

UNIVERSIDAD DE GRANADA

SIMULACIÓN DE SISTEMAS

Práctica 1

Alejandro Manzanares Lemus

alexmnzlms@correo.ugr.es

22 de octubre de 2020

Índice general

1.	Simulador de aparcamiento	2
	1.1. Múltiples ejecuciones	2
	1.2. Variación de un parámetro	
	1.3. Variación de varios parámetros	10
2.	Simulador de radares	12
	2.1. Variación del número de ejecuciones	12
	2.2. Variación de las propiedades de los repuesto	17
3.	Simulador dos especies de peces	19
	3.1. Búsqueda del equilibrio	19
	3.2. Campaña de pesca	

Apartado 1: Simulador de aparcamiento

El simulador de aparcamiento consiste en un sistema que simula un conductor que debe aparcar su coche en una calle infinitamente larga lo mas cerca posible de una posición objetivo. Para todas las pruebas realizadas se ha considerado 100 como posición objetivo en la que se desea aparcar. Para simular este sistema, podemos establecer la probabilidad de que el conductor encuentre la plaza ocupada, así como la distancia de visión que posee y el número de simulaciones que se realizan.

1.1: Múltiples ejecuciones

En la primera prueba, ejecutamos el simulador un total de 10 veces, para comprobar los resultados obtenidos. Podemos ver en la siguiente tabla la distancia mínima a la posición objetivo —recordemos que esta posición es la número 100— así como la posición a partir de la cual empezó a buscar aparcamiento. Para cada iteración del simulador se han realizado 100000 simulaciones.

Iteración de la simulación	Distancia mínima al objetivo	Posición inicial (c)
0	6.554650	96
1	6.514790	95
2	6.521850	94
3	6.497070	95
4	6.493840	95
5	6.523610	94
6	6.514420	95
7	6.499410	95
8	6.525110	95
9	6.562060	96

También podemos ver estos resultados en forma de gráfica a continuación.

Como se puede apreciar, los resultados no varían demasiado entre una simulación y otra, ya que no estamos alterando ninguna variable del sistema, simplemente estamos ejecutando la misma simulación de forma reiterada.

1.2: Variación de un parámetro

Esta prueba si que tiene algo más de interés, a continuación realizaremos una serie de ejecuciones del simulador variando un solo parámetro cada vez. Por defecto, los parámetros son 100000 simulaciones, 0.9 probabilidad de ocupación de la plaza y 2 unidades de visión para el conductor.

Primeramente realizamos la prueba variando el parámetro de la probabilidad de que el conductor encuentre ocupada la plaza en la que intentará aparcar.

En la siguiente tabla podemos ver la distancia mínima encontrada para los diferentes valores de esta probabilidad así como la posición inicial a partir de la cual se obtiene esta distancia.

Probabilidad de ocupación	Distancia mínima al objetivo	Posición inicial (c)
0.1	0.101910	100
0.2	0.210680	100
0.3	0.338430	100
0.4	0.509750	100
0.5	0.744920	99
0.6	1.067510	99
0.7	1.647840	99
0.8	2.960300	98
0.9	6.478240	95

Para una probabilidad inferior al 50 %, podemos observar como la mejor distancia se obtiene empezando a buscar aparcamiento justo cuando alcanzamos la posición objetivo, mientras que cuando la probabilidad aumenta, debemos ser mas precavidos y empezar a buscar plaza antes de llegar a nuestro objetivo.

En la gráfica siguiente se puede observar como para los distintos valores de probabilidad, cuanto antes se empieza a buscar aparcamiento, más lejos se aparca del objetivo, mientras que cuanto mas esperamos a empezar a buscar, mejor resultado se obtiene, excepto cuando la probabilidad pasa el $50\,\%$. En este caso, podemos ver como al curva es ascendente en su ultimo tramo, lo que significa que el resultado empeora si esperamos demasiado.

En las siguientes gráficas, podemos ver de manera visual, como según aumenta la probabilidad de encontrar la plaza ocupada, aumenta la distancia mínima encontrada y disminuye la posición inicial a partir de la cual empezar a buscar aparcamiento.

El siguiente parámetro que variamos, es la distancia de visión del conductor. En la siguiente tabla podemos ver los resultados obtenidos para esta prueba.

Visión del conducto	Distancia mínima al objetivo	Posición inicial (c)
1	6.567060	94
2	6.509090	94
3	6.447840	95
4	6.389330	95
5	6.251710	95
6	6.145040	95
7	5.937980	94
8	5.849080	94
9	5.752370	93
10	5.647370	93

Podemos ver en este caso, que según aumenta la distancia de visión del conductor, disminuye la distancia a la que conseguimos aparcar de la posición objetivo, pero también disminuye la posición inicial a partir de la cual debemos empezar a buscar, es decir, debemos empezar a buscar aparcamiento con más antelación.

En la siguiente gráfica, se muestra la relación entre distancia mínima al objetivo y la posición inicial a partir de la cual se empieza a buscar aparcamiento.

Se puede notar como para los diferentes valores de la visión del conductor, los resultados son bastante homogéneos, siendo que las gráficas casi parecen una sola.

A continuación se puede notar gráficamente como al aumentar la visión del conductor, la distancia mínima al objetivo se reduce, mientras que la posición inicial aumenta en un principio pero disminuye finalmente.

Finalmente, el último parámetro que modificaremos será el número de simulaciones de aparcamiento que se realizan por cada ejecución del simulador.

Igual que en los casos anteriores, en la siguiente tabla podemos apreciar los distintos valores que se han probado, así como la distancia mínima al objetivo encontrada y la posición inicial a partir de la cual se obtiene plaza a dicha distancia.

número de simulaciones	Distancia mínima al objetivo	Posición inicial (c)
10	3.200000	93
100	5.800000	96
1000	6.350000	94
10000	6.371000	94
100000	6.470920	95

De forma gráfica, podemos observar como, cuando el número de simulaciones es bajo, los resultados tienen un mayor número de altibajos, mientras que según aumenta el número de simulaciones, la gráfica se vuelve más continua y con menos saltos.

Como nota de interés, al igual que en los apartados anteriores se han generado las siguientes gráficas, donde podemos observar que según aumenta el número de simulaciones, los resultados convergen a un valor concreto.

1.3: Variación de varios parámetros

Finalmente, realizaremos un estudio del comportamiento del simulador cambiando más de un parámetro al mismo tiempo. Para esta memoria, se ha decido mantener el número de simulaciones y variar la distancia de visión del conductor asi como la probabilidad de ocupación de una plaza de aparcamiento.

En las siguientes tablas se reflejan los resultados obtenidos en distancia mínima y posición inicial para los valores que se han probado.

Probabilidad de aparcamiento

		1 Tobachitata de aparecamento									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
1	0.099620	0.210710	0.338900	0.506900	0.748600	1.151790	1.839180	3.030380	6.517660		
2	0.100520	0.209580	0.338920	0.506960	0.746740	1.064400	1.649300	2.953630	6.460450		
3	0.100390	0.208980	0.331670	0.477110	0.687310	1.006920	1.602300	2.782350	6.437300		
4	0.099130	0.207590	0.333320	0.480670	0.689810	0.982970	1.512140	2.697540	6.371280		
5	0.099830	0.208420	0.330430	0.475570	0.670110	0.966900	1.480660	2.565040	6.277510		
6	0.100240	0.206780	0.328190	0.476200	0.672600	0.954690	1.437860	2.513240	6.085530		
7	0.099610	0.207000	0.326700	0.475310	0.664360	0.945820	1.427430	2.441490	6.001120		
8	0.099350	0.206130	0.325790	0.475920	0.668380	0.942190	1.396800	2.416840	5.853020		
9	0.098970	0.206130	0.328060	0.471570	0.664220	0.942370	1.400510	2.345610	5.729080		
10	0.099440	0.204730	0.327840	0.473750	0.666350	0.933790	1.395460	2.351450	5.656510		

Vision del conductor

Probabilidad de aparcamiento

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	100	100	100	100	100	100	100	98	95
2	100	100	100	100	99	99	99	98	95
3	100	100	99	99	99	99	99	98	95
4	100	99	99	99	98	98	98	97	94
5	97	98	98	98	98	98	98	97	95
6	98	98	97	97	97	97	97	97	95
7	99	97	99	97	97	97	97	96	95
8	95	98	98	98	97	96	96	95	94
9	94	97	95	96	97	96	95	95	93
10	94	94	97	94	96	95	95	94	93

Vision del conductor

Estos datos son útiles pero poco ilustrativos, por ello, para comprobar el comportamiento real del simulador, he generado los siguientes mapas 3D, donde puede apreciarse de manera gráfica el comportamiento de los resultados.

En el primer mapa, podemos ver que la variable que más afecta a los resultados es la probabilidad de ocupación de la plaza, siendo que según aumenta este valor, aumenta también la distancia mínima obtenida. Mientras que según varia la visión del conductor, el valor de la distancia mínima aumenta, pero no de manera tan marcada.

En el segundo mapa no apreciamos tan bien el comportamiento cuando hablamos de la posición inicial óptima a partir de la cual empezar a buscar aparcamiento. Si podemos ver, que a menos vista del conductor, menos anticipación debemos tener a la hora de buscar plaza, puesto que vemos menos. Según aumenta la probabilidad de ocupación de la plaza, aumenta también la anticipación que debemos tener.

Mapa 3D posicion inicial (c) donde la distancia al objetivo es minima variando visión y probabilidad de aparcamiento —

Apartado 2: Simulador de radares

El simulador de radares simula el funcionamiento de un número determinado de radares, que poseen una vida útil determinada — por defecto 20 días — y un tiempo de reparación determinado hasta que vuelven a estar operativos — de 15 a 30 días por defecto —. Intentaremos averiguar el número de repuestos necesarios para que el tiempo de desprotección parcial sea inferior al $1\,\%$

2.1: Variación del número de ejecuciones

En primer lugar, probaremos a ejecutar el simulador bajo su configuración por defecto, variando el número de simulaciones que se realizan. A continuación mostramos los resultados obtenidos:

	Tabla generada para el simulador de radares con 1 simulación											
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección					
0	1	45	349.951	95.877	0	0	0					
1	1	50	319.631	87.5701	0	0	0					
2	1	53	304.679	83.4737	0	0	0					
3	1	67	291.709	79.9203	0	0	0					
4	1	49	201.927	55.3224	0	0	0					
5	1	31	104.231	28.5563	0	0	0					
6	1	25	90.1675	24.7034	0	0	0					
7	1	21	42.9977	11.7802	0	0	0					
8	1	16	38.4443	10.5327	0	0	0					
9	1	8	10.8468	2.97171	0	0	0					
10	1	1	2.82288	0.773391	0	0	0					
11	1	0	0	0	0	0	0					
12	1	0	0	0	0	0	0					
13	1	0	0	0	0	0	0					
14	1	0	0	0	0	0	0					
15	1	0	0	0	0	0	0					
16	1	0	0	0	0	0	0					
17	1	0	0	0	0	0	0					
18	1	0	0	0	0	0	0					
19	1	0	0	0	0	0	0					
20	1	0	0	0	0	0	0					
21	1	0	0	0	0	0	0					
22	1	0	0	0	0	0	0					
23	1	0	0	0	0	0	0					
24	1	0	0	0	0	0	0					
25	1	0	0	0	0	0	0					

Con una simulación podemos observar que el número de repuestos necesarios para que el tiempo de desprotección parcial no supere el 1% es 10.

	Tabla generada para el simulador de radares con 5 simulaciones										
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección				
0	5	42	352.239	96.5038	3.60555	9.11129	2.4957				
1	5	50	335.562	91.9348	6.44205	13.2647	3.63428				
2	5	53.8	287.18	78.6795	4.65832	25.3226	6.93761				
3	5	53.2	238.988	65.4762	5.54075	32.7864	8.98265				
4	5	50	197.389	54.0793	10.3199	47.2767	12.9525				
5	5	33.2	117.506	32.1935	6.22093	16.5225	4.52668				
6	5	28.6	78.5825	21.5294	6.94982	26.0007	7.12348				
7	5	20.4	57.108	15.646	5.54977	16.4936	4.5188				
8	5	17.8	44.1643	12.0998	5.84808	12.0867	3.31144				
9	5	7.4	14.9035	4.08316	3.91152	8.64149	2.36753				
10	5	4.6	10.6241	2.91071	4.50555	9.50589	2.60435				
11	5	2	4.51752	1.23768	2.12132	4.76625	1.30582				
12	5	1.2	3.48875	0.955823	1.78885	5.9696	1.63551				
13	5	0	0	0	0	0	0				
14	5	0	0	0	0	0	0				
15	5	0	0	0	0	0	0				
16	5	0	0	0	0	0	0				
17	5	0	0	0	0	0	0				
18	5	0	0	0	0	0	0				
19	5	0	0	0	0	0	0				
20	5	0	0	0	0	0	0				
21	5	0	0	0	0	0	0				
22	5	0	0	0	0	0	0				
23	5	0	0	0	0	0	0				
24	5	0	0	0	0	0	0				
25	5	0	0	0	0	0	0				

Para 5 simulaciones, podemos apreciar como el número mínimo de repuestos necesarios aumenta a 12.

	Tabla generada para el simulador de radares con 10 simulaciones											
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección					
0	10	44.7	349.833	95.8447	2.86937	11.2503	3.08207					
1	10	51.1	327.844	89.8203	3.66516	12.1404	3.32656					
2	10	57.9	300.196	82.2454	4.01246	21.3681	5.8542					
3	10	54.3	246.846	67.6289	5.12184	24.8807	6.81661					
4	10	54.9	209.583	57.4199	11.5031	31.7491	8.69833					
5	10	38.7	132.112	36.195	6.7173	30.2853	8.29734					
6	10	32.1	92.83	25.4329	11.7232	30.7326	8.41989					
7	10	21.5	50.8223	13.9239	10.2659	27.8845	7.6396					
8	10	16.6	40.2062	11.0154	8.64356	19.9703	5.47132					
9	10	8	17.2256	4.71935	3.74166	10.8646	2.97659					
10	10	5.3	13.462	3.68821	3.653	11.2033	3.06939					
11	10	3.5	7.81515	2.14114	2.71825	7.38965	2.02456					
12	10	1	2.41587	0.661883	1.24722	3.10247	0.849992					
13	10	0.4	0.572334	0.156804	0.699206	1.071	0.293425					
14	10	0.2	0.414171	0.113471	0.632456	1.30972	0.358828					
15	10	0	0	0	0	0	0					
16	10	0	0	0	0	0	0					
17	10	0	0	0	0	0	0					
18	10	0	0	0	0	0	0					
19	10	0	0	0	0	0	0					
20	10	0	0	0	0	0	0					
21	10	0	0	0	0	0	0					
22	10	0	0	0	0	0	0					
23	10	0	0	0	0	0	0					
24	10	0	0	0	0	0	0					
25	10	0	0	0	0	0	0					

Para 10 simulaciones, vemos que el número mínimo de repuestos es 12.

	Tabla generada para el simulador de radares con 50 simulaciones											
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección					
0	50	43.96	353.582	96.8718	3.19413	7.18843	1.97028					
1	50	50.1	327.789	89.8053	3.94994	15.8941	4.3548					
2	50	53.82	287.653	78.809	5.75588	23.1274	6.33634					
3	50	53.52	241.971	66.2935	7.16067	26.2554	7.19317					
4	50	48.8	185.36	50.7835	10.3214	34.2243	9.37641					
5	50	40.66	136.93	37.5151	10.1088	33.439	9.16132					
6	50	32.08	92.246	25.2729	9.57854	30.3834	8.32423					
7	50	20.84	55.5177	15.2103	9.36202	24.514	6.71617					
8	50	13.56	32.382	8.87178	7.74639	18.8165	5.1552					
9	50	7.9	17.2093	4.71488	4.9208	11.604	3.17918					
10	50	4.46	8.5308	2.33721	4.3669	8.89152	2.43603					
11	50	1.94	3.31555	0.90837	3.11291	5.86852	1.60781					
12	50	0.7	1.37498	0.376707	1.40335	2.83413	0.776473					
13	50	0.32	0.411364	0.112703	0.890769	1.55438	0.425857					
14	50	0.04	0.0598782	0.016405	0.282843	0.423403	0.116001					
15	50	0	0	0	0	0	0					
16	50	0	0	0	0	0	0					
17	50	0	0	0	0	0	0					
18	50	0	0	0	0	0	0					
19	50	0	0	0	0	0	0					
20	50	0	0	0	0	0	0					
21	50	0	0	0	0	0	0					
22	50	0	0	0	0	0	0					
23	50	0	0	0	0	0	0					
24	50	0	0	0	0	0	0					
25	50	0	0	0	0	0	0					

Para 50 simulaciones el número mínimo se reduce a 11.

	Tabla generada para el simulador de radares con 100 simulaciones											
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección					
0	100	44.23	352.931	96.6935	2.90197	7.8096	2.13881					
1	100	50.06	327.452	89.7128	4.05473	15.6902	4.29859					
2	100	53.96	289.779	79.3916	4.97249	21.7551	5.96041					
3	100	53.3	240.962	66.017	6.75921	28.8235	7.89661					
4	100	48.42	188.81	51.7287	7.93686	29.438	8.06512					
5	100	40.32	135.199	37.0408	8.46846	29.1112	7.97563					
6	100	31.17	91.8402	25.1617	9.0208	26.5919	7.28545					
7	100	21.39	56.0191	15.3477	8.17349	20.9672	5.74444					
8	100	13.62	31.757	8.70056	7.10496	16.7809	4.59749					
9	100	7.05	15.3795	4.21357	5.29603	12.19	3.33973					
10	100	3.64	7.21123	1.97568	4.06393	8.3311	2.28249					
11	100	2.14	4.24927	1.16418	3.45248	6.85864	1.87908					
12	100	0.85	1.55213	0.425242	1.83883	3.42524	0.938423					
13	100	0.59	0.920676	0.25224	1.82073	2.9375	0.804793					
14	100	0.28	0.415516	0.11384	1.07384	1.51682	0.415566					
15	100	0.14	0.19732	0.0540603	0.651649	0.983849	0.269548					
16	100	0.07	0.103657	0.0283992	0.408372	0.618308	0.169399					
17	100	0	0	0	0	0	0					
18	100	0	0	0	0	0	0					
19	100	0	0	0	0	0	0					
20	100	0	0	0	0	0	0					
21	100	0	0	0	0	0	0					
22	100	0	0	0	0	0	0					
23	100	0	0	0	0	0	0					
24	100	0	0	0	0	0	0					
25	100	0	0	0	0	0	0					

Para 100 simulaciones el número mínimo de repuestos necesarios es 12 nuevamente.

Tabla generada para el simulador de radares con 1 simulaciones							
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección
0	500	43.614	353.264	96.7847	3.38172	8.2248	2.25325
1	500	49.964	327.702	89.7815	3.90708	15.6817	4.29633
2	500	52.968	286.273	78.4308	5.37818	22.7282	6.22769
3	500	52.948	239.339	65.5724	7.19394	27.4515	7.52098
4	500	47.96	184.182	50.461	8.74159	30.029	8.22693
5	500	41.108	138.178	37.857	9.83594	31.5809	8.65228
6	500	30.594	88.8157	24.3331	9.35437	27.1053	7.4261
7	500	21.71	57.0597	15.6328	8.91251	23.4896	6.43552
8	500	13.862	33.0256	9.04811	7.58168	18.336	5.02354
9	500	7.706	16.5063	4.52227	5.74958	12.8776	3.5281
10	500	4.012	8.00862	2.19414	4.01448	8.49454	2.32727
11	500	2.344	4.30441	1.17929	3.09917	6.26651	1.71685
12	500	1.01	1.6885	0.462602	1.89766	3.50219	0.959503
13	500	0.476	0.732022	0.200554	1.41613	2.36788	0.648735
14	500	0.132	0.176517	0.0483607	0.644521	0.880701	0.241288
15	500	0.056	0.0624482	0.0171091	0.439603	0.544604	0.149207
16	500	0.026	0.0234817	0.00643334	0.318633	0.27563	0.075515
17	500	0.014	0.00706058	0.0019344	0.184043	0.0963399	0.0263945
18	500	0	0	0	0	0	0
19	500	0	0	0	0	0	0
20	500	0	0	0	0	0	0
21	500	0	0	0	0	0	0
22	500	0	0	0	0	0	0
23	500	0	0	0	0	0	0
24	500	0	0	0	0	0	0
25	500	0	0	0	0	0	0

Para 500 simulaciones, el número se establece en 12.

Tabla generada para el simulador de radares con 1 simulaciones							
Num. repuestos	Num. simulaciones	Media fallos	Media t desprotección	Media % desprotección	Desv. num fallos	Desv. t desprotección	Desv % desprotección
0	1000	43.513	353.071	96.732	3.1796	8.59499	2.35043
1	1000	49.824	327.038	89.5994	3.96923	16.1883	4.43528
2	1000	53.512	288.475	79.0343	5.43427	22.5752	6.18537
3	1000	53.045	238.865	65.4425	7.00743	27.7088	7.59086
4	1000	48.38	186.192	51.0116	8.7462	30.6683	8.40182
5	1000	40.452	135.737	37.1883	9.58142	30.7735	8.43114
6	1000	31.071	91.6605	25.1124	9.66775	27.9243	7.6505
7	1000	21.122	55.8657	15.3057	8.61658	23.3216	6.3895
8	1000	13.697	32.3572	8.86498	7.25437	17.7917	4.87444
9	1000	8.095	17.5134	4.79818	5.80031	13.0986	3.58867
10	1000	4.477	8.83343	2.42012	4.2804	8.90266	2.43908
11	1000	2.271	4.17391	1.14354	2.92919	5.75138	1.57572
12	1000	1.03	1.69007	0.463034	2.23295	3.9231	1.07482
13	1000	0.37	0.581137	0.159215	1.16123	1.97489	0.541066
14	1000	0.125	0.194782	0.0533649	0.594751	1.05566	0.289222
15	1000	0.061	0.0826214	0.022636	0.370697	0.585637	0.160449
16	1000	0.023	0.0301155	0.00825083	0.22918	0.36915	0.101137
17	1000	0.008	0.018493	0.00506657	0.126301	0.363317	0.0995388
18	1000	0.001	0.00167416	0.000458674	0.0316228	0.0529416	0.0145045
19	1000	0	0	0	0	0	0
20	1000	0	0	0	0	0	0
21	1000	0	0	0	0	0	0
22	1000	0	0	0	0	0	0
23	1000	0	0	0	0	0	0
24	1000	0	0	0	0	0	0
25	1000	0	0	0	0	0	0

Para 1000 simulaciones es finalmente 12.

Por tanto, podemos afirmar rotundamente que para repuestos con un tiempo de reparación de entre 15 y 30 días y una vida útil de 20 días, el número mínimo de repuestos necesarios para que el tiempo de desprotección parcial sea inferior al $1\,\%$ es de 12 repuestos.

Finalmente se añaden dos gráficas en las que se puede notar, como al aumentar el número de simulaciones, las curvas tanto para el tiempo de desprotección como para el porcentaje de tiempo, estas se suavizan.

2.2: Variación de las propiedades de los repuesto

A continuación, se ha realizado el mismo estudio, pero variando las propiedades de estos repuestos. De ahora en adelante 'tr' se referirá a tiempo de reparación, es decir, el tiempo que tarda un repuesto en ser reparado y 'vu' se referirá a la vida útil del repuesto, el tiempo que tarda el mismo en fallar.

Debido al elevado número de pruebas realizadas, comentaremos los resultados en función de las siguientes gráficas:

En primer lugar, me gustaría recalcar un hecho que no debería sorprender a nadie, los mejores resultados los aporta el repuesto cuyo tr es menor, mientras que su vu es la máxima. Esto tiene mucho sentido, puesto que el mejor componente es el casi no falla y además es repuesto lo más rápido posible. Tampoco debería sorprendernos, que la peor combinación de parámetros es la opuesta, en la que el tr del repuesto es máxima y la vu es mínima.

Para obtener el mismo grado de protección, para el mejor repuesto solo necesitamos 3 mientras que para el peor necesitamos más de 20.

Creo que en este problema hace falta un factor decisivo a la hora de considerar uno u otro. Este factor es sin duda el precio del repuesto. Si no conocemos el precio, obviamente siempre será mejor el repuesto que mejores características tenga.

Por tanto la influencia que tiene variar estos parámetros en el sistema es clara, cuanto mejor sea el repuesto, mejor resultado en cuanto a protección aporta.

Apartado 3: Simulador dos especies de peces

Este ultimo simulador, se basa en simular un lago en el que conviven dos especies de peces. La especie de peces pequeños se alimenta de los recursos que se encuentran en el lago, mientras que los peces grandes se alimentan de los peces pequeños. Si los peces tienen acceso a suficiente comida pueden reproducirse con el tiempo y aumentar la población.

3.1: Búsqueda del equilibrio

En este simulador, es fundamental encontrar la combinación de parámetros que permitan que el sistema encuentre un punto de equilibro, durante las pruebas realizadas, se ha seleccionado como ejemplo ilustrativo los siguientes valores:

- Como ejemplos de sistemas que no están en equilibrio lagos con 5000 peces pequeños y 50 grandes y 50000 peces pequeños y 500 grandes.
- Como ejemplos de sistemas en equilibrio, poblaciones con 5000 peces pequeños y 10 grandes y 50000 peces pequeños y 100 grandes.

Las pruebas se han realizado para una población de dichos tamaños durante un periodo de 10 años.

Para los sistemas que no están en equilibrio, podemos ver como la población de peces pequeños se reduce drásticamente, mientras que la población de peces grandes se reduce poco a poco, ya que han consumido todos los recursos de los que disponían.

Sin embargo, en los sistemas en equilibrio, vemos como la población de peces grandes cree y disminuye en consonancia con la de los peces pequeños, hasta que ambas poblaciones alcanzan un tamaño que les permite permanecer en equilibrio a lo largo del tiempo.

3.2: Campaña de pesca

Para este apartado se ha propuesto añadir una mecánica de pesca al sistema. Para ello se ha seleccionado un sistema que se sabe que se encuentra en equilibrio.

El sistema con una población de 50000 peces pequeños y 100 grandes es el sistema de referencia.

La mecánica de pesca funciona de la siguiente manera, cada cierto número de días, se sustrae un determinado % porcentaje de la población de peces grandes — que es la que tiene interés comercial —.

Finalmente se anota el total de la pesca pasados 10 años en la simulación para comprobar cual es el mejor sistema.

En la siguiente tabla podemos observar los resultados obtenidos:

Intervalo de días en los que se pesca	Porcentaje de la población que se pesca	Tamaño de la pesca pasados 10 años
30	0.1	166300
30	0.3	253974
30	0.5	236
30	0.9	9
60	0.1	86432
60	0.3	194077
60	0.5	179173
60	0.9	11
180	0.1	29145
180	0.3	70980
180	0.5	86917
180	0.9	29235
365	0.1	12591
365	0.3	26872
365	0.5	30811
365	0.9	12348

Como se puede apreciar, la mejor opción es pescar el $30\,\%$ de la población de los peces grandes cada mes. De esta manera, el número de peces pequeños se mantiene lo suficientemente estable para que el sistema permanezca el equilibrio y la población de peces grandes pueda recuperarse.

Más adelante podemos ver como afecta gráficamente la pesca al ecosistema.

Vemos como podemos mantener el sistema en equilibrio si pescamos la cantidad justa y necesaria, mientras que si pescamos más de lo debido, podemos destruir el equilibrio del sistema y condenar a los peces a la extinción, así como condenarnos a nosotros a la ruina.

