Step-1

4764-1-12RE AID: 124

RID: 232

a) Given statement is $\hat{a} \in If A$ is invertible and its rows are in reverse order in B, then B is invertible $\hat{a} \in If A$.

We have to determine whether the given statement is true or false.

Step-2

The given statement is **true**.

Since changing of order of elements does not alter its magnitude.

Hence *B* is invertible.

Step-3

(b) Given statement is $\hat{a} \in \mathbb{T}^{M}$ and B are symmetric then AB is symmetric $\hat{a} \in \mathbb{T}^{M}$.

We have to determine whether the given statement is true or false.

Step-4

The given statement is **false.**

Since

$$(AB)^{T} = B^{T} A^{T}$$

$$= BA \qquad \begin{cases} \text{Since } A \text{ and } B \text{ are symmetric} \\ \text{So } A^{T} = A \text{ and } B^{T} = B \end{cases}$$

From this, we get AB is symmetric if and only if AB = BA.

Hence the given statement is **false**.

Step-5

(c) Given statement is $\hat{a} \in \text{If } A$ and B are invertible then BA is invertible $\hat{a} \in \text{IM}$.

We have to determine whether the given statement is true or false.

Step-6

The given statement is **true**.

Since
$$(BA)^{-1} = A^{-1}B^{-1}$$
 and A^{-1} and B^{-1} exists.

So
$$(BA)^{-1}$$
 is also exists.

Therefore, BA is invertible.

Hence the given statement is **true.**

Step-7

d) Given statement is $\hat{a} \in \text{Every nonsingular matrix}$ can be factored into the product A = LU of a lower triangular L and an upper triangular U.

We have to determine whether the given statement is true or false.

Step-8

The given statement is **true**.

Since every non singular matrix A is the product of elementary matrices.

So it can be factorized into A = LU.

Hence the given statement is **true.**