Quantile Regression and R-Program

Cliff J. Huang Emeritus Professor of Economics Vanderbilt University

Yung-Lieh Yang

Professor of Finance Ling Tung University

Outline

- **▶** Mean, Quantiles, and Distribution
- **Quantile Regression**
- **Fundamentals of Quantile Estimation**
- **Computation of Quantile Regression: R-Program**

Mean, Quantiles, and Distribution

- 1. Distribution of a Random Variable
 - Example: Starting Salary of 10 Employees (in thousands of NT\$)

Y = 18, 19, 21, 22, 24, 26, 28, 32, 36, 44

Distribution Skewness

Symmetric (No Skewness):

Median = Mean

Median – First Quartile = Third Quartile – Median

Positive Skewness (Skew to the Right)

Median < Mean

Median – First Quartile < Third Quartile – Median

Negative Skewness (Skew to the Left)

Median > Mean

Median – First Quartile > Third Quartile – Median

- Quantiles of order τ : $Q(\tau)$, $0 \le \tau \le 1$
 - Q(0.20) = 19; Q(0.25) = 20;

$$Q(0.50) = 25; Q(0.75) = 34;$$

$$Q(0.90) = 36; Q(1.00) = ?$$

❖ Quantile as a Ranking:

$$Q(\tau)\!<\!Q(\lambda) \ \ {\rm if} \ \tau \!<\! \lambda$$

2. Quantile and Distribution Function

• Distribution Function

$$F(y) = P(Y \le y)$$

- Quantiles
 - Quantiles of order τ:

$$F(y) = P(Y \le y) = \tau \text{ implies } y = F^{-1}(\tau) = Q(\tau)$$

Examples:
$$25 = F^{-1}(0.50) = Q(0.50)$$

$$34 = F^{-1}(0.75) = Q(0.75)$$

Quantile Regression

- 1. Classical Regression versus Quantile Regression
 - Example: y = salary; x = years of experience

• Classical Regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Conditional Mean Regression

$$E(y_i \mid x_i) = \beta_0 + \beta_1 x_i \equiv \mu_i$$

• Quantile Regression of order $\tau \in [0, 1]$

$$y_i = \beta_0^{\tau} + \beta_1^{\tau} x_i + \varepsilon_i$$

Conditional Quantile Regression

$$Q(\tau \mid x_i) = \beta_0^{\tau} + \beta_1^{\tau} x_i$$

2. Example:

- Quantile Regressions of Wage Determination in Taiwan
- Data: 29,133 plant workers in 1996

- Regressions:
 - Conditional Mean Regression

$$ln(wage) = \beta_0 + \beta_1 (experience) + \varepsilon$$

Quantile Regression

$$ln(wage) = \beta_0^{\tau} + \beta_1^{\tau} (experience) + \varepsilon$$

τ	$\beta_0^{ au}$	$\beta_l^{ au}$
0.1	4.47987	-0.00137
0.2	4.65334	-0.00056
0.3	4.77952	0.00000
0.4	4.88014	0.00040
0.5	4.99839	0.00062
0.6	5.07736	0.00094
0.7	5.18110	0.00111
0.8	5.31419	0.00117
0.9	5.50766	0.00115
0.95	5.69128	0.00121
Conditional Mean	5.02400	-0.000086

Fundamentals of Quantile Regression Estimation

- 1. Estimation of Mean and Quantile
 - Sample Observations: $y = (y_1, y_2, ..., y_n)$
 - Population Mean and Population Quantile

$$E(y_i) = \mu; Q(\tau) = F^{-1}(\tau)$$

- Least-square Estimation of Population Mean
 - Model: $y_i = \mu + \varepsilon_i = \overline{Y} + e_i$

Error:
$$e_i = y_i - \overline{Y}$$

- **❖** Loss Function: $\rho(e_i) = e_i^2 = (y_i \overline{Y})^2$ **❖** Least-square method:

$$\min_{\overline{Y}} \ \sum_{i=1}^n \rho \left(e_i \right) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left(y_i - \overline{Y} \right)^2 \ ; \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^n y_i$$

• Quantile Estimation of $Q(\tau)$

• Model:
$$y_i = Q(\tau) + \varepsilon_i = \hat{Q} + e_i$$

Error:
$$e_i = y_i - \hat{Q}$$

Example: $\tau = 0.25$ implies

$$100 \tau \% \text{ of } e_i = y_i - \hat{Q} \le 0$$

$$100 (1-\tau) \% \text{ of } e_i = y_i - \hat{Q} \ge 0$$

Loss Function:

$$\begin{split} \rho_{\tau}\left(e_{i}\right) &= \tau \times e_{i} = \tau \times \left(y_{i} - \hat{Q}\right) \quad \text{if } e_{i} \geq 0 \\ &= \left(\tau - 1\right) \times e_{i} = \left(\tau - 1\right) \times \left(y_{i} - \hat{Q}\right) \quad \text{if } e_{i} \leq 0 \\ \rho_{\tau}\left(e_{i}\right) &= \left(\tau - I\left(e_{i} < 0\right)\right) \times e_{i} \\ &= \left(\tau - I\left(y_{i} - \hat{Q} < 0\right)\right) \times \left(y_{i} - Q\right) \end{split}$$

Quantile Estimation Method

$$\min_{\hat{Q}} \quad \sum_{i=1}^{n} \rho_{\tau}\left(e_{i}\right) = \sum_{i=1}^{n} \left(\tau - I\left(y_{i} - \vec{Q} < 0\right)\right) \times \left(y_{i} - Q\right)$$

2. Estimation of Classical Regression and Quantile Regression

• Model:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Classical Regression
 - ❖ Conditional Mean: $E(y_i | x_i) = \beta_0 + \beta_1 x_i$
 - **❖** Least-square Method:

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left(y_i - \beta_0 - \beta_1 x_i\right)^2$$

• Quantile Regression:

- Conditional Quantile: $Q(\tau | x_i) = \beta_0^{\tau} + \beta_1^{\tau} x_i$
- Quantile Method:

$$\min_{\beta_0^\tau,\beta_1^\tau} \ \sum_{i=1}^n \rho_\tau \left(e_i \right) = \sum_{i=1}^n \left(\tau \! - \! I \! \left(e_i < 0 \right) \right) \! \times \! \left(e_i \right)$$

$$e_i = y_i - \beta_0^\tau - \beta_1^\tau x_i$$

Computation of Quantile Regression: R-Program

- Free Downloard of R-Program at http://www.r-project.org
- Example on Wage Determination in Taiwan
 - ❖ Observations: 29,133 plant workers in 1996
 - ❖ Variables: wage = hourly wage; lnwage = ln(wage); gender = 1 male, 0 female; age = year of age; married = 1 married, 0 unmarried; education = year of education; experience = months on current job

