Deures 10/02/2020

Joan Pau Condal Marco

February 11, 2020

Enunciat:

Considerem en \mathbb{R}^n les operacions definides com:

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) := (a_1 +_{\mathbb{R}} b_1 - 1, \dots, a_n +_{\mathbb{R}} b_n - 1)$$

 $\alpha \cdot (a_1, \dots, a_n) := (\alpha \cdot_{\mathbb{R}} (a_1 - 1) + 1, \dots, \alpha \cdot_{\mathbb{R}} (a_n - 1) + 1)$

Prova que $(\mathbb{R}^n, +^*, \cdot^*)$ és un espai vectorial. Caracteritza al vector nul de \mathbb{R}^n , i al vector oposat d'un dau.

Demostració:

Per demostrar que $(\mathbb{R}^n, +^*, \cdot^*)$ és un espai vectorial haurem de demostrar que es compleixen els vuit condicions de les dues operacions:

1. +* és associativa:

Hem de demostrar que $(u+v)+w=u+(v+w), \forall u,v,w\in E$. Per demostrar-ho agafarem vectors $u=(a_1,\ldots,a_n),$ $v=(b_1,\ldots,b_n)$ i $w=(c_1,\ldots,c_n)$, tots en \mathbb{R}^n . Per definició de $+^*$ tenim que:

$$(u+v)+w=((a_1+b_1-1)+c_1-1,\ldots,(a_n+b_n-1)+c_n-1)=(a_1+b_1-1+c_1-1,\ldots,a_n+b_n-1+c_n-1)=(a_1+(b_1+c_1-1)-1,\ldots,a_n+(b_n+c_n-1)-1)=u+(v+w)$$

D'on queda demostrada la propietat associativa.

2. +* és commutativa

Hem de demostrar que $u+v=v+u, \forall u,v\in E$. Per fer-ho, utilitzarem dos vectors qualsevols que anomenarem u i v $(u,v\in\mathbb{R}^n)$, on

$$u = (a_1, \ldots, a_n), v = (b_1, \ldots, b_n)$$

Utilitzant la definició de +* trobem que:

$$u + v = (a_1 + b_1 - 1, \dots, a_n + b_n - 1) = (b_1 + a_1 - 1, \dots, b_n + a_n - 1) = v + u$$

D'on trobem que $+^*$ és associativa.

3. Vector nul

Per demostrar que existeix un vector nul, hem de trobar $\vec{0} \in \mathbb{R}^n$ tal que $u + \vec{0} = u, \forall u \in \mathbb{R}^n$. Sigui $u = (a_1, \dots, a_n)$ un vector qualsevol de \mathbb{R}^n i $\vec{0} = (b_1, \dots, b_n)$ aplicant la definició de $+^*$ tenim:

$$u + \vec{0} = (a_1 + b_1 - 1, \dots, a_n + b_n - 1) = (a_1, \dots, a_n) = u \implies a_1 + b_1 - 1 = a_1, \dots, a_n + b_n - 1 = a_n \implies b_1 = 1, \dots, b_n = 1 \implies \vec{0} = (1, \dots, 1)$$

Aix podem veure que es compleix la propietat del vector nul i aquest és $\vec{0} = (1, \dots, 1)$

4. Suma de l'invers

La quarta propietat que hem de demostrar és que $\forall u \in \mathbb{R}^n$, $u + (-1) \cdot u = \vec{0}$. Per demostrar-ho aplicarem la deficició de + i de \cdot :

Sigui
$$u = (a_1, \dots, a_n)$$

 $u + (-1) \cdot u = u + (-1 \cdot (a_1 - 1) + 1, \dots, -1 \cdot (a_n - 1) + 1) = u + (-a_1 + 1 + 1, \dots, a_n + 1 + 1) = u + (2 - a_1, \dots, 2 - a_n) = (a_1 + (2 - a_1) - 1, \dots, a_n + (2 - a_n) - 1) = (1, \dots, 1) = \vec{0}$

5. Propietat distributiva de \cdot^*