AR-MOLECULES – ENSINO DE MOLÉCULAS QUÍMICAS COM BASE EM REALIDADE AUMENTADA E ILUSÃO DE ÓTICA

Aluno: Leonardo Rovigo

Orientador: prof. Dalton S. dos Reis

Roteiro

- Introdução
- Objetivos
- Trabalhos Correlatos
- Proposta: justificativa, requisito e metodologia
- Revisão bibliográfica

Introdução

- Disponibilizar conteúdo de forma mais interativa.
- Motivação no aprendizado.
- Melhor entendimento por parte do usuário.

Objetivos

- O objetivo é:
 - Disponibilizar um aplicativo com conteúdo sobre moléculas químicas e suas estruturas.
- Os Objetivos específicos são:
 - Utilizar a realidade aumentada e ilusão de ótica para apresentar o conteúdo.
 - Criar um conjunto de exercícios sobre este conteúdo.
 - Demonstrar a quantidade de acertos destes exercícios.

Trabalho Correlato 1: Desenvolvimento de um

aplicativo para ensino de química usando realidade aumentada

Fonte: Pinto, Pilan e Almeida (2018).

- Utilizaram Vuforia, Unity e
 C#.
- Marcadores de realidade aumentada.
- Colisão entre as moléculas cria novas moléculas.
- Desenvolvido por Pinto,
 Pilan e Almeida (2018).

Trabalho Correlato 2: Tabela periódica com realidade aumentada aplicada no processo de ensino e aprendizagem de química

Fonte: Guimarães et al. (2018).

- Utilizaram Unity, Vuforia, SketchUp e Blender.
- Marcadores de realidade aumentada.
- Mostra elementos com suas informações.
 - Desenvolvido por Guimarães et al. (2018).

Trabalho Correlato 3: Realidade aumentada no ensino

da química: elaboração e avaliação de um novo recurso didático

Fonte: Queiroz, de Oliveira e Rezende (2015)

- ARToolKit e linguagem C.
- Disponibiliza informações sobre a tabela periódica.
- Mostra os modelos atômicos em realidade aumentada.
- Desenvolvido por Queiroz, de Oliveira e Rezende (2015).

Proposta: justificativa

- Poucas aplicações sobre o assunto possuem interação com o usuário.
- Pessoas mais motivadas aprendem melhor.
- Demonstra uma classificação local do usuário.

Proposta: requisitos funcionais

- Utilizar marcadores no formato da tabela periódica para selecionar os elementos;
- Utilizar a anamorfose para esconder várias moléculas em uma cena;
- Permitir que o usuário escolha uma molécula ao visualizá-la do ângulo correto;
- Permitir que o usuário receba pontos por escolher a molécula correta;
- Aplicar penalidade quando o usuário selecionar uma molécula errada;
- Disponibilizar uma dica sobre como é construída a molécula para que seja encontrado mais facilmente;
- Apresentar uma classificação com a pontuação do usuário.

Proposta: requisitos não funcionais

- Utilizar o Unity e a linguagem de programação C# para desenvolver o aplicativo;
- Utilizar o Vuforia para cuidar da parte de realidade aumentada;
- Utilizar o Blender como uma das ferramentas para fazer a modelagem em
 3D;
- Utilizar o Blender para aplicar a anamorfose nas moléculas.

Proposta: metodologia

		2021									
	fe	v.	mar.		abr.		maio		jun.		
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2	
levantamento bibliográfico											
reavaliação dos requisitos											
modelagem											
desenvolvimento											
etapa de análise dos resultados											

Fonte: elaborado pelo autor.

Revisão bibliográfica

- Química (ATKINS, 2018)
 - Ciência da matéria e de suas mudanças.
 - Átomos.
 - Moléculas.

- Realidade Aumentada (KIRNER; TORI; 2006, p.22).
 - Mantém o usuário em seu ambiente.
 - O Traz o virtual ao mundo real.
 - Geralmente utiliza menos equipamentos que a realidade virtual.

Revisão bibliográfica

- Ilusão de ótica
 - O Engana a percepção da realidade (SILVA et al., 2020).
 - O Força o cérebro a entender uma imagem de uma forma diferente.
 - Anamorfose (SEMMER, DA SILVA e NEVES, 2013).

Questionamentos

Referências

- ATKINS, Peter; JONES, Loretta Co-autor; LAVERMAN, Leroy Co-autor. Princípios de química:
 questionando a vida moderna e o meio ambiente.7. Porto Alegre: ArtMed, 2018. E-book. Disponível em:
 https://integrada.minhabiblioteca.com.br/books/9788582604625. Acesso em: 1 out. 2020.
- BEVILAQUA, Diego Vaz et al. Ilusões virtuais: sobre o uso de objetos de aprendizagem para a exploração de ilusões de ótica em um museu. In: ENCONTRO DE PESQUISA EM ENSINO DE FÍSICA, 7., 2010, Águas de Lindóia. Anais... Águas de Lindoia: SBF, 2010. p. 1-20. Disponível em: https://www.arca.fiocruz.br/handle/icict/32152. Acesso em: 20 set. 2020.
- GUIMARÃES, Guilherme et al. Tabela Periódica com Realidade Aumentada Aplicada no Processo de Ensino e Aprendizagem de Química. Anais dos Workshops do VII Congresso Brasileiro de Informática na Educação (Cbie 2018), [S.L.], v. 7, n. 1, p. 187-190, 28 out. 2018. Disponível em: https://br-ie.org/pub/index.php/wcbie/article/view/8229. Acesso em: 20 set. 2020.
- KIRNER, Claudio; TORI, Romero. Fundamentos de Realidade Aumentada. In: SYMPOSIUM ON VIRTUAL REALITY, 8., 2006, Belém. Livro do Pré-Simpósio. [S. L.]: Sbc, 2006. p. 22-38. Disponível em: https://pcs.usp.br/interlab/wp-content/uploads/sites/21/2018/01/Fundamentos_e_Tecnologia_de_Realid ade_Virtual_e_Aumentada-v22-11-06.pdf. Acesso em: 18 set. 2020.
- PINTO, Luis Thiago Gallerani; PILAN, José Rafael; ALMEIDA, Osvaldo Cesar Pinheiro de. Desenvolvimento de um aplicativo para ensino de química usando realidade aumentada. In: JORNADA CIENTÍFICA E TECNOLÓGICA DA FATEC DE BOTUCATU, 7., 2018, Botucatu. Anais [...]. [S. L.]: Fatec, 2018. p. 1-5. Disponível em: http://www.jornacitec.fatecbt.edu.br/index.php/VIIJTC/VIIJTC/paper/view/1673. Acesso em: 20 set 2020

Referências

- QUEIROZ, Altamira Souza; DE OLIVEIRA, Cícero Marcelo; REZENDE, Flávio Silva. Realidade Aumentada no Ensino da Química: Elaboração e Avaliação de um Novo Recurso Didático. Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, [S.I.], v. 1, n. 2, mar. 2015. ISSN 2446-7634. Disponível em: https://revistas.setrem.com.br/index.php/reabtic/article/view/44. Acesso em: 28 set. 2020. doi: http://dx.doi.org/10.5281/zenodo.59446.
- SEMMER, Simone; DA SILVA, Sani de Carvalho Rutz; NEVES, Marcos Cesar Danhoni. Anamorfose no Ensino de Geometria. Alexandria: Revista de Educação em Ciência e Tecnologia, Florianópolis, v. 6, n. 3, p. 61-86, out. 2013. ISSN 1982-5153. Disponível em: https://periodicos.ufsc.br/index.php/alexandria/article/view/38010/29010. Acesso em: 02 out. 2020.
- SILVA, Karina Batista da et al. Neurobiologia da visão e da ilusão de ótica. Analecta Centro Universitário Uniacademia, Juiz de Fora, v. 5, n. 5, 2020. Disponível em: https://seer.cesjf.br/index.php/ANL/article/view/2363. Acesso em: 02 out. 2020.