Лабораторная работа № 1 «Проверка статистических гипотез»

студента	Яковлева Андре	<u>я</u> группы <u>Б20-</u>	<u>-504</u> . Дата сдачи:_	28.10.22_	
Ведущий	преподаватель:	Трофимов А.І	оценка:	подпись:	
		Вариант №	12		

Цель работы: изучение функций Statistics and Machine Learning ToolboxTM MATLAB / Python SciPy.stats для проверки статистических гипотез.

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2
X_1	$N(\mu, \sigma^2)$	$\mu = 5$ $\sigma^2 = 3$	5	3
X_2	$N(\mu, \sigma^2)$	$\mu = 5$ $\sigma^2 = 1$	5	1

Указание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

выоброчные характеристики.					
СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i	Объем выборки, n_i	
X_1	5.112	3.146	1.774	250	
X_2	5.003	1.128	1.062	250	
Pooled	5.058	2.14	1.463	500	

 $\mathit{Указаниe}$: для расчета использовать функции **mean, var, std (scipy.stats: describe)**

2. Однопараметрические критерии

Для случайной величины X_1 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при $\alpha = _0.1$	Ошибка стат. решения
z-test	H0: m = 5	0.998	0.318	<i>H</i> 0 принята	нет
t-test	H0: m = 5	0.998	0.319	<i>H</i> 0 принята	нет
χ²-test (m – изв)	$H0: \sigma = \sqrt{3}$	262.183	0.571	<i>H</i> 0 принята	нет
χ²-test (m – не изв)	$H0: \sigma = \sqrt{3}$	261.134	0.603	<i>H</i> 0 принята	нет

Указание: для проверки гипотез использовать функции ztest, ttest, vartest (scipy.stats: ttest_1samp, chisquare)

3. Двухвыборочные критерии

Для случайных величин X_1, X_2 :

Тест	Стат. гипотеза, H_0	Выборочное значение статистики критерия	p-value	Стат. решение при α =_0.1	Ошибка стат. решения
2-sample t-test	H0: $m1 = m2$	0.833	0.405	<i>H</i> 0 принята	нет
2-sample F-test (m – изв)	$H0:$ $\sigma 1 = \sigma 2$	2.789	2.22 ⁻¹⁵	H0 не принята	нет
2-sample F-test (m – не изв)	$H0:$ $\sigma 1 = \sigma 2$	2.789	2.44 ⁻¹⁵	<i>H</i> 0 не принята	нет

Указание: для проверки гипотез использовать функции ttest2, vartest2 (scipy.stats: ttest_ind, chisquare)

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

4. Исследование распределений статистик критерия

Статистическая гипотеза: H_0 : $m1 = m2 (\sigma 1, \sigma 2 - \mu 3B.)$

Формула расчёта статистики критерия Z:

$$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Формула расчёта статистики Pvalue: ____p = min (Fz(z) ,1 - Fz(z)) * 2

Число серий экспериментов $N = _1000_{100}$

Теоретические характеристики:

Topothi iooniio impuni opiioiiniii						
СВ	Распределение в условиях H_0	Параметры	Математическое ожидание	Дисперсия	С.к.о.	
Z	$N(\mu,\sigma^2)$	$\mu = 0$ $\sigma^2 = 1$	0	0	1	
P-value	R(a,b)	a = 0 b = 1	0.5	0.833	0.288	

Выборочные характеристики:

СВ	Среднее	Оценка дисперсии	Оценка с.к.о.
Z	0.007	1.014	1.007
P-value	0.498	0.084	0.289

Указание: при расчете выборочных значений статистики критерия использовать функции **norminv**, **tinv**, **chi2inf**, **finv** (**scipy.stats: norm.ppf**, **t.ppf**, **chi2.ppf**, **f.ppf**)

Гистограмма частот статистики Z и теоретическая функция $f_z(z|H_0)$:

Гистограмма частот статистики P-value и теоретическая функция $f_P(p \mid H_0)$:

Указание: для построения гистограмм и теоретических функций плотности использовать функции hist, normpdf, tpdf, chi2pdf, fpdf (scipy.stats: norm.pdf, t.pdf, chi2.pdf, f.pdf, histogram; matplotlib.pyplot: hist)