we are interested in maximizing of function $f(x,y) = xy^2$ にX: a level curre YRYO 2+42 = 1

find (xm) on the circle

where
$$f(xm) = xy^2$$
 tokes the highest value

Lets look at a maximize f(xrs) s.t. (3(x,y)=c)

Tg. t = 0 [info they -g = c

bigger picture In general g(x, v) = c. will represent some klud of curve.

(x,y) is a random pt.

who the curve

4(x4) = 322+323

Art To D=c at wax bring maximize f(xm) s.t. 3(x.4) = C noted! 79 is always let fixed has the highest value at point for the de how wilk the directional derivative of finth tangential direction charge sign before a after P? Vf.Z -ve di if Pistle max point, $\nabla f. \hat{T}$ at P=0

i.e. at the max point P, If is also perpendicular to the wive

maximize f(x,y) TY I $\Rightarrow \nabla g.\hat{t} = 0$ at all point on the curve g = C→ in general Vf.2 ≠ 0 \rightarrow if at the max point f, $\nabla f \cdot \hat{t} = 0$

_ this leads to the defining eqn for the point?

at P: we must have \(\tauf = 478 \)

(d: a scoler typically called dagrange multiplier

if PLQ are extremum d. maximize f(x, x) = x42 $S.\Gamma. \quad \chi^2 + \chi^2 = 1$ Vf = dg at PAG. $\rightarrow 4^2 \hat{i} + 2x + \hat{j} = d(2x \hat{i} + 2 \hat{j})$ Egns for extreme points 2xy = 2dy 2xy = 2dy $x^2 + y^2 = 1$ $x^2 + y^2 = 1$ **EXAMPLE 2** Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the

 $circle x^2 + y^2 = 1.$

 $z = x^2 + 2v^2$

 $x^2 + y^2 = 1$

According to

$$2x = d^{2}x$$
 $4x = d^{2}x$
 $4x = d^{2}x$
 $x^{2}+x^{2}=1$

$$2x = d2x$$

$$X = dx$$

$$X = dx$$

$$X - dx = 0$$

$$X(1-d) = 0$$

$$X = 2d$$

$$X = 0$$

$$X =$$

X=エノ、ガ=の」、イ=リ、

$$(x,y)$$
 d f
 $(0,1)$ 2 2 max points
 $(0,-1)$ 2 2 min points
 $(1,0)$ 1 1 min points

 $f(x, y) = x^2y; \quad x^2 + 2y^2 = 6$