2021 AMC 10A Problems/Problem 21

Contents

- 1 Problem
- 2 Diagram
- 3 Solution
- 4 Video Solution by OmegaLearn (Angle Chasing and Equilateral Triangles)
- 5 Video Solution by TheBeautyofMath
- 6 Video Solution by MRENTHUSIASM (English & Chinese)
- 7 See Also

Problem

Let \overline{ABCDEF} be an equiangular hexagon. The lines AB,CD, and EF determine a triangle with area $192\sqrt{3}$, and the lines BC,DE, and FA determine a triangle with area $324\sqrt{3}$. The perimeter of hexagon \overline{ABCDEF} can be expressed as $m+n\sqrt{p}$, where m,n, and p are positive integers and p is not divisible by the square of any prime. What is m+n+p?

- (A) 47
- **(B)** 52
- **(C)** 55
- **(D)** 58
- **(E)** 63

Diagram

~MRENTHUSIASM

Let
$$P,Q,R,X,Y$$
, and Z be the intersections $\overrightarrow{AB} \cap \overrightarrow{CD},\overrightarrow{CD} \cap \overrightarrow{EF},\overrightarrow{EF} \cap \overrightarrow{AB},\overrightarrow{BC} \cap \overrightarrow{DE},\overrightarrow{DE} \cap \overrightarrow{FA}$, and $\overrightarrow{FA} \cap \overrightarrow{BC}$, respectively.

The sum of the interior angles of any hexagon is 720° . Since hexagon ABCDEF is equiangular, each of its interior angles is $720^\circ \div 6 = 120^\circ$. By angle chasing, we conclude that the interior angles of $\triangle PBC, \triangle QDE, \triangle RFA, \triangle XCD, \triangle YEF,$ and $\triangle ZAB$ are all 60° . Therefore, these triangles are all equilateral triangles, from which $\triangle PQR$ and $\triangle XYZ$ are both equilateral triangles.

We are given that

$$[PQR] = \frac{\sqrt{3}}{4} \cdot PQ^2 = 192\sqrt{3},$$

 $[XYZ] = \frac{\sqrt{3}}{4} \cdot YZ^2 = 324\sqrt{3},$

so we get $PQ=16\sqrt{3}$ and YZ=36, respectively.

By equilateral triangles and segment addition, we find the perimeter of hexagon ABCDEF:

$$AB + BC + CD + DE + EF + FA = AZ + PC + CD + DQ + YF + FA$$

= $(YF + FA + AZ) + (PC + CD + DQ)$
= $YZ + PQ$
= $36 + 16\sqrt{3}$.

Finally, the answer is $36 + 16 + 3 = \boxed{(\mathbf{C}) \ 55}$.

~sugar_rush (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Video Solution by OmegaLearn (Angle Chasing and Equilateral Triangles)

https://youtu.be/ptBwDcmDaLA

 \sim pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/8qcbZ8c7fHg

~IceMatrix

Video Solution by MRENTHUSIASM (English & Chinese)

https://www.youtube.com/watch?v=0n8EAu2VAiM

~MRENTHUSIASM

See Also

2021 AMC 10A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))	
Preceded by Problem 20	Followed by Problem 22
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_10A_Problems/Problem_21&oldid=163282"

Copyright © 2022 Art of Problem Solving