Kane's Method: Finding Constraint Equations

Eric Stoneking Nov 2014

Kane's Equation

Recall Kane's equation in matrix form:

$$\Omega^{T}(T-I\alpha-\omega\times H)+V^{T}(F-ma)=0$$

We've said that the matrices Ω and V project Euler's and Newton's equations into the state space spanned by the generalized speeds.

Let's step back and look at the bigger picture.

Rigid Bodies and Joints

- A system of rigid bodies has a total of 6N_h DOF
- Assign 6DOF to the root body
- Examine each joint
 - The outer body motion is dictated by the inner body motion and the joint DOFs
- A joint introduces 0-6 constraints (typically 1-5)
 - Example: a simple hinge introduces 3 translational constraints and 2 rotational constraints, leaving 1 DOF
- So each of the 6N_b potential DOFs either becomes a DOF or a constraint: N_{II} + N_c = 6N_b

Doing It the Hard Way

- Typical Newton-Euler formulations (ref Haug, etc) adjoin the constraint equations to the equations of motion and solve them together
- Introduces constraint forces (and torques) as additional unknowns to be solved for
 - These are obtained "for free", in the sense that you have no choice but to obtain them
- Size of system to be solved is then 6N_b+N_c
 - Solution time grows like $(6N_b + N_c)^3$
- Due to roundoff, constraints may not be perfectly satisfied
 - This can also degrade the accuracy of the overall solution

Kane's Method is Faster and More Accurate

- Constraints are identically satisfied
 - Numerical issues related to augmented systems are avoided entirely
- Size of system to solve is 6N_b-N_c
 - Solution time grows like (6N_b-N_c)³
 - Example: $N_b = 2$, $N_c = 5$ (a 1DOF hinge)
 - $-6N_{b}+N_{c}=17, 6N_{b}-N_{c}=7$
 - $-7^3/17^3 = 0.07$
 - So Kane's Method is much faster
 - This system is solved 4x per time step for RK4
- Computation of constraint forces/torques is optional, not compulsory
 - 1x per time step (not 4x), and with no matrix inversion

Assigning DOFs and Constraints

- Every system starts out with 6N_b potential
 DOFs
- Give the root body (B₁) 6 DOFs
- Examine each joint in turn
 - Assign each potential DOF to an actual DOF or a constraint
 - For a tree topology, all potential DOFs will be accounted for
 - Non-tree topologies are a topic for another day

An Example Joint Definition

```
! Inner, outer body indices
1 213 GIMBAL ! RotDOF, Seq, GIMBAL or SPHERICAL
0 123 ! TrnDOF, Seq
```

- Identify number of rotational, translational DOFs
- Give 3-element sequences in all cases
 - Ex: Rotational axis 2 is free, and axes 1 and 3 are constrained (in that order!)
- Spherical joints are distinguished from 3-DOF gimbal joints by additional keyword

Theory

Imagine the dynamical system with all potential DOFs. We write Kane's equation:

$$\Omega_P^T[T - I(\Omega \dot{u} + \alpha_r) - \omega \times H] + V_P^T[F - m(V \dot{u} + a_r)] = 0$$

where Ω_P , V_P project into all $6N_b$ dimensions of the state space.

Now partition Ω_P , V_P :

$$\Omega_P = [\Omega \ \Omega_c], \ V_P = [V \ V_c]$$

where Ω , V project into the permissible motion subspace, and Ω_c , V_c project into the constrained subspace.

Also explicitly show the constraint forces and torques:

$$F = F_a + F_c$$
, $T = T_a + T_c$

Equations of Motion

$$\Omega^{T}[T_{a}+T_{c}-I(\Omega\dot{u}+\alpha_{r})-\omega\times H]+V^{T}[F_{a}+F_{c}-m(V\dot{u}+a_{r})]=0$$

Rearrange to solve for \dot{u} :

$$(\Omega^T I \Omega + V^T m V) \dot{u} = \Omega^T (T_a - I \alpha_r - \omega \times H) + V^T (F_a - ma_r)$$

 $\Omega^T T_c = V^T F_c = 0$ by definition (constraints do no work)

- An N_u x N_u system of equations to solve by Gaussian elimination (or similar)
- Propagate using RK4
 - Requires system to be solved four times per timestep
- If constraints are unwanted, this gives the complete solution

Equations of Constraint

$$\Omega_{c}^{T}[(T_{a}+T_{c})-I(\Omega \dot{u}+\alpha_{r})-\omega \times H]+V_{c}^{T}[(F_{a}+F_{c})-m(V \dot{u}+a_{r})]=0$$

Rearrange to isolate generalized constraint forces:

$$c = \Omega_c^T T_c + V_c^T F_c = -\Omega_c^T [T_a - I(\Omega \dot{u} + \alpha_r) - \omega \times H] - V_c^T [F_a - m(V \dot{u} + \alpha_r)]$$

- The generalized constraint force vector c has N_c elements
- All terms on RHS are known from solution of equations of motion
- No simultaneous solution needed (no matrix inverse!)
 - Simply matrix multiplication and addition
- Evaluated once per timestep (not four times, as would be if it were solved along with equations of motion)
- Completely optional
 - Find all, some, or none as desired

Conclusion

- Kane's method provides a straightforward way to obtain constraint forces and torques
- Accuracy of equations of motion is not compromised as happens when EOM are augmented with constraint equations
- Computational complexity of Kane's method is much less than for augmented formulation
- Addition of constraint equations is much less burdensome by using Kane's method
 - Constraint equations do not "perturb" equations of motion
 - No matrix inversion
 - Solve once per timestep, not four times (for RK4)
 - Can restrict attention to those constraints of interest

Appendix: Example from OSIRIS-REX

Example from OSIRIS-REX

- To study the dynamics of the Touch-And-Go (TAG) maneuver, we built a model of O-Rex in 42 with:
 - Main Body: 6 DOF
 - Shoulder and Elbow Joints: All DOF constrained
 - To find constraint forces and torques
 - Pogo Joint: 1DOF Translation
 - Wrist: 2DOF Gimballed
- Following slides show part of output file Tree00.42
 - Documents partition of potential DOFs into DOFs and constraints

Main Body has 6DOF

*****	****	****	* * * * *	******	*****	*****
Body 00:	RotS	eq = 13	23	TrnSeq = 123		
- T				Col in	Col in	Col in
Axis	F/C	u[]	x[]	u00.42	x00.42	Constraint00.42
Rot1	F	00	00	01	01	
Rot2	F	01	01	02	02	walker awale
Rot3	F	02	02	03	03	
(Sph)	_		03		04	
Trn1	F	06	07	07	08	
Trn2	F	07	08	08	09	- Wind
Trn3	F	08	09	09	10	

Shoulder and Elbow are Constrained

****	*****	*****	******	*****	*****
Joint	00: RC	otSeq = 213	TrnSeq = 12	23	
			Col ir	n Col in	Col in
Axis	F/C	u[] x[] u00.42	2 x00.42	Constraint00.42
Rot1	C				01
Rot2	C				02
Rot3	C				03
Trn1	C			000 <u></u> 0	04
Trn2	C				05
Trn3	C	\-		A	06
****	*****	******	******	******	*****
Joint	01: RC	otSeq = 213	TrnSeq = 12	23	
					Col in
Axis	F/C	u[] x[] u00.42	2 x00.42	Constraint00.42
Rot1	C				07
Rot2	C		-		08
Rot3	C		-	w	09
Trn1	С	- 1 1 -	-		10
Trn2	C)		11
Trn3	C				12

Pogo and Wrist Joints

****	*****	*****	****	******	*****	******
Joint	02: Rot	Seq = 2	13	TrnSeq = 312		gal in
Azzia	E/C	12 F 1	57 []		Col in	
Axis	F/C	u[]	x[]	u00.42	XUU.42	Constraint00.42
Rot1	С					13
Rot2	С				- Mill Mill	14
Rot3	С					15
Trn1	F	03	04	04	05	
Trn2	C	03	04	04	05	16
Trn3	C					17
		*****	****	 *******	 *****	******
~ ~ ~ ~ ~ ~ ~ ~ ~						
Joint				TrnSeq = 123	Col in	Col in
			13	TrnSeq = 123 Col in		
Joint Axis	03: Rot	Seq = 2 u[]	13 x[]	TrnSeq = 123 Col in u00.42	x00.42	Col in
Joint	03: Rot F/C F	Seq = 2 u[]	13	TrnSeq = 123 Col in		Col in
Joint AxisRot1	03: Rot	Seq = 2 u[] 04	13 x[] 	TrnSeq = 123 Col in u00.42	x00.42 06	Col in
Joint AxisRot1 Rot2	03: Rot	Seq = 2 u[] 04	13 x[] 	TrnSeq = 123 Col in u00.42	x00.42 06	Col in Constraint00.42
Joint Axis Rot1 Rot2 Rot3 Trn1	F/C F F C C	Seq = 2 u[] 04	13 x[] 	TrnSeq = 123 Col in u00.42	x00.42 06	Col in Constraint00.42 18 19
Joint Axis Rot1 Rot2 Rot3 Trn1 Trn2	F/C F F C C C	Seq = 2 u[] 04	13 x[] 	TrnSeq = 123 Col in u00.42	x00.42 06	Col in Constraint00.42 18 19 20
Joint Axis Rot1 Rot2 Rot3 Trn1	F/C F F C C	Seq = 2 u[] 04	13 x[] 	TrnSeq = 123 Col in u00.42	x00.42 06	Col in Constraint00.42 18 19