O que é "Deep Learning"

& como posso usar na Astronomia?

O que são redes neurais? O que é "Deep Learning"?

O conceito

Neurônios biológicos

Neurônios artificiais

Neurônios biológicos

Wikipedia

Neurônios artificiais

Neurônios biológicos

Neurônios artificiais

Neural Network

Deep Neural Networks

<u> http://towardsdatascience.con</u>

Convolutional Neural Networks

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

O que é um filtro de convolução?

O que é um filtro de pooling?

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

Dados préavaliados

Treino

Dados usados diretamente no processo de treinamento: é neles que se aplica o processo de otimização da rede.

Validação

Dados usados para avaliar os vários parâmetros de treino.

Teste

Dados nos quais se faz a avaliação **FINAL** da qualidade da rede treinada. Não podem ser reutilizados até se conseguir a qualidade desejada, senão se tornam automaticamente "validação".

Dados alvo

Dados sem classificação ou medida anterior, nos quais pretendemos usar nosso modelo treinado para obter novos dados.

Aplicações

Autoencoder

$$p(\boldsymbol{\theta}|\mathbf{d}_o, \mathcal{M}) = \frac{p(\mathbf{d}_o|\boldsymbol{\theta}, \mathcal{M}) \ p(\boldsymbol{\theta}|\mathcal{M})}{p(\mathbf{d}_o|\mathcal{M})}$$

Figure 3: The neural network architecture. For cataloging M2, the input image is an 8×8 padded tile, and the network returns distributional parameters for latent variables contained in the center 2×2 tile.

1. Dados - pré classificação

- 1. Dados pré classificação
- 2. Dados volume

- 1. Dados pré classificação
- 2. Dados volume
- 3. Dados representatividade

- 1. Dados pré classificação
- 2. Dados volume
- 3. Dados representatividade
- 4. Overfitting

- 1. Dados pré classificação
- 2. Dados volume
- 3. Dados representatividade
- 4. Overfitting
- 5. Reusabilidade

- 1. Dados pré classificação
- 2. Dados volume
- 3. Dados representatividade
- 4. Overfitting
- 5. Reusabilidade
- 6. Determinação de erros

- 1. Dados pré classificação
- 2. Dados volume
- 3. Dados representatividade
- 4. Overfitting
- 5. Reusabilidade
- 6. Determinação de erros
- 7. Simetrias

Como usar Deep Learning em imagens Astronômicas

Frameworks

Tensorflow, PyTorch

- Mais genérico, flexível
- Mais complexidade
- Melhor performance

Keras

- Alto nível
- Simples
- Relativamente mais lento

Extra

Para saber mais

- 1. <u>Tutoriais de Deep Learning & Python: sentdex (YouTube)</u>
- 2. <u>Como funciona: 3Blue1Brown (legendado em BR/PT)</u>
- 3. Curiosidades, insights: <u>Lex Fridman</u>
- 4. Keras https://keras.io/
- 5. https://towardsdatascience.com/
- 6. Datasets/Competições: <u>Kaggle</u>

Histórico

- 1. Perceptron (Rosenblatt 1957)
- 2. Neocognitron (Fukushima 1980)
- 3. Backpropagation, CNNs (LeCun 1986)
- 4. GPUs (2009)
- 5. Tensorflow, Pytorch, Keras...

