NAME: DESU VENKATA SAI MANOJ KUMAR

- REG NO: 21BCE8450
- CAMPUS: VIT-AP
- Assignment 3 on sept 15
- Morning Slot (10-12 am)
- Google colab Link: https://colab.research.google.com/drive/16laM3IN76F-4HyuvBwwZKYUAh9hziiBu?usp=sharing)

```
In [1]: #ASSIGNMENT_3
#SAI KRISHNA KOWSHIK
#21BCE9150
# Data Preprocessing.
# Import the Libraries.
# Import the dataset
# Checking for Null Values.

# Data Visualization.
# Outlier Detection
# Splitting Dependent and Independent variables
# Encoding
# Feature Scaling.
# Splitting Data into Train and Test.
```

Import the Libraries

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [5]: from google.colab import files
uploaded = files.upload()
```

```
Choose Files No file chosen
```

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving Titanic-Dataset.csv to Titanic-Dataset.csv

```
In [6]: df = pd.read_csv("/content/Titanic-Dataset.csv")
```

In [7]: df.head()

Out[7]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	•											

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
<pre>dtypes: float64(2), int64(5), object(5)</pre>						

memory usage: 83.7+ KB

In [9]: df.describe()

Out[9]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [10]: df.corr()

<ipython-input-10-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_
only in DataFrame.corr is deprecated. In a future version, it will default to F
alse. Select only valid columns or specify the value of numeric_only to silence
this warning.

df.corr()

Out[10]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	- 0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	- 0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	- 0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [11]: df.corr().Survived.sort_values(ascending = False)

<ipython-input-11-936bc0a2ea37>:1: FutureWarning: The default value of numeric_
only in DataFrame.corr is deprecated. In a future version, it will default to F
alse. Select only valid columns or specify the value of numeric_only to silence
this warning.

df.corr().Survived.sort_values(ascending = False)

Out[11]: Survived

Survived 1.000000
Fare 0.257307
Parch 0.081629
PassengerId -0.005007
SibSp -0.035322
Age -0.077221
Pclass -0.338481

Name: Survived, dtype: float64

Handling Missing/Null Values

```
In [12]: | df.isnull().any()
Out[12]: PassengerId
                            False
          Survived
                            False
          Pclass
                            False
          Name
                            False
          Sex
                            False
          Age
                             True
                            False
          SibSp
                            False
          Parch
          Ticket
                            False
          Fare
                            False
          Cabin
                             True
          Embarked
                             True
          dtype: bool
In [13]: sum(df.Cabin.isnull())
Out[13]: 687
In [14]:
          sum(df.Age.isnull())
Out[14]: 177
In [15]: | df["Age"].fillna(df["Age"].mean(),inplace=True)
In [16]: | sum(df.Embarked.isnull())
Out[16]: 2
In [17]:
          df["Embarked"].fillna(df["Embarked"].mode()[0],inplace=True)
         df.describe()
In [18]:
Out[18]:
                  PassengerId
                                              Pclass
                                Survived
                                                           Age
                                                                     SibSp
                                                                                Parch
                                                                                             Fare
                   891.000000
                              891.000000 891.000000
                                                     891.000000
                                                                891.000000
                                                                            891.000000
                                                                                       891.000000
           count
                   446.000000
                                0.383838
                                            2.308642
                                                      29.699118
                                                                  0.523008
                                                                              0.381594
                                                                                        32.204208
           mean
             std
                   257.353842
                                 0.486592
                                            0.836071
                                                      13.002015
                                                                  1.102743
                                                                              0.806057
                                                                                        49.693429
             min
                     1.000000
                                0.000000
                                            1.000000
                                                       0.420000
                                                                  0.000000
                                                                              0.000000
                                                                                         0.000000
             25%
                   223.500000
                                0.000000
                                            2.000000
                                                      22.000000
                                                                  0.000000
                                                                              0.000000
                                                                                         7.910400
             50%
                   446.000000
                                 0.000000
                                            3.000000
                                                      29.699118
                                                                  0.000000
                                                                              0.000000
                                                                                        14.454200
             75%
                   668.500000
                                            3.000000
                                                      35.000000
                                                                   1.000000
                                                                              0.000000
                                 1.000000
                                                                                        31.000000
             max
                   891.000000
                                 1.000000
                                            3.000000
                                                      80.000000
                                                                  8.000000
                                                                              6.000000
                                                                                       512.329200
```

Data Visualization

In [19]: plt.scatter(df["Fare"],df["Survived"])

Out[19]: <matplotlib.collections.PathCollection at 0x7b32cd9d3fa0>

In [20]: | sns.heatmap(df.corr(),annot=True)

<ipython-input-20-8df7bcac526d>:1: FutureWarning: The default value of numeric_
only in DataFrame.corr is deprecated. In a future version, it will default to F
alse. Select only valid columns or specify the value of numeric_only to silence
this warning.

sns.heatmap(df.corr(),annot=True)

Out[20]: <Axes: >

In [21]: sns.pairplot(df)

Out[21]: <seaborn.axisgrid.PairGrid at 0x7b3295a7bac0>

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Sex"],y=df["Survived"],ci=0)

Out[22]: <Axes: xlabel='Sex', ylabel='Survived'>

In [23]: sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

<ipython-input-23-d5b0276940a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect.

sns.barplot(x=df["Embarked"],y=df["Survived"],ci=0)

Out[23]: <Axes: xlabel='Embarked', ylabel='Survived'>

In [24]: sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

<ipython-input-24-a1496fefeaf8>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=('ci', 0)` for the same effect. sns.barplot(x=df["Parch"],y=df["Survived"],ci=0)

Out[24]: <Axes: xlabel='Parch', ylabel='Survived'>

Outlier Detection

In [25]: sns.boxplot(df)

Out[25]: <Axes: >


```
In [26]: sns.boxplot(df.Age)
```

Out[26]: <Axes: >


```
In [27]: Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Age'] >= Q1 - threshold) & (df['Age'] <= Q3 + threshold)]</pre>
```

In [28]: sns.boxplot(df.Age)

Out[28]: <Axes: >

In [29]: sns.boxplot(df.SibSp)

Out[29]: <Axes: >


```
In [30]: p99 = df.SibSp.quantile(0.99)
```

In [31]: df = df[df.SibSp < p99]</pre>

In [32]: sns.boxplot(df.SibSp)

Out[32]: <Axes: >


```
In [33]: sns.boxplot(df.Parch)
```

Out[33]: <Axes: >


```
In [34]: p99 = df.Parch.quantile(0.99)
```

In [36]: sns.boxplot(df["Parch"])

Out[36]: <Axes: >


```
In [37]: sns.boxplot(df["Fare"])
```

Out[37]: <Axes: >


```
In [38]: Q1 = df['Fare'].quantile(0.25)
Q3 = df['Fare'].quantile(0.75)

IQR = Q3 - Q1

threshold = 1.5 * IQR

df = df[(df['Fare'] >= Q1 - threshold) & (df['Fare'] <= Q3 + threshold)]</pre>
```


Out[39]: <Axes: >

Splitting Dependent and Independent Variables

In [41]: x.head()

Į.								
Out[41]:		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	3	male	22.000000	1	0	7.2500	S
	2	3	female	26.000000	0	0	7.9250	S
	3	1	female	35.000000	1	0	53.1000	S
	4	3	male	35.000000	0	0	8.0500	S
	5	3	male	29.699118	0	0	8.4583	Q

In [42]: y = pd.Series(df["Survived"])

```
In [43]: y.head()
Out[43]: 0
               0
               1
          3
               1
          4
               0
          5
          Name: Survived, dtype: int64
          Encoding
In [44]: | from sklearn.preprocessing import LabelEncoder
In [45]: le = LabelEncoder()
In [46]: |x["Sex"] = le.fit_transform(x["Sex"])
In [47]: | x.head()
Out[47]:
             Pclass Sex
                             Age SibSp Parch
                                                 Fare Embarked
          0
                                                             S
                 3
                      1 22.000000
                                            0
                                               7.2500
          2
                 3
                      0 26.000000
                                      0
                                               7.9250
                                                             S
                 1
                      0 35.000000
                                      1
                                            0 53.1000
                                                             S
                 3
                      1 35.000000
                                                             S
                                      0
                                            0
                                               8.0500
                 3
                                                             Q
                      1 29.699118
                                               8.4583
In [48]: print(le.classes_)
          ['female' 'male']
         mapping=dict(zip(le.classes_,range(len(le.classes_))))
In [50]:
         mapping
Out[50]: {'female': 0, 'male': 1}
In [51]: le1 = LabelEncoder()
In [52]: |x["Embarked"] = le1.fit_transform(x["Embarked"])
```

```
In [53]: x.head()
```

```
Out[53]:
               Pclass Sex
                                 Age SibSp Parch
                                                       Fare Embarked
            0
                   3
                         1 22.000000
                                                     7.2500
                                                                     2
                                                 0
            2
                   3
                        0 26.000000
                                                     7.9250
                                                                     2
                        0 35.000000
                                                    53.1000
                         1 35.000000
                   3
                                          0
                                                 0
                                                     8.0500
                                                                     2
                         1 29.699118
                   3
                                                     8.4583
                                                                     1
```

```
In [55]: mapping1=dict(zip(le1.classes_,range(len(le1.classes_))))
mapping1
```

Out[55]: {'C': 0, 'Q': 1, 'S': 2}

Feature Scaling

```
In [56]: from sklearn.preprocessing import MinMaxScaler
ms = MinMaxScaler()
```

In [58]: x_Scaled.head()

Out[58]:		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1.0	1.0	0.372549	0.25	0.0	0.122054	1.0
	1	1.0	0.0	0.450980	0.00	0.0	0.133418	1.0
	2	0.0	0.0	0.627451	0.25	0.0	0.893939	1.0
	3	1.0	1.0	0.627451	0.00	0.0	0.135522	1.0
	4	1.0	1.0	0.523512	0.00	0.0	0 142396	0.5

Splitting Training and Testing Data

```
In [59]: from sklearn.model_selection import train_test_split
In [60]: x_train,x_test,y_train,y_test = train_test_split(x_Scaled,y,test_size = 0.2,random)
```