Алгебра. Неофициальный конспект

Лектор: Алексей Владимирович Степанов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Гом	ологическая алгебра	2
	1.1	Абелевы категорий	2
	1.2	Компле́ксы	4
	1.3	Гомологии	5
	1.4	Функторы между абелевыми категориями	
	1.5	Резольвенты	
	1.6	Резольвенты. Левый производный функтор	12
		1.6.1 Длинная точная последовательность левых производных функторов	
	1.7	Производные функторы для \otimes	
	1.8	Производные функторы для Нот	
	1.9	Гомологии и когомологии групп	
2	Teo	рия Галуа	21
	2.1	Базовые понятия про расширения полей	21
		2.1.1 Алгебраическое замыкание одного поля в другом	
		2.1.2 Поле разложения	
		2.1.3 Сепарабельность	

Глава 1

Гомологическая алгебра

Лекция I 12 февраля 2024 г.

1.1 Абелевы категории

Напомним некоторые определения из предыдущей лекции.

Определение 1.1.1 (Предаддитивная категория \mathscr{A}). $\forall A, B \in \mathscr{A} : \mathrm{Mor}_{\mathscr{A}}(A, B)$ образует абелеву группу, и везде, где определена, выполнена дистрибутивность:

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
 $(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha$

Определение 1.1.2 (Бипроизведение). Такая диаграмма, что

$$A \stackrel{\pi_1}{\longleftarrow} C \stackrel{\pi_2}{\longleftarrow} B$$

- 1. $\pi_1 \iota_1 = \mathrm{id}_A$.
- 2. $\pi_2 \iota_2 = id_B$.
- 3. $\iota_2 \pi_2 + \iota_1 \pi_1 = id_C$.
- 4. $\pi_2 \iota_1 = 0$.
- 5. $\pi_1 \iota_2 = 0$.

Определение 1.1.3 (Аддитивная категория). Предаддитивная категория с финальным объектом и произведениями (любых двух объектов).

Эквивалентно, существуют инициальный объект и копроизведения, эквивалентно существуют нулевой объект и бипроизведения.

Определение 1.1.4 (Предабелева категория). Аддитивная категория, в которой у всех морфизмов есть ядро и коядро.

Определение 1.1.5 ((Ко)нормальный мономорфизм (эпиморфизм)). Он является (ко)эквалайзером (какой-то, неважно какой, пары стрелок).

Определение 1.1.6 (Абелева категория). Предабелева категория, в которой все мономорфизмы нормальны.

Пусть \mathscr{C} — категория. Вспомним про категорию стрелок $\mathscr{Arr}\mathscr{C}$, в которой объекты — стрелки из $\mathrm{Mor}(\mathscr{C})$, множество морфизмов между ϕ, ψ — это

$$\operatorname{Mor}_{\mathscr{Apr}_{\mathscr{C}}}(\phi,\psi) = \{(\alpha,\beta) | \alpha : \operatorname{source}(\phi) \to \operatorname{source}(\psi), \beta : \operatorname{target}(\phi) \to \operatorname{target}(\psi), \beta \phi = \psi \alpha \}$$

$$\begin{array}{ccc}
 & \xrightarrow{\phi} & \bullet \\
\downarrow^{\alpha} & \downarrow^{\beta} \\
 & \xrightarrow{\psi} & \bullet
\end{array}$$

Далее будем обозначать за $\ker f$ ядро стрелки, как уравнитель стрелки и нуля, а за $\ker f := \operatorname{source}(\ker f)$ — объект (в конкретных категориях типа $\operatorname{mod-R}$ это докатегорное понятие ядра — подмодуль без стрелки-вложения).

Лемма 1.1.1. ker, coker — функторы $\mathcal{A}rr\mathcal{A} \to \mathcal{A}rr\mathcal{A}$.

Доказательство. Достаточно доказать для ядер, для коядер двойственно.

Определим действие ker на морфизмах:

$$\operatorname{Ker} f \xrightarrow{\ker f} A \xrightarrow{f} B$$

$$\downarrow \exists ! \phi \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow \beta$$

$$\operatorname{Ker} f' \xrightarrow{\ker f'} A' \xrightarrow{f'} B'$$

 $f \cdot \ker f = 0 \Rightarrow \beta \cdot f \cdot \ker f = 0 \Rightarrow f' \cdot \alpha \cdot \ker f = 0$, откуда по универсальному свойству ядра $\exists ! \phi : \ker f' \cdot \phi = \alpha \cdot \ker f$.

Положим $\ker(\alpha,\beta)=(\phi,\alpha)$. Далее несложно проверить, что данное определение сохраняет композицию и id.

Определение 1.1.7 (Точный функтор). Функтор, сохраняющий ядра и коядра.

 $\mathit{Интересный}\ \phi \mathit{акm}\ (\mathsf{Teopema}\ \Phi \mathsf{peйдa} - \mathsf{M}\mathsf{итчеллa}\ (\mathsf{Freyd}\ - \mathsf{Mitchell})).$ Для любой малой абелевой категории $\mathscr{A}\colon \exists R\in \mathit{Ring}\ (\mathsf{нeo}$ бязательно коммутативное кольцо с единицей) и строгий, полный, точный функтор $\mathscr{A}\to \mathit{mod}\ -R$.

Предложение 1.1.1. Для всякого морфизма $f:A\to B$ найдётся пунктирная стрелка, делающая диаграмму коммутативной.

Более того, в абелевой категории эта стрелка — изоморфизм.

Доказательство. Следует из эпи-моно разложения, доказанного на прошлой лекции, или из теоремы Митчелла.

Само построение пунктирной стрелки получается из универсальных свойств, а доказательство того, что это — изо — непростое. \Box

Лемма 1.1.2. Пусть \mathscr{C} — полная подкатегория в абелевой категории \mathscr{A} . Следующие условия равносильны

- С является абелевой.
- $-0_{\mathscr{A}} \in \mathscr{C}$, здесь, как обычно, $0_{\mathscr{A}}$ нулевой объект категории \mathscr{A} .
 - в содержит бипроизведение любых двух своих объектов.

- Ядра и коядра (взятые в А) любых морфизмов из С лежат в С.

Доказательство.

- ←. Очевидно.
- ⇒. Чуть сложнее, доказывать не будем (и использовать тоже).

1.2 Комплексы

Если противное не оговорено, то всё происходит в абелевой категории \mathscr{A} , большими буквами обозначены объекты данной категории, маленькими — морфизмы.

Определение 1.2.1 (Компле́кс). Такая диаграмма, что $\forall k \in \mathbb{Z} : d_k \cdot d_{k+1} = 0$.

$$\cdots \xrightarrow{d_{n+1}} C_{n+1} \xrightarrow{d_n} C_n \xrightarrow{d_{n-1}} C_{n-1} \xrightarrow{d_{n-2}} \cdots$$

Альтернативно, комплекс можно рассматривать, как функтор из категории (\mathbb{Z},\geqslant) (полученной из частично упорядоченного множества) в \mathscr{A} (при котором образ композиции любых двух нетождественных морфизмов нулевой). Таким образом, комплексы — полная подкатегория в категории этих функторов.

Eщё один, следующий, взгляд на комплексы работает только для конкретной категории, уже вложенной в R-модули.

Определение 1.2.2 (Градуированный объект). $C_{\bullet} = \bigoplus_{n \in \mathbb{Z}} C_n$ с морфизмом $d: C_{\bullet} \to C_{\bullet}$, таким, что $d(C_n) \subset C_{n+p}$ для некоторой фиксированной *степени* объекта p (чаще всего она равна ± 1).

Определение 1.2.3 (Дифференциальный модуль). Градуированный объект (C_{\bullet},d) со свойством $d^2=0$.

Определение 1.2.4 (Комплекс). Дифференциальный модуль степени -1.

При развороте стрелок получается дифференциальный модуль степени +1, также известный, как кокомплекс:

$$\cdots \xleftarrow{d^{n+2}} C^{n+1} \xleftarrow{d^{n+1}} C^n \xleftarrow{d^n} C^{n-1} \xleftarrow{d^{n-1}} \cdots$$

Предостережение. У кокомплекса несколько другая нумерация стрелок, но мы их практически не будем использовать.

Определение 1.2.5 (Сдвиг комплекса (C_{\bullet},d) на $p \in \mathbb{Z}$). Комплекс $(C[p]_{\bullet},d[p])$, где $C[p]_n = C_{n+p}$ и $d[p]_n = d_{n+p}$.

Иногда при сдвиге комплекса определяют $d[p]_n = (-1)^p d_{n+p}$, но мы так делать не будем.

Лекция II

19 февраля 2023 г.

Определение 1.2.6 (Морфизм дифференциальных модулей $\bigoplus A_n \to \bigoplus B_n$). Такое $f:\bigoplus A_n \to \bigoplus B_n$, что $f(A_n) \subset B_n$, и диаграммы коммутативны:

$$A_{n+1} \xrightarrow{d_n^A} A_n$$

$$\downarrow^f \qquad \qquad \downarrow^f$$

$$B_{n+1} \xrightarrow{d_n^B} B_n$$

На языке абелевых категорий, надо рассматривать не одно отображение f, так как отношение $f(A_n) \subset B_n$ не выражается, а серию морфизмов $f_n : A_n \to B_n$.

Для всякого морфизма f коммутативна диаграмма в категории комплексов:

$$A[1] \xrightarrow{d^A} A$$

$$\downarrow^{f[1]} \quad \downarrow^f$$

$$B[1] \xrightarrow{d^B} B$$

Если рассматривать комплексы, как функторы из категории (\mathbb{Z}, \geqslant) , то морфизмы между комплексами — естественные преобразования между функторами.

Теорема 1.2.1. Категория комплексов абелева.

Доказательство.

Лемма 1.2.1. Если $\mathscr C$ — малая категория, $\mathscr A$ — абелева, то $\operatorname{Func}(\mathscr C,\mathscr A)$ — тоже абелева категория.

Доказательство леммы.

Нулевой объект — функтор \mathbb{O} , сопоставляющий каждому объекту $0_{\mathscr{A}}$, и каждой стрелке — нуль-стрелку.

Для двух функторов \mathscr{F},\mathscr{G} : $(\mathscr{F}\oplus\mathscr{G})(C)=\mathscr{F}(C)\oplus\mathscr{G}(C)$.

Если $\eta \in \mathrm{Mor}_{\mathrm{Func}(\mathscr{C},\mathscr{A})}(\mathscr{F},\mathscr{G})$ (то есть η — естественное преобразование $\mathscr{F} \to \mathscr{G}$), то $(\mathrm{Ker}\,\eta)(C) = \mathrm{Ker}(\eta_C)$.

Аналогично (лемма 1.1.1), определяется ker. Аналогично с коядрами.

Далее по-хорошему надо проверить, что выполняются все универсальные свойства, но мы этого делать не будем. \Box

Ссылаемся на (лемма 1.1.2).

$$\cdots \longrightarrow A_{n+1} \xrightarrow{d_n^A} A_n \xrightarrow{d_{n-1}^A} A_{n-1} \longrightarrow \cdots$$

$$\cdots \longrightarrow B_{n+1} \xrightarrow{d_n^B} B_n \xrightarrow{d_{n-1}^B} B_{n-1} \longrightarrow \cdots$$

$$\cdots \longrightarrow A_{n+1} \oplus B_{n+1} \xrightarrow{d_n^{A \oplus B}} A_n \oplus B_n \xrightarrow{d_{n-1}^{A \oplus B}} A_{n-1} \oplus B_{n-1} \longrightarrow \cdots$$

Если $d^A \cdot d^A = 0$, и $d^B \cdot d^B = 0$, то (из теоремы Митчелла уж точно очевидно) $d^{A \oplus B} \cdot d^{A \oplus B} = 0$.

Ядра тоже являются комплексами, так как на языке конкретных категорий это просто подмодули. Двойственно с коядрами. \Box

1.3 Гомологии

Дифференциал d является морфизмом комплексов $d:C[1]\to C$ (по-хорошему, $C[1]_{\bullet}\to C_{\bullet}$, но точку будем опускать):

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_n} C_n \longrightarrow \cdots$$

$$\downarrow^{d_n} \qquad \downarrow^{d_{n-1}}$$

$$\cdots \longrightarrow C_n \xrightarrow{d_{n-1}} C_{n-1} \longrightarrow \cdots$$

Ниже мы по произвольному комплексу C строим новые комплексы.

Определение 1.3.1 (Циклы). Комплекс $Z=Z(C)\stackrel{def}{=} \operatorname{Ker} d[-1].$

Определение 1.3.2 (Границы). Комплекс $B = B(C) \stackrel{def}{=} \operatorname{Im} d[-1]$.

По определению, образ — это ядро коядра: $\operatorname{Im} \phi \stackrel{def}{=} \operatorname{Ker}(\operatorname{coker} \phi)$. В абелевой категории канонически $\operatorname{Im} \phi \cong \operatorname{CoIm} \phi \stackrel{def}{=} \operatorname{CoKer}(\ker \phi)$.

На языке конкретных категорий, так как $d^2=0$, то $B\subset Z$, и можно определить фактормодуль $H\coloneqq Z/B-\mathit{гомологиu}.$

То же самое можно сказать на языке универсальных свойств, хотя в будущем мы, ссылаясь на теорему Митчелла, будем всё писать исключительно в терминах элементов.

$$Z[1] \xrightarrow{z[1]} C[1] \xrightarrow{d} C \xrightarrow{d[-1]} C[-1]$$

$$\downarrow \downarrow \qquad \qquad \uparrow z$$

$$B \xrightarrow{\beta} Z \xrightarrow{\operatorname{coker} \beta} H \xrightarrow{} 0$$

Построение H в терминах универсальных свойств. Так как $d[-1] \cdot d = 0$, то можно пропуститься через ядро: $\exists ! \alpha : z \cdot \alpha = d$.

Далее, $z \cdot \alpha \cdot z[1] = d \cdot z[1] = 0$, а так как z — моно, то $\alpha \cdot z[1] = 0$. Значит, можно пропуститься через коядро, то есть $\exists ! \beta : \beta b = \alpha$. Далее H определяется, как коядро β .

Следствие 1.3.1. B комплексах Z, B, H нулевые дифференциалы.

Примеры (Гомологии окружности).

 \bullet Рассмотрим окружность, как симплициальное множество: $a \overbrace{\stackrel{\iota}{\smile}} b$

Построим $C_0 = \mathbb{Z}a + \mathbb{Z}b$ — свободная абелева группа на $\{a,b\}$, $C_1 = \mathbb{Z}x + \mathbb{Z}y$ — тоже свободная абелева группа, но на образующих $\{x,y\}$. Вместо \mathbb{Z} можно было взять любое другое кольцо.

Все остальные элементы комплекса объявляются нулями.

$$0 \longrightarrow C_1 \stackrel{d_1}{\longrightarrow} C_0 \longrightarrow 0$$

Определим d_1 , как «конец минус начало»: $\begin{cases} d_1(x) = b - a, \\ d_1(y) = a - b \end{cases}$.

Теперь
$$\begin{cases} Z_0 = C_0 \\ Z_1 = \mathbb{Z}(x+y) \end{cases} \quad \begin{cases} B_0 = \mathbb{Z}(b-a) \\ B_1 = 0 \end{cases} \quad \text{и} \begin{cases} H_0 = Z_0/B_0 = (\mathbb{Z}a + \mathbb{Z}b)/\mathbb{Z}(b-a) & \cong \mathbb{Z} \\ H_1 = Z_1/B_1 = \mathbb{Z}(x+y) & \cong \mathbb{Z} \end{cases}.$$

• Теперь триангулируем окружность по-другому: $z = b \\ y \\ d_1(x) = b - a, \\ d_1(y) = c - b, \\ d_1(z) = a - c \\$

Теперь
$$\begin{cases} Z_0 = C_0 \\ Z_1 = \mathbb{Z}(x+y+z) \end{cases}, \begin{cases} B_0 = \mathbb{Z}(b-a) + \mathbb{Z}(c-b) \\ B_1 = 0 \end{cases}$$
 и
$$\begin{cases} H_0 & \cong \mathbb{Z} \\ H_1 = \mathbb{Z}(x+y+z)/0 & \cong \mathbb{Z} \end{cases}$$

Ответ получился тот же самый, и это не случайно — есть теорема, что сингулярные/симплициальные гомологии (они равны для клеточных пространств) не зависят от триангуляции.

6

Упражнение 1.3.1. Триангулировать сферу, и вычислить гомологии. Дифференциал от треугольника ABC (ориентация — порядок вершин — важна) определяют, как его обход вдоль периметра: AB + BC + CA.

Теорема 1.3.1 (Длинная точная последовательность гомологий). Пусть имеется точная последовательность комплексов $0 \to A' \to A \to A'' \to 0$.

Существует длинная точная последовательность гомологических групп

$$\cdots \longrightarrow H' \longrightarrow H \longrightarrow H'' \longrightarrow H'[-1] \longrightarrow H[-1] \longrightarrow \cdots$$

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально: если есть другая короткая точная последовательность, и морфизм между ними, то по отношению к ним найдётся естественный морфизм полученных длинных точных последовательностей гомологий.

Доказательство. Сначала строим δ .

Для $z \in Z_n''$, обозначим за [z] класс z в H_n'' .

$$0 \longrightarrow A'_{n} \longrightarrow A_{n} \stackrel{\pi}{\longrightarrow} A''_{n} \longrightarrow 0$$

$$\downarrow^{d'} \qquad \downarrow^{d} \qquad \downarrow^{d''}$$

$$0 \longrightarrow A'_{n-1} \stackrel{i}{\longrightarrow} A_{n-1} \longrightarrow A''_{n-1} \longrightarrow 0$$

Положим $\delta([z])\coloneqq [i^{-1}(d(\pi^{-1}(z)))]$, где $\pi^{-1}(z)$ — произвольный прообраз (он есть, так как π сюръективно).

Дальше надо проверить, что определение корректно, и последовательность точна. Это типичный диаграммный поиск, который невозможно записывать, и его несложно воспроизвести самостоятельно.

Лекция III 4 марта 2023 г.

Теперь приведём другое доказательство существования длинной точной последовательности гомологий, опирающееся на лемму о змее.

Лемма 1.3.1 (О змее). Пусть даны два комплекса $A' \to A \to A'' \to 0$ и $0 \to B' \to B \to B''$, и морфизм между ними. Тогда имеется длинная точная последовательность из пунктирных стрелок.

Короткие стрелки получены из действия соответственных функторов (ядра и коядра), а связующий гомоморфизм определён δ определён в доказательстве, и естественен (функториален).

Доказательство. Диаграммный поиск.

Теорема 1.3.2 (Длинная точная последовательность гомологий на бис). Пусть имеется точная последовательность комплексов $0 \to A' \to A \to A'' \to 0$.

Существует длинная точная последовательность гомологических групп

$$\cdots \longrightarrow H' \longrightarrow H \longrightarrow H'' \longrightarrow H'[-1] \longrightarrow H[-1] \longrightarrow \cdots$$

где связующий морфизм δ будет построен в доказательстве.

Более того, это всё функториально.

Доказательство. Длинная точная последовательность комплексов означает наличие следующей коммутативной диаграммы (где строки точны, и столбцы — комплексы)

Пусть циклы, границы и гомологии в комплексе A обозначаются $Z_{\bullet}, B_{\bullet}, H_{\bullet}$ соответственно, в $A' - Z'_{\bullet}, B'_{\bullet}, H'_{\bullet}$, , в $A' - Z''_{\bullet}, B''_{\bullet}, H''_{\bullet}$. Из коммутативности диаграммы B'_n вправо уходит в B_n , а B_n , в свою очередь — в B''_n .

Чтобы воспользоваться леммой о змее, построим следующую диаграмму, взяв коядро верхней строки, ядро — нижней, и дорисовав сверху — ядра вертикальных стрелок, снизу — коядра.

Обоснуем, каким образом получилась такая диаграмма. По определению $d_n(B_n)=\{0\}$, поэтому $A_n \xrightarrow{d_n} A_{n-1}$ пропускается через фактор, и получается отображение $\widetilde{d}_n: A_n/B_n \to A_{n-1}$. Так как A — комплекс, то $\widetilde{d}_n(A_n/B_n) \subset Z_{n-1}$, можно сузить codomain, получая \overline{d}_n . По определению $H_n=Z_n/B_n$, поэтому действительно $H_n=\mathrm{Ker}(d_n)$. В свою очередь, $H_{n-1}=Z_{n-1}/B_{n-1}$, и это действительно $\mathrm{CoKer}(d_n)$.

Отображение $A_n \to A_n''$ было эпиморфизмом, после взятия коядра эпиморфизмом оно и осталось. Двойственно, $A_{n-1}' \to A_{n-1}$ было мономорфизмом, мономорфизмом оно и осталось.

Применяя лемму о змее, получаем утверждение теоремы.

1.4 Функторы между абелевыми категориями

Пусть \mathscr{A}, \mathscr{B} — абелевы категории.

Определение 1.4.1 (Аддитивный функтор $\mathscr{F}:\mathscr{A}\to\mathscr{B}$). Такой функтор, что $\forall \alpha,\beta\in\operatorname{Mor}(\mathscr{A}):\mathscr{F}(\alpha+\beta)=\mathscr{F}(\alpha)+\mathscr{F}(\beta)$ всегда, когда определено.

Рассмотрим произвольную короткую точную последовательность $0 \to A' \to A \to A'' \to 0$ в \mathscr{A} . Подействовав на неё функтором \mathscr{F} , мы получим последовательность $0 \to \mathscr{F}(A') \to \mathscr{F}(A) \to \mathscr{F}(A'') \to 0$. Точность, вообще говоря, пропадёт, но если \mathscr{F} сохраняет точность в каком-то члене для всех таких коротких точных последовательностей, то функтор \mathscr{F} имеет соответствующее название:

- 1. Если всегда имеется точность в члене $\mathcal{F}(A)$, то \mathcal{F} полуточный функтор.
- 2. Если всегда имеется точность в членах $\mathcal{F}(A')$ и $\mathcal{F}(A)$, то \mathcal{F} точный слева функтор.
- 3. Если всегда имеется точность в членах $\mathcal{F}(A)$ и $\mathcal{F}(A'')$, то \mathcal{F} точный справа функтор.
- 4. Если всякая короткая точная последовательность переходит в короткую точную последовательность, то \mathscr{F} точный функтор.

Лемма 1.4.1. Пусть $\mathcal{F}-$ аддитивный функтор. Следующие условия эквивалентны:

- 1. У точен справа.
- 2. \mathscr{F} сохраняет нуль и коядра: $\mathscr{F}(0) = 0, \mathscr{F}(\operatorname{coker}(\phi)) = \operatorname{coker}(\mathscr{F}(\phi)).$
- 3. У сохраняет конечные копределы.

Доказательство.

- $(3) \Rightarrow (2)$ Коядро конечный копредел, поэтому очевидно.
- $(2) \Rightarrow (3)$ В свою очередь, копроизведение в абелевой категории бипроизведение, а это «внутренний объект», поэтому всякий аддитивный функтор сохраняет его.
- $(2)\Rightarrow (1)$ Короткая точная последовательность $A'\stackrel{\phi}{\to} A\stackrel{\psi}{\to} A''\to 0$ характеризуется свойствами $\psi=\operatorname{coker}\phi, 0=\operatorname{coker}\psi.$
- (1) \Rightarrow (2) Рассмотрим произвольный $\phi: A' \to A$. У него есть эпи-моно разложение $\phi = \mu \varepsilon$ (μ моно, ε эпи), и $\operatorname{coker}(\mu \varepsilon) = \operatorname{coker}(\mu)$, так как ε эпиморфизм. Значит, без потери общности ϕ мономорфизм.

Тогда последовательность $0 \to A' \xrightarrow{\phi} A \xrightarrow{\operatorname{coker} \phi} \operatorname{CoKer} \phi \to 0$ точна, и так как \mathscr{F} — точен справа, то $\mathscr{F}(\operatorname{coker} \phi) = \operatorname{coker}(\mathscr{F}(\phi))$.

Также точный справа функтор сохраняет нуль: $0 \to A \xrightarrow{\mathrm{id}} A \to 0 \to 0$ переходит в $\mathscr{F}(A) \xrightarrow{\mathrm{id}} \mathscr{F}(A) \to \mathscr{F}(0) \to 0$.

Следствие 1.4.1. Левый сопряжённый функтор точен справа.

Доказательство. Он сохраняет копределы.

Копредел (который является левым сопряжённым к диагональному Δ) сохраняет копределы, значит, точен справа. Другими словами, копределы коммутируют.

К сожалению, в лемме о змее это не помогает в доказательстве того, что последовательность точна в члене $\operatorname{Ker} \phi$, так как нет точной последовательности $0 \to A' \to A \to A'' \to 0$.

При доказательстве существования длинной точной последовательности гомологий на бис, мы использовали, что коядро точно справа, ядро — точно слева.

Лекция IV

11 марта 2023 г.

Факт 1.4.1. Если точный справа функтор сохраняет мономорфизмы, то функтор точен. Двойственно, точный слева функтор, сохраняющий эпиморфизмы, точен.

Доказательство. Условия как раз означают, что короткая точная последовательность отображается в короткую точную последовательность. \Box

Пусть имеются комплексы X_{\bullet} и X'_{\bullet} , и между ними морфизмы f,g.

Определение 1.4.2 (Морфизмы f и g гомотопны). Существует семейство морфизмов $s_k: X_{k-1} \to X_k'$, таких, что $f_n - g_n = d_n' s_{n+1} + s_n d_{n-1}$. При этом диаграмма ниже **не обязана** быть коммутативной.

$$X_{n+1} \xrightarrow{d_n} X_n \xrightarrow{d_{n-1}} X_{n-1} \xrightarrow{d_{n-2}} \cdots \xrightarrow{d_0} X_0$$

$$\downarrow^{g_{n+1}} \downarrow^{g_{n+1}} \downarrow^{g_n} \downarrow^{g_n} \downarrow^{g_n} \downarrow^{g_{n-1}} \downarrow^{g_{n-1}} \downarrow^{g_n} \downarrow^{g_0}$$

$$X'_{n+1} \xrightarrow{d'_n} X'_n \xrightarrow{d'_{n-1}} X'_{n-1} \xrightarrow{d'_{n-2}} \cdots \xrightarrow{d'_0} X'_0$$

Пишут $f \simeq g$.

А почему это то же самое, что и гомотопность в топологии?

Теорема 1.4.1. Если два морфизма комплексов $f,g:X\to X'$ гомотопны, то H(f)=H(g) (гомологии являются функтором, и действуют не только на комплексах, но и на морфизмах между ними).

Доказательство. Докажем, что H(f-g) = 0.

Рассмотрим $\overline{x} \in H_n(X)$. У него имеется прообраз $x \in Z_n$.

Заметим, что $H(f_n-g_n)(\overline{x})=\overline{(f_n-g_n)(x)}=\overline{d_n'(s_{n+1}(x))}+\overline{s_n(d_{n-1}(x))}$. Первое слагаемое равно нулю, так как $d_n'(\cdots)\in B_n(X')$, а второе — так как $x\in \operatorname{Ker} d_{n-1}$.

Замечание. Если $\mathscr{F}:\mathscr{A}\to\mathscr{A}$ — аддитивный функтор, и $f\simeq g$ — морфизмы комплексов с объектами из \mathscr{A} , то (допуская вольность речи можно писать $\mathscr{F}(f)$) $\mathscr{F}(f)\simeq\mathscr{F}(g)$.

Факт 1.4.2. Быть гомотопными — отношение эквивалентности.

Доказательство. Рефлексивность: $\forall n: s_n = 0$. Симметричность: $s_n \coloneqq -s_n$. Транзитивность:

$$\begin{cases} f_n - g_n = d'_n s_{n+1} + s_n d_{n-1} \\ g_n - h_n = d'_n r_{n+1} + r_n d_{n-1} \end{cases} \Rightarrow f_n - h_n = d'_n (s_{n+1} + r_{n+1}) + (s_n + r_n) d_{n-1}$$

Определение 1.4.3 (Два комплекса X и X' гомотопически эквивалентны). Существуют морфизмы комплексов $f: X \to X'$ и $g: X' \to X$, такие, что $fg \simeq \mathrm{id}_{X'}$ и $gf \simeq \mathrm{id}_X$. Данные морфизмы f и g называют гомотопическими эквивалентностями.

Факт 1.4.3. Если X и X' гомотопически эквивалентны, то $H(X) \cong H(X')$.

Определение 1.4.4 (Квазиизоморфизм $f: X \to X'$). Морфизм f, такой, что H(f) — изоморфизм.

Факт 1.4.4. Гомотопическая эквивалентность — квазиизоморфизм.

Определение 1.4.5 (Комплекс X ацикличен). X точен, то есть H(X) = 0.

Определение 1.4.6 (Комплекс X стягиваем). $id_X \simeq 0_X$.

Замечание. Из (теорема 1.4.1) следует, что стягиваемый комплекс ацикличен.

Обратное, вообще говоря, неверно. Стягиваемый комплекс сохраняется под действием функторов, а ацикличный — может и не сохраниться.

1.5 Резольвенты

Пусть \mathscr{A} — абелева категория, $P \in \mathscr{A}$.

Определение 1.5.1 (Объект P проективен). $\forall \phi: A \to B: \phi - \exists \theta: P \to A$, причём диаграмма коммутирует. При этом θ должно найтись какое-то, не факт, что оно единственно.

$$\begin{array}{ccc}
P & & \downarrow \\
\downarrow \forall \psi & & \downarrow \\
A & \xrightarrow{\vee \phi} & B & \longrightarrow 0
\end{array}$$

Факт 1.5.1. В Set все множества — проективные объекты.

Теорема 1.5.1. Пусть $\mathscr{A} = R\text{-}mod$. Модуль P проективен $\iff P$ является прямым слагаемым свободного модуля.

Доказательство.

- 1. Свободный модуль проективен: пусть $\{p_{\alpha}\}$ базис P. Определим $\theta(p_{\alpha})=\psi(\phi^{-1}(p_{\alpha}))$, где прообраз выбран произвольно, и продолжим по линейности.
- 2. Прямое слагаемое проективного модуля проективно. Рассмотрим каноническое вложение $M \hookrightarrow M \oplus N$, где $M \oplus N$ проективен.

Определим $M \oplus N \to B, (m,n) \mapsto \psi(m)$. Так как $M \oplus N$ проективен, то найдётся $M \oplus N \to A$, и композиция $M \to M \oplus N \to A$ подходит в качестве морфизма, который должен найтись из определения проективного модуля.

3. Пусть P проективен. Возьмём свободный модуль F, сюръективно накрывающий P (например, подойдёт свободный модуль на всех элементах P, но на практике, конечно, удобно брать модуль поменьше).

$$F \xrightarrow{\exists \text{id}} F$$

Так как модуль проективен, то найдётся пунктирная стрелка. Значит, $F \cong P \oplus \operatorname{Ker} \pi \ (\forall f \in F : \pi^{-1}(f) = P(f) + \operatorname{Ker} \pi).$

Примеры.

- Пусть $R = \mathbb{Z}/6\mathbb{Z}$. Тогда $\mathbb{Z}/6\mathbb{Z}$ является R-модулем, но $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, значит, модули $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$ все проективны.
- Можно предъявить проективный модуль, исходя из топологического факта о том, что шар нельзя причесать.

Определение 1.5.2 (Проективная резольвента модуля M). Ацикличный комплекс вида $\cdots \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$, где P_i — проективные модули.

В будущем докажем, что любые две проективные резольвенты гомотопически эквивалентны.

Определение 1.5.3 (В категории $\mathscr A$ достаточно много проективных объектов). $\forall A \in \mathscr A$ найдётся проективный объект $P \in \mathscr A$ вместе с эпиморфизмом $P \twoheadrightarrow A$.

Если в нашей категории ${\mathscr A}$ достаточно много проективных объектов, то у всякого модуля M найдётся резольвента — надо просто подряд накрывать возникающие ядра.

11

Π екция V 18 марта 2024 г.

1.6 Резольвенты. Левый производный функтор

Зафиксируем некоторый аддитивный функтор $\mathscr{F}: \mathscr{A} \to \mathscr{B}$, который обычно будет точен справа. Пусть у объекта $A \in \mathscr{A}$ имеется проективная резольвента, которую я выделил стрелками \leadsto .

Иными словами, проективная резольвента — это некоторый морфизм комплексов P и A_{\bullet} . Под комплексом A_{\bullet} подразумевается такой комплекс, в котором в нулевой градуировке сидит A, а в остальных — нули (следовательно, все дифференциалы — тоже нули).

Раз ${\mathscr F}$ точен справа, то он сохраняет нуль. Применим ${\mathscr F}$ к верхней строчке. Тогда получится комплекс вида

$$\cdots \longrightarrow \mathscr{F}(P_1) \longrightarrow \mathscr{F}(P_0) \longrightarrow 0$$

Чуть ниже мы определим $L_n\mathcal{F}(A) \coloneqq H_n\mathcal{F}(P)$ — левый производный функтор, измеряющий неточность \mathcal{F} — но пока, например, неясна корректность (независимость от резольвенты) такого определения.

Теорема 1.6.1. Пусть P_i проективные, сверху комплекс (и ноль в верхней строчке вообще-то неважен), снизу — точный комплекс.

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Тогда найдутся пунктирные стрелки, и они определены с точностью до гомотопии.

Доказательство.

- - Сначала построим $f_i: P_i \to Q_i$.
 - $Q_0 o B$ сюръективно, значит, найдётся f_0 , такое, что квадрат коммутативен.
 - Далее по индукции: пусть построены f_0, \ldots, f_n .

$$\begin{array}{cccc} P_{n+1} & \longrightarrow & P_n & \longrightarrow & P_{n-1} \\ \downarrow^{f_{n+1}} & & \downarrow^{f_n} & & \downarrow^{f_{n-1}} \\ Q_{n+1} & \longrightarrow & Q_n & \stackrel{d^Q_{n-1}}{\longrightarrow} & Q_{n-1} \end{array}$$

Хочется заполучить стрелку $P_{n+1} \to Q_{n+1}$, воспользовавшись проективностью P_{n+1} . Для этого надо найти сюръективное $Q_{n+1} \to ?$. Так как внизу — точная последовательность, то $Q_{n+1} \to \operatorname{Ker}(d_{n-1}^Q)$ подойдёт: оно сюръективно, так как $P_{n+1} \to P_{n-1}$ нулевой,

$$P_n \longrightarrow P_{n-1}$$
 а квадрат $\downarrow \qquad \downarrow \qquad$ коммутативен. Тем самым, по определению проективного $Q_n \longrightarrow Q_{n-1}$ модуля $\exists f_{n+1}.$

• — Теперь пусть имеются два морфизма комплексов, продолжающих f, f_i и g_i .

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A$$

$$\downarrow f_1 \downarrow \downarrow g_1 \qquad f_0 \downarrow \downarrow g_0 \qquad \downarrow f$$

$$\cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow B \longrightarrow 0$$

Распишем разность: пусть $h_i := f_i - g_i$. Понятно, что $A \to Q_0$ надо взять нулевым.

 s_0 строится по основному свойству проективного модуля P_0 : ведь $h_0(P_0) \subset \mathrm{Ker}(d_{-1}^Q) = \mathrm{Im}\, d_0^Q$

- Далее индукция. Пусть построены s_0, \ldots, s_{n-1} , строим s_n .

$$Q_{n+1} \xrightarrow{d_{n-1}^{P}} Q_{n} \xrightarrow{d_{n-1}^{P}} P_{n-1} \xrightarrow{d_{n-2}^{P}} P_{n-2}$$

Хочется, чтобы выполнялось $h_n = d_n^Q s_n + s_{n-1} d_{n-1}^P$, эквивалентно $d_n^Q s_n = h_n - s_{n-1} d_{n-1}^P$.

Надо проверить, что образ правой части лежит в ${\rm Im}(d_n^Q)$, то есть ${\rm Ker}(d_{n-1}^Q)$. Применим d_{n-1}^Q . Получим

$$d_{n-1}^{Q}h_{n} - d_{n-1}^{Q}s_{n-1}d_{n-1}^{P} = h_{n-1}d_{n-1}^{P} - (h_{n-1} - s_{n-2}d_{n-2}^{P})d_{n-1}^{P} = 0$$

Тем самым, s_n действительно найдётся согласно свойству проективного модуля.

Следствие 1.6.1. Любые две проективные резольвенты одного и того же объекта гомотопически эквивалентны.

$$\begin{array}{cccc} P & \longrightarrow & A_{\bullet} & & P & \longrightarrow & A_{\bullet} \\ g & & \downarrow_f & & \uparrow_{\mathrm{id}} & & \mathrm{id} \downarrow & \downarrow_{fg} & & \uparrow_{\mathrm{id}} \\ Q & \longrightarrow & A_{\bullet} & & P & \longrightarrow & A_{\bullet} \end{array}$$

Строим по только что доказанной теореме f,g, по теореме $fg\simeq \mathrm{id}_Q$ и $gf\simeq \mathrm{id}_Q$.

Таким образом, определение левого производного функтора L_n корректно.

С некоторой точки зрения «правильно» рассматривать категорию комплексов с точностью до гомотопической эквивалентности, назовём её $\mathscr{HoComp}(\mathcal{A})$: там объекты — $\mathrm{Obj}\,\mathcal{A}$, а группа морфизмов $\mathrm{Mor}_{\mathscr{HoComp}(\mathcal{A})}(P,Q) = \mathrm{Mor}(\mathscr{Comp}(\mathcal{A}))/\mathrm{Ho}(P,Q)$, где Ho(P,Q) — группа морфизмов, гомотопных 0.

Примеры (Что такое L_0 от точного справа функтора).

ullet Предположим, что ${\mathcal F}$ точен справа. Тогда

$$\mathcal{F}(P_1) \longrightarrow \mathcal{F}(P_0) \longrightarrow \mathcal{F}(A) \longrightarrow 0$$

точна. $L_0\mathcal{F}(A)=H_0(\mathcal{F}(P))=\mathrm{CoKer}(\mathcal{F}(P_1)\to\mathcal{F}(P_0))$. Если функтор точен справа, то $\mathrm{CoKer}(\mathcal{F}(P_1)\to\mathcal{F}(P_0))=\mathcal{F}(A)$.

Тем самым, $L_0 \mathscr{F} = \mathscr{F}$.

• Обратно, если $L_0 \mathscr{F} = \mathscr{F}$, то \mathscr{F} сохраняет коядра, значит, точен справа. (По-хорошему, надо ещё проверить, что $L_0 \mathscr{F}$ действует на морфизмах так же, но это банально).

Следствие 1.6.2. Если P_A, P_B — проективные резольвенты A, B соответственно, и $f: A \to B$, то $\exists \widetilde{f}: P_A \to P_B$, делающий диаграмму коммутативной. Он определён однозначно с точностью до гомотопии.

$$P_{A} \longrightarrow A_{\bullet}$$

$$\tilde{f} \downarrow \qquad \qquad f \downarrow$$

$$P_{B} \longrightarrow B_{\bullet}$$

Здесь A_{\bullet} — комплекс, где A сосредоточен в нулевом члене.

Таким образом, морфизму f объектов из $\mathscr A$ сопоставляется морфизм резольвент $\widetilde f$, а он, в свою очередь, индуцирует морфизм гомологий $H_n(P_A) \to H_n(P_B)$. Значит, конструкция L функториальна.

1.6.1 Длинная точная последовательность левых производных функторов

Зафиксируем некоторый функтор \mathscr{F} . Далее мы исследуем $L_n\mathscr{F}$, для упрощения записи будем писать $L_n\coloneqq L_n\mathscr{F}$.

Пусть имеется короткая точная последовательность $0 \to A \to B \to C \to 0$ в \mathscr{A} . Построим длинную точную последовательность производных функторов. Это так говорится? Скорее всё-таки их значений на A,B,C

$$\cdots \to L_1(A) \to L_1(B) \to L_1(C) \to L_0(A) \to L_0(B) \to L_0(C) \to \cdots$$

Для получения такой штуки было бы неплохо заполучить точную последовательность резольвент $P_A \to P_B \to P_C$, причём не абы какую, а сохраняющую свою точность под действием любого аддитивного функтора. Оказывается, это сделать несложно, и в этом нам поможет лемма о подкове.

Лемма 1.6.1 (О подкове). Пусть P- проективный модуль, все строки и столбцы (состоящие из чёрных сплошных стрелок) точны.

Утверждается, что диаграмму можно достроить до коммутативной, добавив зелёные пунктирные стрелки. Новые строки и столбцы также станут точны.

Доказательство. Так как P — проективен, а g — эпи, то найдётся сечение s такое, что $gs=h_C$.

Определим стрелку h_B исходя из того, что квадраты должны в итоге получиться коммутативными. Из коммутативности левого квадрата $h_B(u,0)=f(h_A(u))$. Из коммутативности правого треугольника $h_B(0,v)=h_C(v)=gs(v)$. Тем самым, подойдёт $h_B(u,v)\coloneqq f(h_A(u))+s(v)$.

При таком определении правый квадрат будет коммутативен: $g(s(v)) = h_C(\pi(u,v)) \stackrel{?}{=} g(h_B(u,v)) = g(s(v))$, так как gf = 0.

Также несложно убедиться, что построенный морфизм h_B — эпи (видимо, диаграммный поиск).

Теорема 1.6.2. Для короткой точной последовательности $0 \to A \to B \to C \to 0$ существует точная последовательность резольвент $0 \to P_A \to P_B \to P_C \to 0$, точность которой сохраняется под действием любого аддитивного функтора.

Доказательство. Возьмём произвольные резольвенты P_A, P_C . Резольвенту P_B будем строить пошагово, по индукции. $(P_B)_0 \coloneqq (P_A)_0 \oplus (P_C)_0$ строится прямым применением леммы о подкове.

Далее необходимо провести индукционный переход.

$$(P_{A})_{n+1} \xrightarrow{i} (P_{A})_{n+1} \oplus (P_{C})_{n+1} \xrightarrow{\pi} (P_{C})_{n+1}$$

$$\downarrow \qquad \qquad \downarrow^{d_{n}^{B}} \qquad \qquad \downarrow$$

$$0 \longrightarrow \operatorname{Ker}(d_{n-1}^{A}) \longrightarrow \operatorname{Ker}(d_{n-1}^{B}) \longrightarrow \operatorname{Ker}(d_{n-1}^{C}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow (P_{A})_{n} \longrightarrow (P_{B})_{n} \longrightarrow (P_{C})_{n} \longrightarrow 0$$

$$\downarrow^{d_{n-1}^{A}} \qquad \downarrow^{d_{n-1}^{B}} \qquad \downarrow^{d_{n-1}^{C}}$$

$$0 \longrightarrow \operatorname{Ker}(d_{n-2}^{A}) \longrightarrow \operatorname{Ker}(d_{n-2}^{B}) \longrightarrow \operatorname{Ker}(d_{n-2}^{C}) \longrightarrow 0$$

Вычленим некоторый кусочек диаграммы, и попробуем применить лемму о подкове для получения d_n^B . Для этого необходимо потребовать от стрелки $\mathrm{Ker}(d_{n-1}^B) \to \mathrm{Ker}(d_{n-1}^C)$, чтобы она была эпиморфизмом.

Докажем последнее по индукции: короткая последовательность ядер $0 \to \operatorname{Ker}(d_n^A) \to \operatorname{Ker}(d_n^B) \to \operatorname{Ker}(d_n^C) \to 0$ точна (так как ядро точно слева, то точность в остальных членах не вызывает сомнений, надо лишь проверить эпиморфность). В качестве базы здесь удобно применить лемму о змее:

А индукционный переход я не знаю, ну, можно просто убедиться, использовав определение d_n^B из леммы о подковы.

Тем самым, так как прямая сумма проективных проективна, то $(P_A)_{n+1} \oplus (P_C)_{n+1} \twoheadrightarrow \operatorname{Ker} d_{n-1}^B$, и определение резольвенты B по индукции корректно.

Точность $0 \to P_A \to P_B \to P_C$ под действием всякого аддитивного функтора, конечно, сохраняется, так как $(P_B)_n = (P_A)_n \oplus (P_C)_n$, а аддитивные функторы сохраняют бипроизведение.

Следствие 1.6.3 (Длинная точная последовательность производных функторов). Для короткой точной последовательности $0 \to A \to B \to C \to 0$ имеет место длинная точная последовательность

$$\cdots \to L_1(A) \to L_1(B) \to L_1(C) \to L_0(A) \to L_0(B) \to L_0(C) \to \cdots$$

Доказательство. Из (теорема 1.6.2) найдётся точная последовательность проективных резольвент $0 \to P_A \to P_B \to P_C \to 0$. Применяя \mathscr{F} , получаем точную последовательность $0 \to \mathscr{F}(P_A) \to \mathscr{F}(P_B) \to \mathscr{F}(P_C) \to 0$.

Возьмём у $\mathscr{F}(P_A), \mathscr{F}(P_B), \mathscr{F}(P_C)$ гомологии. Составленная из них длинная точная гомологическая последовательность как раз и сконструирует искомую длинную точную последовательность левых производных функторов.

Замечание. Если ${\mathscr F}$ точен справа, то длинная точная последовательность производных функторов обрывается эпиморфизмом: $L_0(B) \to L_0(C) \to 0$.

Лекция VI _{25 марта 2024 г.}

Рассмотрим формальное обобщение производных функторов.

Пусть имеется семейство $\{\mathscr{F}_i\}_{i\in\mathbb{N}}$ функторов $\mathscr{F}_i:\mathscr{A}\to\mathscr{A}'$.

Определение 1.6.1 ((Левая) связанная последовательность функторов). Такая последовательность функторов $\{\mathscr{F}_i\}_{i\in\mathbb{N}}$, что для любой точной последовательности $0\to A\to B\to C\to 0$ существует функториальная длинная точная последовательность

$$\cdots \to \mathscr{F}_1(A) \to \mathscr{F}_1(B) \to \mathscr{F}_1(C) \to \mathscr{F}_0(A) \to \mathscr{F}_0(B) \to \mathscr{F}_0(C)$$

Пример. Последовательность $\{L_i\mathscr{F}\}_{i\in\mathbb{N}}$ — связанная последовательность функторов.

Заметим, что $\forall i>0: L_i\mathcal{F}(P)=0$, если P проективен. Это очевидным образом следует из существования резольвенты $0\to P\to P\to 0$. Если \mathcal{F} точен справа (а мы это предполагаем), то он сохраняет ноль. Тогда $L_n\mathcal{F}$ — гомологии $\cdots\to 0\to 0\to \mathcal{F}(P)\to 0$, которые в нулевом члене — $\mathcal{F}(P)$, а в остальных — нулевые.

Оказывается, этого условия достаточно, чтобы определить связанную последовательность по нулевому элементу:

Теорема 1.6.3. Пусть $\{\mathscr{F}_i\}, \{\mathscr{G}_i\}$ — две связанные последовательности функторов, такие, что имеется естественный изоморфизм $\mathscr{F}_0 \cong \mathscr{G}_0$, и для любого проективного $P \colon \forall i > 0 \colon \mathscr{F}_i(P) = \mathscr{G}_i(P) = 0$.

Также предположим, что в А достаточно много проективных объектов.

Тогда $\forall i: \mathscr{F}_i \cong \mathscr{G}_i$ — естественный изоморфизм.

 $\ \ \, \mathcal{A}$ оказательство. Пусть $A \in \mathscr{A}$. Накроем A проективным, возьмём ядро, получим точную последовательность

$$0 \to M \to P \to A \to 0$$

Так как последовательности функторов — связаны — то имеется длинная точная последовательность:

$$0 = \mathcal{F}_1(P) \longrightarrow \mathcal{F}_1(A) \longrightarrow \mathcal{F}_0(M) \longrightarrow \mathcal{F}_0(P)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 = \mathcal{G}_1(P) \longrightarrow \mathcal{G}_1(A) \longrightarrow \mathcal{G}_0(M) \longrightarrow \mathcal{G}_0(P)$$

Значит, имеется естественный изоморфизм ядер, $\mathscr{F}_1(A) \cong \mathscr{G}_1(A)$, тем самым, $\mathscr{F}_1 \cong \mathscr{G}_1$ (естественность — упражнение).

Теперь займёмся индукционным переходом:

$$0 = \mathscr{F}_i(P) \longrightarrow \mathscr{F}_i(A) \longrightarrow \mathscr{F}_{i-1}(M) \longrightarrow \mathscr{F}_{i-1}(P) = 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow$$

$$0 = \mathscr{G}_i(P) \longrightarrow \mathscr{G}_i(A) \longrightarrow \mathscr{G}_{i-1}(M) \longrightarrow \mathscr{G}_{i-1}(P) = 0$$

Зажав $\mathcal{F}_i(A)$ и $\mathcal{F}_{i-1}(M)$ между двумя нулями, мы доказали, что все четыре ненулевых объекта изоморфны (естестенность, опять же, доказывается несложно).

Следствие 1.6.4. Пусть \mathcal{F} точен справа (например $\mathcal{F} = _ \otimes M$, где M — фиксированный модуль). Пусть $\mathcal{F}_0 \cong \mathcal{F}$, где $\{\mathcal{F}_i\}$ — связанная последовательность функторов, такая, что для любого проективного $P: \mathcal{F}(P) = 0$.

По-прежнему предполагаем, что в А достаточно много проективных объектов.

Тогда $\forall i \in \mathbb{N} : \mathscr{F}_i \cong L_i \mathscr{F}$.

1.7 Производные функторы для \otimes

Пусть R — необязательно коммутативное кольцо с единицей, $M \in mod$ - $R, N \in R$ -mod, напомним, что тогда $M \otimes_R N \in \mathscr{Ab}$.

Изучим производные функторов тензорного произведения (функтор тензорного произведения точен справа, так как он — левый сопряжённый к Hom). Обозначим $\mathrm{LTor}_i(M,_) \stackrel{def}{=} L_i(M \otimes _)$, $\mathrm{RTor}_i(_,N) \stackrel{def}{=} L_i(_ \otimes N)$.

Примеры.

• Изучим ${
m Tor}_1(M,R/aR)$, где R — коммутативная область целостности. Для R/aR несложно написать проективную резольвенту: $0 \to R \stackrel{a}{\longrightarrow} R \to R/aR \to 0 \ (a(m)=am)$.

Тензорно домножая на M, мы получаем $0 \to M \stackrel{m \otimes r \mapsto m \otimes ar}{\longrightarrow} M \to M \otimes R/aR \to 0$. Так как кольцо коммутативное, то тензорное произведение - mod-R, поэтому $m \otimes r \mapsto m \otimes ar$ — тоже просто отображение умножения на a.

Так как естественно $M \otimes R/aR \cong M/aM \otimes R \cong M/aM$, то гомологии в среднем члене — нуль, а в левом члене — a-кручение в M, то есть $\{x \in M | ax = 0\}$.

Теорема 1.7.1. Имеет место естественный изоморфизм: $\forall i : \mathrm{LTor}_i \cong \mathrm{RTor}_i$.

Идея доказательства.

Домножение на свободный объект — точный справа функтор — из дистрибутивности тензорного произведения. Домножение на проективный объект — точный справа функтор — опять же из дистрибутивности.

Все строки точны, кроме нижней, и все столбцы точны, кроме правого, в которых мы и хотим посчитать гомологии, и доказать, что они равны.

Заведём тотальный комплекс $\operatorname{Tot}(M,N)_n := \bigoplus_{i=0}^n P_i \otimes Q_{n-i}$, и теперь надо определить дифференциал D. Необходимо, чтобы выполнялось требование $D^2 = 0$, поэтому абы какой не подойдёт.

Пусть $d_p:P o P_{p-1},\ d_q:Q_q o Q_{q-1}$ — дифференциалы резольвент, определим

$$D_{p,q}: P_p \otimes Q_q \to \operatorname{Tot}(M, N)_{p+q-1}$$
$$(x \otimes y) \mapsto d_p(x) \otimes y + (-1)^p x \otimes d_q(y)$$

Теперь полный дифференциал $D_n = \bigoplus_{p+q=n} D_{p,q} : \operatorname{Tot}(M,N)_{p+q} \to \operatorname{Tot}_{p+q-1}.$

Упражнение **1.7.1.** $D_{n-1} \cdot D_n = 0$.

Осталось показать, что гомологии нижней строки, как и гомологии правого столбца, совпадают с гомологиями тотального комплекса.

1.8 Производные функторы для Hom

Теперь разберёмся с функторами ${
m Hom}$ — эти функторы являются правыми сопряжёнными к \otimes , поэтому точны слева.

Конкретнее, имеются ковариантный $\text{Hom}(M, _)$, и контравариантный $\text{Hom}(_, N)$.

Для изучения точных слева функторов будем строить последовательность правых сопряжённых функторов.

Определение 1.8.1 (Инъективный модуль Q). Такой модуль Q, что для любой инъекции $A \rightarrowtail B$, и для любого морфизма $A \to Q$, существует морфизм $B \to Q$ такой, что диаграмма коммутативна:

Интересный факт. Инъективный модуль — делимый модуль, то есть $\forall r \in R \setminus \{0\}, q \in M: \exists x \in M: rx = q.$

В одну сторону доказательство очевидно — в качестве A надо взять кольцо R, а в качестве B — поле частных R.

В категории, где достаточно много инъективных объектов, двойственно проективной, строится инъективная резольвента, в которой коядро предыдущего морфизма вкладывается? в следующий инъективный модуль:

$$0 \to N \to Q_0 \to Q_1 \to Q_2 \to \cdots$$

Далее аналогично определяются правые производные функторы, в частности, имеется комплекс

$$0 \to \operatorname{Hom}(M, Q_0) \to \operatorname{Hom}(M, Q_1) \to \cdots$$

Гомологии такого комплекса обозначают $\operatorname{Ext}^i(M,N)$.

Построив проективную резольвенту для $M\colon \cdots \to P_2 \to P_1 \to P_0 \to M \to 0$. Применяя к этой последовательности контравариантный Hom, получаем $0 \to \operatorname{Hom}(P_0,N) \to \operatorname{Hom}(P_1,N) \to \cdots$ Гомологии этого комплекса обозначают $\operatorname{Ext}^i(M,N)$ (это уже другой Ext, но они, как и Tor, естественно изоморфны, доказательство абсолютно аналогично)

Название Ext происходит от extensions, элементы Ext^1 находятся в биекции с классами коротких точных последовательностей $0 \to M \to ? \to N \to 0$. В качестве среднего члена всегда подойдёт $M \oplus N$, но, может быть, и ещё что-то, и за это отвечает Ext.

Для функторов Ext более высокой степени надо брать более длинные последовательности.

Пусть $M, N \in mod - R$.

Определение 1.8.2 (Расширение N при помощи M). Точная последовательность $0 \to M \to X \to N \to 0$.

Морфизм расширений $0 \to M \to X \to N \to 0$ и $0 \to M \to X' \to N \to 0$ — такая стрелка $X \to X'$, что два получившихся треугольника коммутативны.

Теорема 1.8.1. $\operatorname{Ext}^1(M,N)$ естественно изоморфен множеству классов изоморфизмов расширений N при помощи M.

Доказательство. Рассмотрим расширение $0 \to M \to X \to N \to 0$. Запишем длинную точную последовательность для $\operatorname{Ext}^1(_,N)$ и данной короткой точной последовательности.

$$\operatorname{Ext}^1(N,M) \longleftarrow \operatorname{Hom}(M,M) \longleftarrow \operatorname{Hom}(X,M) \longleftarrow \operatorname{Hom}(N,M) \longleftarrow 0$$

Теперь построим $x \in \operatorname{Ext}^1(N, M) \cong \operatorname{Ext}^1(M, N)$, как образ $\operatorname{id} \in \operatorname{Hom}(M, M)$.

Теперь построим стрелку обратно: накроем N проективным объектом: $0 \to A \to P \to N \to 0$.

$$0 = \operatorname{Ext}^{1}(P, M) \longleftarrow \operatorname{Ext}^{1}(N, M) \longleftarrow \operatorname{Hom}(A, M) \longleftarrow \operatorname{Hom}(P, M) \longleftarrow \operatorname{Hom}(N, M)$$

Так как домножение на проективный модуль — точный функтор, то $\operatorname{Ext}^1(P,M)=0$. Теперь пусть X — пушаут диаграммы $M \overset{\beta}{\leftarrow} A \to P$. Следующая диаграмма будет коммутативна:

Далее можно проверить, что в одну сторону эти отображения взаимно обратны:

$$0 = \operatorname{Ext}^1(P,M) \longleftarrow \operatorname{Ext}^1(N,M) \longleftarrow \operatorname{Hom}(A,M) \longleftarrow \operatorname{Hom}(P,M) \longleftarrow \operatorname{Hom}(N,M)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \parallel$$

$$\operatorname{Ext}^1(N,M) \longleftarrow \operatorname{Hom}(M,M) \longleftarrow \operatorname{Hom}(X,M) \longleftarrow \operatorname{Hom}(N,M)$$

 ${\rm id} \in {\rm Hom}(M,M)$ уходит вверх при _ · β в β , далее влево — в x по определению x. Если же отправить ${\rm id}$ вправо, то он тоже уйдёт в x. Почему? И надо ещё проверить, что ? = ${\rm id}$.

Далее идёт отступление про то, что быть определённым с точностью изоморфизма, и быть определённым — разные вещи, и я не справился это записать.

Если же хочется изучить всё кручение M, то оказывается, $\mathrm{Tor}_1(M,F/R)=\{x\in M|\exists a\in R\setminus\{0\}: ax=0\}$ (здесь F/R — фактор R-модулей). Здесь используется, что $F/R=\varinjlim R/aR$, значит, $\mathrm{Tor}_1(F/R,M)=\varinjlim \mathrm{Tor}_1(R/aR,M)$.

1.9 Гомологии и когомологии групп

Пусть G — группа, A — абелева группа, на которой действует G. Иными словами, A — $\mathbb{Z}[G]$ -модуль.

Рассматриваем \mathbb{Z} , либо как кольцо, либо как $\mathbb{Z}[G]$ -модуль с тривиальным действием G.

Определим гомологии $H_n(G,A) \stackrel{def}{=} \operatorname{Tor}_n^{\mathbb{Z}[G]}(\mathbb{Z},A)$ (верхний индекс $\mathbb{Z}[G]$ указывает, что мы работаем в категории $\mathbb{Z}[G]$ -модулей). Также определим когомологии $H^n(G,A) \stackrel{def}{=} \operatorname{Ext}_{\mathbb{Z}[G]}^n(\mathbb{Z},A)$.

Запишем проективную резольвенту по первому аргументу.

• Пусть P_n — свободный \mathbb{Z} -модуль с базисом $\{(g_0,\ldots,g_n)|g_i\in G\}$. По совместительству P_n — свободный $\mathbb{Z}[G]$ -модуль с базисом $\{(1,g_1,\ldots,g_n)|g_i\in G\}$ и действием $g\cdot(g_0,\ldots,g_n)=(gg_0,\ldots,gg_n)$.

• Теперь определим гомоморфизмы.

$$\cdots \longrightarrow P_0 = \mathbb{Z}[G] \longrightarrow \mathbb{Z}$$

Граничные гомоморфизмы определены так: $d_n(g_0,\ldots,g_n)=\sum_{i=0}^n (-1)^i(g_0,\ldots,\widehat{g}_i,\ldots,g_n)$. Несложно проверить, что $d_{n-1}\cdot d_n=0$.

• Посчитаем нулевые гомологии и когомологии группы $G.\ H_0(G,A) = \mathbb{Z} \otimes_{\mathbb{Z}[G]} A.$ $\mathbb{Z} = \mathbb{Z}[G]/I_G$, где $I_G = \mathrm{Ker}(\phi)$, здесь $\phi: \mathbb{Z}[G] \to \mathbb{Z} - \mathbb{Z}$ -линейный гомоморфизм аугментации, определённый на базисе $g \mapsto 1.$ Иными словами, $I_G = \langle g-1|g \in G \rangle = \left\{\sum_{g \in G} \alpha_h \cdot g \middle| \sum_{g \in G} \alpha_g = 0\right\}$, все суммы финитные.

Тем самым, $H_0(G,A)=\mathbb{Z}\otimes_{\mathbb{Z}[G]}A\cong A/(I_GA)$ — коинварианты. $I_GA=\langle ga-a|g\in G,a\in A\rangle$.

- Теперь посчитаем когомологии. $H^0(G,A) = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A)$. Всякому гомоморфизму $\varphi \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A)$ можно $\phi(1)$. Из G-линейности $\forall g \in G: \phi(1) = \phi(g \cdot 1) = g \cdot \phi(1)$, значит, $\phi(1) \in A^G \stackrel{def}{=} \{a \in A | \forall g \in G: ga = a\}$ инварианты. Значит, нулевые когомологии инварианты.
- $H_1(G,\mathbb{Z}) = G^{ab} \stackrel{def}{=} G/[G,G].$
- $H^1(G,A) = \mathrm{Der}(G,A)$ множество скрещённых гомоморфизмов. Скрещенный гомоморфизм — это такое отображение $\phi:G \to A$, которое обладает свойством $\phi(gh) = g \cdot \phi(h) + \phi(g)$.
- $H_2(G,\mathbb{Z})=$? Предположим, что имеется точная последовательность групп $0\to R\to F\to G\to 1$, то есть $G\cong F/R$.

Тогда
$$H_2(G,\mathbb{Z})=rac{R\cap [F,F]}{[R,F]}.$$

Если [G,G]=G (G совершенна), то существует универсальное центральное расширение $\pi:S \to G$, то есть $\mathrm{Ker}(\pi) \in C(S)$, и

В этом случае $H_2(G,\mathbb{Z})={\rm Ker}\,\pi$. Например, в случае $G=SL_n(F):S={\rm St}_n(F)$ — группа Стейнберга. Ядро ${\rm St}_n(F) \twoheadrightarrow SL_n(F)$ — это $K_{2,n}(F)=H_2(G,\mathbb{Z})$. Для $n\geqslant 5$ от поля ничего не зависит.

Глава 2

Теория Галуа

Лекция VIII

15 апреля 2024 г.

2.1 Базовые понятия про расширения полей

Мы будем изучать расширения полей, и базовое поле будем обозначать F (от английского Field), а расширенное — K (от немецкого Körper). Имеется теоретико-множественное включение $F \subset K$, и включение полей обозначается K/F (это не надо путать с факторкольцом, никаких факторов здесь не берётся, просто общепринятое обозначение).

K является векторным пространством над F, и $\dim_F K \stackrel{def}{=} [K:F]$ — степень расширения.

Для элемента $\alpha \in K$ поле $F(\alpha)$ — наименьшее подполе в K, содержащее F и α .

Лемма 2.1.1 (О простых расширениях). Либо $F(\alpha) \cong F(t)$ — поле дробно-рациональных функций, оно же поле частных K[t], его общий элемент имеет вид $\frac{p}{q}$ $(p \in F[t], q \in F[t]^*)$.

Либо $F(\alpha)\cong F[t]/(p)$, где $p\in F[t]$ — неприводимый. В этом случае $\deg p$ — степень расширения.

Доказательство. Рассмотрим гомоморфизм F-алгебр $\phi: F[t] \to F(\alpha), t \mapsto \alpha$.

• Если $\operatorname{Ker} \phi = \{0\}$, то $\operatorname{Im} \phi \cong F[t]$. Тем самым, $F(\alpha) \supset \operatorname{Im} \phi$, а раз $F(\alpha)$ — поле, то оно содержит и поле частных $Q(\operatorname{Im} \phi) \cong Q(F[t])$.

Так как F[t] — наименьшее подполе, то $F(\alpha) \cong F(t)$.

• Иначе, так как многочлены — PID — то $\ker \phi = p \cdot F[t]$, и $\operatorname{Im} \phi \cong F[t]/(p)$. То, что p неприводим, легко видеть от противного: если p = rs, то один из r, s ассоциирован с p, иначе в кольце появляются делители нуля.

Тем самым, раз p неприводим, то (p) — максимальный идеал, откуда $\operatorname{Im} \phi \cong F[t]/(p)$ — уже поле. Базисом F[t]/(p) над K является, например, $(1, \overline{t}, \dots, \overline{t}^{\deg(p)-1})$.

В первом случае $F(\alpha) \cong F(t)$ элемент $\alpha \in K$ называется трансцендентным.

Во втором случае $F(\alpha)\cong F[t]/(p)$ элемент $\alpha\in K$ называется алгебраическим. В таком случае $p\in F[t]$ — минимальный многочлен α . Таким образом, $F(\alpha)=F[\alpha]$, где $F[\alpha]$ — наименьшее кольцо в K, содержащее F и α .

В случае расширений колец вместо слова алгебраический используют *целый* при дополнительном условии унитальности минимального многочлена.

21

Определение 2.1.1 (Алгебраическое расширение K/F). Такое расширение, что $\forall \alpha \in K$: α — алгебраический. Иначе ($\exists \alpha \in K$: α — трансцендентный) расширение называют трансцендентным.

Определение 2.1.2 (Конечное расширение F/K). Расширение конечной степени: $[K:F] < \infty$.

Конечные и алгебраические расширения тесно связаны между собой, но, конечно, существует бесконечное алгебраическое расширение. Например, $\mathbb{Q}\left(\sqrt{p}\middle|p\in\mathbb{P}\right)$ — имеет бесконечную степень над \mathbb{Q} , так как корни из простых чисел линейно независимы над \mathbb{Q} (что ещё надо обосновать).

Лемма 2.1.2. Пусть имеется композиция расширений L/K/F. Тогда $[L:F] = [L:K] \cdot [K:F]$.

Доказательство. Пусть $(a_{\alpha})_{\alpha \in A}$ — базис K над F, и $(b_{\beta})_{\beta \in B}$ — базис L над K.

Тогда несложно видеть, что $(a_{\alpha} \cdot b_{\beta})_{\alpha \in A, \beta \in B}$ — базис L над F.

Теорема 2.1.1. Следующие условия равносильны

- 1. Расширение K/F конечно.
- 2.~K/F алгебраическое и конечнопрождённое.
- 3. $K = F[\alpha_1, \ldots, \alpha_n]$, где все α_i алгебраичны над F.

Доказательство.

 $(3) \Rightarrow (1)$ Индукция по n.

<u>База:</u> $n = 0 \Rightarrow K = F$.

<u>Переход:</u> $F[\alpha_1, \dots, \alpha_n] = F[\alpha_1, \dots, \alpha_{n-1}][\alpha_n]$. Так как α_n алгебраично над F, то оно алгебраично и над $F[\alpha_1, \dots, \alpha_{n-1}]$ (впрочем, степень трансцендентности при увеличении поля может стать меньше).

 $(1) \Rightarrow (2)$ **Лемма 2.1.3.** Любой элемент конечного расширения K/F алгебраический.

Доказательство леммы.

Рассмотрим $\alpha \in K$. Так как расширение конечно, то $1, \alpha, \alpha^2, \ldots$ линейно зависимы. Выбрав линейную зависимость $\beta_0 + \beta_1 \alpha + \cdots + \beta_d \alpha^d = 0$. Тогда $\beta_0 + \beta_1 t + \cdots + \beta_d t^d$ аннулирует α , то есть ядро ϕ из доказательства (лемма 2.1.1) ненулевое. \square

Пусть [K:F]=d, значит, K имеет базис $(\alpha_1,\ldots,\alpha_d)$ над F. Тогда K порождено элементами α_1,\ldots,α_d даже просто как векторное пространство, а не как F-алгебра \square

 $(2) \Rightarrow (3)$ Тавтологично.

2.1.1 Алгебраическое замыкание одного поля в другом

Пусть имеется расширение полей K/F, тогда $\mathrm{Int}_K F \stackrel{def}{=} \{\alpha \in K | \alpha \text{ алгебраичен над } F \}$ — целое (алгебраическое) замыкание F в K.

 $\operatorname{Int}_K F$ является полем: $\forall \alpha, \beta \in \operatorname{Int}_K F : \alpha - \beta, \alpha + \beta, \alpha \cdot \beta, \frac{\alpha}{\beta}$ (последнее при $\beta \neq 0$) лежат в $F[\alpha, \beta]$, а это — конечное расширение согласно (теорема 2.1.1).

Пусть $X \subset K$, где по-прежнему K/F.

Определение 2.1.3 (X алгебраически независим над F). $\forall f \in F[t_1, \dots, t_m], \forall x_1, \dots, x_m \in X$ (где x_i попарно различны): $f(x_1, \dots, x_m) \neq 0$.

Иными словами, отображение из универсальной F-алгебры, порождённой элементами X в F[X] (определённое на образующих $x \mapsto x$) имеет нулевое ядро.

Определение 2.1.4 (Линейная оболочка X над F). $\langle X \rangle \stackrel{def}{=} \operatorname{Int}_K F(X)$.

Определение 2.1.5 (X — (алгебраический) базис расширения K/F). Алгебраически независимое X такое, что $\langle X \rangle = K$. При этом |X| называется *степенью трансцендентности* K/F

Пример. В кольце F(t): $\{t\}$ — базис трансцендентности.

Для алгебраического базиса X верны те же аксиомы, что и для базиса векторных полей:

- 1. todo
- 2. todo
- 3. todo

Теорема 2.1.2. Степень трансцендентности не зависит от выбора базиса.

Доказательство. Аналогично подобному факту из линейной алгебры.

2.1.2 Поле разложения

Пусть F — поле, $f \in F[t]$.

Определение 2.1.6 (Поле разложения f над F). Поле F_f/F , в котором f раскладывается на линейные множители, и вкладывающееся (**не факт**, что единственным образом) в любое другое поле, обладающее тем же свойством.

Примеры.

- $F = \mathbb{R}, f = t^2 + 1$. В этом случае $F_f \cong \mathbb{C}$.
- $F = \mathbb{Q}, f = t^3 2$. В этом случае $\mathbb{Q}\left(\sqrt[3]{2}\right)$ не поле разложения, оно вкладывается в \mathbb{R} , а f в \mathbb{R} на линейные множители не раскладывается.

Надо присоединить ещё какой-то корень f, достаточно присоединить какой-то $\sqrt[3]{1}$, отличный от 1; это то же самое, что присоединить $\sqrt{-3}$. Тем самым, поле разложения $\mathbb{Q}_f \cong \mathbb{Q}\left[\sqrt[3]{2}, \sqrt{-3}\right]$.

Теорема 2.1.3. Для любого $f \in F[t]$ существует его поле разложения.

Доказательство. Индукция по $\deg f$.

<u>База:</u> $\deg f = 1 \Rightarrow F_f = F$.

Переход: Пусть f = pg, где p — неприводим.

Пусть E := F[t]/(p). В $E: \alpha := \overline{t} = t + (p)$ — корень p.

Над E: $f(t) = (t - \alpha) \cdot h(t)$ для некоторого h: $\deg h = \deg f - 1$. Положим $F_f \coloneqq E_h$, E_h существует по индукционному предположению.

Теперь пусть K/F — другое поле, в котором f раскладывается на линейные множители. Сначала устроим вложение $E \hookrightarrow K$, отправив α в любой корень p. Такой корень найдётся в K, так как F[t] — UFD.

При этом h раскладывается в K на линейные множители, по индукции E_h вкладывается в K. \square

Теорема 2.1.4. Пусть K — поле, в котором $f \in F[t]$ раскладывается на линейные множители. Тогда K — поле разложения $f \iff K \cong F[\alpha_1, \dots, \alpha_n]$, где α_i — корни f.

Доказательство. В одну сторону видно, что построенное в (теорема 2.1.3) поле разложения действительно порождено корнями f.

В другую сторону, можно устроить гомоморфизм $K \to F[\alpha_1, \dots, \alpha_n]$, он сюръективен почему-то и инъективен.

Лекция IX 16 апреля 2024 г.

todo

Лекция Х

22 апреля 2024 г.

Предложение 2.1.1. Пусть E/F — алгебраическое расширение, и L/F — такое расширение, что $\forall f \in F[t]$: f раскладывается на линейные множители в L[t]. Обозначим $K := \operatorname{Int}_L F$. Тогда

- 1. Существует вложение $\phi: E \hookrightarrow L$ над F.
- 2. Для всякого вложения ϕ : $\phi(E) \subset K$.
- 3. Если E алгебраически замкнуто, то $\phi(E) = K$.

Доказательство.

1. Образуем множество $\mathcal{X}\coloneqq \left\{(\widetilde{F},\phi)\Big| F\subset \widetilde{F}\subset E, \phi:\widetilde{F}\hookrightarrow L\right\}$. На \mathcal{X} введём частичный порядок: $(F',\phi')\preceq (F'',\phi'')\iff F'\subset F''$ и $\phi''\big|_{F'}=\phi'.$

 ${\mathscr X}$ непусто, так как $(F,F\hookrightarrow L)\in {\mathscr X}.$

Убедимся, что здесь применима лемма Цорна: если $(F_{\alpha},\phi_{\alpha})_{\alpha\in A}$ — цепь, то $\widetilde{F}\coloneqq\bigcup_{\alpha\in A}F_{\alpha}$ вместе с $\widetilde{\phi}$ — верхняя грань (где $\widetilde{\phi}$ определено так: и $\forall x\in\widetilde{F}:\widetilde{\phi}(x)\coloneqq\phi_{\alpha}(x)$ для произвольного α , такого, что $x\in F_{\alpha}$).

Тем самым, имеется максимальный элемент $(\widetilde{F},\widetilde{\phi})\in\mathcal{X}$. Предположим, что $\widetilde{F}\neq E$, то есть $\exists \theta\in E\setminus\widetilde{F}$. Пусть $f\in F[t]$ — минимальный многочлен θ в F, и $g\in\widetilde{F}[t]$ — минимальный многочлен θ над \widetilde{F} .

Отождествим \widetilde{F} с его образом $\widetilde{\phi}(\widetilde{F})\subset L$ (ϕ инъективно, как гомоморфизм полей).

- В L многочлен f раскладывается на линейные множители. Так как $g\mid f$, то $g\in L[t]$ тоже раскладывается на линейные множители, то есть $\exists \alpha\in L: g(\alpha)=0$. Согласно универсальному свойству простого расширения: $\widetilde{F}[\theta]\cong \widetilde{F}[t]/(g)$, то есть $\exists !\psi:\widetilde{F}[\theta]\to \widetilde{F}[\alpha]$ гомоморфизм полей над \widetilde{F} , такой, что $\psi(\theta)=\alpha$.
- 2. Предположим, что ϕ существует. Корень $f \in F[t]$ переходит в корень, поэтому ϕ сохраняет множество алгебраических элементов, откуда $\phi(E \subset K)$.
- 3. Рассмотрим $\beta \in K$, это корень некоторого унитального многочлена $f \in F[t]$. В E многочлен f раскладывается на линейные множители $f(t) = (t \alpha_1) \cdot \ldots \cdot (t \alpha_n)$, где $\alpha_i \in E$. Применяя индуцированный $\phi : E[t] \to L[t]$ к данному разложению, получаем $f(t) = (t \phi(\alpha_1)) \cdot \ldots \cdot (t \phi(\alpha_n))$. Подставляя β , получаем, нуль. Значит, $\beta = \phi(\alpha_i)$ для некоторого i.

Следствие 2.1.1. Любое алгебраическое расширение F вкладывается в алгебраическое замыкание F.

Следствие 2.1.2. Алгебраическое замыкание F вкладывается в любое алгебраически замкнутое поле, содержащее F.

Следствие 2.1.3. Алгебраическое замыкание единственно с точностью до **не единственного** изоморфизма.

2.1.3 Сепарабельность

Пусть F — поле, $f \in F[t]$.

Определение 2.1.7 (Сепарабельный многочлен f). f не имеет кратных корней в F^{alg} .

Так как кратные корни — это корни $\gcd(f, f')$, то условие сепарабельности эквивалентно условию $\gcd(f, f') = 1$.

Если $f = \prod_{i=1}^n f_i$, где f_i неприводимы, то f сепарабелен \iff все f_i различны и сепарабельны. Неприводимый же многочлен на сепарабельность проверять легко: $\deg f' < \deg f$, поэтому при $\deg f > 0$: $\gcd(f,f') \neq 1 \iff f' = 0$ (что бывает только в конечной характеристике).

Теперь пусть E/F — алгебраическое расширение полей.

Определение 2.1.8 ($\alpha \in E$ сепарабелен над F). Минимальный многочлен α сепарабелен.

Определение 2.1.9 (Расширение E/F сепарабельно). $\forall \alpha \in E$: $\alpha \in E$ сепарабелен над F.

Интересный факт. $F = E^{\operatorname{Aut}(E/F)} \iff E/F$ — сепарабельное расширение. Здесь $\operatorname{Aut}(E/F)$ — автоморфизмы E, тождественные над F, и для $G \subset \operatorname{Aut}(E/F)$: $E^G \stackrel{def}{=} \{x \in E | \forall g \in G : gx = x\}$ — множество точек, оставляемых под действием G на месте.

Примеры (Сепарабельные и несепарабельные расширения).

- Любое расширение поля характеристики нуль сепарабельно.
- Пусть $F \coloneqq \mathbb{F}_p(t^p), \ E \coloneqq \mathbb{F}_p(t)$. Рассмотрим многочлен $x^p t^p \in F[x]$. Он неприводим над F, так как даже свободный член неприводим, и видно, что все ассоциированные с t^p не корни.

Но над $E: x^p-t^p=(x-t)^p$, то есть $x^p-t^p\in F[x]$ неприводим и несепарабелен. И действительно, $(x^p-t^p)'=px^{p-1}=0$.

Определение 2.1.10 (Совершенное поле F). Любое алгебраическое расширение F сепарабельно.

Упражнение 2.1.1. Верно ли, что F совершенно \iff эндоморфизм Фробениуса $Frob: F \to F, x \mapsto x^p$ сюръективен? Вероятно, верно только \Rightarrow , но лектор не до конца уверен.

Примеры.

- Если $\operatorname{char} F = 0$, то F совершенно.
- Если $|F| < \infty$, то F совершенно.

Доказательство. Рассмотрим $\theta \in F^{\mathrm{alg}}$. $|F[\theta]| = q^n$, где $q \coloneqq |F|$. Тогда $\theta^{q^n-1} = 1$ (теорема Лагранжа для мультипликативной группы $F[\theta]^*$), то есть θ — корень $t^{q^n-1} - 1$.

Этот многочлен взаимно прост со своей производной: $\left(t^{q^n-1}-1\right)'=(q^n-1)t^{q^n-2}=-t^{q^n-2},$ и $\gcd(-t^{q^n-2},t^{q^n-1}-1)=1.$

Минимальный многочлен θ делит $t^{q^n-1}-1$, значит, он тоже не имеет кратных корней. \square