GRAFOS

Prof. Dr. Matheus da Silva Menezes

GRAFOS

GRAFOS EULERIANOS
Caminhos e Ciclos

Definição

Caminho Euleriano

É um caminho que considera o uso de cada aresta do grafo apenas uma vez. Como é um caminho, não tem a obrigação de iniciar e terminar no mesmo vértice.

Definição

Ciclo Euleriano

Cadeia que, inicia em um vértice \mathbf{v} , passa por todas as arestas do grafo \mathbf{c} (sem repetição), e finaliza em \mathbf{v} .

Definição

Ciclo Euleriano

Cadeia que, inicia em um vértice \mathbf{v} , passa por todas as arestas do grafo \mathbf{c} (sem repetição), e finaliza em \mathbf{v} .

GRAFOS e DIGRAFOS EULERIANOSCondições para Existência de Caminhos e Ciclos

	CAMINHOS	CICLOS
GRAFO	Todos os vértices possuem grau par ou no máximo dois vértices possuem grau ímpar.	Todos os vértices possuem grau par
DIGRAFO	No máximo um vértice tem grau (d+-d=1) e no máximo um vértice tem grau (dd+=1). Todos os demais vértices tem o mesmo grau de entrada e de saída.	Todos os vértices possuem o mesmo grau de entrada e de saída.

	CAMINHOS	CICLOS
GRAFO	Todos os vértices possuem grau par ou no máximo dois vértices possuem grau ímpar.	Todos os vértices possuem grau par

	CAMINHOS	CICLOS
GRAFO	Todos os vértices possuem grau par ou no máximo dois vértices possuem grau ímpar.	Todos os vértices possuem grau par

	CAMINHOS	CICLOS
DIGRAFO	No máximo um vértice tem grau (d+-d-=1) e no máximo um vértice tem grau (dd+=1). Todos os demais vértices tem o mesmo grau de entrada e de saída.	Todos os vértices possuem o mesmo grau de entrada e de saída.

	CAMINHOS	CICLOS
DIGRAFO	No máximo um vértice tem grau (d ⁺ -d ⁻ =1) e no máximo um vértice tem grau (d ⁻ -d ⁺ =1). Todos os demais vértices tem o mesmo grau de entrada e de saída.	Todos os vértices possuem o mesmo grau de entrada e de saída.

Algoritmo de Hierholzer

Pseudocódigo

Ler G=(N,M)

- 1. Escolher um vértice v de G
- 2. Construir uma cadeia fechada C, a partir de v, percorrendo as arestas de G aleatoriamente.
- 3. Remover de G as arestas de C
- 4. Enquanto $(M \neq \emptyset)$ Fazer
 - 5. Escolher v tal que d(v) > 0 e $v \in C$
 - 6. Construir uma cadeia fechada H, a partir de v, percorrendo as arestas de G aleatoriamente.
 - 7. Remover de G as arestas de H
 - 8.C

 H U C
 - 9. H ← Ø
- 10. Fim_do_enquanto
- 11. Imprimir C

Algoritmo de Hierholzer

	CAMINHOS	CICLOS
DIGRAFO	No máximo um vértice tem grau (d ⁺ -d ⁻ =1) e no máximo um vértice tem grau (d ⁻ -d ⁺ =1). Todos os demais vértices tem o mesmo grau de entrada e de saída.	Todos os vértices possuem o mesmo grau de entrada e de saída.

Nó	#Entrada	# Saída
1	1	2
2	3	3
3	3	3
4	2	2
5	1	1
6	2	1

Algoritmo de Hierholzer

O Algoritmo de Hierholzer pode ser implementado em O (m)

Dúvidas?!

