		1	10 5 k			Paris
Name	· ·	17.	cu		S.	×100 0
	• •	···	Serve	mbe	r 17,	2015

TEST 1 Math 1553 D Steinbart

Work neatly. Justify your answers and use proper notation. SHOW YOUR WORK TO RECEIVE CREDIT! No calculators or electronic devices are allowed.

There is a total of 100 points.

(15) 1. Solve the system of equations
$$x_1 - 3x_2 + x_3 = -2$$

 $-x_2 + x_3 = -3$
 $2x_1 + x_2 - x_3 = 13$

The augmented matrix fur

The augmented matrix for
$$e_3 - R_2 = R_3 + R_2 = R_3 + R_3 = R_3$$

There is a solution to this system

(15) 2. Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 1 \\ 4 \\ 7 \\ 5 \end{bmatrix}$. Are the vectors $\mathbf{v_1}$, $\mathbf{v_2} \in \mathbf{v_3}$ are linearly

independent? Justify your answer. Be sure to show your work in a manner that can be

Followed.

Let
$$A = [X_1 \ X_2 \ Y_3] = [124] R_3 HR_3 R_3 HR_3 R_3 R_3 R_3 - R_3 -$$

there is a pivot in every column. Every adiumn of A is a pivot culumn. So the vectors v, v, v, v, are linearly in de pendent

(18) 5. In parts (a), (b), and (c) below, denotes a nonzero entry and * denotes an entry that
may be 0 or nonzero. 5. (a). A is a 5×4 matrix. Suppose that A can be row reduced to
[* * * *]
o o
000. Pivot in each
[i) Does $Ax = b$ have a solution for all b in \mathbb{R}^5 ? No Why?
(1) Does Ax = D have a solution for an U in at will:
(ii) If $Ax = b$ has a solution, is this solution unique? Les Why?
There is a pivot in every column of A.
(or Every column of A is a pivot column.)
This means that there are no free variables
So it a solution to Ax= be exists, that
Solution will be unique.
5. (b). A is a 5×6 matrix. Suppose that A can be row reduced to $\begin{vmatrix} 0 & * & * & * \\ 0 & 0 & * & * & * \end{vmatrix}$
5. (b). A 18 a 5 x 6 matrix. Suppose that A can be low reduced to 0 0 0 . * * * *
to the equation $Ax = b$. (i) Does $Ax = b$ have a solution for all b in \mathbb{R}^5 ? Yes Why? There is a pivot in
(ii) If $Ax = b$ has a solution, is this solution unique? No Why? every row of A.
(ii) it ax = b has a solution, is this solution unique: 144 why:
A hus a column which is not a pivot column.
30 mile 15 à prée variable.
Soif Ax=2 has a solution, then it has infinitely
Many Solutions.
5. (c). A is a 4×5 matrix. Suppose that A can be row reduced to
[· * * *]
[000 **] There is a pivotin
(i) Does $Ax = b$ have a solution for all b in \mathbb{R}^5 ? Yes Why? every vow of A .
(ii) If $Ax = b$ has a solution, is this solution unique? $N0$ Why?
(ii) ii AA - D has a solution, is this solution unique: wny!
Ahus a column which is not a pivot column. So
there is a free variable. So if Ax= b hasa
solution, it will have infinitely many solutions
J'ung somme

= vector. param. formot L 13 the set of points 1 a. Find the vector parametric form of the line through the points P(3,-2) and Q(-1,2). V= PQ=[-1]-[3]-[-4] Listhe set of points & with X = R + ty for all t in TR So X=[3]+6[4], 6 ETR (You did not need to include y on graph.) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation T(x) = Ax for $A = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$ b. Let L_2 be the image under T of the line L. Sketch L_2 . Label the images of P and Q. Tis linear since T(x). Ax for a matrixA. So the image of a line is a line T(P) = AP = [2][3] = [4-2] - [4] = P' > (4,11) T(6) = A & = [3][-1] = [-2+2] - [0] = 6' + (9-5) [Since Tis linear Note T(X)= FUZEL, T(X)=T(P+EX)=T(P)+ET(X)=[4]+E[-4], EAR Aside: T(x)=A y=[2 1][-4]=[-8+4]=[-4] Surce [-4] = -4[4], the vectors [4] and [4] are form of Le 15

Since [-16] = -4[4], the vectors [4] and [4] are she blank You do not need [4] So a vector param. to justify your answer. a. True If v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3 , then the set $\{v_1, v_2, v_3, v_4\}$ is linearly dependent. Since the vectors are in 123, they have 3 entries. There are 4 b. False If A is a 4×3 matrix, then the columns of A span \mathbb{R}^3 vectors c. In A is a 3×5 matrix, then the columns of A are linearly dependent. d. The v_1 is not the zero vector 0. If the set $\{v_1, v_2\}$ is linearly dependent, then $v_2 = c v_1$ for some scalar c. e. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. T is one-to-one if the columns of A span IRm. FALSE. See Hom 1, 9. (b) A is 4x3. A= [a, a, a] where each airsin 1724, so the columns of A are not in TR3 and so connat span 123

1 Tis 1-1. VF the columns of A are linearly undependent