226

Z

Koule, která má objem 1 litr, má průměr přibližně:

A. 6,2 cm

B. 12,4cm C. 15,5cm D. 16,6cm

E. 20,9 cm

227

Z

Při rekonstrukci náměstí narazili dělníci na dvě stejná válcová potrubí s vnitřním průměrem 12 cm, která byla ve velmi špatném stavu. Odbor životního prostředí je nařídil nahradit jedním válcovým potrubím se stejným průtokem. Vnitřní průměr nového potrubí bude:

A. $12\sqrt{2}$ cm

B. 16 cm

C. $16\sqrt{2}$ cm

D. 18 cm

E. $18\sqrt{2}$ cm

228

7

Prodloužíme-li hranu krychle o 1 m, zvětší se její objem 125krát. Délka hrany původní krychle je:

A. 1,25 m

B. 50 cm

 $C. 0.25 \, m$

D. $\frac{1}{3}$ m

E. 60 cm

229

Z

Dutá lešenářská ocelová trubka má vnější průměr 5 cm, vnitřní průměr 4,4 cm a délku 5 m. Hustota oceli je přibližně 7800 kg·m⁻³. Hmotnost trubky je přibližně:

A. 9,3 kg

B. 11,3 kg

C. 13,3 kg

D. 15,3 kg

E. 17,3 kg

230

Trvanlivé mléko se prodává v krabicích, které obsahují 1 litr mléka. Petr si koupil dvě krabice mléka a doma mléko přelil do válcového hrnce vysokého 30 cm s vnitřním průměrem 10 cm. Hladina mléka byla

pod okrajem hrnce v hloubce přibližně: B. 30 mm

C. 35 mm

D. 40 mm

E. 45 mm

7

Z

7

Z

231

A. 25 mm

Stará jednotka délky stopa je rovna 0,3048 m a yard je roven 0,9144 m. Krychlová stopa je:

A. ½ krychlového yardu

B. ½ krychlového yardu

C. ½ krychlového yardu

D. ½ krychlového yardu

E. ½ krychlového yardu

232

Do dřevěné krychle je vyvrtána prohlubeň tvaru rotačního kuželu, jehož podstavou je kruh vepsaný do jedné stěny krychle a jehož vrchol leží ve středu protější stěny krychle. Počet procent, o která se po vyvrtání prohlubně zmenšil objem původní krychle, je přibližně:

A. 21,5

B. 26.2

C. 52,4

D. 75,8

E. 78,5

233

Válec má poloměr podstavy $r = 14 \,\mathrm{cm}$ a výšku v = 16 cm. Průnikem tohoto válce a roviny ρ rovnoběžné s jeho osou je čtverec ABCD, viz obrázek. Vzdálenost osy válce od roviny ρ je:

A. $6\sqrt{2}$ cm B. 10,5 cm

C. 12 cm

D. $2\sqrt{33}$ cm

E. $\sqrt{41}$ cm

Z

Pro pravidelný čtyřboký jehlan ABCDV platí, že obsah podstavy ABCD je roven obsahu řezu ACV. Poměr výšky jehlanu a délky podstavné hrany je:

A.
$$\frac{1}{2}\sqrt{3}:1$$

B.
$$\frac{1}{2}\sqrt{2}:1$$

C.
$$\sqrt{2}:1$$

A.
$$\frac{1}{2}\sqrt{3}:1$$
 B. $\frac{1}{2}\sqrt{2}:1$ C. $\sqrt{2}:1$ D. $2\sqrt{2}:1$ E. $2\sqrt{3}:1$

E.
$$2\sqrt{3}:1$$

235

Je dána krychle ABCDEFGH. Bod V je střed její hrany AB a bod Kje střed její hrany GH. Označme S_1 obsah trojúhelníku HKA, S_2 obsah trojúhelníku HKV a S_3 obsah trojúhelníku HKB. Platí:

A.
$$S_1 = S_2 < S_3$$

B.
$$S_1 = S_2 > S_3$$
 C. $S_1 = S_2 = S_3$

C.
$$S_1 = S_2 = S_3$$

D.
$$S_1 = S_3 < S_2$$
 E. $S_1 = S_3 > S_2$

E.
$$S_1 = S_3 > S_2$$

236

Střecha má tvar pláště rotačního kuželu s průměrem podstavy 6 m a výškou 2,5 m. Kolik korun bude stát plech na pokrytí střechy, jestliže 1 m² plechu stojí 152 Kč a jestliže na spoje, překrytí a odpad je nutné zakoupit 15 % plechu navíc?

A. přibližně 3 300 Kč

B. přibližně 4 300 Kč

C. přibližně 5800 Kč

D. přibližně 6400 Kč

E. přibližně 7 100 Kč

237

Z

Střecha věže má tvar pláště pravidelného čtyřbokého jehlanu s podstavnou hranou délky $a=4\,\mathrm{m}$ a výškou $v=9\,\mathrm{m}$. Kolik m² plechu bude zapotřebí na pokrytí střechy, jestliže na spoje, překrytí a odpad musíme počítat s 5 % plechu navíc?

A. přibližně 77,4 m²

B. přibližně 65,3 m²

C. přibližně 58,9 m²

- D. přibližně 54.5 m²
- E. jiné množství, než je uvedeno v bodech A D

Je dán pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu C a odvěsnami délek $a = 12 \,\mathrm{cm}$ a $b = 5 \,\mathrm{cm}$. Při rotaci trojúhelníku ABC kolem jeho přepony se vrchol C pohybuje po kružnici délky:

- A. $\frac{120}{12}$ π cm
- B. $\frac{13}{12} \pi \text{ cm}$
- C. $15.6 \,\pi$ cm

- D. $2\sqrt{60} \ \pi \ \text{cm}$ E. $\sqrt{\frac{60}{17}} \ \pi \ \text{cm}$

239

238

Z

Součet délek všech stěnových i tělesových úhlopříček v krychli s hranou délky 1 dm je:

- A. $4(\sqrt{6}+1)\sqrt{3}$ dm
- B. $4(\sqrt{2}+1)\sqrt{3} \, dm$
- C. $6(\sqrt{3}+1)\sqrt{2} \text{ dm}$

D. $3(\sqrt{3}+2)\sqrt{2} \text{ dm}$

E. $3(\sqrt{2}+3)\sqrt{3} \, dm$

249

Obdélníkový list papíru s rozměry 20 cm × 30 cm může být dvěma způsoby svinut bez překrytí do tvaru pláště rotačního válce, viz obrázek. Určete poměr objemů příslušných válců.

250

Pravidelný čtyřstěn, tj. trojboký jehlan, jehož všechny čtyři stěny jsou shodné rovnostranné trojúhelníky, má obsah jedné stěny $16\sqrt{3}$ dm². Jaký je jeho objem?

251 Z

Je dána koule a rovnostranný rotační kužel, tj. rotační kužel, jehož osovým řezem je rovnostranný trojúhelník. Vrchol kuželu i kružnice omezující podstavu kuželu leží na povrchu koule. Určete poměr povrchů koule a kuželu.

252

- a) Zobrazte ve volném rovnoběžném promítání krychli ABCDEFGH s hranou délky $a=4\,\mathrm{cm}$ a vepište jí pravidelný čtyřboký jehlan ABCDP, kde bod P je středem stěny EFGH.
- b) Vypočtěte objem V jehlanu ABCDP.
- c) Vypočtěte povrch S jehlanu ABCDP.

253

Z

Z

Z

Vodní rezervoár, jehož objem je V, má tvar rotačního válce ukončeného polokoulí s poloměrem podstavy r. Osový řez rezervoáru je na obrázku.

- a) Plášť rezervoáru je tvořen pláštěm válce a polovinou kulové plochy. Vyjádřete jeho obsah v závislosti na r a V.
- b) Určete obsah pláště rezervoáru, jestliže $r = 1 \,\mathrm{m}, \ V = 120 \,\mathrm{hl}.$

254

Je dána rovina ϱ a v ní úsečka AC. Dále je dán bod B, který v rovině ϱ neleží. Trojúhelník ABC je pravoúhlý s pravým úhlem u vrcholu C, viz obrázek:

Platí $|AC| = 8 \,\mathrm{dm}$, $|AB| = 3 \cdot |BC|$. Odchylka roviny ABC od roviny ϱ je 30°. Určete vzdálenost bodu B od roviny ϱ .

Ζ

Z