

Fondamenti di Automatica

Unità 4 Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo

- Raggiungibilità e controllabilità
- Retroazione statica dallo stato
- Osservabilità e rilevabilità
- > Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità

- Definizioni ed esempi introduttivi
- Analisi della raggiungibilità di sistemi dinamici LTI
- > Esempi di studio della raggiungibilità
- Il problema della realizzazione

Raggiungibilità e controllabilità

Definizioni ed esempi introduttivi

- ➤ Le proprietà di raggiungibilità e di controllabilità descrivono le possibilità di azione della funzione di ingresso u(·) al fine di influenzare il movimento dello stato
- La proprietà di **raggiungibilità** descrive le possibilità di modificare lo stato del sistema a partire da un particolare stato iniziale prefissato agendo opportunamente sull'ingresso $u(\cdot)$
- ➤ La proprietà di controllabilità descrive le possibilità di trasferire lo stato del sistema ad un particolare stato finale prefissato agendo opportunamente sull'ingresso u(·)

Definizione di stato raggiungibile

- **>** Uno stato x^* si dice **raggiungibile** (dallo stato zero x_0 al tempo t^*) se esistono:
 - Un istante di tempo $t^* \in [t_0, \infty)$
 - Una funzione di ingresso $u^*(t)$ definita in $t \in [t_0, t^*]$

tali che, detto x(t), $t \in [t_0, t^*]$ il movimento dello stato generato da $u^*(t)$ a partire dallo stato x_0 ($x(t_0) = x_0$), risulti:

$$X(t^*) = X^*$$

7

L'insieme di raggiungibilità

- ightharpoonup L'insieme di tutti gli stati raggiungibili (dallo stato zero x_0 al tempo t^*) rappresenta l'insieme di raggiungibilità $X_R(t^*)$ al tempo t^*
- ightharpoonup L'insieme $X_R(t^*)$ costituisce un sottospazio lineare dello spazio di stato X

La completa raggiungibilità

Si definisce il sottospazio di raggiungibilità X_R come l'insieme di raggiungibilità $X_R(t)$ di dimensione massima:

$$X_{R} = \max_{t \in [t_{0}, \infty)} X_{R}(t)$$

Un sistema è completamente raggiungibile se

$$X_R = X$$

Per i sistemi non completamente raggiungibili si definisce il sottospazio di non raggiungibilità X_{NR} come il complemento ortogonale di X_R :

$$X_{NR} = X_R^{\perp}$$

9

Definizione di stato controllabile

- Uno stato x^* si dice **controllabile** (allo stato zero x_0 al tempo t^*) se esistono:
 - **●** Un istante di tempo $t^* \in [t_0, \infty)$
 - ullet Una funzione di ingresso $u^*(t)$ definita in $t \in [t_0, t^*]$

tali che, detto x(t), $t \in [t_0, t^*]$ il movimento dello stato generato da $u^*(t)$ a partire dallo stato $x^*(x(t_0) = x^*)$ risulti:

$$X(t^*)=X_0$$

y(t) = Cx(t)

L'insieme di controllabilità

- ightharpoonup L'insieme di tutti gli stati controllabili (allo stato zero x_0 al tempo t^*) rappresenta l'insieme di controllabilità $X_C(t^*)$ al tempo t^*
- ightharpoonup L'insieme $X_{\mathcal{C}}(t^*)$ costituisce un sottospazio lineare dello spazio di stato X

11

c(t) = Cx(t)

La completa controllabilità

Si definisce il sottospazio di controllabilità X_C come l'insieme di controllabilità $X_C(t)$ di dimensione massima:

$$X_{\mathcal{C}} = \max_{t \in [t_0,\infty)} X_{\mathcal{C}}(t)$$

Un sistema dinamico è completamente controllabile se

$$X_C = X$$

Per i sistemi non completamente controllabili si definisce il sottospazio di non controllabilità X_{NC} come il complemento ortogonale di X_C :

$$X_{NC} = X_C^{\perp}$$

Il concetto di stato zero

- ➤ Lo stato zero x₀ è uno stato prefissato considerato come "obiettivo"
- Tipicamente si tratta di uno stato di equilibrio non coincidente, in generale, con l'origine dello spazio di stato: $x_0 \neq 0$
- Tuttavia, per semplicità di trattazione e senza perdere generalità, si assumerà x_0 coincidente con lo stato nullo
- ightharpoonup In modo analogo, si può assumere: $t_0 = 0$

13

y(t) = Cx(t)

Relazioni tra raggiungibilità e controllabilità

Per i sistemi LTI TC si ha:

$$X_R = X_C$$

> Per i sistemi LTI TD si ha in generale:

$$X_R \subseteq X_C$$

● Se la matrice A è non singolare

$$X_R = X_C$$

Studio della raggiungibilità

Per i sistemi LTI si ha quindi in generale:

$$X_R \subseteq X_C$$

- Quindi, se un sistema LTI è completamente raggiungibile è anche completamente controllabile
- Pertanto, si studieranno sempre le proprietà di raggiungibilità

15

y(t) = Cx(t)

Parte raggiungibile e non raggiungibile

- ➤ In un sistema LTI con dimensione finita n e non completamente raggiungibile sono stati definiti:
 - **●** Il sottospazio di raggiungibilità X_R (dim(X_R) = r < n) → parte raggiungibile
 - Il sottospazio di non raggiungibilità X_{NR} (dim(X_{NR}) = n r) \rightarrow parte non raggiungibile
 - Al sottospazio di raggiungibilità sono associati
 r degli n autovalori della matrice A
 - Al sottospazio di non raggiungibilità sono associati n – r degli n autovalori della matrice A

Parte raggiungibile e non raggiungibile L'ingresso u(·) agisce sulla sola parte raggiungibile Gli stati raggiungibili non influenzano la parte non raggiungibile Gli stati non raggiungibili possono influenzare la parte raggiungibile u parte raggiungibile y parte raggiungibile

Esempio introduttivo 1

Consideriamo il seguente sistema dinamico:

- Il circuito aperto su y(t) impedisce all'ingresso u(t) di agire sulla variabile di stato $x_2(t)$
- **>** La variabile di stato $x_2(t)$ non è controllabile dall'ingresso u(t)

Esempio introduttivo 2

Consideriamo il seguente sistema dinamico:

- Il circuito rappresenta un ponte simmetrico
- ightharpoonup Se $x(0) = 0 \rightarrow x(t) = 0 \ \forall t, \ \forall u(t)$
- $\rightarrow u(t)$ non ha nessun effetto su x(t)

19

y(t) = Cx(t)

Esempio introduttivo 3

Consideriamo il seguente sistema dinamico:

- Nel circuito sono presenti due impedenze identiche in parallelo ad un generatore di tensione
- **>** Se $x_1(0) = x_2(0) = 0$ → $x_1(t) = x_2(t) \forall t$, $\forall u(t)$
- Mediante u(t) posso imporre qualsiasi valore a $x_1(t)$ e $x_2(t)$ con il vincolo che siano identici
- ► La variabile $x_1(t) x_2(t)$ non è controllabile

Raggiungibilità e controllabilità

Analisi della raggiungibilità di sistemi dinamici LTI

Determinazione di X_R per sistemi LTI TD (1/6)

Consideriamo un sistema dinamico LTI TD descritto dalle equazioni di stato:

$$X(k+1) = AX(k) + BU(k)$$

- Vogliamo determinare:
 - ullet L'insieme di raggiungibilità $X_R(\ell)$ al tempo ℓ
 - ullet Il sottospazio di raggiungibilità X_R
 - Una condizione necessaria e sufficiente per la completa raggiungibilità del sistema

y(t) = Cx(t)

Determinazione di X_R per sistemi LTI TD (2/6)

$$X(k+1) = AX(k) + BU(k)$$

- > Consideriamo, per semplicità, il caso in cui:
 - Il sistema abbia un solo ingresso ($p = 1 \rightarrow B \in \mathbb{R}^{n \times 1}$)
 - La condizione iniziale sia nulla: $x_0 = x(0) = 0$
- Si ha:

$$X(1) = AX(0) + BU(0) = BU(0)$$

 $X(2) = AX(1) + BU(1) = ABU(0) + BU(1)$
 $X(3) = AX(2) + BU(2) = A^{2}BU(0) + ABU(1) + BU(2)$
:

$$X(\ell) = A^{\ell-1}Bu(0) + \cdots + ABu(\ell-2) + Bu(\ell-1)$$

23

y(t) = Cx(t)

Determinazione di X_R per sistemi LTI TD (3/6)

$$X(\ell) = A^{\ell-1}Bu(0) + \cdots + ABu(\ell-2) + Bu(\ell-1)$$

Si può compattare l'espressione in forma matriciale:

$$x(\ell) = \underbrace{\begin{bmatrix} B & AB & \cdots & A^{\ell-1}B \end{bmatrix}}_{M_{R}(\ell)} \underbrace{\begin{bmatrix} u(\ell-1) \\ u(\ell-2) \\ \vdots \\ u(0) \end{bmatrix}}_{U(\ell)} = \underbrace{M_{R}(\ell)U(\ell)}$$

y(t) = Cx(t)

Determinazione di X_R per sistemi LTI TD (4/6)

La matrice

$$M_R(\ell) = \begin{bmatrix} B & AB & \cdots & A^{\ell-1}B \end{bmatrix} \in \mathbb{R}^{n,\ell}$$

rappresenta il legame tra la sequenza di ingresso $[u(0), u(1), ..., u(\ell - 1)]$ e lo stato $x(\ell)$ raggiunto al tempo ℓ

Pertanto, l' insieme di raggiungibilità $X_R(\ell)$ al tempo ℓ corrisponde allo spazio immagine $\mathcal{R}(\cdot)$ generato dalle colonne della matrice $M_R(\ell)$:

$$X_R(\ell) = \mathcal{R}(M_R(\ell)) = \mathcal{R}(B \quad AB \quad \cdots \quad A^{\ell-1}B)$$

25

y(t) = Cx(t)

Determinazione di X_R per sistemi LTI TD (5/6)

Per determinare il sottospazio di raggiungibilità X_R bisogna trovare l'insieme di raggiungibilità $X_R(\ell)$ avente dimensione massima:

$$X_R = \max_{\ell \in [0,\infty)} X_R(\ell)$$

- **>** Questo corrisponde a determinare per quale istante ℓ la matrice $M_R(\ell)$ ha rango massimo
- ▶ A tal fine, ricordiamo che nel caso considerato (p = 1), $M_R(\ell)$ viene costruita affiancando le ℓ colonne: B, AB, ..., $A^{\ell-1}B$

$$M_R(\ell) = \begin{bmatrix} B & AB & \cdots & A^{\ell-1}B \end{bmatrix}$$

$y(t) \neq Cx(t)$

Determinazione di X_R per sistemi LTI TD (6/6)

- **>** Ogni volta che viene aggiunta una colonna del tipo $A^{j-1}B$ ($j = 1, ..., \ell$) il rango della matrice $M_R(\ell)$ aumenta di una unità o rimane costante
- Gli eventuali aumenti di rango possono avvenire solo fino a quando il numero delle colonne aggiunte ℓ eguaglia il numero n di righe di $M_R(\ell)$ e cioè coincide con la dimensione del sistema
- Pertanto:

$$X_R = X_R(n)$$

27

y(t) = Cx(t)

La matrice di raggiungibilità

Definiamo la matrice di raggiungibilità M_R come la matrice $M_R(n)$

$$M_R = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

Il sottospazio di raggiungibilità è quindi definito come:

$$X_R = \mathcal{R}(M_R)$$

La condizione di completa raggiungibilità

Pertanto, la dimensione del sottospazio di raggiungibilità X_R è pari al rango r della matrice di raggiungibilità M_R

$$\dim(X_R) = \rho(M_R) = r$$

➤ Un sistema dinamico LTI TD è quindi completamente raggiungibile (e anche controllabile) se e soltanto se il rango della matrice di raggiungibilità M_R è pari alla dimensione n del sistema:

$$\rho(M_R) = n$$

29

Generalizzazione

- Il risultato appena enunciato vale anche:
 - Nel caso di sistemi dinamici LTI TC del tipo

$$\dot{X}(t) = AX(t) + BU(t)$$

per cui la matrice di raggiungibilità è definita allo stesso modo

Nel caso di sistemi LTI TC e TD a più ingressi (p > 1) nei quali la matrice di raggiungibilità M_R assume la forma più generale:

$$M_R = [B \quad AB \quad \cdots \quad A^{n-b}B], b = \rho(B)$$

- La matrice di raggiungibilità M_R di un sistema dinamico LTI può essere calcolata in MatLab mediante l'istruzione: M_R = ctrb(A,B)
 - A, B: matrici della rappresentazione di stato

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x(k+1) = Ax(k) + Bu(k)$

- Il rango r della matrice di raggiungibilità può essere calcolato con l'istruzione: r = rank(M_R)
- Per maggiori dettagli sulle istruzioni, digitare help ctrb, help rank al prompt di MatLab

Raggiungibilità e controllabilità

Esempi di studio della raggiungibilità

© 2007 Politecnico di Torino

Esempio 1: formulazione del problema

Si consideri il seguente sistema LTI TC:

$$\dot{x}(t) = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} u(t)$$

Studiarne le proprietà di raggiungibilità

33

x₁

Esempio 1: procedimento di soluzione

- Per analizzare le proprietà di raggiungibilità occorre:
 - ullet Calcolare la matrice di raggiungibilità M_R a partire dalle matrici A e B delle equazioni di stato
 - Valutare il rango r di M_R e confrontarlo con la dimensione n del sistema; in particolare
 - \bullet Se r = n allora il sistema risulta completamente raggiungibile
 - Se r < n allora il sistema non è completamente raggiungibile

Esempio 1: calcolo di M_R

➤ Le matrici A e B del sistema dato sono:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

- ightharpoonup Il sistema è a un ingresso p=1 e di ordine n=3
- La matrice di raggiungibilità è quindi del tipo:

$$M_R = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

35

y(i) = Cx(i)

Esempio 1: procedura di calcolo di M_R

- Per calcolare M_R conviene procedere alla sua costruzione "per colonne" come segue:
 - Si parte dalla colonna *B*:

$$M_R = [B \cdots \cdots]$$

Si calcola la seconda colonna eseguendo il prodotto AB:

$$M_R = \begin{bmatrix} B & AB & \cdots \end{bmatrix}$$

Si calcola la terza colonna A^2B eseguendo il prodotto A(AB):

 $M_R = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$

Nell'esempio considerato si ha:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

$$M_{R} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

$$B \quad AB \quad A^{2}B$$

37

Nel primo passaggio riporto la matrice B come prima colonna di \mathcal{M}_R :

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

$$M_{R} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

$$B \quad AB \quad A^{2}B$$

Nel secondo passaggio costruisco la seconda colonna di M_R con il prodotto righe per colonne AB:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \quad M_R = \begin{bmatrix} -1 & 5 \\ 2 & 0 \\ 0 & 2 \end{bmatrix} \quad B \quad AB \quad A^2B$$

39

Nel terzo passaggio costruisco la terza colonna di M_R con il prodotto righe per colonne A^2B eseguito tramite il prodotto A(AB)

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & 5 \\ 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

$$M_{R} = \begin{bmatrix} -1 & 5 & 9 \\ 2 & 0 & 30 \\ 0 & 2 & -2 \end{bmatrix}$$

$$B \quad AB \quad A^{2}B$$

Esempio 1: analisi della raggiungibilità

Si ottiene la matrice di raggiungibilità:

$$M_{R} = \begin{bmatrix} -1 & 5 & 9 \\ 2 & 0 & 30 \\ 0 & 2 & -2 \end{bmatrix}$$

Poiché:

$$\det(M_R)=116\neq 0$$

➤ Si ha:

$$\rho(M_R)=3=n$$

■ Il sistema risulta completamente raggiungibile

Esempio 2: formulazione del problema

➤ Si consideri il seguente sistema LTI TD:

$$x(k+1) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -3 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} u(k)$$

> Studiarne le proprietà di raggiungibilità

- Per analizzare le proprietà di raggiungibilità occorre:
 - ullet Calcolare la matrice di raggiungibilità M_R a partire dalle matrici A e B delle equazioni di stato
 - Valutare il rango r di M_R e confrontarlo con la dimensione n del sistema; in particolare
 - Se r = n allora il sistema risulta completamente raggiungibile
 - Se r < n allora il sistema non è completamente raggiungibile

➤ Le matrici A e B del sistema dato sono:

Esempio 2: calcolo di M_R

➤ Le matrici A e B del sistema dato sono:

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

- ightharpoonup Il sistema è a un ingresso p=1 e di ordine n=3
- La matrice di raggiungibilità è quindi del tipo:

$$M_R = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

45

Esempio 2: analisi della raggiungibilità (1/2)

La matrice di raggiungibilità è:

$$M_{R} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 2 & -10 \\ 2 & -10 & 26 \end{bmatrix}$$

Si ha

$$\det(\mathcal{M}_{R})=0 \Rightarrow \rho(\mathcal{M}_{R})<3$$

Notiamo che M_R ha una riga nulla mentre le altre due sono linearmente indipendenti

$$\rho(M_R) = 2$$

$$M_R = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 2 & -10 \\ 2 & -10 & 26 \end{bmatrix}, \rho(M_R) = 2$$

- Il sistema risulta non completamente raggiungibile
- **>** Inoltre:

$$\dim(X_R) = \rho(M_R) = 2$$

Raggiungibilità e controllabilità

Il problema della realizzazione

y(t) = Cx(t)

Rappresentazioni di sistemi dinamici SISO

- Un sistema dinamico SISO LTI si può rappresentare con
 - Equazioni di stato (rappresentazione ingresso – stato – uscita)

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) & \begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(t) = Cx(t) + Du(t) \end{cases} & \begin{cases} y(k) = Cx(k) + Du(k) \end{cases} \end{cases}$$

Funzione di trasferimento (rappresentazione ingresso – uscita)

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_0} \quad H(z) = \frac{b_m z^m + b_{m-1} z^{m-1} + \ldots + b_0}{a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0}$$

y(t) = Cx(t)

II problema della realizzazione (1/3)

- Vogliamo studiare come è possibile passare dalla rappresentazione in equazioni di stato a quella in funzione di trasferimento e viceversa
- ➤ Equazioni di stato →→ Funzione di trasferimento

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) & \begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(t) = Cx(t) + Du(t) & \end{cases} y(k) = Cx(k) + Du(k)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H(s) = C(sI - A)^{-1}B + D \qquad H(z) = C(zI - A)^{-1}B + D$$

La soluzione è unica

II problema della realizzazione (2/3)

➤ Funzione di trasferimento →→ Equazioni di stato

$$H(s) = \frac{b_{m}s^{m} + b_{m-1}s^{m-1} + \dots + b_{0}}{a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}} \quad H(z) = \frac{b_{m}z^{m} + b_{m-1}z^{m-1} + \dots + b_{0}}{a_{n}z^{n} + a_{n-1}z^{n-1} + \dots + a_{0}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A = ??, B = ??, C = ??, D = ??$$

$$A = ??, B = ??, C = ??, D = ??$$

➤ Il problema di determinare un insieme di equazioni di stato a partire da una funzione di trasferimento non ha soluzione unica ed è detto problema della realizzazione

51

II problema della realizzazione (3/3)

Nel caso in cui la funzione di trasferimento H(s) non sia strettamente propria (cioè m = n), prima di procedere alla **realizzazione** occorre compiere la divisione (polinomiale) tra il numeratore e il denominatore:

$$H(s) = \frac{b_{n}s^{n} + b_{n-1}s^{n-1} + \dots + b_{0}}{a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}} =$$

$$= \frac{b'_{n-1}s^{n-1} + \dots + b'_{1}s + b'_{0}}{s^{n} + a'_{n-1}s^{n-1} + \dots + a'_{1}s + a'_{0}} + b'_{n}$$

La forma canonica di raggiungibilità

Data la funzione di trasferimento:

$$H(s) = \frac{b'_{n-1}s^{n-1} + \dots + b'_1s + b'_0}{s^n + a'_{n-1}s^{n-1} + \dots + a'_1s + a'_0} + b'_n$$

la forma canonica di raggiungibilità

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) & A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a'_{0} & -a'_{1} & \cdots & -a'_{n-1} \end{bmatrix} B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \\ C = \begin{bmatrix} b'_{0} & b'_{1} & \cdots & b'_{n-1} \end{bmatrix} D = \begin{bmatrix} b'_{n} \end{bmatrix}$$

costituisce una sua possibile realizzazione

53

y(t) = Cx(t)

Forma canonica di raggiungibilità: proprietà

Nella forma canonica di raggiungibilità

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ -a'_0 & -a'_1 & \cdots & -a'_{n-1} \end{bmatrix} B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b'_0 & b'_1 & \cdots & b'_{n-1} \end{bmatrix} D = \begin{bmatrix} b'_n \end{bmatrix}$$

- La matrice A è in forma compagna inferiore \rightarrow il polinomio caratteristico è: $\lambda^n + ... + a'_1\lambda + a'_0$
- Il sistema dinamico individuato dalle matrici
 A, B, C, Dè sempre completamente raggiungibile
- Il medesimo procedimento si applica a sistemi TD

Esempio: formulazione del problema

Data la seguente funzione di trasferimento:

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1}$$

Determinarne la realizzazione secondo la forma canonica di raggiungibilità

55

Esempio: realizzazione

ightharpoonup La funzione di trasferimento data è di ordine n=3:

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

La sua realizzazione secondo la forma canonica di raggiungibilità è quindi della forma:

$$\begin{vmatrix} A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a'_0 & -a'_1 & -a'_2 \end{vmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b'_0 & b'_1 & b'_2 \end{bmatrix} D = \begin{bmatrix} b'_3 \end{bmatrix}$$

$$y(t) = Cx(t)$$
Esempio: calcolo della realizzazione

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + (s^2) + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + (a_2's^2 + a_1's + a_0')} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0' & -a_1' & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b_0' & b_1' & b_2' \end{bmatrix} D = \begin{bmatrix} b_3' \end{bmatrix}$$

$$a_{2}^{'}=1$$

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$a_{1}' = 1$$

$$y(t) = Cx(t)$$
Esempio: calcolo della realizzazione

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b_0' & b_1' & b_2' \end{bmatrix} D = \begin{bmatrix} b_3' \end{bmatrix}$$

$$a_0'=1$$

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b_0' & b_1' & 1 \end{bmatrix} D = \begin{bmatrix} b_3' \end{bmatrix}$$

$$b_{2}' = 1$$

$$y(t) = Cx(t)$$
Esempio: calcolo della realizzazione

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} b_0' & \boxed{3} & \boxed{1} \end{bmatrix} D = \begin{bmatrix} b_3' \end{bmatrix}$$

$$b_1' = 3$$

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} D = \begin{bmatrix} b_3' \end{bmatrix}$$

$$b_{0}^{'}=1$$

$$H(s) = \frac{s^2 + 3s + 1}{s^3 + s^2 + s + 1} = \frac{b_2's^2 + b_1's + b_0'}{s^3 + a_2's^2 + a_1's + a_0'} + b_3'$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$b_{3}' = 0$$

La realizzazione secondo la forma canonica di raggiungibilità della funzione di trasferimento data è quindi:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} x(t)$$