HuBMAP + HPA - Hacking the Human Body Competition Progress Report 4

Presentation of a Report By

Group C

Overview

Data Augmentation Strategy:

1. Data augmentation strategies for some Top Ranking teams

Inference Trick:

1. Expansion tiles but only during inference

Pre-training model:

1. Pre-train the model on a dataset of similar competition (HuBMAP - Hacking the Kidney)

Future Plan:

1. Continue to improve the UNext50 Model

Part 1: Data Augmentation Strategy

The 3rd Place's Strategy:

```
def get_aug(p=1.0):
    return Compose([
        HorizontalFlip(),
        VerticalFlip(),
        RandomRotate90(),
        ShiftScaleRotate(shift limit=0.0625, scale limit=0.2, rotate limit=15, p=0.9,
                         border mode=cv2.BORDER REFLECT),
        OneOf([
            ElasticTransform(p=.3),
            GaussianBlur(p=.3),
            GaussNoise(p=.3),
            OpticalDistortion(p=0.3),
            GridDistortion(p=.1),
            IAAPiecewiseAffine(p=0.3),
        ], p=0.3),
        OneOf([
            HueSaturationValue(15,25,0),
            CLAHE(clip_limit=2),
            RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3),
        ], p=0.3),
    ], p=p)
```

[Inference] - FastAl Baseline (version 14/16)

[Inference] - FastAl Baseline (version 1/16)

11 days ago by Juntuo Wang

Notebook [Inference] - FastAl Baseline | Version 1

Succeeded

0.59

0.56

Succeeded

Part 1: Data Augmentation Strategy

The 17th Place's Strategy:

```
Horizontal/Vertical Flip (p=0.5)
RandomRotate90 (p=0.5)
Rotate (-40/+40, reflect101, p=0.5)
ShiftScaleRotate (scale: -0.2/0.1, p=0.5)
OneOf (p=0.5)
  RandomBrightnessContrast (B: 0.5, C: 0.1)
 HueSaturationValue (H: +-20, S: +-100, V: +-80)
One of (p=0.5)
 Cutout (holes: 100, size: 1/64, white RGB)
 GaussianNoise
One of (p=0.5)
  ElasticTransform
 GridDistortion (steps: 5, limit: 0.3)
  OpticalDistortion (distort: 0.5, shift: 0.0)
```

[Inference] - FastAl Baseline Succeeded 0.57 (version 15/16)

[Inference] - FastAl Baseline Succeeded 0.56 (version 1/16)

11 days ago by Juntuo Wang

Notebook [Inference] - FastAl Baseline | Version 1

Part 1: Data Augmentation Strategy

The Final Strategy:

```
def get_aug(p=1.0):
    return Compose([
       HorizontalFlip(),
        VerticalFlip(),
        RandomRotate90(),
        Transpose(),
        ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.9,
                         border_mode=cv2.BORDER_REFLECT),
        OneOf([
            OpticalDistortion(p=0.3),
            GridDistortion(p=.1),
            GaussianBlur(p=.3),
            IAAPiecewiseAffine(p=0.3),
        ], p=0.3),
        OneOf([
            HueSaturationValue(10,15,10),
            CLAHE(clip_limit=2),
            RandomBrightnessContrast(),
            IAASharpen(),
        ], p=0.3),
    ], p=p)
```

[Inference] - FastAl Baseline (version 4/16)	Succeeded	0.6
W 1 1 1 1 W		
[Inference] - FastAl Baseline (version 1/16)	Succeeded	0.56
11 days ago by Juntuo Wang		

Notebook [Inference] - FastAl Baseline | Version 1

Part 2: Inference Trick:

The idea from 3rd Place's solution:

The basic idea is to eliminate edge effects.
 To achieve this, for each tile we run the model on, we expand the tile by a certain number of pixels in all 4 directions, but only use the center region's predictions which do not have edges.

Entire tile is run through the neural network, but only green region is used as inference output

Part 2: Inference Trick:

Comparison of the Results:

The edge effect is eliminated by using the results in the middle of the predicted results

[Inference] - FastAl Baseline

(version 12/16)

2 days ago by Juntuo Wang

Notebook [Inference] - FastAl Baseline | Version 12

[Inference] - FastAl Baseline

(version 4/16)

6 days ago by Juntuo Wang

Succeeded 0.63

Succeeded 0.61

Part 3: Pre-Training Model:

Preprocessing the Dataset (Convert it to 256 × 256)

Pre-tarin the Model

 Loading the Pre-trained Model and Continue to train the model on our own competition's dataset

Part 3: Pre-Training Model:

Comparison of the Results:

Part 4: Further Improvement

Continue to try to improve the UNext50 Model

Try to Use Some New Model Architecture