Асимптотический анализ вычислительной сложности алгоритмов. Анализ вычислительной сложности в худшем, среднем и лучшем случаях. Асимптотические обозначения Ο, Θ, Ω. Основные классы сложности алгоритмов.

Асимптотический анализ сложности алгоритма заключается в построении асимптотических оценок его вычислительной сложности (*computational complexity*) или объема требуемой ему памяти (*space complexity*) в худшем, среднем или лучшем случае. **Асимптотический анализ** , позволяет оценивать скорость роста функций T(n) при стремлении размера входных данных к бесконечности (*при* $n \to \infty$)

3 Возможных случая при анализе алгоритмов

- **Лучший случай** (best case) это экземпляр задачи (набор входных данных), на котором алгоритм выполняет наименьшее число операций.
- **Худший случай** (worst case) это экземпляр задачи, на котором алгоритм выполняет наибольшее число операций.
- Средний случай (average case) это «средний» экземпляр задачи, набор «усреднённых» входных данных. В среднем случае оценивается математическое ожидание количества операций, выполняемых алгоритмом.

Асимптотические обозначения О, Θ, Ω.

В теории вычислительной сложности алгоритмов для указания границ функции T(n) используют асимптотические обозначения: **О** (о большое), Ω (омега большое), Θ (тета большое).

О-обозначение (*о большое*), f(n) = O(g(n)): используют, если необходимо указать асимптотическую верхнюю границу (asymptotic upper bound) для функции f(n), числа операций алгоритма.

Проще говоря это значит, что функция f(n) растёт **не быстрее**, чем g(n) (с точностью до постоянного множителя).

Ω-обозначение (*омега большое*), $f(n) = \Omega(g(n)) : \Omega$ -обозначение используется для записи асимптотической нижней границы (asymptotic lower bound) для функции f(n). Проще говоря функция f(n) растёт **не медленнее**, чем g(n). (с точностью до постоянного множителя).

О-обозначение (*mema большое*), $f(n) = \Theta(g(n))$: О-обозначение позволяет записать асимптотически точную оценку (asymptotic tight bound) для функции f(n). Проще говоря функция f(n) растёт **точно так же**, как g(n) (с точностью до постоянных множителей).

Основные классы сложности алгоритмов

Класс сложности	Название
O(1)	Константная сложность
O(logn)	Логарифмическая сложность
O(n)	Линейная сложность
O(nlogn)	Линейно-логарифмическая сложность
O(n²)	Квадратичная сложность
O(n³)	Кубическая сложность
O(2 ⁿ)	Экспоненциальная сложность
O(n!)	Факториальная сложность