

Operační systémy

3. ročník

Tomáš Michalek

tomas.michalek@spsehavirov.cz

1.3.2 (2022) SPŠE Havířov

NTFS vnitřní struktura

Osnova i

1. NTFS

```
Vznik a vývoj
```

Vlastnosti a organizace oddílu

Volume Boot Record

Master File Table

Záznam

Atributy

Analýza příkladového záznamu

MFT Zone

MFTMirr

Systémové metasoubory

\$LogFile

Osnova ii

\$Secure \$BadClus \$Volume \$Extend \$AttrDef \$UpCase

Kořenový adresář (.)

Alternativní datové toky (ADS)

Nevýhody NTFS

\$Bitmap

2. Cvičení

Úkol: Vytvoření a připojení VHD

Úkol: zobrazení vnitřní struktury NTFS

Osnova iii

Úkol: zobrazení záznamu MFT

Úkol: Prozkoumání ADS

Bonusové úkoly

3. Kontrolní otázky

NTFS

NTFS - Vznik

Během 90. let společnost *Microsoft* začala silně pociťovat jednu z největších slabin svých operačních systémů *MS-DOS* a *Windows 3.x* – závislost na souborové systému **FAT**.

Microsoft si kladl za cíl vytvořit vysoce kvalitní, výkonný, spolehlivý a bezpečný operační systém tak, aby byl schopen plně konkurovat operačním systémům jako Unix¹.

Systém FAT nedostačoval požadavkům na *správu*, *management* a *spolehlivost*, které na něho byly kladené při nasazení v rozsáhlých firemních prostředích. Proto se Microsoft z příchodem *Windows NT* rozhodl vytvořit zcela nový souborový systém, který už nevycházel z FAT. Tak se zrodil nový **NTFS**.

Obrázek 1: Logo Microsoft Windows NT z roku 1993.

¹Nutnost splnění standartu POSIX.

NTFS - Vývoj

NTFS

New Technology File System

V době kolem vzniku NTFS spolupracoval Microsoft z firmou *IBM* na jejich operačním systému *OS/2*. Společně vytvořili souborový systém *HPFS*² a po rozvázání spolupráce s IBM se některé poznatky z vývoje HPFS promítly právě do nově vzniklého NTFS³.

NTFS byl navržen tak aby měl následující vlastnosti:

- Spolehlivost
- Bezpečnost a řízení přístupů (oprávnění)
- Efektivní ukládání dat
- Navýšení limitů pro velikosti oddílů i souborů
- Dlouhé názvy souborů

²High Performance File System

³V té době politika Microsoftu nerada viděla věci, které nebyly vytvořené "přímo" Microsoftem. Proto většina názvů, které se v odvětví standardně používají se ve Windows jmenuje jinak.

NTFS - Verze

Souborový systém NTFS postupně procházel vývojem, který reagoval na různé nové potřeby (jako například nástup SSD disků a s nimi spojená technologie TRIM).

Rok	Označení	Verze Windows	Vlastnost	Max. velikost
1993	NTFS 1.0	Windows NT 3.1	Žurnalování	2TB
1994	NTFS 1.1^a	Windows NT 3.5	Dlouhá jména FAT	2TB
1996	NTFS 1.2	Windows NT 3.51	Komprimované soubory, ACL	2TB
2000	NTFS 3.0	Windows 2000	Kvóty, šifrování, Reparse,	2TB
2001	NTFS 3.1	Windows Server 2003	Extended MFT, Stínové kopie,	256TB
2005		Windows Vista	Symbolické odkazy,	256TB
2006		Windows Server 2008	SMART reader, self-healing	256TB
2009		Windows Server 2008 R2	SSD TRIM, nativní VHD	256TB

Tabulka 1: Postupný vývoj NTFS

^aNěkterá literatura označuje verze stejně jako verze kernelu zapsané v **NTFS.sys** (NTFS 4.0, NTFS 5.0, ...)

NTFS – Vlastnosti

NTFS využívá transakce

- operace a interakce s souborovým systémem jsou rozdělené na několik dílčích akcí.
- Např. zápis na disk je rozdělen na dílčí akce:
 - přenos dat do řadiče
 - · vyhledání volného místa na disku
 - · vlastní zápis dat
 - uložení informací o poloze zapsaných dat do tabulky logické struktury
- Podstata transakce spočívá v tom, že se buď provede, nebo se neprovede vůbec.
 - pokud dojde k havárií některého z kroků neprovede se nic
 - nemůže tedy dojít např. ke ztrátě clusteru jako u FAT

Vylepšená správa dat

- Není omezen počet složek v kořenu disku.
- Použití B-Stromu (b-tree) pro efektivní uložení dat.
- Při vyhledávání je minimalizován počet přístupů na disk.

NTFS – Vlastnosti

Žurnalování

- všechny zápisy na disk se zároveň zaznamenávají do speciálního souboru tz. žurnálu (\$Logfile).
- Pokud uprostřed zápisu systém havaruje, je následně možné podle záznamů všechny rozpracované operace dokončit, nebo anulovat a tím systém uvést do konzistentního stavu.
- Přemapovaní clusterů⁴
- Komprese dat
 - zakomponovaná přímo do NTFS
 - transparentní pro operační systém a uživatele
 - Windows Explorer zobrazuje komprimované soubory modrou barvou (ikona modrých šipek k sobě).

⁴Přemapování clusterů probíhá při zápisu.

NTFS – Vlastnosti

- Oprávnění pro složky a soubory
 - Popisují co může a nemůže uživatel provádět s daty ve složce (souvislost s právy uživatelů).
- Přípojné body svazků⁵
- Diskové kvóty
- Šifrování dat
 - · zakomponovaná přímo na úrovni souborového systému
 - transparentní pro operační systém a uživatele
 - Windows Explorer zobrazuje šifrované soubory zelenout barvou (ikona zámku).

⁵Adresář se chová jako disk nebo disk se připojí jako adresář do diskové struktury.

NTFS Oddíl

Oddíl sformátovaný jako NTFS má několik zásadních vlastností:

- Všechno je soubor.
- · Vše je na disku uloženo jako little endian
- Celý oddíl je dostupný pro data (soubory)⁶.
 - Cluster 0 začíná na začátku oddílu.
- Celý systém je řešen jako obří databáze
 - ve které jeden záznam v ní odpovídá souboru
- · Speciální soubory pro popis NTFS:
 - jejich názvy se začínají znakem \$
 - označujeme je názvem metasoubory (metafiles)
 - Windows Explorer tyto soubory nezobrazuje
 - Zobrazit je můžeme například příkazem: dir \ah <NAZEV>

NTFS Oddíl

Data

Obrázek 2: Oddíl NTFS

⁶Kromně souborů potřebných systému, které mají z pravidla stejné umístění.

NTFS Oddíl

- Prostor je rozdělen na clustery (podobně jako u FAT).
 - nejmenší adresovatelná jednotka z pohledu NTFS
 - typicky se skládá z 2, 4, 8, 16 nebo 32 sektorů.
 - maximálně 64kB⁷
 - hledání rovnováhy mezi fragmentací oddílu a nevyužitým místem v clusteru.
- až 64-bitové adresování clusterů:
 - teoretická hranice až **16EB** při clusteru 64KB⁸.
 - pro disk s MBR je maximální velikost svazku 2TB
 - pro disk s GPT je aktuální maximální velikost 256TB (pro 64KB cluster)

NTFS Oddíl

Data

Obrázek 3: Oddíl NTFS

⁷Windows 10 (1903) přidal nové velikosti: 128K až 2M

 $^{^{8}}$ tj. asi $17*10^{9}$ TB

NTFS Oddíl

- logické číslování clusterů (LCN)
 - Offest na oddílu: $Index_{clusteru} * Velikost_{clusteru}$
- clustery souboru identifikovány virtuálním číslováním (VCN):
 - číslovány sekvenčně od 0, ale ve skutečnosti musí jít za sebou.
 - součástí souboru mapování VCN- > LCN.

Obrázek 4: Oddíl NTFS

NTFS – Organizace oddílu

Naformatováním disku jako NTFS se prostor rozdělí podobně jak je tomu na obrázku 5.

Obrázek 5: Typická organizace oddílů NTFS

NTFS – Volume Boot Record (\$Boot)

Při formatování oddílu NTFS, formatovací program na něm vyhradí (alokuje) prvních 16 sektorů (maximální velikost 8KB) pro metasoubor **\$Boot**, který slouží k zavedení systému. Boot sektor oddílu obsahuje dvě hlavní struktury:

BIOS parameter block

 Obsahuje informace o oddílu, název svazku, velikosti a umístění metasouborů.

Volume Boot Code

 Malý blok kódu programu obsahující instrukce pro zavedení systému.

Záloha

Pro případ poškození je metasoubor \$Boot zálohovaný ještě na konci oddílu.

Obrázek 6: NTFS boot sektor

NTFS – \$Boot (pokračování)

Ofset	Velikost	Popis	Hodnota
0x00	3	Instrukce skoku	0xEB'52'90
0x03	8	OEM ID	NTFS
0x0B	2	Byty v sektoru	512
0x0D	1	Sektorů v klastru	8
		•••	
0x28	8	Sektorů celkem	571391
0x30	8	Start \$MFT	3
0x38	8	Start \$MFTMirr	35711
		•••	
0x1FE	1	Konec sektoru	0x55'AA

Tabulka 2: Vybrané hodnoty ze souboru \$Boot

Obrázek 7: NTFS boot sektor

NTFS - MFT

MFT

Master File Table

Každý **soubor** v oddílu NTFS **je reprezentován pomocí záznamu** ve speciálním souboru **\$MFT. První 16 záznamů je rezervováno** pro tabulku speciálních informací.

První záznam je popisuje samotnou tabulku MFT.

Obrázek 8: NTFS \$MFT

NTFS – Vlastnosti MFT

Master File Table:

- · vytváří se během formátování
- každý soubor (adresář) má zde svůj vlastní záznam (větu)
 - zaznamenává organizace dat v clusterech
 - velikost jednoho záznamu je pevná a obvykle 1KB (1024)
 - malé soubory a složky⁹ jsou uložené plně v MFT jako je tomu na obrázku 12.

Obrázek 9: NTFS \$MFT

⁹Typicky menší jak 512 bytů

NTFS – MFT záznam

Každý záznam v MFT se skládá z:

- MFT hlavičky prvních 42 bytů
- Atributů zbylé byty
 - Každý atribut se skládá z:
 - hlavička (16 bytů)
 - umístění a velikost obsahu (8 nebo 56¹⁰ bytů)
 - obsah (různá velikost) detaily atributu

MFT Atribut Hlavička atributu Velikost MFT Option Obsah velikost

Obrázek 10: Struktura atributu

¹⁰Pokud obsah je uložen v jiném místě oddílů (příznak "Non-Resident").

NTFS – Atributy záznamu

Obrázek 11: Struktura záznamu je složená z atributů a hlavičky

NTFS – Atributy záznamu

Тур	Název	Poznámka
0x00	Prázdné místo	
0x10	\$STANDARD_INFORMATION	základní informace
0x30	\$FILE_NAME	název souboru a jeho základní metadata
0x40	\$OBJECT_ID	unikátní GUID objektu
0x50	\$SECURITY_DESCRIPTOR	řízení přístupů
0x60	\$VOLUME_NAME	název oddílu
0x70	\$VOLUME_INFORMATION	verze a stav ¹¹ oddílu
0x80	\$DATA	data souboru
0x90	\$INDEX_ROOT	informace o složce
		•••
0xFFFF'FFFF	Konec atributů	

Tabulka 3: Vybrané atributy definované v \$AttrDef (viz Russon et al., 2005)

¹¹Vlajka Dirty označuje špatné ukončení systému a nutnost provést chkdsk.

NTFS – MFT záznam pro malý soubor

Díky tomu, že je malý soubor uložený přímo v \$MFT je přístupová doba k němu velmi rychlá¹².

Složky jsou podobně jako soubory uložené v MFT, ale místo dat mají záznam informací o indexu. Podobně jako je tomu u malých souborů, malé záznamy složek mohou být plně uložené v MFT.

	\$MFT Zaznam		
(0x10) (0x: Standardní Název s informace nebo s	ouboru Bezpečnostní	(0x80) Data nebo (0x90) index	

Obrázek 12: Záznam v \$MFT pro malý soubor nebo adresář

¹²Pro porovnání ve FAT musíme nejdříve zjistit, zda-li soubor existuje a pak ho "poskládat" průchodem přes FAT alokační tabulku. U NTFS máme začátek dat k dispozici hned.

¹³Security descriptor

Offset	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII	Unicode
1F40E800	46 49 4C 45 30 00 03 00 10 C5 20 00 00 00 00 FILEDÅ	0
1F40E810	01 00 01 00 38 00 01 00 E0 01 00 00 00 04 00 00sàà	8.Ā.È.
1F40E820	00 00 00 00 00 00 00 00 00 00 00 00 00	&.
1F40E830	0B 00 00 00 00 00 00 00 00 10 00 00 00 60 00 00 00	
1F40E840	00 00 00 00 00 00 00 00 48 00 00 00 18 00 00 00H	H
1F40E850	9C D5 92 59 D5 25 D8 01 69 F4 64 8C D5 25 D8 01 .0.Y0% .iod.0%	űű
1F40E860	69 F4 64 8C D5 25 D8 01 25 A2 55 6D D7 25 D8 01 iôd.Õ%ø.%¢Um×%ø.	űű
1F40E870	20 00 00 00 00 00 00 00 00 00 00 00 00 0	******
1F40E880	00 00 00 00 08 01 00 00 00 00 00 00 00 00 00 00	Ĉ
1F40E890	00 00 00 00 00 00 00 00 30 00 00 00 88 00 00 00	0
1F40E8A0	00 00 00 00 00 00 05 00 6E 00 00 00 18 00 01 00n	n
1F40E8B0	05 00 00 00 00 00 05 00 9C D5 92 59 D5 25 D8 01Õ.YÕ%Ø	
1F40E8C0	9C D5 92 59 D5 25 D8 01	űű
1F40E8D0	9C D5 92 59 D5 25 D8 01 00 00 00 00 00 00 00 00 .Õ.YÕ%	ú
1F40E8E0	00 00 00 00 00 00 00 00 20 00 00 00 00 0	****
1F40E8F0	16 00 73 00 6F 00 75 00 62 00 6F 00 72 00 5F 00s.o.u.b.o.r	soubor_
1F40E900	70 00 72 00 6F 00 5F 00 61 00 6E 00 61 00 6C 00 p.r.oa.n.a.l.	pro_anal
1F40E910	79 00 7A 00 75 00 2E 00	yzu.txt.
1F40E920	40 00 00 00 28 00 00 00 00 00 00 00 00 04 00 0(@.(
1F40E930	10 00 00 00 18 00 00 00 8E 15 11 32 C7 91 EC 112Ç.ì.	******
1F40E940	BF 61 5C BA EF AB 21 6E 80 00 00 00 90 00 00 00 2a\2i«!n	******
1F40E950	00 00 18 00 00 00 01 00 72 00 00 00 18 00 00 00r	r
1F40E960	54 6F 74 6F 20 6A 65 20 73 6F 75 62 6F 72 2C 20 Toto je soubor,	
1F40E970	6B 74 65 72 79 20 6D 61 74 65 20 7A 61 20 75 6B ktery mate za uk	9
1F40E980	6F 6C 20 70 72 6F 7A 6B 6F 75 6D 61 74 20 76 20 ol prozkoumat v	46
1F40E990	70 72 6F 67 72 61 6D 75 20 70 72 6F 20 61 6E 61 programu pro ana	
1F40E9A0	6C 79 7A 75 0D 0A 4E 54 46 53 2E 20 56 79 70 69 1yzu.NTFS. Vypi	
1F40E980	73 74 65 20 70 6F 7A 6E 61 74 6B 79 20 6B 20 6A ste poznatky k	
1F40E9C0	65 68 6F 20 7A 61 7A 6E 61 6D 75 20 76 20 4D 46 eho zaznamu v MF	1
1F40E9D0	54 2E 00 00 00 00 00 00 FF FF FF FF 82 79 47 11 Tÿÿÿÿ¸yĞ,	******
1F40E9E0	00 00 00 00 00 00 00 00 00 00 00 00 00	******

Obrázek 13: Vybraný záznam fyzicky na disku

Na	Name		Value
	Signature (must be 'FILE')	000	FILE
	Offset to the update sequence	004	0x30
	Update sequence size in words	006	3
	\$LogFile Sequence Number (LSN)	800	2 147 600
	Sequence number	010	1
	Hard link count	012	1
	Offset to the first attribute	014	0x38
~	Flags	016	01 00
	In use	:0	1
	Directory	:1	0
	Real size of the FILE record	018	480
	Allocated size of the FILE record	01C	1 024
	Base FILE record	020	0
	Next attribute ID	028	6
	ID of this record	02C	38
	Update sequence number	030	0B 00
	Update sequence array	032	00 00 00 00
>	Attribute \$10	038	
>	Attribute \$30	098	
>	Attribute \$40	120	
>	Attribute \$80	148	
	End marker	1D8	0xFFFFFFF

V	Attribute \$10	038	
	Attribute type	038	0x10
	Length (including header)	03C	96
	Non-resident flag	040	0
	Name length	041	0
	Name offset	042	0x00
	✓ Flags	044	00 00
	Compressed	:0	0
	Encrypted	:14	0
	Sparse	:15	0
	Attribute ID	046	0
	Length of the attribute	048	72
	Offset to the attribute data	04C	0x18
	Indexed flag	04E	0
	Padding	04F	0
	→ \$STANDARD_INFORMATION	050	
	File created (UTC)	050	19.02.2022 21:12
	File modified (UTC)	058	19.02.2022 21:13
	Record changed (UTC)	060	19.02.2022 21:13
	Last access time (UTC)	068	19.02.2022 21:26
	> File Permissions	070	20 00 00 00
	Maximum number of versio	074	0
	Version number	078	0
	Class Id	07C	0
	Owner Id	080	0
	Security Id	084	264
	Quota Charged	088	0
	Update Sequence Number	090	0

∨ Attribute \$30	098	
Attribute type	098	0x30
Length (including header)	09C	136
Non-resident flag	0A0	0
Name length	0A1	0
Name offset	0A2	0x00
→ Flags	0A4	00 00
Compressed	:0	0
Encrypted	:14	0
Sparse	:15	0
Attribute ID	0A6	5
Length of the attribute	0A8	110
Offset to the attribute data	0AC	0x18
Indexed flag	0AE	1
Padding	0AF	0
→ \$FILE_NAME	0B0	
Parent directory file record	0B0	5
Parent directory sequence n	0B6	5
File created (UTC)	088	19.02.2022 21:12
File modified (UTC)	0C0	19.02.2022 21:12
Record changed (UTC)	0C8	19.02.2022 21:12
Last access time (UTC)	0D0	19.02.2022 21:12
Allocated size	0D8	0
Real size	0E0	0
> File attributes	0E8	20 00 00 00
(used by EAs and reparse)	0EC	0
File name length	0F0	22
File name namespace	0F1	0
File name	0F2	soubor_pro_analyzu.txt

→ File attributes	0E8	20 00 00 00
Read-Only	:0	0
Hidden	:1	0
System	:2	0
Archive	:5	1
Device	:6	0
Normal	:7	0
Temporary	:8	0
Sparse File	:9	0
Reparse Pointe	:10	0
Compressed	:11	0
Offline	:12	0
Not Content Indexed	:13	0
Encrypted	:14	0
Directory	:28	0
Index View	:29	0

Obrázek 17: Atribut \$FILE_NAME – detail

➤ Attribute \$40	120	
Attribute type	120	0x40
Length (including header)	124	40
Non-resident flag	128	0
Name length	129	0
Name offset	12A	0x00
✓ Flags	12C	00 00
Compressed	:0	0
Encrypted	:14	0
Sparse	:15	0
Attribute ID	12E	4
Length of the attribute	130	16
Offset to the attribute data	134	0x18
Indexed flag	136	0
Padding	137	0
	138	
GUID Object Id	138	8E 15 11 32 C7 91 EC 11 BF 61 5C BA EF AB 21 6E

Obrázek 18: Atribut \$OBJECT_ID

➤ Attribute \$80	148	
Attribute type	148	0x80
Length (including header)	14C	144
Non-resident flag	150	0
Name length	151	0
Name offset	152	0x18
→ Flags	154	00 00
Compressed	:0	0
Encrypted	:14	0
Sparse	:15	0
Attribute ID	156	1
Length of the attribute	158	114
Offset to the attribute data	15C	0x18
Indexed flag	15E	0
Padding	15F	0
→ \$DATA	160	
Data	160	54 6F 74 6F 20 6A 65 20 73 6F 75 62 6F 72 2C 20 6B 74 65 72 7

Obrázek 19: Atribut \$DATA

NTFS - MFT Zone

Pro rychlejší a efektivnější práci systém (při formátovaní) **vyhradí prostor pro růst \$MFT souboru** - **\$MFT zone**. Zpravidla šlo o **12.5%** celkové kapacity, ale lze toto nastavení změnit (typicky na 25% nebo 50%).

Od Windows Vista bylo toto nastavení z důvodu kapacit disku nepraktické, a tak systém alokuje pro \$MFT zonu 200MB prostor, který může být umístěn kdekoliv na disku.

Neznamená to, že by do takto vyhrazeného prostoru nešlo zapsat data souborů, ale je to vodítko pro systém, aby tak učinil co nejpozději s ohledem na volné místo v jiných částech disku.

Obrázek 20: MFT může růst díky prealokovanému prostoru

NTFS - \$MFTMirr

Druhým záznamem v MFT je *MFT mirror record*, který odkazuje na soubor **\$MFTMirr**.

Tento soubor slouží jako záloha prvních 4¹⁴ záznamy pro případ korupce MFT. (Zalohované jsou záznamy pro \$MFT, \$MFTMirr, \$LogFile and \$Volume)

Podobně jako v případě souboru \$MFT je i lokace \$MFTMirr uložená v *boot záznamu*.

Soubor \$MFTMirr se naléza přibližně v polovině oddílu NTFS¹⁵.

Obrázek 21: Umístění \$MFTMirr

¹⁴Některé zdroje chybně uvádějí 16, viz: Sedory, 2018

¹⁵Podobnou zálohu má i boot sektor, který má svou zálohu v logickém středu disku.

NTFS – Systémové metasoubory

Inode	Název souboru	Popis
0	\$MFT	Index všech souborů (a složek)
1	\$MFTMirr	Záloha prvních 4 záznamů MFT
2	\$LogFile	Záznamy o transakcích (žurnalování)
3	\$Volume	seriové číslo, vytvoření, vlajka <i>dirty</i>
4	\$AttrDef	Definice atributů
5	•	kořenový adresář oddílu
6	\$Bitmap	Mapa klastrů oddílu (1 = používaný vs 0 =
		volný)
7	\$Boot	boot záznam oddílu
8	\$BadClus	seznam vadných klastrů na oddílu
9	\$Secure	bezpečností popisovače pro oddíl

...

Tabulka 4: Systémové metasoubory (viz Russon et al., 2005)

NTFS – Systémové metasoubory

Inode	Název souboru	Popis
10	\$UpCase	 tabulka mapování velkých a malých čísel pro vyhledávání ¹⁶
11	\$Extend	složka (\$ObjId, \$Quota, \$Reparse, \$UsnJrnl)
12-15	Nepouživané	vyhrazeno pro budoucí rozšíření (in-use)
16-23	Nepouživané	
<any></any>	\$Extend\ \$Quota	kvóty oddílů
<any></any>	\$Extend\ \$Reparse	zkratky, přípojné body,
<any></any>	\$Extend\ \$UsnJrnl	žurnalovací záznam šifrování

Tabulka 5: Systémové metasoubory - pokračování

¹⁶NTFS používá Unicode pro ukládání znaků. Mapování mezi nimi není tak jednoduché jako v případě ASCII.

NTFS - \$LogFile

- Jak již bylo zmíněno všechny přístupy k objektům na disku jsou v pohledu NTFS transakce.
- Soubor \$Logfile zaznamenává průběh transakcí:
 - obsahuje pouze detaily nedávných transakcí
 - omezení velikosti souboru řešeno jako kruhový buffer
 - po naplnění souboru se přepíše první záznam nových záznamem
- cílem zajištění konzistence POUZE systémových souborů

Obrázek 22: Umístění \$Logfile na disku

NTFS - \$Secure

Systémový soubor **\$Secure** popisuje:

- vlastníka pro každý soubor (\$SSI Standard Information ID)
- pravidla přístupu ACL¹⁷ (\$SDH Security Descriptor Hash)

Okénko do minulosti

Ve Windows NT každý soubor měl vlastní atribut \$Security_Descriptor, který ukládal tyto informace. Většina souborů ale měla stejné hodnoty tohoto atributu, proto se pro ně vyčlenil speciální soubor, aby nedocházelo k duplikaci dat.

Obrázek 23: Umístění \$Secure na disku

33/71

¹⁷Access Control List

NTFS - \$BadClus

Soubor \$BadClus sleduje vadné clustery na disku.

- Cluster je označený jako vadný, pokud alespoň jeden sektor je vadný.
- V souboru \$Bitmap se cluster označí jako používaný (1), aby zamezil budoucím pokusům o zápis na jeho místo.
- \$BadClus má velikost rozměru NTFS oddílu:
 - Soubor je "sparse file".
 - Ve sparse souborech se spočítají 0, ale neukládají se fyzicky na disk.
- \$BadClus nezabírá místo na disku:
 - pokud cluster je označen jako špatný, data jsou místo toho zapsané v souboru \$BadClus se stejným offsetem, jako by tomu bylo na disku.

Obrázek 24: Umístění souboru \$BadClus na disku

NTFS - \$Volume

Soubor **\$Volume** obsahuje informace o aktuálním NTFS oddíle:

- název NTFS oddílu
- číslo **verze** NTFS (1.x nebo 3.x)
- vlajky pro operace, které se mají provést při boot-u jako například:
 - 0x0001 (dirty) špatné ukončení relace.
 - 0x0002 změň velikost logovacího souboru
 - upgraduj na novou verzi

Příznak "dirty"

Příznak "dirty" signalizuje OS, že minulý ukončení systému neproblěhlo správně. Při příštím startu musí systém provést **chkdsk** **f**.

Obrázek 25: Umístění \$Volume na disku

NTFS - \$Extend

Složka **\$Extend** obsahuje volitelné metasoubory (extensions - rozšíření):

- \$Quota metasoubor specifikující kvóty
 - \$0 záznamy o uživatelích, kteří mají nastavené kvóty (má vlastník souboru kvótu?)
 - \$Q záznam pro všechny uživatele v systému (jak veliká je kvóta?)
- \$0bjId seznam všech souborů, které mají atribut \$0bject_ID:
 - Nejčastěji využívané pro MS Office dokumenty; odkazy v souborech tak můžou být přejmenované bez toho, aby dokument ztratil k nim přístup.

Obrázek 26: Umístění ŠExtend na disku

NTFS - \$Extend

- \$Reparse seznam všech reparse bodů:
 - · umožňuje připojit část systému jako oddíl
- \$UsnJrnl zvaný "žurnál změn":
 - krátkodobé logování změn v systému (přes jednotlivé aplikace)
 - podobný jako \$LogFile
 - využívá se k inkrementální zálohy, antivirový scan, ...
 - většinou se jeví jako prázdný obsahuje data jen po dobu, kdy je potřebuje program

Obrázek 27: Umístění \$Extend na disku

NTFS - \$AttrDef

Jak již bylo zmíněno, soubory a složky v NTFS se skládají z *atributů*. Jejich definice se nalézá v metasouboru **\$AttrDef**. (viz tabulka 3)

Pro každý atribut obsahuje několik informací:

- název atributu (attribute name)
- ID
- pravidla pro použití (v současnosti nepouživané)
- vlajky
 - 0x02 indexované (indexed)
 - 0x40 vždy residentní (always resident)
 - 0x80 může být neresidentní (non-resident)
- minimální velikost
- maximální velikost

Obrázek 28: Umístění \$AttrDef na disku

NTFS - \$UpCase

Metasoubor **\$UpCase** umožňuje efektivní třídění a vyhledávání v NTFS. Pro práci s různými jazykovými sadami (code pages), ukládá NTFS nazvy souborů ve znakové sadě *Unicode*. Soubor *\$UpCase* tedy obsahuje všechny *velká* písmena pro zakovou sadu Unicode (128KB).

Dle čeho třídíme?

Samotný soubor má vždy ponechané velikosti písmen, ale názvy souborů jsou převedene na VELKE_PISMENA pro třídění, když se pro ně vytváří záznam do složky.

Obrázek 29: Umístění \$UpCase na disku

NTFS - \$Bitmap

Metasoubor **\$Bitmap** popisuje aktuální stav alokace každého clusteru na oddíle. Jednotlivé bity pak mohou nabývat hodnot:

- dostupný (0)
- alokovaný (1)

Defragmentace

Defragmentovací utility se snaží, aby jednotlivé byty byly 0x00 nebo 0xFF. Jiné hodnoty jsou vnímané jako "díry", které se musí defragmentovat.

Zarovnání

Protože soubor \$Bitmap je zarovnaný jako násobky 8 (ale oddíly ne) - proto na konci souboru může být sekce, která odpovídá prostoru "za oddílem". Vždy má hodnoty 1 (alokovaný).

Obrázek 30: Umístění \$Bitmap na disku

NTFS – Kořenový adresář

Kořenový adresář **nemá**, na rozdíl od FAT, **omezení na počet položek v něm**. Obsahuje odkazy na soubory a podsložky na oddíle.

Je tvořen jako B-strom (balancovaný strom) tak, aby umožňoval efektivní ukládání, třídění a čtení informací.

Obrázek 31: Umístění kořenového adresáře

NTFS – Systémové metadata – shrnutí

- popisují jednotlivé části NTFS systému
- jsou skryté před uživatelem
 - přístup k nim je umožněn "raw" čtením disku
 - normální systémové API k nim nemá přístup
- až na několik vyjímek (\$Boot) se mohou vyskytovat na různých na oddílu (historické změny NT, XP, 7, 10)
- stále procházejí vývojem:
 - Např. \$Quote byl přesunut do \$Extend\\$Quote
 - Nové metadata jako \$Deleted, ...

Obrázek 32: Přehled metasouborů NTFS

42/71

Alternativní datové toky (ADS)

Komně povinné částí v NTFS - kterou je zápis údajů o souboru do MFT (do souboru \$MFT) lze v NTFS uloží také další data - **alternativní datové toky**:

- nezobrazují se ve Windows Explorer
- v příkazové řádce je možnost je zobrazit příkazem dir /r
- jejich velikost není započítaná do velikosti souboru.
- při kopírování na FAT, posílání e-mailem a podobně je kopírován pouze "standardní" datový tok.

Čtení a zápis ADS (cmd)

- 1. C:\>ECHO "moje_tajnustka" > mujsoubor.txt:psst
- 2. C:\>MORE < mujsoubor.txt:psst</pre>

Nevýhody NTFS

Fragmentace

- NTFS od svého počátku trpí nepříjemnou vlastností s oblibou fragmentuje soubory.
- Proto je od Windows 7 implicitně nastavena defragmentace na 1x týdně.

Limitovaná komprese

• NTFS není schopné komprimace pro klustry větší jak 4kB.

Neexistující oficiální dokumentace

- Jako proprietární systém Microsoftu neexistuje celková dokumentace.
- Většina zásadních informací o vnitřím fungování NTFS byla získáná zpětným inženýrstvím.

Omezená kompatibilita s jinými OS

- Pro *nixové systémy dostupný ovládač NTFS-3G.
- Apple MacOS má od verze 10.13 podporu pro čtení NTFS.

Cvičení

Úkol: Vytvoření a připojení VHD

Zadání

Vytvořte a připojte virtuální disk v systému Windows:

- 1. Otevřete program "**Správa disků**" (Win + X).
- 2. Vytvořte (na ploše) virtuální disk "3{a,b}_{prijmeni}.vhd".
- 3. Nastavte parametry na:
 - · Master Boot Record
 - Statická velikost (512MB)
 - Typ: VHD

Úkol: Vytvoření a připojení VHD (řešení)

Obrázek 33: Zvolíme z menu "Akce" vytvoření nového virtuálního disku

Úkol: Vytvoření a připojení VHD (řešení II)

Obrázek 34: Zvolíme správné nastavení a umístění virtuálního disku

Úkol: Vytvoření a připojení VHD (řešení III)

Obrázek 35: Inicializujeme virtuální disk

Úkol: Vytvoření a připojení VHD (řešení IV)

Obrázek 36: Inicializujeme virtuální disk

Úkol: Vytvoření a připojení VHD (řešení V)

Obrázek 37: Naformátujeme virtuální disk

Úkol: Vytvoření a připojení VHD (řešení VI)

Obrázek 38: Výsledkem je připojený virtuální disk

Úkol: zobrazení vnitřní struktury NTFS

Zadání

Získejte a prozkoumejte základní informace o vnitřní struktuře NTFS oddílu:

- 1. Připojte disk "haw_3_task_analyse_ntfs.vhd" do systému.
- 2. Spustte program "Disk Editor for NTFS" a vyberte disk HAW3
- 3. Zobrazte MFT tabulku
- 4. Zobrazte obsah kořenového adresáře

Úkol: zobrazení vnitřní struktury NTFS (řešení)

Obrázek 39: Úvodní obrazovka oddílu v aplikaci Disk Editor

Úkol: zobrazení vnitřní struktury NTFS (řešení II)

Obrázek 40: Menu Disk Editoru

Úkol: zobrazení vnitřní struktury NTFS (řešení III)

Obrázek 41: Metasoubory uložené v MFT

Úkol: zobrazení vnitřní struktury NTFS (řešení III)

Obrázek 42: Kořenový adresář oddílu

Úkol: zobrazení záznamu MFT

Zadání

Zobrazte a analyzujte obsah souborů na disku:

- 1. Připojte disk "haw_3_task_analyse_ntfs.vhd" do systému.
- 2. Spustte program "Active@ Disk Editor" a vyberte disk HAW3
- 3. Najděte jednotlivé soubory z disku v MFT tabulce.

Úkol: zobrazení záznamu MFT (řešení)

Obrázek 43: Řešení úlohy "zobrazení záznamu MFT"

Úkol: zobrazení záznamu MFT (řešení II)

Obrázek 44: Pravým klikem začneme hledání

Úkol: zobrazení záznamu MFT (řešení III)

Obrázek 45: Názvy jsou uložené jako Unicode (nastavíme paramtery hledání)

Úkol: zobrazení záznamu MFT (řešení IV)

Obrázek 46: Ve výsledcích prohlédáme výsledky až najdeme záznam, který má hlavičku FILE

Úkol: zobrazení záznamu MFT (řešení V)

Obrázek 47: Označíme začátek a spustíme šablonu

Úkol: zobrazení záznamu MFT (řešení VI)

Obrázek 48: Prohlédneme si obsah souboru

Úkol: Prozkoumání ADS

Zadání

Prozkoumejte soubor s alternativním tokem:

- 1. Podívejte se v průzkumníku na "tajny_soubor.txt".
- 2. Spustte program "Active@ Disk Editor" a najděte soubor, jaké má atributy?
- 3. Pomocí příkazové řádky zobrazte alternativní toky.
- 4. Pomocí příkazové řádky zobrazte obsah alternativního toku.
- 5. Pomocí příkazové řádky vytvořte nový soubor s alternativním tokem.

Úkol: Prozkoumání ADS (řešení)

```
    Příkazový řádek

                                                                                                    A:\>dir /r /x
 Volume in drive A is HAW3
 Volume Serial Number is 7424-9A19
 Directory of A:\
19.02.2022 23:45
                                                fsutil.
19.02.2022 21:53
                              2 558
                                                kev pass is test.pfx
20.02.2022 00:08
                     <DIR>
                                                programy
19.02.2022 22:28
                                                sifrovacka.txt
19.02.2022 22:19
                     <DIR>
                                                slozka_pro_analyzu
19.02.2022 22:14
                                 79
                                                soubor_2.txt
                                83 KRATKY.C
                                                soubor ktery ma velmi dlouhy nazev a pak take kratky nazev.c
19.02.2022 23:18
19.02.2022 23:55
                                                soubor prejmenovany.txt
                                 30
                                                soubor pro analyzu.txt
19.02.2022 22:13
                                114
19.02.2022 23:00
                                                 soubor zniceny.txt
19.02.2022 22:26
                                65
                                                tajny_soubor.txt
                                                tainy soubor.txt:secret message:$DATA
                                117
               9 File(s)
                                 3 069 bytes
               2 Dir(s)
                           443 482 112 bytes free
A:\>
```

Obrázek 49: Vylistování dalších atributů v programu cmd

Úkol: Prozkoumání ADS (řešení)

Obrázek 50: Výpis obsahu ADS v programu cmd

Úkol: Prozkoumání ADS (řešení)

Obrázek 51: Vytvoření ADS v programu cmd

Úkol: Prozkoumání ADS (řešení, bonus)

```
Microsoft Windows [Version 10.0.19041.685]
(c) 2020 Microsoft Corporation. Všechna práva vyhrazena.

C:\Users\root>fsutil file setshortname soubor_ktery_ma_velmi_dlouhy_nazev_a_pak_take_kratky_nazev.c kratky.c
```

Obrázek 52: Vytvoření alternativního krátkého názvu v programu cmd

Úkol: Prozkoumání ADS (řešení, bonus)

Obrázek 53: Vygenerování hash souboru pro ověření obsahu

Bonusové úlohy

Zadání

- 1. Vytvořte obrázek, který bude mít jako alternativní tok program nebo virtuální disk.
- 2. Spusťte program z alternativního toku (příkaz start).
- 3. Vytvořte komprimovaný soubor.
- 4. Vytvořte šifrovaný soubor.
- 5. Může být soubor komprimovaný i šifrovaný zároveň?
- 6. prozkoumejte MFT záznamy dalších souborů na disku "HAW3".

Kontrolní otázky

Kontrolní otázky

- Co je to transakce?
- Jaké jsou výhody souborového systému NTFS vzhledem k systému FAT?
- Co to jsou metasoubory?
- Co je to žurnálování a k čemu se prakticky používá?
- Co je to MFT a co obsahuje?
- Nakreslete schéma rozložení disku s NTFS.
- · Co je to Cluster?
- Co obsahuje soubor \$Bitmap?
- Co obsahuje soubor \$Badclus?
- Co všechno obsahuje záznam o jednom souboru, kde se nachází, jakou má (nebo může mít) velikost tento záznam?
- Kde se nachází a co znamená vlajka "dirty"?

Děkuji za pozornost!

Zdroje i

- ARNES, A., 2017. *Digital Forensics*. Wiley. ISBN 9781119262404. Dostupné také z: https://books.google.cz/books?id=Fk0nDwAAQBAJ.
- CARRIER, Brian, 2005. File system forensic analysis. 1st edition. Upper Saddle River: Addison-Wesley. ISBN 978-0321268174. Dostupné také z: https://repo.zenk-security.com/Forensic/File%20System%20Forensic%20Analysis.pdf.
- WENRY, Timothy, 2011. NTFS Concepts and Analysis. Kingston (Rhode Island):
 Department of Computer Science a Statistics, University of Rhode Island. Dostupné také z: https://homepage.cs.uri.edu/~thenry/CSC487_Video_Library.html.
- HORÁK, Jaroslav, 2007. *Hardware: učebnice pro pokročilé*. 4., aktualiz. vyd. Brno: Computer Press. ISBN 978-80-251-1741-5.
- KCALL.CO.UK, 2020. Everything I know about NTFS [online]. kcall.co.uk [cit. 2022-02-18]. Dostupné z: http://kcall.co.uk/ntfs/index.html.

Zdroje ii

- KHOLODOV, Igor, 2007. NTFS File System Overview: Computer Organization and Design [online]. Fall River: Computer Information Systems Department / STEM, Bristol Community College [cit. 2022-02-20]. Dostupné z: http://c-jump.com/bcc/t256t/Week04NtfsReview/index.html.
- MEDEIROS, Jason, 2008. NTFS Forensics: A Programmers View of Raw Filesystem Data Extraction. Grayscale Research. Dostupné také z: http://grayscale-research.org/new/pdfs/NTFS%20forensics.pdf.
- METZ, Joachim, 2009. New Technologies File System (NTFS): 0.0.25 [online]. USA: @libyal [cit. 2022-02-20]. Dostupné z: https://github.com/libyal/libfsntfs/blob/main/documentation/New%5C% 20Technologies%5C%20File%5C%20System%5C%20(NTFS).asciidoc.
- MICROSOFT, 1993. Windows NT Server Logo. Dostupné také z: https://logodix.com/logos/340506.

Zdroje iii

- NTFS Basics, 2021. Mississauga: LSoft Technologies. Dostupné také z: http://www.ntfs.com/ntfs-multiple.htm.
- RALBOVSKÝ, Petr, 2013. *NTFS struktura*. Havířov: Střední průmyslová škola elektrotechnická.
- RUSSINOVICH, Mark E.; SOLOMON, David A., 2005. *Microsoft Windows internals: Microsoft Windows Server 2003, Windows XP, and Windows 2000.* 4th ed. Redmond:

 Microsoft Press. ISBN 07-356-1917-4. Dostupné také z:

 https://flylib.com/books/en/4.491.1.109/1/.
- RUSSON, Richard; FLEDEL, Yuval, 2005. NTFS Documentation [online]. Dubeyko [cit. 2022-02-18]. Dostupné z: http://dubeyko.com/development/FileSystems/NTFS/ntfsdoc.pdf.
- SEDORY, Daniel B., 2018. An Introduction to NTFS: New Technology File System [online]. The Starman's Realm [cit. 2022-02-18]. Dostupné z: https://thestarman.pcministry.com/asm/mbr/IntNTFSfs.htm.

Tato prezentace slouží jako podklad pro výuku předmětu Operační systémy na *Střední průmyslové škole elektrotechnické v Havířově*. Pro případné připomínky, vylepšení nebo poznatky prosím využijte *issues* v Git-repositáři projektu nebo mého školního e-mailu:

https://github.com/michto01/spse-materials tomas.michalek@spsehavirov.cz

Podporujeme svobodné licencování! Tato prezentace je volně šiřitelná v souladu s licencí Creative Commons 4.0 (CC BY-SA 4.0):

