Visual Analytics de Datos Epidemiológicos: Análisis de la Propagación y Olas Pandémicas del COVID-19

La pandemia de COVID-19 evidenció la necesidad de herramientas analíticas robustas para interpretar la evolución de la enfermedad. La gran disponibilidad de datos epidemiológicos abiertos permite estudiar patrones de propagación y olas pandémicas, comprendiendo la dinámica del brote en distintas regiones. El enfoque de visual analytics combina análisis computacional y visualización interactiva para facilitar la exploración y generación de conocimiento útil para epidemiólogos y autoridades sanitarias.

Contexto y Justificación del Proyecto

Contexto

La pandemia generó una disrupción global y la necesidad de analizar datos multivariados y espacio-temporales para entender la propagación del virus.

Justificación

Se requiere un marco analítico que identifique y caracterice olas epidémicas, facilitando la toma de decisiones basadas en evidencia científica en emergencias sanitarias.

Objetivo

Analizar datos epidemiológicos del COVID-19 mediante t´ecnicas de visual analytics, con el propósito de identificar y caracterizar patrones de propagaci´on y olas pandémicas

Descripción del Dataset OWID

Origen y Contenido

Datos diarios globales sobre COVID-19, incluyendo contagios, muertes, hospitalizaciones, pruebas y vacunación.

Actualización constante y cobertura multivariada para análisis espacio-temporales detallados.

Atributos Clave

- location: país o región
- date: fecha del registro
- new cases y new deaths: casos y muertes diarias
- reproduction rate: tasa de reproducción
- stringency index: índice de medidas restrictivas

Problemas Detectados en el Dataset

Datos Anómalos
Casos negativos inválidos causados por errores de carga o correcciones retroactivas.

Variabilidad Regional
Asia y Europa presentan mayor impacto, consistente con reportes oficiales y cobertura mediática.

Importancia para
Visualización
Estos datos guían la priorización de visualizaciones regionales para un análisis más efectivo.

Se detectaron datos anómalos como casos negativos, lo cual es inv´alido. Esto puede ser causado por errores de carga, correcciones retroactivas o fallas en los sistemas nacionales.

Problemas en las Herramientas y Datos Epidemiológicos

Limitaciones Técnicas

Dificultad para integrar múltiples escalas espaciales y falta de interactividad en visualizaciones. Representación

Temporal

Incapacidad para mostrar

claramente la evolución

temporal y tratar la

incertidumbre en los datos.

Impacto

Estas deficiencias dificultaron la comprensión de la propagación y la identificación de olas pandémicas, afectando la respuesta en salud pública.

Asia y Europa encabezan la lista, lo cual es consistente con el impacto mediático y los reportes de la OMS. Sirve como base para priorizar visualizaciones regionales.

Patrones de Tendencia en las Olas Pandémicas

Crecimiento Rápido

Períodos de aumento acelerado en casos que marcan el inicio de olas

Descensos

Graduales

Fases de control y reducción de contagios tras alcanzar picos máximos.

Estudio de Picos

Las curvas permiten analizar picos y duración de cada ola para mejorar la respuesta sanitaria.

Variación Geográfica de la Propagación

India y Alemania

Olas abruptas con picos marcados, indicando brotes rápidos y severos.

Japón y Brasil

Picos más modulados y olas menos pronunciadas, reflejando propagación más controlada.

Respuesta

Estos patrones permiten adaptar estrategias sanitarias según características regionales.

Conclusiones y Aplicaciones del Visual Analytics

Integración de Datos

Combinar múltiples variables y escalas espaciales para un análisis completo.

Visualización

hateractiva ploración dinámica para detectar patrones y anomalías.

Apoyo a Decisiones

Generar conocimiento útil para autoridades sanitarias en la gestión de emergencias.