Chapter 3 Electrical Characteristics

3.1 Test conditions

Unless otherwise specified and marked, all voltages are referenced to Vss.

All minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and clock frequency. Typical values are based on normal temperature (25°C) and $V_{DD} = 3.3 V$ or 5V environment, which are given only as design guidelines.

The data based on comprehensive evaluation, design simulation or technology characteristics are not tested in production. On the basis of comprehensive evaluation, the minimum and maximum values refer to sample tests. Unless otherwise specified that is tested, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Power supply scheme:

Figure 3-1 Typical circuit for conventional power supply

3.2 Absolute maximum ratings

Stresses at or above the absolute maximum ratings listed in the table below may cause permanent damage to the device.

Table 3-1 Absolute maximum ratings

Symbol	Description	Min.	Max.	Unit
T_{A}	Ambient temperature during operation	-40	85	°C
T _S	Ambient temperature during storage	-40	125	°C
V _{DD} -V _{SS}	External main supply voltage (V _{DD})	-0.3	5.5	V
77	Input voltage on the FT (5V tolerant) pin	V _{SS} -0.3	5.5	V
$ m V_{IN}$	Input voltage on other pins	V _{SS} -0.3	V _{DD} +0.3	
$ \triangle V_{DD_x} $	Variations between different main power supply pins		50	mV
$ \triangle V_{SS_x} $	Variations between different ground pins		50	mV

V _{ESD(HBM)}	Electrostatic discharge voltage (human body model, non-contact)	4K		V
I_{VDD}	Total current into V_{DD} power lines (supply current)		100	
I_{Vss}	Total current out of Vss ground lines (outflow current)	80		
т	Sink current on any I/O and control pin		20	
$I_{\rm I/O}$	Output current on any I/O and control pin		-20	mA
т	OSC_IN pin of HSE		+/-4	
$I_{\mathrm{INJ(PIN)}}$	Injected current on other pins		+/-4	
$\sum I_{INJ(PIN)}$	Total injected current on all I/Os and control pins		+/-20	

3.3 Electrical characteristics

3.3.1 Operating conditions

Table 3-2 General operating conditions

Symbol	Parameter	Condition	Min.	Max.	Unit	
F _{HCLK}	Internal AHB clock frequency			50	MHz	
3.7	Standard anamating valtage	ADC not used	2.7	5.5	V	
$ m V_{DD}$	Standard operating voltage	Use ADC (recommended)	2.8	5.5	V	
T_A	Ambient temperature		-40	85	°C	
T_{J}	Junction temperature range		-40	105	°C	

Table 3-3 Power-on and power-down conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{DD} rise time rate			0	∞	us/V
$t_{ m VDD}$	V _{DD} fall time rate		30	∞	us/V

3.3.2 Embedded reset and power control block characteristics

Table 3-4 Reset and voltage monitor (For PDR, select high threshold gear)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		PLS[2:0] = 000 (rising edge)		2.85		V
		PLS[2:0] = 000 (falling edge)		2.7		V
		PLS[2:0] = 001 (rising edge)		3.05		V
		PLS[2:0] = 001 (falling edge)		2.9		V
		PLS[2:0] = 010 (rising edge)		3.3		V
	D	PLS[2:0] = 010 (falling edge)		3.15		V
$V_{PVD}^{(1)}$	Programmable voltage detector level selection	PLS[2:0] = 011 (rising edge)		3.5		V
	detector level selection	PLS[2:0] = 011 (falling edge)		3.3		V
		PLS[2:0] = 100 (rising edge)		3.7		V
		PLS[2:0] = 100 (falling edge)		3.5		V
		PLS[2:0] = 101 (rising edge)		3.9		V
		PLS[2:0] = 101 (falling edge)		3.7		V
		PLS[2:0] = 110 (rising edge)		4.1		V

		PLS[2:0] = 110 (falling edge)		3.9		V
		PLS[2:0] = 111 (rising edge)		4.4		V
		PLS[2:0] = 111 (falling edge)		4.2		V
V _{PVDhyst}	PVD hysteresis			0.18		V
17	Power-on/power-down	Rising edge	2.32	2.5	2.68	V
V _{POR/PDR}	reset threshold	Falling edge	2.3	2.48	2.66	V
V _{PDRhyst}	PDR hysteresis			20		mV
4	Power on reset		12	17	22	mS
t _{RSTTEMPO}	Other resets			300		uS

Note: 1. Normal temperature test value.

3.3.3 Embedded reference voltage

Table 3-5 Embedded reference voltage

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{REFINT}	Internal reference voltage	$T_A = -40$ °C~85°C	1.17	1.2	1.23	V
	ADC sampling time when					
$T_{S_vrefint}$	reading the internal		3		500	$1/f_{ADC}$
	reference voltage					

3.3.4 Supply current characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, the software configuration of the product, the operating frequency, flip rate of the I/O pin, the location of the program in memory and the executed code, etc. The current consumption measurement method is as follows:

Figure 3-2 Current consumption measurement

The microcontroller is in the following conditions:

Normal temperature VDD = 3.3V or 5V case, when testing: all IO ports configured with pull-down inputs; HSI on when testing HSE, HSE off when testing HSI, HSE= 24M, HIS= 24M (calibrated); system clock source CLK*2 when FHCLK= 48MHz, 16MHz; clock on all peripherals only when turning on all peripherals. Enables or disables power consumption of all peripheral clocks.

Table 3-6-1 Typical current consumption in Run mode, data processing code runs from the internal Flash ($V_{DD} = 3.3V$)

				Ту	/p.	
Symbol	Parameter	Condit	Condition		All peripherals	Unit
				enabled	disabled	
			$F_{HCLK} = 48MHz$	7.0	4.6	
			$F_{HCLK} = 24MHz$	5.2	4.2	
		External clock	$F_{HCLK} = 16MHz$	4.6	3.8	
			$F_{HCLK} = 8MHz$	3.1	2.7	
	Supply		$F_{HCLK} = 750 KHz$	1.8	1.8	
$I_{DD}^{(1)}$	current in	Runs on the	$F_{HCLK} = 48MHz$	6.3	3.9	mA
	Run mode	high-speed internal	$F_{HCLK} = 24MHz$	4.3	3.1	
		RC oscillator (HSI).	$F_{HCLK} = 16MHz$	3.9	3.1	
		Uses AHB prescaler	$F_{HCLK} = 8MHz$	2.3	1.9	
		to reduce the frequency.	$F_{HCLK} = 750 \text{KHz}$	1.1	1.0	

Note: 1. The above are measured parameters.

Table 3-6-2 Typical current consumption in Run mode, data processing code runs from the internal Flash $(V_{DD} = 5V)$

				Ту	7 p .	
Symbol	Parameter	Condit	ion	All peripherals	All peripherals	Unit
				enabled	disabled	
			$F_{HCLK} = 48MHz$	8.0	5.6	
			$F_{HCLK} = 24MHz$	6.4	5.6	
		External clock	$F_{HCLK} = 16MHz$	5.8	5.0	
			$F_{HCLK} = 8MHz$	3.8	3.4	mA
	Supply		$F_{HCLK} = 750 KHz$	2.2	2.1	
$I_{DD}^{(1)}$	current in	Runs on the	$F_{HCLK} = 48MHz$	7.3	4.9	mA
	Run mode	high-speed internal	$F_{HCLK} = 24MHz$	5.3	4.1	
		RC oscillator (HSI).	$F_{HCLK} = 16MHz$	5.0	4.3	
		Uses AHB prescaler	$F_{HCLK} = 8MHz$	3.1	2.7	
		to reduce the frequency.	$F_{HCLK} = 750 \text{KHz}$	1.4	1.4	

Note: 1. The above are measured parameters.

Table 3-7-1 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM ($V_{DD} = 3.3V$)

STATE (+ BB - State +)							
					Ту	p.	
	Symbol	Parameter	Condition		All peripherals	All peripherals	Unit
ı					enabled	disabled	
ı	$I_{DD}^{(1)}$	Supply	External clock	$F_{HCLK} = 48MHz$	4.9	2.5	mA

^{2.} When VDD < 3V, the current power consumption will increase.

current in		$F_{HCLK} = 24MHz$	2.9	1.7	
Sleep mode		$F_{HCLK} = 16MHz$	2.5	1.7	
(In this case,		$F_{HCLK} = 8MHz$	1.7	1.3	
peripheral		$F_{HCLK} = 750 KHz$	1.2	1.1	
power supply	Runs on the	$F_{HCLK} = 48MHz$	4.2	1.8	
and clock are	high-speed internal	$F_{HCLK} = 24MHz$	2.2	1.0	
maintained)	RC oscillator	$F_{HCLK} = 16MHz$	1.8	1.0	
	(HSI). Uses AHB	$F_{HCLK} = 8MHz$	1.0	0.6	
	prescaler to reduce the frequency.	$F_{HCLK} = 750KHz$	0.4	0.4	

Note: 1. The above are measured parameters.

Table 3-7-2 Typical current consumption in Sleep mode, data processing code runs from internal Flash or SRAM ($V_{DD} = 5V$)

				Ту	Тур.	
Symbol	Parameter	Cond	ition	All peripherals	All peripherals	Unit
				enabled	disabled	
			$F_{HCLK} = 48MHz$	4.9	2.5	
			$F_{HCLK} = 24MHz$	2.9	1.7	
	Supply	External clock	$F_{HCLK} = 16MHz$	2.5	1.7	
	current in		$F_{HCLK} = 8MHz$	1.7	1.3	
	Sleep mode		$F_{HCLK} = 750 KHz$	1.2	1.1	
$I_{DD}^{(1)}$	(In this case,	Runs on the	$F_{HCLK} = 48MHz$	4.2	1.8	mA
	peripheral power supply	high-speed internal	$F_{HCLK} = 24MHz$	2.2	1.0	
	and clock are	RC oscillator	$F_{HCLK} = 16MHz$	1.8	1.0	
	maintained)	(HSI). Uses AHB	$F_{HCLK} = 8MHz$	1.0	0.6	
	prescaler to reduce the frequency.	$F_{HCLK} = 750 \text{KHz}$	0.4	0.4		

Note: 1. The above are measured parameters.

Table 3-8 Typical current consumption in Standby mode

Symbol	Parameter	Condition		Тур.	Unit
		I CI on	$V_{DD} = 3.3V$	10.5	
T	Supply current in	LSI on	$V_{DD} = 5V$	11.1	
I_{DD}	Standby mode	ICI CC	$V_{DD} = 3.3V$	9.0	uA
		LSI off	$V_{DD} = 5V$	9.6	

Note: The above are measured parameters.

3.3.5 External clock source characteristics

Table 3-9 From external high-speed clock

İ	Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
İ	F _{HSE_ext}	External clock frequency		4	24	25	MHz
	V _{HSEH} ⁽¹⁾	OSC_IN input pin high level		$0.8V_{\mathrm{DD}}$		V_{DD}	V

	voltage				
V _{HSEL} ⁽¹⁾	OSC_IN input pin low-level voltage	0		$0.2V_{DD}$	V
$C_{in(HSE)}$	OSC_IN input capacitance		5		pF
DuCy _(HSE)	Duty cycle	40	50	60	%
$I_{\rm L}$	OSC_IN input leakage current			±1	uA

Note: 1. Failure to meet this condition may cause level recognition error.

Figure 3-3 External high-frequency clock source circuit

Table 3-10 High-speed external clock generated from a crystal/ceramic resonator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{OSC_IN}	Resonator frequency		4	24	25	MHz
R_{F}	Feedback resistance			250		kΩ
С	Recommended load capacitance and corresponding crystal series impedance R _S	$R_{\rm S} = 60\Omega^{(1)}$		20		pF
I_2	HSE drive current	$V_{DD} = 3.3 V$, 20p load		0.32		mA
g_{m}	Oscillator transconductance	Startup		6.8		mA/V
t _{SU(HSE)}	Startup time	V _{DD} is stable, 24M crystal		2		ms

Note 1: It is recommended that the ESR of 25M crystal should not exceed 60 Ω , and it can be relaxed if it is lower than 25M.

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, generally $C_{L1} = C_{L2}$.

Figure 3-4 Typical circuit of external 24M crystal

3.3.6 Internal clock source characteristics

Table 3-11 Internal high-speed (HSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{HSI}	Frequency (after calibration)			24		MHz
DuCy _{HSI}	Duty cycle		45	50	55	%
1.00	Accuracy of HSI oscillator (after	$TA = 0$ °C \sim 70°C	-1.2		1.6	%
ACC _{HSI}	calibration)	$TA = -40$ °C \sim 85°C	-2.2		2.2	%
t _{SU(HSI)}	HSI oscillator startup stabilization time			10		us
I _{DD(HSI)}	HSI oscillator power consumption		120	180	270	uA

Table 3-12 Internal low-speed (LSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{LSI}	Frequency		100	128	150	KHz
DuCy _{LSI}	Duty cycle		45	50	55	%
t _{SU(LSI)}	LSI oscillator startup stabilization time			80		us
$I_{DD(LSI)}$	LSI oscillator power consumption			1.5		uA

3.3.7 Wakeup time from low-power mode

Table 3-13 Wakeup time from low-power mode⁽¹⁾

Symbol	Parameter	Condition	Тур.	Unit
twusleep	Wakeup from Sleep mode	Wake up using HSI RC clock	30	us
		LDO stabilization time + HSI RC		
t _{WUSTDBY}	Wakeup from Standby mode	clock wake up + code load time(2)	200	us
		(take 128K as example)		

Note: The above parameters are measured parameters.

3.3.8 Memory characteristics

Table 3-14 Flash memory characteristics

, , , , , , , , , , , , , , , , , , ,								
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit		
t _{ERASE_64}	Page (64 bytes) programming time	$T_A = -20$ °C ~ 85 °C	2.4		3.1	ms		
t _{ERASE}	Page (64 bytes) erase time	$T_A = -20$ °C \sim 85°C	2.4		3.1	ms		
t_{prog}	16-bit programming time	$T_A = -20$ °C \sim 85°C	2.4		3.1	ms		
$t_{ m ME}$	Whole chip erase time	$T_A = -20$ °C \sim 85°C	2.4		3.1	ms		
V_{prog}	Programming voltage		2.8		5.5	V		

Table 3-15 Flash memory endurance and data retention

Sym	bol	Parameter	Condition	Min.	Тур.	Max.	Unit
NE	ND	Endurance	$T_A = 25$ °C	10K	80K ⁽¹⁾		times

t_{RET}	Data retention	10		year

Note: The endurance parameter is actual measured, which is not guaranteed.

3.3.9 I/O port characteristics

Table 3-16 General-purpose I/O static characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
	Standard I/O pin, input high level		0.22*(V _{DD} -		V _{DD} +0.3	V	
37	voltage		2.7)+1.55		V DD+0.3	v	
$V_{ m IH}$	FT I/O pin, input high level voltage		$0.22*(V_{DD}-$		5.5	V	
	r 1 1/O pin, input ingil level voltage		2.7)+1.55		3.3	·	
$ m V_{IL}$	Standard I/O pin, input low-level		-0.3		0.19*(V _{DD} -	V	
	voltage		-0.3		2.7)+0.65	· I	
	FT I/O pin, input low-level voltage	-0.3			0.19*(V _{DD} -	$\mid v \mid$	
	171 170 pm, input low-level voltage		-0.3		2.7)+0.65	`	
$V_{ m hys}$	Schmitt trigger voltage hysteresis		150			mV	
-		Standard I/O port			1		
I_{lkg}	Input leakage current	FT I/O port			3	uA	
R_{PU}	Weak pull-up equivalent resistance		35	45	55	kΩ	
R_{PD}	Weak pull-down equivalent resistance		35	45	55	kΩ	
$C_{\rm I/O}$	I/O pin capacitance			5		pF	

Output drive current characteristics

GPIO (General-Purpose Input/Output Port) can sink or output up to ± 8 mA current, and sink or output ± 20 mA current (not strictly to $V_{\text{OL}}/V_{\text{OH}}$). In user applications, the total driving current of all I/O pins cannot exceed the absolute maximum ratings given in Section 3.2:

Table 3-17 Output voltage characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
V_{OL}	Output low level when 8 pins are sunk	TTL port, $I_{I/O} = +8mA$		0.4	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 5.5V$	V _{DD} -0.4		V
V_{OL}	Output low level when 8 pins are sunk	CMOS port, $I_{I/O} = +8mA$		0.4	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 5.5V$	2.3		v
V_{OL}	Output low level when 8 pins are sunk	$I_{I/O} = +20 \text{mA}$		1.3	V
V_{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 5.5V$	V _{DD} -1.3		V

Note: In the above conditions, if multiple I/O pins are driven at the same time, the total current cannot exceed the absolute maximum ratings given in Table 3.2. In addition, when multiple I/O pins are driven at the same time, the current on the power/ground point is very large, which will cause the voltage drop to make the internal I/O voltage not reach the power supply voltage in the table, resulting in the drive current being less than the nominal value.

MODEx[1:0] configuration	Symbol	Parameter	Condition	Min.	Max.	Unit
10	F _{max(I/O)out}	Maximum frequency	$CL = 50pF, V_{DD} = 2.7-5.5V$		2	MHz
10 (2MHz)	$t_{f(I/O)out}$	Output high to low fall time	CI - 50pE V - 2.7.5.5V		125	ns
(ZMITZ)	$t_{r(I/O)out}$	Output low to high rise time	$CL = 50pF, V_{DD} = 2.7-5.5V$		125	ns
0.1	F _{max(I/O)out}	Maximum frequency	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	MHz
01 (10MHz)	t _{f(I/O)out}	Output high to low fall time	CI = 50°E V = 2.7.5.5V		25	ns
(10MHz)	$t_{r(I/O)out}$	Output low to high rise time	$CL = 50pF, V_{DD} = 2.7-5.5V$		25	ns
1.1	F _{max(I/O)out}	Maximum frequency	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
(30MHz)	$t_{f(I/O)out}$	Output high to low fall time	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
(30MHz)	t _{r(I/O)out}	Output low to high rise time	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
	$t_{ m EXTIpw}$	The EXTI controller detects the pulse width of the external signal		10		ns

Table 3-18 Input/output AC characteristics

3.3.10 NRST pin characteristics

Table 3-19 External reset pin characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low-level voltage		-0.3	31	0.28*(V _{DD} -1.8)+0.6	V
V _{IH(NRST)}	NRST input high-level voltage		0.41*(V _{DD} -1.8)+1.3		V _{DD} +0.3	V
V _{hys(NRST)}	NRST Schmitt Trigger voltage hysteresis		150			mV
$R_{PU}^{(1)}$	Weak pull-up equivalent resistance		35	45	55	kΩ

Note: 1. The pull-up resistor is a real resistor in series with a switchable PMOS implementation. The resistance of this PMOS/NMOS switch is very small (approximately 10%).

Circuit reference design and requirements:

Figure 3-5 Typical circuit of external reset pin

3.3.11 TIM timer characteristics

Table 3-20 TIMx characteristics

	Symbol	Parameter	Condition	Min.	Max.	Unit
--	--------	-----------	-----------	------	------	------

$t_{\rm res(TIM)}$	Timer reference clock		1		t _{TIMxCLK}
	Timer reference clock	$f_{TIMxCLK} = 48MHz$	13.9		ns
E	Timer external clock frequency on		0	f _{TIMxCLK} /2	MHz
F_{EXT}	CH1 to CH4	$f_{TIMxCLK} = 48MHz$	0	36	MHz
ResTIM	Timer resolution			16	位
	16-bit counter clock cycle when the		1	65536	t _{TIMxCLK}
t _{COUNTER}	internal clock is selected	$f_{TIMxCLK} = 48MHz$	0.0139	910	us
t _{MAX_COUNT}	M			65535	t _{TIMxCLK}
	Maximum possible count	$f_{TIMxCLK} = 48MHz$		59.6	s

3.3.12 I2C interface characteristics

t_{r(SCL)}--

Figure 3-6 I2C bus timing diagram

Table 3-21 I2C interface characteristics

G 1 1	D	Standard I2C		Fast I2C		TT '
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
$t_{w(SCKL)}$	SCL clock low time	4.7		1.2		us
$t_{w(SCKH)}$	SCL clock high time	4.0		0.6		us
$t_{\rm SU(SDA)}$	SDA data setup time	250		100		ns
$t_{h(SDA)}$	SDA data hold time	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA and SCL rise time		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA and SCL fall time		300			ns
t _{h(STA)}	Start condition hold time	4.0		0.6		us
t _{SU(STA)}	Repeated start condition setup time	4.7		0.6		us
t _{SU(STO)}	Stop condition setup time	4.0		0.6		us
	Time from stop condition to start condition	4.7		1.0		
$t_{w(STO:STA)}$	(bus free)	4.7		1.2		us
Сь	Capacitive load for each bus		400		400	pF

3.3.13 SPI interface characteristics

Figure 3-7 SPI timing diagram in Master mode

Figure 3-8 SPI timing diagram in Slave mode (CPHA = 0)

Figure 3-9 SPI timing diagram in Slave mode (CPHA = 1)

Table 3-22 SPI interface characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
£ /4	CDI ala als fragues ass	Master mode		24	MHz
f_{SCK}/t_{SCK}	SPI clock frequency	Slave mode		24	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capacitance:C = 30pF		20	ns
t _{SU(NSS)}	NSS setup time	Slave mode	2t _{PCLK}		ns
$t_{h(NSS)}$	NSS hold time	Slave mode	$2t_{PCLK}$		ns
/4	CCV 1::-1 11 1:	Master mode, $f_{PCLK} = 48MHz$,	20	70	
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK high and low time	Prescaler factor = 2	30		ns
$t_{\mathrm{SU(MI)}}$	Data innut satur time	Master mode	5		ns
$t_{ m SU(SI)}$	Data input setup time	Slave mode	5		ns
$t_{h(MI)}$	Data input hold time	Master mode	5		ns
t _{h(SI)}	Data input hold time	Slave mode	4		ns
t _{a(SO)}	Data output access time	Slave mode, $f_{PCLK} = 24MHz$	0	1t _{PCLK}	ns
t _{dis(SO)}	Data output disable time	Slave mode	0	10	ns
$t_{ m V(SO)}$	Data autout valid time	Slave mode (After enable edge)		5	ns
t _{V(MO)}	Data output valid time	Master mode (After enable edge)		5	ns
$t_{h(\mathrm{SO})}$	Data autaut hald time	Slave mode (After enable edge)	2		ns
t _{h(MO)}	Data output hold time	Master mode (After enable edge)	0		ns

3.3.14 10-bit ADC characteristics

Table 3-23 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
$V_{ m DD}$	Supply voltage		2.8		5.5	V
I_{DD}	Supply current			370		uA

		$V_{DD} = 2.8 \text{ to } 5.5 \text{V}$	1		6	
$f_{ m ADC}$	ADC clock frequency	$V_{DD} = 3.2 \text{ to } 5.5 \text{V}$	1		12	MHz
		$V_{\rm DD} = 4.5 \text{ to } 5.5 \text{V}$	1		24	
V _{AIN}	Conversion voltage range		Vss		V_{DD}	V
C_{ADC}	Internal sample and hold capacitor			3		pF
		$f_{ADC} = 4 \text{ MHz}$			285	
f_{S}	Samulina nata	$f_{ADC} = 6 \text{ MHz}$			430	KHz
1s	Sampling rate	$f_{ADC} = 12 \text{ MHz}$			857	
		$f_{ADC} = 24 \text{ MHz}$			1710	
		$f_{ADC} = 4 \text{ MHz}$		0.75		
t_s	Sampling time	$f_{ADC} = 6 \text{ MHz}$		0.5		us
		$f_{ADC} = 12 \text{ MHz}$		0.25		
t_{STAB}	Power-on time			7		us
		$f_{ADC} = 4 \text{ MHz}$	3.5			us
 	Total conversion time	$f_{ADC} = 6 \text{ MHz}$	2.33			us
t _{CONV}	(including sampling time)	$f_{ADC} = 12 \text{ MHz}$	1.17			us
		-		14		1/f _{ADC}

Note: Above parameters are guaranteed by design.

 $Table \ 3-24 \ ADC \ error \ (f_{ADC} = 12 MHz: R_{AIN} < 10 k \ \Omega \ , V_{DD} > 2.9 V) (f_{ADC} = 24 MHz: R_{AIN} < 3 k \ \Omega \ , V_{DD} = 5 V)$

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ET	Total data deviation	$f_{ADC} = 12 \text{ MHz}$		2	4	
ETF24	$f_{ADC} = 24MHz$ total data deviation	$f_{ADC} = 24 \text{ MHz}$		3	6	
EO	Misalignment error	$f_{ADC} = 12 \text{ MHz}$		1	3	LSB
EG	Gain error	$f_{ADC} = 12 \text{ MHz}$		1	2	LSD
ED	Differential nonlinearity error	$f_{ADC} = 12 \text{ MHz}$		0.5	2	
EL	Integral nonlinearity error	$f_{ADC} = 12 \text{ MHz}$		0.6	2.5	

Note: Source simulation.

 C_p represents the parasitic capacitance on the PCB and the pad (about 5pF), which may be related to the quality of the pad and PCB layout. A larger C_p value will reduce the conversion accuracy, the solution is to reduce the f_{ADC} value.

Figure 3-10 ADC typical connection diagram

Figure 3-11 Analog power supply and decoupling circuit reference

3.3.15 OPA characteristics

Table 3-25 OPA characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
$V_{ m DD}$	Supply voltage		2.8		5.5	V
C_{MIR}	Common mode input voltage		0		V _{DD}	V
V _{IOFFSET}	Input offset voltage			3	10	mV
I_{LOAD}	Drive current				1.5	mA
I _{DDOPAMP}	Current consumption	No load, static mode		273		uA
$C_{MRR}^{(1)}$	Common mode rejection ratio	@1KHz		81		dB
$P_{SRR}^{(1)}$	Power supply rejection ratio	@1KHz		88		dB
$Av^{(1)}$	Open loop gain	$C_{LOAD} = 50pF$		105		dB
$G_{BW}^{(1)}$	Unit gain bandwidth	$C_{LOAD} = 50pF$		12		MHz
$P_{M}^{(1)}$	Phase margin	$C_{LOAD} = 50pF$		75		deg
$S_R^{(1)}$	Slew rate limited	$C_{LOAD} = 50pF$		7.7		V/us
t _{WAKU} (1)	Setup time from shutdown to wake up, 0.1%	Input $V_{DD}/2$, $C_{LOAD}=50pF$, $R_{LOAD}=4k\Omega$		520		ns
R _{LOAD}	Resistive load		4			kΩ
C_{LOAD}	Capacitive load				50	pF
V (2)	High saturation output	$R_{LOAD} = 4k\Omega$, input V_{DD}	V _{DD} -180			
$V_{OHSAT}^{(2)}$	voltage	$R_{LOAD} = 20k\Omega$, input V_{DD}	V _{DD} -36			mV
V (2)	Low saturation output	$R_{LOAD} = 4k\Omega$, input 0			5	
$V_{OLSAT}^{(2)}$	voltage	$R_{LOAD} = 20k\Omega$, input 0		5	mV	
		$R_{LOAD} = 4k\Omega$, @1KHz		83		
EN ⁽¹⁾	Equivalent input voltage noise	$R_{LOAD} = 4k\Omega$, @10KHz		28		$\frac{\text{nv}}{\sqrt{Hz}}$

Note: 1. Design parameters are guaranteed.

2. The load current limits the saturated output voltage.