See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264315010

ASSAMICADINE, A NEW PYRROLIZIDINE ALKALOID FROM CROTALARIA ASSAMICA

ARTICLE in JOURNAL OF NATURAL PRODUCTS · JANUARY 1989

Impact Factor: 3.8

READS

14

6 AUTHORS, INCLUDING:

Jinquan Cheng

465 PUBLICATIONS 6,106 CITATIONS

SEE PROFILE

Erhard Thomas Röder/Roeder

University of Bonn

234 PUBLICATIONS 1,742 CITATIONS

SEE PROFILE

ASSAMICADINE, A NEW PYRROLIZIDINE ALKALOID FROM CROTALARIA ASSAMICA

D. CHENG, Y. LIU, T.T. CHU,

Institute of Organic Chemistry

Y. Cui, J. CHENG,

Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730001, People's Republic of China and E. ROEDER*

Institute of Pharmaceutical Chemistry, University of Bonn, An der Immenburg 4, D-5300 Bonn 1, FRG

ABSTRACT.—A minor alkaloid was isolated from *Crotalaria assamica*, and its structure was determined by spectroscopic methods as the $9-0-(\gamma-lactone)$ of (2',3'-dimethyl-4'-hydroxypentane-2',3'-dicarboxyl)-retronecine [1]. The new alkaloid was named assamicadine.

As we reported previously, monocrotaline has been isolated from Crotalaria assamica Benth. (Leguminosae), which occurs in the southern parts of China (1,2). The seeds of C. assamica yield about 3.5% of monocrotaline. During the further investigation of the seeds, another new pyrrolizidine alkaloid has been isolated which has been named assamicadine. This alkaloid occurs only in traces. Its structure 1 as the 9-0-(γ -lactone) of (2',3'-dimethyl-4'-hydroxy-pentane-2',3'-dicarboxyl)-retronecine was determined by its physical and spectroscopic properties.

The ir spectrum of **1** showed characteristic signals for a free hydroxyl group at 3373 cm^{-1} , a saturated ester at 1736 cm^{-1} , and a γ -lactone structure at 1778 cm^{-1} . The eims spectrum had a molecular ion peak [M]⁺ of m/z 309 (4%), which can be correlated to the formula $C_{16}H_{23}NO_5$. Characteristic peaks appear at m/z 266, 265, 256, 211, 155, 139, 138, 137, 136, 111, 94, 93, 80.

This fragmentation indicated the presence of the necine, retronecine, or one of its isomers. Alkaline saponification yielded a necine, whose spectroscopic data verify the structure to be that of retronecine.

The characteristic intensities of the ms fragments at m/z 136, 137, and 138 support the presence of a C-9-monoester structure (3). The ¹H-nmr chemical shift of H-7 at 4.46 ppm is an indication for the presence of a free hydroxyl group in position 7.

The DEPT spectrum of 1 gave the signals of five CH, four CH2 and three Me groups. The exact classification of the ¹H-nmr signals was made by the ¹H-¹H-correlation spectrum. The NOESY of assamicadine was used to determine the relative configuration of the molecule. The cross-signals in this spectrum showed an nOe effect indicating that H-2' is sterically near to the methylprotons of Me-1". The same is true for H-4' and Me-4". In addition, it was indicated that H-2' and Me-2" are on the same side of the ring plane of the lactone [1a and 1b].

In the cd spectrum we observed a negative Cotton effect at 203 nm. The rule of Klyne and Beecham (5,6) concerning γ -lactones suggested that the β carbon lies under the ring plane of the γ lactone. The ester carbonyl group in po-

sition 3' is either pseudo-axial or pseudo-equatorial. H-2', H-4', and Me-2" are on the same side of the lactone ring system. The relative configuration of the lactone is either 2'S, 3'R, 4'R [1a] or 2'R, 3'S, 4'S [1b].

EXPERIMENTAL

APPARATUS.—The melting points have been determined on a Kofler apparatus and are uncorrected. Optical rotation and cd spectra: J-20C, JSPCO, Japan. Ms spectra: JMS-D300, 70 eV, 180°. ¹H- and ¹³C-nmr spectra: AM-400 Bruker, (400.1 MHz for ¹H, 100.6 MHz for ¹³C). The sample for all nmr experiments was 10 mg assamicadine in 0.4 ml CDCl₃; δ values are in ppm with TMS as internal standard. ¹H- ¹H-correlation: AM-400 Bruker, COSY 45, conditions 256 exp./16 scans/1K; Relax-Delay = 0.4 sec; NOESY mixing time = 1000 msec.

ISOLATION OF THE ALKALOIDS.—Powdered seeds of *C. assamica* (3 kg) taken from the Hubei Institute of Botany, Academia Sinica, were exhaustively extracted with 96% MeOH. (Voucher specimens have been deposited in the Wühan Botanical Institute, Academia Sinica.) The solvent was evaporated in vacuum, and the residue was dissolved in 2.5% HCl. The neutral compounds were eliminated by liquid-liquid extraction with Et₂O and CH₂Cl₂. The aqueous phase was basified with NH₃ and again extracted with CH₂Cl₂. This purification procedure was re-

TABLE 1. ¹H- and ¹³C-nmr Data of Assamicadine [1].

¹³ C			¹H		
Carbon	ppm	$J_{\rm C,H}({ m Hz})$	Proton	ppm	J(Hz)
C-1	132.3 s	01/3			
C-2	127.6 d	$J_1 = 167, J_2 = 7.0$	H-2	5.88 brs	
C-3	61.8 t	$J_1 = 114$	Н-3	4.18 brd	15.7
		The state of the s	Н-3	3.57 brs	
C-5	53.7 t		Н-5	3.52 m	
			Н-5	2.91 dd	18.4, 9.7
C-6	36.4 t	$J_1 = 134$	Н-6	2.10 m	
C-7	78.1 d		Н-7	4.46 brs	
C-8	81.2 d	$J_1 = 157, J_2 = 5.0$	Н-8	4.46 brs	
C-9	61.8 t	$J_1 = 157, J_2 = 6.0$	Н-9	4.89 dd	14.8, 2.0
			Н-9	4.68 dd	14.8, 2.0
C-1'	177.0 s			. 3.	
C-2'	46.1 d	$J_1 = 123, J_2 = 5.0$	H-2'	2.61 q	7.0
C-3'	55.3 s		/ 0	Mar / And	
C-4'	70.5 d	$J_1 = 155, J_2 = 5.0$	H-4'	4.30 q	6.5
C-1"	9.3 q	$J_1 = 124, J_2 = 2.0$	H-1"	1.20 d	7.0
C-2"	14.5 q	$J_1 = 157$	H-2"	1.38 s	
C-3"	171.0 s	Q FI			
C-4"	18.5 q	$J_1 = 150, J_2 = 1.0$	H-4"	1.36 d	6.5

peated and yielded 105 g of pure monocrotaline. Alkaloids in the mother liquor were separated by preparative tlc [Si gel plates, 0.5 mm; eluent $\mathrm{CH_2Cl_2}$ -MeOH-NH $_3$ (25%) (85:14:1); detection Dragendorff reagent]. Removal of the Si gel and the extraction of the zone at R_f 0.32 with $\mathrm{CH_2Cl_2}$ yielded monocrotaline, and the zone at R_f 0.22 yielded assamicadine. The purification procedure was repeated twice, and 13 mg of assamicadine was isolated.

IDENTIFICATION OF THE ALKALOIDS.—
Monocrotaline.—Mp 200–201°; $[\alpha]^{25}D$ –55.5°
(c = 1, CHCl₃) [lit. (4) 202–203°, $[\alpha]D$ –55°
(CHCl₃); $R_f = 0.32$ (CH₂Cl₂-MeOH-NH₃ (25%) (85:14:1)]; ir (KBr, cm⁻¹) 3450 (-OH), 1735, 1710 (saturated and α,β-unsaturated ester). The ms, 1 H-nmr, and 13 C-nmr data corresponded with those of an authentic sample (1).

Assamicadine.—Colorless, viscous material: $[\alpha]^{19}D - 9.4^{\circ} (c = 0.4, \text{MeOH}); \text{cd } \lambda_2 = 203 \text{ nm},$ $\Delta \epsilon_2 = -4.4; R_f = 0.22; \text{ ir (KBr, cm}^{-1}) 3373 (-OH), 1778 (γ-lactone), 1736 (saturated ester); eims <math>[M]^+$ 309 (4.0), 266 (2.0), 265 (5.5), 256 (1.0), 211 (2.4), 155 (8.0), 139 (2.0), 138 (24), 137 (20), 136 (10), 111 (20), 94 (24), 93 (100), 80 (42); exact mass calcd for $C_{16}H_{23}NO_5$, 309.1570, found 309.1568; 1H and ^{13}C nmr see

Table 1.

ACKNOWLEDGMENTS

We are grateful to Prof. Zhiben Tu, Wuhan Botanical Institute, Academia Sinica for his help in obtaining the plant material, and to the Laboratory of Applied Organic Chemistry, Lanzhou University, People's Republic of China, for measuring ¹H- and ¹³C-nmr spectra and the cd spectrum.

LITERATURE CITED

- D.L. Cheng, S.B. Tu, A.A. Enti and E. Roeder, Sci. Pharm., 54, 351 (1986).
- Group of Crotalaria Plant Res., Chih Wu Hsueh Pao, 16, 380 (1974); Chem. Abstr., 83, 25052 (1975).
- 3. E. Pedersen and E. Larsen, Org. Mass Spectrom., 4, 249 (1970).
- L.B. Bull, C.C.J. Culvenor, and A.T. Dick, "The Pyrrolizidine Alkaloids," North-Holland, Amsterdam, 1986, pp. 44, 279.
- W. Klyne, P.M. Scopes, and A. Williams, J. Chem. Soc., 7237 (1965).
- 6. A.F. Beecham, Tetrahedron Lett., 3591 (1968).

Received 21 February 1989