Оптимизация транспортного потока при заданных пунктах отправления и назначения всех участников движения

Пехтерев С.И. 610 группа

Научный руководитель: д.ф.-м.н. Васенин В.А. к.ф.-м.н. Афонин С.А.

Кафедра вычислительной математики

3 июня 2022

Описание проблемы

В некоторой дорожной сети имеются участники, которым необходимо добраться из заданных точек отправления в некоторые точки назначения. Требуется проложить такие маршруты, чтобы все участники в совокупности потратили меньше времени.

В условиях отсутствия кооперативности каждый участник стремится сократить собственные временные затраты, несмотря на временные затраты других участников.

Равновесие Нэша: ни одному из участников невыгодно изменение его маршрута.

Парадокс Браеса

Равновесие Нэша может не соответствовать оптимальному решению. Пусть из A в B отправляется 4 000 участников, а время проезда по ребру зависит от числа участников (метка на ребре).

Рис.: Оптимальное равновесие Нэша.

Рис.: Неоптимальное равновесие Нэша с ребром CD

Парадокс Браеса

Оптимальное среднее время в пути достигается, когда группы участников не влияют друг на друга.

Рис.: Оптимальное равновесие Нэша с ребром CD

История описания транспортного потока

Современные исследования транспортных потоков во многом основаны на следующих классических моделях:

Некооперативная игра на основе экономической модели (1952):

- Выигрыш затраты на маршрут.
- Затраты зависят от суммарной величины потока по пути.

Сжимаемая жидкость в гидродинамической модели (1955):

- Выполняется закон сохранения массы.
- Есть соответствие между скоростью и плотностью потока.

История описания транспортного потока

Моделирование однополосного движения (1959):

- Учитывается порядок участников на полосе.
- Скорость участника зависит от состояния (положения и скорости) впереди идущих участников.

Модель клеточных автоматов (1986):

- Дорога разбивается на клетки.
- Движение происходит в дискретном времени.
- Присутствуют случайные возмущения движения.

Неформальная постановка задачи

Описание задачи

Поставим задачу следующим образом:

- Считаем, что заданы законы изменения скорости участников при их взаимодействии друг с другом.
- Оптимизируем некоторую общую функцию временных затрат, зависящую только от временных затрат каждого участника.

Сложность: область оптимизации есть множество всевозможных комбинаций путей.

Новизна подхода заключается в следующем:

- Необходимо построить оптимальные маршруты для всех участников.
- Каждый участник индивидуален и не является частью потока.

Основные определения

- Дорожной сетью назовем тройку G = (V, E, l), где (V, E) — ориентированный граф с длинами ребер $l: E \to \mathbb{R}_{\searrow 0}$.
- \bullet Предположим, что имеется n участников с заданными точками отправления $A_i \in V$ и прибытия $B_i \in V$. Пусть множество P_i есть множество всех простых путей из A_i в B_i . Элемент декартового произведения $P = \prod_{i=1}^{n} P_i$ назовем комбинацией путей.
- Пусть известно, что при комбинации путей участников $\mathbf{p} = (p_1, \dots, p_n) \in P$ *i*-ый участник затрачивает $T_i(\mathbf{p}) \in \mathbb{R}_{>0}$ времени на свой путь. Функции T_i назовем ϕ ункциями временных затрат участника i.
- Некооперативным прокладыванием пути назовем пятерку $F = (n, G, \{A_i\}_{i=1}^n, \{B_i\}_{i=1}^n, \{T_i\}_{i=1}^n).$

Общая постановка задачи

Функцию $\Phi(\mathbf{p}) = \phi(T_1(\mathbf{p}), \dots, T_n(\mathbf{p}))$, определенную на множестве всех возможных комбинаций путей P и отображающую его во множество действительных чисел назовем функцией стоимости.

- $\Phi(\mathbf{p}) = \frac{1}{n} \sum_{i=1}^{n} T_i(\mathbf{p})$ средние временные затраты.
- ② $\Phi(\mathbf{p}) = \frac{1}{|I|} \sum_{i \in I} T_i(\mathbf{p})$ приоритетные временные затраты.
- $\Phi(\mathbf{p}) = \max_{i=1,\dots,n} T_i(\mathbf{p})$ максимальные временные затраты.

Для заданных некооперативного прокладывания пути F и функции стоимости Φ необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна, то есть

$$\Phi(\mathbf{p}^*) = \min_{\mathbf{p} \in P} \Phi(\mathbf{p}). \tag{1}$$

Постановка задачи в терминах модели движения

Моделью движения назовем набор положительных отделенных от нуля ограниченных функций $\{v_i(\mathbf{p},t)\}_{i=1}^n$.

Утверждение

Для заданной модели движения $\{v_i(\mathbf{p},t)\}_{i=1}^n$ существует единственный набор функций $\{T_i(\mathbf{p})\}_{i=1}^n$, описыващий время прибытия участника i.

Поиск таких функций называется моделированием движения.

Для заданных модели движения $\{v_i(\mathbf{p},t)\}_{i=1}^n$, некооперативного прокладывания пути F, в котором функции временных затрат получены путем моделирования движения, и функции стоимости Ф необходимо найти комбинацию путей \mathbf{p}^* такую, что функция стоимости на ней минимальна.

Правила движения

Значения функции $v_i(\mathbf{p},t)$ могут быть посчитаны применением правил движения в момент моделирования:

- Тормозим, если впереди идущий слишком близко к нам.
- Ускоряемся, если впереди идущий достаточно далеко от нас.
- Не превышаем скорость.
- Тормозим перед поворотами.

Макроскопические модели движения

Модель движения назовем макроскопической, если скорость каждого участника зависит только от загруженности ребра, на котором он движется.

Теорема

Пусть модель движения $v_i(p,t)$ макроскопическая и функция затрат ϕ — линейная. Тогда задача поиска оптимальной комбинации путей есть задача смешанного целочисленного линейного программирования.

В ходе доказательства показывается возможность введения экспонециального числа булевых и вещественных переменных.

Микроскопические модели движения

Модель движения назовем микроскопической, если она не является макроскопической.

• Модель пропорциональной скорости

$$v_i(t) = \begin{cases} v_{max}, & i = n, \\ v_{max} \frac{d_i(t)}{D}, & i \neq n, \end{cases}$$
 (2)

где v_{max} — максимальная скорость, D — расстояние взаимодействия, а $d_i(t)$ — расстояние до следующего участника.

• Модель снижения скорости

$$v_{n-k} = v_{max} - c_n k, \ k = 0, \dots, n-1,$$
 (3)

где v_{max} — максимальная скорость, c_n — величина снижения скорости.

Для таких моделей аналогичную теорему получить не удалось.

Кооперативное равновесие и алгоритмы его поиска.

Кооперативным равновесием некооперативного прокладывания пути F и функции стоимости $\Phi(\mathbf{p})$ назовем комбинацию путей $\widetilde{\mathbf{p}} \in P$, которая является равновесием Нэша некооперативной игры $\widetilde{\Gamma} = (n, \{P_i\}_{i=1}^n, \{-\Phi\}_{i=1}^n)$. Оптимальное решение является кооперативным равновесием.

Алгоритмы поиска кооперативного равновесия:

- Поиск неподвижной точки: последовательно решаем задачу оптимизации по каждому из путей, пока это возможно.
- Алгоритм последовательного добавления участников: будем добавлять в нашу задачу по одному участнику и сводить их к неподвижной точке.

Одинаковый приоритет участников

Исследуем движение n = 30 участников в графе путем поиска кооперативных равновесий для функции стоимости

$$\phi(T_1, \dots, T_n) = \frac{1}{n} \sum_{i=1}^n T_i.$$

Рис.: Результат минимизации затрат, $\Phi(\widetilde{\mathbf{p}}) = 1063.$

Рис.: Результат максимизации затрат, $\Phi(\widetilde{\mathbf{p}}) = 1576.$

- Результат соответствует ожиданиям.
- Результат может быть неоптимальным.

Поиск путей для приоритетных участников

Исследуем движение n = 30 участников в графе путем поиска кооперативных равновесий для функции стоимости $\phi(T_1,\ldots,T_n) = \frac{1}{3} \left(T_1 + T_{\frac{n}{2}} + T_n \right).$

Рис.: Результат минимизации затрат, $\Phi(\widetilde{\mathbf{p}}) = 778.34.$

Рис.: Результат минимизации затрат, $\Phi(\widetilde{\mathbf{p}}) = 950.37.$

- Результат зависит от начального распределения путей.
- Результат может быть неоптимальным.

- Предложено описание общего принципа взаимодействия участников, заключающегося в задании некоторой модели движения.
- Разработан и реализован алгоритм моделирования движения в соответствии с заданной моделью движения.
- Выделен класс моделей, для которого доказана возможность сведения поставленной задачи к задаче смешанного целочисленного линейного программирования.
- Разработаны и реализованы алгоритмы поиска кооперативного равновесия.
- Разработано ПО для моделирования, поиска оптимального пути и оптимальной комбинации путей в произвольной модели движения.

