

An Ion-to-Frequency ISFET Architecture for Ultra-Low Power Applications

Miguel Cacho-Soblechero ^{1,2}, Tor Sverre Lande ² and Pantelis Georgiou ^{1,2}

 1 Dept. of Electrical and Electronic Engineering, Imperial College London, United Kingdom
 2 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, United Kingdom

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Imperial College London

ISFET – Ion Sensitive Field Effect Transistor

ISFET Applications

1 PoC Diagnosis

State-of-the-art Challenges

- 1 Spatial Resolution
- Compact pixel size
- Scalability to smaller tech. process
- Scalability to larger arrays

- 2 Power
- Sweat monitoring requires operation over long periods of time
- Power harvesting relies on low power

- 3 pH Resolution
- Chemical and electronical noise limits the maximum pH resolution

Opportunities - Voltage-Controlled Oscillator ADC

Highly digital

Suitable for low supply voltage

Energy Efficient

First-Order Noise-Shaping

Integration with digital processing

Ion-to-Frequency ISFET Architecture

- Phase 1 → pH_{Out} = 0 & R > V_{th Inv2}
 - Node S forced to V_{dd}
 - Potential @ Node R discharges through ISFET
- Phase 2 \rightarrow pH_{Out} = 0 & R < V_{th Inv2}
 - Potential @ Node R crosses inverter threshold voltage
 - SR Latch switch pH_{Out} from 0 to 1

- Phase 3 → pH_{Out} = 1 & S > V_{th Inv1}
 - Node R forced to V_{dd}
 - Potential @ Node S discharges through ISFET
- Phase 4 → pH_{Out} = 1 & S < V_{th Inv1}
 - Potential @ Node R crosses inverter threshold voltage
 - SR Latch switch pH_{Out} from 1 to 0
 - Oscillatory behaviour achieved

Ion-to-Frequency ISFET Architecture – Transfer Function

Standard FM sensor function

$$f_{pH} = f_{pH=7} + G \cdot \Delta f_{pH}$$

 Both the centre frequency & the sensitivity are defined by:

$$f_{pH} \propto \frac{1}{V_{th\ Inv} \cdot C} \left(I_{ISFET[pH=7]} + \Delta I_{ISFET} \right)$$

Ion-to-Frequency ISFET Architecture – Transfer Function

ISFET weak inversion transfer function

$$I_{ISFET} = I_0 \cdot \exp\left(\frac{V_{g''s}}{n \cdot U_t}\right) \cdot \left[1 - \exp\left(\frac{-V_{ds}}{U_t}\right)\right]$$
$$I_{ISFET} \propto I_0 \cdot \exp\left(\frac{\alpha S_N pH}{n \cdot U_t}\right)$$

Merging with frequency transfer function

$$f_{pH} \propto \frac{I_0}{V_{th Inv} \cdot C} \cdot \exp\left(\frac{\alpha S_N(pH_7 + \Delta pH)}{n \cdot U_t}\right)$$

Pixel Layout

- Fabricated in 180nm process
- Compact form factor 20x21 um²
 - Chemical area limited to 11x21 um²
 to minimise floating gate coupling

Pixel Simulated Performance – Sensitivity & Power

- Supply voltage = 0.2 V
- Sensitivity curve follows expected pattern from transfer function

$$- f_{pH7} = 697 Hz$$

$$- S[f_{pH7}] = 286.58 \frac{Hz}{pH}$$

Maximum power consumption – 33pW

Pixel Simulated Performance – Noise

- Noise performance obtained from Power Spectral Density (PSD)
- PSD integrated between 10 mHz & 8 Hz
 - pH resolution 0.0119 pH
- Further validation required to obtain any conclusion on this result

State-of-the-art Comparison

Specification	This Work	[7]	[16]	[17]	[9]
Technology	$0.18\mu m$	$0.35 \mu m$	$0.35\mu m$	$0.35\mu m$	$0.18\mu m$
Sensing Domain	Frequency	Time	Current	Voltage	Duty Cycle
Pixel pitch $[\mu m^2]$	20x21	37x31	6.5x7.8	50x50	40x40
Sensitivity	287 Hz/pH	$3.26\mu s/pH$	$1.03 \mu A/pH$	42.1 mV/pH	11.78 %/рН
Input Range	9.15pH	-	$200\mu A$	1.92 V	3.39pH
Supply [V]	0.2	3.3	3.3	3.3	1.8
Min. Detectable pH	0.0119	0.017	0.01	0.06	0.0176
Pixel Power Consumption	33 pW	99 μW	$\dagger 150 \mu W$	$1.98~\mu W$	$61~\mu W$
In-Pixel Quantization	✓	1	×	×	1
Scalability	✓	✓	✓	×	/

Conclusions

- Presented an ultra-low power pixel architecture, which addresses some of the most urgent challenges on ISFET technology
 - Realised with digital components → Enable scalability to smaller nodes
 - High energy efficiency, ideal for wearable devices → 33pW at 0.2 V
 - Compact pixel form factor \rightarrow 20x21 um^2
 - Provides in-pixel quantisation → No need for ADC

Dr. Pantelis GeorgiouDepartment of Electrical and Electronic Engineering
Centre for Bio-inspired Technology

pantelis@imperial.ac.uk

@pgeorgiou_ic

Prof. Tor Sverre LandeCentre for Bio-Inspired Technology
Institute of Biomedical Engineering

bassen@ifi.uio.no

An Ion-to-Frequency ISFET Architecture for Ultra-Low Power Applications

Miguel Cacho-Soblechero ^{1,2}, Tor Sverre Lande ² and Pantelis Georgiou ^{1,2}

 1 Dept. of Electrical and Electronic Engineering, Imperial College London, United Kingdom
 2 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, United Kingdom

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Imperial College London

Q&A

