МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ

по временным моделям обнаружения ошибок»

Студент гр. 6304	 Тимофеев А.А.
Преподаватель	 Кирьянчиков В.А

Санкт-Петербург 2020

Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}} = 10$, CKO $s_{\text{равн}} = 20/(2*\text{sqrt}(3)) = 5.8$.
- Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 $y>=0$, с параметром $b=0.1$ и соответственно $m_{9KCH}=s_{9KCH}=1/b=10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

$$W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром c=8.0 и соответственно $m_{pen} = c*sqrt(\pi/2), s_{pen} = c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Равномерный закон распределения (100% входных данных):

Было сгенерировано п = 30 значений

i	X	i	X	i	X
1	0.152	2	1.533	3	2.857
4	3.571	5	3.940	6	4.397
7	4.567	8	5.347	9	5.455
10	5.798	11	7.114	12	7.340
13	7.996	14	9.326	15	9.429
16	9.904	17	12.007	18	12.410
19	13.324	20	14.130	21	14.752
22	15.155	23	16.039	24	16.577
25	16.820	26	17.047	27	17.451
28	17.563	29	18.505	30	19.922

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.259$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 20.26 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.793	2.555	2.355	2.183	2.035	1.906
f-g	1.202	0.472	0.204	0.072	0.000	0.042

Минимум разности при m = 35

Первоначальное количество ошибок B = m - 1 = 34

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.006556$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	31	32	33	34
Xi	38.134	50.845	76.268	152.536

Время до завершения тестирования $t_k = 317.784$ дней Общее время тестирования:

$$t = \sum_{i=1}^n X_i + t_k = 310.428 + 317.784 = 628.212$$
 дней

Равномерный закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1	1.880	2	1.941	3	2.739
4	4.131	5	4.625	6	5.407
7	8.060	8	8.431	9	8.483
10	8.823	11	9.042	12	10.495
13	10.708	14	13.885	15	14.507
16	15.291	17	15.473	18	15.695
19	16.373	20	17.260	21	17.462
22	17.628	23	17.849	24	18.181

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.883$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15.88 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.632	2.372	2.159	1.981	1.830	1.700
f-g	1.143	0.444	0.196	0.077	0.014	0.022

Минимум разности при m = 29

Первоначальное количество ошибок B = m - 1 = 28

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.006921$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25	26	27	28
Xi	36.122	48.163	72.244	144.488

Время до завершения тестирования $t_k = 301.016$ дней Общее время тестирования:

$$t = \sum_{i=1}^n X_i + t_k = 264.369 + 301.016 = 565.385$$
 дней

Равномерный закон распределения (60% входных данных):

Было сгенерировано п = 18 значений

i	X	i	X	i	X
1	0.067	2	1.285	3	1.924
4	2.778	5	4.913	6	6.768
7	7.590	8	8.265	9	8.533
10	11.695	11	11.810	12	12.108
13	13.738	14	14.480	15	14.500
16	17.572	17	17.770	18	19.676

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.59$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12.59 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.808	2.429	2.140	1.913
f-g	0.687	0.119	0.042	0.101

Минимум разности при m = 21

Первоначальное количество ошибок B = m - 1 = 20

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.012197$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	19	20
Xi	40.994	81.988

Время до завершения тестирования $t_k = 122.983$ дней

Общее время тестирования:

$$t = \sum_{i=1}^n X_i + t_k = 175.472 + 122.983 = 298.455$$
 дней

Экспоненциальный закон распределения (100% входных данных):

Было сгенерировано n = 30 значений

i	X	i	X	i	X
1	0.352	2	0.448	3	0.552
4	1.088	5	1.530	6	1.735
7	2.481	8	3.056	9	3.126
10	3.533	11	3.637	12	3.719
13	4.359	14	6.216	15	6.758
16	7.105	17	7.652	18	8.202
19	11.357	20	11.696	21	13.769
22	13.776	23	13.989	24	14.694
25	17.669	26	20.029	27	24.773
28	40.652	29	44.287	30	51.504

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23.759$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 23.76 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32
f	3.995	3.027
g	4.143	3.640
f-g	0.148	0.613

Минимум разности при m = 31

Первоначальное количество ошибок B = m - 1 = 30

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.012053$$

Время до завершения тестирования $t_k=0$ дней

Общее время тестирования: 343.744 дней

$$t = \sum_{i=1}^{n} X_i + t_k = 343.744 + 0 = 343.744$$
 дней

Экспоненциальный закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1	0.146	2	0.476	3	1.005
4	1.220	5	2.835	6	3.028
7	3.853	8	4.447	9	4.742
10	5.208	11	5.394	12	5.660
13	5.685	14	6.965	15	7.395
16	10.374	17	11.827	18	13.659
19	13.962	20	14.035	21	14.849
22	15.829	23	17.556	24	35.264

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.902$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 17.9 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27
f	3.776	2.816	2.354
g	3.381	2.964	2.638
f-g	0.395	0.148	0.284

Минимум разности при m = 26

Первоначальное количество ошибок B = m - 1 = 25

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^n X_i - \sum_{i=1}^n iX_i} = 0.014428$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25
Xi	69.311

Время до завершения тестирования $t_k = 69.311$ дней

Общее время тестирования:

$$t = \sum_{i=1}^{n} X_i + t_k = 205.414 + 69.311 = 274.725$$
 дней

Экспоненциальный закон распределения (60% входных данных):

Было сгенерировано п = 18 значений

i	X	i	X	i	X
1	0.196	2	0.491	3	0.810
4	1.500	5	3.529	6	6.173
7	7.022	8	7.051	9	11.860
10	12.841	11	13.218	12	14.315
13	17.182	14	17.330	15	18.295
16	26.535	17	36.873	18	38.281

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.717$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13.72 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20
f	3.495	2.548
g	3.407	2.865
f-g	0.088	0.317

Минимум разности при т = 19

Первоначальное количество ошибок B=m-1=18

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.014593$$

Время до завершения тестирования $t_k=0$ дней

Общее время тестирования:

$$t = \sum_{i=1}^{n} X_i + t_k = 233.502 \ + 0 = 233.502$$
 дней

Релеевский закон распределения (100% входных данных):

Было сгенерировано п = 30 значений

i	X	i	X	i	X
1	1.008	2	3.397	3	3.672
4	4.911	5	5.025	6	5.419
7	5.696	8	5.985	9	6.309
10	7.074	11	7.481	12	7.558
13	7.785	14	8.026	15	8.136
16	8.556	17	8.595	18	9.221
19	9.326	20	10.680	21	11.032
22	11.631	23	11.861	24	11.897
25	11.957	26	12.092	27	12.563
28	19.876	29	21.277	30	23.245

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.656$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.66 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36	37	38
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609
g	2.645	2.430	2.248	2.091	1.955	1.836	1.730	1.635
f-g	1.350	0.597	0.310	0.164	0.080	0.028	0.005	0.027

Минимум разности при т = 37

Первоначальное количество ошибок B = m - 1 = 36

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.006149$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	31	32	33	34	35	36
Xi	27.104	32.525	40.656	54.208	81.312	162.623

Время до завершения тестирования $t_k = 398.427$ дней

Общее время тестирования:

$$t = \sum_{i=1}^{n} X_i + t_k = 281.291 + 398.427 = 679.718$$
 дней

Релеевский закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1		1		1	
1	1.025	2	2.893	3	3.886
4	4.607	5	4.658	6	5.582
7	6.345	8	6.485	9	7.438
10	7.721	11	7.954	12	8.064
13	8.468	14	9.328	15	9.705
16	11.346	17	12.261	18	12.358
19	12.667	20	13.601	21	14.296
22	15.428	23	16.362	24	21.630

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.907$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15.91 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.639	2.378	2.163	1.985	1.833	1.703
f-g	1.137	0.438	0.191	0.074	0.011	0.025

Минимум разности при m = 29

Первоначальное количество ошибок B = m - 1 = 28

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.008179$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25	26	27	28
Xi	30.566	40.754	61.131	122.263

Время до завершения тестирования $t_k = 254.714$ дней

Общее время тестирования: 478.822 дней

$$t = \sum_{i=1}^{n} X_i + t_k = 224.108 \, + 254.714 = 478.822$$
 дней

Релеевский закон распределения (60% входных данных):

Было сгенерировано п = 18 значений

i	X	i	X	i	X
1	2.347	2	2.861	3	4.904
4	5.653	5	5.694	6	6.215
7	6.474	8	7.187	9	7.247
10	7.800	11	9.351	12	9.708
13	10.818	14	13.069	15	13.097
16	15.169	17	15.568	18	23.174

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.151$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12.15 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22	23
f	3.495	2.548	2.098	1.812	1.607
g	2.628	2.293	2.034	1.828	1.659
f-g	0.867	0.255	0.064	0.016	0.052

Минимум разности при m = 22

Первоначальное количество ошибок B = m - 1 = 21

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.010987$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	19	20	21
Xi	30.339	45.508	91.017

Время до завершения тестирования $t_k = 166.864$ дней

Общее время тестирования: 333.2 дней

$$t = \sum_{i=1}^{n} X_i + t_k = 166.336 + 166.864 = 333.2$$
 дней

Сводные таблицы

Оценка первоначального числа ошибок.

n	Входные	Распределение		
П	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	34	30	36
24	80	28	25	28
18	60	20	18	21

Оценка полного времени проведения тестирования

		Входные	Распределение		
n		данные, %	Равномерное	Экспоненциальное	Релеевское
30		100	628.212	343.744	679.718
24		80	565.385	274.725	478.822
18		60	298.455	233.502	333.2

Экспоненциальное распределение показывает значительно меньшую оценку первоначального количества ошибок и полного времени проведения тестирования, в то время как равномерное и релеевское показывают более высокие оценки. Это связано с тем, что модель Джелинского-Моранды основана на предположении, что время до следующего отказа программы распределено экспоненциально. Равномерное распределение показало немного лучшие результаты, чем релеевское.

Вывод:

В ходе выполнения лабораторной работы была проведена оценка характеристик надежности программ по временным моделям обнаружения ошибок. Было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды для равномерного, экспоненциального и релеевского распределения времён обнаружения отказов.