MODULE II THE SET OF REAL NUMBERS

THE SET OF THE REAL NUMBERS

A real number is any number that has a decimal representation

SYMBOL	NAME	DESCRIPTION	EXAMPLE
N	Natural	Counting numbers	1, 2, 3, 4
	Whole	Natural numbers and O	0,1,2,3
	Prime number	Natural number greater than 1 and	2,3,5,7
		divisible by 1 and itself	
	Composite	Natural number greater than 1	1,4,6,8,9,10
	number	that are not prime	
\mathbb{Z}	Integers	Whole numbers and negatives	-2,-1,0,1,2
Q	Rational	Numbers that can be represented	2,-1,0,1,2, 3, 4
	number	In the form $\frac{a}{b}$, $b\neq 0$; a and b are	
		integers	
	Irrational	Numbers that cannot be	$\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \pi,$
	number	represented in the form $\frac{a}{b}$, $b\neq 0$; a	
		and b are integers	
		_	
\mathbb{R}	Real numbers	All the rational and irrational	2,-1, 0, 1, 2, 3,
		numbers.	4,
			$\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, π ,.

OPERATIONAL WITH REAL NUMBERS

Real numbers can be added, subtracted, multiplied and divided

BASIC PROPERTIES OF THE SET OF REAL NUMBERS

Let R be the set of real numbers, and let a, b, and c be arbitrary elements of R.

ADDITION PROPERTIES

1)	Closure	: a + b is a unique element in R.
2)	Association	: (a+b)-c=a+(b+c)
3)	Commutative	: a+b=b+a
4)	Identity the only element	: 0 is the additive identity; that is $0+a=a+0=a$ for all a in R, and 0 is ent in R with this property.
5)	Inverse $a + (-a) = (-a)$ property.	: For each a in R, (-a) is its unique inverse, that is $a)+a=0$, and $(-a)$ is the only element in R relative to a with this

Note that (-a) is not necessarily a negative number, it is positive if a is negative and negative if a is positive.

MULTIPLICATION PROPERTIES

- 1) Closure : ab is a unique element in R.
- 2) Associative : (ab)c = a(bc)
- 3) Commutative : ab = ba
- 4) Identity : 1 is the multiplicative identity; that is for any a in R, $1 \times a = a \times 1 = a$, and 1 is the only element in R with this property.
- 5) Inverse : for each a in R, $a \neq 0, \frac{1}{a}$ is its unique multiplicative inverse, that is

 $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$, and $\frac{1}{a}$ is the only element in R relative to a with this property

Combined property

6) Distributive:

$$a(b+c) = ab + ac$$
and
$$(a+b)c = ac + bc$$

SUBTRACTION AND DIVISION

Subtraction and division can be defined in terms of addition and multiplication respectively.

For all real numbers a and b

- 1) Subtraction: a b = a + (-b)
- 2) Division:

$$b \div a = \sqrt[b]{a} = \frac{a}{b} = a \left(\frac{1}{b}\right)$$

where $b \neq 0$

Note: Division by 0 is never allowed.

If
$$a \neq 0, \frac{0}{a} = 0$$
 but $\frac{a}{b}$ is undefined; $\frac{a}{0} = \infty$ (inf inity)

PROPERTIES OF NEGATIVES

For all real numbers a and b

1)
$$-(-a)=a$$

2)
$$(-a)b = -(ab) = a(-b) = -ab$$

3)
$$(-a)(-b) = ab$$

$$4) \quad (-1)a = -a$$

5)
$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b} = \frac{a}{b}, b \neq 0$$

6)
$$\frac{-a}{-b} = -\frac{-a}{b} = \frac{-a}{-b} = \frac{a}{b}; b \neq 0$$

ZERO PROPERTIES

For all real numbers a and b

1)
$$a \times 0 = 0$$

$$ab = 0$$
 iff $a = 0$ or $b = 0$ or $a = b = 0$ (both)