PBSH 32410 / STAT 22401 Winter 2025 J. Dignam

Exam 2

March 11 10:00-12:00

Details: 2 hrs, page of notes (two-sided)

Important Topics

- Multiple Linear Regression General
 - interpreting β s
 - categorical predictors/indicator variables and continuous variables
 - models with main effects vs. interactions how different?
- Multiple Linear Regression Special Situations
 - familiarity with model violations recognize from plots, etc

- transformations on Y-
 - * log transforms what does this mean for β ?
 - * Box-Cox what is being evaluated here?
- familiarity with transformation issues why we use, etc

• Logistic Regression

- relationship of frequency data to the model and odds ratios
- basic interpretation of model coefficients log odds ratio and odds ratios
- calculating a probability of event (1) for a given set of covariate values

Poisson Regression

- relationship of mean count and rate data to the model and incidence rate ratios
- basic interpretation of model coefficients log of mean counts or rate, etc

Data on FEV1 predicted by age at three geographic centers

. by center: sum a	•					
-> center = 1						
Variable					Max	
age	21	62.04762	8.558482 .468614	41		
-> center = 2						
Variable						
age	21	61.57143	9.452891 .3018664	44	75	
-> center = 3						
Variable						
age	24	60.04167	8.306515 .4365359	42	73	

. reg fev1 center2 center3

Source	1	SS			df		MS	1	Number of	obs	=	66
	+-							- F	F(2, 63)		=	8.77
Model	1	2.951171	.75		2	1.475	558588	3 F	Prob > F		=	0.0004
Residual	1	10.59740	99		63	.1682	212855	5 F	R-squared		=	0.2178
	+-							- <i>I</i>	Adj R-squa	red	=	0.1930
Total	1	13.54858	316		65	.2084	139718	3 F	Root MSE		=	.41014
fev1		Coef						P> t	t [95 	% Co	onf. :	Interval]
center2		.529		265712		4.18	0.0		.27611	52		.78198
center3	1	.236		122552		1.93	0.0)59	00876	98	.48	310317
_cons	1	2.697	.0	894994		30.14	0.0	000	2.5187	69	2.8	376469

What does this model say and why does it reproduce means by center?

. reg fev1 age center2 center3

Source	l SS	df	MS	Number of ob	os =	66
	+			F(3, 62)	=	12.31
Model	5.05636517	3	1.68545506	Prob > F	=	0.0000
Residual	8.49221647	62	.136971233	R-squared	=	0.3732
	+			Adj R-square	ed =	0.3429
Total	13.5485816	65	.208439718	Root MSE	=	.3701
fev1		Std. Err.	t P		Conf.	Interval]
200		.0053203		.0000314		0102226
age	0206577	.0055205	-3.92	.0000314	1920	0102220
center2	.5191154	.1142423	4.54 0	.000 .2907	' 483	.7474825
center2 center3		.1142423		.000 .2907 .0850277		.7474825
	. 1942915		1.75 0		'966	

What is meaning of intercept here?

What is predicted FEV for 45 year old from center 2?

Linear Regression Models - with interaction effects

. reg fev1 age center2 center3 agebycent2 agebycent3

. . .

fev1	 -+-	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	İ	0117189	.0097259	-1.20	0.233	0311736	.0077358
center2	1	1.282685	.8193459	1.57	0.123	3562513	2.92162
center3	1	1.052032	.8314677	1.27	0.211	6111514	2.715214
agebycent2	1	0123307	.0131199	-0.94	0.351	0385744	.0139131
agebycent3		0139804	.0134875	-1.04	0.304	0409595	.0129987
_cons	1	3.424748	.6089115	5.62	0.000	2.206744	4.642753

Slope in center 1: -.01172 per year of age

Slope in center 2: -.01172 - .01233 = -.02405 per year of age

Slope in center 2: -.01172 - .01398 = -.02570 per year of age

not statistically different here, based on tests on the interaction coefficients. What is another way to test?

Some Diagnostic plots for OLS

(https://tobeneo.wordpress.com/2013/12/08/multiple-regression-iii/)

Transformations

We want to predict radioactivity counts at different times from contamination.

Is there a transformation that could help?

Transformations

```
. boxcox counts time
Fitting comparison model
Iteration 4: Log likelihood = -39.643945
Fitting full model
Iteration 0: Log likelihood = -47.45472
Iteration 7: Log likelihood = -4.4707423
                                        Number of obs =
                                                             12
                                        LR chi2(1)
                                                          70.35
Log likelihood = -4.4707423
                                        Prob > chi2
                                                          0.000
     counts | Coefficient Std. err. z P>|z| [95% conf. interval]
_____
     /theta | .0117264 .0096365 1.22 0.224 -.0071608 .0306136
Estimates of scale-variant parameters
```

What is the suggested new response variable to predict w/time?

$$Y' = (Y^{\theta} - 1)/\theta$$

Since theta not different from zero, natural log transform is suggested. Do data look linear on log(counts) scale?

Transformations

. reg logcounts time

. . .

•	Coefficient				[95% conf.	interval]
time	5005141 4.636288	.007411	-67.54	0.000	5170269 4.489752	4840013

How to interpret?

Data on possible sources of food poisoning at a gathering

. list, clean

	crabsalad	psalad	n	isick
1.	. 0	0	23	0
2	. 0	0	0	1
3	. 0	1	24	0
4	. 0	1	22	1
5	. 1	0	4	1
6	. 1	0	31	0
7	. 1	1	80	0
8	. 1	1	120	1

Of those who had neither crab or potato salad, 0 out of 23 sick,

Of those who had potato salad only, 24 were not sick, 24 were sick,

etc

. tab isick crabsalad [fweight=n]

		crabsal	ad	
isick	1	0	1	Total
	-+			+
0	1	47	111	l 158
1	1	22	124	l 146
	-+			+
Total	1	69	235	304

Odds ratio for eating crab salad?

OR = (odds of illness in exposed) / (odds of illness in unexposed)

$$=\frac{124/111}{22/47}=2.39$$

Running the logistic model:

. logit isick crabsalad [fweight=n]

Iteration 0: log likelihood = -210.47984

. . .

Logistic regression	Number of obs	=	304
	LR chi2(1)	=	9.51
	Prob > chi2	=	0.0020
Log likelihood = -205.72331	Pseudo R2	=	0.0226

isick		Std. Err.				Interval]
· ·	.8698565		3.00	0.003	.3024658 -1.26541	1.437247 2528

What is the odds ratio? $\exp(0.86985) = 2.39$

What is being tested? What is the inferential conclusion?

Logistic regression Number of obs = 304LR chi2(2) = 60.45Prob > chi2 = 0.0000Log likelihood = -180.25338 Pseudo R2 = 0.1436

isick	•	Std. Err.		P> z	[95% Conf	. Interval]
crabsalad	.6097114 2.825864	.3169859	1.92	0.054 0.000		1.230992 3.876733
_cons	-3.007495	.5675813	-5.30	0.000	-4.119934	-1.895056

Which food item has greater risk? What is probability of being sick for those who had both?

$$Pr(sick|both\ items) = \frac{\exp(-3.007 + 0.6097 + 2.8258)}{1 + \exp(-3.007 + 0.6097 + 2.8258)} = 0.6055$$

What is the log odds ratio comparing someone who had crab salad only to someone who had potato salad only?

Write out the difference:

$$(-3.007 + 2.826) - (-3.007 + .6097) = 2.216$$

and $\exp(2.216) = 9.17$

Note that OR for potato salad is $\exp(2.83) = 16.9$ and OR for crab salad is $\exp(.610) = 1.84$

ratio is 9.17 - OR for potato salad vs crab salad

Count Data and Regression Models

Ex: 3 different garden plantings are monitored for monarch butterfly visits. Counts are made over a fixed period:

	Gtype	count	g1	g3
1.	A	0	1	0
2.	A	3	1	0
3.	A	2	1	0
4.	A	2	1	0
5.	A	1	1	0
	•			
9.	В	5	0	0
10.	В	9	0	0
11.	В	5	0	0
12.	В	5	0	0
13.	В	7	0	0
	•			
17.	C	8	0	1
18.	C	14	0	1
19.	C	12	0	1
20.	C	12	0	1
21.	C	10	0	1

Count Data and Regression Models

. by Gtype: s	um count					
-> Gtype = A						
			Std. dev.			
	8	1.75	1.28174	0	3	
Gtype = B						
			Std. dev.			
count	l 8	6.5	2.329929	5	11	
-> Gtype = C						
			Std. dev.			
	•		3.284161		18	

Count Data and Regression Models

. poisson count g1 g3

Iteration 0: Log likelihood = -50.669741

. . .

	rval]
g1 -1.312186 .3010969 -4.36 0.000 -1.902325722 g3 .5920511 .1728267 3.43 0.001 .253317 .930 _cons 1.871802 .138675 13.50 0.000 1.600004 2.	07852

What are these numbers? Output is in $\log_e(counts)$

$$\exp(1.871802) = 6.5$$
 - mean count in baseline (garden 2) group

$$\exp(1.871802 - 1.312186) = 1.75$$
 - mean count in garden 1

$$\exp(1.871802 + .5920511) = 11.75$$
 - mean count in garden 3

Rate Data and Regression Models

Here are skin cancer rates for two cites (Minneapolis (0) and Dallas (1)) and by age (in groups, midpoint of age used)

. list, clean

	cases	city	age	pyrs
1.	1	0	19.5	172675
2.	16	0	29.5	123065
3.	30	0	29.5	96216
4.	71	0	49.5	92051
5.	102	0	59.5	72159
6.	130	0	69.5	54722
7.	133	0	79.5	32185
8.	40	0	89.5	8328
9.	4	1	19.5	181343
10.	38	1	29.5	146207
11.	119	1	39.5	121374
12.	221	1	49.5	111353
13.	259	1	59.5	83004
14.	310	1	69.5	55932
15.	226	1	79.5	29007
16.	65	1	89.5	7503

Rate Data and Regression Models

Run the rate table by city:

. ir cases city pyrs

Incidence-rate comparison

1	city				
1	Exposed Unexposed	.	Total		
		+-			
cases	1242 523	5	1765		
pyrs	735723 651401	.	1387124		
+		+-			
1		1			
Incidence rate	.0016881 .0008029	1	.0012724		
1		1			
ĺ	Point estimate	ĺ	[95% conf.	interval]	
1		+-			
Inc. rate diff.	.0008853		.0007688	.0010017	
Inc. rate ratio	rate ratio 2.102587		1.896843	2.333224	(exact)

What is the interpretation?

Rate Data and Regression Models Run the model with city as predictor

poisson cases city, exposure(pyrs)
. . .

Poisson regression

·	Coefficient					interval]
city _cons	.7431685 -7.127299 1	.0521268 .0437269	14.26	0.000	.641002 -7.213002	.8453351 -7.041596

Interpretation: Output in (natural) log(incidence rate) for baseline and log increase/decrease for covariate increment

 $\exp(-7.127299) = 0.000803$ - incidence rate in Minn.

 $\exp(-7.127299 + 0.7431685) = 0.00169$ - incidence rate in Dallas.

Incidence rate ratio is 0.00169/0.00080=2.10 - same as that obtained from the incidence table