Sztuczna inteligencja i inżynieria wiedzy

Algorytm genetyczny

1. Implementacja

1.1 Inicjalizacja

Początkowa populacja zostaje zainicjalizowana losowo poprzez przypisanie do zadań dowolnego zasobu o kompetencjach spełniających wymagania zadania oraz ustawienie czasów początku i końca za pomocą algorytmu zachłannego.

1.2 Przebieg algorytmu

Po zapełnieniu generacji zerowej następuje wykonanie kolejnych kroków algorytmu:

- 0) wyłonienie najlepszego osobnika z całej populacji i przypisanie go do nowego pokolenia;
- 1) selekcja osobników prowadząca do wybrania dwóch najlepszych na podstawie metody turnieju;
- 2) wykonanie na nich krzyżowania;
- 3) wykonanie mutacji na uzyskanych z krzyżowania osobnikach
- 4) przypisanie uzyskanych w wyniku mutacji osobników do nowej populacji.

Krok 0 wykonywany jest tylko raz na początku każdego pokolenia, kolejne kroki (1-4) powtarzane są w pętli tak długo, aż nowe pokolenie będzie liczyć tyle samo osobników, co pokolenie rodziców.

1.3 Krzyżowanie

Operacja krzyżowania zachodzi pod warunkiem, że wylosowana na początku operacji liczba będzie mniejsza od zadanej wartości prawdopodobieństwa mutacji, w przeciwnym wypadku do nowego pokolenia zostaną przypisani rodzice w niezmienionej formie. Krzyżowanie w niniejszej implementacji polega na wyborze punktu krzyżowania i zmianie przypisania zasobów leżących dalej niż ten punkt pomiędzy dwoma osobnikami.

AAAAAAAAA | AAAAA BBBBBBBBBBBB | BBBBB

+

AAAAAAAAA | BBBBB BBBBBBBBBB | AAAAA

1.4 Selekcja

Wybrano metodę selekcji za pomocą turnieju. Przed krzyżowaniem następuje wylosowanie z populacji zadanej liczby osobników (nie dbając, by się nie powtarzały) a następnie porównanie ich wartości funkcji przystosowania (czasu trwania harmonogramu) i wyłonienie najlepszego, który zostaje przekazany do krzyżowania. Wielkość turnieju jest określana procentowo, dlatego przy każdej zmianie wielkości populacji obserwujemy wpływ jedynie tego parametru, nie musimy jeszcze uwzględniać wielkości turnieju.

1.5 Mutacja

Mutacja przeprowadzana jest, tak jak krzyżowanie, pod warunkiem wylosowania liczby mniejszej od przyjętego prawdopodobieństwa mutacji. Dotyczy każdego zadania (taska) z osobna, czyli każde zadanie ma takie samo prawdopodobieństwo mutacji.

2. Badania

2.1. Badanie na różnych plikach testowych

Badanie przeprowadzone zostało dla pięciu różnych plikach testowych przy zachowaniu tych samych parametrów: l. generacji – 100, wielkość populacji – 100, PX = 0.7, Pm = 0.01 oraz turniej wielkości 0.05. Otrzymywane najlepsze wyniki różniły się oczywiście, często o kilkaset jednostek, ponieważ każdy zbiór ma inny potencjał. Bardziej interesujący nas parametr, to różnica pomiędzy uruchomieniami programu dla tego samego zbioru. Największa (nawet 10 jednostek w każdą stronę) była dla zbiorów z większą liczbą tasków, co nie dziwi, ponieważ mamy wówczas więcej możliwości wyników. Należy pamiętać, że algorytm(metaheurystyka) genetyczny niekoniecznie doprowadza nas do optymalnego wyniku i opiera się na pseudolosowości.

1. 100_5_22_15.def

Najlepszy w ewolucji: 492.0

2. 200_10_50_15.def

Najlepszy w ewolucji: 493.0

3. 100_10_26_15.def

Najlepszy w ewolucji: 247.0

4. 200_20_97_9.def

Najlepszy w ewolucji: 258.0

5. 200_40_133_15.def

Najlepszy w ewolucji: 167.0

2.2. Wpływ prawdopodobieństwa krzyżowania i mutacji na otrzymywane wyniki

Od tego podpunktu badania będę przeprowadzać tylko na jednym zbiorze. Będzie to 200 40 133 15.def, bo jako jeden z największych zbiorów może dawać różnorodne wyniki.

$$Px = 0.0$$

$$Pm = 0.0$$
Algorytm genetyczny
$$350$$

$$300$$

$$250$$

—— uajlebszk ozopujy —— uzjek o

Najlepszy w ewolucji: 257.0

Jak można się było spodziewać brak krzyżowania i mutacji prowadzi do szybkiego ustalenia się relatywnie słabego wyniku, ponieważ poruszamy się jedynie pośród posiadanych od początku rozwiązań i wybieramy najlepsze.

200

Najlepszy w ewolucji: 219.0

Samo krzyżowanie doprowadza nas do znacząco lepszego wyniku, jednak widzimy, że jego wpływ kończy się bardzo szybko, ponieważ zaczynamy obracać się wokół mieszanek już istniejących rozwiązań.

Px = 0

Pm = 1

Najlepszy w ewolucji: 228.0

Bardzo interesujące wyniki daje mutacja ustawiona na 0, bez parametru krzyżowania. Widzimy, że brak tu jakiegokolwiek trendu, choć wcale nie oznacza to, że otrzymywane wyniki są gorsze niż w przypadku braku mutacji. W tym wypadku łatwo "wytracamy" raz zdobyte rozwiązanie, jak również łatwo zyskujemy kolejne. Pm = 1 to całkowita losowość w każdym osobniku każdego pokolenia.

$$Px = 0.5$$

Pm = 0.5

Najlepszy w ewolucji: 225.0

W wypadku Px=0.5 i Pm=0.5 wciąż największy wpływ ma Pm i, jak widać, wciąż jest zbyt duże.

$$Px = 0.5$$
$$Pm = 0.05$$

Najlepszy w ewolucji: 191.0

Przy dziesięciokrotnie zmniejszonym Pm zaczynamy obserwować trend spadkowy, znacząco również poprawia nam się wynik najlepszego osobnika.

$$Px = 0.5$$

 $Pm = 0.01$

Najlepszy w ewolucji: 160.0

Przy Pm=0.01 trend spadkowy jest już wyraźny, zyskujemy również o wiele lepsze rozwiązania.

Px=0.5 Pm=0.001

Najlepszy w ewolucji: 174.0

Dziesięciokrotnie mniejsze Pm jest już za małe i nie jesteśmy w stanie osiągnąć tak dobrych wyników jak wcześniej.

2.2 Badanie wypływu wielkości pokolenia oraz liczby pokoleń

Oba z badanych parametrów powinny wpływać na wyniki i intuicyjnie wiemy, że im większy zbiór tym wyniki powinny być lepsze. Pomijam wielkości rzędu mniejszego niż 10².

1. pokoleń=100, wielkość populacji=100

Najlepszy w ewolucji: 160.0

1. pokoleń=1000, wielkość populacji=100

Najlepszy w ewolucji: 146.0

Osiągane wyniki rzeczywiście są o wiele lepsze, jednak wykonanie programu wydłużyło się do ok. 16 sek.

1. pokoleń=10000, wielkość populacji=100

Najlepszy w ewolucji: 144.0

Wykonanie programu trwało około 2.5 minuty dlatego eksperyment powtórzony był tylko raz.

Osiągnięto nieznacznie lepszy wynik przy ogromnym nakładzie czasu, dlatego ten parametr musi pozostać taki jak poprzednio.

1. pokoleń=100, wielkość populacji=1000

Najlepszy w ewolucji: 152.0

Najlepszy osobnik różni się znacząco od tego przy wielkości populacji=100, jednak jest to zaledwie 8 jednostek, przy prawie 50 razy dłuższym czasie wykonania programu, dlatego uważam, że ten parametr również musi zostać taki jak poprzednio.

2.3. Badanie wpływu selekcji na skuteczność GA – turniej, ruletka

Turniej

Turniej = 0.05 (5%)

Najlepszy w ewolucji: 160.0

Turniej = 0.01 (1%)

Najlepszy w ewolucji: 235.0

W tym wypadku wybieramy zawsze losowego osobnika, toteż wyniki są zupełnie losowe. Turniej = 0.5 (50%)

Najlepszy w ewolucji: 160.0

Nie widać znaczącej różnicy między 5% a 50%. Optymalną wartość tego parametru ciężko wyznaczyć.

Turniej = 1 (100%)

Najlepszy w ewolucji: 160.0

Ruletka

Ruletka polega na przypisywaniu prawdopodobieństwa wyboru na podstawie funkcji przystosowania. Poniżej przedstawione wyniki zbliżone są do losowych, ponieważ dla tak niewiele różniących się osobników prawdopodobieństwo jest zbliżone i brak ciśnienia selekcyjnego.

Poniższa tabela została utworzona na podstawie 5 wywołań dla każdego zbioru danych.

	GA		Greedy	
Nr zbioru danych	śr.	б	śr.	б
1. 100_5_22_15.def	488.8	2.17	580.4	13.22
2. 200_10_50_15.def	497.0	4.36	657.8	17.41
3. 100_10_26_15.def	251.8	3.49	334.8	11.95
4. 200_20_97_9.def	256.2	3.56	382.4	9.91
5. 200_40_133_15.def	260.4	2.41	258	4.36