Mostafa Sabri

Lecture 5

2.8 Subspaces of \mathbb{R}^n

2.9 Dimension and Rank

Subspaces of \mathbb{R}^n

A *subspace* of \mathbb{R}^n is any set $H \subseteq \mathbb{R}^n$ such that :

- a. The zero vector is in H.
- b. For each $\mathbf{u}, \mathbf{v} \in H$, the sum $\mathbf{u} + \mathbf{v} \in H$.
- c. For each $\mathbf{u} \in H$ and each scalar c, $c\mathbf{u} \in H$.

 $H = \{0\}$ is a subspace, called the zero subspace.

- 1. Check that if $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^n$, then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace.
- 2. Are the following subsets of \mathbb{R}^2 subspaces ? $H = \{(x, y) : y = 3x\}, V = \{(x, y) : y = 3x + 1\}.$

Column Space and Null Space of a matrix

The *column space* of an $m \times n$ matrix A is the set of all linear combinations of the columns $\{\mathbf{a}_i\}$ of A, i.e.

$$Col(A) = Span\{\mathbf{a}_1, \ldots, \mathbf{a}_p\} \subseteq \mathbb{R}^m$$
.

The *null space* of A is the set of solutions of $A\mathbf{x} = \mathbf{0}$,

$$Nul(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & -1 \\ 2 & -5 & 5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 9 \\ -6 \\ 17 \end{bmatrix}$. Is \mathbf{b} in Col(A)?

Clearly, Col(A) is a subspace, equal to the range of A.

Basis for a subspace

Thm: Nul(A) is a subspace of \mathbb{R}^n .

Proof. Since
$$A\mathbf{0} = \mathbf{0}$$
, then $\mathbf{0} \in \text{Nul}(A)$. Next, if $\mathbf{u}, \mathbf{v} \in \text{Nul}(A)$, then $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$, so $\mathbf{u} + \mathbf{v} \in \text{Nul}(A)$. Finally, if $\mathbf{u} \in \text{Nul}(A)$ and $c \in \mathbb{R}$, then $A(c\mathbf{u}) = cA\mathbf{u} = \mathbf{0}$, so $c\mathbf{u} \in \text{Nul}(A)$.

A basis for a subspace H of \mathbb{R}^n is a linearly independent set in H that spans H.

e.g. The vectors $\mathbf{e}_j \in \mathbb{R}^n$ with all entries zero except the jth entry equal to 1, satisfy that $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is a basis of \mathbb{R}^n . It is called the *standard basis of* \mathbb{R}^n . Check.

Bases for null spaces and column spaces

Find a basis for the null space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix}.$$

Thm: The pivot columns of a matrix A form a basis for Col(A).

What this theorem means is that if we want to find a basis for Col(A), we should first put A in row-echelon form, say $A \sim B$, identify the pivot columns of the reduced matrix B, then the corresponding columns of A (not B) will form a basis for Col(A).

Basis for the column space

Proof: Let $A \sim B \sim C$, with B in echelon form and C in reduced echelon form. If C has r pivots, its pivot columns must be $\mathbf{e}_1, \dots, \mathbf{e}_r$. Clearly these columns are linearly independent. Moreover, they span Col(C). In fact, if \mathbf{c}_k is a non-pivot column, and if there are j pivot columns on its left, $\mathbf{e}_1, \dots \mathbf{e}_i$, then \mathbf{c}_k can only have nonzero entries in the first *i* components, otherwise it would be a pivot column. Thus, \mathbf{c}_k is a linear combination of them $\mathbf{e}_1, \dots \mathbf{e}_i$.

We have shown that the pivot columns of C are linearly independent and span Col(C), so they are a basis for Col(C).

¹The only way to skip some \mathbf{e}_i would be to have an intermediate zero row, which is impossible.

Basis for the column space

Next we note that the equations $A\mathbf{x} = \mathbf{0}$, $B\mathbf{x} = \mathbf{0}$ and $C\mathbf{x} = \mathbf{0}$ all have the same solutions. But nontrivial solutions give precisely the dependence relations among the columns. It follows that the dependence relations among the columns of A, B and C are the same. For example, if $\mathbf{c}_4 = 5\mathbf{c}_2 + 2\mathbf{c}_1$, then also $\mathbf{c}_4 = 5\mathbf{c}_2 + 2\mathbf{c}_1$ and vice versa.

This shows that columns in A corresponding to the pivot columns of C are also linearly independent. Moreover, they span Col(A), as the pivot columns of C span Col(C).

Basis for the column space

This shows that the designated columns of A are a basis for Col(A). Finally, since the pivot columns of B and C are in the same positions, we are done.

$$\begin{bmatrix} 1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ -3 & 0 & 6 & -1 \\ 3 & 4 & -2 & 1 \\ 2 & 0 & -4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Illustration of the proof. $A \sim B \sim C$, $\mathbf{c}_3 = -2\mathbf{c}_1 + \mathbf{c}_2$ implies $\mathbf{a}_3 = -2\mathbf{a}_1 + \mathbf{a}_2$. Independence of \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_4 implies that of \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_4 , which are thus a basis of Col(A).

Find a basis for the column space of
$$A = \begin{bmatrix} 1 & 3 & -2 & -4 \\ 3 & 7 & 1 & 4 \\ -2 & 0 & 7 & 8 \end{bmatrix}$$
.

Coordinate systems

Thm: If $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis of a subspace H, then any element \mathbf{w} of H can be written uniquely as $\mathbf{w} = \sum_{i=1}^p c_i \mathbf{v}_i$, for some $c_i \in \mathbb{R}$.

<u>Proof.</u> We know that **w** has at least one expansion $\mathbf{w} = \sum_{i=1}^p c_i \mathbf{v}_i$ since the $\{\mathbf{v}_i\}$ span H. If $\mathbf{w} = \sum_{i=1}^p d_i \mathbf{v}_i$ is another one, then

 $\mathbf{0} = \mathbf{w} - \mathbf{w} = \sum_{i=1}^{p} c_i \mathbf{v}_i - \sum_{i=1}^{p} d_i \mathbf{v}_i = \sum_{i=1}^{p} (c_i - d_i) \mathbf{v}_i$. But the $\{\mathbf{v}_i\}$ are linearly independent. So we must have $c_i - d_i = 0$ for all i. So $c_i = d_i \ \forall i$ and the expansion is unique.

П

Coordinate systems

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace H. For each $\mathbf{x} \in H$, the coordinates of \mathbf{x} relative to the basis \mathcal{B} are the weights c_1, \dots, c_p such that

$$\mathbf{x} = \sum_{i=1}^{p} c_i \mathbf{b}_i$$
. The vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} \in \mathbb{R}^p$ is called

the coordinate vector of \mathbf{x} (relative to \mathcal{B}) or the \mathcal{B} -coordinate vector of \mathbf{x} .

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -5 \\ 6 \\ -7 \end{bmatrix}$. Is \mathbf{x} in $H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$? If yes, find $[\mathbf{x}]_{\mathcal{B}}$, for $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$.

Coordinate systems

The idea in the previous example is that although vectors in H have 3 coordinates, the space H is actually a plane. The map $H \to \mathbb{R}^2$ given by $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is an isomorphism (i.e. an identification).²

Thm: If $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for H, then every set containing more than n vectors in H is linearly dependent.

<u>Proof.</u> Let $\{\mathbf{u}^1, \dots, \mathbf{u}^m\}$ be m vectors in H, with m > n. Let us show that

$$\sum_{i=1}^{m} k_i \mathbf{u}^i = \mathbf{0} \iff \sum_{i=1}^{m} k_i [\mathbf{u}^i]_{\mathcal{B}} = \mathbf{0}.$$
 (1)

²This will be proved later in the course.

The dimension of a subspace

Indeed, $\mathbf{u}^i = \sum_{j=1}^n c_{ji} \mathbf{v}_j \implies \sum_{i=1}^m k_i \mathbf{u}^i = \sum_{j=1}^n \left(\sum_{i=1}^m k_i c_{ji} \right) \mathbf{v}_j. \text{ But } \{\mathbf{v}_j\} \text{ are linearly independent, hence } \sum_{i=1}^m k_i \mathbf{u}^i = \mathbf{0} \iff \sum_{i=1}^m k_i c_{ji} = 0 \; \forall j. \text{ On the other hand, } \\ \sum_{i=1}^m k_i [\mathbf{u}^i]_{\mathcal{B}} = \mathbf{0} \iff \sum_{i=1}^m k_i \begin{bmatrix} c_{1i} \\ \vdots \\ c_{ni} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \iff \\ \sum_{i=1}^m k_i c_{ji} = 0 \; \forall j. \text{ This proves (1).}$

But $[\mathbf{u}^1]_{\mathcal{B}}, \dots, [\mathbf{u}^m]_{\mathcal{B}}$ are m vectors in \mathbb{R}^n , m > n. So they are dependent (lecture 3). By the previous paragraph, we deduce $\mathbf{u}^1, \dots, \mathbf{u}^m$ are dependent.

Dimension Theorem

Thm: If H has one basis with n vectors, then every basis of H has n vectors.

<u>Proof.</u> Let $\mathcal{B}_1 = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a basis for H and let $\mathcal{B}_2 = \{\mathbf{w}_1, \dots, \mathbf{w}_m\}$ be another basis. Then by the previous theorem, $m \le n$, because \mathcal{B}_1 is a basis and \mathcal{B}_2 is linearly independent. Similarly, $n \le m$ because \mathcal{B}_2 is a basis and \mathcal{B}_1 is linearly independent. Thus, n = m.

The dimension of a subspace

The dimension of a nonzero subspace H, denoted by dim H, is the number of vectors in any basis for H. The dimension of the zero subspace $\{\mathbf{0}\}$ is defined to be zero.

e.g.
$$\dim(\mathbb{R}^n) = n$$
 since $\mathcal{B} = \{\mathbf{e}^1, \dots, \mathbf{e}^n\}$ is a basis.

The rank of a matrix A is defined by

$$rank(A) = dim Col(A)$$
.

This is also the number of pivot columns of A, and also the dimension of the range of A.

Rank and Basis Theorems

Find the rank of
$$A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ 0 & 1 & 3 & 5 \end{bmatrix}$$
.

Rank Theorem: If a matrix A has n columns, then

$$rank(A) + dim Nul(A) = n$$
.

Basis Theorem: Let $H \subset \mathbb{R}^n$ have dimension p.

If p vectors in H are linearly independent, they are a basis for H.

If p vectors in H span H, they are a basis for H.

Rank and Basis Theorems

These theorems allow us to save time. If we know the rank, we can immediately deduce dim Nul(A), and vice versa.

Similarly, to test if a set of p vectors is a basis for a p-dimensional subspace, it suffices to test either linear independence or spanning, no need to test both.

These theorems will be proved later in the course in more generality.