CH402 Chemical Engineering Process Design

Class Notes L13

Flowsheet Synthesis and I/O Analysis

WPR1 Corrections – Due Friday 14 Feb 2359 at 40% recovery

Block Diagram of (all) Chemical Processes

Often simplified to this form.

Case Study - Vinyl Chloride Monomer (VCM) Production

47 million tons/y in 2025 worldwide

57 million tons/y in 2030 (est.)

3.87% growth to 2030

https://www.mordorintelligence.com/industry-reports/vinyl-chloride-monomer-market

12 US plants, average capacity is 667,000 t/y

J.A. Cowfer and M.B. Gorensek, 19 May 2006, Kirk-Othmer Encylcopedia of Chemical Technoilogy, https://doi.org/10.1002/0471238961.2209142503152306.a01.pub2

Emissions and toxicity

3 Feb 2023 East Palestine, OH

Vinyl chloride is highly flammable Hydrogen chloride is highly corrosive

Continuous processing page 132, > 50 mt/yr

Feedstocks are naphtha (50.8%), natural gas (27.2%), coal (17.2%), and other (4.7%)

Kirk-Othmer, SRI, Wikipedia both have excellent articles

(acetylene hydrochlorination)

Known Vinyl Chloride Routes

Next step is a literature search – 5 Routes Identified

 $C_2H_2 + HCl$

Vinyl Chloride Process Flow Diagram

Ullmann's Encylcopedia of Industrial Chemistry

Dreher, L., Beutel, K.K., Myers, J.D., Lübbe, T., Krieger, S., & Pottenger, L.H., Chloroethanes and Chloroethylenes. 1-81.

Process Flow Diagram (PFD)
Similar to CHEMCAD

- a) Reactor
- b) Lights column
- c) VCM column
- d) Heavy stripper
- e) Vent wash tower
- g) Condenser
- h) Reflux drum
- i) Reboiler

Kirk-Othmer, Wikipedia

Literature Search

(also CH383)

Route 2 direct chlorination of ethylene (liquid phase)

thermodynamically favored
$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

Not the product we want

Kirk-Othmer, Wikipedia

Literature Search

CH383

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

ethylene chlorination

$$C_2H_4Cl_2$$
 \longrightarrow $C_2H_3Cl + HCl$

pyrolysis

$$C_2H_4 + Cl_2$$
 \longrightarrow $C_2H_3Cl + HCl$

Route 3 direct chlorination + pyrolysis

Ethylene Dichloride (EDC) Pyrolysis

a) Crack furnace; b) Heat exchanger; c) Quench tower; d) HCl distillation tower; e) VCM purification tower; f) VCM wash tower; g) Light-end tower; h) EDC—heavy-end tower; i) Condenser; j) Reflux drum; k) Reboiler

Ullmann's Encylcopedia of Industrial Chemistry

Dreher, L., Beutel, K. K., Myers, J. D., Lübbe, T., Krieger, S., & Pottenger, L. H. Chloroethanes and Chloroethylenes. 1-81. https://doi.org/10.1002/14356007.006_001.pub2

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + 2HCl + 1/2O_2 \longrightarrow C_2H_4Cl_2 + H_2O \qquad \text{oxychlorination}$$

$$C_2H_4Cl_2 \longrightarrow C_2H_3Cl + HCl \qquad \text{pyrolysis}$$

$$C_2H_4 + HCl + 1/2O_2 \longrightarrow C_2H_3Cl + H_2O \qquad \textbf{Route 4}$$
oxychlorination + pyrolysis

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2 \qquad \text{chlorination}$$

$$+$$

$$C_2H_4 + 2HCl + \frac{1}{2}O_2 \longrightarrow C_2H_4Cl_2 + H_2O \qquad \text{oxychlorination}$$

$$+$$

$$C_2H_4Cl_2 \longrightarrow C_2H_3Cl + HCl \qquad \text{pyrolysis}$$

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$$
 \longrightarrow $2C_2H_3Cl + H_2O$ Route 5 (overall)

5 processes identified in literature survey

Summary

$$C_2H_2 + HCl$$

$$-- C_2H_3Cl$$

$$C_2H_4 + Cl_2$$

$$\longrightarrow$$
 C₂H₃Cl + HCl

$$C_2H_4 + Cl_2$$

$$C_2H_3Cl + HCl$$

$$C_2H_4 + HCl + \frac{1}{2}O_2$$
 \longrightarrow $C_2H_3Cl + H_2O$

oxychlorination + pyrol.

$$\rightarrow$$
 2C₂H₃Cl + H₂O

C-O-P chlor. + oxychlor. + pyrol.

Functions Diagram - C - Direct Chlorination

The utility of the functions diagram is that it can be used to build much larger processes.

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

Functions Diagram – Pyrolysis

Hybrid Functions Diagram - Route 3 - CP

Functions Diagram – Oxychlorination

Hybrid Functions Diagram - Route 5 - COP

 $C_2H_4Cl_2$

Input/Output Structure - Route 5 - COP

I/O box is frequently left blank

The I/O analysis allows us to assess the overall economics of the process.

5 processes

				Reaction Path
C ₂ H ₂ + HCl		C ₂ H ₃ Cl	Α	1
$C_2H_4 + Cl_2$		C ₂ H ₃ Cl + HCl	С	2
$C_2H_4 + Cl_2$		C ₂ H ₃ Cl + HCl	C-P	3
C ₂ H ₄ + HCl + ½ O ₂		C ₂ H ₃ Cl + H ₂ O	O-P	4
2C ₂ H ₄ + Cl ₂ + ½ O ₂		2C ₂ H ₃ Cl + H ₂ O	C-O-P	5

Economic Analysis is Based on I/O

Measures the economic "driving force" Example 4-2, page 135

	Α	В	С	D	Е	F	G	Н		
1	Example 4-2. Compare product and raw material values based on 1kg of vinyl chloride									
2										
3	Reaction Path, kg/kg VC									
4	Species	MW, kg/kgmol	Price, \$/kg	1	2	3	4	5		
5	Cl ₂	70.9	0.03		1.13	1.13		0.57		
6	HCI	36.5	0.22	0.58	0.58	0.58	0.58			
7	C_2H_2	26.0	1.39	0.42						
8	C ₂ H ₄	28.1	0.45		0.45	0.45	0.45	0.45		
9	C ₂ H ₃ Cl	62.5	0.45	1.00	1.00	1.00	1.00	1.00		
10	O ₂	32.0	0.04				0.26	0.13		
11										
12	product val	ue		\$0.45	\$0.58	\$0.58	\$0.45	\$0.45		
13	reactant co	st		\$0.71	\$0.24	\$0.24	\$0.34	\$0.22		
14	excess valu	ıe		-\$0.26	\$0.34	\$0.34	\$0.11	\$0.23		

The bottom line represents \$/kg. If we know the kg/year, then we know the annual cash flow.

The I/O diagram for process 5 is shown in slide 19.

- (a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.
- (b) What production mode (batch or continuous) should be used to obtain production rates of $2x10^7$ and $1x10^8$ kg/y?

Electricity: \$0.05/kW·h

 H_2 : \$4.67/kg (Kirk-Othmer)

 O_2 : \$0.04/kg (Kirk-Othmer)

Coal: \$0.055/kg Steam: \$0.008/kg

NG: \$0.13/kg

References are Kirk-Othmer and Ullman's

basis: 1kg of H₂

Use same approach as Example 4-13

Continuous versus Batch

page 132-133

Batch if:

production rate < 50 m.t./y

heavy fouling

biological processes

pharmaceutical processes

short product life spans, 1-2 y

product value >> product cost

(a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas. (b) What production mode should be utilized to obtain production rates of 3×10^7 and 1×10^8 kg/yr?

basis: 1kg of H₂

 H_2 : \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Steam: \$.008/kg

NG: \$.13/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

Need stoichiometry (reaction coefficients).

Also need an empirical formula for coal (coal is not "C").

basis: 1kg of H₂

 H_2 : \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Coal: \$.055/kg Steam: \$.008/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

Need a relationship between electrical power and stoichiometry

electrolysis is a cathode/anode process with 2 mol e- flowing per mol $\rm H_2$ think electrochemical (Daniel) cell from general chemistry with a voltage of ~1.23 V

basis: 1kg of H₂

Electricity: \$.05/kW·h

 H_2 : \$.67/kg (Kirk-Othmer)

 O_2 : \$.04/kg (Kirk-Othmer)

Balancing Electrochemical Reactions (General Chemistry)

Adding half-reactions:

$$2 H^{+} + 2e^{-} \rightleftharpoons H_{2}(gas)$$
 $E^{\circ} = 0.0000 \text{ Volts}$ $H_{2}O(\text{liquid}) \rightleftharpoons \frac{1}{2}O_{2}(gas) + 2H^{+} + 2e^{-}$ $E^{\circ} = 1.2291 \text{ Volts}$

Overall (water electrolysis):

$$H_2O(\text{liquid}) \rightleftharpoons \frac{1}{2}O_2(\text{gas}) + H_2(\text{gas})$$
 E° = 1.2291 Volts

Questions?