Global States in Partial Semantics

November 21, 2014

Preliminary for runtime verification in partial semantics

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - P(P_i, L_i, T_i) is an LTS over a set of ports P_i, control locations L_i and set of transitions T_i ⊆ L_i × P_i × L_i
 - X; is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$

 - $\blacktriangleright \rightarrow_i = \{((l', v'), \rho, (l, v)) \in Q_i \times P_i \times Q_i \mid \exists \tau \in T_i : g_{i\tau}(v') \land v = f_{i\tau}(v') \land v = f_{i\tau}(v'$
- Γ is set of connectors

- $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\bigcup_{i \in I} x_i$ (the guard)
- \triangleright F is an update function defined over the set of variables $\cup_{i \in I} x_i$
- ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - ▶ (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - \triangleright X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$
- Γ is set of connectors

- $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\cup_{i \in I} x_i$ (the guard)
- F is an update function defined over the set of variables $\bigcup_{i \in I} x_i$
- ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - \triangleright (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$
- Γ is set of connectors
 - - $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
 - ▶ G is a Boolean expression over the set of variables $\bigcup_{i \in I} x_i$ (the guard)
 - \triangleright F is an update function defined over the set of variables $\cup_{i \in I} x_i$
 - ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - \triangleright (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - Xi is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$
- Γ is set of connectors
 - - $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
 - ▶ G is a Boolean expression over the set of variables $\bigcup_{i \in I} x_i$ (the guard)
 - \triangleright F is an update function defined over the set of variables $\cup_{i \in I} x_i$
 - ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - ▶ (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - \triangleright X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$

$$\rightarrow_{i} = \{((l', v'), p, (l, v)) \in Q_{i} \times P_{i} \times Q_{i} \mid \exists \tau \in T_{i} : g_{i\tau}(v') \land v = f_{i\tau}(v')\}$$

Γ is set of connectors

- $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\cup_{i \in I} x_i$ (the guard)
- F is an update function defined over the set of variables $\bigcup_{i \in I} x_i$
- ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - ▶ (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - \triangleright X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$

 - $\rightarrow_i = \{((l', v'), p, (l, v)) \in Q_i \times P_i \times Q_i \mid \exists \tau \in T_i : g_{i_\tau}(v') \land v = f_{i_\tau}(v')\}$
- Γ is set of connectors

- $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\cup_{i \in I} x_i$ (the guard)
- \triangleright F is an update function defined over the set of variables $\bigcup_{i \in I} x_i$
- \triangleright Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - ▶ (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subseteq L_i \times P_i \times L_i$
 - ▶ X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$

 - $\blacktriangleright \rightarrow_i = \{((l',v'),p,(l,v)) \in Q_i \times P_i \times Q_i \mid \exists \tau \in T_i : g_{i\tau}(v') \land v = f_{i\tau}(v')\}$
- Γ is set of connectors

- $\triangleright \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\bigcup_{i \in I} x_i$ (the guard)
- \triangleright F is an update function defined over the set of variables $\cup_{i \in I} x_i$
- ightharpoonup Interaction of γ in denoted with \mathcal{I}_{γ}

$$B = \Gamma(B_1, ..., B_n)$$

- B_i is a tuple $(P_i, L_i, T_i, X_i, \{g_{i_\tau}\}_{\tau \in T_i}, \{f_{i_\tau}\}_{\tau \in T_i})$
 - ▶ (P_i, L_i, T_i) is an LTS over a set of ports P_i , control locations L_i and set of transitions $T_i \subset L_i \times P_i \times L_i$
 - X_i is a set of variables.
- Semantics of B_i is an LTS $(Q_i, P_i, \rightarrow_i)$

 - $\rightarrow_i = \{((l', v'), p, (l, v)) \in Q_i \times P_i \times Q_i \mid \exists \tau \in T_i : g_{i\tau}(v') \land v = f_{i\tau}(v')\}$
- Γ is set of connectors

- $ightharpoonup \mathcal{P}_{\gamma} = \{p_i[x_i] \mid p_i \in B_i.P\}_{i \in I} \text{ such that } \forall i \in I : \mathcal{P}_{\gamma} \cap B_i.P = \{p_i\}$
- ▶ G is a Boolean expression over the set of variables $\bigcup_{i \in I} x_i$ (the guard)
- ▶ F is an update function defined over the set of variables $\cup_{i \in I} x_i$
- Interaction of γ in denoted with \mathcal{I}_{γ}

Semantics

Semantics of B is defined as a transition system (Q, A, \longrightarrow)

- ullet $Q=B_1.Q \times \ldots \times B_n.Q$ is the set of global state, $Init \in Q$ as the initial state
- $lack A = ldsymbol{\cup}_{\gamma \in \Gamma} \{\mathcal{I}_{\gamma}\}$ is the set of all possible interactions,
- \bullet \longrightarrow is the least set of transitions satisfying rule:

$$\frac{\exists (a = \{p_i\}_{i \in I}) \in A \quad G_a(v(X))}{\forall i \in I: \quad q_i \xrightarrow{p_i}_i q_i' \land v_i = F_{a_i}(v(X)) \quad \forall i \not\in I: \quad q_i = q_i'}{(q_1, \ldots, q_n) \xrightarrow{\partial} (q_1', \ldots, q_n')}$$

Set of all global Run

 $R(B) = \{(q_0 \cdot q_1 \cdots q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land \exists a \in A, q_{i-1} \xrightarrow{a} q_i\}$

Set of all global Trace

 $Tr(B) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_s \cdot q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land a_i \in A, q_{i-1} \xrightarrow{a_i} q_i\}$

Semantics

Semantics of B is defined as a transition system (Q, A, \longrightarrow)

- ullet $Q = B_1.Q \times ... \times B_n.Q$ is the set of global state, $Init \in Q$ as the initial state
- $lack A = ldsymbol{\cup}_{\gamma \in \Gamma} \{\mathcal{I}_{\gamma}\}$ is the set of all possible interactions,
- \bullet \longrightarrow is the least set of transitions satisfying rule:

$$\frac{\exists (a = \{p_i\}_{i \in I}) \in A \quad G_{\partial}(v(X))}{\forall i \in I: \quad q_i \xrightarrow{p_i}_i q_i' \land v_i = F_{\partial_i}(v(X)) \quad \forall i \not\in I: \quad q_i = q_i'}{(q_1, \ldots, q_n) \xrightarrow{\partial} (q_1', \ldots, q_n')}$$

Set of all global Run

$$R(B) = \{(q_0 \cdot q_1 \cdot \cdot \cdot q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land \exists a \in A, q_{i-1} \xrightarrow{a} q_i\}$$

Set of all global Trace

 $Tr(B) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_s \cdot q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land a_i \in A, q_{i-1} \xrightarrow{a_i} q_i\}$

Semantics

Semantics of B is defined as a transition system (Q, A, \longrightarrow)

- ullet $Q=B_1.Q imes\ldots imes B_n.Q$ is the set of global state, $Init\in Q$ as the initial state
- $A = \bigcup_{\gamma \in \Gamma} \{\mathcal{I}_{\gamma}\}$ is the set of all possible interactions,
- lacktriangle \longrightarrow is the least set of transitions satisfying rule:

$$\frac{\exists (a = \{p_i\}_{i \in I}) \in A \quad G_{\partial}(v(X))}{\forall i \in I: \quad q_i \xrightarrow{p_i}_i q_i' \land v_i = F_{\partial_i}(v(X)) \quad \forall i \not\in I: \quad q_i = q_i'}{(q_1, \ldots, q_n) \xrightarrow{\partial} (q_1', \ldots, q_n')}$$

Set of all global Run

$$R(B) = \{(q_0 \cdot q_1 \cdot \cdot \cdot q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land \exists a \in A, q_{i-1} \xrightarrow{a} q_i\}$$

Set of all global Trace

$$Tr(B) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_s \cdot q_s) \mid q_0 = Init, \forall i \in [1, s] : q_i \in Q \land a_i \in A, q_{i-1} \xrightarrow{a_i} q_i\}$$

$$B^\perp = \Gamma^\perp(B_1^\perp, \, \ldots, \, B_n^\perp)$$

- $B_i^{\perp} = (P_i \cup \{\beta_i\}, L_i \cup L_i^{\perp}, T_i^{\perp}, X_i, \{g_{i_{\tau}}\}_{\tau \in \mathcal{T}_i^{\perp}}, \{f_{i_{\tau}}\}_{\tau \in \mathcal{T}_i^{\perp}})$ is the partial state model of B_i where :
 - $L_i^{\perp} = \{l_t^{\perp} \mid t \in T_i\}$ such that $L_i^{\perp} \cap L_i = \emptyset$

 - ▶ $\beta_i^{'} \notin P_i$ is a new port ▶ $T_i^{\perp} \subseteq (L_i \cup L_i^{\perp}) \times P_i \cup \{\beta_i\} \times (L_i \cup L_i^{\perp})$ such that $T_i^{\perp} = \{(l, p, l_t^{\perp}), (l_t^{\perp}, \beta, l') \mid \exists (l, p, l') \in T_i\}$
- Semantics of B_i is an LTS $(Q_i \cup Q_i^{\perp}, P_i \cup \{\beta_i\}, \leadsto_i)$
 - $Q_{i}^{\perp} = \{(l, v) \in L_{i}^{\perp} \times \{\perp\}\}$
 - $T_i^{\perp}, (l, v), (l', v') \in Q_i, (l_t^{\perp}, \perp) \in Q_i^{\perp} \land \exists \tau \in T_i : g_{i\tau}(v) \land v' = f_{i\tau}(v)$

 $\Gamma^{\perp} = \Gamma$

Semantics

Semantics of B^{\perp} is defined as a transition system $(Q^{\perp}, A^{\perp}, \leadsto)$

- $Q^{\perp} = \bigotimes_{i=1}^{n} (Q_i \cup Q_i^{\perp}), \ Q \subset Q^{\perp}$
- lacktriangledown $A^{\perp}=A\cup\{eta_i\}_{i=1}^n$, where $\{eta_i\}_{i=1}^n$ is the set of busy transitions
- The transition relation → can be defined by the following rules

$$\exists (a = \{p_i\}_{i \in I}) \in A \qquad G_a(v(X)) \\
\forall i \in I : q_i \stackrel{p_i}{\leadsto}_i q_i' \land v_i = F_{a_i}(v(X)) \qquad \forall i \not\in I : q_i = q_i' \\
(q_1, \dots, q_n) \stackrel{\partial}{\leadsto}_i (q_1', \dots, q_n') \\
q_i \stackrel{\beta_i}{\leadsto}_i q_i' \\
(q_1, \dots, q_i, \dots, q_n) \stackrel{\beta_i}{\leadsto}_i (q_1, \dots, q_i', \dots, q_n)$$

Set of all partial Run

 $R(B^{\perp}) = \{(q_0 \cdot q_1 \cdot \cdot \cdot q_m) \mid q_0 = Init, \forall i \in [1, m] : q_i \in Q^{\perp} \land \exists a \in A^{\perp}, q_{i-1} \stackrel{a}{\leadsto} q_i\}$

Set of all partial Trace

 $Tr(B^{\perp}) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_m \cdot q_m) \mid q_0 = Init, \forall i \in [1, m] : q_i \in Q^{\perp} \land a_i \in A^{\perp}, q_{i-1} \overset{a_i}{\leadsto} q_i^p\}$

Semantics

Semantics of B^{\perp} is defined as a transition system $(Q^{\perp}, A^{\perp}, \leadsto)$

- lacktriangledown $A^{\perp}=A\cup\{eta_i\}_{i=1}^n$, where $\{eta_i\}_{i=1}^n$ is the set of busy transitions
- The transition relation → can be defined by the following rules

$$\frac{\exists (a = \{p_i\}_{i \in I}) \in A \quad G_{\partial}(v(X))}{\forall i \in I : \quad q_i \stackrel{p_i}{\leadsto}_i \quad q_i' \land v_i = F_{\partial i}(v(X)) \quad \forall i \not\in I : \quad q_i = q_i'}{(q_1, \dots, q_n) \stackrel{\partial}{\leadsto}_i \quad (q_1', \dots, q_n')}$$

$$\frac{q_i \stackrel{\beta_i}{\leadsto}_i \quad q_i'}{(q_1, \dots, q_i, \dots, q_n) \stackrel{\beta_i}{\leadsto}_i \quad (q_1, \dots, q_i', \dots, q_n)}$$

Set of all partial Run

 $R(B^\perp) = \{(q_0 \cdot q_1 \cdot \cdot \cdot q_m) \mid q_0 = Init, \forall i \in [1,m] : q_i \in Q^\perp \land \exists a \in A^\perp, q_{i-1} \overset{a}{\leadsto} q_i\}$

Set of all partial Trace

 $Tr(B^{\perp}) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_m \cdot q_m) \mid q_0 = Init, \forall i \in [1, m] : q_i \in Q^{\perp} \land a_i \in A^{\perp}, q_{i-1} \overset{a_i}{\leadsto} q_i^p\}$

Semantics

Semantics of B^{\perp} is defined as a transition system $(Q^{\perp}, A^{\perp}, \leadsto)$

- $Q^{\perp} = \bigotimes_{i=1}^{n} (Q_i \cup Q_i^{\perp}), \ Q \subset Q^{\perp}$
- $lack A^{\perp} = A \cup \{\beta_i\}_{i=1}^n$, where $\{\beta_i\}_{i=1}^n$ is the set of busy transitions
- The transition relation → can be defined by the following rules

$$\frac{\exists (a = \{p_i\}_{i \in I}) \in A \quad G_{\partial}(v(X))}{\forall i \in I : \quad q_i \stackrel{p_i}{\leadsto}_i \quad q_i' \land v_i = F_{\partial i}(v(X)) \quad \forall i \not\in I : \quad q_i = q_i'}{(q_1, \dots, q_n) \stackrel{\partial}{\leadsto}_i \quad (q_1', \dots, q_n')}$$

$$\frac{q_i \stackrel{\beta_i}{\leadsto}_i \quad q_i'}{(q_1, \dots, q_i, \dots, q_n) \stackrel{\beta_i}{\leadsto}_i \quad (q_1, \dots, q_i', \dots, q_n)}$$

Set of all partial Run

 $R(B^{\perp}) = \{(q_0 \cdot q_1 \cdot \cdot \cdot q_m) \mid q_0 = \mathit{Init}, \forall i \in [1, m] : q_i \in Q^{\perp} \land \exists a \in A^{\perp}, q_{i-1} \overset{a}{\leadsto} q_i\}$

Set of all partial Trace

 $Tr(B^{\perp}) = \{(q_0 \cdot a_1 \cdot q_1 \cdot \cdots \cdot a_m \cdot q_m) \mid q_0 = Init, \forall i \in [1, m] : q_i \in Q^{\perp} \land a_i \in A^{\perp}, q_{i-1} \overset{a_i}{\leadsto} q_i^p\}$

Definition (Bisimulation)

A bisimulation over B and B^{\perp} is a relation $R \subseteq Q \times Q^{\perp}$ such that

We say that B and B^{\perp} are bisimilar.

Theorem

Let $B^{\perp} = \Gamma^{\perp}(B_1^{\perp}, \dots, B_n^{\perp})$ be the corresponding partial state semantic model obtained from $B = \Gamma(B_1, \dots, B_n)$. B and B^{\perp} are bisimilar.

Proof.

We define the relation $R'=\{(q,r)\in Q\times Q^\perp\mid r\overset{\beta^*}{\leadsto}q\}$ and prove that R' satisfies all the bisimulation properties.

Definition (Witness)

Given a bisimulation R between B and B^{\perp} , the witness relation $W \subseteq Tr(B) \times Tr(B^{\perp})$ is the smallest set that contains (Init, Init) and satisfies the following rules

```
For (\sigma_1, \sigma_2) \in W:
(\sigma_1, \sigma_2 \cdot \beta \cdot q_2) \in W \text{ if } (last(\sigma_1), q_2) \in R
(\sigma_1 \cdot a \cdot q_1, \sigma_2 \cdot a \cdot q_2) \in W \text{ if } a \in A \text{ and } (q_1, q_2) \in R
```

If $(\sigma_1, \sigma_2) \in W$, we say that σ_1 is a witness of σ_2

Property

- For all $(\sigma_1, \sigma_2) \in W$, Sequence of interactions of σ_2 and its witness trace σ_1 are equal
- For any trace $\sigma_2 \in Tr(B^{\perp})$ there <u>exists</u> an unique witness trace $\sigma_1 \in Tr(B)$

Proof.

Question

How to find the unique witness global trace of a partial trace in online fashion?

Reconstruction of the global trace from the partial trace

Definition (Accumulator function)

```
Acc: Tr(B^{\perp}) \longrightarrow Q \times (A \times Q)^* \times (A \times Q^{\perp})^{\leq n}
- Acc(Init) = Init
- Acc(\sigma \cdot a \cdot q) = Acc(\sigma) \cdot a \cdot q \qquad \text{for } a \in A
- Acc(\sigma \cdot \beta_j \cdot q) = \text{Map } [upd] \ (q, Acc(\sigma)) \qquad \text{for } \beta_j \in \{\beta_i\}_{i=1}^n, \text{ where }
\text{let } q = (q_1^{\prime\prime}, \cdots, q_n^{\prime\prime}) \text{ in }
upd: Q^{\perp} \times (Q^{\perp} \cup A) \longrightarrow Q^{\perp} \cup A
upd(a) = a \text{ ,for } a \in A
upd((q_1, \cdots, q_n)) = (q_1^{\prime}, \cdots, q_n^{\prime}) \text{ where, } \forall k \in [1, n],
q_k^{\prime} = \begin{cases} q_k^{\prime\prime} & \text{if } (j = k) \land (q_k \in Q_k^{\perp}) \\ q_k & \text{otherwise} \end{cases}
```

Reconstruction of the global trace from the partial trace

Definition (Discriminant function)

$$\mathcal{D} = Q \times (A \times Q)^* \times (A \times Q^{\perp})^{\leq n} \longrightarrow Tr(B)$$

$$- \mathcal{D}(Init) = Init$$

$$- \mathcal{D}((Acc(\sigma) \cdot a \cdot q)) = \begin{cases} \mathcal{D}(Acc(\sigma)) \cdot a & \text{if } (a \in A) \land (q \notin Q) \\ \mathcal{D}(Acc(\sigma)) \cdot q & \text{if } (a \notin A) \land (q \in Q) \\ \mathcal{D}(Acc(\sigma)) & \text{if } (a \notin A) \land (q \notin Q) \\ n/a^* & \text{otherwise} \end{cases}$$
*: The next state after an intercation is a lways a partial state, therefore $(a \in A) \land (q \in Q)$ never occurs

Theorem

 $\forall \sigma \in \mathit{Tr}(B^{\perp}) : (\mathcal{D}(\mathit{Acc}(\sigma)), \sigma) \in \mathit{W}$