Econometrics

Probability

Machine Learning

Big Data

Data Science

Computational SC

Econometrics

Probability

Machine Learning

Big Data

Data Science

Computational SC

Statistics

Model ── Data

Data ── Model

Model: When wee flip a coin the process that governs its behavior in one in which:

- Call the coin flipping "variable X"
- X has 2 possible outcomes: {Head,Tail}
- P(X = Head) : p
- P(X = Tail) : q = 1-p

E.g. If p=0.9, then q=0.1 as well.

We call this a RANDOM variable: we know the "parameters" (p), but not the outcome of X

- If we flip this coin, most likely we get a Head, but not necessarily

Formally, we would say that:

"X comes from a Bernoulli distribution with parameter p=0.9": X ~ Bernoulli(0.9)

We can also derive other theoretical results

What is the probability of getting 2 Heads if I flip a "fair" coin twice?

Model: p=q=0.5

Four possible outcomes:

H,H

H,T

T,H

T,T

1 out of 4 = 0.25

More formally: p * p = 0.5 * 0.5 = 0.25

Even more formally: What is the probability of getting n Heads if I flip the coin n times?

5 Head

6 Head

5 Head

Data		Mac	
Data			

H T H	What is the underlying model that generates data like this?
T T	Or, what is p?
H H	We don't know, be we can estimate p from the data.
T H	We need an ESTIMATOR, let's call it $ heta$
Ť	Which will produce an ESTIMATE of p, let's call it p̂.

Data ————	Model
Dala	Model

H T H T T H H T H T

What is an estimator?

An estimator is f(Data) that aim to approximate the true value of p, that is, \hat{p}

Ideas for $\theta(x_i,...,x_n)$?

p̂ = Number of occurrence of H / Total number of occurrences

$$\hat{p} = 5/10 = 0.5$$

Data	
Data ———————————————————————————————————	Model

H T H T T H H T H T

 \hat{p} = Number of occurrence of H / Total number of occurrences

How good is our estimate? —> Probability Theory

Data ---- Model

Let's say the data DOES come from a world in which p=0.5 Here are some possible data draws:

Our data	Other data	Other data
Н	T	Н
Т	Н	Т
Н	Н	Т
Т	T	Н
Т	Н	Н
н	T	Т
Н	Н	Т
Т	T	Н
Н	Н	Н
Т	T	Н
$\hat{p} = 5/10 = 0.5$	$\hat{p} = 5/10 = 0.5$	$\hat{p} = 6/10 = 0.6$

Data ── Model

Model ── Data

Produce ESTIMATES of (unknown) true parameters governing the processes we want to study

Quantify UNCERTAINTY around these estimates

Data is usually structured is matrix form: [rows,columns] -> [observations, variables]

We have a sample of:

- 10 people
- 4 men and 6 women
- each of them tossed the same coin once

	"Coin toss"	"Gender"
(1)	Н	Male
(2)	T	Female
(3)	Н	Male
(4)	T	Female
(5)	T	Female
(6)	Н	Male
(7)	Н	Female
(8)	T	Female
(9)	Н	Female
(10)	T	Male

Data[5,1] : T

Data[7,2] : Female

Do not mistake "variables" in a dataset with RANDOM VARIABLES

	"Coin toss"	"Gender"
(1)	Н	Male
(2)	Т	Female
(3)	Н	Male
(4)	T	Female
(5)	T	Female
(6)	Н	Male
(7)	Н	Female
(8)	T	Female
(9)	Н	Female
(10)	T	Male

- "Coin toss" is a VARIABLE (column) in our data
- **–** Each of the 10 entries in "Coin toss" are the manifestation of a RANDOM VARIABLE with a Bernoulli distribution and parameter p