3.8 Homework 2
Problem 1:
Solutions:
a. According to the title, the state space is:
0
3
(B) (B) (D)
8 9 10 11 12 B 14 II
b. When using breadth-first search, the list will be:
1234567891011
when using depth-limit search with limit 3, the order is:
1248951011
when using iterative deepening search:
1.123,1245367,1248951011
Problem 2:
Solutions.
a. This statement is right. When the cost of each edge is equal, the uniform-cost
search becomes Breadth-first search.

b. This statement is right. When the forward cost hin) = -depthin, the best-
first tree search because becomes Depth-first search.
c. This statement is right. Since the A* search orders by the sum of backward
cost gin and forward cost him while the Uniform-cost search only consider
g(n), the 10 later one will become A* when h(n) = 0 for all n.
Problem 3:
Solutions:
a. The branching factor b = 4 because the number of the still neighbors for
each node is 4

b. The number of the distinct states at depth k is 4k (for k>0) because every node has 4 choices for the next location.

c. When using the breadth-first tree search, we can at most expand $\frac{|x|+|y|}{|x|-y|} + \frac{|y-y||x|+|y|+|y|}{|x|-y|} = \frac{|y||x|+|y|+|y|-|y|}{|x|-y|} \quad \text{nodes}$

d. When using the breadth-first graph search, we can at most expand $\frac{[X]+[M]}{\sqrt{1-1}} + i = \frac{[4+4(X + M)](X + M)}{2} = 2(X + M)(X + M + M) \text{nodes}.$	
e. Yes. Proof:	
: h= u-x +1v-y . so h>0	
Besides, h is the sum of the vertical and horizontal distances between	נעגע
and (x, y), which is always equal or less than the true distance between	veen_
two points. According to the definition, h is an admissible heuristic	
f. According to A* gragh graph search, the number of expanded nodes i	S :
0-x + 0-y = x + y when initial location is $(0,0)$.	
g. Yes When some links are removed, the true distance between two poin	ts_
will not decrease definitely, instead, it will only increase \$ in some	cases.
So h remains $0 \le h \le h^*$, where h^* is the true distance, which means	ans_
h is admissible.	
h. No. When links are added between a nonadjacent states. their actua	l distar
decreases and therefore, it can be less than h.	
Problem 4	
Solutions:	- ·
a Obviously, there are 9! possible games of tic-tac-toe	<u></u>
98 ST - F	200

b. Taking symmetry into account, the tree can be:
C. = Eval(s) = 3x2(s)+ x1(s)-(302(s)+01(s))
and the values are marked on the tree in (b).
d. As shown is shown in the tree, the best starting move is circled at depth
1. At +ight. I on the right.
e. When applying alpha-beta pruning, the pruned nodes are shown in the
tree at depth 2 if the nodes are generated in the optimal order.

Problem 3

The pruned nodes are crossed out as above.