FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 24: 29/09/22)

FUND. ELEM. DA MATEMATICA AULA 24: Families de Conjuntes Complements de un Conjunts Dados Conjuntos E e F, a diference entre els é: En.: A={1,2,3,5} & B={2,4,6,8} L> A B = {1,3,5}

a diferença ExFéchannada de Complements de F en E; e representames li- [En.: E= {1,2,3,4,5,6}, A= {2,4,6} 1 B= {1,3,5} Entas: $C(A) = [-1]A = {1,3,5}$ B== [18={2,4,6}. E = 1 \ E = {0,7,8,9,...} = {NEN : N=0 OU N = 7}

	Terenna: Syom A, Be E evry. com
	ACE & BCE.
~ -	A,BCE
<i>S</i>	Sempre vale:
	(a) $A \setminus \phi = A$ $A \setminus A = \phi$
4	(b) ANB= \$\phi => A\B=A & B\A=B
	Sow dujuntos
	$(c) (AUB)^c = A \cap B^c$
	$(A) (A \cap B)^{c} = A^{c} \cup B^{c}$
	(e) $A \cup A^c = E$ $A \cap A^c = \emptyset$
	A / AC E
	$(f)(A^c)^e = A$
	(9) $A \subset B \iff B' \subset A'$

Prova de (d): Pour provos devenus ga
nontin que
Yn, ne (ANB) => NEAUB
à surrepre verdade. Poros inter, terms!
Yn, ne(ANB)=EI(ANB)
X E E Q M CAMB
> n E E l (n & A on n & B)
(neEen&B)
<=> x ∈ E \ A gu n ∈ E \ B
<=> x ∈ ACUBC
Portonto, vole a ignaldade (AUB) = A' NB'

Indinação de Conjunto AUBUC={76 NEA OUNEBOUNEC} AUBUCUD= {x: x ∈ A on x ∈ B on x ∈ C on x ∈ D} B) Pora regin fazendo unios de mais Conjuntos, preciramos de indiraças. € Arrim, para n≥2, e Conjuntes A, Az, Az, ..., Am-s & Am, le modo que podemo entas consideros 1) A:= {n: n ∈ A; poro algum i, 1 ≤ 1 ≤ M} 1687151.1mg

Por exemplo: A=A, Az=B, Az=CeA=D, Ai = AIUAZUAZUAY i∈{1,2,3,4} = AUBUCUD De modo gural, dado um conjunto que charronners de Conz. de Índias, Chomorenes de Fornilia, o conjunts $A_i : i \in I$ de Conjuito 1, que tombém à representa-{ A; }, eI.

Enter:
$$I = \{1, 2, 3\}$$
 e $A_1 = \{5, 6\}$, $A_2 = \{2, \pi\}$
e $A_3 = IN$.
Enter: $\{A_i\}_{i \in I} = \{A_1, A_2, A_3\}$
 $= \{3, 6\}, \{2, \pi\}, IN\}$.
 $E_{XII}: J = \{V_2, \Pi, \frac{1}{2}, 100\}$ e
 $B_1 = \{1, 2, 3\}$ e $B_{100} = \{1, 2, 3, ..., 10\}$
 $A_2 = \{1, 2, 3\}$ e $B_{100} = \{1, 2, 3, ..., 10\}$
A gorar, dada uma familia
 $\{A_i\}_{i \in I}$

a Unios de todos os elementos do familia
l dada por
que representances por VA; ou reja,
one representances por VA; con sega,
ieI /
$A_i = \{x : x \in A_i, point alguna i \in I\}$.
1 E I
$\begin{cases} \underline{t_{n.}} : \bigcup B_{J} = B_{V_{\overline{2}}} \cup B_{\overline{m}} \cup B_{V_{\overline{2}}} \cup B_{100} \end{cases}$
$j \in \mathcal{J}$
En: Consider N={1,2,,m}
$A_{\lambda} = \{i, i+3\}$ $A_{\lambda} = \{1, 2\}$
$A_{z} = \{z, 3\}$ \vdots
$A_{m} = \{m, m+3\}$

live	$A_{1} = A_{1} \cup A_{2} \cup \cup A_{m} = \{1, 2, 3,, m, m+1\}$ $\{1,, m\}$
	En: Considere Roany. des muiveres
	$S_{\alpha} = \left\{ n \in \mathbb{R}^{n} : -\kappa < n < \kappa \right\}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\{S_{\alpha}\}_{\alpha\in\mathbb{R}}$
	Alim durs: 7 R. D. Sa = R.

Vanus prova a sympladi: Neste esso, note que YZ, ZE US => ZES LO PUR algum «OEIR. => ZEIR, pois Soc R. L> YZ, Z∈US => Z∈R, on ryor, turns USaCIR. (**) R C USa Nutrasno: Yy, y \ R => - (|y|+1) x y < |y|+1 => 465 | 41+1 => 46 | Sx Portont, RCUSX.