ME 460/660 Exam 1, Spring 1994

One problem may be skipped.

- 1) The damping ratio, ζ , and natural frequency, ω , of a single degree of freedom system are identified by examination of the free response to be 0.01 and 10 rad/sec. The spring stiffness is found to be 10 N/m by static analysis. What is the damping coefficient and the mass? Include correct units.
- 2) A cylinder of mass m and mass moment of inertia $1/2mr^2$ is free to roll without slipping but is restrained by a spring, k, as shown below. Determine the damping ratio and the natural frequency. (Hint: Use the energy method.)

3) Determine the equation of motion for the system below.

One problem may be skipped.

4) Given that the maximum value of A_0 occurs when the maximum of

$$(A_0k)/F_0 = 1/(\sqrt{(1-r^2)^2+(2\zeta r)^2})$$
 occurs, derive the maximum of A_0 with respect to r .

- 5) a) Shown that for a free decay system, $x_i/x_{i+1} = const$ where x_i is the amplitude after i cycles.
 - b) Given that for a free decay system, $x_i/x_{i+1} = const$, and that the logarithmic decrement is

$$\delta = \ln x_i / x_{i+1}$$
, show that $\delta = (1/n) \ln x_0 / x_n$. (Hint: $\ln x^n = n \ln x$)

6) The amplitude of motion of a pendulum decreases from 10 mm to 9 mm after 1000 cycles. Determine the damping ratio of the system.

ME 460/660 Exam 1 Solutions 1) With Jan Hall And the $m = \frac{k}{\bar{\omega}^2} = \frac{10 N l_a}{100 \text{ rolls}} = .1 \text{ kg}$ C= 2 Jkm 8 = 2.1.01 = .02 kg.s D) No Jaminy. 3=0. Energy Method T= 1 m v2 + 1 J w2 T= = = m v2 + = . = mx. = 3 4 m - 2 = 3 4 m x2 U= 1 k x2 T+ U = const. d+(T+u)=0=(KX+3mx)x $\omega = \int \frac{k}{3h} = \int \frac{2k}{3h}$ 1 487 - 448 - 248

For small displacements Define x as the displacement of the mass, The resisting force on m due to the dashpot is $\left(\frac{a}{b}\right)^2 c \times .$: mx+(a)2cx + kx=0; See last page. 1. k Fo = \(\int (1-r^2)^2 + (2\frac{2}{3}r)^2\) $\frac{d}{dr}\left((1-r^2)^2+(2?r)^2\right)^2=0$ -1 dr ((1-r2)2+ (23r)2) ((1-r2)2+ (22r)2) =0 2(-2+)(1-12)+2.23(23+)=0 - f (1-x2) + 232 f=0 r= 1-232 1 - Fr Strage $\frac{Ak}{F_0} = \sqrt{(1-1+23^2)^2 + 43^2(1-23^2)}$ - 484 + 432 - 834 = 2951-92

5) Xi = Xo e Sin (WD(t+iT) + Ø) Vin = Xo e Sin (wd (+iT) + b + wo T) Shie wait where is an integer = 1.2TT, both sin functions are equal to sin (upt + d)

- 3w(+it)

Xi = Xo e

-3w(+it-1)

Sin(wst/+6)

Sin(wst/+6) a) since e, 3, w, + T are constants, Xi is a constant, $\int_{n} \frac{\chi_{0}}{\chi_{n}} = \int_{n} \left(\frac{\chi_{0}}{\chi_{1}} \frac{\chi_{1}}{\chi_{2}} \frac{\chi_{2}}{\chi_{3}} \dots \frac{\chi_{n-1}}{\chi_{n-1}} \frac{\chi_{n-1}}{\chi_{n}} \right)$ $= l_0 \left(\frac{\chi_c}{\chi_c} \right)^2$ = h la x Since la Tro = 5 la = n 5 S= 1 la Xo

ME 460/660 Exam 1, Spring 1994

e problem n	$\begin{array}{c} \chi \\ \\ \text{nay be skipped} \end{array} \rightarrow F_{\chi}$
ited by exam	sponse to be 0.01 and 10 radisge. The spring stiffness is 1.22 by study and lysis. What is the damping coefficient and the mass? Include
	manifold inertia $1/2mr^2$ is free to roll without slipping but is less than 1 show. Determine the damping ratio and the natural free to the state of the same of
Taking	moments about the pivot point
	$F_y = F_x b$
Since	Fy is caused by a dashpot
termine the	eq Fy = of more lighter system below
	Thus Fx = -a b C j
	$\dot{y} = \frac{9}{6} \cdot \dot{x}$
	$F_{x} = -\left(\frac{\alpha}{6}\right)^2 c \dot{x}$
	is the resisting force due to the lashpot.

One problem may be skipped.