39 èm	e Pro	motion
ISARA	lère	année

Juin 2007²
Pascale NEYRAN

Nom	 Prénom	9	
LACARAT	 *******************************		

STATISTIQUE (durée 2 heures)

Une calculatrice collège est autorisée. Les tables statistiques distribuées au début de l'épreuve sont à rendre aux surveillant(e)s.

Répondre sur la feuille du sujet.

Le devoir est noté sur 50 points (barème entre parenthèses).

Exercice I (4 points)

Sélectionner la réponse correcte :

Question	Réponse A	Réponse B	Réponse C	Choix
$s^2(x) =$	$\frac{\sum (n_i x_i)^2}{n} - \overline{x}^2$	$\sum f_i x_i^2 - \overline{x}^2$	$\sum f_i x_i^2 - n \overline{x}^2$	
Le coefficient de variation =	$\frac{\overline{x}}{s(x)} \times 100$	$\frac{s(x)}{me} \times 100$	$\frac{s(x)}{\overline{x}} \times 100$	
Le coefficient d'asymétrie de Fisher =	$\frac{\mu_4}{s(x)^4}$	$\frac{\mu_3}{\mu_2^{1,5}}$	$\frac{\mu_3}{\mathrm{s(x)}^3} - 3$	
Si Y = bX + a	$s^2(y) = bs^2(x) + a$	$s^2(y) = b^2 s^2(x)$	s(y)=bs(x)	
Si L(X) = B(n,p) $V(X) =$	np(1-p)	np	nq	
$Si L(X) = P(\lambda)$ $V(X) =$	λ^2	$\sqrt{\lambda}$	λ	
Si L(X)=N(m; σ) E(X) =	me	m/2	σ	
Si L(X)=N(m; σ) V(X) =	σ	mo	σ^2	

Exercice II (11 points)

Le service des Ressources Humaines d'une exploitation agricole dispose des éléments statistiques suivants concernant l'intéressement perçu l'an dernier par ses cadres.

Intéressement en K€	Nombre cadres concernés
[0;10[6
[10; 20[30
[20; 24[50
[24;30[40
[30;40[20
[40;50]	4

1) Déterminer au centième, les paramètres suivants :

Classe modale	
Moyenne	
C ₂₅	
Q ₃	
Médiane	
$\sum n_i x_i^2 - n \overline{\overline{x}}^2$	
Coefficient de Yule	

- 2) Cette série est elle symétrique ?
- 3) Déterminer au centième le coefficient d'aplatissement de Fisher. Que peut-on en conclure ? On nous précise que : $\sum n_i (x_i - \overline{x})^4 = 2064607$.

4) Pour cette année, le directeur des Ressources Humaines s'est prononcé pour une augmentation de 1,5 % de l'intéressement de chaque cadre, majorée d'une prime de 1 000 € pour chacun.

Suite à ces majorations, calculer la moyenne et l'écart type de l'intéressement distribué.

Exercice III (6 points)

On s'intéresse à la répartition d'un volume de 900 arbres d'une même espèce, selon leur hauteur et leur origine géographique. On dispose des données suivantes :

Hauteur	Faible	Moyenne	Forte
origine Région 1	2.7	189	54
Région 2	33	124	23
Région 3	103	309	38

On aimerait savoir, pour un risque de 5%, s'il y a un lien entre ces 2 caractères.

Hypothèse nulle:

Critère statistique calculé :	
Nombre de degrés de liberté :	
Critère statistique théorique :	
Conclusion:	
Risque réel ?	

illar Erimen i

Exercice IV (10 points)

Les parties A, B sont indépendantes.

Partie A:

La société PARCOTO exploite un parking automobile situé à proximité d'une chaîne de magasins.

On estime que le nombre d'heures de stationnement payées chaque jour par un usager suit une loi de Poisson de paramètre 3 et on attend en moyenne 180 clients par jour.

Soit X le nombre d'heures de stationnement payées en une journée par l'ensemble des usagers.

- 1) Déterminer, en la justifiant, la loi suivie par X.
- 2) Donner une approximation de cette loi.
- 3) Donner un intervalle centré sur la moyenne qui a une probabilité de 92% de contenir X.

Partie B:

A la sortie du parking il y a deux caisses :

- ✓ Caisse A: tous paiements.
- ✓ Caisse B: paiements automatiques par carte bancaire.

Des observations antérieures permettent de dire que la probabilité pour qu'un client choisisse la caisse B est 0,3.

On attend toujours en moyenne 180 clients par jour.

Soit Y le nombre de paiements par carte bancaire à la caisse B en une journée.

1) Quelle est la loi de Y? (Justifier)

- 2) Calculer son espérance mathématique et une valeur approchée à 10^{-2} près de son écart-type.
- 3) Par quelle loi peut-on approcher la loi de Y?
- 4) Quelle est la probabilité pour qu'il y ait entre 38 et 62 (bornes incluses) paiements par carte bancaire à la caisse B en une journée ?
- 5) La caisse B délivre un reçu à chaque client. Lorsqu'il n'y a plus de reçu dans la machine, celle-ci s'arrête et les clients suivants se dirigent tous vers la caisse A.

Quel nombre minimal de reçus faut-il prévoir pour que 97% des clients souhaitant passer au péage automatique soient satisfaits ?

Exercice V (11 points)

Le tableau suivant (partiellement renseigné) donne l'évolution des frais de publicité (x_i) et du chiffre d'affaires (y_i) d'une entreprise agricole sur 8 ans.

N°		77	X _i ²	y _i ²	$x_i y_i$
~ .	X _i	У	^i	J.i.	151
observation	2	41	1	1681	82
1	2	41	7		
2	2,3	59	5,29	3481	135,7
3	2,6				
4	2,9				
5	3,2				
6	3,5				
7	3,8	73	14,44	5329	277,4
8	4,1	75	16,81	5625	307,5
Total	24,4	515	78,2	34025	1623,10

e. 1 . 1

1) Déterminer, avec 4 chiffres après la virgule :

- la covariance de X et Y
- l'équation de la droite de regression de Y par rapport à X
- le coefficient de détermination et l'interpréter
- la somme des produits des écarts de X et Y

2) Compléter le tableau ci-dessous :

N° observation	Yi estimé	résidu	e_i^2	Résidu standardisé
1				
2	53,99	-5,01	25,12	-1,17
3	58,14	-1,86	3,45	-0,43
4	62,30	-2,70	7,30	-0,63
5	66,45	-3,55	12,59	-0,83
6	70,61	-1,39	1,94	-0,33
7	74,76	1,76	3,10	0,41
8				
Total	515		146,87	

- 3) Existe t'il des données OUT. Si oui, expliquer pourquoi.
- 4) Vérifier l'indépendance des résidus.
- 5) Calculer la variance expliquée par la regression.

Exercice VI (8 points)

Vérifier à l'aide d'un test statistique, pour un risque d'erreur de 5 %, si la distribution observée dans cet exercice est conforme à celle d'une loi normale de moyenne égale à 25,5 et d'écart type égal à 10.

Variable X	effectifs
[5;10[10
[10; 20]	50
[20; 25[38
[25;30]	40
[30;40]	52
[40; 60[10

Hypothèse nulle:

Compléter le tableau suivant :

Valeurs de X	probabilité	Effectifs théoriques	Effectifs observés
10≤X<20	0,2306	46,12	
20≤X<25	0,1889	37,78	
25≤X<30			
30≤X<40	0,2528	50,57	
Total			

Critère statistique calculé:

Critère statistique théorique :

Conclusion: