CS120 Project Tutorial

YUELIN LIU FALL 2022

Overview

 Build an acoustic toy computer network(Athernet). Each layer is built upon the former layer.

Project 1: Physical Layer

Project 2: MAC Layer

Project 3: TCP/IP Layer

Project 4: Application Layer

Project 1 Acoustic Link

- Project 1 is the basis of ATNet, parameters in project 1 are very important when you are facing some magic problems.
- Tools
 - ●JUCE & Projucer (C++): get rid of some annoying work (e.g. multi-thread for speaker and mic)
 - Windows OS:sound card may give bad performance in MacOS
 - You can also use other languages (e.g. Python and Java).

NODE File Helper INPUT.TXT OUTPUT.TXT Bitstream, Bitstream **FIFO FIFO** Bitstream Bitstream Physical Layer Tx Thread Rx Thread Coding Decoding Modulation Demodualtion Packet Detection Add Header and Synchronization DAC Speaker

Play with the Sound Card

- Recommended Tools for Windows
 - (https://github.com/SIST1C407/ATNet/blob/main/doc/01_win_asio_juce)
 - Microsoft Visual Studio
 - ASIO Driver and SDK
 - JUCE Library and Projucer
- Sample Player

(https://github.com/SIST1C407/ATNet/tree/main/doc/02_write_a_player)

Useful Apps

Basic signal knowledge

- ADC: takes in a continuous analog signal and converts it into a discrete digital signal by sampling
- Sample rate: number of samples of signal per second

•Common: 8k, 44.1k, 48k

Basic signal knowledge

Bit depth: quantization fineness of the signalCommon bit depth: 16

 Channel: number of output channels from a DAC, can be mono (1channel) or stereo (2 channels)

 Frequency Offset: Devices usually use a single oscillator to derive clocks for sampling and modulation. But the oscillators in the transmitter and receiver do not run at the exact same frequency.

Modulation and Demodulation

- Modulation
 - the transmission of a signal by using it to vary a carrier wave
 - Use carrier wave to represent 0 and 1
 - Check Lec 3 for more details
- Demodulation
 - Use correlation
 - Sample 0 * carrier wave > 0
 - Sample 1 * carrier wave < 0 (PSK)</p>
 - But the threshold may not be 0

Header and frame detection

- Header
 - Help receiver to find out the accurate start of a frame.
 - Just add a predefined wave pattern before your data.
 - Select a signal with good autocorrelation.

- Frame detection and synchronization
 - When receiving enough samples, do correlation between header and received samples to determine whether there is something transmitting.
 - Once the occurrence of a new frame is confirmed, synchronize the header and find the start of the frame.

Summary

Practical issue

- Find a balance between transfer rate and accuracy(>99%).
 - A higher rate leads to a lower accuracy, and vice versa

- Each frame contains a header, the longer the frame is, the shorter the total length is, the less time you use.
 - Speaker needs time to warm up, do not use short header

Project 1 Check

- Deadline: Oct.16 afternoon
- Each group has around 10 minutes, show your checkpoints to TAs and gain corresponding points.
- After check, submit your code to Blackboard on the spot. You can only submit once.
- I'll send the time arrangement before deadline to you.