Thought about SupCP

Jiaxin Hu

May 21, 2021

1 SupCP performance

In this note, we consider the Gaussian data and all the matrices are full rank. Let $\mathcal{Y} \in \mathbb{R}^{d \times d \times d}$, $\mathbf{X}_k \in \mathbb{R}^{d \times p}$, $k \in [3]$. Consider the tucker rank $\mathbf{r} = (r, r, r)$ and CP rank R. The dimension of \mathbf{M}_k can be obtained by the context.

1.1 Without supervision

Recall the STD and SupCP models without the supervision.

$$STD$$
 : $\mathcal{Y} = \mathcal{C} \times \{M_1, M_2, M_3\} + \mathcal{E}$
 $SupCP$: $\mathcal{Y} = [A_1, A_2, A_3] + \mathcal{E}$.

The fitted value $vec(\mathcal{Y})$ for STD and SupCP lie in

$$\mathcal{P}_{STD} = \{ C(\boldsymbol{M}_1 \otimes \boldsymbol{M}_2 \otimes \boldsymbol{M}_3) \mid \boldsymbol{M}_k \in \mathbb{R}^{d \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = \boldsymbol{I}_r \},$$

$$\mathcal{P}_{SupCP} = \{ C(\boldsymbol{A}_1 \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3) \mid \boldsymbol{A}_k \in \mathbb{R}^{d \times R} \},$$

respectively, where $C(\boldsymbol{X})$ refers to the column space of the matrix \boldsymbol{X} . Note that $\operatorname{rank}(\boldsymbol{M}_1 \otimes \boldsymbol{M}_2 \otimes \boldsymbol{M}_3) = r^3$ and $\operatorname{rank}(\boldsymbol{A}_1 \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3) = R$.

1. If the true signal is generated from STD, the fitted value for STD model is

$$\operatorname{vec}(\hat{\mathcal{Y}}_{STD}) \in C(\hat{M}_1 \otimes \hat{M}_2 \otimes \hat{M}_3), \text{ for some } \hat{M}_k^T \hat{M}_k = I_r.$$

If $R \leq r^3$, the space \mathcal{P}_{SupCP} may not cover the best estimation from the true model, $\text{vec}(\hat{\mathcal{Y}}_{STD})$. Because $\text{vec}(\hat{\mathcal{Y}}_{STD})$ is a combination of r^3 bases of \mathbb{R}^3 , and the $\hat{\mathcal{Y}}_{SupCP} \in \mathcal{P}_{SupCP}$ is a combination of R bases of \mathbb{R}^3 .

If $R > r^3$, we can expect the space \mathcal{P}_{SupCP} may cover the best estimation $\text{vec}(\hat{\mathcal{Y}}_{STD})$.

See the following figures for numerical results.

References

Figure 1: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (1, 1, 1)$ with d = 10.

Figure 2: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider r = (3, 3, 3) with d = 10.

Figure 3: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (7,7,7)$ with d = 10.

Figure 4: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (9, 9, 9)$ with d = 10.