La mappa logistica discreta: origine e comportamento

Simone Zuccher

Oltre il compasso... Moti ordinati e moti caotici 03 Maggio 2013

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- 3 Stabilità degli stati di equilibrio
- Dall'ordine al caos

- Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

Dall'ordine al caos

Evoluzione di una popolazione

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (*n*-esimo passo temporale), $p_n > 0$.

- il tasso di natalità τ^{nati} , definito come il numero di individui
- il tasso di mortalità τ^{morti} , definito come il numero di

$$au_n^{\mathrm{nati}} = au_0^{\mathrm{nati}} - ap_n \qquad \mathrm{e} \qquad au_n^{\mathrm{morti}} = au_0^{\mathrm{morti}} + bp_n,$$

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$. Introduciamo:

- il tasso di natalità τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il tasso di mortalità $\tau^{\rm morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - a p_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + b p_n,$$

dove $\tau_0^{\text{nati}}, \tau_0^{\text{morti}}, a$ e b sono tutte costanti positive. a e b misurano il **grado di competizione per le risorse** all'interno della specie.

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (*n*-esimo passo temporale), $p_n > 0$. Introduciamo:

- il tasso di natalità τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il tasso di mortalità τ^{morti} , definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? Risorse limitate: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{\mathrm{nati}} = au_0^{\mathrm{nati}} - ap_n$$
 e $au_n^{\mathrm{morti}} = au_0^{\mathrm{morti}} + bp_n$

4D + 4B + 4B + B + 990

(1/2)

Indichiamo con p_n il numero di individui di una popolazione al tempo t_n (n-esimo passo temporale), $p_n \ge 0$. Introduciamo:

- il tasso di natalità τ^{nati} , definito come il numero di individui nati durante il passo n diviso per il numero di individui p_n
- il tasso di mortalità $\tau^{\rm morti}$, definito come il numero di individui morti durante il passo n diviso per il numero di individui p_n

Tassi costanti nel tempo? **Risorse limitate**: al crescere della popolazione il tasso di natalità diminuisce e/o quello di mortalità cresce.

$$au_n^{ ext{nati}} = au_0^{ ext{nati}} - a p_n \qquad ext{e} \qquad au_n^{ ext{morti}} = au_0^{ ext{morti}} + b p_n,$$

dove τ_0^{nati} , τ_0^{morti} , a e b sono tutte costanti positive. a e b misurano il **grado di competizione per le risorse** all'interno della specie.

In assenza di flusso migratorio:

$$p_{n+1} = p_n + \tau_n^{\text{nati}} p_n - \tau_n^{\text{morti}} p_n$$

$$= (1 + \tau_n^{\text{nati}} - \tau_n^{\text{morti}}) p_n$$

$$= (1 + \tau_0^{\text{nati}} - ap_n - \tau_0^{\text{morti}} - bp_n) p_n$$

$$= [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a + b)p_n] p_n,$$
(1)

Questo è solo un modello di evoluzione di una popolazione, detto modello *logistico* o *di Verhulst*.

Domande

- ① Esiste un valore asintotico p_{∞} della popolazione?
- Esiste un valore massimo p_{max} della popolazione?

In assenza di flusso migratorio:

$$p_{n+1} = p_n + \tau_n^{\text{nati}} p_n - \tau_n^{\text{morti}} p_n$$

$$= (1 + \tau_n^{\text{nati}} - \tau_n^{\text{morti}}) p_n$$

$$= (1 + \tau_0^{\text{nati}} - ap_n - \tau_0^{\text{morti}} - bp_n) p_n$$

$$= [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a + b)p_n] p_n,$$
(1)

Questo è solo un *modello* di evoluzione di una popolazione, detto modello *logistico* o *di Verhulst*.

Domande:

- Esiste un valore asintotico p_{∞} della popolazione?
- 2 Esiste un valore massimo p_{max} della popolazione?

$$p_{\infty} = [(1+ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = rac{ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni

- se $au_0^{\rm nati} \le au_0^{\rm morti}$ allora $p_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($\tau_0^{\mathrm{nati}} > \tau_0^{\mathrm{morti}}$) o estinzione ($\tau_0^{\mathrm{nati}} < \tau_0^{\mathrm{morti}}$).

$$p_{\infty} = [(1+ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = rac{ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p_n$$

esplosione ($\tau_0^{\mathrm{nati}} > \tau_0^{\mathrm{morti}}$) o estinzione ($\tau_0^{\mathrm{nati}} < \tau_0^{\mathrm{morti}}$).

$$p_{\infty} = [(1+ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = rac{ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($\tau_0^{\mathrm{nati}} > \tau_0^{\mathrm{morti}}$) o estinzione ($\tau_0^{\mathrm{nati}} < \tau_0^{\mathrm{morti}}$).

nati m

$$p_{\infty} = [(1+\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = \frac{\tau_0^{\mathsf{nati}}-\tau_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p$$

esplosione ($au_0^{
m nati} > au_0^{
m morti}$) o estinzione ($au_0^{
m nati} < au_0^{
m morti}$).

$$p_{\infty} = [(1+ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}})-(a+b)p_{\infty}]p_{\infty} \quad \Longrightarrow \quad p_{\infty} = rac{ au_0^{\mathsf{nati}}- au_0^{\mathsf{morti}}}{a+b}.$$

Considerazioni:

- se $au_0^{
 m nati} \leq au_0^{
 m morti}$ allora $extit{p}_\infty = 0$: la popolazione si **estingue**
- se $\tau_0^{\rm nati} > \tau_0^{\rm morti}$ allora $p_\infty \neq 0$: la popolazione si **stabilizza**; "comportamenti strani"?
- al crescere di a e b (competizione) p_{∞} diminuisce
- limite a = b = 0: $p_{n+1} = [(1 + \tau_0^{\text{nati}} \tau_0^{\text{morti}})]p_n$, da cui

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}})]^n p_1$$

esplosione ($\tau_0^{\text{nati}} > \tau_0^{\text{morti}}$) o estinzione ($\tau_0^{\text{nati}} < \tau_0^{\text{morti}}$).

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b},$$

pertanto

$$p_{\max} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sì: possibili fenomeni di *overshooting*, l'assestamento della popolazione avviene in maniera **non monotòna**.

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}}{a + b},$$

pertanto

$$p_{\text{max}} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sì: possibili fenomeni di *overshooting*, l'assestamento della popolazione avviene in maniera **non monotòna**.

Sotto l'ipotesi $p_n \ge 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}}{a + b},$$

pertanto

$$p_{\text{max}} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\mathsf{max}} > p_{\infty}$?

Sì: possibili fenomeni di *overshooting*, l'assestamento della popolazione avviene in maniera **non monotòna**.

Sotto l'ipotesi $p_n \geq 0$, si ha

$$p_{n+1} \ge 0 \iff [(1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}) - (a+b)p_n]p_n \ge 0$$

da cui

$$0 \leq p_n \leq \frac{1 + \tau_0^{\mathsf{nati}} - \tau_0^{\mathsf{morti}}}{a + b},$$

pertanto

$$p_{\text{max}} = \frac{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}}{a + b} > p_{\infty}.$$

 $p_{\text{max}} > p_{\infty}$?

Sì: possibili fenomeni di overshooting, l'assestamento della popolazione avviene in maniera non monotòna.

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

Siccome esiste p_{max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione** "riscalata" $x_n = p_n/p_{\text{max}}$ tale che $0 < x_n < 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

$$\frac{p_{n+1}}{p_{\text{max}}} = \left[(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}}$$

Un modello per la dinamica delle popolazioni

Siccome esiste p_{max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione** "riscalata" $x_n = p_n/p_{\text{max}}$ tale che $0 < x_n < 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

dividendo entrambi i membri per p_{max} e rielaborando si ottiene

$$\frac{p_{n+1}}{p_{\text{max}}} = \left[(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}}$$

$$= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}}$$

Un modello per la dinamica delle popolazioni

Siccome esiste p_{max} , anziché utilizzare il numero "assoluto" di individui p_n , introduciamo una **popolazione** "riscalata" $x_n = p_n/p_{\text{max}}$ tale che $0 < x_n < 1$. Da

$$p_{n+1} = [(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n]p_n,$$

dividendo entrambi i membri per p_{max} e rielaborando si ottiene

$$\begin{aligned} \frac{p_{n+1}}{p_{\text{max}}} &= \left[(1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) - (a+b)p_n \right] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n \right] \frac{p_n}{p_{\text{max}}} \\ &= (1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}) \left[1 - \frac{p_n}{p_{\text{max}}} \right] \frac{p_n}{p_{\text{max}}} \end{aligned}$$

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0$$

е

$$x_n = rac{p_n}{p_{ ext{max}}} = rac{a+b}{1+ au_0^{ ext{nati}}- au_0^{ ext{morti}}} p_n,$$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta.

Domande:

- ① Quanto vale x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x₀?

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0$$
 e $x_n = \frac{p_n}{p_{\text{max}}} = \frac{a+b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta. Domande:

- **Quanto vale** x_{∞} (valore asintotico normalizzato)?

2/2)

Introducendo

$$A = 1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}} > 0 \qquad \text{e} \qquad x_n = \frac{p_n}{p_{\text{max}}} = \frac{a + b}{1 + \tau_0^{\text{nati}} - \tau_0^{\text{morti}}} p_n,$$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta.

Domande:

- **Quanto vale** x_{∞} (valore asintotico normalizzato)?
- 2 Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x_n?

Introducendo

$$A = 1 + au_0^{ ext{nati}} - au_0^{ ext{morti}} > 0$$
 e $x_n = rac{p_n}{p_{ ext{max}}} = rac{a+b}{1 + au_0^{ ext{nati}} - au_0^{ ext{morti}}} p_n,$

si ottiene semplicemente

$$x_{n+1} = Ax_n(1-x_n),$$
 (2)

nota come equazione logistica discreta.

Domande:

- **Quanto vale** x_{∞} (valore asintotico normalizzato)?
- Quali valori può assumere A in modo che la popolazione normalizzata x_n sia sempre $0 \le x_n \le 1$?
- Si può pensare ad un metodo grafico per determinare il destino della popolazione normalizzata x_n ?

1 calcolo di x_{∞} :

$$x_{\infty} = Ax_{\infty}(1-x_{\infty})$$

da cui

$$x_{\infty}=0$$
 e $x_{\infty}=1-1/A$.

Affinché la specie non si estingua ($x_{\infty} > 0$), deve essere 1 - 1/A > 0 che implica A > 1.

valori ammissibili di A: il vertice della parabola y = Ax(1-x) è V(1/2, A/4), per avere $0 < x_n \le 1$ deve essere 0 < A/4 < 1 che implica 0 < A < 4.

• calcolo di x_{∞} :

$$x_{\infty} = Ax_{\infty}(1-x_{\infty})$$

da cui

$$x_{\infty}=0$$
 e $x_{\infty}=1-1/A$.

Affinché la specie non si estingua ($x_{\infty} > 0$), deve essere 1 - 1/A > 0 che implica A > 1.

valori ammissibili di A: il vertice della parabola y = Ax(1-x) è V(1/2, A/4), per avere $0 < x_n \le 1$ deve essere $0 < A/4 \le 1$ che implica $0 < A \le 4$.

Domande 1 e 2

- per $0 \le A \le 1$ si ha $x_{\infty} = 0$
- per $1 < A \le 4$ si hanno $x_{\infty} = 0$ oppure $x_{\infty} = 1 1/A$.

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- ① partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 . . .
- calcolare $x_{n+1} = f(x_n)$
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Sì: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- oriportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- 7 riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- oriportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- 7 riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- riportare il valore di x₂ sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- 7 riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Vedi script Octave.

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- 2 riportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- **o** calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- 7 riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Vedi script Octave.

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- riportare il valore di x2 sull'asse delle ascisse sfruttando la bisettrice v = x
- 3 calcolare $x_3 = f(x_2)$
- 4 ...
- \odot calcolare $x_{n+1} = f(x_n)$
- se $|x_{n+1}-x_n|<\epsilon$, esci dal ciclo
- \bigcirc riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y = x e ripetere dal punto 5

Si: basta riportare sullo stesso grafico y = f(x) e y = x e poi

- partire dal dato iniziale x_1 e calcolare $x_2 = f(x_1)$
- oriportare il valore di x_2 sull'asse delle ascisse sfruttando la bisettrice y = x
- o calcolare $x_3 = f(x_2)$
- 4 ...
- **o** calcolare $x_{n+1} = f(x_n)$
- **1** se $|x_{n+1} x_n| < \epsilon$, esci dal ciclo
- \circ riportare il valore di x_{n+1} sull'asse delle ascisse sfruttando la bisettrice y=x e ripetere dal punto 5

Vedi script Octave.

Agenda

- Un modello per la dinamica delle popolazion
- 2 La mappa logistica
- 3 Stabilità degli stati di equilibrio
- Dall'ordine al caos

Stabilità di uno stato di equilibrio

Stato di equilibrio x_{eq} : un valore che, se raggiunto, fa in modo che la popolazione non evolva più e si mantenga *in equilibrio* su quel valore in eterno.

$$x_{\text{eq}} = 0$$
 oppure $x_{\text{eq}} = 1 - 1/A$.

- Il punto di equilibrio x_{eq} è stabile se, perturbando il sistema, la risposta non si allontana troppo dal punto di equilibrio.
- Il punto di equilibrio x_{eq} è asintoticamente stabile se perturbando il sistema, la risposta ritorna, prima o poi (per n → ∞), esattamente al punto di equilibrio.

Stato di equilibrio x_{eq}: un valore che, se raggiunto, fa in modo che la popolazione non evolva più e si mantenga in equilibrio

su quel valore in eterno.

$$x_{eq} = 0$$
 oppure $x_{eq} = 1 - 1/A$.

- Il punto di equilibrio x_{eq} è stabile se, perturbando il
- Il punto di equilibrio x_{eq} è asintoticamente stabile se

Stabilità di uno stato di equilibrio

Stato di equilibrio x_{eq} : un valore che, se raggiunto, fa in modo che la popolazione non evolva più e si mantenga *in equilibrio* su quel valore in eterno.

$$x_{eq} = 0$$
 oppure $x_{eq} = 1 - 1/A$.

- Il punto di equilibrio x_{eq} è stabile se, perturbando il sistema, la risposta non si allontana troppo dal punto di equilibrio.
- Il punto di equilibrio x_{eq} è asintoticamente stabile se perturbando il sistema, la risposta ritorna, prima o poi (per n → ∞), esattamente al punto di equilibrio.

Stabilità di uno stato di equilibrio

Stato di equilibrio x_{eq} : un valore che, se raggiunto, fa in modo che la popolazione non evolva più e si mantenga *in equilibrio* su quel valore in eterno.

$$x_{eq} = 0$$
 oppure $x_{eq} = 1 - 1/A$.

- Il punto di equilibrio x_{eq} è stabile se, perturbando il sistema, la risposta non si allontana troppo dal punto di equilibrio.
- Il punto di equilibrio x_{eq} è asintoticamente stabile se perturbando il sistema, la risposta ritorna, prima o poi (per n → ∞), esattamente al punto di equilibrio.

(1/3)

Sia $f: I \rightarrow I, I \subseteq \mathbb{R}$ e

$$x_{n+1} = f(x_n)$$

una generica successione per ricorrenza.

Se δ_n è una perturbazione (positiva o negativa) dello stato di equilibrio al tempo n, al tempo successivo n+1 la soluzione è

$$f(\mathbf{x}_{eq} + \delta_n) \neq f(\mathbf{x}_{eq}).$$

Per avere stabilità asintotica la distanza di $f(x_{eq} + \delta_n)$ dalla soluzione di equilibrio $f(x_{eq}) = x_{eq}$ deve essere minore di δ_n , altrimenti la soluzione continuerebbe ad allontanarsi, passo dopo passo, dal punto x_{eq} :

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n|$$

(1/3)

Sia $f: I \rightarrow I, I \subseteq \mathbb{R}$ e

$$x_{n+1} = f(x_n)$$

una generica successione per ricorrenza.

Se δ_n è una perturbazione (positiva o negativa) dello stato di equilibrio al tempo n, al tempo successivo n+1 la soluzione è

$$f(\mathbf{x}_{eq} + \delta_n) \neq f(\mathbf{x}_{eq}).$$

Per avere stabilità asintotica la distanza di $f(x_{eq} + \delta_n)$ dalla soluzione di equilibrio $f(x_{eq}) = x_{eq}$ deve essere minore di δ_n , altrimenti la soluzione continuerebbe ad allontanarsi, passo dopo passo, dal punto x_{eq} :

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n|$$

(1/3)

Sia $f: I \rightarrow I, I \subseteq \mathbb{R}$ e

$$\mathbf{x}_{n+1} = f(\mathbf{x}_n)$$

una generica successione per ricorrenza.

Se δ_n è una perturbazione (positiva o negativa) dello stato di equilibrio al tempo n, al tempo successivo n+1 la soluzione è

$$f(\mathbf{x}_{eq} + \delta_n) \neq f(\mathbf{x}_{eq}).$$

Per avere stabilità asintotica la distanza di $f(x_{eq} + \delta_n)$ dalla soluzione di equilibrio $f(x_{eq}) = x_{eq}$ deve essere minore di δ_n , altrimenti la soluzione continuerebbe ad allontanarsi, passo dopo passo, dal punto x_{eq} :

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n|.$$

(2/3)

Linearizzando nell'intorno di x_{eq} si ha

$$f(\mathbf{x}_{eq} + \delta_n) = f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n + \mathcal{O}(\delta_n^2),$$

da cui

$$|f(\mathbf{x}_{\text{eq}} + \delta_n) - f(\mathbf{x}_{\text{eq}})| = |f(\mathbf{x}_{\text{eq}}) + f'(\mathbf{x}_{\text{eq}})\delta_n - f(\mathbf{x}_{\text{eq}})| = |f'(\mathbf{x}_{\text{eq}})| \cdot |\delta_n|,$$

imporre la stabilità asintotica implica

$$|f(x_{eq} + \delta_n) - f(x_{eq})| < |\delta_n| \iff |f'(x_{eq})| \cdot |\delta_n| < |\delta_n|$$

da cui la condizione di asintotica stabilità

$$|f'(x_{eq})| < 1. (3)$$

(2/3)

Linearizzando nell'intorno di x_{eq} si ha

$$f(\mathbf{x}_{eq} + \delta_n) = f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n + \mathcal{O}(\delta_n^2),$$

da cui

$$|f(\mathbf{x}_{\text{eq}} + \delta_n) - f(\mathbf{x}_{\text{eq}})| = |f(\mathbf{x}_{\text{eq}}) + f'(\mathbf{x}_{\text{eq}})\delta_n - f(\mathbf{x}_{\text{eq}})| = |f'(\mathbf{x}_{\text{eq}})| \cdot |\delta_n|,$$

imporre la stabilità asintotica implica

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n| \iff |f'(\mathbf{x}_{eq})| \cdot |\delta_n| < |\delta_n|$$

da cui la condizione di asintotica stabilità

$$|f'(x_{eq})| < 1. (3)$$

(2/3)

Linearizzando nell'intorno di x_{eq} si ha

$$f(\mathbf{x}_{eq} + \delta_n) = f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n + \mathcal{O}(\delta_n^2),$$

da cui

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| = |f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n - f(\mathbf{x}_{eq})| = |f'(\mathbf{x}_{eq})| \cdot |\delta_n|,$$

imporre la stabilità asintotica implica

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n| \quad \iff \quad |f'(\mathbf{x}_{eq})| \cdot |\delta_n| < |\delta_n|$$

da cui la condizione di asintotica stabilità

$$|f'(x_{eq})| < 1. (3)$$

(2/3)

Linearizzando nell'intorno di x_{eq} si ha

$$f(\mathbf{x}_{eq} + \delta_n) = f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n + \mathcal{O}(\delta_n^2),$$

da cui

$$|f(\mathbf{x}_{\text{eq}} + \delta_n) - f(\mathbf{x}_{\text{eq}})| = |f(\mathbf{x}_{\text{eq}}) + f'(\mathbf{x}_{\text{eq}})\delta_n - f(\mathbf{x}_{\text{eq}})| = |f'(\mathbf{x}_{\text{eq}})| \cdot |\delta_n|,$$

imporre la stabilità asintotica implica

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n| \quad \iff \quad |f'(\mathbf{x}_{eq})| \cdot |\delta_n| < |\delta_n|$$

da cui la condizione di asintotica stabilità

$$|f'(\mathbf{x}_{eq})| < 1. (3)$$

(2/3)

Linearizzando nell'intorno di xeg si ha

$$f(\mathbf{x}_{eq} + \delta_n) = f(\mathbf{x}_{eq}) + f'(\mathbf{x}_{eq})\delta_n + \mathcal{O}(\delta_n^2),$$

da cui

$$|f(\mathbf{x}_{\text{eq}} + \delta_n) - f(\mathbf{x}_{\text{eq}})| = |f(\mathbf{x}_{\text{eq}}) + f'(\mathbf{x}_{\text{eq}})\delta_n - f(\mathbf{x}_{\text{eq}})| = |f'(\mathbf{x}_{\text{eq}})| \cdot |\delta_n|,$$

imporre la stabilità asintotica implica

$$|f(\mathbf{x}_{eq} + \delta_n) - f(\mathbf{x}_{eq})| < |\delta_n| \iff |f'(\mathbf{x}_{eq})| \cdot |\delta_n| < |\delta_n|$$

da cui la condizione di asintotica stabilità

$$|f'(\mathbf{x}_{eq})| < 1. ag{3}$$

(3/3)

Sia $f: I \to I, I \subset \mathbb{R}$ una funzione di classe C^3 e x_{eq} un punto di equilibrio per la successione definita da $x_{n+1} = f(x_n)$. Allora vale il seguente schema:

- se $|f'(x_{eq})| < 1$ allora x_{eq} è (localmente asintoticamente) stabile.
- se $|f'(x_{eq})| > 1$ allora x_{eq} è instabile.
- se $|f'(x_{eq})| = 1$ si ha:
 - se $f'(x_{eq}) = -1$ si ha:
 - se $2f'''(x_{eq}) + 3[f''(x_{eq})]^2 < 0$ allora x_{eq} è instabile
 - se $2f'''(x_{eq}) + 3[f''(x_{eq})]^2 > 0$ allora x_{eq} è (localmente asintoticamente) stabile
 - se $f'(x_{eq}) = 1$ si ha:
 - se $f''(x_{eq}) < 0$ allora x_{eq} è (localmente asintoticamente) stabile superiormente ed instabile inferiormente
 - se $f''(x_{eq}) > 0$ allora x_{eq} è instabile superiormente e (localmente asintoticamente) stabile inferiormente
 - se $f''(x_{eq}) = 0$ si ha se $f'''(x_{eq}) < 0$ allora x_{eq} è (loc. asint.) stabile se $f'''(x_{eq}) > 0$ allora x_{eq} è instabile

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi **per** 0 < A < 1 **la popolazione è condannata all'estinzione**.
- $x_{eq} = 1 1/A$: essa esiste solo se $1 < A \le 4$ e si ha f'(1 1/A) = 2 A, la condizione di stabilità è

$$2 - A | < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per $3 \le A < 4$.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe instabili... **cosa succede**?

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi **per** 0 < A < 1 **la popolazione è** condannata all'estinzione.
- $x_{eq} = 1 1/A$: essa esiste solo se $1 < A \le 4$ e si ha f'(1 1/A) = 2 A, la condizione di stabilità è

$$|2 - A| < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per $3 \le A < 4$.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi **per** 0 < A < 1 **la popolazione è** condannata all'estinzione.
- $x_{eq} = 1 1/A$: essa esiste solo se $1 < A \le 4$ e si ha f'(1 1/A) = 2 A, la condizione di stabilità è

$$|2 - A| < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per $3 \le A < 4$.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi **per** 0 < A < 1 **la popolazione è** condannata all'estinzione.
- $x_{eq} = 1 1/A$: essa esiste solo se $1 < A \le 4$ e si ha f'(1 1/A) = 2 A, la condizione di stabilità è

$$|2 - A| < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per $3 \le A < 4$.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi **per** 0 < A < 1 **la popolazione è** condannata all'estinzione.
- $x_{eq} = 1 1/A$: essa esiste solo se $1 < A \le 4$ e si ha f'(1 1/A) = 2 A, la condizione di stabilità è

$$|2 - A| < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per $3 \le A < 4$.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe instabili... **cosa succede**?

Studiamo la stabilità di x_{eq} sapendo che f'(x) = A - 2Ax.

- $x_{eq} = 0$: f'(0) = A, $|f'(0)| < 1 \iff |A| < 1$, da cui 0 < A < 1. Se 0 < A < 1 la soluzione $x_{eq} = 0$ è l'*unica* possibile, quindi per 0 < A < 1 la popolazione è condannata all'estinzione.
- $x_{eq} = 1 1/A$: essa esiste solo se 1 < A < 4 e si ha f'(1-1/A)=2-A, la condizione di stabilità è

$$|2 - A| < 1 \implies 1 < A < 3.$$

Pertanto, la soluzione $x_{eq} = 1 - 1/A$ è stabile per 1 < A < 3 e instabile per 3 < A < 4.

- $0 < A \le 1$: estinzione ($x_{eq} = 0$ è unica e stabile)
- 1 < A < 3: $x_{eq} = 1 1/A$ (soluzione stabile)
- $3 \le A \le 4$: $x_{eq} = 0$ e $x_{eq} = 1 1/A$ sono entrambe instabili... cosa succede?

equilibrio stabile:

Giochiamo un po' con Octave: per 0 < A < 3 si osservano varie transizioni, in ogni caso c'è almeno una soluzione di

- Se $0 < A \le 1$, ovvero se $\tau_0^{\text{nati}} \le \tau_0^{\text{morti}}$, allora $x_{\infty} = 1 1/A = 0$ e la specie si estingue.
- Se 1 < A ≤ 2 la popolazione si stabilizza velocemente al valore 1 – 1/A, indipendentemente dal valore iniziale della popolazione.
- Se 2 < A ≤ 3 la popolazione si stabilizza comunque al valore 1 - 1/A ma oscillando attorno ad esso per un po' di tempo. La convergenza risulta molto lenta per A = 3.

Cosa succede per $3 < A \le 4$?

Agenda

- 1 Un modello per la dinamica delle popolazioni
- 2 La mappa logistica
- Stabilità degli stati di equilibrio
- Dall'ordine al caos

Stabilità degli stati di equilibrio

Cosa succede per $3 < A \le 4$?

(1/2)

Fatto interessante: esistono soluzioni stabili per la mappa

$$x_{n+1}=f^2(x_n),$$

dove $f^2(x)$ è l'iterata seconda di f(x) = Ax(1-x):

$$f^{2}(x) = f(f(x)) = A^{2}x(1-x)(Ax^{2} - Ax + 1)$$

Significato biologico: $x_n \in [0,1] \implies 0 \le f^2(x) \le 1$. La funzione $f^2(x)$ raggiunge il massimo nei punti

$$x_{\text{max}} = \frac{A \pm \sqrt{A^2 - 2A}}{2A} \implies f^2(x_{\text{max}}) = \frac{A}{4} \implies 0 \le \frac{A}{4} \le 1,$$

da cui $0 < A \le 4$, che è soddisfatta in quanto $3 < A \le 4$. I punti di equilibrio di $f^2(x)$ sono 4:

$$x = 0,$$
 $x = 1 - \frac{1}{A},$

$$x_{+} = \frac{A+1+\sqrt{A^{2}-2A-3}}{2A}, \qquad x_{-} = \frac{A+1-\sqrt{A^{2}-2A-3}}{\sqrt{A^{2}-2A-3}}.$$

Stabilità degli stati di equilibrio

Cosa succede per 3 < A < 4?

Un modello per la dinamica delle popolazioni

Fatto interessante: esistono soluzioni stabili per la mappa

$$x_{n+1}=f^2(x_n),$$

dove $f^2(x)$ è l'iterata seconda di f(x) = Ax(1-x):

$$f^{2}(x) = f(f(x)) = A^{2}x(1-x)(Ax^{2} - Ax + 1)$$

Significato biologico: $x_n \in [0,1] \implies 0 \le f^2(x) \le 1$. La funzione $f^2(x)$ raggiunge il massimo nei punti

$$x_{\text{max}} = \frac{A \pm \sqrt{A^2 - 2A}}{2A} \implies f^2(x_{\text{max}}) = \frac{A}{4} \implies 0 \le \frac{A}{4} \le 1,$$

da cui 0 < A < 4, che è soddisfatta in quanto 3 < A < 4. I punti

$$x = 0,$$
 $x = 1 - \frac{1}{A},$

$$x_{+} = \frac{A+1+\sqrt{A^{2}-2A-3}}{2A}, \qquad x_{-} = \frac{A+1-\sqrt{A^{2}-2A-3}}{\sqrt{A^{2}-2A-3}}.$$

Cosa succede per $3 < A \le 4$?

Fatto interessante: esistono soluzioni stabili per la mappa

$$x_{n+1}=f^2(x_n),$$

dove $f^2(x)$ è l'iterata seconda di f(x) = Ax(1-x):

$$f^{2}(x) = f(f(x)) = A^{2}x(1-x)(Ax^{2} - Ax + 1)$$

Significato biologico: $x_n \in [0,1] \implies 0 \le f^2(x) \le 1$. La funzione $f^2(x)$ raggiunge il massimo nei punti

$$x_{\text{max}} = \frac{A \pm \sqrt{A^2 - 2A}}{2A} \implies f^2(x_{\text{max}}) = \frac{A}{4} \implies 0 \le \frac{A}{4} \le 1,$$

da cui $0 < A \le 4$, che è soddisfatta in quanto $3 < A \le 4$. I punti di equilibrio di $f^2(x)$ sono 4:

$$x = 0,$$
 $x = 1 - \frac{1}{A},$

$$x_{+} = \frac{A+1+\sqrt{A^{2}-2A-3}}{2A}, \qquad x_{-} = \frac{A+1-\sqrt{A^{2}-2A-3}}{\sqrt{A^{2}-2A-3}}.$$

Stabilità degli stati di equilibrio

Un modello per la dinamica delle popolazioni

Fatto interessante: esistono soluzioni stabili per la mappa

$$x_{n+1}=f^2(x_n),$$

dove $f^2(x)$ è l'iterata seconda di f(x) = Ax(1-x):

$$f^{2}(x) = f(f(x)) = A^{2}x(1-x)(Ax^{2} - Ax + 1)$$

Significato biologico: $x_n \in [0, 1] \implies 0 < f^2(x) < 1$. La funzione $f^2(x)$ raggiunge il massimo nei punti

$$x_{\text{max}} = \frac{A \pm \sqrt{A^2 - 2A}}{2A} \quad \Longrightarrow \quad f^2(x_{\text{max}}) = \frac{A}{4} \quad \Longrightarrow \quad 0 \le \frac{A}{4} \le 1,$$

da cui 0 < A < 4, che è soddisfatta in quanto 3 < A < 4. I punti di equilibrio di $f^2(x)$ sono 4:

$$x = 0,$$
 $x = 1 - \frac{1}{A},$

$$x_{+} = \frac{A+1+\sqrt{A^{2}-2A-3}}{2A}, \qquad x_{-} = \frac{A+1-\sqrt{A^{2}-2A-3}}{\sqrt{A^{2}-2A-3}}.$$

Stabilità degli stati di equilibrio

Un modello per la dinamica delle popolazioni

Fatto interessante: esistono soluzioni stabili per la mappa

$$x_{n+1}=f^2(x_n),$$

dove $f^2(x)$ è l'iterata seconda di f(x) = Ax(1-x):

$$f^{2}(x) = f(f(x)) = A^{2}x(1-x)(Ax^{2} - Ax + 1)$$

Significato biologico: $x_n \in [0, 1] \implies 0 < f^2(x) < 1$. La funzione $f^2(x)$ raggiunge il massimo nei punti

$$x_{\text{max}} = \frac{A \pm \sqrt{A^2 - 2A}}{2A} \quad \Longrightarrow \quad f^2(x_{\text{max}}) = \frac{A}{4} \quad \Longrightarrow \quad 0 \le \frac{A}{4} \le 1,$$

da cui 0 < A < 4, che è soddisfatta in quanto 3 < A < 4. I punti di equilibrio di $f^2(x)$ sono 4:

$$x = 0,$$
 $x = 1 - \frac{1}{A},$

$$x_{+} = \frac{A+1+\sqrt{A^2-2A-3}}{2A}, \qquad x_{-} = \frac{A+1-\sqrt{A^2-2A-3}}{2A}.$$

Cosa succede per 3 < A < 4?

Un modello per la dinamica delle popolazioni

Se x_- e x_+ sono le due soluzioni di equilibrio dell'iterata seconda (che esistono solo per $A \ge 3$) allora **partendo da** $x_0 = x_+$ si avrà $x_{2n} = x_+$ e $x_{2n+1} = x_- = f(x_+)$.

x

Stabilità dei punti di equilibrio di $f^2(x)$, 3 < A < 4

$$\frac{\mathrm{d} f^2(x)}{\mathrm{d} x} = g(x) = -4A^3x^3 + 6A^3x^2 - 2A^3x - 2A^2x + A^2.$$

- $x_{eq} = 0$: $g(0) = A^2$, quindi $x_{eq} = 0$ è **instabile** essendo
- $x_{eq} = 1 1/A$: $g(1 1/A) = (A 2)^2$, quindi è instabile
- $x_{eq} = x_{\pm}$: $g(x_{+}) = g(x_{-}) = -(A^{2} 2A 4)$, da cui la condizione di stabilità $|-(A^2-2A-4)|<1$, ossia $x_{\rm eq} = x_{+}$ sono **stabili** per $3 < A < 1 + \sqrt{6} \approx 3.45$. Se $1 + \sqrt{6} < A \le 4$? $x_{eq} = x_+$ sono instabili e si deve

Stabilità dei punti di equilibrio di $f^2(x)$, 3 < A < 4

$$\frac{\mathrm{d} f^2(x)}{\mathrm{d} x} = g(x) = -4A^3x^3 + 6A^3x^2 - 2A^3x - 2A^2x + A^2.$$

- $x_{eq} = 0$: $g(0) = A^2$, quindi $x_{eq} = 0$ è **instabile** essendo A > 1.
- $x_{eq} = 1 1/A$: $g(1 1/A) = (A 2)^2$, quindi è instabile
- $x_{eq} = x_{\pm}$: $g(x_{+}) = g(x_{-}) = -(A^{2} 2A 4)$, da cui la condizione di stabilità $|-(A^2-2A-4)|<1$, ossia $x_{\rm eq} = x_{+}$ sono **stabili** per $3 < A < 1 + \sqrt{6} \approx 3.45$. Se $1 + \sqrt{6} < A \le 4$? $x_{eq} = x_+$ sono instabili e si deve

Stabilità dei punti di equilibrio di $f^2(x)$, $3 < A \le 4$

$$\frac{\mathrm{d} f^2(x)}{\mathrm{d} x} = g(x) = -4A^3x^3 + 6A^3x^2 - 2A^3x - 2A^2x + A^2.$$

- $x_{eq} = 0$: $g(0) = A^2$, quindi $x_{eq} = 0$ è **instabile** essendo A > 1.
- $x_{eq} = 1 1/A$: $g(1 1/A) = (A 2)^2$, quindi è **instabile** essendo A > 3.
- $x_{\text{eq}} = x_{\pm}$: $g(x_{+}) = g(x_{-}) = -(A^{2} 2A 4)$, da cui la condizione di stabilità $|-(A^{2} 2A 4)| < 1$, ossia $x_{\text{eq}} = x_{\pm}$ sono **stabili** per $3 < A < 1 + \sqrt{6} \approx 3.45$. Se $1 + \sqrt{6} < A \le 4$? $x_{\text{eq}} = x_{\pm}$ sono instabili e si deve ricorrere all'iterata terza (fintanto che essa ammette punt di equilibrio stabili), quindi all'iterata quarta e così via.

Stabilità dei punti di equilibrio di $f^2(x)$, $3 < A \le 4$

$$\frac{\mathrm{d} f^2(x)}{\mathrm{d} x} = g(x) = -4A^3x^3 + 6A^3x^2 - 2A^3x - 2A^2x + A^2.$$

- $x_{eq} = 0$: $g(0) = A^2$, quindi $x_{eq} = 0$ è **instabile** essendo A > 1.
- $x_{eq} = 1 1/A$: $g(1 1/A) = (A 2)^2$, quindi è **instabile** essendo A > 3.
- $x_{\text{eq}} = x_{\pm}$: $g(x_{+}) = g(x_{-}) = -(A^{2} 2A 4)$, da cui la condizione di stabilità $|-(A^{2} 2A 4)| < 1$, ossia $x_{\text{eq}} = x_{\pm}$ sono **stabili** per $3 < A < 1 + \sqrt{6} \approx 3.45$. Se $1 + \sqrt{6} < A \le 4$? $x_{\text{eq}} = x_{\pm}$ sono instabili e si deve ricorrere all'iterata terza (fintanto che essa ammette punti di equilibrio stabili), quindi all'iterata quarta e così via.

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per 1 + $\sqrt{6}$ < A < 3.54409: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: **period-doubling cascade**.
- per $A \approx 3.56995$: si raggiunge una condizione in cui x_n assume tutti valori diversi con l'impossibilità di riconoscere delle oscillazioni periodiche: **caos matematico!** ma...
- da $A = 1 + \sqrt{8} \approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili,
- per $A \approx 3.56995$: si raggiunge una condizione in cui x_n
- da $A = 1 + \sqrt{8} \approx 3.82843$: si osservano oscillazioni tra 3
- per 3.848 < A < 4: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: **period-doubling cascade**.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: **period-doubling cascade**.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A=1+\sqrt{8}\approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: **period-doubling cascade**.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A = 1 + \sqrt{8} \approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per $3.848 < A \le 4$: ritorna il comportamento caotico

- per $3 < A < 1 + \sqrt{6}$: x_n oscilla tra 2 valori stabili
- per $1 + \sqrt{6} < A < 3.54409$: x_n oscilla tra 4 valori stabili
- per 3.54409 < A < 3.56995: x_n oscilla tra 8 valori stabili, poi 16, 32 etc.: **period-doubling cascade**.
- per A ≈ 3.56995: si raggiunge una condizione in cui x_n
 assume tutti valori diversi con l'impossibilità di riconoscere
 delle oscillazioni periodiche: caos matematico! ma...
- da $A = 1 + \sqrt{8} \approx 3.82843$: si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- per 3.848 < A ≤ 4: ritorna il comportamento caotico

(2/3)

Cosa succede per $3 < A \le 4$?

(3/3)

Cosa succede per $3 < A \le 4$?

Sensibilità alle condizioni iniziali

A = 4.0, confronto tra $x_1 = 0.1000$ (linea continua, pallini pieni) e $x_1 = 0.1001$ (linea tratteggiata, pallini vuoti). Si noti che le due soluzioni sono praticamente sovrapposte fino a k = 6, ma poi si allontanano l'una dall'altra.

Un modello per la dinamica delle popolazioni

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2
- se $1+\sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra
- se $A \approx 3.56995$ non si capisce più niente... caos
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3
- se $3.848 < A \le 4$ ritorna il comportamento captico $\frac{1}{2}$

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se 1 < $A \le$ 3 la popolazione raggiunge il valore asintotico 1 - 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2
- se $1 + \sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra
- se $A \approx 3.56995$ non si capisce più niente... caos
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3
- se $3.848 < A \le 4$ ritorna il comportamento captico $\frac{1}{2}$

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se 1 < $A \le$ 3 la popolazione raggiunge il valore asintotico 1 - 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se $1+\sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra
- se $A \approx 3.56995$ non si capisce più niente... caos
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3
- se $3.848 < A \le 4$ ritorna il comportamento captico $\frac{1}{2}$

• se $0 < A \le 1$ la popolazione è condannata all'estinzione

- se 1 < $A \le$ 3 la popolazione raggiunge il valore asintotico 1 - 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se $1 + \sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra
- se $A \approx 3.56995$ non si capisce più niente... caos
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se $1 < A \le 3$ la popolazione raggiunge il valore asintotico 1 1/A (velocemente se $1 < A \le 2$, oscillando se $2 < A \le 3$).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se 1 + $\sqrt{6}$ < A < 3.54409 il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se A ≈ 3.56995 non si capisce più niente... caos matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se 1 < A < 3 la popolazione raggiunge il valore asintotico 1 - 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se $1 + \sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se $A \approx 3.56995$ non si capisce più niente... **caos** matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento captico

- se $0 < A \le 1$ la popolazione è condannata all'estinzione
- se 1 < $A \le$ 3 la popolazione raggiunge il valore asintotico 1 - 1/A (velocemente se $1 < A \le 2$, oscillando se 2 < A < 3).
- se $3 < A < 1 + \sqrt{6} \approx 3.44948$ la popolazione oscilla tra 2 (valori che dipendono solo da A): comportamento periodico.
- se $1 + \sqrt{6} < A < 3.54409$ il numero di individui oscilla tra 4 valori
- se 3.54409 < A < 3.56995 il numero di individui oscilla tra 8 valori, poi 16, etc.
- se $A \approx 3.56995$ non si capisce più niente... **caos** matematico!
- da $A = 1 + \sqrt{8} \approx 3.82843$ si osservano oscillazioni tra 3 valori, poi 6, poi 12 etc. (isole di stabilità)
- se 3.848 < A ≤ 4 ritorna il comportamento caotico

Dall'ordine al caos

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica

- Modelliamo il comportamento della Natura con delle leggi deterministiche, spesso all'apparenza semplici, che hanno sempre bisogno di una condizione iniziale.
- Al variare dei parametri queste leggi possono esibire un comportamento strano (soluzioni periodiche, caotiche).
- Se cambio di poco il dato iniziale, solitamente, mi aspetto che il risultato cambi di poco. Per soluzioni caotiche no: variando di pochissimo il dato iniziale si ottengono evoluzioni completamente diverse. Dipendenza sensibile dalle condizioni iniziali.
- Ci sembra che l'ordine sia sparito: il chaos apparente scaturisce da una legge deterministica.
- Esempi in Natura:
 - le previsioni metereologiche (effetto farfalla)
 - la turbolenza (argomento irrisolto della fisica classica)

Domande?

