15MAT31

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 Engineering Mathematics – III

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

1 a. Express $f(x) = (\pi - x)^2$ as a Fourier series of period 2π in the interval $0 < x < 2\pi$. Hence deduce the sum of the series $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (08 Marks)

b. The turning moment T units of the Crank shaft of a steam engine is a series of values of the crank angle θ in degrees. Find the first four terms in a series of sines to represent T. Also calculate T when $\theta = 75^{\circ}$.

θ:	0.	30°	60°	90°	120°	150°	180*
T:	0	5224	8097	7850	5499	2626	0

OR

2 a. Find the Fourier Series expansion of the periodic function,

$$f(x) = \begin{cases} l + x, & -l \le x \le 0 \\ l - x, & 0 \le x \le l \end{cases}$$
 (06 Marks)

b. Obtain a half-range cosine series for $f(x) = x^2$ in $(0, \pi)$.

(05 Marks)

c. The following table gives the variations of periodic current over a period:

	2 0				1		
t sec:	0	T	T	T	2T	5T	
		6	$\frac{1}{3}$	$\frac{1}{2}$	3	6	
A amp:	1.98	1.30	1.05	1.30	-0.88	-0.25	

Show that there is a direct current part 0.75 amp in the variable current and obtain the amplitude of the first harmonic (05 Marks)

Module-2

3 a. Find the Fourier transform of $f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and evaluate $\int_0^x \left(\frac{\sin x}{x} \right) dx$ (06 Marks)

b. Find the Fourier cosine transform of,
$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2 - x & \text{for } 1 < x < 2 \\ 0 & \text{for } x > 2 \end{cases}$$
 (05 Marks)

c. Obtain the inverse Z-transform of the following function, $\frac{z}{(z-2)(z-3)}$. (05 Marks)

OR

4 a. Find the Z-transform of
$$\cos\left(\frac{n\pi}{2} + \alpha\right)$$
. (06 Marks)

b. Solve
$$u_{n+2} - 5u_{n+1} + 6u_n = 36$$
 with $u_0 = u_1 = 0$, using Z-transforms. (05 Marks)

c. If Fourier sine transform of
$$f(x)$$
 is $\frac{e^{-a\alpha}}{\alpha}$, $\alpha \neq 0$. Find $f(x)$ and hence obtain the inverse Fourier sine transform of $\frac{1}{\alpha}$.

For More Question Papers Visit - www.pediawikiblog.com

15MAT31

Module-3

5 a. Calculate the Karl Pearson's co-efficient for the following ages of husbands and wives:

(06 Marks)

Husband's age x:	23	27	28	28	29	30	31	33	35	36
Wife's age y:	18	20	22	27	21	29	27	29	28	29

b. By the method of least square, find the parabola $y = ax^2 + bx + c$ that best fits the following data: (05 Marks)

x: 10 12 15 23 20

C. Using Newton-Raphson method, find the real root that lies near x = 4.5 of the equation $\tan x = x$ correct to four decimal places. (Here x is in radians). (05 Marks)

OR

- 6 a. In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x 5y + 33 = 0 and 20x 9y 107 respectively. Calculate x y and the coefficient of correlation between x and y. (06 Marks)
 - b. Find the curve of best fit of the type $y = ae^{bx}$ to the following data by the method of least squares:

 x:
 1
 5
 7
 9
 12

 y:
 10
 15
 12
 15
 21

c. Find the real root of the equation xe'-3=0 by Regula Falsi method, correct to three decimal places. (05 Marks)

Module-4

7 a. From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age of 46: (06 Marks)

 Age:
 45
 50
 55
 60
 65

 Premium (in Rupees):
 114.84
 96.16
 83.32
 74.48
 68.48

b. Using Newton's divided difference interpolation, find the polynomial of the given data:

(05 Marks)

x 3 7 9 10 f(x) 168 120 72 63

c. Using Simpson's $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ rule to find $\int e^{-x} dx$ by taking seven ordinates. (05 Marks)

ÓΩ

8 a. Find the number of men getting wages below ₹ 35 from the following data: (06 Marks) Wages in ₹ : $0 - 10 \cdot 10 - 20 \cdot 20 - 30 \cdot 30 - 40$

Frequency: 9 30 35 42

- c. Compute the value of $\int_{0.2}^{1.4} (\sin x \log_e x + e^x) dx$ using Simpson's $\left(\frac{3}{8}\right)^{10}$ rule. (05 Marks)

For More Question Papers Visit - www.pediawikiblog.com

15MAT31

- a. A vector field is given by $\vec{F} = \sin y \hat{i} + x(1 + \cos y)\hat{j}$. Evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, z = 0.
 - b. If C is a simple closed curve in the xy-plane not enclosing the origin. Show that $\int F dR = 0$.

where $\vec{F} = \frac{y\hat{i} - x\hat{j}}{y^2 + y^2}$. (05 Marks)

c. Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y} - \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0$. (05 Marks)

- OR

 10 a. Use Stoke's theorem to evaluate $\int \vec{F} \cdot d\vec{R}$ where $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.
 - b. Show that the geodesics on a plane are straight lines. (05 Marks)
 - Find the curves on which the functional $\int ((y')^2 + 12xy) dx$ with y(0) = 0 and y(1) = 1 can be extremized (05 Marks)