Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	e	matricol	a:
COSHOING	1101110	\sim	III COI	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $h: \mathbb{Q} \to \mathbb{Q}$ definita da $h(z) = \frac{2z+8}{2} - z$ per ogni $z \in \mathbb{Q}$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- \Box h è suriettiva.
- \Box h è iniettiva.
- $\square \ h(z) = 2 \text{ per qualche } z \in \mathbb{Q}.$
- $\blacksquare \ h(z) = 4 \text{ per ogni } z \in \mathbb{Q}.$
- (b) Dati due insiemi A e B, indichiamo con A^B l'insieme delle funzioni da B in A. Sia C un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- $\hfill\Box$ C^C è un insieme infinito.
- \square C^C è certamente in biezione con $\mathcal{P}(A)$.
- \blacksquare \mathbb{N}^C è un insieme infinito numerabile.
- \qed che numerabile. $C^{\mathbb{N}}$ è necessariamente più che numerabile.
- (c) Siano C, D, A lettere proposizionali e R una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

$$\Box R \models D \lor \neg A \lor \neg C$$

 \square R è insoddisfacibile. \blacksquare ¬R non è valido. \square D \rightarrow A $\models \neg R$ (d) Sia $L = \{Q\}$ un linguaggio del prim'ordine con Q simbolo di relazione 2 punti binario. Quali delle seguenti affermazioni sono formalizzate dalla formula $\neg \exists z \forall w \ Q(z, w)$ relativamente alla struttura $\langle \mathbb{R}, \geq \rangle$? □ "Non c'è un numero reale più piccolo di tutti gli altri." ■ "Ci sono numeri reali arbitrariamente grandi." ■ "I numeri reali non hanno un massimo." \square "Non c'è un numero reale più grande di w." (e) Sia C un insieme non vuoto e sia $L = \{T\}$ un linguaggio del prim'ordine con 2 punti T simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle C, T \rangle$, l'affermazione: "T è simmetrica"? $\blacksquare \forall x \forall y (R(x,y) \rightarrow R(y,x))$ $\Box \ \forall x \forall y \, (x = y \to y = x)$ $\Box \ \forall x \forall y \left(R(x,y) = R(y,x) \right)$ $\square \ \forall x \forall y (R(x,y) \land R(y,x))$ (f) Siano D, A sottoinsiemi di C e sia $h: C \to C$. Stabilire quali delle seguenti 2 punti affermazioni sono corrette. \square Se $h[D] \subseteq h[A]$ allora si deve avere che $D \supseteq A$. $\blacksquare D \subseteq h^{-1}[h[D]].$ \square Se $D \neq A$ allora certamente accade che $h[D] \neq h[A]$. (g) Siano S e T formule proposizionali. Quali delle seguenti affermazioni 2 punti sono corrette? ■ Se S è insoddisfacibile, allora ¬S è una tautologia.

Punteggio totale primo esercizio: 14 punti

□ Se S non è una tautologia allora S è certamente insoddisfacibile.

 \blacksquare T $\not\equiv$ S se e solo se $i(T) \neq i(S)$ per qualche interpretazione i.

 $\blacksquare \neg (T \lor S) \not\equiv \neg T \lor \neg S$

Esercizio 2 9 punti

Sia $L = \{T, h, e\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario T, un simbolo di funzione binario h e un simbolo di costante e. Sia ϕ la formula

$$(\neg \exists w (h(w, w) = z) \rightarrow T(h(x, e), z)).$$

Consideriamo la L-struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists w (h(w, w) = z)[z/k, w/l]$ se e solo se k è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[z/1, w/0, x/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[z/2, w/1, x/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[z/5, w/1, x/5]$?
- 6. È vero che $\mathcal{N} \models \forall z \, \varphi[z/0, w/0, x/0]$?
- 7. È vero che $\mathcal{N} \models \forall z \, \varphi[z/0, w/0, x/5]$?
- 8. È vero che $\mathcal{N} \models \exists x \forall z \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall x \forall z \, \boldsymbol{\varphi}$?

Giustificare le proprie risposte.

Soluzione:

- 1. Non è un enunciato. Le occorrenze libere di variabili sono tutte le occorrenze di z,x. Concludiamo che in tutti i punti dell'esercizio è irrilevante controllare l'assegnamento della variabile w.
- 2. Si è vero poiché la formula in questione asserisce che il numero assegnato a z è ottenuto sommando con se stesso un qualche numero naturale w.
- 3. L'interpretazione di φ in \mathcal{N} è: "se z è dispari allora si ha che $x+1 \leq z$ ". Se a x viene assegnato 0 e a z viene assegnato 1, allora si ha che l'interpretazione di φ è vera in \mathcal{N} : infatti, l'implicazione è vera dato che lo è la sua conclusione (che interpretata nella struttura con l'assegnazione data diventa $0+1 \leq 1$).
- 4. L'interpretazione di φ in \mathcal{N} è: "se z è dispari allora si ha che $x+1 \leq z$ ". Se ad z assegniamo 2 la premessa dell'implicazione è falsa e quindi l'implicazione è vera.
- 5. L'interpretazione di φ in \mathcal{N} è: "se z è dispari allora si ha che $x+1 \leq z$ ". Se a z viene assegnato 5 e anche a x viene assegnato 5, la premessa dell'implicazione risulta vera (in quanto 5 è effettivamente dispari), ma la sua conclusione è falsa dato che 5+1=6>5. Quindi l'implicazione è falsa.
- 6. L'interpretazione di φ in \mathcal{N} è: "per ogni numero naturale z, se z è dispari allora $x+1 \leq z$ ". Se a x viene assegnato 0, l'affermazione risulta vera perché qualunque numero naturale dispari è certamente maggiore o uguale di 0+1, ovvero di 1.

- 7. Se invece assegniamo a x il numero 5, allora l'interpretazione della formula diventa "ogni numero dispari è maggiore o uguale a 5+1". Questo è falso perché prendendo z=3 si ha che z è un numero dispari (premessa dell'implicazione vera) ma 3<6 (conclusione dell'implicazione falsa).
- 8. Per quanto visto ai punti precedenti, l'assegnamento che dà a z il valore 0 mostra la verità in \mathcal{N} dell'enunciato $\exists x \forall z \ \varphi$.
- 9. Per quanto visto ai punti precedenti, se prendiamo z=3 e x=5 si ha che l'implicazione φ risulta falsa: questo mostra la falsità in \mathcal{N} dell'enunciato $\forall x \forall z \varphi$.

Esercizio 3 9 punti

Sia C un insieme non vuoto, siano D,A sottoinsiemi di C e sia $h\colon C\to C$ una funzione. Formalizzare relativamente alla struttura $\langle C,D,A,h\rangle$ mediante il linguaggio $L=\{D,A,h\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. h è biettiva
- 2. $h \circ h$ è suriettiva
- 3. $h[A] \subseteq D$
- 4. $h[D] \cup h[A] = C$.

Soluzione: 1. h è biettiva: $\forall x \forall y (\neg(x=y) \rightarrow \neg(h(x)=h(y))) \land \forall y \exists x (h(x)=y)$

- 2. $h \circ h$ è suriettiva: $\forall y \exists x (h(h(x)) = y)$
- 3. $h[A] \subseteq D: \forall x(A(x) \to D(h(x)))$
- 4. $h[D] \cup h[A] = C$: $\forall y \exists x (h(x) = y \land (D(x) \lor A(x)))$