Extension Fields

Definition

Let F and K be fields such that F is a subring of K. F is called a *subfield* of K and K is called an *extension field* of F.

Note that K (vectors) is a vector space over F (scalars), called an F-vector space, and denoted denoted K/F. A basis for K/F is called an F-basis for K. The dimension of K/F is denoted by $[K:F]=\dim_F(K)$ and represents the cardinality of an F-basis for K.

If [K : F] is finite then K is called a finite extension of F.

Example

F	K	[F:K]	BASIS
$\overline{\mathbb{Q}}$	\mathbb{C}	∞	
\mathbb{R}	$\mathbb C$	2	$\{1, i\}$
Q	$\mathbb{Q}(\sqrt{d})$	2	$\{1,\sqrt{d}\}$
Q	$\mathbb{Q}(\sqrt[n]{d})$	n	$\{1, \sqrt[n]{d}, \sqrt[n]{d^2} \dots, \sqrt[n]{d^{n-1}}\}$

Notation

K/F is sometimes denoted as follows:

The reason for this is that there may be a tree of subfields of interest:

Definition: Generated Extension

Let K/F and $S \subseteq K$. The smallest subfield of K containing both F and S, denoted F(S), is called the extension of F generated by S and is the intersection of all extended fields L of F such that $S \subseteq L \subseteq K$.

Definition: Simple Extension

Let K/F and $\alpha \in K$. The field extension generated by $\{\alpha\}$, denoted $F(\alpha)$, is called the *simple* field extension of F generated by α , and α is called a primitive element for $F(\alpha)/F$.

Note that $F(\alpha)$ is the field of fractions for the ring F[x] with polynomials evaluated at α :

$$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f(x), g(x) \in F[x] \text{ and } g(\alpha) \neq 0 \right\}$$

When the α is algebraic then $q(\alpha)$ can be eliminated by a technique such as rationalization. Thus, $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$; however $\mathbb{Q}(\pi) \neq \mathbb{Q}[\pi]$ because $\frac{1}{\pi} \notin \mathbb{Q}[\pi]$.

Theorem

Let K/L and L/F be field extensions:

$$[K:F] = [K:L][L:F]$$

Furthermore, if A is an F-basis for L and B is an L-basis for K then:

$$AB = \{ab \mid a \in A \text{ and } b \in B\}$$

is an F-basis for K.

Proof

Let n = [K : L] and m = [L : F]

Assume $c \in K$

 $c=\sum_{i=1}^n\ell_ib_i$, where $\ell_i\in L$ and $b_i\in B$ But each ℓ_i can be written as $\ell_i=\sum_{j=1}^mf_ja_j$, where $f_j\in F$ and $a_j\in A$

So
$$c = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} f_{j} a_{j} \right) b_{i} = \sum_{i,j} f_{ji}(a_{j} b_{i})$$

Therefore AB spans K.

Now assume $\sum_{i,j} f_{ji}(a_jb_i)=0$ for some finite $\{a_ib_i\}\subseteq AB$ For a given i, let $\ell_i=\sum_j f_{ji}a_j$

$$\sum_{i} \ell_i b_i = 0$$

But the b_i are linearly independent and so each $\ell_i 0$

So for each i, $\sum_{j} f_{ji} a_{j} = 0$

But the a_i are linearly independent and so each $f_{ji} = 0$

Therefore the $a_i b_i$ are linearly independent.

Therefore AB is an F-basis for K and [K:L][L:F]=[K:F].