第四章 門檻值決定與區域分割

內容

- 4.1 前言
- 4.2 統計式門檻值決定法
- ■4.3 消息理論式門檻值決定法
- 4.4 分水嶺式區域分割法
- 4.5 作 業

- 門檻值的決定,可幫忙分割影像或提供測邊用。
- 區域分割可將影像分割成不同屬性的區域集。

4.2 統計式門檻值決定法

■ 視覺選取法 (Visual Selection) 波谷處 (Vally) 為門檻值。

圖4.2.1 灰階分佈柱狀圖

範例 4.2.2: 给定如下雨張 6×6 之影像灰階值:

25	5	35	15	10	40
10	40	20	30	40	15
45	15	5	25	10	35
50	30	45	20	50	30
30	45	15	25	5	20
10	25	40	35	50	45

20	15	40	55	50	10
45	10	5	45	35	40
25	45	20	10	15	20
35	55	50	55	45	25
50	15	40	30	5	40
15	20	10	45	15	50

(a) (b)

那張影像不適合使用視覺選取法決定門檻值?

影像 (a) 不適合使用視覺法選取門檻值;而影像 (b) 適合使用視覺法選取門檻值,且門檻值 T^* 為 30。

Otsu 法

 T^* 的決定,使得 C_1 和 C_2 之間的變異數為最大或使得 C_1 內的變異數加上 C_2 內的變異數之和為最小。

圖4.2.2 二區的例子

組內變異數和為
$$\sigma_W^2 = W_1 \sigma_1^2 + W_2 \sigma_2^2$$

$$igg *$$
 紅內變異數和為 $\sigma_W^2 = W_1 \sigma_1^2 + W_2 \sigma_2^2$
 組間變異數為 $\sigma_B^2 = W_1 (u_1 - u_{T^*})^2 + W_2 (u_2 - u_{T^*})^2$

這裡
$$u_{T^*} = \sum_{i=0}^{I-1} \frac{n_i * i}{N} = \frac{1}{N} \sum_{i=0}^{I-1} n_i * i$$

圖 4.2.3 窗户影像

圖 4.2.4 利用 Otsu 方法得 到的黑白影像

м

範例 4.2.3: 给定下列 3×3 之影像灰階值: 試算出 $T^* = 40$ 時的組間變異數和?

20	120	120
20	100	100
30	30	40

解答:

$$P(20) = \frac{2}{9}$$
, $P(30) = \frac{2}{9}$, $P(40) = \frac{1}{9}$, $P(100) = \frac{2}{9}$, $P(120) = \frac{2}{9}$

M

當
$$T^* = 40$$
 時, $W_1 = 5/9$, $W_2 = 4/9$

$$u_1 = (2/9)/(5/9) * 20 + (2/9)/(5/9) * 30 + (1/9)/(5/9) * 40 = 28$$

$$u_2 = (2/9)/(4/9) * 100 + (2/9)/(4/9) * 120 = 110$$

$$\sigma_R^2 = (5/9) * (28 - 64.44)^2 + (4/9) * (110 - 64.44)^2 = 1660.25$$

м

4.3 消息理論式門檻值決定法

■ 消息理論

令事件機率為P,帶來的消息量為I(P),具兩性質:

(1)
$$I(P) \ge 0$$
, (2) $I(P_1P_2) = I(P_1) + I(P_2)$ \circ

$$\rightarrow I(P) = \log \frac{1}{P}$$

例如: Pr(A)=1/4、Pr(B)=1/8、Pr(C)=1/8 和 Pr(D)=1/2,則平均消息量-熵(Entropy):

$$E=Pr(A)\times I(1/4)+Pr(B)\times I(1/8)+Pr(C)\times I(1/8)+Pr(D)\times I(1/2)$$

$$=(1/4)\times 2+(1/8)\times 3+(1/8)\times 3+(1/2)\times 1= 1\frac{3}{4} \text{ (bits)}$$

■ Kapur 法

$$= \begin{cases} E(C_1) = -\sum_{i=0}^{T} \frac{P(i)}{W_1} \times \log \frac{P(i)}{W_1} \\ E(C_2) = -\sum_{i=T+1}^{I-1} \frac{P(i)}{W_2} \times \log \frac{P(i)}{W_2} \end{cases}$$

最佳門檻值 T^* 的決定需滿足

圖
$$4.2.2$$
 二區的例子
需滿足
 $\sqrt{\operatorname{lax} E(C_1)} + E(C_2)$ (4.3.1)

圖4.3.1 利用Kapur法測得的 黑白影像

 \mathbf{C}_1

背景

 \mathbb{C}_2

前景

範例 4.3.1:在 Kapur 的方法中,為何要取兩個熵和之最大值?

解答:

機率分佈愈平滑的事件集所表現出來的熵會愈大。

M

範例 4.3.2: 给定下列 3×3 之影像灰階值,試算出 T*=30 時的熵?

200	120	80
150	150	80
30	30	200

解答:

$$P(30) = \frac{2}{9}$$
, $P(80) = \frac{2}{9}$, $P(120) = \frac{1}{9}$, $P(150) = \frac{2}{9}$, $P(200) = \frac{2}{9}$

$$E(C_1) = -(\frac{2}{2} \times \log(\frac{2}{2})) = 0,$$

$$E(C_2) = -\left(\frac{2}{7} \times \log(\frac{2}{7}) + \frac{1}{7} \times \log(\frac{1}{7}) + \frac{2}{7} \times \log(\frac{2}{7}) + \frac{2}{7} \times \log(\frac{2}{7})\right) = 0.587, \ E(C_1) + E(C_2) = 0.587$$

4.4 分水嶺式區域分割法

圖4.4.1 區域、局部最小值和分水嶺

50	49	41	45	51
60	45	50	40	60
55	53	42	55	42
45	32	41	50	55
65	46	35	45	60

圖4.4.2 二維的例子

圖4.4.3 水流和分水嶺

給一 Lena 灰階影像,利用本節介紹的分水嶺式區域分割法,我們實驗後得到圖 4.4.4 的結果。

圖4.4.4 Lena 影像的區域分割效果圖

4.5 作業

■作業一:寫一C程式以完成Otsu法的實作。

■ 作業二: 寫一 C 程式以完成消息理論式門檻值決定 法的實作。

■ 作業三: 寫一 C 程式以完成分水嶺區域分割法之實作。