GEBRUIK VAN ENDECRYPT, MATHEMATICA EN MATLAB WORD TOEGELAAT

Universiteit van Stellenbosch Toegepaste Wiskunde 314 Semestertoets II 14 Junie 2003

Tyd: 09:00-12:00 Punte: 100

Vir kantoorgebruik / For official use

Vul asseblief in / Please complete:

Van (blokletters) / Surname (capitals)
Volle Voorname / Full First Names
US-nommer / US Number

Vraag	Punte	Nasiener
Question	Marks	Marker
1	/17	J. van Vuuren
2	/13	J. van Vuuren
3	/16	P. Grobler
4	/16	P. Grobler
5	/19	P. Grobler
6	/19	P. Grobler
Totaal	/100	

Eksaminatore / Examiners: J.H. van Vuuren & P.J.P. Grobler

Lees asseblief die volgende reëls en voorskrifte, en teken dan die onderstaande verklaring:

- (1) Kommunikasie tussen kandidate word nie in die eksamenlokaal toegelaat nie.
- (2) Hulpmiddels (insluitende blankopapier, boeke, geskrifte en elektroniese apparaat) word nie in die eksamenlokaal toegelaat nie, tensy die gebruik van spesifieke items uitdruklik toegelaat of voorgeskryf is.
- (3) Geen dele van hierdie vraestel/antwoordstel mag verwyder word nie.
- (4) Ekstra tyd word nie toegestaan aan kandidate wat laat kom nie.
- (5) Kandidate word nie toegelaat om die eksamenlokaal binne die eerste 45 minute van die eksamensessie te verlaat nie.
- (6) Antwoorde mag in potlood ingevul word.
- (7) Hierdie vraestel sowel as u antwoordstel moet aan 'n opsiener oorhandig word voordat u die eksamenlokaal verlaat.

Please read the following rules and instructions, and then sign the declaration below:

- (1) Communication between candidates is not allowed.
- (2) Supporting material (including blank paper, books, notes and electronic equipment) is not allowed in the examination room, unless the use of particular items is expressly allowed or prescribed.
- (3) No parts of this question/answer paper may be removed.
- (4) Latecomers are not allowed extra time.
- (5) Candidates are not allowed to leave the examination room within the first 45 minutes of the examination session.
- (6) Answers may be supplied in pencil.
- (7) Before leaving the examination room candidates must hand this question paper as well as solutions to an invigilator.

VERKLARING / DECLARATION	HANDTEKENING / SIGNATURE
	·
Hiermee verklaar ek dat ek die bogenoemde eksamenreëls sal gehoor-	
saam en dat die inligting op hierdie bladsy verstrek, korrek is.	
I hereby declare that I will abide by the above examination rules and	
and the second s	
that the particulars supplied on this front cover are correct.	

(1) (a) Definieer wat bedoel word met 'n primitiewe polinoom in $(\mathbb{Z}_2, +, \times)$. / Define what is mean by a primitive polynomial in $(\mathbb{Z}_2, +, \times)$. [2]

(b) Gebruik **Mathematica** om te toets of die volgende polinome primitief is, of nie. Motiveer volledig. / Use **Mathematica** to determine whether the following polynomials are primitive, or not. Motivate fully [5]

i.
$$f_1(x) = 1 + x^2 + x^6$$
,

ii.
$$f_2(x) = 1 + x^3 + x^6$$
,

iii.
$$f_3(x) = 1 + x^5 + x^6$$
.

(c) Waarom is primitiewe polinome belangrik by die studie van stroomsyfer stelsels? / Why are primitive polynomials important in the study of stream ciphers? [2]

(d) Gebruik 'n Vernam stroomsyfer stelsel waarvan die sleutelstroom gegenereer word deur die lineêre terugvoer-skuifregister $\mathcal{F}_{1+x^5+x^6}^5$ met begintoestand [1,1,0,0,0,1] om die kriptoteks 11000001 00010001 te dekripteer. Wat is die ooreenstemmende skoonteks (i.t.v. Romeinse karakters)? Wys u werking. / Use a Vernam stream cipher whose key stream is generated by the linear feedback shift register $\mathcal{F}_{1+x^5+x^6}^5$ with initial state [1,1,0,0,0,1] to decrypt the ciphertext 11000001 00010001. What is the corresponding plaintext (i.t.o. Roman characters)? Show your working. [3]

(e) Die binêre stroom $\underline{s} = 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, \dots$ is deur middel van 'n lineêre terugvoer-skuifregister, $\mathcal{F}_{f_4(x)}^6$, gevorm. Gebruik tegnieke uit lineêre algebra om die terugvoer-polinoom $f_4(x)$ te bepaal. / The binary stream $\underline{s} = 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, \dots$ was formed by means of a linear feedback shift register, $\mathcal{F}_{f_4(x)}^6$. Use techniques from linear algebra to determine the feedback polynomial, $f_4(x)$. [5]

(2) (a) Gebruik Fermat se Klein Stelling as uitgangspunt en bewys dat die orde van $\alpha \in \mathbb{Z}_n^*$ in die groep (\mathbb{Z}_n^*, \times) 'n deler van n-1 is, indien n priem is. / Use Fermat's Little Theorem as a point of departure, and prove that the order of $\alpha \in \mathbb{Z}_n^*$ in the group (\mathbb{Z}_n^*, \times) is a divisor of n-1, if n is prime. [3]

(b) Wat is die orde van $\alpha=13$ in die groep $(\mathbb{Z}_{41}^*,\times)$? / What is the order of $\alpha=13$ in the group $(\mathbb{Z}_{41}^*,\times)$? [1]

(c) Gebruik Shanks se Algoritme om die diskrete logaritme $\log_{\alpha}\beta \pmod{n}$ te bereken, waar $\alpha=13,\ \beta=11$ en n=41. Produseer beide die lyste $(i,\beta\alpha^{-i}\pmod{n})$ en $(j,\alpha^{mj}\pmod{n})$, vir $i,j=0,\ldots,m-1$, waar $m=\lceil \sqrt{n-1}\rceil$, en toon hoe u die logaritme bereken. Toets die korrektheid van u oplossing deur middel van modulêre magsverheffing. / Use Shanks' Algorithm to compute the discrete logarithm $\log_{\alpha}\beta \pmod{n}$, where $\alpha=13,\ \beta=11$ and n=41. Produce both the lists $(i,\beta\alpha^{-i}\pmod{n})$ and $(j,\alpha^{mj}\pmod{n})$, for all $i,j=0,\ldots,m-1$, where $m=\lceil \sqrt{n-1}\rceil$, and show how you determine the discrete logarithm. Test the validity of your answer via modular exponentiation.

(d) Die kriptoteks (11,4) is deur middel van die ElGamal-sisteem gevorm, en is vir 'n gebruiker met publieke sleutelgetalle soos in vraag 2(c) bedoel. Wat is die ooreenstemmende skoonteks (i.t.v. Romeinse karakters)? / The ciphertext (11,4) was formed via the ElGamal-cipher, and is intended for a user with public keys as in question 2(c). What is the corresponding plaintext (i.t.o. Roman characters)? [2]

(e) Wat is die waarde van die masker, k, wat in vraag 2(d) tydens enkripsie gebruik is? / What is the value of the mask, k, that was used in question 2(d) during encryption?

[2]

(3) (a) Definieer 'n q-êre kode van lengte n. / Define a q-ary code of length n. [1]

(b) Laat d die minimum afstand van 'n kode C wees. Bewys dat, as $d \geq 2t+1$, dan kan C t foute in enige kodewoord korrigeer. / Let d be the minimum distance of a code C. Prove that, if $d \geq 2t+1$, then C can correct t errors in any codeword. [5]

(c) Konstrueer 'n / Construct a

i. binêre (5,2,5)-kode. / binary (5,2,5)-code.

[1]

ii. binêre (5,4,3)-kode. / binary (5,4,3)-code.

[2]

iii. ternêre (3,9,2)-kode. / ternary (3,9,2)-code.

[3]

- (d) Beskou die kode $C = \{00100, 00011, 11111, 11000\}$. / Consider the code $C = \{00100, 00011, 11111, 11000\}$.
 - i. Wat is die parameters van C en hoeveel foute kan C korrigeer? / What is the parameters of C and how many errors can C correct? [2]

ii. Dekodeer die ontvangde vektore 11100, 01110 en 00111. / Decode the received vectors 11100, 01110 and 00111. [2]

(4) (a) Definieer 'n q-êre lineêre kode van lengte n. / Define a q-ary linear code of length n. [1]

(b) Laat C 'n lineêre kode wees en laat w(C) die kleinste van die gewigte van die nie-nul kodewoorde van C wees. Bewys dat d(C) = w(C). / Let C be a linear code and let w(C) be the smallest of the non-zero codewords of C. Prove that d(C) = w(C). [7]

[3]

(c) Laat C die ternêre lineêre kode wees met voortbringermatriks / Let C be the ternary linear code with generator matrix

$$H = \left[egin{array}{c} 1011 \ 0112 \end{array}
ight]$$

i. Lys die kodewoorde van C. / List the codewords of C.

ii. Bepaal die minimum afstand van C. / Determine the minimum distance of C. [1]

iii. Is C 'n perfekte kode? (Gee redes). / Is C a perfect code? (give reasons). [2]

	iv. Vind 'n pariteitskontrolematriks vir C . / Find a parity-check matrix for C . [2]
(5) (a	Veronderstel C is 'n $[n, k]$ -kode oor $GF(q)$. Bewys dat / Suppose C is an $[n, k]$ -code over $GF(q)$. Prove that
	i. elke vektor van $V(n,q)$ is in 'n neweklas van C . / every vector of $V(n,q)$ is in some coset of C .
	ii. elke neweklas bevat q^k vektore. / every coset contains q^k vectors.

iii. twee verskillende neweklasse is disjunk. / two distinct cosets are disjoint.

(b) Laat C die binêre lineêre kode wees met voortbringermatriks / Let C be the binary linear code with generator matrix

$$G = \left[\begin{array}{ccccc} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{array} \right].$$

i. Stel 'n dekoderingstabel vir C op. / Write down a decoding table for C. [4]

ii. Vind 'n standaardvorm pariteitskontrolematriks vir C en skryf die pariteitskontrole vergelykings van C neer. / Find a standard form parity-check matrix of C and write down the parity-check equations for C. [3]

iii. Stel die sindroom opsoektabel van C op. / Write down the syndrome look-up table for C.

iv. Vind die sindrome van die ontvangde vektore 11101 en 01111, en dekodeer hulle.

/ Find the syndromes of the received vectors 11101 and 01111, and decode them.

[2]

(6) (a) Veronderstel C is 'n [n, k]-kode oor GF(q) met pariteitskontrolematriks H. Bewys dat die minimum afstand van C gelyk is aan d as en slegs as enige d-1 kolomme van H lineêr onafhanklik is, terwyl daar d kolomme is wat lineêr afhanklik is. / Suppose C is an [n, k]-kode over GF(q) with parity-check matrix H. Prove that the minimum distance of C is equal to d if and only if any d-1 columns of h are linearly independent, while there are d columns that are linearly dependent. [10]

(b) Vind 'n pariteitskontrolematriks vir Ham(3,3). Hoeveel kodewoorde het Ham(3,3). / Find a parity-check matrix for Ham(3,3). How many codewords does Ham(3,3) have. [4]

(c) Vind 'n pariteitskontrolematriks vir Ham(3,2) en dekodeer 1110110. / Find a parity-check matrix for Ham(3,2) and decode 1110110. [5]