EXERCICE I

1. Soit
$$(x_0,y_0)\in\mathbb{R}^2$$
 fixé , on a $f_\lambda(x_0)=y_0$ ssi $\lambda=\dfrac{(y_0-x_0)e^{x_0}}{1+x_0^2}$.

$$\begin{array}{l} \text{2. - Si } \lambda = 0 \text{ , } f_0(x) = x \text{ , c'est l'équation d'une droite.} \\ \text{- Si } \lambda \neq 0 \\ \text{- au } V(+\infty) \text{ , } f_\lambda \sim x \text{ et } f_\lambda(x) - x \longrightarrow 0 \text{ , donc } y = x \text{ est une asymptote.} \\ \text{- au } V(-\infty) \text{ , } \frac{f_\lambda(x)}{x} \sim \lambda x e^{-x} \longrightarrow \infty \text{ , donc } (Oy) \text{ est une branche parabolique.} \\ \end{array}$$

3. $f_{\lambda}^{\prime\prime}(x)=\lambda(x-1)(x-3)e^{-x}$,d'où les tableaux de variations :

	x	$-\infty$		1	3		$+\infty$		x	$-\infty$	1		3	$+\infty$
Si $\lambda > 0$	$f'_{\lambda}(x)$		+	0	- 0	+		Si \ < 0	$f'_{\lambda}(x)$		- 0	+	0 –	
31 A > 0					_			31 A < 0			_			
	$f_{\lambda}(x)$		U			U			$f_{\lambda}(x)$			U		

donc les points d'inflexion sont $(1,1+\frac{2\lambda}{e})$, $(3,3+\frac{10\lambda}{e^3})$.

4. (a) Posons $g(x)=\frac{(x-1)^2}{e^x}$, $g'=(x-1)(3-x)e^{-x}$,d'où le tableau de variations :

x	$-\infty$		1		3		$+\infty$
g'(x)		_	0	+	0	_	
	$+\infty$				$\frac{4}{e^3}$		
g(x)		\		7		/	
			0				0

d'où le tracé de la courbe

(b) Pour $\lambda \neq 0$, Γ_{λ} admet une tangente horizontale ssi $f'_{\lambda} = 0$ ssi $g(x) = \frac{1}{\lambda}$ d'où si n est le nombre de points où Γ_{λ} admet une tangente horizontale , alors , n est le nombre de points sur lesquelles la droite horizontale $y = \frac{1}{\lambda}$ rencontre le graphe de g qu'on vient de tracer.

$$\begin{array}{ll} -\,\,\mathrm{si}\,\,\lambda \leq 0 \;,\, n=0 \\ -\,\,\mathrm{si}\,\,\lambda > \frac{e^3}{4} \;,\, \mathrm{n=3} \end{array} \qquad \begin{array}{ll} -\,\,\mathrm{si}\,\,\lambda = \frac{e^3}{4} \;,\, n=2 \\ -\,\,\mathrm{si}\,\,0 < \lambda < \frac{e^3}{4} \;,\, n=1 \end{array}$$

(c) Le lieu I est l'ensemble des (x,y) vérifiants $g(x)=\frac{1}{\lambda}$ et $y=f_{\lambda}(x)$, c'est la fonction définie sur $\mathbb{R}-\{1\}$ par : $y=x+\frac{x^2+1}{(x-1)^2}$ de tracé :

5. On suppose que $a \neq 1$, $\Gamma_{\lambda,a}$ apour équation $y = f_{\lambda}(a) + f'_{\lambda}(a)(x-a)$ Un point (x,y) est commun à tous les $\Gamma_{\lambda,a}$ ssi $(x,y) \in \Gamma_{\lambda,a}, \forall \lambda \in \mathbb{R}$ ssi $\lambda e^{-a}(1+a^2-(a-1)^2(x-a))+(x-y)=0, \forall \lambda \in \mathbb{R}$ ssi $x=y=a+\frac{a^2+1}{(a-1)^2}$ et le point commun est donc : $(a,a+\frac{a^2+1}{(a-1)^2})$. Si a=1, $f'_{\lambda}(a)=1, \forall \lambda \in \mathbb{R}$, donc les $\Gamma_{\lambda,1}$ sont parallèles .

6. - Si
$$\lambda = -2$$

$$\begin{vmatrix} x & -\infty & +\infty \\ f'_{-2}(x) & + & + \\ f_{-2}(x) & & \nearrow \\ -\infty & & -\infty \end{vmatrix}$$

$$- \operatorname{Si} \lambda = 3 \begin{array}{|c|c|c|c|c|}\hline x & -\infty & x_0 & +\infty \\\hline f_3'(x) & - & 0 & + \\\hline f_3(x) & +\infty & & +\infty \\\hline f_3(x) & & & \swarrow & & \nearrow \\\hline \end{array}$$

$$- \operatorname{Si} \lambda = 7 \begin{array}{|c|c|c|c|c|c|c|c|}\hline x & -\infty & x_1 & x_2 & x_3 & +\infty \\\hline f_7'(x) & - & + & - & + & -10 \\\hline f_7(x) & +\infty & & & +\infty \\\hline \end{array}$$

7. $f_\lambda'=1-\lambda(x-1)^2e^{-x}$ or $\lambda e^{-x}=\frac{f_\lambda-x}{1+x^2}$, donc f_λ vérifie l'équation différentielle linéaire du premier ordre $(x^2+1)y'+(x-1)^2y=x^3-x^2+x+1$.

La question 1 s'interpréte par le théorème de Cauchy-Lipschitz : par un point (x_0,y_0) passe une et une seule solution de l'équation .

EXERCICE II

- 1. (a) C'est la somme d'une suite géométrique de raison $q = x \neq 1$.
 - (b) 1 n'est racine de P , donc , $P_n(x) = 0$ ssi $x \neq 1$ et $x^{2n+1} = 1$ ssi $x \in \{e^{i\frac{2k\pi}{2n+1}} \ / \ k = 1,...,2n\}$.
- 2. Pour x=1 , $P_n(x)=2n+1\longrightarrow +\infty$, et la suite $(x^{2n+1})_n$ converge ssi $|x|\le 1$, donc $(P_n(x))_n$ converge ssi $x\in [-1,1[$.

3. (a)
$$P_n(1) = 2n + 1$$
, $P_n(-1) = \frac{1 - (-1)^{2n+1}}{1+1} = 1$, $P'_n(1) = \sum_{k=1}^{2n} k = n(2n+1)$

$$P'_n(-1) = \sum_{k=1}^{2n} k(-1)^{k-1} = \sum_{paires} + \sum_{impaires} = -2\sum_{p=1}^{n} p + \sum_{p=0}^{n-1} (2p+1) = -n.$$

- (b) Pour $x \neq 1$, $P'_n(x) = \frac{\varphi_n(x)}{(1-x)^2}$.
- (c) Pour $n \neq 0$, $\varphi_n'(x) = 2n(2n+1)(x-1)x^{2n-1}$, d'où les tableaux de variations :

ĺ	x	$-\infty$		0		1		$+\infty$
	$\varphi'_n(x)$		+	0	_	0	+	
I				1				$+\infty$
	$\varphi_n(x)$	7			\		7	
		$-\infty$				0		

x	$-\infty$		α_n		1		$+\infty$
$P'_n(x)$		_	0	+	0	+	
	$+\infty$				2n + 1		$+\infty$
$P_n(x)$		\		7		7	
			$P_n(\alpha_n)$				

(d) φ_n est strictement croissante sur [-1,0] continue , de plus , $\varphi_n(-1)=-4n<0$ et $\varphi_n(0)=1>0$ le TVI entraine l'existence de α_n unique qui annule φ_n . Le tableau de variations de P_n montre que $\beta_n=P_n(\alpha_n)=\frac{1-\alpha_n^{2n+1}}{1-\alpha_n}>0$.

5. (a) $\varphi_n(\alpha_n)=0$, donc $\alpha_n^{2n}=\frac{1}{1+2n-2n\alpha_n}$ et puisque $-1<\alpha_n<0$, on obtient $\frac{1}{1+4n}<\alpha_n^{2n}<\frac{1}{1+2n}$ ce qui donne $\frac{1}{\sqrt[2n]{1+4n}}<|\alpha_n|<\frac{1}{\sqrt[2n]{1+2n}}$, or les deux suites encadrantes tendent vers 1, donc $|\alpha_n|=-\alpha_n\longrightarrow 1$, c.à.d $\alpha_n\longrightarrow -1$.

- (b) $\varphi_n(\alpha_n)=0$, donc $P'_n(\alpha_n)=0$. De l'égalité $\alpha_n^{2n}=\frac{1}{1+2n-2n\alpha_n}$ et $\alpha_n\longrightarrow -1$, on déduit que $\alpha_n^{2n}\sim \frac{1}{4n}$, or $\frac{1}{4n}$ ne tend pas vers 1, donc $2n.ln(-\alpha_n)\sim -ln(4n)=-ln(4)-ln(n)\sim -ln(n)$, or $ln(-\alpha_n)\sim -\alpha_n-1$ et par suite $\alpha_n+1\sim \frac{ln(n)}{2n}$.
- (c) $\varphi_n'(x)=2n(2n+1)x^{2n-1}(x-1)>0$ sur]-1,0[, donc φ_n est croissante sur]-1,0[, ceci nous invite à montrer que : $\forall n\in\mathbb{N}^*$, $\varphi_{n+1}(\alpha_n)>0$, or $\varphi_{n+1}(\alpha_n)=(2n+2)\alpha_n^{2n+3}-(2n+3)\alpha_n^{2n+2}-2n\alpha_n^{2n+1}+(2n+1)\alpha_n^{2n}=\alpha_n^{2n}(\alpha_n-1)((2n+2)\alpha_n^2-\alpha_n-(2n+1))=\alpha_n^{2n}(\alpha_n-1)^2((2n+2)\alpha_n+(2n+1))$, ce qui revient à montrer que $\forall n\in\mathbb{N}^*$, $(2n+2)\alpha_n+(2n+1)>0$ qu'on va le faire par récurrence .
 - $-\text{ Pour }n=1\text{ , on a }\varphi_1(\alpha_1)=0\text{ , donc }2\alpha_1^3-3\alpha_1^2+1=(\alpha_1-1)^2(2\alpha_1+1)=0\text{ , ce qui donne }\alpha_1=\frac{-1}{2}\text{ , donc }4\alpha_1+3=1>0$
 - Suposons que pour un certain $n\in\mathbb{N}^*$, $2n\alpha_{n-1}+(2n-1)>0$ et montrons que $(2n+2)\alpha_n+(2n+1)>0$.

Le graphe de P_n est au dessous de celui de P_{n-1} , donc , $P_n(\alpha_n) < P_{n-1}(\alpha_{n-1})$, or en dérivant l'expression $(1-x)P_n(x) = 1-x^{2n+1}$ on obtient $-P_n(x) + (1-x)P_n'(x) = -(2n+1)x^{2n}$ et par suite $P_n(\alpha_n) = (2n+1)\alpha_n^{2n}$ et l'inégalité $P_n(\alpha_n) < P_{n-1}(\alpha_{n-1})$ se traduit par $|\alpha_n|^{2n} < \frac{2n-1}{2n+1}|\alpha_{n-1}|^{2n-2}$

, donc en utilisant l'hypothèse de récurrence , on obtient les inégalités : $\left(\frac{2n+2}{2n+1}|\alpha_n|\right)^{2n} < \left(\frac{2n+2}{2n+1}\right)^{2n} \frac{2n-1}{2n+1}|\alpha_{n-1}|^{2n-2} < \left(\frac{2n+2}{2n+1}\right)^{2n} \frac{2n-1}{2n+1} \left(\frac{2n-1}{2n}\right)^{2n-2} = \\ \left(\frac{(2n-1)(2n+2)}{2n(2n+1)}\right)^{2n-2} \frac{(2n+2)^2(2n-1)}{(2n+1)^3} = \left(\frac{4n^2+2n-2}{4n^2+2n}\right)^{2n-2} \frac{8n^3+12n^2-4}{8n^3+12n^2+6n+1} < 1 \\ \operatorname{donc} \frac{2n+2}{2n+1}|\alpha_n| < 1 \text{ c.à.d } (2n+2)\alpha_n + (2n+1) > 0 \text{ et la récurrence est établie.}$

- $\text{(d) On a } \varphi_n(\alpha_n)=0 \text{ , donc } \alpha_n^{2n}=\frac{1}{2n+1-2n\alpha_n}\sim \frac{1}{4n} \text{ et par suite } \beta_n=\frac{1-\alpha_n^{2n+1}}{1-\alpha_n}\sim \frac{1}{2}.$
- 6. (a) f_u est continue sur $\mathbb R$ avec $\lim_\infty = 0$, donc f_u est bornée .
 - (b) La fonction $(x,y) \longmapsto f_u(t)$ est symétrique par rapport à l'origine , donc on peut restreindre L'étude au demi plan $y \geq 0$ et l'étude de f_u conduit au tableau de variations où on a posé $r_1 = \frac{-x \sqrt{x^2 xy + y^2}}{y}$ et $r_2 = \frac{-x + \sqrt{x^2 xy + y^2}}{y}$ les zéros de f_u' :

1								
	t	$-\infty$		r_1		r_2		$+\infty$
	$f'_u(t)$		_	0	+	0	_	
		0				$\frac{y}{1+2r_2}$		
	$f_u(t)$		/	21			/	
				$\frac{y}{1+2r_1}$				0
				$1 + 2r_1$				

De plus $r_1 \leq 0$, $r_2 \geq 0$ et $|f_u(r_2)| - |f_u(r_1)|$ est de même signe que celui de $2 + 2(r_1 + r_2) = \frac{y - 2x}{y}$.

Donc , $N(u)=\frac{y}{1+2r_1}$ si $y\leq 2x$ et $N(u)=\frac{y}{1+2r_2}$ si $y\geq 2x$, ce qui donne :

 $N(u) = 1 \text{ ssi } ((y-1)^2 = -4(x-1) \text{ et } y \le 2x) \text{ ou } ((y+1)^2 = 4(x+1) \text{ et } y \ge 2x).$

d'où la figure suivante qui comporte La sphère S, le cercle de centre O de rayon a et celui de centre O et de rayon b des questions ultérieures.

- (c) L'inégalité $aN(x,y) \leq \sqrt{x^2+y^2}$ se traduit par $a\overline{B}_2 = \overline{B}_2(O,a) \subset \overline{B}_N$, où \overline{B}_2 et \overline{B}_N désignent respectivement les boules unités associées au normes $\|.\|_2: (x,y) \longmapsto \sqrt{x^2+y^2}$ et $N: (x,y) \longmapsto N(x,y)$, le plus grand réel qui vérifit cette inclusion est a=d(O,S) . Soit $M_0=(x_0,y_0), (y_0>0)$, le point unique d'intersection de la tangente à S et de la sphère de centre O et de rayon a , l'équation de la sphère est : $f(x,y)=(y+1)^2-4(x+1)=0$, donc $\overrightarrow{OM_0}$ est parallèle au vecteur $\overrightarrow{grad}(f)(x_0,y_0)=(-4x_0,2(y_0+1))$, ce qui donne M_0 est la solution unique du système : $\begin{cases} \det(\overrightarrow{OM},\overrightarrow{grad}(f)(x_0,y_0))=0 \\ (y_0+1)^2=4(x_0+1) \end{cases}$ qui est équivalent au système $\begin{cases} x_0(y_0+1)+2y_0=0 \\ (y_0+1)^2=4(x_0+1) \end{cases}$, ceci revient à résoudre l'équation $y^3+3y^2+7y-3=0$ qui admet la seule solution réelle $y_0\simeq 0.36$, ce qui donne $x_0\simeq -0.53$ et par suite $a=\sqrt{x_0^2+y_0^2}\simeq 0.64$.
- (d) L'inégalité $\sqrt{x^2+y^2} \leq bN(x,y)$ se traduit par l'inclusion $\overline{B}_N \subset b\overline{B}_2 = \overline{B}_2(O,b)$, le plus petit réel qui vérifit cette inclusion est b, le demi diamètre de la sphère S. Soit $N_0 = (x_1,y_1)$ le point d'abscisse positif , intersection de S avec la droite y=2x, alors , N_0 vérifie le système $\begin{cases} y_1 = 2x_1 \\ (y_1+1)^2 = 4(x_1+1) \end{cases}$ ce qui donne $x_1 = \frac{\sqrt{3}}{2}$ et $y_1 = \sqrt{3}$ et par suite $b = \sqrt{x_1^2+y_1^2} = \frac{\sqrt{15}}{2}$.

EXERCICE III

Partie-A

- 1. (a) ln est concave, la tangente en 0 est d'équation y=x-1, donc $\forall x>0$, $ln(x)\leq x-1$.
 - (b) Pour u=n, l'inégalité est triviale . – pour $u\in [0,n[$, $x=1-\frac{u}{n}>0$, donc d'après (a) , $ln(1-\frac{u}{n})\leq -\frac{u}{n}$, c.à.d $nln(1-\frac{u}{n})\leq -u$ est en composant par l'exponentielle on obtient l'inégalité demandée.
- 2. (a) La formule de Taylor-Lagrange entre 1 et x entraine l'existence de c tel que $e^x=1+x+\frac{x^2}{2}e^c$, donc $e^x\geq 1+x$.
 - (b) $\forall t \in [0,1]$, $e^t \geq 1+t$, donc $(1-t)e^t \geq 1-t^2 \geq 0$, donc en levant à la puissace n , on obtient l'inégalité demandée.
 - (c) $\forall t \in [0,1]$, la fonction $t \longmapsto (1-t)^n$ est convexe et la tangente en 0 est d'équation y=1-nt, donc $\forall t \in [0,1]$, $(1-t)^n \geq 1-nt$, et en remplaçant t par t^2 , on obtient l'inégalité demandée.
 - (d) Pour $t=\frac{u}{n}$,(c) entraine $1-n(\frac{u}{n})^2 \leq (1-\frac{u^2}{n^2})^n$ et d'après (b) $(1-\frac{u^2}{n^2})^n \leq (1-\frac{u}{n})^n e^u$ ce qui entraine l'inégalité demandée.
- 3. (a) Pour tout $t \geq 0$, $h' = 2t^3(2-t^2)e^{-t^2}$, d'où le tableau de variations :

t	0		$\sqrt{2}$		$+\infty$
h'(t)		+	0	_	
			$\frac{4}{e^2}$		0
h(t)		7	Ü	\	
	0				0

ce qui montre que h est bornée et que $\forall t \geq 0$, $|h(t)| \leq \frac{4}{e^2}$.

- (b) Notons cette suite u_n , les questions (1.b) et (2.d) entrainent que $0 \le u_n \le \int_0^{\sqrt{n}} \frac{h(t)}{n} \le \int_0^{\sqrt{n}} \frac{4}{ne^2} = \frac{4}{e^2\sqrt{n}}$, donc $(u_n)_n$ tend vers 0.
- (c) $e^{-t^2}=o(\frac{1}{n^2})$, d'où la convergence de $\int_0^{+\infty}e^{-t^2}dt$. $(u_n)_n$ converge vers 0 donc les deux suites $\int_0^{\sqrt{n}}e^{-t^2}dt \text{ et } \int_0^{\sqrt{n}}(1-\frac{t^2}{n})^ndt \text{ convergent vers la même limite }.$

Les changements succéssives $t=u\sqrt{n}$ et $u=cos(\theta)$ conduisent à $\int_0^{\sqrt{n}}(1-\frac{t^2}{n})^nd=\sqrt{n}\int_0^{\frac{\pi}{2}}sin^{2n+1}(\theta)d\theta$.

On va établir le résultat classique $\int_0^{\frac{\pi}{2}} sin^n(t) dt \sim \sqrt{\frac{\pi}{2n}}.$

Posons : $W_n = \int_0^{\frac{\pi}{2}} sin^n(t)dt$.

- $\text{ On remarque d'abord que la suite } (W_n)_n \text{ est strictement positive et strictement décroissante }.$ En effet $\forall t \in]0, \frac{\pi}{2}[$, 0 < sin(t) < 1 ce qui donne en multipliant par $sin^n(t) > 0$, l'encadrement strict $0 < sin^{n+1}(t) < sin^n(t)$ et puisque les fonctions sont continues sur le segment $[0, \frac{\pi}{2}]$ ces inégalités se préservent par intégration , ce qui donne $\forall n \in \mathbb{N}^*$, $0 < W_{n+1} < W_n$.
- Une première relation s'obtient par une intégration par parties puisque les fonctions $t \longmapsto cos(t)$ et $t \longmapsto sin^{n+1}(t)dt$ sont de classe C^1 sur $[0,\frac{\pi}{2}]$:

$$W_{n+2} = \int_0^{\frac{\pi}{2}} (-\cos'(t)) sin^{n+1}(t) dt = [-\cos(t) sin^{n+1}(t)]_0^{\frac{\pi}{2}} + (n+1) \int_0^{\frac{\pi}{2}} cos^2(t) sin^n(t) dt = (n+1)(W_n - W_{n+2}), \text{ donc } W_{n+2} = \frac{n+1}{n+2} W_n.$$

- $\text{ L'\'egalit\'e pr\'ec\'edente entraine que } \forall p \in \mathbb{N}^* \text{ , } W_{2p} = \frac{(2p-1)(2p-3)...1}{(2p)(2p-2)...2} W_0 = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2} \text{ et } W_{2p+1} = \frac{(2p)(2p-2)...2}{(2p+1)(2p-1)...1} W_1 = \frac{2^{2p}(p!)^2}{(2p+1)!}.$
- La décroissance et la positivité stricte de $(W_n)_n$ entraine que : $0 < W_{n+2} < W_{n+1} < W_n$ et en divisant par W_n , on obtient $\frac{n+1}{n+2} = \frac{W_{n+2}}{W_n} < \frac{W_{n+1}}{W_n} < 1$ ce qui donne : $\frac{W_{n+1}}{W_n}$ tend vers 1 à l'infini et par suite $W_{n+1} \sim W_n$.
- $\text{ Cette dernière \'equivalence fournit } \lim_{p \longrightarrow +\infty} \frac{W_{2p+1}}{W_{2p}} = 1 \text{ et d'autre part } \frac{W_{2p+1}}{W_{2p}} = \frac{(2.4...(2p))^2}{(3.5...(2p-1))^2} \frac{2}{(2p+1)\pi},$ d'où $\sqrt{p} \frac{1.3.5...(2p-1)}{2.4...(2p)} \longrightarrow \frac{1}{\pi}.$
- La suite $((n+1)W_nW_{n+1})_n$ est constante . En effet $\forall n\in\mathbb{N}$, l'égalité $(n+2)W_{n+2}=(n+1)W_n$, entraine $(n+2)W_{n+1}W_{n+2}=(n+1)W_nW_{n+1}=...=W_0W_1=\frac{\pi}{2}$.
- En fin on obtient grâce à l'équivalence $W_{n+1}\sim W_n$, $\frac{\pi}{2}=(n+1)W_nW_{n+1}\sim nW_n^2$ ce qui donne $W_n\sim \sqrt{\frac{\sqrt{\pi}}{2n}}$.

On conclut finalement $\int_0^{\frac{\pi}{2}} sin^{2n+1}(t)dt = W_{2n+1} \sim \sqrt{\frac{\pi}{4n+2}} \sim \frac{1}{2}\sqrt{\frac{\pi}{n}}$, et par suite $\int_0^{+\infty} e^{-t^2}dt = \frac{\pi}{2}$.

4. La parité de la fonction $t\longmapsto e^{-t^2}$ entraîne que : $\int_{-\infty}^{+\infty}e^{-t^2}dt=2\int_0^{+\infty}e^{-t^2}dt=\sqrt{\pi}.$

Partie-B

- 1. $|e^{-ixt}f(t)| = f(t) = e^{-t^2}$ intégrable.
- 2. Les hypothèses du théorème de dérivation sous le signe intégrale
 - $\forall x$, $t \longmapsto e^{-ixt}f(t)$ est continue par morceaux et intégrable sur $\mathbb{R}.$
 - $\forall x$, $t\longmapsto rac{\partial}{\partial x}=-ite^{-ixt}f(t)$ est continue par morceaux sur $\mathbb R$.
 - $\forall t$, $x \longmapsto \frac{\partial}{\partial x} = -ite^{-ixt} f(t)$ est continue sur \mathbb{R} .
 - $-\ \forall (x,t)\in \mathbb{R}^2\ ,\ |-ite^{-ixt}f(t)|=|t|e^{-t^2}=o(\frac{1}{t^2}).\ \text{sont v\'erifi\'ees}\ ,\ \text{donc}\ \widehat{f}\ \text{est de classe}\ C^1\ \text{sur}\ \mathbb{R}\ \text{et ona}$ $\forall x\in \mathbb{R}\ ,\ (\widehat{f})'(x)=-i\int_{-\infty}^{+\infty}te^{-ixt}f(t)dt\ \text{et par suite}\ :$

$$(\widehat{f})' + \frac{x}{2}\widehat{f} = \int_{-\infty}^{+\infty} (-it + \frac{x}{2})e^{-ixt - t^2} dt = \frac{i}{2} \int_{-\infty}^{+\infty} (-2t - ix)e^{-ixt - t^2} dt = \frac{i}{2} \left[e^{-ixt - t^2} \right]_{-\infty}^{+\infty} = 0$$

Le crochet est nul grâce à l'égalité $|e^{-ixt-t^2}|=e^{-t^2}\longrightarrow 0$ à l'infini.

3. Les solutions de l'équation sont les fonctions de la forme : $x \longmapsto Ae^{-\frac{x}{4}}$ où A une constante réelle , or \widehat{f} est une solution de cette équation , donc il existe $A \in \mathbb{R}$ tel que $\widehat{f}(x) = Ae^{-x^2}$ et puisque $\widehat{f}(0) = \sqrt{\pi}$, alors $\widehat{f}(x) = \sqrt{\pi}e^{-\frac{x^2}{4}}$.