вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 6.2.2011 г.

Задача 1. Казваме, че крайна редица от числа $[a_1,\dots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\dots,a_{n_k}]$, където $1 \leq n_1 < n_2 < \dots < n_k \leq n$, че $a_{n_1} < a_{n_2} < \dots < a_{n_k}$ и $\exists c \forall i (a_i > a_{i+1} \implies a_{i+1} = c \& \exists j (i = n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.

Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и между два върха u и v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,v), който по даден списък от двуелементни списъци E и връх v на графа G(E) проверява дали в G(E) има цикъл, преминаващ през v.

вариант	ф.	номер	група	поток	курс	специалност
1						
Име:						

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 6.2.2011 г.

Задача 1. Казваме, че крайна редица от числа $[a_1,\dots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\dots,a_{n_k}]$, където $1 \leq n_1 < n_2 < \dots < n_k \leq n$, че $a_{n_1} < a_{n_2} < \dots < a_{n_k}$ и $\exists c \forall i (a_i > a_{i+1} \implies a_{i+1} = c \& \exists j (i=n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.

Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и между два върха u и v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,v), който по даден списък от двуелементни списъци E и връх v на графа G(E) проверява дали в G(E) има цикъл, преминаващ през v.

вариант	ф.	номер	група	поток	курс	специалност
2						
Име:						

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" $6.2.2011~\mathrm{r}.$

Задача 1. Казваме, че крайна редица от числа $[a_1,\dots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\dots,a_{n_k}]$, където $1 \leq n_1 < n_2 < \dots < n_k \leq n$, че $a_{n_1} < a_{n_2} < \dots < a_{n_k}$ и $\exists c \forall i (a_i > a_{i+1} \implies a_i = c \& \exists j (i+1=n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.

Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и между два върха u и v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,n,u,v), който по даден списък от двуелементни списъци E, естествено число n и върхове u и v от графа G(E) проверява дали в G(E) има път от u до v с дължина не по-голяма от n.

вариант	ф.	номер	група	поток	курс	специалност
9						
4						
1.7						
Име:						

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 6.2.2011 г.

Задача 1. Казваме, че крайна редица от числа $[a_1,\dots,a_n]$ е сегментна, ако съществува такава подредица $[a_{n_1},a_{n_2},\dots,a_{n_k}]$, където $1 \leq n_1 < n_2 < \dots < n_k \leq n$, че $a_{n_1} < a_{n_2} < \dots < a_{n_k}$ и $\exists c \forall i (a_i > a_{i+1} \implies a_i = c \& \exists j (i+1=n_j))$. Да се дефинира на пролог предикат p(L), който по даден списък от числа L проверява дали той задава сегментна редица.

Задача 2. Ако E е списък от списъци с дължина 2, да означим с G(E) ориентирания граф, в който няма изолирани върхове и между два върха u и v има ребро точно тогава, когато [u,v] е елемент на списъка E. Да се дефинира на пролог предикат p(E,n,u,v), който по даден списък от двуелементни списъци E, естествено число n и върхове u и v от графа G(E) проверява дали в G(E) има път от u до v с дължина не по-голяма от n.