

ЗАНЯТИЕ 1.0

Временные ряды

ЦЕЛИ ЗАНЯТИЯ

Сегодня:

- Что такое временной ряд
- Автокорреляция
- Стационарность и как ее достичь
- Авторегрессия
- Тест Дики-Фуллера

Временной ряд

ВРЕМЕННОЙ РЯД:

y1, ..., yT , ..., где yt ∈ R, – **значения** признака, измеренные через **постоянные** временные интервалы.

Пример:

Примеры:

- Финансовый сектор
- Показания датчиков
- Объемы продаж/производства
- Телеметрия it-систем (rps/утилизация сри/памяти и тп)
- •

Способы визуализации:

- Простой график
- Ящик с усами (box plot)
- Свечи (candles)

Простой график:

Box plot:

Candle Plot

Вопросы к временным рядам:

- Анализ (где мы сейчас)?
- Прогноз (куда мы идем)?
- Поиск аномалий (где было что-то необычное)?

Тренд — плавное долгосрочное изменение уровня ряда

Сезонность — циклические изменения уровня ряда с постоянным периодом.

Цикл — изменения уровня ряда с переменным периодом (экономические циклы, периоды солнечной активности).

Ошибка — непрогнозируемая случайная компонента ряда.

Пример (тренд)

Пример (тренд, сезонность)

Пример (сезонность, циклы)

Пример (сезонность, циклы)

Анализ продаж машин в Квебеке

Продажи

Каждый июнь продажи растут

Каждый сентябрь продажи падают

Посмотрим как связана продажа в текущем месяце и в следующем

Текущий к следующему

Текущий к t + 2

Текущий к t + 2

Текущий к t + 12

Автокорреляция

Автокорреляция:

Статистическая взаимосвязь (коэффициент корреляции) между последовательностями величин одного ряда, взятыми со сдвигом

Автокорреляция:

$$R(\tau) = \frac{E((y_t - Ey)(y_{t+\tau} - Ey)}{Dy}$$

 $R(\tau) \in [-1, 1]$, $\tau \in N$ — лагавтокорреляции.

Автокорреляция для выборки:

$$R(\tau) = \frac{\sum_{t=1}^{T-\tau} (y_t - \bar{y})(y_{t+\tau} - \bar{y})}{\sum_{i=1}^{T} (y_t - \bar{y})^2}$$

Для нашего ряда:

	R
1	0.728
2	0.367
8	-0.011
12	0.919

Коррелограмма:

График автокорреляций для разных лагов

Коррелограмма:

Коррелограмма:

Автокорреляция:

Значение 0.9 – хорошее? А 0.1? А 0.4? Как понять какой коэффициент значимый?

Автокорреляция:

Временной ряд: y(t)

Нулевая гипотеза: H_0 : $r_{\tau}=0$

Альтернативная гипотеза: H_0 : $r_{\tau} \neq 0$

Статистика: $T(y^T) = \frac{r_{\tau}\sqrt{T-\tau-2}}{\sqrt{1-r_{\tau}^2}}$

Распределение: $T(y^T) \sim St(T-\tau-2)$

St(k):

Стационарность

Строгая стационарность:

Ряд у(t) называется строго стационарным если для любого s совместное распределение вероятностей у(t), у(t+1); ..., у(у+k) совпадает с совместным распределением вероятностей у(t+s), у(t+s+1), ..., у(у+s+k)

Слабая стационарность:

Ряд y(t) называется слабо стационарным если E(y(t))=const и cov(y(t), y(t+s)) зависит только от s

Стационарность:

Всякий строго стационарный ряд так же и слабо стационарен

Стационарность:

1. Стационарный ряд легче предсказывать. Можно предположить, что статистические свойства в будущем не изменятся 2. В большинство моделей рядов закладывается гипотеза о стационарности. Это означает, что получаемые оценки будут надежными только в случае стационарности ряда.

Стационарность:

Тренд => нестационарность Сезонность => нестационарность Цикл => ?

Как сделать ряд стационарным

Для рядов с монотонно меняющейся дисперсией – логарифмирование

$$y'_{t} = \begin{cases} \ln y_{t}, \lambda = 0\\ \frac{y_{t}^{\lambda} - 1}{\lambda}, \lambda \neq 0 \end{cases}$$

Для прогноза нужно применять обратное преобразование

Лямбда - не очень строгий параметр, его можно спокойно округлять

Дифференцирование – переход к попарным разностям. Позволяет избавиться от тренда

Сезонное дифференцирование – вычитаем не предыдущее значение, а сдвинутое на сезон

Дифференцировать можно несколько раз подряд

Модель авторегрессии

Модель авторегрессии:

Цель – пытаемся предсказать ряд по его же наблюдениям в прошлом

Модель авторегрессии:

$$y_t = a + \sum_{i=1}^p b_i y_{t-i} + \varepsilon_t$$

а – свободный член

b(i) – коэффициенты регрессии

eps - octatok

Модель авторегрессии:

$$AR(1): y_t = a + by_{t-1} + \varepsilon_t$$

ТЕСТ ДИКИ-ФУЛЛЕРА

Тест Дики Фуллера:

Проверяем гипотезу не стационарности против стационарности

Техническая идея теста ДФ:

$$y_{t} = a + by_{t-1} + \varepsilon_{t}$$

$$y_{t} - y_{t-1} = a + by_{t-1} - y_{t-1} + \varepsilon_{t}$$

$$\Delta y_{t} = a + (b - 1)y_{t-1} + \varepsilon_{t}$$

Единичный корень:

Говорят, что y(t) имеет единичный корень, если ряд y(t) – y(t-1) стационарен Если y(t) имеет единичный корень, то ряд не стационарен

Виды ДФ:

```
Без константы: \Delta y_t = (b-1)y_{t-1} + \varepsilon_t
С константой: \Delta y_t = a + (b-1)y_{t-1} + \varepsilon_t
С трендом: \Delta y_t = a + (b-1)y_{t-1} + ct + \varepsilon_t
```

Расширенный тест ДФ:

Является модификацией теста Дики-Фуллера, необходимость введения связана с тем, что рассматриваемый процесс может являться авторегрессией не первого, а более высокого порядка

Расширенный тест ДФ:

В каждое уравнение теста вводятся авторегрессионные переменные (лаги) переменной разности для коррекции возможной коррелированности случайных отклонений тестируемой модели

Расширенный тест ДФ:

```
Без константы: \Delta y_t = (b-1)y_{t-1} + \sum_{i=1}^k d_i \Delta y_{t-i} + \varepsilon_t
С константой: \Delta y_t = a + (b-1)y_{t-1} + \sum_{i=1}^k d_i \Delta y_{t-i} + \varepsilon_t
С трендом: \Delta y_t = a + (b-1)y_{t-1} + ct + \sum_{i=1}^k d_i \Delta y_{t-i} + \varepsilon_t
```

ВИЗУАЛЬНАЯ ПРОВЕРКА

График автокорреляций (АСF):

Стационарный ряд: Независимо от значений в первом лаге, быстро убывает после несколько первых значений.

Нестационарный ряд: Значения в первом лаге, т.е. АСГ(1), близки к единице, а затем медленно убывает по угасающей экспоненте(синусоиде)

Частичная автокорреляция(PACF):

определяется как значение коэффициента корреляции между случайными величинами Xt и Xt+k, очищенными от влияния "промежуточных" случайных величин Xt+1, ..., Xt+k-1.

Частичная автокорреляция(PACF):

Стационарный ряд: Также быстро убывает после несколько первых значений

Нестационарный ряд: Значение в первом лаге ACF(1)=PACF(1) близко к единице, однако остальные значения коэффициентов корреляции статистически незначимы, т.е. значения функций не выходят за пределы доверительного интервала.

Визуальная проверка:

Для проверки на стационарность рекомендуется комбинировать ДФ и визуальные методы

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. http://economy.bsu.by/wp-content/uploads/2014/10/econometr_zao_1_2.pdf
- 3. http://people.duke.edu/~rnau/whatuse.htm
- 4. https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/

Спасибо за внимание!

Сапрыкин Артур