COSC 414/519I: Computer Graphics

2023W2

Shan Du

Geometric Objects

- How to represent 3D objects?
 - Using three fundamental types:
 - Scalar a number, can be used to represent distance.
 - Point a location in space, no size or shape.
 - Vector can be used for any quantity with direction and magnitude. Physical quantities, e.g., velocity and force, are vectors. A vector, however, does not have a fixed location in space.

- We often connect points with directed line segments.
- A directed line segment has both magnitude – its length and direction – its orientation, and thus is a vector.

Vectors

- Vectors can have their lengths increased or decreased without changing their directions.
 - (a) B = 2A multiplication of a vector by a scalar
- Two vectors can be added by the *head-to-tail* rule.
 - (b) D = A + C the addition of two vectors

(a) Parallel line segments. (b) Addition of line segments.

Vectors

 If two vectors have the same length but opposite directions, their sum will be zero vector, 0 whose magnitude is zero and orientation is undefined.

Inverse vectors.

Vectors

 We can use a directed line segment to move one point to another. We call this operation point-vector addition, and it produces a new point.

Point-vector addition

Any two points define a directed line segment or vector from one point to the second. We can call this operation *point-to-point subtraction*, v = P - Q.

Coordinate-Free Geometry

Object and coordinate system.

Object without coordinate system.

Vector and Affine Spaces

Vector space:

- contains two distinct types of entities, vectors and scalars.
- We can combine scalars and vectors to form new vector through scalar-vector multiplication and vectors to vectors through vector-vector addition.

Euclidean space:

 an extension of the vector space that adds a measure of size or distance and allows us to define such things as the magnitude of a vector.

Vector and Affine Spaces

Affine space:

- An extension of the vector space that includes an additional type of objects: the point.
- No operations between two points or between a point and a scalar that yields points.
- Has operation of *point-vector addition* that produces a new point, or alternatively, an operation of *point-point subtraction* that produces a vector from two points.

Abstract Data Types (ADT)

- In computer graphics, our scalars are real numbers using ordinary addition and multiplication. Our geometric points are locations in space, and our vectors are directed line segments.
- These objects obey the rules of an affine space. We can create the corresponding ADTs in a program.

Abstract Data Types (ADT)

- Greek letters α , β , γ , ... denote scalars.
- Uppercase letters P, Q, R, \dots denote points.
- Lowercase letters u, v, w, ... denote vectors.

Scalars, Points and Vectors

• The magnitude of a vector v is a real number denoted by |v|. The operation of vector-scalar multiplication has the property that $|\alpha v| = |\alpha||v|$, and the direction of αv is the same as the direction of v if α is positive and the opposite direction if α is negative.

Scalars, Points and Vectors

- Subtraction of two points: v = P Q
- Point-vector addition: P = Q + v

Scalars, Points and Vectors

Use of the head-to-tail rule. (a) For vectors. (b) For points.

$$(P-Q) + (Q-R) = P - R$$

Lines

- The sum of a point and a vector (or the subtraction of two points) leads to the notion of a line in an affine space.
- Consider all points of the form $P(\alpha) = P_0 + \alpha d$, where P_0 is an arbitrary point, d is an arbitrary vector, and α is a scalar that can vary over some range of values.

Line in an affine space.

15

Lines

- For any value α , $P(\alpha)$ yields a point.
- These points lie on a line.
 This form is known as the parametric form of the line.
- If α is nonnegative, we get a ray emanating from P_0 and going in the direction of d.

Line in an affine

space.

Affine Sums

• For any point Q, vector v, and positive scalar α ,

$$P = Q + \alpha v$$

describes all points on the line from Q in the direction of v.

 We can always find a point R such that

$$v = R - Q$$

Thus

$$P = Q + \alpha(R - Q)$$

= $\alpha R + (1 - \alpha)Q$

Affine Sums

 This operation looks like the addition of two points and leads to the equivalent form

$$P = \alpha_1 R + \alpha_2 Q$$

where $\alpha_1 + \alpha_2 = 1$

Affine addition.

Convexity

- A convex object is one for which any point lying on the line segment connecting any two points in the object is also in the object.
- We can use affine sums to help us gain a deeper understanding of convexity. For $0 \le \alpha \le 1$, the affine sum defines the line segment connecting R and Q; thus this line segment is a convex object.

Line segment that connects two points.

Convexity

• We can extend the affine sums to include objects defined by n points $P_1, P_2, ..., P_n$. Consider the form $P = \alpha_1 P_1 + \alpha_2 P_2 + ... + \alpha_n P_n$ which is defined if and only if

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

• The set of points formed by the affine sum of n points, under the additional restriction $\alpha_i \geq 0$, i = 1,2,...,n is called the **convex hull** of the set of points.

- The dot product of u and v is written $u \cdot v$. If $u \cdot v = 0$, u and v are orthogonal.
- The magnitude of a vector u can be given by the dot product $|\mathbf{u}| = \sqrt{u \cdot \mathbf{u}}$.
- The cosine of the angle between two vectors is given by

$$cos\theta = \frac{u \cdot v}{|u||v|}$$

Dot product and

• $|u|cos\theta = \frac{u \cdot v}{|v|}$ is the length of the orthogonal projection of u on to v.

• A set of vectors is linear
independent if we cannot write
one of the vectors in terms of the others using
scalar-vector multiplication and vector addition.

 A vector space has a dimension, which is the maximum number of linearly independent vectors that we can find.

- We can use two nonparallel vectors, u and v, to determine a third vector n that is orthogonal to them. This vector is the cross product $n = u \times v$.
- We can use cross product to derive three mutually orthogonal vectors in 3D space from any two nonparallel vectors.

$$n = u \times v$$
$$w = u \times n$$

and then u, n, and w are mutually orthogonal.

• The magnitude of the cross product gives the magnitude of the sine of the angle θ between u and v,

$$|sin\theta| = \frac{|u \times v|}{|u||v|}$$

- A plane in an affine space can be defined as a direct extension of the parametric line.
- The line segment that joins P and Q is the set of points of the form

$$S(\alpha) = \alpha P + (1 - \alpha)Q$$
 $0 \le \alpha \le 1$

• Suppose we take an arbitrary point on this line segment and form the line segment from this point to R, we can use a second parameter β to describe points along it.

Formation of a

piane

26

$$T(\beta) = \beta S + (1 - \beta)R \quad 0 \le \beta \le 1$$

Such points are determined by α and β and form the triangle determined by P, Q, and R.

$$T(\alpha, \beta) = \beta[\alpha P + (1 - \alpha)Q] + (1 - \beta)R$$

If we rewrite
$$T(\alpha, \beta) = \beta \alpha P + \beta (1 - \alpha)Q + \beta (1 - \beta)R \Rightarrow T(\alpha', \beta', \gamma') = \alpha' P + \beta' Q + \gamma' R$$
, where $\alpha' + \beta' + \gamma' = 1$

Formation of a

- The representation of a point by $(\alpha', \beta', \gamma')$ is called its **barycentric coordinate** representation of T with respect to P, Q, R.
- For $0 \le \alpha, \beta \le 1$, all the points $T(\alpha, \beta)$ lie in the triangle formed by P, Q, R.

- If a point P lies in the plane, u and v are two nonparallel arbitrary vectors, then $P P_0 = \alpha u + \beta v$ where P_0 is the joint point of u and v.
- We can find a vector n that is orthogonal to both u and v. If we use the cross product $n = u \times v$, then the equation of the plane becomes $n \cdot (P P_0) = 0$.
- The vector *n* is perpendicular, or orthogonal, to the plane; it is called the *normal* to the plane.

• The forms $P(\alpha)$, for the line, and $T(\alpha, \beta)$, for the plane, are known as **parametric forms** because they give the value of a point in space for each value of the parameters α and β .

3D Objects

In 3D, objects are no longer restricted to lie in the same plane.

Curves in three dimensions.

Surfaces in three dimensions.

Volumetric ob-

jects.

3D Objects

- Three features characterize 3D objects that fit well with existing graphics hardware and software:
- 1. The objects are described by their surfaces and can be thought of as being hollow.
- 2. The objects can be specified through a set of vertices in 3D.
- 3. The objects either are composed of or can be approximate by flat, convex polygons.