## Illusion de sortie de corps en réalité virtuelle pour l'anorexie mentale

Guillaume Biannic (g9bianni@enib.fr)

Encadrants : Nathalie Le Bigot (nathalie.lebigot@univ-brest.fr), Cédric Buche (buche@enib.fr)





occidentale







#### Contexte

But : Définir un outil pour aider les patients souffrants d'anorexie mentale

Modification de la perception du corps nécessaire [Luyat, 2014]

Solutions existantes:

- Miroir
- Massage
- Dessin

### Sortie de corps en réalité virtuelle

[Blanke et al., 2010]

Nécessite une corrélation visuotactile et/ou visuomotrice [Slater et al., 2008]

Sensation d'appartenance au corps virtuel [Ehrsson, 2007]

Modification de la satisfaction de son corps [Ehrsson et al., 2014]

Demande une synchronisation entre le réel et le virtuel



Expérience de sortie de corps [Blanke et al., 2010]

## Problématique

Avoir un impact sur la perception du corps

Reproduire le phénomène de sortie de corps en réalité virtuelle

Utiliser un environnement complètement virtuel

Utiliser du matériels « grand public »

## Modification d'un corps virtuel

[Lee et al., 2001]

#### *Morphing 3D* [Lee et al., 2001]:

- Interpolation entre deux modèles
- Modèles doivent être définis de la même manière

Shape Interpolation [Zhong et al., 2009]:

• Ré-échantillonnage des modèles



Modèles avec différentes formes et la même texture obtenus avec le Morphing 3D

#### Capture de mouvement

Capture optique avec marqueurs [Knossow, 2007] [Zong, 2012]:

- Précis
- Beaucoup de matériels

*Kinect V1 et V2* [Zeng et al., 2012][Lun et al., 2015]:

- Certains mouvements non preçus
- Une seule caméra nécessaire
- Capture plus précise avec la Kinect V2



Dispositif de système optique avec marqueurs



Microsoft Kinect V2

### Proposition Sortie de corps

Corrélation visuotactile et corrélation visuomotrice

Stimuli tactile dans le dos

Acquisition des mouvements :

- Microsoft Kinect V2
- Razer Hydra





# Proposition Perception du corps

Choix de l'avatar de base par le patient

Choix de l'avatar après transformation par le psychiatre

Modification progressive grâce au *Morphing 3D* 

Transformation lente et discrète



### Réalisation Capture de mouvement

#### Mouvements du participant :

- Récupération de l'orientation des articulations
- Filtrage des données

#### Mouvements du bâton :

 Position et orientation de la Razer Hydra appliquées au bâton virtuel



Microsoft Kinect V2

#### Réalisation Avatars

Avatars créés avec MakeHuman

25 avatars proposés

Modification du maillage (Mesh) de l'avatar



Modèle après modification avec apparence d'origine en transparence

## Application





 $Guillaume\,Biannic\,(g9bianni@enib.fr)$ 

#### Evaluation

#### Quatre conditions:

- Avec/Sans stimulation tactile
- Avec/Sans modification de l'avatar

#### Mesures:

- Effet stimulation tactile : Localisation dans l'espace [Blanke et al., 2010]
- Effet modification du corps : Perception implicite de la largeur du corps [Guardia et al, 2010]



Portes de largeur différentes

Questionnaires [Lenggenhager et al., 2007]

#### Résultats

- 1: Essai avant de voir l'avatar
- 2 : Sans stimulation tactile / Sans modification de corps
- 3 : Sans stimulation tactile / Avec modification de corps
- 4 : Avec stimulation tactile / Sans modification de corps
- 5 : Avec stimulation tactile / Avec modification de corps



### Conclusion et Pespectives

Modification du corps virtuel

Corrélation visuotactile et corrélation visuomotrice

Matériels accessibles

Perspectives:

- Création de l'avatar
- Utilisation à long terme

## Illusion de sortie de corps en réalité virtuelle pour l'anorexie mentale

Guillaume Biannic (g9bianni@enib.fr)

Encadrants : Nathalie Le Bigot (nathalie.lebigot@univ-brest.fr), Cédric Buche (buche@enib.fr)





occidentale







# Bibliographie

[Luyat, 2014] Luyat, M., 2014, Les apports de la psychologie cognitive et de la neuropsychologie dans la compréhension de l'anorexie mental [Guardia et al, 2010] Guardia, D., Lafarguea, G., Thomas, P., Dodin, V., Cottencin, O., & Luyat, M. (2010). Anticipation of body-scaled action is modfied in anorexia nervosa. Neuropsychologia, Volume 48, Issue 13, Pages 3961-3966

[Blanke et al., 2010] Lopez, C., & Blanke, O., 2010, Quand l'esprit met le corps à distance

[Ehrsson, 2007] Ehrsson H. H. (2007). The experimental induction of out-of-body experiences. Science, 317,1048.

[Slater et al., 2008] Slater, M., Spanlang, B., Frisoli, A., & Sanchez-Vives, M.V. (2008). Virtual hand illusion induced by visual-proprioceptive and motor correlations. PLoS ONE 5(4): e10381.

# Bibliographie

[Ehrsson et al., 2014] Preston, C., & Ehrsson, H. H., 2014, Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology

[Lenggenhager et al., 2007] Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O., 2007, Video ergo sum: manipulating bodily self-consciousness [Zhong et al., 2009] Zhong Y., Liu H., & Jinag J., 2009, 3D Human Body Morphing Based on Shape Interpolation

[Lee et al., 2001] Lee, W., Magnenat-Thalmann N. (2001). Virtual Body Morphing Computer Animation, The Fourteenth Conference on Computer Animation. Proceedings, p158-166

[Knossow, 2007] Knossow, D. (2007).Paramétrage et Capture Multi caméras du Mouvement Humain. Human-Computer Interaction. Institut National Polytechnique de Grenoble - INPG.

# Bibliographie

[Zong, 2012] Zong, C. (2012). Système embarquée de capture et analyse du mouvement humain durant la marche. Automatic. Université Pierre et Marie Curie - Paris VI.

[Zeng et al., 2012] Wenjun Zeng & Zhengyou Zhang, 2012, Microsoft Kinect Sensor and Its Effect

[Lun et al., 2015] Lun, R., & Zhao, W. (2015). A Survey of Applications and Human Motion Recognition with Microsoft Kinect. International Journal of Pattern Recognition and Articial Intelligence.



 $Guillaume\, Biannic\, (g9bianni@enib.fr)$ 

|                             | Sans bâton | Bâton  |
|-----------------------------|------------|--------|
| Corps virtuel est mon corps | -1,083     | 0,417  |
| Dérive vers l'avant         | -1,54      | -0,75  |
| Plus d'un corps             | -1,625     | -0,875 |

| Synchronisation bâtons                 | 2,541 |
|----------------------------------------|-------|
| Maniabilité de l'avatar                | 1,25  |
| Crédibilité de l'avatar (visuellement) | 1,25  |