

Compléter avec le symbole qui convient :

1. 4...N

4. $\frac{1}{3}$... \mathbb{D}

2. $2, 5 \dots \mathbb{N}$

5. ℕ…. D

3. $-6 \dots \mathbb{Z}$

6. 4, 5 . . . ℚ

Indiquer l'ensemble minimum auquel appartient chaque nombre suivant parmi \mathbb{N} , \mathbb{Z} , \mathbb{Q} ou \mathbb{R} :

 $\bullet \ \frac{5-11}{2}$

- $\sqrt{16} 1$
- 3, 14 159

• $\overline{6}$

Compléter avec le symbole d'appartenance \in ou de non-appartenance \notin :

- 1. 3...] 1; 5]
- **4.** $7...] \infty$; 7]
- **2.** $-2 \dots] -1; 0]$
- 5. π ...]3,14;3,15[
- 3. $10^{-3} \dots [0; +\infty[$
- **6.** $0 \dots [-\sqrt{3}; \sqrt{3}]$

On considère la droite des réels représentée ci-dessous.

- 1. Indiquer les abscisses (exactes) des points $M,\ N$ et P :
- 2. Placer sur la droite, le plus précisément possible, les points A, B et C ayant respectivement pour abscisses -2; $\frac{5}{2}$ et 3, 5.

Quels sont les réels qui appartiennent à la partie de la droite numérique représentée en « foncé » ?

Écrire leur ensemble sous forme d'intervalle :

Dans chacun des cas suivants, représenter l'ensemble des nombres vérifiant la condition donnée sur une droite graduée puis écrire cet ensemble sous forme d'intervalle :

- 1. $-4 < x \leqslant 1$
- **2.** $x > \frac{3}{2}$
- 3. $x \leq -1$

Déterminer l'ensemble, sous forme d'union ou d'intersection d'intervalles, auquel appartient le nombre réel x dans chacun des cas suivants. Simplifier l'ensemble quand cela est possible. :

- 1. -2x < 8 ou $x \le -10$.
- **2.** $x \le 3$ et $x \ge -1$.

Traduire chacune des informations ci-dessous par une ou des inégalités :

- 1. $x \in [-1; 7[$
- **2.** $x \in]-\infty;-5]$
- **3.** $x \in [-2; +\infty[$

Soit I = [-1; 5] et J = [3; 10].

Dire si chacun des nombres suivants appartient à I, à J, à $I\cap J$, à $I\cup J$:

a. 4

c. 10

b. -1

d. 8

Représenter les intervalles I et J de deux couleurs différentes sur la même droite réelle. Donner ensuite leur réunion et leur intersection.

- **1.** I = [-6; 7] et J = [-2; 9]
- **2.** I =]-3; 8] et J =]-5; 6]
- **3.** $I =]-\infty$; 2] et J = [3; 5]
- **4.** $I =]-\infty$; 3] et $J = [0; +\infty[$

11

- 1. Sur un même axe, et avec des couleurs différentes, représenter les intervalles I = [-3; 5], J =]0; 2] et $K = [0; +\infty[$.
- **2.** Parmi ces affirmations ci-dessous, lesquelles sont justes?
 - **a.** $I \subset J$
- c. $J \subset K$
- **b.** $J \subset I$
- **d.** $I \subset K$

12

Soit $A = \{a; k; d; f; m; u\}, B = \{u; d; m; b\}$ et $C = \{a; d; f\}.$

- 1. B est-il inclus dans A? Justifier.
- **2.** Écrire avec des accolades les ensembles : $A \cup B$, $A \cup C$ et $A \cap B$ et $A \cap C$.

Dans chacun des cas suivants, proposer une écriture plus simple:

1.
$$A = 4x \times 3$$

2.
$$B = n + 5 \times n \times n$$

3.
$$C = 2 \times y + 6$$

$$4. D = z \times 1 \times z$$

5.
$$E = 2s \times 4t$$

6.
$$F = 3 \times x \times 4 \times x \times x$$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$\begin{array}{ccc} & & & & \\ \hline & & & \\ -5 & & & -1 \end{array} \longrightarrow^{x}$	
$2 \leqslant x < 7$	x	
	x	$]-2;+\infty[$

Compléter le tableau suivant :

Inéquation	Représentation	Intervalle
	$ \begin{array}{ccc} & & & \downarrow \\ & & \downarrow \\ & & 0 & & 9 \end{array} $	
$2 < x \leqslant 9$	x	
	x	$]-\infty;6]$

Simplifier:

1.
$$x \times x^2$$

2.
$$(3u)^2$$

3.
$$\left(\frac{x}{4}\right)^2$$

4.
$$(2x)^3 \times (4u)^2$$

5.
$$\frac{10^5}{10^5}$$

x est un nombre réel non nul. Écrire les nombres suivants sous la forme x^n avec n un entier relatif.

1.
$$A = \left(\frac{1}{x^{-4}}\right)^3$$

2.
$$B = \frac{x^{-8} \times x^5}{x^3 \times x^{-10}}$$

3. $C = ((x^3)^2)^4$

3.
$$C = ((x^3)^2)^4$$

4.
$$D = \left(\frac{x^{-3}}{x^7}\right)^3$$

Les nombres a et b étant non nuls, écrire plus simplement:

1.
$$(a^{-2}b^3)^{-4}$$

2.
$$a^2b^{-2}a^{-3}b^3$$

3.
$$\left(\frac{a}{b}\right)^{-1}$$

4.
$$a^{-6}(a^3 \times b^{-2})^2$$

On considère les deux nombres :

- 1. Comparer A et B.
- **2.** Calculer C = A 1 et D = 1 B.
- **3.** Comparer C et D.
- 4. Quel est, entre A et B, le nombre le plus proche de 1? Justifier.