

Motion Planning with Moving Obstacles

Advanced Deep Learning in Robotics (CIT433027)

Xinhua Wang, Yunfei Deng

Introduction

Problem

Robots must navigate not only through static environments but also through dynamic environments where they encounter moving obstacles.

Contribution

- •Develop a reliable way to encode moving obstacles into 2D environments.
- •Introduce a globally guided reinforcement learning approach.

Environment Representation

Global Guidance

We apply the A-star search algorithm to find a global path to navigate the robot.

Local Planner

We utilize Proximal Policy Optimization (PPO) for dynamic local route planner. PPO enables the robot to adapt and find optimal paths in dynamic environments.

Architecture Local Observation Historical Observations Flatten Flatten Opnamic obstacle Global guidance Current robot Architecture Action Ac

Quantitative results	Success rate	Avg reward
Only static obstacles	79.5%	270
Dynamic environment without Global path	0%	-50.3
Dynamic environment with hybrid algorithm (ours)	57.9%	244.93

Reward design

$$R(t) = egin{cases} r_1 \ r_2 \ r_1 + N_e imes r_3 \end{cases}$$

- A small negative reward r1 (r1=-1) is given when the robot is not on the global guidance path.
- A large negative reward r2 (r2=-100) is given when the robot collides with a static or dynamic obstacle.
- A large positive reward $r1+Ne\times r3$ (r3=4) is awarded when the robot reaches the global path. Ne is the number of steps the robot has deviated from the global path.

Future works

- Extend the 2D environment to 3D
- Use LSTM to enhance temporal performance

