

Digital Design Blocks

Sponsored by: Si-Vision

Contents

1.Fre	equency Ratio Block	3
1.	.Block Diagram	3
2.	.Block Description	4
2.	WRITE DATA BLOCK	7
•	Block diagram	7
•	Block implementation	7
•	WR_controller	7
•	DQS	8
3.	COMMAND ADDRESS BLOCK	9
•	Block diagram	9
•	Block implementation	9
4.	CRC BLOCK	11
•	Block implementation	11
5- Timing diagrams		12
1-	- Single write command with BL16 with mask	12
2-	- Single write command with BL16 with CRC	12
3-	- Single write command with BL32 with CRC	13
4-	- Two independent write command with BL16 with mask	13
5-	- Back to back write command with BL16 with CRC	13
6-	- Back to back write with frequency ratio of 2:1 and BL16 with CRC	14

1.Frequency Ratio Block

1.Block Diagram

2.Block Description

- ➤ All signals coming from MC to PHY should pass by this block.
- Frequency Ratio Block converts the signals from MC interface to PHY interface.
- At initialization before any operation, this block should read an input from the register file called dfi freq ratio.
- Each signal comes from MC to PHY on maximum 4 different phases, Frequency Ratio Block should out all these signals on one phase only.
- dfi_freq_ratio signal determines the number of phases where each signal come on to this block, for example:
 - o dfi_freq_ratio = $000 \rightarrow ::$ each signal comes on only 1 phase.
 - o dfi_freq_ratio = 001 → ∴ each signal comes on only 2 phases.
 - o dfi freq ratio = 010 \rightarrow : each signal comes on only 4 phases.
- This block is a serializer block which consists of 7 registers

frequency_ratio Register:

- 3 bit register to save the input dfi_freq_ratio in.
- Dfi_freq_ratio is an input comes to this block at the initialization before operation.

o cs Register:

- 4 bit register to save the input dfi_cs_n_pN in.
- Dfi_cs_n is a 1 bit input signal comes on maximum 4 different phases
 - Dfi_cs_0: should be in cs register [0].
 - Dfi cs 1: should be in cs register [1].
 - Dfi cs 2: should be in cs register [2].
 - Dfi_cs_3: should be in cs register [3].
- Dfi_cs is a 1 bit output signal from this block. This output signal should take the
 value of cs Register[0] and at each cycle we should shift the cs register and the
 output takes the new value of cs Register [0].

Wr_en Register:

- 4 bit register to save the input dfi_wrdata_en_pN in.
- Dfi_wrdata_en_pN is a 1 bit input signal comes on maximum 4 different phases
 - Dfi wrdata en 0: should be in wr en register [0].
 - Dfi_wrdata_en_1: should be in wr_en register [1].
 - Dfi_wrdata_en_2: should be in wr_en register [2].
 - Dfi wrdata en 3: should be in wr en register [3].
- Dfi_wrdata_en is a 1 bit output signal from this block. This output signal should take the value of wr_en register [0] and at each cycle we should shift the wr_en register and the output takes the new value of wr_en Register [0].

rst Register:

- 4 bit register to save the input dfi_reset_n_pN in.
- dfi_reset_n is a 1 bit input signal comes on maximum 4 different phases
 - dfi_reset_0: should be in rst register [0].
 - dfi_reset_1: should be in rst register [1].
 - dfi_reset_2: should be in rst register [2].
 - dfi_reset_3: should be in rst register [3].
- Dfi_reset_n is a 1 bit output signal from this block. This output signal should take the value of rst Register [0] and at each cycle we should shift the rst register and the output takes the new value of rst Register [0].

address Register:

- 56 bit register to save the input dfi_address_pN in.
- dfi_address is a 14-bit input signal comes on maximum 4 different phases
 - dfi_address_p0: should be in address register [0].
 - dfi_address_p1: should be in address register [1].
 - dfi address p2: should be in address register [2].
 - dfi_address_p3: should be in address register [3].
- Dfi_address is a 14 bit output signal from this block. This output signal should take
 the value of address Register [13:0] and at each cycle we should shift the address
 register and the output takes the new value of address Register [13:0].

Write data Register:

- parameterized register to save the input dfi address pN in.
- dfi_wrdata_pN is a parameterized input signal comes on maximum 4 different phases
 - dfi wrdata p0: should be in write data register [parameter-1:0].
 - dfi wrdata p1: should be in write data register [parameter-1:0].
 - dfi wrdata p2: should be in write data register [parameter-1:0].
 - dfi wrdata p3: should be in write data register [parameter-1:0].
- Dfi_wrdata is a parameterized output signal from this block. This output signal should take the value of write data Register [parameter-1:0] and at each cycle we should shift the address register and the output takes the new value of write data Register [parameter-1:0].

Write data mask Register:

- parameterized register to save the input dfi_wrdata_mask_pN in.
- dfi_wrdata_mask_pN is a parameterized input signal comes on maximum 4 different phases
 - dfi_wrdata_mask_p0: should be in write data mask register [parameter-1:0].
 - dfi_wrdata_mask_p1: should be in write data mask register [parameter-1:0].
 - dfi_wrdata_mask_p2: should be in write data mask register [parameter-1:0].
 - dfi_wrdata_mask_p3: should be in write data mask register [parameter-1:0].
- Dfi_wrdata mask is a parameterized output signal from this block. This output signal should take the value of write data mask Register [parameter-1:0] and at each cycle we should shift the address register and the output takes the new value of write data mask Register [parameter-1:0].

2. WRITE DATA BLOCK

• Block diagram

• Block implementation

The block consists of 2 main blocks

- 1- WR_controller
- 2- DQS

WR_controller

- The FSM consists of 7 states.
- The block output will be DQ, DQ_valid and DM.
- It will control DQS block by DQS_sel signal.
- The following figure shows FSM states.

DQS

This block stores the different pattern of DQS (pre-amble, post-amble, and interamble) and the output will be DQS and DQS_valid according to the DQS_sel signal from WR_controller.

3. COMMAND ADDRESS BLOCK

• Block diagram

Block implementation

- This block is consist of command address controller.
- The FSM of the controller has 5 different states.
 - Idel
 - 1st cycle: The 1st cycle of the command will be stored and then sent on CA bus.
 - 2nd cycle: The 2nd cycle of the command will be stored and then sent on CA bus.
 - MRW: the burst length, the preamble, the postamble, and the CRC enable will be fetched in this state.
 - WR: the gap will be calculated form the last write command and the current command (if the gap between [BL/2 + 5: BL/2], interamble DQS will be exist).
- The following figure shows FSM states.

4.CRC BLOCK

• Block implementation

- This block will fetch the data from write data block.
- It will have 8 registers of 8 bits and will be initially hold 1's.
- For each clock cycle the data will be stored in one register according the selector of the demux.
- After 8 clock cycles the data will be ready to calculate the CRC from it.
- At the 9th clock cycle the CRC code will be ready to be fetched (8bits CRC for 64bits of data).
- This block will be duplicated according to the device type.

5- Timing diagrams.

1- Single write command with BL16 with mask.

2- Single write command with BL16 with CRC.

3- Single write command with BL32 with CRC.

4- Two independent write command with BL16 with mask.

5- Back to back write command with BL16 with CRC.

6- Back to back write with frequency ratio of 2:1 and BL16 with CRC.

