

PCIE基础知识

尤恺元 15921999232 微信

PCI Express 简介

- 计算机通信平台中,PCI Express体系结构代表作高性能的外围组件互联方法
- 由PCI 和PCI-X 体系结构演变而来architectures
- PCI Express 以一种串行的点对点的方式互联两个设备
- 信息传输基于数据包协议实现
- PCI Express 互联中可实现单通道或多通道的数据传输
- PCI Express 协议目前已经发布4个版本

时间	版本	速率
2003	PCIe 1.0	2.5GT/s
2006	PCIe 2.0	5GT/s
2010	PCIe 3.0	8GT/s
2017	PCIe 4.0	16GT/s

PCI Express 特性

- 点对点传输
- 串行总线意味着使用更少的引脚
- 通道数可选择: x1, x2, x4, x8, x12, x16, x32
- 全双工通信
- 2.5Gbps / 5.0Gbps
- 基于数据包的传输协议

PCI Express拓扑结构

- ■根端口
 - 连接CPU和存储器系统及PCle结构的设备
 - 支持一个或多个PCle端口
- 交換
 - 根据地址、ID或隐含路由数据包
 - 只要一个向上链路
 - 支持Type1配置空间
- 端点设备
 - 支持Type0配置空间
 - 可以被主板连接或者挂载
 - 显卡、网卡等功能卡

EXILINX®

PCIe配置空间

Type0

- 用于配置端点设备
- 由根复合体发起,配置预定义的PCI系统端 点设备头部区域
- 设备号/ID号
- BAR
- Type1
 - 用于配置Switches/Bridges

PCI Express事务类型

■ 事务层将请求翻译成四种事务类型:

地址空间	事务类型	用途
存储器	读写	传送数据 自/至系统存储器空间的一个单元
10	读写	传送数据 自/至系统IO空间的一个单元
配置	读写	传送数据 自/至PCI兼容的、设备配置空间的一个单元
消息	底线/厂商定义	通常用于带内的消息传递和事件报告

PCI Express TLP Types

 Header
 Data Payload
 ECRC

 3~4DW
 0~1024DW
 1DW

Sequence	Header	Data Payload	ECRC	LCRC	
2B	3~4DW	0~1024DW	1DW	1DW	

•

Start	Sequence	Header	Data Payload	ECRC	LCRC	End
1B	2B	3~4DW	0~1024DW	1DW	1DW	1B

链路层TLP

物理层

Ftm[1:0]: 00=3DW, 无数据; 01=4DW, 无数据; 10=3DW, 有数据; 11=4DW, 有数据; 其和Type字段一起来规定事务的类型

TLP 类型	Ftm [1:0]	Type[4:0]
存储器读请求Mrd	00 = 3DW,无数据 01 = 4DW,无数据	0 0000
锁定存储器读请求MrdLk	00 = 3DW,无数据 01 = 4DW,无数据	0 0001
存储器写请求MWr	10 = 3DW,有数据 11 = 4DW,有数据	0 0000
IO读请求IORd	00 = 3DW,无数据	0 0010
IO写请求IOWr	10 = 3DW,有数据	0 0010
Type 0 配置读请求(CfgRd0)	00 = 3DW,无数据	0 0100
Type 1 配置读请求(CfgRd1)	00 = 3DW,无数据	0 0101
Type 0 配置写请求(CfgWr0)	10 = 3DW,有数据	0 0100
Type 1 配置写请求(CfgWr0)	10 = 3DW,有数据	0 0101
消息请求(Msg)	01 = 4DW,无数据	1 Orrr
带数据的消息请求(MsgD)	11 = 4DW,有数据	1 Orrr
完成Cpl	00 = 3DW,无数据	0 1010
带数据的完成(CplD)	10 = 3DW,有数据	0 1010
锁定完成(CplLk)	00 = 3DW,无数据	0 1011
带数据的锁定完成(CplDLk)	10 = 3DW,有数据	0 1011

TLP概况

Figure 3-2: Endpoint Integrated Block Byte Order

数据包路由

- ■每一种请求或者完成报文头都会有类型标注,每个数据包的路由都基于以下三种方式:
 - 地址路由
 - ID 路由
 - 隐含式路由

TLP类型	使用路由方法	
MRd、MRdLk、MWr	地址路由	
IORd、IOWr	地址路由	
CfgRd0、CfgRd1 CfgWr0、CfgWr1	ID路由	
Msg、MsgD	地址路由、ID路由或隐含式路由	
Cpl、CplD	ID路由	

数据包路由

- 端点的地址路由 端点设备检查TLP包中的地址与BAR中所有地址进行比较,如果不属于本端点范 围,则拒绝。
- 端点的ID路由 端点设备检查TLP包里的 总线 ID 和 设备 ID 功能ID是否与本端点一致,这些信息 在Type0的配置信息里可以捕获。

Programmed I/O Transaction

DMA Transaction

Peer-to-Peer Transaction

PCI Express Device Layers

中断类型

■ 真正的PCIe设备:必须使用MSI发送中断

■ 传统的端点设备:必须支持MSI,可选择性地支持INTx消息。

■ PCIe到PCI (X) 桥: 必须支持INTx消息

理论带宽计算

- Gen2单向链路速率5Gbps
- 使用8B/10B编码,产生20%的数据开销
- 理论带宽=链路速率 * 80% * 通道数
- 对于单通道:
 - Gen1: 2.5Gbps*0.8=250MBps
 - Gen2: 5Gbps*0.8=500MBps
 - Gen3: 8Gbps*1=1GBps
- 更多的开销是由协议导致
 - 数据头
 - 校验位
 - 链路训练
 - 错误通信

PCIe在数据存储方面的应用

■ NVMe 标准高端 SSD (M.2接口)

■ 实施方案(嵌入式应用)

PCIe 在图像处理方面的应用

■ H.264编解码系统

■实施方案

PCle 在高速数据采集方面的应用

- 高速AD/DA系统
 - JESD204B
 - LVDS

PCle 在网络通信方面的应用

■ 有线通信系统--光纤通信

参考

- pcisig.com
- mindshare.com
- PCI Express System Architecture (Book)
- PCI Express 3.0 Architecture