Introducción a la los robótica e instrumentación

Instrumentación Básica y Robótica ENCiT 2024-1 Miguel Ángel Robles Roldán miguel.robles@atmosfera.unam.mx

Conceptos Básicos

Instrumentación

Investigar y discutir

Robótica

Investigar y discutir

Robótica Aérea

Investigar y discutir

Robótica submarina

Investigar y discutir

Herramientas de Hardware y Software

Hardware de procesamiento y control

Single Board Computer (SBC)

Sistemas basados principalmente en microprocesadores, incluyen periféricos de red y video. Ejemplo: Raspberry Pi 4. Consumo de energía y costo Medio

Tarjeta de desarrollo

Sistemas basados en microcontroladores, incluyen periféricos para adquisición de señales y procesamiento. Arduino, Rpi Zero, Esp32. Consumo de energía muy bajo. Costo bajo

Microprocesador

Circuito integrado que se compone básicamente de las unidades aritmética, lógica y control que conforman una CPU (Central Process Unit). Ejemplo: Intel Core I3

Microcontrolador

Circuito integrado que contiene al menos un CPU, memoria y diversos periféricos. Ejemplo: PIC, ATmega

Sistemas Basados en ESP32

(microcontroladores y tarjetas de desarrollo)

ESP32 Características

ESP32 S2 mini

- Operating Voltage 3.3V
- Size 34.3*25.4mm
- Weight 2.4g
- 240MHz crystal oscillator
- based ESP32-S2FN4R2 WIFI IC
- Type-C USB
- 4MB Flash
- 2MB PSRAM
- 27x IO
- ADC, DAC, I2C, SPI, UART, USB OTG
- Compatible with MicroPython, Arduino, CircuitPython and ESP-IDF

Python

Características

Lenguaje interpretado, fácil, versátil (muchas aplicaciones), eficiente en general (desarrollo rápido), popular

Investigar

- Breve historia: autor, año de creación, versiones
- Aplicaciones
- Top Ten lenguajes de programación

Motores en robótica

Motor DC

Motorreductor

Motor

Sistema capaz de transformar algún tipo de energía en energía mecánica

Actividad: Investigar los tipos de motores mencionados

Motor a pasos

Servomotor

Sensores para instrumentación

Analógicos

Sensor cuya salida es de tipo analógica. Son simples económicos y altamente compatibles con los sistemas de recolección de datos. Requieren etapas o componentes extra para lectura adecuada de la señal.

Todo aquello que tiene una propiedad sensible a una condición del medio

Digitales

Sensor cuya salida es de tipo digital. Son más complejos que los analógicos, pero ya incluyen las etapas de acondicionamiento, amplificación y conversión de la señal. Requieren conexión mediante algún protocolo serie de datos.

Actividad: Buscar diferentes sensores y clasificarlos

Puente H

BLOCK DIAGRAM

Características

- Sirve como interfase entre el microcontrolador y el motor
- Provee suficiente potencia para alimentar al motor
- Permite el cambio de sentido de giro del motor
- Permite el control de velocidad

Actividad

Investigar los modelos disponibles, revisar las características principales y analizar si se pueden usar en diferentes casos

Sistema de energía

Baterías y reguladores de tensión

Baterías

- Conjunto de celdas galvánicas que generan energía eléctrica a partir de reacciones químicas.
- El nivel de tensión disminuye con el uso.

Clasificación

- Recargables
- No recargables

Actividad: Mencionar/investigar diferentes tipos de baterías (componentes activos)

Baterías Recargables

Tipo	Voltaje ^a	Densidad de energía ^b			Potencia ^c	Eficiencia ^d	E/\$e	Descargaf	Ciclos ^g	Vida media ^h
	(V)	(MJ/kg)	(Wh/kg)	(Wh/L)	(W/kg)	(%)	(Wh/\$)	(%/mes)	(#)	(años)
Plomo y ácido	2.1	0.11-0.14	30-40	60-75	180	70-92 %	5-8	3-4 %	500-800	5-8 (batería de coche), 20 (estacionaria)
VRLA	2.105									
Alcalina	1.5	0.31	85	250	50	99.9 %	7.7	<0.3	100-1000	<5
Ni-Hierro	1.2	0.18	50		100	65 %	5-7.3 ⁷	20-40 %		50+
Ni-Cadmio	1.2	0.14-0.22	40-60	50-150	150	70-90 %		20 %	1500	
Ni-H ₂	1.5		75						20 000	15+
NiMH	1.2	0.11-0.29	30-80	140- 300	250-1000	66 %	1.37	20 %	1000	
Ni-zinc	1.7	0.22	60	170	900		2-3.3		100-500	
ion Li	3.6	0.58	160	270	1800	99.9 %	2.8-5 ⁸	5-10 %	1200	2-3
polímeros Li	3.7	0.47-0.72	130-200	300	3000+	99.8 %	2.8-5.0		500~1000	2-3
LiFePO ₄	3.25		80-120	170 ⁹	1400		0.7-3.0		2000+10	
Li azufre ¹¹	2.0	0.94- 1.44 ¹²	400 ¹³	350					~100	
Li titanato	2.3		90		4000+	87-95 % ^r	0.5- 1.0 ¹⁴		9000+	20+
Li película delgada	?			350	959	?	? ^{p15}		40000	
ZnBr			75-85							
V redox	1.15- 1.55		25-35 ¹⁶			80 %17		20 %17	14 000 ¹⁸	10(estacionario) ¹⁷
NaS			150			89-92 %				
Sal fundida			70- 110 ¹⁹		150-220		4.54 ²⁰		3000+	8+
Plata-zinc (Ag- Zn)	1.86		130	240						

*Fuente: Wikipedia

Reguladores de Tensión (Voltaje)

• Dispositivo que mantiene el nivel de tensión constante

Lineales

- Trabajan en la zona lineal
- Funcionamiento simple (menos componentes externos)
- Poco ruido

Conmutados

- Trabajan en las zonas on/off
- Permite elevar el nivel > entrada
- Más eficientes

Actividad: Buscar reguladores comunes y clasificar

Tarea

• Realizar resumen, enfocar sobre todo a conceptos investigados

