Algorithms and Analysis

Lesson 12: Use Arrays for Fast Set Algorithms

Equivalent classes, Disjoint Set, Fast Sets

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets

• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties

```
(Reflexivity) For every element x \in \mathcal{X}, x \sim x (Symmetry) For every two elements x,y \in \mathcal{X} if x \sim y then y \sim x (Transitivity) For every three elements x,y,z \in \mathcal{X} if x \sim y and y \sim z then x \sim z
```


• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties

(Reflexivity) For every element $x \in \mathcal{X}$, $x \sim x$ (Symmetry) For every two elements $x, y \in \mathcal{X}$ if $x \sim y$ then $y \sim x$

(Transitivity) For every three elements $x,y,z\in\mathcal{X}$ if $x\sim y$ and $y\sim z$ then $x\sim z$

• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties

(Reflexivity) For every element $x \in \mathcal{X}$, $x \sim x$ (Symmetry) For every two elements $x, y \in \mathcal{X}$ if $x \sim y$ then $y \sim x$

(Transitivity) For every three elements $x,y,z\in\mathcal{X}$ if $x\sim y$ and $y\sim z$ then $x\sim z$

• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties

```
(Reflexivity) For every element x \in \mathcal{X}, x \sim x (Symmetry) For every two elements x,y \in \mathcal{X} if x \sim y then y \sim x (Transitivity) For every three elements x,y,z \in \mathcal{X} if x \sim y and y \sim z then x \sim z
```


• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties

(Reflexivity) For every element $x \in \mathcal{X}$, $x \sim x$ (Symmetry) For every two elements $x, y \in \mathcal{X}$ if $x \sim y$ then $y \sim x$

(Transitivity) For every three elements $x,y,z\in\mathcal{X}$ if $x\sim y$ and $y\sim z$ then $x\sim z$

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging, but fortunately there is an elegant solution to this

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets $\mathcal{S}_1, \mathcal{S}_2, \ldots$
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets \mathcal{S}_1 , \mathcal{S}_2 , . . .
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union_(int root1, int root2) { /* Union */}

    private:
    int* s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union_(int root1, int root2) { /* Union */}

    private:
    int* s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union_(int root1, int root2) { /* Union */}

    private:
    int* s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree

$$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -2 & 5 & -1 & -1 & -1 \ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

$$\begin{bmatrix} -1 & | -1 & | -1 & | -1 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

find(6)=5

$$(1)^{1}$$
 $(2)^{1}$ $(3)^{1}$ $(4)^{1}$ $(5)^{1}$ $(6)^{1}$ $(8)^{1}$

union(find(3),find(6))

$$\begin{bmatrix} -1 & | -1 & | -1 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(2),find(6))

union(find(2),find(6))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(8))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | -1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(8))

$$\begin{bmatrix} -1 & -1 & 5 & 5 & -1 & -2 & 5 & -2 & 7 & 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(3))

$$\begin{bmatrix} -1 & | -1 & | 5 & | 5 & | -1 & | -2 & | 5 & | -2 & | 7 & | 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

union(find(9),find(3))

-1	-1	5	5	-1	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(3),find(4))

union(find(3),find(4))

-1	-1	5	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(0),find(1))

-1	-1	5	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(0),find(1))

-2	0	15	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

union(find(1),find(2))

 $\begin{bmatrix} -2 & 0 & 5 & 7 & 7 & 7 & 5 & -3 & 7 & 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$

union(find(1),find(2))

7	0	7	7	7	7	5	-3	7	7
0	1	2	3	4	5	6	7	8	9

find(6)

$$find(6)=7$$

7	0	7	7	7	7	7	-3	7	7
0	1	2	3	4	5	6	7	8	9

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<numElements; i++)</pre>
                                       // roots are negative number
        s[i] = -1;
void DisjointSets::union_(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
        s[root1] = root2; // make root2 the root
    } else {
        if (s[root1] == s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
                       -A
s[]
                                            root2
                       root1
```

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<numElements; i++)</pre>
                                      // roots are negative number
        s[i] = -1;
void DisjointSets::union_(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
                          // make root2 the root
        s[root1] = root2;
    } else {
        if (s[root1] == s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
                       -A
s[]
                                            root2
                       root1
```

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<numElements; i++)</pre>
                                      // roots are negative number
        s[i] = -1;
void DisjointSets::union_(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper}
                          // make root2 the root
        s[root1] = root2;
    } else {
        if (s[root1] == s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
                       -A
s[]
                                            root2
                       root1
```

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

Mazes

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
		37		
40	41	42	43	44
$\overline{45}$	46	47	48	49

Mazes

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34
		37		
40	41	42	43	44
45	46	47	48	49

- \bullet If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- ullet Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \leq 5$ for all conceivable N

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(10^{80}) = 265.75$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(10^{80})) = 8.0539$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(10^{80}))) = 3.0097$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(10^{80}))) = 1.5896$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(\log_2(10^{80})))) = 0.66868$$

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

$$\log_2(\log_2(\log_2(\log_2(10^{80})))) = 0.66868$$

• The proof of this time complexity is rather involved

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3 Fast Sets

- Binary Search Trees: $O(\log_2(n))$, general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- B-trees: $O((k-1)\log_k(n))$ very complicated, used for large amounts of data
- Tries: $O(\log_k(n))$ for large k expensive in memory, complicated to code efficiently

- Binary Search Trees: $O(\log_2(n))$, general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- B-trees: $O((k-1)\log_k(n))$ very complicated, used for large amounts of data
- Tries: $O(\log_k(n))$ for large k expensive in memory, complicated to code efficiently

- Binary Search Trees: $O(\log_2(n))$, general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- ullet B-trees: $O((k-1)\log_k(n))$ very complicated, used for large amounts of data
- Tries: $O(\log_k(n))$ for large k expensive in memory, complicated to code efficiently

- Binary Search Trees: $O(\log_2(n))$, general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- B-trees: $O((k-1)\log_k(n))$ very complicated, used for large amounts of data
- Tries: $O(\log_k(n))$ for large k expensive in memory, complicated to code efficiently

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random—what should we use?

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set
- But how do we find a random element of the set quickly?

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set
- But how do we find a random element of the set quickly?

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set
- But how do we find a random element of the set quickly?

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set
- But how do we find a random element of the set quickly?
- Use another array of course!

add (4)

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

true

true

add(7)
0 1 2 3 4 5 6 7 8 9
-1 -1 -1 -1 0 -1 -1 1

true

add (4)

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 0 -1 1

4 9 7

false
0 1 2 3 4 5 6 7 8 9
-1 -1 -1 -1 0 -1 2 -1 1

add(1)

0 1 2 3 4 5 6 7 8 9

-1 -1 -1 -1 0 -1 -1 2 -1 1

4 9 7

true

contains(9)

0	1	2	3	4	5	6	7	8	9
-1	3	-1	-1	0	-1	-1	2	-1	1
4	9	7	1						

true

contains(5)

0	1	2	3	4	5	6	7	8	9
-1	3	-1	-1	0	-1	-1	2	-1	1
$\boxed{4}$	9	7	1						

false
0 1 2 3 4 5 6 7 8 9
-1 3 -1 -1 0 -1 2 -1 1

remove(9)

true

Implementation

```
class FastSet {
  private:
    int* indexArray;
    int* memberArray;
    int noMembers;
  public:
    FastSet(int n) {
      indexArray = new int[n];
      memberArray = new int[n];
      for (int i=0; i<n; i++) {</pre>
           indexArray [i] = -1;
      noMembers = 0;
  int size() {
     return noMembers;
```

Implementation

```
class FastSet {
  private:
    int* indexArray;
    int* memberArray;
    int noMembers;
  public:
    FastSet(int n) {
      indexArray = new int[n];
      memberArray = new int[n];
      for (int i=0; i<n; i++) {</pre>
           indexArray [i] = -1;
      noMembers = 0;
  int size() {
     return noMembers;
```

Implementation

```
class FastSet {
  private:
    int* indexArray;
    int* memberArray;
    int noMembers;
  public:
    FastSet(int n) {
      indexArray = new int[n];
      memberArray = new int[n];
      for (int i=0; i<n; i++) {</pre>
           indexArray [i] = -1;
      noMembers = 0;
  int size() {
     return noMembers;
```

Add and Remove

```
bool add(int i) {
   if (indexArray[i]>-1)
      return false;
   memberArray[noMembers] = i;
   indexArray[i] = noMembers;
   ++noMembers;
   return true;
bool remove(int i) {
   if (indexArray[i]==-1)
         return false;
   --noMembers;
   memberArray[indexArray[i]] = memberArray[noMembers];
   indexArray[memberArray[noMembers]] = indexArray[i];
   indexArray[i] = -1;
   return true;
```

Add and Remove

```
bool add(int i) {
   if (indexArray[i]>-1)
      return false;
   memberArray[noMembers] = i;
   indexArray[i] = noMembers;
   ++noMembers;
   return true;
bool remove(int i) {
   if (indexArray[i]==-1)
         return false;
   --noMembers;
   memberArray[indexArray[i]] = memberArray[noMembers];
   indexArray[memberArray[noMembers]] = indexArray[i];
   indexArray[i] = -1;
   return true;
```

Collection Methods

```
void clear() {
   for(int i=0; i<noMembers; i++) {</pre>
      indexArray[memberArray[i]] = -1;
   noMembers = 0;
bool isEmpty() {
   return noMembers==0;
int* begin() {return &memberArray[0];}
int* end() {return &memberArray[noMembers];}
```

Collection Methods

```
void clear() {
   for(int i=0; i<noMembers; i++) {</pre>
      indexArray[memberArray[i]] = -1;
   noMembers = 0;
bool isEmpty() {
   return noMembers==0;
int* begin() {return &memberArray[0];}
int* end() {return &memberArray[noMembers];}
```

Collection Methods

```
void clear() {
   for(int i=0; i<noMembers; i++) {</pre>
      indexArray[memberArray[i]] = -1;
   noMembers = 0;
bool isEmpty() {
   return noMembers==0;
int* begin() {return &memberArray[0];}
int* end() {return &memberArray[noMembers];}
```

And Random?

 We can add additional methods taking advantage of the classes strength

Need to use FastSet signature to use this

```
FastSet fastSet(n);
int r = fastSet.getRandomElement();
```

And Random?

 We can add additional methods taking advantage of the classes strength

Need to use FastSet signature to use this

```
FastSet fastSet(n);
int r = fastSet.getRandomElement();
```

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array
- Why?

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array
- Why?

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array
- Why?

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array
- Why?

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array
- Why? The array solution isn't in the books

- If you have a bounded set then using an array is usually going to be very fast O(1) (or $O(\log^*(n))$)
- These data structures are not general purpose for solving every day problems (c.f. vector<T>, set<T> and map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist

- If you have a bounded set then using an array is usually going to be very fast O(1) (or $O(\log^*(n))$)
- These data structures are not general purpose for solving every day problems (c.f. vector<T>, set<T> and map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist

- If you have a bounded set then using an array is usually going to be very fast O(1) (or $O(\log^*(n))$)
- These data structures are not general purpose for solving every day problems (c.f. vector<T>, set<T> and map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist

- If you have a bounded set then using an array is usually going to be very fast O(1) (or $O(\log^*(n))$)
- These data structures are not general purpose for solving every day problems (c.f. vector<T>, set<T> and map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist