Sujet IMT-1

- 1. trivial
- 2. trivial
- 3. parfait: 3-clique (triangle), imp. minimal: 5-cycle
- 4. (Pas la seule preuve, des preuves par l'absurde peuvent passer)

On note $G' = G[v \setminus A]$

On a que:

 $\forall k \in [2, \chi]$:

Si il existe une partition en $\chi-k$ anticliques de $V\setminus A$. Alors on a une partition en $\chi-k+1$ anticliques de V. (en ajoutant A). Donc $\forall k\in [\![2,\chi]\!]$, on a:

$$\chi' > \chi - k$$

Donc:

$$\chi' > \chi - 2$$

Donc

$$\chi' \ge \chi - 1$$

D'où:

$$\chi - 1 \le \chi' \le \chi \tag{1}$$

$$\omega' \le \omega \tag{2}$$

G' étant parfait: $\chi' = \omega'$ et G étant imparfait: $\chi > \omega$

Par (1), on a

$$\omega - 1 < \chi - 1 \le \chi' = \omega' \le \chi$$

d'où:

$$\omega - 1 < \omega'$$

Ainsi:

$$\omega \leq \omega'$$

Par (2), on a:

$$\omega = \omega'$$

5. $\forall v \in A_0$, on peut découper $G' = G[V \setminus \{v\}]$ en $\omega = \omega' = \chi'$ anticliques. (car G' parfait). Ce qui forme nos $\alpha+1$ anticliques.

Chaque sommet v de A_0 seront présent dans A_0 et dans $\alpha-1$ autre cliques (une parmis celles formée par $G\setminus v'$ et ce pour les $\alpha-1$ valeurs de v' différentes de v).

Les sommets qui ne sont pas dans A_0 seront présent dans une clique parmis celles formées par $G\setminus v'$ et ce pour les α valeurs de $v'\in A_0$.

- 6. C_i = clique maximale de $V \setminus A_i$. trivialement $C_i \cap A_i = \emptyset$
 - C_i etant une clique il ne peut pas y avoir un j tq $|A_j\cap C_i|>2$ Or les ω élements de C_i sont tous présents dans α anticliques différentes donc $\forall j\neq i, |A_j\cap C_i|=1$.
- 7. indice : regarder la gueule de la matrice
- 8. et questions suivantes: si le candidat est arrivé là, il saura continuer.

IMT-1 2 of 2