

a)
$$y(t) = \frac{dx(t)}{dt}$$
 $(F) = j2\pi X(F)$

· We see that the merkimon frequences Component of Y(F) will be the Same as X(F)

b)
$$y(t) = X^{2}(t)$$
 FT $Y(F) = X(F)*Y(F)$ $Y(F) = \int_{-2B}^{\infty} X(z)X(F-z)dz$ $F_{S} = 4B$

operties of Fourier Representations

	AND ASSESSMENT	Fourier Series .
	Fourier Transform	$x(t) \stackrel{FS; \omega_o}{\longleftrightarrow} X[k]$
	$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega)$	$y(t) \stackrel{FS; \omega_n}{\longleftrightarrow} Y[k]$
	$y(t) \stackrel{FT}{\longleftarrow} Y(j\omega)$	Period = T
	$ax(t) + by(t) \longleftrightarrow aX(j\omega) + bY(j\omega)$	$ax(t) + by(t) \stackrel{FS; \omega_o}{\longleftrightarrow} aX[k] + bY[k]$
	$x(t-t_o) \stackrel{FT}{\longleftrightarrow} e^{-j\omega t_o} X(j\omega)$	$x(t-t_o) \stackrel{FS; \omega_o}{\longleftrightarrow} e^{-jk\omega_o t_o} X[k]$
y .	$e^{j\gamma t}x(t) \stackrel{FT}{\longleftrightarrow} X(j(\omega - \gamma))$	$e^{ik_o\omega_o t}x(t) \stackrel{FS;\omega_o}{\longleftrightarrow} X[k-k_o]$
5-1	$x(at) \xleftarrow{FT} \frac{1}{ a } X\left(\frac{j\omega}{a}\right)$	$x(at) \xleftarrow{FS; a\omega_o} X[k]$
	$\frac{d}{dt}x(t) \longleftrightarrow FT \longrightarrow j\omega X(j\omega)$	$\frac{d}{dt}x(t) \stackrel{FS; \omega_o}{\longleftrightarrow} jk\omega_o X[k]$
	$-jtx(t) \longleftrightarrow \frac{FT}{d\omega}X(j\omega)$	_ /
	$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{FT} \frac{X(j\omega)}{j\omega} + \pi X(j0)\delta(\omega)$	_
	$\int_{-\infty}^{\infty} x(\tau)y(t-\tau) d\tau \xleftarrow{FT} X(j\omega)Y(j\omega)$	$\int_0^T x(\tau)y(t-\tau)d\tau \xleftarrow{FS;\omega_o} TX[k]Y[k]$
	$x(t)y(t) \longleftrightarrow \frac{FT}{2\pi} \int_{-\infty}^{\infty} X(j\nu)Y(j(\omega-\nu)) d\nu$	$x(t)y(t) \stackrel{FS;\omega_o}{\longleftrightarrow} \sum_{l=-\infty}^{\infty} X[l]Y[k-l]$
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	$\frac{1}{T} \int_0^T x(t) ^2 dt = \sum_{k=-\infty}^{\infty} X[k] ^2$
	$X(jt) \stackrel{FT}{\longleftrightarrow} 2\pi x(-\omega)$	$x[n] \xleftarrow{DTFT} X(e^{j\Omega})$ $X(e^{jt}) \xleftarrow{FS;1} x[-k]$
	$x(t) \text{ real} \longleftrightarrow X^*(j\omega) = X(-j\omega)$	$x(t) \text{ real} \xleftarrow{FS; \omega_o} X^*[k] = X[-k]$
1	$x(t)$ imaginary $\leftarrow FT \longrightarrow X^*(j\omega) = -X(-j\omega)$	$x(t)$ imaginary $\stackrel{FS;\omega_o}{\longleftrightarrow} X^*[k] = -X[-k]$
	$x(t)$ real and even \longleftrightarrow $\operatorname{Im}\{X(j\omega)\}=0$	$x(t)$ real and even $\leftarrow FS; \omega_a \longrightarrow Im\{X[k]\} = 0$
	$x(t)$ real and odd $\leftarrow FT \longrightarrow \operatorname{Re}\{X(j\omega)\} = 0$	$x(t)$ real and odd $\leftarrow FS; \omega_o \longrightarrow \operatorname{Re}\{X[k]\} = 0$

(continues on next trace)

$$d(n) = X(n) - 0, X(n-1)$$

$$O_{\delta}^{2} = E[\delta^{2}(n)] - PP433$$

$$O_{\delta}^{2} = E[(X(n) - \alpha X(n-1))^{2}]$$

$$= E[X^{2}(n)] - 2\alpha E[X(n)X(n-1)] + E[\alpha^{2}X^{2}(n-1)]$$

$$= O_{x}^{2} - 2\alpha \cdot \chi_{x}(1) + \alpha^{2}O_{x}^{2} - PP433$$

$$= O_{x}^{2}[1 + \alpha^{2} - 2\alpha \chi_{x}(1)O_{x}^{-2}]$$

$$\frac{\chi_{x}(1)}{\sigma_{x}^{2}} = \frac{\chi_{x}(1)}{\chi_{x}(0)} - P.P.434$$

$$O_{z}(d) = O_{x}^{2}[1 + \alpha^{2} - 2\alpha P(1)]$$

6.16

· To find the minimum Value we can set the devivative to O are solve.

$$\frac{d}{da}Q_{0}^{2} = 2Q_{x}^{2}\alpha - 2Q_{x}Q_{x}^{2} = 0$$

• We plug result backin. (a = f(x)) = 0

 $Q_{x}^{2}(E) = Q_{x}Y_{1} + P_{x}^{2}(1) - 2P_{x}^{2}(1)$

To fink when 022/022 we say 1+02-20 fx(1)<1 02-20 fx(1)<0 0-2 fx(1)<0 For 02-02 [1-gx(1)] 1-fx(1)<1

So (8x(1) 70 (0)

8x2(1)>0