COMS0031132095 Natural Language Processing - HW 1

李鹏, 10175501102@stu.ecnu.edu.cn

October 31, 2019

题目一

有如下词典,每个词的费用为 C = -logP, P 为该词在语料库中的使用频率。对"为人民工作"进行分词。

- (1) 分别给出正向和逆向最大匹配法的分词结果;
- (2) 画出词图,用最短路径法分词;
- (3) 用最大概率法分词,给出详细计算过程。

词	费用
为人	4.2
人民	2.8
民工	3.2
工作	2.5
为	3.6
人	3.4
民	4.5
工	4.0
作	4.8

答:

(1) 设定最大词长为 5,

正向最大匹配法分词结果:"**为人/民工/作**" 逆向最大匹配法分词结果:"**为/人民/工作**"

(2)

词图如下,用最短路径法分词结果:"为/人民/工作"、"为人/民工/作"、"为人/民/工作"(均含有3个词)

(3) 利用动态规划算法进行最大概率法分词 (标*的为最优路径):

序号	候选词	费用	累计费用	最佳左邻
0	为	3.6	3.6*	-1
1	为人	4.2	4.2	-1
2	人	3.4	7.0	0
3	人民	2.8	6.4*	0
4	民	4.5	8.7	1
5	民工	3.2	7.4	1
6	工	4.0	10.4	3
7	工作	2.5	8.9*	3
8	作	4.8	12.2	5

分词结果: "为/人民/工作"

题目二

一个分词系统分词得到如下结果:

据/中央/气象台/预报/,未来/三天/,四川/盆/地/等/地/将有/一次/降/雨天/气/过程/。 假设正确分词结果如下:

据/中央气象台/预报/,未来/三/天/,四川盆地/等/地/将有/一/次/降雨/天气/过程/。 计算此次分词的准确率、召回率及 F-Measure 值(标点符号不计人词数)。

答:

分词结果中正确的分词: "据", "预报", ",未来", "等", "地", "将有", "过程", 共7个。结果中所有的分词数共17个。标准答案中所有分词数共15个。

(1) 准确率:

$$Precision(P) = \frac{$$
分词结果中正确分词数 $}{$ 结果中所有分词数 $} \times 100\% = \frac{7}{17} \times 100\% \approx 41.17\%$

(2) 召回率:

$$Recall(R) = \frac{\text{分词结果中正确分词数}}{\text{标准答案中所有分词数}} \times 100\% = \frac{7}{15} \approx 46.67\%$$

(3)F-measure 值:

$$F-measure = \frac{2PR}{P+R} = \frac{2 \times \frac{7}{17} \times \frac{7}{15}}{\frac{7}{17} + \frac{7}{15}} = 43.75\%$$

注: 在判断分词正确与否的时候,要注意这里"四川盆地"的"地"与"等地"中的"地"是不是要区分考虑。

题目三

用 HMM 和 Viterbi 算法进行词性标注

人民 收入 和 生活 水平 进一步 提高 n n
$$c/p/v$$
 n/v n/a n/d n/v

词性转移表

Tag	n	c	p	v	a	d
n	80000	10000	12000	80000	5000	10000
c	30000	1000	2000	20000	10000	5000
р	40000	1000	500	5000	5000	10000
v	50000	5000	5000	20000	4000	10000
a	30000	8000	4000	7000	1000	20000
d	20000	10000	6000	30000	5000	9000

词语频度表

词语	词性	频次	词语	词性	频次
人民	n	5000	水平	n	4000
收入	n	4000	水平	a	1000
和	С	2000	进一步	n	1000
和	р	1000	进一步	d	2000
和	v	200	提高	n	1000
生活	n	5000	提高	v	4000
生活	v	2000			

词性频度表

词性	频次
n	200000
С	100000
р	100000
v	200000
a	100000
d	100000

答:

本部分内容由于笔算过于繁琐,自己动手用 python 实现了这两个算法,过程中遇到并解决了浮点数下溢、笛卡尔积计算以及 Viterbi 算法的实现等困难。代码参见附件,最终结果如下:

其中传统的 HMM 算法用时 0.6659998893737793s, 而基于 Viterbi 算法的 HMM 用时 0.08899998664855957s, 可见 Viterbi 算法能够显著提升算法效率。尽管整体结果并不是太好。