Topic Tuton'al s MPS Date

	Probability distributions: discrete
	A random variable is a variable whose values
	are determined by the outcome of a random
	experiment. It is also called stochastic
	variable.
	Probability distribution: If auponsible values
	of a random variable can be unitten along their
	arrovated probabilities, then the distribution is
	called probability distribution.
	$n: n_2 n_3 n_n$
	f(n): f(n2) f(ne) fn3 f(nn)
	+ mandatory conditions for probability distribution:
	$\frac{1}{2} f(n_i) = 0$ $\frac{2}{2} f(n_i) = 1$
	$\geq f(\pi;)=1$
	r= 7
	Types of Probability distribution:
	· discrete probability distribution
	- Binomial probability distribution
	-poisson probability distribution
	· continuous probability distribution
	- normal probability distribution
	- exponential probability distribution
*	Binomial distribution
	The word binomial means 2 numbers. A
	binomial distribution for a random variable
	X (known as binomial variate) is one in which
	there are only 2 outcomes, sucress or failure, for
	afinite number of trals.
	Teacher's Sign

	TopicDate
H	ower or the success and failure, the two events
	ust be mutually exclusive and complementary
	e. They must n't occur at same time and mesum
1	Ther probabilities is 100% (complementary).
	Pp (success) = p
	P(failure) = 9 = 1-P
	n = fixed number of trials
	p= probability of successfor any one mid
,	9 = probability of failure for any one toal
	Formula:
	$P(r) = {}^{n}Cr p^{r}q^{n-r}$ where $n = 0, 7, 2, 3$
	5
	r= number of successes
1	Brequency (fr) = (N) P(r) Lireperin'm of experiment (n)
	Lireperin'on of experiment (n)
<u>e</u>	rample 7: A for coin is tossed 2 times. Find
	soin,
	n= 2
	p = probability of getting head in onetrial = 2/2
	9 = probability of getting tail in metrial = 1/2
P	no bability of getting o head (P(0))
	$=\frac{2}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}$
	= 1/128
P	(19 head)= 7(1. pt 96 = (7) (1) (1)6= 2 128
	Teacher's Sign

	TopicDate
	P(x=2) = P(0) + P(2) + P(2)
. 4	= 500 poq5+ 50xp2q4+ 502p2q3
	= 0.32768+ 0.4096 + 0.2048
3	= 0.94208
	en and a d
	examples: an event-has p= 3. Find complete
	binomial disorbution for n=5 triols.
	b=3, 6= 1-b=2 ===
	The complete binomial distribution in (ptg) terms
	i.e. (3 + 5) 45 is.
	[ncopogn + nczpzqn-1+ + ncnpogn]
	$= \left(\frac{8}{2}\left(\frac{8}{3}\right)_{0}\left(\frac{8}{2}\right)_{2} + \frac{2}{3}\left(\frac{8}{3}\right)_{2}\left(\frac{8}{2}\right)_{1} + \frac{2}{3}\left(\frac{8}{3}\right)_{1}\left(\frac{8}{3}\right)_{2}\right)_{3}$
	+5(3(3)3(5)2+5(4(3)4(5)2+5(5(3)55)
	- 0.0954 + 0.2867 + 0.3433 + 5.2060 + 0.0618
	+ 0.0024
	Propobility table
	24 () 7
	2 2 3 4 3
	P(x) 0.0954 0.7862 0-3433 0.2010 0.0618 0.0074
	Teacher's Sign

Scanned with CamScanner

p = 0.001, n = 2000, p = 2Teacher's Sign...

P(22) = 1-P(0)-P(2)-P(2) $= 1 - \left[\frac{e^{-2} 2^{\circ}}{0!} \right] - \left[\frac{e^{-2} 2^{\frac{1}{2}}}{2!} \right] - \left[\frac{e^{-2} 2^{\frac{2}{2}}}{2!} \right]$ 1-[0.1353]-[0.2706]-[0-22] 0-5941-0-22 example 2: The no-ofaccidents occurry in a plant in a month follows poisson distribution with a mean as 5-2. The probability of or curence of less than 2 accidents in the plant dunny randomly relected monthis? 1=5.2, P(12) = = P(0)+P(1)+ = 6-2 e -5-2 = 0.034 example 3: you go to a party with Jooguests. What is probability that exactly one other guest has same birthday as you? p = rame brinday of person as me = I 365 -success (same birthday) n=5009481+5 1=500x1 = 7.36 = 5 ropoisson $P(I) = e^{-1/3} / (1.37) = 0.348$ Teacher's Sign