data-science-casc-final

November 9, 2018

1 Introdução

Mercado de Ações - Utilizei como source uma base de dados própria que mantenho em outro projeto pessoal, aonde coleto dados diariamente da bolsa americana NASDAQ. Para efeitos didáticos e de simplificação, disponibilizei apenas as cotações do período entre *01-10-2018 e 15-10-2018* e do ativo *AMD* (https://www.amd.com/en).

Esta análise tem como objetivo gerar um método de visualização gráfica simples e funcional para as quotações diárias de um ativo da bolsa, mostrando a evolução do preço ao longo do(s) periodo(s) e assim evidenciar potenciais relações ou comportamentos que ele venha apresentar ao ter seus indicadores comparados.

1.1 URL do Dataset

https://s3-sa-east-1.amazonaws.com/danielabraao-01/quotes-AMD-01-to-15-OUT-2018.csv

1.2 Etapas do Desenvolvimento

- Obtenção, validação e limpeza do dataset
- Construção do recurso para seleção de data e range de horário
- Indexação e preparação dos dados para melhor utilização ao longo da análise
- Montagem dos gráficos básicos (evolução do preço, evolução do volume e relacionamento preço vs volume)
- Aperfeiçoamento dos gráficos (inclusão de linha de tendência, médias móveis, legenda, etc)
- Documentação e conclusão

1.3 Desdobramento e código fonte

```
In [366]: # declara variaveis principais
          date = "2018-10-10"
          start_time = "09:30:00"
          stop_time = "10:30:00"
          ticker = "AMD"
          metadata = "%s %s" % (date, ticker)
In [376]: # indexa e prepara os dados para utilização
          df_by_date = df.loc[date]
          df by time = df
          df_by_time['count'] = df_by_time.index
          df_by_time = df_by_date.set_index('rtquotetime')
          df_by_time = df_by_time.loc[start_time:stop_time]
          df_by_time['rtquotetime'] = df_by_time.index
1.4 Gráfico de evolução do preço
In [406]: # plota primeiro grafico basico de evolução dos preços
          plt.figure(figsize=(10, 7))
          plt.title(metadata)
          plt.plot(df_by_time['rtqlast'], markevery=100, label='quotes', linewidth=3)
          # plota gráficos de médias móveis simples - são dois, com janelas diferentes
          window = 3
          values = df_by_time['rtqlast']
          weights = np.repeat(1.0, window) / window
          smas = np.convolve(values, weights, 'valid')
          plt.plot(smas, color='Green', label='smas (3)')
          # plota gráficos de médias móveis exponenciais
          window = 4
          weights = np.exp(np.linspace(-1., 0., window))
          weights /= weights.sum()
          emas = np.convolve(values, weights, mode='full')[:len(values)]
          emas[:window] = emas[window]
          plt.plot(emas, color='Orange', label='emas (4)')
          plt.ylabel("preco")
          plt.xlabel("linha do tempo")
          plt.legend(loc='upper left')
          plt.show()
```


1.5 Gráfico de evolução do volume

1.6 Gráfico de relação Preço x Volume

```
In [386]: # plota gráfico scatter comparando preço x volume e traça linha de tendência
    plt.figure(figsize=(10, 7))
    plt.title(metadata)
    x = df_by_time['rtqvolu']
    y = df_by_time['rtqlast']
    plt.scatter(x=x, y=y, label='quotes')

z = np.polyfit(x, y, 1)
    p = np.polyfid(z)
    plt.plot(x,p(x),"r--", label='tendencia')

plt.ylabel("preco")
    plt.xlabel("volume")
    plt.legend(loc='upper left')
    plt.show()
```


1.7 Características da série de cotações

```
In [387]: # imprime descrição da série de últimos preços
          df_by_time['rtqlast'].describe()
Out [387]: count
                    59.000000
                    23.824746
          mean
          std
                     0.063283
          min
                    23.700000
          25%
                    23.800000
          50%
                    23.820000
          75%
                    23.860000
                    23.960000
          Name: rtqlast, dtype: float64
```

2 Conclusões

Gráfico de evolução do preço - Funcinou dentro do esperado, em instantes é possível visualizar a evolução dos preços em um período parcial ou completo do dia. ao adicionar as médias movieis o grafico ficou ainda mais útil e atraente.

Gráfico de volume - Funcinou dentro do esperado, é possivel observar os picos de valores de volume ao longo do período. um fato observado foi que o dataset traz em cada linha de cotação

o valor acumulado do volume no período, ou seja, a somatória do anterior mais o último, e não o valor individual por cotação.

Relação Preço x Volume - Fica evidente que existe uma relação entre o volume e o preço, porém na forma que os dados estão apresentados na base de dados, não existe evidência concreta garantido que os dois caminham juntos em movimentos de alta e baixa.

O campo volume neste caso é cumulativo, ou seja, em cada cotação existirá um acréscimo sobre a quantidade apresentada na cotação anterior, desta forma o volume será sempre crescente. Para que tenhamos uma visão mais concreta sobre essa relação, seria necessário gerar uma coluna adicional de volume contemplando o valor da diferença (ou quantidade acrescida por cotação) e não o acumulado, desta forma poderíamos verificar, por exemplo, se montantes de volume maior sendo acrescentados significa também maior variação no preço. este pode ser um exercicio evolutivo para outra analise.

2.1 Exercício sugerido

- 1. Carregar o dataset diretamente via URL.
- 2. Criar um mecanismo de gráfico simples para mostrar a evolução do preço durante o dia.
- 3. Criar um gráfico simples com a evolução do preço ao longo do range de datas de todo dataset.