

Vorlesung Betriebssysteme

- Teil des Moduls "Technische Informatik II"
 - Betriebssysteme (36 SWS / 54 SWS)
 - Rechnerarchitekturen (36 SWS / 54 SWS)
 - Systemnahe Programmierung I (24 SWS /36 SWS)
- Insgesamt 8 ECTS

Prof. Dr. Kornmaye

Ziele der Vorlesung

- Einführung
 - Historischer Überblick
 - Betriebssystemkonzepte
- Prozesse und Threads
 - Einführung in das Konzept der Prozesse
 - Prozesskommunikation
 - Übungen zur Prozesskommunikation: Klassische Probleme
 - Scheduling von Prozessen
 - Threads
- Speicherverwaltung
 - Einfache Speicherverwaltung ohne Swapping und Paging
 - Swapping
 - Virtueller Speicher
 - Segmentierter Speicher

- Dateien und Dateisysteme
 - Dateien
 - Verzeichnisse
 - Implementierung von Dateisystemen
 - Sicherheit von Dateisystemen
 - Schutzmechanismen
 - Neue Entwicklungen: Log-basierte Dateisysteme Ein- und Ausgabe
- Grundlegende Eigenschaften der I/O-Hardware
 - Festplatten
 - Terminals
 - Die I/O-Software
- Anwendung der Prinzipien auf reale Betriebssysteme:
 - UNIX und Windows *, ...

Prof. Dr. Kornmayer

_

Inhaltsverzeichnis

- Organisation
- Einführung
- Prozesse und Threads
- Deadlocks / Verklemmungen
- Speicherverwaltung
- Dateisysteme
- Eingabe und Ausgabe

- (Multiprozessor-Systeme)
- IT-Sicherheit
- Fallstudien:
 - Linux
 - (Windows)
 - (Android)

Prof. Dr. Kornmayer

Betriebssysteme

0. Organisation

Prof. Dr. Harald, Kornmayer Institut für Informatik, DHBW Mannheim, Germany

Prof. Dr. Kornmayer

5

Vorlesungskultur

- Pünktlichkeit
 - Vorlesungsbeginn und Pausenende
- Nur eine Person redet während der Vorlesung
- Private Internet-Nutzung ist während der Vorlesungen und Übungen untersagt
- Laptops sind geschlossen
 - Verwendung von Laptops nur nach Rücksprache mit dem Dozenten!
- Nutzung von Handys ist untersagt
 - Handys sind auszuschalten!
- Pausen werden bei Bedarf durchgeführt!
 - Keine Essen während der Vorlesung!

Prof. Dr. Kornmaye

Vorlesungskultur

- Ziel ist des eine optimale Lern- und Lehrsituation herzustellen
 - Störungen jeglicher Art beeinträchtigen diese Ziel
- Offenheit und Respekt helfen diese Ziele zu erreichen
- Bringen Sie sich ein!
 - Stellen Sie lieber heute eine dumme Frage anstatt ein Leben lang dumm zu bleiben!
 - Helfen Sie Antworten und Lösungen zu finden!

Prof. Dr. Kornmayer

__

Vorlesungskultur

- Maßnahmen bei Verstößen
 - Ermahnung ("gelbe Karte")
 - Ausschluss aus der aktuellen Vorlesung
 - Information des Studiengangleiters
 - Information des Ausbildungsunternehmens
 - Personalgespräch
 - Arbeitsrechtliche Konsequenzen

Prof. Dr. Kornmayer

Kommunikation

- Der Dozent
 - harald.kornmayer@dhbw-mannheim.de
 - Bei Rückfragen/Bedarf: Termin ausmachen!
- Die Kurse
 - TINF18IT1

• Email: tinf18it1@googlegroups.com Kurssprecher: Johannes Lange; johannes.lange@hotmail.com

- TINF18IT2
 - Email:
 - · Kurssprecher:
- Die Unterlagen
 - in Moodle:
 - TINF18IT1
 - http://moodle.dhbw-mannheim.de/course/view.php?id=880
 - TINF18IT2
 - http://moodle.dhbw-mannheim.de/course/view.php?id=1434Kursname als Schlüssel

Prof. Dr. Kornmayer

Vorlesung

- Termine:
 - In den Kalendern eingetragen
 - http://vorlesungsplan.dhbw-mannheim.de/index.php
 - Änderungen werden durch Kurssprecher dort eingetragen!
- Übungen
 - teilweise in Vorlesung!
 - meistens zu Hause!
 - Fokussierung auf das Linux Betriebssystem!
- Leistungsnachweis
 - Schriftliche Klausur am Semesterende (75 min)

Prof. Dr. Kornmayer

Literatur

- Andrew S. Tanenbaum: Moderne Betriebssysteme,
 - 3. aktualisierte Auflage, ISBN 978-3-8273-7342-7, Pearson Studium
- Ehses, E., et al.: Betriebssysteme
 - ISBN 3-8273-7156-2, Pearson Studium
- Weitere Literatur
 - Stallings W.: Betriebssysteme, 4. Auflage, Pearson Studium, 2003
 - Mandl, Peter: Grundkurs Betriebssysteme, Vieweg+Teubner Verlag, 2010

Prof. Dr. Kornmayer

11

Umfrage

 Beantworten Sie die Umfrage auf der Moodle-Webseite!

Prof. Dr. Kornmayer

Aufgabe

- Fassen Sie kurz zusammen, was Sie über Betriebssysteme wissen?
 - Diskutieren Sie mit Ihrem Nachbarn/ihrer Nachbarin
 - 5 Minuten
 - Fassen Sie die Ergebnisse so zusammen, dass Sie diese vortragen können

of. Dr. Kornmayer

Einführung

- Motivation und Herausforderungen
- Aufgaben eines Betriebssystems
- Historische Entwicklung
- Arten von Betriebssystemen
- Betriebssystemfamilie
- Überblick Computer-Hardware
- Betriebssystemkonzepte
- Systemaufrufe
- C und die Betriebssystemwelt
- Betriebssystemstrukturen

Prof. Dr. Kornmayer

15

Einführung CPU Transistor Counts 1971-2008 & Moore's Law Moore'sches Gesetz 2,000,000,000 Die Anzahl der 100,000,000 Transistoren pro Chip verdoppelt sich ca. 10,000,000 alle 2 Jahre 1,000,000 Prozessoren werden immer kleiner dichter · leistungsfähiger Date of introduction (Gordon Moore: Mitbegründer von Intel (1968)) Prof. Dr. Kornmayer

Einführung

- Viel mehr"-kern-Prozessoren
 - Dezember 2009:Intel 48 Core Prozessor
 - 24 "Kacheln" mit 2 Cores
 - 24-router Mesh Netzwerk
 - 4 DDR3 memory controller
 - Hardware support für Message-passing
 - "Single-Chip-Cloud-Computer"

- Parallelität auch auf dem Chip
 - Wie programmiert man 48, 64, 512 Kerne?
 - 1 Kern für Word, 1 Kern für browser, 2 Kern für Audio/Video, ...
 - 44 für Antivirus??

Prof. Dr. Kornmayer

19

Einführung

• Leistungsdichte

Power Density Becomes Too High to Cool Chips Inexpensively

- Extrapolation in die Zukunft??
- Kehrseite der Leistungssteigerung
 - · Batterielebensdauer wird kritisch

Prof. Dr. Kornmayer

Prof. Dr. Kornmayer • Hardware-Fortschritt kommt mit einer immer größer werdenden Komplexität auf der Platine - spiegelt sich auch in Software wieder **Prof. Dr. Kornmayer** • Hardware-Fortschritt kommt mit einer immer größer werdenden Komplexität auf der Platine - spiegelt sich auch in Software wieder **Prof. Dr. Kornmayer** • Hardware-Fortschritt kommt mit einer immer größer werdenden Komplexität auf der Platine - spiegelt sich auch in Software wieder **Prof. Dr. Kornmayer** **

Einführung

- Herausforderungen
 - Wie organisiert man das Management von Komplexität in heterogenen Umgebungen?
 - Wie können Anwendungen/Computersysteme ihre Aufgabe in Zukunft erfüllen?
 - Wie unterstützen Computer den Menschen/das Geschäft?
 - Welche neuen Herausforderungen/Anwendungen kommen in der Zukunft?

Prof. Dr. Kornmayer

Einführung

- Rechensysteme sollen Probleme lösen!!
 - Textverarbeitung
 - Lohnabrechnung
 - Wettervorhersagen
 - Steuerung eines Kraftwerks
 - Berechnungen von Ingenieursaufgaben
 - Informationen aus dem Internet besorgen
 - Email/Informationen austauschen
 - **—** ...
- · Rechensysteme sind kein Selbstzweck!
 - Business: Unterstützung einer Wertschöpfungskette!
 - Privat: Unterhaltung

Prof. Dr. Kornmayer

23

Einführung

- · Rechensysteme sind vielfältig
 - PC
 - Großrechner
 - Handy
 - Waschmaschine
 - Industriesteueranlage
- Rechensysteme sind komplex
 - bestehen aus vielen sich schnell ändernden Komponenten
 - (Prozessoren, Arbeitsspeicher, Festplatten, Druckern, Tastaturen, Maus, Bildschirm, Netzwerkschnittstellen, USB-Geräten, ...)

Prof. Dr. Kornmayer

• Schuhe sind vielfältig

• Können Sie Ähnlichkeiten zwischen der Welt von Schuhen und Betriebssystemen finden?

Prof. Dr. Kornmayer

25

Aufgabe

- Können Sie Ähnlichkeiten zwischen der Welt von Schuhen und Betriebssystemen finden?
 - Diskutieren Sie mit Ihrem Nachbarn/ihrer Nachbarin
 - 5 Minuten
 - Fassen Sie die Ergebnisse so zusammen, dass Sie diese Vortragen können

Prof. Dr. Kornmayer

Lösungen

- Schuhe befinden sich zwischen Träger und Untergrund
- Es gibt für verschiedene Untergründe verschiedene Schuhe
- Nicht jeder Schuh ist gut für jeden Untergrund
- Ein Mensch hat mehrere Schuhe für verschiedene Bereiche
- Gute Schuhe sind bequem
- Träger weiß selten wie der Schuh aufgebaut ist

Prof. Dr. Kornmayer

27

Einführung

- "Schuhmodell"
 - "einfaches und klares Modell" zur Benutzung von Schuhen

Träger/Aufgabe

Schuhe

Untergrund

Prof. Dr. Kornmayer

Aufgaben des Betriebssystems

1. Abstraktion der Hardware

- Hardware beschränkt sich auf notwendige Funktionen, um günstig zu sein
 - → Betriebssystem stellt Funktionen bereit, die Anwendungsprogramme nutzen können
 - · Bsp: Festplatte
- Trotz ähnlicher Architektur unterscheiden sich Rechner im Detail sehr
 - Speicher, Controller, ...
 - → Betriebssystem realisiert eine einheitliche Sicht für Anwendungen
 - Bsp: Dateien auf externen Speichermedien (kein Unterschied zwischen Digitalkamera und CD)
- → Betriebssystem realisiert eine "Virtuelle Maschine"

Prof. Dr. Kornmayer

Aufgaben des Betriebssystems

- 2. Verwaltung der Ressourcen
 - Anwendung braucht Ressourcen um ausgeführt zu werden
 - CPU, Speicher, Platte, Netzwerk, ...
 - Leistungsfähige Rechner laufen im Mehrprozess- und Mehrbenutzerbetrieb
 - Mehrere Anwendung laufen "gleichzeitig"
 - → Betriebssystem verteilt die Ressourcen gerecht und sichert die Anwendungen und Benutzer gegeneinander
 - Multiplexing
 - · Zeitlich: CPU, Platte
 - "Einer nach dem anderen"
 - Räumlich: Arbeitsspeicher
 - "ein Teil für dich, ein Teil für mich"

Prof. Dr. Kornmayer

21

Aufgaben des Betriebssystems

 Betriebssystem ist <u>Mittler</u> zwischen Anwendung und Hardware

- 1. Abstraktion der Hardware
- 2. Verwaltung der Ressourcen
- Anwendungen können nicht direkt auf Hardware zugreifen
 - Sicherheit (als Nebenprodukt der Verwaltung)

Prof. Dr. Kornmaye

Aufgaben des Betriebssystems

Anwendung Betriebssystem Hardware

Virtual Machine

Physical Machine Interface

Prof. Dr. Kornmayer

33

Geschichte der Betriebssysteme

- 1. Generation (-1945)
 - Technologie: Elektronenröhren
 - Manuel Programmierung
 - · Teilweise durch feste Verdrahtung
 - Einfach numerische Berechnungen waren möglich
- 2. Generation (1955 1965)
 - Technologie: Transistoren (Großrechner)
 - Trennung von Entwicklern, Operatoren, Wartungspersonal
 - Lochkarten mit Programmcode (z.B. Assembler, Fortran)
 - Betriebssystem
 - startet Übersetzer und Programm
 - nimmt Eingabe entgegen
 - · gibt Ausgabe auf Drucker aus

Prof. Dr. Kornmayer

Geschichte der Betriebssysteme

- 3. Generation (1965-1980)
 - Technologie: Integrierte Schaltungen
 - Einführung von Rechnerfamilien
 - Gleicher Befehlssatz
 - Unterschiedliche Leistung
 - Portabilität von Programmen möglich
 - Bsp: IBM System/360 mit Produkten 370, 4300, 3080, 3090
 - Heute: zSeries
 - Betriebssystem soll Unterschiede der Rechner/Geräte abstrahieren
 - Einführung des Mehrprogrammbetriebs
 - CPU wartet oft (80%-90% der Zeit) auf Eingabe/Ausgabe-Geräte
 - statt zu warten wird ein anderer Job aktiviert
 - Betriebssystem muss die Geräte verwalten!

Prof. Dr. Kornmayer

Geschichte der Betriebssysteme

- Interaktive Nutzung der Rechner durch Timesharing
 - Terminals statt Lochkarten und Drucker
 - · Mehrere Benutzer gleichzeitig
 - → Sicherheitsmechanismen notwendig
 - Bsp: MULTICS (Multiplexed Information and Computing System)
 - Viele Innovationen, aber nur geringer wirtschaftlicher Erfolg
 - Vision:
 - Zentralisierten Rechnerwerkzeugs verwendbar wie das Stromnetz
 - Ähnlichkeiten mit Internet und Cloud-Computing
- Verbreitung von Minicomputer
 - z.B. DEC PDP-1 bis PDP-11
 - MULTICS wurde angepasst → <u>Ursprung von UNIX</u>

Prof. Dr. Kornmayer

37

Geschichte der Betriebssysteme

- 4. Generation (1980 heute)
 - Technologie: Hochintegrierte Schaltkreis (Mikroprozessoren)
 - Billige Hardware
 - Zurück zu Einbenutzersystemen (DOS, Windows, ...)
 - Von der Kommandozeile zur Graphischen Benutzeroberflächen (GUI)
 - · Apple Mactintosh
 - Zunehmende Vernetzung der Rechner
 - Client/Server-Systeme: mehrere Benutzer
 - UNIX, Linux, Windows NT, ...
 - Verteilte Betriebssysteme
 - Ganz aktuell: Wie ist die Cloud aufgebaut?

Prof. Dr. Kornmayer

Cloud Computing

Anwendung (Software as a Service) Platform as a Service

Virtual Cloud Interface

Cloud Provider Interface

Infrastuktur as a Service (CPU, Storage, Network,...)

Prof. Dr. Kornmayer

30

Betriebssystemfamilie

- Grossrechner (Mainframe)
 - Hohe Ein-/Ausgabe-Leistung, viele Prozesse, Transaktionen
- Server
 - Viele Benutzer über ein Netzwerk
- Multiprozessorsysteme
 - Parallelrechner
- Personalcomputer
 - Linux, FreeBSD, Windows Vista, Windows 7
 - Oberfläche ist nicht das Betriebssystem
- Handheld-Computer
 - PDA, iPad, Android-Phones, ...

Prof. Dr. Kornmayer

Betriebssystemfamilie

- Eingebettete Systeme
 - Auto, Fernseher, MP3-Player, ...
 - Nur vertrauenswürdige Software ausgeführt
 - Nachladen von Software durch Benutzer nicht möglich
- Sensorknoten
 - Kleine batteriebetriebene Computer mit Funkgeräten
 - Überwachungsaufgaben
- Echtzeitbetriebssysteme
 - Zeit ist essentiell bei Ressourcenvergabe
 - Steuerungsanlagen
 - Digitale Telefone, Audio- und Multimediasysteme
- Smart Cards / Chipkarten

Prof. Dr. Kornmayer

41

Überblick Computer-Hardware

• Vereinfachtes Modell (PC)

- Betriebssystem muss Details der Hardware kennen
 - Abstrahieren für Programmierer
 - Verwalten der Ressourcen

Prof. Dr. Kornmayer

- Prozessor
 - Gehirn des Computers
 - Hole Befehle aus dem Speicher und führe sie aus!
 - · Abarbeitung von Programmen
 - Unterschiedliche CPU-Typen haben unterschiedliche Menge von Befehle
 - Pentium-Programm läuft nicht auf SPARC Maschine
 - Laden von Befehlen dauert länger als Ausführung
 - Optimierung durch Register (Speicherbereiche) innerhalb der CPU
 - · Ganzzahl-, Gleitkomma-Register
 - Befehle um ein Wort vom Speicher in Register zu schreiben
 - Befehle um ein Wort vom Register in Speicher zu schreiben
 - Befehle kombinieren zwei Operanden aus Registern

Prof. Dr. Kornmayer

43

Überblick Computer-Hardware

- Prozessor ...
 - Spezialregister
 - Befehlszähler (Program Counter PC)
 - Enthält die Speicheradresse des nächsten Befehls
 - Kellerregister (stack pointer)
 - Zeigt auf das Ende des aktuellen Kellers/stack
 - Hier werden "frames" (Rahmen) für jede angesprungene, aber nicht beendete Prozedur abgelegt
 - Eingabeparameter, lokale Variablem, ...
 - Programmstatuswort (Program Status Word, PSW)
 - Enthält Status-Bits, CPU-Priorität, Modus (kernel modus, Benutzer modus)
 - Begrenzter Zugriff für Benutzermodus
 - » (lesen ja, schreiben teilweise)
 - Wichtig bei Systemaufrufen und Ein-/Ausgabe

Prof. Dr. Kornmayer

- Prozessor ...
 - Verwaltung durch Multiplexing
 - Zeitliche Aufteilung der CPU Ressource
 - Halte laufende Programm an und starte anderes!
 - Betriebssystem muss alle Register kennen
 - Speichern der Register und späteres Wiederherstellen
 - Moderne Prozessoren
 - Mehrere Befehle zur gleichen Zeit ausführen

Prof. Dr. Kornmayer

45

Überblick Computer-Hardware

- Prozessor ...
 - Ausführungsmodi
 - Maßnahme, um den direkten Zugriff auf Systemressourcen durch Anwendungsprogramme zu unterbinden
 - Modus wird durch Bit im PSW (Progammstatuswort) gesetzt
 - System-/Kern-modus (kernel mode)
 - Jeder Befehl des Befehlssatz kann ausgeführt werden
 - Jede Eigenschaft der Hardware kann ausgenutzt werden
 - Benutzermodus (user mode)
 - · Eingeschränkter Zugriff
 - Speicher nur über Speicherverwaltung
 - Keine privilegierten Bereiche
 - z.B. Aus-/Eingabe

Prof. Dr. Kornmayer

- Prozessor ...
 - Systemaufruf (kontrollierter Moduswechsel)
 - Ein Benutzerprogramm nutzt Dienst des Betriebssystem
 - Spezieller Befehl (Systemaufruf, TRAP, system call)
 - Bei Ausführung des Befehls:
 - » Prozessor sichert PC im Keller (Rückkehradresse)
 - » Umschalten in Systemmodus
 - » Verzweigung an vordefinierte Adresse im BS
 - BS analysiert Art des Systemaufrufs und führt den Aufruf aus
 - Rückkehrbefehl schaltet wieder in Benutzermodus
 - Andere Unterbrechungen erfordern das BS zu handeln
 - Interrupts (von Hardware erzeugt)
 - Exceptions (durch Programmfehler)

Prof. Dr. Kornmayer

47

Überblick Computer-Hardware

- Prozessor ...
 - Entwicklung der Prozessoren geht weiter!
 - Hardware-Unterstützung
 - Multi-Threading
 - Mehrere Threads in einem Prozessor mit schnellem Umschalten
 - in nsec (10⁻⁹ sec)
 - Keine wirkliche Parallelität
 - Multi-Core
 - Eigene unabhängige Prozessoren

Prof. Dr. Kornmayer

- · Speicher ...
 - Register, Cache
 - · Sehr nahe an der Prozessoreinheit
 - RAM (Random Access Memory)
 - · Arbeitstier des Speichersystems
 - Was der Cache nicht kann, macht der RAM!
 - · Andere Speicher
 - ROM, EEPROM, Flash, CMOS
 - Festplatte
 - Ermöglichen "Virtuellen Speicher"
 - · Lasse Programme laufen, die größer als der physische Speicher sind
 - · Verschiedenen Zugriffzeiten
 - Hardwareunterstützung durch MMU auf CPU
 - (MMU = Memory Management Unit)

Prof. Dr. Kornmayer

51

Überblick Computer-Hardware

- Speicher
 - Magnetbänder
 - Sicherungsmedium für Festplatten
 - Speicher sehr großer Datenmengen
 - Externes Ein-/Ausgabegerät
- Ein-/Ausgabe-Geräte
 - Integration in Computer durch Controller-Ansatz
 - Bietet vereinfachte (aber noch komplexe) Schnittstelle an
 - Spezielle Hardware, oft mit eigenen Mikroprozessor
 - · Steuert das Gerät weitgehend autonom
 - Kann Interrupts senden
 - Geräte-Treiber
 - Software, die mit Controller kommuniziert
 - muss im Kernmodus laufen, also Teil des BS sein!

Prof. Dr. Kornmayer

- Ein-/Ausgabe-Geräte ...
 - Anbindung an CPU
 - Speicher-basierte E/A
 - Register des Controllers sind in Speicheradressraum eingeblendet
 - Normale Schreib- und Lesebefehle
 - Zugriffsschutz über MMU
 - Separater E/A-Adressraum
 - Zugriff auf Controller-Register nur über spezielle (privilegierte)
 E/A-Befehle
 - Beides im Einsatz

Prof. Dr. Kornmayer

52

Überblick Computer-Hardware

- Ein-/Ausgabe-Geräte ...
 - Arten der Ein- und Ausgabe
 - 1. Aktives Warten
 - Benutzerprogramm startet Systemaufruf
 - System startet die E/A mit Treiber
 - System wartet in Endlosschleife, bis die E/A Operation zu Ende ist
 - » Falls beendet, speichern der Daten
 - Rücksprung in Benutzerprogramm
 - Nachteil:
 - » CPU wartet aktiv
 - » CPU kann für keine anderen Aufgaben verwendet werden

Prof. Dr. Kornmaye

- Ein-/Ausgabe-Geräte ...
 - Arten der Ein- und Ausgabe ...
 - 2. Interrupt
 - Benutzerprogramm startet Systemaufruf
 - System startet die E/A durch Controller mit Treiber
 - Wenn Controller fertig ist, sendet er ein Signal an den Interrupt-Controller über speziellen Bus
 - Interrupt-Controller sendet Signal an CPU
 - CPU behandelt Interrupt durch Wechsel in Kernmodus
 - » Sprung an Unterbrechungsbehandlungsroutine (interrupt handler) und Ausführung
 - Rückkehrbefehl schaltet wieder in Benutzermodus
 - Hauptanwendung: Ein-/Ausgabe

Prof. Dr. Kornmayer

55

Überblick Computer-Hardware

- Ein-/Ausgabe-Geräte ...
 - Arten der Ein- und Ausgabe ...
 - 2. Interrupt ...

Prof. Dr. Kornmaye

- Ein-/Ausgabe-Geräte ...
 - Arten der Ein- und Ausgabe ...
 - 3. DMA-Chip (Direct Memory Access)
 - Regelt Datenfluss zwischen Controller und Speicher ohne CPU
 - Initialisierung durch CPU (Wieviele Bits wohin?)
 - » Selbstständige Aufführung
 - Interrupt nach der Beendigung der E/A
 - » Behandlung wie zuvor

Prof. Dr. Kornmayer

57

Überblick Computer-Hardware Bus-Systeme Bus-Systeme Cache-Bus Lokaler Bus Speicherbus PCI-Bus Graflic Karte Freier PCI-Slot ScSI-Bus Maus Tasta-Bus ISA-Bus BS muss unterschiedliche Geschwindigkeiten berücksichtigen