



# **Neural Networks**

Optimizers, Loss Functions and Learning Rate



## Recap - Last Video

- Artificial Neural Networks
  - Structure
  - Elements in a Neural Network
- Layers in a Neural Network
  - Different types of layers
- Activation Functions in a Neural Network
  - How they affect a Neural Network
  - Different types of Activation Functions
  - When to use which activation function
- How to create a model in Python with Keras





# Optimization, Loss and Learning Rate

#### Loss and Loss Functions

- O What is it and what is it used for?
- Different types of loss functions in Neural Networks

### Optimization

- What is it and what is it used for?
- Optimizers in Neural Networks

### Learning Rate

- What is it?
- How does it affect the Neural Network during training?



## Loss and Loss Functions

- The objective during training of a Neural Network is to minimize the loss function by iteratively updating the weights in the network
- The loss is calculated by using the true labels from the input data and the predicted output from the Neural Network

```
error = model's prediction - true label
```

Mean Squared Error (MSE)

```
MSE = (model's prediction - true label) - (model's prediction - true label)
```

## Loss Functions

- Regression Loss Functions
  - Mean Squared Error
  - A lot more
- Probabilistic Loss Functions
  - Categorical Crossentropy
  - Sparse Categorical Crossentropy
  - Binary Crossentropy
  - A lot more



MSE = (model's prediction - true label) - (model's prediction - true label)



# **Optimizers in Neural Networks**

- Specific implementation of the gradient descent algorithm
- Algorithm depends on the first order derivative of a loss function
- Calculates the way the weights should be altered so the loss function can reach a minima - a global minima is the goal and depends on the learning rate





# Optimizers in Neural Networks

- Stochastic Gradient Descent (SGD)
- Root Mean Square Prob (RMSprob)
- Adaptive Moment Estimation (Adam)
- Adaptive Gradient Algorithm (AdaGrad)





# Learning Rate in Neural Networks

- Size of the steps we are taking to reach our minimized loss
- How fast do we want our model to learn?



gradients \* learning rate

