Exercises on Galton Watson processes

Exercice 6.1

Prove that for a subcritical GW process (m < 1) the mean total progeny is

$$\mathbb{E}\left[\bar{X}\right] = \frac{1}{1-m}$$

Exercice 6.2

Assume that $\sigma^2 := \operatorname{Var}(\xi) < +\infty$. Show that

$$\operatorname{Var}(X_{n+1}) = m^n \sigma^2 + m^2 \operatorname{Var}(X_n), \qquad (6.1)$$

and then that

$$\operatorname{Var}(X_n) = \begin{cases} \frac{\sigma^2 m^n (m^n - 1)}{m^2 - m} & \text{if } m \neq 1.\\ n\sigma^2 & \text{if } m = 1. \end{cases}$$
 (6.2)

Show that if m > 1 then the martingale $W_n = \frac{X_n}{m^n}$ is UI.

Solution de l'Exercice 6.2

By the conditional variance formula

$$\operatorname{Var}(X_{n+1}) = \operatorname{Var}(\mathbb{E}[X_{n+1} \mid \mathcal{F}_n]) + \mathbb{E}[(X_{n+1} - \mathbb{E}[X_{n+1} \mid \mathcal{F}_n])^2]$$

= $m^2 \operatorname{Var}(X_n) + \mathbb{E}[\mathbb{E}[(X_{n+1} - mX_n)^2 \mid X_n]]$
= $m^2 \operatorname{Var}(X_n) + \mathbb{E}[X_n\sigma^2].$

Exercice 6.3

The Galton Watson process with immigration is defined by the recurrence

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n+1)} + Y_{n+1}$$

where the $(\xi_i^{(k)}, k \ge 1, i \ge 1)$ are IID distributed as xi and are independent from $(Y_k, k \ge 1)$ IID distributed as Y. In this model $\xi_i^{(n+1)}$ is the number of children of the i-th individual of the n-th generation, and Y_n is the number of immigrants in the n-th generation. We assume that $0 < m = \mathbb{E}[\xi] < +\infty$, $\forall j \mathbb{P}(\xi = j) < 1$ and $0 < \lambda = \mathbb{E}[Y] < +\infty$.

1. Prove that one has

$$X_n = Z_n + U_n^{(1)} + \dots + U_n^{(n)},$$
 (6.3)

with Z_n the number of descendants at generation n of the initial individual, $U_n^{(i)}$ is the number of descendants at generation n of immigrants that arrived at generation i, and all these processes are independent.

2. Let $V_n = m^{-n}X_n$. Show that

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = mX_n + \lambda, \qquad (6.4)$$

after defining precisely \mathcal{F}_n .

- 3. Show that V_n is a positive submartingale.
- 4. Show that

$$\mathbb{E}\left[X_n\right] = \frac{m^n(m+\lambda-1)-\lambda}{m-1},\tag{6.5}$$

and infer that $C := \sup \mathbb{E}[V_n] < +\infty$.

- 5. Show that there exists a rv V, $0 \le V < +\infty$ a.e. and $V_n \to V$ a.e.
- 6. Recall that $W_n=m^{-n}Z_n\to W$ a.e. for a positive finite rv W. Let $\beta=\frac{m+\lambda-1}{m-1}$ and let

$$T = \sum_{k=1}^{Y} W_k \,, \tag{6.6}$$

with $(W_k, k \ge 1)$ IID distributed as W. Show that

$$m^{-n}U_n^{(i)} \to m^{-i}T^{(i)}a.e.$$
 with $T^{(i)} \stackrel{d}{=} T$. (6.7)

Deduce that

$$V \ge U := W + \sum_{i=1}^{+\infty} m^{-i} T^{(i)}$$
 a.e. (6.8)

7. Using independence in (6.3), compute for $\lambda > 0$, $\mathbb{E}\left[e^{-\lambda V_n}\right]$ Combining the inequality for a posivitve random variable

$$-\log \mathbb{E}\left[e^{-X}\right] \le \mathbb{E}\left[X\right]$$

with the fact that $\mathbb{E}\left[m^{-n}U_n^{(i)}\right]=m^{-i}\mathbb{E}\left[T\right]$, show that

$$\mathbb{E}\left[e^{-\lambda V}\right] = \lim_{n \to +\infty} \mathbb{E}\left[e^{-\lambda V_n}\right] = \mathbb{E}\left[e^{-\lambda U}\right],\tag{6.9}$$

and deduce from it that V = U a.e.

8. Show that if $\mathbb{E}\left[\xi \log^+ \xi\right] < +\infty$ the V > 0 a.e. and that if $\mathbb{E}\left[\xi \log^+ \xi\right] = +\infty$ then V = 0 a.e.