Going Deeper into Spark Core

Xavier Morera
HELPING DEVELOPERS UNDERSTAND SEARCH & BIG DATA
@xmorera www.xaviermorera.com

Going Deeper into Spark Core

Why Lambdas?

Convenient and expressive

- Don't disregard named functions either

Quick to define, use and reuse

Testing and refactoring is easier

A.k.a Anonymous Functions

Anonymous Functions / Lambdas

Named Functions in Spark

```
def split_the_line(x: String):
Array[String] =
   x.split(",")
```

badges.map(split_the_line)

Why Are Lambdas so Useful?

Anonymous Functions in Spark

```
-badges.map(split_the_line)
```

```
badges.map(x => x.split(","))
```

You will find yourself using lambdas all the time with Spark

Believe me...


```
cd posts_simple_titles
sbt package
spark2-submit --class "PreparePostsSimpleTitlesApp"
  target/scala-2.11/posts-simple-titles-project_2.11-1.0.jar
```

Extract Titles from Posts.xml

Data preparation step


```
val words_in_line = lines.map(x => x.split(" "))
words_in_line.collect()
```

A Closer Look at Map, FlatMap, Filter, Sort, ... map() is one of the most commonly used transformations

Followed by flatMap(), filter() and sort()

And later on aggregations


```
word_for_count = words.map(lambda x: (x,1))
word_for_count.take(1)
words.map(lambda x: x.lower())
words.map(lambda x: x.upper())
```

Мар

Apply function to each element

map(), mapPartitions(), mapValues(), mapPartitionsWithIndex() ...

RDD of length N transformed to RDD of length N


```
val word_for_count = words.map(x => (x,1))
word_for_count.take(1)
word_for_count.take(5)
```

Мар

Apply function to each element

map(), mapPartitions(), mapValues(), mapPartitionsWithIndex() ...

Each element in parent RDD mapped to one element in the child RDD


```
val words = lines.flatMap(line => line.split(" "))
words.collect()
```

FlatMap

Apply function to each element and returns list of elements Returns 0, 1 or more elements, "flattens" the results with map

Parent RDD

Child RDD

How, can, I, use, DataFrames, in, 2.0, What, is, an, RDD, and, Schema, RDD, How, do, I, group, by, a, field, Can, I, use, Hive, from, HUE


```
def starts_h(word: (String, Int)) =
  word._1.toLowerCase.startsWith("h")
word_for_count.filter(starts_h).collect()
```

Filter

Apply a function to each element of the RDD

If the function returns false, element is not included in new RDD

Filter

Filter

Child RDD

(can,1)
(l, 1)
(use, 1)

Child RDD

(How,1)

(Hive,1)

```
val word_count = word_for_count.reduceByKey(_ + _)
word_count.sortByKey().collect()
word_count.sortByKey(false).collect()
word_count.map({ case (x,y) => (y,x) }).sortByKey()
    .map(x => x.swap).collect()
word_count.sortBy({ case (x,y) => -y }).collect()
```

SortBy and SortByKey

Sort elements of an RDD

- By key on PairRDD with sortByKey()
- By a function using sortBy()

word_for_count.distinct().filter(starts_h).collect()

Many More Transformations

Plenty of transformations to go around

Some of them very powerful and/or very useful

Plenty of transformations to go around...


```
val lines = sc.textFile("/user/cloudera/se/simple_titles.txt")
val words = lines.flatMap(line => line.split(" "))
val word_for_count = words.map(x => (x,1))
val grouped_words = word_for_count.reduceByKey(_ + _)
grouped_words.collect()
```

Transformations

Start with method from SparkContext to load data

Transformations perform a computation

And create new RDDs


```
def keyBy[K](f: (T) \Rightarrow K): RDD[(K, T)]
    Creates tuples of the elements in this RDD by applying f.
def localCheckpoint(): RDD.this.type
    Mark this RDD for local checkpointing using Spark's existing caching layer.
def map[U](f: (T) \Rightarrow U)(implicit arg0: ClassTag[U]): RDD[U]
    Return a new RDD by applying a function to all elements of this RDD.
def mapPartitions[U](f: (Iterator[T]) ⇒ Iterator[U],
    preservesPartitioning: Boolean = false)(implicit arg0:
    ClassTag[U]): RDD[U]
    Return a new RDD by applying a function to each partition of this RDD.
def mapPartitionsWithIndex[U](f: (Int, Iterator[T]) ⇒ Iterator[U],
    preservesPartitioning: Boolean = false)(implicit arg0:
    ClassTag[U]): RDD[U]
    Return a new RDD by applying a function to each partition of this RDD, while
    tracking the index of the original partition.
def max()(implicit ord: Ordering[T]): T
    Returns the max of this RDD as defined by the implicit Ordering[T].
def min()(implicit ord: Ordering[T]): T
```

Transformations

flatMap so intersection

filter subtract

keyBy cartesian

subtract

sortBy

coalesce zipWithIndex

zip mapPartitions

distinct

Transformations PairRDDs

reduceByKey reduceByKey reduceByKey Subtract ByKey fullOuterJoin sortByKey cogroup rightOuterJoin aggregateByKey flatMapValues foldByKey reduceByKeyLocally partitionBy


```
val lines = sc.textFile("/user/cloudera/se/simple_titles.txt")
val words = lines.flatMap(line => line.split(" "))
val word_for_count = words.map(x => (x,1))
val grouped_words = word_for_count.reduceByKey(_ + _)
grouped_words.collect()
```

Previously on Transformations

Transformations are what "changes" your data

Remember: Spark is lazy

No computation done when you specify transformation


```
val lines = sc.textFile("/user/cloudera/se/simple_titles.txt")
val words = lines.flatMap(line => line.split(" "))
val word_for_count = words.map(x => (x,1))
val grouped_words = word_for_count.reduceByKey(_ + _)
grouped_words.collect()
grouped_words.saveAsTextFile("/user/cloudera/stackexchange/words")
```

Actions

Action triggers computation

i.e. can return data to the driver or save an RDD to storage

Operations that produce non RDD values

Actions

Actions PairRDD countApproxDistinctByKey

CountByValueApprox

countByKeyApprox

countByKeyExact

sampleByKeyExact

countByValue

A Thing or Two on Partitions

Partition is just a 'bunch' of data

One of the foundations of parallelism

Faster to operate within partition

- Than shuffling data

Group data to minimize network traffic

How Does Spark Partition Data?

Data locality

- Partition per HDFS block

Resources

Configuration or parameters

How Does Spark Partition Data?

Partitioner

- Hash partitioner
- Range partitioner

Repartition

More or Less Partitions?

More partitions

- Less data per partition
- Smaller jobs
- More parallelism

Less partitions

- More data per partition
- Larger jobs

```
val badges_for_part = badges_columns_rdd.map(x => (x(2),
   x.mkString(","))).repartition(50)

badges_for_part.partitioner

import org.apache.spark.HashPartitioner
```

PartitionBy

Returns an RDD partitioned using a specific partitioner

Useful to get keyed data into same partition

Not yet a group operation


```
val badges_by_badge = badges_for_part.
  partitionBy(new HashPartitioner(50))
badges_by_badge.partitioner
badges_for_part.saveAsTextFile("/user/cloudera/
  stackexchange/badges_no_partitioner")
badges_by_badge.saveAsTextFile("/user/cloudera/
  stackexchange/badges_yes_partitioner")
```

PartitionBy

Create a function to be used for partitioning

Pass function as parameter to partitionBy()

Save with and without partitioner, and review results

badges_by_badge.map({ case $(x,y) => x }).glom().take(1)$

Glom

There is an action to coalesce all rows in a partition into an array
Useful for operations on all items within a partition
Let's print our keys per partition


```
badges_by_badge.
   mapPartitions(x => Array(x.size).iterator, true)
   .collect()

badges_for_part.
   mapPartitions(x => Array(x.size).iterator, true)
   .collect()
```

MapPartitions

Apply a function to each partition

Done at a single pass

Returns after entire partition is processed

posts_all.count()

Sampling Data

Selecting a representative part of the population

Faster, but you may lose accuracy

Also useful if you are resource constrained or very large dataset


```
val sample_posts = posts_all.sample(false,0.1,50)
sample_posts.count()
```

Sampling Data

Transformation to obtain a sample from your data with sample()

- withReplacement
- fraction
- seed


```
posts_all.count()
posts_all.countApprox(100, 0.95)
```

Approximate Counts

Obtain an approximate count with countApprox()

Note: Experimental


```
posts_all.takeSample(false,15,50)
posts_all.takeSample(false,15,50).size
```

Take a Sample of Exact Size

Action available for exact count is called takeSample()

Set Operations

Set Operations


```
val questions =
sc.parallelize(Array(("xavier",1),("troy",2),("xavier",5)))
val answers =
sc.parallelize(Array(("xavier",3),("beth",4)))
questions.collect()
answers.collect()
```

Our Data

Create with parallelize

If you feel confident, go for the full dataset


```
questions.union(answers).collect()
questions.union(questions).collect()
questions.union(sc
   .parallelize(Array("irene", "juli", "luci"))).collect()
```

Union

RDD with all elements in both RDDs

Questions + answers

Be careful with types

(xavier, 1) (troy, 2) (xavier, 5) (xavier, 3) (beth, 4)

Union

All questions and answers

Elements remain the same

questions.join(answers).collect()

Join

Elements with same keys in both, joined values

Hash join over the cluster, thus expensive

Unless known partitioner for narrow transformation

Join

People who have asked questions AND answered questions

Key is the person, value shows posts

Excludes those that do not contribute

questions.fullOuterJoin(answers).collect()

fullOuterJoin

Like join(), but....

None where key does not appear in one RDD

fullOuterJoin

All questions and answers, joined by key

- None when user does not appear in one set

questions.leftOuterJoin(answers).collect()

leftOuterJoin

Join using keys from left set

None when key not found on right set

leftOuterJoin Join on all objects from the left List of all

questions.rightOuterJoin(answers).collect()

rightOuterJoin

Opposite of a leftOuterJoin

Join using keys from the right set

None where keys not available in left set

rightOuterJoin

questions.leftOuterJoin(answers).collect()
answers.rightOuterJoin(questions).collect()

leftOuterJoin and rightOuterJoin questions.leftOuterJoin(answers)

Equivalent to answers.rightOuterJoin(questions)

questions.cartesian(answers).collect()

Cartesian

Join of all elements in left set

With all elements in the right set


```
((xavier, 1) (xavier, 3)) ((xavier, 1) (beth, 4)) ((troy, 2) (xavier, 3)) ((xavier, 5) (xavier, 3)) ((troy, 2) (beth, 4)) ((xavier, 5) (beth, 4))
```

Cartesian

Aggregation

Grouping elements together

Foundations of Big Data analytics


```
posts_all.take(1)
val each_post_owner = posts_all.map(x => x.split(",")(6))
val posts_owner_pair_rdd = each_post_owner.map(x => (x,1))
posts_owner_pair_rdd.take(1)
```

Prepare Some Data

Extract user from each post

PairRDD

- Key is user
- Value is 1


```
val top_posters_gbk = posts_owner_pair_rdd.groupByKey()
top_posters_gbk.take(10)
```

GroupByKey

Values grouped by each key

Data sent over the network and collected on reduce workers

Can cause problems on larger datasets


```
top_posters_gbk.map({ case (x,y) => (x, y.toList) })
   .take(10)

top_posters_gbk.map({ case (x,y) => (x, y.size) }).take(10)

top_posters_gbk.map({ case (x,y) => (x, y.size) })
   .sortBy({ case (x, y) => -y}).take(1)
```

GroupByKey

Tuple of user id and list of 1's

Posts per user? → User id and number of posts

Use sortBy for top poster


```
val top_posters_rbk = posts_owner_pair_rdd
    .reduceByKey(_ + _)
```

ReduceByKey

Perform an operation on all elements with same key

Specify a function

Reduce operation done within partition

top_posters_rbk.lookup("51")

ReduceByKey

Perform add using _ + _

Pass function as parameter to reduceByKey()

Use lookup() to find top poster and confirm


```
top_posters_gbk.count()
top_posters_rbk.count()
```

groupByKey vs. reduceByKey

Do we get the same results?

Indeed we do

Preparation for aggregateByKey

```
val posts_all_entries = posts_all.map(x => x.split(","))
val questions = posts_all_entries.filter(x => x(1) == "1")
val user_question_score = questions.map(x => (x(6),x(4).toInt))
user_question_score.take(5).foreach(println)
```



```
val posts_all_entries = posts_all.map(x => x.split(","))
val questions = posts_all_entries.filter(x => x(1) == "1")
val user_question_score = questions.map(x => (x(6),x(4).toInt))
user_question_score.take(5).foreach(println)
```

aggregateByKey

Like reduceByKey()

But takes an initial value

Specify functions for merging and combining


```
var for_keeping_count = (0,0)
def combining (tuple_sum_count: (Int, Int), next_score: Int) =
  (tuple_sum_count._1 + next_score, tuple_sum_count._2 + 1)
def merging (tuple_sum_count: (Int, Int),
tuple_next_partition_sum_count: (Int, Int)) = (tuple_sum_count._1 +
  tuple_next_partition_sum_count._1, tuple_sum_count._2 +
  tuple_next_partition_sum_count._2)
val aggregated_user_question =
  user_question_score.aggregateByKey(for_keeping_count)(combining,
 merging)
aggregated_user_question.take(1)
aggregated_user_question.lookup("51")
```



```
val aggregated_user_question =
  user_question_score.aggregateByKey(for_keeping_count)
  (combining, merging)
```

aggregateByKey

Combining

- Within partition

Merging

- Across partitions

aggregated_user_question.lookup("51")

aggregateByKey

Only questions, include score and user id

Define initial value, merging function, and combining function

Check with top poster


```
val user_post = questions.map(x => (x(6), x(0).toInt))

def to_list(postid: Int): List[Int] = List(postid)

def merge_posts(posta: List[Int], postb: Int) = postb :: posta

def combine_posts(posta: List[Int], postb: List[Int]): List[Int] = posta ++ postb
```



```
val combined = user_post.combineByKey(to_list, merge_posts,
  combine_posts)
combined.filter({ case (x,y) => x == "51" }).collect()
```

CombineByKey

Specify an initial value can be a function that returns a new value

Provide merge and combine functions

Like aggregateByKey(), but more flexible


```
user_post.lookup("51")
user_post.countByKey()("51")
```

CountByKey

Dictionary with keys and counts of occurrences

Like a reduceByKey() where we count based on key


```
word_for_count.groupByKey().count()
word_for_count.reduceByKey(_ + _).count()
```

reduceByKey & groupByKey

Both can be used for the same purpose

Aggregate by keys

Work very differently underneath

Comparing groupByKey vs. reduceByKey

groupByKey

(Cloudera 1)

(Spark,1) (Spark,1) (Spark,1) (Spark,1) (HUE,1)

```
(Spark,1) (
(Spark,1) (
(Spark,1)
(Spark,1)
(Cloudera,1)
```

```
(Cloudera,1)
(Cloudera,1)
```

reduceByKey

(Spark,1)
(Spark,1)
(Spark,1)
(Spark,1)
(HUE,1)

,
(Spark,1)
(Spark,1)
(Spark,1)
(Spark,1)
(Cloudera,1)

A diagram consisting of rectangles whose area is proportional to the frequency of a variable and whose width is equal to the class interval.

```
badges_reduced.take(10)
badges_reduced.map({ case (x,y) => y }).histogram(7)
```

Grouping Data into Buckets with Histogram

Histograms are very powerful graphic tools

An image is worth a thousand words

Getting the data is usually the hardest part


```
val intervals: Array[Double] =
    Array(0,1000,2000,3000,4000,5000,6000,7000)
badges_reduced.map({ case (x,y) => y }).histogram(intervals)
badges_reduced.sortBy(x => -x._2).take(10)
badges_reduced.filter(x => x._2 < 1000).count()</pre>
```

Grouping Data into Buckets with Histogram Specify number of intervals

- Returns array with intervals and array of counts within intervals

Explicitly state which intervals to use

Cache

Store data for future use, to improve response times Persist to disk, memory or both


```
reduced.setName('Reduced RDD')
reduced.cache()
```

Cache & Persist

Spark may perform caching of intermediate results

- On expensive operations, to avoid recomputing when nodes fail

Details for Job 95

Status: SUCCEEDED Completed Stages: 1 Skipped Stages: 2

▶ Event Timeline

▼ DAG Visualization

Completed Stages (1)

Stage Id +	• Description		Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
142	runJob at PythonRDD.scala:446	+details	2018/01/12 13:00:58	75 ms	1/1			177.8 KB	

reduced.cache()

Cache & Persist

Spark may perform caching of intermediate results

- On expensive operations, to avoid recomputing when nodes fail

If the same job called twice, entire operation may be recomputed

import org.apache.spark.storage.StorageLevel
grouped.persist(StorageLevel.DISK_ONLY)

Cache & Persist

Call explicitly cache() and persist() when beneficial

cache() is equivalent to persist(MEMORY_ONLY)

When RDD not needed anymore, call unpersist()

Storage Levels

Cache & Persist

Cache in Spark UI

Spark Processing

Distributed and parallel processing Each executor has separate copies

- Variables and functions

No propagation data back to driver

- Except on certain necessary cases
- Accumulators and broadcast variables

Shared Variables

Accumulators

"Added"

Associate and commutative

Numeric accumulator

Other types possible

Counter is one common scenario

Accumulator may not be reliable

Case of failed task

Potential duplicate counts

Broadcast Variables

Read only variable

Immutable

Fits in memory

Distributed efficiently to the cluster

Do not modify after shipped

Good case is a lookup table


```
val accumulator_badge = sc.
  longAccumulator("Badge Accumulator")

def add_badge(item: (String, String)) =
  accumulator_badge.add(1)

badges_by_badge.foreach(add_badge)

accumulator_badge.value
```

Accumulator

Create accumulator and check current value
Increment accumulator function and run
Get value

Accumulators

Executors write to accumulator in Driver program

- Aggregated Metrics by Executor

Executor ID .		Address	Task Time	Total Tasks	Failed Tasks	Killed Tasks	Succeeded Tasks	Shuffle Read Size / Records	Blacklisted	
88	stdout stderr	dn04.cloudera:36647	2 s	50	0	0	50	710.5 KB / 20586	0	

Accumulators

Accumulable	Value
Badge Accumulator	20586

Tasks (50)

Index	ID	Attempt	Status	Locality Level	Executor ID / Host	Launch Time	Duration	GC Time	Accumulators	Shuffle Read Size / Records	Errors
0	1062	0	SUCCESS	PROCESS_LOCAL		2018/03/05 23:00:08	2 ms			0.0 B / 0	
1	1024	0	SUCCESS	NODE_LOCAL		2018/03/05 23:00:06	31 ms		Badge Accumulator: 166	9.8 KB / 166	
2	1063	0	SUCCESS	PROCESS_LOCAL		2018/03/05 23:00:08	2 ms			0.0 B / 0	
3	1064	0	SUCCESS	PROCESS_LOCAL		2018/03/05 23:00:08	2 ms			0.0 B / 0	
4	1065	0	SUCCESS	PROCESS_LOCAL		2018/03/05 23:00:08	3 ms			0.0 B / 0	

Convert Users.xml to CSV

Data preparation step


```
val users_all =
sc.textFile("/user/cloudera/stackexchange/users_csv")
users_all.take(10)
val users_columns = users_all.map(split_the_line)
users_columns.take(3)

top_posters_rbk.take(10)
top_posters_rbk.lookup("51")
```



```
def get_name(user_column: Array[String]) = {
  val user_id = user_column(0)
  val user_name = user_column(3)
  var user_post_count = "0"
  if (broadcast_tp.value.keySet.exists(_ == user_id))
    user_post_count = broadcast_tp.value(user_id).toString
  (user_id, user_name, user_post_count)
}
```

```
val tp = top_posters_rbk.collectAsMap()
val broadcast_tp = sc.broadcast(tp)
```

Broadcast Variable

Create a broadcast variable using the context

Access when necessary, i.e. lookup

Use value


```
val user_info = users_columns.map(get_name)
user_info.take(10)
```

Broadcast Variable

Create using sc.broadcast()

- Assign to a variable

Access using variable.value

Broadcast Variables

Executors read from Broadcast variable

Developing Self-contained Spark Apps

Requires

- Create the SparkContext
- Dependencies
- Execute using spark2-submit

```
import org.apache.spark.{SparkConf, SparkContext}
val conf = new SparkConf()
   .setMaster("yarn")
   .setAppName("Self Contained Application")
sc = new SparkContext(conf)
```

Creating the SparkContext

Corresponding import

Create sc

cd users
sbt package

Bundling Your Application

Use sbt or Maven to create an "uber jar"

Use sbt package, respect folder structure

We covered in the Scala refresher module

spark2-submit --class "PrepareUsersApp"

target/scala-2.11/users-project_2.11-1.0.jar

Launching Application

Using spark2-submit

Code to be executed, submitted as a job

Dependencies

Use jars parameter

- Supports file, hdfs, http, ftp or local, but no directory expansion

Maven coordinates with packages

Disadvantages of RDDs

Don't take this the wrong way

RDDs are still used, even internally

Extremely powerful

Limitations on potential optimizations

Disadvantages of RDDs

Performance

Schema less

Steeper learning curve

"Everybody knows SQL"

Anonymous Functions

- Lambdas

Transformations vs. Actions

- Transformations return RDDs
- Actions trigger computation

Map, FlatMap, Filter, Sort, ...

Partitions

Sampling

Set operations

Aggregations

Histogram

Caching & Persisting

Shared variables

Self contained applications

Disadvantages of RDDs

