## **ENSC1004**

## Supplementary Formula and Data Sheet

| $N_A = 6.022 \times 10^{23} atoms /mol$ | $k = 1.38 \times 10^{-23} J/atom \cdot K$ $k = 8.62 \times 10^{-5} eV/atom \cdot K$ | $R = 8.314 \ J/mol \cdot K$ |
|-----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|
| $F = 96485 \ C/mol$                     | $e = 1.602 \times 10^{-19} C$                                                       |                             |

% ionic character =  $\{1 - \exp[-(0.25)(X_A - X_B)^2]\} \times 100$ 

| $\%EL = \left(\frac{l_f - l_o}{l_o}\right)$ | 100 |
|---------------------------------------------|-----|
| $%RA = \left(\frac{A_o - A_f}{A}\right)$    | ·)  |

$$U_r \cong \frac{E}{2} \left(\varepsilon_y\right)^2 \cong \frac{\left(\sigma_y\right)^2}{2E}$$

$$\sigma_m = \sigma_o \left[ 1 + 2 \left( \frac{a}{\rho} \right)^{1/2} \right]$$

$$K = Y\sigma\sqrt{\pi a}$$

|                                   | Three ba                             | asic stress-strain                          | states                          |
|-----------------------------------|--------------------------------------|---------------------------------------------|---------------------------------|
|                                   | Tension/<br>Compression              | Shear                                       | Hydrostatic<br>Pressure         |
| Stress (MPa)<br>Pressure<br>(kPa) | $\sigma = \frac{F}{A_o}$             | $\tau = \frac{F}{A_o}$                      | p                               |
| Strain (%)                        | $\varepsilon = \frac{\Delta l}{l_o}$ | $\gamma = \frac{\Delta x}{y_o} = tan\theta$ | $\Delta = \frac{\Delta V}{V_o}$ |
| Linear Elastic                    | stress-strain beha                   | aviour                                      |                                 |

## **Elastic** properties: E, G, K and $\nu$

 $\sigma = E\varepsilon$ 

Hooke's Law

| Poisson's<br>Ratio | $\boldsymbol{v} = -\frac{\varepsilon_{lateral}}{\varepsilon_{axial}}$ |           |          |
|--------------------|-----------------------------------------------------------------------|-----------|----------|
| Modulus<br>(GPa)   | E (Young's)                                                           | G (shear) | K (bulk) |
|                    | $G = \frac{E}{2(1+v)} \approx \frac{3}{8}E$                           |           |          |

$$\rho = \frac{nA}{V_{uc}N_A}$$

FCC structure: Al, Ni, Cu, Ag, Au, Pb

APF=0.74



$$APF = \frac{3}{a^3}$$

BCC structure: Li, Cr, Mn, Fe, Nb, Mo, W

 $\tau = G\gamma$ 

 $p = -K\Delta$ 

APF=0.68



| $\rho = \frac{1}{\sigma} = \frac{RA}{l} = \frac{UA}{ll}$ $\rho_t = \rho_{rt} \left[ 1 + \alpha (T - T_{rt}) \right]$ $\rho = \rho_o (1 + \beta c_i)$ | $\sigma = n e \mu_e$ $\sigma = n e \mu_e + p e \mu_h$ $\sigma = n_i e (\mu_e + \mu_h)$ | $\sigma = \sigma_0 \cdot exp\left(-\frac{E_g}{2kT}\right)$ $f(E) = \frac{1}{e^{(E-E_F)/kT} + 1}$                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C = \frac{Q}{\Delta T \times n}$ $c = \frac{Q}{\Delta T \times m}$                                                                                  | $q = -k \frac{dT}{dx}$ $Q = -kAt \frac{\Delta T}{l}$                                   | $\varepsilon_{th} = \frac{\Delta l}{l_0} = \alpha_l \Delta T$ $\sigma_{th} = -E \varepsilon_{th} = -E \alpha_l \Delta T$ $TSR = \frac{\sigma_f k}{E \alpha_l}$ |

| $2H^{+} + 2e^{-} \rightarrow H_{2}$ $0_{2} + 4H^{+} + 4e^{-} \rightarrow 2H_{2}0$ $0_{2} + 2H_{2}0 + 4e^{-} \rightarrow 40H^{-}$ $M^{n+} + e^{-} \rightarrow M^{(n-1)+}$ | $aA + bB \leftrightarrow cC + dD$ $K = \frac{(activity \ of \ C)^c (activity \ of \ D)^d}{(activity \ of \ A)^a (activity \ of \ B)^b}$ $V = V^0 - \frac{2.303RT}{nF} \log(K)$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $M^{n+} + ne^- \to M$                                                                                                                                                    | $PB = \frac{M_{oxide}\rho_{metal}}{nM_{metal}\rho_{oxide}}$                                                                                                                    |

| Standard EMF Seri                        | es        | Platinum                          |
|------------------------------------------|-----------|-----------------------------------|
|                                          | Standard  | Gold                              |
| Clootro do                               |           |                                   |
| Electrode                                | Reduction | Graphite                          |
| Reaction                                 | Potential | Titanium                          |
|                                          | (V)       | Silver                            |
| Au <sup>3+</sup> + 3e <sup>-</sup> → Au  | +1.420    | 316 Stainless steel (passive)     |
| $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$    | +1.229    | 304 Stainless steel (passive)     |
| Pt <sup>2+</sup> + 2e <sup>-</sup> → Pt  | +1.2      | Inconel (80Ni-13Cr-7Fe) (passive) |
| $Ag^+ + e^- \rightarrow Ag$              | +0.800    | Nickel (passive)                  |
| $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$    | +0.771    | Monel (70Ni-30Cu)                 |
| $O_2 + 2H_2O + 4e^- \rightarrow 4(OH^-)$ | +0.401    | Copper-nickel alloys              |
| Cu <sup>2+</sup> + 2e <sup>-</sup> → Cu  | +0.340    | Bronzes (Cu-Sn alloys)            |
| $2H^+ + 2e^- → H_2$                      | 0.000     | Copper                            |
| $Pb^{2+}+ 2e^- \rightarrow Pb$           | -0.126    | Brasses (Cu–Zn alloys)            |
| Sn <sup>2+</sup> + 2e⁻ → Sn              | -0.136    | Inconel (active)                  |
| Ni <sup>2+</sup> + 2e⁻ → Ni              | -0.250    | Nickel (active)                   |
| $Co^{2+} + 2e^{-} \rightarrow Co$        | -0.277    | Tin                               |
| $Cd^{2+} + 2e^{-} \rightarrow Cd$        | -0.403    | Lead                              |
| $Fe^{2+} + 2e^{-} \rightarrow Fe$        | -0.440    | ☐ 316 Stainless steel (active)    |
| Cr <sup>3+</sup> + 3e <sup>-</sup> → Cr  | -0.744    | 304 Stainless steel (active)      |
| $Zn^{2+} + 2e^- \rightarrow Zn$          | -0.763    | ☐ Cast iron                       |
| Al <sup>3+</sup> + 3e <sup>-</sup> → Al  | -1.662    | Iron and steel Carbon steels      |
| $Mg^{2+} + 2e^{-} \rightarrow Mg$        | -2.363    | Aluminum alloys                   |
| Na <sup>2+</sup> + 2e⁻ → Na              | -2.714    | Cadmium                           |
| $K^+ + e^- \rightarrow K$                | -2.924    | Commercially pure aluminum        |
|                                          |           | Zinc                              |
|                                          |           | Magnesium and magnesium alloys    |

| 1        | 20) |     | 0.7 | ,     | 59,075 |     | 500 |       | 4   |     | 20  |     |     |     |     |     | 1   |
|----------|-----|-----|-----|-------|--------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| H<br>2.1 | 2   |     |     |       |        |     |     |       |     |     |     | 13  | 14  | 15  | 16  | 17  | He  |
| 2.1      | Be  |     | Pai | ıling | scal   | e   |     |       |     |     |     | В   | C   | N   | 0   | E   | Ne  |
| 1.0      | 1.5 |     |     |       |        |     |     |       |     |     |     | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |     |
| Na       | Mg  | 1   |     |       |        |     |     | 17000 |     |     |     | Al  | SI  | P   | S   | CI  | Ar  |
| 0.9      | 1.2 | 3   | 4   | 5     | 6      | 7   | 8   | 9     | 10  | 11  | 12  | 1.5 | 1.8 | 2.1 | 2.5 | 3.0 | -   |
| K        | Ca  | Sc  | TI  | V     | Cr     | Mn  | Fe  | Co    | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
| 8.0      | 1.0 | 1.3 | 1.5 | 1.6   | 1.6    | 1.5 | 1.8 | 1.8   | 1.8 | 1.9 | 1.6 | 1.6 | 1.8 | 2.0 | 2.4 | 2.8 | 3.0 |
| Rb       | Sr  | Y   | Zr  | Nb    | Mo     | TC  | Ru  | Rh    | Pa  | Ag  | Cd  | in  | Sn  | Sb  | Te  | 1   | Xe  |
| 8.0      | 1.0 | 1.2 | 1.4 | 1.6   | 1.8    | 1,9 | 2.2 | 2.2   | 2.2 | 1.9 | 1.7 | 1.7 | 1.8 | 1.9 | 2.1 | 2.5 | 2.6 |
| Cs       | Ва  | La  | Hf  | Та    | W      | Re  | Os  | tr    | Pt  | Au  | Hg  | TI  | Pb  | BI  | Po  | At  | Rn  |
| 0.7      | 0.9 | 1.1 | 1.3 | 1.5   | 1.7    | 1.9 | 2.2 | 2.2   | 2.2 | 2.4 | 1.9 | 1.8 | 1.9 | 1.9 | 2.0 | 2.2 | **  |
| Fr       | Ra  | Ac  | Rf  | Db    | Sg     | Bh  | Hs  | Mt    | Uun | Uuu | Uub | 113 | Uuq | 115 | 116 | 117 | 118 |
| 0.7      | 0.9 | 1.1 |     | **    |        | **  |     |       | **  |     | **  | **  | **  |     | -   | *** |     |

1.2

Cm

1.3

1.1

Am

1.3

1.2

Bk

1.3

1.2

Cf

1.3

1.2

Es

1.3

1.2

Fm

1.3

1.2

Md

1.3

1.2

No

1.5

1.3

Lr

1.1

Th

1.3

1.1

Pa

1.5

1.1

U

1.7

1.2

Np

1.3

1.2

Pu

1.3