COMP0009 Logic and Databases Modal Logic

Robin Hirsch

December 7, 2022

A modal propositional formula is either a proposition p,q,r,\ldots , a negated modal formula, a disjunction/conjunction/implication of two formulas, a box formula or a diamond formula. A Kripke frame $\mathcal{F}=(W,R)$ consists of a set W of worlds and a binary relation $R\subseteq W\times W$ of arrows. In other words, a Kripke frame is just a directed graph.

1. Consider the Kripke frame $\mathcal{F} = (\{x, y, z\}, \{(x, y), (x, z), (z, x), (z, z)\})$ and let v be the valuation $v(p) = \{y, z\}, \ v(q) = \{x, z\}.$

Are the following true?

- (a) $\mathcal{F}, v, x \models \Box q$
- (b) $\mathcal{F}, v, x \models (q \land (q \rightarrow \Box p))$
- (c) $\mathcal{F}, v, x \models \Diamond \Box \bot$, where \bot is any unsatisfiable formula, e.g. $(p \land \neg p)$.
- 2. Write down a modal fromula that is true at a world w in a Kripke frame (regardless of the valuation) if and only if there are no outgoing edges from w (or no successors of w).
- 3. Let \mathcal{F} be one of the three Kripke Frames: (i) $\mathcal{Q} = (\mathbb{Q}, <)$, (ii) $\mathcal{N} = (\mathbb{N}, <)$, (iii) $\mathcal{N}^- = (\mathbb{N}, >)$, where \mathbb{N} is the set of natural numbers, \mathbb{Q} is the set of rational numbers and < denotes strict inequality (reversed for >). For each modal formula below, state whether the formula is valid in the frame \mathcal{F} .
 - (a) $\Box p \to p$
 - (b) $\Diamond (p \vee \neg p)$
 - (c) $\Diamond \Diamond p \rightarrow \Diamond p$
 - (d) $\Box\Box p \to \Box p$
 - (e) $\Box \bot \lor \Diamond \Box \bot$.
- 4. (a) Suppose $\mathcal{F} \models \Diamond \top$ for some Kripke frame \mathcal{F} where \top is any valid formula, e.g. $p \vee \neg p$. What does this tell you about \mathcal{F} ? What if \mathcal{F} is transitive and irreflexive?
 - (b) Find a Kripke frame \mathcal{F} such that $\mathcal{F} \models (\Diamond \Box p \to \Box \Diamond p)$. Find a Kripke frame \mathcal{G} such that $\mathcal{G} \not\models (\Diamond \Box p \to \Box \Diamond p)$. Can you describe the frame property that this formula defines?