Automating Feature Selection and Engineering for Predictive Modeling

Bar Katash

March 9, 2025

Abstract

This project addresses the challenge of improving feature selection and engineering in the predictive modeling pipeline. In part 2 of the project, feature selection and engineering were performed manually, which proved to be time-consuming and prone to human bias. This work presents an automated solution to dynamically select and engineer relevant features, thereby improving model accuracy and reducing manual intervention. By implementing techniques such as correlation-based feature elimination and transformation strategies, the solution aims to enhance model performance while maintaining scalability. Experimental results show some improvements in accuracy and run time when applying the automated process compared to traditional manual approaches.

1 Problem Description

Feature selection and engineering play a crucial role in the data science pipeline, directly influencing model performance, interpretability, and computational efficiency. However, traditional methods for feature selection and transformation often suffer from several issues, which limit their effectiveness:

- Time-consuming and manual effort: In previous phases of this project, feature selection and engineering were performed manually, which required significant domain knowledge and iterative experimentation.
- Lack of a systematic evaluation framework: Features were selected based on intuition rather than data-driven statistical and machine learning techniques. This led to suboptimal feature sets, where relevant information might be ignored, or irrelevant features might be retained.
- Redundancy: High correlation between independent variables can inflate variance in model coefficients, making interpretation difficult and potentially reducing predictive performance.
- Computational inefficiency: Large datasets with high-dimensional feature spaces lead to increased training times and overfitting risks if irrelevant features are not eliminated effectively.

2 Solution Overview

The proposed solution involves automating the feature selection and engineering process in the predictive modeling pipeline. The methodology integrates statistical principles such as correlation measures, independence tests, and variance analysis to systematically refine input features. These concepts align with the statistical techniques discussed in class, including correlation measures, independence tests, skewness, and unbiased estimation. The key components include:

2.1 Feature Selection

• Correlation-Based Filtering: Compute pairwise correlations between features and remove those with high correlations (above a set threshold), leveraging correlation

coefficients such as Pearson's

$$r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \sqrt{\sum (Y_i - \bar{Y})^2}}$$

to detect redundant features.

- Variance Thresholding: Eliminate features with low variance, as they contribute little to prediction, applying variance estimation to determine optimal thresholds.
- Chi-Square Test for Categorical Features: Apply independence tests using the Chi-square statistic:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

where O_i are observed frequencies and E_i are expected frequencies, to evaluate associations between categorical features and the target variable, ensuring statistical relevance.

2.2 Feature Engineering

- Transformation of Skewed Features: Apply moment-based skewness and apply transformations (logarithmic, square root, power) to normalize distributions.
- Time-Based Feature Extraction: Extract components such as year, month, and day from time-based features, and compute lag or difference values to capture temporal relationships.

The solution dynamically evaluates the impact of each transformation or feature and retains only those that improve model performance based on statistical significance.

3 Experimental Evaluation

To evaluate the effectiveness of the proposed automated feature selection and engineering approach, I conducted experiments on four datasets: Video Games, Property Sales, Car Prices, and Flight Prices. The evaluation follows these steps:

- Train a baseline model using the original dataset without automated feature selection and engineering.
- Apply the proposed automated feature selection and engineering process to the dataset.
- Train an enhanced model using the transformed dataset.
- Compare the performance of the baseline and enhanced models using the following metrics:
 - Mean Absolute Error (MAE)
 - Mean Absolute Percentage Error (MAPE)
 - Root Mean Squared Error (RMSE)
 - Coefficient of Determination (R²)
- Measure and compare the training times of both models.

3.1 Results and Analysis

The results indicate that the enhanced model generally improves performance, particularly in terms of \mathbb{R}^2 , demonstrating better model fit. However, the overall improvement in performance metrics is relatively small across all datasets.

Additionally, the training time is significantly reduced for the Video Games dataset, indicating computational efficiency. However, for some datasets, such as Flight Prices, the improvement in performance is marginal.

The results suggest that while automated feature selection and engineering can enhance model accuracy and efficiency, the extent of improvement varies depending on the dataset characteristics.

Comparison Graphs

Figure 1: Graphical Comparison of MAPE

Figure 2: Graphical Comparison of RMSE

Figure 3: Graphical Comparison of \mathbb{R}^2

Figure 4: Graphical Comparison of Run Time

4 Related Work

Feature selection and engineering are essential steps in the machine learning pipeline. Numerous studies and tools have been proposed to automate these processes, and several of them align with the objectives of my research proposal.

One key study on feature engineering for machine learning [1] emphasizes statistical and machine learning techniques for feature creation and pruning. The article discusses transformation methods such as scaling, encoding, and polynomial features, which align with this project's approach to automating feature selection and transformations. Unlike traditional methods that require manual intervention, this project aims to systematize these techniques through automated correlation analysis, variance thresholding, and categorical feature evaluation.

Another relevant work [2] focuses on filter-based feature selection methods, demonstrating their application in cybersecurity. The study outlines techniques such as mutual information, Chi-square tests, and correlation-based feature selection, which are instrumental in identifying redundant or irrelevant features. While the primary focus of that work is cybersecurity, its principles are directly applicable to general predictive modeling, reinforcing this project's decision to incorporate statistical feature evaluation in an automated pipeline.

On the tool front, Feature Tools is a widely used Python library for automating fea-

ture engineering. It employs a method called Deep Feature Synthesis (DFS) to create new features from raw data by automatically generating aggregations and hierarchical relationships between entities. FeatureTools is particularly useful for relational datasets, and its principles can be adapted to my research project, where the goal is to automate feature engineering, including creating interaction features and applying transformations like logarithmic or power transformations.

In terms of comparing existing techniques, these tools and methods often focus on different aspects of feature selection and engineering, such as using statistical measures, correlation, or more sophisticated machine learning algorithms for feature importance. The difference in my solution lies in its automation and dynamic feature generation, which not only selects relevant features but also generates new ones by applying transformations and interactions. Although existing tools like FeatureTools automate feature creation, my approach distinguishes itself by systematically evaluating the impact of these features on model performance, ensuring that only the most relevant and effective features are retained.

References

- [1] Towards Data Science, Feature Engineering for Machine Learning," 2023. https://towardsdatascience.com/feature-engineering-for-machine-learning-eb2e0cff7a30.
- [2] MDPI, Filter-Based Feature Selection Methods in Cybersecurity," 2023. https://www.mdpi.com/2078-2489/14/3/191.
- [3] Feature Tools, Automated Feature Engineering with Deep Feature Synthesis," 2024. https://featuretools.alteryx.com.

5 Conclusion

In this project, I learned that automated feature selection methods, such as correlation-based techniques and statistical tests, can enhance model accuracy. By dynamically identifying relevant features and applying necessary transformations, the models can generalize better across various datasets and avoid errors caused by irrelevant or redundant features. However, I also found that the effectiveness of the solution can vary depending on the dataset. Different datasets may yield different results, and what works well for one dataset may not generalize to another, making it challenging to apply a one-size-fits-all approach.

I also realized the importance of applying proper transformations, such as logarithmic or power transformations, to handle skewed features, which can improve the performance of machine learning models. This not only enhances accuracy but also increases the robustness of the model when applied to unseen data.

The results demonstrated that this approach reduces computational overhead while still providing a high level of predictive accuracy. However, the improvements were not always consistent across all datasets, which highlights the complexity of generalizing the solution.

In conclusion, this project helped me understand how crucial it is to automate repetitive tasks like feature selection and transformation in the machine learning pipeline. It provided insights into how automation can not only save time but also improve the overall quality of machine learning models, especially when dealing with large and complex datasets. Moving forward, I plan to further explore additional methods for automating other steps in the machine learning pipeline to continue improving efficiency and accuracy, while keeping in mind the variability of results depending on the dataset.