Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 4

Visualizing relations as graphs

- Teachers and courses
 - T, set of teachers in a college
 C, set of courses being offered
 - A ⊆ T × C describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$

Teachers and courses

Visualizing relations as graphs

- Teachers and courses
 - T, set of teachers in a collegeC, set of courses being offered
 - A ⊆ T × C describes the allocation of teachers to courses
 - $\blacksquare A = \{(t,c) \mid (t,c) \in T \times C, t \text{ teaches } c\}$
- Friendships
 - P, a set of students
 - F ⊆ P × P describes which pairs of students are friends
 - $F = \{(p,q) \mid p,q \in P, p \neq q, p \text{ is a friend of } q\}$
 - $(p,q) \in F \text{ iff } (q,p) \in F$

Friendship

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed

Teachers and courses

- Graph: G = (V, E)
 - V is a set of vertices or nodes
 - One vertex, many vertices
 - **E** is a set of edges
 - $E \subseteq V \times V$ binary relation
- Directed graph
 - $(v, v') \in E$ does not imply $(v', v) \in E$
 - The teacher-course graph is directed
- Undirected graph
 - $(v,v') \in E \text{ iff } (v',v) \in E$
 - Effectively (v, v'), (v', v) are the same edge
 - Friendship graph is undirected

Friendship

Paths

- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$

Friendship graph

Paths

- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Normally, a path does not visit a vertex twice
- A sequence that re-visits a vertex is usually called a walk
 - Kumar Feroze Colin Aziz Priya Feroze — Sheila

Friendship graph

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Paths in directed graphs
- How can I fly from Madurai to Delhi?
 - Find a path from v_9 to v_0
- Vertex v is reachable from vertex u if there is a path from u to v
- Typical questions
 - Is v reachable from u?
 - What is the shortest path from u to v?
 - What are the vertices reachable from u?
 - Is the graph connected? Are all vertices reachable from each other?

Airline routes

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph

- Assign each state a colour
- States that share a border should be coloured differently
- How many colours do we need?
- Create a graph
 - Each state is a vertex
 - Connect states that share a border
- Assign colours to nodes so that endpoints of an edge have different colours
- Only need the underlying graph
- Abstraction: if we distort the graph, problem is unchanged

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G

Madhavan Mukund Graphs PDSA using Python Week 4

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots, edges represent overlapping slots
 - Colours are classrooms

English

Math

History

Science

- Graph G = (V, E), set of colours C
- Colouring is a function $c: V \to C$ such that $(u, v) \in E \Rightarrow c(u) \neq c(v)$
- Given G = (V, E), what is the smallest set of colours need to colour G
 - Four Colour Theorem For planar graphs derived from geographical maps, 4 colours suffice
 - Not all graphs are planar. General case? Why do we care?
- How many classrooms do we need?
 - Courses and timetable slots, edges represent overlapping slots
 - Colours are classrooms

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?

8/11

Madhavan Mukund Graphs PDSA using Python Week 4

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections

Vertex cover

- A hotel wants to install security cameras
 - All corridors are straight lines
 - Camera can monitor all corridors that meet at an intersection
- Minimum number of cameras needed?
- Represent the floor plan as a graph
 - V intersections of corridors
 - *E* corridor segments connecting intersections
- Vertex cover
 - Marking v covers all edges from v
 - Mark smallest subset of V to cover all edges

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap

Independent set

- A dance school puts up group dances
 - Each dance has a set of dancers
 - Sets of dancers may overlap across dances
- Organizing a cultural programme
 - Each dancer performs at most once
 - Maximum number of dances possible?
- Represent the dances as a graph
 - V dances
 - *E* sets of dancers overlap
- Independent set

 Subset of vertices such that no two are connected by an edge

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset *M* ⊆ *E* of mutually disjoint edges

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset $M \subseteq E$ of mutually disjoint edges
- Find a maximal matching in G

- Class project can be done by one or two people
 - If two people, they must be friends
- Assume we have a graph describing friendships
- Find a good allocation of groups
- Matching
 - G = (V, E), an undirected graph
 - A matching is a subset M ⊆ E of mutually disjoint edges
- Find a maximal matching in G
- Is there a perfect matching, covering all vertices?

PDSA using Python Week 4

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected

11 / 11

Madhavan Mukund Graphs PDSA using Python Week 4

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected
- Paths are sequences of connected edges
- Reachability: is there a path from u to v?

11 / 11

Madhavan Mukund Graphs PDSA using Python Week 4

Summary

- A graph represents relationships between entities
 - Entities are vertices/nodes
 - Relationships are edges
- A graph may be directed or undirected
 - A is a parent of B directed
 - A is a friend of B undirected
- Paths are sequences of connected edges
- Reachability: is there a path from u to v?

- Graphs are useful abstract representations for a wide range of problems
- Reachability and connectedness are not the only interesting problems we can solve on graphs
 - Graph colouring
 - Vertex cover
 - Independent set
 - Matching
 - . . .

Representing Graphs

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 4

Working with graphs

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Vertex v is reachable from vertex u if there is a path from u to v

Working with graphs

- Graph G = (V, E)
 - V set of vertices
 - $E \subseteq V \times V$ set of edges
- A path is a sequence of vertices $v_1, v_2, ..., v_k$ connected by edges
 - For $1 \le i < k$, $(v_i, v_{i+1}) \in E$
- Vertex v is reachable from vertex u if there is a path from u to v
- Looking at the picture of G, we can "see" that v_0 is reachable from v_9
- How do we represent this picture so that we can compute reachability?

- Let |V| = n
 - Assume $V = \{0, 1, \dots, n-1\}$
 - Use a table to map actual vertex "names" to this set

- Let |V| = n
 - Assume $V = \{0, 1, ..., n-1\}$
 - Use a table to map actual vertex "names" to this set
- Edges are now pairs (i, j), where $0 \le i, j < n$
 - Usually assume $i \neq j$, no self loops

- Let |V| = n
 - Assume $V = \{0, 1, ..., n-1\}$
 - Use a table to map actual vertex "names" to this set
- Edges are now pairs (i,j), where $0 \le i,j < n$
 - Usually assume $i \neq j$, no self loops
- Adjacency matrix
 - Rows and columns numbered $\{0, 1, ..., n-1\}$
 - A[i,j] = 1 if $(i,j) \in E$

Airline routes

3/11

- Adjacency matrix
 - lacksquare Rows and columns numbered $\{0,1,\ldots,n-1\}$
 - A[i,j] = 1 if $(i,j) \in E$

Adjacency matrix

- Rows and columns numbered $\{0, 1, ..., n-1\}$
- A[i,j] = 1 if $(i,j) \in E$

Airline routes

A[i,j] = 1

Adjacency matrix

■ Rows and columns numbered $\{0, 1, ..., n-1\}$

■
$$A[i,j] = 1$$
 if $(i,j) \in E$

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

Undirected graph

$$A[i,j] = 1 \text{ iff } A[j,i] = 1$$

Symmetric across main diagonal

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

Airline routes, all routes bidirectional

- Neighbours of i column j with entry 1
 - lacksquare Scan row i to identify neighbours of i
 - Neighbours of 6 are [3, 5]

```
def neighbours(AMat,i):
    nbrs = []
    (rows,cols) = AMat.shape
    for j in range(cols):
        if AMat[i,j] == 1:
            nbrs.append(j)
    return(nbrs)
neighbours(A,7)
[4, 5, 8]
```

		0	1	2	3	4	5	6	7	8	9
	0	0	1	1	0	1	0	0	0	0	0
	1	1	0	1	0	0	0	0	0	0	0
	2	1	1	0	0	0	0	0	0	0	0
	3	0	0	0	0	1	1	1	0	0	0
	4	1	0	0	1	0	0	0	1	0	0
	5	0	0	0	1	0	0	1	1	1	0
	6	0	0	0	1	0	1	0	0	0	0
	7	0	0	0	0	1	1	0	0	1	0
	8	0	0	0	0	0	1	0	1	0	1
ľ	9	0	0	0	0	0	0	0	0	1	0

- Neighbours of i column j with entry 1
 - Scan row *i* to identify neighbours of *i*
 - Neighbours of 6 are [3, 5]
- Directed graph

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

- Neighbours of i column j with entry 1
 - Scan row *i* to identify neighbours of *i*
 - Neighbours of 6 are [3, 5]
- Directed graph
 - Rows represent outgoing edges

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

- Neighbours of i column j with entry 1
 - Scan row *i* to identify neighbours of *i*
 - Neighbours of 6 are [3, 5]
- Directed graph
 - Rows represent outgoing edges
 - Columns represent incoming edges

		0	1	2	3	4	5	6	7	8	9
Ì	0	0	1	0	0	1	0	0	0	0	0
ĺ	1	0	0	1	0	0	0	0	0	0	0
	2	1	0	0	0	0	0	0	0	0	0
ĺ	3	0	0	0	0	1	0	1	0	0	0
ĺ	4	1	0	0	1	0	0	0	1	0	0
	5	0	0	0	1	0	0	0	1	0	0
	6	0	0	0	0	0	1	0	0	0	0
ĺ	7	0	0	0	0	1	0	0	0	1	0
ĺ	8	0	0	0	0	0	1	0	0	0	1
Ì	9	0	0	0	0	0	0	0	0	1	0

- Neighbours of i column j with entry 1
 - Scan row *i* to identify neighbours of *i*
 - Neighbours of 6 are [3, 5]
- Directed graph
 - Rows represent outgoing edges
 - Columns represent incoming edges
- Degree of a vertex i
 - Number of edges incident on i degree(6) = 2

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Neighbours of i column j with entry 1
 - Scan row *i* to identify neighbours of *i*
 - Neighbours of 6 are [3, 5]
- Directed graph
 - Rows represent outgoing edges
 - Columns represent incoming edges
- Degree of a vertex i
 - Number of edges incident on i degree(6) = 2
 - For directed graphs, outdegree and indegree

$$indegree(6) = 1$$
, $outdegree(6) = 1$

		0	1	2	3	4	5	6	7	8	9
	0	0	1	0	0	1	0	0	0	0	0
ĺ	1	0	0	1	0	0	0	0	0	0	0
	2	1	0	0	0	0	0	0	0	0	0
ĺ	3	0	0	0	0	1	0	1	0	0	0
ĺ	4	1	0	0	1	0	0	0	1	0	0
ĺ	5	0	0	0	1	0	0	0	1	0	0
ĺ	6	0	0	0	0	0	1	0	0	0	0
ĺ	7	0	0	0	0	1	0	0	0	1	0
ĺ	8	0	0	0	0	0	1	0	0	0	1
ĺ	9	0	0	0	0	0	0	0	0	1	0

■ Is Delhi (0) reachable from Madurai (9)?

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices
- Stop when 0 becomes marked

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Is Delhi (0) reachable from Madurai (9)?
- Mark 9 as reachable
- Mark each neighbour of 9 as reachable
- Systematically mark neighbours of marked vertices
- Stop when 0 becomes marked
- If marking process stops without target becoming marked, the target is unreachable

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Need a strategy to systematically explore marked neighbours

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Need a strategy to systematically explore marked neighbours
- Two primary strategies
 - Breadth first propagate marks in "layers"
 - Depth first explore a path till it dies out, then backtrack

	0	1	2	3	4	5	6	7	8	9
0	0	1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	1	1	1	0
6	0	0	0	1	0	1	0	0	0	0
7	0	0	0	0	1	1	0	0	1	0
8	0	0	0	0	0	1	0	1	0	1
9	0	0	0	0	0	0	0	0	1	0

Adjacency lists

- Adjacency matrix has many 0's
 - Size is n^2 , regardless of number of edges
 - Undirected graph: $|E| \le n(n-1)/2$
 - Directed graph: $|E| \le n(n-1)$
 - Typically |E| much less than n^2

Adjacency lists

- Adjacency matrix has many 0's
 - Size is n^2 , regardless of number of edges
 - Undirected graph: $|E| \le n(n-1)/2$
 - Directed graph: $|E| \le n(n-1)$
 - Typically |E| much less than n^2
- Adjacency list
 - List of neighbours for each vertex

0	[1,4]
1	[2]
2	[0]
3	[4,6]
4	[0,3,7]

5	[3,7]
6	[5]
7	[4,8]
8	[5,9]
9	[8]

Adjacency lists

- Adjacency matrix has many 0's
 - Size is n^2 , regardless of number of edges
 - Undirected graph: $|E| \le n(n-1)/2$
 - Directed graph: $|E| \le n(n-1)$
 - Typically |E| much less than n^2
- Adjacency list

```
AList = {}
for i in range(10):
    AList[i] = []
for (i,j) in edges:
    AList[i].append(j)

print(AList)
{0: [1, 4], 1: [2], 2: [0], 3: [4, 6], 4: [0, 3, 7], 5: [3, 7], 6: [5], 7: [4, 8], 8: [5, 9], 9: [8]}
```

Airline routes

9/11

Comparing representations

Adjacency list typically requires less space

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	[1,4]
1	[2]
2	[0]
3	[4,6]
4	[0,3,7]

ĺ	5	[3,7]			
	6	[5]			
	7	[4,8]			
	8	[5,9]			
	9	[8]			
4.8	4 7 7 7 7 7 7 7				

Comparing representations

- Adjacency list typically requires less space
- Is *j* a neighbour of *i*?
 - Check if A[i,j] = 1 in adjacency matrix
 - Scan all neighbours of *i* in adjacency list

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	[1,4]	Ì
1	[2]	
2	[0]	
3	[4,6]	
4	[0,3,7]	1

5	[3,7]
6	[5]
7	[4,8]
8	[5,9]
9	[8]

Comparing representations

- Adjacency list typically requires less space
- Is *j* a neighbour of *i*?
 - Check if A[i,j] = 1 in adjacency matrix
 - Scan all neighbours of *i* in adjacency list
- Which are the neighbours of *i*?
 - Scan all n entries in row i in adjacency matrix
 - Takes time proportional to (out)degree of *i* in adjacency list

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	[1,4]
1	[2]
2	[0]
3	[4,6]
4	[0,3,7]

5	[3,7]
6	[5]
7	[4,8]
8	[5,9]
9	[8]

Comparing representations

- Adjacency list typically requires less space
- Is j a neighbour of i?
 - Check if A[i,j] = 1 in adjacency matrix
 - Scan all neighbours of i in adjacency list
- Which are the neighbours of *i*?
 - Scan all n entries in row i in adjacency matrix
 - Takes time proportional to (out)degree of *i* in adjacency list
- Choose representation depending on requirement

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	[1,4]
1	[2]
2	[0]
3	[4,6]
4	[0,3,7]

5	[3,7]
6	[5]
7	[4,8]
8	[5,9]
9	[8]

Summary

- To operate on graphs, we need to represent them
- Adjacency matrix
 - $n \times n$ matrix, AMat[i,j] = 1 iff $(i,j) \in E$
- Adjacency list
 - Dictionary of lists
 - For each vertex *i*, *AList*[*i*] is the list of neighbours of *i*
- Can systematically explore a graph using these representations
 - For reachability, propagate marking to all reachable vertices

Breadth First Search

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Choose an appropriate representation
 - Adjacency matrix
 - Adjacency list

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	{1,4}
1	{2}
2	{0}
3	{4,6}
4	{0,3,7}

5	{3,7}
6	{5}
7	{4,8}
8	{5,9}
9	{8}

2 / 13

Reachability in a graph

- Mark source vertex as reachable
- Systematically mark neighbours of marked vertices
- Stop when target becomes marked
- Choose an appropriate representation
 - Adjacency matrix
 - Adjacency list
- Strategies for systematic exploration
 - Breadth first propagate marks in "layers"
 - Depth first explore a path till it dies out, then backtrack

	0	1	2	3	4	5	6	7	8	9
0	0	1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	1	0	0	0
4	1	0	0	1	0	0	0	1	0	0
5	0	0	0	1	0	0	0	1	0	0
6	0	0	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	1
9	0	0	0	0	0	0	0	0	1	0

0	{1,4}
1	{2}
2	{0}
3	{4,6}
4	{0,3,7}

5	{3,7}
6	{5}
7	{4,8}
8	{5,9}
9	{8}

2/13

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -
- Each visited vertex has to be explored
 - Extend the search to its neighbours
 - Do this only once for each vertex!

- Explore the graph level by level
 - First visit vertices one step away
 - Then two steps away
 -
- Each visited vertex has to be explored
 - Extend the search to its neighbours
 - Do this only once for each vertex!
- Maintain information about vertices
 - Which vertices have been visited already
 - Among these, which are yet to be explored

• Assume $V = \{0, 1, \dots, n-1\}$

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}\$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty

```
class Queue:
    def __init__(self):
        self.queue = []
    def addq(self,v):
        self.queue.append(v)
    def delq(self):
        v = None
        if not self.isemptv():
            v = self.queue[0]
            self.queue = self.queue[1:]
        return(v)
    def isempty(self):
        return(self.queue == [])
    def str (self):
        return(str(self.queue))
```

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}\$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty

```
q = Queue()
for i in range(3):
    q.addq(i)
    print(q)
print(q.isempty())
for j in range(3):
    print(q.delq(),q)
print(q.isemptv())
[0]
[0, 1]
[0, 1, 2]
False
0 [1, 2]
1 [2]
2 []
```

True

- Assume $V = \{0, 1, ..., n-1\}$
- visited : $V \rightarrow \{\text{True}, \text{False}\}\$ tells us whether $v \in V$ has been visited
 - Initially, visited(v) = False for all $v \in V$
- Maintain a sequence of visited vertices yet be explored
 - A queue first in, first out
 - Initially empty
- Exploring a vertex i
 - For each edge (i, j), if visited(j) is False,
 - Set visited(*j*) to True
 - \blacksquare Append j to the queue

```
q = Queue()
for i in range(3):
    q.addq(i)
    print(q)
print(q.isempty())
for j in range(3):
    print(q.delq(),q)
print(q.isemptv())
[0]
[0, 1]
[0, 1, 2]
False
0 [1, 2]
1 [2]
2 []
```

True

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - \blacksquare Add j to the queue

5/13

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

```
def BFS(AMat,v):
    (rows,cols) = AMat.shape
    visited = {}
    for i in range(rows):
        visited[i] = False
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isempty()):
        i = q.delq()
        for k in neighbours(AMat, j):
            if (not visited[k]):
                visited[k] = True
                q.addq(k)
```

return(visited)

5 / 13

- Initially
 - visited(v) = False for all $v \in V$
 - Queue of vertices to be explored is empty
- Start BFS from vertex j
 - Set visited(j) = True
 - Add j to the queue
- Remove and explore vertex i at head of queue
 - For each edge (i, j), if visited(j) is False,
 - Set visited(j) to True
 - \blacksquare Append j to the queue
- Stop when queue is empty

```
def BFSList(AList,v):
    visited = {}
    for i in AList.keys():
        visited[i] = False
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isempty()):
        i = q.delq()
        for k in AList[i]:
            if (not visited[k]):
                visited[k] = True
                q.addq(k)
    return(visited)
```

5 / 13

Visited					
0	False				
1	False				
2	False				
3	False				
4	False				
5	False				
6	False				
7	False				
8	False				
9	False				

To explore queue									

Visited					
0	False				
1	False				
2	False				
3	False				
4	False				
5	False				
6	False				
7	True				
8	False				
9	False				

To explore queue									
7									

■ Mark 7 and add to queue

Visited					
0	False				
1	False				
2	False				
3	False				
4	True				
5	True				
6	False				
7	True				
8	True				
9	False				

To explore queue									
4	5	8							

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}

Visited					
0	True				
1	False				
2	False				
3	True				
4	True				
5	True				
6	False				
7	True				
8	True				
9	False				

To explore queue									
5	8	0	3						

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

Visited					
0	True				
1	False				
2	False				
3	True				
4	True				
5	True				
6	True				
7	True				
8	True				
9	False				

To explore queue									
8	0	3	6						

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

V	isited
0	True
1	False
2	False
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
0	3	6	9						

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
3	6	9	1	2					

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
6	9	1	2						

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
9	1	2							

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue									
1	2								

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

To explore queue										
2										

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

V	Visited				
0	True				
1	True				
2	True				
3	True				
4	True				
5	True				
6	True				
7	True				
8	True				
9	True				

To explore queue										

- Mark 7 and add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

Complexity of BFS

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2

Complexity of BFS

- G = (V, E)
 - |V| = n
 - |E| = m
 - If G is connected, m can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore i, scan neighbours(i)
- Look up n entries in row i, regardless of degree(i)

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore i, scan neighbours(i)
- Look up n entries in row i, regardless of degree(i)

Adjacency list

- List *neighbours*(*i*) is directly available
- Time to explore i is degree(i)
- Degree varies across vertices

- G = (V, E)
 - |V| = n
 - |E| = m
 - If *G* is connected, *m* can vary from n-1 to n(n-1)/2
- In BFS, each reachable vertex is processed exactly once
 - Visit the vertex: add to queue
 - Explore the vertex: remove from queue
 - Visit and explore at most *n* vertices
- Exploring a vertex
 - Check all outgoing edges
 - How long does this take?

Adjacency matrix

- To explore *i*, scan *neighbours*(*i*)
- Look up n entries in row i, regardless of degree(i)

Adjacency list

- List *neighbours*(*i*) is directly available
- Time to explore *i* is *degree*(*i*)
- Degree varies across vertices

Sum of degrees

- Sum of degrees is 2*m*
- Each edge (*i*, *j*) contributes to *degree*(*i*) and *degree*(*j*)

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

8 / 13

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

- If $m \ll n^2$, working with adjacency lists is much more efficient
 - This is why we treat *m* and *n* as separate parameters

BFS with adjacency matrix

- n steps to initialize each vertex
- n steps to explore each vertex
- Overall time is $O(n^2)$

BFS with adjacency list

- n steps to initialize each vertex
- 2m steps (sum of degrees) to explore all vertices
 - An example of amortized analysis
- Overall time is O(n+m)

- If $m \ll n^2$, working with adjacency lists is much more efficient
 - This is why we treat m and n as separate parameters
- For graphs, O(m+n) is typically the best possible complexity
 - Need to see each each vertex and edge at least once
 - Linear time

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?
- visited(k) was set to True when exploring some vertex j

Enhancing BFS to record paths

- If BFS from *i* sets visited(*k*) = True, we know that *k* is reachable from *i*
- How do we recover a path from i to k?
- visited(k) was set to True when exploring some vertex j
- Record parent(k) = j
- From *k*, follow parent links to trace back a path to *i*

```
def BFSListPath(AList.v):
    (visited, parent) = ({},{})
    for i in AList.keys():
        visited[i] = False
        parent[i] = -1
    q = Queue()
    visited[v] = True
    q.addq(v)
    while(not q.isempty()):
        j = q.delq()
        for k in AList[i]:
            if (not visited[k]):
                visited[k] = True
                parent[k] = j
                q.addq(k)
```

9/13

	Visited	Parent
0	False	-1
1	False	-1
2	False	-1
3	False	-1
4	False	-1
5	False	-1
6	False	-1
7	False	-1
8	False	-1
9	False	-1

To explore queue										

	Visited	Parent			
0	False	-1			
1	False	-1			
2	False	-1			
3	False	-1			
4	False	-1			
5	False	-1			
6	False	-1			
7	True	-1			
8	False	-1			
9	False	-1			

To explore queue										
7										

■ Mark 7, add to queue

	Visited	Parent				
0	False	-1				
1	False	-1				
2	False	-1				
3	False	-1				
4	True	7				
5	True	7				
6	False	-1				
7	True	-1				
8	True	7				
9	False	-1				

To explore queue										
4	5	8								

- Mark 7, add to queue
- Explore 7, visit {4,5,8}

	Visited	Parent				
0	True	4				
1	False	-1				
2	False	-1				
3	True	4				
4	True	7				
5	True	7				
6	False	-1				
7	True	-1				
8	True	7				
9	False	-1				

To explore queue										
5	8	0	3							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

	\ /' '. I	D				
	Visited	Parent				
0	True	4				
1	False	-1				
2	False	-1				
3	True	4				
4	True	7				
5	True	7				
6	True	5				
7	True	-1				
8	True	7				
9	False	-1				

To explore queue										
8	0	3	6							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

	Visited	Parent			
0	True	4			
1	False	-1			
2	False	-1			
3	True	4			
4	True	7			
5	True	7			
6	True	5			
7	True	-1			
8	True	7			
9	True	8			

To explore queue										
0	3	6	9							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
3	6	9	1	2					

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

	To explore queue									
6	9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

	To explore queue									
1	2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									
2									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

Path from 7 to 6 is 7–5–6

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

	Visited	Parent
0	True	4
1	True	0
2	True	0
3	True	4
4	True	7
5	True	7
6	True	5
7	True	-1
8	True	7
9	True	8

Path from 7 to 2 is 7-4-0-2

To explore queue									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex

11 / 13

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex
- Instead of visited(j), maintain level)(j)

```
def BFSListPathLevel(AList.v):
    (level,parent) = ({},{})
    for i in AList.keys():
        level[i] = -1
        parent[i] = -1
    q = Queue()
    level[v] = 0
    q.addq(v)
    while(not q.isempty()):
        j = q.delq()
        for k in AList[i]:
            if (level[k] == -1):
                level[k] = level[i]+1
                parent[k] = j
                q.addq(k)
```

11 / 13

Enhancing BFS to record distance

- BFS explores neighbours level by level
- By recording the level at which a vertex is visited, we get its distance from the source vertex
- Instead of visited(j), maintain level)(j)
- Initalize level(j) = -1 for all j
- Set level(i) = 0 for source vertex
- If we visit k from j, set level(k) to level(j) + 1
- level(j) is the length of the shortest path from the source vertex, in number of edges

```
def BFSListPathLevel(AList.v):
    (level,parent) = ({},{})
    for i in AList.keys():
        level[i] = -1
        parent[i] = -1
    q = Queue()
    level[v] = 0
    q.addq(v)
    while(not q.isempty()):
        j = q.delq()
        for k in AList[i]:
            if (level[k] == -1):
                level[k] = level[i]+1
                parent[k] = j
                q.addq(k)
```

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	-1	-1
5	-1	-1
6	-1	-1
7	-1	-1
8	-1	-1
9	-1	-1

To explore queue									

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	-1	-1
5	-1	-1
6	-1	-1
7	0	-1
8	-1	-1
9	-1	-1

To explore queue									
7									

■ Mark 7, add to queue

	Level	Parent
0	-1	-1
1	-1	-1
2	-1	-1
3	-1	-1
4	1	7
5	1	7
6	-1	-1
7	0	-1
8	1	7
9	-1	-1

	To explore queue										
4	5	8									

- Mark 7, add to queue
- Explore 7, visit {4,5,8}

12 / 13

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	-1	-1
7	0	-1
8	1	7
9	-1	-1

To explore queue									
5	8	0	3						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	-1	-1

To explore queue										
8	0	3	6							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}

	Level	Parent
0	2	4
1	-1	-1
2	-1	-1
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue										
0	3	6	9							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue										
3	6	9	1	2						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

To explore queue										
6	9	1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3

	Level	Parent
0	2	4
1	3	0
3	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

	Т	o ex	<pl< th=""><th>ore</th><th>qı</th><th>ıeι</th><th>ıe</th><th></th></pl<>	ore	qı	ıeι	ıe	
9	1	2						

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6

	Level	Parent
0	2	4
1	3	0
3	3	0
	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

	To	э е	хр	lore	e q	ue	ue	
1	2							

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

	Т	0 6	exp	lor	e d	que	eue	
2								

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1

	Level	Parent
0	2	4
1	3	0
2	3	0
3	2	4
4	1	7
5	1	7
6	2	5
7	0	-1
8	1	7
9	2	8

_	Го	ex	plo	re	qu	eue	9	

- Mark 7, add to queue
- Explore 7, visit {4,5,8}
- Explore 4, visit {0,3}
- Explore 5, visit {6}
- Explore 8, visit {9}
- Explore 0, visit {1,2}
- Explore 3
- Explore 6
- Explore 9
- Explore 1
- Explore 2

■ Breadth first search is a systematic strategy to explore a graph, level by level

13 / 13

Madhavan Mukund Breadth First Search PDSA using Python Week 4

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue

13 / 13

Madhavan Mukund Breadth First Search PDSA using Python Week 4

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges
 - In general, edges are labelled with a cost (distance, time, ticket price, ...)

- Breadth first search is a systematic strategy to explore a graph, level by level
- Record which vertices have been visited
- Maintain visited but unexplored vertices in a queue
- Complexity is $O(n^2)$ using adjacency matrix, O(m+n) using adjacency list
- Add parent information to recover the path to each reachable vertex
- Maintain level information to record length of the shortest path, in terms of number of edges
 - In general, edges are labelled with a cost (distance, time, ticket price, ...)
 - Will look at weighted graphs, where shortest paths are in terms of cost, not number of edges

13 / 13

Madhavan Mukund Breadth First Search PDSA using Python Week 4

Depth First Search

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

■ Start from *i*, visit an unexplored neighbour

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours
- Backtrack to nearest suspended vertex that still has an unexplored neighbour

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours
- Backtrack to nearest suspended vertex that still has an unexplored neighbour
- Suspended vertices are stored in a stack
 - Last in, first out
 - Most recently suspended is checked first

V	Visited						
0	False						
1	False						
2	False						
3	False						
4	False						
5	False						
6	False						
7	False						
8	False						
9	False						

S	tac	ck (of	sus	spe	nd	ed	ve	rtices

V	isited
0	False
1	False
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stack	c of sus	spended	vertices

■ Mark 4,

V	isited
0	True
1	False
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	(0	f s	usp	en	de	dν	er!	tices
4									

■ Mark 4, Suspend 4, explore 0

V	isited
0	True
1	True
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	of	sus	spe	end	ed	ve	rti	ces
4	0								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1

V	isited
0	True
1	True
2	True
3	False
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	of s	usp	er	de	d v	/er	tic	es
4	0	1							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2

V	isited
0	True
1	True
2	True
3	False
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	of	sus	spe	end	ed	ve	rti	ces
4	0								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1,

V	isited
0	True
1	True
2	True
3	False
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	(0	f s	usp	en	de	dν	er!	tices
4									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0,

V	isited
0	True
1	True
2	True
3	True
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4

V	isited
0	True
1	True
2	True
3	True
4	True
5	False
6	False
7	False
8	False
9	False

St	ack	(0	f s	usp	en	de	dν	ert/	tices
4									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3

V	Visited						
0	True						
1	True						
2	True						
3	True						
4	True						
5	True						
6	False						
7	False						
8	False						
9	False						

St	ack	of	sus	spe	end	ed	ve	rti	ces
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	False
8	False
9	False

St	ack	of s	usp	er	de	d١	/er	tic	es
4	3	5							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	False
8	False
9	False

St	ack	of	sus	spe	end	ed	ve	rti	ces
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5,

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	False
9	False

St	ack	of s	usp	er	de	d١	/er	tic	es
4	3	5							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	False

St	ack	of s	usp	en	dec	lv	ert	ice	s
4	3	5	7						

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8

V	Visited					
0	True					
1	True					
2	True					
3	True					
4	True					
5	True					
6	True					
7	True					
8	True					
9	True					

Stack of suspended vertices									
4	3	5	7	8					

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9

V	Visited					
0	True					
1	True					
2	True					
3	True					
4	True					
5	True					
6	True					
7	True					
8	True					
9	True					

Stack of suspended vertices									
4	3	5	7						

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8,

V	Visited					
0	True					
1	True					
2	True					
3	True					
4	True					
5	True					
6	True					
7	True					
8	True					
9	True					

Stack of suspended vertices									
4	3	5							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7,

V	Visited					
0	True					
1	True					
2	True					
3	True					
4	True					
5	True					
6	True					
7	True					
8	True					
9	True					

Stack of suspended vertices								ces	
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5,

DFS from vertex 4

V	Visited				
0	True				
1	True				
2	True				
3	True				
4	True				
5	True				
6	True				
7	True				
8	True				
9	True				

Stack of suspended vertices									
4									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5, 3,

DFS from vertex 4

V	Visited				
0	True				
1	True				
2	True				
3	True				
4	True				
5	True				
6	True				
7	True				
8	True				
9	True				

Stack of suspended vertices									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5, 3, 4

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)

```
def DFSInit(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  (visited, parent) = ({},{})
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFS(AMat, visited, parent, v):
  visited[v] = True
  for k in neighbours(AMat.v):
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFS(AMat, visited, parent, k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicilty maintains stack
 - Separate initialization step

```
def DFSInit(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  (visited, parent) = ({},{})
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFS(AMat, visited, parent, v):
  visited[v] = True
  for k in neighbours(AMat.v):
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFS(AMat, visited, parent, k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicity maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list

```
(visited, parent) = ({},{})
def DFSInitGlobal(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return
def DFSGlobal(AMat.v):
  visited[v] = True
  for k in neighbours(AMat,v):
    if (not visited[k]):
      parent[k] = v
      DFSGlobal(AMat,k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicity maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list
- Use an adjacency list instead

```
def DFSInitList(AList):
  # Initialization
  (visited, parent) = ({},{})
  for i in AList.kevs():
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFSList(AList, visited, parent, v):
  visited[v] = True
  for k in AList[v]:
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFSList(AList, visited, parent, k)
```

```
return(visited,parent)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicilty maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list
- Use an adjacency list instead

```
(visited, parent) = ({},{})
def DFSInitListGlobal(AList):
  # Initialization
  for i in AList.keys():
    visited[i] = False
    parent[i] = -1
  return
def DFSListGlobal(AList.v):
  visited[v] = True
  for k in AList[v]:
    if (not visited[k]):
      parent[k] = v
      DFSListGlobal(AList.k)
```

return

Complexity of DFS

■ Like BFS, each vertex is marked and explored once

Complexity of DFS

- Like BFS, each vertex is marked and explored once
- $lue{}$ Exploring vertex v requires scanning all neighbours of v
 - O(n) time for adjacency matrix, independent of degree(v)
 - degree(v) time for adjacency list
 - Total time is O(m) across all vertices

Complexity of DFS

- Like BFS, each vertex is marked and explored once
- $lue{}$ Exploring vertex v requires scanning all neighbours of v
 - lacksquare O(n) time for adjacency matrix, independent of degree(v)
 - *degree*(*v*) time for adjacency list
 - Total time is O(m) across all vertices
- Overall complexity is same as BFS
 - $O(n^2)$ using adjacency matrix
 - O(m+n) using adjacency list

■ DFS is another systematic strategy to explore a graph

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours
- Paths discovered by DFS are not shortest paths, unlike BFS

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours
- Paths discovered by DFS are not shortest paths, unlike BFS
- Useful features can be found by recording the order in which DFS visits vertices

Applications of BFS and DFS

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 4

BFS and DFS

- BFS and DFS systematically compute reachability in graphs
- BFS works level by level
 - Discovers shortest paths in terms of number of edges
- DFS explores a vertex as soon as it is visited neighbours
 - Suspend a vertex while exploring its neighbours
 - DFS numbering describes the order in which vertices are explored
- Beyond reachability, what can we find out about a graph using BFS/DFS?

■ An undirected graph is connected if every vertex is reachable from every other vertex

Connected Graph

- An undirected graph is connected if every vertex is reachable from every other vertex
- In a disconnected graph, we can identify the connected components

Connected Graph

- An undirected graph is connected if every vertex is reachable from every other vertex
- In a disconnected graph, we can identify the connected components
 - Maximal subsets of vertices that are connected

Connected Graph

- An undirected graph is connected if every vertex is reachable from every other vertex
- In a disconnected graph, we can identify the connected components
 - Maximal subsets of vertices that are connected

Connected Graph

- An undirected graph is connected if every vertex is reachable from every other vertex
- In a disconnected graph, we can identify the connected components
 - Maximal subsets of vertices that are connected
 - Isolated vertices are trivial components

Connected Graph

Assign each vertex a component number

- Assign each vertex a component number
- Start BFS/DFS from vertex 0

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*
 - Increment component number to 1

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*
 - Increment component number to 1
 - Run BFS/DFS from node j

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*
 - Increment component number to 1
 - Run BFS/DFS from node j
 - Assign each visited node component number 1

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*
 - Increment component number to 1
 - Run BFS/DFS from node j
 - Assign each visited node component number 1
- Repeat until all nodes are visited

Connected Graph

- Assign each vertex a component number
- Start BFS/DFS from vertex 0
 - Initialize component number to 0
 - All visited nodes form a connected component
 - Assign each visited node component number 0
- Pick smallest unvisited node *j*
 - Increment component number to 1
 - Run BFS/DFS from node j
 - Assign each visited node component number 1
- Repeat until all nodes are visited

```
def Components(AList):
  component = {}
  for i in AList.keys():
    component[i] = -1
  (compid, seen) = (0,0)
  while seen <= max(AList.kevs()):</pre>
    startv = min([i for i in AList.keys()
                   if component[i] == -1])
    visited = BFSList(AList,startv)
    for i in visited.keys():
      if visited[i]:
        seen = seen + 1
        component[i] = compid
    compid = compid + 1
  return(component)
```

■ A cycle is a path (technically, a walk) that starts and ends at the same vertex

- A cycle is a path (technically, a walk) that starts and ends at the same vertex
 - -4 8 9 4 is a cycle

A cycle is a path (technically, a walk) that starts and ends at the same vertex

$$-4 - 8 - 9 - 4$$
 is a cycle

■ Cycle may repeat a vertex:

$$2 - 3 - 7 - 10 - 6 - 7 - 2$$

A cycle is a path (technically, a walk) that starts and ends at the same vertex

$$-4 - 8 - 9 - 4$$
 is a cycle

Cycle may repeat a vertex:

$$2 - 3 - 7 - 10 - 6 - 7 - 2$$

• Cycle should not repeat edges: i - j - i is not a cycle, e.g., 2 - 4 - 2

Detecting cycles

- A cycle is a path (technically, a walk) that starts and ends at the same vertex
 - -4 8 9 4 is a cycle
 - Cycle may repeat a vertex:

$$2 - 3 - 7 - 10 - 6 - 7 - 2$$

- Cycle should not repeat edges: i j i is not a cycle, e.g., 2 4 2
- Simple cycle only repeated vertices are start and end

Detecting cycles

- A cycle is a path (technically, a walk) that starts and ends at the same vertex
 - -4 8 9 4 is a cycle
 - Cycle may repeat a vertex: 2-3-7-10-6-7-2
 - Cycle should not repeat edges: i j i is not a cycle, e.g., 2 4 2
 - Simple cycle only repeated vertices are start and end
- A graph is acyclic if it has no cycles

Acyclic Graph

Graph with cycles

BFS tree

- Edges explored by BFS form a tree
 - Technically, one tree per component
 - Collection of trees is a forest

Acyclic Graph

Graph with cycles

BFS tree

- Edges explored by BFS form a tree
 - Technically, one tree per component
 - Collection of trees is a forest
- Any non-tree edge creates a cycle
 - Detect cycles by searching for non-tree edges

Acyclic Graph

Graph with cycles

Maintain a DFS counter, initially0

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

pre 0

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

 As before, non-tree edges generate cycles

- Maintain a DFS counter, initially0
- Increment counter each time we start and finish exploring a node
- Each vertex is assigned an entry number (pre) and exit number (post)

- As before, non-tree edges generate cycles
- To compute pre and post pass counter via recursive DFS calls

```
(visited, pre, post) = ({},{},{})
def DFSInitPrePost(AList):
  # Initialization
  for i in AList.keys():
    visited[i] = False
    pre[i],post[i]) = (-1,-1)
  return
def DFSPrePost(AList, v, count):
  visited[v] = True
  pre[v] = count
  count = count+1
  for k in AList[v]:
    if (not visited[k]):
      count = DFSPrePost(AList,k,count)
  post[v] = count
  count = count+1
  return(count)
```

Directed cycles

- In a directed graph, a cycle must follow same direction
 - $lackbox{0} o 2 o 3 o 0$ is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not

Directed cycles

- In a directed graph, a cycle must follow same direction
 - $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not

Directed cycles

- In a directed graph, a cycle must follow same direction
 - $lackbox{0} o 2 o 3 o 0$ is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not
- Tree edges

- In a directed graph, a cycle must follow same direction
 - $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not
- Tree edges
- Different types of non-tree edges

- In a directed graph, a cycle must follow same direction
 - $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is a cycle
 - $0 \rightarrow 5 \rightarrow 1 \leftarrow 0$ is not
- Tree edges
- Different types of non-tree edges
 - Forward edges

- In a directed graph, a cycle must follow same direction
 - $lackbox{0} o 2 o 3 o 0$ is a cycle
 - $0 \rightarrow 5 \rightarrow 1 \leftarrow 0$ is not
- Tree edges
- Different types of non-tree edges
 - Forward edges
 - Back edges

- In a directed graph, a cycle must follow same direction
 - $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is a cycle
 - $0 \rightarrow 5 \rightarrow 1 \leftarrow 0$ is not
- Tree edges
- Different types of non-tree edges
 - Forward edges
 - Back edges
 - Cross edges

- In a directed graph, a cycle must follow same direction
 - $0 \rightarrow 2 \rightarrow 3 \rightarrow 0$ is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not
- Tree edges
- Different types of non-tree edges
 - Forward edges
 - Back edges
 - Cross edges

 Only back edges correspond to cycles

■ Use pre/post numbers

- Use pre/post numbers
- Tree edge/forward edge (u, v)
 Interval [pre(u), post(u)] contains
 [pre(v), post(v)]

- Use pre/post numbers
- Tree edge/forward edge (u, v)

 Interval [pre(u), post(u)] contains
 [pre(v), post(v)]
- Back edge (u, v)
 Interval [pre(v), post(v)] contains
 [pre(u), post(u)]

- Use pre/post numbers
- Tree edge/forward edge (u, v)Interval [pre(u), post(u)] contains [pre(v), post(v)]
- \blacksquare Back edge (u, v)Interval [pre(v), post(v)] contains [pre(u), post(u)]
- \blacksquare Cross edge (u, v)Intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint

■ Take directions into account

- Take directions into account
- Vertices *i* and *j* are strongly connected if there is a path from *i* to *j* and a path from *j* to *i*

- Take directions into account
- Vertices *i* and *j* are strongly connected if there is a path from *i* to *j* and a path from *j* to *i*
- Directed graphs can be decomposed into strongly connected components (SCCs)
 - Within an SCC, each pair of vertices is strongly connected

- Take directions into account
- Vertices *i* and *j* are strongly connected if there is a path from *i* to *j* and a path from *j* to *i*
- Directed graphs can be decomposed into strongly connected components (SCCs)
 - Within an SCC, each pair of vertices is strongly connected
- DFS numbering can be used to compute SCCs

- BFS and DFS can be used to identify connected components in an undirected graph
 - BFS and DFS identify an underlying tree, non-tree edges generate cycles

- BFS and DFS can be used to identify connected components in an undirected graph
 - BFS and DFS identify an underlying tree, non-tree edges generate cycles
- In a directed graph, non-tree edges can be forward / back / cross
 - Only back edges generate cycles
 - Classify non-tree edges using DFS numbering

- BFS and DFS can be used to identify connected components in an undirected graph
 - BFS and DFS identify an underlying tree, non-tree edges generate cycles
- In a directed graph, non-tree edges can be forward / back / cross
 - Only back edges generate cycles
 - Classify non-tree edges using DFS numbering
- Directed graphs decompose into strongly connected components
 - DFS numbering can be used to compute SCC decomposition

- BFS and DFS can be used to identify connected components in an undirected graph
 - BFS and DFS identify an underlying tree, non-tree edges generate cycles
- In a directed graph, non-tree edges can be forward / back / cross
 - Only back edges generate cycles
 - Classify non-tree edges using DFS numbering
- Directed graphs decompose into strongly connected components
 - DFS numbering can be used to compute SCC decomposition
- DFS numbering can also be used to identify other features such as articulation points (cut vertices) and bridges (cut edges)

- BFS and DFS can be used to identify connected components in an undirected graph
 - BFS and DFS identify an underlying tree, non-tree edges generate cycles
- In a directed graph, non-tree edges can be forward / back / cross
 - Only back edges generate cycles
 - Classify non-tree edges using DFS numbering
- Directed graphs decompose into strongly connected components
 - DFS numbering can be used to compute SCC decomposition
- DFS numbering can also be used to identify other features such as articulation points (cut vertices) and bridges (cut edges)
- Directed acyclic graphs are useful for representing dependencies
 - Given course prerequisites, find a valid sequence to complete a programme

Directed Acyclic Graphs (DAGs)

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Conduits (E) Conduits (T)

Tiling Plastering

Painting

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Painting

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Schedule the tasks respecting the dependencies

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)
 - Conduits (T) Conduits (E) –
 Plastering Tiling Painting –
 Wiring (E) Fittings (E) –
 Cabling (T)

. . .

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)
 - Conduits (T) Conduits (E) –
 Plastering Tiling Painting –
 Wiring (E) Fittings (E) –
 Cabling (T)
 -
- How long will the work take?

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Topological sorting

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Topological sorting
- How long with the work take?
 - Find the longest path in the DAG

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Arise in many contexts
 - Pre-requisites between courses for completing a degree
 - Recipe for cooking
 - Construction projects
 -
- Problems to be solved on DAGS
 - Topological sorting
 - Longest paths

Topological Sorting

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 4

Directed Acyclic Graphs

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
- Represents a feasible schedule

Topological Sort

- A graph with directed cycles cannot be sorted topologically
- Path $i \leadsto j$ means i must be listed before j
- Cycle \Rightarrow vertices i, j such that there are paths $i \rightsquigarrow j$ and $j \rightsquigarrow i$
- i must appear before j, and j must appear before i, impossible!

Topological Sort

- A graph with directed cycles cannot be sorted topologically
- Path $i \rightsquigarrow j$ means i must be listed before j
- Cycle \Rightarrow vertices i, j such that there are paths $i \rightsquigarrow j$ and $j \rightsquigarrow i$
- i must appear before j, and j must appear before i, impossible!

Claim

Every DAG can be topologically sorted

3 / 10

How to topologically sort a DAG?

Strategy

- First list vertices with no dependencies
- As we proceed, list vertices whose dependencies have already been listed

. . . .

How to topologically sort a DAG?

Strategy

- First list vertices with no dependencies
- As we proceed, list vertices whose dependencies have already been listed
-

Questions

- Why will there be a starting vertex with no dependencies?
- How do we guarantee we can keep progressing with the listing?

Algorithm for topological sort

A vertex with no dependencies has no incoming edges, indegree(v) = 0

Algorithm for topological sort

 A vertex with no dependencies has no incoming edges, indegree(v) = 0

Claim

Every DAG has a vertex with indegree 0

Algorithm for topological sort

 A vertex with no dependencies has no incoming edges, indegree(v) = 0

Claim

Every DAG has a vertex with indegree 0

- Start with any vertex with indegree > 0
- Follow edge back to one of its predecessors
- Repeat so long as indegree > 0
- If we repeat n times, we must have a cycle, which is impossible in a DAG

Fact

Every DAG has a vertex with indegree 0

- List out a vertex j with indegree = 0
- \blacksquare Delete j and all edges from j
- What remains is again a DAG!
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

■ Compute indegree of each vertex

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix

Indegree

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG

Indegree

Topologically sorted sequence

1,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees

Indegree

Topologically sorted sequence

1,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate

Indegree

Topologically sorted sequence

1, 0,

7 / 10

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate

Indegree

Topologically sorted sequence

1, 0,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2, 5,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2, 5,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2, 5, 6,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

Topologically sorted sequence

1, 0, 3, 2, 5, 6,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

, 1

Topologically sorted sequence

1, 0, 3, 2, 5, 6, 4,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Indegree

0

Topologically sorted sequence

1, 0, 3, 2, 5, 6, 4,

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Can find another vertex with indegree = 0 to list and eliminate
- Repeat till all vertices are listed

Topologically sorted sequence

1, 0, 3, 2, 5, 6, 4, 7

- Compute indegrees by scanning columns of adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Repeat till all vertices are listed

```
def toposort(AMat):
  (rows,cols) = AMat.shape
  indegree = {}
 toposortlist = []
 for c in range(cols):
   indegree[c] = 0
   for r in range(rows):
     if AMat[r,c] == 1:
        indegree[c] = indegree[c] + 1
 for i in range(rows):
   j = min([k for k in range(cols)
             if indegree[k] == 0])
   toposortlist.append(j)
   indegree[j] = indegree[j]-1
   for k in range(cols):
     if AMat[i,k] == 1:
        indegree[k] = indegree[k] - 1
 return(toposortlist)
```

- Compute indegrees by scanning columns of adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Repeat till all vertices are listed

Analysis

```
def toposort(AMat):
  (rows,cols) = AMat.shape
  indegree = {}
 toposortlist = []
 for c in range(cols):
   indegree[c] = 0
   for r in range(rows):
     if AMat[r,c] == 1:
        indegree[c] = indegree[c] + 1
 for i in range(rows):
   j = min([k for k in range(cols)
             if indegree[k] == 0])
   toposortlist.append(j)
   indegree[j] = indegree[j]-1
   for k in range(cols):
     if AMat[i,k] == 1:
       indegree[k] = indegree[k] - 1
 return(toposortlist)
```

- Compute indegrees by scanning columns of adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Repeat till all vertices are listed

Analysis

■ Initializing indegrees is $O(n^2)$

```
def toposort(AMat):
  (rows,cols) = AMat.shape
  indegree = {}
  toposortlist = []
 for c in range(cols):
    indegree[c] = 0
    for r in range(rows):
      if AMat[r,c] == 1:
        indegree[c] = indegree[c] + 1
 for i in range(rows):
    j = min([k for k in range(cols)
             if indegree[k] == 0])
    toposortlist.append(j)
    indegree[j] = indegree[j]-1
    for k in range(cols):
      if AMat[i,k] == 1:
        indegree[k] = indegree[k] - 1
  return(toposortlist)
```

8 / 10

- Compute indegrees by scanning columns of adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Repeat till all vertices are listed

Analysis

- Initializing indegrees is $O(n^2)$
- Loop to enumerate vertices runs *n* times
 - Identify next vertex to enumerate: O(n)
 - Updating indegrees: O(n)

```
def toposort(AMat):
  (rows,cols) = AMat.shape
  indegree = {}
  toposortlist = []
 for c in range(cols):
    indegree[c] = 0
    for r in range(rows):
      if AMat[r,c] == 1:
        indegree[c] = indegree[c] + 1
 for i in range(rows):
    j = min([k for k in range(cols)
             if indegree[k] == 0])
    toposortlist.append(j)
    indegree[j] = indegree[j]-1
    for k in range(cols):
      if AMat[i,k] == 1:
        indegree[k] = indegree[k] - 1
  return(toposortlist)
```

- Compute indegrees by scanning columns of adjacency matrix
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees
- Repeat till all vertices are listed

Analysis

- Initializing indegrees is $O(n^2)$
- Loop to enumerate vertices runs *n* times
 - Identify next vertex to enumerate: O(n)
 - Updating indegrees: O(n)
- Overall, $O(n^2)$

```
def toposort(AMat):
  (rows,cols) = AMat.shape
  indegree = {}
  toposortlist = []
 for c in range(cols):
    indegree[c] = 0
    for r in range(rows):
      if AMat[r,c] == 1:
        indegree[c] = indegree[c] + 1
 for i in range(rows):
    j = min([k for k in range(cols)
             if indegree[k] == 0])
    toposortlist.append(j)
    indegree[j] = indegree[j]-1
    for k in range(cols):
      if AMat[i,k] == 1:
        indegree[k] = indegree[k] - 1
  return(toposortlist)
```

Using adjacency lists

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Enumerate head of queue, update indegrees, add indegree 0 to queue
- Repeat till queue is empty

```
def toposortlist(AList):
    (indegree, toposortlist) = ({},[])
    for u in AList.keys():
        indegree[u] = 0
    for u in AList.keys():
        for v in AList[u]:
            indegree[v] = indegree[v] + 1
    zerodegreeq = Queue()
    for u in AList.keys():
        if indegree[u] == 0:
            zerodegreeq.addq(u)
    while (not zerodegreeq.isempty()):
        j = zerodegreeq.delq()
        toposortlist.append(i)
        indegree[i] = indegree[i]-1
        for k in AList[j]:
            indegree[k] = indegree[k] - 1
            if indegree[k] == 0:
                zerodegreeq.addq(k)
    return(toposortlist)
                    4 D > 4 P > 4 E > 4 E > E
                                              9 / 10
```

Using adjacency lists

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Enumerate head of queue, update indegrees, add indegree 0 to queue
- Repeat till queue is empty

Analysis

```
def toposortlist(AList):
    (indegree, toposortlist) = ({},[])
    for u in AList.keys():
        indegree[u] = 0
    for u in AList.keys():
        for v in AList[u]:
            indegree[v] = indegree[v] + 1
    zerodegreeq = Queue()
    for u in AList.keys():
        if indegree[u] == 0:
            zerodegreeq.addq(u)
    while (not zerodegreeq.isempty()):
        j = zerodegreeq.delq()
        toposortlist.append(i)
        indegree[i] = indegree[i]-1
        for k in AList[j]:
            indegree[k] = indegree[k] - 1
            if indegree[k] == 0:
                zerodegreeq.addq(k)
    return(toposortlist)
                   4 D > 4 P > 4 E > 4 E > E
```

Using adjacency lists

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Enumerate head of queue, update indegrees, add indegree 0 to queue
- Repeat till queue is empty

Analysis

■ Initializing indegrees is O(m+n)

```
(indegree, toposortlist) = ({},[])
for u in AList.keys():
    indegree[u] = 0
for u in AList.keys():
    for v in AList[u]:
        indegree[v] = indegree[v] + 1
zerodegreeq = Queue()
for u in AList.keys():
    if indegree[u] == 0:
        zerodegreeq.addq(u)
while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    toposortlist.append(i)
    indegree[j] = indegree[j]-1
    for k in AList[j]:
        indegree[k] = indegree[k] - 1
        if indegree[k] == 0:
            zerodegreeq.addq(k)
return(toposortlist)
                4 D > 4 P > 4 E > 4 E > E
                    PDSA using Python Week 4
                                          9 / 10
```

def toposortlist(AList):

Using adjacency lists

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Enumerate head of queue, update indegrees, add indegree 0 to queue
- Repeat till queue is empty

Analysis

- Initializing indegrees is O(m+n)
- Loop to enumerate vertices runs *n* times
 - Updating indegrees: amortised O(m)

```
indegree[u] = 0
for u in AList.keys():
    for v in AList[u]:
        indegree[v] = indegree[v] + 1
zerodegreeq = Queue()
for u in AList.keys():
    if indegree[u] == 0:
        zerodegreeq.addq(u)
while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    toposortlist.append(i)
    indegree[i] = indegree[i]-1
    for k in AList[j]:
        indegree[k] = indegree[k] - 1
        if indegree[k] == 0:
            zerodegreeq.addq(k)
return(toposortlist)
                    PDSA using Python Week 4
                                          9 / 10
```

def toposortlist(AList):

for u in AList.keys():

(indegree,toposortlist) = ({},[])

Using adjacency lists

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Enumerate head of queue, update indegrees, add indegree 0 to queue
- Repeat till queue is empty

Analysis

- Initializing indegrees is O(m+n)
- Loop to enumerate vertices runs *n* times
 - Updating indegrees: amortised O(m)
- Overall, O(m+n)

```
for u in AList.keys():
    indegree[u] = 0
for u in AList.keys():
    for v in AList[u]:
        indegree[v] = indegree[v] + 1
zerodegreeq = Queue()
for u in AList.keys():
    if indegree[u] == 0:
        zerodegreeq.addq(u)
while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    toposortlist.append(i)
    indegree[j] = indegree[j]-1
    for k in AList[j]:
        indegree[k] = indegree[k] - 1
        if indegree[k] == 0:
            zerodegreeq.addq(k)
return(toposortlist)
```

(indegree, toposortlist) = ({},[])

def toposortlist(AList):

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Topological sort gives a feasible schedule that represents dependencies
 - At least one vertex with no dependencies, indegree 0
 - Eliminating such a vertex retains DAG structure
 - Repeat the process till all vertices are listed
- Complexity
 - Using adjacency matrix takes $O(n^2)$
 - Using adjacency list takes O(m+n)
- More than one topological sort is possible
 - Choice of which vertex with indegree 0 to list next

10 / 10

Longest Paths in DAGs

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 4

• G = (V, E), a directed graph without directed cycles

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

- G = (V, E), a directed graph without directed cycles
- Topological sorting
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i,j) \in E$, iappears before j
 - Feasible schedule
- Imagine the DAG represents prerequisites between courses
- Each course takes a semester
- Minimum number of semesters to complete the programme?

■ Find the longest path in a DAG

- Find the longest path in a DAG
- If indegree(i) = 0, longest-path-to(i) = 0

- Find the longest path in a DAG
- If indegree(i) = 0, longest-path-to(i) = 0
- If indegree(i) > 0, longest path to i is 1 more than longest path to its incoming neighbours

```
\begin{aligned} &\mathsf{longest\text{-}path\text{-}to}(i) = \\ &1 + \mathsf{max}\{\mathsf{longest\text{-}path\text{-}to}(j) \mid (j,i) \in E\} \end{aligned}
```


■ longest-path-to(i) = $1 + \max\{\text{longest-path-to}(j) \mid (j,i) \in E\}$

- longest-path-to(i) = $1 + \max\{\text{longest-path-to}(j) \mid (j, i) \in E\}$
- To compute longest-path-to(i), need longest-path-to(k), for each incoming neighbour k

- longest-path-to(i) = $1 + \max\{\text{longest-path-to}(j) \mid (j, i) \in E\}$
- To compute longest-path-to(i), need longest-path-to(k), for each incoming neighbour k
- If graph is topologically sorted, k is listed before i

- longest-path-to(i) = $1 + \max\{\text{longest-path-to}(j) \mid (j, i) \in E\}$
- To compute longest-path-to(i), need longest-path-to(k), for each incoming neighbour k
- If graph is topologically sorted, k is listed before i
- Hence compute longest-path-to() in topological order

■ Let i_0, i_1, \dots, i_{n-1} be a topological ordering of V

- Let i_0, i_1, \dots, i_{n-1} be a topological ordering of V
- All neighbours of i_k appear before it in this list

- Let i_0, i_1, \dots, i_{n-1} be a topological ordering of V
- All neighbours of i_k appear before it in this list
- From left to right, compute longest-path-to(i_k) as $1 + \max\{\text{longest-path-to}(i_j) \mid (i_j, i_k) \in E\}$

- Let i_0, i_1, \dots, i_{n-1} be a topological ordering of V
- All neighbours of i_k appear before it in this list
- From left to right, compute longest-path-to(i_k) as $1 + \max\{\text{longest-path-to}(i_j) \mid (i_j, i_k) \in E\}$
- Overlap this computation with topological sorting

■ Compute indegree of each vertex

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices

Indegree, Longest path

Topological order Longest path to

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize *textlongest* − *path* − *to* to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG

Indegree, Longest path

Topological order 1 Longest path to 0

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path

Indegree, Longest path

Topological order 1 Longest path to 0

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 Longest path to 0 0

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 Longest path to 0 0

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 Longest path to 0 0 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 Longest path to 0 0 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 Longest path to 0 0 1 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 Longest path to 0 0 1 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 5 Longest path to 0 0 1 1 2

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 5 Longest path to 0 0 1 1 2

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 5 6 Longest path to 0 0 1 1 2 3

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 5 6 Longest path to 0 0 1 1 2 3

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

```
Topological order 1 0 3 2 5 6 4
```

Longest path to 0 0 1 1 2 3 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

```
Topological order 1 0 3 2 5 6 4
```

Longest path to 0 0 1 1 2 3 1

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize textlongest path to to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Indegree, Longest path

Topological order 1 0 3 2 5 6 4 7 Longest path to 0 0 1 1 2 3 1 4

- Compute indegree of each vertex
 - Scan each column of the adjacency matrix
- Initialize *textlongest* − *path* − *to* to 0 for all vertices
- List a vertex with indegree 0 and remove it from the DAG
- Update indegrees, longest path
- Repeat till all vertices are listed

Topological order 1 0 3 2 5 6 4 7 Longest path to 0 0 1 1 2 3 1 4

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Process head of queue: update indegrees, update queue, update longest paths
- Repeat till queue is empty

```
def longestpathlist(AList):
  (indegree, lpath) = ({},{})
  for u in AList.keys():
    (indegree[u],lpath[u]) = (0,0)
  for u in AList.keys():
    for v in AList[u]:
      indegree[v] = indegree[v] + 1
  zerodegreeq = Queue()
  for u in AList.keys():
    if indegree[u] == 0:
      zerodegreeq.addq(u)
  while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    indegree[i] = indegree[i]-1
    for k in AList[i]:
      indegree[k] = indegree[k] - 1
      lpath[k] = max(lpath[k],lpath[j]+1)
      if indegree[k] == 0:
        zerodegreeq.addq(k)
  return(lpath)
```

4 日 5 4 個 5 4 国 5 4 国 6 国 6

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Process head of queue: update indegrees, update queue, update longest paths
- Repeat till queue is empty

Analysis

```
def longestpathlist(AList):
  (indegree, lpath) = ({},{})
  for u in AList.keys():
    (indegree[u],lpath[u]) = (0,0)
  for u in AList.keys():
    for v in AList[u]:
      indegree[v] = indegree[v] + 1
  zerodegreeq = Queue()
  for u in AList.keys():
    if indegree[u] == 0:
      zerodegreeq.addq(u)
  while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    indegree[i] = indegree[i]-1
    for k in AList[i]:
      indegree[k] = indegree[k] - 1
      lpath[k] = max(lpath[k],lpath[j]+1)
      if indegree[k] == 0:
        zerodegreeq.addq(k)
  return(lpath)
```

4 日 5 4 個 5 4 国 5 4 国 6 国 6

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Process head of queue: update indegrees, update queue, update longest paths
- Repeat till queue is empty

Analysis

■ Initializing indegrees is O(m+n)

```
def longestpathlist(AList):
  (indegree, lpath) = ({},{})
  for u in AList.keys():
    (indegree[u],lpath[u]) = (0,0)
  for u in AList.keys():
    for v in AList[u]:
      indegree[v] = indegree[v] + 1
  zerodegreeq = Queue()
  for u in AList.keys():
    if indegree[u] == 0:
      zerodegreeq.addq(u)
  while (not zerodegreeq.isemptv()):
    j = zerodegreeq.delq()
    indegree[i] = indegree[i]-1
    for k in AList[i]:
      indegree[k] = indegree[k] - 1
      lpath[k] = max(lpath[k],lpath[j]+1)
      if indegree[k] == 0:
        zerodegreeq.addq(k)
  return(lpath)
```

4 日 5 4 個 5 4 国 5 4 国 6 国 6

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Process head of queue: update indegrees, update queue, update longest paths
- Repeat till queue is empty

Analysis

- Initializing indegrees is O(m+n)
- Loop to enumerate vertices runs *n* times
 - Updating indegrees, longest path: amortised O(m)

```
def longestpathlist(AList):
  (indegree, lpath) = ({},{})
  for u in AList.keys():
    (indegree[u],lpath[u]) = (0,0)
  for u in AList.keys():
    for v in AList[u]:
      indegree[v] = indegree[v] + 1
  zerodegreeq = Queue()
  for u in AList.keys():
    if indegree[u] == 0:
      zerodegreeq.addq(u)
  while (not zerodegreeq.isempty()):
     = zerodegreeq.delq()
    indegree[i] = indegree[i]-1
    for k in AList[i]:
      indegree[k] = indegree[k] - 1
      lpath[k] = max(lpath[k],lpath[j]+1)
      if indegree[k] == 0:
        zerodegreeq.addq(k)
  return(lpath)
                   4 日 5 4 個 5 4 国 5 4 国 6 国 6
```

- Compute indegrees by scanning adjacency lists
- Maintain queue of vertices with indegree 0
- Process head of queue: update indegrees, update queue, update longest paths
- Repeat till queue is empty

Analysis

- Initializing indegrees is O(m+n)
- Loop to enumerate vertices runs *n* times
 - Updating indegrees, longest path: amortised O(m)
- Overall, O(m+n)

```
def longestpathlist(AList):
  (indegree, lpath) = ({},{})
  for u in AList.keys():
    (indegree[u],lpath[u]) = (0,0)
  for u in AList.keys():
    for v in AList[u]:
      indegree[v] = indegree[v] + 1
  zerodegreeq = Queue()
  for u in AList.keys():
    if indegree[u] == 0:
      zerodegreeq.addq(u)
  while (not zerodegreeq.isempty()):
    j = zerodegreeq.delq()
    indegree[i] = indegree[i]-1
    for k in AList[i]:
      indegree[k] = indegree[k] - 1
      lpath[k] = max(lpath[k],lpath[j]+1)
      if indegree[k] == 0:
        zerodegreeq.addq(k)
  return(lpath)
```

4 日 × 4 間 × 4 国 × 4 国 × 1 国 ×

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Topological sort gives a feasible schedule that represents dependencies
- In parallel with topological sort, we can compute the longest path

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Topological sort gives a feasible schedule that represents dependencies
- In parallel with topological sort, we can compute the longest path
- Notion of longest path makes sense even for graphs with cycles
 - No repeated vertices in a path, so path has at most n-1 edges

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Topological sort gives a feasible schedule that represents dependencies
- In parallel with topological sort, we can compute the longest path
- Notion of longest path makes sense even for graphs with cycles
 - No repeated vertices in a path, so path has at most n-1 edges
- However, computing longest paths in arbitrary graphs is much harder than for DAGs
 - No better strategy known than exhaustively enumerating paths