# ¿La aversión al riesgo afecta el retorno esperado de las acciones?

Gabriel Cabrera G.

Universidad de Chile Facultad de Economía y Negocios

6 de Mayo del 2019

Gabriel Cabrera G.

#### Tabla de contenido



- 1 Motivación
- 2 Estimación Aversion al riesgo
- 3 Constante vs Time-varying Risk Aversion
- 4 Predictibilidad de los Retornos Accionarios
- 5 Conclusiones

Tesis Magister en Finanzas

## Motivación



#### Motivación



- La variable no es observable y dificil de estimar.
- Interes en estudiar las propiedades de algunos proxies tales como VIX, Variance Risk Premium (VRP), entre otros.
- Se estima una función *time-varying risk aversion* (TVRA) siguiendo los parametros de Bollerslev, Gibson y Zhou (2011).
- 8 países (Francia, Alemania, Reino Unido, China, Japón, Suiza, Estados Unidos y Corea del Sur).
- Se estudia si la variable TVRA puede predecir el retorno accionario in-sample.

# Estimación Aversion al riesgo

#### Motivación Teórica I



• Considerando el modelo de volatilidad estocástica de Heston (1993), donde la volatilidad del logarítmo del precio de la acción sigue un proceso:

$$dp_t = \mu_t(\cdot)dt + \sqrt{V_t}dB_{1t}$$
  

$$dV_t = \kappa(\theta - V_t)dt + \sigma_t(\cdot)dB_{2t}$$
(1)

y la distribución neutral al riesgo está dado por:

$$dp_t = r_t^* dt + \sqrt{V_t} dB_{1t}^*$$
  

$$dV_t = \kappa^* (\theta^* - V_t) dt + \sigma_t(\cdot) dB_{2t}^*$$
(2)

• Siguiendo la notación de Bollerslev, Gibson y Zhou (2011),  $\mathcal{V}^{\mathcal{N}}_{t,t+\Delta}$  denota la volatilidad realizada, computada como la suma al cuadrado del retornos entre t y  $t+\Delta$ .



• Bollerslev y Zhou (2002) documentan que el primer momento del proceso de la volatilidad en (1) esta dado por:

$$\mathsf{E}(\mathcal{V}_{t+\Delta,t+2\Delta}|\mathfrak{F}_t) = \alpha_{\Delta}\mathsf{E}(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) + \beta_{\Delta} \tag{3}$$

• Britten-Jones y Neuberger (2000) prueban que la medida de volatilidad puede ser computada como el promedio de un continuo de  $\Delta$ -maturity options.

$$IV_{t,t+\Delta}^* = 2\int \frac{C(t+\Delta,K) - C(t+\Delta)}{K^2} dK$$

• Donde  $C(t + \Delta, K)$  es el precio de una opción Europea con madurez al tiempo t con precio strike K, que es igual al verdadero riesgo neutral de la volatilidad integrada:





8/26

$$IV_{t,t+\Delta}^* = \mathsf{E}^*(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) \tag{4}$$

• Usando este resultado, Bollerslev y Zhou (2006) muestran que existe una relación entre la voltilidad neutral al riesgo en (2) y la volatilidad física de (1):

$$E(\mathcal{V}_{t,t+\Delta}|\mathfrak{F}_t) = \mathcal{A}_{\Delta}\mathsf{IV}^*_{t,t+\Delta} + \mathfrak{B}_{\Delta} \tag{5}$$

• Donde  $\mathcal{A}_{\cdot \cdot} = \frac{(1-e^{-k\Delta})/k}{(1-e^{-k^*\Delta})/k^*}$  y  $\mathfrak{B}_{\Delta} = \theta[\Delta - (1-e^{-k\Delta})/k] - A_{\Delta}\theta^*[\Delta - (1-e^{-k^*\Delta})/k^*]$  son funciones del los parámetros  $\kappa$ ,  $\theta$  y  $\lambda$ .



#### Estimación GMM



- Dados los momentos de (3) y (5), se utiliza el método de estimación GMM.
- Se considera los momentos definidos en (3) y (5), y el rezago de la volatilidad realizada como instrumento adicional.
- El conjunto final de los momentos para recuperar el vector de parametros  $\xi = (\kappa, \theta, \lambda)$  es:

$$f_{t}(\xi) \equiv \begin{pmatrix} \nu_{t+\Delta,t+2\Delta} - \alpha_{\Delta}\nu_{t,t+\Delta} - \beta_{\Delta} \\ (\nu_{t+\Delta,t+2\Delta} - \alpha_{\Delta}\nu_{t,t+\Delta} - \beta_{\Delta})\nu_{t-\Delta,t} \\ \nu_{t,t+\Delta} - \mathcal{A}_{\Delta}i\nu_{t,t+\Delta}^{*} - \mathfrak{B}_{\Delta} \\ (\nu_{t,t+\Delta} - \mathcal{A}_{\Delta}i\nu_{t,t+\Delta}^{*} - \mathfrak{B}_{\Delta})\nu_{t-\Delta,t} \end{pmatrix}$$
(6)

• Por construcción  $E(f_t(\xi)|\mathcal{G}_t) = 0$ , y el estimador GMM es definido como:

$$\hat{\xi}_t = \arg\min_{\xi} g_t(\xi)' W g_t(\xi) \tag{7}$$





10 / 26

 La volatilidad realizada es computada para cada mes como la suma al cuadrado de los retornos diarios en el mes:

$$RV_{t} \equiv \sum_{i=1}^{n} \left( p_{t+\frac{i}{n}} - p_{t+\frac{i-1}{n}} \right)^{2}$$
 (8)

- La volatilidad implicita se obtiene del índice VIX de cada país.
- Tanto los retornos de los índices como la volatilidad implícita (VIX) se obtienen de Bloomberg, con una frecuencia mensual.
- La muestra contiene información para Francia (CAC y VCAC), Alemania (DAX 30 y VDAX), Reino Unido (FTSE 100 y VFTSE), China (HSI y VHSI), Japon (NIKKEI 225 y VXJ), Suiza (SMI 20 y VSMI), Estados Unidos (S&P 500 y VIX), y Corea del Sur (KOSPI y VKOSPI).

## Estadística Descriptiva



• Tanto la volatilidad implícita como realizada tiene skewness y kurtosis altas y positivas. No es sorprendente a la luz de la literatura empírica sobre los datos de los Estados Unidos.

Cuadro 1: Summary Statistics for Monthly Realized and Implied Volatility

|       | Cadaro 1. Sammary Statistics for Monthly Realized and Implica Volutility |        |        |        |          |        |        |        |        |            |        |        |        |        |        |        |
|-------|--------------------------------------------------------------------------|--------|--------|--------|----------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|
|       | CAC                                                                      | C 40   | DAX 30 |        | FTSE 100 |        | HS     | HSI    |        | NIKKEI 225 |        | I 20   | S&P    | 500    | KO     | SPI    |
|       | $RV_t$                                                                   | $IV_t$ | $RV_t$ | $IV_t$ | $RV_t$   | $IV_t$ | $RV_t$ | $IV_t$ | $RV_t$ | $IV_t$     | $RV_t$ | $IV_t$ | $RV_t$ | $IV_t$ | $RV_t$ | $IV_t$ |
| Mean  | 20.68                                                                    | 23.11  | 21.81  | 22.49  | 16.48    | 19.83  | 19.93  | 23.12  | 21.51  | 25.29      | 16.03  | 18.41  | 15.21  | 19.5   | 17.89  | 21.56  |
| SD    | 11.01                                                                    | 8.40   | 11.43  | 8.41   | 9.57     | 8.31   | 11.49  | 9.73   | 10.57  | 8.79       | 9.52   | 7.46   | 9.05   | 7.5    | 10.12  | 9.26   |
| Skew. | 1.94                                                                     | 1.54   | 1.85   | 1.5    | 2.43     | 1.73   | 3.39   | 2.15   | 3.35   | 2.45       | 2.58   | 2.16   | 2.89   | 1.7    | 2.67   | 2      |
| Kurt. | 5.87                                                                     | 2.79   | 4.55   | 2.11   | 9.49     | 4.01   | 19.24  | 6.08   | 22.07  | 10.12      | 9.55   | 6.1    | 13.48  | 4.46   | 12.13  | 5.95   |
| Min.  | 6.75                                                                     | 11.97  | 6.32   | 11.67  | 4.17     | 9.99   | 6.66   | 11.8   | 6.34   | 12.21      | 5.73   | 9.26   | 4.24   | 10.26  | 5.91   | 10.75  |
| 5 %   | 9.32                                                                     | 13.55  | 10.02  | 13.39  | 7.3      | 11.09  | 9.81   | 13.66  | 9.92   | 15.22      | 7.36   | 11.39  | 6.71   | 11.56  | 8.06   | 11.86  |
| 25 %. | 13.07                                                                    | 17.46  | 14.58  | 16.89  | 10.27    | 13.94  | 13.48  | 16.63  | 15.39  | 19.61      | 10.44  | 13.77  | 9.66   | 13.75  | 11.69  | 15.03  |
| 50 %  | 18.62                                                                    | 21.41  | 18.57  | 20.74  | 14.12    | 17.6   | 16.87  | 20.36  | 19.33  | 24.07      | 13.31  | 16.14  | 12.86  | 17.66  | 15.61  | 19.51  |
| 75 %  | 24.32                                                                    | 25.77  | 25.31  | 25.65  | 19.22    | 23.26  | 22.53  | 26.2   | 25.64  | 28.31      | 18.15  | 20.2   | 17.61  | 23.52  | 20.58  | 24.92  |
| 95 %  | 45.35                                                                    | 41.49  | 42.65  | 41.14  | 35.28    | 36.58  | 41.76  | 43.23  | 40.58  | 37.72      | 37.01  | 34.49  | 30.18  | 32.04  | 37.76  | 36.48  |
| Max.  | 84.61                                                                    | 59.09  | 80.62  | 52.78  | 79.29    | 59.98  | 110.26 | 71.97  | 109.61 | 78.9       | 77.64  | 56.92  | 82.92  | 59.89  | 86.8   | 70.29  |

# **Constante vs Time-varying Risk Aversion**

Gabriel Cabrera G. Tesis Magister en Finanzas 6 de Mayo del 2019 12 / 26

#### Estimación País



13 / 26

- La volatility risk premium es proporcional al coeficiente de aversión al riesgo de una inversionista representativo, bajo los siguientes supuestos:
  - Volatility risk premium lineal.
  - La volatilidad estocástica es  $\sigma(\cdot) = \sigma \sqrt{V_t}$ .

$$U(W_t) = e^{-\delta t} \left( \frac{W_t^{1-\gamma}}{1-\gamma} \right) \tag{9}$$

• Para incorporar variación en el tiempo, Bollerslev, Gibson y Zhou (2011) proponen implemenar un proceso AR(1) aumentado.

$$\lambda_{t+1} = \alpha + b\lambda_t + \sum_{k=1}^k c_k \times state_{t,k}$$
 (10)

Cuadro 2: GMM Estimates of Constant and Time-Varying Volatility Risk Premium Function

|                                      | Franc    | e (CAC 40)    | Germa    | ny (DAX 30)   | UK (      | FTSE 100)     | Ch       | ina (HSI)     |
|--------------------------------------|----------|---------------|----------|---------------|-----------|---------------|----------|---------------|
|                                      | Constant | Macro Finance | Constant | Macro Finance | Constant  | Macro Finance | Constant | Macro Finance |
| λ                                    | -4.705*  |               | -1.776   |               | -2.578*** |               | -2.031** |               |
|                                      | (2.559)  |               | (1.232)  |               | (0.540)   |               | (1.003)  |               |
| $\alpha$                             | , ,      | -0.527***     | ` ,      | -0.435***     | , ,       | -0.526***     | , ,      | -0.527***     |
|                                      |          | (0.070)       |          | (0.160)       |           | (0.026)       |          | (0.178)       |
| $\beta$                              |          | 0.812***      |          | 0.779***      |           | 0.818***      |          | 0.855***      |
|                                      |          | (0.035)       |          | (0.038)       |           | (0.012)       |          | (0.061)       |
| c <sub>1</sub> Realized Volatility   |          | -0.323***     |          | -0.319***     |           | -0.317***     |          | -0.319*       |
| -                                    |          | (0.105)       |          | (0.079)       |           | (0.100)       |          | (0.173)       |
| c <sub>2</sub> Aaa Bond              |          | 0.190**       |          | 0.192***      |           | 0.187***      |          | 0.291**       |
|                                      |          | (0.086)       |          | (0.036)       |           | (0.061)       |          | (0.127)       |
| c <sub>3</sub> Housing Start         |          | -0.325        |          | -0.103**      |           | -0.212***     |          | -0.230        |
|                                      |          | (0.288)       |          | (0.046)       |           | (0.071)       |          | (0.253)       |
| c <sub>4</sub> Industrial Production |          | 0.137         |          | 0.091***      |           | 0.069**       |          | 0.041         |
|                                      |          | (0.095)       |          | (0.022)       |           | (0.027)       |          | (0.029)       |
| c <sub>5</sub> Producer Price Index  |          | -0.056        |          | -0.034        |           | -0.037***     |          | -0.031        |
|                                      |          | (0.062)       |          | (0.048)       |           | (0.010)       |          | (0.097)       |
| c <sub>6</sub> Payroll Employment    |          | -0.032***     |          | -0.045***     |           | -0.048        |          | -0.052        |
|                                      |          | (0.011)       |          | (0.007)       |           | (0.052)       |          | (0.127)       |
| c <sub>7</sub> PE Ratio              |          | 0.440**       |          | 0.384***      |           | 0.393***      |          | 0.302**       |
|                                      |          | (0.190)       |          | (0.086)       |           | (0.129)       |          | (0.152)       |

Cuadro 3: GMM Estimates of Constant and Time-Varying Volatility Risk Premium Function

|                         | Japan (  | (NIKKEI 225)  | Switzerl  | and (SMI 20)  | US       | (S&P 500)     | South K   | orea (KOSPI)  |
|-------------------------|----------|---------------|-----------|---------------|----------|---------------|-----------|---------------|
|                         | Constant | Macro Finance | Constant  | Macro Finance | Constant | Macro Finance | Constant  | Macro Finance |
| λ                       | -3.118** |               | -3.153*** |               | -2.504*  |               | -3.382*** |               |
|                         | (1.565)  |               | (0.756)   |               | (1.347)  |               | (0.986)   |               |
| γ                       | , ,      | -0.232*       | , ,       | -0.777***     | , ,      | -0.200        | , ,       | -0.320***     |
|                         |          | (0.127)       |           | (0.229)       |          | (0.120)       |           | (0.042)       |
| 3                       |          | 0.931***      |           | 0.425***      |          | 0.740***      |           | 0.890***      |
|                         |          | (0.019)       |           | (0.087)       |          | (0.222)       |           | (0.017)       |
| Realized Volatility     |          | -0.319***     |           | -0.362***     |          | -0.423***     |           | -0.216        |
| -                       |          | (0.055)       |           | (0.076)       |          | (0.194)       |           | (0.166)       |
| 2 Aaa Bond              |          | 0.191***      |           | 0.210***      |          | 0.251***      |           | 0.192*        |
|                         |          | (0.054)       |           | (0.042)       |          | (0.088)       |           | (0.106)       |
| 3 Housing Start         |          | -0.230***     |           | -0.201***     |          | -0.212***     |           | -0.233***     |
|                         |          | (880.0)       |           | (0.062)       |          | (0.063)       |           | (0.112)       |
| 4 Industrial Production |          | 0.037         |           | 0.079***      |          | 0.093***      |           | 0.056         |
|                         |          | (0.118)       |           | (0.029)       |          | (0.023)       |           | (0.073)       |
| 5 Producer Price Index  |          | -0.052        |           | -0.083***     |          | -0.045***     |           | -0.061*       |
|                         |          | (0.093)       |           | (0.028)       |          | (0.011)       |           | (0.036)       |
| C6 Payroll Employment   |          | -0.030        |           | 0.018         |          | -0.034        |           | -0.052        |
|                         |          | (0.096)       |           | (0.049)       |          | (0.031)       |           | (0.062)       |
| 7 PE Ratio              |          | 0.302**       |           | 0.302***      |          | 0.114**       |           | 0.264         |
|                         |          | (0.137)       |           | (0.067)       |          | (0.057)       |           | (0.195)       |

#### Resultados



- La constante estimada  $\lambda$  varía entre 1.77 para Alemania y 4.71 para Francia. El coeficiente es significativo para 7 de los 8 países (Alemania es la excepción).
- En el caso de la tasa de crecimiento de la variable housing starts, para siete países el coeficiente mínimo estimado es -0.32 (Francia) y máximo -0.10 (Alemania).
- El rezago de la volatilidad realizada presenta un signo negativo y significativo.
- El signo de los coeficientes estimados son consistente con lo esperado. La mayoría de los resultados parecen estar alineados con la premisa que la aversión al riesgo aumenta cuando los mercados están bear y decresen en los bull.

# Time-Varying Risk Aversion & Business Cycle



- Los modelos de asset pricing con habito predicen que la aversión al riesgo es contra cíclica.
- Kim (2014) evidencia que la correlación dinámica entre la aversión al riesgo y el desempleo disminuye a lo largo del tiempo. Concluyendo que la variable tiene un comportamiento contra cíclico.

$$Corr(-\lambda_t^i, Uempl_{t+k}^i)$$

Cuadro 4: Correlation between Time-varying Risk Aversion and Unemployment Rate

| Countries (Indices)  | t-5      | t-4      | t-3      | t-2      | t-1      | t        | t+1      | t + 2    | t+3      | t+4      | t+5      |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| France (CAC 40)      | 0.412*** | 0.410*** | 0.406*** | 0.399*** | 0.389*** | 0.376*** | 0.360*** | 0.339*** | 0.317*** | 0.291*** | 0.261*** |
| Germany (DAX 30)     | 0.125*   | 0.122*   | 0.119*   | 0.116*   | 0.113    | 0.108    | 0.103    | 0.099    | 0.094    | 0.090    | 0.086    |
| UK (FTSE 100)        | 0.311*** | 0.327*** | 0.340*** | 0.347*** | 0.350*** | 0.350*** | 0.341*** | 0.330*** | 0.316*** | 0.301*** | 0.285*** |
| China (HSI)          | 0.379*** | 0.333*** | 0.283*** | 0.232*** | 0.184**  | 0.140*   | 0.109    | 0.085    | 0.067    | 0.055    | 0.046    |
| Japan (NIKKEI 225)   | 0.262*** | 0.234*** | 0.205*** | 0.175**  | 0.146**  | 0.117*   | 0.092    | 0.069    | 0.050    | 0.032    | 0.015    |
| Switzerland (SMI 20) | 0.449*** | 0.458*** | 0.454*** | 0.440*** | 0.412*** | 0.356*** | 0.326*** | 0.294*** | 0.260*** | 0.225*** | 0.188*** |
| US (S&P 500)         | 0.376*** | 0.348*** | 0.318*** | 0.283*** | 0.247*** | 0.208*** | 0.164**  | 0.121*   | 0.080    | 0.039    | 0.001    |
| South Korea (KOSPI)  | 0.132*   | 0.125    | 0.120    | 0.117    | 0.113    | 0.099    | 0.084    | 0.077    | 0.060    | 0.041    | 0.019    |

Gabriel Cabrera G. Tesis Magister en Finanzas

### Predictibilidad de los Retornos Accionarios

Gabriel Cabrera G. Tesis Magister en Finanzas 6 de Mayo del 2019 18 / 26



- El uso de datos de panel reduce el problema de data-mining y mejora la eficiencia de la estimación.
- Se estima el siguiente modelo panel:

$$h^{-1}r_{t,t+h}^{i} = a(h) + b(h)TVRA_{t}^{i} + \gamma(h)'X_{t}^{i} + \alpha_{i} + u_{t,t+h}^{i}$$
  $h = 1, 2, ..., 12$  (11)

- $TVRA_t^i$  representa el índice de time-varying risk aversion, y  $\mathbf{X}_t^i$  el conjunto de variables de control.
- Las variables de control en X' son: VRP, sentiment (consumer confidence index) e incertidumbre económica (Economic Policy Uncertainty index).

Cuadro 5: Panel Stock Return Predictability Regressions

|                              |          |          |          |          | Par          | nel A: Baseli | ne          |          |          |          |          |          |
|------------------------------|----------|----------|----------|----------|--------------|---------------|-------------|----------|----------|----------|----------|----------|
| Horizon                      | 1        | 2        | 3        | 4        | 5            | 6             | 7           | 8        | 9        | 10       | 11       | 12       |
| TVRA                         | 1.212*** | 0.621*** | 0.413*** | 0.312*** | 0.246***     | 0.206***      | 0.179***    | 0.157*** | 0.142*** | 0.126*** | 0.113*** | 0.105*** |
|                              | (0.445)  | (0.222)  | (0.148)  | (0.112)  | (0.090)      | (0.074)       | (0.064)     | (0.055)  | (0.049)  | (0.045)  | (0.041)  | (0.037)  |
| %Adj. <i>R</i> <sup>2</sup>  | 0.22     | 0.23     | 0.23     | 0.23     | 0.22         | 0.22          | 0.23        | 0.23     | 0.24     | 0.23     | 0.23     | 0.23     |
| Obs.                         | 1627     | 1619     | 1611     | 1603     | 1595         | 1587          | 1579        | 1571     | 1563     | 1555     | 1547     | 1539     |
|                              |          |          |          | Pane     | l B: Baselin | e + Varianc   | e Risk Prem | nium     |          |          |          |          |
| TVRA                         | 1.191*** | 0.610*** | 0.406*** | 0.307*** | 0.242***     | 0.202***      | 0.176***    | 0.155*** | 0.139*** | 0.124*** | 0.112*** | 0.103*** |
|                              | (0.421)  | (0.209)  | (0.139)  | (0.105)  | (0.084)      | (0.070)       | (0.059)     | (0.052)  | (0.046)  | (0.042)  | (0.038)  | (0.035)  |
| VRP                          | 0.198*   | 0.099**  | 0.066**  | 0.050**  | 0.040*       | 0.033**       | 0.028**     | 0.025**  | 0.022**  | 0.020**  | 0.018**  | 0.016*   |
|                              | (0.064)  | (0.032)  | (0.021)  | (0.016)  | (0.013)      | (0.011)       | (0.009)     | (800.0)  | (0.007)  | (0.006)  | (0.006)  | (0.005)  |
| % Adj. <i>R</i> <sup>2</sup> | 2.07     | 2.08     | 2.09     | 2.1      | 2.09         | 2.1           | 2.11        | 2.11     | 2.11     | 2.09     | 2.08     | 2.07     |
| Obs.                         | 1627     | 1619     | 1611     | 1603     | 1595         | 1587          | 1579        | 1571     | 1563     | 1555     | 1547     | 1539     |
|                              |          |          |          | Pa       | nel C: Basel | ine + Inves   | tor Sentime | nt       |          |          |          |          |
| TVRA                         | 1.147**  | 0.588**  | 0.391**  | 0.296**  | 0.234**      | 0.196**       | 0.170***    | 0.149*** | 0.135*** | 0.120*** | 0.108*** | 0.100*** |
|                              | (0.463)  | (0.229)  | (0.152)  | (0.115)  | (0.093)      | (0.077)       | (0.065)     | (0.057)  | (0.050)  | (0.046)  | (0.042)  | (0.038)  |
| Sentiment                    | -0.131   | -0.068   | -0.046   | -0.035   | -0.028       | -0.023        | -0.021      | -0.018   | -0.017   | -0.015   | -0.014   | -0.013   |
|                              | (0.090)  | (0.046)  | (0.031)  | (0.023)  | (0.018)      | (0.015)       | (0.013)     | (0.012)  | (0.010)  | (0.009)  | (800.0)  | (0.008)  |
| % Adj. <i>R</i> <sup>2</sup> | 0.31     | 0.33     | 0.34     | 0.34     | 0.33         | 0.34          | 0.35        | 0.35     | 0.37     | 0.36     | 0.35     | 0.37     |
| Obs.                         | 1561     | 1553     | 1545     | 1537     | 1529         | 1521          | 1513        | 1505     | 1497     | 1489     | 1481     | 1473     |

Cuadro 6: Panel Stock Return Predictability Regressions

|                              |                                          |           |           |           | Pa           | nel A: Baseli | ne             |           |           |           |           |           |  |
|------------------------------|------------------------------------------|-----------|-----------|-----------|--------------|---------------|----------------|-----------|-----------|-----------|-----------|-----------|--|
| Horizon                      | 1                                        | 2         | 3         | 4         | 5            | 6             | 7              | 8         | 9         | 10        | 11        | 12        |  |
|                              | Panel D: Baseline + Economic Uncertainty |           |           |           |              |               |                |           |           |           |           |           |  |
| TVRA                         | 1.161***                                 | 0.592***  | 0.394***  | 0.296***  | 0.234***     | 0.196***      | 0.170***       | 0.150***  | 0.136***  | 0.121***  | 0.110***  | 0.101***  |  |
|                              | (0.431)                                  | (0.214)   | (0.142)   | (0.107)   | (0.086)      | (0.071)       | (0.061)        | (0.053)   | (0.047)   | (0.043)   | (0.040)   | (0.036)   |  |
| Uncertainty                  | 0.035                                    | 0.017     | 0.011     | 0.009     | 0.007        | 0.006         | 0.005          | 0.004     | 0.003     | 0.003     | 0.002     | 0.002     |  |
|                              | (0.022)                                  | (0.011)   | (0.008)   | (0.006)   | (0.005)      | (0.004)       | (0.004)        | (0.003)   | (0.003)   | (0.003)   | (0.003)   | (0.002)   |  |
| % Adj. <i>R</i> <sup>2</sup> | 0.39                                     | 0.4       | 0.4       | 0.4       | 0.41         | 0.41          | 0.39           | 0.38      | 0.37      | 0.36      | 0.32      | 0.31      |  |
| Obs.                         | 1428                                     | 1421      | 1414      | 1407      | 1400         | 1393          | 1386           | 1379      | 1372      | 1365      | 1358      | 1351      |  |
|                              |                                          |           |           | Pa        | nel E: Basel | ine + All con | trols variable | es        |           |           |           |           |  |
| TVRA                         | 1.1684***                                | 0.5950*** | 0.3946*** | 0.2973*** | 0.2337***    | 0.1950***     | 0.1690***      | 0.1478*** | 0.1337*** | 0.1193*** | 0.1082*** | 0.1005*** |  |
|                              | (0.4294)                                 | (0.2115)  | (0.1405)  | (0.1061)  | (0.0860)     | (0.0715)      | (0.0601)       | (0.0522)  | (0.0465)  | (0.0419)  | (0.0386)  | (0.0349)  |  |
| VRP                          | 0.2079**                                 | 0.1038**  | 0.0693**  | 0.0521**  | 0.0417**     | 0.0348**      | 0.0298***      | 0.0260*** | 0.0230**  | 0.0207*** | 0.0188*** | 0.0171**  |  |
|                              | (0.0648)                                 | (0.0324)  | (0.0216)  | (0.0162)  | (0.0129)     | (0.0108)      | (0.0092)       | (0.0080)  | (0.0071)  | (0.0064)  | (0.0058)  | (0.0053)  |  |
| Sentiment                    | -0.0821                                  | -0.0432   | -0.0299   | -0.0226   | -0.0171      | -0.0144       | -0.0130        | -0.0117   | -0.0108   | -0.0095   | -0.0088   | -0.0085   |  |
|                              | (0.0648)                                 | (0.0331)  | (0.0223)  | (0.0168)  | (0.0132)     | (0.0107)      | (0.0094)       | (0.0082)  | (0.0074)  | (0.0066)  | (0.0059)  | (0.0059)  |  |
| Uncertainty                  | 0.0530***                                | 0.0263*** | 0.0176*** | 0.0135*** | 0.0112***    | 0.0092***     | 0.0077***      | 0.0065*** | 0.0057*** | 0.0052*** | 0.0045*** | 0.0040**  |  |
| _                            | (0.0201)                                 | (0.0100)  | (0.0068)  | (0.0052)  | (0.0042)     | (0.0035)      | (0.0031)       | (0.0027)  | (0.0025)  | (0.0023)  | (0.0022)  | (0.0020)  |  |
| % Adj. R <sup>2</sup>        | 2.71                                     | 2.72      | 2.74      | 2.76      | 2.77         | 2.77          | 2.75           | 2.73      | 2.7       | 2.69      | 2.62      | 2.59      |  |
| Obs.                         | 1561                                     | 1553      | 1545      | 1537      | 1529         | 1521          | 1513           | 1505      | 1497      | 1489      | 1481      | 1473      |  |

#### Resultados Panel



- En el panel A, se observa que el TVRA ayuda a pronosticar el retorno futuro para todos los horizontes considerados. El coeficiente estimado, b(h), es positivo, como se esperaba y significativo. Va desde 1.21 en h = 1 hasta 0.11 para h = 12.
- Se esperaba un perdida de significancia predictiva para el TVRA cuando la variable VRP es incluida en la especificación. La estimación muestra que este no es el caso, debido a que el coeficiente TVRA permanece significativo duarante los horizontes considerados.
- El coeficiente de la variable sentiment es negativa, consistente con la evidencia de Schmeling (2009), sin embargo, no se encuentra evidencia de significancia estadística.
- Ante la inclusión de incertidumbre (EPU), el TVRA permanece positiva y estadísticamente significativa. Se documenta que el coeficiente del índice EPU durante los horizontes es positivo, pero no estadísticamente significativo.



Cuadro 7: Stock Return Predictability Regressions by Country

| Horizon (h) |                      | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      |
|-------------|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| France      | $\hat{\beta}_{TVRA}$ | 1.20    | 0.68    | 0.45    | 0.35    | 0.26    | 0.21    | 0.20    | 0.19    | 0.18    | 0.16    | 0.15    | 0.14    |
|             | $R^2$                | 0.21    | 0.27    | 0.27    | 0.28    | 0.25    | 0.23    | 0.29    | 0.32    | 0.36    | 0.35    | 0.37    | 0.39    |
| Germany     | $\hat{\beta}_{TVRA}$ | 0.98    | 0.49    | 0.33    | 0.24    | 0.20    | 0.17*   | 0.14*   | 0.12**  | 0.11**  | 0.10**  | 0.09*** | 0.08*** |
|             | $R^2$                | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    | 0.06    |
| UK          | $\hat{\beta}_{TVRA}$ | 1.83*** | 0.92*** | 0.61*** | 0.46*** | 0.37*** | 0.31*** | 0.27*** | 0.23*** | 0.20*** | 0.18*** | 0.16*** | 0.15*** |
|             | $R^2$                | 1.24    | 1.25    | 1.25    | 1.27    | 1.25    | 1.26    | 1.29    | 1.26    | 1.22    | 1.23    | 1.09    | 1.18    |
| China       | $\hat{\beta}_{TVRA}$ | 5.81    | 2.91    | 1.93    | 1.46    | 1.17    | 0.97    | 0.83    | 0.73    | 0.64    | 0.58    | 0.53    | 0.48    |
|             | $R^2$                | 2.32    | 2.33    | 2.31    | 2.38    | 2.38    | 2.37    | 2.37    | 2.37    | 2.37    | 2.40    | 2.41    | 2.41    |
| Japan       | $\hat{\beta}_{TVRA}$ | 1.49*** | 0.74*** | 0.49*** | 0.37*   | 0.30    | 0.25    | 0.21    | 0.18    | 0.16    | 0.15    | 0.13    | 0.12    |
|             | $R^2$                | 0.87    | 0.87    | 0.87    | 0.87    | 0.87    | 0.88    | 0.86    | 0.85    | 0.87    | 0.85    | 0.86    | 0.84    |
| Switzerland | $\hat{\beta}_{TVRA}$ | 6.21*** | 3.26*** | 2.13*** | 1.67*** | 1.29*** | 1.05**  | 0.88**  | 0.73**  | 0.65**  | 0.53    | 0.48    | 0.47    |
|             | $R^2$                | 1.06    | 1.15    | 1.08    | 1.17    | 1.06    | 0.99    | 0.95    | 0.85    | 0.82    | 0.67    | 0.66    | 0.75    |
| US          | $\hat{\beta}_{TVRA}$ | 0.54    | 0.27    | 0.19    | 0.15    | 0.12    | 0.12    | 0.11    | 0.11    | 0.11    | 0.09    | 0.08    | 0.07    |
|             | $R^2$                | 0.02    | 0.02    | 0.02    | 0.02    | 0.02    | 0.03    | 0.03    | 0.04    | 0.05    | 0.04    | 0.04    | 0.04    |
| South Korea | $\hat{\beta}_{TVRA}$ | 6.54*** | 3.38*** | 2.26*** | 1.65*** | 1.30*** | 1.06*** | 0.94*** | 0.82*** | 0.71*** | 0.63*** | 0.57*** | 0.52*** |
|             | $R^2$                | 0.95    | 1.02    | 1.02    | 0.97    | 0.93    | 0.90    | 0.94    | 0.95    | 0.91    | 0.89    | 0.87    | 0.86    |

23 / 26

Gabriel Cabrera G. Tesis Magister en Finanzas

## Conclusiones



Gabriel Cabrera G. Tesis Magister en Finanzas 6 de Mayo del 2019 24

#### Conclusiones



- La función de aversión al riesgo es contra cíclica, consitente con la teoría de asset pricing.
- Corporate bond spreads, industrial production growth, and price-earnings ratios son los componentes principales de la aversión al riesgo a nivel agregado en la mayoría de los países de la muestra.
- En promedio, Japón, Suiza y Francia son los países más aversos.
- En promedio Estados Unidos, China y Reino Unido son los menos aversos.
- Usando datos de panel, encontramos que la función de aversión al riesgo puede predecir los retornos accionarios de los próximo 12 meses.
- El resultado es robusto al agregar como controles variance risk premium, investor's sentiment e incertidumbre económica (EPU).

#### Referencia I





Tim Bollerslev, Michael Gibson y Hao Zhou. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities". En: *Journal of econometrics* 160.1 (2011), págs. 235-245.



Tim Bollerslev y Hao Zhou. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility". En: *Journal of Econometrics* 109.1 (2002), págs. 33-65.



Tim Bollerslev y Hao Zhou. "Volatility puzzles: a simple framework for gauging return-volatility regressions". En: *Journal of Econometrics* 131.1-2 (2006), págs. 123-150.



Mark Britten-Jones y Anthony Neuberger. "Option prices, implied price processes, and stochastic volatility". En: *The Journal of Finance* 55.2 (2000), págs. 839-866.



Steven L Heston. "A closed-form solution for options with stochastic volatility with applications to bond and currency options". En: *The review of financial studies* 6.2 (1993), págs. 327-343.



Kun Ho Kim. "Counter-cyclical risk aversion". En: Journal of Empirical Finance 29 (2014), págs. 384-401.



Maik Schmeling. "Investor sentiment and stock returns: Some international evidence". En: *Journal of empirical finance* 16.3 (2009), págs. 394-408.