Optimality conditions

Slides by

Jussi Hakanen
Post-doctoral researcher

<u>jussi.hakanen@jyu.fi</u>

Presented by

Mohammad Tabatabaei Post-doctoral researcher mohammad.tabatabaei@jyu.fi

Structure of optimization methods

Typically

- Constraint handling converts the problem to (a series of) unconstrained problems
- In unconstrained optimization a search direction is determined at each iteration
- The best solution in the search direction is found with line search

Constrained problem

- \bullet min f(x), s.t. $x \in S \subset \mathbb{R}^n$
- S is the feasible region, consists of all the points that satisfy the constraints
- Constraints can be e.g.
 - Box constraints: $x_i^l \le x_i \le x_i^u$, i = 1, ..., n
 - Inequality constraints: $g_j(x) \le 0$, j = 1, ..., m
 - Equality constraints: $h_j(x) = 0, j = 1, ..., l$
- Special case: linear constraints
 - $Ax \le b$ (i.e., g(x) = Ax b)
 - Ax = b (i.e., h(x) = Ax b)

Reminder: Descent direction

Definition: Let $f: R^n \to R$. A vector $d \in R^n$ is a descent direction for f in $x^* \in R^n$ if

$$\exists \ \delta > 0 \text{ s.t. } f(x^* + \lambda d) < f(x^*) \ \forall \ \lambda \in (0, \delta].$$

Result: Let $f: R^n \to R$ be differentiable in x^* . If $\exists d \in R^n$ s.t. $\nabla f(x^*)^T d < 0$, then d is a descent direction for f in x^* .

Unconstrained problem

Inequality constraints

Min f(x)

s.t. $g(x) \le 0$

Analogy: Ball rolling down valley pinned by fence

Note: Balance of forces (∇f , ∇g_1)

Inequality and equality constraints

Problem: Min f(x)

s.t. $g(x) \le 0$

h(x) = 0

Analogy: Ball rolling on rail pinned by fences

Balance of forces: ∇f , ∇g_1 , ∇h

Feasible descent directions

- **Definition**: Let $S \subset R^n$, $S \neq \emptyset$ and $x^* \in cl\ S$. Then $D = \{d \in R^n \mid d \neq 0 \& x^* + \alpha d \in S \ \forall \alpha \in (0, \delta)\}$ for some $\delta > 0$ is the cone of feasible directions of S in x^* .
 - Each $d \in D$, $d \neq 0$ is a feasible direction
- Definition:

$$F = \{d \in \mathbb{R}^n \mid f(x^* + \alpha d) < f(x^*), \ \forall \alpha \in (0, \delta)\}$$
 for some $\delta > 0$ is the cone of descent directions in x^* .

Note: Set

 $F \cap D = \{d \in \mathbb{R}^n \mid d \in F \& d \in D\}$ is the cone of feasible descent directions

A necessary condition

- Let us consider min f(x), $s.t. x \in S \subset \mathbb{R}^n$ where $S \neq \emptyset$
- **Theorem:** Let f be differentiable in x^* ∈ S. If x^* is a local minimizer, then $F^\circ \cap D = \emptyset$ where

$$F^{\circ} = \{ d \in \mathbb{R}^n \mid \nabla f(x^*)^T d < 0 \}.$$

spring 2017

- That is, no descent direction in x^* is feasible

Problem with only inequality constraints

- Let us consider $\min f(x)$, s.t. $g_i(x) \le 0$, i = 1, ..., m
- $S = \{x \in R^n \mid g_i(x) \le 0 \ \forall i = 1, ..., m\}$ where $g_i: R^n \to R \ \forall i$
- Let *I* denote the set of active constraints in x^* i.e. $I = \{i \mid g_i(x^*) = 0\}$.

A necessary condition (for inequality constraints only)

- Define $G^{\circ} = \{d \in \mathbb{R}^n \mid \nabla g_i(x^*)^T d < 0 \ \forall i \in I\}$
- **Theorem:** Let f and g_i be continuously differentiable in $x^* \in S$. If x^* is a local minimizer, then $F^\circ \cap G^\circ = \emptyset$.

Example

 $\min f(x) = (x_1 - 3)^2 + (x_2 - 2)^2$

$$x_1^2 + x_2^2 \le 5,$$

 $s.t. x_1 + x_2 \le 3,$ $x_1, x_2 \ge 0$

$$\hat{x} = \left(\frac{9}{5}, \frac{6}{5}\right)^T, I = \{2\}$$

- $F^{\circ} \cap G^{\circ} \neq \emptyset$
- \hat{x} is not a local minimizer!

From Miettinen: Nonlinear optimization, 2007 (in Finnish)

Notes

- If $\nabla f(x^*) = 0$, then $F^{\circ} = \emptyset$ and $F^{\circ} \cap G^{\circ} = \emptyset$ All critical points satisfy necessary conditions
- Any $x^* \in S$ that satisfies $g_i(x^*) = 0$ for some $i \in I$ satisfies also the necessary conditions

Fritz John conditions (for inequality constraints only)

- Necessary conditions: Let f and g_i be continuously differentiable in $x^* \in S$. If x^* is a local minimizer, then there exist multipliers $\lambda \geq 0$ and $\mu_i \geq 0$, i = 1, ..., m such that $(\lambda, \mu) \neq 0$ and
 - 1) $\lambda \nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) = 0$
 - 2) $\mu_i g_i(x^*) = 0$ for all i = 1, ..., m.
- Multipliers are usually called as Lagrange multipliers
 - $\min L(x, \mu) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x)$, s. $t. x \in \mathbb{R}^n$
- Conditions 2) are called complementarity conditions

Example

 $\nabla g_{1}(x^{*})$ $\nabla f(x^{*})$ $\nabla g_{2}(x^{*})$

- $\bullet \quad \min f(x) = x_1$
- $s.t. x_2 (1 x_1)^3 \le 0$ $-x_2 \le 0$
- $x^* = (1,0)^T$, $I = \{1,2\}$
- $\nabla f(x^*) = (1,0)^T, \nabla g_1(x^*) = (0,1)^T, \nabla g_2(x^*) = (0,-1)^T$
- $\lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \mu_2 \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 - $\lambda = 0$ and $\mu_1 = \mu_2 = \alpha$ (> 0) will do \rightarrow necessary conditions are satisfied even though x^* is not a local minimizer

KKT conditions

- Assume that $\lambda > 0$ i.e. the gradient of the objective function is taken into account every time.
- Since $\lambda > 0$ we can divide by it and can assume that $\lambda = 1$
- In order to satisfy KKT conditions, some regularity must be assumed from the constraints
 - Constraint qualifications
- **Definition:** A point $x^* ∈ S$ is *regular* if the set of gradients of the active constraints $\nabla g_i(x^*)$ (i ∈ I) is linearly independent.

KKT conditions (for inequality constraints)

- Necessary conditions: Let f and g_i be continuously differentiable in a regular $x^* \in S$. If x^* is a local minimizer, then there exist multipliers $\mu_i \geq 0$, i = 1, ..., m such that
 - 1) $\nabla f(x^*) + \sum_{i=1}^{m} \mu_i \nabla g_i(x^*) = 0$
 - 2) $\mu_i g_i(x^*) = 0$ for all i = 1, ..., m.
- Note: In problems including $g_i(x) \ge 0$, we have $\mu_i \le 0$

KKT conditions (for inequality constraints)

Sufficient conditions: Let f and g_i be continuously differentiable and convex. Consider $x^* \in S$. If there exist multipliers $\mu_i \geq 0$, i = 1, ..., m such that

1)
$$\nabla f(x^*) + \sum_{i=1}^{m} \mu_i \nabla g_i(x^*) = 0$$

2) $\mu_i g_i(x^*) = 0$ for all i = 1, ..., m, then x^* is a global minimizer.

Note

Alternatively, one can write

$$-\nabla f(x^*) = \sum_{i=1}^m \mu_i \, \nabla g_i(x^*)$$

• That is, $-\nabla f(x^*)$ belongs to the cone defined

by the gradients of

the active constraints

Problem with both inequality and equality constraints

- Let us consider $\min f(x), \ s.t. \ g_i(x) \leq 0, i = 1, ..., m \ \text{and}$ $h_i(x) = 0, j = 1, ..., l$
- $S = \{x \in R^n | g_i(x) \le 0 \ \forall i = 1, ..., m \& h_j(x) = 0 \ \forall j = 1, ..., l\}$ where $g_i: R^n \to R \ \forall i$ and $h_j: R^n \to R \ \forall j$

KKT conditions

- **Definition:** A point $x^* ∈ S$ is *regular* if the set of gradients of the active inequality constraints $\nabla g_i(x^*)$ (i ∈ I) and equality constraints $\nabla h_i(x^*)$ (i = 1, ..., l) are linearly independent.
- Necessary conditions: Let f, g_i and h_i be continuously differentiable in a regular $x^* \in S$. If x^* is a local minimizer, then there exist multipliers $\mu_i \geq 0$, i = 1, ..., m and ν_i , i = 1, ..., l such that
 - 1) $\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{i=1}^l \nu_i \nabla h_i(x^*) = 0$
 - 2) $\mu_i g_i(x^*) = 0$ for all i = 1, ..., m.

KKT conditions

- **Sufficient conditions:** Let f, g_i and h_i be continuously differentiable and convex. Consider $x^* \in S$. If there exist multipliers $\mu_i \geq 0$, i = 1, ..., m and ν_i , i = 1, ..., l such that
 - 1) $\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{i=1}^l \nu_i \nabla h_i(x^*) = 0$
 - 2) $\mu_i g_i(x^*) = 0$ for all i = 1, ..., m, then, x^* is a global minimizer.

Example

$$\min f(x) = (x_1 - 3)^2 + (x_2 - 2)^2$$
$$x_1^2 + x_2^2 \le 5,$$

- s.t. $x_1 + 2x_2 = 4$, $x_1, x_2 \ge 0$
- Formulate the KKT conditions

$$2x_1 - 6 + 2\mu_1 x_1 - \mu_2 + \nu_1 = 0$$

$$2x_2 - 4 + 2\mu_1 x_2 - \mu_3 + 2\nu_1 = 0$$

$$\mu_1 (x_1^2 + x_2^2 - 5) = 0$$

$$-\mu_2 x_1 = 0$$

$$-\mu_3 x_2 = 0$$

$$x_1 + 2x_2 - 4 = 0$$

• $\mu_1, \mu_2, \mu_3 \geq 0$

