

Università degli Studi di Milano-Bicocca Scuola di Scienze Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di laurea Magistrale in Informatica

Progetto di Metodi del Calcolo Scientifico

MCS-progetto-1-alternativo

Anno Accademico 2024-2025

Relazione a cura di:

Oleksandra Golub

Matricola:

856706

Sommario

1. Introduzione	3
1.1 Scelte tecnologiche	3
1.2 Procedura di validazione	4
1.3 Dati di test (.mtx)	4
2. Architettura della libreria	5
2.1 src/linear_solvers.py	5
2.2 src/matrix_utils.py	8
2.3 src/initpy	9
2.4 main.py	9
2.5 plots/generate_plots.py	12
2.6 tests/test_quick.py	13
2.7 tests/mtx_indexing_test.py	14
2.8 results/	15
2.8 test_data/	15
3. Risultati	17
3.1 Lettura dei risultati dal terminale	17
3.1.1 Matrice spa1.mtx	17
3.1.2 Matrice spa2.mtx	19
3.1.3 Matrice vem1.mtx	21
3.1.4 Matrice vem2.mtx	23
3.2 Iterazioni vs Tolleranza	26
3.3 Riepilogo prestazioni	28
4 Conclusioni	32

1. Introduzione

Lo scopo del progetto è realizzare una mini-libreria open-source per la soluzione di sistemi lineari **Ax=b** con matrici **simmetriche e definite positive (SPD)**, implementando da zero i quattro metodi iterativi classici:

- Jacobi;
- Gauss-Seidel;
- Gradiente;
- Gradiente Coniugato;

L'unica funzionalità richiesta alla libreria esterna è la gestione di vettori/matrici (struttura dati e operazioni elementari), **senza** usare routine già pronte per risolvere sistemi lineari. Il criterio d'arresto è sul **residuo relativo:**

$$\frac{\|Ax^{(k)}-b\|}{\|b\|}<\mathtt{tol}$$

con un ulteriore limite di iterazioni maxIter ≥ 20000.

La validazione prevede test con $\mathbf{x} = [1,1,...,1]$, $\mathbf{b} = \mathbf{A}\mathbf{x}$, più valori di **tol** e report di **errore relativo**, **iterazioni e tempo** per ogni metodo.

1.1 Scelte tecnologiche

L'implementazione è in Python. Si usano:

- NumPy per operazioni vettoriali/matriciali di base (prodotti, somme, norme).
- SciPy solo per il caricamento delle matrici Matrix Market (.mtx) tramite scipy.io.mmread. Tutte le routine Jacobi, Gauss-Seidel, Gradiente, Gradiente Coniugato sono state scritte da zero, rispettando il vincolo della consegna che vieta l'uso di solutori integrati.

Nota sul formato .mtx: l'indicizzazione dei file è **1-based**; mmread gestisce automaticamente la conversione a **0-based**. È stato verificato con un test dedicato incluso nel repository.

1.2 Procedura di validazione

Per ogni matrice SPD fornita, si costruisce il sistema di prova con $\mathbf{x}^* = \mathbf{1} \mathbf{e} \mathbf{b} = \mathbf{A}\mathbf{x}^*$, poi si eseguono i quattro metodi partendo dal **vettore iniziale nullo**. La procedura è ripetuta per le tolleranze:

$$\mathtt{tol} \in \{10^{-4},\, 10^{-6},\, 10^{-8},\, 10^{-10}\}$$

e, per ogni run, si riportano **numero di iterazioni, tempo di calcolo, errore relativo** tra la soluzione numerica e **x***.

1.3 Dati di test (.mtx)

Sono state utilizzate le quattro matrici sparse fornite in consegna:

spa1.mtx: 1000×1000 sparsità ≈ 81.77%
 spa2.mtx: 3000×3000 sparsità ≈ 81.87%
 vem1.mtx: 1681×1681 sparsità ≈ 99.53%
 vem2.mtx: 2601×2601 sparsità ≈ 99.69%

Le matrici sono simmetriche e (numericamente) definite positive; il caricamento avviene da file **.mtx** e i test seguono la procedura standard descritta nella consegna.

2. Architettura della libreria

La libreria è una mini-toolbox **pure-Python** per la soluzione di sistemi lineari **Ax=b** con matrici **simmetriche e definite positive (SPD)**.

È composta da un **core con i solutori iterativi** e da **moduli di infrastruttura** (I/O delle matrici, generazione dei sistemi di test, salvataggio risultati e grafici). Le uniche dipendenze sono *NumPy* (operazioni vettoriali/matriciali) e *SciPy* limitatamente al **caricamento** dei file Matrix Market .mtx.

2.1 src/linear_solvers.py

È la classe **LinearIterativeSolver** che incapsula i 4 metodi iterativi (Jacobi, Gauss-Seidel, Gradiente, Gradiente Coniugato) e alcune utility comuni.

- **costruttore** __init__(max_iter=20000, verbose=True) imposta quante iterazioni al massimo può fare un metodo e se stampare messaggi.
- _check_matrix_properties(A) controlla che A sia utilizzabile dai metodi:
 - o deve essere quadrata;
 - o deve essere simmetrica (A uguale alla sua trasposta);
 - deve essere definita positiva (autovalori > 0).

Se qualcosa non va, lancia un errore. Serve solo a evitare input sbagliati.

• _compute_residual_norm(A, x, b) calcola il residuo relativo usato come criterio d'arresto:

$$\frac{\|Ax-b\|_2}{\|b\|_2}$$

È l'indicatore che usiamo per dire che siamo arrivati abbastanza vicino, perciò possiamo fermarci.

Regole comuni ai 4 metodi:

• Punto di partenza: se non si fornisce un x0, l'algoritmo parte da x^(0)=0.

- Criterio di arresto:
 - o il residuo relativo scende sotto tol;
 - o al raggiungimento di max_iter;
- **Controllo input:** per uniformità con la consegna, prima di iterare si verifica che A sia quadrata, simmetrica e definita positiva (SPD).
- **Output:** ciascun metodo restituisce un dizionario con solution, iterations, time, residual_norm, converged, method.

I quattro metodi:

• jacobi(A, b, tol, x0=None) implementa l'iterazione

$$x^{(k+1)} = D^{-1} ig(b - (L+U) x^{(k)} ig)$$

dove **A=D+L+U** con **D** diagonale (non nulla!), **L** triangolare inferiore stretta, **U** triangolare superiore stretta.

Costo per iterazione. Una moltiplicazione matrice-vettore e poche operazioni vettoriali: con matrici sparse il costo è **O(nnz(A))** a iterazione.

Convergenza. Non è garantita dal solo SPD. Una condizione sufficiente è la dominanza diagonale stretta (per righe/colonne) oppure, in generale

$$\rho(D^{-1}(L+U))<1$$

Nella pratica è spesso più lento di Gauss–Seidel e del Gradiente Coniugato, a parità di tolleranza.

• gauss_seidel(A, b, tol, x0=None) riformula l'iterazione come

$$(D+L) \, x^{(k+1)} = b - U \, x^{(k)}$$

risolvendo a ogni passo un sistema triangolare inferiore tramite **forward substitution** esplicita (aggiornamento riga per riga).

Costo per iterazione. Un prodotto matrice-vettore per **Ux^(k)** più la sostituzione in avanti: con matrici sparse il costo è **O(nnz(A))** a iterazione.

Convergenza. Per matrici SPD la convergenza è garantita e, a parità di tolleranza, richiede in genere meno iterazioni di Jacobi. L'aggiornamento è intrinsecamente sequenziale (meno adatto al parallelismo rispetto a Jacobi).

• gradient_method(A, b, tol, x0=None) è il metodo del gradiente per sistemi con A come SPD. Dato x^(0) (di default il vettore nullo), all'iterazione k si calcola il residuo:

$$r^{(k)} = b - Ax^{(k)}$$

e si sceglie il passo ottimo lungo la direzione del residuo:

$$lpha_k = rac{(r^{(k)},\,r^{(k)})}{(r^{(k)},\,Ar^{(k)})}$$

aggiornando:

$$x^{(k+1)} = x^{(k)} + \alpha_k r^{(k)}$$

Costo per iterazione. Un prodotto matrice–vettore **Ar^(k)**, due prodotti scalari e poche operazioni assiali vettoriali: con matrici sparse il costo è **O(nnz(A))** a iterazione.

Convergenza. Lineare e fortemente dipendente dal numero di condizione $\kappa(A)$; può presentare andamento a "zig-zag" quando κ è alto, richiedendo molte iterazioni. In pratica è raramente competitivo con Gradiente Coniugato su SPD.

 conjugate_gradient(A, b, tol, x0=None) rappresenta l'algoritmo classico per matrici SPD. Con inizializzazione:

$$r^{(0)} = b - Ax^{(0)}$$
, $p^{(0)} = r^{(0)}$

ad ogni iterazione **k=0,1...** si calcola:

$$egin{aligned} lpha_k &= rac{(r^{(k)},\,r^{(k)})}{(p^{(k)},\,Ap^{(k)})}, \quad x^{(k+1)} = x^{(k)} + lpha_k p^{(k)}, \quad r^{(k+1)} = r^{(k)} - lpha_k Ap^{(k)}, \ egin{aligned} eta_k &= rac{(r^{(k+1)},\,r^{(k+1)})}{(r^{(k)},\,r^{(k)})}, \quad p^{(k+1)} = r^{(k+1)} + eta_k p^{(k)}. \end{aligned}$$

Costo per iterazione. Un solo prodotto matrice–vettore **Ap^(k)**, alcuni prodotti scalari e aggiornamenti vettoriali: con matrici sparse il costo è **O(nnz(A))** a iterazione.

Convergenza. In aritmetica esatta raggiunge la soluzione in **al più n iterazioni** con **n=dimA**. In pratica la velocità dipende da $\sqrt{\kappa(A)}$ ed è nettamente superiore ai metodi classici. Su SPD è lo standard de-facto per efficienza e robustezza.

solve_all_methods(A, b, x_exact, tol) che lancia in sequenza Jacobi, Gauss-Seidel, Gradiente e Gradiente Coniugato con gli stessi dati.
 In più, se c'è la soluzione esatta x_exact (nel nostro setup è il vettore tutto 1), calcola anche l'errore relativo sulla soluzione ||x-x*||/||x*|| e lo aggiunge all'output di ciascun metodo.

2.2 src/matrix_utils.py

Modulo di supporto per I/O delle matrici, generazione dei sistemi di test e formattazione dei risultati.

Non implementa solutori: prepara i dati per i metodi del file **linear_solvers.py**.

load_mtx_matrix(filepath)

Carica un file **Matrix Market** (.mtx) con scipy.io.mmread, che gestisce in automatico la conversione dagli indici 1-based del formato al 0-based di NumPy.

Come output restituisce la matrice come array denso np.ndarray (conversione da sparse con .toarray() se necessario) e un dizionario con informazioni sulla matrice.

Da notare: La scelta di convertire a denso semplifica il codice ma può richiedere memoria; qui è accettabile per le dimensioni in consegna.

check_matrix_properties(A, compute_eigenvalues=False)

Controlla proprietà strutturali utili ai solutori (quadratura, simmetria, definitezza positiva, calcola autovalori, salva min_eigenvalue e max_eigenvalue, il numero di condizione spettrale max/min ed eventuali problemi).

Ritorna un dizionario con i risultati e un'eventuale lista di errori.

create_test_system(n, matrix_type='tridiagonal')

Crea una matrice A di dimensione n a scelta tra:

- tridiagonal (SPD classica),
- diagonal_dominant (matrice simmetrica resa diagonalmente dominante),
- hilbert (simmetrica e definita positiva ma mal condizionata (utile per stresstest della convergenza).

Restituisce A, b e x_exact.

generate_standard_test_system(A)

Utility usata nella modalità di validazione: prende una $\bf A$ già caricata e genera lo stesso setup standard, ritornando $\bf b$ e $\bf x_exact$.

print_matrix_info(A, name='Matrix')

Stampa a schermo: dimensioni, numero di non-zero, norma di Frobenius.

Se A è quadrata, chiama check_matrix_properties(..., compute_eigenvalues=True) e mostra anche: simmetria, definitezza positiva, autovalori min/max e numero di condizione.

save_results_to_file(results, filepath, matrix_name, tolerance)

Scrive su un file di testo i risultati dei metodi per una certa tolleranza: convergenza sì/no, iterazioni, tempo, residuo e (se c'è) errore relativo sulla soluzione.

create_comparison_table(all_results)

Costruisce una tabella in testo: per ogni tolleranza elenca, metodo per metodo, convergenza, iterazioni, tempo ed errore relativo.

2.3 src/__init__.py

Questo file è l'inizializzatore del pacchetto: definisce l'API "pulita" esposta a chi usa la libreria (es. from src import...).

Non contiene logica algoritmica: riesporta le classi e le funzioni principali (LinearIterativeSolver, utilità di I/O e di test), e fornisce metadati (versione e attore).

Il vettore pubblico è controllato da _all_, così gli import restano stabili e ordinati.

2.4 main.py

Rappresenta **l'entry point del progetto**: orchestria i test dei quattro solutori, gestisce gli input da riga di comando, produce l'output su schermo e salva i risultati su file.

Non implementa gli algoritmi numerici (che stanno in src/), ma coordina il workflow di validazione e confronto.

Uso: python main.py

Esistono tre modalità di esecuzione:

1. Validazione (default)

Per ogni matrice .mtx trovata in data/ (o per una matrice specificata con -m), costruisce il sistema con soluzione nota x*=1 e b=Ax*, avvia i quattro metodi con $x^{(0)}=0$ e, per ciascuna tolleranza, riporta: numero di iterazioni, tempo, residuo relativo e (se disponibile) errore relativo sulla soluzione.

2. Generica (utente fornisce A, b, x)

Con -m A.mtx --b b.txt --x x.txt --single-tol 1e-6 legge una terna arbitraria (A, b, x*). Esegue controlli di compatibilità (dimensioni) e una verifica diagnostica di coerenza ||Ax*-b||/||b||. Poi lancia i quattro solutori con la tolleranza indicata.

3. Matrice generata

Con --test (e opzionalmente -n e tipo in create_test_system) genera un sistema di prova (es. tridiagonale SPD), quindi segue lo stesso flusso della validazione.

Argomenti da riga di comando (principali):

- -m/--matrix: nome file .mtx da testare (cercato in --data-dir).
- --test: usa una matrice sintetica (default: tridiagonale).
- -n/--size: dimensione della matrice generata (default 100).
- **-t/--tolerances**: lista di tolleranze (default: 1e-4, 1e-6, 1e-8, 1e-10).
- --b, --x, --single-tol: attivano la modalità generica.
- -o/--output: cartella di destinazione dei risultati (results).
- --data-dir: cartella con i .mtx (data).

Funzioni di supporto:

test_single_matrix(path, tolerances, output_dir)

Carica A (con load_mtx_matrix), stampa info (print_matrix_info), costruisce b=A*1 e lancia LinearIterativeSolver.solve_all_methods per ogni tolleranza. Stampa una tabella di confronto (create_comparison_table) e salva:

un summary complessivo per la matrice (*_summary.txt);

- un file di dettaglio per ciascuna tolleranza (*_tol_*.txt) con convergenza, iterazioni, tempo, residuo ed errore relativo.
- test_generated_matrix(n, matrix_type, tolerances, output_dir)
 Genera A, b, x* con create_test_system e segue lo stesso flusso di test_single_matrix.
- test_generic_system(matrix_path, b_path, x_path, tolerance, output_dir)
 Carica A, b, x* da file, verifica dimensioni e coerenza b≈Ax*, poi esegue i quattro metodi con la singola tolleranza indicata. Salva un file di risultati.
- find_mtx_files(data_dir)

Elenca tutti i .mtx nella cartella indicata (usato dalla modalità di validazione "batch").

load_vector_from_file(filepath)

Carica **b** o **x*** da .txt/.npy con controlli d'errore basilari.

Logica del main():

Il main() interpreta gli argomenti, seleziona la modalità (generica, test, validazione singola, validazione batch), istanzia il solver con max_iter=20000 e verbose=False (set coerenti con la consegna), avvia i test e produce sia output su console sia file in results/.

In caso di errori (file mancanti, dimensioni incompatibili, ecc.) stampa messaggi esplicativi e termina in modo pulito.

Per ogni esperimento vengono sempre:

- stampate a schermo le metriche fondamentali (convergenza, iterazioni, tempo, residuo, errore relativo);
- salvati file testuali riutilizzabili per la relazione e per i grafici (timestamp nel summary, tabella di confronto formattata, un file per tolleranza).

2.5 plots/generate_plots.py

Questo script automatizza la creazione dei grafici a partire dai file di output prodotti da main.py (cartella results/). L'obiettivo è avere, con un solo comando, i grafici pronti.

Uso: python tests/generate_plots.py

Flusso generale:

- 1. Caricamento dei risultati: legge i file results/{matrice}_tol_{toll}.txt per le matrici spa1, spa2, vem1, vem2 e per le tolleranze 1e-04, 1e-06, 1e-08, 1e-10.
- 2. **Parsing**: da ciascun file estrae, per ogni metodo, converged, iterations, time, relative_error.
- 3. Plot: costruisce due figure riepilogative e le salva in plots/.

Funzioni principali:

parse_results_file_real(filepath)

Apre un singolo file di risultati (testo) e, tramite una regex, cerca il blocco di ciascun metodo:

- convergenza ("Sì/No"),
- · numero di iterazioni,
- tempo (secondi),
- · errore residuo,
- errore relativo.

Restituisce un dizionario.

Assunzioni: il file ha il formato creato da save_results_to_file.

load_all_results_auto(results_dir="results")

Scorre in automatico i nomi **{matrice} × {tolleranza}** attesi, costruisce il percorso del file, chiama il parser e accumula tutto in una struttura nidificata. Stampa anche un breve riepilogo su quanti file sono stati trovati e letti con successo.

plot_all_matrices_comparison(results, output_dir="plots")

Crea una figura **2×2**, una sottotrama per ogni matrice. Sull'asse x c'è la **tolleranza** (scala log), sull'asse y il **numero di iterazioni** (scala log).

Per ogni matrice traccia quattro curve (Jacobi, Gauss–Seidel, Gradiente, Gradiente Coniugato). L'asse x è **invertita** per leggere da sinistra a destra le tolleranze da più blanda (1e-4) a più severa (1e-10).

Salva il file come **plots/all_matrices_iterations.png** (curve iterazioni vs tolleranza).

plot_performance_all_tolerances(results)

Per **ogni tolleranza** genera una figura con **due grafici a barre** affiancati:

- a sinistra, iterazioni per metodo e matrice (asse y in scala log);
- a destra, tempo (s) per metodo e matrice (asse y in scala log);

I file prodotti sono **plots/performance_tol_1e-04.png, ..._1e-06.png, ..._1e- 08.png, ..._1e-10.png**.

main()

Esegue il flusso completo: carica i risultati, genera i due grafici e indica a video dove sono stati salvati.

Come leggere i grafici

- Iterazioni vs tolleranza (2×2): a parità di matrice, confronta la sensibilità alla tolleranza e la rapidità di convergenza dei quattro metodi. Le curve più in basso sono migliori (meno iterazioni).
- Riepilogo a barre (1e-06): confronta rapidamente chi converge in meno iterazioni e chi impiega meno tempo reale su ciascuna matrice.

2.6 tests/test_quick.py

Scopo: verifica veloce che la mini-libreria funzioni end-to-end su un caso piccolo e che i controlli sulle proprietà della matrice (quadrata, simmetrica, SPD) si comportino correttamente.

Uso: python tests/quick_test.py

test_basic_functionality()

Genera un sistema di prova A,b,x* con **create_test_system(n=10,'tridiagonal')**, dove x*=1 e b=Ax*.

Istanziato il solver (LinearIterativeSolver(max_iter=1000, verbose=True)), esegue un test puntuale con Jacobi e poi il batch con tutti i metodi tramite solve_all_methods(...).

Stampa per ciascun metodo: convergenza, iterazioni, tempo, errore relativo.

test_matrix_properties()

Verifica positiva su una 3×3 tridiagonale simmetrica e SPD.

Verifica negativa su una matrice non simmetrica: ci si attende un'eccezione dal controllo interno _check_matrix_properties.

Output atteso: tabella riassuntiva dei metodi sul caso 10×10 e messaggio conclusivo "TUTTI I TEST SUPERATI!" se non emergono errori.

2.7 tests/mtx_indexing_test.py

Scopo: validare che **scipy.io.mmread** gestisca correttamente la conversione dagli indici **1-based** (tipici del formato Matrix Market) agli indici **0-based** (NumPy/SciPy), e fare un controllo minimo di simmetria/consistenza su file reali.

Uso: python tests/mtx_indexing_test.py

test_mtx_indexing()

Crea un file .mtx temporaneo (piccolo, simmetrico) scritto in 1-based.

Carica con mmread, converte a denso e confronta con la matrice attesa in 0-based usando np.allclose.

Verifica aggiuntiva: simmetria della matrice caricata.

test_with_actual_matrix(matrix_path)

Carica una matrice reale (es. **data/spa1.mtx**), stampa tipo, dimensioni e nnz. Se la matrice è piccola, la converte a denso e verifica rapidamente la simmetria; se è grande, ispeziona alcuni elementi.

check_mtx_file_format(filepath)

Stampa le prime righe del file .mtx e legge la riga delle dimensioni/nnz per un controllo visivo del formato.

__main__

Esegue il test sintetico su file temporaneo e, a seguire, i controlli su alcune matrici reali (percorsi configurabili nell'elenco test_matrices).

Output atteso: messaggi che confermano la corretta conversione da 1-based a 0-based nel caso sintetico e l'esito dei controlli su file reali (shape, nnz, simmetria).

2.8 results/

Contiene gli output generati da main.py, che possono essere di tre tipi:

• File "summary" per matrice

Per esempio: **spa1_summary.txt** contiene le info della matrice (dimensioni, sparsità, simmetria, ecc.) più una tabella di confronto tra metodi e tolleranze.

• File per tolleranza (modalità validazione)

Per esempio: **spa1_tol_1e-06.txt**, **spa1_tol_1e-08.txt**.. per ogni metodo riporta Metodo, Convergenza, Iterazioni, Tempo, Errore residuo, Errore relativo.

• File per tolleranza (modalità generica)

Per esempio: **spa1_generic_tol_1e-06.txt** identico ai file sopra ma ottenuto quando passi **--b** e **--x**.

Attenzione: i file in results/ vengono creati/aggiornati automaticamente da main.py.

2.8 test data/

Contiene gli input usati **solo** nella modalità generica:

- x_*.txt: vettori soluzione esatta (nel setup di questo progetto sono tutti 1).
- b_*.txt: termini noti coerenti, calcolati come b = A @ x.
- test_x.txt, test_b.txt: coppia di prova piccola.

Quando si lancia, ad esempio:

python main.py -m spa1.mtx --b test_data/b_spa1.txt --x test_data/x_spa1.txt --single-tol 1e-6, main.py carica A da data/spa1.mtx e b con x da test_data/..., verifica le dimensioni e poi esegue i 4 metodi su quella singola tolleranza.

Attenzione: i file in **test_data/** devono essere **preparati da noi** (o con uno script) e devono avere la **stessa dimensione** di A.

Esempio di alcuni script utilizzati:

```
#spa1
```

```
python -c 'import numpy as np; from src import load_mtx_matrix;

A,_=load_mtx_matrix("data/spa1.mtx"); x=np.ones(A.shape[0]);

np.savetxt("test_data/x_spa1.txt", x); np.savetxt("test_data/b_spa1.txt", A@x)'

python main.py -m spa1.mtx --b test_data/b_spa1.txt --x test_data/x_spa1.txt --s ingle-tol 1e-6
```

```
#spa2
```

```
python -c 'import numpy as np; from src import load_mtx_matrix;

A,_=load_mtx_matrix("data/spa2.mtx"); x=np.ones(A.shape[0]);

np.savetxt("test_data/x_spa2.txt", x); np.savetxt("test_data/b_spa2.txt", A@x)'

python main.py -m spa2.mtx --b test_data/b_spa2.txt --x test_data/x_spa2.txt --
single-tol 1e-6
```

vem1

```
python -c 'import numpy as np; from src import load_mtx_matrix;

A,_=load_mtx_matrix("data/vem1.mtx"); x=np.ones(A.shape[0]);

np.savetxt("test_data/x_vem1.txt", x); np.savetxt("test_data/b_vem1.txt", A@x)'

python main.py -m vem1.mtx --b test_data/b_vem1.txt --x test_data/x_vem1.txt --s ingle-tol 1e-6
```

vem2

```
python -c 'import numpy as np; from src import load_mtx_matrix;

A,_=load_mtx_matrix("data/vem2.mtx"); x=np.ones(A.shape[0]);

np.savetxt("test_data/x_vem2.txt", x); np.savetxt("test_data/b_vem2.txt", A@x)'

python main.py -m vem2.mtx --b test_data/b_vem2.txt --x test_data/x_vem2.txt --single-tol 1e-6
```

3. Risultati

In questo capitolo confrontiamo i quattro metodi implementati (Jacobi, Gauss–Seidel, Gradiente e Gradiente Coniugato) nella soluzione di sistemi lineari **Ax=b** con **A** simmetrica definita positiva (SPD).

L'obiettivo è valutare **efficienza** (iterazioni e tempo) e **accuratezza** (errore) al variare della tolleranza e della matrice.

3.1 Lettura dei risultati dal terminale

Di seguito vengono commentate le tabelle di confronto generate automaticamente dai file results/*_summary.txt. Per ogni matrice (spa1, spa2, vem1, vem2) sono riportati, al variare di tol \in {10^(-4), 10^(-6), 10^(-8), 10^(-10)}, convergenza, iterazioni, tempo wall-clock e errore relativo.

3.1.1 Matrice spa1.mtx

Pannello con le info della matrice:

```
Caricata matrice spa1.mtx
 Dimensione: 1000x1000
 Elementi non zero: 182264
 Sparsità: 81.77%
 Simmetrica: True
Informazioni Matrice spa1.mtx:
  Dimensione: 1000x1000
  Elementi non zero: 182264
  Norma di Frobenius: 1.7874e+04
  Simmetrica: True
 Definita positiva: True
 Autovalore minimo: 4.8798e-01
  Autovalore massimo: 9.9946e+02
  Numero di condizione: 2.0482e+03
Sistema generato:
 Soluzione esatta: x = [1, 1, ..., 1] (dimensione 1000)
  Termine noto: b = A * x
```

TABELLA DI CONFRONTO METODI ITERATIVI					
Tolleranza	Metodo	Conv.	Iter.	Tempo (s)	Err. Rel.
1e-04	Jacobi	Sì	115	0.034002	1.771281e-03
	Gauss-Seidel	Sì	9	0.696276	1.820594e-02
	Gradient	Sì	143	0.039021	3.457470e-02
	Conjugate Gradient	Sì	49	0.010000	2.078976e-02
1e-06	Jacobi	Sì	181	0.054004	1.797930e-05
	Gauss-Seidel	Sì	17	1.332070	1.299694e-04
	Gradient	Sì	3577	0.957618	9.680457e-04
	Conjugate Gradient	Sì	134	0.026093	2.552909e-05
1e-08	Jacobi	Sì	247	0.072157	1.824979e-07
	Gauss-Seidel	Sì	24	1.827774	1.709733e-06
	Gradient	Sì	8233	2.212606	9.816364e-06
	Conjugate Gradient	Sì	177	0.033562	1.319840e-07
1e-10	Jacobi	Sì	313	0.093518	1.852436e-09
	Gauss-Seidel	Sì	31	2.403620	2.248088e-08
	Gradient	Sì	12919	3.382639	9.820387e-08
	Conjugate Gradient	Sì	200	0.037998	1.203111e-09

Ordine delle iterazioni:

- Gradiente Coniugato:
 decine/centinaia di iterazioni (es. 49 iter a 1e-4; 200 a 1e-10).
- Gauss-Seidel:
 decine di iterazioni (es. 9 a 1e-4; 31 a 1e-10).
- Jacobi:
 centinaia di iterazioni (es. 115 a 1e-4; 313 a 1e-10).
- Gradiente:
 da centinaia a migliaia/decine di migliaia (es. 143 a 1e-4, 12919 a 1e-10).

Tempi:

- Gradiente Coniugato:
 è il più veloce (es. 0.01s a 1e-4; 0.379s a 1e-10).
- Gauss-Seidel:
 è lento nonostante le poche iterazioni (es. 0.696s a 1e-4; 2.403s a 1e-10),
 perché ogni iterazione fa sostituzione in avanti sequenziale.

Jacobi:

spesso abbastanza rapido (es. **0.034** a **1e-4**; **0.093** a **1e-10**), ma il tempo cresce quando servono molte iterazioni.

Gradiente:

accumula tempo per il numero enorme di iterazioni (es. 0.039 a 1e-4; 3.382 a 1e-10).

Errori relativi:

- Scendono con la tolleranza!
- Per esempio, a 1e-10:
 - o Gradiente Coniugato ≈ 1.2e-09
 - o Jacobi ≈ 1.85e-09
 - Gauss-Seidel ≈ 2.25e-08
 - Gradiente \approx 9.8e-08.
- Sono tutti numeri molto piccoli: siamo vicino ai limiti della precisione double.

3.1.2 Matrice spa2.mtx

Pannello con le info della matrice:

```
Caricata matrice spa2.mtx
  Dimensione: 3000x3000
  Elementi non zero: 1631738
  Sparsità: 81.87%
  Simmetrica: True
Informazioni Matrice spa2.mtx:
  Dimensione: 3000x3000
  Elementi non zero: 1631738
  Norma di Frobenius: 9.5801e+04
  Simmetrica: True
  Definita positiva: True
  Autovalore minimo: 2.1235e+00
  Autovalore massimo: 2.9984e+03
  Numero di condizione: 1.4120e+03
Sistema generato:
  Soluzione esatta: x = [1, 1, ..., 1] (dimensione 3000)
  Termine noto: b = A * x
```

TABELLA DI CONFRONTO METODI ITERATIVI					
Tolleranza	Metodo	Conv.	Iter.	Tempo (s)	Err. Rel.
1e-04	Jacobi	Sì	36	0.171706	1.766247e-03
	Gauss-Seidel	Sì	5	3.512159	2.598896e-03
	Gradient	Sì	161	0.501269	1.812965e-02
	Conjugate Gradient	Sì	42	0.087575	9.821128e-03
1e-06	Jacobi	Sì	57	0.267568	1.666756e-05
	Gauss-Seidel	Sì	8	5.543945	5.141641e-05
	Gradient	Sì	1949	6.158386	6.694229e-04
	Conjugate Gradient	Sì	122	0.254864	1.197985e-04
1e-08	Jacobi	Sì	78	0.367388	1.572870e-07
	Gauss-Seidel	Sì	12	8.309299	2.794322e-07
	Gradient	Sì	5087	15.858072	6.865240e-06
	Conjugate Gradient	Sì	196	0.410797	5.586661e-07
1e-10	Jacobi	Sì	99	0.466009	1.484273e-09
	Gauss-Seidel	Sì	15	10.355855	5.570739e-09
	Gradient	Sì	8285	26.227214	6.937813e-08
	Conjugate Gradient	Sì	240	0.501360	5.324230e-09

Ordine delle iterazioni:

- Gradiente Coniugato:
 decine/centinaia di iterazioni (es. 42 iter a 1e-4; 240 a 1e-10).
- Gauss-Seidel:
 decine di iterazioni (es. 5 a 1e-4; 15 a 1e-10).
- Jacobi: decine/centinaia di iterazioni (es. 36 a 1e-4; 99 a 1e-10).
- Gradiente:
 da centinaia a migliaia/decine di migliaia (es. 161 a 1e-4, 8285 a 1e-10).

Tempi:

- Gradiente Coniugato:
 è il più veloce (es. 0.088s a 1e-4; 0.501s a 1e-10).
- Gauss-Seidel:
 è lento nonostante le poche iterazioni (es. 3.512s a 1e-4; 10.356s a 1e-10),
 perché ogni iterazione fa sostituzione in avanti sequenziale.

- Jacobi:
 rapido e scalabile (es. 0.172 a 1e-4; 0.466 a 1e-10).
- Gradiente:
 accumula tempo per il numero enorme di iterazioni (es. 0.501 a 1e-4; 26.227 a 1e-10).

Errori relativi:

- Scendono con la tolleranza!
- Per esempio, a 1e-10:
 - o Gradiente Coniugato ≈ 5.32e-09
 - o Jacobi ≈ 1.48e-09
 - o Gauss-Seidel ≈ 5.57e-09
 - Gradiente ≈ 6.94e-08
- Sono tutti numeri molto piccoli: correttezza fino a 8–9 cifre decimali.

3.1.3 Matrice vem1.mtx

Pannello con le info della matrice:

```
Caricata matrice vem1.mtx
  Dimensione: 1681x1681
 Elementi non zero: 13385
  Sparsità: 99.53%
  Simmetrica: True
Informazioni Matrice vem1.mtx:
 Dimensione: 1681x1681
  Elementi non zero: 13385
  Norma di Frobenius: 1.2527e+02
  Simmetrica: True
 Definita positiva: True
 Autovalore minimo: 1.2321e-02
  Autovalore massimo: 4.0000e+00
  Numero di condizione: 3.2464e+02
Sistema generato:
 Soluzione esatta: x = [1, 1, ..., 1] (dimensione 1681)
  Termine noto: b = A * x
```

TABELLA DI CONFRONTO METODI ITERATIVI					
Tolleranza	Metodo	Conv.	Iter.	Tempo (s)	Err. Rel.
1e-04	Jacobi	Sì	1314	1.309663	3.540381e-03
	Gauss-Seidel	Sì	659	145.454549	3.506973e-03
	Gradient	Sì	890	0.380865	2.704572e-03
	Conjugate Gradient	Sì	38	0.013510	4.082793e-05
1e-06	Jacobi	Sì	2433	2.583244	3.540073e-05
	Gauss-Seidel	Sì	1218	275.914331	3.526697e-05
	Gradient	Sì	1612	0.743079	2.713339e-05
	Conjugate Gradient	Sì	45	0.014966	3.732340e-07
1e-08	Jacobi	Sì	3552	3.929881	3.539766e-07
	Gauss-Seidel	Sì	1778	394.705513	3.517457e-07
	Gradient	Sì	2336	0.851060	2.695337e-07
	Conjugate Gradient	Sì	53	0.014001	2.831873e-09
10	Jacobi	Sì	4671	4.693605	3.539467e-09
	Gauss-Seidel	Sì	2338	515.579566	3.508245e-09
	Gradient	Sì	3058	1.330840	2.713171e-09
	Conjugate Gradient	Sì	59	0.018995	2.191750e-11

Ordine delle iterazioni:

- Gradiente Coniugato:
 decine di iterazioni (es. 38 iter a 1e-4; 59 a 1e-10).
- Gauss-Seidel:
 centinaia/migliaia di iterazioni (es. 659 a 1e-4; 2338 a 1e-10).
- Jacobi:
 migliaia di iterazioni (es. 1314 a 1e-4; 4671 a 1e-10).
- Gradiente:
 da centinaia a migliaia di iterazioni (es. 890 a 1e-4, 3058 a 1e-10).

Tempi:

- Gradiente Coniugato:
 è il più veloce (es. 0.0135s a 1e-4; 0.0190s a 1e-10).
- Gauss-Seidel:
 è molto lento (es. 145s a 1e-4; 515s a 1e-10).

Jacobi:

abbastanza rapido (es. **1.31** a **1e-4**; **4.69** a **1e-10**), ma il tempo cresce quando servono molte iterazioni.

Gradiente:

piuttosto contenuto (es. 0.38 a 1e-4; 1.33 a 1e-10).

Errori relativi:

- Scendono con la tolleranza!
- Per esempio, a 1e-10:
 - o **Gradiente Coniugato** ≈ **2.19e-11** (11 cifre corrette)
 - O Jacobi ≈ 3.54e-09
 - Gauss-Seidel ≈ 3.51e-09
 - Gradiente ≈ 2.71e-09
- Sono tutti numeri molto piccoli: nell'ordine di 10^(-9) e 10^(-11), vicino ai limiti della precisione double.

3.1.4 Matrice vem2.mtx

Pannello con le info della matrice:

```
Caricata matrice vem2.mtx
  Dimensione: 2601x2601
  Elementi non zero: 21225
  Sparsità: 99.69%
  Simmetrica: True
Informazioni Matrice vem2.mtx:
  Dimensione: 2601x2601
  Elementi non zero: 21225
  Norma di Frobenius: 1.5728e+02
  Simmetrica: True
  Definita positiva: True
  Autovalore minimo: 7.8892e-03
  Autovalore massimo: 4.0000e+00
  Numero di condizione: 5.0702e+02
Sistema generato:
  Soluzione esatta: x = [1, 1, ..., 1] (dimensione 2601)
  Termine noto: b = A * x
```

TABELLA DI CONFRONTO METODI ITERATIVI					
Tolleranza	Metodo	Conv.	Iter.	Tempo (s)	Err. Rel.
1e-04	Jacobi	Sì	1927	6.629710	4.968461e-03
	Gauss-Seidel	Sì	965	510.232157	4.951189e-03
	Gradient	Sì	1308	2.676783	3.811930e-03
	Conjugate Gradient	Sì	47	0.060571	5.729017e-05
1e-06	Jacobi	Sì	3676	12.999283	4.967034e-05
	Gauss-Seidel	Sì	1840	966.848848	4.941761e-05
	Gradient	Sì	2438	4.665881	3.791419e-05
	Conjugate Gradient	Sì	56	0.071995	4.742996e-07
1e-08	Jacobi	Sì	5425	19.190853	4.965608e-07
	Gauss-Seidel	Sì	2714	1403.482746	4.958370e-07
	Gradient	Sì	3566	6.778007	3.809851e-07
	Conjugate Gradient	Sì	66	0.083406	4.299983e-09
1e-10	Jacobi Gauss-Seidel Gradient Conjugate Gradient	Sì Sì Sì Sì	7174 3589 4696 74	24.925650 1867.759789 8.832831 0.096507	3.798757e-09

Ordine delle iterazioni:

- Gradiente Coniugato:
 decine di iterazioni (es. 47 iter a 1e-4; 74 a 1e-10).
- Gauss-Seidel:
 centinaia/migliaia di iterazioni (es. 965 a 1e-4; 3589 a 1e-10).
- Jacobi:
 migliaia di iterazioni (es. 1927 a 1e-4; 7174 a 1e-10).
- Gradiente:
 migliaia di iterazioni (es. 1308 a 1e-4, 4696 a 1e-10).

Tempi:

- Gradiente Coniugato:
 è il più veloce (es. 0.06s a 1e-4; 0.096s a 1e-10).
- Gauss-Seidel:
 è molto lento (es. 510s a 1e-4; 1868s a 1e-10), perché ogni iterazione fa sostituzione in avanti sequenziale.

Jacobi:

diventa pesante (es. **6.63** a **1e-4**; **24.9** a **1e-10**), ma il tempo cresce quando servono molte iterazioni.

Gradiente:

piuttosto contenuto (es. 2.67 a 1e-4; 8.83 a 1e-10).

Errori relativi:

- Scendono con la tolleranza!
- Per esempio, a 1e-10:
 - o **Gradiente Coniugato** ≈ **2.25e-11** (11 cifre corrette)
 - o Jacobi ≈ 4.96e-09
 - o Gauss-Seidel ≈ 4.95e-09
 - Gradiente ≈ 3.80e-09
- Sono tutti numeri molto piccoli: nell'ordine di 10^(-9) e 10^(-11), vicino ai limiti della precisione double.

3.2 Iterazioni vs Tolleranza

Ogni pannello è una matrice (titolo = dimensioni e percentuale di zeri).

Sull'asse x c'è la **tolleranza** (in scala log, da 10^{-4} a 10^{-10} , con asse invertito: andando a destra la tolleranza si stringe).

Sull'asse y c'è il **numero di iterazioni** (log). Le quattro curve sono i 4 metodi citati precedentemente.

Osservazioni principali:

• Il Gradiente Coniugato (CG) è nettamente il più efficace.

In tutti i casi la curva/colonna rossa è la più bassa: **pochi passi** per raggiungere la tolleranza, e tempi molto contenuti.

L'aumento di iterazioni al ridursi della tolleranza è **moderato** rispetto agli altri metodi.

Il Gradiente (steepest descent) è il più sensibile alla tolleranza e alla condizione.

Le curve verdi crescono rapidamente stringendo la tolleranza (soprattutto su *spa1* e *spa2*): servono **migliaia** di iterazioni a 10^{-8} e 10 ^{-10}. È il comportamento tipico del metodo del gradiente quando il numero di condizione è alto.

Gauss-Seidel richiede meno iterazioni di Jacobi, ma il tempo può essere maggiore.

Nei pannelli e nel riepilogo a 10^{-6} le barre arancioni (GS) in **iterazioni** sono spesso più basse delle blu (Jacobi).

Tuttavia, nella colonna **tempi** GS può risultare più lento perché l'aggiornamento è **intrinsecamente sequenziale** (forward substitution riga-per-riga) e, in questa implementazione, è meno **vettorializzato** di Jacobi.

Quindi meno iterazioni ≠ tempo minore.

Effetto della dimensione/sparsità della matrice.

Passando da spa1 (1000×1000) a spa2 (3000×3000) e da vem1 a vem2 crescono sia iterazioni (moderatamente) sia tempi (marcatamente).

Le matrici *vem* sono **molto più sparse** (≈99.5–99.7%) e questo aiuta i tempi dei metodi vettorializzati (Jacobi/CG) più di GS.

• Tolleranza più stretta implica più iterazioni per tutti.

Le curve sono **crescienti** verso destra: l'ordine è quello atteso.

L'incremento è **più dolce** per CG, **marcato** per Gradiente, **intermedio** per Jacobi/GS.

3.3 Riepilogo prestazioni

Sono le barre logaritmiche di **iterazioni** e **tempi** per un confronto immediato tra metodi e matrici, dove:

- A sinistra: iterazioni richieste dai metodi su ciascuna matrice (scala log).
- A destra: tempi wall-clock corrispondenti (scala log).

Osservazioni principali:

1) Iterazioni:

 Gradiente coniugato resta sempre nell'ordine delle decine di iterazioni su tutte le matrici e per tutte le tolleranze.

L'incremento passando da 1e-4 a 1e-10 è moderato.

Messaggio: è il più robusto all'inasprimento della tolleranza.

- Gauss-Seidel richiede meno iterazioni di Jacobi (spesso 5–20× meno), ma le iterazioni crescono parecchio quando si scende a 1e-8 e 1e-10.
- Jacobi ha il numero di iterazioni sempre superiore a Gauss-Seidel e molto più alto di Gradiente coniugato.

Cresce in modo marcato quando la tolleranza si fa stringente.

 Gradiente "semplice" è quello che cresce di più; su diverse matrici arriva a migliaia–decine di migliaia di passi per 1e-8 e 1e-10.
 Causa è l'andamento "zig-zag" e la dipendenza forte dal numero di condizione κ(A).

2) Tempi:

 Gradiente coniugato è quasi sempre il più veloce in tempo assoluto, spesso con due-tre ordini di grandezza in meno rispetto a Gauss-Seidel e al Gradiente.

Quasi sempre più rapido anche di Jacobi nonostante faccia più operazioni per iterazione: guadagna perché chiude in poche iterazioni.

• Gauss-Seidel pur con poche iterazioni, il tempo esplode su matrici grandi/tolleranze strette.

Causa è la **forward substitution** che è intrinsecamente **sequenziale** e **meno cache-friendly** rispetto a un singolo mat-vec.
Inoltre **ogni iterazione "pesa" di più**.

- Jacobi ha i tempi spesso contenuti (una sola mat-vec per iterazione e aggiornamenti indipendenti), ma peggiora quando il numero di iterazioni cresce (1e-8 e1e-10).
- Gradiente ha i tempi intermedi/ampi perché accumula tantissime iterazioni; anche quando ogni passo è economico, la somma diventa rilevante.

3) Differenze tra matrici:

- spa1 (1000×1000) e spa2 (3000×3000, ~81% di zeri):
 - o all'aumentare della dimensione, i tempi di tutti i metodi crescono;
 - Gauss-Seidel e Gradiente soffrono di più, mentre Gradiente coniugato resta competitivo;
- vem1 (1681×1681) e vem2 (2601×2601, ~99.6% di zeri):
 - l'elevatissima sparsità mantiene i mat-vec leggeri, ma il numero di iterazioni richieste da Jacobi/Gauss-Seidel/Gradiente aumenta quando la tolleranza si stringe;
 - Gradiente coniugato rimane nell'ordine delle decine di passi e domina anche qui;

4) Effetto della tolleranza:

Passando da 1e-4 → 1e-6 → 1e-8 → 1e-10:

- **Gradiente coniugato**: aumento **lieve** di iterazioni e tempi.
- Jacobi/Gauss-Seidel: aumento marcato delle iterazioni; i tempi diventano rapidamente alti, in particolare per Gauss-Seidel.
- **Gradiente**: crescita **forte** (fino a 10^3–10^4 iterazioni), con tempi che possono diventare impraticabili.

5) Da mettere in evidenza:

- Gradiente coniugato è lo standard de-facto su SPD: poche iterazioni, tempi minimi, scalabilità buona al crescere di n e alla richiesta di precisione.
- Gauss–Seidel: pochi passi, ma costo per passo alto e poco parallelismo → può risultare molto lento in wall-time su matrici grandi.
- Jacobi: semplice e ben parallelizzabile; tempo discreto a tolleranze blande, ma il conto di iterazioni lo penalizza quando si scende a 1e-8 e 1e-10.
- Gradiente: implementazione corta, ma sensibile a κ(A); diventa inefficiente già a 1e-6 e 1e-8.

4. Conclusioni

L'analisi comparativa dei quattro metodi iterativi (Jacobi, Gauss–Seidel, Gradiente e Gradiente Coniugato) ha permesso di valutare in modo sistematico l'efficienza e l'accuratezza nella risoluzione di sistemi lineari con matrici simmetriche definite positive (SPD).

Dai risultati emersi possiamo trarre alcune considerazioni generali:

• Gradiente Coniugato come metodo di riferimento

- È risultato sistematicamente il più efficiente: converge in poche decine/centinaia di iterazioni anche su matrici di grandi dimensioni e tolleranze strette.
- I tempi di calcolo sono di gran lunga i più bassi (anche ordini di grandezza inferiori a Jacobi e soprattutto Gauss–Seidel).
- Gli errori relativi raggiungono valori prossimi al limite della precisione double (circa 10^(-11)), garantendo soluzioni numericamente molto accurate.

Si conferma quindi lo **standard de facto** per matrici SPD.

Jacobi e Gauss-Seidel

- Entrambi convergono con affidabilità, ma presentano limitazioni:
 - Jacobi richiede molte più iterazioni di Gauss-Seidel, ma è più parallelizzabile e veloce per singolo passo.
 - Gauss-Seidel, pur richiedendo meno iterazioni, risulta spesso molto lento per via dell'implementazione sequenziale e del costo elevato per iterazione.
- In pratica, il vantaggio teorico di Gauss–Seidel in termini di iterazioni non si traduce in un guadagno reale sui tempi.

Gradiente (steepest descent)

- Mostra una forte dipendenza dal numero di condizione: a tolleranze strette il numero di iterazioni cresce rapidamente fino a valori impraticabili (10³ e 10⁴).
- o I tempi risultano medi o elevati, a causa dell'accumulo delle iterazioni.
- Resta un metodo concettualmente semplice, ma poco competitivo rispetto al Coniugato.

• Effetti di dimensione e sparsità delle matrici

- L'aumento della dimensione comporta un incremento dei tempi per tutti i metodi, ma in misura molto diversa:
 - Jacobi e Conjugate Gradient beneficiano della sparsità elevata (vem1/vem2), restando efficienti.
 - Gauss-Seidel scala male, con tempi che esplodono al crescere della dimensione.
 - Gradiente risente fortemente della tolleranza e del numero di condizione, diventando poco praticabile.

Accuratezza

- Tutti i metodi raggiungono errori molto bassi (da 10^(-7) a 10^(-11)),
 sufficienti per la maggior parte delle applicazioni numeriche.
- Il Coniugato si distingue perché mantiene errori sistematicamente più bassi, anche con poche iterazioni.

Conclusione generale

Il confronto ha mostrato che, pur essendo utili a fini didattici, Jacobi, Gauss–Seidel e Gradiente non sono competitivi per problemi di grandi dimensioni e tolleranze strette. Il **Gradiente Coniugato** emerge come metodo ottimale per matrici SPD: garantisce convergenza rapida, tempi ridottissimi e accuratezza elevata.

In prospettiva, l'adozione del Coniugato è la scelta naturale in contesti applicativi reali, mentre gli altri metodi restano strumenti preziosi per comprendere i concetti fondamentali di iterazione e convergenza.