SUPPLEMENTARY INFORMATION: Polymers for Near-field Electrospinning with Spatial Control

Antonio Osamu Katagiri Tanaka, Héctor Alán Aguirre Soto

 $[\]label{lem:email$

Table 1: Electrospun Polymer Solutions - Solution and Process Parameters

Polymer(s)	Solvent(s)	NFES Variant	Process Parameters and Fiber Characterization	Ref.
Poly(ethylene oxide) (PEO; MW = $4,000,000$ g/mol)	Deionized water	Low-Voltage NFES (LV NFES)	Solution Concentration: 1, 2, and 3 $wt\%$ PEO Nozzle: 27 gauge type 304; stainless steel needle Solution deposition rate: lower than $1\mu L/h$ Nozzle-to-substrate distance: $1mm$ Substrate composition: Pyrolyzed SU-8 carbon and Si Applied voltage: polymer jet initiated at 400-600 V and dispensed at 200-400 V x-y stage velocity: $10-40mm/s$ Fiber Diameter: $50-425nm$ Distance between adjacent fibers: Not determined	[1]

Table 1 continue	ed				
Poly[2-	acetonitrile	Typical	NFES	Solution Concentration:	[2]
methoxy-5-(2-	toluene mix-	process		$10mg$ of MEH-PPV in $2mL$ of toluene; $500\mu L$ of MEH-	
ethylhexyloxy)-	ture $(65/35)$;			PPV solution with $250mg$ of PEO in $3.5mL$ of acetoni-	
1,4-	acetic acid			trile / toluene (65 / 35); $500\mu L$ of MEH-PPV solution	
phenylenevinylene	toluene			with $250mg$ of PEO in $3mL$ of acetic acid / toluene (17	
(MEH-PPV;	(17/83); pure			/ 83). The resulting MEH-PPV/PEO concentration is	
MW = 380,000	toluene			0.08~wt%	
g/mol) with				Nozzle: mm-diameter tip Tungsten spinneret in a 26	
Poly(ethylene				gauge needle	
oxide) (PEO;				Solution deposition rate: $50\mu L/h$	
MW = 300,000				Nozzle-to-substrate distance: $500\mu m$	
g/mol)				Substrate composition: SiO2/Si (oxide thickness =	
-, ,				800 nm)	
				Applied voltage: around $1.3kV$	
				x-y stage velocity: $50cm/s$	
				Fiber Diameter: 100nm	
				Distance between adjacent fibers: around $100\mu m$	

Table 1 continue	ed			
Poly(ethylene ox-	Water	Scanning Tip	Solution Concentration: $7wt\%$ PEO	[3]
ide) (PEO; $MV =$		Electrospinning	Nozzle: Needle outer diameter of $200\mu m$ and inner	
$300,000 \ g/mol)$		and NFES	diameter of $100\mu m$	
			Solution deposition rate: $0.1\mu L/h$	
			Nozzle-to-substrate distance: $500\mu m$	
			Substrate composition: Not determined	
			Applied voltage: polymer jet initiated at $1.5 \ kV$ and dispensed at $600V$	
			x-y stage velocity: $120mm/s$	
			Fiber Diameter: $709\pm131nm$; $49-74nm$ when ap-	
			plied voltage is $800V$	
			Distance between adjacent fibers: Not deter-	
			mined	
			Notes: $108m$ yield in $15min$ with a fiber diameter of	
			$709 \pm 131 nm$	
Poly(vinylidine	$_{\rm N,N}$	Helix	Solution Concentration: $1.8g$ PVDF in $4.1g$ of DMF	[4]
fluorid) (PVDF; MW = 440,000	Dimethyl- formamide	Electrohydro- dynamic Printing	and $4.1g$ of acetone. The resulting concentration is 18% PVDF.	
g/mol)	(DMF)	(HE-printing)	Nozzle: Needle outer diameter of $510\mu m$ and inner	
			diameter of $260\mu m$	
			Solution deposition rate: $400nL/min$	
			Nozazle-to-substrate distance: 10-50mm	
			Substrate composition: Poly(dimethylsiloxane)	
			(PDMS) on Ecoflex	
			Applied voltage: $1.5-3kV$	
			x-y stage velocity: 0-400mm/min	
			Fiber Diameter: about 1.5-3 μm	
			Distance between adjacent fibers: Not determined	
			Continued on ne	ext page

Table 1 continue				
Polyhedral	Dimethyl	Electrohydro-	Solution Concentration: POSS-PCU and POSS-	[5]
Oligomeric	acetamide	dynamic 3D	PCL-PCU used in $20\%w/w$ concentration in DMAC	
Silsesquioxane-	(DMAC) and	Print-patterning		
Poly(Carbonate-	1-Butanol	or Electrohydro-	Nozzle: needle of 750 μm in diameter	
Urea)Urethane		dynamic Jetting	Solution deposition rate: less than $1\mu L/min$	
(POSS-PCU)			Nozzle-to-substrate distance: about between	
and Polyhe-			$500\mu m$ to $2mm$	
dral Oligomeric			Substrate composition: Not determined	
Silsesquioxane			Applied voltage: $8.0-10.0kV$	
Poly(Caprolactone	} -		x-y stage velocity: $10mm/s$	
Poly(Carbonate-			Fiber Diameter: $15-50\mu m$	
Urea)Urethane)			Distance between adjacent fibers: $250\mu m$	
(POSS-PCL-				
PCU)				
(Dry Polycarbon-				
ate $MW = 2000$				
g/mol)				F = 1
Poly(ethylene ox-	Distilled wa-	Electrohydro-	Solution Concentration: 6wt% PEO	[6]
ide) (PEO; MW	ter	dynamic Writing	Nozzle: Not determined	
$= 300,000 \ g/mol)$		or Mechano-	Solution deposition rate: $1200nL/min$	
		electrospinning	Nozzle-to-substrate distance: 7.5mm	
		(MES)	Substrate composition: Not determined	
			A 121 14 1	
			Applied voltage: polymer jet initiated at $2 kV$ and	
			dispensed at $0.8-1kV$	
			dispensed at $0.8\text{-}1kV$ x-y stage velocity: around $400mm/s$	
			dispensed at $0.8-1kV$	

Table 1 continue	d			
Poly(ethylene ox-	Deionized	Airflow-assisted	Solution Concentration: 8wt% PEO	[7]
ide) (PEO; MW	water and	Electrohydro-	Nozzle: Outer airflow passage diameter: 1mm Airflow	
$= 300,\!000\;g/mol)$	ethanol with	dynamic Direct-	gas pump pressure: $25kPa$ Inner liquid passage diam-	
	a volume	writing (EDW)	eter: $0.21mm$	
	ratio of 3:1		Solution deposition rate: $30\mu L/h$	
			Nozzle-to-substrate distance: 2mm	
			Substrate composition: Silicon	
			Applied voltage: about $2kV$	
			x-y stage velocity: $1-20mm/s$	
			Fiber Diameter: $3.73 \pm 1.37 \mu m$	
			Distance between adjacent fibers: $5.13 \pm 6.67 \mu m$	
Poly(Vinylidene	Acetone and	3D Electrospin-	Solution Concentration: $17wt\%$ PVDF; $1.7g$ of	[8]
Fluoride)	Dimethyl	ning	PVDF, $5g$ of acetone, $0.5g$ of Capstone FS-66, $5g$ of	
(PVDF; MW =			DMSO	
$534,000 \ g/mol)$	(DMSO)		Nozzle: Needle inner diameter of $100\mu m$	
			Solution deposition rate: $14 nL/min$	
			Nozzle-to-substrate distance: $750\mu m$	
			Substrate composition: A4 size commercial print-	
			ing paper (Double A)	
			Applied voltage: $1.9kV$	
			x-y stage velocity: $10mm/s$	
			Fiber Diameter: Not determined	
			Distance between adjacent fibers: Not determined	

Table 1 continue	ed			
Poly(9-Vinyl	Styrene	Typical NFES	Solution Concentration: 3.96wt% PVK in styrene	[9]
Carbazole)		process	Nozzle: Needle inner diameter of $100\mu m$	
(PVK; MW =			Solution deposition rate: $500nL/min$	
$1,100,000 \ g/mol)$			Nozzle-to-substrate distance: around 2.5mm	
			Substrate composition: Si/SiO2	
			Applied voltage: $3-4kV$	
			x-y stage velocity: $13.3cm/s$	
			Fiber Diameter: $289.26 \pm 35.37nm$	
			Distance between adjacent fibers: $50\mu m$	
			Notes: 15m yield in 2min	
Polystyrene (PS;	1,2,4-	Electrohydro-	Solution Concentration: 1 to 5wt% PS	[10]
MW Not deter-	Trichloro	dynamic (EHD)	Nozzle: Glass nozzle inner diameter of $2\mu m$ and outer	
mined)	benzene	jet printing	diameter of $2.66 \mu m$	
			Solution deposition rate: Not determined	
			Nozzle-to-substrate distance: $20, 30, 40 \mu m$	
			Substrate composition: Si	
			Applied voltage: $500 \text{ to } 400V \text{ in } 25V \text{ increments}$	
			x-y stage velocity: $0.01-10mm/s$	
			Fiber Diameter: about $60-170 \mu m$	
			Distance between adjacent fibers: Not determined	
Poly(ethylene ox-	Not deter-	Typical NFES	Solution Concentration: $3wt\%$ PEO	[11]
ide) (PEO; MW	mined	process	Nozzle: Not determined	
$= 300,\!000~g/mol)$			Solution deposition rate: Not determined	
			Nozzle-to-substrate distance: $500\mu m$	
			Substrate composition: Si	
			Applied voltage: $1000V$	
			x-y stage velocity: $20cm/s$	
			Fiber Diameter: 300nm	
			Distance between adjacent fibers: $25\mu m$	

Table 1 continue	ed				
Poly(ethylene	Distilled	wa-	Multinozzle	Solution Concentration: $5wt\%$	[12]
oxide) (PEO;	ter		NFES	Nozzle: four-nozzle and six-nozzle array with needle	
MW = 2,000,000				spacing changes from $1.5mm$ to $3.5mm$	
g/mol)				Solution deposition rate: $1-3\mu L/min$	
				Nozzle-to-substrate distance: 2mm	
				Substrate composition: Not determined	
				Applied voltage: $1.7-2.7kV$	
				x-y stage velocity: Not determined	
				Fiber Diameter: $5.47 \mu m$	
				Distance between adjacent fibers: $3-5 mm$	
Poly(ethylene	Distilled	wa-	Multinozzle	Solution Concentration: $5wt\%$	[13]
oxide) (PEO;	ter		NFES	Nozzle: Dual-28G-needle array with needle inner di-	
MW = 2,000,000				ameter of $0.18mm$ and outer diameter of $0.36mm$; with	
g/mol)				needle spacing changes from $2.0mm$ to $3.0mm$	
				Solution deposition rate: $0.2\mu L/min$	
				Nozzle-to-substrate distance: 3.0-4.0mm	
				Substrate composition: Not determined	
				Applied voltage: $2.0-3.0kV$	
				x-y stage velocity: $20mm/s$	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: $218-326\mu m$	

Table 1 continue					
Poly(ethylene	Distille	d wa-	Multinozzle	Solution Concentration: $5 wt\%$	[14]
oxide) (PEO;	ter		NFES	Nozzle: Dual-28G-needle array with needle inner di-	
MW = 2,000,000				ameter of $180\mu m$ and outer diameter of $360\mu m$; with	
g/mol)				needle spacing changes of $2.0mm$	
				Solution deposition rate: $0.2\mu L/min$	
				Nozzle-to-substrate distance: 4.0mm	
				Substrate composition: chromium-plated glass	
				Applied voltage: $2.5kV$	
				x-y stage velocity: $20mm/s$	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: 2.3002-	
				2.7224mm	
Poly(ethylene	Not	deter-	Typical NF	ES Solution Concentration: $2wt\%$	[15]
oxide) (PEO;	mined		process	Nozzle: G30 needle with inner diameter of $0.15mm$	
MW = 4,000,000				Solution deposition rate: Not determined	
g/mol)				Nozzle-to-substrate distance: 1-3mm	
				Substrate composition: Silicon	
				Applied voltage: $1250V$	
				x-y stage velocity: Not determined	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: $20\mu m$	

T-11- 11:	1			—
Table 1 continue		MEEC	$C_{1} = \frac{1}{2} \left[\frac{1} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}$	
Gelatin	Acetic Acid Typical	NFES	Solution Concentration: $11wt\%$ gelatin, $30wt\%$ wa- [16]	
(porcine skin;	and Ethyl process		ter, $35.4wt\%$ acetic acid, $23.6wt\%$ ethyl acetate	
MW Not deter-	Acetate		Nozzle: 19G needle tip with outer diameter of 1.08mm	
mined)				
,			Solution deposition rate: Not determined	
			Nozzle-to-substrate distance: 1.25mm	
			Substrate composition: Poly(Dimethylsiloxane)	
			(PDMS) films	
			Applied voltage: 1000V	
			x-y stage velocity: Not determined	
			Fiber Diameter: around $2-3\mu m$	
			Distance between adjacent fibers: $40\mu m$	
Poly(ethylene ox-	Water/Ethanol Typical	NFES	Solution Concentration: PEO concentrations of [17]	_
ide) (PEO; MW	(v/v = 60/40) process		16% and 18%	
$=300,000 \ g/mol)$	·		Nozzle: $40\mu m$	
, 0,			Solution deposition rate: Not determined	
			Nozzle-to-substrate distance: 1mm	
			Substrate composition: Planar silicon	
			Applied voltage: $1.7kV$	
			x-y stage velocity: $0.36m/s$	
			Fiber Diameter: $5.15 \mu m$	
			Distance between adjacent fibers: Not determined	
				_

Table 1 continue	ed			
Poly(ethylene ox-	Water/Ethanol	Electrohydro-	Solution Concentration: $14wt\%$ PEO	[18]
ide) (PEO; MW	(v/v=3/1)	dynamic Direct-	Nozzle: Stainless needle with inner diameter of $210\mu m$	
$= 300,\!000~g/mol)$		Write (EDW)	and outer diameter of $400\mu m$	
			Solution deposition rate: $50\mu L/h$	
			Nozzle-to-substrate distance: 2mm	
			Substrate composition: Poly(ethylene terephtha-	
			late) (PET)	
			Applied voltage: $3kV$	
			x-y stage velocity: $700mm/s$	
			Fiber Diameter: $15-35\mu m$	
			Distance between adjacent fibers: $70\mu m$	
Poly(ethylene ox-	Deionized wa-	Mechano-	Solution Concentration: $3wt\%$ PEO	[19]
ide) (PEO; MW	ter	Electrospinning	Nozzle: Stainless steel nozzle with inner diameter of	
$= 300,\!000 \; g/mol)$			$160\mu m$ and outer diameter of $310\mu m$	
			Solution deposition rate: $50nL/min$	
			Nozzle-to-substrate distance: 2-5mm	
			Substrate composition: Silicone	
			Applied voltage: polymer jet initiated at $2kV$ and dis-	
			pensed at $1kV$	
			x-y stage velocity: $200-400mm/s$	
			Fiber Diameter: from 344 ± 32 to $214\pm27nm$	
			Distance between adjacent fibers: Not determined	
			-	

Table 1 continue					
Poly(co-Glycolic)	Dimethyl	Tethered F	Pyro-	Solution Concentration: Not determined	[20]
acid (PLGA;	Carbonate	Electrohydro-	-	Nozzle: nozzle-free	
MW Not deter-	(DMC)	dynamic Spin	$_{ m nning}$	Solution deposition rate: The drop reservoir is	
mined)		(TPES)		placed directly on a flat substrate	
				Nozzle-to-substrate distance: Taylor's cone is fo-	
				cused and put in direct contact with the collector	
				Substrate composition: Poly(tetrafluoroethylene)	
				(PTFE) coated glass slide	
				Applied voltage: pyro-electric field of between 2.7	
				$x10^7 \ V/m \text{ and } 5.5x10^7 \ V/m$	
				x-y stage velocity: Not determined	
				Fiber Diameter: 304.7nm	
				Distance between adjacent fibers: Not determined	
Poly(ethylene	N,N	Typical N	IFES	Solution Concentration: SU-8/PEO/TBF blend	[21]
oxide) (PEO;	Dimethyl-	process		with $0.75wt\%$ PEO, $1wt\%$ TBF; the blend is diluted	
MW = 4,000,000	formamide			with $30vol\%$ DMF	
g/mol) with	(DMF)			$\mu m \mu m$	
Tetrabutylammo-				Solution deposition rate: Not determined	
nium tetrafluo-				Nozzle-to-substrate distance: Not determined	
roborate (TBF;				Substrate composition: Brass disk with a diameter	
MW Not deter-				of $38mm$	
mined) and SU-8				Applied voltage: $980V$	
2002				x-y stage velocity: Not determined	
				Fiber Diameter: Not determined	
				Distance between adjacent fibers: Not determined	
-				Cti1	

Table 1 continue	ed			
Poly(ethylene	Water:Ethanol	Suspension NFES	Solution Concentration: $14wt\%$ PEO	[22]
oxide) (PEO;	(3:2)		Nozzle: stainless steel needle (25 G) with inner diam-	
$200,000 \ g/mol)$			eter of $0.25mm$	
			Solution deposition rate: $3nL/s$	
			Nozzle-to-substrate distance: between 0.5 and	
			10mm with $0.5mm$ increments	
			Substrate composition: Planar silicon electrodes	
			Applied voltage: $1.6kV$	
			x-y stage velocity: 50, 150, and $250mm/s$	
			Fiber Diameter: 300nm	
			Distance between adjacent fibers: 0.1 and 0.5mm	
Poly(ethylene ox-	Deionized wa-	Typical NFES	Solution Concentration: 10wt% PEO	[23]
ide) (PEO; MW	ter	process	Nozzle: 32G metal needle	
$=400,\!000\;g/mol)$			Solution deposition rate: (Jet impact speed of	
			5mm/s)	
			Nozzle-to-substrate distance: 0.5mm	
			Substrate composition: p-type silicon wafer	
			Applied voltage: $400V$	
			x-y stage velocity: $5mm/s$	
			Fiber Diameter: Not determined	
			Distance between adjacent fibers: $50\mu m$	

References

- [1] G. S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, M. J. Madou, Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning, Nano Letters 11 (4) (2011) 1831–1837. doi:10.1021/nl2006164.
- [2] D. D. Camillo, V. Fasano, F. Ruggieri, S. Santucci, L. Lozzi, A. Camposeo, D. Pisignano, Near-field electrospinning of conjugated polymer light-emitting nanofibers, Nanoscale 5 (2013) 11637–11642. doi:10.1039/C3NR03094F.
- [3] C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Appl Phys Lett (2008) 3doi:10.1063/1.2975834.
- [4] Y. Duan, Y. Ding, Z. Xu, Y. Huang, Z. Yin, Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers., Polymers 9 (9) (sep 2017). doi:10.3390/polym9090434.
- [5] A. Gupta, A. M. Seifalian, Z. Ahmad, M. J. Edirisinghe, M. C. Winslet, Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Scaffolds, Journal of BIOACTIVE AND COMPATIBLE POLY-MERS 22 (2007). doi:10.1177/0883911507078268.
- [6] Y. Huang, Y. Duan, Y. Ding, N. Bu, Y. Pan, N. Lu, Z. Yin, Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers, Scientific Reports 4 (1) (2015) 5949. doi:10.1038/srep05949.
- [7] J. Jiang, X. Wang, W. Li, J. Liu, Y. Liu, G. Zheng, J. Jiang, X. Wang, W. Li, J. Liu, Y. Liu, G. Zheng, Electrohydrodynamic Direct-Writing Micropatterns with Assisted Airflow, Micromachines 9 (9) (2018) 456. doi:10.3390/mi9090456.
- [8] J. Kim, B. Maeng, J. Park, Characterization of 3D electrospinning on inkjet printed conductive pattern on paper, Micro and Nano Systems Letters 6 (1) (2018) 12. doi:10.1186/s40486-018-0074-1.
- [9] S.-Y. Min, T.-S. Kim, B. J. Kim, H. Cho, Y.-Y. Noh, H. Yang, J. H. Cho, T.-W. Lee, Large-scale organic nanowire lithography and electronics, Nature Communications 4 (1) (2013) 1773. doi:10.1038/ncomms2785.
- [10] C. Song, J. A. Rogers, J.-M. Kim, H. Ahn, Patterned polydiacetylene-embedded polystyrene nanofibers based on electrohydrodynamic jet printing, Macromolecular Research 23 (1) (2015) 118–123. doi:10.1007/s13233-015-3024-2.
- [11] D. Sun, C. Chang, S. Li, L. Lin, Near-Field Electrospinning (2006). doi:10.1021/nl0602701.
- [12] H. Wang, S. Huang, F. Liang, P. Wu, M. Li, S. Lin, X. Chen, Research on Multinozzle Near-Field Electrospinning Patterned Deposition, Journal of Nanomaterials 2015 (2015) 1–8. doi:10.1155/2015/529138.
- [13] Z. Wang, X. Chen, J. Zeng, F. Liang, P. Wu, H. Wang, Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning, AIP Advances 7 (3) (2017) 035310. doi:10.1063/1.4974936.
- [14] Z. Wang, X. Chen, J. Zhang, Y.-J. Lin, K. Li, J. Zeng, P. Wu, Y. He, Y. Li, H. Wang, Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning, AIP Advances 8 (7) (2018) 075111. doi:10.1063/1.5032082.
- [15] J. Xu, M. Abecassis, Z. Zhang, P. Guo, J. Huang, K. Ehmann, J. Cao, Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning, International Workshop on Microfactories IWMF2014 (9th) (2014).
- [16] N. Xue, X. Li, C. Bertulli, Z. Li, A. Patharagulpong, A. Sadok, Y. Y. S. Huang, Rapid Patterning of 1-D Collagenous Topography as an ECM Protein Fibril Platform for Image Cytometry, PLoS ONE 9 (4) (2014) e93590. doi:10.1371/journal.pone.0093590.
- [17] G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, Precision deposition of a nanofibre by near-field electrospinning, Journal of Physics D: Applied Physics 43 (41) (2010) 415501. doi:10.1088/0022-3727/43/41/415501.
- [18] J.-Y. Zheng, H.-Y. Liu, X. Wang, Y. Zhao, W.-W. Huang, G.-F. Zheng, D.-H. Sun, Electrohydrody-

- namic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate, Journal of Nanomaterials 2014 (2014) 1–7. doi:10.1155/2014/708186.
- [19] N. Bu, Y. Huang, X. Wang, Z. Yin, Materials and Manufacturing Processes Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning Continuously Tunable and Oriented Nanofiber Direct-Written by Mechano-Electrospinning (2012). doi:10.1080/10426914.2012.700145.
- [20] S. Coppola, V. Vespini, G. Nasti, O. Gennari, S. Grilli, M. Ventre, M. Iannone, P. A. Netti, P. Ferraro, Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro-and Nanoscale, Chem. Mater 26 (2014) 3360. doi:10.1021/cm501265j.
- [21] A. Cisquella-Serra, M. Magnani, Álvaro Gual-Mosegui, S. Holmberg, M. Madou, M. Gamero-Castaño, Study of the electrostatic jet initiation in near-field electrospinning, Journal of Colloid and Interface Science 543 (2019) 106–113. doi:10.1016/J.JCIS.2019.02.041.
- [22] A. R. Nagle, C. D. Fay, Z. Xie, G. G. Wallace, X. Wang, M. J. Higgins, A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays, Nanotechnology 30 (19) (2019) 195301. doi:10.1088/1361-6528/ab011b.
- [23] D. Shin, J. Kim, J. Chang, Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber, Journal of Manufacturing Processes 36 (2018) 231–237. doi:10.1016/J.JMAPRO.2018.10.011.