§7. Полярная система координат

Прямоугольная декартова система координат не является единственным способом установления взаимно однозначного соответствия между точками плоскости и упорядоченными парами вещественных чисел. Во многих задачах более удобна так называемая полярная система координат.

При введении полярной системы координат на плоскости выбирают некоторую точку O, называемую *полюсом*, и исходящий из нее луч OP с выбранным на нём

масштабом, называемый полярной осью. Полярными координатами точки M называются полярный радиус r = |OM| и полярный угол ϕ , определяемый как угол поворота полярной оси до совмещения с лучом OM (рис. 7.1). Очевидно, для любой точки плоскости $r \ge 0$. Полярный угол ϕ обычно измеряется в радианах и считается положительным, если поворот осуществлён

Рис. 7.1. Полярная система координат

направлении против часовой стрелки, и отрицательным — в противоположном случае. Таким образом, определение полярного угла совпадает с определением угла в тригонометрии. Очевидно, что любая пара вещественных чисел (r, φ) при условии $r \ge 0$ определяет на плоскости единственную точку. Обратное утверждение неверно. Так, две различные пары $\left(2, \frac{\pi}{4}\right)$ и $\left(2, \frac{9\pi}{4}\right)$ определяют на плоскости одну и ту же точку. Однако, если условиться брать полярный угол φ в границах $-\pi < \varphi \le \pi$ или $0 \le \varphi < 2\pi$ (так называемое *главное значение* полярного угла), то тогда между точками плоскости (кроме полюса) и упорядоченными парами вещественных чисел (r,φ) устанавливается взаимно однозначное соответствие (при условии r>0). В полюсе r=0, а $\varphi-$ любое.

Пример 7.1. Дан правильный шестиугольник, сторона которого равна a. Приняв за полюс одну из его вершин, а за полярную ось — сторону, через неё проходящую (рис. 7.2), найти полярные координаты остальных пяти вершин.

Рис. 7.2. К примеру 7.1

 $ightharpoonup r_E = OE = a, \ \phi_E = 0, \ E(a,0).$ Внутренние углы правильного шестиугольника равны $2\pi/3$, поэтому в рав нобедренном $\triangle ODE$ (рис. 7.2) $\widehat{OED} = 2\pi/3$, а $\widehat{DOE} = \pi/6$. Итак, $\phi_D = \pi/6$, а $r_D = OD$ найдём по теореме косинусов: $OD^2 = 2OE^2 - 2OE^2 \cos(2\pi/3) = 2a^2 - 2a^2(-1/2) = 3a^2$, отсюда имеем: $OD = a\sqrt{3}$, $D(a\sqrt{3},\pi/6)$. $r_C = OC = 2a$, $\phi_C = \pi/3$, $C(2a,\pi/3)$;

$$r_C = OC = 2a, \ \varphi_C = \pi/3, \ C(2a, \pi/3);$$

 $r_B = OB = OD = a\sqrt{3}, \ \varphi_B = \pi/2, \ B(a\sqrt{3}, \pi/2);$
 $r_A = OA = a, \ \varphi_A = 2\pi/3, \ A(a, 2\pi/3). \blacktriangleleft$

Для установления связи между полярными и прямоугольными координатами одной и той же точки плоскости введём прямоугольную систему координат специальным образом. А именно, поместим её начало в полюс O, а ось Ox направим вдоль полярной оси OP (рис. 7.3). Определения тригонометрических функций синус и косинус приводят к следующим соотношениям:

Рис. 7.3. К установлению связи между прямоугольными и полярными коорлинатами

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$
 (7.1)

По формулам (7.1), выражающим прямоугольные координаты (x,y) точки M через её полярные координаты (r,φ) , можно осуществить переход от полярных к прямоугольным координатам.

Пример 7.2. Точки M_1 и M_2 заданы полярными координатами: $M_1(2,\pi/3), M_2(\sqrt{2},3\pi/4)$. Найти их прямоугольные координаты.

▶ Пусть x_1 , y_1 и x_2 , y_2 — прямоугольные координаты данных точек M_1 и M_2 . По формулам (7.1) имеем

$$x_{1} = 2\cos\frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1, \quad y_{1} = 2 \cdot \sin\frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3},$$

$$x_{2} = \sqrt{2}\cos\frac{3\pi}{4} = \sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) = -1, \quad y_{2} = \sqrt{2}\sin\frac{3\pi}{4} = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1;$$

$$M_{1}(1, \sqrt{3}), \quad M_{2}(-1, 1). \blacktriangleleft$$

Разрешив равенства (7.1) относительно r и ϕ , получим формулы перехода от прямоугольных координат точки M к её полярным координатам:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ tg\varphi = \frac{y}{x}. \end{cases}$$
 (7.2)

Угол ф с помощью второго из равенств (7.2) определяют с учётом

четверти, в которой находится данная точка или выбирают его

значение так, чтобы $\sin \phi$ имел тот же знак, что и ордината у.

Пример 7.3. Точки M_1, M_2, M_3, M_4 заданы их прямоугольными координатами: $M_1(\sqrt{3},1), M_2(-1,\sqrt{3}), M_3(-1,-1), M_4(2,-2)$ (рис.7.4). Найти их полярные координаты.

Рис. 7.4. К примеру 7.3

►Пусть r_i , ϕ_i — полярные координаты точки M_i , i = 1, 2, 3, 4. Для r_i и ϕ_i , i = 1, 2, 3, 4, из равенства (7.2) имеем:

$$r_1 = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$
, $tg \phi_1 = 1/\sqrt{3} \Rightarrow \phi_1 = \pi/6$;
 $r_2 = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$, $tg \phi_2 = -\sqrt{3} \Rightarrow \phi_2 = 2\pi/3$;
 $r_3 = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, $tg \phi_3 = 1 \Rightarrow \phi_3 = 5\pi/4$;
 $r_4 = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$, $tg \phi_4 = -1 \Rightarrow \phi_4 = 7\pi/4$,

при этом значения полярных углов данных точек выбраны с учётом четверти, в которых они находятся. Таким образом, $M_1(2,\pi/6)$, $M_2(2,2\pi/3)$, $M_3(\sqrt{2},5\pi/4)$, $M_4(2\sqrt{2},7\pi/4)$.