

LINEAR DATA STRUCTURES AND ALGORITHMS.

L02-03: Problems, Algorithms and Programs.

BACKGROUND.

We say two sets of numbers are *anagrams* if the number of set 1 can be constructed as a permutation of the numbers of set 2 and viceversa. Examples:

- Scenario A: Set $1 = \{3, 5, 6, 8\}$ and Set $2 = \{8, 3, 6, 5\}$ are anagrams, as each set can reorder its numbers to look exactly the same as the other set.
- Scenario B: Set $1 = \{3, 5, 6, 9\}$ and Set $2 = \{8, 3, 6, 5\}$ are not anagrams, as there is no way each set can be reordered to get the same numbers as the other set.

PROBLEM SPECIFICATION.

Provided 2 sets of n numbers { A₁, A₂, A₃, ..., A_n } and { B₁, B₂, B₃, ..., B_n }, come up with a solution to check whether the two sets are anagrams.

In our lecture 'Problems, Algorithms and Programs' we have seen three possible algorithms to be used as a formal specification of the solution:

- 1. Algorithm **anagrams1** (slides 39-41): Based on removing matching numbers between sets.
- 2. Algorithm **anagrams2** (slides 42-47): Based on sorting the numbers of both sets and compare them.
 - It uses the additional algorithms bubble_sort and are_equal.
- 3. Algorithm anagrams 3 (slides 48-49): Based on counting the digit appearances of each set and compare them.
 - It uses the additional algorithms appearances and are equal.

PRACTISE.

The folder contains the implementation of the algorithm **anagrams2** (and its additional algorithms **bubble_sort** and **are_equal**) in the following programming paradigms:

