#### **MAGNETIC RECORDING MEDIUM**

Publication number: JP2002025032

Publication date:

2002-01-25

Inventor:

MAESAKA AKIHIRO; OMORI HIROYUKI

Applicant:

**SONY CORP** 

Classification:

- international:

G11B5/66; G11B5/667; G11B5/673; G11B5/73;

G11B5/62; G11B5/66; (IPC1-7): G11B5/673;

G11B5/667; G11B5/738

- european:

G11B5/66; G11B5/73N

Application number: JP20000200370 20000630 Priority number(s): JP20000200370 20000630

Report a data error here

Also published as:

間 US 6596418 (B2)

関 US 2002015864 (A1)

#### Abstract of JP2002025032

PROBLEM TO BE SOLVED: To provide a magnetic recording medium which considerably reduces transition noise in a multilayer magnetic recording film, has excellent S-N ratio and is suitable for short-wavelength recording. SOLUTION: The magnetic recording medium has a perpendicular magnetic recording film 5 comprising an artificial lattice film formed by alternately stacking Pt or Pd layers and Co layers and containing B and O.



Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

## (12)公開特許公報 (A)

(11)特許出願公開番号

## 特開2002-25032

(P2002-25032A)

(43)公開日 平成14年1月25日(2002.1.25)

 (51) Int. Cl. \*
 識別記号
 F I
 デーマコード (参考)

 G11B 5/673
 50006

 5/667
 5/667

 5/738
 5/738

審査請求 未請求 請求項の数13 OL (全13頁) 特願2000-200370(P2000-200370) (21)出願番号 (71)出願人 000002185 ソニー株式会社 (22)出願日 平成12年6月30日(2000.6.30) 東京都品川区北品川6丁目7番35号 (72) 発明者 前坂 明弘 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内 (72)発明者 大森 広之 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内 (74)代理人 100067736 弁理士 小池 晃 (外2名) Fターム(参考) 5D006 BB01 BB06 BB08 CA01 CA03 CA04 CA05 DA08 FA09

#### (54) 【発明の名称】磁気記録媒体

#### (57)【要約】

【課題】 積層磁気記録層における遷移ノイズが大幅に減少され、S/Nに優れた短波長記録に好適な磁気記録媒体を提供する。

【解決手段】 Pt層若しくはPd層と、Co層とが交互に積層された人工格子膜からなり、B及びOを含有してなる垂直磁気記録膜5を備える。



#### 【特許請求の範囲】

【請求項1】 Pt層若しくはPd層と、Co層とが交 互に積層された人工格子膜からなり、B及びOを含有し てなる垂直磁気記録膜を備えることを特徴とする磁気記 録媒体。

1

【請求項2】 上記Bは、1原子%以上15原子%以下 の範囲で含有され、且つ上記〇は、0.1原子%以上1 0原子%以下の範囲で含有されることを特徴とする請求 項1記載の磁気記録媒体。

を有する金属を含有する材料からなる下地層を備えるこ とを特徴とする請求項1記載の磁気記録媒体。

【請求項4】 上記面心立方構造を有する金属は、P d、Pt、Au、Ag、Rh、若しくはIrであること を特徴とする請求項3記載の磁気記録媒体。

【請求項5】 上記下地層は、B及びOを含有すること を特徴とする請求項3記載の磁気記録媒体。

【請求項6】 上記Bは、1原子%以上30原子%以下 の範囲で含有され、且つ上記〇は、0.1原子%以上3 項5記載の磁気記録媒体。

【請求項7】 上記磁気記録層に対して、面心立方構造 を有する金属と、酸化物、窒化物、若しくは炭化物の何 れかとの複合材料からなる下地層を備えることを特徴と する請求項1記載の磁気記録媒体。

【請求項8】 上記面心立方構造を有する金属は、P d、Pt、Au、Ag、Rh、若しくはIrであること を特徴とする請求項7記載の磁気記録媒体。

【請求項9】 上記酸化物は、SiO2、Al2O3、M gO、TiO<sub>2</sub>、Li<sub>2</sub>O、CaO、ZnO、ZrO、Y 30 長記録に好適な磁気記録媒体を提供することを目的とす 2O1、HfOであることを特徴とする請求項7記載の磁 気記録媒体。

【請求項10】 上記窒化物は、Si<sub>3</sub>N<sub>4</sub>、AlN、B N、TiN、ZrN、GaNであること特徴とする請求 項7記載の磁気記録媒体。

【請求項11】 上記炭化物は、SiC、TiC、Zr C、TaCであることを特徴とする請求項7記載の磁気 記録媒体。

【請求項12】 上記下地層の直下に軟磁性層を備える ことを特徴とする請求項8記載の磁気記録媒体。

【請求項13】 上記軟磁性層は、NiFe、CoZ r、FeN、若しくはNiFeTaからなることを特徴 とする請求項12記載の磁気記録媒体。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、ハードディスク、 磁気テープ、フロッピー(登録商標)ディスク、光磁気 ディスク等に利用される磁気記録媒体に関する。

#### [0002]

【従来の技術】磁気記録媒体に関する面内磁気記録は、

記録情報の高密度化に伴って、記録磁化が時間の経過に したがって減衰する熱減磁が問題となってきている。

【0003】この、磁気記録媒体に対する面内磁気記録 の問題点を解決する手法の1つとして、垂直磁気記録が ある。かかる垂直磁気記録用磁気記録媒体の磁性材料と して、СоСг合金が広く研究されている。

【0004】しかしながら、垂直磁気記録用磁気記録媒 体の磁性材料としてのCoCr合金の垂直磁気異方性 は、飽和磁化より小さいため、垂直角形比が1にならな 【請求項3】 上記磁気記録層に対して、面心立方構造 10 いという欠点がある。このため、CoCr合金の磁性層 は、長波長記録部分で反転磁化領域が発生し、それがノ イズの原因となることが知られている。

> 【0005】この問題を解決するためには、垂直磁気記 録用磁気記録媒体の磁性層として、垂直磁気異方性の大 きな材料を用いれば良く、そのような磁性層としては、 CoとPt又はPdとを交互に積層した積層磁性層があ る。

#### [0006]

【発明が解決しようとする課題】ところで、かかるCo O原子%以下の範囲で含有されることを特徴とする請求 20 と、Pt又はPdとを交互に積層した積層磁気記録層を 有する磁気記録媒体は、積層磁気記録層の垂直磁気異方 性磁界が飽和磁化に起因した反磁界より十分大きいの で、積層磁気記録層におけるノイズの発生は少ないが、 その反面遷移ノイズが多いので短波長記録には不向きで あるという問題がある。

> 【0007】したがって、本発明は、かかる点に鑑み、 Coと、Pt又はPdとを交互に積層した積層磁気記録 層を有する磁気記録媒体において、積層磁気記録層にお ける遷移ノイズが大幅に減少され、S/Nに優れた短波

#### [0008]

【課題を解決するための手段】本発明に係る磁気記録媒 体は、Pt層若しくはPd層と、Co層とが交互に積層 された人工格子膜からなり、B及び〇を含有してなる垂 直磁気記録膜を備えることを特徴とするものである。

【0009】本発明に係る磁気記録媒体は、積層磁気記 録層として、Pt層若しくはPd層とCo層とが交互に 積層された人工格子膜からなり、さらにB及びOを含有 40 してなる垂直磁気記録膜を備えるため、積層磁気記録層 における遷移ノイズが大幅に減少する。

#### [0010]

【発明の実施の形態】以下、本発明の具体的な実施の形 態を図面を参照して説明する。

【0011】図1を参照して本発明の実施の形態の一例 を説明する。図1に示した磁気記録媒体1は、基板2 と、基板2上に形成された接着層3と、接着層3上に形 成された下地層4と、下地層4上に形成された積層磁気 記録層5と、積層磁気記録層5上に形成された保護層6 50 とを備えて構成されている。

【0012】基板2は、磁気記録媒体の種類により異な るが、ここでは、例えばガラス板を用いる。

【0013】接着層3は、基板2と下地層4との接合力 を高めるために設けられる。接着層3の材質は、基板及 び下地層4の種類により異なるが、基板2がガラス板の 場合には、接着層3としては、例えばTiを用いること ができ、その厚さは、例えば1nmである。

【0014】下地層4は、面心立方構造を有する金属を 含む材料により構成される。このような材料としては、 具体的には、Pd、Pt、Au、Ag、Rh、Irを挙 10 げることができる。また、これらの材料は、特に、酸化 や窒化等の化学的変化を受け難い材料が選ばれており、 これらの合金も用いることが可能である。ここでは下地 層4として、例えばPdを用い、その厚さは、例えば2 Onmとされる。

【0015】積層磁気記録層5は、Pt層及とCo層が 所定の層数だけ交互に積層された人工格子膜からなるも のである。そして、この人工格子膜は、高密度記録に対 応した垂直磁気記録用の垂直磁化膜とされている。積層 のCo層と、例えば厚さがO. 6nmのPt層とが、そ れぞれ20層ずつ交互に積層されてなる。また、Pt層 の代わりにPd層等を用いても良い。

【0016】保護層6は、積層磁気記録層5上に被着形 成されている。この保護層6の材料としては、例えばC を用いることができ、その厚さは、例えば10 n m であ る。

【0017】ここで、この磁気記録媒体1は、積層磁気 記録層5がその層中にB元素及びO元素を含有すること を特徴とする。そして、B元素及びO元素は、積層磁気 30 記録層5の構成要素であるCo層と及びPt層の双方に 含有されるものである。

【0018】この磁気記録媒体1は、積層磁気記録層5 中にB元素及びO元素を含有することにより、磁性粒子 であるPt粒子及びCo粒子の結晶学的な孤立性が向上 する。そして、この結晶粒子の結晶学的な孤立は、当該 結晶粒子の磁気的な孤立を生じさせる。その結果、この 磁気記録媒体1は、積層磁気記録層5における遷移ノイ ズが減少し、S/Nを向上させることが可能となる。

【0019】ここで、積層磁気記録層5中におけるB元 40 素及びO元素の含有率は、B元素に関しては、1原子% 以上、15原子%以下とすることが好ましい。

【0020】これは、積層磁気記録層5中におけるB元 素の含有率が、1原子%未満である場合には、磁性粒子 であるPt粒子及びCo粒子の結晶学的な孤立性を十分 に向上させることができない。そして、その結果、積層 磁気記録層 5 における遷移ノイズを減少させ、S/N比 を向上させる効果を十分に得ることができないからであ る。また、積層磁気記録層5中におけるB元素の含有率 **量が、15原子%よりも多い場合には、過剰のB元素が 50 層4中に含有させるB元素の量が、30原子%よりも多** 

結晶粒子内に進入することで、垂直磁気異方性が劣化す る。その結果、垂直角形比が1以下となり、S/Nが低 下するからである。

【0021】そして、上述した含有率は、積層磁気記録 層5の各Pt層及び各Co層において上述した範囲とさ れる。磁気記録媒体1では、積層磁気記録層5の各P t 層及び各Co層に、上述した範囲でB元素を含有させる ことにより、上述した効果を確実に得ることができるか らである。

【0022】また、積層磁気記録層5中における〇元素 の含有率は、0.1原子%以上、10原子%以下とする ことが好ましい。

【0023】これは、積層磁気記録層5中における〇元 素含有率が、1原子%未満である場合には、磁性粒子で あるP t 粒子及びC o 粒子の結晶学的な孤立性を十分に 向上させることができない。そして、その結果、積層磁 気記録層5における遷移ノイズを減少させ、S/N比を 向上させる効果を十分に得ることができないからであ る。また、積層磁気記録層5中における〇元素の含有率 磁気記録層5は、ここでは、例えば厚さが、0.6nm 20 が、10原子%よりも多い場合には、過剰のO元素が結 晶粒子内に進入することで、垂直磁気異方性が劣化す る。その結果、垂直角形比が1以下となり、S/Nが低 下するからである。

> 【0024】そして、上述した含有率は、積層磁気記録 層5の各Pt層及び各Co層において上述した範囲とさ れる。磁気記録媒体1では、積層磁気記録層5の各P t 層及び各Co層に、上述した範囲でO元素を含有させる ことにより、上述した効果を確実に得ることができるか らである。

【0025】また、上述した下地層4は、図2に示すよ うに、上述した材料がB元素及びO元素を含有した材料 により構成されても良い。下地層4がかかる材料により 構成されることにより、Pt層及びCo層からなる積層 磁気記録層5にみられる遷移ノイズを減少させ、S/N 比を向上させることができるからである。これは、下地 層4がB元素及びO元素を含有することにより、その結 晶粒の孤立性が高められ、当該下地層4上に形成される 積層磁気記録層 5 の結晶粒の孤立性を高めるからであ

【0026】このとき、上述した下地層4中におけるB 元素及びO元素の含有率は、B元素に関しては、1原子 %以上、30原子%以下とすることが好ましい。

【0027】これは、下地層4中におけるB元素の含有 率が、1原子%未満である場合には、下地層4の結晶粒 の孤立性を十分に高めることができないため、下地層 4 上に形成される積層磁気記録層5の結晶粒の孤立性が十 分に高められない。そして、その結果、積層磁気記録層 5にみられる遷移ノイズを減少させ、S/N比を向上さ せる効果を得ることができないからである。また、下地

い場合には、下地層の結晶粒サイズが不均一となり、そ の結果、積層磁気記録層5の結晶粒サイズが不均一とな りS/N比が低下するからである。

【0028】また、下地層4中に含有させる〇元素の割 合は、0.1原子%以上、30原子%以下とすることが 好ましい。これは、下地層4中に含有させる〇元素の量 が、1原子%未満である場合には、下地層4の結晶粒の 孤立性を十分に高めることができないため、下地層 4 上 に形成される積層磁気記録層5の結晶粒の孤立性が十分 に高められない。そして、その結果、積層磁気記録層 5 10 以上、30 n m以下とすることが好ましい。 にみられる遷移ノイズを減少させ、S/N比を向上させ る効果を得ることができないからである。また、下地層 4中に含有させる〇元素の量が、30原子%よりも多い 場合には、下地層の結晶粒サイズが不均一となり、その 結果、積層磁気記録層5の結晶粒サイズが不均一となり S/N比が低下するからである。

【0029】そして、上述したB元素及びO元素を含有 する積層磁気記録層5とB元素及びO元素を含有する下 地層4とを併用することにより、積層磁気記録層5にみ られる遷移ノイズを減少させ、S/N比を向上させる効 20 果をさらに髙めることが可能となる。

【0030】また、上述した下地層4は、Pd、Pt、 Au、Ag、Rh、Irの面心立方構造の金属の何れか Ł, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, MgO, TiO<sub>2</sub>, Li<sub>2</sub>O, CaO、ZnO、ZrO、Y2O3、HfO等の酸化物の 何れか、との複合材料からなる複合材料層にて構成され ても良い。下地層4が、かかる構成を有することによ り、Pt層及びCo層からなる積層磁気記録層5を有す る磁気記録媒体にみられる遷移ノイズを大きく減少させ ることができる。また、上述した複合材料は、Pd、P t、Au、Ag、Rh、Irの面心立方構造の金属の何 れかと、Si<sub>2</sub>N<sub>4</sub>、AlN、BN、TiN、ZrN、G a N等の窒化物の何れか、との複合材料でも良く、P d、Pt、Au、Ag、Rh、Irの面心立方構造の金 属の何れかと、SiC、TiC、ZrC、TaC等の炭 化物の何れか、との複合材料でも良い。何れの場合も、 Pd、Pt、Au、Ag、Rh、Irの面心立方構造の 金属の何れかと、SiO₂、Al₂O₃、MgO、Ti O2、Li2O、CaO、ZnO、ZrO、Y2O3、Hf 〇等の酸化物の何れか、との複合材料の場合と同様の効 40 果を得ることができる。

【0031】さらに、この磁気記録媒体においては、上 述した複合材料からなる下地層4を備える場合に、図3 に示すように下地層4の直下に、すなわち積層磁気記録 層5と反対側に軟磁性層を配しても良い。通常、垂直記 録用磁気記録層の下側に、軟磁性層を配すると、記録遷 移が明瞭に書けることが知られているが、その反面、磁 気記録層のノイズが増加することが多い。そこで、上述 したように、軟磁性層と、積層磁気記録層5との間に、

気記録層で発生するノイズを低減することができる。す なわち、磁気記録層のノイズを増加させることなく、記 録遷移を明瞭に書くことが可能となる。

【0032】このとき、複合材料からなる下地層4の厚 さは、1 n m より薄いときは、ノイズ低減効果は得られ ず、30nmより厚い場合は、積層磁気記録層5と、軟 磁性層との間の距離が離れすぎて、軟磁性層による上述 した効果が小さくなる。したがって、軟磁性層を備える 場合には、複合材料からなる下地層4の厚さは、1nm

【0033】図3の例では、軟磁性層として、例えば、 NiFe層を用い、複合材料層として、例えば、厚さが 20nmの(Au+SiO₂)層を用い、積層磁気記録 層5として、厚さが、例えば、0.6mmのPd層と、 厚さが、例えば、0.6nmのCo層とが、それぞれ2 0枚ずつ交互に積層されたものを用いている。

【0034】また、図3においては、軟磁性層として、 NiFe層を用いているが、軟磁性層に用いる材料は、 これに限定されることなく、CoZr、FeN、NiF eTa等を用いることもできる。

[0035]

【実施例】以下、本発明を具体的な例に基づいて説明す

【0036】<実施例1>実施例1では、積層磁気記録 層である垂直磁化膜にB元素及び〇元素を含有させた磁 気記録媒体を作製した。

【0037】磁気記録媒体は、直径2.5インチのガラ ス基板上に、RFスパッタ法により、下地層と積層磁気 記録層とをこの順で成膜して作製した。積層磁気記録層 30 は、人工格子膜からなる垂直磁化膜により構成した。各 層の組成、構成は、(CoBO: 0.4nm/PdB O:0.6nm)×20/Pd:20nmとし、図4に 示す断面構造からなる磁気記録媒体1を作製した。

【0038】成膜条件は、スパッタリング前到達真空 度:8×10 <sup>6</sup>Pa、投入電力:120Wとした。スパ ッタリングターゲットは、下地層4用には、Pdターゲ ット、積層磁気記録層5用には、図4に示すようにCo ターゲット上及びPdターゲット上に1cm角のBチッ プを4個配置させたターゲットを用いた。下地層4の成 膜は、Ar雰囲気中において2Paのスパッタガス圧で 行い、積層磁気記録層5の成膜は、(Ar+O2) 雰囲 気中において2Paのスパッタガス圧で行った。Arと O<sub>2</sub>の質量流量比O<sub>2</sub>/Arは、0.2%とした。

【0039】また、作製した磁気記録媒体1の積層磁気 記録層 5 中における B 元素及びO 元素の含有率を化学分 析、エネルギー分散性 X線(Energy-dispersive x-ra y:以下、EDXと呼ぶ。)及び二次イオン質量分析計 (Secondary ion mass spectrometer:以下、SIMS と呼ぶ。)により調べたところ、B元素の含有率は、3 上述した複合材料からなる下地層4を備えることで、磁 50 原子%であり、〇元素の含有率は、0. 3原子%であっ

8

た。

【0040】上記において作製した磁気記録媒体1の垂直方向の保磁力Hc、及び信号対ノイズの比S/Nを調べた結果を表1に示す。ここで、S/Nは、磁気記録媒体1を磁気ヘッドに対する相対速度が15m/secになるように回転させ、記録トラック幅が $1.2\mu m$ の磁

気抵抗効果型ヘッド(MRヘッド)で周波数が50MHzの信号を磁気記録媒体に記録し、その再生信号中の50MHzの信号と、0Hzから80MHzまでのノイズを積分したノイズ強度との比と定めた。

[0041]

【表1】

|       | 層 構 成                                                                                                              | Нс      | S/N  |
|-------|--------------------------------------------------------------------------------------------------------------------|---------|------|
| 実施例 1 | (CoBO-0.4nm/PdBO-0.6nm)×20<br>/Pd-20nm                                                                             | 2.0kOe  | 28dB |
| 実施例7  | (CoBO-0.4nm/PdBO-0.6nm)×20<br>/PdBO-20nm                                                                           | 2. 3kOe | 30dB |
| 実施例15 | (CoBO-0.4nm/PdBO-0.6nm)×20<br>/(Pd+SiO <sub>2</sub> )-20nm                                                         | 2.0kOe  | 30dB |
| 実施例36 | (CoBO-0.4nm/PdBO-0.6nm)×20<br>/(Pd+SiO <sub>2</sub> )-10nm/Ni <sub>80</sub> Fe <sub>15</sub> Ta <sub>5</sub> -20nm | _       | 32dB |
| 比較例1  | (Co-0.4nm/Pd-0.6nm)×20<br>/Pd-20nm                                                                                 | 3.4kOe  | 12dB |

【0042】実施例1で作製した磁気記録媒体1は、H c は磁気的及び熱的外乱に対して安定しており、且つ従来の記録へッドで記録可能である実用的なレベルの値を保持しつつ、遷移ノイズが著しく改善されている。その結果、S/Nは28dBと良好な値を示している。

【0043】<実施例2>下地層をPtとしたこと以外は、実施例1と同様にして磁気記録媒体を作製した。

【0044】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例1と同等の効果が得られた。

【0045】<実施例3>下地層をAuとしたこと以外は、実施例1と同様にして磁気記録媒体を作製した。

【0046】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例1と同等の効果が得られた。

【0047】<実施例4>下地層をAgとしたこと以外は、実施例1と同様にして磁気記録媒体を作製した。

【0048】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例1と同等の効果が得られた。

【0049】<実施例5>下地層をRhとしたこと以外は、実施例1と同様にして磁気記録媒体を作製した。

【0050】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例1と同等の効果が得られた。 【0051】<実施例6>下地層をIrとしたこと以外は、実施例1と同様にして磁気記録媒体を作製した。

【0052】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ 30 たところ、実施例1と同等の効果が得られた。

【0053】<実施例7>実施例7では、積層磁気記録層である垂直磁化膜と、下地層との双方にB元素及びO元素を含有させた磁気記録媒体を作製した。

【0054】磁気記録媒体は、実施例1と同様にして作製した。各層の組成、構成は、(CoBO:0.4nm/PdBO:0.6nm)×20/PdBO:20nmとし、図5に示す断面構造からなる磁気記録媒体1を作製した。

【0055】スパッタリングターゲットは、下地層4用には、図6に示すようにPdターゲット上に1cm角のBチップを4個配置させたターゲット、積層磁気記録層5用には、図6に示すようにCoターゲット上及びPdターゲット上に1cm角のBチップを4個配置させたターゲットを用いた。

【0056】また、作製した磁気記録媒体1の積層磁気 記録層5中におけるB元素及びO元素の含有率を化学分 析、EDX及びSIMSにより調べたところ、B元素の 含有率は、3原子%であり、O元素の含有率は、0.2 原子%であった。

0 【0057】上記において作製した磁気記録媒体1の垂

直方向の保磁力Hc、及び信号対ノイズの比S/Nを調 べた結果を表1に併せて示す。ここで、S/Nは、実施 例1と同様にして求めた。

【0058】実施例7で作製した磁気記録媒体は、実施 例1で作製した磁気記録媒体よりもさらに遷移ノイズが 改善され、S/Nは30dBと良好な値を示している。 この磁気記録層では、Pd下地層にもB元素及びO元素 を含有させることにより、下地層の結晶粒の孤立性が高 められたことで、その上に積層したCo/Pd積層磁気 記録層の結晶粒の孤立性がより高められた。そして、そ 10 けるB元素及び〇元素の含有率は、化学分析、エネルギ の結果、積層磁気記録層における遷移ノイズが減少し、 S/Nが向上したものと考えられる。

【0059】<実施例8>下地層をPtBOとしたこと 以外は、実施例7と同様にして磁気記録媒体を作製し た。

【0060】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例7と同等の効果が得られた。

【0061】<実施例9>下地層をAuBOとしたこと 以外は、実施例7と同様にして磁気記録媒体を作製し た。

【0062】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例7と同等の効果が得られた。

【0063】<実施例10>下地層をAgBOとしたこ と以外は、実施例7と同様にして磁気記録媒体を作製し た。

【0064】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例7と同等の効果が得られた。

【0065】<実施例11>下地層をRhBOとしたこ と以外は、実施例7と同様にして磁気記録媒体を作製し た。

【0066】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例7と同等の効果が得られた。

【0067】<実施例12>下地層をIrBOとしたこ と以外は、実施例7と同様にして磁気記録媒体を作製し

【0068】上記において作製した磁気記録媒体の垂直 40 同様に(CoBO: 0.4 nm/PdBO: 0.6 n 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例7と同等の効果が得られた。

【0069】<実施例13>実施例13では、積層磁気 記録層中におけるB元素の含有率が、S/Nに与える影 響について調べた。

【0070】磁気記録媒体は、積層磁気記録層中におけ るO元素の含有率を0.2原子%に固定し、B元素の含 有率を 0 原子%、 0.5原子%、 0.7原子%、 1原子 %、1.8原子%、3原子%、4.3原子%、5原子% と変化させること以外は、実施例1と同様にして8種類 50 析した。

の磁気記録媒体を作製した。各層の組成、構成は、実施 例1と同様に (CoBO: 0. 4nm/PdBO: 0. 6 nm) × 20 / P d : 20 nmとし、図4に示す断面 構造からなる磁気記録媒体1を作製した。

【0071】積層磁気記録層5中におけるB元素の含有 率は、スパッタリングターゲット上に配置するBチップ の数で制御し、O元素の含有率は、ArとO2の質量流 量比(O2/Ar)により制御した。

【0072】磁気記録媒体1の積層磁気記録層5中にお 一分散性X線(Energy-dispersive x-ray: EDX)及 び二次イオン質量分析計 (Secondary ion mass spectro meter:SIMS)を用いて総合的に解析した。

【0073】上記において作製した8種類の磁気記録媒 体の垂直方向の信号対ノイズの比S/Nを調べた結果を 図7に示す。ここで、S/Nは、実施例1と同様にして 求めた。

【0074】図7より、B元素の含有率が1原子%の付 近でS/Nは急激に上昇し、それ以上の範囲では、ほぼ 20 一定の値となることが判る。このS/Nが上昇するB元 素含有率の臨界値を、O元素含有率を変化させて調べた 結果を図8に示す。図8から判るように、S/Nが向上 するB元素の臨界含有率は、O元素の含有率が0.1原 子%以上であれば、〇元素の含有率に依存せずほぼ一定 であった。

【0075】以上の結果から、積層磁気記録層の結晶粒 子を孤立させるために必要なB元素の含有率は、1原子 %以上であることが判る。この条件は、上述した実施例 7における Р d В Оからなる下地層の結晶粒子が孤立化 30 する条件と同一であった。

【0076】<実施例14>実施例14では、積層磁気 記録層中における〇元素の含有率が、S/Nに与える影 響について調べた。

【0077】磁気記録媒体は、B元素の含有率を3原子 %に固定し、B元素の含有率を0原子%、0.05原子 %、0.08原子%、0.1原子%、0.2原子%、 0. 3原子%、0. 37原子%、0. 48原子%と変化 させること以外は、実施例1と同様にして8種類の磁気 記録媒体を作製した。各層の組成、構成は、実施例1と m) × 20/Pd: 20 nmとし、図4に示す断面構造 からなる磁気記録媒体1を作製した。

【0078】積層磁気記録層5中におけるB元素の含有 率は、スパッタリングターゲット上に配置するBチップ の数で制御し、O元素の含有率は、ArとO2の質量流 量比(O₂/Ar)により制御した。

【0079】磁気記録媒体1の積層磁気記録層5中にお けるB元素及びO元素の含有率は、実施例13と同様 に、化学分析、EDX及びSIMSを用いて総合的に解

【0080】上記において作製した8種類の磁気記録媒 体の垂直方向の信号対ノイズの比S/Nを調べた結果を 図9に示す。ここで、S/Nは、実施例1と同様にして 求めた。

【0081】図9より、O元素の含有率が0.1原子% の付近でS/Nは急激に上昇し、それ以上の範囲では、 ほぼ一定の値となることが判る。このS/Nが上昇する O元素含有率の臨界値をB元素含有率を変化させて調べ た結果を図10に示す。図10から判るように、S/N が向上するB元素の臨界含有率は、B元素の含有率が1 10 たところ、実施例15と同等の効果が得られた。 原子%以上であれば、B元素の含有率に依存せずほぼー

【0082】以上の結果から、積層磁気記録層の結晶粒 子を孤立させるために必要な〇元素の含有率は、0.1 原子%以上であることが判る。この条件は、上述した実 施例7におけるPdBOからなる下地層の結晶粒子が孤 立化する条件と同一であった。

【0083】<実施例15>実施例15では、積層磁気 記録層である垂直磁化膜にB元素及び〇元素を含有さ せ、さらに下地層としてPdとSiO。とを同時成膜し た複合下地層を用いた磁気記録媒体を作製した。

【0084】磁気記録媒体の各層の組成、構成は、(C oBO: 0. 4 nm/PdBO: 0. 6 nm) × 2 0/ Pd+SiO2:20nmとし、図11に示す断面構造 からなる磁気記録媒体を作製した。

【0085】そして、複合下地膜を、SiO2のターゲ ット上にPdのチップを配置したターゲットを用いてR Fマグネトロンスパッタで成膜したこと以外は、実施例 1と同様にして作製した。複合下地膜の構成は体積比で Pd:50%、SiO2:50%である。

【0086】また、作製した磁気記録媒体1の積層磁気 記録層5中におけるB元素及びO元素の含有率を化学分 析、EDX及びSIMSにより調べたところ、B元素の 含有率は、3原子%であり、〇元素の含有率は、0.2 原子%であった。

【0087】上記において作製した磁気記録媒体1の垂 直方向の保磁力Hc、及び信号対ノイズの比S/Nを調 べた結果を表1に併せて示す。ここで、S/Nは、実施 例1と同様にして求めた。

【0088】実施例15で作製した磁気記録媒体1は、 実施例1で作製した磁気記録媒体よりもさらに遷移ノイ ズが改善され、S/Nは、実施例7の磁気記録媒体とほ ぼ同等の31dBという良好な値を示している。これ は、下地層4としてPd+SiO₂複合下地層を用いた ことにより、CoBO/PdBO積層磁気記録層5にお ける結晶粒の孤立性が実施例1に較べて、より高めら れ、その結果として遷移ノイズが大幅に減少し、S/N が向上したものと考えられる。

【0089】<実施例16>下地層をPt+SiOzと したこと以外は、実施例15と同様にして磁気記録媒体 50 を作製した。

【0090】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0091】<実施例17>下地層をAu+A12O2と したこと以外は、実施例15と同様にして磁気記録媒体 を作製した。

【0092】上記において作製した磁気記録媒体の垂直 方向の保磁力H c 、及び信号対ノイズの比S/Nを調べ

【0093】<実施例18>下地層をAg+MgOとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0094】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15同等の効果が得られた。

【0095】<実施例19>下地層をRh+TiO2と したこと以外は、実施例15と同様にして磁気記録媒体 を作製した。

【0096】上記において作製した磁気記録媒体の垂直 20 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0097】<実施例20>下地層をIr+LiO2と したこと以外は、実施例15と同様にして磁気記録媒体 を作製した。

【0098】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0099】<実施例21>下地層をPd+CaOとし 30 たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0100】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0101】<実施例22>下地層をPd+2nOとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0102】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ 40 たところ、実施例15と同等の効果が得られた。

【0103】<実施例22>下地層をPd+2rOとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0104】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0105】<実施例23>下地層をPd+Y20,とし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0106】上記において作製した磁気記録媒体の垂直

方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0107】<実施例24>下地層をPd+HfOとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0108】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0109】<実施例25>下地層をPd+HfOとし たこと以外は、実施例15と同様にして磁気記録媒体を 10 作製した。

【0110】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0111】<実施例26>下地層をPd+Si,N,と したこと以外は、実施例15と同様にして磁気記録媒体 を作製した。

【0112】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0113】<実施例27>下地層をPt+AlNとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0114】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0115】<実施例28>下地層をAu+BNとした こと以外は、実施例15と同様にして磁気記録媒体を作 製した。

方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0117】<実施例29>下地層をAg+TiNとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0118】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0119】<実施例30>下地層をRh+ZrNとし たこと以外は、実施例15と同様にして磁気記録媒体を 40 作製した。

【0120】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0121】<実施例31>下地層を I:r+GaNとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0122】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0123】<実施例32>下地層をPd+SiCとし たこと以外は、実施例15と同様にして磁気記録媒体を

14

作製した。 【0124】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ

たところ、実施例15と同等の効果が得られた。

【0125】<実施例33>下地層をPt+TiCとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0126】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0127】<実施例34>下地層をAu+ZrCとし たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0128】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0129】<実施例35>下地層をAg+TaCとし 20 たこと以外は、実施例15と同様にして磁気記録媒体を 作製した。

【0130】上記において作製した磁気記録媒体の垂直 方向の保磁力Hc、及び信号対ノイズの比S/Nを調べ たところ、実施例15と同等の効果が得られた。

【0131】以上、実施例15乃至実施例35の結果よ り、下地層が、Pd、Pt、Au、Ag、Rh、Irの 面心立方構造の金属の何れかと、SiOュ、AlュOュ、 MgO、TiO2、Li2O、CaO、ZnO、ZrO、 Y2O3、HfO等の酸化物の何れか、との複合材料から 【0116】上記において作製した磁気記録媒体の垂直 30 なる複合材料、Pt、Au、Pd、Ag、Rh、Irの 面心立方構造の金属の何れかと、Si,N,、AlN、B N、TiN、ZrN、GaN等の窒化物の何れか、との 複合材料、若しくは、Pt、Au、Pd、Ag、Rh、 Irの面心立方構造の金属の何れかと、SiC、Ti C、ZrC、TaC等の炭化物の何れか、との複合材料 により構成することにより積層磁気記録層にみられる遷 移ノイズを減少させ、S/N比を向上させる効果を得ら れることが確認された。

> 【0132】<実施例36>実施例36では、下地層の 下にNiFeTaからなる軟磁性層を備え、その上に下 地層、積層磁気記録層が形成された磁気記録媒体を作製 した。

【0133】磁気記録媒体の各層の組成、構成は、(C oBO: 0. 4 nm/PdBO: 0. 6 nm) × 20/  $(Pd+SiO_2): 20nm/Ni_{80}Fe_{15}Ta_5: 2$ 0 n m とし、図12に示す断面構造からなる磁気記録媒 体1を作製した。

【0134】そして、軟磁性層を、NiターゲットとF eターゲットとTaターゲットとを用いてスパッタ法で 50 成膜したこと以外は、実施例15と同様にして作製し

た。

【0135】また、作製した磁気記録媒体1の積層磁気 記録層 5 中における B 元素及び O 元素の含有率を化学分 析、EDX及びSIMSにより調べたところ、B元素の 含有率は、3原子%であり、〇元素の含有率は、0.2 原子%であった。

【0136】上記において作製した磁気記録媒体1の信 号対ノイズの比S/Nを調べた結果を表1に併せて示 す。ここで、S/Nは、実施例1と同様にして求めた。

として軟磁性層であるNisoFeisTas層を用いるこ とで、積層磁気記録層における記録磁区の遷移領域がよ り明瞭になったために、S/Nは実施例1、実施例7及 び実施例15よりもさらに向上し、32dBと良好な値 を示している。

【0138】〈実施例37〉軟磁性層をCoZrとした こと以外は、実施例36と同様にして磁気記録媒体を作 製した。

【0139】上記において作製した磁気記録媒体の信号 対ノイズの比S/Nを調べたところ、実施例36と同等 20 の効果が得られた。

【0140】<実施例38>軟磁性層をFeNとしたこ と以外は、実施例36と同様にして磁気記録媒体を作製 した。

【0141】上記において作製した磁気記録媒体の信号 対ノイズの比S/Nを調べたところ、実施例36と同等 の効果が得られた。

【0142】以上、実施例36乃至実施例38の結果か ら、下地層の直下、すなわち積層磁気記録層と反対側に 裏打ち層として軟磁性層を備えることにより、積層磁気 30 記録層における記録磁区の遷移領域がより明瞭にするこ ととができ、その結果、S/Nを向上させられることが 確認された。

【0143】<比較例>比較例では、積層磁気記録層で ある垂直磁化膜、及び下地層にB元素及びO元素を含有 させない従来の磁気記録媒体1を作製した。

【0144】磁気記録媒体は、実施例1と同様にして作 製した。各層の組成、構成は、(Co: O. 4 nm/P d:0.6nm)×20/Pd:20nmとし、図13 に示す断面構造からなる磁気記録媒体1を作製した。

【0145】スパッタリングターゲットは、下地層4用 には、Pdターゲット、積層磁気記録層5用には、Co ターゲット及びPdターゲットを用いて、2PaのAr 雰囲気中で成膜を行った。

【0146】上記において作製した磁気記録媒体1の垂 直方向の保磁力Hc、及び信号対ノイズの比S/Nを調 べた結果を表1に併せて示す。ここで、S/Nは、実施 例1と同様にして求めた。

【0147】比較例1で作製した磁気記録媒体1は、H cは、磁気的及び熱的外乱に対して安定であり、且つ従 50 を示す要部断面図である。

来の記録ヘッドで記録可能な実用的な値を示している が、遷移ノイズが大きく、その結果S/Nは12dBと 小さい値を示している。

16

【0148】ここで、比較例と実施例1との磁気記録媒 体の、積層磁気記録層における遷移ノイズの差を明らか にするために、積層磁気記録層の微細構造を透過電子顕 微鏡 (Transmission electron microscope: TEM) に より解析し、比較例と実施例1とを比較した。実施例1 のTEMでの観察結果を図14に、比較例のTEMでの 【0137】実施例36の磁気記録媒体1は、裏打ち層 10 観察結果を図15に示す。その結果、比較例では、結晶 粒子同士が密着しているのに対し、実施例1では、結晶 粒界に隙間が見られた。

> 【0149】また、実施例1の結晶粒界の構造を明らか にするために、高分解能TEMとEDXにより解析を行 った。EDXの分析領域は5nm程度で、高分解能TE M像中の分析領域Aでは結晶粒子内のみの元素情報が得 られるが、分析領域Bでは結晶粒内と結晶粒界の両方の 元素情報を含んでいる。結晶粒内のEDXの分析結果を 図16に、結晶粒界のEDXの分析結果を図17に示 す。また、高分解能TEMでの観察結果を図18に示 す。

> 【0150】高分解能TEM像からは、結晶粒子の周り がアモルファス状の物質で満たされており、結晶粒子同 士が結晶学的に孤立しているのが判った。

> 【0151】また、EDXスペクトルを結晶粒内と結晶 粒界とで比較すると、B元素及びO元素は結晶粒界でし か検出されず、結晶粒界にボロンオキサイド相が析出し ていると考えられる。

【0152】これらのことより、本解析結果は、B元素 及び〇元素が積層磁気記録層の結晶粒子を孤立させるの に重要な役割を果たすことを示している。すなわち、こ の結晶粒子の結晶学的な孤立が磁気的な孤立を生じさ せ、その結果遷移ノイズが減少し、S/Nが向上したも のと考えられる。

#### [0153]

【発明の効果】以上、詳細に説明したように、本発明に 係る磁気記録媒体は、積層磁気記録層として、Pt層若 しくはPd層とCo層とが交互に積層された人工格子膜 からなり、さらにB及びOを含有してなる垂直磁気記録 40 膜を備えるため、積層磁気記録層における遷移ノイズが 大幅に減少する。

【0154】したがって、本発明によれば、積層磁気記 録層における遷移ノイズが大幅に減少され、S/Nに優 れた短波長記録に好適な磁気記録媒体を提供することが 可能となる。

#### 【図面の簡単な説明】

【図1】本発明を適用した磁気記録媒体の一例の層構造 を示す要部断面図である。

【図2】本発明を適用した磁気記録媒体の一例を層構造

17

【図3】本発明を適用した磁気記録媒体の一例を層構造 を示す要部断面図である。

【図4】実施例1、実施例13及び実施例14で作製した磁気記録媒体の層構造を示す要部断面図である。

【図5】実施例7で作製した磁気記録媒体の層構造を示す要部断面図である。

【図6】本津名を適用した磁気記録媒体を作製する際に 用いたスパッタリングターゲットを示す平面図である。

【図7】B元素の含有率とS/Nとの関係を示す特性図である。

【図8】O元素の含有率とS/Nが上昇するB元素の含有率の臨界値との関係を示す特性図である。

【図9】O元素の含有率とS/Nとの関係を示す特性図である。

【図10】B元素の含有率とS/Nが上昇するO元素の含有率の臨界値との関係を示す特性図である。

【図11】実施例15で作製した磁気記録媒体の層構造を示す要部断面図である。

【図12】 実施例36で作製した磁気記録媒体の層構造を示す要部断面図である。

【図13】比較例で作製した磁気記録媒体の層構造を示す要部断面図である。

【図14】実施例1のTEMでの観察結果を示す顕微鏡 写真を表す図である。

【図15】比較例のTEMでの観察結果を示す顕微鏡写真を表す図である。

【図16】結晶粒内のEDXの分析結果を示す特性図で 10 ある。

【図17】結晶粒界のEDXの分析結果を示す特性図である。

【図18】実施例1の高分解能TEMでの観察結果を示す顕微鏡写真を表す図である。

【符号の説明】

1 磁気記録媒体、2 基板、3 接着層、4 下地層、5 積層磁気記録層、6 保護層、7 軟磁性層









【図16】



【図17】



【図18】



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| · ·                                                   |
|-------------------------------------------------------|
| ☐ BLACK BORDERS                                       |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES               |
| FADED TEXT OR DRAWING                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                               |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                |
| ☐ GRÁY SCALE DOCUMENTS                                |
| LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
|                                                       |

## IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.