INTERACTION

SPECTRUM

Static content

Infographics Books

Dynamic content

Animated content
 "Auto-play", user is not in control

2. Interactive content

Changes are a result of user actions

WHY INTERACT WITH VISUALIZATION?

Need to explore data that is big/complex

Too much data

Too many ways to show it

30 40

OVERALL

WHY INTERACTION WITH VIS?

Interaction amplifies cognition

Understand things better if we can touch them When we can observe cause and effect

INTERACTION METHODS

What do you design for?

Mouse, keyboard?

Touch interaction / mobile?

Gestures?

Eye movement?

Speech?

DIRECT MANIPULATION

Interact directly with objects

Continuous feedback/updates

Indirect interact

Using a query, a slides, etc.

TYPES OF INTERACTION

Single view

Change over time

Navigation

Semantic zooming

Filtering and Querying

Focus + Context

Multiple views

Selection (Details on demand)

Linking & brushing

Adapting representation

PURPOSES OF INTERACTION

DOI:10.1145/2133806.2133821

A taxonomy of tools that support the fluent and flexible use of visualizations.

BY JEFFREY HEER AND BEN SHNEIDERMAN

Interactive Dynamics for Visual Analysis

TABLE 1: Taxonomy of interactive dynamics for visual analysis

Data & View Specification	Visualize data by choosing visual encodings. Filter out data to focus on relevant items. Sort items to expose patterns. Derive values or models from source data.
View Manipulation	Select items to highlight, filter, or manipulate them. Navigate to examine high-level patterns and low-level detail. Coordinate views for linked, multi-dimensional exploration. Organize multiple windows and workspaces.
Process & Provenance	Record analysis histories for revisitation, review and sharing. Annotate patterns to document findings. Share views and annotations to enable collaboration. Guide users through analysis tasks or stories.

CHANGE OVER TIME/TRANSITIONS

CHANGE OVER TIME

Use slides to see view with data at different times

Sometimes better to show difference explicitly

CHANGE OVER TIME

Doesn't have to be literal time:

change as you go

as part of an analysis process

WHY TRANSITION?

Different representations support different tasks

Bar chart vs stacked bar chart

Change ordering

Transition make it possible for users to track what is going on

https://benfry.com/isometricblocks/

ANIMATED TRANSITIONS

Smooth interpolation between states or visualization techniques

http://bl.ocks.org/mbostock/3943967

https://observablehq.com/@d3/zoomablesunburst

WHY ANIMATED TRANSITION?

Animated Transitions in Statistical Data Graphics

Jeffrey Heer, George G. Robertson

a taxonomy of transition types. We then propose design principles for creating effective transitions and illustrate the application of

Abstract—In this paper we investigate the effectiveness of animated transitions between common statistical data graphics such as bar charts, pie charts, and scatter plots. We extend theoretical models of data graphics to include such transitions, introducing

ANIMATION CAVEATS (WARNING)

Changes can be hard to track Eyes over memory

Show all states in multiple views

NAVIGATION

NAVIGATION

Pan

Move around

Zoom

Enlarge/make smaller

Rotate

https://www.google.com/maps/@40.53884 17,19.7863469,14278660m/data=!3m1!1e3

http://x.babymri.org/example1/?scene=http://x.babymri.org/example1/scene.json

SCROLLTELLING

Telling an interactive story Interaction by scrolling

Nice but

Continuous scrolling vs discrete states

Direct access

Unexpected behavior

What's Really Warming the World?

By Eric Roston 💆 and Blacki Migliozzi 💆 | June 24, 2015

Skeptics of manmade climate change offer various natural causes to explain why the Earth has warmed 1.4 degrees Fahrenheit since 1880. But can these account for the planet's rising temperature? Scroll down to see how much different factors, both natural and industrial, contribute to global warming, based on findings from NASA's Goddard Institute for Space Studies.

https://www.bloomberg.co m/graphics/2015-whatswarming-the-world/

SCROLLTELLING: OIL PRICES

SCROLLTELLING: INTRO TO ML

Making predictions

The newly-trained decision tree model determines whether a home is in San Francisco or New York by running each data point through the branches.

SEMANTIC ZOMING

SEMANTIC ZOOMING

Update content on zooming

More detail as more space becomes available

Ideally readable at multiple resolutions

FOCUS + CONTEXT

FOCUS + CONTEXT

Carefully pick what to show

Hint at what you are not showing

FOCUS + CONTEXT

Synthesis of visual encoding and interaction

User selects regions of interest (focus) through navigation or selection

Provide context through

aggregation

reduction

layering

→ Embed

→ Elide Data

→ Superimpose Layer

→ Distort Geometry

ELISION

Focus item shown in detail

Other items summarized for context

Example: SpaceTree

https://www.cs.umd.edu/hcil/spacetree/

https://youtu.be/F7-vJBsFBWw

DEGREE OF INTEREST (DOI)

Represent objects in the neighborhood in detail, and only major landmarks far away

Balance between local detail and global context

$$DOI(x) = I(x) - D(x,y)$$

I(x): interest in object x

D – a distance function to the current focus y of x

There may have many foci

DOI TREE

Interactive tree with animated transitions that fit within a bounded region of space layout depends on the user's estimated DOI

USE:

logical filtering based on DOI

Geometric distortion of node size based on DOI

Semantic zooming on content based on node size

Aggregate representations of elided subtrees

DOI: JUNIPER EXAMPLE

SUPERIMPOSE

Focus layer limited to a local region of view Instead of stretching across the entire view

TOOLGLASS & MAGIC LENSES

Magic lense:

details/different data is shown when moving a lens over a scene

MAGIC LENSE

MAGIC LENSE: LABELING

DISTORTION

Use geometric distortion of the contextual regions to make room for the details in the focus regions(s)

PERSPECTIVE WALL

https://www.youtube.com/watch?v=hYUZbrWtCZg

FISHEYE

HYPERBOLIC GEOMETRY

DISTORTION CONCERNS

Unsuitable for relative spatial judgements

Overhead of tracking distortion

Visual communication of distortion

gridlines, shading

Target acquisition problem

lens displacing items away from screen location

Mixed result compared to separate views and temporal naviation

OVERVIEW + DETAIL

OVERVIEW AND DETAIL

One view shows overview

Other show detail

[FilmFinder, Ahlberg & Shneiderman, 1994]

FILTERING & DYNAMIC QUERYING

MANTRA

Visual information seeking matra (Shneiderman, 1996)

Overview first,

Zoom and filter,

Then details on demand

Related, history, extract

DYNAMIC QUERIES

Define criteria for inclusion/ exclusion

DYNAMIC QUERY WITH FILTER

Spotfire

VISUAL QUERIES

VISUAL QUERIES

Time Searcher (Hocheiser, 2003)

QUERY INTERFACES

