Graph Embedding and Extensions: A General Framework for Dimensionality Reduction

Graph Embedding

Definition

The definition of **Graph Embedding** in this paper is different from original definition.

Let $G = \{X, W\}$ be undirected weighted graph with vertex set X and similarity matrix W.

We want to find a low-dimensional representation of the Graph ${\cal G}$ which can maintain graph relation.

Hence, we define:

- y = f(x) which map vertex to \mathbb{R}^m
- ullet A diagonal matrix D. $D_{ii} = \sum_{i
 eq j} W_{ij}$
- L = D W
- B = I or $B = D^p B^p$ for scalar preserving, where W^p denotes penalty graph.

and a programming target:

$$y^* = rg\min_{y^TBy=d} \sum_{i
eq j} \left| y_i - y_j
ight|^2 W_{ij} = rg\min_{y^TBy=d} y^T L y$$

Dimensionality Reduction

Previous works on dimensionality reduction can be represented as graph embedding framework[Table crop from paper]:

Algorithm	W&B Definition
PCA	$W_{ij}=rac{1}{N}$, $B=I$
LDA	$W_{ij} = rac{\delta_{c_i,c_j}}{n_{c_i}}$, $B = I - rac{1}{Nee^T}$
LPP	$W_{ij} = \expiggl\{rac{- x_i-x_j ^2}{t}iggr\}, ext{if } i \in N_k(j) ext{ or } j \in N_k(i)$, $B=D$

Marginal Fisher Analysis

Steps

Step1: PCA

Step2: Intraclass compatness and interclass separability

- ullet Intraclass: $W_{ij}=1$ if (i,j) is nearest neighbor pair in same class
- ullet Interclass: $W_{ij}^p=1$ if (i,j) is nearest neighbor pair in different class

Step3: Marginal Fisher Criterion

$$w^* = rg \min_w rac{w^T X (D-W) X^T w}{w^T X (D^p - W^p) X^T w}$$

Step4: Resolve PCA

Result

The result is greater than previous work at face recognition.