ПРОЕКЦИОННИ МЕТОДИ

12. Афинитет между две равнини. Афинно-еквивалентни фигури

Проекционни методи се наричат методите за изобразяване на пространството върху равнина.

В основата на всички проекционни методи стои построение наречено **проектиране**, което се състои в следното: В пространството са фиксирани точка S и крайна равнина π , $S \notin \pi$.

1. За произволна точка $M(M \neq S)$ е определена точката $M' = SM \cap \pi$; $\psi_{\pi}^{S}(M) = M'$.

Точката M' се нарича проекция на M от центъра S в π , равнината $\pi-$ проекционна равнина, а S- проекционен център.

Ако точката S е крайна, проектирането се нарича *централно*. Ако $S = U_l$ е безкрайна, проектирането се нарича *успоредно*. Ако $U_l \perp \pi$, т.е. $l \perp \pi$, проектирането се нарича *ортогонално*. Точката M' не определя еднозначно M. Очевидно точката M'' е проекция в π на всяка точка X от правата SM.

2. Нека a е произволна права, $S \notin a$. Равнината (S,a) пресича π в права a', която се нарича **проекция на правата a от S в \pi**. Ако $M \in a$, то $M' \in a'$. Правата a' не определя еднозначно a, тъй като очевидно всяка права x от равнината (S,a) се проектира в a'. Ако една права g минава през проекционния център S и $G = g \cap \pi$, то всяка точка от g, се проектира в G. Следователно проекцията g' на g е точката $G - g' = G = g \cap \pi$.

3. Ако α е равнина, $S \notin \alpha$, всяка точка от α има единствена проекциия в π , като съответствието между точките от α и техните проекции в π е еднозначно обратимо. Наистина ако $A \in \alpha$, то проекцията и $A' = SA \cap \pi$ се определя еднозначно от A и обратното $A = SA' \cap \pi$ се определя еднозначно от A'.

Нека $m=\alpha \cap \pi$. Ако a е права от α , a' е проекцията й в π и $a \cap a' = M$, то $M \in m$. Ако една равнина β минава през проекционния център S и $b=\beta \cap \pi$, то всяка точка от β , се проектира в b. Следователно проекцията β' на β е правата $b-\beta'=b=\beta \cap \pi$.

Ако $Y \in \pi$ то Y = Y', т.е. точките от π съвпадат с проекциите си.

Нека u_{α} е безкрайната права на крайната равнина α . Проекцията на u_{α} от S ($S \notin \alpha$), в π е пресечницата u'_{α} на равнините (Su_{α}) и π .

Ако центърът S е крайна точка, то $\left(Su_{\alpha}\right)$ е крайна равнина, успоредна на α . Тя ще пресича π в безкрайната \square права u_{π} , точно тогава, когато α е успоредна на π . Ако центърът S е безкрайна точка, то $\left(Su_{\alpha}\right)$ е безкрайната равнина Ω , и тя пресича π в безкрайната \square права u_{π} .

И така u_{α} се проектира в u_{π} или когато $\alpha \parallel \pi$, или когато центърът S е безкрайна точка. В случая на успоредно проектиране ($S=U_{l}$), проекцията на произволна безкрайна точка U_{a} е безкрайна точка $U_{a}' \in u_{\pi}$, тъй като правата $U_{l}U_{a}$ е безкрайна и пресича π в точка от u_{π} . Следователно при успоредно проектиране успоредни прави се проектират в успоредни прави.

Афинитет между две равнини. Афинно еквивалентни фигури

Както видяхме, съответствието между точките на една равнина α ($S \notin \alpha$) и техните проекции в π е еднозначно обратимо.

Проектирането в π от център S означаваме с ψ_{π}^{S} . Ако $\psi_{\pi}^{S}(u_{\alpha}) = u_{\pi}$, то съответствието

между точките на α и π има свойствата на афинна трансформация в равнината.

При изучаване на свойствата на успоредното проектиране важна роля играят така наречените афинно еквивалентните фигури.

Деф. Две фигури F и F` се наричат $a\phi$ инно еквивалентии, ако съществува афинна трансформация, която трансформира F във F`.

Теорема: Два равнинни четриъгълника ABCD и A'B'C'D' са афинно еквивалентни, тогава и само тогава, когато (ACK) = (A'C'K') и (BDK) = (B'D'K'), където $K = AC \cap BD$ и $K' = A'C' \cap B'D'$.

Доказателство: а) Нека ABCD и A'B'C'D' са афинно еквивалентни. Тогава съществува афинна трансформация φ , такава че $A,B,C,D \xrightarrow{\varphi} A',B',C',D'$. Следователно

$$K = AC \cap BD \xrightarrow{\varphi} A'C' \cap B'D' = K'.$$

Тъй като афинните трансформации запазват простото отношение, то (ACK) = (A'C'K') и (BDK) = (B'D'K').

б) Нека (ACK) = (A'C'K') и (BDK) = (B'D'K'). Ще докажем, че ABCD и A'B'C'D' са афинно еквивалентни.

Нека E е произволна точка и $E \notin (A,B,C)$, $E \notin (A',B',C')$. Тогава съществува точно една афинна трансформация φ такава , че

$$A,B,C,E \xrightarrow{\varphi} A',B',C',E'$$
.

Нека $K \xrightarrow{\varphi} K^*$. Тъй като $K \in AC$, то $K^* \in A'C'$ и $(ACK) = (A'C'K^*)$. Но (ACK) = (A'C'K').

Следователно $(A'C'K^*) = (A'C'K')$ и

$$K^* \equiv K$$
, r.e. $K \xrightarrow{\varphi} K'$.

Нека $D \stackrel{\varphi}{\longrightarrow} D^*$. Тъй като $D \in BK$, то $D^* \in B `K`$ и $(BDK) = (B'D^*K')$. Но (BDK) = (B'D'K'). Следователно $(B'D^*K') = (B'D'K')$ и $D^* \equiv D'$, т.е. $D \stackrel{\varphi}{\longrightarrow} D'$.

Така получихме, че $A,B,C,D \xrightarrow{\varphi} A',B',C',D'$, т.е. четриъгълниците ABCD и A'B'C'D' са афинно еквивалентни.