(HTRA 18:11)

NOVOZHILOV, M.G., doktor tekhn. nauk; DRUKOVANYY, M.F., kand. tekhn. nauk; TARTAKOVSKIY, B.N., kand. tekhn. nauk; YEFREMUV, E.K., kand. tekhn. nauk; IL'IN, V.I., insh.; GAVRILYUK, I.I., insh.

Use of high benches in flux quarries. Vsryv. delo no.57/14:

Filial Institute mekhaniki AN Ukrosa.

167-173 165.

VASIL'YEV, V.S.; IL'III. V.K.; MIHAYEV-TSIKANOVSKIY, V.A.; PHREPELITSIB, V.I., redaktor; RACHEVSKAYA, M.I., redaktor; GUROVA, O.A., tekhnicheskiy redaktor

[Construction and operation of laundry equipment] Konstrukteii i skepluatatsiia prachechnogo oborudovaniia. Moskwa, Ind.-vo Ministerstva kommunal'nogo khoministva RSFSR, 1954. 218 p. (MIRA 8;4)

(Laundry machinery)

IL'IN, V.K.; VASIL'YEV, V.S. [deceased]; MATEVSKIY, V.V.; KHOLSHCHEVBIKOV,
To.N.; KĪRKHOOY, A.G.; LOGVINOVICH, S.L.; ABRAMOV. G.A.; MIRATEVTSIPANOVSKIY, V.A., red.; RACHEVSKAYA, M.I., red.ixd-wa; VOLKOV,
S.V., tekhn.red.

[Leundry equipment album] Al'bom prachechnogo oborndovaniia.

Koskva, Isd-vo M-va kommun.khos.RSFSR, 1958. 119 p. (MIRA 12:?)

1. Akademiya Kommunal'nogo khosyaystva. Proyektao-konstruktorskoye byuro.

(Laundry machinery)

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6"

ACC NR: AP7002018 (A) SOURCE CODE: UR/0142/66/009/005/0610/0615

AUTHOR: Kulikov, E. L.; Il'in, V. K.

ORG: none

TITLE: New method of measuring line width of ferromagnetic resonance of ferrites

SOURCE: IVUZ. Radiotekhnika, v. 9, no. 5, 1966, 610-615

TOPIC TAGS: ferromagnetic resonance, ferrite

ABSTRACT: A thin-ferrite-plate-loaded waveguide segment is replaced by an equivalent quadripole (see figure), and formulas for the component impedances of the latter are derived by a variational method. Applied to the case of a ferrite-loaded rectangular waveguide terminated with a matched load, the above formulas permit deducing this expression for the width of ferrite resonance curve:

 $2\Delta H = \frac{4\pi M}{1 + \left(\frac{H_{\perp}}{H_{\parallel}}\right)^2 \frac{|T_0|}{|T|} - 1}.$ The use of this formula presupposes a knowledge of the

Card 1/2

UDG: 534,245

ACC NR: AP7002018

saturation magnetization 4 m M and the factor $y = y_{sp} g/2$, where $y_{sp} = gyromagnetic ratio for electron spin and <math>g$ - spectroscopic-split factor; the longitudinal-resonance constant magnetic field $H_{11} = \omega/y$. Actual measurements of 4 different-ferrite specimens have proved the validity of the above formula. Although the required measurement of 4 m and y may be regarded as a shortcoming of the new method, these quantities have to be determined anyway in designing many ferrite-containing devices. Orig. art. has: 2 figures, 17 formulas, and 1 table.

SUB CODE: 092 SUBM DATE: 02Apr64 / ORIG REF: 009 / OTH REF: 002

Card 2/2

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6"

HEIR REFERENCES MERKESER VEGGER HEISER HESER KOSH BEHRADAR BE HEK DI HUNDORHANN HI HURURI NATUD AMERIKAN AN EK

ACC NR: AT60045 AUTHOR: 11'1n, V.	WI(m)/FMP(j)/T RFL WW/ 91 SOUN K.; Korobova, M. N.; Fin	RCE CODE: UR/0000/65/0	•	
ORG: none	. 4	ARIU, A. F.; SHAKHOV.	Year A. G/	
	· Marky	•		
ITLE: Combustion	of fuels containing organ	ite phosphorus compound	•	
. Anhtona caniff E	Institut goryuchikh iskops oreniya (New methods in th on). Hoscow, Izd-vo Nauka	a combinet on of funta .	szhiganiya topliv end probleme in the	
CPIC TAGS: combu	stion, phosphorus, phospho	rus compound		3
BSTRACT: The con-	ditions were studied under	ship the same		
ACTUCONCULTATOR WIL	OFERRIC BROSENATUR COMPANI	ad wialds a section of		
Conducti	ed by analyzing the combus ther 9 or 30% phosphoric a	Ald makes II a missibus at it		
ROY CONFESTIVING GT			adaybbee	
ith a fuel atomize	or and a scrubber for the	retention of combunedad	products was used	
ith a fuel atomize the experiments sho .2—1.5. The the	owed that the highest yiel	retention of combustion d is obtained at an air	excess factor of	
ith a fuel atomize the experiments she .2—1.5. The the experiments are of or the new methods	owed that the highest yiel modynamics of reactions a interest for the combusti s used in phosphoric acid	retention of combustion d is obtained at an air t various temperatures on of compounds contain production. Orig art.	excess factor of are discussed. The sing phosphorus and has: 3 figures. [PV]	
ith a fuel atomize the experiments sho 2-1.5. The the experiments are of or the new methods	owed that the highest yiel modynamics of reactions a interest for the combusts	retention of combustion d is obtained at an air t various temperatures on of compounds contain production. Orig art.	excess factor of are discussed. The sing phosphorus and has: 3 figures. [PV]	
ith a fuel atomize the experiments sho 2-1.5. The the experiments are of or the new methods	owed that the highest yiel modynamics of reactions a interest for the combusti s used in phosphoric acid	retention of combustion d is obtained at an air t various temperatures on of compounds contain production. Orig art.	excess factor of are discussed. The sing phosphorus and has: 3 figures. [PV]	

AKHMEROV, A.Kh., kand.biol.nauk; BATENKO, A.I., kand.sellskokhos.nauk;
BRUDASTOVA, M.A., kand.tekin.nauk; GGLOVINSKALA, K.A., kand.biolog.
nauk; GGRDON, L.M., kand.ekon.nauk; DGROKHOV, S.M., rybovod-biolog;
YEROKHINA, I.V., rybovod-biolog; IL.IE, V.M., rybovod-biolog;
ISAYEV, A.I., rybovod-biolog; KADZEVICH, G.V., rybovod-biolog;
KOMAROVA, I.V., kand.biol.nauk; KRYMOVA, R.V., rybovod-biolog;
KULAKOVA, A.M., rybovod-biolog; MAMONTOVA, L.H., kand.biol.nauk;
MEYSNER, Ye.V., kand.biol.nauk; MIKHEYEV, P.V., kand.biol.nauk;
MUKHINA, R.I., kand.biol.nauk; PAKHOMOV, S.P., kand.biol.nauk;
SUKHOVERKHOV, F.M., kand.biol.nauk; SOKOLOVA, Z.P., rybovod-biolog; TSIUNCHIK, R.I., rybovod-biolog; RYZHRNKO, M.I., red.; KOSOVA,
O.M., red.; SOKOLOVA, L.A., tekhn.red.

[Handbook on pond fish culture] Spravochnik po prudovomu rybovodstvu.
Red.kollegiia: A.I.Isaev i dr. Moskva, Pishchepromisdat, 1959. 374 p.
(MIRA 13:4)

1. Moscow. Vserossiyakiy nauchno-issledovateliskiy institut prudovogo rybnogo khosysystva. (Fish culture)

IOHAS, Boris Yakovlevich; GURBVICH, M.S., red.; IL'IH, V.M., red.; LEYKIN, B.P., red.; MASIOV, M.A., red.; USPERSKIY, V.V., red.; CHERNYAK, M.Ya., red.; EL'KIM, E.M., tekhn.red.

[Basic aspects of the economics of construction; besed on the experience and examples of housing construction, Osnownye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own ye voprosy experience and examples of housing construction, one own year.

[MIRA 11:3)

[MIRA 11:3)

CIA-RDP86-00513R000618510004-6

SYRTSOVA, Te.D.; MIRLI'ZON, B.B.; L'IN, V.M., insh., ped.; GRRASDOVA, G.S., red.; ind-va, PRUSAKOVA, T.A., tekhn.red.; LORRELVA, V.I., tekhn.red.

[Analysis of labor productivity standards in building; a scientific report] Analis urovnia proisvoditel'nosti trula v stroitel'stve; nauchnoe soobshchenie. Moskva, Qos. isd-vo lit-ry po stroit., arkhit. i stroit. materialam, 1958. 97 p.

(Building--Production standards) (Froductivity accounting)

SEMENOV, I. Ya.; DUKKL'SKIY, D.S., red.; IL'IN, V.M., red.; HASLOV, N.A., red.;

MALYUGIN, V.I., red.; USPENSKIY, V.V., red.; CHKRUTAK, M.Ya., red.;

SHASS, M.Ye.; red.; LAGUTINA, I.M., tekhn. red.; EL'KIMA, E.M., tekhn. red.

[Working capital of the construction industry] Obcrotage sredstva v

stroitel'stvo. Mckrva, Ocs. ind-vo lit-ry po stroit., arkhit. i

stroit. materialsm, 1958. 107 p.

(Gonstruction industry)

(Gonstruction industry)

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510

D'YACHKOV, Mikhail Fedorovich; LEYKIN, B.P., rod.; LI,'IN, V.M., red.;

MALTUGIN, V.I., red.; MASEOV, M.A., red.; UDPENSITY, V.V., red.;

CHERNYAK, M.Ia., red.; SHASS, M.Ye., red.; MOREKOY, K.L., red.

[Anelysis of the administrative operations of contract building organizations; based on reports] Analiak khoministrenmoi deia
organizations; based on reports] Analiak khoministrenmoi deiaorganizations; based on reports] Analiak khoministrenmoi deiaorganizations; based on reports] Analiak khoministrenmoi deiaorganizations; based on reports]

octentosti, Moskva, Gos.izd-vo lit-ry po stroit., arkhit. i

octentosti, Moskva, Gos.izd-vo lit-ry po stroit., arkhit. i

(Construction industry)

IL'IN, Ivan Mikhaylovich; YUNGEROV, A.A., red.; IL'IN, V.M., red.;
LEKKIN, B.P., red.; MALTUUIN, V.I., red.; MASIGN, E.A., red.;
UNPREKII, V.V., red.; ERASS, M.Te., red.; EUTERHOVA, A.A.,
red.id-va; RYAZABOV, P.Ye., tekhn.red.

[Business accounting in building organisations] Khasisistvennyi
raschet v stroitel nyth organisatishh. Moskva, Gos.isd-vo
raschet v stroitel, arkhit. i stroit.materials, 1960. 148 p.
lit-ry po stroit., arkhit. i stroit.materials, 1960. (MIRA 14:2)

(Construction industry—Accounting)

REKITAR, Ya.A.; POPOV, A.N., red.; IL-IN, V.N., red.; MALTIGIN, V.I., red.; MASLOV, N.A., red.; USPENSKIY, V.V., red.; LEMEIN, B.P., red.; SHASS, M.Ye., red.; MORSKOY, K.L., red., red.,

[Reconomic efficiency of the reorganisation of vall-panel plants, conversion of operating plants to the output of modern types of production] Ekonomichesknia effektivnost rekonstruktsii pred-priistii stenovykh materialov; perevod deistvulushchikh savodov na vypusk progressivnykh vidov isdelii. Moskwa, Gon, isd-vo lit-ry po stroit., arkhit. i stroit.materialam, 1960. 79 p. (MIRA 14:3)

1. Deystvitel'nyy chlen Akademii stroitel'stva i srkhitektury SSSR (for Popov). (Walls)

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6

IL'IN, Valentin Mikhaylovich; MAYEVSKIY, I.V., doktor ekonom. nauk,
red.; PRAVKIN, G.A., red.; POPOV, N.D., tekhm. Red.

[Faster, better, cheaperl; Prefabrication techniques in
capital construction]Bystree, luchashe, deshevlei; industrialicapital construction]Bystree, luchashe, deshevlei; industrialicapital construction stroitel'stva. Pod red. I.V. Maevskogo.

zatsiia kapital'nogo stroitel'stva. Pod red. I.V. Maevskogo.

(MIRA 15:8)

(Construction industry)

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6"

IA-RDP86-00513R000618510004-6"

KVITHIPSKIY, Leonid Antonovich; HHUE, A.A., manchinyy red.; IL'II, V.M.,
red.; KETSIN, A.S., red.; LEIKIN, B.P., red.; MALTUGIN, V.I.,
red.; USPREKIY, V.I., red.; SHARS, M.Ye., red.; MORSKOY, K.L.,
red.ind-va; GARBURHIN, Ye.K., tekhnired.

[Transportation expenses in construction and ways to lower
them] Transporture rashbody v stroitel'stve i puti immendation
nia. Ind.2., dep. i perer. Neskra, Gos.ind-vm literappe dereit.
(mia. 1961. 105 p.
(mirrials handling)
(Construction industry—Costs)

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86

CIA-RDP86-00513R000618510004-6"

KOPNYAYEV, V.P., dots.; MASSANYGIN, F.S., dots.; MANZHEYEV, D.N., dots.; KOPNYAYEV, V.P., dots.; USATOV, I.A., kand. ekonom. neuk; IL'IN, V.M., dots.; KOMATKOVA, D.S.; MOTOV, S.I., dots.; KOMOTKOVA, L., red.; MEDVEDEVA, R., red.; TELEGINA, T., tekhn. red.

[Analysis of the financial and economic operations of enterprises] Analiz finansovo-khozisistvennoi deintel'nosti predpriatii. Pod obshchei red. Kopnyayeva. Moskva, Gosfánizdat, 1962. 357 p.

(MIRA 15:12)

(Finance) (Industrial management)

CIA-RDP86-00513R000618510004-6

5/143/60/000/004/002/007 A163/A026

9.2530

TITLE:

Il'in, V.M.; Bladyko, V.M.; - Engineers

AUTHORS: Non-Hysteresis Magnetization of Perromagnetics With the Help of a

Natural Oscillator

Energetika, 1960, No. 4, pp. 27 - 33 PERIODICAL:

The article deals with the non-hysteresis magnetization of ferromagnetics with the help of a natural oscillator. The author presents results of experimental work carried out with a damped ferro-resonance oscillator, and an installation permitting one to obtain non-hysteresis and primary magnetization curves. V.M. Il'in recommends an oscillator (Fig. 1) whose operation is based on the effect of the ferro-resonance of voltage, as a result of which the current in the chain CLL1 (in case all other elements are switched off) has the characteristic of short pulses corresponding to each maximum network voltage. The pulse response of the power to be supplied from the source to the chain CLL1 corresponds to the pulse response of the current. At intervals, when the current is equal or close to zero, the chain practically does not receive power. Therefore, when cutting in the capacitor C1 parallel to the choke 4, free damped

Card 1/6

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6

\$/143/60/000/004/002/007 A163/A026

Non-Hysteresis Magnetization of Ferromagnetics With the Help of a Natural Oscillator

oscillations will arise in the chain C1L during these intervals. As a result, the current and the voltage on the linear inductance L1 have ospillations that use to damp in the course of each semi-period of the voltage U1 of the power supply source. When connecting the rectifier to the secondary winding of the choke, the effect of the resonance in the circuit is produced by only one semiperiod of the voltage U1 of the network. Due to this fact, oscillations show up at the output of the oscillator, which continuously damp in the course of erch period of input voltage. This is one of the most important characteristics of the oscillator in comparison to those now in operation (1). In addition, the diagram permits one to regulate continuously the extent of automatic oscillation damping by changing R and R1, and also the maximum amplitude of damped oscillations (by changing the capacitance C) and the frequency of oscillations (by changing the capacitance C_1). The capacitor C_2 , connected to the output of the oscillator, limits the current of the power source frequency and enables to establish resonance conditions in the circuit of the inductive load on the frequency of damped oscillations. This increases the efficiency of the oscillator operation. A diagram of a ballistic installation for obtaining an ideal magnet-

Card 2/6

CIA-RDP86-00513R00061

88910

B/143/60/000/004/002/007 A163/A026

Non-Hysteresis Magnetization of Ferromagnetics With the Help of a Natural Oscillator

ization curve with the help of a natural oscillator is presented in Figure 3. The model consists of two similar cores O. Each of the core has three windings: a magnetizing one W1 serving for establishing a constant field and also for demagnetizing the model; the winding W2 necessary for obtaining a damped magnetic field in the installation; and the measuring winding W3. To eliminate the effect of the damped alternating field on the magnetizing and measuring circuit, the windings W2 are closely connected. At the beginning of experiments, the measuring circuit is opened and the installation is demagnetized with the help of the PY (RU) demagnetization device, which is an autotransformer or a choke with an adjustable air gap. Then, a damped magnetic field is established in the installation with the help of the FA (GA) natural oscillator. The maximum amplitude and type of current of the oscillation is controlled by the 90 (80) electron oscillograph. Thereupon, the magnetizing circuit is locked with the switch IT (P) and a corresponding value of the magnetizing current is supplied to the winding W_1 . According to the key kick of the BF (BG) galvanometer, the unknown (iskomaya) induction is determined on the optimum magnetization curve, i.e.,

 $B_1 = \frac{C_b}{2 \text{ s W}_3} \text{ d. [gs]},$

Card 3/6

4

8/143/60/000/004/002/007 A163/A026

Non-Hysteresis Magnetization of Ferromagnetics With the Help of a Natural Oscillator

where s = section of one core of the installation, cm2; w3 = number of coils of the measuring winding; d = key kick of the light spot in scale mm; Cb = ballistic constant of the galvanometer. To determine the ballistic constant of the galvanometer, a pattern-type mutual induction coil M is used. Then, the palifration current I1 is passed through the primary winding of the coll. When looking or opening the key K2, the magnitude of the ballistic key kick is read. The ballistic constant is determined by the formula

 $c_b = \frac{MI_1}{\alpha_1} \cdot 10^8 \left[\mu sec/mm \right],$

where M = mutual induction of the pattern coil, gn. The recommended diagram of the natural oscillator permits one to perform non-hysteresis magnetization of ferromagnetics. The application of natural oscillations which damp the network voltage in the course of time is more effective than half-wave oscillations. There are 6 figures and 6 references: 4 Soviet and 2 German.

ASSOCIATION: Belorusskiy politekhnicheskiy institut (Belorussian Polytechnical

Institute)

by the Department for Theoretical Principles of Electrical Engi-PRESENTED:

neering

Card 4/6

CIA-RDP86-00513R000618510004-6'

11'111, V.M

26809 S/143/60/000/008/007/008/XX D213/D302

24,2200

AUTHOR:

Bladyko, V.M. Candidate of Technical Sciences, and

Il'yin, V.M., Engineer

TITLE: The influence of some factors on hysteresis-less

magnetization of ferro-magnetic materials

PERIODICAL: Vysshiye uchebnyye zavedeniya. Izvestiya. Energetika,

no. 8, 1960, 49-54

TEXT: The author briefly explains the influence of amplitude, frequency, degree of damping and some other factors on obtaining a hysteresis-less magnetization of ferromagnetic materials using a simultaneous action of d.c. and of damped oscillating fields. The method of obtaining a hysteresis-less magnetization curve using a ferroresonance generator differed from the existing methods in the way of the measuring the induction on a hysteresis-less curve. A peculiarity of this method was that it was designed to obtain a periodical damped

Card 1/5

26809 S/143/60/000/008/007/008/XX D213/D302

The influence of ...

field in a sample, whose magnetic properties were to be measured. The frequency, the amplitude and the degree of the damping influence the coefficient of increase of induction K which is a ratio of induction B of the initial magnetization curve. The author found the maximum value of k of the order of 130 at 1200 cps, at const. intensity of the d.c. field of H=8.10⁻⁵ of 130 at 1200 cps, are const. $\mu_{\rm g} = 20,000$, $\mu_{\rm r} = 75,000$ (Fig. 1). The oversted. for $\mu_{\rm g} = 10.000$

variation of values of k is explained by the author by the fact that the number of the magnetizing cycles increased with frequency, but the depth of penetration of the damped field decreased, and the eddy currents depth of penetration of the damping of oscillations was investigated increased. The influence of the damping of oscillations was investigated increased. When the found that the best result was obtained with the osby the author, who found that the best result was obtained with the oscillations damped in 1/3 of the period T(T=0.02 secs). The magnitude cillations damped in 1/3 of the period T(T=0.02 secs). The magnitude of the amplitude had the same influence on the coefficient k for permetalloy as for steel 3 42 (E42). With the increase of amplitude the coefficient k first increases then decreases. For each value of the damped field. The field there is a definite value of amplitude of the damped field. The

Card 2/5

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6"

26809 S/143/60/000/008/007/008/XX D213/D302

The influence of ...

Card 3/5

influence of the amplitude is greater for the weak d.c. fields. The coefficient of increase of induction k, for a sample of permalloy in the form of coiled tape, was found to be much smaller than for a ring sample. The discrepancy was bigger for a weak d.c. field, showing the influence of the air gap. The hysteresis-less curve was taken in step values of the d.c. current from zero up to a given value and also at the variation of this current, from this value to zero, in the opposite direction. This was achieved by using a system of rheostats R₁ - R₅ and a make-before break switch. The hysteresis-less curves taken with step-like changes of the d.c. current were fully repeatable and coincided. This showed that there was a univalued dependence of the induction $B_{_{\mathbf{U}}}$ on a hysteresis-less curve from the voltage H taken with the d.c. and that there was a sufficient accuracy of the measurements and a possibility of the hysteresis-less magnetization with the d.c. This system differed from the earlier suggested systems in the generation made of the damped field and in the technique of measurements. The system consisted of a generator of the damped oscillations

26809 S/143/60/000/008/007/008/XX D213/D302

The influence of ...

and of two identical permalloy cores, the latter having three windings; the windings of the input and output signals \mathbf{W}_1 and \mathbf{W}_2 , connected cumulatively, and of the winding \mathbf{W}_3 fed from the generator of the oscillations and connected in opposition. At the switching-on of the d.c. a ballistic galvanometer deflects on a number of divisions k times that number in the absence of a damped field. The sensitivity of the circuit increases with the decrease of the input signal current. There are 6 figures and 8 references: 7 Soviet-bloc and 1 non-Soviet-bloc.

ASSOCIATION: Belorusskiy politekhnichoskiy institut (Belorussian Poly-

technic Institute)

PRESENTED: By Kafedra teoreticheskikh osnovelektratekhniki

(Department of Theoretical Electrotechnics).

SUBMITTED: January 21, 1960

Card 4/5

erapporterantalis. Turi erapikali desembarah dinambah dinambah dinambah dinambah dinambah dinambah dinambah di

21:201

8/143/61/000/006/001/003 D253/D301

24.22.00 AUTHORS:

Bladyko, V.M., Candidate of Technical Sciences, and Il'in, V.M., Engineer

TITLE:

An oscillographic method of controlling magnetic properties of high frequency ferromagnetic materials

PERIODICAL: Energetika, no. 6, 1961, 1 - 5

TEXT: This paper describes a method of obtaining the magnetization curve and the hysteresis loop on an oscillograph screen. This method is most suitable for a continuous control of magnetic characteristics in magnetic materials and cores in production. The equip--ment requires a ferro-resonance periodical damped oscillation generator. The life of this arrangement is practically infinite. The working frequency is 1000 cycles and therefore it is used for examining high frequency steel, ferrites and for making cores of identical magnetic properties, in which the eddy current losses are small at this frequency. The set-up consists of a damped oscilla-

Card 1/5

CIA-RDP86-00513R000618510004-6" APPROVED FOR RELEASE: 04/03/2001

24201 S/143/61/000/006/001/003 D253/D301

An oscillographic method ...

the magnetizing current of L₂ and consequently controls the length and the phase of the pulse. The values of R₅ and C₅ greatly affect the phase of the pulses. In this way any part of the cycle can be selected to appear on the screen. The damped oscillations are applied to the winding w₁ of the sample. During one period T the inductance of the sample varies from zero to saturation (the beam traces the fundamental magnetization curve). Since the second and the third amplitudes of oscillations are greater than the first one, the inductance in the sample changes along the major hysteresis cycle and then along the smaller cycles drops to zero causing a complete demagnetization of the sample. To prove the accuracy of this method the magnetization curve was obtained by using this method side by side with a ballistic method. The agreement was sufficiently good. The maximum error using the above method does not exceed 8 %. There are 6 figures and 7 Soviet-bloc references.

Card 3/5

24201

An oscillographic method ...

S/143/61/000/006/001/003 D253/D301

ASSOCIATION: Belorusskiy politekhnicheskiy institut (Belorussian Polytechnic Institute)

PRESENTED:

December 30, 1960 by the Kafedra teoreticheskikh osnov elektrotekhniki (Department of the Theoretical Bases of Electrical Engineering)

Card 4/5

NAKHABIN, V.P.; MIKULINSKIY, A.S.; SHIRER, G.B.; NEVSKIY, R.A.; SHOLOKHOV, V.F.; YEFREMKIN, V.V.; ZHUCHKOV, V.I.; KURHUSHKO, O.V.; EPSHTEYN, N.Ye.; PANFILOV, S.A.; Prinimali uchastiye: IL*IN, V.M.; ZEMLYAKOV, V.V.; SHMULEVICH, Ye.Ya.

Smelting out manganese-silicon and ferromanganine from Polunochnove deposit ores in difurnace with a power of 10,500 kilovolt—amperes. Trudy Inst. met. UFAN SSSR no.7:127-145 '61. (MIRA 16:6) (Manganese alloys) (Sintering)

5/716/61/018/000/015/019 D207/D301

AUTHOR:

Il'in. Y. M.

TITLE:

A null indicator for alternating-current balancing circuits used in high-frequency testing of ferromagnetic

unterials

SOURCE:

Akademiya nauk Ukrayins koyi RSR. Instytut elektrotekhniky. Spornik trudov, v. 18, 1961. Voprdsy magnitnykh

izmereniy, 111-114

The author describes a null indicator for bridge and compensation circuits used in measuring ferromagnetic properties at high frequencies. The indicator consists of a three-stage transistor amolifier with an indicating meter. The transistors are of the N-133A (P-133A) type in grounded-emitter directits. The second and third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant third harmonics produced by a ferromagnetic sample are attenuant to the sample attenuant third harmonics produced by a ferromagnetic sample are attenuant to the sample attenuant third harmonics produced by a ferromagnetic sample attenuant to the s of the indicator is 400 - 20,000 c/s covered in five frequency

Card 1/2

A null indicator ...

S/716/61/013/000/015/019 D207/D301

ranges. The overall maximum sensitivity of the indicator is 1 mm of scale per microvolt. Its input impedance varies from 5,000 ohm at high sensitivity to 10,000 ohm at low sensitivity. Ambient tenperature variations are compensated by means of a thermistor MNT-6 (MNT-6) which is used to control the bias voltage of the transistor varies not more than 0.3% per 1 deg C. The power is obtained from a stabilized rectifier fed from 50 c/s 127 V or 220 V mains. The indicator consumes 3 mA at 10 V d.c. There are 1 figure and 3 So-viet-bloc references.

Card 2/2

S/143/62/000/009/001/003 D238/D308

Design of a ferro-resonance ...

makes possible an estimation of the limiting operating conditions when the losses in the circuit elements decrease. An approximate solution of the non-linear differential equation describing the oscillator processes is sought in the form

 $y = y_1 \cos \tau + y_3 \cos 5\tau$,

(13)

) \ \C

where y_1 and y_3 are proportional to amplitudes of the first and third harmonic of the choke flux linkage. The first and third harmonic prevail in the choke voltage and consequently they will prevail in the flux linkage. Taking into account the harmonic composition of

 $(y_1 \cos \tau + y_3 \cos 3\tau)^n$

(15)

one obtains two algebraic equations which express the dependence of y₁ and y₃ on the amplitude of the voltage applied to the oscillator, for a given degree of approximation of the magnetization Card 2/4

Design of a ferro-resonance ... D238/D308
SUBMITTED: November 20, 1961

HLADYKO, V.M., kand.tekhn.nauk; 26 IROVSKIY, M.Z., ingh.; ILIH, V.M., ingh.

Simplified in the far the farmonic analysis of periodic functions.

Inv. vys. ucheb. 28v; energ. 6 no.31222y m. 63. (MIRA 1615)

1. Belorusekiy politekinichenkiy institut. Predstavlena kafedroy elektrotekhniki.

(Electric networks) (Harmonic analysis)

APPROVED FOR RELEASE: 04/03/2001 CIA-R

CIA-RDP86-00513R000618510004-6"

BLADYKO, V.M., kand.tekhn.nauk; ZGIROVSKIY, M.Z., inah.; IL'IN, V.M., inzh.

Use of a simplified harmonic analysis method for calculating electric networks with steel. Izv. vys. ucheb. zav.; energ. 6 no.5:109-112 My 163. (MIRA 16:7)

1. Belorusakiy politekhnicheskiy institut. Predstavlena kafedroy elektrotekhniki Belorusakogo politekhnicheskogo instituta.
(Electric networks)

APPROVED FOR RELEASE: 04/03/2001 CDA-RDPS 6-005 138 0005 185 1000

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6"

BR

ACCESSION NR: AT4035414

8/0000/63/000/000/0218/0219

AUTHOR: Il'in, V. M.

TITLE: Testing the magnetic properties of ferromagnetic materials with an oscillograph

SOURCE: Vsesoyuznoye soveshchaniye po ferritam i po beskontaktny*m magnitny*m elementam avtomatiki. 3d, Minsk. Ferrity* i beskontaktny*ye elementy* (Ferrites and noncontact elements); doklady* soveshchaniya. Minsk, Izd-vo AN BSSR, 1963, 218-219

TOPIC TAGS: magnetism, ferromagnetism, ferrite, magnetic core storage, oscillograph

ABSTRACT: The testing device includes an EO-7 oscillograph, an oxyler-1000 ferromagnetic sample with an integrating circuit and a new unit consisting of two ferroresonance generators. The first generator consists of a nonlinear choke (L_1) , a linear inductance L (considerably lower than that of the chcke), capacitors (C, C_1, C_2) , resistances (R_1, R_2) , and a semiconductor valve (B_1) . A 1000 ops voltage, damping in time T_1 is created at the generator's outlet when the T-period grid voltage is fed into the generator. The second generator consists of a choke (L_2) , capacitors (C_4, C_5) , a neon tube (N_1) , a valve (B_2) and resistances (R_5, R_6, R_7) . Periodical pulses are generated at the generator's outlet when the T-period voltage is fed in. The pulse polarity is controlled by the valve B_2 and the

Caril 1/3

phase — by varying R5, R6 and C5. Feeding damping oscillations into the magnetizing coil of a ferromagnetic sample causes the inductance of the sample to fluctuate, thus producing images of the initial magnetization curve, the ultimate hysteresis loop and individual cycles on the oscillograph screen. Orig. art. has: 2 figures.

ASSOCIATION: none

SUBMITTED: 04Dec63

DATE ACQ: 07May64

ENCL: 01

SUB CODE: DP, EM

NO REF SOV: 000

OTHER: 000

Cord 2/3

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6"

CIA-RDP86-00513R000618510004-6

T. 31574-66

50.47 (7) GD ACC NR: AT6008385

SOURCE CODE: UR/0000/65/000/000/0114/0118

AUTHOR: Il'in, V.M.

ORG: Institute of Electrodynamics, AN UkrSSR (Institute elektrodinamiki AN UkrSSR)

TITLE: An infrared, semiconductor, continuous optical pyrometer 15

SOURCE: AN UkrSSR. Povysheniye tochnost! i avtomatizatsiya izmeritel'nykh sistem (Automating and increasing the accuracy of measuring systems). Kiev, Naukova dumka, 1965, 114-118

TOPIC TAGS: IR pyrometer, IR photoconductor, semiconductor device, temperature measurement

ABSTRACT: The paper describes a semiconductor optical pyrometer operating in the near infrared region. Following a brief exposition of the conventional theoretical relationship, the author describes the design and operation of the semiconductor device using silicon photodiodes incorporated within a four-arm bridge circuit. The 1,000-3,000K temperature range is covered (in two subranges) by an electronic automatic recorder. The relative error does not exceed +2.5%, the sensitivity is $2.5 \cdot 10^3 \, \mu\text{V/degree}$. The device is capable of measuring the temperature of a gas-oxygen flame and the temperature of molten metals. It is currently in use at the Institute for Gases of the AN UkrSSR (Institut gaza AN UkrSSR) and at the Institute of Electrical Welding im. Ye. O. Paton AN UkrSSR (Institute elektrosvarki

Cord 1/2

TAPPROVÉD FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004

មេទាស សាយាសាស្ត្រមានសម្តេចម្ការស្វាស់ស្ត្រាស្ត្រី ស្រ្តាស្ត្រាស់ ស្ត្រាស់ សាយាស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រ ស្ត្រាស់ ស្ត្រីស្ត្រី ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស់ ស្ត្រាស

IL'IN, V.N.; HAZAROV, S.S.; FRENKEL', I.B.; PELEVIN, S.N.; PEEOBRAZHENSKAYA,

Scouring woolen fabrics in water under pressure. Tekst.prom. 17 no.12:46-49 D 157. (MIRA 11:1)

1.Zamestitel' predsedatelya Bryanskege sovnarkhosa (for Il'nin).
2.Direktor fabriki "Proletariy" (for Masarov). 3.Olavnyy inshener
fabriki "Proletariy" (for Frenkel') 4.Direktor Kuntsevskoy sherstyanoy
fabriki (Pelevin). 5.Glavnyy inshener Kuntsevskoy sherstyanoy fabriki
(for Preobrashenskaya).

(Woolen and worsted manufacture)

8/264/62/000/006/008/008 1064/1842

AUTHORS:

Fridkin, A.Ya., Il'in, V.P., Terekhov, V.S.

TITLE:

Hanger building for line operation and repair shops

PERIODICAL:

Referativnyy zhurnal, Vozdushnyy transport. Svodnyy tom, no.6B, 1962, 18, abstráct 6B95. (Prom. str.vo, no.12, 1961, 22-26)

It is reported that in the CKO FTM (SKO GPT) department of the Leningrad industrial building project a typical hangar design was developed for line operation, maintenance and repair shows, for technical service routing and hasic repair of aircraft. The technological part of the project is worked out by the Air project institute. The hanger building contains a one-floor hanger and a threefloor section which accommodates laboratories, service and administration rooms.

Abstractor's note: Complete translation.

Card 1/1

CIA-RDP86-00513R000618510004-6

RAZIKOV, M.I.; Pranimali uchastiyes KHOVANETS, V.K., inzh.; KULISHENKO, B.A., inzh.; IL'IN, V.P., inzh.

New techniques for automatic hard facing in an atmosphere of carbon dioxide. Avtom. svar. 15 no.6:33-38 Je '62.

(MRA 15:5)

1. Ural'skiy politekhnicheskiy institut imeni S.M.Kirova.

(Hard facing) (Protective atmospheres)

et talka ala di na sian istanti e tali e ila di

PETROV, P.S., dots.; BORISKIN, S.V., dots.; VASILENKO, N.A., starshiy prepod.; GERSHANOV, Ye.M., dots.; DEMENT'YEVA, A.W., starshiy prepod.; IL'IN, V.P., dots.; NIKITIN, D.P., starshiy prepod.; NIKITIN, D.P., starshiy prepod.; SHRAMCHENKO, K.G., starshiy prepod.; YUSHIN, V.I., starshiy prepod.; POPOV, A.S., red.; MESHALKIN. V.I., tekhn. red.

[Book of the trade-union committee chairman; sid to the factory, plant and workshop committee chairman] thigs predsedatelia komiteta profesiusa; v pomoshch predsedateliu fabrichnego, zavodskogo, teekhovogo komiteta, Moskva, Profisdat, 1962. 356 p. (MIRA 16:2)

1. Moscow: Vysahaya sanchnaya Shkola profdvizheniya. 2. Kafedra "Profsoydanoye stroitel stwo" Moskovskoy vysahey sanchnoy shkoly prodvisheniya Vassoyumogo tsentral nogo sovata profesyumov (for all except
Popov, Meshalkin). (Trade unions--Handbooks, manuala, etc.)

5/869/62/000/000/009/012 B102/B186

21.2300 AUTHORS:

APETERINI DIGITALA PER CARA DERIM DELLA CERTA DELLA CONTRETA EN LA CARACTERIA DELLA CONTRETA DELLA CONTRETA DE A LO GUARDINE EN LA CONTRETA DELLA CONTRETA DELLA CONTRETA DELLA CONTRETA DELLA CONTRETA DELLA CONTRETA DELLA

Marchuk, G. I., Il'in, V. P.

TITLE:

Neutron resonance capture in an annular lump

SOURCE:

Teoriya i metody rascheta yadernykh reaktorov; sbornik statej Ed. by.G. I. Marchuk, Moscow. Gosatomizdat, 1962, 191 - 199

TEXT: A method for calculating the effective resonance integral of thin lumps had been developed by Guravich and Pomeranchuk, and one for thick lumps by Wigner. Working independently, Orlov (Atomnaya energiya 4,6,1958) and Rudik generalized these methods to apply to blocks of any thickness. Proceeding from the results of this generalization, the authors deal with problems concerning the resonance of an annular lump when the mutual shielding of the lumps is taken into account. The lump under consideration is assumed to be embedded in moderator, but absorption and retardation are disregarded. The epiresonance neutron flux is taken to be isotopic and equal to $\sigma_0/4\pi$, the moderator density constant and equal to 1. The total number of resonance absorptions is considered to be the sum of those inside

the ring (region I), those within the ring itself (III) and those outside

Card 1/4

Neutron resonance capture in an ... $\frac{S/869/62/000/000/009/012}{B102/B186}$ the ring (II): $p_{j}^{i} = p_{j}^{I} + p_{j}^{II} + p_{j}^{III}.$ Substituting $\frac{I}{p_{j}^{I}} = \frac{90}{4\pi} \left\{ \int_{G_{j}}^{I} ds \ d\Omega^{i} \Omega_{n} \Big|_{E_{j}^{I} = \alpha}^{I} \frac{\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{i} dE}{\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} (1 - \frac{1 - e^{-\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} (1 - e^{-\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} dE})}{\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} (1 - e^{-\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} dE})} e^{-\sum_{j=\alpha}^{I} dE} dE + \frac{1}{2\pi} \int_{G_{j}^{I}}^{I} ds \ d\Omega^{i} |\Omega_{n}| \int_{E_{j}^{I} = \alpha}^{I} \frac{\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} (1 - e^{-\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} dE})}{\sum_{j=\alpha}^{I} \sum_{j=\alpha}^{I} \sum_{j=\alpha}$

5/869/62/000/000/009/012

Neutron resonance capture in an ...

a series of transformations and simplifications leads to

$$p_{j} = \frac{1}{(\xi \Sigma_{s})^{ext}} \left[\left[\alpha_{1} V + \alpha_{2} V + \gamma_{3} S \right] \frac{\Phi_{2}(\Sigma_{sn} T_{3})}{8 \Sigma_{sn}} e^{-\sum_{s}^{L} L} \right] \cdot \int_{E_{j} = \alpha}^{E_{j} + \alpha} \frac{\sum_{s} \Sigma_{sn}}{\Sigma} dE +$$

$$+ \frac{3}{4} \left\{ \gamma_{1} \phi_{1} (\Sigma_{sn} \overline{1}_{1}) R_{1} (\frac{1}{2} \Sigma_{s}^{II} \overline{L}_{o}, \frac{1}{2} \Sigma_{sn} \overline{1}_{1}) + \gamma_{2} \phi_{1} (\Sigma_{sn} \overline{1}_{2}) + \gamma_{3} \left[\phi_{1} (2 \Sigma_{sn} \overline{1}_{3}) R_{2} (\frac{1}{2} \Sigma_{s}^{II} \overline{L}_{o}, \frac{1}{2} \Sigma_{sn} \overline{1}_{3}) - \right] \right\}$$

+
$$\gamma_3 \left[\phi_1 (2 \sum_{sn} \overline{1}_3) R_2 (\frac{1}{2} \sum_{s} \overline{1}_0, \frac{1}{2} \sum_{sn} \overline{1}_3) \right] -$$

$$- \phi_{1}(\Sigma_{sn}\overline{1}_{3})R_{1}(\frac{1}{2}\Sigma_{s}^{II}\overline{L}_{o}, \frac{1}{2}\Sigma_{sn}\overline{1}_{3}) \right] e^{-\sum_{s}^{I}\overline{L}} \left\{ \sum_{j=\alpha}^{E_{j}+\alpha} \frac{\sum_{c}\Sigma_{c}}{\sum_{s}^{2}} dE \right\}, \quad (37)$$

Card 3/4

Neutron resonance capture in an ...

\$/869/62/000/000/009/012 B102/B186

$$R_{k}(\Sigma_{s}^{II}\Gamma_{o},\Sigma_{sn}\overline{1}) = \frac{\sum_{j=\alpha}^{L} \frac{\sum_{j=\alpha}^{L} \frac{1-e^{-\sum_{j=1}^{II}\overline{L}_{o}}}{1-e^{-\sum_{j=1}^{II}\overline{L}_{o}}} (1-e^{-k\Sigma\overline{1}}) dE}{\sum_{j=\alpha}^{L} \frac{\sum_{j=\alpha}^{L} \sum_{j=\alpha}^{L} \sum_{j=\alpha}^{L} (1-e^{-k\Sigma\overline{1}}) dE}{\sum_{j=\alpha}^{L} \frac{\sum_{j=\alpha}^{L} \sum_{j=\alpha}^{L} \sum_{j=\alpha}^{L$$

The total effective resonance integral works out at J^{eff} = $ma + \gamma(S/M)b$, where S is the surface area of a cell and M the mass of uranium per cell. There are 4 figures.

Card 4/4

(17-KD)586-005 1380006 85 10004-

8/0000/63/000/000/0144/0167

AUTHOR: Il'in, V. P.

TITLE: The gamma-radiation spectrum of uranium fission products. The effective absorption coefficients of the gamma-ray spectrum and their use for shielding computations

SOURCE: Voprosy* fiziki zashchity* reaktorov; sbornik statey (Problems in physics of reactor shielding; collection of articles). Moscow, Gosatomizdat, 1963, 144-167

TOPIC TAGS: nuclear reactor, reactor shielding, Gamma ray, Gamma ray shielding, uranium 235, uranium fission, Gamma ray spectrum, Gamma ray absorption coefficient, water shielding, lead shielding, concrete shielding, iron shielding

ABSTRACT: The gamma-radiation spectrum of uranium flasion products was computed for a wide interval of uranium radiation times in the reactor (T = 1 - 730 days) and exposure after radiation (t = 1 sec - 730 days). The intensity of the radiation was normed for 1 kilowatt of heat emission in the uranium radiated in the reactor. The sum gamma-activity of the fission products of U^{235} as a function both of the reactor radiation time T and the exposure time t is presented in graph form. It is pointed out that, when making computation

Card

of shielding to be used against gamma-radiation, it is expedient to use the effective absorption coefficients of a broad beam of gamma-rays in the material of the shielding. This is particularly true if the sources of radiation, against which the shielding is to operate, are of complex geometrical form. The effective absorption coefficient makes allowance for the accumulation of scattered radiation. A formula is given whereby this factor may be computed for a monochromatic broad beam of gamma-rays. When using the effective absorption coefficients, sufficient accuracy is maintained in the computation of the shielding. This point is illustrated in the article by means of an example. A comparison of attenuation factors, calculated by the effective absorption coefficient method and by other techniques, confirms the accuracy of the results obtained by the method under discussion and the essential simplicity of the computation procedure. The method is to be recommended particularly for shielding computations in the case of a complex spectrum of gamma-radiation. A formula is provided in the text, on the basis of which the effective absorption factor in the shielding can be calculated if the gamma-ray spectrum is complex. Using this formula and a table of values occurring in the formulas for the computation of the dosage intensity from different sources, the effective absorption coefficients of the gamma-ray spectrum of uranium fission products in water, concrete, iron and lead were

The same of the same

स्त सम्मान प्राप्तमध्यक्षकृति इस्त मुक्ता हुन्य । स्त्राप्त सम्मान स्त्राप्त स्त्राप्त स्त्राप्त स्त्राप्त सम् स्त्राप्त सन्त्राप्त के विकास स्त्रापत स्त्रापत स्त्रापत स्त्रापत स्त्रापत स्त्रापत स्त्रापत स्त्रापत सम्बद्धा

determined. The results of these computations are presented in a series of diagrams. The author explains how the results of the calculation of uranium fission product activity and the effective absorption factors for the gamma-ray spectrum of the fission product can be put to use in practical problems involving the computation of shielding against radiation sources of various form "In conclusion, the author wishes to thank O. S. Kubasova and N. Ye. Ivanova for their assistance in preparing the data for the electronic computer and in processing the results of the computations." Orig. art. has: 3 tables, 8 formulas, and 11 figures.

ASSOCIATION: none

SUBMITTED: 14Aug63

DATE ACQ: 27Feb64

ENCL: 00

SUB CODE: NE

NO REF SOV: 001

OTHER: 00

Card 3/3

APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510002-6

KULISHENKO, B.A.; KOCHEVA, G.N.; HILICHENKO, S.L.; IL'IN, V.F.;
CHERNYAK, V.S., inzh., retsenzent

[Hard facing of metals; a worker's pocket handbook] Naplavka netallov; karmannyi spravochnik rabochego.

"Mashinostroenie," 1964. 130 p.

(MIRA 17:7)

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6"

IL'IN, V.P., inzh. (Tashkent)

Use of rotary regenerator heat exchangers in the hot-air heating and air-conditioning systems in the United States.

Vod. i san. tekh. no.8137-39 Ag '65.

(MIRA 18:12)

(H) SOURCE CODE: UR/O	11 35/6d /1400 /001 (00ho 40ho 40ho
Dubinin, L. G. (Engineer); Zubchenko, M. G. (Engineer): T	135/60/000/001/0029/0029 9 9 9 11 11 11 V. F. (Engineer):
[lzraylevich] Rostovenergorement [Dubinin, Zul	chenko] Taimlyacacaya GES;
	ing for rotor wheel chambers
SOURCE: Svarochnoye proizvodetvo, no. 1, 1966, 29	
TOPIC TAGS: steel, turbine rotor, water turbine protective coating/ 30KhlOGIO steel	
turbine no. 4 it was decided to experimentally line a part	uring the overheat of
on the chamber walls and spaced 8-10 mm apart. The strips w	one, mounted vertically
Cord 1/3	66.023.8
	ORG: [Razikov, Il'in] UPI im. S. M. Kirov; [Dubinin, Zuli [Izraylevich] Rostovenergoremont TITLE: Use of 30Khl0G10 cavitation-resistant steel as line of hydraulic turbines. SOURCE: Svarochnoye proizvodstvo, no. 1, 1966, 29 TOPIC TAGS: steel, turbine rotor, water turbing protective coating/ 30Khl0G10 steel ABSTRACT: At the Tsimlyanskaya Hydroelectric Power Station of hydraulic turbines, built of 30L steel, are subject to a depth of as much as 30 mm. Until 1962 these chambers were turbine no. 4 it was decided to experimentally line a part turbine no. 4 it was decided to experimentally line a part of its rotor wheel chamber with 30Khl0G10 Cr-Hm cavitation on the chamber walls and spaced 8-10 mm apart. The strips we could be a strips with a 3x50 mm cross section, 600 mm in the chamber walls and spaced 8-10 mm apart. The strips we could be a strips with a 3x50 mm cross section, 600 mm in the chamber walls and spaced 8-10 mm apart. The strips we could be a strips with a 3x50 mm cross section.

APPROVED FOR RELEASE: 04/03/2001

2

ACC NR. AP6003286

.

of the chamber manually by means of UFI-30Kh10G10-2 electrodes (dismeter 4 mm, reversed-polarity DC, welding current 130-150 a). A year later inspection revealed no traces of cavitational erosion or damage to the strips. Rence in 1963 the entire rotor wheel chamber (area 39 m²) of unit no. 3 at the same hydroelectric station was lined with 30Kh10G10 steel. To improve the quality of attachment of the strips, a special clamp was used (Fig. 1). Inspection of units no. 3 and 4 performed in May 1965 showed that the 30Kh10G10-steel lining in both units was in satisfactory state: there was neither any cavitational erosion nor any rupture of the strips. At present four rotor wheel chambers at the Tsimlyanskaya Hydroelectric Power Station are lined with 30Kh10G10 steel (aggregate area of lining: 118 m²). The replacement of 1Kh1849T steel with 30Kh10G10 steel as the lining of rotor wheel chambers in four turbines was sade it possible to save about 2.5-3.0 tons of scarce chrome-nickel steel while at the same time providing a lining with a higher cavitation resistance. Orig. art. has: 1 figure, 1 table.

SUB CODE: 11, 13/ SUBM DATE: none/ ORIG REF: 000/ OTH REF: 000

Card 3/3

APPROVED FOR RELEASE: 04/03/2001

		an a lik in a	
IL'IN, V. P.			тछ्नहरू
	and V. I. Krylov. Submitted 23 Mar 51 ts. L. Sobolev.	USSR/Wathematics - Approximation (Contd)	USER/Mathematics - Approximation 1 Jun "Evaluations of Functions Possessing Berivatives Summable With Given Degree, in Hyperplanes of Va ous Dimensions," V. P. II'in "Dok Ak Mank SSSR" Vol LXXVIII, No 4, pp 633-636 In space of m dimensions x1,xm, considers bou region 5 with contour 6, in which terbin sum in function f(x1,,xn) is given with generalized derive (according to S. L. Sobolev) up to the or which are summable with terbin degree, in those obtained by L. V. Kantorovich, S. L. Sobol 184
184 T64	by Acad	1 Jun 51	l Jun 51 g bertratives g bertratives rplanes of Vari th, pp 633-636 considers bounded generalized up to the order up to the order which generalizes which generalizes S. L. Soboler, 184764
APPROVED FOR RELEASE: 04	03/200		CIA-RDP86-00513R000618510004-6

"APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R00061

"APPROVED FOR RELEASE: 04/03/2001

CIA-RDP86-00513R000618510004-6

IL' VIN, V.P.

SUBJECT

PG- 417 CARD 1/2 USSR/MATHEMATICS/Theory of functions

AUTHOR

ILJIN V.P.

The generalization of an integral inequation.

TITLE PERIODICAL Uspechi mat. Nauk 11. 4, 131-138 (1956) reviewed 12/1956

By aid of a lemma of Sobolev (Mat. Sbornik 4, 3 (1938)) the author proves the following generalization of the inequation of Hilbert-Riesz: Let the function $f(x_1, \dots, x_n)$ be summable with f the power in the whole space of the n variables. Let the function $g(y_{\eta^{(0,0)}},y_{\underline{n}})$ be summable with quith power in the space of the m variables. Let p > 1, q > 1, $\frac{1}{p} + \frac{1}{q} > 1$, m < n. Then there exists the integral

Then there exists the large
$$f(x_1, \dots, x_m, \dots, x_n) \cdot g(y_1, \dots, y_n)$$

$$\int - \dots \int \frac{f(x_1, \dots, x_m, \dots, x_n) \cdot g(y_1, \dots, y_n)}{x^n} dx$$

where

$$x = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2 + \sum_{i=m+1}^{n} x_i^2}, \quad \lambda = \frac{n}{p^2} + \frac{m}{q^2}, \frac{1}{p} + \frac{1}{p^2} = 1, \frac{1}{q} + \frac{1}{q^2} = 1.$$

This integral satisfies the inequation

Uspechi mat. Nauk 11, 4, 131-138 (1956)

$$\Im \leq K(m,n,p,q) \left[\int \cdots \int |f(x_1,\dots,x_n)|^p dx_1,\dots,dx_n \right]^{\frac{1}{p}} \cdot \left[\int \cdots \int |g(y_1,\dots,y_m)|^p dx_m dy_m \right]^{\frac{1}{q}}.$$

Here K(m,n,p,q) is a constant independent of f and g, where

$$K(m,n,p,q) \leq \left[\frac{m}{6m}\right]^{\frac{1}{p'}} = \frac{1}{q'} \left[\frac{n-m}{\sqrt{1+t_1^2+\dots+t_{n-m}^2}} \right]^{1/p'} \times$$

$$\times \left[\int_{\cdots}^{m} \frac{(\sqrt{t_{1}^{2} + \dots + t_{m}^{2}}) - dt_{1} \cdot \dots dt_{m}}{(\sqrt{(t_{1}-1)^{2} + t_{2}^{2} + \dots + t_{m}^{2}})} \right]$$

 \mathcal{G}_{m} - surface of the unit sphere of the m-dimensional space.

APPROVED FOR RELEASE: 04/03/2001

THE PROPERTY OF THE PROPERTY OF THE PERSON O

PG - 745 CARD 1/4 USSR/MATHEMATICS/Theory of functions

UBJECT AUTHOR TITLE

PERIODICAL

reminero parente de la servicia de la companione de la companione de la companione de la companione de la comp

On the convergence of the function sequences in some functionspaces. Uspechi mat. Nauk 12, 1, 192-195 (1957)

reviewed 5/1957

Let $\{v_i(x_1,...,x_n)\}$ (i=0,1,...) be a sequence of continuous functions being defined in the n-dimensional domain D and having continuous derivatives up to the 1-th order which are summable in p-th power (p > 1). Let the domain D have the property that in every point of D the vertex of an n-dimensional spherical sector of constant radius and form can be laid such that the whole sector lies in D. Let here H be the greatest radius being possible. It is stated that there are walld the following estimations:

 $\left\{\ldots\right\}\left|_{u=u_{\underline{1}}\right|^{s}}\,dx_{1}\ldots dx_{n}\leqslant A_{\underline{1}}^{s},$ (1)

Then the following assertions hold:

CARD 2/4 Uspechi mat. Nauk 12, 1, 192-195 (1957)

1. If $l_p > n$ $(p \ge 1)$, $\lim_{i \to \infty} A_i = 0$, $\lim_{i \to \infty} A_i = 0$, $\lim_{i \to \infty} A_i = 0$, then $\{u_i\}$ converges

uniformly to u, in D, where from

 $\left(\frac{\underline{A_1}}{B_1}\right)^{\frac{1}{1-\frac{\underline{n}}{p}+\frac{\underline{n}}{s}}} \leq \mathbb{E} \text{ there follows } \left\|u-u_1\right\|_{\mathbb{Q}} \leq C_1\left(\underline{A_1}^{1-\frac{\underline{n}}{p}},\underline{B_1}^{\underline{n}}\right)$

2. If $lp \in n$ $(p \ge 1)$, $\lim_{n \to \infty} A_1 = 0$, $\lim_{n \to \infty} A_2 = 0$, where

 $\max(p,s) \leq q^* < \frac{mp}{n-lp}$, m > n-lp, then $\{u_i\}$ converges to u in the mean with the power q^* in every D_m . D_m is the intersection of D with un n-dimensional hyperplane. If here

Jspechi mat. Nauk 12, 1, 192-195 (1957)

CARD 3/4

PG - 745

then

$$\begin{pmatrix} \frac{A_1}{B_1} \end{pmatrix}^{\frac{1}{1-\frac{n}{p}+\frac{n}{s}}} \leq H,$$
hen
$$\begin{bmatrix} n \text{ times} \\ \vdots \\ D_m \end{bmatrix} |u-u_1|^{q^*} dv_m \end{bmatrix}^{\frac{1}{q^*}} \leq c_2 \left(\frac{\frac{n}{q^*}+1-\frac{n}{p}}{B_1} \frac{\frac{n}{s}-\frac{n}{q^*}}{B_1} \right)^{\frac{1}{1-\frac{n}{p}+\frac{n}{s}}}$$

 $\lim_{i\to\infty} A_i = \lim_{i\to\infty} B_i = 0$, then there exists the assertion 2 for the exponent

where

$$\left[\int_{D_{2n}}^{n \text{ times}} \left| u - u_{\underline{1}} \right|^{q} dv_{\underline{m}} \right]^{\frac{1}{q}} \leq c_{3} \underline{A}_{\underline{1}} + c_{4} \underline{B}_{\underline{1}}.$$

Uspechi mat. Nauk 12, 1, 192-195 (1957)

FAIR NA BARBAN KINGKIN KUNAN KUT KRUMAN LAMPHALAMBAN KATAN DI MILAMBAN KATINGKIN KINGKIN LINGKA MILAMBAN LAMPAN

CARD 4/4

PG - 745

Some further theorems of convergence and estimations are obtained by adding further conditions, e.g. beside of (1) and (2) still

further conditions, e.g. desired of
$$v_t$$
 and $v_t \leq L_t$,
$$\int_{D_t} \left[\sum_{i_1, \dots, i_{k-1}}^{n} \left| \frac{\partial^k (u - u_i)}{\partial x_{i_1} \dots \partial x_{i_k}} \right|^2 \right]^{\frac{1}{2}} dv_t \leq L_t^{\frac{1}{2}},$$

and by variation of (1) and (2). The results are not only valid for existing continuous derivatives but also if the derivatives are generalized functions in the sense of Sobolev.

16(1)

AUTHOR:

Il'in, V.P.

807/20-123-6+

TITLE:

Some Functional Inequations of the Type of the Imbedding Theorems (Mekotoryye funktsional'nyye neravenetva tipa teorem vidsheniya)

PERIODICAL: Doklady Akademii nauk SSSR, 1958, Vol 123, Nr 6, pp 967-970 (USSR)

For functions defined in a domain D of the n-dimensional space the author gives estimations corresponding about to the imbedding theorems of Sobolev [Ref 1,2]. The distinction to the results of Sobolev consists in the fact that in Sobolev's investigations the estimation of the p-th powers of the 1-th derivatives is the same for all \(\Omega\); the author, however, assumes that the estimation depends on a certain positive power of the diameter of Ω . In the case $(1+\alpha)p>n$ the author's results overlap with those of Greco [Ref 3] and Nirenberg [Ref 4]. Three long theorems with estimations for continuous functions are given (the estimations are also valid for functions with generalized derivatives).

There are 4 references, 2 of which are Soviet, 1 American, and

ASSOCIATION: Leningradskoye otdeleniye matematicheskogo instituta imeni V.A. Steklova Akademii nauk SSSR (Leningrad Section of the Mathematical Card 1/2

"APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6

Some Punctional Inequations of the Type of the Imbedding

SOV/20-123-6-3/50

Institute imeni V.A.Steklov, AS USSR)

PRESENTED: August 6, 1958, by S.L.Sobolev, Academician

SUBMITTED: July 28, 1958

Card 2/2

forks on Approximate Analysis	80V/SST.
(ermakov, S. M. On One Method of Constructing Cubature Formulas	37
Il'in, V. P. Estimation of Error in Ritz's Method for Ordinary Different Equations	11al 43
Il'in. V. P. Certain Inequalities in Punctional Spaces and Their Application to the Study of the Convergence of Variational Processes	64
Il'in, V. P. On One Theorem of G. H. Hardy and J. E. Lettlewood	128
Kublanovskaya, V. N. Application of Analytic Extension by Moons of Substituting Variables in Municipal Analysis	145
Kublanovskaya, V. N. and T. N. Smirnova. The Zeroes of Hankel Panetions and Certain Other Functions Related to Them	186
Kus'mina, G. V. Numerical Determination of the Radii of Univalence of Analytic Functions	192
Card 3/5	

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6"

Works on Approximate Analysis	807/2217
Mikolayeva, G. A. (Deceased) On the Approximate Construction of a Conformal Mapping by the Method of Conjugate Trigonometric Series	236
In Memoria G. A. Nikolayeva	266
Streshneva, V. A. Supplementary Tables for the Solution of Poisson Equations by the Method of Reduction to Ordinary Differential Equations for Polygonal Regions	267
Krylov, V. I., M. A. Fillipova, M. F. Frolova. Computing the Indefinite Integral With a Small Number of Values of the Integrable Function	263
Chernin, K. Ye. Solution of One Axially Symmetric Problem by the Direct Method	302
Chernin, K. Ye. Conformal Mapping of Regions, Composed of Rectangles, on to the Unit Circle	307
Shaydayeva, T. A. Quadrature Formulas With the Lowest Estimate of the Remainder for Certain Classes of Functions	313
Card 4/5	

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6

Works on Approximate Analysis		and an
Yarysheva, I. M. Finite Difference Methods of	Bolving dimension	80 V /2217
Il'in, V. P. On "Rubedding" Theorems	A SHOW WANT BOOK IN THE	•
Paddeyev, D. K. On the Condition of Matrices		359
AVAILABLE: Library of Congress		387
	1	
	1	
		:
Card 5/5		IX/mg
		11-10-59
		*

8/044/62/000/001/042/061

Some inequalities in functional spaces ... C111/0222

sequences in various metrics is given. Using these results. conditions are formulated which guarantee the uniform convergence of minimizing sequences for functionals

 $\int_{0}^{\infty} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} + bu^{2} - 2fu \right) d\theta + \int_{0}^{\infty} 6 u^{2} df$

(G-n-dimensional area, \(\bar{1}\) --boundary of G). Cases where the functions of the minimizing sequences are algebraic or trigonometric polynoms are considered separately, simpler criteria of uniform convergence are given for such minimizing sequences. The formulation of the basic results is too extensive.

[Abstracter's note: Complete translation.]

Card 2/2

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6

16(1) SOV/20-129-5-5/64 AUTHOR: Il'in. V.P. Some Functional Inequalities of the Imbedding Theorem Type With TITLE: Weight PERIODICAL: Doklady Akademii nauk SSSR, 1959, Vol 129, Nr 5, pp 983-985 (USSR) Under numerous assumptions in three long theorems and three ABSTRACT: remarks the author gives weighted inequations having the character of imbedding theorems. Inequations of this kind were already given by the author [Ref 1] and others [Ref 2-4]. No proofs are given. There are 4 references, 2 of which are Soviet, 1 Italian, and 1 American. ASSOCIATION: Leningradskoye otdeleniye matematicheskogo instituta imeni V.A. Steklova Akademii nauk SSSR (Leningrad Section of the Mathematical Institute imeni V.A. Steklov, AS USSR) August 8, 1959, by S.L. Sobolev, Academician PRESENTED: SUBMITTED: June 26, 1959 Card 1/1

APPROVED FOR RELEASE: 04/03/2001

68142 16(1) 16.3500, 16,2600 50V/20-129-6-5/69 Il'in, V.P. AUTHOR: Some Integral Inequalities for Differentiable Functions of TITLE: Many Variables Doklady Akademii nauk SSSR, 1959, Vol 129, Nr 6, pp 1214-1217 (USSR) PERIODICAL: The author gives integral inequalities for differentiable ABSTRACT: functions which are an analogue to the functional inequalities the author obtained in his preceding paper (Doklady Akademii nauk SSSR, 129, 983-985). The distance from a fixed point or from a hyperplane serves as weight function. Some special cases were already formerly treated by Kh.L. Smolitzkiy [Ref 1 7 and others [Ref 2 - 4 7 . There are 6 references, 2 of which are Soviet, 3 American, and 1 German. ASSOCIATION: Leningradskoye otdeleniye Matematicheskogo instituta imeni V.A. Steklova AN SSSR (Leningrad Department of the Mathematical Institute imeni V.A. Steklov AS USSR)
August 8, 1959, by S.L. Sobolev, Academician PRESENTED: June 26, 1959 SUBMITTED: Card 1/1

APPROVED FOR RELEASE: 04/03/2001

s/020/60/135/003/003/039 C111/C222

16,4600

Complete Continuity of the Imbedding Operator for an Unbounded AUTHOR: Il'in. V.P. TITLE:

PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol.135, No.3, pp.517+519 TEXT: Let E_n be an n-dimensional Euclidean space, $\omega(x_1,...,x_n)$ a positive measurable function given in E; p>1. Let $L_p(c\phi;E_n)$ be the set of functions f(X) given on E for which

 $\|z\|_{L_p(\omega;E_n)} = \left[\int_{(E_n)}^{E_n} \omega |z|^p dx\right]^{1/p} < \infty.$ (1)

Let 1 be a positive number, I = [1]. Let f(X) have continuous derivatives of the order I. Let

Card 1/5

APPROVED FOR RELEASE: 04/03/2001

86025 \$/020/60/135/003/005/039 0111/0222

Complete Continuity of the Imbedding Operator for an Unbounded Domain

form a set F' being compact in $W_{\mathbf{q}}^{(s)}(\mathbf{E}_{\mathbf{m}})$.

Theorem 2: Let F be the set of functions $f(X) \in W_p^{(1)}(\mathbb{R}_n)$ for which it holds

 $(5') \qquad \| z \|_{\Psi_{\underline{u}}^{(1)}(\underline{B}_{\underline{u}})} \leq M.$

Let \bar{s} , m be integers, $0 \le \bar{s} < 1$, $1 \le m \le n$, $q \ge p > 1$, $1 - \bar{s} + \frac{m}{2} / q - \frac{n}{p} \ge 0$. Let E_m be an m-dimensional hyperplane, $\omega(X)$ be a positive function defined on E_m satisfying the condition 1)

(10) $\sup_{Y \in E_{\underline{m}}} \int_{S_{\underline{m}}^{(\underline{m})}(Y)}^{\underline{m}} \omega(X) dX < \infty, \quad \int_{S_{\underline{m}}^{(\underline{m})}(Y)}^{\underline{m}} \omega(X) dX \to 0 \quad \text{for } |Y| \to \infty.$

2) There exists a $\delta > 0$ so that it holds

Card 4/5

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6

86025 8/020/60/135/003/003/039 C111/C222

Complete Continuity of the Imbedding Operator for an Unbounded Domain

(11)
$$\sup_{Y \in E_{m}} \left(\underbrace{\int_{S_{R}^{(m)}(Y)}^{m}} \frac{\omega(x) dx}{|x-y| [n/p+s+s-1]q} \right) < \infty,$$

where H>0 is a fixed number.

Then the derivatives of s-th order of the functions fd P, considered on th hyperplane E_m , form a set F' being compact in $L_q(\omega; E_m)$.

The author mentions A.M. Molchanov, M.Sh. Birman and B.S. Pavlov. There are 2 Soviet references.

ASSOCIATION: Leningradskoye otdeleniye Matematicheskogo instituta imeni V.A. Steklova Akademii nauk SSSR (Leningrad Department of the Mathematical Institute imeni V.A. Steklov of the Academy of Sciences USSR)

PRESENTED: June 17, 1960, by S.L. Sobolev, Academician

SUBMITTED: June 16, 1960

Card 5/5

CIA-RDP86-00513R000618510004-6 APPROVED FOR RELEASE: 04/03/2001

S/020/60/135/004/004/037 C111/C222

16.3500

AUTHOR: Il'in. V.P.

TITLE: Some Inequalities for Differentiable Functions of Many Variables PERIODICAL: Doklady Akademii nauk SSSR. 1960. Vol.155. No.4. pp.779-782

TEXT: Let D be a region of the n-dimensional space satisfying the following condition: For arbitrary points X,Y of D for which it holds $|X-Y| \le H$, where H is a fixed number not depending on X and Y, there exist n-dimensional spherical sectors of the same opening of radius $\le |X-Y|$ lying entirely in D, where the measure of their common divisor is $\ge \lambda |X-Y|^{T}$, where $\lambda > 0$ is a constant number not depending on X and Y. The class of these regions is denoted by $C_H(\lambda)$.

Let s be an integer, $0 \le s \le n$. Let D_m be the intersection of the region D with the hyperplane $x_{m+1} = a_{m+1}, \dots, x_n = a_n$; let D_m be the s-dimensional

intersection $x_{s+1} = a_{s+1}, \dots, x_m = a_m, x_{m+1} = a_{m+1}, \dots, x_n = a_n$. Let $\begin{bmatrix} b_s \end{bmatrix}_{m=0}^d$ be the set of the points $X(x_1, \dots, x_s, x_{s+1}, \dots, x_m, a_{m+1}, \dots, a_n)$ of the intersection D_m for which $|x_1 - a_1| \le d$ (i=s+1,...,m).

Card 1/7

APPROVED FOR RELEASE: 04/03/2001 CIA-RDP86-00513R000618510004-6"

89011

8/020/60/135/004/004/037 0111/0222

Some Inequalities for Differentiable Functions of Many Variables Let $f(x_1,\dots,x_n)$ be a continuous function defined in D&C_H(A) which has continuous derivatives up to the order I = [1], where [1] is the integral part of I, and which satisfies the conditions I)

(1)
$$\left[\int_{(p)}^{\infty} |f(x)|^p dx\right]^{1/p} \leq A \quad (p \geqslant 1).$$

2) There exists a constant N>O so that for arbitrary integral m, 0 = n and an arbitrary d>O it holds:

(5)
$$\sup_{D} \sum_{\mathbf{x}} \frac{\mathbf{1}^{l_1 \dots l_1 l_2}}{\sum_{\mathbf{x}}} \left[\sum_{\mathbf{y}} \frac{|\mathbf{x} - \mathbf{x}|}{\sum_{\mathbf{y}} \sum_{\mathbf{y}} \frac{|\mathbf{x} - \mathbf{x}|}{2\mathbf{I}(\mathbf{x})}} - \frac{|\mathbf{x} - \mathbf{x}|}{2\mathbf{I}(\mathbf{x})} - \frac{\mathbf{x}}{2\mathbf{I}(\mathbf{x})} - \frac{\mathbf{x}}{2\mathbf{I}(\mathbf{$$

if 1 is not integral, and Card 2/7

APPROVED FOR RELEASE: 04/03/2001

89011

8/020/60/135/004/004/037 0111/0222

Some Inequalities for Differentiable Functions of Many Variables

$$(2') \quad \sup_{D_{\underline{n}}} \sum_{i_1, \dots, i_{\underline{1}}=1}^{\underline{n}} \left[\left| \underbrace{\int_{0}^{\underline{n}} \int_{0}^{\underline{1}} f(\underline{x})}_{0} \right|^p d\underline{x} \right]^{1/p} \leqslant \underline{\mathbf{M}} d^{\frac{n}{2}}$$

if 1 is integral; here of (m=0,1,...,n) are fixed numbers and

Theorem 1: Let f(X) satisfy the conditions (1)-(3) in $D \in C_{\underline{H}}(X)$, where k is integral and $0 \le k < 1$. Then:

1) if
$$\mathcal{E}_0 = 1 + \omega_0 - \frac{n}{p}$$
, $\mathcal{E}_0 - k > 0$, $0 < \beta \le 2_0 - k$, $\beta \le 1$, then there hold the

inequalities
$$\frac{2^{k}f(X)}{2x_{1}\cdots 2x_{1}} \leq c_{1}Ah^{-k-n/p} + c_{2}Mh^{g_{0}-k}$$

Card 3/7

APPROVED FOR RELEASE: 04/03/2001 CIA-RD

8/020/60/135/004/004/037 C111/C222

2/---

Some Inequalities for Differentiable Functions of Many Variables

$$\frac{3^{-2}(X)}{3x_{1}...3x_{1}} - \frac{3^{-2}(Y)}{3x_{1}...3x_{1_{k}}} \le \frac{3^{-2}(Y)}{3x_{1}...3x_{1_{k}}} \le \begin{cases}
C_{3}(Ah^{-k-n/p-\beta}+Mh^{2}e^{-k-\beta}) & \text{for } e_{0}-k>1 & \text{or } g_{0}-k-1; \\
C_{4}(Ah^{-k-n/p-\beta}+\frac{1}{1-\beta}Mh^{2}e^{-k-\beta}) & \text{for } e_{0}-k-1, \beta<1; \\
C_{5}[AZ^{-k-n/p-\beta}+H(1+|\ln\frac{Z}{|X-Y|}|)] & \text{for } E_{0}-k-1, \beta=1.
\end{cases}$$

where h is an arbitrary positive number $\leq 2\ell$; C_1 are constants not depending on A,H,h.

2) If $0 \leq \beta \leq 1$, $q \gg p$, m - integral, $1 \leq m \leq n$, $\ell_m = 1 + m \leq (1 - \frac{m}{2}) + \frac{m}{2} + \frac{m}{2}$

 $\mathcal{E}_{n}-k-\beta>0$, s - integral, $0\leqslant s\leqslant n$, 2ℓ - an arbitrary fixed positive Card 4/7

APPROVED FOR RELEASE: 04/03/2001

89011

S/020/60/135/004/004/037 0111/0222

Some Inequalities for Differentiable Functions of Many Variables number, $\delta = 1 + \exp(1 - \frac{D}{a}) + \exp(q + s/q - n/p - k)$, then there hold the inequalities:

(6)
$$I_{1} = \left[\int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \left| \frac{\partial x_{1}}{\partial x_{1}} \cdots \partial x_{1}} \right|^{q} dv_{n} \right]^{1/q} \leq$$

(a)
$$G_6(AH^{-1}/4h^2) + AH^{-1}/4h^2 + AH^{-1}/4h^$$

Card 5/7

APPROVED FOR RELEASE: 04/03/2001