Objectives

Objectives

Y Combinator

Dr. Mattox Beckman

Illinois Institute of Technology Department of Computer Science

- Understand how to allow functions to call themselves even when they don't have names.
- Understand how to develop a general combinator *Y* to implement recursion.

		4 D > 4 D > 4 E > 4 E > 9 Q Q			
Dr. Mattox Beckman (IIT)	Y Combinator	1 / 1	Dr. Mattox Beckman (IIT)	Y Combinator	2 / 1
	To Infinity and Beyond				

Recursion

Step 1

Suppose we want to implement

f n = f (n+1)

The outline of the function would look like

 $\lambda n.(f(inc n))$

But, how does f get to know itself?

Dr. Mattox Beckman (IIT)

To Infinity and Beyond To Infinity and Beyond

Step 2

Expanding a Church Numeral

Maybe we can tell *f* by having it take it's own name as a parameter.

$$\lambda f. \lambda n. (f(inc n))$$

So then we pass a copy of f to itself...

$$(\lambda f.\lambda n.(f(inc n))) (\lambda f.\lambda n.(f(inc n)))$$

But now f must pass itself into itself... so we have

$$(\lambda f.\lambda n.((ff) (inc n))) (\lambda f.\lambda n.((ff) (inc n)))$$

Y Combinator

• Consider how this is similar to the operation of Church numerals.

$$((f_5 f) x)$$

$$\rightarrow (f((f_4 f) x))$$

$$\rightarrow (f(f((f_3 f) x)))$$

$$\rightarrow (f(f(f((f_2 f) x))))$$

$$\rightarrow (f(f(f(f(x)))))$$

So...

$$((f_n f) x) \rightarrow (f((f_{n-1} f) x))$$

What would it look like to have an f_{∞} ?

4	Þ	4 6	5	Þ	∢.	Ē	Þ	∢	Ē	>	₽	990

Dr. Mattox Beckman (IIT)

Y Combinator

Dr. Mattox Beckman (IIT)

The Y Combinator

Coding the Y Combinator

Consider this pattern:

$$((f_{\infty} f) x) \rightarrow (f((f_{\infty} f) x))$$

- What can you tell about f? About f_{∞} ?
- Definition: combinator = higher order function that produces its result only though function application.
- The problem with the above function is that there's no way out. How can we stop the function when we are done?

$$(Yf) \rightarrow (f(Yf))$$

So...

$$Y = \lambda f.(\lambda y.(f(y y)) \lambda y.(f(y y)))$$

The function f must take (Y f) as an argument.

$$(YF) = (\lambda f.(\lambda y.(f(y y)) \lambda y.(f(y y))) F)$$

$$= (\lambda y.(F(y y)) \lambda y.(F(y y)))$$

$$= (F(\lambda y.(F(y y))\lambda y.F(y y)))$$

$$= (F(YF))$$

To Infinity and Beyond Further Reading

Example

```
1 fact n =
_2 if n < 1 then 1
            else n * (fact (n-1))
```

In λ -calculus:

$$\lambda f. \lambda n.$$
 if $n < 1$ then 1 else $n*(f(n-1))$

Then we have:

$$Y fact
ightarrow egin{array}{l} \lambda \textit{n}. \ & ext{if } \textit{n} < 1 \text{ then } 1 \ & ext{else } \textit{n} * ((\textit{Y} fact) (\textit{n} - 1)) \end{array}$$

Further Reading

• You can use λ -calculus to represent itself using these techniques. You already have everything you need to do it. You can see the details in Torben Æ. Mogensen's paper Efficient Self-Interpretations in lambda Calculus, in the Journal of Functional Programming v2 n3.

Dr. Mattox Beckman (IIT)

Y Combinator

Dr. Mattox Beckman (IIT)

Y Combinator