
 (TM)

 Release 3.1A John F. Collins, Biocomputing Research Unit.
 Copyright (C) 1993-1998 University of Edinburgh, U.K.
 Distribution rights by Oxford Molecular Ltd

MSEARCH_PP protein - protein database search, using Smith-Waterman algorithm
 Run on: Fri Sep 18 13:52:52 1998; MasPar time 2.12 Seconds
 Tabular output not generated.

Title:

>US_08-765-588-8

Description: (1-143) from US08765588.pep

Perfect Score:

Sequence: 1 MSFLRRRLLLALIQLQAPQ..... CREEKKKDSAVKPDRCRKLLR 143

Scoring table: PAM 150

Searched: Gap 11

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-issued
 1:5_COMB 2:PCT9_COMB 3:backfiles1

Statistics: Mean 28.064; Variance 116.805; scale 0.240

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Length	DB ID	Description	Pred. No.
1	1023	94.9	188	1 US-08-469- Sequence 11, Application 1.69e-91	1
2	947	87.8	188	1 US-08-469- Sequence 5, Application 9.26e-84	1
3	897	83.2	133	1 US-08-469- Sequence 9, Application 1.12e-78	1
4	870	80.7	195	1 US-08-469- Sequence 7, Application 6.18e-76	1
5	709	65.8	102	1 US-08-469- Sequence 2, Application 1.21e-59	1
6	400	37.1	121	3 5219739-20 Patient No. 5219739-20	8.12e-29
7	400	37.1	121	3 5194596-19 Patient No. 5194596-19	8.12e-29
8	379	35.2	231	3 PCT-US96-0 Sequence 10, Application 9.28e-27	1
9	378	35.1	191	3 532671-4 Patient No. 532671-4	1.16e-26
10	377	35.0	165	3 5219739-19 Patient No. 5219739-19	1.46e-26
11	377	35.0	165	3 5219739-18 Patient No. 5219739-18	1.46e-26
12	375	34.8	120	3 5219739-9 Patient No. 5219739-9	2.28e-26
13	375	34.8	120	3 5194596-9 Patient No. 5194596-9	2.28e-26
14	374	34.7	215	3 5219739-22 Patient No. 5219739-22	2.86e-26
15	373	34.6	214	3 5240848-11 Patient No. 5240848-11	3.58e-26
16	373	34.6	215	3 5219739-17 Patient No. 5219739-17	3.58e-26
17	365	33.9	190	3 5332671-3 Patent No. 5332671-3	3.58e-26
18	352	32.7	164	3 5219739-18 Patent No. 5219739-18	4.01e-24
19	352	32.7	164	3 5219739-17 Patent No. 5219739-17	4.01e-24
20	352	32.7	164	3 5194596-17 Patient No. 5194596-17	4.01e-24
21	348	32.3	189	1 US-08-469- Sequence 15, Application 9.82e-24	11
22	29.5	149	1 US-08-469- Sequence 14, Application 7.95e-21	11	
23	16.2	419	1 PCT-US96-0 Sequence 2, Application 2.29e-07	11	

ALIGNMENTS

RESULT ID	US-08-469-427A-11	STANDARD;	PRT:	188 AA.
XX	Sequence 11, Application US/08469427A			
XX	Patent No. 5607918			
AC	Sequence 11, Application US/08469427A			
XXXXXX	General Information:			
CC	APPLICANT: ERIKSSON, Ulf			
CC	APPLICANT: Olofsson, Birgitta			
CC	APPLICANT: Alitalo, Kari			
CC	APPLICANT: Pajusola, Katri			
CC	Title of Invention: VASCULAR ENDOTHELIAL GROWTH FACTOR-B AND DNA CODING THEREFOR			
CC	Number of Sequences: 17			
CC	Correspondence Address:			
CC	ADDRESSEE: Evenson, McKeown, Edwards & Lenahan			
CC	STREET: 1200 G Street, N.W., Suite 700			
CC	CITY: Washington			
CC	STATE: DC			
CC	ZIP: 20005			
CC	Computer Readable Form:			
CC	Medium Type: Floppy disk			
CC	Computer: IBM PC compatible			
CC	Operating System: PC-DOS/MS-DOS			
CC	Software: Patent Release #1.0, Version #1.25			
CC	Current Application Data:			
CC	Application Number: US/08/469,427A			
CC	Filing Date: 06-JUN-1995			
CC	Classification: 435			
CC	Prior Application Data:			
CC	Application Number: US 08/397,651			
CC	Filing Date: 01-MAR-1995			
CC	Attorney/Agent Information:			
CC	Name: Evans, Joseph D			
CC	Registration Number: 26,269			
CC	Reference/Doctet Number: 41979cp2			
CC	Telecommunication Information:			
CC	Telephone: (202) 628-8800			
CC	Information for Seq ID No: 11:			
CC	Sequence Characteristics:			
CC	Length: 188 amino acids			

24	164	11.2	204	1	PDGA-RAT	PLATELET-DERIVED GROWTH	5.81e-15
163	11.2	226	1	PDGA-XENIA	PLATELET-DERIVED GROWTH	9.36e-15	
25	157	10.8	241	1	PDGB-SHEEP	PLATELET-DERIVED GROWTH	5.16e-13
27	107	7.3	3707	1	PGBM-MOUSE	BASIMENT MEMBRANE-SPEC	5.14e-04
28	99	6.8	51	1	HSP1-ALOSE	SPERM PROTAMINE PI.	1.13e-02
29	99	6.8	4393	1	PGBM-HUMAN	BASIMENT MEMBRANE-SPEC	1.38e-08
30	96	6.6	100	1	HSP2-ALOSE	SPERM HISTONE P2 PRECU	3.45e-02
31	96	6.6	327	1	FASA-MOUSE	FAST RECEPTOR PRCURSO	3.45e-02
32	93	6.4	503	1	VE2-HPV21	REGULATORY PROTEIN E2.	1.03e-01
33	94	6.4	769	1	ITB2-HUMAN	CELL SURFACE ADHESION	7.17e-02
34	93	6.4	1380	1	ZMS1-YEAST	ZINC FINGER PROTEIN ZM	1.03e-01
35	90	6.2	381	1	SRP1-HUMAN	SRPENDOPROTEIN B SPECIFIC	2.00e-01

Release 3.1A John P. Collins, Biocomputing Research Unit.
Copyright (c) 1993-1998 University of Edinburgh, U.K.
Distribution rights by Oxford Molecular Ltd

APPENDIX

 (TM)

Release 3.1a, John F. Collins, Biocomputing Research Unit.
 Copyright (c) 1993-1998, University of Edinburgh, U.K.
 Distribution rights by Oxford Molecular Ltd

MPSrch_PP protein - protein database search, using Smith-Waterman algorithm

Run on: Fri Sep 18 13:40:03 1998; MasPar time 9.36 Seconds
 734.106 Million cell updates/sec

Tabular output not generated.

Title:

Description: >US-08-765-588-6
 (1-188) from US08765588.pep

Perfect Score:

Sequence: 1 MSPLRLLLAALLQLAPAQ... COQGRGLELNPDTCRCKLRR 188

Scoring table: PAM 150

Gap 11

Searched: 120441 seqs, 36531193 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir56 1:pir1 2:pir2 3:pir3 4:pir4 5:nr13d

Statistics: Mean 41.161; Variance 80.141; scale 0.514

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Length	DB ID	Description	Pred. No.	RESULT ENTRY	1	JC4680	#type complete vascular endothelial growth factor-related factor 167 - mouse
1	1317	90.3	188	2 JG4680	5.71e-251	ALTERNATE NAMES		VFR 167 protein	#formal_name Mus musculus #common_name house mouse
2	938	64.3	207	2 JC4679	2.15e-169	ORGANISM		#fORMAL NAME	Mus musculus
3	513	35.5	190	2 A35987	7.43e-80	DATE	10-May-1996	#sequence_revision	19-Jul-1996 #text_change
4	511	35.0	190	2 S22130	1.92e-79	ACCESSIONS	JC4680	10-Sep-1997	
5	34.9	190	2 B44881	vasc	4.95e-79	REFERENCE	JC4679	Townson, S.; Lagercrantz, J.; Grimmond, S.; Silins, G.; Nordenkjaeld, M.; Weber, G.; Hayward, N.	
6	505	34.6	190	2 BA0080	vasc	authors		Biochem. Biophys. Res. Commun. (1996) 220:922-928	
7	371	25.4	232	2 AA1551	vasc	#journal		#characterization of the murine VEGF-related factor gene.	
8	369	25.3	146	2 S27956	vasc	#title		#accession	
9	369	25.3	214	2 AA4881	vasc	#molecule_type mRNA		#label	
10	361	24.8	120	2 AA33787	endothelial	#residues	1-188	#label	TGF
11	296	20.3	149	2 AA41236	endothelial	#cross_references	G3-U43837; NID:gi134335; PID:gi1314336	#label	GB
12	295	20.2	133	2 BA9530	endothelial	COMMENT	This factor is a mitogen, that is selective for endothelial cells, and belongs to a family of growth factor. This transcript is differentially spliced to produce two major isoforms, vascular endothelial growth factors 167 and VEGF 186.	#label	GB
13	268	18.4	158	2 A56125	endothelial	SUMMARY	#length	188	#molecule_weight
14	261	17.9	128	2 A51295	endothelial	Query Match	90.3%; Score 1317; DB 2; Length 188;	#product	vascular endothelial
15	181	12.4	225	2 S25097	endothelial	Best Local Similarity	87.8%; Pred. No. 5.71e-251;	vascular	endothelial
16	178	12.2	419	2 S259207	endothelial	Matches	165; Conservative 14; Mismatches 9; Indels 0; Gaps 0;	endothelial	endothelial
17	177	12.1	151	2 A38108	endothelial	FEATURE	5.22e-49	domain	signal sequence
18	177	12.1	226	1 TRAVSS	endothelial	#status	3.10e-36	predicted	status
19	177	12.1	230	1 A55030	endothelial	PREDICTED	4.84e-36	#label	predicted
20	177	12.1	241	1 PMNSGB	endothelial	SIMILARITY	7.49e-31	factor	predicted
21	177	12.1	241	1 PRHUG2	endothelial	SEQUENCE	1.61e-29	status	predicted
22	176	12.1	245	1 PTCTSS	endothelial	LENGTH	1.33e-50	molecule	weight
23	11.9	148	2 D49530	endothelial	TYPE	1.23e-14	predicted	predicted	predicted

platelet-derived grow 4.21e-13
 hypothetical protein 6.26e-13
 platelet-derived grow 4.21e-13
 platelet-derived grow 4.31e-13
 platelet-derived grow 4.52e-12
 platelet-derived grow 6.69e-12
 platelet-derived grow 6.80e-10
 platelet-derived grow 4.80e-10
 platelet-derived grow 4.80e-10
 platelet-derived grow 9.91e-12
 platelet-derived grow 9.91e-12
 platelet-derived transform 9.91e-12
 platelet-derived grow 2.17e-11
 platelet-derived grow 4.80e-10
 platelet-derived grow 4.80e-10
 platelet-derived grow 4.80e-10
 heparan sulfate prote 5.33e-02
 Babbiani ring 2.1 - m 1.01e-01
 paracan precursor - 1.01e-01
 proline P2 - red ho 2.58e-01
 apoptosis-mediating m 2.58e-01
 hypothetical protein 3.51e-01

ALIGNMENTS

22	1240	85.0	195	10	US-	Sequence 7, Application
23	1240	85.0	195	8	US-	Sequence 7, Application
24	1188	81.5	167	6	US-	Sequence 34, Application
25	1162	79.7	160	12	US-	Sequence 8, Application
26	1133	77.7	155	12	US-	Sequence 9, Application
27	1112	76.3	152	12	US-	Sequence 10, Application
28	1093	75.0	150	12	US-	Sequence 11, Application
29	1073	73.6	147	12	US-	Sequence 12, Application
30	1056	72.4	145	12	US-	Sequence 13, Application
31	1014	69.5	207	9	US-	Sequence 14, Application
32	1014	69.5	207	10	US-	Sequence 15, Application
33	1014	69.5	207	9	US-	Sequence 15, Application
34	1014	69.5	207	10	US-	Sequence 15, Application
35	1014	69.5	207	9	US-	Sequence 15, Application
36	996	68.9	205	12	US-	Sequence 2, Application
37	946	64.9	221	14	US-	Sequence 2, Application
38	946	64.9	221	12	US-	Sequence 5, Application
39	946	64.9	221	8	US-	Sequence 2, Application
40	946	64.9	221	8	US-	Sequence 2, Application
41	936	64.2	207	9	US-	Sequence 13, Application
42	936	64.2	207	9	US-	Sequence 13, Application
43	936	64.2	207	9	US-	Sequence 13, Application
44	936	64.2	207	10	US-	Sequence 13, Application
45	936	64.2	207	10	US-	Sequence 13, Application
ALIGNMENTS						
ID	1	STANDARD;	PRT;	188	AA.	
XX						
AC	xxxxxx					
DE						
XX						
DT						
XX						
Sequence 57, Application US/08795430						
GENERAL INFORMATION:						
APPLICANT: Alitio, Kari						
APPLICANT: Joukov, Vladimir						
TITLE OF INVENTION: Vascular Endothelial Growth Factor C (VEGFC)						
NUMBER OF SEQUENCES: 57						
CORRESPONDENCE ADDRESS:						
ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun						
STREET: 6300 Sears Tower, 233 South Wacker Drive						
CITY: Chicago						
STATE: Illinois						
COUNTRY: United States of America						
ZIP: 60606-6402						
COMPUTER READABLE FORM:						
MEDIUM TYPE: Floppy disk						
COMPUTER: IBM PC compatible						
OPERATING SYSTEM: PC-DOS/MS-DOS						
SOFTWARE: Patentin Release #1.0, Version #1.30						
CURRENT APPLICATION DATA:						
APPLICATION NUMBER: US/08795430						
FILING DATE:						
CLASSIFICATION: 435						
PRIOR APPLICATION DATA:						
APPLICATION NUMBER: PCT/FF96/00427						
FILING DATE: 01-AUG-1996						
PRIOR APPLICATION DATA:						
APPLICATION NUMBER: 08/671,573						
FILING DATE: 28-JUN-1996						
PRIOR APPLICATION DATA:						
APPLICATION NUMBER: 08/601,132						
FILING DATE: 14-FEB-1996						
PRIOR APPLICATION DATA:						
APPLICATION NUMBER: 08/585,895						
FILING DATE: 12-JAN-1996						
PRIOR APPLICATION DATA:						

Page 1

21	86	11.4	394	9	P96447	EXAA6	VOLTAGE-DEPENDENT CALCIUM CHANNEL SUBUNIT A6	1.01e+00	
22	86	11.4	605	2	Q03094	GLUVATE DEHYDROGENAS	1.01e+00		
23	85	11.3	411	8	Q04870	GLUVATE DEHYDROGENASE	1.40e+00		
24	85	11.3	411	8	Q43620	GLUVATE DEHYDROGENASES	1.40e+00		
25	85	11.3	411	8	P04871	GLUVATE DEHYDROGENAS	1.40e+00		
26	85	11.3	412	8	P93341	KALISTATIN	1.40e+00		
27	85	11.3	423	10	P97569	FRAZZLED PROTEIN HOMOL	1.93e+00		
28	84	11.1	641	10	Q08463	(INDIVIDUAL ISOLATE 11)	2.65e+00		
29	83	11.0	393	9	Q46413	MAJOR OUTER MEMBRANE P	2.65e+00		
30	83	11.0	393	9	Q46410	MAJOR OUTER MEMBRANE P	2.65e+00		
31	83	11.0	393	9	Q46412	MAJOR OUTER MEMBRANE P	2.65e+00		
32	83	11.0	393	9	Q46414	MAJOR OUTER MEMBRANE P	2.65e+00		
33	83	11.0	393	9	Q46411	(INDIVIDUAL ISOLATE 98)	2.65e+00		
34	83	11.0	393	9	Q46415	MAJOR OUTER MEMBRANE P	2.65e+00		
35	83	11.0	393	9	Q46409	MAJOR OUTER MEMBRANE P	2.65e+00		
36	83	11.0	394	9	Q06520	MAJOR OUTER MEMBRANE P	2.65e+00		
37	83	11.0	394	9	Q46408	MAJOR OUTER MEMBRANE P	2.65e+00		
38	83	11.0	396	9	Q46406	MAJOR OUTER MEMBRANE P	2.65e+00		
39	83	11.0	722	3	Q19758	F22E12.1 (FRAGMENT).	2.65e+00		
40	83	11.0	1031	3	Q09489	ORNL-ELLE-TYPE CALCIUM CHANNEL PROTEIN	2.65e+00		
41	83	11.0	4096	2	Q13227	DNA-DEPENDENT PROTEIN	2.65e+00		
42	83	11.0	4127	2	P78227	DNA-DEPENDENT PROTEIN	2.65e+00		
43	82	10.9	488	11	Q03822	ENT POLYPROTEIN (CONTA	3.64e+00		
44	82	10.9	619	10	Q06209	TETRIS NUCLEAR RNA-BIN	3.64e+00		
45	82	10.9	684	2	Q14050	ALPHA-3 TYPE IX COLLAGEN	3.64e+00		

Release 3.1A John F. Collins, Biocomputing Research Unit.
 Copyright (c) 1993-1998 University of Edinburgh, U.K.
 Distribution rights by Oxford Molecular Ltd.

MPSrch_PP protein - protein database search, using Smith-Waterman algorithm
 Run on: Fri Sep 18 13:57:41 1998; MasPar time 4.15 Seconds
 Tabular output not generated.

Title:

>US-08-765-588-10

Description: (1-101) from US08765588.pep

Perfect Score:

1 MSPLLRLLLALLQLAPQ...CPDGSLECVPTGQHQRVMQT 101

Sequence:

1 MSPLLRLLLALLQLAPQ...CPDGSLECVPTGQHQRVMQT 101

Scoring table:

PAM 150

Gap 11

Searched:

69111 seqs, 25083644 residues

Post-processing:

Minimum Match 0%
 Listing first 45 summaries

Database:

swiss-prot35
 1:swiss1

Statistics:

Mean 40.632; variance 65.664; scale 0.619

Pred.

No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result

Score

Query

Match Length DB ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description

pred. No.

NO.

DB

ID

Description</

Page 1

Release 3.1A John F. Collins, Biocomputing Research Unit.
Copyright (c) 1993-1998 University of Edinburgh, U.K.

using Smith-Waterman algorithm.

Run on: Fri Sep 18 14:00:02 1998; Maspar time 7.25 Seconds

Tabular output not generated.

Title: >SUS-08-/63-588-10
Description: (1-101) from US08765588.pep
Perfect Score: 754

Sequence: 1 MSPLLRRRLLAALQLOPAQ.

Gap 11

Post-processing: Minimum Match 0%

100

卷之三

Pred. No. is the number of results predicted by chance score greater than or equal to the score of the result) and is derived by analysis of the total score distribution.

SUMMARIES

22	b82	90.5	133	3	US-
23	682	90.5	188	8	US-
24	682	90.5	188	8	US-
25	682	90.5	188	10	US-
26	682	90.5	188	9	US-
27	682	90.5	188	10	US-
28	682	90.5	188	9	US-
29	682	90.5	188	9	US-
30	682	90.5	195	8	US-
31	682	90.5	195	10	US-
32	682	90.5	195	9	US-
33	682	90.5	195	10	US-
34	682	90.5	195	9	US-
35	682	90.5	195	8	US-
36	682	90.5	195	9	US-
37	680	90.2	207	9	US-
38	680	90.2	207	10	US-
39	680	90.2	207	9	US-
40	680	90.2	207	10	US-
41	680	90.2	207	9	US-
42	625	82.9	221	8	US-
43	625	82.9	221	14	US-
44	82.9	221	8	US-	221
45	82.9	221	12	US-	

ALIGNMENTS

No.	Score	Match	Length	DB	ID	Description	Pred.	No.
1	749	99.3	188	10	US	Sequence 56, Application 1, 35e-62		
2	749	99.3	188	9	US	Sequence 11, Application 1, 33e-62		
3	749	99.3	188	10	US	Sequence 11, Application 1, 33e-62		
4	749	99.3	188	10	US	Sequence 11, Application 1, 33e-62		
5	749	99.3	188	11	US	Sequence 57, Application 1, 33e-62		
6	749	99.3	188	9	US	Sequence 11, Application 1, 33e-62		
7	749	99.3	188	8	US	Sequence 11, Application 1, 33e-62		
8	749	99.3	188	8	US	Sequence 2, Application 1, 35e-62		
9	749	99.3	206	12	US	Sequence 15, Application 1, 35e-62		
10	749	99.3	207	9	US	Sequence 15, Application 1, 33e-62		
11	749	99.3	207	9	US	Sequence 15, Application 1, 33e-62		
12	749	99.3	207	10	US	Sequence 15, Application 1, 35e-62		
13	749	99.3	207	10	US	Sequence 15, Application 1, 35e-62		
14	749	99.3	207	9	US	Sequence 1, Application 1, 35e-62		
15	685	90.5	188	12	US	Sequence 9, Application 7, 02e-56		
16	682	90.5	133	8	US	Sequence 9, Application 7, 02e-56		
17	682	90.5	133	9	US	Sequence 9, Application 7, 02e-56		
18	682	90.5	133	10	US	Sequence 9, Application 7, 02e-56		
19	682	90.5	133	10	US	Sequence 9, Application 7, 02e-56		
20	682	90.5	133	9	US	Sequence 9, Application 7, 02e-56		
21	682	90.5	133	9	US	Sequence 9, Application 7, 02e-56		

ID US-08-671-573B-56 STANDARD; PRT; 188 AA.
XX
XX AC
XX DT
XX DE Sequence 56, Application US/08671573B
XX CC Sequence 56, Application US/08671573B
XX CC GENERAL INFORMATION:
XX CC APPLICANT: Alitalo, Kari
XX CC APPLICANT: Joukov, Vladimir
XX CC TITLE OF INVENTION: Receptor Ligand
XX CC NUMBER OF SEQUENCES: 58
XX CC CORRESPONDENCE ADDRESS:
XX CC ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun
XX CC STREET: 6300 Sears Tower, 233 South Wacker Drive
XX CC CITY: Chicago
XX CC STATE: Illinois
XX CC COUNTRY: United States of America
XX CC ZIP: 60606-3402
XX CC COMPUTER READABLE FORM:
XX CC MEDIUM TYPE: Floppy disk
XX CC COMPUTER: IBM PC compatible
XX CC OPERATING SYSTEM: PC-DOS/MS-DOS
XX CC SOFTWARE: Patenten Release #1.0, Version #1.30
XX CC CURRENT APPLICATION DATA:
XX CC APPLICATION NUMBER: US/08-671,573B
XX CC FILING DATE: 28-JUN-1996
XX CC CLASSIFICATION: 435
XX CC PRIOR APPLICATION DATA:
XX CC APPLICATION NUMBER: 08/601,132
XX CC FILING DATE: 14-FEB-1996
XX CC PRIOR APPLICATION DATA:
XX CC APPLICATION NUMBER: 08/585,895
XX CC FILING DATE: 12-JAN-1996
XX CC PRIOR APPLICATION DATA:
XX CC APPLICATION NUMBER: 08/510,133
XX CC FILING DATE: 01-AUG-1995
XX CC ATTORNEY/AGENT INFORMATION:
XX CC NAME: Geiss, David A.
XX CC REGISTRATION NUMBER: 38-1513
XX CC REFERENCE/DOCKET NUMBER: 28957/33348
XX CC TELECOMMUNICATION INFORMATION:

