Advanced Macroeconomics Kernelemente von Wachstumsmodellen

Termin 3

Claudius Gräbner University of Duisburg-Essen Institute for Socio-Economics &

Johannes Kepler University Linz Institute for Comprehensive Analysis of the Economy (ICAE)

www.claudius-graebner.com | www.uni-due.de | www.jku.at/icae

Outline

- Vorbemerkungen: Beschreibung vs. Erklärung und Schließung von Modellen
- Überblick über Elemente von Wachstumsmodellen
- Modelle für Produktion und die Social Accounting Matrix
- Modelle für den Arbeitsmarkt
- Modelle für Konsum- und Investitionsverhalten
- Zusammenfassung

Vorbemerkungen

- Bislang haben wir reale Ökonomien mit Hilfe verschiedener Konzepte
 beschrieben jetzt wollen wir was wir gesehen haben mit Modellen erklären
- Modelle bestehen aus exogenen und endogenen Variablen
- Variation in den exogene Variablen wird angenommen, Variation in den endogenen Variablen wird durch das Modell erklärt
 - Für jede endogene Variable brauchen wir mindestens eine Modellgleichung
- Wir betrachten zunächst Wachstumsmodelle mit den endogenen Variablen:
 - Wachstum des Kapitalstocks g_k , Profitrate v, Reallohn w und Konsum c
- Mit komplexeren Modelle können wir auch mehr endogene Variablen haben!
- Aber wir starten mal mit diesen vier Variablen → wir brauchen vier Gleichungen!

Vorbemerkungen

- Wir brauchen insgesamt also vier Gleichungen
- Zwei Gleichungen ergeben sich bereits aus unseren Accounting-Identitäten:
 - w = x vk
 - $c = x (g_K + \delta) k$
- Diese Gleichungen sind relativ unproblematisch und finden sich in Varianten
 in fast allen Wachstumsmodellen
- Welche weiteren Gleichungen formuliert werden ist paradigmenabhängig!
- In jedem Fall spricht man bei dem Hinzufügen ausreichend vieler Gleichungen von einer Schließung des Modells
- Um ausreichend viele sinnvolle Gleichungen zusammenzubekommen betrachten wir drei Bereiche einer Ökonomie

Elemente von Wachstumsmodellen

- Wachstumsmodelle betrachten mindestens drei Bereiche
 - Die theoretischen Überlegungen führen zu mindestens vier Modellgleichungen

Firmensektor Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

Wiederholungsfragen

- Was ist der Unterschied zwischen exogenen und endogenen Variablen?
- Aus welchen drei Bereichen besteht ein Wachstumsmodell?
- Welchen Zusammenhang gibt es zwischen der Anzahl von Modellgleichungen und Anzahl der endogenen Variablen?
- Was versteht man unter der Schließung eines Modells?

Elemente von Wachstumsmodellen

- Wachstumsmodelle betrachten mindestens drei Bereiche
 - Die theoretischen Überlegungen führen zu mindestens vier Modellgleichungen

Firmensektor Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

7 Claudius Gräbner

- Grundprinzip: Entrepreneure wählen die optimale Produktionstechnik, stellen Arbeiter:innen ein und die Firmen produzieren den entsprechenden Output
- Basis-Annahmen:
 - Diskrete Zeitschritte: $t = t_0, ..., 2015, 2016, ..., t_{max}$
 - ullet BIP X als zentrales Maß für ein homogenes Output-Gut
 - ullet Das homogene Output-Gut fungiert gleichzeitig als homogenes Kapitalgut K
 - ullet Zwei Produktionsfaktoren: Arbeit N und Kapital K
- Von zentraler Bedeutung sind die verwendeten Produktionstechniken:
 - Bestimmen notwendige Kapitalausstattung f
 ür jede Arbeitseinheit
 - Bestimmt die Menge an Output, die von einer Einheit Arbeit produziert wird
 - Bestimmt die Abnutzung des Kapitalstocks

Produktionstechniken und technologischer Wandel

- Wir nehmen für die Produktionstechniken konstante Skalenerträge an → doppelt so viele Inputs produzieren doppelt so viel Output
 - Das ist eine sehr kritische Annahme, die jedoch schwer abzuschwächen ist
 - Wir lernen entsprechende Modelle später in der Veranstaltung kennen
- Eine Produktionstechnik wird durch ein Triple definiert: $\langle k, x, \delta \rangle$ oder $\langle \rho, x, \delta \rangle$
 - k: Kapitalausstattung pro Einheit Arbeit
 - ρ : Kapitalproduktivität x/k
 - x: Output, der pro Einheit Arbeit produziert wird
 - δ : Verschleiss von Kapital im Produktionsprozess $(0 < \delta \le 1)$

1 Einheit Lk Einheiten K

x Einheiten X $(1 - \delta) k$ Einheiten K

Produktionstechniken und technologischer Wandel

Aus den Produktionstechniken ergibt sich die Input-Output-Beziehung:

$$N = \frac{X}{x}$$

$$K = \frac{kX}{x} = \frac{X}{\rho}$$

 Kompakt kann eine einzelne Produktionstechnik auch durch einen Vektor beschrieben werden:

$$\begin{pmatrix} x \\ (1 - \delta k) \\ k \\ 1 \end{pmatrix}$$
Outputs
$$\begin{cases} h \\ h \\ h \\ h \end{cases}$$
Inputs

Produktionstechniken und technologischer Wandel

• Wenn wir alle zu einem Zeitschritt t verfügbaren Techniken in einer Matrix \mathcal{T}_t zusammenfassen bekommen wir die aktuelle **Technologie**:

$$\mathcal{T}_{t} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ (1 - \delta_{1})k_{1} & (1 - \delta_{2})k_{2} & \cdots & (1 - \delta_{n})k_{n} \\ k_{1} & k_{2} & \cdots & k_{n} \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

• Technologischer Wandel ist eine Änderung dieser Matrix über die Zeit

Arten von Agenten

In den meisten Wachstumsmodellen gibt es – explizit oder implizit – drei
 Arten von Akteuren

Arbeiter:innen

Bieten Arbeit für einen Lohn w an

Kapitalist:innen

Besitzer der Kapitalgüter, Empfänger der Profite

Manager:innen

Wählen Produktionstechniken, stellen
Arbeiter:innen ein,
verkaufen Output und
leiten Profite weiter

Annahme, dass es eine sehr große Anzahl von Agenten gibt → wegen
 Wettbewerb nehmen alle Output-Preise und Löhne als gegeben hin

Entscheidungen der Manager:innen

- 1. Wahl der Produktionstechnik: Manager:innen wählen für ihre Firmen eine Produktionstechnik $\langle \rho, x, \delta \rangle$ um einen Output X zu produzieren
- 2. Manager:innen stellen N = X/x Arbeiter:innen ein

→ Gesamtlohn ('wage bill', WB):
$$W = wN = w\frac{X}{x}$$

- 3. Manager:innen besorgen Kapital von den Kapitalist:innen: $K = \frac{X}{\rho}$
- 4. Die Manager:innen zahlen nach Verkauf des Outputs und Zahlung der Löhne den Bruttoprofit an die Kapitalist:innen:

Profitquote:
$$\pi = \left(1 - \frac{w}{x}\right)$$
 Profite: $Z = X - W = \left(1 - \frac{w}{x}\right)X = \pi X$

Brutto-Profitrate:
$$v = \frac{Z}{K} = \rho \left(1 - \frac{w}{x}\right) = \pi \rho$$

Ein Modell des Firmensektors Entscheidungen der Manager:innen

4. Die Manager zahlen nach Verkauf des Outputs und Zahlung der Löhne den Bruttoprofit an die Kapitalist:innen:

Profitquote:
$$\pi = \left(1 - (w/x)\right)$$
 Profite: $Z = X - W = \left(1 - \frac{w}{x}\right)X = \pi X$

Brutto-Profitrate:
$$v = \frac{Z}{K} = \rho \left(1 - \frac{w}{x}\right) = \pi \rho$$

Die Profitrate *v* ist was die Kapitalist:innen für die Abnutzung einer Einheit Kapital pro Zeitschritt bekommen ≠ Preis von Kapital

- Preis von einer Einheit Kapital ist immer gleich 1
- ullet Preise werden i.H.v. Output X angegeben & Output kann als Kapital verwendet werden

Note: Manager:innen versuchen eine möglichst hohen Profitrate zu erzielen, damit sie bei Kapitalisten möglichst beliebt sind → Wettbewerb mit anderen

Entscheidungen der Kapitalist:innen

- 1. Kapitalist:innen starten einen Zeitschritt mit Kapitalausstattung K
- 2. Am Ende der Periode erhalten sie $(1 \delta) K$ und den Brutto-Profit vK

Nettoprofite:
$$R = vk - \delta K$$

Nettoprofitrate:
$$r \equiv \frac{R}{K} = \frac{vK - \delta K}{K} = v - \delta = \pi \rho - \delta$$

Nächste Schritte:

- 1. Einführung der Sozialen Accounting-Matrizen um Beziehungen zwischen Agenten darzustellen
- 2. Analyse der Wahl von Produktionstechniken

Wiederholungsfragen

- Was verstehen wir unter eine Produktionstechnik?
- Was verstehen wir unter einer Technologie und was unter technologischem Wandel?
- Was ist die Rolle der folgenden Agenten im Produktionsprozess:
 - Arbeiter:innen
 - Kapitalist:innen
 - Entrepreneure
- Wieso versuchen Entrepreneure in diesen Modellen den Profit der Kapitalist:innen zu maximieren?
- Welche Entscheidungen müssen die Entrepreneure treffen?
- Was ist in diesen Modellen der Preis von Kapital?

Ein Modell des Firmensektors Einführung der *Social Accounting Matrizen*

- In den SAM werden alle Transaktionen des Modells gespeichert
 - Aktuell: nur reale Größen, später auch finanzielle Größen

		<u> </u>					
	Output-Kosten	w	c	f	I	Summe	Outputidentität
Verwendung		C^w	C^c		$\Delta K + \delta K$	X	-
Einkommen w c f Geldflüsse	W $vK = Z$			vK = Z		$X^w \ X^c \ X^f$	Einkommen der Arbeiter, Kapitalisten und Firmen • Brutto-Profite bei Firmen
c			S^c		$-\left(\Delta K + \delta K\right)$	0	
Summe	X	X^w	X^c	X^f	0		-

Einkomensidentität

 Zeilen- und Spaltensummen sind identisch → Value Added kann über Einkünfte oder Ausgaben gemessen werden

Ein Modell des Firmensektors Einführung der *Social Accounting Matrizen*

	Output-Kosten	w	c	f	I	Summe
Verwendung Einkommen		C^w	C^c		$\Delta K + \delta K$	X
$w \\ c$	W			vK = Z		$X^w \ X^c$
fGeldflüsse	vK = Z					X^f
c			S^c		$-(\Delta K + \delta K)$	0
Summe	X	X^w	X^c	X^f	0	

Brutto-Investment:

 Verdeutlicht wie Investment finanziert wird

Quellen von Flüssen mit positivem, Verwendung mit negativem Vorzeichen Infos darüber wie die einzelnen Agenten ihr Einkommen verwenden

- Arbeiter konsumieren gesamtes Einkommen, Kapitelist:innen sparen
- Firmen leihen Kapital, aber sparen nicht
- Die hier dargestellte SAM ist sehr simpel
 - → je realistischer das Modell, desto komplexer die SAM
 - → z.B. wenn Sparen und Investition nicht vom gleichen Agenten durchgeführt werden

Ein Modell des Firmensektors Einführung der agentenspezifischen *Balance Sheets*

- In den Balance Sheets werden die Aktiva (Assets) und Verbindlichkeiten (Liabilities) aller Agenten vermerkt
- ullet Netto-Wohlstand J ist gleich Aktiva Verbindlichkeiten

Aktiva | Verbindlichkeiten + Netto-Wohlstand

- Bis jetzt Kapital als einziges Asset und keine Verbindlichkeiten
 - Aktuell gilt K = J, da nur die Kapitalisten Aktiva halten
- Die Balance Sheets beschreiben Betstände (stocks), die SAM Flüsse (flows)
 - Beide zusammen geben ein vollständiges Bild über die Makro-Zusammenhänge in einem Modell
 - Zentral für stock-flow-consistency

Ein Modell des Firmensektors Die Wahl der Produktionstechniken

• Jede Produktionstechnik $\langle \rho, x, \delta \rangle$ steht für eine Art aus Arbeit und Kapital den Output herzustellen \rightarrow korrespondiert zu einem eigenen Lohn-Profit-Plan

- Zeigt wie viel Profit bei gegebenem Lohn möglich ist
 - T_1 attraktiv bei niedrigem, T_2 bei hohem w
 - Die Effizienzgrenze einer Technologie $\mathcal T$ gibt immer Wert der besten Technik an
 - Punkt A ist der Switchpunkt
 - Profitmaximierende Manager:innen wählen immer eine Technik auf der Effizienzgrenze
- Darstellung gilt auch für Technologien mit beliebig vielen Techniken
 - ullet Profitmaximierende Manager:innen wählen für jeden Lohn w die Technik der Effizienzgrenze

Ein Modell des Firmensektors Die Wahl der Produktionstechniken und die Produktionsfunktion

- Ein typisches Merkmal neoklassischer Wachstumstheorie ist die Produktionsfunktion, in der Kapital selbst auch produktiv ist
- Gibt für jede Kombination von N und K gibt sie den Output X an:

$$X = F(K, N)$$

- Typischerweise werden konstante Skalenerträge angenommen
 - In diesem Fall repräsentiert eine Produktionsfunktion genau eine Technologie $\mathcal T$ und wir können aus $F(\,\cdot\,)$ auch x herleiten:

$$x = \frac{X}{N} = F\left(\frac{K}{N}, \frac{N}{N}\right) = F\left(k, 1\right) \equiv f(k)$$

Dieser Zusammenhang heißt intensive Produktionsfunktion

Die Wahl der Produktionstechniken und die Produktionsfunktion

• Wenn wir es mit einer stetigen und differenzierteren Produktionsfunktion zu tun haben...

...enthält die dadurch repräsentierte Technologie ${\mathcal T}$ unendlich viele Techniken

...ist jeder Punkt auf der Effizienzkurve ein Switchpunkt

...führt ein kleiner Anstieg in w zur Wahl einer leicht kapitalintensiveren Technik

...kombiniert die profitmaximierende Technik so, dass

$$w = \frac{\Delta X}{\Delta N} = \frac{\partial F(N, K)}{\partial N}$$
 $v = \frac{\Delta X}{\Delta K} = \frac{\partial F(N, K)}{\partial K}$

Marginale Produkte der Produktions-Faktoren korrespondieren zu Faktorpreisen

Innerhalb der neoklassischen Theorie wird daher das Entscheidungsproblem der Managerinnen auch als Maximierungsproblem dargestellt und analysiert

Ein Modell des Firmensektors Die Wahl der Produktionstechniken als Maximierungsproblem

- In der neoklassischen Theorie spielt das Gleichsetzen von marginalen Produkten und Faktorpreisen eine zentrale epistemologische Rolle
- In unserem Kontext starten wir mit der Definition der Profite:

$$Z = vk = X - wN = F(N, K) - wN$$

• Für eine gegebene Menge an Kapital wird nun die Menge an Arbeit gewählt sodass der Profit maximiert wird:

$$\frac{\partial Z}{\partial N} = \frac{\partial F(N, K)}{\partial N} - w = 0 \qquad w = \frac{\partial F(N, K)}{\partial N}$$

- Die resultierende Technik liegt genau auf einem Switchpunkt
- Später lernen wir wie man dieses Maximierungsproblem generell löst

Ein Modell des Firmensektors Die Wahl der Produktionstechniken und der W-V-P

- Zentraler Mechanismus ist die Wahl der profit-maximierenden Technik gegeben dem Reallohn w
 - Wenn es nicht unendlich viele Produktionstechniken gibt funktioniert die Gleichsetzung von MP_L und w nichts \rightarrow Die Wahl der profit-maximierenden Technik aber schon

Ausgangspunkt: w

Determiniert Produktionstechnik $T \in \mathcal{T}$

W-V-P bestimmt x und ρ und Trade-Off zw. C und I

Wiederholungsfragen

- Wofür verwenden wir die SAM und wofür die Balance Sheets?
- Welches Konzept illustriert die Gleichheit der Spalten- und Zeilensummen in einer SAM?
- Was verstehen wir unter der Effizienzgrenze einer Technologie?
- Unter welchen Umständen wählen profitmaximierende Entrepreneure eine Produktionstechnik abseits der Effizienzgrenze?
- Was verstehen wir unter einer Produktionsfunktion?
- Gebt Schritt für Schritt an wie man aus einem gegebenen Reallohn den Wachstums-Verteilungsplan einer Volkswirtschaft ableiten kann.

Arten von Produktionsfunktionen

- Es gibt viele verschiedene Arten von Produktionsfunktionen
 - Hier nur kurzer Ausblick → genauere Diskussion wenn wir sie in Modellen antreffen

Leontief-Produktionsfunktion

Cobb-Douglas
Produktionsfunktion

CES Produktionsfunktion

$$X = \min\left(\rho K, xN\right)$$

oder

$$x = \min\left(\rho k, x\right)$$

$$X = AK^{\alpha}N^{1-\alpha}$$

 $\mathsf{und}\, A \; \mathsf{als} \; \mathsf{Skalenparamter}$

$$X = A \left[\alpha K^{\frac{\sigma - 1}{\sigma}} + (1 - \alpha) N^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma - 1}{\sigma}}$$

mit $0 \le \sigma \le \infty$ als Substitutions-Elastizität

$$\sigma = 0 \rightarrow \text{Leontief-Funktion}$$

$$\sigma = 1 \rightarrow \text{Cobb-Douglas}$$

$$\sigma = \infty \rightarrow \text{lineare Prdktsfkt}.$$

Arten von Produktionsfunktionen - die Leontief-Funktion

- Bei der Leontief-Funktion k\u00f6nnen Kapital und Arbeit nur in genau einer Art und Weise kombiniert werden
- Die Funktion beschreibt genaue eine einzige Produktionstechnik
- Der Output wird immer durch den knapperen Faktor bestimmt

Isoquante

Lohn-Profit-Plan

Intensive PF

Arten von Produktionsfunktionen - die Cobb-Douglas Funktion

$$X = AK^{\alpha}N^{1-\alpha}$$

- Aus praktischen Gründen sehr weit verbreite Produktionsfunktion
- Im Gegensatz zur Leontief-Funktion sind Kapital und Arbeit hier Substitute
 - Genug vom einen Faktor kann immer den anderen Faktor substituieren → TRS

$$\frac{X}{N} = A \frac{K^{\alpha} N^{1-\alpha}}{N} \qquad \qquad x = Ak^{\alpha} 1^{1-\alpha} \qquad \qquad x = Ak^{\alpha} \qquad \qquad \text{Intensive}$$
Variante

Isoquante

Lohn-Profit-Plan

Intensive PF

Arten von Produktionsfunktionen - die Cobb-Douglas Funktion

• Die CD-Funktion ist auch deswegen so beliebt, weil die marginalen Produkte über die partiellen Ableitungen definiert sind:

$$\mathsf{MP}_N = \frac{\partial X}{\partial N} = (1 - \alpha) A \left(\frac{K}{N}\right)^{\alpha} = (1 - \alpha) A k^{\alpha}$$

$$\mathsf{MP}_K = \frac{\partial X}{\partial K} = \alpha A \left(\frac{K}{N}\right)^{-(1-\alpha)} = \alpha A k^{\alpha-1}$$

 Grenzrate der Substitution (TRS): wie viel mehr von einem Faktor nötig um den anderen Faktor bei gleichem Output um 1 zu reduzieren:

$$\mathsf{TRS} = \frac{\mathsf{MP}_N}{\mathsf{MP}_K} = \frac{1 - \alpha}{\alpha} k$$

Arten von Produktionsfunktionen - die Cobb-Douglas Funktion

- Wie können wir den Parameter lpha interpretieren?
 - Zum einen als die Substitutionselastizität von Kapital
 - Zum anderen als die Profitquote
- Exkurs:
 - Maximieren wir die Cobb-Douglas Produktionsfunktion muss gelten, dass:

$$v = \mathsf{MP}_K = \frac{\partial X}{\partial K} = \alpha A k^{\alpha - 1} = \alpha \rho$$

$$\rho = \frac{x}{k} = A \frac{k^{\alpha}}{k} = A k^{\alpha - 1}$$

• Aus der Definition der Profitquote ergibt sich dann:

$$\pi = \frac{vk}{x} = \frac{\alpha x}{x} = \alpha$$

$$k = \frac{K}{N} \qquad v = \frac{X - W}{K} = \frac{Z}{K}$$
$$\pi = \frac{X - W}{X} = \frac{x - w}{x}$$

Arten von Produktionsfunktionen - die CES-Funktion

Die CES-Funktion sieht erstmal furchtbar aus:

$$F(N, K; A, \alpha, \sigma) = X = A \left[\alpha K^{\frac{\sigma - 1}{\sigma}} + (1 - \alpha) N^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma - 1}{\sigma}}$$

- Tatsächlich ist sie aber so verbreitet, weil man mit ihr so leicht rechnen kann
- Zudem ist sie eine sehr generelle Funktion, die alle bisherigen Funktionen als Sonderfall enthält
- Zentral ist der Parameter σ , die Substitutionselastizität:

$$\sigma = \frac{\text{Änderung der relativen Kapitalintensität}}{\text{Änderung in der Grenzrate der technischen Substitution}} = \frac{\frac{\Delta k}{k}}{\frac{\Delta TRS}{TRS}}$$

 Die Funktion ist weit verbreitet und sehr generell, soll aber hier nicht im Detail besprochen werden

Arten von Produktionsfunktionen - die CES-Funktion (optional)

• Woraus ergibt sich die konstante Substitutionselastiztät der Produktionsfunktion $F(N, K; A, \alpha, \sigma)$?

TRS =
$$\frac{\partial F(\cdot)/\partial N}{\partial F(\cdot)/\partial K} = \frac{1-\alpha}{\alpha} \left(\frac{K}{N}\right)^{\frac{1}{\sigma}} = \frac{1-\alpha}{\alpha} k^{1/\sigma}$$

• Wenn wir beide Seiten logarithmieren:

$$\ln\left[\mathsf{TRS}\right] = \ln\left[\frac{1-\alpha}{\alpha}k^{1/\sigma}\right] = \ln\left[\frac{1-\alpha}{\alpha}\right] + \ln\left[k^{1/\sigma}\right] = \ln\left[\frac{1-\alpha}{\alpha}\right] + \frac{1}{\sigma}\ln\left[k\right]$$

$$\frac{\ln \left[\mathsf{TRS} \right]}{\ln k} = \frac{1}{\sigma} \to \sigma = \frac{\ln k}{\ln \left[\mathsf{TRS} \right]}$$

Zusammenfassung

- Wir haben alle notwendigen Elemente einer Theorie der Produktion kennen gelernt, die wir für ein vollständiges Wachstumsmodell brauchen
- Produktionstechniken $\langle k, x, \delta \rangle$ oder $\langle \rho, x, \delta \rangle$ definieren wie Inputfaktoren Kapital K und Arbeit N in Output X transformiert werden
- Alle möglichen Produktionstechniken sind die aktuelle Technologie \mathcal{T}_t
- In neoklassischen Modellen werden Produktionstechniken durch eine Produktionsfunktion mit konstanten Skalenerträgen repräsentiert
- In Wachstumsmodellen werden i.d.R. drei Typen von Agenten unterschieden:
 - Arbeiter:innen, Kapitalist:innen und Manager:innen
 - Letztere wählen $T_t \in \mathcal{T}_t$ sodass der Profit maximiert wird
- Bestände aller und Flüsse zwischen den Agenten werden mit den Balance Sheets und der SAM repräsentiert

Drei Bereich und vier Gleichungen

Firmensektor

Entscheidungen über Produktion

 Firmen entscheiden was und wie viel sie produzieren

Haushaltssektor

Entscheidung über Sparen & Konsum

• Haushalte entscheiden wie viel sie konsumieren bzw. sparen

Arbeitsmarkt

Entscheidung über Arbeit und Lohn

 Haushalte entscheiden über Arbeitsangebot, Firmen über Lohn

34 Claudius Gräbner

Wiederholungsfragen

- Welche drei Arten von Produktionsfunktionen haben wir genauer kennen gelernt? Wodurch sind sie jeweils gekennzeichnet?
- Fasset die zentralen Entscheidungen zusammen, welche durch die Manager:innen in den herkömmlichen Modellen zur Produktion getroffen werden.
- Was macht eine bestimmte Produktionstechnik aus?
- Unter welchen Umständen repräsentiert eine Produktionsfunktion eine Produktionstechnik?
- Skizziert eine einfache SAM und erläutert warum es Sinn macht, dass die Zeilensummen gleich den Spaltensummen sind.

Fortsetzung in Foliensatz 4

Anhang: Erklärung der Spalten in der SAM

Spaltensummen aus den einzelnen Posten, die beschreiben für was die Klassen ihr Geld verwenden. Die Summe gibt also Gesamtausgaben der Klassen an Geldflüsse: Ursprung positiv, Verwendung negativ Hier: Sparen der Kapitalist:innen zum Aufbau/Erhalt der Kapitalstocks verwendet

37 Claudius Gräbner