

Fachbereich Mathematik

Bachelorarbeit

Die Helmholtz-Zerlegung in L^2

Fabian Gabel

15.10.2016

Betreuer: PD Dr. Robert Haller-Dintelmann

Inhaltsverzeichnis

Ei	inleit	ung	4			
1	Gru	ındlagen	5			
	1.1	Physikalische Grundlagen	5			
1.2 Funktionalanalytische Grundlagen			5			
		1.2.1 Glatte Funktionen und der Raum der Testfunktionen	5			
		1.2.2 "Falten glättet" und weitere Eigenschaften	8			
		1.2.3 Schwache Differenzierberkeit				
		– Distributionen und Sobolev-Räume	9			
2	Lös	ungen von $\nabla p = f$	15			
	2.1	Lipschitz-Gebiete und Gebietsapproximation	15			
	2.2	2.2 Kompakte Einbettungen				
	2.3	Darstellung von Funktionalen	21			
	2.4	Das Gradientenkriterium	23			
3	Hel	mholtz-Zerlegung in L^2	29			
4 Zusammenfassung und Ausblick						
Li	iterat	turverzeichnis	31			

Einleitung

Kapitel 1

Grundlagen

1.1 Physikalische Grundlagen

- Physikalische Motivation dieses Gleichungssystems
- Linearisierung der Navier-Stokes-Gleichungen (Motivation der Stokes-Gleichung)
- Schleichende Strömungen z.B. [SA10][S.112,S.489].

1.2 Funktionalanalytische Grundlagen

Dieses Unterkapitel beschäftigt sich mit den für die kommenden Kapitel zentralen Funktionenräumen und dient zudem der Einführung der verwendeten Notation und Bildung der verwendeten Begriffe. Die Notation ist an [Soh01] angelehnt.

1.2.1 Glatte Funktionen und der Raum der Testfunktionen

Ziel dieses Abschnittes ist es die nötigen Begriffe und Definitionen im Zusammenhang mit glatten Funktionen bereitzustellen. Im Folgenden bezeichne $\Omega \subseteq \mathbb{R}^n$ stets ein nichtleeres Gebiet.

Sei $k \in \mathbb{N}$ und es bezeichne $\mathcal{C}^k(\Omega)$ die Menge aller Funktionen

$$u: \Omega \to \mathbb{R}, \quad x \mapsto u(x),$$

sodass alle partiellen Ableitungen $D^{\alpha}u$ für alle Multiindices $\alpha \in N_0^n$ mit $0 \le |\alpha| \le k$ existieren und stetig sind . Mit

$$\mathcal{C}^{\infty}(\Omega) := \bigcap_{k=0}^{\infty} \mathcal{C}^k(\Omega)$$

6 1 Grundlagen

bezeichnen wir den Raum der glatten Funktionen auf Ω .

Im Kontext der Approximation von L^p -Funktionen spielt ein Funktionenraum eine wichtige Rolle: der Raum der glatten Funktionen mit kompaktem Träger

$$\mathcal{C}_0^\infty(\Omega) := \{ u \in \mathcal{C}^\infty(\Omega) \mid \operatorname{supp} u \text{ kompakt und } \operatorname{supp} u \subseteq \Omega \}.$$

Wir werden diesem Raum in Abschnitt 1.2.3 nochmals als Raum der Testfunktionen begegnen. Wir werden zudem den Raum $\mathcal{C}^{\infty}(\overline{\Omega})$ aller Restriktionen $u|_{\overline{\Omega}}$ von Funktionen aus $\mathcal{C}^{\infty}(\mathbb{R}^n)$ mit

$$\sup_{|\alpha| < \infty, x \in \mathbb{R}^n} |D^{\alpha} u(x)| < \infty \tag{*}$$

benötigen. Aufgrund der Eigenschaft (*) lässt sich der Raum $\mathcal{C}^{\infty}(\overline{\Omega})$ mit einer Norm ausstatten:

$$||u||_{\mathcal{C}^{\infty}} = ||u||_{\mathcal{C}^{\infty}(\overline{\Omega})} := \sup_{|\alpha| \le k, x \in \overline{\Omega}} |D^{\alpha}u(x)|.$$

Alle eingeführten Räume lassen sich auf natürliche Weise zu Räumen von Vektorfeldern verallgemeinern. Man erhält so

$$\mathcal{C}^{\infty}(\Omega)^{m} := \{(u_{1}, \dots, u_{m}) \mid u_{j} \in \mathcal{C}^{\infty}(\Omega), j = 1, \dots, m\},$$

$$\mathcal{C}^{\infty}_{0}(\Omega)^{m} := \{(u_{1}, \dots, u_{m}) \mid u_{j} \in \mathcal{C}^{\infty}_{0}(\Omega), j = 1, \dots, m\} \text{ und}$$

$$\mathcal{C}^{\infty}(\overline{\Omega})^{m} := \{(u_{1}, \dots, u_{m}) \mid u_{j} \in \mathcal{C}^{\infty}(\overline{\Omega}), j = 1, \dots, m\},$$

wobei der letzte Vektorraum durch die Norm

$$||u||_{\mathcal{C}^{\infty}} = ||u||_{\mathcal{C}^{\infty}(\overline{\Omega})}^{m} := \sup_{j=1,\dots,m} ||u_{j}||_{\mathcal{C}^{\infty}(\overline{\Omega})}$$

zu einem normierten Vektorraum wird.

In der Literatur findet man eine Reihe anderer Definitionen des Symbols $\mathcal{C}^{\infty}(\overline{\Omega})$. Für beschränkte Gebiete stimmen sie jedoch alle überein, wie das folgende Lemma beweist.

Lemma 1.1. Sei $\Omega \subseteq \mathbb{R}^n$ ein beschränktes Gebiet. Wir schreiben

- (a) $u \in \mathcal{C}_{\bullet}^{\infty}(\overline{\Omega})$, falls eine Funktion $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ mit $\sup_{|\alpha| < \infty, x \in \mathbb{R}^n} ||D^{\alpha}f(x)|| < \infty$ exsistiert, die u fortsetzt, also $u = f|_{\overline{\Omega}}$ gilt.
- (b) $u \in \mathcal{C}^{\infty}_{\bullet \bullet}(\overline{\Omega})$, falls eine offene Obermenge $\overline{\Omega} \subseteq U \subseteq \mathbb{R}^n$ und eine differenzierbare Fortsetzung $\tilde{u} : U \to \mathbb{R}$ von u existieren.
- (c) $u \in \mathcal{C}^{\infty}_{\bullet\bullet\bullet}(\overline{\Omega})$, falls $u \in C^{\infty}(\Omega)$ gilt, und sich für alle Multiindices $|\alpha| \leq k$ die Funktion $D^{\alpha}u$ auf $\overline{\Omega}$ fortsetzen lässt.

Dann qilt

$$\mathcal{C}^{\infty}_{\bullet}(\overline{\Omega}) = \mathcal{C}^{\infty}_{\bullet\bullet}(\overline{\Omega}) = \mathcal{C}^{\infty}_{\bullet\bullet}(\overline{\Omega}).$$

Beweis. Zunächst ist $\overline{\Omega}$ als beschränkte abgeschlossene Teilmenge von \mathbb{R}^n kompakt. Es gilt

$$\mathcal{C}^{\infty}_{\bullet}(\overline{\Omega}) \subseteq \mathcal{C}_{\bullet\bullet},$$

da jedes $u \in \mathcal{C}^{\infty}_{\bullet}(\overline{\Omega})$ bereits eine differenzierbare Fortsetzung auf \mathbb{R}^n besitzt.

Die Inklusion

$$\mathcal{C}^{\infty}_{\bullet\bullet}(\overline{\Omega}) \subseteq \mathcal{C}^{\infty}_{\bullet\bullet\bullet}(\overline{\Omega})$$

folgt direkt aus der Definition.

Die letzte Inklusion

$$\mathcal{C}^{\infty}_{\bullet\bullet\bullet}(\overline{\Omega}) \subseteq \mathcal{C}^{\infty}_{\bullet}(\overline{\Omega})$$

erfordert mehr Arbeit. Sei dazu $u \in \mathcal{C}^{\infty}_{\bullet\bullet\bullet}(\overline{\Omega})$. Es ist eine Eigenschaft von HAUS-DORFF-Räumen, dass stetige Abbildungen höchstens eine Fortsetzung auf den Abschluss ihres Definitionsberechs besitzen [Bar15][S.112, Lemma 4.2.4]. Wir wollen daher u mit seiner Fortsetzung auf $\overline{\Omega}$ identifizieren. Diese Menge ist kompakt. Über das URYSOHN-Lemma für glatte Funktionen [?] setzen wir in einem weiteren schritt u auf ganz \mathbb{R}^n zu einer Funktion \tilde{u} fort. Diese Fortsetzung besitzt jedoch im Allgemeinen keine beschränkten Ableitungen wie in der Definition von $\mathcal{C}^{\infty}_{\bullet}(\overline{\Omega})$ gefordert. Da jedoch Ω als beschränkt vorausgesetzt wurde, existiert ein offener Ball B_r mit $\Omega \subseteq \overline{\Omega} \subsetneq B_r$. Wir multiplizieren nun diese Fortsetzung mit einer glatten cut-off-Funktion ψ , für die $\psi(x) = 1$ für alle $x \in \overline{\Omega}$, $\psi(x) = 0$ für alle $x \in \mathbb{R}^n \setminus B_r$ und supp $\psi \subseteq B_r$ gilt. Mit $f := \tilde{u} \cdot \psi$ erhalten wir

$$\sup_{|\alpha|<\infty, x\in\mathbb{R}^n} ||D^{\alpha}f|| = \sup_{|\alpha|<\infty, x\in\overline{B}_r} ||D^{\alpha}f|| < \infty,$$

da auch \overline{B}_r kompakt ist. Da $f|_{\overline{\Omega}}=u$

Zuletzt erwähnen wir den Untervektorraum der divergenzfreien glatten Vektorfelder

$$\mathcal{C}_{0,\sigma}^{\infty}(\Omega) := \{ u \in \mathcal{C}_0^{\infty}(\Omega)^n \mid \operatorname{div} u = 0 \},\$$

welcher den natürlichen Lösungsraum der stationären inkompressiblen NAVIER-STOKES-Gleichungen darstellt. 8 1 Grundlagen

1.2.2 "Falten glättet" und weitere Eigenschaften

Aus der Integrationstheorie ist bekannt, dass sich L^q -Funktionen durch Faltungen mit Glättungskernen $\mathcal{F}_{\varepsilon}$ approximieren lassen.

Lemma 1.2. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \ge 1$ ein Gebiet und $1 \le q < \infty$ sowie $\varepsilon > 0$. Für alle $u \in L^q(\Omega)$ gilt dann

$$\|(\mathcal{F}_{\varepsilon} * u)\|_{L^{q}(\Omega)} \le \|u\|_{L^{q}(\Omega)}$$

und

$$\lim_{\varepsilon \to 0} \|(\mathcal{F}_{\varepsilon} * u) - u\|_{L^{q}(\Omega)} = 0.$$

Sei nun $\Omega_0 \subseteq \overline{\Omega}_0 \subseteq \Omega$ ein beschränktes Teilgebiet und

$$0 < \varepsilon < \operatorname{dist}(\Omega_0, \partial \Omega). \tag{1.1}$$

Zusätzlich sei $u \in L^1_{loc}(\Omega)$. Setzt man u(x) := 0 für alle $x \in \mathbb{R}^n \setminus \Omega$, so folgt $u \in L^1_{loc}(\mathbb{R}^n)$. Wie [Rud91][S.171, Theorem 6.30(b)] zeigt, lassen sich aus der Integrationstheorie bekannte Eigenschaften der Glättungen auch auf Faltungen

$$u^{\varepsilon} := \mathcal{F}_{\varepsilon} * u$$

von Glättungskernen $\mathcal{F}_{\varepsilon} * u$ mit Distributionen $u \in \mathcal{C}_0^{\infty}(\Omega)'$ erweitern. Dazu zählt einerseits, dass $u^{\varepsilon} \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ gilt. Da Ω_0 als beschränkt vorausgestzt wurde, gilt sogar $u^{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\Omega}_0)$. Andererseits ist für alle Multiindices $\alpha \in \mathbb{N}_0^n$ und alle $x \in \Omega_0$ die folgende Gleichung gültig:

$$(D^{\alpha}u^{\varepsilon})(x) = (\mathcal{F}_{\varepsilon} * (D^{\alpha}u))(x) = ((D^{\alpha}\mathcal{F}_{\varepsilon}) * u)(x), \quad x \in \Omega_{0}.$$
 (1.2)

Lemma 1.3. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 1$ ein Gebiet und $1 \leq q < \infty$. Ist $u \in L^1_{loc}(\Omega)$ und gilt $\nabla u = 0$ im distributionellen Sinne, dann ist u konstant.

Beweis. Für alle $x \in \Omega_0$ und ε wie in Ungleichung (1.1) folgern wir unter Verwendung der Gleichung (1.2)

$$\nabla u^{\varepsilon}(x) = (D^{1}(\mathcal{F}_{\varepsilon} * u), \dots, D^{n}(\mathcal{F}_{\varepsilon} * u))^{T}$$
$$= (\mathcal{F}_{\varepsilon} * D^{1}u, \dots, \mathcal{F}_{\varepsilon} * D^{n}u)^{T}$$
$$= (0, \dots, 0)^{T}.$$

Es ist u^{ε} eine glatte Funktion. Zudem ist Ω_0 als offene zusammenhängende Teilmenge von \mathbb{R}^n insbesondere Wegzusammenhängend. Ausgehend von der Integraldarstellung des Funktionszuwachses [Kö04][S.57] gilt $u_{\varepsilon} = C_{\varepsilon}$ auf ganz Ω_0 . Mit Lemma 1.2 folgt nun die Netzkonvergenz $C_{\varepsilon} \to C$ für $\varepsilon \to 0$ auf Ω_0 . Da sich zudem aufgrund von Lemma 2.3 das Gebiet Ω von einer Folge $(\Omega_j)_{j\in\mathbb{N}}$ offener beschränkter LIPSCHITZ-Gebiete ausschöpfen lässt, erhalten wir durch Anwendung des beschriebenen Arguments auf die Folgenglieder Ω_j sogar u = C auf ganz Ω .

- [Soh01][Die Glättungsmethode S.64ff.]
- [AF03][S.10, S.9(alt), S.36, S.30(alt)]

1.2.3 Schwache Differenzierberkeit

- Distributionen und Sobolev-Räume

Es bezeichne im Folgenden wieder $\Omega \subseteq \mathbb{R}^n$ ein offenes Gebiet mit $n \geq 1$.

Lokal integrierbare Funktionen

Wir werden im Folgenden oft eine Obermenge der bezüglich des Lebesgue-Maßes auf \mathbb{R}^n integrierbaren Funktionen verwenden. Für $1 \leq q \leq \infty$ schreiben wir

$$u \in L^q_{loc}(\Omega),$$

und nennen u lokal integrierbar, falls $u \in L^q(B)$ für alle offenen Bälle $B \subseteq \Omega$ mit $\overline{B} \subseteq \Omega$ gilt.

Bemerkung. Eine Funktion u ist genau dann lokal integrierbar über Ω , falls $u \in L^q(K)$ für alle Kompakta $K \subseteq \Omega$ gilt.

Diese Aussage findet man ebenfalls in der Literatur zur Definition lokaler Integrierbarkeit. Tatsächlich ist sie äquivalent zur obigen Definiton. Denn einerseits ist für alle Bälle B auch \overline{B} ein Kompaktum und die Aussage folgt aus der Inklusionsbeziehung $L^q(\overline{B}) \subseteq L^q(B)$. Andererseits lässt sich jedes Kompaktum K mit endlich vielen Bällen B_1, \ldots, B_n mit $\overline{B}_i \subseteq \Omega, i = 1, \ldots, n$, überdecken und die Umkehrung der Aussage folgt aus der Inklusionsbeziehung $\bigcap_{i=1}^n L^q(B_i) \subseteq L^q(K)$.

Des Weiteren schreiben wir

$$u \in L^q_{\mathrm{loc}}(\overline{\Omega}),$$

falls $u \in L^q(B \cap \Omega)$ für jeden offenen Ball $B \subseteq \mathbb{R}^n$ mit $B \cap \Omega \neq \emptyset$ gilt. Zusammenfassend gilt also die folgende Inklusionsbeziehung:

$$L^{q}(\Omega) \subseteq L^{q}_{loc}(\overline{\Omega}) \subseteq L^{q}_{loc}(\Omega).$$

10 1 Grundlagen

Distributionen

In Abschnitt 1.2.1 hatten wir bereits den Raum der Testfunktionen $\mathcal{C}_0^{\infty}(\Omega)$ kennegelernt. Wir werden und vor allem für seinen Dualraum, den Raum der stetigen Funktionale auf $\mathcal{C}_0^{\infty}(\Omega)$ existieren. Um überhaupt über Stetigkeit von Funktionalen auf $\mathcal{C}_0^{\infty}(\Omega)$ sprechen zu können, müssen wir jedoch zunächst eine Topologie festlegen. Wir werden dies durch die Spezifikation einer Konvergenzstruktur tun. Ein lineares Funktional $F: \mathcal{C}_0^{\infty}(\Omega) \to \mathbb{R}$ ist stetig, genau dann wenn für jedes beschränkte Teilgebiet $G \subseteq \Omega$ mit $\overline{G} \subseteq \Omega$ ein $k \in \mathbb{N}_0$ und C = C(F, G) existiert, sodass

$$|F(\varphi)| \le C \|\varphi\|_{\mathcal{C}^k}(\overline{G})$$

gilt, wobei $\|\cdot\|_{\mathcal{C}^k}(\overline{G})$ gerade die Diese Konvergenzstruktur ist topologisierbar und macht $\mathcal{C}_0^{\infty}(\Omega)$ zu einem lokalkonvexen Vektorraum. Genauere Ausführungen finden sich in [Wer11][S.433f.]. Den Raum $\mathcal{C}_0^{\infty}(\Omega)'$ aller im obigen Sinne stetigen Funktionale

$$F : \mathcal{C}_0^{\infty}(\Omega) \to \mathbb{R}, \quad \varphi \mapsto F(\varphi) = [F, \varphi],$$

bezeichnen wir als den Raum der *Distributionen*. Hierbei stellt $[\cdot, \cdot]$ die duale Paarung auf Ω dar.

Wir betrachten nun spezielle Distributionen. Ist $f \in L^1_{loc}$ so induziert bezeichnet man

$$f \mapsto \langle f, \varphi \rangle := \int_{\Omega} f \varphi \, \mathrm{d}x.$$

als zugehörige reguläre Distribution. Dass diese Zuodrnung sogar injektiv ist und somit zur Inklusionsbeziehung $L^1_{loc}(\Omega) \subseteq \mathcal{C}_0^{\infty}(\Omega)'$ führt, lässt sich in [Wer11][S.432, Beispiel (a)] nachlesen.

Differentiation von Distributionen

Distributionen ermöglichen es, den für die Analysis grundlegenden Begriff der Differenzierbarkeit zu verallgemeinern. Ist $\alpha \in \mathbb{N}_0^n$ ein Multiindex und $D^{\alpha} \colon \mathcal{C}_0^{\infty}(\Omega) \to \mathcal{C}_0^{\infty}(\Omega)$ der zugehörige Ableitungsoperator, so definieren wir für eine Distribution $F \in \mathcal{C}_0^{\infty}(\Omega)'$ ihre distributionelle Ableitung $D^{\alpha}F \in \mathcal{C}_0^{\infty}(\Omega)'$ durch

$$[D^{\alpha}F,\varphi] := (-1)^{|\alpha|}[F,D^{\alpha}\varphi].$$

Bis auf ein Vorzeichen stimmt also die distributionelle Ableitung mit der zum Ableitungsoperator dualen Abbildung $(D^{\alpha})': \mathcal{C}_0^{\infty}(\Omega)' \to \mathcal{C}_0^{\infty}(\Omega)'$ überein. Dass die distributionelle Ableitung wohldefiniert und sogar schwach*-stetig ist, lässt sich in [Wer11][S.434, Lemma VIII.5.7] nachlesen.

Im Unterabschnitt zu glatten Funktionen hatten wir die dortigen Definitionen auf auf Produkträume ausgeweitet. Wir versehen den so entstandenen Produktraum $C_0^{\infty}(\Omega)^m$ mit der Produkttopologie und wenden uns nun dem zugehörigen Distributionenraum $C_0^{\infty}(\Omega)^m$ zu.

Wir betrachten dazu die Funktion

$$F = (F_1, \ldots, F_m), \quad F_j \in \mathcal{C}_0^{\infty}(\Omega)', \quad j = 1, \ldots, m$$

und definieren für alle

$$\varphi = (\varphi_1, \dots, \varphi_m) \in \mathcal{C}_0^{\infty}(\Omega)^m$$

die Distribution

$$[F,\varphi] := [F_1,\varphi_1] + \cdots + [F_m,\varphi_m].$$

Durch Betrachtung von Funktionen des Typs $\psi^{(i)} = (0, \dots, 0, \psi_i, 0, \dots, 0) \in \mathcal{C}_0^{\infty}(\Omega)^m$ mit $i \in \{1, \dots, m\}$ erkennen wir, dass jedes stetige Funktional auf $\mathcal{C}_0^{\infty}(\Omega)^m$ diese Form besitzt. Der Raum der Distributionen zu den Testfunktionen $\mathcal{C}_0^{\infty}(\Omega)^m$ besitzt also die Form

$$\mathcal{C}_0^{\infty}(\Omega)^{\prime m} = (\mathcal{C}_0^{\infty}(\Omega)^m)^{\prime}$$
$$= \{ (F_1, \dots, F_m) \mid F_j \in \mathcal{C}_0^{\infty}(\Omega)^{\prime}, \quad j = 1, \dots, m \}$$

Wir erinnern uns an dem im Unterabschnitt zu glatten Funktionen definierten Lösungsraum $\mathcal{C}_{0,\sigma}^{\infty}(\Omega)$ der divergenzfreien Funktionen. Nach dem Fortetzungssatz von Hahn-Banach für lokalkonvexe Vektorräume ([Wer11][S.408, Satz VIII.2.8]) erhalten wir die stetigen Funktionale auf $\mathcal{C}_{0,\sigma}^{\infty}$ gerade als Einschränkungen der stetigen Funktionale auf $\mathcal{C}_{0}^{\infty}(\Omega)^{n}$. Es gilt somit

$$\mathcal{C}_{0,\sigma}^{\infty}(\Omega)' = \{ F |_{\mathcal{C}_{0,\sigma}^{\infty}(\Omega)} \mid F \in (\mathcal{C}_{0}^{\infty}(\Omega)^{n})' \}.$$

Betrachten wir nun den HILBERT-Raum $L^2(\Omega)^n$. Aus Lemma 1.2 ist bekannt, dass die glatten Funktionen mit kompaktem Träger dicht in $L^2(\Omega)$ liegen. Ebenso stellt der Produktraum $\mathcal{C}_0^{\infty}(\Omega)^n$ einen dichten Unterraum von $L^2(\Omega)^n$ dar. Um diese Tatsache zu immitieren definieren wir den Unterraum

$$L^2_{\sigma}(\Omega) := \overline{C^{\infty}_{0,\sigma}(\Omega)}^{\parallel \cdot \parallel_2} \subseteq L^2(\Omega)^n$$

Identifizieren wir nun jedes Funktion $u \in L^2(\Omega)^n$ mit dem Funktional

$$\langle u, \cdot \rangle \colon \varphi \mapsto \langle u, \varphi \rangle, \quad \varphi \in C_0^{\infty}(\Omega)^n$$

so erhalten wir die Einbettung

$$L^2(\Omega)^n \subseteq (C_0^\infty(\Omega)^n)'.$$

12 1 Grundlagen

Ebenso lassen sich Funktionen $u \in L^2_\sigma(\omega)$ mit der entsprechenden Einschränkung

$$\langle u, \cdot \rangle \colon \varphi \mapsto \langle u, \varphi \rangle, \quad \varphi \in C_{0,\sigma}^{\infty}(\Omega)^n$$

identifizieren, was die Einbettung

$$L^2(\Omega)^n \subseteq (C_0^\infty(\Omega)^n)'.$$

liefert.

Sobolev-Räume

Im Allgemeinen wird die Ableitung einer regulären Distribution nicht wieder regulär sein. Wir definieren daher für alle $k \in \mathbb{N}$ und $1 \leq q \leq \infty$ den L^q -Sobolev-Raum $W^{k,q}(\Omega)$ der Ordnung k durch

$$W^{k,q} := \{ u \in L^q \mid D^{\alpha}u \in L^q(\Omega) \text{ für alle } |\alpha| \le k \}.$$

Für $u \in W^{k,q}$ bezeichnen wir $D^{\alpha}u \in L^{q}(\Omega)$ als schwache Ableitung von u. Hierbei identifizieren wir die reguläre Distribution $D^{\alpha}u$ immer direkt mit der korrespondierenden L^{q} -Funktion.

Wir machen $W^{k,q}$ zu einem normierten Vektorraum durch die Sobolev-Norm

$$||u||_{W^{k,q}(\Omega)} := ||u||_{W^{k,q}} := ||u||_{k,q} := \begin{cases} \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||_q^q\right)^{\frac{1}{q}} & \text{für } 1 \le q < \infty \\ \max_{|\alpha| \le k} ||D^{\alpha}u||_{\infty} & \text{für } q = \infty. \end{cases}$$

Lemma 1.4. Für ein Gebiet $\Omega \subseteq \mathbb{R}^n$ mit $n \ge 1$ und $1 \le q \le \infty$ ist $W^{k,q} = W^{k,q}(\Omega)$ ausgestattet mit der SOBOLEV-Norm ein BANACH-Raum.

Beweis. Sei $(u_j)_{j\in\mathbb{N}}$ eine CAUCHY-Folge in $W^{k,q}$. Nach Definition ist dann auch $(D^{\alpha}u_j)_{j\in\mathbb{N}}$ für alle $|\alpha|\leq k$ eine CAUCHY-Folge in L^q . Folglich existieren für alle $|\alpha|\leq k$ Funktionen $u_{\alpha}\in L^q$ mit

$$\lim_{j \to \infty} ||D^{\alpha} u_j - u_{\alpha}||_q = 0.$$

Sei $f_0 := f_{(0,\dots,0)}$. Wir behaupten nun, dass die Identität $D^{\alpha} f_0 = f_{\alpha}$ für alle $|\alpha| \le k$ gilt. Dazu halten wir zunächst fest, dass mit der HÖLDER-Ungleichung

$$\int_{\Omega} (D^{\alpha} f_j - f_{\alpha}) \varphi \, \mathrm{d}x \le \| (D^{\alpha} f_j - f_{\alpha}) \|_q \| \varphi \|_{q'} \to 0$$

sowie

$$\int_{\Omega} (f_j - f_0) D^{\alpha} \varphi \, \mathrm{d}x \le \|(f_j - f_0)\|_q \|\varphi\|_{q'} \to 0$$

folgt, wobei q' den zu q konjugierten Exponenten bezeichne. Damit erhalten wir

$$[f_{\alpha}, \varphi] = [\lim_{j \to \infty} D^{\alpha} f_{j}, \varphi]$$
 (Limes bezüglich $\|\cdot\|_{q}$)
$$= \lim_{j \to \infty} [D^{\alpha} f_{j}, \varphi]$$

$$= \lim_{j \to \infty} (-1)^{|\alpha|} [f_{j}, D^{\alpha} \varphi]$$

$$= (-1)^{|\alpha|} [\lim_{j \to \infty} f_{j}, D^{\alpha} \varphi]$$

$$= (-1)^{|\alpha|} [f_{0}, D^{\alpha} \varphi].$$

Daraus folgt jedoch gerade die Behauptung $D^{\alpha}f_0 = f_{\alpha}$. Insgesamt ergibt sich also $\lim_{j\to\infty} ||f_j - f_0||_{k,q} = 0$, was zu beweisen war.

Wir definieren den Unterraum

$$W_0^{k,q}(\Omega) := \overline{\mathcal{C}_0^{\infty}(\Omega)}^{\|\cdot\|_{k,q}}$$

welcher die glatten Funktionen mit kompaktem Träger als dichte Teilmenge bezüglich der Sobolev-Norm enthält.

Bisher hatten wir nur Sobolev-Räume positiver Ordnung betrachtet. Für $1 < q < \infty$ definieren wir die Sobolev-Räume negativer Ordnung

$$W^{-1,q}(\Omega) := W_0^{k,q'}(\Omega)'.$$

Wie für den Dualraum eines normierten Raumes üblich, ist auch $W^{-1,q}(\Omega)$ mit Operatornorm ein Banach-Raum.

Es ist möglich einen SOBOLEV-Raum $W^{k,q}(\Omega)$ für $1 < q < \infty$ als abgeschlossenen Teilraum eines L^q -Raumes zu realisieren [AF03][S.61, 3.5]. Als solcher ist er insbesondere reflexiv. Wir halten diese wichtige Eigenschaft in einem Lemma fest.

Lemma 1.5. Für ein Gebiet $\Omega \subseteq \mathbb{R}^n$ mit $n \ge 1$ und $1 < q < \infty$ ist $W^{k,q} = W^{k,q}(\Omega)$ ausgestattet mit der SOBOLEV-Norm ein reflexiver Raum.

Aus der Reflexivität der Sobolev-Räume leiten wir für $1 < q < \infty$ die folgende Identität ab:

$$W_0^{1,q'}(\Omega) = W^{-1,q}(\Omega)'.$$

Wir können also jede Funktion $u \in W_0^{1,q'}(\Omega)$ mit dem Funktional

$$[\cdot,u]\colon F\mapsto [F,u],\quad F\in W^{-1,q}(\Omega)$$

identifizieren.

14 1 Grundlagen

Wir definieren nun die $W^{k,q}_{\mathrm{loc}}$ -Räume. Wir bezeichnen mit $W^{k,q}(\Omega)$ den aller Funktionen u mit $D^{\alpha}u\in L^q_{\mathrm{loc}}(\Omega)$ für alle Multiindices $|\alpha|\leq k$. Des Weiteren definieren definieren wir $W^{k,q}(\overline{\Omega})$ als den Raum aller Funktionen u mit $D^{\alpha}u\in L^q_{\mathrm{loc}}(\overline{\Omega})$.

Wie schon im Unterabschnitt zu glatten Funktionen können wir auch die Definition der SOBOLEV-Räue auf Produkträume ausdehnen. Wir definieren hierzu

$$W^{k,q}(\Omega)^m := \{(u_1, \dots, u_m) \mid u_i \in W^{k,q}(\Omega), \quad j = 1, \dots, m\}$$

und versehen den so entstandenen Vektorraum mit der Norm

$$||u||_{W^{k,q}(\Omega)^m} := ||u||_{k,q} := \left(\sum_{j=1}^m ||u_j||_{k,q}^q\right)^{\frac{1}{q}}$$

Kapitel 2

Lösungen von $\nabla p = f$

2.1 Lipschitz-Gebiete und Gebietsapproximation

Im Folgenden sei \mathbb{R}^n immer mit der Euklidischen Metrik versehen. Es bezeichne zudem

$$dist(X,Y) := \inf\{ ||x - y|| \mid x \in X, y \in Y \}$$

den Euklidischen Abstand zweier Mengen $X, Y \subseteq \mathbb{R}^n$.

Definition 2.1. Lipschitz-Gebiete

Lemma 2.2. Seien $\emptyset \subsetneq A, B \subsetneq \mathbb{R}^n$. Gilt $A \subseteq B$, so folgt $\operatorname{dist}(a, \partial A) \leq \operatorname{dist}(a, \partial B)$ für alle $a \in A$.

Beweis. Da \mathbb{R}^n ein zusammenhängender Raum ist, sind die einzigen Mengen mit leerem Rand die leere Menge und der ganze Raum. Dies wurde jedoch in der Voraussetzung des Lemmas bereits ausgeschlossen, daher nimmt dist nur endliche Werte an.

Sei nun $a \in A$ und $b \in \partial B$ Wir betrachten den Strahl $s: [0,1] \to \mathbb{R}^n$ mit s(0) = a und s(1) = b. Zudem können wir annehmen, dass $a, b \notin \partial A$ gilt, da ansonsten die Ungleichung sofort erfüllt ist. Wir wollen im Folgenden nachweisen, dass ein $t' \in (0,1)$ mit $s(t') \in \partial A$ existiert.

Dazu definieren wir die Funktion

$$f(x) := (1 - 2\chi_A(x)) \cdot \operatorname{dist}(x, \partial A), \quad x \in \mathbb{R}^n,$$

wobei χ_A die charakteristische Funktion der Menge A bezeichne. Als Nächstes weisen wir nach, dass f auf \mathbb{R}^n stetig ist. Es ist bekannt, dass die Funktion dist $(\cdot, \partial A)$ stetig ist [Kö04][S.14]. Auf $\mathbb{R}^n \setminus \partial A$ ist zudem $(1 - 2\chi_A(x))$ konstant gleich -1 beziehungsweise 1, also ist f dort stetig.

Sei nun $(x_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R}^n mit $\lim_{n\to\infty}x_n=x\in\partial A$. Dann gilt

$$|(1 - 2\chi_A(x_n)) \cdot \operatorname{dist}(x_n, \partial A)| \le \operatorname{dist}(x_n, \partial A) \to \operatorname{dist}(x, \partial A) = 0,$$

also auch

$$\lim_{n \to \infty} f(x_n) = 0 = f(x),$$

da aufgrund der Abgeschlossenheit von ∂A die Gleichheit dist $(x, \partial A) = 0$ äquivalent zu $x \in \partial A$ ist (*).

Auf $f \circ s$ lässt sich nun der Zwischenwertsatz anwenden, denn nach Voraussetzung gelten

$$(f \circ s)(0) = f(a) = -1$$
 und $(f \circ s)(1) = f(b) = 1$.

Somit existiert also ein $t' \in (0,1)$ mit $(f \circ s)(t') = f(s(t')) = 0$, was nach (*) äquivalent zu $s(t') \in \partial A$ ist. Es ist also

$$||a - b|| \ge ||a - s(t')|| - ||s(t') - b|| \ge ||a - s(t')|| \ge \operatorname{dist}(x, \partial A).$$

Da dies für alle $b \in \partial B$ gilt folgt sogleich $\operatorname{dist}(a, \partial B) \geq \operatorname{dist}(a, \partial A)$.

Bemerkung. Wie aus dem Beweis von Lemma 2.2 ersichtlich ist, reicht es bereits aus A und B als Teilmengen der konvexen Hülle von B mit euklidischer Spurmetrik und entsprechender Abstandsfunktion dist zu betrachten. Die Konvexität ist hierbei notwendig, wie man an einem Beispiel zeigen kann.

Lemma 2.3. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 2$ ein Gebiet. Dann existiert eine Folge $(\Omega_j)_{j \in \mathbb{N}}$ beschränkter Lipschitz-Gebiete $\Omega_j \subseteq \Omega$ und eine Folge $(\varepsilon_j)_{j \in \mathbb{N}}$ positiver reeller Zahlen mit folgenden Eigenschaften:

- a) Für alle $j \in \mathbb{N}$ gilt $\overline{\Omega}_j \subseteq \Omega_{j+1}$.
- b) Für alle $j \in \mathbb{N}$ gilt $\varepsilon_{j+1} \leq \operatorname{dist}(\Omega_j, \partial \Omega_{j+1})$.
- c) Es gilt $\lim_{j\to\infty} \varepsilon_j = 0$.
- d) Die Gebiete Ω_j schöpfen Ω aus.

Beweis. Im Folgenden bezeichne $B_r(x) \subseteq \mathbb{R}^n$ den bezüglich Euklidischer Topologie offenen Ball mit Radius r und Mittelpunkt x.

Für ein festgewähltes $x_0 \in \Omega$ betrachten wir den Schnitt

$$\Omega' := \Omega \cap B_1(x_0).$$

Als Schnitt offener Mengen ist Ω' wiederum offen. Bezüglich der Teilraumtopologie muss Ω' jedoch nicht zwingend zusammenhängend sein. Wir bezeichnen nun mit $\widetilde{\Omega}_1$ die Zusammenhangskomponente von Ω' , welche x_0 enthält. Da die Zusammenhangskomponenten eines topologischen Raumes immer eine Partition desselben bilden, ist Ω' eindeutig bestimmt. Insbesondere gilt für den Rand

$$\partial \widetilde{\Omega}_1 \subseteq \overline{B_1(x_0)},$$

er ist somit als abgeschlossene Teilmenge des Kompaktums $\overline{B_1(x_0)}$ selbst kompakt. Für alle $\varepsilon > 0$ lässt sich daher $\partial \widetilde{\Omega}_1$ durch endlich viele Bälle $B_{\varepsilon}(x_j)$, mit $x_j \in \partial \widetilde{\Omega}_1$ für alle $j = 1, \ldots, m$, überdecken:

$$\partial \widetilde{\Omega}_1 \subseteq \bigcup_{j=1}^m B_{\varepsilon}(x_j).$$

Wir definieren nun

$$\widehat{\Omega}_1 := \widetilde{\Omega}_1 \setminus \bigcap_{j=1}^m \overline{B_{\varepsilon}(x_j)}$$

und wählen $0 < \varepsilon < 1$ so klein, dass zusätzlich $x_0 \in \widehat{\Omega}_1$ gilt. Dies lässt sich immer erreichen, da $\widetilde{\Omega}_1$ als bezüglich Teilraumtopologie offen-abgeschlossene Menge in Ω' auch in \mathbb{R}^n offen ist und daher ein $\delta > 0$ mit $B_{\delta}(x_0) \subseteq \Omega'$ existiert. Hiermit besitzt bereits ein $\varepsilon < \operatorname{dist}(x_0, \partial \widetilde{\Omega}_1) - \delta$ die geforderte Eigenschaft.

Man erkennt nun $\widehat{\Omega}_1$ als beschränktes LIPSCHITZ-Gebiet, da $\partial \widehat{\Omega}_1$ sämtlich aus Teilen der Ränder der Bälle $B_{\varepsilon}(x_j)$ besteht. Wir setzen nun $\Omega_1 := \widehat{\Omega}_1$ und $\epsilon_1 := \epsilon$ und führen diese Konstruktion weiter fort.

Wir wählen wieder

$$\widetilde{\Omega}_2 \subseteq \Omega \cap B_2(x_0)$$

als die x_0 enthaltende Zusammenhangskomponente des Schnitts von Ω und $B_2(x_0)$ und konstruieren analog zum ersten Schritt ein Gebiet $\widehat{\Omega}_2$ mit $0 < \varepsilon < \frac{1}{2}$ und $\varepsilon < \operatorname{dist}(\Omega_1, \partial \widetilde{\Omega}_2)$. Dies ist jedoch nur möglich, falls $0 < \operatorname{dist}(\Omega_1, \partial \widetilde{\Omega}_2)$ gilt, was wir im Folgenden beweisen werden.

Zunächst gilt nach Konstruktion die Inklusionskette

$$\widehat{\Omega}_1 \subseteq \widetilde{\Omega}_1 \subseteq \widetilde{\Omega}_2.$$

Hieraus folgt mit Lemma 2.2, dass

$$\operatorname{dist}(x,\partial\widehat{\Omega}_1) \le \operatorname{dist}(x,\partial\widetilde{\Omega}_1) \le \operatorname{dist}(x,\partial\widetilde{\Omega}_2) \tag{*}$$

für alle $x \in \widehat{\Omega}_1$ gilt. Des Weiteren gilt

$$0 < \lambda \le \operatorname{dist}(\widehat{\Omega}_1, \partial \widetilde{\Omega}_1), \tag{**}$$

wobei λ die Lebesgue-Zahl der Überdeckung $B_{\varepsilon_1}(x_1), \ldots, B_{\varepsilon_1}(x_m)$ von $\partial \widetilde{\Omega}_1$ aus dem ersten Schritt des Beweises bezeichne. Die Ungleichungen (*) und (**) zusammen ergeben nun die Behauptung.

Setzen wir noch $\Omega_2 := \widehat{\Omega}_2$ und $\varepsilon_2 := \varepsilon$, so erhalten wir einerseits $\overline{\Omega}_1 \subseteq \Omega_2$, denn $\Omega_1 \subseteq \Omega_2$ gilt nach Konstruktion, sowie $0 < \operatorname{dist}(x, \partial \widehat{\Omega}_2) =: d$ für alle $x \in \partial \widehat{\Omega}_1$. Dann gilt aber auch $B_{\frac{d}{2}}(x) \subseteq \widehat{\Omega}_2$, also insbesondere $x \in \widehat{\Omega}_2$ für alle $x \in \partial \widehat{\Omega}_1$. Damit folgt

$$\widehat{\Omega}_1 \cup \partial \widehat{\Omega}_1 = \overline{\widehat{\Omega}}_1 \subseteq \widehat{\Omega}_2.$$

Andererseits gilt $\varepsilon_2 < \operatorname{dist}(\Omega_1, \partial \Omega_2)$, denn

$$\varepsilon_{2} < \frac{1}{2} \operatorname{dist}(\Omega_{1}, \partial \widetilde{\Omega}_{2})
\leq \frac{1}{2} (\operatorname{dist}(\Omega_{1}, \partial \widehat{\Omega}_{2}) + \operatorname{dist}(\partial \widehat{\Omega}_{2}, \widetilde{\Omega}_{2}))
\leq \frac{1}{2} (\operatorname{dist}(\Omega_{1}, \partial \widehat{\Omega}_{2}) + \varepsilon_{2}).$$

Setzt man das beschriebene Vorgehen induktiv fort, so erhält man eine Folge $(\Omega_j)_{j\in\mathbb{N}}$ von Lipschitz-Gebieten und eine Folge $(\varepsilon_j)_{j\in\mathbb{N}}$ für die nach Konstruktion $0<\varepsilon_j<\frac{1}{i}$ für alle $j\in\mathbb{N}$ gilt. Die Eigenschaften a), b) und c) werden also erfüllt.

Es gilt noch zu zeigen, dass die so konstruierte Folge $(\Omega_j)_{j\in\mathbb{N}}$ auch Eigenschaft d) erfüllt, also $\Omega\subseteq\bigcup_{j\in\mathbb{N}}\Omega_j$ gilt. Sei dazu $x\in\Omega$ beliebig. Weil Ω zusammenhängend ist, existiert ein $j_0\in\mathbb{N}$, sodass

$$x \in \widetilde{\Omega}_{j_0} \subseteq \Omega \cap B_{j_0}(x_0)$$

gilt. Sei $d := \operatorname{dist}(x, \partial \widetilde{\Omega}_{j_0})$. Dann existiert ein $j_1 > j_0$ mit $\varepsilon_{j_1} < d$. Da die Inklusion $\widetilde{\Omega}_{j_0} \subseteq \widetilde{\Omega}_{j_1}$ gilt, folgt mit Lemma 2.2 die Ungleichung $\varepsilon_{j_1} < \operatorname{dist}(x, \partial \widetilde{\Omega}_{j_1})$, was wiederum $x \in \widehat{\Omega}_{j_1} = \Omega_{j_1}$ impliziert. Damit gilt auch Eigenschaft d).

Bemerkung 2.4. Mit der im Beweis von Lemma 2.3 verwendeten Konstruktion gilt nun auch, dass für alle beschränkten Teilgebiete $\Omega' \subseteq \Omega$ mit $\overline{\Omega'} \subseteq \Omega$ ein $j \in \mathbb{N}$ existiert, sodass $\Omega' \subseteq \Omega_j$

2.2 Kompakte Einbettungen

• [Soh01][S.58, Lemma 1.5.4]

Lemma 2.5. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \ge 1$ ein beschränktes Gebiet und $1 < q < \infty$. Dann ist die Einbettung

$$L^q(\Omega) \subseteq W^{-1,q}(\Omega)$$

kompakt.

Lemma 2.6. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 2$ ein beschränktes LIPSCHITZ-Gebiet und $\Omega_0 \subseteq \Omega$ ein nichtleeres Teilgebiet. Zudem sei $1 < q < \infty$. Dann gilt die Ungleichung

$$||u||_{L^{q}(\Omega)} \le C_1 ||\nabla u||_{W^{-1,q}(\Omega)^n} \le C_1 C_2 ||u||_{L^{q}(\Omega)}$$
(2.1)

für alle $u \in L^q(\Omega)$, welche die Integralgleichung

$$\int_{\Omega_0} u \, \mathrm{d}x = 0$$

erfüllen. Hierbei bezeichnen $C_1 = C_1(q, \Omega, \Omega_0) > 0$ sowie $C_2 = C_2(n) > 0$ Konstanten.

Beweis. Wir halten zunächst fest, dass für alle Folgen $(v_j)_{j\in\mathbb{N}}$ mit $v_j\in\mathcal{C}_0^\infty(\Omega)^n$ für alle $j\in\mathbb{N}$ und $\lim_{j\to\infty}\|v_j-v\|_{1,q}=0$ für ein $v\in\overline{\mathcal{C}_0^\infty(\Omega)^n}^{\|\cdot\|_{1,q}}$ auch $\lim_{j\to\infty}\|\operatorname{div} v_j-\operatorname{div} v\|=0$ gilt. Hiermit ergibt sich für ein $u\in L^q(\Omega)$ folgende Darstellung der linearen Fortsetzung der Distribution $\nabla u\in(\mathcal{C}_0^\infty(\Omega)^n)'$ auf den Raum $\overline{\mathcal{C}_0^\infty(\Omega)^n}^{\|\cdot\|_{1,q}}$:

$$[\nabla u, \cdot] : v \to [\nabla u, v] = -\langle u, \operatorname{div} v \rangle = \int_{\Omega} u \operatorname{div} v \, \mathrm{d}x.$$

Wir können somit ∇u als Element von $W^{-1,q}(\Omega)$ auffassen. Mit dieser Eigenschaft lässt sich der zweite Teil der Ungleichung (2.1) beweisen. Es gilt nämlich für alle $v \in W_0^{1,q'}(\Omega)^n$

$$\begin{aligned} |[\nabla u, v]| &= |\langle u, \operatorname{div} v \rangle| \\ &\leq \|u\|_q \|\operatorname{div} v\|_{q'} \\ &\leq \sum_{|\alpha|=1} \|u\|_q \|D^{\alpha}v\|_{q'} \\ &\leq C_2 \|u\|_q \|v\|_{W^{1,q'}(\Omega)^n}, \end{aligned}$$
(HÖLDER)

mit einem aus der Normäquivalenz auf \mathbb{R}^n stammenden $C_2 = C_2(n)$.

Wir beweisen nun den ersten Teil der Ungleichung (2.1) durch einen Widerspruchsbeweis. Dazu nehmen wir an, es existiere keine Konstante C > 0, sodass die Ungleichung

$$||u||_q \leq C||\nabla u||_{-1,q}$$

für alle $u \in L^q(\Omega)$ mit $\int_{\Omega_0} u \, dx = 0$ gelte. Dann existiert insbesondere für alle $j \in \mathbb{N}$ ein $u_j \in L^q(\Omega)$ mit

$$||u_j||_q > j||\nabla u_j||_{-1,q}$$

und $\int_{\Omega_0} u_j dx = 0$. Wir betrachten nun die normierte Folge $(\tilde{u}_j)_{n \in \mathbb{N}}$ mit

$$\tilde{u}_j := \frac{u_j}{\|u_j\|_q}, \quad n \in \mathbb{N}.$$

So gilt weiterhin aufgrund der Homogenität des Integrals $\int_{\Omega_0} \tilde{u}_j \, \mathrm{d}x = 0$. Darüberhinaus gilt $\|\tilde{u}_j\|_q = 1$ und die Ungleichung

$$\|\nabla \tilde{u}_j\|_{-1,q} < \frac{1}{j}, \quad j \in \mathbb{N}. \tag{*}$$

Nach dem Satz von Banach-Alaoglu ist die Einheitskugel in reflexiven Banach-Räumen schwach kompakt. Damit folgt, dass die beschränkte Folge $(\tilde{u}_j)_{j\in\mathbb{N}}$ eine schwach konvergente Teilfolge mit Grenzwert $u\in L^q(\Omega)$ enthält. Zur Vereinfachung bezeichnen wir diese konvergente Teilfolge wieder mit $(\tilde{u}_j)_{j\in\mathbb{N}}$. Nach Definition der schwachen Konvergenz gilt somit

$$\langle u, v \rangle = \lim_{j \to \infty} \langle \tilde{u}_j, v \rangle$$

für alle $v \in L^{q'}(\Omega)$. Insbesondere gilt aufgrund der vorausgesetzten Beschränktheit von Ω auch $\mathbb{1} \in L^q(\Omega)$ und damit

$$\langle u, 1 \rangle = \int_{\Omega_0} u \, \mathrm{d}x = 0.$$

Unter Verwendung der Ungleichung (*) folgt

$$\lim_{j \to \infty} \|\nabla \tilde{u}_j\|_{-1,q} = 0. \tag{**}$$

Für alle $v \in W_0^{1,q'}(\Omega)^n$ und $j \in \mathbb{N}$ gilt zudem

$$\begin{aligned} |\nabla \tilde{u}_{j}, v]| &= |\langle \tilde{u}_{j}, \operatorname{div} v \rangle| \\ &\leq ||\tilde{u}_{j}||_{q} ||\operatorname{div} v||_{1, q} \\ &\leq ||\tilde{u}_{j}||_{q} ||v||_{1, q} \\ &\leq ||\nabla \tilde{u}_{j}||_{-1, q} ||v||_{1, q}, \end{aligned}$$
(Poincaré)

woraus schließlich

$$\begin{aligned} |[\nabla u, v]| &= |\langle u, \operatorname{div} v \rangle \\ &= \lim_{j \to \infty} |\langle \tilde{u}_j, \operatorname{div} v \rangle \\ &= \lim_{j \to \infty} |[\nabla \tilde{u}_j, v]| \\ &= 0 \end{aligned}$$

folgt. Im distributionellen Sinne gilt damit $\nabla u = 0$. In Abschnitt 1.2.2 haben wir gezeigt, das dies gerade impliziert, dass u konstant ist. Aus der Bedingung $\int_{\Omega_0} u \, dx = 0$ folgt nun u = 0.

Nach [Soh01][S.45 Lemma 1.1.3] existiert eine Konstante C>0, sodass für alle $j\in\mathbb{N}$ die Ungleichung

$$1 = \|\tilde{u}_j\|_q \le C(\|\nabla \tilde{u}_j\|_{-1,q} + \|\tilde{u}_j\|_{-1,q}) \tag{***}$$

gilt. Da die Folge $(\tilde{u}_j)_{j\in\mathbb{N}}$ beschränkt in $L^q(\Omega)$ ist und zudem die Einbettung nach Lemma 2.5 kompakt ist, existiert eine bezüglich der Norm auf $W^{-1,q}(\Omega)$ konvergente Teilfolge von $(\tilde{u}_j)_{j\in\mathbb{N}}$, welche gegen eine Funktion \tilde{u} konvergiert. Wir wollen die Teilfolge wieder mit $(\tilde{u}_j)_{j\in\mathbb{N}}$ bezeichnen. Insbesondere konvergiert die Folge $(\tilde{u}_j)_{j\in\mathbb{N}}$ schwach gegen \tilde{u} . Dann gilt aber $\lim_{j\to\infty} \tilde{u}_j = \tilde{u} = u = 0$ aufgrund der HAUSDORFF-Eigenschaft der schwachen Topologie.

Aus den Gleichungen (**) und (***) folgt nun der Widerspruch

$$1 \le \lim_{j \to \infty} (\|\nabla \tilde{u}_j\|_{-1,q} + \|\tilde{u}_j\|_{-1,q}) = 0.$$

2.3 Darstellung von Funktionalen

Zunächst beschäftigen wir uns mit dem Gradientenoperator. Wir wollen zeigen, dass er unter gewissen Zusatzvoraussetzungen ein abgeschlossenes Bild besitzt. Dies ist Inhalt des folgenden Lemmas.

Lemma 2.7. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 2$ ein beschränktes Gebiet und $1 < q < \infty$. Dann gilt für die Abbildung

$$\nabla \colon L^q(\Omega)^n \to (\mathcal{C}_0^\infty(\Omega)^n)',$$

dass das Bild

$$\{\nabla v \in L^q(\Omega)^{n^2} \colon v \in W^{1,q}_0(\Omega)^n\} \subseteq L^q(\Omega)^{n^2}$$

der Einschränkung von ∇ auf $W_0^{1,q}$ eine abgeschlossene Teilmenge des Raumes $L^q(\Omega)^{n^2}$ ist.

Beweis. Sei $(v_j)_{j\in\mathbb{N}}$ eine Folge in $W_0^{1,q}(\Omega)^n$, sodass die Folge der Gradienten $(\nabla v_j)_{j\in\mathbb{N}}$ in $L^q(\Omega)^{n^2}$ konvergiert. Als konvergente Folge ist diese insbesondere eine CAUCHY-Folge. Da Ω nach Voraussetzung ein beschränktes Gebiet ist, lässt sich die POIN-CARÉ-Ungleichung anwenden. Daraus folgt, dass auch die Folge $(v_j)_{j\in\mathbb{N}}$ eine CAUCHY-Folge in $L^q(\Omega)^n$ ist. Dann gilt jedoch mit der Definition der SOBOLEV-Norm die Ungleichung

$$||v_j - v_k||_{W_{1,q}} \le c(||v_j - v_k||_q + ||\nabla v_j - \nabla v_k||_q)$$

für ein aufgrund der verwendeten Normäquivalenz existierendes c > 0 und alle $j, k \in \mathbb{N}$. Die Folge $(v_j)_{j \in \mathbb{N}}$ ist also auch eine CAUCHY-Folge bezüglich SOBOLEV-Norm.

Der Raum $W_0^{1,q}$ ist nach Definition ein bezüglich SOBOLEV-Norm abgeschlossener Unterraum von $W^{1,q}$ und damit gilt $\lim_{j\to\infty} v_j = v \in W_0^{1,q}$. Da zudem

$$\|\nabla v_j\|_{L_{1,q}} \le \|v\|_{W_{1,q}}$$

gilt, muss also auch $\lim_{j\to\infty} \nabla v_j = \nabla v$ gelten. Dies beweist, dass D ein abgeschlossener Unterraum von $L^q(\Omega)^{n^2}$ ist.

Basierend auf [Soh01][S.61, Lemma 1.6.1] beweisen wir nun eine Verallgemeinerung dieses Lemmas.

Lemma 2.8. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 2$ ein beschränktes Gebiet und $f \in W^{-1,q}(\Omega)^n$ mit $1 < q < \infty$. Dann existiert eine Matrix $F \in L^q(\Omega)^{n^2}$, welche die Gleichung

$$f = \operatorname{div} F$$

im distributionellen Sinne und die Ungleichungen

$$||f||_{W^{-1,q}(\Omega)^n} \le ||F||_{L^q(\Omega)^{n^2}} \le C||f||_{W^{-1,q}(\Omega)^n}$$

 $mit\ C = C(\Omega) > 0$ erfüllt.

Beweis. Wir betrachten den Raum

$$D := \{ \nabla v \in L^{q'}(\Omega)^{n^2} \colon v \in W_0^{1,q'}(\Omega)^n \} \subseteq L^{q'}(\Omega)^{n^2}$$

der Gradienten $\nabla v = (D_j v_l)_{j,l=1}^n$ von Funktionen $v = (v_1, \dots, v_n) \in W_0^{1,q'}(\Omega)^n$. Nach Lemma 2.7 ist D ein abgeschlossener Unterraum von $L^{q'}(\Omega)^{n^2}$.

Wir definieren das Funktional

$$\tilde{f} \colon \nabla v \mapsto [\tilde{f}, \nabla v] , \quad \nabla v \in D$$

durch $[\tilde{f}, \nabla v] := [f, v]$ für alle $v \in W_0^{1,q'}(\Omega)^n$. Dann liefert die HÖLDER-Ungleichung zusammen mit der POINCARÉ-Ungleichung eine Konstante $C = C(\Omega) > 0$, sodass

$$|[\tilde{f}, \nabla v]| = |[f, v]| \leq_{\text{H\"{O}LDER}} ||f||_{-1, q} ||v||_{1, q'} \leq_{\text{POINCAR\'{E}}} C||f||_{-1, q} ||\nabla v||_{q'}$$

für alle $\nabla v \in D$ gilt. Somit ist \tilde{f} ein stetiges Funktional auf $D \subseteq L^{q'}(\Omega)^{n^2}$ mit

$$\|\tilde{f}\|_{D'} \le C\|f\|_{-1,q}.$$

Der Satz von Hahn-Banach liefert eine normgleiche Fortsetzung von D nach $L^{q'}(\Omega)^{n^2}$. Nach dem Darstellungssatz von Riesz über Funktionale auf L^q existiert nun eine Matrix $F \in L^q(\Omega)^{n^2}$ mit

$$\langle F, \nabla v \rangle = \sum_{i,l=1}^{n} \int_{\Omega} F_{il}(D_{j}v_{l}) \, \mathrm{d}x = \int_{\Omega} F \cdot \nabla v \, \mathrm{d}x = [\tilde{f}, \nabla v] = [f, v]$$

für alle $v = (v_1, \dots, v_n) \in W_0^{1,q'}(\Omega)^n$. Beweise des Darstellungssatzes finden sich in [AF03][S.47, Theorem 2.44] und [Wer11][?]. Zudem gilt

$$||F||_{L^q(\Omega)^{n^2}} = ||\tilde{f}||_{(L^{q'}(\Omega)^{n^2})'} \le C||f||_{-1,q},$$

da die Identifikation von Funktionalen auf $L^{q'}(\Omega)^{n^2}$ mit Funktionen aus $L^q(\Omega)^{n^2}$ isometrisch ist. Des Weiteren gilt für alle $v \in W_0^{1,q'}(\Omega)^n$ mit der HÖLDER-Ungleichung

$$\begin{split} |[f,v]| &= |\langle F, \nabla v \rangle| \\ &\leq \|F\|_q \|\nabla v\|_{q'} \qquad \qquad \text{(H\"older-Ungleichung)} \\ &\leq \|F\|_q (\|v\|_{q'}^{q'} + \|\nabla v\|_{q'}^{q'})^{\frac{1}{q'}} \qquad \qquad \text{(\"Ubergang zu Sobolev-Norm)} \\ &= \|F\|_q \|v\|_{W_0^{1,q'}(\Omega)^n}. \end{split}$$

Daraus folgt

$$||f||_{W^{-1,2}(\Omega)} \le ||F||_2.$$

Ist nun $v \in \mathcal{C}_0^{\infty}(\Omega)^n$, so gilt

$$[f, v] = \langle F, \nabla v \rangle$$

$$= \sum_{j,l=1}^{n} \langle F_{jl}, D_{j} v_{l} \rangle$$

$$= -\sum_{j,l=1}^{n} \langle D_{j} F_{jl}, v_{l} \rangle$$

$$= -[\operatorname{div} F, v],$$

die Abbildungen $[f,\cdot]$ und $[-\operatorname{div} F,\cdot]$ stimmen also im Sinne von Distributionen überein, die zu zeigende Aussage folgt durch den Übergang von F zu -F.

2.4 Das Gradientenkriterium

In diesem Abschnitt stellen wir ein für die HELMHOLTZ-Zerlegung fundamentales Kriterium vor, welches es ermöglicht, Funktionen $f \in W^{1,q}(\Omega)^n$ als Gradienten $f = \nabla p$ mit $p \in L^q(\Omega)$ darzustellen.

Lemma 2.9. Sei $\Omega \subseteq \mathbb{R}^n$ mit $n \geq 2$ ein Gebiet $\Omega_0 \subseteq \Omega$ ein beschränktes Teilgebiet mit $\emptyset \neq \overline{\Omega}_0 \subseteq \Omega$ und $1 < q < \infty$. Angenommen, für $f \in W^{-1,q}_{loc}(\Omega)^n$ gelte

$$[f, v] = 0, \quad \text{für alle} \quad v \in \mathcal{C}_{0,\sigma}^{\infty}(\Omega).$$
 (2.2)

Dann existiert ein eindeutig bestimmtes $p \in L^q_{loc}(\Omega)$, welches die Gleichung $\nabla p = f$ im distributionellen Sinne erfüllt und für das zusätzlich

$$\int_{\Omega_0} p \, \mathrm{d}x = 0 \tag{2.3}$$

gilt.

Beweis. Wir zeigen zunächst, dass für ein beliebiges beschränktes LIPSCHITZ-Gebiet $\Omega_1 \subseteq \Omega$ mit $\overline{\Omega}_0 \subseteq \Omega_1 \subseteq \overline{\Omega}_1 \subseteq \Omega$ ein eindeutig bestimmtes $p \in L^q(\Omega_1)$ existiert, welches die Behauptung des Lemmas erfüllt.

Ähnlich zum ersten Beweisschritt von Lemma 2.3 finden wir ein weiteres beschränktes Lipschitz-Gebiet Ω_2 mit $\overline{\Omega}_1 \subseteq \Omega_2 \subseteq \overline{\Omega}_2 \subseteq \Omega$. Dazu wählen wir ein $x_0 \in \Omega_1$ und finden aufgrund der vorausgesetzten Beschränktheit von Ω_1 ein r > 0, sodass $\Omega_1 \subseteq B_r(x_0)$ gilt. Wir wählen sodann die x_0 enthaltende Zusammenhangskomponente $\widetilde{\Omega}_2$ von $B_r(x_0) \cap \Omega$ aus und konstruieren wie schon im Beweis von Lemma 2.3 das beschränkte Lipschitz-Gebiet $\Omega_2 = \widehat{\Omega}_2$.

Der Voraussetzung $f \in W_{\text{loc}}^{-1,q}(\Omega)^n$ entnehmen wir, dass $f \in W^{-1,q}(\Omega_2)^n$ gilt. Zudem existiert aufgrund der Beschränktheit von Ω_2 nach Lemma 2.8 eine Darstellung

$$f = \operatorname{div} F$$
 mit $F = (F_{jl})_{i,l=1}^n \in L^q(\Omega_2)^{n^2}$.

Im Folgenden bezeichne $F^{\varepsilon} := \mathcal{F}_{\varepsilon} * F = (\mathcal{F}_{\varepsilon} * F_{jl})_{j,l=1}^{n}$ mit $0 < \varepsilon < \text{dist}(\Omega_{1}, \partial \Omega_{2})$ die in Abschnitt 1.2.2 definierte Faltung von F mit einem Glättungskern, für den wie bereits gezeigt $F^{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\Omega}_{1})^{n^{2}}$ gilt. Wir wollen beweisen, dass eine Darstellung der Form

$$\operatorname{div} F^{\varepsilon} = \nabla U_{\varepsilon}$$

mit einem $U_{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\Omega}_1)$ existiert.

Ein bekanntes Resultat aus der Funktionentheorie besagt, dass jedes auf dem Gebiet Ω_1 definierte glatte Vektorfeld $g \in \mathcal{C}^{\infty}(\Omega_1)^n$ genau dann ein Potential $\Phi \in \mathcal{C}^{\infty}(\Omega_1)$ besitzt, falls das Kurvenintegral entlang jeder in Ω_1 verlaufenden glatten Kurve $w \colon [0,1] \to \Omega_1$ verschwindet, also genau dann, falls

$$\oint_w g \cdot ds = \int_0^1 g(w(\tau)) \cdot w'(\tau) d\tau = 0$$

für alle glatten Kurven w in Ω_1 gilt.

Wir wollen dies nun für div F^{ε} beweisen. Dazu definieren wir für alle $x \in \Omega_2$ den Wert des Integrals

$$V_{w,\varepsilon}(x) := \int_0^1 \mathcal{F}_{\varepsilon}(x - w(\tau))w'(\tau) d\tau$$

und erhalten durch wiederholte Anwendung der Leibniz-Regel für Parameterintegrale $V_{w,\varepsilon} \in \mathcal{C}_0^{\infty}(\Omega_2)^n$. Darüber hinaus gilt für eine geschlossene Kurve w in $\overline{\Omega}_1$ folgende Rechnung

$$\operatorname{div} V_{w,\varepsilon}(x) = \int_0^1 \sum_{j=1}^n (D_j \mathcal{F}_{\varepsilon})(x - w(\tau)) w_j'(\tau) \, d\tau \qquad \text{(Leibniz)}$$

$$= -\int_0^1 \frac{\mathrm{d}}{\mathrm{d}\tau} \mathcal{F}_{\varepsilon}(x - w(\tau)) \, d\tau \qquad \text{(Kettenregel)}$$

$$= \mathcal{F}_{\varepsilon}(x - w(0)) - \mathcal{F}_{\varepsilon}(x - w(1)) \qquad \text{(Hauptsatz)}$$

$$= 0 \qquad \text{(geschlossene Kurve)}$$

Hiermit folgt $V_{w,\varepsilon} \in \mathcal{C}_{0,\sigma}^{\infty}(\Omega_2)^n$. Unter Verwendung der Voraussetzung aus Gleichung (2.2) und dem Satz von Fubini folgt

$$0 = [f, V_{w,\varepsilon}] = [\operatorname{div} F, V_{w,\varepsilon}] = \int_{\Omega_2} \operatorname{div} F \cdot V_{w,\varepsilon} \, \mathrm{d}x$$

$$= \int_{\Omega_2} \sum_{j,l=1}^n D_j F_{jl}(x) \left(\int_0^1 \mathcal{F}_{\varepsilon}(x - w(\tau)) w_l'(\tau) \, \mathrm{d}\tau \right) \, \mathrm{d}x$$

$$= \sum_{j,l=1}^n \int_0^1 \left(\int_{\Omega_2} D_j F_{jl}(x) \mathcal{F}_{\varepsilon}(x - w(\tau)) \, \mathrm{d}x \right) w_l'(\tau) \, \mathrm{d}\tau \qquad \text{(Satz von Fubini)}$$

$$= \sum_{j,l=1}^n \int_0^1 \left(\int_{\Omega_2} D_j F_{jl}(x) \mathcal{F}_{\varepsilon}(w(\tau) - x) \, \mathrm{d}x \right) w_l'(\tau) \, \mathrm{d}\tau \qquad (\mathcal{F}_{\varepsilon}(x) = \mathcal{F}_{\varepsilon}(-x))$$

$$= \sum_{j,l=1}^n \int_0^1 \left(D_j F_{jl} * \mathcal{F}_{\varepsilon} \right) (w(\tau)) w_l'(\tau) \, \mathrm{d}\tau$$

$$= \sum_{j,l=1}^n \int_0^1 \left(D_j F_{jl} * \mathcal{F}_{\varepsilon} \right) (w(\tau)) w_l'(\tau) \, \mathrm{d}\tau \qquad \text{((1.2) mit } F_{jl} \in L^2(\Omega) \subseteq \mathcal{C}_0^{\infty}(\Omega)')$$

$$= \sum_{j,l=1}^n \int_0^1 \left(D_j F_{jl}^{\varepsilon} \right) (w(\tau)) w_l'(\tau) \, \mathrm{d}\tau$$

$$= \int_0^1 \left(\operatorname{div} F^{\varepsilon} \right) (w(\tau)) \cdot w'(\tau) \, \mathrm{d}\tau$$

$$= \int_0^1 \operatorname{div} F^{\varepsilon} \cdot \, \mathrm{d}s.$$

Es existiert also ein $U_{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\Omega}_1)$ mit div $F^{\varepsilon} = \nabla U_{\varepsilon}$. Die Funktion U_{ε} ist bis auf eine Konstante γ eindeutig bestimmt, denn es gilt $\nabla U_{\varepsilon} = \nabla (U_{\varepsilon} - \gamma)$. Wir können

durch die Wahl $\gamma = \int_{\Omega_0} U_{\varepsilon} dx$ erreichen, dass $\int_{\Omega_0} U_{\varepsilon} - \gamma dx = 0$ gilt. Im Folgenden bezeichnen wir die so gewählte Funktion wieder mit U_{ε} . Mit Lemma 2.6 folgt

$$||U_{\varepsilon}||_{L^{q}(\Omega_{1})} \leq C||\nabla U_{\varepsilon}||_{W^{-1,q}(\Omega_{1})}$$

$$= C \sup_{0 \neq v \in \mathcal{C}_{0}^{\infty}(\Omega_{1})^{n}} \left(\frac{|[\nabla U_{\varepsilon}, v]|}{||\nabla v||_{q'}}\right)$$

$$\stackrel{(*)}{=} C \sup_{0 \neq v \in \mathcal{C}_{0}^{\infty}(\Omega_{1})^{n}} \left(\frac{|\langle F^{\varepsilon}, \nabla v \rangle|}{||v||_{q'}}\right)$$

$$\leq C||F^{\varepsilon}||_{L^{q}(\Omega_{1})} \qquad (\star)$$

für ein $C = C(q, \Omega_0, \Omega_1)$, welches nicht von ε abhängt. Die Gleichheit (*) ergibt sich dabei wie folgt:

$$\langle F^{\varepsilon}, \nabla v \rangle = \int_{\Omega_{1}} F^{\varepsilon} \cdot \nabla v \, dx$$

$$= \int_{\Omega_{1}} \sum_{j,l=1}^{n} F_{jl}^{\varepsilon}(D_{j}v_{l}) \, dx$$

$$= \int_{\Omega_{1}} \sum_{j,l=1}^{n} -(D_{j}F_{jl}^{\varepsilon})v_{l} \, dx \qquad (Kompakter Träger)$$

$$= \int_{\Omega_{1}} -\operatorname{div} F^{\varepsilon} \cdot v \, dx$$

$$= \int_{\Omega_{1}} -\nabla U_{\varepsilon} \cdot v \, dx$$

$$= -[\nabla U_{\varepsilon}, v].$$

Eine wesentliche Eigenschaft der Glättungskerne ist, dass $\lim_{\varepsilon \to 0} ||F - F^{\varepsilon}||_{L^q(\Omega_1)} = 0$ gilt. Das Netz $(F^{\varepsilon})_{\varepsilon \in \mathbb{R}^+}$ ist aufgrund der Konvergenz auch ein CAUCHY-Netz. Mit Gleichung (*) gilt dann für alle $0 < \eta < \varepsilon$ die Ungleichung

$$||U_{\varepsilon} - U_{\eta}||_{L^{q}(\Omega_{1})} \le C||F^{\varepsilon} - F^{\eta}||_{L^{q}(\Omega_{1})}.$$

Also ist auch $(U_{\varepsilon})_{\varepsilon \in \mathbb{R}^+}$ ein CAUCHY-Netz, welches aufgrund der Vollständigkeit des Raumes $L^q(\Omega_1)$ einen eindeutig bestimmten Grenzwert $U \in L^q(\Omega_1)$ besitzt. Da zudem Ω_0 beschränkt ist, gilt die Inklusionsbeziehung $L^1(\Omega_0) \subseteq L^q(\Omega_0)$. Damit folgt

$$\left| \int_{\Omega_0} U - U_{\varepsilon} \, \mathrm{d}x \right| \le \int_{\Omega_0} |U - U_{\varepsilon}| \, \mathrm{d}x = \|U - U_{\varepsilon}\|_{L^1(\Omega_0)} \to 0 \quad \text{für } \varepsilon \to 0,$$

also auch

$$\int_{\Omega_0} U \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{\Omega_0} U_\varepsilon \, \mathrm{d}x = 0,$$

aufgrund der Wahl von U^{ε} .

Nun zeigen wir noch dass div $F = \nabla U$ im distributionellen Sinne gilt. Wir halten dazu zunächst fest, dass die Konvergenz auf $L^q(\Omega_1)^n$ die komponentenweise Konvergenz auf $L^q(\Omega_1)$ impliziert. Es gilt somit $||F_{jl} - F_{jl}^{\varepsilon}||_{L^q(\Omega_1)} \to 0$ für $\varepsilon \to 0$. Sei nun $v \in \mathcal{C}_0^{\infty}(\Omega_1)^n$. Dann gilt

$$[\nabla U, v] = \int_{\Omega_1} \nabla U \cdot v \, dx$$

$$= \int_{\Omega_1} \sum_{j=1}^n (D_j U) v_j \, dx$$

$$= -\int_{\Omega_1} \sum_{j=1}^n U(D_j v_j) \, dx$$

$$= -\int_{\Omega_1} \sum_{j=1}^n \lim_{\varepsilon \to 0} U_{\varepsilon}(D_j v_j) \, dx$$

$$\stackrel{(\clubsuit)}{=} -\lim_{\varepsilon \to 0} \int_{\Omega_1} \nabla U_{\varepsilon} \cdot v \, dx$$

$$= -\lim_{\varepsilon \to 0} \int_{\Omega_1} \int_{\Omega_1} v \, dv \, dx$$

$$= -\lim_{\varepsilon \to 0} \int_{\Omega_1} \sum_{j,l=1}^n F_{jl}^{\varepsilon}(D_j v_l) \, dx$$

$$\stackrel{(\clubsuit)}{=} \int_{\Omega_1} \sum_{j,l=1}^n (D_j F_{jl}) v_l \, dx$$

$$= \langle \operatorname{div} F, v \rangle,$$

wobei bei (\clubsuit) verwendet wurde, dass Ω_1 beschränkt ist.

Zuletzt zeigen wir, wie sich die gesuchte Funktion p konstruieren lässt. Wie der Beweis zeigt, lässt sich für jedes beschränkte LIPSCHITZ-Gebiet Ω_1 ein $U \in L^q(\Omega_1)$ finden, welches zudem aufgrund der Forderung

$$\int_{\Omega_0} U \, \mathrm{d}x = 0$$

eindeutig bestimmt ist. Nach Lemma 2.3 lässt sich jedes Gebiet Ω durch eine Folge $(\Omega_j)_{j\in\mathbb{N}}$ beschränkter LIPSCHITZ-Gebiete ausschöpfen. Zudem gilt nach Bemerkung 2.4 jedes beschränkte Teilgebiet $\Omega'\subseteq\Omega$ in einem beschränkten LIPSCHITZ-Gebiet $\Omega_j, j\in\mathbb{N}$ enthalten ist. Wir können direkt annehmen, dass dies bereits für j=1 erfüllt ist. Führen wir nun den vorangehenden Beweis für Ω_j , so erhalten wir eine eindeutig bestimmte Funktion $p\in L^q(\Omega_j)$, die die Gleichung $f=\nabla p$ auf Ω_j im distributionellen Sinne erfüllt und für die des Weiteren das Integral $\int_{\Omega_0} p \, dx$ verschwindet. Da nach Lemma 2.3 die Gleichheit $\bigcup_{j\in\mathbb{N}} \Omega_j = \Omega$ gilt, lässt sich p auch eindeutig bis auf Nullmengen auf Ω definieren. Ist zudem B ein Ball mit $\overline{B}\subseteq\Omega$,

so existiert ein $j \in \mathbb{N}$ mit $\overline{B} \subseteq \Omega_j$. Da $p \in L^q(\Omega_j)$ gilt, folgt sofort $p \in L^q(B)$. Die Definition der lokalen Integrierbarkeit liefert hiermit $p \in L^q_{loc}(\Omega)$. Dies beweist die Behauptung.

Kapitel 3

Helmholtz-Zerlegung in \mathcal{L}^2

 \bullet Lemma 2.5.1, 2.5.2 [Soh01][S.81ff.]

Kapitel 4

Zusammenfassung und Ausblick

Literaturverzeichnis

- [AF03] Adams, R.; Fournier, J. J. F.: Sobolev Spaces. 2. Auflage. Amsterdam: Elsevier Academic Press, 2003
- [Bar15] Bartsch, R.: Allgemeine Topologie. 2. Auflage. Berlin: De Gruyter, 2015
- [Kö04] KÖNIGSBERGER, K.: Analysis II. 4. Auflage. Berlin: Springer, 2004
- [Rud91] RUDIN, W.: Functional Analysis. 2. Auflage. Boston: McGraw-Hill, 1991
- [SA10] Spurk, J. H.; Aksel, N.: Strömungslehre: Einführung in die Theorie der Strömungen. 8. Auflage. Berlin: Springer, 2010
- [Soh01] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Basel: Birkhäuser, 2001
- [Wer11] WERNER, D.: Funktionalanalysis. 7. Auflage. Berlin: Springer, 2011

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst habe und alle benutzten Quellen einschließlich der Quellen aus dem Internet und alle sonstigen Hilfsmittel angegeben habe.

Darmstadt, den 17. Juli 2016

Fabian Gabel