EVOLVING DOCUMENT

ME 4710/5710 Applie Dynamics Homework

Date of this version: January 25, 2018

For each problem attempt to write a self-complete solution. This includes a *brief* problem restatement and gives a solution that would convince a skeptical student who didn't understand the problem.

- 1. 3D. Get good at vectors. Assume that the positions relative to an origin of four random points, which are randomly located in space are given as \vec{r}_A , \vec{r}_B , \vec{r}_C and \vec{r}_D . Assume force \vec{F} is given. For each problem below write a single vector formula (one for each problem) that answers the question. In all of these problems the formula evaluates to a scalar.
 - a) The points A and B define an infinite line. So do the points C and D. Find the distance between these two lines ('the' distance means 'the minimum distance').
 - b) Find the volume of the tetrahedron ABCD (you should reason-out and not quote any formulas for the volume of a tetrahedron).
 - c) Assume points A, B and C are fixed to a structure. All three are connected by massless rods, the a ball and socket at each end, to point D. At point D the force \vec{F} is applied. Find the tension in bar AD.
- 2. The geometric definition of cross product is this $\vec{a} \times \vec{b}$ is a vector \vec{c} with magnitude $|\vec{a}||\vec{b}|\sin\theta_{ab}$ that is orthogonal to \vec{a} and \vec{b} in the direction given by the right hand rule. Use this definition to find an alternative geometric definition involving projection. Use that definition to show the distributive rule $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$. Then use the distributive rule to find the component formula for cross product, namely that

$$\vec{\pmb{a}} \times \vec{\pmb{b}} = (a_2b_3 - a_3b_2)\hat{\pmb{e}}_1 + (a_3b_1 - a_1b_3)\hat{\pmb{e}}_2 + (a_1b_2 - a_2b_1)\hat{\pmb{e}}_3.$$

Hint: You can read about this in, say, the Ruina/Pratap book (box 2.7).

3. Practice a bit with dyadics. Read as much as you like, and do the exercises in course in 2.13 and 2.14: **Paul Mitiguy**'s Stanford course.