Unit 4 –Orthogonalization , Eigenvalues and Eigenvectors

Orthogonal Bases, The Gram- Schmidt Orthogonalization, Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Power Method to find the Largest Eigenvalue, Diagonalization of a Matrix.

44- 46	Orthogonal Bases- Orthogonal Matrices, Properties, Rectangular Matrices with
	orthonormal columns
47-50	The Gram- Schmidt Orthogonalization, A = QR Factorization
51	Scilab Class Number 7- The Gram- Schmidt process
52-54	Introduction to Eigenvalues and Eigenvectors, Properties of eigenvalues and
	eigenvectors, Power Method to compute the largest eigenvalue
55-56	Diagonalization of a Matrix, Powers and Products of Matrices
57-58	Scilab Class Number 8&9- Eigen Values and Eigen Vectors, The Power
	Method

Class work Problems:

1	The vectors $q_1 = (1, 0, 0)$, $q_2 = (0, 3/5, 4/5)$ and $q_3 = (0, 4/5, -3/5)$ form an orthonormal basis for \mathbb{R}^3 . Express the vector $\mathbf{v} = (7, -5, 10)$ as a linear combination
	of the q's.
	Answer: $v = 7 q_1 + 5 q_2 - 10 q_3$
2	 Let W = { (a, b, b) / a, b are real } and let v = (3, 2, 6). (i) Find an orthonormal basis for W (i) Find the projection of v onto W, say v₁ (ii) Decompose v into a sum of two vectors v₁+ v₂ where v₂ is projection of v onto W[⊥]
	Answer: $v = (3, 4, 4) + (0, -2, 2)$
3	Find a third column as that the matrix $O = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} & \\ 1/\sqrt{3} & 2/\sqrt{14} & \end{bmatrix}$ is orthogonal
	Find a third column so that the matrix Q = $\begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} &\\ 1/\sqrt{3} & 2/\sqrt{14} &\\ 1/\sqrt{3} & -3/\sqrt{14} & \end{bmatrix}$ is orthogonal.
	Answer: $\pm (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6})$ (two vectors)
4	Let Q = $\begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix}$, $x = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$ and $y = \begin{bmatrix} -3\sqrt{2} \\ 6 \end{bmatrix}$. Verify that
	(i) $Q^{T}Q = I$ (ii) $ Qx = x $, $ Qy = y $ (iii) $(Qx)^{T}(Qy) = x^{T}y$
5	If W is a subspace spanned by the orthogonal vectors (2, 5, -1) and (-2, 1, 1) find the point in W that is closest to (1, 2, 3) Answer: (-2/5, 2, 1/5)

6	What multiple of $a_1 = (1, 1)$ should be subtracted from $a_2 = (4, 0)$ to make the
	result orthogonal to a_1 ? Factorize $A = [a_1 \ a_2]$ into QR.
	Answer: 2.
7	Find an orthonormal set q ₁ , q ₂ , q ₃ for which q ₁ and q ₂ span the column space of
	$A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Which fundamental subspace contains q_3 ? What is the least
	A = $\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$. Which fundamental subspace contains q ₃ ? What is the least
	squares solution of $Ax = b$ if $b = (1, 2, 7)$?
	Answer: $q_3 = (-2/3, 2/3, 1/3)$. LS solution is $(1, 2)$
8	Use the Gram – Schmidt process to find a set of orthonormal vectors from the
	independent vectors $a_1 = (1, 1, 1)$, $a_2 = (0, 1, 1)$ and $a_3 = (0, 0, 1)$. Also find the
	$A = QR$ factorization where $A = [a_1 \ a_2 \ a_3]$.
9	Find the matrices Q and R such that QR = A where A has columns (1, 1, 1),
	(1,1,0) and (2,0,0).
10	Find orthogonal vectors A, B, C by Gram- Schmidt method from a = (1, -1, 0, 0),
	b = (0, 1, -1, 0) and c = (0, 0, 1, -1)
11	Find the eigenvalues and eigenvectors of A = $\begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$. Verify that the trace
	1 ind the eigenvalues and eigenvectors of A = 1. Verify that the trace
	equals the sum of eigenvalues and the determinant equals their product. If we shift A
	to A – 7 I what are the eigenvalues and eigenvectors and how are they related to
	those of A?
12	Find the eigenvalues and eigenvectors of $A = A^2 = A^{-1}$ and $A = A$ if $A = \begin{bmatrix} 2 & -1 \\ \end{bmatrix}$
	Find the eigenvalues and eigenvectors of A , A^2 , A^{-1} and A + 4I if $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.
	Answer: e. values of A are 1, 3 with e. vectors (1, 1), (1, -1)
13	Write three different 2 x 2 matrices for which the eigenvalues are 4, 5 and
	determinant is 20.
14	Find the eigenvalues and the corresponding eigenvectors of
	$ \begin{bmatrix} 1 & 3 & 3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 4 & 3 \end{bmatrix} \qquad \begin{bmatrix} 8 & -6 & 2 \end{bmatrix} $
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	3 3 1 3 3 1 2 -4 3
	Answer: (i) 1, -2, -2 k1(1, -1, 1), k2(-1, 1, 0), k3 (-1, 0, 1)
	(ii) 1, -2, -2 k1(1, -1, 1) , k2(-1, 1, 0)
	(iii) 0,3, 15 k1(1, 2, 2), k2(2, 1, -2), k3(2, -2, 1)
15	
	Use the Cayley – Hamilton's theorem to find the inverse of $\Delta = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$
	Use the Cayley – Hamilton's theorem to find the inverse of A = $\begin{bmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$
	<u> </u>
16	Use the power method to find the numerically largest eigenvalue of
	$A = \begin{bmatrix} 4 & 4 & -1 \end{bmatrix}$ given $x_0 = (1,0,0)$. Compute 6 iterations and correct the
	$A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ given $x_0 = (1,0,0)$. Compute 6 iterations and correct the
	values to 3 decimal places

values to 3 decimal places.

$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and hence compute A ¹⁰⁰ .
values are 1, 5 with eigenvectors (1, -1), (3, 1)
matrix $A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$ and find one of its square roots, a matrix R
A. How many such square root matrices are there? values are 9 and 1 with eigenvectors (1, 1), (1, -1). One square
. There are 4 of them.
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
lues and eigenvectors of A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and write two different atrices S.
ralues are 0, 0, 3 with eigenvectors (-1 , 1, 0) , (-1, 0, 1), (1, 1, 1)
es Λ and S to diagonalize A = $\begin{bmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{bmatrix}$. What are limits of
as $k \to \infty$?
values of A are 1 and 0.2 with eigenvectors (1,1), (1,-1).
and $S \Lambda^k S^{-1} \rightarrow \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$