Essai nouvelles fonctionnalités PolyTeX 1.5

Sommaire

I	Le cours	4
1	Méthodes de recherche linéaire 1.1 introduction	5 6 7
II	Les annexes	9
A	Les exemples A.1 Exemples du chapitre 1	10 11 11
В	Les exercicesB.1Exercices du chapitre 1	12 13

	B.1.1	Exercice dans un grain	13
	B.2 Autres	s exercices	14
	B.2.1	Méthode du gradient et règle de Goldstein	14
\mathbf{C}	Les documen	ts	16
	C.1 Docum	nents du chapitre 1	17
	C.1.1	Exemple de document	17

Première partie Le cours

1 Méthodes de recherche linéaire

1.1 introduction				6
------------------	--	--	--	---

1.1 introduction

111	But de la recherche linéaire	
	Dut uc la l'editelene lineane	

▲ section

But de	la recherche
linéair	e

Exemples: exemple A.1.1

Exercices: exercice B.1.1 exercice B.2.1

Documents: document C.1.1

Liens:
Animation
Lien

notion clé : Recherche linéaire

On a vu que dans le cas non-quadratique les méthodes de descente :

$$x_{k+1} = x_k + t_k d_k, \ t_k > 0, \tag{1.1}$$

nécéssitent la recherche d'une valeur de $t_k > 0$, optimale ou non, vérfiant

$$f(x_k+t_kd_k)\leq f(x_k).$$

On définit comme précedemment la fonction $\varphi(t) = f(x_k + td_k)$. Rappellons que si f est différentiable, le pas optimal \hat{t} peut être caractérisé par

$$\left\{ \begin{array}{lcl} \varphi'(\hat{t}) & = & 0, \\ \varphi(\hat{t}) & \leq & \varphi(t), \ \text{pour} \ 0 \leq t \leq \hat{t}, \end{array} \right.$$

autrement dit, \hat{t} est un minimum local de φ qui assure de plus la décroissance de f. En fait, dans la plupart des algorithmes d'optimisation modernes, on ne fait jamais de recherche linéaire exacte, car trouver \hat{t} signifie qu'il va falloir calculer un grand nombre de fois la fonction φ , et cela peut être dissuasif du point de vue du temps de calcul. En pratique, on recherche plutot une valeur de t qui assure une décroissance suffisante de f.

Cela conduit à la notion d'intervalle de sécurité. Il faut maintenant préciser quelles sont les relations sur φ qui vont nous permettre de caractériser les valeurs de t convenables, ainsi que les techniques utilisées pour réduire l'intervalle (point 1 ci-dessus).

Deuxième partie Les annexes

Annexe A

Les exemples

Table des exemples

A.1:	Exemples du ch	napitre 1 .			 	 		 				1:
$\mathbf{E}\mathbf{x}$	emple A.1.1 :	Un exemi	ole exe	emplaire		 		 		 		11

A.1 Exemples du chapitre 1

Exemple A.1.1 Un exemple exemplaire

Par exemple,

$$x = y$$

Retour au grain 🛦

Annexe B

Les exercices

Table des exercices

B.1: Exercices du	chapitre 1	13
Exercice B.1.1:	Exercice dans un grain	13
B.2: Autres exerci	ces	14
Exercice B.2.1:	Méthode du gradient et règle de Goldstein	14

B.1 Exercices du chapitre 1

Exercice B.1.1 Exercice dans un grain

Voici un exercice.

Retour au grain 🛦

Solution

B.2 Autres exercices

Exercice B.2.1 Méthode du gradient et règle de Goldstein

Soit $J: \mathbf{R}^N \to \mathbf{R}, C^2$ et coercive, c'est à dire J continue et

$$\lim_{\|u\|\to\infty} J(u) = +\infty.$$

On a montré en cours que cette propriété assure que J est bornée inférieurement. On considère un algorithme de gradient

$$u_{k+1} = u_k - \rho_k g_k,$$

où $g_k = \nabla J(u_k)$. On supposera qu'à chaque itération le pas ρ_k satisfait à la règle de Goldstein

$$\varphi(0) + m_2 \varphi'(0) \rho_k \le \varphi(\rho_k) \le \varphi(0) + m_1 \varphi'(0) \rho_k,$$

où
$$\varphi(\rho) = J(u_k - \rho g_k)$$
 et $0 < m_1 < m_2 < 1$.

1. Calculer $\varphi'(0)$.

- 2. (a) Montrer que $m_1 \rho_k ||g_k||^2 \le J(u_k) J(u_{k+1})$.
 - (b) En déduire que $J(u_k)$ converge et que $\rho_k ||g_k||^2$ tend vers 0.
 - (c) Montrer que la suite u_k est bornée.
- 3. (a) En utilisant la formule de Taylor à l'ordre 2 montrer qu'il existe $\bar{\rho} \in [0, \rho_k]$ tel que

$$\|(1-m_2)\|g_k\|^2 \leq rac{
ho_k}{2} <
abla^2 J(ar{u})g_k, g_k >,$$

avec $\bar{u} = u_k + \bar{\rho} g_k$.

$$|(1-m_2)||g_k||^2 \le R \frac{\rho_k}{2} ||g_k||^2,$$

et que donc $||g_k||^2$ tend vers 0.

Question 1 Aide 1

Question 2a Aide 1

Question 2b Aide 1 Aide 2

Question 2c Aide 1 Aide 2

Question 3a Aide 1 Aide 2 Aide 3

Annexe C

Les documents

Table des documents

C.1: Documents du	chapitre 1	17
Document C.1.1:	Exemple de document	17

C.1 Documents du chapitre 1

Document C.1.1 Exemple de document

Voici un document.

Retour au grain 🛦

Entrées canoniques

Solution de l'exercice B.1.1

C'est facile non?

Retour à l'exercice A

Aide 1, question 1, Exercice B.2.1

 $\varphi'(0) = -\|g_k\|^2.$

Retour à l'exercice ▲

Aide 1, question 2a, Exercice B.2.1

On utilise la partie droite de la règle de Goldstein, en notant que $\varphi(0) = J(u_k)$ et $\varphi(\rho_k) = J(u_{k+1})$, soit

$$arphi(
ho_k) < arphi(0) + m_1 arphi'(0)
ho_k \Leftrightarrow J(u_{k+1}) < J(u_k)$$

Retour à l'exercice A

Aide 1, question 2b, Exercice B.2.1

La question précédente permet d'établir que $J(u_k)$ est une suite décroissante. Puisque J est bornée inférieurement (à cause de la coercivité) la suite $J(u_k)$ est donc convergente.

Retour à l'exercice

Aide 2, question 2b, Exercice B.2.1

Comme on a de plus

$$0 \leq m_1
ho_k \|g_k\|^2 \leq J(u_k) - J(u_{k+1}),$$
 alors $ho_k \|g_k\|^2
ightarrow 0.$

Retour à l'exercice A

Aide 1, question 2c, Exercice B.2.1

On montre ce résultat par l'absurde

Retour à l'exercice A

Aide 2, question 2c, Exercice B.2.1

Supposons que u_k n'est pas bornée. Il existe alors une sous-suite u_{i_k} telle que $\lim_{k\to\infty} \lVert u_{i_k}\rVert = \infty.$ Donc $J(u_{i_k})\to\infty$, ce qui est impossible puisque $J(u_k)$ est convergente.

Retour à l'exercice

Aide 1, question 3a, Exercice B.2.1

On écrit donc le developpement de Taylor de φ en 0 : il existe $\bar{\rho} \in [0, \rho]$ tel que

$$\varphi(\rho_k) = \varphi(\mathbf{0}) + \rho_k \varphi'(\mathbf{0}) + \frac{\bar{\rho}^2}{2} \varphi''(\bar{\rho}),$$

Retour à l'exercice

Aide 2, question 3a, Exercice B.2.1

on a

$$\varphi''(\bar{\rho}) = \mathbf{g}_k^{\top} \nabla^2 J(\mathbf{u}_k - \bar{\rho} \mathbf{g}_k) \mathbf{g}_k.$$

On a d'autre part (partie de gauche de la règle de Goldstein) :

$$\varphi(\rho_k) - \varphi(0) \ge m_2 \varphi'(0) \rho_k$$

on peut donc écrire que

$$ho_k arphi'(0) + rac{ar
ho^2}{2} arphi''(ar
ho) \geq m_2 arphi'(0)
ho_k,$$

ce qui donne, en remplacant $\varphi'(0)$ par $-\|g_k\|$, l'inégalité demandée.

Retour à l'exercice

Aide 3, question 3a, Exercice B.2.1

La fonction J étant C^2 , son hessien est donc borné et il existe deux constantes r et R tq

$$|r||u||^2 \le u^\top \nabla J(v)u \le R||u||^2, \ \forall u,v \in \mathbf{R}^n.$$

On a nécéssairement R>0 puisque la question 3. (a) montre qu'il existe u,v tq $v^\top \nabla^2 J(u)v>0$. On en déduit donc que

$$\|(1-m_2)\|g_k\|^2 \leq R \frac{
ho_k}{2} \|g_k\|^2.$$

On a montré précedemment que $\rho_k ||g_k||^2 \to 0$, la majoration ci-dessus montre donc que de plus $||g_k||^2 \to 0$. On en déduit donc que la méthode du gradient avec

un pas choisi selon la règle de Goldstein permet de faire converger le gradient vers zéro (c'est bien la moindre des choses), mais on ne peut pas dire grand chose sur la convergence de la suite u_k elle même, sans information supplémentaire sur J. Par exemple si J est strictement convexe alors on peut en déduire que u_k converge.

Retour à l'exercice