Community detection

Maximilien Danisch

LIP6 - CNRS and Université Pierre et Marie Curie

first_name.last_name@lip6.fr

- Motivation and intuition
- 2 Label propagation
- Validation
- 4 k-clique percolation

Community detection

Goal: Identify automatically relevant groups of nodes.

Applications:

- Understand the structure of a network
- Detect specific communities (web pages, proteins, ...)
- Help visualization
- Improvement information retrieval (search engines, recommendation, ...)

What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)
- ...

What is the connexion with the network structure?

What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)
- ...

What is the connexion with the network structure?

What is a community?

Set of nodes that share something:

- Affiliation (friends, colleagues, club, ...)
- Similar interests (tagging systems, ...)
- Similar contents (movies, books, products, web pages, ...)
- ...

What is the connexion with the network structure?

More densely connected inside than outside

Find a single community (intuition)

Structural approaches: cohesive subgraphs

Exercise: suggest a relevant definition of a community.

Example: a clique

Optimization approach: quality function

Quality function: quantitatively evaluate the quality of a set of

nodes as a community.

Exercise: suggest a relevant quality function.

- Motivation and intuition
- 2 Label propagation
- Validation
- 4 k-clique percolation

One graph partitioning method: Label propagation

Near linear time algorithm to detect community structures in large-scale networks - Raghavan et al.

- Step 1: give a unique label to each node in the network
- Step 2: Arrange the nodes in the network in a random order
- Step 3: for each node in the network in this random order: set its label to a label occurring with the highest frequency among its neighbours (if it is not already the case)
- Step 4: go to 2 as long as there exists a node with a label that does not have the highest frequency among its neighbours.

To shuffle in a clean way:

https://en.wikipedia.org/wiki/Fisher-Yates_shuffle

One graph partitioning method: Label propagation

Exercise: why such an algorithm should lead to relevant groups?

Exercise: Which data structure should be used to implement this algorithm efficiently?

One graph partitioning method: Label propagation

Exercise: why such an algorithm should lead to relevant groups?

- Densely connected groups should reach a common label.
- When such a consensus group is created it should expand until being stopped by other equivalent consensus groups.

Exercise: Which data structure should be used to implement this algorithm efficiently?

- Motivation and intuition
- 2 Label propagation
- Validation
- 4 k-clique percolation

Validation: the case of a partition

Comparing the performance of several algorithms:

- Using synthetic graphs with a known community structure
 - Exercise: suggest such a graph
 - LFR bechmark: link
- Using a metric evaluating how similar the found community structure is to the ground-truth one
 - Exercise: Suggest such a metric
 - Adjusted Rand Index (ARI): Wikipedia paper
 - Normalized Mutual Information (NMI)
 - ..

- Motivation and intuition
- 2 Label propagation
- Validation
- 4 k-clique percolation

One overlapping method: k-clique percolation

Definition: Two k-cliques are considered adjacent if they share k-1 nodes.

Definition: A community is defined as the maximal union of *k*-cliques that can be reached from each other through a series of adjacent *k*-cliques.

Exercise: how can we find all "communities" efficiently for k = 3?