INHIBITION OF ACID CORROSION OF MILD STEEL WITH 1,3-DIAMINOPROPANE

Wequar Ahmad Siddique, Monika* and Arwind Dubey

Department of Applied Sciences & Humanities
Faculty of Engineering & Technology
Jamia Millia Islamia, New Delhi –110025
INDIA

e-mail: jmi_bansal24@yahoo.com; wegar_ah@yahoo.com;

• Mobile No: 09868495161

Volume 7 Preprint 23

31 January 2005

Abstract

The influence of 1,3-diaminopropane on corrosion inhibition of mild steel in 1N HNO₃ and 1N H₂SO₄ has been studied using weight loss study and galvanostatic polarization study. Galvanostatic study indicates that compound act as mixed type corrosion inhibitor. The rate of corrosion of mild steel rapidly increases with temperature over the temperature range of 298K to 328K both in absence and presence of inhibitor. Thermodynamic parameters for adsorption process have been calculated using the Langmuir's adsorption isotherm.

Key words: Corrosion, Inhibition, 1,3-diaminopropane, HNO₃ and H₂SO₄.

1. Introduction

Corrosion is a type of surface chemical process in which metallic material is lost as oxides, hydrids and carbonates due to its direct chemical, biochemical and electrochemical reactions with environment. There are several ways to prevent atmospheric corrosion. Among the available methods of preventing corrosion, the use of inhibitor is the most promising method particularly for closed systems. The inhibitors find wide application in the industrial field. Most of the organic compounds that mainly contain nitrogen, sulpher atom and multiple bonds in the molecules is act as inhibitor. The inhibition by organic additives on metals in acids has been studied [1-12]. The selection of an inhibitor for a given system depends on the corrosive medium, the nature of metal, the magnitude of charge at metal solution interface and the cathodic relation [13]. The aim of present investigation is to examine the inhibitive action of 1,3-diaminopropane towards the corrosion of mild steel in both acid solutions (1N HNO₃ and1N H₂SO₄) by chemical and electrochemical technique.

2. Experimental

The mild steel coupons of composition(C=0.20%, Mn=1.00%, Si=0.05%, S=0.025%, P=0.25% and Fe=98%) and of size (i.e. 0.8×0.8×3.0 cms) have been used for weight loss measurements. These coupons were given mechanical polishing and then degreased before use. Weight loss study was carried out as described in literature [14]. The inhibition efficiency for different concentrations of inhibitor was calculated from weight loss values. For polarization studies a cylindrical mild steel rod of it composition embedded ion araldite was used. The electrodes were polished with emery papers and degreased. AR grade of HNO₃ and H₂SO₄ acids were used for preparing solutions. Double distilled water was used to prepare all solutions. For accurate measurements of potential and current densities, galvanostatic polarization studies were carried out at different temperatures. A platinum foil and saturated calomel electrode were used as counter and reference electrode respectively. Polarization was carried out in 1N

HNO₃ and H₂SO₄ in the absence and presence of inhibitor of various concentrations and temperatures.

3. Results and Discussion

3.1 Weight loss measurements

Tables 1 & 2 give the values of inhibition efficiencies for different concentrations of 1,3-diaminopropane in 1N HNO $_3$ and 1N H $_2$ SO $_4$ obtained from weight loss measurements. The percentage inhibition were calculated using the following equation

$$I\% = \frac{Wo - Wi}{Wo} \times 100$$

where Wo and Wi are weight losses in the absence and in the presence of inhibitor respectively. The results in Table 1 & 2 show that the inhibition efficiency increases with increasing the concentration of inhibitor in both acids at lower temperature. As the temperature increases the inhibition efficiency decreases. The inhibition efficiency is some much higher i.e. 90.66% in case of H_2SO_4 acid in presence of $10^{-1}M$ concentration at 298K temperature.

3.2. Galvanostatic polarization measurements

Table 3 & 4 give the electrochemical parameters such as corrosion potential (E_{corr}), Tafel's slopes (b_a and b_c), corrosion current (i_{corr}) and inhibition efficiency (I%) for corrosion of mild steel in 1N HNO₃ and 1N H₂SO₄ in absence and presence of 1,3-diaminopropane inhibitor in different concentrations and temperatures. Figures 1 to 4 show the effect of compound concentration on the current potential curves for both the cathodic and anodic reactions at different temperatures in 1N HNO₃. The potential curves for the same temperature and concentration in 1N H₂SO₄ acid medium are shown in Figs. 5 to 8. As the concentration increases there is an increase in the values of both the Tafel's slopes in both the acid. The value of Tafel's slopes (cathodic and anodic) is more in case of 1N H₂SO₄ in comparison to 1N HNO₃. But in 1N H₂SO₄ the values of cathodic Tafel's slope is larger than anodic values. So inhibition of corrosion of mild steel

in 1N H₂SO₄ acid is under mixed control but predominately under anodic control. The percentage inhibition curve of 1,3- diaminopropane on mild steel in 1N H₂SO₄ solution shows that the corrosion inhibition efficiency reached about 90% with solution containing 10⁻¹M inhibition whereas at the lower concentration (10⁻¹ M), the percentage inhibition was about 55.33% at temperature 298K. The percentage inhibition of 1,3-diaminopropane in 1N HNO₃ is about 87% having concentration 10⁻¹M while at lower concentration 10⁻⁷M the percentage inhibition was about 66.1% at 298K temperature. At lower concentration the inhibition efficiency is more in case of 1N HNO₃ at all temperatures except 318K. The value of I_{corr} is found to be little more in case of lowest concentrations of compound in both the acids. As the concentration increases there is decrease in the values of I_{corr}. The inhibition efficiency of 1,3-diaminopropane depends on many factors including number of adsorption active center in the molecule and their charge density, which are affected by amino (-NH2) group. The values of inhibition efficiency obtained by weight loss method and galvanostatic polarization studies show fairly good agreement in both acids. It is also found that compound performs better in 1N H₂SO₄ acid.

3.3. Adsorption Kinetics

From polarization measurements, surface coverage θ values have been obtained for various concentration of inhibitor. The data were tested graphically for fitting a suitable adsorption isotherm. A straight line is obtained by plotting a graph between log $\theta/1$ - θ vs. 1/T in both the acids (Figs 9&10). This clearly proves that the adsorption of 1,3-diaminopropane on mild steel surface from both the acids obey Langumir's adsorption isotherm.

To calculate the activation energy of corrosion process, corrosion current densities at various temperatures in the absence and presence of various concentrations of inhibitor were put in Arrhenius equation.

$$\log K = \log A - \frac{E_a}{2.303RT}$$

where K is the specific corrosion rate constant, E_a is the activation energy, T is absolute temperature and A is the exponential factor. Plotting of log K against 1/T in absence and presence of inhibitor give straight line as shown in Figs.11&12. The activation energy is calculated from this graph. The activation energy is 72.18 Kcal/mol in 1N HNO₃ solution while it is 74.11Kcal/mol in case of H_2SO_4 . The results show that the rate of corrosion increases as the temperature increases. This indicates that corrosion inhibition takes place by adsorption of inhibitor at electrode surface.

4. Conclusion

- 1,3-diaminopropane inhibits the corrosion of mild steel in both the acids (1N HNO₃ and 1N H₂SO₄).
- 2. The performance of this compound as an inhibitor in both the acid is very much encouraging.
- The inhibition efficiency increases with increase in concentration in both the acid.
- 4. The inhibition efficiency decrease with increase in temperature in both the acids.
- 5. The inhibition of corrosion of mild steel by 1,3-diaminopropane in both the acids is of mixed type.
- 6. The adsorption of 1,3-diaminopropane on mild steel surfaces from both the acids obey Langumir's adsorption isotherm.

5. References

- 1. J.I. Bregman, *Corrosion Inhibitors*, Manmillan, New York (1963).
- 2. W. Machu, *Proc.* 3rd Eur. Symp. on Corrosion Inhibitors, Ferrara, (1970) Univ of Ferrara, (1971) 107.
- 3. G. Trabenelli and F. Zucchi, Rev. Coat. Corros., (1973) 97.
- 4. G. Gardner, in C Nathan (Ed), *Corrosion Inhibitors*, NACE, Houston, (1973) 156.
- 5. W. Bullough, in L L Shreir (Ed), *Corrosion*, Vol. 2 Butterworths, London, 2nd Edn, (1976) 12.
- 6. M.W. Ranney, *Corrosion Inhibitors Manufacture and Technology*, Noyes Data Corporation, New Jersey (1976).
- 7. J.S. Robinson, *Corrosion Inhibitors*, Recent Development, Noyes Data Corporation, New Jersy (1979).
- 8. I.L. Rozenfeld, *Corrosion Inhibitors*, McGraw-Hill New York (1981).
- 9. S. Kertit, B. Hammouti, M. Taleb and M. Brigiili, *Bullt. of Electrochem.*, 13 (1997) 241.
- 10. B. Mernari, H. Elattari, M. Traisnel, F. Bentiss and M. Lagrenee, *Corrosion Science*, 40 (1998) 391.
- 11. H.-B. Fan, C.-Y. Fu, H.-L. Wang, X.-P. Guo and J.-S. Zheng, *Brit. Corros. J.*, 37-2 (2002) 122.
- 12. Y.K. Agrawal, J.D. Talati, M.D. Shah, M.N. Desai and N.K. Shah, *Corrosion Science*, 46 (2004) 633.
- 13. O.L. Riggs, *Jr. in Corrosion inhibitors*, CC Nathan Ed, NACE, Houston (1973) 7.
- 14. P.B. Mathur and T. Vasudeva, *Corrosion*, 38 (1982) 171.

Caption of Figures

- 1. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 298K.
- 2. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 308K.
- 3. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 318K.
- 4. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 328K.
- 5. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 298K.
- 6. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 308K.
- 7. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 318K.
- 8. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentration of DAP at 328K.
- 9. Variation of surface coverage vs. concentration at different temperatures of DAP in 1N HNO₃.
- 10. Variation of surface coverage vs. concentration at different temperatures of DAP in 1N H₂SO₄.
- 11. Variation of corrosion current vs. reciprocal of temperature at different concentrations of DAP in 1N HNO₃.
- 12. Variation of corrosion current vs. reciprocal of temperature at different concentrations of DAP in $1N\ H_2SO_4$.

Table1:

Inhibition efficiency of mild steel in presence of different concentrations of 1-3-diaminopropane from weight loss at various temperatures in 1N HNO₃

Temperature	Solution/mol (L ⁻¹)	Weight loss/gram	%I	
298K	1N HNO ₃	0.5701	-	
	10^{-7}	0.1385	75.7	
	10^{-5}	0.1450	74.5	
	10^{-3}	0.1440	74.7	
	10^{-1}	0.0698	87.7	
308K	1N HNO ₃	0.8900	_	
	10^{-7}	0.5100	42.6	
	10^{-5}	0.3400	61.7	
	10^{-3}	0.2300	74.1	
	10^{-1}	0.1700	80.8	
318K	$1N HNO_3$	0.8350	-	
	10^{-7}	0.4280	48.7	
	10^{-5}	0.3320	60.2	
	10^{-3}	0.2550	69.4	
	10^{-1}	0.2050	75.4	
328K	1N HNO ₃	0.7500	-	
	10^{-7}	0.6000	20.0	
	10^{-5}	0.5300	29.3	
	10^{-3}	0.3400	54.6	
	10^{-1}	0.3000	60.0	

Table2: Inhibition efficiency of mild steel in presence of different concentrations of 1-3-diaminopropane from weight loss at various temperatures in $1N\ H_2SO_4$

Temperature	Solution/mol (L ⁻¹)	Weight loss/gram	%I	
298K	1N H ₂ SO ₄	0.0786	_	
	10^{-7}	0.0384	56.10	
	10^{-5}	0.0275	65.01	
	10^{-3}	0.0231	70.61	
	10^{-1}	0.0074	90.58	
308K	$1N H_2SO_4$	0.1568	-	
	10^{-7}	0.0728	53.57	
	10^{-5}	0.0658	58.03	
	10^{-3}	0.0518	66.96	
	10^{-1}	0.0189	87.94	
318K	$1N H_2SO_4$	0.5467	-	
	10^{-7}	0.3091	43.46	
	10^{-5}	0.2394	56.20	
	10^{-3}	0.2075	62.04	
	10^{-1}	0.1374	74.86	
328K	$1N H_2SO_4$	1.1891	-	
	10^{-7}	0.9105	23.42	
	10^{-5}	0.6113	48.59	
	10^{-3}	0.5913	50.27	
	10^{-1}	0.4692	60.54	

ISSN 1466-8858

Table 3: Electrochemical parameters of mild steel in 1N HNO₃ in presence of 1,3-diaminopropane as additive

Temp.	Solution/mol (L ⁻¹)	E _{corr} mV	Log i _{corr} μA/cm ²	b _c mV/dec	b _a mV/dec	%I
298K	1N HNO ₃	410	3.57	29	40	-
	10^{-7}	451	3.10	21	29	66.1
	10^{-5}	439	2.99	30	32	73.6
	10^{-3}	390	2.80	20	20	83.0
	10^{-1}	407	2.68	75	45	87.1
308K	1N HNO ₃	474	3.40	21	22	-
	10^{-7}	427	3.06	18	18	54.2
	10^{-5}	437	3.04	16	17	56.3
	10^{-3}	420	2.88	13	20	69.8
	10^{-1}	442	2.59	22	24	84.5
318K	1N HNO ₃	478	3.39	28	28	-
	10^{-7}	451	3.19	14	16	36.9
	10^{-5}	431	3.00	16	16	59.2
	10^{-3}	420	2.90	20	20	67.6
	10^{-1}	450	2.80	25	20	74.2
328K	$1N HNO_3$	493	3.37	20	11	-
	10^{-7}	442	3.19	17	16	33.9
	10^{-5}	441	3.09	12	12	47.5
	10^{-3}	457	3.01	18	08	56.3
	10 ⁻¹	440	2.90	31	32	66.1

Table 4: Electrochemical parameters of Mild Steel in $1N\ H_2SO_4$ in presence of 1,3-diaminopropane (DAP) as additive:

Temp.	$\begin{array}{c} Solution/mol\\ (L^{-1}) \end{array}$	$\begin{array}{c} E_{corr} \\ mV \end{array}$	Log i _{corr} μA/cm ²	b _c mV/dec	b _a mV/dec	% I
298K	1N H ₂ SO ₄	512	3.45	99	141	-
	10^{-7}	471	3.10	53	72	55.33
	10^{-5}	453	3.00	36	97	64.51
	10^{-3}	481	2.90	36	52	71.81
	10^{-1}	483	2.42	163	297	90.66
308K	$1N H_2SO_4$	522	3.38	111	151	=
	10^{-7}	478	3.05	59	72	53.22
	10^{-5}	481	3.00	49	48	58.31
	10^{-3}	472	2.89	49	73	67.59
	10^{-1}	485	2.48	123	170	87.41
318K	$1N H_2SO_4$	500	3.35	75	73	-
	10^{-7}	480	3.10	50	59	43.76
	10^{-5}	464	2.98	30	78	57.34
	10^{-3}	470	2.93	30	71	61.98
	10^{-1}	470	2.75	55	121	74.88
328K	$1N H_2SO_4$	480	3.29	41	93	-
	10 ⁻⁷	471	3.17	46	32	24.14
	10^{-5}	470	3.00	50	39	48.71
	10^{-3}	472	2.99	47	88	49.88
	10^{-1}	476	2.89	35	59	60.18

Fig. 1. Galvanostatic polarization curves of mild steel in 1N HNO₃ containing different concentrations of 1,3-diaminopropane at 298K.

Fig. 2. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 308K.

Fig. 3. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 318K.

Fig. 4. Galvanostatic polarization curves of mild steel in 1N HNO₃ solution containing different concentrations of 1,3-diaminopropane at 328K.

Fig. 5. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 298K.

Fig.6. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 308K.

Fig. 7. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentrations of DAP at 318K.

Fig. 8. Galvanostatic polarization curves of mild steel in 1N H₂SO₄ solution containing different concentration of DAP at 328K.

Fig. 9. Variation of surface coverage vs concentration at different temperatures of DAP in 1N HNO₃.

Fig.10. Variation of surface coverage vs. concentration at different temperatures of DAP in 1N H₂SO₄.

Fig. 11. Variation of corrosion current vs. reciprocal of temperature at different concentrations of DAP in 1N HNO₃

Fig.12. Variation of corrosion current vs. reciprocal of temperature at different concentrations of DAP in $1N\ H_2SO_4$.