Business Analytics Using Computational Statistics

RMarkdown

https://rmarkdown.rstudio.com

Markdown (*.md)

Easy syntax to add **formatting** to text

You can use Pandoc's Markdown to make:

- Headers
- Lists
- Links
- Images
- Block quotes
- Latex equations
- Horizontal rules
- Tables
- Footnotes
- Bibliographies and Citations
- Slide breaks
- Italicized text
- Bold text
- Superscripts
- Subscripts
- Strikethrough text

RMarkdown (*.Rmd)

Easy syntax to add **R** output to Markdown

The following output formats are available to use with R Markdown.

Documents

- html notebook Interactive R Notebooks
- html_document HTML document w/ Bootstrap CSS
- pdf document PDF document (via LaTeX template)
- word_document Microsoft Word document (docx)
- odt_document OpenDocument Text document
- rtf_document Rich Text Format document
- md_document Markdown document (various flavors)

Presentations (slides)

- ioslides_presentation HTML presentation with ioslides
- revealis::revealis presentation HTML presentation with reveal.is
- slidy_presentation HTML presentation with W3C Slidy
- beamer_presentation PDF presentation with LaTeX Beamer
- powerpoint_presentation: PowerPoint presentation

More

- flexdashboard::flex dashboard Interactive dashboards
- tufte::tufte_handout PDF handouts in the style of Edward Tufte
- tufte::tufte_html HTML handouts in the style of Edward Tufte
- tufte::tufte_book PDF books in the style of Edward Tufte
- html_vignette R package vignette (HTML)
- github_document GitHub Flavored Markdown document

Rescaling

Normal Data

Normalization (Min-Max Scaling)

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}} = \frac{\text{(Min difference)}}{range}$$

Normalized

plot(density(normalize(heights)))
head(normalize(heights))

[1] 0.6486486 0.4586645 0.4445548 ...

Non-normal Data

Normalized

plot(density(normalize(minday)))
head(normalize(minday))

[1] 0.7446809 0.8510638 0.5106383 ...

Rescaling changes centrality and dispersion

but does not change **shape** of distribution

Normalized

Standardization (*Z-score Normalization*)

$$X_{std} = \frac{X - \bar{X}}{S_X} = \frac{mean\text{-centered data}}{standard deviation}$$

standardize <- function(x) { (x - mean(x)) / sd(x) }</pre>

Standardized

Standard Normal

plot(density(standardize(heights)))
head(standardize(heights))

[1] 1.37346859 -0.54966899 0.37253734

z-scores

plot(density(standardize(minday)))
head(standardize(minday))

[1] 0.5668138 1.3576899 -1.1731137 ...

z-scores

Is the standard normal distribution useful for anything?

What are the <u>units</u> of standardized data?

(from Original)

Z-scores and probabilities

for standard normal distributions

Probability given a z-score

Z-score given a probability (as quantile)

Classical One-Sample Test of Means: *t-Test*

sample mean

hypothesized mean

Test of Interest:

$$\bar{x} = \mu_0$$

sample mean vs. hypothesized population mean (units specific to domain)

Test Statistic:

test the difference

$$t = \frac{\left(\overline{x} - \mu_0\right)}{s}$$

standard error (standard deviation of the sampling mean)

Interpretations of *t-statistic*:

- How many *standard errors* the *sample mean* is away from the *hypothesized mean*
- A standardized difference of means

Confidence Interval of μ : *t-distribution*

Sample statistics:

Sample Mean: (weakly approx. to pop. mean)

$$\bar{x} = \frac{\sum x_i}{n} \sim \mu_x$$

Standard Deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

sample size: n

degrees of freedom (df) = n-1

Standard error of the mean:

(based on one sample)

$$S_{\bar{x}} = \sqrt[S]{\sqrt{n}}$$

distribution of sample means

95% Confidence Interval:

$$\bar{x} - 1.96 \binom{s}{\sqrt{n}}$$
 to $\bar{x} + 1.96 \binom{s}{\sqrt{n}}$

$$\bar{x} + 1.96 \left(\frac{S}{\sqrt{n}} \right)$$

$$\bar{x} - 2.58 \binom{s}{\sqrt{n}}$$
 to $\bar{x} + 2.58 \binom{s}{\sqrt{n}}$

$$\bar{x} + 2.58 \left(\frac{s}{\sqrt{n}} \right)$$

Confidence Interval of Population Mean (μ_x) :

$$\bar{x} \pm t \left(\frac{S}{\sqrt{n}} \right)$$

Confidence Level	t (df > 30)
90.0%	1.65
95.0%	1.96
99.0%	2.58

Probability and scores on t-distributions:

Examples:
pt(-1.13, df=100) [1] 0.1305897
qt(0.13, df=100) [1] -1.132817

Hypothesis Testing with *t*

sample mean — hypothesized population mean

$$t = \frac{\left(\overline{x} - \mu_0\right)}{S_{\overline{x}}} = \frac{\left(\overline{x} - \mu_0\right)}{\left(S / \sqrt{n}\right)} \sim t_{n-1}$$
 standard error

the distance (in standard errors) from the hypothesized mean to sample mean

t-distribution (assuming H_{null} is correct)

The **Non-Parametric Bootstrap**

We do not need to use the parameters of any distribution

How do we do a non-parametric bootstrap?

From an original sample of size n, We draw k new samples of size n, with replacement

Resampling gives us *estimates* of other possible samples

But there are too many possible resample combinations:

$$\binom{2n-1}{n} = \frac{(2n-1)!}{n!(n-1)!}$$

boot_combinations <- function(n) choose(2*n - 1, n)</pre>

Even for **small samples**, *exhaustive resampling* is difficult **boot_combinations**(10) # 92378

For **larger samples**, exhaustive sampling is impossible boot_combinations(100) # 4.53e+58

Thus, we only pick 1,000 - 10,000 resamples

What does non-parametric bootstrapping give us?

Bootstrapped means \bar{x}_i are centered around sample mean \bar{x} , **not** around population mean μ

The best estimate of population mean μ is still the mean of the original sample \bar{x}

Bootstrapping does **not** give us a more *accurate* estimate of of μ than \bar{x}

Bootstrapping only tells us how precise \bar{x} might be (confidence interval of \bar{x})

Bootstrap percentile confidence interval

Picking the 2.5% - 97.5% quantiles of \bar{x}_i should give us estimate of the 95% CI of \bar{x}

Percentile CI is poor for **small samples** $(n \le 30)$

Randomness in Bootstrapping

Reproducibility

```
set.seed(10)
sample(1:10, replace=TRUE)
[1] 6 4 5 7 1 3 3 3 7 5
sample(1:10, replace=TRUE)
[1] 7 6 2 6 4 5 1 3 4 9

set.seed(10)
sample(1:10, replace=TRUE)
[1] 6 4 5 7 1 3 3 3 7 5
sample(1:10, replace=TRUE)
[1] 7 6 2 6 4 5 1 3 4 9
```

We can **initialize** R's randomization algorithm with a given **seed** value

With the same seed, other researchers can now reproduce our research

lost amounts

Pick a random seed for every project, and use it set.seed()

round(runif(1) * 10^9)
set.seed(864721226)

Destructive Resampling

How much data is lost in a single resampling with replacement?

```
set.seed(4356781)
resampled <- sample(1:100, replace=TRUE)

100 - length( unique(resampled) )
[1] 37</pre>
```

In general, how much data is lost in bootstrapping?

```
lost <- function() {
  100 - length(unique(sample(1:100, replace=TRUE)))
}</pre>
```


On each random pick of a bootstrap, every number has:

(1/n) probability of being picked, and

(1 - 1/n) probability of not being picked.

Probability of an item NOT being picked at large n:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e} \approx 0.3678794$$

 $\sim 1/3^{rd}$ of data is lost in a bootstrap!

Sampling Statistics: Mean vs. Median

Bootstrapped means

```
sample_means <- replicate(num_boot, sample_statistic(mean, minday))
plot(density(sample_means), lwd=2, main="sample means")
quantile(sample_means, probs = c(0.025, 0.975))

# 2.5% 97.5%
# 941.33 943.63 We can estimate the population mean
within a 2-3 minute interval!</pre>
```


sample means

Bootstrapped medians

sample_medians <- replicate(num_boot, sample_statistic(median, minday))
plot(density(sample_medians), lwd=2, main="sample medians")
quantile(sample_medians, probs = c(0.025, 0.975))
2 5% 07 5%</pre>
**Sampling widely at

2.5% 97.5% # 1020 1050

The population **median** might be in a 30 minute interval...

How would you respond to: "What is the 95% CI of the median?"

sample medians

Bootstrapping and Standard Error

Sample size and Standard error

Bootstrapping from a medium-sized sample

show_resample_width(mean, sample(minday, 1000))

Bootstrapping from a large sample

show_resample_width(mean, minday)

This demonstrates **Standard error:**(standard deviation of sampling means)

$$S_{\bar{x}} = \sqrt[S]{\sqrt{n}}$$

Bootstrapping

Non-parametric Bootstrap

Start from <u>Sample Data</u>

Uses best known estimate of unknown population distribution: the sample distribution!

Not the best choice for small samples, normal distributions

Parametric Bootstrap

Assume Population Distribution

from distribution parameters

Very precise when population distribution is well known (e.g., residuals)

Must have strong reason to know population distribution

Smoothed Bootstrap

Use Density Function of Sample Data

Compromise between non-parametric and parametric

Does not generalize well to multivariate or categorical data

Classical Hypothesis Testing: *t-values*, *p-values*

The *credit manager* of a department store **claims** that their average credit balance of their account holders customers is **\$410**. An *independent auditor* wants to confirm that the credit manager is keeping accurate records.

The auditor carefully examines 180 accounts at random, and calculates they have a mean balance of \$507.47, with standard deviation of \$177.84.

At 95% confidence, should the auditor believe that the credit manager's estimate is accurate?

Manager's (Hypothesized) Population Claim:

```
hypmanager hyp <- 410
```

Auditor's sample:

```
auditor_sample <- read.csv("audit.txt")$audit
sample_size <- length(auditor_sample) # 180
sample_mean <- mean(auditor_sample) # 507.47
sample sd <- sd(auditor_sample) # 177.84</pre>
```

The Test

Standard Error:

```
se <- (sample_sd /sqrt(sample_size))
[1] 13.25578</pre>
```

T-statistic

```
t <- (sample_mean - manager_hyp) / se
[1] 7.352796</pre>
```

```
p-value: Probability of t
    df <- sample_size - 1
    p <- 1 - pt(t, df)
    [1] 3.349099e-12</pre>
```


t-intervals (and p-values) are poor for skewed data Use the bootstrapped intervals instead

Bootstrapping the mean differences

Let's create some fictional data for our earlier problem:

```
set.seed(50)
pop <- rnorm(100000, mean=511, sd=183)
# Manager's hypothesis: μ=140
```

Claim and sample

```
manager_hyp <- 410
mean(auditor_sample) # [1] 507.47</pre>
```

Difference between auditor's mean and manager's claim

(should be close to zero if they agree!)

```
mean(auditor_sample) - manager_hyp
# [1] 97.46706
```

Bootstrapping the 95% CI of the Difference of Means

```
boot_mean_diffs <- function(sample0, mean_hyp) {
    resample <- sample(sample0, length(sample0), replace=TRUE)
    return( mean(resample) - mean_hyp )
}

set.seed(42379878)
num_boots <- 2000
mean_diffs <- replicate(
    num_boots,
    boot_mean_diffs(auditor_sample, manager_hyp)
)

diff_ci_95 <- quantile(mean_diffs, probs=c(0.025, 0.975))
# 2.5% 97.5%
# 71.37672 124.00195 The 95% CI of the difference does not contain zero:</pre>
```

we can reject the manager's claim

Bootstrapping the *t-interval*

```
Bootstrapping the standardized difference (t-statistic)
```

Visualizing the bootstrapped standardized difference

Statistical Inference: generalizing from sample to population

Inference & Error

Error: Bias vs. Variance

 $+ \varepsilon_i$

Imagine monitoring usage data of users of a mobile game app, for a 24-hour period

(errors that tend to disagree)

Coverage Error

Sampling Frame

555

???

infrequent_{..} players

Target Population

Undercoverage

Nonresponse Error

???

333

Target Population = Sampling Frame

Statistical Inference & Hypothesis Testing

Нуро	othesis: The defendant is guilty!	If you reject H _{null}	If you cannot reject H _{null}
H _{null}	The defendant is presumed to be innocent		You find support for H _{null}
H _{alt}	The defendant is guilty	You find support for Halt	

$$t = \frac{\left(\overline{x} - \mu_0\right)}{S_{\overline{x}}}$$

H _{null}	The average professors spends 8 or fewer hours in the office	μ ≤ 8 hrs
H _{alt}	The average professor spends more than 8 hours in the office	μ > 8 hrs

H _{null}	On average, the factory fills bottles with at least 1 liter	<i>μ</i> ≥ 1.00L
H _{alt}	On average, the factory fills bottles with less than a liter	μ < 1.00L

H _{null}	The average credit balance is \$410	$\mu = 410$
H_{alt}	The average credit balance is not \$410	µ ≠ 410

Type I and Type II Errors

Distribution of sampling means

Null hypothesis (H_0) : $\mu_0 \le a$

e.g., average number of people per restaurant booking is 3 persons or less

$$t = \frac{\left(\overline{x} - \mu_0\right)}{S_{\overline{x}}} = \frac{\left(\overline{x} - \mu_0\right)}{\left(\frac{S}{\sqrt{n}}\right)}$$

Sample 1:

if we reject H_{null}

 $P(\alpha) = P(type \ I \ error) = P(1-\beta) = Power=$

if we don't reject H_{null}

 $P(1-\alpha) = P("correct") = P(\beta) = P(type II error) =$

Sample 2:

if we reject H_{null}

 $P(\alpha) = P(type \ I \ error) = P(1-\beta) = Power=$

if we don't reject H_{null}

 $P(1-\alpha) = P("correct") = P(\beta) = P(type II error) =$

Sample 3:

if we reject H_{null}

 $P(\alpha) = P(type \ I \ error) = P(1-\beta) = Power=$

if we don't reject H_{null}

 $P(1-\alpha) = P("correct") = P(\beta) = P(type II error) =$

