Monte-Carlo Estimation for Problem 1a Assignment 2

```
In [10]: from scipy import random
  import numpy as np
```

$(i) \exp(-x)$

```
In [11]:
    a = 0
    b = 1
    N = 1000
    xrand = np.zeros(N)

for i in range(len(xrand)):
        xrand[i] = random.uniform(a,b)

def func(x):
    return np.exp(-x)

integral = 0.0

for i in range(N):
    integral += func(xrand[i])

answer = (b-a)/float(N)*integral
    print("the integral from 0 to 1 of exp(-x) is", answer)
```

the integral from 0 to 1 of $\exp(-x)$ is 0.6376685156211883

(ii) $(1-x^2)^2$

the integral from 0 to 5 of $(1-x^2)^2$ is 556.3822219373099

Monte-Carlo Estimation for Problem 2 a

test with a given number of points and throw randomly in minimal bounding rectangle

fill the points in the rectangle and count those folling inside the curve and compute the ratio of the points inside to total

Monte-Carlo Estimation for Problem 2 b

```
In [41]: import numpy as np
```

test with a given number of points and throw randomly in minimal bounding rectangle

```
ymax = 1.0
a = xmax * ymax
```

fill the points in the rectangle and count those folling inside the curve and compute the ratio of the points inside to total