MAT 2155

Submission Date: 26 - 29th October

- 1. Let a, b, c be elements in a Lattice (A, \leq) . Show that, $a \leq b$ if and only if $a \vee (b \wedge c) \leq b \wedge (a \vee c)$
- 2. Show that a lattice is distributive if and only if for any elements a, b, c in the lattice $(a \lor b) \land c \le a \lor (b \land c)$
- 3. Show that a lattice is modular if and only if the following condition holds

$$a \lor (b \land (a \lor c)) = (a \lor b) \land (a \lor c)$$

4. In any lattice L, prove that

$$(a \land b) \lor (b \land c) \lor (c \land a) \le (a \lor b) \land (b \lor c) \land (c \lor a)$$
 for all $a, b, c \in L$.

- 5. Prove that, in any lattice L, the distributive inequalities
 - (i) $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$
 - (ii) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$
- 6. Let (A, V, Λ) be an algebraic system, where V and Λ are binary operations satisfying the commutative and absorption laws.
 - (i) Define a binary relation \leq on A as follows: For all $a, b \in A$, $a \leq b$ if and only if $a \wedge b = a$. Show that ' \leq ' is a partial ordering relation.
 - (ii) Show that $a \lor b$ is least upper bound of a and b in (A, \leq)
 - (iii) Show that $a \wedge b$ is greatest lower bound of a and b in (A, \leq)
- 7. Let (P, \leq) be a poset. Suppose the length of the longest chains in P is n, then prove that, the elements in P can be partitioned into n disjoint antichains.
- 8. For elements a and b in a Boolean algebra, show that $a \le b$ if and only if $\overline{a} \lor b = 1$.
- 9. For a fixed integer $n \ge 1$, let B be the set of all binary strings of length n. Define a relation \le on B as follows. For two strings $x = x_1 x_2 \dots x_n$ and $y = y_1 y_2 \dots y_n$ in B, $x \le y$ if and only if for each i, whenever the bit $y_i = 0$, the bit $x_i = 0$ as well (Example: $0101 \le 1101$). Show that (B, \le) is a lattice. Describe the join and meet operations of two strings in terms of the bits of the string.
- 10. Let $E(x_1, x_2, x_3) = \overline{x_1} \wedge (\overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_3})$ be a Boolean Expression over the two-valued Boolean algebra $(\{0,1\}, \vee, \wedge, \overline{\ })$. Write $E(x_1, x_2, x_3)$ in CNF and DNF respectively.