The Computability of PAC Learning

N. Ackerman¹ J. Asilis^{1, 2} J. Di² C. Freer³ J. Tristan²

¹Department of Mathematics Harvard University

²Computer Science Department Boston College

³Department of Brain and Cognitive Sciences Massachusetts Institute of Technology

BC Math & Machine Learning Seminar

- Recall the fundamental theorem of machine learning.
 - Perfectly bridges VC theory and PAC learning!

Fundamental Theorem (see, e.g., [SB14, Theorem 6.7])

Let $\mathcal H$ be a countable hypothesis class of functions from a domain $\mathcal X$ to $\{0,1\}$. Then the following are equivalent:

- 1. \mathcal{H} has finite VC dimension.
- 2. \mathcal{H} is PAC learnable in the realizable case.
- 3. \mathcal{H} is agnostically PAC learnable.
- 4. Any ERM learner is an agnostic PAC learner for \mathcal{H} .
 - To know whether a learner exists, just check the VC dimension.
 - What exactly is a learner?

- In the fundamental theorem, a learner is a measurable function mapping samples to hypotheses.
- Our intention is for computers to do the heavy lifting; learners should (furthermore) be computable!
- What happens if we impose this restriction?
 - How sensitive is the fundamental theorem to computability requirements?
 - How should computable learners even be defined, exactly?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist?
 - Computable proper learner? Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist?
 - Computable proper learner? Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?

Not-so-obvious questions:

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners?
- Formulating computability in the agnostic vs realizable case? Proper vs improper learning?

Table of Contents

- Computability theory preliminaries
- igorplus PAC Learning over $\Bbb N$
- PAC Learning over computable metric spaces
- 4 Conclusion

Table of Contents

- Computability theory preliminaries
- 2 PAC Learning over N
- PAC Learning over computable metric spaces
- 4 Conclusion

- Our model of computation is the Turing machine.
 - Determined by its program (i.e., transition function, states).
 - Index by natural numbers: T_1, T_2, \dots
 - Can use binary alphabet and implicitly encode input/ouput in binary.

- Our model of computation is the Turing machine.
 - Determined by its program (i.e., transition function, states).
 - Index by natural numbers: T_1, T_2, \dots
 - Can use binary alphabet and implicitly encode input/ouput in binary.

Definition

A function $f: \mathbb{N} \to \mathbb{N}$ is **computable** if there exists a Turing machine that halts on each $n \in \mathbb{N}$ and produces f(n) as output. Otherwise, f is **noncomputable**.

- Computable: polynomials, integer division, exponentiation, etc.
 - Proof: We know the algorithms!
- Noncomputable: halting function.
 - $n \mapsto \begin{cases} 1 & T_n \text{ halts on empty input;} \\ 0 & \text{else.} \end{cases}$
 - Proof: Turing's argument . . .

Definition

A set $S \subseteq \mathbb{N}$ is **computable** if its characteristic function is computable. S is **computably enumerable** (c.e.) if it is the range of a computable function (or empty).

- S is computable: one can determine membership in S.
- *S* is c.e.: one can confirm that $s \in S$ (but not that $s \notin S$).
 - S = range(f), then compute $f(1), f(2), \ldots$ Any $s \in S$ eventually appears, but when can you conclude $s \notin S$?

Definition

A set $S \subseteq \mathbb{N}$ is **computable** if its characteristic function is computable. S is **computably enumerable** (c.e.) if it is the range of a computable function (or empty).

- *S* is computable: one can determine membership in *S*.
- *S* is c.e.: one can confirm that $s \in S$ (but not that $s \notin S$).
 - S = range(f), then compute $f(1), f(2), \ldots$ Any $s \in S$ eventually appears, but when can you conclude $s \notin S$?

Lemma

If S is computable, then S is c.e.

• Proof: fix some $s_0 \in S$.

return n if chi_S(n) else s0

Example

Let S be finite. Then it is computable (and thus c.e.).

• Proof: hard code the elements of *S* into your program!

```
def chi_S(x):
    return x in [4, 11, 27, ..., 1034]
```

Example

Let S be finite. Then it is computable (and thus c.e.).

• Proof: hard code the elements of S into your program!

```
def chi_S(x):
    return x in [4, 11, 27, ..., 1034]
```

Example

Let $\mathbf{0}' \subseteq \mathbb{N}$ be the collection of naturals n such that T_n halts on the empty input. Then $\mathbf{0}'$ is not computable.

• Proof idea:

```
def f():
    if halts(f):
        stall()
```

Computability on continuous space

- Want to formalize computation over continuous space, e.g., ℝ.
 - \bullet Fundamental obstruction: computers are discrete, $\mathbb R$ is uncountable
- Appropriate notion is of an approximation interface: computer requests approximation of input to produce approximation of output.
- Example of such an interface: computable reals

Computability on continuous space

- Want to formalize computation over continuous space, e.g., ℝ.
 - \bullet Fundamental obstruction: computers are discrete, $\mathbb R$ is uncountable
- Appropriate notion is of an approximation interface: computer requests approximation of input to produce approximation of output.
- Example of such an interface: computable reals

Definition

A **computable real** $x \in \mathbb{R}$ is a real number such that there exists a computable function $f : \mathbb{N} \to \mathbb{Q}$ with $|f(i) - x| < 2^{-i}$.

- Intuition: open balls shrinking around x (and with vibrating center).
- For computable x, y, you can confirm that $x \neq y$ (when true) but never that x = y.
 - Fundamental loss in power from discrete case.

Computable metric spaces

- Crucial property of computable reals: *separability* of underlying metric space (\mathbb{R}) .
 - 1. Countable: can be input to & output by computers.
 - 2. Dense: approximate values to arbitrary (but finite) precision.

Computable metric spaces

- Crucial property of computable reals: *separability* of underlying metric space (\mathbb{R}) .
 - 1. Countable: can be input to & output by computers.
 - 2. Dense: approximate values to arbitrary (but finite) precision.

Definition

A computable metric space is a triple $\mathbb{X} = (X, d, (s_i)_{i \in \mathbb{N}})$ such that:

- 1. $(X \cup \{s_i\}_{i \in \mathbb{N}}, d)$ is a separable metric space.
- 2. $(s_i)_{i\in\mathbb{N}}$, the sequence of **ideal points**, is dense in $(X \cup \{s_i\}_{i\in\mathbb{N}}, d)$.
- 3. X, the **underlying set** of X, is dense in $(X \cup \{s_i\}_{i \in \mathbb{N}}, d)$.
- 4. $d(s_i, s_i)$ is a computable real, uniformly in i and j.
- Informally: ideal points play role of \mathbb{Q} , computable handle on X.
 - May want underlying set to be $\mathbb{R} \setminus \mathbb{Q}$. Still want \mathbb{Q} as dense subset!

Computable functions on metric spaces

Things get tedious quickly; don't pay too close attention.

Definition

Let \mathbb{X} and \mathbb{Y} be computable metric spaces with ideal points $(s_i)_{i\in\mathbb{N}}$ and $(t_i)_{i\in\mathbb{N}}$. $f:X\to Y$ is **computable** if for all $(j,q)\in\mathbb{N}\times\mathbb{Q}$ there is a set $\Phi_{j,q}\subseteq\mathbb{N}\times\mathbb{Q}$ such that

- ullet $f^{-1}(B(t_j,q))=\cup_{(k,p)\in\Phi_{j,q}}B(s_k,p)$, and
- $\{(j,q,k,p) : (k,p) \in \Phi_{j,q}\}$ is c.e.
- In English: given open ball in codomain, can enumerate the open balls building its pre-image.

Computable functions on metric spaces

Things get tedious quickly; don't pay too close attention.

Definition

Let \mathbb{X} and \mathbb{Y} be computable metric spaces with ideal points $(s_i)_{i\in\mathbb{N}}$ and $(t_i)_{i\in\mathbb{N}}$. $f:X\to Y$ is **computable** if for all $(j,q)\in\mathbb{N}\times\mathbb{Q}$ there is a set $\Phi_{j,q}\subseteq\mathbb{N}\times\mathbb{Q}$ such that

- $f^{-1}(B(t_j,q)) = \cup_{(k,p)\in\Phi_{j,q}} B(s_k,p)$, and
- $\{(j, q, k, p) : (k, p) \in \Phi_{j,q}\}$ is c.e.
- In English: given open ball in codomain, can enumerate the open balls building its pre-image.
- Immediate consequence: computable maps are continuous!
 - For maps $\mathbb{N} \to \mathbb{N}$, totally meaningless.
 - For more general spaces, can be quite important . . .

Table of Contents

- Computability theory preliminaries
- igorplus PAC Learning over $\Bbb N$
- PAC Learning over computable metric spaces
- Conclusion

Computable learning over $\mathbb N$

- What should it mean for A to be a 'computable PAC learner' for $\mathcal{H} \subseteq \{0,1\}^{\mathbb{N}}$?
 - A emits computable functions $\mathbb{N} \to \{0,1\}$.
 - A itself is a computable map $\mathbb{N} \to \mathbb{N}$.
 - ullet Encodings of samples \mapsto encodings of (programs for) functions.
- Simply put: A can be computed and its output can be used to compute predictions.

Computable learning over $\mathbb N$

- What should it mean for A to be a 'computable PAC learner' for $\mathcal{H} \subseteq \{0,1\}^{\mathbb{N}}$?
 - A emits computable functions $\mathbb{N} \to \{0,1\}$.
 - A itself is a computable map $\mathbb{N} \to \mathbb{N}$.
 - ullet Encodings of samples \mapsto encodings of (programs for) functions.
- Simply put: A can be computed and its output can be used to compute predictions.

Definition ([Aga+20, Definition 8])

 $\mathcal{H}\subseteq\{0,1\}^{\mathbb{N}}$ is **computably PAC learnable** if there is a computable PAC learner for \mathcal{H} that outputs code for computable functions.

Conditions on \mathcal{H} and \mathbb{D}

- In classical PAC learning, learnability is formulated with respect to a class of possible distributions $\mathbb D$ over $\mathcal X \times \mathcal Y$.
 - Informally, learner must succeed on any distribution $\mathcal{D} \in \mathbb{D}$.
- Two important choices of D:

Conditions on \mathcal{H} and \mathbb{D}

- In classical PAC learning, learnability is formulated with respect to a class of possible distributions $\mathbb D$ over $\mathcal X \times \mathcal Y$.
 - Informally, learner must succeed on any distribution $\mathcal{D} \in \mathbb{D}$.
- Two important choices of D:
 - 1. Agnostic PAC learning: $\mathbb D$ consists of all Borel distributions on $\mathcal X \times \mathcal Y$.
 - 2. Realizable PAC learning: $\mathbb D$ consists of distributions for which some $h \in \mathcal H$ attains true error of 0.
 - Some $h \in \mathcal{H}$ is the true labeling function!

Conditions on \mathcal{H} and \mathbb{D}

- In classical PAC learning, learnability is formulated with respect to a class of possible distributions $\mathbb D$ over $\mathcal X \times \mathcal Y$.
 - Informally, learner must succeed on any distribution $\mathcal{D} \in \mathbb{D}$.
- Two important choices of D:
 - 1. Agnostic PAC learning: $\mathbb D$ consists of all Borel distributions on $\mathcal X \times \mathcal Y$.
 - 2. Realizable PAC learning: \mathbb{D} consists of distributions for which some $h \in \mathcal{H}$ attains true error of 0.
 - Some $h \in \mathcal{H}$ is the true labeling function!
- For computable learning, also valuable to consider computability conditions on \mathcal{H} .

Definition ([Aga+20, Definition 6])

 $\mathcal{H}\subseteq\{0,1\}^{\mathbb{N}}$ is **computably enumerably representable** (CER) if there exists a c.e. set of programs P such that the set of functions computed by a program in P equals \mathcal{H} .

Computable enumerability and ERM

Theorem ([Aga+20, Theorem 10])

Let $\mathcal{H} \subseteq \{0,1\}^{\mathbb{N}}$ be a CER class. Then an empirical risk minimization (ERM) learner for \mathcal{H} is computable in the realizable case.

Proof.

Let $(h_i)_{i\in\mathbb{N}}$ be a computable enumeration of \mathcal{H} , and fix a sample S in the graph of some h_j . In particular, $L_S(h_j)=0$. Then an $h_k\in L_S^{-1}(0)$ can be found by iterating through \mathcal{H} and calculating empirical error.

Corollary

Let $\mathcal{H} \subseteq \{0,1\}^{\mathbb{N}}$ be a CER class of finite VC dimension. Then \mathcal{H} is computably PAC learnable in the realizable case.

Computability makes proper learning strictly harder

Theorem ([Aga+20, Theorem 9])

There is a hypothesis class of VC dimension 1 that does not have any proper computable PAC learners (even in the realizable case).

Proof.

Let
$$h_i(x) = \begin{cases} 1 & x = 2i; \\ 1 & x = 2i + 1 \text{ and } i \in \mathbf{0}'; \\ 0 & \text{else.} \end{cases}$$

Set $\mathcal{H}_{\mathrm{halt}} = \{h_i\}_{i \in \mathbb{N}}$, and suppose A is a proper PAC learner in the realizable case. Then you can compute $\mathbf{0}'$ from A as follows. Fix $n \in \mathbb{N}$, and train A on samples of the form $S = ((2n,1),\ldots,(2n,1))$. Eventually $A(S) = h_n$, exactly when A(S)(2n) = 1. Then compute $h_n(2n+1) = \chi_{\mathbf{0}'}(n)$, as desired.

Computability makes proper learning strictly harder

Corollary

There is a hypothesis class of finite VC dimension whose proper PAC learners are all noncomputable.

- The fundamental theorem fails under computability constraints!
 - Class of finite VC dimension (1!) without computable proper learners.
- Lesson from \mathcal{H}_{halt} : fork in the road.
 - 1. Consider improper learners.
 - Does fundamental theorem hold for improper learning?
 - \bullet $\,{\cal H}_{\rm halt}$ has a computable improper PAC learner!
 - Demand mild conditions (e.g., CER) to prevent classes from memorizing noncomputable sets.
 - Hopefully classes encountered 'in nature' do not have this problem . . .

Table of Contents

- Computability theory preliminaries
- 2 PAC Learning over N
- 3 PAC Learning over computable metric spaces
- 4 Conclusion

Learners on metric spaces

- ullet Binary classification over computable metric space ${\cal X}.$
- First attempt: computable learner should be a computable map $(\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathcal{Y}^{\mathcal{X}}$.
 - LHS and RHS thought of as computable metric spaces.
 - Obstruction: $\mathcal{Y}^{\mathcal{X}}$ is not in general a computable metric space!

Learners on metric spaces

- ullet Binary classification over computable metric space ${\cal X}.$
- First attempt: computable learner should be a computable map $(\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathcal{Y}^{\mathcal{X}}$.
 - LHS and RHS thought of as computable metric spaces.
 - ullet Obstruction: $\mathcal{Y}^{\mathcal{X}}$ is not in general a computable metric space!
- Instead, curry the definition of a learner.

Definition ([Ack+21, Definition 2.18])

A learner is a Borel measurable function $A: (\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X} \to \mathcal{Y}$. A **computable learner** is a learner that is computable as a map of computable metric spaces.

- Extend PAC learning criterion to such learners by simply uncurrying.
 - I.e., consider the map $\tilde{A}(S)$ with $\tilde{A}(S)(x) = A(S,x)$.

Computable presentations

- Once again, want to (sometimes) impose basic computability constraints on \mathcal{H} .
 - Intuitively, an analogue of CER for the continuous case.
- ullet Identify elements of ${\cal H}$ using an index space.

Computable presentations

- Once again, want to (sometimes) impose basic computability constraints on \mathcal{H} .
 - Intuitively, an analogue of CER for the continuous case.
- ullet Identify elements of ${\mathcal H}$ using an index space.

Definition ([Ack+21, Definition 3.2])

A presentation of a hypothesis class is a Borel measurable function $\mathfrak{H}\colon \mathcal{I}\times\mathcal{X}\to\mathcal{Y}$. We call \mathcal{I} the **index space**, and write \mathfrak{H}^{\dagger} for the underlying hypothesis class, i.e., $\mathrm{range}(i\in\mathcal{I}\mapsto\mathfrak{H}(i,\,\cdot\,))$

Computable presentations

- Once again, want to (sometimes) impose basic computability constraints on \mathcal{H} .
 - Intuitively, an analogue of CER for the continuous case.
- \bullet Identify elements of ${\cal H}$ using an index space.

Definition ([Ack+21, Definition 3.2])

A presentation of a hypothesis class is a Borel measurable function $\mathfrak{H}\colon \mathcal{I}\times\mathcal{X}\to\mathcal{Y}$. We call \mathcal{I} the index space, and write \mathfrak{H}^{\dagger} for the underlying hypothesis class, i.e., $\mathrm{range}(i\in\mathcal{I}\mapsto\mathfrak{H}(i,\,\cdot\,))$

Definition ([Ack+21, Definition 3.3])

A presentation $\mathfrak{H}\colon \mathcal{I}\times\mathcal{X}\to\mathcal{Y}$ of a hypothesis class is **computable** if \mathcal{I} is a computable metric space and \mathfrak{H} is computable as a map of computable metric spaces.

ullet Not so different from CER: 'walk through' \mathfrak{H}^{\dagger} using ideal points of \mathcal{I} .

Proper learning

- Computable presentations set the stage for proper learning.
 - Fix a presentation $\mathfrak{H} \colon \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$.
 - Learner can output hypotheses in \mathcal{H} (i.e., \mathfrak{H}^{\dagger}) via their indices.
- ullet Proper learners should take advantage of the structure in $\mathcal{I}!$

Proper learning

- Computable presentations set the stage for proper learning.
 - Fix a presentation $\mathfrak{H}: \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$.
 - Learner can output hypotheses in \mathcal{H} (i.e., \mathfrak{H}^{\dagger}) via their indices.
- ullet Proper learners should take advantage of the structure in $\mathcal{I}!$

Definition ([Ack+21, Definition 3.4])

Let $\mathfrak{H}: \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$ be a presentation of a hypothesis class. A **proper learner** for \mathfrak{H} is a map $\mathfrak{A}: (\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathcal{I}$. If the map A defined by

$$A(S,x)=\mathfrak{H}(\mathfrak{A}(S),x)$$

is a PAC learner for \mathfrak{H}^{\dagger} , then \mathfrak{A} is a **proper PAC learner** for \mathfrak{H} .

We call A the **learner induced** by \mathfrak{A} . If \mathfrak{H} is a computable presentation, then \mathfrak{A} is **computable** when it is computable as a map of computable metric spaces.

Learning in the realizable case

- ullet Consider computable learning in the realizable case for fixed ${\cal H}.$
 - Guaranteed that an $h \in \mathcal{H}$ is the true labeling function!
- Computable learner is nevertheless required to be computable on all of $(\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X}$.
 - $(\mathcal{X} \times \mathcal{Y})^{<\omega}$ includes samples wildly inconsistent with every $h \in \mathcal{H}$.
 - In realizable case, can ignore such perverse samples.

Learning in the realizable case

- ullet Consider computable learning in the realizable case for fixed ${\cal H}.$
 - Guaranteed that an $h \in \mathcal{H}$ is the true labeling function!
- Computable learner is nevertheless required to be computable on all of $(\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X}$.
 - $(\mathcal{X} \times \mathcal{Y})^{<\omega}$ includes samples wildly inconsistent with every $h \in \mathcal{H}$.
 - In realizable case, can ignore such perverse samples.

Definition ([Ack+21, Definition 3.5])

For a hypothesis class \mathcal{H} , define $\Phi_{\mathcal{H}}$ to be the set of those finite sequences $(x_i, y_i)_{i \in [n]}$ for which $\{(x_1, y_1), \dots, (x_n, y_n)\}$ lies in the graph of an $h \in \mathcal{H}$.

• Learners in the realizable case need only compute on $\Phi_{\mathcal{H}}!$

Computability in the realizable case

Definition ([Ack+21, Definition 3.6])

A learner A for \mathcal{H} is **computable in the realizable case** if it is computable on $\Phi_{\mathcal{H}} \times \mathcal{X}$. A proper learner for a computable presentation \mathfrak{H} of \mathcal{H} is **computable in the realizable case** if it is computable on $\Phi_{\mathcal{H}}$.

- Weaker notion of computability for learning in the realizable case.
 - Informally, computer is allowed to stall/fail on samples that aren't labeled by an $h \in \mathcal{H}$.
- Learners in the realizable case only need to succeed on $\Phi_{\mathcal{H}}$; they also only need to be computable on $\Phi_{\mathcal{H}}$.

- Classical learning problem: decision stump over \mathbb{R} .
 - $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \{0,1\}$, $\mathcal{H}_{\mathrm{halt}} = \{\mathbf{1}_{>c} : c \in \mathbb{R}\}$.
- PAC learnable in realizable case with following algorithm:
 - 1. Set *m* to be the maximal negatively labeled example (label 0) or minimal positively labeled example (label 1).
 - 2. Return $\mathbf{1}_{>m}$.

- Classical learning problem: decision stump over \mathbb{R} .
 - $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \{0,1\}$, $\mathcal{H}_{\mathrm{halt}} = \{\mathbf{1}_{>c} : c \in \mathbb{R}\}$.
- PAC learnable in realizable case with following algorithm:
 - 1. Set *m* to be the maximal negatively labeled example (label 0) or minimal positively labeled example (label 1).
 - 2. Return $\mathbf{1}_{>m}$.
- Problem: classical algorithm is *not* a computable learner
 - $\mathbf{1}_{>m}$ is not computable from S (not even continuous!).
- Topological issue: R is connected.
 - ullet Only computable maps $\mathbb{R} o \{0,1\}$ are constant!
 - Problem must be reformulated . . .

- New decision stump: $\mathcal{H} = \{\mathbf{1}_{>c} : c \in \mathbb{R}_c\}$ and $\mathcal{X} = \mathbb{R} \setminus \mathbb{R}_c$ $(\mathbb{R}_c = \text{computable reals}).$
 - \bullet \mathcal{X} is totally disconnected.
 - Hypotheses in \mathcal{H} are continuous (and computable!) on \mathcal{X} .
 - ullet Cutoff points are not in ${\mathcal X}$.
- New setup even has a computable presentation!

$$\mathfrak{H}_{\mathrm{step}} \colon \mathbb{R}_c \times (\mathbb{R} \setminus \mathbb{R}_c) \longrightarrow \{0, 1\}$$

$$c, x \longmapsto \mathbf{1}_{>c}(x)$$

- New decision stump: $\mathcal{H} = \{\mathbf{1}_{>c} : c \in \mathbb{R}_c\}$ and $\mathcal{X} = \mathbb{R} \setminus \mathbb{R}_c$ $(\mathbb{R}_c = \text{computable reals}).$
 - ullet $\mathcal X$ is totally disconnected.
 - Hypotheses in ${\mathcal H}$ are continuous (and computable!) on ${\mathcal X}$.
 - ullet Cutoff points are not in ${\mathcal X}$.
- New setup even has a computable presentation!

$$\mathfrak{H}_{\mathrm{step}} \colon \mathbb{R}_c \times (\mathbb{R} \setminus \mathbb{R}_c) \longrightarrow \{0, 1\}$$

$$c, x \longmapsto \mathbf{1}_{>c}(x)$$

- But classical algorithm still fails . . .
 - Largest negatively labeled feature m lies in \mathcal{X} .
 - ullet So $\mathbf{1}_{>m}$ is discontinuous on $\mathcal X$ and noncomputable.

• Despite failure of classical algorithm, computable learners exist!

Algorithm $\mathfrak{A}_{\mathrm{step}}$

Fix a computable enumeration $(q_i)_{i\in\mathbb{N}}$ of \mathbb{Q} . We define a proper learner $\mathfrak{A}_{\mathrm{step}}$ for $\mathfrak{H}_{\mathrm{step}}$ in the realizable case as follows: given a sample S, output first $q_i \in \mathbb{Q}$ for which the empirical error of $\mathbf{1}_{>q_i}$ is 0.

Despite failure of classical algorithm, computable learners exist!

Algorithm $\mathfrak{A}_{\mathrm{step}}$

Fix a computable enumeration $(q_i)_{i\in\mathbb{N}}$ of \mathbb{Q} . We define a proper learner $\mathfrak{A}_{\text{step}}$ for $\mathfrak{H}_{\text{step}}$ in the realizable case as follows: given a sample S, output first $q_i \in \mathbb{Q}$ for which the empirical error of $\mathbf{1}_{>a_i}$ is 0.

- $\bullet \ \mathfrak{A}_{step}$ is computable in the realizable case.
 - The functions $(1_{>q_i})_{i\in\mathbb{N}}$ are uniformly computable on \mathcal{X} (as $\mathbb{Q}\subseteq\mathbb{R}_c$).
 - Such a $q_i \in \mathbb{Q}$ is guaranteed to exist as we are in the realizable case.
- ullet ${\mathfrak A}_{
 m step}$ is a computable proper PAC learner in the realizable case!
 - \bullet $\mathfrak{A}_{\mathrm{step}}$ induces an ERM learner on the underlying hypothesis class.
 - Underlying class has VC dimension 1; invoke fundamental theorem.
- \bullet In fact, learnability via \mathfrak{A}_{step} is an instance of a general result . . .

Learning computable presentations

Theorem ([Ack+21, Theorem 4.2])

Suppose $\mathfrak{H}: \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$ is a computable presentation. Then there is an ERM for \mathfrak{H}^{\dagger} that is computable in the realizable case.

Proof sketch.

We provide a proper learner: search through the ideal points of \mathcal{I} , calculating empirical errors, and return the first to attain an error of 0. By continuity of \mathfrak{H} and of empirical error, the collection of $i \in \mathcal{I}$ attaining an error of 0 is an open set. Because we are in the realizable case, the set is furthermore non-empty, thus it contains an ideal point.

 \bullet Generalization of $\mathfrak{A}_{\mathrm{step}}$ and of CER result from the discrete case!

Sample functions

- Suppose we want a procedure for mapping ϵ, δ to a hypothesis with desired error rate and failure probability.
 - Require computable learner and computable sample function.
- Do all learners have some computable sample functions? What about computable learners?

Sample functions

- Suppose we want a procedure for mapping ϵ, δ to a hypothesis with desired error rate and failure probability.
 - Require computable learner and computable sample function.
- Do all learners have some computable sample functions? What about computable learners?

Theorem ([Ack+21, Theorem 3.12])

There exists a computable PAC learner A for a hypothesis class $\mathcal H$ and collection of measures $\mathbb D$ such that any sample function for A is noncomputable.

Noncomputable sample functions

Theorem ([Ack+21, Theorem 3.12])

There exists a computable PAC learner whose sample functions are all noncomputable.

Proof sketch.

Let $(e_k)_{k\in\mathbb{N}}$ be a computable enumeration without repetition of $\mathbf{0}'$. Construct a learner A such that A(S) incurs a true error of $1/e_{|S|}$.

Observe that $e_{|S|} > n$ for $|S| > m(1/n, \cdot)$, due to the PAC criterion on m. So $n \in \mathbf{0}'$ if and only if $n \in (e_k)_{k \le m(1/n, \cdot)}$. Then $\mathbf{0}'$ is computable from a sample function m and the computable enumeration $(e_k)_{k \in \mathbb{N}}$.

• E.g., to know whether $10 \in \mathbf{0}'$, computing $m(1/10, \cdot) = 300$. Then $10 \notin \mathbf{0}'$ if it does not appear in $(e_k)_{k \leq 300}$.

Table of Contents

- Computability theory preliminaries
- 2 PAC Learning over N
- PAC Learning over computable metric spaces
- 4 Conclusion

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist?
 - Computable proper learner? Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners?
- Formulating computability in the agnostic vs realizable case?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist?
 - Computable proper learner? No. Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners?
- Formulating computability in the agnostic vs realizable case?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist? No.
 - Computable proper learner? No. Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners?
- Formulating computability in the agnostic vs realizable case?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist? No.
 - Computable proper learner? No. Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?
 Computable presentation + realizability.

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners?
- Formulating computability in the agnostic vs realizable case?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist? No.
 - Computable proper learner? No. Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?
 Computable presentation + realizability.

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners? No and No.
- Formulating computability in the agnostic vs realizable case?

Natural questions:

- Does finite VC dimension suffice for some computable ERM learner to exist? No.
 - Computable proper learner? No. Computable improper learner?
- If not, any sufficient conditions for computable learners to exist?
 Computable presentation + realizability.

- What about sample functions?
 - Do arbitrary PAC learners have computable sample functions? Do computable PAC learners? No and No.
- Formulating computability in the agnostic vs realizable case? Weaken computability restriction using $\Phi_{\mathcal{H}}$.

Fundamental theorem, revisited

Fundamental Theorem (see, e.g., [SB14, Theorem 6.7])

Let $\mathcal H$ be a countable hypothesis class of functions from a domain $\mathcal X$ to $\{0,1\}$. Then the following are equivalent:

- 1. \mathcal{H} has finite VC dimension.
- 2. \mathcal{H} is PAC learnable in the realizable case.
- 3. \mathcal{H} is agnostically PAC learnable.
- 4. Any ERM learner is an agnostic PAC learner for \mathcal{H} .
 - 1. \Rightarrow 4. fails in the computable setting.
 - Even if you weaken from ERM learners to proper learners!
 - Does finite VC dimension guarantee computable improper learnability?
 - Open question!
 - Non-uniform learning? Computability of multi-label classification?
 Regression?

References

- [Ack+21] Nathanael Ackerman, Julian Asilis, Jieqi Di, Cameron Freer, and Jean-Baptiste Tristan. *On computable learning of continuous features.* 2021. arXiv: 2111.14630 [cs.LG].
- [Aga+20] Sushant Agarwal, Nivasini Ananthakrishnan, Shai Ben-David, Tosca Lechner, and Ruth Urner. "On Learnability with Computable Learners". In: Proceedings of the 31st International Conference on Algorithmic Learning Theory (ALT). Vol. 117. PMLR. 2020, pp. 48–60. URL: http://proceedings.mlr.press/v117/agarwal20b.html.
- [SB14] Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to Algorithms*. Cambridge University Press, 2014. DOI: 10.1017/CB09781107298019.