

■ arjo@[university].edu | 🔏 alrojo.github.io | 🖸 alrojo | 🛅 alexrosejo | 💆 @alexrosejo

Research Interest

I am interested in understanding and quantifying the human body through gathering and analyzing health data. Currently, I am excited about the opportunities with affordable sensor technologies and at-home micro sampling devices for multi-omics profiling. I investigate these fields through my role as a Ph.D. student in the Snyder lab at Stanford where I lead the Stanford Center for Personalized Health (stanford-health.github.io). Previously I have conducted and supervised research in the field of bioinformatics (protein structure and function), diabetes glucose monitoring, and building generalizable neural components for machine learning.

Education

Stanford University Stanford, California, USA

Ph.D. Computer Science

Sep 2020 - est. Jun 2026

- · Advised by Professor Michael P. Snyder
- · 2020 Fulbright Scholar

Technical University of Denmark

Kongens Lyngby, Denmark

M.Sc. Mathematical Modeling and Computation, GPA: 11.44/12.00

Sep 2014 - Dec 2016

- Nanyang Technological University, Singapore Semester Abroad Fall 2015
- · Honors program, Supervised by Professor Ole Winther

Copenhagen Business School

Frederiksberg, Denmark

B.Sc. Business Administration and Information Systems, GPA: 10.70/12.00

Sep 2011 - Jun 2014

• Lincoln University, Canterbury, New Zealand — Semester Abroad Fall 2013

Experience

Stanford University Stanford, California, USA

STANFORD CENTER FOR PERSONALIZED HEALTH

Juli 2021 -

As a part of my Ph.D. I founded, and am currently managing, the Stanford Center for Personalized Health where I organize research projects om quantifying the human body. Beyond me, the lab currently includes eight researchers (4 high school, 1 undergraduate, 1 independent, 1 PhD, 1 Post Doc) and project collaborators from the Snyder lab and the Stanford School of Medicine. We meet every week and the research agenda and current roster can be found at stanford-health.github.io.

Ocean.io Copenhagen, Denmark

Head of Data Science Research Feb 2020 - est. Sep 2020

Developing and deploying state-of-the-art NLP projects at scale. Time divided between Copenhagen, Denmark and Kiev, Ukraine.

Technical University of Denmark

Kongens Lyngby, Denmark

RESEARCH PROJECT MANAGER

Jan 2019 - Jan 2020

Inspired by my time at Salesforce Research, I started a student based research lab with research meetings every Tuesday and one-on-ones every Thursday. More than 30 students (M.Sc. and Ph.D.) have participated in the lab in 2019 resulting in several publications. To find research projects I collaborated with professors and Ph.D. students at the university on hot topics and datasets. The majority of the participants had previously done projects with me in the 02456 Deep Learning course.

Salesforce Palo Alto, California, USA

DEEP LEARNING RESEARCH, INTERN

Jan 2017 - Jan 2018

Under the supervision of Richard Socher (Salesforce Research) I researched in probability based decision making (+100k impression blogpost, ACL workshop paper); multi-task learning for NLP; and mixture-of-experts using distributed computing, PyTorch, and TorchText.

Teaching _____

Technical University of Denmark

Head TA

DEEP LEARNING, 02456 Fall 2016, Fall 2018, Fall 2019

In 2018 and 2019 I was the head TA with significant course material contributions. Half of the course is project based and I supervised the NLP, Bioinformatics, and RL projects; the most popular amongst students for 2018 and 2019.

October 6, 2021 Alexander R. Johansen · Résumé

MASTER THESIS SUPERVISION Spring 2019, Fall 2019, Spring 2020

I have co-supervised 16 Master Thesis projects (an M.Sc. thesis is 5 months full-time). The thesis' have investigated formal languages, Levenhstein transformer, multi task learning, exploration in VQA, bio-/, and cheminformatics; resulting in multiple arcademic contributions.

Co-Supervisor

Special Courses Spring 2019, Fall 2019

I have supervised 11 special course projects (a special course is 4 months part-time). Similar to M.Sc. thesis, the special courses have investigated topics within deep learning methods and applications.

Course Responsible

Intro Reinforcement Learning Spring 2019

Exercises from Chap 1-13 in Sutton & Barto and Homework 1-2 from UC Berkeley's Deep RL course. 9 Students (M.Sc. and Ph.D.).

Course Co-Responsible

DEEP REINFORCEMENT LEARNING

Jun. 2019

Adjusted version of UC Berkeley's Deep RL course, co-supervised with Ass. Prof. T. Herlau. 10 students (M.Sc. and Ph.D.).

Community _____

Deep Learning Copenhagen

MeetUp

FOUNDER Nov. 2018 - Dec. 2019

Inspired by Stanford's public poster exam in CS224N in 2017 I convinced Professor Ole Winther to do the same for our 02456 Deep Learning course. With student posters, company sponsored first prize, drinks, and pizza. Given the positive feedback, I was hired by the university, started a research lab for students, and kept hosting events to celebrate the students projects. This was a lot of fun and resulted in seven events, +1.5k participants, and multiple company sponsorships. (Event page: https://www.meetup.com/Deep-Learning-DTU/).

Community research Zoom

FOUNDER Jan. 2020 - now

I help independent researchers who wants to pursue graduate studies and provide free supervision and problem statements to help them publish papers and get recognized.

DNAS Proceedings of the National Academy of Sciences of the United States of America

Open Source

GOOGLE TENSORFLOW

contrib.seq2seq: #4761, #4686, #4382

TensorFlow tutorial (2k stars): https://github.com/alrojo/tensorflow-tutorial

Academic Reviews

2021	PNAS, Proceedings of the National Academy of Sciences of the Office States of America	ASSISTED TEVIEW
2021	Bioinformatics,	Reviewer
2020	ICLR, International Conference on Learning Representations	Program committee
2020	ACL , Association for Computational Linguistics	Reviewer
2020-21	AAAI , Association for the advancement of artificial intelligence	Program committee
2018-20	CONLL , Computational Natural Language Learning	Reviewer
2017	NIPS, Neural Information Processing Systems	Assisted review
2017	ICML, International Conference on Machine Learning	Assisted review

Journal Publications_

Prediction of GPI-Anchored proteins with pointer neural networks

PUBLISHED

Assisted review

CURRENT RESEARCH IN BIOTECHNOLOGY

2021

https://www.sciencedirect.com/science/article/pii/S2590262821000010
M. Gislason, H. Nielsen, J. Armenteros*, <u>A. Johansen</u>* (*equal contribution)

An introduction to deep learning on biological sequence data: examples and solutions

PUBLISHED

BIOINFORMATICS (IF: 6.9) VOLUME 33, ISSUE 22, PAGES 3685-3690, OXFORD UNIVERSITY PRESS

2017

HTTPS://ACADEMIC.OUP.COM/BIDINFORMATICS/ARTICLE/33/22/3685/4092933

V. Jurtz, <u>A. Johansen</u>, M. Nielsen, J. Armenteros, H. Nielsen, C. Sønderby, O. Winther and S. Sønderby

Conference Publications

Short term blood glucose prediction based on continuous glucose monitoring data IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)	POSTER
HTTPS://ARXIV.ORG/ABS/2002.02805	2020
A. Mohebbi, A. Johansen, N. Hansen, P. Christensen, M. Jensen, J. Tarp, H. Bengtsson, M. Mørup	
Neural arithmetic units	SPOTLIGHT (top 6%)
International Conference on Learning Representations	31 01 E10111 (top 070,
HTTPS://openreview.net/forum?id=HigNOeHKPS	2020
A. Madsen, A. Johansen	
Deep recurrent conditional random field for protein secondary structure prediction	ORAL
ACM Conference on Bioinformatics, Computational Biology, and Health Informatics	
HTTP://delivery.acm.org/10.1145/3110000/3107489/p73-Johansen.pdf	2017
A. Johansen, C. Sønderby, S. Sønderby and O. Winther	
A deep learning approach to adherence detection for type 2 diabetics	POSTER
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)	201
HTTPS://IEEExplore.IEEE.ORG/STAMP/STAMP.JSP?ARNUMBER=7471776	
A. Mohebbi, T. Aradóttir , <u>A. Johansen</u> , H. Bengtsson, M.Fraccaro, M. Mørup	
Epileptiform spike detection via convolutional neural networks	POSTER
IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING	2016
A. Johansen, J. Jin, T. Maszczyk, J. Dauwels, S. Cash and M. Westover	
Workshop and Abstract Publications	
Measuring arithmetic extrapolation performance	POSTE
NEURIPS WORKSHOP ON SCIENCE MEETS ENGINEERING OF DEEP LEARNING	201
HTTPS://ARXIV.ORG/ABS/1910.01888	201
A. Madsen, <u>A. Johansen</u>	
Language modeling for biological sequences — curated datasets and baselines	POSTER
NEURIPS WORKSHOP ON LEARNING MEANINGFUL REPRESENTATIONS OF LIFE	201:
J. Armenteros, <u>A. Johansen</u> , O. Winther, H. Nielsen	
Learning the language of life	ORAL
INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY / EUROPEAN CONFERENCE ON COMPUTATIONAL BIOLOGY	2019
HTTPS://ORBIT.DTU.DK/FILES/193584092/LEARNING_THE_LANGUAGE_OF_LIFE_ABSTRACT.PDF	
J. Armenteros, <u>A. Johansen</u> , O. Winther, H. Nielsen	
Learning when to skim and when to read	POSTE
ACL Workshop on Representation Learning for NLP	201
HTTPS://arxiv.org/abs/1712.05483	
A. Johansen, R. Socher	DOCTE
Neural machine translation with characters and hierarchical encoding	POSTER
NIPS RECURRENT NEURAL NETWORK SYMPOSIUM https://arxiv.org/abs/1610.06550	201
A. Johansen, J. Hansen, E. Obeid, C. Sønderby and O. Winther	
Projects under review	
SignalP 6.0 achieves signal peptide prediction across all types using protein language	UNDER REVIEV
models	O. DER NEVIEV
Submitted for Nature Biotechnology (IF: 54.9)	202
HTTPS://www.Biorxiv.org/content/10.1101/2021.07.21.453084v1	
F. Teufel, J. Armenteros, <u>A. Johansen</u> , M. Gislason, S. Pihl, K. Tsirigos, S. Brunak, G. Heijne, H. Nielsen	
NetSolP: predicting protein solubility in E. coli using language models	UNDER REVIEV
SUBMITTED FOR BIOINFORMATICS (IF: 6.9)	202
https://www.biorxiv.org/content/10.1101/2021.07.21.453084v1	

V. Thumuluri, H. Martiny, J. Armenteros, J. Salomon, H. Nielsen, <u>A. Johansen</u>

Predicting recombinant gene expression with deep learning techniques

UNDER REVIEW

SUBMITTED FOR COMPUTATIONAL BIOLOGY AND CHEMISTRY (IF: 2.8)

HTTPS://www.BIORXIV.ORG/CONTENT/10.1101/2021.05.13.443426v1

H. Martiny, J. Armenteros, <u>A. Johansen</u>, J.Salomon, H. Nielsen

2021

Patents

Probability-Based Guider PENDING

US PATENT APP. 15/853,530 2017

A. Johansen, B. McCann, J. Bradbury, R. Socher

Deep Neural Network-Based Decision Network

PENDING

US PATENT APP. 15/853,570 2017

A. Johansen, B. McCann, J. Bradbury, R. Socher

Technical Skills_

Programming Python, Matlab, SQL

ML Frameworks PyTorch, TensorFlow, Theano, Lasagne, CUDA

Others Linux, Docker, Vim, IPythonNotebook, Google Colab, Git, Github, AWS S3, AWS EC2, ŁTĘX