(NATURAL SCIENCE)

Vol. 63 No. 10 JUCHE106(2017).

인체운동모의에서 운동토막들의 상대자세자리표결정방법

김수경, 김영성

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《현시대는 과학의 시대인것만큼 체육도 과학화하여야 체육기술을 발전시킬수 있습니다.》 (《김정일선집》 중보관 제12권 490폐지)

운동형태를 알고 그 수행에 필요한 운동토막들의 상대자세자리표들을 결정하는 문제는 운동토막들의 3차원절대자리표를 알고 그것의 관절각자리표들을 구하는 자세해석의 거 꿀문제로서 다체계동력학리론에 기초한 인체운동모의에서 비교적 복잡한 문제의 하나로 되고있다.

론문에서는 구면관절에서 운동토막들의 상대자세자리표들을 결정하기 위한 거꿀문제에 대하여 론의하고 조마운동에 대한 수값계산실례를 주었다.

1. 까르단각자리표의 거꿀추정을 위한 리론적기초

인체운동모의에서 관절각들의 시간에 따르는 변화특성은 운동모의의 구동조건으로서 리용된다. 이 경우 주어진 운동형태를 재생하기 위해서는 관절들에서 운동토막들의 상대자세자리표들을 결정해주어야 한다.

인체운동에서 관절들의 작용은 회전관절(팔굽관절과 무릎관절)과 구면관절(어깨관절과 골반관절, 손목 및 발목관절 등)들로써 모형화할수 있다.

우리는 구면관절에서 운동토막들의 상대자세를 나타내는 까르단각자리표 q_1, q_2, q_3 을 구하는 문제에 대하여 보기로 한다.

어깨관절에 원점이 놓이면서 웃몸통에 결합되여있는 자리표계를 $e^s = \{e_1^s, e_2^s, e_3^s\}$, 어깨관절에 원점이 놓이면서 왼쪽상박에 결합되여있는 자리표계를 $e^{s'} = \{e_1^{s'}, e_2^{s'}, e_3^{s'}\}$ 라고 하자.(그림 1)

운동의 초기순간에 어깨관절에서 웃몸통에 결합되여있는 자리표계 e^s 와 왼쪽상박에 결합되여 있는 가동계 $e^{s'}$ 는 일치하며 절대기준계에 대한 방향코시누스행렬은

$$\underline{A}_0^{rs} = \underline{A}_0^{rs'} = \begin{bmatrix} e_{11}^s & e_{21}^s & e_{31}^s \\ e_{12}^s & e_{22}^s & e_{32}^s \\ e_{13}^s & e_{23}^s & e_{33}^s \end{bmatrix}$$

그림 1. 어깨관절에서의 자세자리표결정

과 같다. 여기서 e_{ij}^s (i, j=1, 2, 3)는 벡토르 e_i^s 의 절대기준계에 대한 j째 자리표성분이다.

다음 운동과정에 상박에 고정되여 함께 운동하는 상박결합자리표계 e^1 을 정하자.

그림 1에서 점 P는 어깨관절점이고 점 A_1 , B_1 은 왼쪽상박의 점들이고 A_2 , B_2 는 웃 몸통의 점들이다. 이 점들로부터 상박의 벡토르 a_1 , b_1 과 그것들에 수직인 벡토르 $c_1=a_1\times b_1$ 을 구하고 이 벡토르들을 표준화하여 벡토르 e^{a_1} , e^{b_1} , e^{c_1} 을 얻는다.

 e^{a_1} 을 \underline{e}^1 의 X축, e^{c_1} 을 Y축, 오른손계가 되도록 $e^{d_1}=e^{a_1}\times e^{c_1}$ 을 Z축으로 정하면 절대기준계에 대한 상박결합자리표계의 방향코시누스행렬은 다음과 같다.

$$\underline{\underline{A}}^{r1} = \begin{bmatrix} e_1^{a_1} & e_1^{c_1} & e_1^{d_1} \\ e_2^{a_1} & e_2^{c_1} & e_2^{d_1} \\ e_3^{a_1} & e_3^{c_1} & e_3^{d_1} \end{bmatrix}$$
(1)

식 (1)의 매 원소들은 실제운동의 동화상자료에서 그림 1에서와 같은 점 P, $A_{\rm l}$, $B_{\rm l}$, $A_{\rm 2}$, $B_{\rm 2}$ 의 자리표들을 측정하여 계산한다.

마찬가지의 방법으로 웃몸통에 결합된 자리표계 e^2 를 정하면 절대기준계에 대한 방향

코시누스행렬은 $\underline{A}^{r2} = \begin{bmatrix} e_1^{a_2} & e_1^{c_2} & e_1^{d_2} \\ e_2^{a_2} & e_2^{c_2} & e_2^{d_2} \\ e_3^{a_2} & e_3^{c_2} & e_3^{d_2} \end{bmatrix}$ 로 되는데 역시 실제운동의 촬영자료에 기초하여 매 원

소의 값들을 계산한다.

운동과정에 불변인 상박결합자리표계 \underline{e}^1 에 대한 어깨관절에서의 가동계 $\underline{e}^{s'}$ 의 방향코시누스행렬 $\underline{A}^{1s'}$ 와 웃몸통결합자리표계 \underline{e}^2 에 대한 어깨관절에서의 자리표계 \underline{e}^s 의 방향코시누스행렬 \underline{A}^{2s} 는 $\underline{A}^{1s'}=(\underline{A}_0^{r1})^T\underline{A}_0^{rs'}$, $\underline{A}^{2s}=(\underline{A}_0^{r2})^T\underline{A}_0^{rs}$ 와 같다. 여기서 \underline{A}_0^{r1} , \underline{A}_0^{r2} 는 운동의 첫시작순간에 상박결합자리표계와 웃몸통결합자리표계의 절대기준계에 관한 방향코시누스행렬들이다.

이상의 결과들을 종합하면 운동과정에 어깨관절에서 자리표계 e^s 에 대한 가동계 $e^{s'}$ 의 방향코시누스행렬 $A^{ss'}$ 는 다음과 같이 구해진다.

$$\underline{A}^{ss'} = (\underline{A}^{r2} \underline{A}^{2s})^{\mathrm{T}} \underline{A}^{r1} \underline{A}^{1s'}$$
 (2)

측정에 의하여 식 (2)의 오른변에 있는 량들을 모두 구할수 있으므로 결국 $\underline{A}^{ss'}$ 를 계 산할수 있게 된다.

한편 선행연구[1]에 의하면 구면관절의 경우 자리표변환행렬은

$$\underline{A} = \begin{bmatrix} c_2c_3 & -c_2s_3 & s_2 \\ s_1s_2c_3 + c_1s_3 & -s_1s_2s_3 + c_1c_3 & -s_1c_2 \\ -c_1s_2c_3 + s_1s_3 & c_1s_2s_3 + s_1c_3 & c_1c_2 \end{bmatrix}$$

(여기서 $c_1 = \cos q_1$, $c_2 = \cos q_2$, $c_3 = \cos q_3$, $s_1 = \sin q_1$, $s_2 = \sin q_2$, $s_3 = \sin q_3$ 이며 q_1 , q_2 , q_3 은 웃몸통에 대한 왼쪽상박의 상대자세를 나타내는 까르단각자리표들이다.)와 같으므로 $A^{ss'} = A$ 의 관계가 성립된다.

이로부터 구하려는 까르단각자리표 $q_1,\ q_2,\ q_3$ 을 계산할수 있다.

이러한 리론적근거에 기초하여 인체운동의 절대자리표에 대한 측정자료로부터 구면관 절에서의 까르단각자리표들을 계산하기 위한 프로그람을 작성하였다.

2. 계산실례

조마운동선수의 동작에 대한 고속촬영자료에 기초하여 상박과 웃몸통에서 각각 그림 1에서와 같이 점 P, $A_{\rm l}$, $B_{\rm l}$ 들을 취하고 운동분석프로그람을 리용하여 414개의 리산시간점들에서 그 세 점의 절대자리표들을 얻었다.

다음 우에서 서술한 관계식들에 기초하여 웃몸통에 대한 왼쪽상박의 까르단각자리표 q_1, q_2, q_3 을 추정하였다.

 q_1 에 대한 추정결과는 그림 2와 같다.

그림 2에서 상하로 요동하는 잡음이 많은것은 자리표측정에서의 오차가 거꿀삼각방정식의 풀이에 반영된 결과인데 이 곡선에 대하여 잡음제거를 위한 평활화처리를 진행한 후 얻어진 결과를 최종적인 자세자리표로 리용하였다.

맺 는 말

론문에서는 조마운동에 대한 고속촬영자료를 분석하여 관절들에서의 운동토막들의 상 대자세자리표들을 구함으로써 모의에 필요한 시간에 따르는 관절각변화를 결정하였다.

참고문 헌

[1] O. A. Bauchau; Flexible Multibody Dynamics, Springer, 3~67, 2011.

주체106(2017)년 6월 5일 원고접수

A Method for Deriving Segment Orientation Angle in Bodily Motion Simulation

Kim Su Gyong, Kim Yong Song

In this paper joint angle time histories of spherical joint for a simulation of body dynamics have been determined by using motion analysis with video data.

Key word: bodily motion simulation