目录

1.	实验一:	优化 Linux 系统的内存	4
	1.1.	实验目的	4
	1.2.	实验要求	4
	1.3.	实验环境	4
	1.4.	实验视图	4
	1.5.	实验过程	5
	1.5.1.	实验任务一:将 Hadoop 用户添加到 root 组中	5
		1.5.1.1. 步骤一: 切换到 root 账号	5
	1.5.2.	1.5.1.4. 步骤四:用 vi 打开/etc/sudoers 文件	5 5
	1.5.3.	1.5.2.1. 步骤一: 查看 swappiness 的值	5 6
	1.5.4.	1.5.3.1. 步骤一: 查看当前 vm.overcommit_memory 参数的值 1.5.3.2. 步骤二: 永久性修改 vm.overcommit_memory 参数的值 1.5.3.3. 步骤三: 使参数生效 实验任务四: 脏页配置优化	6 6
	1.5.5.	1.5.4.1. 步骤一: 查看当前脏页相关配置信息 1.5.4.2. 步骤二: 修改脏页配置信息 1.5.4.3. 步骤三: 使参数生效 实验任务五: 内存读写速度测试	7
2.	实验二:	1.5.5.1. 步骤一: 使用 linux 自带命令测试内存读写速度	
	2.1.	实验目的	8
	2.2.	实验要求	8
	2.3.	实验环境	8
	2.4.	实验视图	8
	2.5.	实验过程	9
	2.5.1.	实验任务一: 关闭 Linux 防火墙	9
		2.5.1.1. 步骤一: 使用命令查看 Linux 防火墙状态	9

		2.5.1.2. 步骤二: 使用命令关闭防火墙	
	2.5.2.	2.5.1.3. 步骤三:禁止开机启动防火墙	
		2.5.2.1. 步骤一: 修改配置文件	
		2.5.2.2. 步骤二: 使配置生效	
	2.5.3.	实验任务三:修改端口最大监听队列长度	. 10
		2.5.3.1. 步骤一: 查看当前监听队列大小	10
		2.5.3.2. 步骤二: 修改监听队列长度	
	2.5.4.	2.5.3.3. 步骤三: 使配置生效	
	2.3.4.		
		2.5.4.1. 步骤一:设置 tcp 数据发送窗口大小为 256kb	
		2.5.4.3. 步骤三: 设置最大 TCP 数据发送缓冲区最大值为 2M	
		2.5.4.4. 步骤四:设置最大 TCP 数据接收缓冲区最大值为 2M	
	2.5.5.	实验任务五: 网络传输速度测试	
		2.5.5.1. 步骤一: 安装测试工具 iperf	
3.	京 松二	2.5.5.2. 步骤二:测试 master 与 slave1 之间的网络传输速度	
Э.			
	3.1.	实验目的	
	3.2.	实验要求	. 13
	3.3.	实验环境	. 13
	3.4.	实验视图	. 13
	3.5.	实验过程	. 13
	3.5.1.	实验任务一:修改 I/O 调度器	. 13
		3.5.1.1. 步骤一: 查看当前系统支持的 I/O 调度器	
		3.5.1.2. 步骤二: 查看硬盘的 IO 调度算法 I/O 调度器	
		3.5.1.3. 步骤四: 临时修改当前 I/O 调度器	
	3.5.2.	实验任务二:禁止记录访问时间戳	
		3.5.2.1. 步骤一: 修改/etc/fstab 文件	15
		3.5.2.2. 步骤二: 使配置生效	15
4.	实验四	优化 Linux 文件系统	. 16
	4.1.	实验目的	. 16
	4.2.	实验要求	. 16
	4.3.	实验环境	. 16
	4. 4.	实验视图	. 16
	4.5.	试验过程	. 16

	4.5.1.	实验任务一:增大可打开文件描述符的数目	16
	4.5.2.	4.5.1.1. 步骤一: 修改 limits.conf4.5.1.2. 步骤二: 修改 20-nproc.conf实验任务二: 关闭 THP	17
	4.5.3.	4.5.2.1. 步骤一: 查询 linux 内核版本以及透明大页面的状态	17
5.	实验五	4.5.3.1. 步骤一: 查看 SeLinux 的状态	18
	5.1.	实验目的	20
	5.2.	实验要求	20
	5.3.	实验环境	20
	5. 4.	实验视图	20
	5.5.	实验过程	20
	5.5.1.	实验任务一:设置合理的预读取缓冲区大小	20
	5.5.2.	5.5.1.1. 步骤一: 查看磁盘占用情况5.5.1.2. 步骤二: 读取设备的预读值5.5.1.3. 步骤三: 修改设备的预读值5.5.1.4. 步骤四: 再次查看预读值实验任务二: 利用 hadoop 自带测试程序测试磁盘性能	21 21
		5.5.2.1. 步骤一: 启动 hadoop 集群	
		5.5.2.2. 步骤二:进行测试	21

1. 实验一: 优化 Linux 系统的内存

1.1. 实验目的

完成本实验, 您应该能够:

- 掌握给用户添加 root 组权限的方法
- 掌握优化交换内存(swap)的方法
- 掌握优化内存分配策略的方法
- 掌握优化脏页配置的方法

1.2. 实验要求

- 熟悉常用 Linux 操作系统命令
- 理解 Linux 用户及权限管理
- 了解交换内存(swap)的含义和作用
- 了解脏页的含义和作用

1.3. 实验环境

本实验所需之主要资源环境如表 1-1 所示。

表 1-1 资源环境

	W. C. Sun S.
服务器集群	3 个以上节点, 节点间网络互通, 各节点最低配置: 双核 CPU、8GB 内存、100G
	硬盘
运行环境	CentOS 7.4 (gui 英文版本)
用户名/密码	root/password hadoop/password
服务和组件	HDFS、YARN、MapReduce 等,其他服务根据实验需求安装

1.4. 实验视图

1.5. 实验过程

1.5.1. 实验任务一: 将 Hadoop 用户添加到 root 组中

1.5.1.1. 步骤一: 切换到 root 账号

本实验需要修改的配置文件属于 root 用户所有, 所以我们需要先切换到 root 账号。root 账号的密码是 password

[hadoop@master /]\$ su root

1.5.1.2. 步骤二: 查看/etc/sudoers 文件的读写权限

使用 Is -I 命令查看/etc/sudoers 文件的读写权限

[root@master/]# ls -l /etc/sudoers

-r-r---. 1 root root 3938 Jul 6 18:44 /etc/sudoers

可以看出, /etc/sudoers 文件对 root 账号和 root 用户组只有读的权限对于其他用户没有任何权限

1.5.1.3. 步骤三: 给/etc/sudoers 文件添加可写权限

给/etc/sudoers 文件的所有者 root 账户添加可写权限

[root@master hadoop]# chmod u+w /etc/sudoers

再次使用 Is -I 命令查看/etc/sudoers 文件的读写权限

[root@master hadoop]# Is -I /etc/sudoers

-rw--r--. 1 root root 3938 Jul 6 18:44 /etc/sudoers

1.5.1.4. 步骤四: 用 vi 打开/etc/sudoers 文件

[root@master ~]# vi /etc/sudoers

1.5.1.5. 步骤五: 添加配置信息

找到 root ALL=(ALL) ALL 这一行,在后面再加上一行 hadoop ALL=(ALL) ALL 接 Esc 键,在按:wq,保存并退出

1.5.1.6. 步骤六: 恢复/etc/sudoers 文件的读写权限

将 sudoers 文件的可写权限去掉,恢复到初始状态

[root@master ~]# chmod u-w /etc/sudoers

进入 Hadoop 用户

[root@master ~]# su hadoop

[root@master root]# cd

1.5.1.7. 步骤七: 三台虚拟机同步操作

在 slave1 和 slave2 上也进行以上操作,同时本章中的所有提到的参数均需要在三台虚拟机上进行修改。

1.5.2. 实验任务二: 避免使用 swap 分区

1.5.2.1. 步骤一: 查看 swappiness 的值

使用 cat 命令查看 swappiness 的值

[hadoop@master ~]\$ cat /proc/sys/vm/swappiness

可以看到初始值为30

1.5.2.2. 步骤二: 修改配置文件

使用 vi 打开配置文件, 修改配置文件

[hadoop@master ~]\$ sudo vi /etc/sysctl.conf

找到 vm.swappiness 参数并更改其值为 1。如果此参数不存在,请将以下行附加到该文件 /etc/sysctl.conf 中

vm.swappiness = 1

按 Esc 键,再按:wq,保存并退出

1.5.2.3. 步骤三: 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用[hadoop@master ~]\$ cat /proc/sys/vm/swappiness 看参数是否生效如果参数生效应该可以看到返回结果为 1

1.5.3. 实验任务三: 调整内存分配策略

1.5.3.1. 步骤一: 查看当前 vm.overcommit_memory 参数的值

使用命令 [hadoop@master ~]\$ sysctl -n vm.overcommit_memory 来查看当前vm.overcommit_memory的参数值

可以看到当前的 vm.overcommit memory 的参数值为 0

1.5.3.2. 步骤二: 永久性修改 vm.overcommit_memory 参数的值

使用 vi 打开/etc/sysctl.conf 文件,在文件末尾加入 vm.overcommit_memory=2 参数并保存 [hadoop@master ~]\$ sudo vim /etc/sysctl.conf

vm.overcommit_memory=2

按 Esc 键,再按:wq,保存并退出

Tips:将 vm.overcommit_memory 的参数如果修改为 2 的话会导致无法进入图形界面,如果需要使用系统的图形界面可以将 vm.overcommit_memory 的参数值修改为 1

1.5.3.3. 步骤三: 使参数生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用命令[hadoop@master ~]\$ sysctl -n vm.overcommit_memory 验证参数是否生效如果参数生效应该可以看到返回值为 2

1.5.4. 实验任务四: 脏页配置优化

1.5.4.1. 步骤一: 查看当前脏页相关配置信息

查看当前脏页配置信息

[hadoop@master ~]\$ sysctl -a | grep dirty

可以看到返回的脏页参数为:

vm.dirty_background_bytes = 0

vm.dirty_background_ratio = 10

vm.dirty_bytes = 0

vm.dirty_expire_centisecs = 3000

vm.dirty_ratio = 30
vm.dirty_writeback_centisecs = 500

1.5.4.2. 步骤二:修改脏页配置信息

通过修改 vm.dirty_background_ratio 的值和 vm.dirty_radio 的值来优化脏页配置 [hadoop@master ~]\$ sudo vi /etc/sysctl.conf

在文件末尾添加两个参数

vm.dirty_background_ratio=5

vm.dirty_ratio=80

按 Esc 键,再按:wq,保存并退出

1.5.4.3. 步骤三: 使参数生效

[hadoop@master ~]\$ sudo sysctl -p

执行命令后的返回值应该为修改的参数的数据

vm.dirty_background_ratio = 5

vm.dirty_ratio = 80

1.5.5. 实验任务五: 内存读写速度测试

1.5.5.1. 步骤一: 使用 linux 自带命令测试内存读写速度

可以使用以下命令对内存进行读写速度进行测试

[hadoop@master /]\$ dd if=/dev/zero of=/dev/null bs=1M count=1024

其中 if 代表输入文件位置一般都填写默认值, of 代表输出文件位置,因为是对内存进行读写所以也可以采用默认值, bs 的含义是同时设置读入/输出的块大小为 bytes 个字节。count 代表进行几次读写

返回数据的格式为:

记录了 1024+0 的读入

记录了 1024+0 的写出

1073741824 字节(1.1 GB)已复制, 0.066381 秒, 16.2 GB/秒 18.3 GB/s 代表的就是当前的内存读写速度

2. 实验二: 优化 Linux 系统网络

2.1. 实验目的

完成本实验, 您应该能够:

- 掌握 Linux 平台防火墙操作
- 掌握通过命令禁用 ipv6
- 掌握修改 somaxconn 以限制 tcp 连接侦听队列大小
- 掌握使用通过 sysctl 命令调整分配给读写缓冲区的内存大小

2.2. 实验要求

- 熟悉常用 Linux 操作系统命令
- 了解缓冲区对 Linux 读写的意义
- 了解 Linux 网络

2.3. 实验环境

本实验所需之主要资源环境如表 1-1 所示。

表 1-1 资源环境

服务器集群	3 个以上节点, 节点间网络互通, 各节点最低配置: 双核 CPU、8GB 内存、100G 硬盘
运行环境	CentOS 7.4 (gui 英文版本)
用户名/密码	root/password hadoop/password
服务和组件	Iperf3.1.1

2.4. 实验视图

2.5. 实验过程

2.5.1. 实验任务一: 关闭 Linux 防火墙

2.5.1.1. 步骤一: 使用命令查看 Linux 防火墙状态

打开终端输入 sudo systemctl status firewalld 查看防火墙状态,如图 1-1 所示 [hadoop@master ~]\$ sudo systemctl status firewalld 状态如下所示

• firewalld.service - firewalld - dynamic firewall daemon

Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)

Active: active (running) since Tue 2020-07-07 00:36:11 PDT; 5s ago

Docs: man:firewalld(1)
Main PID: 12618 (firewalld)

CGroup: /system.slice/firewalld.service

12618 /usr/bin/python -Es /usr/sbin/firewalld --nofork --nopid

2.5.1.2. 步骤二: 使用命令关闭防火墙

在终端中输入 sudo systemctl stop firewalld 以关闭防火墙,如图 1-2 所示 [hadoop@master ~]\$ sudo systemctl stop firewalld 在终端中输入 sudo systemctl status firewalld 再次查看防火墙状态,如图 1-3 所示 [hadoop@master ~]\$ sudo systemctl status firewalld 状态如下所示

firewalld.service - firewalld - dynamic firewall daemon

Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)

Active: inactive (dead)

Docs: man:firewalld(1)

2.5.1.3. 步骤三: 禁止开机启动防火墙

在终端中输入 sudo systemctl disable firewalld 命令禁止开机启动防火墙,如图 1-4 所示 [hadoop@master ~]\$ sudo systemctl disable firewalld

2.5.2. 实验任务二: 禁用 ipv6

2.5.2.1. 步骤一: 修改配置文件

在终端中输入 sudo vi /etc/sysctl.conf
[hadoop@master ~]\$ sudo vi /etc/sysctl.conf
在文件末尾添加 net.ipv6.conf.all.disable ipv6=1 保存

2.5.2.2. 步骤二: 使配置生效

在终端中输入 sudo sysctl -p 使配置生效
[hadoop@master ~]\$ sudo sysctl -p
在返回值中显示 net.ipv6.conf.all.disable_ipv6 = 1 说明参数配置生效

2.5.3. 实验任务三:修改端口最大监听队列长度

2.5.3.1. 步骤一: 查看当前监听队列大小

打开终端,输入 sudo cat /etc/sysctl.conf (若无 net.core.somaxconn 项则手动添加) [hadoop@master ~]\$ sudo cat /etc/sysctl.conf

2.5.3.2. 步骤二:修改监听队列长度

在终端中输入 sudo vi /etc/sysctl.conf

[hadoop@master ~]\$ sudo vi /etc/sysctl.conf

在文件末尾追加 net.core.somaxconn=32768

如果已经存在 net.core.somaxconn 参数则修改它的的值为 32768

2.5.3.3. 步骤三: 使配置生效

在终端中输入 sudo sysctl -p 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

当返回值中存在 net.core.somaxconn = 32768 说明配置生效

2.5.4. 实验任务四: socket 读写缓冲区调优

2.5.4.1. 步骤一: 设置 tcp 数据发送窗口大小为 256kb

在终端中输入 sudo sysctl -q net.core.wmem default

[hadoop@master ~]\$ sudo sysctl -q net.core.wmem_default

在终端中输入 echo "net.core.wmem_default=256960"|sudo tee -a /etc/sysctl.conf [hadoop@master~]\$ echo "net.core.wmem_default=256960"|sudo tee -a /etc/sysctl.conf 最后在终端中输入 sudo sysctl -p 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用命令[hadoop@master ~]\$ sudo sysctl -q net.core.wmem_default

若返回值为 net.core.wmem_default=256960 说明配置生效

2.5.4.2. 步骤二: 设置 tcp 数据接收窗口大小为 256kb

在终端中输入 sysctl -q net.core.rmem default

[hadoop@master ~]\$ sysctl -q net.core.rmem_default

在终端中输入 echo " net.core.rmem default=256960" | sudo tee -a /etc/sysctl.conf

[hadoop@master ~]\$ echo " net.core.rmem_default=256960"|sudo tee -a /etc/sysctl.conf

最后在终端中输入 sudo sysctl -p 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用命令[hadoop@master ~]\$ sysctl -q net.core.rmem_default

若返回值为 net.core.rmem_default=256960 说明配置生效

2.5.4.3. 步骤三: 设置最大 TCP 数据发送缓冲区最大值为 2M

在终端中输入 sysctl -q net.core.wmem_max

[hadoop@master ~]\$ sysctl -q net.core.wmem_max

在终端中输入 echo "net.core.wmem_max=2097152" | sudo tee -a /etc/sysctl.conf

[hadoop@master ~]\$ echo "net.core.wmem_max=2097152"| sudo tee -a /etc/sysctl.conf 最后在终端中输入 sudo sysctl -p 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用命令[hadoop@master ~]\$ sysctl -q net.core.wmem_max

若返回值为 net.core.wmem max=2097152 说明配置生效

2.5.4.4. 步骤四:设置最大 TCP 数据接收缓冲区最大值为 2M

在终端中输入 sysctl -q net.core.rmem_max

[hadoop@master ~]\$ sysctl -q net.core.rmem_max

在终端中输入 echo " net.core.rmem_max=2097152"| sudo tee -a /etc/sysctl.conf

 $[hadoop@master~] \$ \ echo " \ net.core.rmem_max=2097152" | \ sudo \ tee \ -a \ /etc/sysctl.conf$

最后在终端中输入 sudo sysctl -p 使配置生效

[hadoop@master ~]\$ sudo sysctl -p

再次使用命令[hadoop@master ~]\$ sysctl -q net.core.rmem_max

若返回值为 net.core.rmem_max=2097152 说明配置生效

2.5.5. 实验任务五: 网络传输速度测试

2.5.5.1. 步骤一: 安装测试工具 iperf

首先解压 iperf

[hadoop@master ~]\$ cd /usr/local/src

[hadoop@master src]\$ sudo tar -zxvf /opt/software/iperf-3.1.1-source.tar.gz

然后进入 iperf 文件

[hadoop@master src]\$ cd iperf-3.1.1/

然后依次执行以下三条命令

[hadoop@master iperf-3.1.1]\$ sudo ./configure

[hadoop@master iperf-3.1.1]\$ sudo make

[hadoop@master iperf-3.1.1]\$ sudo make install

同时在 slave1 以及 slave2 上以相同的步骤安装 iperf

[hadoop@master iperf-3.1.1]\$ sudo scp /opt/software/iperf-3.1.1-source.tar.gz slave1:/root

[hadoop@master iperf-3.1.1]\$ sudo scp /opt/software/iperf-3.1.1-source.tar.gz slave2:/root

[hadoop@slave1~]\$ cd /usr/local/src

[hadoop@slave1 src]\$ sudo tar -zxvf /root/iperf-3.1.1-source.tar.gz

[hadoop@slave1 src]\$ cd iperf-3.1.1/

然后依次执行以下三条命令

[hadoop@slave1 iperf-3.1.1]\$ sudo ./configure

[hadoop@slave1 iperf-3.1.1]\$ sudo make

[hadoop@slave1 iperf-3.1.1]\$ sudo make install

[hadoop@slave2~]\$ cd /usr/local/src

[hadoop@slave2 src]\$ sudo tar -zxvf /root/iperf-3.1.1-source.tar.gz

[hadoop@slave2 src]\$ cd iperf-3.1.1/

然后依次执行以下三条命令

[hadoop@slave2 iperf-3.1.1]\$ sudo ./configure

[hadoop@slave2 iperf-3.1.1]\$ sudo make

[hadoop@slave2 iperf-3.1.1]\$ sudo make install

2.5.5.2. 步骤二: 测试 master 与 slave1 之间的网络传输速度

在 master 上开启测试端口 5201

[hadoop@master iperf-3.1.1]\$ iperf3 -s

Server listening on 5201

使用命令[hadoop@slave1 iperf-3.1.1]\$ iperf3 -c 192.168.1.6 测试 slave1 到 master 的传输速度 [hadoop@slave1 iperf-3.1.1]\$ iperf3 -c 192.168.1.6

Connecting to host 192.168.1.6, port 5201

[4] local 192.168.1.7 port 53084 connected to 192.168.1.6 port 5201

[ID] Interval		Tr	ansfer B	andwidth	Retr	Cwnd	
[4]	0.00-1.00	sec	499 MBytes	4.19 Gbits/sec	0	1.13 MBytes
[4]	1.00-2.00	sec	526 MBytes	4.41 Gbits/sec	0	1.20 MBytes
[4]	2.00-3.00	sec	604 MBytes	5.06 Gbits/sec	0	1.33 MBytes
[4]	3.00-4.00	sec	596 MBytes	5.00 Gbits/sec	0	1.41 MBytes
[4]	4.00-5.00	sec	591 MBytes	4.96 Gbits/sec	0	1.46 MBytes
[4]	5.00-6.00	sec	608 MBytes	5.10 Gbits/sec	0	1.50 MBytes
[4]	6.00-7.00	sec	601 MBytes	5.04 Gbits/sec	0	1.53 MBytes
[4]	7.00-8.00	sec	588 MBytes	4.93 Gbits/sec	0	1.56 MBytes
[4]	8.00-9.00	sec	600 MBytes	5.04 Gbits/sec	0	1.57 MBytes
[4]	9.00-10.00	sec	590 MBytes	4.95 Gbits/sec	0	1.59 MBytes

[ID] Interval			iranster	Bandwidth	Ketr		
[4]	0.00-10.00	sec	5.67 GBytes	4.87 Gbits/sec	0	sender
[4]	0.00-10.00	sec	5.66 GBytes	4.86 Gbits/sec		receiver

iperf Done.

测试结果中的 Bandwidth 就是两台服务器之间的传输速度

3. 实验三 优化 Linux 系统磁盘

3.1. 实验目的

完成本实验, 您应该能够:

- 了解三种 I/O 调度器的优缺点并自主选择最优的调度器
- 了解时间戳对 Linux I/O 的影响

3.2. 实验要求

- 了解 I/O 调度器对 linux 的作用
- 了解文件记录访问时间戳的意义

3.3. 实验环境

本实验所需之主要资源环境如表 1-1 所示。

表 1-1 资源环境

服务器集群	3 个以上节点, 节点间网络互通, 各节点最低配置: 双核 CPU、8GB 内存、100G 硬盘
\= 4=TT1#	ContOC 7.4 (nui 苦文斯士)
运行环境 	CentOS 7.4 (gui 英文版本)
用户名/密码	root/password hadoop/password
服务和组件	Linux

3.4. 实验视图

3.5. 实验过程

3.5.1. 实验任务一: 修改 I/O 调度器

3.5.1.1. 步骤一: 查看当前系统支持的 I/O 调度器

在终端中输入命令 dmesg | grep -i scheduler,如图 2-1 所示

[hadoop@master iperf-3.1.1]\$ cd

[hadoop@master ~]\$ sudo dmesg | grep -i scheduler

返回值为

8.605539] io scheduler noop registered

- [8.605542] io scheduler deadline registered (default)
- [8.605572] io scheduler cfq registered

3.5.1.2. 步骤二: 查看硬盘的 IO 调度算法 I/O 调度器

终端中时输入命令 cat /sys/block/sda/queue/scheduler,如图 2-1 所示 [hadoop@master ~]\$ cat /sys/block/sda/queue/scheduler 返回值为

noop deadline [cfq]

3.5.1.3. 步骤三: 临时修改当前 I/O 调度器

在终端中输入 sudo chmod o+wr /sys/block/sda/queue/scheduler 给用户添加权限

[hadoop@master ~]\$ sudo chmod o+w /sys/block/sda/queue/scheduler

在终端中输入 echo noop > /sys/block/sda/queue/scheduler

[hadoop@master ~]\$ sudo echo noop > /sys/block/sda/queue/scheduler

在终端中输入 cat /sys/block/sda/queue/scheduler 查看该文件

[hadoop@master ~]\$ cat /sys/block/sda/queue/scheduler

[noop] deadline cfq

在终端中输入 sudo chmod o-wr /sys/block/sda/queue/scheduler 回收用户权限

[hadoop@master ~]\$ sudo chmod o-wr /sys/block/sda/queue/scheduler

3.5.1.4. 步骤四: 永久修改当前 I/O 调度器

在终端中输入 sudo grubby --update-kernel=ALL --args="elevator=noop"

[hadoop@master ~]\$ sudo grubby --update-kernel=ALL --args="elevator=noop"

重启后终端输入 cat /sys/block/sda/queue/scheduler

[hadoop@master ~]\$ sudo reboot

[root@master ~]# su hadoop

[hadoop@master root]\$ cd

[hadoop@master ~]\$ cat /sys/block/sda/queue/scheduler

[noop] deadline cfq

Tips:将 I/O 调度器调整为 noop 是最适合虚拟机在固态硬盘中的用户,对于机械硬盘的用户,一般来说 centos7 的默认 I/O 调度器已经为 deadline 所以无需调整

3.5.2. 实验任务二:禁止记录访问时间戳

3.5.2.1. 步骤一: 修改/etc/fstab 文件

在终端中输入命令 sudo vi /etc/fstab

[hadoop@master ~]\$ sudo vi /etc/fstab

在 defaults 后面添加 "noatime, nodiratime"表示不记录文件访问时间

#

/etc/fstab

Created by anaconda on Wed May 20 01:10:47 2020

#

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

#

UUID=9744bd7c-41db-47e8-b218-60f3a3d842f4 /

xfs

defaults,noatime,nodiratime

0 0

UUID=c1d20982-23c1-4974-9643-27cccd72eaae /boot

xfs

defaults 0 0

UUID=a1f33604-7437-4da0-b4ee-e08ef73bc514 swap

swap

defaults 0 0

3.5.2.2. 步骤二: 使配置生效

方法一: 重启系统

方法二: 在终端中输入命令: mount -o remount /

[hadoop@master ~]\$ sudo mount -o remount /

4. 实验四 优化 Linux 文件系统

4.1. 实验目的

完成本实验, 您应该能够:

- 掌握增大可打开文件描述符数目方法
- 掌握关闭透明大页面的方法
- 掌握关闭 selinux 的方法

4.2. 实验要求

- 熟悉常用 Linux 操作系统命令
- 了解 THP 在 linux 系统中的作用
- 了解 selinux 在 linux 系统中的作用

4.3. 实验环境

本实验所需之主要资源环境如表 1-1 所示。

表 1-1 资源环境

服务器集群	3 个以上节点, 节点间网络互通, 各节点最低配置: 双核 CPU、8GB 内存、100G 硬盘
运行环境	CentOS 7.4 (gui 英文版本)
用户名/密码	root/password hadoop/password
服务和组件	Linux

4.4. 实验视图

4.5. 试验过程

4.5.1. 实验任务一: 增大可打开文件描述符的数目

4.5.1.1. 步骤一: 修改 limits.conf

在终端中输入 sudo vi /etc/security/limits.conf

[hadoop@master ~]\$ sudo vi /etc/security/limits.conf

在文件中的#@student 和#End of flle 中间添加以下内容

#@student - maxlogins 4

- * hard nofile 1048576
- * soft nproc 1048576
- * hard nproc 1048576
- * soft memlock unlimited
- * hard memlock unlimited

#End of file

保存并退出

4.5.1.2. 步骤二: 修改 20-nproc.conf

在终端中输入 sudo vi /etc/security/limits.d/20-nproc.conf

[hadoop@master ~]\$ sudo vi /etc/security/limits.d/20-nproc.conf

将第一列为*的用户的限制 4096 修改为 1048576

* soft nproc 1048576

root soft nproc unlimited

重启后查看当前最大打开文件数

[hadoop@master ~]\$ sudo reboot

[root@master ~]# su hadoop

[hadoop@master root]\$ cd

[hadoop@master ~]\$ ulimit -u

返回值为 1048576 说明参数修改成功

4.5.2. 实验任务二: 关闭 THP

4.5.2.1. 步骤一: 查询 linux 内核版本以及透明大页面的状态

在终端中输入 cat /sys/kernel/mm/transparent_hugepage/enabled

[hadoop@master ~]\$ cat /sys/kernel/mm/transparent_hugepage/enabled

返回值为

[always] madvise never

4.5.2.2. 步骤二: 关闭透明大页面

在终端中输入 sudo vi /etc/default/grub

[hadoop@master ~]\$ sudo vi /etc/default/grub

修改 GRUB_CMDLINE_LINUX="crashkernel=auto rhgb quiet"为 GRUB_CMDLINE_LINUX="crashkernel=auto rhgb quiet transparent_hugepage=never"

4.5.2.3. 步骤三: 应用修改

在终端中输入 sudo grub2-mkconfig -o /boot/grub2/grub.cfg

[hadoop@master ~]\$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

重启后在终端输入 cat /sys/kernel/mm/transparent_hugepage/enabled

[hadoop@master ~]\$ sudo reboot

[root@master ~]# su hadoop

[hadoop@master root]\$ cd

[hadoop@master ~]\$ cat /sys/kernel/mm/transparent_hugepage/enabled always madvise [never]

4.5.3. 实验任务三: 关闭 SELinux

4.5.3.1. 步骤一: 查看 SELinux 的状态

[hadoop@master ~]\$ getenforce

Enforcing

若显示为 Enforcing 说明 SELinux 服务已经启动,若为 Disabled 说明 SELinux 已经关闭。

4.5.3.2. 步骤二: 关闭 SELinux

在终端中输入 sudo vi /etc/selinux/config

[hadoop@master ~]\$ sudo vi /etc/selinux/config

将 SELINUX=enforcing 改为 SELINUX=disabled

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

- # enforcing SELinux security policy is enforced.
- # permissive SELinux prints warnings instead of enforcing.
- # disabled No SELinux policy is loaded.

SELINUX=disabled

SELINUXTYPE= can take one of three two values:

- # targeted Targeted processes are protected,
- # minimum Modification of targeted policy. Only selected processes are protected.
- # mls Multi Level Security protection.

SELINUXTYPE=targeted

重启

在终端中输入 /usr/sbin/sestatus -v 查看 SELinux 的状态

[hadoop@master ~]\$ /usr/sbin/sestatus -v

SELinus status: disable

5. 实验五 优化 Linux 系统缓冲区

5.1. 实验目的

完成本实验, 您应该能够:

- 掌握优化 Linux 文件系统缓冲区的方法
- 掌握使用 hadoop 自带程序进行性能测试

5.2. 实验要求

- 了解预读缓冲区对 Linux 系统的作用
- 了解常用的 hadoop 集群操作

5.3. 实验环境

本实验所需之主要资源环境如表 1-1 所示。

表 1-1 资源环境

服务器集群	3 个以上节点, 节点间网络互通, 各节点最低配置: 双核 CPU、8GB 内存、100G 硬盘
运行环境	CentOS 7.4 (gui 英文版本)
用户名/密码	root/password hadoop/password
服务和组件	Linux, Hadoop2. 7

5.4. 实验视图

5.5. 实验过程

5.5.1. 实验任务一: 设置合理的预读取缓冲区大小

5.5.1.1. 步骤一: 查看磁盘占用情况

在终端中输入 df-h

[hadoop@master ~]\$ df -h

3.8G 0 3.8G 0%/dev

tmpfs 3.9G 0 3.9G 0% /dev/shm tmpfs 3.9G 9.0M 3.9G 1% /run

tmpfs 3.9G 0 3.9G 0%/sys/fs/cgroup

/dev/sda1 297M 157M 141M 53%/boot

tmpfs 781M 4.0K 781M 1% /run/user/42 tmpfs 781M 20K 781M 1% /run/user/1000

5.5.1.2. 步骤二: 读取设备的预读值

在终端中输入 blockdev --getra /dev/sda1 [hadoop@master ~]\$ sudo blockdev --getra /dev/sda1 返回值为 8192

5.5.1.3. 步骤三:修改设备的预读值

在终端中输入 blockdev --setra 10240 /dev/sda1 以修改预读值为 10240 [hadoop@master ~]\$ sudo blockdev --setra 10240 /dev/sda1

5.5.1.4. 步骤四: 再次查看预读值

在终端中输入 blockdev --getra /dev/sda1 [hadoop@master ~]\$ sudo blockdev --getra /dev/sda1 返回值为 10240 说明参数修改成功

5.5.2. 实验任务二: 利用 hadoop 自带测试程序测试磁盘性能

修改了磁盘,文件系统以及文件缓冲区之后可以利用 hadoop 自带的测试程序来测试磁盘的 传输性能

5.5.2.1. 步骤一: 启动 hadoop 集群

在 master, slave1 以及 slave2 上启动 zookeeper

[hadoop@master ~]\$ zkServer.sh start

[hadoop@slave1 ~]\$ zkServer.sh start

[hadoop@slave2 ~]\$ zkServer.sh start

在 master 上直接启动集群

[hadoop@master ~]\$ start-all.sh

5.5.2.2. 步骤二:进行测试

进入到/usr/local/src/hadoop/share/hadoop/mapreduce/下

[hadoop@master ~]\$ cd /usr/local/src/hadoop/share/hadoop/mapreduce/

利用命令进行写入文件测试

[hadoop@master mapreduce]\$ hadoop jar hadoop-mapreduce-client-jobclient-2.7.1-tests.jar TestDFSIO -write -size 1GB

测试结果

20/08/05 09:04:29 WARN hdfs.DFSClient: DFSInputStream has been closed already

20/08/05 09:04:29 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write

20/08/05 09:04:29 INFO fs.TestDFSIO: Date & time: Wed Aug 05 09:04:29 CST 2020

20/08/05 09:04:29 INFO fs.TestDFSIO: Number of files: 1 20/08/05 09:04:29 INFO fs.TestDFSIO: Total MBytes processed: 1024.0

20/08/05 09:04:29 INFO fs.TestDFSIO: Throughput mb/sec: 9.683947721813471 20/08/05 09:04:29 INFO fs.TestDFSIO: Average IO rate mb/sec: 9.683947563171387 20/08/05 09:04:29 INFO fs.TestDFSIO: IO rate std deviation: 0.0011379476762855877

20/08/05 09:04:29 INFO fs.TestDFSIO: Test exec time sec: 131.786 20/08/05 09:04:29 INFO fs.TestDFSIO: 利用命令进行读取文件测试

[hadoop@master mapreduce]\$ hadoop jar hadoop-mapreduce-client-jobclient-2.7.1-tests.jar TestDFSIO -read -size 1GB

20/08/05 09:06:52 WARN hdfs.DFSClient: DFSInputStream has been closed already

20/08/05 09:06:52 INFO fs.TestDFSIO: ----- TestDFSIO -----: read

20/08/05 09:06:52 INFO fs.TestDFSIO: Date & time: Wed Aug 05 09:06:52 CST 2020

20/08/05 09:06:52 INFO fs.TestDFSIO: Number of files: 1 20/08/05 09:06:52 INFO fs.TestDFSIO: Total MBytes processed: 1024.0

20/08/05 09:06:52 INFO fs.TestDFSIO: Throughput mb/sec: 15.166550646503843 20/08/05 09:06:52 INFO fs.TestDFSIO: Average IO rate mb/sec: 15.166550636291504 20/08/05 09:06:52 INFO fs.TestDFSIO: IO rate std deviation: 0.0018087053803741643

20/08/05 09:06:52 INFO fs.TestDFSIO: Test exec time sec: 98.047

20/08/05 09:06:52 INFO fs.TestDFSIO:

利用命令删除生成的测试数据

[hadoop@master mapreduce]\$ hadoop jar hadoop-mapreduce-client-jobclient-2.7.1-tests.jar TestDFSIO -clean

如果想进行多文件的测试可以将后面的参数进行修改

[hadoop@master mapreduce]\$ hadoop jar hadoop-mapreduce-client-jobclient-2.7.1-tests.jar TestDFSIO -write -nrFiles 10 -fileSize 128MB

例如这条命令是用与测试 10 个 128MB 文件写入速度,-nrFiles 为指定文件数,-fileSize 为指定每个文件的大小,读取同理