Clase 11- hoare

martes, 20 de mayo de 2025

19.02

 $\pi(S, \sigma)$ denota la computación de un programa S a partir de un estado inicial σ .

Secuencia de pasos de s partir de σ

 $val(\pi(S, \sigma)) = \sigma'$ denota el estado final de $\pi(S, \sigma)$.

En particular, $val(\pi(S, \sigma)) = \bot$ denota que $\pi(S, \sigma)$ no termina. Esto esta para que todas las funciones estén definidas.

Un programa es correcto parcialmente si para todo sigma inicial a partir de p y termina y da q o si no termina.

Correto totalmente si terina y queda en q

- Un programa S es <u>correcto parcialmente</u> con respecto a una especificación (p, q) sii: Para todo estado σ : $[\sigma |= p \land val(\pi(S, \sigma)) = \sigma' \neq \bot] \rightarrow \sigma' |= q$ es decir, a partir de un estado $\sigma |= p$, si S termina (o no diverge) lo hace en un estado $\sigma' |= q$.
- Un programa S es <u>correcto totalmente</u> con respecto a una especificación (p, q) sii:

 Para todo estado σ : $\sigma \models p \rightarrow [val(\pi(S, \sigma)) = \sigma' \neq \bot \land \sigma' \models q]$ es decir, a partir de un estado $\sigma \models p$, S termina (o no diverge) lo hace en un estado $\sigma' \models q$.
- {p} S {q} denota la correctitud parcial y ⟨p⟩ S ⟨q⟩ denota la correctitud total