

Éléments de mémoire et bascules (ex. LAT)

Exercises Conception Numérique

3 Bascules

3.1 Détecteur de transitions

A l'aide d'une bascule D et de portes logiques, concevoir un circuit qui détecte les transistions de son signal d'entrée.

3.2 Registre à décalage

La figure suivante présente un registre à décalage.

Expliquer le fonctionnement de ce circuit.

3.3 Bascule donnée par son équation caractéristique

Un circuit à modifier contient des bascules M, spécifiées par leur équation caractéristique :

$$q^+ = \bar{s}a + sb$$

Proposer un circuit de remplacement de la bascule M à l'aide d'une bascule D et de portes logiques combinatoires.

3.4 Diviseur par 2

A l'aide d'une bascule T, réaliser un diviseur de fréquence par 2. A l'aide de ce diviseur par 2, réaliser un diviseur par 4.

3.5 Remplacement de bascule

A l'aide d'une bascule E et de portes logiques combinatoires, réaliser une bascule T.

3.6 Registre à décalage

Réaliser un registre à décalage de 4 bits à l'aide de bascules T.

3.7 Remise à zéro asynchrone

A l'aide d'un circuit RC et de portes logiques, réaliser un circuit d'initialisation des bascules au moment de la mise sous tension de l'électronique.

3.8 Circuit asynchrone

La figure suivante présente un circuit asynchrone : les bascules ont des signaux d'horloge différents.

Compléter la figure suivante donnant le fonctionnement temporel de ce circuit. Assigner un retard de porte identique à tous les composants du circuit.

