Permutation tests for Clinical Trials

Livio Finos

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

Introduction

- Well established nonparametric approach to **inference**: Fisher, 1935; Pitman, 1937; Pitman, 1938.
- (In general) it requires less assumptions about the data generating process than the parametric counterpart.
- Very good inferential properties, typically:
 - exactness (i.e. exact control of the type I error)
 - asymptotically optimality and convergence to the parametric counterpart when it does exist.

Introduction

- o Fisher exact test is a prototypical example, but
- the general approach has restricted applicability without the support of a computer.

Renewed interest toward permutation testing

- A milestone: Westfall and Young (1993). Resampling-Based Multiple Testing: Examples and Methods for p-value Adjustment. Wiley.
- Many actives areas of research adopt these methods in their daily statistical analysis (e.g. genetics and neuroscience: Nichols and Holmes (2002); Pantazis et al. (2009); Winkler et al. (2014)).
- Permutation approach:
 - Ideal for randomized experimental design
 - deals with very complex models, without formal definition of the data generating process.

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

Comparison of Two Samples (i.e. one factor with two levels)

- · Control: 3 observations,
- · Treated: 3 observations:

1.025, 1.949, 3.477, 2.391, 3.676, 4.816

Hypothesis testing

- \circ H_0 : Two groups are equal
- \circ H_1 : Treated is greater than Control (on average)

p-value: probability to get the observed evidence against H_0 if the two groups were equal (i.e. H_0 were true)

Test: if $p \le \alpha$ (e.g. $\alpha = .05$): we decide for H_1 , otherwise: we stay with H_0

Parametric approach

Assumptions on y_1, y_2, \ldots, y_6

- independent
- identically distributed
 - normally distributedOR
 - have finite mean and variance (but inference is only asymptotically valid in this case!)

Parametric approach

Assumptions on y_1, y_2, \ldots, y_6

- independent
- identically distributed
 - normally distributedOR
 - have finite mean and variance (but inference is only asymptotically valid in this case!)

We can perform a t-test:

$$T = \frac{\bar{y}(Treated) - \bar{y}(Control)}{sd(\bar{y}(Treated) - \bar{y}(Control))} \sim t_4$$

(i.e. T test statistic follow a t distribution with n-2=4 d.f.)

Parametric approach

```
With toy data:

t = -1.4545,

df = 4,

p-value = 0.1098
```

Remark

The hypotheses tested are:

```
\circ H_0: \mu_{Treated} = \mu_{Control}
```

• $H_1: \mu_{Treated} > \mu_{Control}$ (only a difference in mean is allowed)

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

The p-value is computed under H_0 : Controls and Treated have the same distribution.

Collection of equally likely outcomes:

$$f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

$$f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$

$$= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$

The p-value is computed **under** H_0 : Controls and **Treated** have the **same distribution**.

Collection of equally likely outcomes:

$$f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$
 $= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$
 $= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$

The p-value is computed under H_0 : Controls and Treated have the same distribution.

Collection of equally likely outcomes:

$$f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$$
 $= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$
 $= f(1.025, 1.949, 3.477, 2.391, 3.676, 4.816) =$
 $= \dots$

There are $\binom{6}{3} = \frac{6!}{3!3!} = 20$ equally likely outcomes

Compute the difference in mean of the two samples

Compute the same difference on another hypothetical experiment

$$T=1.35$$

...and go on with all hypothetical experiments...

$$T=0.6$$

...and go on with all hypothetical experiments...

$$T=2.18$$

...and go on with all hypothetical experiments...

$$T=1.15$$

...and go on with all hypothetical experiments...

...and go on with all hypothetical experiments...

$$T = -0.43$$

...and go on with all hypothetical experiments...

...and go on with all hypothetical experiments...

$$T=0.3$$

...and go on with all hypothetical experiments...

$$T = -0.54$$

...and go on with all hypothetical experiments...

$$T=0.54$$

...and go on with all hypothetical experiments...

$$T = -0.3$$

...and go on with all hypothetical experiments...

$$T = -1.04$$

...and go on with all hypothetical experiments...

...and go on with all hypothetical experiments...

$$T = -0.32$$

...and go on with all hypothetical experiments...

$$T=-1.15$$

...and go on with all hypothetical experiments...

$$T = -0.6$$

...and go on with all hypothetical experiments...

$$T = -1.35$$

...and go on with all hypothetical experiments...

$$T = -2.18$$

...and compute the p-value!

Summary

The Permutation Test:

- Conditioned to observed data (i.e. the distribution of the test statistic depends on the data).
- Under H_0 cases and controls have the same distribution (eg. they have the same probability to get hight values),
- explore all possible experiments that we can observe with the data (ie. exchanging cases and controls),
- \circ compute the p-value as the proportion of experiments providing equal or more evidence against H_0 with respect to observed data.

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

(see also Pesarin, 2001) $\mathbf{y} = (y_1, y_2, \dots, y_n)$ the vector of observed data

Orbit: the set of all samples having the same likelihood under H_0 .

$$\mathcal{O} = \{ \mathbf{y}^* : f(\mathbf{y}^*) = f(\mathbf{y}) \}$$

(and $|\mathcal{O}|$ number of elements of \mathcal{O})

If we assume exchangeability of observations, then:

$$\mathcal{O} = \{\text{all permutations of the observed data } \mathbf{y}\} = \{\mathbf{y}^* : \pi^* \circ \mathbf{y}\}$$

 $(\pi^* \in \Pi, \Pi \text{ set of all possible permutations})$

Remark: exchangeable observations: $f(y_1, y_2) = f(y_2, y_1)$. It implies observations:

- are identically distributed
 t-test and linear models assume normality, only asymptotic
 control of the tye I error
- have the same dependence
 t-test and linear models assume independence, which is just a special case, i.e. more stringend assumptions

p-value: proportion of experiments providing equal or more evidence against H_0 with respect to observed data.

To compute it, we need the Orbit \mathcal{O} and a

p-value: proportion of experiments providing equal or more evidence against H_0 with respect to observed data.

To compute it, we need the Orbit $\mathcal O$ and a Test statistic $(T:\mathbb R^n \to \mathbb R)$ quantifies the evidence against H_0

- \circ higher values provide more evidence against H_0
- \circ compute a test statistic for each element of the Orbit \mathcal{O} , this induces an ordering on \mathcal{O} .

In our example: $T = \bar{y}(Treated) - \bar{y}(Control)$ is the difference in mean, higher the difference, higher the evidence for H_1 .

$$f(\mathbf{y}^*|\mathcal{O}) = \frac{f(\mathbf{y}^* \cap \mathcal{O})}{f(\mathcal{O})} = \frac{f(\mathbf{y}^*)}{f(\mathcal{O})} = \frac{f(\mathbf{y}^*)}{f(\cup_{y \in \mathcal{O}} y)} = \frac{1}{|\mathcal{O}|} \ \forall \ \mathbf{y}^* \in \mathcal{O}$$

i.e. each permutation is equally likely in the Orbit \mathcal{O} .

The p-value:

$$P(T(\mathbf{y}^*) \ge T(\mathbf{y})|\mathbf{y}^* \in \mathcal{O}, H_0) =$$

$$= \int_{T(\mathbf{y})}^{+\infty} f(T(\mathbf{y}^*)) dT(\mathbf{y}^*) =$$

$$= \sum_{\mathbf{y}^* \in \mathcal{O}} I(T(\mathbf{y}^*) \ge T(\mathbf{y})) / |\mathcal{O}| \quad \forall \mathcal{O}$$

The package flip

```
It is on CRAN and on github (https://github.com/livioivil/flip)
To install the github version type (in R):
library(devtools)
install_github('livioivil/flip')
```

Seeds data (Pesarin, 2001)

Standard fertilizer (grp = 0) vs New fertilizer (grp = 1) Total weight of the plant and average leaves length is recorded.

Hypothesis testing

About weight:

- $\bullet \ H_0(weight): F(weight|grp=0) = F(weight|grp=1)$ vs
- $\circ H_1(weight): F(weight|grp=0) > F(weight|grp=1)$

And about leaf length:

- $\bullet \ H_0(leaf.len): F(leaf.len|grp=0) = F(leaf.len|grp=1)$ vs
- \circ $H_1(leaf.len): F(leaf.len|grp=0) > F(leaf.len|grp=1)$

Hypothesis testing

res=flip(. \sim grp, data=seeds, tail=1)

	Test	Stat	tail	p-value
weight	t	1.320	>	0.098
leaf.length	t	2.061	>	0.030

together with some visualization hist(res)

Two-tailed tests

About weight:

- \circ $H_0(weight): F(weight|grp=0) = F(weight|grp=1)$ vs
- $\circ H_1(weight) : F(weight|grp = 0) \neq F(weight|grp = 1)$

And about leaf length:

- \circ $H_0(leaf.len): F(leaf.len|grp=0) = F(leaf.len|grp=1)$ vs
- $\circ H_1(leaf.len) : F(leaf.len|grp = 0) \neq F(leaf.len|grp = 1)$

Two-tailed tests

res=flip(. \sim grp, data=seeds, tail=0)

	Test	Stat	tail	p-value
weight	t	1.320	><	0.202
leaf.length	t	2.061	><	0.049

Also very negative values provide evidence against H_0

Properties

- Exact control of the Type I Error: $P(p \le \alpha | H_0) < \alpha \ \forall \ (\text{attainable})\alpha$
- Consistency: $P(p \le \alpha | H_1) \to 1$ when $n \to \infty$
- Converges to parametric counterpart (i.e. asymptotic optimality if the parametric test is optimal)

Remark

The number of possible permutations (size of the Orbit $|\mathcal{O}|$) is often huge, we can not compute the test statistic for all elements. Common use to sample from the Orbit (i.e. randomly permute the labels B times).

The properties remain the same.

Simulation: normal distribution

- Comparison of Two groups (labels A, B) of size 5
- o $y_i \sim N(0,1)$
 - $\bullet \ H_0: f(y|grp = A) = f(y|grp = B)$
 - $H_0: f(y|grp = A) \neq f(y|grp = B)$ (i.e. two-sided alternatives)
- o 10000 replications
- 1000 random permutations for each test

Simulation: H_0

Empirical Type I error	≤0.01	≤0.05	≤ 0.1	≤ 0.5	<u>≤0.75</u>
Permutation	0.00	0.05	0.09	0.49	0.74
Paramatric t.test	0.01	0.04	0.09	0.49	0.75

Simulation: H_1

now
$$(y|grp=A) \sim N(0,1)$$
, $(y|grp=B) \sim N(2,1)$

Empirical Power	≤0.01	≤0.05	≤ 0.1	≤ 0.5	<u>≤0.75</u>
Permutation	0.40	0.78	0.89	0.99	1.00
Paramatric t.test	0.41	0.77	0.88	0.99	1.00

990

Simulation: Cauchy distribution

- Comparison of Two groups (labels A, B)
- \circ $y_i \sim Cauchy$
 - $\circ H_0: f(y|grp = A) = f(y|grp = B)$
 - $H_0: f(y|grp = A) \neq f(y|grp = B)$ (i.e. two-sided alternatives)
- o 10000 replications
- 1000 random permutations for each test

Simulation: H_0

Empirical Type I error	≤0.01	≤0.05	≤ 0.1	≤ 0.5	<u>≤0.75</u>
Permutation	0.00	0.04	0.09	0.49	0.74
Paramatric t.test	0.00	0.01	0.04	0.62	0.84

Simulation: H_1

now $(y|grp = A) \sim Cauchy(0)$, $(y|grp = B) \sim Cauchy(10)$

Empirical Power	≤0.01	≤0.05	≤ 0.1	≤ 0.5	<u>≤0.75</u>
Permutation	0.66	0.78	0.81	0.89	0.92
Paramatric t.test	0.53	0.68	0.75	0.91	0.96

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

A very general approach

This approach (Orbit \mathcal{O} + Test statistic T) is very general. It includes:

- ChiSquare test
- Fisher exact test
- McNemar test
- rank tests
- ANOVA tests
- linear models
- o other models difficult to deal within the parametric framework
- 0 . . .

The case of contingency table

```
> chisq.test(x,y)
Pearson's Chi-squared test
data: x and y
X-squared = 6, df = 2, p-value = 0.04979
Warning message:
In chisq.test(x, y) : Chi-squared approximation may
be incorrect
```

The case of contingency table

```
Use: simulate.p.value = TRUE
> chisq.test(x,y,simulate.p.value = TRUE)
Pearson's Chi-squared test (based on 2000 replicates)
data: x and y
X-squared = 6, df = NA, p-value = 0.09345
```

Same schema:

- o Orbit \mathcal{O} : all possible permutation of \mathbf{y} (under $H_0 \mathbf{x}$ and \mathbf{y} are independent)
- o test statistic $T(\mathbf{y}^*)$: the χ^2 statistic computed (higher is better)
- o p-value: proportion of T^* greater than the one computed on observed data \mathbf{y} : $p = \sum_{\mathbf{y}^* \in \mathcal{O}} I(T(\mathbf{y}^*) \geq T(\mathbf{y}))/|\mathcal{O}|$.

The case of experimental design with blocks (or within-subject)

For example: n lots/subjects, each with two treatments (A vs B) we can assume a specific effect for each lot/subject:

$$y_{ij} \sim (\nu_i + \mu_j, \sigma_i) \ i = 1, \dots, n, \ j = A, B$$

$$H_0: \mu_A = \mu_B \Leftrightarrow \mu_A - \mu_B = 0$$

Parametric approach:

- define: $z_i = y_{iB} y_{iA} \sim (\mu_B \mu_A, 2 \cdot \sigma_i) \ i = 1, ..., n$
- \circ assume $\sigma_i = \sigma, \ \forall i = 1, \dots, n$
- o perform a 1-sample t-test (i.e. t-test for 2 paired samples)
- \circ test is exact only it z_i is normal, it is approximated otherwise.

The case of experimental design with blocks (or within-subject)

What about permutation approach? how to define the Orbit \mathcal{O} ?

$$H_0 \Rightarrow \mu_A = \mu_B = \mu \Rightarrow y_{ij} \sim (\nu_i + \mu, \sigma_i) \ i = 1, \dots, n, \ j = A, B$$

$$f(y_{1A}, y_{1B}, y_{2A}, y_{2B}, \dots, y_{nA}, y_{nB}) \text{ (observed)} =$$

$$= f(y_{1A}, y_{1B}, y_{2A}, y_{2B}, \dots, y_{nA}, y_{nB}) =$$

$$= f(y_{1A}, y_{1B}, y_{2A}, y_{2B}, \dots, y_{nA}, y_{nB}) \dots$$

- We exchange observations only within the same lot/subject!
- There are 2^n possible configurations: $|\mathcal{O}| = 2^n$
- \circ we don't need to assume: $\sigma_i = \sigma, \ \forall i = 1, \ldots, n$
- (even we may allow non addictive effect: $\nu_{ij} \neq \nu_i + \mu_j$)
- \circ A part from \mathcal{O} , the procedure is the same.

Outline

Introduction

A toy example

A Naive approach to Permutation Testing

Theory (very short)

Other cases

Multivariate Testing

Multivarite hypotheses

 $p_{weight} = .098$ and $p_{leaf.length} = .030$.

Shall we reject the multivariate H_0 ?

```
Testing H_0(weight) + \text{Testing } H_0(leaf.length) is different from testing  \circ \ H_0: \ H_0(weight) \cap \ H_0(leaf.length)  (i.e. simultaneously true)  \circ \ H_1: \ H_1(weight) \cup \ H_1(leaf.length)  (i.e. at least one null hypo is false) Here test H_0: the New is equal to the Standard in both variables For 1-tailed alternative:
```

Multivariate hypotheses

Common approaches:

MANOVA test

```
is OK but only for linear models (2 or more samples). assumes multivariate normality.

Does not allow for one-sided alternatives.
```

o Bonferroni correction $(p = min(p_1, p_2) * 2)$ very simple, always valid does not take in account dependences among data (i.e. may be very conservative, i.e. high final p-value)

Joint distributions of the data

The two variables are dependent:

Joint distributions of test statistics

This dependence induce a dependence into the joint distribution of the test statistic

Permutation Space

Joint distributions of the p-values

... and into the p-values joint distributions (i.e. compute the p-values for observed samples and all elements $\mathbf{y}^* \in \mathcal{O}$)

Permutation Space of p-values

Nonparametric Combination methodology (Pesarin, 2001)

The Orbit is now defined in a multivariate framework:

$$\mathcal{O} = \{ (\mathbf{y}_1, \mathbf{y}_2)^* : f((\mathbf{y}_1, \mathbf{y}_2)^*) = f((\mathbf{y}_1, \mathbf{y}_2)) \}$$

(in practice: when you permute one observation in a variable, do the same in the other variables)

Also compute the p_1^*, p_2^* associated to each $\mathbf{y}_1^*, \mathbf{y}_2^*$.

Nonparametric Combination methodology (Pesarin, 2001)

The Orbit is now defined in a multivariate framework:

$$\mathcal{O} = \{ (\mathbf{y}_1, \mathbf{y}_2)^* : f((\mathbf{y}_1, \mathbf{y}_2)^*) = f((\mathbf{y}_1, \mathbf{y}_2)) \}$$

(in practice: when you permute one observation in a variable, do the same in the other variables)

Also compute the p_1^*, p_2^* associated to each $\mathbf{y}_1^*, \mathbf{y}_2^*$.

Define a Combining Function $\psi(p_1,\ldots,p_m)$ having the following properties:

- i is non-increasing in each argument: $p_k < p_k^{'}$ implies $\psi(\ldots, p_k, \ldots) \geq \psi(\ldots, p_k^{'}, \ldots)$;
- ii attains its supremum ψ° if at least one argument attains 0;
- iii $\alpha > 0$ implies the critical value is such that $T_{\psi\alpha} < \psi^{\circ}$, i.e. no concentration of points at ψ° under H_0 .

Apply $T((p_1, p_2)^*) = \psi((p_1, p_2)^*)$ and compute the p_{global} .

Fisher combining function

$$\psi = -2 \cdot (log(p_1) + log(p_2)) = 6.029$$
$$p_{global} = 0.0400$$

p-values

Tippett (min-p) combining function

 $\psi=1-min(p_1,p_2)=1-0.0280$ $p_{global}=0.0460~(\le 2\cdot 0.0280=0.0560~\text{similar to Bonferroni, but}$ more powerfull)

• Here we only have global p-values (in analogy to Manova, F-tests etc).

- Here we only have global p-values (in analogy to Manova, F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)

- Here we only have global p-values (in analogy to Manova,
 F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)
- How to cast them into multiple testing procedures?

- Here we only have global p-values (in analogy to Manova,
 F-tests etc).
- If the test is significant at least one among $H_0(weight)$ or $H_0(leaf.len)$ is false.
- We don't know which one! (weak control of the FamilyWise Error)
- How to cast them into multiple testing procedures?
- (strong) control of the FWER is easy!

Take Home Message

Permutation approach:

- very general uni/multi-variate approach
- few assumptions on the data-generating process
- o natural approach in randomized experimental design
- good inferential properties
 (in most of the cases: exact control of the type I error, consistency, asymptotic optimality)
- very convenient for multiplicity control methods, since it deals easily with dependent tests.

Warnings:

- o more complex experimental design can be dealt, but with caution (Pesarin, 2001)
- multiple (generalized) linear models need some care (Solari, Finos & Goeman, 2014; Hemerik, Goeman & Finos, 2018)

Software 'R': libraries 'coin', 'flip', 'permuco'