PRINCIPLES OF ANALYSIS PROBLEM SET E

PAUL L. BAILEY

ABSTRACT. The problems are due Thursday, December 4, 2003.

Problem 1 (Exercise 4.25). Let $f:(a,b)\to\mathbb{R}$ be differentiable on (a,b). Suppose that there exists M > 0 such that for every $x \in (a, b)$, we have $|f'(x)| \leq M$.

- (a) Show that if $x, y \in (a, b)$, then $\left| \frac{f(x) f(y)}{x y} \right| \le M$. (b) Show that f is uniformly continuous on (a, b).

Hints.

- (a) use MVT.
- (b) Start like this:

Let $\epsilon > 0$. Set $\delta =$ (an appropriate quantity). We show that if $x, y \in (a, b)$ and $|x-y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Problem 2 (Exercise 4.35). Let $f(x) = x^3 + 2x^2 - x + 1$. Find an equation for the line tangent to the graph of f^{-1} at the point (3,1).

Observation 1 (Alternate Definition). Let $f: \mathbb{R} \to \mathbb{R}$ and let $x_0 \in \mathbb{R}$. Define

$$Q: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
 by $Q(h) = \frac{f(x_0 + h) - f(x_0)}{h}$.

Then f is differentiable at x_0 if and only if $\lim_{h\to 0} Q(h)$ exists, in which case $f'(x_0) = \lim_{h \to 0} Q(h).$

Problem 3 (Exercise 4.39). Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying

- (1) f(0) = 1;
- (2) f is differentiable at 0 and f'(0) = 1;
- (3) f(x+y) = f(x)f(y).

Show that f is differentiable on \mathbb{R} and that f'(x) = f(x) for every $x \in \mathbb{R}$.

Hint. Use the preceding alternate definition of differentiable.

Definition 1. A function $f:[-b,b]\to\mathbb{R}$ is called *odd* if f(x)=-f(x) for every $x \in [-b, b].$

Problem 4 (Exercise 5.14). Let $f:[-b,b]\to\mathbb{R}$ be an odd function which is integrable on [-b,b]. Show that $\int_{-b}^{b}f\,dx=0$.

Problem 5 (Exercise 5.27). Let $f, g : [a, b] \to \mathbb{R}$ be integrable on [a, b]. Define $h:[a,b]\to\mathbb{R}$ by $h(x)=\max\{f(x),g(x)\}$. Show that h is integrable on [a,b].

Department of Mathematics and CSCI, Southern Arkansas University $E ext{-}mail\ address: plbailey@saumag.edu}$

Date: November 24, 2003.