TETIANA PARSHAKOVA

tetianap@stanford.edu parshakova.github.io

OBJECTIVE

To develop efficient algorithms for large-scale problems using techniques from optimization, discrete mathematics and statistics. In particular, my research interests include

- large-scale and distributed convex optimization
- network science, learning and inference for network data
- numerical and randomized linear algebra
- low rank and structured optimization
- machine learning

POSITIONS

Amazon USA

Postdoctoral Scientist | SCOT

07/2024 -

 distributed optimization algorithms for supply chain problems Advisor: Garrett van Ryzin

EDUCATION

Stanford USA

Ph.D. | Computational Mathematics 09/2019 – 06/2024

Advisor: Prof. Stephen Boyd

Thesis: Multilevel Low Rank Matrices and Applications

M.Sc. | Computational Mathematics 09/2019 – 09/2022

KAISTM.Sc. | Electrical Engineering
02/2017 – 02/2019

M.Sc. | Electrical Engineering
Thesis: Latent Question Interpretation: Parameter Adaptation Using Interpretation Policy

B.Sc. | Industrial Design 09/2012 – 02/2017

Thesis: UMorph: Self-Change Tracker to Reflect Yourself to the Future and Past

RESEARCH EXPERIENCE

Google Research USA

Student Researcher | Google Brain Robotics

06 - 09/2022

 message passing and tree-based algorithms for fast graph field integration, towards generalization of fast multipole method to discretized manifolds

Apple USA

Machine Learning Research Intern | Exploratory Design Group

06 - 09/2020, 2021

- accelerating the training of neural networks using Hessian-vector products
- constructive methods for neural networks on elementary functions

Naver Labs Europe France

Machine Learning Researcher | Natural Language Processing Group

03 - 07/2019

• global autoregressive models (GAMs) combine an autoregressive component with a log-linear component, allowing the use of global a priori features to compensate for lack of data

PATENTS

Methods and systems for producing neural sequential models

Naver Corp, 2024

T. Parshakova, M. Dymetman, J.-M. Andréoli

US 17/018,754

Interpolation method and apparatus for arithmetic functions

Apple Inc, 2022 US 17/085,971

W. C. Athas, Z. M. Nadeem, T. Parshakova

- <u>T. Parshakova</u>, Y. Bai, G. van Ryzin, and S. Boyd. *Multiple-response agents: Fast, feasible, approximate primal recovery for dual optimization methods*. arXiv preprint arXiv:2503.12221. 2025. Package: github.com/cvxgrp/mra_precovery
- <u>T. Parshakova</u>, T. Hastie, and S. Boyd. *Fitting multilevel factor models*. arXiv preprint arXiv:2409.12067. 2024. Package: github.com/cvxgrp/multilevel_factor_model
- S. Boyd, <u>T. Parshakova</u>, E. K. Ryu, J. J. Suh. *Optimization algorithm design via electric circuits*. Advances in Neural Information Processing System (Spotlight). 2024. Package: github.com/cvxgrp/optimization_via_circuits
- T. Parshakova. Multilevel low rank matrices and applications. PhD thesis, Stanford University. 2024
- <u>T. Parshakova</u>, T. Hastie, E. Darve and S. Boyd. *Factor fitting, rank allocation, and partitioning in multilevel low rank matrices*. Optimization, Discrete Mathematics, and Applications to Data Sciences, Springer Optimization and Its Applications, vol. 220, Springer. 2024. Package: github.com/cvxgrp/mlr_fitting
- K. Choromanski, A. Sehanobish, H. Lin, Y. Zhao, E. Berger, <u>T. Parshakova</u>, et al. *Efficient graph field integrators meet point clouds*. International Conference on Machine Learning. 2023. Package: github.com/topographers/efficient_graph_algorithms
- <u>T. Parshakova</u>, F. Zhang and S. Boyd. *Implementation of an oracle-structured bundle method for distributed optimization*. Optimization and Engineering. 2023. Package: github.com/cvxgrp/OSBD0
- <u>T. Parshakova</u>, M. Dymetman and J.-M. Andreoli. *Distributional policies for energy-based sequential models*. NeurIPS Optimization Foundations of Reinforcement Learning Workshop. 2019
- <u>T. Parshakova</u>, J.-M. Andreoli and M. Dymetman. *Global autoregressive models for data-efficient sequence learning*. Conference on Computational Natural Language Learning, ACL. 2019. Package: github.com/parshakova/GAMS-for-Data-Efficient-Learning
- <u>T. Parshakova</u>, F. Rameau, A. Serdega, I. S. Kweon, and D.-S. Kim. *Latent question interpretation through variational adaptation*. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 2019
- <u>T. Parshakova</u> and D.-S. Kim. *Latent question interpretation through parameter adaptation using stochastic neuron*. In Proceedings of ICML Workshop, MRC-2018. 2018
- <u>T. Parshakova</u> and D. Saakes. *UMorph: Self-change tracker to reflect yourself to the future and past*. Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems, ACM. 2018
- <u>T. Parshakova</u>, M. Cho, A. Cassinelli, and D. Saakes. *Furniture that learns to move itself*. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, ACM. 2017
- <u>T. Parshakova</u>, M. Cho, A. Cassinelli, and D. Saakes. *Ratchair: Furniture learns to move itself with vibration*. ACM SIGGRAPH 2016 Emerging Technologies, ACM. 2016

HONORS AND AWARDS

Oliger Memorial Fellowship

2019 - 2022

A stipend during the Ph.D. at Stanford

Qualcomm-KAIST innovation awards 2018

2018

Paper competition awards for graduate students

Featured at discovery daily planet Canada

2017

Ratchair: Furniture that learns to move itself demonstration

KAIST breakthroughs newsletter Furniture that learns to move itself featured in KAIST breakthroughs newsletter	2017
Excellence award for Bachelor's thesis Thesis: UMorph: Self-change tracker to reflect yourself to the past and to the future	2017
First prize in Qualcomm-KAIST innovation awards Embedded systems awards	2016
SIGGRAPH 2016 emerging technologies DC EXPO special prize Project: Ratchair: Furniture that learns to move itself with vibration	2016
Undergraduate research program excellence award For extraordinary efforts and research outcomes	2016
KAIST international student scholarship A stipend during the B.Sc. and M.Sc. at KAIST	6, 2017 – 2019
Kyiv capital olympiads in mathematics Bronze medal	2009, 2012
Regional mathematics olympiad Silver medal	2009
Volyn regional mathematics olympiad Gold medal	2008
TALKS	
Design and Analysis of Efficient Algorithms for Large-Scale Problems, Flatiron Institute	1/2025
Price Directed Distributed Optimization and Primal Recovery, INFORMS, Seattle	10/2024
Multilevel Low Rank Matrices and Applications, Optimization lunch, Stanford	05/2024
Multilevel Low Rank Matrices and Applications, Amazon, SCOT	05/2024
Multilevel Low Rank Matrices and Applications, van Dijk Lab, Yale	01/2024
Multilevel Low Rank Matrices and Applications, Krishnaswamy Lab, Yale	12/2023
Fast Graph Field Integrators for Robotics & Beyond, Google Brain, New York	09/2022
Latent question interpretation: Parameter adaptation using interpretation policy, Naver Labs Europe	01/2019
Latent Question Interpretation Through Parameter Adaptation Using Stochastic Neuron, ICML Workshop	07/2018
Projects and Research	
Research rotations Stanford University	2019 – 2021 USA

Stanford University

• with Prof. Aaron Sidford on hop constrained graph embedding onto a distribution of a dominating trees:

- with Prof. Aaron Sidford on hop constrained graph embedding onto a distribution of a dominating trees: minimax principle between probabilistic and distributional distance stretch, randomized algorithms for obtaining embeddings
- with Prof. Amin Saberi on finding optimal strategy for the card guessing game using partially observable Markov decision process
- with Prof. Eric Darve on deriving bounds for the number of neurons and layers of relu NNs necessary for approximating any analytic function arbitrarily close

Graduate researcher2017 – 2018Brain Reverse Engineering and Imaging Lab, KAISTSouth Korea

 latent question interpretation through variational adaptation; visual question answering via bottom-up and top-down attention; abstractive text summarizer using pointer generator with seq2seq attention that constructs hybrid vocabulary distribution; sequential decision making agent for solving Angry Birds using deep deterministic policy gradient with attention-based LSTM

Undergraduate researcher

2016

Brain Reverse Engineering and Imaging Lab, KAIST

South Korea

• machine learning and reinforcement learning basics; comic style generation using NNs

Undergraduate researcher

2015 - 2016

My Design Lab, KAIST

South Korea

- a strategy for displacing objects utilizing vibrations *Ratchair*; tools: Python, Java, Android, OpenCV, Arduino, Inventor, Processing-Android, Myo Armband, hardware
- an unobtrusive self-image capturing system for tracking self changes over time *UMorph*; tools: PyQt, Dragon Board 410c, OpenCV, Dlib, hardware

SKILLS

Languages: Ukrainian (native), English (fluent), Russian (fluent), Korean (elementary)

Programming: Python, Julia, Matlab, C++, Java, Torch, Tensorflow, PyTorch, Git, LaTeX, OpenCV, Unix

Prototyping: Raspberry Pi, Arduino, Processing-Android, Autodesk Inventor, Rhino 5, Adobe Photoshop, Adobe Illustrator, Adobe After Effects, Adobe Premiere Pro

SERVICE & EXTRA-CURRICULAR

Course assistant at Stanford 2023, 2024

EE364a Convex Optimization

Reviewer 2021

Energy Based Models Workshop @ ICLR2021

Tutor at KAIST EE Co-op Program

2018

Taught undergraduate students basics of ML, NLP and Tensorflow

South Korea

Tutor in science and English camps

2017, 2018

Prepared schoolchildren for a science competition and taught English

South Korea

Organizer of KAIST EE promotion in Ukraine

2017

Helped to organize EE Visit Camp, recruited students

Ukraine/South Korea

Teaching assistant at KAIST

2015 - 2016

Intro to Philosophy, English Short Stories, Philosophy of Mathematics, Logic and AI

South Korea 2012

Volunteer at UEFA Euro 2012Closing ceremony dance performance in Kyiv

Ukraine

Candidate Master of Sports

2001 - 2007

Acrobatic gymnastics

Ukraine