1231 - Coin Change (I)

In a strange shop there are n types of coins of value A_1 , A_2 ... A_n . C_1 , C_2 , ... C_n denote the number of coins of value A_1 , A_2 ... A_n respectively. You have to find the number of ways you can make K using the coins.

For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if $\mathbf{K} = \mathbf{5}$ the possible ways are:

1112 122 5

So, 5 can be made in 3 ways.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing two integers n ($1 \le n \le 50$) and K ($1 \le K \le 1000$). The next line contains 2n integers, denoting A_1 , A_2 ... A_n , C_1 , C_2 ... C_n ($1 \le A_i \le 100$, $1 \le C_i \le 20$). All A_i will be distinct.

Output

For each case, print the case number and the number of ways **K** can be made. Result can be large, so, print the result modulo **100000007**.

Sample Input	Output for Sample Input
2	Case 1: 3
3 5	Case 2: 9
1 2 5 3 2 1	
4 20	
1 2 3 4 8 4 2 1	