Leveraging Phase Polynomials for Quantum Circuits Optimization

Zihan Chen*, Henry Chen*, Xiangyu Gao°, Yuwei Jin, Minghao Guo*, Enhyeok Jang[†], Jiakang Li^{*}, Caitlin Chan^{*}, Won Woo Ro[†], Eddy Z. Zhang^{*}

* Rutgers University, Oniversity of Washington, JPMorgan Chase, Yonsei University

Main Contribution:

PhasePoly: A quantum circuits optimization framework via Phase Polynomials.

1. Background and Motivation

Background

- We can construct a phase polynomials circuit using {CNOT, Rz}.
- Phase polynomial circuits can be represented as *sum-over-path*^[2]:

$$U|x_1,\ldots,x_n
angle=e^{ip(x_1,\ldots,x_n)}|g(x_1,\ldots,x_n)
angle$$

- Phase-parity network: p(x)
- Output-parity : g(x)

Motivation

- Phase polynomials are key building block
 - ♦ 75% of gates are {CNOT, Rz} in selected circuits
 - Commonly used in Clifford+T circuits optimization
- Current phase polynomial approaches^[3]
 - Independently optimize phase- and output-parity network and single-block phase polynomials

♦ Local equivalent subcircuit rewriting approaches^[6-7] struggle with scalability

Results and Evaluation

Benchmarks: Clifford+T benchmarks

Metrics: Total and CNOT count.

by Qiskit and MQT QCEC

26.83%, respectively)

from prior work^[3-7], as well as additional

near-term and fault-tolerant applications.

♦ **Baselines**: GRAY-SYNTH^[3] (with T gate

(state-of-the-art subcircuit rewriting)

Results: PhasePoly outperforms both

reduction. (averaging 34.70% and

prior frameworks individually, reducing

up to 50% total gate and 48.57% CNOT

optimizations), Quartz^[6], and QUESO^[7]

Verification: Pass equivalence checking

Hardware-aware phase polynomials optimization

- → Embed hardware constraints and qubit mapping cost into synthesis
- → Maintain valid *sum-over-path* representation
- Fault-tolerant friendly phase polynomials optimization
- → Improve full-program FTQC performance via logical-level gains
- → Optimize T gate placement via phase polynomials, potentially improve magic state injection strategies, and facilitate qubit reuse

2. Our Approach: holistic phase polynomials optimization

Beyond the Phase Parity: Phase Polynomial Co-Optimization

Breaking the Single-Block Barrier: **Cross-Block Optimization**

- Without SSA-style cross-block intermediate representation(IR) and optimization, the term qoxq2, cannot be reused due to Hadamard gate block barrier
- (b) After cross-block IR and optimization, three blocks are merged into a single phase polynomial region.
- (c) Cross-block optimization reorders the parity network structure and reducing CNOT gates from 10 to 8 through the reuse of qo®q2

Block 3 Block 1 Block 2 (Gates Omitted) $R_Z(\theta_3)$ $R_Z(\theta_4)$ $q_0 \oplus q_2 \oplus q_3$ (a) Before Renaming and Multi-Blook Optimization (b) After Renaming and Multi-Blcok Optimization

Orthogonal Integration with Other Frameworks

Standing Alone, Working Together:

- a. Ours alone: strong reductions (~35% total, ~27% CNOT)
- b. Ours + Others: only marginal gain (≤ +1%)
- c. Others + Ours: significant results boost (+7-13% and +6-10%)
- d. QUESO^[7]:
- considers phases
- but still misses a lot
- e. Quartz^[6]:
- **x** ignores phases;
- with ours, achieves best

Extensible phase polynomials optimization

Reference:

[1] Chen, Zihan, et al. PhasePoly: An Optimization Framework for Phase Polynomials in Quantum Circuits. (2025).

[2] Amy, Matthew, et al. Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. (2014).

[3] Amy, Matthew, et al. On the controlled-NOT complexity of

controlled-NOT-phase circuits. (2018). [4] Nam, Yunseong, et al. Automated optimization of large quantum circuits with continuous parameters. (2018).

[5] Vandaele, Vivien, et al. Phase polynomials synthesis algorithms for NISQ

architectures and beyond. (2022).

[6] Xu, Mingkuan, et al. Quartz: superoptimization of quantum circuits. (2022). [7] Xu, Amanda, et al. Synthesizing quantum-circuit optimizers. (2023).