

R Docket No.: 081607-1090

CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1. A distributed data monitoring and control system suitable for residential automation applications, comprising:

at least one sensor suitably integrated with a residential system configured to provide a sensor data signal;

at least one wireless communication device communicatively coupled with the at least one sensor configured to receive the sensor data signal and format a first encoded data signal comprising a communication device identifier and a predetermined function code responsive to the received sensor data signal wherein the wireless communication device broadcasts the first encoded data signal over a wireless transmission media to a gateway communicatively coupled to a wide area network configured to receive and translate the first encoded data signal into a wide area network data transfer protocol for transmission to a computing device configured to collect, process, and store, the received sensor data signal.

- 2. The system of claim 1, wherein the at least one wireless communication device is configured to broadcast the first encoded data signal via a transmission medium selected from the group consisting of radio-frequency (RF), infra-red (IR), and ultrasound.
- The system of claim 1, wherein the at least one wireless communication device broadcasts the first encoded data signal to a computing device configured to execute a computer program having a first segment for evaluating the first encoded data signal to identify the at least one wireless communication device.

- 4. The system of claim 1, wherein the at least one wireless communication 1
- device broadcasts the first encoded data signal to a computing device configured to 2
- execute a computer program having a second segment for evaluating the first encoded 3
- 4 data signal to identify a parameter value associated with the sensor.
- 5. The system of claim 1, wherein the at least one wireless communication 1
- device is configured to receive a second encoded data signal via a transmission medium 2
- selected from the group consisting of radio-frequency (RF), infra-red (IR), and 3
- ultrasound. 4
- 6. The system of claim 1, wherein the gateway is configured to insert timing 1 2 information into the first encoded data signal.
- 7. The system of claim 1, wherein the gateway is configured to translate the 1
- first encoded data signal into TCP/IP for communication over the wide area network. 2
- The system of claim 1, wherein the wide area network is the Internet. 1 8.
- 9. The system of claim 1, wherein the wide area network is an Intranet. 1
- 10. The system of claim 4, wherein the computer program uses a look-up table 1
- that associates at least one parameter value associated with the sensor to a data input. 2
- 11. The system of claim 4, wherein the at least one wireless communication 1
- 2 device broadcasts the first encoded data signal to a computing device configured to
- execute a computer program having a third segment for evaluating the relative health of 3
- the at least one wireless communication device. 4

2

3

4

1

- 1 12. The system of claim 5, wherein the second encoded data signal originates 2 from a closely located second wireless communication device associated with at least one 3 sensor and identifies a parameter value associated with the associated sensor.
- 1 13. The system of claim 5, wherein the at least one wireless communication 2 device is configured to generate and broadcast a composite encoded data signal 3 comprising information from the first and second encoded data signals.
- 1 14. The system of claim 11, wherein the computer program evaluates the 2 relative health of the at least one wireless communication device based on an algorithm 3 that monitors elapsed time between received first encoded data signals.
 - 15. The system of claim 13, wherein the at least one wireless communication device is in communication with an actuator and is configured to receive an encoded command signal generated by a computing device configured to execute a computer program responsive to the received sensor data signal.
- 1 16. The system of claim 15, wherein encoded command signals are routed in 2 response to the previously identified wireless communication device(s) responsible for 3 generating and forwarding an associated received sensor data signal.
- 1 17. The system of claim 15, wherein the actuator is responsive to a received 2 command signal.
- 1 18. The system of claim 15, wherein encoded command signals are routed 2 periodically to the at least one wireless communication device to initiate a sensor data 3 signal.

7

8

9

10

11

12

1

2

3

21.

- 19. The system of claim 15, wherein encoded command signals are routed 1 periodically to the at least one wireless communication device to initiate a wireless 2 communication device health check response signal. 3
- 20. 1 The system of claim 15, wherein encoded command signals contain encoded audio broadcast messages. 2
- A method for monitoring residential systems, comprising: 1 providing at least one gateway device in communication with a wide area network 2 wherein the gateway device is configured to receive an encoded broadcast signal having a 3 first portion that identifies an originating wireless communication device and a second 4 portion that contains a function code responsive to a sensed parameter; 5

using the gateway device to translate and embed the received broadcast signal within a data packet with a network data transfer protocol;

using the gateway device to transmit the data packet over the wide area network to a designated computing device;

receiving the data packet at the designated computing device; and using the designated computing device to identify the originating wireless communication device and the associated function code contained within the data packet.

- 22. The method of claim 21, wherein the step of providing the at least one gateway device is accomplished by communicatively associating the gateway with the Internet.
- 23. The method of claim 21, wherein the step of providing the at least one 1 gateway device is accomplished by communicatively associating the gateway with a 2 dedicated Intranet. 3

2

3

4

5

- 1 24. The method of claim 21, wherein the step of using the gateway device to 2 translate and embed the received broadcast signal in a data packet is accomplished with 3 terminal control protocol / Internet protocol (TCP/IP).
 - 25. The method of claim 21, wherein the step of providing the at least one gateway device is accomplished with a gateway device in communication with at least one wireless communication device configured to broadcast an encoded broadcast signal via a transmission medium selected from the group consisting of radio-frequency (RF), infra-red (IR), and ultrasound.
- 1 26. The method of claim 21, further comprising:
 2 using the designated computing device to associate timing information responsive
 3 to the received broadcast signal;
 4 storing parameter information derived from the function code; and
 5 providing access to the stored parameter information upon client request.
- 1 27. The method of claim 21, wherein the step of providing access to the stored 2 parameter information is accomplished using a web browser.
- 1 28. The method of claim 27, wherein the step of providing access to the stored 2 parameter information is accomplished using hypertext mark-up language (HTML).
- 1 29. The method of claim 27, wherein the step of providing access to the stored 2 parameter information is accomplished using at least one graphical user interface.

ì	30. A method for monitoring and controlling residential systems, comprising:
2	providing at least one gateway device in communication with a wide area network
3	wherein the gateway device is configured to receive a first encoded signal having a first
4	portion that identifies an originating wireless communication device and a second portion
5	that contains a function code responsive to a sensed parameter and wherein the gateway
6	device is configured to broadcast a second encoded signal that identifies at least one
7	wireless communication device to traverse ending at a destination wireless
8	communication device and wherein the second encoded signal contains a command;
9	using the gateway device to translate and embed the received broadcast signal
10	within a data packet with a network data transfer protocol;
11	using the gateway device to transmit the data packet over the wide area network to
12	a designated computing device;
13	receiving the data packet at the designated computing device;
14	using the designated computing device to identify the originating wireless
15	communication device and the associated function code contained within the data packet;
16	deriving parameter information from the function code;
17	generating at least one command in response to the derived parameter
18	information;
19	embedding the command information and appropriate wireless communication
20	device routing information in a data packet;
21	transmitting the data packet to the appropriate gateway; and
22	using the gateway to construct an appropriate second encoded signal responsive to
23	the data packet.

31. The method of claim 30, wherein the step of providing the at least one gateway device is accomplished by communicatively associating the gateway with the Internet.

2

3

4

5

6

- 1 32. The method of claim 31, wherein the step of providing the at least one 2 gateway device is accomplished by communicatively associating the gateway with a 3 dedicated Intranet.
- 1 33. The method of claim 31, wherein the step of using the gateway device to 2 translate and embed the received broadcast signal in a data packet is accomplished with 3 terminal control protocol / Internet protocol (TCP/IP).
- The method of claim 31, wherein the step of providing the at least one gateway device is accomplished with a gateway device in communication with at least one wireless communication device configured to broadcast an encoded signal via a transmission medium selected from the group consisting of radio-frequency (RF), infrared (IR), and ultrasound.
 - 35. The method of claim 31, further comprising:
 using the designated computing device to associate timing information responsive
 to both the first and second encoded signals;
 deriving parameter information from the function code;
 using the parameter information in a control algorithm to derive system outputs;
 providing the system outputs upon client request.
- 1 36. The method of claim 31, wherein the step of providing system outputs is accomplished using a web browser.
- The method of claim 36, wherein the web browser uses hypertext mark-up language (HTML).
- 1 38. The method of claim 36, wherein the web browser uses at least one graphical user interface.