Automated Self-Assembly of Components for Multiphysics Simulations

K. Long

Department of Mathematics and Statistics Texas Tech University

SIAM Conference on Parallel Computing 26 Feb 2010

Outline

- High-level problem specifications
- Automating simulation self-assembly from high-level interfaces
 - Mathematical foundations
 - Software architecture
 - Performance and scalability

Outline

- High-level problem specifications
- 2 Automating simulation self-assembly from high-level interfaces
 - Mathematical foundations
 - Software architecture
 - Performance and scalability

High-level specification of a PDE

Fragment of user-level code for Poisson equation

```
/* Create unknown and test functions, discretized using first-order
 * Lagrange interpolants */
Expr u = new UnknownFunction(new Lagrange(2). "u"):
Expr v = new TestFunction (new Lagrange (2), "v");
/* Create differential operator and coordinate function */
Expr dx = new Derivative (0);
Expr x = new CoordExpr(0):
/* Define the weak form */
Expr eqn = Integral(interior, -(dx*v)*(dx*u), quad)
    + Integral(interior, -2.0*v, quad);
/* Define the Dirichlet BC */
Expr bc = EssentialBC(leftPoint. v*u. guad):
/* Put together a linear problem */
LinearProblem prob(mesh, eqn, bc, v, u, vecType);
```

Goals and approach

From high level to low level

- High-level description encodes specification of low-level tasks
- The key to retaining performance is to distinguish high-level specification objects from low-level computational kernels
- High-level description encodes structural information we can exploit to improve performance
 - For example, identify and eliminate redundant computations
- Optimization of computational kernels then apply to any simulation built from them
- Our job is to "build the matrix" (or effect an MV multiply)

The Sundance toolkit

Ideas implemented in Sundance toolkit

- Sundance is a Trilinos package
- Available from trilinos.sandia.gov

Outline

- High-level problem specifications
- Automating simulation self-assembly from high-level interfaces
 - Mathematical foundations
 - Software architecture
 - Performance and scalability

Preliminaries

Functionals

We work with functionals $F:(V,U)\to\mathbb{R}$ of the form

$$F[v,u,] = \int_{\Omega} \mathcal{F}(v,u) \, dx$$

where \mathcal{F}

- can be a **nonlinear** differential operator on *u*
- but must be a linear, homogeneous differential operator on v.

Weak Equations

We are interested in equations of the form

$$F[v, u] = 0 \quad \forall v \in V$$

Expository simplifications

To keep notation compact during talk:

- Assume the same equations apply over whole domain
 - Trivially extended to multiple domains
- Ignore boundary conditions
 - Many BC methods (e.g., Nitsche) fit immediately into the framework as shown
 - Replacement BC methods require some annotation at user level and conditionals in matrix assembly, but otherwise fit into our framework

Examples of some functionals

Steady Navier-Stokes flow

$$F\left[\mathbf{v},\mathbf{u},q,\rho\right] = \int_{\Omega} \left[\nu \nabla \mathbf{v} : \nabla \mathbf{u} + \rho \nabla \cdot \mathbf{v} + \mathbf{v} \cdot (\mathbf{u} \cdot \nabla) \, \mathbf{u} + q \nabla \cdot \mathbf{u}\right]$$

Lagrangian for Poisson source inversion w/ Tikhonov

$$F[v, \mu, \beta, u, \lambda, \alpha] = \int_{\Omega} [(u - u^*) v + \nabla \lambda \cdot \nabla v] dx +$$

$$+ \int_{\Omega} [\nabla \mu \cdot \nabla u + \mu \alpha] dx +$$

$$+ \int_{\Omega} [\nabla \alpha \cdot \nabla \beta + \lambda \beta] dx$$

Discretization

- Introduce *N*-dimensional subspaces V^h and U^h , with bases $\{\psi_i\}_{i=1}^N$ and $\{\phi_i\}_{i=1}^N$.
- Introduce $v^h = \sum_{i=1}^N \mathbf{v}_i \psi_i$ and $u^h = \sum_{i=1}^N \mathbf{u}_i \phi_i$ where \mathbf{v} and \mathbf{u} are vectors of expansion coefficients.
- Approximation on spaces V^h , U^h takes F[v, u] to

$$\hat{F}(\mathbf{v}, \mathbf{u}) : (\mathbb{R}^N, \mathbb{R}^N) \to \mathbb{R}.$$

• The equation $F[v, u] = 0 \ \forall \ v \in V$ becomes

$$\hat{F}(\mathbf{v}, \mathbf{u}) = 0 \ \forall \ \mathbf{v} \in \mathbb{R}^N.$$

Mathematical foundations

A simple but consequential lemma

Lemma

 \mathbf{u}^* is a solution of $\hat{F}(\mathbf{v}, \mathbf{u}) = 0 \quad \forall \, \mathbf{v} \in \mathbb{R}^N$ iff

$$\frac{\partial \hat{F}}{\partial v_i}\bigg|_{\mathbf{v}=0,\mathbf{u}=\mathbf{u}^*} = 0, \quad i=1:N$$

Proof.

Follows immediately from linearity & homogeneity of F as it acts on \mathbf{v} .

A simple but consequential lemma

Lemma

 \mathbf{u}^* is a solution of $\hat{F}(\mathbf{v}, \mathbf{u}) = 0 \quad \forall \, \mathbf{v} \in \mathbb{R}^N$ iff

$$\frac{\partial \hat{F}}{\partial v_i}\bigg|_{\mathbf{v}=\mathbf{0},\mathbf{u}=\mathbf{u}^*} = 0, \quad i=1:N$$

Derivatives are with respect to test functions

Not to be confused with first-order optimality conditions for a variational problem

Mathematical foundations

Differentiation provides the path to automation

A simple theorem establishes these relations

$$\frac{\partial F}{\partial v_i} = \sum_{\alpha} \int_{\Omega} \frac{\partial F}{\partial D_{\alpha} v} D_{\alpha} \psi_i$$
$$\frac{\partial^2 F}{\partial v_i \partial u_j} = \sum_{\alpha, \beta} \int_{\Omega} \frac{\partial^2 F}{\partial D_{\alpha} v \partial D_{\beta} u} D_{\alpha} \psi_i D_{\beta} \phi_j$$

The key idea

This theorem bridges high-level problem specification and low-level computation! Fréchet differentiation connects:

- ullet The abstract problem specification ${\cal F}$
- The discretization specification: ψ , ϕ , and integration procedure
- The discrete matrix and vector elements $\frac{\partial^2 F}{\partial v_i \partial u_j}$ and $\frac{\partial F}{\partial v_i}$

A plan for automation

To make practical use of the bridge theorem we need:

- A data structure for high-level symbolic description of functionals
 F
- Integrands F represented as DAG
- Automated selection of basis function combinations from element library, given signature of derivative
- Connection to finite element infrastructure for basis functions, mesh, quadrature, linear algebra, and solvers
- A top-level layer for problem specification
- A method to automate the organization of efficient in-place computations of *numerical values* of $\frac{\partial \mathcal{F}}{\partial \nu}$, etc, given DAG for \mathcal{F}
- Low-level AD tools not suitable

Software architecture

Example: Burgers' Equation

Weak form of Burgers' equation on [0, 1]

$$\int_0^1 \left[vu D_x u + c D_x v D_x u \right] \, dx = 0 \quad \forall v \in H^1_\Omega.$$

(Ignoring BCs)

Software architecture

Burgers' Example: Mapping from Derivative Signature to Coefficient and Basis Combination

Derivative	Multiset	Value	Basis combination	Integral
$\frac{\partial \mathcal{G}}{\partial v}$	{ <i>v</i> }	$u_0 D_x u_0$	ϕ_i	$\int u_0 D_x u_0 \phi_i$
$\frac{\partial \mathcal{G}}{\partial D_X v}$	$\{D_X v\}$	cD _x u ₀	$D_{x}\phi_{i}$	$\int cD_x u_0 D_x \phi_i$
$\frac{\partial^2 \mathcal{G}}{\partial v \partial u}$	$\{v,u\}$	$D_x u_0$	$\phi_i\phi_j$	$\int D_x u_0 \phi_i \phi_j$
$\frac{\partial^2 \mathcal{G}}{\partial v \partial D_X u}$	$\{v, D_x u\}$	u_0	$\phi_i D_x \phi_j$	$\int u_0 \phi_i D_x \phi_j$
$\frac{\partial^2 \mathcal{G}}{\partial D_X v \partial D_X u}$	$\{D_X v, D_X u\}$	С	$D_x\phi_iD_x\phi_j$	$\int cD_x\phi_iD_x\phi_j$

Automating simulation self-assembly from high-level interfaces
Performance and scalability

Performance and Scalability Results and Methods

Math-based automated assembly is at least as efficient as matrix assembly in hand-coded, problem-tuned "gold standard" codes

- Comparison of assembly times for 3D forward problems
 - Sundance uses same solvers (Trilinos) as gold-standard codes
- MP-Salsa and Fuego don't allow instrusion
 - Can only compare forward problem performance
 - Comparisons do not include additional gains enabled by Sundance's intrusive capabilities

Comparison to generated code (Dolfin)

Stokes assembly timings, 3D Taylor-Hood					
verts	tets	p = 2; 1			
		Sundance	Dolfin		
142	495	0.07216	0.3362		
874	3960	0.6677	2.793		
6091	31680	5.521	22.57		
45397	253440	45.97	crash		

Parallel scalability of assembly process

Processors	Assembly time
4	54.5
16	54.7
32	54.3
128	54.4
256	54.4

- Assembly times for a model CDR problem on ASC Red Storm
- Weak scalability means: assembly time remains constant as number of processors increases in proportion to problem size
- Results demonstrate Sundance is weakly scalable

How can user-friendly, intrusion-friendly code be fast?

High performance is a result of:

- Amortization of overhead
- Careful memory management
- Effective use of BLAS
- Work reduction through data flow analysis

With our unified formulation, effort spent tuning computational kernels applies immediately to diverse problem types and arbitrary PDE

A key to high level ease-of-use without low performance: division of labor

Decouple user-level representiation from low-level evaluation

Reduces human factors / performance tradeoffs

- User-level objects optimized for human factors
- Low-level objects optimized for performance

Allows interchangeable evaluators under a common interface

- Easy to upgrade, tune, and experiment with evaluators w/o impact on user
- Future: different evaluators for different architectures