Applied Data Science Capstone - Car accident severity

Peer-graded Assignment

Table of contents

Introduction - Business Problem

The objective is to predic the probability of severity of an accident (injury or property damage only) given the weather and road conditions. Prediction will be done with the Logistic Regression.

Methodology

For this project I will mainly concentrate on the Road and Weather Conditions to estimate severity of the accident.

Analysis Defining X 'Weather - Clear', 'Weather - Raining', 'Road Condition - Dry', 'Road Condition - Wet', y 'SEVERITYCODE' for dataset. Normalizing the dataset Train/Test dataset Modeling (Logistic Regression with Scikit-learn)

Property Damage Only Collision 132451 Injury Collision 57092

Name: SEVERITYDESC, dtype: int64

df['WEATHER'].value_counts()

Clear 111116 Raining 33141 Overcast 27702 Unknown 15080 Snowing 907 Other 830 Fog/Smog/Smoke 569 Sleet/Hail/Freezing Rain 113 Blowing Sand/Dirt 55 Severe Crosswind 25 Partly Cloudy 5

Name: WEATHER, dtype: int64

df['ROADCOND'].value_counts()

124432 Dry Wet 47450 Unknown 15068 Ice 1206 Snow/Slush 1002 Other 132 Standing Water 115 Sand/Mud/Dirt 74 Oil 64 Name: ROADCOND, dtype: int64

...

		Weather - Clear	Weather - Raining	Road Condition - Dry	Road Condition - Wet	SEVERITYCODE
	count	189543.000000	189543.000000	189543.000000	189543.000000	189543.000000
	mean	0.586231	0.174847	0.656484	0.250339	0.301209
	std	0.492509	0.379837	0.474883	0.433209	0.458784
	min	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.000000	0.000000	0.000000	0.000000	0.000000
	50%	1.000000	0.000000	1.000000	0.000000	0.000000
	75%	1.000000	0.000000	1.000000	1.000000	1.000000
	max	1.000000	1.000000	1.000000	1.000000	1.000000

...

Train set: (132680, 4) (132680,) Test set: (56863, 4) (56863,)

Modeling Logistic Regression

First column is the probability of class 1, P(Y=1|X), and second column is probability of class 0, P(Y=0|X)

jaccard index

...

0.6945465416879165

Classification Report

•••

		precision	recall	f1-score	support
	0	0.69	1.00	0.82	39494
	1	0.00	0.00	0.00	17369
micro	avg	0.69	0.69	0.69	56863
macro	avg	0.35	0.50	0.41	56863
veighted	avg	0.48	0.69	0.57	56863

/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn_for)

Log loss

•••

0.5990610314273476

Conclusion

The objective was to predic the probability of severity of an accident (injury or property damage only) given the weather and road conditions using Logistic Regression. Accidents with property damage are more likely, also clear weather conditions and dry road conditions have highest number of accidents.