School of Geography and Geology McMaster University

Applied Spatial Statistics

Point Pattern Analysis I & II

This session:

- Point Pattern Analysis I
 - Definitions
 - First and Second Order Properties
 - Visualizing Point Patterns
 - Exploring Point Patterns
 - Quadrat counts
 - Quadrat Analysis

Definitions

- Region
- Point
- Event
- Attributes
- Patterns
 - Random
 - Clustered
 - Dispersed/Regular

Region (R) – Specific area over the surface of the earth that is of interest

Examples of regions - Continent

Definitions

Examples of regions - Province

Definitions

Order Properties

Quadrat Counts

Quadrat Analysis

Examples of regions

City

Examples of regions

Land plot

- Examples of regions
 - Computer chip

- Examples of regions
 - Section of tissue

Regular region

o Irregular region

Definitions

Order Properties

Visualization

Quadrat Counts

Quadrat Analysis

Definitions: Point

Point – An arbitrary location in region R

Definitions Order Properties Visualization Quadrat Counts Quadrat Analysis

Definitions: Event

 Event – An "interesting" occurrence in region R

Definitions Order Properties

Definitions: Event – Examples

Definitions

Order Properties

Visualization

Quadrat Counts

Quadrat Analysis

Definitions: Event – Examples

Note: What about the underlying population?

Definitions: Event – Examples

Event – Further examples

Definitions: Attributes

- \circ s₁, s₂: the "x" and "y" coordinates of the event
- Other values attached to event
 - Type of occurrence
 - Type of building
 - Tree species
 - 0 ...
 - Time of occurrence
 - Other characteristics
 - Depth of borehole
 - Age
 - 0 ...

Definitions: Patterns

Definitions: Patterns

Definitions: Patterns

Definitions: Population

 Mapped point pattern – A complete map of events in R

Definitions: Sample

Sampled point pattern – Some events in R have not been recorded

Definitions Order Properties

Visualization

Quadrat Counts

Quadrat Analysis

Definitions: Sample

Limitations - Example

Definitions Order Properties Visua

Definitions: Edge Effects

Edge Effects

Definitions

Order Properties

Visualization

Quadrat Counts

Quadrat Analysis

Definitions: Edge Effects

Possible Solution – Creating a torus

Definitions Order Properties

Definitions: Edge Effects

Possible Solution – Guard Area

First & Second Order Properties

Number of Events per Unit Area

Definitions Order Properties Visualization Quadrat Counts Quadrat Analysis

First & Second Order Properties

Number of Events per Unit Area

- $Y(A_i)$: Number of events per unit area i
- E[Y(A)]: Mean number of events per unit area
- COV[Y(A_1), Y(A_2)]: Covariance between \mathcal{A}_1 and \mathcal{A}_2

First & Second Order Properties

Number of Events per Unit Area

Depends on the size of \mathcal{A}

First order properties

 Intensity – Mean number of events per unit area at point s

$$\lambda(\mathbf{s}) = \lim_{ds \to 0} \left\{ \frac{E[Y(\mathbf{ds})]}{\mathbf{ds}} \right\}$$

• Stationary process: $\lambda(s)$ is a constant $\rightarrow \lambda$

Second order properties

Second Order Intensity

$$\gamma(\mathbf{s}_{i}, \mathbf{s}_{j}) = \lim_{ds_{i}, ds_{j} \to 0} \left\{ \frac{E[Y(\mathbf{ds}_{i})Y(\mathbf{ds}_{j})]}{\mathbf{ds}_{i}\mathbf{ds}_{j}} \right\}$$

 Stationary, isotropic process: $\gamma(s)$ depends on distance only

Visualizing Point Patterns

Dot Map

Definitions Order Properties Visualization Quadrat Counts Quadrat Analysis

Example: Shops in Hamilton, ON

Definitions Order Properties Visualization Quadrat Counts Quadrat Analysis

Visualizing Point Patterns

Dot Map with Attributes

Example: Shops in Hamilton, ON

Example: Cities in Eastern Asia

Dot Map with Attributes

Example: Cities in Eastern Asia

Dot Map with Attributes

Visualizing Point Patterns

- Dot Map with Attributes
 - Represent underlying population

Exploring Point Patterns

- Methods
 - Quadrat Counts/Analysis
 - Kernel Estimation

Figure 5.5 Illinois Tornado Pattern with Quadrats Superimposed

Definitions Order Properties

Figure 2.1 Location of Settlements of 300 or Greater Population in 1971 in Southern Saskatchewan

Figure 2.1 Location of Settlements of 300 or Greater Population in 1971 in Southern Saskatchewan

 \circ Smooth variation of intensity $\lambda(\mathbf{s})$ (Good)

Definitions Order Properties Visualization

Quadrat Counts Quadrat Analysis

o Relative location of points within window?

Definitions Order Properties

Visualization

Quadrat Counts

Size of window?

Large window

Small window

 Based on the frequency of events occurring in various parts of the region

- Mean cell frequency
 - MEAN = # of events (n)/# of cells (m)

Variance of the cell frequencies

•
$$VAR = \frac{\sum f_i X_i^2 - \left(\sum f_i X_i\right)^2 / m}{m-1}$$

- Variance-mean ratio
 - VMR = VAR / MEAN

Case 1

# of Events	X^2	# of Cells	fX	fX^2
X		with X Events (f)		
X=0	0	0	0	0
<i>X</i> =1	1	0	0	0
X=2	4	0	0	0
X=3	9	9	27	81
X=4	16	0	0	0
<i>X</i> =5	25	0	0	0
		Sum=	27	81

$$MEAN = 27/9 = 3$$

$$MEAN = 27/9 = 3$$
 $VAR = \frac{81 - 27^2/9}{9 - 1} = 0$ $VMR = \frac{0}{3} = 0$

$$VMR = \frac{0}{3} = 0$$

Order Properties Visualization Quadrat Counts Kernels Definitions

Case 2

Case 3

Definitions Order Properties Visualization Quadrat Counts Kernels

- Variance-mean ratio
 - VMR < 1: The pattern is more dispersed than random
 - VMR > 1: The pattern is more clustered than random
 - *VMR* = 1: The pattern is random

Next...

- Kernel estimation
- Second order properties
- Nearest neighbor analysis
- K Functions