Выражение функции XOR через медианы

Теорема:

$$x_0 \oplus x_1 \oplus \ldots \oplus x_{2m} = \langle \neg x_0, s_1, s_2, \ldots, s_{2m} \rangle,$$
 $s_j = \langle x_0, x_j, x_{j+1}, \ldots, x_{j+m-1}, \neg x_{j+m}, \neg x_{j+m+1}, \ldots, \neg x_{j+2m-1} \rangle,$ где x_{2m+k} обозначает то же, что и x_k , при $k \geqslant 1$.

Разберемся с условием. Мы хотим доказать, что побитовый XOR с 2m+1 аргументами выражается с помощью медианы с 2m+1 аргументом. Аргументами медианы является набор $\{s_i\}$, получаемый следующим образом:

- Выпишем последовательность $x_1, x_2, ..., x_{2m}$
- Первую половину аргументов (а их ровно m) возьмем с отрицанием ($\neg x_1, \neg x_2, ..., \neg x_m, x_{m+1}, x_{m+2}, ..., x_{2m}$)
- Слева к этой последовательности припишем x_0 и подадим в качестве аргументов медиане: $\langle x_0, \neg x_1, \neg x_2, ..., \neg x_m, x_{m+1}, x_{m+2}, ..., x_{2m} \rangle$ так мы получили s_{m+1}
- Остальные s_i получаются "циклическим сдвигом" отрицания (без учета x_0), например, вправо (так мы получим все "циклические сдвиги" отрицаний):

$$\bullet \ s_1 = \langle x_0, x_1, x_2, x_3, ..., x_{m-1}, x_m, \neg x_{m+1}, \neg x_{m+2}, \neg x_{m+3}, ..., \neg x_{2m-1}, \neg x_{2m} \rangle$$

$$\bullet \quad s_m = \langle x_0, \neg x_1, \neg x_2, \neg x_3, \dots, \neg x_{m-1}, x_m, x_{m+1}, x_{m+2}, x_{m+3}, \dots, x_{2m-1}, \neg x_{2m} \rangle$$

$$\bullet \ \ s_{m+2} = \langle x_0, x_1, \neg x_2, \neg x_3, ..., \neg x_{m-1}, \neg x_m, \neg x_{m+1}, x_{m+2}, x_{m+3}..., x_{2m-1}, x_{2m} \rangle,$$

И нужно проверить, что $\langle \neg x_0, s_1, s_2, ..., s_{2m} \rangle = x_0 \oplus x_1 \oplus ... \oplus x_{2m}$.

Содержание

- 1 Вспомогательные утверждения
- 2 Доказательство теоремы
- 3 См. также
- 4 Источники информации

Вспомогательные утверждения

Лемма:

Каждой s_i можно однозначно сопоставить в пару такую s_j , что все переменные (кроме x_0) с отрицанием из s_i в s_j будут без отрицания и наоборот. Аргументы x_0 у всех s_i одинаковые, поэтому будем разбивать на пары без учета x_0 .

Доказательство:

Мы строим набор s_i , циклически сдвигая отрезок отрицания переменных, пока не получим все возможные. Совершив ровно m таких шагов, мы сдвинем начало отрезка отрицания на следующую позицию после его конца. Таким образом, там, где был отрезок отрицания, будет отрезок без отрицания, и наоборот.

Назовем такую пару (s_i, s_j) двойственной, и будем обозначать через $\neg s_i$ двойственную s_i пару.

Пусть на j-ом месте у s_i стоит единица (j > 0). Назовем этот аргумент **самостоятельной единицей**.

Утверждение:

Если в s_i ровно n самостоятельных единиц, то в $\neg s_i$ их будет (2m-n).

У двойственного элемента все самостоятельные единицы станут нулями, а все нули — единицами. А всего позиций 2m.

Утверждение:

Среди x_i четное число единиц \Leftrightarrow найдется двойственная пара, элементы которой имеют одинаковое количество самостоятельных единиц.

Пусть A_i — множество аргументов (за исключением x_0) s_i с отрицанием, B_i — без отрицания (тоже за исключением x_0). Оба множества по условию мощности m. Пусть среди A_i ровно a_i переменных равны единице, тогда оставшиеся $(m-a_i)$ из них — нули. Аналогично среди B_i ровно b_i единиц и $(m-b_i)$ нулей. Самостоятельные единицы s_i получаются из нулей среди A_i и единиц среди B_i . Тогда в s_i будет $(m-a_i)+b_i$ самостоятельных единиц. В $\neg s_i$ переменные заменятся на их отрицания, поэтому самостоятельные единицы в ней получаются из единиц среди A_i и нулей среди B_i . Поэтому количество самостоятельных единиц в $\neg s_i$ будет $a_i+(m-b_i)$.

 \leftarrow

Приравняем количества самостоятельных единиц в паре: $(m-a_i)+b_i=a_i+(m-b_i) \Leftrightarrow a_i=b_i$

А a_i и b_i — количества единиц в A_i и в B_i соответственно, и, так как множество всех аргументов s_i это $A_i \cup B_i$, то $(a_i + b_i)$ и есть количество единиц среди ее аргументов. Но $a_i = b_i$, значит $a_i + b_i$ четное.

Вообще, утверждения "нашлась двойственная пара, элементы которой имеют одинаковое количество самостоятельных единиц" (1) и "нашлась s_i с количеством самостоятельных единиц, равным m" равносильны.

И правда, выше мы поняли, что (1) $\Leftrightarrow a_i = b_i$. Посчитаем количество самостоятельных единиц в s_i . $((m-a_i)+b_i)=m \Leftrightarrow a_i=b_i$.

 \Rightarrow

Пусть среди $x_i(i>0)$ будет 2t единиц. Давайте найдем s_j , в которой среди A_j единиц столько же, сколько и среди B_j . Тогда в ней будет $a_j=b_j$, из чего и будет следовать требуемое. Рассмотрим любую s_k . Будем считать, что в A_k меньше половины единиц ($a_k < t$), иначе рассмотрим двойственную ей, в ней будет меньше половины, или, если равенство, то мы уже нашли такую. Будем последовательно сдвигать

отрицания вправо на одну позицию, переходя от s_l к s_{l+1} . За каждый сдвиг количество единиц в A_l может измениться только на 1. Действительно, если в A_l добавились и ушли разные числа, то количество единиц изменилось на 1 (увеличилось или уменьшилось), а если одинаковые — то не поменялось. Таким образом, сделав m шагов, мы дойдем от s_k до $\neg s_k$, причем количество единиц в A_l будет изменяться не более, чем на 1. Изначально оно было a_l , а станет — $2t-a_l$. Тогда выполняются неравенства: $a_k \le t \le 2t-a_k$. Левый знак верен просто потому, что мы так выбрали s_k , а правый, очевидно, равносилен первому. Таким образом, мы, изменяя a_l не больше, чем на единицу, пришли из a_k в $2t-a_k$, причем число t было между ними. Поэтому мы обязательно на каком-то шаге оказались с $a_{l'} = t$, то есть ровно половина единиц попала в $A_{l'}$, чего мы и хотели.

Заметим также, что мы доказали наличие одной пары, но на самом деле таких может быть больше. Давайте такие пары назовем особенными, а остальные — обычными.

Доказательство теоремы

Теорема:

$$x_0 \oplus x_1 \oplus \dots \oplus x_{2m} = \langle \neg x_0, s_1, s_2, \dots, s_{2m} \rangle,$$

 $s_j = \langle x_0, x_j, x_{j+1}, \dots, x_{j+m-1}, \neg x_{j+m}, \neg x_{j+m+1}, \dots, \neg x_{j+2m-1} \rangle$

Доказательство:

Пусть k_i — количество самостоятельных единиц у s_i .

Рассмотрим два случая.

$$1. x_0 = 0.$$

- Тогда в каждой s_i будет стоять вместо него 0, то есть количество аргументов-единиц в точности равно количеству самостоятельных единиц.
- Пусть $k_i \ge m+1 \Rightarrow k_{i+m} \le m-1$ (и аналогично с противоположным знаком) \Rightarrow в обычных парах одна s_i будет равна 1, а вторая 0.
- При нечетном количестве единиц особенных пар не будет, будет только ровно m обычных пар, из каждой ровно одна s_i даст единицу. Тогда среди всех s_i будет ровно m единиц, и, подставив их в конечную медиану, вместе с $\neg x_0 = 1$, получим ровно m+1 аргумент, равный 1. Тогда медиана вернет 1, что и должен вернуть XOR нечетного числа единиц.
- При четном количестве у нас найдется особенная пара, а в этих s_i и ¬ s_i ровно по m самостоятельных единиц, а значит, они обе будут равны 0. Тогда всего среди s будет не более $(m-1)s_i$ равных одному, значит, конечная медиана вернет 0, что и нужно при XOR-е четного числа единиц.

$2. x_0 = 1$

- Тогда в каждой s_i будет стоять вместо него 1, то есть количество аргументов-единиц для s_i на один больше количества самостоятельных единиц.
- Пусть $k_i \ge m+1 \Rightarrow k_{i+m} \le m-1$ (и аналогично с противоположным знаком) \Rightarrow попрежнему (тут с учетом $x_0 = 1$) в обычных парах одна s_i будет равна 1, а вторая 0.
- При нечетном количестве единиц особенных пар нет, будет снова только ровно m обычных пар, из каждой ровно одна s_i даст единицу. Тогда среди всех s_i будет ровно m единиц, и,

- подставив их в конечную медиану, вместе с $\neg x_0 = 0$, получим ровно m аргументов, равных 1 . Тогда медиана вернет 0, что и должен вернуть XOR четного числа единиц.
- При четном количестве у нас найдется особенная пара, а в этих s_i и ¬ s_i ровно по m самостоятельных единиц, а значит, они обе будут равны 1, ведь вместе с $x_0 = 1$ среди аргументов медиан будет по m+1 единиц. Тогда всего среди s_i будет не менее m+1 $s_i = 1$, значит, конечная медиана вернет 1, что и нужно при XOR-е нечетного числа единиц.

См. также

- Представление функции формулой, полные системы функций
- Представление функции класса DM с помощью медианы
- Определение булевой функции

Источники информации

- Notes on Majority Boolean Algebra (https://si2.epfl.ch/~demichel/publications/archive/2016/2016_ismvl_1.pdf)
- Multi-input XOR Gate Using Multi-input Majority Function (https://www.researchgate.net/profile/Esam_Alkaldy/publication/277518459_A_Novel_Design_Approach_for_Multi-input_XOR_Gate_Using_Multi-input_Majority_Function/links/568b60df08ae051f9afa9b56/A-Novel-Design-Approach-for-Multi-input-XOR-Gate-Using-Multi-input-Majority-Function.pdf)
- Upper bounds on formula size for specific functions (http://sites.math.rutgers.edu/~sk1233/courses/topics -S13/lec1.pdf)

Источник — «http://neerc.ifmo.ru/wiki/index.php? title=Выражение функции XOR через медианы&oldid=85598»

Эта страница последний раз была отредактирована 4 сентября 2022 в 19:36.