ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_1^{(1)} \times H_12^{(3)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

$$\begin{cases} (1;1) \longrightarrow (1;2), (1;3), (1;4), (1;12), \\ (1;2) \longrightarrow (1;1), (1;3), (1;4), (1;5), \\ (1;3) \longrightarrow (1;1), (1;2), (1;4), (1;5), (1;6), \\ (1;4) \longrightarrow (1;1), (1;2), (1;3), (1;5), (1;6), (1;7), \\ (1;5) \longrightarrow (1;2), (1;3), (1;4), (1;6), (1;7), (1;8), \\ (1;6) \longrightarrow (1;3), (1;4), (1;5), (1;7), (1;8), (1;9), \\ (1;7) \longrightarrow (1;4), (1;5), (1;6), (1;8), (1;9), (1;10), \\ (1;8) \longrightarrow (1;5), (1;6), (1;7), (1;9), (1;10), (1;11), \\ (1;9) \longrightarrow (1;6), (1;7), (1;8), (1;10), (1;11), (1;12), \\ (1;10) \longrightarrow (1;7), (1;8), (1;9), (1;11), (1;12), \\ (1;11) \longrightarrow (1;8), (1;9), (1;10), (1;11), \end{cases}$$

Date: January 20, 2016.

Key words and phrases. sample.tex.

In forma circolare diventa:

Con le famiglie di grafi H vogliamo indicare dei circuiti che hanno le potenze orizzontali limitate al valore di n, quindi l'unico arco che fa da circuito è quello tra il primo nodo e l'ultimo.

1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_1^{(1)} \times H_1 2^{(3)}$

Ecco alcuni valori

T(n,k)	k = 0	1	2	3
0	1			
1	1	1		
2	1	2		
3	1	3		
4	1	4		
5	1	5		
6	1	6	2	
7	1	7	5	
8	1	8	9	
9	1	9	14	
10	1	10	20	2
11	1	11	27	7
12	1	12	35	16

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7	8	9	10	11	12
AD_n	1	1	2	3	4	5	6	7	10	14	19	25	32
RS_n	1	2	3	4	5	6	9	13	18	24	33	46	64
K_n	0	1	1	1	1	1	2	2	2	2	3	3	3

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.

1.2. Automa.

Il sistema lineare diventa:

Calcolo automatico sistema lineare e automa per circuiti:

