

Gegeben sind drei jeweils von dem Parameter $t, t \in \mathbb{R} \setminus \{0\}$, abhängige Punkte $A_t(t \mid 0 \mid 0)$, $B_t(0 \mid 2t \mid 0)$ und $C_t(0 \mid 0 \mid 3t)$.

- 1.1 Begründen Sie, warum durch die drei Punkte für jeden Wert von t genau eine Ebene H_t aufgespannt wird.

 Leiten Sie eine Koordinatengleichung für die Ebenenschar her und beschreiben Sie die Lage der Ebenen zueinander.

 [mögliche Lösung: 6x + 3y + 2z = 6t]
- 1.2 In einer dieser Ebenen H_t liegt der Punkt $P(2 \mid -2 \mid 3)$. Berechnen Sie den zugehörigen Wert von t. Zeichnen Sie die Punkte A_t , B_t und C_t für diesen Wert von t in ein Koordinatensystem und verbinden Sie diese zu einem Dreieck. (3BE)
- 1.3 Berechnen Sie den Parameter t so, dass die Ebene H_t den Abstand d=6 vom Koordinatenursprung hat. (4BE)
- 2. Für den Flächeninhalt F eines Dreiecks ABC mit dem Innenwinkel α an der Ecke A kann man in Formelsammlungen folgende Formel finden: $F = 0.5 \cdot |\overline{AB}| \cdot |\overline{AC}| \cdot \sin(\alpha)$.
- 2.1 Leiten Sie die Formel $F(t) = 3.5t^2$ für den Flächeninhalt F(t) des Dreiecks $A_tB_tC_t$ aus Aufgabe (5BE) 1 (für beliebiges t) her.
- 2.2 Bestimmen Sie die Gerade durch den Punkt C_t , die das Dreieck $A_tB_tC_t$ in zwei gleich große (5BE) Teilflächen zerlegt.
- 3.1 Bestimmen Sie die Matrix M der linearen Abbildung des \mathbb{R}^3 in sich, die den Punkt A_1 auf dem Punkt A_2 , den Punkt B_1 auf den Punkt B_2 und der Punkt C_1 auf den Punkt C_2 abbildet. (5BE)
- 3.2 Mit E sei die 3x3-Einheitsmatrix bezeichnet. Begründen Sie, dass die Matrix $N = \frac{u}{t} \cdot E$ die Ebene H_t auf der Ebene H_u abbildet. (3BE)