Introduction to Digital Image Processing

Dr. Kundan Kumar

Ph.D. (IIT Kharagpur) Assistant Professor ECE Department (Cabin - E139)

Institute of Technical Education & Research (ITER)
Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha,
India-751030

© 2017 Kundan Kumar, All Rights Reserved

▶ Histogram is a measure that provides a global description of the appearance of an image

- ► Histogram is a measure that provides a global description of the appearance of an image
- ▶ The histogram of a digital image with intensity levels in the range [0,L-1] is a discrete function

$$h(r_k) = n_k$$

where, r_k is the k^{th} intensity value and n_k is the number of pixels in the image with intensity r_k .

▶ A plot of $h(r_k)$ vs. k is called *histogram*.

- ► Histogram is a measure that provides a global description of the appearance of an image
- ▶ The histogram of a digital image with intensity levels in the range [0,L-1] is a discrete function

$$h(r_k) = n_k$$

where, r_k is the k^{th} intensity value and n_k is the number of pixels in the image with intensity r_k .

- ▶ A plot of $h(r_k)$ vs. k is called *histogram*.
- Normalized histogram

$$p(r_k) = \frac{n_k}{MN}$$
 for $k = 0, 1, 2, \dots, L - 1$.

▶ $p(r_k)$ is an estimate of the *probability of occurrence of* intensity level r_k in an image.

Histogram Processing: Example

Compute the histogram of the given image

1	0	2	4	5	3	1
9	1	1	4	7	2	1
10	3	7	3	5	3	3
11	2	3	3	3	2	1
7	5	6	6	7	6	1
1	4	1	1	4	9	1
2	8	1	1	5	1	1

Histogram Processing: Example

Compute the histogram of the given image

1	0	2	4	5	3	1
9	1	1	4	7	2	1
10	3	7	3	5	3	3
11	2	3	3	3	2	1
7	5	6	6	7	6	1
1	4	1	1	4	9	1
2	8	1	1	5	1	1

- ► Histograms give a *global description* and nothing specific about the image content.
- ► Shape of the histogram gives useful information about possibility for contrast enhancement.

Histogram manipulation

- Histogram Equalization
- Histogram Matching (Specification)

- As the low-contrast image's histogram is narrow and centered in the middle of the gray scale, if we distribute the histogram to a wider range the quality of the image will be improved.
- We can do it by adjusting the probability density function (PDF) of the original histogram of the image so that the probability spread equally.

Transformation Function, T(r)

$$s = T(r)$$

- T(r) satisfies
- (a) T(r) is single valued and monotonically increasingly in the interval of $0 \le r \le L-1$
- (b) $0 \le T(r) \le L 1$ for $0 \le r \le L 1$

Transformation Function, T(r)

- ► Single-valued (one-to-one relationship) guarantees that the inverse transformation will exist.
- Monotonicity condition preserves the increasing order from black to white in the output image thus it won't cause a negative image.
- ▶ $0 \le T(r) \le L 1$ for $0 \le r \le L 1$ guarantees that the output gray levels will be in the same range as the input levels.
- \blacktriangleright The inverse transformation from s back to r is

$$r = T^{-1}(s); \quad 0 \le s \le L - 1$$

Random Variable

- If a random variable r is transformed by a monotonic transformation function T(r) to produce a new random variable s.
- ▶ $p_r(r)$ and $p_s(s)$ are probability density function (PDF) of r and s respectively.
- ▶ Then, the PDF $p_s(s)$ can be obtained from knowledge of T(r) and $p_r(r)$, as follows:

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

where the vertical bars signify the absolute value.

Applied to Image

- ▶ Let
 - $p_r(r)$ denote the PDF of random variable r
 - $p_s(s)$ denote the PDF of random variable s
- If $p_r(r)$ and T(r) are known and $T^{-1}(s)$ satisfies condition (a) then $p_s(s)$ can be obtained using a formula

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

► The PDF of the transformed variable s is determined by the gray-level PDF of the input image and by the chosen transformation function.

Transformation function

► A transformation function of a particular importance in image processing has the form

$$s = T(r) = (L-1) \int_{0}^{r} p_r(w) dw$$
 (1)

where integration term is a cumulative distribution function (CDF) of random variable r and w is a dummy variable.

- The above equation satisfies (a) and (b) both because the area under the function cannot decrease as r increases and $0 \le r \le L 1$ (i.e., $0 \le s \le L 1$).
- ▶ Note that T(r) depends on $p_r(r)$

Finding $p_s(s)$

Leibniz's rule: The derivative of a definite integral with respect to its upper limit is the integrand evaluated at the limit. That is

$$\frac{ds}{dr} = \frac{dT(r)}{dr}$$

$$= (L-1) \frac{d}{dr} \left[\int_{0}^{r} p_r(w) dw \right]$$

$$= (L-1) p_r(r)$$

Thus we can write

$$\begin{aligned} p_s(s) &= p_r(r) \left| \frac{dr}{ds} \right| \\ &= p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right| \\ &= \frac{1}{L-1} \quad \text{where } 0 \le s \le L-1 \end{aligned}$$

Finding $p_s(s)$

- As $p_s(s)$ is a probability function, it must be zero outside the interval [0, L-1].
- \blacktriangleright Its integral over all values of s must equal 1.
- ▶ Called $p_s(s)$ as a uniform probability density function.
- $lackbox{ }p_s(s)$ is always a uniform, independent of the form of $p_r(r)$

Discrete transformation function

- ► For a discrete values, we deal with probabilities (histogram values) and summation instead of probability density function & integrals.
- The probability of occurrence of gray level in an image is approximated by

$$p_r(r_k) = \frac{n_k}{MN}$$
 where $k = 0, 1, \dots, L-1$

where $n_k \Rightarrow$ no. of pixels that have intensity r_k , $L \Rightarrow$ no. of possible intensity levels in the image

▶ The discrete form of transformation

$$\begin{split} s_k &= T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) \\ &= \frac{L-1}{MN} \sum_{j=0}^k n_j \quad \text{ where } k=0,1,\dots,L-1 \end{split}$$

- ▶ The transformation (mapping) $T(r_k)$ in this equation is called a *Histogram Equalization* or *Histogram Linearization*.
- ▶ In discrete space, it cannot be proved in general that this discrete transformation will produce the discrete equivalent of a uniform probability density function, which would be a uniform histogram.

Figure: Histogram Equalized images of dark and bright images

Figure: Histogram Equalized images of low-contrast and high-contrast images

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$s_0 = 1.33 \rightarrow 1$	$s_4 = 6.23 \rightarrow 6$
$s_0 = 1.33 \rightarrow 1$ $s_1 = 3.08 \rightarrow 3$ $s_2 = 4.55 \rightarrow 5$ $s_3 = 5.67 \rightarrow 6$	$s_5 = 6.65 \rightarrow 7$
$s_2 = 4.55 \rightarrow 5$	$s_6 = 6.86 \rightarrow 7$
$s_3 = 5.67 \rightarrow 6$	$s_7 = 7.00 \rightarrow 7$

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

- ▶ Histogram equalization automatically determines a transformation function that seeks to produce an output image that has a uniform histogram.
- ▶ In some application, uniform histogram is not desirable.
- ▶ Sometimes, it is useful to specify the shape of the histogram that we wish the processed image to have.
- ► The method which is used to generate a processed image that has a specified histogram is called histogram matching or histogram specification.

FIGURE 3.23

(a) Image of the Mars moon Phobos taken by NASA's Mars Global Surveyor. (b) Histogram. (Original image courtesy of NASA.)

a b

FIGURE 3.24

(a) Transformation function for histogram equalization. (b) Histogramequalized image (note the washedout appearance). (c) Histogram of (b).

- ▶ Let $p_r(r)$ & $p_z(z)$ are the continuous PDFs.
- Let r & z are the intensity levels of the input and output image respectively.
- $ightharpoonup p_r(r)$ can be estimated from the given input image whereas, $p_z(z)$ is the specified PDF.
- ightharpoonup Let s = random variable with the property

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$
 (2)

▶ Let us consider another random variable z with the property

$$G(z_q) = (L-1) \sum_{i=0}^{q} p_z(z_i)$$
 (3)

▶ Requirement is $G(z_q) = s_k$

$$z_q = G^{-1}(s_k) \tag{4}$$

Histogram Matching: Procedure

Procedure to obtain an image whose intensity levels have a specified PDF:

- 1. Obtain $p_r(r_k)$ from the input image and use it to find the histogram equalization transformation. Obtain the value of s_k using Eq. (2). Round the resulting value, s_k , to the integer range [0, L-1].
- 2. Compute all values of the transformation function $G(z_q)$ using Eq. (3). Round the values of $G(z_q)$ to integers in the range [0,L-1]. Store the value of $G(z_q)$ in a table.
- 3. For every value of s_k use the stored values of $G(z_1)$ from step 2 to find the corresponding value of z_q so that $G(z_q)$ is closest to s_k and store these mapping form s_k to z_q . When more than one value of z_q satisfies the given s_k , choose the smallest value by convention.
- 4. Form the histogram-specified image by first histogram-equalizing the input image and then mapping every equalized pixel value, s_k , of this image to the corresponding value z_q in the histogram-specified image using mapping found in step 3.

Step I Obtain $p_r(r_k)$ and s_k

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Step 2 Obtain $G(z_q)$

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Step 2 Obtain $G(z_q)$

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00$$

Similarly,

$$G(z_1) = 7 \sum_{j=0}^{1} p_z(z_j) = 7 [p(z_0) + p(z_1)] = 0.00$$

and

$$G(z_2) = 0.00$$
 $G(z_4) = 2.45$ $G(z_6) = 5.95$

$$G(z_3) = 1.05$$
 $G(z_5) = 4.55$ $G(z_7) = 7.00$

Step 2 Obtain $G(z_q)$

Specified $p_z(z_q)$	Actual $p_z(z_k)$
0.00	0.00
0.00	0.00
0.00	0.00
0.15	0.19
0.20	0.25
0.30	0.21
0.20	0.24
0.15	0.11
	$p_z(z_q)$ 0.00 0.00 0.00 0.15 0.20 0.30 0.20

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00$$

Similarly.

$$G(z_1) = 7\sum_{j=0}^{1} p_z(z_j) = 7[p(z_0) + p(z_1)] = 0.00$$

and

$$G(z_2) = 0.00$$
 $G(z_4) = 2.45$ $G(z_6) = 5.95$

$$G(z_3) = 1.05$$
 $G(z_5) = 4.55$ $G(z_7) = 7.00$

Step 2 Obtain $G(z_q)$

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0.00$$

Similarly.

$$G(z_1) = 7 \sum_{j=0}^{1} p_z(z_j) = 7 [p(z_0) + p(z_1)] = 0.00$$

and

$$G(z_2) = 0.00$$
 $G(z_4) = 2.45$ $G(z_6) = 5.95$

$$G(z_3) = 1.05$$
 $G(z_5) = 4.55$ $G(z_7) = 7.00$

 $p_z(z_a)$

Step 3 Obtain mapping between s_k and z_q

z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$	0
$z_2 = 2$	0
$z_3 = 3$	1
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7

s_k	\rightarrow	z_q
1	\rightarrow	3
3	\rightarrow	4 5
3 5 6	\rightarrow	
6	\rightarrow	6
7	\rightarrow	7

Step 4 Form the histogram-specified image by mapping every equalized pixel value, s_k of equalized image to the corresponding value z_q in the histogram-specified image using mapping found in step 3.

