PLSC 503 – Spring 2025 Bootstrapping and Missing Data

March 17, 2025

Bootstrapping...

The population is to the sample as the sample is to the bootstrap sample.

Practical (Nonparametric) Bootstrapping

The General Idea:

- Draw one bootstrap sample of size N with replacement from the original data,
- Estimate the parameter(s) $\tilde{\theta}_{k \times 1}$,
- Repeat steps 1 and 2 R times, to get $\tilde{\theta}_r$, $r \in \{1, 2, ...R\}$, comprising elements $\tilde{\theta}_{rk}$,
- Examine the empirical characteristics of the resulting distribution(s) of $\tilde{\theta}_{rk}$.

Why Bootstrap?

- It's intuitive.
- It's simple.
- It's robust.

Bootstrapping: "By Hand"

```
N<-10 # small sample!
reps<-1001
set.seed(1337)
X<-rnorm(N)
Y < -2 + 2 * X + rnorm(N)
data<-data.frame(Y,X)
fitOLS<-lm(Y~X)
CI<-confint(fitOLS)
BO<-numeric(reps)
B1<-numeric(reps)
for (i in 1:reps) {
  temp<-data[sample(1:N,N,replace=TRUE),]
  temp.lm<-lm(Y~X,data=temp)
  B0[i] <- temp.lm $ coefficients[1]
 B1[i] <-temp.lm$coefficients[2]
BvHandB0<-median(B0)
BvHandB1<-median(B1)
ByHandCI.BO<-quantile(B0,probs=c(0.025,0.975)) # <-- 95% c.i.s
ByHandCI.B1<-quantile(B1,probs=c(0.025,0.975))
```

Normal Residuals...

Bootstrapping Via boot

Bootstrapping Via simpleboot

```
library(simpleboot)
Simple<-lm.boot(fitOLS,reps)
SimpleB0<-perc(Simple,.50)[1]
SimpleB1<-perc(Simple,.50)[2]
Simple.CIs<-perc(Simple,perc(0.025,0.975))</pre>
```

Bootstrapping Results

Bootstrapping: Skewed Residuals

```
N<-10
reps<-1001
set.seed(1337)
X<-rnorm(N)
ustar<-rgamma(N,shape=0.2,scale=1)*6 # <- skewed u.s
Y<-2+2*X*(ustar-mean(ustar))
data<-data.frame(Y,X)
fitDLS<-lm(Y*X)
CI<-confinit(fitDLS)
```


Skewed Residuals: Results

When Should I Bootstrap?

A few canonical applications:

- When N is small, and the estimator is consistent (but not unbiased / efficient)
- When the estimand(s) is/are complex
- When the distribution of the estimand(s) is unknown
- As a robustness check on your findings when data are complex

Bootstrapping Resources

R things:

- A simple introduction at StatMethods
- Bootstrap in R (at DataCamp)
- Packages: boot, bootstrap, simpleboot, car::Boot, broom (tidy), many more

Other Resources:

- Efron's original (1979) paper
- Chernick and Labudde (2011) (a solid R-based bootstrapping book)
- A good little online intro, by James Scott
- Many other books, etc.

Missing Data

Missing Data, Part I: Why?

Why are data missing?

- The observation itself does not exist
- Data don't exist for that observation
- Data exist, but are *impossible* to measure
- Data exist, but were not measured

Missing Data, Part II: Flavors

Notation:

$$X_i \in \{W_i, Z_i\}$$

 \mathbf{W}_i have some missing values, \mathbf{Z}_i are "complete"

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data, Part II: Rubin's Flavors

Missing completely at random ("MCAR"):

$$\textbf{R} \perp \{\textbf{Z}, \textbf{W}\}$$

Missing at random ("MAR"):

$$\textbf{R} \perp \textbf{W} | \textbf{Z}$$

Anything else is "informatively" (or "non-ignorably," or sometimes "MNAR") missing.

MCAR vs. MAR vs. MNAR, Explained

H: Homework

H*: Homework with missing values

A: Attribute of student

D: Dog (missingness mechanism)

(Source)

Missing Data: Consequences

In general:

MCAR:

- · Missing data are a fully random sample of all the data
- $\cdot \to \mathsf{Missingness}$ does not bias $\hat{\theta}$, but
- · There is some loss of information (and therefore efficiency)

MAR

- · Missing data are a nonrandom sample of all the data
- · Ignoring missingness can lead to bias in $\hat{\theta}$, but
- · Conditioning on the variable(s) that drive the missingness can eliminate the bias

• Informative Missingness / MNAR

- · Missing data are a nonrandom sample of all the data
- · Ignoring missingness can lead to bias in $\hat{\theta}$
- · In general, conditioning cannot eliminate the bias

Example, Simulated

```
> set.seed(7222009)
> Npop <- 1000
> X<-runif(Npop,0,10) # NOTE: X, Z are correlated a bit...
> Z<-(0.3*X)+(0.7*runif(Npop,0,10))
> Y<-0+(2*X)+(2*Z)+rnorm(Npop,mean=0,sd=4)</pre>
> DF<-data.frame(X=X,Z=Z,Y=Y)
> fit.pop<-lm(Y~X+Z,DF)</pre>
> summary(fit.pop)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4051
                        0.3260 1.24
                                          0.21
X
             1.9553 0.0466 41.97 <2e-16 ***
             1.9812
                       0.0617 32.09 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 3.98 on 997 degrees of freedom
```

Multiple R-squared: 0.823, Adjusted R-squared: 0.823 F-statistic: 2.32e+03 on 2 and 997 DF, p-value: <2e-16

Simulated MCAR

```
> pmis < -0.50
> DF$Ymcar<-rbinom(Npop,1,pmis)</pre>
> DF$Ymcar<-ifelse(DF$Ymcar==1,NA,DF$Y)</pre>
>
> # Regression w/listwise deletion:
>
> fit.s<-lm(Ymcar~X+Z.DF) # <-- looks fine
> summary(fit.s)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4442 0.4653 0.95 0.34
Х
             1.9661 0.0658 29.87 <2e-16 ***
             1.9763 0.0862 22.92 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4 on 507 degrees of freedom
  (490 observations deleted due to missingness)
Multiple R-squared: 0.822, Adjusted R-squared: 0.821
F-statistic: 1.17e+03 on 2 and 507 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

Simulated MAR Y

```
> set.seed(7222009)
> DF$Ymar<-rbinom(Npop,1,(DF$Z/10))</pre>
> DF$Ymar<-ifelse(DF$Ymar==1,NA,DF$Y)</pre>
>
> summary(lm(Ymar~X,DF))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        0.3610 10.1 <2e-16 ***
(Intercept) 3.6600
X
             2.9923
                        0.0648 46.2 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4.75 on 547 degrees of freedom
  (451 observations deleted due to missingness)
Multiple R-squared: 0.796, Adjusted R-squared: 0.795
F-statistic: 2.13e+03 on 1 and 547 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

More MAR: Add Z...

```
> summary(lm(Ymar~X+Z,DF))
Call:
lm(formula = Ymar ~ X + Z, data = DF)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2529
                       0.4367 0.58 0.56
X
             2.0200
                       0.0663 30.49 <2e-16 ***
             1.9499 0.0979 19.91 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 4.02 on 499 degrees of freedom
  (498 observations deleted due to missingness)
Multiple R-squared: 0.801, Adjusted R-squared: 0.8
F-statistic: 1e+03 on 2 and 499 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

Informative Missingness / "MNAR"

```
> set.seed(7222009)
> DF$Yim<-rbinom(Npop,1,rescale(DF$Z-(4*DF$Y)))</pre>
> DF$Yim<-ifelse(DF$Yim==1,NA,DF$Y)
>
> summary(lm(Yim~X+Z,DF))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0518 0.5463 3.76 0.00019 ***
X
             1.8420 0.0671 27.45 < 2e-16 ***
             1.9171 0.0859 22.32 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.85 on 465 degrees of freedom
  (532 observations deleted due to missingness)
Multiple R-squared: 0.797, Adjusted R-squared: 0.796
F-statistic: 911 on 2 and 465 DF, p-value: <2e-16
```

Do That A Bunch Of Times...

A Real-Data Examples: 2020 ANES

Model is:

```
Biden Thermometer; = \beta_0 + \beta_1 R's Conservatism; +
= \beta_2 R Labor Union; + \beta_3 Female_i +
= \beta_4 Latino_i + \beta_5 Age / 10_i +
= \beta_6 Education_i + u_i
```

Data: ANES 2016-2020 Panel data, 2020 pre-election survey (N = 2839).

Three models:

- All data (N = 2291)
- 67% MCAR (via simulation) (N = 709)
- (MNAR) Data *only* on individuals who stated that they "strongly approved" of how then-President Trump was doing his job (N = 743)

Biden Thermometer Models

	Dependent variable:						
	Biden Thermometer Score						
	Complete	2/3 MCAR data	MNAR (Trump Supporters)				
R's Conservatism	-14.060***	-14.070***	-5.340***				
	(0.336)	(0.613)	(0.627)				
R in Labor Union	-0.710	0.168	-2.817				
	(1.578)	(2.723)	(2.004)				
R is Female	1.943*	3.454*	1.384				
	(1.135)	(2.029)	(1.317)				
R is Latino	9.251***	10.880***	1.818				
	(2.042)	(3.483)	(2.835)				
R's Age(/10)	3.106***	3.018***	0.524				
0.00	(0.357)	(0.634)	(0.432)				
R's Education	0.666	1.330	-0.234				
	(0.542)	(0.978)	(0.663)				
Constant	86.870***	82.890***	40.440***				
	(3.306)	(5.915)	(4.750)				
Observations	1,942	583	621				
R ²	0.497	0.511 0.114					
Adjusted R ²	0.495	0.506 0.105					
Residual Std. Error	24.770 (df = 1935)	24.240 (df = 576) 16.350 (df = 614)					
F Statistic	318.300*** (df = 6; 1935)	100.500*** (df = 6; 576)	13.150*** (df = 6; 614)				

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Biden Thermometer Models (II)

How Much Missing Data Is A Problem?

"It is often supposed that there exists something like a critical missing rate up to which missing values are not too dangerous. The belief in such a global missing rate is rather stupid."

- Vach (1994, 113)

What to Do About Missing Data?

- Listwise Deletion...
- Mean Substitution / Imputation
- "Nearest Neighbor" methods
- "Hot Deck" Imputation
- Multiple Imputation
- Model-Based Solutions

MAR Data

For MAR data:

$$\mathbf{R} \perp \mathbf{W} | \mathbf{Z}$$

so W and Z factorize independently.

Sources of variation we need to consider:

- 1. Prediction
- 2. Predictive variation
- 3. Parameter variation / uncertainty

MAR: Multiple Imputation

Multiple Imputation (continued)

Original Data X With Missing Data

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	•	X_{22}	X_{32}	•		X_{K2}
3	X ₁₃	X_{23}	•	X_{43}		X_{K3}
4	X ₁₄	•	X_{34}	X_{44}		X_{K4}
5	•	X_{25}	X_{35}	•		•
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		•	•	•	•	•
Ν	X _{1 N}	X2N	X3N	XAN		XKN

Iteration One:

Step One: "Fill In" Missing Values of X

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	R_{12}	X_{22}	X_{32}	R_{42}		X_{K2}
3	X_{13}	X_{23}	R_{33}	X_{43}		X_{K3}
4	X_{14}	R_{24}	X_{34}	X_{44}		X_{K4}
5	R_{15}	X_{25}	X_{35}	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
		•	•	•		
:		:	:	:	:	:
Ν	Y	Υ	Υ	Υ		Υ
/ V	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Two: Use $\{X_2, X_3, ... X_K\}$ To Impute X_1^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X_{11}	X_{21}	X_{31}	X_{41}		X_{K1}
2	$ I_{12}^{(1)} $	X_{22}	X_{32}	R_{42}		X_{K2}
3	X ₁₃	X_{23}	R_{33}	X_{43}		X_{K3}
4	X_{14}	R_{24}	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X_{35}	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	•		:	:
•	•	•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Three: Use The Imputed X_1 , Along With $\{X_3, X_4, ... X_K\}$ To Impute X_2^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X ₂₁	X ₃₁	X_{41}		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X_{32}	R_{42}		X_{K2}
3	X ₁₃	X_{23}	R_{33}	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X ₂₅	X ₃₅	R_{45}		R_{K5}
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	•	:	:
•		•	•	-	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Four: Use The Imputed X_1 and X_2 , Along With $\{X_4,...X_K\}$ To Impute X_3^{mis}

i	X_1	X_2	<i>X</i> ₃	X_4		X_K
1	X ₁₁	X ₂₁	X ₃₁	X ₄₁		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X ₃₂	R_{42}		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X_{14}	$I_{24}^{(1)}$	X ₃₄	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X ₃₅	R_{45}		R_{K5}
6	X_{16}	X_{26}	X ₃₆	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		•	•	•	•	•
Ν	X_{1N}	X_{2N}	X _{3N}	X_{4N}		X_{KN}

(etc.)

Step K + 1: Use The Imputed $X_1, X_2, ... X_{K-1}$ To Impute X_K^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X_{31}	X_{41}		X_{K1}
2	$I_{12}^{(1)}$	X_{22}	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(1)}$	X_{25}	X_{35}	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•		•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Iteration Two:

Step One: Use The Imputed $X_2, X_3, ... X_K$ To Impute X_1^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X_{11}	X ₂₁	X ₃₁	X ₄₁		X_{K1}
2	$I_{12}^{(2)}$	X_{22}	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(1)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X_{25}	X_{35}	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:		:	•	:	:	:
•	•	•	•	•	•	•
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Step Two: Use The Imputed $X_1, X_3, ... X_K$ To Impute X_2^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X ₃₁	X_{41}		X_{K1}
2	$I_{12}^{(2)}$	X_{22}	X_{32}	$I_{42}^{(1)}$		X_{K2}
3	X ₁₃	X ₂₃	$I_{33}^{(1)}$	X_{43}		X_{K3}
4	X_{14}	$I_{24}^{(2)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X ₂₅	X ₃₅	$I_{45}^{(1)}$		$I_{K5}^{(1)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	:
•	· ·	•	•	•	•	•
Ν	X _{1 N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

(etc.)

Step K: Use The Imputed $X_1, X_2, ... X_{K-1}$ To Impute X_K^{mis}

i	X_1	X_2	X_3	X_4		X_K
1	X ₁₁	X_{21}	X_{31}	X ₄₁		X_{K1}
2	$I_{12}^{(2)}$	X_{22}	X_{32}	$I_{42}^{(2)}$		X_{K2}
3	X ₁₃	X_{23}	$I_{33}^{(2)}$	X_{43}		X_{K3}
4	X ₁₄	$I_{24}^{(2)}$	X_{34}	X_{44}		X_{K4}
5	$I_{15}^{(2)}$	X_{25}	X_{35}	$I_{45}^{(2)}$		$I_{K5}^{(2)}$
6	X_{16}	X_{26}	X_{36}	X_{46}		X_{K6}
:	:	:	:	:	:	-
•		•	•	•	•	-
Ν	X_{1N}	X_{2N}	X_{3N}	X_{4N}		X_{KN}

Multiple Imputation: Summary

Basically:

- Repeat this process for $J \approx 10$ iterations until convergence of the $I_{ki}^{(j)}$ s.
- Output the resulting imputed data **X**⁽¹⁾.
- Repeat this entire process M times to create M imputed datasets $\{\mathbf{X}^{(1)}, \mathbf{X}^{(2)}, ... \mathbf{X}^{(M)}\}.$
- Rule of thumb: "Set M ≥ the percentage of cases in your data with missingness."
- Estimate models and conduct inference using multiple analysis and model averaging (see e.g. Schafer 1997, Ch. 4).

MNAR Data

For MNAR data:

$$Pr(\mathbf{R}) = f(\mathbf{W}, \mathbf{Z})$$

i.e., missingness is nonignorable.

Common causes / situations:

- Omitted variables (\rightarrow can't condition on all elements of **Z**)
- Differential response due to unmeasured factors
- Truncation / censoring

MNAR and Model-Based Solutions

For MNAR data, we must model the joint distribution Pr(X, R)...

Approaches:

- Selection model: Pr(X, R) = Pr(X) Pr(R|X)
 - · E.g., Heckman (1976, 1979, etc.)
 - · Specifies a (usually, regression) model for $Pr(\mathbf{R} \mid X)$

• Pattern-Mixture model:
$$Pr(\mathbf{X}, \mathbf{R}) = Pr(\mathbf{X}|\mathbf{R}) Pr(\mathbf{X})$$

= $Pr(\mathbf{X}|\mathbf{R} = 0) Pr(\mathbf{R} = 0) + Pr(\mathbf{X}|\mathbf{R} = 1) Pr(\mathbf{R} = 1)$

- · E.g., Glynn, Laird, and Rubin (1986)
- · Mixture-type model across "responders" and "non-responders"
- Others... [see, e.g., Little and Rubin (2002)]

Multiple Imputation Example: ANES

Earlier, we created a data frame with \approx 75% MCAR missingness on the BidenThermometer variable:

```
> describe(MCAR.ANES)
                               sd median trimmed mad min max range skew kurtosis
MCARRidenTherm
                1 583 47.85 34.50
                                    50.0
                                          47.66 51.89 0.0 100 100.0 -0.12
                                                                          -1.43 1.43
RConservatism
                2 1942 4.11 1.75
                                    4 0
                                           4.11 2.97 1.0
                                                              6.0 -0.05
                                                                          -1.14 0.04
RHHLaborUnion
                3 1942
                       0.15 0.36
                                    0.0
                                           0.06 0.00 0.0
                                                         1 1.0 1.95
                                                                         1.80 0.01
RFemale
                4 1942
                      0.52 0.50
                                    1.0
                                           0.53 0.00 0.0
                                                        1 1.0 -0.10
                                                                         -1.99 0.01
RLatino
              5 1942 0.09 0.28
                                    0.0
                                           0.00 0.00 0.0 1 1.0 2.95
                                                                         6.71 0.01
RAge10
                6 1942 5.27 1.62
                                    5.4
                                           5.29 2.08 1.9 8 6.1 -0.08
                                                                         -1.13 0.04
REducation
                7 1942 3.57 1.07
                                    4.0
                                           3.62 1.48 1.0 5 4.0 -0.26
                                                                         -0.67 0.02
```

We can multiply impute values for MCARBidenTherm using (e.g.) mice:

```
> mice.mcar<-mice(McAR.ANES,m=75,seed=7222009) # MICE object

iter imp variable
1 1 MCARBidenTherm
1 2 MCARBidenTherm
1 3 MCARBidenTherm
.
.
.
5 74 MCARBidenTherm
5 75 MCARBidenTherm</pre>
```

Multiple Imputation Example: ANES (continued)

Re-run the regression on the multiply-imputed data:

```
> fit.imputed.mcar<-with(mice.mcar.lm(MCARBidenTherm~RConservatism+
                        RHHLaborUnion+RFemale+RLatino+RAge10+
                        REducation))
> summary(pool(fit.imputed.mcar))
          term estimate std.error statistic
                                              df p.value
    (Intercept) 84.5889
                           5.1475
                                   16.4330 152.9 1.336e-35
2 RConservatism -14.0159
                           0.5088 -27.5478 163.4 2.676e-63
3 RHHLaborUnion 0.4795
                           2.3107
                                    0.2075 179.2 8.358e-01
       RFemale 3.5353
                          1.9616 1.8022 123.1 7.396e-02
       RLatino 12.0907
                          3.2318 3.7412 147.3 2.617e-04
        RAge10 2.8790
                           0.5532
                                    5.2045 154.3 6.114e-07
    REducation 0 8884
                           0.9066
                                    0 9800 131 2 3 289e-01
```

Compare to the "complete" data::

```
> summary(fit.all)
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                86.868
                            3.306
                                    26.28
                                          < 2e-16 ***
RConservatism -14.060
                            0.336
                                  -41.88
                                          < 2e-16 ***
RHHI aborlinion
               -0.710
                            1.578
                                    -0.45
                                              0.653
RFomale
                1.943
                            1.135
                                     1.71
                                             0.087 .
RLatino
                 9.251
                            2.042
                                     4.53 0.0000063 ***
RAge10
                 3.106
                            0.357
                                     8.71
                                            < 2e-16 ***
                 0.666
                            0.542
                                     1.23
                                             0.219
REducation
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Residual standard error: 24.8 on 1935 degrees of freedom
Multiple R-squared: 0.497, Adjusted R-squared: 0.495
F-statistic: 318 on 6 and 1935 DF. p-value: <2e-16
```

Does this work for MNAR data?

MNAR ANES data:

REducation -0 004455

```
> describe(MNAR.ANES)
              vars
                      n mean
                                sd median trimmed mad min max range skew kurtosis
MNARRidenTherm
                1 621 12,40 17.28
                                             9.14 0.00 0.0 90 90.0 1.53
                                                                             2.24 0.69
RConservatism
                 2 1942 4.11 1.75
                                      4.0
                                             4.11 2.97 1.0
                                                                6.0 -0.05
                                                                            -1.140.04
RHHI aborlinion
                3 1942 0.15 0.36
                                      0.0
                                            0.06 0.00 0.0
                                                              1.0 1.95
                                                                             1.80 0.01
RFomale
                4 1942 0.52 0.50
                                      1.0
                                             0.53 0.00 0.0
                                                           1 1.0 -0.10
                                                                            -1.99 0.01
RI.at.ino
                5 1942 0.09 0.28
                                      0.0
                                            0.00 0.00 0.0
                                                          1 1.0 2.95
                                                                             6.71 0.01
RAge10
                 6 1942 5.27 1.62
                                      5.4
                                            5.29 2.08 1.9
                                                          8 6.1 -0.08
                                                                         -1.13 0.04
REducation
                7 1942 3.57 1.07
                                      4.0
                                            3.62 1.48 1.0 5
                                                                4.0 -0.26
                                                                            -0.67 0.02
> mice.mnar<-mice(MNAR.ANES,m=75,seed=7222009) # MICE object
iter imp variable
    1 MNARBidenTherm
     2 MNARBidenTherm
> fit.imputed.mnar<-with(mice.mnar,lm(MNARBidenTherm~RConservatism+RHHLaborUnion+RFemale+RLatino+
                                    RAge10+REducation))
> summary(pool(fit.imputed.mnar))
          term estimate std.error
                                   statistic
                                                    p.value
                           4.9672
    (Intercept) 41.816443
                                  8.418599 153.9 2.472e-14
2 RConservatism -5 478921
                           0.5402 -10.141586 132.6 3.051e-18
3 RHHLaborUnion -2.058441
                           2.5739 -0.799749 129.1 4.253e-01
4
       RFemale 0 936825
                          1.8626 0.502967 127.6 6.159e-01
                           3.5359 0.869358 115.8 3.864e-01
       RLatino 3.073983
        RAge10 0.508512
                           0.5681 0.895163 135.3 3.723e-01
```

0.7982 -0.005581 162.0 9.956e-01

Imputed Thermometer Model Estimated $\hat{\beta}$ s

Missing Data Resources, R and Otherwise

Check out:

- The Missing Data CRAN Task View
- Packages:
 - · Amelia
 - · mi, mice, and miceFast
 - miceMNAR (MNAR imputation using a Heckman-style selection model)
 - naniar (tidy-cult, but enables cool visualizations)
 - VIM (joint visualization and imputation of missing data; also used to have a GUI)
 - · Many others...
- van Buuren's Flexible Imputation of Missing Data 2e e-book