编译原理HW2习题答案

2.8 用算法 2.2 将 (a|b)*abb(a|b)* 的 NFA 变换成 DFA, 给出处理输入串 ababbab 的状态转换序列。

初始状态为0、那么 ϵ -closure(0)={0,1,2,4,7}、标记为A。 $move(A,a)=\{3,8\}$, ε-closure($\{3,8\}$)= $\{1,2,3,4,6,7,8\}$, 标记为B。 move(A,b)={5}, ε-closure({5})={1,2,4,5,6,7}, 标记为C。 $move(B,a)=\{3,8\}$, ε -closure($\{3,8\}$)即上面已经标记过的B集合。 $move(B,b)=\{5,9\}$, ε-closure($\{5,9\}$)= $\{1,2,4,5,6,7,9\}$, 标记为D。 $move(C, α) = {3,8}$, ε-closure(${3,8}$)即上面已经标记过的B集合。 $move(C,b)=\{5\}$, ϵ -closure($\{5\}$)即上面已经标记过的C集合。 $move(D,a)=\{3,8\}$, ε -closure($\{3,8\}$)即上面已经标记过的B集合。 move(D,b)={5,10}, g-closure({5,10})={1,2,4,5,6,7,10,11,12,14,17}, 标记为E。 move(E,a)={3,8,13}, e-closure({3,8,13})={1,2,3,4,6,7,8,11,12,13,14,16,17}, 标记为F。 move(E,b)={5,15}, ε-closure({5,15})={1,2,4,5,6,7,11,12,14,15,16,17}, 标记为G。 $move(F,a) = \{3,8,13\}, \epsilon-closure(\{3,8,13\})$ 即已经标记过的F。 move(F,b)={5,9,15}, ε-closure({5,9,15})={1,2,4,5,6,7,9,11,12,14,15,16,17}, 标记为H。 $move(G,a) = \{3,8,13\}, \epsilon-closure(\{3,8,13\})$ 即已经标记过的F。 $move(G,b)=\{5,15\}$, ε-closure($\{5,15\}$)即已经标记过的G。 $move(H,a)={3,8,13}, ε-closure({3,8,13})$ 即已经标记过的F。 move(H,b)={5,10,15}, e-closure({5,10,15})={1,2,4,5,6,7,10,11,12,14,15,16,17}, 记作I。 $move(I,a) = \{3,8,13\}, \epsilon-closure(\{3,8,13\})$ 即已经标记过的F。 $move(I,b) = \{5,15\}, \epsilon-closure(\{5,15\})$ 即已经标记过的G。

题目页码: P39 算法2.2页码: P26

状态标志	输入符号		
	а	b	
Α	В	С	
В	В	D	
С	В	С	
D	В	Е	
E	F	G	
F	F	Н	
G	F	G	
Н	F	I	
I	F	G	

2.8 DFA 状态转换表

ababbab 状态转换序列: A->B->D->B->H

2.8 DFA 状态转换图

题目页码: P39 算法2.2页码: P26 2.10 某语言的注释是以 /* 开始和以 */ 结束的任意字符串,但它的任何前缀不以 */ 结尾。画出接受这种注解的 DFA 的状态转换图。

设 c1 代表不为 / 和*的任意字符, c2 代表不为*的任意字符。

最简 DFA 均为

(a|b)* 构造 NFA

(a|b)* 从NFA 构造 DFA

NFA 状态	DFA 状态	a	b
{0,1,2,4,7}	Α	В	С
{1,2,3,4,6,7}	В	В	С
{1,2,4,5,6,7}	С	В	С

(a*|b*)* 构造 NFA

(a*|b*)* 从 NFA 构造 DFA

NFA 状态	DFA 状态	a	b
{0,1,2,3,5,6,7 ,9,10,11}	Α	В	С
{1,2,3,4,5,6,7 ,9,10,11}	В	В	С
{1,2,3,5,6,7,8 ,9,10,11}	С	В	С

$((\varepsilon|a)b^*)^*$ 构造 NFA

$((\varepsilon|a)b^*)^*$ 从 NFA 构造 DFA

NFA 状态	DFA 状态	a	b
{0,1,2,3,4,6,7 ,9,10}	А	В	С
{1,2,3,4,5,6,7 ,9,10}	В	В	С
{1,2,3,4,6,7,8 ,9,10}	С	В	С

$$S \to (L)|a$$

$$L \to L, S|S$$

- (a) 建立句子 (a,(a,a)) 和 (a,((a,a),(a,a))) 的分析树。
- (b) 为(a) 的两个句子构造最左推导。
- (c) 为(a)的两个句子构造最右推导。
- (d) 这个文法产生的语言是什么?

(a) 建立句子1 (a,(a,a)) 和句子2 (a,((a,a),(a,a))) 的分析树。

题目页码: P103

分析树: P43

$$S \to (L)|a$$

 $L \to L, S|S$

(b) 为句子1
$$(a,(a,a))$$
 和句子2 $(a,((a,a),(a,a)))$ 构造最左推导。

$$S \Rightarrow (L)$$
 $\Rightarrow (L,S)$ $\Rightarrow (L,S)$ $\Rightarrow (a,((a,a),(L)))$ $\Rightarrow (L,S)$ $\Rightarrow (a,S)$ $\Rightarrow (a,S)$ $\Rightarrow (a,(L,S))$ $\Rightarrow (a,((a,a),(a,S)))$ $\Rightarrow (a,((a,a),(a,A)))$ $\Rightarrow (a,((a,a),(a,A))$ $\Rightarrow (a,((a,a),(a,A)))$ $\Rightarrow (a,((a,a),(a,A)))$ $\Rightarrow (a,((a,a),(a,A))$ $\Rightarrow (a,((a,a),(a,A))$

$$S \to (L)|a$$

$$L \to L, S|S$$

(c) 为句子1
$$(a, (a, a))$$
 和句子2 $(a, ((a, a), (a, a)))$ 构造最右推导。

 $S \Rightarrow (L)$
 $\Rightarrow (L, S)$
 $\Rightarrow (L, L)$
 $\Rightarrow (L, (L))$
 $\Rightarrow (L, (L))$
 $\Rightarrow (L, (L, S))$
 $\Rightarrow (L, (L, a))$
 $\Rightarrow (L, (L, a))$
 $\Rightarrow (L, (L, a))$
 $\Rightarrow (L, (a, a))$
 $\Rightarrow (L, (a, a))$
 $\Rightarrow (L, (a, a))$
 $\Rightarrow (L, (L, (a, a)))$
 $\Rightarrow (L, (L, (a, a)))$

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

(d) 这个文法产生的语言是什么? 注意到 L 是 S 的列表,展开后得到 S S,S S,S,S ... 而 S 要么是 a,要么是列表上套一个括号, 不难发现该语言对应于所有叶子只取 a 的多叉树:将 a 看作 nil, S 的两个分支分别对应于树根和空树。

答案言之有理即可。注意:不能排除掉"a"。

典型错误:只提到"括号匹配的串",但没有提到没有括号的情况。

3.3 下面的二义文法描述谓词演算公式,为它写一个等价的非二义文法。

$$S \rightarrow S$$
 and $S \mid S$ or $S \mid$ not $S \mid$ true | false | (S)

写法1:

$$E \rightarrow E$$
 or $T \mid T$
 $T \rightarrow T$ and $F \mid F$
 $F \rightarrow \text{not } F \mid (E) \mid \text{true} \mid \text{false}$

写法2:

$$E \rightarrow E \text{ or } T \mid T$$

 $T \rightarrow T \text{ and } F \mid F$
 $F \rightarrow \text{not } F \mid M$
 $M \rightarrow (E) \mid \text{true} \mid \text{false}$

思路: 算符的结合性和优先级。

题目页码: P103

二义文法及冲突解决: P91