Computer Vision

3. Color

I-Chen Lin

College of Computer Science, National Yang Ming Chiao Tung University

Outline

- Color sources and reflectance
- Color perception
- Color representation
- Surface color from images

Textbook:

• David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New Jersey, (1st Ed. 2003, 2nd Ed. 2012).

Some contents are from the reference lecture notes:

- Prof. D.A. Forsyth, Computer Vision, UIUC.
- Prof. J. Rehg, Computer Vision, Georgia Inst. of Tech.
- Prof. D. Lowe, Computer Vision, UBC, CA.
- Prof. T. Darrell, Computer Vision and Applications, MIT.
- •Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall
- E.Angel, Interactive Computer Graphics, 4th Ed., Addison Wesley

What's color?

- Light is produced in different amounts at different wavelengths by each light source.
- Light is differentially reflected at each wavelength, which gives objects their natural colors.
- ► The sensation of color is determined by the human visual system, based on the product of light and reflectance (or transmission).

Illumination of sky

Why the sky is blue?

Light of a long wavelength can travel much farther before scattered.

Figure from http://www.sciencemadesimple.com/sky_blue.html

Spectral albedo

Bidirectional reflectance distribution function

Often are more interested in relative spectral composition than in overall intensity, so the spectral BRDF computation simplifies a wavelength-by-wavelength multiplication of relative energies.

Why do we usually use RGB?

Retina

- \rightarrow Center of retina has most of the cones \rightarrow
 - allows for high acuity of objects focused at center
- ► Edge of retina is dominated by rods →
 - allows detecting motion of threats in periphery

Color perception via cones

- "Photopigments" used to sense color
- 3 types: blue, green, "red" (really yellow) (or S, M, L cones)
 - each sensitive to different bands of spectrum
 - \triangleright ratio of neural activity of the 3 \rightarrow color
 - other colors are perceived by combining stimulation

Distribution of photopigments

- Not distributed evenly
 - \triangleright mainly reds (64%) & very few blues (4%) \rightarrow
 - insensitivity to short wavelengths
 - cyan to deep-blue
- ► Center of retina (high acuity) has no blue cones →
 - disappearance of small blue objects you fixate on

Color match experiments

Color matching experiments imply that 3 primaries are enough for most people.

Color matching experiment

Trichromacy

- Experimental facts:
 - Three primaries will work for most people if we allow subtractive matching
 - Exceptional people can match with two or only one .
 - Some elderly people may choose weights that differ from the norm.
 - Most people make the same matches.

Color matching experiments imply that three good primaries are sufficient.

Color space

Use color matching functions to define a coordinate system for color.

► Each color can be assigned a triple of coordinates with respect to some color space (e.g. RGB).

Devices (monitors, printers, projectors) and computers can communicate colors precisely.

RGB color space

- Primaries are monochromatic 645.2nm, 526.3nm, 444.4nm.
- Color matching functions have negative parts
- Some colors can be matched with subtraction.

Figure courtesy of D. Forsyth

Color matching experiment

What's the negative color?

CIE XYZ color space

CIE XYZ: color matching functions are positive everywhere, but primaries are imaginary.

Usually draw x, y, as x=X/(X+Y+Z) y=Y/(X+Y+Z)

► The overall brightness is ignored.

Figure courtesy of D. Forsyth

CIE xy Color space

- White is in the center, with saturation increasing towards the boundary
 - Mixing two colored lights creates colors on a straight line
 - Mixing 3 colors creates colors within a triangle
- There are sets of (x, y) coordinates that don't represent real colors, because the primaries are not real lights.

Color display

► The colors that can be displayed on a typical computer monitor (phosphor limitations keep the space quite small)

Uniform color spaces

MacAdam ellipses demonstrate that differences in x,y coordinates are a poor guide to differences in color

HSV color space

- Hue
 - property of the wavelengths of light (i.e., "color")
- Lightness (or value)
 - how much light appears to be reflected from a surface
 - some hues are inherently lighter or darker
- Saturation
 - purity of the hue
 - e.g., red is more saturated than pink
 - color is mixture of pure hue & achromatic color
 - portion of pure hue is the degree of saturation

HSV color space (cont.)

Hue, Saturation, Value model (HSV)

https://en.wikipedia.org/wiki/HSL_and_HSV

HSV color space (cont.)

$$H \in [0 ... 360]; S, V, R, G, B \in [0, 1]$$

$$MAX = \max(R, G, B); MIN = \min(R, G, B)$$

$$\begin{cases} \text{undefined,} & \text{if } MAX = MIN \\ 60 \times \frac{G-B}{MAX-MIN} + 0, & \text{if } MAX = R \\ & \text{and } G \geq B \end{cases}$$

$$H = \begin{cases} 60 \times \frac{G-B}{MAX-MIN} + 360, & \text{if } MAX = R \\ & \text{and } G < B \end{cases}$$

$$60 \times \frac{B-R}{MAX-MIN} + 120, & \text{if } MAX = G \\ 60 \times \frac{R-G}{MAX-MIN} + 240, & \text{if } MAX = B \end{cases}$$

$$S = \begin{cases} 0, & \text{if } MAX = 0 \\ 1 - \frac{MIN}{MAX}, & \text{otherwise} \end{cases}$$

$$V = MAX$$

HSV color space (cont.)

http://www2.ncsu.edu/scivis/lessons/colormodels/color_models2.html#saturation.

LAB color space

► CIE LAB is the most popular uniform color space.

$$L^* = 116 \left(\frac{Y}{Y_n}\right)^{1/3} - 16$$

$$a^* = 500 \left[\left(\frac{X}{X_n}\right)^{1/3} - \left(\frac{Y}{Y_n}\right)^{1/3}\right]$$

$$b^* = 200 \left[\left(\frac{Y}{Y_n}\right)^{1/3} - \left(\frac{Z}{Z_n}\right)^{1/3}\right]$$

Lab model

Images of real objects

 Assume that reflections are mainly due to diffuse and specular components.

- Diffuse components
 - Color of reflected light depends on both illuminant and surface.

- Specularities often saturate the camera film.
- Specularities on dielectric (non-metalic) objects mainly take the color of the light.

Distribution of reflected lights

- ► T the saturate diffuse components.
- ▶ S the saturate specular components.

Distribution of reflected lights (cont.)

Figure 6.21 of the textbook

Human color constancy

Color constancy: hue and saturation

Lightness constancy: gray-level

- Humans can perceive
 - Color that a surface would have under white light (surface color)
 - Color of reflected light (separate surface color from measured color)
 - Color of illuminant (limited)

A simple model of lightness constancy

- Assumptions:
 - Linear camera response
 - Nearly planar frontal scene
 - ► Lambertian reflectance

 k_c : Camera gain

I: illumination (reflection of light on surface)

 ρ : albedo (material color)

$$C(x) = k_c I(x) \rho(x)$$

- Camera model: $\log C(x) = \log k_c + \log I(x) + \log \rho(x)$
- Modeling assumptions for scene
 - Piecewise constant albedo
 - Slowly-varying Illumination

1-D lightness

p can be regarded as C/k_c

Figure 6.23 of the textbook

1-D lightness

- Assume that albedo changes during occlusion.
 - ightharpoonup Derivative of log ρ are either zero or large.

Extending to 2D

- Spatial issues
 - Integration becomes much harder
 - Using minimization.
- Recover of absolute reference
 - Brightest patch is white
 - Average reflectance across scene is known
 - Gamut(collection of all colors) is known
 - Known reference (e.g. skin color)