

People

Professor: 임종우

2220-2376

jlim@hanyang.ac.kr

Information & Communication Building 505

Office hour: Thr 16:00-17:00 (by appointment)

Textbook

Introduction to Algorithms, 3rd Ed. MIT Press

T. Cormen, C. Leiserson, R. Rivest, and C. Stein

Evaluation

Midterm Exam 35%: Oct. 24 (Thr) 7:00pm Final Exam 35%: Dec. 19 (Thr) 7:00pm 2 C++ Homeworks 20% Attendance 10%

Topics

Data structure

- List, stack, queue, skip list
- Trees binary heap, BST, AVL, red-black tree, B-tree
- Hashing / Bloom filter
- Graph Dijkstra algorithm

Algorithm

- Sorting insertion, merge, quick, counting, radix
- Complexity analysis Big-oh, recursion tree, amortized analysis, NP completeness
- Dynamic programming
- Graph DFS, topological sort, minimum spanning tree, disjoint set, Bellman-Ford

What is an algorithm?

- What is a problem?
 - A well-specified input and output.

- What is an algorithm?
 - A well-defined procedure to solve a problem.

A problem example

- Cooking instant noodles
 - Input
 - Chinese noodles,
 - powder soup,
 - an egg,
 - green onions,...
 - Output
 - Cooked instant noodles

A computer algorithm

• A computer algorithm

 A well-defined computational procedure to solve a computational problem

• A computational problem example

- Computing the sum of integers from 1 to *n*
 - $S = 1 + 2 \dots + n$

An algorithm example

- Algorithm
 - Boil 500cc of water.
 - Put Chinese noodles and powder soup.
 - Boil for 4 minutes.
 - Put an egg and green onion.
 - Boil for 1 minute.

Computer algorithm examples

Elementary school algorithm

• Compute each addition one by one from the left.

•
$$S = (...(((1+2)+3)+4)...)+n$$

High school algorithm

•
$$S = n(n+1)/2$$

• Are the algorithms above correct?

Correctness of algorithms

Elementary school algorithm

Obvious

High school algorithm

- S = n(n+1)/2
 - 2S = 2(1 + 2 + ... + n)
 - $2S = (1 + 2 + \dots n-1 + n) + (n + n-1 + \dots 2 + 1)$
 - 2S = n(n+1)
 - S = n(n+1)/2

Comparison of algorithms

• Which one is better?

- Elementary school algorithm
- High school algorithm

Performance of algorithms

- Performance of algorithms
 - Running time
 - Space consumption

Performance of algorithms

Performance of algorithms

- Running time
 - Elementary school algorithm?
 - High school algorithm?
- Space consumption
 - Elementary school algorithm?
 - High school algorithm?

Problem instance

o Problem

- Computing the sum of integers from 1 to *n*
 - $S = 1 + 2 \dots + n$

A problem instance

- Computing the sum of integers from 1 to 100
 - 1 + 2 ... + 100

Class outline

Problem

- Why the problem?
- Problem definition.

Algorithm

- Description
- Correctness
- Performance