Solutions for 2024 JC1 H2 Mathematics Promotional Examination

	T	
1	Let x , y , z be the original price (\$) of a ticket for 'Senior	
(a)	Citizen', 'Adult' and 'Child' respectively.	
	5x + 12y + 6z = 2440 (1)	
	15(0.8)x + 10y + 5z = 2660	
	12x + 10y + 5z = 2660 (2)	
	$8x + 10y + 12\left(\frac{y}{2}\right) = 2560$	
	8x + 16y = 2560 - (3)	
	Using GC, $x = 80$, $y = 120$ and $z = 100$.	
	The original price of a ticket for 'Senior Citizen',	
	'Adult' and 'Children' is \$80, \$120 and \$100	
	respectively.	
(b)	2(80) + 2(120) + 3(100) = 700	
	Lee family spends \$700.	
2	$\sum_{r=n+1}^{2n} \left(4r^3 + n\right)$	
	$=4\sum_{r=n+1}^{2n}r^3+\sum_{r=n+1}^{2n}n$	
	$=4\left(\sum_{r=1}^{2n}r^{3}-\sum_{r=1}^{n}r^{3}\right)+(n)(n)$	
	$=4\left(\frac{(2n)^{2}}{4}(2n+1)^{2}-\frac{n^{2}}{4}(n+1)^{2}\right)+n^{2}$	
	$=4n^{2}(2n+1)^{2}-n^{2}(n+1)^{2}+n^{2}$	
	$= n^{2} \left[4(4n^{2} + 4n + 1) - (n^{2} + 2n + 1) + 1 \right]$	
	$= n^2 \left(15n^2 + 14n + 4 \right)$	

	-	
3	$x^2 - 2x + 3 = (x-1)^2 + 2$	
(a)	Since $(x-1)^2 \ge 0$ for all $x \in \Box$, $(x-1)^2 + 2 \ge 2 > 0$.	
	$\therefore x^2 - 2x + 3$ is always positive for all values of x.	
(b)	$\frac{\left(x^2 - 2x + 3\right)\left(1 - x\right)}{x^2 - x - 2} < 0$	
	$\frac{x^2 - x - 2}{x^2 - x - 2} < 0$	
	Since $x^2 - 2x + 3$ is always positive, $\frac{(1-x)}{x^2 - x - 2} < 0$.	
	$\frac{(1-x)}{x^2-x-2}<0$	
	$\frac{\left(x-1\right)}{\left(x+1\right)\left(x-2\right)} > 0$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(c)	Replace x with $-x$ in $\frac{(x^2 - 2x + 3)(1 - x)}{x^2 - x - 2} < 0$	
	$\therefore -1 < \sqrt{x} < 1 \text{ or } \sqrt{x} > 2$	
	$0 \le x < 1$ or $x > 4$	

4	$ \ln y = (\cos x) \ln x $	
(a)	1 dy () 1	
	$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = (-\sin x)\ln x + (\cos x)\frac{1}{x}$	
	` _	
	$\left \frac{\mathrm{d}y}{\mathrm{d}x} = y \right (-\sin x) \ln x + (\cos x) \frac{1}{x}$	
	$\cos x \left[\cos x\right]$	
	$= x^{\cos x} \left \frac{\cos x}{x} - (\sin x) \ln x \right $	
	OR	
	$ \ln y = (\cos x) \ln x $	
	$y = e^{(\cos x)\ln x}$	
	$\frac{dy}{dx} = \left[(-\sin x)(\ln x) + (\cos x)(\frac{1}{x}) \right] e^{(\cos x)\ln x}$	
(b)	$\alpha \lambda = \alpha \lambda$	
(i)	$\left(x^2 \frac{dy}{dx} + 2xy\right) - \left(x\left(2y \frac{dy}{dx}\right) + y^2\right) = 0$	
	$\left(x^2 - 2xy\right)\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 - 2xy$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy}$	
	, , , , , , , , , , , , , , , , , , ,	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 - 2xy}{x^2 - 2xy} = 1$	
	$\frac{1}{dx} - \frac{1}{x^2 - 2xy}$	
	$y^2 - 2xy = x^2 - 2xy$	
	$y^2 = x^2$ $y = \pm x$	
	$y = \pm x$	
	$y = x \Rightarrow x^3 - x^3 = 6$	
	0=6 Thus no solution	
	Thus, no solution.	
	$y = -x \Longrightarrow -x^3 - x^3 = 6$	
	$x^3 = -3$	
	$x = -\sqrt[3]{3}$	
	$y = \sqrt[3]{3}$	
	Thus $(-\sqrt[3]{3}, \sqrt[3]{3})$.	

5 (a)	$3[xy] + 2\left[\frac{1}{2}x^2\sin 60^\circ\right] = 300$
	$3xy + \frac{\sqrt{3}}{2}x^2 = 300$
	$3xy = 300 - \frac{\sqrt{3}}{2}x^2$
	$y = \frac{100}{x} - \frac{x}{2\sqrt{3}}$
	$V = \left(\frac{1}{2}x^2\sin 60^\circ\right)y$
	$= \left(\frac{\sqrt{3}}{4}x^2\right)\left(\frac{100}{x} - \frac{x}{2\sqrt{3}}\right)$
	$=25\sqrt{3}x - \frac{1}{8}x^3 \text{ (Shown)}$
(b)	dV 25 $\sqrt{2}$ 3 x^2 0

(b)
$$\frac{dV}{dx} = 25\sqrt{3} - \frac{3}{8}x^2 = 0$$
$$x^2 = \frac{200}{\sqrt{3}}$$
$$x = \pm \frac{\sqrt{200}}{\sqrt[4]{3}}$$

Since
$$x > 0$$
, $x = \frac{\sqrt{200}}{\sqrt[4]{3}} = 10.746$ (5 sf).

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{3}{4}x = -\frac{3\sqrt{200}}{4\sqrt[4]{3}} < 0$$

Hence *V* is maximum when $x = \frac{\sqrt{200}}{\sqrt[4]{3}}$.

Alternatively:

1 11001110011 (01) (
X	10.7	$\frac{\sqrt{200}}{\sqrt[4]{3}}$	10.8
$\frac{\mathrm{d}V}{\mathrm{d}x}$	0.368	0	-0.439
Slope	/	_	\

Maximum V

$$=25\sqrt{3}\left(\frac{\sqrt{200}}{\sqrt[4]{3}}\right) - \frac{1}{8}\left(\frac{\sqrt{200}}{\sqrt[4]{3}}\right)^3 = 310 \text{ cm}^3 (3 \text{ sf})$$

(b)(i)
$$\frac{dx}{dt} = a(2t-1) \qquad \frac{dy}{dt} = a(-4t)$$
$$\frac{dy}{dx} = \frac{-4t}{2t-1}$$

At
$$t = -1$$
, $\frac{dy}{dx} = \frac{4}{-3}$
Gradient of normal is $\frac{3}{4}$

$$y - (-a) = \frac{3}{4}(x - 2a)$$
$$y = \frac{3}{4}x - \frac{5}{2}a$$

$$y = \frac{3}{4}x - \frac{5}{2}a$$
(b)(ii) $a(1-2t^2) = \frac{3}{4}a(t^2-t) - \frac{5}{2}a$

$$4-8t^2 = 3t^2 - 3t - 10$$

$$11t^2 - 3t - 14 = 0$$

$$(11t - 14)(t+1) = 0$$

$$t = \frac{14}{11} \text{ or } t = -1 \text{ (rej. original point)}$$

$$x = a \left[\left(\frac{14}{11} \right)^2 - \frac{14}{11} \right] = \frac{42}{121} a,$$

$$y = a \left[1 - 2 \left(\frac{14}{11} \right)^2 \right] = -\frac{271}{121} a$$

$$\left(\frac{42}{121} a, -\frac{271}{121} a \right)$$

8	Translation by 2 units in the negative <i>x</i> -direction .
(a)	

Scaling by a scale factor of $\frac{1}{3}$, parallel to the x-axis. **Translation** by 1 unit in the **positive** *y***-direction**. OR Scaling by a scale factor of $\frac{1}{3}$, parallel to the x-axis. **Translation** by $\frac{2}{3}$ units in the **negative** *x***-direction**. **Translation** by 1 unit in the **positive** y-direction. **(b)** x = 3x = -3**(i)** (-a, b)(a,b)(0,c)**(b)** (ii) (a, 0)x = -1

9 (a)	$\int \sin^2 3\theta d\theta = \int \frac{1 - \cos 6\theta}{2} d\theta$	
	$=\frac{1}{2}\theta - \frac{1}{12}\sin 6\theta + C$	
9 (b)	$= \frac{1}{2}\theta - \frac{1}{12}\sin 6\theta + C$ $\int x(\ln x)^2 dx = \frac{x^2}{2}(\ln x)^2 - \int \frac{x^2}{2} \cdot 2\ln x \frac{1}{x} dx$	
	$= \frac{1}{2} (x \ln x)^2 - \int x \ln x dx$	
	$= \frac{1}{2} \left(x \ln x \right)^2 - \left(\frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \mathrm{d}x \right)$	
	$= \frac{1}{2} (x \ln x)^2 - \frac{1}{2} x^2 \ln x + \frac{x^2}{4} + C$	
9 (c)	$\int_{1}^{3} \frac{x^{2}}{\sqrt{2x^{3}-1}} dx = \frac{1}{6} \int_{1}^{3} 6x^{2} (2x^{3}-1)^{-\frac{1}{2}} dx$	
	$=\frac{1}{6} \left[\frac{(2x^3 - 1)^{\frac{1}{2}}}{\frac{1}{2}} \right]_{1}^{3}$	
	$= \frac{1}{3} \left[\left(2(3)^3 - 1 \right)^{\frac{1}{2}} - \left(2(1)^3 - 1 \right)^{\frac{1}{2}} \right]$	
	$=\frac{1}{3}\left(\sqrt{53}-1\right)$	
9 (d)	$\frac{du}{dx} = e^x = u$ When $x = 0$, $u = 1$ When $x = \ln \sqrt{3}$, $u = \sqrt{3}$	
	$\int_{0}^{\ln\sqrt{3}} \frac{e^{3x}}{e^{2x} + 1} dx = \int_{1}^{\sqrt{3}} \frac{u^{3}}{u^{2} + 1} \cdot \frac{1}{u} du$	
	$= \int_{1}^{\sqrt{3}} 1 - \frac{1}{u^2 + 1} \mathrm{d}u$	
	$= \left[u - \tan^{-1} u\right]_1^{\sqrt{3}}$	
	$= \left(\sqrt{3} - \tan^{-1}\sqrt{3}\right) - \left(1 - \tan^{-1}1\right)$	
	$= \sqrt{3} - \frac{\pi}{3} - 1 + \frac{\pi}{4}$	
	$=\sqrt{3}-1-\frac{\pi}{12}$	

(a)
$$\lambda = \frac{x+1}{2} = y-4 = \frac{2-z}{3}$$

(**)	(2) (-3)
	$z = 2 - 3\lambda$ $\therefore \underline{r} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \ \lambda \in \square$
	$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$
	$z = 2 - 3\lambda$
	$x = -1 + 2\lambda$ $y = 4 + \lambda$ $z = 2 - 3\lambda$
	$x = -1 + 2\lambda$

Plane
$$p_1: x-4z=5 \Rightarrow \underline{r} \cdot \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix} = 5$$

Let θ be the acute angle between l_1 and p_1 .

$$\sin \theta = \frac{\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}}{\begin{pmatrix} 2 \\ 1 \\ 0 \\ -4 \end{pmatrix}} = \frac{|2+12|}{\sqrt{14}\sqrt{17}} = \frac{14}{\sqrt{14}\sqrt{17}}$$

$$\theta = 65.2^{\circ}$$

(iii) Substituting line l_1 equation into p_1 equation:

$$\begin{pmatrix} \begin{pmatrix} -1\\4\\2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-3 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\-4 \end{pmatrix} = \begin{pmatrix} -1+2\lambda\\4+\lambda\\2-3\lambda \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\-4 \end{pmatrix} = 5$$
$$-1+2\lambda-8+12\lambda=5$$
$$\lambda=1$$

Required position vector = $\begin{pmatrix} -1\\4\\2 \end{pmatrix} + (1) \begin{pmatrix} 2\\1\\-3 \end{pmatrix} = \begin{pmatrix} 1\\5\\-1 \end{pmatrix}$

(b)

(i)

Let F be foot of perpendicular from R to l_2 .

$$\overrightarrow{AR} = \begin{pmatrix} -1\\2\\2\\-1 \end{pmatrix} = \begin{pmatrix} 1\\2\\0\\3 \end{pmatrix}$$

Method 1: Direct formula

$$RF = \frac{\begin{vmatrix} -2 \\ 0 \\ 3 \end{vmatrix} \times \begin{vmatrix} 2 \\ -3 \\ 1 \end{vmatrix}}{\begin{vmatrix} 2 \\ -3 \\ 1 \end{vmatrix}} = \frac{\begin{vmatrix} 9 \\ 8 \\ 6 \end{vmatrix}}{\sqrt{14}} = \frac{\sqrt{181}}{\sqrt{14}} = 3.60 \text{ units (3 s.f.)}$$

Method 2: Use length of projection

$$AF = \frac{\begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}}{\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}} = \frac{1}{\sqrt{14}}$$

$$AR = \sqrt{2^2 + 3^2} = \sqrt{13}$$

 $RF = \sqrt{\sqrt{13}^2 - \left(\frac{1}{\sqrt{14}}\right)^2} = \sqrt{\frac{181}{14}} = 3.60 \text{ units (3 s.f.)}$

Method 3 (Foot of perpendicular): (Not recommended)

$$\overrightarrow{OF} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \text{ for some } \lambda \in \square$$

$$\overrightarrow{RF} = \overrightarrow{OF} - \overrightarrow{OR} = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

$$\overrightarrow{RF} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 0$$

$$4 + 4\lambda + 9\lambda - 3 + \lambda = 0$$

$$\lambda = \frac{-1}{14}$$

$$RF = \begin{vmatrix} \frac{1}{14} \begin{pmatrix} 26\\3\\-43 \end{vmatrix} = \frac{1}{14} \sqrt{26^2 + 3^2 + 43^2} = 3.60 \text{ units (3 s.f.)}$$

(b) (ii)	Normal of plane $p_2 = \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 9 \\ 8 \\ 6 \end{pmatrix}$	
	Eqn of plane p_2 : $r \cdot \begin{pmatrix} 9 \\ 8 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 8 \\ 6 \end{pmatrix} = 19$	
	9x + 8y + 6z = 19	
(b) (iii)	$\begin{cases} x - 4z = 5 \\ 9x + 8y + 6z = 19 \end{cases}$	
	From GC:	
	$ \widetilde{r} = \begin{pmatrix} 5 \\ -\frac{13}{4} \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -\frac{21}{4} \\ 1 \end{pmatrix}, \mu \in \square $	

11	From 1 Jan 2024 to 1 Dec 2026, there are 36 months.
(a)	$\frac{36}{36}(2x+(36-1)(10)) = 25000$

$$2x + 350 = 1388.88889$$

- x = 519.44 (2 d.p.) At the end of 31 Dec 2024, the first \$200 will be worth
- $200(1.002)^{12} \approx 204.85 (2 \text{ d.p.})$ **(b)**
- **(i)**

Method 1: (ii)

11

MICHI	<u>10u 1.</u>		
Mth	Start	End	
1	200	200(1.002)	
2	200(1.002)+200	$200(1.002^2) + 200(1.002)$	
3	$200(1.002^2) + 200(1.002)$	$200(1.002^3) + 200(1.002^2)$	
	+200	+200(1.002)	
:	:	:	
n		$200(1.002^n) + 200(1.002^{n-1})$	
		$+\cdots + 200(1.002)$	

Total amount in the account at end of last day of n^{th} month

$$= 200(1.002^n) + 200(1.002^{n-1}) + \dots + 200(1.002)$$

$$= 200 \underbrace{\left[1.002 + 1.002^{2} + \dots + 1.002^{n}\right]}_{\text{GP}, a=1.002, r=1.002, n \text{ terms}}$$

$$=200 \left\lceil \frac{1.002 \left(1.002^n - 1\right)}{1.002 - 1} \right\rceil$$

$$=100200(1.002^n - 1)$$
 (Shown)

Method 2:

At the end of the *n*th month,

The 1^{st} \$200 deposited is worth $200(1.002)^n$

The 2^{nd} \$200 deposited is worth $200(1.002)^{n-1}$

The 3^{rd} \$200 deposited is worth $200(1.002)^{n-2}$

The n^{th} \$200 deposited is worth \$200(1.002)

Total amount in the account

$$= 200 \underbrace{\left[1.002 + 1.002^{2} + \dots + 1.002^{n}\right]}_{\text{GP}, a = 1.002, r = 1.002, n \text{ terms}}$$

$$= 200 \underbrace{\left[\frac{1.002 \left(1.002^{n} - 1\right)}{1.002 - 1}\right]}_{\text{I} = 100200 \left(1.002^{n} - 1\right) \text{ (Shown)}}$$
(iii) total amount at end of *n*th month = $100200 \left(1.002^{n} - 1\right) > 4500$
Using GC,
When $n = 21$, total amount = 4293.64
When $n = 22$, total amount = 4502.63
Dan's account will first exceed \$4500 in Oct 2025.

Amount at start of Oct 2025

= \$4293.64 + \$200

= \$4493.64 < \$4500

It occurs at the end of the month.