Datasheet

Low power, 1.7 MHz, rail-to-rail output, 36 V operational amplifier

SO14

TSSOP14

MiniSO8

DFN8 (3 x 3 mm)

Features

Low offset voltage: 1 mV max. @ 25 °C

Low current consumption: 375 μA max. / operator @ 36 V

Wide supply voltage: 2.7 to 36 V
Gain bandwidth product: 1.7 MHz

Unity gain stable

· Rail-to-rail output

Input common mode voltage incudes ground

High ESD tolerance: 4 kV HBM

EMI hardened

Extended temperature range: -40 to 125 °C

Automotive qualification

Applications

- Industrial
- Power supplies
- Automotive

Maturity status link

TSB621, TSB622, TSB624

Related products					
TSB611, TSB612	For lower power consumption				
TSB571, TSB572, TSB514	For higher speed and rail- to-rail inputs				
TSB711, TSB712	For a higher precision and speed				

Description

The TSB621, TSB622, TSB624 are general purpose operational amplifiers featuring an extended supply voltage operating range and rail-to-rail output. They also offer an excellent speed/power consumption ratio with 1.7 MHz gain bandwidth product while consuming less than 375 μ A per operator at 36 V supply voltage.

The TSB621, TSB622, TSB624 operate over a wide temperature range from -40 $^{\circ}$ C to 125 $^{\circ}$ C making these devices ideal for industrial and automotive applications with the associated qualification.

Thanks to the small package size, the TSB621, TSB622, TSB624 can be used in applications where space on the board is limited. It can thus reduce the overall cost of the PCB.

1 Pin connections

Figure 1. TSB621 pin connections (top view)

Table 1. TSB621 pin description

Pin n°	Pin name	Description
1	OUT1	Output
2	VCC -	Negative supply voltage
3	IN +	Positive input voltage
4	IN -	Negative input voltage
5	VCC	Positive supply voltage

Figure 2. TSB622 pin connections (top view)

⁽¹⁾ Exposed pad can be left floating or connected to ground.

Table 2. TSB622 pin description

Pin n°	Pin name	Description			
1	OUT1	Output			
2	IN1 -	Negative input voltage			
3	IN1 +	Positive input voltage			
4	VCC -	Negative supply voltage			
5	IN2 +	Positive input voltage			
6	IN2 -	Negative input voltage			
7	OUT2	Output			
8	VCC +	Positive supply voltage			

DS13848 - Rev 3 page 2/35

Figure 3. TSB624 pin connections (top view)

SO14 - TSSOP14

Table 3. TSB624 pin description

Pin n°	Pin name	Description
1	OUT1	Output
2	IN1 -	Negative input voltage
3	IN1 +	Positive input voltage
4	VCC +	Positive supply voltage
5	IN2 +	Positive input voltage
6	IN2 -	Negative input voltage
7	OUT2	Output
8	OUT3	Output
9	IN3 -	Negative input voltage
10	IN3 +	Positive input voltage
11	VCC -	Negative supply voltage
12	IN4 +	Positive input voltage
13	IN4 -	Negative input voltage
14	OUT4	Output

DS13848 - Rev 3 page 3/35

Absolute maximum ratings and operating conditions

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage (1)	40	V
V _{id}	Differential input voltage (2)	± V _{cc}	V
V _{in}	Input voltage	(V _{cc-}) -0.2 to (V _{cc+}) +0.2	V
l _{in}	Input current (3)	10	mA
T _{stg}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C
R _{th-ja}	Thermal resistance junction to ambient ⁽⁴⁾ ⁽⁵⁾ SO8 MiniSO8 DFN8 3x3 WF SOT23-5 SO14 TSSOP14	125 190 40 250 105 100	°C/W
ESD	Human Body Model (HBM TSB621, TSB622) (6) Human Body Model (HBM TSB624) (6) Charged Device Model (CDM) (7)	4000 3000 1500	V

- 1. All voltage values, except differential voltage, are with respect to network ground terminal.
- 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
- 3. Input current must be limited by a resistor in series with the inputs.
- 4. R_{th} are typical values.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. According to JEDEC standard JESD22-A114F.
- 7. According to ANSI/ESD STM5.3.1.

Table 5. Operating conditions

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	2.7 to 36	V
V _{icm}	Common mode voltage on input pins	(V _{cc-}) -0.1 to (V _{cc+}) -1	V
Т	Operating free-air temperature range	-40 to 125	°C

DS13848 - Rev 3 page 4/35

3 Electrical characteristics

Table 6. Electrical characteristics V_{CC^+} = 2.7 V, V_{cc^-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	· · · · · · · · · · · · · · · · · · ·	DC performance				
.,,		T = 25 °C	-1		1	.,
V_{IO}	Input offset voltage	Tmin < T < Tmax	-1.6		1.6	- mV
Δ V _{IO} /ΔT	Input offset voltage drift	Tmin < T < Tmax		2		μV/°C
		T = 25 °C		15	30	
I _{IB}	Input bias current	Tmin < T < Tmax			45	
	love to the standard	T = 25 °C		3	10	- nA
I _{IO}	Input offset current	Tmin < T < Tmax			15	
CMR	Common mode rejection ratio: 20 log ($\Delta V_{icm}/\Delta V_{io}$)	V_{icm} = - 0.1 to V_{CC} -1 V, V_{OUT} = $V_{CC}/2$	90	115		dB
	S (Ioiii Io)	Tmin < T < Tmax	85			
A_{VD}	Large signal voltage gain	$V_{OUT} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V})$	90	105		dB
AVD	Large signal voltage gain	Tmin < T < Tmax	82			ub ub
V _{OH}	High-level output voltage,	T = 25 °C		35	46	
VOH	V _{OH} = V _{CC} - V _{OUT}	Tmin < T < Tmax			55	mV
V_{OL}	Low-level output voltage	T = 25 °C		50	60	IIIV
VOL	Low-level output voltage	Tmin < T < Tmax			75	
	Lea	V _{OUT} = V _{CC}	20	27		
I _{OUT}		Tmin < T < Tmax	10			mA.
		V _{OUT} = 0 V	20	28		IIIA
	Isource	Tmin < T < Tmax	8			_
1	Cumply ourrent (nor channel)	No load, V _{OUT} = V _{CC} /2		280	330	
I _{CC}	Supply current (per channel)	Tmin < T < Tmax			400	μA
		AC performance				
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$	1	1.45		MHz
GDF	Gairi Dariuwiutii product	Tmin < T < Tmax	0.7			IVITIZ
Φm	Phase margin	B = 10 k0 0 = 100 = 5		45		degree
G _m	Gain margin	R_L = 10 kΩ, C_L = 100 pF		18		dB
0.5		T = 25 °C	0.30	0.53		
SR	Slew rate	Tmin < T < Tmax	0.20			V/µs
E _N	Equivalent input noise voltage	f = 1 kHz		30		nV/√H
		f_{in} = 1 kHz, Gain = 1, R_L = 100 k Ω ,				
THD+N	Total harmonic distortion + noise	$V_{icm} = (V_{cc} - 1 \ V) / 2,$		0.005		%
		BW = 22 kHz, V _{OUT} = 1 Vpp				
C _S	Channel separation	f = 1 kHz		120		dB
t _{rec}	Overload recovery time			2		μs

DS13848 - Rev 3 page 5/35

Table 7. Electrical characteristics V_{CC+} = 12 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance					
.,		T = 25 °C	-1		1	.,	
V_{IO}	Input offset voltage	Tmin < T < Tmax	-1.6		1.6	mV	
Δ V _{IO} /ΔT	Input offset voltage drift	Tmin < T < Tmax		2		μV/°C	
		T = 25 °C		15	30		
I _{IB}	Input bias current	Tmin < T < Tmax			45	A	
I	land offer a company	T = 25 °C		3	10	- nA	
I _{IO}	Input offset current	Tmin < T < Tmax			15		
CMR	Common mode rejection ratio: 20 log ($\Delta V_{icm}/\Delta V_{io}$)	V_{icm} = - 0.1 to V_{CC} -1 V, V_{OUT} = $V_{CC}/2$	100	130		dB	
	-3 129 (= 1 ldll = 1 ld)	Tmin < T < Tmax	95				
A_{VD}	Large signal voltage gain	$V_{OUT} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V})$	98	115		dB	
AVD	Large signal voltage gain	Tmin < T < Tmax	90			ub.	
V _{OH}	High-level output voltage,	T = 25 °C		68	80	80	
VOH	$V_{OH} = V_{CC} - V_{OUT}$	Tmin < T < Tmax			95	mV	
V_{OL}	Low-level output voltage	T = 25 °C		86	100	IIIV	
VOL	Low-level output voltage	Tmin < T < Tmax			125		
	Lea	V _{OUT} = V _{CC}	25	35			
l _{OUT}		Tmin < T < Tmax	10			mA	
		V _{OUT} = 0 V	30	37		IIIA	
	Isource	Tmin < T < Tmax	15				
1	Country comment (non-channel)	No load, V _{OUT} = V _{CC} /2		295	345		
I _{CC}	Supply current (per channel)	Tmin < T < Tmax			420	μΑ	
		AC performance					
CDD	Cain handwidth and dust	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$	1.1	1.55		NAL I—	
GBP	Gain bandwidth product	Tmin < T < Tmax	0.8			MHz	
Фт	Phase margin	D = 10 k0 C = 100 = F		45		degree	
G _m	Gain margin	R_L = 10 kΩ, C_L = 100 pF		18		dB	
0.5		T = 25 °C	0.35	0.58		.,,	
SR	Slew rate	Tmin < T < Tmax	0.20			V/µs	
E _N	Equivalent input noise voltage	f = 1 kHz		30		nV/√H	
		f_{in} = 1 kHz, Gain = 1, R_L = 100 k Ω ,					
THD+N	Total harmonic distortion + noise	$V_{icm} = (V_{CC} - 1 V) / 2,$		0.005		%	
		BW = 22 kHz, V _{OUT} = 1 Vpp					
C _S	Channel separation	f = 1 kHz		120		dB	
t _{rec}	Overload recovery time			2		μs	

DS13848 - Rev 3 page 6/35

Table 8. Electrical characteristics V_{CC+} = 36 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to Vcc/2 (unless otherwise specified)

Parameter	Conditions	Min.	Тур.	Max.	Unit	
	DC performance					
land to ffeet well-	T = 25 °C	-1		1		
input offset voltage	Tmin < T < Tmax	-1.6		1.6	mV	
Input offset voltage drift	Tmin < T < Tmax		2		μV/°C	
	T = 25 °C		15	30		
Input bias current	Tmin < T < Tmax			45		
	T = 25 °C		3	10	nA	
Input offset current	Tmin < T < Tmax			15		
	V_{icm} = -0.1 to V_{CC} -1 V,	105	405			
	$V_{OUT} = V_{CC}/2$	105	135		dB	
20 log (Δν _{icm} /Δν _{io})	Tmin < T < Tmax	100			-	
Supply voltage rejection ratio:	V _{CC} = 4.5 to 36 V, V _{icm} = 0 V	100	124			
20 log ($\Delta V_{CC}/\Delta V_{io}$)	Tmin < T < Tmax	95			dB	
	V _{OUT} = 0.5 V to (V _{CC} -0.5 V)	105	120			
Large signal voltage gain	Tmin < T < Tmax	100			dB	
High-level output voltage,	T = 25 °C		110	140		
V _{OH} = V _{CC} - V _{OUT}	Tmin < T < Tmax			180	mV	
Low lovel output veltage	T = 25 °C		125	150		
Low-level output voltage	Tmin < T < Tmax			195		
I _{sink}	V _{OUT} = V _{CC}	35	45			
	Tmin < T < Tmax	15				
	V _{OUT} = 0 V	35	45		mA	
Isource	Tmin < T < Tmax	25				
	No load, V _{OUT} = V _{CC} /2		310	375		
Supply current (per channel)	Tmin < T < Tmax			420	μA	
	AC performance					
	R _L = 10 kΩ, C _L = 100 pF	1.2	1.7			
Gain bandwidth product					MHz	
Phase margin			45		degree	
-	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$				dB	
- 5	T = 25 °C	0.35				
Slew rate					V/µs	
Equivalent input noise voltage			25		nV/√H	
4						
Total harmonic distortion + noise			0.005		%	
. Stat. Harmonia diatoritari - Holac	BW = 22 kHz, V _{OUT} = 1 Vpp		0.500		%	
	==					
Channel separation	f = 1 kHz		120		dB	
	Input offset voltage Input offset voltage drift Input bias current Input offset current Common mode rejection ratio: 20 log (ΔV _{icm} /ΔV _{io}) Supply voltage rejection ratio: 20 log (ΔV _{CC} /ΔV _{io}) Large signal voltage gain High-level output voltage, V _{OH} = V _{CC} - V _{OUT} Low-level output voltage I _{sink} I _{source} Supply current (per channel) Gain bandwidth product Phase margin Gain margin	$ \begin{tabular}{ c c c c c } \hline DC performance \\ \hline Input offset voltage \\ \hline Input offset voltage drift \\ \hline Input offset voltage drift \\ \hline Input offset voltage drift \\ \hline Input bias current \\ \hline Input offset current \\ \hline Input offset current \\ \hline T = 25 °C \\ \hline Tmin < T < Tmax \\ \hline T = 25 °C \\ \hline Tmin < T < Tmax \\ \hline T = 25 °C \\ \hline Tmin < T < Tmax \\ \hline V_{lcm} = -0.1 to V_{CC} - 1 V, \\ V_{OUT} = V_{CC} / 2 \\ \hline Tmin < T < Tmax \\ \hline Supply voltage rejection ratio: \\ 20 log (\Delta V_{CC}/\Delta V_{lo}) \\ \hline Total harmonic distortion + noise \\ \hline V_{CC} = 4.5 to 36 V, V_{lcm} = 0 V \\ \hline V_{CC} = 4.5 to 36 V, V_{lcm} = 0 V \\ \hline Total harmonic distortion + noise \\ \hline T = 25 °C \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = 0.5 V to (V_{CC} - 0.5 V) \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = 0.5 V to (V_{CC} - 0.5 V) \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = 0.5 °C \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = V_{CC} \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = V_{CC} \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = 0 V \\ \hline Tmin < T < Tmax \\ \hline V_{OUT} = 0 V \\ \hline Tmin < T < Tmax \\ \hline AC performance \\ \hline R_L = 10 k\Omega, C_L = 100 pF \\ \hline Tmin < T < Tmax \\ \hline R_L = 10 k\Omega, C_L = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} = 100 pF \\ \hline Tmin < T < Tmax \\ \hline C_{CC} =$	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c } \hline \textbf{DC performance} \\ \hline & T = 25 ^{\circ} \text{C} & -1 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T < T \text{max} & -1.6 \\ \hline & T \text{min} < T $	Input offset voltage	

DS13848 - Rev 3 page 7/35

4 Typical performance characteristics

DS13848 - Rev 3 page 8/35

Figure 8. Input offset voltage vs. temperature at $V_{CC} = 36 V$ 400 Vcc = 36V 300 Vicm = 0V Input Offset Voltage (μV) $RI = 10k\Omega$ 200 CI = 100pF 100 0 -100 -200 -300 -400 <u>L</u> 60 80 -20 20 40 100 120 Temperature (°C)

Figure 9. Input offset voltage temperature variation distribution at $V_{CC} = 36 \text{ V}$ Vcc = 36V Vicm =0V 25 Vio ΔμV/°C -40°C to 25°C 20 Relative Frequency (%) 15 10 5 -10 -8 -6 -4 -2 0 2 4 6 8 Input offset voltage(µV/°C)

Figure 10. Input offset voltage temperature variation distribution at V_{CC} = 36 V

Vcc = 36V Vicm = 0V Vio ΔμV/°C 125°C to 25°C Vio Δμν/°C 125°C to 25°C Vio 2

DS13848 - Rev 3 page 9/35

Figure 13. Supply voltage rejection ratio SVR at V_{CC} = 5 V 160 140 120 Rejection (dB)
09
09 PSSR+ Vcc = 5V 40 Temp = 25°C G = 101 20 Vin = 1Vpp 100 1k 10k 100k 1M Frequency (Hz)

Figure 14. Input bias current vs. temperature 5 0 Input Bias Current (nA) -5 Vcc = 36V-10 Vcc = 2.7V Vcc =12V -20 └─ -40 -20 0 20 40 100 120 Temperature (°C)

DS13848 - Rev 3 page 10/35

Figure 19. Phase margin vs. capacitive load at V_{CC} = 2.7 V

DS13848 - Rev 3 page 11/35

Figure 20. Phase margin vs. capacitive load at V_{CC} = 12 V 50 Vcc = 12V 40 Phase Margin (°) 30 -40°C 20 25°C 125°C 10 0 └ 150 350 200 250 300 400 450 500 550 Capacitive Load (pF)

Figure 21. Phase margin vs. capacitive load at V_{CC} = 36 V

50
40
40
25°C
10
10
125°C
150 200 250 300 350 400 450 500 550 600

Capacitive Load (pF)

Figure 22. Short-circuit current vs. temperature 60 ISink Vcc = 36V Short-Circuit current (mA) 40 20 ISink Vcc =12V ISink Vcc = 2.7V 0 ISource Vcc = 2.7V ISource Vcc =12V -20 ISource Vcc =36V -60 -40 -20 0 60 20 40 80 100 120 Temperature (°C)

DS13848 - Rev 3 page 12/35

Figure 25. Output source current vs. output voltage at $V_{CC} = 36 V$ 40 Vcc = 36V 35 30 Output Voltage (V) 125°C 25 20 25°C 15 10 -40°C 5 5 10 15 20 25 30 35 40 45 50 55 0 Output Current Isource (mA)

DS13848 - Rev 3 page 13/35

DS13848 - Rev 3 page 14/35

DS13848 - Rev 3 page 15/35

DS13848 - Rev 3 page 16/35

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS13848 - Rev 3 page 17/35

SOT23-5

5.1 SOT23-5 package information

Figure 39. SOT23-5 package outline

Table 9. SOT23-5 mechanical data

Symbol		Milimeters	Milimeters		Inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.45			0.057
A1	0.00		0.15	0.000		0.006
A2	0.90	1.15	1.30	0.035	0.045	0.051
b	0.30		0.50	0.012		0.020
С	0.08		0.22	0.003		0.009
D		2.90			0.114	
E		2.80			0.110	
E1		1.60			0.063	
е		0.95			0.037	
e1		1.90			0.075	
L	0.30	0.45	0.60	0.012	0.018	0.024
θ	0	4	8	0	4	8

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

DS13848 - Rev 3 page 18/35

Figure 40. SOT23-5 recommended footprint

DS13848 - Rev 3 page 19/35

5.2 SO8 package information

SEATING PLANE

C

SECTION B-B

BASE METAL

DO10023_S0-807_fig2_Rev10

Figure 41. SO8 package outline

Table 10. SO8 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A			1.75
A1	0.10		0.25
A2	1.25		
b	0.31		0.51
b1	0.28		0.48
С	0.10		0.25
c1	0.10		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
L2		0.25	
k	0°		8°
ccc			0.10

DS13848 - Rev 3 page 20/35

Figure 42. SO8 recommended footprint

DS13848 - Rev 3 page 21/35

5.3 MiniSO8 package information

GAUGE PLANE

SET IN 1 IDENTIFICATION

Figure 43. MiniSO8 package outline

Table 11. MiniSO8 mechanical data

Dim.	Millim	eters		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.03	0.033	0.037
b	0.22		0.4	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.8	3	3.2	0.11	0.118	0.126
E	4.65	4.9	5.15	0.183	0.193	0.203
E1	2.8	3	3.1	0.11	0.118	0.122
е		0.65			0.026	
L	0.4	0.6	0.8	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.01	
k	0°		8°	0°		8°
ccc			0.1			0.004

DS13848 - Rev 3 page 22/35

Figure 44. MiniSO8 recommended footprint

DS13848 - Rev 3 page 23/35

577

5.4 DFN8 3x3 wettable flanks package information (package code: A03Y)

PIN 1 INDEX AREA

DETAIL A

Figure 45. DFN8 3x3 package outline and mechanical data

Table 12. DFN8 3x3 mechanical data

Symbol -	mm		
Symbol	Min.	Тур.	Max.
А	0.70	0.75	0.80
A1	0.0		0.05
A2	0.10		
A3		0.20 Ref.	
b	0.25	0.30	0.35
D	2.95	3.00	3.05
D2	2.25	2.35	2.45
е	0.65 BSC		
E	2.95	3.00	3.05
E2	1.45	1.55	1.65
L	0.35	0.45	0.55
K		0.275 Ref.	

DS13848 - Rev 3 page 24/35

Figure 46. DFN8 3x3 footprint data

DS13848 - Rev 3 page 25/35

SO14 package information 5.5

Figure 47. SO14 package outline

DS13848 - Rev 3 page 26/35

Table 13. SO14 package mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
Α			1.75	
A1	0.10		0.225	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39		0.47	
b1	0.38	0.41	0.44	
С	0.20		0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.27 BSC			
h	0.25		0.50	
L	0.50		0.80	
L1	1.05 REF			
	0		8°	

Figure 48. SO14 recommended footprint

DS13848 - Rev 3 page 27/35

5.6 TSSOP14 package information

Figure 49. TSSOP14 package outline

DS13848 - Rev 3 page 28/35

Table 14. TSSOP14 package mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
Α			1.20	
A1	0.05		0.15	
A2	0.80	1.00	1.05	
b	0.19		0.30	
С	0.09		0.20	
D	4.90	5.00	5.10	
E	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
е		0.65		
L	0.45	0.60	0.75	
L1		1.00		
k	0°		8°	
aaa			0.10	

DS13848 - Rev 3 page 29/35

6 Ordering information

Table 15. Order code

Order code	Package	Packaging	Marking
TSB621ILT	SOT23-5		K2K
TSB621IYLT (1)			K2L
TSB622IDT	SO8		TSB622I
TSB622IYDT (1)	506		TSB622IY
TSB622IST	MiniCOO		K2K
TSB622IYST (1)	MiniSO8	Tape & Reel	K2L
TSB622IQ3T	DFN8 3x3 WF	Таре а кеег	K2K
TSB622IYQ3T (1)			K2L
TSB624IDT	SO14		TSB624I
TSB624IYDT (1)			TSB624IY
TSB624IPT	TSSOP14		TSB624I
TSB624IYPT (1)	1350P14		TSB624IY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

DS13848 - Rev 3 page 30/35

Revision history

Table 16. Document revision history

Date	Revision	Changes
03-Nov-2021	1	Initial release.
15-Feb-2022	2	Updated Figure 2.
01-Dec-2022	3	Added new TSSOP14, SO14 and SOT23-5 packages in Section 5 Package information. Updated Section 1 Pin connections, Table 4. Absolute maximum ratings, phase margin typical value in Table 6, Table 7, Table 8 and Section 6 Ordering information.

DS13848 - Rev 3 page 31/35

Contents

1	Pin	connections	2
2	Abs	olute maximum ratings and operating conditions	4
3	Elec	ctrical characteristics	5
4	Турі	ical performance characteristics	8
5	Pac	kage information	
	5.1	SOT23-5 package information	18
	5.2	SO8 package information	20
	5.3	MiniSO8 package information	22
	5.4	DFN8 3x3 wettable flanks package information (package code: A03Y)	24
	5.5	SO14 package information	26
	5.6	TSSOP14 package information	28
6	Ord	ering information	30
Re	vision	history	31

DS13848 - Rev 3 page 32/35

List of tables

Table 1.	TSB621 pin description	2
Table 2.	TSB622 pin description	
Table 3.	TSB624 pin description	3
Table 4.	Absolute maximum ratings	4
Table 5.	Operating conditions	4
Table 6.	Electrical characteristics V_{CC+} = 2.7 V, V_{cc-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to $V_{CC}/2$ (unless	
	otherwise specified)	5
Table 7.	Electrical characteristics V_{CC+} = 12 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to $V_{CC}/2$ (unless	
	otherwise specified)	6
Table 8.	Electrical characteristics V_{CC+} = 36 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, R_L = 10 k Ω connected to Vcc/2 (unless	
	otherwise specified)	7
Table 9.	SOT23-5 mechanical data	8
Table 10.	SO8 mechanical data	20
Table 11.	MiniSO8 mechanical data	
Table 12.	DFN8 3x3 mechanical data	
Table 13.	SO14 package mechanical data	:7
Table 14.	TSSOP14 package mechanical data	29
Table 15.	Order code	60
Table 16.	Document revision history	31

DS13848 - Rev 3 page 33/35

List of figures

Figure 1.	TSB621 pin connections (top view)	
_	TSB622 pin connections (top view)	
_	TSB624 pin connections (top view)	
_	Supply current vs. supply voltage	
Figure 5.	Input offset voltage distribution at V _{CC} = 2.7 V	
	Input offset voltage distribution at V _{CC} = 12 V	
Figure 7.	Input offset voltage distribution at V _{CC} = 36 V	
Figure 8.	Input offset voltage vs. temperature at V _{CC} = 36 V	
Figure 9.	Input offset voltage temperature variation distribution at V_{CC} = 36 V	
Figure 10.	Input offset voltage temperature variation distribution at V_{CC} = 36 V	. 9
Figure 11.	Input offset voltage vs. common-mode voltage at V_{CC} = 36 V_{CC} = 36 V_{CC} = 36 V_{CC}	. 9
Figure 12.	Common-mode reject. ratio CMR at V _{CC} = 5 V	10
Figure 13.	Supply voltage rejection ratio SVR at V _{CC} = 5 V	10
Figure 14.	Input bias current vs. temperature	10
Figure 15.	Bode diagram at V _{CC} = 2.7 V	10
Figure 16.	Bode diagram at V _{CC} = 12 V	11
Figure 17.	Bode diagram at V _{CC} = 36 V	11
Figure 18.	Overshoot vs. capacitive load at V _{CC} = 36 V	11
Figure 19.	Phase margin vs. capacitive load at V_{CC} = 2.7 V	11
	Phase margin vs. capacitive load at V_{CC} = 12 V	
	Phase margin vs. capacitive load at V _{CC} = 36 V	
_	Short-circuit current vs. temperature	
	Output source current vs. output voltage at V_{CC} = 2.7 V	
_	Output source current vs. output voltage at V_{CC} = 12 V	
	Output source current vs. output voltage at V_{CC} = 36 V	
	Output sink current vs. output voltage at $V_{CC} = 2.7 \text{ V}$.	
	Output sink current vs. output voltage at $V_{CC} = 12 \text{ V}$	
_	Output sink current vs. output voltage at $V_{CC} = 36 \text{ V}$	
_	Slew rate at $V_{CC} = 2.7 \text{ V}$	
_	**	
	Slew rate at V_{CC} = 12 V_{CC} = 20 V_{CC}	
_	Slew rate at V _{CC} = 36 V	
_	Slew rate vs. temperature at V _{CC} = 36 V	
	Small signal step response	
	Maximum output voltage vs. frequency	
Figure 35.	THD+Noise vs. frequency	
Figure 36.	Cross talk vs. frequency.	
_	Equivalent input noise voltage vs. frequency.	
Figure 39.	SOT23-5 package outline	
Figure 40.	SOT23-5 recommended footprint	
	SO8 package outline	
Figure 42.	SO8 recommended footprint.	
	MiniSO8 package outline	
_	MiniSO8 recommended footprint.	
_	DFN8 3x3 package outline and mechanical data	
	DFN8 3x3 footprint data	
Figure 47.	SO14 package outline	26
Figure 48.	SO14 recommended footprint	27
Figure 49.	TSSOP14 package outline	28

DS13848 - Rev 3 page 34/35

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics - All rights reserved

DS13848 - Rev 3 page 35/35