

Yuanyuan Lin^a(Instructor)¹

January 16, 2023

¹Correspondence to: Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China (E-mail: ylin@sta.cuhk.edu.hk)

"A journey of a thousand miles begins with a single step." - Lao Tzu (Laozi).

Chapter 1. Generalized inverse

We review some advanced linear algebra concepts and theorems.

full columnant

Proof. There exist nonsingular matrices P and Q such that

P&Q are primary operation on rows & columns, respetituely. $PAQ = \left| \begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right|$ $\Longrightarrow A = P^{-1} \left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right] Q^{-1}.$

Partition P^{-1} and Q^{-1} as

$$P^{-1} = [K_{p \times r} W_{p \times (p-r)}]$$

$$Q^{-1} = \begin{bmatrix} L_{r \times q} \\ Z_{(q-r) \times q} \end{bmatrix}.$$

$$Q^{-1} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} L \\ Z \end{bmatrix}$$

$$= [K \quad 0] \begin{bmatrix} L \\ Z \end{bmatrix}$$

$$= KL.$$

Remark 1. For any matrix $A_{p\times q}$ of rank $r, r \leq \min(p, q)$.

Remark 2. A matrix $A \in \mathbb{R}^{m \times n}$ is

(i) full column rank iff $A^{\top}A$ is invertible; rank $(A^{\top}A) = n$

(ii) full row rank iff AA^{\top} is invertible. Trank (AAT) = m

Remark 3. If matrix A has dimension $n \times m$ and is full rank, then we use the <u>left inverse</u> if n > m and make gure that ATA is invertable the right inverse if n < m: T= min in ? . (ATA)-1AT

$$n < m$$
 $A^{r}(AA^{T})^{-1}$

- (i) Left inverse: $A_{left}^{-1} = (A^{\top}A)^{-1}A^{\top}$, that is, $A_{left}^{-1}A = I_m$, where I_m is an $m \times m$ identity matrix.
- (ii) Right inverse: $A_{right}^{-1} = A^{\top} (AA^{\top})^{-1}$, that is, $AA_{right}^{-1} = I_n$, where I_n is an $n \times n$ identity matrix.

$$y = X\beta + E$$
 $X \in \mathbb{R}^{n \times p}$ $\beta \in \mathbb{R}^p$ $EE:=0$ Vor $E:=0^{2-2m}$ $\hat{\beta} = (X^TX)^{-1}X^Ty$ $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty$.

H. fall rank nordall rank.

-Idempotent Matrices $(A^2 = A)$ $A \in \mathbb{R}^{n \times n}$

Of course, I is an idempotent matrix.

THEOREM 2. All idempotent matrices(except I) are singular.

Proof. Since $A^2 = A$, if A is nonsingular,

Is there any other idempolant matrix?

$$A = A^{-1}AA = A^{-1}A = I.$$

THEOREM 3. For any idempotent matrix A, r(A) = tr(A). $-tr(A) = \sum_{i} A_{ii}$

Proof. Consider the full rank factorization, let

$$A = BC$$
 and $A^2 = BCBC = BC$.

But B has left inverse L and C has a right inverse R, then

$$L = (B^TB)^{-1}B^T$$

$$R = C^T(CC^T)^{-1}$$

$$\frac{I}{LBCBCR} = \frac{I}{LBCR}$$

$$\Rightarrow CB = I_{r \times r}.$$

t inverse
$$R$$
, then $A = BC$ full rank. $LBCBCR = LBCR$ — then $CB = Ir$ $\Rightarrow CB = I_{r \times r}$.

Thus,

$$tr(A) = tr(BC)$$
 — full rank factorization
$$= tr(CB)$$
 — exchangeble -
$$= tr(I_{r \times r})$$

$$= r$$

$$= r(A).$$

THEOREM 4. Eigenvalues of idempotent matrices are either 0 or 1.

Proof. Let λ , x be a pair of eigenvalue and eigenvector. Then,

$$Ax = \lambda x$$

$$\Longrightarrow A^2x = A(Ax) = A(\lambda x) = \lambda Ax = \lambda^2 x.$$

However,

$$A^{2}x = A\lambda x = \lambda^{2}x = \lambda x = A\lambda$$

$$A^{2}x = Ax = \lambda x$$

$$\lambda^{2}x = \lambda x \Rightarrow \lambda(\lambda - 1)x = 0.$$

$$A^{2}x = A\lambda x = \lambda^{2}x = \lambda^{2}$$

In view of the definition of eigenvector,

$$x \neq 0 \Rightarrow \lambda = 0 \text{ or } 1.$$

7hm 4 A idempotent
$$\Rightarrow \lambda = 90.1$$
?
7hm 5 $\lambda = 90.1$ & A symmetric \Rightarrow A idempotent.

THEOREM 5. For a symmetric matrix A, if all its eigenvalues are 1 or 0, then A is idempotent.

Proof. Since A is symmetric, there exists an orthogonal matrix P such that

$$P^{\top}AP = D$$
 eigenvalue decomposition

where D is a diagonal matrix with eigenvalues of A on the diagonal.

Hence,
$$P^{\top}APP^{\top}AP = D^2$$
.

4

But,
$$P^{\top}APP^{\top}AP = P^{\top}AAP$$
.

Nevertheless, if all eigenvalues are 1 or 0,

The vertices, if all eigenvalues are 1 of 0,
$$\Rightarrow D = D^{2} \qquad \qquad \text{A is idempotent}.$$

$$\Rightarrow P^{T}AP = P^{T}AAP \qquad \qquad \text{Y } D^{2}=D \qquad \qquad \text{Y } D^{2$$

 $\Rightarrow A$ is idempotent.

Tow & column vectors are all norm-1.

Remark 4. Orthogonal matrix is a square matrix with real entries whose <u>columns and rows</u> are <u>orthogonal</u> unit vectors (i.e orthonormal vectors), that is

$$Q^{\top}Q = QQ^{\top} = I,$$

implying $Q^{\top} = Q^{-1}$.

沸罗斯.

-Moore- Penrose Inverse

Definition: Let A be an $m \times n$ matrix.

If a matrix A^+ exists that satisfies

H may not exists for
$$(1)$$
 AA^+ is symmetric. Some special A ? (2) A^+A is symmetric. No any matrix A has (3) $AA^+A = A$. Penrose - Inverse A^+ by $Tim(4)$: $A^+AA^+ = A^+$.

 A^+ is defined as a Moore-Penrose inverse of A.

THEOREM 6. Each matrix(A) has an A^+ .

Proof. If A = 0, $A^{+} = 0$.

If $A \neq 0$, A can be factored by the full-rank factorization

$$A = A_L A_R = BC$$

where B is $m \times r$ of rank r and C is $r \times n$ of rank r.

Hence, $B^{\top}B$ and CC^{\top} are both nonsingular.

Define

A' = BC
asingular.

$$A' = (BC)^{+} = C^{+}B^{+} \text{ just for monorizing.}$$

$$A' = (BC)^{+} = C^{+}B^{+} \text{ just for monorizing.}$$

$$= C^{T}(CC^{T})^{-1}(B^{T}B)^{-1}B^{T}$$
as the 4 conditions in (*).

and it can be shown that A^+ satisfies the 4 conditions in (*).

Properties:

- 1. The Moore-Penrose inverse is unique.
- 2. $(A^{\top})^+ = (A^+)^{\top}$.
- 3. $r(A^+) = r(A)$.
- 4. If $A = A^{\top}$, then $A^{+} = (A^{+})^{\top}$.
- 5. If A is nonsingular, $A^{-1} = A^{+}$.
- 6. If A is symmetric idempotent, $A^+ = A$.
- 7. If $r(A_{m \times n}) = m$, then $A^+ = A^{\top} (AA^{\top})^{-1}, AA^+ = I$, If $r(A_{m \times n}) = n$, then $A^+ = (A^{\top}A)^{-1}A^{\top}, A^+A = I$.
- 8. The matrices AA^+ , A^+A , $I-AA^+$ and $I-A^+A$ are all symmetric idempotent.

For the computation of Moore-Penrose inverse, see for example "Matrixes with application in Statistics" By Graybill p.118-129.

-Generalized Inverse

Definition: Let A be an $m \times n$ matrix and the generalized inverse A^- satisfies

$$AA^{-}A = A$$
.
 $A^{-}AA^{-} = A^{-}Q$ not care!

Properties:

- A[†] is also a generalized inverse 1. The M-P inverse is also a generalized inverse.
- 2. G-inverse may not be unique.
- 3. Let X be $m \times n$, r(X) = k > 0.
 - (a) $r(X^{-}) > k$.

- $\sqrt{(b)} X^{-}X$ and XX^{-} are idempotent.
 - (c) $r(X^-X) = r(XX^-) = k$.
 - (d) $X^-X = I$ if and only if r(X) = n.
 - (e) $XX^- = I$ if and only if r(X) = m.
 - (f) $tr(X^{-}X) = tr(XX^{-}) = k = r(X)$
- (g) If X^- is any G-inverse of X, then $(X^-)^\top$ is a G-inverse of X^\top .

 4. Let $K = X(X^\top X)^- X^\top$, K is invariant for any G-inverse of $X^\top X$.
- 5. $X(X^{\top}X)^{-}X^{\top} = XX^{+}$.
- 6. For $K = X(X^{T}X)^{-}X^{T}$
 - (a) $K = K^{\top}$, $K = K^2$ (Symmetric Idempotent).
 - (b) $\operatorname{rank}(K) = \operatorname{rank}(X) = r.(\operatorname{rank}(K) = tr(K) = \operatorname{rank}(X))$
 - (c) $KX = X; X^{\top}K = X^{\top}$.
 - (d) $(X^{\top}X)^{-}X^{\top}$ is a G-inverse of X for any G-inverse of $X^{\top}X$.
 - (e) $X(X^{\top}X)^{-}$ is a G-inverse of X^{\top} for any G-inverse of $X^{\top}X$.

In linear model y= xβ+ε $\hat{\mathcal{Y}} = \frac{X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y}{\kappa}$