CHERRY: CHECKPOINTED EARLY RESOURCE RECYCLING

José F. Martínez¹, Jose Renau²

Michael C. Huang³, Milos Prvulovic², and Josep Torrellas²

MOTIVATION

- Problem: Limited processor resources
- Goal: More efficient use by aggressive recycling
- Opportunity: Resources reserved until retirement

Solution: Decouple recycling from retirement

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors

LDQ Entry

STQ Entry

Register

PROPOSAL: EARLY RECYCLING

- Decouple resource recycling from instruction retirement
 - Recycle when no longer needed
- Targeted resources:
 - Load queue entries
 - Store queue entries
 - Physical registers
- Potential when targeted resources are unlimited:
 - 1.12 speedup in SPECint2000
 - 1.32 speedup in SPECfp2000

CONSTRAINT: PRECISE STATE

- Events that require precise state:
 - Branch mispredictions
 - Memory replay traps
 - Exceptions
 - Interrupts
- Early recycling makes this difficult
 - E.g. recycled registers no longer available
 - E.g. memory may be overwriten prematurely

PROPOSAL: POINT OF NO RETURN

- Classify events according to frequency:
 - Frequent: branch mispredictions, memory replays
 - Infrequent: exceptions
- Split ROB into two logical sets of instructions
 - Irreversible set
 - Subject to infrequent events only
 - Checkpoint recovery
 - Reversible set:
 - Subject to frequent and infrequent events
 - Conventional ROB recovery mechanisms
 - Boundary: Point of No Return (PNR)

CONVENTIONAL VS CHERRY ROB

CONVENTIONAL VS CHERRY ROB

CONVENTIONAL VS CHERRY ROB

OUTLINE

- Motivation
- Overview
- Implementation
 - Checkpointing
 - Exception and interrupt handling
 - Early resource recycling
- Results

Timeline

Conventional ROB

ENTERING CHERRY MODE

- Backup architectural registers
 - Can be done in a handful of cycles
- Allow PNR to race ahead of ROB head
- Updates to cache hierarchy set Volatile bit

PERIODIC CHECKPOINTING

- Done regularly to bound re-execution overhead
- Stop early recycling to create checkpoint (collapse)
 - Freeze PNR (stop recycling)
- Once ROB head catches up with PNR:
 - Clear Volatile bits from cache
 - Backup architectural registers

PRECISE EXCEPTION HANDLING

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

PRECISE EXCEPTION HANDLING

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

- Exception in Irreversible set:
 - Roll back to checkpoint
 - Temporarily disable recycling (for some time)
 - Re-execute in conventional OOO mode (w/o Cherry)
 - Allow exception to re-occur

- Exception in Reversible set:
 - Disable resource recycling (freeze PNR)
 - Process exception
 - Take new checkpoint; re-enter Cherry mode

- Exception in Reversible set:
 - Disable resource recycling (freeze PNR)
 - Process exception
 - Take new checkpoint; re-enter Cherry mode

- Exception in Reversible set:
 - Disable resource recycling (freeze PNR)
 - Process exception
 - Take new checkpoint; re-enter Cherry mode

- Exception in Reversible set:
 - Disable resource recycling (freeze PNR)
 - Process exception
 - Take new checkpoint; re-enter Cherry mode

- Interrupts are asynchronous: delay handling
 - Disable resource recycling (freeze PNR)
 - Process interrupt
 - Take new checkpoint and re-enter Cherry mode

- Interrupts are asynchronous: delay handling
 - Disable resource recycling (freeze PNR)
 - Process interrupt
 - Take new checkpoint and re-enter Cherry mode

- Interrupts are asynchronous: delay handling
 - Disable resource recycling (freeze PNR)
 - Process interrupt
 - Take new checkpoint and re-enter Cherry mode

- Interrupts are asynchronous: delay handling
 - Disable resource recycling (freeze PNR)
 - Process interrupt
 - Take new checkpoint and re-enter Cherry mode

- Interrupts are asynchronous: delay handling
 - Disable resource recycling (freeze PNR)
 - Process interrupt
 - Take new checkpoint and re-enter Cherry mode

OUTLINE

- Motivation
- Overview
- Implementation
 - Checkpointing
 - Exception and interrupt handling
 - Early resource recycling
- Results

DEFINING THE PNRs

- Each resource defines its own PNR
- Based on three ROB pointers:

 U_b : oldest unresolved branch

 U_s : oldest store with unresolved address

 U_l : oldest load with unresolved address

EARLY LDQ ENTRY RECYCLING

EARLY LDQ ENTRY RECYCLING

EARLY LDQ ENTRY RECYCLING

- Constraint: Must detect memory replay traps
 - older (U_s) : ST-LD replay trap
 - Not affected by branches

$$PNR_{LDQ} = U_s$$

EARLY REGISTER RECYCLING

- Constraint: Must not contain potentially useful data
 - older (U_s) : Free of ST-LD replay trap
 - older (U_b) : Free of branch misprediction

$$\mathsf{PNR}_{\mathsf{Reg}} = \mathsf{oldest}(U_S, U_B)$$

Of course register must be dead (paper)

EARLY RECYCLING SUMMARY

Resource	PNR Value
LDQ entries	U_S
STQ entries	$oldest(U_L, U_S, U_B)$
Registers	$oldest(U_S, U_B)$

EVALUATION

- Execution-driven simulation
- SPEC 2000 applications
- SGI MIPSPro compiler
- Compare Cherry against:
 - Processor with unlimited resources
 - Three aggressive base processor designs (paper)

PROCESSOR MODEL

Frequency: 3.2GHz Cherry checkpoint frequency: $5\mu s$

Fetch/issue/commit width: 8/8/12 Up to 1 taken branch/cycle

I. window/ROB size: 128/384 RAS: 32 entries

Int/FP registers: 192/128 BTB: 4K entries, 4-way assoc.

Ld/St units: 2/2 Branch predictor:

Int/FP/branch units: 7/5/3 Hybrid with speculative update

Ld/St queue entries: 32/32 Bimodal size: 8K entries

MSHRs: 24 Two-level size: 64K entries

Cache	L1	L2	Bus & Memory
Size:	32KB	512KB	FSB frequency: 400MHz
RT:	2 cycles	10 cycles	FSB width: 128bit
Assoc:	4-way	8-way	Memory: 4-channel Rambus
Line size:	64B	128B	DRAM bandwidth: 6.4GB/s
Ports:	4	1	Memory RT: 120ns

OVERALL RESULTS

OVERALL RESULTS

OVERALL RESULTS

SUMMARY

- Decoupling resource recycling from retirement
 - Split ROB into two logical sets
 - Use of ROB+checkpointing simultaneously
- Early recycling mechanism: LDQ, STQ, Registers
- Integration with speculative multithreading (paper)
- Speedup over baseline
 - 1.06 for SPECint2000
 - 1.26 for SPECfp2000

QUESTIONS?

José F. Martínez¹
Jose Renau²
Michael C. Huang³

Milos Prvulovic²

Josep Torrellas²

2

3

BACKUP SLIDES

RECYCLING PNRs

Resource	PNR Value
LDQ entries (uniprocessor)	U_S
LDQ entries (multiprocessor)	$oldest(U_L,U_S)$
STQ entries	$oxed{oldest(U_L,U_S,U_B)}$
Registers (uniprocessor)	$oldest(U_S, U_B)$
Registers (multiprocessor)	$oldest(U_L,U_S,U_B)$

EARLY STQ ENTRY RECYCLING

- Constraint: Must not overwrite potentially useful data
 - older (U_l) : Unresolved LD may need old data
 - older (U_s) : No older LD is replayable
 - older (U_b) : Free of branch misprediction

$$\mathsf{PNR}_{\mathsf{STQ}} = \mathsf{oldest}(U_L, U_S, U_B)$$

CHECKPOINT FREQUENCY

$$T_o = c_k + p_e c_e \tag{1}$$

$$p_e = \frac{T_c}{T_e} \tag{2}$$

$$c_e = s \frac{T_c}{2} + (s - 1) (3)$$

$$\frac{T_o}{T_c} = \frac{c_k}{T_c} + \left(s - \frac{1}{2}\right) \frac{T_c}{T_e} \tag{4}$$

$$T_c = \sqrt{\frac{c_k T_e}{s - \frac{1}{2}}} \tag{5}$$

CHECKPOINT SELECTION

SPECINT2000 PARAMETERS

		Used	Irreversible Set			Collapse
	Apps	ROB	(% of Used ROB)			Step
		(%)	Reg	LQ	SQ	(Cycles)
SPECint	bzip2	29.9	24.3	55.8	19.5	292.3
	crafty	28.8	33.4	97.6	28.6	41.9
	gcc	19.1	19.0	82.3	17.8	66.9
	gzip	28.5	65.5	81.7	8.5	47.1
	mcf	30.1	14.6	37.7	13.8	695.6
	parser	30.7	26.1	80.7	21.8	109.2
	perlbmk	12.2	24.6	89.9	20.5	23.3
	vortex	39.3	26.3	87.1	24.9	64.4
	vpr	32.9	25.2	83.6	21.5	165.1
	Average	27.9	28.7	77.4	19.7	167.3

SPECFP2000 PARAMETERS

Apps		Used	Irreversible Set			Collapse
		ROB	(% of Used ROB)			Step
		(%)	Reg	LQ	SQ	(Cycles)
SPECfp	applu	62.2	61.6	62.4	60.7	411.5
	apsi	76.8	82.3	83.1	81.6	921.1
	art	88.0	54.3	62.6	29.2	1247.3
	equake	41.6	61.6	69.1	57.3	135.2
	mesa	29.8	35.1	44.6	34.6	33.7
	mgrid	65.1	91.5	93.5	91.3	335.9
	swim	59.4	64.8	65.4	64.7	949.1
	wupwise	71.9	90.3	71.2	87.9	190.7
	Average	61.9	67.7	78.3	63.4	528.1

REGISTER ACCESS TIME

OTHER CONSIDERATIONS (PAPER)

- Exception on instruction older than youngest PNR:
 - Roll back to checkpoint
- Each PNR recycles at its own pace
- Not all PNRs critical, e.g. PNR_{LDQ}
- Early register recycling:
 - Must count in-flight consumers (Moudgill et al 1993)
- Optimal interval between checkpoints

CHERRY PARAMETERS

- Cherry checkpoint frequency: $5\mu s$
- Checkpoint overhead: 60 cycles (18.75ns)
- Avg time between exceptions: $800\mu s$ (not modeled)

Cherry: Checkpointed Early Resource Recycling in Out-of-order Microprocessors

Ingoring U_b

PERFECT BRANCH PREDICTION

INTERRUPT COLLAPSING

INTERRUPT COLLAPSING

Interrupt

INTERRUPT COLLAPSING

Interrupt

EQUIVALENT SYSTEM

Resource	Baseline	SPECint2000	SPECfp2000
LDQ entries	32	80	128
STQ entries	32	64	112
Int Registers	192	240	240
FP Registers	128	128	192