ECHOES

Extended Calculator of HOmogEnization Schemes

Jean-François Barthélémy

10/18/22

Table of contents

W	/elcome	3
1	Introduction	4
2	Summary	5
Re	eferences	6
Αį	ppendices	6
Α	Hill polarization tensor	7
	A.1 General expression	7
	A.2 Isotropic matrix	7
	A.3 Case of cracks	10
	A.4 Application of Hill calculation	11
	A.4.1 Definition of the matrix tensor	11
	A.4.2 Calculation of the crack compliance $\mathbb{L} = \lim_{\omega \to 0} \omega \mathbb{Q}^{-1} \dots \dots$	12
	A.4.3 Checking the aspect ratio for which $\omega \mathbb{Q}^{-1} \approx \lim_{\omega \to 0} \omega \mathbb{Q}^{-1}$ is acceptable	12

Welcome

See Eshelby (1957)

1 Introduction

2 Summary

In summary, this book has no content whatsoever.

References

- Abramowitz, Milton, and Irene A Stegun. 1972. *Handbook of Mathematical Functions*. Washington D.C.: National Bureau of Standards Applied Mathematics Series 55.
- Barthélémy, Jean-François. 2009. "Compliance and Hill Polarization Tensor of a Crack in an Anisotropic Matrix." *International Journal of Solids and Structures* 46 (22): 4064–72. https://doi.org/10.1016/j.ijsolstr.2009.08.003.
- Barthélémy, J.-F. 2020. "Simplified Approach to the Derivation of the Relationship Between Hill Polarization Tensors of Transformed Problems and Applications." *International Journal of Engineering Science* 154 (September): 103326. https://doi.org/10.1016/j.ijengsci.2020.10 3326.
- Barthélémy, J.-F., I Sevostianov, and Albert Giraud. 2021. "Micromechanical Modeling of a Cracked Elliptically Orthotropic Medium." *International Journal of Engineering Science* 161 (April): 103454. https://doi.org/10.1016/j.ijengsci.2021.103454.
- Eshelby, J D. 1957. "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems." *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* 241 (1226): 376–96. https://doi.org/10.1098/rspa.1957.0133.
- Gavazzi, A C, and D C Lagoudas. 1990. "On the Numerical Evaluation of Eshelby's Tensor and Its Application to Elastoplastic Fibrous Composites." Computational Mechanics 7 (1): 13–19. https://doi.org/10.1007/BF00370053.
- Ghahremani, F. 1977. "Numerical Evaluation of the Stresses and Strains in Ellipsoidal Inclusions in an Anisotropic Elastic Material." *Mechanics Research Communications* 4 (2): 89–91. https://doi.org/10.1016/0093-6413(77)90018-0.
- Kellogg, O D. 1929. Potential Theory. Berlin: Springer-Verlag.
- Masson, Renaud. 2008. "New Explicit Expressions of the Hill Polarization Tensor for General Anisotropic Elastic Solids." *International Journal of Solids and Structures* 45 (3): 757–69. https://doi.org/10.1016/j.ijsolstr.2007.08.035.
- Mura, Toshio. 1987. *Micromechanics of Defects in Solids, Second Edition*. Kluwer Academic. https://doi.org/10.1002/zamm.19890690204.
- Willis, J. R. 1977. "Bounds and Self-Consistent Estimates for the Overall Properties of Anisotropic Composites." *Journal of the Mechanics and Physics of Solids* 25 (3): 185–202. https://doi.org/10.1016/0022-5096(77)90022-9.
- Withers, P J. 1989. "The Determination of the Elastic Field of an Ellipsoidal Inclusion in a Transversely Isotropic Medium, and Its Relevance to Composite Materials." *Philosophical Magazine A* 59 (4): 759–81. https://doi.org/10.1080/01418618908209819.

A Hill polarization tensor

This section recalls some results about the calculation of the Hill polarization tensors related to a matrix of stiffness $\mathbb C$ and an ellipsoid $\mathcal E_A$ of equation

$$\underline{x} \in \mathcal{E}_{\mathbf{A}} \quad \Leftrightarrow \quad \underline{x} \cdot ({}^{t}\mathbf{A} \cdot \mathbf{A})^{-1} \cdot \underline{x} \le 1$$

where A is an invertible second-order tensor so that ${}^t A \cdot A$ is a positive definite symmetric tensor associated to 3 radii (eigenvalues $a \geq b \geq c$ possibly written $\rho_1 \geq \rho_2 \geq \rho_3$ for convenience) and 3 angles (orientation of the frame of eigenvectors $\underline{e}_1, \underline{e}_2, \underline{e}_3$)

$${}^t\mathbf{A}\cdot\mathbf{A}=a^2\underline{e}_1\otimes\underline{e}_1+b^2\underline{e}_2\otimes\underline{e}_2+c^2\underline{e}_3\otimes\underline{e}_3=\sum_{i=1}^3\rho_i\underline{e}_i\otimes\underline{e}_i \tag{A.1}$$

A.1 General expression

A general expression of the elastic polarization tensor is derived in (Willis 1977) (see also (Mura 1987))

$$\begin{split} \mathbb{P}(\mathbf{A},\mathbb{C}) &= \frac{1}{4\pi} \int_{\|\underline{\zeta}\| = 1} (\mathbf{A}^{-1} \cdot \underline{\zeta}) \overset{s}{\otimes} \Big((\mathbf{A}^{-1} \cdot \underline{\zeta}) \cdot \mathbb{C} \cdot (\mathbf{A}^{-1} \cdot \underline{\zeta}) \Big)^{-1} \overset{s}{\otimes} (\mathbf{A}^{-1} \cdot \underline{\zeta}) \, \mathrm{d}S_{\zeta} \\ &= \frac{\det \mathbf{A}}{4\pi} \int_{\|\underline{\xi}\| = 1} \frac{\underline{\xi} \overset{s}{\otimes} (\underline{\xi} \cdot \mathbb{C} \cdot \underline{\xi})^{-1} \overset{s}{\otimes} \underline{\xi}}{\|\mathbf{A} \cdot \underline{\xi}\|^{3}} \, \mathrm{d}S_{\xi} \end{split} \tag{A.2}$$

When \mathbb{C} is arbitrarily anisotropic, it is necessary to resort to numerical cubature to estimate \mathbb{P} as proposed in (Ghahremani 1977), (Gavazzi and Lagoudas 1990) or (Masson 2008). However in some cases of anisotropy, analytical solutions are available ((Withers 1989), (J.-F. Barthélémy 2020)). The case of isotropic matrix is particularly developed in the next section.

A.2 Isotropic matrix

In this section, the matrix is assumed isotropic so that its stiffness tensor writes by means of a bulk k and shear μ or Lamé λ and μ moduli or even Young modulus E and Poisson ratio ν

with $k = \frac{E}{3(1-2\nu)}$ and $\mu = \frac{E}{2(1+\nu)}$.

$$\mathbb{C} = 3k\mathbb{J} + 2\mu\mathbb{K} = 3\lambda\mathbb{I} + 2\mu\mathbb{K}$$
 with $J_{ijkl} = \frac{\delta_{ij}\delta_{kl}}{3}, I_{ijkl} = \frac{\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}}{2}$ and $\mathbb{K} = \mathbb{I} - \mathbb{J}$ (A.3)

Introducing Equation A.3 in Equation A.2 leads to after some algebra

$$\mathbb{P} = \frac{1}{\lambda + 2\,\mu} \mathbb{U} + \frac{1}{\mu} (\mathbb{V} - \mathbb{U})$$

where the tensors \mathbb{U} and \mathbb{V} , depending only on the ellipsoidal tensor A of Equation A.1, are given by (see (J.-F. Barthélémy 2020))

$$\begin{split} \mathbb{U} &= \frac{\det \mathbf{A}}{4\pi} \int_{\|\underline{\xi}\|=1} \frac{\underline{\xi} \otimes \underline{\xi} \otimes \underline{\xi} \otimes \underline{\xi}}{\|\mathbf{A} \cdot \underline{\xi}\|^3} \, \mathrm{d}S_{\xi} \\ &= \frac{1}{4\pi} \int_{\|\underline{\zeta}\|=1} \frac{(\mathbf{A}^{-1} \cdot \underline{\zeta}) \otimes (\mathbf{A}^{-1} \cdot \underline{\zeta}) \otimes (\mathbf{A}^{-1} \cdot \underline{\zeta}) \otimes (\mathbf{A}^{-1} \cdot \underline{\zeta})}{\|\mathbf{A}^{-1} \cdot \underline{\zeta}\|^4} \, \mathrm{d}S_{\zeta} \end{split}$$

and

$$\begin{split} \mathbb{V} &= \frac{\det \mathbf{A}}{4\pi} \int_{\|\underline{\xi}\|=1} \frac{\underline{\xi} \overset{s}{\otimes} \mathbf{1} \overset{s}{\otimes} \underline{\xi}}{\|\mathbf{A} \cdot \underline{\xi}\|^3} \, \mathrm{d}S_{\xi} \\ &= \frac{1}{4\pi} \int_{\|\zeta\|=1} \frac{(\mathbf{A}^{-1} \cdot \underline{\zeta}) \overset{s}{\otimes} \mathbf{1} \overset{s}{\otimes} (\mathbf{A}^{-1} \cdot \underline{\zeta})}{\|\mathbf{A}^{-1} \cdot \zeta\|^2} \, \mathrm{d}S_{\zeta} \end{split}$$

For an arbitrary ellipsoid defined by Equation A.1, the components of \mathbb{U} and \mathbb{V} write

$$\begin{split} U_{iiii} &= \frac{3(I_i - \rho_i^2 I_{ii})}{2} \quad \forall \, i \in \{1, 2, 3\} \\ U_{iijj} &= U_{ijji} = U_{ijji} = \frac{I_j - \rho_i^2 I_{ij}}{2} = \frac{I_i - \rho_j^2 I_{ij}}{2} \quad \forall \, i \neq j \in \{1, 2, 3\} \end{split}$$

and

$$\begin{split} V_{iiii} &= I_i \quad \forall \, i \in \{1,2,3\} \\ V_{ijij} &= V_{ijji} = \frac{I_i + I_j}{4} \quad \forall \, i \neq j \in \{1,2,3\} \end{split}$$

where the coefficients I_i and I_{ij} are given by (note that I_i and I_{ij} are adapted from those provided in (Kellogg 1929) and (Eshelby 1957): they differ by a factor of $4\pi/3$ for I_{ij} with $i \neq j$ and by 4π for the others)

• if a > b > c

$$\begin{split} I_1 &= \frac{a\,b\,c}{(a^2-b^2)\sqrt{a^2-c^2}} \ (F-E) \\ I_3 &= \frac{a\,b\,c}{(b^2-c^2)\sqrt{a^2-c^2}} \ \left(\frac{b\sqrt{a^2-c^2}}{a\,c} - E\right) \\ I_2 &= 1 - I_1 - I_3 \\ I_{ij} &= \frac{I_j - I_i}{\rho_i^2 - \rho_j^2} \ \ \forall \, i \neq j \in \{1,2,3\} \\ I_{ii} &= \frac{1}{3} \left(\frac{1}{\rho_i^2} - \sum_{i \neq i} I_{ij}\right) \quad \forall \, i \in \{1,2,3\} \end{split}$$

where $F = F(\theta, \kappa)$ and $E = E(\theta, \kappa)$ are respectively the elliptic integrals of the first and second kinds (see (Abramowitz and Stegun 1972)) of amplitude and parameter

$$\theta = \arcsin \sqrt{1 - \frac{c^2}{a^2}} \quad ; \quad \kappa = \sqrt{\frac{a^2 - b^2}{a^2 - c^2}}$$

• if a > b = c (prolate spheroid)

$$\begin{split} I_2 &= I_3 = a \, \frac{a \sqrt{a^2 - c^2} - c^2 \, \operatorname{arcosh} \left(a/c \right)}{2 \left(a^2 - c^2 \right)^{3/2}} \\ I_1 &= 1 - 2 \, I_3 \\ I_{1i} &= I_{i1} = \frac{I_i - I_1}{a^2 - \rho_i^2} \quad \forall \, i \in \{2, 3\} \\ I_{ij} &= \frac{1}{4} \left(\frac{1}{c^2} - I_{31} \right) \quad \forall \, i, j \in \{2, 3\} \\ I_{11} &= \frac{1}{3} \left(\frac{1}{a^2} - 2 \, I_{31} \right) \end{split}$$

• if a = b > c (oblate spheroid)

$$\begin{split} I_1 &= I_2 = c \, \frac{a^2 \, \arccos \left(c/a \right) - c \sqrt{a^2 - c^2}}{2 \left(a^2 - c^2 \right)^{3/2}} \\ I_3 &= 1 - 2 \, I_1 \\ I_{3i} &= I_{i3} = \frac{I_3 - I_i}{\rho_i^2 - c^2} \quad \forall \, i \in \{1, 2\} \\ I_{ij} &= \frac{1}{4} \left(\frac{1}{a^2} - I_{31} \right) \quad \forall \, i, j \in \{1, 2\} \\ I_{33} &= \frac{1}{3} \left(\frac{1}{c^2} - 2 \, I_{31} \right) \end{split}$$

• if
$$a=b=c$$
 (sphere)
$$I_1=I_2=I_3=\frac{1}{3}$$

$$I_{ij}=\frac{1}{5\,a^2}\quad\forall\,i,j\in\{1,2,3\}$$

In this last case of spherical inclusion (A = 1), \mathbb{U} and \mathbb{V} are simply decomposed as

$$\mathbb{U} = \frac{1}{3}\mathbb{J} + \frac{2}{15}\mathbb{K} \quad \text{and} \quad \mathbb{V} = \frac{1}{3}\mathbb{I}$$

A.3 Case of cracks

The case of cracks corresponds to ellipsoids for which the smallest radius is very small compared to the two others, in other words the characteristic tensor A Equation A.1 can be written here

$$A = \underline{\ell} \otimes \underline{\ell} + \eta \underline{m} \otimes \underline{m} + \omega \underline{n} \otimes \underline{n} \quad \text{with} \quad \eta = \frac{b}{a} \quad \text{and} \quad \omega = \frac{c}{a}$$

Figure A.1: Ellipsoidal crack

In the case of cracks, it is useful to introduce the second Hill polarization tensor defined as

$$\mathbb{Q}=\mathbb{C}-\mathbb{C}:\mathbb{P}:\mathbb{C}$$

and in particular $\lim_{\omega\to 0}\omega\mathbb{Q}^{-1}$ in which it is recalled that \mathbb{P} and thus \mathbb{Q} depend on ω such that the components Q_{nijk} (with n corresponding to the crack normal) behave as $1/\omega$ when ω tends towards 0. The analytical expressions of this limit are fully detailed in (J.-F. Barthélémy, Sevostianov, and Giraud 2021) which recalls in particular that \mathbb{L} actually derives from a symmetric second-order tensor B as

$$\mathbb{L} = \lim_{\omega \to 0} \omega \, \mathbb{Q}^{-1} = \frac{3}{4} \, \underline{n} \overset{s}{\otimes} B \overset{s}{\otimes} \underline{n} \tag{A.4}$$

For an arbitrarly anisotropic matrix, an algorithm allowing to estimate the limit Equation A.4 is proposed in (J.-F. Barthélémy 2009) whereas in the isotropic case B writes

$$\mathbf{B} = B_{nn}\,\underline{n} \otimes \underline{n} + B_{mm}\,\underline{m} \otimes \underline{m} + B_{\ell\ell}\,\underline{\ell} \otimes \underline{\ell}$$

with

$$\begin{split} B_{nn} &= \frac{8\,\eta\,(1-\nu^2)}{3\,E}\,\frac{1}{\mathcal{E}_{\eta}} \\ B_{mm} &= \frac{8\,\eta\,(1-\nu^2)}{3\,E}\,\frac{1-\eta^2}{(1-(1-\nu)\,\eta^2)\,\,\mathcal{E}_{\eta}-\nu\,\eta^2\,\mathcal{K}_{\eta}} \\ B_{\ell\ell} &= \frac{8\,\eta\,(1-\nu^2)}{3\,E}\,\frac{1-\eta^2}{(1-\nu-\eta^2)\,\mathcal{E}_{\eta}+\nu\,\eta^2\,\mathcal{K}_{\eta}} \end{split}$$

where $\mathcal{K}_{\eta} = \mathcal{K}(\sqrt{1-\eta^2})$ and $\mathcal{E}_{\eta} = \mathcal{E}(\sqrt{1-\eta^2})$ are the complete elliptic integrals of respectively the first and second kind (see (Abramowitz and Stegun 1972)). If the crack is circular, the components of B become

$$B_{nn} = \frac{16\,(1-\nu^2)}{3\,\pi\,E} \quad ; \quad B_{mm} = B_{\ell\ell} = \frac{B_{nn}}{1-\nu/2} \label{eq:Bnn}$$

A.4 Application of Hill calculation

```
import numpy as np
from echoes import *
import matplotlib.pyplot as plt
```

RuntimeError: FATAL: module compiled as little endian, but detected different endianness at runtime

A.4.1 Definition of the matrix tensor

C = stiff_Enu(1.,0.2); print(C)

A.4.2 Calculation of the crack compliance $\mathbb{L} = \lim_{\omega \to 0} \omega \, \mathbb{Q}^{-1}$

Note that in *Echoes* it is necessary to provide an aspect ratio ω for the crack even if the crack compliance is actually calculated as a limit (not depending on ω)

```
\omega = 1.e-4
L = crack\_compliance(spheroidal(\omega), C) ; print(L)
                                                                               ]
[[0.
               0.
                            0.
                                         0.
                                                      0.
                                                                   0.
 [0.
                                                                               ]
               0.
                            0.
                                         0.
                                                      0.
                                                                   0.
 [0.
               0.
                            1.22230996 0.
                                                      0.
                                                                   0.
                                                                               ]
 [0.
               0.
                            0.
                                         0.67906109 0.
                                                                               ]
                                                                   0.
 [0.
                                                                               ]
               0.
                            0.
                                         0.
                                                      0.67906109 0.
 [0.
               0.
                            0.
                                         0.
                                                                   0.
                                                                               ]]
                                                      0.
```

A.4.3 Checking the aspect ratio for which $\omega\,\mathbb{Q}^{-1}\approx\lim_{\omega\to0}\omega\,\mathbb{Q}^{-1}$ is acceptable

Figure A.2: Influence of the aspect ratio on the contribution tensor