CS480/680: Introduction to Machine Learning

Differential Privacy

Saber Malekmohammadi

28 Nov 2024

slides by Prof. Y. Yu, CS 680 course

The Netflix Challenge

	Inside Out	Good Will Hunting	Mean Girls	Terminator	Titanic	Warrior
	HEIDE HEIDE	COOD WIE HINTING	MEAN CRES	TERMINATOR	TITANIC	
Tina Fey	3	1	5	1	?	1
Helen Mirren	2	?	?	2	5	1
Sylvester Stallone	1	3	1	4	2	5
Tom Hanks	?	3	1	?	4	3
George Clooney	2	2	1	3	1	4

- <user, movie, date of rating, rating>
- \sim 1M ratings, .5M users, 20k movies

1M Prize

Lawsuit

3

Anonymization is not Enough

ZIP Code	Birth Date	Gender	Race
33171	7/15/71	m	Caucasian
02657	2/18/73	f	Black
20612	3/12/75	m	Asian

Table 2. Deidentified Data that Are Not Anonymous.

The 1997 voting list for Cambridge, Massachusetts, contains demographics on 54,805 voters. Of these, birth date, which contains the month, day, and year of birth, alone can uniquely identify the name and address of 12 percent of the voters. One can identify 29 percent of the list by just birth [birth date alone 12% date and gender, birth date and gender 29% 69 percent with birth date and 5-digit ZIP code 69% only a birth date birth date and full postal code 97% and a 5-digit ZIP Table 3. Uniqueness of Demographic code, and 97 per-Fields in Cambridge, Massachusetts, cent (53,033 vot-Voter List.

Just Sacrifice A Few?

Restricted Access

Example

- Consider a medical study about smoking and cancer
- Should a smoker participate?
- If yes, may lead to higher insurance premium
- But may also benefit from learning health risks
- Has the smoker's privacy been compromised?

Participate or not, impact on the smoker is likely the same

Have you cheated in any exam?

Randomized Response

- Want to estimate the percentage of cheaters
- If ask bluntly, almost certainly will under-estimate
- Toss a coin: head, answer honestly; tail, answer randomly
 - cheaters: w.p. $\frac{3}{4}$ say yes
 - non-cheaters: w.p. $\frac{1}{4}$ say yes
 - $-\frac{3}{4}p + \frac{1}{4}(1-p) = \frac{1}{4} + \frac{1}{2}p =$ percentage of yes
- Plausible deniability for everyone
- What happens if we ask this question repeatedly?

S. L. Warner. "Randomised response: a survey technique for eliminating evasive answer bias". Journal of the American Statistical Association, vol. 60, no. 309 (1965), pp. 63-69.

Differential Privacy

- Let $M: \mathcal{D} \to \mathcal{Z}$ be a randomized mechanism
- (ϵ, δ) -DP if for $\underline{\text{any}}\ D, D' \in \mathcal{D}$ differing by one data point, for $\underline{\text{any}}$ event $E \subseteq \mathcal{Z}$,

$$\Pr[\mathsf{M}(D) \in E] \le \exp(\epsilon) \cdot \Pr[\mathsf{M}(D') \in E] + \delta$$

- dataset D, D' fixed; randomness from the mechanism
- the smaller ϵ or δ is, the stricter the privacy requirement
- $(\epsilon, 0)$ -DP if $\delta = 0$, a.k.a. ϵ -DP
- ullet ϵ (roughly) bounds log odds ratio: $\epsilon \leq 1$ often considered "good"
- ullet δ allows rare, possibly catastrophic event (to trade utility): often, $\delta \ll 1/|\mathcal{D}|$

C. Dwork and A. Roth. "The algorithmic foundations of differential privacy". Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-4 (2014), pp. 211-407.

Randomized Response is $(\log 3, 0)$ -DP

$$\log \frac{\Pr[\mathsf{M}(D) \in E]}{\Pr[\mathsf{M}(D') \in E]} = \log \frac{\int_E p(\mathbf{x}) \, \mathrm{d}\mathbf{x}}{\int_E q(\mathbf{y}) \, \mathrm{d}\mathbf{y}} = \log \int_E \frac{p(\mathbf{x})}{q(\mathbf{x})} \cdot \frac{q(\mathbf{x})}{\int_E q(\mathbf{y}) \, \mathrm{d}\mathbf{y}} \, \mathrm{d}\mathbf{x}$$

$$(\mathsf{Jensen's inequality}) \le \int_E \log \left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right) \cdot \frac{q(\mathbf{x})}{\int_E q(\mathbf{y}) \, \mathrm{d}\mathbf{y}} \, \mathrm{d}\mathbf{x}$$

$$(\mathsf{mean} \le \mathsf{max}) \le \max_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \le \epsilon$$

• Consider when D has a cheater and D' has a non-cheater:

$$\begin{array}{l} - \, \log \frac{\Pr[\mathsf{M}(D) = \mathsf{Yes}]}{\Pr[\mathsf{M}(D') = \mathsf{Yes}]} = \log \frac{3/4}{1/4} = \log 3 \\ \\ - \, \log \frac{\Pr[\mathsf{M}(D) = \mathsf{No}]}{\Pr[\mathsf{M}(D') = \mathsf{No}]} = \log \frac{1/4}{3/4} = -\log 3 \end{array}$$

DP in Practice

- Apple: reportedly $\epsilon=6$ in MacOS, $\epsilon=14$ in iOS10 and $\epsilon=2$ for health types
- Facebook: e.g., $\epsilon = 1.453$ and $\delta = 1e 5$
- Google: e.g., ϵ up to 9
- LinkedIn: each query uses $\epsilon = 0.15$ and $\delta = 1e 10$
- Microsoft: e.g., $\epsilon = 12$ and $\delta = 5.8e 6$
- ullet US Census Bureau: e.g., $\epsilon=13.64$ and $\delta=1e-5$

https://desfontain.es/blog/real-world-differential-privacy.html

A Hypothesis Testing View

- Consider null hypothesis $H_0:D$ and alternative hypothesis $H_1:D'$
- Or simply two classes Y = 0 vs. Y = 1
- Treat $\hat{\mathbf{Y}} := \llbracket \mathbf{M}(\cdot) \in E \rrbracket$
 - $\Pr(\mathsf{M}(D) \in E) = \Pr(\hat{\mathsf{Y}} = 1 | \mathsf{Y} = 0)$: false positive rate; type-1 error
 - $\Pr(\mathsf{M}(D') \in E) = \Pr(\hat{\mathsf{Y}} = 1 | \mathsf{Y} = 1)$: true positive rate; power
- DP: $FPR \leq \exp(\epsilon) \cdot TPR + \delta$

J. Dong et al. "Gaussian Differential Privacy". Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 84, no. 1 (2022), pp. 3-37.

α Rényi-DP

$$\mathbb{D}_{\alpha}(\mathsf{M}(D) \| \mathsf{M}(D')) := \frac{1}{\alpha - 1} \log \mathop{\mathbb{E}}_{\mathsf{X} \sim q} \left(\frac{p(\mathsf{X})}{q(\mathsf{X})} \right)^{\alpha} \leq \epsilon$$
 equivalently,
$$\mathop{\mathbb{E}}_{\mathsf{X} \sim p} e^{(\alpha - 1)r(\mathsf{X})} \leq e^{(\alpha - 1)\epsilon}$$

- p and q are the densities of $\mathsf{M}(D)$ and $\mathsf{M}(D')$, respectively
- Log odds ratio: $r = \log \frac{p}{a}$; a.k.a. privacy loss
- $\mathbb{D}_{\alpha} = \log \left[\mathbb{E}_{\mathsf{X} \sim p} (r(\mathsf{X}))^{\alpha 1} \right]^{\frac{1}{\alpha 1}}$ increasing w.r.t. $\alpha \geq 1$, in particular $-\alpha \downarrow 1 \implies \mathbb{D}_{\alpha} \to \mathsf{KL}$ $-\alpha \to \infty \implies \mathbb{D}_{\alpha} \to \max_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})}$, used in $(\epsilon, 0)$ -DP (we choose)
- I. Mironov. "Rényi differential privacy". In: IEEE 30th computer security foundations symposium. 2017, pp. 263-275

The Many Shades of DP

- ullet ϵ -DP: log odds ratio r uniformly bounded by ϵ
- (ϵ, δ) -DP: roughly, with probability 1δ , we have $r \leq \epsilon$
 - anything can happen for the remaining δ probability
 - sacrificing some δ proportion for (much?) better utility
 - the smaller ϵ or δ is, the stronger the privacy guarantee
- α -DP: bounds the exponential moment of r
 - smoother transition than (ϵ, δ) -DP
 - implies (ϵ, δ) -DP by e.g. Markov's inequality
 - the bigger α or the smaller ϵ is, the stronger the privacy guarantee

Calculus for DP

- ullet Post-processing: If M is DP, so is ${f T}\circ{f M}$ for any ${f T}$
- Parallel composition: $D = \cup_k D_k$, each M_k is DP, then $\mathsf{M}(D) := \left(\mathsf{M}_1(D_1), \ldots, \mathsf{M}_K(D_K)\right)$ is DP
- Sequential composition: (M(D), N(D, M(D))) is $(\alpha, \epsilon_N + \epsilon_M)$ -RDP
 - cannot ask too many questions or run ML algorithms for too many epochs!
 - often been heavily abused in practice
- ullet Differ by a group of k: $(k\epsilon,0)$ -DP
- Subsampling

J. Domingo-Ferrer et al. "The limits of differential privacy (and its misuse in data release and machine learning)". Communications of the ACM, vol. 64, no. 7 (2021), pp. 33–35.

Gaussian Mechanism

$$\mathsf{M}(D) := f(D) + \pmb{\xi}, \quad \text{where} \quad \pmb{\xi} \sim \mathcal{N}(\mathbf{0}, \Sigma)$$

- Sensitivity: $\Delta_2 f := \sup_{D \sim D'} \|f(D) f(D')\|_{\Sigma^{-1}}^2$
- (α, ϵ) -RDP with $\epsilon = \frac{\alpha}{2}\Delta_2 f$
- (α, ϵ) -RDP $\Longrightarrow (\epsilon + \frac{1}{\alpha 1} \log \frac{1}{\delta}, \frac{\delta}{\alpha})$ -DP
 - note $\alpha \to \infty \implies \mathbb{D}_{\alpha} \to \max_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \implies (\epsilon, 0)$ -D
 - to achieve $lpha o \infty$ with Gaussian mechanism: $\epsilon = rac{lpha}{2} \Delta_2 f o \infty$

DP-SGD

Algorithm 1: Differentially private stochastic gradient descent

Input: model w; data x_1, \ldots, x_n ; noise σ , gradient bound C, batch size b

```
1 for t = 0, 1, ... do
         sample a random batch B_t with size b
         for i \in B_t do
              \mathbf{g}_i \leftarrow \nabla_{\mathbf{w}} \ell(\mathbf{x}_i; \mathbf{w})
```

```
\mathbf{g}_i \leftarrow \mathbf{g}_i / \max\{1, \|\mathbf{g}_i\|_2 / C\}
```

$$y - \eta \cdot \mathbf{g}$$

 $\mathbf{g} \leftarrow \left[\frac{1}{h} \sum_{i \in B_t} \mathbf{g}_i\right] + \sigma C \boldsymbol{\xi}$

$$(\mathbf{w})$$

// compute grad

$$\begin{array}{c|c}
7 & \mathbf{w} \leftarrow \mathbf{w} - \eta \cdot \mathbf{g} \\
\mathbf{8} & \mathbf{w} \leftarrow \mathbf{P}(\mathbf{w})
\end{array}$$

Application in Generative Models

- Modern generative models are powerful, e.g., ChatGPT, DALLE-2
 - We can release the generative model as a proxy of releasing data
 - We can conduct data analysis / ML downstream tasks using generated data
- How to protect privacy when sensitive data (medical records, face images) are used in training?
- One solution: Differentially Private Generative Models equip generative models with DP guarantees

DPDM

DP-MERF

D. Jiang et al. "Functional Rénvi differential privacy for generative modeling" Advances in Neural Information Processing Systems, vol. 36