MSAI Statistics & Probability – Week 3 Seminar & HW

Problem 1: Let P be a distribution on \mathbb{R} and F be its distribution function. Are the following equalities true?

1.
$$P([a,b]) = F(b) - F(a-)$$

2.
$$P((a,b)) = F(b-) - F(a)$$

3.
$$P([a,b)) = F(b-) - F(a-)$$

4.
$$P({x}) = F(x) - F(x-)$$

Problem 2: Let P have density p. Find its distribution, F, if

1.
$$p(t) = \frac{I_{[a,b]}(t)}{b-a}$$

2.
$$p(t) = \lambda e^{-\lambda t} I_{(0,\infty)}(t)$$

3.
$$p(t) = \frac{\theta}{\pi(t^2 + \theta^2)}$$

Find the product of $F_1(2b)F_2(\ln 2/\lambda)F_3(0)$.

Problem 3: Let P be a discrete distribution on \mathbb{R} , $p(x) = P(\{x\})$

- 1. $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$, $x \in \mathbb{Z}_+$ (Poisson distribution). Find $P(2\mathbb{Z}_+)$.
- 2. $p(x) = p(1-p)^{x-1}$, $x \in \mathbb{N}$ (geometric distribution). Find the distribution function and $P(2\mathbb{Z}_+)$.

Find numerical values for both distributions if $\lambda = \ln 2/2$, p = 1/3

Problem 4: Let P be the uniform distribution on the quarter disk $D = \{(x, y) : x^2 + y^2 < 1, x > 0, y > 0\}$. Let $P_1(x)$ be its marginal distribution (marginalized y). Find the density function $p_1(x)$ of it, as well as the distribution function F_1 . Find the numerical value of $p_1(\sqrt{1-(\pi/4)^2})$.