Early-stage anomaly detection and mitigation in large-scale networks

Thien Xuan Phan, Kensuke Fukuda

National Institute of Informatics, Japan

Motivation

- Increasing number of anomalies such as misconfiguration and remote attacks
- These Internet traffic anomalies cause a serious problem for the users and Internet service operators:
 - Affect directly availability of network services
 - Prevent legitimate users from accessing the networks resources
- Existing anomaly detection approaches:
- Based on conventional network architecture
- Heavy processing to extract features for traffic analysis
 - Delay time in detection
 - Inflexibility and latency in reaction
 - Even more challenged in large scales networks

Solution requirements and challenges

- Solution requirements:
- Detect anomaly traffic in an early-stage
- Quickly react to mitigate the possible attack
- Be applicable for large-scale network including a number of distributed networks
- Challenges:
 - Similarity between abnormal traffic and normal traffic
- Early-stage detection is challenging since retrieving data for analysis is time consuming
- Challenges in implementation, deployment and experiment solution in large-scale networks

Proposed solution

- Anomaly detector:
 - Receive network traffic statistics from SDN controller platform
 - Analyze the statistics (based on 5 tuples: source IP, source port, destination IP, destination port, protocol)
 - Run anomaly detection algorithm to find out anomalies
 - Alert when anomalies were found
- SDN controller platform:
- Query flow statistics from SDN switches by sending Flow Statistics Request to the switches
- Pass the queried statistics through Anomaly Detector
- Get alert from Anomaly Detector if anomalies were found
- Mitigate attacks by blocking attack traffic (via Soundbound API)

Anomaly detection method

- 2 main phases:
- Query statistics from switches
- Calculate traffic volume changes in flows to find out anomaly
- Processing steps:
 - ① SDN switch forwards first packet of every flow to controller -> controller add a Flow Entry in which Match Field including 5 tuples {scr IP, src Port, dst IP, dst Port, Proto}
 - 2 Detector creates a Monitoring Table to record traffic volume changes in flows, including fields: {5-tuples, packet count, byte count}
 - ③ For every time interval M minutes ($M = \{10, 15, 30, ...\}$), repeat N times:
 - i. Controller sends an Individual Flow Statistics Request to switch
 - ii. Individual Statistics Reply from switch include a list of flow statistics of all flow entries existing in its Flow Table -> controller delegate it to Detector
 - iii. For each statistics in the list (correspond to a flow) -> Detector save information (as an item) to Monitoring Table (MT)
 - iv. For each item in MT, Detector calculate traffic volume change in that flow (using ASTUTE-based algorithm)
- ASTUTE-based algorithm (calculate changes of flow traffic volume):
 - 1) Substract packet-count of this query to packet-count of previous query (volume change is called δf ,i)
 - 2) Assume F: number of observing flows, compute sample mean δi , sample standard deviation σi of volume changes -> computer the K' (Astute assessment value, AAV):

$$\hat{\delta}_i = \sum_{f=1}^F \frac{\delta_{f,i}}{F} \quad \therefore \quad \hat{\sigma}_i = \left[\sum_{f=1}^F \frac{(\delta_{f,i} - \hat{\delta}_i)^2}{F - 1}\right]^{\frac{1}{2}} \qquad K' = \frac{\hat{\delta}_i}{\hat{\sigma}_i} \sqrt{F}$$

3) Check if |K'| larger than K(p) -> mark observed flow as anomaly. Threshold K(p): examined through experiment, initial values: {3, 6, 9}

Evaluation plan

- SDN controller platform: Floodlight
- SDN network deployment: OpenvSwitch (software switch), Pica8 (physical switch)
- Evaluation metrics:
- Detection time
- Accuracy: detection rate (DR), false positive rate (FP)
- Effectiveness of mitigation: time for react/recover network services after attack detected

Impact

- Potentially applied to build anomaly detection systems for large-scale networks
- Protect networks in real-life: organizational networks, company networks, research institutes, universities,...

Conclusion

- Anomaly detection architecture based on SDN
- Anomaly detection method
- Deployment and experiment plan for solution evaluation

SOKENDAI - 2015 International Communication Program