CSE215 Foundations of Computer Science

State University of New York, Korea

Proof by contraposition

Review Exercise

Are P-> Q and~Q -> ~P equivalent, and why?

Contraposition, Contrapostive

- contraposition = inference of going from a conditional statement into its logically equivalent contrapositive
- P -> Q
 - contrapositive is ~Q -> ~P
- "If it is raining, then I wear my coat"
 - contrapositive is "If I don't wear my coat, then it isn't raining."
- (This slide is taken from Wikipedia)

Proof by contraposition

- Proposition: P -> Q
- Proof
 - Suppose ~Q
 - •
 - Therefore ~P
- QED.

 Suppose x is an arbitrary integer. Prove: If 7x + 9 is even, then x is odd.

•

Proposition Suppose $x \in \mathbb{Z}$. If 7x + 9 is even, then x is odd.

Proof. (Direct) Suppose 7x + 9 is even.

Thus 7x + 9 = 2a for some integer a.

Subtracting 6x + 9 from both sides, we get x = 2a - 6x - 9.

Thus x = 2a - 6x - 9 = 2a - 6x - 10 + 1 = 2(a - 3x - 5) + 1.

Consequently x = 2b + 1, where $b = a - 3x - 5 \in \mathbb{Z}$.

Therefore x is odd.

Here is a contrapositive proof of the same statement:

Proposition Suppose $x \in \mathbb{Z}$. If 7x + 9 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd.

Thus x is even, so x = 2a for some integer a.

Then 7x + 9 = 7(2a) + 9 = 14a + 8 + 1 = 2(7a + 4) + 1.

Therefore 7x + 9 = 2b + 1, where *b* is the integer 7a + 4.

Consequently 7x + 9 is odd.

Therefore 7x + 9 is not even.

Prove: If $x^2 - 6x + 5$ is even, then x is odd.

Proposition Suppose $x \in \mathbb{Z}$. If $x^2 - 6x + 5$ is even, then x is odd.

Proof. (Contrapositive) Suppose *x* is not odd.

Thus x is even, so x = 2a for some integer a.

So
$$x^2-6x+5=(2a)^2-6(2a)+5=4a^2-12a+5=4a^2-12a+4+1=2(2a^2-6a+2)+1$$
.

Therefore $x^2 - 6x + 5 = 2b + 1$, where *b* is the integer $2a^2 - 6a + 2$.

Consequently $x^2 - 6x + 5$ is odd.

Therefore $x^2 - 6x + 5$ is not even.

Prove: Suppose $x, y \in \mathbb{R}$. If $y^3 + yx^2 \le x^3 + xy^2$, then $y \le x$.

Proof. (Contrapositive) Suppose it is not true that $y \le x$, so y > x. Then y - x > 0. Multiply both sides of y - x > 0 by the positive value $x^2 + y^2$.

$$(y-x)(x^{2} + y^{2}) > 0(x^{2} + y^{2})$$

$$yx^{2} + y^{3} - x^{3} - xy^{2} > 0$$

$$y^{3} + yx^{2} > x^{3} + xy^{2}$$

Therefore $y^3 + yx^2 > x^3 + xy^2$, so it is not true that $y^3 + yx^2 \le x^3 + xy^2$.

Prove: If $x^2 - 6x + 5$ is even, then x is odd.

Proof. (Contrapositive) Suppose *x* is not odd.

Thus x is even, so x = 2a for some integer a.

So
$$x^2-6x+5=(2a)^2-6(2a)+5=4a^2-12a+5=4a^2-12a+4+1=2(2a^2-6a+2)+1$$
.

Therefore $x^2 - 6x + 5 = 2b + 1$, where *b* is the integer $2a^2 - 6a + 2$.

Consequently $x^2 - 6x + 5$ is odd.

Therefore $x^2 - 6x + 5$ is not even.

Prove: Suppose $x, y \in \mathbb{Z}$. If $5 \nmid xy$, then $5 \nmid x$ and $5 \nmid y$.

Proof. (Contrapositive) Suppose it is not true that $5 \nmid x$ and $5 \nmid y$.

By DeMorgan's law, it is not true that $5 \nmid x$ or it is not true that $5 \nmid y$.

Therefore $5 \mid x$ or $5 \mid y$. We consider these possibilities separately.

Case 1. Suppose $5 \mid x$. Then x = 5a for some $a \in \mathbb{Z}$.

From this we get xy = 5(ay), and that means $5 \mid xy$.

Case 2. Suppose $5 \mid y$. Then y = 5a for some $a \in \mathbb{Z}$.

From this we get xy = 5(ax), and that means $5 \mid xy$.

The above cases show that $5 \mid xy$, so it is not true that $5 \nmid xy$.

Exercises

Warm up

- **1.** Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.
- **2.** Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
- **3.** Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2-2b)$ is odd, then a and b are odd.

- **4.** Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.
- **5.** Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then x < 0.
- **6.** Suppose $x \in \mathbb{R}$. If $x^3 x > 0$ then x > -1.

- **9.** Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.
- **10.** Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.
- **11.** Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.

n^2 is even $\implies n$ is even

Prove:

Suppose n is an integer. If n^2 is even, then n is even

Exercise 2: Prove the following

Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.

Exercise 3: Prove the following

Suppose $x \in \mathbb{R}$. If $x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 \ge 0$, then $x \ge 0$.

Exercise 4: Prove the following

Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.

Exercise 5: Prove the following

Suppose *x* ∈ \mathbb{R} . If $x^5 + 7x^3 + 5x \ge x^4 + x^2 + 8$, then $x \ge 0$.