The Simple Linear Regression Model

EC295

Justin Smith

Wilfrid Laurier University

Fall 2022

What is Econometrics?

What is Econometrics

- Defining characteristics of econometrics
 - Observational data
 - Use of regression analysis
- Motivating statistical models with economic models
 - Focus on causality
- This class introduces you to linear regression
 - Building block for many future economics classes
 - You will use this technique in EC481

Introduction to Linear Regression

- Economic analysis often involves relating two or more variables
 - Does age of school entry affect test scores?
 - Does childhood health insurance affect adult health?
 - Does foreign competition affect domestic innovation?
- These relationships are typically used for
 - Causal Inference: the independent effect of one variable on another
 - **Prediction**: estimating value of one variable given values of another
- Which one you use depends on goals of your analysis
 - Causal inference is important in policy analysis
 - Prediction is useful for guessing unknown values of a variable
- We will develop a model to use for these goals

Context

- A big issue in education is the size of school classes
- Parents often in favour of smaller classes
 - More attention paid to individual students
 - Classes easier to control
 - Can do more interactive work
- But, smaller classes are more expensive
 - More teaching resources per student
- Important to measure benefit of smaller classes
 - Compare against cost to see if worthwhile
- Book repeatedly discusses models in context of class size and student performance

What Are We Trying to Model?

- We want to relate test scores to class size
- Hard to do this for specific individuals
 - Many reasons why test scores differ between people
 - Even people in same class sizes have very different scores
- Instead focus on the systematic relationship
- We do this by focusing on average test scores
 - How do average test scores change with class size?
- Several reasons to use the average
 - Highlights systematic patterns between variables
 - It is mathematically optimal way to predict a variable given another
 - Intuitively appealing

What Are We Trying to Model?

- Mathematically we focus on the Conditional Expectation
- In the context of test scores, the conditional expectation is

- This is the average test score for each class size
- ullet STR is Student Teacher Ratio, a measure of class size

Reminder about Expected Values

The **Expected Value** E[Y] of a random variable Y is its weighted average

The **Conditional Expectation** E[Y|X] is the weighted average of a variable Y at specific values of another variable X

What Are We Trying to Model?

- Big problem: we do not know how average test scores relate to class size
 - Could be linear
 - Could be non-linear
 - Could some other weird function
- Unfortunately, we will **never know** exactly how they relate 😭
- Instead we approximate this relationship
- In EC295 our we use linear models for the approximation
 - Often a good guess at true relationship
 - But unknown true model is probably more complicated

The Linear Regression Model

• A linear model relating test scores to each class size is

$$TestScore = \beta_0 + \beta_{STR}STR + u$$

- Several important components of this model
 - TestScore are individual test scores
 - STR are individual class sizes
 - $\circ \beta_{STR}$ is the slope
 - Effect of one-unit change in class size on test scores
 - $\circ \beta_0$ is the intercept parameter
 - Test scores when class size is zero
 - $\circ \ u$ is everything except class size that determines test scores

The Linear Regression Model

This model breaks test scores in to two pieces

1. Population Regression Function

$$\beta_0 + \beta_{STR}STR$$

The predictable part of test scores

2. Error Term

$$u = TestScore - \beta_0 - \beta_{STR}STR$$

The unobserved and unpredictable part of test scores

The Linear Regression Model

- Another big problem: We do not know the values of eta_0 and eta_{STR}
 - They are parameters that we do not observe
- We also do not observe u
 - The unobserved error term
- Suppose we need to know these parameters
- How do we proceed from here?
- Answer: we **estimate** β_0 and β_{STR} with a sample of data
 - There are several estimation methods
 - We will focus on Ordinary Least Squares (OLS)

Drawing a Sample from the Population

- To estimate our model, we need to collect data on test scores and class sizes
- Imagine collecting a sample of size n
 - e.g. test scores and class sizes from 50 classes in different schools
 - $\circ \ n = 50$ in this case
- The population regression model holds for each member of the sample

$$TestScore_i = \beta_0 + \beta_{STR}STR_i + u_i$$

- \circ The subscript i identifies a specific member of the sample
- Test scores are assumed to be linearly related to class size for each member of the sample

Ordinary Least Squares

A method that estimates regression parameters by choosing the ones that minimize the sum of the squared distance between the estimated regression line and each data point

• To implement OLS, replace the unknowns of the population model with estimates

$$TestScore_i = {\hat eta}_0 + {\hat eta}_{STR}STR_i + {\hat u}_i$$

- $\circ \; \hat{eta}_0 \; ext{estimates} \; eta_0$
- $\circ \; \hat{eta}_{STR} \; ext{estimates} \; eta_{STR}$
- $\circ \hat{u}_i$ is the residual (estimates the error)
- OLS chooses $\hat{\beta}_0$ and $\hat{\beta}_{STR}$ to minimize the sum of the squared residual

• The sum of the squared residual is

$$\sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n (TestScore_i - \hat{eta}_0 - \hat{eta}_1 STR_i)^2.$$

- To solve, take derivative 1 above with respect to \hat{eta}_0 and \hat{eta}_1 and set to zero

$$\sum_{i=1}^{n} (TestScore_i - {\hat eta}_0 - {\hat eta}_{STR}STR_i) = 0$$

$$\sum_{i=1}^{n} (TestScore_i - \hat{eta}_0 - \hat{eta}_{STR}STR_i)STR_i = 0$$

• These are the OLS Normal Equations

1. If you don't know calculus, don't worry about it. I will not ask you to take a derivative in this class.

• Use these equations to solve for \hat{eta}_0 and \hat{eta}_{STR}

Ordinary Least Squares Estimators (for our example)

$$\hat{\beta}_0 = \overline{TestScore} - \hat{\beta}_1 \overline{STR}$$

$$\hat{\beta}_{STR} = \frac{\sum_{i=1}^n (STR_i - \overline{STR})(TestScore_i - \overline{TestScore})}{\sum_{i=1}^n (STR_i - \overline{STR})^2} = \frac{\widehat{cov}(STR_i, TestScore_i)}{\widehat{var}(STR_i)}$$

- The estimates of the intercept and slope based on our sample
- ***Important***: these will differ from one sample to another
 - We will return to sampling variation later

The estimated model has its own terminology

1. Sample Regression Function

$$\hat{eta}_0 + \hat{eta}_{STR} STR$$

The line constructed with the OLS estimators

2. Predicted Value

$$\widehat{TestScore}_i = {\hat{eta}}_0 + {\hat{eta}}_{STR}STR_i$$

The value of $TestScore_i$ implied by the sample regression function

3. Residual

$$\hat{u}_i = TestScore_i - \hat{eta}_0 - \hat{eta}_{STR}STR_i$$

The difference between the actual value of $TestScore_i$ and its prediction

General Model

- So far we have used a specific example
- A population regression function for any outcome and any independent variable is

$$Y = \beta_0 + \beta_1 X + u$$

Ordinary Least Squares Estimators

$${\hat eta}_0 = \overline{Y} - {\hat eta}_1 \overline{X}$$

$$\hat{eta}_1 = rac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = rac{\widehat{cov}(X_i, Y_i)}{\widehat{var}(X_i)}$$

Sample Regression Function

$$\hat{eta}_0 + \hat{eta}_1 X$$

Predicted Value

$${\widehat Y}_i = {\hat eta}_0 + {\hat eta}_{STR} X_i$$

Residual

$$\hat{u}_i = Y_i - \hat{eta}_0 - \hat{eta}_1 X_i$$

- Question: Are class size and student achievement related?
- We will create simulated data to explore the relationship
 - We set the process generating the data
 - Lets us control the true values of the parameters
 - We set these values to create realistic data
- The simulated data will mimic actual data we see on test scores
- We will use this dataset to explore linear regression
 - We will see mechanics of estimation
 - Also how sampling variation affects estimates

• Suppose the population regression function is

$$TestScore_i = \beta_0 + \beta_1 STR_i + u_i$$

- \circ β_1 is effect of one more student per teacher
- \circ β_0 is test score when class size is zero
 - Does not have a useful interpretation in this example
- ullet u are determinants of test scores other than student-teacher ratio
 - Natural ability
 - Student background
 - School/teacher quality
 - etc

• Set the population regression equation as

$$TestScore = 700 - 2 * STR + u$$

- \circ Says that $eta_0=700, eta_1=-2$
- These are fictional population values
 - In reality we would never know these
 - We are pretending we know them for instructional reasons

- Next step is to estimate β_0 and β_1
 - As though we did not know their values
- First take sample of data from population
- We will draw 420 observations with a simple random sample
- Stata code on right

Stata Code

```
clear
set obs 420
set seed 12345

gen str = rnormal(20,2)
gen u = rnormal(0,20)

gen testscr = 700 -2 * str + u
```

• Before estimating parameters, summarize the data

Stata Code and Output

sum testscr str

Variable			Std. dev.	Min	Max
testscr				593.118	713.0748
str	420	20.13071	2.103167	14.2861	27.30753

- Note scale of test scores
 - Simulate scores from a standardized test
 - Standardized tests often scaled to have mean 650, standard deviation 20
- Roughly 20 students per teacher in these fictional districts

• Estimate intercept and slope by OLS

Stata Code and Output

regress tests	cr str						
Source	SS	df	MS		er of obs 418)	=	420 15.45
Model Residual	172661.265	418		Prob R-sq	> F uared	=	0.0001 0.0357
+ Total		419	427.313531		R-squared MSE	=	0.0333 20.324
 testscr	Coefficient		 t 	• •	 [95% col	 nf. 	interval]
str _cons		.472094 9.55519	-3.93 72.89	0.000 0.000	-2.78379 677.7112		9278429 715.2756

• The OLS estimates are

$$\hat{\beta}_1 = -1.86$$

$$\hat{eta}_1 = -1.86$$
 $\hat{eta}_0 = 696.49$

• The sample regression function is

$$\widehat{TestScore} = 696.49 - 1.86STR$$

- Use to generate predictions of test scores
- \circ Simply plug in a value for STR, and compute TestScore

Stata Code

```
predict fitted, xb
twoway (scatter testscr str)(line fitted str), title(Test Scores and Student Teacher Ratio)
subtitle(Fitted Values and Actual Data)
```


Stata Code

```
predict resid, residual
twoway (scatter resid str), title(Test Scores and Student Teacher Ratio) subtitle(Residuals)
```


Introduction

- OLS is one way to estimate a linear regression model
- It is important to know how well the method works
- One way is to examine the fit of our regression line
 - How close to the line are the datapoints?
 - \circ Does X explain a large fraction of variation in Y?
- These are the algebraic properties of our estimator
 - Mathematical relationships hold true **in each sample**
- Different from the statistical properties
 - The behaviour of estimators **across repeated samples**
 - Necessarily hypothetical because we only have one sample

R-Squared

ullet The Coefficient of Determination \mathbb{R}^2 measures the fraction of the variation in y that is explained by the independent variables

$$R^2 = rac{ESS}{TSS}$$

• TSS is the Total Sum of Squares

$$TSS = \sum_{i=1}^N (Y_i - ar{Y})^2$$

 $\circ~$ A measure of the spread in the Y_i

• ESS is the Explained Sum of Squares

$$ESS = \sum_{i=1}^N (\hat{Y_i} - ar{Y})^2$$

• And the Residual Sum of Squares (SSR) is

$$SSR = \sum_{i=1}^N (\hat{u}_i)^2$$

- R^2 ranges between 0 and 1
 - $\circ \ R^2 = 0$ means that X explains none of the variation in Y
 - ullet Scatterplot between Y and X is a cloud with no obvious linear relationship
 - $\circ \ R^2 = 1$ means that X explains all of the variation in Y
 - ullet Data in scatterplot between Y and X fall along a straight line

- ullet R^2 is also equal to the square of correlation coefficient between y_i and \hat{y}_i
 - $\circ \ R^2=1$ is perfect correlation between prediction and actual values
- An important relationship between sums of squares is

$$TSS = ESS + SSR$$

- \circ Part of any movement of y_i away from its average is explainable by factors in the regression
- Other part is related to unobserved factors
- As a result, you can reexpress

$$R^2 = rac{ESS}{TSS} = 1 - rac{SSR}{TSS}$$

- Important to be cautious when using R^2
- ullet In real applications, R^2 is often very low
 - Does not mean regression is bad
 - $\circ~$ Just means we have not captured all factors that explain Y
- A low R^2 does not imply a poor estimate of β_1
 - $\circ \beta_1$ measures effect on Y from changing X, all else equal
 - $\circ \: R^2$ measures fraction of total variation in Y is explained by X
 - Concepts are independent of each other
- In class size example $R^2=0.036$
 - Many other factors besides student-teacher ratio explain test scores

Standard Error of Regression (SER)

- Can also measure fit with spread of data around regression line
- The residual \hat{u}_i is deviation of Y_i from prediction

$$\hat{u}_i = Y_i - \hat{Y}_i$$

- The standard error of regression (SER) is the standard deviation of \hat{u}_i
 - $\circ~$ The average distance of Y_i from its prediction $\hat{Y_i}$

$$SER = s_{\hat{u}} = \sqrt{rac{1}{n-2}\sum_{i=1}^n \hat{u}_i^2} = \sqrt{rac{SSR}{n-2}}$$

Example

• Recall the regression output from earlier

	regress tests	scr str						
Model 6383.10498 1 6383.10498 Prob > F = 0.000 Residual 172661.265 418 413.065226 R-squared = 0.035	Source	SS	df	MS				420 15 45
					98 Prob 26 R-sq	> F uared	=	0.0001 0.0357
	Total				_	•		
testscr Coefficient Std. err. t P> t [95% conf. interval	testscr	Coefficient	Std. err.	t	P> t	 [95% с	 onf.	interval]
str -1.855817 .472094 -3.93 0.000 -2.783791927842 _cons 696.4934 9.55519 72.89 0.000 677.7112 715.275								9278429 715.2756

Example

- The sums of squares are
 - $\circ \ ESS = 6383.10$
 - \circ SSR = 172661.27
 - $\circ TSS = 179044.37$
- ullet $R^2=0.056$ is in the top right corner
- You can verify that
 - $\circ SST = SSE + SSR$
 - $\circ R^2 = \frac{SSE}{SST}$
- The SER is called the Root MSE (Mean Square Error) in the output
 - $\circ~$ From the output SER=20.32

Least Squares Assumptions for Causal Inference

- So far we have defined β_1 only as the **slope**
- The slope could be two things
 - 1. The (standardized) correlation between X and Y
 - What happens to *Y* when we change *X*?
 - 2. The causal effect of X on Y
 - ullet What happens to Y when we change X and **nothing else that affects Y changes**
- In many applications we want the causal effect
 - What happens to my income if I get a university degree?
 - How does getting a COVID shot affect the likelihood of infection?
- In this section we establish what needs to be true for OLS to estimate a causal effect

Least Squares Assumptions for Causal Inference

Correlation Example

 Regression of Income on Schooling with observational data

$$Inc = \beta_0 + \beta_1 Schl + u$$

- β_1 shows how income changes with schooling
- Probably represents only a correlation
 - People with more schooling were already smarter
 - Would have earned more even without schooling
- Slope reflects partly effect of schooling, partly effect of intelligence

Causation Example

 Regression of test scores on class size when students randomly assigned to classes

$$TestScore = \beta_0 + \beta_1 ClassSize + u$$

- β_1 shows how bigger classes affect scores
- Probably a causal effect because
 - Randomization of class size means it is unrelated to other factors
 - Students in big classes are no different from those in small ones
- Slope reflects only independent effect of class size on scores

• For OLS to estimate the causal effect the following things need to be true

Assumptions for Causal Inference

The model relating Y to X is

$$Y = \beta_0 + \beta_1 X + u$$

where β_1 is explicitly defined as the causal effect, **and**:

1. The error u is not systematically related to X on average:

$$E[u|X] = 0$$

- 2. (X_i, Y_i) are independent and identically distributed (iid)
- 3. Large outliers are unlikely

Assumption 1: Zero Conditional Mean of the Error

ullet The average error term u_i , conditional on X_i , is zero

$$E[u_i|X_i]=0$$

- Means that unobserved factors are unrelated to the independent variable
 - No linear or non-linear relationship between the two
 - $\circ~$ Zero correlation and covariance between u_i and X_i
- ullet Intuitively, at each X_i positive and negative errors tend to average out to zero
- ullet Assumption implies the population regression function accurately describes the conditional mean of Y_i
 - \circ Average Y_i is linearly related to X_i

- Why do we need to assume $E[u_i|X_i]=0$?
- It allows us to claim $\hat{\beta}_1$ is unbiased
 - \circ Average of \hat{eta}_1 over repeated samples equals eta_1
- When eta_1 is the causal effect and \hat{eta}_1 is an unbiased estimate of it, we can infer causality
 - $\circ \ E[u_i|X_i] = 0$ means no unobserved factors change systematically with X_i
 - \circ When this is true, \hat{eta}_1 estimates the causal effect of X_i on Y_i
- This is an **assumption**
- We will never know for sure if it is true
 - Best we can do is assess whether we think it is reasonable
 - Most of the time, it is probably not (we will discuss later in the course)

OLS Estimates Unbiased Causal Effect

OLS Estimates Biased Effect

Assumption 2: (X_i, Y_i) are iid

- ullet When sampling, we draw both X_i and Y_i for each person
- Assumption is they are independent, and have the same distribution across people
- If we have a simple random sample, this will be true
 - Observations come from same population
 - Chosen so that everyone has same chance of being in sample
 - \circ Then one pair (X_i,Y_i) gives no info about other (X_i,Y_i)
 - \circ Each (X_i,Y_i) has same distribution
- Assumption sometimes fails with different sampling schemes
 - Ex: time series and panel data

Assumption 3: Large Outliers Unlikely

- ullet Outlier: an observation on X or Y far outside usual range of data
- OLS estimators are sensitive to outliers
 - Regression line on right is flat without outlier
 - Regression line tilts up significantly with one outlier

- Outliers happen for several reasons
 - Data entry error
 - Recording height in cm instead of inches for 1 observation
 - Accidentally shifting decimal place
 - Entering a totally wrong value
 - Naturally occurring issues that are not errors
 - One large country in sample of small countries
 - One big donor in sample of charitable giving
- Important to check data for outliers
 - Examine summary statistics before doing regression
 - E.g. mean, standard deviation, max, min, iqr, etc.

Introduction

- The estimator $\hat{\beta}_1$ is a quantity computed from a sample
- Its value therefore varies from sample to sample
 - It is a .red[random variable]
- The sampling distribution of \hat{eta}_1 describes the likelihood of values it can take across random samples
- The sampling distribution helps us test claims about β_1 through hypothesis tests
- For hypothesis tests, we need to know the sampling distribution
- In this section we derive it using our assumptions

The Mean of $\hat{\beta}_1$

- Like all random variables, $\hat{\beta}_1$ has a mean and variance
- We compute these values as part of the description of the sampling distribution
- To compute the mean, start with the formula for $\hat{\beta}_1$

$$\hat{eta}_1 = rac{\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y})}{\sum_{i=1}^n (X_i - ar{X})^2}$$

- First step is to rearrange the formula
- Rewrite numerator as

$$\sum_{i=1}^n (X_i - ar{X})(Y_i - ar{Y}) = \sum_{i=1}^n (X_i - ar{X})(eta_1(X_i - ar{X}) + u_i - ar{u}))$$

• Multiplying out the brackets

$$egin{aligned} &= \sum_{i=1}^n (eta_1 (X_i - ar{X})^2 + (X_i - ar{X}) (u_i - ar{u})) \ &= eta_1 \sum_{i=1}^n (X_i - ar{X})^2 + \sum_{i=1}^n (X_i - ar{X}) (u_i - ar{u}) \end{aligned}$$

The last term can be simplified

$$egin{align} \sum_{i=1}^n (X_i - ar{X})(u_i - ar{u}) &= \sum_{i=1}^n (X_i - ar{X})u_i - \sum_{i=1}^n (X_i - ar{X})ar{u} \ &= \sum_{i=1}^n (X_i - ar{X})u_i \end{aligned}$$

- The estimator $\hat{\beta}_1$ is the sum of two things
 - The parameter it is estimating
 - A weighted sum of the (unknown) errors
- The expected value of $\hat{\beta}_1$ is then

$$egin{align} E[\hat{eta}_1|X_i] &= E\left[eta_1 + rac{\sum_{i=1}^n (X_i - ar{X}) u_i}{\sum_{i=1}^n (X_i - ar{X})^2} | X_i
ight] \ &= E[eta_1|X_i] + E\left[rac{\sum_{i=1}^n (X_i - ar{X}) u_i}{\sum_{i=1}^n (X_i - ar{X})^2} | X_i
ight] \ &= eta_1 + rac{\sum_{i=1}^n (X_i - ar{X}) E[u_i|X_i]}{\sum_{i=1}^n (X_i - ar{X})^2} \end{aligned}$$

ullet Our first assumption is that $E[u_i|X_i]=0$, so

$$E[\hat{eta}_1|X_i]=eta_1$$

- For a given value of X_i , the average of $\hat{\beta}_1$ is β_1
- To find the **overall** average, use the law of iterated expectations

$$E[\hat{eta}_1] = E[E[\hat{eta}_1|X_i]]$$

• Substituting in $E[\hat{eta}_1|X_i]=eta_1$

$$E[\hat{eta}_1] = E[eta_1] = eta_1$$

 \circ Intuition: Since the average at each X_i is zero, the overall average is also zero

-The resulting mean of the OLS estimator is

Mean of the OLS Estimator

$$E[\hat{eta}_1] = eta_1$$

- $E[\hat{eta}_1] = eta_1$ means that \hat{eta}_1 is unbiased
- Why is this important?
 - \circ **If we could repeatedly sample** the average of $\hat{\beta}_1$ would be β_1
 - \circ The only reason $\hat{\beta}_1$ differs from β_1 in any one sample is sampling error
 - A sample does not always match the population
 - Unbiased estimators are preferable to biased estimators
 - Biased estimators differ from parameter it is estimating because of sampling error and because it is systematically wrong
 - Statisticians will generally prefer an unbiased estimator
- If eta_1 is the causal effect and \hat{eta}_1 is an unbiased estimate of it, we can attribute causality to the estimated relationship between X_i and Y_i

Variance of \hat{eta}_1

- The expected value tells us the middle of the distribution
- We also need to know how spread out the values of \hat{eta}_1 are from the mean across samples
- The key measure of this is the variance
- Start with the alternate formula for $\hat{\beta}_1$ we derived above

$$\hat{eta}_1 = eta_1 + rac{\sum_{i=1}^n (X_i - ar{X}) u_i}{\sum_{i=1}^n (X_i - ar{X})^2}$$

ullet Rewrite the denominator using the sample variance of X_i

$$\hat{eta}_1 = eta_1 + rac{\sum_{i=1}^n (X_i - ar{X}) u_i}{(n-1) s_X^2}$$

- ullet where $s_X^2=rac{\sum_{i=1}^n(X_i-ar{X})^2}{n-1}$
- Multiply numerator and denominator by $\frac{1}{n}$

$$\hat{eta}_1 = eta_1 + rac{rac{1}{n} \sum_{i=1}^n (X_i - ar{X}) u_i}{(rac{n-1}{n}) s_X^2}$$

- From this point forward, we assume that we have a large sample
 - With large samples, estimators are very close to parameters
 - $\circ~$ So $ar{X}pprox \mu_X$ and $s_X^2pprox \sigma_X^2$
 - \circ Also, $rac{n-1}{n}pprox 1$

Substitute these values into the formula

$$\hat{eta}_1 = eta_1 + rac{rac{1}{n}\sum_{i=1}^n (X_i - \mu_X)u_i}{\sigma_X^2}$$

• Now use the variance operator

$$VAR(\hat{eta}_1) = VAR\left(eta_1 + rac{rac{1}{n}\sum_{i=1}^n(X_i - \mu_X)u_i}{\sigma_X^2}
ight)$$

• Since β_1 is a fixed parameter,

$$VAR(\hat{eta}_1) = VAR\left(rac{rac{1}{n}\sum_{i=1}^n(X_i - \mu_X)u_i}{\sigma_X^2}
ight)$$

- We will now make heavy use of the properties of variance
- Because σ_X^2 is a fixed constant

$$VAR(\hat{eta}_1) = rac{1}{(\sigma_X^2)^2} VAR\left(rac{1}{n}\sum_{i=1}^n (X_i - \mu_X)u_i
ight)$$

• Because $\frac{1}{n}$ is a fixed constant

$$VAR(\hat{eta}_1) = rac{1}{(\sigma_X^2)^2 n^2} VAR\left(\sum_{i=1}^n (X_i - \mu_X) u_i
ight)$$

ullet Finally, because X_i and u_i are unrelated

$$VAR(\hat{eta}_1) = rac{n}{(\sigma_X^2)^2 n^2} VAR\left((X_i - \mu_X)u_i
ight)$$

• Simplifying, we have the final variance formula

Variance of OLS Estimator

$$VAR(\hat{eta}_1) = rac{VAR\left((X_i - \mu_X)u_i
ight)}{n(\sigma_X^2)^2}$$

- Important things to note about the spread of $\hat{\beta}_1$
 - \circ The larger is n, the smaller is the variance
 - More data reduces sampling variation
 - \circ The larger is σ_X^2 , the smaller is the variance
 - lacktriangle When X_i is more spread out, it is easier to estimate the linear relationship
 - \circ A larger spread in u_i increases the variance

The Distribution of $\hat{\beta}_1$

- We know the mean and variance of the distribution of $\hat{\beta}_1$
- What about the shape?
- If we assume a big sample we can apply the Central Limit Theorem (CLT)
 - The sum of independent random variables from the same population is approximately Normally distributed
- $\hat{\beta}_1$ is an average

$$\hat{eta}_1 = eta_1 + rac{rac{1}{n} \sum_{i=1}^n (X_i - \mu_X) u_i}{\sigma_X^2} = eta_1 + rac{rac{1}{n} \sum_{i=1}^n v_i}{\sigma_X^2}$$

- Central Limit Theorem says $\hat{\beta}_1$ has a Normal distribution
- We previously derived the mean and variance
- This gives us the distribution of the OLS estimator

Distribution of OLS Estimator

$$\hat{eta}_1 \sim \mathcal{N}\left(eta_1, rac{VAR\left((X_i - \mu_X)u_i
ight)}{n(\sigma_X^2)^2}
ight)$$

Example

- Simulate the sampling distribution of \hat{eta}_1
- Code to the right:
 - Assumes model is

$$TestScore = 700 - 2 * STR + u$$

- \circ Draws 420 observation on Y and X
- \circ Computes $\hat{\beta}_1$ based on sample
- Repeats this 9999 times
- Plots distribution of 9999 $\hat{\beta}_1$ values

```
clear all
local sims = 9999
set obs `sims'
set more off
gen beta1 = .
forvalues x = 1/`sims' {
    preserve
    clear
    qui set obs 420
    gen str = rnormal(20,2)
    gen \mathbf{u} = rnormal(0,20)
    gen testscr = 700 -2 * str + u
    qui regress testscr str
    restore
    qui replace beta1 = _b[str] in `x'
```

Example

twoway hist beta1, title(Sampling Distribution of Beta1) scheme(s2mono)

Example

