

Replikasi DNA dan Sintesis Protein

A. PENDAHULUAN

- Replikasi DNA dan sintesis protein adalah dua hal yang dilakukan sebelum pembelahan sel.
- Replikasi DNA dan sintesis protein bertujuan untuk menghasilkan segala sesuatu dalam sel menjadi dua kali lipat untuk keperluan pembelahan sel.
- ▶ **Dalam** replikasi DNA dan sintesis protein, istilah penyalinan kode gen diartikan sebagai pembentukan DNA/RNA baru yang memiliki basa nitrogen berlawanan dengan DNA/RNA yang disalin.

B. REPLIKASI DNA

- Replikasi DNA adalah proses penggandaan DNA baru menggunakan DNA yang telah ada.
- 🔌 **Model** mengenai proses replikasi DNA:

model konservatif

DNA induk menghasilkan DNA yang baru secara utuh

model semikonservatif

DNA induk menjadi dua buah rantai, masingmasing rantai membentuk DNA baru

model dispersif

DNA induk menjadi rantai yang terputus-putus, masing-masing rantai membentuk DNA baru

Model yang diakui sampai sekarang adalah model semikonservatif.

- Komponen-komponen yang bekerja dalam replikasi DNA antara lain DNA, enzim helikase, enzim topoisomerase, enzim DNA polimerase, dan enzim ligase.
- Proses replikasi DNA menurut model semikonservatif:

- 1) **DNA** yang akan direplikasi:
 - a. Diputus ikatan hidrogennya oleh helikase memenuhi aturan downstream, yaitu dari arah 3' ke 5' DNA awal.
 - b. Diluruskan oleh topoisomerase.
- DNA polimerase kemudian mulai membentuk salinan DNA baru dari titik promoter (awal) ke titik terminator (akhir), memenuhi aturan downstream.
 - a. Pada rantai bearah 3' ke 5', replikasi DNA berjalan **kontinu**/tidak terputus (*leading strands*).
 - b. Pada rantai berarah 5' ke 3', replikasi DNA berjalan **diskontinu**/terputus (*lagging strands*).
- 3) Rantai yang mengalami *lagging strands* menghasilkan fragmen terputus-putus yang disebut **fragmen Okazaki**.
- Fragmen Okazaki kemudian diperbaiki oleh ligase agar DNA baru dapat terbentuk seperti normal.

C. SINTESIS PROTEIN

- Sintesis protein adalah proses pembentukan asam amino melalui kode gen yang dibuat DNA.
- Tahap sintesis protein terdiri dari tahap transkripsi dan translasi.
 - 1) **Transkripsi** adalah pembentukan mRNA oleh DNA *sense* di inti sel.
 - Translasi adalah penerjemahan mRNA oleh tRNA di ribosom.

Sub-tahap	Transkripsi	Translasi		
Inisiasi	RNA polimerase di promoter	tRNA di start kodon		
Elongasi	pembentukan mRNA oleh DNA sense	penerjemahan kodon mRNA oleh tRNA		
Terminasi	RNA polimerase di terminator	tRNA di stop kodon		

- Komponen-komponen yang bekerja dalam sintesis protein antara lain mRNA (RNAd), rRNA, tRNA, enzim RNA polimerase, enzim aminoasiltRNA sintetase, dan enzim peptidil transferase.
- Proses transkripsi terjadi di inti sel:

- mRNA dibuat dengan menyalin rantai DNA yang disebut **DNA** sense atau kodogen.
 Rantai DNA lawan yang tidak disalin disebut **DNA** antisense.
- 2) mRNA dibuat menggunakan RNA polimerase sehingga menghasilkan **kodon.**
- **Kodon** adalah urutan basa nitrogen yang merupakan salinan DNA *sense* atau kodogen, yang mengkode asam amino tertentu. Urutan basa nitrogen kodon sama dengan DNA *antisense*.
- Asam amino dikode oleh **triplet kodon**, yaitu susunan 3 basa nitrogen yang menentukan jenis 20 asam amino berbeda.

	U		С		Α		G		
U	UUU	Phe	UCU	Ser	UAU	Tyr	UGU UGC	Cys	U C
	UUA	1	UCA		UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG		UAG	STOP	UGG	Trp	G
С	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
	CUC		CCC		CAC		CGC		С
	CUA		CCA		CAA	Gln	CGA		Α
	CUG		CCG		CAG	Gui	CGG		G
A	AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser	U
	AUC		ACC		AAC		AGC		С
	AUA		ACA		AAA	Lys	AGA	Arg	Α
	AUG	START	ACG		AAG		AGG		G
G	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
	GUC		GCC		GAC		GGC		С
	GUA		GCA		GAA	Glu	GGA		Α
	GUG		GCG		GAG		GGG		G

- Redundansi adalah keadaan dimana satu jenis asam amino dapat dikode oleh >1 triplet kodon.
- New Proses translasi terjadi di ribosom:

- mRNA lalu keluar dari inti sel dan berikatan dengan rRNA pada ribosom.
- tRNA lalu mencari start kodon (AUG) pada mRNA untuk memulai translasi.

Pada start kodon:

- a. Unit ribosom kecil dan besar bergabung.
- b. AUG mengkode metionin (Met), sehingga setiap protein pasti mengandung metionin.

Selama translasi:

- a. tRNA mengenali kodon menggunakan **antikodon** (lawan kodon).
- Asam amino yang dikode tRNA lalu dibentuk oleh rRNA, lalu diikatkan dengan tRNA menggunakan aminoasiltRNA sintetase.
- 3) Peptidil transferase mengikat asam amino yang dihasilkan tiap triplet kodon menjadi **rantai polipeptida**.
- 4) tRNA berhenti menerjemahkan setelah mencapai **stop kodon (UAA/UAG/UGA).**

Pada stop kodon:

- a. Tidak ada asam amino yang dikode.
- b. mRNA, unit ribosom kecil dan besar, tRNA terpisah-terpisah.
- c. Rantai polipeptida lepas dari tRNA dan dibawa keluar ribosom, dan dimodifikasi di badan Golgi untuk diubah menjadi enzim, hormon, protein struktural, atau organel baru, sebagai **ekspresi gen**.