WHAT IS CLAIMED IS:

1. A method for treating a host infected with RSV comprising administering an anti-RSV effective amount of a compound of Formula I:

$$R_1$$
 R_2
 R_3
 R_3

or a pharmaceutically acceptable salt or prodrug thereof,

wherein:

 R_1 is selected from the group consisting of -NHC(O)Y, where Y is C_1 - C_{22} alkyl, C_2 - C_{22} alkenyl, and C_2 - C_{22} alkynyl;

 R_2 is selected from the group consisting of -OX, where X is C_1 - C_{22} alkyl, C_2 - C_{22} alkenyl, C_2 - C_{22} alkynyl; and

R₃ is phosphocholine.

- 2. The method of claim 1 wherein Y and X are independently C_{l} - C_{14} alkyl, C_{2} - C_{14} alkenyl, or C_{2} - C_{14} alkynyl.
- 3. The method of claim 1 wherein:

Y is
$$-C_{10}H_{21}$$
; and

- 4. The method of claim 1 wherein Y is $-C_{11}H_{23}$ and X is C_1-C_5 alkyl.
- 5. The method of claim 1 wherein Y is $-C_9H_{19}$ and X is C_9-C_{11} alkyl.
- 6. The method of claim 1, wherein the compound is

1-WA/2142875.1 -76-

3-dodecanamido-2-ethoxypropyl-1-phosphocholine,

3-decanamido-2-ethoxypropyl-1-phosphocholine,

3-decanamido-2-decyloxypropyl-1-phosphocholine,

3-dodecanamido-2-octyloxypropyl-1-phosphocholine,

$$\begin{array}{c} O \\ | \\ | \\ CH_2\text{-NH} \longrightarrow C \longrightarrow (CH_2)_{10}CH_3 \\ | \\ CH \longrightarrow O \longrightarrow (CH_2)_{11}CH_3 \\ | \\ O \qquad \qquad CH_3 \\ | \\ CH_2 \longrightarrow O \longrightarrow P \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow N \longrightarrow CH_3 \\ | \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ | \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ | \\ CH_4 \longrightarrow CH_2 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ | \\ CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \\ | \\ CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \\ | \\ CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \longrightarrow CH_5 \\ | \\ CH_5 \longrightarrow CH_$$

3-dodecanamido-2-dodecyloxypropyl-1-phosphocholine, or

$$\begin{array}{c} O \\ | \\ | \\ CH_{2}\text{-NH} - C - (CH_{2})_{10}CH_{3} \\ | \\ CH - O - (CH_{2})_{3}CH_{3} \\ | \\ O - CH_{2} - CH_{2} - CH_{3} \\ | \\ CH_{2} - O - P - O - CH_{2}CH_{2} - N - CH_{3} \\ | \\ CH_{3} - CH_{3} CH_$$

3-dodecanamido-2-butyloxy-1-phosphocholine; or a combination thereof.

7. The method of claim 1 wherein the host is a mammal.

- 8. The method of claim 1 wherein the host is a human.
- 9. A method for treating a host infected with RSV comprising administering an anti-RSV effective amount of a compound of Formula II:

$$\begin{array}{c} CH_{2} - X_{1} - R_{21} \\ CH - O - R_{22} \\ \\ CH_{2} - O - P - O - M - N^{+}(R_{23})(R_{24})(R_{25}) \\ \\ O - \end{array}$$

or a pharmaceutically acceptable salt or prodrugs thereof, wherein:

M is C_2 - C_4 alkyl;

 X_1 is selected from the group consisting of -S-, -O-, -NH-, and -NHC(O)-;

 R_{21} is selected from the group consisting of C_1 - C_{20} straight chain alkyl, C_2 - C_{20} straight chain alkylene containing not more than four double bonds, and aryl;

 R_{22} is selected from the group consisting of C_1 - C_{20} straight chain alkyl, C_2 - C_{20} straight chain alkylene containing not more than four double bonds, and aryl; and

 R_{23} , R_{24} , and R_{25} are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl.

10. The method of claim 9 wherein

M is $-CH_2CH_2-$;

 X_1 is -NHC(O)-;

 R_{21} is selected from the group consisting of a C_1 - C_{16} straight chain alkyl and C_2 - C_{16} straight chain alkylene containing not more than one double bond;

 R_{22} is selected from the group consisting of a C_1 - C_{16} straight chain alkyl and C_2 - C_{16} straight chain alkylene containing not more than one double bond; and

 R_{23} , R_{24} , and R_{25} are each independently hydrogen or methyl.

11. The method of claim 9 wherein

 R_{21} is selected from the group consisting of C_1 - C_{16} straight chain alkyl and C_2 - C_{16} straight chain alkylene containing not more than one double bond; and

 R_{22} is selected from the group consisting of C_1 - C_5 straight chain alkyl and C_2 - C_5 straight chain alkylene containing not more than one double bond.

- 12. The method of claim 11 wherein R_{21} is C_9 - C_{12} alkyl and R_{22} is C_1 - C_{12} alkyl.
- 13. The method of claim 11 wherein R_{21} is C_9 - C_{12} alkyl and R_{22} is C_1 - C_5 alkyl.
- 14. The method of claim 11 wherein R_{21} is C_9 - C_{12} alkyl and R_{22} is C_8 - C_{12} alkyl.
- 15. The method of claim 9 wherein the host comprises a mammal.
- 16. The method of claim 9 wherein the host comprises a human.
- 17. A method for treating a host infected with RSV comprising administering an anti-RSV effective amount of a compound of Formula III:

$$\begin{array}{c} CH_2 \longrightarrow Y \longrightarrow R_1 \\ \\ X \qquad O \qquad \qquad R_2 \\ \\ CH_2 \longrightarrow O \longrightarrow P \longrightarrow O \longrightarrow J \longrightarrow N^+ \longrightarrow R_3 \\ \\ O \longrightarrow R_4 \end{array} \tag{III}$$

or a pharmaceutically acceptable salt or prodrug thereof,

wherein:

Y is selected from the group consisting of -S-, -O-, -NH-, -N(CH₃)-, -NHC(O)-, and -N(CH₃)C(O)-;

 R_1 is selected from the group consisting of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, and aryl;

X is a covalent bond or methylene that is optionally substituted with a hydroxyl, C_1 - C_{20} alkyl, -O-(C_1 - C_{20} alkyl), -S-(C_1 - C_{20} alkyl), -C(O)N(C_1 - C_{20} alkyl), C_2 - C_{20} alkenyl, -O-(C_2 - C_{20} alkenyl), -S-(C_2 - C_{20} alkenyl), -C(O)N(C_2 - C_{20} alkenyl), C_2 - C_{20} alkynyl, -O-(C_2 - C_{20} alkynyl), or -C(O)N(C_2 - C_{20} alkynyl);

J is a C_1 - C_4 alkyl optionally substituted from one to three times with methyl or ethyl; and R_2 , R_3 , and R_4 are independently hydrogen or C_1 - C_3 alkyl.

18. The method of claim 17 wherein:

Y is -NHC(O)-;

 R_1 is C_6 - C_{18} alkyl;

X is $-C(H)(O-C_1-C_{18} \text{ alkyl})$ - or $-C(H)(O-C_1-C_{18} \text{ alkenyl})$ -;

J is -CH₂CH₂-; and

 R_2 , R_3 , and R_4 are each methyl.

- 19. The method of claim 18 wherein R_1 is $-C_{11}H_{23}$ and X is $-C(H)(O-C_1-C_5$ alkyl)-or $-C(H)(O-C_1-C_5$ alkenyl)-
- 20. The method of claim 18 wherein R_1 is $-C_9H_{19}$ and X is $-C(H)(OC_2H_5)$ -
- 21. The method of claim 17 wherein R_1 is $-C_9H_{19}$ and X is $-C(H)(OC_{10}H_{21})$.
- 22. The method of claim 17 wherein the host comprises a mammal.
- 23. The method of claim 17 wherein the host comprises a human.
- 24. A method for treating a host infected with RSV comprising administering an anti-RSV effective amount of a compound of Formula IV:

or a pharmaceutically acceptable salt or prodrug thereof,

 R_1 is selected from the group consisting of C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, and C_2 - C_{18} alkynyl that is optionally substituted from 1 to 5 times with -OH, -COOH, oxo, amino, or aryl;

X is selected from the group consisting of -NHC(O)-, -N(CH₃)C(O)-, -C(O)NH-, -C(O)N(CH₃)-, -S-, -S(O)-, -(SO₂)-, -O-, -NH-, and -N(CH₃)-;

 R_2 is selected from the group consisting of C_1 - C_{14} alkyl, C_2 - C_{14} alkenyl, and C_2 - C_{14} alkynyl that is optionally substituted from 1 to 5 times with -OH, -COOH, oxo, amino, or aryl;

Y is selected from the group consisting of -NHC(O)-, -N(CH₃)C(O)-, -C(O)NH-, -C(O)N(CH₃)-, -S-, -S(O)-, -(SO₂)-, -O-, -NH-, -N(CH₃)-, and -OC(O)-;

 R_6 is selected from the group consisting of $C_2\text{-}C_6$ alkyl; $C_2\text{-}C_6$ alkenyl, and $C_2\text{-}C_6$ alkynyl; and

 R_3 , R_4 , and R_5 are independently methyl or ethyl, or R_3 and R_4 together form an aliphatic or heterocyclic ring having five or six ring atoms and R_5 is methyl or ethyl.

25. The method of claim 24 wherein:

 R_2 is C_1 - C_{14} alkyl, C_2 - C_{14} alkenyl, or C_2 - C_{14} alkynyl;

wherein:

R₆ is -CH₂CH₂-; and

R₃, R₄, and R₅ are each independently CH₃.

- 26. The method of claim 25 wherein R_2 is C_1 - C_5 alkyl or C_2 - C_5 alkenyl.
- 27. The method of claim 25 wherein R_1 is C_8 - C_{12} alkyl and R_2 is C_1 - C_{12} alkyl.
- 28. The method of claim 25 wherein R_1 is C_8 - C_{12} alkyl and R_2 is C_1 - C_5 alkyl.
- 29. The method of claim 25 wherein R_1 is C_8 - C_{12} alkyl and R_2 is C_8 - C_{12} alkyl
- 30. The method of claim 27 wherein

- 31. The method of claim 24 wherein the host comprises a mammal.
- 32. The method of claim 24 wherein the host comprises a human.
- 33. The method of claim 24 wherein the compound comprises:

$$\begin{array}{c} O \\ \\ CH_2\text{-NH} \longrightarrow C \longrightarrow (CH_2)_{10}CH_3 \\ \\ CH \longrightarrow O \longrightarrow CH_2CH_3 \\ \\ CH_2 \longrightarrow O \longrightarrow P \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow N \longrightarrow CH_3 \\ \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ \\ CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \\ \\ CH_2 \longrightarrow CH_3 \longrightarrow CH$$

3-dodecanamido-2-ethoxypropyl-1-phosphocholine.

34. The method of claim 24 wherein the compound comprises:

3-decanamido-2-ethoxypropyl-1-phosphocholine.

35. A method for treating a host infected with RSV comprising administering an anti-RSV effective amount of a compound of Formula AA-1:

$$CH_2 - X^1 - R^1$$
 $- X^2 - R^2$
 $CH_2 - O - P - O - R_6 - N^+ - R_4$
 $CH_2 - O - P - O - R_6 - N^+ - R_4$

(AA-1)

or a pharmaceutically acceptable salt or prodrug thereof,

wherein:

$$X^1$$
 is -NHC(O)-;

$$X^2$$
 is -O-;

$$R^1$$
 is $-C_1-C_{22}$ alkyl;

$$R^2$$
 is $-C_1-C_{22}$ alkyl;

R³, R⁴, and R⁵ are methyl.

ゥ

36. The method of claim 35, wherein

R¹ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -(CH₂)₅CH₃, -(CH₂)₆CH₃, -(CH₂)₇CH₃, -(CH₂)₈CH₃, -(CH₂)₉CH₃, -(CH₂)₁₀CH₃, -(CH₂)₁₁CH₃, -(CH₂)₁₂CH₃ or -(CH₂)₁₃CH₃; and

R² is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -(CH₂)₅CH₃, -(CH₂)₆CH₃, -(CH₂)₇CH₃, -(CH₂)₈CH₃, -(CH₂)₉CH₃, -(CH₂)₁₀CH₃, -(CH₂)₁₁CH₃, -(CH₂)₁₂CH₃ or -(CH₂)₁₃CH₃.

37. The method of claim 36, wherein

 $R^1 \text{ is -(CH_2)_8CH_3, -(CH_2)_9CH_3, -(CH_2)_{10}CH_3, -(CH_2)_{11}CH_3; -(CH_2)_{12}CH_3, or -(CH_2)_{13}CH_3;}\\$ and

38. The method of claim 36, wherein

 $R^1 \text{ is -(CH_2)_5CH_3, -(CH_2)_6CH_3, -(CH_2)_7CH_3, -(CH_2)_8CH_3, -(CH_2)_9CH_3, -(CH_2)_{10}CH_3, -(CH_2)_{11}CH_3, or -(CH_2)_{12}CH_3; and \\$

 R^2 is $-(CH_2)_6CH_3$, $-(CH_2)_7CH_3$, $-(CH_2)_8CH_3$, $-(CH_2)_9CH_3$, $-(CH_2)_{10}CH_3$, $-(CH_2)_{11}CH_3$, $-(CH_2)_{12}CH_3$, or $-(CH_2)_{13}CH_3$.

39. The method of claim 1, wherein the administering is orally, intravenously, parentally, intradermally, subcutaneously, topically, or by inhalation.

1-WA/2142875.1 -85-