Finding All Max-Complexity Patterns in a 3×3 Grid

Dr. Zye

1. Defining notations

Let us name the 9 dots $1 \sim 9$ starting from the top left.

When indicating a pattern, we can either only list the order of dots, or also list slopes such as '(dot) [slope] (dot) [slope] (dot)...'. For example, the pattern '152' is the same as '(1) [-1] (5) [∞] (2)'.

(1) (2) (3) [-1] [\infty] (4) (5) (6)

9

[Fig 1] Pattern '152'

<u>(</u>7) (8)

When choosing the next dot in the middle of drawing a pattern,

- (1) Do not go to any dot using a slope that's already been used
- (2) Check if there is a slope needed to be used right now

Suppose we are finding a max-complexity pattern starting with '152'. We can use (1) to exclude 6 and 8 from the candidates of the next dot, because if we go to 6 we use [-1], and if we go to 8 we use $[\infty]$.

On the other hand, we can use (2) to determine that the next dot is 9. The slope [-2] can only go between 1-8 or -9, and if we do not go to 9, it is not possible to use [-2] at all. After going to 9, we need to move to 4 because slope $[-\frac{1}{2}]$ is needed to be used.

If we need to use a certain slope like this, or if there is only one possible path we can take, we denote a '!' beside the slope.

①
$$[-1]$$
 ⑤ $[\infty]$ ② $\rightarrow [-2]!$ ⑨ $[-\frac{1}{2}]!$ ④

[Fig 2] '15294'

Suppose we are finding a max-complexity pattern starting with '15294'. Now the next dot can be either ③ or ⑥.

First, if we go to ③, then we need to go to ⑧ because slope [2] is needed to be used. Now the left slopes are [0] and [1], and the left dots are ⑥ and ⑦. If we go to ⑥ then slope [0] is impossible to use, and if we go to ⑦ then slope [1] is impossible to use. When we cannot make a max-complexity pattern like this, we write '(X)', and write the reason such as '([0] impossible)'. If it is not hard to know why it is impossible, it can be

omitted.

Second, if we go to 6, then we need to go 7 because slope $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ is needed to be used. Now the left slopes are $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \end{bmatrix}$, and the left dots are 3 and 8. If we go to 3 and then 8, we can use all 8 different slopes. When we succeeded in making a max-complexity pattern like this, we write '(O)'. The entire notation for this example is as follows.

①
$$[-1]$$
 ⑤ $[\infty]$ ②
 $\rightarrow [-2]!$ ⑨ $[-\frac{1}{2}]!$ ④
 $\rightarrow [\frac{1}{2}]$ ③ $[2]!$ ⑧ (X)
 $\rightarrow [0]$ ⑥ $[\frac{1}{2}]!$ ⑦ $[1]!$ ③ $[2]!$ ⑧ (O)

Now we use this notation to find all max-complexity patterns in a 3×3 grid.

2. Starting from the corner

Dots ①, ③, ⑦ or ⑨ are corners of a 3×3 grid. If we find all patterns starting from dot ①, we can find the rest with rotation. Dots ②, ④, ⑤, ⑥ or ⑧ can come after ①, but if we find the cases for ②, ⑤ and ⑥, the rest can be found through symmetry.

A. Starting with '12'

B. Starting with '15'

Next, if we find the cases for ②, ③ and ⑥, the rest can be found through symmetry.

1) Starting with '152'

[Fig 4] '152946738'

2) Starting with '153'

- ① [-1] ⑤ [1] ③
 - \rightarrow [0] ② (X) (either [2] or [-2] impossible)
 - $\rightarrow \left[\frac{1}{2}\right] \oplus \left[-\frac{1}{2}\right]! \oplus \left[-2\right]! \oplus \left[2\right]! \oplus \left[X\right]$
 - $\rightarrow [\infty] \ \textcircled{6} \ [\tfrac{1}{2}]! \ \textcircled{7} \ [2]! \ \textcircled{2} \ [-2]! \ \textcircled{9} \ (X)$
 - \rightarrow [2] \otimes

 - \rightarrow [0] \bigcirc [$\frac{1}{2}$]! \bigcirc [∞]! \bigcirc (X)
 - \rightarrow [0] 9 $[-\frac{1}{2}]!$ 4 (X) ([-2] impossible)

[Fig 5] '153829467'

3) Starting with '156'

- ① [-1] ⑤ [0] ⑥
 - $\rightarrow [\infty]$ (3) $[\frac{1}{2}]!$ (4) (X) ([1] impossible)
 - $\rightarrow \left[\frac{1}{2}\right]$ 7
 - \rightarrow [2] ② [-2]! ⑨ [∞]! ③ (X)
 - \rightarrow [1] ③ [2]! ⑧ [∞]! ② [-2]! ⑨ [$-\frac{1}{2}$]! ④ (O)
 - $\rightarrow [\infty] \ \textcircled{4} \ [-\frac{1}{2}]! \ \textcircled{9} \ (X) \ ([1] \text{ impossible})$
 - \rightarrow [1] \otimes [2]! \otimes [$\frac{1}{2}$]! \otimes [$-\frac{1}{2}$]! \otimes (X)

C. Starting with '16'

Dots 2, 3, 5, 7, 8 or 9 can come afterwards.

1) Starting with '162'

- ① $\left[-\frac{1}{2}\right]$ ⑥ $\left[-1\right]$ ②
 - \rightarrow [-2]! (9)

 - \rightarrow [0] \otimes [2]! \otimes [$\frac{1}{2}$]! \otimes [∞]! \otimes [1]! \otimes (O)

2) Starting with '163'

- ① $\left[-\frac{1}{2}\right]$ ⑥ $\left[\infty\right]$ ③
 - $\rightarrow \left[\frac{1}{2}\right]! \ \oplus$
 - \rightarrow [1] ② [2]! ⑦ (X) ([-2] impossible)
 - \rightarrow [0] \bigcirc [1]! \bigcirc (X) ([-1] impossible)
 - \rightarrow [-1] \otimes
 - \rightarrow [0] \bigcirc [2]! \bigcirc (X)
 - \rightarrow [0] 9 [-2]! 2 [2]! 7 [1]! 5 (O)

3) Starting with '165'

- ① $\left[-\frac{1}{2}\right]$ ⑥ $\left[0\right]$ ⑤
 - \rightarrow [∞] ② [-2]! ⑨ (X)
 - \rightarrow [1] ③ $\left[\frac{1}{2}\right]!$ ④ $\left[-1\right]!$ ⑧ $\left[\infty\right]!$ ② $\left(X\right)$
 - **→** [1] ⑦
 - \rightarrow [2] ② [-2]! ⑨ [∞]! ③ [$\frac{1}{2}$]! ④ [-1]! ⑧ (O)
 - \rightarrow [∞] 4 [$\frac{1}{2}$]! 3 (X) ([-1] impossible)
 - $\rightarrow [\infty] \otimes [-1]! \oplus [\frac{1}{2}]! \otimes [1]! \bigcirc [2] \otimes [-2] \otimes (O)$
 - \rightarrow [-1] 9 [-2]! 2 [2]! 7 [1]! 3 (X)

4) Starting with '167'

- ① $\left[-\frac{1}{2}\right]$ ⑥ $\left[\frac{1}{2}\right]$ ⑦
 - \rightarrow [2] ② [-2]! ⑨
 - $\rightarrow [\infty]$ (3) [1]! (5) [0]! (4) [-1]! (8) (O)
 - \rightarrow [-1] (5) [1]! (3) (X)
 - \rightarrow [0] \otimes [-1]! \oplus (X)
 - $\rightarrow [\infty]$ 4
 - \rightarrow [1] ② [-2]! ⑨ [-1]! ⑤ (X)
 - \rightarrow [0] (5) [1]! (3) (X) ([-1] impossible)
 - \rightarrow [-1] \otimes [2]! \otimes [0]! \otimes (X)
 - \rightarrow [1] (5)

 - \rightarrow [0] 4 [-1]! 8 [2]! 3 [∞]! 9 [-2]! 2 (O)
 - \rightarrow [∞] \otimes [2]! \otimes (X) ([-1] impossible)
 - \rightarrow [-1] 9 [-2]! 2 [∞]! 8 (X)
 - \rightarrow [0] \otimes [2]! \otimes
 - \rightarrow [1] \bigcirc [-1]! \bigcirc (X)
 - $\rightarrow [\infty] \ \ 9 \ \ [-2]! \ \ 2 \ \ (X)$

[Fig 8] '163489275'

[Fig 9] '165729348'

[Fig 10] '165843729'

[Fig 12] '167293548'

[Fig 11] '167548392'

5) Starting with '168'

① $[-\frac{1}{2}]$ ⑥ [1] ⑧ → [2] ③ $[\frac{1}{2}]!$ ④ → [0] ⑤ [-1]! ⑨ (X) → $[\infty]$ ⑦ [0]! ⑨ (X) → [-1] ④ $[\frac{1}{2}]!$ ③ → [0] ② (X) (either [2] or [-2] impossible) → $[\infty]$ ⑨ [-2]! ② (X) → $[\infty]$ ⑤ → [0] ④ $[\frac{1}{2}]!$ ③ (X) → [-1] ⑨ [-2]! ② [2]! ⑦ (X) → [0] ⑦ [2]! ② [-2]! ⑨ [-1]! ⑤ (X) → [0] ⑨ [-2]! ② (X) ([-1] impossible)

6) Starting with '169'

① $[-\frac{1}{2}]$ ⑥ $[\infty]$ ⑨

→ [-2]! ②

→ [0] ③ [2]! ⑧ (X) ($[\frac{1}{2}]$ impossible)

→ [1] ④ $[\frac{1}{2}]!$ ③ (X) ([-1] impossible)

→ [2] ⑦

→ [1] ⑤ [0]! ④ (X)→ [0] ⑧ [-1]! ④ $[\frac{1}{2}]!$ ③ [1]! ⑤ (O)

[Fig 13] '169278435'

3. Starting from the edge

Dots ②, ④, ⑥ or ⑧ are edges of a 3×3 grid. If we find all patterns starting from dot ②, we can find the rest with rotation. Dots ①, ③, ④, ⑤, ⑥, ⑦ or ⑨ can come after ②, but if we find the cases for ①, ④, ⑤ and ⑦, the rest can be found through symmetry.

[Fig 14] '218359476'

A. Starting with '21'

[Fig 15] '218367594'

B. Starting with '24'

- \rightarrow [∞] ① [-2]! \otimes (X) ([$-\frac{1}{2}$] impossible)
- $\rightarrow \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ (3) [2]! (8) [-2]! (1) [- $\frac{1}{2}$]! (6) [∞]! (9) (X)
- → [0] ⑤
 - \rightarrow [-1] ① [-2]! \otimes (X) ([- $\frac{1}{2}$] impossible)
 - \rightarrow [∞] \otimes [-2]! \otimes (X) ([2] impossible)
 - \rightarrow [-1] \bigcirc [∞]! \bigcirc [$-\frac{1}{2}$]! 1 (X) ($[\frac{1}{2}]$ impossible)
- $\rightarrow [\infty]$ ⑦

 - \rightarrow [0] \otimes [-2]! \bigcirc (X) ([2] impossible)
- \rightarrow [1] \otimes [-2]! \oplus (X) ([2] impossible)
- $\rightarrow \left[-\frac{1}{2}\right]$ (9)
 - → [-1] ⑤
 - \rightarrow [0] 6 [$\frac{1}{2}$]! 7 [∞]! 1 [-2]! 8 [2]! 3 (O)
 - \rightarrow [∞] \otimes [-2]! (X) ([2] impossible)
 - $\rightarrow [\infty]$ 6 $\left[\frac{1}{2}\right]!$ 7 $\left[0\right]!$ 8 $\left[-2\right]!$ 1 $\left(X\right)$
 - \rightarrow [0] \otimes [-2]! \bigcirc (X) ([2] impossible)

[Fig 16] '249567183'

C. Starting with '25'

Next, if we find the cases for ①, ④ and ⑦, the rest can be found through symmetry.

1) Starting with '251'

- ② [∞] ⑤ [-1] ①
 - \rightarrow [-2]! \otimes [2]! \otimes [1]! \circ [$\frac{1}{2}$]! \otimes [0]! \oplus [$-\frac{1}{2}$]! \otimes (O)

[Fig 17] '251837649'

2) Starting with '254'

- ② [∞] ⑤ [0] ④
 - $\rightarrow [\frac{1}{2}]$ (3) [2]! (8) [-2]! (1) (X) ([1] impossible)
 - \rightarrow [-1] \otimes [-2]! \oplus (X) ([2] impossible)
 - $\rightarrow [-\frac{1}{2}] \ 9 \ [-1]! \ 1 \ [-2]! \ 8 \ [2]! \ 3 \ [1]! \ 7 \ [\frac{1}{2}] \ 6 \ (O)$

[Fig 18] '254918376'

3) Starting with '257'

- $\rightarrow \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ 6
 - $\rightarrow [-\frac{1}{2}] \ (1) \ [-2]! \ (8) \ [2]! \ (3) \ (X)$
 - \rightarrow [0] 4 $[-\frac{1}{2}]!$ 9 [-1]! 1 [-2]! 8 [2]! 3 (O)

D. Starting with '27'

Dots 4, 5, 6 or 8 can come afterwards.

1) Starting with '274'

- ② [2] ⑦ [∞] ④
 - $\rightarrow \left[\frac{1}{2}\right]!$ ③
 - \rightarrow [0] ① [-2]! \otimes (X) ([- $\frac{1}{2}$] impossible)
 - \rightarrow [1] \bigcirc
 - \rightarrow [-1] ① [-2]! ⑧ (X)

 - \rightarrow [-1] 9 [0]! 8 [-2]! 1 [- $\frac{1}{2}$]! 6 (O)

2) Starting with '275'

- ② [2] ⑦ [1] ⑤
 - \rightarrow [-1] ① [-2]! \otimes [0]! \otimes [$\frac{1}{2}$]! ④ [$-\frac{1}{2}$]! \otimes [∞]! \otimes (O)
 - $\rightarrow [0] \ \textcircled{4} \ [\tfrac{1}{2}]! \ \textcircled{3} \ [\infty]! \ \textcircled{6} \ [-\tfrac{1}{2}]! \ \textcircled{1} \ (X)$
 - $\rightarrow [0]$ 6
 - $\rightarrow [-\frac{1}{2}] \ (\bigcirc \ [-2]! \ (\otimes \ [-1]! \ (4) \ (\frac{1}{2}]! \ (3) \ (\infty)! \ (9)$

 - $\rightarrow [\infty]$ 9 $\left[-\frac{1}{2}\right]!$ 4 (X) ([-1] impossible)
 - $\rightarrow [\infty] \otimes [-2]! \oplus [-\frac{1}{2}]! \oplus (X)$
 - → [-1] (9)
 - $\rightarrow \begin{bmatrix} -\frac{1}{2} \end{bmatrix} \textcircled{4} \begin{bmatrix} \frac{1}{2} \end{bmatrix}! \textcircled{3} (X)$

 - \rightarrow [0] \otimes [-2]! \oplus [- $\frac{1}{2}$]! \oplus [∞]! \oplus [$\frac{1}{2}$]! \oplus (O)

3) Starting with '276'

② [2] ⑦ $[\frac{1}{2}]$ ⑥

- $\rightarrow [-\frac{1}{2}] \ (1) \ [-2]! \ (8)$
 - \rightarrow [-1] 4 [0]! 5 [1]! 3 [∞]! 9 (O)

 - \rightarrow [0] 9 [-1]! 5 (X)
- \rightarrow [∞] 3 [1]! 5
 - \rightarrow [-1] ① [-2]! \otimes [0]! \otimes [$-\frac{1}{2}$]! \otimes (O)
 - \rightarrow [0] 4 $[-\frac{1}{2}]!$ 9 [-1]! 1 [-2]! 8 (O)
- → [0] ⑤ [1]! ③ [∞]! ⑨ $[-\frac{1}{2}]!$ ④ [-1]! ⑧ [-2]! ① (O)
- \rightarrow [1] \otimes [-2]! \bigcirc
 - \rightarrow [0] ③ [∞]! ⑨ (X)
 - $\rightarrow [\infty] \ \ (-\frac{1}{2}]! \ \ (X)$
 - \rightarrow [-1] \bigcirc [0]! \bigcirc [-\frac{1}{2}]! \bigcirc [\infty]! \bigcirc (O)
- - \rightarrow [0] ⑤ [1]! ③ (X)
 - \rightarrow [-1] \otimes [- $\frac{1}{2}$]! \bigcirc [0]! \bigcirc [1]! \bigcirc (O)

4) Starting with '278'

- 2 [2] 7 [0] 8
 - \rightarrow [-2]! ①
 - $\rightarrow [\infty] \ \textcircled{4} \ [\frac{1}{2}]! \ \textcircled{3} \ (X) \ ([-\frac{1}{2}] \ impossible)$
 - \rightarrow [-1] \bigcirc [1]! \bigcirc [$\frac{1}{2}$]! \bigcirc [$-\frac{1}{2}$]! \bigcirc [∞]! \bigcirc (O)
 - $\rightarrow \left[-\frac{1}{2}\right]$ 6

[Fig 32] '278153496'

4. Starting from the center

The dot ⑤ is the center of a 3×3 grid. For the next dot, if we find the cases for ① and ②, the rest can be found through symmetry.

A. Starting with '51'

Next, if we find the cases for 2 and 6, the rest can be found through symmetry.

1) Starting with '512'

- 5 [-1] 1 [0] 2

2) Starting with '516'

- $\boxed{5} \ [-1] \ \boxed{1} \ [-\frac{1}{2}] \ \boxed{6}$
 - $\rightarrow [\infty]$ (3) [2]! (8) (X) ([$\frac{1}{2}$] impossible)
 - \rightarrow [0] 4 [$\frac{1}{2}$]! 3 [1]! 7 [2]! 2 (X)
 - $\rightarrow \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ 7
 - \rightarrow [2] ② [-2]! ⑨ (X) ([1] impossible)
 - \rightarrow [1] ③ [2]! ⑧ [∞]! ② (X)
 - \rightarrow [∞] 4 [1]! 2 [-2]! 9 [0]! 8 [2]! 3 (O)
 - \rightarrow [0] \otimes [2]! \otimes [∞]! \otimes [-2]! \otimes [1]! \otimes (O)
 - $\rightarrow [1]$ (8)
 - \rightarrow [∞] ② [-2]! ⑨ (X) ([2] impossible)
 - \rightarrow [2] ③ $\left[\frac{1}{2}\right]!$ ④ $\left[\infty\right]!$ ⑦ [0]! ⑨ $\left[-2\right]!$ ② (O)
 - \rightarrow [0] \bigcirc [2]! \bigcirc [-2]! \bigcirc [∞]! \bigcirc [$\frac{1}{2}$]! \bigcirc (O)
 - $\rightarrow [0] \ 9 \ [-2]! \ 2 \ [2]! \ 7 \ [\infty]! \ 4 \ [\frac{1}{2}]! \ 3 \ (O)$
 - \rightarrow [∞] 9 [-2]! 2
 - \rightarrow [0] 3 [2]! 8 (X)
 - \rightarrow [1] 4 [$\frac{1}{2}$]! 3 [2]! 8 [0]! 7 (O)
 - \rightarrow [2] ⑦ [1]! ③ (X)

[Fig 38] '516892743'

[Fig 39] '516924387'

[Fig 33] '512947683'

[Fig 34] '516742983'

[Fig 35] '516783924'

[Fig 36] '516834792'

[Fig 37] '516872934'

B. Starting with '52'

Next, if we find the cases for ①, ④ and ⑦, the rest can be found through symmetry.

1) Starting with '521'

```
(5) [∞] (2) [0] (1) → [-2]! (8) (X) ([-1] impossible)
```

2) Starting with '524'

3) Starting with '527'

5. Results

From chapters 2-4, the number of max-complexity patterns are: 11 that start from the corner, 19 that start from the edge, and 7 that start from the center. This does not include rotated/reflected patterns. If we include the reflection and 4 rotations, the number of max-complexity patterns are $(11+19+7)\times 8 = 296$.