Assignment 1: Simulated Annealing and Sampling github link

Task 1

In this task we needed to produce neural network which will be optimized by simulated annealing approach. To do so we need to specify the simple model (Keras used):

Neural Network Model Summary: Model: "sequential 2"

Layer (type)	Output Shap	e Param #
relu1 (Dense)	(None, 10)	40
relu2 (Dense)	(None, 10)	100
sotfmax (Dense)	(None, 3)	30

Total params: 170 Trainable params: 170 Non-trainable params: 0

None

note: to show activations name field used, for loss categorical cross entropy used

For the annealing these parameters were used:

```
T = 100.0
T_min = 1e-8 Temperature to stop
anneal_rate = 0.1
max_steps = 100 Steps between annealings
```

Results were pretty surprising:

Simulated annealing	Adam (Ir=0.001) on same	SGD (Ir=0.01) on same
	model	model
Time taken: 14.9 sec Test set loss: 0.128090 Test set accuracy: 0.966667	Time taken: 15.0 sec Test set loss: 0.146576 Test set accuracy: 0.966667	Time taken: 13.2 sec Test set loss: 0.146884 Test set accuracy: 0.966667

For conclusion simulated annealing approach (at least on this problem) can compete with optimizer giants with about similar results, thus making it useful for some tasks.

References used:

Task itself

SA implementation in PyTorch

Simple model for Iris

Keras docs

Paper on SA and DL

Task 2

In this task we were required to solve classical Travelling salesman problem using simulated annealing on top30 cities in Russia.

For the annealing these parameters were used:

```
T = 1000.0
T_min = 1e-8 Temperature to stop
max_steps = 100 Steps between annealings
```

Anneal rate 0.1 (slow)	Anneal rate 0.001 (Fast)	Anneal rate 0.01 (Mid)
Initial distance: 66906.0	Initial distance: 55232.6	Initial distance: 62472.3
Time taken: 53.6 sec	Time taken: 17.6 sec	Time taken: 27.54 sec
Best path distance: 25467.1	Best path distance: 23606.6	Best path distance: 27245.8

For the conclusion I found that anneal rate affects the time but not always result.

Most of code runs converged to 20000 - 25000 being the best path. Observations showed that first several temperature reports (every anneal) showed huge jump between distances, slowing down at the last anneals (as, obviously, expected).

References used:

Task itself

Java implementation