Neural Conversational AI

Ondřej Dušek

MLSS^N Summer School 30 June 2022

About

Ondřej

- Charles University, Prague
- '16-18 at Heriot-Watt Uni Edinburgh
- working mostly on language generation
- often in/with dialogue systems

This lecture

- relatively vague/high-level (focus on main ideas)
- focusing on what I work with (pretrained language models)
- trying to avoid digressions
- expecting you know NNs, but haven't necessarily worked in NLP
- probably much more applied than other talks here
 - most of you probably know more about ML theory than I do
- slightly improvised (depending on timing, I might skip stuff)

Topics of Today

- 1. Intro: "Conversational AI" = "Dialogue Systems"
- 2. Transformer & pretrained language models
- 3. Neural models for dialogue system components
 - language understanding
 - state tracking
 - dialogue policy
- 4. End-to-end neural models
- 5. Evaluation metrics

1. Introduction

What's Conversational AI = Dialogue System?

- Definition: A (spoken) dialogue system is a computer system designed to interact with users in (spoken) natural language
 - Wide covers lots of different cases
 - "smart speakers" / phone OS assistants
 - phone hotline systems (even tone-dial ones)
 - in-car systems
 - assistive technologies: therapy, elderly care, companions
 - entertainment: video game NPCs, chatbots
- DSs are cool:
 - ultimate natural interface: say what you want
 - lots of active research far from solved
 - already used commercially

Real-life dialogue systems: virtual assistants

- Google, Amazon, Apple & others, Mycroft, Rhasspy: open-source
- Really good microphones
 - and not much else listen for wake word, processing happens online
- Huge knowledge bases
 - combined with web search
- Lots of domains programmed in, but all by hand
 - integration with a lot of services (calendar, music, shopping, weather, news...)
 - you can add your own (with limitations)
- Can keep some context
- Conversational capabilities limited

https://www.lifehacker.com.au/2018/02/ specs-showdown-google-home-vsamazon-echo-vs-apple-homepod/

Dialogue System Types

Task-oriented

- focused on completing a certain task/tasks
 - booking restaurants/flights, finding bus schedules, smart home...
- most actual DS in the wild
 - also our main focus in this course
- (typically) single/multi domain
 - talk about 1/more topics

Non-task-oriented

- chitchat social conversation, entertainment
 - persona, gaming the Turing test
- typically open-domain talk about anything

Comm. Modes: voice / text / multimodal (face, graphics...)

Dialogue Systems Architecture

- traditional DS pipeline:
 - ASR: voice → text
 - NLU: text → meaning
 - DM: meaning → reaction
 - NLG: reaction → text
 - TTS: text → voice
- backend
 - needed for anything better than basic chit-chat
- text-based systems (here):
 NLU→DM→NLG

Task-oriented Dialogue Example

- MultiWOZ: benchmark for task-oriented dialogue in multiple domains
 - hotels, restaurants, attractions, trains, taxi, police, hospital
 - domains are connected (e.g. taxi from hotel to attraction)
 - 10k dialogues, extensive annotation (but noisy!)

```
I am looking for a train from Cambridge to London Kinks Cross.
      user:
                   {train {departure = cambridge, destination = london kings cross}}
      state:
      DB:
                   {train (70) {...}}
                             [count]
                                                           [departure]
                                                                              [destination]
                   There are 70 trains departing from Cambridge to London Kings Cross. What day would you like to travel?
      system:
                   I would like to leave on Saturday after 18:45.
      user:
                   {train {day = saturday, departure = cambridge, destination = london kings cross, leave at = 18:45}}
      state:
                   \{train(3) | \{arrive by = 19:51, 21:51, 23:51; id = TR0427, TR0925, TR4898; leave at = 19:00, 21:00, 23:00; \dots \} \}
      DB:
                                     [leave at]
                                                            [arrive_by]
                   TR0427 leaves at 19:00 and arrives by 19:51. Would you like to book this train?
      system:
                   Yes, I would like to book it for eight people.
      user:
3.
                                                                        [reference]
                   I have booked it for you. Your reference number is 00000057. Is there anything else I can help you with?
      system:
                   I am also looking for an expensive restaurant in the centre.
      user:
      belief:
                   {restaurant {area = centre, price range = expensive} train {...}}
                   {restaurant (33) {area = centre (33); name=Curry Garden, ...; ...}, ...}
      DB:
                             [count] [price_range]
                   There are 33 expensive restaurants in the centre. Is there a particular type of food you would like?
      system:
```

2. Transformer & Pretrained Models

Representing Language: Embeddings

- distributed representation
 - each word = a vector of floats
 - basically an easy conversion of 1-hot → numeric
 - a dictionary of trainable features
- part of network parameters trained
 - a) pretraining (optional)
 - b) training for the target task

http://blog.kaggle.com/2016/05/18/home-depot-product-search-relevance-winners-interview-1st-place-alex-andreas-nurlan/

- the network learns which words are used similarly for the given task
 - they end up having close embedding values
 - different embeddings for different tasks
- embedding size: ~100s-1000
- vocab size: ~50-100k

Subwords

- vocabulary is unlimited, embedding matrix isn't
 - + the bigger the embedding matrix, the slower your models
- Special out-of-vocabulary token <unk>
 - loses information, we don't want it on the output
- **Subwords:** groups of characters that
 - make shorter sequences than using individual characters
 - cover everything
 - 20-50k subwords for 1 language, ~250k subwords multilingual
- Byte-pair Encoding (=one way to get subwords)
 - start from individual characters
 - iteratively merge most frequent bigram, until you get desired # of subwords

```
fast_
faster_
faster_
taller_
taller_
taller_
tallest_
```

Encoder-Decoder Networks (Sequence-to-sequence)

- Default RNN paradigm for sequences/structure prediction
 - encoder RNN: encodes the input token-by-token into hidden states h_t
 - next step: last hidden state + next token as input

 $\begin{aligned} \boldsymbol{h}_0 &= \mathbf{0} \\ \boldsymbol{h}_t &= \operatorname{cell}(\boldsymbol{x}_t, \boldsymbol{h}_{t-1}) \end{aligned}$

 $p(y_t|y_1, \dots y_{t-1}, \mathbf{x}) = \operatorname{softmax}(\mathbf{s}_t)$

 $\mathbf{s}_t = \operatorname{cell}(\mathbf{y}_{t-1}, \mathbf{s}_{t-1})$

- decoder RNN: constructs the output token-by-token autoregressively
 - initialized by last encoder hidden state
 - output: hidden state & softmax over output vocabulary + argmax.
 - next step: last hidden state + last generated token as input
- LSTM/GRU cells=layers over vectors of ~ embedding size
- used for many NLP tasks

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://medium.com/syncedreview/a-brief-overview-of-attention-mechanism-13c578ba9129

Attention

- Encoder-decoder is too crude for complex sequences
 - the whole input is crammed into a fixed-size vector (last hidden state)
- Attention = "memory" of all encoder hidden states
 - weighted combination, re-weighted for every decoder step
 → can focus on currently important part of input
 - fed into decoder inputs + decoder softmax layer
- Self-attention over previous decoder steps
 - increases consistency when generating long sequences

https://skymind.ai/wiki/attention-mechanism-memory-network

Seq2seq RNNs with Attention

Transformer

(Waswani et al., 2017) https://arxiv.org/abs/1706.03762

- getting rid of recurrences
 - faster to train, allows bigger nets
 - replace everything with attention
 - + feed-forward networks
 - ⇒ needs more layers
 - ⇒ needs to encode positions
- positional encoding
 - adding position-dependent patterns to the input
- attention simple dot-product
 - scaled by $\frac{1}{\sqrt{\#\text{dims}}}$ (so values don't get too big)
 - more heads (attentions in parallel)
 - focus on multiple inputs

Probabilities

Transformer

Pretrained Language Models

- Transformer Architecture
 - Encoder-only (= good for classification/token tagging)
 - Decoder-only (= good for generation)
 - Encoder-Decoder (= RNN seq2seq equivalent)

Self-supervised pretraining

- standard supervised training, but without annotation
 - naturally occurring labels
 - automatic labels ~ fix artificially corrupted data
- typically simple language tasks (→)
- used with huge amounts of data many GBs of text (e.g. CommonCrawl)
- models not useful for much, but can be finetuned for the target task

• just train further, use data for target task

(Devlin et al., 2019)
https://www.aclweb.org/anthology/N19-1423
https://github.com/google-research/bert

(Rogers et al., 2020) <u>http://arxiv.org/abs/2002.12327</u>

(Liu et al., 2019) <u>http://arxiv.org/abs/1907.11692</u>

- Pretraining Tasks
 - Masked word prediction
 - Next-word prediction
 - Fixing corrupt sentences
 - Sentence order prediction

(Lewis et al., 2020) http://arxiv.org/abs/1910.13461

(Raffel et al., 2019) http://arxiv.org/abs/1910.10683

Models

- **BERT** encoder only, variants: multilingual, **RoBERTa** (optimized)
- **GPT**(-2/-3/-j/-neo): decoder only, next-word prediction
- (m)BART, (m)T5: encoder-decoder
- ByT5: enc-dec, byte-level (instead of subwords)
- a lot of pretrained models released plug-and-play
 - you only need to finetune (and sometimes, not even that)

3. Component Models

Natural/Spoken Language understanding (NLU/SLU)

- Words → meaning: Extracting the meaning from user utterance
- dialogue acts (or other structured semantic representation):
 - act type/intent (inform, request, confirm)
 - **slot**/attribute (*price*, *time*...)
 - **value** (11:34, cheap, city center...)

inform(food=Chinese, price=cheap)
request(address)

- typically intent classification + slot-value tagging
- (other, more complex representations e.g. trees, predicate logic)
- Specific steps:
 - named entity resolution (NER)
 - identifying task-relevant names (*London, Saturday*)
 - coreference resolution
 - ("it" -> "the restaurant")

NLU Challenges

- non-grammaticality find something cheap for kids should be allowed
- disfluencies
 - hesitations pauses, fillers, repetitions uhm I want something in the west the west part of town
 - fragments uhm I'm looking for a cheap
 - self-repairs (~6%!) uhm find something uhm something cheap no I mean moderate
- ASR errors I'm looking for a for a chip Chinese rest or rant
- synonymy Chinese city centre I've been wondering if you could find me a restaurant that has Chinese food close to the city centre please
- out-of-domain utterances oh yeah I've heard about that place my son was there last month

NLU basics

- You can get far with keywords/regexes (for a limited domain)
- Intent classification
 - RNN: last hidden state
 - Transformers, PLMs: typically over 1st input element (start-of-sentence token)
- Slot value detection
 - classification (binary: "is slot value X present?")
 _{I need a flight from Boston to New York tomorrow}
 slot tagging classify every token
 OO OO B-dept O B-arr I-arr B-date
 - **slot tagging** classify every token **BIO/IOB** scheme: beginning (+slot) inside (+slot) outside
- **Delexicalization**: replacing slot values by placeholders
 - essentially named entity recognition
 - essentially tagging, but typically done by dictionaries

I'm looking for a Japanese restaurant in Notting Hill. I'm looking for a <food> restaurant in <area>.

I need to leave after 12:00.
I need to leave after <time>.
(= not necessarily 1:1 with slots)

BERT-based NLU

combined intent-slot

(Chen et al., 2019) http://arxiv.org/abs/1902.10909

- slot tagging on top of pretrained BERT
 - standard IOB approach
 - feed last BERT layers to softmax over tags
 - classify only at 1st subword in case of split words (don't want tag changes mid-word)
- special start token tagged with intent
 - again, softmax on top of last BERT layer
- finetune both tasks at once
 - essentially same task, just having different labels on the 1st token ☺

- Pretraining on dialogue tasks can do better (& smaller) than BERT
 - ConveRT: Transformer-based dual encoder
 - 2 Transformer encoders: context + response
 - feed forward + cosine similarity on top
 - training objective: response selection
 - response that actually happened = 1
 - random response from another dialogue = 0
 - trained on a large dialogue dataset (Reddit)
- can be used as a base to train models for:
 - slot tagging (top self-attention layer → CNN → CRF)
 - intent classification (top feed-forward → more feed-forward → softmax)
 - Transformer layers are fixed, not fine-tuned
 - works well for little training data (few-shot)

(Coope et al., 2020)

https://www.aclweb.org/anthology/2020.acl-main.11

(Casanueva et al., 2020)

https://www.aclweb.org/anthology/2020.nlp4convai-1.5

TOD-BERT

- pre-finetuning BERT on vast task-oriented dialogue data
 - basically combination of 2 previous approaches
- BERT + user/sys tokens + train for:
 - masked language modelling
 - response selection (dual encoder style)
 - over [CLS] tokens from whole batch
 - other examples in batch = negative
- result: "better dialogue BERT"
 - can be finetuned for various dialogue tasks
 - intent classification
 - slot tagging
 - good performance even few-shot
 - just 1 or 10 examples per class

Dialogue Manager (DM)

- Given NLU input & dialogue so far, responsible for deciding on next action
 - keeps track of what has been said in the dialogue
 - keeps track of user profile
 - interacts with backend (database, internet services)
- Dialogue so far = dialogue history, modelled by dialogue state
 - managed by dialogue state tracker
- System actions decided by dialogue policy

Dialogue state / State tracking

- Stores (a summary of) dialogue history
 - User requests + information they provided so far
 - Information requested & provided by the system
 - User preferences
- Implementation
 - handcrafted e.g. replace value for slot with last-mentioned
 - good enough in some circumstances
 - probabilistic (belief state)
 - keep an estimate of per-slot preferences based on NLU
 - more robust, more complex
 - accumulates probability over time & n-best lists
 - → handles NLU/ASR errors
 - e.g. 3x same low-confidence input = prob. high enough to react

price: cheap food: Chinese area: riverside

> price: 0.8 cheap 0.1 moderate 0.1 < null>

food: 0.7 Chinese 0.3 Vietnamese

area: 0.5 riverside 0.3 <null> 0.2 city center

Basic State/Belief Trackers

a) Always trust the NLU

for **null** value: $p = \text{prev} \cdot p(\widehat{\textbf{p}}) \sim \text{user didn't mention this slot}$

non-null value *v*:

$$p = \operatorname{prev} \cdot p(\widehat{\boldsymbol{y}}) + p(v)$$

- ~ didn't mention = carry from previous
- ~ did mention = add new NLU probability
- basically rule-based (but good if NLU is good)

b) "NLU" over whole dialogue

- typically classification ("is slot value v present?")
 - option: limit to some candidates (from NLU/delexicalization), rank them
- may not need NLU, may be better, but slower

BERT & Span Selection a.k.a. Span Tagging (~question answering/reading comprehension)

BERT over previous system & current user utterance

(Chao & Lane, 2019) http://arxiv.org/abs/1907.03040

- from 1st token's representation, get a decision: none/dontcare/span
 - per-slot (BERT is shared, but the final decision is slot-specific)
- span = need to find a concrete value as a span somewhere in the text
 - predict start & end token of the span using 2 softmaxes over tokens
- rule-based update:
 - if *none* is predicted, keep previous value
 - essentially similar to NLU & update rule

Break

Action Selection / Policy

Deciding what to do next

- action based on the current belief state
- following a policy (strategy) towards an end goal (e.g. book a flight)
- controlling the coherence & flow of the dialogue
- actions: linguistic & non-linguistic (backend access)
- actions represented by system dialogue acts

(from Milica Gašić's slides)

confirm(food=Chinese)

inform(name=Golden Dragon, food=Chinese, price=cheap)

• DM/policy should:

- manage uncertainty from belief state ← _____ Did you say Indian or Italian?
- recognize & follow dialogue structure follow convention, don't be repetitive
- plan actions ahead towards the goal ———— e.g. ask for all information you require

Action Selection Approaches

- Finite-state machines
 - simplest possible
 - dialogue state is machine state
- Frame-based/flowcharts (e.g. VoiceXML)
 - slot-filling + providing information basic agenda
 - rule-based in essence
- Rule-based
 - any kind of rules (e.g. Python code)
- Statistical
 - typically trained with reinforcement learning


```
elif fact['we_did_not_understand']:
                  # NLG("Sorry, I did not understand
230
                  res_da = DialogueAct("notunderstoo
231
                  res_da.extend(self.get_limited_cor
232
                  dialogue_state["ludait"].reset()
233
234
              elif fact['user_wants_help']:
235
236
                  # NLG("Pomoc.")
                  res_da = DialogueAct("help()")
237
                  dialogue_state["ludait"].reset()
238
239
              elif fact['user_thanked']:
240
                  # NLG("Díky.")
241
                  res_da = DialogueAct('inform(cordi
242
                  dialogue_state["ludait"].reset()
243
244
              elif fact['user_wants_restart']:
```

Why Reinforcement Learning

- Action selection ~ classification → use supervised learning?
 - set of possible actions is known
 - belief state should provide all necessary features
- Yes, but...
 - You'd **need** sufficiently large **human-human data** hard to get
 - human-machine would just mimic the original system
 - Dialogue is ambiguous & complex
 - there's no single correct next action—multiple options may be equally good
 - but datasets will only have one next action
 - some paths will be unexplored in data, but you may encounter them
 - DSs won't behave the same as people
 - ASR errors, limited NLU, limited environment model/actions
 - DSs should behave differently make the best of what they have
 - supervised classification doesn't plan ahead
 - RL optimizes for the whole dialogue, not just the immediate action

Reinforcement learning: Definition

MDP formalism: agent in an environment, state-action-reward

- RL = finding a policy that maximizes long-term reward
 - unlike supervised learning, we don't know if an action is good
 - immediate reward might be low while long-term reward high

$$\begin{array}{l} \text{return} = \\ \text{accumulated} \\ \text{long-term reward} \end{array} \\ R_t = \sum_{t=0}^{T} \gamma^t \vec{r}_{t+1} \\ \text{(immediate vs. future reward trade-off)} \\ \end{array}$$

• state transition is stochastic → maximize expected return

 $\mathbb{E}[R_t|\pi,s_0]$ expected R_t if we start from state s_0 and follow policy π

Policy Gradients

- Train a **network to represent the policy** $\pi(a|s,\theta) \theta$ are parameters
- To optimize, we need a **performance metric**: $J(\theta) = V^{\pi_{\theta}}(s_0)$
 - expected return in starting state when following π_{θ}
 - we want to directly optimize this using gradient ascent

Policy Gradient Theorem:

• expresses $\nabla J(\theta)$ in terms of $\nabla \pi(a|s,\theta)$

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) = E_{\pi} \left[\sum_{a} Q^{\pi}(s, a) \nabla \pi(a|s, \theta) \right]$$

 $\mu(s)$ is state probability under π – this is the same as expected value E_{π}

$$Q^{\pi}(s, a)$$
 = "Q-function"

– value of taking action a in state s, then following policy π

Neural Conv Al (Sutton & Barto, 2018; p. 324ff)

REINFORCE: Monte Carlo Policy Gradients

- direct search for policy parameters by stochastic gradient ascent
 - looking to maximize performance $J(\boldsymbol{\theta}) = V^{\pi_{\theta}}(s_0)$
- choose learning rate α , initialize θ arbitrarily
- loop forever:

Neural Conv AI

- generate an episode $s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T$, following $\pi(\cdot \mid \cdot, \boldsymbol{\theta})$
- for each $t = 0.1 \dots T$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t R_t \nabla \ln \pi (a_t | s_t, \boldsymbol{\theta})$

returns
$$R_t = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i+1}$$

variant – **advantage** instead of returns:

discounting a **baseline** b(s) (predicted by any model) $A_t = R_t - b(s_t)$ instead of R_t gives better performance

this is stochastic $\nabla I(\boldsymbol{\theta})$:

• from policy gradient theorem

this will guarantee

distribution/frequency $\mu(s)$

the right state

- using single action sample a_t
- expressing Q^{π} as R_t (under E_{π})
- using $\nabla \ln x = \frac{\nabla x}{x}$

(Sutton & Barto, 2018; p. 327f)

Rewards in RL

Typical setup – handcrafted rewards:

- every turn: -1 (encourage fast dialogues)
- successful dialogue: + 20
- unsuccessful: 10 (~center around 0)

Problems:

- domain knowledge needed to detect dialogue success
- need simulated and/or paid users (known goal)
 - simulated = essentially another dialogue system
 - paid users = costly + often fail to follow pre-set goals
- needs a lot of dialogues to train (1000s) → simulated users, supervised pretraining

• Solutions:

- trained rewards
 - provided by a network, can be turn-level
- corpus-based RL (supervised/RL hybrid)
 - follow dataset, just assign rewards like RL (→)

Natural Language Generation (NLG) / Response Generation

- Representing system dialogue act in natural language (text)
 - reverse NLU
- How to express things might depend on context
 - Goals: fluency, naturalness, avoid repetition (...)
- Traditional approach: templates
 - Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 - Works well for limited domains

- Statistical approach: seq2seq/pretrained language models
 - input: system dialogue act, output: sentence (operation similar to →)

4. End-to-end models

End-to-End Systems

- experimental, research state-of-the-art
 - but not ready for practical deployment
- the whole system (NLU/DM/NLG) is a single neural network
 - joint training ("end-to-end")
 - more elegant
 - potentially easily retrainable
- typically still needs annotation
 - same as individual modules
 - can be less predictable
- connecting the database is a problem
 - typically this step is done separately

(Wen et al., 2017) https://www.aclweb.org/anthology/E17-1042/

End-to-end vs. separate components

Traditional architecture – separate components:

- more flexible (replace one, keep the rest)
- error accumulation
- improved components don't mean improved system
- possibly joint optimization by RL
- more explainable
- End-to-end:
 - joint supervised optimization, RL still works
 - still needs DA-level annotation
 - typically needs a lot of data
 - less control of outputs: hallucination, dull/repetitive

previous

Sequicity: Two-stage Copy Net

- fully RNN/seq2seq-based, not much structure
 - still explicit dialogue state
 - DB is external (as in most systems)
- operation:

1) encode

- previous dialogue state
- prev. system response
- current user input

2) decode new dialogue state first

attend over whole encoder

3) decode system output (delexicalized)

- attend over state only
 - + use DB output (one-hot vector added to each generator input)
 - DB: 0/1/more results vector of length 3
- delexicalized decoding: use placeholders (replaced based on full DB result)

previous

system

decode system output, attend over state only, add DB vector to inputs, delexicalized

current

- Multiple recent DSs are based on GPT-2 (SOLOIST, UBAR, SimpleTOD, NeuralPipeline)
 - decoder-only PLM
- Similar to Sequicity, everything recast as sequence generation
 - dialogue context, belief state, database outputs represented as sequences
 - GPT-2 **prompting**: force-decode some input (ignore softmaxes, feed your tokens)
 - allows attention over it, conditions following text
 - essentially works like an encoder
- Multi-step operation:
 - prompt with context
 & decode belief state
 - 2) query DB (external)
 - 3) prompt with DB output& decode response

- Same idea as ↑, multiple improvements
- Operation:
 - 1) context → belief state
 - prompt w. context & user utterance
 - greedy decoding of state
 - text-like belief state representation
 - 2) belief state → DB
 - text-like DB results
 - 3) DB \rightarrow response
 - top-p sampling (diversity)
 - delexicalized (slot placeholders)
- Training:
 - belief/response prediction + consistency (Y/N)

Consistency task

- Additional training task generating & classifying at the same time
 - additional classification layer on top of last decoder step logits
 - incurs additional loss, added to generation loss
- Aim: **robustness** detecting problems
 - 1/2 data artificially corrupted state or target response don't fit context
 - prev. work: corrupted state sampled randomly
 - AuGPT: corrupted state sampled from the same domain harder!

context state response consistent?

i want a cheap italian restaurant { price range = cheap , food = Italian } ok which area ?

i want a cheap Italian restaurant { price range = cheap , food = Italian } thanks, goodbye!

i want a cheap italian restaurant { destination = Cambridge , leave at = 19:00 } ok which area ?

i want a cheap italian restaurant { area = north , food = Chinese } ok which area ?

i want a cheap italian restaurant { area = north , food = Chinese } ok which area ?

Further improvements

- **Data augmentation** via backtranslation (en → xx → en)
 - MT between English and 40 languages from the ELITR project (https://elitr.eu/)
 - we chose 10 best languages
 - user inputs chosen at random from original & 10 backtranslated texts
- Data cleaning
 - checking consistency of user goal with database
 - ~30% MultiWOZ data discarded
- Unlikelihood loss for output diversity
 - repeated tokens are penalized
- Sampling for output diversity

- 2-step decoding, same as ↑
 - based on T5 or BART here
 - explicit 2 decoders (for state, for response)
- "Levenshtein states"
 - don't decode full state each time
 - just decode a diff
 ("Levenshtein distance from previous")
 - better consistency over dialogue

[hotel] stars 5 area centre day sunday [restaurant] food thai area centre day sunday name bangkok city <EOB> Can you help me book a 5 star hotel near the restaurant on the same day? <EOU>For how many people? <EOR>10 people <EOU>

<SOB>[hotel] people 10 <EOB>

<KB2> sorry, there are no matches. would you like to try another part of town? <EOR>

DB queried based on updated state response decoder starting token = # of DB results

Training end-to-end systems: RL?

- Supervised
 - sometimes components still trained separately
 - e.g. hard knowledge base lookup
 - sometimes all in one
 - can't learn from users
 - problems with train-test mismatch
- RL
 - can learn from users, can learn all-in-one
 - doesn't work great if done on word-level
 - RL doesn't care about fluency/naturalness
 - either avoid word-level, or mix with supervised

```
Alice: book=(count:3 value:1) hat=(count:2 value:1) ball=(count:1 value:5)
    : book=(count:3 value:0) hat=(count:2 value:0) ball=(count:1 value:10
    : i can i i everything else . .
    : i i can i i i everything else . .
Alice : balls have a ball to me to me to me to me to me to me to me
Alice : balls have zero to me to
    https://towardsdatascience.com/the-truth-behind-
    facebook-ai-inventing-a-new-language-37c5d680e5a7
INDEPENDENT
            FACEBOOK'S ARTIFICIAL
   INTELLIGENCE ROBOTS SHUT DOWN
  AFTER THEY START TALKING TO EACH
     OTHER IN THEIR OWN LANGUAGE
                        'you i i i everything else'
             w Griffin | @_andrew_griffin | Monday 31 July 2017 17:10 | 88 comments
```

Facebook abandoned an experiment after two artificially intelligent

they understood.

programs appeared to be chatting to each other in a strange language only

https://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-artificial-intelligence-ai-chatbot-new-language-research-openai-google-a7869706.html

Latent Action RL

- Making system actions latent, learning them implicitly
- **Discrete latent space** here (*M k*-way variables)
 - using Gumbel-Softmax trick for backpropagation
 - trained using Full ELBO (KL divergence vs. a prior network) or "Lite ELBO" (KL divergence vs. uniform)
- RL over latent actions, not words
 - avoids producing disfluent language
 - corpus-based RL
 - generate outputs, but use original contexts from a dialogue from training data
 - success & RL updates based on generated responses
- ignores DB & state tracking
 - takes gold annotation from data (assumes external model for this)

HDNO: Hierarchical RL End-to-end Dialogue

- Similar to (↑), but tries word-level RL
 - corpus-level RL
 - RNN architecture
 - dialogue state not tracked
- hierarchical RL:
 - top level: latent actions, like LARL
 - latent actions Gaussian here
 - standard reward based on success
 - **bottom level**: words
 - reward based on fluency
 - language model probability
 - both rewards weighted (word level much lower)
 - levels updated asynchronously

5. Evaluation

Corpus-based evaluation

- Task: take real dialogue history from corpus + generate 1 response
 - repeat over whole dialogue, collect responses
- Metrics:
 - Inform rate last offered entity matches user constraints
 - Success rate ↑ + system provided all requested information about it
 - Joint goal accuracy % turns where all user constraints are captured correctly
 - **BLEU** n-gram precision (matching sub-phrases of 1-4 words against reference)
- Problems:
 - really artificial setting, but easiest to use (just need test data)
 - Inf/Succ/JGA: matching the provided entities (more ways to do it)
 - BLEU: tokenization, measuring over delexicalized text

Simulator Evaluation

- User Simulator works as a user, tries to follow goals
- **Dialogue-level** good over 1 turn ≠ good over whole dialogue
 - especially for end-to-end systems, errors may accumulate over time
 - simulator is the only automatic way to assess this
- Main metric: Success rate: was the simulated user's goal reached?
 - i.e. did the system give a correct entity & all information
 - technically same as corpus-based, but now over real dialogues
- Problems:
 - the simulator needs to be built for a given domain
 - it's essentially another dialogue system (⟨♠x♠)
 - simulator behavior will bias the evaluation

Human Evaluation

Metrics (objective - measuring):

- Task success (boolean): did the user get what they wanted?
 - (paid) testers with known goal → check if they found what they were supposed to
 - [warning] sometimes people go off script
 - basic check: did we provide any information at all?
- **Duration**: number of turns (fewer is better)

Metrics (subjective – questionnaries):

- Success rate: Did you get all the information you wanted?
 - typically different from objective measures!

System	# calls	Subjective Success Rate	Objective Success Rate
HDC	627	$82.30\%~(\pm 2.99)$	$62.36\%~(\pm 3.81)$
NBC	573	$84.47\% \ (\pm 2.97)$	$63.53\%~(\pm 3.95)$
NAC	588	$89.63\% \ (\pm 2.46)$	$66.84\%~(\pm 3.79)$
NABC	566	$90.28\% \ (\pm 2.44)$	$65.55\% \ (\pm 3.91)$

• Future use: Would you use the system again?

Component-specific questions

(Jurčíček et al., 2012) https://doi.org/10.1016/j.csl.2011.09.004

Final Remarks

Further Research Areas

- Multi/open domains
 - reusability, domain transfer
 - training from little data
 - using less annotation
 - connecting task-oriented systems and chatbots
- Context dependency
 - understand/reply in context (grounding, speaker alignment)
- Incrementality
 - don't wait for the whole sentence to start processing
- Evaluation
 - neural-net-based metrics

Multimodal/Visual Dialogue

- adding other modalities
- specific components
 - parallel to NLU
 - vision image classification networks
 - face identification/tracking
 - parallel to NLG
 - mimics/gesture generation
 - gaze
 - image retrieval
 - vision typically CNN
 - often off-the-shelf stuff
 - specific classifiers/rules

and what is your name?

My name is Raveesh

SHOPPER: Hello

AGENT: Hi, please tell me what i can help you with today?

SHOPPER: show me few of your top large sized rubber type upper material clogs that is mostly light pink in colored that i would like.

AGENT: Of course. Just wait a few seconds while i browse through my catalog

AGENT: Sorry i dont have any in pink but would you like to see some in

olor

other color

SHOPPER: Please show me something similar to the 1st image but in a different upper material

SHOPPER: I like the 4th result . Show me something like it but in material as in the 1st image from what you had previously shown me in clogs

https://youtu.be/5fhjuGu3d0I?t=137 https://vimeo.com/248025147

(Agarwal et al., 2018) http://aclweb.org/anthology/W18-6514

Thanks

Contact me:

MLSS^N Slack in person till tomorrow odusek@ufal.mff.cuni.cz I'm looking for a postdoc & will be looking for PhD students (know someone?)

http://ufal.cz/ng-nlg/postdoc

Get the slides here:

<u>http://ufal.cz/ondrej-dusek/bibliography</u> (under "Talks")

References/Inspiration/Further:

Apart from materials referred directly, these slides are based on slides and syllabi by:

- Pierre Lison (Oslo University): https://www.uio.no/studier/emner/matnat/ifi/INF5820/h14/timeplan/index.html
- Oliver Lemon & Verena Rieser (Heriot-Watt University): https://sites.google.com/site/olemon/conversational-agents
- Filip Jurčíček (Charles University): https://ufal.mff.cuni.cz/~jurcicek/NPFL099-SDS-2014LS/
- Milica Gašić (University of Cambridge): http://mi.eng.cam.ac.uk/~mg436/teaching.html
- David DeVault & David Traum (Uni. of Southern California): http://projects.ict.usc.edu/nld/cs599s13/schedule.php
- Luděk Bártek (Masaryk University Brno): https://is.muni.cz/el/1433/jaro2018/PA156/um/
- Gina-Anne Levow (University of Washington): https://courses.washington.edu/ling575/

Recommended Reading

Best:

- Jurafsky & Martin: Speech & Language processing. 3rd ed. draft 2021, Chap. 24 (+23, 25, 26) (https://web.stanford.edu/~jurafsky/slp3/) – relatively brief intro, good for rest of NLP too!
- McTear: Conversational AI. Morgan & Claypool 2021. (https://doi.org/10.2200/S01060ED1V01Y202010HLT048) a bit more advanced & focused, pretty new
- Gao et al.: Neural Approaches to Conversational AI, 2019
 (http://arxiv.org/abs/1809.08267) more advanced, slightly outdated
- Sutton & Barto: Reinforcement Learning: An Introduction, 2018 (freely online) specifically on RL, pretty advanced
- recent papers from the field (linked on individual slides)

Also good (but more outdated):

- McTear et al.: The Conversational Interface: Talking to Smart Devices. Springer 2016.
- Jokinen & McTear: Spoken dialogue systems. Morgan & Claypool 2010.
- Lemon & Pietquin: Data-Driven Methods for Adaptive Spoken Dialogue Systems. Springer 2012.

Rieser & Lemon: Reinforcement learning for adaptive dialogue systems. Springer 2011.