

| (7) S - Desc | cribe how gases exert a pressure on a surface cribe the relationship between pressure, temperature, volume an ain in terms of kinetic theory why changing V, P, T or n will affec |          |           |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
|              | ACTIVITY 1: Complete this PPQ about gas pressure                                                                                                                                  | 0:03     | :53       |
|              | Hint: Think about Newton's laws  Support your answer with a diagram and a mathematical approach                                                                                   |          |           |
|              | cules are said to make perfectly elastic collisions with one                                                                                                                      | another. |           |
| i State v    | what is meant by a <b>perfectly elastic collision</b> .  Where kE is conserved                                                                                                    |          | (1 mark)  |
| •            | n, in terms of the behaviour of its <b>molecules</b> , how a gas extre on the walls of its container.                                                                             | xerts a  |           |
|              |                                                                                                                                                                                   |          | (4 marks) |
|              | Collision in which no <b>kinetic</b> energy is lost                                                                                                                               | B1       |           |
| Key poin     | collide with (and repound from) the walls of container                                                                                                                            | B1       |           |
|              | Hence, walls exerts a force on the molecule (by Newton's second law)                                                                                                              | B1       |           |
|              | The (total) force exerted by the molecules on the wall is equal to (total) force exerted by the wall on the                                                                       | B1       |           |
|              | molecules (by Newton's third law)                                                                                                                                                 | B1       |           |
|              | $pressure = \frac{\text{total force on wall}}{\text{area of wall}}$                                                                                                               |          |           |
|              | •                                                                                                                                                                                 | •        | •         |

| Ga | as mo | blecules are said to make perfectly elastic collisions with one another.                                          |           |
|----|-------|-------------------------------------------------------------------------------------------------------------------|-----------|
| i  |       | e what is meant by a <b>perfectly elastic collision</b> .                                                         |           |
|    |       |                                                                                                                   | (4 1)     |
|    | ••••• |                                                                                                                   | (1 mark)  |
| ii |       | lain, in terms of the behaviour of its <b>molecules</b> , how a gas exerts a ssure on the walls of its container. |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   | ••••      |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   | (4 marks) |
|    |       |                                                                                                                   |           |
| Ga | as mo | plecules are said to make perfectly elastic collisions with one another.                                          |           |
| i  | Stat  | e what is meant by a <b>perfectly elastic collision</b> .                                                         |           |
|    |       |                                                                                                                   | (1 mark)  |
| ii |       | lain, in terms of the behaviour of its <b>molecules</b> , how a gas exerts a ssure on the walls of its container. |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   | (4 marks) |
|    |       | <u> </u>                                                                                                          |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |
|    |       |                                                                                                                   |           |

- (6) M Describe how gases exert a pressure on a surface
- (7) S Describe the relationship between pressure, temperature, volume and amount of a substance
- (8) C Explain in terms of kinetic theory why changing V, P, T or n will affect another quantity.

## Investigating gases using phet

**ACTIVITY 2:** Check your emails - open up 'gas properties on 'phet'

Complete the worksheet to find out the gas laws



Kilo 10<sup>3</sup>

Mega 10

Giga 10<sup>9</sup>

| N. | Ex:        |                        |                     |  |                                                                                            |  |  |
|----|------------|------------------------|---------------------|--|--------------------------------------------------------------------------------------------|--|--|
|    | Variables  | Nature of relationship | Constant parameters |  | Describe why in terms of kinetic theory of matter                                          |  |  |
|    | V vs P     | $P \alpha \frac{1}{V}$ | T, n                |  | Explain why decreasing the volume of a gas at constant temperature increases the pressure. |  |  |
|    | V vs T     | VαT                    |                     |  |                                                                                            |  |  |
|    | T vs P     | ΤαΡ                    |                     |  |                                                                                            |  |  |
|    | Moles vs V | Vαn                    |                     |  |                                                                                            |  |  |

| ( | 6) | M - | Describe | how gases | s exert a | pressure | on a | surface |
|---|----|-----|----------|-----------|-----------|----------|------|---------|
|   |    |     |          |           |           |          |      |         |

(7) S - Describe the relationship between pressure, temperature, volume and amount of a substance (8) C - Explain in terms of kinetic theory why changing V, P, T or n will affect another quantity.

|  | Summary |
|--|---------|
|--|---------|



Boyle's law  $p\alpha1/V$ pV = constant

Charles' law V / T = constant VαT

Pressure law p α T p / T = constant

| N. Company |                        |                     |     |                                                                                            |  |  |  |
|------------|------------------------|---------------------|-----|--------------------------------------------------------------------------------------------|--|--|--|
| Variables  | Nature of relationship | Constant parameters | 1 1 | escribe why in terms of kinetic theory of natter                                           |  |  |  |
| V vs P     | $P \alpha \frac{1}{V}$ |                     | g   | explain why decreasing the volume of a last at constant temperature increases ne pressure. |  |  |  |
| V vs T     | VαT                    |                     |     |                                                                                            |  |  |  |
| T vs P     | ΤαΡ                    |                     |     |                                                                                            |  |  |  |
| Moles vs V | Vαn                    |                     |     |                                                                                            |  |  |  |