assignment 2

(due before class on 23 Oct 2020)

1. Derive an expression for the rate of an Enzyme catalysed reaction using the modified Michaelis-Menten mechanism:

$$\mathrm{E} + \mathrm{S} \stackrel{k_a}{\rightleftharpoons} \mathrm{E} \mathrm{S} \stackrel{k_b}{\rightleftharpoons} \mathrm{P} + \mathrm{E}$$

Show that at the initial stages, when [S] >> [P], the expression reduces to the usual Michaelis-Menten rate expression.

- 2. Hydrogen iodide undergoes decomposition into $H_2 + I_2$, when irradiated with radiation having a wavelength of 207 nm. When 1 J of energy is absorbed, 440 μ g of HI is decomposed. How many molecules of HI are decomposed by one photon of radiation of this wavelength? Suggest a mechanism that is consistent with this result.
- 3. The hydrolysis of sucrose by the enzyme invertase was followed by measuring the initial rate of change in polarimeter (optical rotation) readings, α , at various initial concentrations of sucrose. the reaction is inhibited reversibly by the addition of urea:

[Sucrose] (mol l^{-1})	0.0292	0.0584	0.0876	0.117	0.175	0.234
initial rate $\frac{d\alpha}{dt} = v_0$	0.182	0.265	0.311	0.330	0.372	0.371
initial rate (2M urea), v'_0	0.083	0.119	0.154	0.167	0.192	0.188

- (a) Make a simple plot of the data in the absence of urea and determine the Michaelis constant for this reaction.
- (b) Carry out a suitable analysis of the data in the presence of urea and determine whether urea is a competitive or a non-competitive inhibitor.
 - 4. The longest wavelength absorption band of chlorophyll a peaks in vivo at $\lambda = 680$ nm.
- (a) For photons with $\lambda = 680$ nm, calculate the energy in J photon⁻¹ and in J einstein⁻¹. (1 Einstein=energy in 1 Avogadro number of photons).
 - (b) CO₂ fixation in photosynthesis can be represented as

$$CO_2+H_2O\rightarrow (CH_2O)+O_2$$
 with $\Delta_rH=116$ kcal mol⁻¹

What is the minimum number of Einsteins of radiation that need to be absorbed to provide the energy needed to fix 1 mol of $\rm CO_2$.

(c) Experimentally, the number of photons required to fix 1 mol of CO₂is 8 or 9.

What is the photochemical quantum yield?