This paper is not to be removed from the Examination Halls

UNIVERSITY OF LONDON

ST104A ZA

BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences, the Diplomas in Economics and Social Sciences and Access Route

Statistics 1

Friday, 03 May 2013: 10.00am to 12.00pm

Candidates should answer **THREE** of the following **FOUR** questions: **QUESTION 1** of Section A (50 marks) and **TWO** questions from Section B (25 marks each). **Candidates are strongly advised to divide their time accordingly.**

A list of formulae and extracts from statistical tables are provided after the final question on this paper.

Graph paper is provided at the end of this question paper. If used, it must be detached and fastened securely inside the answer book.

A calculator may be used when answering questions on this paper and it must comply in all respects with the specification given with your Admission Notice. The make and type of machine must be clearly stated on the front cover of the answer book.

SECTION A

Answer all parts of Question 1 (50 marks in total).

- 1. (a) Classify each one of the following variables as measurable (continuous) or categorical. If a variable is categorical, further classify it as nominal or ordinal. Justify your answer. (Note that no marks will be awarded without justification.)
 - i. Country of birth.
 - ii. Favourite brand of soft drink.
 - iii. Rank of country by academic quality according to ratings given by educational specialists.
 - iv. Temperature in degrees Celsius.

[8 marks]

(b) The table below contains the ages of the volunteers for a project in two different years:

2011									
2012	20	22	18	22	20	22	24	22	20

- i. Find the mean mark and the median mark for each year.
- ii. Calculate the range of the marks for each year and give an explanation for any differences you find.
- iii. Calculate the standard deviation of the marks for each year and give an explanation for any differences you find.
- iv. Comment on the differences in the mean and median for the two years that you found in part i. For this data set, which do you think would give a better description of the difference in marks: the mean or the median? Explain briefly.

[12 marks]

- (c) Monthly household expenditure in country A is normally distributed with a mean of £1200 per week and a standard deviation of £400 per week. In country B it is also normally distributed but with a mean of £960 per week and a standard deviation of £200 per week. Which country has a higher proportion of households spending less than £800? [4 marks]
- (d) We would like to design a survey to estimate the average number of hours university students spend studying per week. How many students must we randomly select to be 95 percent confident that the sample mean is within 2 hours of the population mean? Assume that a previous survey has shown that the standard deviation of hours spent studying is 6.95 hours. [3 marks]

(e) Suppose that $x_1 = 4$, $x_2 = -3$, $x_3 = 5$, $x_4 = 0$, $x_5 = 3$, and $y_1 = 3$, $y_2 = 2$, $y_3 = 1$, $y_4 = 0$, $y_5 = 1$. Calculate the following quantities:

i.
$$\sum_{i=1}^{5} x_i$$
 ii. $\sum_{i=2}^{5} 2x_i(y_i+1)$ iii. $x_2^2 + \sum_{i=1}^{3} (x_i + y_i^3)$

[6 marks]

- (f) In an introductory economics class, the numbers of males and females are 16 and 24, respectively.
 - i. A student is selected randomly from the class. What is the probability the student is female?
 - ii. A student is selected at random and removed from the class. A second student is then selected. What is the probability that one of the students is male and the other is female?
 - iii. What is the probability that the second student is male, given that the first student is female and removed from the class?
 - iv. In previous years it was found that 80% of males pass the exam and 85% of females pass the examination. Based on the available information, find the probability that a student who passes the exam is female.

[8 marks]

- (g) State whether the following are true or false and give a brief explanation. (*Note that no marks will be awarded for a simple true/false answer.*)
 - i. In an observational study, a control group provides an essential tool to establish causal relationships.
 - ii. If two variables are correlated we can conclude that one causes the other.
 - iii. The mean income of British households can be expected to be larger than the median income of British households.

[6 marks]

(h) In the context of sampling, explain the difference between item non-response and unit non-response. [3 marks]

SECTION B

Answer two questions from this section (25 marks each).

2. (a) A social survey in the United States asked subjects, 'Would you say that homeopathy is very scientific, sort of scientific, or not at all scientific?' The table below cross-classifies their responses with their highest level of education.

		Homeopathy is scientific									
Highest degree	Very	Sort of	Not at all	Total							
Less than High school	46 (11%)	168 (41%)	196 (48%)	410 (100%)							
High school	100(5%)	572 (31%)	1148 (63%)	1820 (100%)							
College or higher	32 (2%)	248 (18%)	1076 (79%)	1356 (100%)							
Total	178(5%)	988 (28%)	2420 (67%)	3586 (100%)							

- i. Based on the data in the table, and without doing a significance test, how would you describe the relationship between education and opinion on whether or not homeopathy is scientific? [4 marks]
- ii. Calculate the χ^2 statistic and use it to test for independence, using a 1% significance level. What do you conclude? [9 marks]
- (b) i. Define each of the following:
 - Simple random sampling
 - Stratified random sampling.

[4 marks]

- ii. Why might a researcher prefer to take a stratified random sample rather than a simple random sample? Give two reasons. [3 marks]
- iii. You have been asked to design a nation-wide survey in your country to find out about the smoking habits of adults. Give two stratification factors you might use, and explain why you have chosen them. [5 marks]

3. The level of infant mortality (y) is represented by the number of baby deaths for every 1000 births. For 12 areas these are shown in the following table. For each area, the percentage (x) of babies born into families earning at least £25,000 is also shown.

Area	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L
Percentage (x)	20	6	10	21	12	36	6	19	26	13	21	16
Infant mortality (y)	5	17	16	8	15	5	25	12	11	11	7	12

The summary statistics for these data are:

Sum of x data: 206	Sum of the squares of x data: 4356
Sum of y data: 144	Sum of the squares of y data: 2088
Sum of the pr	coducts of x and y data: 2036

- (a) i. Draw a scatter diagram of these data on the graph paper provided. Label the diagram carefully. [4 marks]
 - ii. Calculate the sample correlation coefficient. Interpret your findings.

[3 marks]

[2 marks]

- iii. Calculate the least squares line of y on x and draw the line on the scatter diagram. [4 marks]
- iv. Using the equation you found in iii., obtain the predicted infant mortality for an area where 38% of babies are born into families earning at least £25,000. Do you think this value is realistic? Justify your answer.[2 marks]
- (b) A survey is conducted to compare public local attitudes towards environmental policies. A number of people in two areas of interest are sampled, and asked if they are satisfied with their local environmental policy. The results of this survey are shown in the following table.

	Sample size	Number satisfied
Area A	168	127
Area B	207	132

- i. You are asked to consider an appropriate hypothesis test to determine whether there is a difference between the two areas in the proportion who are satisfied. Test at two appropriate significance levels and comment on your findings. Specify the test statistic you use and its distribution under the null hypothesis. [7 marks]
- ii. State clearly any other assumptions you make.
- iii. Give a 98% confidence interval for the proportion of people in Areas A and B combined who are satisfied, assuming the respective sample sizes are proportional to population sizes. [3 marks]

4. (a) i. Carefully construct a box plot on the graph paper provided to display the following yearly incomes of a group of people, measured in £1000:

9 6 12 24 21 57 6 15 9 12 30 36

[8 marks]

- ii. Based on the shape of the box plot you have drawn, describe the distribution of the data. [2 marks]
- iii. Name two other types of graphical displays that would be suitable to represent the data. Briefly explain your choices. [3 marks]
- (b) A new treatment has been devised with the aim of reducing blood pressure for people with high blood pressure. Each participant's blood pressure was measured before and after the program to see if the treatment is effective. The following data were obtained:

Before	After
177	174
142	146
146	144
162	159
145	145
162	163
152	156
154	150
171	172

- i. Carry out an appropriate hypothesis test to determine whether the treatment is effective for reducing blood pressure. State the test hypotheses, and specify your test statistic and its distribution under the null hypothesis. Comment on your findings. [6 marks]
- ii. State any assumptions you made.

[2 marks]

- iii. Give a 90% confidence interval for the difference in means.
- [2 marks]
- iv. On the basis of the data alone, would you recommend the programme to a friend who suffers from high blood pressure? Explain why or why not.

[2 marks]

END OF PAPER

ST104a Statistics 1

Examination Formula Sheet

Expected value of a discrete random variable:

$$\mu = E[X] = \sum_{i=1}^{N} p_i x_i$$

The transformation formula:

$$Z = \frac{X - \mu}{\sigma}$$

Finding Z for the sampling distribution of the sample proportion:

$$Z = \frac{P - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

Confidence interval endpoints for a single mean (σ unknown):

$$\bar{x} \pm t_{n-1} \frac{s}{\sqrt{n}}$$

Sample size determination for a mean:

$$n \ge \frac{Z^2 \sigma^2}{e^2}$$

Z-test of hypothesis for a single mean (σ known):

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Standard deviation of a discrete random variable:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=1}^{N} p_i (x_i - \mu)^2}$$

Finding Z for the sampling distribution of the sample mean:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Confidence interval endpoints for a single mean (σ known):

$$\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$

Confidence interval endpoints for a single proportion:

$$p \pm z \sqrt{\frac{p(1-p)}{n}}$$

Sample size determination for a proportion:

$$n \ge \frac{Z^2 p(1-p)}{e^2}$$

t-test of hypothesis for a single mean (σ unknown):

$$t = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Z-test of hypothesis for a single proportion:

$$Z \cong \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

t-test for the difference between two means (variances unknown):

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Pooled variance estimator:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Confidence interval endpoints for the difference in means in paired samples:

$$\bar{x}_d \pm t_{n-1} \frac{s_d}{\sqrt{n}}$$

Pooled proportion estimator:

$$P = \frac{R_1 + R_2}{n_1 + n_2}$$

 χ^2 test of association:

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Spearman rank correlation:

$$r_s = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Z-test for the difference between two means (variances known):

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Confidence interval endpoints for the difference between two means:

$$(\bar{x}_1 - \bar{x}_2) \pm t_{n_1 + n_2 - 2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

t-test for the difference in means in paired samples:

$$t = \frac{\bar{X}_d - \mu_d}{S_d / \sqrt{n}}$$

Z-test for the difference between two proportions:

$$Z = \frac{(P_1 - P_2) - (\pi_1 - \pi_2)}{\sqrt{P(1 - P)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Confidence interval endpoints for the difference between two proportions:

$$(p_1 - p_2) \pm z \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Sample correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right)\left(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2\right)}}$$

Simple linear regression line estimates:

$$b = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

$$a = \bar{y} - b\bar{x}$$

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = \mathbf{1} - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

x	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0.00	0.5000	0.40	0.6554	o·80	o·7881	1.20	0.8849	1.60	0.9452	2.00	0.97725
·o1	.5040	·41	·6591	·81	·791 0	.31	·8869	·61	.9463	.oı	.97778
.02	5080	.42	.6628	·8 2	.7939	.22	.8888	·6 2	.9474	.02	·97831
.03	5120	.43	·6664	83	.7967	.23	·89 0 7	·63	9484	.03	·97882
·04	.5160	·44	·6700	·84	.7995	.24	.8925	·64	.9495	·04	.97932
-	Ū		•	_		-					
0.02	0.2199	0.45	0.6736	o·85	0.8023	1.25	0.8944	1.65	0.9502	2.05	0.97982
·06	5239	·46	6772	·86	·8051	.26	·8962	.66	.9515	.06	·98030
.07	.5279	·47	·68 o 8	·8 ₇	·8o78	.27	∙8980	·6 ₇	9525	.07	.98077
·08	.2319	·48	·6844	⋅88	·8106	·28	·8997	.68	.9535	.08	.98124
.09	.2359	· 49	·6879	.89	.8133	.29	.9012	.69	·9545	.09	.98169
0.10	0.5398	0.20	0.6915	0.90	0.8159	1.30	0.9032	1.40	0.9554	2.10	0.98214
·II	.5438	.21	·69 50	.91	·8186	.31	.9049	.41	·9564	·II	.98257
.13	·5478	.52	·6985	·92	.8212	.32	·9 o 66	.72	.9573	·12	·98300
.13	.5517	·53	.7019	.93	·8238	.33	·9 0 82	.73	·9 5 82	.13	.98341
·14	.5557	·5 4	.7054	·9 4	·8264	.34	.9099	·74	.9591	.14	·98382
0.12	0.5596	0.55	0.7088	0.95	0.8289	1.35	0.9112	1.75	0.9599	2.15	0.98422
·16	•5636	·56	.7123	·96	·8315	·36	.9131	· 7 6	.9608	.16	·98461
·17	•5675	·57	.7157	·9 7	·8340	.37	9147	.77	.9616	.17	·98500
٠18	.5714	·58	.7190	·98	·836 5	.38	·9162	·78	.9625	81٠	·9 ⁸ 537
.19	.5753	.59	.7224	.99	·8389	.39	.9177	·79	.9633	.19	·9 ⁸ 574
0.30	0.5793	0.60	0.7257	1.00	0.8413	1.40	0.9192	1.80	0.9641	2.30	0.98610
.21	·5832	·61	.7291	·o1	·8 43 8	·4I	.9207	·81	.9649	.31	·98645
.22	·5871	·6 2	.7324	.02	·8461	.42	.9222	·82	·9656	.22	.98679
.53	.5910	·63	.7357	.03	.8485	·43	·9236	.83	·9664	.53	.98713
·24	.5948	·6 4	.7389	·04	·8508	·44	.9251	·8 ₄	·9671	·24	·9 ⁸ 745
0.25	0.5987	o·65	0.7422	1.05	0.8531	1.45	0.9265	r·85	0.9678	2.25	0.98778
26	.6026	.66	.7454	·06	·8554	·46	.9279	.86	.9686	·26	.98809
.27	.6064	·6 7	.7486	.07	·8577	47	9292	·8 ₇	.9693	.27	·9884 0
·28	6103	.68	·7517	·08	.8599	·48	·9306	.88	.9699	·28	·98870
· 2 9	.6141	.69	7549	.09	.8621	.49	.9319	.89	·97 0 6	·29	·98899
0.30	0.6179	0.40	0.7580	1.10	0.8643	1.20	0.9332	1.90	0.9713	2:30	0.98928
.31	6217	·71	7611	·ıı	·8665	.21	.9345	.91	.9719	.31	·989 56
.32	.6255	.72	7642	·12	·8686	.52	.9357	·92	.9726	.32	·9898 3
.33	.6293	.73	.7673	.13	·87 0 8	.53	.9370	.93	.9732	.33	.99010
.34	.6331	.74	.7704	.14	.8729	·5 4	·938 2	·94	.9738	·34	·99036
0.32	o·6368	0.75	0.7734	1.12	0.8749	1.55	0.9394	1.95	0.9744	2.35	0.99061
.36	.6406	·76	.7764	·16	·8770	·56	.9406	·96	.9750	·36	·99 0 86
.37	.6443	·77	7794	·17	·879 0	·57	·9418	·97	·9756	·37	.99111
.38	·648o	·78	.7823	·18	·8810	·58	.9429	·98	·9761	.38	.99134
.39	.6517	.79	.7852	.19	·8830	.29	.9441	.99	.9767	.39	.99158
0.40	0.6554	o·8o	0.7881	1.30	o·8849	1 ·60	0.9452	2.00	0.9772	2.40	0.99180

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

\boldsymbol{x}	$\Phi(x)$	x	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$	x	$\Phi(x)$	\boldsymbol{x}	$\Phi(x)$
2·40	0.99180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.12	0.99918
·41	.99202	.56	·99477	.71	·99664	.86	.99788	.oı	•99869	·16	.99921
.42	.99224	.57	.99492	.72	.99674	·8 ₇	.99795	.02	.99874	.17	99924
·43	.99245	·58	·99506	.73	•99683	-88	·99801	.03	.99878	·18	99926
·44	·99266	· 59	.99520	·74	•99693	.89	·99807	.04	·99882	.19	.99929
2.45	0.99286	2.60	0.99534	2.75	0.99702	2.90	0.99813	3.02	0.99886	3.30	0.00031
·46	.99302	·61	.99547	.76	99711	.01	.99819	.06	.99889	.31	.99934
·47	.99324	·62	·99560	.77	.99720	.92	.99825	.07	.99893	.22	.99936
·48	.99343	·63	.99573	.78	.99728	.93	.99831	.08	.99896	.23	.99938
· 4 9	·99361	·6 4	.99585	.79	.99736	·94	.99836	.09	.99900	.24	.99940
2.20	0.99379	2.65	0.99598	2.80	0.99744	2.95	0.99841	3.10	0.99903	3.25	0.99942
.21	·99396	.66	•99609	·81	99752	.96	•99846	.11	.99906	26	99944
.52	.99413	·6 7	·99621	· 82	.99760	.97	.99851	.13	.99910	.27	.99946
.23	·9943 o	∙68	.99632	-83	.99767	.98	.99856	.13	.99913	·28	.99948
·54	·99446	.69	•99643	∙84	.99774	.99	·99861	.14	.99916	.29	.99950
2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	3.12	0.99918	3.30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

2:075	2:262 0:9994	0.99990	0.99995
3.022 3.138 0.0003 3.102 0.0003	3·263 0·9994 3·320 0·9995	3.731 0.99990 3.759 0.99991 3.791 0.99993 3.826 0.99993	3.976 0.99995 0.99996
3 103 0.9991	3 320 0.9996	3 759 0.99992	3.970 0.99997
3.174 0.9993 0.9994	3·389 0·9996 3·480 0·9997	3 791 0.99993	4.055 0.99999 4.173 0.99999 4.417 1.00000
3 1/4 0.9993	3 400 0.9998	3.820 0.99994	4.173 0.99999
3 213 o·9994	3.615 0.9999 0.9998	3.867 0.99994	4.417

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-\frac{1}{4}x^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^6} + \frac{105}{x^8} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

P	x(P)	P	x(P)	P	x(P)	P	x(P)	\boldsymbol{P}	x(P)	P	x(P)
50	0.0000	5·0	1.6449	3.0	1.8808	2.0	2.0537	1.0	2.3263	0.10	3.0902
45	0.1257	4.8	1.6646	2.9	1.8957	1.9	2.0749	0.0	2.3656	0.00	3.1214
40	0.2533	4.6	1.6849	2.8	1.9110	1.8	2.0969	0.8	2.4089	0.08	3.1220
35	0.3853	4.4	1.7060	2.7	1.9268	1.7	2.1201	0.7	2.4573	0.02	3.1947
30	0.2244	4.3	1.7279	2.6	1.9431	1.6	2.1444	0.6	2.2121	o·06	3.2389
25	0.6745	4.0	1.7507	2.5	1.9600	1.2	2.1701	0.2	2.5758	0.02	3.2905
20	0.8416	3.8	1.7744	2.4	1.9774	1.4	2.1973	0.4	2.6521	0.01	3.7190
15	1.0364	3.6	1.7991	2.3	1.9954	1.3	2.2262	0.3	2.7478	0.002	3.8906
10	1.5816	3.4	1.8250	2.3	2.0141	1.3	2.2571	0.3	2.8782	0.001	4.2649
5	1.6449	3.5	1.8522	2·I	2.0335		2.2904	0.1	3.0902	0.0002	4.4172

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

The function tabulated is

$$F_{\nu}(x) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{0}^{x} t^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}t} dt$$

for integer $\nu \leq 25$. $F_{\nu}(x)$ is the probability that a random variable X, distributed as χ^2 with ν degrees of freedom, will be less than or equal to x. Note that $F_1(x) = 2\Phi(x^{\frac{1}{2}}) - 1$ (cf. Table 4). For certain values of x and $\nu > 25$ use may be made of the following relation between the χ^2 - and Poisson distributions:

$$F_{\nu}(x) = I - F(\frac{1}{2}\nu - I|\frac{1}{2}x)$$

where $F(r|\mu)$ is the Poisson distribution function (see Table 2). If $\nu > 25$, X is approximately normally distributed

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

with mean ν and variance 2ν . A better approximation is usually obtained by using the formula

$$F_{\nu}(x) \doteq \Phi(\sqrt{2x} - \sqrt{2\nu - 1})$$

where $\Phi(s)$ is the normal distribution function (see Table 4). Omitted entries to the left and right of tabulated values are 1 and 0 respectively (to four decimal places).

$\nu =$	r	$\nu =$	I	v =	2	$\nu =$	2	ν =	3	$\nu =$	3
x = 0.0	0.0000	x = 4.0	0.9545	$x = \mathbf{o} \cdot \mathbf{o}$	0.0000	x = 4.0	o·8647	$ x = \mathbf{o} \cdot \mathbf{o} $	0.0000	x = 4.0	0.7385
·I	.2482	·I	.9571	·r	·0488	·I	8713	·r	_	.2	.7593
.3	.3453	.2	•9596	.2	.0952	.3	.8775	.2	.0224	· 4	.7786
.3	·4161	.3	•9619	.3	.1393	.3	.8835	.3	•	· 6	7965
. 4	·4729	·4	·9641	.4	.1813	4	·8892	4	.0598	.8	.8130
0.2	0.5205	4.2	0.9661	0.5	0.2212	4.5	0.8946	0.2	0.0811	5.0	0.8282
.6	.5614	.6	·968o	·6	.2592	.6	.8997	.6	.1036	.2	.8423
.7	.5972	.7	·9698	.7	.2953	.7	.9046	.7	.1268	·4	.8553
⋅8	.6289	.8	.9715	·8	3297	. 8	.9093	.8	.1202	.6	.8672
.9	6572	.9	.9731	.9	3624	.9	.9137	.9	.1746	.8	·8782
1.0	0.6827	5.0	0.9747	1.0	0.3935	5.0	0.0170	1.0	0.1987	6∙0	o·8884
.1	.7057	·r	.9761	·1	·423I	·I	9219	·I	.2229	.2	·8977
.3	.7267	.2	.9774	.2	4512	.3	9257	.2	.2470	•4	.9063
.3	.7458	.3	.9787	.3	·478o	.3	.9293	.3	.2709	.6	9003
·4	.7633	·4	.9799	.4	.5034	·4	9328	4	*2945	.8	.9214
1.2	0.7793	5.2	0.9810	1.2	0.5276	5.2	0.9361	1.2	0.3177	7.0	0.9281
· 6	7941	.6	.9820	.6	.5507	·6	.9392	.6	.3406	·2	9342
·7	·8o77	.7	9830	.7	.5726	.7	9392	.7	.3631	·4	.9398
.8	.8203	8	.9840	.8	.5934	· 8	.9450	.8	.3821	.6	·9450
.9	.8319	.9	.9849	.9	.6133	.9	19477	9	·4066	.8	9497
2.0	0.8427	6·o	0.9857	2.0	0.6321	6∙o	0.9502	2.0	0.4276	8·o	0.9540
·I	8527	·r	.9865	.1	6501	.2	.9550	·1	.4481	.2	9579
2	·8620	.2	.9872	.2	.6671	·4	.9592	.2	·4681	·4	.9616
.3	·8706	.3	.9879	.3	.6834	· 6	.9631	.3	·4875	· 6	.9649
· 4	·8787	·4	·9886	.4	.6988	.8	·9666	·4	5064	.8	.9679
2.5	0.8862	6.5	0.9892	2.2	0.7135	7.0	o ·9698	2.5	0.5247	9.0	0.9707
· 6	-8931	.6	.9898	-6	.7275	.2	9727	.6	5425	·2	9733
.7	.8997	.7	.9904	.7	·7408	·4	9727	.7	·5598	·4	·9733
.8	.9057	.8	9909	.8	7534	.₹	·9735	.8	.5765	· 6	9730
.9	.9114	.9	9914	.9	.7654	.8	.9798	.9	.5927	.8	9777
3.0	0.9167	7.0	0.9918	3.0	0.7769	8·o	0.9817	3.0	0.6084	10.0	0.9814
·1	.9217	ī	.9923	.I	.7878	.2	.9834	J.	.6235	.2	.9831
.2	9264	.2	.9927	·2	.7981	·4	·9850	.2	.6382	·4	·9845
.3	.9307	.3	.9931	.3	.8080	.6	·9864	.3	.6524	·6	·9859
·4	.9348	·4	9935	·4	.8173	.8	.9877	.4	·666o	.8	·9871
3.2	0.9386	7:5	0.9938	3.2	0.8262	9.0	0.9889	2.5	0.6792	****	0.9883
·6	.9422	·6	9930	·6	·8347	9 0 •2,	.9899	3 [.] 5 ⋅6		11.0	.9893
.7	·9456	·7	9942	.7	·8428	4	9999		·6920	•2	
.8	.9487	.8	·9948	.8	·8504	·6	.9918	·7 ·8	·7043	·4 ·6	.9903
.9	.9517	.9	.9951	.9	·8 ₅₇₇	.8	9918	.9	·7161 ·7275	.8	.9919 .9911
4.0	0.9545	8·o	0.9953	4.0	0.8647	10.0	0.9933	4.0	0.7385	12.0	0.9926

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

$\nu =$	4	5	6	7	8	9	10	11	12	13	14
x = 0.5	0.0265	0.0079	0.0022	0.0006	0.0001						
1.0	.0902	.0374	.0144	.0052	.0018	0.0006	0.0003	0.0001			
1.2	1734	.0869	.0402	.0177	.0073	.0029	.0011	.0004	0.0001		
2.0	.2642	.1209	.0803	.0402	.0190	.0085	.0032	.0015	.0006	0.0002	0.0001
2.5	0.3554	0.2235	0.1312	0.0729	0.0383	0.0131	0.0001	0.0042	0.0018	0.0008	0.0003
3.0	4422	.3000	.1913	.1120	·0656	.0357	·0186	.0093	.0045	.0021	.0009
3.2	.5221	•3766	•2560	•1648	.1008	.0589	.0329	.0177	.0001	.0046	.0022
4.0	•5940	•4506	.3233	.2202	.1429	∙0886	.0527	.0301	.0166	.0088	.0042
4.2	•6575	.5201	.3907	.2793	.1906	1245	·0780	.0471	.0274	.0124	.0084
5.0	0.7127	0.5841	0.4562	0.3400	0.2424	0.1657	o·1088	o·o688	0.0420	0.0248	0.0142
5 [.] 5	•7603	.6421	.5185	.4008	.2970	.2113	•1446	.0954	•0608	.0375	.0224
6·o	.8009	.6938	.5768	•4603	.3528	.2601	.1847	·1266	·o839	.0538	.0335
6.2	.8352	.7394	.6304	.5173	·4086	.3110	.2283	·1620	.1112	.0739	.0477
7.0	·8641	· 7 794	.6792	.5711	·4634	.3629	2746	2009	1424	.0978	.0653
7.5	0.8883	0.8140	0.7229	0.6213	0.2162	0.4148	0.3225	0.2427	0.1771	0.1254	o·0863
8·o	·9084	.8438	.7619	.6674	.5665	4659	.3712	.2867	.2149	·1564	.1102
8.5	.9251	·869 3	.7963	·7094	·6138	.5154	·4199	.3321	.2551	1904	.1383
9.0	.9389	.8909	·8264	.7473	.6577	.5627	•4679	.3781	.2971	.2271	•1689
9.5	.9503	.9093	.8527	.7813	·6981	.6075	.5146	4242	.3403	.2658	.2022
10.0	0.9596	0.9248	0.8753	o·8114	0.7350	0.6495	0.5595	0 ·4696	0.3840	0.3061	0.2378
10.2	·9672	.9378	·8949	·838 o	•7683	·688 5	.6022	5140	·4278	.3474	.2752
11.0	.9734	·9486	.9116	·8614	.7983	.7243	.6425	.5567	.4711	•3892	.3140
11.2	·978 5	·957 7	.9259	·8818	·8251	.7570	·6801	.5976	.2134	.4310	.3536
12.0	·9826	·9652	-9380	·8994	·8 ₄ 88	.7867	.7149	•6364	·5543	·4724	.3937
12.5	0.9860	0.9712	0.9483	0.9147	o·8697	0.8134	0.7470	0.6727	0.5936	0.2129	0.4338
13.0	·9887	·9766	.9570	.9279	·888 2	·8374	•7763	.7067	•6310	.5522	4735
13.2	.9909	·9809	·9643	.9392	.9042	·8587	·803 0	.7381	·666 2	.5900	.2124
14.0	.9927	·9844	.9704	•9488	·9182	·8777	·8270	.7670	•6993	6262	.2203
14.2	.9941	.9873	9755	.9570	.9304	·8944	·8486	.7935	.7301	·6604	•5868
15.0	0.9953	0.9896	o·9797	0.9640	0.9409	0.9091	0.8679	0.8175	0.7586	0.6926	0.6218
15.2	.9962	.9916	.9833	-9699	.9499	.9219	·8851	.8393	•7848	.7228	.6551
1 6∙0	.9970	.9932	·9862	.9749	.9576	.9331	·9004	·8589	·8o88	.7509	∙6866
16.2	.9976	·9944	.9887	.9791	.9642	.9429	.9138	·8764	·8306	·7768	.7162
17.0	.9981	.9955	.9907	·9826	·9699	.9513	·9256	.8921	·8504 .	.8007	.7438
17:5	0.9985	0.9964	0.9924	0.9856	0.9747	0.9586	0.9360	0.9061	o·8683	0.8226	0.7695
18·0	.9988	.9971	.9938	·9880	.9788	.9648	.9450	.9184	·8843	·8425	.7932
18.2	.9990	9976	.9949	.0001	9822	.9702	.9529	.9293	.8987	·86o6	·8151
19.0	.9992	.9981	.9958	.9918	.9851	.9748	.9597	.9389	.9115	·8769	·8351
19.2	.9994	.9984	·9966	.9932	.9876	.9787	.9656	·9473	·9228	·8916	.8533
20	0.9995	o·9988	0.9972	0.9944	o·9897	0.9821	0.9707	0.9547	0.9329	0.9048	0.8699
21	.9997	·99 92	.9982	·996 2	.9929	.9873	.9789	·9666	·9496	.9271	·898 4
22	.9998	.9995	•9988	.9975	.9921	.9911	·9849	.9756	·962 5	·9446	.9214
23	.9999	.9997	.9992	.9983	•9966	-9938	·9893	.9823	.9723	.9583	.9397
24	.9999	.9998	.9995	.9989	·9977	9957	·9924	.9873	·9797	·9689	.9542
25	0.9999	0.9999	0.9997	0.9992	0.9984	0.9970	o·9947	0.9909	0.9852	0.9769	0.9654
26		.9999	.9998	.9995	.9989	·998 o	.9963	.9935	•9893	·983 o	·974I
27		.9999	.9999	.9997	.9993	·9986	·9974	·9954	.9923	·9876	·98 0 7
28			.9999	.9998	.9995	·999 o	.9982	.9968	.9945	.9910	·98 5 8
29			.9999	.9999	9997	·9994	·9988	.9977	.9961	·9935	.9895
30				o ·9999	0.9998	o ·9996	0.9991	0.9984	0.9972	0.9953	0.9924

TABLE 7. THE χ^2 -DISTRIBUTION FUNCTION

$\nu =$	15	16	17	18	19	20	21	22	23	24	25
x = 3	0.0004	0.0003	0.0001								
4	.0023	.0011	.0002	0.0002	0.0001						
5	0.0079	0.0042	0.0022	0.0011	0.0006	0.0003	0.0001	0.0001			
6	.0203	.0110	.0068	.0038	.0021	.0011	.0006	.0003	0.0001	0.0001	
7 8	.0424	.0267	.0162	.0099	.0058	.0033	.0019	.0010	.0002	-0003	0.0001
	.0762	·0866	.0335	.0214	.0133	.0081	.0049	.0028	.0019	-0009	.0002
9	.1225	0000	.0597	.0403	.0265	.0171	.0108	.0067	.0040	.0024	.0014
10	0.1803	0.1334	0.0964	0.0681	0.0471	0.0318	0.0211	0.0132	0.0087	0.0055	0.0033
II	·2474	.1902	.1434	•1056	.0762	.0538	.0372	.0253	.0168	.0110	.0071
12	.3210	•2560	.1999	•1528	1144	.0839	.0604	.0426	.0295	.0201	.0134
13	'3977	.3272	•2638	.2084	•1614	1226	.0914	•0668	•0480	.0339	.0235
14	·4745	.4013	.3329	.2709	•2163	.1692	.1304	.0985	.0731	.0233	.0383
15	o·5486	0.4754	0.4045	0.3380	0.2774	0.2236	0.1770	0.1378	0.1054	0.0792	0.0586
16	.6179	.5470	4762	.4075	.3427	2834	.2303	1841	1447	.1119	.0852
17	·6811	.6144	.5456	·4769	.4101	.3470	.2889	·2366	1907	.1213	·1182
18	.7373	·676 1	.6112	•5443	•4776	·4126	.3510	•2940	.2425	.1970	•1576
19	.7863	.7313	.6715	·6082	.5432	.4782	.4149	3547	·2988	·248o	.2029
20	0.8281	0 ·7798	0.7258	0.6672	0.6054	0.2421	0.4787	0.4170	0.3281	010000	0.0400
21	.8632	·8215	7737	•7206	.6632	.6029	.2411	0·4170 ·4793	·4189	0·3032 ·3613	0.2532
22	.8922	·8568	.8153	·768o	.7157	_	.6005	·5401	·4797	4207	·3074 ·3643
23	.9159	.8863	8507	.8094	.7627	.7112	.6560	.5983	.5392	.4802	·4224
24	9349	9105	8806	8450	·8o38	.7576	.7069	.6528	5962	.5384	·4806
•	,,,,	, ,		10	J		, ,	3	3,74-4	3394	4000
25	0.9201	0.9302	0.9023	0.8751	0.8395	o·7986	0.7528	0.7029	0.6497	0.5942	0.5376
26	·962 0	·946 o	.9255	.9002	.8698	.8342	•7936	•7483	·6991	•6468	.5924
27	.9713	.9585	.9419	.9210	.8953	·8647	8291	·7888	.7440	•6955	•6441
28	·9784	•9684	.9551	.9379	.9166	·89o6	.8598	.8243	.7842	.7400	6921
29	.9839	·976 1	.9655	.9516	.9340	.9122	∙8860	.8551	·819 7	.7799	•7361
30	0.9881	0.9820	0.9737	0.9626	0.9482	0.9301	0.9080	0.8812	0.8506	0.8152	0.7757
31	.9912	·986 5	•9800	.9712	·9 5 96	•9448	.9263	19039	.8772	·8462	.8110
32	•9936	.9900	·9850	.9780	·9687	·9567	9414	·9226	.8999	.8730	·8420
33	.9953	9926	.9887	.9833	.9760	•9663	.9538	.9381	.9189	·89 <u>5</u> 9	•8689
34	•9966	•9946	.9916	·9874	.9816	.9739	·9638	.9509	.9348	.9153	·8921
35	0.9975	0.9960	0.9938	0.9902	0.9860	o ·9799	0.9718	0.9613	0.9480	0.9316	0.9118
36	.9982	.9971	19954	19929	·9894	·9846	.9781	.9696	.9587	.9451	.9284
37	·998 7	.9979	•9966	.9948	.9921	·988 3	.9832	.9763	.9675	9562	.9423
38	.9991	·998 5	.9975	·9961	·9941	.9911	·9871	9817	.9745	.9653	.9537
39	. 9994	.9989	·9982	·9972	·9956	.9933	19902	·98 5 9	·9802	.9727	.9632
40	0.9992	0.9992	0.9987	0.9979	0.9967	0.9950	0.9926	0.9892	0.9846	0.9786	0.9708
4I	19997	·9994	.9991	.9985	.9976	.9963	9944	.9918	·9882	.9833	.9770
42	.9998	.9996	.9993	.9989	.9982	.9972	.9958	.9937	.9909	·9871	.9820
43	•9998	.9997	.9995	.9992	.9987	·9980	.9969	.9953	.9931	.9901	·986o
44	.9999	.9998	·9997	·9994	.9991	-9985	.9977	·996 5	.9947	.9924	9892
45	0.9999	0.9999	0.9998	0.9996	0.9993	0.9989	0.9983	0:0073	0.0060	0.00.10	0.00-6
45 46	.9999	.9999	·9998	·9990	9993	19999	·9987	••9980 •9980	o·9960 ·9970	0·9942 ·9956	0·9916
47	フプフフ	.9999	.9999	.9998	·9996	·9994	.9991	.9985	·9978	9950	·9936 ·9951
48		フラフフ	.9999	.9998	·9997	·999 4	.9993	.9989	·9978	·9907	.9963
49			.9999	.9999	.9998	9997	19995	19992	.9988	·9981	9903
50				0.9999	0.9999	o ·9998	0.9996	0.9994	0.9991	0.9986	0.9979

TABLE 8. PERCENTAGE POINTS OF THE χ^2 -DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{{\rm IOO}} = \frac{{\rm I}}{2^{\nu/2} \; \Gamma(\frac{\nu}{2})} \int_{\chi^2_{\nu}(P)}^{\infty} x^{\frac{1}{2}\nu - 1} \; e^{-\frac{1}{2}x} \, dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu - 1}$ and unit variance.

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

P	99.95	99.9	99.5	99	97 [.] 5	95	90	80	70	60
$\nu = \mathbf{I}$	0.063927	0.021221	0.043927	0.031571	0.039821	0.003932	0.01579	0.06418	0.1485	0.2750
2	0.001000			0.02010	0.05064	0.1026	0.2107	0.4463	0.7133	1.022
3	0.01528	0.02430	0.07172	0.1148	0.2158	0.3518	0.5844	1.002	I 424	1.869
4	0.06392	0.09080	0.2070	0.2971	0.4844	0.7107	1.064	1.649	2.195	2.753
5	0.1281	0.3103	0.4117	0.5543	0.8312	1.145	1.610	2.343	3.000	3.655
ĕ	0.5994	0.3811	0.6757	0.8721	1.237	1.635	2.204	3.070	3.828	4.570
7	0.4849	0.5985	0.9893	1.239	1 690	2.167	2.833	3.822	4.671	5.493
8	0.2104	0.8571	1.344	1.646	2.180	2.733	3.490	4.294	5.527	6.423
9	0.9717	1.125	1.735	2.088	2.700	3.325	4.168	5.380	6.393	7.357
10	1.265	1.479	2.156	2.558	3.247	3.940	4.865	6.179	7.267	8.295
ıı	1.282	1.834	2.603	3.023	3.816	4.575	5.578	6.989	8.148	9.237
12	1.934	2.214	3.074	3.221	4.404	5.226	6.304	7.807	9.034	10.18
13	2.302	2.617	3.565	4.107	5.009	5.892	7.042	8.634	9.926	11.13
14	2.697	3.041	4.075	4.660	5.629	6.571	7.790	9.467	10.82	12.08
15	3.108	3.483	4.601	5.229	6.262	7.261	8.547	10.31	11.72	13.03
16	3.236	3.942	5.142	5.812	6.908	7.962	9.312	11.12	12.62	13.98
17	3.980	4.416	5 697	6.408	7.564	8.672	10.00	12.00	13.23	14.94
18	4.439	4.905	6.265	7.015	8.531	9.390	10.86	12.86	14.44	15.89
19	4.912	5.407	6.844	7.633	8.907	10.13	11.65	13.72	15.35	16.85
20	5.398	5.921	7.434	8.260	9.591	10.85	12:44	14.58	16.27	17.81
21	5.896	6.447	8.034	8.897	10.28	11.29	13.24	15.44	17·18	18.77
22	6.404	6.983	8.643	9.542	10.98	12.34	14.04	16.31	18-10	19.73
23	6 924	7.529	9.260	10.30	11.69	13.09	14.85	17.19	19.02	20.69
24	7.453	8.085	9.886	10.86	12.40	13.85	15.66	18.06	19.94	21.65
25	7.991	8.649	10.2	11.52	13.12	14.61	16.47	18-94	20.87	22.62
26	8.538	9.222	11.16	12.30	13.84	15.38	17.29	19.82	21.79	23.28
27	9.093	9.803	11.81	12.88	14.57	16.15	18.11	20.70	22.72	24.24
28	9.656	10.39	12.46	13.26	15.31	16.93	18.94	21.59	23.65	25.21
29	10.53	10.99	13.15	14.26	16.02	17.71	19.77	22.48	24.28	26.48
30	10.80	11.20	13.79	14.95	16.79	18.49	20.60	23·36	25.21	27:44
32	11.08	12.81	15.13	16.36	18.29	20.07	22.27	25.12	27.37	29.38
34	13.18	14.06	16.20	17.79	19.81	21.66	23.95	26.94	29.24	31.31
36	14.40	15.32	17.89	19.23	21.34	23.27	25.64	28.73	31.15	33.25
38	15.64	16.61	19.29	20.69	22.88	24.88	27.34	30.24	32.99	35.19
40	16.91	17.92	20.71	22.16	24'43	26.51	29.05	32.34	34.87	37.13
50	23.46	24 67	27.99	29.71	32.36	34.76	37.69	41.45	44.31	46.86
60	30.34	31.74	35.23	37.48	40.48	43.19	46.46	50.64	53.81	56.62
70	37·47	39.04	43.28	45.44	48.76	51.74	55.33	59.90	63.35	66.40
80	44.79	46.52	51.17	53.54	57.15	60.39	64.28	69.21	72.92	76.19
90	52.28	54·16	59.20	61.75	65.65	69.13	73:29	78.56	82.51	85.99
100	59.90	61.92	67.33	70.06	74.22	77:93	82.36	87.95	92.13	95.81

TABLE 8. PERCENTAGE POINTS OF THE χ^2 -DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{v_0^2(P)}^{\infty} x^{\frac{1}{2}\nu - 1} e^{-\frac{1}{2}x} dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/roo is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu-1}$ and unit variance.

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

P	50	40	30	20	10	5	2.2	r	0.2	0.I	0.02
$\nu = \mathbf{r}$	0.454	9 0.708	3 1.074	1.642	2.706	3.841	5.024	6.635	7.879	10.83	12.12
2	1.386			-	•		- :			13.82	15.20
3	2.366							-	12.84	16.27	17.73
4	3.357				_			13.58	14.86	18.47	20.00
				• , ,			•		•	• • •	
5	4.321	5.132	6.064	7:289	9.236	11.07	12.83	15.00	16.75	20.52	22.11
6	5.348	6.211	7.231	8.558	10.64	12.59	14.45	16.81	18.55	22:46	24.10
7	6.346	7.283				14.07	16.01	18.48	20.28	24.32	26.02
8	7:344	8.351	9.524	11.03	13.36	15.21	17:53	20.09	21.95	26.12	27.87
9	8.343	9.414	10.66	12.24	14.68	16.92	19.02	21.67	23.29	27.88	29.67
10	9:342	10.47	11.78	13:44	15.99	18.31	20.48	23.51	25.19	29.59	31.42
II	10.34	11.23	12.90	14.63	17.28	19.68	21.92	24.72	26.76	31.26	33.14
12	11.34	12.58	14.01	15.81	18.55	21.03	23.34	26.22	28.30	32.91	34.82
13	12.34	13.64	15.12	16.98	19·8 1	22.36	24.74	27.69	29.82	34.23	36.48
14	13.34	14.69	16.22	18.12	21.06	23.68	26.13	29.14	31.32	36.13	38.11
15	14.34	15.73	17:32	19.31	22.31	25.00	27.49	30.58	32.80	37.70	39.72
16	15.34	16.78	18.42	20.47	23.24	26.30	28.85	32.00	34.27	39.25	41.31
17	16.34	17·82	19.51	21.61	24.77	27.59	30.10	33.41	35.72	40.79	42.88
18	17:34	18.87	20.60	22.76	25.99	28.87	31.23	34·81	37.16	42.31	44.43
19	18.34	19.91	21.69	23.90	27.20	30.14	32.85	36.19	38.58	43.82	45.97
20	19.34	20.95	22.77	25.04	28.41	31.41	34.17	37.57	40.00	45.31	47:50
21	20.34	21.99	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46·80	49.01
22	21.34	23.03	24.94	27:30	30.81	33.92	36.78	40.29	42.80	48.27	50.21
23	22.34	24.07	26.02	28.43	32.01	35.17	38.08	41.64	44.18	49.73	52.00
24	23.34	25.11	27.10	29.55	33.50	36.42	39.36	42.98	45.26	51.18	53.48
		,	•								
25	24.34	26.14	28.17	30.68	34.38	37.65	40.65	44.31	46.93	52.62	54.95
26	25.34	27.18	29.25	31.79	35.26	38.89	41.92	45.64	48.29	54.05	56.41
27	26.34	28.21	30.35	32.91	36.74	40.11	43.19	46.96	49.64	55.48	57.86
28	27:34	29.25	31.30	34.03	37.92	41.34	44.46	48.28	20.99	56.89	59.30
29	28.34	30.58	32.46	35.14	39.09	42.56	45.72	49.59	52.34	58.30	60.73
								. 0			
30	29.34	31.32	33.23	36.25	40.26	43.77	46.98	50.89	53.67	59.70	62.16
32	31.34	33.38	35.66	38.47	42.58	46.19	49.48	53.49	26.33	62.49	65.00
34	33.34	35.44	37.80	40.68	44.90	48·6o	51.97	56.06	58.96	65.25	67.80
36	35.34	37.50	39.92	42.88	47.21	51.00	54.44	58.62	61.28	67.99	70.29
38	37:34	39.56	42.05	45.08	49.21	53.38	56.90	61.16	64.18	70.70	73.35
40	20124	41.62	44.76	15.05	 0.		50.6 4	60.60	66		-6
40 50	39.34	51.89	44.16	47.27	51.81	55.76	59.34	63.69	66.77	73.40	76.09
50 60	49.33	7. *	54.72	58·16	63.17	67.50	71.42	76.15	79.49	86.66	89.56
	59.33	62.13	65.23	68.97	74.40	79.08	83.30	88.38	91.95	99.61	102.7
70° 80	69.33	72.36	75·69 86:12	79.71	85.23	90.23	95.02	100.4	104.2	112.3	115.6
00	79:33	82.57	00:12	90.41	96.28	101.9	106.6	112.3	116.3	124.8	128.3
90	89.33	92.76	96.52	101.1	107.6	113.1	118.1	124.1	128.3	137.2	T 40:Q
100	99.33	102.0	106.0	111.7	118.5	124.3	129.6	135.8	-		140.8
200	77 33	-04 9	100 9	/	1103	-44 3	149 0	1350	140.3	149.4	153.2

TABLE 9. THE t-DISTRIBUTION FUNCTION

The function tabulated is

$$F_{\nu}(t) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{-\infty}^{t} \frac{ds}{(1 + s^{2}/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

 $F_{\nu}(t)$ is the probability that a random variable, distributed as t with ν degrees of freedom, will be less than or equal to t. When t < 0 use $F_{\nu}(t) = \mathbf{1} - F_{\nu}(-t)$, the t distribution being symmetric about zero.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance (see Table 4). When ν is large interpolation in ν should be harmonic.

Omitted entries to the right of tabulated values are I (to four decimal places).

ν =	1	$\nu =$	ı	v =	2	ν =	2	v =	3	$\nu =$	3
t = 0.0		t = 4.0	0.9220	$t = 0 \cdot 0$	0.2000	t = 4.0	0.9714	t = 0.0	0.5000	t = 4.0	0.9860
	0.2000	4.2	·9256	1 - 00	.2323	· 1	.9727	ı.	.5367	·I	·9869
·1	·5317 ·5628	4.4	9250	.2	.5700	•2	9727	.2	.5729	.2	.9877
		4·4 4·6		.3	.6038	.3	.9750	.3	.6081	.3	.9884
'3	.5928		.9319	-	.6361	·4	.9760	.4	.6420	·4	·9891
·4	.6211	4.8	.9346	'4	-0301	4	9700	4	0420	7	
0.2	0.6476	5·o	0.9372	0.2	0.6667	4.2	0.9770	0.2	0.6743	4.5	0.9898
.6	·6720	5.2	·9428	6	.6953	.6	.9779	-6	.7046	.6	.9903
.7	•6944	6.0	·9474	.7	7218	.7	.9788	.7	.7328	.7	.9909
.8	.7148	6.2	.9514	.8	.7462	.8	.9796	.8	.7589	.8	.9914
.9	.7333	7.0	·9548	.9	.7684	.9	·9804	.9	.7828	.9	.9919
1.0	0.7500	7.5	0.9578	1.0	0.7887	5.0	0.9811	1.0	0.8045	5.0	0.9923
·I	.7651	8·o	·9604	·1	·8070	·I	.9818	.1	·824 2	.1	.9927
.2	.7789	8.5	.9627	.2	.8235	•2	·9825	.2	·8419	.3	.9931
.3	.7913	9.0	·9648	.3	·8384	.3	.9831	.3	·8 5 78	.3	.9934
·4	·8026	9.5	•9666	·4	·8518	'4	.9837	.4	·8720	· 4	.9938
1.2	0.8128	10.0	0.9683	1.2	0.8638	5.2	0.9842	1.2	0.8847	5.2	0.9941
·6	.8222	10.2	.9698	.6	·8746	·6	9848	.6	·896 o	.6	.9944
.7	.8307	11.0	.9711	.7	·8844	.7	9853	7	.9062	.7	·9946
.8	·8 ₃ 86	11.2	.9724	∥ .8	.8932	.8	.9858	.8	.9152	.8	.9949
.9	·8 ₄₅ 8	12.0	9735	.9	.0011	.9	.9862	.9	.9232	.9	.9951
2.0	0.8524	12.5	0.9746	2.0	0.9082	6.0	0.9867	2.0	0.9303	6.0	0.9954
·I	8585	13.0	.9756	·1	9147	•1	.9871	·r	.9367	•1	.9956
·2	·8642	13.2	.9765	.2	·9206	.3	.9875	.2	9424	.2	.9958
.3	·8695	14.0	·9773	.3	.9259	.3	.9879	.3	9475	.3	•9960
·4	·8743	14.5	.9781	.4	.9308	·4	.9882	.4	.9521	·4	·9961
4	0/43	-43	9702	T	93	_	•			_	,
2.2	0.8789	15	0.9788	2.5	0.9352	6.5	o·9886	2.5	0.9561	6.2	0.9963
.6	·8831	16	.9801	·6	.9392	.6	·9889	.6	.9598	6	.9965
·7	·8871	17	.9813	.7	.9429	·7	·9892	.7	·9631	.7	·9966
.8	·89 0 8	18	·9823	⋅8	•9463	.8	.9895	.8	.9661	⋅8	.9967
.9	·89 43	19	.9833	.9	·9494	.9	·9898	.9	·968 7	.9	•9969
3.0	0.8976	20	0.9841	3.0	0.9523	7.0	0.9901	3.0	0.9712	7.0	0.9970
٠ı	.9007	21	.9849	·I	.9549	·ı	.9904	·r	.9734	·r	·997I
.2	.9036	22	.9855	.2	.9573	.2	.9906	•2	.9753	.3	.9972
.3	.9063	23	9862	.3	.9596	.3	.9909	.3	.9771	.3	.9973
·4	.9089	24	·9867	·4	.9617	·4	.9911	·4	·9788	·4	.9974
3.2	0.0114	25	0.9873	3.2	0.9636	7.5	0.9913	3.2	0.9803	7.5	0.9975
·6	.9138	30	·9894	6	.9654	.6	.9916	∥ ∴6	.9816	.6	.9976
.7	.9190	35	·9909	.7	·9670	.7	.9918	.7	.9829	.7	.9977
.8	.9181	40	.9929	.8	·9686	.8	.9920	8.	·9840	·8	.9978
.9	9101	45	9929	.9	.9701	.9	.9922	.9	·9850	.9	.9979
4.0	0.9220	50	0.9936	4.0	0.9714	8∙o	0.9924	4.0	0.9860	8·o	0.9980

Dennis V. Lindley, William F. Scott, New Cambridge Statistical Tables, (1995) © Cambridge University Press, reproduced with permission.

TABLE 9. THE t-DISTRIBUTION FUNCTION

$\nu =$	4	5	6	7	8	9	10	ıı	12	13	14
t = 0.0	0.5000	0.2000	0.2000	0.2000	0.2000	0.5000	0.2000	0.2000	0.2000	0.2000	0.5000
·I	.5374	.5379	.5382	.5384	.5386	.5387	.5388	.5389	.5390	.2391	.2391
.2	.5744	5753	.5760	.5764	.5768	.5770	:5773	.5774	.5776	·5777	.5778
.3	.6104	.6119	.6129	6136	.6141	.6145	.6148	.6151	6153	.6155	.6157
·4	.6452	.6472	.6485	.6495	.6502	.6508	6512	.6516	.6519	.6522	.6524
7	۰	×1/-	9493	°793	0,504		0,124	0,10	0319	0,144	0324
0.2	0.6783	0.6809	0.6826	o·6838	0.6847	0.6855	o·6861	o·6865	o·6869	0.6873	0.6876
.6	•7096	.7127	.7148	.7163	.7174	.7183	.7191	.7197	.7202	•7206	.7210
.7	-7387	.7424	·7449	•7467	.7481	.7492	.7501	.7508	.7514	.7519	.7523
⋅8	.7657	.7700	.7729	.7750	•7766	·7778	.7788	.7797	.7804	.7810	.7815
.9	.7905	.7953	.7986	.8010	.8028	.8042	.8054	.8063	.8071	·8o78	.8083
1.0	0.8130	0.8184	0.8220	0.8247	0.8267	0.8283	0.8296	0.8306	0.8315	0.8322	0.8329
·I	.8335	8393	.8433	·8461	.8483	·8501	.8514	.8526	.8535	.8544	.8551
.2	.8518	·8581	.8623	·8654	.8678	·8696	.8711	.8723	.8734	8742	.8750
.3	.8683	.8748	.8793	·8826	.8851	.8870	·8886	.8899	-8910	·8919	.8927
·4	.8829	·8898	·8945	·8979	.9005	.9025	·9041	9055	·9066		.9084
4	0029	0090	0943	0979	9003	9023	9041	9055	9000	.9075	9004
1.2	0.8960	0.0030	0.9079	0.9114	0.0140	0.0161	0.9177	0.0101	0.9203	0.9212	0.9221
·6	·9076	.9148	.9196	.9232	.9259	·9280	9297	.9310	.9322	.9332	.9340
.7	.9178	9251	.9300	9335	.9362	.9383	.9400	.9414	9426	.9435	·9444
.8	.9269	.9341	.9390	.9426	9452	9473	.9490	.9503	.9515	9525	.9233
.9	.9349	·942I	•9469	.9504	.9530	.9551	.9567	.9580	.9591	.9601	.9609
2.0	0.9419	0.9490	0.9538	0.9572	0.9597	0.9617	0.9633	o·9646	0.9657	o ·9666	0.9674
·ı	·948 2	.9551	•9598	.9631	.9655	.9674	.9690	.9702	.9712	.9721	.9728
.3	.9537	·9605	•9649	∙9681	.9705	.9723	.9738	.9750	.9759	·9768	.9774
.3	9585	.9651	•9694	.9725	.9748	.9765	.9779	·979 o	.9799	·98 07	.9813
·4	·9628	·969 2	·9734	.9763	·9784	.9801	.9813	.9824	.9832	·9840	·9846
2.2	0.9666	0.9728	0.9767	0.9795	0.9815	0.9831	0.9843	0.9852	0.9860	0.9867	0.9873
.6	.9700	9759	.9797	.9823	.9842	.9856	9868	.9877	.9884	.9890	.9895
.7	.9730	.9786	9822	.9847	9865	.9878	•9888	.9897	.9903	.9909	.9914
· 8	.9756	.9810	.9844	.9867	.9884	.9896	.9906	9914	9920	.9925	·9929
.9	.9779	·9831	9863	.9885	.9901	.9912	9921	.9928	.9933	.9938	·9942
,			, ,	,3	,,	,,- -	,,,	9940	9933	9930	99 7~
3.0	0.9800	0.9850	o.988o	0.9900	0.9912	0.9925	0.9933	0.9940	0.9945	o ·9949	0.9952
·ı	.9819	·9866	·9894	.9913	.9927	•9936	.9944	9949	.9954	•9958	·9961
•2	.9835	·988o	.9907	9925	.9937	·9946	.9953	-9958	.9962	·996 5	•9968
.3	·9850	.9893	.9918	.9934	·9946	·9954	·996 o	·996 5	•9968	·9971	·9974
·4	·9864	.9904	·9928	.9943	.9953	.9961	•9966	.9970	·99 7 4	.9976	·99 7 8
3.2	0.9876	0.9914	0.9936	0.9950	0.9960	0.9966	0.9971	0.9975	0.9978	0.9980	0.9982
.6	·9886	.9922	'9943	·99 5 6	·996 5	.9971	·99 7 6	.9979	·9982	·9984	•9986
.7	·9896	.9930	.9950	·9962	.9970	.9975	.9979	.9982	.9985	9987	.9988
⋅8	.9904	.9937	.9955	•9966	.9974	.9979	.9983	.9985	.9987	.9989	.9990
.9	.9912	.9943	·996 o	.9971	.9977	.9982	.9985	.9988	.9989	.9991	.9992
4.0	0.9919	0.9948	0.9964	0.9974	0.9980	0.9984	0.9987	0.9990	0.9991	0.9992	0.9993
·I	.9926	9953	.9968	9977	.9983	9987	.9989	9991	.9993	19994	.9992
•2	.9932	.9958	9972	.9980	.9985	.9988	.9991	.9993	·9994	.9992	.9999
.3	.9937	.9961	·99 75	.9982	.9987	.9990	.9992	·9994	9995	.9996	.9996
·4	.9942	.9965	.9977	.9984	.9989	.9991	.9993	.9995	.9996	·9996	9997
4.5	0.9946	0.9968	0.9979	0.9986	0.9990	0:0003	0.9994	0:0007	0:0006	0:0007	0,000
4⁺5 ·6	.9950	·9971	·9982	·9988		0.9993		0.9992	0.9996	0.9997	0.9998
			·9983	·9989	.9991	·9994	.9995	·9996	·9997	.9998	.9998
·7 ·8	9953	·9973	·9985		·9992	·9994	·9996	9997	·9997	.9998	.9998
	·9957	·9976 ·9978	·9986	.9990	·9993	·9995	·9996	·9997	.9998	.9998	.9999
.9	·996 o	9970	9900	.9991	·999 4	·9996	·999 7	-9998	.9998	.9999	.9999
5.0	0.9963	0.9979	o ·9988	0.9992	0.9992	0.9996	0.9997	0.9998	0.9998	0.9999	0.9999

TABLE 9. THE t-DISTRIBUTION FUNCTION

$\nu =$	15	16	17	18	19	20	24	30	40	60	∞
t = 0.0	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
·ı	.5392	.5392	5392	5393	•5393	.5393	.5394	.5395	.5396	.5397	.5398
.2	.5779	.5780	.5781	.5781	.5782	.5782	.5784	.5786	5788	.5789	.5793
.3	.6159	6160	.6161	.6162	.6163	.6164	.6166	.6169	6171	.6174	.6179
	• •	.6528	.6529	.6531	.6532	.6533	.6537	.6540	.6544	.6547	.6554
4	.6526	0520	0529	0531	0534	0533	0337	0340	V344	V347	∘33∓
0.2	o·6878	0.6881	0.6883	o·6884	o·6886	o·6887	0.6892	o·6896	0.6901	0.6902	0.6912
.6	.7213	.7215	.7218	•7220	.7222	.7224	.7229	.7235	.7241	.7246	.7257
·7	.7527	.7530	.7533	.7536	.7538	.7540	.7547	.7553	•7560	.7567	·7580
.8	.7819	.7823	.7826	.7829	.7832	.7834	.7842	•7850	•7858	·7866	.7881
و.	·8o88	.8093	.8097	.8100	.8103	.8106	·8115	·8124	.8132	·8141	.8159
										0	0
1.0	0.8334	0.8339	0.8343	0.8347	0.8351	0.8354	0.8364	0.8373	0.8383	0.8393	0.8413
·I	·8557	•8562	·8567	·8571	·8575	·8 57 8	·8589	·860 0	·8610	.8621	·8643
· 2	·8756	8762	·8767	·8772	·8776	·8779	·8791	·88 02	·8814	·88 2 6	·8849
.3	.8934	·894 0	·894 5	·8950	.8954	.8958	·8970	·898 2	·899 5	.9007	.9032
•4	.0001	.9097	.0103	.9107	.9112	.9116	.9128	.0141	.9154	·9167	.9192
7	<i>y-y-</i>	<i>9-91</i>	<i>y</i> 3	<i>)1</i>	,				,		
1.2	0.9228	0.9232	0.9240	0.9242	0.9250	0.9254	0.9267	0.9280	0.0203	0.9306	0.9332
.6	.9348	9354	·9360	.9365	.9370	.9374	.9387	·94 00	.9413	9426	.9452
·7	·9451	·9458	.9463	•9468	.9473	.9477	.9490	.9503	.9516	.9528	·9 <u>5</u> 54
.8	.9540	·9546	.9552	9557	·9561	·9565	·9 5 78	.9590	9603	.9616	·9641
.9	•9616	·9622	·9627	·9632	•9636	·964 0	.9652	·966 5	.9677	·9689	.9713
2.0	0.9680	0.9686	0.9691	0.9696	0.9700	0.9704	0.9715	0.9727	0.9738	0.9750	0.9772
·I	9735	.9740	9745	.9750	.9753	.9757	.9768	.9779	·979 0	.9800	.9821
·2	·9733	.9786	·97 4 3	9730	·9798	.9801	.9812	.9822	.9832	·9842	·9861
	.9819	·9824	·9828	·9832	.9835	.9838	·9848	.9857	·9866	.9875	.9893
.3			-		·9866	·9869	·9877	·9886	·9894	.9902	.9918
·4	.9851	.9855	.9859	·9863	9000	9009	90//	9000	9094	9902	99.0
2.2	0.9877	0.9882	0.9885	0.9888	0.9891	0•9894	0.9902	0.9909	0.9917	0.9924	0.9938
.6	•9900	.9903	.9907	.9910	.9912	.9914	.9921	·9928	.9935	·994I	.9953
.7	.9918	.9921	.9924	·99 27	.9929	.9931	.9937	·9944	·9949	.9955	·996 5
.8	.9933	.9936	.9938	.9941	.9943	·9945	.9950	·9956	∙9961	•9966	·9974
.9	9945	.9948	.9950	.9952	·99 5 4	·99 5 6	.9961	·996 5	.9970	·9974	.9981
2.0	0.0044	0.9958	0.9960	0.9962	0.0063	0.9965	0.9969	0.9973	0.9977	0.9980	0.9987
3.0	0.9955				,, ,		·9976	9973	.9982	.9985	.9990
.I	.9963	.9966	.9967	.9969	·9971	·9972			·998 7	.9989	.9993
.2	.9970	9972	.9974	9975	•9976	.9978	.9981	·9984			
.3	·99 7 6	.9977	.9979	·998 o	.9981	.9982	.9985	.9988	.9990	.9992	.9995
·4	.9980	.9982	.9983	.9984	.9985	•9986	.9988	.9990	.9992	·9994	·999 7
3.2	0.9984	0.9985	0.9986	0.9987	0.9988	0.9989	0.9991	0.9993	0.9994	0.9996	0.9998
·6	.9987	.9988	.9989	.9990	.9990	.9991	.9993	.9994	•9996	.9997	•9998
·7	.9989	.9990	1000.	.9992	.9992	.9993	.9994	.9996	.9997	.9998	.9999
.8	.9991	19992	.9993	.9993	.9994	.9994	.9996	.9997	•9998	•9998	.9999
	.9993	·9994	·9994	.9992	.9995	9996	.9997	.9997	.9998	.9999	
.9	9993	9994	999 4	9993	7773	777	7 771	2771	777~	,,,,	
4.0	0.9994	0.9995	0.9992	0.9996	0.9996	0.9996	0.9997	0.9998	0.9999	0.9999	
·I	.9995	•9996	•9996	·999 7	.9997	·999 <u>7</u>	.9998	.9999	.9999	.9999	
.3	•9996	·999 7	.9997	.9997	.9998	•9998	.9998	.9999	•9999		
.3	.9997	9997	•9998	•9998	•9998	•9998	.9999	.9999	.9999		
·4	.9997	.9998	.9998	.9998	-9998	.9999	.9999	.9999			
4.5	0.9998	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999				
4.2	9990	9990	- 3330	~ >>>>	~ >>>>	- ラブブブ	- 2777				

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_{\nu}(P)$ defined by the equation

$$\frac{P}{\mathrm{100}} = \frac{\mathrm{I}}{\sqrt{\nu n}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{t_{\nu}(P)}^{\infty} \frac{dt}{(\mathrm{I} + t^2/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^2 -distribution with ν degrees of freedom respectively; then $t=X_1/\sqrt{X_2/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t\geqslant t_{\nu}(P)$ is P/100. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t|\geqslant t_{\nu}(P)$ is 2P/100.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

P	40	30	25	20	15	10	5	2.5	ı	0.2	0.1	0.02
$\nu = \mathbf{r}$	0.3249	0.7265	1.0000	1.3764	1.963	3.078	6.314	12.71	31.82	63.66	318.3	636.6
2	0.2887	0.6172	0.8165	1.0607	1.386	1.886	2.920	4.303	6.965	9.925	22.33	31.60
3	0.2767	0.5844	0.7649	0.9785	1.220	1.638	2.353	3.182	4.241	5.841	10.31	12.92
4	0.2707	0.2686	0.7407	0.9410	1.190	1.233	2.132	2.776	3.747	4.604	7.173	8.610
									_		_	
5	0.2672	0.5594	0.7267	0.9192	1.126	1.476	2.012	2.21	3.362	4.032	5.893	6.869
6	0.2648	0.5534	0.2126	0.9057	1.134	1.440	1.943	2.447	3.143	3.707	5.508	5.959
7	0.5635	0.2491	0.4111	0.8960	1.119	1.412	1.895	2.362	2.998	3.499	4.785	5.408
8	0.5618	0.5459	0.7064	0.8889	1.108	1.397	1.860	2.306	2.896	3.352	4.201	5.041
9	0.5610	0.5435	0.7027	0.8834	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.2602	0.5415	0.6998	0.8791	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
II	0.2596	0.2399	0.6974	0.8755	1.088	1.363	1.796	2.301	2.718	3.106	4.025	4.437
12	0.2590	0.5386	0.6955	0.8726	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.2586	0.5375	0.6938	0.8702	1.079	1.350	1.771	2.160	2.650	3.013	3.852	4.221
14	0.2582	0.5366	0.6924	0.8681	1.076	1.345	1·761	2.145	2.624	2.977	3.787	4.140
			,	0.44								
15	0.2579	0.5357	0.6913	0.8662	1.024	1.341	1.753	5.131	2.602	2.947	3.733	4.023
16	0.2576	0.2320	0.6901	0.8647	1.021	1.337	1.746	2.130	2.283	2.921	3.686	4.012
17	0.2573	0.2344	0.6892	0.8633	1.069	1.333	1.740	5.110	2.567	2.898	3.646	3.965
18	0.2571	0.2338	0.6884	0.8620	1.062	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.2569	0.2333	0.6876	0.8610	1.066	1.328	1.729	2.093	2.239	2.861	3.579	3.883
20	0.2567	0.5329	0.6870	0.8600	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3·8 50
21	0.2566	0.5325	0.6864	0.8591	1.063	1.323	1.721	2.080	2.218	2.831	3.527	3.819
22	0.2564	0.2321	0.6858	0.8583	1.001	1.321	1.212	2.074	2.208	2.819	3.202	3.792
23	0.2563	0.5317	0.6853	0.8575	1.060	1.319	1.714	2.069	2.200	2.807	3 ·485	3·768
24	0.2562	0.2314	0.6848	0.8569	1.059	1.318	1.411	2.064	2.492	2.797	3.467	3.745
25	0.2561	0.5312	0.6844	0.8562	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.2560	0.2300	o·684 o	0.8557	1.028	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.2559	0.5306	0.6837	0.8551	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3·69 0
28	0.2558	0.5304	0.6834	0.8546	1.026	1.313	1.401	2.048	2.467	2.763	3.408	3.674
29	0.2557	0.2302	0.6830	0.8542	1.022	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.2556	0.5300	0.6828	0.8538	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
32	0.2522	0.5297	0.6822	0.8530	1.024	1.309	1.694	2.037	2.449	2.738	3.365	3.622
34	0.5253	0.5294	0.6818	0.8523	1.022	1.307	1.691	2.032	2.441	2.728	3.348	3.601
36	0.2552	0.5291	0.6814	0.8517	1.025	1.306	1.688	2.028	2.434	2.719	3.333	3.582
38	0.2551	0.5288	0.6810	0.8512	1.021	1.304	1.686	2.024	2.429	2.712	3.319	3.566
Ü	,			•	_							
40	0.2520	0.5286	0.6807	0.8502	1.020	1.303	1.684	2.021	2.423	2.704	3.302	3.221
50	0.2547	0.5278	0.6794	0.8489	1.042	1.299	1.676	2.009	2.403	2.678	3.561	3.496
6о	0.2545	0.5272	0.6786	0.8477	1.042	1.296	1.671	2.000	2.390	2.660	3.535	3.460
120	0.2539	0.2258	0.6765	0.8446	1.041	1.589	1.658	1.080	2.358	2.617	3.190	3.373
∞	0.2533	0.5244	0.6745	0.8416	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291

TABLE 13. PERCENTAGE POINTS OF THE CORRELATION COEFFICIENT r WHEN $\rho=0$

The function tabulated is $r(P) = r(P|\nu)$ defined by the equation

$$\frac{\Gamma\left(\frac{\nu-1}{2}\right)}{\sqrt{\pi}\,\Gamma\left(\frac{\nu-2}{2}\right)}\int_{r(P)}^{1}(1-r^2)^{\frac{\nu-4}{2}}dr=P/100.$$

Let r be a partial correlation coefficient, after s variables have been eliminated, in a sample of size n from a multivariate normal population with corresponding true partial correlation coefficient $\rho = 0$, and let $\nu = n - s$. This table gives upper P per cent points of r; the corresponding lower P per cent points are given by -r(P), and the tabulated values are also upper 2P per cent points of |r|. For s = 0 we have $\nu = n$ and r is the ordinary correlation coefficient. When $\nu > 130$ use the results that r is approximately normally distributed with zero mean and variance $\frac{1}{\nu-1}$, or (more accurately) that $z = \tanh^{-1} r$ is approximately normally distributed with zero mean and variance $\frac{1}{\nu-1}$ (cf. Tables 16 and 17).

(This shape applies for $\nu \ge 5$ only. When $\nu = 4$ the distribution is uniform and when $\nu = 3$ the probability density function is U-shaped.)

Tables of the distribution of r for various values of ρ are given by, for example, F. N. David, Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples, Cambridge University Press (1954), and R. E. Odeh, 'Critical values of the sample product-moment correlation coefficient in the bivariate normal distribution', Commun. Statist. – Simula Computa. II (1) (1982), pp. 1–26. The z-transformation may also be used (cf. Tables 16 and 17).

		V-3				uscu (cr.	1 abico 10	u //.			
\boldsymbol{P}	5	2.2	r	0.2	0.1	P	5	2.2	I	0.2	0.1
$\nu = 3$	0.9877	0.9969	0.9995	0.9999	0.999995	$\nu = 40$	0.2638	0.3120	0.3665	0.4026	0.4741
4	9000	.9500	.9800	.9900	·9980	42	.2573	.3044	.3578	.3932	•4633
-	-		•			44	.2512	.2973	•3496	.3843	4533
5	0.8054	0.8783	0.9343	0.9587	0.9859	46	.2455	.2907	.3420	.3761	.4439
6	.7293	·8114	.8822	9172	.9633	48	.2403	·2845	.3348	•3683	·4351
7	.6694	.7545	·8329	·8745	.9350	d	0.2353	0.2787	0.3281	0.3610	0.4267
8	.6215	.7067	.7887	8343	·9049	50	•2353	.2732	.3218	3542	·4188
9	.5822	∙6664	.7498	.7977	·8751	52	.2262	.2681	.3158	·3477	4114
10	0.5494	0.6319	0.7155	0.7646	0.8467	54 56	.2221	.2632	3130	.3412	.4043
11	.5214	.6021	.6851	.7348	·8199	58	.2181	.2586	3048	.3357	.3976
12	.4973	.5760	·6581	.7079	.7950	50	2101	_			
13	.4762	.5529	.6339	·683 5	7717	6o	0.2144	0.2542	0.2997	0.3301	0.3913
14	.4575	.5324	.6120	•6614	.7501	62	·2108	.2500	·2948	.3248	.3820
_				0.6.177	0.77007	64	.2075	·2461	2902	3198	.3792
15	0.4400	0.2140	0.5923	0·6411 ·6226	0.7301 7114	66	.2042	.2423	·2858	.3120	.3736
16	4259	'4973	.5742	·6055	6940	68	.2012	·2387	·2816	.3104	.3683
17 18	4124	·4821 ·4683	5577	.5897	·6777	70	0.1982	0.2352	0.2776	0.3060	0.3632
	·4000 ·3887	• -	·5425 ·5285		.6624	72	1954	.2319	.2737	.3017	.3583
19		°4555	5405	·5751	•	74	1927	.2287	.2700	.2977	.3536
20	0.3783	0.4438	0.2122	0.2614	0.6481	76	.1901	.2257	·2664	2938	.3490
21	·3687	4329	.5034	.5487	6346	78	·1876	.2227	-2630	2900	3447
22	.3598	.4227	4921	·53 <u>68</u>	6219		•		,	0.2864	0.3402
23	.3512	.4132	.4815	.5256	.6099	80	0.1852	0.5166	0.2597	·2830	.3364
24	•3438	·4044	·4716	.2121	· 5 986	82	.1829	2172	.2565	.2796	3304
25	0.3365	0.3961	0.4622	0.5052	0.5879	84	·1807	.2146	.2535	.2764	·3287
26	.3297	.3882	4534	.4958	.5776	86	•1786	.2120	.2505	2704	.3251
27	.3233	.3809	4451	.4869	.5679	88	.1765	.2096	.2477	4/34	3231
28	.3172	.3739	4372	4785	.5587	90	0.1745	0.2072	0.2449	0.2702	0.3212
29	.3115	.3673	4297	4705	.5499	92	·1726	2050	.2422	.2673	.3181
						94	•1707	·2028	·2396	2645	.3148
30	0.3061	0.3610	0.4226	0.4629	0.2412	96	•1689	.2006	.2371	•2617	.3116
31	.3009	.3550	·4158	·4556	·5334	98	·1671	•1986	·2347	.2591	.3082
32	·296 o	3494	.4093	.4487	.5257	100	0.1654	0.1966	0.2324	0.2565	0.3024
33	.2913	.3440	.4032	4421	.5184	105	.1614	.1918	.2268	.2504	.2983
34	·2869	.3388	3972	·4357	.2113	110	.1576	.1874	.2216	2446	.2915
35	0.2826	0.3338	0.3916	0.4296	0.2042	115	15/0	.1832	.2167	.2393	·2853
36	.2785	.3291	.3862	.4238	·4979	120	1509	.1793	2122	.2343	2794
37	.2746	.3246	.3810	·4182	·4916			-			
38	.2709	.3202	.3760	.4128	·4856	125	0.1478	0.1757	0.2079	0.2296	0.2738
39	.2673	.3160	.3712	·4 0 76	·4797	130	.1449	.1723	2039	.2252	· 2 686

TABLE 14. PERCENTAGE POINTS OF SPEARMAN'S S TABLE 15. PERCENTAGE POINTS OF KENDALL'S K

Spearman's S and Kendall's K are both used to measure the degree of association between two rankings of n objects. Let d_i ($1 \le i \le n$) be the difference in the ranks of the *i*th object;

Spearman's S is defined as $\sum_{i=1}^{n} d_i^2$. To define Kendall's K, re-

order the pairs of ranks so that the first set is in natural order from left to right, and let m_i (1 $\leq i \leq n$) be the number of ranks greater than i in the second ranking which are to the

right of rank i. Kendall's K is defined as $\sum m_i$.

For Table 14 the tabulated value x(P) is the lower percentage point, i.e. the largest value x such that, in independent rankings, $Pr(S \le x) \le P/100$; in Table 15, K replaces S and the upper percentage point is given. A dash indicates that there is no value with the required property. The distributions are symmetric about means $\frac{1}{6}(n^3-n)$ for S and $\frac{1}{4}n(n-1)$ for K, with maxima equal to twice the means; hence the upper percentage points of S are $\frac{1}{3}(n^3-n)-x(P)$ and the lower percentage points of K are $\frac{1}{2}n(n-1)-x(P)$. The variances are

 $\frac{1}{36}n^2(n+1)^2(n-1)$ for S and $\frac{1}{72}n(n-1)(2n+5)$ for K, and when n > 40 both statistics are approximately normally distributed; more accurately, the distribution function of X = $[S - \frac{1}{6}(n^2 - n)]/[\frac{1}{6}n(n+1)\sqrt{n-1}] \text{ is approximately equal to } \Phi(x) - \frac{\gamma}{24\sqrt{2}\pi} e^{-\frac{1}{4}x^2} (x^3 - 3x), \text{ where } \gamma = \frac{-0.04(19n^2 + 5n - 36)}{\frac{1}{6}(n^3 - n)}$

and $\Phi(x)$ is the normal distribution function (see Table 4). A test of the null hypothesis of independent rankings is provided by rejecting at the P per cent level if $S \leq x(P)$, or $K \geqslant x(P)$, when the alternative is contrary rankings. The other points are similarly used when the alternative is similar rankings. To cover both alternatives reject at the 2P per cent level if S, or K, lies in either tail. Spearman's rank correlation coefficient r_S is defined as $1 - 6S/(n^3 - n)$, and has upper and lower P per cent points $1 - 6x(P)/(n^3 - n)$ and $-[1-6x(P)/(n^3-n)]$ respectively. Kendall's rank correlation coefficient r_K is defined as 4K/[n(n-1)]-1, and has upper and lower P per cent points 4x(P)/[n(n-1)]-1 and $-\{4x(P)/[n(n-1)]-1\}$ respectively.

		SPI	EARMAN	rs s			KENDALL'S K							
\boldsymbol{P}	5	2.5	I	0.2	0.1	$\frac{1}{6}(n^3-n)$	P	5	2.2	I	0.2	0.1	$\frac{1}{4}n(n-1)$	
n = 4	o	_				10	n=4	6		_			3	
5	2	0	0			20	5	9	10	10		_	5	
6	6	4	2	0		35	6	13	14	14	15		7.5	
7	16	12	6	4	0	56	7	17	18	19	20	21	10.2	
8	30	22	14	10	4	84	8	22	23	24	25	26	14	
9	48	36	26	20	10	120	9	27	28	30	31	33	18	
10	72	58	42	34	20	165	10	33	34	36	37	40	22.5	
11	102	84	64	54	34	220	11	39	41	43	44	47	27.5	
12	142	118	92	78	52	286	12	46	48	51	52	55	33	
13	188	160	128	108	76	364	13	53	56	59	61	64	39	
14	244	210	170	146	104	455	14	62	64	67	69	73	45.5	
15	310	268	222	194	140	560	15	70	73	77	79	83	52.5	
16	388	338	284	248	184	68o	16	79	83	86	89	94	60	
17	478	418	354	312	236	816	17	89	93	97	100	105	68	
18	580	512	436	388	298	969	18	99	103	108	III	117	76·5	
19	694	616	530	474	370	1140	19	110	114	119	123	129	85.2	
20	824	736	636	572	452	1330	20	121	126	131	135	142	95	
21	970	868	756	684	544	1540	21	133	138	144	148	156	105	
22	1132	1018	890	808	650	1771	22	146	151	157	161	170	115.5	
23	1310	1182	1040	948	768	2024	23	159	164	171	176	184	126.5	
24	1508	1364	1206	1102	900	2300	24	172	178	185	190	200	138	
25	1724	1566	1388	1272	1048	2600	25	186	193	200	205	216	150	
26	1958	1784	1588	1460	1210	2925	26	201	208	216	221	232	162.5	
27	2214	2022	1806	1664	1388	3276	27	216	223	232	238	249	175·5	
28	2492	2282	2044	1888	1584	3654	28	232	239	248	254	267	189	
29	2794	2564	2304	2132	1796	4060	29	248	256	266	272	285	203	
30	3118	2866	2584	2396	2028	4495	30	265	273	283	290	303	217.5	
31	3466	3194	2884	2682	2280	4960	31	282	291	301	308	323	232.5	
32	3840	3544	3210	2988	2552	5456	32	300	309	320	328	342	248	
33	4240	3920	3558	3318	2844	5984	33	318	328	340	347	363	264	
34	4666	4322	3930	3672	3160	6545	34	337	347	359	368	384	280.5	
35	5120	4750	4330	4050	3498	7140	35	356	367	380	388	405	297.5	
36	5604	5206	4754	4454	3858	7770	36	376	388	401	410	428	315	
37	6118	5692	5206	4884	4244	8436	37	397	409	422	432	450	333	
38	6662	6206	5686	5342	4656	9139	38	418	430	444	454	473	351.2	
39	7238	6750	6196	5826	5092	9880	39	440	452	467	477	497	370.5	
40	7846	7326	6736	6342	5556	10660	40	462	475	490	501	522	390	

Dennis V. Lindley, William F. Scott, New Cambridge Statistical Tables, (1995) © Cambridge University Press, reproduced with permission.