Theoretische Informatik

Abgabetermin: 27. April 2015, 13 Uhr in die THEO Briefkästen

Hausaufgabe 1 (5 Punkte)

In der Vorlesung Diskrete Strukturen wird der Begriff des n-Tupels von Elementen eingeführt. Für eine beliebige Menge A wird gleichzeitig A^n als Bezeichnung für die Menge aller n-Tupel von Elementen aus A zusammen mit gleichbedeutenden Bezeichnungen

$$\underbrace{A \times A \times \ldots \times A}_{n-\text{fach}}$$
 oder $A^{\times n}$.

definiert. Mengentheoretisch gilt dabei stets $A^{n+1} \neq A^n \times A \neq A \times A^n$.

- 1. Sei Σ eine nichtleere Menge. Dann ist $(\Sigma^{\times 2}, \times_2)$ eine Algebra mit der 2-Tupelbildung $x \times_2 y := (x, y)$ als Operation. Zeigen Sie, dass die Operation \times_2 nicht assoziativ ist.
- 2. Sei Σ eine nichtleere endliche Menge. Dann ist die Konkatenation \circ von Wörtern aus Σ^* eine assoziative Operation. Im Kontext der assoziativen Algebra (Σ^*, \circ) wird das Produkt AB von Teilmengen $A, B \subseteq \Sigma^*$ definiert und die Potenzierung induktiv durch $A^{n+1} = AA^n$ eingeführt (siehe Vorlesung). Zeigen Sie, dass die folgende Gleichung für alle $A \subseteq \Sigma^*$ und $m, n \in \mathbb{N}_0$ gilt:

$$A^{m+n} = A^m A^n$$

 $\underline{\text{Zu beachten:}}$ Für eine beliebige Menge A ist i.A. keine Konkatenation definiert, wohl aber eine n-Tupelbildung.

3. Sei $R \subseteq [100] \times [100]$ eine binäre Relation über der Menge $[100] = \{1, 2, \dots, 99, 100\}$ von natürlichen Zahlen mit $R = \{(x, y) \in [100] \times [100]; 3x = y\}$. Die Potenzierung R^n ist bekanntlich bezüglich der assoziativen Komposition \circ von Relationen definiert.

Berechnen Sie R^3 und $R^+ = \bigcup_{n \ge 1} R^n$ als endliche Listen.

Hausaufgabe 2 (5 Punkte)

Sei Σ ein Alphabet. Zeigen Sie für alle formalen Sprachen A über Σ die folgenden Aussagen.

- 1. $A^* = A^+ \Leftrightarrow \epsilon \in A$. (Beachten Sie: $A^+ = AA^*$.)
- 2. $AA \subseteq A \Leftrightarrow A = A^+$.

3. Zeigen Sie für alle $A \neq \emptyset$: $A \subseteq AA \Leftrightarrow \epsilon \in A$.

Bemerkung: In algebraischer Sprechweise heißt A abgeschlossen bezüglich der Konkatenation \circ , falls $AA \subseteq A$ gilt, und A ist in diesem Fall eine Unterhalbgruppe von (Σ^*, \circ) . Entsprechend ist A^+ die von A erzeugte Halbgruppe (oder Unterhalbgruppe). Falls $AA \subseteq A$ und $\epsilon \in A$ gelten, heißt A ein Untermonoid von (Σ^*, \circ) . A^* ist das von A erzeugte Monoid (oder Untermonoid).

Hausaufgabe 3 (5 Punkte)

Zeigen oder widerlegen Sie: Seien $u, v \in \Sigma^*$ Wörter mit $u \neq \epsilon, v \neq \epsilon$ und uv = vu. Dann existiert ein $z \in \Sigma^*$ mit $u = z^m$ und $v = z^n$ für gewisse $m, n \in \mathbb{N}$.

<u>Hinweis:</u> Verwenden Sie die Notation w_i , um den i-ten Buchstaben eines Wortes w zu bezeichnen. Dabei bezeichnet w_1 den ersten Buchstaben.

Hausaufgabe 4 (5 Punkte)

Sei $\Sigma = \{(,)\}$ der Zeichenvorrat mit einer öffnenden und einer schließenden Klammer. Für $w \in \Sigma^*$ definieren wir $|w|_{(}$ bzw. $|w|_{)}$ als die Anzahl der in w enthaltenen öffnenden bzw. schließenden Klammern. u ist ein Anfangsteilwort (Praefix) von w, falls es ein Wort v gibt, so dass w = uv gilt. Wir nennen ein nichtleeres Wort $w \in \Sigma^*$ positiv, falls $|u|_{(} > |u|_{)}$ für alle nichtleeren Anfangsteilwörter u von w gilt.

Bestimmen Sie die Anzahl der positiven Wörter über Σ der Länge $n \in \mathbb{N}!$

<u>Hinweis:</u> Benutzen Sie die Formel zur Lösung des Ballot-Problems aus der Vorlesung Diskrete Strukturen (WS 12/13) wie folgt.

<u>Ballot-Problem</u>: Bei einer Wahl erhält Kandidat A a Stimmen und Kandidat B b Stimmen, mit $a > b \ge 0$. Die Stimmzettel werden sequentiell ausgezählt. Wie viele Zählfolgen gibt es, so dass A nach jedem Schritt in Führung ist?

<u>Lösung:</u> Die gesuchte Anzahl ist $\frac{a-b}{a+b}\binom{a+b}{a}$, oder a.a., $\frac{a-b}{a+b}\binom{a+b}{b}$.

Hinweis: Die Vorbereitungsaufgaben bereiten die Tutoraufgaben vor und werden in der Zentralübung unterstützt. Tutoraufgaben werden in den Übungsgruppen bearbeitet. Hausaufgaben sollen selbstständig bearbeitet und zur Korrektur und Bewertung abgegeben werden.

Vorbereitung 1

Eine Grammatik G sei gegeben in BNF-Form durch

$$S \to a S d d$$
, $S \to \{b\} \mid \{c\}$.

Geben Sie G als kontextfreie Grammatik $G = (V, \{a, b, c, d\}, P, S)$ an.

Vorbereitung 2

Gegeben sind folgende Grammatiken:

$$G_1 := (\{S\}, \{a, b, +, (,)\}, \{S \to a, S \to b, S \to S + S, S \to (S)\}, S),$$

 $G_2 := (\{S\}, \{a, b, +, (,)\}, \{S \to a, S \to b, S \to a + S, S \to b + S, S \to (S)\}, S).$

- 1. Ordnen Sie die Grammatiken in die Chomsky-Hierarchie ein.
- 2. Geben Sie jeweils einen Ableitungsbaum für das Wort a+(b+a) an.
- 3. Gilt $L(G_1) = L(G_2)$?

Vorbereitung 3

Wir betrachten einen endlichen deterministischen Automat $A = (Q, \Sigma, \delta, q_0, F)$, der durch die folgende Grafik gegeben ist.

- 1. Übersetzen Sie die Grafik in eine extensionale Mengenschreibweise (Darstellung durch Auflistung) für Q, Σ , δ und F.
- 2. Bestimmen Sie $\delta(\delta(q_1,0),1)$ und $\hat{\delta}(q_0,10)$!
- 3. Geben Sie ein möglichst einfaches Kriterium an, mit dem man entscheiden kann, ob ein Wort $w \in \Sigma^*$ von A akzeptiert wird.

Vorbereitung 4

Geben Sie jeweils einen endlichen Automat (als Graph und Übergangsrelation) an, der über dem Alphabet $\Sigma = \{0, 1\}$ folgende Sprache akzeptiert:

- 1. Die Menge aller Wörter, die das Teilwort 1110 enthalten.
- 2. Die Menge aller Wörter, bei denen die Anzahl der Einsen durch 3 teilbar ist.
- 3. Die Menge aller Wörter, die mit 10 beginnen und auf 01 enden.

Tutoraufgabe 1

Wir beziehen uns auf die in der Vorbereitungsaufgabe 2 definierten Grammatiken G_1 und G_2 .

- 1. Zeigen Sie: Für alle $w_1, w_2 \in L(G_1)$ ist auch $(w_1+w_2) \in L(G_1)$. Gilt diese Aussage auch für G_2 ?
- 2. Sind die Grammatiken G_1 bzw. G_2 eindeutig?

Tutoraufgabe 2

Wir betrachten die Sprache L aller Wörter über dem Alphabet $\Sigma = \{0, 1\}$, die entweder mit 1 beginnen und gleichzeitig mit 1 enden oder die mit 0 beginnen und gleichzeitig mit 0 enden.

- 1. Geben Sie einen deterministischen endlichen Automaten (DFA) an, der L akzeptiert, und zeigen Sie, dass es unendlich viele DFA gibt, die L akzeptieren.
- 2. Geben Sie einen nichtdeterministischen endlichen Automaten (NFA) mit höchstens 4 Zuständen an, der L akzeptiert.

Tutoraufgabe 3

Sei $\Sigma = \{0, 1, 2, 3\}$ die Zeichenmenge der Ziffern von 0 bis 3. Sei Q die Sprache der Zahldarstellungen zur Basis 4 ohne führende Nullen. #(x) sei die der Darstellung x zugeordnete ganze Zahl. (Beispiel: $0 \in Q$, $2013 \in Q$, $02013 \notin Q$. Es gilt $\#(2013_4) = 4 \cdot 4^4 + 2 \cdot 4^3 + 4^1 + 3 \cdot 4^0 = \#(135_{10})$.)

Sei
$$L = \{ w \in Q ; \#(w) \mod 3 = 2 \}.$$

- 1. Konstruieren Sie einen deterministischen endlichen Automaten A, der L akzeptiert.
- 2. Beweisen Sie, dass A die Sprache L akzeptiert, d.h., dass L(A) = L gilt.