Espaces préhilbertiens réels

1 Projection orthogonale

1.1 Définition et premières propriétés

Proposition 1.1

Soit F un sous-espace vectoriel d'un espace préhilbertien E. Si F est de **dimension finie**, alors $E = F \oplus F^{\perp}$.

ATTENTION! Le résultat n'est plus forcément vrai si F n'est pas de dimension finie. On conserve néanmoins le fait que F et F^{\perp} sont en somme directe.

Exemple 1.1

On munit $\mathbb{R}[X]$ du produit scalaire défini par

$$\left\langle \sum_{n=0}^{+\infty} a_n X^n, \sum_{n=0}^{+\infty} b_n X^n \right\rangle = \sum_{n=0}^{+\infty} a_n b_n$$

et on considère le sous-espace vectoriel

$$F = \{P \in \mathbb{R}[X], P(1) = 0\}$$

Soit $P = \sum_{n=0}^{+\infty} a_n X^n \in F^{\perp}$. Alors F est orthogonal aux polynômes $X^n - 1$, ce qui signifie que $a_n = a_0$ pour tout $n \in \mathbb{N}$. Mais comme la suite (a_n) est presque nulle, elle est nulle. Ainsi P = 0. Par conséquent, $F^{\perp} = \{0\}$ et $F \oplus F^{\perp} = F \neq \mathbb{R}[X]$.

Exercice 1.1 Othogonal et topologie

Soit F un sous-espace vectoriel d'un espace préhilbertien réel E.

- Montrer que F[⊥] est fermé.
- 2. Montrer que $\overline{F} \subset (F^{\perp})^{\perp}$.

Définition 1.1 Projecteur orthogonal

Soit F un sous-espace vectoriel d'un espace préhilbertien E. Si $E = F \oplus F^{\perp}$, on appelle **projecteur orthogonal** sur F le projecteur sur F parallèlement à F^{\perp} .

Remarque. La projection orthogonale sur F est notamment définie lorsque F est de dimension finie.

Proposition 1.2 Expression de la projection orthogonale dans une base orthonormale

Soit F un sous-espace vectoriel de **dimension finie** d'un espace préhilbertien E. On se donne une base orthonormale $(f_1, ..., f_n)$ de F. Soient p le projecteur orthogonal sur F et $x \in E$. Alors

$$p(x) = \sum_{k=1}^{n} \langle x, f_k \rangle f_k$$

Remarque. En particulier la projection d'un vecteur x sur une droite vectorielle vect(u) est $\frac{(x|u)}{\|u\|^2}u$. Si u est normé, alors cette projection est simplement (x|u)u.

Proposition 1.3 Inégalité de Bessel

Soient I est un ensemble fini ou dénombrable et $(e_i)_{i \in I}$ une famille orthonormale de vecteurs d'un espace préhilbertien E. Soit également $x \in E$.

Alors la famille $(\langle x, e_i \rangle^2)_{i \in I}$ est **sommable** et

$$\sum_{i \in I} \langle x, e_i \rangle^2 \le ||x||^2$$

1.2 Convergence

Définition 1.2 Suite totale

On dit qu'une suite de vecteurs $(u_n)_{n\in\mathbb{N}}$ d'un espace vectoriel normé E est **totale** si vect $(u_n, n\in\mathbb{N})$ est **dense** dans E.

Exemple 1.2

Posons $E = \mathcal{C}([a,b],\mathbb{K})$. D'après le théorème de Weierstrass la suite $(x \mapsto x^n)_{n \in \mathbb{N}}$ est une suite totale de E muni de la norme infinie.

Proposition 1.4

Soit $(e_n)_{n\in\mathbb{N}}$ une suite **orthonormale totale** d'un espace préhilbertien E. Pour $n\in\mathbb{N}$, on note p_n le projecteur orthogonal sur $\text{vect}(e_0,\dots,e_n)$.

Alors pour tout $x \in E$, la suite $(p_n(x))_{n \in \mathbb{N}}$ converge vers x.

Remarque. E est muni de la norme associée produit scalaire E.

2 Endomorphismes symétriques

2.1 Définition

Définition 2.1 Endomorphisme symétrique

On dit qu'un endomorphisme u d'un espace préhilbertien E est **symétrique** si

$$\forall (x, y) \in E^2, \langle u(x), y \rangle = \langle x, u(y) \rangle$$

Proposition 2.1 Interprétation matricielle

Soit u un endomorphisme d'un espace euclidien E. Alors u est **symétrique** si et seulement si sa matrice dans une **base orthonormale** de E est **symétrique**.

Proposition 2.2

Un **projecteur** d'un espace préhilbertien E est **symétrique** si et seulement si il est **orthogonal**. Une **symétrie** d'un espace préhilbertien E est **symétrique** si et seulement si elle est **orthogonale**.

Remarque. Soit u un endomorphisme d'un espace euclidien de dimension n et A sa matrice dans une **base orthonormale**. Alors

- u est un **projecteur orthogonal** si et seulement si $A^2 = A$ et $A^T = A$;
- u est une symétrie orthogonale si et seulement si $A^2 = I_n$ et $A^T = A$.

- Adjoint -

Si E est un espace euclidien, on peut montrer que pour tout $u \in \mathcal{L}(E)$, il existe un unique $u^* \in \mathcal{L}(E)$ tel que

$$\forall (x, y) \in E^2, \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

Cet endomorphisme u^* s'appelle l'**adjoint** de u. Ainsi u est symétrique si et seulement si $u = u^*$. C'est pour cela qu'on qualifie les endomorphismes symétriques d'endomorphismes auto-adjoints.

2.2 Réduction des endomorphismes symétriques

Proposition 2.3 Stabilité de l'orthogonal

Soit u un endomorphisme symétrique d'un espace préhilbertien E. Si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est également stable par u.

Théorème 2.1 Théorème spectral

Soit *u* un endomorphisme **symétrique** d'un espace euclidien E. Alors on a les propositions équivalentes suivantes.

- (i) E est la somme directe orthogonale des sous-espaces propres de u.
- (ii) Il existe une base orthonormale de E formée de vecteurs propres de u. En particulier, u est diagonalisable.

Corollaire 2.1 Réduction des matrices symétriques

Soit A une matrice symétrique de $\mathcal{M}_n(\mathbb{R})$. Alors il existe $P \in O(n)$ et une matrice diagonale D de $\mathcal{M}_n(\mathbb{R})$ tel que $A = PDP^T$.

- Endomorphismes symétriques positifs

Soit u un endomorphisme symétrique d'un espace euclidien E. On dit que u est **positif** si

$$\forall x \in E, \langle u(x), x \rangle \ge 0$$

Il est classique de montrer que u est positif si et seulement si $Sp(u) \subset \mathbb{R}_+$.

- Supposons u positif et donnons-nous $\lambda \in \operatorname{Sp}(u)$ et x un vecteur propre associé. Alors $\langle u(x), x \rangle \geq 0$ et $\langle u(x), x \rangle = \lambda ||x||^2$. Comme $x \neq 0_E$, $||x||^2 > 0$ et donc $\lambda \geq 0$. Ainsi $\operatorname{Sp}(u) \subset \mathbb{R}_+$.
- Supposons $\operatorname{Sp}(u) \subset \mathbb{R}_+$. D'après le théorème spectral, il existe une base orthonormale (e_1, \dots, e_n) de vecteurs propres de u. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres (positives)associées à ces vecteurs propres. Un calcul simple montre que

$$\langle u(x), x \rangle = \sum_{i=1}^{n} \lambda_i \langle x, e_i \rangle^2 \ge 0$$

On dira que u est **défini positif** si

$$\forall x \in E \setminus \{0_E\}, \langle u(x), x \rangle > 0$$

On montre comme précédemment que u est défini positif si et seulement si $\mathrm{Sp}(u) \subset \mathbb{R}_+^*$.

3 Isométries vectorielles

3.1 Définition

Définition 3.1 Isométrie vectorielle

On appelle **isométrie vectorielle** d'un espace préhilbertien E tout endomorphisme de E **conservant la norme**, c'est-à-dire toute application $u \in \mathcal{L}(E)$ telle que

$$\forall x \in E, \ \|u(x)\| = \|x\|$$

Proposition 3.1

Toute isométrie vectorielle u d'un espace préhilbertien E est linéaire et conserve le produit scalaire i.e.

$$\forall (x, y) \in E^2, \langle u(x), u(y) \rangle = \langle x, y \rangle$$

REMARQUE. Réciproquement, toute application conservant le produit scalaire est évidemment une isométrie vectorielle.

Proposition 3.2

Si E est un espace euclidien, toute isométrie vectorielle de E est un automorphisme. Dans ce cas, une isométrie vectorielle est également appelée un **automorphisme orthogonal**.

Remarque. Si u est un automorphisme orthogonal, alors $Sp(u) \subset \{-1, 1\}$.

Proposition 3.3 Interprétation matricielle

Soit u un endomorphisme d'un espace euclidien E. Alors u est une isométrie vectorielle si et seulement si sa matrice dans une base orthonormale de E est orthogonale.

Rappel | Isométrie vectorielle directe ou indirecte

Une isométrie vectorielle d'un espace euclidien est dite directe si son déterminant est positif et indirecte dans le cas contraire.

On parle également d'automorphisme orthogonal positif ou négatif.

Remarque. Le déterminant d'une isométrie vectorielle ne peut valoir que -1 ou 1.

Rappel | Matrice orthogonale positive ou négative

Une matrice orthogonale est dite **positive** si son déterminant est positif et **négative** dans le cas contraire.

Remarque. Le déterminant d'une matrice orthogonale ne peut valoir que -1 ou 1.

Proposition 3.4

Soit u un endomorphisme d'un espace euclidien E. Alors u est une isométrie vectorielle directe (resp. indirecte) si et seulement si sa matrice dans une base orthonormale de E est orthogonale positive (resp. négative).

3.2 Réduction des isométries vectorielles

Proposition 3.5 Stabilité de l'orthogonal

Soit u une isométrie vectorielle d'un espace préhilbertien E. Si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est également stable par u.

Rappel | Isométries d'un plan euclidien

Les isométries d'un plan euclidien sont :

- les rotations dont la matrice dans toute base orthonormale est de la forme $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$;
- les réflexions dont la matrice dans une base orthonormale adaptée est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Proposition 3.6 Réduction des isométries vectorielles

Soit u une isométrie vectorielle d'un espace euclidien E. Alors il existe une base orthonormale de E dans laquelle la matrice de u est diagonale par blocs, les blocs diagonaux étant de la forme $\begin{pmatrix} 1 \end{pmatrix}$, $\begin{pmatrix} -1 \end{pmatrix}$ et $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Corollaire 3.1 Réduction des matrices orthogonales

Soit $A \in O(n)$. Alors il existe une matrice $P \in O(n)$ et une matrice D diagonale par blocs, les blocs diagonaux étant de la forme $\begin{pmatrix} 1 \end{pmatrix}$, $\begin{pmatrix} -1 \end{pmatrix}$ et $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, telles que $A = PDP^{T}$.

3.3 Cas d'un espace euclidien de dimension 3

Rappel Orientation induite

Soit E un espace euclidien orienté de dimension 3. On peut orienter un plan P de E en se donnant un vecteur u non nul normal à P: on décrète qu'une base (v, w) de P est directe (resp. indirecte) si (u, v, w) est directe (resp. indirecte). On vérifie sans peine qu'on a alors bien orienté P: on parle alors de l'orientation de P induite par u.

Définition 3.2 Rotation

Soient $\theta \in \mathbb{R}$ et *u* un vecteur non nul de E. On appelle **ro**tation (vectorielle) d'angle θ et d'axe orienté par u l'endomorphisme laissant les vecteurs de vect(u) invariants et induisant une rotation d'angle θ dans le plan vect $(u)^{\perp}$ dont l'orientation est induite par celle de vect(u).

Remarque. Si u et u' sont deux vecteurs non nuls, colinéaires et de même sens, les rotations d'axes orientés par u et u' et de même angle θ sont identiques.

Si u et u' sont deux vecteurs non nuls, colinéaires et de sens contraire, la rotation d'axe orienté par u et d'angle θ et la rotation d'axe orienté par u' et d'angle $-\theta$ sont identiques.

REMARQUE. Si on change l'orientation de E, les angles de rotation sont changés en leurs opposés.

Proposition 3.7 Matrice d'une rotation

La matrice de la rotation d'angle θ et d'axe orienté par u dans une base orthonormale directe de premier vecteur colinéaire

et de même sens que
$$u$$
 est $R(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$.

Proposition 3.8

Les isométries vectorielles directes d'un espace euclidien de dimension 3 sont les rotations.

Méthode Déterminer l'image d'un vecteur par une rotation d'axe et d'angle donnés

Soit r une rotation d'angle θ d'axe orienté par u. On suppose u unitaire. Soit x un vecteur de E. On veut déterminer r(x).

- On calcule la projection orthogonale y de x sur vect(u): y = (x|u)u. On a alors $z = x y \in vect(u)^{\perp}$.
- On calcule l'image de $z : r(z) = (\cos \theta)z + (\sin \theta)u \wedge z$.
- On a alors r(x) = y + r(z).

Méthode Déterminer la matrice d'une rotation d'axe et d'angle donnés

Soit r une rotation d'angle θ orienté par u. On suppose u unitaire. On veut déterminer la matrice M de r dans la base canonique.

Méthode °1 On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . La méthode précédente nous permet de calculer $r(e_1)$, $r(e_2)$ et $r(e_3)$. On peut aussi remarquer que $r(e_3) = r(e_1) \wedge r(e_2)$. Les colonnes de M sont les vecteurs colonnes représentant $r(e_1)$, $r(e_2)$ et $r(e_3)$ dans la base canonique.

Méthode °2 On détermine v, w tels que (u, v, w) soient une base orthonormale directe : il suffit de choisir v orthogonal à u et de poser $w = u \wedge v$. La matrice de r dans la base (u, v, w) est $R(\theta)$. Si on note P la matrice de la base (u, v, w) dans la base canonique, alors la matrice recherchée est $PR(\theta)P^{-1} = PR(\theta)P^{-1}$.

Exercice 3.1

Déterminer la matrice dans la base canonique de la rotation d'angle $\frac{\pi}{3}$ et d'axe dirigé par $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$

Méthode Déterminer l'axe et l'angle de la rotation associée à une matrice de SO(3)

Soit r une rotation de matrice R dans une base orthonormale directe \mathcal{B} .

Méthode °1

- On cherche d'abord un vecteur directeur u de l'axe en résolvant RX = X.
- On détermine un vecteur v non nul et orthogonal à u.
- On détermine le vecteur r(v) grâce à R.
- On a alors $\cos \theta = \frac{(v|r(v))}{\|v\|^2}$.
- On détermine θ grâce au signe de $\sin \theta$: on remarque que $[u,v,r(v)] = ||u|| ||v||^2 \sin \theta$ ou que $v \wedge r(v) = ||v||^2 (\sin \theta) \frac{u}{||u||}$.

Méthode °2

- On cherche d'abord un vecteur directeur u de l'axe en résolvant RX = X.
- R et R(θ) sont la matrice de r dans des bases différentes donc tr(R(θ)) = tr(R) i.e. $1 + 2\cos\theta = \text{tr}(R)$. On en déduit $\cos\theta$.
- On détermine θ grâce au signe de $\sin \theta$. Le signe de $\sin \theta$ est le même que celui de [u, x, r(x)] où x est un vecteur quelconque de E: en pratique, on prend un vecteur de la base canonique.

Exercice 3.2

Soit A =
$$\frac{1}{3}$$
 $\begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}$.

- 1. Vérifier que $A \in SO(3)$.
- 2. Déterminer l'axe et l'angle de la rotation associée à A.

Exercice 3.3

Soit E un espace euclidien de dimension 3.

Montrer qu'une rotation de E commute avec une réflexion de E si et seulement si l'axe de la première est orthogonal au plan de la seconde.

On appelle anti-rotation de E toute composée commutative d'une rotation et d'une réflexion. Montrer que les isométries vectorielles indirectes de E sont les anti-rotations.