Project 4 Algorithm Analysis Report

	n=20, rows=10, columns=10
n=15, rows=7, columns=8XXX .XX .XX	.xx [xxxxxxx
exhaustive optimization Exhaustive: 466	exhaustive optimization Exhaustive: 6740
elapsed time=0.0300823 seconds	elapsed time=0.728966 seconds
dynamic programming Dynamic programming: 466	dynamic programming Dynamic programming: 6740
elapsed time=0.000201553 seconds	elapsed time=0.000172438 seconds
n=25, rows=12, columns=13XXX	xxx .xxxx x.x
x.x x	xxx
xx.x. x. x.	exhaustive optimization Exhaustive: 274462 elapsed time=936.615 seconds
exhaustive optimization Exhaustive: 51190	dynamic programming Dynamic programming: 274462
elapsed time=44.8298 seconds	elapsed time=0.0393305 seconds

E = Exhaustive time

D = Dynamic time

x_1	E_1
15	0.0307616
20	0.72896
25	44.8298
30	936.615

\boldsymbol{x}_2	❸ D
15	0.000166041
20	0.000172438
25	0.000182776
30	0.0393305

E = Exhaustive time

D = Dynamic time

\boldsymbol{x}_1	E_1
15	0.0307616
20	0.72896
25	44.8298
30	936.615

x_2	❸ D
15	0.000166041
20	0.000172438
25	0.000182776
30	0.0393305

Time Complexities: Curve Comparison

- a. Are the fit lines on your scatter plots consistent with these efficiency classes? Justify your answer.
 - i. Yes, both fit lines reflect their respective efficiency classes.
 - ii. The scatter plots follow the general trend in line with the curve of its respective efficiency class
- b. Is this evidence consistent or inconsistent with the hypothesis stated on the first page? Justify your answer.
 - i. Yes it is consistent. Based on the difference in time between the two algorithms implemented, polynomial-time dynamic programming algorithm time complexities were found to be more efficient than its exponential-time exhaustive search/optimization counterpart in this analysis.
 - ii. As the size of the grid was increased, the exhaustive search implementation became significantly slower compared to the dynamic-programming one.

- c. Compare and contrast the difficulty you found in implementing the two algorithms. What was the most challenging part of implementing each algorithm. Overall, which implementation did you find harder, and why? Which algorithm implementation do you prefer?
 - i. This particular exhaustive search algorithm was personally more challenging to implement than the dynamic programming one because of the additional concept of having to convert the path as a binary string of bits. In contrast, the dynamic programming implementation was easier to visualize.
 - ii. The preferred method of implementation would easily have to go to the dynamic programming one because it is significantly more efficient in the long run.