

FAST- National University of Computer & Emerging Sciences, Karachi.

Department of Computer Science Assignment # 3, Fall 2020. CS211-Discrete Structures

<u>Instructions:</u>	Max. Points: 1	00
----------------------	----------------	----

- 1- This is hand written assignment.
- 2- Just write the question number instead of writing the whole question.
- 3- You can only use A4 size paper for solving the assignment.
- 1. Let R be the following relation defined on the set {a, b, c, d}:

$$R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}.$$

Determine whether R is:

(a) Reflexive

(b) Symmetric

(c) Antisymmetric

(d) Transitive

(e) Irreflexive

(f) Asymmetric

2. Let *R* be the following relation on the set of real numbers:

 $aRb \leftrightarrow |a| = |b|$, where |x| is the floor of x.

Determine whether R is:

(a) Reflexive

(b) Symmetric

(c) Antisymmetric

(d) Transitive

(e) Irreflexive

(f) Asymmetric

3. List the ordered pairs in the relation R from A = $\{0, 1, 2, 3, 4\}$ to B = $\{0, 1, 2, 3\}$, where $(a, b) \in R$ if and only if

$$a) a = b.$$

b)
$$a + b = 4$$
.

e)
$$gcd(a, b) = 1$$
.

f)
$$lcm(a, b) = 2$$
.

- 4. List all the ordered pairs in the relation R = {(a, b) | a divides b} on the set {1, 2, 3, 4, 5, 6}. Display this relation as Directed Graph(digraph), as well in matrix form.
- 5. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

- 6. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, Asymmetric, irreflexive and/or transitive, where (a, b) ∈ R if and only if:
 - a) a is taller than b.

- b) a and b were born on the same day.
- c) a has the same first name as b.
- d) a and b have a common grandparent.
- 7. Give an example of a relation on a set that is
 - a) both symmetric and antisymmetric.
- b) neither symmetric nor antisymmetric

	R2 = $\{(a, b) \in R \mid a \ge b\}$, the "greater than or equal to "relation, R3 = $\{(a, b) \in R \mid a < b\}$, the "less than" relation, R4 = $\{(a, b) \in R \mid a \le b\}$, the "less than or equal to "relation, R5 = $\{(a, b) \in R \mid a = b\}$, the "equal to" relation, R6 = $\{(a, b) \in R \mid a \ne b\}$, the "unequal to" relation.							
	, , , , , , , , , , , , , , , , , , , ,	R4 ∩ R6. R3 ⊕ R5.						
9.	(a) Represent each of these relations on $\{1,2,3\}$ with a matrix(with the elements of this set listed in increasing order). i) $\{(1,1),(1,2),(1,3)\}$ ii) $\{(1,2),(2,1),(2,2),(3,3)\}$ iii) $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$ iv) $\{(1,3),(3,1)\}$							
	(b) List the ordered pairs in the relations on { 1, 2, 3 } corresponding to these matrices columns correspond to the integers listed in increasing order).	where rows and						
	(i) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$							
10.	. (a) Suppose that R is the relation on the set of strings of English letters such that aRb if and only if $I(a) = I(b)$, where $I(x)$ is the length of the string x . Is R an equivalence relation?							
	 (b) Let m be an integer with m > 1. Show that the relation R = {(a,b) a ≡ b (mod m)} is an equivalence relation on the set of integers. (c) Let m be a positive integer. Show that a ≡ b (mod m) if a mod m = b mod m. 11. What are the quotient and remainder when: 							
	a) 19 is divided by 7? b) -111 is divided by 11?							
	c) 789 is divided by 23? d) 1001 is divided by 13?							
	e) 10 is divided by 19? f) 3 is divided by 5?							
	g) -1 is divided by 3? h) 4 is divided by 1?							
	12. (a) Find a div m and a mod m when							
	i) $a = -111$, $m = 99$. ii) $a = -9999$, $m = 101$.							
	iii) a = 10299, m = 999. iv) a = 123456, m = 1001.							
	-122							
	13. (a) Determine whether the integers in each of these sets are pairwise relatively prim i) 11, 15, 19 ii) 14, 15, 21 iii) 12, 17, 31, 37 iv) 7	ne. 7, 8, 9, 11						

8. Consider these relations on the set of real numbers: $A = \{1,2,3\}$

R1 = $\{(a, b) \in R \mid a > b\}$, the "greater than" relation,

14. Use the extended Euclid	lean algorithm to	express gcd (144	l, 89) and gcd (1001, 100001) as a linear				
15. Solve each of these cong a) 55x ≡ 34 (mod 89)	•	modular inverses. ≡ 2 (mod 232)						
 16. (a) Use the construction system of congruences. i) x ≡ 1 (mod 5), x ≡ 2 ii) x ≡ 1 (mod 2), x ≡ 2 	(mod 6), and $x \equiv 3$	(mod 7).		nd all solutions to the				
(b) An old man goes to mark rider offers to pay for the da remember the exact numbe left. When he took them six out seven at a time, there w at a time, there was no oran	amages and asks r, but when he ha at a time, there w vas only one oran	him how many o d taken them ou ere also three o ge was left and	ranges he had t t five at a time, t ranges left, whe when he had ta	brought. He does not there were 3 oranges en he had taken them ken them out eleven				
17. Find an inverse of <i>a mod</i> a) a = 2, m = 17 c) a = 144, m = 233	b) a = 3	hese pairs of relat 34, m = 89 200, m = 1001	tively prime integ	ers.				
18. (a) Encrypt the message S encryption function, and t i) f (p) = (p + 4) mod 2	then translating the		to letters.	ers, applying the given				
(b) Decrypt these messages e i) CEBBOXNOB XYG	ncrypted using the	Shift cipher. ii) LO WI PBSOX	, ,	nod 26.				
19. Use Fermat's little theorem	m to compute 5 ²⁰⁰³	mod 7, 5 ²⁰⁰³ mod	11, and 5 ²⁰⁰³ mo	d 13.				
20. (a) Encrypt the message I applying the Caesar Ciphe		•	•					
(b) Decrypt these messages e i) PLG WZR DVVLJQF		Caesar Cipher. ii) IDVW QXFHV	XQLYHUVLWB					
21. (a) Which memory locations are assigned by the hashing function h(k) = k mod 97 to the records of insurance company customers with these Social Security numbers?								
i) 034567981	ii) 183211232	iii) 2201	95744	iv) 987255335				
(b) Which memory locations a insurance company customer				to the records of				
	s with these Social 2222187	iii) 372201919	s <i>r</i> iv) 5013	338753				

(b) Find the prime factorization of each of these integers.

ii) 126

iii) 729

iv) 1001

v) 1111

vi) 909

i) 88

- 22. What sequence of pseudorandom numbers is generated using the linear congruential generator? $x_0+1=(4x_0+1) \mod 7$ with seed $x_0=3$?
- 23. (a) Determine the check digit for the UPCs that have these initial 11 digits.

i) 73232184434

ii) 63623991346

(b) Determine whether each of the strings of 12 digits is a valid UPC code.

i) 036000291452

ii) 012345678903

- 24. (a) The first nine digits of the ISBN-10 of the European version of the fifth edition of this book are 0-07-119881. What is the check digit for that book?
- (b) The ISBN-10 of the sixth edition of Elementary Number Theory and Its Applications is 0-321-500Q1-8, where Q is a digit. Find the value of Q.
- 25. Encrypt the message ATTACK using the RSA system with $n = 43 \cdot 59$ and e = 13, translating each letter into integers and grouping together pairs of integers.

Best of Luck!