# **Zhengdong Zhang**

Email: zhengz@uoregon.edu

Course: MATH 648 - Abstract Algebra Instructor: Professor Arkady Berenstein

# Homework - Week 8

ID: 952091294

Term: Winter 2025

Due Date:  $5^{th}$  March, 2025

## **Problem 18.1.2**

Let G be a group and P be a projective  $\mathbb{Z}G$ -module. If M is a  $\mathbb{Z}G$ -module, which is projective as a  $\mathbb{Z}$ -module, then the  $\mathbb{Z}G$ -module  $P \otimes_{\mathbb{Z}} M$  (with diagonal action of G) is projective.

Solution: We first prove a useful fact.

<u>Claim:</u> Let U, V be  $\mathbb{Z}G$ -module, then there is a G-action on the  $\mathbb{Z}$ -module  $\hom_{\mathbb{Z}}(U, V)$  and we have a natural isomorphism

$$\hom_{\mathbb{Z}}(U,V)^G \cong \hom_{\mathbb{Z}G}(U,V)$$

as abelian groups where  $\hom_{\mathbb{Z}}(U,V)$  is the G-invariant set under the previous action.

<u>Proof:</u> We first define a G-action on  $\hom_{\mathbb{Z}}(U,V)$ . Let  $f:U\to V$  be a map of  $\mathbb{Z}$ -modules, for any  $u\in U$ , we define

$$(g \cdot f)(u) := g \cdot f(g^{-1}u).$$

This is a well-defined G-action. For  $g, h \in G$ , we have

$$(g \cdot h \cdot f)(u) = g \cdot (h \cdot f)(g^{-1}u) = g \cdot h \cdot f(h^{-1}g^{-1}u) = (gh) \cdot f((gh)^{-1}u) = ((gh) \cdot f)(u).$$

Consider the G-invariant set  $\hom_{\mathbb{Z}}(U,V)^G$  under this action, consider extending the above G-action  $\mathbb{Z}$ -linearly, and we obtain a  $\mathbb{Z}G$ -module structure because

$$(gf)(u) = (g(g^{-1} \cdot f))(u) = g \cdot g^{-1} \cdot f(gu) = f(gu)$$

for all  $g \in G$  and  $u \in U$ . Conversely, given a  $\mathbb{Z}G$ -module homomorphism  $h : U \to V$ , viewed as a  $\mathbb{Z}$ -module homomorphism, we need to show that h is G-invariant. Indeed, we have

$$(g\cdot h)(u)=g\cdot h(g^{-1}u)=h(gg^{-1}u)=h(u)$$

for all  $g \in G$  and  $u \in U$ . We have proved there is an isomorphism of abelian groups

$$\hom_{\mathbb{Z}G}(U,V) \cong \hom_{\mathbb{Z}}(U,V)^G.$$

Lastly, we check this isomorphism is natural. Suppose we have  $\mathbb{Z}G$ -modules  $U, V_1, V_2$  and a  $\mathbb{Z}G$ -module homomorphism  $\phi: V_1 \to V_2$ , we have a diagram

$$\hom_{\mathbb{Z}G}(U, V_1) \xrightarrow{\cong} \hom_{\mathbb{Z}}(U, V_1)^G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hom_{\mathbb{Z}G}(U, V_2) \xrightarrow{\cong} \hom_{\mathbb{Z}}(U, V_2)^G$$

It is commutative because the isomorphism is taking map f to the same map.

Suppose we have two  $\mathbb{Z}G$ -module U, V and a surjective  $\mathbb{Z}G$ -homomorphism  $f: U \twoheadrightarrow V$ . By the

adjointness of  $\otimes$  and hom and the above claim, we have a commutative diagram

$$\begin{split} \hom_{\mathbb{Z}G}(P \otimes_{\mathbb{Z}} M, U) & \stackrel{\cong}{\longrightarrow} \hom_{\mathbb{Z}}(P \otimes_{\mathbb{Z}} M, U)^G \stackrel{\cong}{\longrightarrow} \hom_{\mathbb{Z}}(P, \hom_{\mathbb{Z}}(M, U))^G \stackrel{\cong}{\longrightarrow} \hom_{\mathbb{Z}G}(P, \hom_{\mathbb{Z}}(M, U)) \\ \downarrow & \downarrow & \downarrow \\ \hom_{\mathbb{Z}G}(P \otimes_{\mathbb{Z}} M, V) \xrightarrow{\cong} \hom_{\mathbb{Z}}(P \otimes_{\mathbb{Z}} M, V)^G \xrightarrow{\cong} \hom_{\mathbb{Z}}(P, \hom_{\mathbb{Z}}(M, V))^G \xrightarrow{\cong} \hom_{\mathbb{Z}G}(P, \hom_{\mathbb{Z}}(M, V)) \end{split}$$

M being a projective  $\mathbb{Z}$ -module implies that  $\hom_{\mathbb{Z}}(M,U) \to \hom_{\mathbb{Z}}(M,V)$  is surjective. P being a projective  $\mathbb{Z}G$ -module implies that

$$\hom_{\mathbb{Z}G}(P, \hom_{\mathbb{Z}}(M, U)) \to \hom_{\mathbb{Z}G}(P, \hom_{\mathbb{Z}}(M, V))$$

is surjective. So the right vertical map is surjective and by commutativity, we know the left vertical map

$$\hom_{\mathbb{Z}G}(P \otimes_{\mathbb{Z}} M, U) \to \hom_{\mathbb{Z}G}(P \otimes_{\mathbb{Z}} M, V)$$

is also surjective. This proves that  $P \otimes_{\mathbb{Z}} M$  is a projective  $\mathbb{Z}G$ -module.

# Problem 18.1.4(Restriction is left adjoint to coinduction)

Let S be a subring of a ring R. Define the coinduction functor

$$\operatorname{coind}_{S}^{R}: S - \mathbf{Mod} \to R - \mathbf{Mod},$$

$$U \mapsto \operatorname{hom}_{S}({}_{S}R_{R}, U).$$

Prove that  $\operatorname{coind}_{S}^{R}$  is right adjoint to  $\operatorname{res}_{S}^{R}$ .

Solution: By the adjointness of  $\otimes$  and hom, we know that the functor  $\hom_S({}_SR_R,-)$  is right adjoint to  ${}_SR_R\otimes_R-$ , so we need to show that  $\operatorname{res}_S^R$  is isomorphic to  ${}_SR_R\otimes_R-$ . Let M be a left R-module, viewed as a left S-module, we have an S-module homomorphism

$$\alpha: {}_{S}R_{R} \otimes_{R} M \to {}_{S}M,$$
$$r \otimes m \mapsto rm.$$

By Lemma 17.2.11, this is a functorial isomorphism.

#### **Problem 18.1.5**

Let  $\phi: S \to R$  be a ring homomorphism. Then R can be regarded as a right S-module, and we have a functor  $R \otimes_S -: S - \mathbf{Mod} \to R - \mathbf{Mod}$ . Prove that  $R \otimes_S -$  is left adjoint to the functor  $R - \mathbf{Mod} \to S - \mathbf{Mod}$  obtained by composing the R-action with  $\phi$ .

Solution: By the adjointness of  $\otimes$  and hom, if we view R as  $_RR_S$ , a (R,S) bimodule, then  $_RR_S\otimes_S-$  is left adjoint to the functor

$$hom_R(_RR_S, -): R - \mathbf{Mod} \to S - \mathbf{Mod}.$$

We need to show that this functor is isomorphic to the functor obtained by composing the R-action with  $\phi$ . Let  $f: {}_{R}R_{S} \to M$  be a R-module homomorphism. For any  $s \in S$  and  $r \in R$ , we have

$$(s \cdot f)(r) = f(r\phi(s)).$$

Recall that we have an R-module isomorphism  $\hom_R({}_RR_S, M) \to M$  by sending f to f(1) = m. Then the induced left S-module structure on M under this isomorphism is given by

$$s \cdot m = (s \cdot f)(1) = f(\phi(s)) = \phi(s) \cdot m.$$

This is exactly the S-module structure obtained from composing with  $\phi$ .

#### **Problem 18.1.6**

In Theorem 18.1.1, Corollary 18.1.3, and Exercise 18.1.4, we have seen three examples of adjoint pairs of functors  $(\mathcal{F}, \mathcal{G})$ . For each of those pairs explicitly construct the unit and the counit of the adjunction.

Solution: We give the unit and counit of Theorem 18.1.1 in (a), Corollary 18.1.3 in (b), and Exercise 18.1.4 in (c).

(a) Let V be a (R, S)-bimodule and U be a left S-module. By Theorem 18.1.1 and Theorem 5.1.8, We have an isomorphism of abelian groups

$$\alpha: \hom_R(V \otimes_S U, V \otimes_S U) \xrightarrow{\sim} \hom_S(U, \hom_R(V, V \otimes_S U)).$$

The unit

$$\eta: id_{S-\mathbf{Mod}} \Rightarrow \hom_R(V, V \otimes_S -)$$

is a natural transformation given by

$$\eta_U = \alpha(id_{V \otimes_S U}) : U \to \hom_R(V, V \otimes_S U)$$

on each  $U \in S - \mathbf{Mod}$ . More explicitly, for any  $u \in U$  and  $v \in V$ , we have

$$\eta_U(u)(v) = v \otimes u.$$

Conversely, given a left R-module W, by Theorem 18.1.1, we have an isomorphism of abelian groups

$$\beta: \hom_S(\hom_R(V, W), \hom_R(V, W)) \xrightarrow{\sim} \hom_R(V \otimes_S \hom_R(V, W), W).$$

By theorem 5.1.8, the counit

$$\varepsilon: V \otimes_S \hom_R(V, -) \Rightarrow id_{R-\mathbf{Mod}}$$

is given by

$$\varepsilon_W = \beta(id_{\hom_R(V,W)}) : V \otimes_S \hom_R(V,W) \to W$$

on each  $W \in R - \mathbf{Mod}$ . More explicitly, for any  $v \in V$  and  $f \in \mathrm{hom}_R(V, W)$ , we have

$$\varepsilon_W(v \otimes f) = f(v).$$

(b) Let S be a subring of R and U be a left S-module. By Corollary 18.1.3, we have an isomorphism of abelian groups

$$\alpha: \hom_R(\operatorname{ind}_S^R U, \operatorname{ind}_S^R U) \xrightarrow{\sim} \hom_S(U, \operatorname{res}_S^R \operatorname{ind}_S^R U).$$

By Theorem 5.1.8, the unit

$$\eta: id_{S-\mathbf{Mod}} \Rightarrow \operatorname{res}_{S}^{R} \operatorname{ind}_{S}^{R}(-)$$

is given by

$$\eta_U = \alpha(id_{\mathrm{ind}_S^R U}) : U \to \mathrm{res}_S^R \mathrm{ind}_S^R U$$

on each  $U \in S - \mathbf{Mod}$ . More explicitly, for any  $u \in U$ , we have

$$\eta_U(u) = 1 \otimes u \in R \otimes_S U$$

where we restrict the action from R to S on  $R \otimes_S U$ , viewing it as a S-module.

Conversely, given a left R-module V, we have an isomorphism of abelian groups

$$\beta: \hom_S(\operatorname{res}_S^R V, \operatorname{res}_S^R V) \xrightarrow{\sim} \hom_R(\operatorname{ind}_S^R \operatorname{res}_S^R V, V).$$

By Theorem 5.1.8, the counit

$$\varepsilon: \operatorname{ind}_{S}^{R} \operatorname{res}_{S}^{R} \Rightarrow id_{R-\mathbf{Mod}}$$

is given by

$$\varepsilon_V = \beta(id_{{\rm res}_S^R V}) : {\rm ind}_S^R {\rm res}_S^R V \to V$$

on each  $V \in R - \mathbf{Mod}$ . More explicitly, for any  $v \in V$ , we first view v as an element in an S-module V, then note that

$$\operatorname{ind}_{S}^{R}\operatorname{res}_{S}^{R}V = {}_{R}R_{S} \otimes_{S} {}_{S}V$$

and we have

$$\varepsilon_V(r\otimes v)=rv.$$

(c) Let  $S \subseteq R$  be a subring and U be a left R-module. We have proved in Exercise 18.1.4 that we have an isomorphism of abelian groups

$$\alpha: \hom_S(\operatorname{res}^R_S U, \operatorname{res}^R_S U) \xrightarrow{\sim} \hom_R(U, \operatorname{coind}^R_S \operatorname{res}^R_S U).$$

By Theorem 5.1.8, the unit

$$\eta: id_{R-\mathbf{Mod}} \Rightarrow \operatorname{coind}_{S}^{R} \operatorname{res}_{S}^{R}$$

is given by

$$\eta_U = \alpha(id_{{\rm res}_S^R U}): U \to {\rm coind}_S^R {\rm res}_S^R U$$

for each  $U \in R - \mathbf{Mod}$ . More explicitly, for any  $u \in U$ , we have

$$\eta_U(u) = f \in \text{hom}_S({}_SR_B, {}_SU)$$

where SU implies that U is viewed as a left S-module and f satisfies f(1) = u. Conversely, given a left S-module V, we have an isomorphism of abelian groups

$$\beta: \hom_R(\operatorname{coind}_S^R V, \operatorname{coind}_S^R V) \xrightarrow{\sim} \hom_S(\operatorname{res}_S^R \operatorname{coind}_S^R V, V).$$

By Theorem 5.1.8, the counit

$$\varepsilon : \operatorname{res}_{S}^{R} \operatorname{coind}_{S}^{R} \Rightarrow id_{S-\mathbf{Mod}}$$

is given by

$$\varepsilon_V = \beta(id_{\operatorname{coind}_S^R V}) : \operatorname{res}_S^R \operatorname{coind}_S^R V \to V$$

on each  $V \in S - \mathbf{Mod}$ . More explicitly, we view  $\hom_S({}_SR_R, V)$  as a left S-module by restricting the R-action, then for any  $f \in \hom_S({}_SR_R, V)$ , we have

$$\varepsilon_V(f) = f(1).$$

#### **Problem 18.2.1**

Prove that in an additive category, initial and terminal objects are isomorphic, hence an additive category always has a zero object.

Solution: Let I be the initial object and T be the terminal object. By definition, there is a unique morphism  $id_I: I \to I$  and since hom(I, I) is an abelian group, we have  $id_I = 0$ . Same thing is true for the terminal object T, we have  $id_T = 0$ . Note that hom(I, T) and hom(T, I) are abelian groups, so we have two zero maps  $\alpha: I \to T$  and  $\beta: T \to I$ , note that

$$id_T = 0 = \alpha \circ \beta : T \to T, id_I = 0 = \beta \circ \alpha : I \to I$$

by uniqueness of the map. We have proved that I and T are isomorphic.

#### **Problem 18.2.4**

If  $(X, p_i, q_i)$  is a biproduct of the  $X_i$ , then  $(X, p_i)$  is a product of the  $X_i$ , and  $(X, q_i)$  is a coproduct of the  $X_i$ .

Solution: We prove that  $(X, p_i)$  is the product of the product of  $X_i$  by showing that it satisfies the universal property of the product. Suppose  $Y \in \text{Ob}\mathbf{C}$  and we have a family of morphisms  $\{f_i: Y \to X_i\}_i$ . For any  $1 \le i, j \le n$ , consider the morphism  $\sum_{i=1}^n q_i \circ f_i: Y \to X$  and  $p_j: X \to X_j$ , by definition of biproduct, if  $i \ne j$ , then  $p_j \circ q_i \circ f_i = 0 \circ f_i = 0$ . If i = j, then  $p_i \circ q_i \circ f_i = id_{X_i} \circ f_i = f_i$ . This means that

$$p_j \circ (\sum_{i=1}^n q_i \circ f_i) = p_j \circ q_j \circ f_j = f_j.$$

We know that  $g = \sum_{i=1}^{n} q_i \circ f_i$  makes the following diagram commutes:



Suppose there exists another map  $h: Y \to X$  satisfying  $p_i \circ h = f_i$  for all  $1 \le i \le n$ . Then we know

$$h = (\sum_{i=1}^{n} q_i \circ p_i) \circ h = \sum_{i=1}^{n} q_i \circ p_i \circ h = \sum_{i=1}^{n} q_i \circ f_i.$$

So g is unique and this proves the universal property of  $(X, p_i)$ .

For the coproduct  $(X, q_i)$ , it is the same proof with arrow reversed. Suppose Y is an object in **C** and we have a family of morphisms  $\{f_i : X_i \to Y\}_i$ . Consider the morphism

$$g = \sum_{i=1}^{n} f_i \circ p_i.$$

By a similar argument, g is the unique morphism making the following diagram commutes:



We have proved the universal property for the coproduct  $(X_i, q_i)$ .

#### Problem 18.2.7

The map

$$hom(X_1, X_1') \oplus \cdots \oplus hom(X_n, X_n') \to hom(X_1 \oplus \cdots \oplus X_n, X_1' \oplus \cdots \oplus X_n'),$$
$$(f_1, \dots, f_n) \mapsto f_1 \oplus \cdots \oplus f_n$$

is an injection of abelian groups.

Solution: Suppose the map in the problem is  $\alpha$ . To prove  $\alpha$  is injective, we need to find a map

$$\beta: \hom(X_1 \oplus \cdots \oplus X_n, X_1' \oplus \cdots \oplus X_n') \to \hom(X_1, X_1') \oplus \cdots \oplus \hom(X_n, X_n')$$

such that  $\beta \circ \alpha = id$ . Given a morphism

$$g: X_1 \oplus \cdots X_n \to X_1' \oplus \cdots \oplus X_n'$$

consider the composition  $p'_j \circ g \circ q_j : X_j \to X'_j$  for any  $1 \leq j \leq n$ . In this way, we can define a map

$$\beta_j : \text{hom}(X_1 \oplus \cdots \oplus X_n, X'_1 \oplus \cdots \oplus X'_n) \to \text{hom}(X_j, X'_j),$$
  
$$g \mapsto p'_j \circ g \circ q_j.$$

And  $\beta$  can be defined as  $\beta = (\beta_1, \dots, \beta_n)$ . We need to check that  $\beta \circ \alpha = id$ . Suppose we have a family of maps  $\{f_i : X_i \to X_i'\}_{i=1}^n$ , we know that by definition

$$(\beta \circ \alpha)(f_1, \dots, f_n) = (p'_1 \circ (f_1 \oplus \dots \oplus f_n) \circ q_1, \dots, p'_n \circ (f_1 \oplus \dots \oplus f_n) \circ q_n)$$
$$= (f_1, \dots, f_n).$$

The last equality is due to Lemma 18.2.6(iii).

#### **Problem 18.2.8**

The assignment  $(X_1, \ldots, X_n) \mapsto X_1 \oplus \cdots \oplus X_n$  and  $(f_1, \ldots, f_n) \mapsto f_1 \oplus \cdots \oplus f_n$  define a functor  $\mathbf{C}^{\times n} \to \mathbf{C}$ .

Solution: We check the assignment

$$\mathcal{F}: \mathbf{C}^{\times n} \to \mathbf{C},$$

$$(X_1, \dots, X_n) \mapsto X_1 \oplus \dots \oplus X_n,$$

$$(f_1, \dots, f_n) \mapsto f_1 \oplus \dots \oplus f_n.$$

is a functor. Let  $(id_1, \ldots, id_n)$  be an identity morphism of  $(X_1, \ldots, X_n)$  in  $\mathbb{C}^{\times n}$ . We need to prove the morphism

$$id_1 \oplus \cdots \oplus id_n : X_1 \oplus \cdots \oplus X_n \to X_1 \oplus \cdots \oplus X_n$$

is the identity morphism for  $X_1 \oplus \cdots \oplus X_n$ . Note that by Lemma 18.2.6, we have

$$id_1 \oplus \cdots \oplus id_n = \sum_{i=1}^n q_i \circ id_i \circ p_i = \sum_{i=1}^n q_i \circ p_i = id_{X_1 \oplus \cdots \oplus X_n}.$$

Next suppose we have two families of morphisms  $\{f_i: X_i \to Y_i\}_{i=1}^n$  and  $\{g_i: Y_i \to Z_i\}_{i=1}^n$ . Let  $(X = X_1 \oplus \cdots \oplus X_n, p_i, q_i), (Y = Y_1 \oplus \cdots \oplus Y_n, p'_i, q'_i)$  and  $(Z = Z_1 \oplus \cdots \oplus Z_n, p''_i, q''_i)$  be the

corresponding biproduct. For any  $1 \le i, j \le n$ , we have

$$p_{j}'' \circ \mathcal{F}(g_{1}, \dots, g_{n}) \circ \mathcal{F}(f_{1}, \dots, f_{n}) \circ q_{i} = p_{j}'' \circ (g_{1} \oplus \dots \oplus g_{n}) \circ (f_{1} \circ \dots \circ f_{n}) \circ q_{j}$$

$$= p_{j}'' \circ (g_{1} \oplus \dots \oplus g_{n}) \circ (\sum_{k=1}^{n} q_{k}' \circ p_{k}') \circ (f_{1} \circ \dots \circ f_{n}) \circ q_{j}$$

$$= \sum_{k=1}^{n} p_{j}'' \circ (g_{1} \oplus \dots \oplus g_{n}) \circ q_{k}' \circ p_{k}' \circ (f_{1} \circ \dots \circ f_{n}) \circ q_{j}$$

$$= \sum_{k=1}^{n} \delta_{j,k} g_{k} \circ \delta_{k,i} f_{i}$$

$$= \delta_{j,i} (g_{i} \circ f_{i})$$

$$= p_{j}'' \circ ((g_{1} \circ f_{1}) \oplus \dots \oplus (g_{n} \circ f_{n})) \circ q_{i}$$

$$= p_{j}'' \circ \mathcal{F}((g_{1} \circ f_{1}), \dots, (g_{n} \circ f_{n})) \circ q_{i}.$$

By the uniqueness in Lemma 18.2.6(iii), we know that

$$\mathcal{F}(g_1,\ldots,g_n)\circ\mathcal{F}(f_1,\ldots,f_n)=\mathcal{F}((g_1\circ f_1),\ldots,(g_n\circ f_n)).$$

This proves that  $\mathcal{F}$  is indeed a functor.

## **Problem 18.2.9**

We have  $\Delta_X := q_1 + q_2$  and  $\nabla_X := p_1 + p_2$ .

Solution: Note that

$$p_{1} \circ (q_{1} + q_{2}) = p_{1} \circ q_{1} + p_{1} \circ q_{2}$$

$$= id_{X} + 0$$

$$= 0 + id_{X}$$

$$= p_{2} \circ q_{1} + p_{2} \circ q_{2}$$

$$= p_{2} \circ (q_{1} + q_{2}).$$

Since  $\Delta_X$  is the unique morphism satisfying  $p_1 \circ \Delta_X = id_X = p_2 \circ \Delta_X$ , we can see that  $\Delta_X = q_1 + q_2$ . Similarly, note that

$$(p_1 + p_2) \circ q_1 = p_1 \circ q_1 + p_2 \circ q_1$$

$$= id_X + 0$$

$$= 0 + id_X$$

$$= p_1 \circ q_2 + p_2 \circ q_2$$

$$= (p_1 + p_2) \circ q_2.$$

Since  $\nabla_X$  is the unique morphism satisfying  $\nabla_X \circ q_1 = id_X = \nabla_X \circ q_2$ , we can see that  $\nabla_X = p_1 + p_2$ .

## Problem 18.2.18

True or false? If R and R' are rings,  $\mathcal{F}: R - \mathbf{Mod} \to R' - \mathbf{Mod}$  is a functor left adjoint to a functor  $\mathcal{G}: R' - \mathbf{Mod} \to R - \mathbf{Mod}$ , and P is a projective R-module, then  $\mathcal{F}P$  is a projective R'-module.

Solution: This is false. Consider the functor

$$\mathbb{Z}/2\mathbb{Z}\otimes -: \mathbb{Z}-\mathbf{Mod} \to \mathbb{Z}-\mathbf{Mod}$$

By adjointness of  $\otimes$  and hom, we know that  $\mathbb{Z}/2\mathbb{Z} \otimes -$  is left adjoint to the functor hom( $\mathbb{Z}/2\mathbb{Z}, -$ ). We know  $\mathbb{Z}$  as a  $\mathbb{Z}$ -module is projective because  $\mathbb{Z}$  is free. But  $\mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}$  is not projective. Consider the surjective quotient map  $q: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ , by the adjointness, we have a commutative diagram

$$\begin{array}{cccc} \hom(\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z},\mathbb{Z}) & \xrightarrow{q_*} & \hom(\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \\ & & & \downarrow^{\sim} \\ \hom(\mathbb{Z}, \hom(\mathbb{Z}/2\mathbb{Z},\mathbb{Z})) & \longrightarrow & \hom(\mathbb{Z}, \hom(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})) \\ & & \downarrow^{\sim} \\ \hom(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) & \longrightarrow & \hom(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \end{array}$$

We know that the bottom map is not surjective because we only have zero map from  $\mathbb{Z}/2\mathbb{Z}$  to  $\mathbb{Z}$ . This implies  $q_*$  is also not surjective, so  $\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z}$  is not a projective  $\mathbb{Z}$ -module.