概率论与数理统计模拟试题(十一)

一、填空题(每小题3分,共5小题,满分15分)

- 1. 在投掷一枚均匀硬币的 4 次独立试验中, 若已知至少 1 次已经反面朝上, 则这时 得到至少3次正面朝上的概率为 .
- 2. 电机的绝缘寿命随机变量 $Y = 10^X$, 其中X 服从正态分布 $N(\mu, \sigma^2)$, 则Y的概 率密度_____.
 - 3. 设随机变量 ξ , η 的概率密度为

$$f_{\xi}(x) = \begin{cases} 2e^{-2x} & x \ge 0 \\ 0 & x < 0 \end{cases}, \quad \varphi_{\eta}(y) = \begin{cases} 4e^{-4y} & y \ge 0 \\ 0 & y < 0 \end{cases}$$

且 ξ 与 η 相互独立,则 $D(2\xi-3\eta)=$.

- 4. 设(X,Y)在 $G = \{(x,y) | 0 < x < y < 1\}$ 上服从均匀分布,则 X = Y的相关系数为
- 5. 已知一批零件长度 $X(cm) \sim N(\mu,1)$, 从中随机地抽取 16 个零件, 得样本均值 $\overline{X} = 40 \,\mathrm{cm}$,则 μ 的置信度为 0.95 的置信区间是______.

二、选择题(每小题3分,共5小题,满分15分)

(每小题给出的四个选项中, 只有一个是符合题目要求的, 把所选项的字母填在题后 的括号内)

- 1. 已知P(B) > 0, $A_1A_2 = \phi$, 则下列各式中不正确的是 ()
- (A) $P(A_1 A_2 | B) = 0$; (B) $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B)$;
- (C) $P(\bar{A}_1 \bar{A}_2 | B) = 1;$ (D) $P(\bar{A}_1 \cup \bar{A}_2 | B) = 1.$
- 2. 下列函数可作为连续型随机变量的概率密度(

(A)
$$f(x) = \begin{cases} \sin x & \pi \le x \le \frac{3}{2}\pi \\ 0 & \text{其他} \end{cases}$$
 (B) $g(x) = \begin{cases} -\sin x & \pi \le x \le \frac{3}{2}\pi \\ 0 & \text{其他} \end{cases}$ (C) $\varphi(x) = \begin{cases} \cos x & \pi \le x \le \frac{3}{2}\pi \\ 0 & \text{其他} \end{cases}$ (D) $h(x) = \begin{cases} 1 - \cos x & \pi \le x \le \frac{3}{2}\pi \\ 0 & \text{其他} \end{cases}$

(C)
$$\varphi(x) = \begin{cases} \cos x & \pi \le x \le \frac{3}{2}\pi \\ 0 & 其他 \end{cases}$$
 (D) $h(x) = \begin{cases} 1 - \cos x & \pi \le x \le \frac{3}{2}\pi \\ 0 & 其他 \end{cases}$

- 3. 设随机变量 $X \sim N(-3,1)$, $Y \sim N(2,1)$, 且 X 与 Y独立,设Z = X 2Y + 7, 则 $Z\sim$ ().
 - (A) N(0,5); (B) N(0,-3); (C) N(0,46); (C) N(0,54).

4. 设(X,Y)有概率密度 $f(x,y) = \begin{cases} 24y(1-x), & 0 \le x \le 1, \ 0 \le y \le x \\ 0, & 其他 \end{cases}$, 则关于 X 的

概率密度为(

(A)
$$f_X(x) = \begin{cases} 12x^2(1-x), & 0 \le x \le 1 \\ 0, & \text{#th} \end{cases}$$
 (B) $f_X(x) = \begin{cases} 12x(1-x)^2, \\ 0, \end{cases}$

$$(A) \ f_X(x) = \begin{cases} 12x^2(1-x), & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

$$(B) \ f_X(x) = \begin{cases} 12x(1-x)^2, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

$$(C) \ f_X(x) = \begin{cases} 24x^2(1-x), & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

$$(D) \ f_X(x) = \begin{cases} 24x(1-x)^2, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$

5. 设 X_1, \cdots, X_n 是总体X的样本, $EX = \mu, DX = \sigma^2, \overline{X}$ 是样本均值, S^2 是样本 方差,则(

(A)
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
;

(B)
$$S^2$$
与 \overline{X} 独立

(A)
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
; (B) $S^2 与 \overline{X}$ 独立; (C) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$; (D) $S^2 \not\in \sigma^2$ 的无偏估计

(D)
$$S^2$$
 是 σ^2 的无偏估计

- 三、(10 分)某班车起点站处上车人数 $X \sim P(\lambda), (\lambda > 0)$,每位乘客在中途下车的概率 均为p,且中途下车与否相互独立,以Y表示在中途下车的人数.求
 - (1) 在发车时有n个乘客的条件下,中途有m个人下车的概率;
 - (2) 二维随机变量(X,Y) 的概率分布.

四、(10 分)设二维随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} e^{-(x+y)} & x > 0, y > 0 \\ 0 & 其他 \end{cases}$$

试求随机变量Z = X - Y的分布函数与概率密度.

五、(10分)设随机变量 X 和 Y 的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域内服从均匀分布,试求随机变量 V=X+Y 的方差.

六、 $(6 \, \text{分})$ 在[0,1] 上任取n 个点,以X 记最大点与最小点的距离,求EX .

七、 $(14 \, \text{分})(1)$ 设 X_1, \dots, X_n 是来自两参数指数分布样本,总体X的密度为

$$f(x_i\theta_1\theta_2) = \begin{cases} \frac{1}{\theta_2} e^{-\frac{x-\theta_1}{\theta_2}}, & x \ge \theta_1\\ 0, & \sharp \dot{\Xi} \end{cases}$$

其中 – ∞ < θ_1 < + ∞ , 0 < θ_2 < + ∞ , 求参数 θ_1 和 θ_2 的

- 1) 极大似然估计; 2) 矩估计
- (2) 某种导线,其电阻的标准差不超过标准 0.005 欧姆,今在生产的一批导线中取样品 9 根,测得 $_S$ =0.007 欧姆,设总体为正态总体,问在显著性水平 $_\alpha$ =0.05 下能认为这批导线电阻的标准差显著地偏大吗?