Advanced Machine Learning

Follow the leader on OLO problems

Learning goals

- Getting to know online linear optimzation (OLO) problems
- See that FTL might fail for these problems
- Understanding the root cause for FTL's flaw

• Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function $L(a, z) = a^{\top} z$.

• Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function $L(a, z) = a^{\top} z$.

• Let
$$A = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

• Another popular instantiation of the online learning problem is the online linear optimization problem, which is characterized by a linear loss function $L(a, z) = a^{\top} z$.

• Let
$$\mathcal{A} = [-1, 1]$$
 and suppose that $z_t = \begin{cases} -\frac{1}{2}, & t = 1, \\ 1, & t \text{ is even,} \\ -1, & t \text{ is odd.} \end{cases}$

- No matter how we choose the first action $a_1^{\rm FTL}$, it will hold that FTL has a cumulative loss greater than (or equal) T 3/2, while the best action in hindsight has a cumulative loss of -1/2.
- Thus, FTL's cumulative regret is at least T 1, which is linearly growing in T.

$$\begin{aligned} a_{t+1}^{\text{FTL}} &= \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t} L(a, z_s) = \arg\min_{a \in [-1, 1]} a \sum_{s=1}^{t} z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^{t} z_s > 0, \\ 1, & \text{if } \sum_{s=1}^{t} z_s < 0, \\ \text{arbitrary, if } \sum_{s=1}^{t} z_s = 0. \end{cases} \end{aligned}$$

$$\begin{split} a_{t+1}^{\text{FTL}} &= \arg\min_{a \in \mathcal{A}} \sum_{s=1}^t L(a, z_s) = \arg\min_{a \in [-1, 1]} a \sum_{s=1}^t z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^t z_s > 0, \\ 1, & \text{if } \sum_{s=1}^t z_s < 0, \\ \text{arbitrary, if } \sum_{s=1}^t z_s = 0. \end{cases} \end{split}$$

Indeed, note that

$$\begin{aligned} a_{l+1}^{\text{FTL}} &= \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t} L(a, z_s) = \arg\min_{a \in [-1, 1]} a \sum_{s=1}^{t} z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^{t} z_s > 0, \\ 1, & \text{if } \sum_{s=1}^{t} z_s < 0, \\ \text{arbitrary, } & \text{if } \sum_{s=1}^{t} z_s = 0. \end{cases} \end{aligned}$$

$$\begin{aligned} a_{l+1}^{\text{FTL}} &= \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t} L(a, z_s) = \arg\min_{a \in [-1, 1]} a \sum_{s=1}^{t} z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^{t} z_s > 0, \\ 1, & \text{if } \sum_{s=1}^{t} z_s < 0, \\ \text{arbitrary, } & \text{if } \sum_{s=1}^{t} z_s = 0. \end{cases} \end{aligned}$$

t	$a_t^{ ext{FTL}}$	z_t	$L(a_t^{\mathrm{FTL}}, z_t)$	$\sum_{s=1}^{t} L(a_s^{\text{FTL}}, z_s)$	$\sum_{s=1}^{t} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	1 -1/2	1/2
3	-1	-1	1	2 -1/2	-1/2

$$\begin{aligned} \mathbf{a}_{t+1}^{\text{FTL}} &= \arg\min_{\mathbf{a} \in \mathcal{A}} \sum_{s=1}^t L(\mathbf{a}, z_s) = \arg\min_{\mathbf{a} \in [-1, 1]} \mathbf{a} \sum_{s=1}^t z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^t z_s > 0, \\ 1, & \text{if } \sum_{s=1}^t z_s < 0, \\ \text{arbitrary, } & \text{if } \sum_{s=1}^t z_s = 0. \end{cases} \end{aligned}$$

t	a_t^{FTL}	z_t	$L(a_t^{\text{FTL}}, z_t)$	$\sum_{s=1}^{t} L(a_s^{\text{FTL}}, z_s)$	$\sum_{s=1}^{l} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	1 -1/2	1/2
3	-1	-1	1	2 -1/2	-1/2
:	:	:	i i	÷	:
Т	$(-1)^T$	$(-1)^{T}$	1	<i>T</i> − 1 − 1/2	$(-1/2)^T$

Indeed, note that

$$\begin{aligned} a_{t+1}^{\text{FTL}} &= \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t} L(a, z_s) = \arg\min_{a \in [-1, 1]} a \sum_{s=1}^{t} z_s \\ &= \begin{cases} -1, & \text{if } \sum_{s=1}^{t} z_s > 0, \\ 1, & \text{if } \sum_{s=1}^{t} z_s < 0, \\ \text{arbitrary, if } \sum_{s=1}^{t} z_s = 0. \end{cases} \end{aligned}$$

t	$a_t^{ ext{FTL}}$	z_t	$L(a_t^{\mathrm{FTL}}, z_t)$	$\sum_{s=1}^{t} L(a_s^{\text{FTL}}, z_s)$	$\sum_{s=1}^{t} z_s$
1	1	-1/2	-1/2	-1/2	-1/2
2	1	1	1	1 -1/2	1/2
3	-1	-1	1	2 -1/2	-1/2
:	•	•	:		:
Т	$(-1)^{T}$	$(-1)^{T}$	1	<i>T</i> − 1 − 1/2	$(-1/2)^{T}$

The best action has cumulative loss

$$\inf_{a \in \mathcal{A}} \sum\nolimits_{s=1}^{T} L(a, z_s) = \inf_{a \in [-1, 1]} a \underbrace{\sum\nolimits_{s=1}^{T} z_s}_{=(-1/2)^T} = -1/2.$$

- Thus, we see: FTL can fail for online linear optimization problems, although it is well suited for online quadratic optimization problems!
- The reason is that the action selection of FTL is not stable enough (caused by the loss function), which is fine for the latter problem, but problematic for the former.
- One has to note that the online linear optimization problem example above, where FTL fails, is in fact an adversarial learning setting: The environmental data is generated in such a way that the FTL learner is fooled in each time step.

