

Lens 1 Mean Variance 12+02+12 How spread out ? $\frac{5^2+0^2+5^2}{3}$ 2D n - Vaciance 1-2-> 3 y-variance = 12+02+12 FOR EDUCATIONAL USE

Sundaram)

Covariance

-2,-1

sum of product of co-ordinates

Covariance: 2 + 0 + 2 (ovariance: (-2) + 0 + (-2)

 $-\frac{4}{3}$

negative zero positive covariance covariance

FOR EDUCATIONAL USE

(Sundaram)

PCA (2D) Covariance Matrix $V = \begin{cases} Var(x) & Cov(x, y) \\ Cov(x, y) & Var(y) \end{cases}$ Coxx

Sundaram

FOR EDUCATIONAL USE

Linear Teansformation (-1,-3) $(n,y) \rightarrow (9n+4y,4n+3y)$ (0,0) (0,0) (1,0) (0,1) (-1,0) (0, -1)Eigen veitols Eigen values

FOR EDUCATIONAL USE

Sundaram

Why eigenvectors? 9 4 4 3 Y = eigenvertæs eigenvalue. How to calculate? Find eigen values Charactersitic polynomial. $= \alpha^2 - |2\alpha + 1|$ FOR EDUCATIONAL USE Sundaram

Eigenvalues: 11 and 1 $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ - Eigenvalues au Real. - The eigenvectors are perpendicular Why? FOR EDUCATIONAL USE (Sundaram)

P C A		Multi	- dime	uion)			
	·a	tt 1	att 2	att	3	att 4	atts
Ν,							
N ₂							
N ₃							
1							
(-						
			5				
Coyai	iance	Matri	X	(5 x 5)		2	
Coyai	iance		X				
	jen vertos	2 7 2 U	b C	d			
		2 7 2 U		d			
5 ev	zenvutos	2 7 2 U	b C	d			
5 ev	genvutos M	2 2 2 4	eigen a	d			
5 ev	genvutos M	a X Y Z U Aese	b C	d			

6

Variante

PCK 2 7 PCA)

Sundaram

FOR EDUCATIONAL USE

Variation for PC1:

Som of Squared distances

n-1

Vac 2 PCA 2

PCA 1 (1) = Yau 1 Vau 1 + Vau 2

Eigenvalues of original covariance matrix is equal to the variances of the seduced space.

- Covariance of original space $Cx = \frac{1}{n} \times TX$

- PCA: Eigenderonposition of covariance of the original space.

 $C_{x} = \frac{1}{n} x^{T} x = U_{\Lambda} U^{T}$

- Projected Data: Y = XV (U has eigenvectors as columns)

Cy = 1 y Ty

 $\frac{1}{n}(xu)(xu)^{T}$

 $U^{T}\left(\begin{array}{c} 1 & \chi T \chi \end{array}\right) U$

Cy = UTCXU

UTUAUTU

aragonal matrix
consisting of eigenvalues