An Introduction to ROC Analysis.

Sergio Campos

Departamento de Informática, UTFSM, Valparaíso, Chile

December 2, 2015

Introduction

- ROC: Receiver Operating Characteristic.
- Started in electronic signal detection theory (1940s 1950s).
- Has become very popular in biomedical applications, particularly radiology and imaging.
- Also used in machine learning applications to assess classifiers.
- Can be used to compare tests/procedures.

ROC Analysis

• A classifier is a mathematical model (algorithm) that create a mapping $f: X \to Y$ where $X \in \mathbb{R}$ is the data matrix (input space) and $Y \in \mathbb{N}$ is the labels (out space) of examples in X.

ROC Analysis

- A classifier is a mathematical model (algorithm) that create a mapping $f: X \to Y$ where $X \in \mathbb{R}$ is the data matrix (input space) and $Y \in \mathbb{N}$ is the labels (out space) of examples in X.
- In Machine Learning is used ROC Analysis to assess a classifier.

ROC Analysis

- A classifier is a mathematical model (algorithm) that create a mapping $f: X \to Y$ where $X \in \mathbb{R}$ is the data matrix (input space) and $Y \in \mathbb{N}$ is the labels (out space) of examples in X.
- In Machine Learning is used ROC Analysis to assess a classifier.
- We going to start with the two-class prediction problem.

Confusion Matrix

			prediction outcome						
1	Accuracy = $\frac{TP+TN}{P+N}$		P	n	total				
2	Specificity = $\frac{TN}{FP+TN}$	p'	True Positive	False Negative	P'				
3	Sensitivity = $\frac{TP}{TP+FN}$	actual	1 Usitive	rvegative					
4	$Precision = \frac{TP}{TP + FP}$	value n'	False Positive	True Negative	N'				
5	F-measure = $\frac{2}{\frac{1}{Precision} + \frac{1}{Sensitivity}}$	total	P	N					

where P are the predicted examples of the positive class and N are the predicted examples of the negative class.

 ROC graphs are two-dimensional graphs in which tp rate is plotted on the Y axis and fp rate is plotted on the X axis.

- ROC graphs are two-dimensional graphs in which *tp rate* is plotted on the Y axis and *fp rate* is plotted on the X axis.
- What is tp rate (tpr) and fp rate (fpr)?:

- ROC graphs are two-dimensional graphs in which *tp rate* is plotted on the Y axis and *fp rate* is plotted on the X axis.
- What is tp rate (tpr) and fp rate (fpr)?:

- ROC graphs are two-dimensional graphs in which tp rate is plotted on the Y axis and fp rate is plotted on the X axis.
- What is tp rate (tpr) and fp rate (fpr)?:

$$2 fpr = 1 - Specificity = \frac{FP}{FP + TN}$$

- ROC graphs are two-dimensional graphs in which tp rate is plotted on the Y axis and fp rate is plotted on the X axis.
- What is tp rate (tpr) and fp rate (fpr)?:

1
$$tpr = \frac{TP}{TP+FN}$$

2
$$fpr = 1 - Specificity = \frac{FP}{FP + TN}$$

 An ROC graph depicts relative tradeoffs between benefits (true positives) and costs (false positives).

- What do the points mean?
- Which one is better?

Curves in ROC Space

- Many classifiers, are designed to produce only a class decision (1,-1; Y, N).
- These classifiers only produce one point in ROC space.
- But others classifiers such Naive Bayes or Neural Networks naturally yield an instance probability or score, a numeric value that represents the degree to which an instance is a member of a class.
- In these cases, we can use a threshold to produce a binary response. We can change the value of the threshold and gets different points on the ROC space.

Curves in ROC Space: example

Inst#	Class	Score	Inst#	Class	Score	¹Г		_	_	_	_	_	_	_	.30 T	
1	р	.9	11	р	.4	0.9								*34	-*	3 .
2	p	.8	12	n	.39	0.8							_ ×36	x ³⁵		
3	n	.7	13	p	.38	0.7			_		k ³⁹	•				
4	p	.6	14	n	.37	True positive rate			¥-:	x	•					
5	p	.55	15	n	.36	0.5 -	*54	- × -	- × ⁵²							
6	p	.54	16	n	.35	을 0.4	¥ ⁵⁵									
7	n	.53	17	p	.34	0.3	¥.6									
8	n	.52	18	n	.33	0.2	8 i.7									
9	p	.51	19	p	.30	0.1	9 inity									
10	n	.505	20	n	.1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	_
						False positive rate										

Questions...

Some final questions:

Oan I summarize the information of ROC space? How?

Questions...

Some final questions:

- Oan I summarize the information of ROC space? How?
- There are others metrics based on ROC Analysis?

Questions...

Some final questions:

- Oan I summarize the information of ROC space? How?
- There are others metrics based on ROC Analysis?
- Can be used ROC Analysis in multi-labels (> 2) problems? How?

References

Reference 1:

Available online at www.sciencedirect.com

Pattern Recognition Letters 27 (2006) 861-874

Pattern Recognition Letters

www.elsevier.com/locate/patrec

An introduction to ROC analysis

Tom Fawcett

Reference 2:

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

A systematic analysis of performance measures for classification tasks

Introduction

Thank you for your attention!

