MATH403: Introduction to Abstract Algebra

Michael Li

Preliminary Theorems

Theorem: $a, c \in Z$ are relatively prime if and only if $\exists x, y \in Z$ such that ax + cy = 1 Proof:

- \implies holds by using gcd as a linear combination
- \Leftarrow if $d \mid a$ and $d \mid c$ then $d \mid ax + cy \implies d \mid 1 \implies d = 1$ so 1 is the only common factor of a, b

Groups

Definition: Binary Operation on a set G is a function that assigns each ordered pair of G an element of G

$$f: G \times G \to G$$

Definition: A set G is a **Group** is under a binary operation \circ if the following 3 properties are satisfied

- 1. **Associativity**: \circ is associative so $(\forall a, b, c \in G)[(ab)c = a(bc)]$
- 2. **Identity**: there is an element $e \in G$ such that $(\forall a \in G)[ae = ea = a]$
- 3. Inverses: $(\forall a \in G)(\exists a^{-1} \in G)[aa^{-1} = a^{-1}a = e]$

Definition: A group G is said to be **Abelian** if $(\forall a, b \in G)[ab = ba]$

3 Key Properties of Groups

• Uniqueness of Identity.

Proof: Let (G,\cdot) be a group. Suppose by contradiction that e,e' are distinct identities of G then we have

$$e = ee' = e'$$

Which is a contradiction thus e = e'

• Cancellation Property: $(\forall a, b, c \in G)[ba = c\dot{a} \implies b = c]$

Proof: Note that

$$(b \cdot a) \cdot a^{-1} = b = c = (c \cdot a) \cdot a^{-1}$$

• Each Element Has a Unique Inverse: $(\forall a \in G)(\exists! a^{-1} \in G)[aa^{-1} = e = a^{-1}a]$

Proof: Let (G,\cdot) be a group. Suppose by contradiction that b,c are distinct inverses of $a\in G$. Then we have

$$ab = e = ac$$

However by the cancellation property, b = c. Thus we have a contradiction and a has a unique inverse

Shoes-Socks Property: $(ab)^{-1} = b^{-1}a^{-1}$

Proof: Note that $(ab)(b^{-1}a^{-1}) = e$

Theorem: if $a_1, a_2, \ldots, a_n \in G$ then

$$(a_1 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}$$

Proof by induction:

- Base case $a_1^{-1} = a_1^{-1}$
- IH: Suppose for an arbitrary n ≥ 1, (a₁ ··· a_n)⁻¹ = a_n⁻¹ ··· a₁⁻¹
 IS: Let a = a₁ ··· a_n and b = a_{n+1}, then, using the shoes-socks property and IH, we have that

$$(a_1 \cdots a_{n+1})^{-1} = (ab)^{-1} = b^{-1}a^{-1} = a_{n+1}^{-1} \cdots a_1$$

Subgroups

Definition: Let (G,\cdot) be a group, then $H\subseteq G$ is a subgroup if it is closed under \cdot and closed under inverse $(h \in H \implies h^{-1} \in H)$

Definition: For any $a \in G$

$$\langle a \rangle = \{ a^n \mid n \in Z \}$$

is a subgroup called the **cyclic subgroup generated by** a

- Note: $\langle a \rangle = \langle a^{-1} \rangle$ $(a^{-k} \in \langle a^{-1} \rangle \implies (a^{-k})^{-1} = a^k \in \langle a^{-1} \rangle)$
- Note: $\langle 2a \rangle \leq \langle a \rangle$

Definition: Let (G,\cdot) be a group. Then

$$Z(G) = \{ a \in G \mid (\forall x) [ax = xa] \}$$

is called the **center of** G

• Note: If G is Abelian, then Z(G) = G

Definition: Let (G,\cdot) be a group. Then for $a \in G$

$$C(a) = \{ x \in G \mid ax = xa \}$$

is the **centralizer** for an element $a \in G$

• Note: If G is Abeliean, then C(a) = G

Theorem: Z(G) is a subgroup of G

Proof:

• Closure: for arbitrary $a_1, a_2 \in Z(G)$ we have that

$$(a_1a_2)x = a_1a_2x = a_1xa_2 = xa_1a_2 = x(a_1a_2)$$

• Inverse: for $a \in Z(G)$ we have that

$$a^{-1}(ax)a^{-1} = a^{-1}(xa)a^{-1} \implies xa^{-1} = a^{-1}x$$

Theorem: $H, K \leq G \implies H \cap K \leq G$

Proof: use 2 step subgroup test

- $a, b \in H$ and $a, b \in K \implies ab \in H$ and $ab \in K$ by closure $\implies ab \in H \cap K$
- $a, a^{-1} \in H$ and $a, a^{-1} \in K$ by closure of inverses $\implies a, a^{-1} \in H \cap K$

Cyclic Groups

Definition: A group G is **cyclic** if $\exists a \in G$ such that

$$\langle a \rangle = G$$

so all elements are of the form a^k . Here a is called the **generator** of G

To show that G is cyclic, we need to show

- $G = \langle a \rangle$
- $\langle a \rangle$ has n distinct elements

Definition: The order $a \in G$ is the least positive exponent n such that $a^n = e$

Theorem: For $a \in (G, \cdot)$

- if $|a| = \infty$, $a^i = a^j$ if and only if i = j
- if |a| = n, $a^i = a^j$ if and only if $n \mid i j$

Proof:

For $|a| = \infty$

- If i = j then clearly $a^i = a^j$
- If $a^i = a^j$ where i > j then for m > 0, i = j + m

$$a^i = a^{j+m} = a^j a^m \implies a^m = e$$

Meaning that a has finite order, which is a contradiction. Thus $a^i \neq a^j$

For |a| = n

• If $n \mid i - j \implies a^i = a^j$

Note that $a^i = a^{j+nk} = a^j a^{nk} = a^j$

• If $a^i = a^j \implies n \mid i - j$

We have that $a^{i-j} = e$

If $i = j \to \text{done since } n \mid 0$

If $i \neq j \rightarrow \text{WLOG}$, i > j then we have

$$i = j + m \implies a^{i-j} = a^m$$

Since $a^i = a^j \implies e = a^m$ so we need to show that $n \mid m$

We can use Division Algorithm: $\exists !q,r \in \mathbb{Z}$ such that m=nq+r for $0 \leq r < n$

Then we have $a^m = a^{nq+r} = a^r = e \implies r = 0$ since $0 \le r < n$

Thus we have shown that $n \mid i - j$

Corollary $|a| = |\langle a \rangle|$

Corollary G is cyclic $\implies |G| = |a|$

Corollary |a| = n and $a^k = e \implies n \mid k$

Corollary if $a, b \in G$ have finite order and commute, then |ab| divides lcm(|a|, |b|)

Proof: Let |a| = n, |b| = m, L = lcm(m, n). Then for $r, s \in Z$

$$(ab)^L = a^L b^L = a^{mr} b^{ns} = e$$

Theorem $|a|=n \implies |a^k|=\frac{n}{\gcd(n,k)}$ and $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$

Proof: Let $d = \gcd(n, k)$ and k = dr. Then we have

Since
$$a^k = a^{dr} \implies a^k \in \langle a^d \rangle \implies \langle a^k \rangle \subseteq \langle a^d \rangle$$

By gcd as a linear combo, d = kx + ny for $x, y \in Z$. Then

$$a^d = a^{kx+ny} = a^{kx} \implies a^d \in \langle a^k \rangle$$

Thus $\langle a^d \rangle \subseteq \langle a^k \rangle$

Thus $\langle a^d \rangle = \langle a^k \rangle$

Let $d = \gcd(n, k)$. Clearly, $(a^d)^{n/d} = e$ so we have $|a^d| \leq n/d$

On the other hand, suppose we have i < n/d then $(a^d)^i \neq e$ by the definition of |a| = n.

Thus we have $|a^k| = |a^{\gcd(n,k)}| = n/\gcd(n,k)$

Corollary if G is cyclic, then the order of any element divides |G|

Fundamental Theorem of Cyclic Groups: every subgroup of a cyclic group is cyclic

Proof: Let $H \leq G$

- Case $H = \{e\}$ then H is trivially cyclic
- Case $H \neq \{e\}$ then there is a $b \in H$ such that $b \neq e \implies b = a^k$ for some $k \in Z$

Furthermore, there must be a $c \in H$ such that $c = a^m$ where m is minimal positive power. Clearly by closure $\langle a^m \rangle \subseteq H$

Using the division algorithm, we have $k = mq + r \implies a^r = a^{-mq}a^k \in H$ by closure

However, $0 \le r < m$, thus r = 0 since m is minimal

Thus $b = a^k = a^{mq} \in \langle a^m \rangle$

Thus we have $H = \langle a^m \rangle$

Ways of Testing Non-Cyclic Group

Use **Countability**: R is uncountable but $\langle a^k \rangle$ is countable. Thus R is not cyclic

Use **Abelian**: Any cyclic group is Abelian but GL(2,R) is not Abelian. Thus GL(2,R) is not cyclic

Misc Notes

$$\langle m \rangle \subseteq \langle d \rangle \implies |m| \text{ divides } |d|$$

$$\langle a \rangle \cap \langle b \rangle = \langle lcm(a,b) \rangle$$

Smallest subgroup containing $\langle a \rangle$ and $\langle b \rangle$ is $\langle \gcd(a,b) \rangle$

 $\langle m, n \rangle = \{ mx + ny \mid x, y \in Z \}$ (linear combination of m and n)

Permutations

Let S be an arbitrary set. A **permutation** of S is a bijection $S \to S$.

Then S_n , the group of all permutations of S under composition

Important things to note:

- $|S_n| = n!$
- ϵ is the identity

Theorem: every $\sigma \in S_n$ is a product of disjoint cycles

Proof: take $\sigma \in S_n$.

- If $\sigma = \epsilon = (1) \cdots (n)$ then we are trivially done
- Otherwise start with an arbitrary element c and applying $\sigma(\ldots(\sigma(c)))$ until we get to $\sigma^d(c) = \epsilon$. If this cycles through all possible values, we are done. Otherwise we repeat for the next distinct element
 - Note: this works because we know that there are a finite number of values

Theorem: order of an m-cycle is m. Order of a product of multiple disjoint cycles is the lcm of their orders.

- Note: in general $gh = hg \implies |gh| \neq lcm(|g|, |b|)$. Take for example $G = Z_{30}$
 - Let $g=5=h \implies |g|=6=|h|$. Then g+h=10 but $|g+h|=3\neq lcm(|g|,|h|)=6$. Instead, we showed above that $|gh| \mid lcm(|g|,|h|)$

Proof: Let
$$|c| = m$$
, $|d| = n$, $l = lcm(|c|, |d|)$, and $k = |cd|$

We have
$$(cd)^l = e \implies k \mid l$$

Note that if c, d are disjoint then so are c^k, d^k .

Thus we have $(cd)^k = e \implies c^k d^k = e \implies c^k = d^{-k}$

- d fixes all elements of c
- d^k fixes all elements of c
- c fixes all elements of d
- c^k fixes all elements of d

Thus $c^k = d^{-k} \implies$ all elements are fixed.

Thus
$$c^k = d^{-k} = \epsilon \implies n \mid k, m \mid k \implies l \mid k$$

Theorem: for $S_n, n > 1$, any $\sigma \in S_n$ is a product of 2 cycles (may not be disjoint)

Proof: We can take any cycle c_i of order k in σ such that $c_i = (abc \dots k) = (ak)(aj) \dots (ab)$. We can repeat this for any cycle in σ

Theorem: $\epsilon = c_1 \dots c_r$ (all 2 cycles) $\implies r$ is even

Proof by induction:

$$r = 1 \implies \epsilon \neq (ab) \text{ so } r \neq 1$$

$$r=2 \implies \text{trivially true}$$

IH: For k < r, we have that $\epsilon = c_1 \dots c_k \implies k$ is even

IS: show for $\epsilon = c_1 \dots c_r$. Take the last 2 cycles. Possible cases are

- $(ab)(ab) = \epsilon$
- (ab)(bc) = (ac)(ab)
- (ac)(cb) = (bc)(ab)

• (ab)(cd) = (cd)(ab)

Either we get the first case and then by Strong Induction $c_1
ldots c_{r-2}$ is even or we recurse downard and get the equation $\epsilon = (a?)c'_2
ldots c'_r$. However, the LHS fixes a but the RHS doesn't fix a. Thus we have a contradiction and $\epsilon \neq c_1
ldots c_r$ in the case where r is odd

Theorem: If $\sigma \in S_n$, $n \geq 2$ and $\sigma = c_1 \dots c_r = f_1 \dots f_s$ (2 cycles), then r and f have the same parity

Proof: Note that $\sigma \cdot \sigma^1 = \epsilon$

Then we have $f_s^{-1} \cdots c_1^{-1} d_1 \cdots d_r = \epsilon \implies s + r$ is even by previous theorem

Thus either f, r are both odd or f, r are both even

Definition: $A_k = \{ \sigma \in S_n \mid \sigma \text{ product of even number of 2-cycles} \}$

Theorem: $|A_n| = \frac{|S_n|}{2} = \frac{n!}{2}$

Proof: need to show that $|A_n| = |S_n - A_n|$, or that there is a bijection $f: A_n \to S - A_n$

Take $\sigma \in A_n$ and add a 2-cycle

• $f^{-1}(p) = (12)p$

• $f(f^{-1}(p)) = (12)(12)(p) = p$

Thus there is a bijection and $|A_n| = |S - A_n|$

Misc Notes

How many elements of order 3 are in S_5 ?

$$|\sigma| = lcm(|c_1|, \ldots)$$

So there is a cycle c_i such that $|c_i| = 3$ but we can only have one 3 cycle for any permutation in S_5

Thus we can select 5*4*3/3 unique 3 cycles, so there are 20 elements of order 3 in S_5

Isomorphism

Definition: A function $\phi: G \to G'$ is a **homomorphim** if $\phi(g_1g_2) = \phi(g_1')\phi(g_2')$. If ϕ is a bijection, then it is an **isomorphism**

Properties of Homomorphisms

- For $e \in G$, $\phi(e) = e' \in G'$. Proof: $\phi(ee) = \phi(e)\phi(e) = \phi(e) \implies e'$ is the identity of G'
- For $g \in G$, $\phi(g^{-1}) = (\phi(g))^{-1}$. Proof: $\phi(gg^{-1}) = \phi(e) = \phi(g)\phi(g^{-1}) \implies \phi(g^{-1}) = (\phi(g))^{-1}$

Definition: Automorphism of G is an isomorphic $\phi: G \to G$

- Trivial example is the identity mapping $\phi(a) = ea = a$ for all $a \in G$
- Aut(G) is the set of all automorphisms of G

Example: $f: Z_{10} \to Z_{10}$

- Note that 1 is a generator of Z_{10} thus f(1) must also be a generator so $f(1) = \{1, 3, 7, 9\} = U(1)$
- Since we are working with addition, $f_a(n) = an$

Proof: Aut(G) is a group under function composition

- Given Automorphisms $\phi, \psi, \psi \phi$ is also a bijection thus $(\psi \phi)(ab) = \psi(\phi(ab)) = \psi(\phi(a)\phi(b)) = \psi(\phi(a))\psi(\phi(b)) = (\psi \phi)(a)(\psi \phi)(b)$ is an automorphism and is closed
- Function composition is associative
- The identity mapping I exists where $\phi I = \psi$
- Inverses exists because ϕ is bijective

Proof: U(n) is isomorphic to $Aut(Z_n)$

Proof: Isomorphisms $G \approx H$ are an equivalence relation

- Reflexivity: Identity mapping $I_G: G \to G$ Symmetry: $\phi: G \to H \implies \phi^{-1}: H \to G$ by bijection Transitivity: $\phi: G \to H, \psi: H \to K \implies \psi \phi$ is bijective and is an isomoprhism

Note: Aut(G) is a permutation of G but NOT the converse since |Aut(G)|

Theorem $U(n) \approx \operatorname{Aut}(Z_n)$

Note: $U(p) \approx Z_{p-1}$ where p is a prime since both are cycli of order p-1

Definition: Inner Automorphism of G is $\phi_a(g) = aga^{-1}$ for $g \in G$

Proof: Inn(G) is a group:

- $\phi_a(gg')=aga^{-1}ag'a^{-1}=\phi_a(g)\phi_a(g')$ closure $\phi_a(e)=a^{-1}=e$ identity