Linear Algebra Eigen value decomposition : Part2 Automotive Intelligence Lab.

Contents

- Eigendecomposition of Singular Matrices
- Quadratic Form, Definiteness, and Eigenvalues
- **■** Generalized Eigendecomposition
- Summary
- Code exercise

Eigendecomposition of Singular Matrices

Wrong Idea about Egiendecomposition of Singular Matrices

- Students often get idea.
 - Singular matrices cannot be eigen decomposed
 - ► Eigenvectors of singular matrix must be unusual somehow.
- That idea is completely wrong!
 - ► Eigendecomposition of singular matrices is refectly fine.

Code Exercise of Eigendecomposition of Singular Matrix

- Code Exercise (13_03)
 - This rank-2 matrix has one zero-valued eigenvalue with nonzeros eigenvector.
 - Explore eigendecomposition of other reduced-rank random matrices by using example code.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Define the matrix
A = [1 \ 4 \ 7; \ 2 \ 5 \ 8; \ 3 \ 6 \ 9];
% Calculate the matrix rank
rankA = rank(A);
% Eigen decomposition
[V, D] = eig(A);
% Display the results
disp('Rank =')
disp(rankA);
disp('Eigenvalues:');
disp(diag(D));
disp('Eigenvectors:');
disp(V);
% Optionally round eigenvalues and eigenvectors for display
disp('Rounded Eigenvalues:');
disp(round(diag(D).',2)); % Round and transpose for horizontal display
disp('Rounded Eigenvectors:');
disp(round(V, 2));
```

MATLAB code of eigendecomposition of singular matrix

One Special Property of Eigendecomposition of Singular Matrices

- At least one eigenvalue is guaranteed to be zero.
 - ► That doesn't mean that number of nonzero eigenvalues equals rank of matrix.
 - True for sing war values
 - Scalar values from the SVD (Singular Value Decomposition)
 - Not for eigen values
 - But if matrix is singular, then at least one eigenvalue equals zero.
- Converse is also true.
 - ► Every full-rank matrix has zero zero-valued eigenvalues.
- Why this happens
 - Singular matrix already has nontrivial null space.
 - $\lambda = 0$ provides nontrivial solution to $(A \lambda I)v = 0$.

ad Singular

- Main take-homes of this section
 - ► Eigendecomposition is valid for reduced-rank matrices.
 - ▶ Presence of at least one zero-valued eigenvalue indicates reduced-rank matrix.

Quadratic Form, Definiteness, and Eigenvalues

Quadratic Form and Definiteness

- Quadratic form and definiteness are intimidating terms.
 - ▶ Don't worry.
 - ► They are both straightforward concepts that provide gateway to advanced linear algebra and applications.
 - advanced linear algebra technique such as
 - Principal components analysis (PCA)
 - Monte Carlo simulations
 - ► Integrating MATLAB code into your learning will give you huge advantage over learning about these concepts.
 - Compared to traditional linear algebra textbooks.

Quadratic Form of Matrix

- Consider Eq 1..
 - ▶ Pre- and postmultiply square matrix by same vector *w* and get scalar.
 - Notice: This multiplication is valid only for square matrices.
- This is called fundation from on matrix A.
- Which matrix and which vector do we use?
 - ▶ Idea of quadratic form
 - To use one specific matrix.
 - To set of all possible vectors.
 - Appropriate size
 - ► Important point
 - Signs of α for all possible vectors.

$$\mathbf{w}^T \mathbf{A} \mathbf{w} = \alpha$$

Eq 1. Quadratic form of matrix

Example of Quadratic Form of Matrix

For this particular matrix as Eq 1.

- ▶ There is no possible combination of *x* and *y* that can give negative answer.
 - Even when x or y is negative value.
 - Because squared terms $(2x^2 \text{ and } 3y^2) \gg \text{cross-term } (4xy)$.
- \triangleright α can be nonpositive.
 - α comes from $\mathbf{w}^T A \mathbf{w} = \alpha$.
 - Only when x = y = 0.
 - In remaining cases, α is always positive.

That is not trivial result of quadratic form.

- \blacktriangleright Eq 2. can have positive or negative α depending on values of x and y.
- ► $[x \ y] \rightarrow [-1 \ 1]$: Negative quadratic form result.
- ► $[x \ y] \rightarrow [-1 \ -1]$: $\rho_{\nu S_i t \mid \nu e}$ quadratic form result

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \overline{2} & 4 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2x^2 + (0+4)xy + 3y^2$$

Eq 1. First example of quadratic form of matrix

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -9 & 4 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -9x^2 + (3+4)xy + 9y^2$$

Scalar for All Possible Vectors

- How can you possibly know whether quadratic form will produce positive?
 - Or negative, or zero-valued
- Key
 - ▶ Full-rank eigenvectors matrix spans all of \mathbb{R}^M .
 - ▶ Therefore, Every vector in \mathbb{R}^M can be expressed.
 - As some linear weighted combination of eigenvectors.
- Then, start from eigenvalue equation and left-multiply by eigenvector to return to quadratic form as Eq 1..

$$Av = \lambda v$$
 $v^T Av = \lambda v^T v$
 $v^T Av = \lambda ||v||^2$

Eq 1. Return to quadratic form

Key of Return to Quadratic Form

- In Eq 1., Final equation is key.
 - ▶ Note, $\|\boldsymbol{v}^T\boldsymbol{v}\|$ is strictly positive.
 - Vector magnitudes cannot be negative.
 - Ignore zeros vector.
 - \triangleright Sign of right-hand side of equation is determined entirely by eigenvalue λ .
- That equation uses only one eigenvalue and its eigenvector.
 - ▶ But we need to know about any possible vector.

$$Av = \lambda v$$

$$v^{T}Av = \lambda v^{T}v$$

$$v^{T}Av = \lambda ||v||^{2}$$

Eq 1. Return to quadratic form

Insight of Return to Quadratic Form

- If equation is valid for each eigenvector-eigenvalue pair,
 - ▶ It is valid for any combination of eigenvector-eigenvalue pairs as Eq 1...
- In other words
 - lacktriangleright Set any vector $oldsymbol{u}$ to be some linear combination of eigen vectors
 - \triangleright Set some scalar ζ to be that same linear combination of eigenvalues.
- Anyway, it doesn't change principle
 - ➤ Sign of right-hand side (quadratic form) is determined by sign of eigenvalues.

$$v_1^T A v_1 = \lambda_1 ||v_1||^2$$

$$v_2^T A v_2 = \lambda_2 ||v_2||^2$$

$$(v_1 + v_2)^T A (v_1 + v_2) = (\lambda_1 + \lambda_2) ||(v_1 + v_2)||^2$$

$$u^T A u = \zeta ||u||^2$$

Eq 1. Valid for each eigenvector-eigenvalue pair

Think about Equation under Different Assumption about sign of λ

- All eigenvalues are positive. > ? wolketic forme the text.
 - ▶ Right-hand side of equation is always positive.
 - $\triangleright v^T A v$ is always positive for any vector v.
- Eigenvalues are positive or zero.
 - $\triangleright v^T A v$ is nonnegative
 - $\triangleright v^T A v$ will equal zero when $\lambda = 0$.
 - $\lambda = 0$ happens when matrix is singular.
- **Eigenvalues are negative or zero.**
 - Quadratic form result will be zero or negative.
- Eigenvalues are negative.
 - Quadratic form result will be negative for all vectors.

Definiteness

- Characteristic of square matrix
- Defined by signs of eigenvalues of matrix.
 - Same thing as signs of quadratic form results.
- Implication
 - Invertibility of matrix as well as advanced data analysis methods.
 - Such as generalized eigendecomposition
 - Used in multivariate linear classifiers and signal processing.

Categories of Definiteness

- There are 5 categories in definiteness.
- Five categories as shown in Table 1.
 - + and signs indicate signs of eigenvalues.
 - Depends
 - Matrix can be invertible or singular depending on numbers in matrix.
 - Not on definiteness category.

Category	Quadratic form	Eigenvalues	Invertible
Positive definite	Positive	+	Yes
Positive semidefinite	Nonnegative	+ and 0	No
Indefinite	Positive and negative	+ and -	Depends
Negative semidefinite	Nonpositive	- and 0	No
Negative definite	Negative	-	Yes

Table 1. Definiteness categories

$A^{T}A$ is Positive (Semi)definite

- Specific matrix is guaranteed to be positive definite or positive semidefinite.
 - Expressed as product of matrix and its transpose.
 - ▶ That is, $S = A^T A$
 - ► Combination of these two categories is often written as Positive (Seni) definite
- All data covariance matrices are positive (semi)definite.
 - \triangleright Because covariance matrices defined: A^TA
 - where data matrix: A
 - ► All covariance matrices have nonnegative eigenvalues.
- Case1: When data matrix is full-rank,
 - ▶ If data is stored as observations by features,
 - Full column-rank
 - ► Eigenvalues will be all positive.
- Case2: If data matrix is reduced-rank,
 - ► At least one zero-valued eigenvalue

Proof of A^TA

- \blacksquare Proof that S is positive (semi)definite.
 - Writing out its quadratic form.
 - Applying some algebra manipulations.
- In Eq 1..
 - ► Transition from first to second equation simply involves moving parentheses around.
 - Such "proof by parentheses" is common in linear algebra.

$$w^{T}Sw = w^{T}(A^{T}A)w$$

$$= (w^{T}A^{T})(Aw)$$

$$= (Aw)^{T}(Aw)$$

$$= ||Aw||^{2}$$

Eq 1. Proof that S is positive (semi)definite by parentheses

Point of Proof of A^TA

- **Quadratic form of** A^TA equals $||matrix||^2 * vector$.
- Characteristic of magnitudes
 - Cannot be negative.
 - Can be zero
 - Only when vector is zero.
- If Aw = 0 for nontrivial w,
 - ► Then *A* is singular.
- Notice
 - ightharpoonup Although all A^TA matrices are symmetric, not all symmetric matrices can be expressed as A^TA .
 - Matrix symmetry on its own does not guarantee positive (semi)definiteness.
 - Because not all symmetric matrices can be expressed as product of matrix and its transpose.

Importance of Quadratic Form and Definiteness

- Importance in data science.
 - Because some linear algebra operations are applied only to well-endowed matrices.
 - Cholesky decomposition
 - Create correlated datasets in Monte Carlo simulations.
 - Importance in optimization problems.
 - Gradient Jescent
 - Because guaranteed minimum to find
- In your never-ending quest to improve your data science prowess,
 - You might encounter technical papers.
 - Use abbreviation SPD (Symmetric Positive Definite).

Generalized Eigendecomposition

Eigendecomposition

- Consider that Eq 1. is same as fundamental eigenvalue equation.
 - ► This is obvious.
 - Because Iv = v.
 - Generalized eigendecomposition as Eq 2. involves replacing identity matrix with another matrix.
 - Not identity or zeros matrix

$$Av = \lambda Iv$$

Eq 1. Assumption equal to fundamental eigenvalue equation

$$Av = \lambda Bv$$

Eq 2. Generalized eigendecomposition

Generalized Eigendecomposition

- It is also called simultaneous diagonalization of two matrices.
- Resulting (λ, v) pair is not eigenvalue / vector of A alone nor of B alone.
 - Instead, two matrices share eigenvalue / vector pairs.
- Conceptually, you can think of generalized eigendecomposition
 - ➤ As "regular" eigendecomposition of product matrix as Eq 1..
- Just conceptual
 - ▶ In practice, does not require *B* to be invertible.
- Not case
 - ▶ Any two matrices can be simultaneously diagonalized.
 - ▶ If *B* is positive (semi)definite,
 - Diagonalization is possible.

$$C = AB^{-1}$$
 $Cv = \lambda v^{-1}$

Eq 1. "Regular" eigendecomposition of product matrix

Use Generalized Eigendecomposition in Data Science

- Classification analysis
- In particular, fisher's linear discriminant analysis (LDA)
 - ▶ Based on generalized eigendecomposition of two data covariance matrices.

Myriad Subtleties of Eigendecomposition

A lot of properties of eigendecomposition

- Sum of eigenvalues equals trace of matrix.
 - While product of eigenvalues equals determinant.
- ▶ Not all square matrices can be diagonalized.
- Some matrices have repeated eigenvalues.
 - Implications for their eigenvectors
- Complex eigenvalues of real-valued matrices
 - Inside circle in complex plane.

Mathematical knowledge of eigenvalues runs deep.

- ▶ But this lecture provides essential foundational knowledge.
 - For working with eigendecomposition in applications.

Summary

Summary

- lacktriangle Eigendecomposition identifies M scalar/vector pairs of an M imes M matrix.
 - It reflect special directions in the matrix.
 - And have myriad applications in data science.
 - As well as in geometry, physics, computational biology, and myriad other technical displines.
- **Eigenvalues can be found.**
 - ightharpoonup Assuming that the matrix shifted by an unknown scalar λ is singular.
 - Setting its determinant to zero.
 - Called characteristic polynomial.
 - ightharpoonup And solving for λs .
- Eigenvectors can be found.
 - ▶ By finding basis vector for the null space of $\lambda shifted$ matrix.
- Meaning of diagonalizing a matrix.
 - ▶ Represent matrix as $V^{-1}\Lambda V$.
 - *V*: matrix with eigenvectors in the columns.
 - \bullet Λ : diagonal matrix with eigenvalues in the diagonal elements.

Summary

Symmetric matrices have several special properties in eigendecomposition.

- ▶ In data science
 - All eigenvectors are pair-wise orthogonal.
 - Matrix of eigenvectors is orthogonal.
 - Inverse of eigenvectors matrix is its transpose.

Definiteness of matrix

- ► Signs of its eigenvalues
- ▶ In data science
 - Positive (semi)definite
 - All eigenvalues are either nonnegative or positive.
- Matrix times its transpose is always positive (semi)definite.
 - All covariance matrices have nonnegative eigenvalues.

Study of eigendecomposition

- Rich and detailed
- Many fascinating subtleties, special cases, and applications

Code Exercises

A, A^{-1} Eigenvalue

Interestingly, the eigenvectors of A^{-1} are the same as the eigenvectors of A while the eigenvalues are λ^{-1} . Prove that is the case by writing out the eigendecomposition of A and A^{-1} . Then illustrate it using a random full-rank 5×5 symmetric matrix.

```
% create the matrix
A = randn(5,5);
A = A' * A;
% compute its inverse
Ai = ;
% eigenvalues of A and Ai
eigvals_A = ;
eigvals Ai = ;
% compare them (hint: sorting helps!)
disp('Eigenvalues of A:')
disp(sort(eigvals_A))
disp(' ')
disp('Eigenvalues of inv(A):')
disp(sort(eigvals_Ai))
disp(' ')
disp('Reciprocal of evals of inv(A):')
disp(sort(1./eigvals_Ai))
```

Sample code

Interesting property of random matrices

One interesting property of random matrices is that their complex-valued eigenvalues are distributed in a circle with a radius proportional to the size of the matrix. To demonstrate this, compute 123 random 42×42 matrices, extract their eigenvalues, divide by the square root of the matrix size (42), and plot the eigenvalues on the complex plane, as in Figure below.

```
nIter = 123;
matsize = 42:
% fill this evals variable
evals = zeros(nIter, matsize);
% create the matrices and get their scaled eigenvalues
for i = 1:nIter
    % declear (matsize, matsise) sized matrix A in every iteration
   A = ; randin/matsize macs, ze)
end
% visualization
% and show in a plot
figure('Position', [100, 100, 600, 600]);
plot(real(evals(:)), imag(evals(:)), 'ko', 'MarkerFaceColor', 'w');
xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);
xlabel('Real');
ylabel('Imag');
                         Sample code
```


Method to Create Random Symmetric Matrices

Start by creating a 4×4 diagonal matrix with positive numbers on the diagonals (they can be, for example, the numbers 1,2,3,4). Then create a 4×4 Q matrix from the QR decomposition of a random-numbers matrix. Use these matrices as the eigenvalues and eigenvectors, and multiply them appropriately to assemble a matrix. Confirm that the assembled matrix is symmetric, and that its eigenvalues equal the eigenvalues you specified.

```
% Create the Lambda matrix with positive values
Lambda = diag(rand(4,1) * 5);
randnMat = randn(4,4);
% create 0
% reconstruct to a matrix
A = ;
% the matrix minus its transpose should be zeros (within precision error)
result = ;
disp(result);
% sort(diag(Lambda)) and sort(eig(A)) disp same result
% print sorted diagonal of Lambda
disp('Sorted diagonal of Lambda:')
disp(sort(diag(Lambda)))
% print sorted eigenvalues of A
disp('Sorted eigenvalues of A:')
disp(sort(eig(A)))
```

Sample code

THANK YOU FOR YOUR ATTENTION

