# Hands-On - AR(1) Stochastic Process: Stationary vs. Non-Stationary Process

#### **Table of Contents**

| Introduction                                                                       | 1 |
|------------------------------------------------------------------------------------|---|
| The AR(1) Process                                                                  | 1 |
| Stationary vs. Non-Stationary Process                                              | 2 |
| Sampled Estimator of the Mean Value, the Variance and the Autocorrelation Function |   |
| Sample Average Estimator                                                           | 2 |
| The Sample Variance                                                                | 3 |
| The Sample Autocorrelation Function                                                | 3 |
| Generate and Collect the Samples                                                   | 4 |
| Comparing Average Values and Variances                                             |   |
| What About the Autocovariance Function?                                            |   |
| What About the Autocovariance Function?                                            | 5 |

#### Introduction

Consider the AR(1) process

$$v(t) = a v(t-1) + \eta(t) \qquad \eta(\cdot) \sim WN(0, \lambda^2)$$

Recalling that |a| < 1 and setting  $v_0 = v(t_0)$ ,  $t_0 = 0$ . Then, in general, we can write

$$v(t) = \sum_{i=0}^{t-1} a^{t-1-i} \eta(i+1) + a^t v_0$$

Now suppose to generate *N* samples for the r.v. of the AR process. Compare the results obtained using the following strategies

- 1. Collect *N* samples, starting from the time instant  $t_0$ ;
- 2. Collect  $N_{skip} + N$  samples, starting from the time instant  $t_0$ , but then throw away the first  $N_{skip}$  samples, in order to avoid data containing the transient response depending on the initial condition. Use only the remaining N samples, as data of the steady-state stationary stochastic process.

clear variables
close all
clc

# The AR(1) Process

Select the AR(1) parameter a, such that |a| < 1

```
a_AR = 0.8; % select a value in the interval ]-1 , +1[
```

Tune the variance of the white noise  $\lambda^2$ 

```
varWG = 4; % select the white noise variance
```

Set as initial condition  $v_0$  a random value

```
v0 = 1e3*randn; % as initial condition a gaussian r.v., with 0 mean and unitary varian
```

Choose how many data to generate ( $N_{tot}$  samples), how many to throw away after the generation ( $N_{skip}$  samples) and how many of the generated values to keep (N samples)

```
Ndata = 3800; % how many samples to generate and keep?
Nskip = 675; % how many samples to generate, but then ignore?
Ntot = Nskip+Ndata; % total num. of samples to generate
```

### **Stationary vs. Non-Stationary Process**

- Evaluate the average value, the sampled variance, the autocorrelation function and the spectrum using the *N* data of the "stationary" process.
- Compare the results with the corresponding values you obtain when using the whole  $N_{tot}$  data, with the transient due to the initial condition.

# Sampled Estimator of the Mean Value, the Variance and the Autocorrelation Function

We have already analysed the sampled estimators of mean value and variance. We recall them for convenience.

# **Sample Average Estimator**

Given N random variables v(1), v(2), ..., v(N) such that

$$E[v(i)] = \mu_v, \quad i = 1, 2, ..., N$$

(i.e., with the same mean value) and

$$E\{[v(i) - \mu_v][v(j) - \mu_v]\} = 0, \quad \forall i \neq j$$

(i.e., the data are mutually uncorrelated), the sampled-average estimator

$$\widehat{\mu}_{v} = \frac{1}{N} \sum_{i=1}^{N} v(i)$$

is an unbiased estimator, i.e.

$$E[\widehat{\mu_{\nu}}] = \mu_{\nu}$$

#### The Sample Variance

The sample variance of N observations  $\{v_i\}$ ,  $i=1,\ldots,N$  of the random variable V with known mean  $\mu_v$  is defined as

$$\hat{\sigma}_{\mu_{\nu},N}^2 = \frac{1}{N} \sum_{i=1}^{N} (\nu_i - \mu_{\nu})^2.$$

We have added the subindex  $\mu$  to indicate that we used the exact value of the mean to calculate the variance.

In practice, **the mean value is often unknown** and replaced by the sample mean. In that case the sample variance is defined as

$$\hat{\sigma}_N^2 = \frac{1}{N-1} \sum_{i=1}^N (v_i - \hat{\mu}_N)^2$$

## The Sample Autocorrelation Function

Given N observations  $\{v_i\}$ ,  $i=1,\ldots,N$  of the random variable V with **null mean value**  $\mu_v = \mathrm{E}[v_i] = 0 \ \forall i$ , the autocorrelation function  $\gamma_v(\tau)$  can be estimated by mean of the following expression

$$\widehat{\gamma}_{\nu}(\tau) = \begin{cases} \frac{1}{N - \tau} \sum_{n=0}^{N - \tau - 1} \nu(n) \cdot \nu(n + \tau) & \tau \ge 0 \\ \widehat{\gamma}_{\nu}(-\tau) & \tau < 0 \end{cases} |\tau| \le N - 1$$

It can be proven that it is an **unbiased estimator** (refer to [1] for details). Moreover, it can be proven that the variance of the estimate converges to zero as  $N \to \infty$ , so the estimate  $\widehat{\gamma}(\tau)$  is a **consistent estimate** of  $\gamma(\tau)$  (refer to [1] for details).

#### **Generate and Collect the Samples**

Remember

$$AR(1): v(t) = a v(t-1) + \eta(t)$$

Let's generate the data

```
% the AR process
buffer = zeros(Nskip,1); % a buffer used to generate a stationary AR process, regardle
buffer(1) = v0: % the initial condition
AR1 = zeros(Ntot-Nskip+1,1);
                              % the buffer used to store the data belonging to the
ARbuffer = [buffer; AR1];
                                % merging the arrays
eta = sqrt(varWG)*randn(Ntot,1); % let's generate the white noise samples
% ---- the AR(1) process ----
for ii = 2:Ntot
   ARbuffer(ii) = a_AR * ARbuffer(ii-1)+eta(ii);
end % for ii
AR1 = ARbuffer(Nskip+1:end); % skip the initial Nskip data
                            % and use the remaining samples as AR
                            % stationary process
ARO = ARbuffer; % use the whole dataset as "candidate" AR process
```

### **Comparing Average Values and Variances**

Let's estimate the mean value and the variance for the stationary AR process

```
av_valAR1 = mean(AR1) % the average value for the stationary AR process
av_valAR1 = -0.2552
```

```
varAR1 = varWG/(1-a_AR.^2) % the theoretical variance of the stationary process
```

```
varAR1 = 11.1111
```

```
sampled_varAR1 = var(AR1) % the sampled variance
sampled_varAR1 = 11.3466
```

Using the whole dataset, the mean and the varaince assume different values

```
% check the average value using all the dataset av_AR0 = mean(AR0)
```

```
av_AR0 = 0.6379
```

```
% check the variance sampled_varAR0 = var(AR0) % the sampled variance
```

```
sampled_varAR0 = 453.2263
```

Run more than once, varying the variance of the white noise feeding in.

#### What About the Autocovariance Function?

```
Ncorr1 =1024; % select the max value of tau in the estimation formula
```

Check if the maximum value for the lag  $\tau$  is respecting the constraint  $|\tau| \le N - 1$ , with N the amount of available data.

```
errMSG = 'The max lag must be less or equal to (N-1), with N the amount of available dassert((Ncorr1 <= (Ndata-1)), errMSG)
```

Let evaluate the estimate, using the MATLAB command xcorr().

```
[gamma_v1, lags_v1] = xcorr(AR1, Ncorr1, 'unbiased');
% unbiased estimation of the autocovariance function

[gamma_v0, lags_v0] = xcov(AR0, Ncorr1, 'unbiased');
% unbiased estimation of the autocorr. function of tilde_v

gammaAR1 = varAR1*(a_AR.^(abs(lags_v1))); % the true autocorrelation function of the s
```

Now let's plot

• the acquired samples of the AR(1) process

• the samples of the estimated autocovaraiance and autocorrelation function toghethere with the corresponding values of the theoretical expression of the autocovariance function

```
figure('Units','normalized','Position',[0.1, 0.1, 0.85, 0.75]);
subplot(3,1,1);
plot(AR1,'db-','MarkerSize',6, 'MarkerFaceColor','b','LineWidth',1.0);grid on;
title('Realization of a Stationary AR$(1)$ Process', 'Interpreter', 'latex');
xlabel('samples', 'Interpreter','latex');ylabel('r.v.', 'Interpreter','latex');
xlim([1, Ndata]); % setting the extremum values on the x-axis[']]]=
subplot(3,1,2);
plot(AR0,'or-','MarkerSize',6, 'MarkerFaceColor','r','LineWidth',1.0);grid on;
title('Realization of a Stationary AR$(1)$ Process', 'Interpreter', 'latex');
xlabel('samples', 'Interpreter', 'latex');ylabel('r.v.', 'Interpreter', 'latex');
xlim([1, Ntot]); % setting the extremum values on the x-axis[']]]=
subplot(3,1,3);
% the covariance function of v(t)
stem(lags_v1, gamma_v1,'b','filled', 'LineWidth',2);
grid on; hold on;
% the correlation function of tilde v
stem(lags_v0, gamma_v0, 'g', 'LineWidth', 1.5);
% the theoretical expression of the covaraince function
stem(lags_v1, gammaAR1, 'r', 'MarkerSize',4,'LineWidth',1.0);
xlabel('$\tau$', 'Interpreter','latex');ylabel('$\hat{\gamma}(\tau)$',...
    'Interpreter','latex');
title('Estimated Autocorrelation Function - AR$(1)$ Stationary Stochastic Process',...
    'Interpreter', 'latex');
legend('est. cov. $\hat{\gamma}(\tau)$', 'est. corr. $\tilde{\gamma}(\tau)$','theoreti
```

