CS 430 Introduction to Algorithms

Fall Semester, 2016

Homework 4 version 1.1

Assigned: Oct. 17 Due: Nov. 2

Please respect the following guidelines for writing pseudocode:

- 1. C instructions are fine. But do not write object-oriented additions. Do not declare or use any class. Declare only procedures (if necessary) and explain in words what each procedure does, and what is the use of each parameter.
- 2. One instruction per line
- 3. Match the brackets with a horizontal line
- 4. Number your lines
- 5. Write down if your array is indexed $0 \dots n-1$ or $1 \dots n$.

Problem 1 Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_i be the i^{th} element of set A, and let b_i be the i^{th} element of set B. You then receive a payoff of $\prod_{i=1}^n a_i^{b_i}$. Give an efficient algorithm to find the reorderings that will maximize your payoff. Present the pseudocode. Prove that your algorithm maximizes the payoff, and state its running time.

Problem 2 What is the best way to multiply a chain of matrices with dimensions that are 9×6 , 6×3 , 3×21 , 21×11 , 11×5 , and 5×50 ? Show your work.

Problem 3 Give a pseudopolynomial algorithm for KNAPSACK. Strive for running time of O(nB), but make sure running time is polynomial in n and B. The KNAPSACK problem is defined as follows. An instance consists of n items $1, 2, \ldots, n$ where item i has size s_i and profit p_i , and a knapsack size B with $B \geq s_i$ for all $i = 1, 2, \ldots, n$. All the numbers are integers. A feasible solution consists of a subset Q of $\{1, 2, \ldots, n\}$ such that $\sum_{i \in Q} s_i \leq B$. The objective is to maximize the total profit of Q - that is $\sum_{i \in Q} p_i$.

Present the pseudocode, discuss correctness, and analyze the running time.

Problem 4 Problem 15-4 from the textbook ("Printing neatly"). It is Problem 15-2 from the second edition of Cormen. Present the pseudocode, discuss correctness, and analyze the running time. Polynomial time is required.