

Determining the Intruder's Location in a Given Network: Locating-Dominating Sets in a Graph

Sergio R. Canoy, Jr.*
Gina A. Malacas
Department of Mathematics
College of Science and Mathematics
MSU-Iligan Institute of Technology
9200 Iligan City
sergio.canoy@g.msuiit.edu.ph
gina_strong@g.math.com

Abstract

The exact location of an intruder (e.g. burglar, fire, etc.) in a given network or graph can be determined using the concept of locating-dominating set in a graph. In this paper the concepts of locating, strictly locating, and locating-dominating sets in a graph will be considered. Corresponding parameters will be discussed and some of their relationships will be given. It is shown that the L-domination number $\gamma_L(G)$ of a connected graph G of order $n \ge 2$ is n - 1 if and only if $G = K_n$ or $G = K_{1,n-1}$. If G is a connected graph and $\gamma_L(G) = 2$, then $3 \le |V(G)| \le 5$. The locating-dominating sets in the joins of graphs are characterized in terms of the other concepts and the associated L-domination numbers are determined subsequently.

Keywords: locating, strictly locating, locating dominating, join

Introduction

Let G = (V(G), E(G)) be a simple connected graph. The **neighborhood** of $v \in V(G)$ is the set $N_G(v) = N(v) = \{ x \in V(G) : xv \in E(G) \}$. The **degree** of $v \in V(G)$, denoted by deg(v), is equal to the cardinality of $N_G(v)$ and the **maximum degree** of G is $\Delta(G) = \max\{deg(x) : x \in V(G)\}$. A subset G of G is a **dominating** set in G if for every $v \in V(G) \setminus S$, there exists G is such that G is a **locating set** in G if G if G if G if it is locating **set** if it is locating

This research (part of Research Project No. B-105) is supported by the DOST-National Research Council of the Philippines.

and $N_G(u) \cap S \neq S$ for all $u \in V(G) \setminus S$. The minimum cardinality of a locating set in G, denoted by In(G), is called the *locating number* of G. The minimum cardinality of a strictly locating set in G, denoted by SIn(G), is the *strictly locating number* of G. A locating (resp. strictly locating) subset S of V(G) which is also dominating is called a *locating-dominating* (resp. *strictly locating-dominating*) set in a graph G. The minimum cardinality of a locating-dominating (resp. strictly locating-dominating) set in G, denoted by $\gamma_L(G)$ (resp. $\gamma_{SL}(G)$), is called the L-domination (resp. SL-domination) number of G. If $S \subseteq V(G)$ is a locating (resp. strictly locating, locating-dominating, or strictly locating-dominating) set with |S| equal to In(G) (resp. SIn(G), $\gamma_L(G)$, or $\gamma_{SL}(G)$), then it is called a *minimum locating* (*minimum strictly locating, minimum locating-dominating*) set.

In a given network or graph, a locating set can be viewed as a set of monitoring device which can actually determine the exact location of an intruder (e.g. a burglar, a fire, etc.). By requiring such a set to be dominating implies that every node where there is no monitor in it is connected to at least one monitoring device. Hence, determination of the *L*-domination number of a graph is equivalent to finding the least number of monitoring device that can do the certain task in a given graph.

Domination in graphs and other types of domination can be found in the book by Haynes et al. [6] and studies in [1] and [2]. The concepts of locating set, locating-dominating set and the associated parameters are studied by Haynes et al. in [5]. Other related concepts are studied in [3], [4], [7], and [8].

Results

It is worth mentioning that a locating (strictly locating) set is a non-empty set and always exists in a connected graph G(V(G)) is one such set). From the definitions, the following relationships are immediate.

Remark 1. For any connected graph G of order $n \ge 2$, $\ln(G) \le \sin(G)$, $\sin(G) \le \gamma_{SL}(G)$, and $\ln(G) \le \gamma_{L}(G) \le \gamma_{SL}(G)$.

The following result gives specific relationships between these parameters.

Theorem 1. Let G be a connected graph of order $n \ge 2$.

- (a) If ln(G) < sln(G), then 1 + ln(G) = sln(G).
- (b) If $ln(G) < \gamma_L(G)$, then $1 + ln(G) = \gamma_L(G)$.
- (c) If $sln(G) < \gamma_{SL}(G)$, then $1 + sln(G) = \gamma_{SL}(G)$.
- (d) If $\gamma_L(G) < \gamma_{SL}(G)$, then $1 + \gamma_L(G) = \gamma_{SL}(G)$.

Proof. (a) Let S be a minimum locating set in G. Then S is not strictly locating in G. Hence, there exists a $y \in V(G) \setminus S$ such that $N_G(y) \cap S = S$. Set $S^* = S \cup \{y\}$ and

let

- $z \in V(G) \setminus S^*$. Then $z \neq y$. Since S is a locating set and $N_G(y) \cap S = S$, $N_G(z) \cap S \neq S$. This implies that there exists $w \in S$ such that $w \notin N_G(z)$. Since $y \notin S$, $w \neq y$. Thus $N_G(z) \cap S^* \neq S^*$. This implies that S^* is a strictly locating set in G. Hence, $sln(G) \leq 1 + ln(G)$. Since ln(G) < sln(G), $1 + ln(G) \leq sln(G)$. Therefore, 1 + ln(G) = sln(G).
- (b) Let S be a minimum locating set in G. Then S is not a dominating set in G. Hence, there exists a $y \in V(G) \setminus S$ such that $xy \notin E(G)$ for all $x \in S$. This implies that $N_G(y) \cap S = \emptyset$. Put $S^* = S \cup \{y\}$ and let $z \in V(G) \setminus S^*$. Then $z \neq y$. Since S is a locating set, $N_G(z) \cap S \neq \emptyset$. This implies that there exists $w \in S$ such that $wz \in E(G)$. This shows that S^* is a dominating set in G. Next, let $a,b \in V(G) \setminus S^*$. Then $a,b \in V(G) \setminus S$; hence $N_G(a) \cap S \neq N_G(b) \cap S$ since S is a locating set in G. Thus, $N_G(a) \cap S^* \neq N_G(b) \cap S^*$ for all $a,b \in V(G) \setminus S^*$. This implies that S^* is a locating set in G. Therefore, $\gamma_L(G) \leq |S^*| = 1 + |S| = 1 + \ln(G)$. Since $\ln(G) < \gamma_L(G)$, $1 + \ln(G) \leq \gamma_L(G)$. This shows that $1 + \ln(G) = \gamma_L(G)$.
- (c) Let S be a minimum strictly locating set in G. Then S is not a dominating set in G. Hence, there exists a $y \in V(G) \setminus S$ such that $xy \notin E(G)$ for all $x \in S$. This implies that $N_G(y) \cap S = \emptyset$. Set $S^* = S \cup \{y\}$. Then, as in the proof of (b), S^* is a locating-dominating set in G. Next, let $a \in V(G) \setminus S^*$. Then $a \in V(G) \setminus S$; hence $N_G(a) \cap S \neq S$ since S is a strictly locating set in G. This implies that there exists $z \in S$ such that $z \notin N_G(a)$. Thus, $z \neq y$ and so $N_G(a) \cap S^* \neq S^*$. Consequently, S^* is a strictly locating-dominating set in G. Therefore, $\gamma_{SL}(G) \leq 1 + \text{sln}(G)$. Since $\text{sln}(G) < \gamma_{SL}(G)$, it follows that $1 + \text{sln}(G) \leq \gamma_{SL}(G)$. This shows that $1 + \text{sln}(G) = \gamma_{SL}(G)$.
- (d) Let S be a minimum locating-dominating set in G. Then S is not a strictly locating set in G. Hence, there exists a $y \in V(G) \setminus S$ such that $N_G(y) \cap S = S$. Put $S^* = S \cup \{y\}$. Since S is a dominating set in G, S^* is also a dominating set in G. Also, as in the proof of (a), S^* is a strictly locating (hence, a strictly locating-dominating) set in G. Therefore, $\gamma_{SL}(G) \le 1 + \gamma_L(G)$. Since $\gamma_L(G) < \gamma_{SL}(G)$, $1 + \gamma_L(G) \le \gamma_{SL}(G)$. This establishes the desired equality. \square

Remark 2. If G is a connected graph of order $n \ge 2$, then $1 \le \gamma_L(G) \le n - 1$.

Theorem 2. Let G be a connected graph of order $n \ge 2$. Then $\gamma_L(G) = n - 1$ if and only if $G = K_n$ or $G = K_{1,n-1}$.

Proof. Suppose that $\gamma_L(G) = n - 1$ and suppose further that $G \neq K_n$. Let $x \in V(G)$ with $\deg(x) = \Delta(G)$ Suppose there exists $y \in V(G) \setminus \{x\}$, such that $xy \notin E(G)$. Since G is connected, y can be chosen so that the d(x,y) = 2. Let $z \in N(x)$ such that $yz \in E(G)$. If $yw \in E(G)$ for all $w \in N(x)$, then choose $S = V(G) \setminus \{y,z\}$. Since $\deg(x) \geq \deg(z) \geq 2$, there exists $u \in N(x) \setminus \{z\}$. It follows that $uy, xz \in E(G)$, i.e., S is a dominating set in G. Moreover, since $x \in N(z) \setminus N(y)$, $N(z) \cap S \neq N(y) \cap S$. This

implies that S is a locating-dominating set in G. Now, if there exists $w \in N(x)$ such that $yw \notin E(G)$, then choose $S = V(G) \setminus \{x,y\}$. Since zy, $xw \in E(G)$, S is a dominating set in G. Also, since $w \in N(x) \setminus N(y)$, $N(x) \cap S \neq N(y) \cap S$. Thus, S is a locating-dominating set in G. In both cases, we have $\gamma_L(G) = |S| = n - 2$, contrary to our assumption. Therefore, $N(x) = V(G) \setminus \{x\}$.

It remains to show that $uv \notin E(G)$ for every two distinct vertices $u, v \in V(G)\setminus\{x\}$. To this end, suppose there exist distinct vertices u and v in $V(G)\setminus\{x\}$ such that $uv \in E(G)$. Since $G \neq K_n$, there exist distinct vertices a and b of G such that $ab \notin E(G)$. If $va \in E(G)$ or $vb \in E(G)$, say $va \in E(G)$, then consider $S = V(G)\setminus\{b,v\}$. Since $a \in N(v) \setminus N(b)$, it follows that $N(v) \cap S \neq N(b) \cap S$. Moreover, $xb, xv \in E(G)$. Thus S is a locating-dominating set in G. If $va \notin E(G)$ and $vb \notin E(G)$, then choose $S = V(G)\setminus\{a,u\}$. Again, S is a locating-dominating set in G. In either case, $\gamma L(G) = |S| = n - 2$, contrary to our assumption. Therefore, $uv \notin E(G)$ for every two distinct vertices $u, v \in V(G)\setminus\{x\}$.

Accordingly, $G = K_{1,n-1}$. The converse is easy.

Theorem 3. Let G be a connected graph. If $\gamma_L(G) = 2$, then $3 \le |V(G)| \le 5$.

Proof. Clearly, $2 \le |V(G)|$. However, by Theorem 2, $\gamma_L(K_2) = 1$. Therefore, $3 \le |V(G)|$. Suppose now that |V(G)| > 5. Let $S = \{x,y\}$ be a minimum locating-dominating set in G. Let $z_1, z_2, z_3, z_4 \in V(G) \setminus S$. Since S is a dominating set, $N(z_i) \cap S \ne \emptyset$ for all $i \in \{1, 2, 3, 4\}$. So, $N(z_i) \cap S$ can only be $\{x\}$, $\{y\}$, or S, which implies that there exist distinct z_i, z_j , where $i, j \in \{1, 2, 3, 4\}$ such that $N(z_i) \cap S = N(z_j) \cap S$. Thus, S is not a locating set in G, contrary to our assumption on S. Therefore, $|V(G)| \le 5$.

Corollary 1. Let G be a connected graph of order n=4. Then $\gamma_L(G)=2$ if and only if $G \neq K_4$ and $G \neq K_{1,3}$.

Proof. This is immediate from Remark 1, Theorem 2 and Theorem 3.

Theorem 4. Let G be a connected graph of order n = 5. Then $\gamma_L(G) = 2$ if and only if there exist distinct vertices x and y that dominate G such that $|N(x) \cap N(y)| = 1$ and and $|N(x) \setminus \{y\}| = |N(y) \setminus \{x\}| = 2$.

Proof. Suppose $\gamma_L(G) = 2$. Then there exist distinct vertices x and y such that $S = \{x, y\}$ is a minimum locating-dominating set in G. Hence $|N(x) \cap N(y)| \le 1$. Suppose $|N(x) \cap N(y)| = 0$. Then one of x and y, say x, has at least two neighbors in $V(G) \setminus S$ that are not in N(y). This implies that S is not a locating set in G, contrary to our assumption. Thus, $|N(x) \cap N(y)| = 1$. Next, let $a \in V(G)$ such that ax, $ay \in E(G)$. Let b, $c \in V(G) \setminus \{x, y, a\}$. Then b, $c \notin N(x) \cap N(y)$. Since S is a dominating set, $b \in N(x)$ or $b \in N(y)$ Assume $b \in N(x)$. Since S is a locating-dominating set, $c \in N(y) \setminus N(x)$. Thus, $|N(x) \setminus \{y\}| = |N(y) \setminus \{x\}| = 2$.

For the converse, suppose there exist distinct vertices x and y of V(G) satisfying the given properties. Let $S = \{x, y\}$. It is easy to show that S is a locating-dominating set in G. Thus $\gamma L(G) = |S| = 2$. \square

Theorem 5. Let G and H be connected non-trivial graphs. Then $S \subseteq V(G+H)$ is a locating dominating set in G+H if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are locating sets in G and G, respectively, where G or G is a strictly locating set.

Proof: Let $S \subseteq V(G+H)$ be a locating-dominating set in G+H. Let $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$. Suppose $S_1 = \emptyset$. Pick distinct vertices u and v in V(G). Then $N_{G+H}(u) \cap S = S = N_{G+H}(v) \cap S$, contrary to our assumption of S. Thus, $S_1 \neq \emptyset$. Similarly, $S_2 \neq \emptyset$. Suppose now that one of S_1 and S_2 is not a locating set, say S_1 is not a locating set in G. Then there exist distinct vertices G and G of G such that G of G is G. Since G is G of G and G of G it follows that

$$N_{G+H}(a) \cap S = (N_G(a) \cap S_1) \cup S_2 = N_{G+H}(b) \cap S.$$

This, again, contradicts our assumption of S. Therefore, S_1 and S_2 are locating sets in G and H, respectively.

Next, suppose that both S_1 and S_2 are not strictly locating sets. Then there exist $z \in V(G) \setminus S_1$ and $w \in V(H) \setminus S_2$ such that $N_G(z) \cap S_1 = S_1$ and $N_H(w) \cap S_2 = S_2$. It follows that $N_{G+H}(z) \cap S = S = N_{G+H}(w) \cap S$, contrary to our assumption. Accordingly, S_1 or S_2 is a strictly locating set.

For the converse, suppose that S_1 and S_2 are locating sets in G and H, respectively, and S_1 or S_2 is strictly locating. Let x and y be distinct vertices in $V(G+H) \setminus S$. If $x, y \in V(G)$, then $N_G(x) \cap S_1 \neq N_G(y) \cap S_1$. It follows that

$$N_{G+H}(x) \cap S = (N_G(x) \cap S_1) \cup S_2 \neq (N_G(y) \cap S_1) \cup S_2 = N_{G+H}(y) \cap S.$$

Similarly, $N_{G+H}(x) \cap S \neq N_{G+H}(y) \cap S$ if $x, y \in V(H)$. Suppose $x \in V(G)$ and $y \in V(H)$. Suppose, without loss of generality, that S_1 is a strictly locating set in G. Then $S_1 \not\subset N_{G+H}(x)$. Since $S_1 \subseteq N_{G+H}(y)$, $N_{G+H}(x) \cap S \neq N_{G+H}(y) \cap S$. Thus, S is a locating set in G + H. Clearly, S is a dominating set in G + H.

Corollary 2. Let G and H be connected non-trivial graphs. Then $\gamma_L(G+H) = \min\{\sin(H) + \ln(G), \sin(G) + \ln(H)\}.$

Proof. Let S be a minimum locating-dominating set in G + H. Let $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$. By Theorem 5, S_1 and S_2 are locating sets in G and H, respectively, and S_1 or S_2 is a strictly locating set. Assume first that S_1 is strictly locating. Then

$$SIn(G) + In(H) \le |S_1| + |S_2| = |S| = \gamma L(G+H).$$

If S_2 is strictly locating, then

$$sln(H) + ln(G) \le |S_1| + |S_2| = |S| = \gamma_L(G+H).$$

Thus, $\gamma_L(G+H) \ge \min\{\sin(H) + \ln(G), \sin(G) + \ln(H)\}.$

Now suppose without loss of generality that $sln(G) + ln(H) \le sln(H) + ln(G)$. Let S_1 be a minimum strict locating set in G and S_2 a minimum locating set in H. Then $S = S_1 \cup S_2$ is a locating-dominating set in G + H by Theorem 5. Hence

$$\gamma_L(G+H) \le |S| = |S_1| + |S_2| = \sin(G) + \ln(H).$$

This proves the desired equality.

Corollary 3. Let G be a non-trivial connected graph and let K_n be the complete graph with $n \ge 2$. Then $\gamma_L(G + K_n) = \text{sln}(G) + n - 1$.

Proof. Clearly, $ln(K_n) = n-1$ and $sln(K_n) = n$. From Corollary 2,

$$\gamma_L(G + K_n) = \min\{ \sin(G) + n - 1, \ln(G) + n \}.$$

From Remark 1 and Theorem 1(b), $sln(G) - 1 \le ln(G)$. It follows that $sln(G) - 1 + n \le ln(G) + n$. Therefore

$$\gamma_L(G + K_n) = \min\{ \sin(G) + n - 1, \ln(G) + n \} = \sin(G) + n - 1.$$

Theorem 6. Let G be a connected non-trivial graph and $K_1 = \langle v \rangle$. Then $S \subseteq V(G+K_1)$ is a locating-dominating set in K_1+G if and only if either $S = S_1 \cup \{v\}$ where S_1 is a locating set in G, or $v \notin S$ and S a strictly locating-dominating set in G.

Proof. For simplicity, let $H = K_1$. Let $S \subseteq V(G+H)$ be a locating-dominating set in G+H. Suppose first that $v \in S$. Let $S_1 = V(G) \cap S$. Then, $S_1 \neq \emptyset$, otherwise $S = \{v\}$ which implies that S is not a locating set in G + H. Thus, $S = S_1 \cup \{v\}$. Let $x,y \in V(G) \setminus S_1$. Then

$$(N_G(x) \cap S_1) \cup \{v\} = N_{G+H}(x) \cap S \neq N_{G+H}(y) \cap S = (N_G(y) \cap S_1) \cup \{v\}.$$

It follows that $N_G(x) \cap S_1 \neq N_G(y) \cap S_1$. This shows that S_1 is a locating set in G.

Next, suppose that $v \notin S$. Then $S = S_1 \subseteq V(G)$. If $x,y \in V(G) \setminus S$, then, since S is a locating-dominating set in G+H,

$$N_{G+H}(x) \cap S = N_G(x) \cap S \neq N_G(y) \cap S = N_{G+H}(y) \cap S.$$

Therefore, S is a locating set in G. Now, if there exists $z \in V(G) \setminus S$ such that $N_G(z) \cap S = S$, then $N_{G+H}(z) \cap S = S = N_{G+H}(v) \cap S$, contrary to our assumption that S is a locating set in G + H. This implies that S is a strictly locating set in G. Moreover, because S is also a dominating set in G + H, it is a dominating set in G.

For the converse assume first that $S = S_1 \cup \{v\}$, where S_1 is a locating set in G. Clearly, S is a dominating set in G+H. Let $x, y \in V(G+H) \setminus S$. Then $x,y \in V(G) \setminus S_1$ and $N_G(x) \cap S_1 \neq N_G(y) \cap S_1$. Thus,

$$N_{G+H}(x) \cap S = (N_G(x) \cap S_1) \cup \{v\} \neq (N_G(y) \cap S_1) \cup \{v\} = N_{G+H}(y) \cap S.$$

This shows that S is a locating-dominating set in G+H.

Finally, suppose $v \notin S$ and S a strictly locating-dominating set in G. Then S is a dominating set in G+H. Let $x,y \in V(G+H) \setminus S$. If $x,y \in V(G)$, then $N_{G+H}(x) \cap S = N_G(x) \cap S \neq N_G(y) \cap S = N_{G+H}(y) \cap S$. Suppose $x \in V(G)$ and y = v. Then $N_{G+H}(v) \cap S = S$. Since S is a strictly locating set in G, $N_G(x) \cap S \neq S$. Thus, $N_{G+H}(v) \cap S \neq N_G(x) \cap S = N_{G+H}(x) \cap S$. This shows that S is a locating-dominating set in G+H.

The following result is immediate from Theorem 6.

Corollary 4. Let G be a connected non-trivial graph. Then

$$\gamma_L(G + K_1) = \min\{\gamma_{SL}(G), \ln(G) + 1\}.$$

Acknowledgment: The authors would like to thank the referee for reviewing the paper and for giving invaluable comments and corrections for its improvement.

References

- [1] Aram, H., Sheikholeslami, S.M. and Volkmann, L. On the total {k}-domination and total {k}-domatic number of graphs, Bull. Malays. Math. Sci. Soc. (2) 36(1) (2013), 39-47.
- [2] Challali, M., Favaron, O., Hansburg, A. and Volkmann, L., k-domination and k-independence in graphs: A Survey, Graphs and Combinatorics (2012) 28: 1-55.
- [3] Frick, M., Mynhardt, C.M. and R.D Skaggs, Critical graphs with respect to vertex identification, Utilitas Math. 76 (2008) 213 227.

- [4] Gimbel, J., van Gorden, B. D., Nicolescu, M., Umstead, C., and Vaiana, N., Location with dominating sets, Congr. Numer. 151 (2001) 129-144.
- [5] Haynes, T.W., Henning, M.A., and Howard, J., Locating and total dominating sets in trees, Discrete Applied Mathematics, 154(2006), Issue 8,1293-1300.
- [6] Haynes, T.W., Hedetniemi, S. T., and Slater, P. J., Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [7] Henning, M.A., McCoy, J., Which trees have a differentiating-paired dominating set?, Journal of Combinatorial Optimization, 22(2011), Number 1, 1-18.
- [8] D. P. Sumner, Point determination in graphs, Discrete Math. 5(1973),179-187.