Cohomologie des figures impossibles

Basile Pillet

 $d_{12} = rac{ ext{distance du point représenté par } A_1 ext{ à l'observateur}}{ ext{distance du point représenté par } A_2 ext{ à l'observateur}}$

 $d_{13} = \frac{\text{distance du point représenté par } B_1 \text{ à l'observateur}}{\text{distance du point représenté par } B_3 \text{ à l'observateur}}$

$$d_{23} = \frac{\text{distance du point représenté par } C_2 \text{ à l'observateur}}{\text{distance du point représenté par } C_3 \text{ à l'observateur}}$$

Pour se recoller

Pour se recoller

il faut

• que A_1 et A_2 se superposent

Pour se recoller

- que A_1 et A_2 se superposent
- que B_1 et B_3 se superposent

Pour se recoller

- que A_1 et A_2 se superposent
- que B_1 et B_3 se superposent
- que C_2 et C_3 se superposent

Pour se recoller

- que A_1 et A_2 se superposent : $d_{12} = 1$
- que B_1 et B_3 se superposent
- que C_2 et C_3 se superposent

Pour se recoller

- que A_1 et A_2 se superposent : $d_{12} = 1$
- que B_1 et B_3 se superposent : $d_{13} = 1$
- ightharpoonup que C_2 et C_3 se superposent

Pour se recoller

- que A_1 et A_2 se superposent : $d_{12} = 1$
- que B_1 et B_3 se superposent : $d_{13} = 1$
- que C_2 et C_3 se superposent : $d_{23} = 1$

Les d_{ij} forment un cocycle.

Que ce passe-t-il si on multiplie toutes les dimensions de l'objet 1 par $\lambda_1 \in \mathbb{R}^{+*}$ ainsi que sa distance à l'observateur?

 $d_{12}\mapsto$

 $d_{13}\mapsto$

 $d_{23}\mapsto$

 $d_{12} \mapsto \lambda_1 d_{12}$

 $d_{13}\mapsto$

 $d_{23} \mapsto$

$$d_{12}\mapsto \lambda_1 d_{12}$$

$$d_{13}\mapsto \lambda_1d_{13}$$

 $d_{23} \mapsto$

$$d_{12}\mapsto \lambda_1 d_{12}$$

$$d_{13}\mapsto \lambda_1d_{13}$$

$$d_{23}\mapsto d_{23}$$

Il existe une manière de redimensionner les trois objets telle que

$$d_{12} = d_{13} = d_{23} = 1$$

Il existe une manière de redimensionner les trois objets telle que

$$d_{12}=d_{13}=d_{23}=1$$

(c'est-à-dire de recoller les trois coins en un vrai triangle de Penrose)

Il existe une manière de redimensionner les trois objets telle que

$$d_{12}=d_{13}=d_{23}=1$$

(c'est-à-dire de recoller les trois coins en un vrai triangle de Penrose)

si et seulement si

Il existe une manière de redimensionner les trois objets telle que

$$d_{12}=d_{13}=d_{23}=1$$

(c'est-à-dire de recoller les trois coins en un vrai *triangle de Penrose*)

si et seulement si

$$d_{12}=rac{\lambda_1}{\lambda_2}$$
 , $d_{13}=rac{\lambda_1}{\lambda_3}$, $d_{23}=rac{\lambda_2}{\lambda_3}$

Il existe une manière de redimensionner les trois objets telle que

$$d_{12}=d_{13}=d_{23}=1$$

(c'est-à-dire de recoller les trois coins en un vrai *triangle de Penrose*)

si et seulement si

$$d_{12}=\frac{\lambda_1}{\lambda_2}$$
 , $d_{13}=\frac{\lambda_1}{\lambda_3}$, $d_{23}=\frac{\lambda_2}{\lambda_3}$

on dit alors que les d_{ij} forment un **cobord**.

$$d_{12} \times d_{23} =$$

$$d_{12} \times d_{23} = \frac{\lambda_1}{\lambda_2} \times \frac{\lambda_2}{\lambda_3} =$$

$$d_{12} imes d_{23} = rac{\lambda_1}{\lambda_2} imes rac{\lambda_2}{\lambda_3} = rac{\lambda_1}{\lambda_3} =$$

$$d_{12} \times d_{23} = \frac{\lambda_1}{\lambda_2} \times \frac{\lambda_2}{\lambda_3} = \frac{\lambda_1}{\lambda_3} = d_{13}$$

 $\mathsf{distance}(A_1) < \mathsf{distance}(B_1)$

 $\mathsf{distance}(A_1) < \mathsf{distance}(B_1)$

 $distance(B_3) < distance(C_3)$

 $distance(A_1) < distance(B_1)$

 $distance(B_3) < distance(C_3)$

 $distance(A_2) > distance(C_2)$

 $d_{13} = d_{12} \times d_{23}$

$$d_{13} = d_{12} \times d_{23}$$

$$d_{13} = d_{12} \times d_{23}$$

$$= \frac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)}$$

$$d_{13}=d_{12}\times d_{23}$$

$$= \frac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)}$$

 $< \frac{\mathsf{distance}(A_1)}{\mathsf{distance}(C_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)}$

$$egin{aligned} d_{13} &= d_{12} imes d_{23} \ &= rac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} imes rac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)} \end{aligned}$$

$$< rac{ ext{distance}(A_1)}{ ext{distance}(C_2)} imes rac{ ext{distance}(C_2)}{ ext{distance}(C_3)}$$

 $< rac{ ext{distance}(A_1)}{ ext{distance}(C_3)}$

$$egin{aligned} d_{13} &= d_{12} imes d_{23} \ &= rac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} imes rac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)} \end{aligned}$$

$$< rac{ ext{distance}(A_1)}{ ext{distance}(C_2)} imes rac{ ext{distance}(C_2)}{ ext{distance}(C_3)} < rac{ ext{distance}(A_1)}{ ext{distance}(C_3)}$$

 $< \frac{\operatorname{distance}(B_1)}{\operatorname{distance}(C_3)}$

$$egin{aligned} d_{13} &= d_{12} imes d_{23} \ &= rac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} imes rac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)} \ &< rac{\mathsf{distance}(A_1)}{\mathsf{distance}(C_2)} imes rac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)} \end{aligned}$$

$$< \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)}$$

$$< \frac{\mathsf{distance}(C_3)}{\mathsf{distance}(B_1)}$$

$$< \frac{\mathsf{distance}(C_3)}{\mathsf{distance}(C_3)}$$

 $< \frac{\mathsf{distance}(B_1)}{\mathsf{distance}(B_3)}$

$$d_{13} = d_{12} \times d_{23}$$

$$= \frac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)}$$

 $< rac{ ext{distance}(A_1)}{ ext{distance}(C_2)} imes rac{ ext{distance}(C_2)}{ ext{distance}(C_3)} < rac{ ext{distance}(A_1)}{ ext{distance}(C_3)}$

 $< \frac{\operatorname{distance}(A_1)}{\operatorname{distance}(C_3)}$ $< \frac{\operatorname{distance}(B_1)}{\operatorname{distance}(C_3)}$

 $< \frac{\mathsf{distance}(B_1)}{\mathsf{distance}(B_3)}$

 $< d_{13}$

$$d_{13} = d_{12} \times d_{23}$$

$$= \frac{\text{distance}(}{\text{distance}(}$$

$$= \frac{\mathsf{distance}(A_1)}{\mathsf{distance}(A_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_3)} < \frac{\mathsf{distance}(C_1)}{\mathsf{distance}(C_2)} \times \frac{\mathsf{distance}(C_2)}{\mathsf{distance}(C_2)}$$

$$\begin{array}{l} \operatorname{distance}(A_2) & \operatorname{distance}(C_3) \\ < \frac{\operatorname{distance}(A_1)}{\operatorname{distance}(C_2)} \times \frac{\operatorname{distance}(C_2)}{\operatorname{distance}(C_3)} \\ < \frac{\operatorname{distance}(A_1)}{\operatorname{distance}(C_3)} \\ < \frac{\operatorname{distance}(B_1)}{\operatorname{distance}(C_3)} \end{array}$$

$$< \frac{\operatorname{distance}(B_1)}{\operatorname{distance}(C_3)}$$
 $< \frac{\operatorname{distance}(B_1)}{\operatorname{distance}(B_3)}$
 $< d_{13}$

Le triangle de Penrose n'existe pas.

