Розділ II. Алгебри

Тема 6. Алгебри

Словом "алгебра" позначають, взагалі, не тільки розділ математики, але й один із конкретних об'єктів, які вивчаються в цьому розділі.

Алгебраїчні методи опису моделей знаходять широке застосування при формалізації різних предметних галузей. Інакше кажучи, при побудові предметної галузі все починається із введення позначень для операцій і відношень із наступним вивченням їх властивостей. Володіння алгебраїчною термінологією, таким чином, входить у арсенал засобів, необхідних для абстрактного моделювання, яке передує будь-яким практичним впровадженням у конкретній предметній галузі.

6.1. Композиція об'єктів

У математиці та її застосуваннях велике значення мають відношення, що ставлять у відповідність парі яких-небудь об'єктів (a,b) третій об'єкт c, тобто тернарні відношення, наприклад, дії над числами. Загалом тернарні відношення можуть бути не тільки між числами, а й між об'єктами різної природи. При цьому запис $a \perp b = c$ означає, що a в композиції з b дає c, де \perp - операція; a, b - операнди; c - результат операції або композиції об'єктів a і b.

Позначимо множини операндів A та B ($a \in A$, $b \in B$) і множину результатів операції C ($c \in C$); тоді операцію (композицію) можна означити як відображення $A \times B \to C$. Її часто називають **законом композиції**.

Будь-який закон композиції $A \times B \to C$ над скінченними множинами можна задавати прямокутною матрицею (таблицею Келі):

	b_1	b_2	b_3	
a_1	c_{11}	c_{12}	c_{13}	
a_2	c_{21}	c_{22}	c_{23}	
a_3	c_{31}	c_{32}	c_{33}	•••

Тут рядки — це елементи множини A, стовпці — елементи множини B. На перетині рядка та стовпця, що відповідають (a_i, b_j), розташовується елемент $c_{ij} = a_i \perp b_j$.

Множини A, B, C, які беруть участь в операції $A \times B \to C$, не обов'язково мають бути різними. Якщо A = B = C = S, то кажуть, що закон композиції означений на множині S. Розрізняють внутрішній закон композиції $S \times S \to S$ і зовнішній $Q \times S \to S$, де Q й S — різні множини $(Q \neq S)$.

У разі внутрішнього закону композиції кажуть, що множина утворює **групоїд** відносно операції \bot . У разі зовнішнього закону композиції операнди $a \in Q$ називаються **операторами**, а Q – множиною операторів на множині S. Наприклад, множина дійсних чисел утворює групоїд відносно операції "+" та "×", множина всіх векторів на площині — групоїд відносно операції геометричного підсумовування.

Прикладами зовнішнього закону композиції можуть бути добуток вектора на скаляр на множині векторів, причому операторами ϵ скаляри — елементи з R.

Скінченний групоїд S відносно закону \bot визначається таблицею Келі, тобто квадратною матрицею n-го порядку, де n – число елементів групоїда.

Наприклад, таблиця Келі для групоїда $S = \{a, b, c, d\}$ відносно деякої операції \bot може мати такий вигляд:

	а	b	С	d
а	а	b	а	b
b	а	b	С	а
С	b	а	d	d
d	d	b	d	b

6.2. Означення алгебри. Замкнення

Означення 6.1. Якщо справджується внутрішній закон композиції $S^n \to S$, то функцію типу $\varphi: S^n \to S$ будемо називати *n***-арною операцією** на множині S; n — **арність** операції φ . Множина S разом із заданою на ній сукупністю операції $\Sigma = \{\varphi_1, ..., \varphi_m\}$, тобто система $A = \{S; \Sigma\}$ (або $A = \{S; \varphi_1, ..., \varphi_m\}$), називається **алгеброю**; S — **основою** або **носієм** алгебри A. Вектор арностей операцій алгебри ϵ її **типом**, сукупність операції Σ - **сигнатурою**.

Алгебра, таким чином, записується як $\langle S; \Sigma \rangle$ або $\langle S; \varphi_1, ..., \varphi_m \rangle$. Операції φ_i скінченномісні, сигнатура Σ скінченна. Носій не обов'язково скінченний, але не порожній.

Часто використовується наступне узагальнене означення алгебри. Нехай $S = \{S_1, ..., S_n\}$ — множина носіїв, $\Sigma = \{\varphi_1, ..., \varphi_m\}$ — сигнатура, де φ_i : $S_{i1} \times ... \times S_{in} \to S_j$. Тоді $\langle S; \Sigma \rangle$ називається **багатоосновною** алгеброю. Іншими словами, багатоосновна алгебра має декілька носіїв, а операції сигнатури діють із прямого добутку деяких носіїв на деякий носій.

<u>Означення 6.2.</u> Підмножина $X \subset S$ називається **замкненою** відносно операції φ , якщо $\forall x_1, ..., x_n \in X \mid \varphi(x_1, ..., x_n) \in X$.

Якщо X замкнена відносно всіх $\varphi \in \Sigma$, то $\langle X; \Sigma_X \rangle$ називається **підалгеброю** $\langle S; \Sigma \rangle$, де Σ_X – множина операцій $\varphi_1, \ldots, \varphi_m$, які розглядаються як операції над X.

Наприклад, множина дійсних чисел з операціями додавання і добутку $\langle R; +, \times \rangle$ – алгебра. Обидві операції є бінарними, тому тип цієї алгебри (2, 2). Усі скінченні підмножини R, крім $\{0\}$, - не замкнені відносно обох операції. Підалгеброю цієї алгебри є, наприклад, множина раціональних чисел із тими самим операціями $\langle Q; +, \times \rangle$.

Алгебра $B = \langle P(U); \cup, \cap, \bar{\ }\rangle$ називається булевою алгеброю множин над U. Її тип (2,2,1). Елементами основи цієї алгебри ϵ множини (підмножини U). Для будь-якого $X \subset U$ $C = \langle P(X); \cup, \cap, \bar{\ }\rangle$ ϵ підалгеброю B. Наприклад, якщо $U = \{a,b,c,d\}$, то основа алгебри B містить 16 елементів; алгебра $\langle P(\{a,c\}); \cup, \cap, \bar{\ }\rangle$ - підалгебра B, її основа містить чотири елементи.

Алгебра гладких функцій $\langle \{ f \mid f: R \rightarrow R \}; \frac{d}{dx} \rangle$, де $\frac{d}{dx}$ - операція диференціювання.

Множина елементарних функцій ϵ замкненою відносно диференціювання, оскільки похідні елементарних функції – елементарні й, отже, утворює підалгебру цієї алгебри.

Розглянемо квадрат із вершинами в точках a_1 , a_2 , a_3 , a_4 , занумерованих проти руху стрілки годинника, і повороти квадрата навколо центра в тому самому напрямку, що переводять вершини у вершини. Таких поворотів є нескінченна множина: на кути 0, $\pi/2$, π , $3\pi/2$, 2π , $5\pi/2$,..., однак вони задають усього чотири різних відображення множини вершин у себе, які відповідають першим чотирьом поворотам. Таким чином, маємо алгебру з основою $\{a_1, a_2, a_3, a_4\}$ та чотирма унарними операціями α , β , γ , δ . Їх можна задати у вигляді таблиці:

	α	β	γ	δ
a_1	a_1	a_2	a_3	a_4
a_2	a_2	a_3	a_4	a_1
a_3	a_3	a_4	a_1	a_2
a_4	a_4	a_1	a_2	a_3

Операція α , що відображає будь-який елемент у себе, називається тотожною. Вона відповідає нульовому повороту. Підалгебр у цій алгебрі немає.

Теорема 6.1. Непорожній переріз підалгебр утворює підалгебру.

Доведення. Нехай $\langle X_i; \Sigma_{Xi} \rangle$ - підалгебра $\langle S; \Sigma \rangle$. Тоді

$$\forall i, j \; \boldsymbol{\varphi}_{j}^{X_{i}}(x_{1},...,x_{n_{i}}) \in X_{i} \Rightarrow \forall j \; \boldsymbol{\varphi}_{j}^{X_{i}}(x_{1},...,x_{n_{i}}) \in \bigcap X_{i} . \blacktriangleright$$

<u>Означення 6.3.</u> **Замкнення множини** $X \subset S$ відносно сигнатури Σ (позначається $[X]_{\Sigma}$) називається множина всіх елементів (включаючи самі елементи X), які можна отримати з X, застосовуючи операції з Σ . Якщо сигнатура зрозуміла, то її можна не вказувати.

Наприклад, в алгебрі цілих чисел $\langle Z; +, \times \rangle$ замиканням числа 2 є парні числа, тобто $[\{2\}] = \{n \in Z \mid n = 2k, k \in Z\}.$

Властивості замкнення:

- 1. $X \subset Y \Rightarrow [X] \subset [Y]$
- 2. $X \subset [X]$
- 3. [[X]] = [X]
- 4. $[X] \cup [Y] \subset [X \cup Y]$

Нехай $A = \langle S; \Sigma \rangle$ - деяка алгебра і $X_1, ..., X_n \subset S$ – деякі підмножини носія, а $\varphi \in \Sigma$ – одна з операцій алгебри. Тоді використовується наступна угода про позначення:

$$\varphi(X_1, ..., X_n) \equiv \{ \varphi(x_1, ..., x_n) \mid x_1 \in X_1, ..., x_n \in X_n \},$$

тобто алгебраїчні операції можна використовувати не тільки до окремих елементів, але й до множин (підмножин носія), отримуючи, відповідно, не окремі елементи, а множини (підмножини носія).

<u>Означення 6.4.</u> Множина $X \subset S$ називається **системою твірних** алгебри $\langle S; \Sigma \rangle$, якщо $[X]_{\Sigma} = S$. Якщо алгебра має скінченну систему твірних, то вона називається **скінченно-породженою**. Нескінченні алгебри можуть мати скінченні системи твірних.

Наприклад, алгебра натуральних чисел $\langle N; + \rangle$ має скінченну систему твірних $1 \in N$.

6.3. Властивості операцій

Деякі властивості операцій мають спеціальні назви. Нехай задана алгебра $\langle S; \Sigma \rangle$ і $a,b,c \in S; \Diamond, \bot \in \Sigma; \Diamond, \bot : S \times S \to S$. Тоді

- 1. Асоціативність: $(a \perp b) \perp c = a \perp (b \perp c)$.
- 2. Комутативність: $a \perp b = b \perp a$
- 3. Дистрибутивність зліва: $a \lozenge (b \perp c) = (a \lozenge b) \perp (a \lozenge c)$.
- 4. Дистрибутивність справа: $(a \perp b) \Diamond c = (a \Diamond c) \perp (b \Diamond c)$.
- 5. Поглинання: $(a \perp b) \lozenge a = a$.
- 6. Ідемпотентність (самопоглинання): $a \perp a = a$.

Прикладами асоціативних операції ε операція добутку та додавання чисел, об'єднання та переріз множин, композиція відношень. Неасоціативні операції: піднесення у степінь, віднімання множин.

Комутативні операції: добуток та додавання чисел, об'єднання та переріз множин. Не комутативні операції: добуток матриць, композиція відношень, піднесення у степінь.

Дистрибутивні операції: добуток відносно додавання чисел. Не дистрибутивні операції: піднесення у степінь дистрибутивно справа, але не зліва: $(\{ab\}^c = a^cb^c, a^{bc} \neq a^ba^c)$.

Переріз поглинає об'єднання, об'єднання поглинає переріз. Добуток та додавання не поглинають один одного.

Ідемпотентні операції: об'єднання та переріз множин. Не ідемпонентні операції: добуток та додавання чисел.

6.4. Гомоморфізм та ізоморфізм алгебр

Алгебри з різними типами, очевидно, мають істотно різну будову. Якщо ж алгебри мають однаковий тип, то наявність у них подібності характеризується за допомогою понять гомоморфізму й ізоморфізму.

<u>Означення 6.5.</u> Нехай є дві алгебри $A = \langle S; \varphi_1, ..., \varphi_m \rangle$ та $B = \langle T; \psi_1, ..., \psi_m \rangle$ однакового типу. Якщо існує функція $f: S \rightarrow T$, така що

$$\forall i \in 1..m \ f(\varphi_i(a_1,...,a_n)) = \psi_i(f(a_1),...,f(a_n)),$$

то кажуть, що f – **гомоморфізм** із A в B.

Зміст цієї умови в тому, що, незалежно від того, чи здійснено спочатку операцію φ_i в A, а потім виконано відображення f, або спочатку зроблено відображення f, а потім в B здійснено відповідну операцію ψ_i , результат буде однаковим.

Наприклад, нехай $A = \langle N; + \rangle$, $B = \langle N_{10}; +_{10} \rangle$, де $N_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, а $+_{10}$ додавання по модулю 10. Тоді $f \equiv a \mod 10$ – гомоморфізм із $A \vee B$.

Гомоморфізми, які мають додаткові властивості, мають спеціальні назви:

- гомоморфізм, який є ін'єкцією, називається мономорфізмом;
- гомоморфізм, який є сюр'єкцією, називається **епіморфізмом**;
- гомоморфізм, який є бієкцією, називається ізоморфізмом;
- Якщо A = B, то гомоморфізм називається **ендоморфізмом**, а ізоморфізм називається **автоморфізмом**.

<u>Теорема 6.2.</u> Якщо існує ізоморфізм A на B, то є ізоморфізм B на A.

Доведення. Розглянемо довільну операцію φ із сигнатури A і відповідну їй операцію ψ із сигнатури B. Маємо:

$$f(\varphi(a_1,...,a_n)) = \psi(f(a_1),...,f(a_n),$$

крім того, f – бієкція. Позначимо $b_1 = f(a_1), \ldots, b_n = f(a_n)$, при цьому $a_1 = f^{-1}(b_1), \ldots, a_n = f^{-1}(b_n)$. Тоді

$$f^{-1}(\psi(b_1,...,b_n)) = f^{-1}(\psi(f(a_1),...,f(a_n))) = f^{-1}(f(\varphi(a_1,...,a_n))) =$$

$$= \varphi(a_1,...,a_n) = \varphi(f^{-1}(b_1),...,f^{-1}(b_n)). \blacktriangleright$$

Якщо $f: S \rightarrow T$ — ізоморфізм, то алгебри A та B називається ізоморфними і позначають так: $A \stackrel{f}{\sim} B$. Якщо f зрозуміло з контексту, то пишуть $A \sim B$.

Наприклад, нехай Z - множина всіх цілих чисел, Z_2 - множина всіх парних чисел. Алгебри $\langle Z; + \rangle$ і $\langle Z_2; + \rangle$ - ізоморфні; ізоморфним є відображення $f: n \to 2n$, причому 2(a+b) = 2a + 2b. Оскільки $Z_2 \subset Z$, f - ізоморфізм $\langle Z; + \rangle$ у себе. Відображення $g: n \to (-n)$ для алгебри $\langle Z; + \rangle$ є автоморфізмом. Для алгебри $\langle Z; \times \rangle$ відображення g не є автоморфізмом, оскільки $(-a) \times (-b) \neq -(ab)$. Ізоморфізмом між алгебрами $\langle R_+; \times \rangle$ і $\langle R; + \rangle$, де R_+ - додатна підмножина R, є відображення $a \to \log a$.

Розглянемо алгебри $\langle S; \varphi \rangle$ та $\langle T; \psi \rangle$, де $S = \{a, b, c, d\}$, $T = \{\alpha, \beta, \gamma, \delta\}$, а бінарні операції φ та ψ задано відповідними таблицями.

	а	b	С	d
а	С	b	b	а
b	а	d	d	b
С	d	b	b	а
d	а	а	С	С

	α	β	γ	δ
α	δ	δ	γ	α
β	α	α	δ	γ
γ	α	α	β	γ
δ	γ	β	γ	β

Відображення $f: a \rightarrow \gamma, b \rightarrow \alpha, c \rightarrow \beta, d \rightarrow \delta \epsilon$ ізоморфізмом.

Перевірка умови означення 6.5 полягає ось у чому. В комірках (внутрішньої частини) першої таблиці замінюємо елементи множини S на елементи множини T відповідно до f і дістаємо ліву частину умови означення 6.5, тобто таблицю функції $f_{\varphi}(x, y)$; в зовнішній частині другої таблиці виконуємо заміну й одержуємо праву частину умови означення 6.5; порівнянням утворених двох таблиць переконуємося, що вони задають одну й ту саму функцію. Справді, досить у першій таблиці перейменувати всі елементи множини S на елементи множини T і порівняти утворену із другою таблицею.

	а	b	С	d
а	β	α	α	γ
b	γ	δ	δ	α
С	δ	α	α	γ
d	γ	γ	β	β

	b	c	а	d
b	δ	δ	γ	α
С	α	α	δ	γ
a	α	α	β	γ
d	γ	β	γ	β

<u>Теорема 6.3.</u> Відношення ізоморфізму на множині однотипних алгебр ϵ відношенням еквівалентності.

Доведення.

Рефлективність. А $\stackrel{f}{\sim}$ А, де f – тотожне відображення.

Симетричність. A $\stackrel{f}{\sim} B \Rightarrow B \stackrel{f^{-1}}{\sim} A$.

Транзитивність. $A \stackrel{f}{\sim} B$, $B \stackrel{g}{\sim} C \Rightarrow A \stackrel{g \circ f}{\sim} C$.

Класами еквівалентності в розбитті за відношенням ізоморфізму ϵ класи ізоморфних між собою алгебр.

Поняття ізоморфізму є одним із центральних понять, що надає змогу застосовувати алгебраїчні методи у різних галузях. Його сутність можна виразити наступним чином: якщо алгебри A та B — ізоморфні, то елементи й операції B можна перейменувати так, що B збігатиметься з A. З умови означення 6.5 випливає, що будь-яке еквівалентне співвідношення в алгебрі A зберігається в будь-якій ізоморфній їй алгебрі A'. Це дає змогу, одержавши такі співвідношення в алгебрі A, автоматично поширити їх на всі алгебри, ізоморфні A. Відомий у математиці вираз "розглядати об'єкти з точністю до ізоморфізму" означає, що розглядаються тільки ті властивості об'єктів, які зберігаються при ізоморфізмі, тобто є загальними для всіх ізоморфних об'єктів. Зокрема, ізоморфізм зберігає такі властивості: асоціативність, комутативність і дистрибутивність операцій.