

MK6116, MKI6116, MK6116L, MKI6116L (N/S) - 15/20/25 2 K X 8 CMOS STATIC RAM

- BYTEWYDE™ 2K x 8 CMOS STATIC RAM.
- +5 VOLT ONLY WRITE/READ.
- 24-PIN 600 MIL PLASTIC DIP, JEDEC PINOUT 28-PIN 330 MIL SOIC.
- EQUAL WRITE AND READ CYCLE TIMES.
- HIGH PERFORMANCE WITH LOW CMOS STANDBY POWER.

PIN CONNECTION

24 Vcc A 7 2 3 Aβ A 6 3 22 Aο 4 21 W 5 7 20 6 19 A 10 MK6116 7 A 1 18 E DQ 7 Αn 8 17 DQ₀ 9 [16 DQ 6 15 DQ 1 10 [DQ 5 14 DQ 2 11 [DQ A Vss 12 [7 13 DQ a (A) DIP-24 28 Vcc 27 2 Αя A₆ A5 3 26 N/C 4 25 Ag A₃ 5 [24 W A2 6 [23 G 7 N/C 22 A₁₀ 8 21 N/C 9 7 20 E 19 An 10 [DQ 7 18 DQ 6 DQ0 11 [DQ 1 12 [17 DQ 5 DQ2 13 [7 16 DQ ₄ Vss 14 15 DQ3 (B) S: SOIC-26

DESCRIPTION

The MK6116 is a 16,384-bit CMOS Static RAM, organized as 2K x 8 usingSGS-THOMSON Microelectronics' advanced HCMOS process technology. This device is directly compatible with the popular 24-pin, three-wire handshake, 16K static CMOS RAM. All inputs and outputs are TTL compatible using a single 5V supply. The MK6116 provides full static operation, requiring no clocks or refresh operations, and has equal access and cycle times. Additionally, whenever E (Chip Enable) goes high, the device will maintain a reduced power standby mode until E again goes active low. (Refer to the MK6116Truth Table.)

PIN NAMES

A ₀ -A ₁₀	ADDRESS INPUTS
DQ ₀ - DQ ₇	DATA I/O
E	CHIP ENABLE
G	OUTPUT ENABLE
W	WRITE ENABLE
Vcc, Vss	+5V, GND

FIGURE 1: BLOCK DIAGRAM

MK6116 TRUTH TABLE

E	G	W	MODE	DQ	POWER
VIH	Х	Х	deselect	Hight Z	Standby
ViL	×	V _{IL}	Write	DIN	Active
V _{IL}	VIL	VIH	Read	Dout	Active
VIL	VIH	VIH	Read	Hight Z	Active

READ MODE

The MK6116 is in the read mode whenever \overline{W} (Write Enable) is high and \overline{E} (Chip Enable) is low, providing a ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs (A₀-A₁₀) defines which one of 2048 bytes of data is to be accessed.

Valid data will be available at the eight Data Outputs Drivers (DQ₀-DQ₇) within t_{AVQV} after the last ad-

dress input signal is stable, provided that the \overline{E} and \overline{G} (Out-put Enable) access times are satisfied. If \overline{E} or \overline{G} access times are not met, data access will be measured from the limiting parameter (t_{ELQV}) or t_{GLQV}) rather than address. The state of the eight Data I/O signals is controlled by the \overline{E} and \overline{G} input signals. Data Out may be indeterminate between t_{AXQX} and t_{AVQV} , but data will always be valid at t_{AVQV} .

AC ELECTRICAL CHARACTERISTICS (READ CYCLE)

 $\{0^{\circ}C \le TA \le +70^{\circ}C \text{ (MK6116/L)}, -40^{\circ}C \le TA \le +105^{\circ}C \text{ (MKI6116/L)}, VCC = 5.0 +/-10\%\}$

ALT. SYMBOL	STD. SYMBOL	PARAMETER			MKI61 MK61	16 - 20 16 -20 16L-20 16L-20	MKI61	16 - 25 16 -25 116-25		
			MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
tac	tavav	Read Cycle Time	150		200		250		ns	
taa	tavov	Address Access Time		150		200		250	ns	1
tcea	telov	ChipEnable Access Time		150		200		250	ns	1
tcez	tenaz	Chip Enable Data OffTime		35		40		50	ns	
toea .	tgLav	Output Enable Access Time		75		80		90	ns	1
toez	tgLav	Output Enable Data Off Time		35		40		50	ns	
toel	tgLax	Out put Enable to Q Low-Z	15		15		15		ns	
tcel	teLax	Chip Enable to Q Low-Z	15		15		15		ns	
tон	taxox	Output Hold from Address	15		15		15		ns	1

FIGURE 2: READ CYCLE TIMING

WRITE MODE

The MK6116 is in the Write Mode of operation whenever W and E are active low (G is a don't care as noted in the Truth_Table). The latter occurring falling edge of either W or E will determine the start of the write cycle. Therefore, address setup time and write or chip enable pulse width are referenced to the latter occurring edge of W or E. The write cycle can be terminated by either earlier rising edge of W or E. The addresses must be held valid

throughout the cycle. \overline{W} must return to the high logic state for a minimum write recovery time designated as t_{WHWL} between write cycles. Addresses must remain valid for t_{WHAX} at the termination of the write cycle. The same principles apply for an \overline{E} controlled write cycle.

If the output bus has been enabled (E and G active low), then W will disable the outputs within twLoz from its falling edge; however, care must be taken to avoid a potential bus contention. Data-In must be valid tower or toyer prior to the earlier rising

AC ELECTRICAL CHARACTERISTICS (WRITE CYCLE)

 $\{0^{\circ}C \le T_{A} \le +70^{\circ}C \text{ (MK6116/L)}, -40^{\circ}C \le T_{A} \le +105^{\circ}C \text{ (MKI6116/L)}, V_{CC}=5.0 \pm 10\%\}$

ALT. SYMBOL	SDT. SYMBOL	PARAMETER	MK611 MKI61 MK611 MKI61	16 -15	MK611 MKI61 MK611 MKI61	16 -20	MK611 MKI61 MKL61	16 -25		
			MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
twc	tavav	Write Cycle Time	150		200		250		ns	
tas	tavwl	Address Setup Time W Low	0		0		0		ns	
tas	tavel	Address Setup Time E Low	0		0		0		ns	
tcew	telen	Chip Enable to End of Write	90		120		160		ns	
taw	tavwh	Address Valid to End of Write	120		140		180		ns	
taw	taveh	Address Valid to End of Write	120		140		180		ns	
twew	twLwH	Write Pulse Width	90		120		160		ns	
tan	twhax	W Hight to address Change	10		10		10		ns	
t _{AH}	tehax	E Hight to address Change	10		10		10		ns	
t _{WR}	twnwL	W Hight to W Low Next Cycle	10		10		10		ns	
twez	twLQZ	W Data Off Time		50		60		80	ns	
tcez	tehoz	E Data Off Time		50		60		80	ns	
t _{DS}	tovwн	Data Setup Time to w Hight	40		60		100		ns	
t _{DS}	toveh	Data Setup Time to E Hight	40		60		100		ns	
t _{DH}	twHDX	Data Hold Time W High	0		0		0		ns	
t _{DH}	tehox	Data Hold Time E High	0		0		0		ns	

FIGURE 3: WRITE CYCLE TIMING

FIGURE 4: OUTPUT LOAD DIAGRAM

*Notes: Including scope and JIG

AC TEST CONDITION

Input Levels: 0.6 V to 2.4 V

Transition Times: 5 ns

Input and Output Timing

Reference Levels: 0.8V or 2.2 V

ABOLUTE MAXIMUM RATINGS

PARAMETER	VALUES	UNITS
Voltage on any Pin Relative tro Ground	-0.3 to +7.0	V
Operating Temperature (MK6116L)	0 to +7	.c
Operatting Temperature (MKI6116/L)	-40 to +150	.c
Storage Temperature	-55 to +150	.C
Power Dissipation	1	W
Output Current	† 20	mA

^{*} This is a stress rating only and functional operation of the device at these or any conditions above those indicazted in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $\{0^{\circ}C \le T_{A} \le +70^{\circ}C \text{ (MK6116/L)}, -40^{\circ}C \le T_{A} \le +150^{\circ}C \text{ (MKI6116/L)}, V_{CC}=5.0 \text{ +/- }10\%\}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.5.	٧	4
Vss	Supply Voltage	0	0	V	4
VIH	Logic 1 All Inputs	2.2	V _{cc} +0.3	٧	4
VIL	Logic 1 All Inputs	-0.3	0.8	V	4,5

DC ELECTRICAL CHARACTERISTICS

 $\{0^{\circ}C \leq TA \leq +70^{\circ}C \text{ (MK6116/L)}, -40^{\circ}C \leq T_{A} \leq +150^{\circ}C \text{ (MKI6116/L)}, V_{CC}=5.0 \text{ +/- }10\%\}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
	Average V _{CC} Power Supply Current ,		70	mA	
Icc	MK6116, MKI6116		70	IIIA	6
	MK6116L, MKI6116L		70	mA	
I _{SB1}	TTL Standby Current (E = V _{IH)}		3	mA	
	CMOS Standby Current (E > V _{CC} -0.2 V)			mA	
lana	MK6116, MKI6116		1	IIIA	
I _{SB2}	MK6116L			μА	
	MKI6116L		10	μА	
ILI	Input Leakage Current	-1	+1	μА	7
ILO	Output Leakage Current	-5	+5	μА	7
V _{OH}	Output Logic 1 Voltage (I _{OH} = -1.0 mA)	2.4		V	
V _{OL}	Output Logic 2 Voltage (I _{OH} = 2.1 mA)		0.4	V	

Output current absolute maximun rating is specified for one output at a time, not to exceed a duration of a1 second

LOW VCC Data RETENTION CHARACTERISTICS (MK6116L, MKI6116L)

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
VDR	V _{CC} Data retention	2.0	Vcc (max)		
	Data Retention Power Supply Current				
IccDR MK6116L MK16116L				μА	8
			3	μА	
tcor	Chip Deselection to Data Retention Time	0		ns	
t _A	Operation Recovery Time	tavav			

^{*} tAVAV = Read Cycle Time

FIGURE 5 . LOW VCC DATA RETENTION TIMING

NOTES:

- 1. Measured with load as shown in Figure 4.
- 2 . Effective capacitance calculated from the equation: $C = I\Delta V\Delta V$, with $\Delta V = 3$ volts and power supply at nominal level
- 3. Output is deselected.
- 4. All voltages referenced to GND.

- 5 . Negative spikes of -1.0 volts allowed for up to 10 ns once per cycle.
- 6. ICC1 measured with output open.
- 7. Measured with GND

 V

 V_{CC} and outputs deselected
- 8 . Vcc = 2.0 Valts

CAPACITANCE (TA = 25 C)

SYMBOL	PARAMETER	MAX	UNITS	NOTES
Cı	Capacitance on all pins (except DQ)	7.0	P ^F	2
CDQ	Capacitance on DQ pins	10.0	P ^F	2, 3

FIGURE 6. 24-PIN PLASTIC DIP (N)

FIGURE 7. 28-PIN SOIC (S)

ORDERING INFORMATION

PART NO.	ACCESS TIME	CYCLE TIME	PACKAGE TYPE	TEMPERATURE
MK6116 (N/S)-15	150 ns	150 ns	Plastic DIP/SOIC	0°C to 70°C
MK6116 (N)-20	200 ns	200 ns	Plastic DIP	0°C to 70°C
MK6116 (N) -25	250 ns	250 ns	Plastic DIP	0°C to 70°C
MKI6116 (N/S) -15	150 ns	150 ns	Plastic DIP/SOIC	-40°C to 105°C
MKI6116 (N) -20	200 ns	200 ns	Plastic DIP	-40°C to 105°C
MKI6116 (N) - 25	250 ns	250 ns	Plastic DIP	-40°C to 105°C
MK6116 L(N/S) -15	150 ns	150 ns	Plastic DIP/SOIC	0°C to 70°C
MK6116 L(N) - 20	200 ns	200 ns	Plastic DIP	0°C to 70°C
MK6116 L(N) - 25	250 ns	250 ns	Plastic DIP	0°C to 70°C
MKI6116 L(N/S) - 15	150 ns	150 ns	Plastic DIP/SOIC	-40°C to 105°C
MKI6116L (N) - 20	200 ns	200 ns	Plastic DIP	-40°C to 105°C

MK	Commercial Temperature Range (0°C to +70°C)
MKI	Industrial Temperature Range (-40°C to +85°C)
6116	Device Family and Identification Number
L	Low Power
N	Plastic Dip Package
s	SOIC Package
15/20/25	_Speed Grade

BYTEWYDE is a Trademark of SGS-THOMSON Microelectronics