DERWENT-ACC-NO:

1997-518858

DERWENT-WEEK:

199748

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Capacitive element for non-volatile RAM -

includes lower

electrode that consists of platinum@, upper

electrode and

capacitive insulating film, which are orderly

formed on

contact layer

PATENT-ASSIGNEE: MATSUSHITA ELECTRONICS CORP[MATE]

PRIORITY-DATA: 1996JP-0055733 (March 13, 1996)

PATENT-FAMILY:

LANGUAGE PUB-DATE PUB-NO

MAIN-IPC PAGES 005 September 19, 1997 N/AJP 09246082 A

H01G 004/10

APPLICATION-DATA:

APPL-NO APPL-DESCRIPTOR PUB-NO

APPL-DATE

1996JP-0055733 N/A JP 09246082A

March 13, 1996

INT-CL (IPC): H01G004/012, H01G004/10

ABSTRACTED-PUB-NO: JP 09246082A

BASIC-ABSTRACT:

The element includes a support substrate (11) on which a contact layer (13)

that consists of metal or metallic oxide is formed.

A lower electrode (14) that consists of platinum, a capacitive insulating film

(15) which consists of metallic oxide and an upper electrode (16) are orderly

formed above the contact layer.

ADVANTAGE - Prevents electrical property deterioration of capacitive insulating film.

CHOSEN-DRAWING: Dwg.1/6

TITLE-TERMS: CAPACITANCE ELEMENT NON VOLATILE RAM LOWER ELECTRODE

CONSIST

PLATINUM@ UPPER ELECTRODE CAPACITANCE INSULATE FILM ORDER

FORMING

CONTACT LAYER

DERWENT-CLASS: L03 V01

CPI-CODES: L03-B03;

EPI-CODES: V01-B03A; V01-B03D1;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1997-165423 Non-CPI Secondary Accession Numbers: N1997-431980

PAT-NO:

JP409246082A

DOCUMENT-IDENTIFIER:

JP 09246082 A

TITLE:

CAPACITANCE ELEMENT AND METHOD OF MANUFACTURING

PUBN-DATE:

September 19, 1997

INVENTOR-INFORMATION:

NAME

NASU, TORU

IZUTSU, YASUFUMI

KIBE, MAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MATSUSHITA ELECTRON CORP

N/A

APPL-NO:

JP08055733

APPL-DATE:

March 13, 1996

INT-CL (IPC): H01G004/10, H01G004/012

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a capacitance element without the off of an adhering layer or the deterioration of an electric characteristic by suppressing the diffusion of the metal components of the adhering layer method of manufacturing the capacitance element with the capacitance in the insulating film of ferroelectric material.

SOLUTION: An adhering layer 13 made of metal or metal oxide and a electrode 14 made of platinum are formed on a supporting substrate 11. Together with forming the capacitance insulating film 15 made of the metal oxide, an upper electrode 16 is formed. In the step of forming the electrode 14, the sputtering method is used to form the platinum film internal tensile stress of 2×10<SP>9</SP> dyne/cm<SP>2</SP> or of the less after the film forming by setting the temperature of the substrate at 200°C to 600°C, and forming the platinum film of dense film quality, the

05/13/2003, EAST Version: 1.03.0007

of the metal components of the adhered layer is suppressed, the peeling off of the adhesion layer is prevented and the deterioration of the electric characteristic is prevented.

COPYRIGHT: (C) 1997, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-246082

(43)公開日 平成9年(1997)9月19日

技術表示箇所

(51) Int.Cl. ⁶ H 0 1 G	4/10 4/012	識別記号	庁内整理番号	FI H01G	4/10 1/015

審査請求 未請求 請求項の数3 OL (全 5 頁)

		奋直明水 不明水 明水火火火
(21)出願番号	特顧平8-55733	(71) 出願人 000005843 松下電子工業株式会社
(22)出願日	平成8年(1996)3月13日	大阪府高槻市幸町1番1号 (72)発明者 那須 徹 大阪府高槻市幸町1番1号 松下電子工業 株式会社内
		(72)発明者 井筒 康文 大阪府高槻市幸町1番1号 松下電子工業 株式会社内
		(72)発明者 木部 真樹 大阪府高槻市幸町1番1号 松下電子工業 株式会社内
		(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 容量素子およびその製造方法

(57)【要約】

【課題】 強誘電体膜を容量絶縁膜とする容量素子の製造方法において、密着層の金属成分の拡散を抑制し、はがれや電気的特性劣化のない容量素子を得ることを目的とする。

【解決手段】 支持基板11上に金属または金属酸化物よりなる密着層13を形成する工程と、白金よりなる下部電極14を形成する工程と、金属酸化物よりなる容量絶縁膜15を形成する工程と、上部電極16を形成する工程とを備え、下部電極14を形成する工程が、成膜後で2×10g dyn/cm²以下の引っ張り応力の内部応力を有する白金を形成するために基板温度を200℃~600℃に設定してスパッタリング法により形成することを特徴とし、緻密な膜質の白金を形成することにより、密着層の金属成分の拡散を抑制し、はがれや電気的特性劣化を生じさせない。

【特許請求の範囲】

【請求項1】 支持基板上に形成された金属または金属酸化物よりなり密着層と、同密着層上に形成され、引っ張り応力が2×10gdyn/cm²以上である白金よりなる下部電極と、同下部電極上に形成された金属酸化物よりなる容量絶縁膜、および同容量絶縁膜上に形成された上部電極とを備えたことを特徴とする容量素子。

【請求項2】 支持基板上に金属または金属酸化物よりなる密着層を形成する工程と、前記密着層上に、アルゴンガスを用い、基板温度を200℃以上600℃以下に 10設定したスパッタリング法により白金を形成して下部電極を形成する工程と、前記下部電極上に金属酸化物よりなる容量絶縁膜を形成する工程、および前記容量絶縁膜上に上部電極を形成する工程とを備えたことを特徴とする容量素子の製造方法。

【請求項3】 スパッタリング法が平行平面型マグネトロン直流電界スパッタリング法であることを特徴とする請求項2記載の容量素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、強誘電性を有する 金属酸化物を容量絶縁膜とする容量素子およびその製造 方法に関する。

[0002]

【従来の技術】低動作電圧、高速書き込みおよび高速読み出し可能な不揮発性RAMの実用化を目指し、自発分極特性を有する強誘電体膜を容量絶縁膜とする容量素子を半導体集積回路の上に形成するための技術開発が盛んに行われている。

【0003】以下、従来の容量素子およびその製造方法 30 を図6の工程断面図を用いて説明する。

【0004】図6(a)に示すように、シリコン基板よりなる支持基板1上に層間絶縁膜2となるシリコン酸化膜を形成する。次に図6(b)に示すように、層間絶縁膜2の上に密着層3となる膜厚が約20nmの金属チタンおよび下部電極4となる膜厚が約20nmの白金を、室温で、アルゴンガスを用いたスパッタリング法により連続して形成する。次に図6(c)に示すように下部電極4の上に容量絶縁膜5となる組成がSrBi2Ta20である強誘電体膜をスピンオン法で塗布し800℃で焼成する。次に図6(d)に示すように容量絶縁膜5の上に上部電極6となる白金をスパッタリング法により形成する。さらに図6(e)に示すように写真食刻法とドライエッチング法により加工を行い、容量素子を形成する

[0005]

【発明が解決しようとする課題】しかしながら従来の構造およびその製造方法では、下部電極4を形成する白金を室温で形成しているため、柱状結晶粒の並んだ荒い膜質であるため結晶粒界を通じて密着層3の金属成分が、

下部電極4へ拡散し易く、密着層3が消滅して密着強度が劣化しはがれが生じたり、さらに容量絶縁膜5にまで拡散して容量素子の電気的特性が劣化するという課題を有していた。

2

【0006】本発明は上記の従来の課題を解決するもので、緻密な膜質の白金を形成することにより、はがれや電気的特性劣化のない容量素子およびその製造方法を提供することを目的とする。

[0007]

【課題を解決するための手段】この目的を達成するために本発明の容量素子は、密着層の上に形成された下部電極を形成する白金が、2×10° dyn/cm²以上の引っ張り応力の内部応力を有するものであり、その製造方法は、下部電極を形成する白金を基板温度を200℃以上600℃以下にしてアルゴンガスによるスパッタリング法により形成するものである。

【0008】本発明によれば、緻密な膜質の白金を形成することができ、はがれや電気的特性劣化のない容量素子が得られる。

[0009]

【発明の実施の形態】本発明の請求項1に記載の発明は、支持基板上に形成された金属または金属酸化物よりなり密着層と、同密着層上に形成され、引っ張り応力が2×10gdyn/cm²以上である白金よりなる下部電極と、同下部電極上に形成された金属酸化物よりなる容量絶縁膜および同容量絶縁膜上に形成された上部電極とを備えたものであり、これにより白金が緻密な膜質となるため、密着層を形成する金属成分が白金で形成された下部電極へ拡散することを抑制する作用を有する。

【0010】請求項2に記載の発明は、支持基板上に金属または金属酸化物よりなる密着層を形成する工程と、前記密着層上に、アルゴンガスを用い、基板温度を200℃以上600℃以下に設定したスパッタリング法により白金を形成して下部電極を形成する工程と、前記下部電極上に金属酸化物よりなる容量絶縁膜を形成する工程および前記容量絶縁膜上に上部電極を形成する工程とを備えたものであり、これにより下部電極を形成する工程とを備えたものであり、これにより下部電極を形成する白金の引っ張り応力を2×10°dyn/cm²以上とすることができ、白金を緻密な膜質とすることができる。この結果密着層を形成する金属成分が白金で形成された下部電極へ拡散することを抑制することができる。

【0011】請求項3に記載の発明は、請求項2記載のスパッタリング法が平行平面型マグネトロン直流電界スパッタリング法であり、これにより白金をより緻密な膜質とすることができる。

【0012】以下、本発明の一実施の形態における容量 素子およびその製造方法を図1の工程断面図を用いて説 明する。

【0013】(実施の形態1)図1(a)に示すよう 50 に、シリコン基板よりなる支持基板11上に層間絶縁膜

12となるシリコン酸化膜を形成する。次に、図1 (b) に示すように、層間絶縁膜12の上に密着層13 となる膜厚が約20nmの金属チタンを形成し、その上 に下部電極14となる膜厚が300mmの白金を、基板 温度を200℃~600℃に設定し、アルゴンガスを用 いた平行平面型マグネトロン直流電界スパッタリング法 により形成する。次に図1(c)に示すように下部電極 14の上に容量絶縁膜15となる組成がSrBi2Ta2 O₉である強誘電体膜をスピンオン法で塗布し800℃ で焼成する。次に図1 (d) に示すようにこの上に上部 10 電極16となる白金をスパッタリング法により形成す る。さらに図1 (e)に示すように写真食刻法とドライ エッチング法により加工を行い、容量素子を形成する。 【0014】ところで図1(b)の下部電極14を形成 する白金のスパッタリングでは、密着層13の金属チタ ンの下部電極14への拡散を防ぐため緻密な膜質の白金 が要求される。図2~図4に白金の成膜条件と白金の内 部応力との関係を示す。内部応力が引っ張り方向で大き いほど緻密な膜となる。このことを以下に説明する。図 2は室温で、スパッタリング・パワー0.72kWの条 20 件での白金の内部応力のAェガス圧依存性を示す図であ る。図3は室温で、Arガス圧8mTorrの条件での 白金の内部応力のスパッタリング・パワー依存性を示す 図である。図4はスパッタリング・パワー0.72kW でArガス圧が8mTorrの条件での白金の内部応力 の基板温度依存性を示す図である。図から分かるよう に、白金の内部応力はArガス圧やスパッタリング・パ ワーによってはあまり変化していない。これらに比べて 白金の内部応力は基板温度依存性が大きく、基板温度が 高いほど内部応力は引っ張り方向に強くなる。図5に、 容量素子形成後の下部電極14の白金と支持基板11上 に形成された層間絶縁膜12のシリコン酸化膜との密着 強度のArガス圧が8mTorr、スパッタリング・パ ワー0.72kWの条件での基板温度依存性を示す。密 着強度は走査型スクラッチテスタにより膜がはがれた時 の臨界荷重として評価した。基板温度が高いほど臨界荷 重が大きくなる。このことから白金の引っ張り応力が大 きくなるほど、臨界荷重すなわち密着強度が大きくなる ことがわかる。この結果、基板温度が高くなるほど、言 い換えれば白金の引っ張り応力が大きくなるほど、密着 40 層13を形成するチタンの拡散が抑制され、密着強度が 強くなることがわかる。以上の結果、白金の成膜条件は 基板温度を図5に示した臨界荷重がほぼ飽和する200 ℃以上にして2×10°dyn/cm²以上の引っ張り応 力を有する緻密な膜を形成することにより、チタン拡散 をほぼ抑制し、密着性の劣化をなくすことができる。 【0015】なお基板温度の上限を600℃としたの

は、600℃以上にすれば拡散が進みすぎることや金属 膜にヒルロックができやすくなるためである。

【0016】なお本実施の形態では支持基板として単なるシリコン基板としたが、集積回路を作り込んだシリコン基板でもよく、あるいは石英基板やGaAs基板などでもよい。また本実施の形態では容量絶縁膜として、Bi系層状ペロブスカイト型構造を有する代表的な組成の $SrBi_2Ta_2O_9$ を用いたが $Pb(Zr_{1-x}Ti_x)O_3$ や($Ba_{1-x}Sr_x$) TiO_3 などの他の強誘電体膜でもよく、あるいはタンタル酸化物などの他の金属酸化物でもよい。

【0017】また本実施の形態では容量絶縁膜をスピンオン法で形成したが、スパッタリング法や化学気相成長法で形成してもよい。

【0018】また本実施の形態では密着層に金属チタンを用いたが、タンタルなどの他の金属やルテニウム酸化物・イリジウム酸化物などの他の金属酸化物でもよい。 【0019】

【発明の効果】本発明の容量素子は、下部電極を形成する白金が2×10⁹ dyn/cm²以上の引っ張り応力の内部応力を有するものであり、その製造方法はこの白金をスパッタリング法により200℃~600℃の基板温度で形成することを特徴とし、これにより緻密な膜質の白金を形成することにより密着層の金属成分を下部電極側への拡散を抑制し、密着層が薄くなることによるはがれや密着層の金属成分が容量絶縁膜にまで拡散してきて容量絶縁膜の電気的特性を劣化させることを防ぐことができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態における容量素子および その製造方法を示す工程断面図

【図2】白金の内部応力のアルゴンガス圧依存性を示す 図

【図3】白金の内部応力のスパッタリング・パワー依存 性を示す図

【図4】白金の内部応力の基板温度依存性を示す図

【図5】白金下部電極と支持基板との密着性の基板温度 依存性を示す図

【図6】従来例における容量素子の製造方法を示す工程 断面図

【符号の説明】

- 11 支持基板
- 12 層間絶縁膜
- 13 密着層
- 14 下部電極
- 15 容量絶縁膜
- 16 上部電極

【図1】

/2 層間絶縁膜 /4 下部電極(Pf) 15 容量絶縁腹 16 上部看極(Pt)

【図2】

【図3】

【図4】

