Measurable Combinatorics

Oleg Pikhurko University of Warwick

"Interactions with Combinatorics", Birmingham, 30 June 2017

Scientific curiosity

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- Axiom of Choice

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~> finite graphs

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~ finite graphs
 - $\chi(G) \leq k$

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~→ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$
- Extra structure

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~→ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$
- Extra structure
 - End compactification (Freudenthal'31, ...)

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~→ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$
- Extra structure
 - End compactification (Freudenthal'31, ...)
 - Martin boundary (Martin'41, Doob'59, Hung'60, ...)

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~→ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$
- Extra structure
 - End compactification (Freudenthal'31, ...)
 - Martin boundary (Martin'41, Doob'59, Hung'60, ...)
- V: measure space

- Scientific curiosity
- **Extend** known results to infinite graphs G = (V, E)
- All degrees uniformly bounded
- ► Axiom of Choice ~→ finite graphs
 - ▶ $\chi(G) \le k$ iff \forall finite $U \subseteq V$ $\chi(G[U]) \le k$
- Extra structure
 - End compactification (Freudenthal'31, ...)
 - Martin boundary (Martin'41, Doob'59, Hung'60, ...)
- V: measure space
 - ▶ Allow only measurable $c: V \rightarrow [k]$

► Finite graph *G*

- ► Finite graph G
 - ▶ Bijections $\phi_1, \ldots, \phi_k : V \to V$ st

$$E = \{\{x,y\} : x \neq y \& \exists i \phi_i(x) = y\}$$

- ▶ Finite graph *G*
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ightharpoonup Edge \leftrightarrow transposition

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ► Matching ↔ involution

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ► Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ► Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection
 - ► *E* = union of edges

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ► Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection
 - ► E = union of edges / matchings

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ▶ Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection
 - E = union of edges / matchings / cycles

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{ \{x, y\} : x \neq y \& \exists i \phi_i(x) = y \}$
 - ▶ Edge ↔ transposition
 - ▶ Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection
 - E = union of edges / matchings / cycles
 - μ: uniform measure on V

- Finite graph G
 - ▶ Bijections $\phi_1, \dots, \phi_k : V \to V$ st $E = \{\{x, y\} : x \neq y \& \exists i \phi_i(x) = y\}$
 - ▶ Edge ↔ transposition
 - ► Matching ↔ involution
 - ► Cycles (with orientations) ↔ bijection
 - ► E = union of edges / matchings / cycles
 - μ: uniform measure on V
 - ▶ Measure-preserving invertible maps $\phi_i: V \to V$

• Graphing (V, E, A, μ) :

- ▶ Graphing (V, E, A, μ) :
 - ▶ (*V*, *E*): graph

- Graphing (V, E, A, μ) :

 - (V, E): graph(V, A, µ): stardard probability space

- Graphing (V, E, A, μ) :
 - ▶ (*V*, *E*): graph
 - (V, A, μ) : stardard probability space
 - eg unit interval [0, 1]

- Graphing (V, E, A, μ) :
 - ▶ (*V*, *E*): graph
 - (V, A, μ) : stardard probability space
 - ▶ eg unit interval [0,1]
 - ▶ \exists measure-preserving maps $\phi_1, \ldots, \phi_k : V \to V$

- Graphing (V, E, A, μ) :
 - ▶ (*V*, *E*): graph
 - (V, A, μ) : stardard probability space
 - ▶ eg unit interval [0,1]
 - ▶ ∃ measure-preserving maps $\phi_1, \ldots, \phi_k : V \to V$ $E = \{ \{x, y\} : x \neq y \& \exists i \phi_i x = y \}$

- Graphing (V, E, A, μ) :
 - ▶ (*V*, *E*): graph
 - (V, A, μ) : stardard probability space
 - ▶ eg unit interval [0,1]
 - ▶ ∃ measure-preserving maps $\phi_1, ..., \phi_k : V \to V$ $E = \{ \{x, y\} : x \neq y \& \exists i \phi_i x = y \}$
- ▶ $\Delta(G) \leq 2k$

More motivation

More motivation

► Limit objects for Benjamini-Schramm convergence

More motivation

- ► Limit objects for Benjamini-Schramm convergence
- Finite graph:

- ► Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :
 - ▶ Sample $x \in V$ using μ

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :
 - ▶ Sample $x \in V$ using μ
 - Output radius-r neighbourhood of x in (V, E)

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :
 - ▶ Sample $x \in V$ using μ
 - Output radius-r neighbourhood of x in (V, E)
- Property testing

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :
 - ▶ Sample $x \in V$ using μ
 - Output radius-r neighbourhood of x in (V, E)
- Property testing
- Not unique

- Limit objects for Benjamini-Schramm convergence
- Finite graph:
 - Uniform vertex x
 - Output radius-r neighbourhood of x
 - Rooted graph, up to isomorphism
- Graphing (V, E, A, μ) :
 - ▶ Sample $x \in V$ using μ
 - Output radius-r neighbourhood of x in (V, E)
- Property testing
- Not unique
- Aldous-Lyons'01: Is every graphing approximable by finite graphs?

Fix irrational $\alpha \in \mathbb{R}$

- Fix irrational $\alpha \in \mathbb{R}$
- V := [0, 1)

- Fix irrational $\alpha \in \mathbb{R}$
- V := [0, 1)
- ▶ $T: V \rightarrow V$, $x \mapsto x + \alpha \pmod{1}$

- ▶ Fix irrational $\alpha \in \mathbb{R}$
- V := [0, 1)
- $T: V \to V, \quad x \mapsto x + \alpha \pmod{1}$
- ▶ $E := \{ \{x, Tx\} : x \in V \}$

- Fix irrational $\alpha \in \mathbb{R}$
- V := [0, 1)
- $ightharpoonup T: V o V, \quad x \mapsto x + \alpha \pmod{1}$
- ▶ $E := \{ \{x, Tx\} : x \in V \}$
- Graphing \mathcal{R}_{α}

► Each component: infinite 2-regular path

- ► Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha})$

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$
 - T(A) = B

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$
 - T(A) = B
 - $\mu(A) = \mu(B) = 1/2$

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$
 - T(A) = B
 - $\mu(A) = \mu(B) = 1/2$
 - Contradicts ergodicity of T

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$
 - T(A) = B
 - $\mu(A) = \mu(B) = 1/2$
 - Contradicts ergodicity of T
- $\chi_{\mu}(\mathcal{R}_{\alpha}) = 3$

- Each component: infinite 2-regular path
- Axiom of Choice: $\chi(\mathcal{R}_{\alpha}) = 2$
- ▶ Measurable chromatic number $\chi_{\mu}(\mathcal{R}_{\alpha}) \geq 3$:
 - $V = A \cup B$
 - T(A) = B
 - $\mu(A) = \mu(B) = 1/2$
 - Contradicts ergodicity of T
- $\chi_{\text{Borel}}(\mathcal{R}_{\alpha}) = 3$

▶ {Borel} $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets

- ▶ {Borel} $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:

- ▶ {Borel} $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:
 - Boolean operations

- ▶ {Borel} $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:
 - Boolean operations
 - Countably many iterations

- ▶ {Borel} $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:
 - Boolean operations
 - Countably many iterations
 - ▶ Colour of every vertex eventually stabilises ⇒ Borel

- ▶ $\{Borel\}$ $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:
 - Boolean operations
 - Countably many iterations
 - ▶ Colour of every vertex eventually stabilises ⇒ Borel
- ► (Lebesgue) measurable ^{def}= Borel △ measure-0

- ▶ $\{Borel\}$ $\stackrel{\text{def}}{=}$ smallest σ -agebra \supseteq open sets
- Some permitted operations:
 - Boolean operations
 - Countably many iterations
 - ▶ Colour of every vertex eventually stabilises ⇒ Borel
- ► (Lebesgue) measurable ^{def}= Borel △ measure-0
 - ► Stabilises a.e. ⇒ measurable

Greedy colourings Borel way

Greedy colourings Borel way

▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$
 - $f(x) := \min \text{ prefix } b_1 \dots b_k \text{ separating } x = 0.b_1b_2b_3\dots$ from N(x)

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$
 - $f(x) := \min \text{ prefix } b_1 \dots b_k \text{ separating } x = 0.b_1b_2b_3\dots$ from N(x)
 - ▶ Define $c: V \rightarrow [\Delta + 1]$:

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$
 - $f(x) := \min \text{ prefix } b_1 \dots b_k \text{ separating } x = 0.b_1b_2b_3\dots$ from N(x)
 - ▶ Define $c: V \rightarrow [\Delta + 1]$:
 - ▶ For $i \in \{0, 1\}^{<\omega}$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$
 - $f(x) := \min \operatorname{prefix} b_1 \dots b_k \operatorname{separating} x = 0.b_1 b_2 b_3 \dots$ from N(x)
 - ▶ Define $c: V \rightarrow [\Delta + 1]$:
 - For $i \in \{0, 1\}^{<\omega}$ Colour each $x \in f^{-1}(i)$ with smallest allowed colour

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- Proof:
 - ▶ WLOG V = [0, 1]
 - ▶ Borel vertex colouring $f: V \to \{0,1\}^{<\omega}$
 - $f(x) := \min \text{ prefix } b_1 \dots b_k \text{ separating } x = 0.b_1b_2b_3\dots$ from N(x)
 - ▶ Define $c: V \rightarrow [\Delta + 1]$:
 - For $i \in \{0, 1\}^{<\omega}$ Colour each $x \in f^{-1}(i)$ with smallest allowed colour
- Descriptive set theory

▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?
- Csóka, Lippner & P.'16:

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?
- Csóka, Lippner & P.'16:
 - $\lambda'_{\mu} \leq \Delta + O(\sqrt{\Delta})$

- ▶ Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?
- Csóka, Lippner & P.'16:
 - $\lambda'_{\mu} \leq \Delta + O(\sqrt{\Delta})$
 - ▶ Bipartite $\Rightarrow \chi'_{\mu} \leq \Delta + 1$

- ► Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?
- Csóka, Lippner & P.'16:
 - $\lambda'_{\mu} \leq \Delta + O(\sqrt{\Delta})$
 - ▶ Bipartite $\Rightarrow \chi'_{\mu} \leq \Delta + 1$
- ▶ Marks'16: Acyclic \mathcal{G} with $\chi_{\text{Borel}} = \Delta + 1$

- ► Kechris, Solecky & Todorcevic'99: $\chi_{Borel} \leq \Delta + 1$
- ▶ Corollary: Borel chromatic index $\chi'_{Borel} \leq 2\Delta 1$
- ▶ Marks'16: $2\Delta 1$ is attainable
 - bipartite & acyclic
- ▶ Vizing'64, Gupta'66: $\chi' \leq \Delta + 1$
- Abert'10, Marks'13: Measurable Vizing's theorem?
- Csóka, Lippner & P.'16:
 - $\lambda'_{\mu} \leq \Delta + O(\sqrt{\Delta})$
 - ▶ Bipartite $\Rightarrow \chi'_{\mu} \leq \Delta + 1$
- ▶ Marks'16: Acyclic \mathcal{G} with $\chi_{Borel} = \Delta + 1$
- Conley, Marks & Tucker-Drob'16: Measurable Brooks' theorem for ∆ > 3

▶ Group Γ

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$
- Graphing (V, E, A, μ)

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$
- $ightharpoonup E := \{ \{x, \gamma.x\} : x \in V, \ \gamma \in S, \ x \neq \gamma.x \}$
- Graphing (V, E, A, μ)
- \mathcal{R}_{α} : $\mathbb{Z} \cong \langle T \rangle$ acting on [0, 1)

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$
- $ightharpoonup E := \{ \{x, \gamma.x\} : x \in V, \ \gamma \in S, \ x \neq \gamma.x \}$
- Graphing (V, E, A, μ)
- $ightharpoonup \mathcal{R}_{lpha} \colon \mathbb{Z} \cong \langle T \rangle \text{ acting on } [0,1)$
- ▶ ∀ graphing is realisable this way

- Group Γ
- ▶ Measure-preserving action $\Gamma \curvearrowright (V, A, \mu)$
- ▶ Finite generating set $S \subseteq \Gamma$, $S = S^{-1}$
- Graphing (V, E, A, μ)
- \mathcal{R}_{α} : $\mathbb{Z} \cong \langle T \rangle$ acting on [0, 1)
- ▶ ∀ graphing is realisable this way
- Measurable group theory

▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$

- $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $\blacksquare \exists B = B_1 \sqcup \cdots \sqcup B_n$

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $\blacksquare \exists B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists$ isometry γ_i with $A_i = \gamma_i(B_i)$

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $ightharpoonup \exists B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists \text{ isometry } \gamma_i \text{ with } A_i = \gamma_i(B_i)$

Example:

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $ightharpoonup \exists B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists \text{ isometry } \gamma_i \text{ with } A_i = \gamma_i(B_i)$

Example:

Wallace 1807, Bolyai 1832, Gerwien 1832: equi-area polygons are dissection congruent

Equidecomposability

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $\blacksquare B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists \text{ isometry } \gamma_i \text{ with } A_i = \gamma_i(B_i)$

Example:

- Wallace 1807, Bolyai 1832, Gerwien 1832: equi-area polygons are dissection congruent
 - Tarski'24: equidecomposable

Equidecomposability

- ▶ $A, B \subseteq \mathbb{R}^k$ are equidecomposable $(A \sim B) \stackrel{\text{def}}{=}$
 - $ightharpoonup \exists A = A_1 \sqcup \cdots \sqcup A_n$
 - $\blacksquare B = B_1 \sqcup \cdots \sqcup B_n$

st $\forall i \exists \text{ isometry } \gamma_i \text{ with } A_i = \gamma_i(B_i)$

Example:

- Wallace 1807, Bolyai 1832, Gerwien 1832: equi-area polygons are dissection congruent
 - Tarski'24: equidecomposable
 - ► Exercise: [0, 1] ~ [0, 1)

► *k* ≥ 3:

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- k ≤ 2:

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- ► *k* < 2:
 - ▶ Banach'23: Measurable $A, B \Rightarrow \mu(A) = \mu(B)$

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- ► *k* < 2:
 - ▶ Banach'23: Measurable $A, B \Rightarrow \mu(A) = \mu(B)$
 - ► Tarski'25: Is B² equidecomposable to a square ?

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- ► *k* < 2:
 - ▶ Banach'23: Measurable $A, B \Rightarrow \mu(A) = \mu(B)$
 - ► Tarski'25: Is B² equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - ▶ $\mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k$, $\mathbb{B}^k := k$ -dim ball
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- ► *k* < 2:
 - ▶ Banach'23: Measurable $A, B \Rightarrow \mu(A) = \mu(B)$
 - ► Tarski'25: Is B² equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations
 - ▶ Dubins-Hirsh-Karush'63: No, with topological disks

- ► *k* > 3:
 - ▶ Banach-Tarski'24: $A, B \subseteq \mathbb{R}^k$, bounded, non-empty interior $\Rightarrow A \sim B$
 - $ightharpoonup \mathbb{B}^k \sim \mathbb{B}^k \sqcup \mathbb{B}^k, \quad \mathbb{B}^k := k\text{-dim ball}$
 - ▶ Hausdorff 1914: paradoxes on sphere \mathbb{S}^{k-1}
- ► *k* < 2:
 - ▶ Banach'23: Measurable $A, B \Rightarrow \mu(A) = \mu(B)$
 - ► Tarski'25: Is B² equidecomposable to a square ?
 - von Neumann'29: Yes, with affine transformations
 - ▶ Dubins-Hirsh-Karush'63: No, with topological disks
 - Laczkovich'90: YES!

▶ Necessary conditions for $A \sim [0, 1]^k$:

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ▶ A is measurable

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ▶ A is measurable
 - A is bounded

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ▶ A is measurable
 - A is bounded
 - ▶ $\mu(A) = 1$

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ► A is measurable
 - A is bounded
 - $\mu(A) = 1$
 - ▶ \bigcup {finitely many copies of A} \supseteq [0, 1]^k

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ► A is measurable
 - A is bounded
 - $\mu(A) = 1$
 - ▶ \bigcup {finitely many copies of A} \supseteq [0, 1]^k
- ► Grabowski-Máthé-P. >'17: sufficient for k > 3

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ► A is measurable
 - A is bounded
 - $\mu(A) = 1$
 - ▶ \bigcup {finitely many copies of A} \supseteq [0, 1]^k
- ► Grabowski-Máthé-P. >'17: sufficient for k > 3
- Grabowski-Máthé-P.'16: circle squaring with measurable pieces

- ▶ Necessary conditions for $A \sim [0, 1]^k$:
 - ► A is measurable
 - A is bounded
 - $\mu(A) = 1$
 - ▶ \bigcup {finitely many copies of A} \supseteq [0, 1]^k
- ► Grabowski-Máthé-P. >'17: sufficient for k > 3
- Grabowski-Máthé-P.'16: circle squaring with measurable pieces
- ► Marks-Unger ≥'17: circle squaring with Borel pieces

▶ Isometries $\gamma_1, \ldots, \gamma_n$

- ▶ Isometries $\gamma_1, \ldots, \gamma_n$
- ▶ Graphing *G*:

- ▶ Isometries $\gamma_1, \ldots, \gamma_n$
- ▶ Graphing *G*:
 - \lor \lor := $A \sqcup B$

- ▶ Isometries $\gamma_1, \ldots, \gamma_n$
- ▶ Graphing *G*:
 - $V := A \cup B$

- ▶ Isometries $\gamma_1, \ldots, \gamma_n$
- ▶ Graphing *G*:
 - $V := A \cup B$
 - \blacktriangleright $E = \{xy \in A \times B : \exists i \ \gamma_i(x) = y\}$
- ▶ Matching $\mathcal{M} \subseteq E \longleftrightarrow$ disjoint $A_1, \dots, A_n \subseteq A$ st $\gamma_1(A_1), \dots, \gamma_n(A_n) \subseteq B$ are disjoint

- ▶ Isometries $\gamma_1, \ldots, \gamma_n$
- ► Graphing *G*:
 - $V := A \cup B$
 - $ightharpoonup E = \{xy \in A \times B : \exists i \ \gamma_i(x) = y\}$
- ▶ Matching $\mathcal{M} \subseteq E \longleftrightarrow$ disjoint $A_1, \dots, A_n \subseteq A$ st $\gamma_1(A_1), \dots, \gamma_n(A_n) \subseteq B$ are disjoint
- → ∃ perfect matching ⇒ A ~ B

Greedy Algorithm:

- Greedy Algorithm:
 - $A_1 := A \cap \gamma_1^{-1}(B)$

- Greedy Algorithm:
 - $A_1 := A \cap \gamma_1^{-1}(B)$
 - $B_1 := \gamma_1(A_1)$

- Greedy Algorithm:
 - $A_1 := A \cap \gamma_1^{-1}(B)$
 - ▶ $B_1 := \gamma_1(A_1)$
 - $A_2 := (A \setminus A_1) \cap \gamma_2^{-1}(B \setminus B_1)$

Greedy Algorithm:

- $A_1 := A \cap \gamma_1^{-1}(B)$
- ▶ $B_1 := \gamma_1(A_1)$
- $A_2 := (A \setminus A_1) \cap \gamma_2^{-1}(B \setminus B_1)$
- $B_2 := \gamma_2(A_2)$

Greedy Algorithm:

- $A_1 := A \cap \gamma_1^{-1}(B)$
- ▶ $B_1 := \gamma_1(A_1)$
- $A_2 := (A \setminus A_1) \cap \gamma_2^{-1}(B \setminus B_1)$
- $B_2 := \gamma_2(A_2)$
- $A_3 := (A \setminus (A_1 \cup A_2)) \cap \gamma_3^{-1}(B \setminus (B_1 \cup B_2))$

Measurable maximal matching

Greedy Algorithm:

- $A_1 := A \cap \gamma_1^{-1}(B)$
- ▶ $B_1 := \gamma_1(A_1)$
- $A_2 := (A \setminus A_1) \cap \gamma_2^{-1}(B \setminus B_1)$
- $B_2 := \gamma_2(A_2)$
- $A_3 := (A \setminus (A_1 \cup A_2)) \cap \gamma_3^{-1}(B \setminus (B_1 \cup B_2))$
- **.**..

Measurable maximal matching

- Greedy Algorithm:
 - $A_1 := A \cap \gamma_1^{-1}(B)$
 - ▶ $B_1 := \gamma_1(A_1)$
 - $A_2 := (A \setminus A_1) \cap \gamma_2^{-1}(B \setminus B_1)$
 - $B_2 := \gamma_2(A_2)$
 - $A_3 := (A \setminus (A_1 \cup A_2)) \cap \gamma_3^{-1}(B \setminus (B_1 \cup B_2))$
 - •
- ▶ Elek-Lippner'10: \exists Borel \mathcal{M}_i without augmenting paths of length $\leq 2i 1$

▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander
 - ▶ All ℓ -products of ρ_i 's, large $\ell = \ell(A, B)$

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander
 - ▶ All ℓ -products of ρ_i 's, large $\ell = \ell(A, B)$
- For circle squaring

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander
 - ▶ All ℓ -products of ρ_i 's, large $\ell = \ell(A, B)$
- For circle squaring
 - Work in $[0,1)^k \pmod{1}$

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander
 - ▶ All ℓ -products of ρ_i 's, large $\ell = \ell(A, B)$
- For circle squaring
 - Work in [0,1)^k (mod 1)
 - ▶ Random $\mathbf{x}_1, \dots, \mathbf{x}_d$, large d = d(A, B)

- ▶ For $A, B \subseteq \mathbb{S}^k$, $k \ge 2$:
 - ▶ Margulis'80, Sullivan'81 ($k \ge 4$), Drinfeld'84 (k = 2, 3): $\exists \rho_1, \ldots, \rho_s$ st ($\mathbb{S}^k, E(\rho_1, \ldots, \rho_s)$) is expander
 - ▶ All ℓ -products of ρ_i 's, large $\ell = \ell(A, B)$
- For circle squaring
 - Work in [0,1)^k (mod 1)
 - ▶ Random $\mathbf{x}_1, \dots, \mathbf{x}_d$, large d = d(A, B)
 - ► Translate by $\{n_1\mathbf{x}_1 + \cdots + n_d\mathbf{x}_d : \|\mathbf{n}\|_{\infty} < M\}, M \gg d$

Minimum number of pieces for circle squaring?

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger ≥ '17: ≤ 10²⁰⁰

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger ≥ '17: ≤ 10²⁰⁰
 - Lower bound:

- Minimum number of pieces for circle squaring?
 - ▶ Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger > '17: < 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger > '17: < 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger > '17: < 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)
- ▶ Banach-Tarski'24: 5 parts for $\mathbb{B}^3 \cong \mathbb{B}^3 \sqcup \mathbb{B}^3$

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger ≥ '17: ≤ 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)
- ▶ Banach-Tarski'24: 5 parts for $\mathbb{B}^3 \cong \mathbb{B}^3 \sqcup \mathbb{B}^3$
- ▶ Grabowski-Máthé-P. >'17: $< 2^{2^{75}}$ for $\mathbb{B}^3 \sim \text{cube}$

- Minimum number of pieces for circle squaring?
 - ► Laczkovich'92: "a rough estimate" is 10⁴⁰
 - Marks-Unger ≥ '17: ≤ 10²⁰⁰
 - Lower bound:
 - 3 (if rotations allowed)
 - 4 (for translations only)
- ▶ Banach-Tarski'24: 5 parts for $\mathbb{B}^3 \cong \mathbb{B}^3 \sqcup \mathbb{B}^3$
- ▶ Grabowski-Máthé-P. >'17: $< 2^{2^{75}}$ for $\mathbb{B}^3 \sim \text{cube}$
- ▶ Open: $A \sim B$, $\mu(A) = \mu(B) \Rightarrow A \sim B$ measurably ?

Thank you!