ESPACES VECTORIELS

SOMME ET SOMME DIRECTE, SOUS-ESPACES VECTORIELS SUPPLÉMENTAIRES

1 Somme de deux sous-espaces vectoriels

Définition 1 Soient E un espace vectoriel sur \mathbb{K} , F et G deux sous-espaces vectoriels de E. L'ensemble de tous les éléments x+y, où x est un élément de F et y est un élément de G, est appelé **somme** des sous-espaces vectoriels F et G. Cette somme est notée F+G et on g:

$$F + G = \{x + y, x \in F, y \in G\}.$$

Proposition 1 Soient E un espace vectoriel sur \mathbb{K} , F et G deux sous-espaces vectoriels de E. Alors

- F+G est un sous-espace vectoriel de E.
- F+G est le plus petit sous-espace vectoriel contenant à la fois F et G.

2 Somme directe et sous-espaces vectoriels supplémentaires

Définition 2 On dit que la somme de deux sous-espaces vectoriels F et G de E est directe si:

$$F \cap G = \{0_E\}.$$

La somme **directe** de F et G dans E est alors notée $F \oplus G$. De plus, on dit que F et G sont des sous-espaces vectoriels **supplémentaires** dans E si $E = F \oplus G$, c'est-à-dire si et seulement si

-
$$F \cap G = \{0_E\}.$$

$$- F + G = E$$
.

Proposition 2 Deux sous-espaces vectoriels F et G sont supplémentaires dans E si et seulement si tout vecteur de E peut se décomposer de manière **unique** en la somme d'un vecteur de F et d'un vecteur de G.

3 Sous-espace vectoriel engendré

Théorème 1 Soient $n \in \mathbb{N}^{\star}$, $\{x_1, x_2, ..., x_n\}$ un ensemble de vecteurs d'un \mathbb{K} -espace vectoriel E. L'ensemble des combinaisons linéaires de $\{x_1, x_2, ..., x_n\}$ est un sous-espace vectoriel de E et c'est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant $x_1, x_2, ..., x_n$. Ce sous-espace vectoriel est appelé **sous-espace vectoriel engendré** par $x_1, x_2, ..., x_n$ et est noté $Vect(\{x_1, x_2, ..., x_n\})$. On a donc

$$x \in Vect(\{x_1, x_2, ..., x_n\}) \Leftrightarrow \exists (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n : x = \sum_{i=1}^n \lambda_i x_i.$$

1 IONISX