

UNIVERSIDAD DE ANTIOQUIA

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Series de Tiempo I

Profesor: Duván Cataño

1. For a moving average process of the form

$$x_t = w_{t-1} + 2w_t + w_{t+1},$$

where w_t are independent with zero means and variance σ_w^2 , determine the autocovariance and autocorrelation functions as a function of lag h = s - t and plot the ACF as a function of h.

- 2. For an MA(1), $x_t = w_t + \theta w_{t-1}$, show that $|\rho_x(1)| \le 1/2$. for any number θ . For which values of θ does $\rho_x(1)$ attain its maximum and minimum?
- 3. A real-valued function g(t), defined on the integers, is non-negative definite if and only if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i g(t_i - t_j) a_j \geqslant 0,$$

for all positive integers n and for all vectors $a = (a_1, a_2, \ldots, a_n)'$ and $t = (t_1, t_2, \ldots, t_n)'$. For the matrix $G = \{g(t_i - t_j); i, j = 1, 2, \ldots, n\}$, this implies that $a'Ga \ge 0$ for all vectors a.

- a. Prove that $\gamma(h)$, the autocovariance function of a stationary process, is a non-negative definite function.
- b. Verify that the sample autocovariance $\hat{\gamma}(h)$, is a non-negative definite function.
- 4. Identify the following models as ARMA(p,q) models (watch out for parameter redundancy), and determine whether they are causal and/or invertible:

a.
$$x_t = 0.80x_{t-1} - 0.15x_{t-2} + w_t - 0.30w_{t-1}$$
.

b.
$$x_t = x_{t-1} - 0.50x_{t-2} + w_t - w_{t-1}$$
.

5. Suponga que los residuos \hat{a}_t del modelo $(1-B)x_t = (1+0,6B)a_t$, ajustado de una serie de 80 observaciones, proporcionan las siguientes autocorrelaciones:

h	1	2	3	4	5	6	7	8	9	10
$\hat{\rho}_a(h)$	0.39	0.20	0.09	0,04	0,09	-0.08	-0.05	0.06	0.07	-0.02

Analice la adecuación del modelo ajustado y si existe alguna indicación de falta de ajustamiento del modelo. Si esto ocurre, sugiera un modelo modificado.

6. Considere las siguientes ACF y PACF muestrales (estimadas) obtenidas a partir de una realización de tamaño n=100 de una serie de tiempo.

h	1	2	3	4	5	6	7	8	9	10
$\hat{ ho}(h)$	-0.43	0.04	0.01	-0.03	0.02	0.02	0.00	-0.01	-0.02	0.01
$\hat{\phi}(h)$	-0.43	-0.33	-0.25	-0.18	-0.13	-0.08	-0.04	-0.04	-0.02	-0.01

- a. Obtenga los correlogramas.
- b. ¿Qué tipo de proceso parece ser el que genera los datos de la serie? Explique.
- c. Escriba el modelo. Con excepción de la constante, cuáles serían unos estimadores preliminares para los parámetros del modelo?
- d. Obtenga la forma dual de este modelo, usando los estimadores preliminares del punto c).
- 7. Considere el modelo $x_t + \beta x_{t-1} = w_t$.
 - a) Obtenga una condición de estacionaridad para x_t .
 - b) Encuentre la representación $MA(\infty)$.
 - c) Obtenga la ACF de x_t y grafíquela.
- 8. Sea $y_t = a_t + ca_{t-1} + ca_{t-2} + \ldots + ca_1$, para t > 0, donde $c \in \mathbb{R}$ y $a_t \sim RB(0, \sigma_a^2)$.
 - a. Calcular la media y autocovarianza de y_t . ¿Es estacionaria?
 - b. Demostrar que la serie $z_t = (1 B)y_t$ es estacionaria.