PROBLEM STATEMENT:- TO PREDICT THE RAIN

FALL BASED ON VARIOUS FEATURES OF THE DATASET IMPORTING THE ESSENTIAL LIBRARIES:-

In [1]: import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn import preprocessing,svm from sklearn.model selection import train test split import matplotlib.pyplot as plt import seaborn as sns

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct De
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980.:
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716.
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690.0
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571.(
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630.
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316.0
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167.
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177.0
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290.
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555.4

4116 rows × 19 columns

DATA PREPROCESSING:-

In [3]: df.head()

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	1696.3	980.3
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2185.9	716.7
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1874.0	690.6
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1977.6	571.0
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	1624.9	630.8

In [4]: df.tail()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Jun- Sep	Oct- Dec
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013.0	316.6
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119.5	167.1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057.0	177.6
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958.5	290.5
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860.9	555.4

```
In [5]: df.isnull().any()
Out[5]: SUBDIVISION
                       False
        YEAR
                       False
        JAN
                       True
        FEB
                        True
        MAR
                        True
        APR
                        True
        MAY
                        True
        JUN
                        True
        JUL
                        True
        AUG
                        True
        SEP
                        True
        OCT
                        True
        NOV
                        True
        DEC
                        True
        ANNUAL
                        True
        Jan-Feb
                        True
        Mar-May
                        True
        Jun-Sep
                        True
        Oct-Dec
                        True
        dtype: bool
In [6]: df.fillna(method='ffill',inplace=True)
```

```
In [7]: df.isnull().sum()
Out[7]: SUBDIVISION
                       0
        YEAR
                       0
        JAN
                       0
        FEB
                        0
        MAR
                        0
        APR
                        0
        MAY
                       0
        JUN
                       0
        JUL
                        0
        AUG
        SEP
                        0
        OCT
                        0
        NOV
                        0
        DEC
        ANNUAL
        Jan-Feb
        Mar-May
        Jun-Sep
                       0
        Oct-Dec
        dtype: int64
```

Out[8]:

In [8]: df.describe()

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
count	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.000000	4116.00
mean	1958.218659	18.957240	21.823251	27.415379	43.160641	85.788994	230.567979	347.177235	290.239796	197.524781	95.72
std	33.140898	33.576192	35.922602	47.045473	67.816588	123.220150	234.896056	269.321089	188.785639	135.509037	99.68
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.100000	0.00
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.475000	175.900000	155.850000	100.575000	14.60
50%	1958.000000	6.000000	6.700000	7.900000	15.700000	36.700000	138.900000	284.800000	259.400000	174.000000	65.75
75%	1987.000000	22.200000	26.800000	31.400000	50.125000	97.400000	306.150000	418.325000	377.800000	266.225000	148.60
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.000000	948.30
4											

localhost:8888/notebooks/rainfall dataset.ipynb#

```
In [9]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4116 entries, 0 to 4115
         Data columns (total 19 columns):
                            Non-Null Count Dtype
              Column
              SUBDIVISION 4116 non-null
                                            object
              YEAR
                            4116 non-null
                                            int64
          2
              JAN
                            4116 non-null
                                            float64
              FEB
                            4116 non-null
                                            float64
              MAR
                            4116 non-null
                                            float64
                            4116 non-null
              APR
                                            float64
                            4116 non-null
              MAY
                                            float64
              JUN
                            4116 non-null
                                            float64
              JUL
                            4116 non-null
                                            float64
              AUG
                            4116 non-null
                                            float64
          9
          10
              SEP
                            4116 non-null
                                            float64
          11
              OCT
                            4116 non-null
                                            float64
          12 NOV
                            4116 non-null
                                            float64
              DEC
                            4116 non-null
                                            float64
          14 ANNUAL
                            4116 non-null
                                            float64
          15 Jan-Feb
                            4116 non-null
                                            float64
                            4116 non-null
          16 Mar-May
                                            float64
          17 Jun-Sep
                            4116 non-null
                                            float64
          18 Oct-Dec
                            4116 non-null
                                            float64
         dtypes: float64(17), int64(1), object(1)
         memory usage: 611.1+ KB
In [10]: df.columns
Out[10]: Index(['SUBDIVISION', 'YEAR', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL',
                 'AUG', 'SEP', 'OCT', 'NOV', 'DEC', 'ANNUAL', 'Jan-Feb', 'Mar-May',
                'Jun-Sep', 'Oct-Dec'l,
                dtype='object')
In [11]: df.shape
Out[11]: (4116, 19)
```

```
In [12]: df['ANNUAL'].value_counts()
Out[12]: ANNUAL
         790.5
                   4
         770.3
                   4
         1836.2
                   4
         1024.6
                   4
         1926.5
                   3
         443.9
                   1
         689.0
                   1
         605.2
                   1
         509.7
                   1
         1642.9
                   1
         Name: count, Length: 3712, dtype: int64
In [13]: df['Jan-Feb'].value_counts()
Out[13]: Jan-Feb
         0.0
                 238
         0.1
                  80
         0.2
                  52
         0.3
                  38
         0.4
                  32
         23.3
                   1
         95.2
                   1
         76.9
                   1
         66.5
                   1
         69.3
                   1
         Name: count, Length: 1220, dtype: int64
```

```
In [14]: df['Mar-May'].value_counts()
Out[14]: Mar-May
         0.0
                  29
         0.1
                  13
         0.3
                  11
         8.3
                  11
         11.5
                  10
                   . .
         246.3
                   1
         248.1
                   1
         151.3
                   1
         249.5
                   1
         223.9
                   1
         Name: count, Length: 2262, dtype: int64
In [15]: df['Jun-Sep'].value_counts()
Out[15]: Jun-Sep
         434.3
                   4
         334.8
                   4
         573.8
                   4
         613.3
                   4
         1082.3
                   3
         301.6
         380.9
                   1
         409.3
                   1
         229.4
                   1
         958.5
                   1
         Name: count, Length: 3683, dtype: int64
```

```
In [16]: df['Oct-Dec'].value_counts()
Out[16]: Oct-Dec
         0.0
                  16
         0.1
                  15
         0.5
                  13
         0.6
                  12
         0.7
                  11
         191.5
                   1
         124.5
                   1
         139.1
                   1
         41.5
         555.4
         Name: count, Length: 2389, dtype: int64
```

EXPLORATARY DATA ANALYSIS:-

```
In [17]: df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [18]: df.columns
Out[18]: Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
```

......

LINEAR REGRESSION:-

```
In [20]: from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [21]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()
         reg.fit(X train,y train)
         print(reg.intercept )
         coeff =pd.DataFrame(reg.coef ,x.columns,columns=['coefficient'])
         coeff
         9.650666612303553
Out[21]:
               coefficient
          FEB
                0.442278
In [22]: score=reg.score(X_test,y_test)
         print(score)
         0.1793580786264921
In [23]: predictions=reg.predict(X_test)
```

In [24]: plt.scatter(y_test,predictions)

Out[24]: <matplotlib.collections.PathCollection at 0x2096b4ad350>


```
In [25]: df500=df[:][:500]
    sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
    plt.show()
```


LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org

```
In [27]: y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='black')
    plt.plot(X_test,y_pred,color='red')
    plt.show()
```



```
In [28]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(X_train,y_train)
    y_pred=model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 Score:",r2)
```

R2 Score: 0.23317763127688762

RIDGE MODEL:-

```
In [29]: from sklearn.linear_model import Lasso,Ridge
    from sklearn.preprocessing import StandardScaler

In [30]: features= df.columns[0:5]
    target= df.columns[-5]

In [31]:    x=np.array(df['JAN']).reshape(-1,1)
    y=np.array(df['FEB']).reshape(-1,2)

In [35]:    x= df[features].values
    y= df[target].values
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=17)

In [33]:    ridgeReg=Ridge(alpha=10)
    ridgeReg_fit(x_train,y_train)
    train_score_ridge=ridgeReg.score(x_train,y_train)
    test_score_ridge=ridgeReg.score(x_test,y_test)

In []:
```

```
In [34]: print("\n Ridge Model:\n")
    print("the train score for ridge model is{}".format(train_score_ridge))
    print("the test score for ridge model is{}".format(test_score_ridge))

    Ridge Model:
    the train score for ridge model is0.999999999874192
    the test score for ridge model is0.9999999998833

In []: lr=LinearRegression()
```