Why abstract algebra? algebra = al jebr in Arabic return

· Solve for roots of polynomial equations.

competition in 14th centrury: Cardan, Tartagliza, Ferrari

Bubic quartic

[824: Niels Abel: no formula of deg. 5.

· application to practical problems algebra of metrices, Balean algebra

axiomatics of algebra constantics of Geometry

Galors: tied in the problem of finding the roots of equations with new discoveries on groups of permutations.

soplamed enably which equations of degree 5 or higher have solutions of the traditional kind

Chap. 2

operations: An operation x on a set A is a rule which assigns to each ordered pair (a,b) of elements of A coachly one element axb in A.

Options: commutative: a*b=b*a

associative: $(a \times b) \times C = a \times (b \times C)$

for every at A identity element: axe=exa=a

inverse of a: a.x=x.a=e NEa.

Ex: 1 axb= /pb/ on the set Q is not an operation

2, axb= |a-b| on 2,0 & an operation.

commutative, not assemble, reducity elevent =0

3 xxy = xx+y+a & con operation on R

YXX= y+x+a=bxy ammitative

. (0+y)* z = xxy+ z+a = (xx+y+a) + z+a, xx (y*z)= xx+ yxz+ a= xx+ y+z+a)+ a ⇒ association

· xxy=e=-a ⇔x+y+a=-a ⇔ y=-2a-x so for any $x \in \mathbb{R}$, $x \mapsto x = -2a - x$

Q: How many operations are there on a set with n elements?
A. nn2
Q: Howmany Commutative operations? associative operations?
Operation tables for A={a,b}. $2^{2^2}=2^4=16$ tables.
Eg.
(a,a) a a a a a a a a a a b b b b b b b b b
Es: which are commutative, associative, having identity element?
Eq. aut - 1 to - 1 to mostly
52: axb=b = a = bxa not commodative.
Eg: $0 \times b = b \neq a = b \times a$ not commodative. $(a \times a) \times a = a \times a = a$ $a \times (a \times a) = a \times g = g$ $(a \times a) \times b = a \times b = b$ $a \times (a \times b) = a \times b = b$
$(a \times b) \times a = a \times a = a$, $a \times (b \times a) = a \times a = a$
$(a*b)*b = b*b=b$. $a*(b*b)=a*b=b$ \Rightarrow associative
$(b \times a) \times a = a \times a = a$, $b \times (a \times a) = b \times a = a$
(b*a)*b= a*b=b, b*(a*b)=b*b=b
(b*b)*a = b*a = a, b*(b*a) = b*a = a
(bxb)xb=bxb=b, bx(bxb)=bxb=b.
axb=b >> b is not telentity >> no relantity.
b*a=a > a is not adoutity