Computational Logic - Assignment 1

Alessandro Marostica*

October 11, 2023

Prelude

I have never used LaTeX before, please bear with my plausibly horrible usage.

Exercise 2

Disjunction Using De Morgan's law, one can define the OR operator as such:

$$A \vee B \equiv \neg(\neg A \wedge \neg B)$$

A	B	$A \lor B$	A	B	$\neg A$	$\neg B$	$\neg A \wedge \neg B$	$\neg(\neg A \land \neg B)$
T	Т	Т	T	Т	F	F	F	Т
T	F	Γ	T	F	F	Т	\mathbf{F}	${ m T}$
F	T	Γ	F	\mathbf{T}	Γ	F	F	${ m T}$
F	F	F	F	F	Γ	T	Γ	F

Implication One can define IMPLIES as such:

$$A \to B \equiv \neg A \lor B$$

A	B	$A \rightarrow B$	A	B	$\neg A$	$\neg A \lor B$
Τ	Т	Т	T	Т	F	Т
Τ	F	\mathbf{F}	T	\mathbf{F}	F	F
F	Т	${ m T}$	F	\mathbf{T}	T	Т
F	F	${ m T}$	F	\mathbf{F}	T	Т

^{*}Arianna, per avermi stimolato ad usare LaTeX

Material equivalence One can define IFF as such:

$$A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$$

A	B	$A \leftrightarrow B$
Т	Т	Т
Γ	\mathbf{F}	F
F	Т	F
F	F	Т

A	B	$A \wedge B$	$\neg A$	$\neg B$	$\neg A \land \neg B$	$(A \land B) \lor (\neg A \land \neg B)$
T	Т	Т	F	F	F	T
\mathbf{T}	F	F	F	Τ	F	F
F	$\mid T \mid$	F	T	F	F	F
F	F	F	Γ	Τ	Γ	T

Note that IFF yields the same result as XNOR, which is opposite of XOR.

Exclusive disjunction One can define XOR as such:

$$A \oplus B \equiv (A \land \neg B) \lor (\neg A \land B)$$

A	B	$A \oplus B$
T	Τ	F
T	\mathbf{F}	${ m T}$
F	Τ	${ m T}$
F	\mathbf{F}	\mathbf{F}

	A	B	$\neg A$	$\neg B$	$A \wedge \neg B$	$\neg A \wedge B$	$(A \land \neg B) \lor (\neg A \land B)$
Ī	Τ	Т	F	F	F	F	F
	Τ	F	F	Τ	${ m T}$	F	T
	F	Γ	T	F	\mathbf{F}	Т	T
	F	F	${ m T}$	T	\mathbf{F}	F	F

NAND is sufficient to define all simple logical operators

 $\neg p$ can be defined as $p \uparrow p$ (\uparrow is the symbol for NAND), this is equivalent to $p \uparrow p \leftrightarrow \neg (p \land p) \leftrightarrow \neg p$. In natural language this can be referred to as "not both p and p".

 $\boldsymbol{p} \wedge \boldsymbol{q}$ can be defined as $\neg(p \uparrow q)$