Gleason (1922 *Ecology* 3: 158-162) reported the following data on species number in relation to quadrat area in aspen woodlands in Michigan.

(1) Write an H_A/H_o pair to test whether there is a statistically significant relation between number of species Nsp and quadrat area A

 H_o : $var(\beta_A \cdot A) = 0$

 H_A : $var(\beta_A \cdot A) \neq 0$

or

 $H_o: \beta_A = 0$

 H_{a} : $\beta_{a} \neq 0$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 4.375 2 5.817 3 6.900 4 7.600 5 8.208 6 8.950 8 9.667 10 10.333 12 11.250 15 12.250 16 12.000 20 12.917 24 13.500 30 15.215 40 16.167 60 19.750 80 20.000 120 23.500 240 27.000	
obsno	area(sq m) Nsp	

The species area curve estimated from this data is:

$$Nsp = e^{1.59065} A^{0.327}$$

(2) Compute the number of species expected in a 80 m² quadrat

20.56

(3) The expected number of species in 240 m² quadrat is 29.45 species. Write a data equation for the number of species in a 240 m² quadrat

(4) Complete an ANOVA table for the following regression model.

total <u>9</u> <u>100</u>