Justin Chen

Exercise 1: Wage

1.1

Data is checked for null values. The code is attached in the end.

1.2

1.3

I think OLS Regression is more suitable for understanding what factors explain variability in wage. The graphs of education against wages, education against lwages, experience or tenure against lwages do show a linear relationship.

1.4

$$wage = eta_0 + eta_1 educ_i + eta_2 exper_i + eta_3 tenure_i + eta_4 married_i + eta_5 female_i + \epsilon_i$$

1.5

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		Least Squa Fri, 18 Nov 2 10:38	OLS Adj. res F-sta 022 Prob	wared: R-squared: tistic: (F-statistic ikelihood:	:):	0.416 0.408 52.70 1.20e-56 -1291.6 2599. 2633.
Covariance T	ype:	nonrob	ust			
=========	coef	std err	t	P> t	[0.025	0.975]
Intercept educ exper tenure married female profocc west	-0.3094 0.3908 0.0101 0.1354 0.6104 -1.5728 1.7488	0.056 0.012 0.020 0.276 0.260 0.304	-0.418 7.016 0.864 6.646 2.215 -6.059 5.748 3.097	0.676 0.000 0.388 0.000 0.027 0.000 0.000	-1.765 0.281 -0.013 0.095 0.069 -2.083 1.151 0.375	1.146 0.500 0.033 0.175 1.152 -1.063 2.347 1.676
Omnibus: Prob(Omnibus Skew: Kurtosis:	;):	0. 1.		•		1.848 672.881 7.69e-147 151.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.6

An additional year of education increases the wage by 0.3908; an additional year of potential experience increases the wage by 0.01; an addition year with current employer increases the wage by 0.135; if married, the wage increases by 0.61; if the person is female, the wage decreases by 1.573; if the person works in professional occupation, the wage increases by 1.749 and if the person lives in west region, the wage increases by 1.025

The regression shows that the coefficients for educ, tenure and whether the person is female are statistically significant at lpha=0.05

1.7

The model explains 41.6% of the variation of wages for different individuals.

1.8

A person with 281 years of education, 270 years of potential experience, 255 years with current employer, married, male, works in professional occupation and lives in western region can have hourly wages of \$150.

2.1Data is checked for null values. The code is attached in the end.

2.2

2.3A Logistic Regression is more suitable. The dependent variable is a 0 or 1 binary outcome. The regression should be predicting the probability.

2.4

$$pr(diabetes=1|X,eta)=rac{e^{eta_0+eta_1pregnant+eta_2glucose+eta_3mass+eta_4pedigree+eta_5age}}{1+e^{eta_0+eta_1pregnant+eta_2glucose+eta_3mass+eta_4pedigree+eta_5age}}$$

2.5

Optimization terminated successfully. Current function value: 0.439905 Iterations 7

Loait	Rear	ession	Resul	1+5
LUGIL	incg i	COSTOIL	INC 3 U	

Dep. Variate Model: Method: Date: Time: converged: Covariance	ı	Fri, 18 Nov 11:4	ogit Df F MLE Df N 2022 Pseu 4:37 Log- True LL-N	Observation Residuals: Model: Judo R-squ.: -Likelihood: Jull: p-value:	======= s:	392 386 5 0.3076 -172.44 -249.05 2.764e-31
========	coef	std err	======== Z	P> z	========= [0.025	0.975]
const pregnant glucose mass pedigree age	-9.9921 0.0840 0.0365 0.0781 1.1509 0.0344	1.087 0.055 0.005 0.021 0.424 0.018	-9.193 1.526 7.324 3.792 2.713 1.929	0.000 0.127 0.000 0.000 0.007 0.054	-12.122 -0.024 0.027 0.038 0.319 -0.001	-7.862 0.192 0.046 0.119 1.982 0.069

2.6

- When other variables are 0, the odds ratio of having diabetes is $e^{-9.9921}=4.576000965045239e-05$
- A unit increase of pregnant times increases the log odds of having diabetes by 0.084;
- A unit increase of plasma glucose concentration increases the log odds of having diabetes by 0.0365;
- A unit increase of body mass index increases the log odds of having diabetes by 0.0781;
- A unit increase of pedigree increases the log odds of having diabetes by 1.1509;
- A unit increase of age increases the log odds of having diavetes by 0.0344

2.7

Probability of the patient with median value of the variables to have diabetes is 0.1906 Probability of the patient with 75th percentile value of the variables to have diabetes is 0.638

Probability of the patient with 25th percentile value of the variables to have diabetes is 0.048

	pregnant	glucose	mass	pedigree	age
count	392.000000	392.000000	392.000000	392.000000	392.000000
mean	3.301020	122.627551	33.086224	0.523046	30.864796
std	3.211424	30.860781	7.027659	0.345488	10.200777
min	0.000000	56.000000	18.200000	0.085000	21.000000
25%	1.000000	99.000000	28.400000	0.269750	23.000000
50%	2.000000	119.000000	33.200000	0.449500	27.000000
75%	5.000000	143.000000	37.100000	0.687000	36.000000
max	17.000000	198.000000	67.100000	2.420000	81.000000

hypothetical_prediction

array([0.19055135, 0.63824141, 0.04838718])

```
Justin Chen
Problem Set 5
"""

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.discrete.discrete_model import Logit

# 1.1
w_df = pd.read_csv('wage.csv')
print(w_df.isnull().sum())
```

```
# 1.2
sns.pairplot(w_df[['wage', 'educ', 'numdep', 'tenure', 'exper']])
fig = plt.figure()
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax4 = fig.add_subplot(2, 2, 4)
ax1.scatter(w_df['educ'], w_df['wage'])
ax1.set_title('educ and wage')
ax1.set_xlabel('educ')
ax1.set_ylabel('wage')
ax2.scatter(w_df['educ'], w_df['lwage'])
ax2.set_title('educ and lwage')
ax2.set_xlabel('educ')
ax2.set_ylabel('lwage')
ax3.scatter(w_df['exper'], w_df['lwage'])
ax3.set_title('exper and lwage')
ax3.set_xlabel('exper')
ax3.set_ylabel('lwage')
ax4.scatter(w_df['tenure'], w_df['lwage'])
ax4.set_title('tenure and lwage')
ax4.set_xlabel('tenure')
ax4.set_ylabel('lwage')
plt.show()
plt.tight_layout()
# 1.5
mod = smf.ols(formula='wage ~ educ + exper + tenure + married + female + profocc + west',
                data=w_df)
res = mod.fit()
print(res.summary())
# 1.8
hypothetical = pd.DataFrame({"educ": [281], "exper": [270], "tenure": [255],
"married": [1], "female": [0], "profocc": [1], "west": [1]})
hypothetical_prediction = res.predict(hypothetical)
print(hypothetical_prediction)
# 2.1
d_df = pd.read_csv('diabetes.csv')
print(d_df.isnull().sum())
diabetes_diag = {'neg': 0, 'pos':1}
d_df['diabetes_int'] = d_df['diabetes'].map(diabetes_diag)
# 2.2
sns.lmplot(x='pedigree', y='diabetes_int', data=d_df).set(
```

```
title='LPM Plot: pedigree and diabetes')
sns.lmplot(x='pedigree', y='diabetes_int', data=d_df, logistic= True).set(
   title='Logistic Plot: pedigree and diabetes')
sns.lmplot(x='pregnant', y='diabetes_int', data=d_df).set(
   title='LPM Plot: pregnant and diabetes')
sns.lmplot(x='pregnant', y='diabetes_int', data=d_df, logistic= True).set(
   title='Logistic Plot: pregnant and diabetes')
sns.lmplot(x='glucose', y='diabetes_int', data=d_df).set(
   title='LPM Plot: glucose and diabetes')
sns.lmplot(x='glucose', y='diabetes_int', data=d_df, logistic= True).set(
    title='Logistic Plot: glucose and diabetes')
sns.lmplot(x='mass', y='diabetes_int', data=d_df).set(
   title='LPM Plot: mass and diabetes')
sns.lmplot(x='mass', y='diabetes_int', data=d_df, logistic= True).set(
   title='Logistic Plot: mass and diabetes')
sns.lmplot(x='age', y='diabetes_int', data=d_df).set(
   title='LPM Plot: age and diabetes')
sns.lmplot(x='age', y='diabetes_int', data=d_df, logistic= True).set(
   title='Logistics Plot: age and diabetes')
plt.show()
# 2.5
dfy = d_df['diabetes_int']
dfx = sm.add_constant(d_df[['pregnant', 'glucose', 'mass', 'pedigree', 'age']])
mod = Logit(dfy, dfx)
res = mod.fit()
print(res.summary())
# 2.7
d_df[['pregnant', 'glucose', 'mass', 'pedigree', 'age']].describe()
hypothetical = [[1, 2, 119, 33.2, 0.4495, 27],
[1, 5, 143, 37.1, 0.687, 36], [1, 1, 99, 28.4, 0.26975, 23]]
hypothetical_prediction = res.predict(hypothetical)
print(hypothetical_prediction)
```