Invertible Matrices

Definition 1. Let $A \in \mathcal{M}_n$ be a square matrix. Then A is called an invertible matrix if there exists a matrix $B \in \mathcal{M}_n$ such that $AB = I_n = BA$.

Example 2. Let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

We compute an inverse of A. We need a matrix

$$B = \left[\begin{array}{cc} x & y \\ z & w \end{array} \right]$$

such that

$$AB = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} x & y \\ z & w \end{array} \right] = \left[\begin{array}{cc} x+z & w+y \\ z & w \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

We obtain the equations

$$x + z = 1$$

$$w + y = 0$$

$$z = 0$$

$$w = 1$$

Solving, we find that x = 1, y = -1, z = 0, w = 1 and so

$$B = \left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right]$$

Theorem 3. If $A \in \mathcal{M}_n$ has an inverse, then this inverse is unique.

Proof. Suppose that B and C are both inverses of A. Then

$$B$$
= $I_n B$ (Identity)
= $(CA)B$ (Since C is an inverse of A)
= $C(AB)$ (Associative)
= CI_n (Since B is an inverse of A)
= C (Identity).

Remark. If $A \in \mathcal{M}_n$ is invertible, then we write A^{-1} for this unique inverse of A.

Theorem. Let $A, B \in \mathcal{M}_n$ be invertible matrices. Then,

- (1) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (2) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proof.

- (1) The $AA^{-1} = I_n = A^{-1}A$ says that A is an inverse of A^{-1} . But $(A^{-1})^{-1}$ is certainly an inverse of A^{-1} . It follows from uniqueness that $(A^{-1})^{-1} = A$.
- (2) The equations

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$

and

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

say two things. First, they say that AB is invertible since we have found $C \in \mathcal{M}_n$ such that $(AB)C = I_n = C(AB)$. The equations also say that $B^{-1}A^{-1}$ is an inverse of AB. But $(AB)^{-1}$ is the unique inverse of AB so that $(AB)^{-1} = B^{-1}A^{-1}$.

Exercises

1. Prove that the matrix

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

is invertible if and only if $ad-bc \neq 0$. Find A^{-1} in this case by solving a system of two equations with two unknowns.

2. Let

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & -3 \end{array} \right].$$

- (a) Show that $A^3 + 3A^2 2A I_3 = \mathbf{0}$.
- (b) Use part (a) to see that A is invertible and compute A^{-1} .
- 3. Let $A \in \mathcal{M}_n$ be a diagonal matrix. Prove that A is invertible if and only if $\operatorname{ent}_{ii}(A) \neq 0$ for all $i \leq n$. Find A^{-1} in this case.
- 4. If $A, B \in \mathcal{M}_n$ are invertible such that $A + B \neq 0$, does it follow that $(A + B)^{-1}$ exists. Prove or find a counterexample.

Elementary Matrices

Definition. There are three elementary row operations on a matrix $A \in \mathcal{M}_{m \times n}$.

- (1) $E_{i \leftrightarrow k} \in \mathcal{M}_m$ switches $\mathbf{r}_i(A)$ and $\mathbf{r}_k(A)$.
- (2) $E_{i\to ci} \in \mathcal{M}_m$ replaces $\mathbf{r}_i(A)$ with $c\mathbf{r}_i(A)$.
- (3) $E_{i \to i+ck} \in \mathcal{M}_m$ replaces $\mathbf{r}_i(A)$ with $\mathbf{r}_i(A) + c\mathbf{r}_k(A)$.

Recall. If $A \in \mathcal{M}_{m \times p}$ and $B \in \mathcal{M}_{p \times n}$, then $\mathbf{r}_i(AB) = \mathbf{r}_i(A)B$. In particular, we have that $\mathbf{r}_i(AB) = a_{i1}\mathbf{r}_1(B) + a_{i2}\mathbf{r}_2(B) + \dots + a_{ip}\mathbf{r}_p(B)$. so that $\mathbf{r}_i(AB) \in \mathrm{Span}(\mathbf{r}_1(B), \mathbf{r}_2(B), \dots, \mathbf{r}_p(B))$.

Example. What is $E_{2\leftrightarrow 4}$ if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{bmatrix}?$$

Well, first note that we need $E_{2\leftrightarrow 4}A$ to be the same as A but only with the second and fourth rows swapped. So we know that $E_{2\leftrightarrow 4}$ is a 4×4 matrix

$$E_{2 \leftrightarrow 4} = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix}.$$

According to our formula for multiplication.

$$\mathbf{r}_i(E_{2\leftrightarrow 4}A) = e_{i1}\mathbf{r}_1(A) + e_{i2}\mathbf{r}_2(A) + \dots + e_{im}\mathbf{r}_m(A).$$

Now $\mathbf{r}_1(E_{2\leftrightarrow 4}A)$ is no different than $\mathbf{r}_1(A)$. That is,

$$\mathbf{r}_1(E_{2\leftrightarrow 4}A) = e_{11}\mathbf{r}_1(A) + e_{12}\mathbf{r}_2(A) + e_{13}\mathbf{r}_3(A) + e_{14}\mathbf{r}_4(A) = \mathbf{r}_1(A).$$

So take

$$e_{11} = 1, e_{12} = 0, e_{13} = 0, e_{14} = 0.$$

Now on to $\mathbf{r}_2(E_{2\leftrightarrow 4}A)$:

$$\mathbf{r}_2(E_{2\leftrightarrow 4}A) = e_{21}\mathbf{r}_1(A) + e_{22}\mathbf{r}_2(A) + e_{23}\mathbf{r}_3(A) + e_{24}\mathbf{r}_4(A) = \mathbf{r}_4(A)$$

so take

$$e_{21} = 0, e_{22} = 0, e_{23} = 0, e_{24} = 1.$$

Similar computations for $\mathbf{r}_3(E_{2\leftrightarrow 4}A)$ and $\mathbf{r}_4(E_{2\leftrightarrow 4}A)$ give

$$E_{2\leftrightarrow 4} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

Exercises

- 1. For the matrix A in the example above, determine $E_{3\rightarrow c3}$ where c is any nonzero real number.
- 2. For the matrix A in the example above, determine $E_{4\rightarrow 4+c2}$ where c is any nonzero real number.
- 3. Prove that each of $E_{i \to k}, E_{i \to ci}, E_{i \to i + ck}$ is invertible by finding an inverse. Prove that the inverse of an elementary matrix is an elementary matrix.
- 4. Define a relation \sim on $\mathcal{M}_{m\times n}$ given by $A\sim B$ if and only if there exists a $P\in\mathcal{M}_{m\times m}$ such that A=PB where $P\in\mathcal{M}_{m\times n}$ is a product of elementary matrices. Prove that \sim is an equivalence relation.