	TABLE A-3	SYMBO	OLS
Symbol	Meaning	Symbo	ol Meaning
α	= helium nucleus (also ⁴ ₂ He) emission from radioactive materials	$\frac{\Delta H^0}{\Delta H^0_f}$	standard enthalpy of reactionstandard molar enthalpy of
β	= electron (also $_{-1}^{0}e$) emission from radioactive materials	$\frac{K_a}{K_a}$	formation = ionization constant (acid)
γ	= high-energy photon emission from radioactive materials	K_b	= dissociation constant (base)
Δ	= change in a given quantity (e.g., ΔH for change in enthalpy)	$\frac{K_{eq}}{K_{sp}}$	= solubility-product constant
c	= speed of light in vacuum	KE m	= kinetic energy = mass
c_p	= specific heat capacity (at constant pressure)	N_A	= Avogadro's number = number of moles
$\frac{D}{E_a}$	= density = activation energy	n P	= number of moles = pressure
E0	= standard electrode potential	pH R	= measure of acidity (-log[H ₃ O ⁺]) = ideal gas law constant
E ⁰ cell	= standard potential of an electro- chemical cell	S	= entropy
\overline{G}	= Gibbs free energy	50	= standard molar entropy
$\Delta G^{0} \over \Delta G^{0}_{f}$	= standard free energy of reaction = standard molar free energy of	<i>T</i>	= temperature (thermodynamic, in kelvins)
	formation	$\frac{t}{V}$	= temperature (± degrees Celsius) = volume
H	= enthalpy	$\frac{r}{v}$	= velocity

TABLE A-4	PHYSICAL C	ONSTANTS
Quantity	Symbol	Value
Atomic mass unit	amu	$1.660\ 5389 \times 10^{-27}\ \mathrm{kg}$
Avogadro's number	N_A	$6.022\ 142 \times 10^{23}$ /mol
Electron rest mass	m_e	$9.109~3826 \times 10^{-31}~\mathrm{kg}$ $5.4858 \times 10^{-4}~\mathrm{amu}$
Ideal gas law constant	R	8.314 L • kPa/(mol • K) 0.0821 L • atm/(mol • K)
Molar volume of ideal gas at STP	V_{M}	22.414 10 L/mol
Neutron rest mass	m_n	$1.674 \ 9273 \times 10^{-27} \ \mathrm{kg}$ $1.008 \ 665 \ \mathrm{amu}$
Normal boiling point of water	T_b	$373.15 \text{ K} = 100.0^{\circ}\text{C}$
Normal freezing point of water	T_f	$273.15 \text{ K} = 0.00^{\circ}\text{C}$
Planck's constant	h	$6.626\ 069 \times 10^{-34}\ \mathrm{J} \bullet \mathrm{s}$
Proton rest mass	m_p	$1.672~6217 \times 10^{-27}~\mathrm{kg}$ 1.007 276 amu
Speed of light in a vacuum	С	$2.997 924 58 \times 10^8 \text{ m/s}$
Temperature of triple point of water		273.16 K = 0.01°C