

Week 13.2: General purpose GPUs

DS-GA 1004: Big Data

This week

- Graphics processing units (GPUs)
- GPGPUs and CUDA
- Software frameworks

Shaders ⇒ Kernels

- General purpose GPUs (GPGPUs) remove the distinction between vertexand pixel-cores
- "Shader" is replaced by "kernel" abstraction
 - This allows all cores to operate as either "vertex" or "pixel" cores...
 - Or as something else entirely!
- This is what NVidia's CUDA (Compute Unified Device Architecture, 2006)
 API does

CPU vs GPU architecture

Adapted from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

- ALU = Arithmetic logic unit (basic math operations)
- Control = program flow (branching, jumping, etc)
- Cache = on-CPU memory cache
- DRAM = Main system memory

CPU vs GPU architecture

Adapted from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

A slightly more accurate picture

Threads, blocks, and grids

CUDA arranges kernel execution into

THREADS, BLOCKS, and GRIDS

- Thread:
 - One execution
 - All threads execute the same kernel (but on different data)
 - Has local, private memory

Threads, blocks, and grids

CUDA arranges kernel execution into

THREADS, BLOCKS, and GRIDS

Thread:

- One execution
- All threads execute the same kernel (but on different data)
- Has local, private memory

Block:

- A group of (possibly related) threads
- Has shared memory for all threads

Threads, blocks, and grids

CUDA arranges kernel execution into

THREADS, BLOCKS, and GRIDS

Thread:

- One execution
- All threads execute the same kernel (but on different data)
- Has local, private memory

Block:

- A group of (possibly related) threads
- Has shared memory for all threads

Grid:

- A collection of blocks
- All grid cells have access to shared global memory (application-level)

Example "saxpy": $y \leftarrow a*x + y$

```
def serial_saxpy(N, a, x, y):
    for i = 0 .. N-1:
        y[i] = a * x[i] + y[i]
```

a = <some number>
x = <array of N numbers>
y = <array of N zeros>

serial_saxpy(N, a, x, y)

- Single-precision ax+y
- Cost for serial implementation: O(N)
- Computational dependencies are trivially parallel

Example "saxpy": $y \leftarrow a*x + y$

```
def serial_saxpy(N, a, x, y):
    for i = 0 .. N-1:
        y[i] = a * x[i] + y[i]

a = <some number>
x = <array of N numbers>
y = <array of N zeros>
serial_saxpy(N, a, x, y)
```

```
def cuda_saxpy(N, a, x, y):
       i = blockIdx.x * blockDim.x + threadIdx.x
       if i < N:
             y[i] = a * x[i] + y[i]
a = <some number>
x = <array of N numbers>
y = <array of N numbers>
d_x \leftarrow copy x to GPU
d_y \leftarrow copy y to GPU
cuda_saxpy<<<\Gamma N/2561, 256 >>>(N, a, d_x, d_y)
y \leftarrow copy d_y from GPU
```

Example "saxpy": $y \leftarrow a*x + y$

- Data access is managed by the thread:
 - blockldx.x = current block index
 - o blockDim.x = size of the current block
 - threadIdx.x = current thread within block
- 「N/2561 = number of blocks 256 = number of threads per block
- "if i < N ..." avoids array bound errors from integer math in block division

```
def cuda_saxpy(N, a, x, y):
       i = blockIdx.x * blockDim.x + threadIdx.x
       if i < N:
             y[i] = a * x[i] + y[i]
a = <some number>
x = <array of N numbers>
y = <array of N numbers>
d_x \leftarrow copy x to GPU
d_y \leftarrow copy y to GPU
cuda_saxpy<<<\Gamma N/2561, 256>>>(N, a, d_x, d_y)
y \leftarrow copy d_y from GPU
```

Thread execution and warps

- Threads within a block execute in parallel via SIMT
 - Single-Instruction, Multiple-Thread
- Threads run in groups of 32 called a warp
 - Threads start at the same instruction, but can follow different execution paths
 - Warp finishes when all threads have finished
 - Pre-Volta (2017) GPUs share the instruction counter, disable cores on different paths
 - For maximum efficiency: threads should follow a common path!
 - Threads can be explicitly synchronized: __syncthreads();
- Blocks need not execute all simultaneously
 - o E.g. if you have more blocks than cores
 - This is why you can't share memory between blocks

Example 2: Dot product (single-block)

```
// Vector dot product with shared memory
global void dot(float *a, float *b, float *c, int N)
      // Each thread acts as a mapper
      __shared__ float temp[N];
      int i = threadIdx.x;
      temp[i] = a[i] * b[i];
      // Wait here for all threads to finish
      syncthreads();
      // Use thread 0 as reducer
      if (threadIdx.x == 0) {
            float sum = 0.0;
            for (int i = 0; i < N; i++) {
                   sum += temp[i];
             *c = sum;
```

This could be improved in several ways...

- Use blocks to compute partial sums
 - ⇒ like combiners in map-reduce!
- Divide-and-conquer for sum aggregation
- Use atomic updates for output buffer
 - ⇒ like accumulators in spark!

Threads, blocks, grids, and hardware

- Like mappers, kernels must be independent of one another and able to execute in any order
- Unlike mappers, kernels are not pure functions.
 - o In fact, they cannot have return values at all!
 - Outputs are written to pre-allocated memory buffers

Threads, blocks, grids, and hardware

- Like mappers, kernels must be independent of one another and able to execute in any order
- Unlike mappers, kernels are not pure functions.
 - In fact, they cannot have return values at all!
 - Outputs are written to pre-allocated memory buffers
- To exploit shared memory within blocks, you must be careful about organizing your data (just like RDD partitions!)

Threads, blocks, grids, and hardware

 Like mappers, kernels must be independent of one another and able to execute in any order

DRAM

- Unlike mappers, kernels are not pure functions.
 - In fact, they cannot have return values at all!
 - Outputs are written to pre-allocated memory buffers
- To exploit shared memory within blocks, you must be careful about organizing your data (just like RDD partitions!)
- Different hardware will have different # cores
 - Thread/block abstraction hides the hardware core layout from the software
 - Current GPUs allow up to 1024 threads per block

Complex programs

- CUDA kernels are usually "simple" operations
 - Vector addition, matrix multiplication, etc.
- Usually we want to combine these to make complex programs
 - E.g. back-propagating through a convolutional network
- Not dissimilar from spark interleaving transformations with actions

Pitfalls of GPU usage

- Efficient usage relies on keeping the GPUs busy at all times
- Usually an idle GPU is waiting for data from the CPU
 - Memory transfer (communication) is often the biggest bottleneck!
 - Try to keep as much data on the GPU as possible without transfers
- Programs with complex control flow (eg conditionals)
- Writing custom GPU code is a daunting task... use existing frameworks!

Summary

Part 2: GPGPUs

- GPGPUs were originally designed to overcome imbalance in graphics, but proved to be a very useful abstraction!
- Shaders ⇒ Kernels
- Distributed programs with simple control flow on shared memory