

Traitement automatique d'électrogrammes transmis par des dispositifs électroniques cardiaques implantables

Tuteur de stage : Rémi Dubois

Encadrante universitaire : Marie Chavent

NGUYEN Alexandre M2 CMI ISI

Soutenance de stage Du 20/02/2023 au 20/07/2023

Sommaire:

- 1. Présentation du Liryc
- 2. Contexte et problématique
- 3. Travaux réalisés pendant le stage
- 4. Conclusion
- 5. Références

1. Présentation du Liryc

- IHU = Institut Hospitalo-Universitaire
- Situé dans le complexe hospitalier Xavier Arnozan à Pessac
- Créé en 2012 grâce au Programme d'Investissement d'Avenir
- Institut dédié à la recherche sur le cœur, son fonctionnement et les pathologies du rythme cardiaque
- Missions de recherche, d'innovation de soins et de formation
- Affilié à l'Université de Bordeaux, CHU de Bordeaux, Inria ainsi qu'à des partenaires industriels du domaine médical

Plusieurs pôles de recherche à l'IHU Liryc :

- ☐ Pôle modélisation
- ☐ Pôle physiopathologie
- ☐ Pôle clinique
- ☐ Pôle technologie pour la santé :
 - Équipe imagerie
 - Equipe science de données multimodales
 - Equipe traitement du signal : instrumentation et traitement du signal

2. Contexte et problématique

- Dispositifs électroniques cardiaques implantés (pacemakers, défibrillateurs) :
 - 410 000 implantés, 80 000 nouvelles implantations chaque année
 - Surveillent l'activité électrique du cœur et corrigent les anomalies
 - Suivi à distance et continu des patients

2. Contexte et problématique

- Fibrillation auriculaire (FA): activité électrique anarchique et rapide du muscle des oreillettes => contractions désordonnées et inefficaces
 - → ne doit pas être traitée par le dispositif

- Détection à tort de FA par le dispositif :
 - Causée par un bruit sur le signal électrique de la voie auriculaire
 - Un rythme rapide est pensé comme conséquence de la FA donc non traité

Objectif du stage: Développer un algorithme, basé sur une stratégie de Machine Learning, capable de détecter automatiquement une FA sur l'EGM du dispositif d'un patient.

→ Discrimination FA d'un autre évènement qui doit être traité

2. Contexte et problématique

- > 10 000 EGM labellisés manuellement par 3 médecins en 2 classes :
 - 1' ou 'AF' : l'EGM présente bien une FA
 - > '0' ou 'other' : l'EGM ne présente pas de FA
- Consensus sur 10 172 EGM : base de données utilisées
 - > 8057 enregistrements de classe 1
 - 2115 enregistrements de classe 0
 - > 652 patients

Pré-traitement des données :

- Min: 513 points Max: 5137 points
- Uniformisation des tailles par zero-padding
- Padding: 8192 (aucune perte d'information)

Organisation de la base de données :

- Découpage apprentissage/test 80/20
- Conservation du déséquilibre des classes dans les deux ensembles
- Tous les enregistrements d'un même patient dans un seul des ensembles

1ère approche : Modèle de réseau de neurones convolutif

Réseau neuronal résiduel (ResNet) \rightarrow évite le phénomène de disparition du gradient (qui empêche le modèle d'apprendre)

Architecture du réseau :

- Nombre de couches
- Nombre de neurones par couches

Hyperparamètres du réseau :

- Algorithme d'optimisation avec un taux d'apprentissage Ir
- w₀ et w₁: poids associés à chaque classe
- Taille des batchs de données (& nombre d'epochs) => Sélection par validation croisée 5-Folds

Performances d'un modèle : Si classe 1 =classe positive, F_1 score pour la classe 0 :

$$F_1 = \left(\frac{TNR^{-1} + NPV^{-1}}{2}\right)^{-1}$$

$$F_1 = \left(\frac{TNR^{-1} + NPV^{-1}}{2}\right)^{-1}$$
 $TNR = \frac{TN}{TN + FP}$ $NPV = \frac{TN}{TN + FN}$

Architecture finale prenant en entrée les deux voies d'un enregistrement

Architecture finale ne prenant en entrée que la voie auriculaire d'un enregistrement

Résultats sur l'ensemble de données test

• Meilleur modèle prenant en entrée les deux voies d'un enregistrement

F1 score (pour la classe 0)	Accuracy
92.9 %	96.8 %

Meilleur modèle prenant en entrée la voie auriculaire d'un enregistrement

F1 score (pour la classe 0)	Accuracy
95.9 %	98.1 %

Modèles intégrés à un environnement (application web via Flask)

2^{nde} approche: Détection hors distribution par incertitudes de prédiction

- Basé sur l'article « Conservative Uncertainty Estimation By Fitting Prior Networks » (Ciosek et al., 2019)[1]
- Soient des observations x_i et un ensemble d'observations d'une même distribution X

$$\begin{cases} z_i = \hat{z}_i, \forall x_i \in X \\ z_i \neq \hat{z}_i, \forall x_i \notin X \end{cases}$$

• Une fois le Predictor entraîné, on mesure pour toutes les données de la base la distance $\|z_i - \hat{z}_i\|^2$ (incertitudes de prédiction).

Application sur le jeu de données MNIST (chiffres manuscrits de 0 à 9)

- Discriminer les images de 4
- Mêmes architecture pour les Prior et Predictor + même taille de vecteurs en sortie que les auteurs de l'article : M=512

Application sur le jeu de données MNIST (chiffres manuscrits de 0 à 9)

Seuil de décision : valeur qui maximise TPR - FPR

96.455% des données bien discriminées sur l'ensemble d'apprentissage du jeu MNIST

83.520% des données bien discriminées sur l'ensemble test du jeu MNIST

100% des données du jeu CIFAR10 bien discriminées

Application sur les données des EGM

- Discrimination des enregistrements présentant une FA
- Modèles Prior et Predictor avec quasiment la même architecture que celle du meilleur modèle à deux voies trouvé précédemment
- Taille de vecteur en sortie : M=512

Application sur les données des EGM

83.177% des données de l'ensemble d'apprentissage bien discriminées

45.280% des données de l'ensemble test bien discriminées

4. Conclusion

4. Conclusion

- Développement de modèles de réseau de neurones ResNet permettant de discriminer
 >95% une FA parmi les EGM remontés par les dispositifs des patients
- Modèles intégrés dans une application pouvant automatiquement détecter la présence d'une FA pour de nouveaux EGM remontés
- Détection hors distribution basée sur un article récent : moins efficace que l'approche par réseau neuronal résiduel dans les conditions actuelles d'implémentation
 - → optimisation des architectures Prior et Predictor
 - → optimisation de l'espace de sortie

Merci de votre attention!

Références

- [1] Ciosek, K., Fortuin, V., Tomioka, R., Hofmann, K., & Turner, R. (2019, September). Conservative uncertainty estimation by fitting prior networks. In *International Conference on Learning Representations*.
- [2] microsoft. (s. d.). GitHub Microsoft/Conservative-uncertainty-estimation-random-Priors: Source code for Paper Conservative Uncertainty Estimation by Fitting Prior Networks (ICLR 2020). GitHub.

https://github.com/microsoft/conservative-uncertainty-estimation-random-priors

• Chollet, F. (2017). Deep learning with python. Manning Publications.