Number System-01-Classification of Numbers

Convert each of the following recurring number to p/q form where p and q are integers.

i.
$$0.\overline{123}$$
 ii. $0.1\overline{23}$ iii. $0.12\overline{3}$ iv. $0.\overline{102}$ v. $0.\overline{102}$

v.
$$0.10\overline{2}$$

2. a & b are two single digit natural numbers such that 0.ababab... = $\frac{8}{11}$. Find the value of a + b.

3. If
$$\frac{x}{0.1010...} = \frac{1}{0.222...}$$
, find the value of x.

4. a and b are two single digit natural numbers such that $0.abab.....\times n$ is an integer value for all values of a and b. What is the least three digit number that n can be?

5. If
$$0.abcabc... = \frac{17}{37}$$
, find the sum $a + b + c$.

Activa Go to Se

Directions for questions 6 to 15: Fill in the blanks with any one of the following:

- always even
- 2. always odd

3. could be even also or odd also

- 6. $x^8 + x^4$ is _____.
- 7. $xy^2 + x^2y$ is _____.
- If 3a + 1 is even, then a is ______.
- If 5a 3 is odd, then a is ______.
- 10. If 4a + 2 is even, then a is _____.
- 11. If 7a 4 is even, then a is _____.
- 12. If 11a + 10 is odd, then a is _____.
- If 10a 7 is odd, then a is ______.
- 14. If $a \times b \times c$ is odd, then ab + bc + ca is _____.
- 15. $(a-b) \times (b-c) \times (c-a)$ is _____.

Directions for 16 & 17: Choose the correct answer option.

16. Let x, y, and z be distinct integers. x and y are odd and positive and z is even and positive.
Which one of the following statements cannot be true?

1.
$$(x-z)^2 \times y$$
 is even

2.
$$(x-z) \times y^2$$
 is odd

3.
$$(x-z) \times y$$
 is odd

4.
$$(x-y)^2 \times z$$
 is even

17. Let x, y and z be distinct integers that are odd and positive. Which of the following statements cannot be true?

1.
$$x \times y \times z^2$$
 is odd

2.
$$(x-y)^2 \times z$$
 is even

3.
$$(x + y - z)^2 \times (x + y)$$
 is even

4.
$$(x - y) \times (y + z) \times (x + y - z)$$
 is odd

18.	State true or false for each of the following:								
	i. All prime num	ibers are odd	True / False						
	ii. Product of an	y two prime num	True / False						
	iii. Sum of any t	wo prime numbe	True / False						
	iv. Difference of	any two prime n	True / False						
19.	If p is a prime n	umber greater th							
	i. p is divided by 6?								
	1. 1	2. 5	3. 1 or 5	4. 2 or 3	5. Cannot be determined				
	ii. p² is divided l								
	1. 1	2.5	3. 1 or 5	4. 2 or 3	5. Cannot be determined				

Dire	ections for questions 20 to 25: Select the correct answer option.								
20.	. In how many ways can 72 be written as a product of two co-prime natural numbers?								
	1.6	2. 5	3. 3	4. 2	5. 1				
21.	If a , $a + 2$, $a + 4$ are all prime numbers, how many distinct values can a take?								
	1.0	2. 1	3. 2	4. 3	5. More than 3				
22.	Let <i>p</i> be a prime by 12?	number greater	than 3. Then wha	at is the remainde	er when $(p^2 + 17)$ is divided				
	1. 3	2. 6	3. 8	4. 9	5. 16				
23.	. If p and q are prime numbers greater than 3 then the greatest number by which $(p^2 - q^2)$ is always divisible is								
	1. 12	2. 18	3. 24	4. 30	5. 36				
24.	. How many prime numbers are of the form $n^s - 1$, where n is any natural number?								
	1.0	2. 1	3. 2	4. 3	5. More than 3				
25.	. How many primes cannot be expressed as a difference of squares of two natural numbers?								
	1.0	2. 1	3. 2	4. 3	5. More than 3				