3 COMPUTE

Use the periodic table to determine the molar masses of C₆H₆ and C₆H₅Cl.

1 mol
$$C_6H_6 = 78.12$$
 g
1 mol $C_6H_5Cl = 112.56$ g

$$36.8 \text{ g.C}_{6}\text{H}_{6} \times \frac{1 \text{ mol } \text{C}_{6}\text{H}_{6}}{78.12 \text{ g.C}_{6}\text{H}_{6}} \times \frac{1 \text{ mol } \text{C}_{6}\text{H}_{5}\text{Cl}}{1 \text{ mol } \text{C}_{6}\text{H}_{6}} \times \frac{112.56 \text{ g } \text{C}_{6}\text{H}_{5}\text{Cl}}{1 \text{ mol } \text{C}_{6}\text{H}_{5}\text{Cl}} = 53.0 \text{ g } \text{C}_{6}\text{H}_{5}\text{Cl} \text{ (theoretical yield)}$$

percentage yield =
$$\frac{38.8 \text{ g}}{53.0 \text{ g}} \times 100 = 73.2\%$$

4 EVALUATE

The answer is correctly rounded to three significant figures to match those in 36.8 g C_6H_6 . The units have canceled correctly. The theoretical yield is close to an estimated value of 50 g, (one-half of 100 g). The percentage yield is close to an estimated value of 80%, (40/50 × 100).

PRACTICE

Answers in Appendix E

1. Methanol can be produced through the reaction of CO and H_2 in the presence of a catalyst.

$$CO(g) + 2H_2(g) \xrightarrow{\text{catalyst}} CH_3OH(l)$$

If 75.0 g of CO reacts to produce 68.4 g CH₃OH, what is the percentage yield of CH₃OH?

2. Aluminum reacts with excess copper(II) sulfate according to the reaction given below. If 1.85 g of Al react and the percentage yield of Cu is 56.6%, what mass of Cu is produced?

 $Al(s) + CuSO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + Cu(s)$ (unbalanced)

extension

Go to **go.hrw.com** for more practice problems that ask you to calculate percentage yield.

SECTION REVIEW

 Carbon disulfide burns in oxygen to yield carbon dioxide and sulfur dioxide according to the following chemical equation.

$$CS_2(I) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g)$$

- a. If 1.00 mol CS₂ is combined with 1.00 mol O₂, identify the limiting reactant.
- **b.** How many moles of excess reactant remain?
- c. How many moles of each product are formed?
- **2.** Metallic magnesium reacts with steam to produce magnesium hydroxide and hydrogen gas.
 - **a.** If 16.2 g Mg are heated with 12.0 g H₂O, what is the limiting reactant?
 - **b.** How many moles of the excess reactant are left?
 - c. How many grams of each product are formed?

3. Quicklime, CaO, can be prepared by roasting limestone, CaCO₃, according to the following reaction. CaCO₃(s) $\stackrel{\triangle}{\longrightarrow}$ CaO(s) + CO₂(g).

When 2.00×10^3 g CaCO₃ are heated, the actual yield of CaO is 1.05×10^3 g. What is the percentage yield?

Critical Thinking

4. ANALYZING DATA A chemical engineer calculated that 15.0 mol H₂ was needed to react with excess N₂ to prepare 10.0 mol NH₃. But the actual yield is 60.0%. Write a balanced chemical equation for the reaction. Is the amount of H₂ needed to make 10.0 mol NH₃ more, the same, or less than 15 mol? How many moles of H₂ are needed?