Richard A. Brealey Stewart C. Myers

MODERN VÁLLALATI PÉNZÜGYEK

Panem, 2005

A diákat készítette: Matthew Will

McGraw Hill/Irwin

4. fejezet

A részvények értéke

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved

Tartalom

- Hogyan kereskednek a részvényekkel?
- + Hogy értékeljük a részvényeket?
- Tőkésítési ráták
- Részvényárfolyam és az EPS
- Diszkontált pénzáramlás és a vállalat értéke

Részvények és részvénypiacok

- **Részvény** Nyilvános társaságban való tulajdoni részesedés.
- Másodlagos piac Az a piac, ahol a befektetők korábban kibocsátott értékpapírokkal kereskednek.
- Osztalék Periodikus pénzbeli juttatás a vállalattól a részvényeseknek.
- P/E ráta Részvényárfolyam osztva az egy részvényre jutó nyereséggel.

Részvények és részvénypiacok

- Könyv szerinti érték A vállalat mérleg szerinti nettó értéke.
- Likviditási érték A vállalat eszközeinek eladása és hitelezőinek kifizetése után maradó érték.
- Piaci értéken alapuló mérleg Az eszközök és források piaci értékét használó pénzügyi kimutatás.

Elvárt megtérülés – Az a százalékos hozam, amelyet egy befektető egy bizonyos ideig tartó beruházástól vár. Néha piaci tőkésítési rátának nevezik.

Elvárt megtérülés =
$$r = \frac{\text{DIV}_1 + P_1 - P_0}{P_0}$$

Példa

Ha a Fledgling Electronics egy részvénye ma 100 dollárba kerül, egy év múlva várhatóan 110 dollárt fog érni. Mekkora az elvárt hozam, ha egy év múlva 5 dolláros osztalékot jósolnak?

Elvárt hozam =
$$\frac{5+110-100}{100}$$
 = 0.15

A képlet két részre bontható:

Osztalékhozam + Árfolyamnyereség

Elvárt hozam =
$$r = \frac{\text{DIV}_1}{P_0} + \frac{P_1 - P_0}{P_0}$$

A tőkésítési ráta az örökjáradék képletének minimális algebrát igénylő átalakításával becsülhető.

Tőkésítési ráta =
$$P_0 = \frac{\text{DIV}_1}{r - g}$$

$$= r = \frac{\text{DIV}_1}{P_0} + g$$

Hozamszámítások

Osztalékho zam =
$$\frac{\text{DIV}_1}{P_0}$$

Egy részvény könyv szerinti értéke

Az osztalékok diszkontálásán alapuló modell – A részvény mai árfolyamának kiszámítása, amely azt állítja, hogy a részvény értéke megegyezik a várható jövőbeli osztalékok jelenértékével.

Az osztalékok diszkontálásán alapuló modell – A részvény mai árfolyamának kiszámítása, amely azt állítja, hogy a részvény értéke megegyezik a várható jövőbeli osztalékok jelenértékével.

$$P_0 = \frac{\text{DIV}_1}{(1+r)^1} + \frac{\text{DIV}_2}{(1+r)^2} + \dots + \frac{\text{DIV}_T + P_T}{(1+r)^T}$$

T = A beruházás élettartama.

Példa

Előrejelzések szerint az XYZ vállalat a következő három évben rendre 3, 3.24, 3.50 dollár osztalékot fizet. A harmadik év végén 94.48 dolláros piaci áron adhatjuk el a részvényt. Mekkora a részvény árfolyama, ha az elvárt hozam 12 százalék?

Példa

Előrejelzések szerint az XYZ vállalat a következő három évben rendre 3, 3.24, 3.50 dollár osztalékot fizet. A harmadik év végén 94.48 dolláros piaci áron adhatjuk el a részvényt. Mekkora a részvény árfolyama, ha az elvárt hozam 12 százalék?

$$PV = \frac{3.00}{(1+0.12)^{1}} + \frac{3.24}{(1+0.12)^{2}} + \frac{3.50 + 94.48}{(1+0.12)^{3}}$$

$$PV = 75.00$$
\$

Ha nem jelzünk előre növekedést, és a részvényt a végtelenségig meg szándékozzuk tartani, akkor a részvényt **örökjáradék**ként árazhatjuk.

Ha nem jelzünk előre növekedést, és a részvényt a végtelenségig meg szándékozzuk tartani, akkor a részvényt örökjáradékként árazhatjuk.

Örökjáradé
$$k = P_0 = \frac{DIV_1}{r}$$
 vagy $\frac{EPS_1}{r}$

Feltétel: az összes nyereséget kifizetik a részvényeseknek.

Állandó ütemű növekedést feltételező, az osztalékok diszkontálásán alapuló modell – Az osztalékok állandó ütemben nőnek (Gordon-modell).

Példa (folytatás)

Ha a részvényt 100 dollárért lehet a piacon megvenni, akkor mekkora növekedést vár a piac a részvénytől?

$$100 \$ = \frac{3.00 \$}{0.12 - g}$$
$$g = 0.09$$

Válasz

A piac az osztalékok évi 9 százalékos éves növekedését várja.

+ Ha a vállalat alacsonyabb osztalék kifizetése mellett dönt, és újra befekteti a tőkéjét, a részvényárfolyam növekedhet, mert a jövőbeli osztalékok valószínűleg nagyobbak lesznek.

Osztalékfizetési ráta – A nyereség osztalékként kifizetett hányada.

Újrabefektetési ráta – A nyereségnek a vállalat által visszatartott hányada.

A növekedési ütem a sajáttőke-arányos nyereség (ROE) és a működésbe visszaforgatott nyereséghányad szorzatából származtatható.

g = Sajáttőke-arányos nyereség× Újrabefektetési ráta

Példa

Vállalatunk 5 dollár osztalék kifizetését ígéri jövőre, amely nyereségének 100 százaléka. Ez a befektetőknek 12 százalékos elvárt hozamot jelent. Most mégis úgy döntünk, hogy a nyereség 40 százalékát visszaforgatjuk 20 százalékos sajáttőke-arányos nyereség mellett. Mekkora a részvény árfolyama az újrabefektetési ráta megváltoztatása előtt és után?

Példa

Vállalatunk 5 dollár osztalék kifizetését ígéri jövőre, amely nyereségének 100 százaléka. Ez a befektetőknek 12 százalékos elvárt hozamot jelent. Most mégis úgy döntünk, hogy a nyereség 40 százalékát visszaforgatjuk 20 százalékos sajáttőke-arányos nyereség mellett. Mekkora a részvény árfolyama az újrabefektetési ráta megváltoztatása előtt és után?

Növekedés nélkül

Növekedés mellett

$$P_0 = \frac{5}{0.12} = 41.67$$
\$

Példa

Vállalatunk 5 dollár osztalék kifizetését ígéri jövőre, amely nyereségének 100 százaléka. Ez a befektetőknek 12 százalékos elvárt hozamot jelent. Most mégis úgy döntünk, hogy a nyereség 40 százalékát visszaforgatjuk 20 százalékos sajáttőke-arányos nyereség mellett. Mekkora a részvény árfolyama az újrabefektetési ráta megváltoztatása előtt és után?

Növekedés nélkül

Növekedés mellett

$$P_0 = \frac{5}{0.12} = 41.67 \$$$

$$g = 0.20 \times 0.40 = 0.08$$

$$P_0 = \frac{3}{0.12 - 0.08} = 75.00$$
\$

Példa (folytatás)

Ha a vállalat nem forgatná vissza a nyereség egy részét, a részvényárfolyam 41.67 dollár maradna. Újrabefektetés mellett az árfolyam 75 dollárra emelkedik.

A két érték közti különbséget (75.00 – 41.67 = 33.33) a növekedési lehetőségek jelenértékének (PVGO) nevezzük.

Növekedési lehetőségek jelenértéke (PVGO)

 A vállalat jövőbeli beruházásainak nettó jelenértéke.

Fenntartható növekedési ráta – Az az állandó ütem, amely szerint a vállalat növekedhet:

Újrabefektetési hányad × Sajáttőke-arányos nyereség.

- A szabad pénzáramlás (FCF) kell legyen minden jelenérték-számítás alapja.
- A szabad pénzáramlás sokkal pontosabb mértéke a jelenértéknek, mint akár az egy részvényre jutó nyereség vagy osztalék.
- A piaci ár nem mindig fejezi ki a szabad pénzáramlás jelenértékét.
- Vállalat eladásakor mindig szabad pénzáramlás alapján értékeljük azt.

Vállalatértékelés

Egy vállalat értékét általában a szabad pénzáramlások egy **értékelési időszak végéig** (*H*) vett sorozatának diszkontálásával kapjuk. Az **értékelési időszak végi értéket** olykor végső értéknek is nevezik, és a PVGO-hoz hasonlóan számolják.

$$PV = \frac{FCF_1}{(1+r)^1} + \frac{FCF_2}{(1+r)^2} + \dots + \frac{FCF_H}{(1+r)^H} + \frac{PV_H}{(1+r)^H}$$

Vállalatértékelés

$$PV = \frac{FCF_1}{(1+r)^1} + \frac{FCF_2}{(1+r)^2} + \dots + \frac{FCF_H}{(1+r)^H} + \frac{PV_H}{(1+r)^H}$$

PV (szabad pénzáramlás)

PV (időszak végi érték)

Példa

A kapcsológyártó részleg adott pénzáramlásai mellett számítsuk ki az értékelési időszak végi esedékes pénzáramlások jelenértékét, az időszak végi értéket és a vállalat teljes értékét r=10%, g=6%.

	év									
	1	2	3	4	5	6	7	8	9	10
Eszközérték	10.00	12.00	14.40	17.28	20.74	23.43	26.47	28.05	29.73	31.51
Nyereség	1.20	1.44	1.73	2.07	2.49	2.81	3.18	3.36	3.57	3.78
Beruházás	2.00	2.40	2.88	3.46	2.69	3.04	1.59	1.68	1.78	1.89
Szabad	-0.80	-0.96	-01.15	-1.39	-0.20	-0.23	1.59	1.68	1.79	1.89
pénzáramlás	-0.00	-0.70	-01.13	-1.57	-0.20	-0.23	1.57	1.00	1.//	1.07
Nyereség	20	20	20	20	20	12	13	6	6	6
növekedése (%)	20	20	20	20	20	13	13	6	6	6

Példa (folytatás)

A kapcsológyártó részleg adott pénzáramlásai mellett számítsuk ki az értékelési időszak végén esedékes pénzáramlások jelenértékét, az időszak végi értéket és a vállalat teljes értékét r = 10%, g = 6%.

PV(időszak végi érték) =
$$\frac{1}{(1.1)^6} \left(\frac{1.59}{0.10 - 0.06} \right) = 22.4$$

$$PV(FCF) = -\frac{0.80}{1.1} - \frac{0.96}{(1.1)^{2}} - \frac{1.15}{(1.1)^{3}} - \frac{1.39}{(1.1)^{4}} - \frac{0.20}{(1.1)^{5}} - \frac{0.23}{(1.1)^{6}}$$
$$= -3.6$$

Példa (folytatás)

A kapcsológyártó részleg adott pénzáramlásai mellett számítsuk ki az értékelési időszak végéig esedékes pénzáramlások jelenértékét, az időszak végi értéket és a vállalat teljes értékét r = 10%, g = 6%

$$PV(vállalat) = PV(FCF) + PV(időszak végi érték)$$

= -3.6 + 22.4
= 18.8 \$

