#### **APPLIED STATISTICS**

#### Simple Linear Regression and Its Estimation

Dr Tao Zou

Research School of Finance, Actuarial Studies & Statistics
The Australian National University

Last Updated: Wed Aug 2 08:35:02 2017

#### **Overview**

- Introduction to Simple Linear Regression (SLR)
- SLR Model Assumptions

Estimation of SLR Model

#### References

- **1. F.L. Ramsey and D.W. Schafer** (2012) Chapter 7 of *The Statistical Sleuth*
- The slides are made by R Markdown. http://rmarkdown.rstudio.com

## **Simple Linear Regression**

Simple linear regression (SLR) is used to describe the **mean** of the **response**, as a function of a single **explanatory variable**.

For example: using a person's height (explanatory) to predict his/her weight (response), or using lean body mass (explanatory) to predict muscle strength (response).

### What is a response variable?



**Key Performance Indicator (KPI)** 

## **Example: Old Faithful**

Old Faithful is a cone geyser located in Yellowstone National Park in Wyoming, United States.



| " <sub>O</sub> | ldfa | ithfu | l csv" |
|----------------|------|-------|--------|

| 4  | А    | В        | С        |
|----|------|----------|----------|
| 1  | DATE | INTERVAL | DURATION |
| 2  | 1    | 78       | 4.40     |
| 3  | 1    | 74       | 3.90     |
| 4  | 1    | 68       | 4.00     |
| 5  | 1    | 76       | 4.00     |
| 6  | 1    | 80       | 3.50     |
| 7  | 1    | 84       | 4.10     |
| 8  | 1    | 50       | 2.30     |
| 9  | 1    | 93       | 4.70     |
| 10 | 1    | 55       | 1.70     |
| 11 | 1    | 76       | 4.90     |
| 12 | 1    | 58       | 1.70     |
| 13 | 1    | 74       | 4.60     |
| 14 | 1    | 75       | 3.40     |
| 15 | 2    | 80       | 4.30     |
| 16 | 2    | 56       | 1.70     |
| 17 | 2    | 80       | 3.90     |
| 18 | 2    | 69       | 3.70     |
| 19 | 2    | 57       | 3.10     |
| 20 | 2    | 90       | 4.00     |

DURATION (explanatory): Duration of Old Faithful Eruptions (mins).

INTERVAL (response): Interval until Subsequent Eruption (mins).

#### R Code



## **Regression Terminology**

The regression of the response variable on the explanatory variable is a mathematical relationship between the mean of the response variable and the explanatory variable.

In the Old Faithful example the **mean** of the **response variable** is modelled as a straight line **function** of the **explanatory variable**.

Notation: Let Y and X denote, respectively, the response variable and the explanatory variable.

- $\mu\{Y|X\}$ , will represent the regression of Y on X= the mean of Y as a function of X.
- $\sigma\{Y|X\}$ , will represent the standard deviation of Y as a function of X.

### **SLR** and Interpretation

The SLR model specifies a particular form for  $\mu\{Y|X\}$ :

$$\mu\{Y|X\} = \beta_0 + \beta_1 X.$$

Two parameters (or called regression coefficients) are involved, where  $\beta_0$  is the intercept and  $\beta_1$  is the slope.

- $\beta_0$  is the mean of Y when X takes the value 0.
- ullet  $eta_1$  is the increase in the mean of Y per one-unit increase in X.

Both  $\beta_0$  and  $\beta_1$  are unknown in the model.

## **SLR Model Assumptions**

For each value of the explanatory variable (X = x), imagine there is a (sub)population of response values (realisations of Y).



# SLR Model Assumptions (Con'd)

- **1. Linearity**: The means of the populations fall on a straight-line function of the explanatory variable  $(\mu\{Y|X\} = \beta_0 + \beta_1 X)$ .
- **2. Normality**: There is a normally distributed population of responses for each value of the explanatory variable.
- **3. Constant variance**: The population standard deviations are all equal:  $\sigma\{Y|X\} = \sigma$ .
- **4. Independence**: The selection of an observation from any of the populations is independent of the selection of any other observations. Briefly speaking, observations  $(X_1, Y_1), \dots, (X_n, Y_n)$  are independent, where n is called sample size.

**Remark**: 2 & 3 imply  $Y = \mu\{Y|X\} + \mathcal{E}$ , where  $\mathcal{E} \sim N(0, \sigma^2)$ . It follows  $Y \sim N(\mu\{Y|X\}, \sigma^2)$ .

/44 11/18

# **SLR Model Assumptions (Con'd)**



Explanatory Variable (X)

Picture taken from class text: "The Statistical Sleuth".

### The Ideal Normal, SLR Model

Real data will not conform perfectly to these assumptions!

For example,  $\mu\{Y|X\}$  is often not a straight line. However,  $\mu\{Y|X\}$  can often be well approximated by a straight line.

We will talk later about the robustness of SLR to assumption violations.



George E. P. Box (1919 - 2013)
"All models are wrong, but some are useful."

### **Estimation of SLR Parameters**





## Estimation of SLR Parameters (Con'd)

The method of <u>least squares (LS)</u> is used to obtain the "best fitting" straight line  $\Rightarrow$  "best fitting" intercept  $\hat{\beta}_0$  and slope  $\hat{\beta}_1$ , which are called the estimates of unkown  $\beta_0$  and  $\beta_1$ , respectively.



Picture taken from class text: "The Statistical Sleuth".

# Estimation of SLR Parameters (Con'd)

Given the observations  $(X_1, Y_1), \dots, (X_n, Y_n)$ , the LS estimates of  $\beta_1$  and  $\beta_0$  are chosen to minimise:

$$Q(b_1, b_0) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

The estimators of  $\beta_1$  and  $\beta_0$  are those values of  $b_1$  and  $b_0$ , that minimise  $Q(b_1,b_0)$ .

The values of  $b_1$  and  $b_0$  that minimise  $Q(b_1, b_0)$  are given by:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \text{ and } \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X},$$

where  $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$  and  $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ .

Estimates are unbiased:  $E(\hat{\beta}_k) = \beta_k$ , k = 1, 0.

How are these solutions obtained?

### Fitting Values and Residuals

Using  $\hat{\beta}_0$  and  $\hat{\beta}_1$ , the estimated mean function is given by:

$$\hat{\mu}\{Y|X\} = \hat{\beta}_0 + \hat{\beta}_1 X$$
 (plug-in idea).

• The estimated mean is called the fitted or predicted value:

$$\operatorname{fit}_{i} = \hat{Y}_{i} = \hat{\mu}\{Y_{i}|X_{i}\} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}.$$

• Residual:  $\operatorname{res}_i = \hat{\mathcal{E}}_i = Y_i - \hat{Y}_i$ .



Picture taken from class text: "The Statistical Sleuth".

# Example: Old Faithful (Con'd)

```
names(fit)
  [1] "coefficients" "residuals"
                                        "effects"
                                                       "rank"
  [5] "fitted.values" "assign"
                                       "ar"
                                                       "df.residual"
  [9] "xlevels"
                       "call"
                                        "terms"
                                                       "model"
fit$coefficients
         (Intercept) oldfaith$DURATION
           33.82821
                        10.74097
head(fit$fitted.values)
## 81.08848 75.71800 76.79209 76.79209 71.42161 77.86619
head(fit$residuals)
## -3 0884837 -1 7179979 -8 7920941 -0 7920941 8 5783917 6 1338098
```

For Old Faithful (note the notation hat " ^ "):

 $\hat{\mu}\{\text{INTERVAL}|\text{DURATION}\} = 33.8 + 10.7 \times \text{DURATION}.$ 

**Interpretation**: If DURATION is increased by one-unit, the estimated mean of INTERVAL will increase 10.7 unit.