MATH PAPER ONE GUIDE

SECTION A (40 marks)

1. Factorise $2x^2 - x - 10$ hence solve $2x^2 - x - 10 = 0$.

1.
$$2x^2 - x - 10$$

$$F_{20} = \{-5, 4\}$$

$$2x^2 - 5x + 4x - 10$$

For correct substitution. M_1

$$x(2x-5) + 2(2x-5)$$

(x+2) (2x-5)

 A_1

C. a. o

Either
$$x+2=0$$

C. a. o

Either
$$x+2=0$$

$$A_1$$

$$x = -2$$

or $2x-5 = 0$

$$x = \frac{5}{2}$$

C. a. o

2. Given that matrix $A = \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 7 & 6 \\ 6 & 13 \end{pmatrix}$ and that A + 2B = C. Find matrix B and hence determinant of matrix B.

$$\begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix} + 2B = \begin{pmatrix} 7 & 6 \\ 6 & 13 \end{pmatrix}$$

$$2B \qquad = \begin{pmatrix} 7 & 6 \\ 6 & 13 \end{pmatrix} \cdot \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix}$$

 B_1 For simplification.

$$2B = \begin{pmatrix} 6 & 2 \\ 8 & 10 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 & 1 \\ 4 & 5 \end{pmatrix}$$

C. a. o A_1

3. Joshua bought 3 pens and 4 books both at shs 5,800 while Isma bought only 5 pens from the same shop at 3,000. Find the cost of each pen and book.

$$3p + 4b = 5800$$

$$5p = 3000$$

$$p = 600$$

$$3(600) + 4b = 5800$$

$$4b = 4000$$

$$b = 1000$$

For the equations B_1

 A_1 C. a. o

 M_1 For correct substitution.

 A_1 C. a. o

4. A translation T maps point A (x,y) into its image A'(x-3,y+2).

i. Find the transformation T.

ii. Find B if B' is (-2,7).

$$T + {x \choose y} = {x-3 \choose y+2}$$

*M*₁ For correct substitution.

$$T = x-3-x$$

$$y+2-y$$

$$T = {\binom{-3}{2}}$$

$$T+B = {\binom{-2}{7}}$$

$$B = {\binom{-2}{7}} \cdot {\binom{-3}{2}}$$

$$B = {\binom{1}{5}}$$

$$A_1 C. a. o$$

$$M_1 For correct substitution.$$

$$A_1 C. a. o$$

5. Calculate the area of a triangle ABC in which AB=14cm, AC=9cm and angle BAC=120°.

Area =
$$\frac{1}{2}$$
 bc sin A
= $\frac{1}{2}$ x 14 x 9 sin120
= 54.56sq units

 $M_1 M_1 M_1$
 A_1 C. a. o

6. A man of height 1.5m stands a level ground to see the roof of a building at angle of elevation of 54⁰. If the man stands 20m away from the foundation of the building. Find the height of the building.

 $an 54 = rac{n}{20}$ M_1 Use of identity h = 20 an 54 A_1 C. a. o = 27.53 anHeight of the building = 27.53 + 1.5 M_1 Adding two heights = 29.03 an C. a. o

7. The probability of picking a blues ball at random from the box containing blue and white balls is $\frac{2}{3}$. If 8 balls were white, how many balls are in the box?

$$P(B) = \frac{2}{3}$$

$$P(w) = \frac{1}{3}$$

$$M_1 \qquad for \frac{1}{3} seen$$

$$Then \frac{1}{3} \times n = 8$$

$$n = 24 \text{ balls}$$

$$M_1 \qquad for \frac{1}{3} seen$$

$$M_1 M_1 \qquad Ideas used$$

$$A_1 \qquad C. a. o$$

8. Solve the inequality $-8 < \frac{3}{4}x - 2 \le x - 6$ and show the solution on a number line.

$$-8 < \frac{3}{4}x - 2$$

$$-3x < 3x - 8$$

$$\frac{-24}{3} < \frac{3}{3}x$$

$$-8 < x$$

$$3x/4 - 2 \le x - 6$$

$$3x/_4$$
 – $2 \le x$ -6

$$3x - 8 \le 4x - 6$$

$$-x \le 2$$

$$x \le -2$$

$$-8 < x \le -2$$

$$M_1 M_1 M_1$$

correct idea

$$A_1$$
 for $x \le -2$, $-8 < x$ correct

9. Given that
$$p * q = p^2 - pq^2$$
. Find;

 B_1 Number line seen

$$P * Q = P^2 - PQ^2$$

 $3 * 1 = 3^2 - 3(1)^2$
 $= 9 - 3$
 $= 6$

$$M_1$$
 For correct substitution.

$$A_1$$
 C. a. o

$$4*6 \Rightarrow 4^2 - 4(6)^2$$

 $\Rightarrow 16 - 144$
= -128

$$M_1$$
 For correct substitution.

$$A_1$$
 C. a. o

10.In the figure below O is the center of the circle.

Find the Angles marked **a** and **b**.

$$40 + 40 + y = 180$$

 $y = 100$

$$B_1$$

$$y + b = 180$$
 M_1
 $100 + b = 180$ A_1

$$220 + y + a = 360$$

 $220 + 100 + a = 360$
 $a = 40^{\circ}$
 A_1

SECTION B (60 marks)

Attempt not more than five questions from this section.

11(a) Solve the equation $\frac{6}{x} + \frac{1}{x-5} = 2$.

$$\frac{6}{x} + \frac{1}{x-5} = 2$$

$$\frac{6(x-5) + x}{x(x-5)} = 2$$

$$6x - 30 + x = 2x(x-5)$$

$$7x - 30 = 2x^2 - 10x$$

$$2x^2 - 17x + 30 = 0$$

$$x = \frac{17 \pm \sqrt{(-17)^2 - 4 \times 2 \times 30}}{2 \times 2}$$

$$= \frac{17 \pm \sqrt{289 - 240}}{4}$$

$$x = \frac{17 \pm 7}{4}$$

$$x = \frac{17 \pm 7}{4}$$

$$Either x = \frac{17 \pm 7}{4} = \frac{24}{4} = 6$$
or $x = \frac{17 \pm 7}{4} = \frac{10}{4} = 2.5$

M₁ For equating correctly

B₁ equation formed

M₁ Any correct method

A₁ C. a. o

A₁ C. a. o

(b) The power of an engine is given by formular $H = \frac{(W_1 - W_2)CN}{3.3 \times 104}$. Make C the subject of the formular and find its value when H=54, N=225, W₁=423, and W₂=27

$$H = \frac{(w_1 - w_2)CN}{3.3 \times 104}$$

$$\frac{3.3 \times 104 \text{ H}}{(w_1 - w_2)} = CN$$

$$M_1 \qquad for correct idea$$

$$\therefore C = \frac{3.3 \times 104 \text{ H}}{(w_1 - w_2)N}$$

$$C = \frac{3.3 \times 104 \times 54}{(423 - 27) \cdot 225}$$

$$= \frac{18532.8}{89,100}$$

$$M_1 \qquad for dividing by N$$

$$and C.a.o$$

$$M_1 \qquad For correct substitution.$$

$$A_1 \qquad C.a.o$$

$$C = 0.208$$

- 12. The probabilities that Kobusingye, Nalubwama and Tumukunde will attend the party at Sheraton are $\frac{3}{4}$, $\frac{4}{7}$ and $\frac{7}{8}$ respectively. Find the probability that;
 - a) All the three will attend the party.

$$P(K) \times P(N) \times P(T)$$

$$3/4 \times 4/7 \times 7/8$$

$$= \frac{84}{224}, \frac{3}{8}$$

$$A_1$$
C. a. o

b) None of them will attend the party.

$$1 - \frac{84}{224}$$

$$= \frac{140}{224}$$

$$M_1$$
For correct substitution.
$$B_1$$
For simplifying
$$A_1$$
C. a. o

c) Only one attends.

 $P(K \times N^1 \times T^1)$ or $P(N \times K^1 \times T^1)$ or

$$P(K^{1} \times N^{1} \times T)$$

$$3/_{4} \times 3/_{7} \times 1/_{8} + 4/_{7} \times 1/_{4} \times 1/_{8} + 1/_{4} \times 3/_{7} \times 7/_{8} M_{1} M_{1} M_{1}$$

$$= \frac{9}{224} + \frac{4}{224} + \frac{21}{224}$$

$$= \frac{34}{224}$$

$$B_{1}$$
For each part
$$A_{1}$$
C. a. o

d) Atmost one of them attends.

$$= \frac{34}{224} + \frac{140}{224} \quad \text{(one or none)} \qquad \qquad M_1 \qquad \textit{For correct substitution.}$$

$$\Rightarrow \frac{174}{224} \qquad \qquad A_1 \qquad \textit{C. a. o}$$

13. The Headteacher of a certain school orders for T-shirts from the tailor as follows in term 1 and term 2.

	Term one	SIZE		
		Small	Medium	Large
Colours	Blue	15	30	5
	Green	0	40	2
	White	30	28	10
	red	25	42	0

	Term Two	SIZE		
		Small	Medium	Large
Colours	Blue	20	35	0

Green	10	42	8
White	25	15	10
Red	24	30	2

If the cost of a small sized T-shirt of any colour is 20,000while that of medium size is Shs 22,000. The cost of a large-sized T-shirt is shs 5,000 more than the cost of a small-sized shirt.

a) Write down a 4X3 overall matrix for the T-shirts bought in both terms.

$$\begin{pmatrix}
15 & 30 & 5 \\
0 & 40 & 2 \\
30 & 28 & 10 \\
25 & 42 & 0
\end{pmatrix} + \begin{pmatrix}
20 & 35 & 0 \\
10 & 42 & 8 \\
25 & 15 & 10 \\
24 & 30 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
35 & 65 & 5 \\
10 & 82 & 10 \\
55 & 43 & 20 \\
49 & 72 & 2
\end{pmatrix}$$

$$4 \times 3 \text{ is the overall matrix}$$

$$A_{1} \qquad C. a. o$$

- b.i) Find the cost of large sized T-shirts.
 - ii) Form a 3X1 matrix for the cost of the T-shirts.

b)
$$\begin{pmatrix} 20,000 \\ 22,000 \\ 25,000 \end{pmatrix}$$
 B_1 for correct matrix B_1 for 25,000 seen

c) Use the matrices formed in (a) and (b) above to find the head teachers expenditure on the T-shirts in the two terms.

14. Three students LEILAH, SHAMIM and JULIAN positioned themselves as shown below in the sketch diagram below.

- a) In which angle should SHAMIM turn to see
 - (i) LEILAH= 240°
- (ii) JULIAN = 187° , 181° , 189° , 190°
- b) Using a scale of 1cm:10km, make an accurate drawing on a graph paper showing clear position of these students.
- c) How far is Julian from Shamim. Give your answer in Km.

No 14. Missing

15(a) A transformation matrix $M = \begin{pmatrix} 2 & 4 \\ 3 & -1 \end{pmatrix}$ maps the vertical of a triangle ABC to A'(-12,-11) B'(14,-7) C'(22,-2). Find the coordinates of the triangle ABC.

$$\binom{2}{3} \frac{4}{-1} \binom{a}{b} \frac{c}{d} \frac{e}{f} = \binom{-12}{-11} \frac{14}{7} \frac{22}{-2}$$

$$3 2a + 4b = -12$$

$$2 3a - b = -11$$

$$\frac{-6a + 12b = -36}{-6a - 2b = -22}$$

$$\frac{14b = -14}{2b = -14}$$

$$b = -1$$

$$3a - (-1) = -11$$

$$3a = -12$$

$$M_1B_1$$
for correct substitution and unknowns seen

$$3 2c + 4d = 14$$

 $3c - d = 7$

= -4

- b) If the image triangle further reflected in the line y + x = 0 to form A" B"C".
- i) Write down the reflection matrix for y + x = 0.

е

=1

 \therefore A (-4, -1) B (3, 2) C (1, 5)

$$y + x = 0$$
 matrix
$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$
 B_1
Correct matrix seen

 $B_1B_1B_1$

unknowns seen

ii) Use the reflection matrix in b(i) above to find the image triangle A" B" C"

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}\begin{pmatrix} -12 & 14 & 22 \\ -11 & 7 & -2 \end{pmatrix} = A'' B''C''$$
 M_1 multiplication A'' $(11, 12) B''(-7, -14) C''(2, -22)$ $B_1B_1B_1$ for each seen correct

c) Find a single Matrix of transformation which maps ABC direct to A" B" C".

16. There are more than 108 tourists that are to visit Mt. Rwenzori. They are to use a taxi and a coaster. The capacity of the taxi is 18 people while that of a coaster is 27 people. Each trip the taxi and coaster make cost shs 24 000 and shs 30,000 respectively. These tourists had contributed shs 240,000 for this trip.

The trips made by the taxi should not exceed those made by the coaster by more than 2. If x and y are the number of trips made by the taxi and the coaster respectively.

a) Write down 5 inequalities representing the above information.

$$\begin{array}{lll} 16.\ 18x+27y\geq 108, & 2x+3y\geq 12 & B_1 & \textit{for each inequality formed} \\ & 24,000x+30,000y\leq 240,000 & 4x+5y\leq 40 & B_1 & \textit{correctly} \\ & x\leq y+2, & B_1 & & & \\ & x\geq 0, & y\geq 0 & B_1 & & & & \end{array}$$

b) Plot these inequalities on the same axes.

Inequality $2x + 3y \ge 12$

Equation 2x + 3y = 12

Points (0,4)(6,0)

Nature solid

$$4x + 5y \le 40$$
 $4x + 5y = 40$ (0,8)(10,0) solid $X \le y + 2$ $x = y + 2$ (4,2)(7,5) solid

c) Show the possible number of trips each vehicle will make given that all the money for transport is to be used.

c) (5,4)	B_1B_1	Correct reading from graph
 d) Find the total number of tourists that went for the trip. 18 x 5 + 27 x 4 = No. of tourist 198 tourists went to the tour. 	M_1 A_1	Correct substn C.a.o

17a) Using a equilateral triangle of sides 2 units and without using a calculator, show that $\cos 30^0 = \sin 60^0 = \frac{\sqrt{3}}{2}$.

$$2^{2} - 1^{2} = h^{2}$$

$$\sqrt{3} = \sqrt{h^{2}}$$

$$h = \sqrt{3}$$

$$h = 3$$

$$\cos \theta = \frac{Adj}{Hyp}$$

$$\cos 30 = \frac{\sqrt{3}}{2}$$

$$8_{1}$$

$$\sec correct$$

$$\sin \theta = \frac{opp}{Hyp}$$

$$\sin 60 = \frac{\sqrt{3}}{2}$$

$$\therefore \cos 30 = \sin 60 = \frac{\sqrt{3}}{2}$$

θ	-180	-90	0	90	180	270	360
$\sin \theta$	0	-1	0	1	0	-1	0

B₁ for intervalB₁ all correct

ii) Use this graph to solve $2 \sin \theta = 1$ $2 \sin \theta = 1$

$$2 \sin \theta = 1$$

$$\sin \theta = \frac{1}{2}$$

$$y = \sin \theta$$

$$\frac{-1/2 = \sin \theta}{y - 1/2 = 0}$$

$$y = \frac{1}{2}$$

$$B_1$$

$$Q_1 = 45 \pm 18, \quad B$$

$$Q_2 = 135 \pm 18 \quad B_1$$
END