Introduction to Shape Manifolds

Geometry of Data

September 26, 2019

Shape Statistics: Averages

Shape Statistics: Averages

Shape Statistics: Variability

Shape priors in segmentation

Shape Statistics: Classification

http://sites.google.com/site/xiangbai/animaldataset

Shape Statistics: Hypothesis Testing

Testing group differences

Cates, et al. IPMI 2007 and ISBI 2008

Shape Application: Bird Identification

American Crow

Common Raven

Shape Application: Bird Identification

Glaucous Gull

Iceland Gull

http://notendur.hi.is/yannk/specialities.htm

Shape Application: Box Turtles

http://www.bio.davidson.edu/people/midorcas/research/Contribute/boxturtle/boxinfo.htm

Shape Statistics: Regression

What is Shape?

What is Shape?

Shape is the geometry of an object modulo position, orientation, and size.

Geometry Representations

- Landmarks (key identifiable points)
- Boundary models (points, curves, surfaces, level sets)
- Interior models (medial, solid mesh)
- Transformation models (splines, diffeomorphisms)

Landmarks

From Dryden & Mardia, 1998

- ➤ A landmark is an identifiable point on an object that corresponds to matching points on similar objects.
- This may be chosen based on the application (e.g., by anatomy) or mathematically (e.g., by curvature).

Landmark Correspondence

More Geometry Representations

Points

(Fourier, splines)

(solid interior)

Transformation Models

From D'Arcy Thompson, On Growth and Form, 1917.

A metric space structure provides a comparison between two shapes.

Examples: Shape Spaces

Kendall's Shape Space

Space of Diffeomorphisms

Tangent Spaces

A **tangent vector** is the velocity of a curve on M.

Tangent Spaces

Infinitesimal change in shape:

A **tangent vector** is the velocity of a curve on M.

The Exponential Map

Notation: $\operatorname{Exp}_p(X)$

- p: starting point on M
- X: initial velocity at p
- Output: endpoint of geodesic segment, starting at p, with velocity X, with same length as ||X||

The Log Map

Notation: $\operatorname{Log}_p(q)$

- ► Inverse of Exp
- $\triangleright p, q$: two points in M
- Output: tangent vector at p, such that $\operatorname{Exp}_p(\operatorname{Log}_p(q)) = q$
- Gives distance between points: $d(p,q) = \| \operatorname{Log}_p(q) \|.$

Shape Equivalences

Two geometry representations, x_1, x_2 , are **equivalent** if they are just a translation, rotation, scaling of each other:

$$x_2 = \lambda R \cdot x_1 + v,$$

where λ is a scaling, R is a rotation, and v is a translation.

In notation: $x_1 \sim x_2$

Equivalence Classes

The relationship $x_1 \sim x_2$ is an **equivalence** relationship:

- ▶ Reflexive: $x_1 \sim x_1$
- Symmetric: $x_1 \sim x_2$ implies $x_2 \sim x_1$
- Transitive: $x_1 \sim x_2$ and $x_2 \sim x_3$ imply $x_1 \sim x_3$

Equivalence Classes

The relationship $x_1 \sim x_2$ is an **equivalence** relationship:

- ▶ Reflexive: $x_1 \sim x_1$
- Symmetric: $x_1 \sim x_2$ implies $x_2 \sim x_1$
- ► Transitive: $x_1 \sim x_2$ and $x_2 \sim x_3$ imply $x_1 \sim x_3$

We call the set of all equivalent geometries to x the equivalence class of x:

$$[x] = \{y : y \sim x\}$$

Equivalence Classes

The relationship $x_1 \sim x_2$ is an **equivalence** relationship:

- ▶ Reflexive: $x_1 \sim x_1$
- Symmetric: $x_1 \sim x_2$ implies $x_2 \sim x_1$
- ► Transitive: $x_1 \sim x_2$ and $x_2 \sim x_3$ imply $x_1 \sim x_3$

We call the set of all equivalent geometries to x the equivalence class of x:

$$[x] = \{y : y \sim x\}$$

The set of all equivalence classes is our **shape space**.

Kendall's Shape Space

- Define object with k points.
- ▶ Represent as a vector in \mathbb{R}^{2k} .
- Remove translation, rotation, and scale.
- End up with complex projective space, \mathbb{CP}^{k-2} .

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^2 ?

Notation: $[x] \in \mathbb{R}^2/\mathbb{R}^+$

Consider planar landmarks to be points in the complex plane.

- Consider planar landmarks to be points in the complex plane.
- ▶ An object is then a point $(z_1, z_2, ..., z_k) \in \mathbb{C}^k$.

- Consider planar landmarks to be points in the complex plane.
- ▶ An object is then a point $(z_1, z_2, ..., z_k) \in \mathbb{C}^k$.
- ▶ Removing **translation** leaves us with \mathbb{C}^{k-1} .

- Consider planar landmarks to be points in the complex plane.
- ▶ An object is then a point $(z_1, z_2, ..., z_k) \in \mathbb{C}^k$.
- ▶ Removing **translation** leaves us with \mathbb{C}^{k-1} .
- How to remove scaling and rotation?

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=re^{i\phi}$, with modulus r and argument ϕ .

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=re^{i\phi}$, with modulus r and argument ϕ .

Complex Multiplication:

$$se^{i\theta} * re^{i\phi} = (sr)e^{i(\theta+\phi)}$$

Multiplication by a complex number $se^{i\theta}$ is equivalent to scaling by s and rotation by θ .

Removing Scale and Rotation

Multiplying a centered point set, $\mathbf{z} = (z_1, z_2, \dots, z_{k-1})$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Removing Scale and Rotation

Multiplying a centered point set, $\mathbf{z} = (z_1, z_2, \dots, z_{k-1})$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of z is an equivalence class:

$$[\mathbf{z}] = \{(wz_1, wz_2, \dots, wz_{k-1}) : \forall w \in \mathbb{C}\}\$$

Removing Scale and Rotation

Multiplying a centered point set, $\mathbf{z} = (z_1, z_2, \dots, z_{k-1})$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of z is an equivalence class:

$$[\mathbf{z}] = \{(wz_1, wz_2, \dots, wz_{k-1}) : \forall w \in \mathbb{C}\}\$$

This gives complex projective space \mathbb{CP}^{k-2} – much like the sphere comes from equivalence classes of scalar multiplication in \mathbb{R}^n .

Alternative: Shape Matrices

Represent an object as a real $d \times k$ matrix.

Preshape process:

- Remove translation: subtract the row means from each row (i.e., translate shape centroid to 0).
- Remove scale: divide by the Frobenius norm.

Orthogonal Procrustes Analysis

Problem:

Find the rotation R^* that minimizes distance between two $d \times k$ matrices A, B:

$$R^* = \arg\min_{R \in SO(d)} ||RA - B||^2$$

Orthogonal Procrustes Analysis

Problem:

Find the rotation R^* that minimizes distance between two $d \times k$ matrices A, B:

$$R^* = \arg\min_{R \in SO(d)} ||RA - B||^2$$

Solution:

Let $U\Sigma V^T$ be the SVD of BA^T , then

$$R^* = UV^T$$

Let A and B be $2 \times k$ shape matrices

1. Remove centroids from *A* and *B*

Let A and B be $2 \times k$ shape matrices

- 1. Remove centroids from A and B
- 2. Project onto sphere: $A \leftarrow A/\|A\|$, $B \leftarrow B/\|B\|$

Let A and B be $2 \times k$ shape matrices

- 1. Remove centroids from *A* and *B*
- 2. Project onto sphere: $A \leftarrow A/\|A\|$, $B \leftarrow B/\|B\|$
- 3. Align rotation of B to A with OPA

Let A and B be $2 \times k$ shape matrices

- 1. Remove centroids from *A* and *B*
- 2. Project onto sphere: $A \leftarrow A/\|A\|$, $B \leftarrow B/\|B\|$
- 3. Align rotation of *B* to *A* with OPA
- 4. Now a geodesic is simply that of the sphere, S^{2k-1}

Intrinsic Means (Fréchet)

The *intrinsic mean* of a collection of points x_1, \ldots, x_N in a metric space M is

$$\mu = \arg\min_{x \in M} \sum_{i=1}^{N} d(x, x_i)^2,$$

where $d(\cdot, \cdot)$ denotes distance in M.

Gradient of the Geodesic Distance

The gradient of the Riemannian distance function is

$$\operatorname{grad}_{x} d(x, y)^{2} = -2 \operatorname{Log}_{x}(y).$$

So, gradient of the sum-of-squared distance function is

$$\operatorname{grad}_{x} \sum_{i=1}^{N} d(x, x_{i})^{2} = -2 \sum_{i=1}^{N} \operatorname{Log}_{x}(x_{i}).$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

 $\mu_0 = \mathbf{x}_1$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \frac{\text{Log}_{\mu_k}(\mathbf{x}_i)}{\mu_{k+1}} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input: $\mathbf{x}_1, \dots, \mathbf{x}_N \in M$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$
$$\mu_{k+1} = \text{Exp}_{\mu_k}(\delta \mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \operatorname{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \mathrm{Exp}_{\mu_k}(\delta\mu)$$

Gradient Descent Algorithm:

Input:
$$\mathbf{x}_1, \dots, \mathbf{x}_N \in M$$

$$\mu_0 = \mathbf{x}_1$$

$$\delta \mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)$$

$$\mu_{k+1} = \mathrm{Exp}_{\mu_k}(\delta\mu)$$

Example of Mean on Kendall Shape Space

Hand data from Tim Cootes

Example of Mean on Kendall Shape Space

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

Linear Statistics (PCA)

Curved Statistics (PGA)

PGA of Kidney

Mode 1 Mode 2

Mode 3

PGA Definition

First principal geodesic direction:

$$v_1 = rg \max_{\|v\|=1} \sum_{i=1}^N \|\operatorname{Log}_{\bar{y}}(\pi_H(y_i))\|^2,$$
 where $H = \operatorname{Exp}_{\bar{y}}(\operatorname{span}(\{v\}) \cap U).$

PGA Definition

First principal geodesic direction:

$$v_1 = rg \max_{\|v\|=1} \sum_{i=1}^N \|\operatorname{Log}_{\bar{y}}(\pi_H(y_i))\|^2,$$
 where $H = \operatorname{Exp}_{\bar{y}}(\operatorname{span}(\{v\}) \cap U).$

Remaining principal directions are defined recursively as

$$egin{aligned} v_k &= rg \max_{\|v\|=1} \sum_{i=1}^N \|\operatorname{Log}_{ar{y}}(\pi_H(y_i))\|^2, \ \end{aligned}$$
 where $H = \operatorname{Exp}_{ar{y}}(\operatorname{span}(\{v_1,\ldots,v_{k-1},v\}) \cap U).$

Tangent Approximation to PGA

Input: Data $y_1, \ldots, y_N \in M$

Output: Principal directions, $v_k \in T_\mu M$, variances, $\lambda_k \in \mathbb{R}$

$$\bar{y} = \text{Fr\'echet mean of } \{y_i\}$$

$$u_i = \operatorname{Log}_{\mu}(y_i)$$

$$\mathbf{S} = \frac{1}{N-1} \sum_{i=1}^{N} u_i u_i^T$$

$$\{v_k, \lambda_k\}$$
 = eigenvectors/eigenvalues of **S**.

Where to Learn More

Books

- Dryden and Mardia, Statistical Shape Analysis, Wiley, 1998.
- Small, The Statistical Theory of Shape, Springer-Verlag, 1996.
- Kendall, Barden and Carne, Shape and Shape Theory, Wiley, 1999.
- Krim and Yezzi, Statistics and Analysis of Shapes, Birkhauser, 2006.