LOW PASS FILTER

Objectives:

- 1. Perform time response and bode analysis
- 2. Perform parametric variations and observe the impact of the same on the circuit response.
- **3.** Verify the output response with the expected values.
- **4.** Analyze the circuit by measuring desired parameters of the waveforms/plots.

Circuit diagram	Transfer Function	
	T(s) = where, a1=0 T(s) = F cutoff =	

Procedure for conduction:

- 1. Select the Low Pass Filter through Filters option.
- 2. Click on conduction button.
- 3. Take screenshots as required.
- 4. Verify the output response with the expected values.
- 5. Also observe the peak-peak input and output voltage in Scope.
- 6. Use cursors to measure the Pass band frequency, magnitude and Pass band gain.
- 7. Perform time response and bode analysis.
- 8. Repeat the above steps with different circuit parameters and signal parameters.

Wav	egen	Scope:		
		Time: Position: 0s Base: 5ms/div		
Wavegen 1	Wavegen 2	Channel 1	Channel 2	
Sine wave	DC: 0, 1,2, -1, -2 V	Offset: 0V	Offset: 0V	
Amplitude: 5V		Range: 1V/div	Range: 1V/div	
Offset: 0V		View-Measu	rements-Add	
Frequency: 100Hz		Vertical	Vertical	
Duty cycle: 50%		C1: Maximum, Minimum Horizontal: C1: Frequency	C2: Maximum, Minimum	

Analog Discovery settings:

Expt.	Input Frequency	R ₁	C1	Pass band gain (v/v)	Pole frequency (Hz)	Zero frequer
LPF	500 HZ	1 kΩ	0.1uF			
Phase Lag Network	100 HZ	10 kΩ	0.01uF			
LPF1	1k HZ	$10k\Omega 1k\Omega$	0.01uF 0.1 uf			

Experiment Outcome: After conducting the experiment students are able to

- 1. Understand the effect of parametric variations on circuit performance.
- 2. Know how to place cursors to measure magnitude, pass band frequency and pass band gain.
- 3. Know the role of each component and input frequency.
- 4. Design the Low Pass Filter for desired transfer function.