

S^2 -VER: Semi-Supervised Visual Emotion Recognition Guoli Jia, Jufeng Yang

Semi-Supervised Visual Emotion Recognition

Reliable Emotion Label Learning

Learning emotional discriminative representation

Generating smoothing label

Ambiguity-Aware Adaptive Threshold

Addressing the ambiguity by Adjusting the threshold for each sample, based on the polarity.

Code is publicly available: https://github.com/exped1230/S2-VER exped1230@gmail.com, yangjufeng@nankai.edu.cn

Method	\mathbf{FI}			SE30K8			LDL		
	80	800	1600	80	400	800	80	800	1600
Yang et al. [42] RCA [41] WSCNet [40] PDANet [50]		$25.9 \pm 0.39 \ 27.5 \pm 0.41$	$31.4 \pm 0.17 \ 31.2 \pm 0.39$	$18.6 {\pm} 0.29 \\ 18.4 {\pm} 0.25$	$21.9 \pm 0.33 \ 23.2 \pm 0.28$	$26.5 \pm 0.33 \ 27.4 \pm 0.36$	23.8 ± 0.48 22.3 ± 0.46	29.2 ± 0.19 29.2 ± 0.31	33.2 ± 0.23 35.2 ± 0.48
π-Model [16] Pseu-Lab [17] VAT [21] Mean-Tea [32] MixMatch [4]	22.9 ± 0.54 22.9 ± 0.48 23.6 ± 0.78 23.8 ± 0.51 26.3 ± 1.53	$31.3 \pm 0.43 \\ 31.5 \pm 0.77 \\ 29.3 \pm 0.48$	$33.5 \pm 0.31 \ 35.1 \pm 0.37 \ 33.9 \pm 0.33$	$23.4{\pm}1.10$ $24.4{\pm}0.69$ $24.3{\pm}0.67$	$25.9 \pm 0.50 \ 27.2 \pm 0.39 \ 26.7 \pm 0.53$	27.6 ± 0.16 28.9 ± 0.25 28.2 ± 0.22	$24.2 \pm 0.49 \ 26.3 \pm 0.58 \ 26.6 \pm 0.54$	32.3 ± 0.44 34.5 ± 0.49 33.8 ± 0.42	35.8 ± 0.13 38.9 ± 0.36 38.6 ± 0.26
	29.7 ± 0.68 28.5 ± 0.87 28.2 ± 0.78 29.7 ± 0.90 36.7 ± 0.87	$37.7 \pm 0.56 \ 37.4 \pm 0.51 \ 38.2 \pm 0.49$	$40.3 \pm 0.38 \ 42.2 \pm 0.29 \ 42.9 \pm 0.17$	$29.7{\pm0.70} \ 28.5{\pm1.03}$	$29.6 \pm 0.64 \ 32.2 \pm 0.57 \ 33.2 \pm 0.60$	$32.2 \pm 0.37 \ 32.7 \pm 0.46 \ 33.9 \pm 0.26$	$30.7{\pm}0.76 \ 32.4{\pm}0.84 \ 33.2{\pm}0.93$	40.9 ± 0.58 39.4 ± 0.45 41.3 ± 0.71	43.4 ± 0.47 43.2 ± 0.24 46.7 ± 0.42
Ours	39.1 ± 0.66	46.9 ±0.46	651.8 ± 0.21	30.1 ± 0.73	33.3 ± 0.62	36.2 ±0.49	37.9 ± 0.80	43.6 ± 0.47	747.4 ± 0.4

Comparison with SOTA methods

Method	F	Emotion-	-6	UnBiasedEmo			
	20%	50%	100%	20%	50%	100%	
FixMatch [30]	46.6	48.3	49.0	65.6	69.2	71.5	
FlexMatch [47]	48.1	50.1	51.2	67.2	71.1	73.4	
CoMatch [18]	50.2	51.2	52.4	68.5	70.8	73.8	
Ours	51.7	53.5	54.0	70.8	76.7	78.7	

- SSL algorithm is beneficial for smallscale datasets
- S²-VER performs better than other methods

M_{acc}	150	300	450	Avg
FixMatch	44.9	59.7	61.8	55.5
FlexMatch	36.6	44.2	47.4	42.7
FlexMatch(W)	31.4	37.4	40.6	36.5
CoMatch	48.1	67.4	66.9	60.8
Base + S	59.8	70.7	67.8	66.1
Base + L	58.9	72.3	69.3	66.8

Accuracy of Pseudo labels reaching threshold

Proportion reaching threshold