

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL
ENGENHARIA DA COMPUTAÇÃO
DISCIPLINA DE CIRCUITOS ELÉTRICOS I
LISTA DE EXERCÍCIOS #12 – RESPOSTA NATURAL DO CIRCUITO RL
PROF. CARLOS ELMANO

* Fonte: Nilson, 10ª. Edição.

- 7.3 No circuito mostrado na Figura P7.3, a chave conecta-se com a posição b imediatamente antes de desconectar-se da posição a. Como já mencionamos, esse tipo de chave é conhecido como liga-antes-interrompe-depois e é projetada de modo a não interromper a corrente em um circuito indutivo. Admite-se que o intervalo de tempo entre 'ligar' e 'desligar' é desprezível. A chave esteve na posição a por um longo tempo. Em t=0, ela muda da posição a para a posição b.
 - a) Determine a corrente inicial no indutor.
 - b) Determine a constante de tempo do circuito para t > 0.
 - c) Determine $i, v_1 \in v_2$ para $t \ge 0$.
 - d) Qual percentagem da energia inicial armazenada no indutor é dissipada no resistor de 90 Ω 1 ms depois de a chave ser mudada da posição a para a posição b?

Figura P7.3

- 7.8 A chave no circuito da Figura P7.8 esteve fechada por um longo tempo, antes de ser aberta em t = 0.
 - a) Determine $i_1(0^-)$ e $i_2(0^-)$.
 - b) Determine $i_1(0^+)$ e $i_2(0^+)$.
 - c) Determine $i_1(t)$ para $t \ge 0$.
 - d) Determine $i_2(t)$ para $t \ge 0^+$.
 - e) Explique por que $i_2(0^-) \neq i_2(0^+)$.

Figura P7.8

- 7.9 A chave mostrada na Figura P7.9 esteve aberta durante um longo tempo, antes de seu fechamento em t = 0.
 - a) Determine $i_0(0^-)$, $i_1(0^-)$ e $v_1(0^-)$.
 - b) Determine $i_a(0^+), i_I(0^+) \in V_I(0^+).$
 - c) Determine $i_o(\infty)$, $i_L(\infty)$ e $v_L(\infty)$.
 - d) Escreva a expressão de $i_t(t)$ para $t \ge 0$.
 - e) Escreva a expressão de $i_{o}(t)$ para $t \ge 0^{+}$.
 - f) Escreva a expressão de $v_L(t)$ para $t \ge 0^+$.

Figura P7.9

7.10 A chave no circuito da Figura P7.10 esteve na posição 1 por um longo tempo. Em t = 0, ela passa instantaneamente para a posição 2. Determine o valor de R de modo que 10% da energia inicial armazenada no indutor de 10 mH seja dissipada em R em 10 µs.

Figura P7.10

- 7.19 No circuito mostrado na Figura P7.19, a chave esteve na posição a por um longo tempo. Em t=0, ela passa instantaneamente de a para b.
 - a) Determine $i_o(t)$ para $t \ge 0$.
 - b) Qual é a energia total fornecida ao resistor de 8 Ω ?
 - c) Quantas constantes de tempo s\u00e3o necess\u00e3rias para se atingir 95% da energia determinada em (b)?

Figura P7.19

- 7.20 A fonte de 240 V, e resistência interna de 2 Ω, no circuito da Figura P7.20, sofre inadvertidamente um curto-circuito em seus terminais a,b. No instante em que a falha ocorre, o circuito estava em funcionamento havia um longo tempo.
 - a) Qual é o valor inicial da corrente i_{ab} de curto-circuito entre os terminais a,b?
 - b) Qual é o valor final da corrente i_{ab} ?
 - c) Em quantos microssegundos, depois de o curto-circuito ter ocorrido, a corrente de curto atinge 114 A?

Figura P7.20

GABARITO

- 7.3) a) 0,5A
 - b) 2ms

c)
$$i(t)=0.5e^{-500t}$$
 (A)

$$v_1(t) = -80e^{-500t} (V)$$

$$v_2(t) = -35e^{-500t} (V)$$

- d) 35,6%
- 7.8) a) 4mA e 12mA;
 - b) 4mA e -4mA;
 - c) $4e^{-25.000t}$ (mA);
 - d) $-4e^{-25.000t}$ (mA);
 - e) ...
- 7.9) a) 0A, 100mA e 0V;
 - b) 400mA, 100mA e -20V;
 - c) 500mA, 0A e 0V;
 - d) 100e^{-4.000t} (mA);
 - e) -100e^{-4.000t} (mA);
 - f) 20e^{-4.000t} (V).
- 7.10) 52,7Ω
- 7.19) a) $-10e^{-5.000t}$ (A)
 - b) 80mJ
 - c) 1,5τ
- 7.20) a) 90A
 - b) 120A
 - c) 439,4µs