MA 523: Homework, Midterms and Practice Problems Solutions

Carlos Salinas

Last compiled: October 21, 2016

Contents

1		mework Solutions
	1.1	Homework 1
	1.2	Homework 2
	1.3	Homework 3
	1.4	Homework 4
	1.5	Homework 5
		Homework 6
2	Exa	ams
	2.1	Midterm Practice Problems
3	Qua	alifying Exams
	3.1	Qualifying Exam, August '04
		Qualifying Exam, August '05
		Qualifying Exam, January '14

1 Homework Solutions

1.1 Homework 1

PROBLEM 1.1.1 (Taylor's formula). Let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth, $n \geq 2$. Prove that

$$f(x) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} D^{\alpha} f(0) x^{\alpha} + \mathcal{O}(|x|^{k+1})$$

as $x \to \mathbf{0}$ for each k = 1, 2, ..., assuming that you know this formula for n = 1. Hint: Fix $x \in \mathbb{R}^n$ and consider the function of one variable g(t) := f(tx). Prove that

$$\frac{d^m}{dt^m}g(t) = \sum_{|\alpha|=m} \frac{m!}{\alpha!} D^{\alpha} f(tx) x^{\alpha},$$

by induction on m.

SOLUTION. Taking the hint, apply Taylor's formula to the function g(t) = f(tx),

$$g(t) = \sum_{k=0}^{\infty}$$

PROBLEM 1.1.2. Write down the characteristic equation for the PDE

$$u_t + b \cdot Du = f \tag{*}$$

on $\mathbb{R}^n \times (0, \infty)$, where $b \in \mathbb{R}^n$. Using the characteristic equation, solve (*) subject to the initial condition

$$u = g$$

on $\mathbb{R}^n \times \{t=0\}$. Make sure the answer agrees with formula (5) in §2.1.2 of [E].

SOLUTION.

PROBLEM 1.1.3. Solve using the characteristics:

- (a) $x_1^2 u_{x_1} + x_2^2 u_{x_2} = u^2$, u = 1 on the line $x_2 = 2x_1$.
- (b) $uu_{x_1} + u_{x_2} = 1$, $u(x_1, x_1) = x_1/2$.
- (c) $x_1u_{x_1} + 2x_2u_{x_2} + u_{x_3} = 3u, u(x_1, x_2, 0) = g(x_1, x_2).$

PROBLEM 1.1.4. For the equation

$$u = x_1 u_{x_1} + x_2 u_{x_2} + \frac{1}{2} \left(u_{x_1}^2 + u_{x_2}^2 \right)$$

find a solution with $u(x_1, 0) = (1 - x_1^2)/2$.

1.2 Homework 2

PROBLEM 1.2.1. Verify assertion (36) in [E, §3.2.3], that when Γ is not flat near x^0 the noncharacteristic condition is

$$D_p F(p^0, z^0, x^0) \cdot \nu(x^0) \neq 0.$$

(Here $\nu(x^0)$ denotes the normal to the hypersurface Γ at x^0).

SOLUTION.

PROBLEM 1.2.2. Show that the solution of the quasilinear PDE

$$u_t + a(u)u_x = 0$$

with initial conditions u(x,0) = g(x) is given implicitly by

$$u = g(x - a(u)t).$$

Show that the solution develops a shock (becomes singular) for some t > 0, unless a(g(x)) is a nondecreasing function of x.

SOLUTION.

PROBLEM 1.2.3. Show that the function u(x,t) defined for $t \geq 0$ by

$$u(x,t) = \begin{cases} -\frac{2}{3} \left(t + \sqrt{3x + t^2} \right) & \text{for } 4x + t^2 > 0\\ 0 & \text{for } 4x + t^2 < 0 \end{cases}$$

is an (unbounded) entropy solution of the conservation law $u_t + (u^2/2)_x = 0$ (inviscid Burgers' equation).

1.3 Homework 3

PROBLEM 1.3.1. Consider the initial value problem

$$\begin{cases} u_t = \sin u_x, \\ u(x,0) = \frac{\pi}{4}x. \end{cases}$$

Verify that the assumptions of the Cauchy–Kovalevskaya theorem are satisfied and obtain the taylor series of the solution about the origin.

SOLUTION.

PROBLEM 1.3.2. Consider the Cauchy problem for u(x,y)

$$\begin{cases} u_y = a(x, y, u)u_x + b(x, y, u), \\ u(x, 0) = 0, \end{cases}$$

let a and b be analytic functions of their arguments. Assume that $D^{\alpha}a(0,0,0) \geq 0$ and $D^{\alpha}b(0,0,0) \geq 0$ for all α . (Remember by definition, if $\alpha = 0$ then $D^{\alpha}f = f$.)

- (a) Show that $D^{\beta}u(0,0) \geq 0$ for all $|\beta| \leq 2$.
- (b) Prove that $D^{\beta}u(0,0) \geq 0$ for all $\beta = (\beta_1, \beta_2)$. (*Hint:* Argue as in the proof of the Cauchy–Kovalevskaya theorem; i.e., use induction in β_2)

SOLUTION.

PROBLEM 1.3.3. (Kovalevskaya's example) show that the line $\{t=0\}$ is characteristic for the heat equation $u_t = u_{xx}$. Show there does not exist an analytic solution u of the heat equation in $\mathbb{R} \times \mathbb{R}$, with $u = 1/(1+x^2)$ on $\{t=0\}$. (*Hint:* assume there is an analytic solution, compute its coefficients, and show instead that the resulting power series diverges in any neighborhood of (0,0).)

1.4 Homework 4

PROBLEM 1.4.1 (Legendre transform). Let $u(x_1, x_2)$ be a solution of the quasilinear equation

$$a^{11}(Du)u_{x_1x_1} + 2a^{12}(Du)u_{x_1x_2} + a^{22}(Du)u_{x_2x_2} = 0$$

in some region of \mathbb{R}^2 , where we can invert the relations

$$p^1 = u_{x_1}(x_1, x_2), \quad p^2 = u_{x_2}(x_1, x_2)$$

to solve for

$$x^{1} = x^{1}(p_{1}, p_{2}), \quad x^{2} = x^{2}(p_{1}, p_{2}).$$

Define then

$$v(p) := \mathbf{x}(p) \cdot p - u(\mathbf{x}(p)),$$

where $\mathbf{x} = (x^1, x^2), p = (p_1, p_2)$. Show that v satisfies the *linear* equation

$$a^{22}(p)v_{p_1p_2} - 2a^{12}(p)v_{p_1p_2} + a^{11}(p)v_{p_1p_2} = 0.$$

(Hint: See [Evans, 4.4.3b], prove the identities (29)).

SOLUTION.

PROBLEM 1.4.2. Find the solution u(x,t) of the one-dimensional wave equation

$$u_{tt} - u_{xx} = 0$$

in the quadrant x > 0, t > 0 for which

$$\begin{cases} u(x,0) = f(x), & u_t(x,0) = g(x), & \text{for } x > 0, \\ u_t(0,t) = \alpha u_x(0,t), & \text{for } t > 0, \end{cases}$$

where $\alpha \neq -1$ is a given constant. Show that generally no solution exists when $\alpha = -1$. (*Hint:* Use a representation u(x,t) = F(x-t) + G(x+t) for the solution.)

SOLUTION.

PROBLEM 1.4.3. (a) Let u be a solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$ for $0 < x < \pi$, t > 0 such that $u(0,t) = u(\pi,t) = 0$. Show that the energy

$$E(t) = \frac{1}{2} \int_0^{\pi} (u_t^2 + c^2 u_x^2) dx, \quad t > 0$$

is independent of t; i.e., $\frac{d}{dt}E = 0$ for t > 0. Assume that u is C^2 up to the boundary.

(b) Express the energy E of the Fourier series solution

$$u(x,t) = \sum_{n=1}^{\infty} (a_n \cos(nct) + b_n \sin(nct)) \sin(nx)$$

in terms of coefficients a_n , b_n .

1.5 Homework 5

PROBLEM 1.5.1. Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define $v(x) := u(Ox), x \in \mathbb{R}^n$, then $\Delta v = 0$.

SOLUTION.

PROBLEM 1.5.2. Let n=2 and U be the halfplane $\{x_2>0\}$. Prove that

$$\sup_{U} u = \sup_{\partial U} u$$

for $u \in C^2(U) \cap C(\bar{U})$ which are harmonic in U under the additional assumption that u is bounded from above in \bar{U} . (The additional assumption is needed to exclude examples like $u = x_2$.) [Hint: Take for $\varepsilon > 0$ the harmonic function

$$u(x_1, x_2) - \varepsilon \ln \sqrt{x_1^2 + (x_2 + 1)^2}.$$

Apply the maximum principle to a region $\{x_1^2 + (x_2 + 1)^2 < a^2, x_2 > 0\}$ with large a. Let $\varepsilon \to 0$.]

SOLUTION.

PROBLEM 1.5.3. Let $U \subset \mathbb{R}^n$ be an open set. We say $v \in C^2(U)$ is subharmonic if

$$-\Delta v \le 0$$
 in U .

(a) Let $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ be smooth and convex. Assume u^1, \dots, u^m are harmonic in U and

$$v := \varphi(u_1, \dots, u_m).$$

Prove v is subharmonic.

[Hint: Convexity for a smooth function $\varphi(z)$ is equivalent to $\sum_{j,k=1}^{m} \varphi_{z_j,z_k}(z)\xi_j\xi_k \geq 0$ for any $\xi \in \mathbb{R}^m$.]

(b) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic. (Assume that harmonic functions are C^{∞} .)

1.6 Homework 6

PROBLEM 1.6.1. For n = 2 find Green's function for the quadrant $\{x_1 > 0, x_2 > 0\}$ by repeated reflection.

SOLUTION.

PROBLEM 1.6.2. (Precise form of Harnack's inequality) Use Poisson's formula for the ball to prove

$$\frac{r^{n-2}(r-|x|)}{(r+|x|)^{n-1}}u(0) \le u(x) \le \frac{r^{n-2}(r+|x|)}{(r-|x|)^{n-1}}u(0)$$

whenever u is positive and harmonic in $B(0,r) = \{ x \in \mathbb{R}^n : |x| < r \}.$

SOLUTION.

PROBLEM 1.6.3. Let $P_k(x)$ and $P_m(x)$ be homogeneous harmonic polynomials in \mathbb{R}^n of degrees k and m respectively; i.e.,

$$P_k(\lambda x) = \lambda^k P_k(x),$$
 $P_m(\lambda x) = \lambda^m P_m(x)$ for every $x \in \mathbb{R}^n$, $\lambda > 0$,
 $\Delta P_k = 0,$ $\Delta P_m = 0$ in \mathbb{R}^n .

(a) Show that

$$\frac{\partial P_k}{\partial \nu} = k P_k(x), \qquad \frac{\partial P_m}{\partial \nu} = m P_m(x) \qquad \text{on } \partial B(0,1)$$

where $B(0,1) = \{ x \in \mathbb{R}^n : |x| < 1 \}$ and ν is the outward normal on $\partial B(0,1)$.

(b) Use (a) and Green's formula to prove that

$$\int_{\partial B(0,1)} P_k(x) P_m(x) d\sigma = 0, \quad \text{if } k \neq m.$$

2 Exams

2.1 Midterm Practice Problems

Problem 2.1.1. Solve $u_{x_1}^2 + x_2 u_{x_2} = u$ with initial conditions $u(x_1, 1) = x_1^2/4 + 1$.

SOLUTION. By inspection, we may suspect that $v(x_1, x_2) = x_1^2/4 + x_2$ is a solution to the PDE. It certainly satisfies the boundary condition. A routine calculation shows that v is in fact a solution to the PDE. Lucky guess!

More formally, let us solve this problem using the method of characteristics. First, write

$$F(p, z, x) = (p^{1}(s))^{2} + x^{2}(s)p^{2}(s) - z(s) = 0.$$

Then, the characteristic ODEs are

$$\begin{cases} \left(\dot{p}^{1}(s),\dot{p}^{2}(s)\right) = -(0,p^{2}(s)) + (p^{1}(s),p^{2}(s)) \\ = (p^{1}(s),0), \\ \dot{z}(s) = (2p^{1}(s),x^{2}(s)) \cdot (p^{1}(s),p^{2}(s)) \\ = 2p^{1}(s)^{2} + x^{2}(s)p^{2}(s), \\ \left(\dot{x}^{1}(s),\dot{x}^{2}(s)\right) = (2p^{1}(s),x^{2}(s)). \end{cases}$$

Now, for $(x^1(0), x^2(0)) = (x^0, 1)$, integrating the characteristics, we get

$$\begin{cases} (p^{1}(s), p^{2}(s)) = (p_{0}^{1}e^{s}, p_{0}^{2}), \\ (x^{1}(s), x^{2}(s)) = (2p_{0}^{1}e^{s} + x_{0}^{1}, x_{0}^{2}e^{s}), \\ z(s) = \frac{(x^{0})^{2}}{4}e^{2s} + p_{0}^{2}e^{s} + z^{0} \end{cases}$$

Using the initial condition and the PDE, we find that

$$p_0^1 = \frac{x^0}{2}, \quad p_0^2 = \frac{(x^0)^2}{4} + 1 - \frac{(x^0)^2}{4} = 1,$$

$$x_0^1 = 0, \quad x_0^2 = 1$$

$$z^0 = 0,$$

and consequently

$$\begin{cases} (x^{1}(s), x^{2}(s)) = (x^{0}e^{s}, e^{s}), \\ z(s) = \frac{(x^{0})^{2}}{4}e^{2s} + e^{s} \end{cases}$$

so, rewriting z in terms of (x^1, x^2) , we have

$$z(s) = \frac{(x^0)^2}{4} e^{2s} + e^s$$
$$= \frac{(x^1(s))^2}{4} + x^2(s),$$

so the solution in terms of (x_1, x_2) , is

$$u(x_1, x_2) = \frac{x_1^2}{4} + x_2,$$

just as we suspected.

PROBLEM 2.1.2. Find the maximal $t_0 > 0$ for which the (classical) solution of the Cauchy problem

$$\begin{cases} uu_x + u_t = 0, \\ u(x,0) = e^{-x^2/2}, \end{cases}$$

exists in $\mathbb{R} \times [0, t)$; i.e., the first time $t = t_0$ when the shock develops.

SOLUTION. First, let us find a solution to the PDE using the method of characteristics. Write

$$F(p, z, x) = z(s)p^{1}(s) + p^{2}(s).$$

Then, the characteristic ODEs are

$$\begin{cases} \left(\dot{p}^{1}(s), \dot{p}^{2}(s)\right) = -(0,0) - p^{1}(p^{1}(s), p^{2}(s)) \\ = \left(-p^{1}(s)^{2}, -p^{1}(s)p^{2}(s)\right), \\ \dot{z}(s) = \left(z(s), 1\right) \cdot \left(p^{1}(s), p^{2}(s)\right) \\ = z(s)p^{1}(s) + p^{2}(s) \\ = 0, \\ \left(\dot{x}(s), \dot{t}(s)\right) = \left(z(s), 1\right). \end{cases}$$

Thus, integrating the characteristic ODEs from $(x^0, 0)$, we have

$$\begin{cases} \dot{z}(s) = z^{0}, \\ (x(s), t(s)) = (z^{0}s + x^{0}, s); \end{cases}$$

since the PDE is quasilinear, we disregard (p^1, p^2) .

Applying the boundary conditions, we see that

$$z^0 = u(x^0, 0) = e^{-(x^0)^2/2}$$
.

Here's where it gets tricky. After a little struggling, we see that there is really no way to solve for z in terms of (x(s), t(s)). However, we can solve for the projected characteristics:

$$(x(t,y),t) = (e^{-y^2/2}t + y,t);$$

and this is really all that matters for us to find the time t_0 when the shock develops, i.e., the time when the projected characteristic fails to be injective.

A little calculation shows that this happens precisely when $t = e^{-1/2}$.

PROBLEM 2.1.3. If ρ_0 denotes the maximum density of cars on a highway (i.e., under bumpet-to-bumper conditions), then a reasonable model for traffic density ρ is given by

$$\begin{cases} \rho_t + (F(\rho))_x = 0, \\ F(\rho) = c\rho \left(1 - \frac{\rho}{\rho_0}\right), \end{cases}$$

where c > 0 is a constant (free speed of highway). Suppose the initial density is

$$\rho(x,0) = \begin{cases} \frac{1}{2}\rho_0 & \text{if } x < 0, \\ \rho_0 & \text{if } x > 0. \end{cases}$$

Find the shock curve and describe the weak solution. (Interpret your result for the traffic flow.)

SOLUTION. First, note that

$$(F(\rho))_x = F'(\rho)\rho_x$$

$$= \left[-c\frac{\rho}{\rho_0} + c\left(1 - \frac{\rho}{\rho_0}\right) \right]\rho_x$$

$$= \left(c - \frac{2c\rho}{\rho_0}\right)\rho_x.$$

Let us find a solution to the PDE using the method of characteristics. Write

$$G(p, z, x) = p^{2}(s) + F'(z(s))p^{1}(s).$$

Then, the characteristic ODEs are

$$\begin{cases} \left(\dot{p}^{1}(s),\dot{p}^{2}(s)\right) = \left(-F''(z(s))p^{1}(s),-F''(z(s))p^{2}(s)\right),\\ \dot{z}(s) = F'(z(s))p^{1}(s)+p^{2}(s)\\ = 0,\\ \left(\dot{x}^{1}(s),\dot{x}^{2}(s)\right) = \left(F'(z(s)),1\right). \end{cases}$$

Now, integrating the characteristics, we have

$$\begin{cases} z(s) = z^0, \\ (x^1(s), x^2(s)) = (F'(z^0)s + x^0, s). \end{cases}$$

We have two cases to consider, $x^0 < 0$ or $x^0 > 0$. For $x^0 < 0$, $z^0 = \rho_0/2$ and the projected characteristics look like

$$(F'(\rho_0/2)t + x^0, t) = \left(\left[c - \frac{2c(\rho_0/2)}{\rho_0} \right] t + x^0, t \right)$$
$$= (0 \cdot t + x^0, t)$$
$$= (x^0, t)$$

(where we have replaced s with the more appropriate t). Whereas for $x^0 > 0$, we have

$$(F'(\rho_0)t + x^0, t) = \left(\left[c - \frac{2c\rho_0}{\rho_0} \right] t + x^0, t \right)$$

= $(-ct + x^0, t)$.

These characteristics intersect precisely when

$$t = \frac{x_1^0 - x_2^0}{c},$$

where $x_1^0 > 0$, $x_2^0 < 0$.

PROBLEM 2.1.4. Find the characteristics of the second order equation

$$u_{xx} - (2\cos x)u_{xy} - (3+\sin^2 x)u_{yy} - yu_y = 0,$$

and transform it to the canonical form.

SOLUTION. First, writing the PDE in the form

$$Au_{xx} + 2Bu_{xy} + Cu_{yy} + 2Du_x + 2Eu_y + Fu = 0,$$

we see that A=1, $B=-\cos x$, $C=-3\sin^2 x$, and E=-y/2. We solve for the characteristic curve by find a solution to the ODEs

$$\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - AC}}{A}$$
$$= -\cos x \pm \sqrt{\cos^2 x + 3 + \sin^2 x}$$
$$= -\cos x \pm 2.$$

The solutions give us the following ODEs

$$\begin{cases} y = -\sin x + 2x + \xi(x, y), \\ y = -\sin x - 2x + \eta(x, y). \end{cases}$$

Integrating these equations, we have

$$\begin{cases} \xi(x,y) = y + \sin x - 2x, \\ \eta(x,y) = y + \sin x + 2x. \end{cases}$$

These are the characteristic strips for the PDE.

To put this PDE in canonical form, we first compute the following partial derivatives

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x},$$

$$u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y},$$

$$u_{xx} = u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx} + (u_{\xi\xi}\xi_{x} + u_{\xi\eta}\eta_{x})\xi_{x} + (u_{\xi\eta}\xi_{x} + u_{\eta\eta}\eta_{x})\eta_{x}$$

$$= u_{\xi\xi}(\xi_{x})^{2} + u_{\eta\eta}(\eta_{x})^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\xi}\xi_{xx} + u_{\eta\eta}\eta_{xx},$$

exploiting symmetry, we can find u_{yy} by replacing x with y above

$$u_{yy} = u_{\xi\xi}(\xi_y)^2 + u_{\eta\eta}(\eta_y)^2 + 2u_{\xi\eta}\xi_y\eta_y + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy},$$

the last thing we need to figure out is the mixed partial

$$u_{xy} = u_{\xi}\xi_{xy} + u_{\eta}\eta_{xy} + (u_{\xi\xi}\xi_y + u_{\xi\eta}\eta_y)\xi_x + (u_{\xi\eta}\xi_y + u_{\eta\eta}\eta_y)\eta_x$$

= $u_{\xi\xi}\xi_x\xi_y + u_{\eta\eta}\eta_x\eta_y + u_{\xi\eta}(\xi_x\eta_y + \xi_y\eta_x) + u_{\xi}\xi_{xy} + u_{\eta}\eta_{xy}.$

Now find the partials $\xi_x, \eta_x, \xi_y, \eta_y, \xi_{xy}, \ldots$, etc.

tials
$$\xi_x, \eta_x, \xi_y, \eta_y, \xi_{xy}, \dots$$
, etc.

$$\xi_x = \cos x - 2, \qquad \eta_x = \cos x + 2,$$

$$\xi_{xx} = -\sin x, \qquad \eta_{xx} = -\sin x,$$

$$\xi_{xy} = 0, \qquad \eta_{xy} = 0,$$

$$\xi_y = 1, \qquad \eta_y = 1,$$

$$\xi_{yy} = 0, \qquad \eta_{yy} = 0.$$

Thus,

$$\begin{cases} u_x = (\cos x - 2)u_{\xi} + (\cos x + 2)u_{\eta}, \\ u_y = u_{\xi} + u_{\eta}, \\ u_{xx} = (\cos x - 2)^2 u_{\xi\xi} + (\cos x + 2)^2 u_{\eta\eta} \\ + 2(\cos x + 2)(\cos x - 2)u_{\xi\eta} - (\sin x)u_{\xi} - (\sin x)u_{\eta} \\ = (\cos^2 x - 4\cos x + 4)u_{\xi\xi} + (\cos^2 x + 4\cos x + 4)u_{\eta\eta} \\ + 2(\cos^2 x - 4)u_{\xi\eta} - (\sin x)u_{\xi} - (\sin x)u_{\eta} \\ u_{yy} = u_{\xi\xi} + u_{\eta\eta} + 2u_{\xi\eta}, \\ u_{xy} = (\cos x - 2)u_{\xi\xi} + (\cos x + 2)u_{\eta\eta} + 2(\cos x)u_{\xi\eta}, \end{cases}$$

so the canonical form is

$$0 = u_{xx} - (2\cos x)u_{xy} - (3\sin^2 x)u_{yy} - yu_y$$

$$= \xi^2 u_{\xi\xi} + \eta^2 u_{\eta\eta}$$

$$+ 2\xi \eta u_{\xi\eta} - (\sin x)u_{\xi} - (\sin x)u_{\eta}$$

$$- (2\cos x) ((\cos x - 2)u_{\xi\xi} + (\cos x + 2)u_{\eta\eta} + 2(\cos x)u_{\xi\eta})$$

$$- (3\sin^2 x)(u_{\xi\xi} + u_{\eta\eta} + 2u_{\xi\eta})$$

$$- y(u_{\xi} + u_{\eta})$$

Who cares.

PROBLEM 2.1.5. Let $Lu := u_{xx} - 4u_{yy} + \sin(y + 2x)u_x = 0$.

- (a) Consider the level curve $\Gamma = \{(x,y) : \varphi(x,y) = C\}$ where $|D\varphi| \neq 0$ on Γ . Define what it means for Γ to be characteristic with respect to L at a point $(x_0, y_0) \in \Gamma$.
- (b) Find the points at which the curve $x^2 + y^2 = 5$ is characteristic.

(c) Is it true that every smooth simple closed curve Γ in \mathbb{R}^2 has at least one point at which it is characteristic with respect to L?

SOLUTION.

PROBLEM 2.1.6. Consider the second order equation

$$Lu := u_{xx} - 2xu_{xy} + x^2u_{yy} - 2u_y = 0.$$

- (a) Find the characteristic curves of Lu = 0. What is the type of this equation?
- (b) Find the points on the line $\Gamma := \{ (x, y) \in \mathbb{R}^2 : x + y = 1 \}$ at which Γ is characteristic with respect to Lu = 0.

Solution.

PROBLEM 2.1.7. Solve the initial boundary value problem for the equation $u_{tt} = u_{xx}$ in $\{x > 0, t > 0\}$ satisfying

$$\begin{cases} u(x,0) = \sin^2 x, & u_t(x,0) = \sin x, \\ u(0,t) = 0. \end{cases}$$

SOLUTION.

Problem 2.1.8. Consider the initial/boundary value problem

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{for } 0 < x < \pi, \ t > 0, \\ u(x, 0) = x, & u_t(x, 0) = 0 & \text{for } 0 < x < \pi, \\ u_x(0, t) = 0, & u_x(\pi, t) = 0 & \text{for } t > 0. \end{cases}$$

- (a) Find a weak solution of the problem.
- (b) Is the solution unique? Continuous? C^1 ?

Solution.

PROBLEM 2.1.9. Let B_1^+ denote the open half-ball $\{x \in \mathbb{R}^n : |x| < 1, x_n > 0\}$. Assume $u \in C(\bar{B}_1^+)$ is harmonic in B_1^+ with u = 0 on $\partial B_1^+ \cap \{x_n = 0\}$. Set

$$v(x) := \begin{cases} u(x) & \text{if } x_n \ge 0, \\ -u(x_1, \dots, x_{n-1}, -x_n) & \text{if } x_n < 0, \end{cases}$$

for $x \in B_1$. Prove v is harmonic in B_1 .

Hint: It will be enough to prove that $\int_B \nabla v \nabla \eta \, dx = 0$ for any test function $\eta \in C_0^{\infty}(B_1)$. Split $\int_{B_1} = \int_{B_1^+} + \int_{B_1^-}$ and apply the integration by parts formula to each of $\int_{B_1^{\pm}}$.

SOLUTION.

PROBLEM 2.1.10. Let u and v be harmonic functions in the unit ball $B_1 \subset \mathbb{R}^n$. What can you conclude about u and v if

- (a) $D^{\alpha}u(0) = D^{\alpha}v(0)$ for every multiindex α ?
- (b) $u(x) \le v(x)$ for every $x \in B_1$ and u(0) = v(0)?

Justify your answer in each case.

SOLUTION.

PROBLEM 2.1.11. Let Φ be the fundamental solution of the Laplace equation in \mathbb{R}^n and $f \in C_0^{\infty}(\mathbb{R}^n)$. Then the convolution

$$u(x) := (\Phi * f)(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy$$

is a solution to the Poisson equation $-\Delta u = f$ in \mathbb{R}^n . Show that if f is radial, i.e., f(y) = f(|y|), and supported in $B_R := \{ |x| < R \}$, then

$$u(x) = c\Phi(x)$$

for any $x \in \mathbb{R}^n \setminus B_R$, where

$$c = \int_{\mathbb{R}^n} f(y) \, dy.$$

[Hint: Use polar (spherical) coordinates and apply the mean value property for harmonic functions.]

3 Qualifying Exams

3.1 Qualifying Exam, August '04

PROBLEM 3.1.1. Consider the initial value problem

$$\begin{cases} a(x,y)u_x + b(x,y)u_y = -u, \\ u = f & \text{on } S^1 = \{x^2 + y^2 = 1\}, \end{cases}$$

where a and b satisfy

$$a(x,y) + b(x,y)y > 0$$

for any $x, y \in \mathbb{R}^n \setminus \{(0,0)\}.$

- (a) Show that the initial value problem has a unique solution in a neighborhood of S^1 . Assume that a, b, and f are smooth.
- (b) Show that the solution of the initial value problem actually exists in $\mathbb{R}^2 \setminus \{(0,0)\}$.

SOLUTION.

PROBLEM 3.1.2. Let $u \in C^2(\mathbb{R} \times [0,\infty))$ be a solution of the initial value problem for the onedimensional wave equation

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{on } \mathbb{R} \times (0, \infty), \\ u = f, & u_t = g & \text{in } \mathbb{R} \times 0, \end{cases}$$

where f and g have compact support. Define the kinetic energy by

$$K(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx,$$

and the potential energy by

$$P(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx.$$

Show that

- (a) K(t) + P(t) is constant in t,
- (b) K(t) = P(t) for all large enough times t.

SOLUTION.

PROBLEM 3.1.3. Use Kirchhoff's formula and Duhamel's principle to obtain an integral representation of the solution of the following Cauchy problem

$$\begin{cases} u_{tt} - \Delta u = e^{-t} g(x) & \text{for } x \in \mathbb{R}^3, t > 0, \\ u(x, 0) = u_t(x, 0) = 0 & \text{for } x \in \mathbb{R}^3. \end{cases}$$

Verify that the integral representation reduces to the obvious solution $u = e^{-t} + t - 1$ when g(x) = 1.

SOLUTION.

PROBLEM 3.1.4. Let Ω be a bounded open set in \mathbb{R}^n and $g \in C_0^{\infty}(\Omega)$. Consider the solutions of the initial boundary value problem

$$\begin{cases} \Delta u - u_t = 0 & \text{for } x \in \Omega, \, t > 0, \\ u(x,0) = g(x) & \text{for } x \in \Omega, \\ u(x,t) = 0 & \text{for } xi \in \partial \Omega, \, t \geq 0, \end{cases}$$

and the Cauchy problem

$$\begin{cases} \Delta v - v_t = 0 & \text{for } x \in \mathbb{R}^n, \ t > 0, \\ v(x, 0) = |g(x)| & \text{for } x \in \mathbb{R}^n, \end{cases}$$

where we put g = 0 outside Ω .

(a) Show that

$$-v(x,t) \le u(x,t) \le v(x,t)$$

for any $x \in \Omega$, t > 0.

(b) Use (a) to conclude that

$$\lim_{t \to \infty} u(x, t) = 0,$$

for any $x \in \Omega$.

SOLUTION.

PROBLEM 3.1.5. Let $P_k(x)$ and $P_m(x)$ be homogeneous harmonic polynomials in \mathbb{R}^n of degrees k and m respectively; i.e.,

$$P_k(\lambda x) = \lambda^k P_k(x), \qquad P_m(\lambda x) = \lambda^m P_m(x),$$

for any $x \in \mathbb{R}^n$, $\lambda > 0$,

$$\Delta P_k = 0, \qquad \Delta P_m = 0$$

in \mathbb{R}^n .

(a) Show that

$$\frac{\partial P_k(x)}{\partial \nu} = kP_k(x), \qquad \frac{\partial P_m(x)}{\partial \nu} = mP_m(x)$$

on ∂B_1 , where $B_1 = \{ |x| < 1 \}$ and ν is the outward normal on ∂B_1 .

(b) Use (a) and Green's second identity to prove that

$$\int_{\partial B_1} P_k(x) P_m(x) \, dS = 0,$$

if $k \neq m$.

3.2 Qualifying Exam, August '05

Problem 3.2.1.

(a) Find a solution of the Cauchy problem

$$\begin{cases} yu_x + xu_y = xy, \\ u = 1 & \text{on } S^1 = \{ x^2 + y^2 = 1 \}. \end{cases}$$

(b) Is the solution unique in a neighborhood of the point (1,0)? Justify your answer.

SOLUTION. The solution to teh first part is

$$u(x,y) = \frac{x^2 + y^2}{4} + \frac{3}{4}.$$

PROBLEM 3.2.2. Consider the second order PDE in $\{x > 0, y > 0\} \subset \mathbb{R}^2$

$$x^2 u_{xx} - y^2 u_{yy} = 0.$$

- (a) Classify the equation and reduce it to the canonical form.
- (b) Show that the general solution of the equation is given by the formula

$$u(x,y) = F(x,y) + \sqrt{xy}G(x/y).$$

SOLUTION.

PROBLEM 3.2.3. Let Φ be the fundamental solution of the Laplace equation in \mathbb{R}^3 and $f \in C_0^{\infty}(\mathbb{R}^n)$. Then the convolution

$$u(x) := (\Phi * f)(x) = \int_{\mathbb{R}^n} \Phi(x - y) f(y) \, dy$$

is a solution of the Poisson equation $-\Delta u = f$ in \mathbb{R}^n . Show that if f is radial (i.e., f(y) = f(|y|)) and supported in $B_R = \{ |x| < R \}$, then

$$u(x) = c\Phi(x),$$

for any $x \in \mathbb{R}^n \setminus B_R$, where

$$c = \int_{\mathbb{R}^n} f(y) \, dy.$$

[Hint: Use spherical (polar) coordinates and the mean value property.]

PROBLEM 3.2.4. Consider the so-called 2-dimensional wave equation with dissipation

$$\begin{cases} u_{tt} - \Delta u + \alpha u_t = 0 & \text{in } \mathbb{R}^2 \times (0, \infty), \\ u(x, 0) = g(x), & u_t(x, 0) = h(x) & \text{for } x \in \mathbb{R}^2, \end{cases}$$

where $g, h \in C_0^{\infty}(\mathbb{R}^2)$ and $\alpha \geq 0$ is a constant.

(a) Show that for an appropriate choice of constant λ and μ the function

$$v(x_1, x_2, x_3, t) := e^{\lambda t + \mu x_3} u(x_1, x_2, t)$$

solves the 3-dimensional wave equation $v_{tt} - \Delta v = 0$.

(b) Use (a) to prove the following domain of dependence result: for any point $(x_0, t_0) \in \mathbb{R}^2 \times (0, \infty)$ the value $u(x_0, t_0)$ is uniquely determined by values of g and h in $\overline{B_{t_0}(x_0)} := \{|x - x_0| \le t_0\}$. (You may use the corresponding result for the wave equation without proof.)

SOLUTION.

PROBLEM 3.2.5. Let u(x,t) be a bounded solution of the heat equation $u_t = u_{xx}$ in $\mathbb{R} \times (0,\infty)$ with the initial condition

$$u(x,0) = u_0(x)$$

for $x \in \mathbb{R}$, where $u_0 \in C^{\infty}$ is 2π -periodic, i.e., $u_0(x+2\pi) = u_0(x)$. Show that

$$\lim_{t \to \infty} u(x, t) = a_0,$$

uniformly in $x \in \mathbb{R}$, where

$$a_0 := \frac{1}{2\pi} \int_0^{2\pi} u_0(x) \, dx.$$

3.3 Qualifying Exam, January '14

PROBLEM 3.3.1. Consider the first order equation in \mathbb{R}^2

$$x_2 u_{x_1} + x_1 u_{x_2} = 0.$$

- (a) Find the characteristic curves of the equation.
- (b) Consider the Cauchy problem for this equation prescribed on the line $x_1 = 1$:

$$u(1, x_2) = f(x_2).$$

Find a necessary condition on f so that the proble is solvable in a neighborhood of the point (1,0).

SOLUTION.

PROBLEM 3.3.2. Let u be a continuous bounded solution of the initial value problem for the Laplace equation

$$\begin{cases} \Delta u = 0 & \text{in } \{x_n > 0\}, \\ u(x', 0) = g(x') & \text{for } x' \in \mathbb{R}^{n-1}, \end{cases}$$

where g is a continuous function with compact support in \mathbb{R}^{n-1} . Here $n \geq 2$. Prove that

$$u(x) \longrightarrow 0,$$
 as $|x| \longrightarrow \infty$,

for $x \in \{x_n > 0\}$.

SOLUTION.

PROBLEM 3.3.3. Let u be a bounded solution of the heat equation

$$\Delta u - u_t = 0$$
 in $\mathbb{R} \times (0, \infty)$,

with the initial conditions u(x,0) = g(x), where g is a bounded continuous function on \mathbb{R} satisfying the Hölder condition

$$|g(x) - g(y)| \le M|x - y|^{\alpha}, \quad x, y \in \mathbb{R}$$

with a constant $\alpha \in (0,1]$. Show that

$$|u(x,t) - u(y,t)| \le M|x - y|^{\alpha}, \quad x, y \in \mathbb{R}, t > 0,$$

 $|u(x,t) - u(x,s)| \le C_{\alpha}M|t - s|^{\alpha/2}, \quad x \in \mathbb{R}, t, s > 0.$

[Hint: For the last inequality, in the representation formula of u(x,t) as a convolution with the heat kernel $\Phi(y,t)$, make a change of variables $z=y/\sqrt{t}$ and use that $|\sqrt{t}-\sqrt{s}| \leq \sqrt{|t-s|}$.]

PROBLEM 3.3.4. Let u be a positive harmonic function in the unit ball B_1 in \mathbb{R}^n . Show that

$$|D(\ln u)| \le M \qquad \text{in } B_{1/2}$$

for a constant M depending only on the dimension n.

[Hint: Use the interior derivative estimate $|Du(x)| \le (C_n/r) \sup_{B_r(x)} |u|$ for $B_r(x) \subset B_1$ as well as the Harnack inequality for harmonic functions.]

SOLUTION.

PROBLEM 3.3.5. Let u be a C^2 solution of the initial value problem

$$\begin{cases} u_{tt} - \Delta u = |x|^k & \text{in } \mathbb{R}^n \times (0, \infty), \\ u = 0, & u_t = 0 & \text{on } \mathbb{R}^n \times \{0\}. \end{cases}$$

for some $k \geq 0$. Prove that there exists a function $\varphi(r)$ such that

$$u(x,t) = t^{k+2}\varphi(|x|/t).$$

[Hint: As one of the steps show that u is (k+2)-homogeneous in (x,t) variables, i.e., $u(\lambda x, \lambda t) = \lambda^{k+2} u(x,t)$ for any $\lambda > 0$.]