⑫公開特許公報(A)

昭61-222939

@Int.Cl.4

識別記号

庁内整理番号

43公開 昭和61年(1986)10月3日

C 03 B 37/085

8216-4G

審査請求 未請求 発明の数 1 (全3頁)

加熱トラフ の発明の名称

> 创特 图 昭60-61803

四出 願 昭60(1985)3月28日

東京都世田谷区野沢 2-29-15 田 高 79発 明者 泉佐野市上町1丁目8番13号203 良 高 木 の発明 者 泉佐野市上町1丁目8番13号203 .昇 明 别 所 79発 者

新日娥化学株式会社 ⑪出 願 人

東京都中央区銀座5丁目13番16号

外1名 弁理士 小松 秀岳 個代 理

明和音

1. 発明の名称

加熱トラフ

2. 特許請求の範囲

トラフの外形を形成する基材内面に新熱量 を設け、その内面に発熱体を埋設した耐火物 からなる発熱闘を形成し、その内面に溶解材 料流と接する保護服を設けてなる加熱トラフ。

3、発明の詳細な説明

産業上の利用分野

この発明は鉱物繊維、例えばロックウール の原料を溶解した溶解材料流(いわゆるノロ) を放すための機(トラフ)に関する。

従来の技術

ロックウール等の鉱物器雑の製造にあたり、 高炉スラグ又は玄武岩、輝緑岩等の天然岩石 を電気炉で溶解するか、或いは原料をコーク スと乱ぜて衝風式溶解炉(キュポラ)で溶解 し、その溶解材料(ノロ)を出傷口から機 (トラフ)により製締装置に誘導し、製綿装

世でロックウールを製造することが従来から 実施されている。

ところで、上記トラフは第2因に示すよう な断面がL字形で内部が空間の鉄皮からなる 越 材: 1が外形を形成し、この内部空間が冷却 水の循環路 6になっているものである。

このような構造のトラフでは、トラフ内面 との接触面に凝固物による被覆(いわゆるノ ロコーティング)が多量に形成され、それを 都除するときにロックウール製品内にノロ塊 が混入することになり、更に、トラフ先頃に コーティングが発生すると製飾装置内のノロ 落下位置が変動する。この落下位置の変動は 製品の品質に大きな影響があり、操業上なら びに製品の品質維持から重大な問題になって

発明が解決しようとする問題点

この発明は、上記ノロコーティングが発生 しないような構造のトラフを提供しようとす るものである。

同聞点を解決するための手段

上記問題を解決するためのこの発明のトラ フの構成は、トラフの外形を形成する基材内 面に断熱層を設け、その内面に発熱体を埋放 した耐火物からなる発熱層を形成し、その内 面に溶解材料・流(ノロ)と接する保護層を設 けてなる加熱トラフである。

図面を参照して具体的に説明すると、第1 図はこの発明のトラフの横断面図であって、 耐熱性材料例えば鉄製の基材 1の内面に耐火 性断熱材例えばセラミックファイバーを張り つけた断熱圏 2を形成し、その内面に耐火物 例えば高アルミナ系キャスタブル耐火物中に、 例えばカンタル線(Mo - Si 系発熱体)製 の電熱体 5を埋設した発熱腫 3を設け、その 上面、すなわち最も内面にノロと接する表面 ■ 4を耐熱・耐食性材料例えばカーポンプレ ートで形成したものである。

上記断熱層 2の耐火性断熱材としてはセラ ミックファイバーの外にシリカファイバー、

らなる断熱闘 2、アルミナ系キャスタブル耐 火物にカンタル線からなる電熱体 5を埋設し た発熱層 3、殿内部に表面圏 4としてカーボ ンプレートを張ったトラフにおいて、このカ ーポンプレートの表面温度、ヒーター(電熱 体)の温度および鉄皮温度を測定したとき、 それぞれの関係は下記の表に示すとおりであ 4. 図面の簡単な説明 2 t-

 (溫	度	の	m	位	は	\mathcal{C})

	1 100 100 100 100	V /
表面温度	ヒータ温度	鉄皮温度
355	500	155
520	700	230
800	1000	320

また、このトラフで実際にノロを誘導する 実験では、キュポラからの出場 2時間前から ヒーターを1000℃にして加熱しておき、出湯 後、流出するノロの温度が次第に上昇するに 従ってヒーターへの入力を下げ、厳終的に 800℃で運転をした。その結果14時間の個ノ ロコーティングの撮除は一度もする必要がな

アルミナファイバー、カーボンファイバー等 が用いられ、裏面暦 4の耐熱・耐食性材とし てはカーポンプレートの外にシリコンカーバ イド、ハイアルミナ等が用いられる。

作用

上記構造を有するこの発明のトラフによれ は、電熱体 5に電流を通すことによって、そ れから発生する熱で、ノロと接する表面的 4 を高温に保つことができる。したがって、ノ ロがトラフ内面で凝固することがないのでコ ーティングが発生しない。その結果、ノロ塊 が製棉装置内に流入することがなく、かつ、 トラフの先端部にコーティングが生成しない ので製棉装置におけるノロの落下点が安定し、 高品質のロックウールを製造することができ

以下実施例によって、この発明のトラフの 性能を具体的に説明する。

実施例

鉄製基材 1内面にセラミックファイバーか

かった。

発明の効果

以上説明したように、この発明のトラフに よればノロコーティングの発生が防止でき、 したがって、高品質の鉱物繊維を安定して製 造することができる。

第1図は、この発明のトラフの一例の機断 面図.

第2回は、従来のトラフの機断面図である。

1 ··· 基材、 2 ··· 断熱層、 3 ··· 発熱層、 4… 表面局、 5… 雷熱体。

> 特許出願人 新日撒化学株式会社 代理人 弁理士 小 代理人 弁理士 旭 宏

第/図

第2 図