

## SLEEP DURATION AND WORKOUT QUALITY

FINAL PROJET 530-T301

DANIEL SOLIS TORO

BELLEVUE UNIVERSITY

How does sleep duration before a workout influence burned calories, workout duration, and post-workout mood? Adequate sleep boosts energy and performance, whereas poor sleep can diminish effectiveness, increase fatigue, and contribute to negative post-workout emotions.

This study explores the extent of sleep duration's influence and examines potential variations based on age, gender, and workout type.

## DATA SET: Workout & Fitness Tracker

#### **Overview**

This dataset contains 10,000+ records of workout and fitness-related data collected from various fitness apps and devices. It includes various metrics such as workout type, duration, calories burned, heart rate, steps taken, and other health-related parameters.



#### **VARIABLES**

**User ID:** A unique numerical identifier assigned to each user in the dataset.

Age: The age of the user, ranging from 18 to 60 years.

Gender: The gender of the user (Male, Female, or Other).

Height (cm): The height of the user in centimeters.

Weight (kg): The weight of the user in kilograms.

#### **VARIABLES**

**Workout Type:** The type of workout performed (e.g., Cardio, Strength, Yoga, HIIT, Cycling, Running).

Workout Duration (mins): The total workout duration in minutes.

**Calories Burned:** The number of calories burned during the workout session.

**Heart Rate (bpm):** The average heart rate (beats per minute) recorded during the workout.

**Steps Taken:** The total number of steps taken during the workout (applicable for walking/running workouts).

## To analyze the research question, the following variables were selected:

#### **Independent Variable:**

• Sleep duration (hours of sleep before the workout).

#### **Dependent Variables:**

- Calories Burned: Total calories burned during the workout.
- Workout Duration (mins): Total time spent in a workout
- Post-Workout Mood: Energized, Neutral, Fatigued.

#### Variables that could influence the relationship:

- Age
- Gender



# ANALYSIS OF THE MAIN VARIABLES

## SLEEP DURATION



## OUTLIERS CHECK

#### Reasoning:

Extremely short sleep durations may indicate data entry errors or users with irregular sleep patterns (e.g., shift workers).

Extremely long sleep durations may be unrealistic or indicate errors (e.g., users forgetting to stop tracking sleep).

Output: None outliers were identified



## CALORIES BURNED



## OUTLIERS CHECK

#### Reasoning:

High-calorie burns may result from long or intense workouts, but extreme values could indicate errors in tracking or unrealistic data.

Low-calorie burns may represent incomplete or very short workouts.

Output: None outliers were identified



## WORKOUT DURATION



## OUTLIERS CHECK

#### **Reasoning:**

Long durations may indicate users forgetting to stop tracking, while short durations may represent incomplete workouts.

Output: None outliers were identified



## POST-WORKOUT MOOD





## OUTLIERS CHECK

#### Reasoning:

These may be data entry errors or users outside the target demographic.

Output: None outliers were identified





## **DESCRIPTIVE ANALYSIS**

| Variable                      | Mean   | Std Dev | Min   | Max   | Range | Q1    | Q3    | IQR   | Skewness  | Kurtosis      |
|-------------------------------|--------|---------|-------|-------|-------|-------|-------|-------|-----------|---------------|
| Sleep<br>Hours                | 6.98   | 1.71    | 4.0   | 10.0  | 6.0   | 5.5   | 8.4   | 2.9   | 0.005072  | -<br>1.164787 |
| Calories<br>Burned            | 552.10 | 260.62  | 100.0 | 999.0 | 899.0 | 325.0 | 776.0 | 451.0 | -0.015800 | -<br>1.205459 |
| Age                           | 38.39  | 12.17   | 18.0  | 59.0  | 41.0  | 28.0  | 49.0  | 21.0  | 0.006228  | -<br>1.213378 |
| Workout<br>Duration<br>(mins) | 64.46  | 31.81   | 10.0  | 119.0 | 109.0 | 37.0  | 92.0  | 55.0  | -0.008161 | -<br>1.184800 |

## PMF of Sleep Hours Based on Gender

Filter the Data based on Gender- Scenario 1: Sleep Hours for Women.- Scenario 2: Sleep hours for Men.



The KL Divergence of 0.02 and the PMF plot suggest that sleep hours are very similar between women and men.

KL Divergence (Women vs. Men): 0.02



## CDF OF SLEEP HOURS

**34.1**% of users sleep 6 hours or less

## Analytical Distribution Plot for Sleep Hours

**KS Statistic:** 0.0646

**P-value:** 0.0000

The empirical distribution of Sleep Hours is **significantly different** from a Normal Distribution.



Analysis of the relationship between Sleep Hours and Workout Duration



#### SLEEP HOURS VS WORKOUT DURATION

• Covariance: -0.32

• Pearson's Correlation: -0.01

• **P-value:** 0.5538

**No statistically significant** linear relationship between Sleep Hours and Workout Duration.



#### SLEEP HOURS VS CALORIES BURNED

• Pearson's Correlation: -0.00

• **P-value:** 0.9967

**No statistically significant** linear relationship between Sleep Hours and Calories Burned



#### SLEEP HOURS VS POST-WORKOUT MOOD

**ANOVA F-statistic:** 0.57

**No significant difference** in postworkout mood across different sleep hour groups.



## REGRESSION MODELS

## CALORIES BURNED MODEL

• R-squared: 0.000

• Intercept: 544.62

• Sleep\_Hours coefficient: -0.0032

• Age coefficient: 0.1953

The model is **not statistically significant**, and there is no meaningful relationship between sleep, age, and calories burned in this dataset.

#### Calories Burned Model Summary:

#### OLS Regression Results

| Dep. Variable: |          | Calories Burned |                     | ared:         |         | 0.000     |  |  |
|----------------|----------|-----------------|---------------------|---------------|---------|-----------|--|--|
| Model:         |          | OLS             |                     | R-squared:    |         | -0.000    |  |  |
| Method:        |          | Least Squares   |                     | istic:        |         | 0.4160    |  |  |
| Date:          | Thu      | ı, 27 Feb 2025  | Prob (F-statistic): |               | :       | 0.660     |  |  |
| Time:          |          | 14:47:07        | Log-Likelihood:     |               |         | -69819.   |  |  |
| No. Observati  | ons:     | 10000           | _                   |               |         | 1.396e+05 |  |  |
| Df Residuals:  |          | 9997            | BIC:                |               |         | 1.397e+05 |  |  |
| Df Model:      |          | 2               |                     |               |         |           |  |  |
| Covariance Ty  | pe:      | nonrobust       |                     |               |         |           |  |  |
| =========      | =======  |                 |                     | ========      |         |           |  |  |
|                | coef     | std err         |                     |               | _       | _         |  |  |
| Intercept      | 544.6236 | 13.720          |                     | 0.000         |         |           |  |  |
| Sleep_Hours    | -0.0032  | 1.525           | -0.002              | 0.998         | -2.993  | 2.987     |  |  |
| Age            | 0.1953   | 0.214           | 0.912               | 0.362         | -0.224  | 0.615     |  |  |
| Omnibus:       | =======  | 9083.566        | Durbir              | <br>n-Watson: |         | 1.991     |  |  |
| Prob(Omnibus)  |          | 0.000           |                     | e-Bera (JB):  |         | 605.130   |  |  |
| Skew:          |          | -0.016          | •                   | Prob(JB):     |         | 3.96e-132 |  |  |
|                |          | 1.795           | •                   | •             |         | 216.      |  |  |
| ==========     | =======  |                 | =======             |               | ======= | =======   |  |  |
|                |          |                 |                     |               |         |           |  |  |

## WORKOUT DURATION MODEL

• R-squared: 0.000

• Intercept: 64.13

• Sleep\_Hours coefficient: -0.1098

• Age coefficient: 0.0288

The model is **not statistically significant** and does not have any meaningful predictive power for workout duration based on sleep hours and age.

| Workout Durat    | ion Model 9 | Summary:    |                  |                 |             |           |           |
|------------------|-------------|-------------|------------------|-----------------|-------------|-----------|-----------|
|                  |             | OLS Re      | _                |                 |             |           |           |
| Dep. Variable    | : Work      |             |                  |                 |             |           | <br>0.000 |
| Model:           |             | OLS         |                  | Adj. R-squared: |             |           | -0.000    |
| Method:          |             | Least Squ   | Least Squares    |                 | atistic:    | 0.7816    |           |
| Date:            |             | Thu, 27 Feb | Thu, 27 Feb 2025 |                 | (F-statist  | 0.458     |           |
| Time:            |             | 14:47:07    |                  | Log-l           | Likelihood: | -48787.   |           |
| No. Observati    | ons:        | 10000       |                  | AIC:            |             | 9.758e+04 |           |
| Df Residuals:    |             | !           | 9997             | BIC:            |             |           | 9.760e+04 |
| Df Model:        |             |             | 2                |                 |             |           |           |
| Covariance Type: |             | nonro       |                  |                 |             |           |           |
|                  | coef        | std err     |                  | t               | P> t        | [0.025    | 0.975]    |
| Intercept        |             | 1.675       |                  |                 |             |           |           |
| Sleep_Hours      | -0.1098     | 0.186       | -0.              | 590             | 0.555       | -0.475    | 0.255     |
| Age              | 0.0288      | 0.026       | 1.               | 101             |             |           |           |
| Omnibus:         | ======      | 7616.13     | =====<br>2 D     | urbin-V         |             | =======   | 1.996     |
| Prob(Omnibus):   |             | 0.000 Ja    |                  | arque-6         | Bera (JB):  | 585.162   |           |
| Skew:            |             | -0.00       | -0.007 Prob      |                 | ):          | 8.58e-128 |           |
| Kurtosis:        |             | 1.81        | 5 C              | ond. No         | o.          |           | 216.      |

#### MOOD AFTER WORKOUT MODEL

• R-squared: 0.000

• Intercept: 1.0125

• Sleep\_Hours coefficient: -0.0045

• Age coefficient: 0.0005

There is **no significant** relationship between sleep, age, and mood after the workout in this dataset.

#### Mood After Workout Model Summary:

#### OLS Regression Results

| =========      |         | ========      | ======          | ========             |         | =======   |  |  |
|----------------|---------|---------------|-----------------|----------------------|---------|-----------|--|--|
| Dep. Variable  | Mood_   | After_Workout | R-squ           | ared:                |         | 0.000     |  |  |
| Model:         |         | OLS           | Adj.            | R-squared:           |         | -0.000    |  |  |
| Method:        |         | Least Squares | F-sta           | tistic:              |         | 0.7136    |  |  |
| Date:          | Thu     | , 27 Feb 2025 | Prob            | (F-statistic):       | :       | 0.490     |  |  |
| Time:          |         | 14:47:07      | Log-L           | ikelihood:           |         | -12144.   |  |  |
| No. Observatio | ons:    | 10000         | AIC:            |                      |         | 2.429e+04 |  |  |
| Df Residuals:  |         | 9997          | BIC:            |                      |         | 2.432e+04 |  |  |
| Df Model:      |         | 2             |                 |                      |         |           |  |  |
| Covariance Typ | oe:     | nonrobust     |                 |                      |         |           |  |  |
| =========      |         | =========     |                 | ========             |         | =======   |  |  |
|                | coef    | std err       | t               | P> t                 | [0.025  | 0.975     |  |  |
| Intercept      | 1.0125  | 0.043         | 23.596          | 0.000                | 0.928   | 1.09      |  |  |
| Sleep_Hours    |         |               |                 |                      | -0.014  |           |  |  |
| Age            |         |               | 0.737           | 0.461                | -0.001  | 0.00      |  |  |
| Omnibus:       | ======= | 62003.557     | ======<br>Durbi | =======<br>n-Watson: | ======= | 1.972     |  |  |
| Prob(Omnibus)  | :       | 0.000         | Jarqu           | e-Bera (JB):         |         | 930.591   |  |  |
| Skew:          |         | -0.000        | Prob(           | JB):                 |         | 8.41e-203 |  |  |
| Kurtosis:      |         | 1.506         | Cond.           | No.                  |         | 216.      |  |  |
|                |         |               |                 |                      |         |           |  |  |

## **Incorrect Assumptions:**

The analysis assumed that sleep duration alone would be a significant predictor of workout quality. However, the results suggest that sleep duration, as measured in this dataset, does not have a meaningful impact on calories burned, workout duration, or post-workout mood. This indicates that other factors, such as sleep quality or overall health, may play a more critical role.

## **Challenges and Understanding:**

One of the main challenges was interpreting the lack of significant relationships between sleep duration and the dependent variables. It was initially assumed that sleep would have a more pronounced effect on workout outcomes. Additionally, understanding the implications of the low R-squared values in the regression models was challenging, as they indicated that the models had little to no predictive power. This raised questions about whether the dataset was sufficient to answer the research question or if other variables needed to be considered.

## Conclusion

While the analysis provided valuable insights into the dataset, it also highlighted the complexity of factors influencing workout quality and the need for more comprehensive data to fully understand the relationship between sleep and exercise.