```
Bogdan Chwaliæski
Zestaw 6 zdanie 4
```

$$\begin{split} & \text{NewtonsMethodList[f_, \{x_, x0_\}, n_] :=} \\ & \text{NestList} \Big[\# - \frac{\text{Function[x, f][\#]}}{\text{Derivative[1][Function[x, f]][\#]}} \; \&, \, x0, \, n \Big] \end{split}$$

Przyk \ddagger d pokazuj, cy, ¿e metoda dzia \ddagger dla danego wielomianu. Startuj, c z przyk \ddagger dowego punktu x_0 =1 ju¿ po 14 iteracjach trafia w dany miejsce zerowe.

$$ln[19]:=$$
 NewtonsMethodList[$x^3 + 3x^2 - 5x + 3, \{x, 1.0\}, 20$]

$$\label{eq:local_local_local_local_local} $$ \ln[16] = \mathbb{N}_{\mathbf{z}} = \mathbb{I}_{\mathbf{z}} := \mathbf{z} - (\mathbf{f} - \mathbf{1}) / \mathbb{D}_{\mathbf{z}} = \mathbb{I}_{\mathbf{z}} = \mathbb{I}_{\mathbf{$$

Wy‡ıskanie wzoru iteracyjnego dla wielomianu przy u¿yciu funkcji mathemathici NewtonIteration.

$$log[47]$$
:= FullSimplify NewtonIteration $[z^3 + 3z^2 - 5z + 3, z]$

Out[17]=
$$\frac{-2 + z^2 (3 + 2 z)}{-5 + 3 z (2 + z)}$$

Length [FixedPointList
$$\left[\frac{-2 + \#^2 (3 + 2 \#)}{-5 + 3 \# (2 + \#)} \&, z, 100\right]$$
];

Graficzne przedstawienie na p**±**szczy nie zespolonej.

```
In[13]: ListDensityPlot[Table[newt[x+Iy], {x, -10, 10, 0.1}, {y, -8, 8, 0.1}], Mesh \rightarrow False, ColorFunction \rightarrow (Hue[2#] &), Frame \rightarrow False] // Timing
```