基于深度学习的文本分类

李林

2018-11-30

- 传统文本分类
- 文本的分布式表示
- 文本分类深度学习模型

文本分类的定义

Definition

给定分类体系,将文本分到某个或某几个对应的类别中。

- 二分类问题, 0或1 (YES or NO)
- · 多分类问题, 多个类别(multi-class), 可拆分成二分类问题
- 多标签问题,一个文本可以属于多个分类

Example

- 垃圾邮件检测(spam or not spam)
- 情感分析 (sentiment analysis)
- 新闻栏目分类
 - 类别{政治,娱乐,科技,...}
- 小说主题标签(多标签)
 - 类别{古装,武侠,爱情,...}

传统文本分类

特征工程

把文本转换成计算机可以理解的形式

- 文本预处理
 - 去标签
 - (英文)去停用词,词根还原
 - (中文)去停用词,分词,词性标注,短语识别,...
- 特征提取(向量空间模型)
 - 特征选择(文档频率,互信息,信息增益,...)
 - 特征权重(TF-IDF及其扩展方法,计算词的重要性)
- 文本表示
 - 词袋模型(0,0,0,...,1,...0,0,0)
 - 向量空间模型
 - LDA主题模型
 - ...

机器学习

大部分机器学习方法在文本分类领域都有所应用:

- 朴素贝叶斯
- KNN
- SVM
- 最大熵
- •

文本分类过程

传统分类中通过特征工程来得到文本的向量表示。

耗时耗力, 泛化能力差, 通常需要针对特定任务的理解。

Word Embedding

深度学习方法的基础

Word Embedding做了什么?

Word Embedding自动的将文本的内容(词)变成了连续稠密的实值向量。

Word Embedding怎么做的?

Idea: 一个词的意思可以由该词的上下文信息表述,连接了词之间的语义关系。

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

banking system a shot in the arm...
```

通过把每个词表示成一个密集向量,就可以方便的表示每个词之间的关系,那些含义相似(向量相近)的词会出现在相似的上下文中。

Word Embedding怎么做的?

通过调整参数(词向量),使得给定中心词(center word)时,其上下文词出现的概率最大化。(或者,反过来,上下文预测中心词)

word2vec

词汇的相似度

(EXIT to break): china		
n vocabulary: 486		
Word	Cosine distance	
taiwan	0.768188	
japan	0.652825	
macau	0.614888	
korea	0.614887	
prc	0.613579	
beijing	0.605946	
taipei	0.592367	
thailand	0.577905	
cambodia	0.575681	
singapore	0.569950	
republic	0.567597	
mongolia	0.554642	
chinese	0.551576	

深度学习文本分类模型

Fast Text

- 1. 将句子中所有词的词向量求平均,得到句子的向量表示
- 2. Hierarchical Softmax加速计算分类的概率
- 3. N-gram捕捉句子中(局部的)序列信息

TextCNN

TextCNN

- 1. CNN-rand: 词向量随机初始化
- 2. CNN-static: 预训练的词向量进行初始化,并保持不变
- 3. CNN-non-static: 预训练的词向量进行初始化,但可以被修改
- 4. CNN-multichannel: 含有不变的词向量和可变的词向量channel

TextRNN

Bidirectional RNN

Multi-layer RNN

TextRNN

Multi-Task Learning

Dataset	Type
SST-1	Sentence
SST-2	Sentence
SUBJ	Sentence
IMDB	Document

同时学习多个任务 通过特定的方式共享权重 让每一个任务都学习的很好

(a) Model-I: Uniform-Layer Architecture

(b) Model-II: Coupled-Layer Architecture

(c) Model-III: Shared-Layer Architecture

TextRCNN

"A sunset stroll along the South Bank affords an array of stunning vantage points"

上文 词向量 下文 词的表示 文本表示

HAN(GRU+Attention)

文章由句子组成,每个句子的重要性不同 句子由词语组成,每个词语的重要性不同 相同的词语在不同的上下文中重要性也不同

总结

- Char-CNN
- MemNN
- EntNet
- DMN

•

使用深度学习方法进行文本分类,需要能够将文本表示成稠密连续向量的方法。 无论是使用预训练的词向量,还是通过模型去学习相应的参数。 所有的工作,都是在寻找一种表征文本的向量,能够更好的实现分类。

Thank You