Exame de Época Especial

18-07-2013

1. Considere a expansão em série de Fourier das funções u(x) definidas no intervalo $-\ell \leq x \leq \ell$:

$$u(x) = \sum_{n=-\infty}^{+\infty} c_n y_n(x) , \qquad y_n(x) = e^{i n \pi x/\ell} .$$

- a) Defina o produto interno de funções adequado ao problema e calcule o produto interno de duas funções arbitrárias $\langle y_n|y_m\rangle$.
- b) Demonstre como se determinam os coeficientes c_n de uma função u(x).
- c) Determine a série de Fourier da função $u(x) = e^x$.
- d) Diga, justificando, quais os valores dessa série nos pontos $x = -\ell$, $x = \ell$.
- 2.a) Coloque na forma de Sturm-Liouville a equação diferencial

$$y''(x) - \frac{3x}{1 - x^2}y'(x) + \frac{\lambda}{1 - x^2}y(x) = 0$$
, $x \in [-1, +1]$.

- **b)** Defina, justificando, a expressão do produto interno de funções adequado a este problema.
- c) Dadas as funções $u(x) = \sqrt{1-x^2}$, $v(x) = \Theta(x)$, $w(x) = \delta(x)$, calcule os produtos internos $\langle u|v\rangle$, $\langle u|w\rangle$.
- 3. Considere a equação diferencial

$$(1-x^2)y''(x) - xy'(x) + \lambda y(x) = 0$$
, $x \in [-1, +1]$.

- a) Admita que a solução y(x) se pode escrever como uma série de potências: $y(x) = \sum_n a_n x^n$. Obtenha a relação de recorrência entre os coeficientes a_n e a consequente expressão de y(x) em termos das constantes a_0 , a_1 .
- **b)** Determine as funções próprias $y_n(x)$ dadas por polinómios de graus n=2 e n=4 e os respetivos valores próprios.
- **4.** A função u(t,x) obedece à equação diferencial,

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \,, \qquad \alpha \in \mathbb{R} \,.$$

- a) Escreva u(t,x) em termos da sua transformada de Fourier $\tilde{u}(t,k)$ e deduza a equação diferencial a que obedece $\tilde{u}(t,k)$.
- **b)** Determine a solução geral para as funções $\tilde{u}(t,k)$ e u(t,x).
- c) Obtenha a expressão de u(t,x) sujeita à condição inicial:

$$\tilde{u}(0,k) = \delta(k+a) + \delta(k-a).$$

Verifique que a expressão encontrada para u(t,x) obedece à equação diferencial.

$$\begin{split} \tilde{f}(k) &= \int_{-\infty}^{+\infty} f(x) \, e^{-i \, k \, x} \, dx \;, \qquad f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k) \, e^{i \, k \, x} \, dk \\ \int_{-\infty}^{+\infty} e^{i \, k \, x} \, dk &= 2\pi \, \delta(x) \;, \qquad \int_{-\infty}^{+\infty} f^*(x) \, g(x) \, dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{f}(k)^* \, \tilde{g}(k) \, dk \end{split}$$