Un réseau de neurones simple

Cyril Charignon

20/01/2021

2 Programmation

• (n,p) format des images à lire (matrices de 0 et de 1 à n lignes et p colonnes). Donc $n \times p$ neurones d'entrée.

- (n,p) format des images à lire (matrices de 0 et de 1 à n lignes et p colonnes). Donc $n \times p$ neurones d'entrée.
- ullet $N_s=10$ nombre de sorties possibles.

- (n,p) format des images à lire (matrices de 0 et de 1 à n lignes et p colonnes). Donc $n \times p$ neurones d'entrée.
- $N_s = 10$ nombre de sorties possibles.
- Pour tout $(k,i,j) \in [\![0,N_s[\![\times [\![0,n[\![\times [\![0,p[\![,P_{k,i,j}]$ le coefficient de transmission du la synape entre le neurone d'entrée (i,j) et le neurone de sortie k.

- (n,p) format des images à lire (matrices de 0 et de 1 à n lignes et p colonnes). Donc $n \times p$ neurones d'entrée.
- $N_s = 10$ nombre de sorties possibles.
- Pour tout $(k,i,j) \in [\![0,N_s[\![\times [\![0,n[\![\times [\![0,p[\![,P_{k,i,j}]$ le coefficient de transmission du la synape entre le neurone d'entrée (i,j) et le neurone de sortie k.
- D'où le tableau P de format (N_s, n, p) .

Dessin $(N_e=4, N_s=4)$

Soit im une image.

Soit im une image.

 \bullet $\forall k \in \llbracket 0, N_{\rm s}
Vert$ on pose :

$$\mathcal{A}(k,im,P) = \sum_{i=0}^{n-1} \sum_{j=0}^{p-1} P[k][i][j] \times im[i][j]$$

la quantité de signal reçu par le neurone k.

Soit im une image.

 \bullet $\forall k \in \llbracket 0, N_{\mathrm{s}}
Vert$ on pose :

$$\mathcal{A}(k,im,P) = \sum_{i=0}^{n-1} \sum_{j=0}^{p-1} P[k][i][j] \times im[i][j]$$

la quantité de signal reçu par le neurone k.

• Le neurone k est dit activé lorsque $\mathcal{A}(k,im,P) \geqslant 1$.

Soit im une image.

 $\bullet \ \forall k \in [\![0, N_s [\![]\!]$ on pose :

$$\mathcal{A}(k, im, P) = \sum_{i=0}^{n-1} \sum_{j=0}^{p-1} P[k][i][j] \times im[i][j]$$

la quantité de signal reçu par le neurone k.

- Le neurone k est dit activé lorsque $\mathcal{A}(k,im,P)\geqslant 1$.
- But : pour tout k, lors de la lecture d'une image qui représente le chiffre k, le neurone k et lui seul s'active.

Lecture d'une image

• Programmer la fonction \mathcal{A} .

Lecture d'une image

- Programmer la fonction \mathcal{A} .
- Programmer une fonction sortiesActivées.

On choisit un coefficient η qui décide à quel vitesse on modifie nos neurones.

On choisit un coefficient η qui décide à quel vitesse on modifie nos neurones.

• Pour tout $k \in [\![0,N_s[\![$, lors de la lecture d'une image im, on décide que la valeur souhaitée est 2 si im représente k, et -2 sinon.

On choisit un coefficient η qui décide à quel vitesse on modifie nos neurones.

- Pour tout $k \in [\![0,N_s[\![$, lors de la lecture d'une image im, on décide que la valeur souhaitée est 2 si im représente k, et -2 sinon.
- On pose $err(k, im, P) = \mathcal{A}(k, im, k)$ valeur voulue(k, im).

On choisit un coefficient η qui décide à quel vitesse on modifie nos neurones.

- Pour tout $k \in [0, N_s[$, lors de la lecture d'une image im, on décide que la valeur souhaitée est 2 si im représente k, et -2 sinon.
- On pose $err(k, im, P) = \mathcal{A}(k, im, k)$ valeur voulue(k, im).
- Formule pour corriger le coeff P[k][i][j] :

$$P[k][i][j] += \eta \times im[i][j] \times err(k, im, P)$$

• La fonction erreur.

- La fonction erreur.
- Procédure lecture_image pour corriger tous les coeff de P après lecture d'une image.

- La fonction erreur.
- Procédure lecture_image pour corriger tous les coeff de P après lecture d'une image.
- Procédure lecture_banque pour lire plusieurs images.

- La fonction erreur.
- Procédure lecture_image pour corriger tous les coeff de P après lecture d'une image.
- Procédure lecture_banque pour lire plusieurs images.
- Prédicat tout_juste qui indique si toutes les images sont lues correctement.

- La fonction erreur.
- Procédure lecture_image pour corriger tous les coeff de P après lecture d'une image.
- Procédure lecture_banque pour lire plusieurs images.
- Prédicat tout_juste qui indique si toutes les images sont lues correctement.
- Fonction finale!