CME 252: Support Vector Machines

AJ Friend ICME, Stanford University

Support Vector Machines

- ▶ find a hyperplane to separate data points into two classes
- ▶ use hyperplane to classify new (unseen) points

Scenarios

- assume data falls into one category:
 - strictly linearly separable
 - approximately (not strictly) linearly separable
 - approximately non-linearly separable (hyperplanes won't work)

Strictly Linearly Separable Data

Approximately Linearly Separable Data

Approximately Non-linearly Separable

Linearly Separable Problem

- ▶ data: $x_i \in \mathbf{R}^n$ with labels $y_i \in \{+1, -1\}$ for i = 1, ..., m
- assume strictly linearly separable
- find hyperplane $\{x \mid a^Tx = b\}$ that separates points by label

$$a^T x_i - b > 0$$
 if $y_i = +1$
 $a^T x_i - b < 0$ if $y_i = -1$

▶ rescale a, b so that

$$a^T x_i - b \ge +1$$
 if $y_i = +1$
 $a^T x_i - b \le -1$ if $y_i = -1$

Linearly Separable Problem

▶ for all *i*, rewrite constraints as

$$y_i\left(a^Tx_i - b\right) \ge 1$$

get feasibility problem

minimize
$$0$$
 subject to $y_i\left(a^Tx_i-b\right)\geq 1$ for $i=1,\ldots,m$

with variables $a \in \mathbf{R}^n$, $b \in \mathbf{R}$

has many potential separators

Separable linear classification/discrimination

- many hyperplanes
- maximum margin classifier and robustness

Nonseparable linear classification

- relaxed feasibility problem
- ▶ I1 penality to minimize misclassification: pure LP
- ▶ tradeoff between classification and width of slab: SOCP

Hinge loss

- ▶ reformulate as hinge loss objective
- general loss function form. . . l(Ax + b)

logistic

- ► change loss function to get logistic loss
- other loss functions

regularization

regularize to get sparse classifier...

nonlinear discrimination

- adding features
- polynomial discrimination any different?
- ▶ rbf kernel? radial basis function
- ▶ kernel methods and relationship with convex opt. . .

algorithms

- ▶ note that so far, we have said **nothing** about **how** to compute a supporting vector
- we have focused on modeling
- that's OK, we're focusing on modeling
- algorithms involve duality and optimality conditions

scikitlearn comparison

- ▶ make sure it matches up with python SVM formulation
- ▶ maybe even do a timing comparison...

data science perspective

- cleaning and centering data
- sparse predictors