

UNIVERSIDADE FEDERAL DE OURO PRETO

Departamento de Computação e Sistemas – DECSI Prof. Filipe Ribeiro

RELATÓRIO ATIVIDADE PRÁTICA DE PROGRAMAÇÃO

Redes de Computadores I – Turma: Sistemas de Informação

Alunos: Arthur Mendonça Feu, Marco Túlio Madeira e Daniel Ângelo Morais

João Monlevade 2023

INTRODUÇÃO:

Como parte da ementa da disciplina de Redes de Computadores, foi solicitado a realização de uma atividade prática com foco na utilização de Sockets e Threads. O arquivo TXT com as orientações do professor está presente na mesma pasta Zip que contém este relatório.

DIVISÃO DE TAREFAS

O grupo apresentado optou por dividir as tarefas de forma mista. Cada aluno contribuiu ativamente na implementação dos códigos. O aluno Daniel Ângelo trabalhou no desenvolvimento de uma interface para executar os programas em Python, inicialmente em parceria com Marco Túlio e posteriormente com Arthur Feu. Ele também auxiliou nos códigos de implementação, fornecendo instruções, dicas e suporte para debug. Os outros dois alunos, Marco e Arthur, foram responsáveis pela implementação básica dos protocolos TCP e UDP, respectivamente.

A construção do relatório e arquivos de documentação foi uma tarefa realizada em conjunto por todos os membros da equipe. Além disso, foi utilizado um repositório Git para facilitar a colaboração e a dinâmica de trabalho da equipe, disponível em: (https://github.com/marco-madeira/REDES_SOCKET).

EXECUÇÃO DA PRÁTICA

Para realizar a implementação da prática, foram criados inicialmente 4 arquivos básicos, que posteriormente foram aprimorados para a contemplação dos pontos extras. Isso incluiu a implementação de uma interface gráfica com botões para selecionar o arquivo a ser enviado pelo protocolo e a funcionalidade de abrir o arquivo no cliente. Ao final, obtivemos um arquivo *cliente*, um arquivo *servidor* e o *transfer_data*, que é responsável por implementar as atividades dos protocolos. Essa estrutura foi replicada para cada um dos protocolos, resultando em um total de 6 arquivos.

PROTOCOLO DE CONTROLE DE TRANSMISSÃO (TCP)

O protocolo TCP é um dos mais confiáveis e amplamente utilizado para a transferência de arquivos pela internet, devido a sua capacidade de garantir a entrega de dados dentro do pacote. O protocolo, implementa mecanismo de retransmissão automática de pacotes perdidos. Se um pacote não for recebido corretamente, o TCP solicitará a retransmissão desse pacote específico, garantindo que todos os dados sejam entregues corretamente, mesmo em condições de rede instáveis.

Uma das dificuldades enfrentadas pelo grupo na implementação do TCP, foi o tamanho do buffer, que às vezes não suportava enviar todo arquivo. Para solucionar esse problema foi criado uma condição para aumentar esse buffer, dependendo do arquivo que era solicitado.

PROTOCOLO DE DATAGRAMAS DO USUÁRIO (UDP)

A transferência de arquivos utilizando o protocolo UDP apresenta limitações significativas devido à falta de garantias de entrega confiável de dados. Dados enviados por UDP podem ser perdidos, chegar fora de ordem, ou corrompidos, o que compromete a integridade e a precisão dos arquivos transferidos. No UDP, os dados são divididos em datagramas e transmitidos sem estabelecer uma conexão prévia entre as partes envolvidas. Isso resulta em uma transmissão mais rápida e eficiente em comparação com o TCP, pois não há sobrecarga de controle de conexão.

Na implementação do UDP, uma das dificuldades enfrentadas foi o travamento da interface do usuário durante a operação. Para contornar esse problema, o grupo optou pelo uso de threads, permitindo que a transferência de dados ocorresse em segundo plano, enquanto a interface permanecia responsiva. Além disso, outro desafio enfrentado foi a perda de pacotes, mencionada anteriormente. A estratégia adotada consistiu em implementar um mecanismo de confirmação de recebimento: Após receber um pacote, o receptor enviava uma confirmação ao remetente. Se o remetente não recebesse a confirmação dentro de um tempo limite, ele reenviaria o pacote. Isso garantia que o remetente tivesse conhecimento da entrega bem-sucedida de cada pacote.

COMPARATIVO e CONCLUSÃO

Levando em consideração a atividade prática realizada, é possível atribuir diferenças consideráveis entre os dois protocolos citados. Além disso, utilizaremos os arquivos base fornecidos pelo professor (*small, medium, large*) para montar uma pequena base de dados comparativa:

Tempo de execução e transferência em milissegundos por arquivo

Protocolo	Small (1001 ln)	Medium (10001 ln)	Large (100001 ln)
ТСР	0.07	0.24	2.02
UDP	0.04	0.25	1.88

Em termos apenas de velocidade de transmissão, o protocolo TCP é superior ao protocolo UDP. Essa diferença se dá pela quantidade de processos realizados na implementação de cada um e fica mais significativa apenas para o maior arquivo.

Contudo, é interessante também avaliar as diferenças que vão além da velocidade de transferência dos dados, como a confiabilidade de cada um e o controle de fluxo. Como explicado anteriormente, o protocolo TCP é mais confiável e possui mais processos para a transferência de pacotes. Além disso, a ausência de controle de fluxo no UDP pode levar a problemas de sobrecarga de rede, principalmente em redes com qualidade variável. Já o TCP

ajusta automaticamente a taxa de transferência de dados com base na capacidade da rede, evitando sobrecargas.

Em última análise, nosso grupo chegou à conclusão de que o protocolo TCP é melhor avaliado para situações que exigem maior segurança e confiabilidade na transferência de pacotes, enquanto por outro lado, o protocolo UDP será fortemente recomendado para situações que exigem velocidade e não levam em consideração a confiabilidade no ato da transferência de dados.