Lab 6: Introduction to Multiplexers and Decoders

A. Objectives

- Understand the concept of multiplexing in the context of digital logic circuits.
- Learn about the internal logic of digital multiplexers.
- Implement digital logic functions using multiplexers.
- Observe and analyze the operations of the 3 to 8 Line Decoder

B. Theory

Multiplexers: A multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally, there are 2^n input lines and n selection lines whose bit combinations determine which input is selected.

A block diagram and truth table for a 4:1 Multiplexer (4 inputs and 1 output) is given below.

S_1	S_0	Y					
0	0	I_0					
0 1 I ₁							
1	0	I_2					
1	1	I_3					
Output Equation:							
$Y = I_0 S_1' S_0' + I_1 S_1' S_2 + I_2 S_1 S_2' + I_3 S_1 S_2$							

Table B.1: Truth Table for a 4:1 Multiplexer

Figure B.1: Block Diagram of a 4:1 Multiplexer

Decoders: A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n output lines.

Figure B2 shows the block diagram for a 3 to 8 line decoder. Here, x, y and z are the inputs and the combination of their values determines which output line becomes active. Setting all the input values to zero activates the first output line (0), setting x and y to zero and z to 1 activates the second output line (1) and this pattern continues till all the inputs are 1 at which point the eighth output line (7) is activated.

Figure B.2: Block diagram of a 3 to 8 line decoder

New Apparatus:

IC 74151 (8:1 Multiplexer):

The 74151 is a 16 pin IC which requires a Ground connection at pin 8 and V_{CC} at pin 16. Pins 4, 3, 2, 1 and 15, 14, 13, 12 are the inputs, pins 9, 10 and 11 are used to select a particular input and pin 5 is the output. Pin 6 is provides the inverse of the output at pin 5. An input at pin 7 is used to Enable the IC.

Figure B.3: Pinout of IC74151

IC 74138 (3 to 8 Line Decoder):

The 74138 is also a 16 pin IC which requires Ground at pin 8 and VCC at pin 16. Pins 15, 14, 13, 12, 11, 10, 9 and 7 are used as the outputs and pins 3, 2 and 1 are used to take input. A combination of the inputs at pins 6, 4 and 5 is used to enable the device. In order for the IC to function as intended, pin 6 (G1) must have a high value and both pins 4 and 5 (G2A and G2B) must have low values.

Unlike some of the other ICs used so far, the outputs of the 74138 IC are ACTIVE-LOW which means that they provide a 0 or LOW output when they are activated and a 1 or High output when they are inactive.

Figure B.4: Pinout of IC74138

Experiment 1: Constructing a 4:1 Multiplexer using basic Logic Gates

C.1 Apparatus

- Trainer Board
- 1 x IC 7404 Hex Inverter (NOT gates)
- 2 x IC 4073 3-input AND gates
- 1 x IC 7432 2-input OR gates

D.1 Procedure

Figure D.1.1: 4:1 Multiplexer

- 1. Construct the circuit for the 4:1 MUX shown in **Figure D.1.1**.
- 2. Complete the Theoretical column of the truth table (**Table F.1.1**) for the following function:
 - $F(A, B, C) = \Sigma (0, 2, 3, 6)$
- 3. Now determine the inputs you need to provide to each data input line (I_0, I_1, I_2, I_3) of the MUX if you use A and B as the selection inputs, S_1 and S_0 respectively. Write down the values in the Data Inputs column.
- 4. Physically implement the function using the 4:1 MUX circuit you constructed.
- 5. Now complete the Practical column of the truth table.

E.1 Questions

1. Simulate the circuit you built for the 4:1 Multiplexer (**Figure D.1.1**) using Logisim. Include a screenshot of the circuit with your report.

Experiment 2: Using an 8:1 Multiplexer to implement a Boolean function

C.2 Apparatus

- Trainer board
- 1 x IC 74151 (8:1 Multiplexer)

D.2 Procedure

- 1. Complete the Theoretical column of the truth table (**Table F.2.1**) for the following function:
 - $F(A, B, C, D) = \Sigma (0, 1, 3, 7, 9, 10, 14, 15)$
- 2. Now determine the inputs you need to provide to each data input line (I₀ I₇) of the MUX if you use A, B and C as the selection inputs, S2, S1 and S0 respectively. Note down the values in the Data Inputs column.
- 3. Draw the IC diagram (**Figure F.2.1**) for the implementation of the function using the provided 8:1 MUX (IC 74151). Clearly label the inputs and outputs that you will use.
- 4. Implement the function using the 8:1 MUX.
- 5. Now complete the Practical column of the truth table.

E.2 Questions

- 1. Draw the IC diagram (with input values) for the implementation of the following function using IC 74151
 - $F(A, B, C, D) = \Sigma (1, 2, 3, 6, 9, 12, 13)$

Experiment 3: Analyzing the behavior of a 3 to 8 Line Decoder (IC74138)

C.3 Apparatus

- Trainer board
- 1 x IC 74138 (3:8 Line Decoder)

D.3 Procedure

- 1) Wire up the IC 74183 using the diagram in Figure B3 as your reference.
 - a) Set the Enable inputs to the appropriate values. G1 should be set to High and both G2A and G2B should be set to Low.
 - b) The 3 select inputs (C B A) should be connected to 3 binary switches and the 8 outputs should be connected to individual LEDs. Note that 'C' is the highest order bit and 'A' is the lowest.
- 2) Now change the values of the select inputs (C B A) to every combination from LLL to HHH and complete the truth table in Table F.3.1. In this table, use "L" to record a 0 and "H" to record a 1.

E.3 Questions

1. Explain the difference between an active-high and an active-low device.

Group:	Date:
Section:	Report:

F.1 Experimental Data (Implementing a Boolean function using a 4:1 MUX):

A	В	C	F (Theoretical)	Data Inputs	F (Practical)
0	0	0		т	
0	0	1		$I_0 =$	
0	1	0		т	
0	1	1		I ₁ =	
1	0	0		т	
1	0	1		I ₂ =	
1	1	0		т	
1	1	1		I ₃ =	

Table F.1.1

F.2 Experimental Data (Implementing a Boolean function using an 8:1 MUX IC):

A	В	C	D	F (Theoretical)	Data Inputs	F (Practical)		
0	0	0	0		т			
0	0	0	1		$I_0 =$			
0	0	1	0		т			
0	0	1	1		$I_1 =$			
0	1	0	0		т			
0	1	0	1		$I_2 =$			
0	1	1	0		т_			
0	1	1	1		$I_3 =$			
1	0	0	0		т			
1	0	0	1		$I_4 =$			
1	0	1	0		т_			
1	0	1	1		$I_5 =$			
1	1	0	0		т_			
1	1	0	1		$I_6 =$			
1	1	1	0		т _			
1	1	1	1		$I_7 =$			

Table F.2.1

Figure F.2.1

F.3 Experimental Data (3 to 8 Line Decoder):

	Enable Inputs		Select Inputs		Outputs							
G1	G2	С	В	Α	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y ₆	Y ₇
Х	Н	Х	X	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Χ	Χ	Χ	Х	Ι	Н	Ι	Н	Н	Н	Н	Н
Н	┙	L	┙	L								
Н	┙	L	┙	Н								
Н	L	L	Н	L								
Н	L	L	Η	Н								
Н	┙	Η	┙	L								
Н	L	Н	L	Н								
Н	L	Η	Η	L								
Н	Ĺ	Н	Η	Н								

Table F.3.1