COMPx270: Randomised and Advanced Algorithms
Lecture 1: Randomness,
Probability, and Algorithms

Clément Canonne School of Computer Science

An experiment 🔄

An experiment 🔄

An experiment 🖹

```
4\heartsuit, 3\heartsuit, 8\clubsuit, 2\clubsuit, 3\spadesuit, 10\heartsuit, 8\diamondsuit, 7\spadesuit, K\heartsuit, 5\diamondsuit, 8\heartsuit, J\heartsuit, 9\clubsuit, 5\clubsuit, J♠, 2\heartsuit, Q♠, 2♠, 10♠, 6♠, 6♠, 5♡, 4♠, 9♠, Q⋄, 8♠, 6⋄, 10⋄, 7♠, J♠, K♠, 4⋄, K⋄, K♠, A⋄, A♠, A♠, A♠, A♥, 3♠, 9⋄, 3⋄, J⋄, 9♡, Q♡, Q♠, 2⋄, 10♠, 5♠, 7⋄, 6♡, 7♡
```

An experiment 🔄

An experiment (*)

```
import numpy as np
import random
deck = 13*['S', 'H', 'D', 'C']
consecutives = []
for _ in range(50000):
    shuffled_deck = random.sample(deck, len(deck));
    consecutives += [np.sum([shuffled_deck[i] == shuffled_deck[i+1] for i
        in range(len(deck)-1)])]
print("Empirical mean: %f" % np.mean(consecutives))
```

An experiment 🔄

An experiment 🔄

Shuffle a deck of cards: then go through them in order. How many times do two consecutive cards have the same suit in expectation?

Can we prove it?

An experiment

Shuffle a deck of cards: then go through them in order. How many times do two consecutive cards have the same suit in expectation?

Theorem (Linearity of expectation).

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

No assumption of independence, or anything. Surprisingly useful!

An experiment 🔄

Standard algorithms: "recipes." Input = ingredients, output =

Given same ingredients, get same 🙆.

Standard algorithms: "recipes." Input = ingredients, output = cake.

- Given input, follow steps, get 🙆.
- Given same ingredients, get same 🙆.

Randomised algorithms: "recipes with randomness" Input = ingredients, output = cake , randomness = unpredictable oven

- Given input, follow steps, get 🙆 .
- Given same ingredients, get <u>\$\pi\$\$</u>.

Randomized algorithms are algorithms where the behaviour doesn't depend solely on the input. It also depends (in part) on random choices or the values of a number of random bits. 😯

Important distinctions: what is (and isn't) a randomized algo

- the input is assumed to be "random" 💢
- we average the time complexity over many calls to the algo 💢
- the input is worst-case, but the algo makes random choices 🗹

(cartoon definition)

Randomised algorithms, Monte Carlo, Las Vegas

(details)

- Avoid pathological corner cases
- Get approximate result very fast
- Avoid predictable outcomes
- Get faster, simpler algorithms
- Break ties or bypass "impossibility results"
- Cryptography! Privacy!

- Randomness is not always good or desirable
- Random bits don't grow on trees!
- Bad random bits? Bad outputs.

secrets — Generate secure random numbers for managing secrets ¶

Added in version 3.6.

Source code: Lib/secrets.py

The <u>secrets</u> module is used for generating cryptographically strong random numbers suitable for managing data such as passwords, account authentication, security tokens, and related secrets.

In particular, <u>secrets</u> should be used in preference to the default pseudo-random number generator in the <u>random</u> module, which is designed for modelling and simulation, not security or cryptography.

Given an n-bit integer, decide whether it is a prime number.

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS). Runs in time $\tilde{O}(n^{12})$. Improved to $\tilde{O}(n^6)$.

Given an n-bit integer, decide whether it is a prime number.

There exists a polynomial-time algorithm! Since 2002 (AKS). Runs in time $\tilde{O}(n^{12})$. Improved to $\tilde{O}(n^6)$.

The algorithm was the first one which is able to determine in polynomial time, whether a given number is prime or composite and this without relying on mathematical conjectures such as the generalized Riemann hypothesis. [...] In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work. (Wikipedia)

Given an n-bit integer, decide whether it is a prime number.

There exists a randomised algorithm! Since 1980 (Miller-Rabin). 🧼

Runs in time $\tilde{O}(n^2)$.

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running time $O(n \log n)$.

Given an array A of n distinct numbers, sort A.

Theorem. There are deterministic sorting algorithms with running time $O(n \log n)$.

Theorem. Every (comparison-based) sorting algorithm must have worst-case running time $\Omega(n \log n)$.

```
Require: Input array A of size n
```

- 1: **if** $n \le 1$ **then return** A
- 2: Select an index $1 \le i \le n$, and let $p \leftarrow A[i]$ be the *pivot*
- 3: Partition A into 3 subarrays: A_1 (elements smaller than p), A_2 (equal to p), and A_3 (greater than p) $\triangleright O(n)$ time
- 4: Recursively call QuickSort on A_1 and A_3 to sort them
- 5: Merge the (sorted) A_1 , A_2 , A_3 into A $\triangleright O(n)$ time
- 6: **return** *A*

Given an array A of n distinct numbers, sort A.

Theorem. QuickSort is a deterministic sorting algorithm with running time $O(n^2)$.

(But it is simple, and nice, and does well in practice.)

Randomised QuickSort

Require: Input array A of size n

- 1: **if** $n \le 1$ **then return** A
- 2: Select an index $1 \le i \le n$, and let $p \leftarrow A[i]$ be the *pivot*
- 3: Partition A into 3 subarrays: A_1 (elements smaller than p), A_2 (equal to p), and A_3 (greater than p) $\triangleright O(n)$ time
- 4: Recursively call QuickSort on A_1 and A_3 to sort them
- 5: Merge the (sorted) A_1 , A_2 , A_3 into A $\triangleright O(n)$ time
- 6: **return** A

Given an array A of n distinct numbers, sort A.

Theorem. Randomised QuickSort is a sorting algorithm with expected running time $O(n \log n)$.

(And it is simple, and still nice, and still does well in practice.)

(proof)

Recap, and looking forward

- Randomised, linearity of expectation, applications
- Concentration bounds, probability amplification, median trick
- Coupon Collector, Load Balancing, Power of Two Choices
- Derandomisation: Max-Cut, Method of Conditional Expectations
- Randomized Min-Cut (Karger's algorithm)
- Probabilistic data structures I: Hashing and Bloom filters
- Probabilistic data structures II: Johnson-Lindenstrauss, LSH
- Streaming and Sketching I: definitions, examples, frequency estimation
- Streaming and Sketching II: CountSketch, Count–min Sketch
- Linear Programming and Randomised Rounding
- Embeddings: FRT algorithm, and applications
- Sampling and Counting

To conclude: something completely different!

If X is a non-negative integer-valued random variable, then

$$\mathbb{E}[X] = \sum_{n=0}^{\infty} n \Pr[X = n] = \sum_{n=1}^{\infty} \Pr[X \ge n]$$

(This is useful!) See tutorial.