Домашняя работа №7

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

1 Задание

Постройте непрерывную биекцию $f:[0;1)\to S^1$ не являющуюся гомеоморфизмом. Не умоляя общности, можно считать, что S^1 — единичная окружность с центром в точке (0;0):

$$S^1 = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1\}$$

 $T_{\mathbb{R}}, T_{\mathbb{R}^2}$ — канонические топологии на \mathbb{R} и \mathbb{R}^2 соответственно:

$$T_{\mathbb{R}x} = \{ U \cap [0;1) \mid U \in T_{\mathbb{R}} \}$$

$$T_{S^1} = \{ U \cap S^1 \mid U \in T_{\mathbb{R}^2} \}$$

Решение

Рассмотрим отображение $f:([0;1),T)\to (S^1,T_S)$, заданное следующим образом:

$$f(t) = (\cos(2\pi \cdot t), \sin(2\pi \cdot t)),$$

где f отображает отрезок [0,1) на единичную окружность S^1 в \mathbb{R}^2 , и функция определяет точку окружности через угол $2\pi t$.

Обратное отображение

Для любой точки $(x,y)\in S^1$ обратное отображение можно выразить через угол, определяемый функцией

$$\operatorname{Angle}(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right), & \operatorname{если}\ x>0,\ y\geq 0\\ \arctan\left(\frac{y}{x}\right) + 2\pi, & \operatorname{если}\ x>0,\ y<0\\ \arctan\left(\frac{y}{x}\right) + \pi, & \operatorname{если}\ x<0\\ \frac{\pi}{2}, & \operatorname{если}\ x=0,\ y>0\\ \frac{3\pi}{2}, & \operatorname{если}\ x=0,\ y<0 \end{cases}$$

Таким образом, обратное отображение f^{-1} определено как

$$f^{-1}((x,y)) = \frac{\text{Angle}(y,x)}{2\pi}.$$

1. Биективность

Отображение f является биективным, так как каждому значению $t \in [0,1)$ соответствует уникальная точка на окружности S^1 , и наоборот.

2. Открытые множества и топология

Поскольку f отображает [0,1) на S^1 , нам нужно определить открытые множества на окружности.

Возьмем базисные множества для топологии в \mathbb{R}^2 :

$$\Sigma_{T_{\mathbb{R}^2}} = \{U(x_0,y_0,r) \mid$$
 окрестности с центром (x_0,y_0) и радиусом $r\}$ — база топологии $T_{\mathbb{R}^2}$.

Тогда множество $\Sigma_{T_{S^1}} = \{S^1 \cap U : U \in \Sigma_{T_{\mathbb{P}^2}}\}$ образует базу топологии T_{S^1} , заданной на S^1 .

Каждое открытое множество $D \in \Sigma_{T_{S^1}}$ — это дуга окружности, не содержащая своих граничных точек.

Следовательно, при обратном отображении $f^{-1}(D)=(a;b)\in [0;1)$ будет интервалом, также принадлежащим $T_{\mathbb{R}}$, поскольку интервал $(a;b)\in T_{\mathbb{R}}$.

Таким образом, f является непрерывным.

Тогда $f^{-1}(D)=(a;b)\in [0;1)$ — интервал $(a;b)\in T_R\Rightarrow f^{-1}(D)=(a,b)\cap [0;1)\in T_{R_X},\ f$ — непрерывна.

3.

 $V\in T_{R^2_{S^1}}\Rightarrow S^1\setminus V$ замкнуто $\Rightarrow Fr\,S^1\setminus V=Fr\,V\subset S^1\setminus V\Rightarrow$ все граничные точки V лежат в его дополнении $\Rightarrow \forall x\in D\exists U_x\in T_{R^2_{S^1}}:U_x\subset D$

Пусть $U = [0; 0.5) \in T_{R_X}$

$$f^{-1}(f^{-1}(U)) = f(U)$$

 $x=f(0)\Rightarrow \forall U_x\in T_{R^2_{c1}}$ существует $x\in U_x\cap f(U)\Rightarrow U_x\cap f(U)
eq \emptyset$

Существует $\varepsilon > 0$: $f(1-\varepsilon) \in U_x \cap f((0;1) \setminus U) \Rightarrow U_x \cap f((0;1) \setminus U) \neq \emptyset$

Следовательно, f(0) — граничная точка f(U) и $f(0) \in f(U) \Rightarrow$ из (1) f(U) не является открытым множеством.

 f^{-1} не является непрерывной функцией

f — не гомеоморфизм.

2 Задание

 T_X, T_Y — топологии на X, Y.

Если ограничения отображения $f:X \to Y$ на всех элементах покрытия Γ непрерывны, то f непрерывна.

- 1. X = [0; 2] $\Gamma = \{V_1 = [0; 1], V_2 = (1; 2]\}$
- 2. X = [0; 2] $\Gamma = \{V_1 = [0; 1], V_2 = [1; 2]\}$
- 3. $X = \mathbb{R} \quad \Gamma = {\mathbb{Q}, \ \mathbb{R} \setminus \mathbb{Q}}$

Решение

Теория

Пусть $\Gamma = \{V_i\}$ — покрытие множества X, то есть объединение всех V_i равно X:

$$\bigcup_{i \in I} V_i = X$$

$$B \in T_Y$$
 $f^{-1}(B) = \{x : f(x) \in B, x \in X\} = A$

$$f|_{V_i}^{-1}(B) = \{x : f(x) \in B, \ x \in V_i\} = A_i \in T_{X_{V_i}}$$

$$A_i = A \cap V_i$$

$$A = \bigcup_{i \in I} A \cap V_i = \bigcup_{i \in I} A_i$$

Задача сводится к вопросу: если для любого множества $A\subset X$ выполняется, что $A_i=A\cap V_i\in T_{X_{V_i}}$ для всех $i\in I$, то справедливо ли, что $A\in T_X$?

Иными словами, если на каждом элементе покрытия прообраз открытого множества B остаётся открытым, будет ли A открытым в топологии T_X ?

Первое достаточное условие непрерывности f

Первое условие заключается в следующем: если для любого множества $A\subset X$ выполнение условия $A_i=A\cap V_i\in T_{X_{V_i}}$ для всех $i\in I$ влечёт, что $A\in T_X$, то отображение f является непрерывным.

Иными словами, прообраз любого открытого множества $B \in T_Y$ остаётся открытым в T_X , если на каждом элементе покрытия V_i прообраз также остаётся открытым.

Второе достаточное условие непрерывности f

Второе достаточное условие можно получить, если использовать определение непрерывности через замкнутость.

В этом случае прообраз любого замкнутого множества в Y должен оставаться замкнутым в X.

Для любого $B \in T_Y$ можно записать:

$$f^{-1}(B) = \{x : f(x) \in B, x \in X\} = A$$

где

$$f|_{V_i}^{-1}(B) = \{x : f(x) \in B, \ x \in V_i\} = A_i; \quad A_i = A \cap V_i$$

и, следовательно,

$$A = \bigcup_{i \in I} A_i = \bigcup_{i \in I} (A \cap V_i)$$

Если для любого $A \subset X$ выполнение условия $A_i = A \cap V_i \in T_{X_{V_i}}$ для всех $i \in I$ влечёт, что $A \in T_X$, то отображение f будет непрерывным.

Следствия и утверждения

На основе вышеизложенных условий можно сформулировать несколько утверждений.

Утверждение 1

Если все V_i являются открытыми в T_X (то есть $V_i \in T_X$ для всех $i \in I$), то f непрерывна.

Доказательство

Необходимость

Если $V_i \in T_X$, то для любого множества $A \subset X$, его прообразы $A_i = A \cap V_i \in T_{X_{V_i}}$ будут открытыми в T_X . Тогда

$$A = \bigcup_{i \in I} A \cap V_i$$

также будет открытым множеством в T_X .

Следовательно, f является непрерывным отображением.

Достаточность

Если $A \in T_X$, то для любого множества V_i из покрытия Γ выполняется, что $A \cap V_i = A_i \in T_{X_{V_i}}$, то есть прообраз любого открытого множества A остаётся открытым в топологии на каждом V_i .

Это означает, что f удовлетворяет первому достаточному условию непрерывности, следовательно, f — непрерывна.

Утверждение 2

Предположим, что $X \setminus V_i \in T_X$ для каждого $i \in I$, и что покрытие $\Gamma = \{V_i\}$ конечно.

Докажем, что при этих условиях отображение f будет непрерывным.

Доказательство

Для каждого множества $A\subset X$ определим его прообраз на элементах покрытия, как $A_i=A\cap V_i$.

Поскольку $X\setminus V_i$ принадлежит топологии T_X , для каждого i множество $V_i\cap A_i$ также будет открытым в топологии $T_{X_{V_i}}$.

Следовательно, каждый прообраз A_i можно записать как разность:

$$A_i = V_i \setminus (V_i \setminus A_i),$$

где $V_i \setminus A_i$ является замкнутым множеством, и, следовательно, $V_i \cap A_i$ — открытое в $T_{X_{V_i}}$.

Объединение всех A_i даёт нам множество A:

$$A = \bigcup_{i \in I} A_i = \bigcup_{i \in I} (A \cap V_i),$$

и, поскольку покрытие $\{V_i\}$ конечно, это объединение также будет конечным.

Таким образом, множество A является конечным объединением замкнутых множеств в T_X , что делает его замкнутым.

Теперь рассмотрим обратное: если $X \setminus A \in T_X$, тогда для каждого $i \in I$ множество $V_i \cap A_i = A_i$ также замкнуто.

Из второго достаточного условия получаем, что **f** - непрерывна

2.3 Доказательство

Рассмотрим топологию T_X , которая индуцирована из канонической топологии на $\mathbb R$ в X.

1. Зададим множество Y = X и функцию f(x), определённую по следующему правилу:

$$f(x) = \begin{cases} 1 - x, & x \in [0; 1] \\ x, & x \in (1; 2] \end{cases}$$

При этом функция f действует следующим образом:

- Ограничение f на V_2 является тождественным отображением $id: V_2 \to X$, то есть $f|_{V_2} = id$, и оно является непрерывным.
- Ограничение f на V_1 также непрерывно, так как $f|_{V_1}:V_1\to X$ сохраняет топологические свойства в этом подмножестве.

Однако, если рассматривать f на всём X, то она уже не является непрерывной. Это можно проиллюстрировать на примере множества [0;0.5), которое принадлежит топологии T_X .

Обратный образ этого множества при f будет равен $f^{-1}([0;0.5))=(0.5;1]$, и это множество не принадлежит T_X . Таким образом, $f:X\to Y$ не является непрерывной в общем случае.

2. Второй случай непрерывности рассмотрен на основе утверждения 2. Поскольку $X \setminus V_i \in T_X$ для каждого $i \in I$, и если покрытие V_i конечно, то f сохраняет непрерывность.

Однако, в данном случае это условие не выполняется для всех элементов, и потому f не является непрерывной.

3. Теперь рассмотрим случай с антидискретными топологиями на рациональных и иррациональных числах.

$$\forall U \notin \{\emptyset, Q\} \quad U \in T_Q \Rightarrow U = V \cap Q$$

Пусть $V=(\min(Q)-\varepsilon_1;\max(Q)+\varepsilon_2)$, где ε_1 и ε_2 — произвольные положительные числа, расширяющие границы Q.

$$\forall \varepsilon_1, \varepsilon_2 \quad V \cap Q \neq U$$

То есть, для любых значений ε_1 и ε_2 , пересечение V и Q не совпадает с U.

Аналогично рассуждаем для $T_{R\setminus Q}$, что позволяет заключить, что обе топологии T_Q и $T_{R\setminus Q}$ являются антидискретными топологиями, где открытыми множествами являются только \emptyset и Q (или $R\setminus Q$ соответственно).

Таким образом, для любого множества $B \in Y$ выполняется следующее:

$$f|_Q^{-1}(B) \in \{\emptyset,Q\} \quad \text{if} \quad f|_{R \backslash Q}^{-1}(B) \in \{\emptyset,R \setminus Q\}$$

Это означает, что прообразы множества B при ограничении отображения f на Q и на $R\setminus Q$ могут быть либо пустыми, либо соответствующими множествами Q или $R\setminus Q$.

Тогда полный прообраз $f^{-1}(B)$ принимает значения из множества $\{\emptyset,Q,R\setminus Q,R\}$, которое состоит из пустого множества, множества Q, множества $R\setminus Q$ и всего пространства R.

Однако, так как Q и $R \setminus Q$ не принадлежат топологии T_R , это означает, что эти множества не являются открытыми в T_R .

Следовательно, в общем случае функция f не является непрерывной, так как прообразы открытых множеств не обязательно остаются открытыми.