Notebook Summary: Forecasting vs Data

Libraries Used

The following Python libraries were imported and used throughout the notebook:

- pandas → Data manipulation and preprocessing
- **numpy** → Numerical operations
- matplotlib.pyplot → Plotting and visualizations
- **seaborn (sns, sls)** → Data visualization and styling
- sklearn (scikit-learn)
 - train_test_split → Splitting train/test data
 - \circ classification_report, confusion_matrix \rightarrow Evaluation metrics
 - accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve → Model evaluation
 - mean_absolute_error → Error metric (time-series validation)
- **xgboost (xgb)** → Core machine learning model (predict refill / no refill)
- **prophet** → Time-series forecasting
- os, pathlib, datetime → File handling and date utilities

Functions Defined

- get_metrics(y_true, y_pred, label)
 - → Custom evaluation function to compute and return metrics (accuracy, precision, recall, F1) for model predictions.

What Was Done in the Notebook

1. Data Loading & Preprocessing

- o Imported multiple datasets: claims, prescribers, market, calendar.
- Cleaned and structured patient refill claims data.
- Encoded categorical variables (specialty, region) using one-hot encoding.

2. Feature Engineering

- Created features like gap_days, fill_count, days of supply (dos), adherence flags, time frames.
- Mapped patients to quarters and computed refill-related features.

3. Train-Test Split

- Used train_test_split with stratification to handle imbalanced classes.
- Multiple variations were tried (test_size=0.2, 0.1, 0.4) for small and large datasets.

4. Modeling with XGBoost

- o Baseline model with default threshold (0.5).
- Threshold-tuned model (0.4).
- Class-weighted model (handling imbalance with scale_pos_weight).

5. Evaluation

- Accuracy, precision, recall, F1 score computed.
- Confusion matrix visualized.
- o ROC curves and AUC scores compared.
- Patient-level prediction probabilities binned into 10% intervals (0–10%, 10–20%, ...).

6. Experimentation on Data Size

- Small Dataset (~500 patients, 2 years) vs Large Dataset (~5,000 patients, 9 years).
- o Results compared across baseline, threshold-tuned, and class-weighted models.

7. Forecasting with Prophet

o Applied Prophet on refill counts for time-series prediction (experimental part).

8. Final Deliverables

- Patient-level prediction table with refill probability and label.
- Comparative results across dataset sizes and methods.
- o Insights into how data size, thresholds, and class weighting impact results.

In short:

This notebook is a **forecasting + classification experiment** using **synthetic patient refill data**, comparing **different dataset sizes** and **modeling approaches** (baseline, threshold-tuned, class-weighted).