above and in the figures are hereby incorporated by reference in their entirety. Walker et al., *Nature*, 402:313-320, is incorporated by reference in its entirety, including Figs. 1-7.

Table 1 Data colle	מונסטי את חביתו פ	lable 1 Data collection, suncture determination and remement statistics	mement stationes					Manager appropriate to the second sec
Data collection and mi	ultiple isomorphous	Data collection and multiple isomorphous replacement phasing statistics	tistics					
Data set	Resolution (Å)	Observations/ unique reflections	Corppleteness (last shell) (%)	$R_{\sf merge}$	$\langle l/\sigma \rangle$ (last shell)	No. of sites	Phasing power!!!!	$R_{\rm iso}$ §§
Native*††	2.4	144,973/37,485	97 2 (90.6)	8.5	16.0 (3 1)	1	: 1	:
1.0Cls-1+°	2.2	191,292/49,599	95.5 (93 3)	9.5	14.3 (1.1)	7	1.7	200
LuCla-2±11	35	43,038/12,484	99.7 (98 2)	85	11.3 (3.4)	· 07	· · ·	81.0
Lanthanides§11	30	71,426/19,180	97.9 (97.1)	4 5	156 (2.3)	, cc	. t	0.0
ATMIT+	2.7	94,900/25,688	92 6 (60 2)	48	170(57)) vc	n e	0 23
lodine 111 t	26	102,511/28,856	93 2 (67.1)	09	136 (14)	ဗ	0 0	0.21
statis	lics		· · · · · · · · · · · · · · · · · · ·	:			: : : : : : : : : : : : : : : : : : : :	:
Data set	Resolution (Å)	Protein atoms	Waters	R _{crystal} ¶¶	Rhee III (% data)	R	R m.s d from ideality##	##
	:	: : : : : : : : : : : : : : : : : : : :		:		Bonds	Angles	Dihedrals
LuCl ₃ -1 lodine¶		6,813 6,954 6,837	89 14 26	0.25 0.26 0.26	0 30 (5.4) 0.33 (5.0) 0.32 (5.6)	0.013Å 0.005Å 0.005Å	17° 11° 12°	23° 21° 21°

The native crystal was soaked in 2.5 mM insP₃, 1.0 mM ATP and 10 mM MgCl₂ for 1 h. Although this was the native crystal for heavy-atom phasing, the final high-resolution structure refinement used data from LuCl₃-1.

Overall figure of merit 0 45

†LuCl₃-1 crystal was soaked in 20mM LuCl₃ and 1.3mM ATP for 1h 40min. ‡LuCl₃-2 crystal was soaked in 20mM LuCl₃ and 1.3mM ATP for 4h. §Lanthanides crystal was soaked for 4h in a mixture of 3.3 mM each of GdCl₃. TbCl₃, HoCl₃, ErCl₃, TmCl₃, and LuCl₃ with 1 26 mM ATP and 1 mM EMTS.

If incline crystal was soaked for 75 min in 1 mM Nals and 1 mM chloramine T. This crystal was originally prepared in an attempt to inclinate tyrosine residues as a heavy atom derivative, but no evidence of ATM crystal was soaked for 22 h in 10 mM sodium aurothiomalate.

yrosine iodination was seen in the resulting structure.

Mn crystal contained 1.4 mM ATP and 14 mM MnCl₂.

1+ Data were collected at ESRF beamline ID14-4. * Data were collected at ESRF beamline ID2b.

 $\Box + R_{\text{interge}} = \sum_{l,l\neq l} \sum_{l} I_l(l + k l) - U(l + k l) I I \sum_{l,l} \sum_{l} (l + k l).$

The phasing power is defined as the ratio of the r.m.s. value of the heavy atom structure factor amplitudes and the r.m.s. value of the lack-of-closure error. If R_{cyst} and $R_{tee} = \Sigma |F_{cbs} - F_{cate}| I\Sigma F_{cas}$; R_{tree} calculated with the percentage of the data shown in parentheses. ##R.m.s. deviations for bond angles and lengths in regard to Engh and Huber parameters.