(14)[一般発表]離散音声トークン生成によるテキスト音声合成のための 音声主観評価値予測に基づくdecoding戦略

◎<u>山内 一輝</u>,中田 亘,齋藤 佑樹,猿渡 洋(東京大学)

音声サンプルはこちら!

Decoder

概要:離散音声トークン生成に基づくTTSモデルおける decoding 戦略の探求

- 背景:離散音声トークンを中間表現として用いる自己回帰型テキスト音声合成(Text-to-Speech: TTS)
 - o 従来のメルスペクトログラムに代わり、Neural Audio Codec (NAC) [1] などのデータ駆動で獲得された離散表現を逐次生成
 - o 自然言語処理(特にテキスト生成)分野で研究されてきた離散トークン処理手法に類似した音声処理手法
- <u>問い</u>: 最適な decoding 戦略(=計算された出力確率から実際に出力するトークンを選択する方法)は?
 - o 例: greedy search は同じトークン列の繰り返し生成問題を引き起こす
- <u>提案</u>: 音声に対する主観評価値の自動予測を活用して最適な出力トークンを選択

TTS モデルの<u>追加学習なし</u>で合成音声の<u>自然性を向上</u>!

関連研究:テキスト生成における decoding 戦略

top-k / top-p サンプリング

- サンプリングにより出力を多様化し、繰り返し生成問題を軽減
 - o 出力されうるトークンの候補を絞り、不適切なトークンの生成を軽減

k=4 とした top-k サンプリング[2]の概要 p=0.9 とした top-p サンプリング[3]の概要

Controlled decoding (block-wise best-of-K)

● 人間の嗜好度の予測値(prefix score)に基づいてトークンを選択

Controlled decoding [4] の概要

提案手法:音声主観評価値の自動予測を活用した decoding 戦略

TTS のための sequence-level best-of-K / block-wise best-of-K

 \bullet top-k top-p サンプリングにより K 通り生成し, prefix score が最も高い候補を選択

sequence-level best-of-K の概要!

block-wise best-of-K (controlled decoding) の概要

主観評価値の予測に基づくprefix scorer

- 自然性 MOS 予測モデル <u>UTMOS</u> [5]を活用
 - o 5段階の自然性 MOS の予測値を prefix score とする
 - 学習時, 入力音声をランダムな時刻以降切り捨てる
 - →途中まで合成された音声の主観評価値予測が可能に

block-wise best-of-*K* のための prefix scorer の学習方法の概要

実験的評価:提案手法は合成音声の自然性向上に有効か?

実験条件

- TTS モデル: Transformer TTS [6]
- 離散音声トークン:
 - Descript Audio Codec (DAC) [7]
- データセット: LJSpeech [8]
 - o 単一女性英語話者による読み上げ音声
 - o 学習/検証/評価:12,600/250/250 発話
- 比較手法:
 - o greedy search
 - o naive sampling
 - o top-k top-p sampling
 - o sequence-level best-of-K(提**案手法**)
 - o block-wise best-of-K(提案手法)

主観評価実験の結果

- 自然性に関する5段階 MOS評価の結果:
 - o サンプリングに基づく手法 > greedy search
 - o 提案手法 > 従来のサンプリングに基づく手法

提案手法は合成音声の自然性向上に有効!

Method	MOS (↑)	UTMOS (1)
greedy search	3.35 ± 0.09	4.27
naive sampling	3.57 ± 0.08	4.31
top-k top-p sampling	3.62 ± 0.08	4.36
sequence-level best-of-K	3.71 ± 0.07	4.46
block-wise best-of- <i>K</i>	3.73 ± 0.07	4.43
ground-truth	3.92 ± 0.07	4.43
ングはサイナノニノブは転託チ2001 11の歌/(11) A		

※受聴者はネイケイノ英語話者200人,1人の評価回数は24

サンプル数Kに関する ablation study

- block-wise best-of-*K* の *K* と MOS の関係:
 - o Kを2から8まで上げるとMOSは向上
 - o K を 8 から 32 まで上げると MOS は低下
 - 一方, K を大きくするほど UTMOS は 向上
- → UTMOS は主観評価値と<u>必ずしも一貫しない</u>

K を大きくしすぎると prefix scorer に<u>過適合</u>

サンプル数 K	MOS (1)	UTMOS (1)
2	3.72 ± 0.08	4.40
4	3.74 ± 0.08	4.43
8	3.83 ± 0.07	4.43
16	3.79 ± 0.07	4.45
32	3.65 ± 0.08	4.46

今後の展望

- 自然性向上に有効な<u>逐次的な</u> decoding 戦略の提案
- o 実験では逐次的 decoding の自然性向上に対する有効性は示されず
- o 逐次的 decoding は長時間音声のストリーミング合成などに適応可能
- 自然性以外の観点の主観評価値に基づくdecoding戦略の提案
 - o Prefix score は自然性に限らず様々な観点の主観評価値に拡張可能
 - 韻律の自然性や感情の適合度などに関する自動評価手法の構築

