R_climate_analysis

April 18, 2018

0.1 Install Packages

The downloaded binary packages are in /var/folders/dq/dpc2bdh55f965pnzkxft3830000gn/T//RtmpEYf9lx/downloaded_packages

0.2 Load Packages

0.3 Import Data

```
In [66]: Tmax <- read_excel("~/git/Didattica/jupyter/Tmax.xlsx", sheet = "R", na = "NA")
In [67]: Tmax[1,2]

MODENAURB
6.5</pre>
```

In [68]: Tmax[,5]

RAVARINO

NA

NA NA

NA

NANA

NA

NA

NA

NA

NA

NA

NA NA

NA

NA

NA

NA

NA

NANA

NA

NA

NA

NA

NA

NA

NA NA

NA

NA

NA

NA

NA

NANA

NA

NA

NA

NA

NANA

NA

NA

NA

NA

NA

NA

NA

NA NA

```
In [69]: Tmax[7,]
```

GIORNO MODENAURB SAGATABOAGRO ZOLAPREDOSAAGRO RAVARINO CORREGGIO 2007-01-07 10.1 9.9 9.5 NA 10.5

In [70]: Tmax[7,c(2,3,4,6)]

```
MODENAURBSAGATABOAGROZOLAPREDOSAAGROCORREGGIOAGRO10.19.99.510.5
```

In [71]: names(Tmax)

1. 'GIORNO' 2. 'MODENAURB' 3. 'SAGATABOAGRO' 4. 'ZOLAPREDOSAAGRO' 5. 'RAVARINO' 6. 'CORREGGIOAGRO'

In [72]: str(Tmax)

```
Classes tbl_df, tbl and 'data.frame': 365 obs. of 6 variables:
$ GIORNO : POSIXct, format: "2007-01-01" "2007-01-02" ...
$ MODENAURB : num 6.5 10.9 13.3 9.5 10.5 10.5 10.1 8.2 10.7 7.5 ...
$ SAGATABOAGRO : num 7 10 12.9 7 11.9 10.7 9.9 8.2 10.7 6.8 ...
$ ZOLAPREDOSAAGRO: num 8.4 10.5 13.5 7.6 10.5 11 9.5 8.2 10.4 10.7 ...
$ RAVARINO : logi NA NA NA NA NA ...
$ CORREGGIOAGRO : num 6.6 12.5 13.4 7 10.3 10.6 10.5 8.7 10.3 6.7 ...
```

In [73]: summary(Tmax)

```
GIORNO
                                                     ZOLAPREDOSAAGRO
                       MODENAURB
                                      SAGATABOAGRO
Min.
       :2007-01-01
                     Min. : 1.00
                                     Min.
                                            :-0.10
                                                     Min.
                                                            : 2.4
1st Qu.:2007-04-02
                     1st Qu.:11.40
                                     1st Qu.:12.00
                                                     1st Qu.:12.2
Median :2007-07-02
                     Median :19.90
                                     Median :21.50
                                                     Median:20.5
Mean
      :2007-07-02
                     Mean
                           :19.36
                                     Mean
                                           :20.52
                                                     Mean
                                                            :20.2
3rd Qu.:2007-10-01
                     3rd Qu.:27.30
                                     3rd Qu.:28.80
                                                     3rd Qu.:28.5
Max.
       :2007-12-31
                     Max.
                            :36.30
                                     Max.
                                            :37.70
                                                     Max.
                                                             :38.7
RAVARINO
               CORREGGIOAGRO
Mode:logical
               Min.
                      :-0.20
NA's:365
               1st Qu.:11.50
               Median :21.00
               Mean
                      :20.15
               3rd Qu.:28.50
```

:37.10

0.4 Plot: basic command

In [74]: plot(Tmax\$MODENAURB)

Max.

In [75]: plot(Tmax\$MODENAURB,pch="+") # pch=2

In [76]: plot(Tmax\$MODENAURB,type="b",col="dark red",lwd=2)

0.5 ggplot2: advanced plots

0.5.1 The different points shapes commonly used in R are illustrated in the figure below:

Warning message:

Ignoring unknown parameters: method, se

0.6 Correlation

0.6.1 Correlation does NOT imply causation!

http://www.tylervigen.com/spurious-correlations

Correlation is a statistical measure that suggests the level of linear dependence between two variables, that occur in pair – just like what we have here in MODENAURB and SAGATABOAGRO. Correlation can take values between -1 to +1. If we observe for every instance where MODENAURB increases, the SAGATABOAGRO also increases along with it, then there is a high positive correlation between them and therefore the correlation between them will be closer to 1. The opposite is true for an inverse relationship, in which case, the correlation between the variables will be close to -1.

A value closer to 0 suggests a weak relationship between the variables. A low correlation (-0.2 < x < 0.2) probably suggests that much of variation of the response variable (Y) is unexplained by the predictor (X), in which case, we should probably look for better explanatory variables.

Correlation coefficient between two random variables *X* and *Y* is defined as

$$\rho(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\sqrt{\mathbf{Var}(X)\mathbf{Var}(Y)}} = \frac{\mathbf{E}[(X - \mu_x)(Y - \mu_y)]}{\mathbf{e}(X)\mathbf{e}(Y)}.$$

where Cov is the covariance Var is the variance μ_x is the mean of X μ_{ν} is the mean of Y

 $\mathbf{e}(X)$ is the standard deviation of X

 $\mathbf{e}(Y)$ is the standard deviation of Y

$$\mathbf{e}(X) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{N}}$$

Compute Pearson correlation

In [81]: cor(Tmax\$MODENAURB, Tmax\$SAGATABOAGRO)

0.994340881622063

Correlation Matrix

In [82]: cor(Tmax[,2:6])

	MODENAURB	SAGATABOAGRO	ZOLAPREDOSAAGRO	RAVARINO
MODENAURB	1.0000000	0.9943409	0.9926168	NA (
SAGATABOAGRO	0.9943409	1.0000000	0.9922394	NA (
ZOLAPREDOSAAGRO	0.9926168	0.9922394	1.0000000	NA (
RAVARINO	NA	NA	NA	1
CORREGGIOAGRO	0.9943669	0.9961841	0.9918855	NA

Plot correlation

In [83]: ggcorr(Tmax)

Warning message in ggcorr(Tmax):

data in column(s) 'GIORNO', 'RAVARINO' are not numeric and were ignored

0.7 Regression

0.7.1 Introduction

The aim of linear regression is to model a continuous variable Y as a mathematical function of one or more X variable(s), so that we can use this regression model to predict the Y when only the X is known. This mathematical equation can be generalized as follows:

$$Y = \beta_1 + \beta_2 X + \epsilon$$

where, β_1 is the intercept and β_2 is the slope. Collectively, they are called regression coefficients. ϵ is the error term, the part of Y the regression model is unable to explain.

0.7.2 Scatter Plot

SAGATABOAGRO ~ MODENAURB

0.7.3 BoxPlot – Check for outliers

Generally, any datapoint that lies outside the 1.5 * interquartile-range (1.5*IQR) is considered an outlier, where, IQR is calculated as the distance between the 25th percentile and 75th percentile values for that variable.

MODENAURB

SAGATABOAGRO

Outlier rows:

Outlier rows:

0.7.4 Density plot – Check if the response variable is close to normality

```
sub=paste("Skewness:", round(e1071::skewness(Tmax$MODENAURB), 2)))
polygon(density(Tmax$MODENAURB), col="red")
plot(density(Tmax$SAGATABOAGRO),
    main="Density Plot: SAGATABOAGRO", ylab="Frequency",
    sub=paste("Skewness:", round(e1071::skewness(Tmax$SAGATABOAGRO), 2)))
polygon(density(Tmax$SAGATABOAGRO), col="red")
```

Density Plot: MODENAURB

Freduency 0.00 0.05 0 10 20 30 40

N = 365 Bandwidth = 2.48 Skewness: -0.02

Density Plot: SAGATABOAGRO

N = 365 Bandwidth = 2.639 Skewness: -0.1

Build linear regression model on full data

Call:

lm(formula = SAGATABOAGRO ~ MODENAURB, data = Tmax)

Coefficients:

(Intercept) MODENAURB 0.03945 1.05787

In [88]: summary(linearMod)

Call:

lm(formula = SAGATABOAGRO ~ MODENAURB, data = Tmax)

Residuals:

Min 1Q Median 3Q Max -4.1198 -0.4477 0.0439 0.4954 10.1355

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.039447  0.126553  0.312  0.755

MODENAURB  1.057875  0.005932  178.326  <2e-16 ***
---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1  1

Residual standard error: 1.015 on 363 degrees of freedom

Multiple R-squared: 0.9887, Adjusted R-squared: 0.9887

F-statistic: 3.18e+04 on 1 and 363 DF, p-value: < 2.2e-16
```

In [89]: linearMod\$coefficients

(Intercept)

0.0394471868372344 **MODENAURB**

1.05787487997798

```
ossia: Y = \beta_1 + \beta_2 X + \epsilon SAGATABOAGRO = Intercept + (\beta MODENAURB) SAGATABOAGRO = +0.03945 + 1.05787 * MODENAURB
```

Considerando che: y_i sono i dati osservati; \overline{y} è la loro media; \hat{y}_i sono i dati stimati dal modello ottenuto dalla regressione.

```
In [90]: yi = Tmax$SAGATABOAGRO

y_{-} = mean(yi)

y_{-}hat = +0.03945 + 1.05787*Tmax$MODENAURB
```

Valutiamo graficamente le grandezze in gioco:

La devianza spiegata dal modello (Explained Sum of Squares):

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

In [92]: ESS = sum(
$$(y_hat-y_)^2$$
) print(ESS)

[1] 32768.54

La devianza totale (Total Sum of Squares):

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

[1] 33142.9

Coefficiente di determinazione:

$$R^2 = \frac{ESS}{TSS}$$

[1] 0.9887047

0.7.5 Uso del modello di regressione per la ricostruzione dei dati mancanti

Selezione della variabile dipendente o target da ricostruire:

Rimozione di alcuni dati misurati, per simulare la presenza di dati mancanti:

1. 12.9 2. 9.9 3. 7.8 4. 8.8 5. 12.7 6. 11.1 7. 16.3 8. 9 9. 15 10. 23.4 11. 31.1 12. 20.7 13. 32.8 14. 26.1 15. 30 16. 12.4 17. 17.7 18. -0.1

1. <NA> 2. <NA> 3. <NA> 4. <NA> 5. <NA> 6. <NA> 7. <NA> 8. <NA> 9. <NA> 10. <NA> 11. <NA> 12. <NA> 13. <NA> 14. <NA> 15. <NA> 16. <NA> 17. <NA> 18. <NA>

Calcolo del valore medio:

Calcolo della media mobile:

1. 8.5 2. 9.45 3. 12 4. 12.5 5. 11.65 6. 14.45 7. 13.4 8. 15.2 9. 17.55 10. 24.1 11. 27.65 12. 24.95 13. 31.2 14. 26.9 15. 28.75 16. 13.5 17. 15.55 18. 6

Matrice X delle variabili indipendenti o covariate usate per ricostruire i dati mancanti

In [100]: # Selezione delle stazioni di MODENAURB (pos=2) e CORREGGIOAGRO (pos=6)

```
X = Tmax[,c(2,6)]
          summary(X)
  MODENAURB
               CORREGGIOAGRO
Min. : 1.00 Min. :-0.20
 1st Qu.:11.40 1st Qu.:11.50
Median: 19.90 Median: 21.00
Mean :19.36 Mean :20.15
3rd Qu.:27.30 3rd Qu.:28.50
Max. :36.30 Max. :37.10
Costruzione del modello di regressione tra la stazione da ricostruire e le altre disponibili:
In [101]: yi[NA_POS]
  1. <NA> 2. <NA> 3. <NA> 4. <NA> 5. <NA> 6. <NA> 7. <NA> 8. <NA> 9. <NA> 10. <NA>
11. <NA> 12. <NA> 13. <NA> 14. <NA> 15. <NA> 16. <NA> 17. <NA> 18. <NA>
In [102]: # build linear regression model using 1 covariate
          lm1 <- lm(yi ~ X$MODENAURB)</pre>
          print(lm1)
Call:
lm(formula = yi ~ X$MODENAURB)
Coefficients:
(Intercept) X$MODENAURB
   0.06158
                 1.05783
In [103]: # build linear regression model using 2 covariate
          lm2 <- lm(yi ~ X$MODENAURB + X$CORREGGIOAGRO)</pre>
          print(lm2)
Call:
lm(formula = yi ~ X$MODENAURB + X$CORREGGIOAGRO)
Coefficients:
                     X$MODENAURB X$CORREGGIOAGRO
    (Intercept)
        0.08778
                         0.35858
                                          0.66965
```

In [106]: cbind(y_,NA_DATA,y_hat_1,y_hat_2)

In [104]: beta = coefficients(lm2)

y _	NA_DATA	y_hat_1	y_hat_2
20.72853	12.9	14.130719	13.825168
20.72853	9.9	10.745663	10.735401
20.72853	7.8	7.783739	7.855573
20.72853	8.8	8.312654	8.101208
20.72853	12.7	13.284455	12.935205
20.72853	11.1	10.534097	9.790994
20.72853	16.3	16.775294	16.463598
20.72853	9.0	9.899399	9.241043
20.72853	15.0	13.813370	13.852390
20.72853	23.4	24.285887	24.303259
20.72853	31.1	31.902263	31.372756
20.72853	20.7	20.160350	20.157760
20.72853	32.8	32.960093	32.804196
20.72853	26.1	28.094075	27.804430
20.72853	30.0	30.738650	29.972775
20.72853	12.4	12.649757	11.982324
20.72853	17.7	18.150473	17.934971
20.72853	-0.1	1.119410	0.301480

Creazione di due funzioni di misura dell'errore:

Root Mean Squared Error

9.78301870722793 3.28996791608807 0.868965253602365 0.733973592872197

Mean Absolute Error

8.61268011527377 2.78888888888889 0.740662666666667 0.5622016111111112

In [110]: cbind(y_,y_mm,NA_DATA-y_mm,NA_DATA,y_hat_1,NA_DATA-y_hat_1,y_hat_2,NA_DATA-y_hat_2)

y_	y_mm		NA_DATA	y_hat_1		y_hat_2	
20.72853	8.50	4.40	12.9	14.130719	-1.230719	13.825168	-0.925168
20.72853	9.45	0.45	9.9	10.745663	-0.845663	10.735401	-0.835401
20.72853	12.00	-4.20	7.8	7.783739	0.016261	7.855573	-0.055573
20.72853	12.50	-3.70	8.8	8.312654	0.487346	8.101208	0.698792
20.72853	11.65	1.05	12.7	13.284455	-0.584455	12.935205	-0.235205
20.72853	14.45	-3.35	11.1	10.534097	0.565903	9.790994	1.309006
20.72853	13.40	2.90	16.3	16.775294	-0.475294	16.463598	-0.163598
20.72853	15.20	-6.20	9.0	9.899399	-0.899399	9.241043	-0.241043
20.72853	17.55	-2.55	15.0	13.813370	1.186630	13.852390	1.147610
20.72853	24.10	-0.70	23.4	24.285887	-0.885887	24.303259	-0.903259
20.72853	27.65	3.45	31.1	31.902263	-0.802263	31.372756	-0.272756
20.72853	24.95	-4.25	20.7	20.160350	0.539650	20.157760	0.542240
20.72853	31.20	1.60	32.8	32.960093	-0.160093	32.804196	-0.004196
20.72853	26.90	-0.80	26.1	28.094075	-1.994075	27.804430	-1.704430
20.72853	28.75	1.25	30.0	30.738650	-0.738650	29.972775	0.027225
20.72853	13.50	-1.10	12.4	12.649757	-0.249757	11.982324	0.417676
20.72853	15.55	2.15	17.7	18.150473	-0.450473	17.934971	-0.234971
20.72853	6.00	-6.10	-0.1	1.119410	-1.219410	0.301480	-0.401480