Zachary Seymour MATH 506 Homework 3 February 27, 2014

Prove the following statements:

1 Let X be a real inner product space with the inner product (\cdot, \cdot) and induced norm $\|\cdot\|$.

1(a) For all
$$x, y, z \in X$$
, $||z - x||^2 + ||z - y||^2 = \frac{1}{2} ||x - y||^2 + 2 ||z - \frac{1}{2}(x + y)||^2$

This looks something like the law of cosines, and I think we can use this, since x, y, and z describe a "triangle".

1(b) The condition ||x|| = ||y|| implies (x + y, x - y) = 0. What is the geometric interpretation if $X = \mathbb{R}^2$.

In \mathbb{R}^2 , this implies that x and y are vectors with the same length and thus describe two sides of a rhombus.

2 Let X be an inner product space and suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences in X, with $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$. Then

$$\lim_{n \to \infty} (x_n, y_n) = (x, y).$$

Proof. The inner product is bilinear and thus continuous in both arguments. We can thus write

$$\lim_{n \to \infty} (x_n, y_n) = (\lim_{n \to \infty} x_n, \lim_{n \to \infty} y_n) = (x, y)$$

3 If Y is a closed linear subspace of a Hilbert space H then $Y^{\perp \perp} = Y$.

Proof. In general, we know first that $Y \subset Y^{\perp \perp}$. We need to show $Y^{\perp \perp} \subset Y$.

4 Let X and Y be linear subspaces of a Hilbert space H. Define $X+Y=\{x+y\in H:x\in X,y\in Y\}$. Then $(X+Y)^{\perp}=X^{\perp}\cap Y^{\perp}$.

Proof. We have $(X+Y)^{\perp} = \{x'+y' \in H : (x'+y',x+y) = 0, \forall x \in X, y \in Y, x+y \in H\}$. By bilinearity and nonnegativity of the inner product, this means (x',x) = (y',y) = 0, which implies $x' \in X^{\perp}$ and $y' \in Y^{\perp}$, so $x'+y' \in X^{\perp} \cap Y^{\perp}$.

5 Let H be a Hilbert space and let $\{e_n\}$ be an orthonormal basis in H. Prove that the Parseval relation

$$(x,y) = \sum_{n=1}^{\infty} (x,e_n)(e_n,y)$$

holds for all $x, y \in H$.

Proof. Since $\{e_n\}$ is an orthonormal basis, we can write

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 and $y = \sum_{m=1}^{\infty} y_m e_m$

for all $x, y \in H$. Then, we have

$$(x,y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} x_n y_m(e_n, e_m)$$
$$= \sum_{n=1}^{\infty} x_n y_n$$
$$= \sum_{n=1}^{\infty} (x, e_n)(e_n, y)$$

6 Let H be a Hilbert space and let $\{e_n\}$ be an orthonormal sequence in H. The following conditions are

- (a) $\{e_n : n \in \mathbb{N}\}^{\perp} = \{0\};$
- (b) $\overline{\text{span}} \{e_n : n \in \mathbb{N}\} = H;$ (c) $||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2$ for all $x \in H;$
- (d) $x = \sum_{n=1}^{\infty} (x, e_n) e_n$ for all $x \in H$.

Hint: It suffices to prove (b) \Longrightarrow (a) and (c) \Longrightarrow (a).

Proof. Since the closure of the span of e_n is the whole space that (b) \Longrightarrow (a) follows from the fact that $\{0\}^{\perp} = H.$