Near-Surface Variability of Shear and Compression Wave Speeds due to Wet/Dry Cycles

Siamak Rabienia and Sergey Vecherin

Cold Regions Research and Engineering Laboratory, U.S. Army Engineer Research and Development Center

July, 2018

Introduction

About The Project Common Knowledge & Assumptions Terminology Objectives

Method

Experimental Set-Up
Analytical Tools and Methods
Quantifications

Experimental Results

Analysis of S-Wave Analysis of P-Wave Conclusions & Suggestions

Myself

- ▶ Ph.D. Candidate, Department of Mathematics, Purdue University
- Dynamic Inverse Problems, X-ray Tomography, Scattering Theory
- NSF-Mathematical Sciences Graduate Internship through ORISE

Myself

- Ph.D. Candidate, Department of Mathematics, Purdue University
- Dynamic Inverse Problems, X-ray Tomography, Scattering Theory
- NSF-Mathematical Sciences Graduate Internship through ORISE

Project:

- Collaboration between ERDC-GSL and ERDC-CRREL laboratories
- Experimental design and data acquisition have been conducted by Oliver Taylor and Amy Cunningham (ERDC-GSL) as well as general methodology of the experiment
- ERDC-CRREL provides analytical and statistical tools to analyze the seismic data
- $lackbox{Wet/dry cycles on sand lead to different V_p and V_s}$

Myself

- ▶ Ph.D. Candidate, Department of Mathematics, Purdue University
- Dynamic Inverse Problems, X-ray Tomography, Scattering Theory
- NSF-Mathematical Sciences Graduate Internship through ORISE

Project:

- Collaboration between ERDC-GSL and ERDC-CRREL laboratories
- Experimental design and data acquisition have been conducted by Oliver Taylor and Amy Cunningham (ERDC-GSL) as well as general methodology of the experiment
- ERDC-CRREL provides analytical and statistical tools to analyze the seismic data
- $ightharpoonup \operatorname{Wet/dry}$ cycles on sand lead to different V_p and $V_s o \operatorname{\mathbf{GOAL}}$ Quantify the degree of variability for different saturations

Common Knowledge:

Common Knowledge:

Geophysical properties of soil are highly variable

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)
- Mechanical and elastic properties of the same soil specimen change with soil water saturation

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)
- Mechanical and elastic properties of the same soil specimen change with soil water saturation

General Assumptions:

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)
- Mechanical and elastic properties of the same soil specimen change with soil water saturation

General Assumptions:

▶ Same density, temperature, moisture and confining pressure

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)
- Mechanical and elastic properties of the same soil specimen change with soil water saturation

General Assumptions:

- ► Same density, temperature, moisture and confining pressure
 - → Same geophysical properties

Common Knowledge:

- Geophysical properties of soil are highly variable
- Variability between different types of soil or for the same type, but different sites (Spatial Variability)
- Mechanical and elastic properties of the same soil specimen change with soil water saturation

General Assumptions:

- ► Same density, temperature, moisture and confining pressure
 - ightarrow Same geophysical properties
- As a consequence, Shear and Compression wave speeds are the same for the same conditions

About The Project Common Knowledge & Assumptions Terminology Objectives

Terminology

Terminology

► **Shear Wave**: A wave in which the medium disturbance is an elastic deformation perpendicular to the direction of propagation of the wave

Terminology

- ► **Shear Wave**: A wave in which the medium disturbance is an elastic deformation perpendicular to the direction of propagation of the wave
- ► Compression Wave: A wave in which the medium particle disturbance is a compression of the medium

Terminology

- ► **Shear Wave**: A wave in which the medium disturbance is an elastic deformation perpendicular to the direction of propagation of the wave
- ► Compression Wave: A wave in which the medium particle disturbance is a compression of the medium
- ▶ **Unconfined sand**: Represent natural setting for near-surface seismic propagation

About The Project Common Knowledge & Assumptions Terminology Objectives

 Experimentally demonstrate that the shear and compression wave speeds of unconfined sand change after each wet/dry cycle

- Experimentally demonstrate that the shear and compression wave speeds of unconfined sand change after each wet/dry cycle
- Investigate the variability of shear and compression wave speeds, as a consequence of wet/dry cycles

- Experimentally demonstrate that the shear and compression wave speeds of unconfined sand change after each wet/dry cycle
- Investigate the variability of shear and compression wave speeds, as a consequence of wet/dry cycles
- Quantify the degree of variability through the non-parametric probability density function estimates:

- Experimentally demonstrate that the shear and compression wave speeds of unconfined sand change after each wet/dry cycle
- Investigate the variability of shear and compression wave speeds, as a consequence of wet/dry cycles
- Quantify the degree of variability through the non-parametric probability density function estimates: Unconditional and moisture content conditional scenarios

► Reproduce natural condition of seismic propagation in GSL lab

► Reproduce natural condition of seismic propagation in GSL lab = Unconfined sand on the surface

 Reproduce natural condition of seismic propagation in GSL lab = Unconfined sand on the surface

▶ Sampling height: $L_0 = 14.5(cm)$

Sampling height: $L_0 = 14.5(cm)$

Source pulse: Sinusoid

▶ Sampling height: $L_0 = 14.5(cm)$

Source pulse: Sinusoid

▶ Source pulse frequency: $f_0 = 10000(Hz)$

- ▶ Sampling height: $L_0 = 14.5(cm)$
- Source pulse: Sinusoid
- ▶ Source pulse frequency: $f_0 = 10000(Hz) \rightarrow T = 0.1(ms)$

- ▶ Sampling height: $L_0 = 14.5(cm)$
- ► Source pulse: Sinusoid
- ▶ Source pulse frequency: $f_0 = 10000(Hz) \rightarrow T = 0.1(ms)$

(b) Received Signal

Challenges & Calibrations

Challenges & Calibrations

Challenges:

Challenges:

► Head wave (Not a propagated wave ??)

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- P-wave

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- P-wave & S-wave & Surface wave

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

Calibrations:

Resonant Column (RC) tests

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

Calibrations:

ightharpoonup Resonant Column (RC) tests ightharpoonup Estimation of S-wave arrival

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

- ightharpoonup Resonant Column (RC) tests ightharpoonup Estimation of S-wave arrival
- ▶ Three RC tests averaged at $Sat_1 = 0.24$

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

- ightharpoonup Resonant Column (RC) tests ightarrow Estimation of S-wave arrival
- ▶ Three RC tests averaged at $Sat_1 = 0.24
 ightarrow V_{s_1}^{ref} = 128 \; (m/s)$

Challenges:

- ► Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

- ightharpoonup Resonant Column (RC) tests ightharpoonup Estimation of S-wave arrival
- ▶ Three RC tests averaged at $Sat_1 = 0.24
 ightarrow V_{s_1}^{ref} = 128 \; (m/s)$
- ▶ Three RC tests averaged at $Sat_2 = 0.62$

Challenges:

- ▶ Head wave (Not a propagated wave ??)
- ► Signals traveled through the surface of cube (500-750 m/s)
- Reflections & Corruptions
- ▶ P-wave & S-wave & Surface wave

- ightharpoonup Resonant Column (RC) tests ightharpoonup Estimation of S-wave arrival
- lacktriangle Three RC tests averaged at $Sat_1=0.24
 ightarrow V_{s_1}^{ref}=128 \; (m/s)$
- ▶ Three RC tests averaged at $Sat_2 = 0.62 \rightarrow V_{s_2}^{ref} = 108 \; (\text{m/s})$

Analysis A: Manually select the peak for V_s and V_p from the received signals

Analysis A: Manually select the peak for V_s and V_p from the received signals

Analysis B: Automatically select the peak for V_s and V_p from the received signals

Analysis A: Manually select the peak for V_s and V_p from the received signals

Analysis B: Automatically select the peak for V_s and V_p from the received signals

► Smooth the signal with Savitzky-Golay filtering (sgolayfilt)

Analysis A: Manually select the peak for V_s and V_p from the received signals

Analysis B: Automatically select the peak for V_s and V_p from the received signals

- Smooth the signal with Savitzky-Golay filtering (sgolayfilt)
- ► Consider two reference points for $V_{s_i}^{ref}$ and find the corresponding travel time via $t_i = \frac{L_0}{V_{s_i}^{ref}}$ for i = 1, 2,

Analysis A: Manually select the peak for V_s and V_p from the received signals

Analysis B: Automatically select the peak for V_s and V_p from the received signals

- Smooth the signal with Savitzky-Golay filtering (sgolayfilt)
- ► Consider two reference points for $V_{s_i}^{ref}$ and find the corresponding travel time via $t_i = \frac{L_0}{V_{s_i}^{ref}}$ for i = 1, 2,
- ▶ Identify the corresponding time intervals around the travel time t_i where the exact peaks at each saturation reference points $Sat_1 = 0.24$ and $Sat_2 = 0.62$ occur

Interpolation of Time Intervals

Interpolation of Time Intervals

▶ Interpolate the boundaries of intervals via

$$\tau_{L}(Sat) = t_{1L} + \frac{t_{2L} - t_{1L}}{Sat_{2} - Sat_{1}} (Sat - Sat_{1})$$

$$\tau_{U}(Sat) = t_{1U} + \frac{t_{2U} - t_{1U}}{Sat_{2} - Sat_{1}} (Sat - Sat_{1})$$

Calculate V_p :

Calculate V_p : Reconstructed V_s

Calculate
$$V_p$$
: Reconstructed V_s & $V_p^{ref} = V_s^{ref} \sqrt{\frac{2-2\nu}{1-2\nu}}$

Calculate V_p : Reconstructed V_s

$$\& V_p^{ref} = V_s^{ref} \sqrt{rac{2-2
u}{1-2
u}}$$

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

▶ **Strength**: Do not require any assumption or information on the data and how it is distributed

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ▶ **Strength**: Do not require any assumption or information on the data and how it is distributed
- Drawback: 1- Requires large amount of data

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ▶ **Strength**: Do not require any assumption or information on the data and how it is distributed
- ▶ **Drawback**: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ▶ **Strength**: Do not require any assumption or information on the data and how it is distributed
- ▶ **Drawback**: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Optimal Bandwidth

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- Strength: Do not require any assumption or information on the data and how it is distributed
- ▶ Drawback: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Optimal Bandwidth

Asymptotic:

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ▶ **Strength**: Do not require any assumption or information on the data and how it is distributed
- ▶ Drawback: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Optimal Bandwidth

► **Asymptotic**: Choose the bandwidth to maximize the Asymptotic Mean Integrated Square Error (Optimal for Normal Distributions)

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ► **Strength**: Do not require any assumption or information on the data and how it is distributed
- ▶ Drawback: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Optimal Bandwidth

- ► **Asymptotic**: Choose the bandwidth to maximize the Asymptotic Mean Integrated Square Error (Optimal for Normal Distributions)
- Cross-validation:

Non-Parametric PDF Estimations

Employ Probability Distribution Function (PDF) estimation for the variability of V_p and V_s

Non-parametric Kernel Density Estimation (KDE) of PDF

- ▶ **Strength**: Do not require any assumption or information on the data and how it is distributed
- ▶ Drawback: 1- Requires large amount of data 2- No unique reconstruction of distribution with finite number of samples

Optimal Bandwidth

- ► **Asymptotic**: Choose the bandwidth to maximize the Asymptotic Mean Integrated Square Error (Optimal for Normal Distributions)
- Cross-validation: Choose the bandwidth to maximize the likelihood function of data occurrence

► Generate an artificial data from 2 Gaussian distributions with different means specifically with no overlap

► Generate an artificial data from 2 Gaussian distributions with different means specifically with no overlap

► Generate an artificial data from 2 Gaussian distributions with different means specifically with no overlap

 Generate an artificial data from 2 Gaussian distributions with different means specifically with no overlap

 Cross-validation provides a better PDF estimates for the bimodal distribution

S-wave Velocities: Manual vs Automatic

S-wave Velocities: Manual vs Automatic

▶ Ultimate goal is to quantify the variability at each saturation level

S-wave Velocities: Manual vs Automatic

- ▶ Ultimate goal is to quantify the variability at each saturation level
- ▶ Not feasible due to lack of data

Separate the whole saturation levels into 5 bins (intervals)

Separate the whole saturation levels into 5 bins (intervals)

Unonditional PDF: Manual vs Automatic

P-wave Velocities: Manual vs Automatic

Unonditional PDF: Manual vs Automatic

▶ The phenomenon is demonstrated

- The phenomenon is demonstrated
- ► The quantification of the variability of *Vs* and *Vp* in both unconditional and moisture content conditional cases have been implemented

- The phenomenon is demonstrated
- ► The quantification of the variability of Vs and Vp in both unconditional and moisture content conditional cases have been implemented
- Coefficient of Variation $C_{
 m v}=rac{\sigma}{\mu}$

- The phenomenon is demonstrated
- ► The quantification of the variability of Vs and Vp in both unconditional and moisture content conditional cases have been implemented
- Coefficient of Variation $C_{
 m v}=rac{\sigma}{\mu}$
- ▶ Unconditional variability of S-wave: $C_v = \%13$ for automatic procedure, while $C_v = \%20$ for manual

- The phenomenon is demonstrated
- ► The quantification of the variability of Vs and Vp in both unconditional and moisture content conditional cases have been implemented
- Coefficient of Variation $C_{
 m v}=rac{\sigma}{\mu}$
- ▶ Unconditional variability of S-wave: $C_v = \%13$ for automatic procedure, while $C_v = \%20$ for manual
- ▶ Conditional (binned) variability of S-wave, $\%6 \le C_{\nu} \le \%8$

- The phenomenon is demonstrated
- The quantification of the variability of Vs and Vp in both unconditional and moisture content conditional cases have been implemented
- Coefficient of Variation $C_{
 m v}=rac{\sigma}{\mu}$
- ▶ Unconditional variability of S-wave: $C_v = \%13$ for automatic procedure, while $C_v = \%20$ for manual
- ▶ Conditional (binned) variability of S-wave, $\%6 \le C_{\nu} \le \%8$
- ▶ Unconditional variability of P-wave: $C_v = \%13.5$ for automatic procedure, while $C_v = \%14.5$ for manual

- The phenomenon is demonstrated
- The quantification of the variability of Vs and Vp in both unconditional and moisture content conditional cases have been implemented
- Coefficient of Variation $C_{
 m v}=rac{\sigma}{\mu}$
- ▶ Unconditional variability of S-wave: $C_v = \%13$ for automatic procedure, while $C_v = \%20$ for manual
- ▶ Conditional (binned) variability of S-wave, $\%6 \le C_v \le \%8$
- ▶ Unconditional variability of P-wave: $C_v = \%13.5$ for automatic procedure, while $C_v = \%14.5$ for manual
- ▶ Conditional (binned) variability of S-wave, $\%2 \le C_v \le \%14$ which is less consistent

More data samples

- ► More data samples
- Isolation of the cube to avoid traveling signals through the cube

- ▶ More data samples
- Isolation of the cube to avoid traveling signals through the cube
- Run the experiment on a larger scale cube to reduce the noise on V_p and V_s recording

▶ I would like to thank NSF and ORISE for the opportunity to work on this project

- ► I would like to thank NSF and ORISE for the opportunity to work on this project
- ▶ I appreciate CRREL for having me as a graduate intern

- ▶ I would like to thank NSF and ORISE for the opportunity to work on this project
- I appreciate CRREL for having me as a graduate intern
- My special thank to Dr. Sergey for his valuable discussion and helps through out this project

Thank you

THANK YOU!