Cálculo Diferencial e Integral I LMAC/MEFT

1° Teste (VA) - 9 de Novembro de 2019 - 9:00 às 10:30

Resolução

Problema 1 (4,5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \text{sen}(\text{senh}(\sqrt{1+x}))$$
 (b) $g(x) = \frac{\ln(1+e^{x^2})}{x}$ (c) $h(x) = x^{e^x}$

Resolução:

(a)
$$f'(x) = \cos(\sinh(\sqrt{1+x})) \cosh(\sqrt{1+x}) \frac{1}{2\sqrt{1+x}}$$

(b)
$$g'(x) = -\frac{\ln(1+e^{x^2})}{x^2} + \frac{2xe^{x^2}}{x(1+e^{x^2})}$$

(c)
$$h'(x) = x^{e^x} (e^x \ln x)' = x^{e^x} (e^x \ln x + \frac{e^x}{x})$$

Problema 2 (4,5 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x\to 0} \frac{\cosh x - 2 \sinh x + 2x - 1}{2 \cos x + 3 \sin x - 3x - 2}$$
 (b) $\lim_{x\to +\infty} \frac{\ln(x^2 + e^x)}{x^2 + \ln(1+x)}$ (c) $\lim_{x\to 0^-} (1 - e^x)^x$

Resolução:

(a)
$$\lim_{x \to 0} \frac{\cosh x - 2 \sinh x + 2x - 1}{2 \cos x + 3 \sin x - 3x - 2} = \lim_{x \to 0} \frac{\sinh x - 2 \cosh x + 2}{-2 \sin x + 3 \cos x - 3} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x + 3 \sin x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x} = \lim_{x \to 0} \frac{\cosh x - 2 \sinh x}{-2 \cos x} = \lim_{x \to 0} \frac{\cosh x}{-2 \cos x} = \lim_{x \to 0} \frac{\sinh x}{-2 \cos$$

(b)
$$\lim_{x \to +\infty} \frac{\ln(x^2 + e^x)}{x^2 + \ln(1+x)} = \lim_{x \to +\infty} \frac{2x + e^x}{x^2 + e^x} \frac{1}{2x + \frac{1}{1+x}} = \lim_{x \to +\infty} \frac{(2x + e^x)(1+x)}{(x^2 + e^x)(2x^2 + 2x + 1)} = \lim_{x \to +\infty} \frac{\frac{2x}{e^x} + 1}{\frac{e^x}{e^x} + 1} \frac{\frac{1}{x} + 1}{2x + 2 + \frac{1}{x}} = \frac{(1)}{(1)} \frac{(1)}{(+\infty)} = 0$$

(c)
$$\lim_{x \to 0^{-}} (1 - e^{x})^{x} = \lim_{x \to 0^{-}} e^{x \ln(1 - e^{x})}; \lim_{x \to 0^{-}} x \ln(1 - e^{x}) = \lim_{x \to 0^{-}} \frac{\ln(1 - e^{x})}{1/x} = \lim_{x \to 0^{-}} \frac{\ln(1 - e^{x})}{1/x} = \lim_{x \to 0^{-}} \frac{x^{2} e^{x}}{1 - e^{x}} = \lim_{x \to 0^{-}} \frac{2x e^{x} + x^{2} e^{x}}{-e^{x}} = -\lim_{x \to 0^{-}} (2x + x^{2}) = 0, \text{ donde}$$

$$\lim_{x \to 0^{-}} (1 - e^{x})^{x} = e^{0} = 1.$$

Problema 3 (3 val.) Seja $f(x) = 2 + \ln(1 + x/2)$ e p_n o polinómio de Taylor de f de ordem n no ponto a = 0.

- (a) Calcule p_3 .
- (b) Mostre que $f(x) < p_3(x)$ para qualquer x > 0.
- (c) Mostre que $p_3(x) 1/50 < f(x) < p_3(x)$ quando 0 < x < 1.

Resolução:

(a)
$$f^{(1)}(x) = \frac{1}{2} \frac{1}{1+x/2} = \frac{1}{x+2}, f^{(2)}(x) = -\frac{1}{(x+2)^2}, f^{(3)}(x) = \frac{2}{(x+2)^3}, \text{ donde}$$

$$p_3(x) = \sum_{k=0}^3 \frac{f^{(k)}(0)}{k!} x^k = 2 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{24}$$

(b)
$$f(x) = p_3(x) + \frac{f^{(4)}(c)}{4!}x^4$$
, onde $0 < c < x$ e

$$f^{(4)}(x) = -\frac{6}{(x+2)^4}$$
 e portanto $\frac{f^{(4)}(c)}{4!} = -\frac{1}{4(c+2)^4} < 0$ por razões evidentes.

Segue-se que $f(x) = p_3(x) + \frac{f^{(4)}(c)}{4!}x^4 < p_3(x)$. (c) Se 0 < x < 1 então 0 < c < x < 1 e $4 \cdot 2^4 < 4(c+2)^4$ donde

$$\frac{f^{(4)}(c)}{4!}x^4 < \frac{f^{(4)}(c)}{4!} = \frac{1}{4(c+2)^4} < \frac{1}{4 \cdot 2^4} = \frac{1}{64} < \frac{1}{50}$$

Temos finalmente

$$f(x) - p_3(x) = -\frac{f^{(4)}(c)}{4!}x^4 > -\frac{1}{50}$$

Problema 4 (4 val.) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} x^2 \sin(1/(3x)) & \text{se } x > 0\\ 3xe^{1/x} & \text{se } x < 0 \end{cases}$$

- (a) Mostre que f é prolongável por continuidade a x=0.
- (b) Sendo F o prolongamento por continuidade de f referido em a), verifique se F é diferenciável em x=0. Caso afirmativo, determine se F' é contínua em \mathbb{R} .
- (c) Sendo g a restrição de F ao intervalo $]-\infty,0]$, mostre que g tem inversa $h=g^{-1}$ e calcule h'(b), onde $b = f(-1/3) = -1/e^3$.
- (d) Calcule $\lim_{x\to +\infty} f'(x)$. Conclua que existe a>0 tal que f é injectiva em $[a,+\infty[$.

Resolução:

(a) Se x > 0 temos $0 \le |f(x)| \le x^2$, pelo que $f(x) \to 0$ quando $x \searrow 0$. Por outro lado, é claro que $\lim_{x\to 0^-} e^{1/x} = \lim_{t\to -\infty} e^t = 0$, pelo que $f(x)\to 0$ quando $x\nearrow 0$. Portanto $\lim_{x\to 0} f(x) = 0$ e f é prolongável por continuidade a 0.

(b) Temos naturalmente F(0) = 0. Para verificar a existência de F'(0) calculamos dois limites laterais:

$$\lim_{x\to 0^-}\frac{F(x)-F(0)}{x}=\lim_{x\to 0^-}3e^{1/x}=0\ \mathrm{e}\ \lim_{x\to 0^+}\frac{F(x)-F(0)}{x}=\lim_{x\to 0^+}x\operatorname{sen}(1/(3x))=0.$$

Concluímos que F é diferenciável em x = 0 e F'(0) = 0. Temos assim

$$F'(x) = \begin{cases} 2x \operatorname{sen}(\frac{1}{3x}) + x^2 \cos(\frac{1}{3x}))(-\frac{1}{3x^2}) = 2x \operatorname{sen}(\frac{1}{3x}) - \frac{1}{3}\cos(\frac{1}{3x}) & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ 3e^{1/x} + 3xe^{1/x}(-1/x^2) = 3e^{1/x}(1 - \frac{1}{x}) & \text{se } x < 0 \end{cases}$$

Notamos que $\lim_{x\to 0^+} F'(x)$ não existe, pelo que F' não é contínua em x=0 (F' é claramente contínua para $x\neq 0$).

(c) Como vimos acima, $g'(x) = f'(x) = 3e^{1/x}(1 - \frac{1}{x})$ para x < 0. É evidente que $g'(x) \neq 0$ para x < 0 e segue-se do teorema de Lagrange que g é injectiva em $]-\infty,0]$, tendo por isso uma inversa h (é aliás fácil ver que g e h são bijecções $g,h:]-\infty,0] \rightarrow]-\infty,0]$). Mais uma vez porque $g'(x) \neq 0$ para x < 0, temos para b = g(-1/3) (e portanto -1/3 = h(b)) que

$$h'(b) = \frac{1}{g'(h(b))} = \frac{1}{g'(-1/3)} = 3e^{-3}(1+3) = 12/e^3.$$

(d) Tomando t = 1/(3x), temos x = 1/(3t) e

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} 2x \operatorname{sen}(\frac{1}{3x}) - \frac{1}{3} \cos(\frac{1}{3x}) = \lim_{t \to 0^+} [\frac{2}{3} \frac{\operatorname{sen}(t)}{t} - \frac{1}{3} \cos(t)] = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

Existe por isso a > 0 tal que f'(x) > 0 para qualquer x > a. Segue-se novamente do teorema de Lagrange que f é estritamente crescente em $[a, +\infty[$ e tem por isso inversa nesse intervalo.

Problema 5 (4 val.) Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções diferenciáveis em \mathbb{R} . Prove que

- (a) Se $\lim_{x\to +\infty} f(x) = \alpha > f(0)$, então f tem mínimo em $[0,+\infty[$, mas não tem necessariamente máximo.
- (b) Se f não tem extremos locais em \mathbb{R} então f é injectiva em \mathbb{R} .
- (c) Se $u(x) = \sec x$ com $x \in [0, \pi/2[$ então u tem inversa h e $h'(x) = 1/(x\sqrt{x^2 1})$.
- (d) Supondo que $f^{(2)}$ e $g^{(2)}$ existem em \mathbb{R} e $p(x) = 1 + x + x^2$ e $q(x) = 2x + x^2$ são os polinómios de Taylor de ordem 2 no ponto a = 0 respectivamente de f e de g, então $r(x) = 1 + 2x + 5x^2$ é o polinómio de Taylor de h(x) = f(g(x)) de ordem 2 no ponto a = 0.

Resolução:

(a) Como $\lim_{x\to +\infty} f(x) = \alpha > f(0)$, é claro que existe a>0 tal que f(x)>f(0) para qualquer x>a (basta aplicar a definição de limite com $\epsilon=\alpha-f(0)$).

Pelo teorema de Weierstrass, a função f tem mínimo m no intervalo [0,a] e é evidente que $m \leq f(0) < f(x)$ para qualquer $x \in]a, +\infty[$. Segue-se que m é o mínimo de f no conjunto $[0, +\infty[$.

O exemplo de $f(x) = \arctan x$, para o qual f(0) = 0 e $\alpha = \pi/2 > f(0)$, mostra que a função f não tem necessariamente máximo em $[0, +\infty[$.

- (b) Temos a mostrar que se f não é injectiva em \mathbb{R} então f tem extremos locais em \mathbb{R} . Supomos para isso que a < b e f(a) = f(b). Pelo teorema de Weierstrass a função f tem máximo e mínimo no intervalo [a,b] e como f(a) = f(b) é óbvio que pelo menos um deles ocorre no interior do intervalo, i.e., num ponto c tal que a < c < b. Concluímos que f tem um extremo local em c.
- (c) Se $u(x) = \sec x$ com $x \in [0, \pi/2[$ então $u([0, \pi/2[) = [1, +\infty[$ e $u'(x) = \sec x \tan x > 0$ para $x \in [0, \pi/2[$. Concluímos que u é estritamente crescente e tem inversa $h: [1, +\infty[\to [0, \pi/2[$. Escrevemos $\theta = h(x)$ e observamos que, para x > 0, u'(h(x)) > 0 e

$$h'(x) = \frac{1}{u'(h(x))} = \frac{1}{u'(\theta)} = \frac{1}{\sec \theta \tan \theta}$$

Notamos que $\sec\theta=u(h(x))=x$, donde $\cos\theta=1/x$ e, como $0<\theta<\pi/2$, $\sin\theta=\sqrt{1-1/x^2}=\frac{\sqrt{x^2-1}}{x}$ e $\tan\theta=\sqrt{x^2-1}$. Temos assim que

$$h'(x) = \frac{1}{\sec \theta \tan \theta} = \frac{1}{x\sqrt{x^2 - 1}}$$

(Em alternativa, podemos notar que $h(x) = \operatorname{arcsec} x = \operatorname{arcsen} 1/x$).

(d) Como $p(x) = 1 + x + x^2$ e $q(x) = 2x + x^2$ são os polinómios de Taylor de ordem 2 no ponto a = 0 respectivamente de f e de g, temos

$$f(0) = 1, f'(0) = 1, f''(0) = 2, g(0) = 0, g'(0) = 2, g''(0) = 2$$

Como h'(x) = f'(g(x))g'(x) e $h''(x) = f''(g(x))[g'(x)]^2 + f'(g(x))g''(x)$, temos

$$h(0) = f(g(0)) = f(0) = 1, \ h'(0) = f'(0)g'(0) = 2 e$$

 $h''(0) = f''(g(0))[g'(0)]^2 + f'(g(0))g''(0) = f''(0)[2]^2 + f'(0)2 = 8 + 2 = 10$

O polinómio de Taylor de ordem 2 de h em a = 0 é portanto $1 + 2x + 5x^2$.