

Q7. The adjacent figure HOPW is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

 $\angle HOP + 70^{\circ} = 180^{\circ}$

Ans: Here $\angle HOP = 180^{\circ} - 70^{\circ} = 110^{\circ}$

[Angles of linear pair]

And $\angle E = \angle HOP$

[Opposite angles of a | gm are equal]

$$\Rightarrow x = 110^{\circ}$$

 \angle PHE = \angle HPO

[Alternate angles]

Now \angle EHO = \angle O = 70°

[Corresponding angles]

$$\Rightarrow$$
 40°+ z = 70°

$$\Rightarrow z = 70^{\circ} - 40^{\circ} = 30^{\circ}$$

Hence, $x = 110^{\circ}$, $y = 40^{\circ}$ and $z = 30^{\circ}$

Q8. The following figures GUNS and RUNS are parallelograms. Find \mathcal{X} and \mathcal{Y} (Lengths are in cm)

Ans: (i) In parallelogram GUNS,

$$GS = UN$$

[Opposite sides of parallelogram are equal]

$$\Rightarrow 3x = 18$$

$$\Rightarrow x = \frac{18}{3} = 6 \text{ cm}$$

[Opposite sides of parallelogram are equal]

$$\Rightarrow$$
 3y -1 = 26

$$\Rightarrow 3y = 26 + 1$$

$$\Rightarrow 3y = 27$$

$$\Rightarrow y = \frac{27}{3} = 9 \text{ cm}$$

Hence, X = 6 cm and X = 9 cm.

(ii) In parallelogram RUNS,

$$y + 7 = 20$$

[Diagonals of | gm bisects each other]

$$\Rightarrow y = 20 - 7 = 13$$
 cm

And
$$x + y = 16$$

$$\Rightarrow x+13=16$$

$$\Rightarrow x = 16 - 13$$

$$\Rightarrow x = 3$$
 cm

Hence, x = 3 cm and y = 13 cm.

Q9. In the figure, both RISK and CLUE are parallelograms. Find the value of x.

Ans: In parallelogram RISK,

$$\angle$$
RIS = \angle K = $^{120^{\circ}}$

[Opposite angles of a ||gm are equal]

$$\angle m + 120^{\circ} = 180^{\circ}$$
 [Linear pair]

$$\Rightarrow \angle m = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

And
$$\angle ECI = \angle L = 70^{\circ}$$

[Corresponding angles]

$$\Rightarrow m + n + \angle ECI = 180^{\circ}$$

[Angle sum property of a triangle]

$$\Rightarrow$$
 60° + n + 70° = 180°

$$\Rightarrow$$
 130°+ n = 180°

$$\Rightarrow n = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

Also
$$x = n = 50^{\circ}$$

[Vertically opposite angles]

Q10. Explain how this figure is a trapezium. Which is its two sides are parallel?

Ans: Here, $\angle M + \angle L = 100^{\circ} + 80^{\circ} = 180^{\circ}$

[Sum of interior opposite angles is 180°]

∴NM and KL are parallel.

Hence, KLMN is a trapezium.

Q11. Find $m \angle C$ in figure, if $\overline{AB} \parallel \overline{DC}$,

Ans: Here, $\angle B + \angle C = 180^{\circ}$

[∵ AB || DC]

Q12. Find the measure of $\angle P$ and $\angle S$ if $\overline{SP} \parallel \overline{RQ}$ in given figure.

(If you find $m \angle R$ is there more than one method to find $m \angle P$)

Ans: Here, $\angle P + \angle Q = 180^{\circ}$

[Sum of co-interior angles is 180°]

$$\Rightarrow \angle p + 130^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle p = 180^{\circ} - 130^{\circ}$$

$$\Rightarrow \angle p = 50^{\circ}$$

$$\therefore \angle R = 90^{\circ} [Given]$$

$$\therefore \angle S + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle S = 90^{\circ}$$

Yes, one more method is there to find $\angle P$.

$$\angle S + \angle R + \angle Q + \angle P = 360^{\circ}$$

[Angle sum property of quadrilateral]

$$\Rightarrow$$
 90°+90°+130°+ \angle P = 360°

$$\Rightarrow$$
 310° + \angle P = 360°

$$\Rightarrow \angle P = 360^{\circ} - 310^{\circ}$$

$$\Rightarrow \angle p = 50^{\circ}$$

********* END *******