Part 2 - Write documentation on the plan & design you will be following to build this automated machine learning system.

1. Introduction.

In designing an automated machine learning (ML) system for production, the goal is to create a scalable, maintainable, and efficient ML pipeline. My system will enable automated data preprocessing, model training, evaluation and deployment ensuring the model remains effective and adapts to new data over time.

2. System Overview.

The system will be structured as an end-to-end ML pipeline with the following stages.

A. Data Preprocessing.

- 1. **Combine Datasets** Use the join method to merge datasets into a single dataset, creating a comprehensive deployment dataset.
- 2. **Select Target and Input Features** Choose the target column and relevant input features from the combined dataset.
- 3. **Encode Categorical Columns** Apply label encoding to convert categorical variables into numerical form.
- 4. **Split Data** Divide the dataset into training (80%) and testing (20%) sets.
- 5. **Impute Missing Values** Fill missing values using mean values.

B. Feature Engineering.

- 1. **Calculate Mutual Information** Measure the mutual information between the target variable and each feature.
- 2. **Set Feature Selection Threshold** Choose a threshold value (0.05) to select the top features based on their mutual information scores.
- 3. **Save Preprocessing Artifacts** Store encoder values imputed mean values, and the selected top features for deployment.

C. Model Selection and Training.

- 1. **Choose LightGBM Model** Use LGBMClassifier and configure model parameters.
- 2. **Hyperparameter Tuning** Perform hyperparameter tuning using RandomizedSearchCV.
- 3. **Cross-Validation** Validate model performance with cross-validation.
- 4. **Get Best Model** Retrieve the model with optimal parameters.

D. Model Evaluation.

- 1. **Evaluate with AUC** Assess model performance on the test set using the Area Under the Curve (AUC) metric.
- 2. **Plot Training and Validation Performance** Visualize the model's performance over training and validation phases.
- 3. Plot Confusion Matrix Create a confusion matrix to analyze classification outcomes.
- 4. **Generate Classification Report** Obtain a detailed classification report.

E. Save the Model for Deployment.

1. **Save the trained model** - For future deployment and use.

F. Model Deployment.

- 1. **Load Saved Model** Load the trained LightGBM model.
- 2. **Load Deployment Dataset** Load the dataset prepared for deployment testing.
- 3. **Load Encoders and Imputer Values** Retrieve saved encoder mappings and imputed mean values.
- 4. **Load Selected Features** Load the top features identified during feature selection.
- 5. **Apply Preprocessing** Use saved preprocessing values to prepare the new dataset.
- 6. **Predict Model Accuracy** Evaluate the model's accuracy on the new dataset.