

第三章 导数及其应用

课时2 导数与函数的单调性

一、课标要求

- 1. 结合实例, 借助几何直观了解函数的单调性与导数的关系.
- 2. 能利用导数研究函数的单调性.
- 3. 对于多项式函数,能求不超过三次的多项式函数的单调区间.

二、知识梳理

1. 函数的单调性与导数的关系

函数 y = f(x) 在某个区间(a,b) 内可导.

- (1) 若在区间(a,b)上f'(x)>0恒成立,则f(x)在区间(a,b)内<u></u>单调递增;
- (2) 若在区间(a,b)上f'(x)<0恒成立,则f(x)在区间(a,b)内<u>单调递减</u>.

2. 单调性的应用

- (1) 在某个区间内,f'(x) > 0 (f'(x) < 0) 是函数 f(x) 在此区间内单调递增(减)的充分条件,而不是必要条件.如函数 $f(x) = x^2$ 在 R 上单调递增,但 $f'(x) = 3x^2 \ge 0$.
- (2)函数 f(x) 在 (a,b) 内单调递增(减)的充要条件是 $f'(x) \ge 0$ $(f'(x) \le 0)$ 在区间(a,b) 内恒成立,且在其任意的子区间内, f'(x) = 0 不能恒成立,即在个别点处导函数等于零,不影响函数的单调性.

3. 利用导数求函数 y = f(x) 的单调区间的步骤如下:

(1) 求函数 y = f(x) 的定义域;

(2) 求导数 f'(x);

(3) 解 f'(x) < 0 或 f'(x) > 0;

(4) 写出结论.

【拓展知识】

- 若所求函数的单调区间不止一个,这些区间之间不能用并集"∪"及"或"连接,只能用 ",""和"字隔开.
 - 2. f'(x) > 0(<0)是 f(x)在区间(a, b)内单调递增(减)的充分不必要条件.
 - 3. $f'(x) \ge 0 (\le 0)$ 是 f(x) 在区间(a, b) 内单调递增(减)的必要不充分条件.
- 4. 由 f(x)在区间(a, b)内单调递增(减)可得 f'(x)≥0(≤0)在该区间内恒成立,而不是 f'(x) > 0(<0)恒成立,"="不能少,必要时还需对"="进行检验.

- 三、基础回顾
- 1. 判断正误. (正确的打"√",错误的打"×")
- (1) 若函数 f(x)在(a, b)内单调递增,则一定有 $f'(x) > 0.(\times)$

(2) 若函数 f(x)在某个区间内恒有 f'(x)=0,则 f(x)在此区间内没有单调性. (\checkmark)

(3) 在 (a,b) 内 f'(x) ≤ 0 ,且 f'(x) = 0 的根有有限个,则 f(x)在 (a,b) 内单调递减.(\checkmark)

(4) 若函数 f(x)在定义域上恒有 f'(x) > 0 ,则 f(x)在定义域上一定单调递增.(\times)

- 2. 函数 $y = \frac{1}{2} x^2 \ln x$ 的单调递减区间为()
- A. (-1, 1] B. (0, 1]
- C. $[1, +\infty)$ D. $(0, +\infty)$
- B 【解析】 函数 $y = \frac{1}{2} x^2 \ln x$ 的定义域为 $(0, +\infty)$, $y' = x \frac{1}{x}$.令y' < 0, 得 0 < x < 1, 故

函数的单调递减区间为(0, 1].故选 B.

- 3. (多选题)如图所示为函数 y=f(x)的导数 y=f'(x) 的图象,则下列判断正确的有(
- A. f(x)在区间(-2, 1)上是增函数
- B. f(x)在区间(2, 3)上是减函数
- C. f(x)在区间(4, 5)上是增函数
- D. f(x)在区间(3, 5)上是增函数

BC 【解析 】 在(4, 5)上 f(x)>0 恒成立,所以 f(x)是增函数. 在(2, 3)上 f(x)<0 恒成立,所以 f(x)是减函数. 故选 BC.

4. 已知函数 $f(x) = e^x - x$ 在区间 $(-\infty, a)$ 上单调递减,则实数 a 的取值范围是______.

 $(-\infty,0]$ 【解析】由函数单调递减,可得 $f'(x) = e^x - 1 < 0$,解得 x < 0 ,函数在区间 $(-\infty,a)$ 上单调递减,可得 $a \le 0$.

四、考点扫描

考点一 利用导数研究函数的单调性

考向 1 不含参数的函数

例 1 (1) (2024·北京市模拟)函数 $f(x)=x-\ln x$ 的单调递减区间为()

- A. (0, 1) B. $(1, +\infty)$
- C. $(0, +\infty)$ D. $(0, 1), (1, +\infty)$

A【解析】因为 $f(x)=x-\ln x$,所以函数f(x)的定义域为 $(0, +\infty)$,所以 $f'(x)=1-\frac{1}{x}$,由f'(x)

 $=1-\frac{1}{x}$ <0 有 x<1,所以函数 $f(x)=x-\ln x$ 的单调递减区间为(0, 1),故选 A.

(2)(多选题)(2024·江苏南通市高三联考)下列函数在区间(0, +∞)上单调递增的有(

A.
$$y=x-(\frac{1}{2})x$$

B. $y=x+\sin x$
C. $y=3-x$
D. $y=x^2+2x+1$

B.
$$y = x + \sin x$$

C.
$$y = 3 - x$$

D.
$$y = x^2 + 2x + 1$$

ABD【解析】对于 A,因为 y=x 与 $y=-\left(\frac{1}{2}\right)^x$,都是增函数,所以 $y=x-\left(\frac{1}{2}\right)^x$ 在区间

(0, +∞)上单调递增,符合题意;对于 B, $y=x+\sin x$,其导数 $y'=1+\cos x$,由 $y'\ge 0$ 在 R 上恒成立,则这个函数在区间(0, +∞)上单调递增,符合题意;对于 C,y=3-x,是一次函数,在 R 上是减函数,不符合题意;对于 D, $y=x^2+2x+1=(x+1)^2$,是二次函数,其图象开口向上,对称轴为直线 x=-1,则这个函数在区间(0, +∞)上单调递增,符合题意.故选 ABD.

规律方法:

对点训练(1) (2024·重庆市第十一中学校校考)已知函数 $f(x) = x \sin x + \cos x$, $x \in [0,2\pi]$,则 f(x)的单调递减区间为()

A.
$$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$$
B. $\begin{bmatrix} \frac{\pi}{2}, \frac{3\pi}{2} \end{bmatrix}$
C. $(\pi, 2\pi)$
D. $\begin{bmatrix} \frac{3\pi}{2}, 2\pi \end{bmatrix}$

B 【解析】 由题意, $f(x) = x\sin x + \cos x$, $x \in [0,2\pi]$, 则 $f'(x) = x\cos x$, 当

$$x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$$
时, $f'(x) > 0$, 当 $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ 时, $f'(x) < 0$,故 $f(x)$ 的单调递减区间为

$$\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$$
.故选 B.

(0,1); $(1,+\infty)$ 【解析】函数 $f(x) = \ln x + \frac{1}{x}$ 的定义域为 $(0,+\infty)$,函数的导数 $f'(x) = \frac{x-1}{x^2}$,

由 $f'(x) = \frac{x-1}{x^2} < 0$,解得 x < 1,即函数 f(x) 的单调减区间为(0, 1);

同理,函数 f(x) 的单调增区间为 $(1,+\infty)$.

考向 2 含参数的函数

例 2 已知函数 $f(x)=2x-\frac{a}{x}-(a+2)\ln x (a \in \mathbb{R})$,试讨论 f(x)的单调性.

【解】 因为
$$f(x) = 2x - \frac{a}{x} - (a+2)\ln x$$
, $x > 0$, 则 $f'(x) = 2 + \frac{a}{x^2} - \frac{a+2}{x} = \frac{2x^2 - (a+2)x + a}{x^2} = \frac{(2x-a)(x-1)}{x^2}$.

- ① 当 $\frac{a}{2}$ <0,即 a<0 时,由 f'(x)<0,得 0<x<1,由 f'(x)>0,得 x>1,此时函数 f(x)的单调递减区间为(0,1),单调递增区间为(1,+ ∞);
- ② 当 $\frac{a}{2}$ =1时,a=2时,对任意的x>0,f(x)≥0,此时函数f(x)在(0,+∞)上单调递增;
- ③ 当 $0 < \frac{a}{2} < 1$ 时,即 0 < a < 2 时,由 f'(x) > 0,得 $0 < x < \frac{a}{2}$ 或 x > 1,由 f'(x) < 0,得 $\frac{a}{2} < x < 1$,此时,函

数
$$f(x)$$
 的单调递增区间为 $\left(0,\frac{a}{2}\right)$, $(1,+\infty)$, 单调递减区间为 $\left(\frac{a}{2},1\right)$;

④ 当 $\frac{a}{2}$ >1, 即 a>2 时,由 f'(x)>0,得 0<x<1 或 x> $\frac{a}{2}$,由 f'(x)<0,得 1<x< $\frac{a}{2}$,此时,函数 f(x)

的单调递增区间为(0, 1), $\left(\frac{a}{2}, +\infty\right)$,单调递减区间为 $\left(1, \frac{a}{2}\right)$.

综上所述,当 $a \le 0$ 时,函数 f(x) 的单调递减区间为(0, 1),单调递增区间为 $(1, +\infty)$;

当 0 < a < 2 时,函数 f(x) 的单调递增区间为 $\left(0, \frac{a}{2}\right)$, $(1, +\infty)$,单调递减区间为 $\left(\frac{a}{2}, 1\right)$;

当 a=2 时,函数 f(x)的单调递增区间为 $(0, +\infty)$;当 a>2 时,函数 f(x)的单调递增区间为 $(0, +\infty)$;

1),
$$\left(\frac{a}{2}, +\infty\right)$$
, 单调递减区间为 $\left(1, \frac{a}{2}\right)$.

规律方法:

对点训练 已知函数 $g(x)=(x-a-1)e^x-(x-a)^2$,试讨论函数 g(x)的单调性.

【解】 g(x)的定义域为 R, $g'(x)=(x-a)e^x-2(x-a)=(x-a)(e^x-2)$, 令 g'(x)=0, 得 x=a 或 $x=\ln 2$.

①若 a>ln 2,

则当 $x \in (-\infty, \ln 2) \cup (a, +\infty)$ 时,g'(x) > 0,当 $x \in (\ln 2, a)$ 时,g'(x) < 0,

所以g(x)在 $(-\infty, \ln 2)$, $(a, +\infty)$ 上单调递增,在 $(\ln 2, a)$ 上单调递减;

②若 $a=\ln 2$,则 $g'(x)\geq 0$ 恒成立,所以 g(x)在 R 上单调递增;

③若 $a < \ln 2$,则当 $x \in (-\infty, a) \cup (\ln 2, +\infty)$ 时,g'(x) > 0,当 $x \in (a, \ln 2)$ 时,g'(x) < 0,

所以g(x)在 $(-\infty, a)$, $(\ln 2, +\infty)$ 上单调递增,在 $(a, \ln 2)$ 上单调递减.

综上,当 a>ln 2 时,g(x)在($-\infty$, ln 2),(a, $+\infty$)上单调递增,在 $(\ln 2$, a)上单调递减;

当 $a=\ln 2$ 时,g(x)在R上单调递增;

当 $a < \ln 2$ 时,g(x)在 $(-\infty, a)$, $(\ln 2, +\infty)$ 上单调递增,在 $(a, \ln 2)$ 上单调递减.

考点二 函数单调性的应用

考向1 由单调性求参数

例 3 (1)(2024·浙江名校联考)若函数 $f(x)=(x^2-mx+2)e^x$ 在 $\begin{bmatrix} -\frac{1}{2}, 1 \end{bmatrix}$ 上存在单调递减区间,

 $(2, +\infty)$ 【解析】因为 $f(x) = (x^2 - mx + 2)e^x$,所以 $f(x) = (2x - m)e^x + (x^2 - mx + 2)e^x = [x^2 + (2 + mx + 2)e^x]$

$$-m)x+2-m]e^{x}$$
,则原问题等价于 $f'(x)<0$ 在 $\left[-\frac{1}{2},1\right]$ 上有解,即 $x^{2}+(2-m)x+2-m<0$ 在

$$\left[-\frac{1}{2}, 1 \right]$$
上有解,即 $m > \frac{x^2 + 2x + 2}{x + 1}$ 在
$$\left[-\frac{1}{2}, 1 \right]$$
上有解.则 $m > \left(\frac{x^2 + 2x + 2}{x + 1} \right), \frac{x^2 + 2x + 2}{x + 1} = x + 1$

 $+\frac{1}{x+1} \ge 2$, 当且仅当x+1=1, 即x=0 时取等号,所以m>2.

(2)(2023·全国乙巻)设 $a \in (0, 1)$.若函数 $f(x) = a^x + (1+a)^x$ 在 $(0, +\infty)$ 上单调递增,则 a 的取值范围是 ____.

$$\left[\frac{\sqrt{5}-1}{2},1\right]$$
【解析】 由题意,得当 $x > 0$ 时, $f'(x) = a^x \ln a + (1+a)^x \ln(1+a) =$

$$a^{x}\left[\ln a + \left(\frac{1}{a} + 1\right)^{x}\ln(1+a)\right] \ge 0.$$
 设 $g(x) = \ln a + \left(\frac{1}{a} + 1\right)^{x}\ln(1+a)$, 因为 $a^{x} > 0$,所以 $g(x) \ge 0$.

因为 $a \in (0, 1)$,所以 $\ln(1+a) > 0$, $\frac{1}{a} + 1 > 1$,所以g(x)在 $(0, +\infty)$ 上单调递增,故只需满足

 $g(0) \ge 0$,即 $\ln a + \ln(1+a) = \ln(a+a^2) \ge 0$,所以 $a+a^2 \ge 1$,解得 $a \le -\frac{\sqrt{5+1}}{2}$ 或 $a \ge \frac{\sqrt{5-1}}{2}$.又 0 < a

$$<1$$
,所以 a 的取值范围是 $\left|\frac{\sqrt{5}-1}{2},1\right|$.

(3)若函数 $f(x) = cx^4 + (c^2 - 3)x^2 + 1$ 在区间 $(-\infty, -1)$ 上单调递减, 在区间 (-1, 0) 上单调递增, 则实数 c 的值为 .

1【解析】由题意, 得 $f'(x) = 4cx^3 + 2(c^2 - 3)x$.

曲 f'(-1)=0, 得 $-4c-2(c^2-3)=0$, 解得 c=-3 或 c=1.

 $\leq c = -3 \bowtie$, f'(x) = -12x(x-1)(x+1).

当x < -1时,f'(x) > 0,则f(x)在区间 $(-\infty, -1)$ 上单调递增,不满足条件,舍去;

 $\stackrel{\text{def}}{=} c = 1 \stackrel{\text{red}}{=} f'(x) = 4x(x-1)(x+1).$

当x < -1时,f'(x) < 0,当-1 < x < 0时,f'(x) > 0,满足f(x)在区间 $(-\infty, -1)$ 上单调递减,

在区间(-1,0)上单调递增,故c=1.

规律方法:

对点训练 已知函数 $f(x) = \ln x - \frac{1}{2}ax^2 - 2x(a \neq 0)$.

(1) 若函数 f(x) 存在单调递减区间,则实数 a 的取值范围是_____;

(-1,0) \cup $(0,+\infty)$ 【解析】 $f(x)=\ln x-\frac{1}{2}ax^2-2x$, $x\in(0,+\infty)$, 所以 $f'(x)=\frac{1}{x}-ax-2$.由

于 f(x)在 $(0, +\infty)$ 上存在单调递减区间,所以当 $x \in (0, +\infty)$ 时, $\frac{1}{x} - ax - 2 < 0$ 有解. 即 $a > \frac{1}{x^2}$

$$-\frac{2}{x}$$
有解,设 $G(x) = \frac{1}{x^2} - \frac{2}{x}$,所以只要 $a > G(x)_{\min}$ 即可. 而 $G(x) = \left(\frac{1}{x} - 1\right)^2 - 1$,所以 $G(x)_{\min} = \frac{1}{x} - \frac{1}{x}$

-1. 所以 a>-1 且 a≠0.即 a 的取值范围是(-1,0) \cup (0, +∞).

(2) 若函数 f(x)在[1, 4]上单调递减,则实数 a 的取值范围是_____.

 $\left| -\frac{7}{16}, 0 \right| \cup (0, +\infty)$ 【解析】 由 f(x)在[1, 4]上单调递减得,得当 $x \in [1, 4]$ 时,

$$f'(x) = \frac{1}{x} - ax - 2 \le 0$$
 恒成立,即 $a \ge \frac{1}{x^2} - \frac{2}{x}$ 恒成立.设 $G(x) = \frac{1}{x^2} - \frac{2}{x}$,所以 $a \ge G(x)_{\text{max}}$,而 $G(x) = \frac{1}{x} - \frac{2}{x}$

$$\left(\frac{1}{x}-1\right)^2 - 1.$$
 因为 $x \in [1, 4]$,所以 $\frac{1}{x} \in \left[\frac{1}{4}, 1\right]$,所以 $G(x)_{\text{max}} = -\frac{7}{16}$ (此时 $x = 4$),所以 $a \ge -\frac{7}{16}$ 且

 $a\neq 0$,即 a 的取值范围是 $\left[-\frac{7}{16},0\right] \cup \left(0,+\infty\right)$.

考向 2 比较大小

例 4 (2024·浙江金华市调考)已知函数 $f(x)=3x+2\cos x$.若 $a=f(3\sqrt{2})$, b=f(2), $c=f(\log_2 7)$,

则 a, b, c 的大小关系是()

A.*a*<*b*<*c*

B.*c*<*b*<*a*

C.*b*<*a*<*c*

D.*b*<*c*<*a*

D 【解析】 由题意,得 $f'(x)=3-2\sin x$.因为 $-1\leq\sin x\leq 1$,所以 f(x)>0 恒成立,所以 f(x)是增函数.因为 $\sqrt{2}>1$,所以 $3^{\sqrt{2}}>3$.又 $\log_2 4 < \log_2 7 < \log_2 8$,即 $2 < \log_2 7 < 3$,所以 $2 < \log_2 7 < 3^{\sqrt{2}}$,所以 $f(2) < f(\log_2 7) < f(3^{\sqrt{2}})$,即 b < c < a.故选 D.

对点训练 已知函数
$$f(x) = \ln x - \frac{x}{e^x}$$
.设 $a = f(2), b = f(2), c = f(3), \emptyset$ 则()

C 【解析】 易知
$$f(x) = \frac{e^x + x^2 - x}{xe^x} = \frac{e^x + \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}}{xe^x}$$
,又 $x \in (0, +\infty)$ 时, $e^x > 1$, $\left(x - \frac{1}{2}\right)^2 - \frac{1}{4} \ge -\frac{1}{4}$,所以 $f(x) > 0$,即 $f(x)$ 在(0, $+\infty$)上单调递增,故 $f\left(\frac{7}{3}\right) > f(2) > f\left(\frac{3}{2}\right)$,即 $c > b > a$.故

选 C.

考向3解不等式

例 5 (2024 • 江苏扬州市模拟)已知函数 $f(x)=2\ln x+\frac{1}{x}-x$,则不等式 f(2x-1)< f(1-x)

的解集为()

A.
$$\left(0, \frac{2}{3}\right)$$

$$C.$$
 $\left(\frac{1}{2}, 1\right)$

$$B. \frac{2}{3}, 1$$

$$D.\left(\frac{1}{2}, \frac{2}{3}\right)$$

B 【解析】 由题意,可知 f(x)的定义域为(0, +∞).因为 $f'(x) = \frac{2}{x} - \frac{1}{x^2} - 1 = -\left(\frac{1}{x} - 1\right)^2 \le 0$ 恒成

立,所以f(x)在 $(0, +\infty)$ 上单调递减.由f(2x-1) < f(1-x),可得 $\begin{cases} 2x-1 > 0, \\ 1-x > 0, \end{cases}$ 解得 $\frac{2}{3} < x < 1, \\ 2x-1 > 1-x, \end{cases}$

即原不等式的解集为 $\left(\frac{2}{3},1\right)$.故选 B.

规律方法:

对点训练 已知函数 $f(x) = \frac{1}{e^x} - e^x + 2x - \frac{1}{3}x^3$. 若 $f(3a^2) + f(2a - 1) \ge 0$,则实数 a 的取值范围是

_____•

$$\left[-1, \frac{1}{3} \right]$$
 【解析】 由题意,得 $f'(x) = -\frac{1}{e^x} - e^x + 2 - x^2 = -\left(e^x + \frac{1}{e^x}\right) + 2 - x^2$,

因为 $e^{x} + \frac{1}{e^{x}} \ge 2\sqrt{e^{x} \cdot \frac{1}{e^{x}}} = 2$,当且仅当 x = 0 时等号成立,所以 $f(x) \le 0$,所以 f(x)在 R 上单调递减,又 f(x) = -f(-x),所以 f(x)为奇函数,所以 $f(3a^{2}) + f(2a-1) \ge 0 \Rightarrow f(3a^{2}) \ge -f(2a-1) = f(1-2a)$,即 $3a^{2} \le 1 - 2a$,解得 $-1 \le a \le \frac{1}{3}$.

THANKS