CH2010

NOHAN JOEMON CH198072

FUGACITY

ASSIGNMENT

30-11-20

1: The plot û given below: (In ra vs xa)

For the plot ,

In(ra) - 0 as
$$x_a \longrightarrow 1$$

This is a characteristic of Lewis-Randell returns state.

:. Species a is based on [Lewis-Randall]

At equilibrium (species 0):

$$f_a = f_a^l = f_a^v = q_a^{sot} p_a^{sut} exp \left[\int_{p_a}^{p_a} \sqrt{q_a^l} dp \right]$$

Assumption:

$$\therefore f_a = f_a^{\ell} = P_a^{sat} = \boxed{30 \text{ kPa}}$$

From the graph,
$$lr(y_a^{\infty}) = 3$$

(the value of $lr(r_a)$ at $\alpha_a \rightarrow 0$)

infinite dilution

$$r_a^{\infty} = \frac{Ha}{fa}$$

(b) The relation between
$$r_a$$
 and r_a and r_a are a :
$$r_a = \frac{1}{r_a} = \frac{f_a}{H_a}$$

$$= \frac{1}{20.08}$$

For octulty welficient,

$$\Rightarrow x_a \frac{\partial (\ln r_a)}{\partial x_a} + (1-x_a) \frac{\partial (\ln r_b)}{\partial x_a} = 0$$

Approximating, we get

$$\left(\ln\left(r_{b}\right)\right)_{i+1} = \left(\ln\left(r_{b}\right)\right)_{i} - \left(\frac{\alpha a}{1-2a} \cdot \frac{\partial \left(\ln\left(r_{o}\right)\right)}{\partial \times a}\right)_{i}^{\left(\Delta \times a\right)}_{i}$$

where (Doca); = 2;+1 - 2;

we find 2 (en (ro)) using cardened difference method

27 (1)

 $\left(\frac{\partial (\upsilon_1(r_0))}{\partial x_0}\right)_i = \frac{(\upsilon_1(r_0))_{i+1} - (\upsilon_1(r_0))_{i-1}}{2(\Delta x_0)_i}$

Returne point: oca = 0 -> pure b (i=0) oca = 0 18 & doore Lewis-Randall returner state,

As xa = 0 rb = 1

 $\exists a = 0 \quad (\ln(r_b)) = 0$

:. We can sur the relation (1) to find in (1) at all points. First one is shown as laumple

7 = 1 : 20 = 0.00

 $\left(\ln(\gamma_6)\right)_0 = \left(\ln(\gamma_6)\right)_0 - \left(\frac{\alpha}{1-\alpha}\right)$ 0 (xa at 1=0 =0)

⇒(b, (Yb)) = 0

 $\frac{1=2}{}$: $(2a)_2 = 0.04$

 $\left(\ln\left(r_{b}\right)\right)_{0.04} = \left(\ln\left(r_{b}\right)\right)_{0.02} - \left(\frac{\alpha_{0}}{1-\alpha_{0}} \cdot \frac{\partial\left(\ln\left(r_{0}\right)\right)}{\partial\alpha_{0}}\right)\left(\Delta\alpha_{0}\right)_{0.02}$

$$\frac{(\Delta x_0)_{0.02}}{(\partial (\ln x_a))} = \frac{(\ln (x_0))_{0.04} - (\ln (x_a))_{0.04}}{(\ln (x_0))_{0.04}} = \frac{2 \cdot 7 - 0.3}{0.04}$$

$$\frac{(\Delta x_0)_{0.02}}{(\Delta x_0)_{0.02}} = \frac{(\ln (x_0))_{0.04}}{(\Delta x_0)_{0.02}} = \frac{0.02}{(1-0.02)}$$

$$\frac{(\Delta x_0)_{0.02}}{(\Delta x_0)_{0.04}} = \frac{0.02}{(1-0.02)} = \frac{0.02}{0.039}$$
Substituting,
$$(\ln (x_0))_{0.04} = \frac{0.003061}{0.004}$$
Table:

xa	In (gamma a)	In (gamma b)
0	3	0
0.02	2.85	0
0.04	2.7	0.00306122449
0.1	2.2	0.01660289116
0.2	1.6	0.07771400227
0.3	1.1	0.2152140023
0.4	0.75	0.3973568594
0.5	0.45	0.6140235261
0.6	0.25	0.8640235261
0.7	0.1	1.126523526
8.0	0.05	1.359856859
0.9	0	1.559856859
1	0	1.784856859

(39mma b)					
=					
2					
				1	
1.5				, Marie Company	
			, and the same		
1					
0.5					
555-5	, and the same of				
	e a company of the co				
0		0.5		1	
					,

We know,

qi = x, ri

= aa - xa ra

= 9 9 = 2, 1 = (1-x0) 1 b

We know to and to at different any value

:. We can find aa and ab

Qa = aa ra

96 = (1-x0) Yb

Table showing and and abouting (b):

xa	In (gamma a)	In (gamma b)	gamma a	gamma b	activity(a)	activity(b)
0	3	0	20.08553692	1	0	1
0.02	2.85	0	17.28778184	1	0.3457556368	0.98
0.04	2.7	0.00306122449	14.87973172	1.003065915	0.595189269	0.9629432782
0.1	2.2	0.01660289116	9.025013499	1.016741485	0.9025013499	0.9150673366
0.2	1.6	0.07771400227	4.953032424	1.080813504	0.9906064849	0.8646508034
0.3	1.1	0.2152140023	3.004166024	1.240127259	0.9012498072	0.868089081
0.4	0.75	0.3973568594	2.117000017	1.487886802	0.8468000066	0.892732081
0.5	0.45	0.6140235261	1.568312185	1.84785134	0.7841560927	0.9239256698
0.6	0.25	0.8640235261	1.284025417	2.372688086	0.77041525	0.9490752346
0.7	0.1	1.126523526	1.105170918	3.084913216	0.7736196427	0.9254739649
8.0	0.05	1.359856859	1.051271096	3.895635638	0.8410168771	0.7791271277
0.9	0	1.559856859	1	4.758140113	0.9	0.4758140113
1	0	1.784856859	1	5.958726951	1	0

Plot: aa vs xa and ab vs xa

The time - ab - activity (b) - red line
block time - aa - activity (c) - violet line

In (a), we found
$$ra^{\alpha} = e^3 = 20.08 \Rightarrow \ln(ra^{\alpha}) = 3$$

From Q(3), (plot) \rightarrow $\ln(rb^{\alpha}) = \frac{1.7848}{200}$
(value of AB $\ln(rb)$ at $\alpha a \rightarrow 1$)

In
$$(r_a)$$
 = $\ln(r_a)$ - $\ln(r_a)$ = $\ln(r_a)$ - 3

In (r_b) - $\ln(r_b)$ - $\ln(r_b)$ = $\ln(r_b)$ - $\ln(r_b)$ - $\ln(r_b)$ - $\ln(r_b)$ - $\ln(r_b)$ = $\ln(r_b)$ - $\ln(r_b)$ = $\ln(r_b)$ - $\ln(r_b)$ =

xa	In (gamma a)	In (gamma b)	In (gamma a, Henry's)	In (gamma b, Henry's
0	3	0	0	-1.784856859
0.02	2.85	0	-0.15	-1.784856859
0.04	2.7	0.00306122449	-0.3	-1.781795635
0.1	2.2	0.01660289116	-0.8	-1.768253968
0.2	1.6	0.07771400227	-1.4	-1.707142857
0.3	1.1	0.2152140023	-1.9	-1.569642857
0.4	0.75	0.3973568594	-2.25	-1.3875
0.5	0.45	0.6140235261	-2.55	-1.170833333
0.6	0.25	0.8640235261	-2.75	-0.9208333333
0.7	0.1	1.126523526	-2.9	-0.6583333333
8.0	0.05	1.359856859	-2.95	-0.425
0.9	0	1.559856859	-3	-0.225
1	0	1.784856859	-3	0

green line - In (To Henry's)

Plot: In Ya vs xq and In Yb Henry's Vs

In (ra Hong's) - blue line
In (ra Hong's) - rud line

6)
$$\ln\left(\frac{r_a}{r_b}\right) = \ln(r_a) - \ln(r_b)$$
 vs x_a

we have value of $\ln(r_a)$ and $\ln(r_b)$ at

various x_a value:

Plot: $\left[\ln\left(\frac{r_a}{r_b}\right)\right]$ vs x_a

In (ra) dxa - and intloved by the above graph and x-usus

We can find their area by counting no of equation.

Trapezoidal rulle:

Arua $\cong \frac{1}{2} \times 0.1 \left[3 + (2.18) + (1.52) + (0.81) +$

-1 x 0.1 [+0.16 + (0.614)2 + (1.023)2 + (1.91) & + (1.55)2+1.78]

Arua = 0.0848 -> doce to zuro

=> quality of imperimental data is fairly right

 $a_b = \frac{8}{10} = 0.2$

From, the graph, we can find en (ro) at 2a = 0.8

 $ln(r_a) = 0.05$ $\Rightarrow r_a = 1.05$

At equilibrium,

 $\hat{f}_{\alpha} = \hat{f}_{\alpha} = 5c_{\alpha} Y_{\alpha} f_{\alpha} = 0.8 \times 1.05 \times 8.0 \text{ kPa}$ $\hat{f}_{\alpha} = 67.2 \text{ kPa}$

The vapor mole froction can be determined from the definition of fugacity in the vapor phase if we assure so I deal gas behaviour (masonable at 1 bar)

$$\hat{f}_{a} = y_{0} P \qquad P = 1 \text{ box (yiven)}$$

$$y_{a} = 962.56 \text{ kPa} = -0.672$$

$$100 \text{ kPa} = 0.672$$

9) Assume the two-sultix Murgules equation:
$$g = A \times_a \times_b$$

$$\frac{1}{G_{1}a} = RT \ln (Y_{a}) = A x_{b}^{2} = A (1-x_{a})^{2}$$

$$\left[RT \ln \left(r_{0} \right) \right] = A \left(1 - \alpha_{0} \right)^{2}$$

Tuble:

xa	(1-xa)^2	In (gamma a)	RT In (gamma a)
0	1	3	7482.6
0.02	0.9604	2.85	7108.47
0.04	0.9216	2.7	6734.34
0.1	0.81	2.2	5487.24
0.2	0.64	1.6	3990.72
0.3	0.49	1.1	2743.62
0.4	0.36	0.75	1870.65
0.5	0.25	0.45	1122.39
0.6	0.16	0.25	623.55
0.7	0.09	0.1	249.42
0.8	0.04	0.05	124.71
0.9	0.01	0	0
1	0	0	0

Plot: RTIn (ro) vs (1-xa)2 Orange - line - s wwe - ht line

Slope of fitted line = A = 7495 25319 7531.9

A = 7531.9 7/md

3-sulfix Margules . 14n.

Table:

xa	(1-xa)	RT In (gamma a)	
0	1	7482.6	
0.02	0.98	7108.47	
0.04	0.96	6734.34	
0.1	0.9	5487.24	
0.2	8.0	3990.72	
0.3	0.7	2743.62	
0.4	0.6	1870.65	
0.5	0.5	1122.39	
0.6	0.4	623.55	
0.7	0.3	249.42	
8.0	0.2	124.71	
0.9	0.1	0	
1	0	0	

Plot .

oxange Grand Line is represented as
$$y = ax^3 + bx^2 + cx + d$$

As expected, a and I are done to o

:, orange line: y = 6400 x 3 + 933.63 x 2 ong ign: y = (A+B)23 + -4B oc

Comp orung,

B = -233.4075 J/mH

Plot :

$$g_{a} = 50 \text{ J/md} \qquad g_{b} = 100 \text{ J/md}$$

$$x_{a} g_{a} + x_{b} g_{b} = 50 x_{a} + (1-x_{a}) 100$$

$$\Delta g_{mix}^{i dul} = PT(x_{a} \ln x_{a} + x_{b} \ln x_{b})$$

$$g = A x_{a} x_{b} = A x_{a} (1-x_{a}) = 7531.9 G_{a} (1-x_{a})$$

xa	xaga+xbgb	delta(g-mix, ideal)	gE, excess energy	gT, total energy
0	100	0	0	100
0.02	99	-244.5291563	147.62524	2.096083658
0.04	98	-418.8862933	289.22496	-31.66133328
0.1	95	-810.8219522	677.871	-37.95095223
0.2	90	-1248.103725	1205.104	47.00027521
0.3	85	-1523.617742	1581.699	143.0812578
0.4	80	-1678.6257	1807.656	209.0303001
0.5	75	-1728.847698	1882.975	229.1273022
0.6	70	-1678.6257	1807.656	199.0303001
0.7	65	-1523.617742	1581.699	123.0812578
8.0	60	-1248.103725	1205.104	17.00027521
0.9	55	-810.8219522	677.871	-77.95095223
1	50	0	0	50

Plot :

11) Plot of good vs xa:

violet the -> regulard tangent

OBSERVATIONS

- 2 minima and 1 maxima

-> Tangent joining two minima

the tangent shows the g value of phase-separated mixtures. The mixture will except with two compositions in their area because, in their case, the total gibbs free very is smaller than any point on the were (between their 2 minimu)

Assume
$$A = \frac{15329}{1531.9} - \frac{7531.9}{1000}$$

ghotal = $9axa + 9bxb + \Delta 9mix + 8E$

Coamy as physicus case \Rightarrow except A is -ve)

Table:

xa	xaga+xbgb	delta(g-mix, ideal)	gE, excess energy	gT, total energy
0	100	0	0	100
0.02	99	-244.5291563	-146.902	-292.4311563
0.04	98	-418.8862933	-289.22496	-610.1112533
0.1	95	-810.8219522	-674.55	-1390.371952
0.2	90	-1248.103725	-1199.2	-2357.303725
0.3	85	-1523.617742	-1573.95	-3012.567742
0.4	80	-1678.6257	-1798.8	-3397.4257
0.5	75	-1728.847698	-1873.75	-3527.597698
0.6	70	-1678.6257	-1798.8	-3407.4257
0.7	65	-1523.617742	-1573.95	-3032.567742
8.0	60	-1248.103725	-1199.2	-2387.303725
0.9	55	-810.8219522	-674.55	-1430.371952
1	50	0	0	50

Plot: (8 tolul vs xa): A is regative

Obsurvations

-> The plot is concave parabolic in this can
-> How, there is only one minima, so phase
separation does not occur.