How to Break Secure Boot on FPGA SoCs through Malicious Hardware

<u>Nisha Jacob</u>, Johann Heyszl, Andreas Zankl, Carsten Rolfes, and Georg Sigl CHES 2017, September 27th, 2017

FPGA SoCs in a nutshell

- Include FPGA and hard-core CPU on the same die
- High performance CPU together with customizable hardware accelerators
- In-field updates, for both hardware and software e.g., update communication interface to fit new standards
- Shift to contemporary platforms like FPGA SoCs

How to get HW blocks for the FPGA SoCs?

- Lack of time and skill for in-house development
 - e.g. as SW design team
- Outsource to third party
- Buy from somewhere else
 - e.g. Amazon Web Services market place

Flash light mobile application

Threat of third party IP cores

- Third party IP needs to be tested before integration
- Requires time, resources and skills
- Often IP is delivered as a netlist
- Hard to verify IP does not contain additional functionality
- Malicious functionality in IP cores can ...
 - e.g. corrupt sensitive data, memory or cause privilege escalation

Threat of third party IP cores

- Third party IP needs to be tested before integration
- Requires time, resources and skills
- Often IP is delivered as a netlist
- Hard to verify IP does not contain additional functionality
- Malicious functionality in IP cores can ...
 - e.g. corrupt sensitive data, memory or cause privilege escalation
 - \rightarrow Do you trust the vendor?

What is secure boot?

- One of the most important security mechanisms
- Foundation for all later security mechanisms
- All executed code is verified before execution
- After system startup, running software can be trusted
- Chain-of-trust is established starting from hardware-root-of-trust,
 - e.g. keys in eFuses, ROM

Our contribution

- 1. How to break secure boot of FPGA SoCs, ...
 - on Xilinx Zynq-7000

Our contribution

1. How to break secure boot of FPGA SoCs, ...

on Xilinx Zynq-7000

2. ... generalise ...

- impact on common security mechanisms
- to other FPGA SoCs

Our contribution

- 1. How to break secure boot of FPGA SoCs, ...
 - on Xilinx Zynq-7000
- 2. ... generalise ...
 - impact on common security mechanisms
 - to other FPGA SoCs
- 3. ... and how to protect against such threats
 - using a security enhanced AXI-wrapper

How to break secure boot of FPGA SoCs...

on Xilinx Zynq-7000

Attack timeline

How to break secure boot of FPGA SoCs, ...

... generalise ...

impact on common security mechanisms

Why existing mechanisms do not help

- IOMMU
 - Prevent unauthorised accesses to memory by peripherals
 - Typically initialized by OS
 - Older generations have no IOMMU

Why existing mechanisms do not help

- IOMMU
 - Prevent unauthorised accesses to memory by peripherals
 - Typically initialized by OS
 - Older generations have no IOMMU
- TrustZone
 - Prevents unauthorised access to secure world
 - Crypto cores are typically within Trustzone
 - Whole system can be corrupted
 - Since U-boot runs in normal world
 - Normal world IP cores can still carry out the attack

generalisation to other FPGA SoCs

Impact on different FPGA SoCs

- Xilinx Zynq UltraScale+
 - → XMPU from Xilinx allows dynamic memory restriction from early boot stages

Impact on different FPGA SoCs

- Xilinx Zynq UltraScale+
 - → XMPU from Xilinx allows dynamic memory restriction from early boot stages
- Altera allows different boot options
 - → Depends whether FPGA boots before the OS or during the CPU Often FPGA is needed early (e.g. for acceleration)

Impact on different FPGA SoCs

- Xilinx Zynq UltraScale+
 - → XMPU from Xilinx allows dynamic memory restriction from early boot stages
- Altera allows different boot options
 - → Depends whether FPGA boots before the OS or during the CPU Often FPGA is needed early (e.g. for acceleration)
- Microsemi uses non-volatile FPGA
 - → Threat is imminent from the very start

How to break secure boot of FPGA SoCs, ..
... generalise ...

... and protect against such threats

using a security enhanced AXI-wrapper

- Does the following checks
 - Address location being accessed during read/write
 - Accesses when system is in idle state
 - Number of transactions being executed
 - TrustZone setting

- Uses configuration information sent by software
 - Source address, destination address, length, enable, TrustZone setting

Checks are interleaved between AXI handshaking

Benefits of our solution

- Interleaves checks between the AXI-handshake
 - Does not affect the performance
- Minimalist functionality and small code base
- Support easy review and re-use
- Functional from power-up and does not rely on OS
- Sources can be downloaded from:

https://github.com/Fraunhofer-AISEC/axi-firewall

Take-home-message

- **System security is threatened** through malicious hardware
- Especially on FPGA SoCs, many HW cores will be sourced from third parties

Remember! Hardware cores can also include additional functionality

- This paper shows compromise of secure boot
- At DATE 2017, we showed threat to crypto keys in running systems

Take-home-message

- System security is threatened through malicious hardware
- Especially on FPGA SoCs, many HW cores will be sourced from third parties

Remember! Hardware cores can also include additional functionality

- This paper shows compromise of secure boot
- At DATE 2017, we showed threat to crypto keys in running systems
- Take care of isolating such hardware cores
 - \rightarrow Use simple wrapper or XMPU etc

Nisha Jacob

nisha. jacob@aisec. fraunhofer. de

Hardware Security Department

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Garching (near Munich) Germany

http://www.aisec.fraunhofer.de

