注意行为规范 遵守考场纪律

专业班级

考生姓名

뮥

任课教师

装 រា 线 内

不 得 答 颞

主管领导 审核签字

试 概率论与数理统计

(注: 需用到的标准正态分布表, t-分布表见第四页末尾处。)

题号	_	 \equiv	四	五	六	七	八	九	十	总分
分数										

- 一、填空题(每题3分,共计15分)
 - 1. 若事件 A, B满足 $P(B|A) = P(\overline{B}|A)$,则 P(B|A) =
 - 2. $\exists \exists P(A) = P(B) = P(C) = \frac{1}{4}, \ P(AB) = 0, \ P(AC) = P(BC) = \frac{1}{16}, \ \exists A, B, C$

都不发生概率为

- $(X \le \frac{1}{2})$ 出现的次数,则 P(Y = 2) =______.
- 4. 已知一批零件长度 $X\sim N(\mu,16)$, μ 未知,从中随机地抽取 9 个零件,得样本均值 $\overline{X}=30$,则 μ的置信度为 0.95 的置信区间是
- 5. 设随机变量 X,Y 相互独立,且都服从区间[0, 1] 的均匀分布,则 $P(X+Y \le 1) =$ ______.
- 二、单项选择题(每题3分,共计15分)
 - 1. 设A,B为两个事件, $P(A) \neq P(B) > 0$,且 $B \subset A$,则一定成立
 - (A) P(B|A)=1; (B) P(A|B)=1; (C) $P(B|\overline{A})=1$; (D) $P(A|\overline{B})=0$.
 - 2. 设A,B,C三个事件两两独立,则A,B,C相互独立的充分必要条件是
 - (A) AB = AC 独立; (B) $AB = A \cup C$ 独立; (C) A = BC 独立; (D) $A \cup B = A \cup C$ 独立.
 - 3. 设 r. v X,Y 独立同分布, $X \sim U[0,1]$,则下列 r. v 中服从均匀分布的是 ().
 - (A) (X,Y); (B) X+Y;

- (C) X^2 ; (D) X Y.
- 4. 设随机变量 X 服从参数为 3 的泊松分布, $Y \sim N(-3.9)$,且 $\rho_{XY} = \frac{1}{\sqrt{2}}$,根据

切比晓夫不等式有: $P(|X+Y| \le 6) \ge$

- (A) $\frac{1}{8}$. (B) $\frac{1}{2}$. (C) $\frac{1}{4}$. (D) $\frac{2}{9}$.

- 5. 设 X_1, X_2, \dots, X_n 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, $EX = \mu$, $DX = \sigma^2$, \bar{X} 是样本均值, S^2 是样本方差, S^{*2} 为样本的二阶中心矩,则
- (A) $\overline{X} \sim N(\mu, \sigma^2)$. (B) $\frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1)$.
- (C) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \overline{X})^2$ 是 σ^2 的无偏估计. (D) $\frac{\overline{X} \mu}{S} \sqrt{n} \sim t(n-1)$.

第1页(共5页)

草 纸

(草纸内不得答题)

专业班级

考生姓名

学号

任课教师

装订线内

不得答题

三. (10分) 三个箱子,第一个箱子中有4个黑球,1个白球;第二个箱子中有3个黑球,3个白球;第三个箱子中有3个黑球,5个白球.现随机地取一个箱子,再从这个箱子中取出一个球,求该球是白球的概率?

四、(10分)设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} e^{-(x+y)} & x > 0, y > 0 \\ 0 & 其他 \end{cases}$$

试求随机变量Z = X - Y的分布函数与概率密度.

第2页(共5页)

草 纸

(草纸内不得答题)

试 题:

专业班级

考生姓名

学号

任课教师

装订线内

不得答题

五、(10 分)已知随机变量 X 和 Y 分别服从 $N(1, 3^2)$ 和 $N(0, 4^2)$,且 X 和 Y 的相关系数 $\rho_{XY}=-\frac{1}{2}$,设 $Z=\frac{X}{3}+\frac{Y}{2}$,(1)求 EZ 和 DZ (2)求 ρ_{XZ}

草 纸

(草纸内不得答题)

专业班级

考生姓名

学号

任课教师

装订线内

不得答题

$$f(x;\lambda) = \begin{cases} \frac{1}{\lambda} e^{-\frac{1}{\lambda}x}, & x > 0, \\ 0, & x \le 0 \end{cases}, \lambda > 0,$$

而 x_1, x_2, \cdots, x_n 为来自总体 X 的简单随机样本.求:(1)未知参数 λ 的矩估计和极大似然估计;

(2) 讨论上述估计的无偏性。

草 纸

(草纸内不得答题)

第4页(共5页)

专业班级

考生姓名

学 号

任课教师

装订线内

不得答题

七 (6分) 设 $X \sim N(0,1)$, 且 $P(Y=0) = P(Y=1) = \frac{1}{2}$, X = Y 独立, Z = XY

求(1) 随机变量Z = XY的分布函数 $F_Z(z)$; (2) 讨论 $F_Z(z)$ 的连续性。。

草 纸

(草纸内不得答题)

 $(t_{0.025}(8) = 2 \cdot 3060, t_{0.05}(8) = 1 \cdot 8595, t_{0.05}(9) = 1.8331, t_{0.025}(9) = 2.2622$ $\Phi(1.96) = 0.975, \Phi(1.645) = 0.95)$

第5页(共5页)