Задача 3. XOR double

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Требуется взять заданное число X типа double, "прохогить" его с заданным 64-битным целым числом M, и вывести результат как double. "Прохогить" означает: обратить в битовом представлении X все биты, для которых бит с тем же номером в битовом представлении M равен единице.

В этой задаче предполагается little-endian порядок байтов и общепринятое 8-байтовое представление double.

Формат входных данных

В первой строке записано целое число N — количество тестов ($1 \le N \le 1\,000$). В остальных N строках записаны тесты, по одному в строке.

Каждый тест описан в формате: "P/Q хог M". Здесь целые числа P и Q — числитель и знаменатель дроби, задающей вещественное число X ($0 \le P \le 100$, $1 \le Q \le 100$), а М — шестнадцатеричное целое число M ровно из шестнадцати цифр. В записи M сначала идут старшие цифры, потом младшие (как обычно у людей записываются числа).

Совет: Шестнадцитеричное число можно читать при помощи формата "%x" так же, как мы считаем десятичные числа форматом "%d". Если нужно прочитать 64-битное число, то нужно дописать две буквы 11 перед последней буквой формата.

Формат выходных данных

Для каждого теста выведите в отдельной строке $(X \operatorname{xor} M)$ как вещественное число типа double.

Ваши ответы должны быть верны с относительной точностью 10^{-14} . Рекомендуется использовать формат "%0.15g" при выводе ответа.

Пример

input.txt	output.txt
10	-0
0/1 xor 800000000000000	1
1/1 xor 000000000000000	-1
1/1 xor 800000000000000	0
1/1 xor 3ff0000000000000	2
1/1 xor 7ff0000000000000	0.5
1/1 xor 001000000000000	1.625
1/1 xor 000a00000000000	-0.428571428571429
3/7 xor 800000000000000	-2.90689205178751e-054
3/7 xor 8b0abc000000000	0.428571428570292
3/7 xor 0000000000000000	

Пояснение к примеру

В первом тесте X = 0/1, а в заданной маске M установлен только старший бит. В представлении нуля в double все биты нулевые, после операции хог старший бит становится

Императивное программирование Контест 7,

единичным, однако число по-прежнему остаётся нулевым (получается так называемый "отрицательный ноль").

Во втором тесте число X=1/1 равно единице, а маска M вся нулевая. Значит хог ничего не меняет и результат получается тоже равен единице.

В третьем и восьмом тестах в маске только старший бит единичный. Он в представлении double отвечает за знак числа, так что в этих тестах число X меняет знак.

В предпоследнем тесте число X=3/7, его битовое представление выглядит как 3fdb6db6db6db6db в шестнадцатеричном виде. Когда мы хог-им с заданной маской, получается представление b4d1d1b6db6db6db. Если проинтерпретировать эти данные как double, то получается число -2.90689205178751e-054.