

MODULE I: INTRODUCTION

Leçon 1 : Potentiel du rayonnement solaire au Cameroun

Ing Gilly Tchematchou Tientcheu

gillytientcheu@gmail.com

Master d'ingénieur en Génie Energétique option énergie Renouvelable_ ENSTP YDE (Cameroun)/Université de Padoue (Italie)

Chef département technique 237 Energie

Introduction

Jusqu'au 18ieme siècle, les besoins en énergie de l'Homme dépendaient en partie de ses propres labeurs, des animaux et de la forêt. Mais lorsqu'il a manqué de bois, il a découvert une source extraordinaire d'énergie emmagasinée dans les combustibles fossiles (le charbon, le gaz naturel et le pétrole). Les combustibles fossiles sont rien de plus que des restes de plantes et d'animaux morts depuis des milliers d'années. Lorsque nous les brûlons, nous libérons l'énergie de l'ancienne lumière du soleil qui a contribué à leurs créations. Mais nous sommes devenus dangereusement tributaire de ces combustibles fossiles voir dépendant. Cependant, on constate aujourd'hui une régression de consommation des ressources fossiles sûrement dû à leurs épuisements, conjugué au caractère non écologique de celles-ci et la flambée du prix du pétrole. Non seulement cela accélère le réchauffement de la planète dû à l'émission des gaz à effet de serre (GES), mais nous manquerons probablement de pétrole et de gaz naturel au milieu de ce siècle. Le charbon bien que beaucoup plus abondant est très toxique. À cela et face aux accidents nucléaires (Chalk River en 1952, Three ile Island en 1979, Tchernobyl en 1986, Fukushima en 2011, pour ne citer que ceux-là) (Lamy, 2006), il est urgent d'agir pour la préservation de l'environnement et de la lutte contre le changement climatique. Dans cet optique et au regard du potentiel énorme en matière d'énergies renouvelables, l'Afrique subsaharienne en générale, et le Cameroun en particulier, pourrait s'inscrire dans une perspective de développement durable.

I- Potentiel en énergie solaire du Cameroun

La position géographique de Cameroun lui confère un immense potentiel solaire dont l'utilisation à des fins énergétique reste peu développée. La zone méridionale du pays, plus humide, enregistre une insolation de 4 kWh/m²/jr tandis que la zone septentrionale reçoit près de 5,8 kWh/m²/jr, ce qui se traduit par une insolation moyenne pour l'ensemble du pays de 4,9 kWh/m²/jr, soit 2327,5 TWh pour la superficie totale.

La Figure 1 démontre l'énorme potentiel solaire du Cameroun où on peut observer que son potentiel est aussi élevé que dans l'Etat de la Californie et beaucoup plus élevé qu'en Allemagne, pays leader dans l'utilisation de l'énergie solaire en Europe.

Figure 1 : Production annuelle en kWh d'un système PV de 4 kWp

II- Evaluation du gisement solaire

II.1- Influence de la localité sur le gisement solaire

Le 1er paramètre est la latitude (**Cette donnée est obtenue à l'aide d'une GPS**), c'est-à-dire la distance par rapport à l'équateur. L'irradiation solaire diminue au fur et à mesure qu'on se rapproche des pôles (ou qu'on s'éloigne de l'équateur). La nébulosité du site est également une variable. On remarquera en ce sens que les zones arides à très faibles nébulosité sont les plus soumises aux fortes irradiations solaires (désert d'Atacama au Chili, désert du Sahara en Afrique).

Carte mondiale de l'irradiation solaire globale (annuelle et journalière moyenne)

Par exemple, la France est située entre les latitudes +41° et +51°. L'irradiation solaire varie entre 1000 kWh/m²/an (au nord) et 1700 kWh/m²/an (sur le pourtour méditerranéen). A ce titre, il apparaît une inégalité entre ces 2 extrémités du territoire : pour un même investissement, la production photovoltaïque est quasiment 2 fois supérieure dans le sud que dans le nord.

On notera également une dépendance de l'irradiation solaire vis-à-vis de l'altitude. Par exemple, les Alpes et les Pyrénées présentent des points rouges à forte irradiation solaire. Cela s'explique par le fait qu'en altitude, le rayonnement solaire traverse une épaisseur d'atmosphère moins importante qu'en plaine. L'effet de filtre de l'atmosphère est donc moins impactant.

Coefficient Air-Masse

Le soleil émet continuellement une énergie radiative considérable dans toutes les directions du système solaire. Une moyenne de 1 367 W/m² de cette énergie atteint le bord externe de l'atmosphère terrestre. Celle-ci absorbe et reflète une partie de ce rayonnement solaire de telle sorte que le l'énergie reçue au niveau de la surface de la mer (altitude 0 m), par ciel clair et quand le soleil est au zénith, vaut 1 000 W/m². Cette situation a été définie par la communauté scientifique comme une situation de référence décrite par l'indicateur Air-Masse, notée AM 1. Le coefficient Air-Masse évalue la masse atmosphérique traversé par le rayonnement solaire.

Lorsqu'on s'écarte de cette configuration de référence (en prenant de l'altitude, lorsque le soleil n'est plus au zénith ou bien lorsque l'atmosphère est polluée), le coefficient Air-Masse évolue plus ou moins. On parle alors de coefficient AM "X". Le nombre "X" indique que le parcours du rayonnement solaire est X fois supérieur au parcours de référence (AM1), et sera donc plus ou moins filtré.

On remarque également que les zones de fortes urbanisations présentent un déficit d'irradiation solaire lié à la présence de pollution atmosphérique qui est d'autant d'éléments absorbants du rayonnement. On note par ailleurs que Marseille (deuxième ville de France) ne présente pas cet inconvénient car elle bénéficie du mistral qui chasse cette pollution urbaine.

Dans le domaine du photovoltaïque autonome, l'échelle de temps pour l'évaluation du gisement solaire est la journée. On exprimera communément le gisement solaire en kWh/jour ou bien en kWh/m²/jour. Ce gisement solaire journalier dépend, comme nous venons de le voir de la localisation, mais également de la période de l'année.

Où trouver les données météorologiques ?

La conception d'un système photovoltaïque passe la connaissance du gisement solaire journalier du site, ce qui n'est pas toutà-fait possible avec les cartes générales comme celles que nous présentons dans cet ouvrage. Pour ce faire, il convient de s'adresser aux services météorologiques nationaux et internationaux qui enregistrent et archivent les données d'ensoleillement journalier mois par mois. Tout concepteur pourra trouver les données journalières dont il a besoin pour dimensionner son installation photovoltaïque.

A titre d'exemple, PVGIS Africa diffusent gratuitement sur leur site internet ces données pour la zone Afrique : http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?lang=en&map=africa.

II.2- Angle d'inclinaison des modules PV dans une installation photovoltaïque

L'inclinaison correspond à la pente du module par rapport à l'horizontale. Elle se mesure en degré ° grâce à un clinomètre :

- Une inclinaison de 0° signifie que le module est à plat ;
- Une inclinaison de 90° signifie que le module est à la verticale.

Sur toiture, l'inclinaison du module est imposée par la pente de la toiture :

Angle d'inclinaison optimale des modules photovoltaïques

L'inclinaison optimale est théoriquement fonction de la latitude du lieu.

Ainsi pour installation PV autonome l'inclinaison optimale est donnée par : **latitude du lieu** + **10** °. Cette formule n'est valable que dans le cas où on souhaite maximiser l'irradiation solaire reçue en saison de pluie et lorsque l'orientation est plein Sud.

Si l'orientation n'est pas plein sud, on pourra utiliser la formule approchée suivante :

Inclinaison optimale = (latitude du lieu + 10°) × (1 - Orientation/ 180°).

Cependant il est important de note que l'inclinaison optimal varie d'un mois à l'autre au cour d'une année. L'inclinaison optimale du champ solaire sera donc celle qui donnera la meilleure production solaire au mois de l'année présentant les pires irradiations.

II.3- Orientation des modules PV dans une installation photovoltaïque

Au Cameroun, et plus généralement dans l'hémisphère nord, **l'orientation plein sud** est la meilleure orientation possible pour un champ photovoltaïque. En effet, elle permettra de capter un maximum de rayonnement solaire tout-au-long d'une journée. Pour une toiture existante, l'orientation du toit impose l'orientation des panneaux solaires. Cette orientation est mesurée à l'aide d'une **boussole**.

- Une orientation à 90° signifie module plein Ouest
- Une orientation à 0° signifie module plein Sud
- Une orientation à -90° signifie module plein Est.

L'orientation Sud est la plus exposée au rayonnement solaire

Comme nous venons de le voir, le gisement solaire dépend non seulement de la localisation mais également de l'inclinaison, l'orientation du champ photovoltaïque mais bien évidement aussi de la période de l'année. Il est donc à noter que les pires scénarios doivent être calculés car il est préférable d'avoir de l'énergie supplémentaire dans la saison avec une irradiation de râpe que pas assez dans la pire saison. Par conséquent, la valeur pour le pire mois sera utilisée.

Exemple simple : Le gisement solaire nécessaire au dimensionnement d'une installation solaire PV autonome pour couvrir les besoins en énergie de Madame DJEUKAM Rose (Domicile situé au quartier Fouda-Yaoundé) s'effectue relevant les données suivantes :

Localisation :

Coordonnée	Degré, Minute, Seconde	Degré décimal
Latitude	3°52'35" Nord	3,876388889

Longitude	11°31'52" Est	11,53111111
	Élévation: 784 m.s.n.m	

Coordonnée du site (donnée recueilli grâce à un GPS)

- Inclinaison du toit (Relevé grâce à un clinomètre) : 17°
- Orientation du toit (Relevé grâce à une boussole) : 10° Ouest

L'ensemble de ces données introduit dans PVGIS Africa permet d'obtenir les données d'irradiations suivant : (N.B. : Convertir les coordonnées GPS du site du Degré, minute, seconde en Degré décimal avant de les entrés sous PVGIS).

•	Système fixe: inclinaison=17°, orientation=10°						
Mois	H_d						
Janvier	6.52						
Février	5.91						
Mars	5.83						
Avril	4.84						
Mai	4.42						
Juin	3.88						
Juillet	3.61						
Août	3.75						
Septembre	4.58						
Octobre	4.67						
Novembre	5.26						
Décembre	6.39						
Année	4.97						

H_d: Irradiation annuelle sur le plan incliné choisi en kWh/m²/jr

L'irradiation choisie pour la suite est celui du mois de juillet 3,61 kWh/m²/jr car présentant le pire scénario.

¹ Soit la coordonnée $X^{\circ}YY'ZZ''$, sa conversion en degré décimal passe par la formule suivant : X + (YY/60) + (ZZ/3600).

III- Gisement solaire du Cameroun par Région (Base de données de radiation solaire employée: PVGIS-CMSAF)

Sud									
Cordonné	2.9200421		10.629749						
Site: 2°55'12" Nord, 10°37'47" Est, Élévation: 543 m.s.n.m,									
L'angle d'inclinaison optimale est: 7 degrés									
Irradiation annuelle perdue à cause des ombres (horizontale): 0.0 %									
Mois	H _h	H _{opt}		l _{opt}					
Jan	5830	6100		31					
Fev	5590	5730		20					
Mar	5820	5840		6					
Avr	5010	4910		-11					
Mai	4770	4600		-23					
Juin	4270	4120		-26					
Jui	3980	3860		-21					
Aug	4000	3930		-11					
Sep	4430	4410		-1					
Oct	4390	4440		13					
Nov	4670	4820		25					
Dec	5540	5820		33					
Année	4860	4880		7					

Adamaoua				Centre				Ouest				
Cordonn	é 7.082	23999	12.0899856	4.7028644, 10.6334799		5.5858177		10.0408476	1			
Site: 7°4'	56" Nord	, 12°5'23	" Est,	Site: 4°42'1	.0" Nord, 10°3	38'0" Est, Élé	vation:	Site: 5°35'8" Nor	d, 10°2'27" Es	t, Élévation: 2	076	
Élévation	: 1126 m	.s.n.m,		418 m.s.n.r	m,			m.s.n.m,				
L'angle d'inclinaison optimale est: 12				L'angle d'in	clinaison opti	imale est: 8	degrés	L'angle d'inclinais	L'angle d'inclinaison optimale est: 11 degrés			
degrés												
			e à cause des	1	annuelle pero		des	Irradiation annue		cause des omb	res	
ombres (+ *		-	orizontale): 2.			(horizontale): 0.0				
Mois	Hh	H _{opt}	l _{opt}	Mois	H _h	H _{opt}	l _{opt}	Mois	H _h	H _{opt}	l _{opt}	
Jan	6440	7100	36	Jan	5930	6270	32	Jan	6450	7020	35	
Fev	6630	7030	26	Fev	5700	5880	21	Fev	6350	6660	24	
Mar	7030	7110	11	Mar	5850	5880	7	Mar	6570	6620	9	
Avr	5880	5690	-7	Avr	5280	5180	-8	Avr	5360	5200	-8	
Mai	5850	5460	-20	Mai	5130	4920	-20	Mai	5390	5070	-21	
Juin	5470	5050	-26	Juin	4670	4460	-25	Juin	4750	4450	-25	
Jui	4820	4510	-22	Jui	4310	4160	-20	Jui	4360	4130	-22	
Aug	4690	4510	-11	Aug	4200	4110	-10	Aug	4160	4030	-11	
Sep	5170	5140	4	Sep	4640	4620	1	Sep	4490	4450	2	
Oct	5530	5720	19	Oct	4810	4890	15	Oct	4980	5100	16	
Nov	6190	6720	33	Nov	5110	5330	27	Nov	5670	6050	31	
Dec	6220	6930	39	Dec	5680	6040	34	Dec	6210	6810	37	
Année	5820	5910	12	Année	5110	5140	8	Année	5390	5460	11	

Est				Nord				Extrême-Nord				
Cordonné	3.871	.6338 12	2.1136202	8.6252703		12.7903478		11.5044622	13.4033854	13.4033854		
Site: 2°55	'12" Nord	l, 10°37'47	" Est,	Site: 8°37'30" Nord, 12°47'25" Est, Élévation:				Site: 11°30'16" No	ord, 13°24'12'	Est, Élévation	: 340	
Élévation	: 543 m.s	.n.m,		287 m.s.n.m	١,			m.s.n.m,				
L'angle d'inclinaison optimale est: 7				L'angle d'inc	linaison opti	male est: 13 o	legrés	L'angle d'inclinais	L'angle d'inclinaison optimale est: 15 degrés			
degrés												
ı		e perdue à	cause des			ue à cause de	25	Irradiation annue	•	ause des ombi	res	
ombres (norizonta	le): 0.0 %		ombres (hor	rizontale): 0.0	9%		(horizontale): 0.0	%			
Mois	H _h	H _{opt}	I _{opt}	Mois	Hh	Hopt	lopt	Mois	Hh	Hopt	lopt	
Jan	Hh	Hopt	lopt	Jan	6120	6810	37	Jan	5910	6770	41	
Fev	5830	6100	31	Fev	6310	6720	27	Fev	6350	6920	31	
Mar	5590	5730	20	Mar	7020	7130	12	Mar	7360	7550	16	
Avr	5820	5840	6	Avr	6010	5820	-5	Avr	6720	6500	-2	
Mai	5010	4910	-11	Mai	5750	5370	-18	Mai	6410	5920	-17	
Juin	4770	4600	-23	Juin	5480	5040	-24	Juin	5880	5340	-22	
Jui	4270	4120	-26	Jui	4970	4630	-21	Jui	5460	5040	-19	
Aug	3980	3860	-21	Aug	4790	4610	-10	Aug	5000	4790	-7	
Sep	4000	3930	-11	Sep	5200	5190	5	Sep	5720	5740	8	
Oct	4430	4410	-1	Oct	5890	6140	21	Oct	6200	6590	25	
Nov	4390	4440	13	Nov	6150	6750	34	Nov	6040	6810	38	
Dec	4670	4820	25	Dec	6010	6770	39	Dec	5780	6710	43	
Année	5540	5820	33	Année	5800	5910	13	Année	6070	6220	15	

Littoral				Nord-Ouest			Sud-ouest					
Cordonn	é 4.306	612 9	9.1093448	6.4487852		9.8523518		5.2282328		8.2013967	8.2013967	
Site: 4°18	3'23" Nord	d, 9°6'33"	Est,	Site: 6°26'55" Nord, 9°51'8" Est, Élévation:				Site: 5°13'41" No	rd, 8°12'5" Est	t, Élévation: 13	m.s.n.m,	
Élévation	: 870 m.s	.n.m,		605 m.s.n.n	٦,							
L'angle d degrés	'inclinaisc	n optimal	le est: 8	L'angle d'inclinaison optimale est: 11 degrés				L'angle d'inclinaison optimale est: 11 degrés				
1	Irradiation annuelle perdue à cause des ombres (horizontale): 0.1 %				·				lle perdue à c %	ause des omb	res	
Mois	Hh	Hopt	lopt	Mois	Hh	Hopt	lopt	Mois	Hh	Hopt	lopt	
Jan	4410	4580	28	Jan	6340	6890	37	Jan	6050	6530	41	
Fev	3870	3930	16	Fev	6390	6710	27	Fev	5810	6050	31	
Mar	3850	3850	4	Mar	6790	6860	12	Mar	5900	5920	16	
Avr	3250	3210	-6	Avr	5510	5340	-5	Avr	5260	5110	-2	
Mai	2930	2870	-13	Mai	5160	4870	-18	Mai	5040	4770	-17	
Juin	2590	2530	-15	Juin	4870	4560	-24	Juin	4430	4170	-22	
Jui	2570	2520	-13	Jui	4650	4390	-21	Jui	3890	3700	-19	
Aug	2520	2490	-6	Aug	4530	4390	-10	Aug	3650	3550	-7	
Sep	2770	2760	0	Sep	4820	4800	5	Sep	4200	4170	8	
Oct	2690	2700	8	Oct	4840	4970	21	Oct	4700	4790	25	
Nov	2970	3030	18	Nov	5750	6170	34	Nov	5170	5480	38	
Dec	3970	4120	28	Dec	6000	6570	39	Dec	5760	6260	43	
Année	3200	3210	8	Année	5470	5540	13	Année	4980	5040	15	