8.07 Lecture Slides 12 October 21, 2019

ELECTRIC POTENTIAL:

LEGENDRE POLYNOMIALS AND

SPHERICAL HARMONICS VIA

TRACELESS SYMMETRIC TENSORS

Expansion of $F(\hat{n})$

$$\hat{\boldsymbol{n}} = \sin \theta \cos \phi \, \hat{\boldsymbol{e}}_1 + \sin \theta \sin \phi \, \hat{\boldsymbol{e}}_2 + \cos \theta \, \hat{\boldsymbol{e}}_3 ,$$

so $F(\hat{\boldsymbol{n}})$ can also be written $F(\theta, \phi)$.

Can expand any square-integrable $F(\hat{n})$ in a power series:

$$F(\hat{\boldsymbol{n}}) = C^{(0)} + C_i^{(1)} \hat{\boldsymbol{n}}_i + C_{ij}^{(2)} \hat{\boldsymbol{n}}_i \hat{\boldsymbol{n}}_j + \ldots + C_{i_1 i_2 \ldots i_\ell}^{(\ell)} \hat{\boldsymbol{n}}_{i_1} \hat{\boldsymbol{n}}_{i_2} \ldots \hat{\boldsymbol{n}}_{i_\ell} + \ldots ,$$

where repeated indices are summed from 1 to 3 (as Cartesian coordinates), and each $C_{i_1 i_2 \dots i_\ell}^{(\ell)}$ is **symmetric and traceless.**

$$abla_{
m ang}^2 F_\ell(m{\hat{n}}) = -\ell(\ell+1) F_\ell(m{\hat{n}}) \; ,$$

where

$$F_{\ell}(\boldsymbol{\hat{n}}) = C_{i_1 i_2 \dots i_{\ell}}^{(\ell)} \boldsymbol{\hat{n}}_{i_1} \boldsymbol{\hat{n}}_{i_2} \dots \boldsymbol{\hat{n}}_{i_{\ell}} \; .$$

General Solution to Laplace's Equation in Spherical Coordinates

The most general solution to Laplace's equation, in spherical coordinates, can be written as

$$\Phi(ec{m{r}}) = \sum_{\ell=0}^{\infty} \left(C_{i_1 i_2 \ldots i_\ell}^{(\ell)} r^\ell + rac{C_{i_1 i_2 \ldots i_\ell}^{\prime (\ell)}}{r^{\ell+1}}
ight) m{\hat{n}}_{i_1} m{\hat{n}}_{i_2} \ldots m{\hat{n}}_{i_\ell} \; ,$$

where $C_{i_1 i_2 \dots i_\ell}^{(\ell)}$ and $C_{i_1 i_2 \dots i_\ell}^{\prime(\ell)}$ are arbitrary traceless symmetric tensors, and $\vec{r} = r\hat{n}$.

Trace Decomposition Theorem

Any symmetric matrix $S_{i_1...i_{\ell}}$ can be uniquely written in the form

$$S_{i_1...i_{\ell}} = S_{i_1...i_{\ell}}^{(TS)} + \underset{i_1...i_{\ell}}{\text{Sym}} \left[M_{i_1...i_{\ell-2}} \delta_{i_{\ell-1},i_{\ell}} \right] ,$$

where $S_{i_1...i_\ell}^{(TS)}$ is a traceless symmetric tensor, $M_{i_1...i_{\ell-2}}$ is a symmetric tensor, and

$$\displaystyle \operatorname{Sym}_{i_1...i_\ell}[xxx]$$

means to symmetrize the expression xxx in the indices $i_1 \dots i_\ell$.

$$\{S_{i_1...i_\ell}\}_{\mathrm{TS}} \equiv S_{i_1...i_\ell}^{(\mathrm{TS})} = S_{i_1...i_\ell} - \underset{i_1...i_\ell}{\mathrm{Sym}} \left[M_{i_1...i_{\ell-2}}\delta_{i_{\ell-1},i_\ell}\right].$$

Example: Azimuthal Symmetry

Azimuthal symmetry: symmetry under rotation about z axis. Construct traceless symmetric tensors from \hat{z} :

$$\{1\}_{\mathrm{TS}} = 1 ,$$

$$\{\hat{z}_{i}\}_{\mathrm{TS}} = \hat{z}_{i} ,$$

$$\{\hat{z}_{i}\hat{z}_{j}\}_{\mathrm{TS}} = \hat{z}_{i}\hat{z}_{j} - \frac{1}{3}\delta_{ij} ,$$

$$\{\hat{z}_{i}\hat{z}_{j}\hat{z}_{k}\}_{\mathrm{TS}} = \hat{z}_{i}\hat{z}_{j}\hat{z}_{k} - \frac{1}{5}(\hat{z}_{i}\delta_{jk} + \hat{z}_{j}\delta_{ik} + \hat{z}_{k}\delta_{ij}) ,$$

$$\{\hat{z}_{i}\hat{z}_{j}\hat{z}_{k}\hat{z}_{m}\}_{\mathrm{TS}} = \hat{z}_{i}\hat{z}_{j}\hat{z}_{k}\hat{z}_{m} - \frac{1}{7}(\hat{z}_{i}\hat{z}_{j}\delta_{km} + \hat{z}_{i}\hat{z}_{k}\delta_{mj} + \hat{z}_{i}\hat{z}_{m}\delta_{jk} + \hat{z}_{j}\hat{z}_{k}\delta_{im}$$

$$+ \hat{z}_{j}\hat{z}_{m}\delta_{ik} + \hat{z}_{k}\hat{z}_{m}\delta_{ij}) + \frac{1}{35}(\delta_{ij}\delta_{km} + \delta_{ik}\delta_{jm} + \delta_{im}\delta_{jk}) .$$

Construction of F(heta)

Any square-integrable function $F(\theta)$ can be expanded

$$F(\theta) = c_0 + c_1 \{ \hat{\boldsymbol{z}}_i \}_{\text{TS}} \hat{\boldsymbol{n}}_i + c_2 \{ \hat{\boldsymbol{z}}_i \hat{\boldsymbol{z}}_j \}_{\text{TS}} \hat{\boldsymbol{n}}_i \hat{\boldsymbol{n}}_j + \dots + c_\ell \{ \hat{\boldsymbol{z}}_{i_1} \dots \hat{\boldsymbol{z}}_{i_\ell} \}_{\text{TS}} \hat{\boldsymbol{n}}_{i_1} \dots \hat{\boldsymbol{n}}_{i_\ell} + \dots ,$$

where the c_{ℓ} 's are constants.

Since
$$\hat{z} \cdot \hat{n} = \hat{z} \cdot (\sin \theta \cos \phi \, \hat{e}_1 + \sin \theta \sin \phi \, \hat{e}_2 + \cos \theta \, \hat{e}_3) = \cos \theta$$
,

$$\{1\}_{\mathrm{TS}} = 1$$
 $\{\hat{oldsymbol{z}}_i\}_{\mathrm{TS}}\,\hat{oldsymbol{n}}_i = \cos heta$
 $\{\hat{oldsymbol{z}}_i\hat{oldsymbol{z}}_j\}_{\mathrm{TS}}\,\hat{oldsymbol{n}}_i\hat{oldsymbol{n}}_j = \cos^2 heta - \frac{1}{3}$
 $\{\hat{oldsymbol{z}}_i\hat{oldsymbol{z}}_j\hat{oldsymbol{z}}_k\}_{\mathrm{TS}}\,\hat{oldsymbol{n}}_i\hat{oldsymbol{n}}_j\hat{oldsymbol{n}}_k = \cos^3 heta - \frac{3}{5}\cos heta$

Connection to Legendre Polynomials

Up to normalization, this is the standard expansion in Legendre polynomials.

The Legendre polynomials are normalized so that $P_{\ell}(\cos \theta = 1) = 1$, and you showed on Problem Set 4 that

$$P_{\ell}(\cos heta) = rac{(2\ell)!}{2^{\ell}(\ell!)^2} \{ \hat{oldsymbol{z}}_{i_1} \dots \hat{oldsymbol{z}}_{i_{\ell}} \}_{\mathrm{TS}} \, \hat{oldsymbol{n}}_{i_1} \dots \hat{oldsymbol{n}}_{i_{\ell}} \; .$$

The Multipole Expansion

The most general solution to Laplace's equation, in spherical coordinates, can be written as

$$\Phi(ec{m{r}}) = \sum_{\ell=0}^{\infty} \left(C_{i_1 i_2 \dots i_\ell}^{(\ell)} r^\ell + rac{C_{i_1 i_2 \dots i_\ell}^{\prime(\ell)}}{r^{\ell+1}}
ight) m{\hat{n}}_{i_1} m{\hat{n}}_{i_2} \dots m{\hat{n}}_{i_\ell} \; ,$$

where $C_{i_1 i_2 \dots i_\ell}^{(\ell)}$ and $C_{i_1 i_2 \dots i_\ell}^{\prime(\ell)}$ are arbitrary traceless symmetric tensors, and $\vec{r} = r\hat{n}$. For localized charge distributions, $C_{i_1 i_2 \dots i_\ell}^{(\ell)} = 0$. So

$$\Phi(\vec{r}) = \sum_{\ell=0}^{\infty} \frac{1}{r^{\ell+1}} C'^{(\ell)}_{i_1...i_{\ell}} \hat{n}_{i_1} ... \hat{n}_{i_{\ell}} .$$

Since each term falls off faster, the first few terms are usually sufficient at large r.

How to Find Multipole Moments Method 1 (as in Griffiths)

Combine

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3x' ,$$

with

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \sum_{\ell=0}^{\infty} \left(\frac{r'}{r}\right)^{\ell} P_{\ell}(\cos \theta')$$

to obtain

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} \frac{1}{r^{\ell+1}} \int r'^{\ell} \rho(\vec{r}') P_{\ell}(\cos\theta') d^3x'.$$

Drawback of Method 1

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} \frac{1}{r^{\ell+1}} \int r'^{\ell} \rho(\vec{r}') P_{\ell}(\cos\theta') d^3x'.$$

Since θ' is the angle between \vec{r} and \vec{r}' , to use this equation directly one has to redo the integral for every direction of \vec{r} .

How to Find Multipole Moments Method 2: with Traceless Symmetric Tensors

Expand

$$f(\vec{r}') \equiv rac{1}{|\vec{r} - \vec{r}'|}$$
.

in a power series in the components of $\vec{r}' = x_i' \hat{e}_i = r' \hat{n}_i'$:

$$f(\vec{r}') = f(\vec{0}) + \frac{\partial f}{\partial x_i'} \Big|_{\vec{r}' = \vec{0}} x_i' + \frac{1}{2!} \frac{\partial^2 f}{\partial x_i' \partial x_j'} \Big|_{\vec{r}' = \vec{0}} x_i' x_j' + \dots ,$$

$$= f(\vec{0}) + r' \frac{\partial f}{\partial x_i'} \Big|_{\vec{r}' = \vec{0}} \hat{n}_i' + \frac{r'^2}{2!} \frac{\partial^2 f}{\partial x_i' \partial x_j'} \Big|_{\vec{r}' = \vec{0}} \hat{n}_i' \hat{n}_j' + \dots .$$

Since
$$f$$
 is a function of $\vec{r} - \vec{r}'$, $\frac{\partial f}{\partial x_i'} = -\frac{\partial f}{\partial x_i}$, and

$$\left. \frac{\partial^{\ell} f}{\partial x'_{i_1} \dots \partial x'_{i_{\ell}}} \right|_{\vec{r}' = \vec{0}} = (-1)^{\ell} \frac{\partial^{\ell}}{\partial x_{i_1} \dots \partial x_{i_{\ell}}} \frac{1}{|\vec{r}|} .$$

This quantity is traceless, since

$$\left(\frac{\partial^{\ell}}{\partial x_{j}\partial x_{j}\partial x_{3}\dots\partial x_{i_{\ell}}}\frac{1}{|\vec{r}|}\right) = \frac{\partial^{\ell}}{\partial x_{3}\dots\partial x_{i_{\ell}}}\nabla^{2}\frac{1}{|\vec{r}|} = 0,$$

because $\nabla^2(1/|\vec{r}|) = 0$ except at $\vec{r} = 0$.

We found that

$$rac{\partial^\ell}{\partial x_{i_1}\dots\partial x_{i_\ell}}rac{1}{|ec{oldsymbol{r}}|}=rac{(-1)^\ell(2\ell-1)!!}{r^{\ell+1}}\{\,oldsymbol{\hat{n}}_{i_i}\dotsoldsymbol{\hat{n}}_{i_\ell}\,\}_{\mathrm{TS}}\,\,,$$

where

$$(2\ell - 1)!! \equiv (2\ell - 1)(2\ell - 3)(2\ell - 5)\dots 1$$
, with $(-1)!! \equiv 1$.
$$= \frac{(2\ell)!}{2^{\ell}\ell!}$$

The power series then becomes

$$\frac{1}{|\vec{r} - \vec{r}'|} = \sum_{\ell=0}^{\infty} \frac{(2\ell-1)!!}{\ell!} \frac{r'^{\ell}}{r^{\ell+1}} \{ \hat{\boldsymbol{n}}_{i_1} \dots \hat{\boldsymbol{n}}_{i_{\ell}} \}_{\mathrm{TS}} \{ \hat{\boldsymbol{n}}'_{i_1} \dots \hat{\boldsymbol{n}}'_{i_{\ell}} \}_{\mathrm{TS}} , \text{ (for } r' < r)$$

where either one (but not both) of the TS's can be dropped, since the difference is proportional to a Kronecker delta function, which leads to taking a trace of the other TS expression, which vanishes.

The analogous equation for the standard spherical harmonics is

$$\frac{1}{|\vec{r} - \vec{r}'|} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell + 1} \frac{r'^{\ell}}{r^{\ell+1}} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi) , \qquad (\text{for } r' < r).$$

Inserting the above boxed equation into

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3x' ,$$

we find the final result

$$V(\vec{r}) = rac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} rac{1}{r^{\ell+1}} C_{i_1 \dots i_{\ell}}^{(\ell)} \hat{\boldsymbol{n}}_{i_1} \dots \hat{\boldsymbol{n}}_{i_{\ell}} ,$$

where the multipole moments $C_{i_1...i_\ell}^{(\ell)}$ are given by

$$C_{i_1...i_\ell}^{(\ell)} = \frac{(2\ell-1)!!}{\ell!} \int \rho(\vec{r}') \{ \vec{r}'_{i_1} ... \vec{r}'_{i_\ell} \}_{TS} d^3 x' .$$

The analogous formulas for the standard spherical harmonic treatment are

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell+1} q_{\ell m} \frac{Y_{\ell m}(\theta, \phi)}{r^{\ell+1}} ,$$

where the multipole moments $q_{\ell m}$ are given by

$$q_{\ell m} = \int \rho(\vec{\boldsymbol{r}}') r'^{\ell} Y_{\ell m}^*(\theta', \phi') d^3 x'.$$

Once we calculate the $C_{i_1...i_\ell}^{(\ell)}$ or the $q_{\ell m}$ for a given charge distribution $\rho(\vec{r}')$, from

$$C_{i_1...i_{\ell}}^{(\ell)} = \frac{(2\ell-1)!!}{\ell!} \int \rho(\vec{\boldsymbol{r}}') \{ \vec{\boldsymbol{r}}'_{i_1} ... \vec{\boldsymbol{r}}'_{i_{\ell}} \}_{\mathrm{TS}} d^3 x' ,$$

$$q_{\ell m} = \int \rho(\vec{\boldsymbol{r}}') r'^{\ell} Y_{\ell m}^*(\theta', \phi') d^3 x' ,$$

then we can calculate $V(\vec{r})$ for any \vec{r} :

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} \frac{1}{r^{\ell+1}} C_{i_1...i_{\ell}}^{(\ell)} \hat{n}_{i_1} ... \hat{n}_{i_{\ell}},$$

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell+1} q_{\ell m} \frac{Y_{\ell m}(\theta, \phi)}{r^{\ell+1}},$$

avoiding the drawback of "Method 1".

Detailed Form of the Trace Decomposition Theorem

For an symmetric tensor $S_{i_1...i_\ell}$, the traceless symmetric part can be written as

$$\{ S_{i_1...i_\ell} \}_{TS} = S_{i_1...i_\ell} + \underset{i_1...i_\ell}{\text{Sym}} \left[a_{1,\ell} \delta_{i_1 i_2} \delta^{j_1 j_2} S_{j_1 j_2 i_3...i_\ell} + a_{2,\ell} \delta_{i_1 i_2} \delta_{i_3 i_4} \delta^{j_1 j_2} \delta^{j_3 j_4} S_{j_1 j_2 j_3 j_4 i_5...i_\ell} + \ldots \right],$$

where

$$\operatorname{Sym}_{i_{1}...i_{\ell}} \left[T_{i_{1}...i_{\ell}} \right] \equiv \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1}...i_{\ell}}} T_{i_{1}...i_{\ell}} ,$$

and

$$a_{n,\ell} = (-1)^n \frac{\ell!^2 (2\ell - 2n)!}{n!(\ell - 2n)!(\ell - n)!(2\ell)!}$$
.

Today we will derive $a_{1,\ell}$.

$$\{ S_{i_1 \dots i_\ell} \}_{TS} = S_{i_1 \dots i_\ell} + \underset{i_1 \dots i_\ell}{\text{Sym}} \left[a_{1,\ell} \delta_{i_1 i_2} \delta^{j_1 j_2} S_{j_1 j_2 i_3 \dots i_\ell} \right.$$

$$+ a_{2,\ell} \delta_{i_1 i_2} \delta_{i_3 i_4} \delta^{j_1 j_2} \delta^{j_3 j_4} S_{j_1 j_2 j_3 j_4 i_5 \dots i_\ell} + \dots \right] ,$$

The coefficients $a_{n,\ell}$ are determined by the requirement that the trace of $\{S_{i_1...i_\ell}\}_{TS}$ equals zero. We can trace on any two indicies, since they are symmetric. Choose i_1 and i_2 . The trace of the RHS, through the $a_{1,\ell}$ term, is

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

Evaluation of this trace is tricky, since the right-hand piece is summed over all $\ell!$ orderings of the indices. So the indices are not fixed at the locations shown. For example, for $\ell=3$,

$$\operatorname{Tr}\left(\mathrm{RHS}_{1}\right) = S_{jji_{3}} + a_{1,3}\delta_{i_{1}i_{2}} \frac{1}{6} \left[\delta_{i_{1}i_{2}}S_{jji_{3}} + \delta_{i_{1}i_{3}}S_{jji_{2}} + \delta_{i_{2}i_{3}}S_{jji_{1}} + \delta_{i_{2}i_{1}}S_{jji_{3}} + \delta_{i_{3}i_{1}}S_{jji_{2}} + \delta_{i_{3}i_{2}}S_{jji_{1}}\right].$$

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

To carry out the sum, we have to consider 4 possible cases of where the indices i_1 and i_2 can be.

Case I: i_1 and i_2 can appear on the Kronecker δ -function in the square brackets. There are two possible orderings of i_1 and i_2 . There are $(\ell-2)!$ orderings of the other indices, i_3, \ldots, i_ℓ . The value includes a factor of $\delta_{i_1 i_2} \delta_{i_1 i_2} = 3$. Summary:

Case I: Multiplicity =
$$2(\ell - 2)!$$
, Value = $3S_{jji_3...i_\ell} \frac{a_{1,\ell}}{\ell!}$.

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

Case II: i_1 can appear on the Kronecker δ -function in the square brackets, while i_2 appears as one of the indices of S. There are two possible positions for i_1 , and $\ell-2$ positions for i_2 . Again, there are $(\ell-2)!$ orderings for the other indices. The value can be seen by looking at a sample term:

$$a_{1,\ell}\delta_{i_1i_2}\frac{1}{\ell!}[\delta_{i_1i_3}S_{jji_2i_4...i_\ell}] = \frac{a_{1,\ell}}{\ell!}S_{jji_3...i_\ell}.$$

Summarizing,

Case II: Multiplicity =
$$2(\ell - 2)(\ell - 2)!$$
, Value = $S_{jji_3...i_\ell} \frac{a_{1,\ell}}{\ell!}$.

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell}\delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1}...i_{\ell}}} \left[\delta_{i_{1}i_{2}}S_{jji_{3}...i_{\ell}}\right].$$

Case III: i_2 can appear on the Kronecker δ -function in the square brackets, while i_1 appears as one of the indices of S. This case is equivalent to Case II:

Case III: Multiplicity =
$$2(\ell - 2)(\ell - 2)!$$
, Value = $S_{jji_3...i_\ell} \frac{a_{1,\ell}}{\ell!}$.

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

Case IV: Both i_1 and i_2 can appear on S. i_1 has $\ell-2$ possible places, and i_2 has $\ell-3$ places. The other indices again have $(\ell-2)!$ orderings. The value can again be seen by looking at a representative term:

$$a_{1,\ell}\delta_{i_1i_2}\frac{1}{\ell!}[\delta_{i_3i_4}S_{jji_1i_2i_5...i_\ell}] = \frac{a_{1,\ell}}{\ell!}\operatorname{Sym}[\delta_{i_3i_4}S_{jjkki_5...i_\ell}].$$

Summary:

Case IV: Multiplicity =
$$(\ell - 2)(\ell - 3)(\ell - 2)!$$

Value = Sym $\left[\delta_{i_3 i_4} S_{jjkk i_5 \dots i_\ell}\right] \frac{a_{1,\ell}}{\ell!}$.

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell}\delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1}...i_{\ell}}} \left[\delta_{i_{1}i_{2}}S_{jji_{3}...i_{\ell}}\right].$$

Check on multiplicities. Remember, multiplicity = number of terms in above sum for each case, so they should sum to $\ell!$. Check:

$$(\ell-2)! [2+2(\ell-2)+2(\ell-2)+(\ell-2)(\ell-3)] = \ell!.$$

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

Check on multiplicities. Remember, multiplicity = number of terms in above sum for each case, so they should sum to $\ell!$. Check:

$$(\ell-2)! [2+2(\ell-2)+2(\ell-2)+(\ell-2)(\ell-3)] = \ell!.$$

TERRIFIC!

$$\operatorname{Tr}(\mathrm{RHS}_{1}) = S_{jji_{3}...i_{\ell}} + a_{1,\ell} \delta_{i_{1}i_{2}} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_{1} \dots i_{\ell}}} \left[\delta_{i_{1}i_{2}} S_{jji_{3}...i_{\ell}} \right].$$

Check on multiplicities. Remember, multiplicity = number of terms in above sum for each case, so they should sum to $\ell!$. Check:

$$(\ell-2)! [2+2(\ell-2)+2(\ell-2)+(\ell-2)(\ell-3)] = \ell!.$$

TERRIFIC!

Then

$$a_{1,\ell} \delta_{i_1 i_2} \frac{1}{\ell!} \sum_{\substack{\text{all } \ell! \text{ index} \\ \text{orderings of } i_1 \dots i_\ell}} \left[\delta_{i_1 i_2} S_{j j i_3 \dots i_\ell} \right] =$$

$$\sum_{\text{Case}} \text{Multiplicity(Case)} \times \text{Value(Case)}$$

Finally,

$$\operatorname{Tr}(RHS_{1}) = S_{jji_{3}...i_{\ell}} \left[1 + \frac{a_{1,\ell}}{\ell(\ell-1)} \left(2 \cdot 3 + 4(\ell-2) \right) \right] + \operatorname{Sym} \left[\delta_{i_{3}i_{4}} S_{jjkki_{5}...i_{\ell}} \right] a_{1,\ell} \frac{(\ell-2)(\ell-3)}{\ell(\ell-1)} .$$

Recall,

$$\{S_{i_1...i_{\ell}}\}_{TS} = S_{i_1...i_{\ell}} + \underset{i_1...i_{\ell}}{\operatorname{Sym}} \left[a_{1,\ell}\delta_{i_1i_2}\delta^{j_1j_2}S_{j_1j_2i_3...i_{\ell}} + a_{2,\ell}\delta_{i_1i_2}\delta_{i_3i_4}\delta^{j_1j_2}\delta^{j_3j_4}S_{j_1j_2j_3j_4i_5...i_{\ell}} + \ldots\right].$$

We must require that the trace of the full RHS vanish. However, note that all terms not yet included have 2 or more Kronecker delta functions, so when traced they will have 1 or more. So, they cannot contribute to the terms with no Kronecker delta functions. So the term in square brackets in the top equation must vanish.

$$\operatorname{Tr}(RHS_{1}) = S_{jji_{3}...i_{\ell}} \left[1 + \frac{a_{1,\ell}}{\ell(\ell-1)} \left(2 \cdot 3 + 4(\ell-2) \right) \right] + \operatorname{Sym} \left[\delta_{i_{3}i_{4}} S_{jjkki_{5}...i_{\ell}} \right] a_{1,\ell} \frac{(\ell-2)(\ell-3)}{\ell(\ell-1)} .$$

$$\left[1 + \frac{a_{1,\ell}}{\ell(\ell-1)} (2 \cdot 3 + 4(\ell-2))\right] = 0 \implies a_{1,\ell} = -\frac{\ell(\ell-1)}{2(2\ell-1)}.$$

$$a_{1,\ell} = -\frac{\ell(\ell-1)}{2(2\ell-1)}$$

Application to $\hat{n}_{i_\ell} \set{\hat{n}_{i_1} \dots \hat{n}_{i_\ell}}_{\mathrm{TS}}$

 $\hat{\boldsymbol{n}}_{i_{\ell}} \{ \hat{\boldsymbol{n}}_{i_{1}} \dots \hat{\boldsymbol{n}}_{i_{\ell}} \}_{\mathrm{TS}}$ is traceless and symmetric and constructed from $\hat{\boldsymbol{n}}$, so it must be proportional to $\{ \hat{\boldsymbol{n}}_{i_{1}} \dots \hat{\boldsymbol{n}}_{i_{\ell-1}} \}_{\mathrm{TS}}$. Then

$$\{\hat{m{n}}_{i_{\ell}}\{\hat{m{n}}_{i_{1}}\dots\hat{m{n}}_{i_{\ell}}\}_{\mathrm{TS}} = \hat{m{n}}_{i_{\ell}}\left\{\hat{m{n}}_{i_{1}}\dots\hat{m{n}}_{i_{\ell}} - rac{\ell(\ell-1)}{2(2\ell-1)} \mathop{\mathrm{Sym}}_{i_{1}\dots i_{\ell}}[\delta_{i_{1}i_{2}}\hat{m{n}}_{i_{3}}\dots\hat{m{n}}_{i_{\ell}}] + \ldots
ight\}$$

Clearly

$$\hat{m{n}}_{i_\ell}\left(\hat{m{n}}_{i_1}\dots\hat{m{n}}_{i_\ell}
ight)=\hat{m{n}}_{i_1}\dots\hat{m{n}}_{i_{\ell-1}}$$
 .

Also

$$\hat{\boldsymbol{n}}_{i_{\ell}} \operatorname*{Sym}_{i_{1}...i_{\ell}} [\delta_{i_{1}i_{2}}\hat{\boldsymbol{n}}_{i_{3}}...\hat{\boldsymbol{n}}_{i_{\ell}}] = \frac{2}{\ell}\hat{\boldsymbol{n}}_{i_{1}}...\hat{\boldsymbol{n}}_{i_{\ell-1}}.$$

Then

$$egin{aligned} \hat{m{n}}_{i_\ell} \set{\hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_\ell}}_{\mathrm{TS}} &= \hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_{\ell-1}} \left[1 - rac{\ell(\ell-1)}{2(2\ell-1)} rac{2}{\ell}
ight] + \dots \ &= rac{\ell}{2\ell-1} \hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_{\ell-1}} + \dots \end{aligned}$$

$$egin{aligned} \hat{m{n}}_{i_\ell} \set{\hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_\ell}}_{\mathrm{TS}} &= \hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_{\ell-1}} \left[1 - rac{\ell(\ell-1)}{2(2\ell-1)} rac{2}{\ell}
ight] + \dots \ &= rac{\ell}{2\ell-1} \hat{m{n}}_{i_1} \dots \hat{m{n}}_{i_{\ell-1}} + \dots \end{aligned}$$

The omitted terms cannot contribute to the term with no Kronecker delta functions, so

$$\{\hat{m{n}}_{i_\ell} \{\, \hat{m{n}}_{i_1} \ldots \hat{m{n}}_{i_\ell} \,\}_{ ext{TS}} = rac{\ell}{2\ell-1} \{\, \hat{m{n}}_{i_1} \ldots \hat{m{n}}_{i_{\ell-1}} \,\}_{ ext{TS}} \;.$$

Integration over Legendre Polynomials

Result:

$$\int d\Omega \left[C_{i_{1}...i_{\ell}}^{(\ell)} \left\{ \hat{\boldsymbol{n}}_{i_{1}} \dots \hat{\boldsymbol{n}}_{i_{\ell}} \right\}_{\mathrm{TS}} \right] \left[C_{j_{1}...j_{\ell'}}^{\prime(\ell')}, \left\{ \hat{\boldsymbol{n}}_{j_{1}} \dots \hat{\boldsymbol{n}}_{j_{\ell'}} \right\}_{\mathrm{TS}} \right]
= 4\pi \frac{2^{\ell} \ell!^{2}}{(2\ell+1)!} C_{i_{1}...i_{\ell}}^{(\ell)} C_{i_{1}...i_{\ell}}^{\prime(\ell)} \text{ if } \ell' = \ell.$$

And it equals zero if $\ell' \neq \ell$.

Note added after class: we started this derivation on the blackboard, and will finish it on Wednesday.