得 分

一、填空题: (本大题共10小题,每小题3分,共30分)

- 3. 级数 $\sum_{n=1}^{\infty} \left[\frac{2^n n!}{n^n} + (-1)^n (\sqrt[n]{n} 1) \right]$ 是收敛还是发散? ______
- 4. 函数 $y = x^2 \sin x$ 的麦克劳林级数 x^{2023} 中的系数为______
- 5.设 2π 周期函数f在 $[-\pi,\pi)$ 上满足 $f(x) = \begin{cases} e^x, -\pi \le x \le 0 \\ x+2, 0 < x < \pi \end{cases}$,其傅里叶级数的和函

数记为 S(x),则 $S(10\pi)$ = ______

6.二重极限 $\lim_{\substack{x \to 1 \\ y \to -1}} \frac{\sin(x^2 - y^2)}{x + y} = \underline{\hspace{1cm}}$

7. xoz 坐标面上的曲线 $z^2 = x$ 绕 x 轴旋转一周所生成的曲面方程为
8. 若数项级数 $\sum_{n=1}^{\infty} a_n 3^n$ 条件收敛,则幂级数 $\sum_{n=1}^{\infty} a_n 2^n x^n$ 的收敛半径为
9. 设函数 $z = x^2y + \sin(xy)$, 则全微分 $dz =$
10. 若方程 $xz = \ln \frac{z}{y}$ 可确定隐函数 $z = z(x, y)$,则 $\frac{\partial z}{\partial x} = \underline{\qquad}$
二、计算题: (本大题共6小题,每小题10分,共60分)
得分 11. 将函数 $f(x) = \frac{1}{(x-2)^3}$ 展为 x 的幂级数并求展开式成立的区间.

12. 求微分方程 $y'' + 4y' + 4y = xe^x$ 的通解.

得分

13. 设 $z = f(2x + y, y \cos x)$, 其中f具有连续的二阶偏导数, 求 $\frac{\hat{c}^2 z}{\partial x \partial y}$.

1
71

14. 求幂级数 $\sum_{n=1}^{\infty} \frac{1}{2n+1} x^{2n}$ 的收敛域与和函数.

得分

15.设数列 $\{a_n\}$ 满足 $a_n \ge a_{n+1} > 0, n = 1, 2, 3, \cdots$ 且数项级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发

散, 讨论级数 $\sum_{n=1}^{\infty} \left(\frac{1}{1+a_n}\right)^n$ 的敛散性.

16. 设有方程组
$$\begin{cases} x = e^{u} + u \sin v \\ y = e^{u} - u \sin v \end{cases}$$
 确定隐函数 $u = u(x, y), v = v(x, y)$ 求 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$.

三、证	明题: (本大题共2小题,每小题5分,共10分)
得分	17. 设函数 $F(x,y)$ 具有连续偏导数,且方程 $F(x-2z,y-3z)=0$ 可确定
	隐函数 $z = z(x, y)$,证明 $2\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = 1$.
得分	18. 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$, $a_n > 0$, $b_n > 0$, $n = 1, 2, 3,$, 证明若
	正项级数 $\sum_{n=1}^{\infty} b_n$ 收敛,则正项级数 $\sum_{n=1}^{\infty} a_n$ 也收敛.