# raw tabular data semantical mapping

#### first of all, what we want?



#### what we want? (another example)

| Washington    |
|---------------|
| Hollywood     |
| Fort Wayne    |
| Cincinnati    |
| New York City |
| Fort Wayne    |
| Portland      |
| Wilmington    |
| Anaheim       |
| Arlington     |



city: 0.9

country: 0.09

name: 0.01

age: 0.01

. . .

#### what we want? (last example)



what we want? (more general)

input: array of strings output: what do those strings mean?

what we want? (more philosophical)

syntax ==> semantics

#### data

Initially, there was an attempt to create training dataset from scratch ..



#### all categories

address affiliate affiliation age album artist birth Date area birth Place brand capacity category classification city class club collection code command company component continent country county credit creator currency day depth description director duration education elevation family file Size format gender grades genre industry isbn jockey language location manufacturer nationality name organisation notes operator order origin plays owner person position publisher product range rank ranking region religion result sales service requirement species state status sex team Name symbol team type weight year

#### data

so we will use parsed VizNet data<sup>☆</sup>

VizNet is a centralized and large-scale repository of data as used in practice, compiled from the web, open data repositories, and online visualization platforms. VizNet enables data scientists and visualization researchers to aggregate data, enumerate visual encodings, and crowdsource effectiveness evaluations.

#### data, how we parse it?

| PAT_CITY        | PAT_STATE | PAT_ADDRESS            | PAT_ZIP |
|-----------------|-----------|------------------------|---------|
| Fort Lauderdale | FL        | 2315 Esch Park         | 33355   |
| Sioux Falls     | SD        | 28055 Westend Trail    | 57198   |
| Stockton        | CA        | 29013 Magdeline Court  | 95210   |
| Albuquerque     | NM        | 52243 Orin Hill        | 87195   |
| Corona          | CA        | 40 Bonner Avenue       | 92878   |
| Mobile          | AL        | 9410 Oxford Plaza      | 36622   |
| Milwaukee       | WI        | 0 Manufacturers Plaza  | 53220   |
| Montgomery      | AL        | 4 Stone Corner Road    | 36125   |
| Alexandria      | VA        | 5 Carey Alley          | 22333   |
| Montgomery      | AL        | 372 Jenna Street       | 36114   |
| Houston         | TX        | 56409 Delladonna Plaza | 77255   |

#### distribution of number of samples for each category



#### how we fit data into model?



array of strings

#### what features we extract?

- lengths of elements
- percentage of alphabet letters
- percentage of digits
- how often each character occurs
- how often each character occurs on fixed position
- percentage of empty (nan or None) elements
- uniqueness

We then take a bunch of stats about each of those: mean, min, max, standard deviation, skewness, etc

#### what models did we try?

| Random forest    | Neural network                         | XGBoost           |
|------------------|----------------------------------------|-------------------|
| 20 trees         | 3 layers                               | 100 trees         |
|                  | 1024 neurons on each layer dropout 0.1 | depth 10          |
| Accuracy: 0.8277 | ·                                      | Accuracy: ~0.5 :( |
| -                | Accuracy: ~0.84                        | ,                 |

#### learning curves for neural network





#### what are the most important features?

```
length_mean
                                : 0.0154
 _occurrence_mean
                                  0.0103
length_max
                                : 0.0098
uniqueness
                                : 0.0094
                                : 0.0092
uppercase mean
uppercase_min
                                : 0.0082
length min
                                : 0.0081
alphabetic_mean
                                : 0.0080
 _occurrence_max*
                                : 0.0079
numeric_max
                                : 0.0074
```

nothing in the beginning means '', space character

#### features importances distribution



Not good, obviously. Nearly 80% of features are useless :(

#### classes that were classified good

| grades      | 0.991 |
|-------------|-------|
| isbn        | 0.986 |
| birth Date  | 0.964 |
| elevation   | 0.954 |
| symbol      | 0.952 |
| industry    | 0.950 |
| age         | 0.937 |
| year        | 0.936 |
| duration    | 0.932 |
| affiliation | 0.927 |
| format      | 0.926 |
| sex         | 0.926 |
|             |       |

#### classes that were classified bad

| 0.659 |
|-------|
| 0.656 |
| 0.651 |
| 0.599 |
| 0.589 |
| 0.557 |
| 0.540 |
| 0.538 |
| 0.509 |
| 0.493 |
| 0.468 |
| 0.452 |
| 0.405 |
| 0.262 |
|       |

#### distribution of accuracies among all classes



### how the result looks like

```
Values : 'Central Missouri', 'unattached', 'unattached', 'Kansas Sta . . .
Predicted: {'affiliation': 0.3, 'country': 0.2, 'category': 0.2}
Truth : affiliation
Values : 95, 100, 95, 89, 84, 91, 88, 94, 75, 78, 90, 84, 90, 76, 93 . . .
Predicted : {'rank': 0.3, 'plays': 0.3, 'education': 0.2}
Truth : weight
Values : 'Katie Crews', 'Christian Hiraldo', 'Alex Estrada', 'Fredy . . .
Predicted: {'jockey': 0.9, 'owner': 0.1, 'year': 0.0}
Truth : jockey
Values : 'Christian', 'Non-Christian', 'Unreported', 'Jewish', 'Athe . . .
Predicted: {'type': 0.2, 'language': 0.1, 'name': 0.1}
Truth : religion
Values : 'AAF-McQuay Canada Inc.', 'AAF-McQuay Canada Inc.', 'Abilit . . .
Predicted : {'company': 0.3, 'album': 0.2, 'description': 0.1}
Truth
         : company
```

#### what I learned from doing this project

- Preparing and preprocessing data is 90% of the work
- Making a decent dataset by yourself is hard
- Extracting and training sometimes takes hours so always do a backup
- Plots and graphs can really help
- Don't reinvent the wheel when it's possible

## let's give it a test!

# github repo with all stuff:

https://github.com/rureirurei/cat

