โลกสองใบ: Binding Language-Image

ผมสร้างโลก 2 ใบ สำหรับ Language Model และ Vision Model เขาไม่รู้ว่ามันมีโลก multimodal อีกใบหนึ่ง เขาดำเนินชีวิตในแบบคนรักที่ดีทั้งคู่ ผมโกหกเขา เพื่อให้โลกทั้ง 2 ใบนี้ ยังอยู่กับผมได้

ป๊อป ปองกูล ไม่ได้กล่าว

Saksorn Ruangtanusak (Ha Al Research - TILDI

Who is He ->

A Random Guy?

Who is Saksorn (Harry?)

Nuclear Physics Researcher & Robotics Engineer

@ B.S. in Mechanical Engineering (2018 - 2021)

Al Engineer (Gold Medal) @ SuperAl Engineer SS2

2D/3D Computer Vision (Data Scientist)

@ PTTEP ARV Bedrock (June 2022 - Mar 2024)

LLM Researcher

@ CJ More (TILDI) (Mar 2024 - Present)

Hacker who wins 1st in hackathon

- Typhoon Hack 2024 SCB10x created personalized meeting summarizer
- Bangkok Al Hack 2023 SCB10x created Financial Adviser ChatBot
- The Dispatcher 2023 ARV created Anti-drone system

Langchain

AWS

Publication

- 1. IEEE ICCI 2024 (TH) in NLP with BERT
- 2. PHYSOR 2022 (US) in Nuclear Physics
- 3. **IEEE ECTI 2022** (TH) in Optimization.

Volunteer

- 1. Coach @ Super Al Engineer SS4 2024
- 2. TA @ Google Build with Al Day 2024
- Technical Staff @ CUD Hackathon 2023
- 4. TA @ Super Al Engineer SS3 2023

Timeline of Al

Let take a look!

With Multimodal Model ~~

Look Cool right?

This can enable lots of use cases. More than just Text.

Introduction to multimodal

Multimodal models are advanced Al systems designed to comprehend, interpret, and generate information across various data formats, including text, images and audio.

Task in Multimodal Model

Image Retrieval

Image Captioning

Visual Question Answering

????

Level 1: Image Retrieval

Level 1 : Image Retrieval

Finding relevant images based on a text query or finding relevant text based on an image query.

Traditional Feature-Based Methods

Good old days before deep learning

SIFT (Scale-Invariant Feature Transform):

 detects and describes local features in images.

- SURF (Speeded Up Robust Features):

- An improvement over SIFT (Speed)
- simplifying the computation with approximate Gaussian smoothing.

Level 1: Image Retrieval

Break through Image Feature Extraction

CNN: Convolutional Neural Networks

- VGGNet (VGG16, VGG19)
 - CNN that very efficient to tackle ImageNet
- **ResNet** (ResNet50, 101)
 - Use Residual learning
 - Make model deeper.

EfficientNet

- uniformly scales network depth/width/resolution
- using a compound coefficient

Level 1: Image Retrieval

Break through Image Feature Extraction

ViT: Vision Transformer

OG ViT

- Turn image into patch
- Encode patch and position
- More scalable than CNN

- BEIT

- BERT like pre-training
- Use MLM (Mask Language Model)
- Hide some token then predict that token

- SwinTransformer

- Shifted window method
- Likely CNN + ViT

But these are not good enough for Image retrieval. We need something bigger and add some NLP.

Break through Language-Image Pretraining

CLIP: Connecting Language Image Pre-training

Why it so good??

Contrastive Pre-Training: contrastive learning to align images with textual descriptions effectively.

Zero-Shot Learning: Ability to generalize to new tasks without additional training.

Large-Scale and Diverse Dataset: Training on diverse internet-sourced data enhances without intensive labeling. (400M Sample)

Multimodal Understanding: Unified framework for processing and understanding both images and text.

Task Versatility: Applicable to a wide range of tasks, often with superior performance.

Level 1: Image Retrieval

Break through Language-Image Pretraining

CLIP: Generalized much more than imageNet

Although both models have the same accuracy on the ImageNet test set, CLIP's performance is much more representative of how it will fare on datasets that measure accuracy in different, non-ImageNet settings.

Level 1: Image Retrieval

Break through Language-Image Pretraining

CLIP: Zero Shot Capability

https://huggingface.co/openai/clip-vit-large-patch14

Level 1: Image Retrieval (Wrap Up)

Generating descriptive text for an image, understanding objects, actions, and context.

a woman riding a horse with a crowd of people.

several full baskets of different colored apples.

ClipCap: CLIP Prefix for Image Captioning

Fast training with single GPU!, Utilized pre-trained model both En, De.

BLIP: Bootstrapping Language-Image Pre-training

Large pre-trained for many task. (Retrieval, Captioning) And can FT for VQA, Video Understanding

But we have pre-trained LLMs. Why not utilized it?

BLIP-2: Bootstrapping Language-Image Pre-training

Utilized Frozen Image Encoders and Large Language Models instead of training from scratch.

Overview of BLIP-2's framework.

BLIP-2: But what is a Q-Former?

In first-stage pre-training using Extract Visual Representation.

We jointly optimize three objectives which enforce the queries (a set of learnable embeddings) to extract visual representation most relevant to the text.

BLIP-2: How it learn to caption?

In second-stage pre-training using Image-Ground Text Generation Loss.

The fully-connected layer adapts from the output dimension of the Q-Former to the input dimension of the chosen LLM.

Compare all ClipCap, BLIP, BLIP-2

In NoCaps Datasets with CIDEr metrics (Mean Similarity from multiple-reference)

models	#Trainable Params	in-domain	near-domain	out-of-domain	Overall
ClipCap	43M	84.85	66.82	49.14	65.83
BLIP	446M	114.9	112.1	115.3	113.2
BLIP-2 ViT-g OPT2.7B	1100M	123.0	117.8	123.4	119.7
BLIP-2 ViT-g OPT6.7B	1100M	123.7	119.2	124.4	121.0

Level 3: Visual Question Answering

Visual Question Answering

VQA Dive

Level 3: VQA

LLaVA: Large Language and Vision Assistant

Visual Instruction Tuning!!!! And all the model following this method (Phi-3 vision too)

Training LLaVA

Stage 1: Pre-training for Feature Alignment

- Image captioning task single training.
- Use 595K image-text pairs (Subset of LAION-CC-SBU).
- Keep both the visual encoder and LLM weights frozen
- Maximize the likelihood of W (the projection matrix)

Input sequence to train model (Single Turn Captioning).

Training LLaVA

Stage 2: Fine-tuning End-to-End

- Keep the visual encoder weights frozen.
- fine-tuning on the 158K
 language-image
 instruction-following
 multi-turn
- Maximize the likelihood of W and f-phi


```
\begin{array}{l} \mathbf{X}_{\text{system-message}} < & \text{STOP} > \\ \text{Human}: \mathbf{X}_{\text{instruct}}^1 < & \text{STOP} > \\ \text{Assistant: } \mathbf{X}_{\text{a}}^1 < & \text{STOP} > \\ \text{Human}: \mathbf{X}_{\text{instruct}}^2 < & \text{STOP} > \\ \text{Assistant: } \mathbf{X}_{\text{a}}^2 < & \text{STOP} > \cdots \end{array}
```

Input sequence to train model (Multi Turn - Multi Task).

Level 3: VQA

Result of LLaVA

Visual Reasoning

Visual input example, Extreme Ironing:

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

User LLaVA What is unusual about this image?

The unusual aspect of this image is a man ironing clothes on the back of a minivan or van. This is not a typical place to perform this activity, as one would usually iron clothes in a more stationary and safe location, such as a home, using a regular ironing board. The scene depicted in the image is peculiar as it involves a makeshift ironing setup on a vehicle, which can be both unsafe and unconventional. Additionally, it is not clear how the man is able to maintain balance and stability while ironing clothes in such an unstable environment.

Level 3: VQA

Result of LLaVA

Optical character recognition (OCR)

Who will be interested in the content in this image?

Individuals interested in the content of this image might include those who are familiar with the city of Vancouver, Canada, or are interested in traveling there. Additionally, people involved in the technology or computer industry, as well as those interested in artificial intelligence and its applications, may find the image intriguing. This is because the image features an attractive design with a blue logo that has the word "Vancouver" on it, suggesting a connection to the city or a product related to it. The presence of a laptop in the image might also connect to the tech or computer industry, possibly indicating a Vancouver-based company or an event taking place in the city.

what is written in the photo?

In the photo, there is written "Llava" which is presumably an abbreviation for a location or other identifier.

Level 4: Beyond Images

ImageBind: One embedding to bind them all

- first Al model capable of binding data from six modalities at once
- without the need for explicit supervision.
- images and video, audio, text, depth, thermal and inertial measurement units (IMUs)

Level 4: Beyond Images

Gemini 1.5 Pro

- can reason across
 vision, video, and text
- Longer context (2M)

New Task.

- Video analysis
- Processing complex documents
- Code understanding

Level 4: Beyond Images

GPT-40: Omni Model

can reason across audio,
 vision, video, and text in
 real time

New Task.

- Visual Narratives
- Poster Creation
- Character Design
- Poetic Typography
- Poetic Typography with Iterative Editing 2
- Commemorative Coin Design for GPT-40
- Photo to Caricature
- Text to Font
- 3D Object Synthesis
- Brand Placement: Logo on Coaster
- Poetic Typography
- Multiline Rendering: Robot Texting
- Meeting Notes with Multiple Speakers
- Lecture Summarization
- Variable Binding: Cube Stacking
- Concrete Poetry

Compare GPT-4o and Gemini 1.5

Thank YOU

Q & A

โลกสองใบ:

Binding Language-Image

Feedback is a GIFT

https://forms.gle/nSZit44NAtEKqXZC9