

Olimpiada Națională de Matematică Etapa Națională, Brașov, 11 aprilie 2023

CLASA a VIII-a – soluții și bareme

Problema 1. Se consideră numerele reale pozitive a,b,c, astfel încât a+b+c=3. Demonstrați că $a^2+b^2+c^2+a^2b+b^2c+c^2a\geqslant 6$.

cu $(a+b+c)^2+a^2b+b^2c+c^2a\geqslant 6+2ab+2bc+2ca$, deci problema revine la a demonstra că $a^2b+b^2c+c^2a+3\geqslant 2ab+2bc+2ca$
Deoarece $a+b+c=3$, inegalitatea precedentă este echivalentă cu: $(b+a^2b)+(c+b^2c)+(a+c^2a)\geqslant 2ab+2bc+2ca.$ (1)
are loc inegalitatea din enunț
$Soluția~2.~ \text{Adunând}~a+b+c~\hat{\text{in}}~ \text{ambii membri, inegalitatea}~ \text{de demonstrat}~ \text{este}~ \text{echivalentă}~ \text{cu:}~ a^2+b^2+c^2+a^2b+b^2c+c^2a+a+b+c\geqslant 9.~ \dots \qquad $
Problema 2. Demonstrați că: a) există o infinitate de perechi (x,y) de numere reale din intervalul $\left[0,\sqrt{3}\right]$ care verifică egalitatea $x\cdot\sqrt{3-y^2}+y\cdot\sqrt{3-x^2}=3$; b) nu există nicio pereche (x,y) de numere raționale din intervalul $\left[0,\sqrt{3}\right]$, astfel încât să aibă loc egalitatea $x\cdot\sqrt{3-y^2}+y\cdot\sqrt{3-x^2}=3$.
Soluție. a) Orice pereche $\left(a,\sqrt{3-a^2}\right)$, cu $a\in[0,1]$, este soluție
Cum $(c,d)=1$ și $d^2\mid b^2c^2$, deducem că $d^2\mid b^2$. Din $(a,b)=1$ și $b^2\mid a^2d^2$, rezultă $b^2\mid d^2$. Așadar $b^2=d^2$. Relația (2) devine $a^2+c^2=3b^2$

Problema 3. Spunem că un număr natural n este interesant dacă poate fi scris sub forma $n = \left[\frac{1}{a}\right] + \left[\frac{1}{b}\right] + \left[\frac{1}{c}\right]$, unde a, b și c sunt numere reale pozitive astfel încât a + b + c = 1.

Determinați toate numerele interesante. ([x] reprezintă partea întreagă a numărului real x.)

Soluție. Fără să restrângem generalitatea, alegem $a \leq b \leq c$.

Cum a, b și c sunt numere reale pozitive cu suma egală cu 1, rezultă că $a, b, c \in (0, 1)$, prin

Dacă $\left[\frac{1}{a}\right] \leqslant 2$, atunci $a, b, c \in \left(\frac{1}{3}, 1\right)$, iar a + b + c > 1, fals. Așadar $\left[\frac{1}{a}\right] \geqslant 3$, deci $n \geqslant 5$.

Dacă 5 ar fi interesant, am avea $\left[\frac{1}{a}\right] = 3$ și $\left[\frac{1}{b}\right] = \left[\frac{1}{c}\right] = 1$, deci a + b + c > b + c > 1, fals.

Dacă 6 ar fi interesant, atunci $\left[\frac{1}{a}\right] = 3$, $\left[\frac{1}{b}\right] = 2$, $\left[\frac{1}{c}\right] = 1$. Rezultă $a \in \left(\frac{1}{4}, \frac{1}{3}\right]$, $b \in \left(\frac{1}{3}, \frac{1}{2}\right]$

Demonstrăm că toate numerele naturale $n \ge 7$ sunt interesante.

Fie $k \in \mathbb{N}, \ k \geqslant 4$ și numerele reale $a = \frac{1}{k}, b = c = \frac{k-1}{2k},$ cu a+b+c=1.

Atunci, $\left[\frac{1}{a}\right] = k$, $\left[\frac{1}{b}\right] = \left[\frac{1}{c}\right] = \left[2 + \frac{2}{k-1}\right] = 2$, prin urmare $\left[\frac{1}{a}\right] + \left[\frac{1}{b}\right] + \left[\frac{1}{c}\right] = k+4$. Rezultă că toate numerele naturale $n \ge 8$ sunt interesante.

Alegând, de exemplu, $a = \frac{8}{30}$, $b = c = \frac{11}{30}$, avem $\left[\frac{1}{a}\right] + \left[\frac{1}{b}\right] + \left[\frac{1}{c}\right] = 3 + 2 + 2 = 7$ și a+b+c=1, aşadar şi numărul 7 este interesar

Problema 4. Fie ABCD un tetraedru și mijloacele M, N ale muchiilor AC, respectiv BD. Arătați că pentru orice punct P de pe segmentul MN, cu $P \neq M$ și $P \neq N$, există și sunt unice punctele X și Y pe segmentele AB, respectiv CD, astfel încât X, P și Y sunt coliniare.

Soluție. Deoarece $P \neq M, P \neq N,$ dacă X, Y, P sunt coliniare, avem $X \notin \{A, B\}$ şi $Y \notin \{C, D\}$. Intr-adevăr, dacă X = A, atunci $XY \subset (ACD)$, deci $P \in (ACD)$, fals. Celelalte situații sunt analoage.

Determinăm $X \in (AB)$ si $Y \in (CD)$ cu proprietatea cerută. Observăm că:

$$\begin{split} (XY) \cap (MN) \neq \varnothing &\Leftrightarrow X, Y, M, N \text{ coplanare } \Leftrightarrow \\ &\Leftrightarrow \frac{XA}{XB} \cdot \frac{NB}{ND} \cdot \frac{YD}{YC} \cdot \frac{MC}{MA} = 1. \end{split}$$

Deoarece M și N sunt mijloacele muchiilor AC, respectiv AB, obtinem:

M

II Fie $P \in (MN)$ astfel încât $\frac{PM}{PN} = k < 1$ (cazul k > 1 este analog). Alegem $X \in (AB)$ și $Y \in (CD)$, cu $\frac{XA}{XB} = \frac{YC}{YD} = k$. Din (1) rezultă că dreptele XY și MN sunt concurente într-un punct Q. Arătăm că Q = P.

Fie $\{R\} = XM \cap BC$. Deoarece $\frac{XA}{XB} = k < 1$, punctul C se află între B și R. Cum $R \in BC \subset (DBC)$ și $R \in XM \subset (QXM)$, deducem că $R \in (DBC) \cap (QXM) = YN$, deci $BC \cap XM \cap YN = \{R\}$.