Analiza 2a

21. oktober 2024

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

1.1.1 Uvodni pojmi

 \mathbb{R}^n je vektorski prostor nad \mathbb{R} . Če je $x, y \in \mathbb{R}^n$, potem $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$. Naj bo $\alpha \in \mathbb{R}$. Operaciji x + y in αx sta definirani po komponentah.

Definicija 1.1. Standardna baza prostora \mathbb{R}^n je množica $\{e_j;\ j=1,\ldots,n\}$, kjer $e_j=(0,\ldots,0,1_j,0,\ldots,0)$.

Opomba.V prostorah $\mathbb{R},~\mathbb{R}^2,~\mathbb{R}^3$ ponavadi koordinate točk označimo zx,y,z.

Definicija 1.2. Standardna baza prostora \mathbb{R}^3 je množica $\{\vec{i}, \vec{j}, \vec{k}\}$.

Definicija 1.3. Standardni skalarni produkt vektrojev $x, y \in \mathbb{R}^n$ je $x \cdot y = \sum_{j=1}^n x_j y_j$.

Norma vektorja $x \in \mathbb{R}^n$ je $||x||_2 = \sqrt{x \cdot x} = \sqrt{x_1^2 + \ldots + x_n^2}$.

Razdalja med vektorjama $x, y \in \mathbb{R}^n$ je $d_2(x, y) = ||x - y||_2 = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$.

Opomba. Standardno normo $||\cdot||$ bomo pisali kot $|\cdot|$.

Definicija 1.4. Odprta krogla s središčem $v \ a \in \mathbb{R}^n$ in polmerom r > 0 je množica $K(a,r) = \{x \in \mathbb{R}^n; \ ||x-a|| < r\}$. Zaprta krogla s središčem $v \ a \in \mathbb{R}^n$ in polmerom r > 0 je množica $K(a,r) = \{x \in \mathbb{R}^n; \ ||x-a|| \le r\}$. Sfera je množica $S(a,r) = \{x \in \mathbb{R}^n; \ ||x-a|| = r\}$

Metrični prostor (\mathbb{R}^n, d_2) porodi topologijo na \mathbb{R}^n . Oznaki: D^{odp} je odprta množica, Z je zaprta množica.

Opomba. Metrična prostora (\mathbb{R}^n, d_2) in $(\mathbb{R}^n, d_{\infty})$ imata isto topologijo.

Izrek 1.1. Naj bo $K \subset \mathbb{R}^n$, potem

K je kompaktna $\Leftrightarrow K$ je zaprta in omejena.

Definicija 1.5. Naj bo $a, b \in \mathbb{R}^n$, $a = (a_1, \dots, a_n)$, $b = (b_1, \dots, b_n)$. Definiramo:

$$a \le b \Leftrightarrow \forall j = 1, \dots, n \cdot a_j \le b_j.$$

 $a < b \Leftrightarrow \forall j = 1, \dots, n \cdot a_j < b_j.$

Definicija 1.6. Naj bo $a, b \in \mathbb{R}^n$, a < b. Odprti kvader (a, b) je množica $(a, b) = \{x \in \mathbb{R}^n; a < x < b\}$. Naj bo $a, b \in \mathbb{R}^n$, $a \le b$. Zaprti kvader [a, b] je množica $[a, b] = \{x \in \mathbb{R}^n; a \le x \le b\}$.

Opomba. Dolžine stranic kvadra [a,b] je b_j-a_j . Volumen kvadra [a,b] je $\Pi_{j=1}^n(b_j-a_j)$.

Če so vse strani kvadra enaki, potem kvader je kocka.

1.1.2 Zaporedja v \mathbb{R}^n

Definicija 1.7. Zaporedje $v \mathbb{R}^n$ je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišimo $a_m, a_m = (a_1^m, \dots, a_n^m)$.

Opomba. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.2. Naj bo $(a_m)_m$ zaporedje $v \mathbb{R}^n$, $a_m = (a_1^m, \dots, a_n^m)$. Velja:

Zaporedje $(a_m)_m$ konvergia \Leftrightarrow konvergira zaporedja $(a_1^m)_m, \ldots, (a_n^m)_m$.

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

1.2.1 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}

Opomba. Če je m=1, potem preslikave rečemo funkcija.

Definicija 1.8. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. Preslikava f je zvezna v a, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . d(x, a) \Rightarrow d(f(x), f(a)).$$

Definicija 1.9. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je zvezna na D, če je zvezna v vsaki točki $a\in D$.

Definicija 1.10. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je enakomerno zvezna na D, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x, x' \in D . d(x, x') < \delta \Rightarrow d(f(x), f(x')) < \epsilon.$$

Opomba. Velja karakterizacija zveznosti v točki z zaporedji.

Opomba. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Definicija 1.11. Preslikava $f: D \to X'$ je C-lipschitzova, če

$$\forall x, x' \in D \cdot d'(f(x), f(x')) \le Cd(x, x').$$

Trditev 1.3. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\Rightarrow f$ je enakomerno zvezna $\Rightarrow f$ je zvezna.

Trditev 1.4. Naj bosta $f, g: D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji v $a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so v a zvezni tudi funkcije:

$$f + g$$
, $f - g$, λf , fg .

Dokaz. Z zaporedji kot pri analizi 1.

Zgled. Nekaj primerov zveznih preslikav.

- Preslikava $\Pi_j(x_1,\ldots,x_n)=x_j$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vsi polinomi v n-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.12. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.5. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \Pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \dots, a_n)$ in $f : D \to \mathbb{R}$ zvezna v a. Tedaj za vsak $j = 1, \dots, n$ funkcija $\varphi_j : D_j \to \mathbb{R}$, $\varphi_j(t) = f(a_1, \dots, a_{j-1}, t, a_{j+1}, \dots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je f zvezna na \mathbb{R}^2 ?

Zgled. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je zvezna na vsaki premici? Ali je f zvezna na \mathbb{R}^2 ?

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja.

1.2.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem $F(x) \in \mathbb{R}^m$, $F(x) = y = (y_1, \dots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.6. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v $a \Leftrightarrow f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.

Opomba. Linearne preslikave so zvezne, saj so vse koordinatne funkcije linearne (polinomi 1. stopnje).

Zqled (Omejenost linearnih preslikav). Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava, potem

$$\exists M \in \mathbb{R} . M \ge 0 . \forall x \in \mathbb{R}^n . x \ne 0 . \frac{|\mathcal{A}x|}{|x|} \le M.$$

Lahko zapišemo sup $\frac{|\mathcal{A}x|}{|x|} = \sup_{|x|=1} |\mathcal{A}x| = ||A||$. Dobimo normo na matrikah. Trdimo: Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Tedaj je \mathcal{A} zvezna na \mathbb{R}^n . Zveznost linearnih preslikav je ekvivalentna zveznosti v točki 0. Vse skupaj je ekvivalentno omejenosti linearnih preslikav.

Dokaz. Definicija zveznosti in omejenosti.

Definicija 1.13. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Preslikavo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $x \mapsto \mathcal{A}x + b$, $b \in \mathbb{R}^m$ imenujemo afina preslikava.

Parcialni odvodi in diferenciabilnost 1.3

1.3.1 Parcialni odvod

Definicija 1.14. Naj bo $f:D\subset\mathbb{R}^n\to\mathbb{R}$ funkcija. Naj bo $a=(a_1,\ldots,a_n)\in D$ notranja točka. Funkcija f je parcialno odvedljivapo spremenljivki \boldsymbol{x}_i v točki a, če obstaja limita

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{j-1},a_j+h,a_{j+1},\ldots,a_n)-f(a_1,\ldots,a_n)}{h},$$

oz. če je funkcija

$$x_i \mapsto f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n)$$

odvedliva v točki a_i .

Če je ta limita obstaja, je to parcialni odvod funkcije f po spremenljivki x_j v točki a. Oznaki: $\frac{\partial f}{\partial x_j}(a)$, $f_{x_j}(a)$

Opomba. Vse elementarne funkcije so parcialno odvedljive po vseh spremenljivkah tam, kjer so definirane.

Zgled. Naj bo
$$f(x,y,z) = e^{x+2y} + \cos(xz^2)$$
. Potem $f_x(x,y,z) = \frac{\partial f}{\partial x}(x,y,z) = e^{x+2y} - z^2\sin(xz^2)$.

1.3.2 Diferenciabilnost

Definicija 1.15. Naj bo $f:D\subset\mathbb{R}^n\to\mathbb{R}$ funkcija. Naj bo $a=(a_1,\ldots,a_n)\in D$ notranja točka. Funkcija f je diferenciabilna v točki a, če obstaja tak linearen funkcional $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, da velja:

$$f(a+h) = f(a) + \mathcal{L}(h) + o(h),$$

 $kjer \lim_{h\to 0} \frac{|o(h)|}{|h|} = 0.$

Opomba. Če je tak \mathcal{L} obstaja, je enolično določen.

Dokaz. Pokažemo, da iz $\mathcal{L}(h) = (\mathcal{L}_1 - \mathcal{L}_2)(h) = (o_2 - o_1)(h) = o(h)$ sledi, da je L = 0. Zato uporabimo vektor $v = tv_0$, kjer $|v_0| = 1$, |v| = t na linearnem funkcionalu \mathcal{L} .

Definicija 1.16. Če je f diferenciabilna v a je \mathcal{L} natanko določen in ga imenujemo diferencial funkcije f v točki a. Oznaka: $\mathcal{L} = df_a$. Linearen funkcional \mathcal{L} imenujemo tudi odvod funkcije f v točki a. Oznaka: (Df)(a).

Opomba. Recimo, da je funkcija f diferenciabilna v točki a. Preslikava $h \mapsto f(a) + (df_a)(h)$ je najboljša afina aproksimacija funkcije $h \to f(a+h)$.

Trditev 1.7. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ diferenciabilna v notranji točki $a \in D$. Tedaj je f v a parcialno odvedljiva po vseh spremenljivkah. Poleg tega je zvezna v a. Pri tem za $h = (h_1, \ldots, h_n)$ velja:

$$(df_a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a) \cdot h_n = f_{x_1}(a) \cdot h_1 + \ldots + f_{x_n}(a) \cdot h_n$$

Opomba. Naj bo $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ linearen funkcional, $x \in \mathbb{R}^n$, potem $\mathcal{L}(x) = l_1 x_1 + \ldots + l_n x_n = \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$,

kjer $\begin{bmatrix} l_1 & \dots & l_n \end{bmatrix}$ matrika linearnega funkcionala glede na standardne baze.

Dokaz. Zveznost pokažemo z limito. Za parcialno odvedljivost poglejmo kaj se dogaja za $h=(h_1,0,\ldots,0)$.

Opomba. Trditev pove, da je
$$(df_a)(h) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_n}(a) \end{bmatrix} \cdot \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)) \cdot (h_1, \dots, h_n).$$

Zapis: $(\vec{\nabla}f)(a) = (\operatorname{grad} f)(a) = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$

Vektor $(\operatorname{grad} f)(a)$ imenujemo gradient funkcije f v točki a. Operator $\vec{\nabla} = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ je operator Nabla.

Zgled. Naj bo
$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$$
. Ali je f diferenciabilna?

 $\textit{Zgled.} \ \text{Naj bo} \ f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}. \ \text{Ali je} \ f \ \text{parcialno odvedljiva? Ali je} \ f \ \text{diferenciabilna?}$

Opomba. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja

Izrek 1.8. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija in naj bo $a \in D$ notranja točka. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah v okolici točke a in so parcialni odvodi zvezni v a. Tedaj je f diferenciabilna v a.

Dokaz. Za n = 2. Definicija diferenciabilnosti + 2-krat Lagrangeev izrek.

1.3.3 Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na $D: f_{x_1}, \ldots, f_{x_n}$. To so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekatareih spremenljivkah.

Trditev 1.9. Naj bo funkcija f definirana v okolici $a \in \mathbb{R}^n$. Naj bosta $i, j \in \{1, 2, ..., n\}$. Denimo, da na tej okolici obstajata $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_i}$ in tudi druga odvoda $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$. Če sta $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})$, $\frac{\partial}{\partial x_i}(\frac{\partial f}{\partial x_j})$ zvezna v a, potem sta enaka v točki a:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a).$$

Dokaz. Dovolj za n = 2.

Definiramo J = f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b) in $\varphi(x) = f(x,b+k) - f(x,b)$, $\psi(y) = f(a+h,y) - f(a,y)$. Zapištemo J s pomočjo funkcij φ , ψ ter porabimo 2-krat Lagrangeev izrek in upoštevamo zveznost.