

Project — Inverse Problems

December 2017

The project will be realized in groups of 2 ("binômes"). At the end of the project, you will submit, for each part independently, a folder containing the MATLAB codes corresponding to the respective questions. Each folder must contain a file main_demo.m that should display the results upon execution. The codes must be accompanied by a <u>short</u> report (10 pages maximum, including figures) that details the calculations, summarizes the proposed algorithms and discusses the results.

Part 1: Simulation of a Gaussian law truncated to positive values

In this part, we are interested in simulating the truncated Normal law defined by

$$f(x) = \frac{1}{K(m, \sigma^2)} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right) \mathbf{1}_{\mathbb{R}^+}(x) \quad \text{avec} \quad K(m, \sigma^2) = \sqrt{\frac{\pi\sigma^2}{2}} \left[1 + \operatorname{erf}\left(\frac{m}{\sqrt{2\sigma^2}}\right)\right]$$

where the cumulative distribution function (CDF) is given by

$$F(t) = P[X < t] = \frac{\operatorname{erf}\left(\frac{t - m}{\sqrt{2\sigma^2}}\right) + \operatorname{erf}\left(\frac{m}{\sqrt{2\sigma^2}}\right)}{1 + \operatorname{erf}\left(\frac{m}{\sqrt{2\sigma^2}}\right)}$$

and where the function $\operatorname{erf}(x)$ is defined as $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp\left(-t^2\right) dt$ (function erf in MATLAB).

Propose a first simulation algorithm based on the method of CDF inversion.
Write a function X = randnt_inversion(m, sigma2, N) that returns a vector X of size N × 1 with elements following a normal law truncated to positive values, with parameters m and sigma2.

Hint: one can use the function erfinv that returns the inverse of the function erf (\cdot) .

2. Compare the empirical histogram from N realizations with the theoretical probability density function.

The drawback of this first method is that one needs to know the functions $\operatorname{erf}(\cdot)$ and $\operatorname{erf}^{-1}(\cdot)$. In order to simulate samples from a truncated normal law, we therefore propose the use of an accept-reject method. Recall that the accept-reject method relies on the use of a candidate law q(x) such that $f(x) \leq Mq(x)$ ($\forall x \in \mathbb{R}$) where M is a constant that determines the acceptance ratio.

- 3. First, choose the normal law $\mathcal{N}\left(m,\sigma^{2}\right)$ as the candidate law.
 - (a) Compute the constant M that maximizes the acceptance ratio.
 - (b) From this, develop an algorithm that enables the generation of random variables that are distributed according to the truncated normal law. Write a function $X = randnt_ar1(m,sigma2,N)$ that returns a vector X of size $N \times 1$ has elements distributed according to the normal law truncated to positive values, with parameters m and sigma2.
- 4. Now choose an exponential distribution as the candidate law, defined by

$$q(x) = \lambda \exp(-\lambda x) \mathbf{1}_{\mathbb{R}^+}(x)$$
 with $\lambda = \left(\sqrt{m^2 + 4\sigma^2} - m\right)/2\sigma^2$.

Answer question 3 with this new candidate law. The function $X = randnt_ar2(m,sigma2,N)$ returns a vector X of size $N \times 1$ has elements distributed according to the normal law truncated to positive values, with parameters m and sigma2.

5. Compare these two simulation methods in terms of acceptance ratio for different values of m and σ^2 . Propose a strategy for efficiently simulating samples from the truncated normal law by carefully combining these two algorithms.

Part 2: Descent Methods

We want to determine the minimum of the function $f_0: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f_0(x) = a \arctan (dx_1^2 + x_2^2) + b(x_1 - x_1^{(0)})^2 + c(x_2 - x_2^{(0)})^2$$

with $x = (x_1, x_2)^T$, a = 0.5, b = 8, c = 0.55, d = 2 et $x^{(0)} = (x_1^{(0)}, x_2^{(0)})^T = (0.5, 1)^T$. The parameters are chosen such that f_0 is convex.

We are first going to solve the problem without constraints

$$\min_{x} f_0(x)$$

using descent methods or order 1 and 2.

We will consider having reached the minimum at iteration k if the absolute deviation of the new and the old value of f_0 is smaller than ε , $|f_0(x(k)) - f_0(x(k-1))| < \varepsilon$, for two values $\varepsilon_1 = 10^{-3}$ and $\varepsilon_2 = 10^{-6}$. We use the point $x' = (-0.8, -2.2)^T$ for initializing the descent.

- 1. Determine the gradient and the Hessian of f_0 Remark: you can use dedicated software for finding the expressions.
- 2. Gradient descent
 - (a) Program a gradient descent algorithm with fixed step size $\alpha(k)$. Find fixed step sizes $\alpha(k) = \alpha$ for which the algorithm converges for $\varepsilon = \varepsilon_1$ and $\varepsilon = \varepsilon_2$.
 - (b) Include an "optimal" step size $\alpha(k)$ in the gradient descent method. For the simple problem considered, we choose the "optimal" step size at each iteration k as the value α' from a finite discrete set (for instance, alpha=logspace(-3,1,1000)) which minimizes $f_0(x(k-1) + \alpha'd(k))$.
- 3. Newton Method
 - (a) Program the Newton method and use it to find the solution for $\varepsilon = \varepsilon_1$ et $\varepsilon = \varepsilon_2$.
 - (b) Include an "optimal" step size in the Newton method in the same was as for the gradient descent method.
- 4. How many iterations are needed for convergence for $\varepsilon = \varepsilon_1$ and $\varepsilon = \varepsilon_2$ for the different descent algorithms and different choices of step size? Illustrate, compare et interpret the behaviour and performance of the algorithms.

Part 3: Deconvolution of sparse signals

In this part, we consider different methods for finding the solution to the inverse problem defined by

$$y = Hx + n$$

where n is a zero-mean Gaussian white noise term with known covariance matrix $\sigma^2 I$ (σ^2 known), H is a convolution matrix and $x \in \mathbb{R}^N_+$ is a sparse positive signal ($x_i \geq 0$). Finding a solution to this problem consists in estimating the signal x from a vector of observations y. We will solve the inverse problem using a convex optimization algorithm, and using a Monte Carlo Markov Chain algorithm.

An example for generating the signal and solving the problem by means of *Orthogonal Matching Pursuit* is given by the file main_deconvolution_OMP.m. You will use this file to answer the following questions and study and compare the methods and their performance, notably as a function of the problem parameters (σ^2 and λ).

1. The equivalent convex optimisation problem to be solved is

$$\min_{x} ||y - Hx||_{2}^{2} + \lambda ||x||_{1} \quad \text{such that } x_{i} \geq 0, \ \forall i,$$

i.e., $f_0(x) = ||y - Hx||_2^2 + \lambda ||x||_1 = f(x) + g(x)$ with f(x) differentiable g(x) non-smooth.

(a) Program a proximal gradient -descent algorithm for this problem without positivity constraints, i.e., $\min_x ||y - Hx||_2^2 + \lambda ||x||_1$. In order to find the step size α^k at each iteration, one can use the rule

$$\alpha^k = \alpha, \ 0 \ll \beta < 1, \quad \text{while } ||r^k||_2^2 > ||r^{k-1}||_2^2 - \nabla_f(x^{k-1} - x^k) + \frac{1}{2\alpha^k}||x^{k-1} - x^k||_2^2 \quad \text{do} \quad \alpha^k = \alpha^k \beta$$

where $r^k = y - Hx^k$ is the residual for α^k .

(b) Include the positivity constraint by using the projected gradient approach, i.e., $x_C^k = Proj_C(x^k)$ with $C = \{x : x_i \ge 0\}$.

2. In a Bayesian setting, this problem can be solved by choosing an exponential prior distribution for each element x_i of x, which are assumed to be independent:

$$f(x_i) = \lambda \exp(-\lambda x_i) \mathbf{1}_{\mathbb{R}^+}(x_i). \tag{1}$$

- (a) Calculate the conditional posterior law of each element of the vector x conditioned on all other elements: $f(x_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_N,y)$.
- (b) Based on this conditional posterior law, deduce a Gibbs sampling algorithm that enables to solve the problem. You can use one or several of the algorithms developed in Part 1.