

PROBLEM IDENTIFICATION

STATEMENT

IoT has proven to have a significant impact on human life by the integration of devices in a myriad of industries. There will be around 125 IoT devices connected to the internet by 2030.

Developing deployable technology in the form of algorithms, frameworks or even complete SIEM Systems, could be extremely useful to get a better understanding of the behavior of malware infections where IoT devices are the main target.

STAKEHOLDERS TO PROVIDE KEY INSIGHTS

- Cyber Security Teams
- Antivirus Companies
- IoT Companies

SCOPE OF SOLUTION SPACE

Dataset: 20 malware captures executed in IoT devices, and 3 captures for benign IoT devices traffic. Published in January 2020. These were captured in the Stratosphere Laboratory, AIC group, FEL, CTU University, Czech Republic.

KEY DATA SOURCES

- Log files provided by the laboratory
- Classification methods spreadsheets

CRITERIA FOR SUCCESS

- Implement a Machine Learning
 algorithm able to detect at least 80%
 of malicious network flows
- Implementing a Malware Type Detector
- Having a deployable pipeline for

malware detection in real-time setting

Not getting enough

computational power to analyze all log files.

- Malware information being outdated and not representative of how new malware works
- Class imbalance for the binary class or multi class project

KEY FINDINGS AND INSIGHTS

Binary classification project (Class 1-Malicious, Class 0-Benign) with a final dataset of:

380,000 observations 67 features

FEATURE HANDLING

MODEL RESULTS AND ANALYSIS

"ONE-FEATURE" MODELS

Model	Feature	Precision	Recall
1	proto	0.89	1.0
2	id.orig_p	0.88	0.90
3	id.resp_p	0.90	0.92
4	History	0.90	0.93
5	orig_ip_bytes	0.88	1.0

Based on simple assumptions

Features showing high differences between classes were used

Example:

"All malicious network flows are using TCP protocol"

^{*} Features eventually dropped

MODELS AND METRICS USED

METRICS COMPUTED PER MODEL

MODEL RESULTS

Classification Report Precision Recall Support Accuracy ROC-AUC

METRICS PRIORITIZED FOR MODEL SELECTION

Model	Precision	Recall
Logistic Regression	<mark>0.84</mark>	<mark>0.90</mark>
KNN	0.76	0.87
Decision Tree	0.78	0.80
Random Forest	0.81	0.86
SVM	<mark>0.82</mark>	<mark>0.92</mark>
XGBoost	0.81	0.87

MODEL SELECTION AND TUNING

The model selected was:

Support Vector Machine

Considerations:

- Precision and Recall
- Computational time
- Overall performance

Parameters tuned and selected

(GridSearchCV)

- Scaler
- C
- coef0
- decision_function_shape
- degree
- gamma
- kernel
- probability.

SVM (Tuned) MODEL RESULTS

