A c:	swmpt	ion:															
	(1) X-	t = (O*,	A+ >	+ 7	t											
	و الا	ìs	wn	ditic	nall	ا مد	-sul	ogaus	Sioun								
104	. V-1	_				'				الليم	\ (o	1 -+	ς,	_ X t	h. X.	< <i>:</i>	
Leo	V															ال .	nce
			θ£ =	Vt	S=1 X	< 1/ 5 =	Vt'	\$=, (A3. 6	}* + <i>i</i>	Js) [}s	_ (Ð1°+	Vt>	t,		
we	have		_		_												
		•	inte) ₊ -0	* 11 \(\frac{2}{\sqrt{1}}	t =	국 II	S+11	2 V E ' =	ma XE	ird (x	C ^T St		10°	11 ve)	
Lem	me 2	.O. J	T E	JXDON	renti	icl	of -	the ~.	Ellip	tical	Po	rtenti	al" is	Su	perm	wtine	ale]
	SOn																
																	(2)
	an						,										
	1																
Σ.	(κ)	= ex	>(~	至"117	X11,)). The	en	Mt C.	x) =	Mt-	· (X)	D+(x).	7 t	≱I. (and	
		EC	Mt (欠) [5	下 _{t-} 门	- 15	CD+	(x) =	Pt-1]	Mt-	(x)						
						= 16	t-,C	exp ($\chi^{\tau}A_{s}$	· 5s -	∑113	2 As	A5 ^T)]	M-E-	(x)		
						ST		exp1	× -	K ZA ZA	c - 1	$ \times $	2 AsAs ⁷	-)] N	\t_1(X)		
							t-,(χ		_				·				
)-								1200	
																1200	
Tot	slace	's I	Neth	1 bo	Lap	slace	's	Appr	omíxo	tion							
$\cdot A_{S}$	sump	tion															
	0 4	îs	twic	e - U	li-(te	vent;	able	,									
	(2)	loo C	۵.	44.00		10.004.50		م مط	.~.	د (ه.		1 10-		4'.~	-2 =O	7	n,)<0)
	\bigcirc \vdash	1/4/2	<u> </u>	U NIC	INE	VVVX	TINOW	1 0	C √3		.5]	(r)P	MCF	' L X	3) - 0	11.7	100) _ ())

OFunction h(x) = ester) with a large s can be well-approximated by a Gaussian function since h(x) = esct(x)-f(x0)) will approach o exponentially fast for a large s. Thus. $I_{S} = \int_{\alpha}^{5} e^{Sf(x)} dx \approx \int_{-\infty}^{+\infty} e^{-\frac{(x-x_{0})^{2}}{2\sigma^{2}}}$ integral of an unwindized "Gaussian" function DFurther, for a large enough s. In estern dx will be dominated by the f(xo) since the significant contributions to the integral $I_s = \int_a^b e^{st(-x)} dx$ only come from points x in a neighborhood of x_0 . · Application: O approximate Is = Ja ester) dx using ten.) @ approximate (the) using Is = Ja estir) dx · Derivation: Consider the 2nd-order Taylor expansion of Jax at Xo: $f(x) \approx f(x^{\circ}) + f(x^{\circ})(x-x^{\circ}) + \frac{1}{2}(x^{\circ})(x-x^{\circ})^{\circ}$ $= f(x^2) - \frac{5}{|f_n(x^2)|} (x - x^2)$ where the equality comes from $f'(\kappa_0)=0$ and $f''(\kappa_0)<0$. Hence $\int_{\infty}^{b} e^{sf(\kappa)} d\kappa \approx \int_{\infty}^{b} e^{s(f(\kappa_{0}) - \frac{|f''(\kappa_{0})|}{2}(\kappa - \kappa_{0})^{2})} d\kappa$ $= e^{\frac{1}{2}} \left(\frac{\pi \pi e^{-1}}{2\pi}\right) \left(\frac{\pi}{2} \frac{\pi}{2\pi}\right) \left(\frac{\pi}{2} \frac{\pi$ $\sim e^{s + (\kappa_0)} \sqrt{\frac{2\pi}{\mu_1 \kappa_0}} \sqrt{\frac{s}{\kappa_0}} \sqrt{\frac{s}{\kappa_0}} e^{-\frac{s}{2} + \frac{s}{\kappa_0}} \sqrt{\frac{s}{\kappa_0}} \sqrt{\frac{s}{\kappa_$ = 624(x0) (34) where the first \approx comes from that $e^{s + c \cdot x}$ can be well-approximated by the unnormalized "Gaussian" function $e^{-\frac{1}{2}t''(\kappa_0)!}(\kappa-\kappa_0)$, for large enough S, and the second \approx comes from that $\sigma^2 = \overline{S15}$ (≈ 11) is small again due to longe enough s

	(00:	-	امما	00.00												
		l-clim Saes	ion 30	W KAC	, CXSC		٠. ٠. ـــــــــــــــــــــــــــــــــ	<u>u~-</u>	∞11 HC	((ar							
		Ja e	st(x) (dx ≈	Ja e	s C d	(X)) ~	2			l x	(Σ=(-sHCx.)) = -	5 H-1	(x ₀))
					c d	.(~~) [[9		[b —	1		_ 11 3	x- %) <u>(-</u> s HCx	((م		
				=	est	(23) []	ーませト	(20)	a 11-	まれれ	(30)	2	2	2	d	X.	
				^	Le st	(×∘) [[.	를 # LJ	<u>(201</u>	=		_ ,	_ <u> 1 2</u>	x- %	<u> (-</u> s HC*	(رم: مام	~	
				^	-4	- 11	8 1011	C ***/1	1Rd 11-	またH	(30)	5	<u></u>		α,	√	
				_	est	(⊀0)∏-	-it H	(26)	(est	6001(<u>2π</u>) =	-HC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 기		
(3) Na	ote -	that	for	r cun	y h	, on	1Red)	ne (ulso	hav	e				
					ያተር ⁄<>>												
						4		i pli cortiv				5 ?)					
Lem																	
let	h !	02 SC	me	probo	abi(U)t	j W	reasu	9n	on	R ^d .	The	Λ	<u> </u>	- Jpd	Mtc,	c) dh((x)
is a	oaj	un (F	_ ud	lapter	d h	0n-1	negor	tive	Sur	erm	ar tìr	gale	wi	th I	No=1		
0 (TBD.	2022.09.07		1					l			J					
troot	-																

Theore	em.	For	all	<u> </u>	o av	d J	£ (0	.(),									
		p(s	ęęη 1	ilS _t II	z V+(X) ⁻	, >, (lugf	+ lb	9 1 1 1VE	HI)	≤δ.						
froof.	. [h = (And					
		Ñ-t	=] pe	a M-	<i>د</i> (۶۲)	d hca	c)										
			= J 1F	ed 12	<u>-</u> TCH-1	_l exf	CSt.	- χ	- 쿠(1	$\propto 11\sqrt{2}$	t - 3	¦แ∕<เ	(H)	ત્ર			
			= 12.	TH1:	έ J ρ	d ex	p(s-	$e^{T} \times -$	子ルコ	< v _t 2	_ (2)	(× (abbrev	iate Ue	+H = V+(((د	
			= 15.	TCHI	ė Jr	dexp	. (-	≥ (l ×	- Vt(λ) ⁻ 'S	, t 11 v	2 t(a) †	±115€	ا الاحوصر الاحوصر	,-,) d	×	
			= 12	TCHI	έ exf	(실	St v	¿(Z)-1)	J 1Rc	ext)(- ⁵	< < < < < < < < < > >	Vt()	\) ⁻ 'St	711 Vec	n) dx	
			2	1 2TC U	- t(x) (1Rd	[27CV=	(2) EX	cp(-:	<u> </u> ux-	V+(V)	St II,	t()	dχ			
			= ex	p(=	IISt II	z Ve(Z) ⁻¹) / <u> ;</u>	14 <i>か</i> シングミ	(y)								
			= ex	φ(±	11St 11	z V+(21) ⁻) / [4 L VE (O)									
	is a	NON	rego	xtive	Suy	ser mi	wtin	gale	wit	h Ī	<u>N</u> o =	- A	Hill	y si	ipem	ortino	ale
	maxi	mcel	ine	rfucel	ity	rodz	NS	that	<u>,</u>								
		Pcs	up i	「 Nt 3	٦)			Noe					7				
						z p	(sup	, ź 11S	t vec	₂₁ -1 }	e elve	f+	iligi .	1 Ut(X))		
							C W =							·			
						= {	8										