

# GigaMOS™ TrenchT2 HiperFET™ **Power MOSFET**

IXFN360N15T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode



| 5T2         | $V_{\scriptscriptstyle  m DSS}$ | = | 150V     |
|-------------|---------------------------------|---|----------|
|             | I <sub>D25</sub>                | = | 310A     |
|             | R <sub>DS(on)</sub>             | ≤ | 4.0m $Ω$ |
| D           | t <sub>rr</sub>                 | ≤ | 150ns    |
| <b>(性打)</b> |                                 |   |          |





| G = Gate   | D = Drain |
|------------|-----------|
| S = Source |           |

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source ( Gate Return ) Terminal.

### **Features**

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation voltage 2500 V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R<sub>DS(on)</sub>

#### **Advantages**

- Easy to Mount
- Space Savings
- High Power Density

### **Applications**

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

| Symbol                  | Test Conditions                                                               | Maximum R | Maximum Ratings |  |  |
|-------------------------|-------------------------------------------------------------------------------|-----------|-----------------|--|--|
| V <sub>DSS</sub>        | T <sub>J</sub> = 25°C to 175°C                                                | 150       | V               |  |  |
| <b>V</b> <sub>DGR</sub> | $T_J = 25$ °C to 175°C, $R_{GS} = 1M\Omega$                                   | 150       | V               |  |  |
| V <sub>GSS</sub>        | Continuous                                                                    | ±20       | V               |  |  |
| V <sub>GSM</sub>        | Transient                                                                     | ±30       | V               |  |  |
| I <sub>D25</sub>        | T <sub>C</sub> = 25°C (Chip Capability)                                       | 310       | A               |  |  |
| I <sub>L(RMS)</sub>     | External Lead Current Limit                                                   | 200       | Α               |  |  |
| I <sub>DM</sub>         | $\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$         | 900       | Α               |  |  |
| I <sub>A</sub>          | T <sub>C</sub> = 25°C                                                         | 100       | Α               |  |  |
| E <sub>AS</sub>         | $T_{c} = 25^{\circ}C$                                                         | TBD       | J               |  |  |
| dv/dt                   | $I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$ | 20        | V/ns            |  |  |
| P <sub>D</sub>          | T <sub>C</sub> = 25°C                                                         | 1070      | W               |  |  |
| T <sub>J</sub>          |                                                                               | -55 +175  | °C              |  |  |
| T <sub>JM</sub>         |                                                                               | 175       | °C              |  |  |
| T <sub>stg</sub>        |                                                                               | -55 +175  | °C              |  |  |
| V <sub>ISOL</sub>       | 50/60 Hz, RMS t = 1 minute                                                    | 2500      | V~              |  |  |
|                         | $I_{ISOL} \le 1 mA$ $t = 1 second$                                            | 3000      | V~              |  |  |
| M <sub>d</sub>          | Mounting Torque                                                               | 1.5/13    | Nm/lb.in.       |  |  |
|                         | Terminal Connection Torque                                                    | 1.3/11.5  | Nm/lb.in.       |  |  |
| Weight                  |                                                                               | 30        | g               |  |  |

| Symbol                | Test Conditions                     | Characteristic |      | Values |    |
|-----------------------|-------------------------------------|----------------|------|--------|----|
| $(T_J = 25^{\circ}C,$ | Unless Otherwise Specified)         | Min.           | Тур. | Max    |    |
| BV <sub>DSS</sub>     | $V_{GS} = 0V, I_D = 3mA$            | 150            |      |        | V  |
| $V_{GS(th)}$          | $V_{DS} = V_{GS}, I_{D} = 8mA$      | 2.5            |      | 5.0    | V  |
| I <sub>GSS</sub>      | $V_{GS} = \pm 20V, V_{DS} = 0V$     |                |      | ±200   | nA |
| I <sub>DSS</sub>      | $V_{DS} = V_{DSS}, V_{GS} = 0V$     |                |      | 50     | μА |
|                       | T <sub>J</sub> =                    | = 150°C        |      | 5      | mΑ |
| R <sub>DS(on)</sub>   | $V_{GS} = 10V, I_{D} = 60A, Note 1$ |                |      | 4.0    | mΩ |



| Symbol Test Conditions   |                                                                                       |      | Characteristic Values |           |  |
|--------------------------|---------------------------------------------------------------------------------------|------|-----------------------|-----------|--|
| $(T_J = 25^{\circ}C, I)$ | Unless Otherwise Specified)                                                           | Min. | Тур.                  | Max.      |  |
| g <sub>fs</sub>          | $V_{DS} = 10V, I_{D} = 60A, Note 1$                                                   | 140  | 230                   | S         |  |
| C <sub>iss</sub>         |                                                                                       |      | 47.5                  | nF        |  |
| C <sub>oss</sub>         | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                                                 |      | 3060                  | pF        |  |
| C <sub>rss</sub>         |                                                                                       |      | 665                   | pF        |  |
| $R_{gi}$                 | Gate Input Resistance                                                                 |      | 2.7                   | Ω         |  |
| t <sub>d(on)</sub>       | Besietive Switching Times                                                             |      | 50                    | ns        |  |
| t <sub>r</sub>           | Resistive Switching Times<br>$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A$ |      | 170                   | ns        |  |
| t <sub>d(off)</sub>      | $R_{c} = 1\Omega$ (External)                                                          |      | 115                   | ns        |  |
| t <sub>f</sub>           | G ,                                                                                   |      | 265                   | ns        |  |
| $Q_{g(on)}$              |                                                                                       |      | 715                   | nC        |  |
| Q <sub>gs</sub>          | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 180A$                              |      | 185                   | nC        |  |
| $\mathbf{Q}_{gd}$        |                                                                                       |      | 200                   | nC        |  |
| R <sub>thJC</sub>        |                                                                                       |      |                       | 0.14 °C/W |  |
| R <sub>thCS</sub>        |                                                                                       |      | 0.05                  | °C/W      |  |

## Source-Drain Diode

|                                                                                                           |                                                             | hara<br>Iin. | acteristic<br>Typ. | Value<br>Max |               |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------|--------------------|--------------|---------------|
| I <sub>s</sub>                                                                                            | $V_{GS} = 0V$                                               |              |                    | 360          | Α             |
| I <sub>sm</sub>                                                                                           | Repetitive, Pulse Width Limited by $T_{JM}$                 |              |                    | 1440         | Α             |
| V <sub>SD</sub>                                                                                           | $I_F = 60A, V_{GS} = 0V, \text{ Note 1}$                    |              |                    | 1.2          | V             |
| $\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array}  ight\}$ | $I_F = 160A, V_{GS} = 0V$ $-di/dt = 100A/\mu s$ $V_R = 60V$ |              | 500<br>9           | 150          | ns<br>nC<br>A |

Note 1. Pulse test,  $t \leq 300 \mu s;$  duty cycle,  $d \leq 2\%.$ 



Fig. 1. Output Characteristics @  $T_J = 25$ °C



Fig. 2. Extended Output Characteristics @ T<sub>J</sub> = 25°C



Fig. 3. Output Characteristics @  $T_J = 150$ °C



Fig. 4.  $R_{\rm DS(on)}$  Normalized to  $I_{\rm D}$  = 180A Value vs. Junction Temperature



Fig. 5.  $R_{DS(on)}$  Normalized to  $I_D$  = 180A Value vs. Drain Current



Fig. 6. Drain Current vs. Case Temperature

















Littelfuse reserves the right to change limits, test conditions, and dimensions.

# IXFN360N15T2



Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature



Fig. 14. Resistive Turn-on Rise Time vs. Drain Current



Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance



Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature



Fig. 17. Resistive Turn-off Switching Times vs. Drain Current



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance







Fig. 19. Maximium Transient Thermal Impedance











Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Littelfuse reserves the right to change limits, test conditions, and dimensions.