# QCM 2

vendredi 11 septembre 2015

#### Question 11

Soit  $z = \left(-\sqrt{3} + i\right)^{42}$ . Alors,

a est un nombre réel

b. z est un nombre imaginaire pur

c. ni l'un ni l'autre

# Question 12

Soit  $x \in \mathbb{R}$ . Alors,

a. 
$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2i}$$

b. 
$$\sin^2(x) = \frac{e^{2ix} - e^{-2ix}}{2i}$$

$$c. \sin(3x) = \frac{e^{3ix} - e^{-3ix}}{2i}$$

d. 
$$\sin(x)\cos(x) = \frac{e^{2ix} - e^{-2ix}}{4i}$$

e. rien de ce qui précède

## Question 13

Une racine carrée de  $\frac{1}{2}-\frac{\sqrt{3}}{2}i$  est  $e^{i\frac{5\pi}{6}}$ 

a. vrai

b. faux

#### Question 14

Une solution de l'équation  $z^3=4\sqrt{2}+4\sqrt{2}i$  d'inconnue  $z\in\mathbb{C}$  est



b.  $2e^{i\frac{5\pi}{12}}$ 



d.  $\sqrt{2}e^{i\frac{\pi}{12}}$ 

e. rien de ce qui précède

#### Question 15

On considère l'équation  $2iz^2+(3-i)z+2-i=0$  d'inconnue  $z\in\mathbb{C}$ . Alors, le discriminant de cette équation est  $\Delta=-22i$ 



b. faux

#### Question 16

Un argument de  $z = -2\sqrt{2}i + 2\sqrt{2}$  est

- a.  $\frac{3\pi}{4}$
- b.  $-\frac{3\pi}{4}$
- c.  $-\frac{\pi}{4}$
- d.  $\frac{\pi}{4}$
- e. rien de ce qui précède

## Question 17

Soit  $z\in\mathbb{C}$  tel que |z|=2 et  $\arg(z)=\frac{4\pi}{3}[2\pi].$  Alors, la forme algébrique de  $\frac{1}{z}$  est

a. 
$$\frac{1}{4} + i \frac{\sqrt{3}}{4}$$

b. 
$$\frac{1}{4} - i \frac{\sqrt{3}}{4}$$

$$-\frac{1}{4} + i\frac{\sqrt{3}}{4}$$

d. 
$$-\frac{1}{4} - i\frac{\sqrt{3}}{4}$$

e. rien de ce qui précède

#### Question 18

Soient  $(a, b) \in \mathbb{C}^2$  et z = b - ia. Alors,

a. 
$$|z| = \sqrt{a^2 + b^2}$$

b. 
$$\overline{z} = b + ia$$

$$z^2 = b^2 - a^2 - 2iab$$

$$d. \ z = 0 \implies a = b = 0$$

e. rien de ce qui précède

#### Question 19

Si  $z = -e^{i\frac{\pi}{6}}$ , alors

a. 
$$|z| = 1$$

b. 
$$\arg(z) = -\frac{\pi}{6} \ [2\pi]$$

$$\overline{z} = -e^{-i\frac{\pi}{6}}$$

d. 
$$\frac{1}{z} = e^{-i\frac{\pi}{6}}$$

e. rien de ce qui précède

# Question 20

Soit  $(z, z') \in \mathbb{C}^2$ . Alors,

$$\boxed{\mathbf{a.}} |zz'| = |z| \times |z'|$$

b. 
$$|z + z'| = |z| + |z'|$$

$$|(\overline{z})^{10}| = |z|^{10}$$

d. 
$$\overline{z+iz'} = \overline{z} + i\overline{z'}$$

e. rien de ce qui précède