Solutions to Modular Arithmetic

MAST

NQU

Contents

1	Unsourced 1.1 Solution	3
2	Unsourced 2.1 Solution	4
3	Unsourced 3.1 Solution	5
4	AMC 12A 2003/18 4.1 Solution	6
5	MAST Diagnostic 2020 5.1 Solution	7
6	1001 Problems in Number Theory 6.1 Solution	8
7	Unsourced 7.1 Solution	9
8		10
9		11 11
10		12 12
11		13
12		14 14
13		15

14	OMO 15-16 Spring/9 14.1 Solution	16 16
15	Unsourced 15.1 Solution	17 17
16	MAST Diagnostic 2021 16.1 Solution	18 18
17	Wolstenholme's Theorem 17.1 Solution	19 19
18	AIME 1989/9 18.1 Solution	20 20
19	USAMO 1979/1 19.1 Solution	21 21
20	AIME II 2017/8 20.1 Solution	22 22
21	IMO 1970/4 21.1 Solution	23 23
22	IMO 2005/4 22.1 Solution	24 24
23	AIME I 2013/15 23.1 Solution	25 25
24	USEMO 2019/4 24.1 Solution	26 26
25	Unsourced 25.1 Solution	27 27
26	Unsourced 26.1 Solution	28 28
27	AMC 10A 2019/18 27.1 Solution	29 29
28	e-dchen Mock MATHCOUNTS 28.1 Solution	30 30
29	AMC 12A 2014/23 29.1 Solution	31 31
	AMC 12B 2016/22 30.1 Solution	32 32

Find the inverse of 2 \pmod{p} for odd prime p in terms of p.

Find the remainder of 97! when divided by 101.

Find the remainder of (p-2)! when divided by p, provided that p is prime.

Q4 AMC 12A 2003/18

Let n be a 5-digit number, and let q and r be the quotient and the remainder, respectively, when n is divided by 100. For how many values of n is q + r divisible by 11?

MAST Diagnostic 2020

How many integer values of $1 \le x \le 100$ makes $x^2 + 8x + 5$ divisible by 10?

36 1001 Problems in Number Theory

For which positive integers n is it true that $1 + 2 + \cdots + n \mid 1 \cdot 2 \cdot \cdots \cdot n$?

What is the residue of $\frac{1}{1\cdot 2} \cdot \frac{1}{2\cdot 3} \cdot \cdots \cdot \frac{1}{11\cdot 12}$ (mod 13)?

38 AMC 10A 2020/18

Let (a, b, c, d) be an ordered quadruple of not necessarily distinct integers, each one of them in the set 0, 1, 2, 3. For how many such quadruples is it true that $a \cdot d - b \cdot c$ is odd? (For example, (0, 3, 1, 1) is one such quadruple, because $0 \cdot 1 - 3 \cdot 1 = -3$ is odd.)

9 AMC 10B 2018/16

Let $a_1, a_2, \ldots, a_{2018}$ be a strictly increasing sequence of positive integers such that

$$a_1 + a_2 + \dots + a_{2018} = 2018^{2018}.$$

What is the remainder when $a_1^3 + a_2^3 + \cdots + a_{2018}^3$ is divided by 6?

Q 10 PUMaC 2018

Find the number of positive integers n < 2018 such that $25^n + 9^n$ is divisible by 13.

Prove $\phi(n)$ is composite for $n \geq 7$.

②12 AMC 10B 2019/14

The base-ten representation for 19! is 121, 6T5, 100, 40M, 832, H00, where T, M, and H denote digits that are not given. What is T + M + H?

3 13 Unsourced

Find the remainder of $5^{31} + 5^{17} + 1$ when divided by 31.

Q 14 OMO 15-16 Spring/9

Let $f(n) = 1 \times 3 \times 5 \times \cdots \times (2n-1)$. Compute the remainder when $f(1) + f(2) + f(3) + \cdots + f(2016)$ is divided by 100.

Prove that the equation $x^2 + y^2 + z^2 = x + y + z + 1$ has no solutions over the rationals.

316 MAST Diagnostic 2021

Find the remainder of $(1^3)(1^3+2^3)(1^3+2^3+3^3)\dots(1^3+2^3+3^3\dots+99^3)$ when divided by 101.

②17 Wolstenholme's Theorem

Prove that for all prime $p \ge 5$, we have $p^2 \mid (p-1)! \begin{pmatrix} \sum_{i=1}^{p-1} \frac{1}{i} \end{pmatrix}$.

318 AIME 1989/9

One of Euler's conjectures was disproved in the 1960s by three American mathematicians when they showed there was a positive integer such that $133^5 + 110^5 + 84^5 + 27^5 = n^5$. Find the value of n.

319 USAMO 1979/1

Determine all non-negative integral solutions (n_1, n_2, \dots, n_k) , if any, apart from permutations, of the Diophantine equation $n_1^4 + n_2^4 + \dots + n_{14}^4 = 1599$.

20 AIME II 2017/8

Find the number of positive integers n less than 2017 such that

$$1 + n + \frac{n^2}{2!} + \frac{n^3}{3!} + \frac{n^4}{4!} + \frac{n^5}{5!} + \frac{n^6}{6!}$$

is an integer.

21 IMO 1970/4

Find all positive integers n such that the set $\{n, n+1, n+2, n+3, n+4, n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.

22 IMO 2005/4

Determine all positive integers relatively prime to all the terms of the infinite sequence

$$a_n = 2^n + 3^n + 6^n - 1, \ n \ge 1.$$

23 AIME I 2013/15

Let N be the number of ordered triples (A, B, C) of integers satisfying the conditions

- $0 \le A < B < C \le 99$,
- there exist integers a, b, and c, and prime p where $0 \le b < a < c < p$,
- \blacksquare p divides A a, B b, and C c, and
- \blacksquare each ordered triple (A, B, C) and each ordered triple (b, a, c) form arithmetic sequences.

Find *N*.

24 USEMO 2019/4

Prove that for any prime p, there exists a positive integer n such that

$$1^n + 2^{n-1} + 3^{n-2} + \dots + n^1 \equiv 2020 \pmod{p}.$$

The expansion of $\frac{1}{7}$ is $0.\overline{142857}$, which is a repeating decimal with a 6 digit long sequence. How many digits long is the expansion of $\frac{1}{13}$?

We define the cycle of a repeating fraction $\frac{m}{n}$ as the minimum number i such that $\frac{m}{n} = 0.\overline{a_1a_2a_3...a_i}$. Find the cycle of $\frac{1}{23}$.

②27 AMC 10A 2019/18

For some positive integer k, the repeating base-k representation of the (base-ten) fraction $\frac{7}{51}$ is $0.\overline{23}_k = 0.232323..._k$. What is k?

28 e-dchen Mock MATHCOUNTS

What is the sum of all odd n such that $\frac{1}{n}$ expressed in base 8 is a repeating decimal with period 4?

29 AMC 12A 2014/23

The fraction

$$\frac{1}{99^2} = 0.\overline{b_{n-1}b_{n-2}\dots b_2b_1b_0},$$

where n is the length of the period of the repeating decimal expansion. What is the sum $b_0 + b_1 + \cdots + b_{n-1}$?

30 AMC 12B 2016/22

For a certain positive integer n less than 1000, the decimal equivalent of $\frac{1}{n}$ is $0.\overline{abcdef}$, a repeating decimal of period 6, and the decimal equivalent of $\frac{1}{n+6}$ is $0.\overline{wxyz}$, a repeating decimal of period 4. Find n.