Wydział	lmię i nazwisko	Zespół 2			
WFIiS	Kotłowska Karolin				
	Such Katarzyna				
PRACOWNIA	Temat:	Nr ćwiczenia			
FIZYCZNA	Dozymetria p	96			
WFiIS AGH					

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z dozymetrią promieniowania jonizującego, wyznaczenie zależności mocy równoważnika dawki od odległości źródła, oraz wyznaczenie średniego tła promieniowania naturalnego.

2 Wykonanie ćwiczenia

2.1 Opis problemu

Do wykonania doświadczenia użyłyśmy następujących przedmiotów:

- komora pomiarowa
- źródło promieniowania
- stoper
- linijka
- dozymetr Geigera-Mullera

2.2 Wyznaczanie tła promieniowania

Na początku wykonałyśmy 10 pomiarów tła promieniowania na stanowisku pomiarowym. Pomiary z miernika zczytywałyśmy co 40s.

2.3 Pomiar mocy dawki skutecznej dla źródła

Następnie prowadzący umieścił źródło promieniowania w komorze pomiarowej. Źródło promieniowania, które otrzymałyśmy to Cs-137. Wykonałyśmy pomiary zależności równoważnika mocy dawki skutecznej od odległości źródła do dozymetru. Dla każdej, ze zmienianych przez nas odległości, dokonano 5 pomiarów. Pomiary z miernika zczytywałyśmy co 30s.

2.4 Pomiar mocy dawki skutecznej dla absorbentu

Następnie wybrałyśmy płytki miedziane jako absorbent, których grubości kolejno mierzyłyśmy. Wykonałyśmy pomiary mocy dawki skutecznej dla absorbentu, dokładając kolejne płytki po wykonaniu pomiaru. Pomiary z miernika zczytywałyśmy co 20s.

3 Wyniki

3.1 Pomiar tła promieniowania

Rysunek 1: Tabela 1. Pomiary tła promieniowania. Moc skuteczną mierzyłyśmy w $\mu Sv/h$

3.2 Pomiar mocy skutecznej dla źródła Cs-137

Odległość na linijce	Odległość rzeczywista	1	2	3	4	5
0	1,800	4,890	4,830	4,120	6,410	4,890
0,5	2,300	4,540	4,110	3,990	4,140	3,880
1	2,800	3,110	3,410	3,720	3,090	3,090
1,5	3,300	2,920	2,120	2,760	2,220	2,540
2	3,800	2,050	2,300	1,700	1,750	2,230
2,5	4,300	2,480	2,140	1,700	1,950	1,910
3	4,800	1,520	1,770	1,630	1,480	1,470
4	5,800	1,130	1,070	1,180	1,310	1,040
5	6,800	1,050	1,040	0,970	0,890	0,960

Rysunek 2: Tabela 2. Pomiary dawki skutecznej, dla różnych odległości. Odległości mierzyłyśmy w [cm]. Moc skuteczną w $\mu Sv/h$.

3.3 Pomiar grubości płytek

Grubość	1	2	3	Średnia
d1	1,500	1,500	1,400	1,467
d2	1,600	1,700	1,600	1,633
d3	1,500	1,600	1,600	1,567
d4	3,700	3,900	3,900	3,833
d5	2,300	2,100	2,100	2,167

Rysunek 3: Tabela 3. Pomiar grubości płytek. Grubość absormentu mierzyłyśmy w [mm].

3.4 Pomiar mocy dawki skutecznej dla absorbentu

Numer pomiaru				
1	2	3	4	5
0,510	0,570	0,460	0,670	0,540
0,820	0,550	0,420	0,630	0,590
0,590	0,560	0,530	0,750	0,410
0,470	0,460	0,570	0,430	0,400
0,440	0,370	0,480	0,450	0,410
	0,510 0,820 0,590 0,470	1 2 0,510 0,570 0,820 0,550 0,590 0,560 0,470 0,460	1 2 3 0,510 0,570 0,460 0,820 0,550 0,420 0,590 0,560 0,530 0,470 0,460 0,570	1 2 3 4 0,510 0,570 0,460 0,670 0,820 0,550 0,420 0,630 0,590 0,560 0,530 0,750 0,470 0,460 0,570 0,430

Rysunek 4: Tabela 4. Pomiar mocy dawki skuteczniej dla absorbentu. Moc skuteczną mierzyłyśmy $\mu Sv/h$.

4 Opracowanie wyników pomiarów

Wartość średnią tła naturalnego promieniowania obliczyłyśmy:

$$\overline{x_{sr}} = \frac{1}{n} \sum_{i=x_i}^{n} \frac{1,150\mu Sv/h}{10} = 0,115\mu Sv/h,$$
(1)

Średnie tło promieniowania na stanowisku pomiarowym wynosiło $0,115\mu Sv/h$.

Dla każdego pomiaru, obliczyłyśmy, korzystając ze wzorów wartość średnią:

$$\bar{x} = \frac{1}{n} \sum x_i \tag{2}$$

oraz niepewność pomiarową (typu A):

$$u(x) = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}}$$
 (3)

gdzie:

n-ilość pomiarów

x- kolejne wyniki

Następnie liczyłyśmy średnią moc dawki skutecznej po odjęciu tła oraz niepewność tych wartości. Wyniki zostały wstawione do tabeli poniżej:

Odległość na linijce [cm]	Odlegóść rzeczywis ta [cm]	Średnia moc dawki skutecznej [µSv/h]	Niepewność standardowa [μSv/h]	Średnia moc dawki skuecznej po odjęciu tła [μSv/h]	Niepewność standardowa 2 [μSv/h]
0	1,800	4,683	0,188	4,568	0,188
0,5	2,300	4,132	0,112	4,017	0,112
1	2,800	3,284	0,125	3,169	0,125
1,5	3,300	2,512	0,153	2,397	0,153
2	3,800	2,006	0,122	1,891	0,122
2,5	4,300	2,036	0,128	1,921	0,131
3	4,800	1,574	0,057	1,459	0,057
4	5,800	1,146	0,048	1,031	0,048
5	6,800	0,982	0,029	0,867	0,029

Rysunek 5: Tabela 5. Zależność mocy dawki skutecznej od odległośći źródło - dozymetr, obliczenia.

Rysunek 6: Wykres 1. Zależności mocy dawki skutecznej od odległości dozymetr - źródło.

Do wykresu punktowego zależności mocy dawki skutecznej od odległości dozymetr - źródło, dopasowałyśmy krzywą:

$$y = 7,985 \cdot e^{-0.326x} \tag{4}$$

Następnie wyznaczyłyśmy średnie mocy dawki, oraz niepewności pomiarowe (typu A) w zależności od grubości absorbentu.

Korzystając z prawa absorpcji promieniowania γ : $I = I_0 * e^{-\mu * x}$, po zlogarytmowaniu tego równania stronami, otrzymujemy równanie: $ln(I) = -mx + ln(I_0)$.

Grubość			Średnia moc	
obsorbentu	Średnia moc	Niewność	dawki skutecznej	Niepewność
wartość	dawki	standardowa	po odjęciu tła	standardowe
średnia [cm]	skutecznej	[µSv/h]	[µSv/h]	[µSv/h]
0,147	0,550	0,035	0,435	0,035
0,310	0,602	0,065	0,487	0,065
0,467	0,568	0,055	0,453	0,055
0,850	0,466	0,029	0,351	0,029
1,067	0,430	0,019	0,315	0,019

Rysunek 7: Tabela 6. Średnia moc dawki w zależności od grubości absorbentu.

Korzystając z regresji liniowej y = ax + b , gdzie: $a = -\mu$ i $b = ln(I_0)$. Do wykresu punktowego średniej mocy dawki skutecznej (po odjęciu tła) od grubości absorbentu, dopasowałyśmy prostą:

Rysunek 8: Wykres 2. Zależności średniej mocy dawki, od grubości absorbentu.

$$y = -0,169x + 0,505 \tag{5}$$

Otrzymałyśmy współczynniki: $a=0,169\frac{1}{cm}=\mu,$ a błąd jego wyznaczenia $u(a)=0,032\frac{1}{cm}=u(\mu)$ $b=0,505=ln(I_0),~I_0=1.656\mu Sv/h$

$$\mu_m = \frac{\mu}{\rho} = \frac{0,169}{8,96} = 0,019 \frac{cm^2}{g} \tag{6}$$

gdzie:

 μ - to współczynnik osłabienia μ_m - to współczynnik masowy osłabienia a błąd jego wyznaczenia $u(\mu_m)=\frac{u(\mu)}{\rho}=0,004\frac{cm^2}{g}$

1	Wartość zmierzona	Niepewność	Wartość tablicowa
μ [1/cm]	0,169	0,032	0,732
μm [cm^2/g]	0,019	0,004	0,820

Rysunek 9: Tabela 7. Wartość współczynników osłabienia.

5 Wnioski

5.1

Zmierzona przez nas na początku średnia wartość tła promieniowania wyniosła $0.115~\mu Sv/h$ i pochodzi ono z naturalnie wystepujących w przyrodzie izotopów.

5.2

Przeprowadzone doświadczenie pozwoliło sprawdzić promieniowanie Cs-137, moc dawki skutecznej zmieniała się w zależności odległości od źródła i wynosiła od 4,890 $\mu Sv/h$ dla odległości 1,8 cm do 0.960 $\mu Sv/h$ dla odległości 6,8 cm.

5.3

Doświadczalnie wyznaczony współczynnik absorbcji miedzi wyniósł $\mu=0,169\frac{1}{cm}\pm0.032$ i nie jest zgodny z wartością tablicową, która wynosi $0.732\frac{1}{cm}$.

5.4

Doświadczalnie wyznaczony współczynnik masowy absorbcji miedzi wyniósł $\mu=0,019\frac{cm^2}{g}\pm0,004$ i nie jest zgodny z wartością tablicową, która wynosi $\mu=0,820\frac{cm^2}{g}$

5.5

Wyniki, które otrzymałyśmy, pozwoliły nam na stwierdzenie, że moc dawki promieniowania maleje wraz ze zwiększeniem odległości od źródła. Metoda, którą wybrałyśmy do policzenia współczynników osłabienia - metoda regresji liniowej - nie pozwoliła nam na uzyskanie wyników bliskich wartościom tablicowym.

5.6

Nasze pomiary nie były przeprowadzane w równych odstępach czasowych - z powodu ograniczonego czasu na laboratorium. Mierzyłyśmy w odstępach czasu równych 20s, 30s, 40s. Miernik promieniowania zbierał wtedy dane o promieniowaniu z różnych przedziałów czasowych, co w znaczący sposób wpłynęło na wynik doświadczenia. Również źródło promieniownia, które otrzymałyśmy było bardzo słabe, o czym wspomniał prowadzący. Po naniesieniu danych na wykres, dostaliśmy słabomalejącą funkcją homograficzną (rysunek 6) - co pozwoliło nam stwierdzić, że źródło rzeczywiście było słabe. Innymi błędami mogły być: błędy odczytu mocy promieniowania , niedokładności w pomiarze grubości płytek, a także zaniedbanie istnienia szczelin między stosem płytek, wkładanych do komory pomiarowej.