Alex Valentino Homework 5
411

1. Let (W, \leq) be a linearly order set.

• \Rightarrow Suppose W is well ordered. We want to show that there does not exists a descending chain. Suppose for contradiction that there is a sequence $(w_n)_{n\in\mathbb{N}}$ where $w_n > w_{n+1}$. Since W is well order than $\min(w_n)$ exists. Since (w_n) has a minimum then there exists $n' \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $w_{n'} \leq w_n$. Note that $w_{n'+1} < w_{n'}$ by the definition of (w_n) . Therefore $w_{n'+1} < w_{n'}$ and $w_{n'+1} \geq w_{n'}$. This is a contradiction. Therefore a descending chain does not exists.

- \Leftarrow Suppose W is not well ordered. We want to show that there exists a descending chain. Since W is not well ordered then there exists a set S where $S \neq \emptyset$, $S \subseteq W$ where min S does not exists. Since S is nonempty then there exists $x_1 \in S$. Note that min $\{x_1\}$ exists, therefore there exists $x_2 \in S$ such that $x_2 < x_1$. Therefore by induction $\{x_1, \dots, x_n\} \subset S$, since min $\{x_1, \dots, x_n\}$ exists. Therefore there exists $x_{n+1} \in S$ such that $x_{n+1} < x_n$. Therefore by induction we have constructed a descending chain.
- 2. (\Rightarrow) Suppose we have the hausdorff maximal principle, and we want to show zorn's lemma. Suppose (X, \leq) is a poset, and all chains in X are bounded. Then by our original assumption there exists a chain $L \subseteq X$ which is maximal. We know since L is a chain then it is bounded above by assumption. Let $a \in X$ be an upper bound of L. We know that $a \in L$ since otherwise $L \cup \{a\}$ would be a chain larger than L, contradicting the maximality of L. Thus a must be a maximal element of X. Note that if we have $x \in X \setminus L$, $a \leq x$ then a = x by maximality. Otherwise $L \cup \{x\}$ would be a chain, contradicting the maximality of L
 - (\Leftarrow) Suppose we have zorn's lemma, and we want to prove the hausdorff maximal principle. Suppose (X, \leq) is a poset, and we have the set of all chains, $\mathcal{C} \subseteq \mathcal{P}(X)$. We want to show that \mathcal{C} has a maximal element. Therefore we must show all chains of chains (or 2chainz, if you will) of \mathcal{C} are bounded, where we have the poset generated by (\mathcal{C}, \subseteq) , the set inclusion relation. Suppose $C \subset \mathcal{C}$ is a 2-chain. We claim that it is bounded above by $C^* = \bigcup_{c \in C} c$, and that $C^* \in \mathcal{C}$. Therefore we must show for all $x, y \in C^*$ that $x \leq y$ or $x \geq y$. Note that since $x, y \in C^*$, then there exists $C_1, C_2 \in C$ such that $x \in C_1, y \in C_2$. Since C is a 2-chain, then either $C_1 \subseteq C_2$ or $C_1 \supseteq C_2$. WLOG assume $C_1 \subseteq C_2$. Thus since $x, y \in C_2$, then since C_2 is a chain then $x \leq y$ or $x \geq y$. Therefore $C^* \in \mathcal{C}$. Thus every chain has an upper bound. Thus by Zorn's lemma \mathcal{C} has a maximal element. Thus there is a maximal chain, hausdorff's principle holds.
- 3. Suppose $\{A_i: i \in I\}$ is a set of sets. Let P be a non-empty poset defined by $f \in P$ being a function with $dom(f) \subseteq I$ and $f: dom(f) \to \bigcup_{i \in I} A_i$ maintaing that for every $i \in dom(f)$ one has $f(i) \in A_i$. P is a poset with the relation \leq given by for every $f, g \in P$ if $f \leq g$ then $dom(f) \subseteq dom(g)$ and for all $i \in dom(f)$ one has f(i) = g(i). We want to show that every chain of functions is bounded in P. If one considers a chain in P, given by $(f_i)_{i \in I'}$, then one can consider the upper bound to trivially be the function $f: \bigcup_{i \in I'} dom(f_i) \to \bigcup_{i \in I} A_i$. Since for every $x \in \bigcup_{i \in I'} dom(f_i)$, every $g \in (f_i)_{i \in I'}$ with x in it's domain has the exact same value on x. Thus f has unique

values. Thus the chain is bounded. Therefore there exists a maximal h by zorn's lemma. Since h has a maximal domain, then it must be I itself. Otherwise, if there exists $j \in I$ such that $j \notin dom(h)$ then there exists a function defined on j, however one could make a new function which operates on both j and dom(h), but this would contradict the maximality of h. Thus there exists an element in $\bigcup_{i \in I} A_i$.

4. Since A is finite then we can enumerate A with $\{a_1, \dots, a_n\}$. Since we have the axiom of choice then we have the choice function $h: \mathcal{P}(X)\backslash\{\emptyset\} \to X$ where for every $S\in \mathcal{P}(X)$, $h(S)\in S$. Thus we can inductively define $a_{n+1}=h(X\backslash A), \ a_{n+2}=h(X\backslash(A\cup\{a_{n+1}\}),$ so on and so forth. Thus the function $f(x)=\begin{cases} a_{n+k} & \text{if } x=a_k \\ x & \text{otws} \end{cases}$ is necessarily a bijection from $X\to X\backslash A$ since all enumerated elements map 1-1 to enumerated elements in $X\backslash A$ and all unenumerated elements are mapped to themselves. Thus X and $X\backslash A$ have the same cardinality

Alex Valentino Homework 5
411

5.

$$\begin{split} \Psi[\bigcup_{j \in J} A_j] &= A \backslash g[B \backslash f[\bigcup_{j \in J} A_j]] \\ &= A \backslash g[B \cap (\bigcup_{j \in J} f[A_j])^c) \\ &= A \backslash g[B \cap (\bigcup_{j \in J} f[A_j])^c) \\ &= A \backslash (g[B] \cap \bigcap_{j \in J} g[f[A_j]^c]) \\ &= A \cap (g[B] \cap \bigcap_{j \in J} g[f[A_j]^c])^c \\ &= A \cap (g[B]^c \cup \bigcup_{j \in J} g[f[A_j]^c]^c) \\ &= (A \cap g[B]^c) \cup (\bigcup_{j \in J} A \cap g[f[A_j]^c]^c) \\ &= \bigcup_{j \in J} (A \cap g[B]^c) \cup (A \cap g[f[A_j]^c]^c) \\ &= \bigcup_{j \in J} (A \cap (g[B]^c \cup g[f[A_j]^c]^c)) \\ &= \bigcup_{j \in J} (A \cap (g[B \cap f[A_j]^c]^c)) \\ &= \bigcup_{j \in J} (A \backslash g[B \backslash f[A_j]])) \\ &= \bigcup_{j \in J} \Psi[A_j] \end{split}$$

- 6. We will show that $\Phi: \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ given by $\Phi(A) = \sum_{n \in A} \frac{2}{3^n}$ is an injection. Suppose $A, B \in \mathcal{P}(\mathbb{N}), A \neq B$. Since $A \neq B$ then the symmetric difference $A\Delta B$ is nonempty. Since $A\Delta B \subseteq \mathbb{N}$, then $A\Delta B$ has a minimal element. Let this element be denoted m, and WLOG assume $m \in A$. If we consider $\Phi(A) \Phi(B) = \sum_{n \in A} \frac{2}{3^n} \sum_{n \in B} \frac{2}{3^n} = \sum_{n \in A \setminus [m-1]} \frac{2}{3^n} \sum_{n \in B \setminus [m-1]} \frac{2}{3^n}$ since A and B must share every element less than m, otherwise contradicting m is the smallest element in $A\Delta B$. Note that we can bound the difference below by considering $\sum_{n \in A \setminus [m-1]} \frac{2}{3^n} \ge \frac{2}{3^m}, -\sum_{n \in B \setminus [m-1]} \frac{2}{3^n} \ge -\sum_{n \in \mathbb{N} \setminus [m]} \frac{2}{3^n}.$ Since $-\sum_{n \in \mathbb{N} \setminus [m]} \frac{2}{3^n} = \frac{1}{3^m}$, then the difference $\Phi(A) \Phi(B) \ge \frac{1}{3} > 0$. Thus $\Phi(A) > \Phi(B), \Phi(A) \neq \Phi(B)$. Thus Φ is injective
 - Suppose $x, y \in \mathbb{R}, x \neq y$. Want to show that $\Psi(x) \neq \Psi(y)$. WLOG assume that x < y. Then by the density of \mathbb{Q} in \mathbb{R} there exists $q \in \mathbb{Q}$ such that x < q < y.

Alex Valentino

Homework 5 411

Since $\Psi(x) = \{r \in \mathbb{Q} : r < x\}$ then by definition $q \notin \Psi(x)$. However since q < y and $q \in \mathbb{Q}$ then by definition $q \in \Psi(y)$. Thus $\Psi(x) \neq \Psi(y)$.

- 7. Since \mathbb{N} has the same cardinality of \mathbb{Q} we will consider subsets of \mathbb{Q} in place of subsets of \mathbb{N} . The infinite family of subsets of \mathbb{Q} we will consider is the set of arbitrarily chosen ration cauchy sequences of a given number. $\mathcal{A} = \{(x_n) \in \mathbb{Q}^n : \exists ! r \in \mathbb{R}, x_n \to r\}$. Since each element uniquely corresponds to a single real number, then \mathcal{A} has the same cardinality of \mathbb{R} . Note for any $(x_n), (y_n)$, since they converge to $x, y \in \mathbb{R}$, then by the topological definition of convergence we can choose $\epsilon = \frac{x-y}{2}$ in which infinitely many terms from each sequence would be in disjoint ϵ neighborhoods around x, y respectively. Thus any two elements have a finite intersection.
- 8. Note that the set of interval with rational endpoints corresponds to the set

$$\bigcup_{a\in\mathbb{Q}}[a,a]\cup\bigcup_{a,b\in\mathbb{Q},a< b}\{(a,b),(a,b],[a,b),[a,b]\}.$$

Since each one of these has indexing over \mathbb{Q} or \mathbb{Q}^2 then it's a countable union of countable sets. Thus it is countable.

- 9. Suppose $\{B(x,r)\}$ is a set of disjoint balls. Then uniquely for each B(x,r), since x-r < x+r then by the density of $\mathbb Q$ in $\mathbb R$ there exists $q \in \mathbb Q$ such that $q \in B(x,r)$. Since the balls are disjoint then there is a unique rational number within each ball. Since $\mathbb Q$ is countable then the set of balls is countable.
 - (a) We claim that $card((\{0,1\}^{\mathbb{N}})^{\mathbb{N}}) = card(\{0,1\}^{\mathbb{N}\times\mathbb{N}})$. Note that $(\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ is the set of of sequences of infinite binary sequences. Therefore for a given $f \in (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ we have that $f(n) = (b_{nk})_{k \in \mathbb{N}}$ for all $n \in \mathbb{N}$. If we define $g : (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}) \to \{0,1\}^{\mathbb{N}\times\mathbb{N}}$ by $g(f) = (b_{nk})_{(n,k)\in\mathbb{N}^2}$, then this is clearly a bijection. Thus $card((\{0,1\}^{\mathbb{N}})^{\mathbb{N}})) = card(\{0,1\}^{\mathbb{N}\times\mathbb{N}})$. Therefore:

$$card(\mathbb{R}^{\mathbb{N}}) = card((\{0,1\}^{\mathbb{N}})^{\mathbb{N}}) = card(\{0,1\}^{\mathbb{N} \times \mathbb{N}}) = card(\{0,1\}^{\mathbb{N}}) = card(\mathbb{R})$$

- .
- (b) Let S be some countable set, and let $X = \{S^n : n \in \mathbb{N}\}$. We want to show that X is countable. Note that S is countable, and therefore S^n is countable by slide 22 of lecture 14. Since S^n and \mathbb{N} is countable, then $\bigcup_{n \in \mathbb{N}}^{\infty} S^n$ is countable. Since $\bigcup_{n=1}^{\infty} S^n = X$, then we're done.
- (c) Note that a polynomial is uniquely determined by it's coefficients. Therefore the set of polynomials over \mathbb{Z} has the same cardinality as all of the finite integer sequences Thus $card(\mathbb{Z}[x]) = card(\{\mathbb{Z}^n : n \in \mathbb{N}\})$. Since $\{\mathbb{Z}^n : n \in \mathbb{N}\}$ is countable then $\mathbb{Z}[x]$ is countable
- (d) Note that since $\mathbb{Z}[x]$ is countable and for $p \in \mathbb{Z}[x]$ the set $r(p) = \{p(x) = 0 : x \in \mathbb{R}\}$ is finite, then $\bigcup_{p \in \mathbb{Z}[x]} r(p)$ is countable. Note that this is exactly the set of algebraic numbers. Additionally, since we've found a countable subset of the real numbers, then there are an uncountable number of numbers not in our set. Thus real algebraic numbers exists

Alex Valentino Homework 5
411

(e) Suppose for contradiction that there is a finite number of prime numbers. Let the set of primes be denoted $\{p_1, \dots, p_n\}$. Consider the number $l = 1 + \prod_{i=1}^n p^i$. Note that for each prime $p_i, l \equiv 1 \mod p_i$. Thus l is divisible by none of the prime numbers. Since l can't be divide by primes, it can't be divide by the product of any of the primes. Thus l is only divisible by 1 and itself. Thus l is prime. This contradicts the fact that $\{p_1, \dots, p_n\}$ is the set of all primes. Thus there is an infinite number of primes.