Grundzüge der Betriebswirtschaftslehre Teil 13

- 1. Grundlagen
- 2. Märkte & Güter
- 3. Ökonomie
- 4. Betriebstechnik
- 5. Management
- 6. Marketing
- 7. Finanz- & Rechnungswesen

Produktionsplanung

Produktionsbegriff

Produktion = Kombination von Produktionsfaktoren zur betrieblichen Leistungserstellung

Sachliche Produktions-Teilplanung

Produktion und Logistik

Logistik = Querschnittsfunktion der Materialwirtschaft zur Koordination der Lagerhaltung, der Auftragsabwicklung und des Transportwesens nach Maßgabe des ökonomischen Prinzips

Langfristige Produktionsprogrammplanung

 langfristige Planung der für Kunden angebotenen Produkte und Dienstleistungen.
 Teil der strategischen Planung, entscheidend für den Fortbestand des Unternehmens

Produktionsportfolio

Rahmenplanung

- Produktarten
- Produktmengen

Produktionsverfahren

Grundsatzentscheidung zum Fertigungstyp

- Manufakturbetrieb
- Massenfertigung

Fertigungstiefe

Grundsatzentscheidung

- Eigenerstellung
- Zulieferer

Kapazitätsrahmen

Rahmenplanung

- Betriebsmittel
- Stammpersonal

Planungsdeterminanten:

- Erwartete ökonomische und gesellschaftliche Entwicklungen (→ Marktforschung)
- Technische Neuentwicklungen
- Fertigungs- oder Absatzverwandtschaften
- Risikostreuung (z.B. Tennisbekleidung und Schianzüge)

Kurzfristige Produktionsprogrammplanung

- kurzfristige Planung der für Kunden angebotenen Produkte und Dienstleistungen unter optimaler Nutzung des Produktionsengpasses
- → Deckungsbeitragsrechnung

Deckungsbeitrag = Differenz zwischen Stückerlös und variablen Stückkosten

		Anzahl Produkte	
Anzahl Engpässe	Eins	Zwei	Mehrere
Einer	Maximieren des Periodendeckungsbeitr ags durch Auslastung bis zur Kapazitätsgrenze. Bedingung: DB > 0	Ermitteln der Deckungsbeiträge pro Engpassbelastungseinheit (z.B. Maschinenminuten). Produktion zuerst jenes Produktes, mit dem höchsten Wert DB/Engpassbelastungs-einheit	Ermitteln der Deckungsbeiträge pro Engpassbelastungseinheit (z.B. Maschinenminuten). Produktion zuerst jenes Produktes, mit dem höchsten Wert DB/Engpassbelastungseinheit
Mehrere	Ermitteln des absoluten Produktionsengpasses. Dort Auslastung bis zur Kapazitätsgrenze. Bedingung: DB > 0	Lösung durch lineare Optimierung m1 Kapazitätsrestriktion Maschine 1 Opt. m1 DB3 Möglicher Lösungsbereich DB4 Kapazitätsrestriktion Maschine 2 Opt.m2 m2	Lösung durch lineare Optimierung mit der Simplex- Methode

Materialwirtschaft

= Bereitstellung der benötigten Materialarten und –qualitäten in den benötigten Mengen zur rechten Zeit am rechten Ort.

Ziel: Minimierung aller Kosten, die mit Beschaffung und Bereitstellung von Materialien verbunden sind.

- Unmittelbare Beschaffungskosten (z.B: Materialeinkaufspreise)
- Mittelbare Beschaffungskosten (z.B. Transportkosten)
- Lagerkosten (z.B. Miete, Zinsen, Lagerverwaltung)

Materialbedarfsermittlung

Erwarteter Bedarf der Planperiode

Lieferantenauswahl

Kriterien

- Qualität
- Preis
- Zuverlässigkeit

Lagerplanung

- strategisch: Standort, Kapazität, Ausstattung
- operativ:
 Optimierung von
 Bestellmengen

Programmgebundene Materialbedarfsermittlung

= Ermitteln des erwarteten Materialbedarfs auf technisch-analytischem Weg

Voraussetzung: Verhältnis zwischen In- und Output der Fertigungsstufen genau bekannt (z.B. Sekundärbedarfe)

Primärbedarf: geplante Produktionsmenge

Sekundärbedarf: dafür benötigte Rohstoffe oder Halbfertigfabrikate

Tertiärbedarf: Hilfs- oder Betriebsstoffe und kleine Verschleißwerkzeuge

Fertigungs- stufe	Produkt X ₁	Produkt X ₂			
I	2 3 A B	1 2 B C			
II	2 1 3 1 1 a b c d e	3 1 1 2 1 C d e b f			

Stücklisten

Stückliste

= Aufzählungen aller Bestandteile von Produkten

Strukturstückliste

Produkt X ₁			
Code-Nr.	Menge		
A ← B ← C d e	2 2 1 3 3 1 1		

Produkt X ₂				
Code-Nr.	Menge			
B	1 3 1 1 2 2 1			

Baukastenstückliste

Produkt X₁			
Code-Nr.	Menge		
A B	2 3		

Baugruppe A				
Code-Nr. Menge				
a b	2			
	'			

Baugruppe B				
Code-Nr. Menge				
С	3			
d	1			
е	1			

Produkt X ₂			
Code-Nr.	Menge		
B C	1 2		

Baugruppe C			
Code-Nr.	Menge		
b	2		
f	1		

Mengenübersichtsstückliste

Produkt X₁				
Code-Nr.	Menge			
А	2 3			
В	3			
а	4			
b	4 2 9			
С				
d	3 3			
е	3			

Produkt X ₂				
Code-Nr.	Menge			
ВС	1 2			
b c d e f	4 3 1 1 2			

→ Bruttobedarf + Mehrverbrauchszuschlag – Lagerbestand + Sicherheitsbestand = Nettobedarf

Verbrauchsgebundene Materialbedarfsermittlung

 Ermitteln des erwarteten Materialbedarfs auf Grund des Verbrauchs vergangener Planungsperiode mit Hilfe statistischer Verfahren
 Voraussetzung: keine exakten Beziehungen zwischen In- und Output (z.B. Tertiärbedarfe)

- Verbrauchsstatistik vergangener Planungsperioden
- Verfahren:
 - Durchschnitt der Planungsperioden
 - Gleitender Durchschnitt
 - Exponentielle Glättung
 - Trendanalysen (lineare Regression)
- ➤ **Problem**: Extrapolieren von Vergangenheitswerten ohne Kenntnis der Ursachen von Verbrauchsschwankungen in der Vergangenheit (z.B. Konjunkturänderungen) und ohne mögliche zukünftige Entwicklungen (z.B. geänderte Fertigungsverfahren)
 - → Vorratshaltung höherer Sicherheitsbestände

Materialklassifizierung mit ABC-Analyse

= Einteilung des Materialsortiments in A-Güter (hoher Wertanteil | geringer Mengenanteil), C-Güter (niedriger Wertanteil | hoher Mengenanteil) und B-Güter (Rest)

- Einfache Einteilung
- nicht alle Lagerkostenarten (z.B. Raumkosten) sind wertabhängig

Beschaffungsmarktforschung und Lieferantenauswahl

- = Ermittlung der Lieferanten mit langfristig minimalen Beschaffungskosten (Einkaufspreis und Transportkosten).
 - → strategisches Entscheidungsproblem, lösbar mit Nutzwertanalyse

		Lieferant 1		Lieferant 2		Lieferant 3	
Kriterien	Ge- wicht	Pkte 1 – 5	gew. Pkte	Pkte 1 – 5	gew. Pkte	Pkte 1 – 5	gew. Pkte
Einstandspreis	30%	1	3	3	9	5	15
Transportkosten	15%	2	3	2	3	2	3
Zahlungsbedingungen	15%	2	3	4	6	4	6
Materialqualität	25%	4	10	2	5	2	5
Lieferantenqualität	15%	4	6	2	3	2	3
Summe	100%		25		26		32

Gewichten von Kriterien: Paarweiser Vergleich (Paarvergleich)

 Vergleichsmethode, bei der einzelne Kriterien paarweise verglichen werden, um eine Gewichtung der Kriterien zu erreichen

Kriterien	Einstandspreis	Transportkosten	Zahlungsbedingungen	Materialqualität	Lieferantenqualität	Gewichtung	Gewichtung [%]
Einstandspreis		3	3	3	3	12	30%
Transportkosten	1		2	1	2	6	15%
Zahlungsbedingungen	1	2		1	2	6	15%
Materialqualität	1	3	3		3	10	25%
Lieferantenqualität	1	2	2	1		6	15%
						40	100%

1 Punkt: Spalte wichtiger

als Zeile

2 Punkte: Spalte gleich

wichtig wie Zeile

3 Punkte: Zeile wichtiger

als Spalte

Aus der Praxis:

Bewertung Software - Entwicklungsumgebung

	A B C D E G H 1 1 WE ral
	五百五日 四日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
1 Syrrorthosten	1311121222113
B BETRIERSKOTTEN	3 8 3 3 3 3 2 3 3 3 26
S SKALIERRARKEIT	31 132233324
@ Livracies	313 31233221
€ CODELESBARKEIT	21112223115
(COMMUNITY GIRBS	31232 323120
6 TECHNOLOGIEREITE	22221 33219
EINARBEITUNGSAUFLAND f. ENTWICKLER	2111221/3215
1 CODELANGE	2111111110
(1) ATTRAKTIVITAT). NONES PORS.	311233223 0
	Z 180

Vorratslose Fertigung

- = Fertigung ohne Lagerhaltung
- Auftragsweise Einzelfertigung
- Just-in-Time-Konzept
 vollständige Synchronisierung von Beschaffung und Fertigung

Beschaffungsart	Vorteil	Nachteil
Fallweise Beschaffung bei Einzelfertigung	Lagerkosten sinken	mittelbare Beschaffungs- kosten steigen
Just-in-Time-Konzept	Lagerkosten sinken	Unmittelbare Beschaffungs- kosten (Einkaufspreise) steigen

Verbrauchsfolgeverfahren

FIFO

(First In - First Out)

Zuerst eingelagerte
Objekte werden auch
zuerst wieder
ausgelagert.
Wichtig z.B. bei
Waren mit
Verfallsdatum

LIFO

(Last In - First Out)

Zuletzt eingelagerte
Objekte werden als
erste wieder
ausgelagert.
Wichtig z.B. in Zeiten
steigender Preise

HIFO

(Highest In - First Out)

Die teuersten
Objekte werden als
erste wieder
ausgelagert.
Führt zu höherer
Umsatzdarstellung.

LOFO

(Lowest In - First Out)

Die günstigsten
Objekte werden als
erste wieder
ausgelagert.
Führt zu einer hohen
Bewertung der
Lagerbestände

D

Lagerarten und Lagerplanung

Fertigungs- prozess	0			—
Lagerart	Eingangslager	Handlager	Zwischenlager	Ausgangslager
Lager- gegenstand	Material	Material	Halbfabrikate	Fertigfabrikate
Lagerort	Sammellager Einkauf	vor jeweiligem Arbeitsplatz	zwischen einzelnen Fertigungs- stufen	Sammellager Verkauf

Funktionen des Lagers:

- Ausgleichsfunktion zwischen Beschaffung und Fertigung
- Sicherungsfunktion bei Versorgungsengpässen
- Spekulationsfunktion bei drohenden Preiserhöhungen

Deckung des Periodenbedarfs durch

- Eine große Bestellung
- Mehrere kleine Bestellungen
- Langfristige Lagerkapazitätsplanung
- Kurzfristige Bestellmengenplanung

Flexible Bestellstrategien Peitscheneffekt (Bullwhip-Effekt)

Bestellpunktsystem

Bestellmenge wird fixiert, Bestellzeitpunkt offen gelassen. Bestellt wird wenn Mindestbestand im Lager erreicht wird (Meldebestand)

Bestellrhythmussystem

Bestellzeitpunkt (damit der Bestellrhythmus) wird fixiert, Bestellmenge offen gelassen. Bestellmenge wird dann jeweils in Abhängigkeit vom tatsächlichen Verbrauch ermittelt

Fertigungsplanung: Fertigungsverfahren

Fertigungsplanung = Festlegung der Aufbauorganisation (**Fertigungsverfahren** = strategische Ebene) und der Ablauforganisation (**Produktionsablaufplanung** = operative Ebene) der Fertigung

Fertigungstypen

nach Anzahl der gefertigten Produkte

- Einzelfertigung
- Serienfertigung
- Sortenfertigung
- Massenfertigung

nach Organisation der Fertigung

- · Werkstattfertigung
- Gruppenfertigung
- Fließfertigung

nach Ortsabhängigkeit der Fertigung

- · ortsgebundene Fertigung
- ortsungebundene Fertigung

Art des Verfahrens	Charakteristikum	Beispiel
Einzelfertigung	einzelne Stücke oder Aufträge	Maßanzug Einfamilienhaus
Serienfertigung	mehrere Einheiten verschie- dener Produkte auf unter- schiedlichen Anlagen	PKW und LKW
Sortenfertigung	mehrere Einheiten verschie- dener Produkte auf gleichen Anlagen	Kollektion Wintermäntel oder Buchdruck
Massenfertigung	unbegrenzt viele Einheiten eines (mehrerer) Produkte auf gleichen Anlagen	Bier Koks

Kriterium	Werkstatt- fertigung	Fließ- fertigung
Kapitalintensität	Niedrig	Hoch
Kapitalkosten	Niedrig	Hoch
Personalqualifikation	Hoch	Niedrig
Arbeitsintensität	Hoch	Niedrig
Lohnstückkosten	Hoch	Niedrig
Transportwege	Lang	Kurz
Leerkosten	Hoch	Niedrig
Fixkostenanteil	Niedrig	Hoch
Flexibilität	Hoch	Niedrig

Produktionsplanungs- und –steuerungs-Systeme (PPS-Systeme)

- = ganzheitliche, IT-gestützte Systeme zur integrierten Mengen-, Kapazitäts-, Produktionsprogramm- und Terminplanung
- **Ursprünglich**: Integration der Produktionsplanung mit Modellen der linearen Programmierung mit simultaner Programm-, Losgrößen- und Maschinenbelegungsplanung (wegen zu großen Problemen u.a. beim Rechenaufwand gescheitert)
- Erste funktionierende Ansätze: einheitliches Datengerüst für die gesamt Produktionsplanung.
 - → MRP (Material Requirements Planning) zur Bestimmung der Sekundärbedarfe anhand vom Primärbedarf über die Stücklistenauflösung

System	Datenverwaltung	Planungsansatz	Zielerreichung
dezentrale Planung	unabhängig je Teilbereich	sukzessiv	gering
simultane PPS- Systeme	integriert	simultan	theoretisch maximal, praktisch gering
traditionelle PPS- Systeme	integriert	sukzessiv	gering bis mittel
neuere PPS-Systeme	integriert	sukzessiv mit Rückkopplungen	mittel bis hoch

Historische Entwicklung

Schwächen traditioneller PPS-Systeme

- Verzicht auf Rückkoppelungen zwischen einzelnen Modulen
- Vernachlässigung der Kapazitätsplanung
- Vernachlässigung von Interdependenzen (z.B. Lagerplatz und Losgröße)
- Häufig nur einfache Heuristiken statt wissenschaftlichbetriebswirtschaftlicher Verfahren
- Durchlaufzeit-Syndrom: Abweichen der tatsächlichen Durchlaufzeiten von den geplanten → Verlängerung der realen Durchlaufzeiten da User sicherheitshalber Fertigungsaufträge frühzeitiger freigeben

Computer Integrated Manufacturing (CIM)

 Vermeidung überflüssiger Organisationsarbeiten und Planungsfehler durch Integration der technischen und betriebswirtschaftlichen Datenverwaltung

Komponente	Aufgabe
CAD	Computer Aided Design (Anfertigung von Konstruktionszeichnungen)
CAM	Computer Aided Manufacturing (Computersteuerung von Werkzeugmaschinen)
CAP	Computer Aided Planning (Arbeitsplanerstellung)
CAQ	Computer Aided Quality Assurance (Computergestützte Qualitätsrechnung)

ERP-System

komplexe
 Anwendungs software zur
 Unterstützung
 der
 Ressourcen planung eines
 gesamten
 Unternehmens

Kanban-Verfahren

- Entwickelt bei Toyota
- Anpassung eines PPS-Systems an kleine bebaubare Landflächen, Rohstoffknappheit, Unternehmensverbundenheit und Gruppendenken
 - Just-in-Time-Produktion
 - Sehr kleine Lagerbestände
 - Lean Production
 - · Verringerung der Durchlaufzeit
 - Lean Management
- Werkstücke werden nach dem Hol-Prinzip von der nachgelagerten Produktionsstufe über Laufkarten (japanisch: Kanban) angefordert

Voraussetzung:

- Geringe Bedarfsschwankungen
- Hoher Wiederholungsgrad der Fertigung
- Möglichst konstante Losgrößen

Probleme:

- Anfällig für größere Störungen (Systemzusammenbrüche)
- Keine Reihenfolge- und Maschinenbelegungsplanung

Lean Production

- = konsequente Ausrichtung von Produktionsprozessen am ökonomischen Prinzip durch
- Kostenminimierung durch Aufdecken von Unwirtschaftlichkeiten
- Zusammenführen von Kompetenz und Verantwortung
- Arbeiten in Netzwerken
- Vermeiden von Verschwendung und Fehlern
- Synchronisieren der Abläufe
- Bemühen um kontinuierliche Verbesserung (Kaizen, KVP)
- Umstrukturierung der Prozesse bei Bedarf

7 Elemente der Lean Production:

- 1. Angemessene technische Ausstattung
- 2. Wenig hierarchische Arbeitsorganisation
- 3. Konsequentes Qualitätsmanagement
- 4. Kontinuierlicher Verbesserungsprozess (KVP)
- 5. Qualifikation und Motivation
- 6. Just-in-Time Produktion
- 7. Wertschöpfungs- und Prozessorientierung

Lean Management

- optimale Befriedigung der Nachfragewünsche durch Kostensenkung einerseits und Steigerung der Produktqualität und Service andererseits
- Umfassendes Führungskonzept
- Optimierung des Wertschöpfungsprozesses

Entwicklungsperspektiven beim IT-Einsatz von PPS

- Entwicklung flexibler Fertigungssysteme
- Steuerung von NC-Maschinen (numeric-control)
- Vermeidung hoher Rüstkosten durch CAP und CAM
- Dezentralisierung der Planung
- Elektronische Leitstände
- Gleichzeitiger Einsatz von mehreren unterschiedlichen PPS-Systemen
- Verstärkter Einsatz elektronischer Kommunikationsmedien (Internet, Intranet)
- Bessere grafische Benutzeroberflächen
- Vermehrter Einsatz von Simulationstechniken
- Einsatz von Systemen der Künstlichen Intelligenz
 - Expertensysteme
 - Neuronale Netze