Ecole Supérieure des Technologies de l'Informatique et du Numérique

^{2ème} année de la Formation en 2nd Cycle

Entrepôt de données et Big Data

Chapitre IV - Exploitation d'un Data warehouse

Dr. AIT TALEB

Introduction

- ☐ Le modèle multidimensionnel présente une vue statique des données ;
- ☐ Il a besoin d'être manipulé pour extraire des informations nécessaires à la prise de décision;
- L'exploitation des données multidimensionnelles peut se faire par divers outils (reporting, OLAP, fouille de données);
- ☐ Les étapes clés pour l'exploitation d'un data Warehouse sont :

Identification des besoins métier :

- > Quels sont les objectifs que l'entreprise cherche à atteindre ?
- Quels sont les domaines qui ont besoin d'être améliorés ?

En répondant à ces questions, vous pourrez identifier les données qui sont les plus importantes pour votre entreprise.

Opérations élémentaires de l'OLAP

Reporting

Dashboards

Introduction

2. Conception de rapports :

- > Conception de rapports : permettent d'extraire des informations pertinentes
- à partir des données du data warehouse.
- > Ces rapports peuvent inclure :
 - ✓ tableaux de bord ;
 - ✓ des graphiques ;
 - √ des résumés de données.

Opérations élémentaires de l'OLAP

Reporting

Dashboards

Introduction

3. Analyse de données :

> Analyser les données pour répondre aux besoins métier.

4. Prise de décision :

- ➤ les informations obtenues à partir des analyses de données permettent aux dirigeants de l'entreprise de prendre des décisions éclairées ;
- Les données du data warehouse peuvent être utilisées pour identifier les tendances du marché, les opportunités de croissance et les domaines qui nécessitent des améliorations.

Introduction Opérations élémentaires de l'OLAP

Définition de OLAP Reporting Dashboards

Visualisations autour d'un ED

OLAP versus **OLTP**

Définition de l'OLAP

- Analytical Processing), proposé (1993),**U** OLAP (Online Codd par est un type de traitement de données qui permet de réaliser des analyses multidimensionnelles sur de gros volumes de données stockées dans un data Warehouse;
- permet d'effectuer des requêtes et des analyses complexes pour répondre aux besoins métier de l'entreprise;
- ☐ Conçu pour une utilisation en lecture seule et peut gérer des données historiques.

Dashboards

Visualisations autour d'un ED

Définition de l'OLAP

- * Notion de cube (Hypercube) :
 - Métaphore d'une structure multidimensionnelle ;
 - Graphiquement, limité à trois dimensions, au-delà de trois, difficile à schématiser.

Visualisations autour d'un ED

Définition de l'OLAP

* Notion de cube (Hypercube) :

Location

Dashboards

Visualisations autour d'un ED

Définition de l'OLAP

Plan

* Représentation graphique d'un cube (3d) en 2d :

Exemple: Répartition des ventes par produit, temps et ville

Temps	7	Trir	nl	Т	rin	12	Γ	rin	13	7	rin	n4	Т	ota	I	
Produit Ville	М	P	Т	М	Р	Т	М	Р	Т	М	Р	Т	M	Р	Т	Tot
Crème	8			4			6			9			27			
Lait	22			23			19			29			93			
Jus	21			24			25			29			99			
Total	51															

Dashboards

OLAP versus OLTP

- **Définition de l'OLTP (On-Line Transaction Processing) :**
- ✓ Est un traitement transactionnel en ligne qui sert à effectuer des modifications d'informations en temps réel.
- ✓ On le retrouve essentiellement dans des opérations commerciales comme les opérations bancaires, ou l'achat de bien divers.
- ✓ L'objectif de l'utilisation d'un tel système est de pouvoir insérer, et interpréter pour des besoins divers, les données de la base de données, en toute sécurité.

OLAP versus OLTP

	Caractéristiques	OLTP	OLAP
	Orientation	Transaction	Analyse
Conception	Conception	Entité-Relation	Etoile/flocon de neige
	Granularité	Détail	Résumées, agrégées
Données	Nature	Relationnelle	Multidimentionnelle
Domices	Actualisation	Actualisées, mises à jour	Historisées, recalculées
	Taille fichiers	< 100 Mo/Go	> 100 Go/To
	Unité de travail	Transaction simple	Requête complexe
Traitements	Accès	Lecture/écriture	Lecture
Traitements	Nb de tuples accédés	Dizaines	Millions
	Métrique	Débit de transactions	Temps de réponse
Utilisateurs	Utilisateur Nombre d'utilisateurs	Agent opérationnel Milliers	Analyste/décideur Centaines

Dashboards

OLAP versus **OLTP**

Opérations élémentaires de l'OLAP

Les opérations élémentaires de l'OLAP permet de manipuler la structure (schéma) ou les données d'un de l'Hypercube ;

Reporting

• Opérateurs liés à la structure : Permet un changement de points de

vue selon différentes dimensions: Rotate/pivot, Switch, Split, push, etc.

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés à la structure (suite):
 - 1. Rotate/pivot: Effectue au cube une rotation autour d'un de ses 3 axes passant par le centre de 2 faces opposées, de façon à présenter un ensemble de faces différent (sélection de faces).

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés à la structure (suite):
 - 2. Switch ou permutation: consiste à interchanger la position des membres d'une dimension.

Exemple:

Plan

Reporting

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés à la structure (suite):
 - 3. Split ou division : consiste à présenter chaque tranche du cube et de passer de sa présentation tridimensionnelle à sa présentation sous la forme d'un ensemble de tables.

Exemple: split(region) du cube Ventes conduit aux 4 tables suivantes:

ventes est	1999	1998	1997
écrous	50	70	100
vis		10	10
clous	70	70	100

ventes sud	1999	1998	1997
écrous	40	20	
vis	50	60	60
clous		10	

ventes ouest	1999	1998	1997
écrous		10	30
vis	50	50	50
clous		10	40

ventes nord	1999	1998	1997
écrous			10
vis	60	30	20
clous	40	20	

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés à la structure (suite):
 - 3. Push (Enfoncement): Combiner les membres d'une dimension aux mesures du cube.

Exemple:

les	
\	

Ventes	Est	Ouest	Nord	Sud
écrous	1996 50 1995 70 1994 100	1996 60 1995 10 1994 30	1994 10	1996 40 1995 20
vis	1995 10 1994 10	1996 50 1995 50 1994 50	1996 60 1995 30 1994 20	1996 50 1995 60 1994 60
clous	1996 70 1995 50 1994 40	1995 10 1994 40	1996 40 1995 20	1995 10

Opérations élémentaires de l'OLAP

Reporting

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés aux données : Roll-up, Drill-down, Slice, Dice.
 - 1. Roll-up: Réduction d'une dimension du cube en la remplaçant par une dimension à grain plus large donc en allant du détail vers le global.

Exemple:

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés aux données (suite):
 - 2. *Drill*-down: Extension d'une dimension du cube en la remplaçant par une dimension à grain plus fins, donc en allant global vers le détail.

Exemple:

Plan

Reporting

Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

- Opérateurs liés aux données (suite) :
 - 3. Slice: Cette opération consiste à sélectionner des portions du cube.

Exemple: Slice (2004): on ne retient que la partie du cube qui correspond à cette date.

Slice (2004)

Ventes 2004	écrou	vis	boulon	joint
est	220	100	60	10
ouest	160	50	10	60
centre	20	150	170	110

rting Dashboards

Visualisations autour d'un ED

Opérations élémentaires de l'OLAP

Plan

- Opérateurs liés aux données (suite) :
 - 4. Dice : extraction d'un sous, provient de l'application de l'opération slice sur plus d'une dimension.

Exemple: Dice selon date, région, pièce.

date=2001 et date=2002, région=est et région =ouest, pièce=boulon et pièce=joint.

Dashboards

Visualisations autour d'un ED

Langages pour l'OLAP

1. SQL (Structured Query Language) : Ce language permet de récupérer des données à partir d'une base de données. Il est souvent utilisé pour extraire des données du data warehouse.

2. MDX (Multi Dimensional eXpression):

- Langage de requêtes inventé pour faire de l'OLAP par Mosha Pasumansky (Microsoft);
- Disponible dans la plupart des serveurs OLAP;
- Plus puissant que SQL pour faire de l'OLAP.

OLAP versus OLTP

Opérations élémentaires de l'OLAP

Reporting

Dashboards

Visualisations autour d'un ED

Langages pour l'OLAP

Plan

Exemple de requête OLAP en MDX :

SELECT {Paris, Berlin} **ON ROWS**

{[Q1], [Q2].CHILDREN} ON COLUMNS

FROM CubeSales

WHERE (MEASURES.SalesAmount,

Time.[2014],

Product.Product)

OLAP et reporting

Plan

- ☐ La réalisation de rapports (reporting) OLAP consiste à créer des rapports analytiques qui permettent de visualiser et d'analyser les données stockées dans un data warehouse.
- □ Pour des utilisateurs qui ont besoin d'un accès régulier à des informations d'une manière presque statique .

Opérations élémentaires de l'OLAP

Reporting

Dashboards Visualisations autour d'un ED

OLAP et tableaux de bords (Dashboards)

- Affichent une quantité limitée d'informations dans un format graphique facile à lire;
- Fréquemment utilisé par les cadres supérieurs qui ont besoin d'un rapide aperçu des changements les plus importants ;
- Pas vraiment utile pour une analyse complexe et détaillée.

Plan

Opérations élémentaires de l'OLAP

Reporting

Dashboards

Visualisations autour d'un ED

OLAP et Visualisation des données

- ☐ Facilitent l'analyse et l'interprétation de données ;
- ☐ Convertissent des données complexes en images, graphiques en 2 et 3 dimensions, voire en animations ;
- ☐ De plus en plus intégrées dans les ED

