Übersicht

- 7 Ausgewählte Algorithmen: Suchen und Sortieren
 - Einführung
 - Sequentielle und binäre Suche
 - Sortieralgorithmen
 - Anmerkungen zum Suchen und Sortieren

Übersicht

- 7 Ausgewählte Algorithmen: Suchen und Sortieren
 - Einführung
 - Sequentielle und binäre Suche
 - Sortieralgorithmen
 - Anmerkungen zum Suchen und Sortieren

Einführung

0

- Suchen und Sortieren sind elementare Aufgaben, die
 - sich (nicht nur) in der Informatik sehr häufig stellen
 - sich auf viele unterschiedliche Arten lösen lassen
- Suche
 - sequentiell in unsortierten Folgen
 - binäre Suche in sortierten Folgen
- Sortieren
 - Verschiedene elementare Algorithmen
 - Teils basierend auf Rekursion
- Wir entwerfen Algorithmen
- Wir versuchen, Aufwand abzuschätzen
 - Komplexität von Algorithmen

Voraussetzungen

- Wir betrachten lineare Folgen (a_i) , $0 \le i < n$, für die gilt
 - a_i bezeichnet den i. Datenwert
 - Es gibt eine Ordnungsrelation < auf dem Datentyp
 - lacksquare Zugriff auf jedes Element a_i der Folge möglich
- Beispiel: Lexikon oder Telefonbuch
 - Lexikographische Ordnung (z.B. "Aal" ≤ "Aberglaube")
 - Zugriff nur auf einzelne Seiten
- Wir beschränken uns vorerst auf Folgen von ganzen Zahlen:
 - d.h. in Java: Felder a vom Typ int[] mit a.length==n
 - und anders als für Objekte können wir mit <,==,> vergleichen
- Wir nehmen hier an, dass gleiche Einträge *nicht mehrfach* vorkommen.

Suche

Definiere Funktion

$$\mathtt{find}(\alpha,x) \; = \; \begin{cases} \mathfrak{i} & \mathsf{falls} \; \alpha_{\mathfrak{i}} = x \\ \bot & \mathsf{falls} \; \nexists \mathfrak{i} : \alpha_{\mathfrak{i}} = x \end{cases}$$

- Index i des gesuchten Eintrags oder
- Undefiniert falls kein entsprechendes Element existiert
- Falls Einträge mehrfach vorkommen können, würden wir eine Menge von Indices erwarten. Wir schließen das hier aus.

Übersicht

- 7 Ausgewählte Algorithmen: Suchen und Sortieren
 - Einführung
 - Sequentielle und binäre Suche
 - Sortieralgorithmen
 - Anmerkungen zum Suchen und Sortieren

Sequentielle Suche

- Gegeben ist eine Folge von *unsortierten Daten*, d.h.
- Keine Annahme über Verteilung und Auftreten von Werten
 - z.B. Rezeptsammlung aus einzelnen, unsortierten Blättern
- Es müssen *alle* Werte der Folge durchsucht werden!
 - Muss entscheiden, ob x in (a_i) vorkommt
 - Einfachste Möglichkeit: *sequentiell* suchen von i = 0, ..., n-1
- Demnach könnten wir find(a, x) wie folgt implementieren

```
static final int UNDEF = -1;  // \( \preceq \)

public static int find(int[] a,int x) {
  for (int i=0;i<a.length;++i)
    if (a[i]==x) return i;
  return UNDEF;
}</pre>
```

■ ⊥ wird hier durch ungültigen Index UNDEF==-1 ausgedrückt

Aufwand für sequentielle Suche

- Definiere den Aufwand als Anzahl der Vergleiche a[i]==x
- Wir betrachten verschiedene Szenarien

Szenario	Aufwand
bester Fall	1
schlechtester Fall	n
Durchschnitt (erfolglose Suche)	n
Durchschnitt (erfolgreiche Suche)	$\lfloor \frac{n+1}{2} \rfloor$

- Im besten Fall gilt "zufällig" a[0]==x
- Schlechtester Fall = erfolglose Suche *oder* a[n-1]==x
- Durchschnittlicher Aufwand
 - Annahme: Gleichverteilung
 - Aufwand 1, 2, ..., n-1, n jeweils gleich wahrscheinlich
 - Im Mittel $\frac{1}{n} \cdot (1+2+\dots+n-1+n) = \frac{1}{n} \cdot \frac{(n+1)n}{2} = \frac{n+1}{2}$

Suche in geordneter Folge

- Was ändert sich für eine geordnete Folge?
 - \blacksquare Hier gilt für $0\leqslant i,j< n \ : \quad i\leqslant j \Rightarrow \alpha_i \leqslant \alpha_j$
- Beispiel: Suche nach Eintrag in Telefonbuch
- Idee: Wende den *Teile und herrsche* Grundsatz an
 - Teile in zwei Teile
 - Rekursion über den Teil, in dem gesuchter Eintrag liegt

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	4	9	11	12	17	18	19	20	23	24	25	26
1	2	4	9	11	12	17	18	19	20	23	24	25	26
1	2	4	9	11	12	17	18	19	20	23	24	25	26
1	2	4	9	11	12	17	18	19	20	23	24	25	26

Binäre Suche in Java (rekursiv)

- int 1,int r bezeichnen *linke* und *rechte* Grenze der Partition
- Initial 1=0 und r=a.length-1=n-1
- m=(1+r)/2 bezeichnet die *Mitte*
- Rekursion endet.
 - wenn 1>r dann war kein Abstieg möglich, oder
 - \blacksquare wenn a[m] == x

Binäre Suche in Java (iterativ)


```
public static int find(int[] a,int x) {
  int l=0, r=a.length-1, m;
  do {
    m = (1+r)/2;
    if (x < a[m])
      r=m-1;
    else
      1 = m + 1;
  } while (x!=a[m] && 1<=r);</pre>
  return (x==a[m]) ? m : UNDEF:
```

- Partition in while Schleife mit Anpassung der Grenzen 1 und r
- Abbruch der Schleife
 - wenn a[m] ==x, oder
 - wenn 1>r dann keine weitere Partition möglich

Analyse des Aufwands für binäre Suche

- Eingabe: durchsuche Feld mit n Elementen
- Annahme: erfolglose Suche (schlechtester Fall)
- Nach dem 1. Schritt: durchsuche noch $\frac{n}{2}$ Elemente Nach dem 2. Schritt: durchsuche noch $\frac{n}{4}$ Elemente ...

Nach dem k. Schritt: durchsuche noch $\frac{n}{2^k}$ Elemente

- In jedem Schritt halbiert sich die Anzahl der Elemente
- Solange bis nur noch ein Element in Teilliste: 1eft==right
 Das heißt

$$1 = \frac{n}{2^k} \Leftrightarrow 2^k = n \Leftrightarrow k = \log_2 n$$

Es werden maximal log₂ n Schritte benötigt!

- *Schritt* = Rekursion oder Iteration
- Das sind maximal $log_2 n + 1$ Vergleiche

Aufwand für binäre Suche

Zum Vergleich mit sequentieller Suche

Sequentielle vs binäre Suche

- Offenbar ist der Aufwand der binären Suche geringer
 - Macht sich vor allem für große n bemerkbar
 - Für n = 1.000.000 im Mittel 20 Vergleiche gegenüber 500.000
 - Doppelte Anzahl $n \Rightarrow +1$ Vergleich!
- Schlüssel zum Erfolg: Teile und herrsche Grundsatz
 - Rekursion
 - In diesem Fall einfach durch Schleife ersetzbar
- *Anmerkung*: Lohnt sich binäre Suche für *kleine* n? z.B. n = 10
 - Hier kann sequentielle Suche effizienter sein.
 - Abhängig von Datentyp, Sprache/Compiler und Rechnerarchitektur
 - Ausprobieren!
- Für binäre Suche benötigen wir eine sortierte Folge . . .
 Als nächstes: Sortieralgorithmen

Übersicht

- 7 Ausgewählte Algorithmen: Suchen und Sortieren
 - Einführung
 - Sequentielle und binäre Suche
 - Sortieralgorithmen
 - Anmerkungen zum Suchen und Sortieren

Sortieralgorithmen

- Wir betrachten eine Auswahl von Algorithmen
- Sortieren durch Auswahl: Selection Sort
- Sortieren durch Einfügen: Insertion Sort
- Sortieren durch Aufsteigen: Bubblesort
- Quicksort*
- Sortieren durch "Mischen": Mergesort*

* Teile und herrsche

Zuerst zu den Spielregeln . . .

Sortieren

- \blacksquare Aufgabe: Sortiere ein Feld (α_i) so, dass gilt $i\leqslant j\ \Rightarrow \alpha_i\leqslant \alpha_j$
- Wir betrachten wieder Felder von ganzen Zahlen (Typ int[])
 - Tatsächlich beliebiger Typ
 - Benötige Ordnungsrelation < ggf. auf *Schlüssel*
 - Oft Typ = Paar (s_i, w_i) aus Schlüssel s_i , Wert w_i (key/value)
- Elementare Operationen
 - Vergleich $a_i < a_j$
 - Vertauschen (swap) von zwei Einträgen: ändert Reihenfolge
- Beobachtung
 - Ggf. unterschiedliche Kosten (Vergleich/Vertauschen)
 - Nötige Folge von Vertauschungen nicht eindeutig (Viele Wege führen zum Ziel.)

Ordnungsrelation

- Es reicht < z.B. in Form einer Funktion bool less(T a,T b)
- Denn

$$\begin{array}{lll} \alpha > b & \Leftrightarrow & b < \alpha \\ \alpha = b & \Leftrightarrow & \neg \big((\alpha < b) \lor (\alpha > b) \big) & \Leftrightarrow & \neg (\alpha < b) \land \neg (\alpha > b) \\ \alpha \leqslant b & \Leftrightarrow & (\alpha < b) \lor (\alpha = b) & \Leftrightarrow & (\alpha < b) \lor \neg (\alpha > b) \end{array}$$

Bemerkung

- C++ Standardbibliothek definiert auf diese Weise Operatoren
 == < <= > >= für beliebige Datentypen "automatisch".
- Das ist in Java so nicht möglich.
- Interface int Comparable::compareTo(Object other)

```
Rückgabewert <0 \Leftrightarrow \text{this} < \text{other}
Rückgabewert =0 \Leftrightarrow \text{this} == \text{other}
Rückgabewert >0 \Leftrightarrow \text{this} > \text{other}
```

key-value Paare

- Oft werden Paare von Schlüsseln und Werten sortiert
 - Schlüssel (key) definiert die Sortierreihenfolge
 - Wert (value) = Daten (irrelevant für Sortierung)
- Anwendungsbeispiele
 - (Matrikelnummer, (Name, Vorname, Adresse, . . .))
 - ((Name, Vorname), Matrikelnummer)
- z.B. In Java: nur ein "Teil" eines Objekts dient als Schlüssel
- Wir bleiben vorerst bei int (als Schlüssel und Wert)
- Sonderfall: gleicher Schlüssel, verschiedener Wert
 - Daten sind unterscheidbar trotz gleicher Schlüssel
 - \blacksquare z.B. $(1,a) \neq (1,b)$ (Zahl als Schlüssel)
 - Reihenfolge als Eigenschaft des Sortierverfahrens . . .

Stabiles Sortierverfahren

Definition (Stabiles Sortierverfahren)

Ein Sortierverfahren heißt *stabil*, wenn es die relative Reihenfolge für gleiche Schlüssel beibehält.

Beispiel

- Gegeben ist die Sequenz [(2,x),(1,b),(1,a)] und die
- Ordnungsrelation $(s,v) < (s',v') \Leftrightarrow s < s'$
- D.h. wir haben Schlüssel {1,2} und Werte {a,b,x}
- Beide Folgen wurden sortiert ...

$$\begin{bmatrix} (1,a),(1,b),(2,x) \end{bmatrix} \quad \textit{nicht} \; \mathsf{stabil} \\ \begin{bmatrix} (1,b),(1,a),(2,x) \end{bmatrix} \quad \mathsf{stabil}$$

Internes und externes Sortieren

Definition (Internes und externes Sortieren)

Ein Sortierverfahren heißt *intern*, wenn alle zu sortierenden Daten (und nötige Hilfsdaten) in den Arbeitsspeicher passen. Ein Sortierverfahren heißt *extern*, wenn Teile der Daten auf einen anderen, externen Speicher ausgelagert sind.

- Arbeitsspeicher = Speicher in dem Vergleich/Vertauschen stattfinden, z.B. RAM
- Externer Speicher = i.d.R. Massenspeicher wie z.B.
 Festplatten, Magnetbänder
- Betrachte sowohl kleine als auch sehr große Datenmengen
- Daneben noch Unterscheidung
 - Überschreibe Eingabe durch Ausgabe (in-place oder in situ)
 - Ausgabe (und/oder Hilfsdaten) in neuem Feld (out-of-place)

Trivialer Fall: 2 Elemente


```
public static void sort2(int[] a) {
   assert (a.length==2); // use with "java -ea"

if (a[0]>a[1]) {
   int t=a[0]; a[0]=a[1]; a[1]=t; // swap
  }

  assert (a[0]<=a[1]);
}</pre>
```

- \blacksquare Vertauschen (swap) falls Bedingung $i\leqslant j\Rightarrow \alpha_i\leqslant \alpha_j$ verletzt
- Bemerkung: assert condition;
 - to assert = ,,versichern, dass [Bedingung gilt]"
 - Abbruch mit Fehlermeldung, wenn Bedingung verletzt
 - Überprüfung nur mit java -ea [Class] (enable assertions)
 - Oft besser als ein Kommentar (allein)!
 - Später mehr zu Vor- und Nachbedingungen, Invarianten

Sortiere Feld mit 3 Elementen

23

```
public static void sort3(int[] a) {
  assert (a.length==3);
  if (a[0]>a[1]) {
    int t=a[0]; a[0]=a[1]; a[1]=t;
  if (a[0]>a[2]) {
    int t=a[0]; a[0]=a[2]; a[2]=t;
  if (a[1]>a[2]) {
    int t=a[1]; a[1]=a[2]; a[2]=t;
  }
  assert (a[0] <= a[1] \&\& a[1] <= a[2]):
}
```

■ Stabil? Möglichkeiten (1,1,1), (1,2,2), (2,1,2), (2,2,1)

Sortiere Feld mit 3 Elementen (stabil)

24

```
public static void sort3(int[] a) {
  assert (a.length==3);
  if (a[1] > a[2]) {
    int t=a[0]; a[0]=a[1]; a[1]=t;
  if (a[0]>a[1]) {
    int t=a[0]; a[0]=a[2]; a[2]=t;
  if (a[1]>a[2]) {
    int t=a[1]; a[1]=a[2]; a[2]=t;
  }
  assert (a[0] <= a[1] \&\& a[1] <= a[2]):
}
```

■ Stabil? \checkmark Möglichkeiten (1,1,1), (1,2,2), (2,1,2), (2,2,1)

Selection Sort: Sortieren durch Auswahl

- Idee
 - Finde kleinsten Eintrag
 - 2 Stelle ihn an den Anfang
 - 3 Wiederhole das gleiche für restliche Einträge
- Umsetzung in Java

Selection Sort

$$n = 30$$

Eigenschaften von Selection Sort

- **E**s werden genau n-1 Werte *vertauscht*.
 - Denn äußere Schleife wird n-1 mal durchlaufen.
- Es werden $\frac{n(n-1)}{2} \approx \frac{n^2}{2}$ Vergleiche benötigt.
 - \blacksquare n-1 Durchgänge mit n-i Vergleichen im i. Durchgang
 - Also $(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2} \approx \frac{n^2}{2}$
- Identisch für besten/mittleren/schlechtesten Fall
- Selection Sort ist nicht stabil!
 - Problem: Vertauschen a[imin] ↔ a[i]
 - Kann Reihenfolge gleicher S. ändern z.B. $[2,2,1] \rightarrow [1,2,\underline{2}]$
 - out-of-place Variante von Selection Sort ist stabil

Insertion Sort: Sortieren durch Einfügen

- Idee
 - Nimm nächsten Eintrag
 - 2 Füge ihn in *bereits sortierte* Teilfolge ein
 - 3 Wiederhole, bis alle Einträge einsortiert sind
- Beispiel: Sortieren eines Kartenspiels
 - Zwei Stapel: noch nicht sortiert / schon sortiert
 - Sortiere jeweils die nächste Karte ein
 - In dieser Formulierung out-of-place, wir betrachten in-place
- Elementare Operation: Einfügen in sortierte Teilfolge
 - Schiebe größere Einträge um eins nach rechts
 - Einfügen in freien Platz
 - $\begin{array}{l} \bullet \quad (\alpha_1,\ldots,\alpha_j,\alpha_{j+1},\ldots,\alpha_n, {\color{red} x}) \rightarrow (\alpha_1,\ldots,\alpha_j, {\color{red} x},\alpha_{j+1},\ldots,\alpha_{n-1}) \\ \text{mit } \alpha_j < x < \alpha_{j+1} \text{ und } i \leqslant j \Rightarrow \alpha_i \leqslant \alpha_j \end{array}$

Insertion Sort

$$n = 30$$

Umsetzung in Java


```
public static void insertionsort(int[] a) {
  int n=a.length;
  for (int i=1;i<n;++i) {</pre>
    int x=a[i]; // insert x into (a_0,...,a_{i-1})
    int j;
    for (j=i; j>0 && a[j-1]>x;--j)
      a[i]=a[i-1];
    a[i]=x;
```

- a[j-1] wird für j = 0 nicht ausgewertet!
- Grund: *short circuit evaluation* von Termen in Bedingungen

Analyse von Insertion Sort (1)

- Immer n-1 Iterationen in äußerer Schleife ("alle einfügen")
- Betrachte innere Schleife ("Einfügeposition finden")
 for (j=i;j>0 && a[j-1]>x;--j) a[j]=a[j-1];
- Bester Fall
 - Folge ist bereits sortiert.
 - Ein Vergleich pro Element $i \Rightarrow$ insgesamt $n-1 \approx n$ Vergleiche
 - Kein Einfügen/Verschieben nötig (aber x=a[i];...a[j]=x;)

Insertion Sort stellt fest, dass Folge sortiert ist und bricht ab!

Analyse von Insertion Sort (2)

- Immer n-1 Iterationen in äußerer Schleife ("alle einfügen")
- Betrachte innere Schleife ("Einfügeposition finden") for (j=i;j>0 && a[j-1]>x;--j) a[j]=a[j-1];
- Schlechtester Fall
 - Liste ist umgekehrt sortiert: $i \leq j \Rightarrow a_i \geq a_j$
 - D.h. Einfügeposition immer bei j = 0, also je i-1 Iterationen
 - Insgesamt $\sum_{i=1}^{n} (i-1) = \frac{n(n-1)}{2} \approx \frac{n^2}{2}$ Vergleiche
 - Gleiche Anzahl an Schiebe-Operationen a[j]=a[j-1]
 - **Z**ähle 1 Schiebe-Operation $\approx \frac{1}{2} \times \text{Vertauschen}$
- Im Mittel
 - lacksquare Unsortiert, Annahme: Gleichverteilung \Rightarrow Einfügen bei $rac{i-1}{2}$
 - Damit etwa $\sum_{i=1}^{n} \frac{(i-1)}{2} = \frac{n(n-1)}{4} \approx \frac{n^2}{4}$ Vergleiche

Eigenschaften von Insertion Sort

- Im *Mittel* etwa $\frac{n^2}{4}$ Vergleiche und $\frac{n^2}{8}$ Vertauschungen.
- Im schlechtesten Fall etwa doppelter Aufwand, Folge ist umgekehrt sortiert.
- Im besten Fall nur n Vergleiche für sortierte Folgen! Erwarte linearen Aufwand für "fast" sortierte Folgen.
- Insertion Sort ist stabil!
- Variante: Finde Einfügeposition mit binärer Suche
 - Lohnend, wenn Aufwand für Vergleiche relativ hoch
 - z.B. für lange Zeichenketten (verschiebe nur Referenzen)
 - **E**s bleibt bei $\frac{n^2}{8}$ Vertauschungen.
- Variante: Shell Sort (nach Donald Shell)
 - Erlaubt Austausch über "größere" Nachbarschaften
 - Nicht stabil

Bubble Sort

- Idee
 - 1 Iteriere über alle Einträge
 - 2 Vertausche je zwei benachbarte Einträge, wenn nötig
 - 3 Wiederhole Verfahren, bis nichts mehr vertauscht wurde
- Große Einträge "perlen" nach oben, kleine "sinken" nach unten.
- Beobachtung
 - Erste Iteration schiebt größte Zahl ans Ende der Folge
 - Verbesserung: betrachte in jeder Iteration nur Teilfolge

```
public static void bubblesort(int[] a) {
  int n=a.length;
  for (int i=n-1;i>=0;--i)
    for (int j=1;j<=i;++j)
      if (a[j-1]>a[j]) {
      int t=a[j]; a[j]=a[j-1]; a[j-1]=t;
      }
} // Missing: Terminate if noting was swapped
```

Bubble Sort

$$n = 30$$

Eigenschaften von Bubble Sort

- Im schlechtesten Fall etwa $\frac{n^2}{2}$ Vergleiche und $\frac{n^2}{2}$ Vertauschungen.
- Gleiches gilt im Mittel.
- Im besten Fall nur n Vergleiche für sortierte Folgen
- Einfache Idee. Aber eher nicht praktikabel.
 - Insertion Sort ist i.d.R. effizienter.

In short, the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems.

> D.E. Knuth. The Art of Computer Programming: Sorting and Searching

Quicksort

- Anwendung des Teile und Herrsche Grundsatzes
- Idee
 - **1** Wähle einen Eintrag $p \in \{a_i\}$, das sogenannte *Pivotelement*
 - **2** Zerlege Folge in Teile $\{a_i | a_i < p\}$, p, $\{a_i | a_i > p\}$
 - 3 Rekursive Anwendung auf nicht-leere Teile
- pivot (französisch/englisch) Dreh- und Angelpunkt
- Quicksort Algorithmus in Java

Zentraler Schritt: Zerlegung

- In-place Zerlegung
 - **1** Wähle Pivot p (hier immer der letzte Eintrag $p = a_{r-1}$)
 - 2 Durchsuche Folge von links (i = 0, 1, ...) nach $a_i > p$
 - 3 Durchsuche Folge von rechts $(j=n-1,\dots)$ nach $a_j < p$
 - 4 Vertausche ggf. Einträge $\alpha_i \leftrightarrow \alpha_j$ und wiederhole bis i>j

5	3	6	7	1	2	4	
0	1	2	2 3		5	6	
2	3	1	4	6	5	7	

Zerlegung in Java


```
static int partition(int[] a,int l,int r) {
  assert (1<=r):
                           // l-eft, r-ight
  int p=a[r], t;
                                       // pivot
  int i=1-1, j=r;
  do {
    do ++i; while (a[i]<p);</pre>
                                     // find
    do --j; while (j>l && a[j]>p);
    t=a[i]; a[i]=a[j]; a[j]=t;
                                // swap
  } while (i<j);</pre>
  a[j]=a[i]; a[i]=a[r]; a[r]=t;
                         // new index of pivot
  return i;
```

■ Rückgabewert = Index des Pivot in Partition

Zerlegung: ein größeres Beispiel

Quicksort

Pivotelement

- Wahl des Pivotelements bestimmt Zerlegung
 - Bester Fall: zwei *gleichgroße* Hälften (*Median* als Pivot)
 - Schlechtester Fall: eine Hälfte leer
- Median = mittleres Element einer sortierten Folge Hier muss der Median ein Element der Folge sein, d.h. bei ungerader Anzahl das "linke" ("abrunden")!
- Schlechtester Fall (in jedem Rekursionsschritt)
 - Folge ist *invers sortiert* (Pivot wandert nach links)
 - Folge ist sortiert (Pivot bereits in Position)
- Bessere Wahl des Pivotelements
 - Zufällige Wahl
 - Median einer kleinen *Teilmenge* z.B. *median-of-three*: median($a_0, a_{\lfloor n/2 \rfloor}, a_{n-1}$)), (typischerweise $\approx 5\%$ Ersparnis [Sedgewick])

Sortieren von Teilfolgen

- Quicksort sortiert Teilfolgen rekursiv (divide and conquer)
- Für kleine Teilfolgen kann rekursiver Aufruf relativ teuer sein
 - z.B. Teil besteht nur aus 2 oder 3 Elementen
 - Dann sind sort2 oder sort3 sicher effizienter
- Erklärung
 - Quicksort vertauscht Einträge auch über große Distanz.
 - Dieser Vorteil verschwindet bei kleinen Teilfolgen.
 - Gleichzeitig eine gewisse "Vorsortierung" auf Teilfolgen
 - In diesem Fall ist Insertion Sort linear.
- In der Praxis oft "Umschalten" auf ein anderes Verfahren
 - $lue{z}$ z.B. Aufruf von Insertion Sort, wenn r-l < m
 - Typischerweise $\approx 20\%$ Ersparnis für m = 5, ..., 25 [Sedgewick]

Exkurs: Funktionale Programmierung

- These: Funktionale P. vereinfacht Entwurf von Algorithmen
- Beispiel: Eine Quicksort Implementierung in Haskell

```
quicksort [] = []
quicksort (p:xs) =
  (quicksort lesser) ++ [p] ++ (quicksort greater)
  where
    lesser = filter (< p) xs
    greater = filter (>= p) xs
```

- Der Code scheint intuitiv lesbar.
- Keine Indices, stattdessen Listen-Operationen.
- Funktionale Programmierung beschreibt *out-of-place* Variante

Eigenschaften von Quicksort

- Rekursiver Algorithmus nach Teile und Herrsche Grundsatz
- Analyse folgt im Anschluss an Merge Sort
- Im *Mittel* etwa 1,38 n log₂ n Vergleiche
- Im *besten Fall* nlog₂ n Vergleiche
- Im schlechtesten Fall n² Vergleiche
- Quicksort ist *nicht* stabil (Vertauschen bei Zerlegung)
- Verschiedene Verbesserungen sind möglich
- Es ist nicht einfach, Quicksort gut zu implementieren!

[Quicksort] is fragile: a simple mistake in the implementation can go unnoticed and can cause it to perform badly for some files.

[Sedgewick]

Mergesort: Sortieren durch "Mischen"

- Anwendung des Teile und Herrsche Grundsatzes
- Idee
 - 1 Teile Folge in zwei gleich große Teile
 - 2 Sortiere beide Teile unabhängig voneinander
 - 3 Zusammenführen der sortierten Teilfolgen
- Wo steckt die Rekursion? Sortieren ist ein rekursiver Prozess
- Zusammenführen (= to merge, auch verschmelzen, mischen)
 - Vergleiche jeweils die beiden kleinsten Einträge
 - ,Schiebe" den kleineren ans Ende der neuen Folge
- Konsequenz: Benötige Zwischenspeicher (out-of-place)
- Beobachtung
 - Im Gegensatz zu Quicksort immer bestmögliche Aufteilung
 - Einträge in Teilfolgen werden sequentiell verarbeitet, d.h. immer einer (a_i) nach dem nächsten (a_{i+1}) .

Zusammenführen (merging)

- **Z**usammenführen von zwei *sortierten* Folgen (a_i) und (b_j)
- lacktriangle merge liefert sortierte Folge (c_k) aus allen Einträgen von a,b

```
static void merge(int[] a,int[] b,int[] c) {
  assert (c.length>=a.length+b.length);
  int i=0, j=0;
  for (int k=0; k<a.length+b.length; ++k) {</pre>
    if (i>=a.length) c[k]=b[j++];
    else if (j>=b.length) c[k]=a[i++];
    else if (a[i] <= b[j]) c[k] = a[i++];</pre>
                           c[k]=b[j++];
    else
```

- Anmerkung: Hier wäre der Einsatz von sentinels sinnvoll!
- Offensichtlich ist merge(a,b,c) stabil!

Mergesort

■ Mit Hilfe von merge können wir mergesort einfach ausdrücken

```
public static void mergesort(int[] c) {
  int na=c.length/2;
  int nb=c.length-na; // mind integer division
  int[] a=new int[na]; // split c: copy parts
  for (int i=0; i < na; ++i) a[i] = c[i];
  int[] b=new int[nb];
  for (int j=0; j<nb;++j) b[j]=c[j+na];</pre>
  if (a.length>1) mergesort(a); // recursive
  if (b.length>1) mergesort(b); // sort
  merge(a,b,c);
                                 // merge
```

Umsetzung von Mergesort

- Was ist nicht so gut an dieser Implementierung?
- c wird in jedem Rekursionsschritt aufgeteilt
 - Dabei wird jedesmal wieder Speicher für α, b angefordert.
 - Das ist unnötig.
- Annahme: Wir sortieren eine Folge der Länge n.
- Dann genügt ein Feld der Länge n als Zwischenspeicher!
 - Für alle Rekursionsschritte
 - Abgrenzung links/rechts mit Indices l, r wie bei Quicksort
 - Übung!

Rekursion in Mergesort: split

- 1. Schritt: **Teilen** (*split*)
 - Entspricht im Java Code Kopieren der Teilfolgen α, b aus c

Rekursion in Mergesort: merge

- 2. Schritt: **Zusammenführen** (*merge*)
 - Entspricht Aufruf von merge im Java Code

Mergesort

Analyse von Mergesort

- lacksquare merge benötigt n Vergleiche für zwei Folgen der Länge je $rac{n}{2}$
- Annahme: Wir sortieren Folge der Länge $n = 2^N$
 - lacksquare 2× rekursiver Aufruf von mergesort für je $rac{n}{2}=2^{N-1}$ Einträge
 - \blacksquare merge benötigt $n = 2^N$ Vergleiche
- Sei C_N die Anzahl Vergleiche, die zum Sortieren nötig ist.
 Dann gilt

$$C_N = 2C_{N-1} + 2^N$$
 für $N \ge 1$ mit $C_0 = 0$.

- Diese Formel ist ebenfalls *rekursiv* definiert.
 - Für kleine N können wir C_N berechnen, z.B. $C_1 = 2C_0 + 2 = 2$, $C_2 = 8$, $C_3 = 24$, $C_4 = 64$, $C_5 = 160$, ...
- Wir wollen eine *geschlossene* Darstellung von C_N.

Analyse von Mergesort

Es gilt

$$C_N \ = \ 2\,C_{N-1} + 2^N \quad \text{ für } N \geqslant 1 \text{ mit } C_0 = 0$$

Betrachte

$$\begin{array}{lll} C_N & = & 2\,C_{N-1} + 2^N \\ \frac{C_N}{2^N} & = & 2\,\frac{C_{N-1}}{2^N} + 1 & = & \frac{C_{N-1}}{2^{N-1}} + 1 \\ & = & \frac{2\,C_{N-2} + 2^{N-1}}{2^{N-1}} + 1 & = & \frac{C_{N-2}}{2^{N-2}} + 1 + 1 \\ & = & \frac{C_{N-3}}{2^{N-3}} + 3 & = & \dots \\ & = & N \end{array}$$

- D.h. es gilt $C_N = N \cdot 2^N$
- Wir setzen ein $n = 2^N \Leftrightarrow N = \log_2 n$ und erhalten

$$C(n) = n \log_2 n$$

Analyse von Mergesort und Quicksort

- Mergesort benötigt n log₂ n Vergleiche
 - Unabhängig von der Reihenfolge der Eingabedaten!
- Gleiche Abschätzung für Quicksort im besten Fall
 - Partitionierung immer in gleich große Teile
- Abschätzung für Quicksort im Mittel
 - Ahnliche Rekursion, ähnliche Idee zur Auflösung
 - Aber insgesamt komplizierter
 - Es gilt $C_0 = C_1 = 0$ und für n > 1

$$C_n = n+1+\frac{1}{n}\sum_{1 \leq k \leq n} (C_{k-1}+C_{n-k})$$

- n+1 Vergleiche für Zerlegung
- Teile der Größe k-1 und n-k je mit Wahrscheinlichkeit $\frac{1}{n}$
- Man kann zeigen, dass $C_n \approx 2n \ln n \approx 1,38 n \log_2 n$
- Bei Interesse: Beweis z.B. in [Sedgewick]

Weitere Eigenschaften von Mergesort

- Mergesort benötigt einen Zwischenspeicher der Größe n.
- Mergesort ist stabil.
- Kombination mit anderen Verfahren möglich (wie Quicksort)
- Out-of-place Sortierverfahren
- Mergesort ist vor allem als externes Sortierverfahren geeignet.
 - merge liest sequentiell und schreibt sequentiell
 - Zwei Eingabeströme und ein Ausgabestrom
 - z.B. Magnetband oder tar-Archiv (oder .tar.gz)
 - Es muss nur ein kleiner Teil der Daten im Hauptspeicher sein.

Überblick über Sortierverfahren

- Sortieren von n Elementen
- Aufwand = (ungefähre) Anzahl Vergleiche

Algorithmus	bestens	Mittel	schlechtest	stabil
Selection Sort	$n^2/2$	$n^2/2$	$n^2/2$	_
Insertion Sort	n	$n^2/4$	$n^2/2$	\checkmark
Bubble Sort	n	$n^2/2$	$n^2/2$	\checkmark
Quicksort	nlog ₂ n	$1,38 \mathrm{n} \log_2 \mathrm{n}$	n ²	_
Mergesort	nlog ₂ n	n log ₂ n	nlog ₂ n	\checkmark

- Selection Sort benötigt immer n Vertauschungen.
- Insertion Sort ist linear für (fast) sortierte Folgen.
- Quicksort und Mergesort: Teile und Herrsche Grundsatz
- Aufwand für Mergesort ist unabhängig von Eingabereihenfolge.
- Mergesort benötigt Zwischenspeicher (n Elemente).

Übersicht

- 7 Ausgewählte Algorithmen: Suchen und Sortieren
 - Einführung
 - Sequentielle und binäre Suche
 - Sortieralgorithmen
 - Anmerkungen zum Suchen und Sortieren

Anmerkungen zum Suchen und Sortieren

- Permutation von Folgen
 - ,Indirektes Sortieren"
- Ordnungsrelationen: lexikographische Ordnung
 - z.B. Vergleich von Zeichenketten
- Sortieren in der Praxis (in Java)
 - Vergleich von Objekten
 - Interface java.lang.Comparable
 - Erste Berührung mit Java generics

Permutationen und Sortierverfahren

- Permutation = Anordnung einer Reihe von Objekten
 - Im Sinn von Veränderung der Anordnung durch Vertauschen
 - Formale Definition als bijektive Abbildung (siehe Mathematik-Vorlesung)
- Mögliche Darstellung einer Permutation von $\mathbf{a} \in \mathbb{Z}^n$
 - Anordnung der Zahlen 1,2,...,n

n! Möglichkeiten!

- lacksquare in einem Vektor $\mathbf{p} \in \mathbb{N}^n$,
- lacksquare so dass $\mathbf{a_i}
 ightarrow \mathbf{a_{p_i}}$
- In Java
 - Darstellung als int[] p mit p.length==a.length
 - Zugriff auf a[p[i]] (statt a[i])

Sortieren mit Hilfe von Permutationen

- Annahme: Vertauschen von Objekten ist sehr aufwendig
- Erzeuge Permutation, die Sortierreihenfolge herstellt
 - Sortiere "indirekt": dabei Vertauschen nur auf Feld p
 - Danach n Vertauschungen (out-of-place, d.h. neues Feld!)
- Beispiel

i	0	1	2	3	4	naont	i	0	1	2	3	4
pi	0	1	2	3	4	\xrightarrow{psort}	pi	2	4	1	0	3
$\mathfrak{a}_{\mathfrak{i}}$	8	7	5	9	6		$\mathfrak{a}_{\mathfrak{i}}$	8	7	5	9	6

- Vergleiche dabei a[p[i]] statt a[i] statt a[i] statt
- Ergebnis $(a_2, a_4, a_1, a_0, a_3) = (5, 6, 7, 8, 9)$
- Weitere Anwendungen
 - Schlüssel und Werte in verschiedenen Feldern
 - Zufälliges Mischen (shuffle) einer Folge

Lexikographische Ordnung

- Lineare Ordnung für zusammengesetzte Objekte (z.B. Tupel)
 - Beispiel: Zeichenketten
 - "Aal" < "Aberglaube" oder "Aal" < "Aalfilet"</pre>
- Allgemeines Prinzip
 - Gegeben sind $\mathbf{a}, \mathbf{b} \in \mathcal{X}^n$. Dann soll gelten

$$\mathbf{a} < \mathbf{b} \Leftrightarrow (\exists k \geqslant 0) [a_k < b_k \land \forall (\ell < k)(a_\ell = b_\ell)]$$

In Java (für char Felder)

```
bool static less(char[] a, char[] b) {
  for (int i=0;i<a.length;++i)
    if (i>=b.length) return false;
    else if (a[i]<b[i]) return true;
    else if (a[i]>b[i]) return false;

return true; // a shorter than b
}
```

Sortieren von Objekten in Java

- Bisher haben wir nur Folgen von int betrachtet.
- Wir wollen Folgen von Java *Objekten* sortieren.
 - Dazu benötigen wir Definition einer Ordnungsrelation
- Wir kennen schon den Test von Gleichheit von Objekten
 - == vergleicht Referenzen (Identität)! i.d.R. nicht erwünscht
 - boolean Object.equals(y) vergleicht "Inhalt" (Zustand)
 - Idee: *überschreibe* Methode equals
- Interface Comparable definiert int compareTo(y)
 - $x.compareTo(y) < 0 \Leftrightarrow x < y$
 - x.compareTo(y)==0 \Leftrightarrow x = y
 - $x.compareTo(y) > 0 \Leftrightarrow x > y$
- Viele Klassen implementieren diese Schnittstelle bereits
 - z.B. String, Integer, Double, ... siehe Dokumentation
- Definitionen von compareTo und equals sollten konform sein!

Sortieren von Objekten in Java

Sortiere Instanzen der Klasse Student nach Matrikelnr. (id)

```
class Student implements Comparable < Student > {
  int    id;
  String name;

public int compareTo(Student other) {
    return this.id-other.id;
  }
}
```

- Sortierverfahren (1. Versuch)
 - Ersetze a[i] < a[j] durch a[i].compareTo(a[j]) < 0.</pre>

```
class SortStudents {
  public static void sort(Student[] a) { ... }
}
```

Sortieren von Objekten in Java

- SortStudents kann nur Student Objekte sortieren
- Das geht besser bzw. allgemeiner 2. Versuch!

```
class Sort {
  public static void sort(Comparable[] a) { ... }
}
```

- Methode Sort.sort() sortiert Felder von *beliebigen* Objekten
- Voraussetzung an Klasse: Implementierung von Comparable
- Alternative: interface java.lang.Comparator
 - sort() sortiert Feld von java.lang.Object
 - Comparator Objekt als zusätzliches Argument an sort()
 - Damit unterschiedliche Sortierkriterien einfach realisierbar, z.B.

```
Sort.sort(students,new CompareStudentsById());
Sort.sort(students,new CompareStudentsByName());
```

Generische Schnittstelle Comparable<T>

- Gleicher Algorithmus f
 ür Vielzahl von Daten (Typen, Klassen)
- Generische Programmierung erlaubt "variable" Typen
- Beispiel in Java: Comparable (ähnlich Comparator)
 - Klasse Student implementiert Comparable
 - D.h. Student.compareTo() nimmt als Argument Student
 - Das ist bei der Definition der Schnittstelle nicht bekannt!
- Definition einer generischen Schnittstelle

```
interface Comparable < T > {
  int compareTo(T other);
}
```

- Anwendung als Comparable<MyClass>
 - Ahnlich für Klassen und Methoden
 - Ohne Angabe von T implizit Comparable<Object>
- Mehr zu generics siehe z.B. Java Tutorial

Zusammenfassung

- Binäre Suche: *Teile und Herrsche*
- Sortieralgorithmen
 - Verschiedene Vorgehensweisen
 - Algorithmen mit verschiedenen Eigenschaften
 - Stabilität
 - intern/extern
 - in-place/out-of-place
- Analyse des Aufwands
 - In Abhängigkeit von der Eingabe
 - Gemessen in Elementaren Operationen (z.B. Vergleiche)
 - Betrachte besten Fall, Mittel und schlechtesten Fall (best case, average, worst case)
- Voraussetzung: Ordnungsrelation
 - In Java: objektorientiert (Überschreiben) und generisch
- Literatur [Saake&Sattler] [Sedgewick] [Goodrich&Tamassia] Beispiele in Java z.T. online