Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

ОТЧЕТ

ПО ПРЕДМЕТУ "ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ АЛГЕБРЫ" НА ТЕМУ "Численное решение нелинейных уравнений"

студентки 2 курса 2 группы Курец Любови Олеговны

Преподаватель

Горбачева Юлия Николаевна

1. Постановка задачи

Решить уравнение f(x) = 0 согласно своему варианту с точностью $\varepsilon = 10^{-7}$ методом простой итерации и методом Ньютона. Корень отделяем сначала графически, затем с помощью метода половинного деления до $\varepsilon = 10^{-2}$. Если корней несколько, то необходимо найти ближайший к началу координат. Провести сравнительный анализ полученных результатов.

Содержание отчета:

- Графики, которые использовались для отделения корня.
- Таблица значений при использовании метода половинного деления

k	a_k	b_k	$f(a_k)$	$f(b_k)$	$\frac{a_k + b_k}{2}$	$f\bigg(\frac{a_k + b_k}{2}\bigg)$	\mathcal{E}_k
:	:	:	:	:	:	:	:

- Проверка сходимости метода простой итерации и метода Ньютона.
- Таблица значений на каждой итерации и достигнутая точность для каждого метода

,	Метод прост	Метод Ньютона		
K	x_k	ε_{k}	x_{k}	ε_k
:	:	:	:	:

• $f(x) = sqrt(1-x^2)-exp(x)+0.1$

2. Теоретические сведения

Метод простых итераций для нелинейных:

Рассмотрим уравнение вида

$$f(x)=0, (1)$$

где f – некоторая заданная функция, x – неизвестная численная величина.

Пусть уравнение (1) каким-либо способом (о некоторых способах будет сказано позже) приведена к виду, пригодному для итераций:

$$x = \varphi(x)$$
.

Будем считать, что корень x_{∞} отделен и указано некоторое начальное приближение x_0 (вообще говоря, произвольное значение из отрезка локализации корня). Тогда уточнение этого значения производят по правилу

$$x_{k+1} = \varphi(x_k), k = 0, 1, \dots$$
 (2)

Формула (2) задает вычислительный процесс метода простой итерации решения нелинейных уравнений.

Приемы приведения уравнений к виду, пригодному для итераций

Скорость сходимости метода итерации — это скорость сходимости геометрической прогрессии со знаменателем q (или $\varphi'(x_\infty)$). Таким образом, при приведении уравнения к виду $x=\varphi(x)$ следует действовать таким образом, чтобы $\varphi'(x_\infty)$ имело по возможности меньшее по абсолютной величине значение. Во всяком случае, для сходимости итерационного процесса, в окрестности точки x_∞ должно выполняться $|\varphi'(x)|<1$. Рассмотрим некоторые приемы.

1. Выразить x каким-либо образом из исходного уравнения.

Пусть, например, дано уравнение

$$x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4 = 0.$$

Тогда, в зависимости от промежутка локализации корня, может подойти один из следующих вариантов:

- $x = -\frac{1}{a_3}x^4 \frac{a_1}{a_3}x^3 \frac{a_2}{a_3}x^2 \frac{a_4}{a_3}$ (может подойти для дробных x);
- $x = -\frac{a_4}{x^3} \frac{a_3}{x^2} \frac{a_2}{x} a_1$ (может подойти для больших x);
- $x = \sqrt[3]{\frac{-a_2x^2 a_3x a_4}{x + a_1}}$;
- $x=\pm\sqrt[4]{-a_3x^3-a_2x^2-a_3x-a_4}$.
- 2. Умножить уравнение f(x)=0 на некоторую непрерывную и не обращающуюся в нуль функцию $\psi(x)$ и сложить с тождеством x=x. Получим $x=x+\psi(x)f(x)$,

T.e.

$$\varphi(x) = x + \psi(x) f(x).$$

Далее подбором $\psi(x)$ добиться, чтобы функция $\phi(x)$ в окрестности корня удовлетворяла условию сжатия $|\phi'(x)| \le q < 1$ (при этом стараться получить q как можно меньше).

3. Рассмотрим частный случай предыдущего способа: $\psi(x) = C = \text{const.}$ Тогда

$$\varphi(x) = x + Cf(x),$$

$$\varphi'(x) = 1 + Cf'(x).$$

Для выбора константы C получаем условие

$$-1 < 1 + Cf(x) < 1$$

или

$$-2 < Cf'(x) < 0$$
.

Сходимость метода простой итерации

Следующая теорема устанавливает достаточные условия сходимости итерационного процесса (2) (доказательство не приводится).

Теорема 1. Пусть функция $\varphi(x)$ на отрезке $\Delta = \{x: |x-x_0| \le \delta\}$ имеет непрерывную производную и удовлетворяет условиям

$$|\varphi'(x)| \le q < 1, \ x \in \Delta, \tag{3}$$

$$|x_0 - \varphi(x_0)| \le (1 - q)\delta. \tag{4}$$

Тогда уравнение $x=\varphi(x)$ имеет на отрезке Δ единственное решение, и последовательность (2) сходится к этому решению.

Метод Ньютона:

Вычислительный процесс метода Ньютона

Рассмотрим уравнение вида

$$f(x)=0, (1)$$

где f – заданная функция, x – неизвестная численная величина.

Предположим, что каким-либо способом получено приближение x_k к корню x_{∞} . Погрешность этого приближения обозначим через ε_k : $\varepsilon_k = x_{\infty} - x_k$. При известном x_k поиск корня равносилен поиску погрешности ε_k . Имеем:

$$f(x_k+\varepsilon_k)=0.$$

Рассмотрим разложение левой части уравнения в ряд Тейлора, взяв в разложении два первых слагаемых:

$$f(x_k) + \varepsilon_k f'(x_k) + O(\varepsilon_k^2) = 0.$$

Если считать величину ε_k небольшой по модулю и отбросить остаточный член $O(\varepsilon_k^2)$, то получим приближенное равенство

$$f(x_k) + \varepsilon_k f'(x_k) \approx 0$$
,

из которого найдем, вообще говоря, не само значение ε_k , а некоторое Δx_k , приближение значения ε_k ($\Delta x_k \approx \varepsilon_k$):

$$\Delta x_k = -\frac{f(x_k)}{f'(x_k)}.$$

Прибавив эту поправку Δx_k к x_k , получим новое приближение:

$$x_{k+1} = x_k + \Delta x_k$$

Сходимость метода Ньютона

С формальной точки зрения метод Ньютона можно трактовать как метод простой итерации с выбором функции $\varphi(x)$ в виде

$$\varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Поэтому формально все результаты метода простой итерации могут быть перенесены на этот случай. Например, формальное достаточное условие сходимости метода Ньютона может выглядеть следующим образом:

$$|\varphi'(x)| = \left| \frac{f(x)f''(x)}{\left(f'(x)\right)^2} \right| < 1, \ x \in \Delta.$$

Мы, однако, проведем самостоятельное изложение основ метода Ньютона по той же схеме, которой пользовались для метода простой итерации.

Обозначим

$$\begin{split} h_0 &= -\frac{f(x_0)}{f'(x_0)}, \\ S_0 &= \{x \colon x_0 + 2h_0 \le x \le x_0\}, \ ecnu \ h_0 < 0, \\ S_0 &= \{x \colon x_0 \le x \le x_0 + 2h_0\}, \ ecnu \ h_0 > 0, \\ M &= \max_{x \in S_0} \left| f''(x) \right|. \end{split}$$

Следующая теорема устанавливает достаточные условия сходимости итерационного процесса (2) (доказательство не приводится).

Теорема 1. Пусть функция f(x) дважды непрерывно дифференцируема на отрезке S_0 и удовлетворяет условиям

$$2|h_0|M \le |f'(x_0)|,\tag{3}$$

$$f(x_0)f'(x_0)\neq 0, \ f(x_0+2h_0)f'(x_0+2h_0)\neq 0.$$
 (4)

Тогда уравнение f(x)=0 имеет на отрезке S_0 единственное решение, и последовательность (2) сходится к этому решению.

3. Листинг программы

Половинное деление:

МПИ:

```
double f(double x)
{
         return x + 0.9 * (sqrt(1 - x * x) - exp(x) + 0.1);
}
double x1 = 0.085;
```

```
double x2 = 0.093;
double eps=0.0000007;
int k = 0;
cout << "K" << setw(10) << "X1" << setw(10) << "eps" << endl;
while (abs(x2 - x1) > eps && k < 10)
{
    if (k % 2 == 0) {
        x2 = f(x1);
        cout << k << setw(10) << x2 << setw(13) << abs(x2 - x1) << endl;
}
    else {
        x1 = f(x2);
        cout << k << setw(10) << x1 << setw(13) << abs(x2 - x1) << endl;
}
k++;
}</pre>
```

Метод Ньютона:

```
double f(double x)
{
       return x + 0.9 * (sqrt(1 - x * x) - exp(x) + 0.1);
}
double x1 = 0.084;
double x2 = 0;
double eps=0.0000007;
int k = 0;
cout << "k" << "x_1" << "eps";</pre>
       while (abs(x2 - x1) > eps)
       {
              if (k % 2 == 0) {
                     x2 = x1 - f(x1) / df(x1);
                      cout << k << x2 << abs(x2 - x1);</pre>
              }
              else {
                      x1 = x2 - f(x2) / df(x2);
                      cout << k << x1 << abs(x2 - x1);
              k++;
       }
```

4. Результат работы программы

Половинное деление:

k a_k	b_k	f(a_k)	f(b_k)	(a_k+b_k)/2	f((a_k+b_k)/2)	Eps
0 0	0.5	0.1	-0.682696	0.25	-0.21578	0.5
1 0	0.25	0.1	-0.21578	0.125	-0.0409917	0.25
2 0	0.125	0.1	-0.0409917	0.0625	0.0335505	0.125
3 0.0625	0.125	0.0335505	-0.0409917	0.125	-0.00268937	0.0625
4 0.0625	0.09375	0.0335505	-0.00268937	0.109375	0.0156858	0.03125
5 0.078125	0.09375	0.0156858	-0.00268937	0.125	0.00656231	0.015625
6 0.0859375	0.09375	0.00656231	-0.00268937	0.132813	0.00195254	0.0078125

МПИ:

k	x_1	eps
0	0.0918975	0.0068975
1	0.0914619	0.000435577
2	0.0914921	3.01737e-05
3	0.09149	2.07862e-06
4	0.0914902	1.43248e-07

Метод Ньютона:

k	x_1	eps
9	0.0915405	0.00754045
1	0.0914902	5.03035e-05
2	0.0914901	2.2462e-09

5. Вывод

Исходя из графика можно определить, что ближайший к нулю корень находится на отрезке [0,0.5].

В результате работы метода половинного деления определяются примерные границы, в которых находится корень уравнения.

Корни полученные в результате обоих методов совпадают, однако метод Ньютона дал результат раньше (всего за 2 итерации) с точностью 10^{-7} .

МПИ: Из графика видно, что функция монотонна на отрезке |x-0.0914| <= 0.25

Метод Ньютона: x_0 =(0+0.5)/2 и в итоге получаем, что условие сходимости выполнено 0.56<=1.54