# Topic 13 - Model Selection

STAT 525 - Fall 2013

## STAT 525

### Outline

- Variable Selection
  - $-R^2$
  - $-C_p$
  - Adjusted  $R^2$
  - PRESS
- Automatic Search Procedures

Topic 13

\_\_

### STAT 525

## Predicting Survival - Page 350

- Surgical unit wants to predict survival in patients undergoing a specific liver operation
- Has random sample of 108 patients use only 54 patients
- Response Y is survival time (days)
- Eight predictor variables
  - $-X_1$  blood clotting score
  - X<sub>2</sub> prognostic index
  - $-X_3$  enzyme function score
  - X<sub>4</sub> liver function score
  - $-X_5$  age
  - $-X_6$  gender
  - $X_7$  and  $X_8$  history of alcohol use

STAT 525

# Survival Time as a Response

- Conditional distribution often highly skewed to the right
- Times can be censored if study stopped prior to all deaths
- Survival analysis techniques should be used when censoring is present
- In this case, we observe all survival times so we will investigate transformation using Box-Cox transformation

Topic 13

3

```
STAT 525
```

### **SAS** Commands

Topic 13

Box-Cox Analysis for surv

60

40

20

Selected \( \lambda = 0 \)

9 -275

330

9 -375

-3 -2 -1 0 1 2 3

Lambda

Terms with Pr F < 0.05 at the Selected Lambda

Topic 13

STAT 525

Topic 13

# Continuing the Analysis

```
data a1; set a1;
    lsurv=log(surv);
run;

proc sgscatter;
  matrix lsurv blood prog enz liver age;
run;

proc corr;
  var lsurv blood prog enz liver age;

proc reg data=a1;
  model lsurv=blood prog enz liver age female mod_alc sev_alc /
  selection= rsquare adjrsq cp aic sbc best=2 b;
run;
```

STAT 525



### Output

### Simple Statistics

| Variable | N  | Mean     | Std Dev  | Sum       | Minimum  | Maximum   |
|----------|----|----------|----------|-----------|----------|-----------|
| lsurv    | 54 | 6.43054  | 0.49152  | 347.24929 | 5.19850  | 7.75919   |
| blood    | 54 | 5.78333  | 1.60303  | 312.30000 | 2.60000  | 11.20000  |
| prog     | 54 | 63.24074 | 16.90253 | 3415      | 8.00000  | 96.00000  |
| enz      | 54 | 77.11111 | 21.25378 | 4164      | 23.00000 | 119.00000 |
| liver    | 54 | 2.74426  | 1.07036  | 148.19000 | 0.74000  | 6.40000   |
| age      | 54 | 51.61111 | 11.12267 | 2787      | 30.00000 | 70.00000  |

### Pearson Correlation Coefficients, N = 54

|       | lsurv   | blood   | prog    | enz      | liver   | age      |
|-------|---------|---------|---------|----------|---------|----------|
| lsurv | 1.00000 | 0.24633 | 0.47015 | 0.65365  | 0.64920 | -0.14505 |
|       |         | 0.0726  | 0.0003  | <.0001   | <.0001  | 0.2953   |
| blood |         | 1.00000 | 0.09012 | -0.14963 | 0.50242 | -0.02069 |
|       |         |         | 0.5169  | 0.2802   | 0.0001  | 0.8820   |
| prog  |         |         | 1.00000 | -0.02361 | 0.36903 | -0.04767 |
|       |         |         |         | 0.8655   | 0.0060  | 0.7321   |
| enz   |         |         |         | 1.00000  | 0.41642 | -0.01290 |
|       |         |         |         |          | 0.0017  | 0.9262   |
| liver |         |         |         |          | 1.00000 | -0.20738 |
|       |         |         |         |          |         | 0.1324   |
|       |         |         |         |          |         |          |

Topic 13

### STAT 525

# $C_p$ Criterion

- Compares total mean squared error with  $\sigma^2$
- Squared error

$$(\hat{Y}_i - \mu_i)^2 = (\hat{Y}_i - E(\hat{Y}_i) + E(\hat{Y}_i) - \mu_i)^2$$

$$= (E(\hat{Y}_i) - \mu_i)^2 + (\hat{Y}_i - E(\hat{Y}_i))^2$$

$$= Bias^2 + (\hat{Y}_i - E(\hat{Y}_i))^2$$

- Mean value is  $(E(\hat{Y}_i) \mu_i)^2 + \sigma^2(\hat{Y}_i)$
- $\bullet$  Total mean value is  $\sum{(\mathbb{E}(\hat{Y}_i) \mu_i)^2} + \sum{\sigma^2(\hat{Y}_i)}$
- Criterion measure

$$\Gamma_p = \frac{\sum (E(\hat{Y}_i) - \mu_i)^2 + \sum \sigma^2(\hat{Y}_i)}{\sigma^2}$$

### Variable Selection

- Two distinct questions
  - 1 What is the appropriate subset size?

adjusted  $R^2$ ,  $C_p$ , MSE, PRESS, AIC, SBC

2 What is the best model for a fixed size?  $R^2$  and any of the above measures

Topic 13

#### 10

### STAT 525

# $C_p$ Criterion

- Do not know  $\sigma^2$  nor numerator
- For  $\sigma^2$ , use  $MSE(x_1, x_2, ..., x_{p-1}) = MSE(F)$  as estimate
- For numerator:
  - Can show  $\sigma^2(\hat{\mathbf{Y}}) = \sigma^2 \mathbf{H}$
  - This means  $\sum \sigma^2(\hat{Y}_i) = \sigma^2 \text{Trace}(\mathbf{H}) = \sigma^2 p$  (Trace(idempotent matrix)= rank)
  - Can show E(SSE)= $\sum (E(\hat{Y}_i) \mu_i)^2 + (n-p)\sigma^2$
  - Note: when model correct,  $\sum (E(\hat{Y}_i) \mu_i)^2 = 0$

$$C_p = \frac{(SSE_p - (n-p)MSE(F)) + pMSE(F)}{MSE(F)}$$
$$= \frac{SSE_p}{MSE(X_1, X_2, ..., X_{p-1})} - (n-2p)$$

Topic 13

11

# $C_p$ Criterion

- p is number of predictors + intercept
- When model correct, there is no bias
- $E(C_p)\approx p$
- $\bullet$  When plotting models against p
  - Biased models will fall above  $C_p = p$
  - Unbiased models will fall around line  $C_p = p$
  - $-\,$  By definition:  $C_p$  for full model equals p

Topic 13

13

### STAT 525

# $PRESS_p$ Criterion

- Looks at the prediction sum of squares which quantifies how well the fitted values can predict the observed responses
- For each case i, predict  $Y_i$  using model generated from other n-1 cases
- PRESS =  $\sum (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS
- Can calculate this in one fit (Chpt 10)

## Adjusted $R^2$ Criterion

- Takes into account the number of parameters in model
- Switches from SS's to MS's

$$R_a^2 = 1 - \left(\frac{n-1}{n-p}\right) \frac{\text{SSE}}{\text{SSTO}} = 1 - \frac{\text{MSE}}{\text{MSTO}}$$

- Choose model which maximizes  $R_a^2$
- Same approach as choosing model with smallest MSE

Topic 13

13

STAT 525

Topic 13

## Other Approaches

- Criterion based on minimizing -2log(likelihood) plus a penalty for more complex model
- AIC Akaike's information criterion

$$n\log\left(\frac{\mathrm{SSE_p}}{n}\right) + 2p$$

• SBC - Schwarz Bayesian Criterion

$$n \log \left( \frac{\text{SSE}_p}{n} \right) + p \log(n)$$

• Can use to compare non-nested models

### STAT 525

### Selection in SAS

- Helpful options in model statement
  - selection= to choose criterion and method
    - forward (step up)
    - backward (step down)
    - stepwise (forward with backward glance)
  - include=n forces first n variables into all models
  - best=n limits output to the best n models
  - start=n limits output to models with  $\geq n X$ 's
  - b will include parameter estimates

Topic 13

STAT 525

# Output

| R-Square Selection Method |          |          |          |           |            |  |
|---------------------------|----------|----------|----------|-----------|------------|--|
| Number in                 |          | Adjusted |          |           |            |  |
| Model                     | R-square | R-square | C(p)     | AIC       | SBC        |  |
| 1                         | 0.4273   | 0.4162   | 117.4783 | -103.8110 | -99.83305  |  |
| 1                         | 0.4215   | 0.4103   | 119.1712 | -103.2679 | -99.28994  |  |
| 2                         | 0.6632   | 0.6500   | 50.4918  | -130.4785 | -124.51159 |  |
| 2                         | 0.5992   | 0.5835   | 69.1967  | -121.0890 | -115.12206 |  |
| 3                         | 0.7780   | 0.7647   | 18.9015  | -151.0021 | -143.04620 |  |
| 3                         | 0.7572   | 0.7427   | 24.9882  | -146.1614 | -138.20545 |  |
| 4                         | 0.8299   | 0.8160   | 5.7340   | -163.3759 | -153.43101 |  |
| 4                         | 0.8144   | 0.7993   | 10.2633  | -158.6694 | -148.72443 |  |
| 5                         | 0.8375   | 0.8205   | 5.5282   | -163.8257 | -151.89179 |  |
| 5                         | 0.8359   | 0.8188   |          | -163.2934 |            |  |
| 6                         | 0.8435   | 0.8235   |          | -163.8583 |            |  |
| 6                         | 0.8392   | 0.8186   | 7.0288   | -162.3961 | -148.47317 |  |
| 7                         | 0.8460   | 0.8226   | 7.0288   | -162.7428 | -146.83088 |  |
| 7                         | 0.8436   | 0.8198   | 7.7214   | -161.9186 | -146.00670 |  |
| 8                         | 0.8461   | 0.8187   | 9.0000   | -160.7773 | -142.87649 |  |

Topic 13 STAT 525

# **Background Reading**

Models of same subset size

• Use knowledge on subject matter to make final decision

• Decision not that important if goal is prediction

• KNNL Sections 9.1-9.5

• Can also use  $R^2$  or SSE

• May result in several worthy models

- knnl350.sas
- KNNL Chapter 10

Topic 13