

SEQUENCE LISTING

<110> MACIAG, Thomas
ZIMRIN, Ann
SMALL, Deena
PRUDOVSKY, Igor

<120> THERAPEUTIC AND DIAGNOSTIC METHODS AND COMPOSITIONS BASED ON
JAGGED/NOTCH PROTEINS AND NUCLEIC ACIDS

<130> 053689-5002-01

<140> 09/579,536
<141> 2000-05-24

<150> US 09/199,865
<151> 1998-11-25

<150> PCT/US97/09407
<151> 1997-05-30

<150> US 60/018,841
<151> 1996-05-31

<160> 56

<170> PatentIn version 3.1

<210> 1
<211> 1218
<212> PRT
<213> Homo sapiens

<400> 1

Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu
1 5 10 15

Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser
20 25 30

Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu
35 40 45

Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg
50 55 60

Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys
65 70 75 80

Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser
85 90 95

Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser
100 105 110

Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp

115	120	125	
Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp			
130	135	140	
Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met			
145	150	155	160
Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val			
165	170	175	
Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr			
180	185	190	
Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly			
195	200	205	
His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp			
210	215	220	
Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro			
225	230	235	240
Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly			
245	250	255	
Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val			
260	265	270	
His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp			
275	280	285	
Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln			
290	295	300	
Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr			
305	310	315	320
Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala			
325	330	335	
Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys			
340	345	350	
Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly			
355	360	365	
Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser			
370	375	380	
His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys			
385	390	395	400
Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys			
405	410	415	
Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala			

420	425	430
Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp		
435	440	445
Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys		
450	455	460
Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala		
465	470	475
480		
Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys		
485	490	495
Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu		
500	505	510
Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr		
515	520	525
Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala		
530	535	540
Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys		
545	550	555
560		
Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp		
565	570	575
Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg		
580	585	590
Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln		
595	600	605
Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr		
610	615	620
Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn		
625	630	635
640		
Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser		
645	650	655
Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser		
660	665	670
Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp		
675	680	685
Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser		
690	695	700
Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys		
705	710	715
720		
Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu		

725

730

735

Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro
 740 745 750

Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys
 755 760 765

Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn
 770 775 780

Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly
 785 790 795 800

Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp
 805 810 815

Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly
 820 825 830

Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro
 835 840 845

Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile
 850 855 860

Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys
 865 870 875 880

Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp
 885 890 895

Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro
 900 905 910

Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His
 915 920 925

Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val
 930 935 940

Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn
 945 950 955 960

Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr
 965 970 975

Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val
 980 985 990

Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala
 995 1000 1005

Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
 1010 1015 1020

Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu

1025	1030	1035
Val Ser Lys Arg Asp Gly Asn	Ser Ser Leu Ile Ala Ala Val Ala	
1040	1045	1050
Glu Val Arg Val Gln Arg Arg	Pro Leu Lys Asn Arg Thr Asp Phe	
1055	1060	1065
Leu Val Pro Leu Leu Ser Ser	Val Leu Thr Val Ala Trp Ile Cys	
1070	1075	1080
Cys Leu Val Thr Ala Phe Tyr	Trp Cys Leu Arg Lys Arg Arg Lys	
1085	1090	1095
Pro Gly Ser His Thr His Ser	Ala Ser Glu Asp Asn Thr Thr Asn	
1100	1105	1110
Asn Val Arg Glu Gln Leu Asn	Gln Ile Lys Asn Pro Ile Glu Lys	
1115	1120	1125
His Gly Ala Asn Thr Val Pro	Ile Lys Asp Tyr Glu Asn Lys Asn	
1130	1135	1140
Ser Lys Met Ser Lys Ile Arg	Thr His Asn Ser Glu Val Glu Glu	
1145	1150	1155
Asp Asp Met Asp Lys His Gln	Gln Lys Ala Arg Phe Gly Lys Gln	
1160	1165	1170
Pro Ala Tyr Thr Leu Val Asp	Arg Glu Glu Lys Pro Pro Asn Gly	
1175	1180	1185
Thr Pro Thr Lys His Pro Asn	Trp Thr Asn Lys Gln Asp Asn Arg	
1190	1195	1200
Asp Leu Glu Ser Ala Gln Ser	Leu Asn Arg Met Glu Tyr Ile Val	
1205	1210	1215

<210> 2
 <211> 3657
 <212> DNA
 <213> Homo sapiens

<400> 2
 atgcgttccc cacggacrcg cggccggtcc gggcgccccc taagcctcct gtcgcctcg 60
 ctctgtgccc tgcgagccaa ggtgtgtggg gcctcggtc agttcgagtt ggagatcctg 120
 tccatgcaga acgtgaacgg ggagctgcag aacgggaact gctgcggcgg cgcgggaac 180
 ccgggagacc gcaagtgcac ccgcgacgag tgtgacacat acttcaaagt gtgcctcaag 240
 gagtatcagt cccgcgtcac ggccgggggg ccctgcagct tcggctcagg gtccacgcct 300
 gtcatcgaaa gcaacacctt caacctcaag gccagccgcg gcaacgaccg caaccgcac 360

gtgctgcctt tcagttcgc ctggccgagg tcctatacgt tgcttgcgaa ggcgtggat	420
tccagtaatg acaccgttca acctgacagt attattgaaa aggcttctca ctcgggcatg	480
atcaacccca gccggcagtg gcagacgctg aagcagaaca cgggcgttgc ccactttgag	540
tatcagatcc gcgtgacctg tcatgactac tactatggct ttggctgyaa taagttctgc	600
cgccccagag atgacttctt tggacactat gcctgtgacc agaatggcaa caaaacttgc	660
atggaaggct gnatgggccc cgaatgtAAC agagctattt gccgacaagg ctgcagtcc	720
aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtayggctg gcaaggcctg	780
tactgtgata agtgcatccc acacccggga tgcgtccacg gcatactgtaa tgagccctgg	840
cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct caattactgt	900
gggactcatc agccgtgtct caacggggga actttagca acacaggccc tgacaaatat	960
cagtgttcct gccctgaggg gtattcagga cccaaactgtg aaattgctga gcacgcctgc	1020
ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg cttttagtgt	1080
gagtgttccc caggctggac cggccccaca tgctctacaa acattgtga ctgttctccc	1140
aataactgtt cccacggggg cacctgccag gacctggta acggatttaa gtgtgtgtgc	1200
cccccacagt ggactggaa aacgtgccag ttagatgcaa atgaatgtga ggccaaacct	1260
tgtgtaaacg ccaaattctg taagaatctc attgccagct actactgcga ctgttctccc	1320
ggctggatgg gtcagaattt tgacataaat attaatgact gccttggcca gtgtcagaat	1380
gacgcctcct gtcgggattt ggttaatggt tatcgctgta tctgtccacc tggctatgca	1440
ggcgatcact gtgagagaga catcgatgaa tgtgccagca acccctgttt gaatgggggt	1500
cactgtcaga atgaaatcaa cagattccag tgtctgtgc ccactggttt ctctggaaac	1560
ctctgtcagc tggacatcga ttattgtgag cctaattccc gccagaacgg tgcccagtgc	1620
tacaaccgtg ccagtgacta tttctgcaag tgcccccagg actatgaggg caagaactgc	1680
tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag ctgcacagtg	1740
gccatggctt ccaacgacac acctgaaggg gtgcggata tttcctccaa cgtctgttgt	1800
cctcacggga agtgcaagag tcagtcggga ggcaaattca cctgtgactg taacaaaggc	1860
ttcacggaa catactgcca tgaaaatatt aatgactgtg agagcaaccc ttgtagaaac	1920
ggtggcactt gcatcgatgg tgtcaactcc tacaagtgca tctgttagtga cggctggag	1980
ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgcca caatggggc	2040
acgtgtcgcg acctggtaa tgacttctac tgcgtactgta aaaatgggtg gaaaggaaag	2100

acctgccact	cacgtgacag	tcagtgtat	gaggccacgt	gcaacaacgg	tggcacctgc	2160
tatgatgagg	gggatgctt	taagtgcatt	tgtcctggcg	gctgggaagg	aacaacctgt	2220
aacatagccc	gaaacagtag	ctgcctgccc	aaccctgcc	ataatggggg	cacatgttg	2280
gtcaacggcg	agtcccttac	gtgcgtctgc	aaggaaggct	gggaggggccc	catctgtgt	2340
cagaatacca	atgactgcag	ccctcatccc	tgttacaaca	gcggcacctg	tgtggatgga	2400
gacaactggt	accggtgca	atgtgccccg	ggtttgctg	ggcccgactg	cagaataaac	2460
atcaatgaat	gccagtcttc	acettgtgcc	tttggagcga	cctgtgtgga	tgagatcaat	2520
ggctaccggt	gtgtctgccc	tccagggcac	agtggtgcca	agtgccagga	agtttcaggg	2580
agaccttgca	tcaccatggg	gagtgtgata	ccagatgggg	ccaaatggga	tgatgactgt	2640
aatacctgcc	agtgcctgaa	tggacggatc	gcctgctcaa	aggctctggg	tggccctcga	2700
ccttgctgc	tccacaaaagg	gcacagcgag	tgccccagcg	ggcagagctg	catccccatc	2760
ctggacgacc	agtgcattcg	ccaccctgc	actggtgtgg	gcgagtgtcg	gtcttccagt	2820
ctccagccgg	tgaagacaaa	gtgcacctct	gactcctatt	accaggataa	ctgtgcgaac	2880
atcacattt	ccttaacaa	ggagatgatg	tcaccaggtc	ttactacgga	gcacatttgc	2940
agtgaattga	ggaatttga	tattttgaag	aatgtttccg	ctgaatattc	aatctacatc	3000
gcttgcgagc	cttccccttc	agcgaacaat	gaaatacatg	tggccatttc	tgctgaagat	3060
atacgggatg	atgggaaccc	gatcaaggaa	atcaactgaca	aaataatcga	tcttgtagt	3120
aaacgtgatg	gaaacagctc	gctgattgct	gccgttgcag	aagtaagagt	tcagaggcgg	3180
cctctgaaga	acagaacaga	tttccttgtt	cccttgctga	gctctgtctt	aactgtggct	3240
tggatctgtt	gcttggtgac	ggccttctac	tggtgctgc	ggaagcggcg	gaagccgggc	3300
agccacacac	actcagccctc	tgaggacaac	accaccaaca	acgtgcggga	gcagctgaac	3360
cagatcaaaa	accccattga	gaaacatggg	gccaacacgg	tcccccattca	ggattacgag	3420
aacaagaact	ccaaaatgtc	taaaataagg	acacacaatt	ctgaagttaga	agaggacgac	3480
atggacaaac	accagcagaa	agcccggttt	ggcaaggcagc	cggcgatatac	gctggtagac	3540
agagaagaga	agccccccaa	cggcacgccc	acaaaacacc	caaactggac	aaacaaacag	3600
gacaacagag	acttggaaaag	tgcccaagagc	ttaaaccgaa	tggagtacat	cgtatacg	3657

<210> 3
 <211> 22
 <212> DNA

<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 3	22
gcgcaagctt tttttttt cg	
<210> 4	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 4	18
gagaccgtga agataactt	
<210> 5	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 5	20
ccgactgcag aataaacatc	
<210> 6	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 6	20
ttggatctgg ttcagctgct	
<210> 7	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 7	20
ttcagtgacg gccactgtga	

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 8
cacgtacatg aagtgcagct 20

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 9
tgagtaggct ccatccagtc 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 10
tggtgtcagg tagggatgct 20

<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 11
ccacccatgg caaattccat ggca 24

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 12

tctagacggc aggtcaggc cacc

24

<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 13
gactatgcga attcggatcc gtcgacgcca ccatgg

36

<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer
<400> 14
caagttcccc cgttgagaca

20

<210> 15
<211> 65
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 15
gcatagtcct cgagttacaa gtcttctca gaaataagct tttttctac gatgtactcc
attcg

60

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 16
atggacaaac accagcagaa

20

<210> 17
<211> 3201
<212> DNA
<213> Homo sapiens

<400> 17
 atgcgttccc cacggacrcg cggccggtcc gggcgcccc taaggctcct gctcgccctg 60
 ctctgtgccc tgcgagccaa ggtgtgtggg gcctcgggtc agttcgagtt ggagatcctg 120
 tccatgcaga acgtgaacgg ggagctgcag aacgggaact gctgcggcgg cgcccgaaac 180
 ccgggagacc gcaagtgcac ccgcgacgag tgtgacacat acttcaaagt gtgcctcaag 240
 gagtatcagt cccgcgtcac ggccgggggg ccctgcagct tcggctcagg gtccacgcct 300
 gtcatcgggg gcaacacctt caacctcaag gccagccgca gcaacgaccg caaccgcac 360
 gtgctgcctt tcagttcgc ctggccgagg tcctatacgt tgcttgtga ggcgtggat 420
 tccagtaatg acaccgttca acctgacagt attattgaaa aggcttctca ctcgggcatg 480
 atcaacccca gccggcagtg gcagacgctg aagcagaaca cgggcgttgc ccactttgag 540
 tatcagatcc gcgtgacctg tcatgactac tactatggct ttggctgyaa taagttctgc 600
 cggcccagag atgacttctt tggacactat gcctgtgacc agaatggcaa caaaacttgc 660
 atggaaggct gnatgggccc cgaatgtaac agagctattt gccgacaagg ctgcagtct 720
 aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtayggctg gcaaggcctg 780
 tactgtgata agtgcatccc acacccggga tgcgtccacg gcatctgtaa tgagccctgg 840
 cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct caattactgt 900
 gggactcatc agccgtgtct caacggggga actttagtca acacaggccc tgacaaatat 960
 cagtgttccct gccctgaggg gtattcagga cccaaactgtg aaattgctga gcacgcctgc 1020
 ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg cttttagtgc 1080
 gagtgttccc caggctggac cggccccaca tgctctacaa acattgatga ctgttctcct 1140
 aataactgtt cccacggggg cacctgccag gacctggta acggattaa gtgtgtgtgc 1200
 cccccacagt ggacttggaa aacgtgccag ttagatgcaa atgaatgtga ggccaaacct 1260
 tgtgtaaacg ccaaattctg taagaatctc attgccagct actactgcga ctgttctccc 1320
 ggctggatgg gtcagaattt tgacataaat attaatgact gccttggcca gtgtcagaat 1380
 gacgcctcct gtcgggattt ggttaatggt tatcgctgtt tctgtccacc tggctatgca 1440
 ggcgatcaact gtgagagaga catcgatgaa tgtgccagca acccctgttt gaatgggggt 1500
 cactgtcaga atgaaatcaa cagattccag tgtctgtgtc ccactggttt ctctggaaac 1560
 ctctgtcagc tggacatcga ttattgtgag cctaattccct gccagaacgg tgcccagtgc 1620
 tacaaccgtg ccagtgacta tttctgcaag tgcccccagg actatgaggg caagaactgc 1680

tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag ctgcacagt	1740
gccatggctt ccaacgacac acctgaaggg gtgcggata tttcctccaa cgtctgtgg	1800
cctcacggga agtgcagag tcagtcggga ggcaaattca cctgtgactg taacaaaggc	1860
ttcacggaa catactgccca tgaaaatatt aatgactgtg agagcaaccc ttgtagaaac	1920
ggtggcactt gcatcgatgg tgtcaactcc tacaagtgcatactgtg cggctggag	1980
ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgccca caatggggc	2040
acgtgtcgcg acctggtcaa tgacttctac tgtgactgta aaaatgggtg gaaaggaaag	2100
acctgccact cacgtgacag tcagtgat gaggccacgt gcaacaacgg tggcacctgc	2160
tatgtgagg gggatgctt taagtgcatg tgtcctggcg gctggaaagg aacaacctgt	2220
aacatagccc gaaacagtag ctgcctgccc aaccctgccca ataatggggg cacatgtgt	2280
gtcaacggcg agtccttac gtgcgtctgc aaggaaggct gggaggggccc catctgtgct	2340
cagaatacca atgactgcag ccctcatccc tttacaaca gcggcacctg tgtggatgga	2400
gacaactggt accgggtgcga atgtcccccg gttttgctg ggcccgactg cagaataaac	2460
atcaatgaat gccagtcttc accttgcc tttggagcga cctgtgtgga tgagatcaat	2520
ggctaccgggt gtgtctgccc tccagggcac agtggtgccca agtgcagga agtttcaggg	2580
agaccttgca tcaccatggg gagtgtgata ccagatgggg ccaaatggga tggatgactgt	2640
aatacctgccca agtgcctgaa tggacggatc gcctgctcaa aggtctggtg tggccctcga	2700
ccttgcctgc tccacaaaagg gcacagcgag tgccccagcg ggcagagctg catccccatc	2760
ctggacgacc agtgcctcgt ccaccctgc actgggtgg gcgagtgtcg gtctccagt	2820
ctccagccgg tgaagacaaa gtgcacctct gactcctatt accaggataa ctgtgcgaac	2880
atcacattta ctttaacaa ggagatgatg tcaccaggatc ttactacggca gcacatttgc	2940
agtgaattga ggaatttggaa tattttgaag aatgtttccg ctgaatattc aatctacatc	3000
gcttgcgagc cttcccttc agcgaacaat gaaatacatg tggccatttc tgctgaagat	3060
atacgggatg atggaaaccc gatcaaggaa atcaactgaca aaataatcga tcttggtagt	3120
aaacgtgatg gaaacagctc gctgattgct gccgttgca gaaatggggcgg aagtaagagt	3180
cctctgaaga acagaacaga t	3201

<210> 18
 <211> 1067
 <212> PRT

<213> Homo sapiens

<400> 18

Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu
1 5 10 15

Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser
20 25 30

Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu
35 40 45

Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg
50 55 60

Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys
65 70 75 80

Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser
85 90 95

Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser
100 105 110

Arg Gly Asn Asp Arg Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp
115 120 125

Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp
130 135 140

Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met
145 150 155 160

Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val
165 170 175

Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr
180 185 190

Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly
195 200 205

His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp
210 215 220

Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro
225 230 235 240

Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly
245 250 255

Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val
260 265 270

His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp
275 280 285

Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln
 290 295 300
 Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr
 305 310 315 320
 Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala
 325 330 335
 Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys
 340 345 350
 Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly
 355 360 365
 Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser
 370 375 380
 His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys
 385 390 395 400
 Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys
 405 410 415
 Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala
 420 425 430
 Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp
 435 440 445
 Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys
 450 455 460
 Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala
 465 470 475 480
 Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys
 485 490 495
 Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu
 500 505 510
 Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr
 515 520 525
 Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala
 530 535 540
 Ser Asp Tyr Phe Cys Lys Cys Pro Glu Asp Tyr Glu Gly Lys Asn Cys
 545 550 555 560
 Ser His Leu Lys Asp His Cys Arg Thr Thr Pro Cys Glu Val Ile Asp
 565 570 575
 Ser Cys Thr Val Ala Met Ala Ser Asn Asp Thr Pro Glu Gly Val Arg
 580 585 590

Tyr Ile Ser Ser Asn Val Cys Gly Pro His Gly Lys Cys Lys Ser Gln
 595 600 605

Ser Gly Gly Lys Phe Thr Cys Asp Cys Asn Lys Gly Phe Thr Gly Thr
 610 615 620

Tyr Cys His Glu Asn Ile Asn Asp Cys Glu Ser Asn Pro Cys Arg Asn
 625 630 635 640

Gly Gly Thr Cys Ile Asp Gly Val Asn Ser Tyr Lys Cys Ile Cys Ser
 645 650 655

Asp Gly Trp Glu Gly Ala Tyr Cys Glu Thr Asn Ile Asn Asp Cys Ser
 660 665 670

Gln Asn Pro Cys His Asn Gly Gly Thr Cys Arg Asp Leu Val Asn Asp
 675 680 685

Phe Tyr Cys Asp Cys Lys Asn Gly Trp Lys Gly Lys Thr Cys His Ser
 690 695 700

Arg Asp Ser Gln Cys Asp Glu Ala Thr Cys Asn Asn Gly Gly Thr Cys
 705 710 715 720

Tyr Asp Glu Gly Asp Ala Phe Lys Cys Met Cys Pro Gly Gly Trp Glu
 725 730 735

Gly Thr Thr Cys Asn Ile Ala Arg Asn Ser Ser Cys Leu Pro Asn Pro
 740 745 750

Cys His Asn Gly Gly Thr Cys Val Val Asn Gly Glu Ser Phe Thr Cys
 755 760 765

Val Cys Lys Glu Gly Trp Glu Gly Pro Ile Cys Ala Gln Asn Thr Asn
 770 775 780

Asp Cys Ser Pro His Pro Cys Tyr Asn Ser Gly Thr Cys Val Asp Gly
 785 790 795 800

Asp Asn Trp Tyr Arg Cys Glu Cys Ala Pro Gly Phe Ala Gly Pro Asp
 805 810 815

Cys Arg Ile Asn Ile Asn Glu Cys Gln Ser Ser Pro Cys Ala Phe Gly
 820 825 830

Ala Thr Cys Val Asp Glu Ile Asn Gly Tyr Arg Cys Val Cys Pro Pro
 835 840 845

Gly His Ser Gly Ala Lys Cys Gln Glu Val Ser Gly Arg Pro Cys Ile
 850 855 860

Thr Met Gly Ser Val Ile Pro Asp Gly Ala Lys Trp Asp Asp Asp Cys
 865 870 875 880

Asn Thr Cys Gln Cys Leu Asn Gly Arg Ile Ala Cys Ser Lys Val Trp
 885 890 895

Cys Gly Pro Arg Pro Cys Leu Leu His Lys Gly His Ser Glu Cys Pro
 900 905 910
 Ser Gly Gln Ser Cys Ile Pro Ile Leu Asp Asp Gln Cys Phe Val His
 915 920 925
 Pro Cys Thr Gly Val Gly Glu Cys Arg Ser Ser Ser Leu Gln Pro Val
 930 935 940
 Lys Thr Lys Cys Thr Ser Asp Ser Tyr Tyr Gln Asp Asn Cys Ala Asn
 945 950 955 960
 Ile Thr Phe Thr Phe Asn Lys Glu Met Met Ser Pro Gly Leu Thr Thr
 965 970 975
 Glu His Ile Cys Ser Glu Leu Arg Asn Leu Asn Ile Leu Lys Asn Val
 980 985 990
 Ser Ala Glu Tyr Ser Ile Tyr Ile Ala Cys Glu Pro Ser Pro Ser Ala
 995 1000 1005
 Asn Asn Glu Ile His Val Ala Ile Ser Ala Glu Asp Ile Arg Asp
 1010 1015 1020
 Asp Gly Asn Pro Ile Lys Glu Ile Thr Asp Lys Ile Ile Asp Leu
 1025 1030 1035
 Val Ser Lys Arg Asp Gly Asn Ser Ser Leu Ile Ala Ala Val Ala
 1040 1045 1050
 Glu Val Arg Val Gln Arg Arg Pro Leu Lys Asn Arg Thr Asp
 1055 1060 1065

<210> 19
 <211> 54
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> PCR primer

 <400> 19
 gactatgcga attcggatcc gtcgacgcca ccatgggttc cccacggaca cgcg 54

<210> 20
 <211> 20
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> PCR primer

 <400> 20
 caagttcccc cgttgagaca 20

<210> 21		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 21		
atggacaaac accagcagaa		20
<210> 22		
<211> 65		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 22		
tagtgctcga gctattacaa gtcttcttca gaaataagct tttgttcatc tgttctgtc		60
ttcag		65
<210> 23		
<211> 44		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 23		
tttggatttg ctggtgcagt acaactaggc ttaataggga catg		44
<210> 24		
<211> 37		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 24		
tccctattaa gcctagttgt actgcaccag caaatcc		37
<210> 25		
<211> 42		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> PCR primer		
<400> 25		
tttctgctcg aattcaagct tctaacgatg tacggggaca tg		42
<210> 26		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 26		
tccccgtaca tcgtagaaag cttgaattcg agcag		35
<210> 27		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 27		
ggatttgctg gtgcagtaca act		23
<210> 28		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 28		
ctgctcgaat tcaagcttct aac		23
<210> 29		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Jagged antisense oligomer		
<400> 29		
tggggaccgc atcgctgc		18
<210> 30		
<211> 18		

<212> DNA
<213> Artificial Sequence

<220>
<223> Jagged sense oligomer

<400> 30
gcagcgatgc ggtcccca 18

<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> 3' Jagged antisense oligomer

<400> 31
gaatcaaggc tccccctag 18

<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Mutated 5' Jagged antisense oligomer

<400> 32
tgcggtcccc aacggtag 18

<210> 33
<211> 4
<212> PRT
<213> Homo sapiens

<400> 33
Pro Glu Ser Thr
1

<210> 34
<211> 10
<212> DNA
<213> Mus musculus

<400> 34
tggatcagtc 10

<210> 35
<211> 10
<212> DNA

<213> Mus musculus

<400> 35
taaagaggcc

10

<210> 36
<211> 10
<212> DNA
<213> Mus musculus

<400> 36
cctgatcttt

10

<210> 37
<211> 10
<212> DNA
<213> Mus musculus

<400> 37
tgtaacagga

10

<210> 38
<211> 10
<212> DNA
<213> Mus musculus

<400> 38
tctgtgcacc

10

<210> 39
<211> 10
<212> DNA
<213> Mus musculus

<400> 39
ccaaataaaa

10

<210> 40
<211> 10
<212> DNA
<213> Mus musculus

<400> 40
ctaataaaag

10

<210> 41
<211> 10
<212> DNA
<213> Mus musculus

<400> 41

gccaaagggtc	10
<210> 42	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 42	
gtctgctgat	10
<210> 43	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 43	
aaggaagaga	10
<210> 44	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 44	
tgaaataaac	10
<210> 45	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 45	
caccaccaca	10
<210> 46	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 46	
cctcagcctg	10
<210> 47	
<211> 10	
<212> DNA	
<213> Mus musculus	
<400> 47	
ctctgactta	10

<210> 48
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 48
gtggcggtgt 10

<210> 49
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 49
tccttggggg 10

<210> 50
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 50
cgccctgctag 10

<210> 51
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 51
aaaaaaaaaa 10

<210> 52
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 52
aagcagaagg 10

<210> 53
<211> 10
<212> DNA
<213> *Mus musculus*

<400> 53
caggactccg 10

<210> 54
<211> 10
<212> DNA

<213> Mus musculus

<400> 54
gaagcaggac

10

<210> 55
<211> 10
<212> DNA
<213> Mus musculus

<400> 55
ggatatgtgg

10

<210> 56
<211> 10
<212> DNA
<213> Mus musculus

<400> 56
gttctgattg

10