Final Technical Report: Atmospheric Energy Harvester Concept & Circuit Modeling

Author:	[Your		Name
Date:	[Date	of	Report
• • •			

Version: 1.0

Abstract

This report presents the conceptual design, modeling, and preliminary simulation work for a hybrid atmospheric energy harvester. The device aims to capture weak electric currents from the atmosphere—through a resonant electrode structure—and convert them via a low-noise transimpedance amplifier into stored energy for ultra-low-power devices. We discuss the architecture, SPICE pseudo-models, circuit nets, simulation expectations, risks, and recommendations for future prototyping.

Keywords: atmospheric energy harvesting, transimpedance amplifier, SPICE modeling, low input current, electrode design

Table of Contents

1.

2. Introduction & Objectives

3.

4. Technical Background & Reference Data

5.

6. System Architecture and Circuit Topology

7.

8. Pseudo-SPICE Models and Netlist Templates

9.

10. Simulation Expectations and Estimates

11.

12. Risks, Limitations, and Critical Factors

13.

14. Recommendations & Roadmap 15. 16. References 17. 18. **Appendices**

1. Introduction & Objectives

We explored a device that passively harvests the Earth-atmospheric electric potential through a resonant electrode structure to generate micro- or nano-level energy. This report documents:

The theory grounding the concept

Circuit architecture and amplifier design

Pseudo-SPICE modeling for LMC6001 with experimental parameter estimates

Simulation templates (netlists) and directive settings

Performance expectations and bottleneck analysis

Recommendations for the next phases of prototype development

2. Technical Background & Reference Data

LMC6001 Amplifier: According to its datasheet, the input bias current is up to ~ 25 fA at 25 °C; under adverse conditions can increase toward ~ 2 pA.

• Noise, offset, and drift features from the datasheet inform the model's parameters.

•

• Atmospheric electric fields are often ~ 100 V/m under calm conditions; air conductivity is extremely low, meaning harvested currents over electrode areas of ~ 1 m² are on the order of pico- to nanoamperes.

3. System Architecture and Circuit Topology

•

• The core signal path: **Electrode** → **TIA** (inverting input) → **feedback network** → **output** → **rectifier** / **storage**

•

• A **Transimpedance Amplifier (TIA)** is chosen to convert minute currents to measurable voltages, using RfR_fRf (feedback resistor) and CfC_fCf (compensation capacitor).

•

• To suppress leakage, **guard rings** / **driven shields** surround high-impedance lines and connections.

•

• The design anticipates integration of a rectification stage, storage (supercapacitors / battery), and protection circuits.

4. Pseudo-SPICE Models and Netlist Templates

•

- We defined a .SUBCKT model for LMC6001 with example parameters:
 - Input bias currents $\sim 10-25$ fA • Offset voltage ~ 1 μV
 - Nonlinear leakage controlled in the model
 - Gain stage with amplification factor $\sim 1 \times 10^6$
 - Output stage with approximate output resistance

•

• Netlist template ensures that the TIA stage, current source, feedback elements, and amplifier subcircuit can be simulated together.

`

• SPICE options such as abstol, gmin, and reltol configured for low-current regimes to avoid internal numeric shunting.

5. Simulation Expectations and Estimates

•

• With a source current of ~ 10 pA and Rf=1 G Ω R_f = 1\,\text{G}\OmegaRf=1G Ω , the output voltage could reach tens of millivolts (in ideal conditions).

•

• At lower current levels (femto- to picoampere range), signal is extremely vulnerable to noise, offset drift, and leakage.

•

• Parasitic elements (PCB leakage, stray capacitances, amplifier input leakage) will significantly reduce effective signal.

•

• Reaching milliwatt power levels demands extraordinary enhancements: vast electrode area, ultra-low loss circuitry, extremely low noise design, and perhaps active gain stages.

6. Risks, Limitations, and Critical Factors

Fact or	Imp orta nce	Miti gati on Stra tegy
Surf ace leak age and para sitics	Even tiny leak age path s can nulli fy sign al	Guar d rings , clea n surfa ces, ultra - high

Amp lifier nois e & offse t	At very low curre nts, nois e may domi nate	insul ation Sele ct ultra -low nois e devi ces, filter ing, calib ratio n
Stabi lity / oscil latio n	High gain + react ive com pone nts can caus e insta bilit y	Proper compens ation (cho ose CfC _fCf carefully), phase margin chec
Para sitic capa citan ce / indu ctan ce	Dist orts sign al coup ling and limit s band widt	ks Care ful layo ut, shiel ding, mini mal trace lengt hs

h

Larg er elect Pow rode er S, Scal field outp ut enha requi often nce reme extre ment nt mely low bette mate rials

7. Recommendations & Roadmap

1.

2. **Run simulations** using the provided netlist / model, sweeping source current, feedback parameters, leakage values to analyze sensitivity.

3.

Build a physical prototype of the TIA stage with guard ring, high-precision components, and shielding; measure input currents, output, offset, noise.

5.

6. **Calibrate the model** using real experimental results— adjust leakage, offset, gain, parasitic parameters.

7.

8. Add **parasitic elements** into simulation: electrode capacitance, PCB leakage, stray coupling.

9.

10. Explore electrode materials (e.g. graphene + Au coatings, nanostructures) to maximize harvesting efficacy.

11.

12. Optimize compensation networks (CfC_fCf), stability margins, possibly multistage amplification.

14. Gradually **scale up** electrode area, integrate protective measures, and test in real atmospheric conditions.

8. References

1.

2. *A Guide to Technical Report Writing* (IET / IEEE) — engineering report writing guide. <u>IEEE Industry Applications Society</u>

3.

4. IEEE Style and Citation Guide — guidelines for preparing technical reports and papers. <u>IEEE Author Center Journals+1</u>

5.

6. "Write Effective Reports" — IEEE Professional Communication Society. procomm.ieee.org

7.

8. "Technical/Company Reports — IEEE Citation Guide" — reference formatting examples. researchguides.njit.edu+1

9. Appendices

•

• Appendix A: Netlist template

•

• Appendix B: Pseudo-SUBCKT model code

•

• Appendix C: Parameter definitions and units

•

• Appendix D: Additional simulation configuration notes