

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática

Sistema de Monitoramento da Temperatura de Bebidas

Equipe: Alan de Abreu Estevão Matrícula: 385179

Matheus dos Santos Bastos **Matrícula:** 385210 Thalisson Felipe de Sousa Feitosa **Matrícula:** 390195

Disciplina: Sistemas Microprocessados

Professor: Ricardo Jardel Nunes da Silveira

Fortaleza, Ceará 2017

Sumário

7	Cronograma de Atividades	4		
	6.3 Aplicativo	4		
	6.2 Microcontrolador			
		3		
6 Organização do Projeto				
5	Diagrama de Blocos			
4	Funcionamento	3		
3	Materiais	2		
2	Objetivos	2		
1	Justificativa	2		

1 Justificativa

Dentre os muitos gastos mensais de uma residência está a energia elétrica, o qual é imprescindível para a realização de tarefas cotidianas tais como a alimentação de eletrodomésticos, mas que se não for utilizada com prudência pode gerar um impacto significativo nas despesas. Um dos eletrodomésticos que consome alta quantidade de energia por exemplo é a geladeira, em virtude da sucessiva abertura da sua porta durante o dia, principalmente quando se deseja conferir se uma bebida está suficientemente gelada.

Uma alternativa para contornar essa situação de conferir manualmente é um sistema que possa mensurar a temperatura da bebida de forma automatizada e enviar essa informação para o usuário, sem que haja necessidade de abrir a geladeira para executar tal tarefa.

2 Objetivos

Este projeto tem como principais objetivos:

- Conferir o estado das bebidas dentro de um refrigerador;
- Monitorar a bebida de acordo com a temperatura;
- Informar ao usuário quando a bebida atingir determinada temperatura.

3 Materiais

No decorrer deste projeto serão necessários os seguintes materiais:

- Microcontrolador STM32F103C8T6; (https://mercadolivre.com.br)
- Sensor de temperatura PT-100; (https://www.autocorerobotica.com.br/sensor-de-temperatura-pt100)
- Módulo Bluetooth RS232 HC-05; (https://www.autocorerobotica.com.br/modulo-bluetooth-rs232-hc-05)
- Protoboard;
- Jumpers;
- Aparelho celular Android.

4 Funcionamento

O sistema será composto por um sensor de temperatura PT-100 e um módulo Bluetooth ligados ao microcontrolador STM32 que irá monitorar a condição das bebidas em uma geladeira. Quando o líquido atingir a temperatura desejada, um alerta será enviado para o celular do usuário, informando-o.

O sensor de temperatura possui um cabo acoplado e será mantido dentro da geladeira fixo ao suporte contendo a bebida. Este cabo será conectado à placa Blue Pill localizada fora da geladeira, pois esta opera apenas em uma determinada faixa de temperatura e pode danificar-se por ação da umidade da geladeira. O módulo Bluetooth também será mantido na parte exterior, a fim de que não haja bloqueio do sinal emitido.

Além disso, será proposto um aplicativo para Android que enviará um alerta ao usuário notificando-o quando a bebida estiver na temperatura desejada. O aplicativo ainda contará com uma interface na qual o usuário poderá acompanhar a temperatura em que a bebida se encontra em tempo real.

5 Diagrama de Blocos

Figura 1: Representação do projeto em diagrama de blocos. (Fonte: Dos autores.)

6 Organização do Projeto

O projeto será organizado em três etapas: sensor de temperatura, microcontrolador e aplicativo.

6.1 Sensor

O sensor será responsável por medir a temperatura da bebida.

6.2 Microcontrolador

O microcontrolador receberá os dados do sensor, realizará um processamento de acordo com o algoritmo implementado e os enviará via módulo Bluetooth para o celular.

6.3 Aplicativo

O aplicativo receberá esses dados e mostrará para o usuário, através da interface.

7 Cronograma de Atividades

Semana	Atividade	Início	Término
1	Planejamento	09/10	13/10
2	Desenvolvimento - aplicativo	16/10	20/10
3	Desenvolvimento - aplicativo	23/10	27/10
4	Desenvolvimento - algoritmo do microcontrolador	30/10	03/11
5	Montagem e implementação - microcontrolador	06/11	10/11
6	Montagem e implementação - módulo Bluetooth	13/11	17/11
7	Testes - microcontrolador e módulo Bluetooth	20/11	24/11
8	Montagem, implementação e testes - sensor de temperatura	27/11	01/12
9	Montagem - projeto completo	04/12	08/12
10	Testes finais e entrega	13/12	15/12