Uncertainty Shocks and Financial Shocks

Marco Brianti

October 2018

Boston College

Financial Shocks and Uncertainty Shocks

Stock and Watson (2012); Caldara et al. (2016) among others shown that uncertainty shocks and financial shocks are deeply confounded.

$$corr(\iota_t^{EBP}, \iota_t^{JLN}) \approx 0.45$$

where ι_t^{EBP} is an unpredictable innovation in the **excess bond premium** from Gilchrist and Zakrajzek (2012) and ι_t^{JLN} is an unpredictable innovation in the **uncertainty proxy** from Jurado et al. (2015).

Both a theoretical and empirical question

Literature did not succeed yet to disentangle the two exogenous sources for two main reasons:

- Simultaneity
 - Both types of variables are fast moving
- Effect on observables
 - They have the same qualitative effects on prices and quantities

As a result, both **zero-impact restrictions** cannot be used and **internal instruments** are not available.

This Project

I want to take a step back and argue that it is conceptually wrong to disentangle these two shocks as defined by the literature.

From a theoretical point of view, uncertainty shocks can potentially be a primitive source of financial shocks.

It is more important to gauge how much of the combinations of these shocks appears to be

- a credit supply shock ⇒ financial shock
- a credit demand shock ⇒ macro uncertainty shock

Main Contribution

• I present evidence and theory of an **internal instrument** able to disentangle shifts in credit supply and demand.

I provide a new econometric method which can be applied to disentangle two structural shocks when an internal instrument is available.

Corporate Cash Reserves

Cash reserves (or cash holdings) refer to money or extremely liquid short-term investment which an individual corporation saves in order to be ready to cover any emergency funding or short-term requirements.

The typical U.S. large firm has cash equal to about 10% and 15% of total assets.

Together with current cash flow is consider the most important internal source of finance.

Cash Reserves and Financial Frictions

Almeida, Campello, Weisbach, 2004. The Journal of Finance

⇒ Financially constrained firms tend to build larger cash reserves as a buffer against potential credit supply shocks.

Kaplan and Zingales, 1997. Quarterly Journal of Economics

⇒ Investment is positive related to cash reserves when firms are financially constrained.

Campello, Graham, Harvey, 2010. Journal of Financial Economics

⇒ After the 2008-09 credit supply shock, cash reserves decrease because adopted as internal source of finance.

Cash Reserves and Uncertainty

Bloom, Mizen, Smietanka (2018). Working Paper

⇒ Higher economic uncertainty in the years 2007-09 is related to an increase in cash holdings.

Alfaro, Bloom, Lin (2018). NBER Working Paper

⇒ Firms accumulate cash reserves and short-term liquid instruments following uncertainty rises.

Economic Intuition I

To provide an economic intuition of the differential response of **cash holdings** to uncertainty and financial shocks, I present a properly augmented model in the spirit of

- Almeida, Campello, and Weisbach (2004)
- Han and Qiu (2007)

It is a simple representation of a dynamic setting where a credit-constrained profit-maximizing firm has

- a trade-off between present and future investment opportunities
- current cash flow and external sources of finance might not be enough to fund all profitable projects

Economic Intuition I

Model has three periods: 0, 1 and 2.

Discount factor $\beta = 1$

In P0 firm can invest I_0

• I_0 pays a deterministic return $g(I_0) = G(I_0) + qI_0$ in P2

In P1 firm can invest I_1

• I_1 pays a deterministic return $h(i_0) = H(i_0) + qI_0$ in P2

Step 1

Regress both a proxy for uncertainty and financial conditions on lagged principal components obtained from a large dataset,

- $F_t = \alpha^F + A_F(L)PC_{t-1} + \iota_t^F$
- $U_t = \alpha^U + A_U(L)PC_{t-1} + \iota_t^U$

where

- \bullet F_t is a proxy of financial conditions
- U_t is a proxy of uncertainty
- PC_t is a vector of principal components

Goal is to obtain ι_t^F and ι_t^U as **unforecastable components** of F_t and U_t , respectively.

Step 2

Regress normalized cash flow on both innovations ι_t^F and ι_t^U , controlling for its forecastable part,

$$\tilde{CF}_t = \alpha + B(L)PC_{t-1} + \beta^F \iota_t^F + \beta^U \iota_t^U + \varepsilon_t$$

where \tilde{CF}_t is cash flow normalized by corporate profits.

Results.

- β^F is always **positive** and **significant** at 1%.
- β^U is almost always **not significant**.

Robustness Checks

- Changing the number of lags, ranging from 3 to 6
- Changing the number of PC_t , ranging from 4 to 8
- Adding different controls in both steps
- Using different measures of uncertainty and credit supply

Penalty Functions

Penalty functions is a constrained maximization problem where the importance of the constraint depends on a exogenously given coefficient.

Given a standard constrained maximization problem,

$$\max_{x} f(x)$$
 s.t $g(x) \ge 0$

a penalty function is

$$\max_{x} f(x) + \delta g(x), \quad \delta > 0$$

- If $\delta = 0$ the constraint g(x) is not taken into account
- If $\delta \to \infty$ optimal solution maximizes constraint g(x)

Penalty Functions Approach (PFA) on Structural VARs

Firstly presented by Uhlig (2005), PFA has the flavor of **sign restrictions** but with the advantage that the problem is just identified, delivering an **unique solution**.

Shortcoming: parameter δ is exogenously chosen making the identification strategy less credible.

I suggest a **general penalty function approach** for internal instruments where δ is treated as an endogenous parameter chosen by the data.

Step 1 - Identifying uncertainty shocks

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ Y_t]'$ where Y_t are macroeconomic variables.
- $\iota'_t \iota_t = \Sigma_\iota$

Step 1

$$\begin{array}{ll} \max_{\gamma_U} & \sum_{t=0}^K e_U' B^t \tilde{A}_0 \gamma_U - \delta e_{CF}' \tilde{A}_0 \gamma_U \\ \text{subject to} & \delta \geq 0 \ \text{ and } \ \gamma_U \gamma_U' = 1 \end{array}$$

where

- $\tilde{A}_0 \tilde{A}_0' = \Sigma_\iota$
- e_i is a selection vector of variable j

An uncertainty shock maximizes its effect on uncertainty over the

Step 2 - Identifying financial shocks

Given the reduced-form system $X_t = BX_{t-1} + \iota_t$ where

- $X_t = [U_t \ F_t \ Y_t]'$ where Y_t are macroeconomic variables.
- $\iota'_t \iota_t = \Sigma_\iota$

Step 2

$$\begin{array}{ll} \max_{\gamma_F} & \sum_{t=0}^J e_F' B^t \tilde{A}_0 \gamma_F + \delta e_{CF}' \tilde{A}_0 \gamma_F \\ \text{subject to} & \delta \geq 0, \;\; \gamma_F \gamma_F' = 1 \;\; \text{and} \;\; \gamma_U \gamma_F' = 0 \end{array}$$

where

- $\tilde{A}_0 \tilde{A}'_0 = \Sigma_t$
- e_i is a selection vector of variable j

A financial shock maximizes its effect on credit spread over the

How to choose δ

Choose δ large enough such that it does not matter if you run Step 1 or Step 2 first.

In other words, internal instrument intervention should be strong enough such that $\gamma_U\gamma_F'\simeq 0$

Solution is **unique** over many dimensions.