Introdução a Python para análise de dados

Parte 2: NumPy e Pandas

Thiago Cardoso thiago.figueredo@cesar.org.br

Conteudo

NumPy

<u>Pandas</u>

Explorando um data set

Indice de exercícios

Exercício 1

Exercício 2

Arrays uni/multidimensionais e funções para operações rápidas:

- Operações matemáticas e lógicas
- Manipulação de forma
- Seleção e ordenação

Instalação
pip install numpy

Carregamento

import numpy as np

```
Gerar dados
array()
arange()
zeros()
ones()
eye()
linspace()
random.random()
```

```
>>> np.array([2,3,4])
>>> np.arange(4)
array([0,1,2,3])
>>> np.linspace(1,10,20)
```

Manipular forma

```
shape()
reshape()
```

Operar sobre dados

```
max()
min()
var()
std()
mean()
cumsum()
cumprod()
```

```
>>> a = np.linspace(1,10,20)
>>> np.mean(a)
5.5
>>>
```

Seleção de elementos

arr[indice]

arr[start:stop:step]

arr[condicional]

```
>>> a = np.linspace(1,10,20)
>>> a[1]
1.4736842105263157
>>> a[0:21:10]
array([1. , 5.73684211])
>>> a[a > 8]
array([ 8.10526316, 8.57894737,
9.05263158, 9.52631579, 10.
>>>
```

Operações com arrays

```
arr1 +-*/ arr2

arr +-*/ inteiro
```

```
>>> a1 = np.ones(3)
>>> a2 = np.ones(3)
>>> a3 = a1 + a2
>>> a3 * 10
array([20., 20., 20.])
>>>
```

Operações com arrays

```
arr1 +-*/ arr2

arr +-*/ inteiro
```

O que acontece quando arr1 e arr2 tem tamanhos diferentes?

```
>>> a1 = np.ones(3)
>>> a2 = np.ones(3)
>>> a3 = a1 + a2
>>> a3 * 10
array([20., 20., 20.])
>>>
```

Exercicio

- 1. Usando NumPy, calcule os 10 primeiros elementos e a soma da progressão **artimética** cujo primeiro elemento é 10 e a razão é 3.
- 2. Usando NumPy, calcule os 10 primeiros elementos e a soma da progressão **geométrica** cujo primeiro elemento é 10 e a razão é 3.
- 3. Calcule o rendimento do CDI como nos exercícios anteriores do primeiro ao décimo ano usando NumPy.

Python Data Analysis Library

Instalação

pip install pandas

Carregamento

import pandas as pd

```
pd.Series(data)

pd.Series(data, index)
```

Lista indexada

```
>>> pd.Series([1, 3, np.NaN, 9])
0 1.0
1 3.0
  NaN
3 9.0
>>> pd.Series([1, 3, np.NaN, 9],
[2019, 2020, 2021, 2022])
2019 1.0
2020
     3.0
2021
     NaN
2022 9.0
```

Índices podem ter tipo diversos (tipos hasheáveis)

```
>>> pd.Series([1, 3, np.NaN, 9], ['a',
'b', 'c', 'd'])
 1.0
  3.0
  NaN
d 9.0
>>> pd.Series([1, 3, np.NaN, 9],
[(0,0),(0,1),(1,0),(1,1)]
(0,0) 1.0
(0,1) 3.0
(1,0)
      NaN
(1,1) 9.0
```

Dados são arrays NumPy, todas as operações anteriores são aplicáveis

```
>>> s = pd.Series([1, 3, 7, 9],
[2019, 2020, 2021, 2022])
>>> s.values
array([1., 3., 7., 9.])
>>> s.sum()
20
>>> s.cumsum()
2019
2020
2021
        11
2022
        20
```

pd.DataFrame

Estrutura bidimensional

Similar a um dicionário de Series

```
>>> d = {
  'attempts': [1, 3, ...],
  'name': ['Anastasia', 'Dima', ... ],
  'qual': ['yes', 'no', ... ]
  'score': [12.5, 9, ...],
>>> df = pd.DataFrame(d)
>>>
```

```
Visualizar dados
dataframe.shape
dataframe.head()/tail()
dataframe.describe()
dataframe.sort values(by=co
lumn)
dataframe.groupby(column)
dataframe.T
```

```
>>> df.shape
(11, 4)
>>> df.head(2)
...
>>>
```

Selecionar dados

```
dataframe.loc[inicio:fim,in
icio:fim]
```

```
dataframe.iloc[inicio:fim,i
nicio:fim]
```

dataframe[condição]

```
>>> df.loc[:,['name', 'score']]
  Anastasia
             12.5
  Dima
              9.0
>>> df.iloc[:,[1, 3]]
  Anastasia 12.5
              9.0
  Dima
>>> df[df.score > 10]
>>>
```

Boa parte das operações de arrays NumPy e Series estão disponíveis para o DataFrame

São executadas para todas as colunas (ou uma seleção delas)

```
>>> df.mean()
             1.818182
attempts
            13.777778
score
>>> df.max()
attempts
            Suresh
name
qualify
               yes
                20
score
>>> df.max(numeric only=True)
attempts
             3.0
            20.0
score
```

Arquivos

```
pd.read_csv()

dataframe.to_csv()
```

Há suporte a outros formatos

```
>>> df = pd.read_csv('data.csv')
>>> df.sort_values(by='score')
>>> df.to_csv('sorted_data.csv')
```

Pandas + matplotlib

Histogramas

dataframe.hist()

Matriz de dispersão

from pandas.plotting import scatter_matrix

scatter_matrix(dataframe)

```
>>> df.hist()
>>> plt.show()
>>> scatter_matrix(df)
>>> plt.show()
```

Exercício 2

Considerando o arquivo <u>data.csv</u>:

- A. Leia os dados em um DataFrame e explore-o
- B. Adicione uma nova coluna *ratio*, sendo a razão entre pontuação e tentativas para cada pessoa.
- C. Imprima as informações das pessoas com o maior e menor ratio.
- D. Ordene decrescentemente pelo ratio.
- E. Salve o novo arquivo CSV ignorando a coluna de índices do DataFrame.

Explorando um data set

Iris Versicolor

Iris Setosa

Iris Virginica

The Data Science Process

Joe Blitzstein and Hanspeter Pfister, created for the Harvard data science course http://cs109.org/.

Pegar os dados

Carregue com Pandas

Explorar os dados

- Verifique o formato (shape)
- Veja algumas linhas dos dados
- Veja o sumário estatístico dos dados
- Veja como é a distribuição de classes entre os dados
- Plote histograma e a matriz de dispersão para fazer uma exploração visual

Mais nas próximas etapas do curso:)

Referências e material complementar

Introduction to Numpy for Data Analysis

A Gentle Introduction to Pandas

Your First Machine Learning Project in Python Step-By-Step

Principal Component Analysis in 3 Simple Steps

Kaggle Datasets

UCI Machine Learning Repository