Adult Census Income Analysis Team 6

Lecturer: Dr. Arash Azarfar

Team members:

Dina Omidvar Tehrani, Niloofar Tavakolian Nastaran Naseri, SeyedehMojdeh Haghighat Hosseini

Overview of the problem

Have you ever wondered what key factors could propel your income to the next level?

Income Patterns Dissecting Adult Income Factors

Income Prediction Lighting Up Inequality & Empowerment

Demographic Insights **Probing Socioeconomic Dynamics**

Dataset Selection

Expectations and Goals

Feature importance analysis

Generating actionable insights

Pre-processing

Dealing with class imbalance
Handling missing values
Dealing with categorical features

Supervised Learning: Decision Tree classification

Table 2: Evaluation of Model's Performance (Supervised learning Classification with Decision Trees) [8]

	Precision	Recall	F1-score	Support
≤50K	0.88	0.82	0.85	2516
>50K	0.72	0.81	0.76	1484
Accuracy			0.81	4000
Macro Avg	0.80	0.81	0.80	4000
Weighted Avg	0.82	0.81	0.81	4000

Semi-supervised Learning Using a Decision Tree Classifier

Table 4: Evaluation of Model's Performance (Semi-supervised learning Classification with Decision Trees) [8]

	Precision	Recall	F1-score	Support
≤50K	0.72	0.93	0.81	4605
>50K	0.77	0.40	0.53	2738
Accuracy			0.73	7343
Macro Avg	0.75	0.66	0.67	7343
Weighted Avg	0.74	0.73	0.71	7343

Supervised Learning: Classification with a Deep Learning Model

	Layers		
Fully connected	FC1,ReLU	Featues in:34	Features out: 64
Dropout	DO1)	→
Fully connected	FC2. ReLU	Featues in:64	Features out: 128
Dropout	DO2 >))
Fully connected	FC3. ReLU	Featues in:128	Features out: 64
Dropout	DO3	+	•
	FC4. BCE	Featues in:64	Features out: 1

Conclusion

Data pre-processing:

Handling missing values, imbalanced dataset, and categorical features

Decision Tree

Accuracy: 81.1

Predicting Income

Semi-Supervised Learning

Accuracy:73.24

DNN Model

Accuracy:85.76

Refrences

- "Adult census income," kaggle, https://www.kaggle.com/datasets/uciml/adult- censusincome?resource=download.
- "Handling missing data," scikit-learn documentation, 2023, https://scikit-learn. org/stable/modules/impute.html.
- D. Omidvar, N. Tavakolian, N. Naseri, and S. H. Hosseini, "Project github," https://github.com/dinaomidvartehrani/Applied- AI- .git.
- "Resampling methods," scikit-learn documentation, 2023, https://scikit-learn. org/stable/modules/classes.html#module- sklearn.utils.
- J. Brownlee, "Why one-hot encode data in machine learning?" 2020, https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/.

