Optimization in Machine Learning

Linear Programming

Learning goals

- Instances of LPs underlying statistical estimation
- Definition of an LP
- Geometric intuition of LPs

LINEAR PROGRAMMING

Linear problems (LP):

linear objective function + **linear** constraints

Example:

$$\min \quad -x_1-x_2$$

s.t.
$$x_1 + 2x_2 \le 1$$

$$2x_1+x_2\leq 1$$

$$\textit{x}_1,\textit{x}_2 \geq 0$$

GEOMETRIC INTERPRETATION

Linear programming can be interpreted geometrically.

Feasible set:

- *i*-th inequality constraint: $\mathbf{a}_i^{\top} \mathbf{x} \leq b_i$
- Points $\{\mathbf{x} : \mathbf{a}_i^{\top} \mathbf{x} = b_i\}$ form a hyperplane in \mathbb{R}^n (\mathbf{a}_i is perpendicular to the hyperplane and called **normal vector**)
- Points $\{\mathbf{x} : \mathbf{a}_i^{\top} \mathbf{x} \geq b_i\}$ lie on the side of the hyperplane into which the normal vector points ("half-space")

SOLUTIONS TO LP

There are 3 ways to solve linear programming:

- Feasible set is empty ⇒ LP is infeasible
- Peasible set is "unbounded"
- Feasible set is "bounded" ⇒ LP has at least one solution

