EXPr Mail: EL711263015US

Date of Deposit: 02/02/01

STING Docket No.: C1037/7013

(HCL/MAT)

SEQUENCE LISTING

<110> Bratzler, Robert L. Petersen, Deanna M. Fouron, Yves

<120> Immunostimulatory Nucleic Acids for the Treatment of Asthma and Allergy

<130> C1037/7013 (HCL/MAT)

<150> US 60/179,991

<151> 2000-02-03

<160> 1093

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 1

tctcccagcg tgcgccat

18

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 2

ataatccagc ttgaaccaag

20

<210> 3

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> 3

ataatcgacg ttcaagcaag

20

<210> 4

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Sequence

<400> taccgcgtgc		18
<210> <211> <212> <213>	9	
<220> <223>	Synthetic Sequence	
<400> ggggagggt	5	9
<210> <211> <212> <213>	9	
<220> <223>	Synthetic Sequence	
<400> ggggagggg	6	9
<210> <211> <212> <213>	9	
<220> <223>	Synthetic Sequence	
<400> ggtgaggtg	7	9
<210> <211> <212> <213>	20	
	modified_base (8)(8) m5c	
	Synthetic Sequence	
<400> tccatgtngt t		20
<210> <211> <212> <213>	15	
	modified_base (11)(11) m5c	

	<223> Synthetic Sequence	
	<400> 9 ettag ngtga	15
	<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <221> modified_base <222> (8)(8) <223> m5c	
	<223> Synthetic Sequence	
tccatg	<400> 10 gangt teetgatget	20
	<210> 11 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <221> modified_base <222> (13)(13) <223> m5c	
	<223> Synthetic Sequence	
tccatç	<400> 11 gacgt tentgatget	20
	<210> 12 <211> 15 <212> DNA <213> Artificial Sequence	
	<220> <221> modified_base <222> (7)(7) <223> m5c	
	<223> Synthetic Sequence	
gctaga	<400> 12 angtt agtgt	15
	<210> 13 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
agete	<400> 13	19

<210> 14 <211> 20 <212> DN <213> Art		
<220>	rnthetic Sequence	
<400> 14 ccacgtcgac ccto		20
<210> 15 <211> 20		
<212> DNA <213> Art	A tificial Sequence	
<220> <223> Syr	nthetic Sequence	
<400> 15 gcacatcgtc ccgc		20
<210> 16 <211> 19		
<212> DNA <213> Art	A tificial Sequence	-
<220>		
	nthetic Sequence	
		19
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25	cctcga	19
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA	cctcga	19
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art	cctcga A	19
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art	cctcga A tificial Sequence nthetic Sequence	19 25
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17	cctcga A tificial Sequence nthetic Sequence cagactt tgttg	
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17 gttggataca ggcc <210> 18 <211> 25 <212> DNA	cctcga A tificial Sequence nthetic Sequence cagactt tgttg	
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17 gttggataca ggcc <210> 18 <211> 25 <212> DNA <213> Art	cctcga A tificial Sequence nthetic Sequence cagactt tgttg	
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17 gttggataca ggcc <210> 18 <211> 25 <212> DNA <213> Art	A tificial Sequence nthetic Sequence cagactt tgttg A tificial Sequence nthetic Sequence	
<223> Syr <400> 16 gtcactcgtg gtac <210> 17 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17 gttggataca ggcc <210> 18 <211> 25 <212> DNA <213> Art <220> <223> Syr <400> 17	A tificial Sequence nthetic Sequence cagactt tgttg A tificial Sequence nthetic Sequence ctcatct taggc	25

<220> <223> Synthetic Sequence	
<400> 19 accatggacg aactgtttcc cctc	24
<210> 20 <211> 24	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 20	
accatggacg agctgtttcc cctc	24
<210> 21	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 21	
accatggacg acctgtttcc cctc	24
<210> 22	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 22	
accatggacg tactgtttcc cctc	24
<210> 23	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 23	
accatggacg gtctgtttcc cctc	24
<210> 24	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 24	
accatggacg ttctgtttcc cctc	24

<210>	> 25	
<211>	> 25	
<212>	> DNA	
<213>	Artificial Sequence	
	•	
<220>	>	
	Synthetic Sequence	
1000	0/	
<400>	25	
	ctgctgctcc acaag	25
ccacccacac	orgorgoroo doddg	_ `
<210>	> 26	
<211>		
<211>		
<2132	Artificial Sequence	
40005	·	
<220>		
<223>	Synthetic Sequence	
<400>		
acttctcata	gtccctttgg tccag	25
<210>	· 27	
<211>	· 20	
<212>	DNA	
<213>	· Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
	1	
<400>	27	
tccatgagct		20
<210>	. 28	
<211>		
<212>		
	Artificial Sequence	
(210)	interretar bequeince	
<220>		
	Synthetic Sequence	
\223/	Synthetic Sequence	
Z221×	modified been	
	modified_base	
	(9)(9)	
<223>		
1001		
	modified_base	
	$(11)\ldots(\overline{11})$	
<223>	1	
	modified_base	
	(15)(15)	
<223>	I	
<400>		
gaggaaggng i	nggangacgt	20
<210>	29	
<211>	20	
<212>	DNA	
	Artificial Sequence	

```
<220>
      <223> Synthetic Sequence
      <221> modified base
      <222> (7)...(7)
      <223> I
      <221> modified base
      \langle 222 \rangle (13)...(\overline{1}3)
      <223> I
      <221> modified base
      <222> (18)...(18)
      <223> I
      <400> 29
gtgaatncgt tcncgggnct
                                                                            20
      <210> 30
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 30
                                                                             6
aaaaaa
      <210> 31
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 31
                                                                             6
CCCCC
      <210> 32
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 32
ctgtca
                                                                             6
      <210> 33
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 33
tcgtag
                                                                             6
```

<210> 34 <211> 6 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 34 tcgtgg	6
<210> 35 <211> 6 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 35 cgtcgt	6
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 36 tccatgtcgg tcctgagtct	20
<210> 37 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 37 tccatgccgg tcctgagtct	20
<210> 38 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 38 tccatgacgg tcctgagtct	20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223>	Synthetic Sequence	
<400> tccatgacgg		20
<210> <211> <212>	40 20	
<220> <223>	Synthetic Sequence	
<400> tccatgtcga		20
<210> <211> <212> <213> <220>	20 DNA Artificial Sequence	
	Synthetic Sequence 41	20
<210> <211> <212> <213>	42 20	
<400> tccatgtcgt 1		20
<210> <211> <212> <213>	20	
	Synthetic Sequence	
<400> tccatgacgt t		20
<210> <211> <212> <213>	20	٠
<220> <223>	Synthetic Sequence	
<400> tccataacgt t		20

	<210> 45 <211> 20	
	<212> DNA <213> Artificial Sequence	
	<213/ AICITICIAL Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 45	
tccatg	acgt ccctgagtct	20
	<210> 46	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 46	
tccatc	acgt gcctgagtct	20
	<210> 47	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 47	
	ctgg tcctgagtct	20
	2010 40	
	<210> 48 <211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<221> modified base	
	<222> (8)(8)	
<	<223> m5c	
•	<223> Synthetic Sequence	
	<400> 48	
tccatgt	tngg tcctgagtct	20
	<210> 49	
	<211> 39	
	<212> DNA	
<	<213> Artificial Sequence	
	<220>	
<	<223> Synthetic Sequence	
<	<400> 49	
ccgctt	cctc cagatgagct catgggtttc tccaccaag	39
<	<210> 50	
	<211> 39	

	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	12232 Bynchecte bequence	
	<400> 50	
cttggt	tggag aaacccatga gctcatctgg aggaagcgg	39
2.2		
	<210> 51	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 51	
CCCCS	aaggg atgagaagtt	20
cccaa	aaggg acgagaagee	20
	<210> 52	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 52	
agatag	gcaaa tcggctgacg	20
	<210> 53	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 53	
ggttca	acgtg ctcatggctg	20
	1010) 54	
	<210> 54	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 54	
	agcg tgcgccat	18
	<210> 55	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220	
	<220> <223> Synthetic Sequence	
	NZZOZ OVIICIIECTO OEGUEIICE	

<400> tctcccagcg 1		18
<210> <211>	18	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> taccgcgtgc		18
<210>	57	
<211>		
<212>	DNA Artificial Sequence	
\213 /	Artificial bequence	
<220>		
<223>	Synthetic Sequence	
<400>	57	
ataatccagc	ttgaaccaag	20
<210>	5.8	
<211>		
<212>		
<213>	Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400>	58	
ataatcgacg	ttcaagcaag	20
<210>	5.0	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	59	
tccatgattt		20
<210>	. 60	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	• 60	
	gttttttgt tttt	24
-010-		
<210> <211>		
<211>		

		- 15 -
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 61	
ttt	tttttgt tttttgttt tt	22
	<210> 62	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 62	
tgo	tgctttt gtgcttttgt gctt	24
_		
	<210> 63 <211> 22	
	<211> 22 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	(223) Synthetic Bequence	
	<400> 63	
tgc	tgcttgt gcttttgtgc tt	22
	<210> 64	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 64	
gca	ttcatca ggcgggcaag aat	23
	2010) 65	
	<210> 65 <211> 23	
	<211> 23 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<220> <223> Synthetic Sequence	
	<400> 65	22
tac	cgagctt cgacgagatt tca	23
	<210> 66	
	<211> 15	
	<212> DNA <213> Artificial Sequence	
	/213/ Altiticial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 66	

gcatgacgtt gagct	15
<210> 67 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 67 cacgttgagg ggcat	15
<210> 68 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 68 ctgctgagac tggag	15
<210> 69 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 69 tccatgacgt tcctgacgtt	20
<210> 70 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 70 gcatgagctt gagctga	17
<210> 71 <211> 12 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 71 tcagcgtgcg cc	12
<210> 72 <211> 17 <212> DNA <213> Artificial Sequence	

<220> <223> Synthetic	Sequence	
<400> 72 atgacgttcc tgacgtt		17
<210> 73		
<211> 20 <212> DNA		
<213> Artificial	Sequence	
<220>	0	
<223> Synthetic	Sequence	
<400> 73 ttttggggtt ttggggtttt		20
<210> 74		
<211> 74		
<212> DNA		
<213> Artificial	L Sequence	
<220>		
<223> Synthetic	Sequence	
<400> 74		22
tctaggcttt ttaggcttcc		20
<210> 75		
<211> 20		
<212> DNA	l Coguence	
<213> Artificia	r sequence	
<220>	Coguengo	
<223> Synthetic	sequence	
<400> 75		
tgcattttt aggccaccat		20
<210> 76		
<211> 22		
<212> DNA		
<213> Artificia	I Sequence	
<220>		
<223> Synthetic	Sequence	
<400> 76		22
tctcccagcg tgcgtgcgcc	at	22
<210> 77		
<211> 17		
<212> DNA <213> Artificia	l Seguence	
	r Seduciice	
<220>	C = ==================================	
<223> Synthetic	sequence	
<400> 77		1.7
teteccageg ggegeat		17

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
\223/	Synthetic Sequence	
<400>	78	
tctcccagcg		18
<210>	79	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
	70	
<400>		1.0
tctcccagcg	cgcgccat	18
<210>	0.0	
<211>		
<212>		
	Artificial Sequence	
\213/	Artificial bequence	
<220>		
	Synthetic Sequence	
<400>	80	
ggggtgacgt	tcagggggg	19
	•	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220>	Complete Commence	
<223>	Synthetic Sequence	
<400>	81	
	gtgcgccatg gggg	24
ggggcccagc	gegegeedeg gggg	
<210>	82	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>		
	Synthetic Sequence	
<400>	82	10
<400> ggggtgtcgt	82	19
ggggtgtcgt	82 tcaggggg	19
ggggtgtcgt <210>	82 tcagggggg	19
ggggtgtcgt <210> <211>	82 tcagggggg 83 20	19
ggggtgtcgt <210> <211> <212>	82 tcagggggg 83 20	19

```
<220>
       <223> Synthetic Sequence
       <400> 83
tccatgtcgt tcctgtcgtt
                                                                          20
      <210> 84
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 84
tccatagcgt tcctagcgtt
                                                                          20
      <210> 85
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 85
tcgtcgctgt ctccgcttct t
                                                                          21
      <210> 86
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 86
gcatgacgtt gagct
                                                                         15
      <210> 87
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 87
tctcccagcg tgcgccatat
                                                                         20
      <210> 88
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (8)...(8)
      <223> m5c
      <221> modified base
```

```
<222> (17)...(17)
       <223> m5c
       <223> Synthetic Sequence
       <400> 88
 tccatgangt tcctgangtt
                                                                           20
       <210> 89
       <211> 15
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> modified base
       <222> (7)...(7)
       <223> m5c
      <223> Synthetic Sequence
       <400> 89
gcatgangtt gagct
                                                                          15
      <210> 90
      <211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 90
tccagcgtgc gccata
                                                                          16
      <210> 91
      <211> 1.8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 91
tctcccagcg tgcgccat
                                                                          18
      <210> 92
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 92
tccatgagct tcctgagtct
                                                                          20
      <210> 93
      <211> 15
      <212> DNA
      <213> Artificial Sequence
```

	- 19 -
<220>	
<223> Synthetic Sequence	
-	
<400> 93	
gcatgtcgtt gagct	
	15
<210> 94	
<211> 19	
<211> 19 <212> DNA	
<213> Artificial Sequence	
(000)	
<220>	
<223> Synthetic Sequence	
<400> 94	
tcctgacgtt cctgacgtt	19
	17
<210> 95	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
bequence	
<220>	
<223> Synthetic Sequence	
1220 Synthetic Sequence	
<400> 95	
gcatgatgtt gagct	15
<210> 06	
<210> 96	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 96	
gcatttcgag gagct	15
	13
<210> 97	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
boquence	
<220>	
<223> Synthetic Sequence	
(223) Synthetic Sequence	
<400> 97	
gcatgtagct gagct	15
<210× 00	
<210> 98	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 98	
tccaggacgt tcctagttct	20
	20

	- 2	£U -	
<220 <223	> > Synthetic Sequence		
<400 tccaggagct	> 99 tcctagttct		20
<211 <212	> 100 > 20 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
	> 100 tcctagttct		20
<211 <212	> 101 > 20 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
	> 101 gcctagttct		20
<211 <212	> 102 > 20 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
	> 102 gcctagttct		20
<211 <212	> 103 > 15 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
<400 gcatggcgtt	> 103 gagct		15
<211 <212	> 104 > 15 > DNA > Artificial Sequence		
<220			

	- <i>LL</i> -	
	<211> 20 <212> DNA	
	<213> Artificial Sequence <220>	
	<223> Synthetic Sequence	
tctgc	<400> 110 gtgcg tgcgccatat	20
	<210> 111 <211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
tctcc	<400> 111 tagcg tgcgccatat	20
	<210> 112 <211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
tctcc	<400> 112 cagcg tgcgcctttt	20
	<210> 113	
	<211> 13 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<221> misc_difference	
	<222> (5)(5) <223> n is a or g or c or t/u	
	<221> misc_difference	
	<222> (6)(6) <223> d is a or g or t/u; not c	
	<221> misc_difference <222> (9)(10)	
	<223> h is a or c or t/u; not g	
gctano	<400> 113 dcghh agc	13
- '		10
	<210> 114 <211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	

	<223> Synthetic Sequence	
tcctga	<400> 114 acgtt ccc	13
	<210> 115 <211> 13 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ggaaga	<400> 115 acgtt aga	13
	<210> 116 <211> 13 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcctga	<400> 116 acgtt aga	13
	<210> 117 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcaga	<400> 117 ccagc tggtcgggtg ttcctga	27
	<210> 118 <211> 27 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcagg	<400> 118 aacac ccgaccagct ggtctga	27
	<210> 119 <211> 13 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gctag	<400> 119 tcgat agc	13
	<210> 120	

		- 2	,4 -	
	<211>	13		
	<212> 1			
		Artificial Sequence		
		_		
	<220>			
	<223>	Synthetic Sequence		
	<400>	120		
gctagt	cgct a	gc		13
	<210>	121		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	44005	101		
	<400>			14
gerra	acgtc t	ayc		
	<210>	122		
	<211>			
	<212>			
		Artificial Sequence		
	(210)			
	<220>			
		Synthetic Sequence		
		-1		
	<400>	122		
gcttg	acgtt t	agc		14
, ,	_			
	<210>	123		
	<211>	14		
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
		102		
	<400>			14
gcttg	acgtc a	age		17
	Z2105	124		
	<210> <211>			
	<211>			
		Artificial Sequence		
	\ZIJ/	ALCELICAT DEGLETION		
	<220>			
		Synthetic Sequence		
		*		
	<400>	124		
gctaq	acgtt t	agc		14
	-			
	<210>	125		
	<211>	20		
	<212>			
	<213>	Artificial Sequence		
	<220>			
	/223	Synthetic Sequence		

<400> 125 tccatgacat tcctgatgct	20
<210> 126 <211> 14 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	•
<400> 126 gctagacgtc tagc	14
<210> 127	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 127	
ggctatgtcg ttcctagcc	1.0
	19
<210> 128	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Synthetic Sequence	
<400> 128	
ggctatgtcg atcctagcc	19
<210> 129	
<211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
(213) Altilicial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 129	
ctcatgggtt tctccaccaa g	21
<210> 130	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 130	
cttggtggag aaacccatga g	21
<210> 131	
<211> 20	

	_	20 -
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccat	<400> 131 gacgt tcctagttct	20
	<210> 132	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 132	
ccgct	tcctc cagatgagct catg	24
	.010. 100	
	<210> 133 <211> 24	
•	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 133	
catga	getea tetggaggaa gegg	24
	<210> 134 <211> 24	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 134	
ccagat	tgagc tcatgggttt ctcc	24
_		
	<210> 135 <211> 24	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	•
	(220)	
	<220> <223> Synthetic Sequence	
aa	<400> 135 aaccc atgageteat etgg	24
yyayaa	aacce argagerear ergg	24
	<210> 136	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) VICILICIAL Seducince	
	<220>	
	<223> Synthetic Sequence	

<400> 136 agcatcagga acgacatgga	20
<210> 137 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 137 tccatgacgt tcctgacgtt	20
<210> 138 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 138 gegegegege gegegegeg	19
<210> 139 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 139 ccggccggcc ggccggccgg	20
<210> 140 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 140 ttccaatcag ccccacccgc tctggcccca ccctcaccct cca	43
<210> 141 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 141 tggagggtga gggtggggcc agagcgggtg gggctgattg gaa	43
<210> 142 <211> 27 <212> DNA	

		- 28 -	
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
	symmetre bequence		
<400>			
tcaaatgtgg (gattttccca tgagtct		27
<210>	143		
<211>			
<212>			
<213>	Artificial Sequence		
4000 \$			
<220>	Synthetic Sequence		
\2237	Synthetic Sequence		
<400>	143		
agactcatgg q	gaaaatccca catttga	:	27
2010 >	144		
<210> <211>			
<212>			
	Artificial Sequence		
<220>	Country of the Country		
\223 /	Synthetic Sequence		
<400>	144		
tgccaagtgc t	gagtcacta ataaaga	2	27
(010)	1.45		
<210> <211>			
<212>			
	Artificial Sequence		
<220>	Cunthatia Campana		
\223 /	Synthetic Sequence		
<400>	145		
tctttattag t	gactcagca cttggca	2	27
-010 >	146		
<210> <211>			
<212>			
	Artificial Sequence		
<220>	Combbabia		
\223 >	Synthetic Sequence		
<400>	146		
tgcaggaagt c	cgggttttc cccaaccccc c	3	1
2010s	3.47		
<210> <211>			
<211>			
	Artificial Sequence		
	-		
<220>	Comphania C		
<223>	Synthetic Sequence		
<400>	147		

		4)		
ggggggttgg ggaaaaccc	g gacttcctgc	: a 31		
<210> 148				
<211> 38				
<211> 30 <212> DNA	•			
	21 Common			
<213> Artificia	ar Sequence			
<220>				
<223> Synthetic	c Sequence			
<400> 148				
ggggactttc cgctgggga	c tttccagggg	gactttcc		38
<210> 149				
<211> 45				
<211> 43 <212> DNA				
<213> Artificia	al Campanas			
VZI32 ALCITICIA	ar sequence			
<220>				
<223> Synthetic	Sequence			
	- 004101100			
<400> 149				
tccatgacgt tcctctccat	gacgttcctc	tccatgacgt	tcctc	45
<210> 150				
<211> 45				
<212> DNA	_			
<213> Artificia	ıl Sequence			
<220>				
<223> Synthetic	Seguence			
(223) Synthetic	. sequence			
<400> 150				
gaggaacgtc atggagagga	acgtcatgga	gaggaacgtc	atgga	45
33 3 33	3 - 33	5-999	~ 0 9 9 ~	13
<210> 151				
<211> 20				
<212> DNA				•
<213> Artificia	1 Sequence			
<220>				
<223> Synthetic	Sequence			
<400> 151				
ataatagagc ttcaagcaag				20
				20
<210> 152				
<211> 20				
<212> DNA				•
<213> Artificia	l Sequence			
<220>				
<223> Synthetic	Sequence			
<400> 152				
<400> 152 tccatgacgt tcctgacgtt				
coolegacy: coolgacytt				20
<210> 153				
<211> 20				
<212> DNA				
<213> Artificia	l Sequence			

<220> <223> Synthetic Sequence	
<400> 153 tccatgacgt tcctgacgtt	20
<210> 154 <211> 20 <212> DNA <213> Artificial Sequence	20
<220> <223> Synthetic Sequence	
<400> 154 tccaggactt tcctcaggtt	20
<210> 155 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 155 tcttgcgatg ctaaaggacg tcacattgca caatcttaat aaggt	45
<210> 156 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 156 accttattaa gattgtgcaa tgtgacgtcc tttagcatcg caaga	45
<210> 157 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 157 tcctgacgtt cctggcggtc ctgtcgct	28
<210> 158 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 158 tcctgtcgct cctgtcgct	19

<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctgacgtt		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctgtcgtt		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctggcgtt		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctgccgtt		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tccttacgtt		15
<210> <211> <212>	15	

Q

	- 32 -	
	<220>	
	<223> Synthetic Sequence	
	<400> 164	
tcctaa	acgtt gaagt	15
	<210> 165	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 165	
tcctca	ecgtt gaagt	15
	<210> 166	
	<211> .15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 166	
tcctga	cgat gaagt	15
		10
	<210> 167	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Synthetic Sequence	
	<400> 167	
tcctga	cgct gaagt	15
	<210> 168	
	<211> 15	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
•	<223> Synthetic Sequence	
	<100× 100	
	<400> 168	
teetga	eggt gaagt	15
	<210 160	
	<210> 169	
	<211> 15	
	<212> DNA	
<	<213> Artificial Sequence	
	<220x	
	<220>	
<	<223> Synthetic Sequence	
	<100× 100	
	<400> 169	
Lucigad	egta gaagt	15

<211	> 170 > 15 > DNA	
	> Artificial Sequence	
<220: <223:	> > Synthetic Sequence	
<4000 tcctgacgtc	> 170 gaagt	15
<210 <211	> 171 > 15	
<212	> DNA > Artificial Sequence	
<220 <223	> > Synthetic Sequence	
<400> tcctgacgtg	> 171 gaagt	15
<210> <211>		
	> DNA	
	> Artificial Sequence .	
<220> <223>	> Synthetic Sequence	
<400> tcctgagctt		15
<210>		
<211>		
<212> <213>	> DNA > Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400>		
gggggacgtt	adada	15
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400> tcctgacgtt		15
<210>		
<211>		
<212>	DNA Artificial Sequence	
<220>		

	- 34 -	
<	<223> Synthetic Sequence	
<	<400> 175	
tctccca	agcg agcgagcgcc at	22
	<210> 176	
	<211> 32	
	<212> DNA	
<	<pre><213> Artificial Sequence</pre>	
<	<220>	
	223> Synthetic Sequence	
	azos ofucuerre pedaeuce	
<	<400> 176	
tcctgac	egtt cecetggegg teceetgteg et	32
		32
	2210> 177	
	2211> 28	
	2212> DNA	
<	213> Artificial Sequence	
_	220>	
	223> Synthetic Sequence	
`	223 Synthetic Sequence	
<	400> 177	
tcctgtc	gct cctgtcgctc ctgtcgct	28
		20
	210> 178	
	211> 15	
	212> DNA	
<:	213> Artificial Sequence	
	220>	
	223> Synthetic Sequence	
-	220 Synchetic Bequence	
<	400> 178	
teetgge	ggg gaagt	15
	210> 179	
	211> 15	
	212> DNA	
< 2	213> Artificial Sequênce	
<2	220>	
	221> modified base	
	222> (7)(7)	
	223> m5c	
<2	223> Synthetic Sequence	
	100> 179	
tcctgang	ytt gaagt	15
ر ع	210> 180	
	211> 15	
	212> DNA	
	213> Artificial Sequence	
	20>	
	21> modified_base	
<2	$(22) (3) \dots (3)$	

<223	3> m5c	
<223	> Synthetic Sequence	
	> 180	1.5
tentgaegtt	gaagt	15
<210	> 181	
	> 15	
	<pre>P DNA</pre>	
\213	Willield begaenee	
<220		
<223	3> Synthetic Sequence	
<400)> 181	
tcctagcgtt	gaagt	15
-210)> 182	
	.> 15	
<212	P> DNA	
<213	3> Artificial Sequence	
<220		
	3> Synthetic Sequence	
<400 tccagacgtt)> 182	15
cccagacget	. gaage	
)> 183	
	.> 15	
	<pre>2> DNA 3> Artificial Sequence</pre>	
1210	, Inciriorar oddanos	
<220		
<223	3> Synthetic Sequence	
<400)> 183	
tcctgacggg	g gaagt	15
<210)> 184	
	1> 154 L> 15	
	2> DNA	
<213	3> Artificial Sequence	
<220		
	3> Synthetic Sequence	
)> 184	15
tcctggcggt	gaagt	10
)> 185	
	1> 27	
	2> DNA 3> Artificial Sequence	
\213	ov viciliotal pednemoe	
<220		
<223	3> Synthetic Sequence	
<400)> 185	
	g agggaatttt tgtctat	27

<210> <211> <212> <213>	27	
<220> <223>	Synthetic Sequence	
<400> atagacaaaa a	186 attecetece eggagee	27
<210> <211> <212> <213>	21	
· <220> <223>	Synthetic Sequence	
<400> tccatgagct t		21
<210> <211> <212> <213>	21	
<220> <223>	Synthetic Sequence	
<400> tcgtcgctgt		21
<210> <211> <212> <213>	21 .	
<220> <223>	Synthetic Sequence	
<400> tcgtcgctgt		21
<210> <211> <212> <213>	23	
<220> <223>	Synthetic Sequence	
<400> tcgagacatt g		23
<210><211><212>	20	

	- 37 -	•
	<220> <223> Synthetic Sequence	
	<400> 191 gtgc aatgtctcga	20
•	<210> 192 <211> 20 <212> DNA <213> Artificial Sequence	
•	<220> <223> Synthetic Sequence	
	<400> 192 tcgt tcctgatgcg	20
	<210> 193 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 193 tcgt tcctgatgct	20
	<210> 194 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 194 tcgt tcctgatgcg	20
	<210> 195 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 195 tegt teegegegeg	20
	<210> 196 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 196 gtcgt tcctgccgct	20

<210> <211> <212>	20	
	Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> tccatgtcgt		0
<210> <211>		
<212>		
<220> <223>	Synthetic Sequence	
<400> gcggcgggcg		20
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	·	. 1
atcaggaacg	tcatgggaag c 2	21
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		
tccatgagct	tcctgagtct	0
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400> tcaacgtt	201	8
-010÷	202	
<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		

```
<223> Synthetic Sequence
      <400> 202
tcaagctt
                                                                           8
      <210> 203
      <211> 19
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 203
tcctgtcgtt cctgtcgtt
                                                                          19
      <210> 204
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 204
tccatgtcgt ttttgtcgtt
                                                                          20
      <210> 205
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 205
tcctgtcgtt ccttgtcgtt
                                                                          20
      <210> 206
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 206
tccttgtcgt tcctgtcgtt
                                                                         20
      <210> 207
      <211> 29
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1) ... (3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
```

<400> tccattccat	> 207 gacgttcctg atgcttcca	29
<2103 <2113 <2123	> 20 > DNA	
	> Artificial Sequence	
<220> <223>	> Synthetic Sequence	
<400> tcctgtcgtt		20
<210>	> 209	
<211>		
<212> <213>	> DNA > Artificial Sequence	
<220>	>	
<223>	> Synthetic Sequence	
<400>	* • •	
tcgtcgctgt	ctccgcttct t	21
<210>	> 210	
<211>		
<212>		
<2132	> Artificial Sequence	
<220> <223>	> Synthetic Sequence	
<400>		
tcgtcgctgt	ctgcccttct t	21
<210>	> 211	
<2112		
<212>		
<213/	> Artificial Sequence	
<220>		
<223>	> Synthetic Sequence	
<400>	> 211	
tcgtcgctgt	tgtcgtttct t	21
<210>	> 212	
<2112		
<212>	> DNA > Artificial Sequence	
<213/	Artificial Sequence	
<220>		
<223>	> Synthetic Sequence	
<400>	> 212	
tcctgtcgtt	cctgtcgttg gaacgacagg	30
<210>	> 213	
<211>		
<212>	> DNA	

tcccgccgtt	gaagt	15	
<211 <212	> 219 > 15 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
<400 tccagacggt	> 219 gaagt	15	j
<211 <212	> 220 > 15 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
<400 tcccgacggt	> 220 gaagt	15	ō
<211 <212	> 221 > 15 > DNA > Artificial Sequence		
<220 <223	> > Synthetic Sequence		
<400 tccagagctt)> 221 : gaagt	15	5
<211 <212	0> 222 .> 20 2> DNA 3> Artificial Sequence		
<222)> L> modified_base 2> (8)(8) 3> m5c		
<222	1> modified_base 2> (17)(17) 3> m5c		
<223	3> Synthetic Sequence		
	D> 222 tcctgtngtt	2	0
<21: <21:	D> 223 1> 20 2> DNA 3> Artificial Sequence		
<22 <22	0> 3> Synthetic Sequence		

<400> 223 tccatgacgt tcctgacgtt	20
<210> 224 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 224 ggggttgacg ttttgggggg	20
<210> 225 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 225 tccaggactt ctctcaggtt	20
<210> 226 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 226 ttttttttt ttttttt	20
<210> 227 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 227 tccatgccgt tcctgccgtt	20
<210> 228 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 228 tccatggcgg gcctggcggg	20
<210> 229 <211> 20	

	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 229	
tccat	cgacgt tcctgccgtt	20
	<210> 230 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 230	
tccat	tgacgt teetggeggg	20
	<210> 231	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 231	
tccat	tgacgt tcctgcgttt	20
	<210> 232	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 232	20
tccat	cgacgg teetgaeggt	20
	<210> 233	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 233	
tccat	tgcgtg cgtgcgtttt	20
	<210> 234	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	

<400> 234 tccatgcgtt gcgttgcgtt	20
<210> 235 <211> 30	
<212> DNA <213> Artificial Sequence	
<220> <221> misc_feature <222> (1)(3)	
<223> Conjugated to biotin moiety.	
<223> Synthetic Sequence	
<400> 235 tccattccat tctaggcctg agtcttccat	30
<210> 236 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 236 tccatagcgt tcctagcgtt	20
<210> 237	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 237	0.0
tccatgtcgt tcctgtcgtt	20
<210> 238 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 238	
tccatagcga tcctagcgat	20
<210> 239 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 239 tccattgcgt tccttgcgtt	20
· · · · · · · · · · · · · · · · · ·	

<210>	240	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>		20
tccatagcgg t	cctagcggt	20
<210>	241	
<211>		
<212>		
<213>	Artificial Sequence	
.000		
<220>	Completia Company	
\223 /	Synthetic Sequence	
<400>	241	
	tcctgcagtt cctgatttt	29
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>		29
tccatgacgt 1	teetgeagtt eetgaegtt	23
<210>	243	
<211>		
	DNA	
<213>	Artificial Sequence	
<220>		
<2237	Synthetic Sequence	
<400>	243	
ggcggcggcg (,	20
	•	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>		20
tccacgacgt	titogaogti	
<210>	245	
<211>		
<212>		
	Artificial Sequence	

	<220> <223> Synthetic Sequence	
t	<400> 245 gtcgttgt cgttgtcgtt	20
	<210> 246 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
t	<400> 246 gtcgtttt gtcgttttgt cgtt	24
	<210> 247 <211> 22 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
t	<400> 247 gtcgttgt cgttttgtcg tt	22
	<210> 248 <211> 21 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
g	<400> 248 egtgegttg tegttgtegt t	21
	<210> 249 <211> 19 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<221> modified_base <222> (2)(2) <223> m5c	
	<221> modified_base <222> (6)(6) <223> m5c	
	<221> modified_base <222> (10)(10) <223> m5c	
	<221> modified_base	

<223>	m5c	
<400> cnggcnggcn		19
<210>	250	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	250	
gcggcgggcg (gegegegeee	20
<210>	251	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<221>	modified base	
	(3)(3)	
<223>		
<221>	modified base	
	$(8)\ldots(8)$	
<223>		
<221>	modified base	
	$(14)\ldots(\overline{14})$	
<223>	I	
<400>	251	
agncccgnga a	acgnattcac	20
<210>	252	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	252	
tgtcgtttgt (cgtttgtcgt t	21
<210>	253	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	253	
tatcattatc (gttgtcgttg tcgtt	25

	· · ·	
<210	> 254	
<211		
	> DNA	
	> Artificial Sequence	
\213.	Altificial bequence	
<220		
<223.	> Synthetic Sequence	
<400	> 254	
		25
igiogrigio	gttgtcgttg tcgtt	
<210	> 255	
<210		
	> DNA	
<213	> Artificial Sequence	
<220		
<220		
<223	> Synthetic Sequence	
< 400	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	> 255	14
tcgtcgtcgt	cgtt	17
. 010	\ 0.E.C.	
<210 <211	> 256	
	> DNA	
<213	> Artificial Sequence	
4000		
<220		
<223	> Synthetic Sequence	
<400	250	
	> 256	13
tgtcgttgtc	gcc	10
×210	> 257	
<210		
	> DNA	
	> Artificial Sequence	
<213	/ Altilicial Sequence	
<220		
	> Synthetic Sequence	
\223	> Synthetic bequence	
<400	> 257	
	ccccccc	20
CCCCCCCCCC		
~210	> 258	
	> 20	
	> DNA	
	> Artificial Sequence	
\213	> Altilitial bequence	
<220	`	
	> Synthetic Sequence	
\223	> Synthetic bequence	
<400	> 258	
	ttagcgttcc	20
cctagegeee		
<21n	> 259	
	> 20	
	> DNA	
	> Artificial Sequence	
\213		
<220	>	

<223>	Synthetic Sequence	
<400>	> 259	
tgcatccccc		20
<210>		
<211>		
<212>	> DNA > Artificial Sequence	
(213)	Altifoldi boquonoo	
<220>		
<223>	> Synthetic Sequence	
<400>	> 260	
	cgtcgtcgtc gtt	23
<210		
<2112		
	> DNA > Artificial Sequence	
\213/	Altificial bequesion	
<220	>	
<223	> Synthetic Sequence	
<400°	> 261	
	cgttgtcgtt	20
	> 262	
<211		
	> DNA > Artificial Sequence	
\213 .	Altificial bequence	
<220	>	
<223	> Synthetic Sequence	
<100	> 262	
	gtcgttttgt cgtt	24
00900900		
	> 263	
<211		
	> DNA > Artificial Sequence	
\Z13	> Withington podes	
<220		
<223	> Synthetic Sequence	
4400	> 263	
	cgttttgtcg tt	22
tegtegtegt	- Cagacatage Cag	
	> 264	
	> 39	
	> DNA > Artificial Sequence	
<213	V VICILICIAL Deduction	
<220)>	
	> Synthetic Sequence	
	0.04	
<400)> 264 g gaacttetta aaatteeece agaatgttt	39
ggggagggag	y gaacticita additioooo agaacgee	
<210)> 265	

	- 51 -	
<2	11> 39	
	12> DNA	
	13> Artificial Sequence	
\2.	132 Michiletar Bequence	
/21	20>	
<27	23> Synthetic Sequence	
< 4 (00> 265	
aaacattc	tg ggggaatttt aagaagttcc tccctcccc 3	39
<2	10> 266	
	11> 33	
	12> DNA	
<2.	13> Artificial Sequence	
<2:	20>	
<22	23> Synthetic Sequence	
<40	00> 266	
		3
acycccac	te cetadate cecagaaty ee	_
~ 2.	10> 267	
	11> 33	
	12> DNA	
<2	13> Artificial Sequence	
<2	20>	
<2	23> Synthetic Sequence	
< 4	00> 267	
	_	33
adacattc	tg ggggaatttt aagaagtaaa cat	, _
.0	10, 060	
	10> 268	
<2	11> 33	
<2	12> DNA	
<2	13> Artificial Sequence	
<2	20>	
	23> Synthetic Sequence	
\Z.	237 Bynchette Bequence	
- 4	005 260	
	00> 268	33
atgtttac	ta gacaaaattc ccccagaatg ttt	دد
	10> 269	
<2	11> 33	
<2	12> DNA	
<2	13> Artificial Sequence	
	•	
ری	20>	
	23> Synthetic Sequence	
\Z	23/ Synchotic Dequence	
	00> 000	
	00> 269	o ¬
aaacattc	tg ggggaatttt gtctagtaaa cat	33
	10> 270	
<2	11> 20	
	12> DNA	
	13> Artificial Sequence	
/2	20>	
< 2	23> Synthetic Sequence	

<400> 270 aaaattgacg ttttaaaaaa	20
<210> 271 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 271 ccccttgacg ttttccccc	20
<210> 272 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 272 ttttcgttgt ttttgtcgtt	20
<210> 273 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 273 tcgtcgtttt gtcgttttgt cgtt	24
<210> 274 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 274 ctgcagcctg ggac	14
<210> 275 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 275 acccgtcgta attatagtaa aaccc	25
<210> 276 <211> 21	

	•	- 53 -
<212> DN	A	
<213> Ar	tificial Sequence	
10101	. • • • • • • • • • • • • • • • • • • •	
<220>		
	nthetic Sequence	
(223/ 3)	Micheric Sequence	
	1.6	
<400> 27		2:
ggtacctgtg ggg	gacattgt g	21
<210> 27	17	
<211> 18	3	
<212> DN	AI.	
<213> Ar	tificial Sequence	
	-	
<220>		
	nthetic Sequence	
(2237 0)	Allenette bequeilee	
<400> 27	77	
		18
agcaccgaac gto	yayagg	
	10	
<210> 27		
<211> 20		
<212> DN		
<213> Ai	rtificial Sequence	
<220>		
<223> Sv	ynthetic Sequence	
<400> 2	7.8	
tccatgccgt tcc		20
tictatyccyt to	segeegee	
<210> 2	7 Ω	
<211> 2		
<212> Di		
<213> A	rtificial Sequence	
<220>		
<223> S	ynthetic Sequence	
<400> 2	79	
tccatgacgg tcc	ctgacggt	2
	3 33	
<210> 28	30	
<211> 20		
<211> 20		
<2132 A	rtificial Sequence	
4000		
<220>	and and a constant	
<223> S	ynthetic Sequence	
<400> 28		
tccatgccgg tc	ctgccggt	2
<210> 2	81	
<211> 2	0	
<212> D	NA	
<213> A	rtificial Sequence	
	•	
<220>		
	ynthetic Sequence	
`~~~~ U	,	

<400> 281 tccatgcgcg tcctgcgcgt	20
<210> 282 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 282 ctggtcttc tggtttttt ctgg	24
<210> 283	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 283	
tcaggggtgg ggggaacctt	20
<210> 284	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> modified_base	
<222> (8)(8)	
<223> m5c	
<223> Synthetic Sequence	
<400> 284	
tccatgangt tcctagttct	20
<210> 285	
<211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 285	
tocatgatgt toctagttot	20
<210> 286	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 286	
cccgaagtca tttcctctta acctgg	26

<pre> <210> 287 <211> 26 <212> DNA <213> Artificial Sequence </pre>
<220> <223> Synthetic Sequence
<400> 287 ccaggttaag aggaaatgac ttcggg
<210> 288 <211> 15 <212> DNA <213> Artificial Sequence
<220> <221> modified_base <222> (7)(7) <223> m5c
<223> Synthetic Sequence
<400> 288 tcctggnggg gaagt
<210> 289 <211> 20 <212> DNA <213> Artificial Sequence
<220> <221> modified_base <222> (2)(2) <223> m5c
<221> modified_base <222> (5)(5) <223> m5c
<221> modified_base <222> (9)(9) <223> m5c
<221> modified_base <222> (12)(12) <223> m5c
<221> modified_base <222> (14)(14) <223> m5c
<221> modified_base <222> (16)(16) <223> m5c
<223> Synthetic Sequence
<400> 289 gnggngggng gngngngccc

26

15

	<210> 290 <211> 20 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tccat	<400> 290 gtgct tcctgatgct	20
	<210> 291 <211> 20	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 291	
tccat	gtcct tcctgatgct	20
	<210> 292	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 292	
tccat	gtcgt tcctagttct	20
	<210> 293	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 293	
tccaa	agtagt tcctagttct	20
	<210> 294	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 294	
tcca	tgtagt tcctagttct	20
	<210> 295	
	<211> 20	
	<212> DNA	
	2212\ Artificial Seguence	

	3,7	
<220> <223>	Synthetic Sequence	
<400> tcccgcgcgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tcctggcggt		20
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctggaggg		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctgggggg		15
<210> <211> <212> <213>	15	
<220> <223>	Synthetic Sequence	
<400> tcctggtggg		15
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
<400> tcgtcgtttt	gtcgttttgt cgtt	24

<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
<400> ctggtctttc	301 tggtttttt ctgg	24
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccaggactt		20
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
	<pre>modified_base (2)(2) m5c</pre>	
	<pre>modified_base (5)(5) m5c</pre>	
	<pre>modified_base > (13)(13) > m5c</pre>	
<222	<pre>> modified_base > (21)(21) > m5c</pre>	
<4002 tngtngtttt	> 304 gtngttttgt ngtt	24
<210	> 305	

		
	> 29 > DNA > Artificial Sequence	
	> > misc_feature > (1)(3)	
	> Conjugated to biotin moiety.	
<223	> Synthetic Sequence	
	> 305 gtcgttttgt cgtttttt	29
<210	> 306	
	> 18	
	> DNA > Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	> 306	18
gctatgacgt	tccaaggg	10
<210	> 307	
<211		
	DNA	
<213	> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
<400	> 307	0
tcaacgtt		8
<210)> 308	
	.> 20	
	C> DNA	
<213	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
)> 308	0.0
tccaggactt	tcctcaggtt	20
<210)> 309	
<21	L> 20	
	2> DNA	
<213	3> Artificial Sequence	
<220)>	
<223	3> Synthetic Sequence	
<400	o> 309	
ctctctgta	g gcccgcttgg	20
<21	0> 310	
	1> 20	
<21	2> DNA	

	- 00 -	
<	213> Artificial Sequence	
,	<220>	
	<pre><220> Synthetic Sequence</pre>	
	•	
	<400> 310	20
ctttccg	gttg gacccctggg	
<	<210> 311	
	<211> 20	
	<212> DNA	
<	<213> Artificial Sequence	
<	<220>	
<	<223> Synthetic Sequence	
	<400> 311	
	gcca ggccaaagtc	20
	<210> 312	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
•	<223> Synthetic Sequence	
	<400> 312	
gtgcgc	gcga gcccgaaatc	20
	<210> 313	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221> modified_base	
	<222> (8)(8)	
	<223> I	
	<221> modified base	
	<222> (17) (17)	
	<223> I	
	<223> Synthetic Sequence	
	(223) bynenoczo soquenos	
	<400> 313	20
tccatg	gangt teetgangtt	20
	<210> 314	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 214	
aatadt	<400> 314 Eggc ataacaaaac	20
aacage		
	<210> 315	

		- 01 -	
	<211> <212> <213>		
	<220> <223>	Synthetic Sequence	
aatagt	<400> cgcc a	315 atggcggggc	20
	<210><211><212><212><213>	28	
	<222>	<pre>misc_difference (1)(3) Biotin moiety attached at 5' end of sequence.</pre>	
	<223>	Synthetic Sequence	
ttttt	<400> ccatg	316 tegtteetga tgettttt	28
	<210><211><211><212><213>	20	
	<220> <223>	Synthetic Sequence	
tcctg	<400> tcgtt	317 gaagttttt	20
	<210><211><211><212><213>	24	
	<220> <223>	Synthetic Sequence	
gctag	<400> cttta	318 gagctttaga gctt	24
	<210><211><211><212><213>	20	
	<220> <223>	Synthetic Sequence	
tacta	<400>	319	20
cyceg			
	<210> <211>	20	
	<212>	DNA	

	- 62 -
<213> A	rtificial Sequence
<220>	·
	ynthetic Sequence
	1
<400> 3	0.0
tcgacgttcc cc	eccecec
<210> 3	21
<211> 2	
<212> D	
<213> A	rtificial Sequence
<220>	
	ynthetic Sequence
400: 0	
<400> 3 tegtegttee ee	0.0
·	
<210> 3	322
<211> 2	
<212> D	
<213> A	Artificial Sequence
<220>	
<223> S	Synthetic Sequence
<400> 3 tegtegttee ee	
cogcogcioo co	
<210> 3	
<211> 2	
<212> D	ona Artificial Sequence
\213\/ F	ittitetat bequeñec
<220>	
<223> S	Synthetic Sequence
<400> 3	323
tegeegttee ee	
<210> 3	
<211> 2	
<212> [ona Artificial Sequence
(213) 1	ittitetat boquooo
<220>	
<223> \$	Synthetic Sequence
<400> 3	324
togtogatoc co	20
<210> 3	
<211> 1 <212> [
	Artificial Sequence
	•
<220>	
<223> \$	Synthetic Sequence
<400> 3	325

	03
tcctgacgtt gaagt	15
<210> 326	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 326	
tcctgccgtt gaagt	15
<210> 327	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Synthetic Sequence	
<400> 327	
tcctgacggt gaagt	15
(010) 220	
<210> 328 <211> 15	
<211> 13 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 328	
tcctgagctt gaagt	15
. 5 . 5 5 5 .	13
<210> 329	
<211> 15	,
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 329	15
tcctggcggg gaagt	15
<210> 330	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
-	
<400> 330	
aaaatctgtg cttttaaaaa a	21
<210> 331	
<211> 33	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 331 gatccagtca cagtgacctg gcagaatctg gat	33
<210> 332 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 332 gatccagatt ctgccaggtc actgtgactg gat	33
<210> 333 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 333 gatccagtca cagtgactca gcagaatctg gat	33
<210> 334 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 334 gatccagatt ctgctgagtc actgtgactg gat	33
<210> 335 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <221> modified_base <222> (16)(16) <223> m5c	
<223> Synthetic Sequence	
<400> 335 tcgtcgttcc cccccncccc	20
<210> 336 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

	05	
	> modified_base > (2)(2) > m5c	
<222>	> modified_base > (5)(5) > m5c	
<223>	> Synthetic Sequence	
<4002 tngtngttcc		20
<210>		
<211>		
	> DNA > Artificial Sequence	
<220>		
	> modified_base	
<222> <223>	> (2)(2)	
<2237	SCm <	
<223>	> Synthetic Sequence	
<400>	> 337	
tngtcgttcc	cccccccc	20
<210>	× 220	
<211>		
	> DNA	
	> Artificial Sequence	
<220>		
	> modified base	
	> (5)(5)	
<223>		
<223>	> Synthetic Sequence	
<400>	> 338	
tcgtngttcc		20
<210>	> 339	
<211>	> 20	
	> DNA	
<213>	> Artificial Sequence	
<220>	>	
<223>	> Synthetic Sequence	
<400>		
tcgtcgctcc	ccccccc	20
<210>	> 340	
<211>		
	> DNA	
<213>	> Artificial Sequence	
<220>	>	
	> Synthetic Sequence	

<400> 340 tcgtcggtcc cccccccc	20
<210> 341 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 341 teggegttee ecceecee	20
<210> 342 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 342 ggccttttcc cccccccc	20
<210> 343 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 343 tcgtcgtttt gacgttttgt cgtt	24
<210> 344 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 344 tcgtcgtttt gacgttttga cgtt	24
<210> 345 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 345 ccgtcgttcc cccccccc	20
<210> 346 <211> 20	

	- 67 -	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		
gcgtcgttcc d	cccccccc	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		
tcgtcattcc c	cccccccc	20
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	348	
acgtcgttcc c	ccccccc	20
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	349	
ctgtcgttcc c	ccccccc	20
<210>	350	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	misc_feature	
	(1)(3)	
<223>	Biotin moiety attached at 5' end of sequence.	
<223>	Synthetic Sequence	
<400>		
tttttcgtcg t	tececece eece	24
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	

```
<220>
      <221> misc_feature
      <222> (18) ... (20)
      <223> Biotin moiety attached at 3' end of sequence.
      <223> Synthetic Sequence
      <400> 351
tcgtcgttcc cccccccc
                                                                          20
      <210> 352
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
      <222> (22)...(24)
      <223> Biotin moiety attached at 3' end of sequence.
      <223> Synthetic Sequence
      <400> 352
tcgtcgtttt gtcgttttgt cgtt
                                                                         24
      <210> 353
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 353
tccagttcct tcctcagtct
                                                                         20
      <210> 354
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (2)...(2)
      <223> m5c
      <223> Synthetic Sequence
      <400> 354
tngtcgtttt gtcgttttgt cgtt
                                                                         24
      <210> 355
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 355
```

	- 07 -
tcctggaggg gaagt	15
<210> 356	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 356	
tcctgaaaag gaagt	15
<210> 357	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 357	
tcgtcgttcc cccccc	17
<210> 358	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<221> modified base	
<221> modified_base <222> (2)(2)	
<223> m5c	
<221> modified base	
<222> (5)(5)	
<223> m5c	
<221> modified_base	
<222> (13)(13)	·
<223> m5c	
<221> modified base	
<222> (21)(21)	
<223> m5c	
<400> 358	
tngtngtttt gtngttttgt ngtt	24
<210> 359	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 359	
ggggtcaagc ttgaggggg	20

	<210> 360	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 360	
tgcto	gettee eececece	20
		20
	<210> 361	
	<211> 14	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	(223) Synthetic Sequence	
	<400> 361	
tcgtc	egtegt egtt	14
		14
	<210> 362	
	<211> 14	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1220/ Synthetic Sequence	
	<400> 362	
tcgtc	gtcgt cgtt	14
		14
	<210> 363	
	<211> 14	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1,0000000000000000000000000000000000000	
	<400> 363	
tcgtc	gtcgt cgtt	14
	<210> 364	
	<211> 10	
	<212> DNA <213> Artificial Sequence	
	V213/ Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 364	
tcaaco	gttga	10
	Z210\ 265	
	<210> 365 <211> 8	
	<212> DNA	
	<213> Artificial Sequence	
	buyur boquence	

		- /1 -	
<220> <223>	Synthetic Sequence		
<400> tcaacgtt	365		8
			Ü
<210> <211>			
<211>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	366		
atagttttcc a	attttttac		20
<210>	367		
<211>			
<212>		•	
(213)	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>		•	
aatagtcgcc a	atcgcgcgac		20
<210>			
<211>			
<212> <213>	Artificial Sequence		
	THE TETTE OF THE T		
<220>	Synthetic Sequence		
<400>			
aatagtcgcc a	atcccgggac		20
<210>			
<211> <212>			
	Artificial Sequence		
	•		
<220> <223>	Synthetic Sequence		
<400>			
aatagtcgcc a		;	20
<210> <211>			
<212>			
	Artificial Sequence		
<220>			
	Synthetic Sequence		
<400>	370		
	tgcttttgt gctt	2	24

	<210> 371	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	Tion interior bequence	
	<220>	
	<223> Synthetic Sequence	
	4400- 271	
	<400> 371	
ctgtc	gettte tgtgttttte tgtg	24
	<210> 372	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Synthetic Sequence	
	(223) Synthetic Bequence	
	<400> 372	
CLaat	cette taattitte etaa	24
	(010) 272	
	<210> 373 .	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
	<220> .	
	<223> Synthetic Sequence	
	2	
	<400> 373	
teate	gttgg tgtcgttggt gtcgtt	26
cogco	geegg egeegge geegee	20
	<210> 374	
	<211> 24	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	200	
	<220>	
	<223> Synthetic Sequence	
	<400> 374	
tcgtc	gttgg ttgtcgtttt ggtt	24
	<210> 375	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1220 Dynametro Dequence	
	<400> 375	
accat	ggacg agctgtttcc cctc	24
	.010. 076	
	<210> 376	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	

•	<223> Synthetic Sequence	
	<400> 376	
	tttt gcgtgcgttt	20
	<210> 377 <211> 20	
	<211> 20 <212> DNA	
•	<213> Artificial Sequence	
	<220>	
•	<pre><223> Synthetic Sequence</pre>	
•	<400> 377	
ctgtaa	gtga gcttggagag	20
•	<210> 378	
	<211> 18	
	<212> DNA <213> Artificial Sequence	
	12137 Altilitud bequence	
	<220>	
•	<223> Synthetic Sequence	
•	<400> 378	
gagaac	gctg gaccttcc	18
•	<210> 379	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
•	<220>	
•	<223> Synthetic Sequence	
	<400> 379	
	actc agtctatcgg	20
	<210> 380	
	<211> 37	
	<212> DNA	
•	<213> Artificial Sequence	
•	<220>	
•	<223> Synthetic Sequence	
	<400> 380	
gttctc	agat aaagcggaac cagcaacaga cacagaa	37
	<210> 381	
	<211> 37	
	<212> DNA	
•	<213> Artificial Sequence	
•	<220>	
•	<223> Synthetic Sequence	
	<400> 381	
	gtct gttgctggtt ccgctttatc tgagaac	37
	<210> 382	
	7610/ 306	

		- /4 -
<211	> 23	
<212	> DNA	
	> Artificial Sequence	
	·	
<220	>	
-	> Synthetic Sequence	
\223	> Synthetic Sequence	
~400	> 382	
cagacacaga	agcccgatag acg	23
	> 383	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	-	
< 400	> 383	
agacagacac	gaaacgaccg	20
J	J g g	20
<210	> 384	
<211		
	> DNA	
	> Artificial Sequence	
\213	> Artificial Sequence	
<220		
<223.	> Synthetic Sequence	
~400°		
	> 384	
gtctgtccca	tgatctcgaa	20
	> 385	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
<400	> 385	
gctggccagc	ttacctcccg	20
	-	20
<210	> 386	
<211		
<212		
	> Artificial Sequence	
.2.20		
<220>	>	
	> Synthetic Sequence	
\223/	Synchecic Sequence	
<400>	386	
ggggccccca	tacaacctgg g	· 21
Z210x	. 207	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
20-		
<220>		
/222	Synthetic Seguence	

<400> 387 ggggtccctg agactgcc	18
<210> 388 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 388 gagaacgctg gaccttccat	20
<210> 389 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 389 tccatgtcgg tcctgatgct	20
<210> 390 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 390 ctcttgcgac ctggaaggta	20
<210> 391 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 391 aggtacagcc aggactacga	20
<210> 392 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 392 accatggacg acctgtttcc cctc	24
<210> 393 <211> 24	

	<212> DNA <213> Artificial Sequence	
	12137 Metricial boquenos	
	<220>	
•	<223> Synthetic Sequence	
	<400> 393	
accatg	gatt acctttttcc cctt	24
	<210> 394	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 394	20
atggaa	ggtc cagcgttctc	20
	<210> 395	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 395	
	agga ccgacatgga	20
	1010- 206	
	<210> 396 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	.000	
	<220> <223> Synthetic Sequence	
	12237 Synthetic Sequence	
	<400> 396	
ctctcc	aagc tcacttacag	20
	<210> 397	
	<211> 21	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	4400× 207	
	<400> 397 agac tgccccacct t	21
ccccy	agao tycoccacci c	لاے
	<210> 398	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
•	7213/ MICITICIAL Sequence	
	<220>	
	<223> Synthetic Sequence	

<400>		20	
gccaccaaaa cttgtccatg 20			
<210> <211>			
<212>			
	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			
gtccatggcg	tgcgggatga	20	
<210>	400		
<211>	19		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	400		
cctctataca	acctgggac	19	
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	401		
cgggcgactc		20	
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			
gcgctaccgg	tagcctgagt	20	
<210>	403		
<211>			
<212>			
	Artificial Sequence		
<220>	·		
	Synthetic Sequence		
<400>	403		
	acaggatatc ggtgatcagc actgg	35	
2010s	404		
<210>			
<211> <212>			
5/1/2	DIAD.		

	- /8 -
<213> Artificial Sequence	
.000	
<220> <223> Synthetic Sequence	
(223) Synthetic Sequence	
<400> 404	
ccagtgctga tcaccgatat cctgttcggc	agtcg 35
<210> 405	
<211> 17 <212> DNA	
<212> DNA <213> Artificial Sequence	
(213) Medical bequence	
<220>	
<223> Synthetic Sequence	
4400 405	
<400> 405 ccaggttgta tagaggc	17
ccagging tagagge	
<210> 406	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 406	
tctcccagcg tacgccat	. 18
<210> 407	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 407	
tctcccagcg tgcgtttt	18
<210> 408	
<211> 18 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 408	
tctcccgacg tgcgccat	18
cococogacy cycycoac	
<210> 409	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
•	
<400> 409	

tctcccgtcg tgcgccat	18
<210> 410	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 410	20
ataatcgtcg ttcaagcaag	
<210> 411	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 411	23
tcgtcgtttt gtcgttttgt cgt	
<210> 412	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 412	24
tcgtcgtttt gtcgttttgt cgtt	24
0.00. 4.1.2	
<210> 413	
<211> 24 <212> DNA	
<212> DNA <213> Artificial Sequence	
2213> Artificial Bequence	
<220>	
<223> Synthetic Sequence	
<400> 413	24
tcgtcgtttt gtcgttttgt cgtt	•
<210> 414	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_difference	
<222> (3)(3)	
<223> n is a or c or g or t/u	
<221> misc_difference	
<222> (8) (8)	
<223> n is a or c or g or t/u	
<221> misc_difference	

<222> (11)(11) <223> n is a or c or g or t/u	
<221> misc_difference <222> (16)(16) <223> n is a or c or g or t/u	
<221> misc_difference <222> (19)(19) <223> n is a or c or g or t/u	
<221> misc_difference <222> (24)(24) <223> n is a or c or g or t/u	
<223> Synthetic Sequence	
<400> 414 tentegtntt ntegtnttnt egtn	24
<210> 415 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 415 tctcccagcg tcgccat	17
<210> 416 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 416 tctcccatcg tcgccat	17
<210> 417 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 417 ataatcgtgc gttcaagaaa g	21
<210> 418 <211> 20 <212> DNA	
<213> Artificial Sequence <220> <223> Synthetic Sequence	

•	
<400> 418 ataatcgacg ttccccccc	20
acaacegaeg cooosses	
<210> 419	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
400> 410	
<400> 419 tctatcgacg ttcaagcaag	20
Ccatcgacg cccaageaag	
<210> 420	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 420	
·	14
tcctgacggg gagt	
<210> 421	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
1	
<400> 421	19
tccatgacgt tcctgatcc	19
<210> 422	
<210> 422 <211> 19	
<212> DNA	
<213> Artificial Sequence	
(213) 111011111111111111111111111111111111	
<220>	
<223> Synthetic Sequence	
<400> 422	
tccatgacgt tcctgatcc	19
<210> 423	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	*
<223> Synthetic Sequence	
<400× 423	
<400> 423 tecatgaegt teetgatee	19
cocatgacge tootgates	
<210> 424	
<211> 15	
<212> DNA	

	- 82 -
<213> Artificial Sequence	
1	
<220>	
<223> Synthetic Sequence	
<400> 424	
tcctggcgtg gaagt	15
ccccggcgcg gaage	
<210> 425	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
(215) Milliolar beganne	
<220>	
<223> Synthetic Sequence	
(223) Synthetic bequeince	
<400> 425	
	19
tccatgacgt tcctgatcc	
<210> 426	
<210> 426 <211> 21	
<212> DNA <213> Artificial Sequence	
<213> Artificial Sequence	
2220 5	
<220>	
<223> Synthetic Sequence	
(100) 100	
<400> 426	21
tcgtcgctgt tgtcgtttct t	2.1
2010> 407	
<210> 427	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
<223> Synthetic Sequence	
(100) 107	
<400> 427	24
agcagcttta gagctttaga gctt	2.4
1010: 100	
<210> 428	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
1000	
<220>	•
<223> Synthetic Sequence	
.400: 400	
<400> 428	24
cccccccc cccccccc ccc	24
4010× 420	
<210> 429	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 429	

	- 05
tcgtcgtttt gtcgttttgt cgttttgtcg 32	tt
<210> 430 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 430 tegtegtttt ttgtegtttt ttgtegtt	28
<210> 431 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 431 tcgtcgtttt ttttttttt	20
<210> 432 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 432 tttttcaacg ttgattttt	20
<210> 433 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 433 ttttttttt ttttttttt tttt	24
<210> 434 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 434 ggggtcgtcg ttttgggggg	20
<210> 435 <211> 24 <212> DNA	

		- 04 -
<21	3> Artificial Sequence	
<22	0>	
	3> Synthetic Sequence	
<40	0> 435	
	t gtcgttttgg gggg	24
<21	.0> 436	
	.1> 27	
	2> DNA	
	3> Artificial Sequence	
<22	20>	
	23> Synthetic Sequence	
- 10	00> 436	
	gt ctccgcttct tcttgcc	27
	10> 437	
	11> 15	
	L2> DNA	
<2.	13> Artificial Sequence	
<22	20>	
<22	23> Synthetic Sequence	
<40	00> 437	
tcgtcgct	gt ctccg	15
	-	
	10> 438	
	11> 20	
	12> DNA	
<2	13> Artificial Sequence	
<2:	20>	
	23> Synthetic Sequence	
< 4.1	00> 438	
	ga gettggagag	20
Ctytaagt	ga geeeggagag	
	10> 439	
	11> 20	
	12> DNA	
<2	13> Artificial Sequence	
_	20>	
<2	23> Synthetic Sequence	
<4	00> 439	
gagaacgc	tg gaccttccat	20
_	10. 440	
	10> 440	
	11> 17 12> DNA	
	12> DNA 13> Artificial Sequence	
< 2	10) Withiterar pedaence	
	20>	
<2	23> Synthetic Sequence	
<4	00> 440	

ccaggttgta tagaggc	17
<210> 441 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 441 gctagacgtt agcgtga	17
<210> 442 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 442 ggagctcttc gaacgccata	20
<210> 443 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 443 tctccatgat ggttttatcg	20
<210> 444 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 444 aaggtggggc agtctcaggg a	21
<210> 445 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 445 atcggaggac tggcgcgccg	20
<210> 446 <211> 20 <212> DNA <213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 446 ttaggacaag gtctagggtg	20
<210> 447 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 447 accacaacga gaggaacgca	20
<210> 448 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 448 ggcagtgcag gctcaccggg	20
<210> 449 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 449 gaacetteca tgetgtt	17
<210> 450 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 450 gctagacgtt agcgtga	17
<210> 451 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 451 qcttqqaqqq cctgtaagtg	20

<2	10> 452	
	11> 12	
<23	12> DNA	
<2	13> Artificial Sequence	
	<u>.</u>	
	20>	
<23	23> Synthetic Sequence	
	•	
	005 452	
	00> 452	12
gtagcctt	cc ta	1.2
/2	10> 453	
_		
<2	11> 14	
<2	12> DNA	
<2	13> Artificial Sequence	
12	135 Inchiant podemen	
<2	220>	
<2	23> Synthetic Sequence	
_	00, 453	
	00> 453	7.4
cggtagcc	tt ccta	14
,,,,,,		
	2105 454	
	10> 454	
<2	211> 16	
<2	212> DNA	
	213> Artificial Sequence	
\2	132 Artificial Sequence	
<2	220>	
<2	223> Synthetic Sequence	
`~	257 Byllenouro ouquantr	
	-	
<4	100> 454	
	100> 454	16
		16
cacggtag	100> 454 gec tteeta	16
cacggtag	100> 454 gec tteeta 210> 455	16
cacggtag	100> 454 gec tteeta	16
cacggtag <2 <2	210> 454 gcc ttccta 210> 455 211> 18	16
<pre>cacggtag <2 <2</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA	16
<pre>cacggtag <2 <2</pre>	210> 454 gcc ttccta 210> 455 211> 18	16
<pre>cacggtag <2 <2</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA	16
<pre>cacggtag <2 <2</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA	16
<pre>cacggtag <2 <2</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence	16
<pre>cacggtag <2 <2</pre>	210> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence	16
<pre>cacggtag</pre>	210> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	16
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence	
<pre>cacggtag</pre>	210> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	16
<pre>cacggtag</pre>	210> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	
<pre>cacggtag</pre>	210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	
<pre>cacggtag</pre>	210> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 455 cag ccttccta	
<pre>cacggtag</pre>	210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 455 tag ccttccta 210> 456 211> 18	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 100> 455 tag ccttccta 210> 456 211> 18 212> DNA	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 455 tag ccttccta 210> 456 211> 18	
<pre>cacggtag</pre>	210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 455 2ag ccttccta 210> 456 211> 18 212> DNA 213> Artificial Sequence	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 100> 455 tag ccttccta 210> 456 211> 18 212> DNA	
<pre>cacggtag</pre>	200> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 300> 455 2ag ccttccta 210> 456 211> 18 212> DNA 213> Artificial Sequence	
<pre>cacggtag</pre>	210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 400> 455 2ag ccttccta 210> 456 211> 18 212> DNA 213> Artificial Sequence	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 210> 455 223 ccttccta 210> 456 211> 18 212> DNA 213> Artificial Sequence 220> 221> Synthetic Sequence 220> Synthetic Sequence	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 310> 456 211> 18 212> DNA 213> Artificial Sequence 220> 456 221> 18 221> DNA 223> Synthetic Sequence 220> 456 221> 18 221> DNA 223> Artificial Sequence 220> 223> Synthetic Sequence	18
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 310> 456 211> 18 212> DNA 213> Artificial Sequence 220> 456 221> 18 221> DNA 223> Synthetic Sequence 220> 456 221> 18 221> DNA 223> Artificial Sequence 220> 223> Synthetic Sequence	
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 210> 455 223 ccttccta 210> 456 211> 18 212> DNA 213> Artificial Sequence 220> 221> Synthetic Sequence 220> Synthetic Sequence	18
<pre>cacggtag</pre>	100> 454 gec ttecta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 4100> 455 223 ecttecta 210> 456 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence	18
<pre>cacggtag</pre>	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 310> 456 211> 18 212> DNA 213> Artificial Sequence 220> 221> Synthetic Sequence 220> 221> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 220> 223> Synthetic Sequence	18
<pre>cacggtag</pre>	100> 454 gec ttecta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 4100> 455 223 ecttecta 210> 456 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence	18
<pre>cacggtag</pre>	100> 454 gec ttecta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 3100> 456 221> 18 212> DNA 213> Artificial Sequence 220> 221> 223> Synthetic Sequence 220> 456 221> 18 222> DNA 223> Artificial Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 220> 456 221> 100> 456 221> 457 221> 10	18
cacggtag	100> 454 gcc ttccta 210> 455 211> 18 212> DNA 213> Artificial Sequence 220> 223> Synthetic Sequence 310> 456 211> 18 212> DNA 213> Artificial Sequence 220> 221> Synthetic Sequence 220> 221> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 223> Synthetic Sequence 220> 220> 223> Synthetic Sequence	18

<220> <223>	Synthetic Sequence	
<400> gaccttccat	457	10
<210> <211> <212> <213>	12	
<220> <223>	Synthetic Sequence	
<400> tggaccttcc		12
<210> <211> <212> <213>	14	
<220> <223>	Synthetic Sequence	
<400> gctggacctt		14
<210> <211> <212> <213>	16	٠
<220> <223>	Synthetic Sequence	
<400> acgctggacc		16
<210> <211> <212> <213>	· 20	
<220> <223>	Synthetic Sequence	
<400> taagctctgt		20
<210> <211> <212> <213>	> 22	
<220> <223>	> > Synthetic Sequence	
<400> gagaacgctg	> 462 gaccttccat gt	22

<210> <211>	20	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> tccatgtcgg t		20
<210>	464	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		21
ttcatgcctt o	gcaaaatggc g	21
<210>	465	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	465	0.0
tgctagctgt q	gcctgtacct	20
<210>	466	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		20
agcatcagga (ccgacatgga	20
<210>	467	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	467	0.0
gaccttccat	gtcggtcctg at	22
<210>	468	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		

<223>	Synthetic Sequence	
<400> acaaccacga		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> gaaccttcca		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> caatcaatct		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tcagctctgg		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tggttacggt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> gtctatcgga		20
<210>	474	

	, ·	
	2> 20 2> DNA	
	3> Artificial Sequence	
<220)>	
	3> Synthetic Sequence	
)> 474	20
cattttacg	g gegggeggge	20
	0> 475	
	1> 20 2> DNA	
	3> Artificial Sequence	
<220	0>	
<22	3> Synthetic Sequence	
	0> 475	20
gaggggacc	a ttttacgggc	20
	0> 476	
	1> 20 2> DNA	
	3> Artificial Sequence	
<22	0>	
	3> Synthetic Sequence	
< 40	0> 476	
	g aggggaccat	20
<21	0> 477	
	1> 20	
	2> DNA 2> Autificial Seguence	
<21	3> Artificial Sequence	
<22		
<22	3> Synthetic Sequence	
	0> 477	20
cgggcttac	g gcggatgctg	20
	.0> 478	
	1> 20	
	.2> DNA .3> Artificial Sequence	
\21	37 Medical codes	
<22		
<22	23> Synthetic Sequence	
	00> 478	20
tggaccttc	et atgteggtee	
	10> 479	
	l1> 20 L2> DNA	
	12> DNA 13> Artificial Sequence	
/21	20>	
	23> Synthetic Sequence	

<400> 479 tgtcccatgt ttttagaagc	20
<210> 480 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 480 gtggttacgg tcgtgcccat	20
<210> 481 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 481 cctccaaatg aaagaccccc	20
<210> 482 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 482 ttgtactctc catgatggtt	20
<210> 483 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 483 ttccatgctg ttccggctgg	20
<210> 484 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 484 gaccttctat gtcggtcctg	20
<210> 485 <211> 20	

	, ,	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
gagac	<400> 485 eegete gaeettegat	20
	<210> 486	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 486	20
ttgc	ccata ttttagaaac	20
	<210> 487	
	<211> 18 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 487	18
ttga	aactga ggtgggac	
	<210> 488	
	<211> 21	
	<212> DNA <213> Artificial Sequence	
	(213) Altificial boquese	
	<220>	
	<223> Synthetic Sequence	
	<400> 488	21
ctat	cggagg actggcgcgc c	
	<210> 489	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 489	20
cttg	ggagggc ctcccggcgg	20
	<210> 490	
	<211> 20 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

71	
<400> 490 gctgaacctt ccatgctgtt .	20
<210> 491 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 491 tagaaacagc attcttcttt tagggcagca ca	32
<210> 492 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 492 agatggttct cagataaagc ggaa	24
<210> 493 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 493 ttccgcttta tctgagaacc atct	24
<210> 494 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 494 gtcccaggtt gtatagaggc tgc	23
<210> 495 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 495 gcgccagtcc tccgatagac	20
<210> 496 <211> 20 <212> DNA	

		- 95 -	
<213> Artific	cial Sequence		
	-		
<220>			
<223> Synthet	ic Sequence		
<400> 496			20
atcggaggac tggcgcgc	ecg		
<210> 497			
<211> 20			
<212> DNA			
	cial Sequence		
<220>		•	
<223> Synthe	tic Sequence		
(400) 407			
<400> 497 ggtctgtccc atatttt	tad		20
ggtetgteee atattet	cag		
<210> 498			
<211> 20			
<212> DNA			
<213> Artifi	cial Sequence		
<220>	tic Commonce		
<223> Synthe	CIC Sequence		
<400> 498			
tttttcaacg ttgaggg	ggg		20
<210> 499			
<211> 21			
<212> DNA	-i-l Commongo		
<213> Artifi	cial Sequence		
<220>			
	etic Sequence		
-			
<400> 499			21
tttttcaagc gttgatt	ttt t		21
1010> 500			
<210> 500 <211> 20			
<211> 20 <212> DNA			
	icial Sequence		
1010			
<220>			
<223> Synthe	etic Sequence		
<400> 500	+++		20
ggggtcaacg ttgattt	,		
<210> 501			
<211> 25			
<212> DNA			
<213> Artif:	icial Sequence		
<220>	otia Somionas		
<223> Synthe	etic Sequence		
<400> 501			
1100, 201			

ggggttttca acgttttgag ggggg	25
<210> 502 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 502 ggttacggtc tgtcccatat	20
<210> 503 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 503 ctgtcccata tttttagaca	20
<210> 504 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 504 accatcctga ggccattcgg	20
<210> 505 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 505 cgtctatcgg gcttctgtgt ctg	23
<210> 506 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 506 ggccatccca cattgaaagt t	21
<210> 507 <211> 22 <212> DNA <213> Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 507 ccaaatatcg gtggtcaagc ac	22
<210> 508 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 508 gtgcttgacc accgatattt gg	22
<210> 509 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 509 gtgctgatca ccgatatcct gttcgg	26
<210> 510 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 510 ggccaacttt caatgtggga tggcctc	27
<210> 511 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 511 ttccgccgaa tggcctcagg atggtac	27
<210> 512 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 512 tatagtccct gagactgccc caccttctca acaacc	36

<211>	513	
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>		
gcagcctcta t	cacaacctgg gacggga	27
<210>	E1.4	
<211>		
<211>		
	Artificial Sequence	
\213>	Altilitial bequence	
<220>		
<223>	Synthetic Sequence	
<400>		
ctatcggagg a	actggcgcgc cg	22
<210>	515	
<210 <i>></i>		
<211>		
	Artificial Sequence	
(213)	The children and an	
<220>		
<223>	Synthetic Sequence	
<400>		0.1
tatcggagga c	etggegegee g	21
<210>	516	
<211>		
<212>		
	Artificial Sequence	
	•	
<220>		
	Synthetic Sequence	
<223>		
<223> <400>	516	01
<223>	516	21
<223> <400> gatcggagga c	516 etggegegee g	21
<223> <400> gatcggagga c	516 etggegegee g 517	21
<223> <400> gatcggagga c <210> <211>	516 etggegegee g 517 26	21
<223> <400> gatcggagga c <210> <211> <212>	516 etggegegee g 517 26 DNA	21
<223> <400> gatcggagga c <210> <211> <212>	516 etggegegee g 517 26	21
<223> <400> gatcggagga c <210> <211> <212>	516 etggegegee g 517 26 DNA	21
<223> <400> gatcggagga c <210> <211> <212> <213>	516 etggegegee g 517 26 DNA	21
<223> <400> gatcggagga c <210> <211> <212> <213> <220> <223>	516 etggegege g 517 26 DNA Artificial Sequence Synthetic Sequence	21
<223> <400> gatcggagga c <210> <211> <212> <213> <220> <223> <400>	516 etggegege g 517 26 DNA Artificial Sequence Synthetic Sequence	
<223> <400> gatcggagga c <210> <211> <212> <213> <220> <223> <400>	516 etggegege g 517 26 DNA Artificial Sequence Synthetic Sequence	21
<223>	516 etggegege g 517 26 DNA Artificial Sequence Synthetic Sequence 517 eateggtgat cagcac	
<223> <400> gatcggagga c <210> <211> <212> <213> <220> <223> <400> ccgaacagga t <210>	516 ctggcgcgcc g 517 26 DNA Artificial Sequence Synthetic Sequence 517 catcggtgat cagcac 518	
<223>	516 ctggcgcgcc g 517 26 DNA Artificial Sequence Synthetic Sequence 517 catcggtgat cagcac 518 24	

<220> <223> Synthetic Sequence	
<400> 518 ttttggggtc aacgttgagg gggg	24
<210> 519 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 519 ggggtcaacg ttgaggggg	20
<210> 520 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 520 cgcgcgcgcg cgcgcgcg	20
<210> 521 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 521 ggggcatgac gttcgggggg	20
<210> 522 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 522 ggggcatgac gttcaaaaaa	20
<210> 523 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 523 .ggggcatgag cttcgggggg	20

<210>	- 524	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
\2237	Synthetic bequeine	
<400>		
ggggcatgac	gttcgggggg	20
<210>	525	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	,	
	Synthetic Sequence	
\223/	Synthetic bequence	
<400>	→ 525	
aaaacatgac	gttcaaaaaa	20
-		
<210>	> 526	
<2112		
<212		
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
<223.	Synthetic Sequence	
<400	> 526	
aaaacatgac	gttcgggggg	20
<210	> 527	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
\223,	> Synthetic Sequence	
<400	> 527	
ggggcatgac	gttcaaaaaa	20
<210	> 528	
<2112		
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
\223	olucinosto podecues	
<400		O 4
accatggacg	atctgtttcc cctc	24
<210	> 529	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	

<223>	Synthetic Sequence	
<400>	→ 529	
	aactgttccc cctc	24
<210> <211>		
<2112		
	Artificial Sequence	
	•	
<220>		
<2232	> Synthetic Sequence	
<400>	> 530	
cccccccc	cccccccc	20
<210>	> 531	
<211>		
	DNA	
<213>	> Artificial Sequence	
<220>		
	> Synthetic Sequence	
	> 531	20
aaaaaaaaa	adadadada	20
<210	> 532	
<2112	> 20	
	> DNA	
<213	> Artificial Sequence	
<220>	>	
	> Synthetic Sequence	
-100	520	
	> 532 gaateggeeg	20
gccgcaaaac	gaareggeeg	
<210	> 533	
<2112		
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
. 100	522	
	> 533 ctcctccatt	20
cccgggcgga		
	> 534	
<2112		
	> DNA > Artificial Seguence	
<2132	> Artificial Sequence	
. <220	>	
<223	> Synthetic Sequence	
4400	. 524	
	> 534 ccggacttat	20
catgetyeye	- coggacteut	_ `
<210	> 535	

<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Synthetic Sequence	
12237	symmetry reducine	
<400>	535	
		20
ggggtaatcg	accaggggg	20
.010.		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	536	
tttgagaacg		20
cccyagaacg	ceggadoced	
<210>	537	
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	537	
gatcgctgat	ctaatgctcg	20
, , ,		
<210>	538	
<211>		
<212>		
	Artificial Sequence	
\213/	Artificial Sequence	
4000s		
<220>		
<223>	Synthetic Sequence	
<400>		
gtcggtcctg a	atgctgttcc	20
<210>	539	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
(223)	Dynametre bequence	
<400>	530	
		20
tcgtcgtcag f	cicycigicg	20
-010	540	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	

<400> 540 ctggaccttc catgtcgg	18
<210> 541 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 541 gctcgttcag cgcgtct	17
<210> 542 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 542 ctggaccttc catgtc	16
<210> 543 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 543 cactgtcctt cgtcga	16
<210> 544 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 544 cgctggacct tccatgtcgg	20
<210> 545 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 545 gctgagctca tgccgtctgc	20
<210> 546 <211> 20	

	> DNA > Artificial Sequence	
<220 <223	> > Synthetic Sequence	
	> 546 cttccatgtc	20
.010	. 543	
	> 547 > 20	
	> 20 > DNA	
	> Artificial Sequence	
\213	> Viffilities podagones	
<220	>	
<223	> Synthetic Sequence	
	> 547	20
tgcatgccgt	acacagetet	20
.04.0	540	
)> 548 .> 20	
	.> 20 ?> DNA	
	>> Artificial Sequence	
<213	Altilitat bequence	
<220)>	
<223	3> Synthetic Sequence	
<400)> 548	
	cggtcctgat ·	20
00000000		
<210)> 549	
<211	1> 20	
_	2> DNA	
<213	3> Artificial Sequence	
<220		
	3> Synthetic Sequence	
	0> 549	20
tactcttcg	g atcccttgcg	20
~21 (2> 550	
	0> 550 1> 18	
	2> DNA	
	3> Artificial Sequence	
	•	
<22		
<22	3> Synthetic Sequence	
<40	0> 550	
	g gtcctgat	18
<21	0> 551	
	1> 18	
	2> DNA	
	3> Artificial Sequence	
<22	0>	
	3> Synthetic Sequence	

<400> 551 ctgattgctc tctcgtga	18
<210> 552 <211> 20 <212> DNA	
<213> Artificial Sequence .	
<220> <223> Synthetic Sequence	
<400> 552 ggcgttattc ctgactcgcc	20
<210> 553	
<211> 22	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 553	22
cctacgttgt atgcgcccag ct	22
<210> 554	
<211> 20	
<212> DNA <213> Artificial Sequence	
(213) Artificial Bequence	
<220> <223> Synthetic Sequence	
<400> 554	20
ggggtaatcg atgaggggg	20
<210> 555	
<211> 20	
<212> DNA <213> Artificial Sequence	
(213) Aftificial Dequence	
<220>	
<223> Synthetic Sequence	
<400> 555	
ttcgggcgga ctcctccatt	20
<210> 556	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 556	20
tttttttt ttttttt	20
<210> 557	
<211> 20	
<212> DNA	

	- 106 -
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
(223) Synthetic Bequence	
<400> 557	20
gggggttttt tttttggggg	20
.010> 550	
<210> 558 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<2237 Synthetic Sequence	
<400> 558	
tttttggggg gggggttttt	20
(210) 550	
<210> 559 <211> 19	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<223> Synthetic Bequence	
<400> 559	10
ggggggggg gggggggt	19
<210> 560	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
.000	
<220> <223> Synthetic Sequence	
(223) Synthetic coquenct	
<400> 560	20
aaaaaaaaa aaaaaaaaaa	20
<210> 561	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
(220)	
<220> <223> Synthetic Sequence	
(223) Binenege 19 i	
<400> 561	20
cccccaaaa aaaaaccccc	20
<210> 562	
<210> 302	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220>	
<400> 562	

aaaaaccccc c	ccccaaaaa		20			
<210> <211> <212>	27					
	Artificial S	equence				
<220> <223>	Synthetic Se	equence				
<400> tttgaattca (563 ggactggtga gg	gttgag				27
<210> <211>						
<212> <213>	DNA Artificial S	Sequence				
<220> <223>	Synthetic Se	equence				
<400> tttgaatcct	564 cageggtete ea	agtggc				27
<210> <211> <212> <213>	45	Sequence				
<220> <223>	Synthetic So	equence				
<400> aattctctat	565 cggggcttct g	tgtctgttg c	tggttccgc	tttat		45
<210> <211> <212> <213>	45	Sequence				
<220> <223>	Synthetic S	equence				
<400> ctagataaag	· 566 cggaaccagc a	acagacaca g	gaagccccga	tagag		45
<210> <211> <212> <213>	→ 28	Sequence				
<220> <223>	> > Synthetic S	equence				
<400> ttttctagag	> 567 aggtgcacaa t	gctctgg				28
<2112 <2122	> 568 > 29 > DNA > Artificial	Sequence				

<220> <223> Synthetic Sequence	
<400> 568 tttgaattcc gtgtacagaa gcgagaagc	29
<210> 569 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 569 tttgcggccg ctagacttaa cctgagagat a	31
<210> 570 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 570 tttgggccca cgagagacag agacacttc	29
<210> 571 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 571 tttgggcccg cttctcgctt ctgtacacg	29
<210> 572 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 572 gagaacgctg gaccttccat	20
<210> 573 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 573	20

```
<210> 574
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 574
                                                                           6
ctgtcg
      <210> 575
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 575
                                                                           6
tcgtga
      <210> 576
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 576
                                                                           6
cgtcga
      <210> 577
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 577
                                                                           6
agtgct
      <210> 578
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 578
                                                                           6
ctgtcg
      <210> 579
      <211> 6
      <212> DNA
      <213> Artificial Sequence
```

<223> Synthetic Sequence <400> 579 agtgct 6 <210> 580 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 580 cgtcga 6 <210> 581 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 581 tcgtga 6 <210> 582 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 582 gagaacgctc cagcttcgat 20 <210> 583 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 583 gctagacgta agcgtga 17 <210> 584 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 584 gagaacgctc gaccttccat 20

<210> <211> <212>	21	
<213>	Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gagaacgctg	gacctatcca t	21
<210> <211>		
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>	Synthetic Sequence	
<400> gctagaggtt		17
<210>	587	
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400> gagaacgctg		19
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400> tcacgctaac		17
<210>	589	
<211>		
<212> <213>	Artificial Sequence	
<220>		
	misc_feature	
	<pre>(1)(3) Conjugated to biotin moiety.</pre>	
<223>	Synthetic Sequence	
<400> gctagacgtt a		17
<210>		
<210>		

		112	
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 590		
atqqa	aggtc gagcgttctc	20	0
acgga	agged gagegeress		
	<210> 591		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 591		
~~~~	cgctg gaccttcgat	2	0
gagaa	legely gatellegat		
	<210> 592		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 592	2	n
gagaa	acgatg gaccttccat	2	Ö
	<210> 593		
	<211> 17		
	<211> 17 <212> DNA		
	<213> Artificial Sequence		
	•		
	<220>		
	<223> Synthetic Sequence		
	<400> 593	1	7
gagaa	acgctg gatccat		′
	<210> 594		
	<210> 594 <211> 20		
	<211> 20 <212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 594	•	. ^
gagaa	acgete cageactgat	2	0
	2210> EOE		
	<210> 595		
	<211> 20		
	<212> DNA <213> Artificial Sequence		
	12137 ALCITICIAL DEGLECITE		
	<220>		
	<223> Synthetic Sequence		

<400> 595 tccatgtcgg tcctgctgat	20
<210> 596	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 596	20
atgtcctcgg tcctgatgct	20
<210> 597	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 597	
gagaacgctc caccttccat	20
<210> 598	
<211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(210) Michigan Boquoneo	
<220>	
<223> Synthetic Sequence	
<400> 598	
gagaacgctg gaccttcgta	20
<210> 599	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_feature	
<222> (1)(3)	
<223> Conjugated to biotin moiety.	
<223> Synthetic Sequence	
<400> 599	
atggaaggtc cagcgttctc	20
<210> 600	
<211> 6	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 600	_
tcctga	6

<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> tcaacgtt	601	8
<210> <211> <212> <213>	6	
<220> <223>	Synthetic Sequence	
<400> aacgtt	602	6
<210> <211> <212> <213>	· 8	
<220> <223>	Synthetic Sequence	
<400> aacgttga	· 603	8
<210> <211> <212> <213>	· 17	
<220> <223>	> Synthetic Sequence	
<400> tcacgctaac	> 604	17
<210> <211> <212> <213>	> 20	
<220> <223>	> Synthetic Sequence	
<400> gagaacgctg		20
<211> <212>	> 606 > 14 > DNA > Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 606 gctggacctt ccat	14
<210> 607 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 607 gagaacgctg gacctcatcc at	22
<210> 608 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 608 gagaacgctg gacgctcatc cat	23
<210> 609 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 609 aacgttgagg ggcat	15
<210> 610 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 610 atgcccctca acgtt	15
<210> 611 <211> 10 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 611 tcaacgttga	10

<	<210>	612	
	<211>		
	<212>		
•	(213)	Artificial Sequence	
	<220>		
<	<223>	Synthetic Sequence	
<	<400>	612	
gctggad	cctt c	ccat	1
<	<210>	613	
<	<211>	7	
<	<212>	DNA	
<	<213>	Artificial Sequence	
<	<220>		
		Synthetic Sequence	
		-7	
<	<400>	613	
caacgtt			
caacge	-		
	<210>	614	
	<211>		
	<212>		
· ·	(213>	Artificial Sequence	
_	<220>	•	
		Combbabia Camona	
<	(223>	Synthetic Sequence	
		C1.4	
	<400>		
acaacgt	tga	•	1(
	-010	C15	
	<210>		
	(211>		
	(212>		
<	(213>	Artificial Sequence	
	(220>		
<	(223>	Synthetic Sequence	
<	(400>	615	
tcacgt			6
	(210>		
	(211>		
	(212>		
<	(213>	Artificial Sequence	
	(220>		
<	(223>	Synthetic Sequence	
<	(400>	616	
tcaagct	:t		8
-			
<	(210>	617	
	(211>		
	212>		
		Artificial Sequence	
		•	
-	220>		
`			

		- 11/-	
	<223>	Synthetic Sequence	
	<400>	617	
to	gtca		6
	<210>		
	<211>		
	<212>	· DNA · Artificial Sequence	
	(213)	Artificial Sequence	
	<220>		
	<223>	· Synthetic Sequence	
	<400>	• 618	8
aç	ggatatc		Ŭ
	<210>	619	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
		•	
	<400>	619	0
ta	agacgtc		8
	<210>	620	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<b>\223</b> /	> Synthetic Sequence	
	<400>	→ 620	
g	acgtcat		8
	<210> <211>		
	<211>		
		> Artificial Sequence	
	<220>		
	<223>	> Synthetic Sequence	
	<400>	> 621	
C	catcgat	<b>021</b> .	8
	,		
	<210>		
	<211>		
	<212>	> DNA > Artificial Sequence	
	12137		
	<220>	>	
	<223>	> Synthetic Sequence	
	-400	622	
9	<400> tcgatgt	> 022	8
a	cogacyc		•
	<210>	> 623	

		- 118 -	
<	211>	8	
	212>		
<	213>	Artificial Sequence	
	(220>	Completia Componer	
<	223>	Synthetic Sequence	
_	(400>	623	
atgcatg			8
	, -		
<	<210>	624	
	<211>		
	<212>		
<	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
	(223)		
<	<400>	624	_
ccatgca	at		8
	<210>		
	<211>		
	<212>	Artificial Sequence	
•	(213)	Aftilitial Sequence	
	<220>		
		Synthetic Sequence	
•	<400>	625	8
agcgct	ga		0
	.010	606	
	<210>		
	<211> <212>		
		Artificial Sequence	
		•	
	<220>		
	<223>	Synthetic Sequence	
	<400>	626	8
tcagcg	CT		
	<210>	627	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>	627	
ccttcg		<del></del> -	8
22209	,		
	<210>	628	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>	•	
		Synthetic Sequence	
	~~~	<u></u>	

<400> gtgccggggt c		18
<210> <211> <212> <213>	18	
<220> <223>	Synthetic Sequence	
<400> gctgtggggc g		18
<210> <211> <212> <213>	8 .	
<222>	<pre>misc_feature (1)(3) Conjugated to biotin moiety.</pre>	
<223>	Synthetic Sequence	
<400> tcaacgtt	630	8
<210> <211> <212> <213>	8	
<222>	<pre>misc_feature (1)(3) Conjugated to FITC moiety.</pre>	
<223>	Synthetic Sequence	
<400> tcaacgtt	631	8
<210> <211> <212> <213>	8	
<222>	<pre>misc_feature (1)(3) Conjugated to FITC moiety.</pre>	
<223>	Synthetic Sequence	
<400> aacgttga	632	8
<210>	633	

```
<211> 7
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 633
                                                                          7
tcaacgt
      <210> 634
      <211> 7
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 634
                                                                           7
aacgttg
      <210> 635
      <211> 6
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 635
                                                                           6
cgacga
      <210> 636
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 636
                                                                           8
tcaacgtt
      <210> 637
      <211> 5
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
       <400> 637
                                                                           5
tcgga
       <210> 638
       <211> 8
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
```

<400> agaacgtt	638	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> tcatcgat	639	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> taaacgtt	640	8
<210> <211> <212> <213>	8 .	
<220> <223>	Synthetic Sequence	
<400> ccaacgtt	641	8
<210> <211> <212> <213>	6	
<220> <223>	Synthetic Sequence	
<400> gctcga	642	6
<210> <211> <212> <213>	6	
<220> <223>	Synthetic Sequence	
<400> cgacgt	643	6
<210> <211>		

	- 122 -	
<212	> DNA	
	> Artificial Sequence	
1220	• • • • • • • •	
<220		
	> Synthetic Sequence	
\223 .	Synthetic bedaened	
	614	
	> 644	6
cgtcgt		-
	> 645	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	-	
<100	> 645	
	> 043	6
acgtgt		
-010	> 646	
<211		
	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
< 400	> 646	_
cgttcg		6
cgcccg		
<210°)> 647	
	> 20	
	>> DNA	
	3> Artificial Sequence	
<213	37 Artificial Sequence	
.000		
<220		
<223	3> Synthetic Sequence	
	0> 647	20
gagcaagcto	g gaccttccat	20
<210)> 648	
<211	L> 6	
<212	2> DNA	
	3> Artificial Sequence	
	-	
<220)>	
	3> Synthetic Sequence	
\22.	Symmetric designation of the second s	
~A01	0> 648	
	y, 010	6
cgcgta		
-014	05 640	
	0> 649	
	1> 6	
	2> DNA	
<21	3> Artificial Sequence	
<22		
<22	3> Synthetic Sequence	

		- 123 -	
<400>	649		
	0.13		6
cgtacg			
<210>	650		
<211>	8		
<212>			
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
\2237	Synthetic bequence		
<400>	650		
tcaccggt			8
.010	CE 1		
<210>			
<211>	20		
<212>	DNA		
	Artificial Sequence		
(213)	Altilitat bedaemee		
<220>			
<223>	Synthetic Sequence		
	651		
<400>			
caagagatgc t	aacaatgca	2	0.5
<210>	652		
<211>			
<212>	DNA		
<213>	Artificial Sequence		
1810			
<220>			
<223>	Synthetic Sequence		
<400>	652		
			20
acccatcaat a	igctctgtgc	2	. 0
<210>	653		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	653		
	= = =		8
ccatcgat			-
<210>	654		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
<223>	Synthetic Sequence		
<400>	654		
tcgacgtc			8
cogacyco			
<210>			
<211>	8		
<212>			
~2127	DIM		

<400> 660

	- 124 -	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ctage	<400> 655 gct	8
	<210> 656	
	<211> 8	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 656	8
taagc	gct	0
	<210> 657	
	<211> 13	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 657	1.0
tcgcg	maattc gcg	13
	<210> 658	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 658	1.0
atgga	aggtc cagcgttct	19
	<210> 659	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 659	17
actgo	gacgtt agcgtga	17
	<210> 660	
	<211> 18	
	<212> DNA <213> Artificial Sequence	
	72137 MICHILOTAL DOGUCIOC	
	<220>	
	<223> Synthetic Sequence	

- 125	
cgcctggggc tggtctgg 18	
<210> 661 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 661 gtgtcggggt ctccgggc	18
<210> 662 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 662 gtgccggggt ctccgggc	18
<210> 663 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 663 cgccgtcgcg gcggttgg	18
<210> 664 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 664 gaagttcacg ttgaggggca t	21
<210> 665 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 665 atctggtgag ggcaagctat g	21
<210> 666 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223>	Synthetic Sequence	
<400> gttgaaaccc g	,	21
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> gcaacgtt	667	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> gtaacgtt	668	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> cgaacgtt	669	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> gaaacgtt	670	8
<210> <211> <212> <213>	8	
<220> <223>	Synthetic Sequence	
<400> caaacgtt	671	8

```
<210> 672
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 672
                                                                           8
ctaacgtt
      <210> 673
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 673
                                                                           8
ggaacgtt
      <210> 674
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 674
                                                                           8
tgaacgtt
      <210> 675
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
       <400> 675
                                                                           8
acaacgtt
       <210> 676
       <211> 8
       <212> DNA
       <213> Artificial Sequence
       <223> Synthetic Sequence
       <400> 676
                                                                            8
 ttaacgtt
       <210> 677
       <211> 8
       <212> DNA
       <213> Artificial Sequence
```

	- 128 -	
<220>	Sunthatia Saguence	
<223>	Synthetic Sequence	
<400> aaaacgtt	677	8
aaaacycc		
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	678	
ataacgtt		8
.010	670	
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
	Synthetic Sequence	
.400	670	
<400> aacgttct	679	8
aacgeece		
<210>		
<211>		
<212> <213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
4400>	600	
<400> tccgatcg	680	8
cccgaccg		
<210>		
<211>		
<212>	DNA Artificial Sequence	
<220>		
<2237	Synthetic Sequence	
<400>	→ 681	8
tccgtacg		Ū
<210>		
<2112		
	> DNA > Artificial Sequence	
<2132	> Withingt pedagues	
<220		
<223	> Synthetic Sequence	
<400	> 682	1 -
gctagacgct		17

<210> <211>		
<211>	683	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
1220	o, meneral and the	
<400×		
<400>		25
gagaacgctg	gacctcatca tccat	
<210>	· 684	
<211>	· 20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	> Synthetic Sequence	
<400>	> 684	
		20
gagaacgcta	gacettetat	
<210>	> 685	
<211>	> 17	
<212>	> DNA	
	> Artificial Sequence	
(213/	Altificial Sequence	
<220>		
<223>	> Synthetic Sequence	
<400>	> 685	
actagacgtt		17
actagacytt	agegega	
0.4.0.		
	> 686	
<211>	> 22	
<212	> DNA	
<213	> Artificial Sequence	
1210		
	, William podemic	
<220°		
<220	> ·	
<223	> > Synthetic Sequence	
<223	> ·	
<2233 <4003	> Synthetic Sequence > 686	22
<2233 <4003	> > Synthetic Sequence	22
<2233 <4003 cacaccttgg	> Synthetic Sequence > 686 tcaatgtcac gt	22
<2233 <4003 cacaccttgg <2103	> Synthetic Sequence > 686 tcaatgtcac gt > 687	22
<2233 <4003 cacaccttgg <2103 <2113	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22	22
<2233 <4003 cacaccttgg <2103 <2113 <2123	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA	22
<2233 <4003 cacaccttgg <2103 <2113 <2123	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22	22
<2233 <4003 cacaccttgg <2103 <2113 <2123	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA	22
<2233 <4003 cacaccttgg <2103 <2113 <2123	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence	22
<2233 <4003 cacaccttgg <2103 <2113 <2123 <22133	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence	22
<2233 <4003 cacaccttgg <2103 <2113 <2123 <22133	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence	22
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence	22
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2203 <4003	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2203 <4003	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence	22
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4003 tctccatcct	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687 atggttttat cg	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4003 tctccatcct	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4000 tctccatcct <210	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687 atggttttat cg	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4000 tctccatcct <210 <211	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687 atggttttat cg > 688 > 15	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4003 tctccatcct <210 <211 <211 <212	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > atggtttat cg > 688 > 15 > DNA	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4003 tctccatcct <210 <211 <211 <212	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687 atggttttat cg > 688 > 15	
<2233 <4003 cacaccttgg <2103 <2113 <2123 <2203 <2233 <4003 tctccatcct <210 <211 <211 <212	> Synthetic Sequence > 686 tcaatgtcac gt > 687 > 22 > DNA > Artificial Sequence > Synthetic Sequence > 687 atggttttat cg > 688 > 15 > DNA > Artificial Sequence	

<223> Synthetic Sequence <400> 688 15 cgctggacct tccat <210> 689 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 689 23 caccaccttg gtcaatgtca cgt <210> 690 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 690 17 gctagacgtt agctgga <210> 691 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 691 17 agtgcgattg cagatcg <210> 692 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 692 24 ttttcgtttt gtggttttgt ggtt <210> 693 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 693 23 ttttcgtttg tcgttttgtc gtt <210> 694

<pre> <211> 24</pre>
<pre> <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 694 ttttgttt gtggtttgt ggtt <210> 695 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 695 accgcatgga ttctaggcca <210> 696 <211> 15 <212> DNA <213> Artificial Sequence <220> <221> Synthetic Sequence <400 695 accgcatgga ttctaggcca <210> 696 <211> 15 <212> DNA <213> Artificial Sequence <220> <221> DNA <213> Synthetic Sequence <220> <221> DNA <211> 17 <212> DNA <211> 17 <211> 17 <212> DNA <211> 17 <212> DNA <211> 17 <212> DNA <211> 17 <212> DNA <212> DNA <213> DNA <213> DNA <213> DNA <213 ATTIFICIAL Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA </pre>
<pre> <213> Artificial Sequence <220></pre>
<pre></pre>
<pre> <223> Synthetic Sequence <400> 694 tttttgtttt gtggttttgt ggtt</pre>
<pre> <223> Synthetic Sequence <400> 694 tttttgtttt gtggttttgt ggtt</pre>
<pre></pre>
<pre>tttttgtttt gtggttttgt ggtt</pre>
<pre>tttttgtttt gtggttttgt ggtt</pre>
<pre></pre>
<pre> <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 695 accgcatgga ttctaggcca <210> 696 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <220> <223> Synthetic Sequence <221> 12</pre>
<pre> <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 695 accgcatgga ttctaggcca <210> 696 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <220> <223> Synthetic Sequence <221> 12</pre>
<pre><212> DNA</pre>
<pre> <213> Artificial Sequence <220></pre>
<pre></pre>
<pre> <223> Synthetic Sequence <400> 695 accgcatgga ttctaggcca</pre>
<pre> <223> Synthetic Sequence <400> 695 accgcatgga ttctaggcca</pre>
<pre><400> 695 accgcatgga ttctaggcca</pre>
<pre> accgcatgga ttctaggcca</pre>
<pre> accgcatgga ttctaggcca</pre>
<pre></pre>
<pre> <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<pre> <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<pre><212> DNA</pre>
<213> Artificial Sequence <220> <223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA
<pre><220> <223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<pre><223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<pre><223> Synthetic Sequence <400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<400> 696 gctagacgtt agcgt <210> 697 <211> 17 <212> DNA
gctagacgtt agcgt <210> 697 <211> 17 <212> DNA
gctagacgtt agcgt <210> 697 <211> 17 <212> DNA
<pre>ctagacgtt agcgt <210> 697 <211> 17 <212> DNA</pre>
<211> 17 <212> DNA
<211> 17 <212> DNA
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence
<400> 697
aacgctggac cttccat
<210> 698
<211> 8
<212> DNA
<213> Artificial Sequence
<220>
<221> modified_base
<222> (5)(5) <223> m5c
<222> (5)(5)
<222> (5)(5) <223> m5c
<222> (5)(5)
<222> (5)(5) <223> m5c <223> Synthetic Sequence <400> 698
<222> (5)(5) <223> m5c <223> Synthetic Sequence <400> 698
<222> (5)(5) <223> m5c <223> Synthetic Sequence <400> 698
<pre><222> (5)(5)</pre>
<222> (5)(5) <223> m5c <223> Synthetic Sequence <400> 698

		- 132 -
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	699	8
ccttcgat		· ·
<210>		
<211>		•
<212>	Artificial Sequence	
(213)	mennen redeeme	
<220>		
<223>	Synthetic Sequence	
<400>	700	
actagacgtt	agtgtga	17
<210>	701	
<210> <211>		
<212>		
<213>	Artificial Sequence	
· <220>	Synthetic Sequence	
1220	2,	
<400>		17
gctagaggtt	agcgtga	17
<210>	702	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	702	
atggactctc		20
<210>		
<211>		
<212>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	703	
atcgactctc	gagcgttctc	20
<210>	704	·
<210 <i>></i>		
<212>		
	Artificial Sequence	
~22 0 \$		
<220>	Synthetic Sequence	
\2237	J boquonoc	
<400>	704	

gctagacgtt	agc 13
<210>	
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	705
gctagacgt	9
<210>	
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	
agtgcgattc (gagatcg 17
<210>	•
<211>	
<212>	
<213>	Artificial Sequence
<220>	
	modified_base
	(5)(5)
<223>	m5c
<223>	Synthetic Sequence
<400>	
tcagngct	8
.010.	700
<210>	
<211>	
<212>	
<213>	Artificial Sequence
.000	
<220>	
<223>	Synthetic Sequence
.400	
<400>	
ctgattgctc t	cctcgtga 18
2010:	700
<210>	
<211>	
<212>	
<213>	Artificial Sequence
2000s	
<220>	madified base
	modified_base
	(2)(2)
<223>	moc .
Z2225	Synthatic Seguence

atcgacttcg a	gcgttctc	19	
<210>	715		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	715		_
atgcactctg o	agegttete	2	0
<210>	716		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			
agtgactctc (cagcgttctc	2	20
<210>	717		
<211>			
<212>	DNA	•	
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	717		
gccagatgtt a		1	L 7
<210>	710		
<211>			
<212>			
	Artificial Sequence		
<220>			
	Synthetic Sequence		
<400>	718		
atcgactcga		1	18
-			
<210>			
<211>			
<212>	Artificial Sequence	·	
<213>	ATCITICIAL Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	719	_	
atcgatcgag	cgttctc		17
<210>			
<211>			
<212>			
<213>	Artificial Sequence		

<220> <221>	misc_feature	
	(1)(3) Conjugated to biotin moiety.	
<223>	Synthetic Sequence	
<400> gagaacgctc		20
3 3 3		
<210>		
<211>		
<212> <213>	DNA Artificial Sequence	
<220>		
	Synthetic Sequence	
<400>	721	
gctagacgtt		17
<210>	· 	
<211> <212>		
	Artificial Sequence	
(213)	merirotar boquonoo	
<220>		
<223>	Synthetic Sequence	
<400>		2.0
atcgactctc	gagcgttctc	20
<210>	723	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	723	
tagacgttag		15
, , ,		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		
cgactctcga	gcgttctc	18
<210>	725	
<210 <i>></i>		
<212>		
	Artificial Sequence	
<220>		

	\2237	Synthetic bequence	
	<400>	725	
			21
5555	,		
	<210>	726	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	.000		
	<220>	Cunthotic Sequence	
	<2237	Synthetic Sequence	
	<400>	726	
gctaac			16
J	, ,		
	<210>	727	
	<211>	9	
	<212>		
	<213>	Artificial Sequence	
	<0.00×		
	<220>	Synthetic Sequence	
	\ 2237	Synthetic bequence	
	<400>	727	
cgtcgt			9
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
		modified base	
		(14)(14)	
	<223>		
	<223>	Synthetic Sequence	
	<400>		20
gagaac	cgctg g	gacnttccat	20
	<210>	729	
	<211>		
	<212>		
		Artificial Sequence	
	<220>		
		modified_base	
		(18)(18)	
	<223>	m5c	
	<223X	Synthetic Sequence	
	\223/	Synthetic bequence	
	<400>	729	
atcgad	cctac o	gtgcgttntc	20
-			
	<210>		
	<211>		
	<212>		
	<<13>	Artificial Sequence	

<220>		
<221>	modified_base	
<222>	(3)(3)	
<223>	m5c	
<223>	Synthetic Sequence	
<400>	730	
atngacctac	gtgcgttctc	20
_		
<210>	731	
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	modified base	
<222>	$(7)\ldots(7)$	
<223>		
<223>	Synthetic Sequence	
<400>	731	
gctagangtt	agcgt	15
<210>	732	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<221>	modified base	
<222>	(14)(14)	
<223>		
<223>	Synthetic Sequence	
<400>	732	
atcgactctc	gagngttctc	20
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	733	
ggggtaatgc	atcagggggg	20
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	734	

ggctgtattc ctgactgccc	20
<210> 735	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 735	17
ccatgctaac ctctagc	17
<210> 736	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 736	1.7
gctagatgtt agcgtga	17
<210> 737	
<211> 15 <212> DNA	
<212> DNA <213> Artificial Sequence	
(213) Mitificial doquent	
<220>	
<223> Synthetic Sequence	
<400> 737	_
cgtaccttac ggtga	15
.010. 700	
<210> 738	
<211> 20 <212> DNA	
<213> Artificial Sequence	
12107 11202222 31]	
<220>	
<223> Synthetic Sequence	
<400> 738	
tccatgctgg tcctgatgct	. 20
<210> 739	
<211> 739	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 739	22
atcgactctc tcgagcgttc tc	2.
<210> 740	
<211> 17	
<212> DNA	
<213> Artificial Sequence	

	<220> <223> Synthetic Sequence	
	<400> 740	
	gctt agcgtga	17
	<210> 741	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 741	20
atcgac	toto gagtgttoto	20
	<210> 742	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 742	
aacgct	cgac cttcgat	17
	<210> 743	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 743	
ctcaac	cgctg gaccttccat	20
	<210> 744	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 744	•
atcgac	cctac gtgcgttctc	20
	<210> 745	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 745	^
gagaat	tgctg gaccttccat	2

<21 <21	0> 746 1> 17 .2> DNA .3> Artificial Sequence	
<22 <22	20> 23> Synthetic Sequence	
	00> 746 ac ctctgac	7
_	•	
<21	10> 747	
<21	11> 20	
<21	12> DNA	
<21	13> Artificial Sequence	
	20>	
	21> misc_feature	
<22	22> (1)(3)	
<22	23> Conjugated to biotin moiety.	
<22	23> Synthetic Sequence	
-11	00> 747	
	tc cagcactgat	0
<2	10> 748	
<2	11> 20	
<2	12> DNA	
<2	13> Artificial Sequence	
/2	20>	
_	21> misc feature	
<2	22> (1)(3) 23> Biotin moiety attached at 5' end of sequence.	
<2	23> Biotin molety attached at 3 end of sequence.	
<2	23> Synthetic Sequence	
<4	00> 748	
gagcaagc	tg gaccttccat	20
. ~	10> 740	
· -	10> 749	
	11> 18	
	12> DNA	
<2	13> Artificial Sequence	
<2	20>	
<2	23> Synthetic Sequence	
< 4	00> 749	
	igt tagcgtga	18
<2	210> 750	
<2	211> 15	
<2	212> DNA	
	213> Artificial Sequence	
<2	220>	
	223> Synthetic Sequence	

- · · · ·	
<400> 750 gctagatgtt aacgt	15
<210> 751 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 751 atggaaggtc cacgttctc	19
<210> 752 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 752 gctagatgtt agcgt	15
<210> 753 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 753 gctagacgtt agtgt	15
<210> 754 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 754 tccatgacgg tcctgatgct	20
<210> 755 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 755 tccatggcgg tcctgatgct	20
<210> 756 <211> 15 <212> DNA	

			- 143	
	<213> Artificia	al Sequence		
	<220>			
	<223> Synthetic	Sequence		
	<400> 756			
	gctagacgat agcgt			15
	<210\ 757			
	<210> 757 <211> 15			
	<212> DNA			
	<213> Artificia	al Sequence		
	<220>			
	<223> Synthetic	c Sequence		
	<400> 757			1 5
	gctagtcgat agcgt			15
2	<210> 758			
	<211> 20			
	<212> DNA			
	<213> Artifici	al Sequence		
	<220>			
	<223> Syntheti	c Sequence		
	<400> 758			0.0
	tccatgacgt tcctgatgc	t		20
	<210> 759			
	<211> 20		·	
	<212> DNA	-1 Commonos		
	<213> Artifici	al Sequence		
	<220>			
	<223> Syntheti	c Sequence		
	<400> 759			20
	tccatgtcgt tcctgatgc	t		20
	<210> 760			
	<211> 15			
	<212> DNA	al Coguence		
	<213> Artifici	ar sequence		
	<220>			
	<221> modified <222> (13)(
	<222> (13)(13)		
	caaa comthati	a Coguengo		
	<223> Syntheti	c sequence		
	<400> 760			15
	gctagacgtt agngt			13
	<210> 761			
	<211> 15			
	<212> DNA <213> Artifici	al Seguence		
	/CID/ MICILICI	ar bequeince		

		- 144 -	
<220> <223> \$	Synthetic Sequence		
<400> 7			15
gctaggcgtt ac	gcgt		15
<210> 7 <211> 2			
<212> [
	Artificial Sequence		
<220>			
<221> 1	modified_base		
	(8)(8)		
<223> 1			
<223>	Synthetic Sequence		
<400>	762		20
tccatgtngg t	cctgatgct		20
<210> <211>			
<211>			
	Artificial Sequence		
	Michigan podami		
<220>	madified base		
	modified_base		
<222 <i>></i> <223>	(12)(12)		
	Synthetic Sequence		
<400>			20
tccatgtcgg t	nctgatgct		20
<210>	764		
<211>			
<212>	DNA		
	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<221>	modified_base		
	(3)(3)		
<223>			
<221>	modified base		
	(10)(10)		
<223>			
<221>	modified_base		
	$(14)(\overline{1}4)$		
<223>			
<400>			20
atngactctn	gagngttctc		20
<210>			
<211>	20		

<: <:	212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 765 gtc cagtgttctc	20
<	2210> 766	
	2211> 15	
	212> DNA	
<	213> Artificial Sequence	
<	<220>	
	223> Synthetic Sequence	
<	<400> 766	
	egtt gaget	15
gcacgac		
	<210> 767	
	<211> 20	
	<212> DNA	
<	<213> Artificial Sequence	
<	<220>	
<	<223> Synthetic Sequence	
<	<400> 767	
	aacg ttgaggggg	20
	<210> 768	
	<211> 700	
	<211> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 768	
	aagt ctgaggggg	20
	<210> 769	
	<211> 20 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 769	20
cgcgcg	leded ededededed	20
	<210> 770	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

<400> 770 cccccccc cccccccc	28
<210> 771 <211> 35	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 771 ccccccccc ccccccccc ccccccccc	35
<210> 772	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 772	20
tccatgtcgc tcctgatcct	20
<210> 773	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 773	15
gctaaacgtt agcgt	13
<210> 774	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 774	20
tccatgtcga tcctgatgct	20
<210> 775	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 775	20
tccatgccgg tcctgatgct	20
<210> 776	
<211> 20	
<212> DNA	

		- 147 -	
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 776		20
aaaato	caacg ttgaaaaaaa		
	<210> 777		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 777		
tocat	aacgt teetgatget		20
lllat	aacge coolgatges		
	<210> 778		
	<211> 23		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 778		
tagag	gtccc accgagatcg gag		23
~95~5	5 5 5		
	<210> 779		
	<211> 21		
	<212> DNA <213> Artificial Sequence		
	22137 Artificial bequence		
	<220>		
	<223> Synthetic Sequence	·	
	<400> 779		
cgtcg	stegte gtegtegteg t		21
	<210> 780		
	<211> 21 <212> DNA		
	<213> Artificial Sequence		
	(213) Michigan Soques		
	<220>		
	<223> Synthetic Sequence		
	<400> 780		
ctqct	getge tgetgetget g		21
,			
	<210> 781		
	<211> 21 <212> DNA		
	<212> DNA <213> Artificial Sequence		
	and the second control of the second control		
	<220>		
	<223> Synthetic Sequence		
	<400> 781		
	-100, .01		

gagaacgct	c cgaccttcga t 21
<21	0> 782
<21	1> 15
	2> DNA
<21	3> Artificial Sequence
<22	
<22	23> Synthetic Sequence
	00> 782
gctagatgt	t agcgt
<23	10> 783
<23	11> 15
	L2> DNA
<23	13> Artificial Sequence
	20>
<22	23> Synthetic Sequence
<4	00> 783
gcatgacg	tt gagct
<2	10> 784
	11> 10
	12> DNA
<2	13> Artificial Sequence
<2	20>
<2	21> misc_feature
<2	22> (8)(10)
<2	23> Conjugated to FITC moiety.
<2	23> Synthetic Sequence
<4	00> 784
tcaatgct	ga 10
<2	10> 785
	11> 10
	12> DNA
<2	13> Artificial Sequence
	20>
<2	21> misc_feature
<2	22> (8) (10)
<2	23> Conjugated to FITC moiety.
<2	23> Synthetic Sequence
<4	00> 785
tcaacgtt	.ga
<2	210> 786
	211> 10
	212> DNA
<2	213> Artificial Sequence
	220>
<2	221> misc_feature

```
<222> (8)...(10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 786
                                                                         10
tcaacgttga
      <210> 787
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (8)...(10)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 787
                                                                          10
gcaatattgc
      <210> 788
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
      <222> (8)...(10)
      <223> Conjugated to FITC moiety.
      <223> Synthetic Sequence
      <400> 788
                                                                          10
gcaatattgc
       <210> 789
       <211> 10
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 789
                                                                           10
agttgcaact
       <210> 790
       <211> 8
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Synthetic Sequence
       <400> 790
                                                                            8
 tcttcqaa
       <210> 791
```

<2	11> 8 12> DNA 13> Artificial Sequence	
	20> 23> Synthetic Sequence	
<4 tcaacgtc	100> 791 C	8
<2 <2	210> 792 211> 19 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 792 ggt cctgatgct	19
<2 <2	210> 793 211> 18 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 793 tat aatttggg	18
<2	210> 794 211> 23 212> DNA 213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 794 ttg tcgttttgtc gtt	23
<: <:	210> 795 211> 12 212> DNA 2213> Artificial Sequence	
	220> 2223> Synthetic Sequence	
< ttggggg	400> 795 gggg tt	12
<	<pre>2210> 796 2211> 13 2212> DNA 2213> Artificial Sequence</pre>	
<	<220> <223> Synthetic Sequence	

	<400> 796 gggg gtt	13
	<210> 797	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 797	17
ggtggt	cgtag gttttgg	
	<210> 798	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221> misc_feature	
	<222> (1)(3)	
	<223> Conjugated to biotin moiety.	
	<221> modified_base	
	<222> (6)(6)	
	<223> m5c	
	<223> Synthetic Sequence	
	<400> 798	20
gagaai	<400> 798 ngctc gaccttcgat	20
gagaai	ngctc gaccttcgat	20
gagaai		20
gagaai	ngete gacettegat <210> 799	20
gagaai	<pre>congctc gaccttcgat</pre>	20
gagaa	<pre>congete gacettegat</pre>	20
gagaai	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence</pre>	20
gagaai	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220></pre>	20
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence</pre>	
	<pre>compact gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220></pre>	
	<pre>compact gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220> <212> DNA <213> Artificial Sequence <220> <213> Artificial Sequence</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (1)(3)</pre>	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220> <210> Conjugated to biotin moiety.</pre>	
	<pre>congete gacettegat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <220> <221> misc_feature <222> (1) (3) <223> Conjugated to biotin moiety.</pre> <221> modified_base	
	<pre>congctc gaccttcgat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <220> <221> misc_feature <222> (1) (3) <223> Conjugated to biotin moiety. <221> modified_base <222> (8) (8)</pre>	
	<pre>congete gacettegat <210> 799 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 799 gttaa cgttaacgtt <210> 800 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <220> <221> misc_feature <222> (1) (3) <223> Conjugated to biotin moiety.</pre> <221> modified_base	

<400> 8 gagcaagntg ga		20
<210> 3 <211> 3 <212> 3 <213> 4	20	
<222>	misc_feature (1)(3) Conjugated to biotin moiety.	
	modified_base (6)(6) m5c	
<223>	Synthetic Sequence	
<400> gagaangctc c		20
<210> <211> <212> <213>	10	
	<pre>modified_base (5)(5) m5c</pre>	
<222>	<pre>misc_feature (8)(10) Conjugated to biotin moiety.</pre>	
<223>	Synthetic Sequence	
<400> tcaangttga	802	10
<210> <211> <212> <213>	10	
	<pre>modified_base (2)(2) m5c</pre>	
<222> <223>	misc_feature (8)(10) Conjugated to biotin moiety.	
	Synthetic Sequence	
<400> gnaatattgc	803	10
<210>	804	

			155	
	<211> <212>			
<	<213>	Artificial Sequence		
	<220> <223>	Synthetic Sequence		
	<400> tttt c	804 gtcgttttgt gctt		24
090090		3 3 - 3 - 3		
	<210>			
	<211> <212>			
		Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>			22
		aatttaactg tg		22
	<210>			
	<211> <212>			
		Artificial Sequence		
		-		
	<220>			
	<223>	Synthetic Sequence		
	<400>	806		
		tcctgatgct		20
		225		
	<210>			
	<211><212>			
		Artificial Sequence		
		-		
	<220>			
	<223>	Synthetic Sequence		
	<400>	807		
tgcatg	ccgt ·	gcatccgtac acagctct		28
	<210>	808		
	<211>			
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence	·	
	<400>	808		
tgcatg		acacagctct		20
	<210>	809		
	<211>			
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		

<400> 809 tgcatcagct ct		12
<210> 810 <211> 8 <212> DNA <213> Artificial	Sequence	
<220> <223> Synthetic S	equence	
<400> 810 tgcgctct		8
<210> 811 <211> 20 <212> DNA <213> Artificial	Sequence	
<220> <223> Synthetic S	Sequence	
<400> 811 ccccccccc cccccccc		20
<210> 812 <211> 12 <212> DNA <213> Artificial	Sequence	
<220> <223> Synthetic S	Sequence	
<400> 812 cccccccc cc		12
<210> 813 <211> 8 <212> DNA <213> Artificial	Sequence	
<220> <223> Synthetic S	Sequence	
<400> 813		8
<210> 814 <211> 12 <212> DNA <213> Artificial	Sequence	
<220> <223> Synthetic	Sequence	
<400> 814 tgcatcagct ct		12
<210> 815 <211> 20		

	• • • • • • • • • • • • • • • • • • • •	
	<212> DNA <213> Artificial Sequence	
	(213) International desires	
	<220> <223> Synthetic Sequence	
	<400> 815	
	ccgt acacagctct	20
•	<210> 816	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 816	20
gagcaa	gctg gaccttccat	20
	<210> 817	
	<211> 32	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 817	
tcaacg	yttaa cgttaacgtt aacgttaacg tt	32
	<210> 818	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 818	2.0
gagaac	egete gacettegat	20
	<210> 819	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 819	0.5
gtccc	cattt cccagaggag gaaat	25
	<210> 820	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	

<400> 820 ctagcggctg acgtcatcaa gctag	25
<210> 821 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 821 ctagcttgat gacgtcagcc gctag	25
<210> 822 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 822 cggctgacgt catcaa	16
<210> 823 <211> 8 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 823 ctgacgtg	8
<210> 824 <211> 10 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 824 ctgacgtcat	10
<210> 825 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 825 attcgatcgg ggcggggcga g	21
<210> 826 <211> 21 <212> DNA	

<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 826 ctcgccccgc cccgatcgaa t	21
<210> 827 <211> 15	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 827 gactgacgtc agcgt	15
<210> 828	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 828	26
ctagcggctg acgtcataaa gctagc	26
<210> 829	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 829 ctagctttat gacgtcagcc gctagc	26
<210> 830	
<211> 26 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 830 ctagcggctg agctcataaa gctagc	26
<210> 831	
<211> 25 · ·	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 831	

<210> 837 <211> 24 <212> DNA

<213> Artificial Sequence

ctagtggctg acgtcatcaa gctag

	20
	24
	26
	15
	24

<220> <223> Synthetic Sequence	
<400> 837 ttaagaccaa taccgctacc accg	24
<210> 838 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 838 gatctagtga tgagtcagcc ggatc	25
<210> 839 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 839 gatccggctg actcatcact agatc	25
<210> 840 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 840 tccaagacgt tcctgatgct	20
<210> 841 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 841 tccatgacgt ccctgatgct	20
<210> 842 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 842 tccaccacgt ggctgatgct	20

<210> <211>	• 17	
<212> <213>	DNA Artificial Sequence	
<220>	Synthetic Sequence	
<400> ccacqtggac		17
ccacgeggae		
<210>		
<211>	> 27 > DNA	
	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
<400		27
tcagaccacg	tggtcgggtg ttcctga	21
<210	> 845	
<211	> 27	
	> DNA	
<213:	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
	> 845	27
tcaggaacac	ccgaccacgt ggtctga	21
<210	> 846	
<211	> 18	
_	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
	> 846	18
catttccacg	atttccca	10
<210	> 847	
	> 19	
	> DNA	
<213	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
	> 847	19
ttcctctctg	caagagact	
	> 848	
	> 19 > DNA	
	> DNA > Artificial Sequence	

<220> <223> Synthetic Sequence	
<400> 848	
tgtatctctc tgaaggact	19
<210> 849	
<211> 25	
<212> DNA <213> Artificial Sequence	
(213) Altificial bequence	
<220>	
<223> Synthetic Sequence	
<400> 849	0.5
ataaagcgaa actagcagca gtttc	25
<210> 850	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 850	
gaaactgctg ctagtttcgc tttat	25
<210> 851	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 851	
tgcccaaaga ggaaaatttg tttcatacag	30
(210) 052	
<210> 852 <211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 852	
ctgtatgaaa caaattttcc tctttgggca	30
<210> 853	
<211> 20 <212> DNA	
<213> Artificial Sequence	
· <220>	
<220> <223> Synthetic Sequence	
<400> 853	20
ttagggttag ggttagggtt	

<210: <211:	> 854 > 20	
	> DNA > Artificial Sequence	
<220: <223:	> > Synthetic Sequence	
	> 854 tcctgatgct	20
<2113 <2123	> DNA	
<213: <220:	> Artificial Sequence	
	> Synthetic Sequence	
	> 855 gttcaaaaa	20
<2113 <2123	> 856 > 20 > DNA > Artificial Sequence	
<2203 <2233	> > Synthetic Sequence	
	> 856 gttcgggggg	20
<2112 <2122	> 857 > 20 > DNA > Artificial Sequence	
<2203 <2233	> > Synthetic Sequence	
	> 857 cttcgggggg	20
<2112 <2122	> 858 > 24 > DNA > Artificial Sequence	
<220: <223:	> Synthetic Sequence	
	> 858 gtcatcaagc tagt	24
<2112 <212	> DNA	
<213:	> Artificial Sequence >	

	<223> Synthetic Sequence	
	<400> 859	
	gtca tctgacgttg gctgacgtct	30
-		
	<210> 860	
	<211> 25	
	<212> DNA <213> Artificial Sequence	
	(213) Attiticial boddonos	
	<220>	
	<223> Synthetic Sequence	
	<400> 860	
	agta atagatatag aagtt	25
ggaacc		
	<210> 861	
	<211> 30	
	<212> DNA <213> Artificial Sequence	
	(210) Michigan Boddonor	
	<220>	
	<223> Synthetic Sequence	
	<400> 861	
	tttt ataaacataa ctaaaacaaa	30
	<210> 862	
	<211> 15	
	<212> DNA <213> Artificial Sequence	
	ZIJV MICIIICIAI boquomeo	
	<220>	
	<223> Synthetic Sequence	
	<400> 862	
acattt	tttt ttgcg	15
, ,		
	<210> 863	
	<211> 24	
	<212> DNA <213> Artificial Sequence	
	(213) 112 02 22 02 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	<220>	
	<223> Synthetic Sequence	
	<400> 863	
atatct	taatc aaaacattaa caaa	24
	<210> 864	
	<211> 24 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	·	
	<220>	
	<223> Synthetic Sequence	
	<400> 864	
tctate	cccag gtggttcctg ttag	24
	<210> 865	

```
<211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 865
                                                                         20
tccatgacgt tcctgatgct
      <210> 866
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 866
                                                                          20
tccatgagct tcctgatgct
      <210> 867
      <211> 13
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (11)...(13)
      <223> Conjugated to FITC moiety.
      <221> misc_feature
      <222> (0) ... (0)
      <223> Has phosphodiester backbone.
      <223> Synthetic Sequence
      <400> 867
                                                                          13
ttttttttt ttt
       <210> 868
       <211> 13
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc feature
       <222> (11)...(13)
       <223> Conjugated to biotin moiety.
       <221> misc_feature
       <222> (0) ... (0)
       <223> Has phosphorothioate and phosphodiester chimeric
```

- 165 -

20

	backbone with	phosphodieseer on	o cha.
<223>	Synthetic Sequence		
<400>	868		
tttttttt			13
<210>	869		
<211>			
<212>	DNA .		
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
<400>	869		
	gagctcagcc gctag		25
<210>			
<211> <212>			
	· DNA · Artificial Sequence		
(213)	Altificial bequeine		
<220>			
<223>	Synthetic Sequence		
<400>	970		
	ttgctgctta gctaa		25
cccagcagaa			
<210>			
<211>			
	> DNA		
<2132	> Artificial Sequence		
<220	>		
<223	> Synthetic Sequence		
<400	> 871		
	tcctgagtct		20
	> 872		
<211			
	> DNA > Artificial Sequence		
\213 .	Altilitial bedaemee		
<220			
<223	> Synthetic Sequence		
<400	> 872		
	acgtcatcaa tctag		25
ccageggeeg	acgeoacous room,		
	> 873		
	> 20		
	> DNA		
<213	> Artificial Sequence		
<220			
<223	> Synthetic Sequence		
- 400	~ 073		
	> 873 gcctgtacct		2
cyclayelyl	23		

<210> 874 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 874 atgctaaagg acgtcacatt gca	23
<210> 875 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 875 tgcaatgtga cgtcctttag cat	23
<210> 876 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 876 gtaggggact ttccgagctc gagatcctat g	31
<210> 877 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 877 cataggatet egagetegga aagteeeeta e	31
<210> 878 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 878 ctgtcaggaa ctgcaggtaa gg	22
<210> 879 <211> 27 <212> DNA <213> Artificial Sequence	

	<220> <223> Synthetic Sequence		
cai	<400> 879 taacatag gaatatttac teetege		27
	caucag gaucaccas sees, j.		
	<210> 880		
	<211> 21 <212> DNA		
	<212> DNA <213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 880		0.1
ct	ccagctcc aagaaaggac g		21
	<210> 881		
	<211> 21		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 881		21
ga	agtttctg gtaagtcttc g		
	<210> 882		
	<211> 24		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	4400 000		
+~	<400> 882 ctgctttt gtgcttttgt gctt		24
Lg	ergerrer grycererge gere		
	<210> 883		
	<211> 24		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
+ ~	<400> 883 gtcgtttt gtggttttgt ggtt		24
	giogical goggeteege ggee		
	<210> 884		
	<211> 23		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 884		
to	egtegtttg tegttttgte gtt	•	23
_			

<210> <211> <212> <213>	22	
<220>	Synthetic Sequence	
<400> tcctgacgtt o	885 eggegegege ee	22
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
<400> tgctgctttt (886 gtgcttttgt gctt	24
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgagct		20
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
<400> tcgtcgtttc	888 gtcgttttga cgtt	24
<210> <211> <212> <213>	26	
<220> <223>	Synthetic Sequence	
<400> tcgtcgtttg	889 cgtgcgtttc gtcgtt	26
<210> <211> <212> <213>	27	
<220>		

<223>	Synthetic Sequence	
<400>	890	
tcgcgtgcgt t	tttgtcgttt tgacgtt	27
<210>	891	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>		٥.
ttcgtcgttt	tgtcgttttg tcgtt	25
<210>	892	
<211>		
<212>	Artificial Sequence	
	THE CITE OF A CONTROL OF A CONT	
<220>	Synthetic Sequence	
(223)	Synthetic Sequence	
<400>		15
tcctgacggg	gaagt	1.0
<210>		
<211>		
<212>	Artificial Sequence	
<220>		
\223 /	Synthetic Sequence	
<400>		15
tcctggcgtg	gaagt	1.
<210>	894	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	894	
tcctggcggt	gaagt	15
<210>	895	
<211>	15	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	895	
tcctggcgtt	gaagt	15
<210>	896	

			- 170 -	
	<211>			
	<212>	DNA Artificial Sequence		
	(213)	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	896		_
tcctga	cgtg g	gaagt	1	5
	<210>	897		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	897		
acaaca		gegegeee	2	0
9-5		,		
	<210>			
	<211> <212>			
		Artificial Sequence		
	1220	1		
	<220>			
	<223>	Synthetic Sequence		
	<400>	898		
gcgac	gggcg	gegegeeee	•	20
	<210>	899		
	<211>			
•	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	800		
acaac		gegegeee		20
5 - 5 5 -				
	<210>			
	<211><212>			
		Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	900		20
gcggc	ggtcg	gcgcgcgccc		20
	<210>	901		
	<211>	· 20		
	<212>			
	<213>	· Artificial Sequence		
	<220>	•		
	<223>	Synthetic Sequence		

<400> 901 gcgacggtcg gcgcgccc	20
<210> 902 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 902 gcggcgttcg gcgcgccc	20
<210> 903 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 903 gcgacgtgcg gcgcgccc	20
<210> 904 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 904 tegtegetgt eteeg	15
<210> 905 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 905 tgtgggggtt ttggttttgg	20
<210> 906 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 906 aggggaggg agggaggg	20
<210> 907 <211> 21	

		1 / 2
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	_	
	<400> 907	21
tgtgt	gtgtg tgtgtgtgt t	21
	<210> 908	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220>	
	<223> Synthetic Sequence	
	<400> 908	
ctctc	tctct ctctctct ct	22
	<210> 909	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) Altificial Sequence	
	<220>	
	<223> Synthetic Sequence	
aaaat	<400> 909	. 20
ggggc	cgacg tcgaggggg	
	<210> 910	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 910	2:
atata	tatat atatatat at	2.
	<210> 911	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	(223) Symonocia adquires	
	<400> 911	_
ttttt	ttttt tttttttt ttttt	2
	<210> 912	
	<210> 912 <211> 21	
	<211> 21 <212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Synthetic Sequence	

<400>	912	
ttttttttt t	tttttttt t	21
<210>	913	
<211>		
<212>		
<213> .	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	913	
ttttttttt t	tttttt	18
<210>	914	
<211>		
<212>	·	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	914	
gctagagggg a	gggt	15
<210>	915	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	915	
gctagatgtt a	gggg	15
<210>	916	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	916	
gcatgagggg g	gaget	15
<210>	917	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	917	
atggaaggtc c		20
<210>	918	
<211>		
<212>	DNA	

		- 1/4 -	
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
<400>	010		
atggactctg		20)
<210> <211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	919		
atggaaggtc		20)
<210×	020		
<210> <211>			
<212>			
<213>	Artificial Sequence		
<220>			
	Synthetic Sequence		
<400>	920		
gagaaggggg		21	0
		•	
<210> <211>			
<211>			
	· Artificial Sequence		
<220>			
	· · Synthetic Sequence		
12201	27		
<400>		2	0
gagaaggggg	gacettecat	_	_
<210>			
<211> <212>			
	> Artificial Sequence		
(213)	International poducine		
<220>			
<223>	> Synthetic Sequence		
<400>		2	_
gagaaggggc	cagcactgat	2	U
<210>	> 923		
<211>			
	> DNA		
<213>	> Artificial Sequence		
<220	>		
<223	> Synthetic Sequence		
<400	> 923		

tccatgtggg gcctgatgct	20
<210> 924	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 924	20
tccatgaggg gcctgatgct	
<210> 925	
<211> 20	
<212> DNA <213> Artificial Sequence	
(213) Artificial bequence	
<220>	
<223> Synthetic Sequence	
<400> 925	20
tccatgtggg gcctgctgat	20
<210> 926	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 926	20
atggactete eggggttete	20
<210> 927	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 927	20
atggaaggtc cggggttctc	23
<210> 928	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 928	20
atggactctg gaggggtctc	
<210> 929	
<211> 20	
<212> DNA	
<213> Artificial Seguence	

<220> <223> Synthetic Sequence	
<400> 929 atggaggctc catggggctc	20
<210> 930 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 930 atggactctg gggggttctc	20
<210> 931 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 931 tccatgtggg tggggatgct	20
<210> 932 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 932 tccatgcggg tggggatgct	20
<210> 933 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 933 tccatggggg tcctgatgct	20
<210> 934 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 934 tecatggggt cectgatget	20

<210> 935 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 935 tccatggggt gcctgatgct	20
<210> 936 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 936 tccatggggt tcctgatgct	20
<210> 937 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 937 tccatcgggg gcctgatgct	20
<210> 938 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 938 gctagaggga gtgt	14
<210> 939 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 939 ttttttttt tttttt	18
<210> 940 <211> 21 <212> DNA <213> Artificial Sequence	

		- 176	
<	220> 221> misc_difference 222> (2)(2)		
<	223> m is a or c		
<	221> misc_difference 222> (18)(18) 223> m is a or c		
<	223> Synthetic Sequence		
	400> 940 acg ttgagggmgg g		21
<	210> 941		
	211> 21		
	212> DNA 213> Artificial Sequence		
	220> 223> Synthetic Sequence		
<	400> 941		
ggggagt	tcg ttgaggggg g		21
<	:210> 942		
	211> 20		
	212> DNA		
<	213> Artificial Sequence		
	:220>		
<	(223> Synthetic Sequence		
<	(400> 942		
tcgtcgt	ttc cccccccc		20
<	(210> 943		
	(211> 25		
	212> DNA		
<	<213> Artificial Sequence		
	<220>		
<	<pre><223> Synthetic Sequence</pre>		
	<400> 943		
ttggggg	ggtt tttttttttt tttt		25
<	<210> 944		
	(211> 23		
	<212> DNA		
<	<213> Artificial Sequence		
<	<220>		
<	<223> Synthetic Sequence		
<	<400> 944		
	ttt aaaatttaaa ata		23
	<210> 945		
	<211> 24		
	(212> DNA		

		- 177 -	
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	945		
ttggttttt 1	tggtttttt ttgg	24	4
<210>	946		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	946		
tttccctttt	ccccttttcc cctc	24	4
<210>	947		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
	misc_difference		
	(21)(21)		
<223>	s is g or c		
<223>	Synthetic Sequence		
<400>	947		_
ggggtcatcg a	atgaggggg s	2	1
<210>	948		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>		2	^
tccatgacgt '	teetgaegtt	24	U
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			_
tccatgacgt	tcctgacgtt	2	U
<210>			
<211>			
<212>	DNA Artificial Sequence		
\Z13 /	Artificial pequence		

<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20

<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgacgt		20
<210> <211> <212> <213>	19	
<220> <223>	Synthetic Sequence	
<400> gggggacgat		19
<210> <211> <212> <213>	· 20	
<220> <223>	Synthetic Sequence	
<400> gggggtcgta		20
<210><211><211><211><212><213>	> 24	
<220>		

	<223> Synthetic Sequence	
	<400> 961 tttt tttttttt tttt	24
	<210> 962 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
aaaaaa	<400> 962 aaaaa aaaaaaaaa aaaa	24
	<210> 963 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
ccccc	<400> 963 cecee ecceecee ecce	24
	<210> 964 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcgtc	<400> 964 gtttt gtcgttttgt cgtt	24
	<210> 965 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tcgtc	<400> 965 gtttt gtcgttttgt cgtt	24
	<210> 966 <211> 24 <212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
tegte	<400> 966 gtttt gtcgttttgt cgtt	24
	<210> 967	

<211> <212> <213>		
<220> <223>	Synthetic Sequence	
<400> tcgtcgtttt	967 gtcgttttgt cgtt	24
<210> <211> <212> <213>	· 20	
<220> <223>	Synthetic Sequence	
<400> ggggtcaacg		20
<220 <223	> Synthetic Sequence	
<400 ggggtcaacg		20
<2203 <2233	> Synthetic Sequence	
<400		20
	ttgaggggg	20
<210 <211		
	> DNA	
<213	> Artificial Sequence	
<220: <223:	> Synthetic Sequence	
	> 971 cccccccc	20
<211	> 972 > 20 > DNA	
	> DNA > Artificial Sequence	
<220:	> Synthetic Sequence	

<400> 972 ggggacgtcg acgtggggg	20
<210> 973 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 973 ggggtcgtcg acgaggggg	20
<210> 974 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 974 ggggtcgacg tacgtcgagg gggg	24
<210> 975 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 975 ggggaccggt accggtgggg gg	22
<210> 976 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 976 gggtcgacgt cgaggggg	19
<210> 977 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 977 ggggtcgacg tcgagggg	19
<210> 978 <211> 22	

	- 	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 978	
gggga	acgtt aacgttgggg gg	22
	<210> 979	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
~~~~+	<400> 979	20
ggggt	caccg gtgaggggg	20
	<210> 980	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 980	
ggggt	cgttc gaacgagggg gg	22
	<210> 981	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 981	
gggga	cgttc gaacgtgggg gg	22
	<210> 982	
	<211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 982	
tcaac		10
	<210> 983	
	<211> 10	
	<212> DNA <213> Artificial Sequence	
	(210) Interrectar bequeince	
	<220>	
	<223> Synthetic Sequence	

		- 100 -	
<400> tcaagcttga	983	1	10
<210>			
<211>			
<212> <213>	Artificial Sequence		
	-		
<220>	Synthetic Sequence		
(223)	Synthetic Sequence		
<400>			12
tcacgatcgt (	ga	,	LΖ
<210>	985		
<211>			
<212> <213>	Artificial Sequence		
	1		
<220>	Synthetic Sequence		
\223>	Synchecic bequence		
<400>			12
tcagcatgct (	ga	-	
<210>			
<211>			
<212> <213>	Artificial Sequence	•	
<220>	Synthetic Sequence		
\2237	Synthetic bequence		
<400>			20
gggggagcat	gctgggggg	•	20
<210>			
<211> <212>			
	Artificial Sequence		
<220>	Synthetic Sequence		
\2237	Synthetic Sequence		
<400>		,	20
adadadada	aaaaaaaaa	•	20
<210>			
<211>			
<212>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			22
gggggacgat	atcgtcgggg gg	•	22
<210>			
<211>			
<212>	UNA		

		- 18/ -
<2	213> Artificial Sequence	
_,	220>	
	223> Synthetic Sequence	
	1	
	400> 989	22
gggggac	gac gtcgtcgggg gg	
<:	210> 990	
	211> 22	
	212> DNA	
<:	213> Artificial Sequence	
<:	220>	
<:	223> Synthetic Sequence	
	400> 990 gag ctcgtcgggg gg	22
ggggac	gag cecgeogggg gg	
	210> 991	
	211> 20	
	212> DNA 213> Artificial Sequence	
	2137 Artificial bequence	
	220>	
<	223> Synthetic Sequence	
<	400> 991	
	gta cgtcgggggg	20
	210> 992 211> 8	
	2112 6 212> DNA	
	213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	223/ Synthetic Beddence	
<	400> 992	
tcaacgt	t	8
-	210> 993	
	211> 20	
	212> DNA	
<	213> Artificial Sequence	
<	220>	
	223> Synthetic Sequence	
	400 003	
	400> 993 egg teetgatget	20
licatat	egg teergatget	
	210> 994	
	211> 20	
	212> DNA 213> Artificial Sequence	
	ALLO MICHIGAN DOGUME	
	:220>	
<	223> Synthetic Sequence	
<	(400> 994	

tccataccgg tcctaccggt	20
(210) DOE	
<210> 995 <211> 20	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(213) Artificial bequence	
<220>	
<223> Synthetic Sequence	
•	
<400> 995	
gggggacgat cgttgggggg	20
<210> 996	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
000	
<220>	
<223> Synthetic Sequence	
<400> 006	
<400> 996 qqqqaacgat cgtcgggggg	20
ggggaacgat cytcgggggg	
<210> 997	·
<211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
(213) Altilicial Sequence	
<220>	
<223> Synthetic Sequence	
1000	
<400> 997	
ggggggacga tcgtcggggg g	21
<210> 998	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 998	21
gggggacgat cgtcgggggg g	21
<210> 999	
<211> 12	
<211> 12 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 999	
aaagacgtta aa	12
<210> 1000	
<211> 12	
<212> DNA	
<213> Artificial Sequence	

<220> <223>	Synthetic Sequence	
<100>	1000	
aaagagctta		12
<210>	• 1001	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	•	
<221>	modified_base	
	· (6)(6)	
<223>	· m5c	
<223>	> Synthetic Sequence	
<400>	> 1001	
aaagangtta	aa	12
<2105	> 1002	
<211>		
	> DNA	
<213>	> Artificial Sequence	
<220>	>	
<223>	> Synthetic Sequence	
<400>	> 1002	
aaattcggaa	aa	12
~210°	> 1003	
<211		
	> DNA	
	> Artificial Sequence	
<220	>	
_	> Synthetic Sequence	
<400	> 1003	
gggggtcatc	gatgaggggg g	21
<210	> 1004	
<2112		
<212	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
<400	> 1004	.=
gggggtcaac	gttgaggggg g	21
<210	> 1005	
<211		
<212	> DNA .	
<213	> Artificial Sequence	
<220	>	

## <223> Synthetic Sequence <400> 1005 20 atgtagctta ataacaaagc <210> 1006 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1006 20 ggatcccttg agttacttct <210> 1007 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1007 20 ccattccact tctgattacc <210> 1008 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1008 20 tatgtattat catgtagata <210> 1009 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1009 20 agcctacgta ttcaccctcc <210> 1010 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1010 20 ttcctgcaac tactattgta <210> 1011

			- 171 -	
	<211>	20		
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
	\2237	Synthetic bequence		
	<400>	1011		
atagaa	ggcc c	ctacaccagt	2	20
		1010		
	<210> <211>			
	<211>			
		Artificial Sequence		
		•		
	<220>			
	<223>	Synthetic Sequence		
	<400>	1012		
ttacac		ctatggaggt		20
ccacac	egge (	2000990990		
	<210>	1013		
	<211>	20		
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
	-220	1		
	<400>	1013		2.0
ctaaco	cagat (	caagtctagg	•	20
	<210>	1014		
	<211>			
	<211>			
		Artificial Sequence		
		-		
	<220>			
	<223>	Synthetic Sequence		
	<400>	1014		
cctaga		atctggttag	:	20
000090				
	<210>			
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
		1015		20
tataa	gcctc	gtccgacatg		
	<210>	1016		
	<211>			
	<212>	DNA		
	<213>	Artificial Sequence		
	.000			
	<220>			
	<b>&lt;</b> ∠∠3>	Synthetic Sequence		

<400> 1016 catgtcggac gaggcttata	20
<210> 1017 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1017 tggtggtggg gagtaagctc	20
<210> 1018 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1018 gagctactcc cccaccac	20
<210> 1019 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1019 gccttcgatc ttcgttggga	20
<210> 1020 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1020 tggacttctc tttgccgtct	20
<210> 1021 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1021 atgctgtagc ccagcgataa	20
<210> 1022 <211> 20	

		- 175	
	<212> DNA		
	<213> Artificial Sequence		
	_		
	<220>		
	<223> Synthetic Sequence		
	(223) 84		
	<400> 1022		
20002	atcag cggaaagtga		20
accya	accay cygaaaycya		
	<210> 1023		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 1023		20
tccat	gacgt tcctgacgtt	•	20
	<210> 1024		
	<211> 24		
	<212> DNA		
	<213> Artificial Sequence	•	
	<220>		
	<223> Synthetic Sequence		
	1		
	<400> 1024		
aasas	aaccc atgageteat etgg	•	24
ggaga	laacce acgagecoae oogg		
	<210> 1025		
	<210> 1023		
	<211> 20 <212> DNA		
	<213> Artificial Sequence		
	.000		
	<220>		
	<223> Synthetic Sequence		
	<400> 1025		20
accad	cagacc agcaggcaga		20
	<210> 1026		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Synthetic Sequence		
	<400> 1026		~ ~
gage	gtgaac tgcgcgaaga		20
J J -			
	<210> 1027		
	<211> 20		
	<212> DNA		
	<213> Artificial Sequence		
	Zios incilicata bequeños		
	<220>		
	<220>		

<400> 1027 tcggtaccct tgcagcggtt	20
<210> 1028 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1028 ctggagccct agccaaggat	20
<210> 1029 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1029 gcgactccat caccagcgat	20
<210> 1030 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1030 cctgaagtaa gaaccagatg t	21
<210> 1031 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1031 ctgtgttatc tgacatacac c	21
<210> 1032 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1032 aattagcctt aggtgattgg g	21
<210> 1033 <211> 21 <212> DNA	

		- 195 -
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	_	
1	<400> 1033	21
acatc	tggtt cttacttcag g	
	<210> 1034	
	<211> 23	
	<212> DNA <213> Artificial Sequence	
	(213) Altificial bequesies	
	<220>	
	<223> Synthetic Sequence	
	<400> 1034	
ataag	tcata ttttgggaac tac	23
	(210) 1025	
	<210> 1035 <211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	(223) Synthetic Bequence	
	<400> 1035	21
cccaa	tcacc taaggctaat t	21
	<210> 1036	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
aaaat	<400> 1036 cgtcg acgaggggg	20
ggggt	egeeg acgaggggg	
	<210> 1037	
	<211> 22 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	(818) 111 011 011 011	
	<220>	
	<223> Synthetic Sequence	
	<400> 1037	
ggggt	cgttc gaacgagggg gg	22
	<210 1020	
	<210> 1038 <211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<220> <223> Synthetic Sequence	
	<400> 1038	

- 196 -			
ggggacgttc gaacgtgggg gg 22			
<210> 1039 <211> 15 <212> DNA <213> Artificial Sequence			
<220> <221> modified_base <222> (9)(9) <223> n is 5-methylcytosine.			
<223> Synthetic Sequence			
<400> 1039 tcctggcgng gaagt	15		
<210> 1040 <211> 22 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 1040 ggggaacgac gtcgttgggg gg	22		
<210> 1041 <211> 20 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 1041 ggggaacgta cgtcggggg	20		
<210> 1042 <211> 24 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 1042 ggggaacgta cgtacgttgg gggg	24		
<210> 1043 <211> 20 <212> DNA <213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 1043 ggggtcaccg gtgaggggg	20		

	***	
	<210> 1044	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1044	
		24
ggggt	cgacg tacgtcgagg gggg	24
	<210> 1045	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1045	
		22
gggga	ccggt accggtgggg gg	22
	<210> 1046	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1046	
		19
gggtc	gacgt cgagggggg	1.0
	<210> 1047	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	(213) Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1047	
aaaat	cgacg tcgagggg	18
ggggt	cgacg tegagggg	
	22.0	
	<210> 1048	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	(213) inclinate codesies	
	(222)	
	<220>	
	<223> Synthetic Sequence	
	<400> 1048	
ggaga	nacgtt aacgttgggg gg	22
22320		
	<210> 1049	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	- · ·	

<223> Synthetic Sequence	
<400> 1049	
ggggacgtcg acgtggggg	19
<210> 1050	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1050	
gcactetteg aagetacage eggeageete tgat	34
<210> 1051	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1051	
cggctcttcc atgaggtctt tgctaatctt gg	32
<210>. 1052	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1052	
cggctcttcc atgaaagtct ttggacgatg tgagc	35
<210> 1053	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1053	
tcctgcaggt taagt	15
<210> 1054	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1054	
gggggtcgtt cgttgggggg	20
<210> 1055	
(D40) 1000	

		- 177 -	
<211> <212> <213>			
<220> <223>	Synthetic Sequence		
<400> gggggatgat			20
<210> <211> <212> <213>	20		
	<pre>modified_base (7)(7)</pre>		
	<pre>modified_base (11)(11) m5c</pre>		
<223>	Synthetic Sequence		
<400> gggggangat	1056 ngttgggggg	;	20
<210> <211> <212> <213>	20		
<220> <223>	Synthetic Sequence	·	
<400> gggggagcta	1057 gcttgggggg		20
<211> <212>			
<220> <223>	Synthetic Sequence		
<400> ggttcttttg	1058 gtccttgtct		20
<211> <212>			
<220> <223>	Synthetic Sequence		
<400> ggttcttttg	1059 gtcctcgtct		20

<21	0> 1060	
<21	1> 20	
	2> DNA	
<21	3> Artificial Sequence	
<22	· ·	
	3> Synthetic Sequence	
	0> 1060	
ggttctttt	g gtccttatct	20
/21	0> 1061	
	1> 20	
	2> DNA	
	3> Artificial Sequence	
	-	
<22		
<22	3> Synthetic Sequence	
<40	0> 1061	
	t ttccttgtct	20
3333		20
	0> 1062	
	1> 20	
	2> DNA	
<21	3> Artificial Sequence	
<22	0>	
	3> Synthetic Sequence	
	•	
	0> 1062	
tggtctttt	g gtccttgtct	20
<21	0> 1063	
	1> 20	
	2> DNA	
<21	3> Artificial Sequence	
<22		
<22	3> Synthetic Sequence	
<40	0> 1063	
	g gtccttgtct	20
	0> 1064	
	1> 20	
	2> DNA 3> Artificial Seguence	
<21	3> Artificial Sequence	
<22	0>	
	3> Synthetic Sequence	
	0> 1064	۰.
gggtctttt	g ggccttgtct	20
<21	0> 1065	
	1> 24	
	2> DNA	
/21	3> Artificial Cognonco	

- 201 -	
<220> <223> Synthetic Sequence	
<400> 1065 tccaggactt ctctcaggtt tttt	24
<210> 1066 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1066 tccaaaactt ctctcaaatt	20
<210> 1067	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1067	24
tactactttt atacttttat actt	2.4
<210> 1068	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1068 tgtgtgtgtg tgtgtgtg tgtg	24
<210> 1069	
<211> 25	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1069	
ttgttgttgt tgttgt tgttg	25
<210> 1070 <211> 27	
<212> DNA	•
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 1070	
ggctccgggg agggaatttt tgtctat	2

<210>	1071
<211>	
<212>	
<213>	Artificial Sequence .
<220>	
<223>	Synthetic Sequence
	-3
4400>	1071
<400>	
gggacgatcg	rcgggggg
<210>	1072
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
	-
<400>	1072
gggtcgtcga	cgagggggg
<210>	1073
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
	•
<400>	1073
	10
ggtcgtcgac	gagggggg
<210>	1074
<211>	20
<212>	DNA
	Artificial Sequence
\213/	Attiticial Sequence
<220>	
<223>	Synthetic Sequence
<400>	1074
gggtcgtcgt	
gggtegtegt	- 1
	1075
<211>	. 20
<212>	DNA
	Artificial Sequence
(213)	merrioral coduction
4000	
<220>	
<223>	Synthetic Sequence
<400>	1075
ggggacgatc	0.0
33334C94CC	g g
-010-	1076
	1076
<211>	
<212>	DNA
	Artificial Sequence
<220>	
<b>&lt;220</b> 2	

## <223> Synthetic Sequence <400> 1076 ggggacgtcg tcgtggggg 20 <210> 1077 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1077 ggggtcgacg tcgacgtcga ggggggg 27 <210> 1078 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1078 ggggaaccgc ggttgggggg g 21 <210> 1079 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1079 ggggacgacg tcgtgggggg g 21 <210> 1080 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1080 tcgtcgtcgt cgtcgtgggg ggg 23 <210> 1081 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1081 tcctgccggg gaagt 15 <210> 1082

	- 204 <b>-</b>	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	N2137 INCITIOLET COQUESTS	
	<220>	
	<223> Synthetic Sequence	
	2237 Synthetic Bequence	
	1002	
	<400> 1082	15
tcctgc	aggg gaagt	
	<210> 1083	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1083	
	aggg gaagt	15
ccccgc		
	<210> 1084	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<zi3> Artificial Sequence</zi3>	
	1000	
	<220>	
	<223> Synthetic Sequence	
	<400> 1084	15
tcctg	geggg caagt	10
	<210> 1085	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	-	
	<220>	
	<223> Synthetic Sequence	
	1	
	<400> 1085	
+ + ~.		15
teetg	gcggg taagt	
	<210 \ 1086	
	<210> 1086	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1086	15
tcctg	gcggg aaagt	13
_		
	<210> 1087	
	<211> 15	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<del>-</del>	

44005	1007	
<400>		15
tccgggcggg	gaagt	13
<210>		
<211>	15	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Synthetic Sequence	
\2237	Synthetic bequence	
<400×	1000	
<400>		15
tcggggcggg (	gaagt	13
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Synthetic Sequence	
(220)	symmetre sequence	
<400>	1000	
		15
tcccggcggg	gaagt	10
	1000	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
· <220>		
	Synthetic Sequence	
	2	
<400>	1090	
		15
gggggacgtt	3999	10
.010.	1001	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
_		
<400>	1091	
ggggttttt		20
ggggccccc		20
2010-	1002	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	1092	
ggggccccc		20
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_
<210>	1093	
<211>		
<b>\Z11&gt;</b>	<b>4.1</b>	

<212> DNA

<213> Artificial Sequence

<223> Synthetic Sequence

<400> 1093

ggggttgttg ttgttggggg g

21