3.1.12. c₁의 값이 아직 주어지지 않은 다음 문제를 고려하라.

Maximize
$$Z = c_1 x_1 + x_2$$

subject to

$$x_1 + x_2 \le 6$$

$$x_1 + 2x_2 \le 10$$

 $x_1 + 2x_2 \le 10$

$$x_1 \ge 0, \qquad x_2 \ge 0$$

그래프를 사용하여 다양한 $c_1(-\infty < c_1 < \infty)$ 값에 대한 (x_1, x_2) 의 최적해를 구하라 .

위의 그래프와 같이, $c_{\scriptscriptstyle 1}$ 의 값에 따라 목적함수의 벡터의 방향이 달라지고, 벡터의 방향이 달라지면 최적해도 매번 달라질 수 있다. 이때 (x_1,x_2) 의 최적해는 CPF의 edge와 수직이 되는 목적함수의 vector를 분기로 달라진다. 따라서 각각의 $\operatorname{\mathsf{edge}}$ 와 목적함수 벡터가 수직이 되게 하는 c_1 의 값을 파악해야 한다. 점 (0, 5)에서 점 (2, 4)를 지나는 벡터는 (2 - 0, 4 - 5) = (2, -1)이다. 이와 수직한 방향 벡터는 (1, 2)이고, x_2 가 1이 되도록 scaling하면 $(rac{1}{2},1)$ 이 된다. 점 (2, 4)에서 점 (6, 0)을 지나는 벡터는 (6 - 2, 0 - 4) = (4, -4)이다. 이와 수직한 방향 벡터는 (1, 1)이다. 이제 $c_{\scriptscriptstyle 1}$ 의 값이 ${1\over 2}$ 와 1을 지날 때, 각각 최적해가 어떻게 변하는지 그래프로 살펴보자.

위 그래프와 같이 c_1 이 $rac{1}{2}$ 일 때 최적해는 제약 함수와 정확히 일치하여, ∞ 개의 optimal solution을 가지게 된다.

만약 $c_{\scriptscriptstyle 1}$ 이 ${1\over 2}$ 보다 작은 경우, 최적해는 (0, 5)가 된다.

반면 $c_{\scriptscriptstyle 1}$ 이 ${1\over 2}$ 보다 큰 경우, 최적해는 (2, 4)가 된다.

위와 같이 $c_{\scriptscriptstyle 1}$ 의 값을 (6, 0), (2, 4)의 edge에 대해서도 조정을 해보면 최종적으로 아래와 같은 수식을 구할 수 있다.

$$\begin{cases} (0,5) & \text{if } c_1 < \frac{1}{2} \\ \infty & \text{if } c_1 = \frac{1}{2} \\ (2,4) & \text{if } \frac{1}{2} < c_1 < 1 \\ \infty & \text{if } c_1 = 1 \\ (6,0) & \text{if } c_1 > 1 \end{cases}$$

4.6.3.* 다음 문제를 고려하라.

Minimize $Z = 2x_1 + 3x_2 + x_3$,

$$\begin{array}{l}
 x_1 + 4x_2 + 2x_3 \ge 8 \\
 3x_1 + 2x_2 & \ge 6
 \end{array}$$

- (a) 이 문제를 3.2절에서 공부한 선형계획의 표준형에 맞게 다
- (b) 빅 M 방법을 이용하여, 단계적으로 심플렉스 방법을 사 용하여 문제를 풀어라
- (c) 2-국면 방법을 이용하여, 단계적으로 심플렉스 방법을 사용하여 문제를 풀어라
- (d) 문제의 (b)에서 얻어진 BF 해의 순서와 (c)에서 얻어진 BF 해의 순서를 비교하라. 어떤 해들이 인공 변수를 사용한 인 공 문제에만 가능해이고, 어떤 문제가 실제 문제에 가능해

$$\begin{array}{ll} \text{Maximize} & -Z = -2x_1 - 3x_2 - x_3 - M\bar{x}_5 - M\bar{x}_7\\ \text{Subject to} & x_1 + 4x_2 + 2x_3 - x_4 + \bar{x}_5 = 8\\ & 3x_1 + 2x_2 - x_6 + \bar{x}_7 = 6\\ \text{and} & x_j \geq 0, for j = 1, 2, 3, 4, 6\\ & \bar{x}_5 \geq 0, \bar{x}_7 \geq 0 \end{array}$$

먼저 basic 변수를 0으로 만들어주자.

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	2-4M	3-6M	1-2M	M	0	M	0	-14M
\bar{x}_5	0	1	4	2	-1	1	0	0	8
\bar{x}_7	0	3	2	0	0	0	-1	1	6

- 진입변수: x_2 - 퇴출변수: $ar{x}_5$

					x_4				
	1	$\frac{5}{4} - \frac{5}{2}M$	0	$M-\frac{1}{2}$	$\frac{3}{4} - \frac{1}{2}M$	$\frac{3}{2}M - \frac{3}{4}$	M	0	-2M - 6
x_2	0	$\frac{1}{4}$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	0	2
\bar{x}_7	0	5 2	0	-1	1/2	$-\frac{1}{2}$	-1	1	2

- 진입변수: x_1 - 퇴출변수: \bar{x}_7

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	0	0	0	$\frac{1}{2}$	$M - \frac{1}{2}$	$\frac{1}{2}$	$M - \frac{1}{2}$	-7
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$-\frac{1}{10}$	9 5
x_1	0	1	0	$-\frac{2}{\epsilon}$	1 =	$-\frac{1}{\epsilon}$	$-\frac{2}{\epsilon}$	2	4 =

종료.

-
$$x_1$$
 = $\frac{4}{5}$ - x_2 = $\frac{9}{5}$ - x_3 = 0 - x_4 = 0 - \bar{x}_5 = 0 - x_6 = 0 - \bar{x}_7 = 0 - $-Z$ = -7 최적해는 7

$$\begin{array}{ll} \text{Minimize} & Z - \bar{x}_5 - \bar{x}_7 = 0 \\ \text{Subject to} & x_1 + 4x_2 + 2x_3 - x_4 + \bar{x}_5 = 8 \\ & 3x_1 + 2x_2 - x_6 + \bar{x}_7 = 6 \\ \text{and} & \\ & x_j \geq 0, for j = 1, 2, 3, 4, 6 \\ & \bar{x}_5 \geq 0, \bar{x}_7 \geq 0 \end{array}$$

Minimize를 Maximize로 바꿔주자.

Maximize
$$-Z + \bar{x}_5 + \bar{x}_7 = 0$$
 Subject to
$$x_1 + 4x_2 + 2x_3 - x_4 + \bar{x}_5 = 8$$

$$3x_1 + 2x_2 - x_6 + \bar{x}_7 = 6$$
 and
$$x_j \geq 0, forj = 1, 2, 3, 4, 6$$

$$\bar{x}_1 \geq 0, \bar{x}_2 \geq 0$$

	-z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	0	0		0	1	0	1	0
\bar{x}_5	0				-1			0	8
\bar{x}_7	0	3	2	0	0	0	-1	1	6
haci	ᄼᄖᄼ	ᇩ	۱۸۱ ت	:1 🗆 =	= ⊏⊦≀	니게	사하다	Ħ	

	-z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	-4	-6	-2	1	0	1	0	-14
\bar{x}_5	0	1	4	2	-1	1	0	0	8
\bar{x}_7	1 0 0	3	2	0	0	0	-1	1	6

자 이제 표를 완성해보자.

· 진입변수: x_2 - 퇴출변수: $ar{x}_5$

	-z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	$-\frac{5}{2}$	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	1	0	-2
x_2	0	$\frac{1}{4}$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	0	2
\bar{x}_7	0	$\frac{5}{2}$	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1	2
진입	J변수	$: x_1$	- 퇴·	출변:	수: \bar{x}	7			

		_	_							
	1	0	0	0	0	1	0	1	0	
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$-\frac{1}{10}$	$\frac{9}{5}$	
x_1	0	1	0	$-\frac{2}{5}$		$-\frac{1}{5}$		2 5	4 =	

エ_ラ ゼラベエベ・

	-Z	x_1	x_2	x_3	x_4	x_6	RHS
	1	2	3	1	0	0	0
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{1}{10}$	$\frac{9}{5}$
x_1	0	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	$-\frac{2}{5}$	$\frac{4}{5}$

basic 변수를 0으로 만들어주자.

	-Z	x_1	x_2	x_3	x_4	x_6	RHS
	1	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	-7
x_2	0	0	1	1	$\frac{3}{5}$	$\frac{1}{10}$	95
x_1	0	1	0	$-\frac{2}{5}$	1/5	$-\frac{2}{5}$	$\frac{4}{5}$

조근

 $x_1 = \frac{4}{5} - x_2 = \frac{9}{5} - x_3 = 0 - x_4 = 0 - x_6 = 0 - -Z = -7$

최적해는 7

2차원 역행렬: $rac{1}{ad-bc} \left(egin{matrix} d & -b \ -c & -a \end{matrix} ight)$

		0 10 11 11 0
	Maximize Z (or W)	Minimize W (or Z)
	Constraint i:	Variable y _i (or x _i):
상식	≤ form ←	$y_i \ge 0$
이상	= form <	→ Unconstrained
기괴	≥ form ←	$y_i' \leq 0$
	Variable x _i (or y _i):	Constraint j:
상식	x _i ≥ 0 ←	→ ≥ form
이상	Unconstrained ←	
기괴	x' ≤ 0 ←	→ ≤ form

	원문제		쌍대문제	
Minimi	$Z = 0.4x_1 + 0$.5x ₂ ,	Maximize $W = 2.7y'_1 + 6y'_2 +$	6y ₃ ,
subject	to		subject to	
(0)	$0.3x_1 + 0.1x_2 \le 2.7$ $0.5x_1 + 0.5x_2 = 6$ $0.6x_1 + 0.4x_2 \ge 6$	' ←	 y'₁ ≤ 0 y'₂ 음수를 허용 y₃ ≥ 0 	(B) (O) (S)
and			and	
(S)	$ x_1 \ge 0 \\ x_2 \ge 0 $	\	$\begin{array}{c} \rightarrow & 0.3y_1' + 0.5y_2' + 0.6y_3 \leq 0.4 \\ \rightarrow & 0.1y_1' + 0.5y_2' + 0.4y_3 \leq 0.6 \end{array}$	(S) (S)

어떤 문제	(결정변수) x _j (여유변수) x _{n+i}	$z_j - c_j$ (잉여변수) $j = 1, 2,, n$ y_i (결정변수) $i = 1, 2,, m$
Wyndor 문제	결정변수: X ₁ X ₂ 여유변수: X ₃ X ₄ X ₅	z ₁ - c ₁ (잉여변수) z ₂ - c ₂ y ₁ (결정변수) y ₂ y ₃

$$x_i \ge -1 \to x_j \ge 0, x_j = x_i + 1$$

 $x_i \text{ is un restricted} \rightarrow x_i = x_i^+ - x_i^-, x_i^+ \geq 0, x_i^- \geq 0$

제약식이 \geq 일 때, 걍 -1 곱해도 되고, surplus 변수 + 인공 변수로 해도 됨 약쌍대: $cx \leq yb$

[**5.2.2.*** 심플렉스 방법의 행렬형을 단계별로 적용하여 다음 문제를 풀어라.

Maximize $Z = 5x_1 + 8x_2 + 7x_3 + 4x_4 + 6x_5$,

subject to

 $2x_1 + 3x_2 + 3x_3 + 2x_4 + 2x_5 \le 20$ $3x_1 + 5x_2 + 4x_3 + 2x_4 + 4x_5 \le 30$

 $x_j \ge 0, \qquad j = 1, 2, 3, 4, 5.$

iteration 1 - basic: x_6, x_7

Ded and an

Reduced cost: $C_bB-1N-C_n$, $C_b=[0,0] \rightarrow \mathrm{Rc}$ = $-C_n$ = [-5, -8, -7, -4, -6]

- enter: x_2

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A_*2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, b = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$$

min ratio test: $\left[\frac{20}{3},6\right]$

- exit: x_7

iteration 2

- basic: x_6, x_2

$$C_b = [0,8], B = \begin{bmatrix} 1 & \frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 3 & 2 & 2 & 0 \\ 3 & 4 & 2 & 4 & 1 \end{bmatrix}, C_n = \begin{bmatrix} 5 & 7 & 4 & 6 & 0 \end{bmatrix}$$

- Reduced cost:

$$\begin{bmatrix} 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 & 2 & 0 \\ 3 & 4 & 2 & 4 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 7 & 4 & 6 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} & -\frac{5}{5} \end{bmatrix}$$

- enter: x_4

$$A_*4B^{-1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ \frac{2}{5} \end{bmatrix}, bB^{-1} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

min ratio test: $\left[\frac{5}{2},15\right]$

- exit: \boldsymbol{x}_6

iteration 3

- basic: x_4, x_2

$$C_b = [4,8], B = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}, B^{-1} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 3 & 2 & 1 & 0 \\ 3 & 4 & 4 & 0 & 1 \end{bmatrix}, C_n = \begin{bmatrix} 5 & 7 & 6 & 0 & 0 \end{bmatrix}$$

- Reduced cost:

$$\begin{bmatrix} 4 & 8 \end{bmatrix} \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 & 1 & 0 \\ 3 & 4 & 4 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 7 & 6 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

종료.

$$bB^{-1} = \begin{bmatrix} \frac{5}{2} \\ \frac{5}{3} \end{bmatrix} C_b B^{-1} b = 50$$

 $-x_1 = 0 - x_2 = 5 - x_2 = 0 - x_4 = \frac{5}{2} - x_5 = 0 - x_6 = 0 - x_7 = 0 - Z = 50$