Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Introduction, Syllabus, Data Types

Class Logistics and Agenda

- Agenda:
 - Introductions
 - Syllabus and Course Overview
 - What is Machine Learning?
 - Types of Data
 - Numpy/Pandas Demo
- My approach to this course:
 - Programming
 - Math
 - Applications and Analytics

Introductions & Course Syllabus

Richard Feynman @ProfFeynman · 12h Don't just teach your students to read.

- Teach them to question what they read, what they study.
- . Teach them to doubt.
- Teach them to think.
- Teach them to make mistakes and learn from them.
- Teach them how to understand something.
- . Teach them how to teach others.

Richard Feynman @ProfFeynman · 21h You cannot get educated by this selfpropagating system in which people study to pass exams, and teach others to pass exams, but nobody knows anything.

You learn something by doing it yourself, by asking questions, by thinking, and by experimenting.

Introductions

- Me
 - · Eric 👍
 - Dr. Larson 👍
 - · Prof. Larson 👍
 - Other 👎
- You
 - · Name
 - Where you grew up
 - Department
 - Grad/Undergrad
 - Something true or false

Choices:

High School

College Job

ML Instructor

Marvel

Kids

Limited Introduction because of Hybrid Class

FAQ

- Text:
 - Recommended: Python Machine Learning, Raschka & Mirjalili, Third Edition
- Use Canvas for posted course material
- Prerequisites:
 - Linear algebra, calculus (multivariate)
 - Basic statistics and probability
 - Basic python programming
- Version of python: 3.X
 - · Install through Anaconda
 - Use conda environments
 - JupyterLab (or notebook)
- Most Used Libraries: Numpy, Pandas, Scikit-Learn, Matplotlib, Seaborn, Tensorflow

Canvas Syllabus

- Lab Assignments
- Flipped Assignments
- Grading Rubrics
- Participation
- Course Schedule
- Difference between 5000 and 7000

Pandemic topics

- Participation is graded via the quizzes! Not lecture questions
- Attendance (if you want, but wear a mask)
 - Zoom always available, and videos posted if you cannot make it to class
 - Zoom etiquette (chat/video)
- Flipped assignments (distance, in-class, team, etc.)

Over the 4 days of infection before the typical time of symptom onset (day 5), the probability of a false-negative result in an infected person decreases from 100% (95% CI, 100% to 100%) on day 1 to 67% (CI, 27% to 94%) on day 4, although there is considerable uncertainty in these numbers. On the day of symptom onset, the median false-negative rate was 38% (CI, 18% to 65%) (Figure 2, top). This decreased to 20% (CI, 12% to 30%) on day 8 (3 days after symptom onset) then began to increase again, from 21% (CI, 13% to 31%) on day 9 to 66% (CI, 54% to 77%) on day 21.

More graph interpretation

https://www.medrxiv.org/content/10.1101/2021.08.19.21262111v1.full.pdf

Class Overview, by topic

Class Overview, by assignment

- Lab One: Visualize data and extract some features
- Lab Two: Analyze Images, Use dimensionality Reduction
- Lab Three: Program Logistic Regression in style of Sci-kit Learn
- Lab Four: Program NN Back propagation from Scratch, implement Adaptive Gradient Techniques
 - Use given dataset for this lab
- Lab Five: Wide and Deep networks
- Lab Six: Classify Images with Convolutional Networks
- Lab Seven: Classify Text with Recurrent Neural Networks

All Assignments posted on Canvas, with Rubric Everything is a team assignment except quizzes

Is this plagiarism in this class?

- Copying code/text from another source without citing it
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code/text from another source, citing at the end of the assignment in a blanket statement (but not making it clear which part of the assignment was from another source)?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying code, citing the source directly next to the code, and commenting on what parts were changed?
 - A. Yes, plagiarism!
 - B. No, its fine!
- Copying text directly and citing the source with the text, but not placing the text in quotes.
 - A. Yes, plagiarism!
 - B. No, its fine!

Machine Learning Overview

What is Machine Learning?

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. **Machine learning** focuses on the development of computer programs that can change when exposed to new data.

What is machine learning? - Definition from WhatIs.com whatis.techtarget.com/definition/machine-learning

About this result • Feedback

• Beware of this definition:

- full of imprecise, loaded words:
 - intelligence, learning
- ignores social structures, ethics, deployment,
 and that all results are interpreted by a human

Machine Learning

≧

Prediction Methods

- Use some variables to predict unknown or future values of other variables
- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining

- Classification
- Regression
- Deviation Detection
- Clustering
- Association Rule Discovery
- Sequential Pattern Discovery

section 1, manipulated from Tan et al. Introduction to Data Mining

Problem Types in Machine Learning

Classification and Regression

Supervised Learning Model

- Training Instances:
 Features + Labels
- Find a model mapping class from values of features.
- Goal: Assign guessed label to <u>previously</u> unseen instances

Example Classification: Malware

- Classify files as malware based on size and naming.
- Approach:
 - Use already classified malware files
 - Must translate name to set of features
 - {malware, not malware} decision forms the class attribute
 - Collect various malware examples and a number of safe files, providing labels for each and a set of features

Training Set

TID	Name	Size	Class
1	erte.dll	916 b	not
2	fufu.bin	1M	yes
3	exe.exe	1G	not
4	ex.py	113 b	not

Unknown

TID	Name	Size
1	asdf.dll	11b

Example Regression: Housing Price

- Predict a value of a given continuous valued variable based on the values of other variables
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Predicting House Sales

Training Set

TI	# Rms	Sq Ft	Zip	Price
1	2	1125	74012	150K
2	2	2525	75155	200k
3	10	4678	90210	3M
4	4	2678	75154	350k

Unknown

TI	# Rms	Sq Ft	Zip
1	2	2200	75115