CÁLCULO AVANZADO Segundo Cuatrimestre — 2019

Segundo Parcial

Apellido y nombre:	
L.U.:	Hojas:

1. Muestre que una función lineal $T: V \to W$ entre espacios normados es continua si y solamente si cada vez que $(x_n)_{n\geq 1}$ es una sucesión en V que converge a 0 la sucesión $(T(x_n))_{n\geq 1}$ es acotada.

Solución. Si T es continua, sabemos que cada vez que $(x_n)_{n\geq 1}$ es una sucesión en V que converge a 0 la sucesión $(T(x_n))_{n\geq 1}$ converge a 0 y, por lo tanto, es acotada: esto nos dice que la condición del enunciado es necesaria para la continuidad de T.

Vamos que es suficiente. Supongamos que T no es continua, de manera que el conjunto $\{\|T(x)\|: x \in V, \|x\| \le 1\}$ no es acotado. Esto implica que para cada $n \in \mathbb{N}$ existe $y_n \in V$ con $\|y_n\| \le 1$ y $\|T(y_n)\| \ge n^2$. Pongamos $x_n = y_n/n$ para cada $n \in \mathbb{N}$: es $\|x_n\| \le 1/n$ y $\|T(x_n)\| \ge n$, así que $(x_n)_{n \ge 1}$ es una sucesión en V que converge a 0 tal que la sucesión $(T(x_n))_{n \ge 1}$ no es acotada. La condición del enunciado, por lo tanto, no se cumple.

2. Muestre que la serie de funciones $\sum_{n\geq 1} \frac{ne^{-nx}}{1+x^n}$ converge puntualmente en $(0,+\infty)$ y uniformente en cada intervalo de la forma $(r,+\infty)$ con r>0. ¿En qué puntos es derivable la función suma? ¿Es esta acotada?

Solución. Sea r>0. Si $x\geq r$, entonces para todo $n\in\mathbb{N}$ es $\frac{ne^{-nx}}{1+x^n}\leq ne^{-nr}$ y la serie numérica $\sum_{n\geq 1}ne^{-nr}$ converge: el cociente entre dos de sus términos sucesivos es $(n+1)e^{-(n+1)r}/ne^{-nr}=(n+1)/ne^r$, que cuando n crece converge a e^{-r} , que es menor que 1. El criterio de Weierstraß, entonces, nos permite concluir que la serie del enunciado converge uniformemente en $(r,+\infty)$. Como esto es así cualquiera sea r>0, esto implica que la serie converge puntualmente en todo el intervalo $(0,+\infty)$.

Llamemos f a la suma de la serie. Si $n \in \mathbb{N}$, la función $ne^{-nx}/(1+x^n)$ es continua en 0 y ahí vale n: existe entonces $\delta_n > 0$ tal que $ne^{-nx}/(1+x^n) \ge \frac{1}{2}$ siempre que $x \in [0, \delta_n]$. Para cada $N \in \mathbb{N}$ podemos poner $x_N = \min\{\delta_1, \dots, \delta_N\}$ y es

$$f(x_N) = \sum_{n>1} \frac{ne^{-nx_N}}{1 + x_N^n} \ge \sum_{n=1}^N \frac{ne^{-nx_N}}{1 + x_N^n} \ge \frac{N}{2}.$$

Esto muestra que la función f no es acotada en $(0, +\infty)$.

Mostremos ahora que la función f es derivable en todo $(0, +\infty)$: para ello es suficiente

que probemos que la serie que se obtiene derivando término a término la de partida,

$$\sum_{n>1} -\frac{n^2(x^n + x^{n-1} + 1)e^{-nx}}{(1+x^n)^2},\tag{1}$$

converge uniformemente en cada intervalo de la forma $(r, +\infty)$ con r > 0.

Sea entonces r > 0. Observemos que si $x \in [0, 1]$ es

$$\frac{x^n + x^{n-1} + 1}{(1 + x^n)^2} \le \frac{1 + 1 + 1}{(1 + x^n)^2} \le 3,$$

mientras que si $x \in [1, +\infty)$ es

$$\frac{x^n + x^{n-1} + 1}{(1 + x^n)^2} \le \frac{x^n + x^n + x^n}{1 + x^n} = 3\frac{x^n}{1 + x^n} \le 3.$$

Usando esto vemos que si $x \in [r, +\infty)$ entonces

$$n^2 \frac{x^n + x^{n-1} + 1}{(1 + x^n)^2} e^{-nx} \le 3n^2 e^{-nr}.$$

Para ver que la serie (1) converge uniformemente en $(r, +\infty)$ es suficiente, entonces, con mostrar que la serie $\sum_{n\geq 1} n^2 e^{-nr}$ converge, y esto es inmediato vía una aplicación del criterio del cociente.

3. Un espacio normado V es completo si y solo si el subconjunto $\{x \in V : ||x|| = 1\}$ es completo.

Solución. Escribamos S al conjunto del enunciado. Si V es completo, entonces S es completo porque es cerrado en V. Supongamos, para probar la recíproca, que S es completo y sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy en V: queremos probar que posee un límite.

La sucesión $(\|x_n\|)_{n\geq 1}$ es de Cauchy en \mathbb{R} : en efecto, si $\epsilon>0$, entonces existe $N\in\mathbb{N}$ tal que $\|x_n-x_m\|<\epsilon$ siempre que $n,\ m\geq N$, y entonces cuando $n,\ m\geq N$ tenemos que $|\|x_n\|-\|x_m\||\leq \|x_n-x_m\|<\epsilon$. Como el espacio métrico \mathbb{R} es completo, existe $a=\lim_{n\to\infty}\|x_n\|$ y es, claro, un número no negativo. Si a=0, entonces la sucesión $(x_n)_{n\geq 1}$ converge a 0. Supongamos entonces que a>0. En ese caso, existe $M\in\mathbb{N}$ tal que $a/2\leq \|x_n\|\leq 2a$ siempre que $n\geq M$ y podemos poner, para cada $n\geq M$, $y_n:=x_n/\|x_n\|$, porque el denomimandor no se anula. Afirmamos que la sucesión $(y_n)_{n\geq M}$ es de Cauchy. Sea, en efecto, $\epsilon>0$ y sea $N\in\mathbb{N}$ tal que cuando $n,\ m\geq N$ es $\|x_n-x_m\|<\epsilon$ y $\|\|x_n\|-\|x_m\|\|<\epsilon$. Entonces si $n,\ m\geq \max\{N,M\}$ es

$$||y_n - y_m|| = \left\| \frac{x_n}{||x_n||} - \frac{x_m}{||x_m||} \right\| = \left\| \frac{x_n - x_m}{||x_n||} + \left(\frac{1}{||x_n||} - \frac{1}{||x_m||} \right) x_m \right\|$$

$$\leq \frac{||x_n - x_m||}{||x_n||} + \frac{|||x_n|| - ||x_m||}{||x_n|||} ||x_m|| \leq \frac{\epsilon}{a/2} + \frac{\epsilon}{a^2/4} 2a = \frac{10}{a} \epsilon$$

Como la sucesión $(y_n)_{n\geq M}$ toma valores en S, que es completo por hipótesis, posee un límite ahí: escribámoslo y. Es claro ahora que la sucesión $(x_n)_{n\geq M}$, que coincide con $(\|x_n\|y_n)_{n\geq M}$, converge a ay. Vemos así que el espacio V es completo, como queremos. \square

4. (a) Sea $F: V \to \mathbb{R}$ una función lineal y continua definida en un espacio normado V. Muestre que si x_0 es un vector de V tal que $||x_0|| = 1$ y $||x_0 - y|| \ge 1$

para cada $y \in \ker F$, entonces $||F|| = |F(x_0)|$.

(b) Sea $T: C[0,1] \to \mathbb{R}$ tal que para cada $f \in C[0,1]$ es

$$T(f) = \int_0^{1/2} f(t) dt - \int_{1/2}^1 f(t) dt.$$

Muestre que T es lineal y continua, y calcule su norma.

 † (c) Muestre que no existe $f \in C[0,1]$ tal que ||f|| = 1 y |T(f)| = 1.

Solución. (a) Sea x_0 como en el enunciado. Sabemos que $|F(x_0)| \leq ||F|| ||x_0|| = ||F||$, ya que $||x_0|| = 1$. Por otro lado, si $x \in X$, entonces existen $y \in \ker F$ y $\lambda \in \mathbb{R}$ tales que $x = y + \lambda x_0$. Observemos que $|\lambda| \leq ||x||$: esto es evidente si $\lambda = 0$, y si $\lambda \neq 0$, entonces $||x|| = |\lambda| \cdot ||x_0 - (-y/\lambda)|| \geq |\lambda|$ por la forma en que elegimos a x_0 . Esto implica que $|F(x)| = |\lambda| |F(x_0)| \leq |F(x_0)| \cdot ||x||$, de manera que $||F|| \leq |F(x_0)|$.

(b) Es claro que si $f \in C[0, 1]$, entonces

$$|T(f)| = \left| \int_0^{1/2} f(t) dt - \int_{1/2}^1 f(t) dt \right| \le \int_0^{1/2} |f(t)| dt + \int_{1/2}^1 |f(t)| dt \le ||f||,$$

así que la función T es continua y tiene $||T|| \le 1$.

Sera ahora $\epsilon \in (0, \frac{1}{2})$ y y consideremos la función $f: [0, 1] \to \mathbb{R}$ tal que

$$f(t) = \begin{cases} 1 & \text{si } 0 \le t \le \frac{1}{2} - \epsilon; \\ \frac{1}{\epsilon} (\frac{1}{2} - t) & \text{si } \frac{1}{2} - \epsilon \le t \le \frac{1}{2} + \epsilon; \\ -1 & \text{si } \frac{1}{2} + \epsilon \le t \le 1. \end{cases}$$

Está función pertence a C[0,1], tiene ||f|| = 1 y es

$$T(f) = \int_0^{1/2} f(t) dt - \int_{1/2}^1 f(t) dt = \int_0^1 |f(t)| dt = 1 - \epsilon.$$

Es claro, entonces, que $||T|| \ge 1 - \epsilon$ para todo $\epsilon \in (0, \frac{1}{2})$ y, por lo tanto, que $||T|| \ge 1$.

Supongamos, para probar la última afirmación por el absurdo, que $f \in C[0,1]$ es tal que ||f|| = 1 y |T(f)| = 1. A menos de cambiar f por -f podemos suponer sin pérdida de generalidad que, de hecho, es T(f) = 1. Tenemos que

$$\frac{1}{2} = \int_0^{1/2} (f + (1 - f)) = \int_0^{1/2} f + \int_0^{1/2} (1 - f).$$

y que

$$\frac{1}{2} = \int_{1/2}^{1} (-f + (1+f)) = -\int_{0}^{1/2} f + \int_{1/2}^{1} (1+f),$$

y sumando miembro a miembro estas dos igualdades y usando que T(f) = 1 vemos que

$$0 = \int_0^{1/2} (1 - f) + \int_{1/2}^1 (1 + f).$$

Como ||f||=1, es $-1 \le f \le 1$ y, por lo tanto, $1-f \ge 0$ y $f+1 \ge 0$: esto nos dice que los integrandos de estas dos últimas integrales son no negativos. Como son continuos, vemos que tiene que ser 1-f=0 en [0,1/2] y 1+f=0 en [1/2,1], lo que es absurdo.

5. Muestre que la función $F: f \in C[0,1] \mapsto \int_0^1 f(t)^2 dt \in \mathbb{R}$ es diferenciable y encuentre su diferencial.

Solución. Sea $f \in C[0,1]$ y $G: h \in C[0,1] \mapsto \int_0^1 2f(t)h(t)\,\mathrm{d}t \in \mathbb{R}$, que es claramente una función lineal y continua, con $||G|| \le 2||f||$. Si $h \in C[0,1]$, es

$$F(f+h) - F(f) - G(h) = \int_0^1 ((f(t) + h(t))^2 - f(t) - 2f(t)h(t)) dt = \int_0^1 h(t)^2 dt$$

у

$$\left| \int_0^1 h(t)^2 \, \mathrm{d}t \right| \le ||h||^2,$$

así que

$$\lim_{h \to 0} \frac{\int_0^1 h(t)^2 dt}{\|h\|} = 0.$$

Esto muestra que F es diferenciable en f y que G es allí su diferencial.

6. Sea V un espacio normado y sean A y B dos subconjuntos de V. Si A es cerrado y B compacto, entonces el conjunto $C := \{a + b : a \in A, b \in B\}$ es un cerrado de V.

Solución. Supongamos que A es cerrado y B compacto, y sea $(c_n)_{n\geq 1}$ una sucesión en C que converge a un punto c de V: queremos mostrar que $c\in C$. Para cada $n\in \mathbb{N}$ hay $a_n\in A$ y $b_n\in B$ tales que $c_n=a_c+b_n$ y, como B es compacto, hay una sucesión estrictamente creciente $(n_k)_{k\geq 1}$ en \mathbb{N} tal que la subsucesión $(b_{n_k})_{k\geq 1}$ de $(b_n)_{n\geq 1}$ converge a un punto $b\in B$. Es claro que la sucesión $(a_{n_k})_{k\geq 1}$, que coicide con $(c_{n_k}-b_{n_k})_{k\geq 1}$, converge a c-b: como A es cerrado, tenemos que $c-b\in A$ y, por lo tanto, que $c=(c-b)+b\in A+B$.