# Multivariate Calculus 1 - MA Math Camp 2022

Andrea Ciccarone

August 25, 2022

#### Derivatives in one dimension

- The fundamental concept in calculus is the derivative. The main idea underlying derivatives is a rate of change.
- Consider a function  $f : \mathbb{R} \to \mathbb{R}$  and take:

$$\frac{f(x)-f(x_0)}{x-x_0}$$

This is giving us the average rate of change of the function f between x and  $x_0$ .

 The idea of the derivative is to let x go to x<sub>0</sub> and study what happens at this rate of change. In this sense, we can talk about the instantaneous rate of change:

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$



## Definition of Derivative

#### Definition 1.1

• Let  $A \subseteq \mathbb{R}$ , and  $x_0 \in A \cap A'$ . A function  $f : A \to \mathbb{R}$  is said to be **differentiable** at  $x_0$  iff the limit

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. In that case, In that case, define the **derivative of** f **at**  $x_0$  as the limit above, denoted as  $f'(x_0)$ .

- A function  $f: A \to \mathbb{R}$  is said to be **differentiable** iff  $A \subseteq A'$  and f is differentiable at any  $x_0 \in A$ .
- Let  $\hat{A}$  be the set of points in  $A \cap A'$  at which f is differentiable. Then the function  $f': \hat{A} \to \mathbb{R}$  is called the **derivative (function)** of f.

# An Example

• Notice that by just applying the change of variable  $x = x_0 + h$  we can rewrite the limit as:

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

• For example, if we want to show that the function  $f: \mathbb{R} \to \mathbb{R}$  s.t.  $f(x) = \sqrt{x}$  is differentiable (and compute the associated derivative) we observe:

$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{x+h-x} = \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

so that:

$$\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{1}{2\sqrt{x}}$$



# Differentiability implies Continuity

- If a function is differentiable at  $x_0$  it is continuous at  $x_0$ . The contrary is not always true (Example?)
- Remember that a function is continuous at  $x_0$  iff the limit of the function at  $x_0$  is equal to the value of the function at  $x_0$
- We can thus prove that a differentiable function is continuous by writing:

$$\left[ \lim_{x \to x_0} f(x) \right] - f(x_0) = \lim_{x \to x_0} \left[ \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right]$$

$$= \lim_{x \to x_0} \left[ \frac{f(x) - f(x_0)}{x - x_0} \right] \cdot \lim_{x \to x_0} (x - x_0)$$

$$= f'(x) \cdot 0 = 0$$

# Common Derivatives and Properties

#### Common Derivatives:

- $(x^{\alpha})' = \alpha x^{\alpha-1}$
- $(\ln x)' = \frac{1}{x}$
- $(e^x)' = e^x$
- $(\sin x)' = \cos x$

#### • Properties:

- (f+g)' = f' + g'
- $(\lambda f)' = \lambda f'$
- $\bullet (fg)' = f'g + fg'$
- $(f/g)' = \frac{f'g fg'}{g^2}$

## Derivatives as Affine Transformations

- An other interpretation of a derivative is that it is the best linear approximation of a function at  $x_0$ .
- In order to appreciate this interpretation, let us introduce first order expansions

#### Definition 1.4

Let  $f:A\to\mathbb{R}$  and  $x_0\in A\cap A'$ . We say that f admits a first order expansion around  $x_0$  if there exists  $a,b\in\mathbb{R}$  and a function  $\epsilon:A\to\mathbb{R}$  such that:

$$\forall x \in A, f(x) = a + b(x - x_0) + (x - x_0)\varepsilon(x)$$
  
and  $\lim_{x \to x_0} \varepsilon(x) = 0$ 

# Derivatives as Affine Transformations (ctd.)

- If a function is differentiable at  $x_0$  it will always have a first order expansion at  $x_0$  (set  $\epsilon(x) = \frac{f(x) f(x_0)}{x x_0} f'(x_0)$ ,  $a = f(x_0)$ ,  $b = f'(x_0)$ )
- If a function has a first order expansion, it will be differentiable and we can show  $a = f(x_0)$ ,  $b = f'(x_0)$ :
  - If  $\forall x \in A$ ,  $f(x) = a + b(x x_0) + (x x_0)\varepsilon(x)$  then  $f(x_0) = a$
  - For  $x \in A \setminus \{x_0\}$  we have:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x) - a}{x - x_0} = b + \epsilon(x) \xrightarrow[x \to x_0]{} b$$

- Thus  $f'(x_0) = b$
- All this combined implies the next result.



# Derivatives as Affine Transformations (ctd.)

#### Theorem 1.5

Let  $f: A \to \mathbb{R}$  and  $x_0 \in A \cap A'$ . The following are equivalent :

- f is differentiable at  $x_0$
- ② f has a first order expansion at  $x_0$

Furthermore the coefficients of the first order expansion when they exist are  $a = f(x_0)$ ,  $b = f'(x_0)$ .

• The function  $f(x_0) + (x - x_0)f'(x_0)$  is the affine transformation of f at  $x_0$ . Geometrically speaking, it is line that is tangent to f at  $x_0$ .

## Mean Value Theorem

 The following theorem is an important result with many useful implications:

#### Mean Value Theorem

Let  $f:[a,b]\to\mathbb{R}$ , differentiable on (a,b), and continuous on [a,b]. Then there exists  $x\in(a,b)$  s.t.

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

- In words, MVT states that we can find some x in the interior of the interval [a,b] such that the average rate of change is equal to the instantaneous rate of change at that point
- We are not going to prove it, but the proof is on the lecture notes (you are also going to see it in Math Methods)



## MVT and IVT

- An important implication of MVT is that if f' > 0 then f is stringly increasing.
- Take any  $x_1, x_2$  in (a, b) with  $x_1 < x_2$ . By MVT there exists some  $x \in (x_1, x_2)$  s.t.

$$f'(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

• Thus  $f(x_2) - f(x_1) = f'(x) \cdot (x_2 - x_1) > 0 \implies f$  is strictly increasing.

#### Intermediate Value Theorem

Let  $f:[a,b]\to\mathbb{R}$  continuous and u is a number between f(a) and f(b), then there exists  $c\in[a,b]$  s.t. u=f(c).



# L'Hospital Rule

- Using MVT, it is also possible to obtain a result which is very useful in computing some limits.
- In order to state this result we need to define the extended real line  $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}$  by extending the order  $\leq$  s.t.  $+\infty > a$  and  $-\infty < a$  for any  $a \in \mathbb{R}$ .

#### L'Hospital Rule

Let  $-\infty \le a < b \le +\infty$ , and  $f:(a,b) \to \mathbb{R}$  and  $g:(a,b) \to \mathbb{R} \setminus \{0\}$  are differentiable in (a,b). If  $\lim_{x\to a} f(x)$  and  $\lim_{x\to a} g(x)$  are both 0 or  $\pm\infty$ , and  $\lim_{x\to a} f'(x)/g'(x)$  has a finite value or is  $\pm\infty$ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

The statement is also true for  $x \to b$ .



# L'Hospital Rule - Example

- Suppose we want to find the limit of  $\frac{\ln(x)}{\sqrt{x}}$  when  $x \to +\infty$ .
- Notice that both the nominator and the denominator diverge to  $+\infty$ , so we can apply L'Hospital
- In particular, we have:

$$\frac{(\ln x)'}{(\sqrt{x})'} = \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \frac{2}{\sqrt{x}} \to 0$$

• We can thus conclude that our function converges to 0 as x diverges to  $+\infty$ .

#### Total Derivatives - Introduction

- As economists, you are going to work a lot with functions from  $\mathbb{R}^n$  to  $\mathbb{R}$  (eg. utility functions).
- We thus want to extend the concept of derivatives to multivariate functions.
- We mentioned that the derivative at  $x_0$  is slope of the "best" linear approximation we can find for f(x) around  $x_0$ :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

• "Best" means that the relative error term  $\epsilon(x)$  goes to 0. In other words,  $f'(x_0)$  is the value of m such that:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - m(x - x_0)}{x - x_0} = 0$$

12



## **Total Derivatives**

• If  $f: \mathbb{R}^n \to \mathbb{R}^m$  then we can write a linear approximation (around  $x_0$ ) of f as:

$$f(x) \approx f(x_0) + C(x - x_0)$$

where A is an  $m \times n$  matrix.

• Thus, we are going to define the total derivative of f at x<sub>0</sub> as the matrix C such that:

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - C(x - x_0)\|}{\|x - x_0\|} = 0$$

## Total Derivative - Definition

#### Definition 2.1

• Let  $A \subset \mathbb{R}^n$  and  $x \in int(A)$ . A function  $f : A \to \mathbb{R}^m$  is said to be **differentiable at** x iff  $\exists$  an  $m \times n$  real matrix C s.t.

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ch\|}{\|h\|} = 0$$

In this case, define the **(total) derivative of** f **at** x as the matrix C, denoted as f'(x), or Df(x).

- A function  $f: A \to \mathbb{R}$  is said to be **differentiable** iff A is open and f is differentiable at any  $x \in A$ .
- Let A<sub>1</sub> ⊂ int (A) be the set of points at which f is differentiable.
   Then the function f': A<sub>1</sub> → ℝ<sup>mn</sup> is called the **derivative (function)** of f.

#### **Total Derivatives**

- The derivative of a function from  $\mathbb{R}^n \to \mathbb{R}^m$  is thus an  $m \times n$  matrix C which we interpret as a linear mapping from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ , i.e., we could think of it as some mapping  $\lambda(h)$ .
- Intuitively, it is the matrix such that f(x) + Ch approximates f(x + h) well when  $h \in \mathbb{R}^n$  is close to 0.
- For a function f from  $\mathbb{R}^n$  to  $\mathbb{R}$ , the derivative reduces to a  $1 \times n$  row vector called the **gradient**  $(\nabla f(x))$

# Some Properties

- The derivative is linear. If  $f, g : \mathbb{R}^n \to \mathbb{R}^m$  and  $\alpha \in \mathbb{R}$ 
  - (f+g)'=f'+g'
  - $(\alpha f)' = \alpha f'$
- If f differentiable at x, then f is continuous at x.

# Introducing Partial Derivatives

- For a function  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ , each coordinate  $i \in \{1, ..., m\}$  of f can be regarded as a function  $f_i$  from A to  $\mathbb{R}$ .
- ullet For instance, the function  $f:\mathbb{R}^2 o \mathbb{R}^2$

$$f(x) = f(x_1, x_2) = (x_1 + x_2, x_1 - x_2)$$

could be written as:

$$f(x) = (f_1(x), f_2(x))$$

where  $f_1(x) = x_1 + x_2$  and  $f_2(x) = x_1 - x_2$ .

• f is differentiable at  $x \in int(A)$  iff  $f_i$  is differentiable at x for each i, and furthermore we have

$$f'(x) = \begin{bmatrix} \nabla f_1(x) \\ \nabla f_2(x) \\ \vdots \\ \nabla f_m(x) \end{bmatrix}$$

# But first... An Example

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ ,  $f(x) = f(x_1, x_2) = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$ . Is it differentiable at  $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ?
- We have  $f\left(\begin{pmatrix}0\\0\end{pmatrix}+\begin{pmatrix}h_1\\h_2\end{pmatrix}\right)=\begin{pmatrix}h_2\\h_1\end{pmatrix}$
- We also have  $f\begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$
- We are thus trying to find the matrix C such that

$$\lim_{h \to 0} \frac{\left\| \begin{pmatrix} h_2 \\ h_1 \end{pmatrix} - C \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \right\|}{\left\| \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \right\|} = 0$$

• By setting  $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ , the error term becomes 0 (no need to compute the limit). Our function is already linear, but the derivative exists!

## Partial Derivatives

#### Definition 2.2

Let  $A \subset \mathbb{R}^n$  and  $x \in int(A)$ . For a function  $f : A \to \mathbb{R}^m$ , its **partial** derivative of the *i*-th coordinate w.r.t. the *j*-th argument at  $x \in A$  is

$$\frac{\partial f_i}{\partial x_j}(x) := \lim_{t \to 0} \frac{f_i(x + te_j) - f_i(x)}{t}$$

if the right-hand side derivative exists.

The vector  $e_i$  above is the j-th canonical basis of  $\mathbb{R}^n$ , i.e.

$$e_j:=(0,\ldots,1,\ldots,0).$$

## Interpretation

- ullet Basically, we are going back to the  $\mathbb R$  to  $\mathbb R$  case...
- The vector  $x + he_j$  is a deviation from x only in the j-th argument. Therefore, intuitively, the partial derivative  $\frac{\partial f_i}{\partial x_j}(x)$  measures the sensitivity of the i-th coordinate  $f_i$  of the multivariate function f wrt the j-th argument of  $x_j$
- What are the partial derivatives of  $f(x) = x_1^2 + x_1x_2$ ?
- Partial derivatives provide a way to compute the total derivative of a function.

# f'(x) with Partial Derivatives

#### Theorem 2.3

Let  $A \subset \mathbb{R}^n$  and  $x \in int(A)$ . If function  $f: A \to \mathbb{R}^m$  is differentiable at x, then  $\frac{\partial f_i}{\partial x_j}(x)$  exists for any  $(i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}$ , and furthermore we have

$$f'(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix}$$

• Given this theorem, what is the total derivative of  $f(x) = f(x_1, x_2) = (x_1 + x_2, x_1 - x_2)$ ?

#### **Technical Concerns**

- We have seen that if f is differentiable, its partials exist and the Jacobian is just the matrix of partial derivatives.
- What if we only know that the partials exist? Is that enough for differentiability?
- Sadly, no... the function could behave nicely along the axes, but misbehave along other directions
- However, if the partials are also continuous, then the derivative exists (see Theorem 2.5). Almost every function we work with in economics will have continuous partial derivatives

# Existence of Partial Derivatives Does Not Imply *f* Differentiable

- We can find a function f s.t.  $\frac{\partial f_i}{\partial x_j}(x)$  exists for all (i,j) but f is not differentiable at x.
- Consider the function  $f: \mathbb{R}^2 \to \mathbb{R}$ :

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

We apply definition of partial derivatives:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$



# Existence of Partial Derivatives Does Not Imply *f* Differentiable

- Therefore, both partial exists at (0,0)
- Nonetheless, the function is not differentiable at (0,0) as it is not continuous at (0,0).
- To see this, notice that f takes value  $\frac{1}{2}$  along the path  $y=x^2$ , except for at the point (0,0), where it takes value 0.

## Some Common Derivatives

- Being comfortable taking vector derivatives in one step can save you
  a lot of algebra (especially in econometrics). You should know these
  identities by heart:
- Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  with f(x) = Ax where A is an  $m \times n$  matrix:

$$f'(x) = A$$

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  with f(x) = x'Ax where A is an  $n \times n$  matrix:

$$f'(x) = x'(A + A')$$

If A is symmetric, f'(x) = 2x'A

• If  $f,g:\mathbb{R}^n \to \mathbb{R}$  and h(x) = f(x)g(x):

$$h'(x) = f'(x)g(x) + g'(x)f(x)$$



## Chain Rule

• Let's state the chain rule for a single variable function:

#### Chain Rule

Let S be a subset of  $\mathbb{R}$ , and  $f:S\to\mathbb{R}$ . Let T be a set s.t.  $f(S)\subset T\subset\mathbb{R}$ , and  $g:T\to\mathbb{R}$ . If f is differentiable at x, and g is differentiable at f(x), and we have

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

- For instance, suppose we want to take the derivative of  $h(x) = \ln(x^2 + 1) = g(f(x))$ , where  $f(x) = x^2 + 1$  and  $g(y) = \ln y$ .
- Then f'(x) = 2x and  $g'(y) = \frac{1}{y}$ .
- Thus,  $h'(x) = g'(x^2 + 1) \cdot 2x = \frac{2x}{x^2 + 1}$



## Chain Rule in multivariate Functions

• We can extend the chain rule for multivariate functions.

#### Chain Rule

Let  $S \in \mathbb{R}^n$ ,  $x \in int(S)$ , and  $f: S \to \mathbb{R}^m$ . Let T be s.t.  $f(S) \subset T \subset \mathbb{R}^m$  and  $f(x) \in int(T)$ , and let  $g: T \to \mathbb{R}^k$ . If f is differentiable at x, and g is differentiable at f(x), then  $g \circ f: S \to \mathbb{R}^k$  is differentiable at x. Furthermore, we have

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

• In the equation above, the  $\cdot$  on the right-hand side is the matrix multiplication. Because g'(f(x)) is an  $k \times m$  matrix, and f'(x) is an  $m \times n$  matrix, their product  $g'(f(x)) \cdot f'(x)$  is a  $k \times n$  matrix, which is exactly the size  $(g \circ f)'(x)$  should have.

# Chain Rule - Example

- Consider the following example:
- ullet Utility u depends on consumption c and hours worked h
- However, c and h depend on the going wage w. Define  $x(w): \mathbb{R} \to \mathbb{R}^2$  by x(w) = (c(w), h(w)). This function assigns consumption and hours worked for any level of wage.
- We thus define our utility as v(w) = u(x(w)). Chain rule says  $v'(w) = u'(x(w)) \cdot x'(w)$ :

$$v' = \begin{pmatrix} \frac{\partial u}{\partial c} & \frac{\partial u}{\partial h} \end{pmatrix} \begin{pmatrix} \frac{\partial c}{\partial w} \\ \frac{\partial h}{\partial w} \end{pmatrix}$$
$$= \frac{\partial u}{\partial c} \frac{\partial c}{\partial w} + \frac{\partial u}{\partial h} \frac{\partial h}{\partial w}$$

# Higher Derivatives: Single Variable

• For a function  $f : \mathbb{R} \to \mathbb{R}$ , the **second derivative** of f at x is the derivative of f' at x:

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

- The second derivative measures the change in the slope per unit change in x:
  - If f''(x) > 0 then the derivative is (locally) increasing in x
  - If f''(x) < 0 then the derivative is (locally) decreasing in x

# Higher Derivatives: $\mathbb{R}^n$

• Recall that for a function  $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$  we know that its gradient at  $x \in int(A)$  is equal to the vector of partial derivatives: i.e.

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$

# Higher Derivatives: $\mathbb{R}^n$

• The second derivative of the real-valued function f at x is also known as the **Hessian matrix** of f at x, denoted as  $H_f(x)$ :

$$H_{f}(x) := f''(x) = (\nabla f)'(x) = \begin{bmatrix} \left(\nabla \frac{\partial f}{\partial x_{1}}\right)(x) \\ \left(\nabla \frac{\partial f}{\partial x_{2}}\right)(x) \\ \vdots \\ \left(\nabla \frac{\partial f}{\partial x_{n}}\right)(x) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial \left(\frac{\partial f}{\partial x_{1}}\right)}{\partial x_{1}}(x) & \frac{\partial \left(\frac{\partial f}{\partial x_{1}}\right)}{\partial x_{2}}(x) & \cdots & \frac{\partial \left(\frac{\partial f}{\partial x_{1}}\right)}{\partial x_{n}}(x) \\ \frac{\partial \left(\frac{\partial f}{\partial x_{2}}\right)}{\partial x_{1}}(x) & \frac{\partial \left(\frac{\partial f}{\partial x_{2}}\right)}{\partial x_{2}}(x) & \cdots & \frac{\partial \left(\frac{\partial f}{\partial x_{2}}\right)}{\partial x_{n}}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial \left(\frac{\partial f}{\partial x_{n}}\right)}{\partial x_{1}}(x) & \frac{\partial \left(\frac{\partial f}{\partial x_{n}}\right)}{\partial x_{2}}(x) & \cdots & \frac{\partial \left(\frac{\partial f}{\partial x_{n}}\right)}{\partial x_{n}}(x) \end{bmatrix}$$

## Order of differentiation matters?

The cross partial

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x) := \frac{\partial \left(\frac{\partial f}{\partial x_i}\right)}{\partial x_j}(x)$$

and the cross partial

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) := \frac{\partial \left(\frac{\partial f}{\partial x_j}\right)}{\partial x_i}(x)$$

are conceptually very different when  $i \neq j$ . However, they are equal if f is twice continuously differentiable at x, and this result is usually known as Young's theorem or Schwarz's theorem.

# Young; Schwarz

## Young-Schwarz Theorem

Let  $A \subset \mathbb{R}^n$  and  $x \in int(A)$ . If function  $f : A \to \mathbb{R}$  is  $C^2$  at x, then for any  $i, j \in \{1, \dots, n\}$  both  $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$  and  $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$  exists and

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

# Taylor Series - "Intuitively"

• Suppose you want to approximate  $f : \mathbb{R} \to \mathbb{R}$  by a polynomial around  $x_0$ :

$$h(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

- Two intuitive criteria for a "good" approximation are:
  - **1**  $h(x_0) = f(x_0) \implies a_0 = f(x_0)$
  - 2 The first n derivatives of h should match those of f at  $x_0$
- Differentiating repeatedly gives  $h^k(x_0) = k! a_k$ . Thus the Taylor series expansion of order n of f around  $x_0$  is:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^n(x_0)(x - x_0)^n$$

We are going to be more precise next class...

