1

Digital Signal Processing

Ravula Karthik

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	7

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/karthik6281/Signal-Processing/blob/main/sig-pro/codes/ Sound Noise.wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code. **Solution:**

import soundfile as sf from scipy import signal #read .wav file input signal,fs = sf.read('Sound Noise.wav' #sampling frequency of Input signal sampl freq=fs #order of the filter order=4 #cutoff frquency 4kHz cutoff freq=4000.0 #digital frequency Wn=2*cutoff freq/sampl freq # b and a are numerator and denominator polynomials respectively b, a = signal.butter(order, Wn, 'low') #filter the input signal with butterworth filter output signal = signal.filtfilt(b, a, input signal) $\#output \quad signal = signal.lfilter(b, a,$ input signal) #write the output signal into .wav file sf.write('Sound With ReducedNoise.wav',

2.4 The output of the python script Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

output signal, fs)

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

Solution: The following code yields Fig. 3.1.

wget https://github.com/karthik6281/Signal-Processing/blob/main/sig-pro/codes/3_1. py

Fig. 3.1

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/karthik6281/Signal— Processing/blob/main/sig-pro/codes/3_2. py

3.3 Repeat the above exercise using a C code. **Solution:** The c code can be obtained from

wget https://github.com/karthik6281/Signal— Processing/blob/main/sig-pro/codes/3_3. c

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Fig. 3.2

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem ??. **Solution:** Z-transform of x(n), X(z) is given by

$$\mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.7)

$$=\sum_{n=0}^{5} x(n)z^{-n} \tag{4.8}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.9)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1+z^{-2}}{1+\frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.15}$$

Solution: The *Z*-transform of $\delta(n)$ is defined as

$$\mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} \delta(n) z^{-n}$$
 (4.16)

$$= \delta(0)z^{-0} \tag{4.17}$$

$$= 1 \tag{4.18}$$

Hence we can say that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.19}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.20)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.21}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

Solution:

$$\mathcal{Z}\lbrace a^{n}u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^{n}u(n)z^{-n}$$
 (4.23)

$$=\sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.24)

$$=\sum_{n=0}^{\infty} (z^{-1}a)^n \tag{4.25}$$

$$= \frac{1}{1 - az^{-1}}, \quad \left| z^{-1}a \right| < 1 \quad (4.26)$$

$$= \frac{1}{1 - az^{-1}}, \quad |z| > |a| \tag{4.27}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.28)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: $H(e^{jw})$ is given by

$$H(e^{jw}) = \frac{1 + (e^{jw})^{-2}}{1 + \frac{1}{2}(e^{jw})^{-1}}$$
(4.29)

$$=2\frac{1+\cos(-2\omega)+j\sin(-2\omega)}{2+\cos(-\omega)+j\sin(-\omega)} \quad (4.30)$$

$$=2\frac{1+\cos(2\omega)-j\sin(2\omega)}{2+\cos(\omega)-j\sin(\omega)}$$
(4.31)

$$=2\frac{2\cos^{2}(\omega)-2j\sin(\omega)\cos(\omega)}{2+\cos(\omega)-j\sin(\omega)}$$
(4.32)

$$= 4\cos(\omega) \frac{\cos(\omega) - j\sin(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.33)

$$= 4|\cos(\omega)| \frac{e^{jw}}{2 + e^{jw}}$$
 (4.34)

So,

$$|H(e^{jw})| = 4|\cos(\omega)|\frac{|e^{jw}|}{|2 + e^{jw}|}$$
 (4.35)

$$=\frac{|4\cos(\omega)|}{5+4\cos(\omega)}\tag{4.36}$$

 $|H(e^{j\omega})|$ is periodic with period π .(The LCM of the period of $|\cos(\omega)|$ and $5 + 4\cos(\omega)$ is 2π) The graph of $|H(e^{j\omega})|$ is symmetric with respect to y-axis. It is continuous over ω . The following code plots Fig. 4.6.

wget https://github.com/ karthik6281/Signal— Processing/blob/main/ Assignment1/codes/4_6. py

Fig. 4.6: $|H(e^{j\omega})|$

4.7 Express h(n) in terms of $H(e^{j\omega})$. **Solution:**

$$\int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega k}d\omega = \sum_{-\infty}^{\infty} h(n) \int_{-\pi}^{\pi} e^{j\omega n}e^{-j\omega k}d\omega$$
(4.37)

$$=\sum_{-\infty}^{\infty}h(n)\int_{-\pi}^{\pi}(\cos(n-k)+i\sin(n-k))d\omega$$
(4.38)

$$\int_{-\pi}^{\pi} (\cos(n-k) + i\sin(n-k))d\omega = \begin{cases} 2\pi & n=k\\ 0 & n\neq k \end{cases}$$
(4.39)

$$\therefore h(n) = \frac{\int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n}d\omega}{2\pi}$$
 (4.40)

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

Solution: H(z) is given by

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = \frac{2 + 2z^{-2}}{2 + z^{-1}}$$
 (5.2)

$$\begin{array}{r}
2z^{-1} - 4 \\
z^{-1} + 2 \overline{\smash{\big)}\ 2z^{-2} + 2} \\
\underline{2z^{-2} + 4z^{-1}} \\
\underline{-4z^{-1} + 2} \\
\underline{-4z^{-1} - 8} \\
\underline{10}
\end{array}$$

So,

$$H(z) = 2z^{-1} - 4 + \frac{10}{z^{-1} + 2}$$
 (5.3)

$$=2z^{-1}-4+\frac{5}{\frac{1}{2}z^{-1}+1}$$
 (5.4)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{z^{-1}}{2}\right)^{n}$$
 (5.5)

$$=1-\frac{1}{2}z^{-1}+5\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n} \qquad (5.6)$$

So,h(n) will be given by

$$h(n) = \begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.7)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.8}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.9)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.10)

using (4.22) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://github.com/ karthik6281/Signal— Processing/blob/main/ Assignment1/codes/5_3. py on simplfying we get h(n) as

$$\begin{cases}
5 \times \left(-\frac{1}{2}\right)^n & n \ge 2 \\
\left(-\frac{1}{2}\right)^n & 2 > n \ge 0 \\
0 & n < 0
\end{cases}$$
(5.11)

$$: 5 \times \left(-\frac{1}{2}\right)^n \to 0 \quad \text{for} \quad n \to \infty$$
 (5.12)

So, we can conclude that h(n) is bounded.

Fig. 5.3: h(n) wrt n

5.4 Convergent? Justify using the ratio test. **Solution:** A sequence $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.13}$$

This is known as Ratio test. In this case the limit will become,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right|$$
 (5.14)
$$= \frac{1}{2} < 1$$
 (5.15)

 $\therefore h(n)$ is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=1}^{\infty} h(n) < \infty \tag{5.16}$$

Is the system defined by (3.2) stable for the impulse response in (5.8)?

Solution: Taking h(n) as defined in (5.7) Then

$$\sum_{n=-\infty}^{\infty} h(n) = +\sum_{n=-\infty}^{-1} 0 + \sum_{n=0}^{1} \left(-\frac{1}{2}\right)^n + \sum_{n=2}^{\infty} 5 \times \left(-\frac{1}{2}\right)^n$$

$$= \frac{4}{3}$$
(5.18)

Since the sum is finite so the system is stable for impulsive response

5.6 Verify the above result using a python code.
Solution: The above result is verified using the below python code

wget https://github.com/karthik6281/Signal-Processing/tree/main/Assignment1/codes/5 _6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.19)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 3.1.

wget https://github.com/karthik/Signal-Processing/tree/main/Assignment1/codes/5 _7.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.20)

Comment. The operation in (5.20) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.1.

wget https://github.com/karthik/Signal-Processing/tree/main/Assignment1/codes/5 _8.py

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Toeplitz matrix.

Solution:

wget https://github.com/karthik6281/Signal-Processing/tree/main/Assignment1/codes/5 _9.py

From (5.20), we express y(n) as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.21)

Fig. 5.9: Convolution of x(n) and h(n) using toeplitz matrix

To understand how we can use a Toeplitz matrix, we will see what we are doing in (5.20)

$$y(0) = x(0) h(0) (5.22)$$

$$y(1) = x(0)h(1) + x(1)h(0)$$
 (5.23)

$$y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0)$$
(5.24)

.

The same thing can be written as,

$$y(0) = (h(0) \quad 0 \quad 0 \quad . \quad . \quad .0) \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
 (5.25)

$$y(1) = \begin{pmatrix} h(1) & h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.26)

$$y(2) = \begin{pmatrix} h(2) & h(1) & h(0) & 0 & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.27)

•

Using Toeplitz matrix of h(n) we can simplify it as,

$$y(n) = \begin{pmatrix} h(0) & 0 & 0 & \dots & 0 \\ h(1) & h(0) & 0 & \dots & 0 \\ h(2) & h(1) & h(0) & \dots & 0 \\ & & & & \\ & & & & \\ 0 & 0 & 0 & \dots & h(m-1) \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$

Now from (3.1) we will take n

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.29)

And from (5.7) we will take some values of n,

$$h(n) = \begin{pmatrix} 1\\ -0.5\\ 1.25\\ .\\ . \end{pmatrix}$$
 (5.30)

Now using (5.28),

$$y(n) = x(n) * h(n)$$

$$= \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -0.5 & 1 & 0 & \dots & 0 \\ 1.25 & -0.5 & 1 & \dots & \dots & 0 \\ & & & & & & \\ 0 & 0 & 0 & \dots & \dots & \\ \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$

$$(5.32)$$

$$= \begin{pmatrix} 1\\1.5\\3.25\\.\\.\\. \end{pmatrix}$$
 (5.33)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.34)

Solution: From (5.20)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.35)

Replacing n-k with a,we get

$$y(n) = \sum_{n-a=-\infty}^{\infty} x(n-a)h(a)$$
 (5.36)

$$=\sum_{-a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.37)

$$=\sum_{a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.38)

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 $k = 0, 1, ..., N-1$ (6.1)

and H(k) using h(n)

Solution: The python code can be obtained from

wget https://github.com/ karthik6281/Signal— Processing/tree/main/ Assignment1/codes/6_1. py

Execute the following commands

python3 6_1.py

Fig. 6.1: Plots of the real parts of the discrete Fourier transforms of x(n) and h(n)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: The python code can be obtained from

wget https://github.com/ karthik6281/Signal— Processing/tree/main/ Assignment1/codes/6_2. py

Execute the following commands

python3 6 2.py

Fig. 6.2: Plot of Y(k)

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) e^{j2\pi kn/N} \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The python code can be obtained from

wget https://github.com/ karthik6281/Signal— Processing/tree/main/ Assignment1/codes/6_3. py

Execute the following commands

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT.Solution: The python code can be obtained from

wget https://github.com/karthik6281/ Signal-Processing/tree/main/ Assignment1/codes/6 4.py

Execute the following commands

6.5 Wherever possible, express all the above equations as matrix equations.

Solution: We use the DFT Matrix, where

Fig. 6.4: Plot of the inverse discrete Fourier transform of Y(k)

Fig. 6.4: Plot of y(n) by fast Fourier transform

$$\omega = e^{-\frac{j2k\pi}{N}}$$
, which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.4)

i.e. $W_{jk} = \omega^{jk}$, $0 \le j, k < N$. Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.5}$$

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.6)

The inverse Fourier Transform is given by

$$\mathbf{x} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.7)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.8}$$

where H denotes hermitian operator. We can compute 6.2 using

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.9}$$

6.6 Verify the above equations by generating the DFT matrix in Python.

Solution: The python code can be obtained from

wget https://github.com/karthik6281/ Signal-Processing/tree/main/ Assignment1/codes/6 6.py

Execute the following commands

