Master's Thesis Midterm Presentation

Philip Hartout

April 30, 2022

D BSSE

Introduction

Proteins are extremely diverse.

Introduction

Proteins are extremely diverse.

They support all functions necessary for life.

Proteins are an interesting platform for generative modelling:

Proteins are an interesting platform for generative modelling:

Proteins can be engineered (for therapeutic or industrial purposes)

Proteins are an interesting platform for generative modelling:

- Proteins can be engineered (for therapeutic or industrial purposes)
- Well-defined (boils down to a sequence or set of sequences)

Proteins are an interesting platform for generative modelling:

- Proteins can be engineered (for therapeutic or industrial purposes)
- Well-defined (boils down to a sequence or set of sequences)

Generative Model A generative model captures the probability distribution of P(X), and is therefore capable of generating samples following P(X) given a random vector of inputs.

Proteins are an interesting platform for generative modelling:

- Proteins can be engineered (for therapeutic or industrial purposes)
- Well-defined (boils down to a sequence or set of sequences)

Generative Model A generative model captures the probability distribution of P(X), and is therefore capable of generating samples following P(X) given a random vector of inputs.

We concern ourselves with the evaluation problem here.

Proteins are an interesting platform for generative modelling:

- Proteins can be engineered (for therapeutic or industrial purposes)
- Well-defined (boils down to a sequence or set of sequences)

Generative Model A generative model captures the probability distribution of P(X), and is therefore capable of generating samples following P(X) given a random vector of inputs.

We concern ourselves with the evaluation problem here.

Given a set of proteins, how to we make sure that our model follows the same distribution?

What makes a good protein?

Maximum Mean Discrepancy (MMD)

$$\mathsf{MMD}(X,Y) := \frac{1}{n^2} \sum_{i,j=1}^n k(x_i,x_j) + \frac{1}{m^2} \sum_{i,j=1}^n k(y_i,y_j) - \frac{2}{nm} \sum_{i=1}^n \sum_{j=1}^m k(x_i,y_j)$$

where:

- \mathcal{X} is some non-empty set.
- $x_i, x_j \subseteq \mathcal{X}$, n is the number of samples in \mathbf{x} ;
- $y_i, y_j \subseteq \mathcal{X}$, m is the number of samples in \mathbf{y} ;
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a valid kernel.

MMD captures distances between 2 sets of structured data on any RKHS $\mathcal{H}.$

Maximum Mean Discrepancy (MMD) – continued

Currently accepted method to evaluate GNNs. Advantages:

1. It's possible to leverage decades of kernel research! Both a blessing and a curse:

Blessing Flexibility, Computation on multiple representations

Curse Instability (see Leslie's ICLR work), hyperparameter tuning.

- 2. Possibility of statistical testing.
- 3. Possibility of leveraging multiple representations.

Foreshadowing...

Thesis Goal –
 Build a library to evaluate protein generative models

Experimental setup

We will study the following settings:

- 1. Add gaussian noise to the point cloud and use graph kernels
- 2. Add twist to protains to the point cloud and see the results on different kernels
- 3. Add mutations to protains to the point cloud and see the results on different kernels

2 sources of variance:

2 sources of variance:

Data

2 sources of variance:

- Data
- Noise

2 sources of variance:

- Data
- Noise

n = 10 runs

Conclusions

2 sources of variance:

- Data
- Noise

n=10 runs

Conclusions

 MMD is stable using the Weisfeiler-Lehman kernel

2 sources of variance:

- Data
- Noise

n = 10 runs

Conclusions

- MMD is stable using the Weisfeiler-Lehman kernel
- 2. Choice of representation influences MMD