CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (RSC)

Bhargab B. Bhattacharya (BBB)

Lecture #22: Computer Arithmetic

20 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Recap: Integer Multiplier using Repeated Add/Shift

- Can we expedite multiplication?
- Handling negative numbers?
- Booth's Algorithm

Recall: Multiplication Example

 $0010 \times 0110 = ? 0010 (+ 2, multiplicand); 0110 (+ 6, multiplier)$

Itera-	multi-	Orignal algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 0110
$\begin{array}{c c} 0010 & 1:0 \Rightarrow \text{no operation} \\ \end{array}$		$1:0 \Rightarrow$ no operation	0000 0110
	0010	2: Shift right Product logical shift	0000 0011
2	$0010 1a:1 \Rightarrow prod = Prod + Mcand 0$		0010 0011
	0010	2: Shift right Product 000	
3	0010	$1a:1 \Rightarrow \text{prod} = \text{Prod} + \text{Mcand}$ 0011	
0010 2: Shift right Product		2: Shift right Product	0001 1000
4	0010	$1:0 \Rightarrow$ no operation	0001 1000
	0010	2: Shift right Product +12	0000 1100

Booth's Encoding

(valid for signed multiplication as well)

• Recall old trick

Example: 123454×9

- \Rightarrow six partial products plus addition of six numbers
 - $123454 \times 9 = 123454 \times (10 1) = 1234540 123454$
 - Transform addition of six partial products to
 - one shift and one subtraction!
- Booth's algorithm applies the same principle
 - in binary we have just '1' and '0'

Booth's Encoding

• Multiply *x* by 0111

x (multiplicand); 0111 (multiplier) =>
$$x \times 7$$

Search for a run of '1' bits in the multiplier

- e.g. '0111' has a run of 3 consecutive '1' bits
- Multiplying by '0111' (7 in decimal) is equivalent to multiplying by 8 and subtracting once, since

$$x \times 7 = x \times (8-1) = 8x - x = > \text{(shift-left } x \text{, three times)} - x$$

- Hence, iterate right to left and look for "runs of 1":
- $x \times 111 = x \times (1000 1) = (x \times 2^3) x$
 - Subtract multiplicand from product at first '1'
 - Shift multiplicand by 3-bits on left and add to the partial product after the last '1'
 - Do nothing for the consecutive 1-bits/in the middle, or for
 0-runs (actually, we keep on shifting the product register)

Booth's Encoding for Multiplier

Booth's Algorithm

Current bit	Bit to right	Explanation	Example (multiplier)	Operation
1	0	Begins run of '1'	00001111000	Subtract/shift
1	1	Middle of run of '1'	00001111000	Nothing/shift
0	1	End of a run of '1'	00001111000	Add/shift
0	0	Middle of a run of '0'	00001111000	Nothing/shift

Booth's algorithm: Example

 $0010 \times 1101 = ? 0010 (+ 2, multiplicand); 1101 (- 3, multiplier)$

arithmetic shift

op performed in the left half

initialization

start of 1-run

end of

1-run

Itera-	multi-	Booth's algorithm		
tion	plicand	Step	Product	
0	0010	Initial values	0000 1101 0	¥
1	0010	1c: 10=2 prod = Prod - Mcand	1110 1101 0	֓֞֡֟֡֓֓֓֓֓֓֓֟֟֡֓֓֓֓֓֡֟֡֓֓֓֓֓֡֡֡֡֡֡֓֓֓֡֡֡֡֡֡
	0010	2: Shift right Product	1111 0110 1	
2	0010	1b: $01 \Rightarrow \text{prod} = \text{Prod} + \text{Mcand}$	0001 0110 1	
	0010	2: Shift right Product	0000 1011 0	
3	0010	1c: $10 \Rightarrow \text{prod} = \text{Prod} - \text{Meand}$	1110 1011 0	
	0010	2: Shift right Product	1111 0101 1	
4	0010	1d: $11 \Rightarrow$ no operation	1111 0101 1	
	0010	2: Shift right Product	1111 1010 1	

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

So far covered in computer arithmetic...

- Integer Number Systems and Overflow
- * Ripple-Carry Adder (RCA)
- Carry-Lookahead Adder (CLA)
- Hybrid Adder, CLT
- Carry-Select Adder (CSA)
- ❖ Brent-Kung's Parallel Prefix Adder (PPA)
- Carry-Save Adders (for adding multiple operands)
- Integer Multiplication

- Integer Division: Reading Assignment
- Floating-Point Arithmetic and Hardware

Division

- Implemented by successive subtractions
- Result must verify the equality
 Dividend = (Multiplier × Quotient) + Remainder

Another powerful division method (Goldschmidt's algorithm):

In computer science, division can be accomplished by multiplying a number with the reciprocal of the multiplier!

Decimal division

- What are the rules?
 - Repeatedly try to subtract a multiple of divisor from dividend
 - Record multiple (or zero)
 - At each step, repeat with a lower power of ten
 - Stop when remainder is smaller than divisor

Integer Division in Binary

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Start 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder ≥ 0 Remainder < 0 Test Remainder 2a. Shift the Quotient register to the left, 2b. Restore the original value by adding setting the new rightmost bit to 1 the Divisor register to the Remainder register and place the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 3. Shift the Divisor register right 1 bit No: < 33 repetitions 33rd repetition? Yes: 33 repetitions Done

Division Hardware

Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	0000 0111
	0010	Shift Rem left 1	0000 1110
1	0010	2: Rem = Rem - Div	1110 1110
1	0010	3b: Rem $< 0 \Rightarrow + \text{Div}$, sll R, R0 = 0	0001 1100
2	0010	2: Rem = Rem - Div	1111 1100
	0010	3b: Rem $< 0 \Rightarrow + \text{Div}$, sll R, R0 = 0	0011 1000
3	0010	2: Rem = Rem - Div	0001 1000
	0010	3a: Rem $\geq 0 \Rightarrow sll R, R0 = 1$	0011 0001
4	0010	2: Rem = Rem - Div	0001 0001
	0010	3a: Rem $\geq 0 \Rightarrow sll R, R0 = 1$	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision)
 generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

MIPS Architecture for Integer Arithmetic: Multiplication and Division

CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (*RSC*)
Bhargab B. Bhattacharya (*BBB*)
Lecture #23, #24: Floating-Point Arithmetic
21 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Floating Point: Format, Arithmetic, and Hardware Implementation

A fundamental theoretical question: Can we prove Kepler's Law of planetary motion by virtue of experiments?

The IEEE Floating-Point Standard

So far as the theories of mathematics are about reality, they are not certain; so far as they are certain, they are not about reality. - Albert Einstein

A computation error observed by a UG student led to the ACM Turing Award later

- 1953: Willian Kahan, a UG student of Math at the *University of Toronto* was simulating numerically the dynamics of the wing controller of an aircraft during takeoff and landing
- Observed certain unexpected results due to errors in computation
- => concept of floating-point (FP) arithmetic
- => principal architect behind IEEE 754 FP standard (1985)
- => Kahan honored with ACM Turing Award (1989)

William Kahan (1933 -)

Floating-Point Representation

- Used to represent *real numbers:* -34.986×10⁻²², π , e, $\sqrt{2}$
- Defined by IEEE 754 Standard
 - --- Kahan (1985)
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

Infamous Intel Pentium Bug (1994) =>FDIV => loss of \$300 Million

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent (E) Mantissa (M)

Fraction ≡Mantissa ≡ Significand

$$N = (-1)^S \times (1.M) \times 2^{\text{(Exponent-Bias)}}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Normalized Significand is Mantissa with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023
 - Trade-off between range (E) and precision (M)

IEEE 754 Single-Precision Floating-Point

Representation of floating point numbers in IEEE 754 standard:

single precision 1 8 23
sign S E M

FP-exponent E: excess 127 binary coding Actual exponent is e = E - 127

Floating-point exponent E = e + 127

mantissa: sign + magnitude, normalized binary significand w/ hidden integer bit: 1.M

FP-exponent (E)	Actual exponent e
00000000 (0)	Special use
00000001 (1)	- 126
00000010 (2)	- 125
•••••	•••••
01111111 (127)	0
•••••	•••••
11111110 (254)	+ 127
11111111 (255)	Special use

IEEE 754 floating-point standard

- Leading "1" bit of significand is implicit
- Exponent is "biased" to make comparison easier
 - all 0s is smallest exponent; all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{sign} \times (1+significand) \times 2^{exponent-bias}$
- Example 1 (Encoding):

For a given decimal number, construct its FP-representation

- decimal: 0.75
- → binary: $-0.11 = -(1.1) \times 2^{-1}$ (normalized)
- → Floating-point exponent = -1 + 127 = 126 = 011111110

IEEE single precision:

Decoding a floating-point number

S E M

- Sign indicated by first bit $S \rightarrow (-1)^S$
- Subtract 127 from biased exponent E to obtain the actual exponent e = E - 127
- Number in binary = (-1)^S 1.M × 2^e

Example (Decoding)

- 0 1000 0000 1000 0000 0000 0000 0000 000
- Sign bit is zero:
 Number is positive
- Biased exponent $E = 1000\,0000 \mid_2 = 128$;
- Actual exponent $e = E 127 = 1 \rightarrow 2^{1}$
- Significand → 1.1 (restored the hidden bit)
- The number = $+1.1 \times 2^{1}|_{2} = +11|_{2} = +3.0|_{10}$

Example (Decoding)

- Sign bit is one:
 Number is negative
- Biased exponent $E = 0111 \ 1110 |_2 = 126$;
- Actual exponent $e = E 127 = -1 2^{-1}$
- Significand → 1.11 (restored the hidden bit)
- The number = $-1.11 \times 2^{-1}|_2 = -0.111|_2 = -0.875|_{10}$

Example (Encoding)

Represent –2 in FP-format

Convert to binary: 10

- Normalize: 1.0×2^{1}

- Sign bit is 1

- FP-exponent is 127 + 1 = 128 = 100000000 $_{two}$

Mantissa is 00...0

1 1000 0000 0000 0000 0000 0000 0000

0/120000 0000 0000	0000 0000 0000 0	000 000 ct
0	0	* Any non-zero number
O	Nonzero	that is smaller than the smallest normalized FP-number is a denormal
1-254	Anything	number (consider magnitude only)
255	O	+ / - infinity
255	Nonzero	NaN like o/o

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Mantissa: $000...00 \Rightarrow$ normalized significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Mantissa: 111...11 ⇒ normalized significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Mantissa : $000...00 \Rightarrow \text{norm. significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Mantissa: 111...11 ⇒ norm significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all mantissa-bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Single-Precision Normalized Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
- - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
 - Largest value
 - 0/1 1111 1110 1111 1111 1111 1111 1111
 - $= \pm (2.0 2^{-23}) \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Single-Precision FP-Denormal Numbers

Exponents 00000000 and 11111111 reserved Smallest value (normalized) $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$ Denormal numbers (gradual underflow) 1 0000 0000 $M \neq 0$ $= \pm 0.M \times 2^{-126}$ {min: $\pm 2^{-23} \times 2^{-126}$; max: $\pm (1-2^{-23}) \times 2^{-126}$ } -1.0×2^{-126} $+1.0 \times 2^{-126}$ \approx -2.0 \times 2⁺¹²⁷ $\approx +2.0 \times 2^{+127}$ representable representable underundernormalized -ve normalized +ve overflow flow overflow flow FP-numbers FP-numbers real line

Denormal FP-Numbers

■ Exponent = 000...0 ⇒ hidden bit is 0

$$N = (-1)^S \times (0. Mantissa) \times 2^{-126}$$

- Smaller than normalized numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with mantissa = 000...0
- \rightarrow +0, -0

Infinities and NaNs

- Exponent = 111...1, Mantissa= 000...0
 - ± Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Mantissa ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0, √-3
 - Can be used in subsequent calculations

Floating Point Complexities

- Operations are somewhat more complicated
- In addition to overflow, we may have "underflow"
- Accuracy can be a big problem
 - IEEE 754 keeps three extra bits, guard, round, and sticky
 - several rounding modes
 - Non-zero number divide-by-zero yields "infinity" → overflow
 - Non-zero number divide-by-infinity yields → underflow
 - zero divide-by-zero yields "not a number (NaN)"
- Implementing the standard can be tricky
- Not using the standard can be even worse
- Remember the 1994 Pentium FDIV bug; write-off cost US\$ 300 M

CS 31007 Autumn 2021 COMPUTER ORGANIZATION AND ARCHITECTURE

Instructors

Rajat Subhra Chakraborty (*RSC*) Bhargab B. Bhattacharya (*BBB*)

Lecture #25: Tutorial on Floating-Point Arithmetic 23 September 2021

Indian Institute of Technology Kharagpur Computer Science and Engineering

Floating-Point Addition

- Consider a 3-digit mantissa binary example
 - \blacksquare 1.000₂ × 2⁻¹ + \blacksquare 1.111₂ × 2⁻²
- 1. Align binary points
 - Shift right the number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$; rightmost 1 is lost
- 2. Add significands (integer addition)
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

overflow? 1.111 1.111 11.110

How do

determine

the sign of

the result?

you

FP Adder Hardware

Three Extra Bits for Internal Use

- Three extra bits are added called Guard, Round, Sticky
 - → To achieve accurate arithmetic such as rounding of significand, otherwise some bits would have been lost during right shifts
 - ♦ Reduces hardware without compromising precision

Guard Bit

- When we shift bits to the right for alignment, some bits are lost
- We may need to shift the result to the left for normalization after operation
- Storing the lost bits shifted to the right will make results more accurate during normalization
- Round and Sticky bits provide further handles for accurate rounding

Guard, Round, and Sticky Bits

- Two extra bits are needed for rounding
 - Rounding performed after normalizing a result significand
 - ♦ Round bit: appears after the guard bit
 - ♦ Sticky bit: appears after the round bit (OR of all additional bits)

Floating-Point Multiplication

- Now consider a 3-digit mantissa binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$ (0.5 × -0.4375)
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Optimized Integer Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

FP Multiplier – Hardware Realization

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is Co-processor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Twc1, swc1,
 - e.g., Twc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.se.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.de.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
- Branch on FP condition code true or false

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1    $f16, const5($gp)
    lwc2    $f18, const9($gp)
    div.s    $f16, $f16, $f18
    lwc1    $f18, const32($gp)
    sub.s    $f18, $f12, $f18
    mul.s    $f0, $f16, $f18
    jr    $ra
```

Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two's complement
 - IEEE 754 floating point
- Computer instructions determine "meaning" of the bit patterns
- Performance and accuracy are important so there are many complexities and implementation challenges in real machines

Problem: Compute $z = \lfloor s/9 \rfloor$ using only integer addition/subtraction, and shift; s: integer Division operation not allowed

$$z = \frac{s}{9}$$

Hardware requirement:
Only shifter and integer adder;
Iterate a few times to obtain a close approximation!

$$z = (s - z)/8$$

$$\Rightarrow 8z = s - z$$

$$\Rightarrow z = s/9$$