Week 9: Measurement

POL-GA 3200 Quantitative Field Methods Prof. Cyrus Samii NYU Politics

April 1, 2014

Type	Examples	Pros	Cons		
Administrative/	Vote records	Unobtrusive	Limited availability		
naturally observed	Expenditures	Real-world	Overdetermined		
Induced behavior	Researcher audits	Moderately obtrusive	Expensive		
	Tests & games	Incentive compatible	Artificial		
		Reveal mechanisms	Obtrusive		
Self-rep. behaviors	Vote choice	Private behavior	Obtrusive		
	Organization membership	Specific	Recall error/bias		
			Social desirability		
Self-rep. attitudes,	Efficacy	Private beliefs	Obtrusive		
perceptions, &	Legitimacy	Specific	Social desirability		
opinions	Preferences	Reveal mechanisms	Top-of-the-head		

▶ You have many types of measures from which to choose.

Type	Examples	Pros	Cons	
Administrative/	Vote records	Unobtrusive	Limited availability	
naturally observed	Expenditures	Real-world	Overdetermined	
Induced behavior	Researcher audits	Moderately obtrusive	Expensive	
	Tests & games	Incentive compatible	Artificial	
		Reveal mechanisms	Obtrusive	
Self-rep. behaviors	Vote choice	Private behavior	Obtrusive	
	Organization membership	Specific	Recall error/bias	
			Social desirability	
Self-rep. attitudes,	Efficacy	Private beliefs	Obtrusive	
perceptions, &	Legitimacy	Specific	Social desirability	
opinions	Preferences	Reveal mechanisms	Top-of-the-head	

- ▶ You have many types of measures from which to choose.
- ► Measurement theorists focus on "reliability" and "validity." http://www.socialresearchmethods.net/kb/measure.php

Type	Examples	Pros	Cons	
Administrative/	Vote records	Unobtrusive	Limited availability	
naturally observed	Expenditures	Real-world	Overdetermined	
Induced behavior	Researcher audits	Moderately obtrusive	Expensive	
	Tests & games	Incentive compatible	Artificial	
		Reveal mechanisms	Obtrusive	
Self-rep. behaviors	Vote choice	Private behavior	Obtrusive	
	Organization membership	Specific	Recall error/bias	
			Social desirability	
Self-rep. attitudes,	Efficacy	Private beliefs	Obtrusive	
perceptions, &	Legitimacy	Specific	Social desirability	
opinions	Preferences	Reveal mechanisms	Top-of-the-head	

- ▶ You have many types of measures from which to choose.
- ► Measurement theorists focus on "reliability" and "validity." http://www.socialresearchmethods.net/kb/measure.php
- ▶ I consider construct validity, power, and comparability.

We will look at examples taking basic measurement a step further:

- ▶ Observed behaviors, sometimes induced by investigators.
- ► Index-type measures that aggregate multiple items to get at hard-to-measure concepts.
- Specialized questioning techniques.

Designing Behavioral Measures

- ▶ Best way to learn about "behavioral measurement" is to become familiar with examples.
- ► Some greatest hits...

- ▶ Bertrand et al. (2007) surprise driving tests for corruption.
- Olken (2007; 2009) road quality audits by engineers for corruption.
- Olken & Barron (2009) riding with truckers to observe bribes and corruption.

- ▶ Bertrand et al. (2007) surprise driving tests for corruption.
- Olken (2007; 2009) road quality audits by engineers for corruption.
- Olken & Barron (2009) riding with truckers to observe bribes and corruption.

► Correspondence:

▶ Bertrand & Mullainathan (2004) CVs to measure discrimination.

- ▶ Bertrand et al. (2007) surprise driving tests for corruption.
- Olken (2007; 2009) road quality audits by engineers for corruption.
- Olken & Barron (2009) riding with truckers to observe bribes and corruption.

► Correspondence:

▶ Bertrand & Mullainathan (2004) CVs to measure discrimination.

► Economic transactions:

- Dovidio et al (2010) attempts to buy \$10 gift certificates with a check for discrimination.
- ► Humphreys et al. (2012) and Beath et al. (2012) a wave of aid distribution for elite capture.

- ▶ Bertrand et al. (2007) surprise driving tests for corruption.
- Olken (2007; 2009) road quality audits by engineers for corruption.
- Olken & Barron (2009) riding with truckers to observe bribes and corruption.

► Correspondence:

▶ Bertrand & Mullainathan (2004) CVs to measure discrimination.

► Economic transactions:

- Dovidio et al (2010) attempts to buy \$10 gift certificates with a check for discrimination.
- ► Humphreys et al. (2012) and Beath et al. (2012) a wave of aid distribution for elite capture.

► Games:

- ▶ Glaeser et al. (2000) for trust.
- ► Habyarimana et al. (2007) for ethnic preferences and institutions
- ▶ Henrich et al. (2007) for trust and reciprocity.
- ▶ Gilligan et al. (2013) for social capital.

- ▶ Bertrand et al. (2007) surprise driving tests for corruption.
- Olken (2007; 2009) road quality audits by engineers for corruption.
- Olken & Barron (2009) riding with truckers to observe bribes and corruption.

► Correspondence:

▶ Bertrand & Mullainathan (2004) CVs to measure discrimination.

► Economic transactions:

- Dovidio et al (2010) attempts to buy \$10 gift certificates with a check for discrimination.
- ► Humphreys et al. (2012) and Beath et al. (2012) a wave of aid distribution for elite capture.

► Games:

- ▶ Glaeser et al. (2000) for trust.
- ▶ Habyarimana et al. (2007) for ethnic preferences and institutions
- ▶ Henrich et al. (2007) for trust and reciprocity.
- ▶ Gilligan et al. (2013) for social capital.

► Physical Markers:

 Nisbett and Cohen (1996) cortisol response to an insult and physical contact aversion to measure aggressiveness.

Designing Behavioral Measures

- ▶ No recipe.
- Require creativity and adaptation to context and research question.
- ▶ Behavioral econ and social psych are rich in such measures.
- ► A concern is that context-specific measures are incomparable across studies.

Indices measure attributes not easily observed or hard to capture by any single item:

Indices measure attributes not easily observed or hard to capture by any single item:

▶ "Living standards" for judging extent and severity of poverty.

Indices measure attributes not easily observed or hard to capture by any single item:

- "Living standards" for judging extent and severity of poverty.
- Psychological health and personality measures (e.g., self-esteem, "Big Five," PTSD).

Indices measure attributes not easily observed or hard to capture by any single item:

- "Living standards" for judging extent and severity of poverty.
- ► Psychological health and personality measures (e.g., self-esteem, "Big Five," PTSD).
- Customized/ad hoc approaches.

Example of living standards for poverty (Grosh & Glewwe, 2000; Deaton, 1997, Ch. 3):

Example of living standards for poverty (Grosh & Glewwe, 2000; Deaton, 1997, Ch. 3):

- ▶ Dominant approach: "money metric utility" approximated by consumption expenditure.
 - Consumption preferred over income as a measure due to consumption smoothing and variable income.
 - Smoothing within household means living standards best measured at household level (can divide by adult "consumption units").
 - ► Convert consumption to \$ metric w/ price index: $C_i = \sum_k p_k c_k$.
 - ► These arguments don't apply if income *per se* interests you!

Example of living standards for poverty (Grosh & Glewwe, 2000; Deaton, 1997, Ch. 3):

- ▶ Alternatives: income or caloric intake.
- Literature is thick on alternative measures of living standards (cf. Ravallion, 2011, for a recent discussion).
- ► Deaton discusses aggregating LS to get at poverty, inequality, and other social welfare measures.
- Example: LSMS (Grosh & Glewwe, 2000, pp. 31-46)

Example of Self-Esteem and Big Five:

- ➤ Commonly-used instrument for self-esteem is the "Rosenberg self-esteem scale" (lots of refs. on the web).
- ► Set of Likert items that are summed into a Likert scale:

 http://www.wwnorton.com/college/psych/psychsci/media/rosenberg.htm

Example of Self-Esteem and Big Five:

- ► Commonly-used instrument for self-esteem is the "Rosenberg self-esteem scale" (lots of refs. on the web).
- Set of Likert items that are summed into a Likert scale: http://www.wwnorton.com/college/psych/psychsci/media/rosenberg.htm
- Big Five is similar, consisting of five Likert scales measuring openness, conscientiousness, extraversion, agreeableness, and neuroticism.

http://www.ocf.berkeley.edu/~johnlab/measures.htm

Poli sci application:

http://isps.research.yale.edu/publication/ISPS11-001/

► Common measure of internal consistency for sum scale, *X*:

Cronbach's
$$\alpha = \frac{K}{K-1} \left(1 - \frac{\sum_{k=1}^{K} \sigma_{Y_k}^2}{\sigma_X^2} \right),$$

where $X = \sum_{k} Y_{k}$.

- ▶ Difference between σ_X^2 and $\sum_{k=1}^K \sigma_{Y_k}^2$ is covariance terms in σ_X^2 .
- $\sigma_X^2 = \sum_{k=1}^K \sigma_{Y_k}^2$ implies no covariance, $\alpha = 0$.
- ► Convention is to rate $\alpha \ge 0.7$ acceptable.

▶ Mokken score is an alternative (Van der Ark, 2007):

$$H = \frac{\sum_{k} \operatorname{Cov}\left(Y_{k}, X_{-k}\right)}{\sum_{k} c_{k}},$$

where X_{-k} is $X - Y_k$, and c_k is a normalization coefficient measuring maximum attainable covariance.

- ▶ Convention is to rate $H \ge .4$ acceptable.
- Mokken analysis can also be used to check monotonicity in relationships between variables.

Other kinds of indexing rules are also possible. Example of PTSD:

- ► A common screening tool used internationally is the WHO Composite International Diagnostic Interview.

 http://www.hcp.med.harvard.edu/wmhcidi/
- Scored as 0 or 1 depending based on Psych Diagnostic & Statistical Manual criteria:

http://www.dsm5.org/Pages/Default.aspx

http://www.neurosurvival.ca/ClinicalAssistant/scales/dsm_IV/Anxiety.html

Customized/ad hoc approaches:

- ▶ Indices we have seen were either weighted sum scores, based on pre-determined weights (e.g., prices), or simple sum scores.
- ► We may wish to come up with a way to weight items based on "information content" or extract "latent factors."

► *Inverse covariance weighting* optimizes information content for index constructed from *items determined to be related a priori*. Equiv. to a single factor latent variable model:

$$\left(\begin{array}{c} Y_{1i} \\ \vdots \\ Y_{Ki} \end{array}\right) = \left(\begin{array}{c} z_i + \boldsymbol{\varepsilon}_{1i} \\ \vdots \\ z_i + \boldsymbol{\varepsilon}_{Ki} \end{array}\right)$$

➤ Factors scores or principal component scores isolate and extract shared variation in different latent dimensions. Equivalent to a multifactor linear latent variable model with orthogonal factors:

$$\begin{pmatrix} Y_{1i} \\ \vdots \\ Y_{Ki} \end{pmatrix} = \begin{pmatrix} \beta_1 z_{1i} + \ldots + \beta_K z_{Ki} + v_{1i} \\ \vdots \\ \beta_1 z_{1i} + \ldots + \beta_K z_{Ki} + v_{Ki} \end{pmatrix}$$

where $\mathbf{z}_k'\mathbf{z}_l = 0$ for all $k \neq l$. Look at R example...

▶ *IRT models* allow for similar index construction/factor extraction with binary, ordered, or categorical data, accounting for non-linearities between the linear combination of factors and observed data.

$$\begin{pmatrix} Y_{1i} \\ \vdots \\ Y_{Ki} \end{pmatrix} = \begin{pmatrix} f(\beta_1 z_{1i} + \dots + \beta_K z_{Ki}) \\ \vdots \\ f(\beta_1 z_{1i} + \dots + \beta_K z_{Ki}) \end{pmatrix}$$

Violence -0.11 2.04 0.16^{**} 1.68^{**} (0.24) (1.35) (0.07) (0.63) Observations 252 252 252 124	able 3:		Main results			
Violence -0.11 2.04 0.16^{**} 1.68^{**} (0.24) (1.35) (0.07) (0.63) Observations 252 252 252 124 R^2 0.033 0.075 0.058 0.139	(2)	(1)	(3)	(4)	(5)	(6)
	ctator	Lottery risk	Cooperate	Trust sent	Trust return	Soc. Index
Observations 252 252 252 252 124 R^2 0.033 0.075 0.058 0.139	2.04	-0.11	0.16**	1.68**	0.07*	0.57***
R^2 0.033 0.075 0.058 0.139	1.35)	(0.24)	(0.07)	(0.63)	(0.03)	(0.13)
	252	252	252	124	128	252
Baseline (no violence) 2.53 15.28 0.60 4.82	.075	0.033	0.058	0.139	0.124	0.163
	5.28	2.53	0.60	4.82	0.23	0.00

Standard errors in parentheses.

WLS with matched-pair block FE.

Robust standard errors clustered by ward. (p-values are for two-sided tests.)

Soc. Index is inverse covariance weighted average of outcomes 2-5.

^{*} $p < 0.10, \, ^{**} \, \, p < 0.05, \, ^{***} \, \, p < 0.01$

- Survey administration:
 - Self-administered questionnaires with sealed ballot box, giving privacy.*
 - ► Interviewers who will be perceived as sympathetic.
 - ► "Bogus pipeline": say you have a way to validate/detect lying.*

- Survey administration:
 - Self-administered questionnaires with sealed ballot box, giving privacy.*
 - ► Interviewers who will be perceived as sympathetic.
 - ► "Bogus pipeline": say you have a way to validate/detect lying.*
- Questioning techniques:
 - ▶ Using *forgiving* and *familiar* wording.
 - Prime people to have an honesty motive.*
 - ► Randomized response.*
 - Item count/list experiment.
 - ► Endorsement experiment (cf. work by Lyall et al.).
 - "Three card method" (illegal alien example).
 - Nominative method ("how many friends do you have who...", cf. Salganik et al.).

- Survey administration:
 - Self-administered questionnaires with sealed ballot box, giving privacy.*
 - ► Interviewers who will be perceived as sympathetic.
 - ► "Bogus pipeline": say you have a way to validate/detect lying.*
- Questioning techniques:
 - Using forgiving and familiar wording.
 - Prime people to have an honesty motive.*
 - ► Randomized response.*
 - ► Item count/list experiment.
 - Endorsement experiment (cf. work by Lyall et al.).
 - "Three card method" (illegal alien example).
 - ► Nominative method ("how many friends do you have who...", cf. Salganik et al.).
- ► *T&Y find consistent evidence in favor of these. Others either untested or inconsistent, meaning more research needed.

Other techniques that are out there:

- Anchoring vignettes (King et al., 2004): used to enhance interpersonal and inter-group comparability of expressed attitudes.
- ▶ Visual aids: Show cards are very common; More advanced techniques—e.g., using a pile of beans for respondents to elicit subjective probabilities (Delavande et al., 2010).

▶ Many studies do very well in terms of identification and treatment construction, but then fail with measurement.

- ▶ Many studies do very well in terms of identification and treatment construction, but then fail with measurement.
- Criteria for judging a measure are:
 - construct validity with respect to outcome of theoretical interest;
 - power for detecting effects;
 - comparability across studies ("mature" sciences work hard to establish standardized measures so that we can compare findings across studies, even do meta-analysis).

- ▶ Many studies do very well in terms of identification and treatment construction, but then fail with measurement.
- Criteria for judging a measure are:
 - construct validity with respect to outcome of theoretical interest;
 - power for detecting effects;
 - comparability across studies ("mature" sciences work hard to establish standardized measures so that we can compare findings across studies, even do meta-analysis).
- ▶ Another criterion is "verifiability" (Blattman et al., 2014).

- ▶ Many studies do very well in terms of identification and treatment construction, but then fail with measurement.
- Criteria for judging a measure are:
 - construct validity with respect to outcome of theoretical interest;
 - power for detecting effects;
 - comparability across studies ("mature" sciences work hard to establish standardized measures so that we can compare findings across studies, even do meta-analysis).
- ▶ Another criterion is "verifiability" (Blattman et al., 2014).
- ► Key trade-off is between validity of a measure in a given context and ability to be compare across contexts.