重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

	考试时间 <u>120</u> 分钟	_ A #	È		共	3	_页第	1	_页	
	考生姓名	考生	班級		考生	学号_				
	一、选择题(本大题共10小题,每小题3分,总计30分)									
1.	函数 $y = \ln(1-x) + \ln(1-x)$	$\frac{x+1}{2}$ 的定	三义域是()						
	(A) $x < 1$ (B)	$) -3 \le x < 1$	(C) -3<	x≤1 ($D) \{x \mid$	x ≤ 1}	$I \left\{ x \middle -3 \right\}$	≤ <i>x</i> ≤	1}	
2.	对函数 $f(x)$,已知	$\Pi f(1) = 2, f'($	1)=-2,则	$\lim_{x\to 1}f(x)=$	= ()				
	(A) -2	(B) 2	(C)	1	(D)	0				
3.	函数 $f(x) = \frac{\ln(x^2)}{x^3 - x}$	有()个ī	可去间断点							
	(A) 0	(B) 1	(C) 2		(D) 3					
4.	设函数 f(x) 在点 a	i 满足: $\lim_{x\to a} \frac{f(x)}{(x)}$	$\frac{(x) - f(a)}{(-a)^{2020}} = 2$.021,则 <i>f</i>	(x)在点	āa处	()		
	(A) 不可导 ((B) 可导且 f'(d	a) = 2021	(C) 取得	极小值	(I	D) 取得	极大值	直	
5.	对函数 $f(x)$,已知	$\prod f(0) = 1, f'(0) = 1$	(0)=-1,则	$\lim_{n\to\infty} n \bigg[f(\frac{1}{n}) \bigg]$	$\left[\frac{1}{n}\right] - 1$	()			
	(A) -1	(B) 0	(C) 1	(I)) ∞					
6.	设函数 $f(x) = (e^x -$	$-1)(e^{2x}-2)\cdots(e^{x}$	^{nx} -n), 其中	n为正整	数,则	f'(0)	=()	ŀ		
	(A) $(-1)^n(n-1)!$	(B) (-1)	n-1 $(n-1)!$	(C) (-	$-1)^n n!$	C	D) (-1)	$n^{n-1}n!$		
7.	设 $f(x) = e^{2-x}$,则	其n阶导数ƒ ($(x)^{(n)}$)						
	(A) e^{2-x}	(B) $(-1)^n e^{2-x}$	(C)	$-e^{2-x}$	((D) ($-2)^n e^{2-x}$			
8.	设 $y = f(x^2)$,其	其中函数 $f(x)$ 可	可导,则 <i>dy</i> <i>dx</i>	=()						
	(A) $f'(x^2)$	(B) $f'(2x)$	(C)	$2xf'(x^2)$	(D) x^2	$f'(x^2)$			
9,	函数 $f(x) = \sqrt{x}$ 按	(x-4)的幂展开	F的带有佩亚	区诺余项的	2 阶泰	勒公司	式是()		
	(A) $2+\frac{1}{4}(x-4)$	$-\frac{1}{32}(x-4)^2 + o($	$(x-4)^2$	(B) $2 + \frac{1}{4}$	(x-4)	$-\frac{1}{32}(x)$	$(-4)^2 + $	•((x-	4) ⁿ)	

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

开课学院	课程名称高等数学【((1) 机电】 半期	考核方式	_
考试时间_120_分钟	_A 卷	共3	页第2	ĺ
***	老儿工作的	-1c +1- 25c 1	1 .	

(C)
$$2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^2)$$
 (D) $2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + o((x-4)^n)$

10. 函数
$$f(x) = \frac{x^2 - x}{x^2 - 1}$$
 的铅直渐近线方程为()

- (A) y=0 (B) y=1 (C) x=1
- (D) x = -1

二、填空题 (本大题共 5 小题,每小题 4 分,总计 20 分)

11. 极限
$$\lim_{x\to\infty} \left(\frac{x+2}{x-1}\right)^x = \underline{\hspace{1cm}}$$
.

12. 函数
$$f(x) = \begin{cases} \frac{4}{x^2 + 1}, & x \le 1 \\ -x + k, & x > 1 \end{cases}$$
 在 $x = 1$ 处连续,则 $k =$ _____.

13. 设
$$f(x)$$
 是可导函数,且 $f'(x) = \sin^2 \left[\ln(x+1) + \frac{\pi}{4} \right]$, $f(0) = 3$, $f(x)$ 的反函数是 $y = \varphi(x)$,则 $\varphi'(3) =$ _______.

14. 曲线
$$y = x^4(12 \ln x - 7)$$
 的拐点坐标是_____.

三、解答题(本大题共5小题,每小题10分,总计50分)

16. 求极限:

(1)
$$\lim_{x\to 0} \left[\frac{1}{e^x - 1} - \frac{1}{\ln(1+x)} \right];$$
 (2) $\lim_{x\to 0} \frac{\sin x + x^2 \sin \frac{1}{x}}{\sqrt{1+x} - 1}.$

17. (1)
$$\forall y = e^{-x} \sin x + \frac{\ln(x+1)}{(x+1)^2}, \ \, |\vec{x}| \, dy \big|_{x=0}$$
.

重庆理工大学本科生课程考试试卷

2020 ~ 2021 学年第 1 学期

开课学院_	理学院

课程名称 高等数学【(1) 机电】 半期

考核方式 闭卷_

考试时间 120 分钟

_A 卷

共 3 页第 3 页

考生姓名

考生斑级

考生学号_____

- 18. 设曲线 $y=x^2+ax+b$ 和 $2y=-1+xy^3$ 在点(1,-1)处相切,其中 a,b 为常数.
 - (1) 求a,b 的值;
 - (2) 求曲线 $y=x^2+ax+b$ 和 $2y=-1+xy^3$ 在点 (1,-1) 处的公切线与法线方程.
- 19. 函数 $f(x) = a \sin x + \frac{1}{3} \sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值.
 - (1) 求a的值;
 - (2) 求此极值,并说明是极大值还是极小值.
- 20. 设函数 f(x) 在 $[0,+\infty)$ 上可导, f(0)=0,且 $\lim_{x\to+\infty} f(x)=2$,证明:
 - (1) 存在a>0, 使得f(a)=1;
 - (2) 对 (1) 中的a,存在 $\xi \in (0,a)$,使得 $f'(\xi) = \frac{1}{a}$.