Data Warehouse - Projeto final de Mineração de Dados

Alunos: Felipe Martins Machado Mendes e Caio Righetto Campos

Contextualização:

Somos analistas de dados trabalhando para uma grande empresa de transporte aéreo. A companhia aérea tem vários sistemas para gerenciar as **reservas de voos, manutenção de aeronaves, operações de aeroportos, catering, pessoal e finanças.** A empresa aérea deseja unificar os dados desses sistemas díspares em um único Data Warehouse para melhorar a eficiência das operações, maximizar a lucratividade, aprimorar a experiência do cliente e informar decisões estratégicas.

Ao ouvir mais sobre os objetivos e intenções da empresa com a implementação deste datawarehouse, a solução inicial que pensamos foi a seguinte:

Temos 7 tabelas no total, sendo elas:

Tabela voos:

fonte:

https://www.gov.br/anac/pt-br/assuntos/dados-e-estatisticas/historico-de-voos

id_voo: Número identificador único para cada voo, utilizado como chave primária da tabela.

sigla_ICAO_empresa_aerea: Sigla de 3 letras representando a identificação ICAO da

empresa aérea associada ao voo.

numero_voo: Número de identificação do voo, geralmente composto por 3 letras ou números.

codigo_DI: Código do dígito identificador do voo;

codigo_tipo_linha: Código de um caractere que pode indicar o tipo de linha do voo.

sigla_ICAO_aeroporto_origem: Sigla de 4 letras representando a identificação ICAO do aeroporto de origem do voo.

partida_prevista: Data e hora previstas para a partida do voo.

partida_real: Data e hora real da partida do voo.

sigla_ICAO_aeroporto_destino: Sigla de 4 letras representando a identificação ICAO do aeroporto de destino do voo.

chegada_prevista: Data e hora previstas para a chegada do voo ao destino.

chegada_real: Data e hora real da chegada do voo ao destino.

situação do voo.

SLA: Indica o atraso (se houver) para a partida do avião.

Tabela comida:

idComida: Número identificador do alimento.

desc_comida: Texto descrevendo o alimento.

Tabela comidaPorVoo:

id_voo: código de identificação do voo.

id_comida: código de identificação do alimento.

quantidade: número de itens do alimento sendo levado.

Tabela tripulação:

registro_funcionario: código identificador do funcionário.

nome: nome do funcionário.

data_nascimento: data de nascimento do funcionário.

Tabela tripulaçãoPorVoo:

id_voo: código identificador do voo.

registro_funcionario: código identificador do funcionário.

Tabela passageiros:

cpf: cadastro de pessoa física do passageiro, é o identificador de cada um.

nome: nome do passageiro.

data_nascimento: data de nascimento do passageiro.

Tabela passageirosPorVoo:

id_voo: código identificador do voo.

passageiro_cpf: cpf do passageiro no voo.

Conforme foi dito, a **tabela voos** é proveniente dos dados abertos fornecidos pela ANAC (Agência Nacional de Aviação) e contém alguns detalhes que precisam ser tratados.

As colunas Partida Prevista, Partida Real, Chegada Prevista e Chegada Real

estão preenchidas com datas e horas, o problema é que elas estão como string, se quisermos fazer cálculos envolvendo estas datas, **precisamos converter elas de string para date**.

Além disso, criamos uma coluna adicional chamada **SLA**, que checa se a partida real foi mais tardia do que a partida prevista e se sim, contabiliza o tempo de atraso (será útil no dashboard).

Com essas transformações e o MER em mente, para fazer o processo de **ETL** resolvemos utilizar o **Apache Airflow** e desenvolvemos a seguinte **DAG**:

A dag foi dividida em 6 tasks no total, comentadas abaixo:

conectar_drive: Essa task é responsável por acessar o repositório onde estão os dados brutos.

coletar_drive: Essa task é responsável por coletar os dados brutos.

gerarInfos: Essa task gera as informações para completar as outras tabelas além da que coletamos.

transform: Essa task faz as transformações comentadas acima, criando também a coluna de SLA.

conectar_postgres: Essa task conecta ao bando de dados.

insert_data: Essa task insere os dados nas tabelas.

Com dos dados no banco de dados, agora eles podem ser extraídos e utilizados para várias finalidades, seja para cálculos estatísticos, modelos de machine learning ou, no nosso caso, criação de dashboards.

Fizemos o seguinte dashboard no **Power BI**:

Acreditamos que ele representa parte dos interesses da empresa e se alinha com alguns dos objetivos para alcançar mais lucro e mais performance nas operações da companhia aérea.

Para implementarmos tudo isso em larga escala, seria necessário um local específico para processar os dados, como um **datacenter** ou se a empresa optar por um serviço de **nuvem**.

Com o poder de processamento em mãos, a empresa seria capaz de coletar os dados em tempo real e já encaminha-los para o começo do processo de **ETL.** Fazendo com que assim o dashboard seja atualizado constantemente e decisões estratégicas sejam tomadas.