GEOMETRY HOMEWORK 9

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

December 1, 2011

Problem 4 (Ex p.101 14). (Gradient on Surfaces.) The gradient of a differentiable function $f: S \mapsto \mathbb{R}$ is a differentiable map grad $f: S \mapsto \mathbb{R}^3$ which assigns to each point $p \in S$ a vector grad $f(p) \in T_p(S) \subset \mathbb{R}^3$ such that

$$\langle \operatorname{grad} f(p), v \rangle_p = \operatorname{df}_p(v) \qquad \text{ for all } v \in T_p(S)$$

Show that

(a) If E, F, G are the coefficients of the first fundamental form in a parametrization $X : U \subset \mathbb{R}^2 \mapsto S$, then grad f on X(U) is given by

$$grad \ f = \frac{f_u G - f_v F}{EG - F^2} \mathbf{X}_u + \frac{f_v E - f_u F}{EG - F^2} \mathbf{X}_v$$

In particular, if $S = \mathbb{R}^2$ with coordinates x, y,

$$grad f = f_x e_1 + f_y e_2$$

where $\{e_1, e_2\}$ is the canonical basis of \mathbb{R}^2 (thus, the definition agrees with the usual definition of gradient in the plane)

(b) 為什麼不直接將 $gradient\ f$ 定義成 $f_u\mathbb{X}_u + f_v\mathbb{X}_v$, 這有什麼缺點 (例如 座標變換)

Proof. (a) First,

$$\langle \operatorname{grad} f(p), \mathbf{X}_u \rangle_p = df_p(\mathbf{X}_u) = f_u$$

 $\langle \operatorname{grad} f(p), \mathbf{X}_v \rangle_p = df_p(\mathbf{X}_v) = f_v$

Let grad $f = q\mathbf{X}_u + r\mathbf{X}_v$. Then

$$\langle \operatorname{grad} f(p), \mathbf{X}_u \rangle = Eq + Fr = f_u$$

 $\langle \operatorname{grad} f(p), \mathbf{X}_v \rangle = Fq + Gr = f_v$

Therefore, solve the linear equations and get

$$q=rac{f_uG-f_uF}{EG-F^2};$$
 $r=rac{f_vE-f_uF}{EG-F^2}$

Then the two results follow immediately.

(b) If we define the gradient in that way, let $S=\mathbb{R}^2$ be the surface and $\mathbf{X}(u,v)=(u,v), \ \mathbf{Y}(s,t)=(s,s+t)$ be its two parametrizations. If f(u,v) = v, then f(s,t) = s + t and therefore grad $f = \mathbf{X}_v = \mathbf{Y}_s + \mathbf{Y}_t$. But clearly $\mathbf{X}_v = (0, 1) \neq (1, 2) = \mathbf{Y}_s + \mathbf{Y}_t$, which is a contradiction.

Problem 7. 計算下列 surface 的 Γ_{ij}^k (共有六項)

- (b) $(x(t), y(t) \cos \theta, y(t) \sin \theta)$
- (c) $E = G = \lambda^2, F = 0$

Proof.

Problem 8 (Ex p.237 1, 2). (a) Show that if X is an orthogonal parametrization, that is, F = 0, then

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right\}$$

(b) Show that if X is an isothermal parametrization, that is, E=G= $\lambda(u,v)$ and F=0, then

$$K = -rac{1}{2\lambda}\Delta(\log\lambda)$$

where $\Delta\phi$ denotes the Laplacian $(\partial^2\phi/\partial u^2)+(\partial^2\phi/\partial v^2)$ of the function ϕ . Conclude that when $E=G=(u^2+v^2+c)^{-2}$ and F=0, then K = const. = 4c.

Proof.