

AQUISIÇÃO E PROCESSAMENTO DE SINAIS

- **CADEIA DE AQUISIÇÃO E PROCESSAMENTO DE SINAIS.**
- *** CIRCUITOS DE ACONDICIONAMENTO DE SINAIS**
 - Montagem Potenciométrica
 - Amplificação
 - * Filtragem
- * CONVERSORES ANALÓGICO/DIGITAL (A/D-C)
- * CONVERSORES DIGITAL/ANALÓGICO (D/A-C)
- *** SENSORES E TRANSDUTORES**

Filtragem Analógica

Um **filtro eléctrico** é uma **rede selectiva na frequência**, que actua sobre a <u>amplitude e/ou a</u> <u>fase do sinal</u> de entrada, dentro de um dado intervalo de frequências, não influenciando sinais cujas frequências se encontrem fora desse intervalo.

A banda de frequências que passa pelo filtro <u>sem sofrer alterações</u> é designada por **Banda** de

LICENCIATURA EM TECNOLOGIA BIOMÉDICA

Tecnologia de Setúbal

Bloqueia as baixas

frequências

Circuitos de condicionamento de sinal

Tipos de filtros:

Filtro LP de 1^a Ordem

$20 \log \frac{a_0}{\omega_0} = -20 \frac{dB}{decade}$ $20 \log \frac{\omega_0}{\omega_0} = 0$ $20 \log \frac{dB}{decade}$ $20 \log \frac{\omega_0}{\omega_0} = 0$ $20 \log \frac{dB}{decade}$ $20 \log$

Filtro HP de 1ª Ordem

• Realização de um LPF de 1ª Ordem, passivo e activo.

$$T(s) = \frac{a_0}{s + \omega_0}$$

LP - Activo

$$\omega_0 = \frac{1}{CR}$$
; ganho $dc = 1$

Realização de um HPF de 1ª Ordem, passivo e activo.

$$\omega_0 = \frac{1}{CR}$$
; ganho hf = 1

HP-Activo

$$T(s) = \frac{a_1 s}{s + \omega_0}$$

$$\omega_0 = \frac{1}{CR_1}$$
; ganho hf = $-\frac{R_2}{R_1}$

• LPF de 2ª Ordem, passivo.

$$T(s) = \frac{\frac{1}{LC}}{s^2 + s\frac{1}{RC} + \frac{1}{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}; \frac{1}{RC} = \frac{\omega_0}{Q} \Rightarrow Q = \omega_0 RC$$

HPF de 2ª Ordem, passivo.

$$T(s) = \frac{s^2}{s^2 + s \frac{1}{RC} + \frac{1}{LC}}; \ a_2 = 1$$

$$\omega_0 = \frac{1}{\sqrt{LC}}; \ \frac{1}{RC} = \frac{\omega_0}{Q} \Rightarrow Q = \omega_0 RC$$

• BPF de 2ª Ordem, passivo.

$$T(s) = \frac{s\frac{1}{RC}}{s^2 + s\frac{1}{RC} + \frac{1}{LC}};$$

$$\omega_0 = \frac{1}{\sqrt{LC}}; \ \frac{1}{RC} = \frac{\omega_0}{O} \Rightarrow Q = \omega_0 RC$$

BRF de 2ª Ordem, passivo.

$$T(s) = \frac{s^2 + \frac{1}{LC}}{s^2 + s\frac{1}{RC} + \frac{1}{LC}};$$

$$\omega_0 = \frac{1}{\sqrt{LC}}; \ \frac{1}{RC} = \frac{\omega_0}{Q} \Rightarrow Q = \omega_0 RC$$

Faça $R_1=10k\Omega$, e determine o valor dos restantes componentes do filtro HP de 1ª ordem representado na figura 3.13, de modo a que a frequência de 3 dB corresponda a 10^4 rad/s, e que o ganho em alta frequência seja de -10.

Figura 3.13 - Filtro HP para o exercício 3.1.

Soluções: R_1 =10 k Ω ; C=0,01 μF ; R_2 =100 k Ω .

Projecte um filtro LP de 1° ordem, de acordo com o circuito representado na figura 3.15, e que verifique as seguintes restrições: $f_0=10$ kHz; ganho dc=-10; $R_{in}=10$ k Ω .

Figura 3.15 – Filtro LP para o exercício 3.3.

Soluções: $R_1=10 \text{ k}\Omega$; $R_2=100 \text{ k}\Omega$; C=0.159 nF.

Projecte um filtro HP de 1° ordem, segundo a topologia ilustrada na figura 3.16, de forma a garantir as seguintes especificações: f_{3dB} =100 kHz; ganho unitário em alta frequências; R_{in} =100 k Ω .

Figura 3.16 – Filtro HP para o exercício 3.4.

Soluções: $R_1 = R_2 = 100 \, k\Omega$; $C = 15,91 \, pF$.

Identifique o filtro representado na figura 4 e determine o valor dos componentes para obter $\omega_0 = 10^5 \text{ rad/s}$ e $Q = 2^{-1/2}$. Considere $C = 0, 1 \ \mu F$.

Solução: $R=70,7 \Omega; L=1mH$.

Considere o filtro LP passivo de 2^a ordem, representado na figura 1. Assumindo que a resistência tem o valor de l $k\Omega$, dimensione a indutância e o condensador, para que o filtro apresente um ganho constante na banda de passagem e que o decréscimo de 3 dB no ganho se verifique à frequência de 100 kHz.

Solução: C=1,125 nF; L=2,25 mH.

P1F - Uma experiência laboratorial realizada com o objectivo de estudar a resposta em frequência de um filtro, permitiu registar um conjunto de valores apresentados na Tabela I.

Freq [Hz]	100	200	300	400	500	600	700	800	900
V _{0pp} /V _{ipp} [dB]	-68.0	-55.7	-48.8	-43.7	-39.9	-36.8	-34.1	-31.7	-29.8
Freq [Hz]	1000	2000	3000	4000	5000	6000	7000	8000	9000
V _{0pp} /V _{ipp} [dB]	-27.9	-16.0	-9.4	-5.4	-3.0	-1.7	-1.0	-0.6	-0.4
Freq [Hz]	10000	20000	30000	40000	50000	60000	80000	10000	
V _{0pp} /V _{ipp} [dB]	-0.3	-0.01	-0.0031	-0.0010	-0.0004	-0.0002	-6.5e-05	-2.7e-05	

Determine para o filtro em questão: (a) o tipo de filtro; (b) a frequência de corte a 3dB; (c) o intervalo de frequências que define a banda de passagem e a banda de atenuação do filtro; (d) a largura de banda do filtro; (e) a taxa de atenuação do filtro.

P2F - Considere que foi realizada uma experiência laboratorial com o objectivo de estudar a resposta em frequência de um filtro. Durante a experiência efectuou-se um conjunto de medições, cujos valores se apresentam na Tabela II.

Determine:

- a) o tipo de filtro em questão;
- **b)** a frequência de corte a 3dB;
- c) o intervalo de frequências que define as bandas de passagem/atenuação do filtro;
- d) a taxa de atenuação do filtro;
- e) se o filtro é passivo/ativo. Justifique a sua resposta.

f [Hz]	V₀/Vi dB				
1	6,021				
100	5,953				
300	5,443				
500	4,576				
700	3,532				
1000	1,906				
1400	-0,102				
1600	-1,006				
2000	-2,622				
5000	-10,052				
10000	-15,991				
50000	-29,944				
100000	-35,964				

Filtragem Analógica

