1-D Spectrum Simulation

Gammapy-0.15

Livetime and Number of Observation

In 1-D spectrum simulation tutorial script their is an option to give Livetime and n_obs, from my what I understand these values represent the as follows:

Livetime: time for which the events were collected or telescope was collecting data.

N_obs / No. of observation : No. of days for which telescope was operating.

Assuming this is true I am keeping the whole observing time to 1000hrs ,i.e; Livetime*n_obs = 1000hrs.

I want to clarify this because I had a second thought that :

Livetime: total observing time

N_obs: no. of times same observation is simulated.

E_true and E_reco (e_reco=energy_axis.edges, e_true=energy_axis_true.edges)

Here I have taken:

energy_axis = MapAxis.from_edges(np.logspace(-1.5, 2.0, 10), unit="TeV", name="energy", interp="log")

energy_axis_true = MapAxis.from_edges(
np.logspace(-1.5, 2.0, 10), unit="TeV", name="energy",
interp="log")

Here I have taken:

energy_axis = MapAxis.from_edges(np.logspace(-1.5, 2.0, 40), unit="TeV", name="energy", interp="log")

energy_axis_true = MapAxis.from_edges(
np.logspace(-1.5, 2.0, 200), unit="TeV", name="energy",
interp="log")

Reconstructed Index

Reconstructed Mean Index Value

Standard Deviation in Reconstructed Index Value

Reconstructed Flux

Reconstructed Mean Flux Value

Standard Deviation in Reconstructed Flux Value

Reconstructed Mean Cutoff Value

Standard Deviation in Reconstructed Cutoff Value

Spectrum plots with Error Bar

