MUSIC SKETCHNET

CONTROLLABLE MUSIC GENERATION VIA FACTORIZED REPRESENTATION OF PITCH AND RHYTHM

Autores

- Ke Chen,
- Cheng-i Wang,
- Taylor Berg-Kirkpatrick,
- Shlomo Dubnov

- CREL, Music Department (Center of Research in Entertaining and Learning)
- University of California, San Diego
- Smule, Inc.

Motivación

Generación automática de música para estudiar y expandir la expresividad/creatividad humana

Permitir a usuarios controlar de manera flexible e intuitiva el resultado de la generación automática de música.

Permitir especificar ideas musicales parciales en términos de representaciones de ritmo y altura incompletas.

Music Sketching Task

Completar una pieza musical generando una secuencia de compases faltantes dado un contexto circundante.

Para esto es necesario solucionar:

- ¿Cómo representar ideas musicales?
- 2. ¿Como generar material nuevo dado el contexto pasado y futuro?
- 3. ¿Cómo procesar input de usuario e integrarlo al sistema?

Solución Propuesta

Solución Propuesta

Music SketchNet resuelve estos problemas a través de tres estructuras:

- 1. SketchVAE
- 2. SketchInpainter
- 3. SketchConnector

Solución Propuesta

Formalmente

El framework propuesto es un modelo de la probabilidad conjunta del contenido musical faltante Xm, condicionado al pasado, futuro y input de bosquejo del usuario.

Formalmente

$$\begin{split} P_{\phi,\varepsilon,\gamma,\theta,\tau}(X^m,Z,S|X^p,X^f,C) &= \\ P_{\phi}(X^m|Z^m) & (\text{SketchVAE Decoder}) \\ *P_{\varepsilon}(Z^m|S^m,C) & (\text{SketchConnector}) \\ *P_{\gamma}(S^m_{pitch}|Z^p_{pitch},Z^f_{pitch}) & (\text{SketchInpainter}) \\ *P_{\gamma}(S^m_{rhythm}|Z^p_{pitch},Z^f_{pitch}) & (\text{SketchInpainter}) \\ *Q_{\theta}(Z^p_{pitch},Z^f_{pitch}|X^p_{pitch},X^f_{pitch}) \\ *Q_{\tau}(Z^p_{rhythm},Z^f_{rhythm}|X^p_{rhythm},X^f_{rhythm}) & (\text{SketchVAE Encoders}) \\ \end{split}$$

SketchVAE

SketchVAE

Busca representar un único compas musical como una variable latente z que codifique el ritmo y la altura en dimensiones separadas (zpitch, zrhythm)

- Pitch Encoder Qo(zpitch|xpitch)
- 2. Rhythm Encoder Qt(zrhythm|xrhythm)
- 3. A hierarchical decoder Pphi(x|zpitch,zrhythm)

Pitch Encoder and Rhythm Encoder

Hierarchical Decoder

SketchInpainter

SketchInpainter

SketchConnector

SketchConnector

Experimentos

Dataset

- Irish and Scottish monophonic music Dataset
- Solo melodías en tiempos de 4/4
- ~16000 melodías para training
- ~2000 melodías para testing

Baseline (SketchVAE)

- Reconstrucción de input
- Modelos comparados:
 - SketchVAE
 - MeasureVAE
 - o EC2-VAE
- Métricas
 - Reconstruction Rate (Accuracy)
- Hiperparámetros:
 - Latent variable |z| set to 256
 - Learning Rate 1e-4
 - o Adam Optimization B1=0.9, B2=0.998

Resultados (SketchVAE)

	SketchVAE	MeasureVAE	EC2-VAE	
Reconstruccion Rate (Accuracy)	98.8%	98.7%	99.0%	

Resultados (SketchVAE)

- Todos los modelos de VAE son capaces de convertir las melodías a variables latentes (al rededor de 99% de precisión).
- SketchVAE es capaz de codificar/decodificar material musical en SketchNet.

Baseline (SketchNet)

- Predicción de 4 compases en el medio a partir de 6 compases de contexto pasado y futuro.
- Modelos comparados:
 - Music InpaintNet
 - SketchVAE + InpaintRNN
 - SketchVAE + SketchInpainter
 - SketchNet
- Métricas
 - Loss
 - Pitch Accuracy
 - Rhythm Accuracy
- Early stopping para todos los sistemas

Baseline (SketchNet)

- Se utilizan dos subsets de test adicionales
 - Irish-Test-R (repetition)
 - Irish-Test-NR (non-repetition)
- Calculados a partir de las similitudes entre el contexto pasado y futuro de cada canción.
 - El 10% de contextos más similares constituyen el primer subset
 - El 10% de contextos más disímiles constituyen el segundo subset

Resultados (SketchNet)

		Irish-Test	t]	Irish-Test-	R	Iı	rish-Test-N	NR .
Model	loss↓	pAcc ↑	rAcc ↑	loss↓	pAcc ↑	rAcc ↑	loss ↓	pAcc ↑	rAcc ↑
Music InpaintNet	0.662	0.511	0.972	0.312	0.636	0.975	0.997	0.354	0.959
SketchVAE + InpaintRNN	0.714	0.510	0.975	0.473	0.619	0.981	1.075	0.374	0.964
SketchVAE + SketchInpainter	0.693	0.552	0.985	0.295	0.692	0.991	1.002	0.389	0.977
SketchNet	0.516	0.651	0.985	0.206	0.799	0.991	0.783	0.461	0.977

Resultados (SketchNet)

- SketchNet supera a todos los modelos en todos los sets de prueba.
- El desempeño mejoró más en la precisión de altura que en la de ritmo.
- La precisión es casi la misma entre el primer y segundo modelo.
- La precisión es ligeramente mejor si se usa SketchInpainter para tratar el ritmo y la altura de forma independiente durante la generación.
- Usando el transformador encoder y random unmasking se logra el mejor desempeño (SketchNet).
- Al aplicar Bootstrap Significance Test se concluye que SketchNet es diferente al resto de modelos con p-value menor a 0.05
- Se tienen las losses más grandes para todos los modelos en el subset de no-repetición.

Subjective Listening Test

- Cada sujeto escucha tres melodías de 32 segundos de piano renderizadas:
 - La versión original
 - La generación a partir de Music InpaintNet
 - La generación de SketchNet
- Tres criterios:
 - Complexity (cantidad de notas)
 - Structure (repetición de estructure)
 - Musicality (grado de armonía)
- Se asigna puntaje de 1.0 a 5.0 para cada criterio.
- 106 sujetos de prueba, 318 resultados consultados
- El inicio y el final son identicos para las 3 melodías

Subjective Listening Test

Model	Complexity [↑]	Structure [†]	Musicality [↑]
Original	3.22	3.47	3.56
InpaintNet	2.98	3.01	3.09
SketchNet	3.04	3.29	3.26

Table 2. Results of the subjective listening test.

Resultados Subjective Listening

- SketchNet es mejor en los tres criterios.
- Complexity en los resultados generados por ambos modelos son similares en términos de riqueza de notas.
- SketchNet no incrementa de forma sustancial el número de notas generadas.