מתמטיקה בדידה - עוצמות 3

מידע כללי

מרצה: מאת: מאת: סוגריים מרובעות מציינות מינות מאריך כתיבה: סוגריים מרובעות מציינות מציינות שאני כתבתי שאני כתבתי שאני כתבתי מטלי שלום שחר פרץ

סיכום - עוצמות 3 (למעשה זה 4)

הגדרה: אוצמת (ארה: משפט קש"ב: $|A| \leq |B| \wedge |B| \leq |A| \implies |A| = |B|$, הגדרה: אוצמת (אוצמת ע"י זיווגים... נזכיר: משפט קש"ב: $|A| = |B| \wedge |B| \leq |A|$ היא עוצמת \mathbb{Q} , \mathbb{N}_{even} , \mathbb{N}_{odd} , \mathbb{Z} , $\forall n \in \mathbb{N}_{+}$. \mathbb{N}^{n} היא עוצמת מניה:

 $|\mathbb{Q}| = \aleph_0$ הוכחה ש

נשתמש בקש"ב.

- $\mathbb{N} \subseteq \mathbb{Q}$ מהכלה $\mathbb{Q} = \mathbb{N}$
- על בכיוון שקימת שקימת שקימת פונקציה על בכיוון $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}_+|$ מספיק להראות שקימת פונקציה על בכיוון $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}_+|$ (ע"פ טענה שתלויה ב־ $|\mathbb{A} \times \mathbb{Z} \times \mathbb{N}_+|$ נגדיר $|\mathbb{A} \times \mathbb{Z} \times \mathbb{N}_+|$ [הערה: אפשר גם בלי אקסיומת הבחירה].

 $|\mathbb{Q}|=leph_0$ מכיוון ש־ $lpha^-$ א נקבל סה"כ מקש"ב $|\mathbb{Z} imes\mathbb{N}_|=lpha^-$ מכיוון ש

משפט: (AC) – מותר להשתמש בו, למרות התלות ב־AC: איחור לכל היותר בן מנייה של קבוצות לכל היותר בנות מנייה $|I| \leq \aleph_0$ אחוף של קבוצות עבור $\{A_i \in I\}$ אסוף של קבוצות עבור $\{A_i \in I\}$ אחוף של קבוצות עבור $\{A_i \in I\}$ ולכל $\{A_i \in I\}$ מתקיים $\{A_i \in \mathcal{N}_0\}$, אז $\{A_i \in \mathcal{N}_0\}$ או ולכל $\{A_i \in I\}$ מתקיים $\{A_i \in \mathcal{N}_0\}$ או ולכל $\{A_i \in \mathcal{N}_0\}$ אחוף של פוע מעניה בנות מנייה משפט: ולכל היותר בנות מנייה משפט: ולמני מעניה בנות מנייה בנות מנייה משפט: ולמני מנייה של מעניה בנות מנייה בנו

. בקש"ב: בקש"ב: את העוצמה של הקבוצה (נשתמש: $A = \{X \in \mathcal{P}(\mathbb{N}) \mid x \text{ is finite}\}$

- $\aleph_0=|\mathbb{N}|\leq |A|$ נגדיר פונקציה חח"ע ולכן $f=\lambda n\in\mathbb{N}.\{n\}$. $f\colon\mathbb{N}\to A$ זוהי פונקציה חח"ע ולכן: $|A|\geq \aleph_0$ כדרוש.
- אז $x \in A$ אז $x \in A$ סופית. נפלג למקרים: אם $x \in A$ אז $x \in A$ טופית. נפלג למקרים: אם $x \in A$ אז $x \in A$ אז $x \in A$ ולכן $x \in A$ אחרת, $x \in A$ אחרת, $x \in A$ אז $x \in A$ אז $x \in A$ אז $x \in A$ אחרת, $x \in A$ אחרת, $x \in A$ אחרת, $x \in A$ אז $x \in A$ אז $x \in A$ אז $x \in A$ אולכן $x \in A$ אחרת, $x \in A$ אולכן $x \in A$ אולכן את ההכלה ולכן $x \in A$ אולכן איחוד בן־מניה של קבוצות סופיות (ובפרט בנות מניה), ולכן, לפי משפט היא לכל היותר בת מניה. מטרנזיטיביות $x \in A$ כדרוש.

תרגיל נוסף: נניח ש־ $A\subseteq\mathcal{P}(\mathbb{R})$ קבוצה של קטעים פתוחים ולא ריקים. מתקיים

$$c_1, c_2.c_3 \in A.c_1 \neq c_2 \neq c_3 \implies c_1 \cap c_3 \cap c_3 = \emptyset$$

. הוכיחו ש־ $|A| \leq \aleph_0$. מותר להשתמש אקטיבית באקסיומת הבחירה (=מותר להשתמש באקסיומת הבחירה כמו שהיא).

הוכחה: יהי $c \in A$ הוא קטע פתוח ולא ריק ולכן קיים $q \in \mathbb{Q} \land q \in c$ (מתוך צפיפות הרציונלים בממשיים). נשתמש ב־ $c \in A$ הוג קטע פתוח ולא ריק ולכן קיים $q_c \in A$ (חובה להשתמש כאן באקסיומת הבחירה כי $a \in C$ אוסף של אינסוף קבוצות, אינסוף בחירות]. נגדיר $a \in C$ היא לא בהכרח חח"ע. מהנתון, נובע שלכל $a \in C$ כלומר מבצעים כאן אינסוף בחירות]. נגדיר $a \in C \in A$ כלומר מבעים כאן אינסוף בחירות]. נגדיר שלא כן, לכן קיימים $a \in C$ (אשר $a \in C_1, c_2, c_3 \in C_1, c_2, c_3 \in C_1, c_2, c_3 \in C_1, c_3$ כאשר $a \in C_1, c_2, c_3 \in C_1, c_3$ כאשר $a \in C_1, c_2, c_3 \in C_1$ (אוכים בחיר בחירות) משום ש־ $a \in C$ וזו סתירה). משום ש־ $a \in C$ וזהו איחוד בן מניה של קבוצות סופיות, ולפי משפט לכל היותר בן־מניה. סה"כ $a \in C$ (אוכל היותר בת מניה).

הוכחת המשפט לגבי איחוד לכל היותר בן מניה: