Factor model in multiblock component-based GLM

Julien GIBAUD¹, Xavier BRY¹ and Catherine TROTTIER^{1,2}

IMAG, CNRS, Univ. Montpellier, France.
AMIS, UPV Montpellier 3, Montpellier, France.

JDS 2022

Outline

- Motivations
- 2 Searching for supervised components
- Random latent factors
- SCGLR with latent factors
- Experimental study

Outline

- Motivations
- 2 Searching for supervised components
- 3 Random latent factors
- 4 SCGLR with latent factors
- Experimental study

Motivations

Ecological motivations

In a context of global warming, we aim at:

- Finding the main determinants of species observations, among a thematic partitioning of the explanatory variables
- Identifying groups of species sharing mutual dependencies

Motivations

Ecological motivations

In a context of global warming, we aim at:

- Finding the main determinants of species observations, among a thematic partitioning of the explanatory variables
- Identifying groups of species sharing mutual dependencies

Statistical counterparts

- Finding strong dimensions allowing to explain the responses as best as possible
 - → Supervised components
- Identifying blocks in the responses' conditional variance-covariance matrix
 - → Random latent variables: factors

Outline

- Motivations
- Searching for supervised components
- Random latent factors
- SCGLR with latent factors
- Experimental study

What a supervised component is?

Notations

- Let $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ be the matrix of responses (GLM)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

What a supervised component is?

Notations

- Let $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ be the matrix of responses (GLM)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

Definition

A component is a vector $f \in \mathbb{R}^n$ linearly combining the explanatory variables, such that

- $f^h = Xu^h$, for h = 1, ..., H
- $f^h \perp f^g$, for all $h \neq g$

What a supervised component is?

Notations

- Let $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ be the matrix of responses (GLM)
- Let $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ be the matrix of explanatory variables

Definition

A component is a vector $f \in \mathbb{R}^n$ linearly combining the explanatory variables, such that

- $f^h = Xu^h$, for h = 1, ..., H
- $f^h \perp f^g$, for all $h \neq g$

Demands

- Components must be close to some explanatory variables to be interpreted
- Components must predict responses $Y \Rightarrow$ supervised components

SCGLR (Bry et al., 2020)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f = Xu (overall closeness to explanatory variables) under the constraint $||u||^2 = 1$

SCGLR (Bry et al., 2020)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f=Xu (overall closeness to explanatory variables) under the constraint $\|u\|^2=1$

Goodness-of-Fit (GoF)

The criterion $\psi(u,\theta)$ is the likelihood of the component model

SCGLR (Bry et al., 2020)

Structural Relevance (SR)

The criterion $\phi(u)$ measures the "strength" of the component f=Xu (overall closeness to explanatory variables) under the constraint $\|u\|^2=1$

Goodness-of-Fit (GoF)

The criterion $\psi(u,\theta)$ is the likelihood of the component model

The SCGLR combined criterion

$$\underset{u, \|u\|^2=1}{\operatorname{argmax}} s \ln \left(\phi(u)\right) + (1-s) \ln \left(\psi(u, \theta)\right)$$

The real $s \in [0,1]$ allows to tune the trade-off between SR and GoF

THEME-SCGLR (Bry et al., 2020)

Notations

- Let $X = [X_1, \dots, X_R] \in \mathbb{R}^{n \times p}$ be the matrix of R thematic subsets
- Let $f_r^h = X_r u_r^h$ be the *h*th component of theme X_r

Julien GIBAUD (IMAG)

THEME-SCGLR (Bry et al., 2020)

Notations

- Let $X = [X_1, \dots, X_R] \in \mathbb{R}^{n \times p}$ be the matrix of R thematic subsets
- Let $f_r^h = X_r u_r^h$ be the *h*th component of theme X_r

New demands

- Components must be explicitly identified in the themes
- Components must be orthogonal to the other components within the theme
- Components must again predict responses Y

THEME-SCGLR (Bry et al., 2020)

Notations

- Let $X = [X_1, \dots, X_R] \in \mathbb{R}^{n \times p}$ be the matrix of R thematic subsets
- Let $f_r^h = X_r u_r^h$ be the *h*th component of theme X_r

New demands

- Components must be explicitly identified in the themes
- Components must be orthogonal to the other components within the theme
- Components must again predict responses Y

The THEME-SCGLR combined criterion

$$\underset{\forall r, \|u_r\|^2=1}{\operatorname{argmax}} \ \ \underset{r=1}{\overset{s}{\sum}} \ln \left(\phi(u_r)\right) + (1-s) \ln \left(\psi(u_1,\ldots,u_R,\theta)\right)$$

Estimation steps

Iterate:

Julien GIBAUD (IMAG)

Estimation steps

Iterate:

Estimation of u_r given θ

The PING algorithm allows to solve a program of the form

$$\begin{cases} \max\limits_{u_r} & c(u_r), \\ \text{s.t.} & \|u_r\|^2 = 1 \quad \text{and} \quad D^T u_r = 0, \end{cases}$$

where D is the constraint matrix of components' orthogonality

Estimation steps

Iterate:

Estimation of u_r given θ

The PING algorithm allows to solve a program of the form

$$\begin{cases} \max\limits_{u_r} & c(u_r), \\ \text{s.t.} & \|u_r\|^2 = 1 \quad \text{and} \quad D^T u_r = 0, \end{cases}$$

where D is the constraint matrix of components' orthogonality

Estimation of θ given all u_r

Maximize the likelihood on θ , e.g. solve

$$\nabla_{\theta} \psi(u_1,\ldots,u_R,\theta) = 0$$

Outline

- Motivations
- 2 Searching for supervised components
- Random latent factors
- SCGLR with latent factors
- Experimental study

More notations

- Let J be the number of factors
- Let $g_i \sim \mathcal{N}(0, I_J), i = 1, \dots n$, be the random vector of factors
- Let $B \in \mathbb{R}^{L \times q}$ be the loading matrix of factors
- Let ε_i be the error vector

More notations

- Let J be the number of factors
- Let $g_i \sim \mathcal{N}(0, I_J), i = 1, \dots n$, be the random vector of factors
- Let $B \in \mathbb{R}^{L \times q}$ be the loading matrix of factors
- Let ε_i be the error vector

Classic linear factor model

The model expressed row-wise is given by $y_i = B^T g_i + \varepsilon_i$ of likelihood $L(Y; B) = \prod_{i=1}^n L(y_i; B)$

More notations

- Let J be the number of factors
- Let $g_i \sim \mathcal{N}(0, I_J), i = 1, \dots n$, be the random vector of factors
- Let $B \in \mathbb{R}^{L \times q}$ be the loading matrix of factors
- Let ε_i be the error vector

Classic linear factor model

The model expressed row-wise is given by $y_i = B^T g_i + \varepsilon_i$ of likelihood $L(Y; B) = \prod_{i=1}^n L(y_i; B)$

Problem

Likelihood difficult to maximize

More notations

- Let J be the number of factors
- Let $g_i \sim \mathcal{N}(0, I_J), i = 1, \dots n$, be the random vector of factors
- Let $B \in \mathbb{R}^{L \times q}$ be the loading matrix of factors
- Let ε_i be the error vector

Classic linear factor model

The model expressed row-wise is given by $y_i = B^T g_i + \varepsilon_i$ of likelihood $L(Y; B) = \prod_{i=1}^n L(y_i; B)$

Problem

Likelihood difficult to maximize

→ We perform the EM algorithm

Outline

- Motivations
- 2 Searching for supervised components
- Random latent factors
- SCGLR with latent factors
- Experimental study

Factors SCGLR

Component-based model with factors

$$Y = \underbrace{(X_1 u_1) \gamma_1 + \dots + (X_R u_R) \gamma_R}_{\text{deterministic}} + \underbrace{GB}_{\text{stochastic}}$$

where the $X_r u_r$'s are the components, $\Gamma = [\gamma_1, \dots, \gamma_R]$ the regression parameters and G the realizations of the factors.

The likelihood writes $L(Y; u_1, ..., u_R, \Gamma, B)$

Factors SCGLR

Component-based model with factors

$$Y = \underbrace{(X_1 u_1) \gamma_1 + \dots + (X_R u_R) \gamma_R}_{\text{deterministic}} + \underbrace{GB}_{\text{stochastic}}$$

where the $X_r u_r$'s are the components, $\Gamma = [\gamma_1, \dots, \gamma_R]$ the regression parameters and G the realizations of the factors.

The likelihood writes $L(Y; u_1, ..., u_R, \Gamma, B)$

Combined criterion

$$\underset{\forall r, \|u_r\|^2=1}{\operatorname{argmax}} s \sum_{r=1}^R \ln \left(\phi(u_r) \right) + (1-s) \ln \left(L(Y; u_1, \dots, u_R, \Gamma, B) \right)$$

Factors SCGLR

Component-based model with factors

$$Y = \underbrace{(X_1 u_1) \gamma_1 + \dots + (X_R u_R) \gamma_R}_{\text{deterministic}} + \underbrace{GB}_{\text{stochastic}}$$

where the $X_r u_r$'s are the components, $\Gamma = [\gamma_1, \dots, \gamma_R]$ the regression parameters and G the realizations of the factors.

The likelihood writes $L(Y; u_1, \ldots, u_R, \Gamma, B)$

Combined criterion

$$\underset{\forall r, \|u_r\|^2=1}{\operatorname{argmax}} s \sum_{r=1}^R \ln \left(\phi(u_r) \right) + (1-s) \ln \left(\frac{L(Y; u_1, \dots, u_R, \Gamma, B)}{L(Y; u_1, \dots, u_R, \Gamma, B)} \right)$$

Estimation steps

The overall algorithm consists in alternating the following steps:

- We find $\{\Gamma, B\}$ through the EM algorithm
- We find all u_r through the PING algorithm

Outline

- Motivations
- 2 Searching for supervised components
- Random latent factors
- SCGLR with latent factors
- Experimental study

Deterministic simulation

Response variables

 $Y = [y_1, \dots, y_{50}]$ is composed by 20 Gaussian responses, 20 Poisson responses and 10 Bernoulli responses

Deterministic simulation

Response variables

 $Y = [y_1, \dots, y_{50}]$ is composed by 20 Gaussian responses, 20 Poisson responses and 10 Bernoulli responses

Explanatory variables

$$X_1 = [\underbrace{x_1, \dots, x_{60}}_{:=\mathcal{X}_1} | \underbrace{x_{61}, \dots, x_{100}}_{:=\mathcal{X}_2}] \text{ and } X_2 = [\underbrace{x_{101}, \dots, x_{160}}_{:=\mathcal{X}_3} | \underbrace{x_{161}, \dots, x_{200}}_{:=\mathcal{X}_4}]$$

- Theme X_1 is composed by two explanatory bundles
- Theme X_2 is composed by two explanatory bundles
- Bundles are sets of correlated variables

Stochastic simulation

We simulate the variance-covariance matrix B^TB as

Figure 1: Conditional variance-covariance matrix

Stochastic simulation

We simulate the variance-covariance matrix B^TB as

Figure 1: Conditional variance-covariance matrix

Question: How to identify the blocks?

Julien GIBAUD (IMAG) F-SCGLR JDS 2022

We perform several a posteriori steps:

We perform several a posteriori steps:

• We estimate the variance-covariance matrix B^TB

We perform several a posteriori steps:

- We estimate the variance-covariance matrix B^TB
- We estimate the correlation matrix

We perform several a posteriori steps:

- We estimate the variance-covariance matrix B^TB
- We estimate the correlation matrix
- We calculate a dissimilarity matrix from the correlations: $d(x, y) = 2(1 cor^2(x, y))$

Classification steps

We perform several a posteriori steps:

- We estimate the variance-covariance matrix B^TB
- We estimate the correlation matrix
- We calculate a dissimilarity matrix from the correlations: $d(x, y) = 2(1 cor^2(x, y))$
- We perform the Multidimensional Scaling (MDS) on the dissimilarity matrix

Classification steps

We perform several a posteriori steps:

- We estimate the variance-covariance matrix B^TB
- We estimate the correlation matrix
- We calculate a dissimilarity matrix from the correlations: $d(x, y) = 2(1 cor^2(x, y))$
- We perform the Multidimensional Scaling (MDS) on the dissimilarity matrix
- We perform the K-means on the output of the MDS

Results

Bundles recovery

Components of theme 1	
$\operatorname{cor}^2(\mathcal{X}_1, \mathit{f}_1^{1})$	0.984
$\operatorname{cor}^2(\mathcal{X}_2,f_1^2)$	0.979

Components of theme 2	
$\operatorname{cor}^2(\mathcal{X}_3, f_2^1)$	0.975
$\operatorname{cor}^2(\mathcal{X}_4, f_2^2)$	0.983

Results

Bundles recovery

Components of theme 1	
$\operatorname{cor}^2(\mathcal{X}_1, \mathit{f}_1^{1})$	0.984
$\operatorname{cor}^2(\mathcal{X}_2, f_1^2)$	0.979

Components of theme 2	
$\operatorname{cor}^2(\mathcal{X}_3, f_2^1)$	0.975
$\operatorname{cor}^2(\mathcal{X}_4, f_2^2)$	0.983

Correctness of classification steps

Rand Index: 0.948

Adjusted Rand Index: 0.904

Results

Bundles recovery

Components	of theme 1
$\operatorname{cor}^2(\mathcal{X}_1, \mathit{f}_1^{1})$	0.984
$\operatorname{cor}^2(\mathcal{X}_2, f_1^2)$	0.979

Components of theme 2	
$\operatorname{cor}^2(\mathcal{X}_3, f_2^1)$	0.975
$\operatorname{cor}^2(\mathcal{X}_4, f_2^2)$	0.983

Correctness of classification steps

Rand Index: 0.948

Adjusted Rand Index: 0.904

Real data

The Genus dataset

- 27 species abundances (Y matrix)
- 36 explanatory variables (X matrix)
 - → subset of 23 photosynthesis variables "evi" (Theme 1)
 - → subset of 13 rainfall variables "pluvio" (Theme 2)

Real data

The Genus dataset

- 27 species abundances (Y matrix)
- 36 explanatory variables (X matrix)
 - → subset of 23 photosynthesis variables "evi" (Theme 1)
 - → subset of 13 rainfall variables "pluvio" (Theme 2)

Results

Clusters	Responses
1	Y_1 , Y_5 , Y_7 , Y_9 , Y_{12} , Y_{15} , Y_{26} , Y_{27}
2	Y ₂ , Y ₈ , Y ₂₃ , Y ₂₄
3	Y ₃ , Y ₁₃
4	Y ₄ , Y ₁₉
5	Y ₆ , Y ₁₆ , Y ₂₂ , Y ₂₅
6	Y ₁₀ , Y ₁₈ , Y ₂₀
7	Y ₁₁ , Y ₁₄
8	Y ₁₇ , Y ₂₁

Real data

The Genus dataset

- 27 species abundances (Y matrix)
- 36 explanatory variables (X matrix)
 - → subset of 23 photosynthesis variables "evi" (Theme 1)
 - → subset of 13 rainfall variables "pluvio" (Theme 2)

Results

CL .	n n
Clusters	Responses
1	$Y_1, Y_5, Y_7, Y_9, Y_{12}, Y_{15}, Y_{26}, Y_{27}$
2	Y_2, Y_8, Y_{23}, Y_{24}
3	Y ₃ , Y ₁₃
4	Y_4, Y_{19}
5	$Y_6, Y_{16}, Y_{22}, Y_{25}$
6	Y ₁₀ , Y ₁₈ , Y ₂₀
7	Y ₁₁ , Y ₁₄
8	Y ₁₇ , Y ₂₁

Conclusion

We have:

- Extended SCGLR to the factor model
- Developed an algorithm allowing to find relevant components and to model the variance-covariance matrix

Conclusion

We have:

- Extended SCGLR to the factor model
- Developed an algorithm allowing to find relevant components and to model the variance-covariance matrix

Perspectives

We want to:

- Add new distributions for the responses
- Better identify blocks in the variance-covariance matrix

Acknowledgments and references

Thank you for your attention

- Bry, X., Trottier, C., Mortier, F., and Cornu, G. (2020). Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables. *Statistical Modelling*, 20(1):96–119.
- Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. *The review of financial studies*, 9(2):557–587.