評卷參考

本文件專為閱卷員而設,其內容不應視為標準答案。考 生以及沒有參與評卷工作的教師在詮釋本文件時應小心 謹慎。

閱卷員需知

1. 為保持評卷的一致性,閱卷員需按照評卷參考作為評分的準則。本評 卷参考不能就各試題羅列所有可能的答案。閱卷員可根據專業判斷,接納 未列於本評卷參考內其他正確和合理的答案。考生很多時候會以有別於評 卷参考的方法作答並得到正確答案。除非該題已訂明須以特定方法解題, 一般來說該正確答案可得答案分。

在評卷參考中,其他作答方式和評卷指引顯示於

内。

- 在評卷参考中,附有單位的正確數值答案可得答案分或'A'分。如果答案 2. 須以 km 表達,則cm 和 m 會被視作錯誤單位。
- 在包含數個連鎖分題的試題中,承接前一部的正確步驟/方法或代入方程 3. 可得方法分或 'M' 分。
- 如考生的答案超出所要求的答題數量,閱卷員須評閱所有答案,惟最低分 4. 的過量答案將在計算總分時被剔除。

卷一甲部

題號	答案	題號	答案
1.	C (66)	26.	D (26)
2.	C (65)	27.	C (65)
3.	A (68)	28.	C (61)
4.	A (69)	29.	D (59)
5.	C (64)	30.	C (39)
6.	B (50)	31.	A (36)
7.	B (62)	32.	A (35)
8.	B (47)	33.	D (60)
9.	D (40)		
10.	D (33)		
11.	B (81)		
12.	A (61)		
13.	A (66)		
14.	D (41)		
15.	B (58)		
16.	D (50)		
17.	A (45)		
18.	D (61)		
19.	C (54)		
20.	A (39)		
21.	B (73)		
22.	D (33)		
23.	A (32)		
24.	B (44)		
25.	C (46)		

註: 括號內數字為答對百分率。

	*******************	答案	分數	說明
1.	(a)	(i) $\frac{140.51 - 102.00}{100 - 0} = \frac{R - 102.00}{60 - 0}$ $R = 38.51 \times \frac{60}{100} + 102$	1M	
		$= 125 \Omega (125.106 \Omega)$	1A 2	·
		(ii) 低於 60 °C。	1A	
	(b)	比熱容 = $\frac{$ 提供的熱 $ \left[c = \frac{E}{m\Delta T} \right] $		
		當停止加熱時因實際的末溫度低於 $60 ^{\circ}$ C,或真實溫度 改變 $\Delta T < 60 ^{\circ}$ C, 或 所提供的熱實際上少於當真正達到 $60 ^{\circ}$ C 時應有的值	1A 1A	
		比熱容的值比應有的為少。	1A 2	
2.	(a)	210 atm × (1.0 × 10 ⁴ cm ³) = 2.0 atm × V $V = 1.05 \times 10^6$ cm ³	1M	接受沒有考慮剩餘體積的答案,即 1.05×10 ⁶ (cm³)
		可供應的空氣體積= $1.05 \times 10^6 - 1.0 \times 10^4$ = 1.04×10^6 (cm ³)	1A 2	
***************************************	(b)	(i) $V_0 = 1.04 \times 10^6 \text{ cm}^3 \div 60$ = 17333 ≈ 17300 (cm ³) (每分鐘)	1M/1A	V ₀ =17500 (cm³) 如沒有考慮剩餘 體積
		(ii) V' : 於該水深/情況的空氣總體積 $ \frac{P_1V_1}{T_1} = \frac{P_2V'}{T_2} $		V'=4.60×10 ⁵ cm ³ 以及 時間=26.3分鐘如沒有考慮剩餘 體積
		$\frac{210 \times (1.0 \times 10^4)}{273 + 24} = \frac{4.5 \times V'}{273 + 20}$ $V' = 4.60 \times 10^5 \text{ cm}^3$	1M	
		可供應的空氣體積= $4.60 \times 10^5 - 1.0 \times 10^4$ = 4.50×10^5 (cm ³) 時間長達:		
		$=\frac{4.50\times10^5}{.17333}$	1M	
	·	= 26.0 (分鐘)	1A 3	

	C. Layer Mencennenn	答案	分數 說明
4.	(a) (b)	方塊作勻減速 (直至 $t=1.5$ s 時為靜止或速度為零); 方塊之後以勻加速滑下斜面 (直至 $t=3.5$ s)。 (i) $a_2 = \left \frac{-1-0}{3.5-1.5} \right $ $= 0.5 \text{ m s}^{-2}$	1A 1A 2 1M 1A 2
		(ii) $a / \text{m s}^{-2}$	
		4 3 2 1	
		0 0.5 1 1.5 2 2.5	3 3.5 t/s
	(c)	—3 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上	1A
		法向反作用力R 摩擦力 f ■量 W/mg	
		正確標示摩擦全部正確	1A 1A 2
	(d)	向上運動: $-mg \sin\theta - f = ma$ -(1)(9.81) $\sin\theta - f = (1)(-2)$ ①	1M
-		向下運動 :- $mg \sin \theta + f = ma'$ -(1)(9.81) $\sin \theta + f = (1)(-0.5)$ ②	1M

1A

3

② - ① : 2f = 1.5f = 0.75 N

(註: θ = 7.32°)

答案	分數	說明
$a \leftarrow \begin{bmatrix} \theta \\ T \end{bmatrix}$	1A	
長繩一端繫着金屬球而另一端穿越量角器的中心/小孔。	1A	
當火車靜止時,保持量角器固定於沿運動方向的同一平 面,而比方說長繩在 90° 標記。	1A	
當火車正以加速度 a 加速時,繩子與豎直成夾角 θ ,量度 角 θ 的值。	1A	;
設 T 為 長 繩 的 張 力 豎 直: T cos θ = mg ① 水 平: T sin θ = ma ② 其中 m 為 金屬球的質量	1M	
$\frac{2}{1}: \tan \theta = \frac{a}{g}$ $a = g \tan \theta$	1A 6	

 6. (a) -溫度梯度高;或 -光線走了足夠長的路程。 或發生「全內反射」。 (b) (i) n₁ sin θ₁ = n₂ sin θ₂ = n₃ sin θ₃ = n₄ sin θ₄ IM 	
(b) (i) $n_1 \sin \theta_1 = n_2 \sin \theta_2 = n_3 \sin \theta_3 = n_4 \sin \theta_4$ 1M	
$\sin \theta_1 = \frac{n_4}{n_1} \sin \theta_4$	
$\theta_1 = \sin^{-1}\left(\frac{1.000221}{1.000261}\right)$	
= 89.5° (89.488°)	
(ii) $\frac{h}{L} = \tan \alpha = \frac{1}{\tan \theta_1}$	
$L = h \tan \theta_1 = 1.5 \tan 89.5^\circ = 167.72$	
	.0 m
= 172 m 1A	
2	
(c) 在相同距離 (168 m)之外因為	
「水源」的幻象是由遙遠物體的光線在相同的固定角 度反射所形成。 1A	
[即與水平的夾角 α=90°- 89.488°= 0.512°]	
或只要光線偏折和全內反射的條件仍然相同,「水 1A	2.50
源」仍在 168 m 外的距離 (滿足相同條件 / 反射角) 1A 2	

	答案	分數	說明
(a)	$\Delta y = \frac{\lambda D}{a}$	1M	
	$=\frac{(650\times10^{-9})\times3.0}{0.325\times10^{-3}}$		
		1A	
	— 0.000 m 实 0 mm	2	
(b)	× 11 10 0 0 0 1111 0 0	1A =	不接受「沒有出現干涉」
	(各個干涉圖樣只短暫出現且迅速變動,視覺上這些圖 樣隨時間平均了)。		
	· ·	1A	
	定汉角回足的怕似例(水)。	2	
(c)	程差 $PS_1 - PS_2 = 10 \text{ mm}$, L_1 正確	1A	
		1A 1A	
		3	
	100 X		10 mm
			10 mm
	90 L_2	$:PS_1-PS_2=$	= 20 mm
	80		
	70		
	60	$:PS_1-PS_2=$	= 10 mm
	50		
	40		
	30		
	10		
	-	70 80	90 100
(d)	(i) $\Delta y = y_2 - y_1 = 31 \text{ mm} - 14 \text{ mm} = 17 \text{ mm} \pm 2 \text{ mm}$	1A 1	
	(ii) 屏幕須遠離雙縫,即 <i>D>> a</i> (即要滿足 <i>D>> y</i> /即考慮 <i>y</i> 接近中央最大)	1A	
	D. A.A. O.A. was also are when I are a large I also had been a	1A	
	(即 <i>D>>> y</i> 未能滿足)		
	13/13 3 / 3/21/12 (-)	1A	
	未能應用小角近似	2	

	emanuse symbolish of all day also m		答案	分數	說明
8.	(a)	(i)	$\rho = \frac{RA}{l}$	1M	
			$\frac{R}{l} = \frac{\rho}{A} = \frac{2.6 \times 10^{-8}}{1.3 \times 10^{-5}}$ $= 2.0 \times 10^{-3} \Omega \mathrm{m}^{-1}$		
			$= 2.0 \Omega \text{ km}^{-1}$ 或 2.0Ω	1A 2	
		(ii)	各股輸電電線以並聯連接/電纜的截面積比單一股 輸電電線大/電阻跟電纜的截面積成反比	1A	
			$R_{\text{cable}} = \frac{R}{40} = 0.05 \ \Omega \ \text{km}^{-1} \ \vec{\boxtimes} \ 0.05 \ \Omega$	1M	
			$\left(\frac{1}{R_{\text{cable}}} = \frac{1}{R} + \frac{1}{R} + \dots + \frac{1}{R} \Rightarrow \frac{1}{R_{\text{cable}}} = \frac{40}{R}\right)$	2	
		(iii)	小鳥身體的電阻比一小段架空電纜還要大。	1A	
			或 小鳥在一段短小架空電纜上並聯連接,雙足之間的電勢差極小(每公里的電阻非常小)。	1A	
			因此通過小鳥身體的電流可忽略。	1A 2	
	(b)	(i)	$I = \frac{P}{V} = \frac{180 \times 10^6}{400 \times 10^3}$	1M	
			= 450 A	1A 2	
		(ii)	電功率損耗的百分比 = $\frac{P_{loss}}{P_{total}} \times 100\%$	1M	
			$=\frac{450^2 \times 0.05 \times 10}{180 \times 10^6} \times 100\%$		
while the statements with the statements who we can when			= 0.05625 % < 0.1 %	1A 2	
		(iii)	(I) $N_p: N_s = V_p: V_s$ $12: 1 = 400: V_s$ $V_s = 33.3 \text{ kV}$	1A	
				1	
			(II) 下列任何 <u>一項</u> : 線圈的電阻 + 使用電線較粗的線圈/ 核心的磁化和消磁 + 使用軟鐵心/ 核心的感生渦電流 + 分層的核心 / 磁力線的漏泄 + 核心的設計	1A+1A	
			MAY 7 3 190 H 2 (MB) (P. 12) 12 H 2 H 2 H 1	2	

		答案	分數	說明
9. (句右(電流向下流動,磁場B指人紙面) 當棒到達最高點隨後下跌,其下端再次與導電液接 觸,同樣的磁力使棒從液體「踢」出。 過程不斷重複,使棒不斷「踢」出液體表面後又再次 返回。		
	(b)	i) 由於力矩 = $F \times d$ $7.2 \times 10^{-4} \text{ N m} = F (0.09 \text{ m})$ $F = \frac{7.2 \times 10^{-4}}{0.09} = 8.0 \times 10^{-3} \text{ N}$	1M 1A 2	
		ii) $F = B11$ $8.0 \times 10^{-3} \text{ N} = B (3.2 \text{ A}) (0.06 \text{ m})$ B = 0.042 T	1M 1A	
	(c)	i) 正確繪圖 觀察者眼睛 P ■ T依! 電池組 S	北例繪製	
	,	ii) 棒沿逆時針方向旋轉(從上方向下觀察)。 或 棒旋轉如一錐擺。	1 1A 1A	

			答案	分數	說明
10.	(a)	= (2.	上虧損 014102 + 3.016049) u – (4.002602 + 1.008665) u 018884 u	1M	
		釋放	出的能量 = 0.018884 × 931 MeV = 17.58 (MeV)	1A	
		或彩	翠放出的能量 = $0.018884 \times 1.661 \times 10^{-27} \times c^2$ = 2.823×10^{-12} J 或 17.64 MeV	1A	
	(b)	(i)	對抗兩個(正)原子核間的(靜電)相斥並	1A	
			轉換成 (兩原子核的) 電勢能。	1A 2	
		(ii)	高溫促使它們有足夠動能(以克服兩原子核的電相斥)。	1A 1	
		(iii)	動能轉換成電勢能 $E_{p} = 2 \times \frac{1}{2} m \left(c_{rms} \right)^{2} = 2 \times \frac{3RT}{2N_{A}}$	1M	接受沒有「×2」的因子
			$0.4 \text{ MeV} = 2 \times (\frac{3 \times 8.31 \times T}{2 \times 6.02 \times 10^{23}})$		$0.4 \text{ MeV} = 6.4 \times 10^{-14} \text{ J}$
			T=1.545×10°K 即數量級 10°(K) 替代方法:	1A	
			$E_{\rm p} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{10^{-15}} = 2 \times \frac{3RT}{2N_{\rm A}}$	1M	
			T=5.56×10°K 即數量級 10°(K)	1A 2	

卷二

甲部:天文學和航天科學

1. A(34%)	2. C(53%)	3. D(57%)	4. B(46%)
5. B(40%)	6. C(60%)	7. A(46%)	8. D(52%)

			答案	分數	說明
1.	(a)	(i)	徑向速度是沿觀察者視線的恆星速度分量/沿 觀察者方向或恆星和觀察者連線上的速度。	1A	
		(ii)	D 點	1 1 1 A	
	(b)		$v_1 = 180 \text{ km s}^{-1}$	1 1A	
	(0)		$v_1 = \frac{2\pi r_1}{T} = \frac{2\pi r_1}{40 \times 60 \times 60}$ (週期 $T = 40 \text{ hr}$)	1M	
			$r_1 = 4.125 \times 10^6 \text{ km}$ 或 $4.125 \times 10^9 \text{ m}$ 由圖 $v_2 = 120 \text{ km s}^{-1}$;並以比值或類似的計算得出	1A	
			$r_2 = 2.75 \times 10^6 \mathrm{km} $	1A 4	
	(c)		$\frac{Gm_1m_2}{(r_1+r_2)^2} = m_1(\frac{2\pi}{T})^2 r_1 = \frac{m_1v_1^2}{r_1} \ [\omega = \frac{2\pi}{T}]$	1M	
			$\frac{(6.67 \times 10^{-11}) m_2}{(4.125 \times 10^9 + 2.75 \times 10^9)^2} = \frac{(180 \times 10^3)^2}{4.125 \times 10^9}$		
			所以 $m_2 = 5.57 \times 10^{30} \text{ kg}$	1A2	
	(d)		$\frac{v_r}{c} = \frac{\Delta \lambda}{\lambda} = \frac{0.5 \text{ nm}}{656.28 \text{ nm}} \Rightarrow v_r = 228.3 \text{ km s}^{-1} > 180 \text{ km s}^{-1};$	1M	
			$\boxed{\cancel{\mathbb{R}} \frac{\Delta \lambda}{\lambda} = \frac{v_r}{c} = \frac{180 \times 10^3}{3 \times 10^8} \Rightarrow \Delta \lambda = 0.394 \text{ nm} < 0.5 \text{ nm} ;}$	1M	
			所以不適合。 接受以 120 km s $^{-1}$ 計算, $\Delta\lambda$ = 0.263 nm < 0.5 nm	1A 2	

乙部:原子世界

1. D(40%)	2. A(42%)	3. D(62%)	4. B(66%)
5. C(47%)	6. C(44%)	7. A(42%)	8. B(36%)

L	(41 /6) 0. C(44 /6) 1. A(42 /6) 8. B(30 /6)		
	答案	分數	說明
2. (a)	- 電子被認為是以特定軌道/圓周運動圍繞着原子核旋轉 的粒子,或	1A	
	- 向心力由庫倫力提供,或 - 電子的運動遵從牛頓運動定律	1	
(b)	最低能級 或 最穩定態	1A	
(c)	$p = \frac{h}{\lambda} = \frac{hc}{\lambda} \cdot \frac{1}{c}$	1M	
	$p = \frac{E}{c}$	1A 2	
(d)	(i) $E_4 = -\frac{13.6}{4^2} = -0.85 \text{ eV}$,	1M	
	$\Delta E_{1 \to 4} = E_4 - E_1 = -0.85 - (-13.6) = 12.75 \text{ eV}$		
	$E_5 = -\frac{13.6}{5^2} = -0.544 \text{ eV},$ $\Delta E_{1 \to 5} = E_5 - E_1 = -0.544 - (-13.6) = 13.056 \text{ eV}$		
	12.75 eV < 12.9 eV < 13.06 eV,所以最多只能達第 三受激態 (n=4)。	1A	
	或 $\Delta E = E_n - E_1 = -13.6(\frac{1}{n^2} - \frac{1}{1^2}) = 12.9 \text{ eV}$	1M	
	n=4.41 而由於 n 為整數,因此取 n=4(第三受激態)。	1A	
	(ii) $mvr_n = \frac{nh}{2\pi} \Rightarrow 2\pi r_n = \frac{nh}{nvv} = n\lambda$ (由公設得知)	2	
	$mV_n = \frac{1}{2\pi}$ $mV_n = \frac{1}{mV}$ (田公民) 當 $n = 4$, $2\pi(0.053)(4^2) = 4\lambda$ 所以 $\lambda = 1.33$ nm	1M 1A	
	$0.053) 4^2 \text{ nm} = 0.848 \text{ nm} = 8.48 \times 10^{-10} \text{ m}$	1M	
$4\pi\varepsilon_0$	$\frac{e^2}{r^2} = \frac{mv^2}{r} = v^2 = \frac{1}{4\pi\varepsilon_0} \cdot \frac{e^2}{r} \cdot \frac{1}{m} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{8.48 \times 10^{-10}} \cdot \frac{1}{9.11 \times 10^{-31}}$ $= v = 5.46 \times 10^5 \mathrm{m s}^{-1}$		
	$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{(9.11 \times 10^{-31})(5.46 \times 10^5)} = 1.33 \times 10^{-9} \mathrm{m} = 1.33 \mathrm{nm}$	1A	
L	1	2	
	(iii) 3		
	金原子的能級	2A	
	1	2	

丙部:能量及能源的使用

1. A(33%)	2. D(50%)	3. B(67%)	4. C(21%)
5. B(28%)	6. C(28%)	7. C(47%)	8. A(32%)

		答案	分數	說明
(a)	(i)	所需的時間 = 移走的熱量 $(mc\Delta T)$	1M	
		$=\frac{576000}{6800}=85 \text{ s } (1.42 分鐘 或 0.0236 小時)$	1A 2	
	(ii)	任何一項: 熱需要從牆壁、傢具等移走/從房間外流入的 熱需要被移走/其他合理因素如空調機通風欠 佳/門窗沒有緊閉妥當/安裝位置向西或直接 曝露在陽光下等/從四周所吸收的熱/不良熱 導體(空氣)延長了傳熱的時間	1A 1	
(b)	(i)	$P_{\rm in} = \frac{2525}{1200} = 2.1 \text{ (kW)} \ \text{\vec{x}} \ 2100 \text{ W}$	1A 1	
	(ii)	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	1M/1A 1A 1A 3	
(c)	(i)	$(C \rightarrow) B \rightarrow A \rightarrow D$ 部件 $B(\underline{\mathbf{y}})$ 冷凝器)	1A 1A 2	
	(ii)	逆轉製冷劑的流動方向 或 接受互換/掉換 B(冷凝器) 與 D(蒸發器) 或 A(膨脹閥) 與 C(壓縮機) 的位置	1A	

丁部:醫學物理學

1. B(47%)	2. D(45%)	3. D(26%)	4. D(29%)
5. B(64%)	6. C(58%)	7. A(50%)	8. A(60%)

		答案	分數	說明
4. (a)	(i)	A: 耳膜 B: 半規管 C: 耳蝸 D: 卵圓窗	1A	
		C(耳蝸) 是用於辨析傳入的聲波之不同頻率 / 把聲波轉換為神經訊號 / 內裏的聽覺感應細胞傳送訊號至腦部。	1A	
	(ii)	25÷20=1.25 (即增加 25%)	1M/1A	
(b)	(i)	60 (方) 耳朵對低頻或高頻 (相對 1~2 kHz 頻率) 的聲音較 不敏感/ 對中頻的聲音較敏感/對高頻或低頻具相 同響度的聲音需有較高的聲強度。	1A 1A	
	(ii)	曲線 C。 曲線向上移,即聽覺閾(或具相同響度感覺)有較大 的聲強級,尤其是在 kHz 音域更為顯著。	1A 1A 2	
(c)		級變化		
		$L_1 = 10 \log \frac{80}{I_0}$ $L_2 = 10 \log \frac{2.5 \times 10^{-5}}{I_0}$ $L_1 = 10 \log \frac{80}{2.5 \times 10^{-5}}$ $= -65 \text{ (dB)}$	1M 1M	接受 ± 65 dB
		$I_0 = 10^{-12} \text{ W m}^{-2}$ $L_1 = 10 \log \frac{80}{10^{-12}} = 139.03 \text{ dB}$	1M	
	L ₂ -	$L_2 = 10 \log \frac{2.5 \times 10^{-5}}{10^{-12}} = 74.03 \text{ dB}$ $L_1 = -65 \text{ (dB)}$ $0 \log \left(\frac{I_{\text{noise reduced}}}{I_{\text{original}}}\right)$	1M+1A	
	=	I_{original} $10 \log \left(\frac{2.5 \times 10^{-5}}{80} \right)$ -65 dB	2M	
	1	少 65 (dB)	1A 3	