User Guide

This is a simple user guide for the GMNS data format version of Big data-driven transportation computational graph framework (BTCG).

1. Introduction

This code is built on the GMNS data format version of BTCG (Wu et al., 2018). BTCG is a forward and backward propagation algorithmic framework on a layered computational graph which can achieve hierarchical travel demand estimation using multiple data source.

The specific relationship between the layers of HFN is shown in Fig1. HFN of Traffic Demand Flow Estimation (TDFE) model. The figure shows the input/output variables of each layer and the correlation calculation between layers.

Fig. 1. HFN of TDFE model

BTCG is the implementation of Hierarchical Flow Network (HFN), by applying the back propagation (BP) algorithm, and by viewing each variable as a vertex and the edge between vertexes as calculation process between variables. To minimize the loss function, parameters like α , π and θ are updated during the training process. Finally, the traffic flow of each layer (e.g. α of ozone layer, γ of OD layer, ν of link layer) are estimated jointly.

Fig. 2. Corresponding BTCG of HFN

2. Data flow

Input files	Output files				
node.csv	output_ozone.csv				
input_agent.csv	output_od.csv				
agent_type.csv	output_path.csv				
road_link.csv	output_link.csv				

node.csv

This file node.csv may include the basic node information about the test network, such as

name, node id, zone id, node type, ctrl type, x coord, y coord, and geometry.

-4	A	В	C	D	E	F	G	Н	1	J	K	L
1	name	node_id	zone_id	node_typ	ctrl_type	x_coord	y_coord	geometry				
2		1	0			1523373	1003235	POINT (15	23373.000	000 100323	35.000000)	
3		2	0			1523873	1003225	POINT (15	25.000000)			
4		3	0			1524263	1003205	POINT (15	05.000000)			
5		4	0			1524224	1002265	POINT (15	24224.000	000 100226	55.000000)	
6		5	0			1523854	1002765	POINT (15	23854.000	000 100276	55.000000)	
7		6	0			1523354	1002745	POINT (15	23354.000	000 100274	15.000000)	

road link.csv

Road link.csv includes basic link-level information.

Α	В	C		D	E	F	G	Н	Î.	J	K	L	M	N	0	P	Q	R	S	T
name	roadlink	i from_n	od to	_node_	facility_	ty link_type	direction	length	lanes	free_spee	capacity	demand	tgeometry							
	1	l	1	100002	HOT		1	277	7	1 25	1800)	LINESTRIN	G (152337	3.000000 10	003235.000	0000 ,15234	148.678000	1002967.7	7000)
	1	L	1	101990	нот		1 1	239	1	1 25	1800)	LINESTRIN	G (152337	3.000000 10	003235.000	0000 ,1523	865.110000	1003474.16	9000)
	1	l	1	101997	НОТ		1	293		1 25	1800)	LINESTRIN	G (152337	3.000000 10	003235.000	0000 ,15236	66.177000	1003224.84	(00081
	1	l	1	101998	HOT		1	230)	1 25	1800)	LINESTRIN	G (152337	3.000000 10	03235.000	0000 ,1523:	43.000000	1003235.00	00000)
	2	2	2	100004	HOT		1	264		1 25	1800)	LINESTRIN	G (152387	3.000000 10	003225.000	0000 ,15238	354.344000	1002961.43	4000)
	2	2	2	101992	нот		1 1	226	i	1 25	1800)	LINESTRIN	G (152387	3.000000 10	03225.000	0000 ,15238	354.344000	1003450.64	(00081
	2	2	2	101996	НОТ		. 1	277		1 25	1800)	LINESTRIN	G (152387	3.000000 10	03225.000	1524;	50.707000	1003215.4	(0000
	2	2	2	101997	НОТ		1	206	i	1 25	1800)	LINESTRIN	G (152387	3.000000 10	03225.000	000 ,1523	66.177000	1003224.84	(0008
	3	3	3	101995	НОТ		. 1	170		1 25	1800)	LINESTRIN	3 (152426	3.000000 10	003205.000	0000 ,1524	32.957000	1003196.62	23000)

input_agent.csv

All the measurements are currently stored in input_agent.csv. Our code requires the household survey data (ozone data), the OD reference volume or the OD split rate (mobile phone data), the link count (sensor data), and the path information such as its node sequence.

4	Α	В	С	D	E	F	G	Н	1	J	K
1	agent_id	agent_type	from_zone_id	to_zone_id	from_node_id	to_node_id	od_flow	node_sequence	path_flow	time_peroid	observations
2	1	1	3	-1	3	-1	-1	-1	-1	1	70
3	2	1	12	-1	12	-1	-1	-1	-1	1	60
4	3	1	4	-1	4	-1	-1	-1	-1	1	90
5	4	1	6	-1	6	-1	-1	-1	-1	1	70
6	5	1	8	-1	8	-1	-1	-1	-1	1	30
7	6	1	9	-1	9	-1	-1	-1	-1	1	50
8	7	1	10	-1	10	-1	-1	-1	-1	1	60
9	8	1	11	-1	11	-1	-1	-1	-1	1	100
10	9	1	16	-1	16	-1	-1	-1	-1	1	90
11	10	1	2	-1	2	-1	-1	-1	-1	1	80
12	11	1	7	-1	7	-1	-1	-1	-1	1	50
13	12	1	18	-1	18	-1	-1	-1	-1	1	80

agent type.csv

agent_type.csv is used to explain the agent type in input_agent.csv. Currently, it includes agent types: 1. household survey; 2. OD reference volume; 3. path proportion; 4. link count, the attribute 1 means the number of observations, and attribute 2 means the number of time period. In our code, we consider one day of traffic volume, so the number of time periods is 1.

4	Α	В	С	D	E
1	agent_type_id	agent_type	attribute1	attribute2	
2	1	household survey	22	1	
3	2	od reference volume	33	1	
4	3	path proportion	126	1	
5	4	link count	76	1	
6					

3. Case study

The Sioux Falls network is used as the test case, it has 22 zones, 24 nodes, 33 OD pairs, 76 links and 132 paths, the network structure is shown in Fig. 3. The GMNS format data is

provided in the sub folder of /SiouxFalls network.

Fig. 3. Sioux Falls Network

Training results (1000 epochs):

BTCGLite_GMNS.py (this code don't use logit model and class object, so it runs faster):

step 1000 :survey error= 6.983434152935154e-08 step 1000 :mobile error= 3.8845606447143905e-05 step 1000 :sensor error= 0.0010404423796513053 step 1000 :total error= 0.0010792072388590332

BTCG_GMNS.py Although the mobile loss increases to a certain degree, the total loss has been reduced, to demonstrate how the BTCG works.

step 1000 :survey error= 3.1824046e-09

step 1000 :mobile error= 0.3365797 step 1000 :sensor error= 0.6412415 step 1000 :total error= 0.9778478

References.

Wu, X., Guo, J., Xian, K., Zhou, X., 2018. Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph. Transportation Research Part C: Emerging Technologies 96, 321-346.