ECMT3150: The Econometrics of Financial Markets

1c. Linear Time Series Analysis

Simon Kwok University of Sydney

Semester 1, 2021

Outline

- 1. Regression with Time Series Errors
 - 1.1 When would a regression break down?
 - 1.2 Spurious Regression
 - 1.3 Cointegration
- 2. Unit Root Models
 - 2.1 Stochastic vs Deterministic Trends
 - 2.2 Unit Root Tests
- 3. Seasonal Models
- 4. Long Memory Models

Let $\{x_t\}$ and $\{y_t\}$ be two time series. Let's say we run the regression

$$y_t = \underset{1 \times k}{x_t'} \cdot \underset{k \times 1}{\beta} + \varepsilon_t. \tag{1}$$

The OLS estimate of β is

$$\hat{\beta} = \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1} \sum_{t=1}^{T} x_t y_t.$$
 (2)

Suppose the conditional covariance of \hat{eta} is estimated by

$$\widehat{\mathsf{Cov}}(\hat{eta}|x) = \hat{\sigma}_{arepsilon}^2 \left(\sum_{t=1}^T x_t x_t' x_t'\right)^{-1},$$

where $\hat{\sigma}_{\varepsilon}^2$ is the OLS variance estimator of the residuals $\{\hat{\varepsilon}_t\}$, given by $\hat{\sigma}_{\varepsilon}^2 = \frac{1}{T-k} \sum_{t=1}^T \hat{\varepsilon}_t^2$.

Q: Upon diagnostic checks, we may find that $\{\hat{\varepsilon}_t\}$ are heteroskedastic and/or serially correlated. Is $\hat{\beta}$ consistent for β , and $\widehat{Cov}(\hat{\beta}|x)$ consistent for $Cov(\hat{\beta}|x)$?

A: It depends on the true data generating process (DGP).

<u>Scenario 1</u>: Let $x = [x_1, x_2, \ldots, x_T]$, a $k \times T$ matrix of full row rank. The true DGP is (1), where $\{x_t\}$ is a covariance stationary process with $E(\|x_t\|^2) < \infty$ and $E[x_t x_t']$ being positive definite, $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$, and the two processes $\{x_t\}$ and $\{\varepsilon_t\}$ are independent.

Consequence: $\hat{\beta}$ is consistent, and $\widehat{Cov}(\hat{\beta}|x)$ is consistent.

Sketch of proof: Substitute (1) into (2).

$$\hat{\beta} = \beta + \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1} \sum_{t=1}^{T} x_t \varepsilon_t.$$

Rewrite the equation as

$$\hat{\beta} - \beta = \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t'\right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} x_t \varepsilon_t\right).$$

Since $E(\|x_t\|^2) < \infty$ and $E(\varepsilon_t^2) < \infty$, which imply that $E(\|x_t \varepsilon_t\|) < \infty$ by Cauchy-Schwartz inequality, we apply the strong law of large numbers and obtain

$$\frac{1}{T} \sum_{t=1}^T x_t x_t' \overset{\text{a.s.}}{\to} E(x_t x_t'), \qquad \frac{1}{T} \sum_{t=1}^T x_t \mathcal{E}_t \overset{\text{a.s.}}{\to} E(x_t \mathcal{E}_t) = 0,$$

as $T \to \infty$, so that $\hat{\beta} - \beta \overset{a.s.}{\to} 0$ as $T \to \infty$.

Conditional on $x = [x_1, x_2, ..., x_T]$, the covariance matrix of $\hat{\beta}$ is

$$Cov(\hat{\beta}|x) = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

$$= \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1} Cov\left(\sum_{t=1}^{T} x_t \varepsilon_t \middle| x\right) \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1}.$$

Now let us compute

$$Cov\left(\sum_{t=1}^{T} x_{t} \varepsilon_{t} \middle| x\right) = E\left[\left(\sum_{t=1}^{T} x_{t} \varepsilon_{t}\right) \left(\sum_{t=1}^{T} x_{t}' \varepsilon_{t}\right) \middle| x\right]$$

$$= E\left[\sum_{t=1}^{T} x_{t} x_{t}' \varepsilon_{t}^{2} + \sum_{s=1}^{T} \sum_{t=s+1}^{T} (x_{s} x_{t}' + x_{t} x_{s}') \varepsilon_{s} \varepsilon_{t} \middle| x\right]$$

$$= \sum_{t=1}^{T} x_{t} x_{t}' E(\varepsilon_{t}^{2} | x) + \sum_{s=1}^{T} \sum_{t=s+1}^{T} (x_{s} x_{t}' + x_{t} x_{s}') E(\varepsilon_{s} \varepsilon_{t} | x).$$

Since $\{\varepsilon_t\} \sim wn(0, \sigma_{\varepsilon}^2)$ and $E(x_t \varepsilon_t) = 0$, we have $E(\varepsilon_t^2|x) = E(\varepsilon_t^2) = \sigma_{\varepsilon}^2$ and $E(\varepsilon_s \varepsilon_t|x) = E(\varepsilon_s \varepsilon_t) = 0$ for all $s \neq t$, and so $Cov\left(\sum_{t=1}^T x_t \varepsilon_t \middle| x\right) = \sigma_{\varepsilon}^2\left(\sum_{t=1}^T x_t x_t'\right)$. It follows that $Cov(\hat{\beta}|x) = \sigma_{\varepsilon}^2\left(\sum_{t=1}^T x_t x_t'\right)^{-1}$.

Since $E(\varepsilon_t^2)<\infty$, we have, by the strong law of large numbers, $\hat{\sigma}_\varepsilon^2\stackrel{a.s.}{\to} \sigma_\varepsilon^2$, and hence,

$$\widehat{Cov}(\hat{\beta}|x) = \hat{\sigma}_{\varepsilon}^{2} \left(\sum_{t=1}^{T} x_{t} x_{t}' \right)^{-1} \stackrel{\text{a.s.}}{\to} \sigma_{\varepsilon}^{2} \left(\sum_{t=1}^{T} x_{t} x_{t}' \right)^{-1} = Cov(\hat{\beta}|x) \text{ as } T \to \infty.$$

<u>Scenario 2</u>: The true DGP is (1) with serially uncorrelated but heteroskedastic ε_t .

Consequence: $\hat{\beta}$ is consistent, but $\widehat{Cov}(\hat{\beta}|x)$ is inconsistent.

Solution: Use the White (1980) heteroskedasticity consistent (HC) estimator for $Cov(\hat{\beta}|x)$:

$$\widehat{Cov}(\hat{\beta}|x)_{HC} = \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1} \left(\sum_{t=1}^{T} \hat{\varepsilon}_t^2 x_t x_t'\right) \left(\sum_{t=1}^{T} x_t x_t'\right)^{-1}.$$

Scenario 3: The true DGP is (1) with serially correlated and heteroskedastic $\{\varepsilon_t\}$.

Consequence: $\hat{\beta}$ is consistent, but $\widehat{Cov}(\hat{\beta}|x)$ and $\widehat{Cov}(\hat{\beta}|x)_{HC}$ are inconsistent.

Solution: Use the Newey and West (1987) heteroskedasticity and autocorrelation consistent (HAC) estimator:

$$\widehat{Cov}(\hat{\beta}|x)_{HAC} = \left(\sum_{t=1}^{T} x_{t} x_{t}'\right)^{-1} \hat{C}_{HAC} \left(\sum_{t=1}^{T} x_{t} x_{t}'\right)^{-1},$$

$$\hat{C}_{HAC} = \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{2} x_{t} x_{t}' + \sum_{j=1}^{\ell} w_{j} \sum_{t=j+1}^{T} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t-j} (x_{t} x_{t-j}' + x_{t-j} x_{t}').$$

One needs to pick the truncation parameter ℓ and the weights $\{w_j\}_{j=1}^\ell$ (e.g., $\ell=\left\lfloor 4\left(\frac{T}{100}\right)^{2/9}\right\rfloor$ and $w_j=1-\frac{j}{\ell+1}$).

<u>Scenario 4</u>: The true DGP contains lagged values of y_t , and $\{\varepsilon_t\}$ is serially correlated. E.g.,

$$y_t = \beta y_{t-1} + \varepsilon_t,$$

 $\varepsilon_t = \theta \varepsilon_{t-1} + u_t,$

where $\{u_t\} \sim wn(0, \sigma_u^2)$.

Consequence: $\hat{\beta}$ is inconsistent.

To see this, first note that this model is the same as regression (1) with one regressor $x_t = y_{t-1}$ and an ε_t with $\{\varepsilon_t\} \sim AR(1)$. Now, let us compute

$$E(x_t \varepsilon_t) = E[y_{t-1} \varepsilon_t]$$

$$= E[y_{t-1} (\theta \varepsilon_{t-1} + u_t)]$$

$$= \theta E(y_{t-1} \varepsilon_{t-1}) + E[y_{t-1} u_t].$$

However, $E(y_{t-1}\varepsilon_{t-1})=E[(\beta y_{t-2}+\varepsilon_{t-1})\varepsilon_{t-1}]\neq 0$, and $E[y_{t-1}u_t]=0$, so that $E(x_t\varepsilon_t)\neq 0$. As a result, the proof of the consistency of $\hat{\beta}$ under scenario 1 breaks down.

Solution: Use MLE instead of OLS.

Unit Root Nonstationarity

A process is nonstationary if some of its unconditional moments vary with time. Some examples are:

- random walk (unit root / stochastic trend process): $y_t = y_{t-1} + \varepsilon_t$, where $\{\varepsilon_t\} \sim wn(0, \sigma_{\varepsilon}^2)$.
- ▶ random walk with drift: $y_t = c + y_{t-1} + \varepsilon_t$, where $\{\varepsilon_t\} \sim wn(0, \sigma_{\varepsilon}^2)$.
- ▶ trend-stationary time series: $y_t = a + bt + u_t$, where u_t is stationary.
- ▶ ARIMA(p, d, q): $\{\Delta^d u_t\} \sim ARMA(p, q)$, where $\Delta^d y_t$ is the d^{th} order difference of y_t . 1 i.e., $[1 \phi(L)] (\Delta^d u_t) = [1 + \theta(L)] \varepsilon_t$, where $\phi(\cdot)$ and $\theta(\cdot)$ are polynomial function of orders p and q, and $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$.

¹For any positive integer $d \ge 1$, the d^{th} order difference is defined as $\Delta^d y_t = (1-L)^d y_t$, where L is the lag operator. E.g., $\Delta^1 y_t = \Delta y_t = (1-L) y_t = y_t - y_{t-1}$, and $\Delta^2 y_t = (1-L)^2 y_t = y_t - 2 y_{t-1} + y_{t-2}$.

Random Walk (RW)

For $t \ge 1$, $y_t = y_{t-1} + \varepsilon_t$, where $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$. $y_0 =$ initial value

Write y_t in terms of the noises: $y_t = y_0 + \varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_1$. Interpretation: any previous shock ε_{t-j} has a permanent effect on y_t .

Conditional on \mathcal{F}_0 , the mean is $E(y_t|\mathcal{F}_0)=y_0$ and the variance is $Var(y_t|\mathcal{F}_0)=t\sigma_{\varepsilon}^2$. The variance grows linearly with time.

Ex: Show that $\hat{y}_t(\ell) = E[y_{t+\ell}|\mathcal{F}_t] = y_t$ for all $\ell > 0$. This shows that $\{y_t\}$ is a *martingale*. Interpretation: the best point forecast of a RW is given by its current value.

Ex: Show that the forecast error $\hat{\mathbf{e}}_t(\ell) = y_{t+\ell} - \hat{y}_t(\ell)$ has variance $\ell \sigma_{\varepsilon}^2$, which diverges as $\ell \to \infty$ (hopeless to forecast RW in the distant future).

Ex: Show that the ACF is $\rho_j = 1$ for all integers j (long memory).

Random Walk with Drift

For $t \ge 1$, $y_t = c + y_{t-1} + \varepsilon_t$, where $\{\varepsilon_t\} \sim wn(0, \sigma_{\varepsilon}^2)$. $y_0 =$ initial value

Write y_t in terms of the noises:

$$y_t = \underbrace{y_0}_{\text{initial point}} + \underbrace{ct}_{\text{deterministic trend}} + \underbrace{\varepsilon_t + \varepsilon_{t-1} + \cdots \varepsilon_1}_{\text{stochastic trend}}.$$

 $E(y_t|\mathcal{F}_0) = y_0 + ct$ (so $c = \text{average rate of change in } y_t \text{ over time}$).

Conditional on \mathcal{F}_0 , y_0+ct is deterministic, so $Var(y_t|\mathcal{F}_0)=t\sigma_{\varepsilon}^2$ (same as RW without drift).

Ex: Show that $\hat{y}_t(\ell) = E[y_{t+\ell}|\mathcal{F}_t] = c\ell + y_t$ for all $\ell > 0$.

Ex: Show that $Var[\hat{\mathbf{e}}_t(\ell)] = \ell \sigma_{\varepsilon}^2$.

Trend-Stationary Time Series

For $t \geq 1$, $y_t = a + bt + u_t$, where $\{u_t\}$ is stationary (e.g., an ARMA model) with mean zero and variance σ_u^2 . $\{y_t\}$ has a deterministic linear trend a + bt but no stochastic trend. $E(y_t) = a + bt$ (so b = average rate of change in y_t over time). As a + bt is deterministic, $Var(y_t) = \sigma_u^2$, which is time-invariant if it exists.

Ex: Show that
$$\hat{y}_t(\ell) = E[y_{t+\ell}|\mathcal{F}_t] = a + b(t+\ell)$$
 for all $\ell > 0$.

Ex: Show that $Var[\hat{e}_t(\ell)] = \sigma_u^2$.

Dickey-Fuller (DF) Test

Consider the regression

$$y_t = \phi_1 y_{t-1} + \varepsilon_t.$$

We want to test: $H_0: \phi_1=1$ vs $H_a: \phi_1<1$. Run the regression, get the OLS estimate $\hat{\phi}_1=\frac{\sum_{t=1}^T y_t y_{t-1}}{\sum_{t=1}^T y_{t-1}^2}$, and

obtain the residual variance $\hat{\sigma}_{\varepsilon}^2 = \frac{1}{T-1} \sum_{t=1}^{T} (y_t - \hat{\phi}_1 y_{t-1})^2$.

The standard error of $\hat{\phi}_1$ is $s.e.(\hat{\phi}_1)=\sqrt{\frac{\hat{\sigma}_{\varepsilon}^2}{\sum_{t=1}^T y_{t-1}^2}}$.

The DF test statistic is the t ratio of $\hat{\phi}_1$ under H_0 :

$$DF = \frac{\hat{\phi}_1 - 1}{s.e.(\hat{\phi}_1)} = \frac{\sum_{t=1}^{I} \varepsilon_t y_{t-1}}{\hat{\sigma}_{\varepsilon} \sqrt{\sum_{t=1}^{T} y_{t-1}^2}}.$$

Under H_0 , DF converges to a nonstandard distribution (function of standard Brownian motion) as $T \to \infty$ (need to use simulation to get critical value).

Dickey-Fuller Test

$$DF = \frac{\sum_{t=1}^{T} \varepsilon_t y_{t-1}}{\hat{\sigma}_{\varepsilon} \sqrt{\sum_{t=1}^{T} y_{t-1}^2}}.$$

Q: What is the asymptotic distribution of DF under H_0 ?

Sketch of proof: Let W(t) be the standard Brownian motion (in continouous time). As $T \to \infty$, by the strong law of large numbers,

 $\qquad \qquad \hat{\sigma}_{\varepsilon}^2 \overset{\textit{a.s.}}{\rightarrow} \sigma_{\varepsilon}^2.$

Also, applying the functional central limit theorem,

Combining the limits using Slutsky's theorem, we obtain

$$DF \xrightarrow{d} \frac{\frac{1}{2}[W(1)^2 - 1]}{\sqrt{\int_0^1 W(s)^2 ds}}.$$

Augmented Dickey-Fuller (ADF) Test

We augment the regression model with a deterministic intercept c_t and p-1 lagged differenced series $\Delta y_{t-1}, \ldots, \Delta y_{t-p+1}$

$$y_t = c_t + \beta y_{t-1} + \sum_{i=1}^{p-1} \phi_i \Delta y_{t-i} + \varepsilon_t.$$

We want to test: $H_0: \beta = 1$ vs $H_a: \beta < 1$.

The ADF test statistic is the t ratio of $\hat{\beta}$ (OLS estimate of β):

$$ADF = \frac{\hat{\beta} - 1}{s.e.(\hat{\beta})}.$$

Under H_0 , ADF converges to a different nonstandard distribution as $T \to \infty$ (need to use simulation to get critical value). Equivalently, we may run the *error-correction* regression of Δy_t :

$$\Delta y_t = c_t + \beta_c y_{t-1} + \sum_{i=1}^{p-1} \phi_i \Delta y_{t-i} + \varepsilon_t.$$

Note that $\beta_c = \beta - 1$.

Spurious Regression

Suppose $\{y_t\}$ and $\{x_t\}$ contain a unit root.

Q: After running the regression (1), we may detect a unit root in the residuals (e.g., as revealed by ADF test), and find a statistically significant $\hat{\beta}$. Is the inference on $\hat{\beta}$ reliable?

A: $\hat{\beta}$ can be spuriously significant, and R^2 spuriously high. This is known as *spurious regression*.

Solutions:

- ▶ Take the first-order difference of $\{y_t\}$ and $\{x_t\}$, and run the regression $\Delta y_t = \alpha + \beta \Delta x_t + \varepsilon_t$. Check for serial correlations of the residuals by looking at their ACF. Add lags of Δy_t , Δx_t and ε_t if necessary. The OLS estimates $\hat{\alpha}$ and $\hat{\beta}$ are \sqrt{T} -consistent and asymptotically normal as $T \to \infty$.
- Add lagged values of y_t and x_t to regression (1). However, the asymptotic distributions of $\hat{\alpha}$ and $\hat{\beta}$ are non-standard.
- Apply Cochrane-Orcutt adjustment.

Cointegration

Suppose $\{y_t\}$ and $\{x_t\}$ contain a unit root.

Q: After running regression (1), we find that the residuals are stationary. What does $\hat{\beta}$ represent?

A: In this case, $\{y_t\}$ and $\{x_t\}$ are cointegrated, We say that the $\{(y_t, x_t)\}$ pair displays a cointegrating relationship given by (1) with cointegrating vector $(1, -\beta)$. As for inference, the OLS estimate $\hat{\beta}$ is super-consistent (T-consistent), and the asymptotic distribution is non-standard.

Seasonal Models

Time series may exhibit cyclical patterns (e.g., weekly pattern for daily series, monthly pattern for weekly series).

Q: Suppose $\{y_t\}$ has a cyclical pattern of periodicity s. How to carry out analysis?

A: If $\{y_t\}$ is stationary, we may remove the cyclicity by applying the seasonal adjustment:

$$\Delta_s y_t = (1 - L^s) y_t$$
$$= y_t - y_{t-s}.$$

If $\{y_t\}$ has a unit root, we may apply the seasonal adjustment to the first-differenced series:

$$\Delta_s(\Delta y_t) = (1 - L^s)(1 - L)y_t = (y_t - y_{t-1}) - (y_{t-s} - y_{t-s-1})$$

= $y_t - y_{t-1} - y_{t-s} + y_{t-s-1}$.

Seasonal Models

Multiplicative season model:

$$w_t := (1 - L^s)(1 - L)y_t = (1 - \theta L)(1 - \lambda L^s)u_t \tag{3}$$

Ex: What is the ACF of $\{w_t\}$?

If $\lambda=1$, then the seasonal factor $(1-L^s)$ appears on both sides of (3). This suggests that the seasonal pattern is deterministic. Exact-likelihood estimation can reveal this and is recommended.

Long Memory / Fractionally differenced Model

Let $\{\varepsilon_t\} \sim wn(0, \sigma_\varepsilon^2)$, and suppose that $\phi(\cdot)$ and $\theta(\cdot)$ are polynomial functions of orders p and q. We say that y_t follows an autoregressive fractionally integrated moving-average model, ARFIMA(p, d, q), if

$$[1 - \phi(L)]\Delta^d y_t := [1 + \theta(L)]\varepsilon_t.$$

- ▶ $d \in (-0.5, 0)$: long-range negative dependence, with ACF $\rho_j \sim j^{2d-1}$ (hyperbolic decay) as $j \to \infty$.²
- d=0: e.g., for AR(1), $ho_i=\phi_1^{|j|}$ (exponential decay).
- ▶ $d \in (0, 0.5)$: long-range positive dependence, $\rho_j \sim j^{2d-1}$ (hyperbolic decay) as $j \to \infty$.
- ▶ $d \in [0.5, 1)$: mean-reverting, non-stationary process.
- ▶ d = 1: martingale, unit root process, $\rho_i \equiv 1$ for all integers j.

 $^{^{2}}$ " \sim " means "is proportional to".