CHANGE

#### THESE ARE SUPERSEDING OR SUPPLEMENTARY PAGES TO SAME PUBLICATION OF PREVIOUS DATE

Insert these pages into basic publication Destroy superseded pages

NAVAIR 01-45HHA-501

AIRCRAFT

INDOCTRI-NATION

NORMAL **PROCD** 

FLT PROCD

& CHARAC

2

3

NATOPS FLIGHT MANUAL

NAVY MODEL F-8A, F-8B **AIRCRAFT** 

(BuNo. 141351 and Subsequent)



ISSUED BY AUTHORITY OF THE CHIEF OF NAVAL OPERATIONS AND UNDER THE DIRECTION OF COMMANDER.

NAVAL AIR SYSTEMS COMMAND

**EMER** PROCD **ALL-WTHR OPERATION** COMMUNI-

**WEAPON SYSTEMS** 

CATIONS

**FLT CREW** COORD

STAND **EVAL** 

10

15 August 1964 Changed 15 April 1968

Reproduction for nonmilitary use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (NAVAIR or USAF). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations, Article 1509.

#### - LIST OF CHANGED PAGES ISSUED -

#### INSERT LATEST CHANGED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current change is indicated by a vertical line in the outer margins of the page.

| Page<br>No. | Date of Latest<br>Change                | Page<br>No. | Date of Latest<br>Change                | Page<br>No. | Date of Latest<br>Change |
|-------------|-----------------------------------------|-------------|-----------------------------------------|-------------|--------------------------|
| *B          | 15 Apr 1968                             | 1-65        | 15 Jul 1967                             | 3-8C        | 15 Jan 1968              |
| i           | 4 = 3 400                               | 1-68        |                                         | *3-8D       | 15 Apr 1968              |
| *ii         | 4= 4 4000                               |             | 15 Jul 1967                             | 3-9         | 15 Jan 1968              |
|             | 15 Jul 1966                             |             | 15 Jul 1966                             | 3-10        | 15 Jul 1966              |
| *iv         |                                         |             | 15 Jul 1966                             |             | 15 Apr 1968              |
| *v          |                                         | 1-72        |                                         | 3-11        | 15 Jul 1967              |
| *vi         | -                                       | 1-73        |                                         |             | 15 Jul 1966              |
| *vii        | 4 - 4 4 6 6 6                           | 1-74        | 4 7 7 400                               | 3-15        | 15 Jan 1968              |
| *viii       |                                         |             | 15 Jul 1966                             | 3-17        | 15 Jul 1967              |
| 1-1         | 15 Jul 1967                             | 1-76        | 4 7 7 400                               |             | 15 Apr 1968              |
|             | 15 Jan 1968                             | *1-78       |                                         | 3-19        | 15 Jan 1968              |
|             | 13 San 1965                             | *1-79       | 4 = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |             | 15 Apr 1968              |
|             | 15 Jul 1966                             |             | 15 Apr 1968                             |             | 15 Apr 1968              |
|             | 15 Jul 1966                             |             | 15 Apr 1968                             |             | 15 Apr 1968              |
| 1-11        |                                         |             | 15 Apr 1968                             |             | 15 Apr 1968              |
| 1-11 1-12   |                                         |             | 15 Jan 1968                             |             | 15 Apr 1968              |
|             |                                         |             | 15 Jan 1968                             |             | 15 Apr 1968              |
| *1-14       |                                         | *1-84A .    | 1 = 1 1000                              |             | 15 Jul 1966              |
|             | 15 Apr 1968                             |             | 15 Jan 1968                             |             | 15 Jul 1966              |
| 1-17        |                                         |             | 15 Jan 1968                             |             | 15 Apr 1968              |
| 1-10        | 15 Jul 1966                             |             | 15 Jan 1968                             |             | 15 Jul 1966              |
|             | 15 Jul 1966                             |             | 15 Jan 1968                             |             | 15 Apr 1968              |
|             | 15 Jul 1966                             |             | 4000                                    |             | 15 Apr 1968              |
|             | 15 Jul 1966                             | 1-84F .     | 45 4 4000                               | 4-1         |                          |
| 1-20        |                                         | *1-85       | 4 7 4 4000                              | 4-3         | 15 Jul 1967              |
| 1-21        |                                         | *1-86       | 4 4000                                  |             | 15 Apr 1968              |
| 1-22        |                                         | *1-86A .    | 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |             | 15 Apr 1968              |
| *1-24       |                                         | *1-86B .    | 4 7 7 4 40 0 7                          |             | 15 Jul 1967              |
| 1-31        |                                         | 1-87        | 4 7 4 4000                              | 4-10        |                          |
| 1-33        |                                         | *1-88       |                                         |             | 15 Jul 1967              |
| 1-34        |                                         | 1-92        | 4 = 7 4000                              |             | 15 Apr 1968              |
| 1-35        | 4 - 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1-93        | 4 7 7 4 4 0 0 7                         | 4-15        | 4 5 5 4 6 6 5            |
| 1-36        |                                         | 1-95        | 45 7 1 4005                             |             | 15 Jul 1967              |
| *1-37       |                                         | 1-96        | 4 400                                   |             | 15 Jul 1967              |
| 1-38        |                                         | 1-97        | 45 4 1000                               |             | 15 Jul 1967              |
| 1-40        |                                         |             | 15 Apr 1968                             |             | 15 Jul 1967              |
| 1-41        |                                         |             | 1 May 1965                              |             | 15 Jul 1966              |
| 1-43        |                                         |             | 15 Apr 1968                             |             | 15 Jan 1968              |
| *1-49       |                                         |             | 15 Jan 1968                             |             | 15 Apr 1968              |
| 1-55        |                                         |             | 15 Jul 1966                             |             | 15 Apr 1968              |
| 1-56        |                                         |             | 15 Jan 1968                             |             | 15 Apr 1906              |
| 1-58        |                                         |             | 15 Apr 1968                             |             | 15 Apr 1968              |
| 1-61        |                                         | *3-8A       |                                         |             | 15 Apr 1966              |
| 1-64        | 15 Jul 1967                             | 3-8B.       | 15 Jan 1968                             | 0-0         | 10 Jul 1300              |

<sup>\*</sup>The asterisk indicates pages changed, added, or deleted by the current change.

#### ADDITIONAL COPIES OF THIS PUBLICATION MAY BE OBTAINED AS FOLLOWS:

USAF ACTIVITIES-In accordance with Technical Order No. 00-5-2.

NAVY ACTIVITIES—Use DD FORM 1348 and submit in accordance with the instructions contained in NAVSUP PUBLICATION 437—Military Standard Requisitioning and Issue Procedures.

For information on other available material and details of distribution, refer to NAVSUP PUBLICATION 2002, SECTION VIII, PART C and NAVAIR 00-500A.

**NAVAIR** 

Reproduction for nonmilitary use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (NAVAIR or USAF). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations, Article 1509.

#### - LIST OF CHANGED PAGES ISSUED -

#### INSERT LATEST CHANGED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current change is indicated by a vertical line in the outer margins of the page.

| 5-10       1 May 1965       6-3       15 Jul 1966       *8-20       15 Apr 1968         5-11       15 Jul 1967       6-4       15 Jul 1966       8-21       15 Jul 1967         5-12       1 May 1965       6-5       15 Jul 1967       *8-22       15 Apr 1968         *5-12A       15 Apr 1968       6-7       1 May 1965       8-23       15 Jul 1967         *5-13       15 Apr 1968       6-9       15 Jul 1966       10-1       15 Jul 1966         *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page I | Date of Latest<br>Change | Page D | ate of Latest<br>Change | Page<br>No. | Date of Latest<br>Change |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|--------|-------------------------|-------------|--------------------------|
| 5-11       15 Jul 1967       6-4       15 Jul 1966       8-21       15 Jul 1967         5-12       1 May 1965       6-5       15 Jul 1967       *8-22       15 Apr 1968         *5-12A       15 Apr 1968       6-7       1 May 1965       8-23       15 Jul 1967         *5-13       15 Apr 1968       6-9       15 Jul 1966       10-1       15 Jul 1966         *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.   | Ontaingo                 | 110.   | 01141190                | 110.        | 060                      |
| 5-12       1 May 1965       6-5       15 Jul 1967       *8-22       15 Apr 1968         *5-12A       15 Apr 1968       6-7       1 May 1965       8-23       15 Jul 1967         *5-13       15 Apr 1968       6-9       15 Jul 1966       10-1       15 Jul 1966         *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                          |        |                         |             |                          |
| *5-12A       15 Apr 1968       6-7       1 May 1965       8-23       15 Jul 1967         *5-13       15 Apr 1968       6-9       15 Jul 1966       10-1       15 Jul 1966         *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-11   |                          |        |                         |             |                          |
| *5-13       15 Apr 1968       6-9       15 Jul 1966         *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-12   |                          | 6-5    |                         |             |                          |
| *5-14       15 Apr 1968       6-10       15 Jul 1967       10-2       15 Jul 1966         5-14A       15 Jan 1968       7-3       15 Jul 1966       10-3       15 Jul 1966         5-15       15 Jul 1967       7-6       15 Jul 1966       10-4       15 Jul 1966         5-16       15 Jul 1966       7-7       15 Jul 1966       10-5       15 Jul 1966         5-17       1 May 1965       7-8       15 Jul 1966       10-6       15 Jul 1966         5-18       15 Jul 1967       7-9       15 Jul 1966       10-7       15 Jul 1966         5-19       15 Jul 1967       7-10       15 Jul 1966       10-8       15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *5-12A |                          |        |                         |             |                          |
| 5-14A       15 Jan       1968       7-3       15 Jul       1966       10-3       15 Jul       1966         5-15       15 Jul       1967       7-6       15 Jul       1966       10-4       15 Jul       1966         5-16       15 Jul       1966       7-7       15 Jul       1966       10-5       15 Jul       1966         5-17       1 May 1965       7-8       15 Jul       1966       10-6       15 Jul       1966         5-18       15 Jul       1967       7-9       15 Jul       1966       10-7       15 Jul       1966         5-19       15 Jul       1967       7-10       15 Jul       1966       10-8       15 Jul       1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                          | 6-9    | 15 Jul 1966             |             |                          |
| 5-15        15 Jul 1967       7-6        15 Jul 1966       10-4        15 Jul 1966         5-16        15 Jul 1966       7-7        15 Jul 1966       10-5        15 Jul 1966         5-17        1 May 1965       7-8        15 Jul 1966       10-6        15 Jul 1966         5-18        15 Jul 1967       7-9        15 Jul 1966       10-7        15 Jul 1966         5-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                          |        |                         | 10-2        | . 15 Jul 1966            |
| 5-16        15 Jul 1966       7-7        15 Jul 1966       10-5        15 Jul 1966         5-17        1 May 1965       7-8        15 Jul 1966       10-6        15 Jul 1966         5-18        15 Jul 1967       7-9        15 Jul 1966       10-7        15 Jul 1966         5-19        15 Jul 1967       7-10        15 Jul 1966       10-8         15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                          |        |                         | 10-3        | . 15 Jul 1966            |
| 5-17 1 May 1965       7-8 15 Jul 1966       10-6 15 Jul 1966         5-18 15 Jul 1967       7-9 15 Jul 1966       10-7 15 Jul 1966         5-19 15 Jul 1967       7-10 15 Jul 1966       10-8 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                          |        |                         | 10-4        | . 15 Jul 1966            |
| 5-18 15 Jul 1967 7-9 15 Jul 1966 10-7 15 Jul 1966<br>5-19 15 Jul 1967 7-10 15 Jul 1966 10-8 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                          |        |                         | 10-5        | . 15 Jul 1966            |
| 5-19 15 Jul 1967 7-10 15 Jul 1966 10-8 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                          |        |                         |             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                          |        |                         |             |                          |
| 5 90 1 0/0** 10% 7 11 12 111 1400 10 0 15 10 1066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                          |        |                         |             |                          |
| 5-20 1 May 1965 7-11 15 Jul 1966 10-9 15 Jul 1966 5-21 15 Jan 1968 7-12 15 Jul 1966 10-10 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                          |        |                         | 10-9        | 15 Jul 1966              |
| 5-22 15 Jan 1968 7-13 15 Jul 1966 10-11 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          |        |                         | 10-10       | 15 Jul 1966              |
| *5-22A 15 Apr 1968 7-14 15 Jul 1967 10-12 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                          |        |                         | 10-11       | 15 Jul 1966              |
| *5-24A 15 Apr 1968 7-15 15 Jul 1967 10-13 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -                        |        |                         | 10-13       | . 15 Jul 1966            |
| *5-25 15 Apr 1968 7-16 (Deleted). 15 Jul 1967 10-14 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                          |        |                         |             |                          |
| 5-26 15 Jan 1968 8-1 15 Jul 1967 10-15 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                          | 8-1    | 15 Jul 1967             |             |                          |
| 5-27 15 Jan 1968 *8-2 15 Apr 1968 10-16 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          | *8-2   | 15 Apr 1968             |             |                          |
| 5-28 15 Jan 1968 8-5 15 Jul 1967 10-17 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                          | 8-5    | 15 Jul 1967             | 10-17       | . 15 Jul 1966            |
| 5-29 1 May 1965 8-6 15 Jul 1967 10-18 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5-29   | 1 May 1965               |        |                         | 10-18       |                          |
| 5-30 15 Jul 1966 *8-6A 15 Apr 1968 10-19 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-30   | 15 Jul 1966              |        |                         | 10-19       |                          |
| 5-31 15 Jul 1967 *8-7 15 Apr 1968 10-20 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-31   | 15 Jul 1967              |        | _                       |             |                          |
| *5-32 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                          |        | _                       |             |                          |
| 5-33 15 Jul 1966 *8-9 15 Apr 1968 10-22 15 Jul 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          |        |                         |             |                          |
| *5-34 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                          |        |                         |             |                          |
| 5-35 15 Jul 1966 *8-11 (Deleted). 15 Apr 1968 Index-2 15 Jan 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                          | : '    | -                       |             |                          |
| 5-36 15 Jul 1967 *8-12 (Deleted). 15 Apr 1968 *Index-2A 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          |        |                         |             |                          |
| 5-36A 15 Jul 1967 *8-13 (Deleted). 15 Apr 1968 *Index-3 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                          | ,      | -                       |             | -                        |
| *5-36B 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                          | ,      | _                       |             |                          |
| 5-37 15 Jul 1966 8-15 15 Jul 1967 *Index-5 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                          |        |                         |             |                          |
| 5-38 15 Jul 1966 8-16 15 Jul 1967 Index-6 15 Jan 1968 6-1 15 Jul 1967 *8-17 15 Apr 1968 *Index-7 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                          |        |                         |             |                          |
| The state of the s |        |                          |        | -                       |             |                          |
| 6-2 15 Jul 1966 *8-18 15 Apr 1968 *Index-8 15 Apr 1968 *8-19 15 Apr 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-2    | 19 9 AT 1900             |        | -                       | muex-o      | . 19 Wht. 1909           |

**NAVAIR** 

USAF ACTIVITIES—In accordance with Technical Order No. 00-5-2.

NAVY ACTIVITIES—Use DD FORM 1348 and submit in accordance with the instructions contained in NAVSUP PUBLICATION 437—Military Standard Requisitioning and Issue Procedures.

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE OBTAINED AS FOLLOWS:

For information on other available material and details of distribution, refer to NAVSUP PUBLICATION 2002, SECTION VIII, PART C and NAVAIR 00-500A.

<sup>\*</sup>The asterisk indicates pages changed, added, or deleted by the current change.



# DEPARTMENT OF THE NAVY OFFICE OF THE CHIEF OF NAVAL OPERATIONS WASHINGTON, D.C. 20350

#### LETTER OF PROMULGATION

- 1. The Naval Air Training and Operating Procedures Standardization Program (NATOPS) is a positive approach towards improving combat readiness and achieving a substantial reduction in the aircraft accident rate. Standardization, based on professional knowledge and experience, provides the basis for development of an efficient and sound operational procedure. The standardization program is not planned to stifle individual initiative but rather, to aid the Commanding Officer in increasing his unit's combat potential without reducing his command prestige or responsibility.
- This manual standardizes ground and flight procedures but does not include tactical doctrine. Compliance with the stipulated manual procedure is mandatory except as authorized herein. In order to remain effective, NATOPS must be dynamic and stimulate rather than suppress individual thinking. Since aviation is a continuing progressive profession, it is both desirable and necessary that new ideas and new techniques be expeditiously evaluated and incorporated if proven to be sound. To this end Type/Fleet/Air Group/Air Wing/Squadron Commanders and subordinates are obligated, authorized and directed to modify procedures contained herein. in accordance with OPNAV Instruction 3510.9 series and applicable directives, for the purpose of assessing new ideas, in a practical way, prior to initiating recommendations for permanent changes. This manual is prepared and kept current by the users in order to achieve maximum readiness and safety in the most efficient and economical manner. Should conflict exist between the training and operating procedures found in this manual and those found in other publications, this manual will govern.
- 3. Checklists and other pertinent extracts from this publication necessary to normal operations and training should be made and may be carried in Naval Aircraft for use therein. It is forbidden to make copies of this entire publication or major portions thereof without specific authority of the Chief of Naval Operations.

THOMAS F. GONNOLI Vice Admiral, USN

Deputy Chief of Naval Operations (Air)

# INTERIM CHANGE SUMMARY

| THE FOLLOWING CHANGES HAVE BEEN CANCELED OR PREVIOUSLY INCORPORATED IN THIS MANUAL |                          |  |  |  |
|------------------------------------------------------------------------------------|--------------------------|--|--|--|
| CHANGE NUMBER(S)                                                                   | REMARKS                  |  |  |  |
| l through 27                                                                       | Previously incorporated. |  |  |  |
|                                                                                    |                          |  |  |  |

| PURPOSE                                              | CHANGE DATE | CHANGE NUMBER |
|------------------------------------------------------|-------------|---------------|
| Adds lateral oscillation warning to Section IV, Part | 8/23/67     | 28            |
|                                                      |             |               |
|                                                      |             |               |
|                                                      |             |               |
|                                                      |             |               |
|                                                      |             |               |
|                                                      |             |               |
|                                                      |             |               |

| INTERIM CHANGES OUTSTANDING - TO BE MAINTAINED BY CUSTODIAN OF THIS MANUAL |                     |                |         |  |
|----------------------------------------------------------------------------|---------------------|----------------|---------|--|
| CHANGE NUMBER<br>AND DATE                                                  | DATE<br>CHANGE MADE | PAGES AFFECTED | PURPOSE |  |
|                                                                            |                     |                | Ť       |  |
|                                                                            |                     |                |         |  |
|                                                                            |                     |                |         |  |
|                                                                            |                     |                |         |  |
|                                                                            |                     |                |         |  |
|                                                                            |                     |                |         |  |
|                                                                            |                     |                |         |  |

# CONTENTS

| Section I        | - AIRCRAFT                                                         | 1-1 |
|------------------|--------------------------------------------------------------------|-----|
| Part 1           | — Aircraft and Engine                                              |     |
| Part 2           | — Systems                                                          |     |
| Part 3 Part 4    | Aircraft Servicing and Handling     Aircraft Operating Limitations |     |
| Part 4           | - Aircraft Operating Limitations                                   |     |
| Section II       | - INDOCTRINATION                                                   | 2-1 |
| Section III      | -NORMAL PROCEDURES                                                 | 3-1 |
| Part 1           | - Briefing/Debriefing                                              |     |
| Part 2           | - Mission Planning                                                 |     |
| Part 3           | - Shore-Based Procedures                                           |     |
| Part 4           | - Carrier-Based Procedures                                         |     |
| Section IV       | -FLIGHT PROCEDURES AND CHARACTERISTICS                             | 4-1 |
| Part 1           | - Flight Procedures                                                |     |
| Part 2           | - Flight Characteristics                                           |     |
|                  |                                                                    |     |
| Section V        | - EMERGENCY PROCEDURES                                             | 5-1 |
| Part 1           | — Ground Emergencies                                               |     |
| Part 2           | - Takeoff Emergencies                                              |     |
| Part 3           | - Inflight Emergencies                                             |     |
| Part 4           | — Landing Emergencies                                              |     |
| Section VI       | - ALL-WEATHER OPERATION                                            | 5-1 |
| Part 1           | - Simulated Instrument Procedures                                  |     |
| Part 2           | - Actual Instrument Procedures                                     |     |
| Part 3           | — Weather Procedures                                               |     |
| Section VII      | - COMMUNICATIONS PROCEDURES                                        | 7-1 |
| Section VIII     | -WEAPON SYSTEMS                                                    | 8-1 |
| Section IX       | -FLIGHT CREW COORDINATION                                          | 9-1 |
| Section X Part 1 | - STANDARDIZATION EVALUATION                                       | 0-1 |
| Section XI       | - PERFORMANCE DATA                                                 | 1-1 |



#### SCOPE

The NATOPS Flight Manual is published by the authority of the Chief of Naval Operations and under the direction of the Commander, Naval Air Systems Command, in conjunction with the Naval Air Training and Operating Procedures Standardization (NATOPS) Program. It provides the best available operating instructions for most circumstances, but no manual is a substitute for sound judgment. Emergencies, adverse weather, or terrain may require modification of the procedures contained herein. Read this manual from cover to cover. It's your responsibility to have a complete knowledge of its contents.

#### **ARRANGEMENT**

The manual is divided into eleven sections as follows:

Section I, AIRCRAFT, consists of four parts which describe the aircraft, its systems, servicing requirements, and operating limitations. Part 1 provides a

general description of the aircraft, console and instrument board illustrations, and a description of the engine and afterburner. Part 2 describes aircraft systems, excluding tactical systems, and presents specialized system operating procedures. Part 3 provides servicing and handling information for operating from strange fields. Part 4 provides aircraft operating limitations. Some additional limitations applying to specialized operations are found in sections III, IV, and V, and in other parts of this section.

Section II, INDOCTRINATION, summarizes all requirements necessary for qualification in the F-8. Ground training, flight training, flight qualification, and personnel flying equipment requirements are included in this section.

Section III, NORMAL PROCEDURES, provides recommended procedures for operating the aircraft under normal conditions. Part 1 contains briefing and debriefing procedures. Part 2 provides mission planning.

Part 3 presents complete shore-based ground and flight procedures. Part 4 presents only those procedures peculiar to carrier operation.

Section IV, FLIGHT PROCEDURES AND CHAR-ACTERISTICS, consists of two parts. Part 1 contains procedures for transition and familiarization, parade and tactical formation, formation rendezvous, inflight refueling, and flight test. Part 2 provides aircraft flight characteristics and recommended pilot techniques.

Section V, EMERGENCY PROCEDURES, is divided into four parts covering ground emergencies (part 1), takeoff emergencies (part 2), inflight emergencies (part 3), and landing emergencies (part 4).

Section VI, ALL-WEATHER OPERATION. Parts 1 and 2 provide simulated and actual instrument procedures. Part 3 covers flight in icing conditions, rain, snow, thunderstorms and turbulence, cold weather, hot weather and desert.

Section VII, COMMUNICATIONS PROCEDURES, contains information on radio discipline and procedures, and hand signals.

SECTION VIII, WEAPON SYSTEMS, contains descriptions of, and normal operating procedures for, the fire control system, guns, and other weapon systems.

Section IX, FLIGHT CREW COORDINATION, is not applicable to the single-place F-8.

Section X, STANDARDIZATION EVALUATION, describes the standardization program and presents requirements for ground and inflight evaluation. The section also provides grading criteria, information pertaining to records and reports, the evaluation question bank, and evaluation forms.

Section XI. PERFORMANCE DATA, contains charts and other data from which aircraft performance can be determined.

#### **HOW TO GET COPIES**

#### **Automatic Distribution**

To receive future changes and revisions to this manual automatically, a unit must be established on the automatic distribution list maintained by the Naval Air Technical Services Facility (NATSF). To become established on the list or change distribution requirements a unit must submit NAVWEPS Form 5605/2 to NATSF, 700 Robbins Ave, Philadelphia, Pa. 19111, listing this manual and all other NAVAIR publications required. For additional instructions refer to BUWEP-SINST 5605. 4 Series and NAVSUP Publication 2002.

#### **Additional Copies**

Additional copies of this manual and changes thereto may be procured by submitting a NAVSTRIP Form DD 1348 to NSD Philadelphia in accordance with NAVSUP Publication 2002.

#### **UPDATING THE MANUAL**

To ensure that the manual contains the latest procedures and information, a review conference will be held periodically as necessary.

#### YOUR RESPONSIBILITY

NATOPS Flight Manuals are kept current through an active manual change program. If you find anything you don't like about the manual, if you have information you'd like to pass along to others, or if you find an error in this manual, submit a change recommendation to the Model Manager at once.

#### **CHANGE RECOMMENDATIONS**

Recommended changes to this manual or other NA-TOPS publications may be submitted by anyone in accordance with OPNAVINST 3510.9 (series). Change recommendations of an URGENT nature (safety of flight, etc,) should be submitted directly to the NA-TOPS Advisory Group Member in the Chain of Command by priority message.

Submit routine change recommendations to the Model Manager on OPNAV Form 3500-22.

Address routine changes to:
Fighter Squadron 124
Naval Air Squadron
Miramar, California 92145
AUTOVON telephone 349-3384

#### NATOPS FLIGHT MANUAL INTERIM CHANGES (FMIC'S)

FMICs are changes or corrections to the NATOPS Flight Manuals promulgated by CNO or NAVAIRSYS COM. FMICs may be received by the individual custodian as a printed page or pages, or by the commands as a naval message.

#### INTERIM CHANGE SUMMARY

The interim change summary in each manual is provided for the purpose of maintaining a complete record of all interim changes issued to the manual. Each time the manual is changed or revised, the interim change summary will be updated to indicate disposition and/or incorporation of previously issued interim changes.

When a regular change is received, the interim change summary should be checked to ascertain that all outstanding interim changes have been either incorporated or cancelled; those not incorporated should be reentered and noted as applicable.

#### **CHANGE SYMBOLS**

Revised text is indicated by a black vertical line in either margin of the page, like the one printed next to this paragraph. The change symbol shows where there has been a change. The change might be material added or information restated.

#### WARNINGS, CAUTIONS, AND NOTES

The following definitions apply to "WARNINGS", "CAUTIONS", and "NOTES" found throughout the manual.

# WARNING

Operating procedures, practices, conditions, etc, which may result in injury or death, if not carefully observed or followed.

#### CAUTION

Operating procedures, practices, conditions, etc, which, if not strictly observed, may damage equipment.

#### Note

An operating procedure, condition, etc, which is essential to emphasize.

## LIST OF APPLICABLE CHANGE DIRECTIVES

Following is a list of change directives which apply to this manual but which may not be incorporated in the aircraft. The change directive is briefly described and, where applicable, information is given for visual determination of incorporation.

| Service Change<br>Number                                                                           | Description                                                                                                                                                                                                      | Visual Identification                                                                                                     |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Aircraft Service Changes:                                                                          | Installs pressure ratio thrustmeter in place of turbine outlet pressure indicator.                                                                                                                               |                                                                                                                           |  |
| Airframe Changes: 480                                                                              | Provides automatic actuation of standard ignition system when a flameout condition exists.                                                                                                                       |                                                                                                                           |  |
| 485                                                                                                | Provides a canopy restraining strap for use when canopy is open during deck operations.                                                                                                                          | Pouch container on right-hand canopy sill.                                                                                |  |
| 491                                                                                                | Converts MK-F5A seat to MK-F7 designation by adding<br>a rocket capability and an RSSK-6 survival kit. Modi-<br>fied seat provides an improved escape envelope for<br>ejection at minimum altitude and airspeed. | Decal on left-hand side of seat head-<br>box reads "MK-F7" and indicates<br>seat capability.                              |  |
| 493                                                                                                | Permits firing upper and lower guns separately or to-<br>gether. Also permits firing of guns while simul-<br>taneously actuating fuselage store stations.                                                        | Gun selector switch panel mounted in the vicinity of the takeoff check-list.                                              |  |
| 495                                                                                                | Changes wing-wheels-droop warning light from a steady light to a flashing light when actuated.                                                                                                                   | Flashing wing-wheels-droop warning light when gear handle/wing incidence relationship incorrect, or droop unlocked.       |  |
| Aviation Clothing<br>and Survival Equip-<br>ment Bulletin 22-61                                    | Modifies MK-F5 ejection seat to provide a ground-level escape capability and redesignates to MK-F5A.                                                                                                             | Orange decal on LH side of drogue parachute container with minimum ejection capability and "ASCEB 22-61" printed thereon. |  |
| Aircrew Systems<br>Change No. 19                                                                   | Incorporates visual indicator top latch mechanism and visual ejection seat alignment indicators for verifying security of the ejection seat installation in the aircraft.                                        | Visual indicating type top latch mechanism and red-painted trip rods for the drogue gun and timed release mechanism.      |  |
| Aircrew Systems<br>Change No. 93                                                                   | Deletes the high speed PK-2 survival kit and adds the Rigid Seat Survival Kit (RSSK-6).                                                                                                                          | The RSSK-6 kit is in a hard pack container with a seat pad attached.                                                      |  |
| COMNAVAIRPAC General Avionics Bulletin No. 45-62 or COMNAVAIRLANT General Avionics Bulletin No. 46 | Provides IFF reply impulse after releasing I/P switch in mode 3.                                                                                                                                                 |                                                                                                                           |  |
| Aircrew Systems<br>Change No. 56                                                                   | Adds indicator on bottom of drogue gun firing mechanism for verifying that firing mechanism is cocked.                                                                                                           | Presence of indicator.                                                                                                    |  |
| Martin-Baker ECP 159                                                                               | Raises altitude limiter minimum altitude for barostatic opening of parachute from 10,000 feet to 11,500 feet.                                                                                                    | ECP 159 entry in ejection seat log-book.                                                                                  |  |





F-8A, F-8B





Figure 1 – 1

# section I aircraft

# **CONTENTS**

# PART 1 — AIRCRAFT AND ENGINE

| Engine and Afterburner                             | 1–11 |
|----------------------------------------------------|------|
| PART 2 — SYSTEMS                                   |      |
|                                                    |      |
| Fuel System                                        |      |
| Inflight Refueling                                 |      |
| Power Control Hydraulic Supply                     |      |
| Flight Controls                                    | 1-25 |
| Trim and Stabilization                             | 1-20 |
| Utility Hydraulic Supply                           | 1-30 |
| Two-Position Wing                                  | 1–31 |
| Wingfold                                           |      |
| Speed Brake                                        | 1-38 |
| Landing Gear                                       |      |
| Nose Gear Steering                                 | 1-42 |
| Wheel Brakes                                       | 1-43 |
| Arresting Hook                                     | 1-45 |
| Pneumatic Supply                                   | 1-45 |
| Electrical Supply                                  | 1–47 |
| Exterior Lights                                    | 1–50 |
| Interior Lights                                    | 1-52 |
| Angle-of-Attack Indicating                         | 1-55 |
| Flight Instruments                                 | 1-57 |
| Fire Detector                                      | 1-57 |
| Radio Equipment                                    | 1-58 |
| Command Radio Set AN/ARC-27A                       | 1–59 |
| Direction Finder (ADF) Group AN/ARA-25             | 1–60 |
| Identification Set AN/APX-6B Coder Group AN/APA-89 | 1–61 |
| Radar Set (Radio Altimeter) AN/APN-22              | 1-63 |
| Radio Navigation (TACAN) AN/ARN-21D                | 1–64 |
| MA-1 Compass                                       | 1–66 |
| Air-Conditioning                                   | 1–68 |
| Antiblackout                                       | 1-74 |
|                                                    |      |

#### **CONTENTS** (Continued)

| Oxygen                                   | 1 - 74  |
|------------------------------------------|---------|
| Canopy                                   | 1–78    |
| MK-F5, -F5A Ejection Seat                | 1–78    |
| MK-F7 Ejection Seat                      | 1-84    |
| Miscellaneous Equipment                  | 1 - 84I |
| PART 3 — AIRCRAFT SERVICING AND HANDLING |         |
|                                          | 1 0/    |
| Servicing                                | 1-80    |
| Handling                                 | 1-88    |
| PART 4 — AIRCRAFT OPERATING LIMITATIONS  |         |
| Introduction                             | 1-92    |
| Instrument Markings                      |         |
| Airspeed Limitations                     | 1-92    |
| Power Control Hydraulic System           |         |
| Trim and Stabilization System            | 1-94    |
| Maneuvers                                |         |
| Acceleration Limitations                 | 1-94    |
| Fuel System Acceleration Limitations.    | 1-94    |
| Fuel Availability                        |         |
| Engine Limitations                       | 1-95    |
| Cooling Flow Limitations                 | 1-96    |
| Center-of-Gravity Limitations            |         |
| Weight Limitations                       | 1-97    |
| External Stores Limitations              | 1-97    |

# PART 1—AIRCRAFT AND ENGINE

#### **AIRCRAFT**

#### DESCRIPTION

The F-8A and F-8B are single-place, carrier- or landbased supersonic day fighters capable of combat at high altitudes.

The aircraft (figure 1-1) is identified by a long slender fuselage with a large air intake duct mounted under the nose section. A thin, swept-back, two-position wing is mounted high on the fuselage and is raised for takeoff and landing. The wing contains

an integral fuel cell and incorporates flaps, ailerons (which also serve as flaps when the wing is raised) and a full-span leading edge droop. The entire horizontal tail moves as a unit to provide elevator control. A single, large speed brake is mounted on the fuselage underside just forward of the main landing gear. Figure 1–2 presents the general arrangement of the aircraft.

The arrangements of the F-8A and F-8B cockpit instrument boards and consoles are illustrated in figures 1–3 through 1–5.

#### PRINCIPAL DIMENSIONS AND WEIGHT

| Wing                                                                                            |                   |
|-------------------------------------------------------------------------------------------------|-------------------|
| Span, maximum.                                                                                  | 35 ft 8 in.       |
| Span, wings folded                                                                              |                   |
| Chord (streamwise)                                                                              |                   |
| At root.                                                                                        | 16 ft 10 in.      |
| At construction tip (theoretical extended section at tip)                                       | 4 ft 8 in.        |
| Mean geometric                                                                                  | 141.4 in.         |
| Incidence at mean aerodynamic chord                                                             |                   |
| Sweepback of 1/4 chord line                                                                     |                   |
| Dihedral                                                                                        |                   |
| Aspect ratio                                                                                    | 3.4               |
| Tail                                                                                            |                   |
| Horizontal                                                                                      |                   |
| Span                                                                                            | 18 ft 2.4 in.     |
| Sweep of 1/4 chord line                                                                         | 45°               |
| Dihedral                                                                                        |                   |
| Aspect ratio (including enclosed fuselage area)                                                 | 3.5               |
| Vertical                                                                                        |                   |
| Sweep of 1/4 chord line                                                                         |                   |
| Aspect ratio                                                                                    | 1.5               |
| Height (overall, static ground position; this height will not be exceeded with the wings folder | ed.)15 ft 9.1 in. |
| Length (overall, static ground position)                                                        | 55 ft 3.2 in.     |
| Approximate weight (less usable fuel, ammunition, pylons and stores and pilot)                  | 17,830 lb         |



Figure 1-2

# INSTRUMENT BOARD F-8A (TYPICAL)



- 1. Landing gear position indicator
- 2. Turbine outlet pressure indicator 18. Armament select switch
- 3. Fuel boost pumps warning light
- 4. Speed brake open light
- 5. Tachometer
- 6. Engine fuel pump warning light 22. Wing-wheels-droop warning light 37. Fuel flow indicator
- 7. Engine oil pressure indicator
- 8. Oil cooler door switch
- 9. Oil cooler door indicator
- 10. Angle-of-attack indicator
- 11. Fuel low level warning light
- 12. Airspeed-Mach number indicator 28. Fuel transfer switch
- 13. Fire warning test switch
- 14. Fire warning light
- 15. Missile jettison switch
- 16. Master armament switch

- 17. Radio altitude indicator
- 19. Rocket pack fire light
- 20. Guns ready-safe switch
- 21. Missile release indicator
- 23. Rocket reset switch
- 24. Turn-and-bank indicator
- 25. Acceleration indicator
- 26. Fuel dump switch
- 27. Fuel quantity test switch
- 29. Transfer fuel pump caution light
- 30. Inflight refueling probe light
- 31. Inflight refueling probe switch
- 32. Transfer fuel quantity indicator

- 33. Engine oil and hydraulic pressure warning light
- 34. Hydraulic system gage switch
- 35. Hydraulic pressure indicator
- 36. Main fuel quantity indicator
- 38. Radio magnetic indicator
- 39. Leading edge droop indicator
- 40. Attitude indicator
- 41. Course indicator
- 42. Trim neutral warning light
- 43. Nose trim indicator
- 44. Range indicator
- 45. Altimeter
- 46. Rate-of-climb indicator
- 47. Exhaust temperature indicator
- 48. Oxygen quantity indicator

53212-1-52

# INSTRUMENT BOARD F-8B (TYPICAL)



- 1. Fuel boost pumps warning light 17. Missile release indicator
- 2. Speed brake open light
- 3. Inflight refueling probe light
- 4. Wing-wheels-droop warning light 20. Course indicator
- 5. Engine pressure ratio indicator
- 6. Landing gear position indicators 22. Fuel transfer switch 7. Angle-of-attack indicator 23. Transfer fuel pump of
- 8. Tachometer
- 10. Inflight rerueling probe switch
- 11. Engine oil pressure indicator
- 12. Radio altitude indicator
- 13. Fire warning light
- 14. Fire warning test switch
- 15. Approach indexer lights
- 16. AN/APS-67 radar scope

- 18. Engine fuel pump warning light
- 19. Fuel low level warning light
- 21. Fuel dump switch
- 23. Transfer fuel pump caution light
- 24. Clock
- 9. Emergency canopy jettison handle 25. Radio magnetic indicator
  - 26. Main fuel quantity indicator
  - 27. Oxygen warning light
  - 28. Hydraulic pressure indicators
  - 29. Engine oil and hydraulic pressure 44. Airspeed-mach number indicator warning light
  - 30. Transfer fuel quantity indicator
  - 31. Oxygen quantity indicator

- 32. Fuel flow indicator
- 33. Turn-and-bank indicator
- 34. Fuel quantity test switch
- 35. Rocket pack fire light
- 36. Attitude indicator
- 37. Nose trim indicator
- 38. Range indicator
- 39. Armament panel
- 40. Oil cooler door indicator
- 41. Oil cooler door switch
- 42. Leading edge droop indicator
- 43. Altimeter
- 45. Acceleration indicator
- 46. Rate-of-climb indicator
- 47. Exhaust temperature indicator

# LEFT-HAND CONSOLE F-8A (TYPICAL)



- 1. Oxygen disconnect
- 2. Ventilation air disconnect
- 3. G valve
- 4. Speed brake override switch
- 5. Face plate heat knob
- 6. Wing incidence handle
- 7. Wing downlock handle
- 8. Emergency droop and wing incidence guard
- 9. Wing incidence release switch
- 10. ARO panel
- 11. Throttle
- 12. Fuel control switch
- 13. Rudder trim knob
- 14. Emergency brake handle
- 15. Exterior lights switch
- 16. Gates out switch
- 17. Emergency pitch trim handle

- 18. Yaw stab switch
- 19. Yaw stab warning light
- 20. Emergency power handle
- 21. Canopy jettison handle
- 22. Emergency downlock release switch
- 23. Roll stab warning light
- 24. Landing gear handle
- 25. Throttle catapult handle
- 26. Roll stab switch
- 27. Engine master switch
- 28. Throttle friction wheel
- 29. Cruise droop switch
- 30. Microphone button
- 31. Speed brake switch
- 32. Fire control panel
- 33. Ventilation/oxygen panel
- 34. Armament panel

53212-1-67NE

# LEFT-HAND CONSOLE F-8B (TYPICAL)



- 1. Oxygen disconnect
- 2. Ventilation air disconnect
- 3. G valve
- 4. Speed brake override switch
- 5. Face plate heat knob
- 6. Wing downlock handle
- 7. Wing incidence handle
- 8. Emergency droop and wing incidence guard
- 9. Wing incidence release switch
- 10. Cruise droop switch
- 11. Fuel control switch
- 12. Rudder trim knob (behind throttle)
- 13. Manual (EMERG) fuel control light
- 14. IR cool switch
- 15. Emergency brake handle
- 16. Exterior lights switch
- 17. Engine master switch

- 18. Emergency pitch trim handle
- 19. Yaw stab switch
- 20. Yaw stab warning light
- 21. Emergency power handle
- 22. Emergency power handle safety pin
- 23. Emergency downlock release switch
- 24. Roll stab warning light
- 25. Landing gear handle
- 26. Throttle catapult handle
- 27. Roll stab switch
- 28. Throttle friction wheel
- 29. Microphone switch
- 30. Speed brake switch
- 31. Radar control panel
- 32. Fire control panel
- 33. Ventilation/oxygen panel
- 34. Armament panel

53212-1-18NB

# RIGHT-HAND CONSOLE F-8A (TYPICAL)



- 1. Arresting hook handle
- 2. Clock
- 3. Cockpit pressure altimeter
- 4. Emergency power indicator light
- 5. Emergency generator switch
- 6. Pitot heat switch
- 7. Hook bypass switch
- 8. Approach indexer lights switch
- 9. Seat adjust switch
- 10. Emergency vent air knob
- 11. Emergency lights switch

- 12. Wingfold controls
- 13. Coder group panel
- 14. IFF panel
- 15. Exterior lights panel
- 16. Interior lights panel
- 17. Compass panel
- 18. UHF panel
- 19. TACAN panel
- 20. Air conditioning panel
- 21. Master generator switch
- 22. DC power indicator

53212-1-6

# RIGHT-HAND CONSOLE - F-8B (TYPICAL)



- 1. Arresting hook handle
- 2. Aileron-Rudder neutral trim lights
- 3. Cockpit pressure altimeter
- 4. Emergency power indicator light
- 5. Emergency generator switch
- 6. Pitot heat switch
- 7. Seat adjust switch
- 8. Emergency lights switch
- 9. Emergency vent air knob
- 10. Wingfold controls
- 11. Gunsight camera test switch

- 12. Missile release computer panel
- 13. Coder group panel
- 14. IFF panel
- 15. Exterior lights panel
- 16. Interior lights panel
- 17. Compass panel
- 18. UHF panel
- 19. TACAN panel
- 20. Air conditioning panel
- 21. Master generator switch
- 22. DC power indicator

#### **ENGINE AND AFTERBURNER**

#### **DESCRIPTION**

The aircraft is equipped with a Pratt and Whitney J57-P-4A continuous-flow gas-turbine engine with an afterburner for thrust augmentation. The axial-flow compressor is split into two mechanically separate rotors which provide greater flexibility for starting and permit part load operation. Each rotor is driven by a separate turbine. During starting, the external starter is connected to the high-pressure rotor since it is smaller and requires less torque. With the high-pressure rotor turning at governed speed, the low-pressure, low-speed rotor rotates so as to ensure optimum

airflow through the compressor. Flow matching between compressors and turbines and prevention of surge are accomplished by interstage bleeding between the rotors. Engine speed is based on highpressure rotor operation and is varied by a hydromechanical fuel control unit.

Test stand static thrust ratings of the engine are:

#### **ENGINE CONTROLS**

| Nomenclature                                                       | Function  ON — accomplishes the following:  1. Admits aircraft fuel to engine driven pump by opening engine fuel shutoff valve.  2. Energizes crank and ignite switches.  3. Energizes temperature sensing element of oil cooler door temperature control unit.  4. Energizes main fuel cell boost pumps.  5. Energizes mercury attitude switch for operation of inverted flight pumps and energizes attitude switch heater element to prevent freezing of mercury.  6. Energizes fuel transfer switch. |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Engine master switch (17, figure 1–4)                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Engine oil pressure indicator (11, figure 1-3)                     | Indicates oil pressure in psi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Turbine outlet pressure (TOP)** indicator                          | Indicates turbine outlet pressure in inches of mercury.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Engine oil/hydraulic pressure<br>warning light<br>(29, figure 1-3) | On, indicates low pressure in one of the following systems: engine oil, uti hydraulic, or either power control hydraulic system.                                                                                                                                                                                                                                                                                                                                                                        |  |
| Engine pressure ratio indicator* (5, figure 1-3)                   | Indicates ratio of turbine outlet pressure (TOP) to engine inlet pressure.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| EPR indicator setting knob (5, figure 1-3)                         | Sets computed engine pressure ratio in window of indicator and moves in marker to corresponding value on periphery of dial for comparison with ac indication during power check.                                                                                                                                                                                                                                                                                                                        |  |
| Exhaust temperature indicator (47, figure 1-3)                     | Indicates average engine exhaust gas temperature in degrees centigrade.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Fuel flow indicator (32, figure 1–3)                               | Indicates rate of engine (but not afterburner) fuel flow in pounds per hour.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Oil cooler door switch<br>(41, figure 1-3)                         | AUTO — normal position; system automatically controlled.  OPEN and CLOSE — permits positioning of oil cooler door if automatic control for                                                                                                                                                                                                                                                                                                                                                              |  |
| Oil cooler door indicator<br>(40, figure 1-3)                      | OPEN — indicates oil cooler door open.  CLOSE — indicates oil cooler door closed. Barberpole indicates door in intermedia position or electrical power not connected.                                                                                                                                                                                                                                                                                                                                   |  |
| Tachometer (8, figure 1-3)                                         | Indicates high-pressure rotor speed by percent based on 9,976 rpm as 100%.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Manual fuel control light (F-8B aircraft only) (13, figure 1–4)    | ON — With engine rpm more than 20%, indicates fuel control unit in manual mode. (With engine rpm less than 20% light will be on regardless of fuel control switch position)                                                                                                                                                                                                                                                                                                                             |  |

<sup>\*</sup>Aircraft BuNo. 145345 and subsequent and those with ASC 4.

<sup>\*\*</sup>Aircraft without ASC 4.

#### Section I Aircraft and Engine

#### **ENGINE CONTROLS** (Continued)

| Nomenclature                                                                                                                           | Function                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Throttle                                                                                                                               | OFF — shuts off fuel flow from fuel control unit.  CRANK — momentary position, initiates engine ground cranking cycle.  IGNITE — momentary position, energizes ignition timer for engine starting.  IDLE — adjustable stop, prevents inadvertent retarding to OFF.  MILITARY — selects maximum thrust without afterburner.  MAX — placed outboard, selects maximum thrust with afterburner. |  |  |
| Throttle friction wheel (28, figure 1-4)                                                                                               | Rotate to adjust throttle friction.                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Fuel control switch (10, figure 1–4)                                                                                                   | NORMAL — activates automatic fuel metering of fuel control unit.  EMERG — bypasses automatic fuel metering of fuel control unit, giving manual control with throttle position.                                                                                                                                                                                                              |  |  |
| Engine fuel pump warning light On, indicates insufficient fuel pressure from engine stage of fuel pu operating from afterburner stage. |                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

#### **ENGINE OPERATION**

#### Engine Fuel (See figure 1-6.)

Fuel is pumped from the main fuel cell through a motor-driven engine fuel shutoff valve to the engine fuel pump. The pump directs fuel to the fuel control unit for automatic fuel metering. Metered fuel then passes through the oil-fuel heat exchanger for fuel preheating and oil cooling. A pressurizing and dump valve directs the fuel to six dual orifice fuel nozzles for atomization in each of the eight burners and provides an overboard drain for the engine fuel manifolds after engine shutdown.

The engine-driven fuel pump serves both the engine and the afterburner. The pump consists of a centrifugal booster stage and separate gear stages for the engine and afterburner. The pump mounts a transfer valve which routes afterburner fuel to an internal recirculating line when the afterburner is not in use. If the engine stage of the pump fails completely, the transfer valve automatically transfers afterburner stage output to the engine fuel control unit and reduces fuel flow to the afterburner fuel control unit during high thrust conditions. Complete failure of the engine stage will be indicated by illumination of the engine fuel pump warning light.

The fuel control unit provides a speed governing control by metering fuel to compensate for variations in ambient conditions, compressor inlet temperature, and burner pressure to maintain optimum engine operation for various throttle settings. During rapid acceleration, the unit limits fuel flow to prevent surge, overtemperature and overpressure. During rapid deceleration, a minimum fuel flow is maintained to prevent engine flameout.

If a malfunction occurs in the automatic metering unit, engine operation may be continued by switching to manual fuel control. With the fuel control switch in manual (decaled EMERG), all automatic fuel metering functions are reduced and fuel flow is manually controlled by throttle movement. Care should be exercised when accelerating. Compressor stalls and overtemperature may result if throttle movement is too rapid. At normal climb airspeeds, EGT will increase with an increase in altitude. Throttle settings must be reduced as necessary to remain within allowable EGT limits.

#### Engine Oil (See figure 1-7.)

Oil is supplied from a tank by direct gravity feed to an engine-driven gear-type pump and directed to the main engine bearings and to the accessory drives for pressure lubrication.

#### Note

During zero or negative g conditions, oil pressure fluctuations may be apparent. The fluctuations are normal and should damp out within approximately 30 seconds after resuming positive g conditions.

The oil, pumped from the engine by six gear-type scavenge pumps, is cooled by a radiator-type oil cooler and an oil-fuel heat exchanger, and then returned to the oil tank. Total system capacity is 7 gallons, 5 of which are for servicing purposes and 2 of which are trapped in the system. Oil temperature is automatically stabilized by a thermal-sensing temperature control unit and a thermostatic regulator valve. The temperature control unit electrically controls the oil cooler door and prevents fuel from being overheated in the heat exchanger. The thermostatic regulator valve senses oil temperature and permits the oil to flow through or bypass the heat exchanger



Figure 1-6



Figure 1-7

depending upon oil temperature. The oil cooler radiator is not effective unless the oil cooler door is opened. When the door is opened, ram air from the engine intake passes through the radiator and overboard. A pressure ratio switch automatically opens the oil cooler door to relieve ram-air pressure in the intake duct at speeds between 1.0 and 1.2 IMN. At lower speeds, door operation is returned to the temperature control unit.

A three position switch in the cockpit provides manual control of the oil cooler door. The switch is normally positioned in AUTO with the OPEN and CLOSE positions used only if the pressure ratio switch fails to position the door. The oil cooler door position will be indicated in the cockpit by an oil cooler door indicator. A low-pressure warning light illuminates in the cockpit when the engine oil pressure drops below 34 psi. The warning light will also indicate a low-pressure

condition in the power control or utility hydraulic systems. The engine and hydraulic pressure indicators should be referred to when the warning light is illuminated.

#### **ENGINE STARTING**

External pressurized air and electrical power are required to start the engine. With external power connected, placing the ENGINE MASTER switch in ON position energizes the master fuel relay which connects electrical power from the primary dc bus to the CRANK switch (the ENGINE MASTER switch also opens the fuel shutoff valve, energizes the fuel boost pumps and energizes fuel transfer switch). Momentarily placing the throttle in CRANK position energizes the air valve relay and the ignite relay. The air valve relay provides power to open the crank air valve on the starting cart. Opening the crank air valve on the air cart provides compressed air to drive the starter turbine and crank the engine. After the starter turbine reaches drop-out speed (3,200 to 3,400 rpm), a centrifugal switch opens, deenergizing the crank air valve relay and closing the air valve on the starting cart. When the throttle is moved to the IGNITE position (5% rpm) the ignition relay is energized and connects ignition power to number 4 and 5 combustion chamber burner cans. The ignition time, actuated by the ignite relay, causes ignition to continue for 30 to 40 seconds even though ignition normally occurs within 3 seconds. At 12% rpm, the throttle is moved to the IDLE position. Acceleration to idle rpm is normally attained within 15 to 20 seconds.

AFC 480 installs an automatic ignition actuator. When a flameout condition exists, an engine-mounted sensor immediately senses any reduction of burner pressure that exceeds a preset rate and actuates the standard ignition system to provide an automatic relight capability. If a flameout is produced by something other than a malfunctioning fuel control unit or fuel exhaustion, the relight will be automatic. Automatic relight occurs more rapidly than the time required by a pilot in ascertaining that a flameout has occurred and initiating the normal relight procedure.

#### **Engine Operating Limitations**

Refer to section I, part 4 for engine operating limits.

#### **Compressor Stalls**

Compressor stalls result from conditions under which engine compressor blades operate at an excessive angle of attack in much the same way as stalling occurs on an airplane wing. Although compressor stalls may be caused by engine damage or accessory malfunctions, they are more commonly associated with high-altitude operation. Stalls may occur in either the high- or lowpressure compressors of the engine and are accompanied by an eventual engine speed drop to between 40% and 60% rpm. Some stalls do not make themselves known by noise or surges, but result in not being able to accelerate the engine, or loss of rpm with no movement of the throttle. At the other extreme, stalls may be characterized by severe vibration and a loud banging noise. It is often difficult at high altitude for the pilot to determine whether a compressor stall or an engine flameout has occurred; exhaust gas temperature is the most positive indicator.

Compressor stall recovery may be accomplished by retarding the throttle to idle to reduce the amount of fuel admitted to the engine and increasing airspeed to admit more air into the engine. It may be necessary to sacrifice as much as 10,000 feet to obtain recovery below 50,000 feet and even more at higher altitudes. Exhaust gas temperature must be monitored and if it exceeds the limits, the engine must be shut down.

Airstart may be accomplished as soon after shutdown as practical. However, increased airspeed and lower altitude are favored for the relight. Aircraft electrical power will be available if engine windmilling speed is high enough (electrical power will be available for approximately 3 to 5 seconds after flameout); otherwise, the emergency power package should be extended. Cockpit pressurization may fluctuate.

Acceleration stalls, or "chug stalls," are frequently encountered during rapid acceleration from idle. This type of stall usually occurs from 58% rpm through 66% rpm. The engine will usually recover from a mild stall of this type without any pilot action. Should a severe chug stall occur, the throttle should be retarded and the engine allowed to stabilize. The throttle may then be advanced to desired setting.

Compressor stalls can also occur as a result of operation at a very high altitude at low airspeed and high angle of attack with the oil cooler door open.

If unstable engine conditions persist and exhaust temperature does not return to normal following a stall, land as soon as practical. Continued engine operation with unstable engine conditions is dangerous.

#### AFTERBURNER OPERATION

Afterburner operation is initiated when the microswitch in the throttle quadrant is actuated by placing the throttle outboard in the afterburner detent. The switch energizes a motor-actuated afterburner shuttle valve to direct afterburner fuel from the fuel pump to the afterburner fuel control unit. Simultaneously, a fuel pressure signal is sent to the afterburner exhaust nozzle control unit to open the exhaust nozzle. The afterburner fuel control unit automatically meters fuel for changes in burner pressure as affected by throttle movement and altitude changes. The metered fuel is directed to the afterburner fuel nozzles and to the afterburner igniter valve. The igniter valve directs a charge of this fuel into number 3 burner can. A flame streak passes through the turbines into the afterburner section and ignites the fuel discharged by the afterburner fuel nozzles. The afterburner is normally ignited at MILITARY thrust; however, it may be ignited at any point above the afterburner aft detent stop.

Normally, no trim changes are associated with afterburner ignition but an immediate increase in airspeed will be evident at all altitudes. Thrust may be varied during afterburner operation by varying throttle position in the afterburner detent.

At or above an altitude of approximately 40,000 feet, afterburner lightoff may not be obtained on the first attempt using JP-4 fuel. If first attempt is unsuccessful, place throttle in MILITARY and wait 15 seconds before reselecting afterburner. This delay is necessary because vaporization of JP-4 in the fuel manifold creates a pressure which resists recycling of the afterburner igniter. This delay is not necessary when using the less volatile JP-5 fuel. A relight should be obtained within two attempts if the engine is operating normally. Afterburner lightoff is most reliable above 0.85 IMN and below 40,000 feet.

### Afterburner Exhaust Nozzle (See figure 1-8.)

The exhaust nozzle area is automatically increased for afterburner operation by a fuel pressure signal transmitted from the fuel pump to the exhaust nozzle actuator control unit. The signal positions the control unit to direct engine compressor bleed air to the eight exhaust nozzle flap actuators. The actuators are mechanically linked to the exhaust nozzle flaps and hold the flaps open during afterburner operation. When afterburner is stopped, the exhaust nozzle control unit directs air to the actuators to close the flaps and hold them closed. If the exhaust nozzle fails to close, there will be a thrust loss of approximately 20% at MILITARY. In such a case, throttle settings approximately 3% to 5% rpm higher will be required to maintain approach

## AFTERBURNER EXHAUST NOZZLE -



53212-1-49

Figure 1-8

thrust. Selection of afterburner will restore full-thrust operation if required for a wave-off. The exhaust nozzle flaps open automatically whenever the throttle is at the IDLE stop and close when the throttle is advanced out of IDLE. The engine is capable of accelerating from idle to military thrust in approximately 7 seconds or decelerating through this range within 20 seconds.

The engine is equipped with a nozzle-closed lightoff (NCL) system. The NCL system, installed primarily to improve lightoff characteristics at high altitudes, prevents momentary loss of thrust during afterburner lightoff at all altitudes by delaying exhaust nozzle opening until lightoff has occurred. This feature is particularly advantageous when afterburner is selected in taking a wave-off.

# PART 2 — SYSTEMS

#### **FUEL SYSTEM**

#### **DESCRIPTION**

Refer to figure 1-9 for system illustration.

Fuel is supplied to the engine from the main fuel cell, through the engine fuel shutoff valve, by five fuel boost pumps. Three of these pumps operate at all times when the engine master switch is on and provide proper fuel flow for all upright flight attitudes. Two of the boost pumps are controlled by an attitude switch to supply fuel at inverted attitude. The inverted flight

boost pumps operate when pitch attitude exceeds 120° nose up or 15° nose down, or when roll attitude exceeds 90°. Only one of the main fuel boost pumps operates when electrical power is being supplied by the emergency power package with the emergency generator switch in ON. With the emergency generator switch in LAND, none of the boost pumps operate and flight operation must be restricted to avoid flameouts. Fuel from the midfuselage cells of the main system flows into the main cell by gravity feed.

#### **FUEL SYSTEM CONTROLS**

| Nomenclature                                                 | Function                                                                                                                                                                                                                                                               |  |  |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Engine master switch<br>(17, figure 1-4)                     | ON — energizes main fuel boost pumps, attitude switch (which controls inverted flight boost pumps) and fuel transfer switch.                                                                                                                                           |  |  |
| Fuel selector switch<br>(left main wheel well)               | Positions fuel valves during central-point fueling for selection of different types o fuel loads, or for defueling. POWER OFF is the flight position.                                                                                                                  |  |  |
| Fuel transfer switch (22, figure 1-3)                        | PRESS DUMP — relieves wing tank pressure and shuts off transfer fuel pumps to discontinue all fuel transfer.  ON — energizes transfer fuel pumps and provides wing tank pressure.  PUMP OFF — shuts off transfer fuel pumps but permits wing fuel transfer to continue |  |  |
| Fuel quantity test switch<br>(34, figure 1-3)                | Depressed momentarily, checks continuity of main and transfer fuel quantity ind cating circuits.                                                                                                                                                                       |  |  |
| Inflight refueling probe switch (10, figure 1-3)             | OUT — opens probe door, extends probe, deenergizes the transfer fuel system and relieves wing tank pressure.                                                                                                                                                           |  |  |
|                                                              | IN — retracts probe, closes probe door, energizes the transfer fuel system and repressurizes wing tank.                                                                                                                                                                |  |  |
|                                                              | OFF — deenergizes probe door valve and energizes the transfer fuel system.                                                                                                                                                                                             |  |  |
| Inflight refueling probe light                               | On, indicates probe door is open.                                                                                                                                                                                                                                      |  |  |
| (3, figure 1-3)                                              | Off, indicates probe door is closed.                                                                                                                                                                                                                                   |  |  |
| Main fuel quantity indicator (26, figure 1-3)                | Indicates total weight of fuel in main fuel system cells.                                                                                                                                                                                                              |  |  |
| Transfer fuel quantity indicator (30, figure 1-3)            | Indicates total weight of fuel in transfer fuel system cells.                                                                                                                                                                                                          |  |  |
| Wing tank manual fuel shutoff valve (left main wheel well)   | OPEN — allows normal operation of fuel system. Engine cannot be ground-started nor fuel transferred from or to wing tank unless valve is in this position.                                                                                                             |  |  |
|                                                              | CLOSE — prevents leakage of fuel from wing to main cell while aircraft is secured; also, aids defueling of main system after wing is empty by stopping airflow from wing.                                                                                              |  |  |
| Wing tank visual quantity indicator (left wing leading edge) | Appearance of red spherical float indicates wing tank is full.                                                                                                                                                                                                         |  |  |
| Fuel dump switch (21, figure 1-3)                            | DUMP — jettisons fuel from wing tank.                                                                                                                                                                                                                                  |  |  |
| Fuel low-level warning light (19, figure 1-3)                | LOW LEVEL — on when fuel level in main cell drops to approximately 1,000 pound (JP-5) in level flight.                                                                                                                                                                 |  |  |
| Fuel boost pumps warning light (1, figure 1-3)               | FUEL BOOST PUMPS — on when fuel boost pressure drops to 4 psi.                                                                                                                                                                                                         |  |  |
| Transfer fuel pump caution light (23, figure 1-3)            | TURN PUMP OFF — steady light with fuel transfer switch on, over 3,500 pounds transfer fuel remaining and aircraft in normal flight attitude indicates transfer fuel pump failure.                                                                                      |  |  |
|                                                              | Intermittent lighting progressing to steady indicates aft fuselage transfer fuel pressure drop induced by maneuvers or low fuel level in aft fuselage transfer cells.                                                                                                  |  |  |



Figure 1-9

The transfer fuel system composed of aft fuselage fuel cells and the wing tank semiautomatically sequences flow of transfer fuel to the main cell. Optimum center-of-gravity conditions are maintained provided the transfer switch is in the proper position. Float valves in the main cell open to admit fuel from the transfer system when the main cell fuel level drops to a predetermined point. Aft fuselage fuel is transferred under pump pressure. Wing fuel is transferred by air pressure supplied by the air-conditioning system. The transfer fuel pumps automatically shut off when the inverted flight boost pumps are operating.

#### **FUEL QUANTITIES**

Fuel load indications will vary depending upon temperature and type of fuel used. Under extreme temperature changes, gage readings can vary as much as 10% (6% gage tolerance and 4% fuel density change) of the average quantities.

With partial refueling selected (fuel selector switch in REFUEL PARTIAL), the main system cells will be fueled to the transfer level and the transfer system will be completely refueled for a total fuel load of 1,185 gallons. With only main cell refueling selected (fuel selector switch in REFUEL MAIN CELL), the main cell will be completely refueled (432 gallons). On some aircraft, the solenoid-operated check valves between the main fuel cell and the midfuselage cells are being replaced with acceleration check valves. On these aircraft, placing the refueling selector switch in REFUEL MAIN CELL will refuel the midfuselage cells in addition to the main cell for a total fuel load of 520 gallons.

Any desired fuel load can be attained by selecting REFUEL TOTAL, fueling to full load, then defueling to the desired quantity.

#### FUEL CELL PRESSURIZATION AND VENTING

Pressurization and venting maintain a constant pressure in the fuel cells and cell cavities during climbs, dives, fueling, defueling, and fuel transfer. Air pressure is used to transfer wing tank fuel. Pressure in all the cells prevents excessive fuel loss due to boiling at high altitude.

Pressurized air is bled from the engine compressor section and cooled by the air-conditioning system. The air passes through a check valve to the combined wing tank pressure regulator and relief valve and to the fuselage cells pressure regulator. The regulators admit the air to the fuel cells and wing tank as required. A check valve is installed in each pressure line to prevent fuel transfer between the cells and to keep fuel from entering the regulators. For all flight conditions except negative g, an emergency airscoop automatically admits ram air to pressurize the fuselage cells if the pressure regulator fails in the closed position, or the air-conditioning system is shut off. An emergency ram-air scoop prevents negative pressures in the wing tank.

The wing tank pressure regulator is electrically controlled to permit selection of fuel transfer conditions by the pilot. When the fuel transfer switch is placed in ON or PUMP OFF, the pressure regulator admits air to the wing tank at sufficient pressure to cause wing fuel to flow to the main cell when the condition of main cell fuel level and aft transfer fuel boost pressure permit. Placing the fuel transfer switch in PRESS

**FUEL WEIGHTS** 

| Fuel Cell                                  | Pounds —<br>JP-4 | Pounds —<br>JP-5 | US<br>Gallons |
|--------------------------------------------|------------------|------------------|---------------|
|                                            | Main Fuel S      | ystem            |               |
| Main                                       | 2,808.0          | 2,937.6          | 432           |
| Left-hand midfuselage                      | 286.0            | 299.2            | 44            |
| Right-hand midfuselage                     | 286.0            | 299.2            | 44            |
| MAIN SYSTEM TOTAL                          | 3,380.0          | 3,536.0          | 520           |
|                                            | Transfer Fuel    | System           |               |
| Left-hand forward transfer (aft fuselage)  | 293              | 306.0            | 45            |
| Right-hand forward transfer (aft fuselage) | 306              | 320              | 47            |
| Left-hand aft transfer                     | 266.5            | 279              | 41            |
| Right-hand aft transfer                    | 266.5            | 279              | 41            |
| Wing tank                                  | 3,764            | 3,937            | 579           |
| TRANSFER SYSTEM TOTAL                      | 4,895            | 5,121            | 753           |
| TOTAL AIRCRAFT FUEL                        | 8,275            | 8,657            | 1,273         |

DUMP shuts off the flow of air to the wing tank and vents the existing pressure to discontinue transfer of wing fuel. A vacuum relief valve admits air into the wing tank to preclude structural collapse from excessive negative pressure if no pressurization is provided. Because fuel outlets of the wing tank are located at the back of the tank, a horizontal or nose-up fuselage attitude is required to transfer wing fuel. Upon loss of normal wing tank pressurization (air-conditioning system failure or shutdown or, in F-8B aircraft, cockpit pressure switch placed in CABIN DUMP), wing tank fuel transfer is negligible.

The fuselage fuel cells are vented overboard through interconnected lines to a vent mast on the fuselage left-hand midsection. The common vent line is connected to a pressure relief valve which relieves cell pressure above  $1.0\ (\pm0.25)$  psi to prevent excessive pressures if the fuselage cells pressure regulator fails in the open position. A float valve in the main cell prevents main cell fuel from being vented overboard during maneuvering flight by shutting off fuel transfer when the vent outlet is covered. Check valves are installed in the other cell vent lines to prevent fuel from entering the vent lines during maneuvering or inverted flight.

#### FUEL SYSTEM MANAGEMENT

For takeoff, the fuel transfer switch is placed in ON which energizes the aft transfer pump and pressurizes the wing tank. Flow of transfer fuel to the main fuel cell is then automatically sequenced until all transfer fuel is consumed. Sequencing is obtained through variations in fuel line sizes and pressures to maintain proper aircraft center-of-gravity at all times. The aft transfer cells empty first and the wing tank empties last. During transfer from the aft cells there will be a noticeable transfer from the wing tank.

Failure of the aft transfer pumps (or loss of main electrical power) will result in as much as 1,200 pounds of aft transfer fuel being trapped in the cells. Wing tank fuel transfer will continue in such cases.

In level cruising flight, intermittent illumination progressing to steady illumination of the transfer pump caution light provides usable indication that the fuselage transfer fuel cells are empty. When the transfer cells are empty, there will be from 1,500 pounds to 3,000 pounds of wing tank fuel remaining, depending upon when the transfer pump is turned on. When the transfer pump caution light comes on under these conditions, turn the pumps and light off by placing the fuel transfer switch in PUMP OFF. For operational convenience, the transfer fuel quantity indicator is marked with an orange reference mark at 2,000 pounds fuel remaining (the nominal transfer quantity at which the fuselage transfer cells empty). This is a reminder to turn the transfer pump off.

When the transfer pumps are turned off, wing fuel transfer will continue until the wing tank is empty. In some cases, because of slight inaccuracies in fuel gaging, wing fuel transfer will continue for a short period even after the transfer fuel quantity indicator reads zero. To prevent wing tank air from entering the fuel lines, two pressure shutoff valves in the wing fueling manifold are automatically closed when the wing tank is empty or a fuel outlet is uncovered.

If the fuselage pumps are turned off too soon (as might be the case if turned off because of the caution light flickering during maneuvering flight), a small amount of fuel may be trapped in the aft cells. If this occurs, there will be an indication of transfer fuel remaining late in the flight when all fuel transfer would normally have been completed. This fuel can be pumped out by placing the fuel transfer switch in ON (in F-8B aircraft, cabin pressure switch must be in CABIN PRESS also) for a brief period. Maintaining a nose-up attitude will aid in pumping out the aft cells.

#### WARNING

Aircraft loss from main fuel depletion can result from fuel transfer failure in conjunction with either misread quantity indications or failure to monitor main fuel quantity. Main fuel quantity must be regularly checked for proper indication except during maneuvering flight. Do not mistake transfer quantity indications as main fuel quantity indications.

Excluding afterburner operation at high Mach numbers (see note), the transfer level in the main fuel system during flight at normal cruise attitude should hold at 2,400 to 2,700 pounds until the transfer fuel system is empty. The main system quantity indicator may read below 2,400 pounds during prolonged nosedown attitudes and when there are approximately 1,500 pounds remaining in the transfer system in certain other flight profiles. But in no case shall it read below 2,200 pounds before the transfer system is completely emptied. With the transfer fuel from the fuselage depleted, there will be negligible transfer from the wing in nose-down attitudes. Normal wing

transfer will be regained with a return to normal flight attitude. The main system quantity may indicate between 2,200 to 3,100 pounds depending upon the flight profile.

#### Note

During afterburner operation at high Mach numbers, the transfer fuel system will supply sufficient fuel to the main cell to hold the fuel level in the main cell at the transfer level down to 20,000 feet. Below 20,000 feet, transfer flow rate will fall slightly behind engine fuel demand and transfer level will drop slowly.

The main fuel quantity indicating system will indicate accurately only in steady wing-level flight between 20° nose-up and 10° nose-down. The transfer fuel quantity indicating system, a capacitance system designed for use in cruise control, will be accurate only between 10° nose-up and 4° nose-down.

The fuel low-level warning light will be on when the fuel in the main cell is at approximately 1,000 pounds. The light will indicate accurately at aircraft attitudes between 25° nose-up and 25° nose-down.

The fuel flow indicator, which indicates engine fuel flow in pounds per hour, may momentarily indicate zero flow when the throttle is retarded to IDLE from a high power setting. Should the indicator continue to reflect zero flow at a sustained IDLE power setting, advancing the throttle momentarily to obtain a higher fuel flow rate may restore proper indications.

#### WING TANK FUEL DUMPING

An electrically operated variable orifice restrictor, installed upstream of the wing tank pressure regulator, controls wing tank air flow for pressurization or provides a high fuel dump rate by allowing a greater air flow to the wing tank during fuel dumping. Two electrically operated dump valves, one in each outboard corner of the wing tank, permit fuel to be dumped overboard. Placing the fuel dump switch in DUMP fully opens the restrictor and opens the dump valves. After fuel has been dumped, the fuel dump switch should be placed in OFF.

#### Note

A nose-up attitude must be maintained to obtain the maximum rate of fuel dumping. Engine power setting is also critical during the dump cycle and 87% rpm or above will always ensure a maximum rate of fuel dumping. A power setting of 80% or less with a nose-down attitude may stop fuel dumping completely.

In F-8B aircraft, when the cockpit pressure switch is placed in CABIN DUMP, wing tank fuel dumping may be accomplished at a reduced rate. Placing cockpit pressure switch in CABIN PRESS for a short time will increase the fuel dumping rate. In F-8A aircraft, normal wing tank dumping can be performed with the cockpit pressure switch in CABIN DUMP.

#### INFLIGHT REFUELING

#### DESCRIPTION

#### Note

The inflight refueling system should be ground checked for leaks before a flight on which firing of guns is anticipated following inflight refueling.

A retractable probe (figure 1-10), mounted in a well on the left side of the fuselage, is extended and retracted by utility hydraulic pressure. Placing the inflight refueling probe switch in OUT deenergizes the transfer pump, depressurizes the wing tank, positions the fuel valves to accept fuel, opens the probe fairing door and extends the probe. The inflight refueling probe out light on the instrument board will also be illuminated when the fairing door opens. With the probe engaged in the tanker's drogue, fuel is admitted into the aircraft fuel system. If desired, partial refueling of the main cell up to the transfer level can be performed with the inflight refueling probe switch in OFF. Total time for refueling depends upon fuel

#### INFLIGHT REFUELING CONTROLS

| Nomenclature                                       | Function                                                                                                     |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Inflight refueling probe switch (10, figure 1-3)   | OUT — opens probe door, extends probe, deenergizes the transfer fuel system and relieves wing tank pressure. |  |
|                                                    | IN — retracts probe, closes probe door, energizes the transfer fuel system and<br>repressurizes wing tank.   |  |
|                                                    | OFF — deenergizes probe door valve and energizes the transfer fuel system.                                   |  |
| Inflight refueling probe out light (3, figure 1-3) | On, indicates probe door is open. Off, indicates probe door is closed.                                       |  |

## PROBE CONTROL.



Figure 1-10

on board when fueling commences and type of tanker supplying fuel. When the desired amount of fuel has been taken aboard, as indicated by the fuel quantity indicators, a slight reduction in airspeed will disengage the probe. Holding the inflight refueling probe switch in the IN position will reenergize the transfer system and reposition the fuel valves for normal operation, retract the probe and close the fairing door. Hold the switch IN for 5 seconds after the probe out light goes off before releasing to OFF. Releasing the switch to OFF will deenergize the door selector valve.

The inflight refueling system is powered from the primary dc bus to permit refueling of all but the aft cells when electrical power is being supplied by the emergency power package. Fuel from the aft cells will not be available when using emergency electrical power.

Refer to section IV, part 1, for inflight refueling techniques and procedures.

#### POWER CONTROL HYDRAULIC SUPPLY

#### DESCRIPTION

The two power control hydraulic systems (figure 1–11), PC 1 and PC 2, each supply hydraulic pressure at 3,000 psi. The systems are completely separate and operate independently of each other. Both systems function in the same manner through identical components and act together to operate the flight control surfaces through the slider valves of the surface power control cylinders. The slider valves, positioned by the control stick, the rudder pedals or the trim and stabilization system servo actuators control the direction and amount of control surface deflection. The use of dual power control hydraulic control systems ensures full controllability of the aircraft in case of failure of one of the systems.

The only difference in operation of the two systems is that the aileron spoilers and the yaw stabilization system operate only off the PC 2 system, while roll stabilization operates only off the PC 1 system. An emergency hydraulic pump in the emergency power package is connected to the PC 1 hydraulic circuit to permit pressurization of the PC 1 system in case of a

failure that does not involve loss of fluid from the system (pump failure). The emergency pump is placed in operation whenever the emergency power package is extended, but the pump will pressurize the system only when normal system pressure has been lost.

Refer to section V for procedure to be employed upon failure of the power control hydraulic systems; to section I, part 4, for flight restrictions imposed with one PC system inoperative; and to section IV, part 2, for flight characteristics encountered when operating on only one PC system. Hydraulic power is supplied to the yaw stabilization circuit from the PC 2 system and to the roll stabilization circuit from the PC 1 system.

#### Note

The engine oil/hydraulic pressure warning light will illuminate when either PC pressure drops below 1,500 psi, when the utility hydraulic pressure drops below 700 psi or when the engine oil pressure drops below 34 psi.

#### **POWER CONTROL SYSTEM CONTROLS**

| Nomenclature                                                           | Function                                                                                                                                                                                                                                           |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hydraulic pressure indicators (28, figure 1-3)                         | Indicates pressure in power control systems (selected by hydraulic system gage switch in F-8A aircraft).                                                                                                                                           |  |
| Engine oil/hydraulic low pressure<br>warning light<br>(29, figure 1-3) | On (ENG/HYD OIL PRESS) when pressure drops excessively in either power contro<br>system, utility hydraulic or engine oil system.                                                                                                                   |  |
| Emergency power handle (21, figure 1-4)                                | Pulled to extend emergency power package and connect emergency hydraulic pum to PC 1 system. (Refer to ELECTRICAL SUPPLY for information on emergency generators.)                                                                                 |  |
| Hydraulic system gage switch (F-8A) (34, figure 1-3)                   | PC-1 — selects PC 1 system pressure reading or emergency pump pressure reading (emergency power package extended and PC 1 system inoperative) on hydraulic pressure gage.  PC-2 — selects PC 2 system pressure reading on hydraulic pressure gage. |  |
|                                                                        |                                                                                                                                                                                                                                                    |  |

# POWER CONTROL HYDRAULIC SUPPLY





Figure 1-11

## **FLIGHT CONTROLS**

#### DESCRIPTION

The flight control system uses the control stick and rudder pedals to operate mechanical linkage to position the slider valves of hydraulic power control cylinders. In response to this movement the slider valves, through mechanical linkage of the power control cylinders to the control surfaces (aileron, horizontal tail and rudder), cause movement of the desired surface. As this irreversible system has no airload feedback to the control stick or rudder pedals, artificial "feel" is introduced into the system by feel springs, bobweights and viscous dampers. The amount of simulated feel introduced is proportional to the amount of surface deflection. The feel springs return the control stick or rudder pedal to neutral after the stick or pedal has been actuated and released. Movement of the control surfaces is also controlled by the trim and stabilization system. Operation of this system does not affect the neutral position of the control stick or the rudder pedals.

An assembly of links and levers in the horizontal tail pushrod system reduces control sensitivity in the vicinity of neutral stick position by changing the ratio of stick travel to surface movement as the stick is moved away from neutral. By reducing surface travel for a given stick displacement, the variable gain linkage eliminates high pitch corrections at high airspeeds.

When the wing is raised to the landing position, the ailerons and flaps are automatically drooped 20° from the cruise neutral position. This is accomplished by means of mechanical linkage from the wing to the aileron power control hydraulic slider valves and the flap segment inboard of the ailerons. Aileron droop and flap action provide increased lift and stability when the wing is raised and the wing leading edge is extended.

A wing spoiler control surface is installed flush with the upper surface of the wing forward of each aileron to increase rate of roll at low altitudes and high airspeed. The spoilers are slaved directly to aileron control and function in both the clean condition and landing condition. When the aileron is deflected more than 2° above the aileron clean condition neutral, the spoiler control surface is deflected an amount proportional to aileron deflection. Maximum spoiler deflection is 49°. Mechanical linkage from the aileron power control package positions a slider valve, allowing PC 2 hydraulic pressure to actuate the spoiler control surface. The spoilers will be inoperative with loss of PC 2 hydraulic system.

## FLIGHT CONTROLS

| Nomenclature                  | Function                                                                                                                                                                            |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pilot's control stick         | Controls aileron deflection of 15° up and 45° down in landing condition (wing raised and ailerons drooped).                                                                         |
|                               | Controls aileron deflection of 15° up and 15° down in clean condition (wing lowered and aileron cruise neutral restored). Overridable clean condition stops are encountered at 9½°. |
|                               | Controls horizontal tail deflection between 29° 30' nose up and 6° 45' nose down.                                                                                                   |
| Rudder pedals                 | Control rudder displacement between 17° left and right of neutral with wing raised. Control rudder displacement between 6° left and right of neutral with wing down.                |
| Rudder pedal adjustment crank | Rotated right or left adjusts rudder pedal assembly fore or aft.                                                                                                                    |

#### DESCRIPTION

This system senses flight deviations about the yaw and roll axes and automatically applies corrective stabilization signals to the control system. Normal yaw, pitch and roll trimming and emergency pitch trimming are provided through cockpit controls. System operation is illustrated in figure 1–12.

Roll stabilization signals are automatically initiated by roll rate gyros. Yaw stabilization and "stiffening" signals are initiated by lateral accelerometers. The stabilization functions can be turned off and on by controls on the left-hand console. Roll and pitch trim knobs are located on the stick grip and the rudder trim knob is on the left-hand console. Pitch trim is calibrated with the wing in the landing condition and the control stick in neutral. With the wing in the clean condition, full nose up trim at the control surface is reached prior to full movement of the control knob. Movement of the trim knob does not affect the position or feel of the control stick.

#### TRIM AND STABILIZATION CONTROLS

| Nomenclature                                  | Function                                                                                                                                                                                                                   |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Roll                                                                                                                                                                                                                       |
| Aileron neutral trim light*                   | On (AIL NEUT), indicates ailerons at 20° droop neutral (0° trim).                                                                                                                                                          |
| (2, figure 1–5)                               | Off, indicates ailerons not in neutral.                                                                                                                                                                                    |
|                                               | Inoperative with weight off landing gear.                                                                                                                                                                                  |
| Roll stabilization switch<br>(27, figure 1-4) | OFF RESET — shuts off roll damping and trim circuits and resets system after cutout by comparator circuit.                                                                                                                 |
|                                               | ON — makes hydraulic power available for roll damping and trim.                                                                                                                                                            |
| Roll trim knob<br>(On control stick grip)     | Rotated left or right, adds corresponding roll trim.                                                                                                                                                                       |
| Roll stabilization warning light              | On (ROLL STAB OFF), indicates system not operating.                                                                                                                                                                        |
| (24, figure 1-4)                              | Off, indicates system operating.                                                                                                                                                                                           |
|                                               | Yaw                                                                                                                                                                                                                        |
| Rudder neutral trim light                     | On (RUD NEUT)†, indicates rudder in neutral (0° trim).                                                                                                                                                                     |
| (2, figure 1-5)                               | Off, indicates rudder not in neutral.                                                                                                                                                                                      |
|                                               | Inoperative with weight off landing gear.                                                                                                                                                                                  |
| Rudder trim knob                              | Rotated left or right, adds corresponding yaw trim.                                                                                                                                                                        |
| (12, figure 1–4)                              |                                                                                                                                                                                                                            |
| Yaw stabilization switch (19, figure 1-4)     | OFF RESET — shuts off yaw damping and trim circuits and resets system after cutout by comparator circuit.                                                                                                                  |
|                                               | ON — makes hydraulic power available for yaw trim and damping.                                                                                                                                                             |
| Yaw stabilization warning light               | On (YAW STAB OFF), indicates yaw stabilization system not operating.                                                                                                                                                       |
| (20, figure 1-4)                              | Off, indicates system operating.                                                                                                                                                                                           |
|                                               | Pitch                                                                                                                                                                                                                      |
| Pitch trim knob<br>(On control stick grip)    | Rotated forward (nose down) or aft (nose up) adds pitch trim. (Calibrated in degrees of trim for wing up position.)                                                                                                        |
| Nose trim indicator                           | OFF — indicates instrument inoperative. (Deenergized with weight off landing gear.)                                                                                                                                        |
| (37, figure 1–3)                              | Degrees UP or DOWN indicates amount of pitch trim attained by the control surface with stick in neutral and wing up. Pitch trim available exceeds the limits of the indicator, but the indications are true within limits. |
| Emergency pitch trim handle                   | Pulled, cuts off normal pitch trim and places emergency trim circuit in standby.                                                                                                                                           |
| (18, figure 1-4)                              | NOSE DOWN or NOSE UP — adds desired trim to horizontal tail.                                                                                                                                                               |

<sup>\*</sup>Aircraft BuNo. 143702 and subsequent †Decal (RUD NEUT) only on aircraft BUNo. 143702 and subsequent.

## **ROLL TRIM AND DAMPING**





LEGEND

Damping Signals

Damping Signals

(Clean Condition)

Trim Signals

(Landing Condition)

## NOTES

- Roll trim and damping operates electrically from emergency buses and hydraulically from PC No. 1 system.
- 2. A monitor system maintains a constant check of roll actuator. If the two channels within the actuator get more than 20% out of agreement, the monitor shuts off the system and it locks in neutral.
- 3. With the emergency power package extended and EMER GEN switch in "LAND," the roll monitor is overridden. To prevent energizing a malfunctioning system, (if the monitor has previously shut off the system because of a malfunction and the system cannot be reset), the ROLL STAB switch should be in "OFF" before the EMER GEN switch is placed in "LAND".
- No emergency roll trim is provided because the electrohydraulic actuator will lock at neutral if electrical or hydraulic power is lost.

## YAW TRIM AND DAMPING



- Yaw trim and damping operates electrically from primary buses and hydraulically from PC No. 2 system.
- 2. This system incorporates dual servo channels with dual components throughout.
- 3. No emergency yaw trim is provided because the actuators will lock at neutral if electrical or hydraulic power is lost.
- 4. A monitor system maintains a constant check of yaw actuator. If the two channels within the actuator get more than 20% out of agreement, the monitor shuts off the system and it locks in neutral.

## PITCH TRIM



53212-1-33 (3)

#### UTILITY HYDRAULIC SUPPLY Hydraulic Fluid **Quantity Indicator** From Engine Compressor Reservoir Bleed Valve **Pressure Regulator** Check Valve and Relief Valve and From Systems Hydraulic Air Filler Vent Filler To Systems In-line Filter Hand Pump System Relief Valve **Pump Case Drain Line** Snubber (Pump cooling) Pressure Filter **Transmitter Engine Driven Utility Pump** LEGEND Hydraulic \_ Wiring **Pressure** Pressure Gage \* Check Valve Return (Arrow denotes free flow) Air Supply \*F-8B gircraft have individual pressure indicators for each hydraulic system. 53212-1-27

Figure 1-13

## UTILITY HYDRAULIC SUPPLY

## DESCRIPTION

The system, illustrated in figure 1–13, provides hydraulic power to operate the following systems.

Arresting Hook Two-Position Wing
Inflight Refueling Probe
Landing Gear Wingfold
Nose Gear Steering Wing Leading Edge
Speed Brake

An engine-driven hydraulic pump supplies pressure (3,000 psi) for the operation of the utility hydraulic circuits. Hydraulic pressure failure will be indicated by illumination of the engine oil/hydraulic pressure warning light.

Illumination of the engine oil/hydraulic pressure warning light also indicates that the utility hydraulic

pressure has dropped below 700 psi, either PC hydraulic pressure has dropped below 1,500 psi or the engine oil pressure has dropped below 34 psi. If illumination occurs, check hydraulic pressure and oil pressure indicators to verify the system affected.

#### Note

Utility hydraulic pressure may surge to 3,500 psi when any of the systems are actuated.

There is no utility hydraulic emergency system. Emergency operation of major utility circuits is provided by air pressure from the pneumatic system. A hydraulic pressure indicator indicates utility pressure.

Refer to part 3, this section, for servicing information.

## UTILITY HYDRAULIC SYSTEM CONTROLS AND INDICATIONS

| Nomenclature                                                       | Function                                                                                           |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Hydraulic system gage switch* (34, figure 1-3)                     | UTILITY — selects utility system pressure reading on hydraulic pressure gage.                      |
| Hydraulic pressure gage* (35, figure 1-3)                          | Indicates utility system pressure with hydraulic system gage switch in UTILITY.                    |
| Utility hydraulic pressure gage† (28, figure 1-3)                  | Indicates utility system pressure.                                                                 |
| Engine oil/hydraulic pressure<br>warning light<br>(29, figure 1-3) | On, indicates that utility system pressure has dropped below 700 psi if confirmed by gage reading. |

<sup>\*</sup>F-8A aircraft. †F-8B aircraft.

## TWO-POSITION WING

## **DESCRIPTION**

The two-position wing provides increased visibility at low takeoff and landing speeds by permitting the angle-of-attack of the wing to be increased without increasing the fuselage angle. The wing leading edge and ailerons are automatically drooped when the wing is raised to provide increased lift and stability during takeoff and landing. The system is illustrated in figures 1–14 and 1–15.

The wing is normally raised or lowered and the leading edge simultaneously extended to or retracted from the landing droop position by utility hydraulic system pressure. If hydraulic pressure is lost, the wing can be raised and the leading edge extended to the landing droop position by pneumatic system pressure.

Figure 1-14 illustrates changes automatically effected by raising or lowering the wing.

### **TWO-POSITION WING CONTROLS**

| Nomenclature                                            | Function                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cruise droop switch<br>(throttle grip)                  | OUT — extends leading edge to cruise position with wing incidence handle in DN position.  IN — retracts leading edge from cruise droop to clean position with wing incidence handle in DN position.                                                                                                                                                                                              |
| Leading edge droop indicator (42, figure 1–3)           | UP — indicates leading edge in clean position or in travel toward the cruise droop position.                                                                                                                                                                                                                                                                                                     |
| ( amy anguite I-J)                                      | DN — indicates leading edge in cruise droop position or in travel toward the clean position or land droop pistons mechanically locked in land droop position.  Barberpole indicates one or more land droop pistons unlocked, or electrical power not connected. Indication will normally occur during wing transition, but will not occur when cycling droops between cruise and clean position. |
| Wing downlock handle<br>(6 figure 1-4)                  | UNLOCK — unlocks wing cylinder mechanical downlock and permits movement of the wing incidence handle.  LOCK — with wing incidence handle in DN, locks wing in down position and turns out wing/wheels/droop warning light with gear retracted and landing droop locked up.                                                                                                                       |
| Wing incidence release switch (9 figure 1-4)            | Held depressed, unlocks wing hydraulic selector valve to permit positioning of wing incidence handle.                                                                                                                                                                                                                                                                                            |
| Wing incidence handle<br>(7 figure 1-4)                 | UP and DN — positions wing and leading edge selector valves for raising or lowering of wing and simultaneous extension or retraction of leading edge (for other changes taking place automatically when wing is raised or lowered) when related controls are properly positioned.                                                                                                                |
| Emergency droop and wing incidence guard (8 figure 1-4) | Raised, permits moving wing incidence handle to EMERG UP to raise wing.  Raised, permits moving wing incidence handle forward to blow landing droops down.                                                                                                                                                                                                                                       |
| Wing-wheels-droop warning light (4, figure 1-3)         | Flashing* (WING-WHEELS-DROOP) when: Landing gear handle up and wing not down and locked. Landing gear handle down and wing not up. Wing down with one or more land droop pistons unlocked.                                                                                                                                                                                                       |

<sup>\*</sup>F-8B aircraft after AFC 495. Light on steady in F-8A aircraft and in F-8B aircraft before the change.

Wing Up

Speed Brake Closed

## WING INCIDENCE CHANGE-**CLEAN CONDITION** Rudder Stops Engaged - 6<sup>0</sup> Throw Overridable Clean Condition Stops (9 1/2°) Engaged Available Aileron Throw - 15° Up and 15° Down Yaw Damper In and Yaw Gain Changer In Roll Damper In and Roll Gain Changer Out Ailerons at Normal Neutral Automatic Trim Change for Wing Down Wing Down Droop Up LANDING CONDITION Rudder Stops Disengaged - 17° Throw Flaps Drooped 200 Clean Condition Stops Disengaged Aileron Throw Changed To 15° Up and 45° Down Yaw Damper In and Yaw Gain Changer Out Roll Damper In and Roll Gain Changer In Ailerons Drooped 20

53212-1-35

Automatic Trim Change for Wing Up

Figure 1-14

Leading Edge Drooped 25°

The wing actuating cylinder has both a mechanical downlock, controlled by the downlock handle, and an integral locking mechanism. The downlock handle must be fully engaged in the UNLOCK detent before the wing incidence handle is actuated. Positioning the wing incidence handle with the downlock handle out of detent will cause misalignment of wing cylinder mechanical downlock and binding of handles. During subsequent wing DN selection, mechanical interference between retracting cylinder and mechanical downlock will prevent further hydraulic or pneumatic operation of the wing and leading edge.

With a force applied to the handle, it will be possible to move the handle toward the LOCK detent, due to action of spring struts in the rigging, but not sufficiently so as to engage the detent. When the downlock handle is in LOCK, a cam is positioned to prevent the wing incidence handle from being placed in UP.

The wing cylinder internal lock locks the cylinder in position when it is not actuated or when pressure is lost. During wing positioning, the lock will engage if g forces are applied due to hydraulic pressure being neutralized. The wing will continue movement when g forces are removed.

The wing hydraulic selector valve has a solenoidoperated dual lock latch, which locks the valve in the up or down position and is controlled by the release switch. The dual lock latch is engaged when energized by secondary bus power and is unlocked by spring action when the circuit is broken by depressing the release switch or when electrical power is lost.

The wing leading edge is drooped by six actuating cylinders. Normal operating pressure is supplied by the utility hydraulic system. Each cylinder is divided into two elements by a wall inside the cylinder barrel, and each has two pistons. One piston rod extends from each end of the cylinder barrel, with one rod connected (directly or indirectly) to the wing and the other to the leading edge. Both elements of the cylinder are used to obtain the land (full) droop position and only one element is used to obtain the cruise droop position. One piston (in the cruise element) is controlled by the cruise droop selector valve which is actuated electrically by the cruise droop switch (throttle grip). The other piston (in the land

droop element) is controlled by a hydraulic valve which is actuated by direct linkage from the wing incidence handle in the cockpit. When the wing incidence handle is put in the UP position, the cruise droop selector valve is energized to include the operation of the cruise elements in obtaining full extension of the leading edge to the land droop position.

Mechanical locks in the land droop elements provide droop locking. Emergency land droop can be obtained by using the pneumatic system. However, there is no emergency provision for obtaining cruise droop.

### NORMAL OPERATION

To raise the wing and extend the leading edge, proceed as follows:

- 1. Wing downlock handle UNLOCK
- 2. Wing incidence release switch DEPRESS
- 3. Wing incidence handle UP

To lower the wing and retract the leading edge:

- 1. Wing incidence release switch DEPRESS
- 2. Wing incidence handle DN
- 3. Wing downlock handle LOCK

To raise the wing and extend the droop pneumatically:

- 1. Wing downlock handle UNLOCK
- 2. Wing incidence handle DN
- The wing incidence handle must be placed in DN before the emergency droop and wing incidence guard is raised, or the handle will bind as the detent plate is released and swings outboard. If this should occur, push detent plate inboard with index finger while pushing wing incidence handle outboard and forward with heel of hand or lower the emergency droop and wing incidence guard and then place wing incidence handle in DN.
- 3. Emergency droop and wing incidence guard—RAISE
- 4. Wing incidence release switch DEPRESS
- 5. Wing incidence handle Full forward to extend droop, then inboard and aft to EMERG UP



Figure 1-15



Figure 1-16

## WINGFOLD

## DESCRIPTION

The wingfold system is illustrated in figure 1–16.

The wing outer panels are folded or spread by utility hydraulic pressure. They may be folded or spread with the wing raised or lowered. When the wings are folded, red warning flags (figure 1–17) are extended mechanically and the lock safety latches are released. At the same time a selector valve is mechanically positioned to supply hydraulic pressure to the hinge pin cylinders and the wingfold cylinders. The hinge pin cylinders retract the hinge pins. The wingfold cylinders are not actuated until the retracting hinge pins

energize microswitches which open the fold sequence valves, permitting the wingfold cylinders to fold the outer panels.

During spreading the folding sequence is reversed. The wing is mechanically locked in the spread position by the wing hinge pins and the lock safety latches. The warning flags will be visible any time the lock safety latches are not engaged.

Inspection ports are provided to permit a visual check of the wing hinge pin and lock mechanism to ascertain a positive wing-lock condition. (Refer to figure 1–18.)

# WINGFOLD WARNING FLAGS -



Figure 1-17

# WINGFOLD SAFETY INSPECTION PORTS





LATCHED Forward Port



LATCHED Aft Port



UNLATCHED Forward Port



UNLATCHED Aft Port

53212-1-56-3-68

## WINGFOLD CONTROLS

| Nomenclature                                                         | Function                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wingfold lock lever<br>(10, figure 1-5)                              | Up (depress tab, squeeze latch and pull up and back until the lever engages the detent) mechanically releases lock safety latches and extends warning flags.  Down (only after wings fully spread by placing wingfold lever in down position) mechanically positions lock safety latches to lock the hinge pins and to retract warning flags. |
| Wingfold lever<br>(under wingfold lock lever)                        | Ailerons must be neutral. Do not deflect stick during folding.  Up (squeeze and pull up), hydraulically folds wings.  Down, hydraulically spreads wings. Wingfold lock lever must be fully aft.                                                                                                                                               |
| Warning flags<br>(top and bottom wing<br>leading edge—wingfold area) | Extended, indicates hinge pins are not locked.  Retracted, indicates hinge pins are locked.                                                                                                                                                                                                                                                   |

## SPEED BRAKE

#### **DESCRIPTION**

The system is illustrated in figure 1-19.

The speed brake is operated by utility hydraulic pressure and can be fully or partially extended. The brake is automatically closed and the speed brake switch circuit is broken by the wing-up switch when the wing is raised. An override circuit permits brake extension with the wing up.

To prevent the brake from contacting the runway when the override feature is used, the pilot must remember to retract the brake before touchdown.

The speed brake will partially close when excessive airloads exerted on the extended surface neutralize hydraulic pressure and cause a pressure relief valve to open. The brake is prevented from being fully extended by the same function at very high speeds. As airspeed decreases the brake can be further extended. With loss of main generator electrical power the speed brake automatically closes and is inoperative until electrical power from the emergency power package is connected (emergency generator switch in ON). During ground operations, a safety circuit prevents opening of the speed brake when weight of the aircraft is on the main gear.

## SPEED BRAKE CONTROLS

| Nomenclature                                | Function                                                                                                                              |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Speed brake light (2, figure 1-3)           | On (SPEED BK OPEN or S/B), indicates speed brake is open.                                                                             |
| Speed brake override switch (4, figure 1–4) | OVERRIDE — permits extension of speed brake (by use of speed brake switch) with wing raised.  NORMAL — normal flight position.        |
| Speed brake switch (30, figure 1-4)         | OUT — extends speed brake.  OFF — holds speed brake in any extended intermediate position.  IN — closes and holds speed brake closed. |



Figure 1-19

## LANDING GEAR

#### DESCRIPTION

Normal operation is accomplished by means of utility hydraulic system pressure. Two doors covering each main gear automatically unlock and open when gear extension is selected. A third main gear door (fairing) and the nose gear doors are mechanically linked to the gear and extend with it. In emergency extension of the gear, pneumatic system pressure unlocks and extends the main gear doors, unlocks the main gear, and extends and locks the nose gear. The main gear falls by its own weight and is locked by airloads acting on it. A down-lock solenoid safety circuit prevents accidental gear retraction while weight is on the left-hand main gear. This circuit can be overridden to permit emergency retraction.

The pneumatic system is normally used to extend the landing gear following loss of utility hydraulic pressure. However, the pneumatic system also can be effective in extending the gear in some cases where utility hydraulic pressure remains but has proven ineffective

in extending the gear. This would be the case, for example, if the landing gear hydraulic selector valve became jammed (the pneumatic system has its own selector valve) or if the hydraulic return lines had become restricted (use of the pneumatic system causes hydraulic return fluid to be relieved overboard).

A mechanical linkage will center the nose gear during retraction provided the nose gear is within 30° of center position. If the nose gear is turned beyond the 30° limit, the landing gear handle can be raised and the main gear will retract, but the nose gear will remain extended due to interference between the centering linkage and the strut. The main gear must be extended and the nose gear steering switch depressed. This moves the nose gear toward center to permit the mechanical centering mechanism to center and release the nose gear for retraction.

Refer to figure 1-20 for system illustration.

The armament system is dearmed when the landing gear handle is down, and the approach lights are energized when the gear is extended.

## LANDING GEAR CONTROLS

| Nomenclature                                                              | Function                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Landing gear handle<br>(25, figure 1-4)                                   | WHEELS UP — with aircraft airborne and nose gear centered, retracts and locks gear in up position.  WHEELS DOWN — extends and locks gear in down position.                                                                                                                 |
|                                                                           | On aircraft BuNo. 141361 and subsequent, emergency extension (pneumatic) is obtained by placing handle in WHEELS DOWN, pushing in, rotating clockwise and pulling aft. Landing gear handle must be placed in WHEELS DOWN for nose gear downlock and indication.            |
| Emergency gear down handle<br>(Aircraft through BuNo.<br>141360)          | PULL — extends gear pneumatically. Landing gear handle must first be placed in WHEELS DOWN for nose gear downlock and indication.                                                                                                                                          |
| Landing gear position indicators (three) (6, figure 1-3)                  | UP — indicates corresponding gear up and locked.  Miniature wheel, indicates corresponding gear down and locked.  Barberpole, indicates position of corresponding gear differs from selected position, gear moving to selected position or electrical power not connected. |
| Landing gear warning light<br>(in landing gear handle)                    | On, indicates position of one or more gears differs from selected position or gear moving to selected position.  Off, indicates all gears locked in position indicated by handle position.                                                                                 |
| Emergency downlock release switch<br>(inboard side forward LH<br>console) | For Emergency Use Only. Up, permits moving landing gear handle to WHEELS UP while aircraft is on ground (nose gear need not be centered).                                                                                                                                  |
| Wing-wheels-droop warning light                                           | Flashing* (WING-WHEELS-DROOP) when:                                                                                                                                                                                                                                        |
| (4, figure 1-3)                                                           | Landing gear handle up — wing not down and locked                                                                                                                                                                                                                          |
|                                                                           | Landing gear handle down — wing not up                                                                                                                                                                                                                                     |
|                                                                           | Wing down — one or more land droop pistons unlocked                                                                                                                                                                                                                        |

\* F-8B aircraft after AFC 495. Light on steady in F-8A aircraft and in F-8B aircraft before the change.



Figure 1-20

## NOSE GEAR STEERING

#### DESCRIPTION

In addition to providing directional control during ground operation, the nose gear steering system (figure 1–21) provides mechanical centering of the nose gear for retraction and shimmy damping. The steering operation is pilot-controlled, while shimmy damping and mechanical centering are accomplished automatically. Powered centering (pilot-controlled) is also available, if desired.

Steering action is obtained by pressing the nose gear steering switch and pushing the appropriate rudder pedal, which admits utility hydraulic pressure to the steer-damper cylinder to rotate the nose gear. Powered steering is limited to 60° right or left by the steering cutout switch, which is actuated to deenergize the system whenever the nose gear rotates more than 60° in either direction.

Because of rudder stop engagement, the full nose gear steering range is not available with the wing down. Unpowered 360° nosewheel swivelling is available when the steering system is not actuated. The system is energized only when aircraft weight is on the main landing gear and the nose gear is down and locked. Nose gear steering is not available when operating on emergency electrical power or when the utility hydraulic system has failed.

Mechanical centering is provided for nose gear offcenter condition up to 30° right or left. If travel beyond 30° exists when nose gear retraction is selected the gear cannot be fully retracted. In this case powered centering is made available by reextending the gear and depressing the steering switch, which drives the gear to the centered position regardless of rudder pedal position.

## **NOSE GEAR STEERING-**



Figure 1-21

The damping function is automatically accomplished by the steer-damper cylinder. An accumulator is provided to ensure adequate damping pressure for all operating conditions.

#### NOSE GEAR STEERING CONTROLS

| Nomenclature                                                        | Function                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nose gear steering switch* (left side of flight control stick grip) | Depressed while taxiing, directs hydraulic pressure to steer-damper cylinder. Steering is effective when rudder pedals are moved.  Depressed after takeoff, directs hydraulic pressure to steer-damper cylinder to center nose gear if automatic centering has not been effective, permitting gear to be retracted. |
| Rudder pedals                                                       | Control steering with steering switch depressed.                                                                                                                                                                                                                                                                    |

<sup>\*</sup>After AFC 493, switch also used to cage and uncage sight unit gyro with wing down.

## WHEEL BRAKES

#### DESCRIPTION

The self-adjusting wheel brakes are normally actuated by utility hydraulic system pressure. Mechanical linkage from the rudder pedal tips actuates the piston in the power-boosted brake cylinder which hydraulically operates the brake assemblies. The force applied to the rudder pedal tips governs the amount of braking action. A brake accumulator provides hydraulic pressure for approximately 6 to 12 "boosted" brake applications when utility system pressure is not available. Manual (no boost) operation of the brakes is possible for ground handling without the engine running and with brake accumulator pressure depleted. If all brake hydraulic pressure is lost a pneumatic metering system provides emergency brake pressure. Differential braking action (applying pressure to one brake at a time) is not possible when using pneumatic pressure.

The system is illustrated in figure 1-22.

### WHEEL BRAKE CONTROLS

| Nomenclature                            | Function                                                                                                                                                                                                                                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rudder pedals                           | Depressing tips directs hydraulic pressure to wheel brake cylinders in proportion to amount of force applied.                                                                                                                                                             |
| Emergency brake handle (15, figure 1-4) | Pulled toward ON, directs pneumatic pressure proportional to handle movement to both wheel brake cylinders simultaneously. (If emergency brake system is used, hydraulic brake system must be bled before flight.)  OFF—shuts off pneumatic pressure and releases brakes. |



Figure 1-22



Figure 1-23

## ARRESTING HOOK

#### DESCRIPTION

The arresting hook (figure 1–23) is retracted by utility hydraulic pressure and extended by pressure from an accumulator. The hook is normally held retracted by hydraulic pressure, and with loss of hydraulic pressure, by a mechanical uplock latch. The hook is

held extended by overcenter locking-gear linkage which is connected to a spring-loaded linkage unlocking cylinder. Approximately 8 seconds are required to fully extend the hook. If accumulator pressure is lost, the hook will drop into position when the arresting hook handle is placed in HOOK DOWN.

## ARRESTING HOOK CONTROLS AND INDICATORS

| Nomenclature                                            | Function                                                                                                                                                         |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arresting hook handle<br>(1, figure 1-5)                | HOOK DOWN — relieves hydraulic pressure, retracts uplock latch, and extends hook. HOOK UP — energizes selector valve, positions uplock latch, and retracts hook. |
| Arresting hook warning light (in arresting hook handle) | ON — arresting hook handle and hook positions do not agree.                                                                                                      |

## PNEUMATIC SUPPLY

## DESCRIPTION

This system (figure 1-24) supplies air from three high-pressure bottles for operation of the circuits

listed. There is no cockpit indication of air bottle pressures. Bottle pressures are checked before flight during the exterior inspection (figure 3-1). (Refer to part 3, this section, for servicing information.)

## PNEUMATIC SUPPLY -



\*1100 cu-in. bottle in F-8B aircraft.

Figure 1-24

| Pneumatic Circuit       | Function                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                         | 900-Cu-In. Air Bottle Circuits*                                                                                           |
| Gun charging            | To arm guns.                                                                                                              |
| Gun vent doors          | To open and close doors.                                                                                                  |
| Emergency power package | For extension of package.                                                                                                 |
| Landing gear            | For emergency extension of landing gear.                                                                                  |
| Wheel brakes            | For emergency operation of wheel brakes.                                                                                  |
| Wing leading edge       | For emergency extension of cruise droop side of wing leading edge dual-element cylinders.  375-Cu-In. Air Bottle Circuits |
| Wing leading edge       | For emergency extension of landing droop side of wing leading edge dual-element cylinders.  50-Cu-ln. Air Bottle Circuit  |
| Two-position wing       | For emergency raising of two-position wing.                                                                               |

<sup>\*</sup>F-8A aircraft only. Replaced by 1,100-cu-in. air bottle on F-8B aircraft.

## **ELECTRICAL SUPPLY**

#### DESCRIPTION

The system is illustrated in figure 1-25.

This system supplies 115/200-volt, 400-cycle, 3-phase ac power and 28-volt dc power for operation of the circuits listed in figure 1–26. Power is supplied by a 9-kva ac generator and a 50-ampere dc generator on F-8A aircraft and a 12-kva ac generator and a 68-ampere dc generator on F-8B aircraft. The generators, contained in the main generator package are turbine-driven by bleed air from the engine compressor section.

Emergency electrical power is supplied by ram-airdriven ac and dc generators in the emergency power package, which is extended by pneumatic system pressure. The ac generator is rated at 2.5 kva and delivers 115/200-volt, 360- to 440-cps, 3-phase ac power to the primary and emergency ac buses. The dc generator is rated at 10 amperes and delivers regulated 28-volt dc power to the emergency and primary dc buses.

If a flameout occurs, engine windmilling speed may not be adequate to drive the main generator to operating speed, and power from the emergency generators must be used for engine ignition for an airstart. After an airstart, the main generator will automatically supply power to the secondary buses (master generator switch in MAIN) but will not supply power to the emergency bus or the primary bus until the emergency generator switch is placed in OFF.

#### **ELECTRICAL SUPPLY SYSTEM CONTROLS**

| Nomenclature                                    | Function                                                                                                                                                                                                                                                  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attitude indicator (36, figure 1–3)             | OFF — flag indicates that ac power is not connected to emergency bus or that ac power has failed.                                                                                                                                                         |
| DC power indicator<br>(22, figure 1-5)          | <ul> <li>v — indicates that dc power is connected to emergency bus.</li> <li>Barberpole indicates that dc power is not connected to emergency bus or that dc power has failed.</li> </ul>                                                                 |
| Master generator switch (21, figure 1-5)        | MAIN — connects power from the main generators to ac and dc buses through a speed sensing switch.                                                                                                                                                         |
|                                                 | EXT — connects external power to the ac and dc buses through the external power<br>receptacle.                                                                                                                                                            |
|                                                 | OFF — disconnects power from the buses.                                                                                                                                                                                                                   |
| Emergency generator switch (5, figure 1-5)      | ON — (emergency power package extended) connects power from emergency generators to emergency and primary ac and dc buses.                                                                                                                                |
|                                                 | LAND — (emergency power package extended) connects power from emergency generators to only the emergency ac and dc buses. This decreases electrical load on the emergency power package to improve package performance at low air-speeds.                 |
|                                                 | OFF — disconnects emergency electrical power from buses.                                                                                                                                                                                                  |
| Emergency power handle (21, figure 1–4)         | Pulled, extends emergency power package. Package cannot be retracted in flight. (Refer to POWER CONTROL HYDRAULIC SUPPLY for information on emergency hydraulic pump.)                                                                                    |
| Emergency power indicator light (4, figure 1-5) | On (emergency generator switch in ON), indicates that power is being supplied by emergency generators and serves as a reminder to place emergency generator switch in LAND (with engine running) prior to landing or in OFF if making a flameout landing. |
|                                                 | Off, indicates emergency generator switch in LAND or OFF.                                                                                                                                                                                                 |



Figure 1-25

SECONDARY

Radar

Radar altimeter Seat adjust

(F-8B) TACAN radio Tape recorder

Secondary instrument lights

PRIMARY

**EMERGENCY** 

#### Altimeter vibrator ADF radio Air bottle heaters Attitude indicator Cockpit temperature control Anti-collision lights Console lights (F-8A BuNo. 143772 and Cockpit temperature control Emergency pitch trim Engine fuel flow subsequent; all F-8B) (F-8A through BuNo. 143771) Forward main fuel pump Fire control system Engine oil pressure IFF radar Fuel pumps Engine pressure ratio Liquid oxygen quantity Aft main Hydraulic pressure indicator MA-1 compass Center main Instrument lights (F-8A) Main fuel quantity Inverted flight Pitch trim Pitot heater Transfer Position lights Transfer fuel quantity Guns (EPP in LAND) UHF command radio Inflight refueling probe light Primary instrument lights Yaw trim and stabilization Missile system (F-8B) Oil cooler door Roll trim and stabilization Position lights (when on main generator)

Approach lights Arresting hook warning DC power indicator Emergency lights Engine fuel pump warning Engine fuel shutoff Engine ignition and timer (F-8A BuNo. 144427 and subsequent; all F-8B) Engine oil/hydraulic pressure warning Fire detector Fuel low level warning (F-8A) Landing gear position Leading edge cruise droop Liquid oxygen warning (F-8A through BuNo. 145344) Manual fuel control Roll trim and stabilization Stabilization warning Transfer fuel pump caution light Wing fuel dump Wing pressurization Wing-wheels-droop warning

ADF radio Afterburner fuel control Engine crank Engine ignition and timer (F-8A through BuNo. 143821) Faceplate heater Fuel boost pump warning IFF radar Inflight refueling (except aft cell) MA-1 compass Missile jettison Speed brake UHF command radio Yaw trim and stabilization

Armament system Arresting hook Automatic ignition Crank air valve Fire control system Flasher Free air temperature Fueling Fuel low-level warning (F-8B) Gun camera Gun vent doors Inflight refueling (aft cell control) Landing gear downlock solenoid Liquid oxygen warning (F-8A BuNo. 154345 and subsequent; all F-8B) Missile system (except jettison) Nose gear steering Oil cooler door Radar TACAN radio Tape recorder Trim neutral light Wingfold Wing selector valve lock

53212-1-25(2)-3-68

## **EXTERIOR LIGHTS**

## DESCRIPTION

The exterior light system (figure 1–27) consists of anticollision lights, carrier landing approach lights and conventional position (navigation) lights.

The anticollision lights are high-intensity red lights mounted on the top and bottom of the fuselage at the centerline. These lights, which are powered from the secondary ac bus, flash off and on approximately 80 times per minute.

The position lights can be operated on emergency power only when the emergency generator switch is in LAND. These lights are powered by the emergency or secondary ac bus.

The separate red, green and amber approach lights are mounted on the nose gear flipper door and are powered, through the angle-of-attack indicating system, from the emergency dc bus. The approach lights come on automatically when the landing gear handle is placed in WHEELS DOWN and weight is off the gear, regardless of the position of the exterior lights switch. An approach light hook bypass circuit permits selection of approach light operation for either carrier landings or for field landings (field mirror landing practice). Refer to ANGLE-OF-ATTACK INDICATING SYS-TEM, this section, for information concerning sequence of approach light operation. An exterior light master control circuit is provided with the exterior lights switch (1, figure 1-27) to permit signaling to catapult officer and for rapid turning out of all exterior lights in tactical operations that require blackout.

## EXTERIOR LIGHTS CONTROLS

| Nomenclature                      | Function                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Figure 1–27                       |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Exterior lights switch            | NORM (or ON) — energizes master light switch circuit to permit selection of desired exterior lights.                                                                                                                                                                                                                                                                                                            |  |  |  |
| Anticollision light switch        | ON — turns on red anticollision lights.                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Approach light dimming switch     | DAY*—selects bright lighting of approach lights for daylight operations.  NIGHT*—selects dim lighting of approach lights for night operations, except when on emergency power.                                                                                                                                                                                                                                  |  |  |  |
| Approach light hook bypass switch | CARRIER — causes approach lights to flash if arresting hook is not down when landing gear handle is in down position and no weight is on the gear. The lights will not flash when operating on emergency electrical power.  FIELD — permits approach light to burn steadily for field mirror landing practice when arresting hook is up, landing gear handle is in down position and weight is not on the gear. |  |  |  |
| Taillight switch                  | BRT*—causes tail navigation lights to burn brightly.  DIM*—causes tail navigation lights to burn dimly.                                                                                                                                                                                                                                                                                                         |  |  |  |
| Wing light switch                 | BRT* — causes wing navigation lights to burn brightly.  DIM* — causes wing navigation lights to burn dimly.                                                                                                                                                                                                                                                                                                     |  |  |  |

<sup>\*</sup>With exterior light switch in NORM or ON.

# **EXTERIOR LIGHT CONTROLS (TYPICAL)**



53212-1-57

## INTERIOR LIGHTS

## **DESCRIPTION**

The interior lighting system provides optimum illumination of all indicators, panels and panel nomenclature for night or foul-weather flying. Glare-free illumination of panel nomenclature is provided on the instrument board and on most of the console-mounted panels (F-8B aircraft with ASC 406) through use of edge-lighting. Separate dimming controls (figure 1-28) are provided for the console lights and for the instrument lights to ensure flexibility in selection of lighting intensity. Separate dimming controls are also provided for the angle-of-attack approach indexer, radar scope bezel lights (F-8B aircraft only) and spotlight. Two emergency floodlights mounted one on each side of the cockpit just aft of the instrument board and a movable spotlight mounted above the right-hand console receive emergency dc power to light up the instrument board and consoles in case of failure of the normal instrument lights. On F-8A aircraft, all instrument and console lights receive electrical power from the emergency ac bus. On F-8B aircraft, the instrument and console lighting is divided into primary lighting, powered from the emergency ac bus and secondary lighting, powered from the secondary ac bus, as follows:

#### Primary Lights

Airspeed-Mach number indicator
Altimeter

Angle-of-attack indicator Attitude indicator

## Primary Lights (Continued)

Cabin pressure
altimeter
Console floodlights
Exhaust temperature
indicator
Land checklist
Landing gear indicator
panel
Liquid oxygen indicator

Main fuel quantity indicator Radio altimeter indicator Radio magnetic indicator Rate-of-climb indicator Tachometer Takeoff checklist Turn and bank indicator

#### Note

Only the primary lighting is available when operating on emergency electrical power.

#### Secondary Lights

Accelerometer Armament panel Clock Course indicator Cockpit pressure altimeter Engine oil pressure indicator Fire control panel\* Fire test panel Fuel flow indicator Fuel panel Hydraulic system panel IFF radar control panel\* Inflight refueling panel MA-1 compass control panel\*

Missile release computer\*
Missile release indicator
Power control No. 1
indicator
Power control No. 2
indicator
Pressure ratio indicator
Radar control panel\*
Remote channel indicator
SIF radar control panel\*
Standby compass
TACAN control panel\*
Transfer fuel indicator
UHF control panel\*
Utility pressure indicator

### INTERIOR LIGHT CONTROLS

| Nomenclature                  | Function                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Figure 1–28                   |                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Approach indexer dimming knob | Rotated between OFF and BRT, turns on and controls intensity of angle-of-attack approach indexer lights.                                                                                                                                                                                                                                                                      |  |  |  |
| Console light dimming knob    | Rotated between OFF and BRT, turns on and controls intensity of the following lights: Cabin pressure altimeter: Armament panel; Fire control panel* IFF radar control panel* Land checklist MA-1 compass control panel* Missile release computer: Radar control panel* Console floodlights SIF radar control panel* TACAN control panel* Takeoff checklist UHF control panel* |  |  |  |

<sup>\*</sup>F-8B aircraft with ASC 406

<sup>†</sup>F-8A aircraft

<sup>‡</sup>F-8B aircraft

# INTERIOR LIGHT CONTROLS (Continued)

| Nomenclature                           | Function                                                                                                                                                                                                                                              |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Emergency lights switch                | EMERG LIGHTS — turns on two emergency floodlights.*  DIM or BRT — turns on two emergency floodlights to either low or high intensity.†                                                                                                                |  |  |
| Instrument lights dimming knob         | Rotated between OFF and BRT, turns on and controls intensity of interior lights (except spotlight) emergency floodlights and lights controlled by console lights dimming knob. Also switches warning and indicator lights from high to low intensity. |  |  |
| Radar scope bezel lights dimming knob‡ | Rotated between DIM and BRT, controls intensity of radar scope bezel lights.                                                                                                                                                                          |  |  |
| Spotlight switch                       | Turns on spotlight.                                                                                                                                                                                                                                   |  |  |

<sup>‡</sup>F-8B aircraft \*Aircraft without ASC 406 †Aircraft with ASC 406

# INTERIOR LIGHT CONTROLS (TYPICAL) —



\*F-8B Aircraft

53212-1-58

## ANGLE-OF-ATTACK INDICATING

#### DESCRIPTION

The angle-of-attack indicating system and the approach lights provide the pilot and the landing signal officer with visual indications of aircraft angle of attack. Indications are presented on the angle-of-attack indicator (7, figure 1-3) under all flight conditions and may be used for such purposes as stall warning and for establishing maximum endurance flight attitudes. For convenience in controlling airspeed in landing approaches, indicator readings are supplemented by lights on the angle-of-attack approach indexer which is mounted on the windshield frame. The approach lights, mounted on the nose gear flipper door, provide the LSO with a similar indication of angle of attack as illustrated in figure 1-29. (Refer to EXTERIOR LIGHTS this section, for additional information concerning approach light operation.) Electrical power for the angle-of-attack indicating system is supplied by the emergency dc bus.

The angle-of-attack transducer, located on the right-hand side of the fuselage, transmits to the indicator a signal representing the relative angle of the fuselage to the airstream. This information is presented to the pilot as the position of the indicator pointer over a scale reading from 0 to 30. Each unit on the indicator dial is equal to 1.5° of indicated angle of attack or approximately 5 knots indicated airspeed in the region of the optimum approach angle of attack.

The angle-of-attack indicator controls operation of the approach indexer and the approach lights to provide indications of high, optimum, and low angle of attack in the landing condition. The indexer and approach lights are operated relative to pointer movement about the reference index marker at the 3 o'clock position on the indicator (figure 1–29).

The angle-of-attack system is ground boresighted and the indicator dial is set so that an indication of 13 units, corresponding to the optimum approach angle of attack, coincides with the center of the approach index marker at the 3 o'clock position. If the aircraft is flown so that the indicator pointer is held at an indication of 13.25 units (centered on the approach index marker) the optimum approach speed for any aircraft gross weight within the allowable limits will result. A preflight check should be made as prescribed in figure 3–1 to assure that the angle-of-attack vane or arm is not bent.

#### NORMAL OPERATION

An inflight check of the angle-of-attack system may be made as follows:

1. Descend below 5,000 feet and maintain straight and level flight.

- 2. Raise wing and lower landing gear.
- 3. Stabilize airspeed at recommended value for aircraft gross weight corresponding to 13.25 units (figure 3–11).
- 4. Angle-of-attack indicator pointer should indicate 13.25 units.

## CAUTION

The cockpit emergency ventilation port must be closed when using the angle-of-attack system as a flight reference. The port, when open, disturbs air flow, resulting in erroneous angle-of-attack indications.

The approach indexer lights function only when the landing gear handle is in WHEELS DOWN and the approach indexer dimming knob is rotated out of the OFF position. Indexer light brightness is controlled by positioning the approach indexer dimming knob (3, figure 1–28) as desired between OFF and BRT.

The approach is flown by coordinating throttle and stick movements to establish the desired glide path at optimum angle of attack. The stick is used to bring angle of attack to the optimum value, as indicated by illumination of the indexer circle (donut). As angle of attack goes high or low, with resulting decrease or increase in airspeed, the indexer upper or lower chevron will be illuminated to point the direction in which the nose should be moved to return to the optimum angle of attack. The throttle is manipulated to control rate of descent so as to establish the desired glide path. The relationships of the various indications to angle of attack and airspeed are shown in figure 1–29.

If the indexer lights fail, the approach may be flown with reference to angle-of-attack indicator readings. In this case, attitude is corrected to keep the indicator pointer as close as possible to the center of the 3 o'clock reference index. Indications above and below the index indicate that the approach is being made more than 5 knots slow or fast.

## ANGLE-OF-ATTACK INDICATIONS



Figure 1-29

## FLIGHT INSTRUMENTS

#### ATTITUDE INDICATOR

This indicator (36, figure 1–3) presents a pictorial indication of the aircraft pitch and roll attitude with respect to the real horizon. The system functions throughout 360° of roll attitude, but is limited to ±82° from the horizon in pitch attitude. A gyro caging switch is not provided because the system gravity-sensing erection circuit corrects induced errors at a rate of approximately 1° per minute. The indicator is operative any time the aircraft electrical circuits are energized. The OFF flag will appear when ac power is removed. A pitch trim knob, located on the face of the indicator, is provided for the purpose of setting the artificial horizon to the "zero pitch" position when in level flight attitude.

#### TURN-AND-BANK INDICATOR

The gyro of this indicator (33, figure 1-3) is operated by bleed air from the engine compressor section.

#### ACCELERATION INDICATOR

This indicator (45, figure 1-3) is self-contained and indicates continuously the existing g-load on the aircraft during flight. It also indicates the maximum positive and negative loads that were imposed on the aircraft during any particular flight period.

## AIRSPEED - MACH NUMBER INDICATOR

This pitot-static pressure indicator (44, figure 1–3) provides indicated airspeed and indicated Mach number readings. An airspeed correction card provides calibrated airspeed data. Conventional pitot tube anticing is provided.

## RATE-OF-CLIMB INDICATOR

This conventional indicator (46, figure 1-3), operated by static pressure, provides rate-of-climb and rate-of-descent information in feet-per-minute.

#### ALTIMETER

This instrument (43, figure 1-3), operated by static pressure, indicates pressure altitude based on the barometric pressure of a given station previously set on the barometric scale of the instrument. The altimeter permits readings to 80,000 feet.

An instrument vibrator is incorporated in the altimeter to prevent erroneous readings caused by sticking of the indicator. Vibrator electrical power is supplied by the emergency ac bus. A momentary lag will occur as the needle passes zero on each revolution during a descent with the vibrator inoperative. This lag may be overcome by a light tap on the instrument face as the needle approaches zero each time. After level flight is attained, altimeter readings will become normal.

#### ANGLE-OF-ATTACK INDICATOR

The indicator (7, figure 1–3) provides continuous angle-of-attack indications for use primarily as an aid in controlling attitude and, hence, in controlling airspeed in landing approaches. The indications can also be used in establishing various other flight conditions. The indicator also controls operation of the angle-of-attack approach indexer and the approach lights. Refer to ANGLE-OF-ATTACK INDICATING, this section, for details of system operation.

## FIRE DETECTOR

### **DESCRIPTION**

Abnormally high temperatures in the engine or afterburner compartments is sensed by the system, resulting in illumination of the fire warning light. The system is comprised of the warning light, detection control assembly and heat sensing elements. Electrical power is provided by the emergency dc bus. The system will operate any time the master generator switch is in MAIN or EXT with the engine running or with external electrical power connected.

#### FIRE DETECTOR SYSTEM CONTROLS

| Nomenclature                              | Function                                                                                       |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Fire warning test switch (14, figure 1-3) | Depressed, checks system circuit continuity and operation of fire warning light.               |  |
| Fire warning light (13, figure 1-3)       | On (FIRE), indicates fire or overheat condition in engine bay or afterburner compartment area. |  |

## RADIO EQUIPMENT

#### DESCRIPTION

The aircraft is equipped with UHF command radio, ADF, TACAN, radio altimeter and IFF radar. An integrated electronics package provides a cooled and pressurized housing for the UHF, ADF and IFF components.

Primary ac and dc bus power is connected to the modified UHF receiver-transmitter, IFF receiver-transmitter, and an ADF electronic control amplifier in the electronic package through the UHF function switch (figure 1–30).

The electronics package is pressurized and cooled by conditioned air from the air-conditioning system. If cabin pressure is dumped (or the air conditioning system fails) above 27,000 feet the UHF function

switch should immediately be placed in OFF. Operating the radio equipment without integrated electronic package pressurization may result in arcing, causing loss of UHF, ADF, and IFF operation. On F-8B aircraft, the cockpit pressure switch may be placed in CABIN PRESS for short periods if radio transmission is desired. If a flameout occurs, the electronic package will remain pressurized for 3 minutes.

During ground operation without the engine running, operating time of the electronic package is limited by lack of forced cooling air. Do not operate IFF or UHF receiver-transmitter continuously for more than 15 minutes; this time period may be extended to 30 minutes if receiving only. If either time limit is reached, wait 30 minutes before continuing operation.

### **ELECTRONIC EQUIPMENT**

| Type                              | Designation             | Function                                                                  | Range         | Location of Controls                              |
|-----------------------------------|-------------------------|---------------------------------------------------------------------------|---------------|---------------------------------------------------|
| Direction Finder<br>(ADF) Group   | AN/ARA-25<br>(modified) | Indicates bearing of received rf signals.                                 | Line of sight | UHF panel<br>(right console)                      |
| Radar Identification<br>(IFF) Set | AN/APX-6B<br>(modified) | Identification of aircraft as friendly when challenged.                   | Line of sight | IFF panel (right console)                         |
|                                   | AN/APA-89               | Coder group for IFF.                                                      | Line of sight | Coder group panel<br>(right console)              |
| Radio Navigation<br>(TACAN) Set   | AN/ARN-21D              | Provides range and bearing information in reference to a selected beacon. | Line of sight | NAV panel<br>(right console)                      |
| UHF Command<br>Radio Set          | AN/ARC-27A              | Two-way voice communication.                                              | Line of sight | UHF panel<br>(right console)<br>and throttle grip |

## COMMAND RADIO SET AN/ARC-27A

## DESCRIPTION

This set provides the pilot with 1,750 channels for radio-telephone communications in the ultra-high-frequency range (225.0 to 399.9 mc). Twenty channels and a guard channel can be preset for automatic selection.

#### NORMAL OPERATION

- 1. Function switch T/R or T/R + G
  - Allow a 1-minute warmup time before attempting to transmit.
- 2. Channel selector switch DESIRED CHANNEL
- 3. UHF volume control knob ADJUSTED
- 4. Sensitivity trim knob ADJUST
  - Sensitivity must be adjusted for each frequency (except guard, which is preset) to assure maximum reception.
  - Rotate sensitivity trim knob clockwise until a background noise is heard, then slowly rotate

the knob counterclockwise. Stop rotation the instant the background noise disappears.

• To increase reception range, it may occasionally be necessary to adjust sensitivity to a point where background noise is audible.

## CHANNEL PRESET PROCEDURE

Channel presetting is a mechanical procedure which does not require electrical power.

- 1. Channel selector switch DESIRED CHANNEL
- 2. Frequency selector dials FREQUENCY TO BE PRE-
- 3. Channel setting button SET
  - Turn button one-quarter turn clockwise, depress and release.
  - Channel is correctly preset if index line assumes a vertical position.

## **COMMAND RADIO CONTROLS**

| Nomenclature                                | Function                                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Channel selector switch (7, figure 1-30)    | M — permits manual selection of frequency channels.  G — permits reception and transmission on guard channel.  At all other positions, permits selection of 20 preset channels.                                                                                  |  |  |
| Preset channel indicator (1, figure 1-30)   | Indicates which of 20 preset channels is selected for operation                                                                                                                                                                                                  |  |  |
| Frequency selector dials (3, figure 1-30)   | Used for selecting frequency when channel selector switch is at M or for preset frequencies in channels selected by channel selector switch.                                                                                                                     |  |  |
| Function switch<br>(5, figure 1–30)         | T/R — puts main receiver in operation and transmitter in standby.<br>T/R + G — puts main and guard receivers in operation and transmitter in stand ADF — puts direction finder group (AN/ARA-25) in operation.<br>OFF — turns off AN/ARC-27A and AN/APX-6B sets. |  |  |
| Microphone switch (29, figure 1-4)          | Puts receivers in standby and operates transmitter.                                                                                                                                                                                                              |  |  |
| Channel setting button (2, figure 1-30)     | Locks preset frequencies in related channels for automatic channel selection.                                                                                                                                                                                    |  |  |
| Sensitivity trim switch (4, figure 1-30)    | Adjusts receiver sensitivity.                                                                                                                                                                                                                                    |  |  |
| UHF volume control knob<br>(6, figure 1–30) | Controls headset volume.                                                                                                                                                                                                                                         |  |  |

## COMMAND RADIO CONTROLS



Figure 1-30

## **DIRECTION FINDER (ADF) GROUP AN/ARA-25**

## **DESCRIPTION**

The AN/ARA-25 direction finder group is operated in conjunction with the UHF command radio set to provide a continuous indication of the relative bearing of the rf signal received. ADF signals are received by the main receiver of the command set, and a command set control is used for operating the ADF system.

## NORMAL OPERATION

To start operation:

1. UHF function switch — ADF

2. Channel selector switch - DESIRED CHANNEL

To stop operation:

1. UHF function switch - ANY POSITION EXCEPT ADF

## ADF CONTROLS

| Nomenclature  UHF function switch (5, figure 1-30) | Function                                                                         |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------|--|--|
|                                                    | ADF — starts direction finder group operation.                                   |  |  |
| Radio magnetic indicator (2, figure 1-33)          | Pointer No. 1 indicates magnetic bearing of UHF station in relation to aircraft. |  |  |

## IDENTIFICATION SET AN/APX-6B CODER GROUP AN/APA-89

#### DESCRIPTION

The AN/APX-6B identification set (figure 1-31) is an airborne transponder used in conjunction with the AN/APA-89 coder group to provide a system of electronic identification and recognition. The purposes of the equipment are:

- To identify the aircraft in which it is installed as friendly when correctly challenged by friendly shore, shipboard, and airborne radars.
- To permit surface tracking and control of aircraft in which it is installed.
- To transpond automatically with an emergency reply signal following ejection, providing UHF function switch is in any position except OFF.

The use of the AN/APA-89 coder permits changing of mode 1 and 3 codes from cockpit; mode 2 is preset. Mode 1 code is on anytime the UHF and IFF switches

are in any position except OFF. Modes 2 and 3 are energized by switches on IFF panel.

## NORMAL OPERATION

To place the AN/APX-6B and AN/APA-89 equipment in operation, proceed as follows:

- 1. UHF function switch ANY POSITION EXCEPT OFF
- 2. IFF master switch—STDBY for 3 minutes then NORM
- 3. Mode switches (IFF and coder) POSITION DETERMINED BY MISSION
- 4. IFF I/P switch OUT

#### Note

AN/APX-6B should be energized (master switch in NORM, LOW or STDBY) during every flight to minimize the possibility of package failure due to moisture condensation.

### **IFF CONTROLS**

| Nomenclature                            | Function                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I/P switch (4, figure 1-31)             | I/P — provides reply impulse for approximately 30 seconds after releasing switch, in mode 1 interrogation only.*                                                                                                                                                                                                                                                                                                      |  |  |
|                                         | OUT — deenergizes circuit.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                         | MIC — transfers reply impulse activation from I/P switch to microphone switch.                                                                                                                                                                                                                                                                                                                                        |  |  |
| Master switch                           | OFF — deenergizes set.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| (2, figure 1-31)                        | STDBY — energizes receiver-transmitter for immediate operation if UHF function<br>switch is in a position other than OFF.                                                                                                                                                                                                                                                                                             |  |  |
|                                         | LOW — provides partial receiver sensitivity when in the presence of strong nearby<br>interrogations.                                                                                                                                                                                                                                                                                                                  |  |  |
|                                         | NORM — allows full receiver sensitivity to provide maximum performance.                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                         | EMERGENCY — provides full receiver sensitivity and allows special emergency replies to be transmitted when a mode 1 interrogation is received. After Interim Avionics Change 170, emergency replies will also be transmitted when a mode 3 interrogation is received. A pushbutton guard (located immediately adjacent to the master switch) prevents accidental switching of the AN/APX-6B into emergency operation. |  |  |
| Mode switches<br>(3, figure 1-31)       | Permit selection of reply signals and codes.                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Code selector dials<br>(1, figure 1-31) | Permit selection of mode codes as determined by mission.                                                                                                                                                                                                                                                                                                                                                              |  |  |

<sup>\*</sup>Also in mode 3 with COMNAVAIRPAC General Avionics Bulletin No. 45-62 or COMNAVAIRLANT General Avionics Bulletin No. 46.

# IFF RADAR CONTROLS-



Figure 1-31

## RADAR SET (RADIO ALTIMETER) AN/APN-22

### DESCRIPTION

The AN/APN-22 radar set is a microwave radio altimeter which is designed to measure the terrain clearance of the aircraft without the necessity for externally mounted equipment. The equipment operates in the 4200- to 4400-mc band and is designed to provide reliable operation from 0 to 10,000 feet over land and 0 to 20,000 feet over water. This equipment is accurate to 2 feet from 0 to 40 feet and 5% of the indicated terrain clearance from 40 to 20,000 feet.

The radio altimeter (figure 1-32) may be set to provide a reference for flight at constant terrain height or to provide a warning of descent below a preset terrain clearance up to 20,000 feet. The adjustable index marker (bug) at the outside of the scale can be positioned at the desired reference height by turning the on-limit knob.

A reliability circuit disables the indicator when the signal is too weak, and the head of the pointer will assume an offscale position behind the dropout mask below the 0 scale mark.

# WARNING

Radio altimeter indications become erroneous at airspeeds over 300 KIAS. Aircraft bank angles of more than 30° will cause the pointer to become erratic and assume the offscale position.

## NORMAL OPERATION

To start operation:

1. On-limit knob - ON

# RADIO ALTITUDE INDICATOR



53212-4-18

Figure 1-32

# CAUTION

Allow at least 12 minutes warmup time after starting the equipment to ensure final accuracy.

- 2. On-limit knob SET TO DESIRED HEIGHT
- 3. Limit light ON (if below designated height)

#### RADIO ALTIMETER CONTROL AND INDICATIONS

| Nomenclature                              | Function  Indicates terrain clearance on a scale with increments that vary from 10 feet, at low levels, to 5,000 feet, at high levels.  Initial clockwise rotation — turns set on. Further clockwise turning increases setting of height index marker.  Turned counterclockwise — decreases setting of height index marker. Turned fully counterclockwise turns set off. |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Radio altitude indicator<br>(figure 1-32) |                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| On-limit knob                             |                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Limit light                               | On — if aircraft is below height indicated by index marker.  Off — if aircraft is above height indicated by index marker.                                                                                                                                                                                                                                                |  |  |
| Index marker                              | Indicates reference height selected by the pilot.                                                                                                                                                                                                                                                                                                                        |  |  |

## **RADIO NAVIGATION (TACAN) AN/ARN-21D**

## DESCRIPTION

The signal transmitted by the surface beacon contains reference (fixed) and variable bearing information, the range reply signal, and the station identification signal.

The aircraft receiver-transmitter compares the difference between the fixed and the variable bearing signals, and transmits the resulting bearing signal to pointer No. 2 of the radio magnetic indicator.

The slant range in nautical miles from the aircraft to the surface beacon is determined from the time it takes a coded interrogation signal from the receivertransmitter to reach the surface beacon and the time required for a reply. The resulting computation is shown on the range indicator.

Station identification signals are received in the headset in the form of Morse code identifying characters.

## CAUTION

When operating in air-to-air mode, if more than one aircraft in a formation is interrogating another distant aircraft on the same channel, the distance information displayed in the interrogated aircraft may be unreliable.

The set will furnish range information between two similarly equipped aircraft simultaneously operating 63 channels apart on the bilateral air-to-air mode.

Controls are illustrated in figure 1-33.

## NORMAL OPERATION

- Master switch REC (bearing only)
   T/R (bearing and range)
   A/A (air-to-air range)
  - Allow 90-second warmup.
- 2. Channel selector knobs DESIRED CHANNEL
- 3. Volume control MIDPOINT OF RANGE

If either REC or T/R is selected, pointer No. 2 of the radio magnetic indicator should stop and indicate bearing of surface beacon with relation to aircraft. If A/A is selected, pointer No. 2 will continue to rotate.

If T/R position was selected, the range dials will rotate for a short period, then stop to display slant range of surface beacon from aircraft.

If A/A is selected, only slant range between cooperating aircraft is displayed.

## CAUTION

Turn the TACAN set off at altitudes above 50,000 feet to prevent damage to equipment as a result of arcing.

#### TACAN CONTROLS

| Nomenclature                                 | Function                                                                                                                    |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Channel selector switch (5, figure 1-33)     | Combined settings of both knobs select desired channel.                                                                     |  |  |
| Course indicator                             | Vertical bar shows position of aircraft in relation to the set course.                                                      |  |  |
| (1, figure 1-33)                             | To-from window indicates whether selected course will take aircraft to or -from the station.                                |  |  |
|                                              | Course set knob permits setting of course heading in course window.                                                         |  |  |
|                                              | Relative heading needle indicates angle between magnetic heading of aircraft and selected course.                           |  |  |
|                                              | Warning flags show as result of power failure or loss of station signal.                                                    |  |  |
|                                              | Horizontal bar not used.                                                                                                    |  |  |
| Master switch<br>(3, figure 1–33)            | OFF — deenergizes radio set.                                                                                                |  |  |
|                                              | REC — energizes bearing circuit only.                                                                                       |  |  |
|                                              | T/R — energizes both bearing and range circuits.                                                                            |  |  |
|                                              | A/A — energizes air-to-air range circuits.                                                                                  |  |  |
| Radio magnetic indicator<br>(2, figure 1-33) | Pointer No. 2 indicates magnetic bearing of TACAN surface beacon with relation to aircraft.                                 |  |  |
| Range indicator<br>(6, figure 1-33)          | Displays slant range (nautical miles) to surface beacon or air-to-air slant range (nautical miles) to cooperating aircraft. |  |  |
| Volume control knob<br>(4, figure 1-33)      | Controls volume of audible signal to headset.                                                                               |  |  |

# TACAN CONTROLS (TYPICAL) -



Figure 1-33

## **MA-1 COMPASS**

## **DESCRIPTION**

The MA-1 compass system combines the action of the remote compass transmitter and the directional gyro to provide accurate, reliable, and continuous azimuth headings on the radio magnetic indicator. The system can be set to operate by either of two methods: slaved or free gyro. The slaved method is normally used since inherent gyro drift errors are automatically corrected by the remote compass transmitter. During operation by the slaved method the system has normal slaving rate of approximately  $1\frac{1}{2}$ ° per minute. For example, if aerobatics cause a 3° heading error, the directional gyro will be properly aligned and the radio magnetic indicator will read true magnetic heading in about 2 minutes.

There are times when the remote compass transmitter is not dependable, such as when making sustained turns, or when flying in polar regions or near large masses of iron. If it is likely that the compass transmitter will be subjected to such magnetic disturbance for more than 1 or 2 minutes, the free gyro method should be used. When this method is used the com-

pass transmitter is disconnected from the directional gyro, and since the directional gyro is then subjected to a drift of less than 4° per hour, the radio magnetic indicator should be reset whenever an accurate heading can be obtained.

A standby compass mounted on the windshield frame indicates magnetic heading.

## CAUTION

With gunsight camera installed, camera motor operating, standby compass is unreliable.

Refer to figure 1-34 for controls illustration.

## NORMAL OPERATION

#### **Slaved Method**

- 1. Power failure indicator flag NOT SHOWING
- 2. Mode selector switch AFTER 2-MINUTE WARMUP,
  PLACE IN SLAVED

#### **MA-1 COMPASS CONTROLS**

| Nomenclature                               | Function                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compass setting knob (7, figure 1-34)      | Pulling and turning (clockwise or counterclockwise as applicable) when operating system by slaved method, synchronizes directional gyro with remote compass transmitter and aligns radio magnetic compass card with exact magnetic heading of aircraft.                                                                                |  |
|                                            | Pulling and turning when operating system by free gyro method, adjusts radio magnetic indicator compass card to any desired heading.                                                                                                                                                                                                   |  |
| Latitude setting knob (5, figure 1–34)     | Adjusts system to the degree of latitude at which you are flying, when operating system by free gyro method. This compensates for apparent drift of gyro due to earth's rotation.                                                                                                                                                      |  |
| Radio magnetic indicator (2, figure 1-34)  | Top index indicates aircraft magnetic heading on compass card.                                                                                                                                                                                                                                                                         |  |
| Mode selector switch (6, figure 1-34)      | SLAVED — connects remote compass transmitter to system which constantly corrects gyro drift.                                                                                                                                                                                                                                           |  |
|                                            | FREE N. LAT. — disconnects remote compass transmitter from system to allow free gyro operation north of the equator.                                                                                                                                                                                                                   |  |
|                                            | FREE S. LAT. — disconnects remote compass transmitter from system to allow free gyro operation south of equator.                                                                                                                                                                                                                       |  |
| Synchronizer indicator<br>(3, figure 1–34) | Alignment of the white bar of the synchronizing indicator with the arrow above the window (by turning compass setting knob) indicates that the compass system is "slaved in" and correctly synchronized. Constant oscillation of the white bar is a normal condition and provides another check that the system is operating normally. |  |
| Power failure flag<br>(4, figure 1-34)     | OFF — indicates that power is not connected to system. (Flag disappears 5 to 10 seconds after power is turned on.)                                                                                                                                                                                                                     |  |

- 3. Setting knob PULL OUT AND SET
  - Turn until white bar of synchronizing indicator is centered under arrow.

# CAUTION

The white bar must move to the right with clockwise rotation or to the left with counterclockwise rotation of the compass setting knob. If it does not, the radio magnetic indicator compass card will reflect an erroneous indication. Continue rotation of knob until white bar moves in correct direction and is centered.

## Free Gyro Method

- 1. Power failure flag NOT SHOWING
- 2. Mode selector switch FREE N. LAT or FREE S. LAT
  - After 2-minute warmup, set selector to hemisphere in which you are flying.
- 3. Compass setting knob PULL OUT AND SET
  - Turn until radio magnetic indicator reads desired heading. Ignore synchronizing indicator.
- 4. Latitude setting knob SET
  - Turn knob to latitude at which you are flying.

## **COMPASS CONTROLS-**

## MA-1 COMPASS AND STANDBY COMPASS



Figure 1-34

## **AIR-CONDITIONING**

### DESCRIPTION

The air-conditioning system provides the following services:

- Cockpit temperature control and pressurization.
- · Ventilation air for anti-exposure coverall.
- Windshield defogging and rain removal.
- Automatic pressurization and cooling of the integrated electronic package.
- Automatic cooling of the unpressurized electronic compartment.
- Automatic pressurization of the fuselage fuel cells and wing tank.
- Automatic pressurization and cooling of the AN/ APS-67 radar (F-8B aircraft).

Hot bleed air from the engine compressor section is directed through the air-conditioning unit which cools this air by means of a heat exchanger and an expansion-turbine refrigeration unit. The heat exchanger reduces the temperature of the engine bleed air by transferring heat through coils to ram air from the engine intake duct. The refrigeration unit further cools some of the warm air from the heat exchanger by expansion through the turbine.

On F-8B aircraft, air flow to the air-conditioning unit is shut off by the bleed air shutoff valve when the

pilot dumps cockpit pressure, resulting in loss of all air-conditioning and pressurization functions. On F-8A aircraft, loss of cockpit pressurization and air-conditioning are the only changes that occur when the pilot dumps cockpit pressure.

The temperature of the air entering the cockpit is controlled by mixing hot air from the temperature control bypass valve with cold air from the turbine. The cockpit temperature controller automatically regulates operation of the bypass valve to maintain the temperature selected by the pilot. On F-8B aircraft, a manual override switch provides manual control in case the automatic feature becomes inoperative. With manual control selected, the pilot controls the bypass valve directly by adjusting the cockpit temperature knob for each change in flight conditions. Pressure fluctuations in the manual mode are an indication that the temperature controller knob is set too high.

The cockpit air pressure regulator automatically regulates pressurization of the cockpit at altitudes above 8,000 feet by limiting outflow of air into the nose cone. (See figure 1–35 for cockpit pressurization schedule.)

The cool air that passes through the cockpit air pressure regulator is vented overboard through side vents in the nose section. Negative cockpit pressure is automatically limited to 0.25 psi maximum, and positive

## **COCKPIT PRESSURIZATION**



53212-4-2

pressure is automatically limited to 5.5 psi maximum by the cockpit air safety valve. This valve also opens to depressurize the cockpit when the pilot elects to dump cockpit pressure.

A manifold pressure regulator valve is provided to automatically control pressure and airflow to the cabin. On F-8A aircraft, placing the cockpit pressure switch in CABIN DUMP closes this valve and stops airflow to the cabin. However, all other air-conditioning functions will continue.

Cool air from the air-conditioning unit is directed to the integrated electronic package for pressurization and cooling. Air from the integrated electronic package is channeled through a flow limiter to cool the electronic compartment and is in turn vented overboard. Cooling is also provided by ram air circulated around the outside of the package. If pressurization is lost due to engine flameout or a system malfunction, a check valve temporarily traps pressure in the package.

Warm air flows directly from the heat exchanger through the rain removal valve and is discharged at high velocity on the exterior of the left-hand side panel for rain removal. Fog is removed from the inside of the windshield by directing hot air from the heat exchanger through the defogger valve and mixing this air with cool air from the air-conditioning unit. This air is then discharged on the windshield side panels through the windshield manifolds. Air from the heat exchanger is also used to pressurize the fuselage fuel cells and wing tank. (Refer to FUEL CELL PRESSUR-IZATION AND VENTING, this section.)

An external air inlet on the left-hand console (figure 1-37) provides for ground ventilation of the anti-exposure coverall. A system schematic is presented in figure 1-36.

### AIR-CONDITIONING CONTROLS

| Nomenclature                                                                  | Function                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cockpit pressure switch (7, figure 1-37)                                      | CABIN PRESS — on F-8A aircraft, opens manifold pressure regulator valve, providing cockpit pressurization and temperature control. On F-8B aircraft, opens bleed air shutoff valve, providing pressurization for the cockpit, integrated electronic package, radar, and air pressure for wing fuel transfer.                                                    |  |  |
|                                                                               | CABIN DUMP—On F-8A aircraft, dumps cockpit pressure, stops temperature controlled airflow to cockpit and eliminates windshield defogging capability. Does not affect operation of other air-conditioning functions. On F-8B aircraft, dumps cabin pressure and shuts off engine bleed air to air-conditioning turbine, stopping all air-conditioning functions. |  |  |
| Defogger switch (5, figure 1-37)                                              | DEFOG — directs hot airflow to windshield and side panels through windshield manifolds.                                                                                                                                                                                                                                                                         |  |  |
| Rain removal switch (6, figure 1-37)                                          | RAIN REMOVE — directs high velocity stream of warm air across left-hand side panel to deflect rain.                                                                                                                                                                                                                                                             |  |  |
| Temperature control knob (8, figure 1-37)                                     | COLD to HOT, selects temperature of conditioned air entering cockpit and exposure coverall.                                                                                                                                                                                                                                                                     |  |  |
| Cockpit pressure altimeter (3, figure 1-37)                                   | Indicates cockpit pressure altitude.                                                                                                                                                                                                                                                                                                                            |  |  |
| Cockpit emergency ventilation knob (4, figure 1-37)                           | Pulled and rotated, controls volume of ram airflow into cockpit for emergency ventilation.                                                                                                                                                                                                                                                                      |  |  |
| Manual override switch* (9, figure 1-37)                                      | AUTO — permits cockpit inlet air temperature to be automatically controlled to the controller knob setting.  MAN — permits cockpit inlet air temperature to be manually controlled by the pilot.                                                                                                                                                                |  |  |
| Antiexposure coverall vent valve (decaled SUIT VENT CONTROL — 1, figure 1–37) | LOW to HI — regulates the volume of ventilating air flowing from the air-conditioning system into the anti-exposure coverall.                                                                                                                                                                                                                                   |  |  |
|                                                                               | EXT — permits ground ventilation of the anti-exposure coverall with an external air supply hose inserted into the external air inlet connection.  OFF — stops flow of ventilating air.                                                                                                                                                                          |  |  |

<sup>\*</sup>F-8B aircraft only. On F-8A aircraft, desired temperature setting selected by temperature knob is automatically controlled.



Figure 1-36

## AIR CONDITIONING CONTROLS -







- 1. Anti-exposure coverall vent valve (decaled PRESS SUIT)
- 2. External air inlet connection
- 3. Cockpit pressure altimeter
- 4. Cockpit emergency ventilation knob
- 5. Defog switch
- 6. Rain remval switch
- 7. Cockpit pressure switch8. Cockpit temperature control knob
- 9. Manual override switch\*
- 10. G-valve
- 11. G-valve button
- 12. Antiblackout line



AUTO.

\*F-8B Aircraft

53212-4-4NB

### NORMAL OPERATION

# **Air-Conditioning and Pressurization**

(See figure 1-37.)

To operate the air-conditioning and pressurization system, position controls as follows:

- 1. Cockpit pressure switch CABIN PRESS
- 2. G valve AS DESIRED
- 3. Manual override switch AUTO
- 4. Temperature knob AS DESIRED

## Repressurization

If it is desired to repressurize the cockpit at any altitude:

- 1. Throttle IDLE
- 2. Cockpit emergency ventilation OPEN
- 3. Cockpit pressure switch CABIN PRESS
- 4. Throttle CRUISE RPM
- 5. Cockpit emergency ventilation CLOSE

## **Defogging**

The defogging system may be operated continuously to provide additional cockpit heat during loiter or

cruise above 30,000 feet. If fogging occurs, proceed as follows:

- 1. Defogger switch DEFOG
  - · During negative g operation, long periods of cruise, or at supersonic speeds, oil vapor or smoke may be emitted from the air-conditioning system when the defogger switch is turned
- 2. Temperature knob HOT
- 3. Throttle 90% RPM MINIMUM
  - · After fog clears, reduce throttle to desired position and adjust cockpit temperature as desired.

### Rain Removal

Operate the rain removal system as required during takeoff and landing.

- 1. Rain removal switch RAIN REMOVE
  - · Do not operate the rain removal system above 200 KIAS or the windshield and air-conditioning cooling turbine may be overheated. Overheating may cause the windshield to crack.
  - If left on after takeoff, a considerable reduction in cockpit pressurization will occur as altitude is gained.
  - If the rain removal system has not been operated for several flights, oil accumulation in the system may result in oil being blown on the windscreen when the system is first activated.

## **ANTIBLACKOUT**

#### DESCRIPTION

Antiblackout pressure is automatically supplied by routing engine bleed air through the G valve and into the pilot's suit. The G valve, opened by centrifugal force, regulates suit pressure as g-loads are applied or reduced. A HI and LO range may be manually selected.

The antiblackout connection is made at the pilot's services disconnect located on the left console. The antiblackout line is routed from the G valve through the base of the console to the disconnect. The antiblackout fitting at the disconnect serves the anti-g suits worn with flight coveralls.

## ANTIBLACKOUT CONTROLS

| Nomenclature                        | Function                                                                                                                                                                                   |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| G valve<br>(10, figure 1-37)        | HI — supplies a pressure of 1.5 psi for each g over 1.75 g up to 10 psi.<br>LO — supplies a pressure of 1 psi for each g over 1.75 g up to 10 psi.                                         |  |
| G valve button<br>(11, figure 1-37) | Depressed and released, permits inflating the suit for body massage to lessen fatigue and to check operation of G valve. If valve tends to stick or fails to close, it should be replaced. |  |

## **OXYGEN**

### DESCRIPTION

Pure gaseous oxygen is supplied by a 5-liter vacuum-insulated liquid oxygen converter through the pilot's oxygen valve on the left-hand console to the miniature regulator of the modified face mask. This regulator delivers a constant positive safety pressure during use. Above 35,000 feet, the mask-mounted regulator will automatically deliver the required pressure for pressure breathing in the event cabin pressurization is lost. Figure 1–38 presents a graphic illustration of oxygen duration.

An emergency oxygen supply in the seat pan provides breathing oxygen upon manual actuation while in the cockpit or upon automatic actuation in the case of ejection from the aircraft.

The emergency oxygen supply can be activated by either of two means. A "green apple" located at the forward edge of the seatpan permits manual operation of the emergency oxygen supply. A separate lanyard is attached to the structure of the aircraft so

as to activate the oxygen bottle automatically upon ejection.

Oxygen controls are illustrated in figure 1-39.

## NORMAL PROCEDURE

Before each flight, check the following:

- 1. Vent and buildup valve BUILD UP
  - Access panel cannot be secured unless valve is in BUILD UP.
- 2. System quantity CHECKED

## Note

The liquid oxygen system must not be permitted to go dry or be exposed to surrounding atmosphere. Water vapors or other gases may condense in the converter bottle, causing system malfunction or contamination. If exposure to atmosphere has occurred for any extended period, the system should be purged with hot dry nitrogen prior to use.

- 3. Pilot's oxygen valve OFF
- 4. Oxygen warning light\* ON

<sup>\*</sup>Aircraft BuNo. 145345 and subsequent.

- 5. Mask connections CONNECTED
  - Connect face mask hose to hose leading from aft right-hand side of seat pan. Connect hose leading from aft left-hand side of seat pan to the oxygen receptacle to complete the connection to the aircraft supply.
- 6. Pilot's oxygen valve PROPER OPERATING POSITION
  - Allow oxygen to flow before placing mask to face.
- 7. Oxygen warning light OFF
  - Check oxygen flow by breathing several times.
     If difficulty in breathing is experienced, the face mask regulator or oxygen supply system is not functioning properly.
  - Following servicing in which the bottle has been filled, the light will sometimes illuminate intermittently.
- 8. Oxygen connections CHECKED
  - Complete or intermittent loss of radio communications or illumination of the oxygen warning

light may indicate that oxygen connections are not fully engaged.

- 9. Emergency bottle CHECKED
  - Check bottle for 1,800 (±50) pounds pressure when ejection seat is inspected before each flight.

During flight, frequently check the following:

- 1. Gage indication OXYGEN REMAINING
- 2. Mask CHECK FOR LEAKS
- 3. Breathing tube coupling CHECK FULLY ENGAGED

Upon completion of flight:

- 1. Oxygen valve OFF
- 2. Mask DISCONNECTED
  - If flow continues from mask after shutoff, check for possible inadvertent actuation of the emergency system. If the system has been actuated, disconnect supply hose before emergency supply is depleted. If supply is allowed to become depleted, system will require purging.

## **OXYGEN DURATION**

| CABIN             | GAGE INDICATION - LITERS |       |       |       |      |      |                     |
|-------------------|--------------------------|-------|-------|-------|------|------|---------------------|
| ALTITUDE 5        | 5                        | 4     | 3     | 2     | 1    | 1/2  | Below<br>1/2        |
| 40,000<br>& Above | 30:18                    | 24:12 | 18:12 | 12:06 | 6:00 |      |                     |
| 35,000            | 18:30                    | 14:48 | 11:06 | 7:24  | 3:42 | 1:48 | -                   |
| 30,000            | 13:36                    | 10:54 | 8:12  | 5:24  | 2:42 | 1:24 | Below               |
| 25,000            | 10:12                    | 8:12  | 6:12  | 4:06  | 2:00 | 1:00 | I Fo                |
| 20,000            | 8:00                     | 6:24  | 4:48  | 3:12  | 1:36 | :48  | 000                 |
| 15,000            | 6:24                     | 5:06  | 3:48  | 2:36  | 1:18 | :36  | Descend<br>10,000 F |
| 10,000            | 5:00                     | 4:00  | 3:00  | 2:00  | 1:00 | :30  |                     |
| 5,000             | 4:12                     | 3:18  | 2:30  | 1:36  | :48  | :24  |                     |
| Sea Level         | 3:30                     | 2:48  | 2:06  | 1:24  | :42  | :18  |                     |

Consumption data per Specification MIL-1-19326 (AER) taken from NAVAER 03-50-517.

NOTE

Duration is given in hours and minutes. Consumption data assumes the use of properly fitted oxygen equipment. Face mask leakage will decrease tabulated duration.

53212-4-3NA

## **OXYGEN SYSTEM CONTROLS**

| Nomenclature                                                                                                           | Function                                                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Figure 1-39                                                                                                            |                                                                                                                                                                                                                |  |  |
| Emergency bottle pressure gage                                                                                         | Indicates emergency bottle pressure.                                                                                                                                                                           |  |  |
| Oxygen quantity indicator                                                                                              | Reflects quantity of liquid oxygen in converter.                                                                                                                                                               |  |  |
| Oxygen valve                                                                                                           | OFF — closes oxygen supply. ON — opens oxygen supply.                                                                                                                                                          |  |  |
| Vent and buildup valve (in area<br>behind liquid oxygen filler valve<br>access panel on right side of nose<br>section) | BUILDUP — normal position. Close system for automatic buildup of operating pressure.  VENT — opens system to allow venting during refilling.                                                                   |  |  |
| Oxygen warning light                                                                                                   | On (OXYGEN),* indicates oxygen pressure drops in line to oxygen receptacle.  On (OXYGEN)†, indicates liquid oxygen quantity is at or below ½ liter or when oxygen pressure drops in line to oxygen receptacle. |  |  |

\*Aircraft BuNo. 145345 through 145456. †Aircraft BuNo. 145457 and subsequent.

# **OXYGEN CONTROLS -**



53212-4-12

## CANOPY

## DESCRIPTION

The one-piece clamshell-type canopy (figure 1–40) is attached to the aircraft by pivots or arms at the aft end of the canopy. A counterbalance strut is provided to aid the pilot in raising and lowering the canopy without the aid of power devices. Cockpit pressure sealing is provided by a striker and diaphragm arrangement. The canopy is locked in the closed position by four rotating hook latches that can be operated from either inside or outside the cockpit.

A cartridge-operated emergency canopy actuator provides for canopy jettisoning in landing emergencies, ditching, ground rescue and as part of the ejection sequence. Pulling the ejection seat face curtain handle, the secondary firing handle, or the emergency canopy jettison handle while in flight fires the canopy actuator cartridge. This blows open the canopy locks and forces the canopy up into the airstream where it is separated from the aircraft by air loads. On the ground, pulling the emergency canopy handle or either of the two exterior rescue handles fires the actuator to release the locks and forcibly open the

canopy. If the aircraft has little or no forward speed, the canopy may not leave the cockpit area.

## CANOPY RESTRAINING STRAP

On aircraft with AFC 485, a restraining strap and stowage pouch are provided on the right canopy sill to restrain the canopy when it is opened. Without the strap there is some danger of a wind gust causing the canopy to exceed opening limits and damage canopy actuating linkage or hinge pins. If canopy opening is extremely rapid without the restraining strap installed, the aircraft should be downed for inspection of the actuator rod. Deployed at full length, the strap restrains the leading edge of the canopy 2 inches short of the full open position. An intermediate open position for use in high winds or jet blast conditions can be obtained by securing the restraint strap loop to the canopy locking handle. The canopy cannot be closed and locked while the restraint strap is deployed because the right forward canopy locking latch will not engage until the restraint hook is removed. When not in use, the restraint strap shall be stowed in the storage pouch.

### CANOPY CONTROLS

| Nomenclature                                                    | Function                                                                                                                       |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Figure 1-40                                                     |                                                                                                                                |  |  |  |
| Canopy lock indicator<br>(aircraft through BuNo. 143701)        | Indicates positioning of canopy locks by control release handles.                                                              |  |  |  |
| Canopy lock indicator<br>(aircraft BuNo. 143702 and subsequent) | Indicates canopy locks in locked or unlocked position.                                                                         |  |  |  |
| Exterior canopy release handle                                  | Open canopy — push forward end of handle, grasp aft end and pull outboard. Open canopy manually.                               |  |  |  |
|                                                                 | Close canopy — close canopy manually and push aft end of handle inboard.                                                       |  |  |  |
| Interior canopy release handle                                  | Open canopy — extend handle, pull aft and manually open canopy.                                                                |  |  |  |
|                                                                 | Close canopy — pull and hold handle aft while manually closing canopy and then push handle fully forward to lock. Stow handle. |  |  |  |
| Emergency canopy jettison handle                                | Pulled out fully, fires canopy actuator to release canopy locks, and opens canopy.                                             |  |  |  |
| Rescue handles                                                  | Pulled out to full length of lanyard, fires canopy actuator to release canopy locks and open canopy.                           |  |  |  |

## MK-F5, -F5A EJECTION SEATS

## **DESCRIPTION**

Before AFC 491, the airplane is equipped with a Martin-Baker MK-F5 or MK-F5A ejection seat (illustrated in figure 1–41). The minimum ejection altitude for the MK-F5 seat is 50 feet at an airspeed of 120 knots in level or climbing flight. The MK-F5A seat has an improved ejection capability and is readily identified by an orange decal, located on the left-hand side of

the drogue parachute container (figure 3-3), which reads as follows:

Martin-Baker MK-F5A Seat Ejection Seat Capability 120 knots — Min on Runway ACSEB 22-61

The low-level escape capability of the MK-F5 or MK-F5A ejection seat is obtained through the use of a

## CANOPY -



Figure 1-40

telescoping long-stroke ejection gun to achieve high seat velocity. The telescoping gun makes high velocities possible with acceptable peak acceleration and rate of increase of acceleration. The use of drogue parachutes to stabilize and decelerate the seat and occupant and to deploy the pilot's parachute further ensures controlled action under all ejection conditions.

The seat is equipped with a pilot's restraint harness that accommodates standard suits with integrated harness provisions, but employs a special Martin-Baker parachute packed in "horseshoe" form and positioned behind the pilot's shoulders. This parachute position is used to permit positive parachute deployment at the moment the pilot is released from the seat. A leg restraint system is provided to prevent leg injuries during ejection. The leg restraint lines, one for each leg, are secured to the airframe and to the seat. The lines are routed through the pilot's leg restraint garters, two garters for each leg, so as to draw the legs back against the front of the seat during ejection. The pilot's legs are restrained until release occurs before deployment of the personnel parachute.

The seat bucket accommodates an RSSK-6 survival kit. The kit is in two halves. The upper half contains an emergency oxygen bottle, which is automatically actuated by a cable attached to the cockpit structure as the seat moves upward during the ejection sequence. The bottle may also be actuated at any time during flight when oxygen is required, such as following normal oxygen system failure. In such cases, the bottle is manually actuated by pulling the emergency oxygen lanvard. The bottom half of the kit contains a life raft, an emergency locator beacon and a survival equipment bag. The emergency locator beacon is switched on automatically by displacement of the seat during the ejection sequence. Seat height adjustment is provided by an electrical actuator that raises or lowers the bottom portion of the seat with respect to the upper portion. A wedge-pad mounted above the parachute pack serves as the pilot's headrest, and there is no headrest adjustment. An adjustable backpad cushion ensures proper posture for the occupant.

The upper housing of the seat contains the controller and stabilizer drogue parachutes and serves as a mounting for the face curtain handle and the canopy interrupter release handle. The housing is peaked at the top to ensure proper penetration of the canopy in a through-the-canopy emergency ejection. The drogue parachutes are deployed by the action of a drogue gun piston that is fired automatically during ejection to drag the 22-inch controller drogue into the slipstream. The 5-foot stabilizer drogue is automatically

drawn into the slipstream and deployed by the controller drogue.

An acceleration limiter (g-controller) and an altitude limiter (barostat) delay operation of the seat timed release mechanism to control deployment of the 24-foot personnel parachute under varying ejection conditions. The g-controller delays the parachute deployment and harness release sequence until the seat and pilot decelerate to approximately 4 g. The altitude limiter delays the sequence until the seat and pilot have descended to a minimum pressure altitude of 10,000 feet.\*

A pilot's services disconnect, mounted on the left console, holds the antiblackout line and the anti-exposure coverall ventilating air line in position to ensure proper separation at ejection. The oxygen supply line from the seat pan is separately connected to the oxygen receptacle on the left console. Provision is made for automatic actuation of the emergency oxygen supply upon ejection. Communications connection between the pilot's equipment and the aircraft is automatically completed when the oxygen line is connected to the console fitting.

Ejection seat controls are illustrated and described in figure 1–41. Ejection seat components are illustrated in figure 1–42.

#### NORMAL OPERATION

See figure 1-43 for a description of the ejection sequence and figure 1-43D for a list of pilot's equipment that may be used with the Martin-Baker seat.

## EMERGENCY RELEASE FROM THE SEAT

In landing emergencies, in ditching, and in the event of the automatic release failing to function in ejection, the pilot can release himself, his parachute, and his survival equipment from the seat by pulling the emergency harness release handle. Pulling the handle releases the leg restraint lines and the lap and shoulder harness, and trips the guillotine which cuts the linkline that connects the stabilizer drogue parachute to the pilot's parachute withdrawal line. Separation of the pilot from the seat should break the pilot's services connections at the disconnect on the left console. Parachute deployment under these conditions is attained by pulling the parachute ripcord D-ring on the left shoulder harness strap. When ditching, the pilot should release the shoulder harness fittings before pulling the emergency harness release handle, and should manually separate the pilot's service connections to ensure separation.

<sup>\*</sup>On seats with Martin-Baker ECP 159 incorporated, the minimum altitude for barostatic opening of the parachute is raised to 11,500 feet.

# MK-F5, -F5A EJECTION SEAT CONTROLS -



| Nomenclature                        | Function                                                                                                                                                                                                                                                          |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Secondary firing handle          | Pulled upward fully, jettisons canopy and ejects seat.  Button pressed, handle rotated sharply aft, releases integrated harness, leg restraint lines, and parachute from seat, permitting the pilot to leave the seat with parachute and full survival equipment. |  |  |
| 2. Emergency harness release handle |                                                                                                                                                                                                                                                                   |  |  |
| 3. Face curtain handle              | Pulled down fully, jettisons canopy and ejects seat.                                                                                                                                                                                                              |  |  |
| 4. Canopy interrupter handle        | Pulled fully forward, bypasses canopy firing and overrides interrupter, permitting complete travel of the face curtain or secondary firing handle to eject the seat through the canopy.                                                                           |  |  |
| 5. Shoulder harness lock lever      | Pulled aft against tension, unlocks shoulder harness inertia reel so that the pilot may lean forward.                                                                                                                                                             |  |  |
|                                     | Neutral position holds unlocked condition.                                                                                                                                                                                                                        |  |  |
|                                     | Pushed to forward position, locks inertia reel to prevent any forward motion of the pilot.                                                                                                                                                                        |  |  |
| 6. Leg restraint release lever      | Pushed forward, releases leg restraint snubber to permit additional length of line to be pulled out.                                                                                                                                                              |  |  |
|                                     | Pulled aft, releases leg restraint line plug in fitting from front seat to permit normal exit from aircraft.                                                                                                                                                      |  |  |
| 7. Seat adjustment switch           | UP or DOWN raises or lowers seat pan to desired height.                                                                                                                                                                                                           |  |  |

# MK-F5, -F5A EJECTION SEAT COMPONENTS -



Ejection seat controls are described separately in figure 1-23.



- 1. Link-line
- 2. Controller drogue parachute withdrawal line
- 3. Top latch mechanism
- 4. Emergency release guillotine
- 5. Drogue gun
- 6. Drogue gun trip rod
- 7. Canopy interrupter
- 8. Drogue shackle scissors
- 9. Controller and stabilizer drague parachute container
- 10. Handle restraint strap\*
- 11. Timed release mechanism (including barostat and g-controller)
- 12. Seat catapult secondary charges
- 13. Timed release trip rod



\*With BACSEB 9-63.

53212-1-44-3-68

# MK-F5, -F5A EJECTION SEQUENCE

#### LOW-ALTITUDE SEQUENCE (BELOW 10,000 FEET\*)

When either the face curtain handle or the secondary firing handle (A) is pulled, initial travel of the handle pulls the canopy firing cable (B) to fire the emergency canopy actuator (C), which opens the canopy locks and jettisons the canopy.



As the canopy separates from the aircraft, it pulls a lanyard to withdraw a pin from the canopy interrupter (D), permitting the interrupter to release either ejection control (face curtain or secondary firing handle) for further travel. Continued motion of the ejection control withdraws the catapult firing sear (E) at the top of the catapult to fire the seat primary cartridge.



As the seat begins to move upward, the drogue gun firing mechanism and timed release mechanism trip rods are pulled free and both mechanisms are armed (F); the drogue gun is fired after 1-second delay (0.5-second delay MK-F5 seat). Initial motion of the seat also causes the leg restraint lines, which are secured to the airframe by shear pins, to be drawn up to place the pilot's legs in the proper position against the front face of the seat (G). The leg restraint snubber in the bottom of the seat holds the pilot's legs in the restrained position until harness release occurs. When the seat is fired, the pilot's services are automatically disconnected and the IFF is automatically switched into operation in the emergency mode. As the seat rises, the auxiliary cartridges are automatically fired to increase seat velocity.



\*Below 11,500 feet with Martin-Baker ECP 159 incorporated.

53212-1-53(1)-8-67

## MK-F5, -F5A EJECTION SEQUENCE

The drogue gun ejects a piston which withdraws the controller drogue from the seat upper housing and pulls it into the slipstream where it tilts the seat into a horizontal attitude and, in turn, withdraws the stabilizer drogue.

The timed release mechanism, which is armed by initial seat movement, releases the drogue shackle scissors and permits the drogues to withdraw and deploy the pilot's parachute 1.75 seconds (1.5 seconds MK-F5 seat) after acceleration reduces to 4.0 g's. The higher the speed, the longer the g-controller prevents operation of the timed release mechanism. This permits the seat and pilot to decelerate to safe speed before the parachute is deployed. The timed release mechanism also actuates the integrated harness release devices to allow the pilot to be separated from the seat by the drag of the parachute.

To prevent the pilot from delaying seat separation by holding onto the face curtain longer than is desirable, the curtain is freed from the seat when the parachute deploys. To ensure clean separation of the pilot and seat, two friction fastenings (sticker tabs) briefly restrain the pilot in the seat after harness release occurs.



## MK-F7 EJECTION SEAT

#### **DESCRIPTION**

After Airframe Change 491, the ejection system utilizes the Martin-Baker MK-F7 ejection seat, equipped with an RSSK-6 survival kit. The system provides the pilot with a means of escape from the aircraft with no minimum airspeed or altitude requirement except for limits imposed by sink rate and bank or dive angles, as illustrated in figures 5-2A and 5-4A. The escape capability of the MK-F7 ejection seat is obtained through the use of two major components: a telescoping, long-stroke ejection gun, which propels the seat from the aircraft, and a rocket motor which ignites after the seat has traveled six feet upward. The rocket pack makes high velocities possible with accelerations reduced from those obtained from a pure ejection gun type seat. The use of drogue parachutes to deploy the pilot's parachute ensures controlled action under all ejection conditions.

The MK-F7 seat is created by adding a rocket capability to the MK-F5A seat. Basically, the conversion (AFC 491) consists of replacing the seat bucket with a similar seat bucket having a rocket motor mounted on the bottom. The parachute support and parachute are replaced by a new support and parachute. A power harness retractor mechanism is installed to ensure correct pilot positioning at ejection.

The seat is equipped with a pilot's shoulder restraint harness that accommodates standard suits with integrated harness provisions. A Skysail E parachute packed in a hardshell container is positioned behind the pilot's shoulders. This parachute location was selected to permit positive parachute deployment at the moment the pilot is released from the seat. The shoulder restraint harness is equipped with a power retractor mechanism which positions the pilot before ejection to ensure proper center-of-gravity position of the ejected mass. When the face curtain is pulled, the shoulder restraint harness power retractor cartridge is fired. Expanding gases from the cartridge supply the energy to spin a reel and draw the pilot back against the seat in a safe position for ejection. Leg restraint lines, one for each leg (two garters), are secured to the airframe and to the seat and are routed through the pilot's leg restraint garters so as to draw the legs back against the front of the seat during ejection. The pilot's legs are restrained until release occurs before deployment of the personnel parachute.

The seat bucket accommodates an RSSK-6 survival kit. The kit is in two halves. The upper half contains an emergency oxygen bottle, which is automatically actuated by a cable attached to the cockpit structure as the seat moves upward during the ejection sequence. The bottle may also be actuated at any time during flight when emergency oxygen is required, such as following normal oxygen system failure. In such cases, the bottle is manually actuated by pulling the emergency

oxygen lanyard. The bottom half of the kit contains a life raft, a radio transmitter and a survival equipment bag. The radio transmitter is switched on automatically by displacement of the seat during the ejection sequence. After ejection an emergency beacon signal will be transmitted on Guard channel frequency.

After ejection and subsequent parachute deployment, when time and altitude permit, pulling up on the release handle on the right-hand side of the survival kit will allow the bottom half of the kit to separate from the top half and fall the length of a retaining lanyard, deploying and inflating the life raft. This deployment allows the bottom half of the kit, survival equipment and life raft, to contact the surface first.

## WARNING

A small pilot utilizing the MK-F7 ejection seat should raise the seat as high as practical while on the ground and in the traffic pattern. This is to ensure a favorable ejection seat center-of-gravity position. In the somewhat unlikely event that a small pilot had the seat fully lowered and was forced to eject at close to zero-zero conditions, a safe ejection could be jeopardized due to unfavorable seat cg position.

Seat height adjustment is provided by an electrical actuator that raises or lowers the bottom portion of the seat with respect to the upper portion. The parachute container serves as the pilot's headrest and backrest. There is no headrest adjustment. A backpad cushion ensures proper posture for the occupant.

The upper housing of the seat contains the controller and stabilizer drogue parachutes and serves as a mounting for the face curtain handle and the canopy interrupter release handle. The housing has breaker points mounted on each side of the headbox to ensure proper penetration of the canopy in a through-the-canopy emergency ejection. The drogue parachutes are deployed by the action of a drogue gun piston that is fired automatically during ejection to drag a 22-inch controller drogue into the slipstream. A 5-foot stabilizer drogue is automatically drawn into the slipstream and deployed by the controller drogue.

Deployment of the personnel parachute begins 2.25 seconds after initial seat movement unless delayed by the altitude limiter (barostat). If above approximately 11,500 feet, the altitude limiter will delay opening until passing through that altitude.

## Section I Systems

A pilot's services disconnect, mounted on the left console, holds the antiblackout line and the antiexposure coverall ventilating air line in position to ensure proper separation at ejection. The oxygen supply line from the seat pan is separately connected to the oxygen receptacle in the left console. Communications connection between the pilot's equipment and the aircraft is automatically completed when the oxygen line is connected to the console fitting.

Ejection seat controls are illustrated and described in figure 1–43A. Ejection seat components are illustrated in figure 1–43B.

#### **OPERATION**

The ejection procedure is described and illustrated in Section V. See figure 1–43C for a description of the ejection sequence and figure 1–43D for a list of pilot's equipment that may be used with the Martin-Baker seat.

### EMERGENCY RELEASE FROM THE SEAT

In landing emergencies, in ditching, and in the event of the automatic release failing to function in ejection, the pilot can release himself, his parachute, and his survival equipment from the seat by pulling the emergency harness release handle. Pulling the handle releases the leg restraint lines and the lap and shoulder harness, and trips the guillotine which cuts the linkline that connects the stabilizer drogue parachute to the pilot's parachute withdrawal line. Separation of the pilot from the seat should break the pilot's services connections at the disconnect on the left console. Parachute deployment under these conditions is attained by pulling the parachute ripcord D-ring on the left shoulder harness strap. When ditching, the pilot should release the shoulder harness fittings before pulling the emergency harness release handle, and should manually separate the pilot's services connections to ensure separation.

## MISCELLANEOUS EQUIPMENT

#### CATAPULT PROVISIONS

A catapult pin on the underside of the fuselage front section transmits the thrust of the catapult to the aircraft structure. The holdback pin on the underside of the fuselage aft section restrains the aircraft during the buildup of thrust, then releases it when a breakable link snaps. The throttle catapult handle on the left-hand console permits the throttle lever to be held in full forward position during catapult acceleration without locking the throttle lever.

## **REAR VISION MIRRORS**

Three adjustable rear vision mirrors are mounted inboard on the canopy frame.

## MAP CASE

A fixed map case is mounted on the inboard side of the left-hand console. A removable map case is mounted on the inboard side of the right-hand console.

### **GUN CAMERA PROVISIONS**

Inflight recording of gunfiring performance is provided by a gunstrike camera installed in the nose section to photograph action along the gun boresight line. All aircraft have provisions for a gunsight camera, which photographs images on the gunsight reflector plate. Either camera is started automatically when the trigger is depressed to the first detent for gun firing. Film capacity of either camera permits approximately 44 seconds of recording; the gunsight camera has no overrun and the gunstrike camera has 3 seconds overrun. The gunsight camera test switch on the right console permits ground testing of the gunsight camera. Both cameras cannot be used at the same time.

# MK-F7 EJECTION SEAT CONTROLS-



| Nomenclature                        | Function                                                                                                                                                                                                  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1. Secondary firing handle          | Pulled upward fully, jettisons canopy and ejects seat.                                                                                                                                                    |  |  |  |
| 2. Emergency harness release handle | Button pressed, handle rotated sharply aft, releases integrated harness, leg restraint lines, and parachute from seat, permitting the pilot to leave the seat with parachute and full survival equipment. |  |  |  |
| 3. Face curtain handle              | Pulled down fully, jettisons canopy and ejects seat.                                                                                                                                                      |  |  |  |
| 4. Canopy interrupter handle        | Pulled fully forward, bypasses canopy firing and overrides interrupter, permitting complete travel of the face curtain or secondary firing handle to eject the seat through the canopy.                   |  |  |  |
| 5. Shoulder harness lock lever      | Pulled aft against tension, unlocks shoulder harness inertia reel so that the pilot may lean forward.                                                                                                     |  |  |  |
|                                     | Neutral position holds unlocked condition.                                                                                                                                                                |  |  |  |
|                                     | Pushed to forward position, locks inertia reel to prevent any forward motion of the pilot.                                                                                                                |  |  |  |
| 6. Leg restraint release lever      | Pushed forward, releases leg restraint snubber to permit additional length of line to be pulled out.                                                                                                      |  |  |  |
|                                     | Pulled aft, releases leg restraint line plug in fitting from front seat to permit normal exit from aircraft.                                                                                              |  |  |  |
| 7. Seat adjustment switch           | UP or DOWN raises or lowers seat pan to desired height.                                                                                                                                                   |  |  |  |

## MK-F7 EJECTION SEAT COMPONENTS -

- 1. Parachute withdrawal line
- 2. Parachute locking pin withdrawal line
- 3. Link-line
- 4. Controller drogue parachute withdrawal line
- 5. Drogue shackle scissors
- 6. Top latch mechanism
- 7. Emergency release guillotine
- 8. Drogue gun
- 9. Drogue gun trip rod
- 10. Seat catapult secondary charges
- 11. Canopy interrupter
- 12. Controller and stabilizer drogue parachute container
- 13. Power retractor gun
- 14. Handle restraint bungee
- Timed release mechanism (including barostat and g controller)
- 16. Timed release trip rod
- 17. Canopy breaker points



Ejection seat controls are described separately in Figure 1—43A.





53212-1-72-8-67

## MK-F7 EJECTION SEQUENCE

### LOW-ALTITUDE SEQUENCE (BELOW 11,500 FEET)

When either the face curtain handle or the secondary firing handle (A) is pulled, initial travel of the handle fires the shoulder harness power retractor cartridge (B) drawing the pilot back against the seat in a safe position for ejection. At the same time, the canopy firing cable is pulled (C), firing the emergency canopy actuator (D) which opens the canopy locks and jettisons the canopy.



As the canopy separates from the aircarft, it pulls a lanyard to withdraw a pin from the canopy interrupter (E), permitting the interrupter to release either ejection control (face curtain or secondary firing handle) for further travel. Continued motion of the ejection control withdraws the catapult firing sear (F) at the top of the catapult to fire the seat primary cartridge. As the seat rises, heat from the primary cartridge fires auxiliary cartridges in rapid succession to increase seat velocity.



As the seat begins to move upward, the drogue gun firing mechanism and timed release mechanism trip rods are pulled free and both mechanisms are armed G; the drogue gun is fired after a 0.75-second delay. Initial motion of the seat also causes the leg restraint lines, which are secured to the airframe by shear pins, to be drawn up to place the pilot's legs in the proper position against the front face of the seat (H). The leg restraint snubber in the bottom of the seat holds the pilot's legs in the restrained position until harness release occurs. When the seat is fired, the pilot's services are automatically disconnected and the IFF is automatically switched into operation in the emergency mode. As the seat rises, the auxiliary cartridges are automatically fired to increase seat velocity.



## MK-F7 EJECTION SEQUENCE.

When the ejection seat has lifted the length of the rocket motor firing lanyard (six feet), the lanyard withdraws a sear from the rocket motor initiator, firing the rocket motor.

The drogue gun ejects a piston which withdraws the controller drogue from the seat upper housing and pulls it into the slipstream where it tilts the seat into a horizontal attitude and, in turn, withdraws the stabilizer drogue.

The timed release mechanism, which is armed by initial seat movement, releases the drogue shackle scissors and permits the drogues to withdraw and deploy the pilot's parachute 2.25 seconds after initial seat movement. The timed release mechanism also actuates the integrated harness release devices to allow the pilot to be separated from the seat by the drag of the parachute.

To prevent the pilot from delaying seat separation by holding onto the face curtain longer than is desirable, the curtain is freed from the seat when the parachute deploys. To ensure clean separation of the pilot and seat, two friction fastenings (sticker tabs) briefly restrain the pilot in the seat after harness release occurs.



## PILOT'S EQUIPMENT -

## FOR USE IN MARTIN-BAKER EJECTION SEAT





Right Dark (Blue or Brown)

Martin-Baker color-coded leg restraint garters

1. Standard flight coveralls, MS22015 torso harness, and type Z-3 anti-g suit

Type Z-2 anti-g coveralls and MS22015 torso harness

S-470 integrated coveralls and type Z-3 anti-g suit

MK-5A anti-exposure coverall and type Z-4 anti-g suit

- 2. Type A 13-A face mask
- 3. Type APH-5 helmet
- 4. Mini-Reg hose
- 5. MK-3C flotation vest
- 6. Oxygen hose F-4932010-3 or -15 (Firewel)

### **RSSK-6 SURVIVAL KIT**

Survival Kit-to-Face Mask Oxygen and Communications Line



53212-1-54-3-68

# PART 3 - AIRCRAFT SERVICING AND HANDLING

## SERVICING

Refer to NAVAIR 01-45HHA-2-1, Plane Captain's Handbook, for permissible panel removal and detailed servicing instructions. Figure 1-44 illustrates aircraft servicing points.

#### **FUELING**

Authorized fuels are listed under FUEL GRADE in part 4 of this section.

If the fueling facility is not equipped with a flowmeter, only procedural checkpoints applicable to aircraft fuel quantity gages shall be used. The aircraft main and transfer indicating systems must be operating properly to obtain valid checks.

A pumping pressure of 40 to 60 psi should be used with a flow rate not to exceed 300 gpm.

No radio or radar activity is permissible within a radius of 75 feet during refueling. Check that the aircraft and fuel truck are properly grounded. Discharge any static electricity from the fuel nozzle before attaching it to the fueling manifold.

Failure of the vent system during fueling can cause cell rupture and structural damage.

Station a fire guard during fueling operations. Station one man in the cockpit to monitor main and transfer fuel quantity indicators during fueling operations.

To prevent the possibility of fuel cell rupture and structural damage, fuel venting must be monitored during the fueling process. Wing cell venting is monitored by a man utilizing a gage and hose assembly connected to the wing. The hose is connected to a pressure-sensing line quick-disconnect fitting located in the right-hand wing access panel, and the gage is hung in the left gear well. Station a man at the fuselage vent (located in the left-hand ventral fin) to check vent airflow during fueling. Check venting by holding the hand near the vent and feeling airflow. Do not block the vent by holding the cupped hand over it. At the start of the cycle, after completing the primary and secondary checks, there will be a strong continuous flow of air from the fuselage vent with a barely detectable indication on the wing pressure gage. As the airflow from the fuselage vent decreases, wing vent pressure will rise to 11/4 to 11/2 psi if the system is operating properly. Should the gage reading exceed 11/2 psi, stop fueling immediately.

If the aircraft is fueled with the fuselage aft section removed, check fuselage cells vent airflow at vent line disconnect on upper left-hand side of disconnect bulkhead. If engine has been run with aft section removed, the CV15-206325-1 drain hose must be removed from the vent line before fueling. If aircraft is fueled with the wings folded, check wing vent airflow at fuel dump line (donut) seal on right-hand wingfold rib.

All fueling personnel shall be properly instructed before attempting refueling operation. The complete fueling procedure cannot be accomplished while the engine is in operation and is supplying electrical power since primary and secondary checks require external dc power with the master generator switch in EXT. Pressure fueling on the deck with the engine in operation and internal power being used shall be limited to one such cycle between normal ground fueling operations. During every pressure fueling on the deck, with or without the engine operating, the vents must be checked. During every pressure fueling without the engine operating, primary and secondary checks must be performed in accordance with the fueling procedure. To permit complete fueling with the engine operating, the inflight refueling probe must be extended and the inflight refueling probe switch left in the OUT position; or external power must be applied with the probe in and the probe switch in OFF. There must be enough wind across the deck to dissipate fuel fumes from the wing and fuselage vent outlets.

#### Fueling Procedure - Static

- 1. Check that fueling nozzle, aircraft and fueling unit are grounded.
- 2. Place engine master, fuel dump, all radio/radar, inflight refueling probe, emergency generator and master generator switches in OFF.
- 3. Connect external dc electrical power.
- 4. Place master generator switch in EXT.
- Open manual shutoff valve in wing fuel transfer line. Rotate fuel selector switch to CHECK SEC-ONDARY.

#### Note

If the fuel selector switch knob is missing, the flat side of the knob shaft is opposite the pointer.

- 6. Adjust fueling source to 40 to 60 psi.
- 7. Remove cap from fueling manifold.
- 8. Connect ground wire.
- 9. Attach fueling nozzle to fueling manifold. If nozzle has manual lever, lever must be locked fully open. Start fuel flowing into aircraft.

10. Check flowmeter and aircraft main transfer fuel quantity gages. Fuel flow must stop before fuel admitted to aircraft exceeds 45 gallons on flowmeter, or 300 pounds total increase on gages. If fuel flow does not stop, disconnect nozzle immediately and notify proper maintenance personnel.

#### Note

This step is performed to prime the shutoff system.

- 11. Check flowmeter and aircraft main and transfer fuel quantity gages. Rotate fuel selector switch to CHECK PRIMARY. Fuel flow must stop before additional 30 gallons on flowmeter or 200 pounds on gages is admitted to aircraft. If fuel does not stop, disconnect nozzle immediately and notify proper maintenance personnel. Monitor flowmeter and gages for no less than 30 seconds. If flow rate after shutoff exceeds 3 gallons per minute on flowmeter or 20 pounds per minute on gages, disconnect nozzle and notify proper maintenance personnel.
- 12. Rotate fuel selector switch to CHECK SECONDARY and with switch in this position, repeat check of step 11.
- 13. If steps 11 and 12 are acceptable, rotate fuel selector switch to fuel load desired. While monitoring fuselage and wing vents, complete desired fueling.
- 14. When system automatically shuts off, stop fueling source pump, remove nozzle, place master generator switch in OFF and remove external electrical power.
- 15. Rotate fuel selector switch to the OFF position.

# Fueling Procedure (Hot Refueling) External Electrical Power

- 1. Check that fueling nozzle, aircraft and fueling unit are grounded.
- 2. With pilot in the aircraft with the engine running, turn master generator, all radio/radar, fuel dump, inflight refueling probe, and electrical switches off.
- 3. Connect electrical power.

- 4. Place master generator switch in EXT. Primary/ secondary fueling checks can be accomplished while the engine is in operation with external power supplied and master generator switch in the EXT position. If primary/secondary checks are not satisfactory, discontinue hot refueling and notify proper maintenance personnel.
- 5. Rotate fuel selector switch to CHECK SECONDARY.
- 6. Refueling procedure remains the same as steps 6 through 12 in the Fueling Procedure Static. No restriction is placed on this refueling procedure providing satisfactory primary/secondary checks are completed.

# Fueling Procedure (Hot Refueling) Aircraft Electrical Power

## CAUTION

Primary/secondary fueling checks and fueling by selecting REFUEL PARTIAL cannot be accomplished on airplane power. Complete refueling on the remaining positions of the fuel selector switch (REFUEL TOTAL and REFUEL MAIN CELL) shall be limited to one cycle between normal ground fueling operations on ground power.

- 1. Check that fueling nozzle, aircraft and fueling unit are grounded.
- With pilot in the aircraft with the engine running, turn all radio/radar, fuel dump, and electrical switches to off.
- 3. Extend inflight refueling probe and leave probe switch in out position and master generator switch
- 4. Adjust fueling source to 40 to 60 psi.
- 5. Remove cap from fueling manifold.
- 6. Connect ground wire.
- 7. Attach fueling nozzle to fueling manifold. Start fuel flowing into aircraft. Fuel vents must be checked during this and all ground refueling operations.
- 8. Complete desired fueling. When the system automatically shuts off, stop the fueling source pump and remove the nozzle.

## **MLP Partial Loads**

For mirror landing practice it may be desirable to take on less than a full load with the engine running. This can be safely accomplished (consecutively) without primary/secondary checks by adherence to the following procedure. The procedure is designed to permit replenishing the aircraft fuel quantity to approximately 3,500 pounds without exercising the aft or main cell pressure shutoff valves. Fuel quantities shall be closely monitored on the airplane fuel quantity gages during fueling.

1. Complete steps 1 through 6 under FULL LOADS.

- 2. Set fuel selector switch to REFUEL MAIN CELL. Attach fuel nozzle to fueling manifold and start fuel flowing into aircraft.
- 3. When main cell quantity reaches 1,800 pounds, terminate flow and reset fuel selector switch to REFUEL TOTAL.
- 4. Start fuel flowing and monitor aircraft quantity gages until the total of the main and transfer gages is approximately 3,500 pounds. (Main gage should indicate approximately 2,500 pounds. If quantity within the main cell reaches 2,700 pounds, terminate hot refueling immediately.)
- 5. Terminate fueling operations and retract refueling probe.

#### **ENGINE OIL SYSTEM**

Service the engine oil system with gas turbine lubricating oil, MIL-L-23699 (Wep). Do not overfill. Check oil level within 5 minutes after engine shutdown. If this is not practical, operate engine for a minimum of 30 seconds at 75% rpm before checking oil level. If checked at any other time, an erroneous reading will be obtained.

When changing oil, the required oil quantity is approximately 5 gallons.

## **OXYGEN SYSTEM**

Service oxygen system with MIL-O-21749 (grade A, type I; or type II) liquid oxygen only. Liquid oxygen boils at -183°C (-297.4°F). Keep oxygen away from oil, grease, or other combustible materials. Ensure adequate ventilation.

## UTILITY HYDRAULIC SYSTEM

Service the system with red hydraulic fluid, MIL-H-5606A and dry air or nitrogen. Use only hydraulic fluid manufactured by one of the companies listed below with the correct identification as shown.

| Manufacturer                          | Identification  | Qualification<br>Reference |  |
|---------------------------------------|-----------------|----------------------------|--|
| American Oil and                      |                 |                            |  |
| Supply Company                        | PQ 1296         | WCLT R59-47                |  |
| Bray Oil Company                      | Brayco 756      |                            |  |
|                                       | Code P-190      | WCRT R55-11                |  |
|                                       | Brayco 756A     | <b>ASRCE 61-88</b>         |  |
|                                       | Brayco 756B     | ASRCE 61-89                |  |
| California Texas Oil                  |                 |                            |  |
| Company                               | Caltex RPM      |                            |  |
|                                       | No. 2           | TSEAM 047-7                |  |
|                                       | PED 2585        | <b>ASRCE 61-92</b>         |  |
|                                       | TL-3969         |                            |  |
|                                       | Code 662        | WCLT R59-17                |  |
| Humble Oil and                        |                 |                            |  |
| Refining Company                      | Univis J-43     |                            |  |
|                                       | Code WS2997     | WCRT R55-140               |  |
| Golden Bear Oil                       |                 |                            |  |
| Company                               | Code 566        | WCRT R55-42                |  |
| Pennsylvania Refin-                   |                 |                            |  |
| ing Company                           | Code 3587       | WCLT R58-41                |  |
|                                       | Code 4751       | <b>ASRCE 61-65</b>         |  |
| Royal Lubricants                      |                 |                            |  |
| Company                               | Rayco 756       | WCRT R55-11                |  |
|                                       | Rayco 756A      | ASRCE 61-90                |  |
|                                       | Rayco 756B      | ASRCE 61-91                |  |
| Shell Oil Company<br>Socony-Mobil Oil | Aeroshell No. 4 | WCLT R58-42                |  |
| Company                               | Mobil RL-102A   | TSEAL 4-044-61             |  |
| Standard Oil Com-                     |                 |                            |  |
| pany of California                    | RPM No. 2       |                            |  |
| • •                                   | 312798B-R       | TSEAM 047-7                |  |
|                                       | PED 2585        | ASRCE 61-92                |  |
| Texaco Incorporated                   | TL-3969         |                            |  |
|                                       | Code 662        | WCLT R59-17                |  |

| PNEUMATIC SYSTEM  At Ambient Air Temperature |              | Charge All Bottles To psi (+50, -0) Except 1100 Cubic Inch Bottle* | Charge 1100-<br>Inch Bottle*<br>To psi<br>(+50, -0) |
|----------------------------------------------|--------------|--------------------------------------------------------------------|-----------------------------------------------------|
| -18° to −1°C                                 | (0-30°F)     | 2,070 psi                                                          | 2,300 psi                                           |
| −1° to 10°C                                  | (30 - 50°F)  | 2,230 psi                                                          | 2,490 psi                                           |
| 10° to 21°C                                  | (50 - 70°F)  | 2,330 psi                                                          | 2,620 psi                                           |
| 21° to 32°C                                  | (70 - 90°F)  | 2,460 psi                                                          | 2,740 psi                                           |
| 32° to 43°C                                  | (90 - 110°F) | 2,600 psi                                                          | 2,900 psi                                           |

If bottle heaters have been operated, pressures will exceed those listed; do not reduce pressure.

<sup>\*</sup>F-8B aircraft

## SERVICING POINTS



- 1. Electrical power
- 2. Engine oil
- 3. Engine starter
- 4. Fuel system (central-point fueling)
- 5. Utility hydraulic system



- 6. Oxygen system
- 7. Pneumatic system
- 8. Tires
- Power control hydraulic systems (PC 2 shown, PC 1 in same location in LH wheel well)

\*F-8A Aircraft through BuNo. 143701

†F-8B Aircraft

‡F-8A Aircraft

53212-1-63

Figure 1-44

#### **POWER CONTROL HYDRAULIC SYSTEMS**

Service the systems with red hydraulic fluid, MIL-H-5606A and dry air or nitrogen. Use only the hydraulic fluids listed under UTILITY HYDRAULIC SYSTEM.

## PNEUMATIC SYSTEM

Service with dry air or nitrogen to the pressures listed.

#### TIRES

Service with dry air or nitrogen as follows:

Main gear — 300 psi (land or FMLP) 400 psi (carrier)

Nose gear — 165 psi (land)

265 psi (carrier or FMLP)

## HANDLING

## EXTERNAL ELECTRICAL POWER REQUIREMENTS

DC power — 27.5 ( $\pm 0.5$ ) volts AC power — 115 ( $\pm 5$ ) volts, 400 ( $\pm 20$ ) cps, 3-phase, ABC rotation

## ENGINE STARTER REQUIREMENTS

Engine starting requires one of the following starting units:

GTC-85 or GTE-85 gas turbine compressor MD-3A jet starting trailer\* USAF Model MA-1TA gas turbine compressor USAF Model MA-2 gas turbine compressor\* NCPP/RCPP-105 gas turbine compressor\*

## MINIMUM TURNING RADIUS

Minimum turning radius and approximate ground clearances while taxiing are illustrated in figure 1-45.

#### DANGER AREAS

Exhaust, inlet, turbine and noise danger areas are illustrated in figure 1–46.

<sup>\*</sup>Set to low pressure ratio.

# MINIMUM TURNING RADIUS - (TAXIING)



### **APPROXIMATE GROUND CLEARANCES\***

| A — Wir             | g tip |      |   |      | INCHES |  |
|---------------------|-------|------|---|------|--------|--|
| B — Duc<br>C — Tail | •     | <br> | 3 | FEET |        |  |

\* Clearances vary slightly with aircraft loading and strut and tire servicing.



53212-1-64

### DANGER AREAS — ENGINE GROUND OPERATION

NOISE DANGER AREAS



NOTE

Approved ear protective devices are specified in Bu Med Inst. 6260.

53212-2-6(1)

### DANGER AREAS - ENGINE GROUND OPERATION



Figure 1-46 (Sheet 2)

### PART 4—AIRCRAFT OPERATING LIMITATIONS

### INTRODUCTION

This section specifies limitations that must be observed during the normal operation of the F-8A and F-8B aircraft. They are derived from actual flight tests and demonstrations. Refer to Supplemental NATOPS Flight Manual for additional information.

Limitations which are merely associated with a certain technique or specialized phase of operation are discussed appropriately in sections III, IV, and V and in other parts of this section.

### **INSTRUMENT MARKINGS**

The operating limits indicated by flight and engine instruments are illustrated in figure 1–47. These limits are not all repeated in the text. Should engine overtemperature or overspeed occur in excess of limitations listed, the engine should be shut down as soon as possible and the required maintenance inspection be performed before further operation.

### AIRSPEED LIMITATIONS

The maximum permissible indicated airspeeds in smooth or moderately turbulent air are as follows:

With arresting hook, landing gear and speed brake retracted, wing leading edge droop retracted and wing down............Refer to Supplemental NATOPS Flight Manual

| I                                    | Flight Manual |
|--------------------------------------|---------------|
| With leading edge cruise droop       |               |
| Extending or retracting              |               |
| Extended                             | 550 KIAS      |
| With wing down and leading edge land |               |
| droop extended pneumatically         | 300 KIAS      |
| With leading edge droop unlocked     |               |
| (barberpole indication)              | 300 KIAS      |
|                                      |               |

For extension of emergency power package 690 KIAS or 1.40 IMN, whichever is less

#### Note

Refer to EMERGENCY POWER PACKAGE in section IV for handling characteristics when extending the package above 500 KIAS.

With wing up, landing gear extended 220 KIAS

#### Note

Do not exceed 220 KIAS until a positive indication of manual wing incidence locking is observed.

With arresting hook extended \_\_\_\_\_\_350 KIAS
With speed brake extended \_\_\_\_\_Refer to Supplemental
NATOPS Flight Manual
For operation of inflight
refueling probe \_\_\_\_\_\_350 KIAS or 0.92 IMN,
whichever is less

### **POWER CONTROL HYDRAULIC SYSTEM**

With one power control hydraulic system inoperative, operation is restricted to the following limits:

Maximum airspeed — 600 KIAS or 0.92 IMN, whichever is less

Maximum acceleration — (PC 1 out) 4.0 g

 (PC 2 out) same as yaw stab out (Refer to Supplemental NATOPS Flight Manual.)

Bank angle is not to exceed 90°.

No abrupt flight control movements are allowable. No slipping or skidding is allowable.

When operating on emergency power control hydraulic pressure with no electrical load on the generator (as in a dead-engine approach and landing), the minimum airspeed for adequate flight control response is 140 KIAS. With the emergency generator switch in LAND under the same circumstances, minimum airspeed is 145 KIAS.

### **INSTRUMENT MARKINGS=**



**ACCELEROMETER** 

Refer to figure 1-1 and 1-2, Supplemental NATOPS Flight Manual



TRANSFER FUEL QUANTITY

Transfer pump should be turned off at approximately 2,000 lbs. fuel remaining, providing the transfer fuel pump caution light is illuminated steadily.



F-8A Aircraft





F-8B Aircraft



#### **TACHOMETER**

102.2% — Absolute maximum rpm 92 to 96% — Normal rpm at standard day temperature.



OIL PRESSURE

37 psi to 53 psi - Normal Range



### **EXHAUST TEMPERATURES**

MAXIMUM AND MILITARY RATED TEMPERATURE LIMITS

- 670° C above 30,000 ft (MAX only) 660° C above 30,000 ft (MIL only)
- 640° C below 30,000 ft (MAX only) 630° C below 30,000 ft (MIL only)

53212-5-1NB

### TRIM AND STABILIZATION SYSTEM

In the clean condition, with only the roll stabilization system inoperative, restrictions are not changed from basic aircraft restrictions. With yaw stabilization and rudder-aileron interconnect systems inoperative, the following restrictions apply:

Maximum airspeed — 675 KIAS or 1.40 IMN, whichever is less Aileron deflection — (1) Clean condition stops,

(2) Above 1.25 IMN or 45,000 feet — clean condition stops, 90° roll angles, and no abrupt lateral stick movement.

180° roll angles.

Maximum permissible
load factors — Refer to Supplemental NATOPS
Flight Manual

With any of the stabilization systems inoperative, the maximum permissible speed in the landing configuration is 180 KIAS.

### **MANEUVERS**

Refer to Supplemental NATOPS Flight Manual.

### **ACCELERATION LIMITATIONS**

Refer to Supplemental NATOPS Flight Manual.

# FUEL SYSTEM ACCELERATION LIMITATIONS

The fuel system is not designed to operate at zero g for extended periods. However, the system will function properly during rapid transient periods between positive and negative accelerations.

To ensure adequate fuel flow to the engine at all times, flight in the range from +0.3 g to -0.3 g is restricted to rapid transient conditions only.

Avoid prolonged operation in the g ranges listed in figure 1-48.

### **FUEL AVAILABILITY**

The following minimum fuel quantities must be maintained in the main fuel system to prevent flameout under the operating conditions stated:

| Level flight     |                                |
|------------------|--------------------------------|
|                  | Maximum thrust — 300 pounds    |
| Best glide ratio | Idle thrust — 150 pounds       |
| Normal landing   |                                |
| attitudes        | Military thrust — 50 pounds    |
|                  | Maximum thrust — 300 pounds    |
| 90° climb        | Military thrust — 1,000 pounds |
|                  | Maximum thrust — 2,000 pounds  |
| 70° climb        | Military thrust — 800 pounds   |
|                  | Maximum thrust — 1,500 pounds  |
| Nose down        | -                              |
| attitudes        | Military thrust — 150 pounds   |
|                  | Maximum thrust — 2,200 pounds  |

#### Note

Since there is no instrument that indicates the very high afterburner fuel flow rate, monitor main system fuel quantity carefully when using afterburner following depletion of transfer fuel.

During operation in the allowable negative g range, fuel flow is not sufficient to maintain military thrust with less than 1,500 pounds of fuel in the main system or to maintain maximum thrust with less than 2,200 pounds of fuel in the main system.

In shallow dives (less than 10°), 1,400 pounds of wing tank transfer fuel will not be available because the fuel outlets are at the aft end of the tank.

In dives exceeding 10°, the transfer booster pump shuts down and neither wing tank nor transfer fuselage fuel is available during the dive.

No intentional slips or skids are permitted below 35,000 feet during afterburner operation with less than 2,000 pounds of main fuel.

### **FUEL SYSTEM ACCELERATION LIMITATIONS**

### NOTE

With 1,500 pounds or more of main fuel, adequate fuel flow is available for sustained operation at military thrust or less at any altitude and any Mach number while in the g range of +0.3 and above or in the range of -0.3g and below.

| Power    | W : F 10               | Alti              | tude             |  |
|----------|------------------------|-------------------|------------------|--|
| Setting  | Main Fuel Quantity -   | Below 45,000 ft   | Above 45,000 f   |  |
| MILITARY | More than 1,500 pounds | +0.3g to -0.3g*   | +0.3g to -0.3g*  |  |
| MILITARY | Less than 1,500 pounds | +0.3g and below*  | +0.3g and below* |  |
| MAXIMUM  | More than 2,200 pounds | +0.5g to $-1.0g*$ | +0.3g to -1.0g*  |  |
| MAXIMUM  | Less than 2,200 pounds | +0.5g and below*  | +0.3g and below* |  |

<sup>\*</sup>Avoid prolonged operation in these g ranges.

53212-1-65

### Figure 1-48

### **ENGINE LIMITATIONS**

#### Note

Refer to the Supplemental NATOPS Flight Manual for classified limitations.

#### **ENGINE OPERATION**

For engine operating limitations, refer to figure 1-49

If engine pump warning light is on, use afterburner only in an emergency.

To maintain adequate cooling for the engine compartment, observe the limitations presented under COOLING FLOW LIMITATIONS.

### OVERTIME ENGINE OPERATION

Engines should not normally be operated beyond the specified time limitations for maximum thrust and military thrust; however, if this becomes necessary for a particular mission, the engine should be operated continuously for the required period of use. Overtime operation can be sustained without immediate adverse results but the total operating life of the engine will be shortened. Operating continuously for one slightly longer period instead of using two or more shorter periods will avoid an additional heat cycling of the engine, which is detrimental to engine life.

### **FUEL GRADE**

#### Note

F-34, F-35, F-40 and F-45 fuels shall not be defueled into JP-5 (F-44) fuel storage on aircraft carriers because of their low flash points.

Approved fuels are:

Ashore

Primary grade JP-5 (F-44)

Acceptable alternates

JP-4 (F-40)

F-34 (commercial grade Jet A-1)

Emergency fuels†

AvGas grades 100/130 (F-18), 115/145 (F-22)

F-35\*

F-42\*

F-45\*

Afloat

Primary grade

JP-5 (F-44)

Emergency fuels†

AvGas grades 100/130 (F-18), and 115/145 (F-22)

<sup>\*</sup>May not be used for high altitude maximum range missions because of relatively high fuel freeze temperature.

<sup>†</sup>Use of emergency fuel imposes restrictions which are required to prevent excessive fuel cell pressures or to prevent flameout due to booster pump cavitation. Emergency fuel restrictions, none of which apply to the primary or acceptable alternate fuels, are as follows:

<sup>•</sup> No afterburner operation above 6,000 feet or above 300 KIAS.

<sup>•</sup> Maximum rate-of-climb, 1,500 feet per minute.

<sup>•</sup> If less than 2,200 pounds of emergency fuel remains in the transfer system prior to reaching 10,000 feet, do not exceed this altitude. This restriction does not apply when this fuel loading is reached at altitudes above 10,000 feet.

### ENGINE OPERATING LIMITATIONS

|                                         | Max   |                                 | Exhaust<br>np. (°C) | Time                                                      | Oil Pressure<br>Normal Range |  |
|-----------------------------------------|-------|---------------------------------|---------------------|-----------------------------------------------------------|------------------------------|--|
| Operating Condition                     | (%)   | Below Above 30,000 ft 30,000 ft |                     | Limits                                                    | (psi)                        |  |
| Maximum Rated Thrust<br>(Afterburner)   | 102.2 | 640                             | 670                 | 5 Min takeoff and<br>ground operation<br>15 Min in flight | 45 (±8)                      |  |
| Military Rated Thrust                   | 102.2 | 630                             | 660                 | 30 Min                                                    | 45 (±8)                      |  |
| Normal Rated Thrust<br>(Max Continuous) | 102.2 | 590                             | 620                 | Continuous                                                | 45 (±8)                      |  |
| Idle                                    | 55-58 | 350‡                            | _                   | Continuous                                                | 35, Minimum                  |  |
| (For pop-open nozzle)                   | 64-69 | 340                             | _                   | Continuous                                                | 35, Minimum                  |  |
| Starting                                | _     | 450                             | 450                 | Momentary                                                 | _                            |  |
| Acceleration*                           | _     | 680                             | 680                 | 2 Min                                                     | 45 (±8)                      |  |
| Negative G Flight                       | _     | _                               | _                   | 10 Seconds                                                | 0                            |  |

<sup>\*</sup>Following acceleration, a thrust and temperature overshoot may be experienced. During this overshoot, exhaust temperature must remain within acceleration limits.

53212-1-66-5-67

Figure 1-49

### **COOLING FLOW LIMITATIONS**

Ram air from the engine inlet duct is used for cooling many compartments and components, the most important being the engine compartment, air conditioning compartment, electronic compartment, radar unit and turbine generator. During most flight conditions, the ram air pressure in the inlet duct is greater than ambient pressure and air will flow from the inlet duct into the various compartments. On the ground and during flight at low airspeed with a high engine power setting, the cooling air flow reverses. Under these conditions, engine suction creates a low-pressure area in the inlet duct causing air to flow from the compartments into the inlet duct.

There are certain flight conditions for which the engine suction exactly matches the ram air pressure in the duct, and there will be no cooling flow. The flight conditions for no cooling depend on airspeed, altitude and engine power setting, but generally occur only during transient conditions, such as climb or landing approach. However, there are three steady-state flight conditions that can cause reduced or no cooling from the inlet duct and are therefore restricted. These are:

 Flight in the landing condition above 175 KIAS, limited to 5 minutes.

- Flight in the clean condition below 200 KIAS, limited to 5 minutes.
- Banner target towing, limited as shown in figure 1–50.

### **CENTER-OF-GRAVITY LIMITATIONS**

The center of gravity of the aircraft will remain within acceptable limits if fuel sequencing is normal. Refer to section V for effects of the center of gravity exceeding aft limits as a result of fuel transfer system failures. Refer to the Handbook of Weight and Balance Data AN 01-1B-40 to determine actual center-of-gravity location. The recommended center-of-gravity ranges during flight are as follows:

| Configuration                    | Center-of-Gravity Range |
|----------------------------------|-------------------------|
| †Clean aircraft or aircraft with |                         |
| single pylons                    | 24* to 36% MAC          |
| †Aircraft with 2 Sidewinders     | 22.5* to 34% MAC        |

<sup>\*</sup>Takeoff center of gravity with full fuel load and normal fuel sequencing.

<sup>‡</sup>If temperature between 340°C and 350°C is noted at stabilized "IDLE" on an engine that does not have a pop-open nozzle, make a note of this fact in the aircraft flight report.

<sup>†</sup>Fuselage pylon configurations include Sidewinder launchers.

### **COOLING FLOW LIMITATIONS FOR TARGET TOWING**



\*In excess of 5 minutes

53212-5-5-5-67

Figure 1-50

### **WEIGHT LIMITATIONS**

The maximum recommended gross weights are as follows:

| Field takeoff                     | 28,000 lb |
|-----------------------------------|-----------|
| Field landing (minimum            |           |
| rate of descent)                  | 26,000 lb |
| Catapulting                       |           |
| Carrier landing, including touch- |           |
| and-go landings, and field        |           |
| mirror landing practice           | 22,000 lb |
| Barricade engagement              |           |

### **EXTERNAL STORES LIMITATIONS**

### Note

Refer to the Supplemental NATOPS Flight Manual for Sidewinder limitations.

#### CARRIER OPERATING LIMITATIONS

For barricade engagement, jettison external stores if possible. Stores will not interfere with barricade engagement but may tear loose and present a hazard to flight deck personnel. Refer to the appropriate recovery bulletin for permissible arresting gear and barricade engagement speeds.

### TOW TARGET LIMITATIONS

Refer to section VIII of this manual and to the F-8 Tactical Manual NAVAIR 01-45HHA-1T (Confidential) for towing limits.

# section II indoctrination

### CONTENTS

| Ground Training Requirements      | 2-  |
|-----------------------------------|-----|
| Flight Training                   | 2-2 |
| Flight Qualification Requirements | 2-2 |
| Personal Flying Equipment         | 2-2 |

### **GROUND TRAINING REQUIREMENTS**

The overall ground training syllabus for each activity varies according to local conditions, field facilities, requirements from higher authority, and the immediate unit commander's estimation of squadron readiness. However, in order to ensure that all F-8 pilots are properly indoctrinated, thoroughly briefed, and adequately prepared to fly the aircraft, certain specific courses must be standardized. An outline of those courses and subjects which are required for all F-8 pilots is presented below. Also presented are the subjects upon which continued ground training is based. The frequency and number of hours devoted

to each course depends upon the progress and circumstances pertaining to each command.

### **GENERAL REQUIREMENTS**

Prior to familiarization flights in the F-8, the FAM pilot must:

- 1. Possess a current medical clearance.
- 2. Meet physiological requirements of the current edition of OPNAV Instruction 3740.3.
- 3. Complete the F-8 NAMT Pilot's Familiarization Course consisting of approximately 40 hours of instruction.

4. Receive lectures on the following subjects from the RCVW or an operating F-8 squadron:

Powerplants
Electrical system
Fuel system
Hydraulic and pneumatic systems
Ejection seat, canopy, and pressurization.
Variable incidence wing
Flight controls and emergency power package
Trim and stabilization
Emergency procedures
Flight characteristics and operating limitations to
include high speed, high altitude flight
Stall and spins (including LTV movie)
Preflight and hand signals
Local area and facilities

- 5. Complete a torso harness suspension drill.
- 6. Satisfactorily complete a minimum of two procedures trainer flights within two weeks of first FAM flight.
- 7. Practice a dry-run ejection in an F-8 ejection seat.
- 8. Satisfactorily complete a blindfold cockpit check.
- Complete a supervised engine start and taxi checkout.
- 10. Satisfactorily complete test on F-8 operating limits, normal and emergency procedures, and aircraft systems.
- 11. Complete an appropriate course rules examination.

#### SUPPLEMENTAL REQUIREMENTS

The following subjects as guidelines should be included in the normal ground school syllabus which is supplemental and complementary to the flight training.

1. Technical subjects

NATOPS Flight. Manual Aircraft maintenance manuals Fire control system manuals Ordnance Auxiliary equipment Aerodynamics

2. Tactical subjects

NATOPS Flight Manual NWP and NWIP Weapons System Tactical Handbook Tactics publications Rules of engagement

3. Instrument flight planning cross-country navigation

Flight planning
Rest computer
Current OPNAV Instruction P3710 series

DR NAV Special equipment

4. Flight safety

AAR REVIEWS
Emergency procedures
Flight safety equipment
Use of emergency arresting gear

5. Intelligence

Military situation in theaters
Functions and organization of Air Intelligence
Security of information
Aircraft recognition
Maps, charts, and aerial photographs
Enemy aircraft aerial tactics
Amphibious operations
Intelligence reports
F-8 versus enemy fighter and bomber briefs

6. Communications

Types of communications
Brevity code
Applicable communications, NWP, NWIP, ACP
Authenticator tables

7. Survival

Physiological and medical aspects Physical fitness and first aid Survival on land/sea Pilot rescue techniques

### FLIGHT TRAINING

The geographic location, the specific flight training concept, local command restrictions, and other factors influence the actual flight syllabus and the sequence in which it is completed. This training is accomplished in the CRAW and/or squadron.

# FLIGHT QUALIFICATION REQUIREMENTS

### **FAMILIARIZATION PHASE REQUIREMENTS**

The following criteria will be met before specific flight phases.

- 1. Prior to the familiarization phase, all pilots will have:
  - Completed the ground training syllabus covered under GENERAL REQUIREMENTS
  - · Prior landings in a swept-wing aircraft
  - Satisfactorily completed three OFT/WST procedures familiarization flights, at least two of which must have been within two weeks of the first familiarization flight

- 2. A qualified chase pilot shall be assigned for a minimum of three familiarization flights. The chase pilot will certify that the FAM pilot is safe for solo.
- 3. An F-8 experienced RDO or instructor chase pilot shall monitor all familiarization landings.

### **ADDITIONAL PHASE REQUIREMENTS**

Additional requirements for various phases are:

- 1. Instruments (Actual)
  - Be basic instrument qualified in series:
     Three satisfactory simulated instrument sorties
     Three satisfactory TACAN penetrations
     Five satisfactory GCA approaches
  - Have satisfactorily completed an instrument progress check on the instrument training portion of the aircraft series training syllabus and an in-type instrument check

### 2. Night

- · Be instrument qualified in series
- 3. Cross-Country
  - Have 25 hours in series
  - Be instrument qualified in series
  - Have completed a servicing checkout
  - Have had at least one night familiarization flight
- 4. Air-to-Air Gunnery
  - · Have 25 hours in series
  - Perform gun camera flights until considered qualified for live gunnery.
- 5. Air-to-Ground
  - Have 25 hours in series.
- 6. Carrier Qualification
  - Day qualification:
     Have completed 8 FMLP periods
     Have a minimum of 50 hours in series
  - Night qualification:
     Have completed 15 night FMLP periods
     Be day carrier qualified
     Make a minimum of two day traps during the day of night qualification and have had a minimum of five day traps during the preceding ten days

### CURRENCY, AIRCRAFT FERRY, AND REQUILIFICATION REQUIREMENTS

To be considered qualified in the F-8, the pilot must meet the following requirements:

| Total Time in<br>F-8 Series | Pilot must have flown | Within last |  |
|-----------------------------|-----------------------|-------------|--|
| 10 - 100 hours              | 5 hours               | 3 months    |  |
| 100 - 300 hours             | 10 hours              | 6 months    |  |
| 300 hours or more           | 10 hours              | 12 months   |  |

Changed 15 April 1968

If these requirements are not met, familiarization phase requirements with the exception of NAMT must be completed.

Training requirements, checkout procedures, evaluation procedures and weather minima for ferry squadrons are governed by the provisions contained in OPNAVINST 3710.6 series.

### **GENERAL REQUIREMENTS**

Any pilot not flying for a two-week period after commencing a training syllabus shall complete at least one OFT/WST or COT procedures trainer flight (if available) prior to his next F-8 flight. Any pilot not flying the F-8 for a two-week period shall be required to fly a day flight prior to any F-8 night flight.

#### Note

Commanding Officers are authorized to waive minimum flight requirements and/or OFT/ WST or COT training where recent experience in similar models warrants.

### PERSONAL FLYING EQUIPMENT

The following equipment will be worn or carried on all flights unless other safety considerations indicate otherwise. All flying equipment will be modified in accordance with current Aviation Clothing and Survival Equipment Bulletins.

- 1. Antibuffet helmet.
- 2. Oxygen mask.
- 3. Anti G suit.
- 4. Flight suit.
- 5. Ankle-high laced boots.
- 6. Life vest.
- 7. Integrated torso harness.
- 8. Sheath knife and shroud line cutter.
- 9. A red lens flashlight (for all night and cross-country flights).
- 10. A pistol with tracer ammunition, or BuWeps approved substitute, for all over-water flights, night flights, and flights over sparsely populated areas.
- 11. Flight gloves.
- 12. Identification tags.
- 13. Anti-exposure coverall on all over-water flights when the water temperature is 59°F (15°C) or below; or OAT is 32°F (0.00°C) or below; or when the combined air/water temperature is 120°F (48.89°C) or below. Exceptions to these requirements are as follows:

Not required when the water temperature is above 50°F (10°C) and aircraft is within gliding distance of land.

When high ambient cockpit temperature would create a hazardous debilitating effect on the pilot, type commanders are authorized to grant a waiver.

- 14. Survival kit.
- 15. Operational equipment appropriate to climate or the area.
- 16. Navigation packet.
- 17. Pocket checklist.

Survival equipment will be secured in such a manner as to offer ready accessibility and to ensure retention during ejection or landing.

## section III

# normal procedures

### CONTENTS

PART 1 — BRIEFING/DEBRIEFING

# Briefing 3-2 Debriefing 3-3 PART 2 – MISSION PLANNING

### PART 3 — SHORE-BASED PROCEDURES

| Line Operations               |       |
|-------------------------------|-------|
| Taxi and Takeoff              | 3-14  |
| Climb, Cruise, and Descent    | 3-19  |
| Traffic Pattern and Landing   | 3-20A |
| Field Mirror Landing Practice | 3-23  |
| Wave-Off                      | 3-24  |
| Touch-and-Go Landing          | 3-24  |
| After Landing                 | 3-24  |
| Night Flying                  | 3-25  |

### PART 4 — CARRIER-BASED PROCEDURES

| Briefing              | 3-26 |
|-----------------------|------|
| Flight Deck Operation | 3-26 |
| Hangar Deck Operation | 3-26 |
| Launch Operations     | 3-27 |
| Carrier Landing       | 3-29 |

### PART 1—BRIEFING/DEBRIEFING

### BRIEFING

The flight leader is responsible for ensuring that all flight members are properly briefed on the operation and conduct of the mission. The briefing will be conducted using a briefing guide and a syllabus card, if applicable. Each pilot in the flight will maintain a kneepad and will record flight numbers, call signs, and all other data necessary to assume the lead and complete the assignment if it should become necessary. The following information will be covered during the briefing:

### **GENERAL**

Aircraft assigned, call signs
Engine start, taxi, and takeoff times
Visual signals and rendezvous instructions

#### MISSION

Primary
Secondary
Operating area
Control agency
Time on station or over target

### **WEAPONS**

Loading
Safety
Arming, dearming
Duds
Special routes with ordnance aboard
Minimum pull-out altitude
Jettison area
Tow/escort

### COMMUNICATIONS

Frequencies
Radio procedure and discipline

Navigational aids Identification and ADIZ procedures

#### WEATHER

Local area
Local area and destination forecasts
Weather at alternate
High altitude weather for jet stream, temperature,
and contrail band width

### **NAVIGATION AND FLIGHT PLANNING**

Takeoff
Climbout
Mission route, including ground controlling agencies (GCI, APC, etc.)
Fuel/oxygen management
Marshall/holding
Penetration
GCA or CCA
Recovery

### **EMERGENCIES**

Aborts
Divert fields
Bingo and low-state fuel
Wave-off pattern
Ready deck
Radio failure
Loss of visual contact with flight
SAR procedures
System failures

### AIR INTELLIGENCE AND SPECIAL INSTRUCTIONS

Friendly and enemy force disposition Current situation Targets Safety precautions

### **OPERATING AREA BRIEFING**

Prior to air operations in and around a new area, it is mandatory that a comprehensive briefing be given covering (but not limited to) the following:

### **Bingo Fields**

Instrument approach facilities Runway length and arresting gear Terrain and obstructions

### **Emergency Fields**

Fields suitable for landing but without required support equipment
Instrument approach facilities
Runway length and arresting gear
Terrain and obstructions

#### **SAR Facilities**

Type Frequencies Location

### **DEBRIEFING**

Immediately after the flight, all pilots will assemble for a debriefing and critique. It will be conducted or supervised by the flight leader and will cover the following:

- Interrogation by an intelligence officer if applicable
- General discussion covering all phases of the flight
- Operational and tactical information that can be given to squadron operations for relay to flight leaders of subsequent flights (include weather, etc.)
- Critique of breakups and landings

The importance of the postflight debriefing and critique cannot be stressed too highly. To derive maximum benefit, constructive criticism and suggested improvements to doctrine, tactics, and techniques should be given and received with frankness, purpose, and in the spirit of improving the proficiency of the unit as well as the individual pilot.

### PART 2 - MISSION PLANNING

Refer to section XI, NWIP 41-4 and the F-8 Tactical Manual for detailed instructions concerning mission planning.

### PART 3 — SHORE-BASED PROCEDURES

### LINE OPERATIONS

### ACCEPTING THE AIRCRAFT

Check the yellow sheet for flight status, fuel load, configuration and armament loading. Review at least the ten previous B sections for the discrepancies noted and the corrective action taken. When satisfied with the yellow sheet information, sign the applicable portions and proceed with the exterior inspection.

### **EXTERIOR INSPECTION**

The exterior inspection is presented in figure 3–1, and is reproduced in the pocket checklist. During flight operations away from the parent organization, ensure that the following additional systems postflight and servicing procedures are completed:

Engine accessory gear drive oil level Viscous dampers Generator turbine oil level Wing fuel quantity (external indications) Liquid oxygen system Hydraulic systems

The airplane may be cleared for flight with fasteners missing from access doors and panels provided that the following restrictions are observed:

 No fastener shall be missing from any door or panel in the cockpit area. Missing fasteners could affect cockpit pressurization.

• Not more than 10% of the total fasteners in any row on any door or panel may be missing. Two fasteners in a row of 20 or more fasteners may be missing only when the two missing fasteners are separated by two installed fasteners.

• The first and last fastener in any row must be installed. No fastener may be missing from the leading edge of any door or panel if an unfastened gap longer than three inches is created.

 No fastener which performs a secondary function of supporting a bracket or other equipment may be missing.

### COCKPIT ENTRY (See figure 3-2)

The canopy is opened manually by the canopy release handle, located on the left side of the fuselage directly below the canopy frame. Depress the forward part of the handle, grasp the handle arm and pull forward to unlock the canopy. Raise the canopy by using the handle on the canopy frame.

### COCKPIT CHECKS

Perform the following checks before connecting external power:

### General

- 1. Ejection system INSPECTED as outlined in figure 3-3 (MK-F5, -F5A seat) or 3-3A (MK-F7 seat)
- 2. Rudder pedals ADJUSTED

### Left Side

- 3. Pilot's services CONNECTED
- 4. G-valve knob AS DESIRED
- 5. Speed brake override switch NORMAL
- 6. Emergency gear down handle STOWED
- 7. Antiexposure coverall ventilation valve AS DESIRED
- 8. Emergency droop and wing incidence guard DOWN
- 9. Wing incidence handle MATCH WING POSITION
- 10. Radar power switch OFF
- 11. Fuel control switch NORMAL
- 12. Rudder trim knob NEUTRAL
- 13. Throttle OFF
- 14. Speed brake switch IN
- 15. Cruise droop switch IN
- 16. Throttle friction wheel ADJUST
- 17. Emergency brake handle OFF
- 18. Engine master switch OFF
- 19. Exterior light switch OFF
- 20. Yaw stabilization switch OFF RESET
- 21. Roll stabilization switch OFF RESET
- 22. Emergency pitch trim handle STOWED
- 23. Emergency power handle STOWED
- 24. Emergency downlock release switch OFF
- 25. Landing gear handle WHEELS DOWN

### **EXTERIOR INSPECTION -**

| (1) | NOSE SECTION                            |                 |
|-----|-----------------------------------------|-----------------|
| U   |                                         | SECURED*        |
|     |                                         | REMOVED         |
|     | Nose cone                               | SECURED         |
|     | Intake duct                             | NO OBSTRUCTION, |
|     |                                         | WRINKLES, OR    |
|     |                                         | MISSING RIVETS  |
|     | A/A transducer vane                     | NO DAMAGE       |
|     | Oxygen filler                           | CAP SECURE, ON  |
|     |                                         | BUILDUP, COVER  |
|     |                                         | CLOSED          |
|     |                                         | NO DAMAGE       |
|     | Emergency air vent                      | CLOSED          |
|     |                                         |                 |
| 10  | *************************************** |                 |

| (2) | NOSEWHEEL WELL          |              |
|-----|-------------------------|--------------|
|     | Nose gear doors         | SECURE       |
|     | Nose gear               | STRUT, TIRE  |
|     | Approach lights         | NO DAMAGE,   |
|     |                         | LENSES CLEAN |
|     | Downlock                | INSTALLED    |
|     | Armament disable switch | GUARD DOWN   |
|     | Underside of fuselage   | NO HYDRAULIC |
|     | Olideroller of Idollary | LEAKS        |

| (3) | RIGHT FORWARD FUSELAGE      |                |
|-----|-----------------------------|----------------|
|     | Pylons and launchers        | . SECURED      |
|     | Ordnance                    |                |
|     |                             | PINS INSTALLED |
|     | Static ports                | CLEAR          |
|     | Utility hydraulic reservoir | PROPER SERVICE |
|     | Underside of fuselage       | NO FLUID LEAKS |
|     | Lower anticollision light   | NO DAMAGE      |
|     | Access doors and panels     | SECURED*       |
|     | Speed brake                 | NO DAMAGE OR   |
|     | open branching              | FLUID LEAKS    |
|     | Pneumatic gages (F-8B)      |                |
|     |                             |                |

|   | Pneumatic gages (F-8B)       | PROPER PRESSURE   |
|---|------------------------------|-------------------|
| ) | RIGHT MAIN WHEEL WELL        |                   |
|   | Gear door and actuator       | SECURE, NO CRACKS |
|   | Wheel well                   | NO HYDRAULIC      |
|   |                              | LEAKS             |
|   | Gear                         | STRUT EXTENSION,  |
|   |                              | TIRE INFLATION    |
|   | Brake pucks                  | WITHIN LIMITS     |
|   | Wheel bolts                  | SECURE, NONE      |
|   |                              | MISSING           |
|   | Land/taxi light              | NO DAMAGE         |
|   | Fuel system vent port        | NOT COVERED       |
|   | Downlock                     | INSTALLED         |
|   | PC accumulator               | NO LEAKS          |
|   | Tiedown ring                 | FLUSH             |
|   | Gear-up lockpin              | SECURE            |
|   | Uplock roller                | NO BINDING        |
|   | Uplock roller Main fuel line | NO LEAKS          |
|   |                              |                   |

| (5) | RIGHT WING              |                 |  |
|-----|-------------------------|-----------------|--|
|     | Check general condition | NO FLUID LEAKS  |  |
|     | Access doors and panels | SECURED*        |  |
|     | Leading edge            | NO DAMAGE OR    |  |
|     | 2000000                 | HYDRAULIC LEAKS |  |
|     | Wing hinge pins         | LOCKED (PANELS  |  |
|     | W 8 P                   | SPREAD AND      |  |
|     |                         | LOCKED)         |  |
|     | Wingfold warnings flags | RETRACTED       |  |
|     | Winglord Warmings and   | (PANELS SPREAD  |  |
|     |                         | AND LOCKED)     |  |
|     | Donut seal              | NOT LEAKING     |  |
|     |                         | OR DEFORMED     |  |
|     | Position light          | NO DAMAGE       |  |
|     | Aileron                 | NO DAMAGE OR    |  |
|     |                         | LEAKS, BATTEN   |  |
|     |                         | REMOVED         |  |
|     | Spoiler                 | NO DAMAGE       |  |
|     | Flap                    |                 |  |
|     | •                       |                 |  |

| 3 - 4 6 7<br>11 9 8 |
|---------------------|
|                     |

| RIGHT AFT FUSELAGE PC No. 2 reservoir PROPER SE Access doors and panels SECURED* Fuel cell cavity vent ports NO OBSTR Underside of fuselage NO FLUID | *<br>RUCTION |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|

| 7 | EMPENNAGE AND TAIL CONE |                  |
|---|-------------------------|------------------|
|   | Tail hook               | SECURE, NO LEAKS |
|   | Horizontal tail         | NO DAMAGE        |
|   | Vertical tail           | NO DAMAGE        |
|   | Rudder                  | NO DAMAGE,       |
|   |                         | BATTEN REMOVED   |
|   | Position light          | NO DAMAGE        |
|   | Tailpipe                | NO WRINKLES OR   |
|   |                         | CRACKS, COLOR    |
|   |                         | NORMAL           |
|   | Nozzle bearings         | NO RUST OR       |
|   |                         | BINDING          |
|   | Nozzle flaps            | NO DAMAGE,       |
|   | -                       | BINDNG OR RUST   |
|   |                         | ON LINKAGE.      |
|   | Upper wing surfaces     | PANELS SECURE,   |
|   | ••                      | NO WRINKLING OR  |
|   |                         | BUCKLING         |
|   | Fuel vent mast          | LEAR             |
|   |                         |                  |

| 8 | Repeat step 6      |        |           |
|---|--------------------|--------|-----------|
|   |                    |        |           |
|   | PC No. 1 reservoir | PROPER | SERVICING |

| 9    | LEFT MAIN WHEEL WELL           |                 |
|------|--------------------------------|-----------------|
|      | Repeat step 4                  |                 |
|      | Wing fuel manual shutoff valve | OPEN            |
|      | Fuel coloctor cruitch          | POWER OFF       |
|      | Pressure fueling cap           | SECURED*        |
|      |                                | STARTER PROBE   |
|      | jet starting receptation       | LEAD CONNECTION |
|      | Hydraulic hand pump handle     | STOWED          |
| / 40 |                                |                 |

| (10) | LEFT WING     |  |  |
|------|---------------|--|--|
|      | Repeat step 5 |  |  |

| 11) | LEFT FORWARD FUSELAGE     |                        |
|-----|---------------------------|------------------------|
|     | Access doors and panels   | SECURED                |
|     | Static ports              | CLEAR                  |
|     | Upper anticollision light | NO DAMAGE              |
|     | Pylons and launchers      | SECURED                |
|     | Ordnance                  | SECURED, SAFETY        |
|     |                           | PINS INSTALLED         |
|     | Canopy                    | CRAZING OR             |
|     | Campp,                    | CRACKS WITHIN          |
|     |                           | LIMITS                 |
|     | Pneumatic pressure gages  | (F-8A) PROPER PRESSURE |

<sup>\*</sup>Refer to EXTERIOR INSPECTION paragraph for information on allowable missing fasteners.

53212-2-4NB



Figure 3-2

### MK-F5,-F5A EJECTION SYSTEM INSPECTION

### WARNING

Ensure that all six ejection system safety pins (sheet 3) are installed before entering the airplane.

### BEFORE ENTERING SEAT, CHECK:

- 1 Check seat type (MK-F5 or -F5A) to determine ejection capability.
- 1A Canopy interrupter release handle stowed.
  - 2 Link line passed through guillotine trap (yellow door) and connected to parachute withdrawal line with no gap between connector halves.
- 2A Top latch plunger not protruding from end of top latch housing\*.
- **2 B** Indicator plunger flush with end of top latch plunger\*.
  - 3 Parachute D-ring stowed.
  - 4 Shoulder harness—to ensure proper attachment.
- 4A Check that the indicator on the bottom of the drogue gun firing mechanism extends about one-half inch from the bottom of the mechanism. This indicates the mechanism is cocked†
  - 5 Drogue gun trip rod (LH side) pinned to bulkhead behind seat. Red painted section of triprod not showing (should be covered by trip rod outer barrel)\*.
  - 6 Face curtain handle stowed.
  - 7 Face curtain firing cable un'damaged and connected to ejection gun sear.
  - 8 Canopy interrupter cable undamaged, properly routed, and connected to interrupter release pin and to canopy bulkhead.
  - **9** Drogue parachute withdrawal line routed as shown and lying aft and below level of canopy breaker points.
- Timed-release mechanism trip rod (RH side) pinned to bulkhead behind seat. Red painted section of trip rod not showing (should be covered by trip rod outer barrel)\*.
- 11 Emergency harness release handle stowed and attached to guillotine firing mechanism.
- 12 Lap harness to ensure proper attachment.
- 13 Emergency oxygen bottle pressure. Emergency oxygen bottle lanyard secured to structure, lanyard quick-disconnect locked, and lanyard not fouled on seat or cockpit floor.
- 14 Pull the first group of safety pins in the following order:
  - a. Canopy actuator initiator pin
  - b. drogue gun pin
  - c. ejection gun pin

(Pins and locations are illustrated in sheet 3.)

†Seats with Air Crew Systems Change No. 56. \*Seats with Air Crew Systems Change No. 19.



### AFTER ENTERING SEAT, CHECK:

- 15 Secondary firing handle stowed.
- 16 Leg restraint lines pulled to check snubber action.
- 17 Emergency canopy jettison handle stowed.
- 18 Remove remaining safety pins in the following order:
  - a. Guillotine firing mechanism pin
  - b. Secondary firing handle pin
  - c. Face curtain pin (plane captain may remove)

(Pins and locations are illustrated in sheet 3.)

- 19 Hand safety pins to plane captain who will display the six pins prior to stowing them in the safety pin container.
- 20 Route leg restraint lines as shown and attach plug-in fittings to front of seat. The leg restraint lines must be hooked up at all times during flight to ensure that the legs will be restrained in the aft position following ejection. This will prevent leg injury and enhance seat stability by preventing the legs from flailing.

### WARNING

Do not cross the leg restraint lines or pass them around the control stick. Misrouted lines can result in serious pilot injury upon ejection.

21 Push leg restraining release lever and extend legs to normal operating position. If too much line has been released from the restraint snubber, raise the seat and have plane captain manually pull the line from the aft side of the snubber.

### WARNING

Too much slack will hinder release of the leg restraint lines.

53212-2-1(1)-8-67



Figure 3-3 (Sheet 2)



Figure 3-3 (Sheet 3)

### MK-F7 EJECTION SYSTEM INSPECTION

### WARNING

Ensure that all seven ejection system safety pins (sheets 3 and 4) are installed before entering airplane.

### BEFORE ENTERING SEAT, CHECK:

- 1 Check seat type to determine ejection capability.
- 1A Canopy interrupter release handle stowed.
- 2 Link line passed through guillotine trap (yellow door) and connected to parachute withdrawal line with no gap between connector halves. Assure parachute locking pin withdrawal line is free of guillotine trap door.
- **2A** Top latch plunger not protruding from end of top latch housing.
- 2B Indicator plunger flush with end of top latch plunger.
  - 3 Parachute D-ring stowed.
  - 4 Shoulder harness to ensure proper attachment.
- 4A Check that the indicator on the bottom of the drogue gun firing mechanism extends about one-half inch from the bottom of the mechanism. This indicates the mechanism is cocked.
- 5 Drogue gun trip rod (LH side) pinned to bulkhead behind seat. Red painted section of trip rod not showing (should be covered by trip rod outer barrel).
- 5A Rocket firing lanyard properly inserted in tiedown fitting. (Fitting is located on floor and is visible to pilot by viewing down the rear of the left hand side of the seat.)
  - 6 Face curtain handle stowed.
  - 7 Face curtain firing cable undamaged and connected to ejection gun sear.
  - **8** Canopy interrupter cable undamaged, properly routed, and connected to interrupter release pin and to canopy bulkhead.
  - **9** Drogue parachute withdrawal line routed as shown and lying aft and below level of canopy breaker points.



- 10 Timed-release mechanism trip rod (RH side) pinned to bulkhead behind seat. Red painted section of trip rod not showing (should be covered by trip rod outer barrel).
- 11 Emergency harness release handle stowed and attached to guillotine firing mechanism.
- 12 Lap harness to ensure proper attachment.
- 13 Emergency oxygen bottle pressure. Emergency oxygen bottle lanyard secured to structure, lanyard quick-disconnect locked, and lanyard not fouled on seat or cockpit floor.
- 14 Pull the first group of safety pins in the following order:
  - a. Canopy actuator initiator pin
  - b. Drogue gun pin
  - c. Power retractor gun pin
  - d. Ejection gun pin

(Pins and locations are illustrated in sheets 3 and 4.)

#### AFTER ENTERING SEAT, CHECK:

- 15 Secondary firing handle stowed.
- **16** Leg restraint lines pulled to check snubber action.
- 11 Emergency canopy jettison handle stowed.
- 18 Remove remaining safety pins in the following order:
  - a. Guillotine firing mechanism pin
  - b. Secondary firing handle pin
  - Face curtain pin (plane captain may remove)

(Pins and locations are illustrated in sheet 4.)

53212-3-18(1)-8-67

### MK-F7 EJECTION SYSTEM INSPECTION

- 19 Hand safety pins to plane captain who will display the seven pins prior to stowing them in the safety pin container.
- 20 Route leg restraint lines as shown and attach plug-in fittings to front of seat. The leg restraint lines must be hooked up at all times during flight to ensure that the legs will be restrained in the aft position following ejection. This will prevent leg injury and enhance seat stability by preventing the legs from flailing.

### WARNING

Do not cross the leg restraint lines or pass them around the control stick. Misrouted lines can result in serious pilot injury upon ejection.

21 Push leg restraining release lever and extend legs to normal operating position. If too much line has been released from the restraint

snubber, raise the seat and have plane captain manually pull the line from the lower side of the snubber.

### WARNING

Too much slack will hinder release of the leg restraint lines.

A small pilot utilizing the MK-F7 ejection seat should raise the seat as high as practical on the ground and in the traffic pattern. This is to ensure a favorable ejection seat center-of-gravity position. In the somewhat unlikely event that a small pilot had the seat fully lowered and was forced to eject at close to zero-zero conditions, a safe ejection could be jeopardized due to unfavorable seat cg position.

22 Small pilot: Raise the seat to the highest position practical.



Figure 3-3A (Sheet 2)

### MK-F7 EJECTION SYSTEM INSPECTION Drogue Gun Trip Rod (2B)DETAIL E DETAIL B (2) Rocket Lanyard Tiedown Fitting **5A** 6 DETAIL F 7 **CANOPY ACTUATOR** 9 8 DETAIL C Timed - Release Mechanism See Detail G Trip Rod Sear Pin 7 SAFETY PIN SAFETY PIN **IMPROPERLY PROPERLY** FWD **INSTALLED INSTALLED** DETAIL D DETAIL G

Figure 3-3A (Sheet 3)

53212-3-18(3)-3-68

# MK-F7 EJECTION SYSTEM INSPECTION Pin 2 Pin 1 Pin 1 (Rear of headbox) Pin 4 Pin 3 Pin 3 (Back of seat) Pin 4 Pin 5 Pin 6 Cover slips over stick grip Pin 5 Pin 6 Pin 1 — Face Curtain Pin 4 - Drogue Gun Pin 2 — Ejection Gun Pin 5 — Guillotine Firing Mechanism Pin 6 — Secondary Firing Handle Pin 3 - Power Retractor Gun 53212-3-18(4)-8-67

### Section III Shore-Based Procedures

#### Instrument Board

- 26. Radio altimeter OFF
- 27. Oil cooler door switch AUTO
- 28. Armament selector switch OFF
- 29. Gun arming switch SAFE
- 30. Missile jettison switch OFF
- 31. Master armament switch OFF
- 32. Fuel dump switch OFF
- 33. Fuel transfer switch OFF
- 34. Inflight refueling probe switch OFF

### Right Side

- 35. Arresting hook handle HOOK UP
- 36. Master generator switch OFF
- 37. Emergency generator switch OFF
- 38. Air conditioning manual override switch AUTO
- 39. Cockpit temperature knob AS DESIRED
- 40. Cockpit pressure switch CABIN PRESS
- 41. Rain removal switch OFF
- 42. Defogger switch OFF
- 43. TACAN master switch OFF
- 44. Pitot heat switch OFF
- 45. UHF function switch OFF
- 46. IFF master switch OFF
- 47. Cockpit emergency ventilation knob CLOSED
- 48. Interior and exterior lights AS DESIRED

### Stick Grip

- 49. Pitch trim knob NEUTRAL
- 50. Roll trim knob NEUTRAL

### STARTING ENGINE Prestart Check

- 1. Starting equipment in position.
- 2. Fire guard standing by.
- 3. Danger areas (figure 1-43) clear.
- 4. External power CONNECTED
  - Use of starters requires connection of an electrical harness from starter cart to jet starting receptacle in left wheel well. Separate jumper wires must not be installed on jet starting receptacle. If jumper wires were used and not removed before flight, overloading of emergency power package would prevent obtaining an airstart.
  - Give plane captain one-finger signal. When signal is returned, place master generator switch to EXT.
  - Check for "V" showing in dc power indicator and that the ac-powered indicators are operating.
  - Fuel control light will be on regardless of fuel control switch position until approximately 20% rpm is obtained.
- 5. Landing gear indicators DOWN
  - If landing gear indicators do not show the gear down, a possible electrical malfunction exists.
     However, a down indication can usually be

- obtained by cycling the master generator switch between EXT and OFF several times.
- Do not crank the engine until a positive down indication is received for all landing gear.
- 6. Main fuel shutoff valve CHECK
  - Give the plane captain the drinking signal. When he is at the starboard wheel well, place the engine master switch ON.
  - Plane captain will check that the main fuel shutoff valve opens and will signify proper operation by a thumbs-up signal.
- 7. Pitot heat CHECKED
- 8. Fuel pump warning light ON
- 9. Engine oil/hydraulic pressure warning light ON
- 10. Fuel low level warning light OFF (press to test)
- 11. Fire warning light OFF (press to test)
- 12. Manual fuel control light OFF
- 13. Warning lights PRESS TO TEST
  - · Press to test any warning lights not illuminated

### Starting Engine (Pilot Controlled)

- 1. External starter probe CONNECTED
  - Give the plane captain the two-finger signal. He will check with the GTC operator and will return the signal when ready for start.
- 2. Throttle CRANK (momentarily)
  - IGNITE (at 5% rpm)
  - IDLE (at 12% rpm)
  - The ignition circuit remains energized for 30 to 40 seconds.
  - Ignition normally occurs within 3 seconds.
  - Acceleration to idle rpm is normally attained
     15 to 20 seconds after throttle is placed in IDLE.
- 3. Engine instruments CHECK
  - After placing the throttle in idle during engine start, the PC-1, PC-2, and utility hydraulic pressures will rise rapidly to operating pressures. The engine oil/hydraulic pressure warning light should remain on, since the oil pressure will still be below 34 psi (generally about 20 psi). If the light goes out as soon as the hydraulic system pressures are up and the oil pressure is still below 34 psi, a malfunctioning oil pressure switch is indicated.
  - Check EGT, oil pressure indicators, and tachometer for proper indication and that limitations are not exceeded.
- 4. External starter probe REMOVED
  - Starter air supply should automatically shut off between 46% and 53% engine rpm. When the engine reaches 40% to idle rpm, give the plane captain the two-finger unplug signal. The GTC will be disconnected and the starter probe withdrawn.

- 5. External electrical power DISCONNECTED
  - When the engine stabilizes at idle rpm, turn master generator switch OFF.
  - Give the plane captain the one-finger unplug signal and ensure external electrical power disconnected.
- 6. Master generator switch—MAIN
- 7. DC power indicator—v showing
- 8. Attitude indicator—OFF NOT SHOWING
- 9. Engine, fuel and hydraulic warning lights-OFF
  - Fuel pump warning light-OFF
  - Fuel boost pumps warning light—OFF
  - Engine oil/hydraulic pressure warning light—OFF

### CAUTION

If throttle is inadvertently retarded to OFF, do not advance throttle to regain light as a hot start or fire will result. Allow a 30-second fuel drainage period, purge engine, and repeat STARTING ENGINE procedure. Retard throttle to OFF immediately if engine flames out. The aircraft is down until cause is determined.

Normally, no engine warmup is required. After the engine has stabilized to idle conditions, the throttle may be advanced to full power. At ambient temperature below -35°C (-31°F), operate engine at idle for 2 to 5 minutes before making higher power settings.

10. Communications and navigation equipment—on

### Starting Engine (Ground Controlled)

The ground crew will notify the pilot that the start will be ground controlled before cranking is initiated.

Give the two-finger signal for the ground crew to initiate cranking. Move the throttle to CRANK, to IGNITE at 5% rpm, and then follow the normal engine starting procedure.

When the start is ground controlled, automatic shutoff of the starter air supply will not occur. Give the twofinger unplug signal at 40% to idle rpm so the ground crew can shut off the starter air supply.

### **UNSATISFACTORY ENGINE STARTS**

#### **Hot Start**

Note maximum temperature reached. If 450°C is exceeded, down the airplane so that a maintenance evaluation of the overtemperature history of the engine may be made and the airplane either approved or disapproved for flight. If EGT exceeds 610°C during starting, engine shall be checked for cause of trouble and possible damage. Perform PURGING ENGINE procedure before next starting attempt.

### Changed 15 April 1968

#### **Aborted Start**

If engine fails to ignite within 20 seconds after the throttle is placed in IDLE, place the throttle and master generator switch in OFF. The engine should be checked for cause of trouble. If necessary, perform PURGING ENGINE procedure before next starting attempt.

#### **FALSE START OR HUNG START**

If the engine ignites but engine speed remains below idle (65% to 68% rpm) and the exhaust gas temperature remains below 630°C, perform one of the following procedures:

Below 25% rpm:

- 1. Throttle OFF
- 2. Master generator switch OFF
- 3. Troubleshooting should be performed on the defective starter system.

Above 25% rpm:

- 1. Fuel control switch MANUAL
- 2. Advance throttle slowly, if necessary, to obtain idle rpm.
- 3. Fuel control switch NORMAL

If false or hung starts persist, engine should be checked for cause of trouble.

### CAUTION

After a false or hung start on the ground, a check should be performed to ensure that all excess fuel is drained out of the afterburner section. Fuel will leak out of the afterburner flanges and into the tail cone shroud and afterburner compartment. The shroud and afterburner section should be cleaned by flushing out fuel through drains in the tail and afterburner compartment. A check should then be made to ensure that no fuel remains that would cause an aft section fire during subsequent engine starting.

### **PURGING ENGINE**

To clear the engine of trapped fuel or vapors, the pneumatic starter is installed and the following operations performed:

### Note

If strong tailwinds exist, it may be necessary to turn the airplane into the wind prior to purging the engine.

1. External electrical power — CONNECTED

2. Master generator switch — EXT

#### Note

Check that the dc power indicator shows a V, and the attitude horizon indicator does not have OFF showing.

- 3. Throttle OFF
- 4. Fuel control switch NORMAL
- 5. Engine master switch ON
- 6. When signal from ground crewman indicates that starter cart has reached proper load speed, place the throttle in CRANK momentarily.
- 7. In 15 to 20 seconds, place master generator switch in OFF.

8. Engine master switch — OFF

#### Note

Operation of the external starter probe assembly is limited to 2 minutes in any 13-minute period, as follows: 1 minute operation, followed by a 10-minute cooling period.

Allow 30 seconds for fuel to drain before starting engine.

### **GROUND CHECKS**

### Note

For each 5 minutes of static ground operation, cycle wing and flight controls to prevent overheating of hydraulic fluid.

### Section III Shore-Based Procedures

#### **Initial Check**

- 1. Boost pump pressure CHECKED
  - Give plane captain the drinking signal. He will check the boost pump pressures and if satisfactory give a thumbs-up signal.
- 2. Fuel transfer switch—ON
  - Observe flicker of transfer pump caution light (flight instrument light rheostat must be in OFF position).
- 3. Fuel flow—CHECKED
  - Occasionally the fuel flow indication may appear abnormal for idle (more than a 1,000 pph error). This is usually a phase error in the gage and can be corrected as follows:
    - (a) After ensuring that the danger areas are clear, advance the throttle until the fuel flow needle has rotated clockwise to 0.
    - (b) Place master generator switch OFF.
    - (c) Retard throttle to IDLE and allow engine to stabilize.
    - (d) Place master generator switch in MAIN.
    - (e) Check that dc generator indicator is on and attitude indicator off flag is not showing.
    - (f) Fuel flow should now read normal. If not, repeat procedure.
- 4. Landing gear downlocks—REMOVED
  - The plane captain will display the three downlocks after removal.
- 5. Fuel quantity test switch—PRESS
  - Main and transfer fuel quantity indicators drop to zero and return to original readings when released.
- 6. Hydraulic pressures—CHECKED, WARNING LIGHT
  OFF
  - All pressure gages read 3,000 (±200) psi.
- 7. Stab switches—OFF, lights ON
- 8. Stab switches—ON, lights OFF
- 9. Cockpit switches—AS DESIRED

### **Manual Fuel Switch Check**

- 1. Throttle—IDLE
- 2. Fuel control switch—MANUAL
  - Cycle switch from NORMAL to MANUAL three times.
  - Modulate throttle to keep engine rpm between 65% and 74% to prevent the possibility of engine damage during acceleration.
- 3. Manual fuel control light ON
- 4. Throttle ADVANCE
  - Check for engine response.

- 5. Throttle IDLE
- 6. Fuel control switch NORMAL
- 7. Manual fuel control light OFF

### With Wing Down

Refer to section VII for information concerning hand signals.

- 1. Emergency pitch trim CHECK
  - Raise the emergency pitch trim T-handle upon signal from the plane captain.
  - When directed, move the T-handle to obtain full UHT trim in each direction.
  - Monitor the nose trim indicator for movement in the proper direction.
  - Zero the trim and stow the T-handle.
  - After the T-handle is stowed, check the nose trim indicator for a value equal to the stick pitch trim knob setting plus 5°.
- 2. Control surfaces CYCLE
  - On signal from the plane captain, "wipe out the cockpit" with the control stick.
  - Follow a rectangular pattern and ensure that the stick contacts all lateral and longitudinal stops.
  - The plane captain will ensure that all controls move properly.

### Note

If control binding occurs, maintain the binding position and notify maintenance personnel. Do not release control pressure, change configuration, or shut down until a thorough inspection has been made.

- 3. Aileron-rudder interconnect CHECK
  - Apply full aileron in each direction while holding rudder pedals neutral.
  - Check that rudder neutral light flashes as ailerons are moved.
  - The plane captain will check rudder deflection in a direction opposite to aileron movement.
- 4. Cruise droop operation—CHECK
  - Check the leading edge droop indicator UP.
  - On signal from the plane captain, place cruise droop switch OUT.
  - Observe droop movement and check leading edge droop indicator DN.
  - Leave the cruise droop switch in the OUT position.
- 5. Wing-RAISE
  - On signal from the plane captain, unlock the wing and try to place the wing incidence handle to the UP position without first depressing the release switch. Do not use excessive force.

### WARNING

If the wing incidence handle moves, down the aircraft. There should be no forces opposing the movement of the wing incidence handle when the button is depressed, nor should there be any forces which would tend to move the handle unassisted when it is out of either detent. If any such forces are noted, the proper rigging and condition of the incidence control cable should be investigated.

- Depress the release switch and move the wing incidence handle to UP.
- Observe that the leading edge droop, flaps, and horizontal tail move to the landing condition.
- Check that the nose trim indicator has automatically corrected to a value corresponding to that of the stick pitch trim knob.
- Place hands outside the cockpit and have the plane captain check the wing well for leaks, damage, or foreign objects.

### With Wing Up

- 6. Angle of attack system—CHECK
  - Move transducer vane (RH side of fuselage, just aft of emergency vent door) through entire range, noting operation of angle-of-attack indicator and indexer. Cross-check indexer and indicator within the approach range (figure 1–13).

### 7. Control surfaces—CYCLE

- On signal from the plane captain, cycle the control surfaces.
- Check that the clean condition stops have disengaged.
- 8. Aileron-rudder interconnect—CHECK
  - Apply fuil aileron in each direction while holding rudder pedals neutral.
  - Rudder should not move from neutral.
- 9. Rudder trim—CHECK
  - On signal from the plane captain, rotate the rudder trim knob full left, full right and then to zero.
  - Check that the rudder neutral trim light is on.

### 10. Aileron trim-CHECK

- On signal from the plane captain, rotate the roll trim knob full left, full right, then to zero.
- Check action of ailerons and that the aileron neutral trim light is on when trim is at zero.
- 11. Normal pitch trim-CHECK
  - On signal from the plane captain, rotate the pitch trim knob to obtain full nose-down trim, full nose-up trim and then to zero. Plane captain will visually check each UHT for zero trim position.

 Numerical values of the nose trim indicator should closely correspond to the values of the stick pitch trim knob.

### 12. Viscous damper—CHECK

- On signal from the plane captain, push the control stick fully forward. When released, the stick should reposition smoothly to its original position.
- Repeat the check, releasing the stick from the full aft position.
- If the stick snaps back, or overshoots its original position, down the aircraft.

### 13. Exhaust nozzle—CHECK

- Plane captain will assume a position to the rear of the aircraft.
- On signal, advance the throttle briefly to a maximum of 75% rpm and return it to IDLE.
- The plane captain will confirm proper exhaust nozzle operation.

### 14. Brakes—CHECK

- On release brake signal from plane captain, pump brake pedals and release.
- Plane captain will check the brake discs for freedom of movement.

### 15. Arresting hook—CHECK

- On signal from plane captain, place arresting hook handle in HOOK DOWN.
- Place arresting hook handle in HOOK UP when cleared by plane captain.
- Observe arresting hook warning light for proper operation.

## 16. Inflight refueling probe — Check by cycling if use is contemplated

- On signal from the plane captain, extend the probe.
- Check probe out light on.
- The plane captain will inspect the probe for integrity and for proper operation.
- Retract the probe on signal from the plane captain. Hold the probe switch IN for 5 seconds after the probe out light goes off.
- Check probe out light off.

### 17. Wing—FOLDED (if necessary)

- Turn the roll stab switch off and center the control stick.
- Pull wingfold lock lever up and back until it engages the detent.
- Raise the wingfold lever to fold the outer wing panels.
- Do not taxi long distances with the wing panels folded.
- Never actuate any of the wingfold controls without utility hydraulic pressure.

### Section III Shore-Based Procedures

### 18. Wing-SPREAD AND LOCKED

- Turn the roll stab switch off and center the control stick.
- Place wingfold lever down to spread outer wing panels.
- Place wingfold lock lever down to lock the hinge pins.

### WARNING

If wingfold lock lever springs back during operation or an excessive force is required to move the lever to the lock position, down the aircraft. The wingfold lock system must be checked for proper operation and rigging before flight.

- Plane captain will check that red warning flags are retracted and visually check that the hinge pins are locked.
- 19. Canopy CLOSE, LOCK, STOW HANDLE
  - Turn cockpit pressurization and defog off.
  - Pull canopy down and hold with left hand.
  - Actuate canopy locking handle full aft, then full forward, making certain that full travel has been achieved (over center).
  - Check canopy lock indicator for locked indication.
  - Stow locking handle.
  - Turn on cockpit pressurization.
- 20. Oxygen CHECKED

### TAXI AND TAKEOFF

### TAXIING

- 1. Fuel control switch NORMAL
  - Do not taxi in manual fuel control.
- 2. Throttle 70% to 80% rpm
  - Clear area fore and aft before adding power.
  - The aircraft will normally move at 70% rpm with the brakes released.
- 3. Brakes RELEASE
- 4. Throttle AS DESIRED
  - Idle power should be adequate for normal operation.
  - Do not ride the brakes or use excessive differential braking during normal taxi.
  - If the aircraft tends to pull laterally in one direction, return to the line.

- Do not taxi with canopy open at airspeeds greater than 60 KIAS. When opening canopy, manually restrain to prevent combination of rotational velocity and air loads from shearing canopy actuator rod end shear pin.
- 5. Nose gear steering CHECK
  - The wing must be up to obtain full nose gear steering.
  - Neutralize the rudder pedals before depressing the nose gear steering switch or the nosewheel will be abruptly displaced in the direction of rudder deflection.
  - If the aircraft turns with nose gear steering engaged and the rudder pedals in neutral, return to the line.
  - Steering will disengage above 60° angle of deflection. Brakes and power will be required to bring the nosewheel within the controlled steering limits.
  - If steering is sluggish, cycle the rudder pedals or make gentle S turns to build up accumulator pressure.
- 6. Magnetic compass CHECK
  - Check for indication of proper direction and for freedom of movement.
- 7. Turn and bank indicator CHECK
  - Check that needle moves in the direction of turn and that the ball is free in the race.

#### TAKEOFF

Refer to section XI for minimum takeoff distances and speeds required at varying gross weights, temperatures and field elevations. Maximum thrust (CRT) is recommended if more than 10,000 feet of runway would be required using military thrust.

### Instrument Checklist

- 1. Altimeter—SET
- 2. Radio altimeter—on
  - Allow at least 12 minutes warmup time to ensure final accuracy.
- 3. Airspeed indicator—ZERO
- 4. Vertical speed—ZERO
- 5. Gyro horizon—ERECT AND SET
- 6. Clock—RUNNING AND SET
- 7. MA-1 compass—set
  - Check that white synchronizing bar moves to the left with counterclockwise rotation of compass setting knob and to the right with clockwise rotation.
- 8. TACAN—on
- 9. Course indicator—AS DESIRED
- 10. ADF—снеск
- 11. IFF/SIF—AS DESIRED
- 12. Pitot heat—on

- 13. Rain removal—AS REQUIRED
- 14. Engine pressure ratio or turbine outlet pressure indicator—set
  - Set the EPR indicator counter to the minimum acceptable value for existing ambient temperature (figure 3-4).
  - On aircraft equipped with the turbine outlet pressure indicator, determine the minimum acceptable value for the existing ambient temperature from figure 3-4 and retain the value for use during the power check (no counter is provided for presetting this indicator).

#### **Takeoff Checklist**

The takeoff checklist will be completed prior to takeoff. Figure 3–5 presents the short, cockpit-mounted checklist.

- 1. Fuel CHECKED
  - Check for proper quantity in the main and transfer systems.
  - Check fuel transfer switch ON.
  - Check fuel control switch NORMAL and manual fuel control light out.
- 2. Wing SPREAD AND LOCKED
  - Visually check that wings are spread.
  - Check wingfold lock lever down.
- 3. Wing RAISED
  - Check wing incidence handle up.
  - Visually check that the wing is raised and that the landing droop is extended.
  - · Check wing-wheels-droop warning light OFF.
  - Check cruise droop selected.
- 4. Yaw and roll stab lights OFF
  - Check stabilization switches ON, lights off.
- 5. Trim—set for takeoff
  - Set pitch trim 0° to 4° nose up (1° nose up for CRT takeoff) and rudder and aileron trim neutral.
  - Check trim neutral lights on.

- 6. Speed brake RETRACTED
  - Check speed brake switch UP and light off.
- 7. Harness LOCKED, ALL SAFETY PINS REMOVED
  - Check shoulder harness lock lever locked in the forward position.
  - Strain against the harness to ensure that it is locked.
- 8. Compass SET
- Canopy CLOSED, LOCKED, HANDLE STOWED, GUST LOCK REMOVED
  - Check canopy fully closed with locking handle in full forward position and stowed.
  - Check canopy gust lock removed and stowed.
- 10. Cockpit pressurization ON
- 11. Anticollision lights ON

### WARNING

A small pilot utilizing the MK-F7 ejection seat should raise the seat as high as practical while on the ground and in the traffic pattern. This is to ensure a favorable ejection seat center-of-gravity position. In the somewhat unlikely event that a small pilot had the seat fully lowered and was forced to eject at close to zero-zero conditions, a safe ejection could be jeopardized due to unfavorable seat cg position.

- 11A. With the MK-F7 ejection seat installation, small pilots should raise the seat to the highest position practical.
  - The seat can be lowered after takeoff if desired.

### THRUST CHECK DATA — J57-P-4A

### AIRCRAFT WITH ENGINE PRESSURE RATIO INDICATOR



| °F  | Minimum<br>Pressure<br>Ratio | °c | °F  | Minimum<br>Pressure<br>Ratio | °c  |
|-----|------------------------------|----|-----|------------------------------|-----|
| 122 | 2.00                         | 50 | 50  | 2.34                         | 10  |
| 120 | 2.00                         | 49 | 48  | 2.35                         | 9   |
| 118 | 2.01                         | 48 | 46  | 2.36                         | 8   |
| 117 | 2.02                         | 47 | 45  | 2.37                         | 7   |
| 115 | 2.03                         | 46 | 43  | 2.38                         | 6   |
| 113 | 2.04                         | 45 | 41  | 2.39                         | 5   |
| 111 | 2.05                         | 44 | 39  | 2.40                         | 4   |
| 109 | 2.06                         | 43 | 37  | 2.41                         | 3 2 |
| 108 | 2.07                         | 42 | 36  | 2.42                         | 2   |
| 106 | 2.08                         | 41 | 34  | 2.43                         | 1   |
| 104 | 2.08                         | 40 | 32  | 2.44                         | 0   |
| 102 | 2.09                         | 39 | 30  | 2.45                         | -1  |
| 100 | 2.10                         | 38 | 28  | 2.46                         | -2  |
| 99  | 2.11                         | 37 | 27  | 2.47                         | -3  |
| 97  | 2.12                         | 36 | 25  | 2.48                         | -4  |
| 95  | 2.13                         | 35 | 23  | 2.48                         | -5  |
| 93  | 2.13                         | 34 | 21  | 2.49                         | -6  |
| 91  | 2.14                         | 33 | 19  | 2.50                         | -7  |
| 90  | 2.15                         | 32 | 18  | 2.51                         | -8  |
| 88  | 2.16                         | 31 | 16  | 2.52                         | -9  |
| 86  | 2.17                         | 30 | 14  | 2.53                         | -10 |
| 84  | 2.18                         | 29 | 12  | 2.54                         | -11 |
| 82  | 2.18                         | 28 | 10  | 2.55                         | -12 |
| 81  | 2.19                         | 27 | 9   | 2.56                         | -13 |
| 79  | 2.20                         | 26 | 7   | 2.57                         | -14 |
| 77  | 2.21                         | 25 | 5   | 2.58                         | -15 |
| 75  | 2.22                         | 24 | 3   | 2.59                         | -16 |
| 73  | 2.23                         | 23 | 1   | 2.60                         | -17 |
| 72  | 2.24                         | 22 | 0   | 2.61                         | -18 |
| 70  | 2.25                         | 21 | -2  | 2.62                         | -19 |
| 68  | 2.25                         | 20 | -4  | 2.63                         | -20 |
| 66  | 2.26                         | 19 | -6  | 2.64                         | -21 |
| 64  | 2.27                         | 18 | -8  | 2.65                         | -22 |
| 63  | 2.28                         | 17 | -9  | 2.66                         | -23 |
| 61  | 2.29                         | 16 | -11 | 2.67                         | -24 |
| 59  | 2.30                         | 15 | -13 | 2.68                         | -25 |
| 57  | 2.31                         | 14 | -15 | 2.69                         | -26 |
| 55  | 2.32                         | 13 | -17 | 2.70                         | -27 |
| 54  | 2.33                         | 12 | -18 | 2.71                         | -28 |
| 52  | 2.34                         | 11 | -20 | 2.72                         | -29 |
|     |                              |    | -22 | 2.73                         | -30 |

### AIRCRAFT WITH TURBINE OUTLET PRESSURE INDICATOR



| °F       | Minimum<br>Turbine Outlet<br>Pressure* | °c | °F  | Minimum Turbine Outlet Pressure* | °C  |
|----------|----------------------------------------|----|-----|----------------------------------|-----|
| 122      | 53.5                                   | 50 | 48  | 60.0                             | 9   |
| 120      | 53.6                                   | 49 | 46  | 61.2                             | 8   |
| 118      | 53.8                                   | 48 | 45  | 61.4                             | 7   |
| 117      | 54.0                                   | 47 | 43  | 61.6                             | 6   |
| 115      | 54.1                                   | 46 | 41  | 61.8                             | 5   |
| 113      | 54.3                                   | 45 | 39  | 62.0                             | 4   |
| 111      | 54.5                                   | 44 | 37  | 62.2                             | 3 2 |
| 109      | 54.7                                   | 43 | 36  | 62.4                             | 2   |
| 108      | 54.8                                   | 42 | 34  | 62.5                             | 1   |
| 106      | 55.0                                   | 41 | 32  | 62.7                             | 0   |
| 104      | 55.2                                   | 40 | 30  | 62.9                             | -1  |
| 102      | 55.4                                   | 39 | 28  | 63.1                             | -2  |
| 99       | 55.6                                   | 38 | 27  | 63.3                             | -3  |
| 97       | 55.7                                   | 37 | 25  | 63.5                             | -4  |
| 97       | 55.9                                   | 36 | 23  | 63.7                             | -5  |
| 95       | 56.1                                   | 35 | 21  | 63.9                             | -6  |
| 93       | 56.3                                   | 34 | 19  | 64.1                             | -7  |
| 91       | 56.4                                   | 33 | 18  | 64.2                             | -8  |
| 90       | 56.6                                   | 32 | 16  | 64.4                             | -9  |
| 88       | 56.8                                   | 31 | 14  | 64.7                             | -10 |
| 86       | 57.0                                   | 30 | 12  | 64.9                             | -11 |
| 84       | 57.2                                   | 29 | 10  | 65.0                             | -12 |
| 82       | 57.4                                   | 28 | 9   | 65.2                             | -13 |
| 81       | 57.5                                   | 27 | 7   | 65.4                             | -14 |
| 79       | 57.7                                   | 26 | 5   | 65.6                             | -15 |
| 77       | 57.9                                   | 25 | 3   | 65.8                             | -16 |
| 75       | 58.1                                   | 24 | 1   | 66.0                             | -17 |
| 73       | 58.3                                   | 23 | 0   | 66.2                             | -18 |
| 72       | 58.5                                   | 22 | -2  | 66.4                             | -19 |
| 70       | 58.7                                   | 21 | -4  | 66.6                             | -20 |
| 68       | 58.8                                   | 20 | -6  | 66.8                             | -21 |
| 66       | 59.0                                   | 19 | -8  | 66.9                             | -22 |
| 64       | 59.2                                   | 18 | -9  | 67.1                             | -23 |
| 63       | 59.4                                   | 17 | -11 | 67.2                             | -24 |
| 61       | 59.6                                   | 16 | -13 | 67.3                             | -25 |
| 59       | 59.8                                   | 15 | -15 | 67.5                             | -26 |
| 57       | 60.0                                   | 14 | -17 | 67.7                             | -27 |
| 55       | 60.2                                   | 13 | -18 | 67.9                             | -28 |
| 54       | 60.4                                   | 12 | -20 | 68.1                             | -29 |
| 52<br>50 | 60.6                                   | 11 | -22 | 68.3                             | -30 |
| 50       | 60.8                                   | 10 |     |                                  |     |

### NOTE

53212-2-25

<sup>\*</sup>These turbine outlet pressures are based on engine pressure ratio values, with average duct loss, at sea level (barometric pressure of 29.92 Hg). For each decrease of 0.2 below barometric pressure of 29.92, a decrease of approximately 0.4 in turbine outlet pressure indication will result. For each increase of 0.2 above barometric pressure of 29.92, an increase of approximately 0.4 in turbine outlet pressure indication will result.

### Takeoff (MRT/CRT)

Refer to figure 3-6 for illustration of typical takeoff.

- 1. Throttle MILITARY
  - Advance throttle to MILITARY
  - If brakes do not hold, return to the line.

### 2. Engine instruments — CHECK

- Check engine oil pressure and EGT for indications within limits.
- Check that the engine pressure ratio or turbine outlet pressure equals or exceeds the predetermined value. If it does not, the engine is not acceptable for flight.
- Check engine speed within limits. RPM at military thrust should be between 92% and 96% at standard day temperature (higher rpm at higher temperatures and vice versa). If 102.2% rpm is exceeded, return to the line. If 102.2% rpm is exceeded during or after takeoff, reduce thrust to the minimum acceptable for flight and land as soon as practicable.
- Check hydraulic pressures within limits.

### 3. Brakes — RELEASE

- Release brakes and nose gear steering if engaged. Nose gear steering should not be engaged during any portion of the takeoff roll except in an emergency situation.
- For afterburner takeoffs, move throttle sharply to the outboard detent after releasing brakes. A noticeable increase in thrust and acceleration will occur as the afterburner ignites. Abort the takeoff if the afterburner fails to ignite. A rapid pressure ratio rise without subsequent decrease and rapid rise in exhaust temperature accompanied by a decrease of 4% rpm indicates that the exhaust nozzle flaps have failed to open. Stop afterburning immediately.
- Maintain directional control with differential braking until the rudder becomes effective (approximately 60 KIAS).
- At 125 KIAS, ease the nose wheel off the runway to establish takeoff attitude. The aircraft will become airborne at approximately 150 KIAS (28,000 lb aircraft gross weight). Refer to section XI for takeoffs at other aircraft gross weights.

# TAKEOFF CHECKLIST (COCKPIT MOUNTED)



53212-2-7

Figure 3-5

### 4. Landing gear—RETRACT

- After a positive climb has been established, move the landing gear handle to WHEELS UP.
   Check the landing gear position indicators UP and the warning light in the gear handle out.
- Do not hold the nose gear steering switch depressed while retracting the gear. If the nose gear fails to retract fully, lower the landing gear and depress the nose gear steering switch to center the nose wheel. Release the switch and move the landing gear handle to WHEELS UP.
- Do not exceed 220 KIAS until the landing gear is up and locked.
- If hot brakes are suspected, leave the landing gear down for 5 minutes to allow the wheel assembly to cool.



Figure 3-6

tread and high vertical fin. However, the ailerons become effective at low speed and are effective in reducing the heel angle.

During takeoff, oppose rolling tendency with aileron, while maintaining directional control with the brakes until the rudder becomes effective. In extreme crosswinds, keep the nosewheel on the runway until flying speed (approximately 150 knots) is obtained; then lift the aircraft from the runway. This technique decreases the lift generated while on the runway, minimizing the tendency of the aircraft to drift laterally.

Whenever practical, takeoffs under substantial crosswind conditions should be individual rather than section.

#### Formation Takeoffs (MRT/CRT)

Formations will normally take off in two-aircraft sections. If a flight of four aircraft is involved, the second section will delay the takeoff roll until the first section becomes airborne. Should either aircraft of a section abort, a radio transmission will be made stating "—— (call sign) aborting." The other aircraft will continue the takeoff unless the abort occurs early in the takeoff roll.

The section leader will line up on the downwind side of the runway. The wingman will form in echelon with a wingtip separation of approximately 10 feet which will be maintained throughout takeoff.

When both aircraft are in position, the leader will give a two-finger signal to complete the takeoff checklist and the engine turnup. When these checks are completed, each pilot will visually check the exterior of the other's aircraft. A thumbs-up signal will be given when ready for takeoff.

After receiving the thumbs-up signal from the wingman, the leader will decrease rpm 1% and raise his hand to a vertical position. To commence takeoff roll, the leader will simultaneously drop his hand and release the brakes. If afterburner is to be used, it will be selected by both pilots when the leader turns his head smartly to the left. Minor adjustments to power setting may be made by the leader to compensate for mismatched aircraft.

During the takeoff, the leader will monitor the progress of the wingman. When both aircraft are definitely airborne, the leader will retract his landing gear without signaling. When the leader observes the wingman's gear retracted, he will place his head against the headrest as the preparatory signal for lowering the wing. Both pilots will lower the wing when the leader nods his head smartly forward. Afterburner, if used, will be deselected simultaneously by both pilots when the leader nods his head smartly to the right.

## ALLOWABLE CROSSWINDS



ANGLE OF WIND RELATIVE TO RUNWAY - DEGREES

53212-2-17

Figure 3-7

#### **Scramble Takeoffs**

Aircraft scrambles will generally occur under varying conditions of radio silence.

When assuming an alert posture that may result in actual launching of the aircraft, conduct the normal preflight, start and poststart checks. If practicable, conduct radio checks with the controlling agencies and the other aircraft of the flight. Check radar operation, observing ground radiation safety precautions. Shut down the engine, but leave the aircraft as ready for flight as possible. Check that ground equipment is positioned to provide for rapid removal during scramble.

If the radio is being monitored to receive the scramble order, observe the ground operating limitations (section I, part 2).

When the scramble order is received, restart the engine and ensure that all gear downlocks and safety pins are removed. When ground crew and equipment are clear, taxi expeditiously, but safely. Energize all electrical and electronic equipment.

Complete the takeoff checklist and the engine turnup check before takeoff.

# CLIMB, CRUISE AND DESCENT

Refer to section XI for climb speed schedules, distances covered during climb, and climb rates.

## Section III Shore-Based Procedures

Climbs are initiated with the aircraft in the clean or cruise droop condition. If climb is initiated in clean condition, select cruise droop as airspeed drops below 300 KIAS.

If afterburner is used for takeoff and a CRT climb is to be made, establish a steady-state climb of 450 KIAS until intercepting 0.92 IMN. If an MRT climb is desired, secure the afterburner at a minimum airspeed of 300 KIAS and establish a steady-state climb of 350 KIAS until intercepting the climb schedule, During the climb, it may be necessary to modulate the throttle to maintain operation within exhaust gas temperature limits.

#### **CRUISE**

The normal minimum cruising airspeed below 10,000 feet MSL is 300 KIAS except:

- 1. When feasible comply with 250 KIAS limit in airspace where FAR part 91 applies (normally feasible only at relatively light gross weights, during holding, penetration and landing approach).
- 2. When otherwise indicated in specific operational/ training procedures.

Refer to section IV, part 2, for a description of flight characteristics, to section I, part 2 for fuel management information, and to section XI for cruise data.

#### **DESCENT**

Refer to section XI for time, fuel, distance and rate of descent data for both maximum range and constant speed descents and to section IV for dive recovery information.

#### **Before Descent Checklist**

- 1. Altimeter SET
- 2. Defogger switch DEFOG
  - To avoid fogging during rapid descent, place defogger switch to DEFOG at least 5 minutes prior to descent.
- 3. Cockpit temperature AS DESIRED
- 4. Pitot heat-ENSURE ON
- 5. Fuel-OUANTITY CHECKED

#### **Before Entering Traffic Pattern**

- 1. Speed brake override switch NORMAL
- 2. Shoulder harness LOCKED

## WARNING

A small pilot utilizing the MK-F7 ejection seat should raise the seat as high as practical while on the ground and in the traffic pattern. This is to ensure a favorable ejection seat center-of-gravity position. In the somewhat unlikely event that a small pilot had the seat fully lowered and was forced to eject at close to zero-zero conditions, a safe ejection could be jeopardized due to unfavorable seat cg position.

- 2A. With the MK-F7 ejection seat installation, small pilots should raise the seat to the highest position practical.
- 3. Fuel QUANTITY CHECKED
- 4. Cruise droop OUT

- 5. Armament switches OFF
- 6. Radar power switch OFF

#### TRAFFIC PATTERN AND LANDING

#### TRAFFIC PATTERN

Refer to section I, part 4 for maximum recommended landing gross weights.

Enter the traffic pattern in a clean condition with cruise droop extended. At 300 KIAS (minimum) to 350 KIAS, execute a level break. Perform cockpit check (cockpit-mounted checklist presented in figure 3–8) as follows:

## WARNING

To avoid inadvertent engine shutdown, maintain inboard pressure on the throttle when reducing the throttle toward idle.

- 1. Throttle 75% MINIMUM RPM
- 2. Speed brake AS REQUIRED
- 3. Landing gear DOWN
  - At 220 KIAS, move the landing gear handle to WHEELS DOWN.
  - Check indicators down and the warning light in the gear handle off.
- 4. Speed brake switch IN
  - · Check that the speed brake light goes out.
- 5. Wing RAISE
  - · Raise the wing after lowering gear.
  - · Unlock the wing downlock handle.
  - · Depress the wing incidence release switch.
  - · Move the wing incidence handle up.
  - · Check the wing-wheels-droop warning light off.

# LANDING CHECKLIST - (COCKPIT MOUNTED)



Figure 3-8

- 6. Leading edge droop CHECK FULL DOWN
  - Visually check droop in landing condition.
  - Check droop indicator DN.
- 7. Arresting hook AS REQUIRED
  - If hook is to be used for an arrested landing, check that the hook warning light is out.
- 8. Hook bypass switch AS REQUIRED
  - For unarrested landings, place the hook bypass switch in FIELD to prevent approach lights from flashing due to retracted hook.

#### FIELD LANDING

See figure 3–9 for typical field landing pattern. Refer to section XI for landing speeds and ground roll distances. Permissible acceleration range in the landing configuration is 0 to 2.0 g.

When making familiarization landings, use center-ofgravity loadings forward of 32% (refer to Handbook of Weight and Balance) and do not attempt to closely control the point of touchdown. Enter the downwind leg of the traffic pattern for final landing with a minimum of 1,000 pounds of fuel remaining.

Prior to the 180° position, the angle of attack should be cross-checked with airspeed and the approach power compensator engaged and checked if it is to be utilized.

At the 180° position, the aircraft should be wings level, on optimum angle of attack with sufficient power to maintain altitude and airspeed. Adjust the 180° position to permit approximately <sup>3</sup>/<sub>4</sub> mile of straightaway on the final approach. Plan the turn from the 180° position to reach the 90° position at 500 feet above field elevation on optimum angle of attack. If cockpit emergency ventilation port is open, angle-of-attack indications will be erroneous.

If a mirror is available on the landing runway, fly a standard FMLP approach from the 90° position to touchdown. If no mirror is available, continue a power-on rate of descent with the angle-of-attack indexer indicating a circle (donut), and aim for a touchdown point 500 to 700 feet beyond the runway threshold. Use the throttle primarily to control rate of descent, and the stick to control attitude. If, at any time, the sink rate becomes excessive, correct first by adding power, and then adjust attitude. It is important to maintain proper touchdown attitude to prevent landing either on the tailpipe or nosewheel. Hold the donut to touchdown.

On touchdown, the nose has a tendency to rock forward, and unless a small amount of back pressure is applied, the nosewheel will contact the runway. If the aircraft bounces, reestablish the proper landing attitude and adjust sink rate with the throttle. If a

porpoise develops, or if doubt exists as to the success of the landing, execute a wave-off.

On the rollout, adjust the fuselage attitude to produce optimum aerodynamic braking. As the airspeed approaches 90 KIAS, the nose will fall through. Once the nosewheel is on the runway, normal braking may be applied. Apply constant friction braking and gradually increase back stick. Keep the stick full aft even after the nosewheel is on the runway since the UHT is still effective in creating drag. On wet runways, intermittent braking may be necessary to avoid skidding.

Rudder control will be effective down to about 60 KIAS.

CAUTION

Neutralize the rudder pedals before depressing the nose gear steering switch or the nose-wheel will be abruptly displaced in the direction of rudder deflection.

At normal landing gross weight, elect to go around when speed is in excess of 105 KIAS with 4,000 feet of runway remaining. Failure of the exhaust nozzle to open may result in excessive runout and high taxi speed. Employ normal engine shutdown to avoid these effects, if necessary.

#### **CROSSWIND LANDING**

The maximum perpendicular crosswind component recommended for landing is 15 knots. With proper technique, it is possible to land the aircraft safely with a component in excess of this limit.

Allow extra spacing behind the preceding aircraft and sufficient straightaway on the final approach to establish a stable crab/wing low approach. Maintain normal approach speed, and line up so that touchdown will be on the upwind side of the runway.

Just before touchdown, align the aircraft with the runway by using rudder. Maintain a wing low attitude with aileron. Once on the runway, use moderate aerodynamic braking, maintaining directional control with rudder. Keep aileron into the wind to prevent heeling and to keep more weight on the upwind wheel.

# FIELD LANDING -(TYPICAL) WARNING INITIAL APPROACH Traffic pattern altitude 300 to 350 KIAS Do not use a higher angle of attack than the optimum carrier approach angle indicated by the reference index marker of the angle-of-attack indicator Cruise droop extended 300 (minimum) to 350 KIAS Extended speed brake as required DOWNWIND Extend gear — 220 KIAS Raise wing 180° POSITION Optimum approach angle of attack (engage APC, if desired) 90° POSITION Optimum approach angle of attack **TOUCHDOWN** Optimum approach angle of attack APPROACH Optimum approach angle of attack

Figure 3-9

The aircraft has a tendency to weathercock (turn into the wind). Oppose this tendency by using downwind rudder. As speed decreases and the rudder loses effectiveness, the weathercocking tendency also decreases. Nose gear steering may then be used to assist in maintaining directional control. The rudder pedals must be neutralized before the nose gear steering switch is depressed.

Below 80 KIAS, weight distribution is generally equalized enough to permit normal braking. Do not apply excessive pressure to the upwind brake or it may lock, skid and blow the tire.

Downwind drift, sometimes erroneously interpreted as downwind weathercocking or weathercocking out of the wind occurs during a crosswind landing roll out. It is the result of the aircraft being literally blown across the runway while still "light on the gear." The effect on roll out is primarily one of ending up downwind on the runway relative to the point of touchdown. Accept the downwind drift, which will occur to a greater or lesser extent depending upon the severity of the crosswind. When landing in severe crosswinds (in excess of 15 knots), consideration should be given to landing at a gross weight greater than normal. Additional weight will help keep the aircraft on the runway and reduce the downwind drift. When the nose falls through, continue to apply aileron and rudder as necessary to maintain directional control. Ailerons are effective down to approximately 60 KIAS. Above all, continue to fly the aircraft until aerodynamic control is no longer effective.

#### FIELD MIRROR LANDING PRACTICE

#### PREFLIGHT INSPECTION

Conduct a normal preflight inspection and give special attention to strut and tire condition. Check the angle-of-attack system as soon as possible after engine start. Place the hook bypass switch in the FIELD position to keep approach lights from flashing.

#### **TAKEOFF**

Conduct the takeoff as briefed.

#### RADIO PROCEDURE

Before letting down, it is advisable to call the LSO to ascertain that the briefed Charlie time is still good. The approach to the field will usually be controlled by tower personnel who will advise when to switch to control frequency. Do not make approaches without radio contact with the LSO, and do not remain in the pattern without a radio receiver.

Give the following report upon reaching the meatball acquisition point and on each subsequent pass:

Aircraft call sign

Fuel state (nearest 100 pounds)

"Crusader"

"Meatball"

If the meatball is not visible, transmit the code word "Clara" to the LSO.

#### **PATTERN**

Refer to the LSO NATOPS Manual for further pattern information, and to section I, part 4 for maximum recommended gross weight at touchdown.

The break interval will be approximately 12 to 16 seconds. Initiate subsequent turns in the downwind portion of the pattern when the preceding aircraft bears 60° relative.

Fly a race track pattern with the 180° position approximately 1½ miles abeam at an altitude of 500 feet above the terrain. Perform cockpit checks and cross check the airspeed indicator with the angle-of-attack indicator while on downwind. Although the airspeed indicator is more than adequate for attitude control, use the angle-of-attack indicator as the primary instrument for this purpose. Check the emergency cockpit ventilation port closed or angle-of-attack indications may be erroneous. Adjust the length of the groove to give a wings-level descent on the glide slope of 18 to 20 seconds (about ¾ mile).

Recommended airspeed at the 180° position is approximately 145 KIAS (donut airspeed). From the 180° position, an increase in power is required to effect a constant altitude turn to the 90° position. At this point you should pick up the meatball.

As the aircraft is rolled wings level in the groove, reduce power slightly to intercept the glide slope. Ideally, the meatball will be centered when rolling wings level and the required descent initiated immediately. In any event, center the meatball before starting the descent.

#### APPROACH AND LANDING

A poor approach rarely results in a good landing. A good pass on the mirror requires:

Angle of attack and/or speed commensurate with landing gross weight.

Meatball in the center of the mirror/lens face.

Aircraft lined up with the runway (or simulated carrier) centerline.

At the point where the meatball is first observed during the turn to final approach, the difference between

#### Section III Shore-Based Procedures

a Roger and a high or low indication is 75 feet. At the ramp, the difference is 5.5 feet and at touchdown, only 2 feet. As a pass progresses down the groove, smaller corrections are required to move the meatball a certain distance on the mirror face. A 3.25° glide slope is normally used during FMLP to approximate the rate of descent encountered when landing aboard a carrier. Any time the meatball is lost close in, initiate a wave-off. Maintain the optimum angle of attack. Do not overrotate, and do not turn.

In the FMLP pattern, do not commence another approach with 1,000 pounds of fuel or less remaining.

All procedures and techniques that apply to day FMLP apply to night FMLP. Exterior lights should be on bright and anticollision lights off. For night CCA pattern, refer to carrier air traffic control manuals.

#### **WAVE-OFF**

When executing a wave-off, place the throttle in MRT (or CRT if required). Leave the landing gear and wing in the landing condition and level the wings while maintaining optimum angle of attack.

#### **TOUCH-AND-GO LANDING**

When making a touch-and-go landing, allow all three wheels to make firm contact with the runway, then follow normal takeoff procedures.

#### AFTER LANDING

#### AFTER-LANDING CHECK

- 1. Canopy OPEN
  - Do not open the canopy in excessive wind conditions.
  - · Turn cockpit pressurization and defog off.
  - If cockpit altitude indicator shows a negative reading (indicating cockpit is pressurized), open

- the emergency ventilation knob to relieve cockpit pressure before opening canopy.
- If canopy restraint strap is to be utilized, install as soon as canopy is open.
- Open canopy only after clearing the landing runway.
- Monitor canopy opening by holding canopy rails to prevent excessive opening speed and possible overtravel which will shear the canopy actuator rod-end shear pins.
- In F-8B aircraft, turn cockpit pressurization on to assure cooling of the electronic package and in preparation for the wing venting check to be performed upon engine shutdown.
- Turn radar off since maximum cooling is not available with the canopy open.
- 2. Trim knobs NEUTRAL
- 3. Rain removal switch OFF
- 4. Pitot heat—off
- 5. Anticollision lights OFF
- 6. Yaw and roll stab switches OFF RESET

#### **BEFORE SHUTDOWN**

- 1. Wing -- DOWN
  - Check wing/wheels/droop warning light on with wing down.
- 2. Cruise droop switch—IN
- 3. Wingfold AS DESIRED
  - If wing panels are to be folded, the ailerons must be centered, yaw and roll stab switches off.
- 4. Landing gear ground locks INSTALLED
- 5. Communications and navigation switches OFF
- 6. Fuel transfer switch PRESS DUMP
  - Plane captain stationed starboard wing vent to check airflow.
- 7. Cockpit pressure switch CABIN DUMP (F-8B only)

#### STOPPING ENGINE

- 1. Throttle OFF
  - When the engine has been operated at high power settings for an appreciable length of time, operate at 80% for 3 to 5 minutes to allow time for cooling. This prevents seizure of the rotors.
  - Prior to shutdown, stabilize engine at 75% rpm for at least 30 seconds to scavenge the oil.
  - Check tachometer for free engine deceleration.
  - Plane captain will signal engine cut after gear downlocks have been installed and wheel chocks are in place.
- 2. Master generator switch OFF
  - Place switch off by the time the engine decelerates to 45% rpm.
- 3. Engine master switch OFF
  - Do not shut engine down with the engine master switch except in an emergency or damage to the engine-driven fuel pump may result from cavitation.
- 4. Oxygen OFF
  - If flow continues from mask after shutoff, check for possible inadvertent actuation of the emergency bottle. If bottle is actuated, do not disconnect supply hose until emergency supply is depleted.

#### BEFORE LEAVING AIRCRAFT

- 1. All electrical switches OFF
- 2. Ejection seat pins INSTALLED (5)
- 3. Canopy actuator safety pin INSTALLED (1)
- 4. Wheels—CHOCKED
- 5. Perform postflight walkaround inspection.

#### **NIGHT FLYING**

The instructions contained in the following paragraphs are supplemental to those covered in the normal VFR or IFR flight procedures.

#### **PREFLIGHT**

After starting the engine, check operation of all interior and exterior lights with the exception of the land/taxi light which is not checked with the airplane in the

chocks. It is recommended that the anti-collision light be secured while in the line and turned on while taxiing to indicate a moving aircraft.

Turn on the position lights during the period 30 minutes before official sunset until 30 minutes after official sunrise or at any time when the prevailing visibility as seen from the cockpit is less than three miles. (This applies to aircraft in flight or operated on the ground, or if stationary and likely to cause a hazard.)

#### **TAKEOFF**

Perform the takeoff using the same techniques and procedures used during day flight, but be prepared for transition to complete instrument flight immediately upon leaving the runway. It is common to experience distracting reflections of ground lighting from the gunsight glass and windshield.

#### **FORMATION**

The basic principles of formation remain unchanged. However, exercise extra vigilance since it is difficult to accurately determine depth, closure rate, and relative motion. Fly a rendezvous bearing that is slightly aft and more stepped down than that employed during daytime operation. Rendezvous speed must be prebriefed.

Reduce the closure rate. If recognized to be dangerously high, immediately break off the rendezvous to assure separation. Cross under and to the outside of the leader's turn. When in formation, fly a position further aft and more stepped down to compensate for a lack of depth perception and visual references. Except for the last aircraft, exterior lights will be on dim and the anticollision lights will be off. The last aircraft will have lights set to bright with the anticollision lights on unless the tactical situation dictates otherwise (during actual weather penetrations, etc).

During night landings, fly the angle-of-attack and airspeed indicators, and use a mirror if available.

Visual signals for lead change at night:

- With two aircraft Lead aircraft switches lights to BRIGHT, and flashes them. Wingman switches lights to DIM when he accepts the lead.
- With more than two aircraft Leader places flight in echelon and proceeds as described for two aircraft.
- With external light failure Use flashlight procedures presently in effect.

## PART 4 — CARRIER-BASED PROCEDURES

#### BRIEFING

Briefings will include the items outlined in the briefing guide, with particular emphasis placed upon bingo procedures, carrier's probable launch and recovery course, position in force, PIM, and ready deck. Operations Department and Air Department briefings covering the following procedures are required prior to actual carrier air operations:

Deck Handling Air operations Communications Catapult launch CATCC SAR

Prior to initial night operation, additional briefings concerning night operations will be given by the flight deck officer, catapult officer, arresting gear officer, and the landing signal officer. The ready room will be lighted for night adaptation (red lights) during briefing. In addition, pilots may wear night adaptation glasses while going from the ready room to the flight deck to prevent loss of night vision.

#### FLIGHT DECK OPERATION

#### **PREFLIGHT**

Man the aircraft when directed by air operations (generally not in excess of 30 minutes prior to launch time). Conduct a normal preflight with particular emphasis given to the condition of the landing gear, shock struts, tires, arresting hook, and to the underside of the fuselage for launching pendant or arresting cable damage. A complete inspection of the aft fuselage may not always be possible due to aircraft spotting.

Leave the tiedowns installed until the engine is started. During night operation, conduct the exterior preflight using a red-lensed flashlight. Ensure that the exterior light switches are properly positioned for a poststart light check. Observe the general rule of not showing a white light on the flight deck at night. Set all colored lights to DIM and rotate the instrument and console lights out of OFF. This will prevent daytime illumination of the red and amber system lights when external power is applied. Emergency flood lights and spotlight may be used as desired.

#### **ENGINE START**

Engines will normally be started 10 minutes before launch time. Perform the system functional checks thoroughly. Adjust the rudder pedals and be prepared to hold the brakes when the tiedowns are removed.

#### **POSTSTART**

Adjust cockpit light intensity to desired level. Conduct an exterior lights check and then the systems checks outlined in normal procedures. Be ready to taxi when directed. As the carrier turns into the wind, either close the canopy or secure it with a lanyard to prevent damage by wind or jet blasts. Spread the outer wing panels on signal from plane director as soon as possible after engine turnup to prevent damage to the wingfold casting. Cycle the inflight refueling probe and check probe out light operation.

#### TAXI

Normally, any signal by the plane director that is above his waist is intended for the pilot; any signal below the waist is intended for deck handling personnel.

Taxiing aboard ship is similar to taxiing ashore. Nose gear steering permits the aircraft to be maneuvered easily and should be used to prevent the nose gear from castering and the nose from swaying with the ship's roll. Keep taxi speeds under control, particularly in the landing area where the deck is slippery from cable lubricant. Use both brakes to stop sideways motion of the nose, since use of a single brake will only provide a different pivot point and the sideways motion will continue.

During night deck operation, the tempo is considerably reduced from daytime operation. Slow and careful handling by aircraft directors and pilots is mandatory. If any doubt exists as to the plane director's signal, stop the aircraft.

#### HANGAR DECK OPERATION

Occasionally, the assigned aircraft will be manned on the hangar deck. Follow the same procedures as those concerning flight deck operation. If the aircraft is not already on the elevator, it will be towed or pushed (with the pilot in the cockpit) into position to be raised to the flight deck. The signal to stop an aircraft that is being moved by other than its own power is either a hand signal or a whistle blast. The whistle blast signifies an immediate or emergency stop. Leave canopy open and the hard hat off to ensure hearing the whistle and keep the plane director in sight at all times. If unable to see the plane director, or if in doubt of safe aircraft movement, stop the aircraft immediately.

#### LAUNCH OPERATIONS

Refer to the applicable aircraft launching bulletin for offcenter spotting and launching limitations, and for minimum permissible endspeeds.

#### CATAPULT HOOKUP

Current deck procedures aboard CVA class carriers provide for astern and angling approaches to both forward and waist catapults. Approach the catapult track slowly, lightly riding the brakes, with the nose gear steering engaged. Watch the plane director's signals, using peripheral vision to sight down the catapult track. Anticipate the initial hold immediately after the nosewheel drops over the shuttle. The come ahead signal will be received after the tension bar is placed in the holdback. Use very slow movement to prevent overstressing the tension bar.

At night, it is very difficult to determine speed or motion over the deck. Rely on the plane director's signals and follow them closely. As the catapult is approached, the plane director should position himself forward of the aircraft and remain stationary. Use him as a visual reference to determine aircraft movement. It is very difficult to properly spot the aircraft on the catapult when the carrier is in a turn or listing.

During all catapult hookups, personnel designated as checkers will visually inspect the aircraft to ensure that it is suitable for flight. The inspection includes, but is not limited to: Checking the entire aircraft for evidence of fuel or hydraulic leaks; security of access panels; proper extension of struts; condition of the hook point; relative symmetry of control surfaces; proper UHT trim setting; wheels, wheel wells, and tires for damage or foreign matter; a positive check of wing hinge pin locks; and that the wing is raised.

#### TRIM SETTINGS

The recommended horizontal tail trim setting for catapult launching is a function of center-of-gravity position and end airspeed (see figure 3-10).

The recommended trim settings for military thrust launching at 5 to 15 KIAS above minimum end airspeed are pitch trim  $6\frac{1}{2}^{\circ}$  nose up, roll trim neutral and rudder trim neutral. Slightly less nose up trim should be used for iaunches at end airspeeds in excess of 15 KIAS above minimum. Slightly more nose up trim  $(7\frac{1}{2}^{\circ}$  to  $8\frac{1}{2}^{\circ}$ ) should be used for launches at or near minimum end airspeed.

## CATAPULT TRIM SETTING



53212-3-17

## Section III Carrier-Based Procedures

#### **CATAPULT LAUNCH (MRT)**

Complete all cockpit checks, except for engine turnup, prior to catapult hookup and tensioning. On runthrough-the-deck periods, actuate the controls and positively check that the aileron and rudder neutral trim lights illuminate as the control surfaces pass through neutral. Failure of either light to illuminate is a downing discrepancy unless the controls are near center and it can positively be established that the fault lies in the indicating circuit. During the control check, flight deck personnel will note freedom and response of all control surfaces, that they return to relative symmetry when pressures are released, and that the UHT trim is properly set.

Upon receipt of the standard tensioning signal, apply military thrust and at the same time release the brakes and nose gear steering. When the turnup signal is received from the catapult officer, thoroughly check all engine instruments. Grip the throttle and the catapult handgrip firmly. When satisfied that the aircraft is functioning properly, place your head against the headrest, salute, and wait. Normally, a 3 to 5 second delay will occur before the catapult fires.

Normal catapult launches provide 15 knots excess endspeed. The aircraft leaves the catapult in a near-level attitude. A slight nose-up rotation may be beneficial, depending upon degree and angle of deck pitch and the UHT trim setting. Retract the landing gear and lower the wing according to land-based procedures. Clearing turns off the catapult will depend upon the ship's catapult configuration and the policy established within the air wing. Check alignment of the radio magnetic indicator once in stabilized flight.

#### CATAPULT LAUNCH (CRT)

The afterburner is not used under normal launch conditions and is not recommended at night. The catapult officer must know when an afterburner launch is to be made.

After reaching MRT and upon receipt of the twofinger turnup signal, check the engine instruments. When the catapult officer signals with 5 fingers (open hand towards the pilot), assume position for launch, select afterburner, check engine instruments, and salute. The catapult officer observes afterburner light and pilot's salute, then gives the fire signal. It is recommended that a minimum speed of 300 KIAS be obtained before deselecting afterburner.

#### NIGHT CATAPULT LAUNCH

Follow the same cockpit procedures and signals used during a daytime launch. When satisfied the aircraft is ready for launch, signal the catapult officer by placing the exterior lights master switch to ON.

Be prepared to establish a wings level climbing attitude on instruments. A 5° to 7° nose up rotation is recommended after clearing the catapult. Do not make clearing turns. When established in a wings level climb, retract the landing gear. Lower the wing at a minimum altitude of 500 feet. At 2,500 feet or above, turn exterior lights to bright and turn on anticollision lights.

#### AIRCRAFT OR CATAPULT MALFUNCTION

If, after establishing power at MRT or CRT, it is determined the aircraft is down, signal this fact to the catapult officer by shaking the head from side to side. Never raise a hand into the catapult officer's view to give a thumbs down signal or it may be misconstrued to be a salute and the catapult will be fired.

The catapult officer will relay a no-go situation to the deck edge catapult operator by crossing his forearms in front of his face. He will then give the release tension signal and walk in front of the wing to give the throttle back signal. Then, and only then, reduce the throttle to idle.

The same signals will be used to signify a catapult malfunction. Leave the throttle at MRT/CRT until the catapult officer walks in front of the wing and signals for power to be reduced to idle.

If a no-go situation arises during night operation, do not turn on the exterior lights. Call on the land/launch frequency and advise that "——(call sign) on catapult number —— is down." Maintain MRT until the catapult officer walks in front of the wing and gives the signal to reduce power.

#### LAUNCHING CHARACTERISTICS

When spotted off center, the aircraft oscillates directionally during the catapult power stroke. The oscillations increase in magnitude with increasing forward center-of-gravity position, increasing main gear off-center distance and decreasing catapult pressures. Yaw will be noticed during the power stroke which will increase and reverse direction twice as the aircraft travels down the catapult. As the aircraft leaves the catapult, it tends to roll in the direction of the yaw. When spotted 6 inches off center (using minimum catapult pressures with a 20% MAC center of gravity), approximately one-half lateral stick deflection will be necessary to stop the roll. This control input is a natural reaction and should cause no difficulty.

#### MINIMUM END AIRSPEED LAUNCHING

Minimum end airspeed is determined by ability to rotate the aircraft to the optimum angle of attack when the gross weight is less than 25,000 pounds. At greater gross weights, proximity to the speed at which the aircraft drag is equal to or greater than the engine thrust becomes the limiting factor.

At gross weights below 25,000 pounds, sink-off-bow will be about 10 feet with moderate rotation required to prevent excessive sink. Do not overrotate. Avoid the use of excessive nose-up trim which will cause a high rate of rotation requiring rapid forward stick to avoid stall. Very light buffer will be encountered during rotation. Acceleration is reduced but comfortable, and as the usual end airspeed is attained acceleration becomes normal.

At gross weights above 25,000 pounds, moderate rotation will prevent sink-off-bow. Very light buffet will be encountered, and acceleration is reduced but comfortable.

#### CARRIER LANDING

Refer to field carrier landing practice, this section, for additional information, to figure 3–11 for illustration of typical carrier landing, and to section I, part 4 for carrier operating limitations.

While maneuvering to enter the traffic pattern, attempt to determine the sea state. This information will be of value in predicting problems that may be encountered during the ensuing approach and landing.

If the sea state is smooth, the carrier is creating all (or most) of the wind over the deck by hard steaming. Avoid entering the pattern at gross weights near the maximum since the approach speed could exceed the maximum engaging speed. Expect the wind to be down the axial deck which will result in a 10° crosswind when lined up with the angled deck. Stack wash will be encountered, so expect some turbulence when approaching the ship's wake. Pay particular attention to lineup.

With a moderate sea state, the carrier should be able to place the wind down the angled deck so lineup will not be a problem. As the wind over deck increases, additional power will be required to fly a proper approach.

If blowing spray is observed the sea state is rough and the carrier will be steaming to maintain steerageway. The wind over deck will be gusty which will necessitate more frequent power and control corrections to maintain the glide slope. Turn earlier at the 180° position to avoid being long in the groove.

#### **PATTERN**

Enter with a level break from a course parallel to Foxtrot Corpen, close aboard the starboard side of the ship at 800 feet MSL. If in formation, maintain a break interval of 12 to 16 seconds. When on downwind leg, descend to 600 feet and perform cockpit check. Engage and check operation of the approach power compensator. Cross-check angle-of-attack and airspeed indicator. Check cockpit emergency ventilation port closed before using angle-of-attack indications. Fly a racetrack pattern with the 180° position approximately 11/4 miles abeam (check distance with TACAN, if desired)

at 600 feet MSL. With a 30-knot wind over deck, begin the 180° turn to the final approach when approximately abeam the LSO platform. To be lined up with the angled deck centerline, roll out immediately to the right of the ship's wake. When the meatball is acquired, transmit call sign, fuel state (nearest 100 pounds), "Crusader" and "meatball." Signify no meatball by transmitting the code word "Clara."

#### GLIDE SLOPE

The physical glide slope projected from the ship is approximately 4°. Due to the wind over the deck, the aircraft flies approximately a 3.25° slope through the air. However, at any given point in the approach, the pilot is looking at the ship on a 4° slope. This, of course, gives the pilot the feeling that he is too high. This feeling should be disregarded, and only the meatball should be relied upon for proper glide slope control. Closure rate on the ship is on the order of 105 knots, whereas on the field, closure rate is usually equal to true airspeed (light wind). This difference in "distance/time" relationship further emphasizes the need for looking at, and flying the meatball all the way to touchdown, rather than estimating power required by looking at the deck. It is necessary to carry a little more power on the glide slope on the ship than ashore, in order to maintain the proper glide slope and airspeed.

#### FLYING THE MEATBALL

Use of the approach power compensator is recommended for all carrier landings. An occasional manual approach will suffice to maintain proficiency. The approach power compensator should not be used if operating in manual fuel control or if the wing cannot be raised.

#### CAUTION

It may become desirable to make a manual approach, instead of an APC approach, under unfavorable approach conditions such as gusty or extremely high winds.

The technique for flying the meatball during steady deck operation approximates that used during FMLP. However, with increasing rough seas the glide slope varies, particularly in the vertical plane. With a pointstabilized Fresnel lens, the glide slope is stabilized only to the extent that it passes through a point in space 1,800 to 2,200 feet astern (approximately half way out on the final approach). As the deck pitches, the glide slope deflects as necessary to remain focused on this point. It is apparent that the vertical movement of the glide slope increases in magnitude as distance from the focal point increases. With a line stabilized lens, the glide slope is stabilized for all ship movement except heave. No meatball movement due to deck motion should be discernible to the pilot, except under the most severe conditions.



Figure 3-11

#### **Initial Approach**

After rolling wings level on the final approach, begin a rate of descent of approximately 600 feet per minute. Average out the meatball movement. Maintain a glide path that shows the same degree, or distance, of meatball movement above and below the datum lights.

#### Middle Approach

As the aircraft progresses into the middle third of the approach, meatball movement due to carrier pitch is at a minimum. Use this part of the approach to advantage. Adjust nose attitude and establish the proper rate of descent.

#### Final Approach

As the aircraft moves into the final third of the approach, the meatball will again begin to cycle on the optical landing system. Hold the power setting and the rate of descent established during the middle third of the approach, unless instructed otherwise by the LSO. If the meatball goes high when approaching the ramp, do not attempt to center it. The ramp could be cycling down, and an increased rate of descent, coupled with a rising ramp on touchdown, could exceed aircraft design limits. If the meatball starts to go low, do not hesitate to override the approach power compensator by adding power. In this case, the aircraft could be descending below the glide path, or the ramp could be cycling up. In either event, the aircraft is getting too close to the ramp and the only correction is power. Accept the fact that wave-off and bolter rates increase when landing with a pitching deck. The higher rates are acceptable, particularly when the alternatives are considered (hard landings, ramp contacts, etc).

#### **FOULED-DECK WAVE-OFF**

Don't anticipate a fouled-deck wave-off. Aircraft will repeatedly clear the landing area fractions of a second before the wave-off point is reached, and a clearance to land will be received. Let the LSO give the wave-off.

Wave-off characteristics are good and the engine accelerates from approach thrust (about 84% rpm) to military thrust in about 2.5 seconds.

#### **CLOSE-IN WAVE-OFF**

Avoid a close-in wave-off whenever possible. However, if it becomes necessary, move the throttle smartly to MRT or CRT and maintain optimum landing attitude. Do not overrotate. Maintain a wings level flight attitude.

## WARNING

Accept a touchdown short of the number one cross-deck pendant, accept a bolter, but do not overrotate and do not turn. In the event of a ramp strike, select afterburner.

#### BINGO FUEL

When the bingo fuel state is reached, clean up the aircraft and depart on course. Do not orbit the carrier awaiting instructions. Fly towards the bingo field and if you are in doubt as to the exact heading, ask for it prior to switching frequency. Shipboard control may be contacted for radar monitoring. Check heading to the bingo field with control and ensure that the RMI is set properly. If possible, relay a "feet dry" message to the ship.

#### ARRESTMENT OPERATIONS

Fly the aircraft on the glide slope all the way to touchdown and do not attempt a flare. Add power to MRT as the aircraft touches down. When forward motion has ceased, reduce power to idle and allow the aircraft to roll aft. Apply brakes on signal and immediately add taxi power. Hold brakes to prevent forward movement and raise the hook when directed. When the come ahead signal is received, release brakes and expedite exit from the landing area. Use brakes for initial directional control and engage nosewheel steering after forward motion is established. When clear of the landing area, turn stabs off and fold outer wing panels on signal.

While the hook is retracting, the aircraft must remain static or a reengagement is likely. If a reengagement occurs, reduce power, drop the hook when directed, and allow the aircraft to be pulled aft. Raise the hook again on signal.

Normally, all night recoveries will be from CATCC controlled approaches. The LSO shall assume control when the aircraft is approximately one mile from the ramp. Exterior lights should be on bright with the anticollision lights off. Following arrestment, reduce power to idle and immediately turn off the exterior lights. Allow the aircraft to roll aft, apply brakes, raise the hook when directed, and taxi slowly out of the landing area. Do not stare at the director's wands, but use them as

#### Section III

#### Carrier-Based Procedures

the center of a scan pattern. When clear of the landing area, signal aircraft status to flight deck control.

#### **POSTFLIGHT**

Taxi the aircraft as directed. Do not use excessive power. Keep the engine running until the chocks and at least one tiedown are installed. Landing gear downlocks should also be installed prior to engine shutdown. Execute a shutdown when the cut signal is received. Always control canopy opening rate by holding the rails with both hands. Install the canopy restraint strap as soon as canopy opens, being careful to

hold the canopy down. The wind over the deck will exert strong forces on the canopy tending to force it open.

If the aircraft is to be spotted on the hangar deck, open the canopy and remove the hard hat as you are descending on the elevator. Normally, taxi the aircraft from the elevator into the hangar bay. Expect the cut signal when clear of the elevator. Lower the wing and raise the droop prior to engine rundown. From this point, aircraft handlers will move the aircraft. Keep speed under control and be alert for stop signals. Hold the brakes after being spotted until a 3-point tiedown has been completed.

# section IV

# flight procedures and characteristics

### CONTENTS

## PART 1 — FLIGHT PROCEDURES

Transition and Familiarization

| Parade and Tactical Formation   | 4-3  |
|---------------------------------|------|
| Formation Rendezvous            |      |
| nflight Refueling               |      |
| Flight Test                     | 4-9  |
|                                 |      |
| PART 2 — FLIGHT CHARACTERISTICS |      |
| ntroduction                     | 4–10 |
| Definitions                     | 4-10 |
| Flight Controls                 | 4-10 |
| Speed Brake                     |      |
| Cruise Droop                    | 4-11 |
| Emergency Power Package         | 4-12 |
| tabilization                    | 4-12 |
| Trimming                        | 4-12 |
| evel Flight                     | 4-12 |
| Maneuvering Flight              | 4-13 |
| Armament                        | 4-13 |
| talls                           | 4-15 |
| pins                            | 4-18 |
|                                 |      |

## PART 1 — FLIGHT PROCEDURES

This section standardizes general flight and operating procedures to minimize confusion, maintain air discipline, and to achieve maximum effectiveness in the air. The general briefing guide (section III, part 1) will be used to brief each flight. Any mission not covered by the briefing guide must be briefed by a qualified individual who has thorough knowledge of all aspects of the mission.

#### TRANSITION AND FAMILIARIZATION

The paragraphs below contain operational information which will be used in conjunction with normal procedures during the FAM stage of training.

#### BRIEFING

The familiarization briefing will be all-inclusive and will cover all emergency procedures contained in section V.

#### **PREFLIGHT**

The chase pilot, or another qualified pilot, will monitor the FAM pilot during his first preflight inspection.

#### START

The chase pilot, or another qualified pilot, will monitor the FAM pilot's first flight start and poststart checks.

#### TAXI

The FAM pilot should call for taxi instructions and lead the flight to the runway.

#### TAKEOFF

The FAM pilot will call for takeoff instructions when ready, and will be the lead aircraft for the takeoff.

#### INFLIGHT

During the FAM stage, the FAM pilot is required to call off the individual items of the 3-point checklist (Fuel Transfer Switch—ON, Wing—Down and Locked, and Cabin Pressurization—ON) when he reports completion of the checklist to the chase pilot.

The FAM pilot will perform all prebriefed maneuvers, to obtain a general feel of the aircraft in both clean and dirty configurations.

FAM flights will be planned so that approximately 2,000 pounds of fuel remain upon return to the home field. Fuel remaining checks will be given by stating main fuel quantity first and transfer quantity second, eg, two eight and one six (2,800 pounds main and 1,600 pounds transfer).

#### RETURN TO THE FIELD AND LANDINGS

The FAM pilot will lead the flight back to the home field and will make the required radio calls to the tower. The chase pilot will fly a wing position that enables him to closely monitor the FAM pilot's landing pattern and approach to coach him as necessary. A chase pilot, or a qualified RDO, must be available while a FAM pilot is practicing landings, and two-way radio contact must be maintained. If these conditions are not satisfied, the FAM pilot will make a final landing on the first acceptable approach. A final landing will be made when the FAM pilot's fuel state at the 180° position first reaches 1,200 pounds or less.

#### **CONFIDENCE MANEUVERS**

Aileron rolls, loops, Immelmann turns, and Cuban eights will be practiced as confidence manuevers. The airspace will be cleared before starting, and the chase pilot will maintain a position that allows adequate clearance between aircraft and affords observation of the surrounding airspace.

The minimum airspeed for all confidence maneuvers is 220 KIAS.

Plan the entry to any maneuver so that the aircraft is level or climbing at a minimum altitude of 10,000 feet above the terrain. Enter overhead maneuvers between 10,000 and 15,000 feet at 500 KIAS and use a 4 g pullup. Use afterburner for the first half of the maneuver when fuel weight is 3,500 pounds or more. Enter rolls at an airspeed of 300 to 350 KIAS.

Do not exceed the flight restrictions outlined in section I, part 4.

#### PARADE AND TACTICAL FORMATION

#### Note

Refer to section VII for formation visual signals.

#### PARADE FORMATIONS

Only the four basic parade formations (fingertip, echelon, diamond and column) and free cruise formation are covered. These formations are used for airshows, flybys, weather penetrations, rendezvous practice, nontactical point-to-point flight, and in traffic patterns.

#### FINGERTIP AND ECHELON

Fly the wing position on a line of bearing 35° to 40° aft the lead aircraft's beam, stepped down 5 to 8 feet, with a wingtip clearance of 5 feet (figures 4–1 and 4–2). When flying through weather, maintain the same wingtip clearance and stepdown, but hold a position 45° aft the lead aircraft's beam (figure 4–3). As visibility decreases, decrease lateral separation and increase stepdown as necessary to maintain visual contact with the lead aircraft.

#### DIAMOND

Fly the wing position on a line of bearing 45° aft the lead aircraft's beam, stepped down 8 to 10 feet, with a wingtip clearance of 5 feet. Fly the slot position in column on the lead aircraft, stepped down as necessary to avoid excessive jetwash. The slot position is equidistant, and on a 45° bearing, from each wingman (figure 4–4).

#### COLUMN

Fly directly behind and stepped down from the preceding aircraft. Maintain nose to tail clearance at all times, though distance between aircraft will vary with the type of maneuver being performed. For example, while parade column positions may be as close as 10 to 15 feet during a flyby, a separation of not less than 50 feet is maintained while maneuvering or in tail chase. Maintain sufficient stepdown to avoid excessive turbulence from jetwash (figure 4–5).

#### FREE CRUISE

The free cruise formation is primarily used for non-tactical point-to-point flight for two or more aircraft. This formation facilitates cruise control, permits each pilot to look around, and allows considerable maneuvering. Free cruise positions require nose-to-tail clearance so that each aircraft can slide independently to maintain position (figure 4–6).

#### CROSS UNDER

When necessary to cross from one side of the leader to the other, adjust power to slide aft until nose-totail separation of 5 feet is attained. Maintain lateral separation and descend to obtain a vertical separation of 8 to 10 feet. Maintain vertical and lateral separation and cross under the leader's flight path. When proper horizontal separation is obtained on the opposite side of the leader, move vertically until the proper stepdown is attained and then move forward to the wing position.

#### TACTICAL FORMATIONS

Tactical formation is not an exact science. Both offensive and defensive techniques are involved, either at the same time or successively, in the overall offensive action. As such, there is not one solution to a specific tactical problem. Tactical formation is of necessity a compromise between maximum flexibility and maximum mutual support. Information concerning specific tactical maneuvers and doctrine may be found in classified Naval Warfare Publications and the F-8 Tactical Manual, NAVAIR 01-45HHA-1T (Confidential).

#### FORMATION RENDEZVOUS

#### **RUNNING RENDEZVOUS**

This type of rendezvous is most effective when aircraft are launched within visual or radar range. Using a predetermined power setting, the leader flies a designated course or TACAN radial at 350 KIAS until the climb schedule is reached. The wingman accelerates to the applicable climb schedule using MRT (CRT only as necessary to expedite the rendezvous). The throttle is retarded when approaching the leader (or desired tactical position) to avoid using the speed brake to prevent overrunning. If tactical conditions dictate a CRT running rendezvous, the leader designates a base course or TACAN radial, uses reduced CRT, and maintains the climb schedule. Trailing aircraft will maintain the base course and use full CRT until rendezvous is effected. When the last aircraft calls "aboard," the leader advances power to full CRT.

#### TACAN RENDEZVOUS

This rendezvous is an expeditious method of joining aircraft under all VFR conditions. The flight leader specifies the TACAN facility, channel number, altitude, radial, and distance to be used. This establishes a point in space where the rendezvous is to be effected. The joinup is accomplished as shown in figure 4–7.

#### ARA-25 (ADF) RENDEZVOUS

The ARA-25 is useful to join aircraft under all conditions, but is particularly effective for a straight course running rendezvous. Trailing aircraft select ADF position with the UHF control. The flight leader transmits a short count every minute and includes altitude if climbing. Trailing aircraft maneuver as necessary to keep the number one needle 5° left or 5° right of the nose position (the number 2 aircraft holds

NOTES

53212-4-19

53212-4-20

## FINGERTIP PARADE



Figure 4-1

## **ECHELON PARADE** NOTES 35° to 40° 2 1. Line up wingtip nav light with junction of trailing edge of the wing root and fuselage. 2. Number 3 and 4 men line up canopies to balance formation. 3 5 Feet Wingtip 0 Separation 5 to 8 Feet Stepdown

Figure 4-2

## INSTRUMENT PARADE —



NOTE

Bearing is maintained by flying on line with trailing edge of wing.

3 to 5 Feet Wingtip Separation

5 to 8 Feet Stepdown

53217-4-21

Figure 4-3

## DIAMOND PARADE -



53212-4-22

Figure 4-4

## PARADE AND TAIL CHASE COLUMN -

#### PARADE COLUMN

#### NOTE

Match lead aircraft's wing and stepdown to avoid excessive turbulence.



#### TAIL CHASE COLUMN



53212-4-23

Figure 4-5

## FREE CRUISE -



53212-4-24

## TACAN RENDEZVOUS



- Each pilot flies ahead for 1 minute, then turns to take a 30° cut to the assigned radial. Instrument climb schedule must be maintained.
- 2. Aircraft track outbound on assigned radial using course line indicator.
- Division leader calls distance at which to begin joinup circle and when
  passing each position. This informs each pilot of the leader's actual position
  in the rendezvous circle.
- 4. All aircraft begin orbit at designated distance and modify orbit as necessary to effect joinup.
- If not on top by 45,000 feet, leader will assign an altitude to each aircraft, allowing 2000 feet separation between aircraft (if not under positive control).
- 6. Leader uses 30° bank and 300 knots to 30,000 feet and 0.86 above.

53212-4-25

Figure 4-7

the leader 5° left, number 3 aircraft 5° right, etc.) until the leader is visually sighted.

If a circling rendezvous is to be made, the leader maintains a 30° bank at a prebriefed airspeed and altitude, transmitting a short count and heading every minute. Trailing aircraft correct heading as necessary to place the number one needle on the nose position each time the leader transmits. Proximity to the leader can be determined by the degree of change in azimuth of the number one needle. As distance to the leader decreases, the needle will change more degrees between counts, requiring larger corrections to keep the leader on the nose. When the leader is detected visually, a standard rendezvous is accomplished.

#### LOW VISIBILITY RENDEZVOUS

The initial procedures will be as previously described for standard rendezvous. Accomplish this type of rendezvous only in an emergency, when directed by higher authority, or when the urgency of the mission so dictates. Fly the aircraft at a safe maneuvering airspeed at an altitude that will permit safe ejection. Establish radio contact and determine the indicated airspeed, altitude, and flight path of the aircraft to be joined. Place all lights on bright and the anticollision lights on. Rendezvous first on a position 1,000 feet out, slightly aft the beam (4 or 8 o'clock) of the lead aircraft. Cautiously close while assuring nose-totail clearance. Maintain a constant relative bearing since changes in bearing make determination of closure rate difficult. Do not allow a rapid closing situation to develop.

## CAUTION

Low visibility rendezvous is conducive to vertigo. A high degree of caution and good judgment must be exercised.

#### SAFETY DURING RENDEZVOUS

Keep the aircraft ahead in view constantly and join the formation in order. Reduce excess speed before reaching the wing position to avoid overshooting. Abort the rendezvous if necessary by leveling the wings, sighting all aircraft ahead, and moving to the outside of the formation.

Use only enough stepdown to ensure separation on the aircraft ahead.

If "sucked" during rendezvous, move to the outside of the leader and join after all other aircraft are in formation.

Stop all relative motion prior to joining an inside wing position. A cross under to the outside may then be made.

Use caution during the final steps of joinup of a running rendezvous. Relative motion is difficult to discern when approaching from the rear.

#### INFLIGHT REFUELING

Refer to section I, part 2, for system description. A-1, A-3, A-4, A-5, KC-97, KC-130F and KC-135 tankers are compatible for inflight refueling to the limits described under LIMITATIONS. The location of the refueling probe, which is 40 inches from the fuselage and abeam the pilot when extended, creates several problems. The probe is not within the pilot's peripheral vision upon engagement; the drogue is influenced by the airflow around the fuselage, tending to drift outboard during run-in; the drogue is in close proximity to the canopy, creating a possibility of canopy damage on missed engagements.

#### LIMITATIONS

Dry hook-ups may be made from any airplane having a drogue arrangement that is compatible with the F-8 probe. Operational procedures must include proper techniques for using the nonretracting type drogue installation, if such is to be used. During WET hookups, transfer fuel pressure must not exceed 35 psi on those aircraft without AFC No. 449 and 50 psi (normal Navy refueling pressure) with AFC No. 449.

Receiver aircraft are limited to maximum internal fuel load of 7500 pounds JP-4 or 8000 pounds JP-5 when refueling from the KC-97 and KC-135.

When refueling from the KC-130F, all F-8 aircraft with AFC No. 449 are cleared to completely refuel, including topping off, from all sources. After complete system refueling is accomplished, limit hookup with pressurized tanker hose to 15 minutes. If necessary to remain hooked up longer, ensure that the hose is depressurized, then top off just prior to disconnect. F-8 aircraft without AFC No. 449 may top off from the KC-130 wing tanks, but should observe the maximum internal fuel load limits cited for the KC-97 and KC-135 when refueling from the KC-130F fuselage package. Limit hookup to pressurized tanker hose to 4 minutes.

The above loadings and pressure limits must be observed to ensure that the surge characteristics of the refueler airplane will not damage the F-8 receiver airplane.

Airspeed and acceleration limitations applying to the inflight refueling probe are presented in section I, part 4.

#### Section IV Flight Procedures

All Other Approved Tankers:

Receiver aircraft limited to maximum internal fuel load of 7,500 pounds JP-4 or 8,000 pounds JP-5.

Airspeed and acceleration limitations applying to the inflight refueling probe are presented in section I, part 4.

#### PRE-REFUELING CHECK

## CAUTION

If the wing tank is empty, no stop transfer check (wing cell pressure dump) is possible. Maximum internal fuel load should be limited to 6,500 pounds JP-5 or 6,000 pounds JP-4 if operational considerations permit.

Prior to taking on fuel and depletion of wing transfer fuel, place the transfer switch in PRESS DUMP and note the transfer fuel quantity reading. Fuel transfer should cease immediately. Note the main and transfer quantities for a period of 3 minutes, allowing main fuel to burn down below the level of the main fuel transfer float (3,100 pounds maximum). Main fuel quantity should decrease and transfer quantity should remain constant. Return the fuel transfer switch to ON. When ready for refueling, place the probe switch in PROBE OUT and note that fuel transfer stops. For the stop

transfer check to be valid, the pressurization system must be functioning and a minimum of 500 pounds of fuel should be retained in the wing tank.

#### REFUELING PRECAUTIONS

#### WARNING

If at any time fuel is observed venting from the fuselage vent mast or starboard wing vent in significant amounts, immediately break away and secure inflight refueling. Fuel cell rupture could be imminent.

During inflight refueling, the main fuel quantity gage should increase to a maximum of 3,100 pounds and then continue filling to a full indication at a significantly reduced rate. The pilot shall monitor the main fuel quantity gage closely during inflight refueling to ensure that main fuel quantity does not increase through 3,100 pounds without this obvious slowing. If no reduction is observed, cease refueling immediately.

#### AIR REFUELING TECHNIQUE

When available, another pilot shall monitor the refueling and he shall call clock position of missed engagements. Whenever possible, conduct refueling in smooth air at optimum altitude and airspeed and with less than 50% receiver fuel remaining. To prepare the receiver aircraft, place the cruise droop out, turn off unnecessary electrical equipment, and extend the probe. Since canopies have been broken by the drogue during missed approaches, place the helmet visor down for protection.

#### Note

The permissible acceleration range with the probe extended is -1.0 g to 3.0 g.

Before sliding into position, call "lining up." Line up behind the tanker with the probe 10 to 15 feet directly behind the drogue and trim the aircraft. The drogue will be slightly forward of the nose of the receiver aircraft. Check that the tanker amber ready light is on or obtain confirmation from the tanker pilot that he is ready for refueling before plugging in.

Execute the approach so that the drogue passes close to the fuselage. Any misalignment, sideways movement, or other deviation constituting a haphazard approach can result in a smashed canopy. Using the tanker and the hose as references, increase power to establish a 3 to 5 knot closure rate. This rate will minimize outboard drogue movement, receiver control problems, and will seat the probe smartly in the drogue coupling. The drogue will have a tendency to move to the left as the nose of the receiver passes it. Do not fence with the probe. Concentrate on flying toward a reference point on the tanker. The gunsight may be used as an aid to alignment.

When engagement is made, a slight ripple of the hose will occur. Adjust power to remain in refueling position and fly formation on the tanker. After engaging the drogue, and the amber light goes out, call "contact."

#### Note

At high closure rates, hose whip will occasionally follow engagement.

If engagement does not occur, reduce power and move slightly to starboard of normal hose trail position then down and straight back. Speed brakes may be used, but are generally not required at high altitude.

## AIR REFUELING TECHNIQUE LANDING CONFIGURATIONS

Inflight refueling with the wing down, landing gear extended, and EPP deployed has little effect on normal inflight refueling procedures. EPP extension has negligible effect; however, gear extension will increase power requirements approximately 5%. Air refueling procedures remain the same as for the clean aircraft.

Inflight refueling with the wing up, landing gear extended, and EPP deployed changes the aircraft attitude, requiring observation of the tanker store through the top of the canopy rather than front wind screen. Drogue positioning prior to plug-in and approach procedures remain the same as for a clean aircraft. An airspeed of 200 KIAS minimum to 220 KIAS maximum is recommended to ensure complete engagement of the probe and drogue for proper fuel passage.

#### BREAKAWAY

To break away from a successful engagement, reduce power and drop back at a rate of 3 to 5 knots. Maintain alignment and altitude. The probe/drogue connection will separate when the hose reaches full extension. After breakaway, when clear of the area behind the hose and drogue, call "clear."

#### OPERATION OF THE PROBE SWITCH

Extend the probe prior to the initial run and leave the switch in the OUT position until all runs are completed. When retracting the probe, hold the switch IN for 5 seconds after the door light goes out to ensure that the probe door locks.

#### AIR REFUELING SIGNALS

Refer to section VII.

#### FLIGHT TEST

Test flights will be conducted in accordance with current BuWeps Instruction 4700.2 series.

## PART 2 - FLIGHT CHARACTERISTICS

#### INTRODUCTION

#### Note

Refer to section I, part 4, for limitations and restrictions.

The Crusader's operating regime covers an extremely wide band of flight conditions ranging from the low speeds required for carrier operations, through the speeds required for long-range cruising flight, to high speed flight at low and high altitudes. Flight stabilization, stick variable gain and a two-position wing are utilized to permit satisfactory operation throughout the flight envelope.

#### **DEFINITIONS**

The following definitions are of terms employed frequently in this section:

Dynamic pressure (q) — The product of  $\frac{1}{2}\rho v^2$ <sub>t</sub> (sometimes called ram pressure).

Equivalent airspeed (EAS) — Calibrated airspeed corrected for compressibility factors. A constant equivalent airspeed maintains a constant dynamic pressure regardless of altitude. At sea level, true airspeed, calibrated airspeed and equivalent airspeed are all equal. At altitude, equivalent airspeed is always less than true airspeed.

Yaw during roll — The yaw which almost always accompanies any rolling maneuver of any aircraft. It is caused by aileron or spoiler drag and by moments on tail and fuselage caused by rolling velocity and flow effects from the ailerons.

Adverse yaw — During a roll, yaw which causes the nose to move in the direction opposite to the direction of roll.

Favorable yaw — During a roll, yaw which causes the nose to move in the direction of the roll.

Rolling pullout — A maneuver in which g is being pulled while the aircraft is rolling, such as in turn reversals.

Symmetrical pullout — A maneuver in which g is pulled without rolling. A symmetrical pullout may be accomplished in a steady turn.

Trim change — A tendency of the aircraft to pitch, yaw, or roll because of the influence of movable components or of changing flight conditions.

#### **FLIGHT CONTROLS**

#### **GENERAL**

All flight controls, ailerons and spoilers, unit horizontal tail, and rudder, are fully powered through dual power control systems in order to overcome the high airloads encountered in high-speed flight. Artificial feel is provided by springs in the lateral (roll) and directional (yaw) control systems and by springs, viscous dampers, and bobweights in the longitudinal (pitch) control system. This feel system provides a force reference against which the pilot may judge his control motions. Feel forces are kept low to make the aircraft pleasant to fly and easy to maneuver. Variable-gain linkages are provided in the pitch control system to permit very small control adjustments when the aircraft is near trimmed conditions. The ailerons and rudder may also be moved about by signals from the stabilization systems, but this occurs automatically without affecting stick or rudder positions or feel.

#### UNIT HORIZONTAL TAIL

The unit horizontal tail is effective from the stall to the highest Mach number at the highest altitude. Horizontal tail effectiveness, or the g per degree of tail movement, varies considerably with flight conditions, and is least in the landing configuration and in high-altitude supersonic flight and most in low altitude, high-speed subsonic flight. Adequate effectiveness is present to rotate the aircraft for takeoff or for landing (even to the extent of bumping the tail) and to pull limit g in supersonic flight at altitudes even above 45,000 feet. In the areas of greatest effectiveness, such as near Mach 0.95 at low altitudes, care must be taken to prevent overcontrolling. The variable-gain linkage reduces these tendencies in the areas of greatest horizontal tail sensitivity or effectiveness by introducing a band of insensitive control response near neutral stick. These characteristics are described more fully under MANEUVERING FLIGHT in the Supplemental NATOPS Flight Manual. Longitudinal stick forces are also presented in the Supplemental NATOPS flight manual.

#### AILERONS AND SPOILERS

The ailerons and spoilers work together to provide lateral control. The ailerons are effective through most flight conditions but become completely ineffective at the stall and almost so in high-speed low-altitude

flight. The spoilers improve roll performance at high speeds but are ineffective at the stall. However, ailerons are the most effective control in inducing or recovering from a spin. Roll rate is the characteristic that is most affected by the addition of the spoilers, although a slightly greater pitch down is encountered in lowaltitude rolls.

Lateral stick forces are light in both the landing and clean configurations. Clean configuration stops provide a reference for observation of roll restrictions.

#### RUDDER

The rudder becomes effective at about 60 knots on the takeoff roll and remains so through all flight conditions. It provides adequate directional control for crosswind landings. Pedal forces are light in the clean configuration and are reduced even more in the landing configuration.

#### POWER CONTROLS

The loss of either of the power control systems will produce only a slight reduction in maximum longitudinal control. This reduction occurs only at supersonic speeds between 22,000 and 42,000 feet altitude. The greatest reduction occurs at Mach 1.1 at an altitude of approximately 35,000 feet.

The loss of one of the power control systems results in a general decrease in response to maximum control inputs above 400 KIAS. Loss of response will generally not be apparent except at high airspeeds or during extreme maneuvers when PC 2 is inoperative.

The effects of the loss of one power control system on maximum lateral control vary significantly depending upon which system is inoperative, as follows:

- With PC 1 inoperative, there is no decrease in maximum lateral control effectiveness below 400 KIAS, but there is a decrease of up to 50% between 25,000 and 35,000 feet altitude at supersonic speeds. The decrease in effectiveness is less at other altitudes. In addition, roll stabilization is inoperative.
- The loss of PC 2, which is the only system that supplies pressure for operation of the spoilers, results in significant decreases in maximum lateral control effectiveness at speeds above 400 KIAS, but only minor decreases below that speed. At speeds above Mach 0.92 below 9,500 feet altitude, or at very high airspeeds (above 680 KIAS), lateral control may be inadequate to correct for an extreme lateral out-of-trim condition.

Directional control is not appreciably affected by loss of either power control system. However, yaw stabilization and aileron-rudder interconnect are lost with PC 2 inoperative. With loss of PC 2, acceleration restrictions governing loss of yaw stabilization apply.

#### SPEED BRAKE

The speed brake, functioning as a controllable high-drag device, provides a quick and effective means of making airspeed adjustments in tactical situations and of limiting airspeed in dives. Precise speed adjustments, such as those desired in formation flying, are difficult to make by use of the speed brake because of its high rate of motion. The brake will open to its full open position of 60° in about 1.5 seconds if the airspeed is below 475 knots EAS. Above this speed, the brake opens only an amount proportional to the speed because ram pressure overcomes the actuator. At 725 knots EAS, the brake will open only about 15° and has lost considerable effectiveness.

Full extension of the speed brake results in moderate buffeting that increases in intensity with increasing airspeed at subsonic speeds. Partially closing the speed brake will decrease or eliminate buffeting without causing an appreciable loss in speed brake effectiveness. No buffeting will be encountered with speed brake operation at supersonic speeds.

Because there is insufficient ground clearance to permit landing with the speed brake extended more than 30°, the brake is automatically closed as the wing is raised unless the speed brake override switch is used.

Refer to Supplemental NATOPS Flight Manual for additional information.

#### CRUISE DROOP

The cruise droop position of the wing leading edge provides a means of obtaining a more efficient wing under certain flight conditions. These conditions and the corresponding improvements obtained with the leading edge extended to the cruise droop position are:

| Condition                                                                                                                          | Improvement                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRT and CRT climbs. Subsonic turning flight, particularly above 30,000 feet.                                                       | Drag is decreased. Buffet is delayed and diminished.                                                                                                                                            |
| Maximum cruise and loiter. Very low speed flight with the wing down, such as inflight refueling and two-position wing transitions. | Drag is reduced.  Stall and buffet speeds decrease, thereby providing a greater safety margin.  (To take advantage of this margin, cruise droop should be extended before takeoff and landing.) |

# Section IV Flight Characteristics

Performance will be reduced to varying degrees under all other flight conditions if the leading edge is left extended to the cruise droop position with maximum speed as the most seriously affected item.

Within the operating limitations, there is a mild nosedown trim change when extending the leading edge and a nose-up change when retracting it. Small lateral trim changes also may occur during leading edge operation.

#### **EMERGENCY POWER PACKAGE**

Extension of the emergency power package (Marquardt unit) at airspeeds up to approximately 500 KIAS causes practically no trim change. In most cases a very slight vibration is the only indication that the unit is extended although sometimes small directional trim changes may occur as the speed brake is opened or closed with the power package deployed.

Above 500 KIAS, the aircraft tends to yaw left, roll right, and pitch down as the unit is extended. These trim changes increase in severity as the extension speed increases and become quite severe above 690 KIAS, constituting a serious handling problem. For this reason, it is imperative to reduce speed at least to the restriction limit and it is highly desirable to slow considerably more before extending the package in the case of electrical or power control hydraulic system failure. Fortunately, after all such failures (except for failure of both power control systems as in the unlikely case of a frozen engine), control power and basic aircraft stability remain adequate so that there is no immediate necessity to extend the emergency package. The aircraft can be and should be slowed to less than 600 KIAS while deciding whether to extend the package or not. The main consideration in making this choice is the considerable drag increase which results from the extended package and leads to a reduction in specific range of approximately 18%. Whenever possible, slow down first, then extend the package if desired. The unit has been proven structurally and functionally sound to 740 knots EAS.

Extension of the emergency power package in the landing configuration causes no trim changes and has no effect upon handling qualities, stall speed, or stall characteristics.

#### STABILIZATION

Automatic roll and yaw stabilization systems improve gun platform characteristics, permit greater maneuvering capabilities, and improve general handling qualities. With stabilization systems operative, the Crusader is a smooth, effective, and competitive flying and fighting machine throughout its flight envelope. Without stabilization, it still may be flown successfully through the same speed envelope but is subject to drastic reductions in permissible maneuvering and to a considerable reduction in its ability to track and hit a target.

In other words, flight stabilization improves the performance of the aircraft as a weapon by performing the following significant functions:

- Damping of undesirable roll and yaw motions caused by air turbulence or rough control usage.
- Stiffening the aircraft directionally, making it more prone to fly with zero yaw angle.
- Applying opposite rudder in all rolls so as to reduce the buildup of favorable yaw at high Mach numbers and altitudes.

Stabilization output is regulated by use of altitude yaw gain changers and by switching between clean configuration and landing configuration roll amplifier gains to give the best performance under all flight conditions. The net result is a steadier aircraft which does not develop excessive yaw angles during maneuvering flight. All stabilization effects are accomplished without effort on the part of the pilot and with no feedback into the controls except for an occasional minute roll "nibble" in the landing configuration.

In the clean configuration, yaw stabilization is the more important function since it is necessary to maintain the yaw angle as near zero as possible at all times. This factor accounts for the reduction in the operating envelope with yaw stabilization inoperative. If a failure should occur at a speed above the restriction speed, avoid abrupt maneuvers or control motions and reduce speed as rapidly as practicable.

In the landing configuration the basic roll damping of the aircraft is poor and roll stabilization accordingly is of major importance. Fortunately, basic damping improves as airspeed decreases so that loss of roll stabilization does not cause a serious approach or landing problem. With roll stabilization inoperative, roll damping will become marginal at airspeeds above 180 KIAS, so avoid abrupt maneuvers, reduce airspeed, or lower the wing.

#### TRIMMING

Use of trim will reposition any of the control surfaces without changing the neutral position of the stick or rudder pedals because the trim actuators move only the linkage downstream of the feel systems. Because of the variable gain linkage in the longitudinal system, flying the aircraft with force applied to the stick (aircraft not in trim) will cause increased sensitivity the further the control is held from neutral. By keeping the aircraft trimmed under high-speed flight conditions, full benefit is obtained from the variable-gain linkage in maintaining pitch attitude without increased control sensitivity.

Movements of the trim knobs will result in changes of aircraft attitude unless compensating movements of the stick or rudder are made. As trim is applied, relax pressure on the stick or rudder pedals to determine the effect of the amount of trim used. This will avoid overtrimming or unwanted changes of aircraft attitude. Until familiar with trimming, apply trim in small amounts to obtain the desired attitude.

Because of the rapidity with which flight conditions change at low altitudes with afterburner, precise trimming is difficult. Attempt minimum trimming during an afterburner climb below 20,000 feet until familiar with the trimming characteristics in this flight regime.

Since roll and yaw trimming is achieved with the same actuators used for stabilization, normal trimming will be lost if the stabilization system fails or is turned off. Remember that in such a case, any roll or yaw trim already applied will be removed since the actuators automatically return to neutral. Emergency pitch trimming is available if normal pitch trim circuits fail.

#### LEVEL FLIGHT

#### MAXIMUM SPEED

Refer to the Supplemental NATOPS Flight Manual for maximum speed limitations.

#### LANDING CONFIGURATION

Landing configuration characteristics are normal and satisfactory in all respects. The aircraft may be trimmed fairly easily during the approach and all controls operate smoothly and effectively.

Military thrust is sufficient for most wave-offs and enormous extra thrust is available from the afterburner for a desperation-type wave-off.

#### CLEAN CONFIGURATION - SUBSONIC

## WARNING

Lateral oscillations with amplitudes as large as 30 degrees in both directions may occur in the low altitude high subsonic speed range. These oscillations are likely to occur when performing 'Jinking' type maneuvers using rapid lateral stick inputs and can also be induced by turbulence. The oscillations may damp out when the stick is released, but the most positive means of recovery is to reduce airspeed as well as 'g' if maneuvering.

The aircraft normally spends most of its flight time in the subsonic region and has quite conventional characteristics there. The afterburner gives it excellent acceleration characteristics under practically all conditions. Trimming generally is good except in the trim change region of about 0.90 IMN to 1.05 IMN, where attention to control is required if you desire to hold a given altitude. High-speed flight at low altitude in turbulent air is rather uncomfortable and disturbing because of the jostling experienced in the cockpit. Sensitive pitch control will be encountered in low-altitude flight at high subsonic speeds.

#### CLEAN CONFIGURATION - SUPERSONIC

Supersonic flight characteristics of the Crusader are excellent and enjoyable. Control response is smooth and precise in pitch, yaw and roll, and trimming is at its best. There is a general reduction in noise and vibration as soon as the aircraft goes supersonic, particularly after the oil cooler door opens. The energy level is very high, enabling the aircraft to be zoomed to high altitudes or turned extensively while maintaining supersonic conditions. Acceleration in level flight is fairly slow as compared to acceleration at subsonic speeds, but in dives airspeed increases very rapidly. Take care to avoid exceeding restrictions. Deceleration is also relatively slow unless a combination of thrust reduction and speed brake is used.

#### MANEUVERING FLIGHT

#### Note

Refer to the Supplemental NATOPS Flight Manual for flight characteristics during pullouts, rolls, rolling pullouts and climbs.

#### DIVES

The aircraft picks up speed quite rapidly in dives. Engine thrusts and dive angle are very influential in controlling speed during dives. Thrust reduction and pulling the nose up will be found more effective than speed brake extension when it is desired to reduce speed from very high values. Stability and control characteristics are generally good.

#### Section IV Flight Characteristics

Dives to lower altitudes are required during attack missions. Be especially cautious about target fixation during these dives.

As indicated under TRIMMING, malfunction of the yaw-stabilization system will result in the rudder immediately returning to neutral and the directional trim system becoming inoperative. If this malfunction occurs at high airspeed or where a large amount of rudder trim is required to maintain balanced flight an abrupt yaw will occur. Poor damping characteristics under these conditions make it easy to set up lateral-directional oscillation if abrupt, large lateral or directional control movements are used. In the event of stabilization failure in high speed dives, reduce speed immediately and effect recovery using small slow aileron or rudder movements if required. Refer to the Supplemental NATOPS flight Manual for additional dive characteristics.

#### **AEROBATICS**

Aerobatics in the Crusader are typical of most contemporary jet aircraft. No special techniques or knowledge are required. Since loops and Immelmann turns develop considerable changes in altitude, start them at altitudes near 10,000 feet with at least 500 KIAS until familiar with the aircraft. Afterburner may be used during these maneuvers either as a means of keeping the airspeed up or of increasing the altitude gain. If the airspeed gets low on top, allow the aircraft to "fly through" at a low g value. Avoid pulling into buffeting throughout the maneuver.

Satisfactory rolls may be performed at most speeds without attempting to coordinate rudder with ailerons, but coordination may be improved by use of rudder if desired. The best and smoothest rolls are obtained by putting in and taking out aileron rather slowly.

#### **ARMAMENT**

The following discussions cover flight characteristics during armament separations.

#### **GUN FIRING**

Gunfire vibration in the cockpit varies considerably with airspeed and altitude. At high altitudes the vibration is very light and is not influenced very much by speed. At low altitudes the vibration is higher, and reaches a moderate peak level around 475 KIAS. At higher or lower speeds, the vibration level is light but even under these conditions the instrument board and gunsight will vibrate to a moderate degree during gunfire. Tracking is not hampered even under the heaviest vibration encountered. No adverse engine effects resulting from gunfiring.

#### SIDEWINDER MISSILE FIRING

Refer to the Supplemental NATOPS Flight Manual.

#### ANGLE OF ATTACK

Refer to the Supplemental NATOPS Flight Manual.

## STALLS

#### **CHARACTERISTICS**

(See figure 4-8 for stall speeds)

#### NORMAL OR 1g STALLS.

#### Landing Condition

Stall warning is first evidenced by prestall buffet commencing around 14.5 units indicated angle of attack, increasing in intensity to heavy buffeting, roll oscillations, porpoising or poor response to lateral control at about 17 units. The stall is marked by a definite wing drop, roll, or snap roll. The horizontal tail and rudder remain effective throughout the stall. Ailerons become ineffective as the stall is reached. Recovery is initiated by immediately neutralizing lateral and directional control, positioning the stick slightly forward of neutral (avoiding use of ailerons) and allowing airspeed to increase in whatever bank angle or pitch attitude exists until well out of buffet.

#### Clean Condition

Clean condition stall behavior is similar to the landing condition, with warnings and stall occurring at higher airspeeds. Buffet onset will occur at least 40 knots above the stall speed and increases to heavy buffet at the stall. At the stall, the wing drop will be more abrupt to approximately 45° but the condition can be aggravated into greater and faster roll departures by maintaining or increasing aft stick at or beyond the stall. With cruise droop extended, stall warnings will occur at airspeeds approximately 10 to 15 knots lower than with leading edge retracted. The stall will occur approximately 5 knots lower with cruise droop extended.

#### ACCELERATED STALLS.

Stalls in Pullouts or Turning Flight

Accelerated stalls will occur whenever excessive aft

stick is used for maneuvering at subsonic speeds such as in pullouts or turning flight.

In a gradual approach to an accelerated stall, warning of the stall occurs initially in the form of buffeting, which increases to heavy buffet at the stall. In addition, roll oscillations (up to 30° left and right) and porpoising will occur just prior to reaching the stall. At the stall a very abrupt roll will occur which can reach or exceed 180° of bank angle change. This can be accompanied by a marked increase in nose-up attitude, especially if ailerons are used to oppose the roll.

If the stall is approached rapidly, warning motions of the airplane prior to the stall will be less apparent, and behavior at the stall will be more violent. At low airspeed or Mach numbers, all stall warnings will be less intense, and greater caution must be used to prevent inadvertent stalls.

An accelerated stall may result from holding a high g level while decelerating from supersonic speed. Particular care should be taken to maintain speed with adequate thrust or nose attitude while holding a high g level in turns at low supersonic speeds. The airplane can rapidly decelerate from these speeds to high subsonic speeds at which the stall boundary decreases and the tail effectiveness increases, making it more likely that an accelerated stall would be entered abruptly. During the deceleration, the time between warning (if felt) and actual stall can be as short as 2 seconds. To ensure against an accelerated stall occurring under such conditions, maintain speed while holding g's or reduce the g's before decelerating.

## STALL SPEEDS



Power-off stalling speeds are based on operation with the engine idling. Stalling speeds with the engine windmilling are essentially the same as presented for power-off. Since power-on stalling speeds are affected more by pilot technique than by thrust effects, power-on stalling speeds are not presented.

53212-6-6

Stalls in Turn Entries and Reversals

Accelerated stalls may also result from attempting aileron rolls at g loads below but close to the stall boundary, such as in turn entries, turn reversals or turn recoveries.

Rolls attempted under these conditions result in large yaw angles which can cause the airplane to stall. In such cases, the usual warnings of an accelerated stall may not be apparent. The most positive warning of a possible stall entered from a roll is indicated by the roll behavior of the airplane. If response to the ailerons is very sluggish, if the roll appears to be stopping while the ailerons are still deflected, or if there is no response at all to the ailerons, the roll is being attempted at too high a g loading or too low an airspeed. When any of these characteristics occur,

ailerons should be neutralized immediately and g loading reduced.

If the ailerons are not neutralized immediately, the airplane may yaw and pitch into a stalled attitude, or an uncontrolled flight maneuver (similar to a snap roll) may occur.

To take advantage of the higher rates of roll and best behavior of the airplane, rolls through large bank angles such as in turn entries or turn reversals should be performed under buffet-free conditions.

Rolls initiated at buffet onset or above should be limited to small lateral stick deflections and small bank angle changes such as occur when tightening a turn or making tracking corrections. To avoid the possibility of entering uncontrolled flight, rolls should not be attempted above moderate buffet levels.

#### RECOVERY PROCEDURE

Upon first signs that the stall point has been reached or upon recognition from the roll behavior of the airplane that a stall is imminent, the following recovery action should be taken immediately:

- 1. Relax all stick and rudder forces, allowing controls to return to their neutral positions, then push stick forward of neutral as required to reduce angle of attack or g load.
- **2.** Avoid use of ailerons and allow airspeed to increase in whatever bank angle or pitch attitude exists, even if inverted, until well out of buffet.

Never displace ailerons to raise a wing at or beyond the stall or to stop a snap roll. It is emphasized that the use of ailerons during stall or stall recovery will not produce the expected roll but will develop sufficient yaw to result in a spin.

Even though the airplane may be gyrating (snap rolling, yawing and pitching) or appears to be entering a spin, hold controls in neutral until either recovery or a spin is clearly indicated. Look at stick and rudder pedals to ensure that they are in neutral. It should not be assumed that the airplane is in a spin until at least one yawing turn (not roll) has occurred without reversing, as described under "Recognition Of The Spin."

#### STALL SUMMARY

- 1. Warning in the form of heavy buffeting, roll oscillations, porpoising, or poor response to ailerons always precedes the stall.
- 2. The stall is marked by abrupt wing drop, roll, or snap roll.
- 3. Recovery is initiated by immediately neutralizing controls.
- 4. Hold neutral controls (stick slightly forward) until either recovery occurs or a spin is clearly indicated.
- 5. Do not use ailerons to stop roll or correct bank angle at or beyond stall.
- 6. Do not attempt rapid rolls through large bank angles in buffet conditions.

## SPINS

#### **CHARACTERISTICS**

#### GENERAL.

Regardless of the flight conditions, attitudes, gyrations or control manipulations leading to departure from controlled flight, and regardless of those imposed during uncontrolled flight, the airplane will perform only the one type of upright spin described below.

Crusader spins are characterized by large frequent changes in pitch attitude and bank angle in the first 2 to 3 turns. In these initial turns the pitch attitude may rapidly change from a nose-high position near or above the horizon, to 40° or 50° nose down, and then back to the nose-high position again. In the same period, the bank angle may vary from 45° wing down to 45° opposite wing down. The nose of the airplane returns to a high position once in each turn. These large motions gradually reduce in magnitude, and during the third turn may reach a level as little as one-half to one-fourth of the initial motions. The behavior of the spin appears considerably smoother to the pilot from this time on. After the third turn, average pitch attitude is relatively flat, with the nose 10° to 20° below the horizon. A complete turn occurs in 4 to 5 seconds. Average altitude loss is 1,400 feet per turn.

Occasionally, while in a spin, the airplane will roll outside wing down to an inverted attitude for a few seconds so that it describes part of a turn (as much as one-half turn) at a negative 1.0g. The airplane will continue to roll, in the same direction that created the inverted attitude, to an upright attitude and will continue in an upright spin regardless of how long the spin is maintained. The general rotation of the spin will remain in the same direction relative to the earth before, during and after the roll through the inverted position. It is possible that while the airplane is inverted, the pilot may have the sensation that a spin reversal has occurred. However, this is not a reversal. This inverted condition, when it occurs, usually does so in the latter part of the second turn and

the first part of the third turn. However, it is not violent, nor does it affect ability of the pilot to select and apply proper recovery controls. The recovery does not appear to be lengthened or otherwise changed by this phenomenon.

The most violent airplane motion will be encountered in the initial departure from controlled flight at higher airspeeds in accelerated stalls. The airplane cannot be made to enter a spin at speeds in excess of 170 knots IAS; however, above this speed, uncontrolled flight (such as violent snap rolls) can be generated from which it is possible to effect recovery providing controls are immediately neutralized. During uncontrolled flight, speed can be lost at very high rates up to 40 knots per second, which may result in speed very rapidly dropping below 170 knots. If recovery from uncontrolled flight has not been effected before this time, the airplane will enter a spin with no break in the motion. In such entries the airplane may initially snap roll over the top or under the bottom before autorotation. Occasionally the airplane will perform, initially, a severe cartwheel type of maneuver in which the nose goes well above and below the horizon to near vertical attitudes. Independently of the manner in which the initial departure occurs, either through a snap roll or cartwheel, the resultant extreme attitudes will be reduced to the typical spin attitudes by the end of the second turn.

Although, the airplane may flip right side up and enter an upright spin as a result of loss of flying speed in inverted flight, it will not perform an inverted spin.

Spin characteristics and spin recovery procedures are not affected by extended landing gear and speed brake, or by fuselage missile pylon installations. Fuselage missiles installed on the airplane have a beneficial effect in that the spin is somewhat milder and recovery is faster. Wind tunnel tests indicate that landing condition spins and recovery procedures are similar to those for the clean condition.

## ENGINE AND ELECTRICAL SYSTEM BEHAVIOR IN SPINS.

Because of the high angle of attack encountered in a spin, the ability of the duct to carry air to the engine is greatly reduced and engine compressor stalls may result. This will be evidenced by loud coughing and banging noises which can lead to excessive engine exhaust temperatures. To reduce the severity of compressor stalls and engine overtemperatures, the throttle must be retarded to IDLE if a spin is encountered. Overtemperatures as high as 770°C have occurred during spins after IDLE was selected. However, in each case engine operation has remained normal.

Severe compressor stalls can also result in complete loss of electrical power if the low pressure compressor rotor speed drops below normal idle values. On some occasions compressor stalls have persisted after idle thrust was selected, until 250 knots IAS and altitudes below 30,000 feet were achieved in the recovery dive.

As compressor stalls cease, engine exhaust temperatures will return to normal and the main generator will automatically return to service. However, yaw and roll stabilization and trim systems will have to be manually reset to regain operation. No engine flameouts occurred during Crusader spin investigations.

#### RECOVERY CHARACTERISTICS AND PROCEDURES

#### RECOVERY PROCEDURE.

Recovery from a spin is obtained by using the following technique:

1. Retard throttle to IDLE.



When selecting emergency droop to aid spin recovery, do not unlock the wing.

- 2. Extend leading edge to landing droop by raising emergency droop and wing incidence guard and moving the WING INCIDENCE handle to the full forward position.
- 3. Place full rudder against spin; apply full aft stick and full lateral stick opposite to rudder (with the spin).

EXAMPLE

| Control | Right Spin              | Left Spin              |
|---------|-------------------------|------------------------|
| Rudder  | Full left               | Full right             |
| Stick   | Full aft and full right | Full aft and full left |

**4.** As spin rotation stops, promptly neutralize ailerons and rudder, and push stick 2 to 3 inches forward of neutral.

## WARNING

Full lateral stick deflection must be applied since as little as ½-inch less than full deflection may add one additional turn to the recovery.

Spin recovery may take as long as 12 seconds, a period that may *seem* considerably longer to the pilot. Concentrated effort must be made to hold correct recovery controls until recovery is indicated.

For this technique to be effective, the pilot must be aware of the behavior of the airplane during recovery from the spin. Incorrect interpretation of these characteristics can result in wrong use of recovery controls and failure to recover from the spin. The following paragraphs describe in more detail the recovery behavior of the airplane and the appropriate actions for obtaining prompt recovery.

#### USE OF THROTTLE.

## WARNING

To avoid inadvertent engine shutdown, maintain inboard pressure on the throttle when reducing the throttle toward idle.

Engine operation above IDLE during the period between radical departure from normal flight and

entry into true spin rotation can be beneficial in recovery with neutral controls. Once the spin is entered, however, the throttle must be at IDLE to minimize the effects of compressor stall and overtemperature. IDLE power settings will prevent overtemperature below 37,000 feet, but compressor stalls may continue. If neutralizing the controls does not result in immediate arrestment of the departure from controlled flight, the throttle should be retarded to IDLE immediately. When in doubt as to how far the stall has progressed towards a spin, retard the throttle to IDLE.

#### RECOGNITION OF THE SPIN.

Spin recovery procedures should not be attempted until the pilot is certain that a spin exists. In the Crusader a spin differs from other stall gyrations in that the nose of the airplane will continuously yaw in one direction. A spin should be assumed only if the yaw is continuous in one direction for at least one turn.

#### DIRECTION OF ROTATION.

Direction of rotation must be positively established so that the rudder and aileron may be deflected in the proper direction to stop the spin.

Direction of rotation can easily be determined by observing traverse of terrain over the nose of the airplane. Spin direction can also be determined by use of the needle of the turn-and-bank indicator. Needle to the right indicates a right spin, and needle to the left, a left spin.

#### RECOVERY BEHAVIOR.

When the leading edge is extended to landing droop and controls are placed to stop the spin, continuous rotation in the initial direction will cease within  $2\frac{1}{2}$  additional turns. The only positive means of recognizing that rotation has stopped is by closely watching the traverse of the terrain. As the apparent motion of the ground past the nose is stopping or when it has stopped, quickly neutralize rudder and ailerons and push stick 2 to 3 inches forward of neutral. Failure to neutralize controls promptly can cause a spin in the opposite direction.

As the rotation stops, a nose-down pitch will usually occur, followed by an increase in airspeed, and eventual recovery to normal flying speed in a 70° to 90° dive. A rolling tendency usually occurs early in the recovery dive just after controlled flight has been regained. This tendency should not be opposed with aileron as the motion will damp as airspeed increases. The use of aileron at this time may develop another spin.

#### USE OF LANDING DROOP.

The use of landing droop results not only in more positive spin recovery, but also results in more positive pilot recognition of the recovery phases. Therefore, landing droop should be selected immediately on recognition that a spin exists. The pilot should devote his full attention, if necessary, to actuation of the droop controls. Visually observe droop control actuation, and if need be, release the stick and use both hands to obtain proper actuation. Releasing the stick will not cause the airplane to enter any other type of maneuver or to fall or spin any faster. There are no

restrictions with respect to extending leading edge to landing droop during a spin. If a reasonable attempt at droop extension is unsuccessful due to buffeting, the pilot should continue the spin recovery sequence, but not beyond altitude limits which would preclude successful ejection. Once recovery controls are applied, additional attempts at droop extension may be made.

#### TRIM SETTINGS.

Under normal trim usage, trim settings will not have significant effect upon spin and recovery characteristics. Full directional or lateral trim settings will not be noticeable until considerable speed is picked up in the recovery dive. Since the longitudinal trim setting existing may not be known, recovery can be hastened by pushing the stick 2 to 3 inches forward of neutral, as the spin ceases, regardless of trim position. A slightly steeper recovery dive may result from this technique.

#### RECOVERY TO LEVEL FLIGHT.

To avoid progressive stalls, do not initiate pullout prior to reaching at least 200 knots IAS. Available g's will not permit rapid round out at low airspeeds, and high drag from a pullout started too early will retard buildup of speed to safer pullout speeds. The altitude loss from the point at which a controlled dive is reached to that at which level flight is achieved will be about 6,000 to 8,000 feet. Speed brake may be extended in the dive, after reaching at least 200 knots IAS, to prevent excessive airspeed buildup. Do not exceed landing droop restrictions in the recovery; the airspeed and g loadings will not exceed these restrictions during the spin.

#### SPIN SUMMARY

(See figure 4-9)

FALLING LEAF

(See figure 4-10)

# SPIN



## SPIN SUMMARY

- 1. Initial turns involve large variations in pitch attitude and bank angle.
- A spin should be assumed only if the yaw is continuous in one direction for one turn.
- 3. Retard throttle to IDLE.
- Using emergency pneumatic system, extend leading edge to landing droop immediately.
- Determine direction of spin by observing traverse of terrain over the nose or observing needle of turn-and-bank indicator.
- Place full rudder against spin, full aft stick and full lateral stick opposite to the applied rudder (with spin).

#### **EXAMPLE**

| Control | Right Spin              | Left Spin  Full right  Full aft and full  left |  |
|---------|-------------------------|------------------------------------------------|--|
| Rudder  | Full left               |                                                |  |
| Stick   | Full aft and full right |                                                |  |

- As continuous rotation in initial direction ceases, promptly neutralize ailerons and rudder and push stick 2 to 3 inches forward of neutral; visually check position of stick.
- Hold neutral control positions until at least 200 knots is obtained in steep dive. Do not revert to spin recovery control positions unless continuing spin is clearly established.
- 9. Do not confuse "falling leaf" behavior with a continuous spin.
- In recovery dive, extend speed brake as required after reaching 200 knots IAS as an aid in preventing excessive airspeed.

53212-6-3

Figure 4-9

# FALLING LEAF-

As the initial spin rotation stops, and neutral controls are applied, a reversal in rotation can result from the airplane entering a stalled maneuver which can be best described as a "falling leaf." A "falling leaf" in the Crusader is characterized by rolling and yawing as in a spin, but differs from a spin in that the yawing motion continuously reverses direction, whereas in a true spin the yawing motion is continuous in one direction. A "falling leaf" entered from a spin can give the impression of spinning for as much as a quarter to half turn before the direction of motion reverses. As long as the air-plane remains stalled, the "falling leaf" can continue, and if ailerons are used to oppose the rolling of a "falling leaf," a spin may recommence. Further, if the "falling leaf" is misinterpreted as a spin reversal, and spin recovery controls are applied for a spin in the reverse direction, the chance of forcing a spin re-entry is very great. By neutralizing all controls and pushing the stick 2 to 3 inches forward of neutral so as to reduce the angle of attack, the falling leaf motions will damp naturally and recovery will occur. To avoid spin re-entry and assure recovery from the "falling leaf," all controls should always be neutralized as motion in the initial spin direction stops, even though it may appear that the spin is reversing. The position of the cockpit controls should be checked visually and held until the full recovery has been obtained or it is certain that the spin is continuing. A continuing spin should be assumed only if the attitude of the airplane remains relatively flat as in a spin, and continuous rotation occurs in one direction for at least 1 turn.

53212-6-

# section V

# emergency procedures

# **CONTENTS**

# PART 1 - GROUND EMERGENCIES

| Engine Fire on Ground                                                                                      | 5-3                                  |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Brake Failure                                                                                              | 5-3                                  |
| Hot Brakes                                                                                                 | 5-3                                  |
| Emergency Entrance                                                                                         | 5-4                                  |
| Emergency Egress                                                                                           | - 5-4                                |
| PART 2 — TAKEOFF EMERGENCIES                                                                               |                                      |
| Field                                                                                                      | 5-6                                  |
| Carrier                                                                                                    | 5-6                                  |
| PART 3 — INFLIGHT EMERGENCIES                                                                              |                                      |
| Engine Malfunctions                                                                                        | . 5-7                                |
| Airstarting                                                                                                |                                      |
| Afterburner Malfunctions                                                                                   | . 5–11                               |
| Fuel System Malfunctions                                                                                   | . 5–11                               |
| Electrical System Malfunctions                                                                             | 5-13                                 |
| Power Control (PC) Hydraulic System Failures                                                               | 5 - 14A                              |
| TI. II. II. II. C. D. II.                                                                                  | 5-15                                 |
| Utility Hydraulic System Failure                                                                           |                                      |
| Lateral Control Malfunctions                                                                               |                                      |
| · · ·                                                                                                      | - 5-17                               |
| Lateral Control Malfunctions                                                                               | - 5–17<br>- 5–17                     |
| Lateral Control Malfunctions  Trim and Stabilization System Failures                                       | - 5-17<br>- 5-17<br>- 5-18           |
| Lateral Control Malfunctions Trim and Stabilization System Failures Inflight Fires/Cockpit Smoke and Fumes | - 5-17<br>- 5-17<br>- 5-18<br>- 5-19 |

# PART 3 - INFLIGHT EMERGENCIES

| Ejection or Bailout                                                                                                                                                                                                                       | 5–21                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Jettisoning Missiles                                                                                                                                                                                                                      | 5-29                                                         |
| Fuel Dumping                                                                                                                                                                                                                              | 5-29                                                         |
| Jettisoning Canopy                                                                                                                                                                                                                        | 5-30                                                         |
| Emergency Descent                                                                                                                                                                                                                         |                                                              |
| Stalls, Spins and Uncontrolled Flight                                                                                                                                                                                                     | 5-30                                                         |
| Loss of Airspeed Indicator                                                                                                                                                                                                                | 5-30                                                         |
| PART 4 — LANDING EMERGENCIES                                                                                                                                                                                                              |                                                              |
| PART 4 — LANDING EMERGENCIES                                                                                                                                                                                                              |                                                              |
| All Landing Emergencies                                                                                                                                                                                                                   | 5–31                                                         |
| All Landing Emergencies                                                                                                                                                                                                                   | 5-31                                                         |
| All Landing Emergencies                                                                                                                                                                                                                   | 5–31<br>5–34                                                 |
| All Landing Emergencies                                                                                                                                                                                                                   | 5–31<br>5–34                                                 |
| All Landing Emergencies  Landing with Gear Out of Position  Landing with Damaged Landing Gear/Hook  Landing with Wing Down  Landing — Use of Emergency Field Arresting Gear                                                               | 5–31<br>5–34<br>5–35<br>5–36                                 |
| All Landing Emergencies                                                                                                                                                                                                                   | 5–31<br>5–34<br>5–35<br>5–36                                 |
| All Landing Emergencies  Landing with Gear Out of Position  Landing with Damaged Landing Gear/Hook  Landing with Wing Down  Landing — Use of Emergency Field Arresting Gear                                                               | 5-31<br>5-34<br>5-35<br>5-36<br>5-36 B                       |
| All Landing Emergencies  Landing with Gear Out of Position  Landing with Damaged Landing Gear/Hook  Landing with Wing Down  Landing — Use of Emergency Field Arresting Gear  Barricade Arrestment                                         | 5-31<br>5-34<br>5-35<br>5-36<br>5-37                         |
| All Landing Emergencies  Landing with Gear Out of Position  Landing with Damaged Landing Gear/Hook  Landing with Wing Down  Landing — Use of Emergency Field Arresting Gear  Barricade Arrestment  Landing with Utility Hydraulic Failure | 5-31<br>5-34<br>5-35<br>5-36<br>5-36<br>5-37<br>5-37<br>5-37 |

Precautionary Approach \_\_\_\_\_\_5-40

# PART 1 - GROUND EMERGENCIES

# ENGINE FIRE ON GROUND

#### **Indications**

Fire warning light — ILLUMINATED Fire observed

#### **Procedures**

With external power and starter connected:

- 1. Throttle OFF
- 2. Engine master switch ON
- 3. Master generator switch EXT
- 4. Throttle -- CRANK
  - Continue cranking until fire is out.

When fire is out:

- 5. Master generator switch OFF
- 6. Engine master switch OFF

If impossible to reconnect external power and starter:

- 1. Throttle OFF
- 2. Engine master switch OFF
  - Operate switch before losing aircraft electrical power.
- 3. Master generator switch OFF
- 4. Abandon aircraft.

#### **BRAKE FAILURE**

#### **Procedures**

To obtain emergency (pneumatic) braking:

- 1. Emergency brake handle PULL AFT SLOWLY
  - Pull handle slowly to avoid locking the brakes.
     This also allows pressure to be applied evenly to the wheels.

- Brake pressure is directly proportional to distance handle is moved.
- Manipulate handle to obtain momentary braking action.
- Push handle full forward to release brakes.
- Differential braking is unobtainable.
- If necessary, shut down engine to aid stopping.
- 2. Perform short field arrestment (if possible) or normal carrier arrestment.
  - Refer to FIELD ARRESTMENTS, this section, part 4, for short field arrestment procedure.
  - After carrier arrestment, leave hook down.

#### HOT BRAKES

Hot brakes can be expected when:

Takeoff aborted Excessive brakes used after a landing Brakes dragging

#### Note

Any of the above conditions could raise temperatures to a point where normal takeoff would heat a wheel enough to produce explosive failure.

Time-temperature histories indicate that normal taxiing using nose gear steering, military and afterburner takeoffs, FMLP and touchand-go landings do not significantly increase wheel temperature.

#### **Procedures**

- 1. Taxi (or have aircraft towed) to nearest hot brakes area.
  - If hot brakes are discovered on the line, promptly taxi or have aircraft towed to an isolated position, and warn personnel to stay clear.
- 2. Notify tower to alert crash crew.

- 3. Park aircraft with wing down and wheel axis pointed in safe direction.
  - Tire/wheel failure usually occurs after returning to the line. This is because maximum transfer of heat from the brake discs to the wheel usually requires 15 to 20 minutes. Therefore, should it become necessary to approach the aircraft, personnel should move toward the aircraft from the front or rear, never from the sides.
  - Where hot brakes result in fire, the use of dry chemicals in preference to CO<sub>2</sub> and foam (as fire extinguishing agents on tires and brakes) is recommended due to metal stresses caused by the cooling action of CO<sub>2</sub>.
  - The wheels require 45 to 60 minutes to get rid of 60% of the heat absorbed in a landing rollout or aborted takeoff. If an agent to accelerate cooling is necessary, use water by directing a stream to the brake in 10- to 15-second bursts (3 to 5 applications) with 30 to 60 seconds between applications.

# **EMERGENCY ENTRANCE**

Refer to figure 5-1 for the procedure to be followed when entering the cockpit under emergency conditions.

# **EMERGENCY EGRESS**

Begin egress procedure *immediately* after aircraft comes to rest. Use the following procedure for either water or field emergency egress.

#### **Procedures**

#### Note

To obtain breathing oxygen supply before actually leaving the aircraft, pull emergency oxygen "green apple."

- 1. Attempt to open canopy by normal means.
  - If canopy cannot be unlocked and opened normally by using the canopy release handle, use the canopy jettison handle.
- 2. Shoulder harness fittings RELEASE
  - Releases parachute.
- 3. Emergency harness release handle—PRESS BUTTON, ROTATE AFT
  - Releases seat-harness connections.
- 4. Ensure separation of leg restraint line fittings.
- 5. Pilot's services connections DISCONNECT AT CONSOLE
  - Disconnect oxygen and antiblackout lines, and/ or lines from antiexposure coverall.
- 6. Abandon aircraft with survival equipment.
  - As aircraft is abandoned, emergency oxygen bottle activates.
  - If desired, release survival equipment after abandoning by releasing hip harness fittings from suit.

# **EMERGENCY ENTRANCE**

## TO OPEN THE CANOPY AND REMOVE PILOT:



BE EXTREMELY CAREFUL NOT TO INJURE THE PILOT WHEN FORCING ENTRY TO THE COCKPIT. BE EXTREMELY CAREFUL NOT TO PULL THE EJECTION SEAT FACE CURTAIN OR THE SEAT SECONDARY FIRING HANDLE WHEN FORCING ENTRY TO THE COCKPIT AND WHEN REMOVING THE PILOT.

DO NOT USE RESCUE HANDLE IF SPILLED FUEL IS IN THE COCKPIT AREA. PULLING HANDLE FORCIBLY OPENS CANOPY BY FIRING EMERGENCY ACTUATOR CARTRIDGE WHICH CAN IGNITE FUEL. IF FUEL IS IN COCKPIT AREA, USE AXE TO FORCE ENTRY THROUGH CANOPY.

#### NOTE

IF IMPOSSIBLE TO OPEN CANOPY BY NORMAL OR EMERGENCY METHODS, BREAK CANOPY GLASS WITH FIRE AXE OR SIMILAR INSTRUMENT.

FIRING OF THE EMERGENCY ACTUATOR CARTRIDGE BLOWS OPEN THE CANOPY LOCKS AND FORCIBLY OPENS THE CANOPY. IF CANOPY DOES NOT SEPARATE FROM AIRCRAFT, IT MAY FALL TO CLOSED POSITION BUT WILL NOT LOCK.

53212-3-15

# PART 2 — TAKEOFF EMERGENCIES

#### FIELD

#### ENGINE FAILURE

#### **Procedures**

Before becoming airborne:

- 1. Abort or eject (MK-F5A or MK-F7 seats only).
  - To abort, retard throttle to OFF and depress brake pedals. If pedal braking is not sufficient, use emergency brake handle. If field is equipped with arresting gear, place arresting hook handle in HOOK DOWN. If aircraft has already run beyond arresting gear and barricade is available, engage the barricade. (Refer to BARRICADE ENGAGEMENT, part 4, for engagement techniques.)
  - Ground-level ejection is possible above 120 KIAS with MK-5FA seat. There is no minimum speed for ground-level ejection with the MK-F7 seat.

Immediately after becoming airborne:

- 1. Eject (if possible).
  - Refer to EJECTION AND BAILOUT, part 3, to determine safe ejection envelope following takeoff.

If unsafe to eject, land straight ahead. Perform as many of the following operations as possible:

- 2. Airspeed 140 KIAS MINIMUM
- 3. Wing AS IS
- 4. Throttle OFF
- 5. EPP EXTEND
- 6. Canopy JETTISON
  - Emergency canopy jettison handle PULL
- 7. Missiles JETTISON (if practical)
  - Stores cannot be jettisoned unless landing gear handle is in WHEELS UP. (Refer to MISSILE JETTISONING, part 3, for jettisoning procedures.)
  - Local directives and operational procedures will govern jettisoning of external stores.
- 8. Landing gear DOWN
  - · Place landing gear handle in WHEELS DOWN.
  - If this step and step 7 cannot both be performed in the time available (due to requirement for gear handle to be in WHEELS UP position for jettisoning), this step shall take precedence.

#### AFTERBURNER FAILURES

#### **Procedures**

- If afterburner fails to light:
  Abort takeoff.
- If afterburner blows out in early stages of takeoff roll: Immediately abort takeoff using field arresting gear if necessary.
- If afterburner blows out shortly before, during, or immediately after liftoff:

Deselect afterburner and continue takeoff in MRT. Do not recycle the afterburner.

#### **BLOWN TIRE**

#### **Procedures**

- 1. Abort, conditions permitting.
  - If needed, use nose gear steering for maintaining directional control.
- 2. Perform short field arrestment.
  - Refer to FIELD ARRESTMENTS, part 4, for short field arrestment techniques.

## SUSPECTED HOT BRAKES

#### Procedure

Leave gear down for approximately 5 minutes following takeoff.

 The 5-minute gear-down time is required for wheel/brake assembly cooling. An exploding wheel assembly can rupture the main fuel line in the wheel well.

#### CARRIER

#### CATAPULTING EMERGENCIES

#### **Procedures**

- If definite loss of catapult thrust is experienced early in the launch and decision is made to remain on deck, take the following actions immediately:
  - 1. Shut down engine.
  - 2. Apply maximum braking.

#### **All Other Catapulting Emergencies**

Select afterburner immediately if additional thrust is needed to aid directional control and escape potential.

# PART 3 - INFLIGHT EMERGENCIES

# **ENGINE MALFUNCTIONS**

#### **FLAMEOUT**

Aircraft with AFC 480 are equipped with an automatic ignition actuator. An engine-mounted sensor immediately senses any burner pressure differential that could cause a flameout. When this occurs, the standard ignition system is actuated to provide an automatic relight capability. If a flameout is produced by something other than a malfunctioning fuel control unit or fuel exhaustion, the relight will be automatic. The automatic relight occurs more rapidly than the time required by a pilot in ascertaining that a flameout has occurred and initiating the normal relight procedure.

Should the engine continue to unwind:

#### **Procedures**

- 1. Throttle OFF
  - To prevent entry of air into the engine fuel system at nose-down attitudes, leave throttle in this position until airstart is begun.
- 2. Ensure engine master switch ON, fuel transfer switch ON and emergency generator switch OFF.
  - If flameout occurred because main fuel cell ran dry, turning on transfer fuel system may transfer enough fuel to permit an airstart.
  - Emergency generator switch must be in OFF position to prevent a load from being placed on the emergency generators when the power package is extended. Extending the EPP with a load on the generators could prevent obtaining electrical power for an airstart.
- 3. Determine cause of flameout.
  - Pilot-induced flameouts are those caused by inadvertently moving engine master switch to OFF, failure to transfer fuel, low-speed highangle-of-attack flight resulting in compressor stalls, prolonged zero-g flight and exceeding the recommended nose attitudes or operating limits with partial or complete electrical failure.
  - Troubleshooting the cause:
    - a. Fuel boost pump failure will be indicated by illumination of the boost pump warning light, unstable engine operation (climbing through 30,000 to 37,000 feet at high power setting) and subsequent flameout. The engine fuel pump light will illuminate as the flameout occurs. After electrical power has been regained by the EPP, the fuel pump light will be out if windmilling rpm is

greater than 10%. A relight is highly probable.

- b. Main fuel exhaustion may also have the same symptoms as a boost pump failure, but the main fuel quantity indication and fuel flow should be near zero. The engine pump light should remain on with electrical power supplied. A relight is highly improbable.
- c. Complete engine-driven fuel pump failure should be typified by the engine fuel pump light coming on and the engine flaming out. Airstart attempts will produce the same indications as main fuel exhaustion with the exception of the fuel quantity indication. A relight will be impossible.
- d. Normal fuel control failure will most likely be indicated by unstable engine operation or rpm restriction before the flameout. The engine fuel pump light may also come on Relights in manual fuel control are highly probable.
- e. Engine oil system failure with subsequent bearing failure will most likely be indicated by noticeable vibration, high EGT, loss of oil pressure and perhaps smoke in the cockpit. A relight is impossible.
- 4. Perform airstart (if practical).

#### TURBINE FAILURE

#### Indications

High EGT Low RPM Low EPR (or TOP) Compressor stalls

#### **ENGINE INSTABILITY**

#### Indications

Erratic EGT

Rapid reduction or fluctuation in RPM at constant throttle

No increase in RPM when throttle advanced

EPR (or TOP) not responding to throttle movement Compressor stall

Physical sensation (If no physical sensation, verify by at least two engine gage readings.)

#### **Procedures**

If engine flames out or must be shut down because limitations exceeded;

Perform FLAMEOUT procedure.

If operation unstable but not exceeding limitations:

- 1. Throttle setting IDLE, time permitting
- 2. Fuel control switch MANUAL
  - Do not hesitate to select MANUAL at any power setting if necessary.
  - The manual fuel control in the F-8 has proven extremely reliable, but remember, when in MANUAL the main fuel regulating valve is the throttle. Take it easy.
- 3. Land immediately at the nearest suitable field (precautionary approach recommended).
  - Refer to PRECAUTIONARY APPROACH, part 4.

# INCORRECT OR FLUCTUATING OIL PRESSURE

#### **Indications**

Oil pressure below 37 psi or above 53 psi

- Engine/hydraulic oil pressure warning light illuminates at or below 34 psi.
- Pressures during zero or negative g operation do not necessarily indicate a failure.

Oil pressure fluctuating more than 10 psi in the normal (37 to 53 psi) range.

- Occasionally, air in the oil transmitting line will cause a pressure fluctuation. This, however, will be a narrow range (3 to 5 psi), rapid fluctuation.
- Pressure fluctuations during zero or negative g operation do not necessarily indicate a failure.

#### **Procedures**

- 1. Throttle MOVE SLOWLY TO CRUISE SETTING (85% to 87%)
- 2. Extend EPP when range is no longer a consideration in order to provide control response in the event of engine seizure.
- 3. Avoid power changes, flight accelerations and abrupt use of speed brakes to reduce possibility of engine seizure.

- 4. Land immediately at the nearest suitable field (precautionary approach recommended).
  - There have been instances where the engine continued to run for as long as an hour without oil pressure, but the engine has also been known to fail in a matter of minutes. Because of this, it is of the utmost importance to land as soon as possible after an engine oil system malfunction is detected.
  - Refer to PRECAUTIONARY APPROACH, part 4.
  - After landing, shut down as soon as practical to prevent further engine damage.

# STUCK THROTTLE OR ENGINE FAILS TO RESPOND TO THROTTLE MOVEMENT

The optimum stuck throttle approach is started from a "hoop" position approximately 4,000 feet from the end of the runway at 300 feet above field elevation and 175 KIAS. These conditions are based upon an aircraft gross weight of 22,000 pounds, a 20-knot headwind, standard day conditions, and a 3½-degree glideslope. Add 5 knots airspeed per 1,000 pounds of fuel above 22,000 pounds aircraft gross weight. Other contingencies such as inability to obtain recommended approach airspeed are covered within the procedure.

Before reaching the hoop:

- 1. Landing gear DOWN
- 2. Wing RAISE
- 3. IFR probe AS DESIRED
  - Extend the inflight refueling probe if level flight speed with full speed brake is above 175 KIAS. This must be done while operating on main generator power.
- 4. Arresting hook HOOK DOWN
  - · Plan for long field arrestment if gear available.
- 5. Speed brake override switch OVERRIDE
- 6. EPP EXTEND
  - The emergency power package is used to provide power control hydraulic pressure, speed brake electrical power, and roll and yaw stabilization (above 175 KIAS) after engine shutdown.
  - To extend package:
  - a. Master generator OFF
  - b. Emergency power handle PULL
  - c. Emergency generator switch ON



Figure 5-1A

#### Section V Inflight Emergencies

- 7. All excess electrical power OFF
  - To conserve power control hydraulic pressure from the EPP, turn OFF the following:
    - a. Exterior and interior lights
    - b. TACAN master switch
    - c. UHF master switch
- 8. Roll and yaw stabilization AS DESIRED
  - Roll and yaw stabilization should be turned off when airspeed drops below 175 KIAS during the approach in order to conserve power control hydraulic pressure from the EPP.

## 9. Adjust airspeed

- Use speed brake as necessary to pass through the hoop at 175 KIAS. If level flight speed exceeds 200 KIAS in landing condition with full speed brake, maneuver the aircraft so as to pass through the hoop at 200 KIAS.
- If impossible to maintain a level flight speed of 160 KIAS in landing condition, an approach can still be made if 160 KIAS can be obtained without exceeding 1,000 fpm rate of descent.

Through the hoop (approximately 4,000 feet from runway, 300 feet above field elevation, 175 KIAS):

# 10. Intercept glideslope

- A centered meatball (on an optical landing system set for a 3½-degree glideslope) and an altimeter reading of 300 feet above field elevation indicate aircraft is 5,000 feet from mirror touchdown point. (If the OLS is not set for 3½ degrees, it still may be used as a reference by flying a high or low meatball as dictated by the particular OLS setting.)
- 11. Engine Master Switch OFF
  - Turning the engine master switch to OFF upon passing through the hoop will provide time for the engine to use up available fuel and the aircraft to decelerate to 145 KIAS at touchdown, approximately 1,000 feet down the runway. At higher airspeeds the power required will consume the fuel faster and vice versa.
  - With the engine master switch in OFF, the engine will continue to produce thrust for a period of approximately 4 seconds (AT MRT) to 24 seconds (AT IDLE).

# 12. Fly proper glideslope approach

- This approach allows safe ejection prior to reaching 1,500 feet from the end of the runway at 150 feet above ground level. From this point a safe landing can be made with a dead engine.
- 13. Airspeed 175 KIAS
  - If level flight speed is above 175 KIAS, use speed brake to maintain as close to 175 KIAS as possible during the approach.
  - If level flight speed is below 175 KIAS, use speed brake only to keep from exceeding 175 KIAS during the approach.

#### After engine stops:

#### 14. Speed brake — AS IS

 When the engine stops, do not change the speed brake deflection.

## Over the end of the runway:

## 15. Emergency Generator Switch - OFF

- The emergency generator switch is placed in the OFF position to provide adequate power control hydraulic pressure for landing.
- Airloads and utility hydraulic pressure from the wind milling engine will retract the speed brake when the emergency generator switch is placed in the OFF position.
- With the emergency generator switch in ON (and all excess electrical power OFF) or LAND, the minimum indicated airspeed for adequate power control hydraulic pressure from the EPP is 145 KIAS. With the switch in OFF, the minimum speed is 140 KIAS.

#### Touchdown:

16. Avoid hitting nosewheel first, which could lead to porpoising.

# **AIRSTARTING**

#### FIRST AIRSTART ATTEMPT

The fundamental starting ingredients for any airbreathing engine will always remain the same: air, fuel and ignition. Be aware of what the engine instruments are reading, and the chances of success will be known in advance.

#### **Procedures**

- 1. Optimum airspeed 170 to 250 kias (13 units)
  - Airstarts are obtained most consistently below 35,000 feet and with 170 to 250 KIAS and 17% to 30% rpm. However, do not wait to obtain these conditions before proceeding with airstart. Proceed with airstart immediately. Airstarts have been obtained at higher altitudes and engine speeds up to the maximum capability of the aircraft. If a flameout occurs above 35,000 feet, it is necessary to perform airstart procedure quickly to utilize maximum available engine rpm.
  - The pump that supplies fuel for an airstart is at the aft end of the main cell on aircraft through BuNo. 145464, and it may be uncovered if excessive attitudes are established. For all fuel loads, a clean condition glide speed of 190 to 220 KIAS will ensure that fuel is available. If for some reason speed cannot be maintained in this range, fuel will be available as long as the following nose-down attitudes are not exceeded for the specified amount of main system fuel remaining:

| Above  | 1,200 | pounds | 20° |
|--------|-------|--------|-----|
| 600 to | 1,200 | pounds | 10° |

On airplanes BuNo. 145465 and subsequent, the pump that supplies fuel for an airstart is at the forward end of the main cell and the above restrictions do not apply.

# 2. Electrical power — AVAILABLE (extend EPP if required)

• The emergency power package is normally used to provide electrical power for airstart ignition. However, it may be possible to obtain an airstart using only aircraft electrical power if engine windmilling rpm is sufficient (the generator drops off the line 3 to 5 seconds after flameout) and main generator power is still available. A high-rpm, high-altitude airstart may

Section V Inflight Emergencies

be attempted by placing the throttle in IGNITE and back to IDLE. A high-rpm, low-altitude airstart may be attempted by thumbing the ignite microswitch and placing the fuel control switch in MANUAL without repositioning the throttle. Both procedures must be accomplished immediately following flameout and prior to generator dropping off the line.

• If necessary to extend emergency power pack-

age, use the following procedure:

a. Master generator switch—OFF (When selecting power source after extending EPP, master generator switch must be placed in OFF before emergency generator switch placed in ON or LAND to prevent complete loss of electrical power.)

b. Emergency power handle—PULL (Do not extend the emergency power package with the emergency generator switch in ON or

LAI

- c. Emergency generator switch ON (In aircraft through BuNo. 143821, airstarts can be obtained only with the emergency generator switch in ON. In airplanes BuNo. 144427 and subsequent, airstarts can be made with the switch in either ON or LAND position, but the ON position is recommended since fuel pump pressure is available in that position.)
- d. Emergency power indicator light ON
- e. DC power indicator v showing
- 3. Fuel control switch NORMAL or MANUAL
- Throttle IGNITE momentarily, then gradually advance to a maximum point slightly above IDLE
  - Monitor fuel flow and attempt to meter if flow does not pass through the desired airstart range (700 to 750 pph), which may be above or below

the IDLE stop.

- The ignition timer fires continuously for 30 to 40 seconds. (The ignite switch should not be actuated more than once every 40 seconds since the timer cannot be reset until the cycle is complete.) Therefore, the throttle should be moved to the desired setting in less than 30 seconds. In most cases, firing of the igniters can be verified by noting a clicking sound in the pilot's earphones, especially if the UHF volume control is set at a high level.
- 5. Engine instruments INDICATION OF START, WITH-IN LIMITS
  - Monitor tachometer and exhaust temperature gages. These gages will give the first indication of a start.
  - Check oil pressure gage for normal indication as rpm approaches idle.
- 6. Throttle DESIRED SETTING AFTER ENGINE

STABILIZES

- If loss of all fuel boost pumps is suspected as cause of flameout and no pumps are regained following airstart, descend below 30,000 feet before advancing throttle out of idle. Observe limitations described under FUEL BOOST PUMP FAILURE.
- If loss of engine stage of engine fuel pump suspected as cause of flameout, use afterburner only in an emergency.
- If operating in manual fuel control, move throttle slowly to avoid overtemperature, overspeed or another flameout.
- 7. Emergency generator switch OFF
- 8. Master generator switch MAIN
- 9. DC power indicator v showing
- 10. Attitude indicator OFF NOT SHOWING
- 11. Hydraulic pressure CHECK
- 12. Roll and stab switches OFF RESET, then ON
- 13. Roll and yaw stab warning lights OFF

#### **UNSATISFACTORY AIRSTART**

#### Indications

Ignition does not occur within 20 seconds after throttle advanced to maximum point slightly above IDLE

— OR —

Engine does not accelerate to idle speed within 45 seconds after ignition

— OR —

Exhaust temperature exceeding 630°C

Proceed immediately with the second airstart attempt if sufficient time remains in the preceding ignition timer cycle to complete the airstart. If insufficient time remains, delay the second attempt until 40 seconds after the throttle had been placed in IGNITE for the first attempt. This will allow the ignition timer to be reset for an additional 40-second cycle.

#### SECOND AIRSTART ATTEMPT

#### **Procedures**

- 1. Throttle OFF
- 2. Fuel control switch REPOSITION
  - Move switch to different position than was used for first attempt.
- 3. Repeat AIRSTART procedure from step 4.
  - If all airstart attempts are unsuccessful, conform to the ejection/bailout doctrine under EJECTION AND BAILOUT. Do not attempt bailout, ditching or dead-engine approach unless the ejection seat malfunctions. If dead landing is to be made, follow the procedure under DEAD-ENGINE LANDING, part 4.

Simulated flameout approaches are prohibited.

If start not obtained on second attempt:

4. Depress ignite microswitch and repeat airstart procedure.

#### AFTERBURNER MALFUNCTIONS

#### AFTERBURNER FLAMEOUT OR FAILURE TO LIGHT

#### **Indications**

If afterburner flames out:

EPR (or TOP) drops

Thrust decreases (below 55,000 feet)

#### **Procedures**

- 1. Throttle MOVE INBOARD IMMEDIATELY
  - · Move throttle inboard to MRT position immediately to stop afterburner fuel flow and to close exhaust nozzle flaps.
- 2. Verify nozzle closure by noting EPR (or TOP) increase.
  - If IP-4 fuel is being used, before relight allow from 1 second at sea level to 15 seconds above 40,000 feet for afterburner igniter valve to recycle. If JP-5 fuel is being used, no delay is required.

#### AFTERBURNER FAILS TO CUT OFF Indication

Afterburning continues after throttle moved inboard.

#### **Procedures**

- 1. Throttle RETARD FOR MECHANICAL CUTOFF
  - Mechanical cutoff occurs in the 88% to 92% range (past afterburner aft detent stop).
- 2. Do not relight afterburner unless necessary.
  - · Advancing throttle past aft detent stop will reignite afterburner.

## THROTTLE STUCK IN AFTERBURNER POSITION **Procedure**

Pull throttle inboard, using both hands, until burner detent pin breaks.

 Approximately 100 pounds of force using both hands is required to shear the afterburner detent pin, moving the throttle out of burner.

#### **NOZZLE REMAINS OPEN** Indications

Abnormal lack of thrust

- Most probably noted during runup to MRT or after deselecting afterburner.
- If desired EPR (or TOP) for present flight condition is known and the nozzle is open, cockpit reading will be much lower than the desired figure.

Observation by wingman

#### **Procedures**

1. With sufficient altitude and airspeed (recommended: 5,000 feet, 300 KIAS) reduce power to idle momentarily and then advance throttle to military. Nozzles should close upon advancing the throttle forward from idle and remain closed at all power settings above idle provided afterburner is not reselected.

If step 1 does not accomplish closing of the nozzle:

- 2. Ensure adequate thrust for landing.
  - With an open nozzle, there is adequate thrust for a normal landing if the aircraft is at a reasonable gross weight. Throttle settings approximately 3% to 5% higher than normal will be required to maintain approach thrust.

 Afterburner should still be available for recovery from a low and slow situation during the

3. Burn down to a reasonable gross weight (if necessary) before landing.

## **NOZZLE REMAINS CLOSED Indications**

Upon selecting burner:

Instantaneous increase in EPR (or TOP) and thrust — FOLLOWED BY —

Rise in EGT

Decrease in RPM (3% to 5%)

Decrease in thrust

#### **Procedures**

- 1. Deselect afterburner.
- 2. Do not relight afterburner.
  - Do not use afterburner again until engine has been ground checked for damage.

# ASYMMETRICAL NOZZLE OPENING

#### Indication

As lightoff occurs:

Yaw and/or pitch

#### Procedure

Deselect and discontinue after using afterburner.

# **FUEL SYSTEM MALFUNCTIONS FUEL CONTROL UNIT FAILURE**

#### Indications

EPR (or TOP), EGT and RPM erratic at constant throttle

Unusual or no engine response to throttle movement Excessive decrease in EGT and thrust with gain in altitude

#### **Procedures**

- 1. Throttle IDLE, time permitting
- 2. Fuel control switch MANUAL

- Changeover to manual fuel metering is not automatic and can only be accomplished in this manner.
- 3. Throttle ADVANCE SLOWLY TO DESIRED SETTING
  - Advance throttle slowly to avoid flameout, overtemperature or overspeed.
- 4. Land as soon as practical.

#### ENGINE FUEL PUMP FAILURE

#### Indications

Engine fuel pump warning light — ILLUMINATED

- Indicates insufficient fuel pressure from engine stage of fuel pump to sustain engine operation. If engine continues to operate, afterburner stage is delivering fuel to engine.
  - AND POSSIBLY -

Engine flameout

#### **Procedures**

- 1. Do not use afterburner, except in an emergency.
- 2. Land as soon as practical.

If engine flames out and no fuel flow indicated:

Relight improbable

If engine flames out, but fuel flow is indicated:

# Perform relight

• If fuel flow indicated, the afterburner stage of the fuel pump is delivering fuel to the engine and a relight may be obtained. When this condition exists, use the afterburner only in an emergency.

#### **FUEL BOOST PUMP FAILURE**

#### Indication

Fuel boost pump warning light — ILLUMINATED

- Warning light comes on when pressure in engine fuel feed line, between main cell boost pumps and engine pumps, has dropped below the pressure required to sustain engine and afterburner operation at high altitudes.
- This warning light is inoperative when emergency generator switch is in LAND. With the emergency generator switch in LAND, the boost pumps will not operate and flight operation must be restricted to avoid flameout.

#### **Procedures**

To prevent flameout because of loss of boost pump pressure:

- 1. Retard throttle to IDLE and descend below 30,000 feet.
- 2. Observe following limitations on return to base:
  - Use lowest possible thrust setting.

- Do not exceed following nose-down attitudes for specified amount of main system fuel remaining: above 1,200 pounds, -20°; 600 to 1,200 pounds, -10°; less than 600 pounds, maintain level or nose-up attitude.
- Do not use afterburner above 6,000 feet or 300 KIAS. If afterburner is used, obtain 2 g or nose-up attitude before reducing power.
- Do not fly at negative g loads.

#### ALL TRANSFER FUEL SYSTEM FAILURES

#### Indications

Steady illumination of fuel transfer pump caution light with more than 3,500 pounds of transfer fuel remaining indicates failure of aft transfer pump.

Main fuel depleting with transfer fuel quantity remaining constant.

Unusually low transfer rates or unexpected illumination of low level warning light with transfer fuel remaining may indicate failure of wing to transfer fuel.

 Low transfer rates are indicated by higher-thanexpected quantity of transfer fuel remaining.

Main fuel quantity indicator reads in excess of 3,100 pounds when transfer fuel being depleted indicates transfer system shutoff failure. Proceed directly to TRANSFER SYSTEM SHUTOFF FAILURE.

#### **Procedures**

In all cases except transfer system shutoff failure:

- 1. Check proper positioning of fuel transfer, cockpit pressure (F-8B aircraft), air refueling probe and fuel dump switches.
  - Check that fuel transfer switch is in ON or PUMP OFF (as applicable), cockpit pressure switch CABIN PRESS (F-8B aircraft), inflight refueling probe switch is not in OUT position and fuel dump switch is OFF.

If switches correct, but no transfer:

- 2. Cycle fuel transfer switch.
- 3. Cycle air refueling probe.
- 4. Induce positive and negative g.
- 5. Cycle speed brake, rock wings.
- 6. Cycle fuel dump switch.

#### If fuel still fails to transfer:

 Proceed to FAILURE OF AFT TRANSFER PUMP or WING FAILS TO TRANSFER FUEL, as applicable.

#### FAILURE OF AFT TRANSFER PUMP

#### **Procedures**

If ALL TRANSFER FUEL SYSTEM FAILURES procedure fails to regain transfer of fuel from aft cells:

- 1. Plan remainder of flight to allow for unavailable (trapped) fuel.
  - When aft transfer pump fails, fuel remaining in aft transfer cells (as much as 1,200 pounds) will not be available.
  - Center of gravity can move aft of normal limits due to the trapped fuel in aft cells.
  - With full aft transfer fuel trapped, the normal center of gravity limits of the F-8A (with or without Sidewinders) will be reached at 1,100 pounds of fuel remaining in the main system (600 pounds for the F-8B).
- 2. Fuel transfer switch PUMP OFF
- 3. Fuel transfer pump caution light OFF
- 4. Dump wing fuel before landing.
- 5. If possible, land with at least 1,000 pounds of fuel in the main system.
  - The recommended center-of-gravity aft limits are based on a gradual deterioration of flying qualities. As the center of gravity moves aft of the normal limits at landing approach speeds, less nose-up pitch trim is required. At 3% aft of the limits, the aircraft will not maintain handsoff longitudinal trim and becomes sensitive to longitudinal stick movement. While no severe difficulties have been encountered during simulated mirror approaches and during landings with the center of gravity 3% aft of the limits, there is a tendency to overcontrol. Under normal loading, 3% aft of the limits will not be exceeded even with zero fuel remaining in the main system. Normal angle-of-attack and approach speeds are recommended.

#### WING FAILS TO TRANSFER FUEL

#### **Procedures**

If ALL TRANSFER FUEL SYSTEM FAILURES procedure fails to regain transfer of fuel from wing:

- 1. Plan remainder of flight to allow for unavailable wing fuel.
  - Wing fuel will not transfer by gravity.
- 2. Avoid using afterburner except in emergency.

#### TRANSFER SYSTEM SHUTOFF FAILURE

#### **Procedures**

- 1. Fuel transfer switch PRESS DUMP
  - Greatest danger of transfer system shutoff failure is that it allows main fuel cell to overpressurize which can result in rupture of main cell and collapse of engine duct.
- 2. Monitor main cell level and adjust as required with transfer switch (and cockpit pressure switch on F-8B aircraft).
  - On F-8A aircraft, return fuel transfer switch to ON or PUMP OFF as necessary to transfer wing fuel.
  - On F-8B aircraft, return fuel transfer switch to ON or PUMP OFF and cockpit pressure switch to CABIN PRESS as necessary to transfer wing fuel.
- 3. Do not attempt air refueling.

#### **FUEL LEAKS**

#### Indication

High fuel consumption, but no fuel control malfunction indicated. Observation by wingman.

#### **Procedures**

1. Avoid using afterburner except in emergency.

Approach

# WARNING

Reverse engine cooling occurs below 205 KIAS. Airspeeds below 205 KIAS could produce an inflight fire as a result of fuel vapor being drawn back into the engine compartment.

- 2. Maintain a minimum of 220 KIAS clean configuration to the 135° position.
- 3. Extend EPP with emergency generator switch in OFF.
- 4. Place wing up and gear down at the 90° position. Maintain 175 KIAS.
- 5. Final approach point 1,500 feet from runway end, 175 KIAS, 150 feet altitude. Secure engine.

- 6. To preclude a possible fire from engulfing the forward fuselage area, do not use a short field arrest.
- 7. If arrest is necessary, utilize the upwind arresting gear following rollout.

# **ELECTRICAL SYSTEM MALFUNCTIONS**

#### MAIN GENERATOR FAILURE

#### Indications

Barberpole in dc power indicator (dc failure) Attitude indicator OFF flag visible (ac failure)

#### **Procedures**

1. With main generator failure the aircraft will change trim due to loss of roll and yaw stabilization. If operating in instrument conditions, primary emphasis must be placed on controlling the aircraft with reference to the turn and bank indicator, airspeed indicator and altimeter until proper functioning of the EPP is assured and primary flight instruments are regained.

- 2. Mechanically stop afterburning (if required).
  - If the afterburner is lit at the time of electrical failure, mechanically stop afterburning by retarding the throttle past the afterburner aft detent stop. Movement of the throttle is then restricted to positions aft of the detent until power from the emergency power package closes the afterburner shuttle valve. Thereafter, do not use afterburner above 6,000 feet or 300 KIAS.
- 3. Master generator switch OFF momentarily, then ON.
  - Moving the switch to OFF and returning it to ON may in some cases restore electrical power.

#### Section V Inflight Emergencies

- 4. Extend EPP as needed.
  - Due to the 18% loss in range and limited life of the emergency power package, do not extend package until needed.
  - To prevent complete electrical system failure when selecting a power source with the emergency power package extended, the emergency generator switch must be in the OFF position before placing the master generator switch in the ON position, or the master generator switch must be in the OFF position before placing the emergency generator switch in the ON or LAND position. Simultaneous application of both main and emergency sources of electrical power can cause the emergency ac relay to fail and thereby lose the use of the emergency generator. The inability of the relay to switch to an unsynchronized three phase load is the primary cause of this type failure. If the main generator has failed or been turned off before deployment and use of the EPP, this possibility is eliminated.
  - Extend power package, using the following procedure:
    - a. Master generator switch OFF
    - b. Emergency generator switch OFF
      - Do not extend the emergency power package with the emergency generator switch in ON or LAND. Extending the package with a load on the generator could prevent voltage buildup to rated values.
    - c. Emergency power handle PULL
    - d. Emergency generator switch ON
    - e. Emergency power indicator light -

ILLUMINATED

- Failure of the emergency generator light to come on within approximately three seconds after the EPP is extended is an indication that the generator has not built up. If this should occur, place the emergency generator switch in OFF and allow about three seconds for the generator to build up. Then return the emergency generator switch to ON. The emergency generator light should come on, indicating that the generator is operating. If the generator still fails to operate, residual magnestism is insufficient to allow generator buildup.
  - f. DC power indicator v showing
  - g. Attitude indicator POWER OFF FLAG NOT VISIBLE (indication of ac electrical power)
  - h. Roll and yaw stab switches OFF RESET, then ON
  - i. Roll and yaw stab warning lights OFF
- 5. Land as soon as possible at the nearest suitable field.
  - The aft transfer fuel pump and all but the forward main fuel boost pump are lost with main generator failure and cannot be regained

- on EPP power. (The forward main boost pump will continue to operate with the emergency generator switch in ON.)
- Do not fly at negative g loads.
- If emergency ac generator is lost, instrument lights are not available. Turn emergency light switch ON.
- With the emergency generator switch in ON, the minimum airspeed required to supply adequate electrical power is 175 KIAS. With the switch in LAND, the minimum airspeed to meet electrical power needs is 145 KIAS.
- Although loss of electrical power is not in itself a cause for immediate landing, the possibility of a failure within the generator air turbine could produce a fire from escaping or vented hot sixteenth stage air which would not be readily discernible to the pilot.
- 6. Be prepared to carry out the EMERGENCY DE-PRESSURIZATION procedure.
  - With loss of secondary ac bus power (F-8A aircraft through BuNo. 143771) or primary ac bus power (F-8A aircraft BuNo. 143772 and subsequent, and all F-8B aircraft) the cockpit air-conditioning temperature will go full cold (temperature control bypass valve will fully close). Fog in the cockpit may obscure vision. On F-8A aircraft, the defog system may be partially effective in preventing this condition.

#### If EPP fails:

7. Perform COMPLETE ELECTRICAL FAILURE procedure.

#### COMPLETE ELECTRICAL FAILURE

If the main system fails and no power is obtained from the EPP with the emergency generator switch in ON, try the LAND position. Even partial restoration of electrical power, such as the emergency dc bus, will provide some useful services. If proper power is not obtained from the EPP:

- 1. Throttle IDLE until below 30,000 feet: then lowest possible thrust setting
  - Only pressure-operated flight instruments, plus the tachometer and tailpipe temperature gages, will function. If this failure occurs above 30,000 feet and at a high power setting, there is a possibility of a flameout occurring due to lack of boost pressure and a relight would be impossible.
- 2. Observe limitations and return to base.
  - Do not exceed following nose-down attitudes for specified amount of main system fuel remaining:

- Do not use afterburner above 6,000 feet or above 300 KIAS. Afterburner will light any time throttle advanced forward of afterburner aft detent stop if burner was in operation at time of failure. If burner used, obtain 2 g or nose-up attitude before reducing power.
- Do not fly at negative g loads.
- 3. Land as soon as practical.
- 4. Be prepared to carry out the EMERGENCY DE-PRESSURIZATION procedure.
  - With loss of secondary ac bus power (F-8A aircraft through BuNo. 143771) or primary ac bus power (F-8A aircraft BuNo. 143772 and subsequent, and all F-8B aircraft) the cockpit air-conditioning temperature will go full cold (temperature control bypass valve will fully close). Fog in the cockpit may obscure vision. On F-8A aircraft, the defog system may be partially effective in preventing this condition.

# POWER CONTROL (PC) HYDRAULIC SYSTEM FAILURES

#### Indications

Engine oil/hydraulic pressure warning light—
ILLUMINATED
PC 1 and/or PC 2 hydraulic gages indicate low or
zero pressure

— AND POSSIBLY —
Complete loss of control (failure of both PC systems)

#### FAILURE OF BOTH PC SYSTEMS

#### **Procedures**

- 1. Extend EPP.
  - With PC hydraulic emergencies requiring the EPP, emergency electrical power from the EPP is not needed; therefore, the emergency generator switch should be left in the OFF position to allow the EPP to furnish maximum PC hydraulic pressure.

If EPP fails to restore control:

# WARNING

Complete loss of power control system hydraulic pressure will result in an uncontrollable nose down pitch and high negative g forces. The pitchover effect is more severe with cruise droops extended than with a clean wing. Therefore, as soon as it becomes evident that both pc systems could be lost, retract the droops.

- 2. Abandon aircraft.
  - If loss of both power control systems is evident and the EPP will not restore PC 1 pressure, abandon the aircraft prior to complete loss of pressure and resulting negative g pitch. Consider placing the left hand on the alternate firing handle if delaying ejection to the last minute. Following uncontrollable pitch, g forces may exceed pilot capability to successfully eject.

#### FAILURE OF ONE PC SYSTEM

#### **Procedures**

- 1. Return to base immediately or land at nearest suitable field.
- 2. Determine which PC system has failed.
  - Hydraulic pressure gage of failed system will indicate low or zero pressure.

#### With PC 1 inoperative:

- 3. Roll stab is lost. If desired, EPP may be extended any time before landing.
  - Consider approximate 18% reduction in range with power package extended. The package is not retractable in flight. If maximum range performance is required, defer extension of the package until descent and approach at destination.

#### With PC 2 inoperative:

- 3. Aileron spoilers and yaw stab are lost. Monitor PC 1 system pressure and extend EPP only if needed.
  - The EPP has been known to cause failure of the PC 1 system due to vibrational effect on connecting lines.
  - Refer to PC 1 INOPERATIVE for range considerations with EPP extended.

#### Limitations with either system inoperative:

- 4. Observe flight restrictions.
  - Maximum airspeed 600 KIAS or 0.92 IMN, whichever is less
  - Maximum permissible airspeed with either stab out in landing condition 180 KIAS
  - Maximum acceleration PC 1 out 4.0 g
    - PC 2 out same as yaw stab out (Refer to Supplemental NATOPS Flight Manual.)
  - Bank angle is not to exceed 90°.
  - No abrupt flight control movements are allowable.
  - No slipping or skidding is allowable.
  - Minimum airspeed with EPP extended, emergency generator switch OFF 140 KIAS
- 5. Emergency generator OFF

- 6. Land immediately at the nearest suitable field.
  - Go easy on the controls during the approach. Due to the greatly reduced volume capacity of the EPP, an approach on EPP PC power should be planned to utilize the least amount of flight control deflection, especially when raising the wing.
  - If operating on EPP PC 1 pressure after failure of both PC systems, a straight-in precautionary approach is recommended. Refer to PRECAUTIONARY APPROACH this section, part 4.
  - Refer to section IV for flight characteristics encountered upon failure of one PC system.

# UTILITY HYDRAULIC SYSTEM FAILURE Indications

Engine oil/hydraulic pressure warning light illuminated

-AND-

Utility hydraulic pressure gage indicates low or zero pressure

#### **Procedures**

If failure detected before all pressure lost:

- 1. Attempt to extend gear and raise wing (if practical).
  - If fuel remaining is sufficient to reach base in the landing configuration, immediately attempt to extend the landing gear first and then raise the wing, using normal procedures.
- 2. Land as soon as practical.

If all pressure lost:

- 1. Return to base.
  - If the failure is complete, return to base early enough so that sufficient fuel remains to allow for field preparations or in case other difficulties are encountered.
- 2. Extend landing gear pneumatically.
  - Always extend the landing gear before attempting to raise the wing.
  - Extend landing gear as follows:
    - a. Airspeed 220 KIAS MAXIMUM
    - b. Aircraft BuNo. 141361 and subsequent:
      - Landing gear handle WHEELS DOWN, push in, rotate clockwise and pull aft (landing gear handle must be placed in WHEELS DOWN to provide nose gear mechanical downlock and a wheel indication)

Aircraft through BuNo. 141360:

- Landing gear handle WHEELS DOWN
- Emergency gear down handle PULLED
- c. Landing gear position indicators WHEELS VISIBLE (if nose gear down and locked but main gear indicators show barberpole, accelerate to maximum speed permissible (220 KIAS) to increase the aerodynamic locking force on the main gear. If main gear still not locked, apply positive g.)
- 3. Extend leading edge and raise wing pneumatically (if leading edge fails to attain at least the cruise droop position, do not raise wing).
  - Extend droops and raise wing as follows:
    - a. Airspeed 220 KIAS MAXIMUM
    - b. Down-lock handle UNLOCK (If landing configuration not achieved or desired prior to complete loss of pressure and unable to

- unlock wing, reduce speed to 220 KIAS or less and push over to one-half negative g to apply compression load on actuating cylinder and allow wing to unlock. After unlocking, wing can be raised with emergency air while in level flight. However, if all attempts to unlock wing fail, do not attempt to raise wing. Wing cylinder locks will bind and all further attempts to raise wing will be unsuccessful.)
- c. Wing incidence handle DN (Failure to place the wing incidence handle in DN before the emergency droop and wing incidence guard is raised will result in the detent plate swinging outboard and binding the wing incidence handle. If this occurs, push the detent plate inboard with index finger while pushing the wing incidence handle outboard and forward with palm of hand.)
- d. Emergency droop and wing incidence guard

   RAISED
- e. Wing incidence release switch DEPRESSED
- f. Wing incidence handle Full forward to extend leading edge droop. Observe extension to the landing droop position; then move handle inboard and aft to EMERG UP position to raise wing. If cruise droop is the maximum droop attainable, the wing still should be raised. Do not, however, raise the wing clean. Raising the wing clean would result in higher-than-normal approach speeds and possible nosewheel-first touchdown. Nosewheel-first touchdowns can lead to porpoising and possible overloading of the nose gear.

If for any reason the wing is blown up without first obtaining land or cruise droop, then
prior to landing, and at a safe altitude, investigate the handling characteristics at and below the speed which gives a donut on the
indexer. Complete stalls are not recommended. It is expected that the normal
approach angle of attack will provide an
approach speed that is satisfactory.

4. Proceed to LANDING WITH UTILITY HY DRAULIC FAILURE.

# LATERAL CONTROL MALFUNCTIONS

#### **Indications**

Ailerons binding Rolling tendency Suspected malfunction due to airframe or system damage

#### **Procedures**

Before raising wing:

1. Climb to at least 10,000 feet.

If uncontrollable with wing raised:

- 2. Lower wing and perform wing-down landing.
  - Refer to LANDING EMERGENCIES for wing down landing procedure.

# TRIM AND STABILIZATION SYSTEM FAILURES

Few complications result from stabilization system failures. Landings without stabilization present no problem. Observe the clean and wing-up configuration limitations listed for the particular failure.

## FAILURE OF YAW TRIM AND STAB SYSTEM

#### **Indications**

Inability to trim
Yaw stab warning light illuminated
Yaw oscillations

#### **Procedures**

- 1. Yaw stab switch OFF RESET until out of oscillation speed range, then ON
  - Yaw oscillations of varying intensities are common with a malfunctioning yaw stabilization system, but can be eliminated by turning the stab switch off. These oscillations are often associated with a particular speed area, and if desired, attempts should be made to reset the stab when out of the suspect range.

If warning light remains lit:

- 2. Yaw stab switch OFF RESET
  - Yaw trim and stab are inoperative and rudder will return to neutral.
- 3. Observe applicable limitations.
  - Refer to section I, part 4 for trim and stabilization system operating limitations.

## FAILURE OF KOLL TRIM AND STAB SYSTEM

#### **Indications**

Inability to trim
Roll stab warning light illuminated

#### **Procedures**

1. Roll stab switch - OFF RESET, then ON

If warning light remains lit:

- 2. Roll stab switch OFF RESET
  - If the EPP is in use and the roll stab switch is inadvertently left in ON, the roll trim and stab system will automatically reset itself when the emergency generator switch is placed in LAND. Energizing a previously malfunctioning system in this situation could produce a dangerous roll maneuver. For more detailed information refer to figure 1–12 (sheet 1).
- 3. Observe applicable limitations
  - With roll stab inoperative, do not exceed 180 KIAS in the landing configuration.

#### PITCH TRIM FAILURE

Trim malfunctions are relatively rare, but on occasion, certain aircraft may become afflicted with a recurring "pitch oscillation." This oscillation is normally mild, but may increase in intensity if allowed to continue. The following procedure will supply emergency trim and should stop the oscillation.

#### **Indications**

Inability to trim Pitch oscillation

#### **Procedures**

Emergency pitch trim T-handle - RAISE

- Normal pitch trim is inoperative and emergency pitch trim is available by movement of the emergency pitch trim handle to NOSE DOWN or NOSE UP.
- Raising the emergency pitch trim emergency T-handle should stop the oscillation. With the handle raised, however, there will be no automatic retrim when wing is raised or lowered.

# INFLIGHT FIRES/COCKPIT SMOKE AND FUMES

Normally, there is adequate time in the F-8 to analyze a fire warning indication and to take appropriate action.

#### ENGINE OR ENGINE COMPARTMENT FIRE

#### Indications

Fire warning light — ILLUMINATED

#### Other Possible Indications

Rapid rise in EGT Unusual vibration Smoke and/or flames emitting from tailpipe Loss of fuel or hydraulic pressure Loss of flight controls

#### **Procedures**

- 1. Throttle IDLE, immediately
  - If in afterburner, simply deselecting the afterburner may cause the fire warning light to go out and indicate a possible afterburner fuel leak.
- 2. Investigate for further evidence of fire.
  - Conditions permitting, ask wingman to check fuselage thoroughly. If alone, turn aircraft sharply and look for smoke. Look for more positive evidence of fire before deciding to shut down or eject.
  - Remember, smoke in the cockpit is rarely an indication of fire in the F-8.
  - Failure of the air-conditioning turbine may be mistaken for engine explosion or fire. Failure of this turbine may be accompanied by a muffled explosion, smoke in the cockpit and illumination of the fire warning light. A suspected engine fire under these conditions should be confirmed.

If fire not positively indicated:

Return to base using minimum power.

If engine fire does exist:

Shut down engine or eject.

• If fire exists, shutting down the engine is a reasonable course of action. After engine shutdown, the EPP may be extended to reenergize the fire warning system.

- If fire warning light goes out after engine shutdown, any decision to relight rests strictly with the pilot.
- If fire persists, eject.

#### WHEEL WELL FIRE

#### **Indications**

Smoke or fire emitting from wheel well Explosion in wheel well area

#### **Procedure**

If wheel well fire does exist: Eject.

- This particular kind of fire is usually caused by overheated wheel assemblies exploding after gear retraction following takeoff with overheated brakes and wheels.
- If fire ensues following a carrier ramp strike/ landing and the aircraft bolters, select afterburner, climb to a safe altitude and eject.

#### **ELECTRICAL FIRE**

#### **Procedures**

- 1. Isolate fire by deenergizing affected equipment.
- If unable to isolate fire:
- 2. Master generator switch OFF
- 3. Emergency generator switch OFF
- 4. Perform COMPLETE ELECTRICAL FAILURE procedure.

#### **COCKPIT SMOKE AND FUMES**

#### **Procedures**

To eliminate smoke and fumes from cockpit:

- 1. Throttle RETARD
- 2. Temperature knob DECREASE
- 3. Defogger switch OFF

If condition persists:

- 4. Perform emergency depressurization.
  - Emergency depressurization procedure is presented under AIR-CONDITIONING SYSTEM FAIL-URES.

# **AIR-CONDITIONING SYSTEM FAILURES**

#### COMPLETE FAILURE

#### **Indications**

Loss of cockpit pressurization and temperature control

Loss of windshield defogging and rain removal

#### **Procedures**

- 1. Descend to lower altitude (if possible).
  - In planning remainder of flight, consider the following (in addition to items under preceding INDICATIONS).
  - Integrated electronic package pressurization is lost.
  - Electronic compartment is automatically cooled by ram air.
  - Ram air is automatically admitted to maintain pressurization of fuselage fuel cells. Wing tank fuel can be dumped at a reduced rate. Wing tank fuel transfer is negligible.
  - · Conditioned air-cooling of the radar set is lost.
- 2. Perform EMERGENCY DEPRESSURIZATION.

#### **ERRATIC TEMPERATURE CONTROL**

#### **Procedures**

In F-8B aircraft, if air-conditioning system will not maintain desired temperature:

- 1. Manual override switch MAN
- 2. Temperature knob AS DESIRED
  - Pressure fluctuations when using manual temperature control indicate that the temperature knob is set too high. Move the knob toward COLD to stop the fluctuations.

In F-8A aircraft, if air-conditioning system will not maintain desired temperature:

Cockpit pressure switch - CABIN DUMP

 Use cockpit emergency ventilation knob as desired. When the emergency ventilation port is open, do not rely on angle-of-attack indications.

#### **COCKPIT OVERTEMPERATURE**

#### **Procedures**

If cockpit temperature goes full hot and cannot be controlled automatically or manually:

1. Throttle — CRUISE POSITION

- 2. Cockpit pressure switch CABIN DUMP (on as required to defog canopy)
  - In F-8B aircraft, wing fuel transfer will be negligible.
- 3. Cockpit emergency ventilation knob AS DESIRED
  - When the emergency ventilation port is open, do not rely on angle-of-attack indications. Airflow over the angle-of-attack vane is disturbed by the vent port door, resulting in erroneous indications.
  - If wearing antiexposure coverall in an F-8A, turn antiexposure coverall vent valve OFF.
- 4. Canopy JETTISON IF REQUIRED
  - If unable to control cockpit temperature using preceding steps, it may be necessary to jettison the canopy.

# **EMERGENCY DEPRESSURIZATION**

#### **Procedures**

When it is necessary to depressurize the cockpit or when the air-conditioning system fails, proceed as follows:

- 1. Cockpit pressure switch CABIN DUMP
  - If radio transmission is desired, place cockpit pressure switch in CABIN PRESS for period of transmission.
  - Dumping cockpit pressure above 43,000 feet may lead to adverse physiological effects.
  - In F-8B aircraft, wing fuel transfer will be negligible. This is due to the wing being depressurized. In F-8A aircraft, with normal system operation, the wing fuel cell will not be depressurized.
- 2. UHF function switch OFF above 27,000 feet
- 3. Defogger switch OFF
- 4. Radar power switch OFF
- 5. Cockpit emergency ventilation AS DESIRED
  - When the emergency ventilation port is open, do not rely on angle-of-attack indications. Airflow over the angle-of-attack vane is disturbed by the vent port door, resulting in erroneous indications.

# **OXYGEN SYSTEM EMERGENCIES**

#### LOW OXYGEN PRESSURE OR QUANTITY

If oxygen low pressure warning light illuminated:

Continue flight if positive pressure noticeable and breathing normal.

# If low quantity indicated:

Monitor quantity closely and one allow supply to become exhausted.

- Normal oxygen consumption rate is one liter per hour. Consider rates higher than this a potential emergency.
- If desirable to reduce oxygen consumption, increase cockpit altitude by opening the cockpit emergency air vent. Do not increase cockpit altitude to more than 25,000 feet because of the physiological effects.

#### **OXYGEN SYSTEM FAILS OR MAIN SUPPLY EMPTY**

#### Indications

Oxygen warning light — ON
Gage indication
Oxygen delivery fails
Difficulty in breathing experienced when wearing
mask with miniature regulators
Hypoxia symptoms

#### **Procedures**

- 1. Check security of mask-mounted regulator.
- 2. Check hose connections.
- 3. Check that oxygen valve shows ON.
- 4. Check oxygen quantity.
- 5. Activate emergency oxygen bottle.
  - "Green apple" PULL LANYARD
  - If mask breathing (mask with miniature regulators) continues to be difficult after pulling the lanyard, remove mask.
- 6. Descend below 10,000 feet (cockpit altitude).
  - Refer to EMERGENCY DESCENT for rapid descent information.

#### CONTAMINATED OXYGEN

#### Indication

Peculiar odor in oxygen system Dizziness Nausea

#### **Procedures**

- 1. If cockpit altitude is more than 10,000 feet, activate the emergency oxygen bottle. If cockpit altitude is less than 10,000 feet, remove the mask.
- 2. Oxygen (Normal) valve OFF
- 3. Descend to below 10,000 feet MSL (5,000 feet MSL at night)
  - An emergency or operational necessity may require remaining at a cockpit altitude of 10,000 feet (5,000 feet at night) or above after the emergency oxygen supply is depleted. In such cases, descend to below 10,000 feet MSL as soon as possible and continue with the procedure from step 4.
- 4. Cockpit pressure switch CABIN DUMP
  - In F-8B aircraft, wing tank fuel transfer will be negligible.
- 5. Emergency ventilation port OPEN
  - Due to the possibility of engine bleed air contamination, depressurize the cockpit. Ram air vent should be open at all times when not on oxygen.
  - When the emergency ventilation port is open, do not rely on angle-of-attack indications. Airflow over the angle-of-attack vane is disturbed by the vent port door, resulting in erroneous indications.
  - To resume transfer of wing fuel in F-8B aircraft, place the cockpit pressure suit in CABIN PRESS. As soon as transfer is complete, return the switch to CABIN DUMP.
- 6. Remove mask.

# **EJECTION OR BAILOUT**

#### **EJECTION/BAILOUT DOCTRINE**

#### High altitude:

If the aircraft is descending out of control, abandon it at an altitude not lower than 10,000 feet above the terrain. Below 10,000-feet, if uncontrolled flight is entered (from which recovery cannot be effected) don't hesitate; abandon the aircraft. If the aircraft is in controlled flight and you decide to eject, head the aircraft out to sea or away from populated areas and abandon it.

#### Low altitude:

If power lost, but sufficient time exists before ejection, turn the aircraft away from any populated area and attempt a high-rpm low-altitude airstart (refer to AIRSTARTING procedure this section, part 1). In no situation attempt to regain power at less than 1,500 feet above the terrain and 250 KIAS; Eject immediately.

#### PREPARING TO EJECT

#### **Procedures**

- 1. Pull up, if at low altitude and with sufficient airspeed.
  - A "pullup" maneuver may be performed as an aid to successful ejection at low altitudes. The pullup increases the margin of safety in a lowaltitude ejection by increasing the time available for seat separation and parachute deployment. However, flight test demonstrations have shown that attempting a power-off "pullup" outside of certain airspeed limits will result in a loss of altitude rather than a gain. Variations in flight path, weight, and wing position can vary the minimum airspeed required for an effective pullup from 160 KIAS to 200 KIAS. In gliding flight, the maximum effective airspeed can vary from 210 to 230 KIAS. When above this airspeed in a glide, more altiude is lost during the flare than can be regained during pullup. See figure 5-2 (MK-F5A seat) or figure 5-2A (MK-F7 seat) for effect of rate of descent on ejection capability.
  - Upon loss of power following takeoff with full fuel load, 180 KIAS is required with the wing up and 190 KIAS with the wing down in order to convert airspeed into altitude. This assumes no rate of descent at the time of pullup. If a descent has begun after power loss, a minimum of 210 KIAS and a maximum of 230 KIAS, wing up or down, is required.
  - During landing approach, airspeed will normally be approximately 150 KIAS at the 180°

- position decreasing to 135 KIAS on final. If power is lost anywhere during the approach, rate of descent will increase rapidly, and a pullup will not be effective. See figure 5–3 (MK-F5A seat) or figure 5–3A (MK-F7 seat) for power-off pullup and ejection capability during takeoff and landing.
- To perform a power-off pullup, apply light to moderate aft stick force, increasing the pitch attitude steadily until reaching the ejection point 10 to 20 knots above stall speed.
- Do not pull excessive g. Accelerations above 1.2 g will decrease possible altitude gains by causing the stall to occur earlier (at a higher airspeed).
- Aircraft pitch attitude and flight path can reach as high as 25° during the pullup. Time for effective completion of a pullup maneuver will be at least 6 seconds at minimum airspeed and can exceed 15 seconds when starting above 220 KIAS.
- Minimum safe ejection altitudes with zero sink rate are contained in the ejection seat descriptions, section I, part 2.
- 2. Reduce speed (if necessary).
  - The risk of bodily injury due to airloads or striking the tail increases with airspeed as follows.
    - a. From 0 to 400 KIAS safe minor forces on body
    - b. 400 to 600 KIAS more hazardous—appreciable forces on body
    - c. Above 600 KIAS extremely hazardous excessive forces on body, may not clear tail (clearance above tail ensured only up to 600 KIAS for 200-pound pilot)
    - Altitude required for safe ejection increases greatly as dive angle or dive airspeed increases. Figure 5–4 shows these effects for the MK-F5A seat and figure 5–4A shows these effects for the MK-F7 seat.
- 3. Actuate emergency IFF.
- 4. Transmit Mayday and give position.
- 5. Stow loose gear.
- 6. Manually lock shoulder harness.
- 7. Place helmet visor down.

#### **EJECTION**

The ejection procedure is presented in figure 5–5 and the after-ejection procedure is presented in figure 5–6. The ejection sequence (timed firing of seat, chute, etc) is described and illustrated in figure 1–42. All pilot actions required before pulling the face curtain are presented in detail under PREPARING TO EJECT.





NOTES

- For 90° bank, add 200 feet to terrain clearance required for wings level.

  For inverted flight, add 400 feet to terrain clearance required for wings level.
- 4. Normal approach curve based on 140 KIAS with power. 5. No-thrust (flameout) curve based on 170 KIAS wing up.

Normal ejection capability based on: a. Two-second reaction time. b. Normal aircraft pitch for conditions shown ( $\pm 15^{\circ}$ ). c. Maximum operational ejected weight.

53212-5-11-9-67

# EFFECT OF RATE OF DESCENT ON EJECTION CAPABILITY (MK - F7 SEAT) -



# NOTES

- 1. Normal ejection capability based on:
  - a. 2-second reaction time
  - b. Maximum operational ejected weight
  - c. Appropriate angle of attack
  - d. 5,000-foot terrain
- Normal approach curve based on 140 KIAS with power.
- 3. No-thrust curve based on 170 KIAS wing up.

53212-5-17-3-68

Figure 5-2A

# TAKEOFF AND LANDING EJECTION CAPABILITY (MK-F5A SEAT)

LAND



NOTES

- 1. Performance based on maximum operational ejected weight.
- 2. Based on complete power failure. Includes 2-second reaction time.
- 3. Minimum ejection speed with zero rate of sink (ground level).
  - 4. Pull-up capability based on complete power failure.

Figure 5-3 (Sheet 1)

# TAKEOFF AND LANDING EJECTION CAPABILITY (MK-F5A SEAT) -



Figure 5-3 (Sheet 2)

3. Minimum ejection speed with zero rate of sink (ground level).

4. Pull-up capability based on complete power failure.

Ejection Not Recommended

# DIVE EJECTION CAPABILITY (MK-F5A SEAT)

#### NOTES

- Curves include 2-second pilot reaction time.
   Curves are based on wings-level bank attitude and appropriate angle of attack.
   Terrain clearance required is based on 5,000-foot terrain and is conservative for lower terrain.
   Example: At 600 knots EAS in 30° dive, terrain clearance required is 2,050 feet.

- 5. Based on maximum operational ejected weight.



53212-5-14

# DIVE EJECTION CAPABILITY (MK - F7 SEAT) -



## NOTES

- 1. Curves include a 2-second pilot reaction time.
- 2. Curves are based on:
  - a. Maximum operational ejected weight
  - b. Wings level bank attitude with appropriate angle of attack
  - c. 5,000-foot terrain (conservative for lower terrain)

# **EJECTION PROCEDURE**

#### IF TIME AND CONDITIONS PERMIT

- Pull up, if at low altitude.
- Reduce speed.
- Actuate emergency IFF.
- Transmit May Day and give position.
- Stow loose gear.
- Manually lock shoulder harness.
- Place helmet visor down.

# WARNING

Do not pull emergency harness handle before ejection.





Sit erect in seat, buttocks against backrest, head firmly against headrest, spine straight, thighs firmly against seat pan, legs extended forward with feet on rudder pedals. Harness properly adjusted and tight. Grasp face curtain with both hands, elbows in, thumbs outboard.





Pull face curtain out and downward in one firm, continuous motion. Canopy will be jettisoned. A slight delay in curtain travel might be noticed during canopy jettisoning. Continued pulling on face curtain will eject the seat.

#### WARNING

If in high positive or negative g flight, it may be impossible to reach or obtain the proper force vector on the face curtain. Use secondary firing handle.

#### IF IMPOSSIBLE TO USE FACE CURTAIN

- Grasp secondary firing handle with right hand.
- Grasp right wrist with left hand.
- Pull handle up sharply.



# **EJECTION PROCEDURE**



Hold face curtain or secondary firing handle with right hand.

Pull canopy interrupter release handle with left hand.

Continue to pull ejection control with both hands.



### WARNING

Do not release the face curtain after it has been pulled. If one hand must be freed to aid ejection, grip face curtain tightly with other hand to prevent curtain from blowing aft over drogue gun firing mechanism. Interference with drogue gun firing can prevent parachute deployment.

# IF CANOPY FAILS TO BE JETTISONED AND UNABLE TO ACTUATE CANOPY INTERRUPTER RELEASE HANDLE



53212-3-11(2)-9-67



### AFTER EJECTION

### WARNING

During ejection, the seat is drogue stabilized. If the drogue chute does not deploy (characterized by continuous tumbling of the seat), manually separate from the seat.

When ejecting above 10,000 feet and drogue chute deploys, allow time for the altitude-time-delay-g mechanisms to function. If the personnel chute does not automatically deploy at 10,000 feet, manually separate from the seat. When ejecting below 10,000 feet, be prepared to manually separate from the seat immediately if automatic release fails to occur.

### NOTE

With the MK-F7 seat, or with Martin Baker ECP 159 incorporated in MK-F5, -F5A seats, the minimum altitude at which barostatic opening of the parachute occurs is raised to 11,500 feet. Also, with the MK-F7 seat there is no g-limiter and consequently no delay due to high speed ejection.

### TO MANUALLY SEPARATE FROM THE SEAT:

- Pull the emergency harness release handle
- Lunge forward to release parachute from support post
- Push free from seat
- Pull the parachute D-handle

Remove the oxygen mask before landing or at any time breathing becomes difficult. This action provides better visibility and reduces the possibility of suffocation following injury or depletion of emergency oxygen supply.





After contact, release the parachute canopy by disconnecting the shoulder fittings. Release the seat pan by disconnecting the hip fittings.

### ADDITIONAL PRECAUTIONS — OVERWATER EJECTION

Release left hip fitting before contact with the water. With both hip fittings connected, the buoyancy of the seat pan will tend to cause the pilot to float in a hips-high position. Also before entering the water, inflate the MK-3C flotation vest.

Immediately after entering the water, release the parachute canopy by disconnecting the shoulder fittings. Rapid release is desirable to prevent entanglement with the shroud lines.

Completely release backpad and seat pan before entering a helicopter rescue sling.

53212-3-12-9-67

### **BAILOUT**

### **Procedures**

If all attempts to eject have failed, but canopy jettisoned:

- 1. Landing gear UP
- 2. External stores JETTISON
- 3. Wing LANDING CONDITION PREFERRED
- 4. Airspeed MINIMUM WITHOUT STALLING
- 5. Emergency harness release handle PRESS BUTTON, ROTATE AFT
- 6. Ensure separation of leg restraint lines.
- 7. Pilot services DISCONNECT AT CONSOLE
- 8. Full aileron trim in one direction, hold wings level.
  - Perform only if surface trim available.
  - Inverted attitudes are not advised for bailout.
    To maintain inverted flight, the tail must be
    placed several additional feet below the cockpit, increasing the hazard of striking the aircraft.
- 9. While holding wings level, crawl into crouching position in seat.
- 10. Release stick and dive over side opposite low wing trim.
  - If no trim available, dive over either side.
- 11. Parachute D-handle PULL (below 10,000 feet)
  - Pull D-handle immediately if below 10,000 feet. If above 10,000 feet, delay until reaching a safe breathing altitude. Remember that the parachute will not open automatically.

### **JETTISONING MISSILES**

### **Procedures**

### Note

Refer to section I, part 4 for additional jettisoning information.

If EPP supplying electrical power:

Emergency generator switch - ON FOR JETTISONING

To jettison:

- 1. Landing gear handle WHEELS UP
- 2. Missile jettison switch LH and/or RH
  - The missile(s) will fire as they are selected by the missile jettison switch.

### **FUEL DUMPING**

### **Procedure**

To dump fuel from wing:

Fuel dump switch - DUMP

- The fuel dump switch may be actuated at any time in flight to obtain rapid dumping of part or all of the wing tank fuel through the wing tip dump ports.
- The rate of wing fuel dumping is reduced with loss of wing tank pressurization.
- There is no provision for dumping fuel from fuselage cells.
- Optimum dumping of wing fuel is obtained with the fuel transfer switch in the PUMP ON or PUMP OFF position, the cockpit pressure switch in CABIN PRESS (F-8B aircraft) and with the nose slightly raised.

Section V Inflight Emergencies

### JETTISONING CANOPY

### **Procedures**

- 1. Emergency canopy jettison handle PULL
- If canopy fails to jettison:
- 2. Canopy locks OPEN MANUALLY

### **EMERGENCY DESCENT**

### **Procedures**

To get aircraft down as rapidly as possible:

- 1. Throttle IDLE
- 2. Speed brake EXTEND FULLY
- 3. Cockpit heat INCREASE
- 4. Defogger switch DEFOG
  - Placing the defogger switch in DEFOG upon initiating dive may be helpful in preventing fogging of windshield.
- 5. Dive aircraft as steeply as desired.
  - Refer to MANEUVERING section IV, part 2, for information on dive recovery.
  - Monitor airspeed and altitude closely during dive and begin pullout with adequate altitude for recovery.

# STALLS, SPINS AND UNCONTROLLED FLIGHT

Characteristics and recovery procedures for stalls, spins and uncontrolled flight are contained in section IV, part 2.

It is difficult to recognize uncontrolled maneuvers. First action should be to move the controls to neutral. The three major errors of technique associated with spins in the F-8 are:

- Getting into the spin initially.
- Not using proper recovery technique.
- Not abandoning the aircraft when recovery unsuccessful.

All of these errors are easily avoided by eliminating the first one.

### LOSS OF AIRSPEED INDICATOR

In the event of an airspeed indicator failure, the angleof-attack indicator is sufficient to perform the following maneuvers. The values are accurate only in 1 g flight.

| Takeoff                                                                         |         |
|---------------------------------------------------------------------------------|---------|
| Start wing down                                                                 | 9.0     |
| Wing locked by                                                                  |         |
|                                                                                 |         |
| MRT Climb (cruise droop out)                                                    | 90.04   |
| 0 to 10,000 feet                                                                |         |
| 10,000 to 20,000 feet                                                           |         |
| 20,000 to 30,000 feet                                                           |         |
| 30,000 to 40,000 feet                                                           |         |
| Above 40,000 feet                                                               | 11.     |
| Max Endurance                                                                   |         |
| Cruise droop in (Below 30,000 feet)                                             |         |
| or out (Above 30,000 feet)                                                      | 13.0    |
| Max Range                                                                       |         |
| Sea level                                                                       | 9.      |
| 40,000 feet                                                                     |         |
| Penetration                                                                     |         |
|                                                                                 |         |
| Speed brake down, 82%, 4,000 to 6,000 FPM rate of descent                       | 13.     |
| Landing                                                                         |         |
| Gear extension (wing down)                                                      | 12 0 12 |
| Wing raising                                                                    |         |
| Carrier pattern and approach                                                    |         |
| GCA pattern (landing configuration)                                             |         |
|                                                                                 |         |
| GCA pattern (final)                                                             |         |
| Field landing                                                                   | 13.2    |
| Wing down landing (cruise droop out or in) Carrier                              | 17      |
| Field                                                                           |         |
|                                                                                 | 10      |
| Stall Warning  Clean (cruise droop in)                                          | 15      |
| -                                                                               |         |
| Clean (cruise droop out)                                                        |         |
| Landing configuration                                                           |         |
|                                                                                 |         |
| Airspeed vs. Angle of Attack (without external pylons)                          |         |
| Inflight check: Clean, 3,000 pounds                                             |         |
| fuel, 300 KIAS, cruise droop out (add 7 knots for each additional 1,000         |         |
| pounds fuel; deduct 7 knots for each                                            |         |
| 1,000 pounds less)                                                              | 10.     |
| Inflight check: Landing configuration,                                          |         |
| 3,000 pounds fuel, 150 KIAS (add 4 knots for each additional 1,000 pounds fuel; |         |
|                                                                                 |         |

# PART 4-LANDING EMERGENCIES

### **ALL LANDING EMERGENCIES**

Landing emergency information is summarized for ready reference in figure 5-7.

### **Procedures**

Before entering traffic pattern:

1. Dump wing fuel.

Before landing:

- 2. Expend fuselage transfer fuel.
- 3. Fuel dump switch OFF
  - Place fuel dump switch in OFF before touchdown, even if fuel dumping has not been completed, to make sure electrical power is available to close the dump valve.
- 4. Fuel transfer switch PRESS DUMP
- 5. Canopy JETTISON IF DESIRED
  - Jettison canopy in flight if the seriousness of a specific emergency requires it. Do not jettison the canopy if a barricade engagement is to be made.

After landing:

- 6. Perform emergency egress if necessary.
  - EMERGENCY EGRESS procedure is found in this section part 1.

# LANDING WITH GEAR OUT OF POSITION

In all cases of failure of the landing gear to extend normally, try to extend the gear pneumatically before attempting to land with the gear out of position.

### ALL LANDING GEAR UP

### **Field Procedures**

Execute controlled ejection

— OR —

If ideal conditions exist; ie, minimum crosswind, experienced pilot, etc.:

- 1. Perform normal landing approach using optimum approach angle of attack.
- 2. Assure minimum sink rate on touchdown.
- 3. Throttle off at touchdown.
- 4. Engine master switch OFF
- 5. Master generator switch OFF

Changed 15 July 1967

### **Carrier Procedures**

Execute controlled ejection

### NOSE GEAR TRAILING OR UP

### **Field Procedures**

- 1. Execute normal landing without arrestment.
  - Use brakes only if necessary to avoid obstacles.
  - Fly nose onto runway before losing pitch control to avoid sudden dropping.
  - Have runway arresting wires removed in landing roll-out area to prevent engagement of aircraft duct by wires.

Just before losing pitch control:

- 2. Throttle OFF
- 3. Engine master switch OFF
- 4. Master generator switch OFF

### **Carrier Procedures**

If unable to divert to suitable field:

- 1. Extend arresting hook.
- 2. Avoid high sink rate on landing.
- 3. Perform barricade arrestment (normal arrestment optional).
  - Refer to BARRICADE ARRESTMENT for arrestment techniques.

### BOTH MAIN GEAR UP

### **Field Procedures**

- 1. Have runway foamed if time permits.
- 2. Perform short field arrestment.
  - Refer to FIELD ARRESTMENTS for short field arrestment techniques.

### **Carrier Procedures**

If unable to divert to suitable field:

Execute controlled ejection.

— OR —

- 1. Extend arresting hook.
- 2. Perform barricade arrestment.
  - Refer to BARRICADE ARRESTMENT for arrestment techniques.

Refer to Part IV, Landing Emergencies, for additional information.

| December of Bulling                                       | Recomm                                                                                            | Recommended Action                                                                                                                   |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Description of Fature                                     | Shore                                                                                             | Ship                                                                                                                                 |
| All landing gear up                                       | Controlled ejection; ot, if conditions ideal, normal landing with minimum sink rate at touchdown. | Controlled ejection.                                                                                                                 |
| Nose gear trailing or up                                  | Normal landing. No arrestment. Fly nose onto runway before losing pitch control.                  | Barricade arrestment with hook down;** normal arrestment optional,;**                                                                |
| Main gears up                                             | Short field arrestment.††                                                                         | Divert to shore for short field arrestment. If unable, execute controlled ejection or place hook down and make barricade arrestment. |
| One main gear up or trailing                              | Short field arrestment.††                                                                         | Barricade arrestment hook down; **normal arrestment optional.‡**                                                                     |
| One main gear and nose gear up or trailing                | Short field arrestment.††                                                                         | Barricade arrestment with hook down.**                                                                                               |
| Nose gear canted                                          | Normal landing. Turn generator switch off just prior to touchdown.                                | Normal arrested landing.                                                                                                             |
| Gear barberpole                                           | Treat as corresponding gear up unless determined to be down.                                      | Treat as corresponding gear up unless determined to be down.                                                                         |
| Nose wheel missing                                        | Normal landing. No arrestment. Fly nose onto runway before losing pitch control.†                 | Barricade arrestment with hook down.**                                                                                               |
| Main gears severed on landing (carrier, aircraft bolters) | Continue rollout attempting to maintain directional control.                                      | Select afterburner and climb. If control lost, eject.                                                                                |

†Remove runway arresting wires in landing roll-out area to prevent engagement of aircraft duct by wires. ‡High sink rates on landing must be avoided. \*\*Divert to suitable field, if possible, and execute appropriate shorebase emergency landing. ††Runway should be foamed if time permits.

# LANDING EMERGENCIES -

Refer to Part IV, Landing Emergencies, for additional information.

|                                                                       | Recomm                                                                                                 | Recommended Action                                                                                                              |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Description of Fature                                                 | Shore                                                                                                  | Ship                                                                                                                            |
| One main wheel missing                                                | Short field arrestment.††                                                                              | Perform a barricade arrestment in accordance with<br>the Barricade Bulletin for the ship class involved.                        |
| Any landing gear failure with failure of wing to raise                | Landing appropriate to particular gear failure.‡‡                                                      | Divert to suitable field and make landing appropriate to particular gear failure. If not possible, execute controlled ejection. |
| Arresting hook failure                                                | Normal landing.                                                                                        | Barricade arrestment.**                                                                                                         |
| Blown tires                                                           | Short field arrestment.                                                                                | Normal arrestment                                                                                                               |
| Wing down or landing after malfunction precautionary approach (shore) | Long field arrestment. Approach speed for wing-down landing — Corresponding to 16 units (160-175 KIAS) | Normal arrestment without barricade. Approach speed - Corresponding to 17 units (150-160 KIAS).                                 |
| Utility hydraulic failure                                             | Short field arrestment.                                                                                | Normal arrestment. Aircraft must be towed out of arresting gear.                                                                |

\*\*Divert to suitable field, if possible, and execute appropriate shorebase emergency landing. ††Runway should be foamed if time permits. ‡‡Damage to arresting gear can be anticipated due to high engaging speeds.

53212-5-15(2)NB

Figure 5-7 (Sheet 2)

### ONE MAIN GEAR UP OR TRAILING

### **Field Procedure**

- 1. Perform short field arrestment.
  - Refer to FIELD ARRESTMENTS for short field arrestment techniques.

Just before losing roll control:

- 2. Throttle OFF
- 3. Engine master switch OFF
- 4. Master generator switch OFF

### **Carrier Procedures**

- 1. Extend arresting hook.
- 2. Perform barricade arrestment (normal arrestment optional).
  - Refer to BARRICADE ARRESTMENT for arrestment techniques.

# ONE MAIN GEAR AND NOSE GEAR UP OR TRAILING

### **Field Procedures**

- 1. Have runway foamed if time permits.
- 2. Perform short field arrestment.
  - Refer to FIELD ARRESTMENTS for short field arrestment techniques.

### **Carrier Procedures**

If unable to divert to suitable field:

- 1. Extend arresting hook.
- 2. Perform barricade arrestment.
  - Refer to BARRICADE ARRESTMENT for arrestment techniques.

### NOSE GEAR CANTED

### **Field Procedures**

1. Plan normal or arrested landing.

Just before touchdown:

- 2. Master generator switch OFF
  - With generator switch off, nose gear is free to caster.

### GEAR INDICATOR BARBERPOLE

### Field Procedures

- Execute a "minimum rate of descent" touch-and-go landing to determine if the applicable gear is down and locked.
  - Following a minimum descent touch-and-go, repositioning of the main gear could provide a down-and-locked position.

### CAUTION

Do not actuate brake pedals while airborne. Actuation of the brake pedals following pneumatic extension of the landing gear could result in locked or dragging brakes.

- 2. Attempt to obtain a safe indication of the landing gear by pneumatically actuating the gear.
- 3. Treat as corresponding gear up or trailing emergency regardless of indication.

### **Carrier Procedure**

 Treat as corresponding gear up or unsafe indication emergency.

# LANDING WITH DAMAGED LANDING GEAR/HOOK

### NOSEWHEEL MISSING

### **Field Procedures**

- 1. Execute normal landing without arrestment.
  - Use brakes only if necessary to avoid obstacles.
  - Fly nose onto runway before nose falls through.
  - Have runway arresting wires removed in landing roll-out area to prevent engagement of aircraft duct by wires.

Just before losing pitch control:

- 2. Fly nose onto runway.
- 3. Throttle OFF
- 4. Engine master switch OFF
- 5. Master generator switch OFF

### **Carrier Procedures**

- 1. Extend arresting hook.
- 2. Perform barricade arrestment.
  - Refer to BARRICADE ARRESTMENT for arrestment techniques.

# BOTH MAIN GEAR SEVERED ON LANDING (CARRIER – AIRCRAFT BOLTERS)

### **Field Procedure**

Continue rollout, attempting to maintain control.

### **Carrier Procedures**

- 1. Select afterburner.
- 2. Climb.

If loss of control experienced:

3. Eject.

### ONE MAIN WHEEL MISSING

### **Field Procedure**

- 1. Have runway foamed if time permits.
- 2. Perform short field arrestment.
  - Refer to FIELD ARRESTMENTS for short field arrestment techniques.

### **Carrier Procedures**

If unable to divert to suitable field:

- 1. Extend arresting hook.
- 2. Perform a barricade arrestment in accordance with the Barricade Bulletin for the ship class involved.

# ANY LANDING GEAR FAILURE WITH FAILURE OF WING TO RAISE

### **Field Procedure**

Use landing procedures appropriate to particular gear failure.

 Anticipate damage to arresting gear due to high engaging speed.

### **Carrier Procedure**

If unable to divert to suitable field:

Execute controlled ejection.

### ARRESTING HOOK FAILURE

### **Field Procedure**

Execute normal landing.

### **Carrier Procedure**

If unable to divert to suitable field:

Perform barricade arrestment.

 Refer to BARRICADE ARRESTMENT for arrestment techniques.

### **BLOWN TIRES**

### **Field Procedure**

Perform short field arrestment.

 Refer to FIELD ARRESTMENTS for short field arrestment techniques.

### **Carrier Procedure**

Perform normal arrestment.

### LANDING WITH WING DOWN

Emergency wing down carrier landings are feasible under ideal conditions. Such things as adverse weather, pitching deck, darkness, and pilot proficiency must be taken into account in assessing the possibility of a successful wing down carrier landing. If a field landing can be accomplished, a carrier landing should not be attempted with the wing down because of the probability of aircraft damage. Do not use the angle-of-attack indexer or approach power compensator during the approach. The compensator would produce an excessively fast approach if operated with the wing down because it bases the throttle setting on optimum angle of attack with the wing up.

### Field Procedure

- 1. Burn down fuel and expend armament to attain as low a gross weight as possible compatible with the operational situation.
- 2. Cruise droop EXTEND IF POSSIBLE
  - If the land droop has not been blown, and if utility hydraulic pressure is still available, use the cruise droop configuration for slower approach speeds; however, any droop setting is acceptable.
- 3. Approach speed corresponding to 16 units (160 to 175 KIAS)
- 4. Perform long field arrestment.

Light buffer may exist in the clean droop position at 16 units. The approach speed corresponding to 16 units with cruise droop extended varies linearly from 160 KIAS at a gross weight of 19,000 pounds to 170 KIAS at a gross weight of 22,000 pounds. With landing droop, the speeds corresponding to 16 units will be approximately 4 knots higher than with cruise droop. Clean droop should give approximately the same speed as with cruise droop.

### **Carrier Procedure**

(To be used only when field landing cannot be accomplished)

- 1. Wind over deck HIGHEST POSSIBLE UP TO 45 KNOTS
  - WOD above 45 knots will result in excessive burble.
- 2. OLS setting 4° (to give good visibility and hook-to-ramp clearance)
- 3. No barricades since the airplane has a bolter capability.

- 4. Reduce aircraft gross weight.
  - Burn down fuel and expend armament to attain as low a gross weight as compatible with the operational situation.
- 5. Cruise droop EXTEND IF POSSIBLE
  - If the land droop has not been blown, and if utility hydraulic pressure is still available, use the cruise droop configuration for slower approach speeds. If cruise droop is not available, extend the emergency landing droop if possible.
- 6. Fly a wide pattern or a straight-in approach for a comfortable 1½-mile straightaway.
- 7. Approach speed Corresponding to 17 units (150 to 160 kias)

### CAUTION

Maximum published engaging speed limit of ship's arresting gear should not be exceeded.

The approach speed at 17 units will be approximately 12 knots less than the speed corresponding to 16 units. At 17 units the visibility is reduced such that the mirror will only be visible through the side windshield panel.

Tail cone damage can be expected during any wing down carrier landing. The flying qualities are satisfactory at 18 units for the cruise or land droop configuration. Buffet commences at 17 units angle of attack for the cruise droop configuration and 20 units for the land droop configuration with stabilized flight possible to 19 and 22 units respectively.

In the event of a bolter, be prepared to rotate the aircraft to the attitude required to maintain level flight as the angled deck bow is passed. (Remember, fuselage attitude will be higher than usual.)

Barricade engagements resulting from the wing down condition alone are not required or recommended. If, however, for other compelling reasons a barricade recovery is required, a successful barricade engagement may be made with the wing down, using the technique described in this procedure.

# LANDING — USE OF EMERGENCY FIELD ARRESTING GEAR

There are several types of field arresting gear. These types include the anchor chain cable, water squeezer, and Morest-type equipment. All of these types require engagement of the arresting hook in a cable pendant rigged across the runway. Location of the pendant in relation to the runway will classify the gear as follows:

1. Midfield gear. Located near the halfway point of the runway. Usually requires prior notification in order to rig for arrestment in the direction desired.

- 2. Abort gear. Located 1,500 to 2,500 feet short of the upwind end of the duty runway and usually will be rigged for immediate use.
- 3. Overrun gear. Located shortly past the upwind end of the duty runway. Usually will be rigged for immediate use.

Some fields will have all of these types of gear, others none. For this reason, it is imperative that all pilots be aware of the type, location, and compatibility of the gear in use with the aircraft, and the policy of the local air station with regard to which gear is rigged for use and when.

The approximate maximum permissible engaging speed, gross weight, and off-center engagement distance for field arrestment of aircraft are listed in figure 5–7A.

### WARNING

Under no circumstances should pilot decision to abort a takeoff be delayed because of knowledge that an emergency arresting gear is available at the end of the runway. Decision to abort should be based on the usual parameters of remaining runway and distance required for stopping, using wheel brakes. The arresting gear will then serve as an assist to stop the aircraft from rolling off the runway onto unprepared surfaces.

If off center just prior to engaging arresting gear, do not attempt to go for center of runway. Continue straight ahead parallel to centerline.

As various modifications to the basic types of arresting gear are made, exact speeds will vary accordingly. Certain aircraft service changes may also affect engaging speed and weight limitations.

Severe damage to the aircraft is usually sustained if an engagement is made in the wrong direction into the chain gear.

In general, the arresting gear is engaged on the centerline at as slow a speed as possible. Burn down to 1,500 pounds or less fuel remaining. While burning down, make practice passes to accurately locate the arresting gear. Engagement should be made with the feet off the brakes, shoulder harness locked, and with the aircraft in a 3-point attitude. After engaging the gear, good common sense and existing conditions now dictate whether to keep the engine running or to shut it down and abandon the aircraft. In an emergency situation, first determine the extent of the emergency by whatever means are possible (instruments, other aircraft, LSO, RDO, tower or other ground personnel). Next, determine the most advantageous arresting gear available and the type of arrestment to be made under the conditions which prevail. Whenever deliberate field

# FIELD ARRESTMENT DATA -

|                      |                                         | T FIELD<br>DING                                     |                             | FIELD<br>DING                                       |                             | RTED                                                | MAXIMUM<br>OFF-CENTER<br>ENGAGEMENT<br>(FEET) |
|----------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|-----------------------------|-----------------------------------------------------|-----------------------------------------------|
| ARRESTING<br>GEAR    | AIRCRAFT<br>GROSS<br>WEIGHT<br>(Note 6) | MAXIMUM<br>ENGAGING<br>SPEED<br>(KNOTS)<br>(Note 4) | AIRCRAFT<br>GROSS<br>WEIGHT | MAXIMUM<br>ENGAGING<br>SPEED<br>(KNOTS)<br>(Note 4) | AIRCRAFT<br>GROSS<br>WEIGHT | MAXIMUM<br>ENGAGING<br>SPEED<br>(KNOTS)<br>(Note 4) |                                               |
| M-2                  | 22,000                                  | 122                                                 | 26,000                      | 115                                                 | 34,000                      | 103                                                 | 20                                            |
| E-14-1               | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 160                                                 | 50                                            |
| E-27                 | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 153                                                 | 35                                            |
| E-15<br>(200' SPAN)  | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 153                                                 | 35                                            |
| E-15<br>(300' SPAN)  | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 160                                                 | 40                                            |
| M-21                 | 22,000                                  | 135                                                 | 26,000                      | 135                                                 | 34,000                      | 135                                                 | 10                                            |
| E-28                 | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 160                                                 | 40                                            |
| E-5<br>(STD CHAIN)   | 22,000                                  | 150                                                 | 26,000                      | 150                                                 | 34,000                      | 150                                                 | (Note 5)                                      |
| E-5-1<br>(STD CHAIN) | 22,000                                  | 165                                                 | 26,000                      | 165                                                 | 34,000                      | 159                                                 | (Note 5)                                      |
| E-5<br>(HVY CHAIN)   | 22,000                                  | 150                                                 | 26,000                      | 150                                                 | 34,000                      | 150                                                 | (Note 5)                                      |
| E-5-1<br>(HVY CHAIN) | 22,000                                  | 165                                                 | 26,000                      | 165                                                 | 34,000                      | 165                                                 | (Note 5)                                      |
| BAK-6                | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 158                                                 | 15                                            |
| ВАК-9                | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 160                                                 | 30                                            |
| BAK-12               | 22,000                                  | 160                                                 | 26,000                      | 160                                                 | 34,000                      | 160                                                 | 50                                            |

### NOTES

- 1. Maximum engaging speed limited by aircraft arresting hook strength.
- Maximum engaging speed limited by aircraft limit horizontal drag load factor (mass item limit "G").
- 3. Maximum engaging speed limited by aircraft landing gear strength.
- 4. Maximum engaging speed limited by arresting gear capacity.
- 5. Off-center engagement may not exceed 25% of the runway span.
- 6. Recommended approach airspeed for 22,000 pounds is 139 knots CAS.

53212-5-17-6-67

# Section V Landing Emergencies

arrestment is intended, notify control tower personnel as much in advance as possible and state estimated landing time in minutes. If gear is not rigged, it will probably require 10 to 20 minutes to prepare it for use. If foaming of the runway or area of arrestment is required or desired, it should be requested by the pilot at this time.

### SHORT FIELD ARRESTMENTS

If at any time prior to landing, it is known that a directional control problem exists or a minimum rollout is desired, a short field arrestment should be made and the assistance of an LSO requested. If option is available, plan the approach to the arresting gear which will provide the maximum runway remaining. The LSO should be stationed near the touchdown point and equipped with a radio. Inform the LSO of the desired touchdown point. A constant glide slope approach to touchdown is permitted (mirror or Fresnel Lens Landing Aid utilized) with touchdown on centerline at or just prior to the arresting wire with the hook extended. The hook should be lowered while airborne and a positive hook-down check should be made, if possible. If mid-field gear or Morest type is available, it should be used. If neither is available, use abort gear. Use an approach speed commensurate with the emergency experienced. Maintain sufficient airspeed to permit a waveoff in the event of a hookskip. After engaging the gear, retard the throttle to IDLE or secure engine and abandon aircraft, depending on existing conditions.

### LONG FIELD ARRESTMENTS

The long field arrestment is used when a stopping problem exists with insufficient runway remaining;

i.e., aborted takeoffs, icy or wet runways, loss of brakes after touchdown, etc. Lower the hook, allowing sufficient time for it to extend fully (approximately 8 seconds) prior to engagement. Normally, this is 3,000 feet prior to reaching the arresting gear. Do not lower the hook too early and weaken the hook point. Line up the aircraft on the runway centerline. Inform the control tower of your intentions to engage the arresting gear, so that aircraft landing behind you may be waved off. If no directional control problem exists (crosswind, brakes out, etc), secure the engine.

### **ABORTED TAKEOFF**

Where an aircraft takeoff must be aborted, a roll-in type engagement of all arresting gear is recommended to prevent overrun. The aircraft is cleared up to the maximum takeoff gross weight specified in the Aborted Takeoff column of figure 5–7A. Additionally, the data provided in the Long Field Landing column may be used for light weight aborted takeoff, where applicable.

### Note

The taxi light may be of use in locating arresting/abort gear at night.

### BARRICADE ARRESTMENT

Do not jettison the canopy for barricade arrestment. The nose section and canopy are designed to pass beneath the top cable of the barricade, but it is recommended that the canopy be kept closed as an additional safeguard against injury inflicted by the top cable.

### **Procedures**

- 1. Burn down fuel as required.
  - Burn down fuel to attain lowest aircraft gross weight compatible with the operating situation.
- 2. Execute normal approach on meatball.
  - Maintain precise lineup and speed control. A late wave-off cannot be given.
  - On some carriers, the meatball may be lost in the late stages of the approach as the lens passes behind the barricade stanchions. Be under positive control of the LSO and follow his instructions explicitly, including a "cut" if it is given.

Upon engaging the barricade:

- 3. Throttle OFF
- 4. Engine master switch OFF
- 5. Master generator switch OFF
- 6. Evacuate aircraft as soon as possible.

# LANDING WITH UTILITY HYDRAULIC FAILURE

**Field Procedure** 

Perform short field arrestment.

- The brake accumulator may provide enough hydraulic pressure for several normal brake applications. However, when the pressure is lost, the pneumatic brakes (and field arresting gear) must be relied upon for aircraft braking. Refer to BRAKE FAILURE, this section, part 1, for emergency braking techniques.
- Refer to HYDRAULIC EMERGENCIES, this section, part 3, for procedures on emergency (pneumatic) operation of wing incidence and leading edge droop system and landing gear.

### **Carrier Procedure**

- 1. Execute normal arrestment.
  - · Have aircraft towed out of gear.

### **DEAD-ENGINE LANDING**

If impossible to abandon the aircraft, perform the dead-engine landing as described and illustrated in figure 5–8. Figure 5–9 shows the maximum power off glide distances. Simulated flameout approaches are prohibited.

### DITCHING

### **Procedures**

If impossible to abandon the aircraft:

- 1. Perform radio distress procedure.
- 2. Wing As Is (if down, blow droops)
  - Do not change wing position for ditching.
     Ditching with the wing in the down position

will attain a nose-high attitude at touchdown speed. Normally, the wing will be up only during takeoff or landing. Lowering the wing under these conditions would produce a high rate of sink which could not be arrested prior to touchdown.

- If wing is down, establish landing droop condition pneumatically.
- 3. Canopy JETTISON
  - In any ditching situation, pull emergency canopy release handle before contact.
- 4. Landing gear WHEELS UP
- 5. Speed brake RETRACT
- 6. Shoulder harness LOCKED
- 7. Glide speed 170 KIAS desirable
  - If EPP extended, the minimum indicated airspeed for adequate power control hydraulic pressure from the package is 145 KIAS with the emergency generator switch in LAND. With the switch in OFF, the minimum speed is 140 KIAS.

Just before contact:

- 8. Engine master switch OFF
- 9. Throttle OFF
- 10. Touchdown 145 KIAS, NOSE HIGH
  - Flare the aircraft just before contact. Immediately after the forward motion stops, abandon the aircraft.
  - If the aircraft is ditched in a near-level attitude, it will probably dive violently after contact.

Refer to EMERGENCY EGRESS in part 1 of this section for egress procedures.

### ROUGH-FIELD LANDING

### **Procedures**

If aircraft must be landed on an unprepared field:

- 1. Landing gear EXTEND
- 2. Wing UP
- 3. Shoulder harness LOCK

Just before contact:

- 4. Canopy JETTISON
- 5. Engine master switch OFF
- 6. Throttle OFF



Figure 5-8

# GLIDING DISTANCE-NO THRUST



Figure 5-9

### PRECAUTIONARY APPROACH

A precautionary approach is recommended when (but not limited to):

Engine oil system malfunctioning Both PC systems lost; operation on EPP PC 1 pressure alone

• Straight-in approach recommended Engine persistently unstable

### **Procedures**

- 1. Extend EPP.
- 2. Use arresting gear (if available) and consider best approach path.
  - Make approach to runway equipped with arresting gear, if possible, and perform a long field arrestment (refer to FIELD ARRESTMENTS for long-field arrestment techniques). Consider population density, surrounding terrain, weather, runway length, and other associated factors. For maximum stopping effect, shut down engine on touchdown.

- Final approach point—1,500 feet from runway end, 175 KIAS, 150 feet altitude, approximately 88% rpm
  - The pilot has an alternative of a straight-in or overhead approach to reach the final approach point. At this point, the throttle may be reduced to IDLE. Approximately 3,000 feet will be required to flare and touch down 1,500 feet down the runway at approximately 140 KIAS.
  - This approach allows the pilot to stay in the ejection envelope until a safe landing on the runway is certain.
  - During an approach necessitated by low or fluctuating oil pressure (oil system malfunction), keep throttle movements and changing g loads to a minimum.
  - It is necessary to maintain a constant rate of descent and proper angle of attack to execute a correct approach to a final landing.
  - If engine flameout or loss of control is experienced before reaching final approach point, eject immediately while still within safe ejection envelope.

53212-3-4

section VI

# all-weather operation

# CONTENTS

| PART 1 — SIMULATED INSTRUMENT PROCEDURES     |      |
|----------------------------------------------|------|
| Safety Precautions                           | 6-2  |
| Confidence Maneuvers (Instrument Aerobatics) |      |
|                                              |      |
| PART 2 — ACTUAL INSTRUMENT PROCEDURES        |      |
| Introduction                                 | 6-3  |
| Before Takeoff                               | 6-3  |
| Takeoff                                      | 6-3  |
| Climb                                        | 6-3  |
| Prior to Descent                             | 6-3  |
| Penetrations                                 | 6-4  |
| Lost Wingman Procedure                       | 6-4  |
| GCA (PAR) Approach                           | 6-4  |
| CCA Approach                                 | 6–5  |
| PART 3 — WEATHER PROCEDURES                  |      |
| Icing, Rain, and Snow                        | 6–8  |
| Thunderstorms and Turbulence                 | 6–8  |
| Cold Weather                                 | 6-9  |
| Hot Weather and Desert                       | 6–9  |
| Hydroplaning on Wet Runways                  | 6-10 |

# PART 1 — SIMULATED INSTRUMENT PROCEDURES

Practice of simulated instrument patterns and procedures develops and maintains the skills necessary for safe, professional instrument flight. Make good use of the time allotted for this practice.

### SAFETY PRECAUTIONS

- 1. A chase pilot will act as flight monitor and will ensure that the flight is clear of all other aircraft at all times. Chase plane's position is 100 yards on the starboard quarter, level with the lead aircraft. On GCA the chase will fly the position assigned by the controller and will not descend below 300 feet AGL. The lead aircraft will go contact at 500 feet AGL.
- 2. The lead aircraft will not go hooded until cleared by chase and not before reaching 2,000 feet AGL.
- 3. Radio checks will be exchanged between aircraft at least once every 5 minutes.
- 4. If radio contact is lost, go contact immediately and remain so until radio contact is reestablished. If necessary, the chase pilot will pass to the right and pull ahead as a signal to go contact. The afterburner may be lighted when passing to ensure gaining attention.
- 5. Always establish radio contact immediately before and after any channel or frequency change.
- 6. Immediately go contact if chase pilot calls for a hard turn or a break maneuver. These are only called when necessary to avoid another aircraft.
- 7. Unless under positive radar control, call indicated altitudes to the chase pilot at each 5,000-foot interval during descent and at level off.

# CONFIDENCE MANEUVERS (INSTRUMENT AEROBATICS)

Vertigo and unusual attitudes caused by turbulence are probably the most disconcerting experiences encountered during instrument flight. A pilot trained to fly through unusual attitudes will more readily believe his instruments and will be better prepared to return his aircraft to normal flight with timely, positive corrections. Aerobatic maneuvers, modified slightly to meet instrument capabilities and limitations, provide the necessary training. Variations of these maneuvers can be performed, but those discussed

are considered minimal for indoctrination. Use a routine scan pattern and practice maneuvers to the left and to the right.

### AILERON ROLL

Start the maneuver at 350 KIAS at 30,000 feet with the throttle set at 90% rpm. Apply gradual back pressure on the stick until a 15° nose-up attitude (VGI) is attained. Relax stick back pressure and apply aileron. The rate of roll must be slow enough so that the aircraft is inverted as the nose passes through the horizon. Continue the roll without stopping and recover at the starting altitude, airspeed, and heading.

### TWO-POINT ROLL

Perform this roll in the same manner as the aileron roll. However, increase the rate of roll slightly so that the aircraft is inverted when the nose is 5° above the horizon. Momentarily stop the roll when the aircraft is inverted, then immediately apply aileron to continue the roll. The nose should be 5° below the horizon when the roll is continued. Hold only enough stick back pressure to remain comfortably seated.

### FOUR-POINT ROLL

This roll closely resembles the two-point roll except that momentary stops are made at each 90° of roll. The maneuver requires a good instrument scan, accurate stick control, and a good sense of timing. The major points that determine performance are the rate of roll, wing and nose position at the inverted point, and the heading, airspeed and altitude at the completion of the recovery.

### WINGOVER

Start the wingover at 30,000 feet, 350 KIAS, with 90% rpm. Apply gradual stick back pressure until a nose-up attitude of approximately 30° (VGI) is attained. Relax back pressure and at 280 KIAS apply aileron to roll at the rate necessary to obtain a 90° angle of bank and 220 KIAS at the top of the maneuver. At this time, the nose will start to fall through the horizon. Using the attitude gyro for reference, stop the nose-down movement when the high wing of the miniature airplane approaches the horizon bar. Hold the wingtip on the horizon bar and begin a gradual recovery to level flight at the original altitude and airspeed. A heading change of about 120° will occur.

# PART 2 — ACTUAL INSTRUMENT PROCEDURES

### INTRODUCTION

Aircraft handling characteristics and stability are good and should not present a problem during instrument flight. Most difficulties encountered will be those caused by inadequate preflight planning and preparation. Plan carefully and make allowances, insofar as possible, for unusual circumstances such as unexpected departures, dog-legging to avoid severe weather areas, and en route or terminal holding. Study the instrument approach plates for both destination and alternate before takeoff.

### Note

The anticollision lights should be turned off during flight through clouds when the rotating lights reflect into the cockpit. (The effect can be vertigo-producing.)

### BEFORE TAKEOFF

Obtain a complete weather briefing and check NOTAMS before filing clearance. Whenever practical, obtain the ARTC clearance before starting the engine. While monitoring the tower, observe the radio ground operating limitations (section I, part 2): After receiving the clearance, start the engine and thoroughly check the instruments and navigation equipment. If the canopy is covered with frost or ice, turn the cockpit temperature control to full hot and the defog switch to DEFOG. After the canopy is clear, turn the defog switch OFF and readjust the cockpit temperature as desired.

Perform normal pretakeoff checks ensuring use of pitot heat. Use rain removal as necessary.

### **TAKEOFF**

Follow the ARTC clearance exactly as given. If unable to comply, notify the controlling agency immediately.

Do not make an afterburner takeoff when wing transition cannot safely be made below the overcast.

If a formation section makes individual takeoffs, accomplish a prebriefed rendezvous either before

entering the weather, or after reaching an altitude on top. The leader will ensure that each pilot checks pitot heat, navigation lights, and VGI when possible, before entering actual weather.

When lowering the wing in instrument conditions, maintain a positive rate of climb. Lower the wing at 190 KIAS at an altitude of not less than 300 feet.

If the rain removal system was used during takeoff, turn it off prior to reaching 200 KIAS or the wind-shield and air-conditioning cooling turbine may overheat.

### CLIMB

If climbing through weather in section and you lose sight of the leader immediately turn away from the flight and notify the leader and the controlling agency. After 1 minute, turn to the original heading and parallel the flight until reaching on top unless otherwise directed by the controlling agency.

If necessary to change lead, do so with wings level. When changing lead, the flight leader will advise the wingman of the desired heading, altitude, geographical position, and other pertinent factors.

### PRIOR TO DESCENT

Contact approach control at least 5 minutes (or as directed by ARTC) prior to reaching the holding fix. Conform to the provisions of section two, FLIGHT PLANNING DOCUMENT. Three minutes from the holding fix, reduce power to arrive at the fix at 250 KIAS. Enter the holding pattern in the manner prescribed.

Obtain the latest weather information for the destination, and for the alternate if required. If leading a flight and turbulence, low ceiling, inability to attain landing configuration VFR, or runway conditions are such that a successful section penetration is doubtful, break up the flight and make individual penetrations.

# Section VI Actual Instrument Procedures

Refer to figure 6-1 for illustration of typical jet penetration and TACAN approach.

Prior to the penetration:

- Correct the altimeter setting.
- Check alignment of the RMI with the magnetic compass in level flight.
- Set desired course in the course line indicator (TACAN penetration).
- Squawk IFF/SIF mode and code as directed by controlling agency.
- · Know the missed approach procedure.
- To avoid the consequences of a 40° lock-on, either compare TACAN azimuth and DME with that of a wingman or if a UHF homer is near the TACAN installation, utilize the ADF to cross-check TACAN azimuth.

### **PENETRATIONS**

### **STANDARD**

When ready to begin penetration, retard throttle to 82% rpm, extend speed brake fully and lower the nose to maintain 250 KIAS. Make minor throttle adjustments to maintain a 4,000 to 6,000 foot-per-minute rate of descent.

If leading a section, avoid configuration changes (including use of speed brake) when actually in the weather. Whenever possible, attain landing configuration in VFR conditions. Signal or call all power and configuration changes to the wingman. To help the wingman hold position, do not retard the throttle to IDLE with the speed brake fully extended or when changing to the landing configuration.

### LANDING CONFIGURATION

If a penetration is to be made with the landing configuration, advise approach control of the nonstandard approach speed.

If leading a section, slow to less than 220 KIAS when approaching the penetration fix and give appropriate signals before lowering the landing gear and raising the wing. As the fix is reached, retard throttle as necessary (it is common to leave too much power on) and lower the nose to maintain 180 KIAS. The attitude will seem extremely nose low. Make throttle adjustments as necessary to maintain approximately a 3,500 foot-per-minute rate of descent. Initiate roundout to reach GCA pickup or TACAN gate altitude at 150 to 160 KIAS.

### **UHF/ADF**

During instrument conditions, use of the UHF/ADF for penetration should be considered an emergency

measure. When the ARC-27A (UHF radio) is used for direction information, voice communication is lost. When used for voice communication, direction information is lost. This is a very unsatisfactory arrangement.

If a UHF/ADF penetration must be made, notify approach control that radio communications will not be possible during most of the approach. Tell the controller where during the approach position reports will be made, and explain that during the rest of the approach the homer frequency will be monitored. Complete a radio check on the homer frequency prior to starting the approach.

If the penetration is being made in section, the wingman may either remain on the approach control frequency, or on the homer frequency, as dictated by local policy.

### Note

Refer to section VII for visual signals to be used for penetration/instrument approach in the event of radio failure.

### RADAR CONTROLLED

Radar controlled penetrations and approaches are basically the same as those previously described. The controlling activity will normally ask for turns or specific IFF/SIF squawks for positive identification, and will transmit headings and turns which will produce the desired flight path. The controlling activity will provide distance from destination and will direct descent to lower altitudes when traffic and terrain permit.

### LOST WINGMAN PROCEDURE

If a wingman loses sight of the leader during a penetration or approach, he should immediately level off, maintain a wings level attitude, and notify the controlling activity. If this situation is compounded by radio failure, he should place the IFF/SIF to EMERGENCY and proceed as briefed or as directed by governing regulations.

# GCA (PAR) APPROACH

The aircraft handles exceptionally well in the GCA pattern. It is very stable directionally and is responsive to minor corrections about all axes. Refer to figure 6–2 for illustration of typical ground controlled approach. Do not make approaches with more than 5,000 pounds of fuel remaining, and do not touch down with more than 3,500 pounds unless an emergency exists.

Descend to GCA pickup altitude and establish the landing configuration when directed. Slow to 150 to 160 KIAS, which will require 88% to 90% rpm and approximately 3° to 5° nose-up trim. Fly the donut, adjusting pitch attitude as necessary to maintain the desired airspeed and/or angle of attack.

When advised to begin normal rate of descent, retard power to 82% to 84% rpm. While holding attitude constant, make smooth, but positive, throttle adjustments to hold the desired rate of descent. After starting descent, use a bank angle of not more than 10° for heading corrections. Heading corrections up to 3° may be made with rudder alone. Bring the runway into your instrument scan pattern when approaching minimum. If the runway is not in sight, execute the missed approach procedure, being careful not to go below the published minimums. If the runway is in sight, take over visually and complete the landing.

A section GCA will not be attempted when the weather is below minimums unless dictated by operational necessity or an emergency exists (radio, nav-aid, or flight instrument failure). If a section approach is made to a runway not suitable for a safe section landing, the wingman will land and the leader will enter a box pattern for another approach.

If you are leading a section approach, the wingman will assume a position on the side opposite the missed approach turn. The wingman will then follow all your configuration changes. Slow to 145 KIAS on final. When you see the runway or upon reaching one-half mile, whichever occurs last, pass the lead to the wingman. This is the signal for the wingman to commence flying his own approach. After passing the lead, turn away from the wingman, then back to the final approach heading. Observe the wingman's progress. In case of a waveoff or bolter and a VFR pattern is not feasible, the wingman will rejoin you for another approach.

If leading a section approach to a section landing, the leader will not pass the lead. Each aircraft will land and roll out in the middle of his half of the runway. To preclude the danger of a decelerating approach or of flying into the leader's jetwash, no attempt will be made to establish interval on final.

# WARNING

If section landings must be made, or when significant crosswinds exist, extreme caution must be exercised during lineup, touchdown, and rollout.

To enter a GCA pattern from other than a penetration, contact approach control for instructions. Fly the downwind leg at 150 to 160 KIAS and the base leg at 150 KIAS. After completing the turn to final, slow to 145 KIAS (section) or fly the angle-of-attack donut if alone. Normal GCA final approach procedures then apply.

### CCA APPROACH

The pattern and procedures for carrier controlled approaches are set forth in the CVA/CVS NATOPS manual.

CCA approaches are normally made by individual aircraft. However, a section approach may occasionally be required to assist an aircraft that has experienced radio, nav-aid, or instrument failure.

If you are leading a section during a CCA approach, the wingman will assume a position on your right wing. If the approach is at night, the position is attained before wing transition. The wingman will follow all your configuration changes. Slow to 145 KIAS on final. When the OLS is sighted or upon reaching one-half mile, whichever occurs last, pass the lead to the wingman. This is the signal for the wingman to commence flying his own approach. After passing the lead, turn away from the wingman, then back to the final approach heading. Observe the wingman's progress. In case of a waveoff or bolter and a VFR pattern is not feasible, the wingman will rejoin you for another approach. If the wingman's landing is successful, execute the normal CCA waveoff procedure and await vectoring and landing instructions.



6-6



Changed 1 May 1965

# PART 3 — WEATHER PROCEDURES

### ICING, RAIN, AND SNOW

### ICING

Turn pitot heat on immediately after starting the engine if there is a possibility of encountering ice during the flight. To combat windshield and canopy icing, turn defog switch on to direct hot airflow to windshield and side panels, and increase the airconditioning temperature setting to direct hotter air to the canopy. The rain removal system is effective against external ice on the left windscreen.

The first indication of inlet icing during cruising flight is a drop in engine pressure ratio. Be alert to the possibility of a subsequent compressor stall or engine overtemperature. The aircraft does not have an anti-icing system, so avoid prolonged flight at known icing levels.

When landing on an ice-covered runway, make a normal touchdown and use aerodynamic braking during the roll-out. After the nose falls through, tap brakes lightly; this will dissipate energy/speed without locking wheels or blowing tires. Maintain directional control with rudder and nose gear steering. If necessary, shut down engine to aid stopping or perform field arrestment. Ground roll may be twice that experienced with ideal runway conditions.

### RAIN

Whenever rain is encountered, icing is possible. Ensure pitot heat is on. Use rain removal for takeoffs and landings. Perform the landing approach using mirror OLS if available (rain on windscreen gives the illusion of being high). Use landing techniques described for landing on ice.

### **SNOW**

During flight in snow, follow the procedures recommended for flight under icing conditions. Avoid taxiing in deep snow or slush before takeoff. Frozen landing gear microswitches may result, giving a false gear warning when the gear is extended for landing.

### THUNDERSTORMS AND TURBULENCE

Avoid thunderstorms whenever possible. The conditions of precipitation and turbulence inside a thunderstorm or towering cumulus cloud cannot be determined by external appearance. A towering cumulus cloud which has not reached high altitude can frequently contain more severe ice, hail, lightning, and turbulence than an extremely rough looking thunderstorm. Thunderstorms which appear to be dissipated can contain heavy precipitation, while some fully developed thunderstorms contain very little precipitation and turbulence. While flying through stable instrument conditions, be alert to the possibility of suddenly encountering conditions of turbulence severe enough to throw the aircraft out of control momentarily.

Be prepared for instrument failures. Pitot tube icing, which can take place even with pitot heat on, will cause erroneous airspeed indications not easily detected until they become large. The angle-of-attack indicator may be used, but attention to level attitude on the attitude gyro, with the necessary rpm for desired airspeed, has proven the best method for flight through a storm.

Put the visor of your helmet down for protection in the event of windshield or canopy breakage. The dark visor is also useful to minimize the blinding effects of lightning strikes.

Severe turbulent air at high altitudes may cause the inlet airflow distribution to exceed acceptable limits of the engine, thereby inducing compressor stalls. To avoid compressor stalls, maintain 250 to 300 KIAS at all altitudes. If attempting to top thunderstorms at high altitudes, this airspeed range must be maintained even if it requires use of afterburner. Higher speeds cause buffeting which will result in extreme pilot discomfort. If severe compressor stalls are encountered, reduce throttle setting to IDLE and lower the nose to increase airspeed. Compressor stalls are generally accompanied by increased exhaust gas temperature. If temperature exceeds allowable limits, shut down the engine and accomplish an airstart as soon as practical.

AN/APS-67 radar is useful for avoiding the centers or extreme turbulence of thunderstorms. Fly toward the black areas on the scope, avoiding areas of bright return. Call GCI/FFA, if available, to obtain tracking assistance.

Operational instrument flights may require penetration of thunderstorms and areas of extreme turbulence. If necessary to do so, proceed as follows:

- 1. Lower seat.
- 2. Maintain 250 to 300 KIAS.
- 3. Extend cruise droop.
- 4. Ensure pitot heat on.
- 5. Secure loose equipment.
- 6. Tighten lap belt, lock shoulder harness, and pull down helmet visor.
- 7. Turn cockpit lights on bright and place panel lights on. Turn anticollision lights off.
- Fly the attitude and heading indicators while in extreme turbulence, because airspeed indicator and altimeter will fluctuate.

### COLD WEATHER

Follow the applicable procedures recommended for flight during icing and snow. With the exception of decreased takeoff roll and an increased initial climb performance, characteristics of the aircraft are not affected by cold weather. Additional ground operating procedures are discussed below.

### BEFORE ENTERING AIRCRAFT

- 1. Check that surfaces are clear of snow, ice, or frost.
- 2. Check that all overboard vent lines are clear.
- 3. Check that pitot tube, airstream detector, and static ports are clear.
- 4. Check that tires are not frozen to the surface.

### STARTING ENGINE

No special procedure for cold weather starting is necessary. If the engine fails to accelerate above 55% rpm and a warmup period of 2 to 3 minutes is not possible, proceed as follows:

- 1. Throttle -- IDLE
- 2. Fuel control switch MANUAL

- 3. Throttle Advance slowly to 80% rpm.
  - · Monitor EGT.
- 4. Fuel control switch NORMAL

### **GROUND TESTS**

If the engine has cooled to an ambient temperature of -35°C (-31°F) or below, a warmup period of 2 to 5 minutes with the throttle in idle should be allowed before engine runup. Carefully check operation of flight controls and actuate hydraulic systems.

### BEFORE LEAVING AIRCRAFT

Shut the engine down in the normal manner. If the aircraft is to be parked for any length of time, ensure that the canopy cover, intake and tailpipe plugs, and proper battens are placed on the aircraft. Make certain that the aircraft is refueled immediately after a flight to minimize condensation in the fuel tanks. The airframe water drains should be drained once every 24 hours or on preflight.

### HOT WEATHER AND DESERT

Hot weather operation does not differ appreciably from normal operation except for the items discussed below.

### **TAKEOFF**

Greater runway distance and more acceleration time are required in hot weather, because the air is less dense. A noticeable decrease in thrust will occur at all power settings. The EGT will not increase appreciably due to the higher ambient temperatures. Check takeoff distances carefully. A CRT takeoff will be made at higher elevations, where available thrust for an MRT takeoff is so reduced that the distance required for takeoff may exceed the runway length.

### DESCENT AND LANDING

If descending into warm, humid conditions, abrupt canopy fogging can occur. To prevent this condition, turn heat control to increase and the defog switch on before descent. Defog output is dependent upon engine rpm; therefore in areas of high humidity, use higher than normal engine rpm, controlling descent with speed brake, to achieve maximum defogging.

### BEFORE LEAVING AIRCRAFT

In desert locations, keep the canopy and all vents and ducts covered to prevent blowing sand from entering. If not located in an area of blowing sand or dust, leave the canopy open during the day for ventilation.

### HYDROPLANING ON WET RUNWAYS

At a certain critical speed, hydrodynamic lift resulting from the built-up pressure under the tire will equal the weight of the vehicle riding on the tire. When this occurs, hydroplaning speed has been reached. Any increase in speed above this critical value will lift the tire completely off the pavement leaving it supported by the fluid alone. This is termed total tire hydroplaning.

The velocity at which tire hydroplaning occurs is predictable and has been expressed in a mathematical formula:

$$V_h = 9\sqrt{P}$$

Where V<sub>h</sub> is the tire hydroplaning speed in knots and P is the tire inflation pressure in pounds per square inch.

From this formula, the hydroplaning speed of the F-8, with a tire pressure of 300 pounds per square inch, is 156 knots. Since the F-8 has a normal landing speed of 135 to 140 knots and a relatively narrow tire, hydroplaning as defined, is not considered to be a significant problem in a wet runway landing. However, the friction coefficient problem still remains with the wet or

slushy runway, and it must be realized that stopping distances will be increased considerably. The recommended technique for wet runway landing in the F-8 is:

- 1. Land at minimum safe approach speed.
- 2. Make runway contact as early as possible.
- 3. Power to idle for minimum thrust. In extreme cases, shutting down engine will decrease stopping distance; however, hydraulic boosted brakes and rudder control will be lost.
- 4. Utilize maximum aerodynamic braking (full noseup trim and full back stick even after nose wheel has made runway contact will produce additional drag which is independent of normal braking action).
- 5. Do not initiate wheel braking above 90 KIAS. Initial braking should be a light pumping action to preclude locking brakes. Gradually increase braking pressure as aircraft slows.
- 6. Be aware of last available arresting gear, and if it is doubtful that aircraft can safely stop prior to leaving the runway, extend the hook and engage arresting gear.

# section VII

# communications procedures

# CONTENTS

| Introduction         | 7-3 |
|----------------------|-----|
| Radio Communications | 7-3 |
| Hand Signals         | 7_2 |

### INTRODUCTION

Communications is the process of transmitting and receiving information. Transmission must be clear and concise to be effective, and standardized phrase-ology, or signals must be used. Communications procedures and terminology are standardized by NWP's 16(A), 32(A), 37(A), and 41(A). Review these publications frequently and adhere to the instructions contained therein.

### RADIO COMMUNICATIONS

### RADIO DISCIPLINE

Maintain strict radio discipline at all times. Know what you are going to say before you depress the mike button, and transmit clear, concise, correct information on the first attempt. Use the following operating techniques to ensure the best results from the UHF (ARC-27A) radio:

- 1. Allow a minimum warmup time of 1 minute prior to pressing the transmitter button.
- 2. Adjust sensitivity control to assure maximum reception (refer to section I, part 2).
- 3. After depressing the mike button, pause momentarily before speaking to avoid cutting out the first word.
- 4. Know the proper procedure for presetting (or resetting) frequencies (refer to section I, part 2).
- 5. Be careful with the oxygen hose/communications connection. If radio failure occurs, plug the oxygen mask hose directly into the port console oxygen fitting. If the failure was due to a broken lead in the seat pack, radio operation may be regained. If this is done, you must reinsert the oxygen mask hose into the normal receptacle to utilize bailout oxygen. The oxygen mask hose connection to the left-hand console oxygen fitting does not contain an automatic disconnect; therefore, ejection must not be made with oxygen mask hose plugged into this fitting.

### **RADIO PROCEDURES**

- 1. During formation flight, use the following procedure for changing radio channels:
  - The formation leader will call "Graycap (or assigned call sign) Flight, this is Graycap One, go channel six." Division and section leaders will wait until wingmen have made the channel change and are heads up in the cockpit before changing channels.
  - After allowing sufficient time for the change, the leader will call "Graycap Flight, check in." The number 2 aircraft in the formation will respond with "Graycap Two." All other aircraft will similarly acknowledge in sequence. The formation leader will check with those aircraft that do not check in. If contact is not established within 1 minute after a channel change, return to the channel of last contact and attempt to reestablish communication.
- 2. If the first division relinquishes the lead to any other division the original division call signs will be retained.
- 3. Flight leaders will ensure that their flights are intact after completion of each attack, either by radio or by visual check.
- Guard channel (EMERGENCY) will be monitored at all times, but will be used only during an emergency.
- 5. In close formation, one aircraft will handle IFF/SIF procedures. Other aircraft in the formation will have equipment on STANDBY, but will be prepared to take over the IFF/SIF responsibility (refer to section I, part 2, for IFF/SIF operation).

### HAND SIGNALS

Hand and other visual signals are presented in figures 7-1 through 7-12.

# AIRCRAFT STARTING AND PRE-TAXI SIGNALS -



CONNECT AUXILIARY POWER UNIT

— Hold extended index finger of right
hand against the flat palm of vertical
left hand. Plane captain repeats signal and connects power.



2

5

8

11

MAIN FUEL SHUTOFF VALVE CHECK
— Pilot raises fist with thumb extended in drinking position. Plane captain
goes to starboard wheel well and
checks operation of the main fuel shutoff valve as the pilot turns the engine
master switch ON (before starting
engine).



3

6

9

PITOT HEAT ON/OFF AFTER CHECK — Plane captain grasps index and middle fingers of left hand with right hand at eye level. Pilot operates pitot heat switch as necessary to perform check.



CONNECT STARTING AIR UNIT—Pilot holds extended index and middle fingers of right hand against the flat palm of vertical left hand. Plane captain repeats signal and connects air. DISCONNECT AIR STARTING UNIT — Pilot signals reverse of signal =4 at idle rpm.

DISCONNECT AUXILIARY POWER UNIT

— Pilot signals reverse of signal #1
at idle rpm.



FUEL PUMPS PRESSURES CHECK— Plane captain gives drinking signal (same as =2). Pilot checks master generator switch ON (after starting engine).



DOWNLOCKS REMOVED — Plane captain points 3 fingers to removed aircraft downlocks. Pilot observes.



EMERGENCY PITCH TRIM "IN"—
Plane captain forms "T" with hands
at waist level and raises hands smartly in that position. Pilot raises pitch
trim handle.



PITCH TRIM — Plane captain extends one arm in front with hand held vertically. Moves hand up and down for elevator trim. Pilot actuates "T" handle while monitoring the pitch trim indicator, using both trim channels to obtain full elevator throw in each direction.

10

EMERGENCY PITCH TRIM "OUT" — Plane captain gives reverse of signal #8. Pilot stows "T" handle.



RUDDER-AILERON INTERCONNECT—Plane captain moves right hand, with fist clenched, in a rectangular pattern at waist level. Indicates rudder trailing edge motion with open right hand. Pilot moves stick in a rectangular pattern, ensuring that all lateral and longitudinal stops are contacted.



CRUISE DROOP EXTEND — Plane captain holds hands facing forward, fists clenched, arms bent 45° at elbows, wrists straight, then bends wrists forward. Pilot extends cruise droop.

53212-7-8

12

15

18

21

24

# AIRCRAFT STARTING AND PRE-TAXI SIGNALS-



RAISE WING — Hands flat, raise arms from extended position. Reverse signal to lower wing.

14

17

FUEL LEAK CHECK — Plane captain signals for hands out of cockpit.

NORMAL PITCH TRIM CHECK — Plane captain gives same signal as #9.

RUDDER-AILERON INTERCONNECT—Plane captain checks for disconnect. Same as signal =11.



AILERON TRIM CHECK — Plane captain holds right forearm vertical and grasps elbow with left hand. Swings forearm left, then right to indicate desired aileron trim change. Pilot actuates trim on signal.

16

13



RUDDER TRIM CHECK — Arm held vertical, elbow cupped in other hand, palm flat. Twist hand left and right to indicate desired trim deflection. Pilot actuates trim on signal.



VISCOUS DAMPER CHECK — With opened right hand, strike clenched left fist, held near stomach, two sharp blows. Pilot executes damper check.



EXHAUST NOZZLE CHECK—With forearm horizontal and fist closed, extend arm and open fist simultaneously. Fingers are extended and separated.

19



BRAKES CHECK — Both arms extended horizontally, fists clenched. Open and close hands rapidly. Pilot pumps brake pedals, then releases them.



HOOK DOWN — Right fist, thumb extended downward into horizontal palm of left hand.



HOOK UP— Right fist, thumb extended upward, raised suddenly to meet horizontal palm of left hand.

23



AIR REFUELING PROBE OUT — Hold arm straight ahead with fist clenched, then swing 90° to side position. Reverse procedure for probe in. Pilot actuates probe on signal.

22



FOLD WINGS — Arms straight out at sides, then swept forward and hugged around the shoulders.

SPREAD WINGS — Reverse fold wings procedure.



WING LOCK CHECK — Plane captain hits right elbow with palm of left hand.



ENGAGE NOSE GEAR STEERING — Point to nose with index finger while indicating direction of turn with other index finger.

53212-7-9

# GENERAL SIGNALS

| Signal                                                                                                                                                                                                                                     |                                                          | Meaning                                                                                                     | Response                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day                                                                                                                                                                                                                                        | Night                                                    | Meaning                                                                                                     | Response                                                                                                                                                                                                                       |
| Thumbs up, or nod of head.                                                                                                                                                                                                                 | Flashlight moved vertically up-and-down repeatedly.      | Affirmative. ("Yes," or, "I understand.")                                                                   |                                                                                                                                                                                                                                |
| Thumbs down, or turn of head from side to side.                                                                                                                                                                                            | Flashlight moved horizontally back-and-forth repeatedly. | Negative. ("No," or, "I do not understand.")                                                                |                                                                                                                                                                                                                                |
| Hand cupped behind ear as if<br>listening.                                                                                                                                                                                                 |                                                          | Question. Used in conjunction with another signal, this gesture indicates that the signal is interrogatory. | As appropriate                                                                                                                                                                                                                 |
| Hand held up, with palm out-<br>ward.                                                                                                                                                                                                      |                                                          | Wait.                                                                                                       |                                                                                                                                                                                                                                |
| Hand waved back and forth in<br>an erasing motion in front of<br>face, with palm turned for-<br>ward.                                                                                                                                      | Letter N in code, given with external lights.            | Ignore my last signal.                                                                                      |                                                                                                                                                                                                                                |
| Employ fingers held vertically to indicate desired numerals 1 through 5. With fingers horizontal, indicate number which added to 5 gives desired number from 6 to 9. A clenched fist indicates 0. (Hold hand near canopy when signalling.) |                                                          | Numerals as indicated.                                                                                      | A nod of the head. ("I understand"). To verify numerals, addressee repeats. If originator nods, interpretation is correct. If originator repeats numerals, addressee should continue to verify them until they are understood. |
| Make hand into cupshape, then make repeated pouring motions.                                                                                                                                                                               |                                                          | I am going to dump fuel.                                                                                    |                                                                                                                                                                                                                                |
| Slashing motion of index finger across throat.                                                                                                                                                                                             |                                                          | I have stopped dumping fuel.                                                                                |                                                                                                                                                                                                                                |

53212-7-10NB

Figure 7-2

# TAKEOFF, INFLIGHT, BREAKUP AND LANDING SIGNALS —

| Siz                                                                                                                                                               | gnal                                                | Meaning                                                                                                                                  | Response                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Day                                                                                                                                                               | Night                                               | messassas                                                                                                                                |                                                                                                              |
| Section takeoff-leader     raises either forearm to     vertical position.                                                                                        |                                                     | I have completed my take-<br>off check list and am ready<br>for takeoff.                                                                 | Stands by for reply from<br>wingman, holding arm up<br>until answered.                                       |
| 2. Wingman raises forearm.                                                                                                                                        |                                                     | I have completed my take-<br>off check list and am ready<br>for takeoff.                                                                 | <ol><li>Wingman lowers arm and<br/>stands by for immediate<br/>takeoff.</li></ol>                            |
| 3. Leader lowers arm.                                                                                                                                             |                                                     | 3. Takeoff path is clear, I am commencing takeoff.                                                                                       | 3. Execute section takeoff.                                                                                  |
| <ol> <li>Sharp head nod to left after<br/>releasing brakes on takeoff.</li> </ol>                                                                                 |                                                     | 4. Select afterburner.                                                                                                                   | 4. Execute.                                                                                                  |
| <ol><li>Sharp head nod to right<br/>after takeoff.</li></ol>                                                                                                      |                                                     | 5. De-select afterburner.                                                                                                                | 5. Execute.                                                                                                  |
| <ol> <li>Arm and hand held straight,<br/>parallel to, and slightly<br/>above canopy rail, pivoted<br/>elbow and raised and<br/>lowered in short order.</li> </ol> |                                                     | Prepare to raise or lower<br>wing (NOTE: Not normally<br>used for takeoff transition).                                                   | <ol> <li>Unlock wing and prepare to<br/>move wing handle.</li> </ol>                                         |
| <ol> <li>Pronounced, smooth, back<br/>to front and front to back<br/>head nod while airborne.</li> </ol>                                                          |                                                     | <ol> <li>Leader is moving wing incidence handle at the same<br/>rate as head nod to lower<br/>or raise the wing respectively.</li> </ol> | 7. Execute.                                                                                                  |
| Leader pats self on the head,<br>points to wingman.                                                                                                               | 2. Lead aircraft switches lights to BRT and flashes | Leader shifting lead to wingman.                                                                                                         | <ol> <li>Wingman pats head and<br/>assumes lead.</li> </ol>                                                  |
| pound to minguine.                                                                                                                                                | them. 3. Wingman places lights on                   |                                                                                                                                          | <ol><li>Wingman places lights on<br/>DIM and assumes lead.</li></ol>                                         |
|                                                                                                                                                                   | DIM and assumes lead.                               |                                                                                                                                          | <ol> <li>Wingman shines flashlight<br/>at leader, then on his hard<br/>hat.</li> </ol>                       |
| Leader pats self on head and holds up two or more fingers.                                                                                                        |                                                     | Leader shifting lead to division designated by numerals.                                                                                 | Wingman relay signal; division<br>leader designated assumes<br>lead.                                         |
| Pilot blows kiss to leader.                                                                                                                                       |                                                     | I am leaving formation.                                                                                                                  | Leader nods ("I understand") or waves goodby.                                                                |
| Leader blows kiss and points to aircraft.                                                                                                                         |                                                     | Aircraft pointed out leave formation.                                                                                                    | Wingman indicated blows kiss and executes.                                                                   |
| Leader points to wingman, then points to eye, then to vessel or object.                                                                                           |                                                     | Directs plane to investigate object or vessel.                                                                                           | Wingman indicated blows kiss and executes.                                                                   |
| Division leader holds up and rotates two fingers in horizontal circle, preparatory to breaking off.                                                               |                                                     | Section break off.                                                                                                                       | Wingman relays signal to section leader. Section leader nods ("I understand") or waves goodbye and executes. |
| Leader describes horizontal circle with forefinger.                                                                                                               | Series of "I's" in code, given by external lights.  | Breakup (and rendezvous).                                                                                                                | Wingman take lead, pass sig-<br>nal after leader breaks, and<br>follow.                                      |
| Landing motion with open hand:                                                                                                                                    |                                                     | Refers to landing of aircraft, generally used in conjunction with another signal.                                                        |                                                                                                              |
| 1. Followed by patting head.                                                                                                                                      |                                                     | 1. I am landing.                                                                                                                         | 1. Nods. ("I understand") or waves goodbye.                                                                  |
| 2. Followed by pointing to another aircraft.                                                                                                                      |                                                     | Directs indicated aircraft to land.                                                                                                      | 2. Aircraft indicated repeats signal, blows a kiss and executes.                                             |

# FORMATION SIGNALS -

| Sign                                                                                               | nal                                                                                   | Meaning                                                                                               | Rashonsa                                                              |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Day                                                                                                | Night                                                                                 | meuning                                                                                               | Response                                                              |
| Open hand held vertically and moved forward or backward, palm in direction of movement.            |                                                                                       | Adjust wing-position forward or aft.                                                                  | Wingman moves in direction indicated.                                 |
| Open hand held horizontally<br>and moved slowly up or down,<br>palm in direction of move-<br>ment. |                                                                                       | Adjust wing-position up or down.                                                                      | Wingman moves up or down as indicated.                                |
| Open hand used as if beckoning inboard or pushing outboard.                                        |                                                                                       | Adjust wing-position laterally toward or away from leader.                                            | Wingman moves in direction indicated.                                 |
| Hand opened flat and palm down, simulating dive or climb.                                          |                                                                                       | I am going to dive or climb.                                                                          | Prepare to execute.                                                   |
| Hand moved horizontally above glareshield, palm down.                                              |                                                                                       | Leveling off.                                                                                         | Prepare to execute.                                                   |
| Head moved backward.                                                                               |                                                                                       | Slow down.                                                                                            | Execute.                                                              |
| Head moved forward.                                                                                |                                                                                       | Speed up.                                                                                             | Execute.                                                              |
| Head nodded right or left.                                                                         |                                                                                       | I am turning right or left.                                                                           | Prepare to execute.                                                   |
| Thumb waved backward over shoulder.                                                                | Series of 00's in code, given by external lights.                                     | Take cruising formation or open up.                                                                   | Execute.                                                              |
| 1. Holds up right (or left) forearm vertically, with clenched fist or single wing-dip.             | 1. Single letter R (or K) in code, given by external lights.                          | Wingman cross under to right (or left) echelon or in direction of wing-dips.                          | 1. Execute.                                                           |
| 2. Same as above, except with pumping motion or double wing-dip.                                   | <ol><li>Series of RR's (or KK's)<br/>in code, given by external<br/>lights.</li></ol> | Section cross under to<br>right (or left) echelon or in<br>direction of wing-dips.                    | 2. Execute.                                                           |
| Triple wing-dip.                                                                                   |                                                                                       | Division cross under.                                                                                 | Execute.                                                              |
|                                                                                                    | Series of VV's in code, given by external lights.                                     | Form a Vee or balanced formation.                                                                     | Execute.                                                              |
| Series of zooms.                                                                                   | Series of XX's in code, given by external lights.                                     | Close up or join up; join up on me.                                                                   | Execute.                                                              |
| Rocking of wings by leader.                                                                        |                                                                                       | Prepare to attack.                                                                                    | Execute preparation to attack                                         |
| Rocking of wings by any other member of flight.                                                    |                                                                                       | We are being, or are about to be, attacked.                                                           | Standby for and execute defen sive maneuvers.                         |
| Lead plane swishes tail.                                                                           |                                                                                       | All aircraft in this formation<br>form step-down column in<br>tactical order behind column<br>leader. | Execute. Leader speeds up slightly to facilitate formation of column. |
| Shaking of ailerons.                                                                               | Long dash, given with external lights.                                                | Execute signal; used as re-<br>quired in conjunction with<br>another signal.                          | Execute last signal given.                                            |

53212-7-12NB

Figure 7-4

# ELECTRONIC COMMUNICATIONS AND NAVIGATION SIGNALS -

| Signal                                                                                                                                    |       | Meaning                                                               | Response                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day                                                                                                                                       | Night |                                                                       | Response                                                                                                                                                        |
| Tap earphones, followed by patting of head, and point to other plane.                                                                     |       | Take over communications.                                             | Repeat signals, pointing to self and assume communications lead.                                                                                                |
| Tap earphones, followed by patting of head.                                                                                               |       | I have taken over communications.                                     | Nod (''I understand'').                                                                                                                                         |
| Tap earphones and indicate by finger-numerals, number of channel to which shifting.                                                       |       | Shift to radio frequency indicated by numerals.                       | Repeat signal and execute.                                                                                                                                      |
| Tap earphones, extend forearm vertically, and rotate fingers, formed as if holding a grapefruit, followed by 4 numbers.                   |       | Manually set up ARC-27 on frequency indicated.                        | Repeat signal and execute.                                                                                                                                      |
| Tap earphones, followed by question signal.                                                                                               |       | What channel (or frequency) are you on?                               | Indicate channel (or frequency) by finger-numerals.                                                                                                             |
| Tap earphones and point to plane being called, followed by finger-numbers indicating frequency.                                           |       | You are being called by radio on channel indicated by finger numbers. | Repeat numbers. Check receiving frequency and switch to channel indicated by originator. Dial in manually, if necessary.                                        |
| Vertical hand, with fingers pointed ahead and moved in a horizontal sweeping motion, with four fingers extended and seperated.            |       | What is bearing and distance to the tacan station?                    | Wait signal, or give magnetic bearing and distance with finger-numerals. The first three numerals indicate magnetic bearing and the last two or three distance. |
| Vertical hand, with 4 fingers extended and separated, pointed ahead in a fore-and-aft chopping motion, followed by a question signal.     |       | What is bearing to tacan station?                                     | Repeat signal and give bearing in three digits.                                                                                                                 |
| Arm and vertical hand, with 4 fingers extended and separated, moved ahead in a fore-and-aft circular motion, followed by question signal. |       | What is distance to tacan station.                                    | Repeat signal and give distance in two or three digits.                                                                                                         |
| Tacan bearing or distance sig-<br>nal, followed by thumbs up or<br>down.                                                                  |       | Tacan bearing or distance, up or down.                                | Thumbs up or nod ("I understand").                                                                                                                              |

53212-7-13(1)NB

Figure 7-5 (Sheet 1)

# ELECTRONIC COMMUNICATIONS AND NAVIGATION SIGNALS —

| Signal                                                                                                        |       | Mannina                                                                                                            | Response                                                                                                                   |  |
|---------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Day                                                                                                           | Night | Meaning                                                                                                            | Kesponse                                                                                                                   |  |
| Tacan-bearing signal, followed by finger-numerals.                                                            |       | Switch to Tacan station indicated.                                                                                 | Repeat and execute.                                                                                                        |  |
| Hand held up. First and fourth<br>fingers extended, moved in<br>fore-and-aft chopping motion,<br>followed by: |       |                                                                                                                    |                                                                                                                            |  |
| 1. 4 numbers.                                                                                                 |       | <ol> <li>Set up UHF/ADF on frequency indicated.</li> </ol>                                                         | 1. Repeat signal and execute.                                                                                              |  |
| 2. Question signal.                                                                                           |       | 2. What is UHF/ADF bearing?                                                                                        | <ol> <li>Repeat chopping motion,<br/>followed by wait, or three nu-<br/>merals indicating magnetic<br/>bearing.</li> </ol> |  |
| 3. Up or down signal.                                                                                         |       | 3. My UHF/ADF is up or down.                                                                                       | 3. Thumbs up or nod ("I understand").                                                                                      |  |
| Two fingers pointed toward<br>eyes (meaning IFF/SIF sig-<br>nals), followed by:                               |       |                                                                                                                    | Repeat, then execute.                                                                                                      |  |
| 1. "CUT".                                                                                                     |       | 1. Turn IFF/SIF to "STAND-BY"                                                                                      |                                                                                                                            |  |
| 2. 3-digit numerals.                                                                                          |       | <ol> <li>Set mode and code indi-<br/>cated: first numeral mode, sec-<br/>ond and third numerals - code.</li> </ol> |                                                                                                                            |  |
| Open hand held up, fingers together, moved in foreand-aft chopping motion (by leader).                        |       | 1. Course to be steered is present compass heading.                                                                | 1. Nod of head ("I understand").                                                                                           |  |
| 2. Followed by question signal.                                                                               |       | 2. What is your compass heading?                                                                                   | <ol><li>Repeat signal and give<br/>compass heading in finger-<br/>numerals.</li></ol>                                      |  |
| 3. Followed by three-finger numerals.                                                                         |       | 3. My compass heading is as indicated by finger-numerals.                                                          | 3. Nod or clarify, as appropriate.                                                                                         |  |

53212-7-13(2)NB

Figure 7-5 (Sheet 2)

# ARMAMENT SIGNALS —

| Signal                                        |       | Magning                                                   | Pashanas                                                         |
|-----------------------------------------------|-------|-----------------------------------------------------------|------------------------------------------------------------------|
| Day                                           | Night | Meaning                                                   | Response                                                         |
| Pistol-cocking motion with<br>either hand.    |       | <ol> <li>Ready or safety guns, as applicable.</li> </ol>  | Repeat signal and execute.                                       |
| 2. Followed by question-signal.               |       | 2. How much ammo do you have?                             | 2. Thumbs up- "over half";<br>thumbs down - "less than<br>half." |
| 3. Followed by thumbs-slown signal.           |       | 3. I am unable to fire.                                   | 3. Nod head ("I understand").                                    |
| 1. Shaking fist.                              |       | Arm or safety bombs, as applicable.                       | Repeat signal and execute.                                       |
| 2. Followed by question-sig-nal.              |       | 2. How many bombs do I have?                              | 2. Indicate with appropriate finger-numerals.                    |
| 3. Followed by thumbs-down signal.            |       | 3. I am unable to drop.                                   | 3. Nod head ("I understand").                                    |
| Shaking hand, with fingers extended downward. |       | <ol> <li>Arm or safety rockets, as applicable.</li> </ol> | Repeat signal and execute.                                       |
| 2. Followed by question-sig-nal.              |       | 2. How many rockets do I have?                            | 2. Indicate with appropriate finger-numerals.                    |
| 3. Followed by thumbs-down signal.            |       | 3. I am unable to fire.                                   | 3. Nod head ("I understand").                                    |

53212-7-15NB

Figure 7-6

# AIRCRAFT AND ENGINE OPERATION SIGNALS -

| Signal                                                             |                                                                             | Meaning                                         | Daghanga                                                                                                 |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Day                                                                | Night *                                                                     | - Meaning                                       | Response                                                                                                 |
| Raise fist with thumb extended in drinking position.               |                                                                             | How much fuel have you?                         | Repeat signal, then indicate fuel in hundreds of pounds by finger-numbers.                               |
| Rotary movement of clenched fist in cockpit as if cranking wheels. | Letter W in code, given by external lights, or rotary motion of flashlight. | Lower or raise landing gear, as appropriate.    | Repeat signal. Execute when leader changes configuration.                                                |
| Leader lowers hook.                                                | Letter H in code, given by external lights.                                 | Lower arresting hook.                           | Wingman lower arresting hook<br>Leader indicates wingman's<br>hook is down with thumbs-up<br>signal.     |
| Open and close four fingers and thumb.                             |                                                                             | Extend or retract speed brakes, as appropriate. | Repeat signal. Execute upon<br>head-nod from leader or when<br>leader's speed brakes extend/<br>retract. |

 $<sup>{\</sup>rm *When}$  using flashlight , turn off anticollision lights. Use white light only.

53212-7-16NE

# AIR REFUELING SIGNALS -

| Signal                                                           |       | Manustra                                | D.                                                                                      |
|------------------------------------------------------------------|-------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| Day                                                              | Night | Meaning                                 | Response                                                                                |
| One finger turn-up signal.  Form cone-shape with hand,           |       | By receiver: start turbine.             | Tanker execute. Receiver gives thumbs-up when turbine starts.  Tanker execute. Receiver |
| all fingers extended aft (make signal close to canopy).          |       |                                         | give thumbs-up if:                                                                      |
| <ol> <li>Cone moved aft.</li> <li>Cone moved forward.</li> </ol> |       | By receiver: extend drogue.             | <ol> <li>Drogue extends proper-<br/>ly.</li> </ol>                                      |
|                                                                  |       | 2. By receiver: retract drogue.         | <ol><li>Drogue retracts fully<br/>and air turbine feathers.</li></ol>                   |
| Make hand into cupshape, then make repeated pouring motions.     |       | By tanker: I am going to dump fuel.     | By receiver: Nod. Give thumbs-up when fuel dumping commences.                           |
| Slashing motion of index finger across throat.                   |       | By tanker: I have stopped dumping fuel. | By receiver: Give thumbs-up if fuel dumping has ceased.                                 |

53212-7-17NB

Figure 7-8

## EMERGENCY SIGNALS BETWEEN AIRCRAFT -

## VISUAL EMERGENCY SIGNALS (AIR TO AIR) General

| Signal                                                  |                                                                    |                                                   | D .                                                                                                                                              |  |
|---------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Day                                                     | Night                                                              | Meaning                                           | Response                                                                                                                                         |  |
| Arms bent across forehead weeping.                      | Horizontal motion of flash-<br>light shone at other air-<br>craft. | ght shone at other air- meaning, I am in trouble. |                                                                                                                                                  |  |
| Landing motion with open hand.                          | Circular motion of flash-<br>light shone at other air-<br>craft.   | I must land immediately.                          | Assume lead if indicated and return to base or nearest suitable field.                                                                           |  |
| Point to pilot and give series of thumb down movements. | pint to pilot and give Flash series of dots with exterior lights.  |                                                   | Thumbs up: I am all right Thumbs down: I am having trouble. Lights off once, then on steady: I am all right Lights flashing: I am having trouble |  |

#### 'HEFOE' SIGNALS (Preceded by General Emergency Signal)

| Signal        |               | Meaning               | Response                           |
|---------------|---------------|-----------------------|------------------------------------|
| Day           | Night         |                       |                                    |
| One Finger    | One Flash     | Hydraulic<br>Trouble  | Nod of Head:<br>I Understand       |
| Two Fingers   | Two Flashes   | Electrical<br>Trouble |                                    |
| Three Fingers | Three Flashes | Fuel<br>Trouble       |                                    |
| Four Fingers  | Four Flashes  | Oxygen<br>Trouble     | Series of Flashes:<br>I Understand |
| Five Fingers  | Five Flashes  | Engine Trouble        |                                    |

53212-7-18NB

Figure 7-9

## ARMING AND DEARMING SIGNALS-

|                                                                       | CARRIER | TO ARMING AIRCRAFT                                                                                                               |                                                                                                                                              |  |
|-----------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Signal                                                                |         | Meaning                                                                                                                          | Dantama                                                                                                                                      |  |
| Day                                                                   | Night   | meaning                                                                                                                          | Response                                                                                                                                     |  |
| Arming supervisor Pistol cocking motion with either hand.             | Same    | Pilot: Check all armament switches OFF and SAFE.                                                                                 | Pilot: Execute. Raise both hands to view of arming supervisor of checking switch positions. (Hands remain in view during check and hook-up.) |  |
| Arming supervisor gives pilot:     a. Thumbs up     b. Thumbs down    | Same    | <ul><li>a. Aircraft is armed and all personnel and equipment clear of area.</li><li>b. Aircraft is down for ordinance.</li></ul> | a. Hold until arming crew clear of arming.     b. Return to line.                                                                            |  |
|                                                                       |         | DEARMING                                                                                                                         |                                                                                                                                              |  |
| 3. Dearming supervisor:<br>Pistol cocking motion with<br>either hand. | Same    | Pilot: Check all armament switches OFF or SAFE.                                                                                  | Pilot: Execute. Raise both hands to view of dearming supervisor after checking switch positions. (Hands remain in view during dearming.)     |  |
| 4. Dearming supervisor gives pilot: Thumbs up.                        | Same    | Pilot: Aircraft is dearmed<br>and crew and equipment clear<br>of aircraft.                                                       | Pilot: Hold until arming crew<br>clear of arming area - then<br>return to line.                                                              |  |

53212-7-19NB

Figure 7-10

## POST FLIGHT GROUND CREW TO PILOT SIGNALS —

| Signal                                                                                                   |  |                     | Response                         |  |
|----------------------------------------------------------------------------------------------------------|--|---------------------|----------------------------------|--|
| Day  Night  1. Drinking signal followed by blowing into open right hand palm.  1. Same except with wand. |  | - Meaning           |                                  |  |
|                                                                                                          |  | Dump wing pressure. | Select fuel transfer PRESS DUMP. |  |

53212-7-20-5-67

Figure 7-11

## EMERGENCY GROUND CREW TO PILOT SIGNALS -

| Signal                                                                                                                      |                            |                                                | Response                                                           |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|--------------------------------------------------------------------|
| Day Night                                                                                                                   |                            | Meaning                                        |                                                                    |
| <ol> <li>Describe a large figure<br/>eight with one hand and<br/>point to the fire area with<br/>the other hand.</li> </ol> | 1. Same except with wands. | Information signal for external aircraft fire. | Comply with engine cut or continuous turnup signal as appropriate. |
| 2. Emergency hold signal followed by wiping brow then pointing to brakes.                                                   | 2. Same except with wand.  | Your aircraft has hot brakes.                  | Comply with local hot brakes procedures.                           |

53212-7-21-5-6

Figure 7-11A

## FLIGHT SIGNALS BETWEEN AIRCRAFT -

## PENETRATION / INSTRUMENT APPROACH (NO RADIO)

| Signal                                                                                                              |                             |                                            |                                                                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Day                                                                                                                 | Night                       | Meaning                                    | Response                                                                                                                                              |  |
| Open and close 4 fingers and thumb in pinching motion.                                                              | 3 dashes w/external lights. | Extend speedbrakes, commencing approach.   | Execute when leader extends speedbrakes.  Execute when leader extends wheels, flaps.  Ashore: Take position for landing. Carrier: Break off and land. |  |
| Rotary movement of clenched fist in cockpit as if cranking wheels.                                                  | 2 dashes w/external lights. | Extend wheels and full flaps.              |                                                                                                                                                       |  |
| Pointing index finger toward<br>runway/ship in stabbing mo-<br>tion, repeatedly, followed by<br>lead change signal. | 1 dash w/external lights.   | Landing runway/meatball and ship in sight. |                                                                                                                                                       |  |

Note: Configuration change should be executed promptly after completion of the signal.

53212-7-14NF

Figure 7-12

# section VIII weapon systems

## **CONTENTS**

| Fire Control System AN/AWG-3 | 8-2 |
|------------------------------|-----|
| Armament Systems             | 8-6 |
| Tow Target Systems           | 8-1 |

#### FIRE CONTROL SYSTEM

#### Note

Refer to Section VIII of the Supplemental NATOPS Flight Manual for additional information on the AN/APS-67 radar.

#### DESCRIPTION

#### Aero 10L-1 (F-8A Aircraft)

The Aero 10L-1 armament control system, powered by the secondary ac and dc buses, consists of the AN/APG-56 (modified AN/APG-30A) radar ranging system and the MK 16 Mod 12 aircraft fire control system. The armament control system cannot be operated when electrical power is being supplied by the emergency power package.

The radar ranging system will lock on any target within range and furnish target range information to

the fire control system for gun firing. Radar ranging may also be used in conjunction with Sidewinder missile launching. In this case, the missile release indicator displays optimum missile launching point.

The fire control system receives a variety of data signals, computes the total lead angle and presents the information to the pilot as a point of aim by the displacement of a "pipper" in a sight unit. The fire control system can be used without radar ranging if it is not practical to use radar or if the radar system is inoperative. It is also used without radar ranging for air-to-ground operations. System controls and indicators are presented in figure 8–1.

#### FIRE CONTROL SYSTEM CONTROLS

| Nomenclature                                                                 | Function                                                                                                                                                                                                                                                                          |  |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FIRE CONTROL SYSTEM                                                          |                                                                                                                                                                                                                                                                                   |  |  |  |
| Sight gyro caging button (before AFC 493)<br>(22, figure 8-1)                | Momentarily depressed and released, cages or uncages sight unit gyro.                                                                                                                                                                                                             |  |  |  |
| Nose gear steering/sight gyro caging button (after AFC 493) (23, figure 8-1) | Momentarily depressed and released with wing down, cages or uncages sight unit gyro. (Switch activates nose gear steering with wing up.)                                                                                                                                          |  |  |  |
| Fire control range-volume knob<br>(7, figure 8–2)                            | Controls volume of fire control system ranging tone.                                                                                                                                                                                                                              |  |  |  |
| Sight gyro switch (3, figure 8-1)                                            | Energizes sight unit gyro reticle lamp and controls power to computer circuits and to gyro motor.                                                                                                                                                                                 |  |  |  |
| Sight fixed lamp switch (5, figure 8–1)                                      | Energizes sight unit fixed reticle lamp.                                                                                                                                                                                                                                          |  |  |  |
| Range switch (1, figure 8-1)                                                 | RADAR—supplies radar range information to fire control system.  FIXED—provides for supplying pilot-estimated range information to fire control system.                                                                                                                            |  |  |  |
| Sight dimming knob (6, figure 8-1)                                           | In positions between OFF and BRIGHT (F-8A aircraft), supplies fire control system power through the sight gyro switch and varies the intensity of the sight unit reticle lamps.  In positions between DIM and BRIGHT (F-8B aircraft), controls sight unit reticle lamp intensity. |  |  |  |
| Fixed range dial (2, figure 8-1)                                             | Permits selection of estimated range for fire control system when FIXED ranging is employed, controls ranging tone for RADAR ranging and controls maximum range for firing guns when RADAR ranging is employed.                                                                   |  |  |  |
| Fire control power switch (F-8B) (11, figure 8-1)                            | ON—supplies power to the sight fixed lamp switch and to the fire control system through the sight gyro switch.                                                                                                                                                                    |  |  |  |

#### FIRE CONTROL SYSTEM CONTROLS (Continued)

| Nomenclature                                | Function                                                                                                                                                                                                                                                                 |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AN/APG-56 RADAR (F-8A AIRCRAFT)             |                                                                                                                                                                                                                                                                          |  |  |
| Radar power switch (10, figure 8-1)         | OFF—deenergizes radar set. STDBY MAN—places radar set on standby. ON—places radar set in operation.                                                                                                                                                                      |  |  |
| Maximum range knob (8, figure 8-1)          | Sets maximum radar lock-on range.                                                                                                                                                                                                                                        |  |  |
| Lock-on sensitivity knob (9, figure 8-1)    | Adjusts sensitivity of radar lock-on.                                                                                                                                                                                                                                    |  |  |
| Gates out switch (7, figure 8–1)            | Jogged, selects next farthest target.                                                                                                                                                                                                                                    |  |  |
| А                                           | N/APS-67 RADAR (F-8B AIRCRAFT)                                                                                                                                                                                                                                           |  |  |
| Brilliance knob<br>(19, figure 8–1)         | Regulates brilliance of radar scope presentation.                                                                                                                                                                                                                        |  |  |
| Focus knob<br>(21, figure 8-1)              | Regulates sharpness of trace on radar scope.                                                                                                                                                                                                                             |  |  |
| Function switch (14, figure 8–1)            | STBY—applies power to maintain radar operation in standby condition. SRCH—selects search mode of operation. RANGE—selects range mode of operation. OFF—deenergizes radar system.                                                                                         |  |  |
| Gain knob<br>(13, figure 8-1)               | Regulates radar receiver gain when function switch is in SRCH.  In the range mode, gain is controlled automatically.                                                                                                                                                     |  |  |
| Minimum range knob<br>(17, figure 8–1)      | Adjusts "at rest" position of tracking range strobe on radar scope.  PRESS TO UNLOCK—releases range strobe from target lock-on (range tracking), permitting acquisition of another target.                                                                               |  |  |
| Clutter limiting switch<br>(16, figure 8–1) | FTC—position limits the amount of ground clutter displayed on the scope when in search mode of operation.  NORMAL—position allows all echos to be displayed on the scope.  In the range mode, the clutter-limiting circuit is operational regardless of switch position. |  |  |
| Funing knob<br>(12, figure 8-1)             | AUTO—provides automatic radar receiver tuning.<br>Range clockwise from AUTO permits manual tuning.                                                                                                                                                                       |  |  |
| Γest button (15, figure 8–1)                | Depressed, provides signals to test radar system operation.                                                                                                                                                                                                              |  |  |

#### AN/AWG-3 (F-8B Aircraft)

The AN/AWG-3 fire control system, powered by the secondary ac and dc buses, consists of the AN/APS-67 radar ranging system and a computer group.

The AN/APS-67 radar is capable of both search and range-tracking operation. In the search mode of operation, the antenna scans a sector ahead of the airplane

to provide initial detection of airborne targets. When the target selected is within range and is located along the boresight line, the minimum range knob is adjusted to position the range line just below the target echo and the pilot changes from the search mode of operation to the range mode. An acquisition display will appear on the scope momentarily, followed immediately by a lock-on display as the radar locks on the target. The computer group accepts data on the attack conditions, makes the computations for firing the guns and causes the sight unit to generate the lead angle for a hit. This information is presented to the pilot by the displacement of the pipper in the sight unit. The sight unit incorporates an antitumbling circuit to prevent the sight gyro from tumbling during violent maneuvers. When the sight gyro pipper reaches maximum deflection, the antitumbling circuit momentarily cages the gyro so that the pipper tends to move toward the center of the optical field. As long as the flight conditions tend to tumble the gyro and the antitumbling circuit provides an opposing tendency, the pipper will oscillate near the edge of the optical field. For air-to-ground operation or air-to-air operation where the radar does not provide reliable range data, the system can be used with a fixed range input. However, to provide effective fire control the system must be supplied with radar range and range-rate inputs whenever possible during air-to-air operations. System controls and indicators are presented in figure 8-1.

#### COMPUTER GROUP WARMUP PROCEDURE

Before performing any tests or operations using the computer group, select the following switch positions and allow a minimum of 10 minutes for warmup.

- 1. Fire control power switch (F-8B) on or Sight dimming knob (F-8A) INTERMEDIATE POSITION
- 2. Sight gyro switch ON

#### FIRE CONTROL PREFLIGHT CHECK

Perform this procedure before takeoff. It is recommended that the fire control system be energized to permit caging the sight gyro during takeoff, while in flight and during landing. The sight unit gyro is automatically caged when the armament selector switch is in a position other than GUNS if the computer group is energized. Before takeoff, perform radar warmup procedure and verify control positions as follows:

- 1. Radar power switch (F-8A) STDBY MAN or Function switch (F-8B) OFF
- 2. Sight dimming knob INTERMEDIATE POSITION
- 3. Fire control power switch (F-8B) ON

- 4. Sight gyro switch ON
- 5. Sight fixed lamp switch AS DESIRED
- 6. Range switch RADAR
- 7. Fixed range dial AS DESIRED
- 8. Armament selector switch OFF

#### RADAR WARMUP PROCEDURE (AN/APG-56)

Set radar power switch in STDBY MAN; leave switch in standby for at least 4 minutes to ensure adequate warmup.

#### RADAR WARMUP PROCEDURE (AN/APS-67)

- 1. Area CLEAR
  - Make sure an area at least 150 feet forward and 45° to the right and left of the aircraft centerline is clear of all personnel, fuel trucks, ammunition carts and other equipment.
- 2. Radar function switch STBY
  - Leave power switch in standby for at least 4 minutes but not more than 6 minutes. Observe these time limits to ensure adequate warmup time and to prevent possible equipment damage.
- 3. Radar function switch SRCH
  - If no display appears, cycle the function switch between STBY and SRCH within the 6-minute time restriction.
  - Turn function switch off if display is not obtained within the time restriction.
  - After normal operation is obtained, leave the radar power switch in one of the operating positions at all times unless turned off due to abnormal scope presentations.
  - If abnormal presentation appears, turn the radar function switch off.
  - If radar presentation appears and disappears three times within a 3-minute period, turn the radar function switch off. (This is caused by actuation of overload circuits; resetting to STBY and then to SRCH is required.)
  - Do not operate the radar set more than 15 minutes, including warmup time, without cooling air (cockpit pressurization ON). Limited cooling is provided at idle power settings.

## FIRE CONTROL SYSTEM CONTROLS-



- 1. Range switch
- 2. Fixed range dial
- 3. Sight gyro switch
- 4. Inoperative
- 5. Sight fixed lamp switch
- 6. Sight dimming knob
- 7. Gates out switch
- 8. Maximum range knob
- 9. Lock-on sensitivity knob
- 10. Radar power switch
- 11. Fire control power switch
- 12. Tuning knob

- 13. Gain knob
- 14. Function switch
- 15. Test button
- 16. Clutter limiting switch
- 17. Minimum range knob
- 18. Sight unit
- 19. Brilliance knob
- 20. Radar scope
- 21. Focus knob
- 22. Sight gyro caging button (before AFC 493)
- 23. Nose gear steering/sight gyro caging button (after AFC 493)

53212-8-1-6-67

#### ARMAMENT SYSTEMS

#### DESCRIPTION

Crusader armament systems consist of a gun system and provisions for Sidewinder missiles on fuselage pylons. Refer to individual system descriptions for mission capabilities. Armament controls are presented in figure 8–2.

#### **GUN SYSTEM**

#### Description

This system consists of four fixed MK 12 Mod 0 20-millimeter guns. Normal ammunition load is 125 rounds per gun and maximum load is 144 rounds per gun.

The guns are pneumatically charged and electrically fired (figure 8-3). Air pressure is supplied by the pneumatic system and electrical power is supplied by secondary buses. The system is inoperative when the landing gear is extended or when the emergency power package is supplying electrical power.

The master armament switch must be placed in ON two minutes before firing to allow warmup of the gun interlock by connecting ac secondary bus power to the unit. The gun interlock maintains firing desynchronization to prevent cumulative shock of all guns firing at the same time.

Radar operating procedures are discussed under FIRE CONTROL SYSTEM. Gunfiring controls are presented in figure 8–2.

#### Radar Ranging (Aero 10L-1)

Radar ranging should be used for all air-to-air gunnery whenever possible. A target lock-on will be indicated by the missile release indicator showing an actual range reading and by the target light being off. After the target has been sighted, the aircraft is maneuvered into position with an estimated target lead. The sight gyro is uncaged during the approach run and the pipper is aligned on the target. The target must be smoothly tracked for 1 to 2 seconds, before firing.

The following procedure is applicable when firing guns using radar ranging. However, if time permits while flying to the target, the procedure should be performed as a range tone test to verify operation of the system ranging function.

To fire guns using radar ranging or to make a range tone test, position switches as follows:

- 1. Radar power switch ON
  - Observe warmup time restrictions.
- 2. Sight gyro switch ON
- 3. Sight dimming knob ADJUST IMAGE BRIGHTNESS
- 4. Range switch RADAR

#### **GUN SYSTEM CONTROLS**

| Function                                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ON—(landing gear retracted) connects secondary dc bus<br>power through armament bus to guns arming switches,<br>trigger switch and secondary ac bus power to gun inter-<br>lock.                                                                                     |  |
| GUNS—connects firing circuit to gun system.  OFF—disconnects firing circuit.                                                                                                                                                                                         |  |
| READY—energizes gun charging valve to charge all guns, connects firing circuit to guns selected (after AFC 493, or all guns before AFC 493), and connects gun compartment vent circuit.  SAFE—returns and holds gun bolts out of battery position.                   |  |
| Depressed to first detent — starts gunfire cameras and, with guns selected, opens gun vent doors.  Depressed to second detent — fires upper and lower guns (before AFC 493). After AFC 493, fires upper and lower guns with corresponding gun selector switch in ON. |  |
| OFF — upper guns firing circuit disconnected. ON — upper guns firing circuit completed to guns.                                                                                                                                                                      |  |
| OFF — lower guns firing circuit disconnected.  ON — lower guns firing circuit completed to guns.                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                      |  |

<sup>\*</sup>Before AFC 493 †After AFC 493

## GUN SYSTEM CONTROLS



F-8A Aircraft

- 1. Trigger switch
- 2. Sight gyro caging button (before AFC 493)
- 3. Nose gear steering/sight gyro caging button (after AFC 493)
- 4. Master armament switch5. Gun select switch (before AFC 493)
- 6. Guns arming switch
- 7. Fire control range-volume knob
- 8. Upper guns selector switch (after AFC 493)
- 9. Lower guns selector switch (after AFC 493)

53212-8-2-3-68



Figure 8-3

- 5. Fixed range dial DESIRED MAXIMUM FIRING RANGE
  - Set dial at 1,500 to 2,500 feet.
- 6. Maximum range knob AS DESIRED
- 7. AFCS range/volume control AS DESIRED
- 8. Missile volume knob OFF
- 9. Obtain radar lock-on and uncage sight gyro.
  - Check missile release indicator and target light for indications of searching and tracking.
  - If performing range tone test, lock on target while range is at least 1,000 yards greater than the setting of the fixed range dial.
- 10. Close range to target. (Refer to Normal Operation for gun firing procedure.)
  - The 400-cycle tone will be heard when the target range is equal to the sum of the settings of the fixed range dial and the bias range switch of the range unit. If the range tone is not heard, recheck setting of the AFCS range/volume knob. Increase volume with care as a marked increase in volume will occur when the system switches the range tone frequency from 400 to 1,200 cycles.
  - If the bias range switch is set at "0," the 400-cycle tone will not be heard but a 1,200-cycle tone will begin when target range has decreased to the value set on the fixed range dial.
  - The range tone frequency will change to 1,200 cycles when target range decreases to a value equal to the fixed range dial setting.
  - When target range decreases to the breakaway range, the range tone will alternate rapidly between 400 and 1,200 cycles. Discontinue closure to avoid collision with the target.
  - Breakaway range can be set to 600, 900, 1,200 or 1,500 feet before flight.
  - All ranging tone will cease when radar lock-on is lost.
- 11. Sight gyro CAGED DURING BREAKAWAY

#### Radar Ranging (AN/AWG-3)

The AN/APS-67 radar set is used both to provide initial detection of the target (search) and to supply range and range rate information (ranging) to the computer group. The computer group uses this information to generate lead angle which is presented to the pilot as gunsight pipper displacement.

The following procedure is applicable when firing guns using radar ranging. However, if time permits while flying to the target, the procedure should be performed as a range tone test to verify operation of the system ranging function. To fire guns using radar ranging or to make a range tone test, position switches as follows:

- 1. Radar function switch SRCH
  - Observe warmup time restrictions.
- 2. Sight gyro switch ON
- 3. Sight dimming knob AS DESIRED
- 4. Fire control power switch ON
- 5. Range switch RADAR
- 6. Fixed range dial DESIRED MAXIMUM FIRING RANGE
  - Set dial at 1,500 to 2,500 feet.
- 6A. Guns selector switches (after AFC 493) ON
  - Upper or lower guns may be fired separately by placing appropriate switch to the ON position.
  - In aircraft before AFC 493, place the armament selector switch in the GUNS position.
- 7. Brilliance knob AS DESIRED
- 8. Focus knob ADJUSTED
- 9. Tuning knob AUTO
- 10. Clutter limiting switch NORMAL
- 11. Gain knob ADJUSTED
- 12. AFCS range/volume knob AS DESIRED
- 13. Missile volume knob MINIMUM
- 14. Search for target; if target is visible, proceed to visual attack below.
  - When target echo appears on scope, maneuver aircraft to position echo in azimuth center of scope.
- 15. Minimum range knob POSITION RANGE LINE JUST BELOW TARGET ECHO
  - Perform when target is within 8 miles.
- 16. Radar function switch RANGE
  - Scope will momentarily indicate a target acquisition display as antenna locks up straight ahead, followed immediately by a lock-on display if range line was positioned within 2 miles of target echo.
  - Radar lock-on display consists of steering dot and dotted range circle, the diameter of which corresponds to target range.
- 17. Steering dot CENTERED IN RANGE CIRCLE
  Dot is centered by maneuvering aircraft.
- 18. Close range to target.
  - Closure is indicated by shrinkage of range circle.
  - Keep steering dot centered in range circle.

19. Visually locate target through gunsight reflector plate and continue attack as described below for visual initial contact. (Refer to Normal Operation for gun firing procedure.)

If initial contact is made visually, proceed as follows:

- 1. Radar function switch RANGE
- 2. Minimum range knob ALMOST TO MINIMUM RANGE
- 3. Unlock control DEPRESS
  - This eliminates any lock-on that may have occurred while maneuvering to attack position.
  - Radar will automatically lock on target again.
- 4. Sight gyro UNCAGED
- 5. Pipper ALIGNED ON TARGET
  - Track target smoothly for 1 to 2 seconds before firing.
  - The 400-cycle tone will be heard when the target range is equal to the sum of the settings of the fixed range dial and the bias range switch of the range unit. If the range tone is not heard, recheck setting of the AFCS range/volume knob. Increase volume with care as a marked increase in volume will occur when the system switches the range tone frequency from 400 to 1,200 cycles.
  - If the bias range switch is set at "0," the 400-cycle tone will not be heard but a 1,200-cycle tone will begin when target range has decreased to the value set on the fixed range dial.
  - The range tone frequency will change to 1,200 cycles when target range decreases to a value equal to the fixed range dial setting.
  - When target range decreases to the breakaway range, the range tone will alternate rapidly between 400 and 1,200 cycles. Discontinue closure to avoid collision with the target.
  - Breakaway range can be set to 600, 900, 1,200 or 1,500 feet before flight.
  - All ranging tone will cease when radar lock-on is lost.
- 6. Sight gyro CAGED DURING BREAKAWAY

#### **Total Lead Angle Test**

Conduct the lead angle test in accordance with Appendix G, Weapons System Tactical Handbook.

Fixed Ranging

To utilize fixed ranging for air-to-ground or air-to-air gunnery attacks, make the following control settings:

1. Sight gyro switch - ON

- 2. Sight fixed lamp switch AS DESIRED
- 3. Sight dimming knob INTERMEDIATE POSITION
- 4. Fire control power switch (F-8B) ON
- 5. Range switch FIXED
- 6. Fixed range dial AT ESTIMATED FIRING RANGE
- 7. Guns selector switches (after AFC 493) ON
  - Upper or lower guns may be fired separately by placing appropriate switch to the ON position.
  - In aircraft before AFC 493, place the armament selector switch in the GUNS position.
- 8. Sight gyro caging switch GYRO UNCAGED
- 9. Guns arming switch READY
- 10. Master armament switch ON

The computer group will calculate the required lead and position the gyro pipper in the same manner as when radar ranging is used. However, the range set on the fixed range dial and a mechanized value for closing rate are used in the computation instead of the range and closing rate information supplied by radar. Thus, during the firing run, the firing range and breakaway range must be estimated; there are no ranging tones. When the approximate dimensions (wingspread) of the target are known, estimate target range by comparing the target size to that of the superimposed gyro pipper.

#### **Normal Operation**

- 1. Master armament switch ON
- 2. Guns selector switches (after AFC 493) ON
  - Upper or lower guns may be fired separately by placing appropriate switch to the ON position.
  - In aircraft before AFC 493, place the armament selector switch in the GUNS position.
- 3. Guns arming switch READY
  - The trigger switch is hot and the system is ready for firing.
  - After the firing run, turn the armament selector switch to OFF.
  - Do not use the guns arming (ready-safe) switch to safety the guns between firing runs.

## WARNING

Cycling the guns arming switch charges live rounds through the guns, which creates the possibility of exploding a round in the gun compartment.

#### AIM-9 (SIDEWINDER) MISSILE

Refer to the (Confidential) Supplemental NATOPS Flight Manual (U).

## AIM-9 (SIDEWINDER) MISSILE SYSTEM Note

Refer to section I, part 4 for Sidewinder loading, launching and carrying limitations and restrictions.

In the following writeup, substitute "trigger switch" for "stores release switch" in the case of aircraft without AFC 493 incorporated.

#### AIM-9B and 9D Sidewinder Missiles

The AIM-9B and AIM-9D Sidewinder missiles are supersonic, air-to-air weapons employing passive infrared guidance. Both models have continuous correction guidance and torque-balance servo control. F-8A aircraft do not have provisions for the AIM-9D missile. Both models are carried on fuselage-mounted pylons with rail-type launchers. The AIM-9B missile is 5 inches in diameter, 113 inches in length and weighs 164 pounds. The AIM-9D is the same length and diameter, with a maximum weight of 186 pounds.

#### Sidewinder Launching System

Two Sidewinder missiles are carried on rail launchers which are attached to fixed pylons, one on each side of the fuselage. Firing circuits, detents, launcher power supplies and (in F-8B aircraft) cooling nitrogen for the AIM-9D are contained in the launcher. Aircraft services required by the launcher are standby and firing power and pilot's headset connection.

Missile selection is controlled by the selector switch on the armament panel in the cockpit. Placing the switch in MISSILES—RH ONLY permits the right missile to be launched individually. When the switch is in MISSILES—LH-RH, the left and right missiles may be launched successively.

Electrical power to operate the missile system is supplied by the secondary ac bus and the primary and secondary dc buses. Power is supplied to the missiles at all times when the aircraft electrical system is energized. The launching circuits are operative only when the landing gear handle is up and the main generator is supplying electrical power. Sidewinder missiles cannot be launched with only emergency electrical power available.

A jettisoning circuit is incorporated, powered from the main or emergency generator, which fires the Sidewinders in an unarmed and unguided condition. The circuit is inoperative when the landing gear handle is in the WHEELS DOWN position or when the emergency power package is supplying power and the emergency generator switch is in LAND position.

#### Missile Release Computer and Indicator

A missile release computer-indicator group is installed as an aid for launching Sidewinder missiles. The missile release computer modifies information received on existing atmospheric conditions and range and range rate from the radar set to compute the maximum effective range of the type of missile to be launched. This information is transmitted to the release indicator.

The missile release indicator visually displays the maximum Sidewinder range at the existing altitude, range of the target, the existence of a radar lock-on and g forces in excess of missile launching capabilities. To obtain satisfactory results from a missile launching, the following conditions must be indicated by the release indicator: the target range needle must be aligned with, or at a shorter range indication than the S/W maximum range needle; the target and g limit lights must be out. When these conditions have been satisfied and the acquisition tone indicates that the missile has acquired the target, the proper conditions exist for launching the missile.

#### Sidewinder Preflight Procedure

With electrical power applied to the aircraft, test AIM-9B and AIM-9D guidance system operation as follows:

- 1. IR missile cooling switch (1C only) ON
  - Wait for 1 minute after turning switch on before checking AIM-9D.
- 2. Master armament switch OFF
- 3. Armament selector switch OFF
- 4. Missile volume ADJUST
  - Adjust volume knob until sound is at a comfortable level.
  - As ground crewman shines a flashlight into the tracking head of left missile, acquisition tone rise should be noticeable.
  - Repeat check for right missile while depressing RH missile tone test button.
- 5. IR missile cooling switch OFF

#### Note

In designated arming area, check that arming switches are safe and keep hands in view of ordnance personnel while arming is performed.

#### **Sidewinder Inflight Tests**

- 1. Master armament switch OFF
- 2. Armament selector switch OFF
- 3. IR missile cooling switch ON
  - Switch is used if AIM-9D missile is selected.
- 4. Fire control power switch ON

#### SIDEWINDER MISSILE SYSTEM CONTROLS

| Nomenclature                                                                                      | Function                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Master armament switch (3, figure 8-2)                                                            | ON—(landing gear retracted) connects secondary dc bus<br>power through armament bus to stores release switch.<br>Arms missile launching circuits and missile release com-<br>puter circuit.                                                                                                    |  |  |
| Armament selector switch (4, figure 8-2)                                                          | MISSILES-RH ONLY—permits only right missile to be launched.  MISSILES-LH-RH—permits left and right missiles to be launched successively.  In either missile position, activates missile release computer when master armament switch is in ON.  OFF—disconnects firing circuits.               |  |  |
| Missile jettisoning switch (2, figure 8-2)                                                        | LH MISSILE JETTISON—launches left missile in unarmed and unguided condition (landing gear handle in WHEELS UP).  RH MISSILE JETTISON—launches right missile in unarmed and unguided condition (landing gear handle in WHEELS UP).  NORMAL—disconnects jettisoning circuit.                     |  |  |
| Trigger switch (before AFC 493) (1, figure 8-2)                                                   | Depressed, energizes missile launching circuits as selected with armament selector switch.                                                                                                                                                                                                     |  |  |
| Stores release switch (after AFC 493)<br>(11, figure 8-2)                                         | Depressed, energizes missile launching circuits as selected with armament selector switch.                                                                                                                                                                                                     |  |  |
| Fire control range-volume knob (7, figure 8-2)                                                    | Controls volume of fire control system ranging tone.                                                                                                                                                                                                                                           |  |  |
| Missile volume knob (8, figure 8-2)                                                               | OFF—disconnects missile acquisition tone circuit.  Range from OFF to HIGH controls intensity of missile acquisition tone.                                                                                                                                                                      |  |  |
| RH missile tone test button (10, figure 8-2)                                                      | Depressed, permits monitoring of acquisition tone from right missile when missiles remain on both lauching circuits.  Released, permits monitoring of acquisition tone from left missile. (When left missile is launched, tone monitored is automatically shifted to right missile.)           |  |  |
| Missile release indicator<br>(6, figure 8–2)                                                      | S/W MAX RANGE needle indicates maximum Sidewinder firing range for indicated altitude.  TARGET RANGE needle indicates range to target.  TGT light off indicates radar lock-on has been obtained.  G LIMIT light on indicates g's are being pulled in excess of missile launching capabilities. |  |  |
| Missile selector switch (F-8B aircraft)<br>(9, figure 8–2)                                        | S/W-1A—permits release computer to make computations for AIM-9B missile. S/W-1C—permits release computer to make computations for AIM-9D missiles.                                                                                                                                             |  |  |
| AIM-9D cooling switch (F-8B aircraft) (on exterior lights master switch panel above left console) | ON—permits continuous cooling of the tracking cells of the AIM-9D missiles.                                                                                                                                                                                                                    |  |  |

- 5. Sight fixed lamp switch ON
- 6. Sight dimming knob AS DESIRED
- 7. Missile volume knob AS DESIRED

Track target using fixed sight image. With sight on target, the headset acquisition tone level should rise when within missile range. When the target is centered within missile boresight, a slight null occurs in acquisition tone.

#### Radar Ranging (AN/APG-56)

Since the missile range capability in some cases exceeds that of the AN/APG-56 radar, the pilot may elect to launch missiles before radar range information is available, providing that the missile has acquired the target and the pilot can observe the target visually. Normally the fixed reticle image of the sight unit is used for tracking until the missiles acquire the target and radar ranging information is available from the missile release indicator.

The missiles are launched when the missile tone indicates target acquisition and the range is at optimum value for the attack conditions. To obtain radar range information and to illuminate the fixed sight reticle for missile launching, proceed as follows:

- 1. Radar power switch ON
  - Observe warmup time restrictions
- 2. Sight gyro switch OFF
- 3. Sight dimming knob ADJUST IMAGE BRIGHTNESS
- 4. Sight fixed lamp switch ON
- 5. Range switch FIXED
- 6. Maximum range knob MAXIMUM RANGE

#### Radar Ranging (AN/APS-67)

The AN/APS-67 radar may be used for search and ranging as well as tracking until missile launch. Set airplane controls as follows:

- 1. Sight gyro switch OFF
- 2. Sight fixed lamp switch ON
- 3. Sight dimming knob AS DESIRED
- 4. Fire control power switch ON
- 5. Brilliance knob AS DESIRED
- 6. Focus knob Adjust for clear sharp presentation
- 7. Tuning knob AUTO
- 8. Clutter limiting switch NORMAL
- 9. Gain knob ADJUST FOR BEST TARGET CONTRAST

- 10. AFCS range/volume knob MINIMUM
- 11. Missile volume knob AS DESIRED
- 12. Radar function switch SRCH
  - When target echo appears on scope, maneuver aircraft to position echo in azimuth center of scope.
- 13. Minimum range knob POSITION RANGE LINE JUST BELOW TARGET ECHO
  - Perform when target is within 8 miles.
- 14. Radar function switch RANGE
  - Scope will momentarily indicate a target acquisition display as antenna locks up straight ahead, followed immediately by a lock-on display if range line was positioned within 2 miles of target echo.
  - Radar lock-on display consists of steering dot and dotted range circle, the diameter of which corresponds to target range.
- 15. Steering dot CENTERED IN RANGE CIRCLE
  - Dot is centered by maneuvering aircraft.
- 16. Close range to target.
  - Closure is indicated by shrinkage of range circle.
  - Keep steering dot centered in range circle.

#### Sidewinder Visual Attack

To track a target by the sight unit for missile firing, proceed as follows:

- 1. Fire control power switch (F-8B) ON
- 2. Master armament switch OFF
- 3. Armament selector switch EITHER MISSILE POSITION
- 4. Sight dimming control INTERMEDIATE POSITION
- 5. Fixed lamp switch ON
- 6. Gyro switch OFF
- 7. Range switch FIXED

#### Launching Procedure

To launch the Sidewinder missile, track the target with the fixed reticle image of the sight unit and proceed as follows:

- 1. Master armament switch ON
- 2. Armament selector switch EITHER MISSILE POSI-
  - If only one missile launch is desired, place switch in MISSILES-RH ONLY.

- 3. Acquire target.
  - Acquisition is indicated by rise in volume of acquisition tone.
- 4. Center missile on target.
  - Proper centering is indicated by a null in signal.
- 5. Missile release indicator PROPER RANGE
- 6. Target and g limit lights OFF
- 7. Stores release switch SQUEEZE
  - If consecutive missile launching selected, release and squeeze stores release switch again.
  - Remain on target until missile is launched.

## WARNING

If a hangfire occurs, the master armament switch must be switched to OFF to disarm the firing circuit to the affected missile. The switch may be returned to ON for gun or rocket firing or for firing a remaining missile. If hangfire occurs with armament selector switch in MISSILES—LH-RH position when firing the left missile, position master armament switch to OFF and then position armament selector switch to MISSILES—RH ONLY before attempting to launch right missile.

#### **Operating Limitations**

For operating limitations while carrying or firing Sidewinder missiles refer to section I, part 4.

#### **Jettisoning**

Operating the missile jettison switch fires the Sidewinder missiles in an unguided and unarmed state by applying firing voltage directly to the rocket-motor squib. The switch has three positions: LH MISSILE JETTISON, RH MISSILE JETTISON and NORMAL. There is no danger involved in making an arrested landing with Sidewinder missiles on the aircraft, provided the master armament switch is OFF. The missile is held rigidly on the launcher by lugs which prevent fore and aft movement.

#### Tactical Use

The firing envelope depends on the type of target aircraft, the physical characteristics of the target tailpipe or other source of signal, the altitude of the target, the speed differential between interceptor and target, burn time of the missile servo grain and the target maneuver. For additional detailed information concerning the AIM-9D Missile, refer to NOTS TP 2493, AIM-9D Description, Operation, and Handling; and NOTS TP 2500, Pilot's Handbooks for AIM-9D.

#### **TOW TARGET SYSTEMS**

#### BANNER TOWED TARGET EQUIPMENT

Equipment consists of the banner, armored cable towline, chain, and a release ring which is attached to the standard arresting hook-operated tow release fitting for banner targets prior to takeoff. A drag takeoff method is used to launch the target. The entire length of towline is laid out in a squat "S" pattern along the tow aircraft takeoff run with the center leg of the "S" parallel to takeoff, and the far forward turn of the "S" placed opposite the estimated takeoff point. This procedure reduces the abrasion of the target before becoming airborne. Upon return from the towing mission, the target and towing gear are released over the recovery area by lowering the arresting hook. For additional information concerning takeoff methods of banner targets, refer to section III of current NAVAIR 28-10A-501, "Handbook of Operation and Service Instructions for Aerial Targets and Associated Equipment."

#### **Flight Operations**

Optimum operational parameters are outlined in figure 8-4.

## CAUTION

Observe cooling flow limitations applicable to target towing as shown in section I, part 4.

#### CENTER-OF-GRAVITY TOW SYSTEM

The center-of-gravity tow system consists of a tow reel, fuselage sheave fitting, launcher, pilot's control box, and target. Except for the pilot's control box, all components mount externally on existing pylons or on special adapters designed for this purpose. The Delmar Engineering Laboratories 216 Installation Kit and Aircraft Armament Change 398 is required to modify the aircraft for center-of-gravity target towing.

#### Reels

The Aero 43 or 43M tow reels mount by use of an adapter on the port SIDEWINDER pylon location and are powered by a variable pitch, wind driven turbine. The Aero 43 reel can carry the D-12116-10 stepped-diameter towline which is 25,600 feet in length. The AERO 43M reel can carry the D-12116-9 stepped-diameter towline which is 31,500 feet in length.

#### Note

These reels may carry other constant or stepped-diameter towlines. Current armament bulletins should be consulted for additional information.

#### Launcher

The LAU-37/A center-of-gravity launcher is used to lead the towline from the reel and fuselage sheave (trunnion pulley) to the target and hold the target in position on the airplane except when the target is deployed.

#### **Control Box**

The pilot's control box may be mounted in the star-board console or other accessible location and has all the instruments and switches required to control and monitor tow reel functions. The instruments indicate turbine pitch and rpm, and a counter indicates feet of towline deployed. Control switches include a master switch which controls electrical power to the reel, a cable drum brake switch, a turbine pitch control switch which is used to control reel-out or reel-in turbine rpm and a target unlatch switch which is used to release the target from the launcher. A cable cutter switch is provided for emergency cutting of the towline at the launcher. On some control boxes, the brake and target unlatch switch may be combined in a 3-position switch.

#### **Targets**

The TDU-22/B and TDU-22A/B targets are 6 feet long, nonrotating, center-of-gravity towed shapes consisting of a 7-inch diameter fiber glass body, 4 stabilizing tail fins, and components for radar and infrared augmentation.

## BANNER TOWING OPERATIONAL PARAMETERS

| Condition              | Wing       | Gear | KLAS                   | Remarks                                                                                                                              |
|------------------------|------------|------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Takeoff                | Up         | Down |                        | Normal takeoff. CRT recommended.                                                                                                     |
| Climb                  |            |      |                        |                                                                                                                                      |
| Sea level to<br>10,000 | Up         | Up   | 160                    | Maintain afterburner in a steep climb to the desired altitude.                                                                       |
| 10,000-20,000          | Up         | Up   | 180                    |                                                                                                                                      |
| 20,000-30,000          | Down       | Up   | 225                    |                                                                                                                                      |
| Level Off              | Down       | Up   | Stabilize at tow speed | Observe cooling flow limitations (see section 1, part 4).                                                                            |
| Letdown                |            |      |                        |                                                                                                                                      |
| Above 10,000           | Up or      | Up   | 180 (max)              | Maintain power to keep windshield clear and provide                                                                                  |
| Below 10,000           | down<br>Up | Up   | 160                    | power margin for chase pilot maneuvering.                                                                                            |
| 2010 11 10,000         | Op         | o P  |                        |                                                                                                                                      |
| Banner Drop            | Up         | Up   | 150-160                | Adhere to local course rules. Minimum aircraft altitude 500 feet AGL. To release banner drop arresting hook. After drop, raise hook. |

53212-8-3-7-67

Figure 8-4

#### AERO 43 and AERO 43M Reels, LAU-37/A

#### Launcher — Operating Procedures

## CAUTION

The master switch must be left ON throughout the flight. This switch controls the turbine pitch, reel brake, and in the LAU-37/A, the latch motor. When this switch is turned off, pitch control is inoperative, brake will automatically be OFF, and the LAU-37/A unlatch motor will be inoperative.

To avoid pitch control motor damage, do not overcontrol rpm by constant pitch adjustments. A 400 rpm drift is permissible.

Do not put the brake ON while reel is operating, except in an emergency. If the brake is placed ON with the reel operating, towline breakage and complete reel failure may occur. Stop the rpm with pitch control. If the length counter is not indicating any movement and rpm indicates 0, the brake may be placed ON.

In case of aircraft electrical failure, all systems will remain in the same position as they were prior to the failure, with the exception of the brake, which will automatically be OFF. The system is on the primary electrical bus and will be regained following the deployment of the emergency power package. Emergency generator switch must be in the ON position and left in the ON position for the operation of the tow reel and brake.

#### **Preflight Check**

The following operations shall be performed prior to boarding the airplane:

- 1. Check security and general condition of launcher.
- 2. Check circuit breaker (LAU-37/A) IN and cable cutter cartridge is installed.
- 3. Check target security in launcher.
- 4. Check ignition frequency on side of target (TDU-22A/B).
- 5. Check security of launcher electrical leads.
- 6. Check security and alignment of fuselage sheave and that wire is properly routed through the pulleys.
- 7. Check security of reel and reel electrical leads.
- 8. Check ground safety pin in place on reel.
- 9. Check turbine blades in feathered position (0 pitch) and for unrepaired nicks and scratches.
- 10. Check towline length on side of reel.

#### **Poststart Check**

The following operations shall be performed after aircraft poststart checks with a ground crewman standing by:

- 1. Master switch on
- 2. Check brake ON

- Check lights on launcher (two) illuminated (LAU-37/A)
- 4. Check turbine operation as follows:
  - (a) Check rpm and pitch indicator at 0.
  - (b) Check counter at (00000).
  - (c) Crewman will pull ground safety pin. Check operation of pitch control upon signal from crewman.
  - (d) After turbine check be sure to set 1½ units IN pitch for AERO 43M reels, 3 units IN pitch for AERO 43 reels.
  - (e) Recheck brake ON.

#### **Takeoff and Climb**

1. Trim for balanced flight.

#### Note

For both normal field takeoff and catapult launch, approximate trim settings are: lateral ½ unit right wing down; directional — rudder 3 o'clock position.

Accelerate and climb to launch altitude observing local course rules. Do not exceed 400 KIAS or 0.9 IMN.

#### Launch and Reel Out

- 1. Launch straight and level, balanced flight, 255  $\pm$ 5 KIAS. Launch below 20,000 feet is recommended.
- Check turbine pitch at 1½ units IN Aero 43M reels, 3 units IN for Aero 43 reels.
- 3. Actuate unlatch switch and observe upper (red) launcher latched light go out.
- 4. Reel brake switch OFF.

## CAUTION

Do not hold the turbine pitch control switch in the OUT position until the upper (red) launcher latched light goes out. If the tow reel drum is permitted to rotate without towline slack being taken up by the target, a loop will form in the towline. This loop can cause mission failure and damage to tow system equipment.

 Immediately hold OUT pitch until target separates from the launcher saddle and clears the launcher and the airplane. Commence timing. See note under COUNTER FAILURE (EMERGENCY PROCEDURES).

#### Note

After the target leaves the launcher, the lower (amber) target in light will go out. Approximately 30 seconds after the (amber) target in light goes out, the (red) launcher latched light will come back on indicating that launcher actuator and linkage are in the latch position and ready to automatically engage the target upon recovery.

- 6. After the target clears the launcher and aircraft (200 feet streamed), establish desired turbine rpm. With the Aero 43, do not exceed 4000 rpm. With the Aero 43M, operations should be confined to a range of 0 to 2700 rpm and 3600 to 4100 rpm to minimize turbine blade fatigue due to vibration. Commence climbing if required.
- Maintain reel speed by momentary actuation of the turbine pitch switch to IN or OUT position, whichever is needed.

## CAUTION

Avoid overcontrol of the rpm. A 400 rpm drift is permissible. Under normal reeling conditions the reel is controlled only by actuation of the turbine pitch control switch. The tow system brake switch must not be placed in the ON position during reel rotation unless emergency conditions necessitate immediate reel stoppage. This precaution is necessary to avoid towline breakage and excessive brake wear.

#### Note

Turbine rpm is a function of towline length, airspeed, altitude, and turbine pitch. With constant pitch, turbine rpm will slowly change as operating conditions are varied. The tachometer indicator and counter shall be monitored when the brake system is in the OFF position.

8. Maintain 250-to-280 KIAS (optimum) until the full scope of the towline is deployed. Observe towline limitations.

## CAUTION

Do not reel-out towline in excess of the maximum permissible length (24,000 feet for D-12116-10; 30,000 feet for D-12116-9 towlines).

- 9. Within 500 feet of desired towline length, slowly toggle IN pitch to obtain 1,000 rpm and then to obtain 0 rpm as the desired length is reached.
- 10. Be sure rpm is at 0 (this requires about 2 to 4 units of IN pitch), and the counter indicates no movement.

## **TOWING LIMITATIONS**

#### TDU-22/B AND TDU-22A/B TARGETS, D-12116-9 AND -10 TOWLINES



Figure 8-5

- Note pitch required for 0 rpm and record pitch and airspeed for reference later. See RECOVERY PROCEDURE.
- 12. Place the brake switch ON.

#### Note

For towing above 340 KIAS, change pitch to 0 to 1 unit IN.

#### Towing

## CAUTION

Observe cooling flow limitations applicable to target towing as shown in section I, part 4.

- 1. Observe towing limitations. Tow speed as prescribed by exercise. See figures 8–5 and 8–6.
- Turns should be held to 20 degrees angle of bank and acceleration of 1.5 G's. Do not make any rapid "S" turns.
- 3. For low altitude towing (target altitude 1,000 feet or below) a slow rate of descent to towing altitude is necessary. Target overshoot will *approximate* rate of descent.
- 4. Towline droop varies with airspeed, altitude and the towline used (approximately 7 percent streamed length for *average* conditions).

## LOW ALTITUDE TOWING LIMITATIONS

## D-12116-9 AND D-12116-10 TOWLINES, SEA LEVEL TO 10,000 FEET TARGET ALTITUDES, TDU-22/B AND A/B TARGETS



#### Figure 8-6

#### **Recovery Procedure**

#### Note

If pitch was changed, restore pitch setting and airspeed. See item 11 of LAUNCH AND REEL OUT.

1. Brake switch - OFF

#### Note

First reel-out 50 feet of towline to relieve undercutting on reel spool.

- Actuate the turbine pitch control switch to IN as required to obtain the desired rpm. See item 6 of LAUNCH AND REEL-OUT.
- 3. Check upper (red) launcher latched light ON.

#### CAUTION

Recovery rate and airspeed become more critical as altitude is increased. Avoid combinations of over 260 KIAS under 90 FPM, or under 250 KIAS over 120 FPM which may cause a reel turbine stall and severe target oscillation.

- 4. Before towline length has been reduced to 500 feet, establish 255 ( $\pm$ 5) KIAS in level, balanced flight, and 500 rpm, 5,000 to 35,000 feet altitude, 15,000 feet optimum.
- 5. Before towline length has been reduced to 100 feet, establish rpm for a recovery rate of 90 to 120 feet

per minute and make no further pitch adjustment with length less than 100 feet.

#### Note

Recovery rate may be determined by timing reel-in of 50 feet of towline (elapsed time of 30 seconds indicates 100 feet per minute). Calculated speed is 260 rpm for the Aero 43 reel and 200 rpm for the Aero 43M reel. Actual values may vary as much as 200 rpm for individual reels due to tachometer inaccuracy at low speed and varying spool load.

### CAUTION

Maintain the aircraft in stable flight during final recovery of the target. Moderate maneuvering or air turbulence may cause some oscillation of the target as it approaches the launcher, with possible recovery difficulty or target loss. If severe oscillation of the target occurs during recovery, immediately stop reelin by actuating the turbine pitch control switch to the OUT position. Let out additional towline and repeat recovery procedures.

Towline angle rapidly increases to approximately 60° as target approaches launcher.

#### Note

If darkness prevents monitoring of the target, completion of the target recovery will be indicated by an abrupt reduction of turbine rpm to zero and counter stoppage.

The "target in" light may not illuminate due to the slow recovery rpm.

- 6. Increase IN pitch to fully seat the target in the launcher saddle (5 units maximum). Both lights will be illuminated when the target is secured.
- 7. Place brake switch in the ON position.
- 8. Reset PRE-LAUNCH pitch position.

#### Letdown and Landing

 Make normal letdown and landing. Hung ordnance entry is recommended if target is not indicating latched.

## CAUTION

Do not fold the wings until the target has been removed.

2. Ensure that the ground crew man has reinstalled the tow reel lockpin before turning the reel master switch OFF or securing the engine.

#### **Emergency Procedures**

## WARNING

If it becomes necessary to eject from the aircraft during towing operations, depress cable cutter button prior to ejection, if possible.

#### Target Loss on Launching or Towline Failure

- 1. Brake ON
- 2. Turbine FEATHER

#### Target Loss From End of Long Towline

- 1. Use recovery procedure.
- 2. When towline whipping is observed at launcher, stop reel and cut the remaining towline.

#### **Counter Failure**

#### Note

Squadron experience will determine average reeling times for streaming -9, -10, or other selected towlines. Use this experience for determining reel-out and reel-in times in the event of counter failure.

#### To Cut Towline

## CAUTION

A number of factors should be considered prior to cutting the towline. If the reel is inoperative, or if reel operation is considered hazardous, the only course of action is to cut. Ensure that the target and towline will not fall in areas where personal injury or property damage may result. Attempt to obtain approval from the controlling agency and recheck aircraft location prior to cut.

In the event of cutter failure, with towline streamed, a normal landing may not be made. Consider as follows:

- 1. Field with unobstructed approach.
- 2. Drag-off over water or land.

#### Note

If there are indications that target and/or wire have been dropped after using the cable cutter, attempt to get a definite radar confirmation from Range Control.

- 1. rpm ZERO
- 2. Brake ON
- 3. Cable cutter DEPRESS
- 4. Turbine FEATHER

#### **Reel Overspeed**

#### Note

The tow reel contains an overspeed switch set at 6000 rpm (Aero 43) or 6200 rpm (Aero 43M) and a relay which will automatically apply the reel brake when overspeed occurs. As the brake is applied, the tachometer indicator will suddenly drop to zero. The brake will remain engaged until electrical power to the reel has been interrupted.

Reel overspeeds may result from towline breakage during reel-in with a long cable scope and at high aircraft speed, or if the operating rpm is excessively high and the system is not properly monitored.

#### CAUTION

Step 1 is essential to prevent uncontrolled overspeed during reset of the system.

- 1. Actuate the turbine pitch control switch to feather turbine blades.
- 2. Tow system brake ON

#### Note

It is recommended that the towline be cut. If continued operation is not intended, delete step 3.

## CAUTION

During the period that the master switch is in the OFF position, the tow reel brake will be disengaged. It is essential that the reel master switch be returned to ON as rapidly as possible.

3. Briefly cycle the tow system master switch to OFF and then immediately to ON position.

#### Inadvertent Flare Ignition (TDU-22A/B)

Spurious flare ignition occasionally occurs due to malfunction of flare command circuitry. If this occurs with the target streamed, no action is required. If flares ignite while the target is in the launcher, jettison of target is required to prevent burning of adjacent aircraft wing panels.

- 1. Cable cutter DEPRESS
- 2. Target unlatch switch ACTUATE

#### 3. Target will fall from launcher.

#### Note

If spurious flare ignition occurs prior to takeoff and fire hazard exists, perform steps 1 and 2 and taxi clear of the target.

## CAUTION

The above procedure is required to ensure that the target leaves the launcher. Do not attempt a normal target launching.

#### **TDU-22/B Target Operating Procedures**

No special procedures are required for this passive type target.

#### **TDU-22A/B Target Operating Procedures**

#### Note

The flight procedures for IR targets do not differ significantly from those prescribed in the preceding paragraphs. However, the "A/B" target is heavier than the "/B" target and incorporates a remote controlled flare firing system, and requires more pilot attention.

The flare firing system utilizes a predetermined UHF frequency, a tone generator, and associated equipment.

#### Preflight

Obtain flare frequency and check this with the frequency written on the target.

#### **Poststart**

Switch ARC 27 to squadron common and check tone generator.

#### Note

Flares will be installed in the target by the ordnance crewman in the arming area. Ensure that the target safety pin is pulled by the crewman after the flares are installed.

When IR targets are in the launcher a safety switch in the target cuts off all power to the target flare receiver preventing inadvertent flare ignition by transmissions from the tow or other aircraft.

#### Flight

#### Note

When the pilot of the missile firing aircraft desires a flare to be ignited, he will transmit for a "Hot Shot." Tow pilot will select the flare firing frequency and transmit the tone for 8–10 seconds. The pilot must wait at least 10 seconds between attempts. If flares are not firing, 12 flare attempts may be made before aborting the mission.

#### After Landing

#### Note

After landing, taxi to the de-arming area. The ordnance crewman will remove the target and/or flares and install safety pins in the reel. Do not fold wings until the target has been removed.

#### CENTER-OF-GRAVITY TOW SYSTEM CHECK LIST AND ESSENTIAL OPERATING PROCEDURES

#### **Preflight Check**

#### Note

For TDU-22A/B Targets, obtain flare firing frequency.

#### Launcher

- 1. Mounting SECURE
- 2. Circuit breaker IN
- 3. Cutter cartridge INSTALLED
- 4. Electrical leads SECURE

#### Target

- 1. Mounting SECURE
- 2. TDU-22A/B FREQUENCY

#### Towline

1. Sheaves — MOUNTING AND ALIGNMENT

#### Reel

- 1. Mounting SECURE
- 2. Electrical leads SECURE
- 3. Safety pin IN
- 4. Towline length NOTE
- 5. Turbine blades FEATHERED
- 6. Turbine blades CONDITION

#### **Poststart Check**

- 1. Master switch ON
- 2. Brake switch ON
- 3. Counter 00000

- 4. Turbine rpm ZERO
- 5. Pitch indicator 1½ units IN (Aero 43M), 3 units IN (Aero 43)
- 6. Reel lockpin OUT
- 7. Launcher lights ON
- 8. Flare tone TEST
- 9. Flare target power switch ON
- 10. Takeoff trim SET

#### **Prelaunch Check**

- 1. Airspeed 255 ( $\pm$ 5) KIAS
- 2. Trim LEVEL BALANCED FLIGHT
- 3. Turbine pitch 1½ units IN (Aero 43M), 3 units IN (Aero 43)
- 4. Brake switch OFF

#### Launch Procedure

- 1. Launcher unlatch switch ACTUATE
- 2. Observe UPPER RED launcher light
- 3. Brake switch OFF
- 4. When light goes out, actuate and hold pitch switch in OUT position. Note time.
- 5. After target clears launcher control turbine rpm by using the pitch switch. Avoid numerous changes in rpm.

#### **Operating Limitations**

Aero 43 Tow Reel

Max stowed — 400 KIAS 0.9 IMN

Airspeed (reeling) — 250 to 280 KIAS (optimum), 400 KIAS, 0.9 IMN (max)

Maximum turbine rpm 4000

Max towing — 400 KIAS, 0.9 IMN below 39,000 ft alt, 350 KIAS, 1.2 IMN above 30,000 ft or towline limit.

#### Aero 43M Tow Reel

Max stowed — 400 KIAS, 0.9 IMN

Airspeed (reeling) — 250 to 280 KIAS (optimum), 400 KIAS, 0.9 IMN (max)

Turbine rpm — 0 to 2700, 3600 to 4100

Avoid prolonged operation at 2700 to 3600 rpm

Max towing - 400 KIAS, 1.5 IMN or towline limit.

#### To Stop Reel For Towing

- 1. Operate pitch control to obtain zero rpm
- 2. Observe the counter indicating no movement
- 3. Note indicated pitch
- 4. Actuate brake switch to ON
- 5. Set turbine pitch to ZERO units at towing above 340 KIAS
- 6. Note time
- 7. Observe towing limitations

#### **Prerecovery Check**

- 1. Airspeed 250-280 KIAS, 0.9 max IMN
- 2. Turbine pitch As used to stop reel
- 3. Launcher lights Top red light on
- 4. Brake switch OFF

#### **Recovery Procedure**

- 1 Reel out 50 feet of towline.
- 2. Change pitch to obtain desired recovery rpm observing operating limitations.
- 3. Before towline length is 500 feet, check:
  - (a) Airspeed 255 (±5) KIAS
  - (b) Trim Level balanced flight
  - (c) Turbine rpm 500
- 4. Before towline length is 100 feet, establish rpm for recovery rate of 100 feet per minute.
- 5. Do not make further adjustments in pitch with length less than 100 feet.
- 6. When target is in launcher, increase pitch until both launcher lights are ON (5 units max).
- 7. Actuate brake switch ON.
- 8. Reset prelaunch pitch position.

#### **Postlanding Check**

- 1. Do not fold wings
- 2. Taxi to dearm area if using TDU 22A/B
- 3. Reel lockpin IN
- 4. Ordnance man remove flares
- 5. Flare target power switch OFF
- 6. Master switch OFF

#### **Emergency Procedures**

## WARNING

If it becomes necessary to eject from the aircraft during towing operations, depress cable cutter button prior to ejection, if possible.

#### Target Loss on Launch or Towline Failure

- 1. Brake ON
- 2. Turbine FEATHER

#### **Target Loss From End of Towline**

- 1. Recover towline until whipping is observed at launcher
- 2. Cut towline

#### **Counter Failure**

1. Utilize time taken to stream to affect recovery

#### To Cut Towline

- 1. RPM ZERO
- 2. Brake ON
- 3. Cable cutter DEPRESS
- 4. Turbine FEATHER

#### Reel Overspeed

- 1. Brake Automatic at 6000 rpm
- 2. Turbine FEATHER
- 3. Brake switch ON
- 4. Cut towline. Or, if necessary to continue operations:
- 5. Briefly cycle master switch to OFF, then *immediately* to ON.

#### Flare Ignition (Target in Launcher)

- 1. Cable cutter DEPRESS
- 2. Launcher unlatch switch ACTUATE
- 3. If on deck, taxi clear of target.

section IX

## flight crew coordination

(not applicable)

## section X

## standardization evaluation

## CONTENTS

## PART 1 - STANDARDIZATION EVALUATION PROGRAM

| Concept                         | 10-2  |
|---------------------------------|-------|
| Definitions                     | 10-2  |
| Implementation                  | 10-2  |
| Ground Evaluation               | 10-2  |
| Flight Evaluation               |       |
| Final Grade Determination       |       |
| Records and Reports             | 10-10 |
| NATOPS Evaluation Question Bank | 10-10 |
| NATOPS Evaluation Forms         | 10-20 |

## PART 1—STANDARDIZATION EVALUATION PROGRAM

#### CONCEPT

The standard operating procedures prescribed in this manual represent the optimum method of operating the aircraft. The NATOPS Evaluation is intended to evaluate compliance with NATOPS procedures by observing and grading individuals and units. This evaluation is tailored for compatibility with various operational commitments and missions of both Navy and Marine Corps units. The prime objective of the NATOPS Evaluation program is to assist the unit Commanding Officer in improving unit readiness and safety through constructive comment. Maximum benefit from the NATOPS Evaluation Program is achieved only through the vigorous support of the program by commanding officers as well as the flight crewmembers.

DEFINITIONS

The following terms, used throughout this section, are defined as to their specific meaning within the NATOPS program.

#### NATOPS EVALUATION

A periodic evaluation of individual flight crewmember standardization consisting of an open book examination, a closed book examination, an oral examination, and a flight evaluation.

#### NATOPS REEVALUATION

A partial NATOPS Evaluation administered to a flight crewmember who has been placed in an Unqualified status by receiving an Unqualified grade for any of his ground examinations or the evaluation flight. Only those areas in which an unsatisfactory level was noted need be observed during a reevaluation.

#### QUALIFIED

That degree of standardization demonstrated by a very reliable flight crewmember who has a good knowledge of standard operating procedures and a thorough understanding of aircraft capabilities and limitations.

#### CONDITIONALLY QUALIFIED

That degree of standardization demonstrated by a flight crewmember who meets the minimum acceptable standards. He is considered safe enough to fly as a pilot in command or to perform normal duties without supervision but more practice is needed to become Qualified.

#### UNQUALIFIED

That degree of standardization demonstrated by a flight crewmember who fails to meet minimum acceptable criteria. He should receive supervised instruction until he has achieved a grade of Qualified or Conditionally Qualified.

#### AREA

A routine of preflight, flight or postflight.

#### SUBAREA

A performance subdivision within an area, which is observed and evaluated during an evaluation flight.

#### CRITICAL AREA

Any area or subarea which covers items of significant importance to the overall mission requirements, the marginal performance of which would jeopardize safe conduct of the flight.

#### **EMERGENCY**

An aircraft component, system failure, or condition which requires instantaneous recognition, analysis, and proper action.

#### MALFUNCTION

An aircraft component or system failure or condition which requires recognition and analysis, but which permits more deliberate action than that required for an emergency.

#### **IMPLEMENTATION**

The NATOPS Evaluation program shall be carried out in every unit operating naval aircraft. Pilots desiring to attain/retain qualification in the aircraft shall be evaluated initially in accordance with OPNAV Instruction 3510.9 series, and at least once during the twelve months following initial and subsequent evaluations. Individual and unit NATOPS Evaluations will be conducted annually; however, instruction in and observation of adherence to NATOPS procedures must be on a daily basis within each unit to obtain maximum benefits from the program. The NATOPS Coordinators, Evaluators, and Instructors shall administer the program as outlined in OPNAVINST 3510.9 series. Evaluees who receive a grade of Unqualified on a ground or flight evaluation shall be allowed 30 days in which to complete a reevaluation. A maximum of 60 days may elapse between the date the initial ground evaluation was commenced and the date the evaluation flight is satisfactorily completed.

#### **GROUND EVALUATION**

Prior to commencing the flight evaluation, an evaluee must achieve a minimum grade of Qualified on the open book and closed book examinations.

The oral examination is also part of the ground evaluation but may be conducted as part of the flight evaluation. To assure a degree of standardization between units, the NATOPS Instructors may use the bank of questions contained in this section in preparing portions of the written examinations.

#### **OPEN BOOK EXAMINATION**

Up to 50% of the questions used may be taken from the question bank. The number of questions on the examination will not exceed 100 or be less than 50. The purpose of the open book examination portion of the written examination is to evaluate the pilot's knowledge of appropriate publications and the aircraft. The maximum time for this examination should not exceed 4 hours.

#### CLOSED BOOK EXAMINATION

Up to 50% of the closed book examination may be taken from the question bank and shall include questions concerning normal procedures and aircraft limitations. The number of questions on the examination will not exceed 100 or be less than 50. Questions designated critical will be so marked. An incorrect answer to any question in the critical category will result in a grade of unqualified being assigned to the examination.

#### **ORAL EXAMINATION**

The questions may be taken from this manual and drawn from the experience of the Instructor/Evaluator. Such questions should be direct and positive and should in no way be opinionated.

#### OFT/WST PROCEDURES EVALUATION

An OFT may be used to assist in measuring the pilot's efficiency in the execution of normal operating procedures and his reaction to emergencies and malfunctions. In areas not served by the OFT facilities, this may be done by placing the pilot in a cockpit and administering appropriate questions.

#### GRADING INSTRUCTIONS

Examination grades shall be computed on a 4.0 scale and converted to an adjective grade of Qualified or Unqualified.

Open Book Examination.

To obtain a grade of Qualified, an evaluee must obtain a minimum score of 3.5.

Closed Book Examination.

To obtain a grade of Qualified, an evaluee must obtain a minimum score of 3.3.

Oral Examination and OFT Procedure Check. (If conducted).

A grade of Qualified or Unqualified shall be assigned by the Instructor/Evaluator.

#### FLIGHT EVALUATION

The number of flights required to complete the evaluation flight should be kept to a minimum; normally one flight. The areas and subareas to be observed and graded on an evaluation flight are outlined in the grading criteria with critical areas marked by an asterisk (\*). Subarea grades will be assigned in accordance with the grading criteria. These subareas shall be combined to arrive at the overall grade for the flight. Area grades, if desired, shall also be determined in this manner.

#### FLIGHT EVALUATION GRADING CRITERIA

Only those subareas provided or required will be graded. The grades assigned for a subarea shall be determined by comparing the degree of adherence to standard operating procedures with adjectival ratings listed below. Momentary deviations from standard operating procedures should not be considered as unqualifying provided such deviations do not jeopardize flight safety and the evaluee applies prompt corrective action.

#### MISSION PLANNING/BRIEFING -

#### FLIGHT PLAN

Qualified

Completed the flight plan and clearance in accordance with governing instructions. Special factors, if required by the mission or aircraft configuration, are computed and recorded where applicable. Completed flight planning without error. Fuel consumption was properly computed. Ensured that maps and charts were available. Weather factors and NOTAMS were used in planning the mission. LID/IFR departure procedures were obtained if required, and planned accordingly.

Conditionally Qualified Same as "qualified," but with minor discrepancies which did not adversely affect successful completion of the mission or jeopardize safety.

Unqualified

Flight planning was incomplete or resulted in discrepancies which would possibly prevent successful completion of the mission.

#### BRIEFING

Qualified

Briefing conducted in accordance with the NATOPS Briefing Guide and/or requirements of the mission. Applicable mission card used. Thorough knowledge of the assigned mission was exhibited. Sufficient time was allowed for the briefing and questions by members of the flight. Flight responsibilities were outlined for each member of the flight.

Unqualified

Briefing not conducted in accordance with the NATOPS Briefing Guide and/or requirements of the mission, and factors affecting mission accomplishment were omitted. Insufficient time allowed for briefing. Flight member responsibilities were not defined.

#### PERSONAL FLYING EQUIPMENT

Qualified

Had all required items of personal equipment necessary for the mission and area over which the flight was to be conducted.

Unqualified

Did not possess all items of personal flying equipment.

#### PREFLIGHT/LINE OPERATIONS -

#### AIRCRAFT ACCEPTANCE

Qualified

Checked the ten previous yellow sheets (if available) for previous discrepancies and corrective action taken. Checked fuel load, armament load, pertinent aircraft data, and aircraft status prior to accepting the aircraft.

Conditionally Qualified

Same as "qualified," but omitted checking minor pertinent data and corrective action taken and/or aircraft status data.

Unqualified

Failed to inspect previous yellow sheets for discrepancies and corrective action taken and/or aircraft status data.

#### PRETAXI PROCEDURES

Qualified

Used correct R/T procedures, standard visual signals, and pretaxi checks with the flight as briefed with no unnecessary deviations, omissions, or delays.

Unqualified

Failed to use correct R/T procedures, standard visual signals, and pretaxi checks with the flight. Deviated and omitted procedures as briefed to extent that misunderstanding resulted in unnecessary delays in departing on the mission.

| TAXI A | ND ' | TA | KE | OFF |
|--------|------|----|----|-----|
|--------|------|----|----|-----|

#### TAXI

Qualified

Taxi clearance was obtained prior to departing flight line/deck spot area. Taxiing was accomplished as briefed and in accordance with safe speed and interval requirements. Proper positioning on the catapult was accomplished without delay and with proper response to plane director's signals. Aircraft systems were operated at prescribed intervals and manner during normal taxi and extended ground operation.

Conditionally Qualified

Minor difficulties were experienced in obtaining taxi clearance. Taxiing was accomplished as briefed and in accordance with speed and interval requirements. Positioning on the catapult was accomplished with minor delays in responding to plane director's signals. Operation of systems was completed but at greater intervals than recommended.

Unqualified

Departed flight line/deck spot area without taxi clearance and taxied contrary to instructions from controlling agency. Taxi speed unsafe for field/deck conditions. Improper response to catapult director's signals, causing excessive delays in aircraft launching operations. Aircraft systems not. operated.

#### ATC CLEARANCE

Qualified

Required minimum transmissions to understand clearance. Read back correctly.

Conditionally Qualified

Required repeat transmissions to understand clearance. Transmissions required additional questions and calls.

Unqualified

Proceeded without being certain of clearance. Required repeated transmissions. Was unable to communicate and give information without excessive delay and words. Poor radio discipline.

#### **TAKEOFF**

Qualified

Received and acknowledged takeoff clearance. Executed engine runup, instrument checks, and necessary visual signals. Brake release was smooth, and good directional control was maintained. For catapult launch, the brakes were released and UHT was properly trimmed prior to launch. Lift-off was accomplished as required by field/WOD conditions, and a smooth transition was accomplished to the clean condition with aircraft in positive climbing attitude and safe separation above the ground/water.

Conditionally Qualified Same as "qualified," except for minor deviations in procedure and technique not detrimental to flight safety.

Unqualified

Did not receive and acknowledge takeoff clearance. Failed to use signals or used improper signals. Exhibited poor or unsafe technique on directional control, catapult launch, lift-off, transition, and climb attitude.

#### **DEPARTURE** -

#### LID/IFR DEPARTURE\*

Qualified Departure was executed in accordance with clearance.

Departure not in accordance with traffic rules and/or traffic clearances. Unqualified

#### VFR DEPARTURE

Departure executed in accordance with local traffic rules and/or traffic Qualified

clearance. Level off is accomplished as briefed.

Same as "qualified" except for minor deviations. Conditionally

Qualified

Departure not in accordance with traffic rules and/or traffic clearance. Unqualified

#### **RENDEZVOUS\***

Qualified Executed and facilitated rendezvous in accordance with procedures as

briefed or currently prescribed.

Conditionally Executed and facilitated rendezvous, except for minor procedural errors and delay. Rendezvous accomplished so as not to be detrimental to Qualified

mission completion.

Unqualified Rendezvous executed in a manner that indicated a lack of knowledge of

required procedure. Resulting delay caused mission accomplishment as

briefed to be adversely affected or delayed.

#### IFR PROCEDURES EN ROUTE

Qualified Conducted flight as briefed or as cleared by controlling agency. Observed

good radio discipline. Gave position reports clearly and in proper sequence.

Conducted flight as briefed or cleared, except for minor deviations not Conditionally

Qualified affecting limits of clearance.

Unqualified Did not conduct flight as briefed or cleared.

#### VFR PROCEDURES EN ROUTE

Qualified Conducted flight as briefed and/or as dictated by the mission/tactical

situation. Formation was maintained to facilitate optimum tactical employment, lookout doctrine and flight progress to the operation area/

destination.

Same as "qualified," except for minor deviations, but not to the extent of Conditionally

precluding successful completion of the mission.

Did not conduct flight as briefed and/or as dictated by the mission Unqualified

tactical situation, resulting in poor tactical employment and/or lookout

doctrine to the detriment of mission completion or safety.

Qualified

<sup>\*</sup>Critical area

#### MISSION -

Those sections of the mission areas which are covered in this manual, Weapons System Tactical Handbook, and NWP/NWIP's will be conducted and evaluated in accordance with the procedures contained in the applicable publications and the criteria outlined below.

Qualified Performed assigned or alternate mission, as briefed, in accordance with

required procedures: Was thorough in the proper selection, conduct and execution of those aspects of the mission or tactical situation, culminating

in safe and efficient mission accomplishment.

Conditionally Qualified

Same as "qualified," except for minor deviations, indicating a lack of required knowledge or adherence to required procedures, not adversely

affecting successful mission accomplishment.

Unqualified Lack of knowledge or adherence to required procedures resulted in

unsuccessful mission accomplishment.

#### RECOVERY-

#### IFR HOLDING/MARSHAL PROCEDURES

Qualified Entered holding/marshal pattern at the assigned altitude and in accord-

ance with published procedures. Slowed to appropriate entry and holding airspeed within prescribed time limtations. Remained within pattern

limits.

Entered holding pattern with minor deviations from published procedures. Conditionally Qualified

Slow in reaching prescribed holding airspeed. Minor deviations in

patterns, but within limits.

Unqualified Improper pattern entry. Did not hold as cleared.

#### EXPECTED APPROACH TIME

Qualified Made expected approach time within time limits or requested an

amended clearance.

Unqualified Expected approach time was made in excess of time limits and/or an

amended clearance was not requested.

#### PENETRATION (TACAN, RADAR, ADF)\*

Qualified Complied with procedures and instructions received. Completed appro-

> priate checks prior to reaching initial approach fix/marshal point. Used proper power settings and descent attitude and configuration. Intercepted penetration course using correct tracking procedures and leveled off at

proper penetration turn, and/or minimum penetration/gate altitude.

Conditionally Same as "qualified," except for minor deviations from procedures, and/or Qualified instructions received.

Unqualified Major deviations and omissions from procedures, instructions, and/or

checks.

#### LOW APPROACH\*

Qualified Executed low approach as published and/or instructed. Completed prelanding checks and executed safe aircraft configuration transition. Reached

minimum altitude at or prior to reaching visibility minimums, from which a successful straight-in or a circling approach to a landing could

Same as "qualified," except for minor deviations from procedures and Conditionally Qualified

errors in aircraft control.

Major deviations from procedures and errors in aircraft control.

(Continued)

Unqualified

<sup>\*</sup>Critical area

#### **RECOVERY** (Continued) -

#### GCA/CCA\*

Used proper voice procedures and complied with instructions received. Qualified Performed landing checks, and transition was completed as prescribed.

FINAL: Maintained glide slope and heading. If occasionally off, accom-

plished appropriate and positive corrections.

Conditionally Same as "qualified," except for minor deviations from procedures/ instructions and/or checks. FINAL: Same as "qualified." Qualified

Major deviations from procedures, instructions and/or checks, requiring Unqualified

a missed approach.

#### MISSED APPROACH\*

Followed missed approach/wave-off/bolter procedures as published or Qualified

instructed. Did not descend below minimum altitude. Established a positive climb attitude. Airspeed did not fall below final approach speed.

Same as "qualified," except for minor deviations from procedures and Conditionally

Qualified errors in aircraft control.

Unqualified Major deviation from procedures and errors in aircraft control.

#### VFR RECOVERY SHORE BASED/SHIP BASED\*

Pattern entry was made as prescribed by local course rules, and/or Qualified

instructions received. Landing check list completed. Break pattern and altitude at the 180° position as prescribed. Final approach speed at optimum. Touch down between first 500 and 1,000 feet of runway or

on mirror touchdown deck area.

Same as "qualified," except for minor deviations at break, pattern, or altitude at the 180° position. Final approach speed within limit. Touchdown between first 500 and 1,500 feet of runway or on mirror touchdown Conditionally Qualified

deck area.

Unqualified Exceeded the above limits. Landing gear and wing transitioned above

airspeed limits. Did not complete landing check. Touched down before first 500 feet or past 1,500 feet down the runway, or disregarded LSO

instructions.

<sup>\*</sup>Critical area

#### **COMMUNICATIONS** -

#### R/T PROCEDURES

Qualified

Complied with procedures prescribed by military and FAA regulations. Transmissions were made correctly on the proper frequency in minimum time, and without interruption of other transmissions. Monitored frequencies at appropriate time. Transmissions were received, understood, properly acknowledged and complied with in minimum time. Familiar with communications equipment and facilities. Utilized backup facilities without hesitation.

Conditionally Qualified

Same as "qualified," except for minor deviations or delays which indicated a lack of thorough familiarity with procedures and equipment, but which did not preclude successful completion of mission or jeopardize safety.

Unqualified

Failed to transmit or receive mandatory reports through omission or lack of familiarity with equipment or procedures. Violation of military/FAA regulations, culminating in a flight violation.

#### VISUAL SIGNALS

Qualified

Used standard visual signals correctly and without confusion. No delay due to questionable signals.

Conditionally Qualified

Same as "qualified," except for minor deviations or delay.

Unqualified

Used improper signals, resulting in misinterpretation and confusion. Excessive delay or noncommunication caused by questionable signals.

#### IFF/SIF PROCEDURES

Qualified

Used proper route codes facilitating timely compliance with all interro-

gation instructions.

Unqualified

Failed to use equipment properly, resulting in confusion and undue delay.

#### **EMERGENCY PROCEDURES\* -**

Qualified

Properly analyzed the emergency situation (if any actually occurred) and took appropriate action without deviation, error, or omission.

Conditionally Qualified

Properly analyzed the emergency situation and accomplished all required action safely, but not necessarily in the proper sequence.

action safely, but not necessarily in the pr

Unqualified

Not up to standards of "conditionally qualified."

<sup>\*</sup>Critical area

#### POSTFLIGHT PROCEDURES AND DEBRIEFING -

#### AIRCRAFT SHUTDOWN, INSPECTION AND RECORDS

| Qualified                  | Aircraft shutdown procedures as prescribed. Aircraft postflight inspection and yellow sheet completed without error or omission.                                                       |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Conditionally<br>Qualified | Same as "qualified," except for minor deviations and omissions not affecting continued flight safety.                                                                                  |  |  |  |
| Unqualified                | Errors or omissions in shutdown check/inspections or yellow sheet entries that could jeopardize safety of personnel and/or the aircraft.                                               |  |  |  |
|                            | FLIGHT DEBRIEFING                                                                                                                                                                      |  |  |  |
| Qualified                  | Provided thorough information in chronological order of events occurring during mission. Debriefed the flight and gave error analysis with definite corrective action indicated.       |  |  |  |
| Conditionally<br>Qualified | Same as "qualified," except for minor deviations and omissions not affecting value of mission debriefing. Debriefed the flight with adequate error analysis.                           |  |  |  |
| Unqualified                | Unfamiliarity with debriefing requirements. Inadequate flight debriefing. No error analysis or corrective action given. Totally inadequate information for other pilots in the flight. |  |  |  |

#### FLIGHT EVALUATION GRADE DETERMINATION

The following procedure shall be used in determining the flight evaluation grade: A grade of Unqualified in any critical area will result in an overall grade of Unqualified for the flight. Otherwise, flight evaluation (or area) grades shall be determined by assigning the following numerical equivalents to the adjective grade for each subarea. Only the numerals 0, 2, or 4 will be assigned in subareas. No interpolation is allowed.

| Unqualified             | 0.0 |
|-------------------------|-----|
| Conditionally Qualified | 2.0 |
| Qualified               | 4.0 |

To determine the numerical grade for each area and the overall grade for the flight, add all the points assigned to the subareas and divide this sum by the number of subareas graded. The adjective grade shall then be determined on the basis of the following scale.

0.0 to 2.19 - Unqualified

2.2 to 2.99 - Conditionally Qualified

3.0 to 4.0 — Qualified

EXAMPLE: (Add Subarea numerical equivalents) 
$$\frac{4+2+4+2+4}{5} = \frac{16}{5} = 3.20$$
 Qualified

#### FINAL GRADE DETERMINATION

The final NATOPS Evaluation grade shall be the same as the grade assigned to the Evaluation flight. An evaluee who receives an Unqualified on any ground examination or the flight evaluation shall be placed in an Unqualified status until he achieves a grade of Conditionally Qualified or Qualified on a reevaluation.

#### **RECORDS AND REPORTS**

A NATOPS Evaluation Report (OPNAV Form 3510-8) shall be completed for each evaluation and forwarded to the evaluee's commanding officer.

This report shall be filed in the individual flight training record and retained therein for 18 months. In addition, an entry shall be made in the pilot flight log book under "Qualifications and Achievements" as follows:

|                 | Qualification       | on                 | Date   | Sz                         | ignature                        |
|-----------------|---------------------|--------------------|--------|----------------------------|---------------------------------|
| NATOPS<br>EVAL. | (Aircraft<br>Model) | (Crew<br>Position) | (Date) | (Authenticating Signature) | (Unit which Administered Eval.) |

# NATOPS EVALUATION QUESTION BANK

The following bank of questions is intended to assist the unit NATOPS Instructor/Evaluator in the preparation of ground examinations and to provide an abbreviated study guide. The questions from the bank should be combined with locally originated questions as well as questions obtained from the Model Manager in the preparation of ground examinations.

#### CLOSED BOOK

- 1. To maintain currency in F-8 aircraft, a pilot must meet what requirements?
- 2. Any pilot not flying the F-8 for a two-week period will be required to complete what prior to any F-8 night flying?
- 3. How can the operation of the rudder-aileron interconnect be checked from the cockpit?
- 4. What should the pilot check when stowing the "T" handle after checking emergency trim?
- 5. What is desired when performing a "VISCOUS DAMPER CHECK"?
- 6. What should be accomplished prior to folding the wings?
- 7. In what position should the rudder be prior to actuating nose-gear steering?
- 8. How often should the wing and control surfaces be cycled to prevent over-heating of hydraulic fluid and pumps?
- 9. How long does it take for the hook to cycle full down after actuation of the handle?
- 10. Why should engine be operated at approximately 75% RPM for 20 seconds prior to shutdown?
- 11. What is the minimum airspeed and altitude for lowering the wing?
- 12. How many times should the pilot attempt to light the afterburner on takeoff?
- 13. What procedure should be followed if an uncontrolled lurch in either direction occurs as the nose wheel touches down on landing?
- 14. What is the maximum recommended speed at which normal braking can be commenced?
- 15. What is the maximum recommended crosswind component for landing the F-8?
- 16. What position should the fuel transfer switch be in prior to catapulting?
- 17. What is the minimum altitude above the terrain, during IFR conditions, that radio channel changes will be made?
- 18. What is the recommended RPM, airspeed, and rate of descent for penetration?
- 19. What is the only absolute indication of a locked canopy?
- 20. What action should be taken if the wing incidence handle moves without depressing the release switch?
- 21. How can positive determination that wings are locked after spreading be made?

- 22. What does an illuminated transfer pump light indicate?
- 23. What indicated airspeed should be used on instrument climbs?
- 24. Why must the cockpit emergency ventilation port be closed for accurate angle-of-attack indications and proper operation of the approach power compensator system?
- 25. What is the maximum fuel weight for entering the GCA pattern?
- 26. What is the minimum refusal speed for all takeoffs?
- \*27. What is the maximum indicated airspeed that the F-8 will enter a spin condition?
- 28. The approach power compensator will not retard the throttle below what setting?
- 29. What actions will override or disengage the approach power compensator?
- 30. Why should the helmet visor always be down for inflight refueling?
- \*31. The limiting airspeed for extending or retracting the cruise droop is\_\_\_\_\_\_IAS?
- \*32. The limiting airspeed with the cruise droop extended is \_\_\_\_\_\_IAS?
- 33. What are the operating pressures and limits of the:
  - a. PC-1 System\_\_\_\_lb\_\_\_lb.
  - b. PC-2 System\_\_\_\_lb\_\_\_lb.
  - c. Utility System\_\_\_\_lb\_\_\_lb.
  - d. Emergency PC System\_\_\_\_lb\_\_\_lb.
- 34. Maximum allowable temperature during ground starting is\_\_\_\_\_?

  For what period of time?\_\_\_\_\_
- 35. What speed restrictions must be observed with a loss of the roll stab system? (Landing Configuration)
- 36. What speed restriction must be observed with loss of stabilization? (Clean configuration)
- \*37. What is the maximum allowable rolling pullout "G" load?\_\_\_\_\_
- 38. What are the limiting airspeeds for actuation of the following:
  - a. Landing gear\_\_\_\_\_
  - b. Wing\_\_\_\_\_
  - c. Wing lock\_\_\_\_\_
  - d. Marquardt\_\_\_\_\_
- \*e. Landing droop\_\_\_\_\_
  - f. Canopy\_\_\_\_\_

#### Standardization Evaluation Program

| *39. | What is the maximum allowable airspeed (IMN) at:                                           | 54. What are the EGT and oil pressure limits for zoom climbs above 50,000 feet?                           |
|------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|      | a. SL to 10,000 feet?                                                                      | *55. List the fundamental steps for obtaining an air-<br>start under the following conditions. The flame- |
|      | b. 25,000 feet?                                                                            | out has just been experienced and was other than                                                          |
|      |                                                                                            | pilot induced. Engine windmill RPM too low to                                                             |
|      | c. 35,000 feet?                                                                            | sustain main generator operation and altitude                                                             |
|      | d. 45,000 feet?                                                                            | may not permit more than one attempt.                                                                     |
| *40. | What is the maximum allowable symmetrical                                                  | 56. What constitutes an oil system failure?                                                               |
|      | "G" load at:                                                                               | 57. What is the proper procedure for handling an oil system failure including an approach to a            |
|      | a. 30,000 feet?                                                                            | field?                                                                                                    |
|      | b. 40,000 feet?                                                                            | *58. Approximately how long will the engine continue to produce thrust at its established setting,        |
|      | c. 50,000 feet?                                                                            | at sea level, after placing the engine master                                                             |
| *41. | c. 50,000 feet? What is the negative "G" load limit of the air-                            | switch to "OFF"? Fromseconds at idle                                                                      |
| * 42 | Palla in arrange of the large and third                                                    | power toseconds at MRT.                                                                                   |
|      | Rolls in excess ofdegrees are prohibited. What are the limits of the acceleration range in | 59. Why is it more desirable to leave the Emergency                                                       |
| 15.  | the landing configuration?                                                                 | Generator Switch in the "ON" position during an attempted airstart even though a given F-8 pro-           |
| *44. | What are the acceleration and airspeed limita-                                             | vides current for ignition in "LAND"?                                                                     |
|      | tions with the landing droop extended?                                                     | 60. What instrument provides the most rapid indica-                                                       |
| 45.  | The normal oil pressure range ispsi to                                                     | tion of an airstart taking place?                                                                         |
| 46.  | Give the maximum gross landing weights and op-                                             | 61. Illumination of the engine fuel pump light means?                                                     |
|      | erating weights for the following situations?                                              |                                                                                                           |
|      | a. Field takeoff                                                                           | 62. Aircraft fuel boost pump failure will likely cause a flameout when using a high power setting above   |
|      |                                                                                            | feet?                                                                                                     |
|      | b. Field landing                                                                           | 63. How soon should ignition occur during an air-                                                         |
|      | c. Catapulting                                                                             | start?                                                                                                    |
|      | d. Arresting                                                                               | 64. The engine should accelerate to idle speed withinseconds afterduring an air-                          |
| 47.  | The permissible acceleration range and speed                                               | start.                                                                                                    |
|      | range with the inflight refueling probe extended                                           | 65. After selecting "MANUAL" fuel control, a com-                                                         |
| 48.  | is to "G" and IAS. What rectriction is placed on continuous negative                       | plete electrical failure is experienced. The fuel                                                         |
|      | "G" operation?                                                                             | control will automatically return to "NORMAL"                                                             |
| *49. | Give the following engine speeds:                                                          | until electrical power is regained? True                                                                  |
|      | a. Absolute maximum RPM                                                                    | 66. If afterburning continues after the throttle is                                                       |
|      | b. Normal RPM at standard day temperature                                                  | moved inboard, how may it be secured otherwise?                                                           |
|      |                                                                                            | 67. Outline the procedures to be followed upon illu-                                                      |
|      | c. Sea level idle RPM                                                                      | mination of the FIRE warning light while air-                                                             |
| *50. | Temperature limits for maximum thrust and mil-                                             | borne, with and without a wingman.                                                                        |
|      | itary thrust are:                                                                          | 68. The cockpit pressurization switch also controls wing fuel cell pressurization? True                   |
|      | a. Above 30,000 feet MAXIMUM                                                               | False                                                                                                     |
|      | MILITARY                                                                                   | 69. If oxygen contamination is suspected, one need                                                        |
|      | b. Below 30,000 feet MAXIMUM                                                               | only pull the "GREEN APPLE" to utilize bail-<br>out oxygen. TrueFalse                                     |
| 51.  | MILITARYAt airspeeds 1.50 IMN or 600 knots IAS what                                        | 70. Describe the procedure for executing a "No Nose                                                       |
|      | thrust setting should be maintained and why?                                               | Gear" field landing, with and without arresting                                                           |
| 52.  | The minimum oil pressure at idle RPM is                                                    | gear.                                                                                                     |
| 52   | What are the PDM and temperature limits for                                                | 71. Describe the procedure for executing a field land-                                                    |
| 23.  | What are the RPM and temperature limits for maximum continuous engine operations?          | ing with one main gear retracted, with or with-<br>out arresting gear.                                    |

- 72. Aerodynamic braking should be used to the utmost after a wing down field landing where no arresting gear is available. True\_\_\_\_\_\_\_False\_\_\_\_\_\_
- 73. What is peculiar to a bolter after an attempted wing down carrier landing?
- 74. Describe the most desirable cockpit emergency egress procedure.
- 75. List the steps in normal ejection.
- 76. If the canopy does not jettison when the face curtain is pulled the pilot should then\_\_\_\_?
- 77. Describe the bailout procedure.
- 78. Why is it not advisable to roll inverted and fall or drop out of the cockpit vice the recommended bailout method?
- 79. What is the minimum/maximum airspeed in gliding flight which will permit an effective (altitude gain) power off pullup?
- 80. Illumination of the engine fuel pump light may be an indication of a fuel control malfunction.

  True\_\_\_\_\_False\_\_\_\_\_
- 81. What is the minimum airspeed at which the RAT can be expected to supply both electrical power and power control hydraulic pressure?
- 82. Outline the procedure for switching to manual fuel control in flight.
- 83. If the engine fuel pump light comes on in flight and the engine continues to function normally, the likely cause is\_\_\_\_\_\_\_.
- 84. If the RAT is extended with the Emergency Generator Switch in the "ON" position what must the pilot do to regain proper RAT electrical power?
- 85. While performing a supersonic dash at 38,000 feet a generator failure is experienced. Outline the procedure for combating the situation and describe the approach and landing if abnormal.
- 86. If electrical power is being supplied by the RAT, the landing gear may be retracted only if the Emergency Generator Switch is in the "ON" position. True\_\_\_\_\_\_False\_\_\_\_\_
- 87. Outline the procedure for extending the landing gear and raising the wing after experiencing a utility hydraulic failure.
- \*88. If a main landing gear is extended but indicates barberpoled, actuating the emergency pneumatic system is desirable. True\_\_\_\_\_False\_\_\_\_\_

- 89. The wing should not be raised if the landing droop cannot be extended pneumatically with a utility failure. True\_\_\_\_\_False\_\_\_\_\_
- 90. When, if at all, should the RAT be extended after experiencing loss of PC-1?
- 91. A\_\_\_\_\_% loss of range should be anticipated with the RAT extended.
- 92. What is the minimum airspeed for adequate hydraulic pressure from the RAT with no electrical load?
- 93. When Emergency Pitch Trim is in use there will be only\_\_\_\_\_degrees of automatic retrim when the wing is raised.
- \*94. List the steps for stall and spin recovery, include spin recognition and recovery recognition.
- \*95. When should a precautionary type approach be made?
- 96. What can the pilot do to close the exhaust nozzle if he has determined it has stuck open when afterburner was deselected?
- 97. What general steps should be taken to correct continuous compressor stalls in flight?
- \*99. During a high speed (0.92 IMN) descent the aircraft commences a tail wagging oscillation which is apparently increasing in intensity. How should this be combated?
- \*100. What is the desired fuel flow for an airstart?
- 101. Describe the precautionary landing pattern.
- 102. After experiencing smoke in the cockpit a pilot elects to dump cockpit pressure by use of the emergency RAM air vent. During a subsequent letdown he encounters icing and his airspeed indicator fails. Undaunted he switches to his angle-of-attack instruments and continues his approach. He dirties up and he picks up the "Donut" (A/AO). At the top of the glide slope the plane yaws violently and enters a spin. What happened?
- 103. Serious wheel overheating problems arise after an aborted takeoff or from stopping after a normal landing. Why does the tire/wheel failure not occur until 15 to 20 minutes later?

| *104. Explain the landing procedures required for both ship and shore for the following conditions.                         | 3. Complete the following range and endurance computations:   |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| a. Main gear tire blown:                                                                                                    |                                                               |
| (1) SHORE<br>(2) SHIP                                                                                                       | (1) (2) (3) (4) (5)<br>Altitude 10,000 20,000 35,000 SL SL    |
| <ul><li>b. One main wheel missing — strut intact:</li><li>(1) SHORE</li><li>(2) SHIP</li></ul>                              | Fuel Remaining (pounds)                                       |
| c. Nose gear up or trailing:                                                                                                | Range this altitude                                           |
| (1) SHIP<br>(2) SHORE                                                                                                       | Range at optimum                                              |
| d. One main gear up or missing:                                                                                             | altitude                                                      |
| (1) SHIP<br>(2) SHORE                                                                                                       | Endurance at this                                             |
| e. All gear up:                                                                                                             | altitude                                                      |
| (1) SHIP<br>(2) SHORE                                                                                                       | Endurance optimum altitude                                    |
| *105. List the preparations, configuration, final speed, fuel weight and roll out procedures for a field wing down landing. | Optimum altitude for range                                    |
| *106. During a carrier landing both main landing gears are lost. What action is required?                                   | Optimum<br>altitude for                                       |
| *Indicates critical questions.                                                                                              | endurance                                                     |
| OPEN BOOK                                                                                                                   |                                                               |
| 1. Give maximum range speed (IMN) for the following altitudes:                                                              | 4. Solve the following maximum range problem                  |
| 10,000 15,000 25,000                                                                                                        | Given: Aircraft configuration, and flight altitude of 30,000. |
| 35,000 45,000                                                                                                               |                                                               |
| 2. Give maximum endurance speeds (IMN and CAS) for the following altitudes:                                                 | Find: Flight Mach No  Specific Range                          |
| IMN CAS                                                                                                                     | True Airspeed                                                 |
| SL 15,000                                                                                                                   | Fuel Flow                                                     |
| 20,000                                                                                                                      | Distance and duration                                         |
| 30,000                                                                                                                      | w/3700 lb fuel                                                |
| 40,000                                                                                                                      | Fuel required and duration for 50 nmi                         |

5. Combat Radius Problem.

Given: The distance to a combat area is 370 nmi. Climb using MRT power under standard conditions. Cruise out and back at maximum range altitude and airspeed. Wind conditions are 45 knots headwind on cruise out and 60 knots tailwind on cruise back. Use no wind for climb and descent. Fuel is full load of JP-5 at 6.8 lb per gallon. Allow 2,500 lb for combat and 250 lb for start and taxi.

Find: Using configuration\_\_\_\_ \_\_\_\_or Standard (photo) find the fuel, distance, time and flight speeds for the flight phases as depicted in the chart below.

6. Combat operations at military thrust? (Use planning data in Supplement Flight Manuals)

| Mach No. | Altitude | Time     | Fuel     |
|----------|----------|----------|----------|
| 0.90     | 45,000   |          | 1,600 lb |
| 0.96     |          | 24.5 min | 2,000 lb |
| 0.80     | 10,000   |          | 2,500 lb |
| 0.85     | 30,000   | 5.5 min  |          |

#### SOLUTION TO COMBAT RADIUS PROBLEM

| Con        | ıfig.        | Alt.                     | Temp.                   | Fuel                          | Fuel<br>Remaining             | Distance                                                      | Time                                                                   | Mach<br>No.<br>or CAS                                                       | TAS                                                                                | Wind                                                             | GS                                                                                             |
|------------|--------------|--------------------------|-------------------------|-------------------------------|-------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| B<br>(Star | nd)          |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| В          |              |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| (          | )            |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| В          |              |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| (          | )            |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| В          |              |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| (          | )            |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| С          |              |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
| С          |              |                          |                         |                               |                               |                                                               |                                                                        |                                                                             |                                                                                    |                                                                  |                                                                                                |
|            | B (Star B) ( | (Stand)  B ( )  B ( )  C | B (Stand) B ( ) B ( ) C | B (Stand) B ( ) B ( ) B ( ) C | B (Stand) B ( ) B ( ) B ( ) C | Config. Alt. Temp. Fuel Remaining  B (Stand)  B ( )  B ( )  C | Config. Alt. Temp. Fuel Remaining Distance  B (Stand)  B ( )  B ( )  C | Config. Alt. Temp. Fuel Remaining Distance Time  B (Stand)  B ( )  B ( )  C | Config. Alt. Temp. Fuel Remaining Distance Time or CAS  B (Stand)  B ( )  B ( )  C | Fuel Remaining Distance Time or CAS TAS  B (Stand) B ( ) B ( ) C | Config. Alt. Temp. Fuel Remaining Distance Time or CAS TAS Wind  B (Stand)  B (( )  B (( ))  C |

- ning data in Supplement Flight Manuals)
- 7. Combat operations at maximum thrust? (Use plan- 8. Combat radium MRT climb? (Use planning data in Supplement Flight Manuals)

| Mach No. | Altitude | Time     | Fuel     | Cruise Out<br>Altitude | Distance | Combat<br>Fuel |
|----------|----------|----------|----------|------------------------|----------|----------------|
| 0.75     | 30,000   |          | 1,500 lb |                        | 450 nmi  | 2,000 lb       |
| 1.3      | 30,000   | 7 min    |          | 40,000                 | 470 nmi  |                |
| 1.05     | 50,000   |          | 2,000 lb | 35,000                 |          | 1,000 lb       |
| 1.4      | 45,000   | 10.5 min |          | 30,000                 | 370 nmi  |                |

| Jidiladidizanon Evaluarion .                                                             |                                                                                                                     |                                                                                                                                                                     |                                                                                                                                                          |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ol><li>Fighter mission combat<br/>in Supplement Flight M</li></ol>                      | 2                                                                                                                   | 19                                                                                                                                                                  | . Why is it not advisable to recharge the guns after an apparent jam?                                                                                    |  |  |
| Given                                                                                    | Find                                                                                                                | 20.                                                                                                                                                                 | Both ac and dc current are necessary to fire the guns. TrueFalse                                                                                         |  |  |
| Combat area 400 nmi from base of operations                                              | Fuel                                                                                                                | 21.                                                                                                                                                                 | Is it possible to jettison the missile after a gen-                                                                                                      |  |  |
| Average MRT combat time of 8 minutes at                                                  | Distance                                                                                                            |                                                                                                                                                                     | erator failure and subsequent emergency power package operation?                                                                                         |  |  |
| 40,000 feet and 0.94<br>IMN                                                              | Time                                                                                                                | 22.                                                                                                                                                                 | Must the master arm switch be on to jettison the missiles?                                                                                               |  |  |
| 5 minutes at CRT at an<br>average altitude of<br>35,000 feet, flight speed<br>of 1.2 IMN | Flight speed                                                                                                        | 23.                                                                                                                                                                 | The master arm switch must be placed in on at leastbefore firing the guns to allow the gun control interlock to warm up and deliver firing voltage.      |  |  |
| Standard day with full load of JP-5 fuel, weight — 6.8 pounds per gallon                 | (factors as required in chart in question 5)                                                                        | 24.                                                                                                                                                                 | The disturbed line of sight system used in the F-8 is designed to solve all factors of the lead-angle problem except trajectory shift. TrueFalse         |  |  |
| target should use                                                                        | to attack a high altitudealtitude for optimum                                                                       | 25.                                                                                                                                                                 | The inside dimension of the gyro pipper ismils.                                                                                                          |  |  |
| atspeed.                                                                                 | droop should be extended                                                                                            | 26. The average wing span of the MIG-15, 17, 19 is 32 feet. At a range offeet, ½ th wing span of a MIG-15, 17, 19 will fill the insid dimension of the gyro pipper. |                                                                                                                                                          |  |  |
| 12. There are five major envelope of a Sidewin                                           | factors that determine the der. What are they?                                                                      | 27.                                                                                                                                                                 | Insofar as lead-angle solution is concerned, the                                                                                                         |  |  |
| failed to open when fir                                                                  | door on the starboard side<br>ring the guns. What limita-<br>imposed upon gun firing?                               |                                                                                                                                                                     | information to the fire control system.                                                                                                                  |  |  |
|                                                                                          | sed from 1.0 IMN to 1.7 itude, what is the percentow?                                                               |                                                                                                                                                                     | * * * * *  Items 28, 29, and 30 assume a fixed range dial setting of 1,500 feet, a bias range                                                            |  |  |
| explain the missile jet supplies the power? W                                            | handle in the <i>up</i> position, tison sequence. Which bus that is the state of the mis-                           | 28.                                                                                                                                                                 | setting of 900 feet, and a breakaway setting of 600 feet on the range unit.  With radar in search, the lead-angle solution is                            |  |  |
| sile after firing?  16. The sight unit gyro is                                           | automatically caged when                                                                                            |                                                                                                                                                                     | theoretically correct at a range offeet.                                                                                                                 |  |  |
| the armament selector or positions?                                                      | switch is in which position                                                                                         | 29.                                                                                                                                                                 | Assuming a closure rate of 450 feet per second on the target with radar locked on and range                                                              |  |  |
| age. You are now faced                                                                   | ou lose your generator and<br>ne emergency power pack-<br>d with a substantial loss of<br>nat portion of your arma- |                                                                                                                                                                     | toggle switch in "radar," the prealert (400 cycle) tone should come on atfeet. Firing (1,200 cycle) tone will be heard atfeet and breakaway tone atfeet. |  |  |
| ment system?  18. The Mk 12 20mm gui                                                     |                                                                                                                     | 30.                                                                                                                                                                 | After prealert tone is sounded, the gyro pipper will move (toward?) (away from?) the fixed                                                               |  |  |
| rate ofrounds p                                                                          |                                                                                                                     |                                                                                                                                                                     | pipper as the range decreases. (Assuming constant G run).                                                                                                |  |  |

| 31.   | For co-speed condition of firing below approxi-                                                    | 50. | Barricade engagements resulting from a wing-                                                                  |
|-------|----------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|
|       | mately 40,000 feet, S/W maximum range is a                                                         |     | down condition alone are not required or recom-                                                               |
| 32    | function of  For co-speed condition of firing above approxi-                                       | 51  | mended. TrueFalseShould a wing-down landing with the leading                                                  |
| 72.   | mately 40,000 feet, S/W maximum range is a                                                         | 71. | edge in the landing droop position be attempted?                                                              |
| 33.   | function of  If you have a positive rate of closure over the                                       | 52. | The F-8 may be completely refueled by using the                                                               |
|       | target, both minimum maximum firing ranges                                                         | 53  | refueling probe. TrueFalse<br>Proper operation of the probe switch is: Just                                   |
|       | will decrease. TrueFalse                                                                           | )). | prior to the initial run, the probe shall be ex-                                                              |
| 34.   | List the conditions that must be met prior to fir-                                                 |     | tended and the switch left in the posi-                                                                       |
| 25    | ing a Sidewinder.                                                                                  |     | tion. Upon completion of the runs after the probe                                                             |
| 35.   | Define the following:                                                                              |     | is retracted hold the switch in thepo-                                                                        |
|       | CAP                                                                                                |     | sition for 5 seconds after door light goes out to                                                             |
| 1     | DADCAP                                                                                             | = 1 | ensure that the probe door locks.                                                                             |
|       | RESCAP                                                                                             | 74. | The prefueling check performed airborne in-<br>cludes placing the fuel transfer switch in the                 |
|       |                                                                                                    |     | pressure dump position to ensure that transfer                                                                |
|       | TAPCAP                                                                                             |     | ceases immediately. TrueFalse                                                                                 |
|       | LOCAP                                                                                              | 55. | When ready for air refueling, placing the probe                                                               |
|       | BARCAP                                                                                             |     | switch toposition will also stop fuel                                                                         |
| 26    | After having hear trained and signaled that you                                                    | 56  | transfer.                                                                                                     |
| 50.   | After having been trapped and signaled that you are going down No. 1 elevator, at what point do    | 50. | In the event the refueling probe will not retract<br>when switch is placed in the <i>in</i> position, it will |
|       | you open the canopy and remove your helmet?                                                        |     | be necessary to place the switch in                                                                           |
| 37.   | What is the catapult officer's signal to light the                                                 |     | position to begin fuel transfer.                                                                              |
|       | burner?                                                                                            | 57. | To minimize drogue and receiver control prob-                                                                 |
| 38.   | On the cat and after turnup, what is the correct                                                   |     | lems, it is recommended that the receiver pilot                                                               |
| 20    | "I am down" signal for both day and night?                                                         |     | maintain a closure rate ofto                                                                                  |
| 39.   | What is the correct pilot procedure after receiving the burner signal from the cat officer? ( List | 50  | knots.                                                                                                        |
|       | the three steps.)                                                                                  | 28. | On a number of occasions the drogue has struck and broken the canopy of the receiver aircraft.                |
| 40.   | What is minimum altitude for lowering the wing                                                     |     | For this reason, aerial refueling is conducted with                                                           |
|       | after a night cat shot?                                                                            |     | the helmet visor                                                                                              |
| 41.   | What is the minimum altitude for switching                                                         | 59. | Continuous negative G flight is limited to                                                                    |
|       | lights to bright and flashing after a night cat                                                    | 60  | seconds.                                                                                                      |
| 62    | shot? The proper numerical angle-of-attack setting for                                             | 00. | The oil cooler door automatically opens atIMN.                                                                |
| · 12. | an F-8 carrier approach isunits.                                                                   | 61  | Describe the function of the oil cooler door                                                                  |
| 43.   | How many degrees of nose-up attitude are set on                                                    | 01. | switch.                                                                                                       |
|       | the gyro-horizon immediately after a night cat                                                     | 62. | The first indication of an air start is usually noted                                                         |
| .,    | shot?                                                                                              | 60  | on the                                                                                                        |
| 44.   | Nosegear steering should not be used in taxiing                                                    | 63. | During static ground conditions, engine accelera-                                                             |
|       | out of the ship's arresting gear until forward motion is established. Why not?                     |     | tion for idle to <i>military</i> should be accomplished within                                                |
| 45.   | What lights are off for a night carrier approach?                                                  | 64. | During military thrust check before takeoff, the                                                              |
|       | Following a night shipboard arrestment, at what                                                    |     | provides the most reliable                                                                                    |
|       | point are all exterior lights turned off?                                                          |     | indication of proper engine operation.                                                                        |

65. What mil specification engine oil is used in the J57 engine? 66. Over filling of the engine oil system may result

in\_\_\_\_\_and\_

67. What is the capacity of the engine oil tank?

68. What is the rated thrust of the basic engine? With A/B?

down landing.

47. If the nose gear fails to retract after a catapult shot, return the handle to wheels down. What is

48. A cross check of airspeed and angle of attack

49. Give the correct procedure for a carrier wing-

should be made at the 180° position to ensure

\_\_False\_

the probable cause and how is it rectified?

that they coincide. True\_\_\_\_

| Station I value of the State of |                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 69. The tachometer recordsrpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94. Roll stabilization signals are automatically initiated by                                                                                                                                                                           |
| 70. Maximum rpm is%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                       |
| 71. Operating in manual fuel control, to what altitude will altitude compensation be provided?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95. Yaw stabilization and stiffening signals are initiated by                                                                                                                                                                           |
| <ul> <li>72. For takeoff and ground operation, A/B is limited tominutes.</li> <li>73. When the engine fuel pump warning light is on, engine operation is restricted to</li> <li>74. The inflight refueling probe switch must be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96. With the emergency power package extended, in order to prevent energizing a malfunctioning system, the roll stabilization switch should be placed in the off position before the emergency generator switch is placed in land. True |
| to take on fuel during aerial refueling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FalseWhy?                                                                                                                                                                                                                               |
| <ul> <li>75. The indication of a fuel transfer shutoff failure is</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97. The yawmoves the rudder power control cylinder linkage to reposition the rudder in the direction required tothe aircraft or provide yawand                                                                                          |
| 77. How is wing fuel transferred?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                       |
| 78. How many fuel booster pumps work on the power package extension electrical power?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98. In the clean condition, the yaw modifies signals from the accelerometer as altitude changes. Gain is                                                                                                                                |
| 79. How may the engine fuel shutoff valve be opened or closed without electrical power?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in the landing condition.  99. When is the rudder aileron interconnector actu-                                                                                                                                                          |
| <ul> <li>80. During fuel transfer in flight, the main fuel quantity indicator will normally read between and pounds.</li> <li>81. How does the cabin pressure switch effect the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ated?  100. The potentiometer initiates signals to the amplifier for rudder aileron interconnect actuation.                                                                                                                             |
| aircraft fuel system?  82. Utility hydraulic system provides hydraulic power for the operation of what systems?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101. Does movement of the three trim knobs displace the control stick?                                                                                                                                                                  |
| 83. Utility hydraulic pressure may surge to pressure when actuating any of the systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102. Roll trim and damping operate from what electrical bus?                                                                                                                                                                            |
| 84. How are hydraulic failures indicated to the pilot?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103. Yaw trim and damping operate from what electrical bus?                                                                                                                                                                             |
| <ul><li>85. Roll stabilization operates off of what hydraulic system?</li><li>86. Yaw stabilization operates off of what hydraulic</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104. In the event of pitch trim failure, what emergency method may be used to regain pitch trim?                                                                                                                                        |
| system?  87. In the event of hydraulic failure, what system is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105. What is the maximum speed restrictions with no yaw stab? Roll stab?                                                                                                                                                                |
| regained by deploying the ram air turbine, assuming no fluid has been lost?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106. The V in the window of the generator control panel indicatespower is connected                                                                                                                                                     |
| 88. Will the low hydraulic pressure warning light go off when the ram air turbine is supplying hydraulic pressure to the PC-1 system?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to thebus(es).  107. The off flag in the window of the gyro horizon                                                                                                                                                                     |
| 89. What are the maximum deflections of the aileron and unit horizontal tail that can be obtained by the pilot?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indicatespower is not connected to thebus, or thathas failed.                                                                                                                                                                           |
| <ul><li>90. What is the maximum deflection of the rudders that can be obtained by the pilot?</li><li>91. With the ram air turbine supplying hydraulic pressure to PC-1, what position should the roll</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108. A barberpole in the window of the generator control panel indicates thatpower is not connected to thebus(es) or thathas failed.                                                                                                    |
| stabilization switch be in prior to switching the generator to the land position? Why?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109. Placing the emergency generator switch in the on position supplies power to theand                                                                                                                                                 |
| 92. With loss of either PC-1 or PC-2, what action should be taken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | buses (with RAT extended).  110. Placing the emergency generator switch in the                                                                                                                                                          |
| 93. Can the tail hook be lowered with a utility hydraulic failure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | land position supplies power to theandbuses (with RAT extended).                                                                                                                                                                        |

| 111. | The emergency power indicator light on the generator control panel shows that         | 114. Actuation of the following controls will produ-<br>normal results with no electrical power (up ar<br>down, on and off).       |  |  |  |
|------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | It will be illuminated with the emergency generator switch in the following positions | True False                                                                                                                         |  |  |  |
|      | only,,,                                                                               | (1) Landing gear handle                                                                                                            |  |  |  |
|      | (with RAT extended).                                                                  | (2) Wing-fold actuating lever                                                                                                      |  |  |  |
|      |                                                                                       | (3) Hook handle                                                                                                                    |  |  |  |
| 112. | Name the buses Emergency, Primary, or Second-                                         | (4) Wing incidence handle                                                                                                          |  |  |  |
|      | ary which supply the power for the operation of the following:                        | (5) Cockpit pressure and dump switch                                                                                               |  |  |  |
|      | (1) Fire control system                                                               | (6) Defog control switch                                                                                                           |  |  |  |
|      | (2) Transfer fuel pump(s)                                                             | (7) Cruise droop switch                                                                                                            |  |  |  |
|      | (3) Roll trim and stabilization(4) IFF                                                | (8) Pressure suit vent                                                                                                             |  |  |  |
|      | (5) Yaw trim and stabilization                                                        | (9) G suit control                                                                                                                 |  |  |  |
|      | (6) ARA-25                                                                            | (10) Changing preset UHF frequency                                                                                                 |  |  |  |
| V.   | (7) Engine master switch                                                              | 115. When operating on emergency electrical power,                                                                                 |  |  |  |
|      | (8) Wing fuel dump                                                                    | what steps must be taken to illuminate externa aircraft lights?                                                                    |  |  |  |
|      | (9) Main fuel quantity                                                                | 116. Explain what occurs when the canopy accuator                                                                                  |  |  |  |
|      | (10) Oil cooler door                                                                  | cartridge fires.                                                                                                                   |  |  |  |
|      | (11) Tacan                                                                            | 117. Immediately after ejection, thedrogue                                                                                         |  |  |  |
|      | (12) Missile jettison                                                                 | withdraws thedrogue.  118. Explain the function of the timed release mechanism.                                                    |  |  |  |
|      | (13) Tail hook retraction                                                             |                                                                                                                                    |  |  |  |
|      | (14) Fuel flow                                                                        | 119. Explain the function of the barometric altitude                                                                               |  |  |  |
|      | (15) Gyro Horizon                                                                     | limiter. What does it activate?                                                                                                    |  |  |  |
|      | (16) Engine ignition and timer                                                        | 120. Ejection at airspeeds from stalling to                                                                                        |  |  |  |
|      | (17) A/B electrical operation                                                         | results in relatively minor forces exerted on the body.                                                                            |  |  |  |
|      | (18) In-flight refueling capability                                                   | 121. With loss of power from 180° position to landing                                                                              |  |  |  |
|      | (19) Wing pressurization                                                              | would a pull-up prior to ejection be effective?                                                                                    |  |  |  |
|      | (20) Fire detection                                                                   | 122. At 175 knots on takeoff and wing-up, you experience a complete power failure. Would a pull-up prior to ejection be effective? |  |  |  |
|      |                                                                                       | 123. On an ejection attempt the canopy fails to jettison. What steps are now necessary to eject?                                   |  |  |  |
| 113. | Name the 10 cockpit instruments which will remain operative with no electrical power  | 124. If ejection is not possible, what is the correct bail-<br>out procedure?                                                      |  |  |  |
|      | (1)(2)(3)                                                                             | 125. What are the necessary procedures if the auto-                                                                                |  |  |  |
|      | (4)(5)(6)                                                                             | matic ejection functions do not occur by 10,000 feet?                                                                              |  |  |  |
|      | (7)(8)(9)                                                                             | 126. The capacity of the aircraft's LOX system is                                                                                  |  |  |  |
|      | (10)                                                                                  | ?                                                                                                                                  |  |  |  |

- 127. At what system capacity does the low level warning light illuminate?
- 128. If it becomes desirable to decrease oxygen consumption, what action is required?
- 129. If contamination is suspected in the main LOX System, what action should be taken? Why?
- 130. How is the LOX System capacity checked?
- 131. What is the relationship between the collapsed B, steering circle, and fine steering dot with respect to target azimuth and elevation?
- 132. Describe the range rate gap in the steering circle. What speeds are represented by the clock code? What is the difference between clockwise and counterclockwise rotation of the range rate gap?
- 133. Describe the probable AAS-15 detection cone for a non-afterburning shielded-tailpipe target? An afterburning target?
- 134. What three indications are necessary to validate an IR lock-on?
- 135. Define the antenna tilt "thumb rule" for target detection with respect to target distance and relative altitude differential?
- 136. Describe the calibrated vertical that extends from the steering circle. What does its length represent? What are the two cases in which a successful pitch-up can be made? What maneuvering is allowed for when the calibrated vertical just reaches the gap in the artificial horizon bar? What maneuvering techniques will increase the length of the calibrated vertical?
- 137. IR controls are parallel to radar controls in operation, what does the radar gain control become? What does the radar B contrast control become?

- Why is it necessary to retune these controls when switching back and forth between IR and Radar modes of operation?
- 138. Describe the method to establish pilot commanded lead with the deviated pursuit computer. What parameters are necessary to establish automatic lead? What are teh leads generated and what happens at missile maximum range plus two miles for the following?
  - a. Sidewinder 1A (AIM-9B)
  - b. Sidewinder IRAH (AIM-9D)
  - c. Unshadowed Sidewinder SARAH (AIM-9C)
  - d. Shadowed Sidewinder SARAH (AIM-9C)
- 139. What does the deviated pursuit computer automatically do for Sidewinders AIM-9C and AIM-9D for high closure rate fuzing? What is the closure rate that the fuzing change over occurs?
- 140. What are the altitude line firing limitations on the AIM-9C SARAH missile?
- 141. What two cases will cause the collapsed B to be separated from the steering circle?
- 142. The HOJ mode of Radar operation enables the antenna to track what type jamming sources while the Radar remains in a passive mode?

#### NATOPS EVALUATION FORMS

In addition to the NATOPS Evaluation Report (figure 10–1), a NATOPS Flight Evaluation Worksheet is/are provided for use by the Evaluator/Instructor during the evaluation flight. All of the flight areas and subareas are listed on the worksheet with space allowed for related notes.

## NATOPS EVALUATION REPORT FORM -

| NAME (Last, first initial)                               |                      | GRADE     | SERVICE NUMBER                   |
|----------------------------------------------------------|----------------------|-----------|----------------------------------|
| SQUADRON/UNIT                                            | AIRCRAFT MODEL       |           | CREW POSITION                    |
| TOTAL PILOT/FLIGHT HOURS                                 | TOTAL HOURS IN MODEL |           | DATE OF LAST EVALUATION          |
|                                                          |                      |           | DATE OF CAST EVALUATION          |
|                                                          | NATOPS EVALUATION    |           |                                  |
| REQUIREMENT                                              | DATE                 | COMPLETED | GRADE Q CQ U                     |
| OPEN BOOK EXAMINATION                                    |                      |           |                                  |
| CLOSED BOOK EXAMINATION                                  |                      |           |                                  |
| ORAL EXAMINATION                                         |                      | =         |                                  |
|                                                          |                      |           |                                  |
| *EVALUATION FLIGHT                                       |                      |           |                                  |
| FLIGHT DURATION                                          | AIRCRAFT BUNO.       |           | OVERALL FINAL GRADE              |
| REMARKS OR EVALUATOR/INSTRUCTOR                          |                      |           |                                  |
|                                                          |                      |           |                                  |
|                                                          |                      |           |                                  |
|                                                          |                      |           | CHECK IF CONTINUED ON REVERSE SI |
| FRADE, NAME OF EVALUATOR/INSTRUCTOR                      | SIGNATURE            |           | CHECK IF CONTINUED ON REVERSE SI |
|                                                          | SIGNATURE            |           |                                  |
| RADE, NAME OF EVALUATOR/INSTRUCTOR RADE, NAME OF EVALUEE |                      |           | DATE                             |
| RADE, NAME OF EVALUEE                                    |                      |           | DATE                             |

53212-10-1NB

Figure 10-1

# section XI performance data

Refer to Supplemental NATOPS Flight Manual

#### **INDEX**

|                                                                        | II (DE/                                                                   |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| A                                                                      | Approach                                                                  |
| ^                                                                      | CCA, 6–5                                                                  |
| Accelerated stalls, 4-15                                               | GCA (PAR), 6–4                                                            |
| Acceleration                                                           | ground-controlled, 6–7                                                    |
| fuel system limitations, 1-94                                          | jet penetration and TACAN, 6–6                                            |
| indicator, 1–57                                                        | precautionary, 5–39                                                       |
| limitations, 1–94                                                      | ARA-25 (ADF) rendezvous, 4-3<br>Armament systems, 8-6                     |
| ADF direction finder group AN/ARA-25, 1-60                             | description, 8–6                                                          |
| ADF controls, 1–60                                                     | flight characteristics, 4-14                                              |
| description, 1–60                                                      | gun firing, 8–8                                                           |
| normal operation, 1-60                                                 | gun system, 8-6                                                           |
| rendezvous using, 4-3                                                  | gun system controls, 8-7                                                  |
| Aerobatics                                                             | missile jettisoning, 5-29, 8-14                                           |
| flight characteristics, 4-14                                           | Sidewinder missile (AIM-9), 8-10                                          |
| instrument, 6–2                                                        | Arresting hook, 1–45                                                      |
| Afterburner                                                            | controls, 1–45                                                            |
| exhaust nozzle, 1–16<br>failure during takeoff, 5–6                    | description, 1-45                                                         |
| malfunctions, 5–10                                                     | failure, carrier procedures, 5-35                                         |
| operation, 1–15                                                        | failure, field procedures, 5-35                                           |
| Afterburner malfunctions, 5–11                                         | field arrestment data, 5—36A                                              |
| asymmetrical nozzle opening, 5–11                                      | system (illustration), 1—45                                               |
| failure to cut off, 5–11                                               | use of emergency gear, 5–34                                               |
| flameout or failure to light, 5–11                                     | Arrestment                                                                |
| nozzle remains closed, 5–11                                            | barricade, 5–36B                                                          |
| nozzle remains open, 5–11                                              | carrier, 3–31                                                             |
| stuck throttle, 5–11                                                   | emergency, 5–36                                                           |
| Aft transfer pump failure, 5-12A                                       | field, 3–24<br>Attitude indicator, 1–57                                   |
| Ailerons and spoilers, 4-10                                            | Attitude indicator, 1–3/                                                  |
| Air-conditioning system, 1-68                                          | В                                                                         |
| cockpit pressurization, 1—68                                           | Bailout procedure, 5-29                                                   |
| cockpit temperature failure, 5-19                                      | Bannor towing cooling flow I' to at an arr                                |
| complete failure, 5-19                                                 | Banner towing, cooling flow limitations, 1–97 Barricade arrestment, 5–36B |
| controls, 1–69                                                         | Bingo fields, 3–3                                                         |
| controls (illustration), 1–71                                          | Bingo fuel, 3–31                                                          |
| description, 1–68                                                      | Boost pump failure, 5–12                                                  |
| erratic temperature control, 5–19                                      | Brakes, wheel, 1–43                                                       |
| normal operation, 1–72                                                 | controls, 1–43                                                            |
| system schematic, 1-70 Air-conditioning system, normal operation, 1-72 | description, 1-43                                                         |
| air-conditioning and pressurization, 1–72                              | hot, $5-3$                                                                |
| defogging, 1–72                                                        | hot (suspected), 5-6                                                      |
| rain removal, 1–72                                                     | system (illustration), 1—44                                               |
| repressurization, 1-72                                                 | Breakaway, inflight refueling, 4-9                                        |
| Aircraft starting and pre-taxi signals, 7-4, 7-5                       | Briefing, 3–2                                                             |
| Air refueling techniques, 4-8A                                         | air intelligence and special instructions, 3-2                            |
| Airspeed                                                               | bingo fields, 3-3                                                         |
| limitations, 1–92                                                      | communications, 3–2                                                       |
| loss of airspeed indicator, 5-30                                       | emergencies, 3–2                                                          |
| Airspeed-Mach number indicator, 1-57                                   | emergency fields, 3–3                                                     |
| Airstarting, 5–9                                                       | general, 3–2<br>mission, 3–2                                              |
| first attempt, 5–9                                                     | navigation and flight plan, 3-2                                           |
| second attempt, 5–10                                                   | operation area, 3–3                                                       |
| unsatisfactory airstart, 5-10                                          | SAR facilities, 3–3                                                       |
| Allowable crosswinds, 3-19                                             | weapons, 3–2                                                              |
| All-weather operation, procedures                                      | weather, 3–2                                                              |
| actual instrument, 6–3                                                 | -                                                                         |
| simulated instrument, 6–2<br>weather, 6–8                              | C                                                                         |
| Altimeter, radio (radar set AN/APN-22), 1-63                           | Camera, gun system, provisions, 1-85                                      |
| control and indications, 1–63                                          | Canopy, 1–78                                                              |
| description, 1–63                                                      | controls, 1–78                                                            |
| indicators, 1–63                                                       | description, 1–78 jettisoning, 5–30                                       |
| normal operation, 1–63                                                 | restraining strap, 1–78                                                   |
| Angle of attack, flight characteristics, 4-14                          | system (illustration), 1-79                                               |
| Angle-of-attack indicating system, 1-55                                | Carrier landing, 3–29                                                     |
| description, 1–55                                                      | arrestment operations, 3–31                                               |
| indications, 1–56                                                      | bingo fuel, 3–31                                                          |
| normal operation, 1-55                                                 | close-in wave-off, 3-31                                                   |
| Antiblackout system, 1-74                                              | flying the meatball, 3-29                                                 |
| controls, 1–74                                                         | fouled-deck wave-off, 3-31                                                |
| description, 1–74                                                      | glide slope, 3-29                                                         |
| /n - 1.1/-                                                             | nes Time Devictor III of the N                                            |

(Boldface Type Denotes Illustration)

#### NAVAIR 01-45HHA-501

| Cold weather procedures, 6–9                                    |
|-----------------------------------------------------------------|
| Command radio set AN/ARC-27A, 1-59                              |
| channel preset procedure, 1-59                                  |
| controls, 1–59                                                  |
| controls (illustration), 1-60                                   |
| description, 1-59                                               |
| normal operation, 1-59                                          |
| Communications procedures, 7–1                                  |
| aircraft starting and pre-taxi signals, 7-4, 7-5                |
| hand signals, 7-3                                               |
| radio, 7–3                                                      |
| takeoff and inflight hand signals, 7—6                          |
| Compass, MA-1, 1-66                                             |
| controls, 1–66                                                  |
| controls (illustration), 1—67                                   |
| description, 1–66                                               |
| normal operation, free gyro method, 1-67                        |
| normal operation, slaved method, 1-66                           |
| Complete electrical failure, 5–14                               |
| Compressor stalls, 1–15                                         |
| Computer group warmup, 8-4                                      |
| Confidence maneuvers, 6-2                                       |
| Consoles                                                        |
| left-hand, F-8A, 1—7                                            |
| left-hand, F-8B, 1—8                                            |
| right-hand, F-8A, 1—9                                           |
| right-hand, F-8B, 1—10                                          |
| Control unit, fuel, failure, 5–11                               |
| Controls, lateral, malfunctions, 5–17                           |
|                                                                 |
| Cooling flow limitations, 1–96                                  |
| for banner towing, 1–97                                         |
| Crosswind                                                       |
| allowable, 3–19<br>landing, 3–21                                |
|                                                                 |
| takeoff (MRT/CRT), 3–18                                         |
| Cruise, 3–20                                                    |
| Cruise droop, flight characteristics, 4-11                      |
| Currency, aircraft ferry, and requalification requirements, 2-3 |
|                                                                 |

| Danger areas, 1–88 engine ground operation, 1–90 Dead engine landing, 5–37 typical, 5–38 Debriefing, 3–3 Defogging, 1–72 Depressurization, 1–72 emergency, 5–19 Descent, 3–20 emergency, 5–30 Dimensions and weight, 1–3 Direction finder (ADF) group AN/ARA-25, 1–60 description, 1–60 normal operation, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection sequence, 1–83 energency, 1–80 controls, 1–84 Electrical gower requirements, external, 1–88 Electrical supply system, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system maffunctions, 5–13 complete foilure, 5–16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                            | Ejection seats, MK-F5, -F5A, 1-78 components, 1-82 controls, 1-81 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|
| typical, 5-38 Depricing, 3-3 Defoiging, 1-72 Depressurization, 1-72 emergency, 5-19 Descent, 3-20 emergency, 5-30 Dimensions and weight, 1-3 Direction finder (ADF) group AN/ARA-25, 1-60 controls, 1-60 description, 1-60 normal operation, 1-60 normal operation, 1-60 rendezvous using, 4-3 Ditching, 5-37 Dives ejection capability, 5-25 flight characteristics, 4-13 Dumping fuel, 1-21, 5-29  Egress, emergency, 5-4 Ejection, 5-21  after ejection, 5-28 dive capability, 5-24A, 5-25  Deficion seat, MK-F7, 1-84A Components, 1-84D controls, 1-84C description, 1-84B emergency release from the seat, 1-84B operation, 1-84B poleration, 1-84B polerati |                                              | description, 1–78 ejection sequence, 1–83                         |
| Debriefing, 3-3 Defogging, 1-72 Depressurization, 1-72 emergency, 5-19 Descent, 3-20 emergency, 5-30 Dimensions and weight, 1-3 Direction finder (ADF) group AN/ARA-25, 1-60 description, 1-60 description, 1-60 rendezvous using, 4-3 Dives ejection capability, 5-25 flight characteristics, 4-13 Dumping fuel, 1-21, 5-29  Egress, emergency, 5-4 Eigection, 5-28 dive capability, 5-28 dive capability, 5-24A, 5-25  Bectrical seat, MK-F/, 1-84A components, 1-84D controls, 1-84C description, 1-84A ejetion sequence, 1-84E emergency release from the seat, 1-84B operation, 1-84B pilot's equipment, 1-85 Electrical fire, inflight, 5-18 Electrical supply system, 1-47 description, 1-47 distribution, 1-49 system, 1-48 system controls, 1-47 Electrical system malfunctions, 5-13 complete failure, 5-14 main generator failure, 5-13 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | normal operation, 1-80                                            |
| Defogging, 1–72 Depressurization, 1–72 Depressurization, 1–72 emergency, 5–19 Descent, 3–20 emergency, 5–30 Dimensions and weight, 1–3 Direction finder (ADF) group AN/ARA-25, 1–60 controls, 1–60 description, 1–60 normal operation, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection capability, 5–25 flight characteristics, 4–13 Dumping fuel, 1–21, 5–29  Egress, emergency, 5–4 Ejection, 5–21 differ ejection, 5–28 dive capability, 5–24A, 5–25  Emergency release from the seat, 1–84B operation, 1–84B pilot's equipment, 1–85 Electrical fire, inflight, 5–18 Electrical supply system, 1–47 description, 1–47 distribution, 1–47 distribution, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–13 Emergency depressurization, 5–13 Emergency depressurization, 5–19 Emergency entrance, 5–4 illustration, 5–5 Emergency gress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | Ejection seat, MK-F7, 1-84A                                       |
| Depressurization, 1–72 emergency, 5–19  Descent, 3–20 emergency, 5–30  Dimensions and weight, 1–3  Direction finder (ADF) group AN/ARA-25, 1–60 controls, 1–60 description, 1–84B emergency release from the seat, 1–84B operation, 1–84B pilot's equipment, 1–85 Electrical fire, inflight, 5–18 Electrical supply system, 1–47 description, 1–47 distribution, 1–49 pives ejection capability, 5–25 flight characteristics, 4–13  Dumping fuel, 1–21, 5–29  Egress, emergency, 5–4  Egress, emergency, 5–4  Egress, emergency, 5–4  Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  Controls, 1–84C description, 1–84A ejection sequence, 1-84E emergency release from the seat, 1–84B operation, 1–84 emergency release from the seat, 1–84B operation, 1–85 Electrical fire, inflight, 5–18 Electrical system, 1–47 description, 1–47 description, 1–47 description, 1–47 description, 1–47 Electrical system, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergency depressurization, 5–19 Emergency depressurization, 5–19 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              | components, 1-84D                                                 |
| description, 1–84A ejection sequence, 1-84E emergency, 5–30 Dimensions and weight, 1–3 Direction finder (ADF) group AN/ARA-25, 1–60 controls, 1–60 description, 1–60 normal operation, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection capability, 5–25 flight characteristics, 4–13 Dumping fuel, 1–21, 5–29  Egress, emergency, 5–4 Egress, emergency, 5–4 Egress, emergency, 5–4 Egress, emergency, 5–28 dive capability, 5–28 electrical spelus general, 1–84 ejection sequence, 1–84E ejection sequence, 1–84E ejection sequence, 1–84E ejection sequence, 1–84E emergency release from the seat, 1–84B operation, 1–84B operation, 1–85 Electrical fire, inflight, 5–18 Electrical supply system, 1–85 Electrical supply system, 1–47 description, 1–47 description, 1–47 distribution, 1–47 distribution, 1–49 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergency descent, 5–30 Emergency descent, 5–30 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | controls, 1-84C                                                   |
| Descent, 3-20 emergency, 5-30 Dimensions and weight, 1-3 Direction finder (ADF) group AN/ARA-25, 1-60 controls, 1-60 description, 1-60 normal operation, 1-60 rendezvous using, 4-3 Ditching, 5-37 Dives ejection capability, 5-25 flight characteristics, 4-13 Dumping fuel, 1-21, 5-29  Egress, emergency, 5-4 Ejection, 5-21 differ ejection, 5-28 dive capability, 5-24A, 5-25  ejection saequence, 1-84E emergency release from the seat, 1-84B operation, 1-84B pilot's equipment, 1-85 Electrical fire, inflight, 5-18 Electrical supply system, 1-47 description, 1-47 distribution, 1-49 system, 1-48 system controls, 1-47 Electrical system malfunctions, 5-13 complete failure, 5-14 main generator failure, 5-13 Emergency depressurization, 5-19 Emergency depressurization, 5-19 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                            |                                                                   |
| emergency, 5-30 Dimensions and weight, 1-3 Direction finder (ADF) group AN/ARA-25, 1-60 controls, 1-60 description, 1-60 normal operation, 1-60 rendezvous using, 4-3 Ditching, 5-37 Dives ejection capability, 5-25 flight characteristics, 4-13 Dumping fuel, 1-21, 5-29  Egress, emergency, 5-4 Egress, emergency, 5-4 Egress, emergency, 5-4 Egress, emergency, 5-28 dive capability, 5-28 dive capability, 5-28 dive capability, 5-28 dive capability, 5-24A, 5-25  emergency release from the seat, 1-84B operation, 1-84 eperation, 1-85 Electrical fire, inflight, 5-18 Electrical supply system, 1-47 description, 1-47 distribution, 1-49 system, 1-48 system controls, 1-47 Electrical system malfunctions, 5-13 complete failure, 5-14 main generator failure, 5-13 Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Descent, 3-20                                | ejection sequence, 1-84E                                          |
| Dimensions and weight, 1–3 Direction finder (ADF) group AN/ARA-25, 1–60 controls, 1–60 description, 1–60 normal operation, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection capability, 5–25 flight characteristics, 4–13 Dumping fuel, 1–21, 5–29  Egress, emergency, 5–4 Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  Dimensions and weight, 1–3  operation, 1–84B pilot's equipment, 1–85 Electrical fire, inflight, 5–18 Electrical supply system, 1–47 description, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–14 main generator failure, 5–13 Emergency descent, 5–30 Emergency descent, 5–30 Emergency egress, 5–4 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                                                   |
| Electrical fire, inflight, 5–18 Electrical power requirements, external, 1–88 Electrical supply system, 1–47 description, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection capability, 5–25 flight characteristics, 4–13 Dumping fuel, 1–21, 5–29  Electrical fire, inflight, 5–18 Electrical supply system, 1–47 description, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  Electrical supply system, 1–47 description, 1–47 description, 1–47 description, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency depressurization, 5–19 Emergency egress, 5–4 illustration, 5–5 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dimensions and weight, 1-3                   | ± '                                                               |
| description, 1–60 normal operation, 1–60 rendezvous using, 4–3 Ditching, 5–37 Dives ejection capability, 5–25 flight characteristics, 4–13 Dumping fuel, 1–21, 5–29  Electrical power requirements, external, 1–88 Electrical supply system, 1–47 description, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  Electrical power requirements, external, 1–88 Electrical supply system, 1–47 description, 1–47 electrical system malfunctions, 5–13 complete failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency egress, 5–4 illustration, 5–5 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Direction finder (ADF) group AN/ARA-25, 1-60 |                                                                   |
| lectrical supply system, 1–47 rendezvous using, 4–3  Ditching, 5–37  Dives ejection capability, 5–25 flight characteristics, 4–13  Dumping fuel, 1–21, 5–29  Electrical supply system, 1–47 description, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  Electrical supply system, 1–47 description, 1–47 electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system, 1–47 description, 1–49 system controls, 1–47 Electrical supply system ontrols, 1–47 Electrical supply system follows:  Electrical supply system | controls, 1-60                               |                                                                   |
| description, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Egress, emergency, 5–4 Ejection, 5–21 after ejection, 5–28 dive capability, 5–24A, 5–25  description, 1–47 distribution, 1–49 system, 1–48 system controls, 1–47 Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency entrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | description, 1-60                            |                                                                   |
| Ditching, 5-37  Dives  ejection capability, 5-25 flight characteristics, 4-13  Dumping fuel, 1-21, 5-29  E  E  E  E  E  E  E  E  E  E  E  E  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | normal operation, 1–60                       |                                                                   |
| Dives  ejection capability, 5-25 flight characteristics, 4-13  Dumping fuel, 1-21, 5-29  Electrical system malfunctions, 5-13 complete failure, 5-14 main generator failure, 5-13 Emergencies (see specific emergency) Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Ejection, 5-21 after ejection, 5-28 dive capability, 5-24A, 5-25  Espection capability, 5-24A, 5-25  system, 1-48 system controls, 1-47 Electrical system malfunctions, 5-13 complete failure, 5-14 main generator failure, 5-13 Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rendezvous using, 4-3                        |                                                                   |
| ejection capability, 5-25 flight characteristics, 4-13  Dumping fuel, 1-21, 5-29  E  E  E  E  E  E  E  E  E  E  E  E  E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ditching, 5–37                               |                                                                   |
| Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergencies (see specific emergency) Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency entrance, 5–4 Eigection, 5–21  after ejection, 5–28 dive capability, 5–24A, 5–25  Electrical system malfunctions, 5–13 complete failure, 5–14 main generator failure, 5–13 Emergency depressurization, 5–19 Emergency descent, 5–30 Emergency estrance, 5–4 illustration, 5–5 Emergency egress, 5–4 Emergency power package, flight characteristics, 4–12 Engine, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dives                                        |                                                                   |
| flight characteristics, 4-13  Dumping fuel, 1-21, 5-29  Egress, emergency, 5-4  Egress, emergency, 5-21  after ejection, 5-28  dive capability, 5-24A, 5-25  Electrical system instructions, 3-13  complete failure, 5-14  main generator failure, 5-13  Emergency (see specific emergency)  Emergency descent, 5-30  Emergency entrance, 5-4  illustration, 5-5  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ejection capability, 5—25                    |                                                                   |
| main generator failure, 5-13 Emergencies (see specific emergency) Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Ejection, 5-21 after ejection, 5-28 dive capability, 5-24A, 5-25  main generator failure, 5-13 Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency entrance, 5-4 illustration, 5-5 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                                                                   |
| Emergencies (see specific emergency) Emergency depressurization, 5-19 Emergency descent, 5-30 Emergency descent, 5-4  Egress, emergency, 5-4 Ejection, 5-21  after ejection, 5-28 dive capability, 5-24A, 5-25  Emergency especific emergency) Emergency descent, 5-30 Emergency entrance, 5-4  illustration, 5-5 Emergency egress, 5-4 Emergency power package, flight characteristics, 4-12 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dumping fuel, 1-21, 5-29                     |                                                                   |
| Egress, emergency, 5-4  Egress, emergency, 5-4  Ejection, 5-21  after ejection, 5-28  dive capability, 5-24A, 5-25  Emergency descent, 5-30  Emergency entrance, 5-4  illustration, 5-5  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                   |
| Egress, emergency, 5-4  Egress, emergency, 5-4  Ejection, 5-21  after ejection, 5-28  dive capability, 5-24A, 5-25  Emergency descent, 5-30  Emergency entrance, 5-4  illustration, 5-5  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                   |
| Egress, emergency, 5-4  Egress, emergency, 5-4  Ejection, 5-21  after ejection, 5-28  dive capability, 5-24A, 5-25  Emergency entrance, 5-4  illustration, 5-5  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r                                            |                                                                   |
| Egress, emergency, 5-4  Ejection, 5-21  after ejection, 5-28 dive capability, 5-24A, 5-25  Eillustration, 5-5  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E .                                          |                                                                   |
| Ejection, 5-21  after ejection, 5-28 dive capability, 5-24A, 5-25  Emergency egress, 5-4  Emergency power package, flight characteristics, 4-12  Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Foress emergency 5_4                         |                                                                   |
| after ejection, 5-28 Emergency power package, flight characteristics, 4-12 dive capability, 5-24A, 5-25 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                                                   |
| dive capability, 5-24A, 5-25 Engine, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·                                        |                                                                   |
| enect of fale of descent on capability, 3–22, 3–22A Controls, 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                   |
| pilot's equipment, 1-84 cooling flow limitations, 1-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                   |
| preparation, 5–21 dead engine landing, 5–37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                   |
| procedure, 5–26, 5–27 dead engine landing, 5–38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                   |
| sequence, 1–82, 1–83 description, 1–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                                            |                                                                   |
| system inspection, 3-7, 3-8, 3-9 failure, 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                                   |
| takeoff and landing capability, 5-23, 5-24 fire inflight, 5-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | ,                                                                 |

| fire on ground, 5–3                                           | Fire                                                                              |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| fuel pump failure, 5-12                                       | cockpit smoke and fumes, 5-18                                                     |
| fuel schematic, 1-13                                          | electrical, 5–18                                                                  |
| ground operation danger areas, 1-90                           | engine, on ground, 5-3                                                            |
| limitations, 1–95                                             | engine or engine compartment, 5–18                                                |
| malfunctions, 5–7                                             | wheel well, 5–18                                                                  |
| oil schematic, 1-14<br>oil system, servicing, 1-87            | Fire control system, 8–2                                                          |
| operating limitations, 1-96                                   | computer group warmup, 8-4<br>description, Aero 10L-1 (F-8A aircraft), 8-2        |
| operation, 1–12                                               | description, AN/AWG-3 (F-8B aircraft), 8-3                                        |
| purging, 3-10A                                                | preflight check, 8-4                                                              |
| starter requirements, 1-88                                    | radar warmup procedure (AN/APG-56), 8-4                                           |
| starting, ground controlled, 3-10A                            | radar warmup procedure (AN/APS-67), 8-4                                           |
| starting, pilot controlled, 3-10                              | Fire detector system, 1-57                                                        |
| thrust check data, 3—16                                       | controls, 1-57                                                                    |
| unsatisfactory starts, 3-10A                                  | description, 1-57                                                                 |
| Engine limitations, 1–95                                      | Fixed ranging, 8-10                                                               |
| fuel grade, 1–95                                              | Flameout                                                                          |
| operation, 1–95<br>overtime operation, 1–95                   | afterburner, 5-10                                                                 |
| Engine malfunctions, 5–7                                      | engine, 5–7                                                                       |
| failure to respond to throttle, 5–8                           | Flight characteristics                                                            |
| flameout, 5–7                                                 | aerobatics, 4-14                                                                  |
| incorrect or fluctuating oil pressure, 5–8                    | angle of attack, 4–14                                                             |
| instability, 5–7                                              | armament, 4–14                                                                    |
| turbine failure, 5-7                                          | cruise droop, 4–11<br>dives, 4–13                                                 |
| Entrance, emergency, 5-4                                      | emergency power package, 4–12                                                     |
| Entry, cockpit, 3–4                                           | flight controls, 4–10                                                             |
| Equipment, personal flying, 2-3                               | gun firing, 4–14                                                                  |
| pilot's equipment, 1–84                                       | level flight, 4–13                                                                |
| Exhaust nozzle, afterburner (see nozzle, afterburner exhaust) | maneuvering flight, 4-13                                                          |
| Exterior inspection, 3–4                                      | Sidewinder missiles, 4-14                                                         |
| illustration, 3-5 Exterior lights, 1-50                       | spins, 4–18                                                                       |
| controls, 1–50                                                | stabilization, 4-12                                                               |
| description, 1–50                                             | stalls, 4–15                                                                      |
| illustration, 1–51                                            | trimming, 4–12                                                                    |
| External stores limitations, 1-97                             | Flight controls, 1-25                                                             |
| carrier, 1–97                                                 | ailerons and spoilers, flight characteristics, 4-10                               |
| tow target, 1–97                                              | controls, 1–25                                                                    |
| F                                                             | description, 1–25                                                                 |
| Failures (see individual failure and/or emergency)            | power controls, flight characteristics, 4-11 rudder, flight characteristics, 4-11 |
| Falling leaf, 4–20                                            | speed brake, flight characteristics, 4–11                                         |
| illustration, 4–22                                            | unit horizontal tail, flight characteristics, 4–10                                |
| Familiarization and transition, 4-2                           | Flight deck operation, 3–26                                                       |
| briefing, 4–2 confidence maneuvers, 4–2                       | engine start, 3–26                                                                |
| inflight, 4–2                                                 | poststart, 3–26                                                                   |
| preflight, 4–2                                                | preflight, 3–26                                                                   |
| return and landings, 4-2                                      | taxi, 3-26                                                                        |
| start, 4–2                                                    | Flight instruments, 1-57                                                          |
| takeoff, 4–2                                                  | acceleration indicator, 1-57                                                      |
| taxi, 4–2                                                     | airspeed-Mach number indicator, 1-57                                              |
| Field arresting gear, 5-36                                    | altimeter, 1–57                                                                   |
| aborted takeoff, 5–36B                                        | angle-of-attack indicator, 1-57                                                   |
| long field, 5–36B                                             | attitude indicator, 1–57                                                          |
| short field, 5–36B                                            | rate-of-climb indicator, 1–57<br>turn-and-bank indicator, 1–57                    |
| Field landing, 3–21 arrestments, 3–24                         | turn-and-pank indicator, 1-57                                                     |
| barricade arrestment, 5-36B                                   | Flight qualification requirements, 2-2                                            |
| illustration, 3–22                                            | additional phase, 2–3                                                             |
| field arrestment data, 5–36A                                  | currency, aircraft ferry, and requalification, 2-3                                |
| mirror landing practice, 3-23                                 | familiarization phase, 2-2                                                        |
| Field mirror landing practice, 3-23                           | general, 2-3                                                                      |
| approach and landing, 3-23                                    | Flight test, 4–9                                                                  |
| pattern, 3–23                                                 | Flight training, 2-2                                                              |
| preflight inspection, 3–23                                    | Flying equipment, personal, 2-3                                                   |
| radio procedure, 3–23                                         | pilot's equipment, 1—84                                                           |
| takeoff, 3–23<br>Field takeoff emergencies, 5–6               | Formation                                                                         |
| afterburner failure, 5–6                                      | rendezvous, 4–3                                                                   |
| blown tire, 5–6                                               | parade and tactical, 4–3                                                          |
| engine failure, 5–6                                           | Formations, parade and tactical, 4–3                                              |
| suspected hot brakes, 5-6                                     | column, 4–3                                                                       |

#### NAVAIR 01-45HHA-501

| cross under, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gun firing, 8–8                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| diamond, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | normal operation, 8-10                                        |
| diamond (illustration), 4–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | radar ranging (Aero IOL-1), 8-6                               |
| echelon, 4–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | radar ranging (AN/AWG-3), 8-9                                 |
| fingertip and echelon, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | total lead angle test, 8-10                                   |
| fingertip parade, 4-4<br>free cruise, 4-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| free cruise (illustration), 4-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                             |
| instrument parade, 4–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |
| parade, 4-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Handling                                                      |
| parade and tail chase columns, 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | danger areas, 1–88                                            |
| tactical, 4-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | danger areas, engine ground operation, 1-90                   |
| Formations, rendezvous, 4-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | engine starter requirements, 1-88                             |
| ADF, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | external electrical power requirements, 1-88                  |
| low visibility, 4–8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | minimum turning radius, 1-88                                  |
| running, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | minimum turning radius (illustration), 1-89                   |
| safety during, 4–8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hand signals, 7-3                                             |
| TACAN, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aircraft starting and pretaxi signals, 7-4, 7-5               |
| TACAN (illustration), 4–8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general signals, 7–6                                          |
| Free cruise formation, 4–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hangar deck operation, 3-26                                   |
| Fuel availability, 1–94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hook, arresting, 1–45                                         |
| Suel boost nump failure 5 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | controls, 1–45                                                |
| Fuel boost pump failure, 5–12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | description, 1-45                                             |
| Fuel control unit failure, 5–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | failure, 5-35                                                 |
| Fuel system, 1–17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | system illustration, 1-45                                     |
| acceleration limitations, 1-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hot brakes, 5-3                                               |
| aircraft fuel, 1—18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | suspected, 5–6                                                |
| cell pressurization and venting, 1-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hot weather and desert procedures, 6-9                        |
| controls, 1–21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | before leaving aircraft, 6-9                                  |
| description, 1-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | descent and landing, 6-9                                      |
| dumping, 1-21, 5-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | takeoff, 6-9                                                  |
| fueling, 1–86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| malfunctions, 5-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hydraulic power control supply (see power control hydraulic   |
| management, 1-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | supply)                                                       |
| quantities, 1-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hydraulic utility supply system (see utility hydraulic supply |
| weights, 1–19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system)                                                       |
| uel system malfunctions, 5-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hydroplaning on wet runways, 6-10                             |
| aft transfer pump failure, 5-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |
| engine fuel pump failure, 5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               |
| fuel boost pump failure, 5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Icing, rain, and snow procedures, 6-8                         |
| fuel control unit failure, 5-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Identification set AN/APX-6B, coder group AN/APA-89,          |
| leaks, 5-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-61                                                          |
| transfer system failures, 5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | description, 1–61                                             |
| transfer system shutoff failures, 5-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| wing fails to transfer fuel, 5-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flight characteristics, 4-11                                  |
| 7 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 | IFF controls, 1–61                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IFF radar controls, 1—62                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | normal operation, 1–61                                        |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Indicating system, angle-of-attack, 1-55                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | description, 1-55                                             |
| GCA (PAR) approach, 6-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | indications, 1—56                                             |
| typical, 6–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | normal operation, 1-55                                        |
| Gear, landing (see landing gear)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Indicator                                                     |
| Gear steering, nose (see nose gear steering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | acceleration, 1-57                                            |
| Generator, main, failure, 5-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | airspeed, loss of, 5-30                                       |
| Glide slope, 3–29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | airspeed-Mach number, 1-57                                    |
| Gliding distance, 5–39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | angle-of-attack, 1-57                                         |
| Ground checks, 3–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | attitude, 1–57                                                |
| Ground-controlled approach, 6–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | radio altitude, 1-63                                          |
| Ground emergencies, 5–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rate-of-climb, 1-57                                           |
| brake failure, 5–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | turn-and-bank, 1-57                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Indoctrination, 2-1                                           |
| emergency entrance, 5-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flight qualification requirements, 2-2                        |
| emergency entrance (illustration), 5-5<br>engine fire, 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flight training, 2–2                                          |
| hot brakes, 5–3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ground training, 2-1                                          |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | personal flying equipment, 2-3                                |
| Ground training requirements, 2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| general, 2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Inflight emergencies, 5-7                                     |
| supplementary, 2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | afterburner malfunctions, 5-11                                |
| Gun camera provisions, 1–85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | air-conditioning failures, 5-19                               |
| Gun system 8–6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | airstarting, 5-9                                              |
| controls, 8-6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ejection or bailout, 5-21                                     |
| description, 8-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | electrical malfunctions, 5-13                                 |
| fixed ranging, 8-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emergency depressurization, 5-19                              |
| flight characteristics, 4-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emergency descent, 5–30                                       |

| engine malfunctions, 5-7                        | canopy, 5–30                                         |
|-------------------------------------------------|------------------------------------------------------|
| fuel dumping, 5-29                              | missiles, 5-29, 8-14                                 |
| fuel system malfunctions, 5–11                  |                                                      |
| inflight fires/cockpit smoke and fumes, 5-18    | L                                                    |
| jettisoning canopy, 5-30                        |                                                      |
| jettisoning missiles, 5–29                      | Landing                                              |
| lateral control malfunctions, 5-17              | after, 3–24                                          |
| loss of airspeed indicator, 5-30                | carrier, 3–29                                        |
| oxygen system, 5–19                             | carrier procedure, 3–30                              |
| power control hydraulic system failures, 5-14   | checklist, 3–20A                                     |
| stalls, spins, and uncontrolled flight, 5-30    | crosswind, 3–21                                      |
| stuck throttle, 5–8                             | dead engine, 5–37                                    |
| stuck throttle approach, 5–8A                   | dead engine (illustration), 5–38                     |
| trim and stabilization system failures, 5-17    | field, 3–22                                          |
| Inflight fires/cockpit smoke and fumes, 5-18    | field mirror, 3–23                                   |
| cockpit smoke and fumes, 5-18                   | rough-field, 5–37                                    |
| electrical fire, 5-18                           | touch-and-go, 3–24                                   |
| engine and engine compartment fire, 5-18        |                                                      |
| wheel well fire, 5-18                           | Landing emergencies, 5–31                            |
| Inflight refueling, 4-8A                        | dead engine, 5–37                                    |
| air refueling signals, 4-9                      | dead engine (illustration), 5–38                     |
| breakaway, 4-9                                  | ditching, 5–37                                       |
| landing configurations, 4-9                     | field arresting gear, 5–36                           |
| limitations, 4–8A                               | field arrestment data, 5–36A                         |
| operation of probe switch, 4–9                  | glide distance, 5–39                                 |
| pre-refueling check, 4–8B                       | illustration, 5-32, 5-33                             |
| probe control, 1–22                             | landing with damaged landing gear/hook, 5-34         |
| refueling precautions, 4–8B                     | landing with gear out of position, 5–31              |
| system controls, 1–21                           | landing with utility hydraulic failure, 5–37         |
|                                                 | landing with wing down, 5-35                         |
| system description, 1–21 technique, 4–8B        | precautionary approach, 5-39                         |
|                                                 | rough-field, 5–37                                    |
| Inspection                                      | use of emergency gear, 5-36                          |
| ejection system, 3–7, 3–8, 3–9<br>exterior, 3–4 | Landing gear, 1-40                                   |
| exterior, 3—4 exterior (illustration), 3—5      | controls, 1–40                                       |
| Instrument                                      | description, 1-40                                    |
| aerobatics, 6–2                                 | system, 1-41                                         |
| board, (F-8A), 1–5                              | Landing gear emergencies                             |
| board (F-8B), 1—6                               | all gear up, 5-31                                    |
| checklist, takeoff, 3–14                        | any gear failure with failure of wing to raise, 5-35 |
| markings, operating limitations, 1-92           | blown tires, 5–35                                    |
| parade formation, 4—5                           | gear indicator barberpole, 5-34                      |
| Instrument procedures, actual, 6-3              | main gear severed on landing, 5-34                   |
| before takeoff, 6-3                             | main gear up, 5-31                                   |
| CCA approach, 6-5                               | nose gear canted, 5-34                               |
| climb, 6–3                                      | nose gear up or trailing, 5-31                       |
| GCA (PAR) approach, 6-4                         | nose wheel missing, 5-34                             |
| ground controlled approach, 6–7                 | one main gear up and nose gear up or trailing, 5-34  |
| jet penertation and TACAN approach, 6–6         | one main gear up or trailing, 5-34                   |
| lost wingman procedure, 6-4                     | one main wheel missing, 5-35                         |
| penetrations, 6-4                               | Lateral controls malfunctions, 5-17                  |
| prior to descent, 6–3                           | Launch operations, 3–27                              |
| takeoff, 6–3                                    | aircraft or catapult malfunction, 3-28               |
| Instrument procedures, simulated, 6-2           | catapult hookup, 3–27                                |
| confidence maneuvers, 6-2                       | catapult launch (CRT), 3-28                          |
| safety precautions, 6–2                         | catapult launch (MRT), 3-28                          |
| Instruments, flight, 1–57                       | catapult trim setting, 3—27                          |
| acceleration indicator, 1–57                    | characteristics, 3-28                                |
| airspeed-Mach number indicator, 1-57            | minimum end airspeed launching, 3-28                 |
| altimeter, 1–57                                 | night catapult launch, 3-28                          |
| angle-of-attack indicator, 1–57                 | trim settings, 3–27                                  |
| attitude indicator, 1–57                        | Leaks, fuel, 5-12A                                   |
| rate-of-climb indicator, 1–57                   | Level flight characteristics, 4-13                   |
| turn-and-bank indicator, 1–57                   | clean configuration, subsonic, 4-13                  |
| Interior lights, 1–52                           | clean configuration, supersonic, 4-13                |
| controls, 1–52                                  | landing configuration, 4–13                          |
| controls, 1–52                                  | maximum speed, 4–13                                  |
| description, 1–52                               | Lights                                               |
| description, 1-72                               | exterior, 1–50                                       |
|                                                 | interior, 1–52                                       |
| J                                               | Limitations, operating                               |
|                                                 | acceleration, 1-94                                   |
| Jet penetration and TACAN approach, 6–6         | airspeed, 1–92                                       |
| Jettisoning                                     |                                                      |

#### NAVAIR 01-45HHA-501

| banner towing cooling flow, 1—97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| center-of-gravity, 1-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
| cooling flow, 1–96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oil system, 1–12                                      |
| engine, 1–95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | schematic, 1—14                                       |
| engine (illustration), 1–96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | servicing, 1–87                                       |
| external stores, 1–97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operating limitations (see limitations)               |
| fuel availability, 1–94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Oxygen system, 1-74                                   |
| fuel system acceleration, 1–94 fuel system acceleration (illustration), 1–95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | controls, 1–76                                        |
| instrument markings, 1–92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | controls (illustration), 1—77                         |
| instrument markings (illustration), 1–93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | description, 1-74                                     |
| maneuvers, 1–94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | duration, 1–75                                        |
| power control hydraulic system, 1-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | normal procedure, 1–74                                |
| Sidewinder missile system, 8-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | servicing, 1–87 Oxygen system emergencies, 5–19       |
| trim and stabilization system, 1-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | contamination, 5–20                                   |
| weight, 1–97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | failure or main supply empty, 5-20                    |
| Line operations, 3–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | low pressure or quantity, 5–19                        |
| accepting the aircraft, 3–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                     |
| cockpit checklists, 3–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                     |
| cockpit entry, 3–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | г                                                     |
| cockpit entry (illustration), 3—6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |
| ejection system inspection, 3–7, 3–8, 3–9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parade formations (see formations)                    |
| exterior inspection, 3–4 exterior inspection (illustration), 3–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Penetrations, 6-4                                     |
| Loss of airspeed indicator, 5–30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | jet, 6-6                                              |
| Loss of an speed midicator, 5–50  Lost wingman procedure, 6–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | landing configuration, 6-4                            |
| Low visibility rendezvous, 4–8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | radar controlled, 6-4                                 |
| 20 W William Felide Lyous, 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | standard, 6-4                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Personal flying equipment, 2-3                        |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pilot's equipment, 1—84                               |
| Def 16 - which is the second of the second o | Pilot's equipment, 1—84                               |
| Malfunctions (see specific item or system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | personal flying equipment, 2-3                        |
| Maneuver limitations, 1–94 Maneuvering flight characteristics, 4–13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pneumatic supply system, 1–45<br>description, 1–45    |
| aerobatics, 4–14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | schematic, 1–46                                       |
| dives, 4–13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | servicing, 1–87                                       |
| MA-1 compass (see compass, MA-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power control hydraulic supply, 1-23                  |
| Map case provisions, 1–85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | controls, 1–23                                        |
| Meatball, flying the, 3-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | description, 1-23                                     |
| carrier landing procedure, 3-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | failure of both PC systems, 5-14A                     |
| final approach, 3–31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | failure of one PC system, 5-14A                       |
| initial approach, 3–31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | limitations, 1–92                                     |
| middle approach, 3–31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | schematic, 1–24                                       |
| Minimum turning radius, 1-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | servicing, 1–87                                       |
| illustration, 1–89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Precautionary approach, 5–39 Preflight checks         |
| Mirrors, rear vision provisions, 1–85 Miscellaneous equipment, 1–84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | field mirror landing practice, 3–23                   |
| catapult provisions, 1–84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fire control system, 8–4                              |
| gun camera provisions, 1–84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | flight deck, 3–26                                     |
| map case, 1–84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | night flying, 3-25                                    |
| rear vision mirrors, 1–84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure suit, 1-73                                   |
| Missile system, Sidewinder (see Sidewinder missile (AIM-9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | controls, 1–73                                        |
| system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | description, 1-73                                     |
| Missiles, jettisoning, 5–29, 8–14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Probe, IFR (see inflight refueling)                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump failure                                          |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aft transfer, 5-12A                                   |
| IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | engine fuel, 5–12                                     |
| NATOPS evaluation report form, 10—21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fuel boost, 5–12                                      |
| Night flying, 3–25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purging engine, 3–10A                                 |
| formation, 3–25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| preflight, 3–25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                                                     |
| takeoff, 3–25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IX.                                                   |
| Nose gear steering system, 1-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radar ranging                                         |
| controls, 1–43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gun system, 8-6, 8-9                                  |
| description, 1–42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sidewinder missile system, 8-13                       |
| system schematic, 1–42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Radar set (radio altimeter) AN/APN-22, 1-63           |
| Nozzle, afterburner exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | control and indications, 1-63                         |
| asymmetrical opening, 5–11 failure to close, 5–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | description, 1–63                                     |
| failure to close, 5–11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | normal operation, 1–63                                |
| illustration, 1–16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | radio altitude indicator, 1–63 Radar warmup procedure |

| AN/APG-56, 8-4                                | arming and dearming, 7—14                             |
|-----------------------------------------------|-------------------------------------------------------|
| AN/APS-67, 8-4                                | electronic communications and navigation signals, 7—9 |
| Radio communications, 7-3                     | emergency ground crew to pilot, 7-15                  |
| discipline, 7–3                               | emergency signals between aircraft, 7—13              |
| procedures, 7–3                               | flight signals between aircraft penetration           |
| Radio equipment, 1-58                         | instrument approach (no radio), 7—15                  |
| description, 1-58                             | formation, 7–8                                        |
| electrical equipment, 1-58                    | general, 7–6                                          |
| Radio navigation (TACAN) AN/ARN-21D, 1-64     | postflight, ground crew to pilot, 7-14                |
| controls, 1–64                                | takeoff, inflight, breakup and landing, 7–7           |
| controls (typical), 1–65                      | Simulated instrument procedures, 6-2                  |
| description, 1-64                             | confidence maneuvers, 6-2                             |
| normal operation, 1-64                        | safety precautions, 6-2                               |
| rendezvous, 4–8                               | Snow, icing, and rain procedures, 6-8                 |
| rendezvous using, 4-3                         | Speed brake, 1–38                                     |
| Rain, icing, and snow procedures, 6-8         | controls, 1–38                                        |
| Rain removal, 1-72                            | description, 1-38                                     |
| Rate-of-climb indicator, 1-57                 | system, 1-39                                          |
| Rear vision mirrors, 1-85                     | Spin recovery, 4–18A                                  |
| Refueling, inflight (see inflight refueling)  | direction of rotation, 4-19                           |
| Rendezvous, formation, 4-3                    | recognition, 4-19                                     |
| ADF, 4–3                                      | recovery behavior, 4-20                               |
| low visibility, 4–8                           | recovery procedure, 4-18A                             |
| running, 4-3                                  | recovery to level flight, 4-20                        |
| safety during, 4-8A                           | trim settings, 4-20                                   |
| TACAN, 4–3                                    | use of landing droop, 4-20                            |
| TACAN (illustration), 4–8                     | use of throttle, 4–18A                                |
| Requirements, training                        | Spins, 4–18                                           |
| flight, 2–2                                   | characteristics (electrical and engine), 4-18A        |
| flight qualification, 2-2                     | characteristics (general), 4-18                       |
| ground, 2-1                                   | emergency procedures, 5-30                            |
| Rough field landing, 5-37                     | falling leaf, 4-20                                    |
| Rudder, flight characteristics, 4-11          | falling leaf (illustration), 4—22                     |
| Running rendezvous, 4-3                       | recovery, 4–18A                                       |
| , -                                           | spin, 4-21                                            |
| S                                             | summary, 4-20                                         |
|                                               | Stabilization (see trim and stabilization)            |
| Scramble takeoffs, 3–19                       | Stalls                                                |
| Seat, ejection (see ejection seat)            | accelerated, 4-15                                     |
| Servicing, 1–86                               | compressor, 1–15                                      |
| engine oil, 1–87                              | emergency procedures, 5-30                            |
| fuel system, 1–86                             | normal or 1g, 4-15                                    |
| oxygen, 1–87                                  | recovery procedures, 4-17                             |
| pneumatic, 1–87                               | speeds, 4–16                                          |
| power control hydraulic, 1–88                 | summary, 4–17                                         |
| servicing points, 1–88                        | Standardization evaluation                            |
| tires, 1–88                                   | concept, 10–2                                         |
| utility hydraulic, 1-87                       | definitions, 10-2                                     |
| Shore-based procedures, 3–4                   | final grade determination, 10-10                      |
| after landing, 3-24                           | flight evaluation, 10-3                               |
| climb, cruise, and descent, 3-19              | ground evaluation, 10-2                               |
| ejection system, MK-F5, -F5A, inspection, 3—7 | implementation, 10-2                                  |
| ejection system, MK-F7, inspection, 3—8B      | NATOPS evaluation forms, 10-20                        |
| field mirror landing practice, 3-23           | NATOPS evaluation question bank, 10-10                |
| line operations, 3–4                          | records and reports, 10-10                            |
| night flying, 3–25                            | Starting engine, 3–10                                 |
| starting engine, 3–10                         | false start or hung start, 3–10A                      |
| taxi and takeoff, 3-14                        | ground checks, 3–11                                   |
| touch-and-go landing, 3-24                    | prestart check, 3–10                                  |
| traffic pattern and landing, 3-20A            | purging engine, 3–10A                                 |
| wave-off, 3-24                                | starting engine (ground controlled), 3-10A            |
| Sidewinder missile (AIM-9), 8-10              | starting engine (pilot controlled), 3–10              |
| flight characteristics, 4–14                  | unsatisfactory engine starts, 3–10A                   |
| Signals                                       | Stuck throttle                                        |
| air refueling, 7—12                           | in afterburner, 5–11                                  |
| aircraft and engine operation, 7–11           | in normal range, 5–8                                  |
| and and angles about and / / 11               |                                                       |
| aircraft starting and pretaxi, 7—4, 7—5       | Supply systems (see individual system)                |

|                                                                        | failure of roll trim and stabilization, 5–17              |
|------------------------------------------------------------------------|-----------------------------------------------------------|
| TACAN (radio navigation) AN/ARN-21B or -21D, 1-64                      | failure of yaw trim and stabilization, 5–17               |
| controls, 1-64                                                         | flight characteristics, 4–12                              |
| controls (typical), 1–65                                               | limitations, 1–94                                         |
| description, 1-64                                                      | schematic, 1–27, 1–28, 1–29 Turn-and-bank indicator, 1–57 |
| normal operation, 1-64                                                 | •                                                         |
| rendezvous, 4–3                                                        | Turning radius, minimum, 1–88                             |
| rendezvous (illustration), 4–8                                         | illustration, 1—89                                        |
| Tactical formation, 4-3                                                | Two-position wing, 1–31                                   |
| Tail, unit horizontal, flight characteristics, 4–10 Takeoff, 3–14, 6–3 | controls, 1–31<br>description, 1–31                       |
| allowable crosswinds, 3–19                                             | normal operation, 1–33                                    |
| checklist, 3–17                                                        | wing and leading edge, 1–34                               |
| crosswind, 3–18                                                        | wing incidence change, 1–32                               |
| formation, 3–19                                                        |                                                           |
| general signals, 7–6                                                   | U                                                         |
| instrument checklist, 3-14                                             |                                                           |
| MRT/CRT, 3–17                                                          | Unit horizontal tail, flight characteristics, 4-10        |
| scramble, 3–19                                                         | Unsatisfactory airstart, 5-10                             |
| takeoff, inflight, breakup and landing signals, 7–7                    |                                                           |
| thrust check data, 3–16                                                | Unsatisfactory engine starts, 3–10A                       |
| typical, 3–18                                                          | Utility hydraulic supply system, 1–30                     |
| Takeoff emergencies, 5-6 carrier, 5-6                                  | controls and indicators, 1–31 description, 1–30           |
| field, 5–6                                                             | failure, 5-14A                                            |
| Taxiing, 3–14                                                          | landing with system failure, 5-37                         |
| Temperature, erratic control, 5-19                                     | schematic, 1–30                                           |
| Test, flight, 4–9                                                      | servicing, 1–87                                           |
| Throttle, stuck                                                        | <i>Cit</i> = 0.1                                          |
| in normal range, 5-8                                                   | W                                                         |
| in afterburner, 5-11                                                   | **                                                        |
| Thrust check data, 3–16                                                | Wave-off, 3-24                                            |
| Thunderstorms and turbulence, 6-8                                      | close-in, 3-31                                            |
| Tires                                                                  | fouled-deck, 3-31                                         |
| blown on landing, 5-35                                                 | Weapon systems, 8-1                                       |
| blown on takeoff, 5-6                                                  | armament systems, 8-6                                     |
| servicing, 1–88                                                        | fire control system, 8-2                                  |
| Touch-and-go landing, 3-24                                             | Weather procedures, 6-8                                   |
| Total lead angle test, 8-10                                            | cold weather, 6–9                                         |
| Tow target systems, 8-15                                               | hot weather and desert, 6-9                               |
| AERO 43 and AERO 43M reels, LAU-37/A, 8-16                             | hydroplaning on wet runways, 6-10                         |
| banner towed target equipment, 8-15                                    | icing, rain, and snow, 6-8                                |
| center-of-gravity checklist, 8-22                                      | thunderstorms and turbulence, 6–8                         |
| center-of-gravity tow, 8-15                                            | Weight and dimensions, 1-3                                |
| recovery procedure, 8-17                                               | Weight limitations, 1-97                                  |
| Towing, banner, cooling flow limitations, 1–97                         | Wheel brakes, 1-43                                        |
| Traffic pattern and landing, 3-20A                                     | controls, 1–43                                            |
| crosswind, 3–21                                                        | description, 1-43                                         |
| field landing, 3–21                                                    | system schematic, 1–44<br>Wheel well fire, 5–18           |
| field landing diagram, 3–22                                            |                                                           |
| traffic pattern, 3–20A                                                 | Wing down, landing, 5-35                                  |
| Training flight, 2–2                                                   | Wing tank fuel dumping, 1-21                              |
| ground, 2–1                                                            | Wing, two-position, 1-31                                  |
|                                                                        | controls, 1–31                                            |
| Transfer fuel system failures, 5–12                                    | description, 1-31                                         |
| Transfer fuel system shutoff failures, 5-12A                           | normal operation, 1–31                                    |
| Transfer pump, aft, failure, 5-12A                                     | wing and leading edge, 1-34                               |
| Transition and familiarization (see familiarization and                | wing incidence change, 1–32<br>Wingfold, 1–35             |
| transition)                                                            | controls, 1–38                                            |
| Trim and stabilization system, 1-26                                    | description, 1–35                                         |
| controls, 1–26                                                         | safety inspection ports, 1—37                             |
| description, 1–26                                                      | system schematic, 1—35                                    |
| failure of pitch trim, 5–17                                            | warning flags, 1-36                                       |
|                                                                        |                                                           |