UEC519-Analog and Digital Communication Systems

Unit-2:

Introduction to Pulse Modulation Systems: Basic model of digital communication system, Bandpass and low pass signal and system representations, low pass equivalent of bandpass signals and system, Pulse modulation. Sampling process, Pulse Amplitude and Pulse code modulation (PCM), Differential pulse code modulation. Delta modulation (DM), Adaptive Delta modulation (ADM), Noise considerations in PCM, Time Division multiplexing.

Types of Information

Graphical Representation of various types of signals

Advantages of using digital communication over analog communication
□Can combine different signal types – data, voice, text, image, video etc.
☐Data communication in computers is digital in nature whereas voice communication between people is analog in nature
☐ The two different types (data/voice/text/image/video) of signal communication are difficult to combine over the same medium in the analog domain .
☐ Using digital techniques, it is possible to combine both format for transmission through a common medium .
☐ Encryption and privacy techniques are easier to implement
☐Better overall performance

☐ Digital communication is inherently more efficient than analog in realizing the exchange of SNR for bandwidth .
☐ Digital signals can be coded to yield extremely low rates and high fidelity as well as privacy .
>Hardware is more flexible
☐ Digital hardware implementation is flexible and permits the use of microprocessors , mini-processors, digital switching and VLSI
☐ Shorter design and production cycle
☐ Low cost: The use of LSI and VLSI in the design of components and systems have resulted in lower cost
➤ Easier and more efficient to multiplex several digital signals
□ Easier and more efficient Multiple Access Technique like TDMA, FDMA, CDMA etc.

Challenges in Digital Communications

- ☐ Requires reliable "synchronization"
 - ❖ Requires A/D conversions at **high rate**
- ☐ Requires larger bandwidth

Noise Immunity of Digital Signals

The data can be recovered correctly as long as the distortion and the noise are within limits.

Continued...

In contrast, the waveform (signal shape) in analog messages is so important, as even a small distortion or interference can cause error in the received signal

Clearly, a digital communication system can better withstand (resist) noise and distortion, thus it is more immune to noise.

Regenerative Repeaters

In digital systems:

- Repeater stations are placed along the communication path at distances short enough to ensure that noise and distortion remains within a limit.
- At each repeater station:
 - The incoming pulses are detected.
 - New clean pulses are generated.
 - The new pulses are transmitted to the next repeater station.
- This process prevents the accumulation of noise and distortion along the path <u>by cleaning the pulses periodically</u> at the repeater station.

Shortcomings of Analog Communication Systems

In analog systems:

- There is no way to avoid accumulation of noise and distortion along the path.
- Amplification is of little help, because it enhances the signal and noise in the same proportion (as discussed earlier).
- Signal quality can be improved by <u>filtering</u> the signal then <u>amplifying</u> it.
- Repeaters used in analog systems basically consist of filters and then amplifiers (they are not "regenerative" repeaters).

Block Diagram of Digital Communication System

Block Diagram

Figure 1.2 Block diagram of a typical digital communication system.

Methods and techniques

Formatting

Character coding Sampling Quantization Pulse code modulation (PCM)

Source Coding

Predictive coding Block coding Variable length coding Synthesis/analysis coding Lossless compression Lossy compression

Baseband Signaling

PCM waveforms (line codes)
Nonreturn-to-zero (NRZ)
Return-to-zero (RZ)
Phase encoded
Multilevel binary
M-ary pulse modulation
PAM, PPM, PDM

Equalization

Maximum-likelihood sequence
estimation (MLSE)
Equalization with filters
Transversal or decision feedback
Preset or Adaptive
Symbol spaced or fractionally
spaced

Bandpass Signaling

Coherent

Phase shift keying (PSK)
Frequency shift keying (FSK)
Amplitude shift keying (ASK)
Continuous phase modulation (CPM)
Hybrids

Noncoherent

Differential phase shift keying (DPSK) Frequency shift keying (FSK) Amplitude shift keying (ASK) Continuous phase modulation (CPM) Hybrids

Channel Coding

Waveform

Structured Sequences

M-ary signaling
Antipodal
Orthogonal
Trellis-coded modulation

Block Convolutional Turbo

Synchronization

Frequency synchronization Phase synchronization Symbol synchronization Frame synchronization Network synchronization

Multiplexing/Multiple Access

Frequency division (FDM/FDMA) Time division (TDM/TDMA) Code division (CDM/CDMA) Space division (SDMA) Polarization division (PDMA)

Spreading

Direct sequencing (DS) Frequency hopping (FH) Time hopping (TH) Hybrids

Encryption

Block Data stream

Fourier Transform

Short Table of Fourier Transforms		
	g(t)	$G(\omega)$
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega} \qquad a>0$
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$ $a>0$
3	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2} \qquad a > 0$
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2} \qquad a>0$
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}} \qquad a>0$
6	$\delta(t)$	1
7	1	$2\pi\delta(\omega)$
8	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$

Time domain

Time limited signal

Frequency domain

Baseband signal

Band pass signal

Frequency Shifting Property of Fourier Transform

Proof: By definition,

$$\mathcal{F}[g(t)e^{j\omega_0 t}] = \int_{-\infty}^{\infty} g(t)e^{j\omega_0 t}e^{-j\omega t}dt = \int_{-\infty}^{\infty} g(t)e^{-j(\omega-\omega_0)t}dt = G(\omega-\omega_0)$$

This property states that multiplication of a signal by a factor $e^{j\omega_0 t}$ shifts the spectrum of that signal by $\omega = \omega_0$.

Similarly

Changing ω_0 to $-\omega_0$

$$g(t)e^{-j\omega_0t} \iff G(\omega + \omega_0)$$

Because $e^{j\omega_0t}$ is not a real function that can be generated, frequency shifting in practice is achieved by multiplying g(t) by a sinusoid. This can be seen from the fact that

$$g(t)\cos \omega_0 t = \frac{1}{2} \left[g(t)e^{j\omega_0 t} + g(t)e^{-j\omega_0 t} \right]$$

We know that

$$g(t)e^{j\omega_0 t} \iff G(\omega - \omega_0)$$
 (3.33)

$$g(t)e^{j\omega_0 t} \iff G(\omega - \omega_0)$$
 (3.33)
 $g(t)e^{-j\omega_0 t} \iff G(\omega + \omega_0)$ (3.34)

From Eqs. (3.33) and (3.34), it follows that

$$g(t)\cos \omega_0 t \Longleftrightarrow \frac{1}{2} [G(\omega - \omega_0) + G(\omega + \omega_0)]$$
 (3.35)

This shows that the multiplication of a signal g(t) by a sinusoid of frequency ω_0 shifts the spectrum $G(\omega)$ by $\pm \omega_0$. Multiplication of a sinusoid cos $\omega_0 t$ by g(t) amounts to modulating the sinusoid amplitude. This type of modulation is known as amplitude modulation.

Performance Metrics

- **Analog Communication Systems**
 - Metric is **fidelity**: want

$$\hat{m}(t) \approx m(t)$$

- SNR typically used as performance metric
- **Digital Communication Systems**
 - Metrics are data rate (R bps) and probability of bit error (BER)

$$\left(P_b = p(\hat{b} \neq b)\right)$$

- $\left(P_b = p(\hat{b} \neq b) \right)$ Symbols already known at the receiver
- Without noise/distortion/sync. problem, we will never make bit errors

Goals in Communication System Design

- \triangleright To maximize transmission rate, R
- \triangleright To maximize system utilization, U
- \triangleright To minimize bit error rate, P_e
- \triangleright To minimize required systems bandwidth, W
- \triangleright To minimize system complexity, C_x
- \triangleright To minimize required power, E_b/N_o

Thanks?