Numer indeksu:	
----------------	--

Logika dla informatyków Egzamin poprawkowy (część licencjacka) 18 lutego 2012

Zadanie 1 (1 punkt). Jeśli formuła $(p \Rightarrow q) \Rightarrow ((r \Rightarrow q) = w$ prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwny kontrprzykład.	
Zadanie 2 (1 punkt). Jeśli formuła $(p \Rightarrow q) \land (q \Rightarrow r) \land (r \Rightarrow r)$ kąt poniżej wpisz słowo "SPRZECZNA". W przeciwnym przypprzykład.	
Zadanie 3 (1 punkt). Jeśli istnieje formuła zbudowana ze zmi \Rightarrow i \neg oraz nawiasów równoważna formule $p \lor q$, to w prostok formułę. W przeciwnym przypadku wpisz słowo "NIE".	
Zadanie 4 (1 punkt). W prostokąty obok zdań prawdziwych kąty obok zdań fałszywych wpisz słowo "NIE".	wpisz słowo "TAK". W prosto-
1. Formuła $p \vee q$ jest w koniunkcyjnej postaci normalnej.	
2. Formuła $p \vee q$ jest w dysjunkcyjnej postaci normalnej.	
3. Formuła $p \wedge q$ jest w koniunkcyjnej postaci normalnej.	
4. Formuła $p \wedge q$ jest w dysjunkcyjnej postaci normalnej.	

Zadanie 5 (1 punkt). Niech ϕ i ψ oznaczają formuły rachunku kwantyfikatorów, być może zawierające wolne wystąpienia zmiennej x. Jeśli formuła

$$(\forall x \, \phi) \Rightarrow ((\exists x \, \psi) \Rightarrow \exists x \, (\phi \Rightarrow \psi))$$

jest prawem rachunku kwantyfikatorów, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.
Zadanie 6 (1 punkt). W prostokąt poniżej wpisz formułę równoważną formule
$\neg(\exists x(p(x)\vee q(x))\Rightarrow r(x)),$
w której argumentem spójnika negacji może być jedynie formuła atomowa $p(x),q(x)$ lub $r(x).$
Zadanie 7 (1 punkt). Jeśli dla wszystkich formuł ϕ i ψ logiki pierwszego rzędu formuła
$(\forall x (\phi \lor \psi)) \Leftrightarrow (\forall x \phi) \lor (\forall x \psi)$
jest tautologią, to w prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 8 (1 punkt). Jeśli równość $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$ zachodzi dla dowolnych zbiorów A, B i C , to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniżej wpisz odpowiedni kontrprzykład.
Zadanie 9 (1 punkt). Jeśli równość $(A \setminus B) \setminus (B \setminus A) = A$ zachodzi dla dowolnych zbiorów A i B , to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie w prostokąt poniże wpisz odpowiedni kontrprzykład.
Zadanie 10 (1 punkt). Jeśli istnieją takie zbiory A, B i C , że $A \setminus B = C$ oraz $A \neq (B \cup C)$ to w prostokąt poniżej wpisz przykład takich trzech zbiorów. W przeciwnym wypadku wpisz słowo "NIE".

	Nun	ner indeksu:				
Zadanie 11 (1 punkt). Niech $R = \{\langle n, n+3 \rangle \mid n \in \mathbb{N}\} \cup \{\langle n, n \rangle \mid n \in \mathbb{N}\}$. W prostokąt poniżej wpisz taką formułę ϕ , że $\{\langle n, m \rangle \in \mathbb{N} \times \mathbb{N} \mid \phi\} = RR$.						
Zadanie 12 (2 punkty). W relacji binarnych określonych relacji słowo "TAK" obok tych relacji które nie są relacjami porządku relacji, które są relacjami równo równoważności. W ostatniej kolkolumny.	na zbiorze liczb na , które są relacjam ı. W kolumnie "rów oważności i słowo "l	aturalnych. W kolu i porządku i słowo vnoważność?" wpisz NIE" obok tych rela	mnie "porządek?" wpisz "NIE" obok tych relacji, słowo "TAK" obok tych cji, które nie są relacjami			
relacja R	porządek?	równoważność?	relacja RR			
$R = \{ \langle x, x \rangle \mid x \in \mathbb{N} \}$						
$R = \{ \langle x, y \rangle \in \mathbb{N} \times \mathbb{N} \mid x \neq y \}$						
Zadanie 13 (1 punkt). Jeśli funkcji $f: A \to B$ i dowolnych W przeciwnym razie w prostoka	zbiorów $Y, Y' \subseteq B$,	to w prostokąt por	niżej wpisz słowo "TAK".			
Zadanie 14 (1 punkt). Rozw	vażmy funkcję $f:\mathbb{N}$	$\mathbb{N} \to \mathbb{N}$ zdefiniowaną	wzorem			
f($n) = 5 \cdot (q(n) +$	1) - (r(n) + 1),				
gdzie $q(n)$ jest częścią całkowi tej liczby przez 5. Jeśli istnieje wyrażenie definiujące tę funkcj "NIE".	e funkcja odwrotna	do funkcji f , to w	prostokąt poniżej wpisz			

Zadanie 15 (1 punkt). Rozważmy funk

$$\begin{split} f &: & (A^B \times A^C) \to A^{B \times C}, \\ g &: & C \to A^B, \\ h &: & B \to A^C \end{split}$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne i słowo "NIE" w prostokąty obok tych spośród podanych niżej wyrażeń, które są niepoprawne.

1.	(f(g,h))(b,c)	
2.	(f(g(a),h(a)))(b,c)	
3.	(f(g(c),h(b)))(b,c)	
4.	f(g(b), h(c))	

Zadanie 16 (1 punkt). W prostokąt poniżej wpisz definicję dowolnej funkcji różnowartościowej $f: \mathbb{N} \times \mathbb{N} \to \mathcal{P}(\mathbb{N})$ lub słowo "NIE", jeśli taka funkcja nie istnieje.

Zadanie 17 (1 punkt). W prostokąt poniżej wpisz definicję jakiejkolwiek funkcji

$$f: (\mathbb{N} \times \mathbb{N})^{\mathbb{N}} \to \mathbb{N}^{(\mathbb{N} \times \mathbb{N})}.$$

Zadanie 18 (1 punkt). Jeśli istnieje taki zbiór $X \neq \mathbb{Q}$, że $\mathbb{Q} \subseteq X$ oraz zbiory X i \mathbb{N} są równoliczne, to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku w prostokąt poniżej wpisz słowo "NIE".

Zadanie 19 (1 punkt). Jeśli istnieje relacja liniowego porządku na zbiorze $\mathbb{N} \times \{0,1\}$, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku w prostokąt poniżej wpisz słowo "NIE".