Posets

Emily

February 27, 2023

INTRODUCTION

This chapter contains some material about posets and constructions with them. Notably, it contains:

- A basic discussion of posets, constructions with them, and co/limits inside posets (Sections 1 to 4)
- · A discussion of so-called *relative preorders* from a set X to a set Y. These are supposed to be an extension of the notion of a preorder $\leq_X \colon X \to X$ on a set X but where we allow the source and target of \leq_X to be entirely different sets.

The basic idea is that we may view preorders as precisely the monads in Rel, so *relative preorders* are to be defined as *relative monads* in Rel in the sense of [nLab23].

Thus, if you're interested in relative monads, you might like reading Section A.

Contents

1	Pred	orders and Partial Orders	2
	1.1	Preorders	2
	1.2	The Preorder Associated to a Relation	3
	1.3	Partial Orders	5
	1.4	The Partial Orders Associated to a Relation	6
	1.5	Total Orders	7
		ets	
		Foundations	
	2.2	Morphisms of Posets	8
	2.3	Ideals of Posets	9
	2.4	Filters on Posets	10

Con	structions With Posets	12
3.1	The Dual of a Poset	12
3.2	Products of Posets	13
3.3	Coproducts of Posets	13
3.4	The Tensor Product of Posets	14
3.5	Internal Hom s	15
Co/L	imits in Posets	16
4.1	Initial Elements	16
4.2	Final Elements	16
4.3	Binary Joins	16
4.4	Joins of Families	17
4.5	Binary Meets	17
4.6	Meets of Families	18
4.7	Lattices	19
Арр	endix Relative Preorders	19
A.1	The Left Skew Monoidal Structure on $Rel(A, B)$	19
A.2	Left Relative Preorders	22
A.3	The Right Skew Monoidal Structure on $Rel(A, B)$	24
A.4	Right Relative Preorders	26
Арр	endix Other Chapters	28
	3.1 3.2 3.3 3.4 3.5 Co/L 4.1 4.2 4.3 4.4 4.5 4.6 4.7 App A.1 A.2 A.3 A.4	3.2 Products of Posets 3.3 Coproducts of Posets 3.4 The Tensor Product of Posets 3.5 Internal Homs Co/Limits in Posets 4.1 Initial Elements 4.2 Final Elements 4.3 Binary Joins 4.4 Joins of Families 4.5 Binary Meets 4.6 Meets of Families 4.7 Lattices Appendix Relative Preorders A.1 The Left Skew Monoidal Structure on Rel(A, B) A.2 Left Relative Preorders A.3 The Right Skew Monoidal Structure on Rel(A, B) A.4 Right Relative Preorders

1 Preorders and Partial Orders

1.1 Preorders

Let *A* be a set.

DEFINITION 1.1.1 ► PREORDERS

A **preorder on** *A* is equivalently:¹

- · An \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$;
- · A monoid in (**Rel**(A, A), χ_A).

 $^{^{1}\}mathrm{Note}$ that since $\mathbf{Rel}(A,A)$ is posetal, being a preorder is a property of a relation, instead of a structure.

REMARK 1.1.2 ► UNWINDING DEFINITION 1.1.1

In detail, a relation R on A is a **preorder** if there exists

· The Multiplication Inclusion. An inclusion

$$\mu_R: R \diamond R \subset R$$

of relations in **Rel**(A, A), i.e. if, for each a, $c \in A$, we have:

- (\star) If $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.
- · The Unit Inclusion. An inclusion

$$\eta_R: \gamma_A \subset R$$

of relations in **Rel**(A, A), i.e. if, for each $a \in A$, we have $a \sim_R a$.

DEFINITION 1.1.3 ► THE PO/SET OF PREORDERS ON A SET

Let A be a set.

- 1. The **set of preorders on** A is the subset POrd(A, A) of Rel(A, A) spanned by the preorders.
- 2. The **poset of preorders on** A is is the subposet $\mathbf{POrd}(A, A)$ of $\mathbf{Rel}(A, A)$ spanned by the preorders.

1.2 The Preorder Associated to a Relation

Let R be a relation on A.

DEFINITION 1.2.1 ► THE PREORDER ASSOCIATED TO A RELATION

The **preorder associated to** R is the preorder $\sim_R^{\text{pord}_1}$ satisfying the following universal property:²

(UP) Given another preorder \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\rm pord} \subset \sim_S$.

¹ Further Notation: Also written R^{pord} .

² Slogan: The preorder associated to R is the smallest preorder containing R.

Construction 1.2.2 ▶ The Preorder Associated to a Relation

Concretely, $\sim_R^{\rm pord}$ is the free monoid on R in $({\bf Rel}(A,A),\diamond,\chi_A)^{\rm 1}$, being given by

$$R^{\text{pord}} \stackrel{\text{def}}{=} \coprod_{n=0}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \Delta_A \cup \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \middle| \begin{array}{l} \text{we have } a = b \text{ or there exist} \\ (x_1, \dots, x_n) \in R^{\times n} \text{ such that} \\ a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b \end{array} \right\}.$$

¹Or, equivalently, the free \mathbb{E}_1 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A, A)), \diamond, \chi_A)$.

PROOF 1.2.3 ► PROOF OF CONSTRUCTION 1.2.2

Clear.

PROPOSITION 1.2.4 ▶ PROPERTIES OF THE PREORDER ASSOCIATED TO RELATION

Let R be a relation on A.

1. Adjointness. We have an adjunction

$$\Big((-)^{\mathsf{pord}}\dashv \bar{\Xi}\Big)$$
: $\mathsf{Rel}(A,A)$
 $\stackrel{(-)^{\mathsf{pord}}}{\stackrel{\vdash}{\varXi}}$ $\mathsf{POrd}(A,A),$

witnessed by a bijection of sets

$$\operatorname{\mathsf{POrd}}\!\left(\sim_R^{\operatorname{\mathsf{pord}}},\sim_S\right)\cong\operatorname{\mathsf{Rel}}(\sim_R,\sim_S),$$

 $\mathsf{natural}\,\mathsf{in} \sim_R \in \mathsf{Obj}(\mathbf{POrd}(A,A))\,\mathsf{and} \sim_S \in \mathsf{Obj}(\mathbf{Rel}(A,A)).$

- 2. The Associated Preorder of a Preorder. If R is partial order, then $R^{pord} = R$.
- 3. Idempotency. We have

$$(R^{\text{pord}})^{\text{pord}} = R^{\text{pord}}.$$

1.3 Partial Orders 5

PROOF 1.2.5 ▶ PROOF OF PROPOSITION 1.2.4

Item 1: Adjointness

This is a rephrasing of the universal property of the preorder associated to a relation, stated in Definition 1.2.1.

Item 2: The Associated Preorder of a Preorder

Clear.

Item 3: Idempotency

Clear.

1.3 Partial Orders

Let X be a set.

DEFINITION 1.3.1 ► PARTIAL ORDERS

A **partial order on** X is a preorder \leq_X on X satisfying the following condition:

 (\star) For each $x, y \in X$, if $x \leq_X y$ and $y \leq_X x$, then x = y.

REMARK 1.3.2 ► UNWINDING DEFINITION 1.3.1

In detail, a **partial order** is a relation $\leq_X \colon X \longrightarrow X$ on X satisfying the following conditions:

- 1. Reflexivity. For each $x \in X$, we have $x \leq_X x$.
- 2. Transitivity. For each $x, y, z \in X$, if $x \leq_X y$ and $y \leq_X z$, then $x \leq_X z$.
- 3. Antisymmetry. For each $x, y \in X$, if $x \leq_X y$ and $y \leq_X x$, then x = y.

DEFINITION 1.3.3 ► THE PO/SET OF PARTIAL ORDERS ON A SET

Let *X* be a set.

- 1. The **set of partial orders relations on** X is the subset $\mathsf{PartOrd}(X,X)$ of $\mathsf{Rel}(X,X)$ spanned by the partial orders.
- 2. The **poset of partial orders relations on** X is is the subposet $\mathbf{PartOrd}(X,X)$ of $\mathbf{Rel}(X,X)$ spanned by the partial orders.

1.4 The Partial Orders Associated to a Relation

Let R be a relation on X.

DEFINITION 1.4.1 ► THE PARTIAL ORDER ASSOCIATED TO A RELATION

The **partial order associated to** R is the partial order $\sim_R^{\text{ptord}_1}$ satisfying the following universal property:²

(UP) Given another partial order \sim_S on X such that $R\subset S$, there exists an inclusion $\sim_R^{\mathrm{ptord}}\subset\sim_S$.

CONSTRUCTION 1.4.2 ► THE PARTIAL ORDER ASSOCIATED TO A RELATION

Concretely, \sim_{R}^{ptord} is the partial order on X defined by

$$R^{ ext{ptord}} \stackrel{\text{def}}{=} \left(R^{ ext{antisymm}} \right)^{ ext{pord}}$$

$$\cong (R/\sim)^{ ext{pord}}$$

$$\stackrel{\text{def}}{=} \Delta_A \cup \bigcup_{n=1}^{\infty} (R/\sim)^{\diamond n},$$

where \sim is the equivalence relation on R obtained by declaring $a \sim b$ iff $a \sim_R b$ and $b \sim_R a$.

PROOF 1.4.3 ► PROOF OF CONSTRUCTION 1.4.2

Clear.

PROPOSITION 1.4.4 ► PROPERTIES OF THE PARTIAL ORDER ASSOCIATED TO RELA-TION

Let R be a relation on X.

1. Adjointness. We have an adjunction

$$\Big((-)^{\operatorname{ptord}}\dashv \overline{\varpi}\Big)$$
: $\operatorname{Rel}(X,X)\underbrace{\overset{(-)^{\operatorname{ptord}}}{\overset{}{\smile}}}_{\overline{\varpi}}\operatorname{PartOrd}(X,X),$

¹ Further Notation: Also written R^{ptord}.

² Slogan: The partial order associated to R is the smallest partial order containing R.

1.5 Total Orders 7

witnessed by a bijection of sets

$$\mathbf{PartOrd}\Big(\sim_R^{\mathsf{ptord}},\sim_S\Big)\cong\mathbf{Rel}(\sim_R,\sim_S),$$

natural in $\sim_R \in \text{Obj}(\mathbf{PartOrd}(X,X))$ and $\sim_S \in \text{Obj}(\mathbf{Rel}(X,X))$.

- 2. The Associated Preorder of a Preorder. If R is partial order, then $R^{ptord} = R$.
- 3. Idempotency. We have

$$(R^{\text{ptord}})^{\text{ptord}} = R^{\text{ptord}}.$$

PROOF 1.4.5 ► PROOF OF PROPOSITION 1.4.4

Item 1: Adjointness

This is a rephrasing of the universal property of the partial order associated to a relation, stated in Definition 1.4.1.

Item 2: The Associated Preorder of a Preorder

Clear.

Item 3: Idempotency

Clear.

1.5 Total Orders

Let X be a set.

DEFINITION 1.5.1 ► TOTAL ORDERS

A **total order on** X is a partial order \leq_X on X satisfying the following condition:

(★) For each $x, y \in X$, we have either $x \leq_X y$ or $y \leq_X x$.

2 Posets

2.1 Foundations

DEFINITION 2.1.1 ▶ POSETS

A **poset** (X, \leq_X) consists of

- · The Underlying Set. A set X, called the **underlying set of** (X, \leq_X) ;
- · The Partial Order. A partial order

$$\leq_X : X \times X \to \{\text{true}, \text{false}\}$$

on X, called the **partial order of** (X, \leq_X) .

EXAMPLE 2.1.2 ▶ POWERSETS

Given a set X, the pair $(\mathcal{P}(X), \subset)$ is a poset, as is $(\mathcal{P}(X), \supset)$.

DEFINITION 2.1.3 ► THE POSETAL CHARACTERISTIC RELATION OF A POSET

The **posetal characteristic relation** of a poset (X, \leq) is the relation

$$\chi^{\mathsf{Pos}}_{(X,<)} \colon X \times X \to \{\mathsf{true}, \mathsf{false}\}$$

on X defined by¹

$$\chi_{(X,\leq)}^{\mathsf{Pos}}(x,y) \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \mathsf{if } x \leq y, \\ \mathsf{false} & \mathsf{if } x \npreceq y \end{cases}$$

for each $x, y \in X$.

¹In other words, $\chi^{\mathsf{Pos}}_{(X,\leq)}$ is just the Hom of the posetal category associated to (X,\leq) , defined by

$$\operatorname{Hom}_{(X, \leq)}(x, y) \stackrel{\text{def}}{=} \begin{cases} \operatorname{pt} & \text{if } x \leq y, \\ \emptyset & \text{if } x \nleq y, \end{cases}$$

but one level lower in enrichment, as $\chi^{\mathsf{Pos}}_{(X,\leq)}$ takes values in $\{\mathsf{true},\mathsf{false}\}$, instead of in $\{\mathsf{pt},\emptyset\}\subset\mathsf{Sets}$

2.2 Morphisms of Posets

Let (X, \leq_X) and (Y, \leq_Y) be posets.

2.3 Ideals of Posets 9

DEFINITION 2.2.1 ► MORPHISMS OF POSETS

A morphism of posets from (X, \leq_X) to $(Y, \leq_Y)^1$ is a function $f: X \to Y$ satisfying the following condition:

(\star) Monotonicity. For each $x, y \in X$, if $x \leq_X y$, then $f(x) \leq_Y f(y)$.

2.3 Ideals of Posets

Let (X, \leq_X) be a poset.

DEFINITION 2.3.1 ► IDEALS OF POSETS

An **ideal of** (X, \leq_X) is a subset I of X satisfying the following conditions:

- 1. Non-Emptiness. We have $I \neq \emptyset$.
- 2. Upward-Directedness. For each $x,y\in I$, there exists some $c_{x,y}\in I$ such that:
 - · We have $x \leq_X c_{x,y}$.
 - · We have $y \leq_X c_{x,y}$.
- 3. Downward-Closedness. For each $x, y \in I$, if:
 - · We have $y \in I$;
 - · We have $x \leq_X y$;

then $x \in I$.

REMARK 2.3.2 ► ALTERNATIVE AXIOMS FOR IDEALS OF LATTICES

If (X, \leq_X) is a lattice, then $I \subset X$ is an ideal of (X, \leq_X) iff the following conditions are satisfied:

- 1. Containment of the Bottom Element. We have $\bot \in I$.
- 2. Closure Under Binary Joins. If $x, y \in I$, then $x \vee y \in I$.
- 3. Closure Under Binary Joins With Elements of X. If $a \in X$ and $x \in I$, then $a \vee x \in I$.

¹Further Terminology: Also called a monotone function.

2.4 Filters on Posets 10

DEFINITION 2.3.3 ► PROPER IDEALS

An ideal I of (X, \leq_X) is **proper** if $I \neq X$.

DEFINITION 2.3.4 ► PRIME IDEALS

An ideal I of (X, \leq_X) is **prime** if the following conditions are satisfied:

- 1. Properness. The ideal I is proper.
- 2. Primality. For each $x, y \in I$, if $x \vee y \in I$, then $x \in I$ or $y \in I$.

DEFINITION 2.3.5 ► COMPLETELY PRIME IDEALS

An ideal I of a lattice (X, \leq_X) is **completely prime** if the following conditions are satisfied:

- 1. Properness. The ideal I is proper.
- 2. Infinitary Primality. For each $\{x_i\}_{i\in J}\in \mathcal{P}(I)$, if $\bigvee_{i\in J}x_i\in I$, then there exists some $i\in I$ such that $x_i\in I$.

DEFINITION 2.3.6 ► MAXIMAL IDEALS

An ideal I of (X, \leq_X) is **maximal** if the following conditions are satisfied:

- 1. *Properness*. The ideal *I* is proper.
- 2. Maximality. Given another ideal J of X, if $I \subset J$, then J = X.

2.4 Filters on Posets

2.4.1 Foundations

Let (X, \leq_X) be a poset.

DEFINITION 2.4.1 ► FILTERS ON POSETS

A **filter on** (X, \leq_X) is a subset F of X satisfying the following conditions:

- 1. Non-Emptiness. We have $F \neq \emptyset$.
- 2. Upward-Closedness. For each $x, y \in X$, if:

2.4 Filters on Posets 11

- · We have $x \in F$;
- · We have $x \leq_X y$;

then $y \in F$.

- 3. Downward-Directedness. For each $x, y \in F$, there exists some $c_{x,y} \in F$ such that:
 - · We have $c_{x,y} \leq_X x$;
 - · We have $c_{x,y} \leq_X y$.

REMARK 2.4.2 ► ALTERNATIVE AXIOMS FOR FILTERS ON LATTICES

If (X, \leq_X) is a lattice, then $F \subset X$ is a filter on (X, \leq_X) iff the following conditions are satisfied:¹

- 1. Containment of the Top Element. We have $\top \in F$.
- 2. Closure Under Binary Meets. If $x, y \in F$, then $x \wedge y \in F$.
- 3. Closure Under Binary Joins With Elements of X. If $a \in X$ and $x \in F$, then $a \lor x \in F$.

2.4.2 Proper Filters

Let (X, \leq_X) be a poset.

DEFINITION 2.4.3 ▶ **PROPER FILTERS**

A filter F on X is **proper** if $F \neq X$.

¹ Further Terminology: The filter X on X is called the **improper filter**.

2.4.3 Prime Filters

Let (X, \leq_X) be a lattice.

DEFINITION 2.4.4 ▶ PRIME FILTERS

A filter F on X is **prime** if $X \setminus F$ is an ideal of X.

 $^{^1}$ These conditions are equivalent to the statement that $\chi_F \colon X \to \{\mathsf{true}, \mathsf{false}\}$ is a morphism of meet-semilattices.

REMARK 2.4.5 ► UNWINDING DEFINITION 2.4.4

That is, *F* is **prime** if the following conditions are satisfied:

- · Properness. We have $\bot \notin F$.
- · Primality. For each $x, y \in X$, if $x \vee y \in F$, then $x \in F$ or $y \in F$.

2.4.4 Completely Prime Filters

Let (X, \leq_X) be a lattice.

DEFINITION 2.4.6 ► COMPLETELY PRIME FILTERS

A filter F on X is **completely prime** if the following conditions are satisfied:

- · Properness. We have $\bot \notin F$.
- · Primality. For each $\{x_i\}_{i\in I}\in \mathcal{P}C(X)$, if $\bigvee_{i\in I}x_i\in F$, then there exists some $i\in I$ such that $x_i\in F$.

2.4.5 Ultrafilters

3 Constructions With Posets

3.1 The Dual of a Poset

Let (X, \leq_X) be a poset.

DEFINITION 3.1.1 ► THE DUAL OF A POSET

The **dual of** (X, \leq_X) is the poset $(X^{op}, \leq_{X^{op}})$ consisting of

· The Underlying Set. The set X^{op} defined by

$$X^{\mathsf{op}} \stackrel{\mathsf{def}}{=} X;$$

· The Partial Order. The partial order

$$\leq_{X^{\mathsf{op}}} : X^{\mathsf{op}} \times X^{\mathsf{op}} \to \{\mathsf{true}, \mathsf{false}\}$$

3.2 Products of Posets 13

on X^{op} defined by

$$x \leq_{X^{\text{op}}} y \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } y \leq_X x, \\ \text{false} & \text{otherwise.} \end{cases}$$

Example 3.1.2 ► Dual of Powersets

Let X be a set. The dual of $(\mathcal{P}(X), \subset)$ is $(\mathcal{P}(X), \supset)$.

3.2 Products of Posets

Let (X, \leq_X) and (Y, \leq_Y) be posets.

DEFINITION 3.2.1 ▶ **PRODUCTS OF POSETS**

The **product of** (X, \leq_X) **and** (Y, \leq_Y) is the poset $(X \times Y, \leq_{X \times Y})$ consisting of

- · The Underlying Set. The Cartesian product $X \times Y$ of X and Y;
- · The Partial Order. The partial order

$$\leq_{X\times Y}$$
: $(X\times Y)\times (X\times Y)\to \{\text{true, false}\}$

on $X \times Y$ defined by

$$(a,b) \leq_{X \times Y} (x,y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } a \leq_X x \text{ and } b \leq_Y y, \\ \text{false} & \text{otherwise.} \end{cases}$$

3.3 Coproducts of Posets

Let (X, \leq_X) and (Y, \leq_Y) be posets.

DEFINITION 3.3.1 ► COPRODUCTS OF POSETS

The **coproduct of** (X, \leq_X) **and** (Y, \leq_Y) is the poset $(X \coprod Y, \leq_{X \coprod Y})$ consisting of

• The Underlying Set. The disjoint union $X \mid Y$ of X and Y;

· The Partial Order. The partial order

$$\leq_{X\coprod Y}: (X\coprod Y)\times (X\coprod Y)\rightarrow \{\mathsf{true},\mathsf{false}\}$$

on $X \coprod Y$ defined by

$$x \leq_{X \coprod Y} y \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \text{if } x, y \in X \text{ and } x \leq_X y, \\ \mathsf{true} & \text{if } x, y \in Y \text{ and } x \leq_Y y, \end{cases}$$
 false otherwise.

3.4 The Tensor Product of Posets

3.4.1 Bilinear Morphisms of Posets

Let (X, \leq_X) , (Y, \leq_Y) , and (Z, \leq_Z) be posets.

DEFINITION 3.4.1 ► BILINEAR MORPHISMS OF POSETS

A bilinear morphism of posets from $(X \times Y, \leq_{X \times Y})$ to (Z, \leq_Z) is a function $f: X \times Y \to Z$ satisfying the following conditions:

- For each $x, y \in X$ and each $z \in Y$, if $x \leq_X y$, then $f(x, z) \leq_Z f(y, z)$.
- For each $x \in X$ and each $y, z \in Y$, if $y \leq_Y z$, then $f(x, y) \leq_Z f(x, z)$.

3.4.2 The Tensor Product of Posets

Let (X, \leq_X) and (Y, \leq_Y) be posets.

DEFINITION 3.4.2 ► THE TENSOR PRODUCT OF POSETS

The **tensor product of** (X, \leq_X) **and** (Y, \leq_Y) is the pair $(X \boxtimes Y, \iota)$ consisting of

- · The poset $X \boxtimes Y$;
- The bilinear morphism of posets $\iota: X \times Y \to X \boxtimes Y$;

satisfying the following universal property:

- (**UP**) Given another pair (Z, i) consisting of
 - · A poset Z;

3.5 Internal **Hom**s 15

· A bilinear morphism of posets $i: X \times Y \to Z$;

there exists a unique morphism of posets $X\boxtimes Y \xrightarrow{\exists !} Z$ making the diagram

$$\begin{array}{ccc} X \times Y \xrightarrow{\iota} X \boxtimes Y \\ & \downarrow \\ \downarrow & \downarrow \\ Z \end{array}$$

commute.

CONSTRUCTION 3.4.3 ► TENSOR PRODUCTS OF POSETS

Concretely, the **tensor product of** X **and** Y is the poset $X \boxtimes Y$ defined by

$$X\boxtimes Y \stackrel{\text{\tiny def}}{\longleftarrow} X_{\mathsf{cat}} \times Y_{\mathsf{disc}} \\ X\boxtimes Y \stackrel{\text{\tiny def}}{=} X_{\mathsf{cat}} \times Y_{\mathsf{disc}} \\ X_{\mathsf{disc}} \times Y_{\mathsf{disc}} \\ X_{\mathsf{disc}} \times Y_{\mathsf{cat}} \longleftarrow X_{\mathsf{disc}} \times Y_{\mathsf{disc}} \\ X_{\mathsf{disc}} \times Y_{\mathsf{disc}} \times Y_{\mathsf{disc}$$

3.5 Internal Homs

Let (X, \leq_X) and (Y, \leq_Y) be posets.

DEFINITION 3.5.1 ► INTERNAL HOMS OF POSETS

The internal Hom of posets from (X, \leq_X) to (Y, \leq_Y) is the poset $\mathbf{Pos}((X, \leq_X), (Y, \leq_Y))^1$ consisting of

- The Underlying Set. The set $\mathsf{Pos}((X, \leq_X), (Y, \leq_Y))$ of morphisms of posets from (X, \leq_X) to (Y, \leq_Y) ;
- · The Partial Order. The partial order

$$\leq_{\mathbf{Pos}(X,Y)}$$
: $\mathsf{Pos}(X,Y) \times \mathsf{Pos}(X,Y) \to \{\mathsf{true},\mathsf{false}\}$

on Pos(X, Y) defined by²

$$f \leq g \stackrel{\text{def}}{=} \begin{cases} \mathsf{true} & \mathsf{if} \, f(x) \leq g(x) \, \mathsf{for} \, \mathsf{each} \, x \in X, \\ \mathsf{false} & \mathsf{otherwise} \end{cases}$$

for each $f, g \in Pos(f, g)$.

4 Co/Limits in Posets

4.1 Initial Elements

Let (X, \leq_X) be a poset.

DEFINITION 4.1.1 ► THE INITIAL ELEMENT OF A POSET

The **initial element of** $(X, \leq_X)^1$ is, if it exists, the element \bot of X satisfying the following condition:

 (\star) For each $x \in X$, we have $\bot \leq_X x$.

¹ Further Terminology: Also called the **bottom element of** (X, \leq_X) .

Example 4.1.2 ► The Initial Element of a Powerset

Let X be a set. The initial element of $(\mathcal{P}(X), \subset)$ is given by \emptyset .

4.2 Final Elements

Let (X, \leq_X) be a poset.

DEFINITION 4.2.1 ► THE FINAL ELEMENT OF A POSET

The **final element of** $(X, \leq_X)^1$ is, if it exists, the element \top of X satisfying the following condition:

 (\star) For each $x \in X$, we have $x \leq_X \top$.

¹ Further Terminology: Also called the **top element of** (X, \leq_X) .

Example 4.2.2 ► The Final Element of a Powerset

Let X be a set. The final element of $(\mathcal{P}(X), \subset)$ is given by X.

4.3 Binary Joins

Let (X, \leq_X) be a poset and let $x, y \in X$.

¹ Further Notation: Also written simply **Pos**(X, Y).

²Further Terminology: Due to its definition, $\leq_{\mathbf{Pos}(X,Y)}$ is called the **pointwise partial order** on $\mathsf{Pos}(X,Y)$.

DEFINITION 4.3.1 ► BINARY JOINS IN A POSET

The **binary join of** x **and** y **in** (X, \leq_X) is, if it exists, the element $x \vee y$ of X satisfying the following conditions:

- 1. We have $x \leq_X x \vee y$ and $y \leq_X x \vee y$.
- 2. For each $s \in X$, if $x \leq_X s$ and $y \leq_X s$, then $x \vee y \leq_X s$.

EXAMPLE 4.3.2 ► BINARY JOINS IN POWERSETS

Let X be a set. The binary join of U and V in $(\mathcal{P}(X), \subset)$ is given by $U \cup V$.

4.4 Joins of Families

Let (X, \leq_X) be a poset and let $\{x_i\}_{i \in I}$ be a family of elements of X.

DEFINITION 4.4.1 ► JOINS OF FAMILIES OF ELEMENTS IN A POSET

The **join of** $\{x_i\}_{i\in I}$ **in** (X, \leq_X) is, if it exists, the element $\bigvee_{i\in I} x_i$ of X satisfying the following conditions:

- 1. For each $i \in I$, we have $x_i \leq_X \bigvee_{i \in I} x_i$.
- 2. For each $s \in X$, the following condition is satisfied:
 - (★) If, for each $i \in I$, we have $x_i \leq_X s$, then $\bigvee_{i \in I} x_i \leq_X s$.

EXAMPLE 4.4.2 ▶ **JOINS OF EMPTY FAMILIES**

The meet $\bigvee_{i \in \emptyset} x_i$ of the empty family is given by (if it exists) the bottom element \bot of (X, \le_X) .

EXAMPLE 4.4.3 ▶ Joins of Families in Powersets

Let X be a set. The join of a family $\{U_i\}_{i\in I}$ in $(\mathcal{P}(X),\subset)$ is given by $\bigcup_{i\in I}U_i$.

4.5 Binary Meets

Let (X, \leq_X) be a poset and let $x, y \in X$.

4.6 Meets of Families 18

DEFINITION 4.5.1 ► BINARY MEETS IN A POSET

The **binary meet of** x **and** y **in** (X, \leq_X) is, if it exists, the element $x \wedge y$ of X satisfying the following conditions:

- 1. We have $x \wedge y \leq_X x$ and $x \wedge y \leq_X y$.
- 2. For each $a \in X$, if $a \leq_X x$ and $a \leq_X y$, then $a \leq_X x \wedge y$.

EXAMPLE 4.5.2 ► BINARY MEETS IN POWERSETS

Let X be a set. The binary meet of U and V in $(\mathcal{P}(X), \subset)$ is given by $U \cap V$.

4.6 Meets of Families

Let (X, \leq_X) be a poset and let $\{x_i\}_{i \in I}$ be a family of elements of X.

DEFINITION 4.6.1 ► MEETS OF FAMILIES OF ELEMENTS IN A POSET

The **meet of** $\{x_i\}_{i\in I}$ **in** (X, \leq_X) is, if it exists, the element $\bigwedge_{i\in I} x_i$ of X satisfying the following conditions:

- 1. For each $i \in I$, we have $\bigwedge_{i \in I} x_i \leq_X x_i$.
- 2. For each $s \in X$, the following condition is satisfied:
 - (★) If, for each $i \in I$, we have $s \leq_X x_i$, then $s \leq_X \bigwedge_{i \in I} x_i$.

EXAMPLE 4.6.2 ► **MEETS OF EMPTY FAMILIES**

The meet $\bigwedge_{i \in \emptyset} x_i$ of the empty family is given by (if it exists) the top element \top of (X, \leq_X) .

EXAMPLE 4.6.3 ► MEETS OF FAMILIES IN POWERSETS

Let X be a set. The meet of a family $\{U_i\}_{i\in I}$ in $(\mathcal{P}(X),\subset)$ is given by $\bigcap_{i\in I}U_i$.

4.7 Lattices 19

4.7 Lattices

DEFINITION 4.7.1 ► LATTICES

Let (X, \leq_X) be a poset.

1. The poset (X, \leq_X) is a **join-semilattice** if it has a bottom element and binary joins.¹

- 2. The poset (X, \leq_X) is a **meet-semilattice** if it has a top element and binary meets.²
- 3. The poset (X, \leq_X) is a **suplattice** if it has joins of arbitrary families.
- 4. The poset (X, \leq_X) is an **inflattice** if it has meets of arbitrary families.
- 5. The poset (X, \leq_X) is a **lattice** if it is both a join-semilattice and a meet-semilattice.
- The poset (X, ≤_X) is a **complete lattice** if it is both a lattice and an inflattice.
- 7. The poset (X, \leq_X) is a **cocomplete lattice** if it is both a lattice and a suplattice.
- 8. The poset (X, \leq_X) is a **bicomplete lattice** if it is both a complete lattice and a cocomplete lattice.

Appendices

A Relative Preorders

A.1 The Left Skew Monoidal Structure on Rel(A, B)

Let A and B be sets and let $J: A \longrightarrow B$ be a relation.

¹This is equivalent to having joins of finite families.

²This is equivalent to having meets of finite families.

Definition A.1.1 \blacktriangleright The Left *J*-Skew Monoidal Structure on Rel(A, B)

The **left** J-skew monoidal category of functors from A to B is the left skew monoidal category ($Rel(A, B), \lhd_I, J$) consisting of

- The Underlying Category. The category Rel(A, B) of relations from A to B;
- · The Skew Monoidal Product. The functor

$$\triangleleft_I : \operatorname{Rel}(A, B) \times \operatorname{Rel}(A, B) \to \operatorname{Rel}(A, B)$$

from $\operatorname{Rel}(A,B) \times \operatorname{Rel}(A,B)$ to $\operatorname{Rel}(A,B)$, called the left J-skew monoidal product of relations from A to B, where

· Action on Objects. For each $R, S \in Obj(\mathbf{Rel}(A, B))$, we have

$$S \triangleleft_I R \stackrel{\text{def}}{=} S \diamond \text{Rift}_I(R),$$

where $S \diamond Rift_I(R)$ is the composition

in **Rel**;

· Action on Morphisms. For each $R,S,R',S'\in {\sf Obj}({\sf Rel}(A,B))$, the action on Hom-sets

$$(\lhd_J)_{(G,F),(G',F')} \colon \operatorname{Hom}_{\operatorname{Rel}(A,B)}(S,S') \times \operatorname{Hom}_{\operatorname{Rel}(A,B)}(R,R') \to \operatorname{Hom}_{\operatorname{Rel}(A,B)}(S \lhd_J R,S' \lhd_J R')$$
 of $\lhd_J \operatorname{at}((R,S),(R',S'))$ is defined by

$$\beta \lhd_J \alpha \stackrel{\text{def}}{=} \beta \diamond \operatorname{Rift}_J(\alpha),$$

for each $\beta \in \operatorname{Hom}_{\operatorname{Rel}(A,B)}(S,S')$ and each $\alpha \in \operatorname{Hom}_{\operatorname{Rel}(A,B)}(R,R')$;

· The Skew Monoidal Unit. The functor

$$\mathbb{F}^{\mathbf{Rel}(A,B)}$$
: $\mathsf{pt} \to \mathbf{Rel}(A,B)$

defined by

$$\mathbb{F}_{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} J;$$

· The Skew Associators. The natural transformation

$$\alpha^{\mathbf{Rel}(A,B)}$$
: $\lhd_I \circ (\lhd_I \times \mathsf{id}) \Longrightarrow \lhd_I \circ (\mathsf{id} \times \lhd_I)$,

whose component

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B)} \colon \underbrace{\left(T \lhd_J S\right) \lhd_J R}_{\stackrel{\mathrm{def}}{=} T \diamond \mathsf{Rift}_J(S) \diamond \mathsf{Rift}_J(R)} \subset \underbrace{T \lhd_J \left(S \lhd_J R\right)}_{\stackrel{\mathrm{def}}{=} T \diamond \mathsf{Rift}_J \left(S \diamond \mathsf{Rift}_J(R)\right)}$$

at (T, S, R) is given by

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \mathrm{id}_T \diamond \gamma,$$

where

$$\gamma \colon \mathsf{Rift}_I(S) \diamond \mathsf{Rift}_I(R) \subset \mathsf{Rift}_I(S \diamond \mathsf{Rift}_I(R))$$

is the inclusion adjunct to the inclusion

$$\underbrace{J \diamond \mathsf{Rift}_{J}(S) \diamond \mathsf{Rift}_{J}(R)}_{ \stackrel{\mathsf{def}_{I}}{=} f_{*}\left(\mathsf{Rift}_{J}(S) \diamond \mathsf{Rift}_{J}(R)\right)}^{\varepsilon_{S} \star \mathsf{id}_{\mathsf{Rift}_{J}(R)}} \subset S \diamond \mathsf{Rift}_{J}(R)$$

under the adjunction $J_* \dashv \operatorname{Rift}_J$, where $\epsilon \colon J \diamond \operatorname{Rift}_J \Longrightarrow \operatorname{id}_{\operatorname{Rel}(A,B)}$ is the counit of the adjunction $J_* \dashv \operatorname{Rift}_J$;

· The Skew Left Unitors. The natural transformation

$$\lambda^{\operatorname{Rel}(A,B)}$$
: $\lhd_{J} \circ \left(\operatorname{\mathbb{I}\!\!\!/}^{\operatorname{Rel}(A,B)} \times \operatorname{id} \right) \Longrightarrow \operatorname{id},$

whose component

$$\lambda_R^{\mathbf{Rel}(A,B)} \colon \underbrace{\int \lhd_J R}_{\stackrel{\mathrm{def}}{=} f \diamond \mathsf{Rift}_J(R)} \subset R$$

at R is given by

$$\lambda_R^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \epsilon_R,$$

where $\epsilon: J \diamond \mathsf{Rift}_I \Longrightarrow \mathsf{id}_{\mathsf{Rel}(A,B)}$ is the counit of the adjunction $J_* \dashv \mathsf{Rift}_I$;

· The Skew Right Unitors. The natural transformation

$$\rho^{\operatorname{Rel}(A,B)} : \operatorname{id} \Longrightarrow \lhd_J \circ \left(\operatorname{id} \times \mathbb{1}^{\operatorname{Rel}(A,B)}\right),$$

whose component

$$\rho_R^{\mathbf{Rel}(A,B)} \colon R \subset \underbrace{R \lhd_J J}_{\underset{\stackrel{\mathrm{def}}{=} R \diamond \mathrm{Rift}_J(J)}{\underbrace{\mathsf{Rift}_J(J)}}}$$

at R is given by

$$\rho_{R}^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \mathrm{id}_{R} * \sigma,$$

where $\sigma: \mathrm{id}_A \Longrightarrow \mathrm{Rift}_J(J)$ is the universal transformation included in the data of the right Kan lift $\mathrm{Rift}_J(J)$.

A.2 Left Relative Preorders

Let A and B be sets and let $J: A \longrightarrow B$ be a relation.

DEFINITION A.2.1 ► LEFT /-RELATIVE PREORDERS

A **left** J-relative preorder from A to B is equivalently:

- · An \mathbb{E}_1 -skew monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \lhd_I, J)$;
- · A skew monoid in (**Rel**(A, C), \triangleleft_I , J).

REMARK A.2.2 ► UNWINDING DEFINITION A.2.1, I

In detail, a **left** *J***-relative preorder** (R, μ_R, η_R) **from** A **to** B consists of

· The Underlying Relation. A relation

$$R: A \longrightarrow B$$

called the **underlying relation of** (R, μ_R, η_R) ;

· The Multiplication Inclusion. An inclusion of relations

$$\mu_R$$
: $R \triangleleft_I R \subset R$,

called the **multiplication of** (R, μ_R, η_R) ;

· The Unit Inclusion. An inclusion of relations

$$\eta_R: J \subset R$$
,

called the **unit of** (R, μ_R, η_R) .

REMARK A.2.3 ► UNWINDING DEFINITION A.2.1, II

In other words, a **left** J-relative preorder from A to B is a relation $R: A \longrightarrow B$ from A to B satisfying the following conditions:

- 1. *J-Transitivity.* For each $a \in A$ and each $c \in B$, the following condition is satisfied:¹
 - (★) If there exists some b ∈ A such that:
 - · For each $x \in B$, if $b \sim_I x$, then $a \sim_R x$;
 - · We have $b \sim_R c$;

then $a \sim_R c$.

- 2. *J-Unitality.* For each $a \in A$ and each $b \in B$, the following condition is satisfied:
 - (\star) If $a \sim_J b$, then $a \sim_R b$.

¹If we have

then $a \sim_R c$.

²Illustration:

A.3 The Right Skew Monoidal Structure on Rel(A, B)

Let A and B be sets and let $J: A \longrightarrow B$ be a relation.

Definition A.3.1 \blacktriangleright The Right *J*-Skew Monoidal Structure on Rel(A, B)

The **right** J-**skew monoidal category of functors from** A **to** B is the right skew monoidal category consisting of

- · The Underlying Category. The category **Rel**(A, B) of relations from A to B;
- · The Skew Monoidal Product. The functor

$$\triangleright_I \colon \operatorname{Rel}(A, B) \times \operatorname{Rel}(A, B) \to \operatorname{Rel}(A, B)$$

from $Rel(A, B) \times Rel(A, B)$ to Rel(A, B), called the **right** J-skew monoidal **product of functors from** A **to** B, where

· Action on Objects. For each $R, S \in \text{Obj}(\mathbf{Rel}(A, B))$, we have

$$S \rhd_I R \stackrel{\text{def}}{=} \operatorname{Ran}_I(S) \diamond R$$
,

where $Ran_I(S) \diamond R$ is the composition

in Cats;

· Action on Morphisms. For each $R,S,R',S'\in {\sf Obj}({\sf Rel}(A,B))$, the action on Hom-sets

$$\left(\rhd_J\right)_{(S,R),(S',R')}\colon\operatorname{Nat}(S,S')\times\operatorname{Nat}(R,R')\to\operatorname{Nat}(S\rhd_JR,S'\rhd_JR')$$

of \triangleright_I at ((S, R), (S', R')) is defined by

$$\beta \rhd_I \alpha \stackrel{\text{def}}{=} \operatorname{Ran}_I(\beta) \diamond \alpha$$
,

where $\operatorname{Ran}_I(\beta) \diamond \alpha$ is the horizontal composition

in Cats;

· The Skew Monoidal Unit. The functor

$$\mathbb{F}^{\mathsf{Rel}(A,B)} \colon \mathsf{pt} \to \mathsf{Rel}(A,B)$$

defined by

$$\mathbb{F}_{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} J;$$

· The Skew Associators. The natural transformation

$$\alpha^{\mathbf{Rel}(A,B)} : \rhd_I \circ (\mathsf{id} \times \rhd_I) \Longrightarrow \rhd_I \circ (\rhd_I \times \mathsf{id}),$$

whose component

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B)} : \underbrace{T \rhd_J \left(S \rhd_J R\right)}_{\stackrel{\mathrm{def}}{=} \mathrm{Ran}_J(T) \diamond \left(\mathrm{Ran}_J(S) \diamond R\right)} \subset \underbrace{\left(T \rhd_J S\right) \rhd_J R}_{\stackrel{\mathrm{def}}{=} \mathrm{Ran}_J \left(\mathrm{Ran}_J(T) \diamond S\right) \diamond R}$$

at (T, S, R) is given by

$$\alpha_{T,S,R}^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \gamma \diamond \mathrm{id}_R,$$

where

$$\gamma$$
: $\operatorname{Ran}_{I}(T) \diamond \operatorname{Ran}_{I}(S) \subset \operatorname{Ran}_{I}(\operatorname{Ran}_{I}(T) \diamond S)$

is the inclusion adjunct to the inclusion

$$\underbrace{\mathsf{Ran}_{J}(T) \diamond \mathsf{Ran}_{J}(S) \diamond J}_{\overset{\mathsf{def}_{I}}{=} J^{*}(\mathsf{Ran}_{J}(T) \diamond \mathsf{Ran}_{J}(S))}^{\mathsf{idR}_{\mathsf{Ran}_{J}(T)} \diamond \varepsilon_{S}} \mathsf{Ran}_{J}(T) \diamond S$$

under the adjunction J^* \dashv Ran_J, where ε : Ran_J \diamond $J \Longrightarrow \mathrm{id}_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction J^* \dashv Ran_J;

· The Skew Left Unitors. The natural transformation

$$\lambda^A \colon \operatorname{id} \Longrightarrow \rhd_J \circ \Big(\mathbb{1}^{\operatorname{Rel}(A,B)} \times \operatorname{id} \Big),$$

whose component

$$\lambda_R^{\mathbf{Rel}(A,B)} \colon R \subset \underbrace{J \rhd_J R}_{\stackrel{\mathrm{def}}{=} \mathsf{Ran}_J(J) \, \circ \, R}$$

at R is given by

$$\lambda_R^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \sigma \diamond \mathrm{id}_R$$
,

where σ : id_B \Longrightarrow Ran_J(J) is the unit of the codensity monad of J;

· The Skew Right Unitors. The natural transformation

$$\rho^{\operatorname{Rel}(A,B)} : \rhd_J \circ \left(\operatorname{id} \times \mathbb{1}^{\operatorname{Rel}(A,B)} \right) \Longrightarrow \operatorname{id},$$

whose component

$$\rho_S^{\mathbf{Rel}(A,B)} : \underbrace{S \rhd_J J}_{\stackrel{\text{def}}{=} \mathsf{Ran}_J(S) \diamond J} \subset S$$

at S is given by

$$\rho_S^{\mathbf{Rel}(A,B)} \stackrel{\text{def}}{=} \varepsilon_R,$$

where ϵ : Ran_J \diamond $J \Longrightarrow id_{\mathbf{Rel}(A,B)}$ is the counit of the adjunction $J^* \dashv \mathrm{Ran}_J$.

A.4 Right Relative Preorders

Let A and B be sets and let $J: A \longrightarrow B$ be a relation.

DEFINITION A.4.1 ► RIGHT J-RELATIVE PREORDERS

A **right** J-**relative preorder from** A **to** B is equivalently:

· An \mathbb{E}_1 -skew monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \triangleright_J, J)$;

· A skew monoid in (**Rel**(A, C), \triangleright_I , J).

REMARK A.4.2 ► UNWINDING DEFINITION A.4.1, I

In detail, a **right** *J*-**relative preorder** (R, μ_R, η_R) **from** A **to** B consists of

· The Underlying Relation. A relation

$$R: A \longrightarrow B$$

called the **underlying relation of** (R, μ_R, η_R) ;

· The Multiplication Inclusion. An inclusion of relations

$$\mu_R: R \rhd_J R \subset R$$
,

called the **multiplication of** (R, μ_R, η_R) ;

· The Unit Inclusion. An inclusion of relations

$$\eta_R: J \subset R$$
,

called the **unit of** (R, μ_R, η_R) .

REMARK A.4.3 ► UNWINDING DEFINITION A.4.1, II

In other words, a **right** *J*-**relative preorder from** A **to** B is a relation $R: A \longrightarrow B$ from A to B satisfying the following conditions:

- 1. *J-Transitivity.* For each $a \in A$ and each $c \in B$, the following condition is satisfied:¹
 - (★) If there exists some b ∈ B such that:
 - · We have $a \sim_R b$;
 - For each $x \in A$, if $x \sim_I b$, then $x \sim_R c$;

then $a \sim_R c$.

- 2. *J-Unitality*. For each $a \in A$ and each $b \in B$, the following condition is satisfied:
 - (\star) If $a \sim_I b$, then $a \sim_R b$.

B Other Chapters

Logic and Model Theory

- 1. Logic
- 2. Model Theory

Type Theory

- 3. Type Theory
- 4. Homotopy Type Theory

Set Theory

- 5. Sets
- 6. Constructions With Sets
- 7. Indexed and Fibred Sets
- 8. Relations
- 9. Posets

Category Theory

- 10. Categories
- 11. Constructions With Categories

- 12. Limits and Colimits
- 13. Ends and Coends
- 14. Kan Extensions
- 15. Fibred Categories
- 16. Weighted Category Theory

Categorical Hochschild Co/Homology

- Abelian Categorical Hochschild Co/Homology
- 18. Categorical Hochschild Co/Homology

Monoidal Categories

- 19. Monoidal Categories
- 20. Monoidal Fibrations
- 21. Modules Over Monoidal Categories
- 22. Monoidal Limits and Colimits
- 23. Monoids in Monoidal Categories
- 24. Modules in Monoidal Categories

- 25. Skew Monoidal Categories
- 26. Promonoidal Categories
- 27. 2-Groups
- 28. Duoidal Categories
- 29. Semiring Categories

Categorical Algebra

- 30. Monads
- 31. Algebraic Theories
- 32. Coloured Operads
- 33. Enriched Coloured Operads

Enriched Category Theory

- 34. Enriched Categories
- 35. Enriched Ends and Kan Extensions
- 36. Fibred Enriched Categories
- Weighted Enriched Category Theory

Internal Category Theory

- 38. Internal Categories
- 39. Internal Fibrations
- 40. Locally Internal Categories
- 41. Non-Cartesian Internal Categories
- 42. Enriched-Internal Categories

Homological Algebra

- 43. Abelian Categories
- 44. Triangulated Categories
- 45. Derived Categories

Categorical Logic

- 46. Categorical Logic
- 47. Elementary Topos Theory
- 48. Non-Cartesian Topos Theory

Sites, Sheaves, and Stacks

- 49. Sites
- 50. Modules on Sites
- 51. Topos Theory

- 52. Cohomology in a Topos
- 53. Stacks

Complements on Sheaves

54. Sheaves of Monoids

Bicategories

- 55. Bicategories
- 56. Biadjunctions and Pseudomonads
- 57. Bilimits and Bicolimits
- 58. Biends and Bicoends
- 59. Fibred Bicategories
- 60. Monoidal Bicategories
- 61. Pseudomonoids in Monoidal Bicategories

Higher Category Theory

- 62. Tricategories
- 63. Gray Monoids and Gray Categories
- 64. Double Categories
- 65. Formal Category Theory
- 66. Enriched Bicategories
- 67. Elementary 2-Topos Theory

Simplicial Stuff

- 68. The Simplex Category
- 69. Simplicial Objects
- 70. Cosimplicial Objects
- 71. Bisimplicial Objects
- 72. Simplicial Homotopy Theory
- 73. Cosimplicial Homotopy Theory

Cyclic Stuff

- 74. The Cycle Category
- 75. Cyclic Objects

Cubical Stuff

- 76. The Cube Category
- 77. Cubical Objects
- 78. Cubical Homotopy Theory

Globular Stuff

- 79. The Globe Category
- 80. Globular Objects

Cellular Stuff

- 81. The Cell Category
- 82. Cellular Objects

Homotopical Algebra

- 83. Model Categories
- 84. Examples of Model Categories
- 85. Homotopy Limits and Colimits
- 86. Homotopy Ends and Coends
- 87. Derivators

Topological and Simplicial Categories

- 88. Topologically Enriched Categories
- 89. Simplicial Categories
- 90. Topological Categories

Quasicategories

- 91. Quasicategories
- 92. Constructions With Quasicategories
- 93. Fibrations of Quasicategories
- 94. Limits and Colimits in Quasicategories
- 95. Ends and Coends in Quasicategories
- 96. Weighted ∞-Category Theory
- 97. ∞-Topos Theory

Cubical Quasicategories

98. Cubical Quasicategories

Complete Segal Spaces

99. Complete Segal Spaces

∞-Cosmoi

100. ∞-Cosmoi

Enriched and Internal ∞-Category Theory

- 101. Internal ∞-Categories
- 102. Enriched ∞-Categories
- $(\infty, 2)$ -Categories
- 103. $(\infty, 2)$ -Categories
- 104. 2-Quasicategories
- (∞, n) -Categories
- 105. Complicial Sets
- 106. Comical Sets

Double ∞-Categories

107. Double ∞-Categories

Higher Algebra

- 108. Differential Graded Categories
- 109. Stable ∞-Categories
- 110. ∞-Operads
- 111. Monoidal ∞-Categories
- 112. Monoids in Symmetric Monoidal ∞-Categories
- 113. Modules in Symmetric Monoidal ∞-Categories
- 114. Dendroidal Sets

Derived Algebraic Geometry

- 115. Derived Algebraic Geometry
- 116. Spectral Algebraic Geometry

Condensed Mathematics

117. Condensed Mathematics

Monoids

- 118. Monoids
- 119. Constructions With Monoids
- 120. Tensor Products of Monoids
- 121. Indexed and Fibred Monoids
- 122. Indexed and Fibred Commutative Monoids
- 123. Monoids With Zero

Groups

- 124. Groups
- 125. Constructions With Groups

Algebra

- 126. Rings
- 127. Fields
- 128. Linear Algebra
- 129. Modules
- 130. Algebras

Near-Semirings and Near-Rings

- 131. Near-Semirings
- 132. Near-Rings

Semirings

- 133. Semirings
- 134. Commutative Semirings
- 135. Semifields
- 136. Semimodules

Hyper-Algebra

- 137. Hypermonoids
- 138. Hypersemirings and Hyperrings
- 139. Quantales

Commutative Algebra

140. Commutative Rings

More Algebra

- 141. Plethories
- 142. Graded Algebras
- 143. Differential Graded Algebras
- 144. Representation Theory
- 145. Coalgebra
- 146. Topological Algebra

Real Analysis, Measure Theory, and Probability

- 147. Real Analysis
- 148. Measure Theory
- 149. Probability Theory
- 150. Stochastic Analysis

Complex Analysis

- 151. Complex Analysis
- 152. Several Complex Variables

Functional Analysis

- 153. Topological Vector Spaces
- 154. Hilbert Spaces
- 155. Banach Spaces
- 156. Banach Algebras
- 157. Distributions

Harmonic Analysis

158. Harmonic Analysis on \mathbb{R}

Differential Equations

- 159. Ordinary Differential Equations
- 160. Partial Differential Equations

p-Adic Analysis

- 161. p-Adic Numbers
- 162. p-Adic Analysis
- 163. p-Adic Complex Analysis
- 164. p-Adic Harmonic Analysis
- 165. p-Adic Functional Analysis
- 166. *p*-Adic Ordinary Differential Equations
- 167. *p*-Adic Partial Differential Equations

Number Theory

- 168. Elementary Number Theory
- 169. Analytic Number Theory
- 170. Algebraic Number Theory
- 171. Class Field Theory
- 172. Elliptic Curves
- 173. Modular Forms
- 174. Automorphic Forms

- 175. Arakelov Geometry
- 176. Geometrisation of the Local Langlands Correspondence
- 177. Arithmetic Differential Geometry

Topology

- 178. Topological Spaces
- 179. Constructions With Topological Spaces
- 180. Conditions on Topological Spaces
- 181. Sheaves on Topological Spaces
- 182. Topological Stacks
- 183. Locales
- 184. Metric Spaces

Differential Geometry

- 184. Topological and Smooth Manifolds
- 185. Fibre Bundles, Vector Bundles, and Principal Bundles
- 186. Differential Forms, de Rham Cohomology, and Integration
- 187. Riemannian Geometry
- 188. Complex Geometry
- 189. Spin Geometry
- 190. Symplectic Geometry
- 191. Contact Geometry
- 192. Poisson Geometry
- 193. Orbifolds
- 194. Smooth Stacks
- 195. Diffeological Spaces

Lie Groups and Lie Algebras

- 196. Lie Groups
- 197. Lie Algebras
- 198. Kac-Moody Groups
- 199. Kac-Moody Algebras

Homotopy Theory

- 200. Algebraic Topology
- 201. Spectral Sequences

- 202. Topological *K*-Theory
- 203. Operator K-Theory
- 204. Localisation and Completion of Spaces
- 205. Rational Homotopy Theory
- 206. *p*-Adic Homotopy Theory
- 207. Stable Homotopy Theory
- 208. Chromatic Homotopy Theory
- 209. Topological Modular Forms
- 210. Goodwillie Calculus
- 211. Equivariant Homotopy Theory

Schemes

- 212. Schemes
- 213. Morphisms of Schemes
- 214. Projective Geometry
- 215. Formal Schemes

Morphisms of Schemes

- 216. Finiteness Conditions on Morphisms of Schemes
- 217. Étale Morphisms

Topics in Scheme Theory

- 218. Varieties
- 219. Algebraic Vector Bundles
- 220. Divisors

Fundamental Groups of Schemes

- 221. The Étale Topology
- 222. The Étale Fundamental Group
- 223. Tannakian Fundamental Groups
- 224. Nori's Fundamental Group Scheme
- 225. Étale Homotopy of Schemes

Cohomology of Schemes

- 226. Local Cohomology
- 227. Dualising Complexes
- 228. Grothendieck Duality

Group Schemes

- 229. Flat Topologies on Schemes
- 230. Group Schemes
- 231. Reductive Group Schemes
- 232. Abelian Varieties
- 233. Cartier Duality
- 234. Formal Groups

Deformation Theory

- 235. Deformation Theory
- 236. The Cotangent Complex

Étale Cohomology

- 237. Étale Cohomology
- 238. ℓ-Adic Cohomology
- 239. Pro-Étale Cohomology

Crystalline Cohomology

- 240. Hochschild Cohomology
- 241. De Rham Cohomology
- 242. Derived de Rham Cohomology
- 243. Infinitesimal Cohomology
- 244. Crystalline Cohomology
- 245. Syntomic Cohomology
- 246. The de Rham–Witt Complex
- 247. p-Divisible Groups
- 248. Monsky-Washnitzer Cohomology
- 249. Rigid Cohomology
- 250. Prismatic Cohomology

Algebraic K-Theory

- 251. Topological Cyclic Homology
- 252. Topological Hochschild Homology
- Topological André—Quillen Homology
- 254. Algebraic *K*-Theory
- 255. Algebraic K-Theory of Schemes

Intersection Theory

256. Chow Homology

257. Intersection Theory

Monodromy Groups in Algebraic Geometry

258. Monodromy Groups

Algebraic Spaces

- 259. Algebraic Spaces
- 260. Morphisms of Algebraic Spaces
- 261. Formal Algebraic Spaces

Deligne-Mumford Stacks

262. Deligne-Mumford Stacks

Algebraic Stacks

- 263. Algebraic Stacks
- 264. Morphisms of Algebraic Stacks

Moduli Theory

265. Moduli Stacks

Motives

- 266. Tannakian Categories
- 267. Vanishing Cycles
- 268. Motives
- 269. Motivic Cohomology
- 270. Motivic Homotopy Theory

Logarithmic Algebraic Geometry

271. Log Schemes

Analytic Geometry

- 272. Real Algebraic Geometry
- 273. Complex-Analytic Spaces
- 274. Rigid Spaces
- 275. Berkovich Spaces
- 276. Adic Spaces
- 277. Perfectoid Spaces

p-Adic Hodge Theory

- 278. Fontaine's Period Rings
- 279. The *p*-Adic Simpson Correspondence

References 34

Algebraic Geometry Miscellanea

280. Tropical Geometry

281. \mathbb{F}_1 -Geometry

Physics

282. Classical Mechanics

283. Electromagnetism

284. Special Relativity

285. Statistical Mechanics

286. General Relativity

287. Quantum Mechanics

288. Quantum Field Theory

289. Supersymmetry

290. String Theory

291. The AdS/CFT Correspondence

Miscellany

292. To Be Refactored

293. Miscellanea

294. Questions

References

[nLab23] The nLab Authors. *Relative Monad.* 2023. URL: https://ncatlab.org/nlab/show/relative+monad (cit. on p. 1).