Contents

- 1 Equations of Motion
- 2 Linearization, Stability, and Controllability 3

1

1 Equations of Motion

- A cart of mass M is constrained to move along the x axis with its distance from an arbitrary point on the x axis denoted x. A driving force of magnitude F is applied to the cart in the x direction. A simple pendulum consisting of a mass m and a massless rod of length l is connected to the cart with its angle from the positive y axis denoted θ .
- The kinetic energy of the cart is

$$T_{\rm cart} = \frac{1}{2}M\dot{x}^2.$$

ullet The x and y coordinates of the pendulum are

$$X = x - l\sin\theta$$
$$Y = l\cos\theta,$$

thus its x and y velocities are

$$\dot{X} = \dot{x} - l\dot{\theta}\cos\theta$$

$$\dot{Y} = -l\dot{\theta}\sin\theta$$

and its kinetic energy is

$$T_{\text{pendulum}} = \frac{1}{2} m v^2$$

$$= \frac{1}{2} (\dot{X}^2 + \dot{Y}^2)$$

$$= \frac{1}{2} m [(\dot{x} - l\dot{\theta}\cos\theta)^2 + (-l\dot{\theta}\sin\theta)^2]$$

$$= \frac{1}{2} m (\dot{x}^2 - 2l\dot{x}\dot{\theta}\cos\theta + l^2\dot{\theta}^2).$$

• The total kinetic energy of the system is

$$T = T_{\text{cart}} + T_{\text{pendulum}}$$
$$= \frac{1}{2}(m+M)\dot{x}^2 + \frac{1}{2}m(l^2\dot{\theta}^2 - 2l\dot{x}\dot{\theta}\cos\theta).$$

• The potential energy of the system is equal to the gravitational potential energy of the pendulum. If its potential energy is 0 when $\theta = \frac{\pi}{2}$ then

$$U = mgl\cos\theta$$
.

• The Lagrangian of the system is

$$\mathcal{L} = T - U$$

$$= \frac{1}{2}(m+M)\dot{x}^2 + \frac{1}{2}m(l^2\dot{\theta}^2 - 2l\dot{x}\dot{\theta}\cos\theta) - mgl\cos\theta.$$

- By d'Alembert's principle the generalized forces associated with the θ and x coordinates are 0 and F, respectively.
- The Euler-Lagrange equation for the θ coordinate is

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\theta}} - \frac{\partial \mathcal{L}}{\partial \theta} = 0$$
$$\frac{d}{dt}(ml^2\dot{\theta} - ml\dot{x}\cos\theta) - ml\dot{x}\dot{\theta}\sin\theta - mgl\sin\theta = 0$$
$$l\ddot{\theta} - \ddot{x}\cos\theta - g\sin\theta = 0.$$

• The Euler-Lagrange equation for the x coordinate is

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} - \frac{\partial \mathcal{L}}{\partial x} = F$$
$$\frac{d}{dt}[(m+M)\dot{x} - ml\dot{\theta}\cos\theta] = F$$
$$(m+M)\ddot{x} - ml\ddot{\theta}\cos\theta + ml\dot{\theta}^2\sin\theta = F.$$

• Solving these equations for $\ddot{\theta}$ and \ddot{x} gives

$$\ddot{\theta} = \frac{(m+M)g\sin\theta + F\cos\theta - ml\dot{\theta}^2\cos\theta\sin\theta}{l(m+M) - ml\cos^2\theta}$$

and

$$\ddot{x} = \frac{2F + mg\sin 2\theta - 2ml\dot{\theta}^2\sin\theta}{m + 2M - m\cos 2\theta}.$$

2 Linearization, Stability, and Controllability

• The state vector for this system is

$$\begin{pmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{pmatrix}.$$

• The fixed point about which the system will be linearized is

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
.

ullet The **A** matrix is equal to the Jacobian matrix evaluated at the fixed point

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{g(m+M)}{lM} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{gm}{M} & 0 & 0 & 0 \end{pmatrix}.$$

• The non-zero eigenvalues of **A** are

$$\pm \sqrt{\frac{g(m+M)}{lM}}.$$

Because one of these has a positive real part the system is unstable.

• Rearranging the equations of motion to find the coefficients of F gives

$$\ddot{\theta} = f(\theta, \dot{\theta}) + \frac{\cos \theta}{l(m+M) - ml\cos^2 \theta} F$$

and

$$\ddot{x} = g(\theta, \dot{\theta}) + \frac{2}{m + 2M - m\cos 2\theta}F.$$

Using the small angle approximation for cos gives

$$\ddot{\theta} = f(\theta, \dot{\theta}) + \frac{1}{lM}F$$

and

$$\ddot{x} = g(\theta, \dot{\theta}) + \frac{1}{M}F$$

resulting in the ${f B}$ matrix

$$\begin{pmatrix} 0\\ \frac{1}{lM}\\ 0\\ \frac{1}{M} \end{pmatrix}.$$

• The controllability matrix

$$C = \begin{pmatrix} \mathbf{B} & \mathbf{AB} & \mathbf{A}^2 \mathbf{B} & \mathbf{A}^3 \mathbf{B} \end{pmatrix}$$

has full rank (4) so the system is controllable via the force F on the cart.

 \bullet The ideal state feedback gains matrix K can be determined using Mathematica's LQRegulatorGains function.