1.) 1.
$$p \rightarrow q$$
 | given } Prove: $p \rightarrow (q \text{ AND } r)$

2. $p \rightarrow r$ | given } Prove: $p \rightarrow (q \text{ AND } r)$

3. $p \rightarrow (q \text{ AND } r) | \text{ conjunction}$

Prove
$$P \rightarrow Q$$

1. $p \rightarrow (q \vee r)$ | given

2. $p \rightarrow (q \vee r) \wedge (q \vee r)$ | given

3. $p \rightarrow (q \vee r) \wedge (q \vee r)$ | conjunction

4. $p \rightarrow q \vee (r \wedge r) - 1$ | distributive

5. $p \rightarrow q \vee F$ | regation

6. $p \rightarrow q$ | elimination

TIT.

- 1. Salisfiable
- 2. Satisfiable
- 3. Tautology
- 4. Contradiction

IV. p V (q ∧ ~ (r ∧ (s→t))) (p V q) ∧ (p V ~ (r ∧ (s → t))) | distributive 1 specialization (p vq) A (p v ~ r)

This short certificate proves the formula

From TV.