Project 3: The One-Time Pad

CSCI 360

March 22, 2017

Due on Monday, April 3.

1 The Main Idea

The goal of this project is to implement the One-Time Pad. Recall that the One-Time Pad is carried out as followed:

- KeyGen: The key generation algorithm randomly generates a key K as a binary string of length n.
- Enc: Represent the message m as a binary string of length n. Encrypt via the bitwise XOR operation,

 $c = K \oplus m$.

• Dec Decrypt by computing $m = K \oplus c$.

You are provided with functions which convert from text to binary, and vice-versa.

2 Challenge 1: KeyGen

Write a function which generates the key for the OTP. This key should be randomly generated. For this, you must use the **random** module. The function should have input n, the desired key length, and output an n-bit random binary key.

INPUT: integer n

OUTPUT: n-bit binary string

Example: Input 3, output 110

Input 5, output 10110

Input 10, output 0011000101

Following is optional psuedocode

```
Import the random module at the beginning of your code.

def KeyGen(n):
    Initialize a key to an empty string

For each item in range(n):
        Append a random bit to the key

Return the key
```

3 Challenge 2: Encrypt

Next write a function which performs encryption. The input should be a bitstring of length n and a key (also a bitstring of length n), and the output should be an bitstring of length n. Encryption is carried out by performing bitwise XOR.

3.1 How to Compute XOR

Note that computing XOR is equivalent to performing computations modulo 2.

```
0 XOR 0 = 0 corresponds to 0 + 0 \equiv 0 \pmod{2}, or (0 + 0)\%2
0 XOR 1 = 1 corresponds to 0 + 1 \equiv 1 \pmod{2}, or (0 + 1)\%2
1 XOR 0 = 1 corresponds to 1 + 0 \equiv 1 \pmod{2}, or (1 + 0)\%2
1 XOR 1 = 0 corresponds to 1 + 1 \equiv 0 \pmod{2}, or (1 + 1)\%2
```

4 Challenge 3: Decrypt

The decryption process works the same as the encryption process, except now you XOR the ciphertext with the key to retrieve the plaintext.

5 Challenge 4: Application

Write an application in the main function which performs the following:

- (1) Ask the user for a plaintext message.
- (2) Convert the plaintext message to binary.
- (3) Generate a random key with the same length as the binary plaintext message.
- (4) Encrypt.
- (5) Convert the ciphertext to text and output.

An example run of the program is as follows:

What would you like to encrypt? ABC Your ciphertext is 7!x

6 Challenge 5: Decryption

Extend your application. Ask the user whether they would like to encrypt or decrypt, and perform the requested function. You receive 5 points on take home exam 1.