TRNAVSKÁ UNIVERZITA V TRNAVE Pedagogická fakulta

Fyzika reálneho sveta interaktívne 3

Semestrálny projekt 2 Volný pád

Obsah

1. Volný pád	3
2. Fyzikálny popis volného pádu	3
3. Výpočet hodnôt	5
4. Závislosť polohy od času	5
5. Závislosť rýchlosti od času	7
6. Závislosť zrýchlenia od času	8
7. Záver	9

Prílohy: 1. Simulácia volného pádu EJS - java

1. Volný pád

V okolí Zeme pôsobí na všetky telesá tiažová sila. V blízkosti povrchu Zeme je konštantná. V dôsledku tejto sily padajú telesá smerom k povrchu Zeme. Pád telesa pod vplyvom tiažovej sily sa najčastejšie uskutočňuje vo vzduchu.

Volný pád je pohyb, ktorý teleso koná vplyvom gravitácie vo vákuu. Volný pád z výšky, ktorá je malá v porovnaní s rozmermi Zeme, je pohyb podobný rovnomerne zrýchlenému pohybu. Zrýchlenie volného pádu sa nazýva tiažové zrýchlenie a označuje sa g. Na tom istom mieste je pre všetky telesá rovnaké. Mení sa s nadmorskou výškou a zemepisnou šírkou. Preto bola dohodnutá hodnota g = 9,806 m.s⁻² platiaca na zemi, ktorá sa nazýva normálové tiažové zrýchlenie.

Pretože a = g, závislosť veľkosti okamžitej rýchlosti voľne padajúceho telesa od času je vyjadrené vzťahom $v = 1/2g*t^2$.

Okrem tiažovej sily vo vzduchu na teleso pôsobí ešte aj odporová sila, v dôsledku odporu prostredia. Veľkosť odporovej sily závisí od rozmerov a tvaru telesa. Aby nepôsobila odporová sila, muselo by teleso padať vo vákuu.

Volný pád sa nazýva pád voľne spustených telies na zem vo vákuu (bez začiatočnej rýchlosti).

2. Fyzikálny popis volného pádu

Pokusmi bolo dokázané, že volný pád je rovnomerne zrýchlený pohyb. Má smer zvislý nadol so stálym zrýchlením. Veľkosť tiažového zrýchlenia závisí od nadmorskej výšky a od polohy na Zemi.

Závislosť rýchlosti na čase.

Na grafe vidíme závislosť rýchlosti od času pri voľnom páde. Rýchlosť narastá priamoúmerne s časom. Na nasledujúcom obrázku môžeme sledovať graf závislosti dráhy voľného pádu od času.

$$s = 1/2*gt^2$$

Závislosť dráhy od času.

Pokusom s Newtnovou trubicou môžeme ukázať, že vo vákuu všetky telesá spustené súčasne padajú spolu. Napríklad, ak z nej nevyčerpáme vzduch, guľôčka dopadne na dno skôr ako pierko. Pierko kladie vzduchu oveľa väčší odpor. Ak z trubice vyčerpáme vzduch (vytvoríme vákuum), padajú obidve telesá s rovnakým zrýchlením a dopadnú súčasne.

3. Výpočet hodnôt

Pri voľnom páde vyšetrujeme tri závislosti a to je závislosť polohy od času s = s(t), závislosť rýchlosti od času v = v(t), závislosť zrýchlenia od času a = a(t). V nasledujúcich kapitolách sa pokúsim porovnať vypočítané hodnoti pomocou vzťahov klasickej mechaniky a získané hodnoty porovnám s hodnotami získanými zo simulácie. Simulácia používa pre výpočet závislostí diferenciálne rovnice.

4. Závislosť polohy od času

Dráha volného pádu rastie s druhou mocninou času. Pre dráhu volného pádu platí vzťah $s=\frac{1}{2}*g*t^2$

s – dráha

g – gravitačné zrýchlenie

 $t - \check{c}as$

Tabuľka vypočítaných hodnôt

S	[m]	0	-0,05	-0,2	-0,4	-0,8	-1,2	-1,8	-2,4	-3,2	-4	-5	-6	-7	-8,4	-9,8	-11,2	-12,8	-14,4	-16	-18	-20
t	[s]	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2

Graf závislosti polohy od času.

Graf závislosti polohy od času vynesený v simulácie.

5. Závislosť rýchlosti od času

Rýchlosť volného pádu rovnomerne narastá v závislosti od času. Rýchlosť je priamoúmerná času v=g*t.

Tabuľka vypočítaných hodnôt

v [m*s ⁻¹]	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20
t [s]	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2

Graf závislosti rýchlosti od času vykreslený v simulácii

6. Závislosť zrýchlenia od času

Ak zanedbáme odpor okolitého prostredia a ak uvažujeme iba homogénne gravitačné pole, pôsobí na pohybujúce sa teleso iba sila vo vertikálnom smere o veľkosti F = -mg. Kde g je tiažové zrýchlenie. V našich zemepisných šírkach je rovné 9,81 m*s⁻². Záporným znamienkom sa označuje, že teleso padá smerom dole. Daná súradnicová os je totiž zvyčajne orientovaná smerom nahor. Pohybový rovnica v danom smere má tvar F = ma kde je zrýchlenie telesa. Z predchádzajúcich vzťahov dostávame rovnicu ma = -mg. Ak je g > 0 tak a = -g.

Ak teleso, ktorí bol na začiatku v pokoji, uvoľníme a necháme padať voľným pádom, zrýchlenie jeho pohybu je a = -g. Rýchlosť voľného pádu rovnomerne narastá v závislosti od času.

Tabuľka vypočítaných hodnôt

a [m*s ⁻²]	0	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
t [s]	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2

Graf závislosti tiažového zrýchlenia od času.

Graf závislosti tiažového zrýchlenia od času vykreslení v simulácii.

7. Záver

Pri porovnávaní získaných hodnôt zo simulácie s vypočítanými hodnotami som overil funkčnosť simulácie. Táto simulácia pracuje správne a vypočítané hodnoty sú totožné s hodnotami získanými zo simulácie. Simulácia používa pri výpočte grafov závislostí na čase diferenciálne rovnice. V simulácii treba ešte odstrániť chyby ako označenie osí a podobne. Matematický aparát je v poriadku a simulácia pracuje správne. V simulácii aj pri výpočtoch som zanedbával odpor prostredia.

Použitá literatúra:

J. Vachek, M. Bednarík – Fyzika pre 1. ročník gymnázia Jozef Beňuška –Sila a pohyb , fyzika pre gymnáziá http://www.um.es/fem/EjsWiki/Main/Documentation