Chapter - 15 Robotics coding VEXcode VR - 1

Objective:

- Introduce students to block-based programming using **VEXcode VR**.
- Teach students how to use **sensors** (specifically, the **Distance Sensor**) to detect obstacles and make the robot respond dynamically.

Simple projects, including sensing-based tasks, to reinforce learning

Skills to be attained : Coding to move the robot

Tools / Websites / Resources:

1. https://www.vr.vex.com//

Teacher Led Instructions:.

- 1. **VEXcode VR** is an online, block-based coding platform that allows students to program a virtual robot and see the results in real-time in a virtual environment. It's designed to teach the basics of programming and robotics through an interactive interface.
 - It allows users to code a virtual robot in a virtual environment: It offers two coding environments:
 - Block-based: Powered by Scratch Blocks, this environment and Text-based: Uses Python directly in the browser It consists of virtual Playgrounds with their virtual robot

2. Key Components of VEXcode VR:

It consist of a **Virtual Playground** where the robot operates and the virtual robot comes with various built-in sensors (like the **Distance Sensor**, **Gyro Sensor**, and **Bumper Switch**). The robot can be programmed using block based code or using python to move, turn, detect objects, follow paths, or draw shapes.

VEX code Screen

Program 1: Moving Forward and Turning

Objective: Program the robot to move forward and turn after a set distance.

Steps:

- 1. **Open VEXcode VR** (https://vr.vex.com)
- 2. Select a Playground:
- 3. Choose the **Grid Map** playground from the playground dropdown. SELECT PLAYGROUND on the top right of the tool bar. **Drag Blocks to Workspace**:
 - \circ From the **Drivetrain** category do the following

Step No	Action	Block with value
1	Drag the "Drive Forward" block into the workspace. Set the distance to 1500 mm.	when started drive forward ▼ for 1500 mm ▼ ▶
2	Drag the "Turn Right" block below the "Drive Forward" block. Set the turn to 90 degrees.	turn right ▼ for 90 degrees ▶
3	Drag the "Drive Forward" block into the workspace. Set the distance to 1500 mm.	drive forward v for 1500 mm v

4	Drag the "Turn Right" block below the "Drive Forward" block. Set the turn to 90 degrees.	turn right ▼ for 90 degrees ▶
5	Drag the "Drive Forward" block into the workspace. Set the distance to 1500 mm.	drive forward ▼ for 1500 mm ▼ ▶
6	Drag the "Turn Right" block below the "Drive Forward" block. Set the turn to 90 degrees.	turn right ▼ for 90 degrees ▶
7	Drag the "Drive Forward" block into the workspace. Set the distance to 1500 mm.	drive forward v for 1500 mm v

4. Run the Code:

o Press **Start icon** in the tool bar and observe the robot moving forward and then turning right.

Output

Conclusion: Students will learn how to operate a robot by their coding. VEXcode gives them an idea about it.