Auction Price Prediction & Image Features

Presented by: Yifei Wang, Bingying (Echo) Liu

Auction Process

Bidding

Highest price

Buyer's premium

Project goals

Sellers

Price prediction

Advertising

Auction arrangement

Estimate vehicle value

Interpretability

Increase expected price

Fix or not fix

Preprocess Data

Feature Image Image
Extraction Processing Annotation

Final Model

Various Modelling Attempts

Timeline

Preprocess Data

Tabular Data

- Final auction price
- Make, Year, Mileage, etc.

Text Data

• Tire, bucket, engine, etc.

Non-annotated

Feature: Colorfulness Scores

10 Most Colorful

10 Least Colorful

Feature: Text Sentiment

VADER

- Lexicon and rule-based sentiment analysis tool
- Preceding tri-grams (observe 90% negation flip); Conjunctions

Engine (more than 100 characters' comments)

Engine access door latch area damaged, engine knocks, engine shroud damaged, new holland 450nc 5.01 four cylinder diesel engine

- 81 hp, approximately one hour on replaced engine, new holland 445m2 four cylinder diesel engine, recently replaced engine
- 70 hp, john deere 5030ht014 3.01 five cylinder turbo diesel engine, one engine cover side panel missing
- Engine compartment fire damage, john deere pe5030 four cylinder turbo diesel engine, lift arm cylinder pins removed, but included

VADER Sentiment Scores

- $\label{eq:compound:compound:-0.70} \begin{tabular}{ll} \begin{ta$
- {'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
- $\label{eq:compound} \begin{tabular}{ll} \beg$
- {'neg': 0.183, 'neu': 0.817, 'pos': 0.0, 'compound': -0.4215}

Image Annotation

View instructions

Instructions: Given an image, answer the following questions.

- If your answer to the first question is "Yes", a follow-up question will pop out. Otherwise, please continue to the second question.
- Please click on "View instructions" before moving on to your task.

- 1. Does this equipment's bucket contain rust?
 - Yes No This equipment has no bucket.
- 2. Use a scale of 1 to 10 to describe how much rust the body of equipment has (please only take in account the body, not the bucket).

1 means 'barely any rust' and 10 means 'rust all over the body'.

01 02 03 04 05 06 07 08 09 010

Submit

Sample 100 images

13 questions/image

3 workers/question

\$83.94 in total

13 questions

Yes-no & Quantitative

Background

Rust extent
Brightness of color
Dirt level

Annotation Quality:

Except for body rust extent, all other annotations are within 2-3 std dev away.

Distribution of Standard Deviations of All Numerical Answers for Each Image

Final Model

Interpretability - Images

- Hard to generate quantitative interpretation on images
 - without enough human annotations

- Try to qualitatively interpret images
 - Indicate which part of the image is driving up/down the price

Interpretability - Attention Map

Interpretability - Saliency Map

Model	Parameters	Sample Size	R^2	MAE
MLR	Hours_final, age_at_sale	6167	0.392	4076
MLR	Hours_final, age_at_sale, parts_sentiment	6167	0.395	4062
MLR	Hours_final, age_at_sale, colorfulness_score	6167	0.396	4047
MLR	Hours_final, age_at_sale, month_of_sold_date	6167	0.401	4066
MLR	Hours_final, age_at_sale, make	6167	0.434	3926
MLR	Hours_final, age_at_sale, make, month_of_sold_date, colorfulness_score, parts_sentiment	6167	0.442	3902
H2O_DRF	Hours_final, age_at_sale, make, month_of_sold_date, colorfulness_score, parts_sentiment	6167	0.489 (MSE)	3391
MLR	Hours_final, age_at_sale	96	0.431	5384
MLR	Hours_final, age_at_sale, make	96	0.570	4998
MLR	Hours_final, age_at_sale, make, mturk	96	0.633	Unstable Because of Overfitting
MLR	Hours_final, age_at_sale, make, mturk, parts_sentiment, colorfulness	96	0.676	
MLR	Hours_final, age_at_sale, make, mturk, parts_sentiment, colorfulness , month_sold	96	0.802	
H2O_DRF	Hours_final, age_at_sale, make, mturk, parts_sentiment, colorfulness , month_sold	96	0.735 (MSE)	odel Com

Brand Premium

Final selling price is on log scale
* chart is based on coefficients of MLR

Seasonality Influence on Sales Price

- Oct, Apr: Positive influence
- Jan, Sep: Negative influence

Top Feature Importance

* Chart is based on distributed random forest

Quantitative Interpretation

https://skidsteer-interpret.herokuapp.com/

Interactive Visualizations

Summary

Recommendations

Interpretable features (machine and human)

Image annotation (MTurk)

Price prediction

Vehicle cleanliness

Thank you!

Yifei Wang & Bingying Liu

II. Feature Extraction - Image Colorfulness

- Haslera and Susstrunk (2003)
- They ask people to rate images using 7 categories of colorfulness
- Propose a metric that correlates to 95.3% of the experiment data
- Opponent color space representation

$$Rg = R - G$$

$$Yb = (1/2) (R + G) - B$$

$$\sigma_{rgyb} = \sqrt{\sigma^2_{rg} + \sigma^2_{yb}}$$

$$\mu_{rgyb} = \sqrt{\mu^2_{rg} + \mu^2_{yb}}$$

$$C = \sigma_{rgyb} + 0.3 * \mu_{rgyb}$$