Reinforcement Learning Walk Throughs

These slides as a supplement for lecture 10.

A Very Simple Maze Problem

Wobbie has to get to the winning square without dying.

A,B,C,D	Locations
	Wobbie's Start Position
⊗	Wobbie Dies if he goes here
₩	Wobbie Wins if he gets here

Problem: Wobbie's Moves are Stochastic

So Wobbies will move 90 degrees to where he aims with .1 probability (in each direction.

If he moves into a wall (an impossible move outside of A,B,C,D) he stays still.

The Transition Function

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
А	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
Α	↑	.9	.1	0	0
Α	\	.1	.1	.9	0
В	\rightarrow	0	.9	0	.1
В	←	.8	.1	0	.1
В	1	.1	.9	0	0
В	\	.1	.1	0	.8
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С	\	0	0	.9	.1
D	\rightarrow	0	.1	0	.9
D	←	0	.1	.8	.1
D	↑	0	.8	.1	.1
D	<u> </u>	0	0	.1	.9

А	В
С	D

The Transition Function

We can simplify: Wobbie will never be able to make an action in state B or D since the game will be over (he will have died or won respectively).

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
Α	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
А	↑	.9	.1	0	0
Α	<u> </u>	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	↑	.8	0	.1	.1
С		0	0	.9	.1

Α	В
	•
С	D
	&

The Reward Function

Each non-terminal turn costs 1 (reward is -1). If Wobbie dies, reward is -100. If he wins it is 100.

State	Reward
А	-1
В	-100
С	-1
D	100

Value Iteration

Start with a utility function from state/action pairs to utility values, where all are 0.

(Utility = Expected Cumulative Discounted Reward given Optimal Policy)

State	Action	Expected Utility
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	<u> </u>	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	1	0
С	1	0
D	Terminal	100

Value Iteration

State	Action	Expected Utility
А	\rightarrow	0
Α	←	0
Α	1	0
Α	1	0
С	\rightarrow	0
С	←	0
С	1	0
С	\	0

Each iteration:

 Recalculate the utility value for each state/action pair based on the Bellman equation:

$$\mathsf{U}(\mathsf{A},\rightarrow) = \Sigma_{\mathsf{s'}} \mathsf{P}(\mathsf{s'}|\mathsf{s},\rightarrow) \left(\mathsf{R}(\mathsf{s'}) + \gamma \; \mathsf{max}_{\mathsf{act}} \mathsf{U}(\mathsf{s'},\mathsf{act})\right)$$

We'll assume $\gamma=1$.

Value Iteration: First Iteration, First Value

State	Action	Expected Utility
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	<u> </u>	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	1	0
С	\	0
D	Terminal	100

$$U(A,\rightarrow) = \Sigma_{s'}P(s'|s,\rightarrow) (R(s')+\gamma \max_{act}U(s',act))$$

State	Reward
А	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
Α	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
Α	1	.9	.1	0	0
А	1	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С	\	0	0	.9	.1

Value Iteration: First Iteration, First Value

State	Action	Expected Utility
Α	\rightarrow	0
Α	←	0
А	1	0
А	<u> </u>	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	1	0
С	\	0
D	Terminal	100

Remember: γ=1 (Our future discount rate)

$$U(A,\rightarrow) = \Sigma_{s'}P(s'|s,\rightarrow) (R(s')+\gamma \max_{act} U(s',act))$$

$$= (.1)(-1 + \gamma \cdot 0) + (.8)(-100) + (.1)(-1 + \gamma \cdot 0)$$
$$= -80.2$$

State	Reward
А	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
Α	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
Α	1	.9	.1	0	0
А	\	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С		0	0	.9	.1

Value Iteration: First Iteration, First Value

State	Action	Expected Utility
А	\rightarrow	-80.2
А	←	0
А	1	0
А	\	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	1	0
С	\	0
D	Terminal	100

Note that all expected utilites would be updated simultaneously: The 80.2 value would play no

role in other calcuations.

State	Reward
Α	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
А	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
А	1	.9	.1	0	0
А	1	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С	\	0	0	.9	.1

Value Iteration: First Iteration

State	Action	Expected Utility
А	\rightarrow	-80.2
Α	←	-1
Α	1	-10.2
А	<u> </u>	-10.2
В	Terminal	-100
С	\rightarrow	79.8
С	←	-1
С	1	9.8
С	<u> </u>	9.8
D	Terminal	100

After the first iteration we have iterated back the effect of making one move from a state (acting optimally according to our utility function).

State	Reward
А	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
Α	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
Α	1	.9	.1	0	0
А	1	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С	\	0	0	.9	.1

Value Iteration: Second Iteration, First Value

State	Action	Expected Utility
Α	\rightarrow	-80.2
Α	←	-1
Α	1	-10.2
А	<u> </u>	-10.2
В	Terminal	-100
С	\rightarrow	79.8
С	←	-1
С	↑	9.8
С	<u> </u>	9.8
D	Terminal	100

Remember: γ=1 (Our future discount rate)

$$U(A,\rightarrow) = \sum_{s'} P(s'|s,\rightarrow) (R(s')+\gamma \max_{act} U(s',act))$$

=
$$(.1)(-1 + \gamma \cdot -1) +$$

 $(.8)(-100) +$
 $(.1)(-1 + \gamma \cdot 79.8)$
= -72.33

State	Reward
Α	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
Α	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
А	1	.9	.1	0	0
А	<u> </u>	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	↑	.8	0	.1	.1
C	l ı	0	n	g	1

Value Iteration: Second Iteration

State	Action	Expected Utility
Α	\rightarrow	-80.24
Α	←	-65.20
Α	↑	-83.08
Α	1	44.92
В	Terminal	-100
С	\rightarrow	79.76
С	←	62.80
С	↑	-45.08
С	1	80.92
D	Terminal	100

After the second iteration we have iterated back the effect of making two moves from a state (acting optimally according to our utility function).

State	Reward
А	-1
В	-100
С	-1
D	100

S _t	Action	P(S _{t+1})=A	P(S _{t+1})=B	P(S _{t+1})=C	P(S _{t+1})=D
А	\rightarrow	.1	.8	.1	0
Α	←	.9	0	.1	0
Α	1	.9	.1	0	0
А	\	.1	.1	.8	0
С	\rightarrow	.1	0	.1	.8
С	←	.1	0	.9	0
С	1	.8	0	.1	.1
С	<u></u>	0	0	.9	.1

Using the implied policy of our Q-model, perform whole 'runs' and update Q-model based on observed sequences of rewards.

The 'implied policy' is that we do whatever action has the highest Q-value for the current state.

State S	Action A	Reward R	New State S´	
	Gam	e One		
А	\	-1	С	
С	\rightarrow	100 (T)	D	
	Game Two			
А	\rightarrow	-100 (T)	В	
	Game Three			
А	←	-1	С	
С	1	-1	А	
А	\	-1	С	
С	\rightarrow	100 (T)	D	

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	\downarrow	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

The table to the left.

Repeat for each run:

- 2. Calculate cumulative discounted rewards for each move.
- 3. Adjust Q-model.

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	1	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	1	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each run:

- 2. Calculate cumulative discounted rewards for each move.
- 3. Adjust Q-model.

Game One:

- CDR(A,↓) = -1 + γ ·100
- CDR(C,→) = 100

If $\gamma=1$:

- $CDR(A,\downarrow) = -1 + 100 = 99$
- CDR(C,→) = 100

(If state/action pairs occur more than once, calculate the CDR for each occurance and average.)

State S	Action A	Reward R	New State S'	
	Game	e One		
Α	↓	-1	С	
С	\rightarrow	100 (T)	D	
	Game Two			
А	\rightarrow	-100 (T)	В	
	Game Three			
А	←	-1	С	
С	1	-1	А	
А	\	-1	С	
С	\rightarrow	100 (T)	D	

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	1	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	†	0
С	\	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each run:

2. Calculate cumulative discounted rewards for each move.

For game one we have:

- CDR(A, \downarrow) = 99
- CDR(C,→) = 100
- 3. Adjust Q-model.

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	\downarrow	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each run:

Calculate cumulative discounted rewards for each move.

For game one we have:

- $CDR(A,\downarrow) = 99$
- CDR(C,→) = 100
- 3. Adjust Q-model.

Simplest to use a learning rate, λ : Q(S,A)=Q(S,A)- λ (Q(S,A)-CDR(S,A))

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	1	.99
В	Terminal	-100
С	\rightarrow	1
С	←	0
С	↑	0
С	\	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each run:

2. Calculate cumulative discounted rewards for each move.

For game one we have:

- $CDR(A,\downarrow) = 99$
- CDR(C,→) = 100
- 3. Adjust Q-model.
 - $Q(A,\downarrow)=0 .01(0-99)= .99$
 - $Q(C,\rightarrow)=0$.01(0-100)=1

Three issues:

- By using the implied policy of the Q-model we quickly hit low-quality local optima: We need to do more 'exploration'!
- We don't really want to run whole episodes before tuning our Q-model. This is very slow and in real problems normally impractical.
- We don't take into account the chained nature of the Q values given by the Bellman equations.
 - Well... we do in the sense that they rewards obtained in the episodes run are so chained. But we don't make use of this when updating the Q-model.

ε-Q-Learning

Issue One: By using the implied policy of the Q-model we quickly hit low-quality local optima: We need to do more 'exploration'!

To add exploration into our Q-Learning, we can introduce randomness: When we make an action we *either*:

- Act according the implied policy (with probability 1-ε).
- Act randomly (with probability ε).

To ensure convergence to an optimal policy in the long run, ϵ should approach 0 as the number of actions taken approaches infinity. So we specify some schedule for ϵ . Some examples (more sophisticated alternatives are possible):

- Start at .1 and decrease by .001 every 10 actions.
- Start at .6 and decrease by .01 every episode.

Issue Two: We don't really want to run whole episodes before tuning our Q-model. This is very slow and in real problems normally impractical.

Issue Three: We don't take into account the chained nature of the Q values given by the Bellman equations.

We can deal with both of these issues by moving to SARS' (ε -)Q-learning.

SARS'=S(tate) A(ction) R(eward) (Next) S(tate).

SARS is an example of an 'off-policy temporal difference' Q-Learning algorithm. As this suggests there are other options for solving these issues, but SARS is the most used.

Using ϵ -Q-learning to decide actions to perform, perform 'runs' and update Q-model based on observed SARS' quadtuples.

State S	Action A	Reward R	New State S´	
	Game	e One		
А	\	-1	С	
С	\rightarrow	100 (T)	D	
	Game Two			
А	\rightarrow	-100 (T)	В	
	Game Three			
А	←	-1	С	
С	1	-1	Α	
А	\	-1	С	
С	\rightarrow	100 (T)	D	

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	\downarrow	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

The table to the left.

Repeat for each action in each run:

- 2. Estimate error of Q-model Q-estimation.
- 3. Adjust Q-model.

State	Action	Q
Otate	Action	· ·
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	1	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	†	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each action in each run:

- Estimate error of Q-model Q-estimation.
- 3. Adjust Q-model.

Game One, Move One:

Compare the following:

- 1. $Q(A,\downarrow) = 0$
- 2. $Q'(A,\downarrow) = -1 + \gamma \cdot max_{act}Q(C,act)$

State S	Action A	Reward R	New State S'	
	Game One			
А	↓	-1	С	
С	\rightarrow	100 (T)	D	

- (1) is our current estimate of $Q(A,\downarrow)$. (2) gives $Q'(A,\downarrow)$ which is our estimate of the expected cumulated discounted reward we will get in this game from now performing \downarrow in state A, since we end up in state C.
 - (2) exploits the Bellman equation for Q-values
 - (2) makes use of the Q-model in its estimation

Game One, Move One:

Compare the following:

- 1. $Q(A,\downarrow) = 0$
- 2. $Q'(A,\downarrow) = -1 + \gamma \cdot max_{act}Q(C,act)$

State S	Action A	Reward R	New State S'
	Game One		
Α	↓	-1	С
С	\rightarrow	100 (T)	D

We can update our estimate of $Q(A,\downarrow)$ based on $Q'(A,\downarrow)$.

Although we make use of the Q-model in calculating $Q'(A,\downarrow)$, objective information is also used:

- When we made move ↓ in state A, we did end up in state C.
- When we made move ↓ in state A, we did get an immediate reward of -1.

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	\downarrow	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each action in each run:

- 2. Estimate error of Q-model Q-estimation.
- 3. Adjust Q-model.

Simplest to use a learning rate, λ : Q(S,A)=Q(S,A)- λ (Q(S,A)-Q'(S,A))

Game One, Move One:

Compare the following:

1.
$$Q(A,\downarrow) = 0$$

2.
$$Q'(A,\downarrow) = -1 + \gamma \cdot max_{act}Q(C,act) = -1$$

We are assuming $\gamma=1$.

State S	Action A	Reward R	New State S'	
	Game One			
Α	↓	-1	С	
С	\rightarrow	100 (T)	D	

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	1	0
Α	\downarrow	0
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	1	0
С	\downarrow	0
D	Terminal	100

State	Action	Q
		(Expected Utility)
Α	\rightarrow	0
Α	←	0
Α	↑	0
Α	<u> </u>	01
В	Terminal	-100
С	\rightarrow	0
С	←	0
С	↑	0
С	\downarrow	0
D	Terminal	100

1. Start with arbitrary Q-model.

Repeat for each action in each run:

- 2. Estimate error of Q-model Q-estimation.
- 3. Adjust Q-model.

Simplest to use a learning rate, λ :

$$Q(A,\downarrow)=0-\lambda(0--1)=-0.01$$

We assume λ =.01

Function (non-tabular) SARS´ ε-Q-Learning

If our Q-model is a parameterized (non-tabular) function we just do a single step of gradient descent.

(Actually that is what we are doing with the parameters of the tabular function too.)

If our Q-model is a deep neural network, we are doing deep reinforcement learning.

You should perform SARS' ε-Q-Learning using a table in project 5.