41. The 0-flat
$$x = \begin{bmatrix} -43 \\ -12 \\ 7 \\ 1 \end{bmatrix}$$

43. TEFTETETET

CHAPTER 3

Section 3.1

- 1. Not a vector space 3. A vector space
- 5. Not a vector space 7. Not a vector space
- 9. A vector space
- 11. A vector space
- 13. A vector space
- 15. A vector space
- 17. a. [-1, 0] is the "zero vector"
 - b. Part 5 of Theorem 3.1 in this vector space becomes r[-1, 0] = [-1, 0], for all $r \in \mathbb{R}$. That is, [0, 0] is not the zero vector 0 in this vector space.
- 27. Both 2×6 matrices and 3×4 matrices contain 12 entries. If we number entries in some fashion from 1 to 12, say starting at the upper left-hand corner and proceeding down each column in turn, then each matrix can be viewed as defining a function from the set $S = \{1, 2, \dots, 12\}$ into the set \mathbb{R} . The rules for adding matrices and multiplying by a scalar correspond in each case to our definitions of addition and scalar multiplication in the space of functions mapping S into \mathbb{R} . Thus we can identify both $M_{2,6}$ and $M_{3,4}$ with this function space, and hence with each other.
- **29.** \mathbb{R}^{24} \mathbb{R}^{25} \mathbb{R}^{26} P_{26} $M_{4,7}$ $M_{2,12}$ P_{24} P_{25} $M_{3,9}$ $M_{4,6}$ $M_{5,5}$ $M_{2,13}$

Section 3.2

- 1. Not a subspace
- 3. Not a subspace
- 5. A subspace
- 7. **a.** Because $1 = \sin^2 x + \cos^2 x$, we have $c = c(\sin^2 x) + c(\cos^2 x)$, which shows that $c \in \operatorname{sp}(\sin^2 x, \cos^2 x)$.

- b. Now $\cos 2x = \cos^2 x \sin^2 x =$ $(-1)\sin^2 x + (1)\cos^2 x$, which shows that $\cos 2x \in \operatorname{sp}(\sin^2 x, \cos^2 x)$
- c. Now $\cos 4x = \cos^2 2x \sin^2 2x =$

$$(1 - \sin^2 2x) - \sin^2 2x = \frac{1}{7}(7) + \frac{1}{$$

- $(-2)\sin^2 2x$, which shows that $\cos 4x$, and thus $8\cos 4x$, is in $sp(7, \sin^2 2x)$.
- 9. a. We see that \mathbf{v}_1 , $2\mathbf{v}_1 + \mathbf{v}_2 \in \mathrm{sp}(\mathbf{v}_1, \mathbf{v}_2)$; and therefore,

$$sp(\mathbf{v}_1, 2\mathbf{v}_1 + \mathbf{v}_2) \subseteq sp(\mathbf{v}_1, \mathbf{v}_2).$$

Furthermore, $\mathbf{v}_1 = 1\mathbf{v}_1 + 0(2\mathbf{v}_1 + \mathbf{v}_2)$ and $\mathbf{v}_2 = (-2)\mathbf{v}_1 + 1(2\mathbf{v}_1 + \mathbf{v}_2)$, showing that $\mathbf{v}_1, \mathbf{v}_2 \in \operatorname{sp}(\mathbf{v}_1, 2\mathbf{v}_1 + \mathbf{v}_2)$; and therefore.

$$sp(\mathbf{v}_1, \mathbf{v}_2) \subseteq sp(\mathbf{v}_1, 2\mathbf{v}_1 + \mathbf{v}_2).$$

Thus, $sp(v_1, v_2) = sp(v_1, 2v_1 + v_2)$.

- 11. Dependent
- 13. Dependent
- 15. Independent
- 17. Dependent
- 19. Independent
- 21. Not a basis
- 23. $\{1, 4x + 3, x^2 + 2\}$
- 25. TFTTTFFFTT
- 35. Let $W = \text{sp}(e_1, e_2)$ and $U = \text{sp}(e_3, e_4, e_5)$ in \mathbb{R}^5 . Then $W \cap U = \{0\}$ and each $x \in \mathbb{R}^5$ has the form x = w + u, where $w = x_1e_1 + x_2e_2$ and $u = x_3e_3 + x_4e_4 + x_5e_5$.
- 39. In deciding whether $\sin x$ and $\cos x$ are independent, we consider linear combinations of them with scalar coefficients. The given coefficients f(x) and g(x) are not scalars. For a counterexample, consider $f(x) = -\cos x$ and $g(x) = \sin x$. We have $(-\cos x)(\sin x) + (\sin x)(\cos x) = 0$.
- 41. The set of solutions consists of all functions of the form h(x) + p(x), where h(x) is the general solution of the corresponding homogeneous equation $\int_{n}(x)y^{(n)} + \int_{n-1}(x)y^{(n-1)} + \cdots + \int_{2}(x)y^{n} + \int_{1}(x)y^{n} + \int_{0}(x)y^{n} = 0.$
- 43. a. $\{a \sin x + b \cos x \mid a, b \in \mathbb{R}\}$
 - b. $\{a \sin x + b \cos x + a, b \in \mathbb{R}\}\$
- **45.** a. $\{ae^{3x} + be^{-3x} + c \mid a, b, c \in \mathbb{R}\}$
 - b. $\{ae^{3x} + be^{-3x} + c \frac{x^3}{27} \frac{1}{9}x^2 \frac{2}{81}x \mid a, b, c \in \mathbb{R}\}$

7. One basis B for W consists of those f_a for a in S defined by $f_a(a) = 1$ and $f_a(s) = 0$ for $s \neq a$ in S. If $f \in W$ and $f(s) \neq 0$ only for $s \in \{a_1, a_2, \dots, a_n\}$, then $f = f(a_1)f_{a_1} + f(a_2)f_{a_2} + \dots + f(a_n)f_{a_n}$. Now the linear combination $g = c_1f_{b_1} + c_2f_{b_2} + \dots + c_mf_{b_m}$ is a function satisfying $g(b_j) = c_j$ for $j = 1, 2, \dots, m$ and g(s) = 0 for all other $s \in S$. Thus $g \in W$, so B spans only W. (The crucial thing is that all linear combinations are sums of only finite numbers of vectors.)

:tion 3.3

1.
$$[1, -1]$$
 3. $[2, 6, -4]$ 5. $[2, 1, 3]$ 7. $[4, 1, -2, 1]$ 9. $\left[\frac{1}{2}, \frac{1}{2}, 1, -\frac{1}{2}, 0\right]$

1. [1, 2, -1, 5]

13.
$$p(x) = [(x+1)-1]^3 + [(x+1)-1]^2$$

 $-[(x+1)-1]-1$
 $= (x+1)^3 - 3(x+1)^2 + 3(x+1) - 1$
 $+ (x+1)^2 - 2(x+1) + 1$
 $- (x+1) + 1$
 $= (x+1)^3 - 2(x+1)^2 + 0(x+1) + 0$

so the coordinate vector is [1, -2, 0, 0].

- 15. [4, 3, -5, -4]
- 17. Let $x^3 4x^2 + 3x + 7 = b_3(x 2)^3 + b_2(x 2)^2 + b_1(x 2) + b_0$. Setting x = 2, we find that $8 16 + 6 + 7 = b_0$, so $b_0 = 5$. Differentiating and setting x = 2, we obtain $3x^2 8x + 3 = 3b_3(x 2)^2 + 2b_2(x 2) + b_1$; $12 16 + 3 = b_1$; $b_1 = -1$. Differentiating again and setting x = 2, we have $6x 8 = 6b_3(x 2) + 2b_2$; $12 8 = 2b_2$; $b_2 = 2$. Differentiating again, we obtain $6 = 6b_3$, so $b_3 = 1$. The coordinate vector is [1, 2, -1, 5].
- **19. b.** $\{f_1(x), f_2(x)\}\$ **21.** $2x^2 + 6x + 2$

ction 3.4

1. A linear transformation, $ker(T) = \{ f \in F \mid f(-4) = 0 \}$, not invertible

- 3. A linear transformation, ker(T) is the zero function, invertible
- 5. A linear transformation, ker(T) is the zero function, invertible
- 7. The zero function is the only function in ker(T).
- 9. $\{c_1e^{2x} + c_2e^{-2x} \frac{1}{5}\sin x \mid c_1, c_2 \in \mathbb{R}\}$
- 11. $\{c_1x + c_2 + \cos x \mid c_1, c_2 \in \mathbb{R}\}$
- 13. $\{c_1 \sin 2x + c_2 \cos 2x + \frac{1}{4}x^2 \frac{1}{8} \mid c_1, c_2 \in \mathbb{R}\}$
- 15. $\{c_1e^{2x}+c_2x+c_3-\frac{1}{12}x^3-\frac{1}{8}x^2\mid c_1,c_2,c_3\in\mathbb{R}\}$
- 17. $T(\mathbf{v}) = 4\mathbf{b}_1' + 4\mathbf{b}_2' + 7\mathbf{b}_3' + 6\mathbf{b}_4'$
- 19. $T(\mathbf{v}) = -17\mathbf{b}_1' + 4\mathbf{b}_2' + 13\mathbf{b}_3' 3\mathbf{b}_4'$
- 21. a. $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
 - **b.** $A \begin{bmatrix} 4 \\ -5 \\ 10 \\ -13 \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \\ -10 \\ 10 \end{bmatrix}$; $12x^2 10x + 10$
 - c. The second derivative is given by

$$A^{2} \begin{bmatrix} -5\\8\\-3\\4 \end{bmatrix} = \begin{bmatrix} 0\\0\\-30\\16 \end{bmatrix}; -30x + 16$$

23. a. $D(x^2e^x) = x^2e^x + 2xe^x$; $D^2(x^2e^x) = x^2e^x + 4xe^x + 2e^x$; $D(xe^x) = xe^x + e^x$; $D^2(xe^x) = xe^x + 2e^x$; $D(e^x) = e^x$; $D^2(e^x) = e^x$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$

b. From the computations in part a, we

have
$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, and computation shows that $A_1^2 = A$.

25. We obtain $A = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$ in both part a and part b.

$$\mathbf{27.} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 81 \end{bmatrix}$$

29. $(a + c)e^{2x} + be^{4x} + (a + c)e^{8x}$ **31.** $\begin{bmatrix} -3 & -3 \\ 4 & -4 \end{bmatrix}$

- 33. $-2b \sin 2x + 2a \cos 2x$
- 45. If A_1 is the representation of T_1 and A_2 is the representation of T_2 relative to B_1B' , then $A_1 + A_2$ is the representation of $T_1 + T_2$ relative to B_1B' . If A is the representation of T relative to B_1B' , then A is the representation of A relative to A.
- 51. Let $V = D_{\infty}$, the space of infinitely differentiable functions mapping \mathbb{R} into \mathbb{R} . Let T(f) = f' for $f \in D_{\infty}$. Then range(T) = D_{∞} because every infinitely differentiable function is continuous and thus has an antiderivative, but T(x) = T(x + 1) shows that T is not one-to-one.

Section 3.5

- 1. Not an inner product
- 3. Not an inner product
- 5. Not an inner product
- 7. An inner product
- 9. Not an inner product

11. a.
$$\frac{5}{6}$$
 b. $\frac{1}{\sqrt{3}}$ c. $\frac{1}{\sqrt{20}}$ d. $\frac{1}{\sqrt{2}}$

- 13. $f(x) = -x + \frac{1}{2}$ and $g(x) = \cos \pi x$. Other answers are possible.
- 15.77

CHAPTER 4

Section 4.1

1. -15 3. 15
5.
$$\mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= b_1(b_2c_3 - b_3c_2) - b_2(b_1c_3 - b_3c_1) + b_3(b_1c_2 - b_2c_1)$$

$$= 0,$$

$$\mathbf{c} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} c_1 & c_2 & c_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= c_1(b_2c_3 - b_3c_2) - c_2(b_1c_3 - b_3c_1) + c_3(b_1c_2 - b_2c_1)$$

$$= 0$$

11.
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = -(b_1 a_2 - b_2 a_1)$$
$$= - \begin{vmatrix} b_1 & b_2 \\ a_2 & a_2 \end{vmatrix}$$

13.
$$-6i \div 3j + 5k$$
 15. $0i \div 0j + 0k$

17.
$$22i + 18j + 2k$$

19. FTTFFTFTTF

21. 38 23.
$$\sqrt{62}$$
 25. $\frac{19}{2}$

27.
$$\frac{\sqrt{230}}{2}$$
 29. 16 31. $\sqrt{390}$

33.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -6$$
,
 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = 12\mathbf{i} + 4\mathbf{k}$

35.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 19$$
,
 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = 3\mathbf{i} - 7\mathbf{j} + \mathbf{k}$

37. 20 39. 9 41. 1 43.
$$\frac{7}{3}$$

45. Not collinear 47. Collinear

49. Not coplanar
 51. Not coplanar
 53. 0
 55. ||a||²||b||²

57.
$$\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$
, but $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} = 0 \times \mathbf{j} = 0$.

59.
$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (b_2c_3 - b_3c_2)\mathbf{i} - (b_1c_3 - b_3c_1)\mathbf{j} + (b_1c_2 - b_2c_1)\mathbf{k}$$
. Thus,
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Equation (4) in the text shows that this determinant is \pm (Volume of the box determined by **a**, **b**, and **c**). Similarly,

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= c_1(a_2b_3 - a_3b_2) - c_2(a_1b_3 - a_3b_1) + c_3(a_1b_2 - a_2b_1),$$

which is the same number.