Homework 9 R08945043 林柏璋

(a) Robert's Operator (threshold=12)

先將影像進行 padding,由左上往右下依序按照 2 個 kernel 計算出每個 pixel 的 r_1 、 r_2 ,計算 gradient magnitude $(\sqrt{r_1^2+r_2^2})$,若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(b) Prewitt's Edge Detector (threshold=24)

先將影像進行 padding,由左上往右下依序按照 2 個 kernel 計算出每個 pixel 的 p_1 、 p_2 ,計算 gradient magnitude ($\sqrt{p_1^2+p_2^2}$),若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(c) Sobel's Edge Detector (threshold=38)

先將影像進行 padding,由左上往右下依序按照 2 個 kernel 計算出每個 pixel 的 $s_1 \setminus s_2$,計算 gradient magnitude ($\sqrt{s_1^2+s_2^2}$),若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(d) Frei and Chen's Gradient Operator (threshold=30)

先將影像進行 padding,由左上往右下依序按照 2 個 kernel 計算出每個 pixel 的 f_1 、 f_2 ,計算 gradient magnitude ($\sqrt{f_1^2+f_2^2}$),若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(e) Kirsch's Compass Operator (threshold=135)

先將影像進行 padding,由左上往右下依序按照 8 個 kernel 計算出每個 pixel 的 k_i , i=0~7,計算 gradient magnitude $(max_{n,n}$ =0~7 k_n),若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(f) Robinson's Compass Operator (threshold=43)

先將影像進行 padding,由左上往右下依序按照 8 個 kernel (實際只需計算其中 4 個,剩下 4 個為前面計算數值取負號)計算出每個 pixel 的 r_i , i=0~7,計算 gradient magnitude ($max_{n,n}$ =0~7 r_n),若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

(g) Nevatia-Babu 5x5 Operator (threshold=12500)

先將影像進行 padding,由左上往右下依序按照 6 個 kernel 計算出每個 pixel 的 N_i , $i=0\sim5$,計算 gradient magnitude $(max_{n,n=0\sim5}\,N_n)$,若 gradient magnitude 小於 threshold 則該 pixel 為白色,反之則為黑色。

