Aprendizaje No Supervisado

Franco Baliarda, Lucía Torrusio, Joaquín Colonnello

Introducción

- Estudiar el concepto de <u>Aprendizaje no Supervisado</u>
- Utilizar diferentes reglas y tipos de redes neuronales
- Resolver problemas de clasificación e identificación de patrones
- Analizar y comparar las diferentes redes y métodos
- Interpretar los resultados obtenidos y obtener conclusiones

Ejercicio 1

Países Europeos

28 países de Europa con las siguientes métricas:

Regla de Oja

Redes de Kohonen

- Área
- PBI
- Inflación
- Expectativa de Vida
- Ejército
- Crecimiento de Población
- Desempleo

Regla de Oja

Converge al autovector correspondiente al mayor autovalor de la matriz de correlaciones
 se usa para obtener la primera componente principal

se puede realizar una interpretación

Regla de Oja vs PCA

Primera componente

$$||PCA - Oja|| = 0.126$$

Primera Componente

Primera Componente

<u>Interpretación</u>

- PC Alto ——→ valores altos de PBI, Exp. de vida, Crec. poblacional ¿calida
- PC Bajo → valores altos de inflación y desempleo

Índice de calidad de vida

- 1. Irland
 - 2. Suiza
 - 3. Noruega
 - 4. Luxemburgo
 - 5. Suecia
 - 6. Islandia
 - 7. Italia

Primera Componente

- 1. Luxemburgo
- 2. Suiza
- 3. Noruega
- 4. Holanda
- 5. Irlanda
- 6. Islandia
- 7. Italia

calidad de vida?

Economist

Intelligence

Unit

(2005)

Red de neuronas bidimensional — → grilla o mapa (k x k)

Encuentra regularidades en los patrones de entrada

la salida de la red es la neurona con pesos más similares a la entrada con pesos más similares a la entradas

Mapa autoorganizado

Mapa autoorganizado

<u>Grupos de países</u> → mismas características geopolíticas, económicas y sociales

Luxemburgo Irlanda Islandia	Suiza Holanda Dinamarca Austria	Bélgica República Checa Eslovenia
Finlandia Suecia Noruega Alemania Italia		Estonia Letonia Lituania Hungría Eslovaquia
Reino Unido España	Portugal Grecia Polonia Croacia	Ucrania Bulgaria

Distancia promedio de neuronas vecinas

Distancia promedio de neuronas vecinas

Ejercicio 2

Redes de Hopfield

Reconocer patrones de letras

Se almacenan 4 patrones

se intentan reconocer patrones con _____ alteraciones aleatorias

ruido *n*: probabilidad de que cada píxel se modifique

Redes de Hopfield

Patrón 'A'

Ruido *n* = 0.2

Ruido *n* = 0.6

Ruido vs Precisión

(cantidad de éxitos)

(total de repeticiones)

• Repeticiones: 100

Patrón de consulta: A

Energía

$$H(w) = -rac{1}{2}\sum_{i,j}w_{ij}S_iS_j$$

- Repeticiones: 10
- Ruido *n*: 0.2
- Patrón de consulta: A

Máxima cantidad de patrones

¿Cuántos patrones puede almacenar la red?

15% del número de neuronas

$$N = 5 * 5 = 25$$

 $p \le 0.15$ Máximo = $N * p = 4$ patrones de letras

¿Qué pasa si almacenamos más patrones que el máximo permitido?

Máxima cantidad de patrones

• Patrones almacenados: 8

• Repeticiones: 100

Patrón de consulta: A

Conclusiones

Conclusiones

- Se alcanzaron valores similares a PCA usando la Regla de Oja
- Al interpretar el resultado como "calidad de vida" se llegó a un ranking parecido al de un índice publicado
- En las redes de Kohonen se alcanzaron los mejores resultados con redes 4x4
- Las redes de 3x3 agruparon los países de una forma sencilla de interpretar
- La precisión de la red de Hopfield disminuye rápidamente a partir de un ruido > 0.3
- La precisión para entradas sin ruido se mantiene en 100% con 8 patrones almacenados, pero disminuye más rápido que con 4 al aumentar el ruido