HW02 Classification

1. 前處理

• Train/Valid [改變的機率值為 0.1]

尺寸調整	Resize((224, 224))		
將圖像轉為 Tensor	ToTensor()		
	RandomHorizontalFlip()		
	RandomVerticalFlip()		
	RandomRotation(10)		
空間操作	RandomPerspective(distortion_scale=0.6, p=1.0)		
	RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), scale=(0.5, 0.75))		
	ElasticTransform(alpha=250.0)		
顏色操作	ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)		
	RandomGrayscale(p=0.1)		
	RandomInvert(p=0.1)		
	RandomPosterize(bits=2, p=0.1)		
	RandomSolarize(threshold=1.0)		
噪聲操作	AddGaussianNoise(mean=0.0, std=0.05)		
	AddPoissonNoise(lam=0.1)		
	AddSpeckleNoise(noise_level=0.1)		
	AddSaltPepperNoise(salt_prob=0.05,		
	pepper_prob=0.05)		
高斯模糊	GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5.))		
標準化 Normalize [-1,1]	Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])		

• Test

尺寸調整	Resize((224, 224))	
將圖像轉為 Tensor	ToTensor()	
標準化 Normalize [-1,1]	Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])	

補充:由於測試圖片加入了翻轉變形、改變顏色跟雜訊干擾等等變化,以此在前處理時訓練及 驗證圖片也要加入這些圖片變化操作,確保後續訓練能獲的更好的模型效果

2. 訓練模型選擇

- 先前: 自己寫的 CNN 模型
 - 使用自己寫的訓練模型,效果很差,精準度在 0.02~0.03 徘徊,比 baseline 要求的 0.05
 還要低,距離最終目標還有很多路要走。

```
class SimpleCNN(nn.Module):
    def __init__(self, numClasses):
        super(SimpleCNN, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2)
        self.classifier = nn.Sequential(
            nn.Linear(128*28*28, 512), # 28*28 from the image size (224/2/2/2 = 28)
            nn.ReLU(inplace=True),
           nn.Linear(512, numClasses),
    def forward(self, x):
       x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
```

- 最終: 套用 CNN pre-trained 模型 (特徵提取)
 - 使用老師提供的 TRANSFER LEARNING FOR COMPUTER VISION TUTORIAL, 裡面有一個部分關於 pre-trained image classification models, 有許多 pre-trained 可供使用, 我使用幾個 CP 值較高的模型,以及舉例上有使用的"resnet50"以下表個的模型作為訓練模型使用。

Pre-trained model				
convnext_base	swin_v2_b			
efficientnet_v2_m	maxvit_t			
resnet50				

做完 Pre-trained model 後,再套一層自己的 linear model,將 CNN 模型的特徵映射到最後的分類空間,題目設計是要辨識出50隻角色,所以這裡的"分類空間=50"

Pre-trained model	
meta_simpleLinear	

```
:lass SimpleLinear(nn.Module):
       def __init__(self, input_dim, num_classes):
           super(SimpleLinear, self).__init__()
           self.fc = nn.Linear(input_dim, 3 * input_dim)
           self.relu = nn.ReLU()
           self.fc2 = nn.Linear(3 * input_dim, num_classes)
           init.kaiming_uniform_(self.fc.weight, nonlinearity='relu')
       def forward(self, x):
           return self.fc2(self.relu(self.fc(x)))
```


3. 環境變數

• .env:

第一次這樣寫,好處是將模型名稱,資料夾路徑等等,定義再一起,方便管理,想換成其他 pre-tarined 可以直接從這裡進行修改,不用每個檔案有用的的地方都改。

• 使用方法:

下載: pip install python-dotenv

```
from dotenv import load_dotenv
load_dotenv()

TRAIN_DATA_DIR = os.getenv('TRAIN_DATA_DIR')

TEST_DATA_DIR = os.getenv('TEST_DATA_DIR')

TRAIN_VAL_RATIO = float(os.getenv('TRAIN_VAL_RATIO'))

BATCH_SIZE = int(os.getenv('BATCH_SIZE'))
```

4. 混淆矩陣(Confusion Matrix)

5. 每層權重(Layer filter)

の国内学院の特定を必然 連合体別の研究を可見な 日本の国際の大阪内国工 日本の国際の大阪内国工 日本の国際の政策を対象 日本の国際の政策を表現 日本の国際の国際の政策を 日本の国際の国際の政策を 日本の国際の国際の政策を 日本の国際の国際の国際の 日本の国際の国際の国際の 日本の国際の国際の 日本の国際の国際の 日本の国際の国際の 日本の国際の国際の 日本の国際の国際の 日本の国際の国際の 日本の国 日本の国際の 日本の国 日本の国 日本の国 日本の国 日本の国 日本の国 日本の国 日本の		
The description of the control of th		
	(省略)(省略) (省略)	