Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Mercury(I)

Equilibrium reaction	lgK at infinite dilution and $T = 298 K$	
	Baes and Mesmer, 1976	Brown and Ekberg, 2016
$Hg_2^{2^+} + H_2O \rightleftharpoons Hg_2OH^+ + H^+$	-5.0ª	-4.45 ± 0.10

^a0.5 M HClO₄

C C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 302.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 741-755.

Distribution diagrams

These diagrams have been computed at two Hg(I) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constant above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Mercury(II)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$		
	Baes and Mesmer, 1976	Powell et al., 2005	Brown and Ekberg, 2016
$Hg^{2+} + H_2O \rightleftharpoons HgOH^+ + H^+$	-3.40	-3.40 ± 0.08	-3.40 ± 0.08
$Hg^{2+} + 2 H_2O \rightleftharpoons Hg(OH)_2 + 2 H^+$	-6.17	-5.98 ± 0.06	-5.96 ± 0.07
$Hg^{2+} + 3 H_2O \rightleftharpoons Hg(OH)_3^- + 3 H^+$	-21.1	-21.1 ± 0.3	
$HgO(s) + 2 H^+ \rightleftharpoons Hg^{2+} + H_2O$	2.56	2.37 ± 0.08	2.37 ± 0.08

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 312.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 741-755.
- K.J. Powell, P.L. Brown, R.H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg^{2+} Cl^- , OH^- , CO_3^{2-} , SO_4^{2-} , and PO_4^{3-} aqueous systems (IUPAC technical report). Pure Appl. Chem. 77, 739–800 (2005).

Distribution diagrams

These diagrams have been computed at two Hg(II) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

