

Introduction to Programming Composition

Admin & Introduction

Module Instructors

Lecturers:

- Dr Aquinas Hobor (a.hobor@ucl.ac.uk)
- Dr Quang Loc Le (loc.le@ucl.ac.uk)
- Dr Sobhan Y. Tehrani (sobhan.tehrani@ucl.ac.uk)
- Teaching Assistants for the labs
 - Hadrien Renaud (hadrien.renaud.22@ucl.ac.uk)
 - Mar Munoz (mar.munoz.22@ucl.ac.uk)
- Contact details and office hours on the Moodle page of the module

Schedule

UCI

	Monday 15:00 -17:00	Thursday 15:00 - 17:00	Fridays 13:00-15:00	Fridays 15:00-17:00						
1	Introduction/Lab	Introduction/Lab	Introduction/Lab	Introduction/Lab						
2	Pratical Session	Pratical Session	Pratical Session	Pratical Session Pratical Session Pratical Session Pratical Session						
3	Pratical Session	Pratical Session	Pratical Session							
4	Pratical Session	Pratical Session	Pratical Session							
5	Pratical Session	Pratical Session	Pratical Session							
	Reading Week									
6	N/A N/A		Exam							
7	Pratical Session	Pratical Session	Pratical Session	Pratical Session						
8	Pratical Session	Pratical Session	Pratical Session	Pratical Session Pratical Session Pratical Session						
9	Pratical Session	Pratical Session	Pratical Session							
10	Pratical Session	Pratical Session	Pratical Session							

COMP0015

	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00
MON							computer practical COMP0015-ASU-T1 Introduction to Programmin □ LE, Quang Loc (Dr), HOBOR, Aq ■ Malet Place Engineering Buildin □ 6-10, 13-16 □ GRP1	uinas (Dr), YASSIP		
TUE										
WED										
THU							Computer practical COMPOUS-ASU-T1 Introduction to Programmin LE, Quang Loc (Dr), HOBOR, Aq ✓ Malet Place Engineering Buildin 6-10, 13-16 GRP2	uinas (Dr), YASSIP		
FRI					Computer practical COMP0015-ASU-T1 Introduction to Programming E LE, Quang Loc (Dr), HOBOR, Aquinas (Dr), YASSIP Malet Place Engineering Building 1.21, Malet Pl 6-10, 13-16 GRP4		computer practical COMP0015-ASU-T1 Introduction to Programming LE, Quang Loc (Dr), HOBOR, Aquinas (Dr), YASSIP Mater Place Engineering Building 1.21, Malet Pl 6-10, 13-16 CRP3			

Support

- Lab Structure: 4 groups and 4 sessions
- Structure:
 - Watch the video lecture in advance
 - Students work through the content during the labs (be prepared!)
 - * Attend the allocated session (group 1-4)
 - Support ask as needed

Office hours

- Monday 13:00-14:00 (online) Dr Hobor
- * Thursday 13:00-14:00 (online) Dr Le
- * Friday 11:00-12:00 (in person) Dr Tehrani

Assessment

- * 60% Coursework
 - Individual coursework (deadline: end of last week)
- * 40% Exam
 - Written examination (after the reading week)

UCL Plagiarism Guidelines

UCI

- Avoid it at all cost!
 - ChatGPT etc...

For more info: https://www.ucl.ac.uk/ioe-writingcentre/reference-effectively-avoid-plagiarism/ plagiarism-guidelines

Topics

- Why Python?
- Types, variables, sequence, branching, loops
- Strings and functions. Data structures; lists, dictionaries and sets
- Object-oriented programming
- File handling and exceptions
- Data analysis using Python libraries

Learning Objectives

- Understand why Python is a useful programming language for developers
- Solve problems using a large sub-set of the language effectively
- Understand how to write simple applications
- Design object-oriented programs with Python classes
- Use programming tools such as an integrated development environment (IDE) and debugger
- * Leverage the power of Python libraries in their code

Topics

- Why Python?
- Types, variables, sequence, branching, loops
- Strings and functions. Data structures; lists, dictionaries and sets
- Object-oriented programming
- File handling and exceptions
- Data analysis using Python libraries

Introduction

- * Computer scientists = mathematicians: use formal languages to denote ideas (specifically computations)
- Computer scientists = engineers: design things, assembling components into systems and evaluating trade-offs among alternatives
- Computer scientists = scientists: observe the behaviour of complex systems, form hypotheses, and test predictions
- Problem solving: ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately
- The process of <u>learning to program</u> is an excellent opportunity to practice problem-solving skills
- On one level, you will be <u>learning to program</u>, a useful skill by itself. On another level, you will <u>use programming</u> as a means to an end

Introduction to COMP0015

- What is this module about?
 - Learn how to solve problems using coding as a tool
 - We use Python as an introductory language ...
 - ... but programming principles are universal
- At the end on the term, you will be able to:
 - Understand why Python is a useful programming language for problem solving
 - Be able to design and develop applications effectively
 - Be able to use appropriately the most common classes in Python Standard Library
 - Be used to tools such as an integrated development environments (IDEs)
 - Be aware of the programming and debugging processes

Programme

UCI

What is a programming language?

A syntax that allows you to define programs that a computer can understand

- What is a program?
 - A set of instructions telling a computer how to perform a particular task (a little like a recipe)
 - A computer will not do anything, unless you tell it to
 - A computer will only do whatever you tell it to
 - But it does so, very quickly and accurately

Why Python?

- Consistently ranked in the top ten most popular programming languages (TIOBE Programming Community Index; Language of the Year in 2007, 2010, and 2018)
- Large organisations that use Python include Wikipedia, Google, Yahoo!, CERN, NASA, Facebook, Amazon, Instagram, Spotify
- * Python can serve as a scripting language for web applications
- The jewel of the queen: Many libraries for machine learning —Pandas
- Libraries for other purposes:
 - Scientific Computing: NumPy, SciPy, MatPlotLib
 - Mathematics: SageMath
 - Specialised domains: Biopython, Astropy

One of many options

Overview

First steps

- 1. Set up a Python development environment (see Session materials)
- 2. Get writing, testing and debugging programs
- 3. Choose and start reading the recommended texts as soon as possible, and repeatedly re-read as many times as you find necessary for a full understanding
- 4. Experiment with exercises from the book, exercises from the lab sessions, and with small programs of your own design as you read
- 5. When facing a new problem, always think about an algorithm (sequence of steps) to solve it (before coding)
- 6. Repeat steps (2-5) steadily and regularly from the beginning of the course (It is impossible to learn programming in a last-minute rush! Recommended: 6 hours/week)
- 7. Do not be embarrassed if you get lost, or initially find programming very difficult. Ask for help!
- 8. Practice! Practice! (Code, Programme, Implement)

Remember

- 1. Check the Materials (if you did not already)
- 2. Get the tools. Install Python 3 and/or find out how to set up our IDE (VS CODE)
- 3. Go through the exercises set this week (ask questions as needed)

For next week:

Review the texts on the Reading List

Do more exercises if you need

Prepare for next sessions:

Read Materials, as they become available

Extend your knowledge, using your chosen book

Practice! Practice! (Code, Programme, Implement)

References

- * Python 3 Reference Standard Library Reference, containing all the built-in facilities:
 - https://docs.python.org/3/library/index.html
- * Language Reference, with all the intimate details of the language (some may be obscure until you know more about programming languages):
 - https://docs.python.org/3/reference/index.html
- * The python 3 tutorial, that gives a tour of all language features:
 - https://docs.python.org/3/tutorial/index.html