Una Definición de Trabajo

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta una definición de trabajo, que puede ser usada en cualquier sistema de referencia (rotante o no rotante) (inercial o no inercial) sin necesidad de introducir fuerzas ficticias.

Definición de Trabajo

Si consideramos dos partículas A y B entonces el trabajo total W_{ab} realizado por las fuerzas \mathbf{F}_a y \mathbf{F}_b que actúan sobre las partículas A y B respectivamente es:

$$W_{ab} = \frac{1}{2} \; m_a m_b \left[2 \int_1^2 \left(\frac{\mathbf{F}_a}{m_a} - \frac{\mathbf{F}_b}{m_b} \right) \cdot d(\mathbf{r}_a - \mathbf{r}_b) + \Delta \left(\frac{\mathbf{F}_a}{m_a} - \frac{\mathbf{F}_b}{m_b} \right) \cdot (\mathbf{r}_a - \mathbf{r}_b) \right]$$

donde m_a y m_b son las masas de las partículas A y B y \mathbf{r}_a y \mathbf{r}_b son las posiciones de las partículas A y B.

El trabajo total W_{ab} es igual al cambio en la energía cinética.

$$W_{ab} = \Delta \frac{1}{2} m_a m_b \left[(\mathbf{v}_a - \mathbf{v}_b)^2 + (\mathbf{a}_a - \mathbf{a}_b) \cdot (\mathbf{r}_a - \mathbf{r}_b) \right]$$

donde \mathbf{v}_a y \mathbf{v}_b son las velocidades de las partículas A y B y \mathbf{a}_a y \mathbf{a}_b son las aceleraciones de las partículas A y B.

Por lo tanto, la energía cinética K_{ab} de las partículas A y B es:

$$K_{ab} = \frac{1}{2} m_a m_b \left[(\mathbf{v}_a - \mathbf{v}_b)^2 + (\mathbf{a}_a - \mathbf{a}_b) \cdot (\mathbf{r}_a - \mathbf{r}_b) \right]$$

Y la energía potencial U_{ab} de las partículas A y B es:

$$\Delta\,U_{ab} = -\frac{1}{2}\,m_a m_b \left[2\int_1^2 \left(\frac{\mathbf{F}_a}{m_a} - \frac{\mathbf{F}_b}{m_b}\right) \cdot d(\mathbf{r}_a - \mathbf{r}_b) + \Delta \left(\frac{\mathbf{F}_a}{m_a} - \frac{\mathbf{F}_b}{m_b}\right) \cdot (\mathbf{r}_a - \mathbf{r}_b) \right]$$