- **2.26** Assume clockwise mesh currents for the circuit shown in Fig. P2.26 (below). Use mesh analysis to find these mesh currents.
- **2.27** For the circuit shown in Fig. P2.27, find v_o when the ideal amplifier (a) is an op amp, and (b) has finite gain A.

Fig. P2.27

2.28 For the op-aimp circuit shown in Fig. P2.28, find (a) v_o , and (b) i_o .

Fig. P2.28

2.29 For the op-amp circuit shown in Fig. P2.29, find (a) v_o , and (b) i_o .

Fig. P2.29

2.30 The op-amp circuit shown in Fig. P2.30 is known as a **negative-impedance converter**. For this circuit, find (a) v_o , and (b) the resistance v_s/i_s .

Fig. P2.30

- **2.31** For the op-amp circuit shown in Fig. P2.31, find (a) v_o , and (b) the resistance v_s/i_s . (See p. 104.)
- **2.32** For the op-amp circuit shown in Fig. P2.31, interchange the 1- Ω and 2- Ω resistors, and find (a) v_o , and (b) the resistance v_s/i_s . (See p. 104.)

Fig. P2.26

Fig. P2.31

Fig. P2.33

- **2.33** For the op-amp circuit shown in Fig. P2.33, find (a) v_o , and (b) the resistance v_s/i_s .
- **2.34** For the op-amp circuit shown in Fig. P2.34, find (a) v_o , and (b) the resistance v_s/i_s . (See p. 105.)
- **2.35** For the op-amp circuit shown in Fig. P2.35, find v_o .

2.37 Consider the circuit shown in Fig. P2.37. (a)

Find the Thévenin equivalent of the circuit to the left

Fig. P2.37

Fig. P2.35

2.36 For the op-amp circuit shown in Fig. P2.36, find v_o . (See p. 105.)

2.38 For the circuit shown in Fig. P2.37, connect a $12-\Omega$ resistor between terminal a and the positive terminal of the voltage source. (a) Find the Thévenin equivalent of the resulting circuit to the left of ter-

2.45 Find the Thévenin equivalent of the op-amp circuit shown in Fig. P2.45. (*Hint:* To find R_o , apply a current source i_o and calculate the resulting voltage v_o .)

Fig. P2.45

2.46 Find the Thévenin equivalent of the op-amp circuit shown in Fig. P2.46. (*Hint*: To find R_o , apply a current source i_o and calculate the resulting voltage v_o .)

Fig. P2.46

2.47 Show that the Norton equivalent of the circuit shown in Fig. P2.47 is an ideal current source. (*Hint*: To find R_o , apply a voltage source v_o and calculate the resulting current $i_{o'}$)

Fig. P2.47

2.48 For the circuit shown in Fig. P2.48, find (a) the Norton-equivalent circuit, and (b) the Thévenin-equivalent circuit.

Fig. P2.48

2.49 Figure P2.49 demonstrates the concept of a source transformation. Specifically, the voltage source v_s connected in series with a resistance R_s is equivalent to a current source v_s/R_s connected in parallel with R_s . Without using Thévenin's or Norton's theorem, confirm the equivalence of Fig. P2.49a and b by writing expressions relating i and v.

2.50 Figure P2.50 also demonstrates the concept of a source transformation. Specifically, the current source i_g connected in parallel with R_g is equivalent to a voltage source $R_g i_g$ connected in series with a resistance R_g . Without using Thévenin's or Norton's theorem, confirm the equivalence of Fig. P2.50a and b by writing expressions relating i and v.

2.51 Use source transformations as described in Problems 2.49 and 2.50 to reduce the circuit given in Fig. P2.8 to a circuit having one mesh. Calculate v_3 from this reduced circuit.

2.52 Use source transformations as described in Problems 2.49 and 2.50 to reduce the circuit given in Fig. P2.9 to a circuit having one mesh. Calculate v_3 from this reduced circuit.

2.53 Use source transformations as described in Problems 2.49 and 2.50 and combine independent sources to reduce the circuit given in Fig. P2.39 to a circuit having one mesh. Calculate i from this reduced circuit when $R_L = 6 \Omega$.

Problems

3.1 For the circuit shown in Fig. P3.1a, suppose that i(t) is described by the function given in Fig. P3.1b. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $v_R(t)$, and (e) $v_s(t)$.

Fig. P3.1

- **3.3** For the circuit shown in Fig. P3.3, suppose that i(t) is described by the function given in Fig. P3.1b. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $i_R(t)$, and (e) $i_S(t)$.
- **3.4** For the circuit shown in Fig. P3.3, suppose that i(t) is described by the function given in Fig. P3.2. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $i_R(t)$, and (e) $i_s(t)$.

Fig. P3.2

Fig. P3.3

- **3.5** For the circuit shown in Fig. P3.5, suppose that i(t) is described by the function given in Fig. P3.1b. Sketch (a) $v_R(t)$, (b) $v_L(t)$, and (c) v(t).
- **3.6** For the circuit shown in Fig. P3.5, suppose that i(t) is described by the function given in Fig. P3.2. Sketch (a) $v_R(t)$, (b) $v_L(t)$, and (c) v(t).
- **3.7** For the circuit shown in Fig. P3.7a, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $w_c(t)$, (c) $p_R(t)$, (d) $v_R(t)$, and (e) $v_s(t)$.
- **3.8** For the circuit shown in Fig. P3.8, suppose that v(t) is described by the function given in Fig. P3.7b.

Fig. P3.5

Fig. P3.7

Sketch (a) i(t), (b) $w_C(t)$, (c) $p_R(t)$, (d) $i_R(t)$, and (e) $i_s(t)$.

Fig. P3.8

3.9 For the op-amp circuit shown in Fig. P3.9, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.

Fig. P3.9

- 3.10 For the op-amp circuit shown in Fig. P3.9, connect an additional 2- Ω resistor in parallel with the capacitor. Suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.
- 3.11 For the op-amp circuit shown in Fig. P3.11, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.

Fig. P3.11

- **3.12** For the op-amp circuit given in Fig. P3.11, connect an additional 2- Ω resistor in parallel with the capacitor. Suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.
- **3.13** For the op-amp circuit shown in Fig. P3.13, suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.

Fig. P3.13

- 3.14 For the op-amp circuit shown in Fig. P3.13, connect an additional 2- Ω resistor in parallel with the capacitor. Suppose that v(t) is described by the function given in Fig. P3.7b. Sketch (a) i(t), (b) $i_R(t)$, (c) $v_R(t)$, (d) $v_s(t)$, and (e) $v_o(t)$.
- 3.15 Show the following: (See p. 178.)
- (a) Inductors connected in series can be combined as depicted in Fig. P3.15a.
- (b) Inductors connected in parallel can be combined as depicted in Fig. P3.15b.
- (c) Capacitors connected in parallel can be combined as depicted in Fig. P3.15c.
- (d) Capacitors connected in series can be combined as depicted in Fig. P3.15d.
- **3.16** For the circuit shown in Fig. P3.1a, suppose that v(t) is described by the function given in Fig. P3.16. Sketch (a) i(t), (b) $v_R(t)$, and (c) $v_s(t)$. (See p. 178.)