TEL:021-52709556

Data Sheet

EMW3166

V1.0 Date: 2016-10-20 NO:DS0047EN

Overview

Features:

- Integration of one Cortex-M4 MCU and one RF chip of 802.11 b/g/n
 - Cortex-M4 core at 100MHz
 - 2M bytes on-board SPI flash and 1M bytes on-chip flash
 - 256K bytes SRAM
- Operation voltage:
 - Low voltage mode: 2.3~3.0V
 - Normal voltage mode: 3~3.6V
- Peripherals
 - · 25 GPIOS
 - JTAG/SWD debug interfaces
- Wi-Fi connectivity:
 - 802.11 b/g/n available
 - WEP, WPA/WPA2, PSK available
 - 16.5dBm@802.11b,

 $14.5 dBm@802.11g,\, 13.5 dBm@802.11n$

- Receiver Sensitivity: -87dBm
- Station, Soft AP and Wi-Fi Direct
- Easylink available
- On-board PCB antenna and IPEX connector for external antenna
- CE, FCC compliant
- Operation Temperature: -30 ℃~+85 ℃

Applications:

- Smart LED
- Smart home appliances
- Medical/Health care
- Industrial automation systems
- Point of Sale system
- Auto electronics

Product list:

Par	t number	Antenna type	
EM	W3166-P	PCB antenna	Default
EM	W3166-E	IPX antenna	Optional

Embedded Wi-Fi module

Hardware block:

Copyright Notice:

No part of this specification may be reproduced without permission, especially for brand, name, part number and figures.

Version Record

Date	Version	Update content
2016-8-13	0.1	Initial version
2016-8-17	0.2	Update "Hardware Block"
2016-8-24	0.3	Update "Package" picturer
2016-10-13	0.4	Update TX&RX characteristics
2016-10-18	0.5	Update the power consumption
2016-10-20	1.0	Release version

Catalog

Ov	erview		I
Ver	sion R	lecord	1
1.	Intro	oduction	5
	1.1	EMW3166 appearance	6
	1.2	Pin Designation	6
	1.3	Recommended Footprint Design	7
	1.4	Pin Arrangement	7
2.	Elect	trical Parameters	11
	2.1	Operating Ratings	
	2.2	Absolute maximum ratings (voltage)	11
	2.3	Current Consumption	11
		2.3.1 Microcontroller Subsystem	
		2.3.2 Power Consumption in Typical Operation Mode	13
	2.4	I/O Port Characteristics	
		2.4.1 I/O Static Characteristics	13
	2.5	2.4.2 RESET pin characteristics	
	2.6	ESD	
	2.7	Static Latch-up	
	2.7	Other MCU Electrical Parameters	
•		haracteristics	
3.		Basic RF characteristics	
	3.1	TX Characteristics	
	3.2		
	3.3	3.2.1 IEEE802.11b mode TX characteristics	
	3.3	3.3.1 IEEE802.11n-HT Mode TX Characteristics	
	3.4	RX Input Level Sensitivity	
		3.4.1 IEEE802.11b Mode in 20MHz	
		3.4.2 IEEE802.11g Mode in 20MHz	18
		3.4.3 IEEE802.11n-HT Mode in 20MHz	19
4.	Ante	nna information	
	4.1	Type of antenna	
	4.2	Minimizing radio interference	
	4.3	U.F.L RF Connector	22
5.	Mecl	hanical Dimensions	24
	5.1	EMW3166 Mechanical Dimensions	
	5.2	Use guidelines (Please read carefully)	24
	5.3	The matters needing attention	26
	5.4	MSL/Storage Condition	26
	5.5	Recommended Reflow Profile	26
6.	Refe	rence circuit	28
7.	MO(Q&Packaging information	30
8.	Sales	s Information and Technical Support	31

Picture Catalog

Figure 1 EMW3166 Block Diagram	5
Figure 2 EMW316-P	6
Figure 3 EMW3166-E	6
Figure 4 Half-hole package dimension	7
Figure 5 Recommended Footprint	7
Figure 6 EWM3166-P	
Figure 7 EMW3166-E	21
Figure 8 EMW3166-B	
Figure 9 Antenna minimum clearance zone	22
Figure 10 An external antenna connector size diagram	
Figure 11 EMW3166 top view(Metric units)	24
Figure 12 EMW3166Side View	24
Figure 13 Temperature and humidity indicator CARDS	25
Figure 14 torage Condition	26
Figure 15 Temperature Curve	27
Figure 16 Power reference circuit	28
Figure 17 USB to serial reference circuit	28
Figure 18 External Circuit Design	28
Figure 19 UART 5 V - 3.3 V conversion circuit	29
Table Catalog	
Table 1 EMW3166 pin arrangement	8
Table 2 Voltage Conditions	11
Table 3 Current Conditions	11
Table 4 Absolute Maximum Rating	11
Table 5 Typical and maximum current consumption in Run mode	12
Table 6 Typical and Maximum Current Consumption in Run Mode	12
Table 7 Typical and Maximum Current Consumption in Standby Mode	12
Table 8 Power Consumption in Typical Operation Mode	13
Table 9 RESET Pin Characteristics	14
Table 10 Static Latch-up	15
Table 11 RF basic attributes	16
Table 12 IEEE802.11b Mode TX Characteristics	16

Table 13 IEEE802.11g mode TX characteristics	. 17
Table 14 IEEE802.11n-HT mode TX characteristics	. 17
Table 15 IEEE802.11b mode RX characteristics	. 18
Table 16 IEEE802.11g mode RX characteristics	. 19
Table 17 IEEE802.11n-HT mode RX characteristics:	. 19
Table 18 MOQ&Packaging information	. 30

1. Introduction

EMW3166 is one embedded Wi-Fi module of low-power, small-size and low-cost designed by MXCHIP. It integrates one Cortex-M4 microcontroller of 256Kbytes SRAM and 1Mbytes on-chip flash with another 2Mbytes on-board SPI flash added. Various peripheral interfaces of analog and digital are available. The power supply voltage is 3.3V. It applies half-hole footprint for hand-soldering. The module runs MICO, which is the IOT OS System of MXCHIP, and is available for secondary development. The TCP/IP protocols and security encryption algorithm could be applied in various Wi-Fi applications. In addition, several particular firmware prepares for some typical applications, like UART to Wi-Fi DTU, easylink configuration and services for cloud interfacing.

Datasheet

EMW3166 Block diagram:

Figure 1 EMW3166 Block Diagram

1.1 EMW3166 appearance

Figure 2 EMW316-P

Figure 3 EMW3166-E

Labels:

CE0700: CE certification ID;

FCC ID P53-EMW3166: FCC certification ID;

EMW3166-P/EMW3166-E: Module type;

047863000093/04786300000C: MAC address;

1635/1632: Production batch;

Linked by MXCHIP: Manufacturer;

1.2 Pin Designation

EMW3166 owns two groups of pins (1X20 + 1X21). The lead pitch is 1mm.

EMW3166 has half-hole footprint fit for hand-soldering

EMW3166 pinouts:

Figure 4 Half-hole package dimension

1.3 Recommended Footprint Design

Recommended footprint (Unit: mm):

Figure 5 Recommended Footprint

1.4 Pin Arrangement

The general pin description:

Table 1 EMW3166 pin arrangement

Pins	Name	Туре	I/O level	Functions		Note		
1	-	-	-					NC
2	PB2	I/O	FT	GPIO			BOOT1	V
3	1	1	-					NC
4	PB15	I/O	FT	SPI2_MOSI	GPIO	TIM12_CH2	I2S2_SD	V
5	PB12	I/O	FT	SPI2_NSS	GPIO	CAN2_RX	I2S2_WS	V
6	PB13	I/O	FT	SPI2_SCK	GPIO	CAN2_TX	I2S2_CK	√
7	PB14	I/O	FT	SPI2_MISO	GPIO	TIM12_CH1		V
8	PC6	I/O	FT	UART6_TXD	GPIO	TIM3_CH1	I2S2_MCK	DEBUG_OUT
9	PA15	I/O	FT	GPIO	JTDI	TIM2_CH1	USART1_TXD	EasyLink
10	VBAT	S	-	VBAT				Clock power supply
11	-	1	-					NC
12	PC7	I/O	FT	UART6_RXD	GPIO	TIM3_CH2	I2S2_CK	DEBUG_IN
13	NRST	I/O	FT	RESET				√
14	PC0	Ι	TC	GPIO			WAKEUP	√
15	ı	1	-					NC
16	PC13	I/O	FT	GPIO				√
17	PB8	I/O	FT	I2C1_SCL	GPIO	TIM4_CH3	CAN1_RX	√

[Page 9]

Pins	Name	Туре	I/O level	Functions			Note	
18	PB9	I/O	FT	I2C1_SDA	GPIO	TIM4_CH4	CAN1_TX	√
19	PB10	I/O	FT	GPIO		TIM2_CH3	I2S2_CK	V
20	GND	S	-	GND				GND
21	GND	S	-	GND				GND
22	-	-	-					NC
23	-	-	-					NC
24	-	-	-					NC
25	PA14	I/O	FT	SWCLK				V
26	PA13	I/O	FT	SWDIO				V
27	PB3	I/O	FT	GPIO		TIM2_CH2	USART1_RXD	√
28	-	-	-					NC
29	PB7	I/O	FT	UART1_RXD	GPIO	TIM4_CH2	I2C1_SDA	USER_UART_RX
30	PB6	I/O	FT	UART1_TXD	GPIO	TIM4_CH1	I2C1_SCL	USER_UART_TX
31	PB4	I/O	FT	GPIO	JTRST	TIM3_CH1		V
32	1	ı	-					NC
33	PA10	I/O	FT	USB_ID	GPIO	TIM1_CH3		√
34	PA5	I/O	TC	GPIO			ADC1_5	V
35	PA11	I/O	FT	USB_DM	GPIO	TIM1_CH4	UART1_CTS	V
36	PA12	I/O	FT	USB_DP	GPIO	TIM1_ETR	UART1_RTS	BOOT

Pins	Name	Туре	I/O level		F	unctions		Note
37	PB0	I/O	FT	GPIO			ADC1_8	STATUS
38	PA4	I/O	TC	GPIO			ADC1_4	\checkmark
39	VDD	S	-	3.3V				3V3
40	VDD	S	-	3.3V				3V3
41	ANT	-	-	ANT				ANT PAD

Notes:

- 1. PIN10, PIN39, PIN40 need connect to VDD 3V3 power and PIN20, PIN21 connects to GND.
- 2. PIN8 and PIN12 are used for secondary burning, ATE and QC auto detection.
- 3. PIN29 and PIN30 are used as serial communication port for application.
- 4. "S" indicates "power supply", "I" indicates "input pin", "I/O" indicates "input/output pin".
- 5. "FT" indicates the maximum tolerance input voltage is 5V. The maximum tolerance voltage could not be over VCC when configured as analog I/O or RTC.
- 6. TC=standard 3.6V I/O.
- 7. PIN4~7 could not be used as the other functions except for the SPI1 interface of on-board flash.
- 8. Take SWD (PIN25, PIN26) as the replacement of JTAG to debug or download firmware.
- 9. "√" indicates the pin which could be used for customized applications, while "×" could not be used besides two groups "serial" and one group "SPI".
- 10. Please refer to MXCHIP for more support.

Important Note:

- If developers build an application based on MICO system, they can define or modify the function for every pin on EMW3166.
- The pin arrangement of the firmware MXCHIP developed could take the Application Note as a reference.

2. Electrical Parameters

2.1 Operating Ratings

EMW3166 enters an unstable condition whenever the input voltage dips below the minimum value of supply voltage. This condition must be considered during design of the power supply routing, especially if operating from a battery.

Table 2 Voltage Conditions

G 1 1	NT /	G 144	Specification				
Symbol	Note	Conditions	Min	Typical	Max	Unit	
VDD	Darrian Cumulti		3.0	3.3	3.6	V	
	Power Supply	Special condition	2.3	2.5	3.0	V	

Voltage exceeding maximum ratings will cause hardware damage to the module, and working at the maximum ratings for a long time will affect the reliability of the module.

Current conditions:

Table 3 Current Conditions

Symbol	Note	Max	Unit
I_{VDD}	Total current into VDD power lines	320	
Т	Output current sunk by any I/O and control pin	25	mA
IO	Output current sourced by any I/O and control pin	-25	

2.2 Absolute maximum ratings (voltage)

Stresses above the absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings:

Table 4 Absolute Maximum Rating

Symbol Note		Min	Max	Unit
$V_{ m DD}$	Power supply	-0.3	4.0	V
$V_{ m OUT}$	Output voltage on 5V tolerance pin	-0.3	5.5	V
V _{IN}	Input voltage on other pins	-0.3	V _{DD} +0.3	V

2.3 Current Consumption

2.3.1 Microcontroller Subsystem

Typical and maximum current consumption in Run mode:

Table 5 Typical and maximum current consumption in Run mode

Cb al	C 122	f (MII-)	Ta=25	T 1-4:4	
Symbol	Conditions	f_{HCLK} (MHz)	Typical	Max	Unit
		100	28.4	28.8	
		84	23.0	24.09	
	Enternal alock all makehonds anabled	64	16.0	16.83	
	External clock, all peripherals enabled	50	12.6	13.46	mA
		25	6.8	7.63	
T		20	5.8	6.31	
I_{MCU}		100	14.3	15.09	
	External clock, all peripherals disabled	84	11.6	12.28	
		64	8.2	8.75	
		50	6.5	7.21	
		25	3.6	4.22	
		20	3.2	3.65	

Typical and maximum current consumption in Stop mode:

Table 6 Typical and Maximum Current Consumption in Run Mode

Symbol	Itam	Conditions	Ta =25 ℃		Unit	
Symbol	Item		Typical	Max	Omt	
	Main regulator usage	Flash in Stop mode, all oscillators OFF, no independent watchdog	124	179		
	Low power regulator usage		52.8	104.9		
Iven	Main regulator usage	Flash in Deep power down mode, all oscillators OFF, no independent watchdog	87.6	123	u	
	Low power regulator usage		26.2	74.7	А	
	Low power low voltage regulator usage		20.1	58.5		

Typical and maximum current consumption in Standby mode:

Table 7 Typical and Maximum Current Consumption in Standby Mode

Symb	ol Item	Conditions	Typical	Unit	
------	---------	------------	---------	------	--

			Ta=25 ℃	
Supply current in Standby mode	Low-speed oscillator (LSE) and RTC ON	4.5	^	
	RTC and LSE OFF	2.6	μΑ	

2.3.2 Power Consumption in Typical Operation Mode

Current consumption of EMW3165 in typical operation mode:

Table 8 Power Consumption in Typical Operation Mode

Status	Average current (3V3)	Peak current (3V3)	Description
WiFi initial	13.42mA	13.49mA	Not low power mode
WiFi connecting	77.52mA	95.52mA	Not low power mode
WiFi connecting	11.52mA	34.28mA	Low power mode
WiFi connecting	5.50mA	33.26mA	Low power mode (WiFi & MCU)
UDP sending	91.64mA	243.59mA	Not low power mode
Easylink	77.07mA	342.20mA	Easylink
Standby	18.54uA	54.36uA	Standby

2.4 I/O Port Characteristics

2.4.1 I/O Static Characteristics

GPIO static characteristics:

Symbol	Item	Conditions	Min	Typical	Max	Unit
VIL	FT and NRST I/O input low level voltage	1.7V ~ 3.6V	-	-	0.3VDD	V
	BOOT0 I/O input low level voltage		-	-	0.1VDD+0.1	
VIH	FT and NRST I/O input low level voltage	1.7V ~ 3.6V	0.7VDD	-	-	V

Symbol	Item		Conditions	Min	Typical	Max	Unit
	BOOT0 I/O level v	-		0.17VDD+0.7	1	1	
VHYS	FT and NRS	ST I/O input cresis	1 7V 2 6V	0.1VDD	1	1	V
VHIS	BOOT0	_	1.7V ~3.6V	0.1	1	-	V
RPU	Weak pull-up equivalent	All pins except for PA10	VIN=VSS	30	40	50	kΩ
	resistor	PA10		7	10	14	
RPD	Weak pull-down equivalent	All pins except for PA10	VIN=VDD	30	40	50	kΩ
	resistor	PA10		7	10	14	
CIO	I/O pin ca	pacitance	-		5	-	pF

2.4.2 RESET pin characteristics

The RESET pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, Rpu. EMW3166 contains RC (resistance-capacitance) reset circuit which ensures the module reset accurately when it powers up. If user need to reset manually, just connect the external control signals to the reset pins directly, but the control signal should be Open Drain Mode $_{\circ}$

RESET pin characteristics:

Table 9 RESET Pin Characteristics

Symbol	Item	Conditions	Min	Typical	Max	Unit
VF(NRST)	NRST Input filtered pulse	-		-	100	no
VNF(NRST)	NRST Input not filtered pulse	VDD > 2.7 V	300	-	ı	ns
RPU	Resistor for Pulling up	VIN= VSS	30	40	50	kΩ
TNRST_OUT	Generated reset pulse duration	Internal Reset source	20	-	-	us

2.5 Temperature and Humidity

Temperature and humidity condition of EMW3166:

Symbol	Item	Scale	Unit
T_{STG}	Storage temperature	-40 to +85	°C
T_{A}	Working temperature	-30 to +85	°C

Humidity Non condensing, relative humidity	95%	-	
--	-----	---	--

2.6 **ESD**

The Electromagnetic Environment Electrostatic discharge:

Symbol	Item	Conditions	Level	Max	Unit
V (HDM)	Electrostatic discharge voltage	TA= +25 ℃ conforming to	2	2000	
V _{ESD} (HBM)	(human body model) JESD22-A114		2000	**	
V. (CDM)	Electrostatic discharge voltage	TA = +25 °C conforming to	11	500	V
$V_{ESD}(CDM)$	(charge device model)	JESD22-C101	II	500	

2.7 Static Latch-up

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 10 Static Latch-up

Symbol	Item	Conditions	Level
L_{U}	Static latch-up class	TA=+105 °C conforming to JESD78A	II level A

2.8 Other MCU Electrical Parameters

Please refer to STM32F412xG datasheet for more information.

3. RF characteristics

3.1 Basic RF characteristics

Table 11 RF basic attributes

Item	Specification
Operating Frequency	2.412~2.484GHz
Wi-Fi Standard	802.11b/g/n(single stream n)
Modulation Type	11b: DBPSK, DQPSK,CCK for DSSS 11g: BPSK, QPSK, 16QAM, 64QAM for OFDM 11n: MCS0~7,OFDM *
Data Rates	11b:1, 2, 5.5 and 11Mbps 11g:6, 9, 12, 18, 24, 36, 48 and 54 Mbps 11n: MCS0~7, up to 72Mbps
Antenna type	PCB printed ANT U.F.L connector for external antenna (Optional)

3.2 TX Characteristics

3.2.1 IEEE802.11b mode TX characteristics

IEEE802.11b mode TX characteristics:

Table 12 IEEE802.11b Mode TX Characteristics

Channel	Transmitter Output Power (dBm)	EVM(%)	Frequency Error (ppm)
1	16.37	25.01	-2.16
2	16.41	25.12	-2.15
3	16.63	25.20	-2.44
4	16.36	25.90	-2.54
5	16.19	25.26	-2.62
6	16.56	26.33	-2.69
7	16.16	26.50	-2.75
8	16.39	25.01	-2.86
9	16.29	26.26	-2.91
10	16.34	26.40	-2.95
11	16.23	26.13	-2.98

12	16.34	25.71	-3.02
13	16.44	25.83	-3.10

3.3 IEEE802.11g mode TX characteristics

IEEE802.11g mode TX characteristics:

Table 13 IEEE802.11g mode TX characteristics

Channel	Transmitter Output Power (dBm)	EVM(%)	Frequency Error (ppm)	
1	13.41	13.41 -27.99		
2	13.24	-27.83	-2.22	
3	13.53	-25.70	-2.17	
4	13.48	-26.94	-2.10	
5	13.52	-27.57	-2.07	
6	13.40	-26.99	-2.06	
7	13.43	-26.28	-2.06	
8	13.22	-26.60	-2.07	
9	13.58	-26.67	-2.06	
10	13.04	-26.78	-2.03	
11	13.22	-25.99	-2.04	
12	13.25	-26.67	-2.05	
13	13.21	-27.04	-209	

3.3.1 IEEE802.11n-HT Mode TX Characteristics

IEEE802.11n-HT mode TX characteristics:

Table 14 IEEE802.11n-HT mode TX characteristics

Channel	Transmitter Output Power (dBm)	er (dBm) EVM(%) Frequenc	
1	12.76	-29.52	-2.19
2	12.71	-29.79	-2.14
3	12.62	-30.38	-2.04
4	12.78	-30.33	-1.99
5	12.69	-29.52	-1.99
6	12.62	-30.41	-1.99
7	12.73	-29.06	-1.99
8	12.74	-29.32	-1.89

Channel	Transmitter Output Power (dBm)	EVM(%)	Frequency Error (ppm)
9	9 12.73		-1.97
10	12.69	-29.32	-2.02
11	12.78	-28.51	-1.99
12	12.57	-29.81	-1.98
13	12.59	-29.23	-1.96

3.4 RX Input Level Sensitivity

3.4.1 IEEE802.11b Mode in 20MHz

IEEE802.11b mode RX characteristics:

Table 15 IEEE802.11b mode RX characteristics

Frequency	1M(dBm)	11M(dBm)	
	IEEE spec : -83	IEEE spec : -76	
1	-96	-88	
2	-95	-87	
3	-96	-87	
4	-96	-87	
5	-96	-88	
6	-96	-87	
7	-96	-87	
8	-96	-87	
9	-96	-88	
10	-96	-88	
î1	-96	-88	
12	-96	-87	
13	-96	-88	

3.4.2 IEEE802.11g Mode in 20MHz

IEEE802.11g mode RX characteristics:

Table 16 IEEE802.11g mode RX characteristics

Frequency	6M(dBm)	54M(dBm)	
	IEEE spec : -82	IEEE spec : -65	
1	-90	-74	
2	-90	-74	
3	-90	-74	
4	-90	-74	
5	-90	-74	
6	-89	-74	
7	-89	-74	
8	-89	-74	
9	-88	-74	
10	-89	-74	
11	-89	-74	
12	-89	-74	
13	-88	-74	

3.4.3 IEEE802.11n-HT Mode in 20MHz

IEEE802.11n-HT mode RX characteristics:

Table 17 IEEE802.11n-HT mode RX characteristics:

Frequency Channel	MCS0(dBm)	MCS7(dBm)
	IEEE spec : -82	IEEE spec : -64
1	-89	-72
2	-90	-72
3	-89	-72
4	-89	-72
5	-89	-72
6	-89	-71
7	-89	-71
8	-89	-71
9	-88	-72
10	-89	-72

Frequency Channel	MCS0(dBm)	MCS7(dBm)	
11	-89	-72	
12	-88	-72	
13	-88	-72	

4. Antenna information

4.1 Type of antenna

There are three types of antenna include PCB antenna, external antenna and antenna pad. The default type is PCB antenna. Users can modify the antenna type with the method below but MXCHIP would not take any responsibility for this behavior.

EMW3166 loads the resistance ($0\Omega/0402$) in the red box, it means user can use PCB antenna. If user wants to use U.F.L RF connector for external antenna, just need switch the resistance from red box to blue box and solder an U.F.L RF connector. If user switches the resistance from red box to yellow box, user can use antenna pad (pin 41).

Type of antenna:

Figure 6 EWM3166-P

Figure 7 EMW3166-E

Figure 8 EMW3166-B

4.2 Minimizing radio interference

When integrating the Wi-Fi module with on board PCB printed antenna, make sure the area around the antenna end

the module protrudes at least 15mm from the mother board PCB and any metal enclosure. If this is not possible use the on board U.FL connector to route to an external antenna. The area under the antenna end of the module should be keep clear of metallic components, connectors, vias, traces and other materials that can interfere with the radio signal.

Minimum size of keep-out zone around antenna:

Figure 9 Antenna minimum clearance zone

4.3 U.F.L RF Connector

This module use U.F.L type RF connector for external antenna connection.

Figure 10 An external antenna connector size diagram

5. Mechanical Dimensions

5.1 EMW3166 Mechanical Dimensions

EMW3166 top view (Unit: mm):

Figure 11 EMW3166 top view(Metric units)

EMW3166 side view (Unit: mm):

Figure 12 EMW3166Side View

5.2 Use guidelines (Please read carefully)

- Stamps port Wi-Fi modules which factory from MXCHIP are welding must by SMT machine.
 - SMT need machine:
 - Reflow soldering SMT machine
 - The AOI detector
 - 6-8 mm diameter suction nozzle
 - baking need equipment:
 - Cabinet baking box

- The antistatic, high temperature resistant tray
- The antistatic high temperature resistant gloves
- Storage conditions as follows
 - Moisture bag must be stored in a temperature < 30 °C, humidity 85% RH of the environment.
 - Dry packaging products, the guarantee period should be from 6 months from the date of packing seal.
 - Sealed packaging is equipped with humidity indicator card, as shown in Figure 13.
- Humidity indicator CARDS and baking several ways as follows:

Figure 13 Temperature and humidity indicator CARDS

- When opened, if the temperature and humidity indicator CARDS read 10%, 20%, 30%,40% three color ring are blue, to continue to bake for 2 hours for module;
- When opened, if the humidity indicator CARDS read 10% color ring into pink, need to continue to bake module 4 hours;
- When opened, if the humidity indicator CARDS read into 10%, 20%, color ring into pink, need to continue to bake for 6 hours module;
- When opened, if the humidity indicator CARDS read into 10%, 20%, 30% are pink color ring, need to continue to bake for 12 hours module:
- When opened, if the humidity indicator CARDS read into 10%, 20%, 30%, 40% are pink color ring, need to continue to bake for 14 hours module;
- Baking parameters are as follows:
 - Baking temperature: 125 °C + / 5 °C;
 - Set the alarm temperature as 130 °C;
 - Under the condition of natural cooling < 36 °C, SMT placement can be made;
 - Dry times: 1 times;
- If opened the time more than 3 months, please ban the use of SMT process welding this batch module, zedoary because PCB process, more than 3 months bonding pad oxidation, SMT is likely to cause virtual welding, welding, the resulting problems we do not assume corresponding responsibility.
- Please to ESD (static discharge, static electricity discharge) protection module before SMT;
- Please according to the SMT reflow soldering curve, peak temperature 245 °C, reflow soldering, temperature curve as shown in figure 14, section 7.6;
- For the first time in order to ensure the qualified rate of reflow soldering, first SMT please extraction 10% product to visual analysis, AOI inspection, to ensure that the furnace temperature control, device adsorption method, the rationality of the put way; Suggestions: when batch production per hour 5-10 pieces of visual analysis, AOI test;

5.3 The matters needing attention

- In the entire production, Each station of the operator must wear anti-static gloves;
- When baking, no more than baking time;
- When roasting, it is forbidden to join explosive, flammable, corrosive substances;
- When baking, high temperature module application tray in the oven, keep the air circulation between each module, at the same time avoid direct contact with the oven wall module;
- Baking, please will bake the door is closed, the guarantee baking box sealing, prevent leakage, temperature influence the baking effect;
- Don't open the door, as far as possible when baking box running if must open, shortening the time of can open the door as far as possible;
- \bullet After baking, must be natural cooling modules to < 36 $^{\circ}$ C before wear anti-static gloves out, so as not to burn.
- Operation, forbidden module bottom touch water or dirt;
- Temperature and humidity control level for Level3, storage and baking conditions based on IPC/JEDEC J
 STD 020.

5.4 MSL/Storage Condition

Figure 14 torage Condition

5.5 Recommended Reflow Profile

Solder paste recommendations: SAC305, Lead -Free solder paste.

Reflow times<= 2times (Max.)

- 1.Max Rising Slope : 3°C/sec
- 2.Max Falling Slope: -3 °C/sec
- 3.Soaking Time(150°C~180°C): 60sec~120sec
- 4.Over 217°C Time:60sec~120sec;
- 5.Peak Temp.240°C ~250°C

Recommended reflow profile:

Figure 15 Temperature Curve

6. Reference circuit

The recommended power supply circuit for EMW3166:

Figure 16 Power reference circuit

The recommended USB to Serial circuit for EMW3166:

Figure 17 USB to serial reference circuit

The recommended external circuit design for EMW3166:

Figure 18 External Circuit Design

EMW3166 UART is 3.3 V, if the user use UART chip is 5 V, the need to convert the voltage, can with EMW3162 UART communication, please refer to the 5 V to 3.3 V UART conversion circuit Figure 19.

Figure 19 UART 5 V - 3.3 V conversion circuit

7. MOQ&Packaging information

Table 18 MOQ&Packaging information

NUM	MOQ	PACKAGING	PCS/TRAY	TRAY/BOX	PCS/BOX
EMW3166-P	1800	托盘	30	10+1	300
EMW3166-E	1800	托盘	30	10+1	300

8. Sales Information and Technical Support

If you need to get the latest information on this product or our other product information, you can visit: http://www.mxchip.com/.

If you need to get technical support, please call us during the working hours.

From Monday to Friday, morning 9:00~12:00, afternoon 13:00~18:00

Telephone: +86 (021)52655026-822

Email: sales@mxchip.com

Postcode: 200333

Contact address: 9thFloor, No.5, Lane2145JinshaJiangRoad, Putuo District, ShangHai