Quotient et dualité

1 Exercice 1.

Donner un exemple de \Bbbk -espace vectoriel E et de sous-espace vectoriel F de E où

- 1. dim F est finie et dim(E/F) est infinie;
- **2.** dim F est infinie et dim(E/F) est finie;
- **3.** dim F est infinie et dim(E/F) est infinie.
- 1. Considérons $E = \mathbb{R}^2$ et $F = \{(0,0)\}.$
- 2. Considérons $E = \mathbb{R}^2$ et $F = \mathbb{R}^2$.
- 3. Considérons \mathbb{R}^2 et $F = \mathbb{R} \times \{0\}$.

2 Exercice 2. Théorèmes d'isomorphismes

Soient E un k-espace vectoriel, et F et G deux sous-espaces vectoriels de E. On note $\pi: E \to E/F$ la projection canonique.

- 1. Montrer que l'application $G \mapsto \pi(G)$ induit une bijection croissante entre l'ensemble des sous-espaces vectoriels de E contenant F et l'ensemble des sous-espaces vectoriels de E/F. Quelle est sa bijection réciproque?
- **2.** Construire un isomorphisme entre $F/(F \cap G) = (F+G)/G$.
- **3.** On suppose $F \subseteq G$. Montrer que G/F s'identifie à un sousespace vectoriel de E/F et construire un isomorphisme entre (E/F)/(G/F) et E/G.

3 Exercice 3. Changement de base duale

Soit E un \mathbb{k} -espace vectoriel de dimension finie. Soient $\mathbf{e} = (e_i)_{i \in [\![1,n]\!]}$ et $\mathbf{f} = (f_i)_{i \in [\![1,n]\!]}$ deux bases de E, et $\mathbf{e}^* = (e_i^*)_{i \in [\![1,n]\!]}$ leurs bases duales respectives. Soit $A = (a_{i,j})_{i,j}$ la matrice de passage de \mathbf{e} à \mathbf{f} .

- **1.** Pour $j \in [1, n]$, on écrit $e_j^* = \sum_{i=1}^n \alpha_{i,j} f_i^*$ avec $\alpha_{i,j} \in \mathbb{k}$, pour tout $1 \le i, j \le n$. Déterminer $A' = (\alpha_{i,j})_{i,j}$ en fonction de A.
- **2.** En déduire la matrice de passage de e^* à f^* en fonction de A.

1.

Table des matières

Quotient et dualité		1
1	Exercice 1	1
2	Exercice 2. Théorèmes d'isomorphismes	1
3	Exercice 3. Changement de base duale	2