

Part 4 SOTA model

Ch1. ViT

An image is worth 16x16 words - Transformers for image recognition at scale

CNN to ViT

- CNN(Convolutional Neural Network)
 - Computer vision분야에서 많이 사용
 - Input image의 공간정보를 유지한 채 학습

CNN to ViT

- Transformer & CNN
 - CNN Image 전체의 정보를 압축하기 위해 여러 개의 layer를 통과
 - Transformer 하나의 layer로 전체 image 정보를 압축

CNN

Transformer

Transformer

- Inductive bias
 - 주어지지 않은 입력의 출력을 예측

Transformer

Inductive bias

CNN

- Convolution filter 사용
- 지역적인 정보 유지o
- 학습 후, 고정된 Weight을 사용

Transformer

- 임베딩에 의한 벡터 변환 후, Self attention
- 지역적인 정보 유지x
- 학습 후에도 input vector에 따라 Weight이 달라짐
- Inductive bias ↓

ViT(Vision in Transformer)

Architecture

Self attention

• NLP • Vision

• Step 1 - Patch embedding

Patch embedding(example-ViT/16)

• Step2 - Embedding patch + Positional Embedding

 Patch embedding + Positional Embedding (example-ViT/16)

Transformer Encoder

• Step 3 – Transformer encoder

- Multi-Head Attention
 - Scaled Dot-Product Attention

Multi-Head Attention

• MLP

• Step 4 – MLP Head

MLP Head

Summary

