

UNIVERSIDADE DE SOROCABA

ENGENHARIA DE COMPUTAÇÃO

IAGO MACHADO NEUBAUER DE ARRUDA, JULIO CESAR GONÇALVES VIEIRA,
KAIC PABLO APARECIDO DIAS, LEONARDO DE PAULA CARDOSO, LUCAS AMARAL FERREIRA,
LUIZ GUSTAVO SANTOS VIEIRA

Projeto integrador

Reconhecimento e separação de objetos

Sorocaba

IAGO MACHADO NEUBAUER DE ARRUDA, JULIO CESAR GONÇALVES VIEIRA, KAIC PABLO APARECIDO DIAS, LEONARDO DE PAULA CARDOSO, LUCAS AMARAL FERREIRA, LUIZ GUSTAVO SANTOS VIEIRA

Projeto integrador: Reconhecimento e separação de objetos

Documentação apresentada ao curso de Engenharia da Computação, destinado à disciplina Projeto Integrador: Desafios de Programação da Universidade de Sorocaba como requisito para a apresentação do trabalho de segundo semestre.

Orientador: Paulo Henrique Rodrigues

Sorocaba

2023

SUMÁRIO

1.	RESUMO	4
2.	NOME COMPLETO DOS INTEGRANTES	5
	INTRODUÇÃO	
4.	OBJETIVOS ESPECÍFICOS	
	4.1. Específicos	7
	4.2 Mensuráveis	8
5.	METODOLOGIA	10
	5.1. Sistema de Visão	10
	5.1.1. Pesquisa e aquisição de Hardware	10
	5.1.2. Aprendizado Inicial	10
	5.1.3. Escolha do Método de Identificação	10
	5.1.4. Implementação da Identificação	10
	5.2. Manipulação de objetos	.11
	5.2.1. Escolha do Hardware para Manipulação	.11
	5.1.2. Aprendizado Inicial	.11
	5.1.3. Implementação das rotinas de manipulação	.11
	5.3. Integração	.11
6.	ATIVIDADES	12
	6.1. Plano de projeto - Visão	12
	6.1.1. Workflows	13
	6.2. Plano de projeto - Manipulação	14
7.	CRONOGRAMA	16
	7.1. Documentação	16
	7.2. Sistema de manipulação	16
	7.3. Sistema de visão	17
	CONCLUSÃO	
9.	REFERÊNCIAS BIBLIOGRÁFICAS	19

1. RESUMO

Este projeto tem como principal objetivo promover o aprendizado e o desenvolvimento de diversas habilidades, incluindo lógica de programação, implementação digital, tomada de decisões na escolha de aplicações, colaboração em equipe e outras competências essenciais para todos os seus participantes. Além disso, busca integrar tecnologias de hardware e software para resolver um problema específico.

Neste artigo, apresentaremos o progresso e os principais aspectos do desenvolvimento de um projeto de reconhecimento de objetos e padrões. A abordagem selecionada combina a utilização do módulo de câmera do ESP32-CAM com a aplicação de aprendizado de máquina (machine learning) Edge Impulse e a parte física do projeto que envolve a manipulação e separação dos objetos detectados, foi escolhido um Arduino Uno em conjunto com um braço robótico controlado por servos motores para realizar estas ações.

2. NOME COMPLETO DOS INTEGRANTES

•	IAGO MACHADO NEUBAUER DE ARRUDA	00115870
•	JULIO CESAR GONÇALVES VIEIRA	00114997
•	LUCAS AMARAL FERREIRA	00114555
•	LUIZ GUSTAVO SANTOS VIEIRA	00115993
•	KAIC PABLO APARECIDO DIAS	00114304
•	LEONARDO DE PAULA CARDOSO	00115032

No qual o aluno Julio Cesar Gonçalves Vieira está designado como líder do grupo para envios e contatos via e-mail com o Professor Orientador. No entanto, todos os participantes são responsáveis igualmente pela execução e desenvolvimento do projeto.

3. INTRODUÇÃO

O objetivo do desenvolvimento desse projeto busca capacitar os participantes a dominar a utilização do arduino e seus componentes para controle e manipulação de objetos através do braço robótico utilizado e, para a visão, a implementação da inteligência artificial no módulo ESP32-CAM é uma das metas fundamentais do projeto. Além disso, um dos desafios cruciais consiste na integração harmoniosa dos componentes, incluindo a comunicação eficiente entre o módulo de visão e o braço robótico, permitindo que a visão seja traduzida em ações físicas do braço robótico.

O reconhecimento de objetos e padrões é uma área essencial no campo da visão computacional e automação. A escolha de utilizar o ESP32-CAM como plataforma de captura de imagem e o Edge Impulse como ferramenta de aprendizado de IA demonstra como a tecnologia está ao alcance de todos e pode ser aplicada em diversas tarefas consideradas repetitivas ou tediosas para serem executadas manualmente.

4. OBJETIVOS ESPECÍFICOS

4.1. Específicos

O projeto se divide em duas partes durante seu desenvolvimento que serão integradas de forma eficaz e eficiente, essas partes serão classificadas e separadas em visão e manipulação.

O sistema de visão do projeto tem o objetivo de realizar a identificação dos objetos submetidos a avaliação da câmera. O hardware escolhido para realizar essa tarefa foi o ESP32-CAM, devido sua confiabilidade de imagem, sua integração com a IDE do arduino e alto conhecimento no mercado, tendo várias fontes de pesquisa caso haja problemas ou dúvidas com sua implementação.

Exemplo da ESP32-CAM

Nessa opção, sua programação para o funcionamento não será tão aprofundada, sendo mais viável a utilização dos exemplos oferecidos pela plataforma

do Edge Impulse ou caso seja preferível o uso da biblioteca OpenCV, onde será necessário apenas da câmera tirando fotos dos objetos. O real trabalho a ser feito será o treinamento da IA ou configuração e programação para utilização da biblioteca.

Quando se trata da manipulação dos objetos, visto que é algo um pouco mais

Braço Robótico utilizado

dinâmico, foi escolhido a utilização de um braço robótico controlado por servos

motores, visto que os integrantes do grupo já têm uma familiaridade com a sua implementação e não serão utilizados apenas exemplos do próprio Arduino. O algoritmo deverá ser desenvolvido especificamente para que o braço consiga levar o objeto desejado do ponto X ao ponto Y, ou, se for o caso, até o ponto Z.

Ao final de tudo isso ainda existe a integração dos sistemas, esta será realizada da seguinte maneira: o Arduino Uno, conectado a uma fonte, irá ler o monitor Serial da ESP32-CAM que estará enviando o nome dos objetos avaliados. A conexão entre os hardwares será feita pelo protocolo de comunicação chamado Universal Asynchronous Receiver / Transmitter (UART), nesse protocolo a utilização dos pinos RX (receiver) e TX (transmitter) das placas é imprescindível sendo conectado o RX de uma placa em um TX da outra placa, e vice-versa.

Desse modo, teremos a câmera fazendo a análise dos objetos e o Arduino recebendo os critérios para a devida separação deles.

Esquemático da conexão UART

4.2 Mensuráveis

Como pontapé inicial do programa de visão utilizamos exemplos (disponibilizados online) para se acomodar com o sistema da ESP32-CAM, hardware utilizado para o sistema de visão do projeto. Nesse primeiro momento foi feito o uso de exemplos de identificação de objetos utilizando a biblioteca OpenCV em Python. Como esta biblioteca tem seu repositório de objetos desconhecido pelos componentes do grupo, se tornou mais factivo a ideia de montar uma biblioteca de identificação própria para o projeto.

Depois de algumas pesquisas, foram encontradas duas alternativas para o seguimento da identificação de objetos, uma delas é utilizar a biblioteca de Python e, está tendo um grande poder de manipulação de imagens, fazer uma identificação dos contornos das formas geométricas. Por exemplo, caso seja posto a análise um quadrado, será contado 4 contornos na imagem, dentro do programa em Python.

A segunda alternativa se baseia na utilização de uma aplicação online chamada Edge Impulse. Com ela foi possível criar um modelo de treinamento Machine Learning a partir de dados coletados pelo usuário, existindo para esse método até mesmo um workflow pré-definido. Depois do treinamento e construção do modelo, este método é utilizado diretamente na linguagem do arduino com o hardware selecionado, tendo a função de, quando detectado o objeto escrever seu nome no monitor serial.

Para os objetos que serão separados, foi escolhido pelo grupo a utilização de impressão 3D, até o momento foi imprimido apenas três unidades, uma pirâmide, um cubo e um cilindro, mas está sendo planejado para o futuro a impressão de mais unidades de cada uma dessas três peças e junto com essa impressão uma modificação na pirâmide, para que o braço possa ter uma pegada mais confiável no objeto.

5. METODOLOGIA

5.1. Sistema de Visão

5.1.1. Pesquisa e aquisição de Hardware

Realizou-se uma pesquisa para identificar as melhores opções de hardware para o projeto, levando em consideração a confiabilidade de imagem, integração com a IDE do Arduino e disponibilidade no mercado.

Após conclusão, foi decidida a aquisição do módulo de câmera ESP32-CAM devido às suas vantagens, como sua facilidade de uso.

5.1.2. Aprendizado Inicial

Foram feitos testes para a capacitação e utilização da câmera em processamento de imagens para a identificação de contornos de objetos.

5.1.3. Escolha do Método de Identificação

Após análise entre dois métodos de identificação de objetos, o OpenCV e o Edge Impulse, foi decidido que a ferramenta Edge Impulse se adequa ao sistema com maior índice de sucesso devido à sua capacidade de criar modelos de aprendizado de máquina específicos para o projeto.

5.1.4. Implementação da Identificação

Foram coletadas imagens dos objetos de interesse e adicionados títulos e rótulos às imagens para treinamento do modelo.

Foi feita a configuração do projeto no Edge Impulse e exportamos o modelo treinado para uso no Arduino.

O ESP32-CAM foi programado para capturar imagens, processar e identificar objetos, exibindo os resultados no monitor serial.

5.2. Manipulação de objetos

Inspirado em sistemas de manipulação comumente utilizados na indústria, optou-se pela utilização de um modelo robótico de quatro eixos, controlado por uma placa Arduino Uno, que, através da troca de informações com o sistema de visão, realizará a separação das peças estipuladas pelo processo.

5.2.1. Escolha do Hardware para Manipulação

O grupo optou por utilizar um braço robótico controlado por servos motores em conjunto com um Arduino Uno para a manipulação dos objetos.

5.1.2. Aprendizado Inicial

Foram feitos testes para a capacitação e utilização do controle de servo motores para a aplicação conjunta de quatro peças interligadas pela estrutura mecânica do braço robótico.

5.1.3. Implementação das rotinas de manipulação

O algoritmo foi desenvolvido de forma que, a partir do recebimento da informação da identificação da peça que será manipulada, irá seguir uma sequência de movimentos que resultarão na pega do material e depósito no local designado para sua separação.

5.3. Integração

Ao se tratar da escolha dos métodos de integração, era consenso entre o grupo pensar no modo mais simples, logo foi escolhido o método UART, que será uma ligação de comunicação serial entre o Arduino, que faz a manipulação e separação dos objetos, e a ESP32-CAM, que fará a identificação dos objetos, com as informações no sistema o Arduino terá uma condicional para cada objeto que for enviado para ele.

Desse modo, a passagem de informação entre as partes envolvidas poderá ser eficaz e eficiente, sem ter perdas ou possíveis problemas momentâneos, o que poderia ocorrer se usasse módulos Wi-fi ou Bluetooth.

6. ATIVIDADES

O projeto visa criar um sistema de visão controlado por meio do ESP32-CAM, que é capaz de identificar formatos e padrões em objetos e a separação de peças através de um modelo de braço robótico controlado por uma placa Arduino Uno.

6.1. Plano de projeto - Visão

Checklist:

- Pesquisa de aplicações para referência do projeto;
- Definição e aquisição de Hardware;
- Aplicação de exemplo para aprendizado de utilização da câmera;
- Escolha do método de identificação:
 - OpenCV (Python) Edge Impulse;
- Integração entre sistema de visão e manipulação.

Em relação às opções do método de identificação temos duas:

<u>OpenCV</u>: Essa opção é realizar a utilização de uma biblioteca em Python que permite a manipulação e processamento de imagens e tarefas relacionadas a visão computacional.

Nessa opção não será utilizada uma inteligência artificial para identificação dos formatos esperados, mas a sim um algoritmo que faz a edição da imagem adquirida para identificar o número de contornos do objeto, por exemplo um quadrado teria 4 contornos, um triângulo teria 3 contornos e por aí vai.

- Prós: Câmera ao vivo, programa mais leve;
- Contras: N\u00e3o foi feita pesquisa para a correta aplica\u00e7\u00e3o, incerteza de sua efic\u00e1cia.

<u>Edge Impulse</u>: Nessa escolha é feito o uso de uma aplicação de desenvolvimento para machine learning em dispositivos de borda, que controlam dados entre duas redes.

Neste caso, o uso de inteligência artificial se torna imprescindível. Como criadores deste projeto, será necessário que fotos sejam tiradas para a coleta de dados e os objetos desejados sejam identificados para a detecção. Após a coleta e rotulagem das imagens, será necessário configurar o restante do projeto e inserir no arduino, tendo no terminal serial a saída com o nome do objeto identificado.

- Prós: Mais fácil de usar; maior confiabilidade na identificação da imagem;
- Contras: Demora para remodelagem de fotos.

6.1.1. Workflows

Caso: OpenCV

- Sinalizar os objetos;
- Utilizar recursos de edição em Python (blur, grayscale, canny edges...)
- Fazer os ajustes de edição com uma foto local;
- Identificar a eficácia do programa;
- Executar.

Caso: Edge Impulse

- Coletar imagens;
- Nomear imagens;
- Treinar modelo;
- Exportar modelo;
- Executar modelo.

6.2. Plano de projeto - Manipulação

- Pesquisa de aplicações para referência do projeto: O grupo foi em busca de aplicações que utilizam modelos robóticos que manipulam objetos automaticamente, sem intervenção humana no meio do processo.
- Definição e aquisição de hardware: O grupo optou por utilizar um braço robótico controlado por servos motores em conjunto com um Arduino Uno para a manipulação dos objetos.
- Aplicação de exemplos de utilização de servo motores: Os servos motores podem ser utilizados para formar os eixos x, y e z do robô, sendo responsável por movimentar as articulações do braço robótico.
- Montagem mecânica do braço robótico: A estrutura do braço mecânico é formada por um servo motor em sua base responsável por movimentar o robô entre esquerda e direita, um servo motor em sua articulação para permitir o movimento de frente, trás e um servo motor para a garra permitindo abrir e fechar
- Ligação elétrica do braço robótico com o Arduino: A ligação entre robô e Arduino é feita a partir dos servos motores onde o positivo do servo é conectado ao 5V do Arduino, o negativo é conectado ao GND (terra) e o sinal é conectado as entradas analógicas do Arduino.
- Desenvolvimento do código base para movimentação dos quatro eixos do robô:
 para o código de movimentação do servo motor, utilizamos seus pontos em um plano cartesiano, cada um sendo responsável por um eixo x, y, e z.
- Implementação de casos no código: foi introduzido no código, funções de separação para cada modelo de peça, fazendo com que o robô separe as de acordo com seu formato, em seu determinado local definido pelo grupo.
- Integração entre sistema de manipulação Arduino com o sistema de visão ESP32-CAM.
- Base para a fixação do robô: base feita de madeira com capacidade de comportar o robô e o demais hardwares.
- Suporte para câmera: Suporte de acrílico, para manter a câmera em uma posição específica para capturar imagens ou vídeos sem nenhum problema.
- Peças que serão detectadas e manipuladas: Utilizar um Cubo, um Triângulo e um Cilindro feitos por uma impressora 3D.

- Projetar ou comprar recipiente para depósito das peças: Utilizar bases de madeira para receber as peças.
- Ambiente com iluminação controlada para o sistema de visão: Instalar em um lugar fixo próximo aos objetos com um suporte em volta para que não tenha riscos de interferências de diferentes intensidades de luzes naturais ou artificiais.

7. CRONOGRAMA

7.1. Documentação

- 1. Escolha do tema do Projeto Integrador 17 a 31 de agosto.
- Validação do tema do projeto com o Professor Orientador 31 de agosto a 7 de setembro.
- Entrega 1 Documentação inicial 7 a 14 de setembro.
- 4. Entrega 2 Documentação 28 de setembro.
- 5. Considerações finais para a apresentação em sala 16 a 23 de novembro.
- 6. Considerações finais para a apresentação em sala 23 a 30 de novembro.
- 7. Apresentação do projeto integrador 2 de dezembro.

7.2. Sistema de manipulação

- 1. Pesquisa de aplicação de sistemas de manipulação 31 a 7 de setembro.
- 2. Aquisição de materiais de consumo 7 a 14 de setembro.
- 3. Aquisição da placa Arduino Uno 7 a 14 de setembro.
- 4. Aquisição do braço robótico 7 a 14 de setembro.
- 5. Desenvolvimento do software para movimentação de 1 servo motor 14 a 21 de setembro.
- Desenvolvimento do software para movimentação dos 4 servos em conjunto –
 21 a 28 de setembro.
- Desenvolvimento do software Rotina de movimentação 28 de setembro a 5 de outubro.
- 8. Desenvolvimento do software Rotina de movimentação 5 a 12 de outubro.
- 9. Troca de sinais com o Sistema de visão 12 a 19 de outubro.
- 10. Troca de sinais com o Sistema de visão 19 a 26 de outubro.
- 11. Construção da maquete/ estrutura física do projeto 26 de outubro a 6 de novembro.
- 12. Construção da maquete/ estrutura física do projeto 2 a 9 de novembro.
- 13. Entrega do projeto finalizado 9 a 16 de novembro.

7.3. Sistema de visão

- 1. Pesquisa de aplicação de sistemas de visão 31 de agosto a 7 de setembro.
- 2. Aquisição dos materiais de consumo 7 a 14 de setembro.
- 3. Aquisição do módulo ESP32-CAM 7 a 14 de setembro.
- 4. Teste com programa de visão genérico 14 a 21 de setembro.
- 5. Implementação de IA (Edge Impulse) 21 a 28 de setembro.
- 6. Desenvolvimento da aplicação 28 de setembro a 5 de outubro.
- 7. Desenvolvimento da aplicação 5 a 12 de outubro.

8. CONCLUSÃO

A ideia inicial deste projeto estava enraizada na automação, combinando a capacidade de identificar formas e padrões em objetos com o desenvolvimento de um algoritmo para um braço robótico separar peças. Ao longo do projeto, houve uma constante evolução no nosso entendimento do tema.

Uma das decisões cruciais foi a escolha das tecnologias, incluindo o ESP32-CAM para visão, o Edge Impulse para aprendizado de máquina e o Arduino Uno para controle do braço robótico. Este projeto ilustra como a tecnologia moderna pode simplificar tarefas complexas, tornando-as acessíveis e eficientes.

Em resumo, este projeto destaca o potencial transformador da tecnologia quando aplicada de maneira eficaz, inspirando-nos a continuar buscando soluções inovadoras e aplicando nossa criatividade para resolver problemas do mundo real.

9. REFERÊNCIAS BIBLIOGRÁFICAS

GREAT LEARNING. OpenCV Tutorial: A Guide to Learn OpenCV in Python. **Great Learning, 2023.** Disponível em: https://www.mygreatlearning.com/blog/opencv-tutorial-in-

python/#:~:text=OpenCV%20is%20a%20Python%20library,learning%20more%20about%20the%20library.>

EDGE IMPULSE. Sobre. **Edge Impulse, 2023.** Disponível em: https://edgeimpulse.com/about>

DRONEBOT WORKSHOP. ESP32-CAM Object Detection with Edge Impulse. **DroneBot Workshop, 2023.** Disponível em: https://dronebotworkshop.com/esp32-object-detect/

NUNES, LUCAS. Comunicação serial Arduino via protocolo UART. **Maker Hero, 2022.**Disponível em: https://www.makerhero.com/blog/comunicacao-serial-arduino-via-protocolo-uart/>