Unit and Currency Converter

Reed Glenn, Hanna Stolarska, Abby Farrell, Lex Gaylor, Quinn Trout

Reasoning

- Powerful tool for individuals and businesses alike
- Can help people to easily convert between different units of measurement and currencies
- Useful when traveling, conducting international business
- Can help them to save time, avoid mistakes, and ultimately achieve better outcomes

Functionality

 Taking units for weight, volume, temperature, and time and converting them into different units relating to the same measurement

 Taking in a currency and comparing it to a different international currency to show the latest conversion rate between the two

 Basic menu-interface where the user selects an option based on their need

U.S. Customary Units

Length

1 feet = 12 inches 1 yard = 3 feet

1 mile = 5.280 feet

1 mile = 1,760 yards

Capacity

1 cup = 8 fluid ounces

1 pint = 2 cups

1 quart = 2 pints

1 gallon = 4 quarts

Weight

1 pound = 16 ounces 1 ton = 2,000 pounds

Time

1 minute = 60 seconds 1 hour = 60 minutes

1 day = 24 hours

1 week = 7days

1 year = 52 weeks 1 year = 12 months

1 year = 365 days

Interacting with our program

• GUI which prompts them with a choice between different unit conversions

- Choose a method, input a value, and the program returns the converted value
 - o Consistent rates from a Metric-Imperial conversion
 - Currency rates will be subject to change from our API updating

Technical components/Programming

- Different functions that are called by the user with user input to convert data from one format to another
- Curl is being used to access currency API information

- GTK GUI builder was used to give the user a friendly and intuitive graphical interface
- All of the Metric-Imperial conversions were written as functions in ANSI C and utilize equations which work both ways

Examples of Our Code

```
1 #include <math.h>
 2 #include <stdio.h>
 5 void CtoF(double celcius) {
      double fahrenheit = (celcius * 9 / 5) + 32;
      printf("\n You have entered %lf degrees of Celcius.\n That is equivalent to "
             "%.2lf degrees of Fahrenheit.",
             celcius, fahrenheit);
14 - void FtoC(double fahrenheit) {
      double celcius = (fahrenheit - 32) * 5 / 9;
      printf("\nYou have entered %lf degrees of Fahrenheit. \n That is equivalent "
             "to %.2lf degrees of Celcius.",
             fahrenheit. celcius):
22 void miToKm(double miles) {
     double km = miles * 1.60934;
      printf("\nYou have entered %lf miles\nThat is equivalent to %.2lf kilometers".
             miles, km);
28 void kmToMi(double km) {
      double miles = km * 0.621371:
      printf("\nYou have entered %lf kilometers\nThat is equivalent to %.2lf miles".
```

```
35 void fToM(double feet) {
     double m = feet * 0.3048;
      printf("\nYou have entered %lf feet\nThat is equivalent to %.2lf meters",
39 1
41 void mToF(double m) {
      double feet = m * 3.28084;
      printf("\nYou have entered %lf meters\nThat is equivalent to %.2lf feet", m,
45 }
47 void inToCm(double in) {
     double cm = in * 2.54;
          "\nYou have entered %lf inches\nThat is equivalent to %.2lf centimeters".
     double in = cm * 0.393701;
          "\nYou have entered %lf centimeters\nThat is equivalent to %.2lf inches",
62 void KaToLb(double ka) {
     double lb = kg * 2.20462;
      printf("\n You have entered %lf kilograms. \n That is equivalent to %.2lf "
             ka. lb):
```

```
70 void LbToKg(double lb) {
71 double kg = lb / 2.20462;
      printf("\n You have entered %lf pounds. \n That is equivalent to %.2lf "
             "kilograms.",
             lb, kg);
77 void milToOz(double ml) {
78 double floz = (ml / 0.033814);
      printf("You have entered %lf milliliters\nThat is equivalent to %.2lf fluid
             ml, floz);
84 void ozToMil(double floz) {
     double ml = (floz * 29.5735);
      printf("You hae entered %lf fluid ounces\nThat is equivalent to %.2lf "
             floz, ml);
89 }
91 void mphToKMH(double mph) {
     double kmh = (mph * 1.60934);
      printf("You have entered %lf miles per hour\nThat is equilavent to %.2lf "
             "kilometers per hour",
             mph, kmh);
98 void kmhToMPH(double kmh) {
      double mph = (kmh / 0.621371);
      printf("You have entered %lf kilometers per hour\nThat is equilavent to "
             "%.2lf miles per hour",
             kmh, mph);
103 }
```

External API: Exchange Rates

The program uses curl to grab the requested information from the API being used. It then displays to the user the current currency exchanges for the requested currencies.

```
"success": true,
"timestamp": 1519296206,
"base": "EUR",
"date": "2021-03-17",
"rates": {
   "AUD": 1.566015,
    "CAD": 1.560132,
   "CHF": 1.154727,
   "CNY": 7.827874,
   "GBP": 0.882047,
    "JPY": 132.360679,
   "USD": 1.23396,
[...]
```

UI Implementation

- GTK GUI builder was used to implement a user interface for the program
- Consists of buttons to choose which conversions will take place, as well as output sections so the user knows the result of the conversion

Analysis - Completed Work

• Conversions for weight, temperature, volume, and time

GUI front end

Analysis - Incomplete work

- GUI back end
 - Input/output functionality

- API implementation
 - Connection to GUI

https://us05web.zoom.us/j/83312707708?pwd=cFNIVWIwdWw4TVNjU0RTbFJrSjNNdz09