

What is Linux?

Linux is an open-source operating system modeled after UNIX, first released in 1991 by Linus Torvalds. It has since evolved through contributions from developers worldwide.

HEADQUATERS iOS

56

Linux isn't about fancy headquarters or polished environments; it's about the freedom to build, customize, and make things work on your own terms—often in the most unconventional ways.

Linux (5)

What is a "distribution?"

Distribution = kernel + specific packages and software

ubuntu®

Spee Linux wale

By looking at the freshest 2024 Linux statistics, we find that 96.3% of the top 1,000,000 web servers use Linux. Linux is also the OS of all supercomputers. There are no Windows supercomputers.

TDevops III grêle girê

- 90% of cloud servers run on Linux (AWS, Azure, Google Cloud).
- Containers and tools like Docker & Kubernetes are built for Linux first.
- Linux offers control, stability, and scalability for production environments.

Unix like systems' characteristics

Multi-user support: Unixlike operating systems allow multiple users to operate simultaneously.

"Everything is a file" principle: System devices and resources are treated as files.

Hierarchical file system:
A structured, tree-like organization of files and directories.

Important Directories

Interaction with Linux

Command line: provides greater control and efficiency but may be less user-friendly and accessible.

Graphical interface: is more intuitive and user-friendly but may be less efficient and have less control over the system.

Different commands

Navigating the File System		
cd [directory]	Change directory	
pwd	Print working directory	
ls [options] [directory]	List directory contents	
mkdir [directory]	Create a new directory	
rmdir [directory]	Remove a directory	
cp [source] [destination]	Copy files or directories	
mv [source] [destination]	Move or rename files or directories	
rm [options] [file]	Remove files or directories	
touch [file]	Create an empty file	

Process Management		
ps [options]	Display information about active processes	
kill [process_ID]	Terminate a process	
top	Display and manage the top processes	
bg [job_ID]	Move a job to the background	
fg (job_ID)	Bring a background job to the foreground	

Archiving an	d Compression
tar [options] [files/directories]	Create or extract tar archives
gzip [file]	Compress a file
unzip [file.gz]	Decompress a gzipped file
ip [archive.zip] [files/directories]	Create a zip archive
unzip [archive.zip]	Extract files from a zip archive

File Manipulation		
cat [file]	Output the contents of a file	
head [options] [file]	Output the first lines of a file	
tail [options] [file]	Output the last lines of a file	
less [file]	View the contents of a file interactively	
grep [pattern] [file]	Search for a pattern in a file	
wc [options] [file]	Count the number of lines, words, or characters in a file	

Permissions		
chmod [permissions] [file]	Change the permissions of a file or directory	
chown [user:group] [file]	Change the owner and group of a file or directory	
chgrp [group] [file]	Change the group of a file or directory	
umask [mask]	Set the default file permissions for newly created files	

Processes in Linux

- Processes are essential in Linux for multitasking, resource management, and system stability.
- Every process is spawned by a parent, except for init (or systemd), which is the root of the process tree.
- Created using system calls like fork() (creates a child process)
 or exec() (replaces the current process with a new program).

System Processes

User Processes

Generated automatically by the kernel.
They ensure the operating system run smoothly.

Example: systemd.

Created by a user. They handle tasks initiated by users.

Example: web browser.

Processes management

Process management in Linux refers to the system's ability to create, schedule, monitor, and terminate processes efficiently. It ensures that resources like CPU, memory, and I/O are allocated fairly among active processes while maintaining system stability.

Processes management

In cloud environments, where scalability and performance are paramount, effective process management enables resource optimization, high availability, and seamless scaling of applications.

Process management is essential in DevOps for automating tasks, managing containers, and optimizing resources. It ensures efficient application delivery, scalability, and reliability in cloud environments.


```
igari@RazerBladeJGG: ~
37 packages can be updated.
17 updates are security updates.
jgari@RazerBladeJGG:~$ screenfetch
    ]] awk: fatal: cannot open file `/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq' for reading (Permission den
ied)
                                    jgari@RazerBladeJGG
                                    OS: Ubuntu 16.04 xenial
                                                                            YOUR HARD WORK
                                   Kernel: x86_64 Linux 4.4.0-43-Microsoft
          .++ .:/+++++/-.+sss/
                                   Packages: 625
        .:++0: /++++++/:--:/-
       0:+0+:++.`..``.-/00+++++/
                                          bash 4.3.48
      .:+0:+0/.
                        +sssoo+/
                                   CPU: Intel Core i7-6700HQ CPU
  .++/+:+00+0:
                                    RAM: 7922MiB / 16276MiB
                          /sssooo.
 +++//+: `00+0
 +/+0+++ 0++0
  .++.0+++00+:`
      .+.0+00:.
        (+.++o+o``-```.:ohdhhhhh
         :o+++ `ohhhhhhhhyo++os:
          .o: syhhhhhhh/.oo++o
igari@Razer Hands on things
```