- 1. **Sorting an Array** Write pseudocode to implement a bubble sort algorithm to arrange a list of integers in ascending order.
 - Get the list of integers, arr[]
 - > Create a variable I to store the size of the list
 - > For i from 0 to I-1
 - > For j from 0 to I-i-1.
 - ➤ If arr[j] > arr[j+1]
 - > Then swap arr[j] with arr[j+1]
 - > Print the sorted list

- 2. **Find the Largest Number** Write pseudocode to find the largest number in an array of integers.
 - ➤ Get the list of integers, arr[]
 - ➤ Create a variable t=arr[0] to hold the largest number and I to store the size of the array.
 - > For i from 0 to I-1
 - ➤ If arr[i] > t
 - > Then t=arr[i]
 - ➤ Print t

- 3. **Check for Palindrome** Write pseudocode to check whether a given string is a palindrome.
 - ➤ Get the input string, arr[]
 - > Create a variable I to store the length of the string
 - ➤ For i from 0 to I/2
 - > If arr[i] =! arr[l-i-1]
 - > Then return not palindrome
 - > Else return is a palindrome

- 4. **Prime Number Verification** Write pseudocode to determine whether a given number is a prime number.
 - ➤ Get the input number, num
 - ➤ Initialize a variable count, count = 0
 - ➤ If num<= 1</p>
 - > Then print not a prime number
 - > For i from 2 to square root(num)
 - ➤ If num%i == 0
 - ➤ Then count++
 - ➤ End
 - \rightarrow If count ==0
 - > Then print num is a prime number
 - > Else print num is not a prime number

- 5. **Fibonacci Series** Write pseudocode to generate the first N terms of the Fibonacci series.
 - ➤ Get the input N term value, n
 - ➤ Initialize a=0 and b=1 new=0
 - > If n=1
 - ➤ Print a
 - ➤ If n=2
 - > Print a and b
 - > For i from 3 to n
 - \rightarrow New = a+b
 - > Print new
 - > Set a=b & b= new

- 6. **Basic Calculator** Write pseudocode to implement a calculator that performs addition, subtraction, multiplication, and division based on user input.
 - ➤ Get the operator {+,-,*,/}
 - Get the two numbers {a & b}
 - > If the operator is +
 - > Then print a+b
 - > If the operator is -
 - > Then print a-b
 - > If the operator is *
 - ➤ Then print a*b
 - > If the operator is /
 - ➤ Then print a/b
 - > Else invalid operator

- 7. **Factorial Calculation** Write pseudocode to compute the factorial of a given number using recursion.
 - > Get the number, n
 - ➤ Initialize fac=1
 - > For i from 1 to n
 - ➤ fac =fac*i
 - ➤ Print fac

- 8. **Count Vowels in a String** Write pseudocode to count the number of vowels in a given string
 - ➤ Get the string, arr[]
 - ➤ Convert it into lowercase
 - > Initialize a count variable, count=0 and create a variable for the length of string, I
 - ➤ For i from 0 to I-1
 - > If arr[i]= 'a' or arr[i]= 'e' or arr[i]= 'i' or arr[i]= 'o' or arr[i]= 'u'
 - ➤ Then count++
 - > Print count

