \lor (\psi \lor \xi)$

(Assoziativität)

(Absorption)

Aussagenlogische Formeln können syntaktisch verschieden sein, und dennoch genau die selben Modelle besitzen.

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $\textit{Mod}(\phi) = \textit{Mod}(\psi)$.

Nützliche Äquivalenzen:

•
$$\neg\neg\phi \equiv \phi$$
 (Elimination der doppelten Negation)

$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$
$$\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$

• $\phi \land (\psi \lor \xi) \equiv (\phi \land \psi) \lor (\phi \land \xi)$ $\phi \lor (\psi \land \xi) \equiv (\phi \lor \psi) \land (\phi \lor \xi)$

• $\phi \land \psi \equiv \psi$, falls ϕ tautologisch $\phi \lor \psi \equiv \phi$, falls ϕ tautologisch

• $\phi \land \psi \equiv \phi$, falls ϕ unerfüllbar $\phi \lor \psi \equiv \psi$, falls ϕ unerfüllbar

(De Morgansche Gesetze)

(Distributivgesetze)

(Tautologieregel)

(Unerfüllbarkeitsregel)

Aussagenlogische Formeln können syntaktisch verschieden sein, und dennoch genau die selben Modelle besitzen.

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $\textit{Mod}(\phi) = \textit{Mod}(\psi)$.

Beweis für $\neg\neg\phi\equiv\phi$. Sei dazu $I\in\mathcal{B}$ eine Interpretation. Es gilt:

$$I(\neg\neg\phi)=1$$
 gdw. $I(\neg\phi)=0$ gdw. $I(\phi)=1$ Also, $Mod(\neg\neg\phi)=Mod(\phi)$.

Aussagenlogische Formeln können syntaktisch verschieden sein, und dennoch genau die selben Modelle besitzen.

Definition

Zwei Formeln $\phi, \psi \in \mathcal{F}$ heißen semantisch äquivalent, in Zeichen $\phi \equiv \psi$, sofern $Mod(\phi) = Mod(\psi)$.

Beweis für $\neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi$. Sei dazu $I \in \mathcal{B}$ eine Interpretation. Es gilt:

$$I(\neg(\phi \land \psi)) = 1$$
 gdw. $I(\phi \land \psi) = 0$ gdw. $I(\phi) = 0$ oder $I(\psi) = 0$ gdw. $I(\neg\phi) = 1$ oder $I(\neg\psi) = 1$ gdw. $I(\neg\phi \lor \neg\psi) = 1$

Ersetzungstheorem

Mithilfe dieses Theorems können wir Formeln in bestimmte syntaktische Formen überführen, wobei die Menge ihrer Modelle unverändert bleibt.

Theorem

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit $\phi \equiv \psi$. Sei $\xi \in \mathcal{F}$ mit $\phi \in t(\xi)$ und $\xi' \in \mathcal{F}$ eine Formel, die sich durch Ersetzung eines Vorkommens von ϕ in ξ durch ψ ergibt. Dann gilt: $\xi \equiv \xi'$.

Beispiel:

$$\phi = A_1 \land (A_1 \lor A_2) \qquad \psi = A_1 \qquad \qquad \phi \equiv \psi$$

$$\xi = (A_1 \land (A_1 \lor A_2)) \rightarrow A_3 \qquad \qquad \phi \in t(\xi)$$

$$\xi' = A_1 \rightarrow A_3 \qquad \qquad \xi \equiv \xi'$$

Ersetzungstheorem

Theorem

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit $\phi \equiv \psi$. Sei $\xi \in \mathcal{F}$ mit $\phi \in t(\xi)$ und $\xi' \in \mathcal{F}$ eine Formel, die sich durch Ersetzung eines Vorkommens von ϕ in ξ durch ψ ergibt. Dann gilt: $\xi \equiv \xi'$.

Beweis (Induktion über den Formelaufbau von ξ):

- Sei ξ atomar. Dann muss $\phi = \xi$, da $t(\xi) = \{\xi\}$. Somit ist $\xi' = \psi$ und damit $\xi \equiv \xi'$ da $\phi \equiv \psi$ vorausgesetzt. (IA)
- Gelte die Ersetzungseigenschaft für ξ_1 (IV) und sei $\xi = \neg \xi_1$.
 - Falls $\phi = \xi$, dann argumentiere wie oben (IV nicht nötig)
 - 2 Sei nun $\phi \neq \xi$. Dann muss $\xi' = \neg \xi'_1$ wobei ξ'_1 durch ersetzen von ϕ in ξ_1 durch ψ entsteht. Da nach IV $\xi_1 \equiv \xi'_1$ gilt, muss per Definition der Negation $\neg \xi_1 \equiv \neg \xi'_1$. Also, $\xi \equiv \xi'$
- Gelte die Ersetzungseigs. für ξ_1 , ξ_2 (IV) und sei $\xi = \xi_1 \circ \xi_2$.
 - Falls $\phi = \xi$, dann argumentiere wie im IA (IV nicht nötig)
 - 2 Sei nun $\phi \neq \xi$. Dann entweder $\phi \in t(\xi_1)$ oder $\phi \in t(\xi_2)$.

Ersetzungstheorem

Theorem

Gegeben zwei Formeln $\phi, \psi \in \mathcal{F}$ mit $\phi \equiv \psi$. Sei $\xi \in \mathcal{F}$ mit $\phi \in t(\xi)$ und $\xi' \in \mathcal{F}$ eine Formel, die sich durch Ersetzung eines Vorkommens von ϕ in ξ durch ψ ergibt. Dann gilt: $\xi \equiv \xi'$.

Beweis (Induktion über den Formelaufbau von ξ):

- Gelte die Ersetzungseigs. für ξ_1 , ξ_2 (IV) und sei $\xi = \xi_1 \circ \xi_2$.
 - Falls $\phi = \xi$, dann argumentiere wie im IA (IV nicht nötig)
 - ② Sei nun $\phi \neq \xi$. Dann entweder $\phi \in t(\xi_1)$ oder $\phi \in t(\xi_2)$. Je nach Fall gilt dann $\xi' = \xi_1' \circ \xi_2$ oder $\xi' = \xi_1 \circ \xi_2'$ wobei ξ_1' (bzw. ξ_2') durch ersetzen von ϕ in ξ_1 (bzw. ξ_2) durch ψ entsteht. Nach IV gilt $\xi_1' \equiv \xi_1$ als auch $\xi_2' \equiv \xi_2$. Somit folgt per Definition der Semantik der Junkoren $\circ \in \{\lor, \land\}$, dass $\xi_1' \circ \xi_2 \equiv \xi_1 \circ \xi_2$ als auch $\xi_1 \circ \xi_2' \equiv \xi_1 \circ \xi_2$. Also, $\xi' \equiv \xi$.

- ein Literal ist eine atomare Formel $A \in \mathcal{A}$ (positives Literal) oder deren Negation $\neg A$ (negatives Literal)
- für atomare Formeln A setzen wir: $\overline{A} = \neg A$ und $\overline{\neg A} = A$.

Definition

Eine Formel ϕ ist in konjunktiver Normalform (KNF), sofern

$$\phi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} L_{ij} \right)$$

mit Literalen L_{ij} . (Konjunktion von Disjunktion von Literalen)

Bsp.:
$$\phi = (A_1 \vee \neg A_2) \wedge (\neg A_1 \vee A_2 \vee A_3)$$
 $(n = 2, m_1 = 2, m_2 = 3)$

- ein Literal ist eine atomare Formel $A \in \mathcal{A}$ (positives Literal) oder deren Negation $\neg A$ (negatives Literal)
- für atomare Formeln A setzen wir: $\overline{A} = \neg A$ und $\overline{\neg A} = A$.

Definition

Eine Formel ϕ ist in disjunktiver Normalform (DNF), sofern

$$\phi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} L_{ij} \right)$$

mit Literalen L_{ij} . (Disjunktion von Konjunktionen von Literalen)

Bsp.:
$$\phi = (A_1 \land A_2 \land \neg A_3) \lor \neg A_2$$
 $(n = 2, m_1 = 3, m_2 = 1)$

Warum interessant?

- standardisierter Input f
 ür Algorithmen (z.B. SAT-solver)
- günstige Eigenschaften bzgl. Entscheidungsverfahren

Satz: Für Formeln in DNF ist das Erfüllbarkeitsproblem effizient lösbar – sogar in Linearzeit.

Begründung: DNF erfüllbar gdw. es ein Disjunkt gibt, welches nicht gleichzeitig eine atomare Formel A und $\neg A$ enthält.

Beispiel:
$$(A_1 \wedge A_2 \wedge \neg A_3 \wedge \neg A_1) \vee (\neg A_2 \wedge A_3)$$

Warum interessant?

- standardisierter Input für Algorithmen (z.B. SAT-solver)
- günstige Eigenschaften bzgl. Entscheidungsverfahren

Satz: Für Formeln in DNF ist das Erfüllbarkeitsproblem effizient lösbar – sogar in Linearzeit.

Begründung: DNF erfüllbar gdw. es ein Disjunkt gibt, welches nicht gleichzeitig eine atomare Formel A und $\neg A$ enthält.

Beispiel: $(A_1 \wedge A_2 \wedge \neg A_3 \wedge \neg A_1) \vee (\neg A_2 \wedge A_3)$ erfüllbar

Warum interessant?

- standardisierter Input f
 ür Algorithmen (z.B. SAT-solver)
- günstige Eigenschaften bzgl. Entscheidungsverfahren

Satz: Für Formeln in KNF ist das Tautologieproblem effizient lösbar – sogar in Linearzeit.

Begründung: KNF tautologisch gdw. alle Konjunkte enthalten gleichzeitig eine atomare Formel A und $\neg A$.

Beispiel:
$$(A_1 \lor A_2 \lor \neg A_3 \lor \neg A_1) \land (\neg A_2 \lor A_2 \lor A_3)$$

Warum interessant?

- standardisierter Input f
 ür Algorithmen (z.B. SAT-solver)
- günstige Eigenschaften bzgl. Entscheidungsverfahren

Satz: Für Formeln in KNF ist das Tautologieproblem effizient lösbar – sogar in Linearzeit.

Begründung: KNF tautologisch gdw. alle Konjunkte enthalten gleichzeitig eine atomare Formel A und $\neg A$.

Beispiel: $(A_1 \lor A_2 \lor \neg A_3 \lor \neg A_1) \land (\neg A_2 \lor A_2 \lor A_3)$ tautologisch

Theorem

Zu jeder Formel $\phi \in \mathcal{F}$ existieren semantisch äquivalente Formeln ϕ_D in DNF und ϕ_K in KNF. $(\phi \equiv \phi_D \equiv \phi_K)$

Beweis (Induktion über den Formelaufbau):

• Sei
$$\phi = A \in A$$
 atomar, dann setze $\phi = \phi_D = \phi_K$. (IA)

• Gelte $E(\phi)$, d.h. es ex. $\phi_D = \bigvee_{j=1}^n \left(\bigwedge_{j=1}^{m_i} L_{ij} \right)$ mit $\phi \equiv \phi_D$. Also:

$$\neg \phi_{D} \stackrel{1}{=} \neg \left(\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_{i}} L_{ij} \right) \right) \stackrel{2}{=} \bigwedge_{i=1}^{n} \neg \left(\bigwedge_{j=1}^{m_{i}} L_{ij} \right) \stackrel{3}{=} \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_{i}} \neg L_{ij} \right) \stackrel{4}{=} \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_{i}} \overline{L_{ij}} \right) \stackrel{1}{=} \underbrace{\prod_{i=1}^{n} \left(\bigvee_{j=1}^{m_{i}} \overline{L_{ij}} \right)}_{\text{in KNF}}$$

- (1) Definition von ϕ_D (2) De Morgan: Negation einer Disjunktion (3) De Morgan: Negation einer Konjunktion (4) $\neg L_{ji} \equiv \overline{L_{ji}}$
 - Beweis für semantische äquivalente DNF analog
 - Hinweis: Ersetzungstheorem wird oft stillschweigend benutzt

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	A_3	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	<i>A</i> ₃	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	<i>A</i> ₃	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\phi_{K} = (A_1 \vee \neg A_2 \vee A_3) \wedge$$

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	<i>A</i> ₃	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\phi_K = (A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_1 \vee A_2 \vee A_3) \wedge$$

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	<i>A</i> ₃	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\phi_K = (A_1 \vee \neg A_2 \vee A_3) \wedge (\neg A_1 \vee A_2 \vee A_3) \wedge (\neg A_1 \vee \neg A_2 \vee A_3)$$

Bsp.:
$$\phi = (A_1 \lor A_2) \to A_3$$

A_1	A_2	A_3	$(A_1 \vee A_2) \to A_3$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$\phi_D = (\neg A_1 \land \neg A_2 \land \neg A_3) \lor (\neg A_1 \land \neg A_2 \land A_3) \lor (\neg A_1 \land A_2 \land A_3) \lor (A_1 \land \neg A_2 \land A_3) \lor (A_1 \land A_2 \land A_3)$$

Vorlesung "Logik"

10-201-2108-1

3. Folgerung und Äquivalenz

Ringo Baumann
Professur für Formale Argumentation
und Logisches Schließen

24. April 2025 Leipzig

