<u>Spring 2025 | DATA 266 | Homework -4</u> <u>Deadline – 11.59 PM – May 10th, 2025</u> <u>20 Points</u>

Complete RLHF Pipeline — Reward Modeling, PPO Fine-Tuning, and LoRA Comparison

In this assignment, you will build a complete Reinforcement Learning from Human Feedback (RLHF) training pipeline for language models. The process consists of two major phases:

- (1) Train a Reward Model from human preference data.
- (2) Fine-Tune a Policy Model using Proximal Policy Optimization (PPO) with the trained reward model.

You will implement both full model fine-tuning and parameter-efficient fine-tuning using Low-Rank Adaptation (LoRA).

You will use two datasets, each designated for a specific phase:

- Reward Model Training Dataset:
 - → Anthropic HH-RLHF (Anthropic/hh-rlhf) from Hugging Face.
 - → Focus on the columns: prompt, chosen, rejected.
 - → Use a subset of 1000 examples for manageable training.
- PPO Fine-Tuning Dataset:
 - → OpenAssistant Conversations Dataset (OpenAssistant/oasst1) from Hugging Face.
 - → Extract only the prompter texts (user questions).
 - → Drop all assister (assistant response) texts.
 - → Randomly sample 1000 prompts for PPO training.

Part 1: Reward Model Training

You will train a reward model to predict human preferences between two responses to a given prompt.

- Load and preprocess the Anthropic HH-RLHF dataset.
- For each sample, you have a prompt, a chosen response, and a rejected response.
- Use a causal language model (e.g., gpt2-medium) as the base reward model.
- Set up a training procedure to teach the reward model to assign:
 - Higher reward to the chosen response
 - Lower reward to the rejected response
- Training Details:
 - o Loss: Pairwise Margin Ranking Loss
 - o Optimizer: AdamW
 - o Learning Rate: 5e-5
 - o Batch Size: 8
 - o Epochs: 3
 - Tokenize input carefully (prompt + response concatenation).

• Save the best reward model based on validation loss for use in PPO fine-tuning.

Part 2: PPO Fine-Tuning of Policy Model

You will fine-tune a **new copy** of gpt2-medium as the policy model using PPO, guided by the reward model you just trained.

- Sample 1000 prompts from the **OpenAssistant Conversations** dataset.
- Only use prompter texts (drop assister).
- For each prompt:
 - o Generate a response from the policy model.
 - o Evaluate the response using the **frozen reward model**.
 - o Apply PPO optimization to improve reward scores.
- Training Details:
 - o Optimizer: PPOTrainer (trl library recommended)
 - o Learning Rate: 1e-5
 - o Batch Size: 64
 - o Forward Batch Size: 16
 - o Epochs: 3
 - o Max Prompt Length: 256 tokens
 - o Max Response Length: 128 tokens
 - o Target moderate KL divergence (~0.02–0.1).

Train two separate models:

- 1. **Full Fine-Tuning**: Update all parameters of the policy model.
- 2. **LoRA Fine-Tuning**: Insert LoRA adapters into attention layers (q proj and v proj) with:
 - o Rank (r): 8
 - o Alpha: 32
 - o Dropout: 0.1
 - o Only LoRA parameters are updated.

Save both fine-tuned model checkpoints separately.

Evaluation and Reporting

You must evaluate your results based on **three aspects**:

1. Reward Score Evaluation (Quantitative)

- On a held-out set (minimum 50) of unseen prompts (not used during PPO training):
 - o Generate responses from:
 - (a) Original pre-trained model
 - (b) Full fine-tuned model
 - (c) LoRA fine-tuned model
 - o Score each response using the reward model.
- Metrics:
 - o Average reward score before PPO vs. after PPO.
 - (a) vs. (b) and (a) vs. (c)

o Reward gain = Final Avg Reward – Initial Avg Reward.

2. KL Divergence Monitoring (Quantitative)

- When using PPO libraries like trl, the KL divergence between the fine-tuned policy model and the original base model is automatically approximated and logged during training.
 - o You must track and plot: KL divergence vs. PPO steps.
- Interpretation:
 - o If KL grows too quickly, the model is diverging too much.
 - o If KL stays very low, learning may be slow.

Target maintaining a moderate KL divergence (~0.02–0.1).

3. Manual Human Evaluation (Qualitative): Write a comparative analysis on the manual rating.

- Select 10 unseen prompts.
- For each prompt:
 - o Generate responses from:
 - (a) Original pre-trained model
 - (b) Full fine-tuned PPO model
 - (c) LoRA fine-tuned PPO model.
- Manual Rating:
 - o Rate each generated response on a scale of 1–5 based on:
 - Coherence
 - Relevance
 - Helpfulness
 - Completeness
 - Hallucination/toxicity (if any)

You are required to follow:

- 1. Submit **one** MS/PDF/Scanned document:
 - Include all the steps of your calculations.
 - Include the summary of the model.
 - Attach screenshots of your code.
 - Attach screenshots showing first few epochs of model training.
 - Attach screenshots of the important code outputs such as confusion matrices, learning curves, and classification reports.

2. Source code:

- a. Python (Jupyter Notebook)
- b. Ensure it is well-organized with comments and proper indentation.
- Failure to submit the source code will result in a deduction of full/partial points.
- Format your filenames as follows: "your_last_name_HW1.pdf" for the document and "your_last_name_HW1_source_code.ipynb" for the source code.
- Before submitting the source code, please double-check that it runs without any errors.
- Must submit the files separately.
- Do not compress into a zip file.
- HW submitted more than 24 hours late will not be accepted for credit.