

라즈베리파이 기반의 스마트 도어 시스템

Smart Door System Based on Raspberry Pl

- 벨 연구소 -2011154006 김동현 2015154043 문주혁 2015150045 박예은 2015154052 임윤경

지도교수: 박정민 교수님

- 1 개요
- 2 관련 연구 및 사례
- 3 시스템 수행 시나리오
- 4 시스템 구성도
- 5 시스템 모듈 상세설계

- 6 개발 환경 및 방향
- 7 업무 분담
- 8 수행 일정
- 9 깃 허브 & 참고 문헌

11 개요

지난 발표에서의 지적사항 >>

[스마트도어 시스템에 대한 좀 더 상세하고 명확한 설명이 필요함]

지적사항에 대한 답변 >>

[시스템 구성도 및 모듈 상세설계에서 미흡한 내용을 보완함]

1 개요

최근 1인 가구 및 맞벌이 가구 비율이 증가하여 집을 비우는 시간이 늘어남에 따라 그에 따른 범죄율 또한 증가하는 추세임

최근 음성 관련 기술이 발전하면서 인공지능 기능을 탑재한 국내외 상품들이 화두가 되고 있음

1 개요

개발목표 >>

[스마트도어 시스템을 개발하여 범죄를 예방하고 사용자의 편의를 증대 시킴]

2 관련 연구 및 사례

관련 연구 >>

스마트 도어록 시스템을 위한 IOT 기반의 실시간 스트리밍 및 원격제어 [1]

☞ 장점: 모니터링 및 원격제어 가능

☞ 단점 : 취약한 보안

Smart Door System for Home Security Using Raspberry Pi3 [2]

☞ 장점: 안면인식 기술 도입으로 보안 강화

☞ 단점: 제한된 사용자 인터페이스

Intelligent Intrusion Prevention System For Households Based on System-On-Chip Computer [3]

☞ 장점: 안면인식 기술 도입으로 보안 강화

☞ 단점: 제한된 사용자 인터페이스, 방문객 구분이 필요

2 관련 연구 및 사례

관련 사례 >>

- 무선 WIFI 통신
- 실시간 외부 모니터링
- 외부인과 실시간 영상통화
- 인체 동작 감지 및 푸시 알람 기능
- 도어락 문 열림 원격 제어

☞ 문제점: 보안에만 치중되어 있어 상품성이 떨어짐

3 시스템 수행 시나리오

외부인 감지 및 모니터링 monitoring 스마트 비서 3 2 4 1 푸시 알람 PUSH 서버 알람 확인 외부인 감지 외부인 APP 2 1 ③ 문 열림 감지 ④ 데이터 송수신 사용자 PI (Server) PI (Client) 요구사항 입력 DB 서버 (일정, 준비물, 택배) **(5)** 문 열림 음성파일 송신 4 기상청 기상정보 요청 및 수신

음성 출력 (스피커)

4 시스템 구성도

4 시스템 구성도

>> SMART DOOR SYSTEM USE CASE DIAGRAM

>> PI (Server)의 기능

Web Server

Client(Pl or APP)로부터 받은 요청을 처리(응답)

DB Server

Client(Pl or APP)로부터 받은 데이터(혹은 요청)를 관리(조회, 삽입, 수정, 삭제)

Push Server

PI(Client)로부터 외부인 감지 신호를 받으면 사용자의 APP에 Push 알림 전송

>> APP의 기능

- 사용자는 언제 어디서나 APP을 통해 외부 상황을 모니터링 가능
- APP의 인터페이스를 통해 요구사항을 관리

>> Streaming Server

- PI(Client)에 부착된 카메라로부터 실시간 외부 영상을 수집
- 수집된 영상을 사용자의 APP에 제공

>> Web & Hybrid App

Web Version

App Version

>> 문 열림 감지 모듈 기능

- 마그네틱 도어센서를 이용하여 문 열림을 감지
- 문열림이 감지될 경우, 상태를 Server에 전송

>> 문 열림 감지 모듈 CLASS DIAGRAM

DoorRecognition	
+bool openYN +time openTime	// 문 열림 여부 (true:열림/false:닫힘) // 몇 시에 열렸는지
isDoorOpen() getCurrentTime() sendDoorState()	// 문 열림 여부 확인 // 문 열림 감지 시, 현재 시간을 얻음 // 문 열림 감지 시, 상태를 Server에 전송

>> 외부인 감지 모듈 기능

- 인체 감지 센서를 이용하여 외부인을 감지
- 외부인이 10초 이상 감지될 경우, 상태를 푸시 서버에 전송

>> 외부인 감지 모듈 CLASS DIAGRAM

```
StrangerRecognition

+bool strangerYN
+time t_start, t_end

isVisit()
sendStrangerState()

// 외부인 방문 여부 확인
// 외부인 10초 이상 감지 시, 상태를 Server에 전송
```

>> 음성 출력 모듈 기능

- 서버로부터 수신된 Text를 TTS API를 이용하여 음성으로 변환 (Text: 기상정보, 사용자 요구사항(일정/준비물), 택배 배송정보)
- PI(Client)에 연결된 스피커를 통해 변환된 음성을 출력

>> 음성 출력 모듈 CLASS DIAGRAM

PrintSpeech	
+string msg +string forecast +string delivery	// 사용자 요구사항 // 기상 정보 // 택배 배송정보
recvText() getTTS() printSpeech()	// 통신 모듈로부터 음성으로 출력하고자 하는 text를 수신 // TTS API를 이용하여 text를 음성으로 변환 // 연결된 스피커를 통해 음성 출력

>> 모니터링 모듈 기능

■ 스트리밍 서버에 접속하여 실시간 외부 영상을 출력함

>> 모니터링 모듈 CLASS DIAGRAM

Monitoring	
+ string pi_addr + int pi_port	// PI(Client) IP // PI(Client) PORT
conStreaming()	// Streaming Server 접속

>> 통신 모듈(in PI) 기능

- 문 열림 감지 모듈 & 외부인 감지 모듈로부터 상태를 수신
- 서버와 통신(Web Server, Push Server) 지속적으로 데이터를 송수신하며 각 모듈에게 적합한 데이터를 송신

>> 통신 모듈(in PI) CLASS DIAGRAM

Communication	
+ string serv_addr + int serv_port	// PI(Server) IP // PI(Server) PORT
recvCurrentState() conServer() sendText()	// 문 열림 모듈 & 외부인 감지 모듈로부터 상태 수신 // 서버와 통신(Web Server, Push Server) // 서버로부터 받아온 Text를 음성 출력 모듈로 송신

>> 통신 모듈(in App) 기능

■ 서버와 통신(Web Server, Push Server) 사용자 인터페이스를 통해 데이터를 송수신

>> 통신 모듈(in App) CLASS DIAGRAM

Communication	
+ string serv_addr + int serv_port	// PI(Server) IP // PI(Server) PORT
conServer()	// 서버와 통신(Web Server, Push Server)

>> 외부인 감지 및 모니터링 Sequence Diagram

>> 스마트 비서 Sequence Diagram

Streaming Server

Raspberry Pi 3 Model B

사양 (Specifications):

- Broadcom BCM2387 chip 1.2GHz 쿼드코어 ARM Cortex-A53 64bit
- 802.11 b/g/n 무선 와이파이 랜
- 블루투스 4.1 BLE
- · Memory: 1GB LP DDR2
- 4개의 USB 포트
- 3.5mm 오디오잭
- 1080P HDMI
- 10/100 이터넷
- 40pin GPIO 입출력핀
- 저장소 Micro SD Card
- 전원 Micro USB 슬롯을 통한 전원 입력 (5V 1.5A~2.5A)
- CSI-2 카메라 포트
- DSI 디스플레이 포트

Samsung GALAXY Note 4

크기 153.5 x 78.6 x 8.5mm

무게 176g

디스플레이 143.9mm 쿼드 HD S 아몰레드(2,560 x 1,440)

CPU 옥타코어(1,9GHz 쿼드코어 + 1,3GHz 쿼드코어)

메모리 3GB RAM

32GB(내장) / 최대 128GB 외장 메모리 슬롯

카메라 전면 370만 화소 + F 1.9

후면 1,600만 화소 + 스마트 OIS

배터리 3,220mAh (급속 충전 지원)

OS Android 4.4 Kitkat

네트워크 광대역 LTE-A

색상 차콜 블랙, 프로스트 화이트, 브론즈 골드,

블로섬 핑크, 레드(SKT 전용, 출시 예정)

7 업무 분담

	김동현	문주혁	박예은	임윤경			
자료수집	스마트 도어 시스템 내 주요 기능에 대한 Log 조사						
월 설계	Application	Raspberry PI	Raspberry Pl	Database			
구 구현	입력 모듈 통신 모듈 모니터링 모듈	외부인 감지 모듈 문 열림 감지 모듈	웹 통신 모듈 앱 통신 모듈	음성 출력 모듈 영상 수집 모듈			
# <u></u> 테스트	통합 테스트 및 유지보수						

8 수행 일정

항목	추진사항	12월	1월	2월	3월	4월	5월	6월	7월~
자료수집	- 주제에 따른 사전조사 및 자료수집 - 제안서 작성								
요구사항 정의 및 분석	- 요구사항 분석 - 분석된 자료를 바탕으로 요구사항 정의								
시스템 설계	- 시스템 아키텍처 설계 - 시스템 상세 설계 [서브 모듈 설계]								
구현	- 서브 모듈 구현								
통합 및 테스트	- 서브 모듈 테스트 - 테스트된 서브 모듈을 점진적으로 통합 후 테스트								
유지보수	- 통합 테스팅 과정에서 생기는 문제점 보완								
최종 검토 및 발표	졸업작품 보고서, 시스템 사용 매뉴얼 작성시스템 최종 점검 및 발표								

9 깃 허브 & 참고 문헌

https://github.com/ideakhan12/senior.git

RASPBERRY PI#

- 모두의 라즈베리 파이 with 파이썬 - 이시이 모루나, 에사키 노리히데, 길벗(2016)

APPLICATION #

- 기상청 API (https://data.kma.go.kr/api/selectApiList.do?pgmNo=42)
- Google TTS (https://zetawiki.com/wiki/%EA%B5%AC%EA%B8%80_TTS_API)
- Do it! 안드로이드 앱 프로그래밍 정재곤, 이지스퍼블리싱(2017)

9 깃 허브 & 참고 문헌

관련 연구#

- [1] 스마트 도어록 시스템을 위한 IoT 기반의 실시간 스트리밍 및 원격제어 (2015.12 중앙대학교, 이성원, 유제훈, 교수 심귀보)
- [2] Smart Door System for Home Security Using Raspberry pi3 (2017 Ferdowsi University of Mashhad, Iran, Naser Abbas Hussein Inas Al mansoori)
- [3] Intelligent Intrusion Prevention System For Households Based on System-On-Chip Computer (2016 BRAC University Dhaka, Bangladesh, Tahmid Rashid, Imtiaz Kalam Abir, Niaz Sharif Shourove, Rakibun Muntaha, Dr.Khalilur Rhaman)

