Conception de la commande d'un robot chirurgical★

B2-07

Question 1 Compléter le schéma-blocs.

En utilisant l'équation électrique du MCC, on a $U_1(p)=(Lp+R)\,I_1(p)+E_1(p)$. En utilisant le schéma-blocs : $I_1(p)=(U_1(p)-E(p))\,D(p)$. On a donc $I_1(p)=\frac{U_1(p)-E(p)}{R+Lp}$ et $D(p)=\frac{U_1(p)-E(p)}{R+Lp}$ $\overline{R + Lp}$

En utilisant la première relation de comportement du MCC, on a $E_1(p)$ en sortie du bloc k_e et $p\Delta_1(p)$ en entrée; donc $H(p) = \frac{1}{n}$.

En utilisant la seconde relation, on a $F(p) = k_t$.

En utilisant l'équation de mouvement de l'axe 1, on a : $\Delta C_1(p) = Jp^2 \Delta \theta_1(p) - k_1 \frac{r_9'}{r_0} h_2 \Delta F_X(p)$. D'après le schéma-blocs, on a $\Delta\theta_1(p) = (\Delta C_1(p) + \Delta F_x(p)E(p))G(p)H(p)$.

En réageançant l'équation, on a $Jp^2\Delta\theta_1(p) = \Delta C_1(p) + k_1 \frac{r_9'}{r_0} h_2\Delta F_x(p) \Leftrightarrow \Delta\theta_1(p) =$ $\left(\Delta C_1(p) + k_1 \frac{r_9'}{r_0} h_2 \Delta F_x(p)\right) \frac{1}{In^2}.$

On a donc $E(p)=k_1\frac{r_9'}{r_0}h_2$. De plus $G(p)H(p)=\frac{1}{Jp^2}$ et $H(p)=\frac{1}{p}$; donc $G(p)=\frac{1}{Jp}$.

En utilisant l'équation électrique du MCC, on a $U_1(p) = (Lp + R)I_1(p) + E_1(p)$. En utilisant le schéma-blocs : $I_1(p) = (U_1(p) - E(p))D(p)$. On a donc $I_1(p) = \frac{U_1(p) - E(p)}{R + Lp}$ et $D(p) = \frac{U_1(p) - E(p)}{R + Lp}$

$$\frac{1}{R + Lp}$$

En utilisant l'équation du PID, on a $U_1(p) = (\Delta \theta_{c1}(p) - \Delta \theta_1(p)) \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \sigma_3 p \Delta \theta_1(p) + \frac{\sigma_2}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \sigma_3 p \Delta \theta_1(p) + \frac{\sigma_2}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \frac{\sigma_3}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \frac{\sigma_3}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) + \frac{\sigma_2}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \frac{\sigma_3}{p} \left(\sigma_1 + \frac{\sigma_2}{p}\right) + \frac{\sigma_3}{p} \left(\sigma_1 + \frac{\sigma_3}{p}\right) + \frac{\sigma_3}{p} \left(\sigma_1 + \frac{\sigma_3}{p}\right)$

$$\sigma_4 \Delta \theta_{c1}(p) \operatorname{soit} U_1(p) = \left(\Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p}\right)\right) - \sigma_3 p \Delta \theta_1(p) + \sigma_4 \Delta \theta_{c1}(p).$$
 En utilisant le schéma-blocs, on a $U_1(p) = \Delta_{c1}(p) A(p) + (\Delta_{c1}(p) - \Delta \theta_1(p)) B(p) - \Delta \theta_1(p) C(p) = \Delta_{c1}(p) (A(p) + B(p)) - \Delta \theta_1(p) (B(p) + C(p)).$

Par suite,
$$U_1(p) = \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4 \right) - \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p \right).$$

On aura donc $B(p) = \sigma_1 + \frac{\dot{\sigma}_2}{p}$, $C(p) = \sigma_3 p$ et $A(p) = \sigma_4$.

Question 2 À partir de ce schéma-blocs, en notant $H_{\text{processus}}(p) = \frac{\Delta \theta_1(p)}{U_1(p)} = \frac{K}{p (1 + \tau p)'}$ exprimer K et τ en fonction des données de l'énoncé.

Correction

On a
$$H_{\text{processus}}(p) = \frac{D(p)F(p)G(p)}{1 + D(p)F(p)G(p)k_e}H(p)$$
 soit $H_{\text{processus}}(p) = \frac{\frac{1}{R + Lp}k_t\frac{1}{Jp}}{1 + \frac{1}{R + Lp}k_t\frac{1}{Jp}k_e}\frac{1}{p}.$
Avec $L = 0$, $H_{\text{processus}}(p) = \frac{k_t}{RJp + k_tk_e}\frac{1}{p} = \frac{\frac{1}{k_e}}{\frac{RJ}{k_tk_e}p + 1}\frac{1}{p}$ soit $K = \frac{1}{k_e}$ et $\tau = \frac{RJ}{k_tk_e}$.

Question 3 Exprimer la fonction de transfert en boucle fermée, sous sa forme canonique, notée $B_F(p) = \frac{\Delta \theta_1(p)}{\Delta \theta_{c1}(p)}$ en fonction de K, τ , σ_1 , σ_2 , σ_3 et σ_4 .

Correction On a vu que $U_1(p) = \Delta\theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta\theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right)$ et que $\frac{\Delta\theta_1(p)}{U_1(p)} = \frac{K}{p(1+\tau p)}$. On a donc $\Delta\theta_1(p) \frac{p(1+\tau p)}{K} = \Delta\theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta\theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right)$ $\Leftrightarrow \Delta\theta_1(p) \left(\frac{p(1+\tau p)}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right) = \Delta\theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right)$ et $B_F(p) = \frac{\sigma_1 p + \sigma_2 + \sigma_4 p}{\frac{p(1+\tau p)}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p} = \frac{\sigma_1 p + \sigma_2 + \sigma_4 p}{\frac{p^2(1+\tau p)}{K} + \sigma_1 p + \sigma_2 + \sigma_3 p^2} = K \frac{(\sigma_1 + \sigma_4) p + \sigma_2}{\tau p^3 + p^2(1+\sigma_3) + \sigma_1 K p + \sigma_2 K}.$

