

#### ArXiv '24

# PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, Zhenguo Li

**Jeonghoon Park**, happypjh2001@unist.ac.kr Undergraduate Research Intern, Ubiquitous Artificial Intelligence Lab, Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology

### Reason to choose this paper

For research...

MobileDiffusion

- ◆ MobileDiffusion: Instant Text-to-Image Generation on Mobile Devices
- ◆ 512 x 512 Resolution

On-device + 4K diffusion

- ◆ No papers on implementing 4K at on-device
- ◆ Decide on a topic for my research

4K diffusion paper

- ◆ Exploring 4K diffusion technology
- ◆ Latest paper



### Preview: Result of a run in Colab T4

PixArtAlphaPipeline.from\_pretrained("PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", torch\_dtype=torch.float16)





### Previous works

#### PixArt-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis (ICLR, 2024 Spotlight)

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P., Lu, H., Li, Z.

→ First Transformer-based Diffusion Model (DiT) capable of generating up to 1024×1024 resolution

#### Stable Diffusion: High-resolution image synthesis with latent diffusion models (CVPR, 2022)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.

→ Utilizes the Latent Diffusion Model (LDM) structure to generate high-resolution images beyond 1024×1024

#### **DALL-E 3 (OpenAl, 2023)**

→ Utilizes GPT-4-based text comprehension to more accurately reflect prompts



### Data Analysis: Higher Aesthetic and higher Resolution

Effective training with limited data

|                          | Data | Data Resolution                   |
|--------------------------|------|-----------------------------------|
| Internal-α               | 14M  | Only 256 ~ 1K                     |
| Internal-Σ               | 33M  | 1K~4K (33M)<br>real photo 4K (8M) |
| SD v1.5<br>(open-source) | 2B   | 512x512, 768x768                  |



### Data Analysis: Higher Aesthetic and higher Resolution

However, well scored!

| Models           | #Params (B) | FID ↓ | CLIP-Score $\uparrow$ |
|------------------|-------------|-------|-----------------------|
| Stable 1.5       | 0.9         | 17.03 | 0.2748                |
| Stable Turbo     | 3.1         | 10.91 | 0.2804                |
| Stable XL        | 2.6         | 7.38  | 0.2913                |
| Stable Cascade   | 5.1         | 9.96  | 0.2839                |
| Playground-V2.0  | 2.6         | 8.68  | 0.2885                |
| Playground-V2.5  | 2.6         | 7.64  | 0.2871                |
| PixArt- $\alpha$ | 0.6         | 8.65  | 0.2787                |
| $PIXART-\Sigma$  | 0.6         | 8.23  | 0.2797                |



### Data Analysis: Enhanced caption accuracy

PixArt-α (LLaVa) -> certain hallucination problem

PixArt-Σ (Share-Captioner) -> generate detailed and correct captions -> augmenting the collected raw prompts



Fig. 5: Comparative illustration of hallucinations: Contrasting differences in hallucination occurrences between LLaVA and Share-Captioner, with red indicating hallucinations and green denoting correctness.

/

(Skip)



#### LLaVa

#### "Visual Instruction Tuning" (2023)

- → a study to create a visual version (Vision-Language Model, VLM) of GPT-4.
- Based on: CLIP + LLaMA (Language Model)
- Purpose: Multimodal model to view images and perform "description, question-answer (Q&A), summarization, etc."
- Features:
  - Utilizes CLIP to convert images into linguistic representations.
  - Large Language Model (LLaMA) to generate text.
  - Performs a similar role to the traditional GPT-4V.
  - However, it can be less accurate and potentially lacks fine-grained information.

(Skip)



### **Share-Captioner**

"ShareGPT4V: Improving Large Multi-Modal Models with Better Captions" (2023)

- → Share-Captioner is a model to overcome the limitations of LLaVA and generate more sophisticated captions.
- Based on: GPT-4V (GPT-4 with Vision)
- Purpose: Generate more accurate and detailed image captions
- Features:
  - Utilizes GPT-4V to generate more accurate and detailed descriptions.
  - Longer sentences, more detail than LLaVA.



### Data Analysis: Increased caption length

Internal- $\alpha$ : <= 120 tokens

Internal- $\Sigma$ : <= 300 tokens

Share-Captioner(60%) + raw(40%) -> reduce potential biases

(Not using raw data can introduce bias!)

Table 1: Statistics of noun concepts for different datasets. VN: valid distinct nouns (appearing more than 10 times); DN: total distinct nouns; Average: average noun count per image; ACL: Average Caption length.

| Dataset                             | Volume | Caption         | VN/DN                        | Total Noun | ACL | Average                        |
|-------------------------------------|--------|-----------------|------------------------------|------------|-----|--------------------------------|
| Internal- $\alpha$                  | 14M    | Raw             | $187 { m K}/931 { m K}$      | 175M       | 25  | $11.7/\mathrm{Img}$            |
| Internal- $\alpha$                  | 14M    | LLaVA           | $28\mathrm{K}/215\mathrm{K}$ | 536M       | 98  | $29.3/\mathrm{Img}$            |
| Internal- $\alpha$                  | 14M    | Share-Captioner | $51\mathrm{K}/420\mathrm{K}$ | 815M       | 184 | $54.4/\mathrm{Img}$            |
| $\overline{\text{Internal-}\Sigma}$ | 33M    | Raw             | 294K/1512K                   | 485M       | 35  | $\overline{14.4/\mathrm{Img}}$ |
| Internal- $\Sigma$                  | 33M    | Share-Captioner | $77\mathrm{K}/714\mathrm{K}$ | 1804M      | 180 | $53.6/\mathrm{Img}$            |
| $_{-}$ 4K- $\Sigma$                 | 2.3M   | Share-Captioner | $24\mathrm{K}/96\mathrm{K}$  | 115M       | 163 | $49.5/\mathrm{Img}$            |



Fig. 6: Histogram Visualization of the Caption Length. We randomly select 1M captions from the raw captions, Internal- $\alpha$ , and Internal- $\Sigma$  to draw the corresponding histogram. ACL denotes the average caption length.



### Data Analysis: High-Quality Evaluation Dataset

SoTA: State of the Art

Most SoTA T2I models chose **MSCOCO** (MobileDiffusion too)

-> Not enough to evaluate aesthetics and text-image alignment

| Image | Prompt                                                                                        | Image | Prompt                                                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | A red apple sitting on a wooden table, remote control aerial photography.                     |       | A photographic work capturing a polar bear walking through icy and snowy terrain.                                                                                                |
|       | A serene beach with palm trees, turquoise water, and a hammock between two trees, star trail. |       | A bird known for its distinctive blue and orange plumage. The kingfisher is perched on a branch, its body angled slightly to the left as if poised to take flight at any moment. |

Fig. 12: Samples in our proposed High-Quality Evaluation Dataset. The evaluation dataset presented in this paper contains samples of superior visual quality compared to those in COCO-30K.



## Efficient DiT Design: Previous problems in PixArt-α

Self-Attention computation increases proportional to the square of the number of tokens  $\rightarrow$  O(N<sup>2</sup>)

4K resolution needs higher number of tokens  $\rightarrow$  Model execution = slow Memory usage spikes when generating 4K  $\rightarrow$  GPU costs = increase

Attention
$$(Q, K, V) = \operatorname{softmax} \left( \frac{Q \cdot f_c(K)^T}{\sqrt{d_k}} \right) f_c(V)$$



### Efficient DiT Design: Key-Value Token Compression

- Compress Key (K) and Value (V) using Group Convolution on Stride 2
- $\rightarrow$  reduce the number of tokens by N  $\rightarrow$  N/R^2
- Using 1<=R<=4 without losing too much accuracy
- → reduce computation by about 34%

from 
$$O(N^2)$$
 to  $O\left(\frac{N^2}{R^2}\right)$ 



Fig. 7: Design of KV Token Compression. We merge KV tokens in spatial space to reduce the computation complexity.



### Group Convolution?

Divide input channels into groups and perform convolution on each independently

- → Less computation
- → More speed



(Skip)



28

45

80

15

184

38

2

6

2 x 2

pool size

### Stride 2?

Moves 2 pixels at a time, so the output is half the size of the input

- → Downsampling
- → Less computation
- → Keep important information than Max Pooling or Average Pooling(general downsampling)







### Efficient DiT Design: Key-Value Token Compression

Effect of Compression Ratio

| Res. I | Ratio | FID \ | CLIP-Score | $\uparrow$ Train Latency $\downarrow$ |
|--------|-------|-------|------------|---------------------------------------|
| 512    | 1     | 8.244 | 0.276      | 2.3                                   |
| 512    | 2     | 9.063 | 0.276      | 2.2 (-4%)                             |
| 512    | 4     | 9.606 | 0.276      | 2.1 (-9%)                             |
| 1024   | 1     | 5.685 | 0.277      | 27.5                                  |
| 1024   | 2     | 5.512 | 0.273      | 22.5 (-18%)                           |
| 1024   | 4     | 5.644 | 0.276      | 20.0 (-27%)                           |
| 1024   | 9     | 5.712 | 0.275      | 17.8 (-35%)                           |

| Res. | Ratio | $\begin{array}{c} \text{Train Latency} \downarrow \\ \text{(s/Iter@32BS)} \end{array}$ | Test Latency $\downarrow$ (s/Img) |
|------|-------|----------------------------------------------------------------------------------------|-----------------------------------|
| 2K   | _     | 56                                                                                     | 58                                |
| 2K   |       | 37 (-34%)                                                                              | 38 (-34%)                         |
| 4K   | _     | 191                                                                                    | 91                                |
| 4K   |       | 125 (-35%)                                                                             | 60 (-34%)                         |

(d) Speed of different resolutions.

(c) Compression rations on different resolutions.

Table 3: KV-Token Compression Settings in Image Generation. This study employs FID, CMMD, and CLIP-Score metrics to assess the impact of various token compression components, such as compression ratio, positions, operators, and varying resolutions. Speed calculation in Tab. 3c is Second/Iteration/384 Batch-size.



### Weak-to-Strong Training Strategy

Adapting model to new VAEs

- lacktriangle PixArt- $\alpha$ : VAE (8x downsampling)
- → PixArt-Σ : Stable Diffusion XL(SDXL) VAE (4x downsampling)
- → Preserve details
- ◆ If training T2I models from scratch = resource-intensive
- → choosing fine-tuning
- ◆ How?
- → fine-tuning quickly converges at **2K training steps**





### Weak-to-Strong Training Strategy

#### **Adapting to Higher-Resolution**

fine-tune from a low-resolution (LR) model to a high-resolution (HR) model

→ observe a performance degradation 😥



#### **Using Positional Embedding Interpolation (PE Interpolation)**

- → Adapt quickly to new resolutions with fewer training steps (1000 steps)
- → Create high-resolution images without learning from scratch

| Resolution Iterations FID $\downarrow$ CLIP $\uparrow$ |      |       |       |  |  |
|--------------------------------------------------------|------|-------|-------|--|--|
| 256                                                    | 20K  | 16.56 | 0.270 |  |  |
| $256 \to 512$                                          | 1K   | 9.75  | 0.272 |  |  |
| $256 \rightarrow 512$                                  | 100K | 8.91  | 0.276 |  |  |



(Skip)



### PE Interpolation?

#### **Previous limitation**

If learned location embedding is 512×512 in size (LR Model),

Directly applying this embedding to a higher resolution (1024×1024) will result in mismatch

→ poor performance **②** 

#### **Apply PE Interpolation**

Interpolate the existing position embedding to the 1024×1024 size.

This means that 512 values are **naturally converted to smooth values** in the process of scaling to 1024.



## Weak-to-Strong Training Strategy Adapting model to KV compression

#### **Using KV Token Compression**

- → Risk of different structure (2)
- $\rightarrow$  Difficult to use the trained weights of PixArt- $\alpha$

#### **Using Conv Avg Init**

- → Set the weighting value to 1/R² to smooth the transition
- → Preserving as much of the existing spatial information as possib





### **Experiment: Implementation Details**

#### Model

| Text-Incoder | Flan-T5-XXL (= PixArt-α)  |
|--------------|---------------------------|
| VAE          | Stable Diffusion XL(SDXL) |
| Base model   | PixArt-α                  |

#### Hardware

| Training GPU (<=1K model)   | 32 NVIDIA Tesla V100 |
|-----------------------------|----------------------|
| Training GPU (2K, 4K model) | 16 NVIDIA A100       |
| Optimization algorithms     | CAME Optimizer       |

#### **Evaluation Metrics**

- → 30,000 high quality dataset
- → benchmark the most powerful T2I models.

| Dataset                             | Volume | Caption         | VN/DN                        | Total Noun | ACL | Average                        |
|-------------------------------------|--------|-----------------|------------------------------|------------|-----|--------------------------------|
| Internal- $\alpha$                  | 14M    | Raw             | $187 { m K}/931 { m K}$      | 175M       | 25  | $\overline{11.7/\mathrm{Img}}$ |
| Internal- $\alpha$                  | 14M    | LLaVA           | $28\mathrm{K}/215\mathrm{K}$ | 536M       | 98  | $29.3/\mathrm{Img}$            |
| Internal- $\alpha$                  | 14M    | Share-Captioner | $51\mathrm{K}/420\mathrm{K}$ | 815M       | 184 | $54.4/\mathrm{Img}$            |
| $\overline{\text{Internal-}\Sigma}$ | 33M    | Raw             | 294K/1512K                   | 485M       | 35  | $\overline{14.4/\mathrm{Img}}$ |
| Internal- $\Sigma$                  | 33M    | Share-Captioner | $77\mathrm{K}/714\mathrm{K}$ | 1804M      | 180 | $53.6/\mathrm{Img}$            |
| $4	ext{K-}\Sigma$                   | 2.3M   | Share-Captioner | $24\mathrm{K}/96\mathrm{K}$  | 115M       | 163 | $49.5/\mathrm{Img}$            |



#### **Image Quality Assessment**

Compared with open-source models







Prompt: A close-up photo of a person. The subject is a woman. She wore a blue coat with a gray dress underneath. She has blue eyes and blond hair, and wears a pair of earrings. Behind are blurred city buildings and streets.







Prompt: half a solid black background and half a solid white background





#### **Image Quality Assessment**

competitive with these commercial products



Prompt: a small cactus with a happy face in the Sahara desert



#### **High-resolution Generation**

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.



Fig. 2: 4K image generation with complex dense instructions. PIXART- $\Sigma$  can directly generate 4K resolution images without post-processing, and accurately respond to the given prompt.



#### Human/AI (GPT4V) Preference Study



Fig. 9: Human(blue)/AI(orange and green) preference evaluation against current open T2I models. PIXART- $\Sigma$  compares favorably against current state-of-the-art T2I models in both image quality and prompt-following.







### Conclusion

Key: Weak-to-Strong Training + KV Token Compression

| Category                 | PixArt-α          | PixArt-Σ                                                                  |
|--------------------------|-------------------|---------------------------------------------------------------------------|
| Maximum Resolution       | 1K (1024×1024)    | 4K (3840×2160) Supported                                                  |
| Computation Optimization | X                 | KV Token Compression (34% Reduction in Computation)                       |
| VAE Model                | Basic VAE         | SDXL VAE<br>(Higher Quality Image Generation)                             |
| Text Token Length        | 120 Tokens        | 300 Tokens<br>(More Precise Text-Image Alignment)                         |
| Training Strategy        | Standard Training | Weak-to-Strong Training (Utilizing Pre-trained Model for Faster Training) |
| Training Cost            | High              | 9% GPU Cost                                                               |

### Limitations

Not on-device

- ◆ Can't run on mobile and edge devices
- → Privacy concerns

Insufficient dataset

- ◆ Using 33M data = less than Stable Diffusion v1.5 (2B data)
- → Quality degradation

speed issues

◆ 4K creation is possible but **not optimized for speed** 

### Future work

4K On-device diffusion

Privacy issue

On-device

Optimization

- ◆ Handling photos is always a privacy risk
- ◆ There is no on-device 4K diffusion paper now
- ◆ Cloud can use your photo **②**
- ◆ Experimenting on-device with this model
- ◆ Identify issues on-device (latency, battery, memory etc.)

- ◆ Optimized to work on **smartphones**
- ◆ Optimize by applying modern paper techniques like 'MobileDiffusion'



### vs MobileDiffusion

| Category                             | PixArt-Σ                                            | MobileDiffusion                                            |  |
|--------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--|
| Model Architecture                   | Diffusion Transformer (DiT) based                   | Latent Diffusion + Optimized UNet                          |  |
| Text Encoder                         | Flan-T5-XXL                                         | CLIP-ViT/L14                                               |  |
| Image Resolution                     | Direct 4K (3840×2160)                               | 512×512                                                    |  |
| KV Token Compression                 |                                                     | ×                                                          |  |
| Model Size                           | 0.6B                                                | 386M                                                       |  |
| VAE (Autoencoder)                    | SDXL VAE                                            | <mark>Lightweight VAE</mark>                               |  |
| Resolution Upscaling Method          | PE Interpolation                                    | Fixed at 512px (No upscaling)                              |  |
| Computation Optimization             | Weak-to-Strong Training (Reuses pre-trained models) | Transformer block removal + Convolution-based optimization |  |
| On-Device Execution                  | 💢 Requires high-performance GPU                     | iPhone 15 Pro, Samsung S24 etc.                            |  |
| Training Dataset Size                | 33M (Includes 4K)                                   | 150M                                                       |  |
| Image Quality Evaluation (FID Score) | 8.23                                                | 11.67 (1-step) / 8.65 (50-step DDIM)                       |  |
| Text-Image Alignment (CLIP Score)    | 0.2797                                              | 0.320 (1-step) / 0.325 (50-step DDIM)                      |  |
| Generation Speed                     | Slow on high-end GPU for 4K                         | 0.2s on iPhone 15 Pro                                      |  |

FID : Fréchet Inception <u>Distance</u>

CLIP (Contrastive Language-Image Pretraining Score)



# PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, Zhenguo Li

Jeonghoon Park, happypjh2001@unist.ac.kr Undergraduate Research Intern, Ubiquitous Artificial Intelligence Lab, Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology