## 1 Supervised topics with ideal point text regression

We can generalize ridge regression on ideal points to provide a fully supervised topic model. Recall that ridge regression on ideal points corresponds to the model

1. Fit the ideal point model

$$\arg \max_{a_d, b_d, x_u} \sum_{u \in U, d \in D} \log p(v_{ud} | a_d, b_d, x_u) - \sum_{d \in D} (\lambda_1 a_d^T a_d + \lambda_2 b_d^T b_d) - \sum_{u \in U} \lambda_3 x_u^T x_u,$$

where  $p(v_{ud}|a_d, b_d, x_u)$  is the logistic function  $\sigma(a_d^T x_u + b_d)$  and  $\lambda_1, \lambda_2, \lambda_3$  are regularization parameters.

2. Fit the ridge regression

$$\beta_a, \beta_b \sim N(0, 1/\lambda_4),$$

$$a_d \sim N(\boldsymbol{w}_d^T \beta_a, \sigma_a),$$

$$b_d \sim N(\boldsymbol{w}_d^T \beta_b, \sigma_b),$$

where  $\mathbf{w}_d$  are word counts and  $\lambda_4$  is a ridge penalty.

Although this model performed well in the prediction task, it suffers from a critical limitation: the ideal points are informed only by votes. The regression coefficients  $\beta_a$ ,  $\beta_b$  are interpretable, but only in the sense that they relate words to ideal points.

**Ideal point text regression** We can solve this problem by forcing  $\sigma_a, \sigma_b \to 0$ . We can accomplish this by modeling the document parameters only implicitly:

$$\arg \max_{\boldsymbol{B},\boldsymbol{b},x_u} \sum_{u \in U,d \in D} \log p(v_{ud}|\boldsymbol{w}_d,\boldsymbol{B},\boldsymbol{b},x_u) - \lambda_1 \sum_{ij} \boldsymbol{B}_{ij}^2 - \lambda_2 x_u^T x_u - \lambda_3 \boldsymbol{b}^T \boldsymbol{b}, \quad (1)$$

where **B** is a  $r \times V$  matrix,  $x_u$  is again the  $r \times 1$  user ideal point, **b** is a  $V \times 1$  vector,  $\lambda_i$  regularize, and

$$p(v_{ud}|\boldsymbol{w}_d,\boldsymbol{B},\boldsymbol{b},x_u) = \sigma(\boldsymbol{w}_d^T(\boldsymbol{B}x_u + \boldsymbol{b}))$$

We call this model *ideal point text regression*, as it infers an ideal point  $x_u \in \mathbb{R}^r$  for each individual while implicitly performing regression on word counts. The role of  $\boldsymbol{b}$  is a per-word intercept term, serving the same purpose as the per-document difficulty terms  $b_d$ .

The columns of  $\boldsymbol{B}$  define a r-dimensional subspace of  $\mathbb{R}^V$  and can be interpreted as topics. <sup>1</sup> A document's topic vector is given by  $\boldsymbol{w}^T\boldsymbol{B} \in \mathbb{R}^r$ , and users' ideal points interact with documents' topics as with traditional ideal point models.

Setting r to 1, legislators' ideal points turn out similar to traditional ideal points (see Figure 2 for examples). Table 1 provides examples of words which are extreme in discrimination, difficulty, or indifference point.

 $<sup>^1\</sup>mathrm{These}$  topics are much more similar to classic LSA topics than LDA topics [2]

|                                    | Most                       | Least                     |
|------------------------------------|----------------------------|---------------------------|
| Liked                              | national defense           | dod                       |
|                                    | industrial base            | $\operatorname{subtitle}$ |
|                                    | army navy                  | defense                   |
|                                    | defense acquisition        | mean                      |
|                                    | develop and implement      | directly                  |
|                                    | procure                    | eligible                  |
|                                    | clinical                   | item relate to section    |
|                                    | provisions subtitle        | commodity                 |
|                                    | national guard             | tracking                  |
|                                    | executive agency           | limitation                |
| Liberal                            | weapons                    | prepare                   |
|                                    | testing                    | offset                    |
|                                    | architect                  | desire                    |
|                                    | reasonable                 | enrich                    |
|                                    | acquire real property      | stop                      |
|                                    | passport                   | fha                       |
|                                    | noncompliance              | excludes                  |
|                                    | energy technology          | minimum standard          |
|                                    | research development       | education and training    |
|                                    | maximum extent practicable | candidate                 |
| Polarizing (preferred by liberals) | thereon                    | waive except those arise  |
|                                    | witness                    | unemployment              |
|                                    | coalition                  | innovation                |
|                                    | distance                   | previous question         |
|                                    | revises                    | borrower                  |
|                                    | bracket                    | fraud and abuse           |
|                                    | peer review                | recipient                 |
|                                    | core                       | chair                     |
|                                    | asset                      | enrollee                  |
|                                    | lieu                       | mean the secretary        |

Figure 1: Phrases in a 1-dimensional ideal point text regression. "Polarizing" is discrimination, "liberal" is indifference, and "liked" is difficulty.



Figure 2: Legislator ideal points from a 1-dimensional ideal point text regression model.

Semiometrie interpretation A particularly nice interpretation of ideal point text regression comes about when we compare it with semiometrie. Semiometrie is a methodology used in marketing and politics for placing users in a latent space of preferences [1]. To find this latent space, each user  $u \in U$  is asked to provide a rating  $r_{ud} \in \{1, \ldots, 7\}$  to 210 words, summarizing their personal warmth toward these words. Principle component analysis is then applied to the resulting ratings, optimizing the PCA objective

$$\arg\max_{Z \in \mathbb{R}^r, X} \sum_{u \in U, d \in D} \log p(r_{ud} | \boldsymbol{Z}, X),$$

where

$$r_{ud}|\mathbf{Z}, X \sim N((\mathbf{Z}x_u)_d, \sigma_d),$$
 (2)

subject to several orthogonalization constraints on Z, X, and  $\sigma_d$ : they are fit to maximize explained variance. The principle component  $\mathbf{z}_1 := \mathbf{Z}_{1*}$  explains the positive ratings shared by everyone: users will share nearly identical loadings on this dimension. We therefore can interpret  $\mathbf{z}_1$  as an intercept column and, for model simplicity, set  $x_{*1} = 1$  (we can scale the component  $\mathbf{z}_1$  of  $\mathbf{Z}$  to do this). Rewriting Equation 2 with the intercept  $\mathbf{z}_1$ , we have

$$r_{ud}|\boldsymbol{Z}, X \sim N((\boldsymbol{Z}_{\backslash 1*}x_u + \boldsymbol{z}_1)_d, \sigma_d).$$

The similarity of ideal point text regression to this scenario is evident; akin to generalized linear models, we simply replace the *identity* (normal) link function

with the *logit* link function:

$$\arg \max_{\boldsymbol{B}, \boldsymbol{b}, X} \sum_{u \in U, d \in D} \log p(v_{ud} | \boldsymbol{B}, \boldsymbol{b}, X),$$

where

$$v_{ud}|\boldsymbol{B}, \boldsymbol{b}, X \sim \sigma(\boldsymbol{w}_d^T(\boldsymbol{B}x_u + \boldsymbol{b})).$$

In short: the goal of ideal point text regression is to best explain observed votes by finding an intercept  $\boldsymbol{b}$  and subspace  $\boldsymbol{B}$  sensitive to user preferences which best explain observed votes.

In semiometrie, the principle component  $z_1$  is typically discarded because it is not informative about individual preferences. The intercept b is likewise noninformative about individuals' preferences, although we keep it to investigate individual words. At the same time, the subspace described by B plays the same role as that of semiometrie: it summarizes legislators by their latent preferences.

## References

- [1] F. Camillo, M. Tosi, and T. Traldi. Semiometric approach, qualitative research and text mining techniques for modelling the material culture of happiness. 185:79–92, 2005.
- [2] S. Deerwester, S. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent semantic analysis. *Journal of the American Society for Information Science*, 1990.