제3장 빅데이터 수집과 저장

Contents

1. 빅데이터 자료수집

- 데이터 구축의 필요성
- 활용방법 및 범위
- 데이터수집 절차 세부내용

2. 빅데이터 자료저장

- 빅데이터 저장관리
- 데이터 전/후 처리
- 데이터 저장

3. 빅데이터 자료저장 방법

- 데이터 베이스 관리 시스템 소개
- 관계형 데이터베이스
- 분산 데이터베이스
- 분석용 데이터베이스 구축

■ 데이터 구축 필요성

- 스마트폰, SNS, 사물인터넷(M2M) 확산 등에 따른 데이터 폭증
- ICT 인프라 시장 성숙 이후 신규 비즈니스 영역으로 관심 급증
- Davos 포럼에서는 빅데이터를 2012년도의 가장 중요한 기술로 지목
- 주요국 및 글로벌 기업은 빅데이터 산업육성 및 활용에 주력
- 글로벌 ICT기업을 중심으로 빅데이터 핵심기술 및 신규 비즈니스 모델
- 개발이 활발하고, 일반기업의 창의적 활용사례도 속속 등장
- 우리나라는 데이터 생산량이 많은 산업(통신, 조업 등)이 발달하여 잠재력이 크지만, 빅데이터 관련 서비스는 도입 단계임.

활용방법 및 범위

1) 데이터 수집과 분석

- 첫째, 데이터 수집은 빅데이터를 수집하는데 필요한 분석절차 및 기술 도입시 고려사항 제시
- <mark>둘째, 데이터</mark> 관리는 수집된 데이터를 분석할 수 있도록 가공 및 처리하고 관리하는데 필요한 업무 절차 및 적용기술 제시
- 셋째, 데이터 제공 및 이용은 빅데이터 분석 플랫폼을 이용하여 서비스를 개발하고 분석결과 등을 이용하는데 필요한 절차 및 기술 활용 방안을 제시
- 넷째, 데이터 수집에 있어서 주체에 따른 활용 범위(데이터 제공자, 플랫폼 운영자, 서비스 운영자 등에 따라 활용범위가 각각 다름)

활용방법 및 범위

• 데이터 수집에 있어 주체에 따른 활용 범위

주체		활용 범위
데이터 제공자	공공기관 연구기관 민간기업	 개방 데이터에 대한 범위, 수준, 시기, 방법 등 계획 수립시 참고 개인정보 보호, 데이터 보안, 데이터 품질관리 등 정책 수립 및 관리 시 참고 데이터제공에 필요한 업무절차, 기술 고려사항 확인
플랫폼 운영자	자체운영 외부제공	 빅데이터 플랫폼 구축을 위한 설계 및 제안요청서(request or proposal: RFP) 작성에 활용 빅데이터 플랫폼 운영(수집, 저장관리, 분석 및 활용 등) 빅데이터 서비스 개발 참고
서비스 이용자	개발자1인 창조기업 개인 등	• 빅데이터 플랫폼에 접근하여 제공 데이터 이용 및 신규 서비스 개발 등에 활용

활용방법 및 범위

• 데이터 접근단계 및 범위

단계	역할	활용 기술	과정
수집	· 내외부 데이터 연동 · 내외부 데이터 통합	Crawing, FTP, Open API, RSS, Log Aggregation, DB Aggregation, Streaming	
적재	· 대용량/실시간 데이터처리 · 분산파일시스템 저장	Distributed File, No-SQL, Memory Cashe d, Message Queue	전처리
처리	·데이터 선택, 변환, 통합, 축소 ·데이터 워크플로 및 자동화	Structured Processing, Unstructured Processing, Workflow, Scheduler	
탐색	· 대화형 데이터 질의 · 탐색적 Ad-Hoc 분석	SQL Like, Distributed Programing, Exploration Visualization	후처리
분석	· 빅데이터 마트 구성 · 통계분석, 고급분석	Data Mining, Machine Learning, Analysis Visualization	
<u> </u>	・보고서 및 시각화 ・분석정보 제공	Data Export/Import, Reporting, Business Visualization	활용

활용방법 및 범위

2) 데이터 수집 절차

- 첫째, 수집대상 데이터 선정은 분석에 필요한 수집 대상 데이터를 선정하되 수집 가능성 여부 등을 파악하고 세부 목록 및 항목을 작성
- 둘째, 세부계획 작성은 수집 데이터 유형을 분류하고 관련 수집기술 및 수집주기, 주요 업무 등을 담은 세부 계획을 작성
- 셋째, 데이터 수집 실행은 수집계획서에 따라 사전 테스트를 진행하여 관련 시스템을 점검한 후 수집활동을 진행

활용방법 및 범위

3) 데이터 수집 활용기술

Hadoop Distributed File System

주체	특징	비고
Crawling	• SNS, 뉴스, 웹 정보 등 인터넷상에서 제공되는 웹문서, 정보 수집	• 웹문서 수집
FTP	TCP/IP 프로토콜을 활용하는 인터넷 서버로부터 각종 파일들을 송수신 보안을 강화하기 위해 SFTP 사용 고려 서버간 연동시에는 전용 네트워크 구축 고려	• File 수집
Open API	 서비스, 정보, 데이터 등을 어디서나 쉽게 이용할 수 있도록 개방된 API로 데이터 수집방식 제공 다양한 어플리케이션을 개발할 수 있도록 개발자와 사용자에게 공개 	• 실시간 데이 터 수집
RSS	• RSS(Really Simple Syndication)는 Web기반 최신의 정보를 공유하기 위한 XML 기반 콘텐츠 배급 프로토콜	• 콘텐츠 수집
Strearning	• 인터넷에서 음성, 오디오, 비디오 데이터를 실시간으로 수집할 수 있는 기술	• 실시간 데이 터 수집
Log Aggregalor	 웹서버 로그, 웹 로그, 트랜잭션 로그, 클릭 로그, DB의 로그 등 각종 로그데이터를 수집하는 오픈 소스 기술 종류: Chukwa, Flume, Scnbe등 	• 로그수집
RDB(relation database) Aggregalor	관계형 데이터베이스에서 정형 데이터를 수집하여 HDFS(하둡 분산파일 시스템)이나 Hbase와 같은 NoSQL에 저장하는 오픈소스 기술 종류 : Sqoop, Direct JDBC/ODBC 등	• RDB 기반 데 이터 수집

데이터수집 절차

1) 수집 대상 데이터 선정

- 수집 데이터 도출: 데이터 수집 활동은 데이터 도메인의 분석 노하우가 있는 내 외부 전문가의 의견을 수렴하여 분석 목적에 맞는 데이터를 도출.
- <mark>목록 작성</mark> : 수집 가능성 여부, 보안 문제, 세부 데이터 항목(품질) 및 비용 등을 검토하여 데이터 수집 목록을 작성

가능성	• 해당 데이터가 사용 가능하고 수집 가능한가?
보안	• 수집 시 개인정보 포함여부 및 유출 문제는 없는가?
정확성	• 활용 목적에 따른 세부 항목들이 적절히 포함되었는가?
수집비용	• 데이터 수집에 드는 비용은 얼마인가

데이터수집 절차

2) 수집 세부계획 수립

- 데이터 소유기관 파악 및 협의

내부 데이터	• 내부 시스템 간 데이터 연계 가능여부 등을 파악
외부 데이터	• 개방 데이터 종류, 데이터 양, 수집 시스템 연계방식 및 절차, 수집주기 등 관련 기술, 정책을 파악하고 협의
유의사항	• 데이터 수집관련 보안사항, 개인정보보호 관련 문제 등을 점검

데이터수집 절차

2) 수집 세부계획 수립

데이터 유형 분류 및 확인 : 수집 대상 데이터 유형을 분류하고 데이터 포맷 등 확인, 데이터 유형에는 정형데이터, 반정형 데이터, 비정형 데이터 등 3가지로 구분함

유형	특징	데이터 종류
정형 데이터	·RDBMS의 고정된 필드에 저장	RDB, 스프레트
(Structured)	·데이터 스키마 지원	시트
반정형 데이터 (Semi- structured)	•데이터 속성인 메타데이터를 가지며, 일반적으로 스토리지에 저장되는 데이터 파일 •XML 형태의 데이터로 값과 형식이 다소 일관성이 없음	HTML,XML, JSON, 웹문서, 웹로그, 센서 데이터
비정형 데이터 (Unstructured)	• 언어 분석이 가능한 텍스트 데이터 • 형태와 구조가 복잡한 이미지, 동영상 같은 멀 티미디어 데이터	소셜 데이터, 문서, 이미지, 오디오, 비디오

데이터수집 절차

2) 수집 세부계획 수립

 수집기술 선정: 데이터 유형 및 포맷 등에 맞는 수집 기술을 선정, 데이터 유형에 따른 수집 기술로, 반정형 데이터, 비정형 데이터 등에 따라 데이터 종류 정리

데이터 유형	데이터 종류	수집 기술
정형 데이터 (Structured)	• RDB, 스프레드 시트	ETL, FTP, Open API
반정형 데이터 (Semi-structured)	• HTML, XML, JSON, 웹문서, 웹로그, 센서 데이터	Crawling, RSS, Open API, FTP
비정형 데이터 (Unstructured)	• 소셜 데이터, 문서(워드, 한글), 이미지, 오디오, 비 디오, loT	Crawling, RSS, Open API, Streaming FTP

· <mark>수집계획서 작성</mark> : 앞서 소개된 수집대상 '데이터 출처, 수집기술, 수집주기 및 수집 담당자의 주요 업무' 등을 반영하여 계획서를 작성하여 활용

데이터수집 절차

3) 데이터 수집 실행

- 사전 테스트 진행 : 수집계획에 따라서 수집주기, 적용기술 등 관련 수집환경에 대한 사전 테스트를 진행

점검 사항	• 네트워크 트래픽 문제, 데이터 누락여부, 정확성(원본 데이터와 샘플 데이터 비교), 보안성(개인정보 포함여부 등) 등을 점검
테스트 수행	• 결과에 따라서 필요시 수집방법 보완 또는 변경
데이터 수집 시행	• 데이터 수집을 진행하되 향후 장애점검 등을 위하여 관련 로그 기록을 확보할 것을 권고
기록	• 수집 데이터의 출처, 수집방식, 장애발생, 로그, 시간 등 수집 당시 상황 등을 시스템적으로 기록

데이터수집 절차

3) 데이터 수집 실행

- 데이터 수집 후 처리
- 데이터 수집 후 저장된 데이터에 대한 외부인의 접근 방지 및 유출 시 대처방안 등 관련 업무 지 침 마련이 필요
- 빅데이터 서비스 활용을 위한 데이터 수집 시 데이터의 질, 수집 기술, 데이터 보안 및 개인정보 보호 문제 등 다양한 부분을 고려해야 하므로 가급적 관련 전문가의 조언을 받을 것을 권장
- 데이터 수집 활동은 분석결과의 질을 좌우하는 중요한 과정으로 분석에 필요한 데이터 항목들이 반드시 포함될 수 있도록 사전 점검
- 수집기술은 다양한 데이터 소스로부터 다양한 유형의 데이터를 수집하기 위해 확장성, 안정성, 실시간성 및 유연성 확보가 중요

빅데이터 저장관리

- 데이터의 수집과 분석 등의 처리절차는 데이터 수집, 데이터 저장관리, 데이터 분석, 서비스제공 및 이용 등의 절차를 따름
- 일반적인 데이터의 수집과 분석 과정에서 데이터 저장관리는 데이터 처리(전 후) -> 저장 -> 보안 품질관리 등 데이터를 안전하게 활용하기 위해 저장 및 관리 업무를 수행하는 과정

데이터 전/후 처리

1) 진행 절차

- 데이터 유형에 따라서 적절한 데이터 처리방식을 선정하여 전/후처리 수행

데이터 처리방식	• 데이터 유형과 분석 목적 등을 고려하여 데이터 저장 전/후처리 기법을
선정	선정
데이터 처리 수행	• 데이터 필터링, 변환, 정제, 통합, 축소 등 선정된 데이터 전/후처리 방식 에 따라서 데이터를 처리

데이터 전/후 처리

2) 활용 기술

방식	설명
데이터 여과	• 오류 발견, 보정, 삭제 및 중복성 확인 등의 과정을 통해 데이터 품질을 향상
(Filtering)	시키는 기술
데이터 변환	 데이터 유형 변환 등 데이터 분석이 용이한 형태로 변환하는 기술 정규화(Normaliztion), 집합화(Aggreagation), 요약(summarization), 계층 생성 등의
(Transformation)	방법 활용 ETL(Extraction/Transformation/Loading) 도구 제공
데이터 정제 (Cleansing)	 결측치를 채워 넣고, 이상치를 식별 또는 제거하고, 잡음 섞인 데이터의 불일치성을 교정하는 기술 일반적으로 데이터는 불완전하고, 잡음이 섞여있고, 일관성이 없기 때문에데이터 정제가 필요
데이터 통합	• 데이터 분석이 용이하도록 유사 데이터 및 연계가 필요한 데이터(또는 DB)
(Integration)	들을 통합하는 기술
데이터 축소	• 분석 컴퓨팅 시간을 단축할 수 있도록 데이터 분석에 활용되지 않는 항목
(Reduction)	등을 제거하는 기술

데이터 전/후 처리

3) 세부 업무처리 절차

- 데이터 처리방식 선정 : 수집된 데이터를 저장하기 위한 전 처리 단계와 저장 된 데이터를 분석하기 전, 후 처리하는 단계로 구분

전 처리	• 수집한 데이터를 저장소에 적재하기 위한 작업으로 데이터 필터링, 유형 변환, 정제 등을 활용
후 처리	• 저장된 데이터를 분석이 용이하도록 가공하는 작업으로 변환, 통합, 축소 등을 활용

- 3) 세부 업무처리 절차
- **데이터 유형과 분석 목적** 등을 검토하여 전 후 처리 기술 선택

- 분석에 소요되는 시간과 노력을 절약할 수 있도록 일관성 있는 데이터 형태로 통합
- 분석 효율을 높일 수 있도록 데이터로부터 의미 있는 정보만 추출
- 의미 파악이 어려운 비정형 데이터는 분석이 가능한 형태로 변환

- 3) 세부 업무처리 절차
- 데이터 처리 수행

- 데이터 중복성, 오류 제거들을 위한 데이터 필터링 기준을 설정
- 실제 사전 테스트를 통하여 오류 발견, 보정, 삭제 및 중복성 검사 등 필터링 과정을 거쳐 필터링 기준을 최적화 하여 활용
- 비정형 데이터는 데이터 마이닝을 통해 오류, 중복, 저품질 데이터를 처리할 수 있도록 자연어처리 및 기계학습과 같은 추가기술 필요
- 분석을 위하여 단위 저장소에 파일형태로 저장 할 경우, 데이터 활용목적에 맞지 않는 정보는 필터링하여 제거해야 분석시간을 단축하고 저장 공간의 효율적 활용이 가능

데이터 전/후 처리

3) 세부 업무처리 절차

데이터 변환 : 다양한 형식으로 수집 된 데이터를 분석에 용이하도록 일관성 있는 형식으로 변환

평활화(Smoothing)	• 데이터로부터 잡음을 제거하기 위해 데이터 추세에 벗어나는 값들을 변환
집계(Aggregation)	• 다양한 차원의 방법으로 데이터를 요약
일반화(Generalization)	• 특정 구간에 분포하는 값으로 스케일을 변화
정규화(Normalization)	• 데이터에 대한 최소-최대 정규화, z-스코어를 말함 • 정규화, 소수 스케일링 등 통계적 기법을 적용
속성 생성 (Attribute/feature construction)	• 데이터 통합을 위해 새로운 속성이나 특징을 만드는 방법으로 주어진 여 러 데이터 분포를 대표할 수 있는 새로운 속성/특징을 활용

데이터 전/후 처리

3) 세부 업무처리 절차

- 데이터 정제 : 수집된 데이터의 불일치성을 교정하기 위한 방식으로 결측치(Missing Value) 처리와 잡음(Noise) 처리 기술을 활용

방법		설명
결측치	해당 레코드 무시	 분류에서 스트레스 구분 라벨이 빠진 경우 레코드 무시 결측치가 자주 발생하는 환경에서는 적용시 비효율적
	자동으로 채우기	결측치에 대한 값을 별도로 정의(예 : "unkown") 통계값 적용 : 전체 평균값, 중앙값, 해당 레코드와 같은 클래스에 속한 데이터 의 평균값 추정치 적용 : 베이지안 확률 추론, 결정 트리
	담당자(전문가) 수 작업 입력	 담당자가 직접 확인하고 적절한 값으로 수정 신뢰성은 높을 수 있으나 많은 작업 시간이 소요됨
잡음 (Noise)	구간화(Bining)	정렬한 데이터를 여러 개의 구간으로 배분한 후 구간 안에 있는 값들을 대푯값으로 대체 구간 단위 별로 잡음 제거 및 데이터 축약 효과 사용되는 대푯값 : 평균, Median 등
	회귀값 적용 (Regression)	• 데이터를 가장 잘 표현하는 추세 함수를 찾아서 이 함수의 값을 사용
	군집화(Clustering)	• 비슷한 성격을 가진 클러스터 단위로 묶은 다음 outlier 제거

- 3) 세부 업무처리 절차
- 데이터 통합: 출처가 다른 상호 연관성이 있는 데이터를 하나로 결합하는 기술로 다음 사항들을 고려
 - 데이터 통합 시 동일한 데이터가 입력 될 수 있으므로 연관관계 분석 등을 통해 중복 데이터 를 검출
 - 데이터 통합 전후 수치 및 통계 등 데이터 값들이 일치 할 수 있도록 검증
 - 통합 대상 entity가 통합 이후에 동일한지 여부를 확인하기 위한 동일성 검사를 수행
- 표현 단위(파운드와 kg, inch와 cm, 시간 등) 등 서로 다른 방식에 대해 표현을 일치할 수 있도록 변환

- 3) 세부 업무처리 절차
- 데이터 축소 : 분석에 불필요한 데이터를 축소하여 고유한 특성은 손상되지 않도록 하고 분석에 대한 효율성을 증대시킴

:	축소 방식	설명
차원 축소	분석에 필요 없거나 중 복 항목 제거	• Stepwise forward selection, Stepwise backward elimination 등 활용
데이터 압축	데이터 인코딩이나 변환을 통해 데이터 축소	• Lossless(BMP 포맷) 등 방법 적용
Discrete wavelet transform(DWT)	선형 신호 처리	• 수는 다르지만 길이는 같은 벡터(wavelet coefficients)로 변환 • 여러 개의 벡터 중에서 가장 영향력이 큰 벡터를 선택하여 다른 벡터들을 제거
Principal components analysis(PCA)	데이터를 가장 잘 표현 하고 있는 직교 상의 데이터 벡터들을 찾아 서 압축	속성들을 선택하고 다시 조합시켜 다른 작은 집합으로 생성 계산하는 과정이 간단하고 정렬되지 않은 속성들도 처리 가능
수 량 축 소 (Numerosity Reduction)	데이터를 더 작은 형태 로 표현해서 데이터의 크기 줄임	• 데이터 파라미터만 저장(예, Log-linerar 모델) • 기존의 데이터에서 축소된 데이터를 저장(예 : 히스토그램, 클러스터링, 샘플링 등)

- 3) 세부 업무처리 절차
- 데이터 전처리

기능	고려사항
	• 데이터 필터링 기준을 정의하고 설정 할 수 있는 기능을 제공해야 함.
	• 데이터 처리 전후에서 생성된 파일의 중복성을 확인 할 수 있도록 파일명, 확장자 등 필터링 기능을 제공해야 함.
데이터 필터링	• 유의미한 데이터를 선별하기 위하여 사전 정의된 필터링 기준을 비교 검증할 수 있는 기능이 제공되어야 함
(Filtering)	• 데이터 필터링 적용시, 비정형 데이터 처리에서 자연어처리 및 기계학습을 수행하기 전에 사용자가 처리 방식을 선택 할 수 있도록 데이터 파일에 대한 정형화된 사전 저장 기준을 제공 하여야 함.
	• 수집된 데이터의 품질 기준의 부합 여부 및 오류 등을 확인하고 관리자에게 알릴 수 있는 기능을 구현해야 함.
	• 필터링 처리 시 사전 정의된 필터링 기준에 의거하여 데이터 처리에서 오류 발생 후 오류에 대한 이력을 저장 할 수 있는 기능을 제공해야 함.

데이터 전/후 처리

3) 세부 업무처리 절차

데이터 전처리

기능	고려사항	
	• 수집된 데이터의 유형을 분류 할 경우 분류 기준을 적용 할 수 있는 기능을 제공해야 함.	
	• 데이터의 유형을 분류하고 이에 대한 데이터 변환에 필요한 알고리즘 함 수 또는 변환 구조를 정의 할 수 있는 기능이 제공 되어야 함.	
데이터 유형 변환 (Transformation)	• 데이터 변환 시 사용자가 지정한 변환 형식에 준하여 변환이 이루어졌는 지 확인 할 수 있는 기능이 제공되어야 함.	
(Transformation)	• 데이터 변환이 실패 되었을 경우 이력을 저장하고 사용자에게 전달할 수 있는 기능이 제공되어야 함.	
	• 데이터 변환이 실패 되었을 경우 이력을 저장하고 사용자에게 전달할 수 있는 기능이 제공되어야 함.	
	• 변환된 데이터를 저장하는 기능을 제공해야 함.	

데이터 전/후 처리

3) 세부 업무처리 절차

- 데이터 전처리

기능	고려사항	
	• 정제 유형을 사전정의하고 속성 값을 부여하는 기능 및 사용자가 스크립 트를 작성 할 수 있는 기능이 제공되어야 함.	
데이터 정제	• 데이터 유형별 정제 시 사용자가 설정한 정제 방법을 사전 정의되어 자 동으로 지정 할 수 있는 기능이 제공되어야 함.	
(Cleansing)	• 결측치, 잡음 데이터를 처리하는 경우, 데이터 저장 및 제거 대상에 대하여, 삭제, 처리, 확인 할 수 있는 기능이 제공되어야 함.	
	• 데이터의 불일치성을 교정하기 위하여 단위, 표현방식, 코드체계 등의 불일치성을 교정하거나 자동으로 교정이 되도록 하는 자동 스크립팅 기 능이 제공되어야 함.	

- 3) 세부 업무처리 절차
- 데이터 후처리

기능	고려사항	
	• 데이터의 일관성을 위해 여러 출처(소스)로부터의 데이터들을 결합할 수 있도록 사전에 확인 할 수 있는 기능을 제공해야 함.	
데이터 통합	• 데이터 통합을 위하여 취합된 정보에 대한 상호 관계를 비교하거나 정보 결합 속성 등의 요건을 체크하는 기능이 제공 되어야 함.	
(Integration)	• 데이터 통합 시 통합 전후의 원시 데이터의 백업을 지원하고 이력을 확 인 할 수 있는 기능이 제공되어야 함.	
	• 데이터 통합을 위해 유일한 키 값을 선정하거나 자동 키(Key) 부여 및 킷 값(Key Value) 관리 기능이 제공 되어야 함.	

데이터 전/후 처리

3) 세부 업무처리 절차

- 데이터 후처리

기능	고려사항	
	• 데이터로부터 잡음을 제거하기 위해 데이터 추세에 벗어나는 데이터(이 상치(Outlier)또는 특이값)를 추세에 맞게 변환 또는 자동 추천 할 수 있는 기능을 제공하여야 함.	
데이디 Hisl	• 집계(Aggregation) 시 데이터를 요약하는 기능이 제공 되어야 함.	
데이터 변환 (Transformation)	• 특정 구간에 분포하는 값을 추출 하거나 이를 사용자가 직관적으로 확인 할 수 있도록 하여 데이터 변환 시 발생 할 수 있는 변환, 패턴, 이벤트를 감시 할 수 있는 기능을 제공해야 함.	
	• 데이터 변환 후 사전 저장된 원시 데이터 셋과 변환 후 데이터 간의 변환 로그를 저장 관리 할 수 있는 기능이 제공되어야 함.	
	• 데이터 축소를 위한 적용 기준 또는 적용 스크립트를 부여 할 수 있는 기능이 제공되어야 함.	
데이터 축소 (Reduction)	• 데이터 크기를 축소하는 경우, 원본 파일의 데이터 축소 범위와 축소가 적용된 속성에 대한 로그를 기록하여 취소 시 재 복구 할 수 있도록 하는 기능이 제공 되어야 함.	

데이터 저장

- 운영자가 수립 처리된 데이터를 분석에 활용 할 수 있도록 적합한 방식으로 저장 보관하는 작업을 데이터 저장이라 함.
- 데이터 유형에 따라 저장계획을 수립하고 적합한 DB를 구축한 후 데이터 저장 및 관리 함.

저장 계획 수립	• 데이터 유형을 검토하여 저장방식을 선정하고 실행에 필요한 데이터 저 장 계획을 수립.
DB 구축 및 테스트 수행	• 선정된 저장방식에 따라 적합한 DB를 구축한 후 사전 테스트를 수행
저장처리 및 모니터링	• 구축된 DB에 데이터를 저장하고 용량한계 등 수시 모니터링 함.

데이터 저장

1) 활용 기술

- 데이터 유형에 따라서 데이터 저장 방식은 RDB, NoSQL, 분산파일시스템 등이 있음.

구분	특징	비고
RDB	 관계형 데이터를 저장하거나, 수정하고 관리할 수 있게 해주는 데이터 베이스 SQL 문장을 통하여 데이터베이스의 생성, 수정 및 검색 등 서비스를 제공 	Oracle, mssql, NoSQL, Sybase, MPP, DB
NoSQL	 Not-Only SQL의 약자이며, 비관계형 데이터 저장소로, 기존의 전통적인 방식의 관계형 데이터베이스와는 다르게 설계된 데이터베이스 테이블 스키마(Table Schema)가 고정되지 않고, 테이블 간 조인(Join) 연산을 지원하지 않으며, 수평적 확장(Horizontal Scalability)이 용이 Key-value, Document Key-value, column 기반의 NoSQL이 주로 활용 중 	MongoDB Cassandra Hbase Redis
분산파일 시스템	 분산된 서버의 로컬 디스크에 파일을 저장하고 파일의 읽기, 쓰기 등과 같은 연상을 운영체제가 아닌 API를 제공하여 처리하는 파일시스템 파일 읽기/쓰기 같은 단순 연산을 지원하는 대규모 데이터 저장소 범용 x86서버의 CPU, RAM 등을 사용하므로 장비증가에 따른 성능 향상용이 수 TB~ 수백 PB 이상의 데이터 저장 지원 용이 	HDFS

데이터 저장

2) 세부 업무처리 절차

- 데이터 유형 검토: 저장 할 데이터의 포맷 등 유형을 검토하고 데이터 저장관리에 유리한 저장방식을 선정

구분	특징
RDB 저장	 RDB 테이블 데이터는 컬럼과 값을 코드 매핑하거나 데이터형을 변환 처리하여 테이블 형태로 저장 XML, JSON, HTML 등 형식의 파일은 파싱 처리하여 테이블에 저장 문서, 이미지, 비디오, 오디오 등 이진파일은 key값을 추출한 후 테이블에 저장
NoSQL 저장	 정형데이터(RDB 저장 데이터)는 컬럼과 값을 key와 value로 구분하여 저장 XML, JSON, HTML 등 형식의 파일은 파싱(parsing)하여 key-value로 저장(NoSQL에서 지원하는 데이터 타입으로 변환 저장) 문서, 이미지, 비디오, 오디오 파일의 저장은 별도 처리 방안이 필요
분산파일 시스템 저장	• 문서(XML, JSON, HTML, 텍스트 등), 이미지, 비디오, 오디오 등 텍스트 및 이진파 일을 분산파일시스템에서 지원하는 파일형식으로 저장

데이터 저장

2) 세부 업무처리 절차

저장 공간 용량 설계 : 수집 할 데이터 크기 및 최대 저장기간 등을 고려하여 용량 설계

구분	특징	Scale out
개요	• CPU, 메모리, 하드디스크 등 서버 자원을 추가하여 처리 능력을 향상시키는 방식	• 서버의 대수(노드)를 추가하여 처리 능력을 향상 시키는 방식
비용	• 컨트롤러나 네트워크 인프라 비용은 발생하지 않고 디스크만 추가	• 추가된 노드들이 하나의 시스 템으로 운영되기 위한 NW장비 필요
용량	• 하나의 스토리지 컨트롤러가 지원 가능한 Device 수가 한정되어 있어 용량 확장시 제 약	• 스토리지 용량 확장성이 매우 좋음

데이터 저장

2) 세부 업무처리 절차

- DB구축 및 테스트 수행 :

데이터 저장계획서에 따라서 확장성 등을 고려하여 DB를 구축하고 운영에 필요한 주요기능에 대한 사전테스트를 진행

- 저장처리 및 모니터링 수행
 - 시, 일, 주, 월 주기적으로 데이터 운영관련 오류 및 여유 공간 등을 신시간 모니터링하고 문제 발생 시 신속한 대응체계를 마련
 - 오류가 발생하였을 경우, 내역을 분석하여 수집, 처리, 저장 단계 관련 담당자와 협의하여 해결

데이터 베이스 관리 시스템

- 1) 데이터베이스 관리 시스템(DBMS; DataBase Management System)
- 사용자와 응용프로그램과 데이터베이스간의 인터페이스 역할을 담당하여 데이터 베이스를 응용 프로그램들이 직접 조작하는 것이 아닌, 데이터베이스 조작을 수행하는 별도의 소프트웨어가 있는데 이를 데이터베이스 관리 시스템 이라 함.

기능	내용
정의 기능	 데이터베이스와 응용 프로그램 간의 상호 작용 수단을 제공 물리적 저장 장치에 데이터베이스가 저장될 수 있게 무리적인 구조를 정의
조작 기능	• 데이터베이스와 사용자 간 상호 작용 수단(데이터 요청, 변경 등)을 제공 • 데이터의 처리를 위한 데이터의 삽입, 삭제, 검색, 갱신 등을 지원
제어 기능	 데이터 간의 모순성이 발생하지 않도록 함 데이터베이스의 내용을 항상 정확하게 유지하여 데이터의 무결성이 파괴되지 않도록 함

데이터 베이스 관리 시스템 소개

2) DBMS의 장단점

장점	• 데이터 공유, 데이터의 중복을 최소화할 수 있음
	• 데이터 중복 감소, 데이터를 공용할 수 있음
	• 데이터 일치, 데이터의 일관성을 유지할 수 있음
	• 데이터 무결성 유지, 데이터의 무결성을 유지할 수 있음
	• 데이터 보안 유지, 데이터의 보안을 보장할 수 있음
	• 데이터 표준화 기능, 전체 데이터의 요구사항을 파악하여 조정할 수 있음
 단점	• 과다한 비용의 지출이 발생
	• 상대적으로 성능이 저하될 수 있음

관계형 데이터베이스

- 1) 관계형 데이터베이스(Relational Database)
- 메타 데이터를 총괄 관리할 수 있기 때문에 데이터의 성격, 속성 또는 표현 방법 등을 체계화할 수 있음.
- 데이터 표준화를 통한 데이터 품질을 확보할 수 있음.
- DBMS는 인증된 사용자만이 참조할 수 있도록 보안기능을 제공.
- 데이터 무결성을 보장할 수 있음.
- 관계형 데이터베이스의 여러 장점이 알려지면 서 기존의 파일시스템과 계층형, 망형 데이터베이스를 대부분 대체하면서 주력 데이터베이스가 됨.

관계형 데이터베이스

2) 관계형 데이터베이스 특징

- 데이터 간의 관계를 표현하기 위해 테이블 집합을 사용.
- 테이블이라는 단순한 개념 및 견고한 수학적 토대를 갖고 있음.
- 프로그래머가 이해하기가 수월하고 실제 데이터베이스시스템을 구현하는데 용이.
- 테이블들의 모임으로 구성되며, 각 테이블은 고유한 이름을 갖음.
- 다른 데이터베이스 모델에 비해 수정이 용이.
- 다른 유형의 데이터베이스 구조를 관계 데이터베이스로 변환하는 일이 비교적 수월함.
- 민감한 데이터에 대한 엑세스 제어를 구현하기 쉬움.
- 엑세스 할 때 상당히 조심해야 하는 데이터는 별도로 관계를 정의하여 두고, 그 관계를 엑세스 할 수 있는 권한을 두거나 또는 액세스 기법을 따로 두는 제어가 가능함.
- 데이터베이스의 간결성(Clarity)과 가시성(Visibility)이 증진됨.
- 포인터를 사용하여 복잡하게 연관되어 있는 데이터 요소들에 대한 탐색보다는 표 형식의 데이터 요소를 탐색하는 편이 훨씬 수월함.

관계형 데이터베이스

3) RDB의 종류

- RDBMS(Relational Database Management System) : RDBMS는 관계형 데이터베이스를 생성하고 수정하고 관리할 수 있는 소프트웨어임.

종류	장점	단점
Oracle	• 분산처리 지원기능이 우수함 • SMP 및 MPP의 지원이 가능	 DBMS관리가 복잡 가격이 DBMS보다 비쌈
Microsoft SQL Sever	윈도우 환경에서 가장 많이 사용됨제품가격이 저렴함	• 충분한 지원 및 발전이 불투명함
My SQL	빠르고 안정적이며 사용하기 쉬움고사양을 요구하지 않음	• 실시간 백업이 안됨
Sybase	• 하드웨어 자원만으로도 충분히 활용가능	• 자체 개발등의 지원도구가 부족
Informix	사용자들의 만족도 우수낮은 사양에서도 운영 우수지원이 풍부	• PC급 지원기능의 한계가 있음
MS Access	• 확장이 용이	• 윈도우에서만 사용 가능

분산 데이터베이스

- 1) 분산 데이터베이스 개요
- <mark>분산 데이터베이스의</mark> 정의는 "여러 곳으로 분산되어 있는 데이터베이스를 하나의 가상 시스템으로 사용할 수 있도록 한 데이터베이스 " 를 뜻함
- 논리적으로 동일한 시스템에 속하지만 컴퓨터 네트워크를 통해 물리적으로 분산되어 있는 데이터들의 모임.
- 물리적 Site 분산: 논리적으로 사용자 통합, 공유, 즉, 분산 데이터베이스는 데이터베이스를 연결하는 빠른 네트워크 환경을 이용하여 데이터베이스를 여러 지역 여러 노드로 위치시켜 상용성, 성능 등을 극대화 시킨 데이터베이스라고 정의할 수 있음.

분산 데이터베이스

2) 분산 데이터베이스의 적용 방법 및 장단점

- 분산 데이터베이스 적용방법 : 분산 환경의 데이터베이스를 성능이 우수하게 현장에서 가치 있게 사용하는 방법은 업무의 흐름을 보고 업무구성에 따른 아키텍처 특징에 따라 데이터베이스를 구성하는 것.
- 분산 데이터베이스 장단점

장점	단점
 지역 자치성, 점증적 시스템 용량 신뢰성과 가용성 효용성과 융통성 빠른 응답 속도와 통신비용 절감 데이터의 가용성과 신뢰성 증가 시스템 규모의 적절한 조절 각 지역 사용자의 요구 수용 증대 	 소프트웨어 개발 비용 오류의 잠재성 증대 처리 비용의 증대 설계, 관리의 복잡성과 비용 불규칙한 응답 속도 통제의 어려움 데이터 무결성에 대한 위협

분산 데이터베이스

3) 구글 파일 시스템

- 구글 파일 시스템(GFS)은 급속히 늘어나는 구글의 데이터 처리량을 해결하기 위해서 설계됨.
- GFS는 현재 그리고 예측 가능한 미래의 어플리케이션 부하와 기술 환경에 대한 관측을 통해서 전통적인 방식들을 재검토하고 설계에 대해서 근본적으로 다른 시점으로 설계함.
- 기존에 비해 훨씬 증가한 파일들의 크기를 고려함.
- 대부분의 파일이 새로운 데이터에 의해 덮어지는 것이 아니라 추가확장 되어간다는 점을 고려함.
- 어플리케이션과 파일 시스템 API를 같이 설계한다는 것은 유연성 측면에서 전체 시스템의 효율을 높여줌.
- 현재 다양한 GFS 클러스터들이 서로 다른 목적을 위해 구성되어 있으며, 가장 큰 클러스터는 1000개 이상의 저장 노드와 300테라 이상의 디스크 저장영역을 가지고 서로 다른 기기에서 수백의 클라이언트에게 끊임없이 이용되고 있음.

분산 데이터베이스

4) 하둡(Hadoop)

- 빅데이터 시대를 출현시켰던 요인 중 하나가 바로 하둡임.
- 빅데이터는 대개 전통적인 데이터베이스(DB)나 시스템 환경에서 처리하기 힘든 대용량데이터를 저장, 분석, 처리해 가치 있는 정보로 만들어내는 일련의 과정을 뜻함.
- 대용량 데이터를 처리하는데 공통점은 바로 하둡을 이용해 처리한다는 점.
- 하둡은 국내외를 막론하고 빅데이터를 다루는 개발자들의 관심을 받고 있음.
- 전문가들은 하둡 생태계를 통해 빅데이터를 보다 원활하고 효율적으로 분석할 수 있다고 봄.

분석용 데이터베이스 구축

1) Data, DB, DBMS의 개념적 구분

구분	내용
데 이 터	 인간이 사물을 인식하여 의사소통이 가능한 형태로 표현해 놓을 것을 말함 자료는 문자, 숫자, 이미지, 사운드 등 다양한 형태로 표현됨 이러한 자료를 전자적 형태로 표현해야 컴퓨터에서 처리가 가능 저자적 형태로 표현한 자료는 디지털자료라고 해야 정확한 표현이지만, 일
(Data)	반적으로 현대의 기업환경에서 자료라고 하면 디지털 자료를 의미
데이터베이스	 한 조직 내에서 관련된 자료들을 정보 생산을 목적으로 논리적 관계에 따라
(Database)	분류하고 정리해서 전자적 매체에 저장해 높은 것을 말함 목적지향적이고 공유를 전제로 하고, 데이터 간에 상호 밀접한 관계를 가지고 있어야 함
데이터베이스 관리시스템 (Data Base Management System)	• 사용자의 권한을 체크하고 데이터 간의 상호 연관성을 점검해 가며, 자료의 저장, 변경, 삭제, 검색 등의 작업을 수행하고, 그 결과를 응용프로그램에 전 달함.

분석용 데이터베이스 구축

2) 데이터웨어하우스의 개념

- 계속 증가되는 기업의 데이터를 정보시스템부서의 전문가뿐만 아니라 해당 업무의 현업 전문가들도 정확히 이해하고 이들 데이터를 이용하여 신속하고도 정확한 의사결정을 하는것이 중요함.
- 의사결정을 위해서 사용되는 데이터를 운영데이터와 구분하여 정보데이터라고 하며, 데이터웨어하우스는 정보데이터를 효과적으로 관리하는 새로운 기술임.

구분	운영데이터	정보데이터
데이터 내용	• 현재 값	• 요약된 값, 과거 값, 계산된 값
데이터 조직	• 응용 시스템별로 조직	• 주제별로 조직
데이터 안정성	• 트랜잭션 발생 때 마다 변동	• 일괄수정 될 때까지 불변
데이터 구조	• 트랜잭션 처리를 위해서 최적화	• 복잡한 질의를 위해서 최적화
접속 빈도	• 매우 빈번	• 가끔
접속 유형	• 검색/수정/삭제	• 검색/총계
사용	예측업무반복적 업무	• 비구조적 업무 • 특별한 업무
 반응속도	• 3초 내의 짧은 시간에 처리완료	• 수초에서 수분 내에 처리완료