Devoir à la maison n°05

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.

- **1. a.** Montrer que sh est une bijection de \mathbb{R} sur \mathbb{R} . Par la suite, on note f sa bijection réciproque.
 - **b.** Montrer que ch induit une bijection de \mathbb{R}_+ sur $[1,+\infty[$. Par la suite, on note g sa bijection réciproque.
 - **c.** Montrer que th induit une bijection de \mathbb{R} sur]-1,1[. Par la suite, on note h sa bijection réciproque.
- **2. a.** Montrer que pour tout $x \in \mathbb{R}$

$$\operatorname{ch}(f(x)) = \sqrt{x^2 + 1}$$

b. Montrer que pour tout $x \in [1, +\infty[$

$$\operatorname{sh}(g(x)) = \sqrt{x^2 - 1}$$

- 3. a. Justifier que f est dérivable sur \mathbb{R} et donner une expression de sa dérivée.
 - **b.** Justifier que g est dérivable sur $]1,+\infty[$ et donner une expression de sa dérivée.
 - **c.** Justifier que h est dérivable sur]-1,1[et donner une expression de sa dérivée.
- **4. a.** Montrer que pour tout $x \in \mathbb{R}$

$$f(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

b. Montrer que pour tout $x \in [1, +\infty[$

$$g(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$

c. Montrer que pour tout $x \in]-1,1[$

$$h(x) = \frac{1}{2} \ln \left(\frac{x+1}{1-x} \right)$$