קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(85 / 4 מועד א 2014 - 2014 (סמסטר 9.7.2014 : תאריך הבחינה

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

.10 יהי א משתנה מקרי פואסוני עם הפרמטר 5, ויהי א משתנה מקרי פואסוני עם הפרמטר 10 יהי א משתנים המקריים א ו-Y בלתי-תלויים זה בזה. Y

מציירים מלבן שרוחבו X סיימ ואורכו Y

- (6 נקי) א. חשב את ההסתברות שהיקף המלבן, דהיינו (X+Y), שווה ל- 28 סיימ.
 - (6 נקי) ב. נתון ש**היקף** המלבן הוא 28 סיימ. מהי ההסתברות שרוחבו הוא 6 סיימ?
 - E[XY] ג. חשב את תוחלת שטח המלבן, דהיינו את (6 נקי)
 - (7 נקי) ד. חשב את שונות שטח המלבן.

שאלה 2 (25 נקודות)

יהיו Z ו- Z משתנים נורמליים סטנדרטיים בלתי-תלויים. U ו- U

- V א. זהה את ההתפלגות של המשתנה המקרי 6. נקי) א. דעום את שמה ואת ערכי הפרמטרים שלה.
 - . $P\{V \le 1.33\}$ את ב. חשב את הפייט 6) בצע אינטרפולציה לינארית בחישוביך.
- $P\{V>a\}=0.8$ נקי) ג. מהו a שמקיים את השוויון ...
- Uו ו- Vו המקריים המקריים בין המשתנים המקריים ו- 7) ו- 7) ו- 7)

שאלה 3 (25 נקודות)

נתון סביבון תקין בעל 4 פאות, שעליהן רשומים המספרים 1, 2, 3 ו- 4. מסובבים את הסביבון 5 פעמים.

- (6 נקי) א. מהי ההסתברות שכל ארבע התוצאות האפשריות תתקבלנה בחמשת הסיבובים!
 - (6 נקי) ב. מהי ההסתברות שהתוצאה 3 תתקבל לפחות פעם אחת?
 - (6) נקי) ג. ידוע שבשני הסיבובים הראשונים (מתוך ה-5 שנעשו) התקבלו תוצאות שונות. מהי ההסתברות שב-5 הסיבובים הללו התקבלו כל ארבע התוצאות?
- . ידוע שב-5 הסיבובים שנעשו לא התקבלה לפחות אחת מארבע התוצאות האפשריות. מהי ההסתברות שב-5 הסיבובים התקבלו <u>בדיוק</u> שתיים מהתוצאות האפשריות!

שאלה 4 (25 נקודות)

0.6 היא H מטילים שוב שוב מטבע, שההסתברות לקבל בו

 X_i נגדיר את המשתנים המקריים , $i=1,2,\ldots$ לכל

יימספר ההטלה שבה התקבל H בפעם ה-i-יתיי (שימו לב: בסהייכ i פעמים, ולא בהכרח ברציפות)

- $P\{X_5 = 8\}$ א. חשב את (6 נקי)
- . טענתך הוכח את הוכח בלתי-תלויים: הוכח את טענתך X_5 ו- X_2 בהאם ב.
- . חשב את j -ו ווער לכל j -ו ווער , $P\{X_2=i,X_8=j\}$ את חשב את אכן 7) זכור לרשום את התחום שבו הסתברות שחישבת מקבלת ערכים חיוביים.
 - . תשב קירוב ל- $P\{X_{100} \geq 180\}$ בעזרת משפט הגבול המרכזי. הסבר מדוע אפשר לחשב קירוב כזה.

שאלה 5 (25 נקודות)

n ו- m , N ו- m (12) א. יהי N משתנה מקרי היפרגיאומטרי עם הפרמטרים א יהי N

$$E[X] = n \cdot \frac{m}{N}$$
 : הוכח כי

ב. נתון ארגז ובו 100 פתקים, הממוספרים מ-1 עד 100.

בוחרים באקראי וללא החזרה 15 פתקים מתוך 100 הפתקים שבארגז.

- (6 נקי) 1. מהי שונות מספר הפתקים שייבחרו, שעליהם מספר שהוא כפולה של 5!
- (7 נקי) 2. מהי ההסתברות שייבחרו 6 פתקים, שעליהם מספר שהוא כפולה של 5 **או** כפולה של 7! **הערה:** בסעיף זה, אין הכרח לחשב את תוצאה מספרית סופית.

בהצלחה!

$\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה:

z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5000	0.5120	0.5160	0.5100	0.5220	0.5270	0.5210	0.5250
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478 0.5871	0.5517	0.5557	0.5596	0.5636 0.6026	0.5675	0.5714	0.5753
0.2 0.3	0.5793	0.5832		0.5910	0.5948	0.5987		0.6064	0.6103	0.6141
0.3	0.6179 0.6554	0.6217 0.6591	0.6255 0.6628	0.6293 0.6664	0.6331 0.6700	0.6368 0.6736	0.6406 0.6772	0.6443 0.6808	0.6480 0.6844	0.6517 0.6879
0.4	0.0334	0.0391	0.0028	0.0004	0.0700	0.0730	0.0772	0.0808	0.0644	0.0879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.0772	0.0770	0.0702	0.0700	0.0702	0.0700	0.0002	0.0000	0.0012	0.0017
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
Z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

דף נוסחאות לבחינה - 20425

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1,, n$	בינומית
$pe^{t}/(1-(1-p)e^{t})$ $t<-\ln(1-p)$	$(1-p)/p^2$	1/p	$(1-p)^{i-1} \cdot p$, $i=1,2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t < -\ln(1-p)} $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
				מולטינומית

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
נוסחת הבינום

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P\bigg(\bigcup_{i=1}^{n}A_{i}\bigg) = \sum_{i=1}^{n}P(A_{i}) - \sum_{i< j}P(A_{i}\cap A_{j}) + \ldots + (-1)^{n+1}P(A_{1}\cap A_{2}\cap \ldots \cap A_{n})$$
 כלל ההכלה וההפרדה

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdot ... \cdot P(A_n \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$
 נוסחת הכפל

$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i)$$
 , S אורים ואיחודם הוא $\{B_i\}$

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum\limits_{i=1}^n P(A \mid B_i)P(B_i)} \quad , \quad S \text{ אורים ואיחודם הוא } \{B_i\}$$

$$E[X] = \sum_{x} x p_X(x) = \int x f(x) dx$$
 תוחלת

$$E[g(X)] = \sum_{x} g(x) p_X(x) = \int g(x) f(x) dx$$
 תוחלת של פונקציה של מ"מ

$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

$$E[aX + b] = aE[X] + b$$
 תוחלת ושונות של פונקציה לינארית

$$Var(aX + b) = a^2 Var(X)$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t \big| X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

5

 $Var(X | Y = y) = E[X^2 | Y = y] - (E[X | Y = y])^2$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{y} E[X \mid Y = y] p_{Y}(y)$ נוסחת התוחלת המותנית $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ (טענה מתרגיל ת26, עמוד 430) Var(X) = E[Var(X | Y)] + Var(E[X | Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n} X_i\right| = \sum_{i=1}^{n} E[X_i]$ תוחלת של סכום משתנים מקריים Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < i} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_X(t) = E[e^{tX}]$; $M_{aX+b}(t) = e^{bt}M_X(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: כאשר מיים ביית מתקיים X_i $E \left| \sum_{i=1}^{N} X_i \right| = E[N]E[X]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X) + (E[X])^{2}\operatorname{Var}(N)$ (מיימ ביית שייה X_i כאשר (כאשר $M_Y(t) = E \left[\left(M_X(t) \right)^N \right]$ $P\{X \geq a\} \leq E[X]/a$, a > 0 , שלילי Xאי-שוויון מרקוב $P\{|X-\mu| \ge a\} \le \sigma^2/a^2$, a > 0, $\mu, \sigma^2 < \infty$ אי-שוויון צ'בישב $Pigg\{(\sum\limits_{i=1}^n X_i - n\mu)igg/\sqrt{n\sigma^2} \le aigg\} \underset{n o\infty}{ o} \Phi(a) \quad , \quad \mu,\sigma^2 < \infty \ , \$ משפט הגבול המרכזי משפט הגבול המרכזי

- אם B ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי P(A)/[P(A)+P(B)] המאורע A יתרחש לפני המאורע
- סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר q הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו בינומיים (בינומיים עם אותו Y-ו Y מיים פואסוניים (בינומיים עם אותו X ההתפלגות המותנית של Xביית היא בינומית (היפרגיאומטרית).

$$\begin{split} \sum_{i=0}^n i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^\infty \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^n x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^\infty x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n(a^b) = b \cdot \log_n a \qquad ; \qquad \log_n(ab) = \log_n a + \log_n b \end{split}$$