Spring25 CS598YP

24.2: Block Attention

Yongjoo Park

University of Illinois Urbana-Champaign

Outline

• Recap: **RoPE** (Rotary Position Embedding)

• Block Attention: fine-tuning and position re-coding

Limitation and opportunities

RoPE

RoPE: Rotary position embedding

We perturb Q and K by **rotating** vectors (its angle *proportional to* the position *m*)

Block Attention (ICLR'25)

Block attention: cross attention only for query

Figure 1: The Block-attention Masks

Block attention: pipeline

Problem: No cross-attention, poor performance

baseline instruct model fine-tuned for RAG: **ideal** model a previous work another previous work

Models	2wiki	HQA	NQ	TQA
Tulu3-SFT	62.0	68.4	58.6	75.7
Tulu3-RAG	73.2	74.8	61.5	75.8
Tulu3-RAG-Superposition	30.1	32.3	35.9	58.9
Tulu3-RAG-promptCache	32.4	31.6	44.4	61.8

Fine-tuning and position re-encoding improves accuracy

baseline instruct model
fine-tuned for RAG: ideal model
a previous work
another previous work

proposed model
proposed model + cross-attention
proposed model - positional re-encoding
proposed model - fine-tuning

Models	2wiki	HQA	NQ	TQA
Tulu3-SFT	62.0	68.4	58.6	75.7
Tulu3-RAG	73.2	74.8	61.5	75.8
Tulu3-RAG-Superposition	30.1	32.3	35.9	58.9
Tulu3-RAG-promptCache	32.4	31.6	44.4	61.8
Tulu3-block-ft	72.2	72.3	60.4	75.1
Tulu3-block-ft-full	73.6	75.2	62.2	76.2
Tulu3-block-ft-w/o-pos	68.9	69.9	59.2	74.4
Tulu3-block-w/o-ft	42.9	42.1	48.3	66.5

Table 1: Accuracy of different models on four RAG benchmarks.

During fine-tuning, mask/erase cross-attention

We let model the produce the same answer, without cross attention

When will it work? or not work?

Feed-forward and others

Layer 1

Q4⁴

K4⁴

pos:

uery:	Q1 ¹	Q2 ²	Q3 ³
key:	K1 ¹	K2 ²	K3 ³

X1 X2 X3 X4	ļ.

			Layer	7	
Q1	Q2	Q3	Q4	<	
K1	K2	K3	K4		

1 _

Feed-forward and others

$$sim(K^{\theta_1}, Q^{\theta_2}) = f(K, Q, \theta_1 - \theta_2)$$

Feed-forward and others

query:

key:

pos:

			Layer	1
Q1 ¹	Q2 ²	Q3 ³	Q4 ⁴	•
K1 ¹	K2 ²	K3 ³	K4 ⁴	

X1	X2	Х3	X4
1	7	2	1

Feed-forward and others

103

104

102

101

$$sim(K^{\theta_1}, Q^{\theta_2}) = f(K, Q, \theta_1 - \theta_2)$$

Feed-forward and others

$$sim(K^{\theta_1}, Q^{\theta_2}) = f(K, Q, \theta_1 - \theta_2)$$

key:

query:

			-4yer	2	
Q1 ¹	Q2 ²	Q3 ³	Q4 ⁴	<	
K1 ¹	K2 ²	K3 ³	K4 ⁴		

Feed-forward and others

query:

ı				, ,
	ı	, ,		,.
		((۲)	/ :

			Layer	1
Q1 ¹	Q2 ²	Q3 ³	Q4 ⁴	
K1 ¹	K2 ²	K3 ³	K4 ⁴	

X1 X2 X3 X4

pos:

Feed-forward and others (no need to run this again)

			Layer	
Q1 ¹⁰¹	Q2 ¹⁰²	Q3 ¹⁰³	Q4 ¹⁰⁴	,
K1 ¹⁰¹	K2 ¹⁰²	K3 ¹⁰³	K4 ¹⁰⁴	

101	102	103	104	
X1	X2	Х3	X4	

Self-Attention (Grouped Multi-Query Attention) Rotary Positional Encodings

$$sim(K^{\theta_1}, Q^{\theta_2}) = f(K, Q, \theta_1 - \theta_2)$$

Shifting a block doesn't change output

			Layer						
Q1	Q2	Q3	Q4						
K1 K2		K3	K4						

Feed-forward and others (no need to run this again)

$$sim(K^{\theta_1}, Q^{\theta_2}) = f(K, Q, \theta_1 - \theta_2)$$

Shifting a block doesn't

In actual implementation, we only need to **rotate keys** (not queries and values)

We could re-produce results

Large model (70B parameters) could produce similar accuracy without fine-tuning

Limitation: redundant KV states for each cache hit

Our ongoing research: add positions *on the fly*, inside GPU registers (not DRAM)

Block diffusion (ICLR'25)

Autoregression: W High quality W Arbitrary-length W KV caching X Not parallelizable

There

Diffusion: X Lower quality X Fixed-length X No KV caching V Parallelizable

Block Diffusion: W High quality W Arbitrary-length W KV caching W Parallelizable

Block Diffusion Internal

Large Language Diffusion Models (LLaDA) : Sequential Sampling

Block 0	Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7
[MASK] [MASK] [MASK] [UNK]	[MASK] 2 [MASK] [MASK]	hour [MASK] [MASK] [MASK]	hours [MASK] [MASK] [MASK]	runs [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	[MASK] 8 [MASK] [MASK]
Lily [MASK] [MASK] [UNK]	1 2 [MASK] [MASK]	hour [MASK] [UNK] [MASK]	hours , [MASK] [MASK]	runs [MASK] [MASK] of	[UNK] [MASK] 2 [MASK]	[UNK] 4 [MASK] [MASK]	4 8 [MASK] [MASK]
Lily can [MASK] [UNK]	1 2 kilometers [MASK]	hour for [UNK] [MASK]	hours , so [MASK]	runs a [MASK] of	[UNK] 1 2 [MASK]	[UNK] 4 = [MASK]	4 8 kilometers [MASK]
Lily can run [UNK]	1 2 kilometers per	hour for [UNK] 4	hours , so she	runs a total of	[UNK] 1 2 *	[UNK] 4 = [UNK]	4 8 kilometers .
Block 8	Block 9	Block 10	Block 11	Block 12	Block 13	Block 14	Block 15
[UNK] [MASK] [MASK] [MASK]	she [MASK] [MASK] [MASK]	kilometers [MASK] [MASK] [MASK]	the [MASK] [MASK] [MASK]	hours [MASK] [MASK] [MASK]	runs [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	[MASK] = [MASK] [MASK]
[UNK] After [MASK] [MASK]	she runs [MASK] [MASK]	kilometers [MASK] hour [MASK]	the remaining [MASK] [MASK]	hours , [MASK] [MASK]	runs [MASK] [MASK] of	[UNK] [MASK] [MASK] [UNK]	[MASK] = [UNK] [MASK]
[UNK] After that [MASK]	she runs [UNK] [MASK]	kilometers per hour [MASK]	the remaining [UNK] [MASK]	hours , [MASK] she	runs [MASK] total of	[UNK] [MASK] * [UNK]	4 = [UNK] [MASK]
[UNK] After that ,	she runs [UNK] 6	kilometers per hour for	the remaining [UNK] 4	hours , so she	runs a total of	[UNK] 6 * [UNK]	4 = [UNK] 2
Block 16	Block 17	Block 18	Block 19	Block 20	Block 21	Block 22	Block 23
[MASK] kilometers [MASK] [MASK]	Therefore [MASK] [MASK] [MASK]	run [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	[UNK] [MASK] [MASK] [MASK]	in [MASK] [MASK] [MASK]	. [MASK] [MASK] [MASK]
4 kilometers [MASK] [MASK]	Therefore , [MASK] [MASK]	run [MASK] [MASK] of	[UNK] 4 [MASK] [MASK]	[UNK] [MASK] 4 [MASK]	[UNK] [MASK] 2 [MASK]	in [MASK] 8 [MASK]	. [UNK] [MASK] [MASK]
4 kilometers [MASK] [UNK]	Therefore , [MASK] can	run [MASK] total of	[UNK] 4 8 [MASK]	[UNK] 2 4 [MASK]	[UNK] 7 2 [MASK]	in [UNK] 8 [MASK]	. [UNK] The [MASK]
4 kilometers . [UNK]	Therefore , Lily can	run a total of	[UNK] 48+	[UNK] 2 4 =	[UNK] 7 2 kilometers	in [UNK] 8 hours	. [UNK] The final
Block 24	Block 25	Block 26	Block 27	Block 28	Block 29	Block 30	Block 31
[MASK] [MASK] [UNK] [MASK]	2 [MASK] [MASK] [MASK]	[MASK] [UNK] [MASK] [MASK]	[MASK] [UNK] [MASK] [MASK]	[MASK] [MASK] [MASK] [UNK]	[MASK] [UNK] [MASK] [MASK]	[MASK] [UNK] [MASK] [MASK]	[MASK] [MASK] [MASK] [UNK]
[MASK] [MASK] [UNK] 7	2 [MASK] [UNK] [MASK]	[MASK] [UNK] [UNK] [MASK]	[MASK] [UNK] [MASK] [UNK]	[MASK] [MASK] [UNK]	[MASK] [UNK] [MASK]	[UNK] [UNK] [MASK] [MASK]	[MASK] [MASK] [UNK] [UNK]
[MASK] is [UNK] 7	2 [MASK] [UNK] [UNK]	[MASK] [UNK] [UNK] [UNK]	[MASK] [UNK] [UNK] [UNK]	[MASK] [UNK] [UNK]	[MASK] [UNK] [UNK]	[UNK] [UNK] [MASK]	[MASK] [UNK] [UNK]
result is [UNK] 7	2 [UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]	[UNK] [UNK] [UNK]

Prompt:

Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?

Final Answer:

Lily can run 1 2 kilometers per hour for 4 hours , so she runs a total of 1 2 * 4 = 4 8 kilometers . After that , she runs 6 kilometers per hour for the remaining 4 hours , so she runs a total of 6 * 4 = 2 4 kilometers . Therefore , Lily can run a total of 4 8 + 2 4 = 7 2 kilometers in 8 hours . The final result is 7 2

Parallel Block Diffusion

Final answer : [UNK]

Large Language Diffusion Models (LLaDA) : Diagonal Sampling Global Timestep: 34 Block 0 Block_1 Block 3 Block_5 Block_6 Block 7 Block_2 Block_4 [MASK] Lily [MASK] [MASK] [MASK] 2 [MASK] [MASK] hour [MASK] [MASK] hours [MASK] [MASK] can [MASK] [MASK] [MASK] [UNK] [MASK] [MASK] [UNK] [MASK] [MASK] [MASK] 8 [MASK] [UNK] [MASK] [MASK] [MASK] [MASK] [MASK] 1 2 [MASK] [MASK] [UNK] [MASK] 8 [MASK] Lily can [MASK] [UNK] hour for [MASK] [MASK] hours , [MASK] [MASK] can run [MASK] [MASK] [MASK] [UNK] [MASK] 2 [MASK] [UNK] 4 [MASK] 1 2 [MASK] per [UNK] 4 8 [MASK] Lily can run [UNK] hour for [UNK] [MASK] hours , [MASK] she can run [MASK] total of [UNK] [MASK] 2 [MASK] [UNK] 4 =1 2 kilometers per [UNK] 4 8 kilometers hour for [UNK] 4 hours , so she can run a total of [UNK] 1 2 * [UNK] 4 = Block_10 Block_11 Block_12 Block 13 Block 14 Block 8 Block 9 Block 15 [MASK] After [MASK] [MASK] runs [MASK] kilometers for [MASK] [MASK] [MASK] hours [MASK] she [MASK] [MASK] [MASK] [MASK] [UNK] [MASK] [UNK] [MASK] [UNK] After [MASK] , [MASK] runs [MASK] [MASK] kilometers per for [MASK] remaining 4 hours [MASK] [MASK] she [MASK] run [MASK] [MASK] of [UNK] [MASK] * [UNK] [MASK] [MASK] [MASK] [MASK] , [MASK] runs [UNK] 4 hours [MASK] so she can run [MASK] total of [UNK] [MASK] * [UNK] [MASK] = [UNK] After [MASK] [MASK] kilometers per for the remaining hour [MASK] , she runs [UNK] 4 hours , so she can run a total of [UNK] 6 * [UNK] 4 = . [UNK] After that 6 kilometers per hour for the remaining [UNK] Block_16 Block_17 Block_18 Block_19 Block_20 Block_21 Block_22 Block_23 [MASK] [UNK] [MASK] [MASK] [MASK] [UNK] [MASK] [MASK] can [MASK] total [MASK] [MASK] 8 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] 7 2 [MASK] [MASK] [MASK] [MASK] hours [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] 2 kilometers [MASK] 8 [MASK] [UNK] [MASK] 4 [MASK] [MASK] 7 [UNK] [MASK] [MASK] [MASK] can run [MASK] total of [MASK] [MASK] 8 hours [MASK] [MASK] . [UNK] [MASK] [MASK] [MASK] kilometers 8 [MASK] [UNK] 2 4 [MASK] [UNK] 7 total of [UNK] [MASK] 2 kilometers in [MASK] . [UNK] [MASK] , [MASK] can run a 8 hours . [MASK] [UNK] 2 [MASK] kilometers 8 + [UNK] 2 4 = [UNK] 7. [UNK] Therefore , total of [UNK] 4 2 kilometers in [UNK] 8 hours . [UNK] Lily can run a [UNK] 2 4 kilometers Block 24 Block 25 Block 26 Block 27 Block 28 Block 29 Block 30 Block 31 [MASK] 7 [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [UNK] [MASK] [MASK] [MASK] [MASK] [UNK] [MASK] [MASK] [MASK] [UNK] [MASK] [MASK] [MASK] [UNK] [UNK] [MASK] [UNK] [MASK] [UNK] [MASK] 7 2 [MASK] [MASK] [MASK] [MASK] [UNK] [UNK] [MASK] [MASK] : [UNK] [MASK] [MASK] [UNK] [MASK] [UNK] [UNK] [UNK] [UNK] [MASK] [MASK] [UNK] [UNK] [MASK] [MASK] [UNK] [MASK] [UNK] [MASK] [UNK] 7 2 [UNK] [MASK] [MASK] answer : [UNK] [MASK] [UNK] [UNK] [MASK] [UNK] [UNK] [UNK] [UNK] [UNK] [MASK] [UNK] [UNK] [MASK] [UNK] [UNK] [UNK] [UNK] [UNK] [UNK] [UNK] [UNK] [MASK] [MASK] [UNK] 7 2 [UNK] [UNK]

[UNK] [UNK] [UNK]

Summary

- RAG can be faster by bypassing cross-attention
- Block-attention can achieve good performance with fine-tuning
- Its position re-encoding can be memory inefficient

Questions?