BIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Termodinámica y Transferencia de Calor

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	140501	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento de los principios que gobiernan las leyes termodinámicas y transferencia de calor que fundamentan la operación de sistemas de refrigeración, motores de combustión, turbinas de vapor, compresores, etc. y sus aplicaciones en procesos químicos e industriales.

TEMAS Y SUBTEMAS

1. Conceptos básicos y terminología

- 1.1 Introducción
- 1.2 Sustancia
- 1.3 Sistema
- 1.4 Superficie y volumen de control
- 1.5 Procesos y ciclos
- 1.6 Procesos adiabáticos

2. Energía

- 2.1 Introducción
- 2.2 Principio de conservación de energía
- 2.3 Energía mecánica
- 2.4 Energía interna
- 2.5 Trabajo termodinámico

3. La sustancia pura

- 3.1 Introducción
- 3.2 Postulado del estado termodinámico
- 3.3 Fases y sus características
- 3.4 Ecuaciones de estado
- 3.5 Líquido comprimido
- 3.6 Diagramas de propiedades

4. Primera ley de la termodinámica

- 4.1 Introducción
- 4.2 Primera ley de la termodinámica
- 4.3 Entalpía
- 4.4 Sistemas cerrados y abiertos
- 4.5 Frontera del sistema

5. Segunda ley de la termodinámica

- 5.1 Introducción
- 5.2 Segunda ley de la termodinámica
- 5.3 Entropía
- 5.4 Disponibilidad, reversibilidad e irreversibilidad

THE CONTRACTOR OF THE PARTY OF

- 5.5 Movimiento perpetuo de segunda clase
- 5.6 Sumidero de calor

6. Gas ideal

- 6.1 Introducción
- 6.2 Ley de Boyle, Charles, Abogador, Joule y de Daton
- 6.3 Teoría general de la termodinámica
- 6.4 Ecuación de estado
- 6.5 Propiedades de un gas ideal

7. Gases reales

- 7.1 Introducción
- 7.2 Ecuaciones de estado
- 7.3 Diagrama de compresividad
- 7.4 Desviación de entalpía y de entropía
- 7.5 Fugacidad y su diagrama

8. Termodinámica de fluidos

- 8.1 Introducción
- 8.2 Proceso reversible e irreversible
- 8.3 Proceso isobárico, isotérmico, isentrópico, adiabático y politrópico
- 8.4 Flujo transitorio

9. Ciclos de potencia

- 9.1 Introducción
- 9.2 Ciclo de trabajo, eficiencia térmica y consumo de calor
- 9.3 Ciclo de Carnot
- 9.4 Ciclo de Stirling
- 9.5 Ciclo de Ericcson
- 9.6 Ciclos inversos y reversibles

10. Máquinas térmicas de refrigeración

- 10.1 Refrigeración
- 10.2 Frigoríficos de compresión de vapor, de absorción y de ciclo de gas
- 10.3 Variaciones sobre el ciclo de compresión de vapor
- 10.4 Refrigeración criónica y bombas de calor

11. Turbinas de vapor de agua

- 11.1 Introducción
- 11.2 Ciclo de Brayton con flujo constante
- 11.3 Turbina de gas con fricción de fluido
- 11.4 Balance de energía para el combustor
- 11.5 Efecto de ariete

12. Motores de combustión interna

- 12.1 Introducción
- 12.2 Ciclo de Otto y determinación del tamaño del motor
- 12.3 El ciclo del Diesel
- 12.4 Ciclo de combustión dual
- 12.5 Variantes en los motores reales

13. Compresores

- 13.1 Introducción
- 13.2 Tipos de compresores
- 13.3 Trabajo de compresión
- 13.4 Compresión múltiple
- 13.5 Desplazamiento volumétrica
- 13.6 Velocidad del pistón
- 13.7 Aire libre

14. Conducción y radiación de calor

- 14.1 Introducción
- 14.2 Conducción térmica
- 14.3 Radiación térmica
- 14.4 Viscosidad y cinemática
- 14.5 Convección de calor natural y forzada
- 14.6 Intercambiadores de calor

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Termodinámica Básica y Aplicada, Martinez, Isidoro, Ed. DOSSAT, S. A., Madrid, España, 1992.
Termodinámica, Moring, Virgil Faires y Max, Clifford Simmang, Ed. Limusa, S. A. de C. V., México, 2002.
Termodinámica para Ingenieros, Balzhiser, Richard E. y Samuels, Michael R., Ed. Prentice Hall Internacional, 1990.

Termodynamics and Heat Power, Rolle, Kurt C., Ed. Prentice Hall, Sixth Edition, 2005.

Libros de Consulta:

Termodinámica, Faires, Virgil Moring \ Simmang Cliford Max. México: Limusa, 1997.

Fundamentos de Transferencia de Calor, Incropera, Frank P. \ Dewitt David P. México: Pearson Education / Prentice Hall, 2001.

Procesos de Transferencia de Calor, Kern, Donald Q. México: Compañía Editorial Continental, 2001.

Transferencia De Calor Aplicada A La Ingenieria, Welty, James R. México: Limusa, 1996.

Termodinámica Básica y Aplicada, Martínez, Isidoro. España: Editorial Dossat, 1992.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero o área afín a la materia, con experiencia en la industria de la transformación, con antecedentes en la docencia y de preferencia con Postgrado.