

С

问题解析:可采用排除法。当单端口网络和负载中间加入衰减时,回波损耗必然减小,VSWR也就减小了,所以答案选A。 下面解析计算过程: VSWR = (1+Γ)/(1-Γ),广为反射系数。对反射系数区log即为RL回波损耗,则有Γ = 10^(RL/20)。代入VSWR = 2.0则有 RL=-9.542dB。在网分和负载之间加入10dB衰减器,则有RL = -29.542dB,代入公式计算出VSWR = 1.07:1。为什么RL衰减了20dB呢?这是因为 S11的测试原理是,网分发出一个射频能量给到负载,负载反射一部分能量回到网分,计算两者比值即为RL。当中间加上10dB衰减以后,这个能量 会两次经过衰减器,所以就被衰减了20dB。

С

[单选 2分]	
专输线上当观察点由负载沿线向信号源方向移动时,对应于阻抗圆图上	
一沿等电阻圆移动	
○ 沿等电抗関移动	
○ 沿等反射系数圆顺时针方向移动	
○沿等反射系数圆反时针方向移动	

С

设输入端口等效阻	抗为纯电阻,若参考阻	抗为50欧姆,那么VSV	VR为2时等效电阻为		
<u> </u>					
<u></u>					
<u></u>					
30					

 $:\Gamma = (Za-Zo)/(Za+Zo)$ VSWR= (1+|T|)/(1-|T|)

Α

对于50欧姆特征阻抗传输线系统	长度为3*λg/8,端接阻抗为30欧姆,则其输入阻抗为?		
电阻	POOLAGE AND		
容性		3	
○ 开路			
○感性			

В

		6/40
? [单选 2分]		
无源器件是不会产生非线性失真的		
正确		
借误		
		下一题

正确

没说 Sa 和 Sb 谁在前谁在后,矩阵乘法不满足乘法交换率

D

=	8/40
[单选 2分]	
常温情况下,在1KHz带宽内,只考虑热噪声,它的功率是多少?	
○-144dBm	
0-114dBm /2 1250; -174 + NF+ /0/ag B	
○-174dBm	
-174 + 10198 = -144	
	下一题

	9/40
) [单选 2分]	
通信系统(未使用扩频技术)一个信道的带宽是100kHz,接收机噪声系数为5dB左右,解调所需信噪比为5dB,则该通	言系统的灵敏度为?
-174+NF+10/09B	+ SNR
-104dBm	, , , ,
84dBm	
114dBm	

N放大器在1dB压缩点的输入功率	率为10 dBm,输出功率为29 dBn	n. 该放大器的线性增益为 ()	dB	
20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,		
<u></u>				
19				
<u>22</u>				
				下一题
? [单洗 2分]				11/4
	底噪(热噪声)?			11/4
② [单选 2分] 以下哪个动作可以降低接收机的] ○ 降低接收机的温度	底噪(热噪声)?			11/4
以下哪个动作可以降低接收机的				11/4
以下哪个动作可以降低接收机的				11/4
以下哪个动作可以降低接收机的。 降低接收机的温度 降低发射机的温度	kΤ			11/4
以下哪个动作可以降低接收机的。 降低接收机的温度 降低发射机的温度 降低发射机的温度	kΤ			下一贩
以下哪个动作可以降低接收机的。 降低接收机的温度 降低发射机的温度 降低发射机的温度	kΤ			

输入信号为-40dBm/Hz,	信噪比为10dB,通过一个	、增益为200B,噪声系数为20B的	的放大器,试估算其输出信噪比为			
12dB						
○ 8dB						
○10dB						
○ 15dB						
				Т	5-题	7/3 Pout
€ 標記一下					_	
由信号源内图	且产生的噪声功	办率为 Pni。,而阿	端的信噪比之比值 网络的输出端负素 $\frac{G_{\mathbb{R}} \mathbb{L}}{G_{\mathbb{R}} \mathbb{L}} = \frac{P_{n/P_{ai}}}{P_{n/P_{ai}}} \frac{P_{no}}{G_{p}P_{ni}}$		信号功率为	
由信号源内图	l产生的噪声,、Pno,噪声:		网络的输出端负载		信号功率为	
由信号源内原 率分別为 Psc	l产生的噪声,、Pno,噪声:	办率为 Pni。,而阿	网络的输出端负载		信号功率为 号功率和噪	
由信号源内原 率分別为 Psc 10lg(SNRin/Sl	l产生的噪声,、Pno,噪声:	办率为 Pni。,而阿	网络的输出端负载		信号功率为 号功率和噪 ■ 14/40	ain
由信号源内原率分別为 Psc 10lg(SNRin/Sl	l产生的噪声, 、Pno,噪声: NRout)	力率为 Pni。,而序 系数定义为 ^{៷_r = 输入}	网络的输出端负载		信号功率为 号功率和噪 ■ 14/40	
由信号源内原 率分別为 Psc 10lg(SNRin/Sl	A产生的噪声式、Pno,噪声:NRout)	力率为 Pni。,而序 系数定义为 ^{៷_r = 输入}	网络的输出端负载		信号功率为 号功率和噪 ■ 14/40	ain (187)
由信号源内原 率分別为 Psc 10lg(SNRin/Sl [单选 2分]	A产生的噪声式、Pno,噪声:NRout)	力率为 Pni。,而序 系数定义为 ^{៷_r = 输入}	网络的输出端负载		信号功率为 号功率和噪 ■ 14/40	ain (187)
由信号源内的 率分別为 Psc 10lg(SNRin/Sl [单选 2分] [中选 2分]	且产生的噪声式、Pno,噪声:NRout)	力率为 Pni。,而序 系数定义为 ^{៷_r = 输入}	网络的输出端负载		信号功率为 号功率和噪 ■ 14/40	ain (187)

串联负反馈提高输入电阻, 并联负反馈降低输入电阻, 电压负反馈降低输出电阻, 电流负反馈提高输出电阻。

	15.	40
自]	单选[2分]	
Bm+5	5dBm=?	
<u> </u>	5dBm	
<u> </u>	ldBm	
1	.0dBm	
	. Ost. District Control of the Contr	
○ 8	3dBm	
	一一人	Į
安的	勺 0dBm = 1mW, 10dBm = 10mW	
	1	6/40
	? [单选 2分]	
	放大器A1:G=10dB,OIP3=10dBm;放大器A2:G=10dB,OIP3=20dBm,两放大器级联后的OIP3=()	
	○17dBm	
	○ 20dBm	
	○10dBm	
	○30dBm	
		85
	- 不	一边
=	$10*log_{10}\left(\frac{1}{\frac{1}{10\frac{\text{OIP3}_1}{10}}+\frac{1}{10\frac{\text{OIP3}_2+\text{G}_1}{10}}+\frac{1}{10\frac{\text{OIP3}_3+\text{G}_1+\text{G}_2}{10}}+\cdots+\frac{1}{10\frac{\text{OIP3}_n+\text{G}_1+\text{G}_2+\cdots+\text{G}_{n-1}}{10}}}\right)$	
=OI	P3-G, 单位都是 dBm 及 dB	
•	17/40	
8	[单选 2分]	
	[单选 2分] 抗匹配中,当RL=RS时负载可获得最大输出功率,此时为阻抗匹配状态。	
在阻抗		
在阻抗	抗匹配中,当RL=RS时负载可获得最大输出功率,此时为阻抗匹配状态。	

正确。。(共轭匹配)

20413-201-20204		<u> </u>
		18/40
[单选 2分]		
面那种工艺的RF有源器件最适合用作设计RF前端低噪声放大器		
HBT		
GaAs		
COMS		
PHEMT		
		下一题
椋记─下		

D

耐压高的 GaAs 工艺更受青睐; GaAs 衬底损耗小, 可以集成高质量的无源元件。

CMOS 工艺优势主要是集成度和成本, 但凡是要求效率、噪声、线性度等指标的放大器都不会选择 CMOS 工艺。

追求更大的功率和效率, 会选择 GaN

HBT: Heterojunction Bipolar Transistor: 异质结, 高速, 可以到 100GHz

	20/40
② [单选 2分]	
绝对稳定是指在任何工作频率和偏置条件下,放大器接任何负载,始终都处于稳定状态。	
○ 正确	
○ 错误	
	下一题

正确

绝对稳定:是指在选定的工作频率和偏置条件下放大器在整个圆内始终都处于稳定状态。

	_		21/40
[单选 2分]			
功率分配器的技术指标不包括			
○承受功率			
○ 动态范围			
 頻率范围			
○ 插入损耗			
			下一题
3			

[单选 2分]	22/40
e用串联电容进行匹配,在Smith圆图上轨迹是沿等电抗圆顺时针移动。	
正确	
○ 错误	
	下一题

上感下容, 左短右开, 串阻并抗 错误

一个晶体管输入阻抗为12.5欧姆,要	要求把它匹配到50欧姆,如果	采用1/4波长线阻抗变换,那	NA 这段阻抗变换线的特征阻	抗是多少欧姆
<u></u>				
<u></u> 50				
<u></u> 10				
75				

Α

	_	24/40
② [单选 2分]		
下面关于功放指标的描述错误的是		
噪声系数是指输出端和输入端噪声功率的比值		
(ACLR是指临道功率泄露比		
OIP3是指功放的3阶截断点		
○ IIP3与功放输入电平大小无关		
		下一题

Δ

信噪比: 衡量一个信号质量优劣的指标。它是在指定频带内,同一端口信号功率 Ps 和噪声/〉 功率 Pn 的比值

噪声系数: 线性四端网络输入端的信噪比与输出端的信噪比之比值。设输入端的信号功率为 Psi,由信号源内阻产生的噪声功率为 Pni。,而网络的输出端负载上所得到的信号功率和噪

声功率分別为 Pso、Pno,噪声系数定义为 $^{N_p}=\frac{\text{输入值噪比}}{\text{输出值噪比}}=\frac{P_a/P_a}{P_m/P_{ou}}$ $\frac{P_{oo}}{G_pP_{ni}}$

Pin: Input power
Pout: Output power

IM3: 3rd order intermodulation productIIP3: Input 3rd order intercept pointOIP3: Output 3rd order intercept point

Pout (dBm) = Pin (dBm) + G (dB)
$$(1)$$

Pout (dBm)

Gain (dB)

		25/40
[单选 2分]		
皮检测电路是通过测量正反向功率的	的差值的大小来确定驻波的大小	
○ 正确		
─ 错误		
		下一题
标记一下		
角		- 224
		26/-
[单选 2分]		
个放大器在1dB压缩点的输入功率	室为1dBm,输出功率为20dBm,该放大器的线性增益为()dB。	
20		
<u>21</u>		
<u></u>		
O 22		
		下一题
		27/40
[单选 2分]		
E形波导和圆波导的方圆转换中各E	自的工作模式是什么?	
○ TE10和TM11		
○ TE10和TE11		
○TE11和HE11		

(两种电场分布要一致)

В

圆形波导 TE11 模与矩形波导 TE10 模相近,可用作矩形——圆波导转换

PAE = (PRFOUT - PRFIN)/PDC = (PRFOUT - PRFIN)/(VDC*IDC)

В

个频率为1GHz的正	弦信号,在一个相对介电常数	效为4的介质中传播时,	它的波长是多少?		
0.6m					
0.15m					
0.3m					
0.075m					

В

red thin ()				32/40
单选 2分 - 个2V Pk-Pk峰峰信号,	加载在50欧姆负载上,则	其功率为多少dBm()?		
O 10				
<u></u>				
<u></u>				
O 20				
				下一题

A
$$V = \frac{2}{2\sqrt{2}}; P = \frac{V^2}{50}$$

	33/40
[单选 2分]	
合放大电路的输出级采用射极输出方式是为了使	
○輸出电流小	
─ 輸出电阻增大	
- 电压放大倍数高	
○ 帶负载能力强	
	下一题
标记一下	

D

组合放大电路的输出极采用射极输出(共集电极)方式是为了使输入阻抗提高,输出阻抗降低带负载能力增强。

共射极:输入阻抗高,输出阻抗高

С

D

- 1、提高增益稳定性:深度负反馈条件下,闭环增益不受外围元器件参数变化影响或影响较小,从而提高增益稳定性;
- 2、减小非线性失真:深度负反馈与开环增益无关,也就与开环传输中的非线性变化关系不大,从而减小非线性失真。
- 3、抑制噪声: 主要抑制外围器件噪声。
- 4、扩展带宽: 受频率变化影响较小。

[单选 2分]					
高通和低通滤波器串联可以组成带通滤波器					
○ 是					
○ 否					
					下一题
					37/40
[单选 2分]					
微带传输线的输入功率为30dBm,输出功率;	为29.7dBm,那么这段(专输线的插入损耗是多	3少		
0.3dB					
0.5dBm					
0.3dBm					
0.5dB					
					下一题
				_	■ 38/40
[单选 2分]					
接收系统,信号带宽10MHz,噪声系数10dB,	10%误码解调门限对应S	NR 10dB,其接收灵敏	放度是多少dBm		
O-94					
O-84					
○-84					
○-84 ○-89					

Psen = **-174+NF+10IgB+**10IgSNR (NF 噪声系数、B 信号带宽(Hz)、SNR 解调信噪比) -174 接收机与天线匹配情况下单位带宽的源电阻噪声功率(kT)。前三项称为**噪底**

正确

```
VSWR=(1+Γ)/(1-Γ)
S11=201g(Γ)
RL=-S11
```

多选题:

₹ [不定项选择 4分]			
用网络分析仪测量一有耗互易二端口器的	‡参数,下列测试结果S11,S21幅度参数一定	有错误的是	
S11: 0.3, S21: 0.95			
S11: 0.35, S21: 0.95			
S11: 0.25, S21: 0.95			
S11: 0.4, S21: 0.95			

BD

能量守恒定律

 $S_{11}(s)S_{11}(s)^* + S_{21}(s)S_{21}(s)^* = 1$

₹ [不定项选择 4分]		
圆波导的主要工作模式有		
TEO1		
тем		
TE11		
TM01		
	下一根	题

ACD

AD

ВС

分界: r=2D/λ(m)

