LIFI: La communication sans fil par la lumière visible

ABIDI AYMEN

Sommaire:

- Problématique
- Historique et applications possibles
- Mise en évidence de la méthode de transmission
- Etude de système de communication :
 - 1: Transmission
 - 2: Réception
- Simulation de propagation
- Simulation de taux d'erreur
- Conclusion

Problématique

Concevoir un prototype pour étudier l'utilité dans le monde réel de l'utilisation de la lumière dans la communication numérique.

Historique

- 1867 : Première utilisation du code Morse
- 1880 : Alexander Graham Bell présente le « Photophone »

(a) Émetteur

(b) Récepteur

- 1962 : Apparition des premières diodes LED
- 1976 : Première utilisation des diodes LED dans les fibres optique pour la transmission des informations
- 2011 : invention du premier système li Fi (Fidélité Lumineuse) capable d'une communication à une haute vitesse

Applications Possibles:

Avions connectées

Voitures Connectées

Hôpitaux connectés

Expérience de mise en évidence

Résultat de l'expérience

Observations

- Le signal reçu par la photodiode suit le signal envoyé par le GBF par le biais du laser avec une certaine atténuation.
- Possibilité de l'envoi des informations en formes des bits 0 et 1 par modulation d'amplitude du signal envoyée au laser :

C 'est la modulation OOK: ON-OFF-KEYING

Matériel utilisé pour le prototype

- Ordinateur
- Module de l'émission :
 - Arduino UNO
 - 2 diodes LED
 - 2 diodes Laser
 - \circ 2 résistances (R1 =150 Ω)
 - Des câbles
- Module de la réception :
 - Arduino Méga
 - 2 photodiodes (BPW21R)
 - 2 résistances (R1 = 100Ω)
 - Des câbles

Matériel utilisé pour le prototype La diode LED

Equation de la diode idéale

$$I_d = I_f \left(e^{\frac{q \cdot V_d}{k \cdot T}} - 1 \right)$$
 où : - I_f est le courant de fuite - q la charge de l'électron = 1,6E-19C - k constante de Boltzman = 1,38E-23 J/K - T température absolue (en degré Kelvin)

Pour éviter d'endommager la diode on limite l'intensité de couranta 20mA La Arduino délivre une tension : 5V La tension seuil pour une diode Bleu est 2,7 V

D'après la loi des mailles :
$$U_g = U_D + U_R = R *I_D + U_D$$

Ainsi
$$R = \frac{U_g - U_D}{I}$$

 $\bigcup_{\mathbf{J}} \mathbf{U}_{\mathbf{J}} \mathbf{U}_{\mathbf{D}}$

Donc une résistance $R = 150 \Omega$ est bien appropriée pour notre circuit

Circuit de L'Émetteur GND GND R1 R1 **Diode LED** Ou **Diode Laser** Pin 8 Pin 12 **Emission de l'information Synchronisation 12**

Circuit de L'Émetteur

Diodes Laser

Diodes LED

Algorithme de l'émission :

Algorithme de définition de la valeur seuil :

Partie Arduino

Algorithme de la réception:

Contrôle de donnée

Pour s'assurer d'extraire la bonne information et minimiser l'erreur on ajoute des bites de contrôle :

Début de message : On ajout la séquence : 0010

ser.write(bytes("00010\n",encoding="ascii"))

Fin de message : On ajout la séquence : 0011

ser.write(bytes("00011\n",encoding="ascii"))

Expérience en utilisant les Diodes Laser:

Expérience en utilisant les Diodes LED:

Résultats de Transmission de Texte

Fenêtre de l'émission

```
-Commencement-
     -----DEBUT DE RECEPTION DE DONNEE-
********** No.O fonctionne
****** No.1 qui
************* No.2 123456789
****** No.3 blond
*************# No.4 2018-2019
****** No.5 Happy
**********# No.6 juge
****** No.7 au
****** **** * No.8 Portez
****** No.9 juge
************# No.10 2018-2019
****** vieux
***** * * * * * * * # No.12 fonctionne
***********# No.13 ce
***** **** * No.14 fonctionne
************# No.15 :-)
****** No.16 qui
****** No.17 fume
****** No.18 juge
****** HO.19 HELLO
************# No.20 2018-2019
************# No.21 123456789
***********# No.22 ce
****** No.23 au
************ No.24 123456789
****** No.25 juge
****** whisky
```

Résultats de Transmission d'une image

```
1%|
        | 0.8420658682634731/100 [00:02<04:39, 2.82s/it]
1%|1
         | 1.122754491017964/100 [00:03<04:42, 2.85s/it]
1%|1
         1.4034431137724552/100 [00:04<04:38, 2.83s/it]
2%|1
         | 1.6841317365269464/100 [00:04<04:41, 2.86s/it]
2%|1
         | 1.9648203592814375/100 [00:05<04:42, 2.89s/it]
2%12
         1 2.2455089820359286/100 [00:06<04:43, 2.90s/it]
3%|2
         | 2.5261976047904198/100 [00:07<04:44, 2.92s/it]
3%[2
         [ 2.806886227544911/100 [00:08<04:45, 2.94s/it]
3%|3
         [ 3.087574850299402/100 [00:08<04:46, 2.95s/it]
3%[3
         [ 3.368263473053893/100 [00:09<04:45, 2.96s/it]
4%13
         13.6489520958083843/100[00:10<04:45, 2.96s/it]
         | 3.9296407185628754/100 [00:11<04:40, 2.92s/it]
4%[3
4% | 4
         4.210329341317366/100 [00:12<04:43, 2.96s/it]
4%|4
         4.491017964071857/100 [00:13<04:42, 2.96s/it]
5% | 4
         [ 4.771706586826348/100 [00:13<04:38, 2.92s/it]
5%15
         15.0523952095808395/100[00:14<04:38, 2.94s/it]
         I 5.333083832335331/100 [00:15<04:33, 2.89s/it]
5%|5
6%15
         | 5.613772455089822/100 [00:16<04:34, 2.91s/it]
6%|5
         | 5.894461077844313/100 [00:17<04:35, 2.92s/it]
6% | 6
         [ 6.175149700598804/100 [00:18<04:35, 2.93s/it]
6% | 6
         | 6.455838323353295/100 [00:18<04:30, 2.90s/it]
7% [6
         [ 6.736526946107786/100 [00:19<04:32, 2.92s/it]
7%|7
         | 7.0172155688622775/100 [00:20<04:27, 2.88s/it]
7%|7
         [7.297904191616769/100 [00:21<04:29, 2.91s/it]
8%|7
         [7.57859281437126/100 [00:22<04:25, 2.87s/it]
8%|7
         [7.859281437125751/100 [00:22<04:27, 2.90s/it]
8% [8
         [ 8.139970059880241/100 [00:23<04:29, 2.93s/it]
8% | 8
         | 8.420658682634732/100 [00:24<04:30, 2.95s/it]
9%[8
         | 8.701347305389223/100 [00:25<04:30, 2.96s/it]</p>
9%[8
         | 8.982035928143715/100 [00:26<04:29, 2.96s/it]
9%[9
         | 9.262724550898206/100 [00:27<04:29, 2.96s/it]
10% | 9
          | 9.543413173652697/100 [00:27<04:23, 2.91s/it]
10% | 9
          | 9.824101796407188/100 [00:28<04:20, 2.89s/it]
10%|#
          10.104790419161679/100 [00:29<04:22, 2.92s/it]
10%|#
          | 10.38547904191617/100 [00:30<04:23, 2.94s/it]
11%|#
          10.666167664670661/100 [00:31<04:23, 2.95s/it]
11%|#
          I 10.946856287425152/100 [00:32<04:23, 2.96s/it]</p>
11% | #1
          | 11.227544910179644/100 [00:32<04:17, 2.91s/it]
```

```
1%
        | 0.8403361344537815/100 [00:02<04:54, 2.97s/it]
1%|1
         | 1.1204481792717087/100 [00:03<04:52, 2.96s/it]
1%|1
         1.4005602240896358/100 [00:04<04:46, 2.90s/it]
                                                           Done
2% | 1
         1.6806722689075628/100 [00:04<04:46, 2.92s/it]
                                                           Done
2% | 1
         | 1.96078431372549/100 [00:05<04:46, 2.93s/it]
                                                          Done
2% | 2
         2.240896358543417/100 [00:06<04:46, 2.93s/it]
                                                          Done
3%12
         | 2.521008403361344/100 [00:07<04:47, 2.95s/it]
                                                          Done
3%12
         | 2.801120448179271/100 [00:08<04:47, 2.95s/it]
                                                          Done
3%|3
         3.081232492997198/100 [00:09<04:47, 2.97s/it]
3%13
         | 3.361344537815125/100 [00:09<04:46, 2.97s/it]
                                                          Done
4%[3
         | 3.6414565826330523/100 [00:10<04:46, 2.97s/it]
                                                           Done
4%[3
         | 3.9215686274509793/100 [00:11<04:41, 2.93s/it]
                                                           Done
4% | 4
         4.201680672268907/100 [00:12<04:44, 2.97s/it]
                                                          Done
4%14
         | 4.481792717086834/100 [00:13<04:43, 2.97s/it]
                                                          Done
5% | 4
         4.761904761904761/100 [00:14<04:39, 2.93s/it]
                                                          Done
5%|5
         | 5.042016806722688/100 [00:14<04:39, 2.94s/it]
                                                          Done
5%|5
         | 5.322128851540615/100 [00:15<04:34, 2.90s/it]
6% | 5
         | 5.602240896358542/100 [00:16<04:35, 2.92s/it]
6% | 5
         [ 5.882352941176469/100 [00:17<04:35, 2.93s/it]
                                                          Done
6% | 6
         [ 6.162464985994396/100 [00:18<04:35, 2.94s/it]
                                                          Done
6% | 6
         | 6.442577030812323/100 [00:18<04:31, 2.90s/it]
                                                          Done
7%16
         | 6.72268907563025/100 [00:19<04:32, 2.93s/it]
                                                         Done
         | 7.0028011204481775/100 [00:20<04:28, 2.89s/it]
7%|7
                                                           Done
7%17
         | 7.2829131652661045/100 [00:21<04:29, 2.91s/it]
                                                           Done
8%|7
         | 7.563025210084032/100 [00:22<04:26, 2.88s/it]
                                                          Done
         | 7.843137254901959/100 [00:22<04:28, 2.91s/it]
8%|7
                                                          Done
8% | 8
         | 8.123249299719886/100 [00:23<04:29, 2.94s/it]
                                                          Done
8% | 8
         | 8.403361344537814/100 [00:24<04:30, 2.96s/it]
                                                          Done
9%18
         | 8.683473389355742/100 [00:25<04:30, 2.96s/it]
                                                          Done
9%|8
         | 8.96358543417367/100 [00:26<04:30, 2.97s/it]
                                                         Done
9%19
         1 9.243697478991598/100 [00:27<04:29, 2.97s/it]
                                                          Done
10% | 9
         | 9.523809523809526/100 [00:27<04:24, 2.92s/it]
                                                           Done
          | 9.803921568627453/100 [00:28<04:20, 2.89s/it]
10% | 9
                                                           Done
10%|#
          | 10.084033613445381/100 [00:29<04:23, 2.93s/it]
                                                           Done
10%|#
          | 10.36414565826331/100 [00:30<04:24, 2.95s/it]
                                                           Done
11%|#
          | 10.644257703081237/100 [00:31<04:24, 2.96s/it]
                                                            Done
11%|#
          | 10.924369747899165/100 [00:32<04:23, 2.96s/it]
                                                            Done
11%|#1
          | 11.204481792717093/100 [00:32<04:18, 2.91s/it] | Done
          | 11.484593837535021/100 [00:33<04:19, 2.93s/it]
11%|#1
```

Résultats de Transmission d'une image

Fenêtre de l'émission

Fenêtre de la réception

Limitations et Problèmes

Pour les deux circuit :

- Une limitation de débit : pour un débit plus que 1Kbit/s , l'erreur devient très grand et on peut plus récupérer un message correct
- C'est un problème lié au performance des diodes (les diodes utilisé sont de faible qualité) et au circuit de photodiode (il faut ajouter un circuit de filtrage)

Pour le circuit avec le laser :

- ➤ Placer le faisceau de laser sur la surface de photodiode (1 cm²) est difficile et instable (chaque déviation d'un des deux modules peut provoquer la rupture de la transmission):
- ✓ On peut changer la photodiode par un panneau solaire

Pour le circuit avec la diode LED :

- Une limitation de distance : pour une distance plus grande que 20 cm en présence de lumière ambiante et plus grande que 40 cm sans lumière ambiante , on ne peut plus récupérer le signal original
- ✓ On peut ajouter un circuit d'amplification de signal reçu par la photodiode (
 On risque d'amplifier aussi le bruit présent dans le signal)
- ✓ On peut utiliser une matrice de diodes LED et des photodiodes qui peut améliorer l'intensité émit et plus qu'un signal récupérer pour minimiser l'effet de bruit

Canal De transmission

$$Y(t) = R * X(t) + N(t)$$

R : Sensitivité spectrale de la photodiode

Liaison optique : visibilité directe LOS (Line of Sight) entre les extrémités des points de communication

En utilisant la loi de cosinus de Lambert :

La distribution angulaire du rayonnement Lumineux :

$$R_0(\phi) = \begin{cases} \frac{(m_l+1)}{2\pi} cos^{m_l}(\phi) & \phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ 0 & \phi \ge \frac{\pi}{2} \end{cases} \text{ avec } \begin{cases} m_l = \frac{-\ln 2}{\ln\left(cos\phi_{\frac{1}{2}}\right)} \\ \Phi_1 : \text{Angle de} \\ \frac{\pi}{2} \text{ demi-puissance} \end{cases}$$

$$A_{eff}(\psi) = \begin{cases} A_r cos \psi & 0 \le \psi \le \frac{\pi}{2} \\ 0 & \psi > \frac{\pi}{2} \end{cases}$$

avec A_r la surface de la photodiode

Ainsi on obtient la puissance reçu :

$$P_r = A_r \frac{(m_l + 1)}{2\pi d^2} cos^{m_l}(\phi) cos(\psi) P_t$$

Avec P_t la Puissance transmit

On considère:

- Une chambre vide de dimensions x=3,5m; y=3,5m; z=2,5m
- Une diode LED: Position fixe au centre du plafond;
 angle de demi-puissance variable (10, 30, 75)
 Puissance 1 Watt
- Une photodiode : sensitivité spectrale = 1 (λ =560 nm pour la photodiode réelle «BPW21R») surface : 1 cm²

distance au sol: 1m

On fait varier la angle de demi-puissance de la diode entre les valeur : 10 , 30 , 75

Puissance reçu sur la surface de la chambre

angle de demi-puissance = 75°

Puissance reçu sur la surface de la chambre

angle de demi-puissance = 75°

Puissance reçu sur la surface de la chambre

angle de demi-puissance = 75°

- La répartition de la puissance reçue dans les différents points dépend strictement de l'angle de demi-puissance de la LED.
- Pour des raisons expérimentales ,on préférera utiliser une LED avec un angle à demi-puissance faible, car la puissance est très concentrée et permet de n'utiliser que peu de LED dans un espace réduit.
- ❖ Mais comme on peut le voir, l'énergie reçue est en général très basse.

✓ Ce problème pourrait être résolu en utilisant une matrice de diodes LED .

Simulation de la transmission avec la modulation On-Off-Keying

On peut évaluer le performance du système a l'aide de ces deux paramètres :

- On définit le rapport signal a bruit (RSB) (SNR en anglais) comme étant le rapport entre la puissance du terme utile du signal d'entrée et la puissance du bruit
- On définit le taux d'erreur binaire (BER en anglais) comme le rapport entre le nombre d'erreurs et le nombre de bits totale

Simulation de la transmission avec la modulation On-Off-Keying

On peut obtenir la courbe de BER=f(SNR) par :

Une simulation:

- On génère un message aléatoire de 0 et 1
- On lui ajout de bruit gaussien selon le SNR choisit
- On le multiplie avec l'intensité moyenne d'une diode LED et la sensitivité de la photodiode pour récupérer le signal reçu
- On compare le signal avec la valeur seuil et on récupère un message binaire
- On évalue le BER

Une courbe théorique:

En utilisant la densité de probabilité de la loi gaussienne (ou loi normale)

Simulation de la transmission avec la modulation On-Off-Keying (la courbe théorique)

$$P_e = p(0) \int_{i_{th}}^{+\infty} p(i/0) di + p(1) \int_{0}^{i_{th}} p(i/1) di$$

Avec
$$p(i/0) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{-i^2}{2\sigma^2}\right)$$
 $p(i/0) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{-(i-l_p)^2}{2\sigma^2}\right)$ $I_p = 2I_{th}$

$$\begin{split} P_{e} &= \frac{1}{2} \int_{i_{th}}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^{2}}} exp\left(\frac{-i^{2}}{2\sigma^{2}}\right) di + \frac{1}{2} \int_{0}^{i_{th}} \frac{1}{\sqrt{2\pi\sigma^{2}}} exp\left(\frac{-\left(i - I_{p}\right)^{2}}{2\sigma^{2}}\right) di \\ &= \frac{1}{2\sqrt{2\pi\sigma^{2}}} \left(\int_{i_{th}}^{+\infty} exp\left(\frac{-i^{2}}{2\sigma^{2}}\right) di + \int_{0}^{i_{th}} exp\left(\frac{-\left(i - I_{p}\right)^{2}}{2\sigma^{2}}\right) di\right) \\ &= \frac{1}{2\sqrt{2\pi\sigma^{2}}} \left(2 * \int_{i_{th}}^{+\infty} exp\left(\frac{-i^{2}}{2\sigma^{2}}\right) di\right) \end{split}$$

On effectue un changement de variables
$$\begin{cases} \frac{i^2}{\sigma^2} = t^2 \\ i = t\sigma \\ di = \sigma dt \end{cases} \begin{cases} t(i_{th}) = \frac{i_{th}}{\sigma} \\ t(i_{th}) = \infty \end{cases}$$

On obtient
$$P_e = \frac{1}{\sqrt{2\pi}} \left(\int_{\frac{i_{th}}{2}}^{+\infty} exp\left(\frac{-t^2}{2}\right) dt \right)$$

Simulation de la transmission avec la modulation On-Off-Keying

Conclusion

Ce prototype démontre bien la possibilité de transmission des donnée par la lumière. Mais il reste encore des problèmes a résoudre pour qu'il soit plus performant.

