Safeguarded Dynamic Label Regression for Noisy Supervision

Jiangchao Yao^{1,2} Hao Wu¹ Ya Zhang¹ Ivor W. Tsang² Jun Sun¹

¹CMIC, Shanghai Jiao Tong University ²CAI, University of Technology Sydney

Overview

TL;DR: Safeguarded dynamic label regression is a method to dynamically learn the noise transition and train the classifier in a **stochastic** and **stable** way, which reduces computational burden in the EM variant of [Patrini, CVPR-17] and safeguard the transition update in [Goldberger, ICLR-18].

- Noisy labels are corrupted from ground-truth labels, which degenerates the robustness of learning models.
- Deep neural networks have the high capacity to fit any noisy labels. The solutions are as follows.
- ♦ Noise transition. E.g., F-correction.
- **Sample re-weighting**. E.g., Bootstrapping.
- ♦ Model regularization. E.g., Dropout.
- We present a stochastic and stable way for deep learning with noisy supervision.
- ♦ Give a Latent Class-Conditional Noise model (LCCN).
 ♦ Optimize LCCN via Dynamic Label Regression (DLR).
- Empirical results on **CIFAR10**, **CIFAR100** with different noise rates and **Clothing1M**, **WebVision** demonstrate our approach improves the robustness of classifiers.

Deficiency of Benchmarks

- Inaccurate transition estimation [Patrini, CVPR-17].
- Unstable transition adaptation [Goldberger, ICLR-18].

Latent Class-Conditional Noise model

- Explicitly model the noise transition on a **simplex**.
- Build **global data dependency** for the noise transition.

Dynamic Label Regression

The optimization of LCCN refers to the following iteration.

• Infer the latent label via Gibbs sampling

$$P(z_n|Z^{\neg n}, X, Y; \alpha) \propto \underbrace{P(z_n|x_n)}_{\text{Classifier}} \underbrace{\frac{\alpha_{y_n} + N_{z_n y_n}^{\neg n}}{\sum_{k'}^{K} (\alpha_{k'} + N_{z_n k'}^{\neg n})}}_{\text{Conditional transition}}$$

• Loss minimization for parameter learning

min
$$\ell_1(z_n, P(z_n|x_n))$$
 and min $\ell_2(y_n, P(y_n|z_n))$

Although the optimization iterates above two steps, it is still computational effective in a **stochastic** way, thus scalable. **Safeguarded transition update:**

$$\left|\phi_i^{new} - \phi_i^{old}\right| \le 2 * \frac{M}{N_i},$$

where the RHS of above inequality correlated to 2 times of the ratio between the batch size M and the sample number for each category N_i , is usually in a small scale if $M \ll N_i$.

QR Code for Implementation

Illustration of Safeguarded Dynamic Label Regression

CIFAR-10 and CIFAR-100

The average accuracy (%) over 5 trials on CIFAR-10 and CIFAR-100 with different noise levels.

	Dataset	CIFAR-10				CIFAR-100					
#	Method \ Noise Ratio	0.1	0.3	0.5	0.7	0.9	0.1	0.2	0.3	0.4	0.5
1	CE	90.10	88.12	76.93	59.01	56.85	66.15	64.31	60.11	51.68	33.37
2	Bootstrapping	90.73	88.12	76.29	57.04	56.79	66.48	64.61	63.01	55.27	$\overline{34.52}$
3	Forward	90.86	89.03	82.47	67.11	57.29	65.43	62.72	61.28	52.64	33.82
4	S-adaptation	91.02	88.83	86.79	72.74	60.92	65.52	64.11	62.39	52.74	30.07
5	LCCN	91.35	89.33	88.41	79.48	64.82	67.83	67.63	66.86	65.52	33.71
6	CE with the clean data			91.63					69.41		

DLR: Latent Label Inference

The corrected labels by inference along with the training on CIFAR-10 with the noise ratio 0.5.

DLR: Noise Transition Estimation

The noise transition learned by LCCN along with the training on CIFAR-10 with the noise ratio 0.5.

Clothing1M (Left) and WebVision (Right)

	#	Method	Accuracy
	1	CE	68.94
•	2	Bootstrapping	69.12
	3	Forward	69.84
•	4	S-adaptation	70.36
	5	Joint Optimization	72.23
	6	LCCN	73.07
	7	CE with the clean data	75.28

#	Method	Accuracy@1	Accuracy@5
1	CE	63.11	83.69
2	Bootstrapping	63.20	83.81
3	Forward	63.10	83.78
4	S-adaptation	62.54	81.73
5	LCCN	63.52	84.27