BIOINFORMATYKA

edycja 2018 / 2019

wykład 10

Transkryptomika Mikromacierze

dr Jacek Śmietański

jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net

Genom drożdży na mikromacierzy

Mikromacierze DNA

Pozwalają na przeprowadzanie analiz genetycznych dla wielu (nawet tysięcy) genów jednocześnie.
Badanie ekspresji genów.

slajd 3

Określenie zmian w poziomie ekspresji genów. W badaniu określa się obecność i ilość cząsteczek mRNA dla poszczególnych genów w danym momencie funkcjonowania komórki.

Np. jedna próbka pochodzi z komórki zdrowej, druga – z chorej. Albo z komórek funkcjonujących w różnych warunkach środowiska (np. bakteria w warunkach tlenowych i beztlenowych).

Albo z komórek w różnych stadiach rozwoju (np. w różnych etapach mitozy).

Zwykle produkowana komercyjnie.

Każda płytka posiada tysiące ściśle określonych punktów, każdy zawiera nić pochodzącą z innego genu.

Nicią jest fragment nici cDNA lub syntetyczny oligonukleotyd.

Nici są dodawane automatycznie za pomocą igły aplikującej cDNA lub metodą podobną do tworzenia procesorów – z tego względu

mikromacierze nazywane są też czipami genowymi (*Gene Chip*)

Jacek Śmietański, Kraków 2018

Przebieg eksperymentu

- 1. Pobranie próbek
- 2. Izolacja mRNA.
- 3. Odwrotna transkrypcja do cDNA.
- 4. Hybrydyzacja na płytce
- 5. Skanowanie mikromacierzy
- 6. Analiza danych

@ Healthwise, Incorporated

Eksperyment

Uzyskane dane – znaczenie kolorów

ZIELONY - geny z próbki kontrolnej, które hybrydyzowały bardziej niż w badanej.

CZERWONY - geny z próbki badanej, które hybrydyzowały bardziej niż w kontrolnej.

ŻÓŁTY - geny z obu próbek hybrydyzowały w podobnym stopniu

CZARNY - obszary, w których żadna próbka nie hybrydyzowała do danej sekwencji DNA

Analiza różnic w ekspresji genów pomiędzy dwiema próbkami pozwala nam zrozumieć rolę genów w poszczególnych stadiach życiowych czy w razie choroby komórki.

Idea analizy

- 1) Identyfikacja punktów na obrazie odpowiadającym poszczególnym genom
- 2) Odczyt intensywności kolorów
- 3) Analizy statystyczne, itp.

Jacek Śmietański, Kraków 2018

Analiza obrazu - problemy praktyczne (1)

Ogon komety (comet tail)

Najprawdopodobniej spowodowane niedostatecznie szybkim zanurzeniem próbki w roztworze.

Analiza obrazu - problemy praktyczne (2)

Plamy, nierówne rozmiary, nachodządze na siebie

Analiza obrazu - problemy praktyczne (3)

Jasne / nierówne tło.

Analiza obrazu - problemy praktyczne (4)

Zachodzenie punktów.

Artefakty

Obrazy ze skanera

Rozdzielczość:10 µm

Standardowy rozmiar punktu: 100 µm

⇒ Średnica obiektu: 10 pixeli

Bioinformatyka, wykład 10

Format obrazu:

TIFF (tagged image file format) 16 bit (65,536 poziomów szarości)

slajd 15

Obraz 1cm x 1cm (16 bit) = 2Mb (bez kompresji)

Istnieją też inne formaty, np. SCN (Stanford)

Oddzielne obrazy dla poszczególnych próbek.

Etapy przetwarzania obrazów

- Adresowanie (tworzenie siatki)
- Przypisanie współrzędnych do każdego punktu
- Segmentacja
- Oddzielenie sygnału od tła
- Analiza intensywności sygnału
- Analiza jakości pomiaru

slajd 17

This is the process of assigning coordinates to each of the spots.

Automating this part of the procedure permits high throughput analysis.

4 by 4 grids 19 by 21 spots per grid

Jacek Śmietański, Kraków 2018

- Rotation
- Skew in the array

Bioinformatyka, wykład 10

Adresowanie - rejestracja

Problemy podczas automatycznego adresowania

Misregistration of the red and green channels Rotation of the array in the image Skew in the array

Adresowanie - etapy

- Analiza podstawowej struktury obrazu (determinowanej przez urządzenie)
- Pozycjonowanie macierzy na obrazie
- Rozdział na wiersze i kolumny w grupach (grids)
- Identyfikacja względnego przesunięcia grup
- Rozdział na wiersze i kolumny wewnątrz każdej grupy
- Korekty (przesunięcia) pojedynczych punktów

ScanAlyze

Segmentacja

Klasyfikacja pikseli do tła lub sygnału.

Metody:

- Fixed circles
- Adaptive circles
- Adaptive shape
- Edge detection
- Seeded Region Growing (R. Adams and L. Bishof (1994): rozrost obszarów począwszy od "punktów zasiewu" stosownie do różnicy pomiędzy jasnościami pikseli i średniej jasności sąsiadujących obszarów
- Metody bazujące na histogramie

Metody segmentacji w wybranych programach

Fixed circle	ScanAlyze, GenePix, QuantArray
Adaptive circle	GenePix, Dapple, SignalViewer (uses ellipse)
Adaptive shape	Spot, region growing and watershed
Histogram	ImaGene, QuantArray, DeArray and adaptive thresholding

slajd 24

Bioinformatyka, wykład 10

Metoda Fixed circle

Dopasowuje okręgi o zadanej na sztywno średnicy do wszystkich obszarów na obrazie.

Łatwa w implementacji.

Obszary powinny mieć ten sam kształt i wielkość.

May not be good for this example

Metoda Adaptive circle

Średnica okręgu jest szacowana indywidualnie dla każdego obszaru.

Wykorzystywane są tu metody gradientowe wykrywania krawędzi (second derivative)

Problematyczna dla nieokrągłych kształtów, np. owalnych.

Ograniczenia segmentacji bazującej na okręgach

- Zbyt mały obszar
- Kształt inny niż okrąg

Ograniczenia sztywnych okręgów

Fixed circle

Metoda Adaptive shape

Specification of starting points or seeds
Bonus: already know geometry of array
Regions grow outwards from the seed points preferentially according to
the difference between a pixel's value and the running mean of values in
an adjoining region

Segmentacja na podstawie histogramu

Choose target mask larger than any spot Fg and bg intensities determined from the histogram of pixel values for pixels within the masked area.

Example: QuantArray

Background: mean between 5th and 20th percentile

Foreground: mean between 80th and 95th percentile

May not work well when a large target mask is set to compensate for variation in spot size

Spot Intensities

- mean of pixel intensities
- median of pixel intensities
- pixel variation (e.g. IQR)

Background values

- none
- local
- constant (global)
- morphological opening

Quality Information

Take the average

Określenie intensywności tła

Mierzony w eksperymencie poziom fluorescencji uwzględnia również wpływ niespecyficznych hybrydyzacji i zanieczyszczeń na płytce.

Poziom fluorescencji z regionów nie zawierających DNA powinien być inny niż z regionów badanych.

Rozwiązanie: stosowanie kontroli negatywnej: fragment DNA, co do którego wiemy, że nie będzie

None: nie uwzględniamy tła Probably not accurate in many cases, but may be better than some forms of local background determination

Local:

- Focusing on small regions surrounding the spot mask
- Median of pixel values in this region
- Most software package implement such an approach
- By not considering the pixels immediately surrounding the spots, the background estimate is less sensitive to the performance of the segmentation procedure

Jacek Śmietański, Kraków 2018

Bioinformatyka, wykład 10

Stałe tło

Global method which subtracts a constant background for all spots.

Some evidence that the binding of fluorescent dyes to 'negative control spots' is lower than the binding to the glass slide.

More meaningful to estimate background based on a set of negative control spots.

If no negative control spots: approximation of the average background = third percentile of all the spot foreground values

Tło: otwarcie morfologiczne

Non-linear filtering, used in Spot.

Use a square structuring element with side length at least twice as large as the spot separation distance.

Compute local minimum filter, then compute local maximum filter.

This removes all spots and generates an image that is an estimate of the background for the entire slide.

For individual spots, the background is estimated by sampling this background image at the nominal center of the spot.

Lower, less variable bg estimate.

Analiza jakości

Array

- Correlation between spot intensities
- Percentage of spots with no signals
- -Distribution of spot signal area

Spot

- Signal / Noise ratio
- Variation in pixel intensities
- -Identification of "bad spot" (spots with no signal)

Ratio (2 spots combined)

-Circularity

IIMK UJ

Flag or weight spots based on these (or other appropriate) criteria

Grupowanie genów wg stopnia aktywności w poszczególnych próbach.

Jacek Śmietański, Kraków 2018

Klastrowanie hierarchiczne

Zastosowania

Gene discovery.

Disease diagnosis: classify the types of cancer on the basis of the patterns of gene activity in the tumor cells.

Pharmacogenomics = is the study of correlations between therapeutic responses to drugs and the genetic profiles of the patients.

Toxicogenomics – microarray technology allows us to research the impact of toxins on cells. Some toxins can change the genetic profiles of cells, which can be passed on to cell progeny.

http://www.ncbi.nlm.nih.gov/geo/

Jacek Śmietański, Kraków 2018

RNA Seq

Analiza RNA dzięki wykorzystaniu wysokoprzepustowych technik sekwencjonowania.

Jacek Śmietański, Kraków 2018

