BUSINESS REPORT ON ADVANCED STATISTICS

Name: Yashveer Kothari. A

Project: Advanced Statistics

Course: PGP-DSBA-2022

Date:07th June 2022

TABLE OF CONTENTS

Problem 1A

Executive Summary	0
Introduction	6
Data Description	6
Sample Dataset	7
Describing the Data	7
Data Information	8
Identifying the Missing Values	8
Counting the Values in Column Education	8
Counting The values in Column Occupation	8
Correlation Plot	9
Pair plot	9
Q1. State the null and the alternate hypothesis for conducting one-	way ANOVA for both
Education and Occupation individually	10
Q2. Perform one-way ANOVA for Education with respect to the whether the null hypothesis is accepted or rejected based on the ANOV	
Q3. Perform a one-way ANOVA on Salary with respect to Occupation	a. State whether the null
hypothesis is accepted or rejected based on the ANOVA results	11
Q4. If the null hypothesis is rejected in either (2) or in (3), find out	which class means are
significantly different. Interpret the result. (Non-Graded)	11
Problem 1B	
Q1. What is the interaction between two treatments? Analyse the effect	ts of one variable on the
other (Education and Occupation) with the help of an interaction plot. [1	hint: use the 'point plot'
function from the 'seaborn' function]	12

Q2. Perform a two-way ANOVA based on Salary with respect to both Ed	ucation and
Occupation (along with their interaction Education*Occupation). State the null an	
hypotheses and state your results. How will you interpret this result?	14
Q3. Explain the business implications of performing ANOVA for this particular _14	case study.
Problem 2	
Executive Summary	15
Introduction	15
Data Description_	15
Q2.1. Perform Exploratory Data Analysis [both univariate and multivariate are performed]. What insight do you draw from the EDA?	alysis to be
Sample Dataset	17
Data Information	18
Describing the data	19
Performing Multi Variate Analysis	
Correlation Plot	21
Pair plot	22
Performing Univariate Analysis	23
Q2.2. Is scaling necessary for PCA in this case? Give justification and perform sc	aling40
2.3 Comment on the comparison between the covariance and the correlation matrice data. [on scaled data]	
Q.2.4 Check the dataset for outliers before and after scaling. What insight do you	
Q2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both] _	44
Q.2.7. Write down the explicit form of the first PC (in terms of the eigenvectors	. Use values
with two places of decimals only). [hint: write the linear equation of PC	in terms of
eigenvectors and corresponding features]	46

Q.2.8. Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate? _____47

Q.2.9. Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained] ______50

	LIST OF TABLES						
Table No.	Table Name Pa						
1	Data Set Sample	7					
2	Data Description	7					
3	One-Way ANOVA on Salary w.r.t Education	10					
4	One-Way ANOVA on Salary w.r.t Occupation	11					
5	Two-way ANOVA on salary w.r.t both Education and Occupation	14					
6	Data Set Sample	17					
7	Data Description	19					
8	Scaled Data frame	40					
9	Covariance Matrix	41					
10	New Frame	49					

	LIST OF FIGURES	
Figure No.	Figure Name	Page No.
1	Correlation Plot	9
2	Pair plot	9
3	Interaction Plot	12
4	Point Plot	12
5	Correlation Plot Multi -Variate Analysis	21
6	Pair plot Multi- Variate Analysis	22
7	Distribution plot and Boxplot for Apps	23
8	Distribution plot and Boxplot for Accept	24
9	Distribution plot and Boxplot for Enrol	25
10	Distribution plot and Boxplot for Top 10 perc	26
11	Distribution plot and Boxplot for Top 25 perc	27
12	Distribution plot and Boxplot for Full Time Graduate	28
13	Distribution plot and Boxplot for Apps Part Time Graduate	29
14	Distribution plot and Boxplot for Outstate	30
15	Distribution plot and Boxplot for Room Board	31
16	Distribution plot and Boxplot for Books	32
17	Distribution plot and Boxplot for Personal	33
18	Distribution plot and Boxplot for PhD	34
19	Distribution plot and Boxplot for Terminal	35
20	Distribution plot and Boxplot for S.F. Ratio	36
21	Distribution plot and Boxplot for Perc. Alumni	37
22	Distribution plot and Boxplot for Expend	38
23	Distribution plot and Boxplot for Grad Rate	39
24	Boxplot before scaling the data	43
25	Boxplot after scaling the data	43
26	Scree Plot	48
27	Heatmap after PCA	50

PROBLEM 1

EXECUTIVE SUMMARY:

Salary is hypothesized to depend on educational qualification and occupation. To understand the dependency, the salaries of 40 individuals are collected and each person's educational qualification and occupation are noted. Educational qualification is at three levels, High school graduate, Bachelor, and Doctorate. Occupation is at four levels, Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. A different number of observations are in each level of education – occupation combination.

INTRODUCTION:

The whole aim of this exercise is to explore the data using ANOVA, BOTH One way and two ANOVA. We will analyse the data by applying different Hypothesis and proving if the hypothesis can be accepted or rejected and thus understand the Significant Inter -dependency of the variables on each other or not i.e., if there is any dependency of any variable on the other available variables.

DATA DESCRIPTION:

- 1. Education: The Education qualification of the individual consisting of High School Graduate, Bachelor and Doctorate. It is of Object Data Type consisting of 40 entries
- Occupation: The Occupation of the individual consisting four levels Administrative and clerical, Sales, Professional or specialty, and Executive or managerial. It also Object Data Type and consists of 40 entries.
- 3. Salary: The salary of the individuals. It consists of 40 entries and is of Integer Data Type.

SAMPLE DATASET:

	Education	Occupation	Salary
0	Doctorate	Adm-clerical	153197
1	Doctorate	Adm-clerical	115945
2	Doctorate	Adm-clerical	175935
3	Doctorate	Adm-clerical	220754
4	Doctorate	Sales	170769

	Education	Occupation	Salary
35	Bachelors	Exec-managerial	173935
36	Bachelors	Exec-managerial	212448
37	Bachelors	Exec-managerial	173664
38	Bachelors	Exec-managerial	212760
39	Doctorate	Exec-managerial	212781

Table 1: Data Set Sample

• The Dataset has 40 entries, 3 Variables.

DESCRIBING THE DATASET:

		count	unique	top	freq	mean	std	min	25%	50%	75%	max
Ī	Education	40	3	Doctorate	16	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	Occupation	40	4	Prof-specialty	13	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	Salary	40.0	NaN	NaN	NaN	162186.875	64860.407506	50103.0	99897.5	169100.0	214440.75	260151.0

Table 2: Data Description

- There are 40 entries in all the variables.
- There are a greater number of people with qualifications as a doctor.
- There are a greater number of people with occupation as Prof-Speciality
- The Highest salary is 2,60,151 and lowest being 50,103.

DATASET INFORMATION:

RangeIndex: 40 entries, 0 to 39
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- 0 Education 40 non-null object
1 Occupation 40 non-null object
2 Salary 40 non-null int64
dtypes: int64(1), object(2)

- There are a total of 40 entries, 3 variables namely Education, Occupation and salary, where Salary is Integer Data Type and other two are Object Data Type.
- There are 40 rows and 3 Columns.

IDENTIFYING THE MISSING VALUES:

Education 0
Occupation 0
Salary 0
dtype: int64

• There are no missing values in any of the variables.

COUNTING THE DIFFERENT LEVELS IN EDUCATION:

Doctorate 16 Bachelors 15 HS-grad 9

 There is a total of 16 Doctors, 15 Bachelors and 9 High school Graduates in variable Education.

COUNTING THE DIFFERENT LEVELS IN OCCUPATION:

Prof-specialty 13
Sales 12
Adm-clerical 10
Exec-managerial 5

- There is a total of 13 Prof-Speciality, 12 Sales, 10 Adm-clerical, 5 Exec-Managerial.
- In salary, every person has different salary.

CORRELATION PLOT:

Correlation Plot

There is no correlation between the variables.

PAIRPLOT:

Fig 2: Salary Pair plot

• Since there is no correlation there is no pair plot except for salary itself

PROBLEM 1A:

Q1. State the null and the alternate hypothesis for conducting one-way ANOVA for both Education and Occupation individually

A. Hypothesis for Education using One way ANOVA:

Null Hypothesis HO: The mean salary value is same for all the categories of Education

Alternate Hypothesis HA: The mean salary value is different in at least one category of Education.

B. Hypothesis for Occupation using One way ANOVA:

Null Hypothesis HO: The mean salary value is same for all the categories of Occupation

Alternate Hypothesis HA: The mean salary value is different in at least one category of Occupation.

Q2. Perform a one-way ANOVA on Salary with respect to Education. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	30.95628	1.257709e-08
Residual	37.0	6.137256e+10	1.658718e+09	NaN	NaN

Table 3: One-Way ANOVA on Salary w.r.t Education

The above is the ANOVA table for Education variable:

Since the p value = 1.257709e-08 is less than the significance level (alpha = 0.05), we can rej ect the null hypothesis and conclude that there is a significant difference in the mean salaries f or at least one category of education.

Q3. Perform a one-way ANOVA on Salary with respect to Occupation. State whether the null hypothesis is accepted or rejected based on the ANOVA results.

```
df sum_sq mean_sq F PR(>F)
C(Occupation) 3.0 1.125878e+10 3.752928e+09 0.884144 0.458508
Residual 36.0 1.528092e+11 4.244701e+09 NaN NaN
```

Table 4: One-Way ANOVA on Salary w.r.t Occupation

The above is the ANOVA table for Occupation variable

Since the p value = 0.458508 is greater than the significance level (alpha = 0.05), we fail to re ject the null hypothesis (we accept H0) and conclude that there is no significant difference in the mean salaries across the categories of occupation.

Q4. If the null hypothesis is rejected in either (2) or in (3), find out which class means are significantly different. Interpret the result. (Non-Graded)

PROBLEM 1B

Q1. What is the interaction between two treatments? Analyse the effects of one variable on the other (Education and Occupation) with the help of an interaction plot. [hint: use the 'point plot' function from the 'seaborn' function].

Fig 3: Interaction Plot for all Variables.

Fig 4: Point Plot for all variables.

Observation from the Interaction Plot Fig 3 and Point Plot Fig 4

- 1. People having a qualification as Bachelors and occupation as Sales and Executive Managerial have the same salaries
- 2. People having qualification of HS Grad have minimum salary
- 3. People with qualification of HS grad do not have occupation as Exec_Maagerial
- 4. People having Prof Speciality have the highest salaries
- 5. Sales Person with Bachelors or doctorate education earn similar salaries, earning higher than people with HS grad education.
- 6. Adm clerical with HS grad education earn the lowest comparatively.
- 7. People with education as Bachelors and occupation as Prof-Specialty earn lesser than people with education as Bachelors and occupations as Adm-clerical and Sales.
- 8. People with education as Bachelors or Doctorate and occupation as Adm-clerical and Sales almost earn the same salaries (salaries ranging from 170000–190000)
- 9. People with HS-grad education do not reach the position of Exec-managerial and they hold only Adm-clerk, Sales and Prof-Specialty occupations.
- 10. People with education as Bachelors and occupation Sales earn higher than people with education as Bachelors and occupation Prof-Specialty whereas people with education as Doctorate and occupation Sales earn lesser than people with Doctorate and occupation Prof-Specialty.
- 11. Similarly, people with education as Bachelors and occupation as Prof-Specialty earn lesser than people with education as Bachelors and occupation Exec-Managerial whereas people with education as Doctorate and occupation as Prof-Specialty earn higher than people with education as Doctorate and occupation Exec-Managerial.

Q2. Perform a two-way ANOVA based on Salary with respect to both Education and Occupation (along with their interaction Education*Occupation). State the null and alternative hypotheses and state your results. How will you interpret this result?

Null Hypothesis H0: There is no interaction effect between the independent variables, education and occupation on the mean salary.

Alternate Hypothesis H1: There is an interaction effect between the independent variable education and occupation on the mean salary.

	df	sum_sq	mean_sq	F	PR(>F)
C(Education)	2.0	1.026955e+11	5.134773e+10	72.211958	5.466264e-12
C(Occupation)	3.0	5.519946e+09	1.839982e+09	2.587626	7.211580e - 02
C(Education):C(Occupation)	6.0	3.634909e+10	6.058182e+09	8.519815	2.232500e-05
Residual	29.0	2.062102e+10	7.110697e+08	NaN	NaN

Table 5: Two-way ANOVA on salary w.r.t both Education and Occupation.

INTERPRETATION:

Since the P-value of 2.232500e-05 is less than Alpha 0.05, we reject the null hypothesis and accept the alternate Hypothesis which states that the There is an interaction between Education and Occupation on the mean salary.

Q3. Explain the business implications of performing ANOVA for this particular case study.

From the ANOVA method and the interaction plot, we see that:

- 1. Education combined with occupation results in higher and better salaries among the people.
- 2. It is clearly seen that people with education as Doctorate earn maximum salaries and people with education HS-grad earn the least.
- 3. Thus, it can be concluded that Salary is dependent on educational qualifications and occupation.

PROBLEM 2:

EXECUTIVE SUMMARY:

The dataset contains information on various colleges. The application received by the colleges, the applications accepted, students enrolled in the colleges or universities, The Part time Graduates, Full- time Graduates, The cost of the course, personal cost and expenditure, the details about the faculties.

INTRODUCTION:

The main aim of this exercise is to explore the dataset using Univariate and Multi variate analysis, find whether the data set is significant to perform Principal component analysis using various methods and reduce the multi-collinearity in the dataset to build models and do further analysis efficiently.

DATA DESCRIPTION:

- 1) Names: Names of various university and colleges
- 2) Apps: Number of applications received
- 3) Accept: Number of applications accepted
- 4) Enrol: Number of new students enrolled
- 5) Top10perc: Percentage of new students from top 10% of Higher Secondary class
- 6) Top25perc: Percentage of new students from top 25% of Higher Secondary class
- 7) F. Undergrad: Number of full-time undergraduate students
- 8) P. Undergrad: Number of part-time undergraduate students
- 9) Outstate: Number of students for whom the particular college or university is

Out-of-state tuition

- 10) Room. Board: Cost of Room and board
- 11) Books: Estimated book costs for a student
- 12) Personal: Estimated personal spending for a student
- 13) PhD: Percentage of faculties with Ph.D.'s
- 14) Terminal: Percentage of faculties with terminal degree
- 15) S.F. Ratio: Student/faculty ratio
- 16) perc. alumni: Percentage of alumni who donate

	Expend: The Instructional expenditure per student
18)	Grad. Rate: Graduation rate
	Page 16 of 51

Q2.1. Perform Exploratory Data Analysis [both univariate and multivariate analysis to be performed]. What insight do you draw from the EDA?

SAMPLE DATASET:

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio
0	Abilene Christian University	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1
1	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2
2	Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9
3	Agnes Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7
4	Alaska Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9

perc.alumni	Expend	Grad.Rate
12	7041	60
16	10527	56
30	8735	54
37	19016	59
2	10922	15

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio
772	Worcester State College	2197	1515	543	4	26	3089	2029	6797	3900	500	1200	60	60	21.0
773	Xavier University	1959	1805	695	24	47	2849	1107	11520	4960	600	1250	73	75	13.3
774	Xavier University of Louisiana	2097	1915	695	34	61	2793	166	6900	4200	617	781	67	75	14.4
775	Yale University	10705	2453	1317	95	99	5217	83	19840	6510	630	2115	96	96	5.8
776	York College of Pennsylvania	2989	1855	691	28	63	2988	1726	4990	3560	500	1250	75	75	18.1

perc.alumni	Expend	Grad.Rate
14	4469	40
31	9189	83
20	8323	49
49	40386	99
28	4509	99
28	4509	99

Table 6: Data Set Sample

DATASET INFORMATION:

RangeIndex: 777 entries, 0 to 776 Data columns (total 18 columns): Non-Null Count Dtype # Column ----------0 Names 777 non-null object 1 Apps 777 non-null int64 2 Accept 777 non-null int64 3 Enroll 777 non-null int64 4 Top10perc 777 non-null int64 Top25perc 5 777 non-null int64 6 F.Undergrad 777 non-null int64 7 P.Undergrad 777 non-null int64 8 Outstate 777 non-null int64 Room.Board 777 non-null int64 10 Books 777 non-null int64 11 Personal 777 non-null int64 12 PhD 777 non-null int64 15 Terminal 14 S.F.Ratio 777 non-null int64 777 non-null float64 15 perc.alumni 777 non-null int64 16 Expend 777 non-null int64 17 Grad.Rate 777 non-null int64

There are a total of 777 entries and 17 columns. The names column is the object type and S.F Ratio is Float Data Type whereas all other variables are Integer data type. The shape of the data set is 777 rows and 18 columns.

IDENTIFYING THE MISSING VALUES:

Names	0
Apps	0
Accept	0
Enroll	0
Top10perc	0
Top25perc	0
F.Undergrad	0
P.Undergrad	0
Outstate	0
Room.Board	0
Books	0
Personal	0
PhD	0
Terminal	0
S.F.Ratio	0
perc.alumni	0
Expend	0
Grad.Rate	0

DESCRIBING THE DATASET:

	count	mean	std	min	25%	50%	75%	max
Apps	777.0	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	779.972973	929.176190	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	549.380952	165.105360	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	9660.171171	5221.768440	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	65.463320	17.177710	10.0	53.0	65.0	78.0	118.0

Table 7: Data Description

INTERPRETATION OF DESCRIPTIVE ANALYSIS:

- 1. There were a total of 48094 applications received in Rutgers at New Brunswick, with total average applications recd were 3001
- 2. The least application received were 81 received in Christendom College
- 3. A total of 26330 students were accepted which is the highest applications accepted among all universities (Rutgers at New Brunswick
- 4. The least application accepted were 72 applications in Christendom College.
- 5. The highest students enrolled were 6392 (Texas A&M Univ. at College Station) and lowest were 35 (Capitol College)

- 6. In Massachusetts Institute of Technology, there were 96 students who were students from the Top10% of Higher secondary class, whereas Centre of Creative Studies had only 1 student from the top 10% of Higher secondary class.
- 7. In Suny at Buffalo and University of California at Berkely (Highest number of students from Top 10 % Higher secondary class) there were 100 students who were from the Top 25% of Higher secondary class, whereas Huron University (Least number of students from top 10% Higher Secondary class) had only 9 students from the top 25% of the higher secondary class
- 8. In Texas A&M Univ. at College Station, there were 31643 full time students which is the highest number of Students opting for full time Undergraduate and Concordia College at St. Paul had the lowest students opting for Full time Under graduation which is 139 students.
- 9. 21836 students opted for Part Time under graduation in University of Minnesota Twin Cities (Highest among all the part time opting students), and 1 student from Claremont McKenna College opting for part time undergraduate (Lowest among all the part time opting students).
- 10. There were a total of 21700 students from outstate visiting Bennington College (It is the highest number of outstate students) and 2340 students visiting Brigham Young University at Provo which having the least number of Outstate Students.
- 11. The highest cost for Room Board is 8124 in Barnard College and least amount of 1780 in North Carolina A. & T. State University.
- 12. The highest estimated cost for a student is 2340 in Centre of Creative studies, and the lowest of 96 at Appalachian State University.
- 13. The Highest personal expenses is of 6800 (Saint Louis University) and the lowest is 250 (Benedictine College).
- 14. The percentage of Faculties with PHD's are highest in Texas A&M University at Galveston 103 faculties and lowest in Centre for Creative Studies 8 faculties
- 15. The number of faculties with terminal degrees are high in 14 universities with 100 faculties each and lowest in Salem-Teikyo University 24 Faculties.
- 16. The Highest Graduation rate is in Cazenovia College with 118% and Texas Southern University with 10 percentage having the lowest graduation rate.

PERFORMING MULTI-VARIATE ANALYSIS:

Correlation Plot -Multi Variate Analysis

INTERPRETATION OF THE CORRELATION PLOT:

The Correlation Plot or Heat Map gives us the correlation between two numerical values.

- 1. There is a higher correlation between the Applications received and the Applications accepted 0.91
- 2. Similarly the correlation between the Applications accepted and Students enrolled is also high 0.94
- 3. There is no correlation between SF ratio and outstate -0.55, SF Ratio and Expend -0.58
- 4. There is a negative correlation between Application received and the Perc. Alumni. which indicates that not all students are a part of alumni of the college or University.
- 5. The applications with Top 10, 25 of Higher secondary class, outstate, room board, books, personal, PhD, terminal, expenditure and graduation ratio are positively skewed.

PAIRPLOT:

Pair Plot-Multi Variate Analysis.

PERFORMING UNI-VARIATE ANALYSIS FOR:

- Univariate Analysis: helps to understand the distribution of the data in the dataset.
 With Univariate analysis we can find different patterns, trends and summarize the data.
- Boxplot helps to identify outliers in data.
- Distribution Plot helps to identify the patterns of the data.

APPS:

Descr	Description of Apps				
count	777.000000				
mean	3001.638353				
std	3870.201484				
min	81.000000				
25%	776.000000				
50%	1558.000000				
75%	3624.000000				
max	48094.000000				
Name:	Apps, dtype: float64 Distribution of Apps				

Distribution plot and Boxplot for Apps

50000

INTERPRETATION FOR APPS:

Apps column have outliers, the Boxplot is Right skewed, The Inter quartile range ranges from 776 to 3624 and Median being 1558. The Outlier ranges from 7896 to 49000 approx. ((IQR*1.5) +Q3=Any point above the result is an outlier=Q3-Q1=3624-776= 2848 (2848*1.5) +3624=7896). The distribution of the data is skewed from which we can understand that each college or university offers application in the range of 3000 to 5000. The maximum application is around 50,000

• ACCEPT:

Descri	iption of	Accept			
count	777	.000000)		
mean	2018	.804376	•		
std	2451	.113971			
min	72	.000000)		
25%	604	.000000)		
50%	1110	.000000)		
75%	2424	.000000)		
max	26330	.000000)		
Name:	Accent	d+vne:	f10a+64	Distribution	of Accept

Name: Accept, dtype: float64 Distribution of Accept

Distribution Plot and Boxplot for Accept.

INTERPRETATION FOR ACCEPT:

Accept: Accept column has outliers, the boxplot is right skewed. The Inter quartile range ranges from 60 to 2424, median is 1110. The outlier ranges between 5970 to 25500 approx., (2424-60=2364, (2364*1.5) +2424=5970).

The distribution Plot shows the majority of the applications accepted from each of the universities and colleges, ranging from 70 to 1500. The accept variable seems to be positively skewed.

• ENROLL:

Description of Enroll

count	777.000000
mean	779.972973
std	929.176190
min	35.000000
25%	242.000000
50%	434.000000
75%	902.000000
max	6392.000000
	mean std min 25% 50% 75%

Name: Enroll, dtype: float64 Distribution of Enroll

Distribution and Box Plot for Enrol

• INTERPRETATION FOR ENROL:

Enrol column has outliers, it is right skewed and ranges from 242 to 902 and Median is 434. The Outlier ranges between 1892 to 6600 approx. (IQR=902-242 =660 Outliers= (660*1.5) +902=1892).

The distribution plot is positively skewed and we can also understand that majority of the universities/Colleges have enrolled students in the range of 2000 to 5000.

• TOP 10 PERC:

Description of Top10perc

count	777.000000	
mean	27.558559	
std	17.640364	
min	1.000000	
25%	15.000000	
50%	23.000000	

75% 35.000000 max 96.000000

Distribution plot and Box plot for Top 10 perc

• INTERPRETATION FOR TOP 10 PERC:

Top 10 Perc: It has outliers, it is right skewed, The IQR ranges from 15 to 35 and Median is 23. The outliers range between 65 to 98 approx. (IQR=Q3-Q1= 35-15=20 and outliers= (20*1.5) + 35=65)

The distribution seems to be positively skewed.. There are about 30 to 50 students that have taken up by the universities and colleges from these particular Top 10 high schools.

• TOP 25 PERC:

Description of Top25perc

count	777.000000	
mean	55.796654	
std	19.804778	
min	9.000000	
25%	41.000000	
50%	54.000000	
75%	69.000000	
max	100.000000	

Name: Top25perc, dtype: float64 Distribution of Top25perc

Distribution and Box Plot for Top 25 Perc

• INTERPRETATION FOR TOP 25 PERC:

Has no outliers and is normally distributed. IQR ranging between 41 to 69 and Median being 54. The distribution is almost normally distributed and majority of the students are from Top 25% of High schools.

• FULL TIME GRADUATE:

	Descri	ption	of	F.	Undergrad
--	--------	-------	----	----	-----------

count	777.000000
mean	3699.907336
std	4850.420531
min	139.000000
25%	992.000000
50%	1707.000000
75%	4005.000000
max	31643.000000
Name .	F Undergood dtyre, £leet(4 Dietribytien e£ F Undergood

Name: F.Undergrad, dtype: float64 Distribution of F.Undergrad

Distribution plot and Box plot for Full Time Graduate

• INTERPREATATION FOR FULL TIME GRADUATE:

It has outliers and is right skewed. The IQR ranges between 992 to 4005 median is 1707. The Outliers ranges between 8524.5 to 35000 approx.. IQR = 4005-992 = 3013, OUTLIER = (3013*1.5) +4005 = 8524.5.

There are Full time Graduates fin all the universities ranging from 3000 to 5000.

• PART TIME GRADUATE:

Description of P.Undergrad

count	777.000000	
mean	855.298584	
std	1522.431887	
min	1.000000	
25%	95.000000	
50%	353.000000	
75%	967.000000	
max	21836.000000	

Name: P.Undergrad, dtype: float64 Distribution of P.Undergrad

Distribution plot and Box plot for Part Time Graduate

It has outliers and is right skewed. The IQR ranges between 95 to 967, median is 353. The outliers range between 2275 and 25000 approx. IQR=967-95=872, outlier= (872*1.5) +967= 2275.

The distribution of the data is positively skewed. There are part time graduates in the range of 1000 to 3000 studying in all the universities and colleges.

• OUTSTATE:

Description of Outstate

count	777.000000
	40440 440044

mean	10440.669241
std	4023.016484
min	2340.000000
25%	7320.000000
50%	9990.000000
75%	12925.000000
max	21700.000000

Name: Outstate, dtype: float64 Distribution of Outstate

Distribution plot and Box plot of Outstate Students.

It has a single outlier and is positively skewed. The IQR ranges between 7320 to 12925 and median is 9990. The outlier is at. IQR= 12925-7320=5605, outlier= (5605*1.5)+12925=21332.5.

The distribution is normally distributed.

• ROOM BOARD:

Description of Room.Board

777 000000

count	777.000000
mean	4357.526384
std	1096.696416
min	1780.000000
25%	3597.000000
50%	4200.000000
75%	5050.000000
max	8124.000000

Name: Room.Board, dtype: float64 Distribution of Room.Board

Distribution plot and Box plot of Room Board

It has outliers, it is normally distributed. The IQR ranges between 3597 to 5050, median is 4200. The outlier ranges between 7229.5 to 0-3597= 1453, outlier= (1453*1.5) +5050= 7229.5 to 8200 approx.

The Distribution is normally distributed.

• BOOKS:

Description of Books	Descri	ption	of	Books
----------------------	--------	-------	----	-------

count	777.000000	
mean	549.380952	
std	165.105360	
min	96.000000	
25%	470.000000	
50%	500.000000	
75%	600.000000	
max	2340.000000	

Name: Books, dtype: float64 Distribution of Books

Distribution plot and Box plot of Books cost

• INTERPRETATION OF BOOKS COST:

It has outliers, it is right skewed. The IQR ranges between 470 to 600, median being 500. The outliers range below 275 and above 795. (IQR= 600-470=130, Outlier= (130*1.5)+600=795 and (130*1.5)-470(Q1)=275). The Distribution is Bimodal and the cost of books per student ranges between 500 to 100.

• PERSONAL:

Description of Personal

count	777.000000	
mean	1340.642214	
std	677.071454	
min	250.000000	
25%	850.000000	
50%	1200.000000	
75%	1700.000000	
max	6800.000000	

Name: Personal, dtype: float64 Distribution of Personal

Distribution plot and Box plot of Personal cost

INTERPRETATION FOR PERSONAL COST:

It has Outliers and it is slightly Right skewed but almost normally distributed. The IQR ranges between 850 to 1700, median is 1200. The outlier ranges between 2975 to 6900 approx. (IQR= 1700-850=850, outlier= (850*1.5)+1700=2975). Few students' personal cost is higher than the others and distribution is positively skewed.

• PhD:

Distribution Plot and Box Plot of Faculties who have a PhD.

• INTERPRETATION FOR PhD:

It has Outliers and it is negatively skewed. The IQR ranges between 62 to 85 and median is 75. The Outlier Ranges Between 37.5 to 10 approx. IQR = 85-60 = 15, outlier = (15*1.5)-60=37.5. The Distribution is negatively skewed.

• TERMINAL:

Description of Terminal	Descri	ption	of	Termi	ina]
-------------------------	--------	-------	----	-------	------

count	777.000000		
mean	79.702703		
std	14.722359		
min	24.000000		
25%	71.000000		
50%	82.000000		
75%	92.000000		
max	100.000000		

Name: Terminal, dtype: float64 Distribution of Terminal

Distribution plot and Box plot of Terminal

• INTERPRETATION OF TERMINAL:

It has Outliers and it is negatively skewed. The IQR ranges between 71 to 92, median is 82. Outlier ranges between 39.5 to 20 approx.= 92-71=21, outlier= (21*1.5)-71=39.5. The distribution is negatively skewed.

• S.F. RATIO:

Description of S.F.Ratio

count	777.000000
mean	14.089704
std	3.958349
min	2.500000
25%	11.500000
50%	13.600000
75%	16.500000
max	39.800000

Name: S.F.Ratio, dtype: float64 Distribution of S.F.Ratio

Distribution plot and Box plot of S.F. Ratio

• INTERPRETATION OF S.F. Ratio:

It has outliers and is normally distributed. The IQR ranges between 11.5 to 16.5, median is 13.6. The Outlier ranges between 3.5 to 2.5 below the minimum whiskers IQR= 16.5-11.5=5,

outlier= (5*1.5)-11=3.5 and between 23.5 to 40 above the maximum whisker= 16.5-11.5=5, outlier= (5*1.5)+16.5=23.5. The distribution is normally distributed and the S.F. Ratio is the same in all colleges/Universities.

PERC ALUMNI:

Description of perc.alumni

coun	t 777.000000		
mean	22.743887		
std	12.391801		
min	0.000000		
25%	13.000000		
50%	21.000000		
75%	31.000000		
max	64.000000		

Name: perc.alumni, dtype: float64 Distribution of perc.alumni

Distribution plot and Box plot of Perc Alumni

• INTERPRETATION OF Perc Alumni:

It has outliers and is slightly right skewed. The IQR ranges between 13 to 31, median is 21. The outliers range between 58 to 65.IQR= 31-13=18, outlier= (18*1.5) +31=58.The distribution is normally distributed.

• EXPEND:

count	777.000000	
mean	9660.171171	
std	5221.768440	
min	3186.000000	
25%	6751.000000	
50%	8377.000000	
75%	10830.000000	
max	56233.000000	

Name: Expend, dtype: float64 Distribution of Expend

Distribution plot and Box plot of Expend

• INTERPRETATION OF EXPEND:

It has Outliers, it is normally distributed. The IQR ranges between 6751 to 10830, median is 8377. The outlier ranges between 16948.5 to 58000 approx. (IQR= 10830-6751=4079, outlier= (4079*1.5) + 10830=16948.50). The Distribution is positively skewed.

• GRAD RATE:

Descrip	tion of Grad.Rate	•	
count	777.00000		
mean	65.46332		
std	17.17771		
min	10.00000		
25%	53.00000		
50%	65.00000		
75%	78.00000		
max	118.00000		

Name: Grad.Rate, dtype: float64 Distribution of Grad.Rate

Distribution plot and Box plot of Grad Rate

• INTERPRETATION OF GRAD RATE:

It has Outliers and it is slightly negatively skewed, but normally distributed. The IQR ranges between 53 to 78 and median is 65. The outlier ranges between 15.5 to 12 approx. below the minimum whisker point (IQR= 78-53=25, outlier= (25*1.5)-53=15.5) and at 115. 5 above the maximum whisker (IQR= 78-53=25, outlier= (25*1.5)+78=115.5). The distribution is normally distributed and there is a graduation rate of 60% in all the universities or colleges.

Q2.2. Is scaling necessary for PCA in this case? Give justification and perform scaling.

Yes, Scaling is necessary in this case, because as per the data dictionary and Info command. There are 18 numerical columns with different scales.

Scaling in general means the representation of the data set into one unit.

Like,

- 1. The application, application accepted, Full time graduates, part time graduates, outstate are number of students,
- 2. The Top 10 percent and top 25 percent are values in percentage,
- 3. Room Board, books and personal are values in Units/Money,
- 4. The PhD, S.F. Ratio, percentage of alumni, Grad Rate are values in percentage of students, Faculties and Graduates.

• SCALING USING Z SCORE TEST:

After Dropping column "Names" from the Data Frame

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal
0	-0.346882	-0.321205	-0.063509	-0.258583	-0.191827	-0.168116	-0.209207	-0.746356	-0.964905	-0.602312	1.270045	-0.163028	-0.115729
1	-0.210884	-0.038703	-0.288584	-0.655656	-1.353911	-0.209788	0.244307	0.457496	1.909208	1.215880	0.235515	-2.675646	-3.378176
2	-0.406866	-0.376318	-0.478121	-0.315307	-0.292878	-0.549565	-0.497090	0.201305	-0.554317	-0.905344	-0.259582	-1.204845	-0.931341
3	-0.668261	-0.681682	-0.692427	1.840231	1.677612	-0.658079	-0.520752	0.626633	0.996791	-0.602312	-0.688173	1.185206	1.175657
4	-0.726176	-0.764555	-0.780735	-0.655656	-0.596031	-0.711924	0.009005	-0.716508	-0.216723	1.518912	0.235515	0.204672	-0.523535

S.F.Ratio	perc.alumni	Expend	Grad.Rate
1.013776	-0.867574	-0.501910	-0.318252
-0.477704	-0.544572	0.166110	-0.551262
-0.300749	0.585935	-0.177290	-0.667767
-1.615274	1.151188	1.792851	-0.376504
-0.553542	-1.675079	0.241803	-2.939613

Table 8: Scaled Data frame

Z(Z score) = x-mu/standard deviation of the sample,

where.

x =the observed value,

Mu= The mean of the sample.

2.3 Comment on the comparison between the covariance and the correlation matrices from this data. [on scaled data]

Covariance m					_		
	Apps	Accept			•	Top25perc	F.Undergrad
Apps	1.001289	0.944666	0.847913		39270	0.352093	0.815540
Accept	0.944666	1.001289	0.912811		92695	0.247795	0.875350
Enroll	0.847913	0.912811	1.001289		81527	0.227037	0.965883
Top10perc	0.339270	0.192695	0.181527		01289	0.893144	0.141471
Top25perc	0.352093	0.247795	0.227037		93144	1.001289	0.199702
F.Undergrad	0.815540	0.875350			41471	0.199702	1.001289
P.Undergrad	0.398777	0.441839	0.513730			-0.053646	0.571247
Outstate		-0.025788			63055	0.490024	-0.216020
Room.Board	0.165152		-0.040284		71959	0.331917	-0.068979
Books	0.132729	0.113672			19012	0.115676	0.115699
Personal	0.178961	0.201248		-0.09	93437	-0.080914	0.317608
PhD	0.391201	0.356216	0.331896	0.53	32513	0.546566	0.318747
Terminal	0.369968	0.338018	0.308671		91768	0.525425	0.300406
S.F.Ratio	0.095756	0.176456	0.237577	7 -0.38	85370	-0.295009	0.280064
perc.alumni	-0.090342 -	-0.160196	-0.181027		56072	0.418403	-0.229758
Expend	0.259927	0.124878	0.064252	0.66	61765	0.528127	0.018676
Grad.Rate	0.146944	0.067399	-0.022376	0.49	95627	0.477896	-0.078875
	P.Undergr	rad Outs	tate Room	n.Board		oks Perso	
Apps	0.3987	777 0.05	0224 0.	165152	0.132	729 0.178	3961 0.391201
Accept	0.4418			091016	0.113		
Enroll		730 -0.15		040284			
Top10perc	-0.1054	192 0.56		371959	0.119		
Top25perc	-0.0536	646 0.49	0024 0.	331917	0.115	676 -0.086	914 0.546566
F.Undergrad	0.5712			068979	0.115		608 0.318747
P.Undergrad	1.0012	289 -0.25	3839 -0.	061405	0.081	304 0.326	0.149306
Outstate	-0.2538	339 1.00	1289 0.	655100	0.038	905 -0.299	
Room.Board	-0.0614	105 0.65	5100 1.	001289	0.128	128 -0.199	0.329627
Books	0.0813	304 0.03	8905 0.	128128	1.001	289 0.179	9526 0.026940
Personal	0.3202	294 -0.29	9472 -0.	199685	0.179	526 1.001	289 -0.010950
PhD	0.1493	306 0.38	3476 0.	329627	0.026	940 -0.010	950 1.001289
Terminal	0.1420	986 0.40	8509 0.	375022	0.100	084 -0.036	0.850682
S.F.Ratio	0.2328	330 -0.55	5536 -0.	363095	-0.031	970 0.136	5521 -0.130698
perc.alumni	-0.2811	L54 0.56	6992 0.	272714	-0.040	260 -0.286	337 0.249330
Expend	-0.0836	76 0.67	3646 0.	502386	0.112	554 -0.098	8018 0.433319
Grad.Rate	-0.2573	332 0.57	2026 0.	425489	0.001	062 -0.269	0691 0.305431

	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
Apps	0.369968	0.095756	-0.090342	0.259927	0.146944
Accept	0.338018	0.176456	-0.160196	0.124878	0.067399
Enroll	0.308671	0.237577	-0.181027	0.064252	-0.022370
Top10perc	0.491768	-0.385370	0.456072	0.661765	0.495627
Top25perc	0.525425	-0.295009	0.418403	0.528127	0.477896
F.Undergrad	0.300406	0.280064	-0.229758	0.018676	-0.078875
P.Undergrad	0.142086	0.232830	-0.281154	-0.083676	-0.257332
Outstate	0.408509	-0.555536	0.566992	0.673646	0.572026
Room.Board	0.375022	-0.363095	0.272714	0.502386	0.425489
Books	0.100084	-0.031970	-0.040260	0.112554	0.001062
Personal	-0.030653	0.136521	-0.286337	-0.098018	-0.269691
PhD	0.850682	-0.130698	0.249330	0.433319	0.305431
Terminal	1.001289	-0.160310	0.267475	0.439365	0.289900
S.F.Ratio	-0.160310	1.001289	-0.403448	-0.584584	-0.307106
perc.alumni	0.267475	-0.403448	1.001289	0.418250	0.491530
Expend	0.439365	-0.584584	0.418250	1.001289	0.390846
Grad.Rate	0.289900	-0.307106	0.491530	0.390846	1.001289

Table 9: Covariance Matrix

• INFERENCE FOR Q.2.3.

The comparison between the covariance and correlation matrix is the relationship measure and dependency between two variables.

Covariance indicates the proportionality (Direct or indirect) of the relationship between variables, if it is positive or negative.

Here in the above table, we can see that app, accept, enrol, F. Grad, top 10 percentage and top 25 percentage are highly positively correlated.

Q.2.4 Check the dataset for outliers before and after scaling. What insight do you derive here?

INTERPRETATION FOR Q.2.4:

There are still outliers in the scaled boxplot, it is because Z score test or scaling does not remove the Outliers from the data. In case outliers have to be removed, we can remove them from the data itself or impute median or mean values (IQR value).

2.5 Extract the eigenvalues and eigenvectors. [Using Sklearn PCA Print Both]

• Applying SK learn using decomposition method:

```
array([[-1.59285540e+00, 7.67333510e-01, -1.01073537e-01, ..., 1.75239502e-03, -9.31400698e-02, 9.35522023e-02], [-2.19240180e+00, -5.78829984e-01, 2.27879812e+00, ..., 1.03709803e-01, -5.02556890e-02, -1.74057054e-01], [-1.43096371e+00, -1.09281889e+00, -4.38092811e-01, ..., -2.25582869e-02, -4.05268301e-03, 3.75875882e-03], ..., [-7.32560596e-01, -7.72352397e-02, -4.05641899e-04, ..., 6.79013123e-02, -2.32023970e-01, -9.99380421e-02], [7.91932735e+00, -2.06832886e+00, 2.07356368e+00, ..., 3.53597440e-01, 3.04416200e-01, 3.35104811e-01], [-4.69508066e-01, 3.66660943e-01, -1.32891515e+00, ..., -1.14873492e-01, -1.17076127e-01, -2.57218339e-03]])
```

• Extracting the Eigen Vectors:

```
array([[ 2.48765602e-01, 2.07601502e-01, 1.76303592e-01,
        3.54273947e-01, 3.44001279e-01, 1.54640962e-01,
        2.64425045e-02, 2.94736419e-01, 2.49030449e-01,
        6.47575181e-02, -4.25285386e-02, 3.18312875e-01,
        3.17056016e-01, -1.76957895e-01, 2.05082369e-01,
        3.18908750e-01, 2.52315654e-01],
      [ 3.31598227e-01, 3.72116750e-01, 4.03724252e-01,
        -8.24118211e-02, -4.47786551e-02, 4.17673774e-01,
        3.15087830e-01, -2.49643522e-01, -1.37808883e-01,
        5.63418434e-02, 2.19929218e-01, 5.83113174e-02,
        4.64294477e-02, 2.46665277e-01, -2.46595274e-01,
       -1.31689865e-01, -1.69240532e-01],
      [-6.30921033e-02, -1.01249056e-01, -8.29855709e-02,
        3.50555339e-02, -2.41479376e-02, -6.13929764e-02,
        1.39681716e-01, 4.65988731e-02, 1.48967389e-01,
        6.77411649e-01, 4.99721120e-01, -1.27028371e-01,
       -6.60375454e-02, -2.89848401e-01, -1.46989274e-01,
        2.26743985e-01, -2.08064649e-01],
      [ 2.81310530e-01, 2.67817346e-01, 1.61826771e-01,
        -5.15472524e-02, -1.09766541e-01, 1.00412335e-01,
       -1.58558487e-01, 1.31291364e-01, 1.84995991e-01,
        8.70892205e-02, -2.30710568e-01, -5.34724832e-01,
        -5.19443019e-01, -1.61189487e-01, 1.73142230e-02,
        7.92734946e-02, 2.69129066e-01],
```

```
[ 5.74140964e-03, 5.57860920e-02, -5.56936353e-02,
 -3.95434345e-01, -4.26533594e-01, -4.34543659e-02,
 3.02385408e-01, 2.22532003e-01, 5.60919470e-01,
 -1.27288825e-01, -2.22311021e-01, 1.40166326e-01,
 2.04719730e-01, -7.93882496e-02, -2.16297411e-01,
 7.59581203e-02, -1.09267913e-01],
[-1.62374420e-02, 7.53468452e-03, -4.25579803e-02,
 -5.26927980e-02, 3.30915896e-02, -4.34542349e-02,
 -1.91198583e-01, -3.00003910e-02, 1.62755446e-01,
 6.41054950e-01, -3.31398003e-01, 9.12555212e-02,
 1.54927646e-01, 4.87045875e-01, -4.73400144e-02,
-2.98118619e-01, 2.16163313e-01],
[-4.24863486e-02, -1.29497196e-02, -2.76928937e-02,
 -1.61332069e-01, -1.18485556e-01, -2.50763629e-02,
 6.10423460e-02, 1.08528966e-01, 2.09744235e-01,
 -1.49692034e-01, 6.33790064e-01, -1.09641298e-03,
 -2.84770105e-02, 2.19259358e-01, 2.43321156e-01,
 -2.26584481e-01, 5.59943937e-01],
[-1.03090398e-01, -5.62709623e-02, 5.86623552e-02,
 -1.22678028e-01, -1.02491967e-01, 7.88896442e-02,
 5.70783816e-01, 9.84599754e-03, -2.21453442e-01,
 2.13293009e-01, -2.32660840e-01, -7.70400002e-02,
 -1.21613297e-02, -8.36048735e-02, 6.78523654e-01,
 -5.41593771e-02, -5.33553891e-03],
[-9.02270802e-02, -1.77864814e-01, -1.28560713e-01,
 3.41099863e-01, 4.03711989e-01, -5.94419181e-02,
 5.60672902e-01, -4.57332880e-03, 2.75022548e-01,
-1.33663353e-01, -9.44688900e-02, -1.85181525e-01,
 -2.54938198e-01, 2.74544380e-01, -2.55334907e-01,
-4.91388809e-02, 4.19043052e-02],
[ 5.25098025e-02, 4.11400844e-02, 3.44879147e-02,
 6.40257785e-02, 1.45492289e-02, 2.08471834e-02,
-2.23105808e-01, 1.86675363e-01, 2.98324237e-01,
-8.20292186e-02, 1.36027616e-01, -1.23452200e-01,
-8.85784627e-02, 4.72045249e-01, 4.22999706e-01,
 1.32286331e-01, -5.90271067e-01],
[ 4.30462074e-02, -5.84055850e-02, -6.93988831e-02,
 -8.10481404e-03, -2.73128469e-01, -8.11578181e-02,
 1.00693324e-01, 1.43220673e-01, -3.59321731e-01,
 3.19400370e-02, -1.85784733e-02, 4.03723253e-02,
-5.89734026e-02, 4.45000727e-01, -1.30727978e-01,
 6.92088870e-01, 2.19839000e-01],
[ 2.40709086e-02, -1.45102446e-01, 1.11431545e-02,
 3.85543001e-02, -8.93515563e-02, 5.61767721e-02,
-6.35360730e-02, -8.23443779e-01, 3.54559731e-01,
-2.81593679e-02, -3.92640266e-02, 2.32224316e-02,
 1.64850420e-02, -1.10262122e-02, 1.82660654e-01,
 3.25982295e-01, 1.22106697e-01],
```

```
[ 5.95830975e-01, 2.92642398e-01, -4.44638207e-01,
 1.02303616e-03, 2.18838802e-02, -5.23622267e-01,
 1.25997650e-01, -1.41856014e-01, -6.97485854e-02,
 1.14379958e-02, 3.94547417e-02, 1.27696382e-01,
-5.83134662e-02, -1.77152700e-02, 1.04088088e-01,
-9.37464497e-02, -6.91969778e-02],
[ 8.06328039e-02, 3.34674281e-02, -8.56967180e-02,
-1.07828189e-01, 1.51742110e-01, -5.63728817e-02,
 1.92857500e-02, -3.40115407e-02, -5.84289756e-02,
-6.68494643e-02, 2.75286207e-02, -6.91126145e-01,
 6.71008607e-01, 4.13740967e-02, -2.71542091e-02,
 7.31225166e-02, 3.64767385e-02],
[ 1.33405806e-01, -1.45497511e-01, 2.95896092e-02,
 6.97722522e-01, -6.17274818e-01, 9.91640992e-03,
 2.09515982e-02, 3.83544794e-02, 3.40197083e-03,
-9.43887925e-03, -3.09001353e-03, -1.12055599e-01,
 1.58909651e-01, -2.08991284e-02, -8.41789410e-03,
 -2.27742017e-01, -3.39433604e-03],
[ 4.59139498e-01, -5.18568789e-01, -4.04318439e-01,
 -1.48738723e-01, 5.18683400e-02, 5.60363054e-01,
-5.27313042e-02, 1.01594830e-01, -2.59293381e-02,
 2.88282896e-03, -1.28904022e-02, 2.98075465e-02,
-2.70759809e-02, -2.12476294e-02, 3.33406243e-03,
-4.38803230e-02, -5.00844705e-03],
[ 3.58970400e-01, -5.43427250e-01, 6.09651110e-01,
 -1.44986329e-01, 8.03478445e-02, -4.14705279e-01,
 9.01788964e-03, 5.08995918e-02, 1.14639620e-03,
 7.72631963e-04, -1.11433396e-03, 1.38133366e-02,
 6.20932749e-03, -2.22215182e-03, -1.91869743e-02,
 -3.53098218e-02, -1.30710024e-02]])
```

• Extracting the Eigen Values:

```
array([5.45052162, 4.48360686, 1.17466761, 1.00820573, 0.93423123, 0.84849117, 0.6057878, 0.58787222, 0.53061262, 0.4043029, 0.31344588, 0.22061096, 0.16779415, 0.1439785, 0.08802464, 0.03672545, 0.02302787])
```

Q.2.7. Write down the explicit form of the first PC (in terms of the eigenvectors. Use values with two places of decimals only). [hint: write the linear equation of PC in terms of eigenvectors and corresponding features]

The Linear equation of the first components are:

^{0.25*}Apps+0.21*Accept+0.18*Enroll+0.35*Top10perc+0.34*Top25perc+0.15*F. Undergrad+0.03*P. Undergrad+0.29*Outstate+0.25*Room. Board+0.06*Books+-0.04*Personal+0.32*PhD+0.32*Terminal+-0.18*S.F. Ratio+0.21*perc.alumni+0.32*Expend+0.25*Grad. Rate+

Q.2.8. Consider the cumulative values of the eigenvalues. How does it help you to decide on the optimum number of principal components? What do the eigenvectors indicate?

• Explained Variance Ratio:

```
array([0.32020628, 0.26340214, 0.06900917, 0.05922989, 0.05488405, 0.04984701, 0.03558871, 0.03453621, 0.03117234, 0.02375192, 0.01841426, 0.01296041, 0.00985754, 0.00845842, 0.00517126, 0.00215754, 0.00135284])
```

• Cumulative Explained Variance:

```
array([ 32.0206282 , 58.36084263, 65.26175919, 71.18474841, 76.67315352, 81.65785448, 85.21672597, 88.67034731, 91.78758099, 94.16277251, 96.00419883, 97.30024023, 98.28599436, 99.13183669, 99.64896227, 99.86471628, 100. ])
```

• INFERENCE FOR Q.2.8

To decide the optimum number of principal components

Adding the Eigen Values, we get total as 100

- 1. The incremental value between the components should not be less than 5%
- 2. Cumulative variance should be up to 90%-85%

Based on this we can decide that the optimal number of principal components is 6, as after 81.65 the incremental value between the components is less than 5%. Therefore there 5 principal components for this case.

Thus, it is understood that how much each variable contributes to the Principal components, with eigen vectors we can understand which variable has more weightage and influence the dataset in principal component analysis.

The PCA reduces the multi collinearity, thus with these reduced multi collinearity we run models efficiently.

From the above scree plot it is inferred that the multi-collinearity has been reduced using PCA.

• PCA being exported into a new Data Frame:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal
0	0.248766	0.207602	0.176304	0.354274	0.344001	0.154641	0.026443	0.294736	0.249030	0.064758	-0.042529	0.318313	0.317056
1	0.331598	0.372117	0.403724	-0.082412	-0.044779	0.417674	0.315088	-0.249644	-0.137809	0.056342	0.219929	0.058311	0.046429
2	-0.063092	-0.101249	-0.082986	0.035056	-0.024148	-0.061393	0.139682	0.046599	0.148967	0.677412	0.499721	-0.127028	-0.066038
3	0.281311	0.267817	0.161827	-0.051547	-0.109767	0.100412	-0.158558	0.131291	0.184996	0.087089	-0.230711	-0.534725	-0.519443
4	0.005741	0.055786	-0.055694	-0.395434	-0.426534	-0.043454	0.302385	0.222532	0.560919	-0.127289	-0.222311	0.140166	0.204720
5	-0.016237	0.007535	-0.042558	-0.052693	0.033092	-0.043454	-0.191199	-0.030000	0.162755	0.641055	-0.331398	0.091256	0.154928
6	-0.042486	-0.012950	-0.027693	-0.161332	-0.118486	-0.025076	0.061042	0.108529	0.209744	-0.149692	0.633790	-0.001096	-0.028477
7	-0.103090	-0.056271	0.058662	-0.122678	-0.102492	0.078890	0.570784	0.009846	-0.221453	0.213293	-0.232661	-0.077040	-0.012161
8	-0.090227	-0.177865	-0.128561	0.341100	0.403712	-0.059442	0.560673	-0.004573	0.275023	-0.133663	-0.094469	-0.185182	-0.254938
9	0.052510	0.041140	0.034488	0.064026	0.014549	0.020847	-0.223106	0.186675	0.298324	-0.082029	0.136028	-0.123452	-0.088578
10	0.043046	-0.058406	-0.069399	-0.008105	-0.273128	-0.081158	0.100693	0.143221	-0.359322	0.031940	-0.018578	0.040372	-0.058973
11	0.024071	-0.145102	0.011143	0.038554	-0.089352	0.056177	-0.063536	-0.823444	0.354560	-0.028159	-0.039264	0.023222	0.016485
12	0.595831	0.292642	-0.444638	0.001023	0.021884	-0.523622	0.125998	-0.141856	-0.069749	0.011438	0.039455	0.127696	-0.058313
13	0.080633	0.033467	-0.085697	-0.107828	0.151742	-0.056373	0.019286	-0.034012	-0.058429	-0.066849	0.027529	-0.691126	0.671009
14	0.133406	-0.145498	0.029590	0.697723	-0.617275	0.009916	0.020952	0.038354	0.003402	-0.009439	-0.003090	-0.112056	0.158910
15	0.459139	-0.518569	-0.404318	-0.148739	0.051868	0.560363	-0.052731	0.101595	-0.025929	0.002883	-0.012890	0.029808	-0.027076
16	0.358970	-0.543427	0.609651	-0.144986	0.080348	-0.414705	0.009018	0.050900	0.001146	0.000773	-0.001114	0.013813	0.006209

S.F.Ratio	perc.alumni	Expend	Grad.Rate
-0.176958	0.205082	0.318909	0.252316
0.246665	-0.246595	-0.131690	-0.169241
-0.289848	-0.146989	0.226744	-0.208065
-0.161189	0.017314	0.079273	0.269129
-0.079388	-0.216297	0.075958	-0.109268
0.487046	-0.047340	-0.298119	0.216163
0.219259	0.243321	-0.226584	0.559944
-0.083605	0.678524	-0.054159	-0.005336
0.274544	-0.255335	-0.049139	0.041904
0.472045	0.423000	0.132286	-0.590271
0.445001	-0.130728	0.692089	0.219839
-0.011026	0.182661	0.325982	0.122107
-0.017715	0.104088	-0.093746	-0.069197
0.041374	-0.027154	0.073123	0.036477
-0.020899	-0.008418	-0.227742	-0.003394
-0.021248	0.003334	-0.043880	-0.005008
-0.002222	-0.019187	-0.035310	-0.013071

Table 10: New Data Frame

Heatmap after PCA:

Q.2.9. Explain the business implication of using the Principal Component Analysis for this case study. How may PCs help in the further analysis? [Hint: Write Interpretations of the Principal Components Obtained]

This case study talks about the education, this dataset contains the names of colleges and universities with the number of applications received, accepted, enrolled and details about the faculties and other student cost.

To understand, we perform Univariate and Multi variate analysis, which provides us with detail understanding about the variables i.e., we get to know the following:

- 1. Distribution of the data in the dataset
- 2. The skewness of the data in the dataset
- 3. Different trends in the dataset.

From Multi variate analysis we get to know the Correlation of variables, whether they are highly correlated or no correlation is there.

Scaling helps the dataset to standardize the variable in one scale. Outliers are imputed using IQR values once the values are imputed we can perform PCA.

The PCA is used to reduce the multicollinearity between the variables. Depending on the variance of the dataset we can reduce the PCA components. The PCA components for this

J	ls with efficienc	<i>y</i> .	
	THE EN	ND	