Hardware Security

-- Good Practice and Emerging Technologies

Cybersecurity Specialization

What Do We Expect to Learn?

- # Trust platform module (TPM)
- # Physical unclonable function (PUF)
- #FPGA and FPGA-based systems
- # Conclusion: hardware's role in security and trust
- # Background
 - Digital logic design basics
 - Physical attacks, IP protection, hardware Trojan, etc.

Trust Platform Module (TPM)

- # TPM refers to
 - the set of specifications for a secure crypto-processor, and
 - the implementation of these specifications on a chip.
- # TPM chips
 - can be installed on the motherboard and is used in almost all PCs, laptops, and tablets; most smart phones.
 - Best to be used together with: firewall, antivirus software, smart card, biometric verification
 - Vendors: Atmel, Broadcom, Infineon, Sinosun, STMicroelectronics, Winbond, Toshiba, Intel, etc.

Main Functions of TPM

- # cryptographic key generation
- # protection of cryptographic keys
- # hardware pseudo-random number generation
- # hardware authentication
- # sealed storage (passwords, encryption keys and digital certificates)
- #remote attestation

TPM Keys

- # Endorsement Key (EK)
 - An RSA key pair, required, created only once for the TPM's lifetime
 - Private key is inside TPM, never revealed or accessible outside the TPM
- # Storage Root Key (SRK)
 - Created when system's ownership is created
 - Based on the EK and user provided password
 - Master wrapping key, stored inside TPM

TPM Keys

- # Attestation identity key (AIK)
 - Another pair of RSA keys, for attestation
 - Public key will be signed by EK and then sent to a trusted certificate authority (CA)
 - CA validates the EK and issues a certificate for the AIK, TPM authenticates itself w.r.t. this certificate
- # Storage key
 - Asymmetric key, encrypt data or other keys (called wrapping)

TPM Keys

- # Signing key
 - * Asymmetric key, sign data and message
- # Bind key
 - Encrypt small amount of data or key on one platform and decrypt it on another
- # Authentication key
 - Symmetric key, protect transport sessions
- #Legacy key
 - Can be exported to another TPM, for signing and encryption

Key Attributes

- # Non-migratable keys (NMK)
 - Bound/unique to a single TPM, inside TPM
- # Migratable keys (MK)
 - Generated inside or outside of a TPM
 - Integrated inside a TPM or move to another
 - Trusted by its creator
- # Certified Migratable keys (CMK)
 - Generated inside a TPM, can move to another TPM, coordinated by a migration authority or migration selection authority

TPM: Pros and Cons

#Pros:

- Added security against physical theft and attacks
- Convenience with the single sign-on

#Cons:

- **■** User privacy
- Trusted hardware and vendors

Useful Links

- # TCG homepage: http://www.trustedcomputinggroup.org/
- # Use TPM with Linux:
 - http://www.grounation.org/index.php?post/2008/07/04/8-how-to-use-a-tpm-with-linux
 - http://www.infond.fr/2010/03/trusted-platforms-module-tpm-openssl.html.
- # TPM and BitLocker in Windows 8 OS
 - http://threatpost.com/en_us/blogs/tpm-chip-windows-8-lays-foundation-widespread-enhancements-hardware-based-security-102612