Prediction and Analysis of Heart Failure

GROUP 19: RAHUL P., WENSHUO Z., SIDDHANT S., JIAWEI W.

Motivation and Goals

- Cardiovascular diseases are the number
 one cause of death globally
- Take an estimated 17.9 million lives each year (31% of all deaths worldwide)
- People with high cardiovascular risk need early detection.
- Goals: Visualize factors which lead to Heart Disease and try to Predict Heart Disease based on these factors.

Dataset

Data retrieved from four independently created datasets.

- Key Column: HeartDisease (True/False)
- o Numerical Data: Age, RestingBP, Cholesterol, FastingBS, MaxHR, Oldpeak
- o Categorical Data: Sex, ChestPainType, RestingECG, ExerciseAngina, ST_Slope

	HeartDisease	Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	Sex	ChestPainType	RestingECG	Exercise Angina	ST_Slope
0	0	40	140	289	0	172	0.0	М	ATA	Normal	N	Up
1	1	49	160	180	0	156	1.0	F	NAP	Normal	N	Flat
2	0	37	130	283	0	98	0.0	М	ATA	ST	N	Up
3	1	48	138	214	0	108	1.5	F	ASY	Normal	Υ	Flat
4	0	54	150	195	0	122	0.0	М	NAP	Normal	N	Up

How do numerical values contribute to Heart Disease?

How does age play a role in Heart Disease?

Risk of heart disease increases with age

Does gender play a role in Heart Disease?

Men are almost 2.5X more likely have heart disease than women!

Does gender play a role in Heart Disease?

As age increases men have a higher risk of heart disease than women

Does certain chest pain type strongly indicate Heart Disease?

Most cases of heart disease have no chest pain!

ATA: Atypical Angina, TA: Typical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic

Does chest pain when exercising strongly indicate Heart Disease?

You are at high risk of heart disease if you experience chest pain when exercising

Does looking at the patients ECG give us an indication of Heart Disease?

Does looking at the patients ECG give us an indication of Heart Disease?

The normal ST slope should be slightly upsloping.

Flat and down-sloping ST slopes are likely to indicate heart disease.

Does looking at the patients ECG give us an indication of Heart Disease?

- Oldpeak is how low ST segment is below the baseline
- Higher Oldpeak is an indication of HeartDisease

ST segment depression

Prediction of Heart Disease

Machine Learning Model Pipeline

Evaluation and Model Selection

- Training on 5 Machine Learning models
- Choose the important features
- OAII models perform nearly the same
- Considering all the metrics of the ML model, Random Forest performs the best.
- The accuracy achieved was approximately 89%.

Prediction of Heart Failure - Random Forest Results

- oSt_Slope is found to be the most important feature.
- While RestingECG and Sex are not the most important features, they contribute to the prediction.
- Consistent with the data analyzed.

Prediction of Heart Failure – Random Forest Results

- Most samples are predicted correctly
- Same performance for false negative & false positive
- Model Accuracy: 89.13%

Conclusions

- Heart Disease risk increases with age.
- Men are more likely to have heart failure than women.
- By the analysis of the ECG data, one can predict heart disease.

- •Predicting heart failure is a typical 0-1 classification task, our models can classify the labels correctly with accuracy of about 89%
- •In our model, ST_Slope has the highest feature importance for predicting heart failure.

References

- <u>https://www.kaggle.com/fedesoriano/heart-failure-prediction</u>
- ohttps://litfl.com/st-segment-ecg-library/ -
- Mattu A, Tabas JA, Brady WJ. <u>Electrocardiography in Emergency, Acute, and Critical Care</u>. 2e, 2019
- Lanza, G A et al. "Diagnostic and prognostic value of ST segment depression limited to the recovery phase of exercise stress test." Heart (British Cardiac Society) vol. 90,12 (2004)
- ohttps://ecgwaves.com/topic/ecg-st-segment-depression-ischemia-infarction-differentialdiagnoses/