Data Analytics, R, Scaling, and Comet Examples

Outline

- I. Data AnalyticsMachine Learning in a NutshellData Mining also
- II. R, Scaling in R, Parallel R
- III. Analytics Cases in Comet

A data example: Home Runs and W-L

the Model: $y_i = f(x, b) = b_o * 1 + b_1 * x_i$

(Won-loss percent as function of team home runs)

the Model: $y_i = f(x, b) = b_o * 1 + b_1 * x_i$

(Won-loss percent as function of team home runs)

the Model: $y_i = f(x, b) = b_o * 1 + b_1 * x_i + Gaussian error$

the Model:
$$y_i = f(x, b) = b_o * 1 + b_1 * x_i$$

Linear Regression with a Decision Threshold

the Model: $y_i = f(x, b) = b_o * 1 + b_1 * x_i$

For Classification choose a decision function:

e. g. For y > 0.5, Classify as Winner

Regression with Logistic Function gives Probability

the Model: $P(y_i = winner | x_i) = squash (b_o * 1 + b_1 * x_i)$

Regression with Logistic Function gives Probability

the Model: $y_i = f(x, b) = b_o * 1 + b_1 * x_i$ for each x segment

Machine Learning Models Are Just Different Functions and Optimizations

What kinds of functions to use

- E.g. Linear vs NonLinear
- E.g. divide input into pieces

What to Optimize

- Minimize Prediction Error
- Minimize Classification Errors
- Maximize Probabilities

How to Optimize

- Solve directly, take derivatives, or search solutions
- Use constraints and heuristics

A Map of Machine Learning Models

(in a nutshell)

Machine Learning In practice

- Complexity: more parameters => more complex,
 - You usually need some heuristics

- Tradeoff, complexity usually => more potential to overfit (and more sensitivity to data)
 - validation procedures can help

Data Mining refers to Modelling Workflow

- 1. Gathering and 'Wrangling' Data
 - **Exploratory Data**
 - Review Variables
 - Clustering
 - e.g. Kmeans finds K groups with high inter-group, low intra-group variance
 - Dimension Reduction/Factor Analysis
 - e.g. Principal Components find good projections that 'line up' with data variance directions

3. Data Preparation

- Selecting, transforming variables
- 4. Build and Evaluate Model

Data Mining also:

- Data Mining is often used generally to encompass related analysis, such as:
 - Text Analytics
 - e.g. word clouds and topic modelling
 - Association Learning
 - e.g. what consumer shopping choices are associated
 - Network Models
 - e.g. which friends have more influence in a social network

A note about clustering

Imagine these 2 dimensional input spaces: Which of these is easy or hard to cluster? (e.g. separate into groups)

Now imaging there are two classes

Potential clusters

easy, 4 clusters match 2 classes Which are easy or hard to classify? (ie separate red or blue with lines)

Upshot:
No easy
relationship
between
clusters
and
classification

Pause

R, Scaling R, Parallel R

- A Glimpse of R
- R strengths
- R and Scaling
- Parallel options for R

The What and Why of R

- A statistical computing environment
 - Full set of Statistical/Mathematical functions
 - Programming Language for complete data manipulation
- Free, Open Source
- Extended with user written packages
- Widely used in academic and increasingly in industry

A typical R development workflow

 R studio: An Integrated development environment for R on your local machine – good for development

> File Edit Code View Plots Session Build Debug Tools Help Menu tab Project: (None) + PR_USD_Commands.R × PR_USD_GETDATA2.r × PR_USD_ADVDATA.R × PR_USD_RandForest2.R × > = -≣ List • Global Environment → #install.packages('randomForest') #random forest Environment is empty Edit window to 9 #first recode race as categorical 10 X4tree - X4tree Build scripts = as.factor(x4tree[,'deny' 12 X4tree[, 'race' = as.factor(x4tree[,'race']) 14 X4tree[,'self_emp'] = as.factor(X4tree[,'self_emp']) R version 3.2.0 (2015-04-16) -- "Full of Ingredients"
> Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. R console You are welcome to redistribute it under certain conditions Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

Environment Information on variables and command history

Plots, help,

R commands in brief

 A typical R code workflow: **#READ DATA** (housing mortage cases) =read.csv('hmda aer.csv',header=T,stringsAsFactors=T) **#SUBSET DATA** indices_2keep =which(X[,'s13'] %in% c(3,4,5))) =X[unique(indices 2keep),] X **#CREATE/TRANSFORM VARIABLES** = as.numeric(X[,'s46']/100) #debt2income ratio pi_rat race = as.numeric(X[,'s13'] %in% c(3,4)) #race category deny = as.numeric(X[,'s7']==3) #dependent variable **#RUN MODEL and SHOW RESULTS** Im_result =Im(deny~race+pi_rat) #Im is 'linearmodel' summary(Im result)

R strengths

- Sampling/bootstrap methods,
- Data Wrangling,
- Particular Statistical procedures that you won't find implemented anywhere else, e.g.
 - Multiple Imputation methods,
 - Instrument Variable (2 stage) Regression

- Several packages, such as 'mice', 'amelia'
- Produces multiple data sets
- Iterates over missing data estimates and linear model estimates
 - Mice uses Gibbs sampling (slower)
 - Amelia uses Expectation Maximization (faster)
- Beware of correlation in variables
 - Matrices not invertible (affects Amelia)

Sample R code using Amelia:

Data: UN conflict data in pairs of countries 300K rows ~ 1 hour on Gordon compute node (not run on the user's PC)

1K-100K entries missing per col for about 20 of 50 cols

#Perform QA on missing data by comparing density of imputated & original data

compare.density(a.out, var="politya")
compare.density(a.out,var='rgdpcontg')

Observed and imputed values of rgdppclo

politya

Useful library for printing margin plots, to compare histograms for single variables # and histograms conditional on missing/non-missing data

library('VIM')

marginplot(gart2use[,c('politya', 'rgdppclo')],

What would you want to see here?

A Data Wrangling example

tables joined

Issue:

~3000 rows for each subject (1 row for each measurement).
But needed 1 row per subject.

Data Wrangling example

Reshape command to get a 'wide' format with repeated measurements in separate columns of the same record

P.R. SDSC UCSD

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Complex Social Science Gateway – a tool for cross-cultural analysis in R

Select dataset, Select variables, Submit analysis

http://socscicompu te.ss.uci.edu/

R Analysis options

- Two-stage least squares to handle spatially correlated errors (OLS, logit, multinomial logit)
- Bootstrap sampling of Bayesian network (package bnlearn) to confirm OLS effects, or suggest other moderating/mediating effects

Depend. var

Scaling, practically

- Scaling (with or without more data):
 - more complex analysis (ie optimizations)
 - more sampling (ie more trees in Random Forest)
- Sometimes easy to parallelize (like with sampling),
- Sometimes too much communication between parts (matrix inversion)

Scaling In a nutshell

- R takes advantage of math libraries for vector operations
- R packages provide multicore, multinode (snow), or map/reduce (RHadoop) options
- However, model implementations not necessarily built to use parallel backends
 - Some models more amenable to parallel versions

Consider Regression Computations

- Linear Model: Y = X * B
 where Y=outcomes , X=data matrix
- Algebraically, we could:
 - take "inverse" of X * Y = B (time consuming)
 - Or take gradient descent (for likelihoods and generalized models)
- Or, better:
 - QR decomposition of X into triangular matrices (easier to solve but more memory)

Consider Regression models in R

Related Models and Functions :

All these work on system of equations

Solving Linear Systems Performance with R, 1 compute node

glm(Y~X,family=gaussian) #gaussn regrssn (like lm) glm(Y~X,family=binomial) # logistic regrssn (Y=0 or 1)

R multicore

Intel Math Kernel Libraries provides fast operations for vector operations

Uses threads across cpu cores to pass data & commands

R multicore

Run loop iterations on separate cores

```
across cores,
                                                                     (loops are independent)
                  install.packages(doMC)
                                              allocate workers
                                                                     %do% runs it serially
                  library(doMC)
                  registerDoMC(cores=24)
                  getDoParWorkers()
                 results = foreach(i=1:24,.combine=rbind) %dopar%
                   { ... your code here
returned items
                                                          specify to combine results into
'combined' into list
                                                          array with row bind
                      return( a variable or object)
by default
```

%dopar% puts loops

R multinode: parallel backend

Run loop iterations on separate nodes

```
install.packages('doSNOW')
                               allocate cluster as
library('doSNOW')
                               parallel backend
cl <- makeCluster( mpi.universe.size()-1, type='MPI' )
                                                         %dopar% puts loops
clusterExport(cl,c('data'))
registerDoSNOW(cl)
                                                         across cores and
                                                         nodes
results = foreach(i=1:47,.combine=rbind) %dopar%
  { ... your code here
    return( a variable or object)
stopCluster(cl)
mpi.exit()
```

Multiple Compute Nodes not always help (tested on Gordon)

multinodes: more nodes is less time for multiplication,

less nodes is better for inversion

Another Parallel option:

- Serially packing R jobs onto cores
- 1. batch script starts a job and calls MPI run utility
- 2. MPI utility executes a Perl script on each core
- 3. Perl script executes R with argument=cpu-id
- 4. R uses cpu-id to process some particular input

Serial Packing with large Random Forest (ensemble of decision trees) job

Option 1: Run separate trees on separate cores

```
%dopar% puts loops
                                                                across cores,
                                                                (loops are independent)
                 install.packages(doMC)
                                           allocate workers
                 registerDoMC(cores=15)
                                                                %do% runs it serially
                 getDoParWorkers()
                 library("randomForest");
                results = foreach(i=1:15,.combine=rbind) %dopar%
                  {RF1 <-randomForest(formula,data=X,na.action=na.omit,
returned items
                     importance=TRUE,
'combined' into list
                     ntree=100000,
                     do.trace=1,
                                                   Sampling on large data
                     nodesize=1)
                                                    could be huge
                classRF1$importance
                })
```

Serial Packing with large Random Forest job

- Option 2: split sampling to make it embarrasingly parallel ie run R script on separate cores and average results
- And, for very large number of parameters, run each tree on subset of variables
 - ie take samples of columns, run lots of trees
 - Can speed up processing without losing interesting variable combinations

Serial Packing with large Random Forest job

- A GWAS (genome wide analysis) study –
- RandomForest Sampling in stages:
 - 1. Take 1000 samples out of ~80K variables (SNPs)
 - 2. Run 50 trees on each sample => 50K total trees
 - 3. Run 1 instance of R on each core => on 4 compute nodes (64 cores) < 16hours (on Gordon)
- Runs better than using R multicore with foreach b/c less total memory across nodes

Installing your own R Packages

- In R, install.packages('package-name') to get specific functionality you want
 - See https://cran.r-project.org/
- But on Comet
 - Need to specify URL when prompted and say 'Y' to personal library;
 - If compiling is required you might get an error, call user support

Other R packages:

- Rspark R interface to Spark
- pdbR higher level over R-MPI, distributed matrix support and other
- Rgputools GPU support
- R openMP, better data mgt than dopar, parallel (mclapply)

Spark ML for bigger data:

Spark MLlib –

- Many standard Machine Learning models that are easiest to parallelize
 - Matrix Factorization
 - Naïve Bayes
 - Linear/NonLinear Regression Models with gradient descent optimization
 - Kmeans
- Some support for large matrix operations

Other Examples on Comet

Image Analysis of Rural Photography

Computer vision and text analytics with 171,021 depression era photographs from Library of Congress.

Feature extraction to database to interface to visual data mining

Title: "Barber and shop" Location: Omaha, Nebraska Photographer: John Vachon. Date Created: 1938. **Image Gray Scale:**

Image Content

OCR + RandomForest :
BARBER SHOP;
ENGLISH

FACE DETECTION: 1 face

Metadata

SEMANTICS:

<shop::business;structure;entity>

<barber::worker;person>

GEO: 41.2°N, 95.9°W

etc...

State of Significance of Sig

SQL with visualizations

Data Mining on American life, visual rhetoric, and aesthetics.

Face Detection detail:

- Using Python and OpenCV package
- Features are combinations of on/off pixels
 - a dark patch above a light patch, as with eyebrows and eyes
- Uses a large number (100's) of these features.

Combining features efficiently:

- Sweep of different scales
- Sweep over image subwindows.
- Feature combined in a chain so that if the most important features are not found above some threshold at some point in the chain, the subwindow is discarded,

Cascaded Classifier

Profiles, or obscured faces do not work well.

Frontal faces work well. False positives are often small face-like patterns.

Overall performance is about 95% accuracy for these digitized photos. Performance is often higher for contemporary images.

171K 1kx1k images take about 12 hours on 1 Comet node.

Text Analytics processing of metadata:

- Parse, tag speech, search ontology
 - using Stanford NLP tools, Wordnet ontology, Python NLP toolkit, 101K
 titles ~ 96 hours on 1 comet node
- Several words identify 'person'
- SQL: give me all pictures by Lange with possible 'person' and num_faces > 0

Title:

"Destitute pea pickers in California. Mother of seven children." By D. Lange, 1936, California, [metadata]

Topic Modelling with Latent Dirichlet Allocation

- Example, 15 documents, 5 words:
 - Each circle is 1 word occurrence
 - 2 topics
 - Start with random assignments (ie randomly filled/empty circles)
- After learning, topics are well formed

LDA optimization

- Start with initial guess of topic=t, and parameters
- Until convergence do this:
 - Compute the expected frequency of word=*w* for each *t*Compute the parameters that maximize likelihood L of *t* given *w*
- Result is list of topics and word probabilities:

P(word|topic)
P(topic|document)

Topic Modelling with LDA on Comet

- R LDA package: wraps C programs for Gibbs sampling or EM Slow for > 5000 journal articles, Easy to use and interactively explore
- Mallet: Gibbs sampling, option for multicore, java code
 Slow for > 50000 articles, easy to use from Unix command line
- Spark LDA: EM
 - Fastest, big datasets OK, harder to set up, but EM not as robust as Gibbs sampling
- Asymptotic Distributed LDA: MPI based
 Faster and Robust, big datasets OK, but difficult to use

Example Ouput: Sample topic plot (tree map)

THE END

