Optimisation convexe et combinatoire TD 5

5 janvier 2017

Exercice 1 Arbre de Gomory-Hu

Définition 1. Valeur de coupe minimale

Soit un graphe G = (V; E) et un poids c_e pour chaque arête $e \in E(G)$, on définit $\alpha_G(u; v)$ comme la valeur de la coupe minimale entre u et v dans G.

Définition 2. Arbre de Gomory-Hu

Soient G = (V; E), c et α_G , on appelle un arbre T = (V(G); E(T)) de Gomory-Hu pour G si pour tout $st \in E_T$ $\delta(W)$ est une coupe minimale dans G où W est une composante de T - st.

1. Montrer pour le graphe G et l'arbre suivants que l'arbre est un arbre de Gomory-Hu pour ce graphe.

Correction:

On vérifie que la coupe minimale pour a-b est $\{a\}$, $\{b,c,d,e\}$ de poids 18, celle pour a-e (ou b-e) est $\{a,b\}$, $\{c,d,e\}$ de poids 17. Pour tout $x \in \{a,b,d,e\}$ la coupe minimale de c-x est $\{c\}$, $\{a,b,d,e\}$ de poids 7; de manière similaire la coupe minimale de our tout $y \in \{a,b,c,e\}$ la coupe minimale de d-y est $\{d\}$, $\{a,b,c,e\}$ de poids 10.

2. Prouver le théorème suivant.

Théorème 1. Soit T un arbre de Gomory-Hu pour un graphe G = (V; E). Alors, pour tous $u, v \in V$, soit st l'arête sur l'unique chemin de u à vtel que $\alpha_G(s,t)$ est minimisé on a:

$$\alpha_G(u,v) = \alpha_G(s,t)$$

et la coupe $\delta(W)$ induite par T-st est une u-v coupe minimum dans G. De ce fait $\alpha_G(s,t)=\alpha_T(s,t)$ pour tout $s,t\in V$ où le poids d'une arête st dans T est égale à $\alpha_G(s,t)$.

Correction:

On note d'abord que α_G obéit à une inégalité triangulaire : $\alpha_G(a,b) \ge \min(\alpha_G(a,c),\alpha_G(b,c))$ pour tout graphe non orienté G et sommets a,b,c (On peut le voir en notant que c doit être d'un côté ou de l'autre pour chaque a-b coupe).

On considère le chemin de u à v dans T; si uv=st alors $\alpha_G(u,v)=\alpha_G(s,t)$. Sinon, soit $w\neq v$ le voisin de u sur le chemin u-v dans T. Par l'inégalité triangulaire, $\alpha_G(u,v)\geq \min(\alpha_G(u,w),\alpha_G(w,v))$. Si uw=st, alors $\alpha_G(u,v)\geq \alpha_G(s,t)$; sinon par induction sur la longueur du chemin, on a $\alpha_G(u,v)\geq \alpha_G(w,v)\geq \alpha_G(s,t)$.

Cependant, par définition d'arbre de Gomory-Hu, on a $\alpha_G(u,v) \leq \alpha_G(s,t)$ puisque la coupe induite par T-st est une coupe valide pour u,v. De ce fait on a $\alpha_G(u,v) = \alpha_G(s,t)$ et la coupe induite par T-st est une coupe minimale dans G.