Chapter 8

The Z-transform

In the previous chapter, we discussed the Laplace transform, which is a generalization of the CT Fourier transform. We will now discuss the z-transform, which constitutes a generalization of the DT Fourier transform. Note that these generalizations of CTFT and DTFT are important for the following reasons:

- They provide additional tools and insights for signals and systems compared to those we gained from Fourier transform.
- They are applicable to important contexts that Fourier tools are not applicable or less useful, for example,
 - analysis/design of feedback systems (topic of EE302)
 - investigation of the stability of systems (topic of EE302)
 - filter design (topic of EE430)

8.1 Generalized eigenfunctions of LTI systems and the z-transform

• Response of a DT LTI system to a complex exponential z^n :

- \Rightarrow Complex exponentials of the general form $z^n=(re^{j\Omega_0})^n$ are eigenfunctions of DT LTI systems with eigenvalues given by $H(z)=\sum_{k=-\infty}^{\infty}h[k]z^{-k}$ where h[n] is the impulse response of the system.
- The eigenvalue expression provides the definition of the z-transform of a signal x[n] where z is an arbitrary complex number:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

We will again use shorthand notations for the z transform of a signal x[n]:

$$X(z) = \mathcal{Z}\{x[n]\}$$
 and $x[n] \longleftrightarrow X(z)$

- Notice that if DTFT of x[n] exists, z-transform reduces to the DTFT when $z = X(z)|_{z=}$
- There is a more general relationship between the z-transform and the DTFT:

The above relation indicates that X(z) converges (exists) whenever

- This occurs when
- and thus for a given x[n], convergence of X(z) will depend on

8.2 Region of Convergence (ROC)

Ex: $x[n] = a^n u[n]$, where a is any complex number. Find X(z) and its ROC.

Note that if the ROC of X(z) contains the unit circle (r=|z|=1), then the DTFT of x[n] ...

Ex: Previous example with $a = \frac{1}{2}$ and $a = \frac{3}{2}$. What can you say about $X(e^{j\Omega})$ in these cases?

Ex: $x[n] = -a^n u[-n-1]$. Find X(z) and its ROC.

Notes:

ullet It is helpful to remember the following frequently used signal and z transform pairs :

$$a^n u[n] \longleftrightarrow \frac{z}{z-a}, \quad ROC : |z| > |a|$$

 $-a^n u[-n-1] \longleftrightarrow \frac{z}{z-a}, \quad ROC : |z| < |a|$

- \bullet The specification of the z transform requires both
 - the algebraic expression for X(z)
 - and the associated ROC.

Warning:

Ex: $x[n] = (\frac{1}{3})^n u[n] + (\frac{1}{2})^n u[n]$. Find X(z) and its ROC.

Ex: [Challenge yourself!] $x[n] = -(\frac{1}{2})^n u[-n-1] + (\frac{1}{3})^n u[n]$. Find X(z) and its ROC.

8.3 Properties of ROC

<u>Property 1:</u> The ROC of X(z) depends only on |z| = r and therefore consists of a **ring** in the z-plane centered at the origin.

Why?:

- The relation indicates that the convergence/existence of X(z) requires the convergence/existence of x(z), which happens when $x[n]r^{-n}$ is absolutely summable, i.e. $\sum_{-\infty}^{\infty}|x[n]r^{-n}|=\sum_{-\infty}^{\infty}|x[n]|r^{-n}<\infty$.
- Thus, ROC of X(z) depends only on the magnitude r = |z| and **not** on the angle Ω of z.

Property 2: For rational X(z), the ROC does **not** contain any poles.

Why?: At a pole, X(z) is ...

Remarks:

- Rational X(z) means X(z) is a ratio of polynomials of z.
- A pole of X(z) is a root of the denominator and a zero of X(z) is a root of the numerator.

<u>Property 3:</u> If x[n] is of finite duration, then the ROC is the entire z-plane except possibly z = 0 and/or $z = \infty$.

Why?: A finite duration sequence has only a finite number of nonzero samples, e.g.

- If $0 < N_1 < N_2$, then ...
- If $N_1 < 0$ and $N_2 > 0$, then ...
- If $N_1 < N_2 < 0$, then ...

<u>Property 4:</u> If x[n] is a **right-sided** sequence, then the ROC is the outside of a circle centered at the origin (excluding possibly $z = \infty$).

Why?: For a right-sided sequence, x[n] = 0 for

Suppose some r_0 is in the ROC of X(z):

- $N_1 > 0$: For $r_1 > r_0$, we have
- $N_1 < 0$: There is an additional finite sum coming from negative n (i.e. $\sum_{N_1}^{0} x[n]r_1^{-n}e^{-j\Omega n}$). This will not cause a problem for convergence except possibly at $z = \infty$. Hence X(z) is

<u>Property 5</u>: If x[n] is a **left-sided** sequence, then the ROC is the inside of a circle centered at the origin (excluding possibly z = 0).

Why?: Reason is similar to the previous property.

Property 6: If x[n] is **two-sided**, then the ROC is either a ring or empty.

Why?: A two-sided sequence =

Ex:
$$x[n] = \begin{cases} 2^n, & n < 0 \\ (\frac{1}{3})^n, & n = 0, 2, 4, \dots \\ 0, & n = 1, 3, 5, \dots \end{cases}$$
 Find $X(z)$ and its ROC.

Property 7: If X(z) is rational, then its ROC is bounded by the poles or extends to infinity.

Why?:

- A signal x[n] with rational X(z) consist of a linear combination of exponentials $\alpha^n u[n]$ or $-\alpha^n u[-n-1]$ which have ROCs bounded by their poles.
- The ROC of X(z) of the linear combination of exponentials thus is the intersection of ROCs bounded by poles (unless there is zero-pole cancellation).

Ex:

Ex: (Cont'ed)

8.4 Inversion of Z transforms

Given X(z) and ROC, how can we determine x[n]?

$$x[n] = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$$

where the integration is around a circle that is in the ROC. Hence the inverse z transform expression contains integration around a circular contour on the z-plane, and is typically difficult to compute and will not be applied in this course. However, there are a number of alternative procedures for obtaining a sequence from its z transform and associated ROC.

For rational X(z), an alternative way is to perform **partial-fraction expansion** for X(z), and then to recognize the sequence associated with each term in the expansion.

Ex:
$$X(z) = \frac{3z}{(2-z)(2z-1)}$$
, ROC: $\frac{1}{2} < |z| < 2$. Find $x[n]$.

Ex: [Challenge yourself!] Same X(z) with ROC: |z| > 2. Find x[n].

Ex: [Challenge yourself!] Same X(z) with ROC: |z| < 1/2. Find x[n].

Another method is to use the **power-series expansion** of X(z) and determine x[n] by inspection.

Ex: $X(z) = 4z^2 + 2 + 3z^{-1}$, ROC: $0 < |z| < \infty$. Find x[n].

Power series expansion is particularly useful for non-rational X(z).

Ex: $X(z) = \log(1 + z^{-1})$, ROC: |z| > 1. Find x[n].

Remember the Taylor series expansion of a function f(x):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Applying Taylor series expansion to $\log(1+x)$ with a=0 gives the following:

$$\log(1+x) = 0 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{2}{3!}x^3 \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}, \quad |x| < 1$$

Then

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{-n}, \quad |z| > 1$$

By inspection, the inverse z-transform of this: $x[n] = \begin{cases} \frac{(-1)^{n+1}}{n}, & \text{if } n \geq 1\\ 0, & \text{otherwise} \end{cases}$

8.5 Properties of Z transform

To discuss the z transform properties, we use the same convenient shorthand notation we used for Fourier transform properties. In other words, to indicate the pairing of a signal and its z transform, we use :

•
$$x[n] \longleftrightarrow X(z)$$

We sometimes also refer to a z transform with the following notation:

•
$$X(z) = \mathcal{Z}\{x[n]\}, ROC : |z| > a$$

For the following properties, we consider two signals x[n] and y[n] with corresponding z transforms X(z) and Y(z), and ROCs R_x and R_y , respectively, i.e.

$$x[n] \longleftrightarrow X(z), \ ROC = R_x$$

$$y[n] \longleftrightarrow Y(z), \ ROC = R_y$$

8.5.1 Linearity

 $ax[n] + by[n] \longleftrightarrow aX(z) + bY(z), \quad ROC \supseteq R_x \cap R_y \text{ (pole zero cancellations may occur)}$

8.5.2 Time Shift

 $x[n-n_0]\longleftrightarrow X(z)z^{-n_0},\ ROC=R_x$ with possible inclusion or deletion of z=0 or $z=\infty.$

Ex: $x_1[n] = -\delta[n+1] + \delta[n]$ and $x_2[n] = x_1[n-1]$. Find the z transforms and associated ROCs.

8.5.3 Scaling in the z domain

$$z_0^n x[n] \longleftrightarrow X(\frac{z}{z_0}), \ ROC = |z_0|R_x = \{z : \left|\frac{z}{z_0}\right| \in R_x\}$$

This property corresponds to frequency shifting property for $z_0 = e^{j\Omega_0}$: $e^{j\Omega_0 n}x[n] \longleftrightarrow$

Ex: [Challenge yourself!] R_x : $\frac{1}{2} < |z| < 5$ and $|z_0| = 3$. Find $|z_0|R_x$.

8.5.4 Time Reversal

$$x[-n] \longleftrightarrow X(\frac{1}{z}), \ ROC = \frac{1}{R_x} = \{z : \frac{1}{z} \in R_x\}$$

Ex: [Challenge yourself!] R_x : $\frac{1}{2} < |z| < 5$. Find $\frac{1}{R_x}$.

8.5.5 Conjugation

$$x^*[n] \longleftrightarrow X^*(z^*), \ ROC = R_x$$

If x[n] is real, (i.e. $x[n] = x^*[n]$)

- $\bullet \ X(z) = X^*(z^*)$
- thus, if X(z) has a pole (zero) at $z = z_0$, then it must have another pole (zero) at the complex conjugate point $z = z_0^*$.

Ex: [Challenge yourself!] Consider $X(z) = A(z) \frac{z-b}{z-a}$. Find $X^*(z^*)$ and its poles. Show that if $X(z) = X^*(z^*)$, then the poles and zeros must appear in complex conjugate pairs.

8.5.6 Convolution

 $x[n]*y[n]\longleftrightarrow X(z)Y(z),\ ROC\supseteq R_x\cap R_y$ (pole zero cancellations may occur)

Ex: Consider $x_1[n]$ and $x_2[n]$ plotted below and find z transform of $x_1[n] * x_2[n]$.

8.5.7 Differentiation in z-domain

$$nx[n] \longleftrightarrow -z \frac{dX(z)}{dz}$$
, $ROC = R_x$ (with possible inclusion of $z = 0$)

Ex: [Challenge yourself!] $X(z) = \frac{az^{-1}}{(1 - az^{-1})^2}$, |z| > a. Determine x[n].

8.5.8 The initial value theorem

If x[n] is <u>causal</u>, i.e. x[n] = 0 for n < 0, then

$$x[0] = \lim_{z \to \infty} X(z)$$

8.5.9 Table of Z transform properties and some common z transform pairs

The following tables from the textbook summarize z transform properties and common pairs.

Section	Property	Signal	z-Transform	ROC
- 3		x[n]	X(z)	R
		$x_1[n]$	$X_1(z)$	R ₁
		$x_2[n]$	$X_2(z)$	R ₂
10.5.1	Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z)+bX_2(z)$	At least the intersection of R_1 and R_2
10.5.2	Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R, except for the possible addition or deletion of the origin
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
		$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z ₀ R
		$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$ = the set of points $\{ a z\}$ for z in R)
10.5.4	Time reversal	x[-n]	X(z-1)	Inverted R (i.e. R^{-1} = the set of points r^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)
10.5.6	Conjugation	x*[n]	X*(z*)	R
10.5.7	Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R
10.5.7	First difference	x[n]-x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
10.5.9		Initial Value Theorem If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$		

Signal	Transform	ROC
1. δ[n]	I state of the state of	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z ^{.m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha''u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
 ηα"u[n] 	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z}$	$\frac{1}{-2}$ $ z > r$
12. $[r^n \sin \omega_0 n]u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z}$	${-2}$ $ z > r$

8.6 LTI Systems and Z-transform

The z-transform plays an important role in the analysis and design of DT LTI systems:

• By convolution property,

• $H(z) = \mathcal{Z}\{h[n]\}$: transfer function (system function) of the LTI system We can characterize an LTI system by H(z) and its ROC. If unit circle \in ROC, then H(z) can be evaluated at $z = e^{j\Omega}$ (i.e. |z| = 1), and hence the frequency response of the system can be obtained:

$$\mathcal{F}\{h[n]\} = H(e^{j\Omega}) =$$

• Also note that, as discussed before, H(z) is the eigenvalue corresponding to the input eigenfunction z^n .

For LTI systems, many system properties can be directly determined from the ROC, and the poles and zeros of H(z), as is discussed below.

8.6.1 Causality

<u>Property 1:</u> A DT LTI system is causal <u>if and only if</u> the ROC of H(z) is outside of a circle, including infinity.

Why?

Property 2 : A DT LTI system with rational H(z) is **causal** if and only if

- order $(a(z)) \le \operatorname{order}(b(z))$ where $H(z) = \frac{a(z)}{b(z)}$.
- the ROC of H(z) is the outside of the outermost pole.

Why?

8.6.2 Stability

<u>Property 1:</u> A DT LTI system is stable if and only if the ROC of H(z) contains the unit circle, i.e. |z| = 1.

Why?

Why?

Ex: An LTI system satisfies the following difference equation:

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1].$$

What are the possible h[n]'s for this system?

Ex: [Challenge yourself!] Consider a stable and causal LTI system with impulse response h[n] and rational system function H(z). The following information is given:

• H(z) contains a pole at $z = \frac{1}{2}$ and a zero somewhere on the unit circle. The precise number and locations of other poles and zeros are unknown.

Are the following statements true, false or not verifiable? Justify your answers.

- 1. $\mathcal{F}\{(\frac{1}{2})^n h[n]\}$ converges.
- 2. $H(e^{j\Omega}) = 0$ for some Ω .
- 3. h[n] has finite duration.
- 4. h[n] is real.
- 5. g[n] = n(h[n] * h[n]) is the impulse response of a causal system.