Sammanfattning av SG1183 Differentialekvationer och transformmetoder

Yashar Honarmandi yasharh@kth.se

26 november 2018

Sammanfattning

Innehåll

1	Ord	linarie differentialekvationer (ODE)	1
	1.1	Användbara defitioner och satser	1
	1.2	Första ordningen	4
	1.3	Andra ordningen	6
	1.4	System av ODE	
	1.5	Exakta differentialekvationer	
	1.6	Potensserier	
	1.7	Stabilitet	13
2	Fou	urierserier	15
_		Definitioner	
		Satser	
3	Fun	aktioner, vektorrum och dylikt	22
•		Definitioner	
	3.2		
	5.2	Saisei	0∠
4		riertransform	28
	4.1	Definitioner	28
	4 2	Satser	28

1 Ordinarie differentialekvationer (ODE)

1.1 Användbara defitioner och satser

Lipschitzkontinuitet En funktion f är Lipschitzkontinuerlig om det finns ett K så att det för varje x_1, x_2 gäller att

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|.$$

Lipschitzkontinuitet och deriverbarhet Låt $f \in C^1$. Då är f Lipschitzkontinuerlig.

Grönwalls lemma Antag att det finns positiva A, K så att $h: [0, T \to \mathbb{R}]$ uppfyller

$$h(t) \le K \int_{0}^{t} h(s) \, \mathrm{d}s + A.$$

Då gäller att

$$h(t) \le Ae^{Kt}$$
.

Bevis Definiera

$$I(t) = \int_{0}^{t} h(s) \, \mathrm{d}s.$$

Då gäller att

$$\frac{\mathrm{d}I}{\mathrm{d}t}(t) = h(t) \le KI(t) + A.$$

Denna differentialolikheten kan vi lösa vid att tillämpa integrerande faktor. Detta kommer att ge

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-Kt} I(t) \right) \le A e^{-Kt}.$$

Vi integrerar från 0 till r och använder att I(0) = 0 för att få

$$I(r) \le \frac{A}{K} (e^{Kr} - 1).$$

Derivation på båda sidor ger

$$h(r) \le Ae^{Kr},$$

vilket skulle visas.

Positivt definitiva funktioner Låt D vara en öppen omgivning av $\mathbf{0}$. Funktionen V är positivt definitiv om $V(\mathbf{0}) = 0$ och $V(\mathbf{x}) > 0$, $\mathbf{x} \neq \mathbf{0}$. Definitionen är analog för negativt definitiva funktioner. Vid att inkludera likheten i olikhetstecknet fås också definitionen av positivt och negativt semidefinitiva funktioner.

Analytiska funktioner En funktion är analytisk om den lokalt beskrivs av en potensserie.

Potenser av matriser Vi definierar

$$e^{At} = I + \sum_{n=1}^{\infty} \frac{A^n t^n}{n!}.$$

Eulers metod Betrakta differentialekvationen

$$\frac{dy}{dt}(t) = f(t, y), \ 0 < t < T, y(0) = y_0.$$

Vi gör indelningen $t_n = n\Delta t, n = 0, 1, \dots, N$ så att $\Delta t = \frac{T}{N}$ och inför $y_n = y(t_n)$. Vidare gör vi approximationen

$$\frac{y_{n+1} - y_n}{\Delta t} = f(t_n, y).$$

Vi utvidgar nu Eulerapproximationen \bar{y} till en styckvis linjär funktion som definieras enligt

$$y(t) - y(t_n) = f(t_n, y)(t - t_n), \ t_n \le t < t_{n+1}.$$

Denna uppfyller

$$\frac{\mathrm{d}\bar{y}}{\mathrm{d}t} = f(\bar{y}_n) = \bar{f}(t,\bar{y}), \ t_n \le t < t_{n+1}.$$

Konvergens av Eulers metod Betrakta differentialekvationen

$$\frac{dy}{dt}(t) = f(t, y), \ 0 < t < T, y(0) = y_0,$$

där f är Lipschitzkontinuerlig, låt \bar{y}, \bar{y} vara två Eulerapproximationer av denna, med indelningar $\bar{t}_n = n \frac{T}{N}, n = 0, 1, \dots, N$ respektive $\bar{t}_m = m \frac{T}{M}, n = 0, 1, \dots, M$ och inför $\Delta t = \max\left(\frac{T}{N}, \frac{T}{M}\right)$. Antag vidare att det finns ett C så att

$$\max(|f(0)|, |y(0)|) \le C,$$
$$|f(a) - f(b)| \le C|a - b|.$$

Då finns det B_1, B_2 så att

$$\max_{t \in [0,T]} (|\bar{y}(t)|, |\bar{\bar{y}}(t)|) \le B_1,$$

$$\max_{t \in [0,T]} |\bar{y}(t) - \bar{\bar{y}}(t)| \le B_2 \Delta t.$$

Bevis Vi beviser det första påståendet först.

Lipschitzkontinuitet av f ger

$$|f(z)| \le C|z| + |f(0)| \le C(1+|z|).$$

Eulers metod ger

$$\bar{y}(\bar{t}_n) = \bar{y}(\bar{t}_{n-1}) + \frac{T}{N} f(\bar{y}(\bar{t}_{n-1})).$$

Dessa två ger till sammans

$$|\bar{y}(\bar{t}_n)| \leq |\bar{y}(\bar{t}_{n-1})| + \frac{T}{N} |f(\bar{y}(\bar{t}_{n-1}))|$$

$$\leq |\bar{y}(\bar{t}_{n-1})| + C\frac{T}{N} (1 + |\bar{y}(\bar{t}_{n-1})|)$$

$$= (1 + C\frac{T}{N}) |\bar{y}(\bar{t}_{n-1})| + C\Delta t.$$

Vi använder induktion på detta resultatet och får

$$|\bar{y}(\bar{t}_n)| \le (1 + C\frac{T}{N})^n |\bar{y}(0)| + C\frac{T}{N} \frac{(1 + C\frac{T}{N})^n - 1}{C\frac{T}{N}}$$
$$= (1 + C\frac{T}{N})^n |\bar{y}(0)| + (1 + C\frac{T}{N})^n - 1.$$

Vi vet även att

$$(1+C\frac{T}{N})^n \le e^{Cn\frac{T}{N}} = e^{C\bar{t}_n},$$

vilket slutligen ger

$$|\bar{y}(\bar{t}_n)| = e^{C\bar{t}_n} |\bar{y}(0)| + e^{C\bar{t}_n} - 1.$$

En motsvarande gräns kan fås för $\bar{\bar{y}}$, vilket slutför beviset.

Vidare bevisar vi det andra påståendet. Skillnaden mellan de två approximationerna ges av

$$\bar{y}(t) - \bar{\bar{y}}(t) = \bar{y}(0) - \bar{\bar{y}}(0) + \int_{0}^{t} \bar{f}(t, \bar{y}) - \bar{\bar{f}}(t, \bar{\bar{y}}) dt$$
$$= \int_{0}^{t} \bar{f}(t, \bar{y}) - \bar{\bar{f}}(t, \bar{\bar{y}}) dt.$$

Betrakta ett $t \in [\bar{t}_n, \bar{t}_{n+1}) \cup [\bar{\bar{t}}_m, \bar{\bar{t}}_{m+1})$. Vi adderar och subtraherar $f(\bar{y}(t))$ och $f(\bar{\bar{y}}(t))$ från integranden och får

$$\bar{f}(t,\bar{y}) - \bar{\bar{f}}(t,\bar{\bar{y}} = f(\bar{y}(\bar{t}_n)) - f(\bar{\bar{y}}(\bar{t}_m))
= (f(\bar{y}(\bar{t}_n)) - f(\bar{y}(t))) + (f(\bar{\bar{y}}(t))) - f(\bar{\bar{y}}(\bar{t}_m))) + (f(\bar{y}(t)) - f(\bar{\bar{y}}(t)))
= R_1 + R_2 + R_3.$$

Lipschitzantagandet för f ger

$$|f(\bar{y}(\bar{t}_n)) - f(\bar{y}(t))| \le C|\bar{y}(\bar{t}_n) - \bar{y}(t)|.$$

Med hjälpresultatet för |f(z)| kan vi skriva

$$|\bar{y}(\bar{t}_n) - \bar{y}(t)| = (t - t_n)|f(\bar{y}(\bar{t}_n))| \le C(1 + |\bar{y}(\bar{t}_n)|)(t - t_n)$$

och slutligen

$$|R_1| \le C^2 (1 + |\bar{y}(\bar{t}_n)|)(t - t_n),$$

 $|R_2| \le C^2 (1 + |\bar{y}(\bar{t}_m)|)(t - t_m),$
 $|R_3| \le C|\bar{y}(t) - \bar{y}(t)|,$

där antaganden igen har användts.

Integranden kan nu skrivas som

$$\left| \bar{f}(t,\bar{y}) - \bar{\bar{f}}(t,\bar{\bar{y}}) \right| \le C^2 (1 + |\bar{y}(\bar{t}_n)|)(t - t_n) + C^2 (1 + |\bar{\bar{y}}(\bar{\bar{t}}_m)|)(t - t_m) + \le C|\bar{y}(t) - \bar{\bar{y}}(t)|.$$

Om vi antar att det första påsåtåendet i satsen stämmer, fås

$$\left| \bar{f}(t,\bar{y}) - \bar{\bar{f}}(t,\bar{\bar{y}}) \right| \le C^2 (1 + B_1) \Delta t + C|\bar{y}(t) - \bar{\bar{y}}(t)|,$$

och integralen kan skrivas som

$$\bar{y}(t) - \bar{\bar{y}}(t) \le \int_{0}^{t} C^{2}(1 + B_{1})\Delta t + C|\bar{y}(t) - \bar{\bar{y}}(t)| dt$$

$$\le \int_{0}^{t} C^{2}(1 + B_{1})\Delta t + C|\bar{y}(t) - \bar{\bar{y}}(t)| dt$$

$$\le \int_{0}^{t} C|\bar{y}(t) - \bar{\bar{y}}(t)| dt + C^{2}(1 + B_{1})T\Delta t$$

$$= \int_{0}^{t} C|\bar{y}(t) - \bar{\bar{y}}(t)| dt + C_{1}T\Delta t.$$

Grönwalls lemma ger slutligen

$$\bar{y}(t) - \bar{\bar{y}}(t) \le C_1 T \Delta t e^{CT}.$$

Linjära differentialekvationer Om en differentialekvation kan skrivas på formen $F(t, y, \frac{dy}{dx}, \dots) = 0$, är den linjär om F är linjär i alla sina argument förutom t.

Wronskianen Wronskianen definieras som

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ \frac{dy_1}{dt}(t) & \frac{dy_2}{dt}(t) \end{vmatrix}.$$

För vektorvärda funktioner definieras den som determinanten av matrisen vars kolumner är de olika funktionerna.

Linjärt beroende funktioner $f: I \to \mathbb{R}, g: I \to \mathbb{R}$ är linjärt beroende om det finns k_1, k_2 så att

$$k_1 f(t) + k_2 g(t) = 0 \ \forall \ t \in I.$$

Fundamentalt sätt av lösningar Betrakta någon ODE och ett sätt lösningar. Detta sättet är ett fundamentalt sätt av lösningar om och endast om deras wronskian är nollskild överallt i lösningsintervallet.

Ordinarie punkter Betrakta differentialekvationen

$$P(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + Q(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + R(x)y(x) = 0.$$

Vi skriver denna om till

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + p(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + q(x)y(x) = 0.$$

Om både p och q är analytiske kring punkten x_0 , är x_0 en ordinarie punkt till differentialekvationen.

Singulära punkter Betrakta differentialekvationen

$$P(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + Q(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + R(x)y(x) = 0.$$

Vi skriver denna om till

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + p(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + q(x)y(x) = 0.$$

Om antingen Q eller R är nollskilda i x_0 , medan $P(x_0) = 0$, är x_0 en singulär punkt till differentialekvationen.

Regulära singulära punkter Betrakta differentialekvationen

$$P(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + Q(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + R(x)y(x) = 0.$$

Vi skriver denna om till

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + x(xp(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) + x^2 q(x) y(x) = 0.$$

Om antingen p eller q ej är analytiska kring x_0 , men xp och x^2q är det, är x_0 en regulär singulär punkt till differentialekvationen.

1.2 Första ordningen

Existens av lösning Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$
$$y(0) = y_0.$$

Detta har en lösning om f är Lipschitzkontinuerlig.

Bevis Bilda två diskreta approximationer $\bar{y}, \bar{\bar{y}}$ av y. Vi kan visa att

$$\max_{t \in [0,T]} |\bar{y}, \bar{\bar{y}}| \le K\Delta t$$

där Δt är det största tidsavståndet mellan två punkter i någon av de diskreta approximationerna. Detta implicerar konvergens mot ett gränsvärde y(t) när $\Delta t \to 0$. Detta gränsvärdet uppfyller

$$y(t) = \lim_{\Delta t \to 0} \bar{y}(t)$$

$$= \lim_{\Delta t \to 0} \bar{y}(0) + \int_{0}^{t} f(\bar{y}(s)) ds$$

$$= y(0) + \int_{0}^{t} f(y(s)) ds,$$

där sista likheten kommer av integrandens Lipschitzkontinuitet. Integralkalkylens fundamentalsats ger då

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$

vilket skulle visas.

Entydighet av lösning Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$
$$y(0) = y_0.$$

Detta har en unik lösning om f är Lipschitzkontinuerlig.

Observera att beviset kan även göras för en funktion f(t,y) vid att skriva differentialekvationen som ett system och komma med en motsvarande sats för system av differentialekvationer.

Bevis Betrakta två lösningar y, z av differentialekvationen. Vi får

$$y(\tau) - y_0 = \int_0^{\tau} f(y) dt$$

och samma för z. Vi subtraherar dessa två resultat och får

$$y(\tau) - z(\tau) = y_0 - z_0 + \int_0^t f(y) - f(z) dt.$$

Vid att beräkna absolutbeloppet av båda sidor och använda Cauchy-Schwarz' oliket får man vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} |f(y) - f(z)| dt.$$

Kravet om Lipschitzkontinuitet av f ger vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} K|y(t) - z(t)| dt.$$

Grönwalls lemma ger slutligen

$$|y(\tau) - z(\tau)| \le |y_0 - z_0|e^{K\tau}.$$

Om $y_0 = z_0$ är y = z, och beviset är klart.

Lösning av linjära ODE av första ordning Antag att vi har en differentialekvation på formen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) + p(t)y(t) = g(t).$$

Beräkna

$$P(t) = \int_{a}^{t} p \, \mathrm{d}x$$

och inför den integrerande faktorn $e^{P(t)}$. Multiplicera med den på båda sidor för att få

$$e^{P(t)} \frac{\mathrm{d}y}{\mathrm{d}t}(t) + p(t)e^{P(t)}y(t) = e^{P(t)}g(t).$$

Detta kan skrivas om till

$$\frac{\mathrm{d}}{\mathrm{d}t} (ye^P)(t) = e^{P(t)}g(t) = \frac{\mathrm{d}H}{\mathrm{d}t}(t).$$

Analysens huvudsats ger då

$$y(t)e^{P(t)} = H(t) + c$$

och slutligen

$$y(t) = ce^{-P(t)} + e^{-P(t)}H(t).$$

Låt oss lägga till bivillkoret $y(a) = y_0$. Man kan då visa att lösningen kan skrivas som

$$y(t) = y_0 e^{-\int_a^t p dx} + \int_a^t g(x) e^{-\int_x^t p ds} dx.$$

Separabla ODE av första ordning Antag att vi har en differentialekvation som kan skrivas på formen

$$m(x) + n(y(x))\frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna betecknas som en separabel ODE av första ordning.

För att lösa den, beräkna primitiv funktion på båda sidor, vilket ger

$$M(x) + N(y(x)) = c, c \in \mathbb{R}.$$

Om N är inverterbar, får man då y enligt

$$y(x) = N^{-1}(c - M(x)).$$

1.3 Andra ordningen

Entydighet av lösning Betrakta den andra ordningens ODE

$$\frac{d^{2}y}{dt^{2}}(t) + p(t)\frac{dy}{dt}(t) + q(t)y(t) = g(t), \ y > t_{0},$$
$$y(t_{0}) = y_{0},$$
$$\frac{dy}{dt}(t_{0}) = y'_{0}.$$

Den har en entydig lösning om p, q är Lipschitzkontinuerliga.

Form på lösning av andra ordningens ODE Betrakta den andra ordningens ODE

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = L(t,y) = g(t).$$

Låt $y_{\rm P}$ vara en partikulär lösning till denna. Då är y en lösning om och endast om

$$y = y_{\rm H} + y_{\rm P},$$

där $y_{\rm H}$ löser den homogena ekvationen.

Bevis Vi har

$$L(t, y) = L(t, y_P + y_H) = L(t, y_P) + L(t, y_H) = g(t) + 0 = g(t),$$

och därmed löser y differentialekvationen. Vi har även

$$L(t, y - y_P) = g(t) - g(t) = 0,$$

och $y-y_{\rm P}$ löser den homogena ekvationen. Eftersom detta är sant, har vi visat ekvivalens.

Fundamentala lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$

där p, q, g är kontinuerliga på I. Låt y_1 uppfylla

$$y_1(t_0) = 1, \frac{\mathrm{d}y_1}{\mathrm{d}t}(t_0) = 0$$

och y_2 uppfylla

$$y_2(t_0) = 0, \frac{\mathrm{d}y_2}{\mathrm{d}t}(t_0) = 1.$$

Då definieras y_1, y_2 som mängden av fundamentala lösningar av differentialekvationen.

Linjär kombination av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t > t_0,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y_0'$$

och anta att y_1, y_2 är lösningar. Då finns det c_1, c_2 så att $y = c_1y_1 + c_2y_2$ är en lösning om $W(y_1, y_2)(t_0) \neq 0$.

Abels sats Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y_0'$$

och anta att y_1, y_2 är lösningar. Då gäller att

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds}$$
.

Bevis

$$\frac{dW}{dt}(t) = \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) - \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) + y_1\frac{d^2y_2}{dt^2}(t) - y_2\frac{d^2y_1}{dt^2}(t)$$

$$= y_1\left(-p(t)\frac{dy_2}{dt}(t) + q(t)y_2(t)\right) - y_2\left(-p(t)\frac{dy_1}{dt}(t) + q(t)y_1(t)\right)$$

$$= -p(t)W(y_1, y_2)(t).$$

Denna differentialekvationen har lösning

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds},$$

vilket skulle visas.

Linjärt beroende av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y'_0$$

och anta att y_1, y_2 är lösningar. Då är dessa linjärt beroende på I om och endast om $W(y_1, y_2)(t) = 0$.

Bevis Om dessa är linjärt beroende, ser man att Wronskianen blir lika med 0, då kolumnerna i matrisen vars determinant ger Wronskianen kommer vara multipler av varandra.

Lösning av andra ordningens ODE med konstanta koefficienter Låt r_1, r_2 vara lösningar till

$$r^2 + pr + q = 0.$$

Då ges lösningarna till

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p\frac{\mathrm{d}y}{\mathrm{d}t}(t) + qy(t) = L(t, y) = 0$$

av

$$y(t) = \begin{cases} c_1 e^{r_1 t} + c_2 e^{r_2 t}, & r_1 \neq r_2, \\ (c_1 t + c_2) e^{r_1 t}, & r_1 = r_2. \end{cases}$$

Variation av parametrar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I$$

där p,q,g är kontinuerliga på I och y_1,y_2 är lösningar av den motsvarande homogena ekvationen, ges en partikulär lösning av ekvationen av

$$y_{p} = -y_{1} \int_{t_{0}}^{t} \frac{y_{2}(s)g(s)}{W(y_{1}, y_{2})(s)} ds + y_{2} \int_{t_{0}}^{t} \frac{y_{1}(s)g(s)}{W(y_{1}, y_{2})(s)} ds$$

 $d\ddot{a}r \ t_0 \in I$.

Eulerekvationer Betrakta en ekvation på formen

$$x^{2} \frac{\mathrm{d}^{2} y}{\mathrm{d}x^{2}}(x) + ax \frac{\mathrm{d}y}{\mathrm{d}x}(x) + by = 0.$$

För att hitta lösningar, gör ansatsen $y(x) = x^r$. Om detta är en lösning, uppfyller r

$$r(r-1) + ar + b = 0.$$

I fallet att ekvationen över har en dubbelrot, är den andra lösningen $y_2(x) = x^r \ln |x|$.

1.4 System av ODE

Formulering Betrakta ett system av funktioner x_1, x_2, \ldots som beskrivs av systemet

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}(t) = g_1(t) + \sum p_{1i}(t)x_i,$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t}(t) = g_2(t) + \sum p_{2i}(t)x_i,$$
:

av differentialekvationer. Definiera

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \end{bmatrix}, \mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \end{bmatrix}, P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \dots \\ p_{21}(t) & p_{22}(t) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}.$$

Då kan systemet skrivas som

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Detta kan även generaliseras till

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{g}(t).$$

Autonoma system Ett autonomt system är på formen

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

Form på lösning av system av ODE Låt \mathbf{x}_p lösa

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Då är alla lösningar på formen

$$\mathbf{x} = \mathbf{x}_\mathrm{p} + \mathbf{x}_\mathrm{h}$$

där \mathbf{x}_{h} löser det motsvarande homogena systemet.

Fundamentalmatris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P(t)\mathbf{x}(t)$$

med fundamentalt sätt av lösningar $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$. Då definieras systemets fundamentalmatris som

$$\Psi = \left[\mathbf{x}^{(1)}(t) \dots \mathbf{x}^{(n)}(t) \right].$$

Vi definierar även den speciella fundamentalmatrisen Φ , vars kolumner satisfierar begynnelsesvillkoret

$$\mathbf{x}^{(1)}(t_0) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{x}^{(n)}(t_0) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Det kan visas att denna ges av

$$\Phi(t) = e^{A(t)t}.$$

Linjär kombination av lösningar Låt $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} \in \mathbb{R}, \ 0 < t < T \text{ vara ett fundamentalt sätt av lösningar till}$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P(t)\mathbf{x}(t), \ t > 0,$$

där P är kontinuerlig. Då kan varje lösning till ekvationen skrivas som

$$\mathbf{x} = \sum c_i \mathbf{x}^{(i)}$$

på precis ett sätt. Med fundamentalmatrisen kan detta uttryckas som

$$\mathbf{x} = \Psi \mathbf{c}$$
,

 $d\ddot{a}r$ c $\ddot{a}r$ en vektor med koefficienter.

Bevis Begynnelsesvärdeproblemet implicerar att vår lösning måste uppfylla

$$\left[\mathbf{x}^{(1)}(0)\dots\mathbf{x}^{(n)}(0)\right]\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}=\mathbf{x}(0).$$

Detta har bara en lösning om $|\mathbf{x}^{(1)}(0)...\mathbf{x}^{(n)}(0)| \neq 0$. Eftersom alla lösningarna är linjärt oberoende, är detta uppfylld. Konstanterna c_i ges då unikt, och beviset är klart.

System av ODE med konstant matris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är en konstant matris. Vi gör ansatsen $\mathbf{x}(t) = e^{rt}\boldsymbol{\xi}$ och får

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) - P\mathbf{x}(t) = e^{rt}(rI - A)\boldsymbol{\xi}.$$

Eftersom exponentialfunktionen alltid är nollskild, kan detta bara bli noll om

$$P\boldsymbol{\xi} = r\boldsymbol{\xi}.$$

Alltså är \mathbf{x} bara en lösning om $\boldsymbol{\xi}$ är en egenvektor till P och r är det motsvarande egenvärdet.

Upprepande egenvärden Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är en konstant matris, låt r vara ett egenvärde till P med algebraisk multiplicitet 2 och geometrisk multiplicitet 1 och ξ en motsvarande egenvektor. Då är en lösning

$$\mathbf{x}^{(1)} = \boldsymbol{\xi} e^{rt}$$

och en ny lösning kan skrivas som

$$\mathbf{x}^{(2)} = \boldsymbol{\xi} t e^{rt} + \boldsymbol{\eta} e^{rt},$$

där η uppfyller

$$(A - rI)\boldsymbol{\eta} = \boldsymbol{\xi}.$$

Wronskianen för ett system med konstant matris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är en konstant matris. Låt ξ_i vara de olika egenvektorerna till P motsvarande egenvärden r_i . Wronskianen till dessa ges av

$$W(\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{n})(t) = \begin{vmatrix} e^{r_{1}t}\boldsymbol{\xi}_{1} & \dots & e^{r_{n}t}\boldsymbol{\xi}_{n} \end{vmatrix}$$
$$= e^{(r_{1}+\cdots+r_{n})} \begin{vmatrix} \boldsymbol{\xi}_{1} & \dots & \boldsymbol{\xi}_{n} \end{vmatrix}$$
$$= W(\boldsymbol{\xi}_{1},\ldots,\boldsymbol{\xi}_{n})(0)e^{\operatorname{Tr}\{P\}t},$$

där vi har använt en sats för att få fram spåret. Det följer blant annat att Wronskianen är antingen 0 eller nollskild överallt.

Diagonalisering Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = A\mathbf{x}(t),$$

där A är en konstant matris som kan skrivas som $A = PDP^{-1}$. Då kan vi införa $\mathbf{x} = P\mathbf{y}$, vilket ger

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = PDP^{-1}\mathbf{y} = PD\mathbf{y},$$
$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = D\mathbf{y},$$

vilket är en simplare variant av det ursprungliga problemet.

Partikulärlösningar Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Det finns olika metoder att ta fram en partikulärlösning av detta.

Diagonalisering Låt P vara diagonaliserbar och konstant. Då får man vid diagonalisering att

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t}(t) = \mathbf{h}(t) + D\mathbf{y}(t)$$

med $\mathbf{h} = T^{-1}\mathbf{g}$. Varje komponent kan då lösas som

$$y_j(t) = c_j e^{r_j t} + e^{r_j t} \int_{t_0}^t h_j(s) e^{-r_j s} ds.$$

Obestämda koefficienter Om **g** har en enkel form, kan man gissa på en lösning och bestämma koefficienterna baserad på ens gissning.

Variation av parametrar Ansätt

$$\mathbf{x}(t) = \Psi(t)\mathbf{u}(t).$$

Då ger differentialekvationen

$$\frac{\mathrm{d}\Psi}{\mathrm{d}t}(t)\mathbf{u}(t) + \Psi(t)\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = P(t)\Psi(t)\mathbf{u}(t) + \mathbf{g}(t).$$

Eftersom Ψ är en fundamentalmatris för ekvationen, gäller att

$$\frac{\mathrm{d}\Psi}{\mathrm{d}t}(t)P(t)\Psi(t),$$

och vi får

$$\Psi(t)\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}(t) = \mathbf{g}(t).$$

Vi löser för **u** och integrerar, vilket slutligen ger

$$\mathbf{x}(t) = \Psi(t)\mathbf{c} + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\mathbf{g}(s) \,\mathrm{d}s.$$

11

1.5 Exakta differentialekvationer

Formulering Betrakta ekvationen

$$M(x, y(x)) + N(x, y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna är exakt om den kan skrivas på formen

$$\frac{\mathrm{d}\psi}{\mathrm{d}x}(x,y(x)) = 0.$$

Det gåller då att

$$\frac{\partial \psi}{\partial x}(x,y(x)) = M(x,y(x)), \ \frac{\partial \psi}{\partial y}(x,y(x)) = N(x,y(x)),$$

och lösningarna ges implicit av

$$\psi(x, y(x)) = c.$$

Exakthet av differentialekvationer Differentialekvationen

$$M(x, y(x)) + N(x, y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0$$

är exakt om

$$\frac{\partial M}{\partial y}(x,y(x)) = \frac{\partial N}{\partial x}(x,y(x)).$$

1.6 Potensserier

Kriterier för potensserielösning I vissa fall kan man ansätta

$$y(x) = \sum_{i=1}^{\infty} a_x x^n$$

som en lösning av en differentialekvation. Detta kan endast göras om alla involverade koefficienter är analytiska.

Singulära punkter och Euler-liknande ekvationer Betrakta differentialekvationen

$$P(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + Q(x)\frac{\mathrm{d}y}{\mathrm{d}x}(x) + R(x)y(x) = 0.$$

Vi skriver denna om till

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}(x) + x(xp(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) + x^2 q(x)y(x) = 0.$$

Antag att antingen p eller q ej är analytiska kring 0, men xp och x^2q är det. Då kan man med hjälp av ansatsen

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}$$

få att detta är en lösning om r uppfyller

$$r(r-1) + p_0 r + q_0 = 0$$

där $p_0 = \lim_{x\to 0} x p(x)$ och $q_0 = \lim_{x\to 0} x^2 q(x)$. Från detta fås vidare en rekursionsrelation för koefficienterna q_{-}

Låt nu r_1, r_2 vara värden av r som ger lösningar, med $r_1 > r_2$, och antag att y_1 är lösningen som fås vid att använda r_1 i ansatsen. Då kan följande ansatser göras för att hitta en ny lösning:

 \bullet Om r_1-r_2 inte är ett heltal, kommer man få två olika rekursionsrelationer med hjälp av ansatsen.

• Om $r_1 = r_2$, gör man ansatsen

$$y_2(x) = y_1(x) \ln x + x^{r_1} \sum_{n=1}^{\infty} b_n x^n,$$

där koefficienterna b_n måste bestämmas.

• Om $r_1 - r_2$ är ett positivt heltal, gör man ansatsen

$$y_2(x) = ay_1(x) \ln x + x^{r_2} \left(1 + \sum_{n=1}^{\infty} b_n x^n \right),$$

för några tal a, b_n .

1.7 Stabilitet

Jämviktspunkter Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

En jämviktspunkt för detta systemet är en punkt $\mathbf{x}(t_0)$ så att $\mathbf{f}(\mathbf{x}(t_0)) = \mathbf{0}$, med implikationen att $\mathbf{x}(t)$ är konstant för $t > t_0$.

Stabila jämviktspunkter En jämviktspunkt \mathbf{x}_0 är stabil om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att alla lösningar \mathbf{x} som uppfyller $|\mathbf{x}(t_0) - \mathbf{x}_0| < \delta$, existerar för $t > t_0$ och uppfyller $|\mathbf{x}(t) - \mathbf{x}_0| < \varepsilon$, $t > t_0$. En jämviktspunkt som ej uppfyller detta är instabil.

Asymptotiskt stabila jämviktspunkter En jämviktspunkt \mathbf{x}_0 är asymptotiskt stabil om den är stabil och det finns ett $\delta_0 > 0$ så att om $|\mathbf{x}(t_0) - \mathbf{x}_0| < \delta_0$, gäller det att

$$\lim_{t\to\infty}\mathbf{x}(t)=\mathbf{x}_0$$

Stabilitet av autonom ODE Betrakta

$$\frac{dy}{dt}(t) = g(y(t)), \ g(y_0) = 0.$$

Då gäller att

- om $\frac{dg}{dy}(y_0) < 0$, är y_0 asymptotiskt stabil.
- om $\frac{\mathrm{d}g}{\mathrm{d}y}(y_0) > 0$, är y_0 instabil.

Bevis Här bevisas endast det första fallet.

Betrakta $(y-y_0)^2$. Nära y_0 gäller att

$$\frac{\mathrm{d}}{\mathrm{d}t}(y(t) - y_0)^2 = 2(y(t) - y_0)g(y(t))$$

$$\approx 2(y(t) - y_0) \left(g(y_0) + \frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0) + o((y(t) - y_0)^2) \right)$$

$$= 2(y(t) - y_0) \left(\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0) + o((y(t) - y_0)^2) \right).$$

Det gäller att $o((y(t)-y_0)^2) < -\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t)-y_0)^2$ tillräckligt nära y_0 (man skulle även kunna välja en annan nollskild konstant än $-\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)$, men detta valet gör beviset snyggare). Detta ger

$$\frac{\mathrm{d}}{\mathrm{d}t}(y(t) - y_0)^2 < \frac{\mathrm{d}g}{\mathrm{d}y}(y_0)(y(t) - y_0)^2,$$

som kan lösas för att ge

$$(y(t) - y_0)^2 < e^{\frac{\mathrm{d}g}{\mathrm{d}y}(y_0)t}(y(0) - y_0)^2,$$

som går mot 0 för stora t enligt vårt antagande om g:s derivata.

Karakterisering av jämviktspunkter för system Betrakta systemet

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där P är konstant och reellvärd. För enkelhetens skull kommer vi här att låta systemet vara ett system i två variabler. Låt även P ha egenvärden $r_1, r_2 \neq 0$. Då gäller att $\mathbf{0}$ är en kritisk punkt. Lösningarnas banor kan nu beskrivas på följande sätt:

- Om $r_1, r_2 < 0$ går alla lösningar in mot origo, och origo kallas en stabil nod.
- Om $r_1, r_2 > 0$ går alla lösningar ut från origo, och origo kallas en instabil nod.
- Om egenvärderna har olika tecken går lösningarna in mot origo parallellt med en egenvektor och ut parallellt med den andra, och origo kallas en instabil sadelpunkt.
- Om $r_1 = \alpha + i\beta$, $r_2 = \alpha i\beta$ gäller att:
 - Om $\alpha > 0$ går lösningarna i spiraler ut från origo, och origo kallas en instabil spiralpunkt.
 - Om $\alpha > 0$ går lösningarna i spiraler in mot origo, och origo kallas en stabil spiralpunkt.
 - Om $\alpha=0$ går lösningarna i bana kring origo, och origo kallas ett centrum.
- Om $r_1 = r_2 = r$ och det finns två egenvektorer motsvarande egenvärdet r går banorna i linjer från eller till origo, beroende på tecknet till r, och origo är en instabil eller stabil nod.
- Om $r_1 = r_2 = r$ och det bara finns en egenvektor motsvarande egenvärdet r går lösningarna i kurvade banor ut från eller in mot origo, där dessa banorna blir parallella med egenvektorn långt borta från origo, och origo är en stabil eller instabil degenererad nod.

Slutsats Det gäller alltså att

- Om alla Ps egenvärden har negativ realdel, är origo en stabil jämviktspunkt.
- Om något av P:s egenvärden har positiv realdel, är origo en instabil jämviktspunkt.

Stabilitet av jämviktspunkter för icke-linjära system av ODE Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)),$$

Låt detta ha en kritisk punkt \mathbf{x}_0 och låt $\mathbf{g} \in C^1$ i en öppen mängd kring \mathbf{x}_0 . Vi linjariserar kring \mathbf{x}_0 , vilket går om

$$\lim_{\mathbf{x}\to\mathbf{x}_0} \frac{|\mathbf{f}(\mathbf{x}(t))|}{|\mathbf{x}(t)|} = 0,$$

vilket uppfylls om $\mathbf{f} \in \mathbb{C}^2$. Inför funktionalmatrisen aka Jacobimatrisen

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_p}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_p}{\mathrm{d}x_n}(\mathbf{x}) \end{bmatrix}$$

och betrakta $J(\mathbf{x}_0)$. Då gäller att

- Om alla $J(\mathbf{x}_0)$ s egenvärden har negativ realdel, är \mathbf{x}_0 en stabil jämviktspunkt.
- Om något av $J(\mathbf{x}_0)$ egenvärden har positiv realdel, är \mathbf{x}_0 en instabil jämviktspunkt.

Lyapunovfunktioner Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{f}(\mathbf{x}(t)).$$

Antag att systemet har en kritisk punkt $\mathbf{0}$. Om det finns en positivt definitiv funktion $V \in \mathbb{C}^1$ och en negativt definitiv funktion

$$V' = \frac{\partial V}{\partial x} f_1 + \frac{\partial V}{\partial y} f_2$$

på någon omgivning av $\mathbf{0}$, är $\mathbf{0}$ en stabil jämviktspunkt. Om V' är negativt semidefinitiv, är $\mathbf{0}$ en stabil jämviktspunkt.

2 Fourierserier

2.1 Definitioner

Positiva summationskärnor En positiv summationskärna är en Riemannintegrerbar funktion K_n på (-a, a) som uppfyller

- $K_n(x) \ge 0, x \in (-a, a)$.
- $\bullet \int_{-a}^{a} K_n(x) \, \mathrm{d}x = 1.$
- för varje $\delta > 0$ så gäller att $\lim_{n \to \infty} \int_{\delta < |x| < a} K_n(x) dx = 0$.

Cesaro-summerbarhet Låt

$$s_n = \sum_{k=0}^n a_k$$

och

$$\sigma_N = \frac{1}{N} \sum_{k=0}^{N-1} s_k.$$

Då är $\sum_{k=0}^{n} a_k$ Cesarosummerbar om σ_N konvergerar.

Summationskärnor Borde definieras

Feijerkärnan Vi definierar Feijerkärnan som

$$F_N(t) = \frac{1}{N} \sum_{k=0}^{N-1} D_k(t).$$

2.2 Satser

Formel för Fourierkoefficienter Antag att en funktion f kan skrivas som

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{inx},$$

 $\mathop{\rm där} \sum_{n \in \mathbb{Z}} |c_n|$ är begränsad. Då gäller det att

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt.$$

15

Bevis Om antagandet är sant, skulle det gälla att

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} c_m e^{imt} e^{-int} dt.$$

Antag först att det finns ett N så att $c_n = 0$ för |n| > N. Detta ger

$$\int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} c_m e^{imt} e^{-int} dt = \sum_{m \in \mathbb{Z}} c_m \int_{-\pi}^{\pi} e^{i(m-n)t} dt.$$

Den återstående integralen ges av

$$\int_{-\pi}^{\pi} e^{i(m-n)t} dt = \begin{cases} \int_{-\pi}^{\pi} dt = 2\pi, & m = n, \\ \frac{1}{i(m-n)} \left(e^{i(m-n)\pi} - e^{-i(m-n)\pi} \right) = \frac{e^{i(m-n)\pi}}{i(m-n)} \left(1 - e^{-2\pi i(m-n)} \right) = 0, \quad m \neq 0, \end{cases}$$

och satsen stämmer.

Låt nu n vara givet och välj ett N så att n < N och $\sum_{|n| > N} |c_n| < \varepsilon$, vilket är möjligt eftersom serien ovan är konvergent. Detta ger

$$\left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} c_m e^{imt} e^{-int} dt \right| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} \sum_{|m| > N} c_m e^{i(m-n)t} dt \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{|m| > N} \left| c_m e^{i(m-n)t} \right| dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{|m| > N} |c_m| dt$$

$$= \frac{1}{2\pi} \sum_{|m| > N} 2\pi |c_m|$$

$$= \sum_{|m| > N} |c_m| < \varepsilon.$$

Enligt vårt tidigare argument gäller det även att

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} c_m e^{imt} e^{-int} \, \mathrm{d}t = c_n,$$

och vi har alltså visat

$$\left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} c_m e^{imt} e^{-int} dt \right| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} \sum_{|m| > N} c_m e^{i(m-n)t} dt \right| < \varepsilon,$$

vilket ger att satsen stämmer.

Konvergens och Cesarosummerbarhet Låt

$$\sum_{i=0}^{\infty} a_i = s.$$

Då är $\sum_{i=0}^{\infty} a_i$ Cesarosummerbar och har värdet s även i denna mening.

Bevis Vi har

$$|\sigma_n - s| = \left| \frac{1}{n} \sum_{i=0}^{\infty} s_i - s \right|$$

$$= \left| \frac{(s_0 - s) + \dots + (s_{n-1} - s)}{n} \right|$$

$$\leq \left| \frac{(s_0 - s) + \dots + (s_N - s)}{n} \right| + \left| \frac{(s_{N+1} - s) + \dots + (s_{n-1} - s)}{n} \right|.$$

Eftersom s_n konvergerar, finns det ett N så att när n > N är $|s_n - s| < \varepsilon$ för något $\varepsilon > 0$. Låt nu N i ekvationen över vara så att när n > N är $|s_n - s| < \frac{\varepsilon}{2}$. Detta ger

$$\left| \frac{(s_{N+1} - s) + \dots + (s_{n-1} - s)}{n} \right| < \frac{n - N - 1}{n} \frac{\varepsilon}{2} < \frac{\varepsilon}{2}.$$

Olikheten över kan då skrivas som

$$|\sigma_n - s| \le \frac{C_N}{n} + \frac{\varepsilon}{2}.$$

Välj nu N igen så att $N = \frac{2C_N}{\varepsilon}$. Då blir olikheten:

$$|\sigma_n - s| \le \varepsilon$$

och beviset är klart.

Riemann-Lebesgues lemma Antag att f är Riemannintegrerbar på $(-\pi, \pi]$. Då är

$$\lim_{\lambda \to \pm \infty} \int_{-\pi}^{\pi} f(t)e^{i\lambda t} dt = 0.$$

Bevis Låt s(x) vara en undertrappa till f. Eftersom f är Riemannintegrerbar så finns det ett s så att

$$\int_{-\pi}^{\pi} |f(x) - s(x)| \, \mathrm{d}x < \frac{\varepsilon}{2}.$$

Detta ger

$$\left| \int_{-\pi}^{\pi} f(t)e^{i\lambda t} dt \right| \leq \left| \int_{-\pi}^{\pi} s(t)e^{i\lambda t} dt \right| + \left| \int_{-\pi}^{\pi} (f(t) - s(t))e^{i\lambda t} dt \right|$$

$$\leq \left| \int_{-\pi}^{\pi} s(t)e^{i\lambda t} dt \right| + \int_{-\pi}^{\pi} |f(t) - s(t)| dt$$

$$\leq \left| \int_{-\pi}^{\pi} s(t)e^{i\lambda t} dt \right| + \frac{\varepsilon}{2}.$$

Vi har vidare

$$\left| \int_{-\pi}^{\pi} s(t)e^{i\lambda t} dt \right| = \left| \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} m_{j}e^{i\lambda t} dt \right|$$

$$= \left| \sum_{j=1}^{n} \frac{m_{j}}{i\lambda} (e^{i\lambda x_{j}} - e^{i\lambda x_{j-1}}) \right|$$

$$\leq \sum_{j=1}^{n} \frac{2|m_{j}|}{\lambda}$$

$$\leq \frac{2nM}{\lambda},$$

där $M = \sup\{|m_1|, \dots, |m_n|\}$. För $\lambda > \frac{4nM}{\varepsilon}$ fås

$$\left| \int_{-\pi}^{\pi} s(t)e^{i\lambda t} \, \mathrm{d}t \right| \leq \frac{1}{2}\varepsilon,$$

och beviset är klart.

Begränsning av Fourierkoefficienter Låt $f \in C^1$ på enhetscirkeln. Då gäller att

$$|c_n| \le \frac{C}{n}, \ n \ne 0.$$

Bevis Vi har

$$\left| c_n \left(\frac{\mathrm{d}f}{\mathrm{d}x} \right) \right| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\mathrm{d}f}{\mathrm{d}x}(t) e^{-int} \, \mathrm{d}t \right|$$
$$= \frac{1}{2\pi} \left| f(\pi) e^{-in\pi} - f(-\pi) e^{in\pi} + in \int_{-\pi}^{\pi} f(t) e^{-int} \, \mathrm{d}t \right|.$$

Eftersom f är konmtinuerlig på enhetscirkeln, ger detta

$$f(\pi)e^{-in\pi} - f(-\pi)e^{in\pi} = f(\pi)(e^{-in\pi} - e^{in\pi}) = -2f(\pi)\sin n\pi = 0,$$

vilket ger

$$\left| c_n \left(\frac{\mathrm{d}f}{\mathrm{d}x} \right) \right| = \frac{1}{2\pi} \left| in \int_{-\pi}^{\pi} f(t)e^{-int} \, \mathrm{d}t \right|$$
$$= \frac{|n|}{2\pi} \left| \int_{-\pi}^{\pi} f(t)e^{-int} \, \mathrm{d}t \right|$$
$$= |n| |c_n(f)|.$$

Riemann-Lebesgues sats ger att $\left|c_n\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)\right|$ är begränsad, vilket ger

$$C \ge \left| c_n \left(\frac{\mathrm{d}f}{\mathrm{d}x} \right) \right| = |n||c_n(f)|,$$

och beviset är klart.

Följdsats Låt $f \in \mathbb{C}^2$ på enhetscirkeln. Då konvergerar dens Fourierserie mot funktionen.

Bevis Med samma resonnemang som i förra satsen får man

$$|c_n| \le \frac{C}{n^2},$$

och

$$\sum_{i=-N}^{N} |c_n(f)e^{inx}| \le \sum_{i=-N}^{N} |c_n(f)| \le \sum_{i=-N}^{N} \frac{C}{n^2},$$

och därmed konvergerar summan.

Integraler med positiva summationskärnor Låt f vara en Riemannintegrerbar funktion på (-a, a), specifikt så att $|f(x)| \leq M, x \in (-a, a)$, och kontinuerlig i x = 0. Antag vidare att K_n är en positiv summationskärna på (-a, a). Då gäller att

$$\lim_{n \to \infty} \int_{-a}^{a} K_n(x) f(x) \, \mathrm{d}x = f(0).$$

Bevis Vi vill visa att för alla $\varepsilon > 0$ existerar ett M > 0 så att om n > M så är

$$\left| \int_{-a}^{a} K_n(x) f(x) \, \mathrm{d}x - f(0) \right| < \varepsilon.$$

Vi har att

$$\left| \int_{-a}^{a} K_{n}(x)f(x) dx - f(0) \right| \\
= \left| \int_{-a}^{a} K_{n}(x)f(x) dx - f(0) \int_{-a}^{a} K_{n}(x) dx \right| \\
= \left| \int_{-a}^{a} K_{n}(x)(f(x) - f(0)) dx \right| \\
= \left| \int_{-\delta}^{\delta} K_{n}(x)(f(x) - f(0)) dx + \int_{\delta < |x| < a} K_{n}(x)(f(x) - f(0)) dx \right| \\
\leq \left| \int_{-\delta}^{\delta} K_{n}(x)(f(x) - f(0)) dx \right| + \left| \int_{\delta < |x| < a} K_{n}(x)(f(x) - f(0)) dx \right|.$$

Eftersom f är kontinuerlig, finns det ett J > 0 sådant att |f(x) - f(0)| < J när |x| < a. Då kan vi skriva

$$\left| \int_{-\delta}^{\delta} K_n(x)(f(x) - f(0)) \, \mathrm{d}x \right| + \left| \int_{\delta < |x| < a} K_n(x)(f(x) - f(0)) \, \mathrm{d}x \right|$$

$$\leq \left| \int_{-\delta}^{\delta} K_n(x)(f(x) - f(0)) \, \mathrm{d}x \right| + J \left| \int_{\delta < |x| < a} K_n(x) \, \mathrm{d}x \right|.$$

Tills nu har vi inte specifierat vårat δ . Välj nu det så att $|x| < \delta \implies |f(x) - f(0)| < \frac{1}{2}\varepsilon$. Använd vidare att eftersom $\lim_{n \to \infty} \int_{\delta < |x| < a} K_n(x) \, \mathrm{d}x = 0$ finns det ett M > 0 så att $n > M \implies \left| \int_{\delta < |x| < a} K_n(x) \, \mathrm{d}x \right| < \frac{\varepsilon}{2J}$. Alltså har vi för ett tillräckligt stort n att

$$\left| \int_{-\delta}^{\delta} K_n(x)(f(x) - f(0)) \, \mathrm{d}x \right| + J \left| \int_{\delta < |x| < a} K_n(x) \, \mathrm{d}x \right| < \frac{1}{2} \varepsilon \left| \int_{-\delta}^{\delta} K_n(x) \, \mathrm{d}x \right| + J \frac{\varepsilon}{2J} = \varepsilon,$$

och beviset är klart.

Följdsats Låt K_n vara en positiv summationskärna och f vara kontinuerlig och integrerbar i x. Då gäller det att

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} K_n(t) f(x-t) \, \mathrm{d}t = f(x).$$

Bevis Tillämpa satsen ovan på g(t) = f(x - t).

Konvergens av Fourierserier

Bevis Vi vill hitta ett villkor på f så att för alla $\varepsilon > 0$ finns det ett K > 0 så att

$$N > K \implies \left| f(x) - \sum_{n=-N}^{N} c_n e^{inx} \right| < \varepsilon,$$

där

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt.$$

Vi definierar

$$S_N(x) = \sum_{n=-N}^{N} c_n e^{inx}$$

och beräknar den som

$$S_N(x) = \frac{1}{2\pi} \sum_{n=-N}^{N} \int_{-\pi}^{\pi} f(t)e^{in(x-t)} dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \frac{1 - e^{-i(2N+1)(x-t)}}{1 - e^{-i(x-t)}} e^{-iN(x-t)} dt.$$

Vi definierar Dirichletkärnan

$$D_N(\alpha) = \frac{1}{2\pi} \frac{1 - e^{i(2N+1)\alpha}}{1 - e^{i\alpha}} e^{-iN\alpha}$$

$$= \frac{1}{2\pi} e^{-iN\alpha} \frac{e^{i(N+\frac{1}{2})\alpha}}{e^{\frac{1}{2}i\alpha}} \frac{e^{-i(N+\frac{1}{2})\alpha} - e^{i(N+\frac{1}{2})\alpha}}{e^{-\frac{1}{2}i\alpha} - e^{\frac{1}{2}i\alpha}}$$

$$= \frac{1}{2\pi} \frac{\sin(N + \frac{1}{2})\alpha}{\sin\frac{1}{2}\alpha}.$$

Då kan vi skriva

$$S_N(x) = \int_{-\pi}^{\pi} f(t) D_N(x-t) dt.$$

Hjälpsats för Feijerkärnan F_N är en positiv summationskärna på $[-\pi, \pi]$.

Bevis F_N är en summa av Riemannintegrerbara funktioner, och är därmed Riemannintegrerbar. För att visa att $F_N \ge 0$, skriv

$$F_N(x) = \frac{1}{2\pi(N+1)} \sum_{n=0}^{N} \frac{\sin(\frac{n+1}{2}t)}{\sin(\frac{1}{2}t)}$$
$$= \frac{1}{2\pi(N+1)} \sum_{n=0}^{N} \frac{\lambda^{n+1} - \lambda^{-n-1}}{\lambda - \lambda^{-1}},$$

där $\lambda = e^{\frac{1}{2}ix}$. Det kan visas att detta ger

$$F_N(t) = \frac{1}{2\pi(N+1)} \left(\frac{\sin\left(\frac{N+1}{2}t\right)}{\sin\left(\frac{1}{2}t\right)} \right)^2.$$

För att visa det andra påståendet, använder vi att

$$\int_{-\pi}^{\pi} D_n(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n} e^{ikx} dx = 1 + \frac{1}{2\pi} \sum_{n} e^{ikx} ... = 1,$$

vilket ger

$$\int_{-\pi}^{\pi} F_N(t) dt = \frac{1}{N+1} \int_{-\pi}^{\pi} \sum D_n(x) dx = \frac{1}{N+1} \sum 1.$$

För att visa det tredje påståendet, skriv

$$\int_{\delta < |x| < \pi} F_N(t) dt = \int_{\delta < |x| < \pi} \frac{1}{2\pi(N+1)} \left(\frac{\sin\left(\frac{N+1}{2}t\right)}{\sin\left(\frac{1}{2}t\right)} \right)^2 dt$$

$$\leq \int_{\delta < |x| < \pi} \frac{1}{2\pi(N+1)} \left(\frac{1}{\sin\left(\frac{1}{2}\delta\right)} \right)^2 dt$$

$$\leq \frac{1}{(N+1)} \left(\frac{1}{\sin\left(\frac{1}{2}\delta\right)} \right)^2$$

$$\to 0.$$

Följdsats

$$\int_{-\pi}^{\pi} F_N(t) f(x-t) dt = f(x).$$

Bevis

Annan följdsats Antag att f är integrerbar på enhetscirkeln och att alla dens Fourierkoefficienter är 0. Då är f(x) = 0 överallt där f är kontinuerlig.

Bevis

Yttersta konvergenssats för Fourierserier Antag att f uppfyller

- f är styckvis C^1 på $(-\pi, \pi]$.
- Höger- och vänstergränsvärdet existerar även mellan de olika intervallen där f är C^1 .

Då konvergerar Fourierserien S_N till

- $\lim_{N \to \infty} S_N(x) = f(x)$ på något av intervallen.
- $\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}$ på gränsen mellan två intervall, där $f(x^{\pm}) = \lim_{t \to x^{\pm}} f(t)$.

Bevis Vi vill att

$$\left| \int_{-\pi}^{\pi} f(x-t) D_N(t) dt - \frac{f(x^+) + f(x^-)}{2} \right| \to 0.$$

Om detta stämmer, gäller det att

$$\left| \int_{0}^{\pi} f(x-t) D_{N}(t) dt - \frac{f(x^{-})}{2} \right| + \left| \int_{-\pi}^{0} f(x-t) D_{N}(t) dt - \frac{f(x^{+})}{2} \right| \to 0.$$

Vi betraktar ett av dessa uttrycken, då beviset är analogt för det andra.

Det gäller att Dirichletkärnan är jämn och integreras till 1 på $[-\pi, \pi]$. Detta ger

$$\frac{f(x^{-})}{2} = \int_{0}^{\pi} f(x^{-}) D_{N}(t) dt,$$

och vi får

$$\left| \int_{0}^{\pi} f(x-t)D_{N}(t) dt - \frac{f(x^{-})}{2} \right| = \left| \int_{0}^{\pi} (f(x-t) - f(x^{-}))D_{N}(t) dt \right|$$
$$= \left| \int_{0}^{\pi} \frac{f(x-t) - f(x^{-})}{t} \frac{t}{\sin\left(\frac{1}{2}t\right)} \sin\left(\frac{N+1}{2}t\right) dt \right|.$$

Det första bråket är begränsad och kontinuerligt när x-t ej är på gränsen mellan två intervall, och är därmed Riemannintegrerbar. Det samma är det andra bråket, och vi kan skriva detta som

$$\left| \int_{0}^{\pi} f(x-t)D_{N}(t) dt - \frac{f(x^{-})}{2} \right| = \left| \int_{0}^{\pi} R(t) \sin\left(\frac{N+1}{2}t\right) dt \right|,$$

där R är Riemannintegrerbar. Enligt Riemann-Lebesgues lemma går detta mot 0, och beviset är klart.

3 Funktioner, vektorrum och dylikt

3.1 Definitioner

Inreprodukt På kontinuerliga funktioner $[-\pi, \pi] \to \mathbb{C}$ definierar vi inreprodukten

$$\langle u|v\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t)v^*(t) dt.$$

Fullständiga mängder Låt $\{e_i\}_{i\in I}$ vara en ortonormal mängd vektorer i V. Då är $\{e_i\}_{i\in I}$ en fullständig mängd i V om det för varje $u\in V$ och $\varepsilon>0 \exists N>0$ så att

$$n > N \implies \left| u - \sum_{i \in I} \langle u | e_i \rangle e_i \right| < \varepsilon.$$

 ℓ^2 Vi definierar $\ell^2(\mathbb{Z})$ som mängden av alla följder av komplexa tal med inreprodukt

$$\langle u|v\rangle = \sum_{i=0}^{n} a_i b_i^*.$$

 L^2 Vi definierar $L^2([-\pi,\pi],\mathbb{C})$ som mängden av alla komplexvärda Riemannintegrerbara funktioner på $[-\pi,\pi]$ med inreprodukten

$$\langle u|v\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(x)v^*(x) dx.$$

I denna klassen definieras två funktioner som lika om ||u-v|| = 0.

Legendrepolynomen Legendrepolynomen är en följd av polynom så att $p_0(x) = 1$, $p_i(1) = 1$ och p_n är ortogonal på p_0, \ldots, p_{n-1} med inreprodukten

$$\langle u|v\rangle = \int_{-1}^{1} u(x)v^{*}(x) dx.$$

Hermiteska operatore En Hermitesk operator uppfyller $\langle Av|w\rangle = \langle v|Aw\rangle$. Se sammanfattningen från SF1681 för mer information.

Sturm-Liouville-operatorn Sturm-Liouville-operatorn är en operator $L: C^2([a,b],\mathbb{C}) \to L^2([a,b],\mathbb{C})$ definierat som

$$L(f) = \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \right) + q(x)f(x) + \lambda w(x)f(x).$$

Reguljära Sturm-Liouvilleproblem Ekvationen

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \right) + q(x)f(x) + \lambda w(x)f(x) = 0, \qquad Af(a) + B \frac{\mathrm{d}f}{\mathrm{d}x}(a) = 0,$$

$$Cf(b) + D \frac{\mathrm{d}f}{\mathrm{d}x}(b) = 0,$$

där p, q och w är kontinuerliga reellvärda funktioner, är ett reguljärt Sturm-Liouvilleproblem på [a, b] om $p(a) \neq 0, p(b) \neq 0, w(x) > 0, (A, B) \neq (0, 0)$ och $(C, D) \neq (0, 0)$.

3.2 Satser

Projektion och minsta avstånd Låt e_1, \ldots, e_N vara ortonormala basvektorer i inreproduktrummet V, och låt

$$V_N = \left\{ \sum_{i=1}^N a_i e_i, i \in \mathbb{C} \right\}.$$

Då ges

$$\inf_{\Phi \in V_N} |u - \Phi|$$

av

$$\Phi = \sum_{i=1}^{N} \langle u | e_i \rangle e_i.$$

Bevis

Följdsats De komplexa tal c_{-N}, \ldots, c_N som minimerar

$$\left\| u - \sum_{n=-N}^{N} c_n e^{inx} \right\|$$

är

$$c_n = \left\langle u \middle| e^{inx} \right\rangle.$$

Bevis Betrakta

$$\left\| u - \sum_{i=1}^{N} \gamma_i e_i \right\|.$$

Vi utvecklar inreprodukten och får

$$\left\| u - \sum_{i=1}^{N} \gamma_i e_i \right\| = \|u\|^2 - \left\langle u \left| \sum_{i=1}^{N} \gamma_i e_i \right\rangle - \left\langle u \left| \sum_{i=1}^{N} \gamma_i e_i \right\rangle^* + \left\| \sum_{i=1}^{N} \gamma_i e_i \right\|^2.$$

Vid att skriva u som sin Fourierserie fås

$$\left\| u - \sum_{i=1}^{N} \gamma_i e_i \right\| = \|u\|^2 - \sum_{i=1}^{N} c_i \gamma_i - \sum_{i=1}^{N} c_i \gamma_i^* + \sum_{i=1}^{N} |\gamma_i|^2.$$

Vid att lägga till och ta bort $\sum_{i=1}^{N} |c_i|^2$ fås

$$\left\| u - \sum_{i=1}^{N} \gamma_i e_i \right\| = \|u\|^2 - \sum_{i=1}^{N} |c_i|^2 + \sum_{i=1}^{N} |c_i|^2 - \sum_{i=1}^{N} c_i \gamma_i - \sum_{i=1}^{N} c_i \gamma_i^* + \sum_{i=1}^{N} |\gamma_i|^2$$

$$= \|u\|^2 - \sum_{i=1}^{N} |c_i|^2 + \sum_{i=1}^{N} |c_i - \gamma_i|^2.$$

Vid att välja $c_i = \gamma_i$ fås det efterfrågade minimumet.

Mindre följdsats

$$||u||^2 = \sum_{i=1}^N |c_i|^2.$$

Parsevals sats Låt $\{\phi_i\}_{i=-\infty}^{\infty}$ vara ett ortonormalt system i V och det för varje u gälla att

$$||u||^2 = \sum_{i=-\infty}^{\infty} |\langle \phi_i | u \rangle|^2.$$

Då är $\{\phi_i\}_{i=0}^N$ fullständig. Det omvända gäller även.

Bevis Om $\{e_i\}_{i=-\infty}^{\infty}$ är ett fullständigt ortonormalt system, kan vi välja c_i så att för N>M gäller det att

$$\left\| u - \sum_{i=-N}^{N} c_i \phi_i \right\| < \varepsilon.$$

Vänstersidan kan med satsen ovan skrivas som

$$\left\| u - \sum_{i=-N}^{N} c_i \phi_i \right\|^2 = \|u\|^2 - \left\| \sum_{i=-n}^{n} c_i \phi_i \right\|^2$$
$$= \|u\|^2 - \left\| \sum_{i=-N}^{N} \langle \phi_i | u \rangle \phi_i \right\|^2.$$

Vi får

$$\|u\|^2 - \left\|\sum_{i=-N}^N \langle \phi_i | u \rangle \phi_i \right\|^2 < \varepsilon,$$

och eftersom ε kan väljas godtyckligt, ger detta

$$||u||^2 = \sum_{i=-\infty}^{\infty} |\langle \phi_i | u \rangle|^2.$$

Om vi vidare antar att

$$||u||^2 = \sum_{i=-\infty}^{\infty} |\langle \phi_i | u \rangle|^2,$$

följer motsatsen från definitionen.

Inreprodukt och ortonormal bas Låt u och v vara element i V, vars bas är ett fullständigt ortonormalt system $\{\phi_i\}_{i=0}^N$. Då gäller att

$$\langle u|v\rangle = \sum_{i=0}^{N} \langle u|\phi_i\rangle \langle v|\phi_i\rangle^*$$
.

Bevis Med projektionen på V_N med bas $\{\phi_i\}_{i=-\infty}^{\infty}$ får man

$$\langle \operatorname{proj}_{V_N}(u) | \operatorname{proj}_{V_N}(v) \rangle =$$

Komplexa exponentialfunktionen och L^2 $e^{inx}, n \in \mathbb{Z}$ är ett fullständigt system av ortonormala vektorer i $L^2([-\pi, \pi], \mathbb{C})$.

Bevis Låt $u \in L^2([-\pi, \pi], \mathbb{C})$. Då finns det för alla $\varepsilon > 0$ en styckvist konstant funktion s så att

$$||u(x) - s(x)|| < \frac{1}{3}\varepsilon.$$

Vi kan skriva

$$\left\| u - \sum_{n=-N}^{N} c_n e^{inx} \right\| \le \left\| s - \sum_{n=-N}^{N} c_n e^{inx} \right\| + \|s - u\|,$$

så beviset är klart om vi
 kan visa att det finns ett N så att

$$\left\| s - \sum_{n=-N}^{N} c_n e^{inx} \right\| < \frac{2}{3}\varepsilon.$$

Vi approximerar s med en kontinuerlig funktion h så att $||s-h|| < \frac{1}{3}\varepsilon$. Enligt Fejers sats konvergerar $F_N * h$ mot h likformigt. Alltså är

$$||F_N*h-h||<\frac{1}{3}\varepsilon$$

för tillräckligt stora N. Eftersom $F_N * h$ är ett trigonometriskt polynom, kan vi välja det och skriva

$$||s - F_N * h|| < ||F_N * h - h|| + ||s - h|| < \frac{2}{3}\varepsilon,$$

och därmed är beviset klart.

Polynomapproximation av funktioner Låt $f:[a,b]\to\mathbb{C}$. Då finns det för varje $\varepsilon>0$ ett polynom p så att

$$\sup_{[a,b]} |f(x) - p(x)| < \varepsilon.$$

Bevis Gör en Taylorapproximation av Fourierserien till f. Detta ger

$$|f(x) - p(x)| \le \left| f(x) - \sum_{n=-N}^{N} c_n e^{inx} \right| + \left| \sum_{n=-N}^{N} c_n e^{inx} - p(x) \right| < \varepsilon.$$

Legendrepolynomens fullständighet Legendrepolynomen är ett fullständigt system i $L^2([-1,1],\mathbb{C})$.

Bevis Ideen är att det finns ett polynom p av grad n så att en funktion f kan approximeras godtyckligt väl av detta polynomet i norm-mening. Detta ger

$$||f - p||^2 = \int_{-1}^{1} |f(x) - p(x)|^2 dx \le 2\varepsilon^2.$$

Det räcker därmed att visa att alla polynom kan skrivas som en linjärkombination av Legendrepolynom. Detta stämmer eftersom man kan hitta n+1 linjärt oberoende Legendrepolynom.

Jämna och udda Legendrepolynom p_n är jämn om n är jämn och udda om n är udda.

Bevis Följer från Gram-Schmidt.

Rodrigues' formel

$$p_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n (x^2 - 1)^n}{\mathrm{d} x^n}.$$

Bevis

Sturm-Liouvilleoperatorns symmetri Operatorn

$$L = \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}}{\mathrm{d}x} \right) + q(x) + \lambda w(x)$$

med inreprodukten

$$\langle f|g\rangle = \int_{a}^{b} f(x)g^{*}(x)w(x) dx$$

på $C^2([a,b])$ har en icke-trivial kärna om det finns $(A,B) \neq (0,0)$ och $(C,D) \neq (0,0)$ så att

$$Af(a) + B\frac{\mathrm{d}f}{\mathrm{d}x}(a) = 0,$$

$$Cf(b) + D\frac{\mathrm{d}f}{\mathrm{d}x}(b) = 0,$$

$$Ag^*(a) + B\frac{\mathrm{d}g^*}{\mathrm{d}x}(a) = 0,$$

$$Cg^*(b) + D\frac{\mathrm{d}g^*}{\mathrm{d}x}(b) = 0.$$

Bevis Vi betraktar i stället operatorn

$$A = \frac{1}{w(x)} \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}}{\mathrm{d}x} \right) + q(x) \right).$$

Om denna är symmetrisk, har vi visat satsen. Vi får

$$\langle Af|g\rangle = \int_{a}^{b} \frac{1}{w(x)} \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \right) + q(x)f(x) \right) g^{*}(x)w(x) \,\mathrm{d}x$$

$$= \int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \right) g^{*}(x) \,\mathrm{d}x + \int_{a}^{b} q(x)f(x)g^{*}(x) \,\mathrm{d}x$$

$$= \left[p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x)g^{*}(x) \right]_{a}^{b} - \int_{a}^{b} p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \frac{\mathrm{d}g^{*}}{\mathrm{d}x}(x) \,\mathrm{d}x + \int_{a}^{b} q(x)f(x)g^{*}(x) \,\mathrm{d}x.$$

Vi jämför detta med

$$\langle f|Ag\rangle = \int_a^b f(x) \left(\frac{1}{w(x)} \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}g^*}{\mathrm{d}x}(x)\right) + q(x)g^*(x)\right)^* w(x) \,\mathrm{d}x$$

$$= \int_a^b f(x) \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}g^*}{\mathrm{d}x}(x)\right) \,\mathrm{d}x + \int_a^b q(x)f(x)g^*(x) \,\mathrm{d}x$$

$$= \left[p(x)f(x) \frac{\mathrm{d}g^*}{\mathrm{d}x}(x)\right]_a^b - \int_a^b p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \frac{\mathrm{d}g^*}{\mathrm{d}x}(x) \,\mathrm{d}x + \int_a^b q(x)f(x)g^*(x) \,\mathrm{d}x,$$

där vi har utnyttjat att p, q och w är reellvärda. Detta ger

$$\langle Af|g\rangle - \langle f|Ag\rangle = \left[p(x)\frac{\mathrm{d}f}{\mathrm{d}x}(x)g^*(x)\right]_a^b - \left[p(x)f(x)\frac{\mathrm{d}g^*}{\mathrm{d}x}(x)\right]_a^b.$$

Detta ger att A är symmetrisk om det finns $(A, B) \neq (0, 0)$ och $(C, D) \neq (0, 0)$ så att

$$Af(a) + B\frac{\mathrm{d}f}{\mathrm{d}x}(a) = 0,$$

$$Cf(b) + D\frac{\mathrm{d}f}{\mathrm{d}x}(b) = 0,$$

$$Ag^*(a) + B\frac{\mathrm{d}g^*}{\mathrm{d}x}(a) = 0,$$

$$Cg^*(b) + D\frac{\mathrm{d}g^*}{\mathrm{d}x}(b) = 0.$$

Inreprodukten över kan även skrivas som

$$\langle Af|g\rangle - \langle f|Ag\rangle = p(b)\frac{\mathrm{d}f}{\mathrm{d}x}(b)g^*(b) - p(a)\frac{\mathrm{d}f}{\mathrm{d}x}(a)g^*(a) - p(b)f(b)\frac{\mathrm{d}g^*}{\mathrm{d}x}(b) + p(a)f(a)\frac{\mathrm{d}g^*}{\mathrm{d}x}(a)$$

$$= p(b)\begin{bmatrix} f(b) \\ \frac{\mathrm{d}f}{\mathrm{d}x}(b) \end{bmatrix} \cdot \begin{bmatrix} -\frac{\mathrm{d}g^*}{\mathrm{d}x}(b) \\ g^*(b) \end{bmatrix} - p(a)\begin{bmatrix} f(a) \\ \frac{\mathrm{d}f}{\mathrm{d}x}(a) \end{bmatrix} \cdot \begin{bmatrix} -\frac{\mathrm{d}g^*}{\mathrm{d}x}(a) \\ g^*(a) \end{bmatrix}$$

• Låt D_L vara alla C^2 -funktioner på [a, b] så att

$$Af(a) + B\frac{\mathrm{d}f}{\mathrm{d}x}(a) = 0,$$
$$Cf(b) + D\frac{\mathrm{d}f}{\mathrm{d}x}(b) = 0.$$

Då är Sturm-Liouville-operatorn symmetrisk om $(A, B) \neq (0, 0)$ och $(C, D) \neq (0, 0)$.

Sturm-Liouvilles sats Sturm-Liouville-operatorn har oändligt många reella egenvärden.

Om ϕ_n är en egenfunktion som motsvarar λ_n är ϕ_n unik och $\{\phi_n\}$ är en fullständig ortogonal mängd i $L^2([a,b],\mathbb{C})$.

Bevis Vi visar inte fullständighet.

För att visa att egenvärdena är reella, låter vi $L\phi_n = \lambda n\phi_n$. Detta ger

$$\lambda_n \langle \phi_n | \phi_n \rangle = \langle L \phi_n | \phi_n \rangle = \langle \phi_n | L \phi_n \rangle = \langle \phi_n | \lambda_n \phi_n \rangle = \lambda_n^* \langle \phi_n | \phi_n \rangle,$$

och beviset är klart.

För att visa ortogonaliteten, låt $\lambda_n \neq \lambda_m$. Detta ger

$$\lambda_n \langle \phi_n | \phi_m \rangle = \langle L \phi_n | \phi_m \rangle = \langle \phi_n | L \phi_m \rangle = \langle \phi_n | \lambda_m \phi_m \rangle = \lambda_m^* \langle \phi_n | \phi_m \rangle.$$

Om egenvektorerna inte är ortogonala, måste egenvärdena vara lika. Eftersom detta strider mot antagandet, måste egenvektorerna vara ortogonala.

Följdsats Reguljära Sturm-Liouvilleproblem har en lösning. Om

$$g(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(p(x) \frac{\mathrm{d}f}{\mathrm{d}x}(x) \right) + q(x)f(x),$$

ges lösningen av

$$f(x) = \sum_{i=1}^{\infty} \frac{\langle \phi_n | g \rangle}{\langle \phi_n | \phi_n \rangle} \frac{1}{\lambda_n} \phi_n.$$

Bevis Följer vid att låta

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}}{\mathrm{d}x}\right) + q(x)$$

verka på f.

4 Fouriertransform

4.1 Definitioner

Fouriertransformen Låt $L^1(\mathbb{R}, \mathbb{C})$ vara alla absolut integrerbara funktioner och $f \in L^1(\mathbb{R}, \mathbb{C})$. Då definieras Fouriertransformen $\mathcal{F}(f)$ som

$$\mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx.$$

4.2 Satser

Räkneregler för Fouriertransformen Fouritertransformen uppfyller:

- Fouriertransformen definierar en linjär operator.
- Om $f_a(x) = f(x-a)$ är $\mathcal{F}(f_a)(\omega) = e^{-ia\omega}\mathcal{F}(f)(\omega)$.
- Om $f_a(x) = f(\frac{x}{a})$ är $\mathcal{F}(f_a)(\omega) = \frac{1}{a}\mathcal{F}(f)(\frac{\omega}{a})$.
- Om $f, \frac{\mathrm{d}f}{\mathrm{d}x} \in L^1(\mathbb{R}, \mathbb{C})$ är $\mathcal{F}(\frac{\mathrm{d}f}{\mathrm{d}x})(\omega) = i\omega \mathcal{F}(f)(\omega)$.

Bevis Här visas endast andra och sista påståendet. Om $f_a(x) = f(x - a)$ är

$$\mathcal{F}(f_a)(\omega) = \int_{-\infty}^{\infty} f(x-a)e^{-i\omega x} dx$$
$$= \int_{-\infty}^{\infty} f(x)e^{-i\omega(x+a)} dx$$
$$= e^{-i\omega a} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$
$$= e^{-i\omega a} \mathcal{F}(f)(\omega),$$

vilket skulle visas.

Om f har kompakt stöd, dvs. det finns ett M så att $|x| > M \implies f(x) = 0$, gäller det vidare att

$$\mathcal{F}(\frac{\mathrm{d}f}{\mathrm{d}x})(\omega) = \int_{-\infty}^{\infty} \frac{\mathrm{d}f}{\mathrm{d}x}(x)e^{-i\omega x} \,\mathrm{d}x$$
$$= \left[f(x)e^{-i\omega x}\right]_{-2M}^{2M} + i\omega \int_{-\infty}^{\infty} f(x)e^{-i\omega x} \,\mathrm{d}x.$$

Jag är inte säker på att detta stämmer, men jag tror gränserna i sista raden valdes godtycklig som något större än M och sedan skulle kunna skickas mot oändligheten. I alla fall ger denna inget bidrag, och beviset är klart.

Fouriertransformens egenskaper Låt $f \in L^1(\mathbb{R}, \mathbb{C})$. Då gäller att

- $|\mathcal{F}(f)(\omega)| \leq \int_{\mathbb{R}} |f(x)| dx$.
- $\mathcal{F}(f)$ är kontinuerlig på \mathbb{R} .
- $\lim_{|\omega| \to \infty} \mathcal{F}(f)(\omega) = 0.$

Bevis Första påståendet följer från Cauchy-Schwarz' olikhet. Andra påståendet är sant ty

$$|\mathcal{F}(f)(\omega+h) - \mathcal{F}(f)(\omega)| = \left| \int_{-\infty}^{\infty} f(x)e^{-i(\omega+h)x} dx - \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx \right|$$

$$= \left| \int_{-\infty}^{\infty} f(x)e^{-i\omega x}(e^{-ihx} - 1) dx \right|$$

$$\leq \left| \int_{x|< M} f(x)e^{-i\omega x}(e^{-ihx} - 1) dx \right| + \left| \int_{x|\geq M} f(x)e^{-i\omega x}(e^{-ihx} - 1) dx \right|.$$

För små h är $|e^{-ihx}-1|<\varepsilon$

Sista påståendet följer direkt från Riemann-Lebesgues lemma.