第三节 计数器

计数的实质:利用多个稳态来实现计数.

稳态数— 称为计数器的模/进位基数/计数容量 分类:

- 1)依据CP脉冲引入方式可分为同步、异步计数器.
- 2)依据计数的模值:二进制和非二进制计数.
- 3)依据计数的操作方式:加法、减法、可逆.
- 1.同步二进制计数器.

1、同步二进制计数器

同步二进制计数器

集成同步计数器(74LS161、74LS160)

2、功能表

异步清**0** 同步置数

计数工作状态下,当 $Q_3Q_2Q_1Q_0=11111$ 时C=1

	— 0 ₃											
$\overline{R}_{\!\scriptscriptstyle D}$	\overline{LD}	ET	EP	CP	D_0	D_1	D_2	D_3	Q_0	Q_1	Q_2	Q_3
0	×	×	×	×	×	×	×	×	0	0	0	0
1	0	×	×	↑	d_0	d_1	d_2	d_3	d_0	d_1	d_2	d_3
1	1	1	1	↑	×	×	×	×	计数			
1	1	0	×	×	×	×	×	×	1	呆持,	C=0)
1	1	1	0	×	×	×	×	×	C	保 = Q ₀C	持 Q ₁ Q ₂ (\mathcal{J}_3

3、74161逻辑框图

用74161、74160组成任意模值计数器:

一、用74LS161组成M<16进制的计数器 (以M=12为例)

基本方法有两种:清0法、置数法。

1、清0法 几进制几清0 $(\overline{R}_D = 0)$

1. Convert M to binary number; 2. Pick out outputs whose value are 1s, and connect them to the clear terminal through a NAND gate.

克服清0不可靠的方法:

2、置数法

a、置0法(置最小数法) 几进制几 -1置0 ($\overline{LD} = 0$)

- 1.Set data inputs to ground;
- 2. Convert M-1 to binary number;
- 3. Pick out outputs whose value are 1s, and connect to the load terminal through a NAND gate.

2、置数法

b、置1法(置最大数法) 几进制几 -2置1 ($\overline{LD} = 0$)

- 1.Set data inputs to HIGH;
- 2. Convert M-2 to binary number;
- 3. Pick out outputs whose value are 1s and at least one 0s, connect them to the load terminal through a NAND gate.

2、置数法

- c、置任意数法 (LD=0)
- ◆ 方法一: M(计数器模值)=2⁴-N(外部置数)

 $Q_3Q_2Q_1Q_0$

置任意数法

◆ 方法二: M=24-N+1

◆ 方法三: N=(2⁴-M)/2+1

置任意数法

◆ 方法四: EP Do D1 D2 D3 C 74LS161 Q_0 Q_1 Q_2 Q_3 $Q_3Q_2Q_1Q_0$ 0111 0000 0100 LD=0 LD=0 1100 1000 1110

片间连接方法:串行进位方式、并行进位方式

1、大模分解法: $M = N_1 \times N_2$ 其中 $N_1 \leq 16$, $N_2 \leq 16$

片 I: 计数状态顺序为 $9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15$ † C=1 $\overline{LD} = 0$

片 Π : 计数状态顺序为 $7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15$ \uparrow C=1 $\overline{LD} = 0$

片
$$\Pi$$
: 计数状态顺序为 $7 \rightarrow 8 \rightarrow 9$ $C=1$

2、整体清零法:几进制几清零,几-1进位

 $\bar{R}_D = 0$ 的条件 计数状态为 01011100时, $(01011100)_2 = (92)_{10}$

3、整体置数法:

- ① $\overline{LD} = 0$ 的条件: 计数状态为 0101 1100时, $(010111100)_2 = (92)_{10}$
- (2) 计数的起始状态: 0000 0001

2、异步二进制计数器

2、异步二进制计数器

集成异步二一五一十进制计数器7490

两个数学模型:

①
$$10 \div 2 \div 5 = 1$$

先2后5, Q₃Q₂Q₁Q₀, 输出编码为BCD **8421**码。

8421BCD计数

Ī	$Q_{\scriptscriptstyle \mathcal{J}}$	Q_2	Q_{1}	Q_{o}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
	0	0	0	0	0	0	0	1
	0	0	0	1	0	0	1	0
	0	0	1	0	0	0	1	1
	0	0	1	1	0	1	0	0
	0	-	0	0	0	1	0	1
	0	1	0	1	0	1	1	0
	0	1	1	0	0	1	1	1
	0	1	1	1	1	0	0	0
	1	0	0	0	1	0	0	1
	1	0	0	1	0	0	0	0

集成异步二一五一十进制计数器

$$2 10 \div 5 \div 2 = 1$$

先5后2, Q₀ Q₃ Q₂ Q₁, 输出编码为BCD 5421码。

5421BCD计数状态转换表

Q_0	Q_3	Q_2	Q_1	Q_0^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	1	0	0
1	1	0	0	0	0	0	0

分析如图所示异步时序逻辑电路的功能

$$\begin{cases}
J_3 = Q_1Q_2 \\
K_3 = 1
\end{cases}$$

$$CP_3 : CP : 7$$

2. 列电路状态转换表

$Q_3Q_2Q_1$	$J_3 K_3 CP$	$J_2 K_2 Q_1$	$J_1 K_1 CP$	$ Q_3^{n+1}Q_2^r $	$^{n+1}Q_1^{n+1}$
0 0 0	0 1	11	1 1 🗼	0 0	1
0 0 1	0 1	11	1 1 🗼	0 1	0 $1 = \overline{\Omega}$
0 1 0	0 1	1 1	1 1 🗼	0 1	1 1 -0 0
0 1 1	1 1	11 🗼	1 1 🗼	1 0	$J_3 = Q_1 Q_2$
1 0 0	0 1	11	0 1 🗼	0 0	0
1 0 1	0 1	11	0 1	0 1	0
1 1 0	0 1	11	0 1	0 1	0
1 1 1	1 1	11	0 1	0 0	0

3. 画状态转换图

集成异步二一五一十进制计数器74LS290

74LS290的功能表

R ₀₁	R ₀₂	S ₉₁	S ₉₂	CP ₀	CP ₁	Q_3	Q_2	Q_1	Q_0
1	1	0	X	Х	Х	0	0	0	0
1	1	Х	0	Х	Х	0	0	0	0
0	X	1	1	X	Х	1	0	0	1
Х	0	1	1	X	Х	1	0	0	1
$R_{01}R_{02} = 0$		$S_{91}S_{92} = 0$		CP ↓	0	二进制计数			
				0	СР↓	五进制计数			
				СР	Q_0	8421十进制计数			
				Q_3	СР↓	5421十进制计数			

清0

置9

计数

74LS290芯片

◆ 74LS290芯片管角图

◆ 74LS290逻辑框图

74LS290的应用

- 1、组成十进制计数器 几进制几-1进位
- a、BCD8421码二-十进制计数器
- b、BCD5421码二一十进制计数器

先2后5, 输出 $Q_3Q_2Q_1Q_0$

先5后2,输出 $Q_0Q_3Q_2Q_1$

10进制9进位

2、组成M<10的任意进制计数器

基本方法有两种:清0法、置9法。(以M=6为例)

a、清0法 几进制几清**0** $(R_{01}R_{02}=1)$

➤ 先将7490接成BCD8421十进制计数器,再按几进制几清零连接。

2、组成M<10的任意进制计数器

➤ 先将7490接成BCD5421十进制计数器,再按几进制 几清零连接。

克服清0不可靠的方法:

2、组成M<10的任意进制计数器

b、 置9法 几进制几-1置9 $(S_{91}S_{92}=1)$

▶ 先将7490接成BCD8421 (或BCD5421) 十进制计数器, 再按几进制几-1置9连接。

3、组成M>10的任意进制计数器

a、大模分解法: $M = N_1 \times N_2$ 其中 $N_1 \leq 10$, $N_2 \leq 10$

例:利用两片74LS290组成60进制计数器

3、组成M>10的任意进制计数器

b、清零法: 先组成 $M = 10 \times 10 = 100$ 进制的计数器,

再按几进制几清零连接

例:利用两片74LS290组成24进制计数器

例

改变 $B_3B_2B_1B_0$ 设置的数值,可实现M<10的任意进制计数器 —— 可变模计数器

