INSTITUTO FEDERAL DE EDUCAÇÃO, GENCIA E TECNOLOGIA PROMISIA	Plano de Ensino	
Dados do Componente Curricular		
Nome do Componente Curricular: Microprocessadores e Microcontroladores		
Curso: Bacharelado em Engenharia de Computação		
Semestre: 7°		
Carga Horária: 67h/r	Horas Teóricas: 47h/r	Horas Práticas: 20h/r
Docente Responsável:	·	

Ementa

Histórico dos microprocessadores e microcontroladores. Arquitetura e organização de um microprocessador. Conjunto básico de instruções de microprocessador. Estudo particularizado de um microprocessador. Arquitetura e organização de um microcontrolador. Famílias de microcontroladores. Programação de microcontrolador. Interrupções e Timers. Manipulando entradas e saídas digitais. Conversores A/D e D/A. Manipulando Saídas PWM. Projeto de hardware e software com microcontroladores.

Objetivos

Geral

 Apresentar os conceitos básicos e avançados sobre os microprocessadores e microcontroladores, permitindo compreender o funcionamento de equipamentos controlados por estes dispositivos e o desenvolvimento de projetos de circuitos eletrônicos de controle baseados em microcontroladores.

Específicos

- Conhecer a arquitetura dos microprocessadores e microcontroladores.
- Conhecer as linguagens de programação dos microprocessadores e microcontroladores.
- Conhecer os principais modelos e fabricantes de microcontroladores.
- Conhecer as aplicações dos microcontroladores.
- Aprender a construir circuitos com microcontroladores.
- Aprender a programar os microcontroladores.
- Conhecer os periféricos dos microcontroladores.
- Aprender a utilizar os microcontroladores na automação de processos.

Conteúdo Programático

1^a Unidade

- Histórico dos microprocessadores e microcontroladores.
- Arquitetura e organização de um microprocessador:
 - Unidade de controle.
 - Unidade logica aritmética.
 - o Barramentos.
- Conjunto básico de instruções de microprocessador:
 - Set de instrução.
 - Linguagem assembly.
- Estudo particularizado de um microprocessador:

- o Registradores.
- o Acesso a memória.
- Instruções logica e aritméticas.
- o Instruções de controle.
- Dispositivos de entrada e saída.

2ª Unidade

- Arquitetura e organização de um microcontrolador:
 - Famílias de microcontroladores.
 - o PIC.
 - o ATMEL.
 - o Arduino.
 - o Beaglebone.
- Programação de microcontrolador:
 - o PIC.
 - o Arduino.
 - o Beaglebone.

3ª Unidade

- Interrupções e Timers.
- Manipulando entradas e saídas digitais.
- Conversores A/D e D/A.
- Manipulando Saídas PWM.
- Projeto de hardware e software com microcontroladores.

Metodologia de Ensino

- Aulas expositivas e dialogadas utilizando recursos audiovisuais.
- Desenvolvimento de projetos utilizando microcontroladores.
- Leitura e discussão de artigos técnicos relacionados ao domínio da disciplina.
- Pesquisas à Internet e elaboração de trabalhos em dupla sobre temas em evidência ou não cobertos pela disciplina.

Avaliação do Processo de Ensino e Aprendizagem

- Provas teóricas e práticas.
- Listas de exercícios.

Recursos Necessários

- Laboratório de Microcomputadores e Microcontroladores:
 - Datashow.
 - o 10 Computadores PC.
 - 10 Multímetros.
 - o 10 Osciloscópios.
 - 10 kit de desenvolvimento PIC.
 - 10 kit de desenvolvimento Arduino.
 - o 10 kit de desenvolvimento Beaglebone Black.
 - Softwares específicos para desenvolvimento, simulação e testes.
 - Componentes eletrônicos diversos.

Pré-Requisito

Organização e Arquitetura de Computadores.

Bibliografia

Básica

- BANZI, M. Primeiros passos com o Arduino. São Paulo: Novatec, 2011. ISBN: 9788575222904.
- MONTEIRO, M. A. Introdução a Organização de Computadores. 5. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2012. ISBN: 9788521615439.
- PEREIRA, F. **Microcontroladores PIC**: programação em C. 2. ed. São Paulo: Érica, 2003. ISBN: 9788571949355.

Complementar

- BANZI, M. Getting Started with Arduino. 2. ed. Sebastopol (EUA): O'Reilly Media, 2011. ISBN: 9781449309879.
- EVANS, M.; NOBLE, J.; HOCHENBAUM, J. **Arduino em Ação**. São Paulo: Novatec, 2013. ISBN: 9788575223734.
- GETTING Started Beaglebone Black. Disponível em http://beagleboard.org/Getting%20Started>. Acesso em 12/02/2015.
- MALVINO, A. P.; BATES, D. J. Eletrônica. Vol. I. 7. ed. São Paulo: McGraw-hill Interamericana, 2008. ISBN: 9788577260225.
- MONK, S. 30 Projetos com Arduino. 2. ed. Porto Alegre: Bookman, 2014. ISBN: 9788582601624.
- TUTORIAIS Arduino. Disponível em http://arduino.cc/en/Tutorial/Links>. Acesso em 12/02/2015.