

					ГУИР.110101.002 ПД				
					Веδ-приложение по усовершенствованию	/lum.	^	1асса	Μαсштαδ
ВМ	Лист	N докум.	Подпись	Дата	визцализации мониторинга качества воды				
азраδ.		Пантус			посредством введения цветовых гексагонов				
ο <i>β</i> .		Цявловская							
контр.		Цявловская			на карте города Минска	Лист 1		Λυςποβ 1	
2Ц	енз.						_		
контр.		Ильясова			Структура базы данных	ИПиЭ, гр. 11010		110101	
πβ.		Казак			1			-	

ДП 200.101011.9NŁ]	
LIMP MOTOR OF LIPE	
	ГУИР.110101.005 ПД
	Изм Лист N докум. Подпись Дата визуализации мониторинга качества воды
	Пров. Цявловская посредством введения цветовых гексагонов
	Т.контр. Цявловская на карте города Минска Лист 1 Листов 1 Реценз. Н.контр. Ильясова Эскизы рабочих окон программы ИПиЭ, гр. 110101
1	Утв. Казак

Промежуточные результаты расчетов

Матании ПС	1		
Метрики ПС	X _{min}	Χ _{φi}	Q _i
V	0,07917888563	1,026686217	-0.00223638
V*	0,006477739787	0,01156276552	0.557359718
CL	0,01902173913	0,05434782609	0.020697812
cl	0,01956181534	0,02034428795	0.302817542
CLI	0,009731782578	0,009969143128	0.716539671
Q	0,01866815269	0,04736695458	0.382591776
N	0,03225806452	1,102150538	-0.00084029
L	0,0027	0,345	0.005159476
L	0	0,01666666667	0
E	0,02998965874	2,105305067	-0.01622308
WMC	0,04347826087	0,6722408027	0.022161918
DIT	0,125	0,25	0.085714286
NOC	0,03125	0,09375	0.311827957
CB0	0,03703703704	0,2592592593	0.041420118
RFC	0,006134969325	0,1226993865	0.009548611
LCOM	-0,1007751938	0,05167958656	-4.96981891

Риск снижения работы программного средства составил R = 0.093.

Формулы для расчета по модели сложности

$$x_{min} = \frac{a_{min}}{a_{max}}$$

$$x_{\Phi} = \frac{a}{a_{max}}$$

$$d_i = \frac{x_{min}(1-x_{\phi})}{x_{\phi}(1-x_{min})},$$

 $R = 1 - \prod_{i=1}^{n} (1 - d_i)^{\lambda_i} = 0.093$.

Промежуточные результаты расчетов

Средняя скорость выполнения одного оператора равна 10330,57. Надежность веδ-приложения для периода эксплуатации t, равному 128 часам, равна P(t) = 0,87.

Формулы для расчета по модели Муса

$$\tau = \tau_0 exp(\frac{CT}{M\tau_0}),$$

$$\tau_0 = \frac{1}{fKN'}$$

$$f = \frac{A}{B}$$

$$p(t)=e^{-\frac{t}{\tau}}.$$

Модель Джелинского-Моранда

Промежуточные результаты расчетов

m	f(m)	g(m, A)	f -g	abs(f-g)
45	0.445554854	0.44444	0.00111041	0.00111041
46	0.433294318	0.43243	0.000861886	0.000861886
47	0.421700115	0.42105	0.000647483	0.000647483
48	0.410718646	0.41026	0.000462236	0.000462236
49	0.40030198	0.4	0.00030198	0.00030198
50	0.390407113	0.39024	0.00016321	0.00016321
51	0.380995348	0.38095	4.29669E-05	4.29669E-05
52	0.372031762	0.37209	-6.12608E-05	6.12608E-05
53	0.363484754	0.36364	-0.00015161	0.00015161
54	0.355325651	0.35556	-0.000229904	0.000229904
55	0.34752838	0.34783	-0.000297707	0.000297707
56	0.340069173	0.34043	-0.000356359	0.000356359
57	0.332926316	0.33333	-0.000407017	0.000407017
58	0.326079932	0.32653	-0.000450681	0.000450681
59	0.319511787	0.32	-0.000488213	0.000488213
60	0.313205126	0.31373	-0.000520365	0.000520365
	1	1		

Формулы для расчета по модели Джелинского-Моранда

$$\lambda(t) = K[B - (i-1)].$$

$$f(B+1) = g(B+1,A)$$

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i'}$$

Надежность ве δ -приложения составила P = 0,907.

ДП 300.101011.9NV]			
			006 00
		ГУИР.110101	
	Изм Лист N докум. Подпись Да Разраδ. Пантус	odoganasados monamopanea ka reemoa ocosi	
	Пров. Цявловская Т.контр. Цявловская	посредством введения цветовых гексагонов на карте города Минска	Лист 1 Листов 1
	Реценз. Н.контр. Ильясова Утв. Казак	Результат расчета надежности веб-приложения	ИПиЭ, гр. 110101