

1 Data Structure Index	1
1.1 Data Structures	1
2 File Index	3
2.1 File List	3
3 Data Structure Documentation	5
3.1 Graph_Params Struct Reference	5
3.1.1 Detailed Description	5
3.1.2 Field Documentation	5
3.1.2.1 n	5
3.1.2.2 m_min	5
3.1.2.3 m_max	6
3.1.2.4 m_crit	6
3.1.2.5 n_graphs	6
3.1.2.6 n_trees	6
4 File Documentation	7
4.1 rand_graph_lib.c File Reference	7
4.1.1 Detailed Description	7
4.1.2 Typedef Documentation	8
4.1.2.1 GP	8
4.1.3 Function Documentation	8
4.1.3.1 binom()	8
4.1.3.2 calc_graph_params()	8
4.1.3.3 A006125_total()	9
4.1.3.4 A001187_conn()	10
4.1.3.5 A054592_disconn()	10
4.1.3.6 prob_conn()	11
4.2 rand_graph_lib.c	12
Bibliography	15
Index	17

Data Structure Index

1.1 Data Structures

Here	are	the	data	structures	with	brief	descri	otions

Graph_Params	
Graph parameters structure, declared as a new type	5

2 **Data Structure Index**

File Index

2.1 File List

Here is a list of all files with brief descriptions:

rand_graph_lib.c

7

File Index

Data Structure Documentation

3.1 Graph_Params Struct Reference

Data Fields

- unsigned short n
- unsigned short m_min
- unsigned short m_max
- unsigned short m_crit
- unsigned long long n_graphs
- unsigned long long n_trees

3.1.1 Detailed Description

Graph parameters structure, declared as a new type.

Definition at line 88 of file rand_graph_lib.c.

3.1.2 Field Documentation

3.1.2.1 n

n

Number of labeled vertices.

Definition at line 90 of file rand_graph_lib.c.

3.1.2.2 m_min

 m_min

Minimal number of edges in a connected graph (tree):

```
m_{min} = n - 1 (tree).
```

Definition at line 90 of file rand_graph_lib.c.

3.1.2.3 m_max

 m_max

Maximal possible number of edges in the complete graph with n labeled vertices:

$$m_{max} = \binom{n}{2} = \frac{n(n-1)}{2} \text{ (complete graph)}.$$

Definition at line 90 of file rand_graph_lib.c.

3.1.2.4 m_crit

m_crit

Number of edges as connectedness threshold:

$$m_{crit} = \binom{n-1}{2} = \frac{(n-1)(n-2)}{2}.$$

Definition at line 90 of file rand_graph_lib.c.

3.1.2.5 n_graphs

n_graphs

Maximal possible number of graphs with n labeled vertices:

$$n_{graphs} = 2^{m_{max}}.$$

Definition at line 91 of file rand graph lib.c.

3.1.2.6 n_trees

n_trees

Maximal possible number of trees with n labeled vertices, p.292, Erdős [3] :

$$n_{trees} = n^{n-2}$$
.

Definition at line 91 of file rand_graph_lib.c.

The documentation for this struct was generated from the following file:

• rand_graph_lib.c

File Documentation

4.1 rand_graph_lib.c File Reference

```
#include <math.h>
```

Data Structures

• struct Graph_Params

Typedefs

• typedef struct Graph_Params GP

Functions

- unsigned long long binom (unsigned short n, unsigned short k)
- GP calc graph params (unsigned short n)
- unsigned long long A006125 total (unsigned short n)
- unsigned long long A001187_conn (unsigned short n)
- unsigned long long A054592_disconn (unsigned short n)
- double prob_conn (unsigned short n, double p)

4.1.1 Detailed Description

Enumerate and calculate the probability of connectedness of random graphs constructed with the Erdős-Rényi and Gilbert models.

Author

```
Andrei Batyrov ( arbatyrov@edu.hse.ru)
```

Version

0.1

Date

2023-08-25

Copyright

Copyright (c) 2023

Definition in file rand_graph_lib.c.

4.1.2 Typedef Documentation

4.1.2.1 GP

```
typedef struct Graph_Params GP
```

4.1.3 Function Documentation

4.1.3.1 binom()

Find binomial coefficient C(n, k).

Parameters

	n	Integer number n
ĺ	k	Integer number k

Returns

Binomial coefficient

Implementation notes:

- 1. Optimized algorithm without explicit calculation of factorial.
- 2. Integer overflow unsafe, since the result size is not checked during calculation and before return.
- 3. Time complexity: $\mathcal{O}(r)$, where $r = \min(k, n k)$.

Definition at line 24 of file rand graph lib.c.

4.1.3.2 calc_graph_params()

```
\begin{tabular}{ll} GP & calc\_graph\_params & ( & \\ & unsigned & short & n & ) \end{tabular}
```

Populate and return graph parameters as a structure.

Parameters

n Number of labeled vertices

Returns

Graph parameters as per structure Graph_Params

Implementation notes:

1. Integer overflow unsafe, since the rhs's size is not checked before assignment.

Definition at line 103 of file rand_graph_lib.c.

4.1.3.3 A006125_total()

Find the total number of labeled graphs (connected and disconnected) with n nodes – sequence A006125 [4] .

Parameters

```
n Graph order – number of vertices
```

Returns

Number of labeled graphs

Implementation notes:

- 1. The number of labeled graphs (connected and disconnected) with n nodes is GP::n_graphs.
- 2. Integer overflow unsafe, since the result's size is not checked before return.
- 3. Time complexity: $\mathcal{O}(pow)$.

Results for $n \in [0, 11]$:

n	A006125(n)
0	1
1	1
2	2
3	8
4	64
5	1 024
6	32 768
7	2 097 152
8	268 435 456
9	68 719 476 736
10	35 184 372 088 832
11	36 028 797 018 963 968

Definition at line 141 of file rand_graph_lib.c.

4.1.3.4 A001187_conn()

```
unsigned long long A001187_conn ( unsigned short n )
```

Find the number of connected labeled graphs with n nodes constructed with the Erdős–Rényi model $\mathcal{G}(n,M)$ – sequence A001187 [5] .

Parameters

```
n Graph order – number of vertices
```

Returns

Number of connected labeled graphs

Implementation notes:

- 1. In this model each graph is chosen randomly with equal probability of $1/n_{graphs}$, where n_{graphs} is GP::n graphs.
- 2. The number C_n of labeled connected graphs of order n is given by the recursive formula (1.2.1), p. 7, Harary [1]; p was substituted with n to avoid confusion with notation of probability.

$$C_n = 2^{\binom{n}{2}} - \frac{1}{n} \sum_{k=1}^{n-1} k \binom{n}{k} 2^{\binom{n-k}{2}} C_k.$$

- 3. Integer overflow unsafe, since the result's size is not checked during calculation and before return.
- 4. Time complexity: $\mathcal{O}(2^{n \max(\mathcal{O}(\mathsf{binom}), \mathcal{O}(\mathsf{pow}))-1})$.

Results for $n \in [0, 11]$:

n	A001187(n)
0	1
1	1
2	1
3	4
4	38
5	728
6	26 704
7	1 866 256
8	251 548 592
9	66 296 291 072
10	34 496 488 594 816
11	35 641 657 548 953 344

Definition at line 183 of file rand_graph_lib.c.

4.1.3.5 A054592 disconn()

Find the number of disconnected labeled graphs with n nodes – sequence A054592 [6].

Parameters

```
n Graph order – number of vertices
```

Returns

Number of disconnected labeled graphs

Implementation notes:

- 1. Number of labeled graphs (connected and disconnected) with n nodes is sequence A006125 [4] . Number of connected labeled graphs with n nodes is sequence A001187 [5] . Thus, the number of disconnected labeled graphs with n nodes is simply A054592(n) = A006125(n) A001187(n).
- 2. Integer overflow unsafe, since the result's size is not checked during calculation and before return.
- 3. Time complexity: $\max(\mathcal{O}(\text{ A006125_total }), \mathcal{O}(\text{ A001187_conn })).$

Results for $n \in [0, 11]$:

n	A054592(n)
0	0
1	0
2	1
3	4
4	26
5	296
6	6 064
7	230 896
8	16 886 864
9	2 423 185 664
10	687 883 494 016
11	387 139 470 010 624

Definition at line 229 of file rand_graph_lib.c.

4.1.3.6 prob_conn()

```
double prob_conn (  \mbox{unsigned short } n, \\ \mbox{double } p \mbox{ )}
```

Find the probability of connectedness of a random labeled graph constructed with the Gilbert model $\mathcal{G}(n,p)$.

Parameters

n	Graph order – number of vertices
р	Edge probability $0 \le p \le 1$

Returns

```
P_n = P(\mathcal{G}(n, p) \text{ is connected})
```

Implementation notes:

1. In this model every possible edge occurs independently with probability p. The probability of obtaining any one particular random graph with m edges is $p^m(1-p)^{N-m}$, where N is GP::m_max.

2. The probability of connectedness of a random labeled graph is given by the recursive formula (3), p. 2, Gilbert [2]; q was substituted by 1-p to avoid introducing unnecessary new variable; N was substituted by n to avoid confusion with N above.

$$P_n = 1 - \sum_{k=1}^{n-1} \binom{n-1}{k-1} (1-p)^{k(n-k)} P_k.$$

- 3. Integer overflow unsafe, since the result's size is not checked during calculation and before return.
- 4. Time complexity: $\mathcal{O}(2^{n \max(\mathcal{O}(\mathsf{binom}), \mathcal{O}(\mathsf{pow}))-1})$.

Results for P_n for $n \in [2, 11]$ and $p \in [0.1, 0.9]$:

n/p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
2	0.10000	0.20000	0.30000	0.40000	0.50000	0.60000	0.70000	0.80000	0.90000
3	0.02800	0.10400	0.21600	0.35200	0.50000	0.64800	0.78400	0.89600	0.97200
4	0.01293	0.08250	0.21865	0.40038	0.59375	0.76550	0.89249	0.96666	0.99581
5	0.00810	0.08195	0.25626	0.48965	0.71094	0.87026	0.95751	0.99166	0.99949
6	0.00621 †	0.09230	0.31690	0.59555	0.81494 ‡	0.93652	0.98497	0.99805	0.99994
7	0.00551	0.11127	0.39385	0.69878	0.88990	0.97072	0.99484	0.99955	0.99999
8	0.00541	0.13851	0.47987	0.78627	0.93709	0.98677	0.99824	0.99990	1.00000
9	0.00574	0.17396	0.56714	0.85325	0.96474	0.99408	0.99941	0.99998	1.00000
10	0.00644	0.21723	0.64897	0.90128	0.98045	0.99737	0.99980	0.99999	1.00000
11	0.00752	0.26729	0.72107	0.93445	0.98925	0.99885	0.99994	1.00000	1.00000

```
† Table 1, p. 2, Gilbert [2]: 0.00624.
```

‡ Table 1, p. 2, Gilbert [2]: 0.81569.

Definition at line 276 of file rand_graph_lib.c.

4.2 rand_graph_lib.c

Go to the documentation of this file.

```
00010 #include <math.h>
00011
00024 unsigned long long binom(unsigned short n, unsigned short k) 00025~\{
00026
           unsigned short i;
00027
          unsigned long long coeff = 1;
00028
00029
           /\star Special cases \star/
           if (k == 0 | k == n)
00030
00031
00032
               return coeff;
00033
00034
           if (k == 1 | k == n - 1)
00035
```

4.2 rand_graph_lib.c 13

```
00036
             return n;
00037
00038
          if (k == 2 | k == n - 2)
00039
00040
              return n * (n - 1) / 2;
00041
          }
00042
00043
          /* General case */
00044
          if (k > n - k)
00045
00046
              k = n - k;
00047
00048
          for (i = 0; i < k; i++)
00049
00050
              coeff \star = (n - i);
              coeff \neq (i + 1);
00051
00052
          return coeff;
00053
00054 }
00055
00088 typedef struct Graph_Params
00089 {
00090
          unsigned short n, m_min, m_max, m_crit;
00091
          unsigned long long n_graphs, n_trees;
00092 } GP;
00093
00103 GP calc_graph_params(unsigned short n)
00104 {
00105
          GP gp;
          gp.m_max = binom(n, 2);
00106
          gp.m_min = n - 1;
00107
00108
          gp.m\_crit = binom(n - 1, 2);
00109
          gp.n_graphs = pow(2, gp.m_max);
00110
          gp.n\_trees = pow(n, n - 2);
00111
          return gp;
00112 }
00113
00141 unsigned long long A006125_total(unsigned short n)
00142 {
00143
          if (n == 0 | n == 1)
00144
00145
             return 1:
00146
00147
          return pow(2, binom(n, 2));
00148 }
00149
00183 unsigned long long A001187_conn(unsigned short n)
00184 {
00185
          unsigned short k:
00186
          unsigned long long disconn_count = 0;
00187
00188
          if (n == 0 | n == 1 | n == 2)
00189
00190
              return 1;
00191
00192
          for (k = 1; k < n; k++)
00193
00194
              disconn\_count += k * binom(n, k) * pow(2, binom(n - k, 2)) * A001187\_conn(k);
00195
00196
          return pow(2, binom(n, 2)) - disconn_count / n;
00197 }
00198
00229 unsigned long long A054592_disconn(unsigned short n)
00230 {
00231
          if (n == 0 | n == 1)
00232
00233
              return 0;
00234
00235
          return A006125_total(n) - A001187_conn(n);
00237
00276 double prob_conn(unsigned short n, double p)
00277 {
00278
          // double q = 1.0 - p;
00279
          double prob_disconn = 0.0;
00280
          unsigned short k;
00281
          for (k = 1; k < n; k++)
00282
              prob_disconn += binom(n - 1, k - 1) * pow(1 - p, k * (n - k)) * prob_conn(k, p);
00283
00284
00285
          return 1.0 - prob_disconn;
00286 }
```

Bibliography

- [1] Frank Harary, Edgar M. Palmer. Graphical Enumeration. Academic Press, 1973. 10
- [2] E. N. Gilbert. Random Graphs. Bell Telephone Laboratories, Inc., 1959. 12
- [3] P. Erdős, A. Rényi. On Random Graphs. Budapest, 1959. 6
- [4] N. J. A. Sloane. $a(n) = 2 (\hat{n}^*(n-1)/2)$ (Formerly M1897). The On-Line Encyclopedia of Integer Sequences, 1991. 9, 11
- [5] N. J. A. Sloane. *Number of connected labeled graphs with n nodes*. The On-Line Encyclopedia of Integer Sequences, 1991. 10, 11
- [6] N. J. A. Sloane. *Number of disconnected labeled graphs with n nodes*. The On-Line Encyclopedia of Integer Sequences, 2000. 11

16 **BIBLIOGRAPHY**

Index

```
A001187_conn
    rand_graph_lib.c, 9
A006125_total
    rand_graph_lib.c, 9
A054592_disconn
    rand_graph_lib.c, 10
binom
    rand_graph_lib.c, 8
calc_graph_params
    rand_graph_lib.c, 8
GP
    rand_graph_lib.c, 8
Graph_Params, 5
    m_crit, 6
    m_max, 5
    m_min, 5
    n, <mark>5</mark>
    n_graphs, 6
    n_trees, 6
m_crit
    Graph_Params, 6
m_max
    Graph_Params, 5
m_min
    Graph_Params, 5
    Graph_Params, 5
n_graphs
    Graph_Params, 6
n_trees
    Graph_Params, 6
prob_conn
    rand_graph_lib.c, 11
rand_graph_lib.c, 7
    A001187_conn, 9
    A006125_total, 9
    A054592_disconn, 10
    binom, 8
    calc_graph_params, 8
    GP, 8
    prob_conn, 11
```