Математика в LATEX

Уютный факультатив

9 февраля 2017 г.

1. Набор формул в простейших случаях

Будучи ещё ребёнком, не имея бумаги, свои чертежи и вычисления Тарталья писал на могильных плитах ближайшего кладбища. Забавно было бы увидеть формулу 2+2=4, написанную на стене склепа, во время ночной прогулки!

Совершенно иным было бы увидеть формулу

$$2 \cdot 2 = 4$$

на стене склепа, гуляя посреди ночи! В то же время, если бы на стене красовалась надпись

$$2 \cdot 2 = 5,\tag{1}$$

то она была бы весёлой.

Каждый из нас знает, что формула (1) на стр. 1 — полная глупость!

2. Нюансы работы с формулами

2.1. Степени и индексы, текст в формулах

$$y = c_2 x^2 + c_1 x + c_0$$

$$F_n = F_n - 1 + F_n - 2$$

$$F_n = F_{n-1} + F_{n-2}$$

2.2. Греческие и разные другие буквы

$$\mu = \alpha \cdot e^{\tau}$$

$$\Omega = \sum_{k=1}^{n} \omega_k$$

 ϵ , ϕ

 ε , φ

2.3. Дроби

$$\frac{1+z}{1-z}$$

$$\frac{1+\frac{a}{b}}{1-z} \qquad \frac{1+\frac{a}{b}}{1-z}$$

2.4. Символы

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \forall n > N(\varepsilon) \quad |a_n - a| < \varepsilon$$

$$2 \cdot 2 \neq 5$$

$$A \cap B$$
, $A \cup B$

2.5. Надстрочные знаки

Например, шляпка: \hat{a} или тильдочка: \tilde{c} .

2.6. Стандартные функции

$$\sin x = 0$$
, $\cos x = 1$, $\ln x = 5$, $\sqrt{x} = 1$

Кроме того, можно определять свои функции, но об этом ниже!

2.7. Скобки

[2+3]

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\int_a^b \frac{1}{2} (1+x)^{-3/2} dx = -\frac{1}{\sqrt{1+x}} \Big|_a^b$$

3. Одно над другим

3.1. Системы уравнений

$$\begin{cases} x^2 + y^2 &= 7 \\ x + y &= 3 \end{cases} \tag{2}$$

$$f(n) = \begin{cases} n/2 & \text{если } n \text{ чётное} \\ -(n+1)/2 & \text{если } n \text{ нечётное} \end{cases}$$

3.2. Формула в несколько строк

Например, формула

$$(x+1)^4 = (x+1)\cdot(x+1)\cdot(x+1)\cdot(x+1) = (x^2+2x+1)\cdot(x^2+2x+1) = x^4+4x^3+6x^2+4x+1$$

не влезла в строку.

Так делать неправильно!

$$(x+1)^3 = (x+1) \cdot (x+1) \cdot (x+1) \cdot (x+1) =$$

= $(x^2 + 2x + 1) \cdot (x^2 + 2x + 1) = x^4 + 4x^3 + 6x^2 + 4x + 1$

Так правильно!

$$(x+1)^3 = (x+1) \cdot (x+1) \cdot (x+1) \cdot (x+1) = (x^2 + 2x + 1) \cdot (x^2 + 2x + 1) = x^4 + 4x^3 + 6x^2 + 4x + 1$$
 (3)

$$(x+1)^3 = (x+1) \cdot (x+1) \cdot (x+1) \cdot (x+1)$$
$$= (x^2 + 2x + 1) \cdot (x^2 + 2x + 1)$$
$$= x^4 + 4x^3 + 6x^2 + 4x + 1$$

3.3. Несколько формул

$$2 \cdot 2 = 4 \qquad \qquad 3 \cdot 3 = 9 \tag{4}$$

$$4 \cdot 4 = 16$$
 $5 \cdot 5 = 25$ (5)

$$6 \cdot 6 = 36$$
 $7 \cdot 7 = 49$ (6)

$$2 \cdot 2 = 4$$
 $4 \cdot 4 = 16$
 $3 \cdot 3 = 9$ $5 \cdot 5 = 25$ (7)
 $6 \cdot 6 = 36$ $7 \cdot 7 = 49$

3.4. Подписи

4. Матрицы

$$\begin{pmatrix}
a_{1,1} & a_{1,2} & \dots & a_{1,n} \\
a_{2,1} & a_{2,2} & \dots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \dots & a_{m,n}
\end{pmatrix}$$

$$\begin{vmatrix}
a_{1,1} & a_{1,2} & \dots & a_{1,n} \\
a_{2,1} & a_{2,2} & \dots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \dots & a_{m,n}
\end{vmatrix}$$

$$\begin{bmatrix}
a_{1,1} & a_{1,2} & \dots & a_{1,n} \\
a_{2,1} & a_{2,2} & \dots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots$$

5. Размеры формул

Например $\lim_{n\to\infty}\frac{n+1}{n}$ выглядит не так как $\lim_{n\to\infty}\frac{n+1}{n}$ или $\lim_{n\to\infty}\frac{n+1}{n}$. Иногда нужно сделать обратную операцию:

$$\sum_{i=1}^{\infty} \frac{n^2}{n!}$$

$$\sum_{i=1}^{\infty} \frac{n^2}{n!}$$

$$\sum_{i=1}^{\infty} \frac{n^2}{n!}$$

5.1. Профит от поддержки юникода

æçðâ©

6. Свои функции и команды

 \mathbb{R} любит конфеты \mathscr{F} не любит

$$sgn x = 1$$
 VS $sgn x = 1$

$$Var(X) = \sigma^2$$
 VS $Var(X) = \sigma^2$

$$\mathbb{R}$$
 λ α β ε

$$4 \leq 8, 2 \geq 1$$

$$4 \le 8, 2 \ge 1$$

 \mathbb{R}

©

@@

7. Вопросы от Перевышина Ю.Н.

7.1. А что если я хочу получить дробь с большими скобочками на разных строках?

$$\left(\frac{1}{2} = \frac{2}{4}\right)$$

7.2. А как сослаться на пункты существующего списка?

- 1. Морковь
- 2. Помидорка
- 3. Коровка

В пункте 2 речь идёт о фрукте (ведь помидор это фрукт!), а в пункте 3 идёт речь о конфетках!