Computer Networks

Link State Routing (§5.2.5, 5.6.6)

Topic

- How to compute shortest paths in a distributed network
 - The Link-State (LS) approach

Link-State Routing

- One of two approaches to routing
 - Trades more computation than distance vector for better dynamics
- Widely used in practice
 - Used in Internet/ARPANET from 1979
 - Modern networks use OSPF and IS-IS

Link-State Setting

Nodes compute their forwarding table in the same distributed setting as for distance vector:

- 1. Nodes know only the cost to their neighbors; not the topology
- 2. Nodes can talk only to their neighbors using messages
- 3. All nodes run the same algorithm concurrently
- 4. Nodes/links may fail, messages may be lost

Link-State Algorithm

Proceeds in two phases:

- 1. Nodes <u>flood</u> topology in the form of <u>link state</u> packets
 - Each node learns full topology
- Each node computes its own forwarding table
 - By running Dijkstra (or equivalent)

Phase 1: Topology Dissemination

Each node floods <u>link state packet</u>
(LSP) that describes their portion
of the topology

Node E's LSP flooded to A, B, C, D, and F

Computer Networks

ь

Phase 2: Route Computation

- Each node has full topology
 - By combining all LSPs
- Each node simply runs Dijkstra
 - Some replicated computation, but finds required routes directly
 - Compile forwarding table from sink/source tree
 - That's it folks!

Forwarding Table

Source Tree for E (from Dijkstra)

E's Forwarding Table

То	Next
Α	С
В	С
С	С
D	D
Е	
F	F
G	F
Н	С

Computer Networks

8

Handling Changes

- On change, flood updated LSPs, and re-compute routes
 - E.g., nodes adjacent to failed link or node initiate

Handling Changes (2)

- Link failure
 - Both nodes notice, send updated LSPs
 - Link is removed from topology
- Node failure
 - All neighbors notice a link has failed
 - Failed node can't update its own LSP
 - But it is OK: all links to node removed

Handling Changes (3)

- Addition of a link or node
 - Add LSP of new node to topology
 - Old LSPs are updated with new link
- Additions are the easy case ...

Link-State Complications

- Things that can go wrong:
 - Seq. number reaches max, or is corrupted
 - Node crashes and loses seq. number
 - Network partitions then heals
- Strategy:
 - Include <u>age</u> on LSPs and forget old information that is not refreshed
- Much of the complexity is due to handling corner cases (as usual!)

DV/LS Comparison

Goal	Distance Vector	Link-State
Correctness	Distributed Bellman-Ford	Replicated Dijkstra
Efficient paths	Approx. with shortest paths	Approx. with shortest paths
Fair paths	Approx. with shortest paths	Approx. with shortest paths
Fast convergence	Slow – many exchanges	Fast – flood and compute
Scalability	Excellent – storage/compute	Moderate – storage/compute

IS-IS and OSPF Protocols

- Widely used in large enterprise and ISP networks
 - IS-IS = Intermediate System to Intermediate System
 - OSPF = Open Shortest Path First
- Link-state protocol with many added features
 - E.g., "Areas" for scalability

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey