

+5 V Powered CMOS RS-232 Drivers/Receivers

ADM223/ADM230L- ADM241L

FEATURES

Single 5 V Power Supply
Meets All EIA-232-E and V.28 Specifications
120 kB/s Data Rate
On-Board DC-DC Converters
±9 V Output Swing with +5 V Supply
Small 1 µF Capacitors
Low Power Shutdown ≤1 µA
Receivers Active in Shutdown (ADM223)
ESD > 2 kV
±30 V Receiver Input Levels
Latch-Up FREE
Plug-In Upgrade for MAX223/230-241
Plug-In Upgrade for AD230-AD241

APPLICATIONS

Computers
Peripherals
Modems
Printers
Instruments

GENERAL DESCRIPTION

The ADM 2xx family of line drivers/receivers is intended for all EIA-232-E and V.28 communications interfaces, especially in applications where ± 12 V is not available. The ADM 223, ADM 230L, ADM 235L, ADM 236L and ADM 241L feature a low power shutdown mode that reduces power dissipation to less than 5 μW , making them ideally suited for battery powered equipment. Two receivers remain enabled during shutdown on the ADM 223. The ADM 233L and ADM 235L do not require any external components and are particularly useful in applications where printed circuit board space is critical.

ADM232L TYPICAL OPERATING CIRCUIT

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

All members of the ADM 230L family, except the ADM 231L and the ADM 239L, include two internal charge pump voltage converters that allow operation from a single +5 V supply. T hese converters convert the +5 V input power to the ± 10 V required for RS-232 output levels. The ADM 231L and ADM 239L are designed to operate from +5 V and +12 V supplies. An internal +12 V to -12 V charge pump voltage converter generates the -12 V supply.

The ADM 2xxL is an enhanced upgrade for the AD2xx family featuring lower power consumption, faster slew rate and operation with smaller (1 μ F) capacitors.

Table I. Selection Table

Part Number	Power Supply Voltage	No. of RS-232 Drivers	No. of RS-232 Receivers	External Capacitors	Low Power Shutdown (SD)	TTL Three-State EN	No. of Pins
ADM 223	+5 V	4	5	4	Y es (SD)	Yes (EN)	28
ADM 230L	+5 V	5	0	4	Y es	No	20
ADM 231L	+5 V & +7.5 V to +13.2 V	2	2	2	No	No	14
ADM 232L	+5 V	2	2	4	No	No	16
ADM 233L	+5 V	2	2	None	No	No	20
ADM 234L	+5 V	4	0	4	No	No	16
ADM 235L	+5 V	5	5	N one	Y es	Y es	24
ADM 236L	+5 V	4	3	4	Y es	Y es	24
ADM 237L	+5 V	5	3	4	Νo	No	24
ADM 238L	+5 V	4	4	4	No	No	24
ADM 239L	+5 V & +7.5 V to +13.2 V	3	5	2	No	Y es	24
ADM 241L	+5 V	4	5	4	Y es	Yes	28

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADM223/ADM230L- ADM241L- SPECIFICATIONS $V_{cc} = +5 \text{ V} \pm 10\% \text{ (ADM223, 31L, 32L, 36L, 38L, 36L, 38L, 39L, 41L);}$

 $V_{CC} = +5 \text{ V} \pm 5\%$ (ADM230L, 33L, 35L, 37L); V+ = 7.5 V to 13.2 V (ADM231L & ADM239L); C1- C4 = 1.0 μ F Ceramic. All Specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter	Min	Тур	Max	Units	Test Conditions/Comments
Output Voltage Swing	±5	±9		Volts	All T ransmitter O utputs L oaded with 3 kΩ to Ground
V _{CC} Power Supply Current		2	3.0	mA	No Load, All T _{INS} = V _{CC} (Except ADM 223)
		3.5	6	mA	$N \circ L \circ A \cap T_{INS} = G \cap D$
		0.4	1	mA	ADM 231L, ADM 239L
V + Power Supply Current		1.5	4	mA	N o Load, V + = 12 V ADM 231L & ADM 239L Only
Shutdown Supply Current		1	5	μΑ	
Input Logic T hreshold Low, V _{INL}			0.8	V	$ T_{IN},\overline{EN},SD,EN,\overline{SD} $
Input Logic Threshold High, V _{INH}	2.0			V	$ T_{IN}, \overline{EN}, SD, EN, \overline{SD} $
Logic Pull-Up Current		10	25	μA	$T_{IN} = 0 V$
RS-232 Input Voltage Range	-30		+30	V	
RS-232 Input Threshold Low	0.8	1.2		V	
RS-232 Input Threshold High		1.7	2.4	V	
RS-232 Input Hysteresis	0.2	0.5	$\frac{1.0}{1.0}$	V	
RS-232 Input Resistance	3	5	7	kΩ	
TTL/CM OS Output Voltage Low, V _{OL}			0.4	V	
TTL/CMOS Output Voltage High, VoH	3.5	0.05		٧.	$I_{OUT} = -1.0 \text{ mA}$
TTL/CMOS Output Leakage Current		0.05	±5	μΑ	$\overline{EN} = V_{CC}, 0 V \le R_{OUT} \le V_{CC}$
Output Enable Time (T _{EN})		250		ns	ADM 223, ADM 235L, ADM 236L, ADM 239L, ADM 241L
Output Disable Times (T.)		F.0			(Figure 25. $C_L = 150 \text{ pF}$)
Output Disable Time (T _{DIS})		50		ns	ADM 223, ADM 235L, ADM 236L, ADM 239L, ADM 241L
Drangation Dalay		0.5			(Figure 25. $R_L = 1 \text{ k}\Omega$)
Propagation D elay		0.5	20	μS	RS-232 to TTL
Instantaneous Slew Rate ¹		25 5	30	V/µs	$C_L = 10 \text{ pF}, R_L = 3-7 \text{ k}\Omega, T_A = +25^{\circ}\text{C}$
Transition Region Slew Rate		5		V/μs	$R_L = 3 k\Omega$, $C_L = 2500 pF$
Output Posistance	300				M easured from +3 V to -3 V or -3 V to +3 V
Output Resistance	300	⊥10		Ω	$V_{CC} = V + = V - = 0 V, V_{OUT} = \pm 2 V$
RS-232 Output Short Circuit Current		±10		mA	

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

T hermal Impedance, θ_{JA} N-14 DIP
N-16 DIP
N-20 DIP
N-24 DIP
N-24A DIP 110°C/W
R-16 SOIC 105°C/W
R-20 SOIC 105°C/W
R-24 SOIC 85°C/W
R-28 SOIC 80°C/W
RS-28 SSOP 100°C/W
Q-14 Cerdip 105°C/W
Q-16 C erdip 100°C/W
Q-20 C erdip
Q-24 C erdip
D-24 C eramic 50°C/W
Operating T emperature Range
Commercial (J Version) 0 to +70°C
Industrial (A Version)40°C to +85°C
Storage T emperature Range65°C to + 150°C
Lead Temperature, Soldering +300°C
Vapour Phase (60 sec) +215°C
Infrared (15 sec) +220°C
ESD Rating>2000 V

^{*}T his is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

-2-REV. 0

¹Sample tested to ensure compliance.

ORDERING GUIDE

Model	Temperature Range	Package Option*	Model	Temperature Range	Package Option*	Model	Temperature Range	Package Option*
AD M 223 AD M 223AR AD M 223ARS	-40°C to +85°C -40°C to +85°C	R-28 RS-28	AD M230L AD M 230LJN AD M 230LJR AD M 230LAN AD M 230LAR AD M 230LAR	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N-20 R-20 N-20 R-20 Q-20	ADM231L ADM231LJN ADM231LJR ADM231LAN ADM231LAR ADM231LAR	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N-14 R-16 N-14 R-16 Q-14
ADM232L ADM232LJN ADM232LJR ADM232LAN ADM232LAR ADM232LAR	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N-16 R-16 N-16 R-16 Q-16	ADM 233L ADM 233LJN ADM 233LAN	0°C to +70°C -40°C to +85°C	N -20 N -20	ADM234L ADM234LJN ADM234LJR ADM234LAN ADM234LAR ADM234LAR	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N-16 R-16 N-16 R-16 Q-16
AD M 235L AD M 235L JN AD M 235L AN AD M 235L AQ	0°C to +70°C -40°C to +85°C -40°C to +85°C	N -24A N -24A D -24	ADM236L ADM236LJN ADM236LJR ADM236LAN ADM236LAR ADM236LAR	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N -24 R-24 N -24 R-24 Q-24	AD M 237L AD M 237L JN AD M 237L JR AD M 237L AN AD M 237L AR AD M 237L AQ	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N -24 R-24 N -24 R-24 Q-24
AD M 238L JN AD M 238L JR AD M 238L AN AD M 238L AN AD M 238L AR AD M 238L AQ	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N-24 R-24 N-24 R-24 Q-24	AD M 239L AD M 239LJN AD M 239LJR AD M 239LAN AD M 239LAR AD M 239LAQ	0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C	N -24 R-24 N -24 R-24 Q-24	ADM241L ADM241LJR ADM241LAR ADM241LJRS ADM241LARS	0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C	R-28 R-28 RS-28 RS-28

^{*}D = Ceramic DIP; N = Plastic DIP; Q = Cerdip; R = Small Outline IC (SOIC); RS = Small Shrink Outline Package (SSOP).

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADM 223/ADM 230L-ADM 241L features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. 0 -3-

Figure 1. ADM 230L DIP/SOIC Pin Configuration

Figure 3. ADM 231L DIP & SOIC Pin Configurations

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT

Figure 2. ADM 230L Typical Operating Circuit

Figure 4. ADM 231L Typical Operating Circuit (DIP Pinout)

-4- REV. 0

Figure 5. ADM 232L DIP/SOIC Pin Configuration

Figure 7. ADM 233L DIP Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 6. ADM 232L Typical Operating Circuit

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 8. ADM 233L Typical Operating Circuit

REV. 0 -5-

Figure 9. ADM 234L DIP/SOIC Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT

Figure 10. ADM 234L Typical Operating Circuit

Figure 11. ADM 235L DIP Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 12. ADM 235L Typical Operating Circuit

REV. 0 -6-

Figure 13. ADM 236L DIP/SOIC Pin Configuration

Figure 15. ADM 237L DIP/SOIC Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 14. ADM 236L Typical Operating Circuit

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 16. ADM 237L Typical Operating Circuit

REV. 0 -7-

Figure 17. ADM 238L DIP/SOIC Pin Configuration

Figure 19. ADM 239L DIP/SOIC Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 18. ADM 238L Typical Operating Circuit

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 20. ADM 239L Typical Operating Circuit

-8- REV. 0

Figure 21. ADM 241L SOIC/SSOP Pin Configuration

Figure 23. ADM 223 SOIC/SSOP Pin Configuration

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TTL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT

Figure 22. ADM 241L Typical Operating Circuit

*INTERNAL 400k Ω PULL-UP RESISTOR ON EACH TIL/CMOS INPUT **INTERNAL 5k Ω PULL-DOWN RESISTOR ON EACH RS-232 INPUT NOTE: RECEIVERS R4 AND R5 REMAIN ACTIVE IN SHUTDOWN.

Figure 24. ADM 223 Typical Operating Circuit

REV. 0 _9-

PIN FUNCTION DESCRIPTION

Mnemonic	Function
V _{cc}	Power Supply Input 5 V \pm 10% (+5 V \pm 5% ADM 233L, ADM 235L).
V+	Internally generated positive supply ($+10 \text{ V}$ nominal) on all parts except ADM 231L and ADM 239L. ADM 231L, ADM 239L requires external 7.5 V to 13.2 V supply.
V-	Internally generated negative supply (-10 V nominal).
GND	Ground pin. M ust be connected to 0 V.
C +	(ADM 231L and ADM 239L only). External capacitor (+ terminal) is connected to this pin.
C -	(ADM 231L and ADM 239L only). External capacitor (- terminal) is connected to this pin.
C1+	(ADM 230L, ADM 232L, ADM 234L, ADM 236L, ADM 237L, ADM 238L, ADM 241L) External capacitor (+ terminal) is connected to this pin. (ADM 233L) The capacitor is connected internally and no external connection to this pin is required.
C 1-	(ADM 230L, ADM 232L, ADM 234L, ADM 236L, ADM 237L, ADM 238L, ADM 241L) External capacitor (- terminal) is connected to this pin. (ADM 233L) The capacitor is connected internally and no external connection to this pin is required.
C2+	(ADM 230L, ADM 232L, ADM 234L, ADM 236L, ADM 237L, ADM 238L, ADM 241L) External capacitor (+ terminal) is connected to this pin. (ADM 233L) Internal capacitor connections, Pins 11 and 15 must be connected together.
C 2-	(ADM 230L, ADM 232L, ADM 234L, ADM 236L, ADM 237L, ADM 238L, ADM 241L) External capacitor (- terminal) is connected to this pin. (ADM 233L) Internal capacitor connections, Pins 10 and 16 must be connected together.
TIN	T ransmitter (D river) Inputs. These inputs accept TTL/CMOS levels. An internal 400 $k\Omega$ pull-up resistor to V_{CC} is connected on each input.
T _{out}	T ransmitter (D river) O utputs. T hese are RS-232 levels (typically ± 10 V).
R _{IN}	Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 $k\Omega$ pull-down resistor to GND is connected on each input.
Rout	Receiver Outputs. These are TTL/CMOS levels.
EN/EN	E nable Input. Active low on ADM 235L, ADM 236L, ADM 239L, ADM 241L. Active high ADM 223. This input is used to enable/disable the receiver outputs. With $\overline{\rm EN}=$ low (EN = high ADM 223), the receiver outputs are enabled. With $\overline{\rm EN}=$ high (EN = low ADM 223), the outputs are placed in a high impedance state. This facility is useful for connecting to microprocessor systems.
SD/SD	Shutdown Input. Active high on ADM 235L, ADM 236L, ADM 241L. Active low on ADM 223. With SD = high on the ADM 235L, ADM 236L, ADM 241L, the charge pump is disabled, the receiver outputs are placed in a high impedance state and the driver outputs are turned off. With $\overline{\text{SD}}$ low on the ADM 223, the charge pump is disabled, the driver outputs are turned off and all receivers except R4 and R5 are placed in a high impedance state. In shutdown, the power consumption reduces to 5 μ W.
NC	N o Connect. N o connections are required to this pin.

Table I. ADM 235L, ADM 236L, ADM 241L Truth Table

Transmitters Receivers SD $\overline{\mathrm{EN}}$ Status T1-T5 R1-R5 Normal Operation Normal Operation 0 Enabled Enabled 0 1 Enabled Disabled Shutdown D isabled 1 0 Disabled

Table II. ADM 223 Truth Table

SD	EN	Status	Transmitters T1-T4	Receivers R1-R3 R4, R5					
0	0	Shutdown	Disabled	D isabled					
0	1	Shutdown	Disabled	D isabled					
1	0	Normal Operation	Enabled	D isabled	Disabled				
1	1	Normal Operation	Enabled	Enabled	Enabled				

-10- REV. 0

Figure 25. Charge Pump V+, V- vs. Current

Figure 26. Transmitter Slew Rate vs. Load Capacitance

Figure 27. Transmitter Output Voltage vs. V_{CC}

Figure 28. Transmitter Output Voltage vs. Current

Figure 29. Charge Pump Impedance vs. V_{CC}

REV. 0 -11-

Figure 30. Charge Pump, V+, V- Exiting Shutdown

Figure 31. Transmitter Output Loaded Slew Rate

Figure 32. Transmitter Output Unloaded Slew Rate

GENERAL INFORMATION

The ADM 223/ADM 230L – ADM 241L family of RS-232 drivers/ receivers are designed to solve interface problems by meeting the EIA-232-E specifications while using a single digital +5 V supply. The EIA-232-E standard requires transmitters which will deliver ± 5 V minimum on the transmission channel and receivers which can accept signal levels down to ± 3 V. The ADM 223/ADM 230L – ADM 241L meet these requirements by integrating step up voltage converters and level shifting transmitters and receivers onto the same chip. CMOS technology is used to keep the power dissipation to an absolute minimum. A comprehensive range of transmitter/receiver combinations is available to cover most communications needs.

The ADM 223, ADM 230L, ADM 235L, ADM 236L and ADM 241L are particularly useful in battery powered systems as they feature a low power shutdown mode which reduces power dissipation to less than 5 μ W.

The ADM 233L and ADM 235L are designed for applications where space saving is important as the charge pump capacitors are molded into the package.

The ADM 231L and ADM 239L include only a negative charge pump converter and are intended for applications where a positive 12 V is available.

T o facilitate sharing a common line or for connection to a microprocessor data bus the AD M 235L , AD M 236L , AD M 239L and AD M 241L feature an enable (EN , $\overline{\rm EN}$) function. When disabled, the receiver outputs are placed in a high impedance state.

CIRCUIT DESCRIPTION

The internal circuitry in the ADM 230L-ADM 241L consists of three main sections. These are:

- (a) A charge pump voltage converter
- (b) RS-232 to TTL/CMOS receivers
- (c) TTL/CMOS to RS-232 transmitters

Charge Pump DC-DC Voltage Converter

The charge pump voltage converter consists of an oscillator and a switching matrix. The converter generates a ± 10 V supply from the input 5 V level. This is done in two stages using a switched capacitor technique as illustrated in Figures 33 and 34. First, the 5 V input supply is doubled to 10 V using capacitor C 1 as the charge storage element. The 10 V level is then inverted to generate –10 V using C 2 as the storage element.

Figure 33. Charge-Pump Voltage Doubler

-12- REV. 0

Figure 34. Charge-Pump Voltage Inverter

C apacitors C 3 and C 4 are used to reduce the output ripple. Their values are not critical and can be reduced if higher levels of ripple are acceptable. The charge pump capacitors C 1 and C 2 may also be reduced at the expense of higher output impedance on the V+ and V- supplies.

The V+ and V- supplies may also be used to power external circuitry if the current requirements are small.

Transmitter (Driver) Section

The drivers convert TT L/C M OS input levels into EIA-232-E output levels. With $V_{CC} = +5$ V and driving a typical EIA-232-E load, the output voltage swing is ± 9 V. Even under worst case conditions the drivers are guaranteed to meet the ± 5 V EIA-232-E minimum requirement.

The input threshold levels are both TTL and CMOS compatible with the switching threshold set at $V_{\rm CC}/4$. With a nominal $V_{\rm CC}=5$ V the switching threshold is 1.25 V typical. U nused inputs may be left unconnected, as an internal 400 k Ω pull-up resistor pulls them high forcing the outputs into a low state.

As required by the EIA-232-E standard, the slew rate is limited to less than 30 V/ μ s without the need for an external slew limiting capacitor and the output impedance in the power-off state is greater than 300 Ω .

Receiver Section

The receivers are inverting level shifters which accept EIA-232-E input levels $(\pm 5\ V\ to\pm 15\ V)$ and translate them into 5 V TTL/CM OS levels. The inputs have internal 5 k Ω pull-down resistors to ground and are also protected against overvoltages of up to $\pm 30\ V$. The guaranteed switching thresholds are 0.8 V minimum and 2.4 V maximum which are well within the $\pm 3\ V$ EIA-232-E requirement. The low level threshold is deliberately positive as it ensures that an unconnected input will be interpreted as a low level.

The receivers have Schmitt trigger inputs with a hysteresis level of 0.5 V. This ensures error-free reception for both noisy inputs and for inputs with slow transition times.

Shutdown (SD)

The ADM 223, ADM 230L, ADM 235L, ADM 236L and ADM 241L feature a control input that may be used to disable the part and reduce the power consumption to less than 5 μW . This is very useful in battery operated systems. During shutdown the charge pump is turned off, the transmitters are disabled and all receivers except R4 and R5 on the ADM 223 are put into a high-impedance disabled state. Receivers R4 and R5 on the ADM 223 remain enabled during shutdown. This feature allows monitoring external activity such as ring indicator monitoring while the device is in a low power shutdown mode.

The shutdown control input is active high on all parts except the ADM 223 where it is active low. Refer to Tables I and II.

Enable Input

The ADM 235, ADM 239, ADM 241L and ADM 223 feature an enable input used to enable or disable the receiver outputs. The enable input is active low on the ADM 235L, ADM 239L, ADM 241L and active high on the ADM 223. Refer to Tables I and II. When disabled, all receiver outputs are placed in a high impedance state. This function allows the outputs to be connected directly to a microprocessor data bus. It can also be used to allow receivers from different devices to share a common data line. The timing diagram for the enable function is shown in Figure 35.

*POLARITY OF EN IS REVERSED FOR ADM223.

Figure 35. Enable Timing

APPLICATION HINTS Driving Long Cables

In accordance with the EIA-232-E standard, long cables are permissible provided that the total load capacitance does not exceed 2500 pF. For longer cables which do exceed this, then it is possible to trade off baud rate vs. cable length. Large load capacitances cause a reduction in slew rate, and hence the maximum transmission baud rate is decreased. The ADM 230L-ADM 241L are designed so that the slew rate reduction with increasing load capacitance is minimized.

For the receivers, it is important that a high level of noise immunity be inbuilt so that slow rise and fall times do not cause multiple output transitions as the signal passes slowly through the transition region. The ADM 230L-ADM 241L have 0.5 V of hysteresis to guard against this. This ensures that, even in noisy environments, error-free reception can be achieved.

High Baud Rate Operation

The ADM 230L-ADM 241L feature high slew rates permitting data transmission at rates well in excess of the EIA-232-E specification. The drivers maintain ± 5 V signal levels at data rates up to 100-kB/s under worst-case loading conditions.

REV. 0 -13-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Lead Plastic DIP (N-14)

16-Lead Plastic DIP (N-16)

16-Lead SOIC (R-16)

14-Lead Cerdip (Q-14)

16-Lead Cerdip (Q-16)

-14- REV. 0

20-Lead Plastic DIP (N-20)

0.280 (7.11) 0.240 (6.10) 10 0.325 (8.25) 0.300 (7.62) 1.060 (26.90) 0.925 (23.50) + 0.060 (1.52) 0.210 (5.33) 0.195 (4.95) 0.115 (2.93) 0,015 (0.38) 0.200 (5.05) 0.125 (3.18) 0.015 (0.381) 0.008 (0.204) SEATING PLANE 0.022 (0.558) 0.014 (0.356) 0.100 (2.54) BSC 0.070 (1.78) 0.045 (1.15)

20-Lead Cerdip (Q-20)

20-Lead SOIC (R-20)

24-Lead Ceramic DIP (D-24)

24-Lead Plastic DIP (N-24)

LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH PLASTIC LEADS WILL BE EITHER SOLDER DIPPED OR TIN PLATED IN ACCORDANCE WITH MIL-M-38510 REOUIREMENTS.

24-Lead Plastic DIP (N-24A)

REV. 0 -15-

24-Lead Cerdip (Q-24)

- 1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH.
- 2. CERDIP LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.

28-Lead SOIC (R-28)

- 1. LEAD NO. IDENTIFIED BY A DOT.
- 2. SOICLEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.

24-Lead SOIC (R-24)

- LEAD NO. 1 IDENTIFIED BY A DOT.
 SOIC LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS

28-Lead SSOP (RS-28)

LEAD ND. 1 IDENTIFIED BY A DOT.
 LEADS WILL BE EITHER TIN PLATED OR SDLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS