EL2520 - Control Theory and Practice - Advanced Course

Solution/Answers - 2018-05-29

- 1. (a) (i) The determinant is $\det G = \frac{2(s-1)}{(s+2)^2}$ and the denominator is the LCD for all minors. Hence there are two poles in s=-2 and one zero at s=1. The zero direction is defined as $y_z^HG(z)=1$, such that $|y_z|=1$ and we get $y_z^H=\frac{1}{\sqrt{5}}[-2\ 1]$. (ii) With two poles we need 2 states in a minimal state space realization.
 - (b) The singular values are given by $\sigma_i(i\omega) = \sqrt{\lambda(G(i\omega)^H G(i\omega))} = \frac{1}{\sqrt{4\omega^2+1}} \sqrt{\lambda(G(0)^H G)}$ (here one can also use the fact that the singular values of a symmetric matrix equals the magnitude of the eigenvalues). This gives $\bar{\sigma} = \frac{3}{\sqrt{4\omega^2+1}}$ and $\underline{\sigma} = \frac{1}{\sqrt{4\omega^2+1}}$. We have $\|G\|_{\infty} = \sup_{\omega} \bar{\sigma}(G) = 3$.
 - (c) The closed-loop eigenvalue is 2-K and the system is stable for -1 < 2-K < 1 which gives 1 < K < 3.
- 2. (a) Since $\bar{\sigma}(S) > |1 \bar{\sigma}(T)|$ we can not have $\bar{\sigma}(S) < 0.5$ when $\bar{\sigma}(T) < 0.5$ (and vice versa) at any frequency. Hence we can not have the magnitude of both weights > 2 at the same frequency and get $||W_SS||_{\infty} < 1$ and $||W_TT||_{\infty} < 1$. Here both weights are larger than 2 around frequency $0.3 \ rad/s$ and hence the objective is infeasible.
 - (b) For internal stability we require that the sensitivity function S has a RHP zero at the same position as G(s) has a RHP pole. In this case we have a pole at s=1 in G(s), but the only zero of S(s) is at s=0. Hence the proposed controller does not give internal stability since there is a pole-zero cancellation in the RHP between the plant and the controller.
 - (c) Here G(s) has a RHP zero at s=1. For any RHP zero s=z>0 we require $|y_z^H G_d(z)| < 1$ where y_z is the corresponding zero direction. We get $y_z^H = \frac{1}{\sqrt{13}}[3-2]$ and $G_d(z) = \frac{1}{11}[2\ 3]^T$ which gives $|y_z^H G_d(z)| = 0 < 1$. Since there are no other limitations, the objective is feasible.
- 3. (a) (i) We get T = K/(s-1+K) and $W_T T = \frac{2K}{3} \frac{s+1}{s-1+K}$. Closed-loop stability for K > 1. The peak-value of $|W_T T(i\omega)|$, corresponding to $||W_T T||_{\infty}$, occurs at $\omega = 0$ if 1 < K < 2 and at $\omega = \infty$ if K > 2. The peak values are 2K/(3(-1+K)) and 2K/3, respectively. Hence, the minimum is obtained for K = 2 corresponding to $||W_T T||_{\infty} = 4/3$. (ii) Since there is a RHP pole at s = p = 1 and $||W_T T||_{\infty} = \frac{4}{3} > 1$ it is not possible to achieve $||W_T T||_{\infty} < 1$.
 - (b) (i) We have $y = GS_I w_u = SGw_u$ and hence we require $||W_1SG||_{\infty} < 1$ with $W_1 = \frac{1}{2} \frac{s+1}{s}$ which enforces $\bar{\sigma}(SG(i0.5)) < 1$ and $\bar{\sigma}(SG(0)) = 1$

0. Robust stability with relative uncertainty at the input is ensured if $||W_2T_I||_{\infty} < 1$ where $W_2 = 0.2$, corredsponding to the relative uncertainty. To get a scalar objective function value we stack the two objectives into one matrix to obtain

$$\min_{F_y} \left\| \frac{W_1 S G}{W_2 T_I} \right\|_{\infty}$$

(ii) For SG we choose $z_{e1} = W_1 y = W_1 SGw_u$. For T_I we have that $u = u_c + w_u$ where u_c is the output of the controller F_y , and hence $u_c = F_y G(I + F_y G)^{-1} w_u = T_I w_u$. Hence we choose $z_{e2} = W_2 u_c = W_2 T_I w_u$. Hence, with $w_e - w_u$ we get in closed=loop

$$z_e = \begin{pmatrix} W_1 SG \\ W_2 T_I \end{pmatrix} w_e$$

Now the signal minimization problem given corresponds to minimizing the \mathcal{H}_{∞} -norm of the transfer-function above.

4. (a) The system is on state space form

$$\dot{y} = 2u(t)$$

(i) This is an LQ problem with $A=0, B=2, M=1, Q_1=1, Q_2=0.1.$ The Riccati equation is then

$$1 - 40P^2 = 0$$

and the solution P > 0 is $P = 1/(2\sqrt{10})$. The optimal feedback gain is then $L = 20P = \sqrt{10}$. Thus, optimal $K_P = \sqrt{10}$. (ii) We have A = 0, $R_1 = 0$, $R_2 = 0.1$, C = 1 for the Riccati equation for the Kalman filter, yielding

$$10P^2 = 0$$

and hence P = 0. Thus, the optimal estimate is

$$\hat{\dot{y}} = 2u(t)$$

(Note that there is no feedback from the measurement. This will by some not be considered a Kalman filter, as it often is a requirement that a process disturbance, i.e., $R_1 \neq 0$, is included in the model in which case we would get $P \neq 0$.) The estimator does not influence the optimal gain in (i) due to the separation principle.

(b) (i) The state-space model is $\dot{y}=2u(t)$ and hence, in discrete time, $A=e^{0T}=1$ and $B=\int_0^T 2e^{0T}dt=2T=1$. Thus, the discrete time state space model is

$$y_{k+1} = y_k + u_k$$

(ii) With N=1 we get the objective function to be minimized

$$V = Q_y y_k^2 + Q_y (y_k + u_k)^2 + u_k^2 + u_{k+1}^2 = 2Q_y y_k^2 + 2Q_y y_k u_k + (Q_y + 1)u_k^2 + u_{k+1}^2$$

Since we can not influence y_k (the current value of y), we can remove the terms with only y_k . Also, u_{k+1}^2 can be removed since obviously the optimum value will be $u_{k+1} = 0$. Thus,

$$V = (Q_y + 1)u_k^2 + 4Q_y y_k u_k$$

and hence $H = Q_y + 1$ and $h = 4Q_y y_k$. The constraint $|u_k| < 1$ can be written as $u_k < 1$ and $-u_k < 1$, i.e., $L = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$ and $b = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

- 5. (a) Because we employ the Small Gain Theorem for analyzing stability of the loop with Δ included, and then require all blocks to be stable.
 - (b) Writing the closed-loop on M- Δ -form we get $M = -W_{iI}S_I$ and hence from the SGT we get the sufficient robust stability condition

$$||W_{iI}S_I||_{\infty} < 1$$

and nominal stability.

(c) We get

$$T_I = \frac{K_p}{K_p + s + 1}$$
; $S_I = \frac{s + 1}{K_p + s + 1}$

and nominal stability for $K_p > -1$. For the uncertainty weights we get

$$k = (1 + W_I \Delta_I) \implies |W_I \Delta_I| < |1 - k| < 0.75$$

and

$$k = (1 + W_{iI}\Delta_{iI})^{-1} \Rightarrow |W_{iI}\Delta_{iI}| < |\frac{1}{k} - 1| < 3$$

With these weights we get

$$||W_I \Delta_I T_I||_{\infty} = 0.75 \left| \frac{K_p}{K_p + 1} \right|$$

(peaks at $\omega=0$ since only one pole and no zeros) and hence RS for all $K_p>-4/7$. For $-1< K_p<0$ we get

$$||W_{iI}\Delta_{iI}S_I||_{\infty} = 3\frac{1}{K_p+1} > 3$$

(peaks at $\omega = 0$ since pole smaller magnitude than zero) while with $K_p > 0$ we get

$$||W_{iI}\Delta_{iI}S_I||_{\infty}=3$$

(peaks at $\omega=\infty$ since zero smaller magnitude than pole) and hence we can not guarantee RS with any value of K_p with the inverse multiplicative uncertainty.

(d) For the relative input uncertainty we get

$$W_I \Delta_I = \frac{1 - \alpha}{s + \alpha}$$

and the robustness condition becomes

$$||W_I \Delta_I T_I||_{\infty} = \left| \frac{K_p}{K_p + 1} \right| \left| \frac{1 - \alpha}{\alpha} \right| \le \left| \frac{3K_p}{1 + K_p} \right| < 1$$

which then gives $-0.25 < K_p < 0.5$ for robust stability. For the inverse uncertainty we get

$$W_{iI}\Delta_{iI} = \frac{\alpha - 1}{s + 1}$$

and the robustness condition

$$||W_{iI}\Delta_{iI}S_I||_{\infty} = \frac{|\alpha - 1|}{|1 + K_p|} \le \frac{1}{1 + K_p} < 1$$

which gives that we have robust stability for all $K_p > 0$.

Thus, we see that it is important to choose the "correct" uncertainty description for robustness analysis, as we otherwise may get overly conservative results.