# Semesteroppgave ${\it CrazyFlie~triangulation~network}$ ${\it Magnus~Berdal}$

## Contents

| 1 | Introduction                                                                                                      | 3             |
|---|-------------------------------------------------------------------------------------------------------------------|---------------|
| 2 | Background                                                                                                        | 4             |
| 3 | System Description           3.1 Notation            3.2 Feasible space            3.3 Agent            3.4 Swarm | 5             |
| 4 | Problem formulation 4.1 Trilateration                                                                             | <b>7</b><br>7 |
| 5 | Implementation                                                                                                    | 8             |
| 6 | Simulation Results                                                                                                | 9             |
| 7 | Discussion                                                                                                        | 10            |
| 8 | Future Work                                                                                                       | 11            |

# 1 Introduction

[1] [2]

# 2 Background

## 3 System Description

#### 3.1 Notation

A set S of points  $\mathbf{x} \in \mathbb{R}^2$  is defined by it's boundary,  $\delta S$ , and it's interior, int(S). The number of elements in a set S is denoted as |S|.

The  $Comb(\cdot)$  operator takes as arguments a set  $\mathcal{S}$  and an integer n and returns all subset of  $\mathcal{S}$  of length n:

$$Comb(\mathcal{S}, n) = \{ \mathcal{A} : \mathcal{A} \subseteq \mathcal{S}, |\mathcal{A}| = n \}$$
 (1)

### 3.2 Feasible space

As in [2], a mission space,  $\Omega$ , is defined as a simple polygon [3]. Within the mission space there exists  $N_o \geq 0$  obstacles, each one of which is defined as a simple polygon. The set of all obstacles,  $\mathcal{O}$ , is defined according to (2).

$$\mathcal{O} = \begin{cases} \{o_0 \dots o_{N_o-1}\} &, N_o > 0\\ \emptyset &, N_o = 0 \end{cases}$$
 (2)

The obstacles in  $\mathcal{O}$  constrains the movement of entities within the mission space, as it is not possible to penetrate the boundary of an obstacle. Due to this, once an entity is inside  $\Omega$ , it is constrained to be positioned within  $\Omega$  and outside  $\operatorname{int}(o) \, \forall \, o \in \mathcal{O}$ . From this we define the feasible space,  $\mathcal{F}$ , as all points where it is possible to place an entity:

$$\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^2 : \mathbf{x} \in \Omega, \ \mathbf{x} \notin \text{int}(o) \ \forall \ o \in \mathcal{O} \} = \Omega \setminus \bigcup_{o \in \mathcal{O}} \text{int}(o)$$
 (3)

#### 3.3 Agent

An *agent*, denoted by an integer i, is described by its position  $\mathbf{s}_i \in \mathbb{R}^2$  and it's maximum radius of communication,  $r_i$ . The probability of an agent i being able to communicate with another entity positioned at a point  $\mathbf{x}$  is defined according to:

$$\hat{p}: (\mathbb{R}^2, \mathbb{R}^2, \mathbb{R}^+) \to [0, 1] \quad \hat{p}(\mathbf{s}_i, \mathbf{x}, r_i) = \begin{cases} p(\|\mathbf{s}_i - \mathbf{x}\|) &, \mathbf{x} \in V(\mathbf{s}_i, r_i) \\ 0 &, \mathbf{x} \in \mathbb{R}^2 \setminus V(\mathbf{s}_i, r_i) \end{cases}$$
(4)

Where  $V(\mathbf{s}_i, r_i)$  denotes the *visible set* of agent *i*. Assuming line-of-sight (LoS) communication, meaning an agent cannot communicate with an entity if there is an obstacle or a mission space wall between them, the visible set of agent *i* is defined in (5).

$$V(\mathbf{s}_i, r_i) = \{ \mathbf{x} \in \mathbb{R}^2 : ||\mathbf{s}_i - \mathbf{x}|| \le r_i, \lambda \mathbf{x} + (1 - \lambda)\mathbf{s}_i \in \mathcal{F} \ \forall \ 0 \le \lambda \le 1 \}$$
 (5)

An example of the visible set for an agent is show in Figure 1.

Find notation for  $\mathbb{R}^5$  with non-negative values in last dimension



Figure 1: Visible set (light blue) for the agent placed at  $\mathbf{s}_i$  in a rectangular mission space  $\Omega$  with two obstacles  $(\mathcal{O} = \{o_0, o_1\})$ 

#### 3.4 Swarm

A swarm consists if N discinct agents, each one denoted by an integer  $i \in \mathcal{N} = \{0 \dots N-1\}$ . The state of the swarm is described by the state of its participants, and is expressed as vector  $\mathbf{S} \in \mathbb{R}^{2N}$  as shown in (6).

$$\mathbf{S} = \begin{bmatrix} \mathbf{s}_0 \\ \vdots \\ \mathbf{s}_{N-1} \end{bmatrix} \tag{6}$$

The maximum radii of communication of the swarm are represented as the vector  $\mathbf{r} \in \mathbb{R}^N$  as shown in (7).

$$\mathbf{r} = \begin{bmatrix} r_0 & \dots & r_{N-1} \end{bmatrix}^T \tag{7}$$

Assuming that the distributions for all agents are independent lets us use (7) in [1] to express the probability of n members in the swarm being able to communicate with an entity at a point  $\mathbf{x}$ :

$$P(n, \mathbf{x}, \mathbf{S}, \mathbf{r}) = \sum_{A \in Comb(\mathcal{N}, n)} \left( \prod_{i \in \mathcal{A}} \hat{p}(\mathbf{s}_i, \mathbf{x}, r_i) \right) \left( \prod_{i \in \mathcal{N} \setminus \mathcal{A}} 1 - \hat{p}(\mathbf{s}_i, \mathbf{x}, r_i) \right)$$
(8)

## 4 Problem formulation

#### 4.1 Trilateration

Given three agents with know positions  $\mathbf{s}_i \in \mathbb{R}^2$ , i = 0, 1, 2, the location of a beacon, denoted by  $\mathbf{x}$ , can be determined as follows:

- 1. The beacon pings agents at  $\mathbf{s}_i$ , i = 0, 1, 2 and starts three timers  $t_i$ , i = 0, 1, 2.
- 2. When the agents receive the ping, they instantly respond with a packet containing  $s_i$ .
- 3. When receiving the packet from agent i, the beacon stops timer  $t_i$  and calculates the distance from itself to agent i:  $d_i = \frac{1}{2}ct_i$ , where c is the speed of light. The factor  $\frac{1}{2}$  is due to the signal traveling two times the distance between the beacon and agent i (the ping travels from the beacon to the agent, and the packet sent by the agent travels back again).
- 4. Based on the distances  $d_i$ , i=0,1,2 and the positions of the agents  $\mathbf{s}_i$ , i=0,1,2 the beacon can determine its position by calculating the point where circles centered at  $\mathbf{s}_i$ , i=0,1,2 with radii  $d_i$ , i=0,1,2 intersect.

#### 4.2 Coverage

5 Implementation

## 6 Simulation Results

## 7 Discussion

## 8 Future Work

## References

- [1] Y. H. Wang, "On the number of successes in independent trials," *Statistica Sinica*, vol. 3, no. 2, pp. 295–312, 1993. [Online]. Available: http://www.jstor.org/stable/24304959
- [2] X. Sun, C. G. Cassandras, and K. Gokbayrak, "Escaping local optima in a class of multi-agent distributed optimization problems: A boosting function approach," 2014.
- [3] E. W. Weisstein, "Simple polygon. From MathWorld–A Wolfram Web Resource," last visited on 10/11/2020. [Online]. Available: https://mathworld.wolfram.com/SimplePolygon.html