National University of Computer and Emerging Sciences, Lahore Campus

Course: Theory of Automata
Program: BS (Computer Science)

Course Code: Semester:

CS-3005 Fall 2023

Duration:

Paper Date:

180 Minutes 27-December-2023 Total Marks: Weight

Fall 20 60 40 %

12

Section: Exam: ALL Final Term Page(s): Roll No.

Instruction/Notes:

1. Answer in the space provided, showing all the steps.

2. You can take rough Sheets but will not be collected.

3. In case of confusion or ambiguity make a reasonable assumption.

4. Attempt all Questions

	CL	01		CLO 2				CLO 3	}	CLO 4		
а	b	С	Total	а	b	Total	а	b	Total	а	b	Total
3	1	8	12	2	10	12	4	8	12	10	14	24

CLO 1 [3 + 1 + 8 = 12 Marks]

Question 1:

a) If L_1 , L_2 and L_3 are Context free languages and $L_4 = L_1 \Omega (L_2 U L_3)$. What kind of language will be L_4 . (RL, CFL or non-CFL) Explain briefly [3 Marks]

Non CFL L₂ U L₃₌ CFL L₁ Ω (L₂ U L₃)= Non CFL

b) True/ False Context free languages are closed under difference. [1 Marks]

False

c) Tell whether the following Language is context free (CFL) or non- context free (non- CFL). If it is CFL provide PDA else prove it using Pumping Lemma. [2 + 6 = 8 Marks]

$$L = \{a^i \ b^j \ c^i \ d^{(i+j)} \colon i, j \ge 0\}$$

same approach we discussed during the class.

Question 2:

a) Tick all regular expressions which express [2 Marks]

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no consecutive } 0 \text{ and no consecutive } 1\}$

b.
$$(10 + 01)$$
*

c.
$$(0(10)^* + 1(01)^*)^*$$

d. None of these

b) Minimization of DFA [5 Marks]

Find a minimum-state DFA recognizing the same language. Show complete working. Use only the method discussed in your respective classes.

Minimal DFA

CLO 3 [4 + 8 = 12 Marks]

Question 3:

a) Tell whether the following grammar is ambiguous. How? Give justification [2+2 = 4 Marks] S \rightarrow 0S1 |0S11 | Λ

Ambiguous	
Justification: two LMD OR 2 RMD from same string WITH EXAMPLE	

b) The Html Table Creator [6 + 1.5 = 7.5 Marks]

Statement:		Sample HTML Code
Consider a context-free gr		
format to create an HTML rows%3=0 contains Numba Number or Alphabet. The	table. The grammar produces a table with pers only, where all other rows can contain be goal is to design a grammar that de for such a table structure.	2<\td> 2<\td>
		<\table>

Design a context-free grammar that generates HTML code for a table with rows%3=0. The multiple of 3 rows should display numbers in each cell, while all the other rows should display alphabet or number. Each row should have at least one cells/columns. Table must contain at least one row. So the minimum number of rows and columns could be a single cell that is one row and one column. Your CFG can have variable number of cells/columns for each row. The generated HTML code should follow the standard syntax and structure of an HTML table. For the context-free grammar, you need to define the production rules that generate the HTML code for the desired table structure. Consider the use of non-terminal symbols for different components of the HTML code, such as the ,
 table>,
 ta

Solution: [Write a CFG for the above scenario also derive the Sample Output [up to 2 rows only] from your CFG using Parse Tree]

CFG:

```
\begin{array}{c} S \longrightarrow  R0 < \!\! / table > S \mid  R0 < \!\! / table > \\ R0 \longrightarrow  C0 < \!\! / tr > R1 \mid  C0 < \!\! / tr > \\ R1 \longrightarrow  C1 < \!\! / tr > R2 \mid  C1 < \!\! / tr > \\ R2 \longrightarrow  C1 < \!\! / tr > R0 \mid  C1 < \!\! / tr > \\ C0 \longrightarrow  Num < \!\! / td > C0 \mid  Num < \!\! / td > \\ C1 \longrightarrow  Num < \!\! / td > C1 \mid  Num < \!\! / td > \\ C1 \longrightarrow  Alpha < \!\! / td > C1 \mid  Alpha < \!\! / td > \\ Num \longrightarrow 0|1|2|3|4|5|6|7|8|9|0 \\ Alpha \longrightarrow a|b| \dots |z|A|B \dots |z| \end{array}
```

Parse 7	Гree:													
CI O 4	[10 + 14	1 _24 M	orleal											
		+ —24 IVI	arksj											
Questio	on 4:													
					pe Turing									
					start of TM M halts).									of the
]	Marks]	1 Tullilli	511 (vv nen 1	ivi naraj.	7 HSO HIC	intion t	110 1000	at1011 0	i the ne	aa [0 . 0	11.0 -	- 10	
Input S	tring:													
•	•	•	Δ	Δ	#	Δ	1	0	Δ	Δ	Δ	•	•	•
_				_										-
Final (Output	along w	ith h	ead/poi	nter Loca	tion								

$\Delta\Delta$ 1111# Δ XXX1111111 $\Delta\Delta$

pointer: Δ after hash

b) Design a Multi-Tape Turing Machine that has two inputs X and Y. Both inputs are unary numbers. X is placed on tape 1 while Y is on tape 2. You need to perform X mod Y and store its remainder and quotient in Tape 3 and Tape 4 respectively. Sample input and output is given below. [14 Marks] Note: X and Y are greater than 0.

Sample Input:

Tape1	Δ	1	1	1	1	1	Δ
Tape2	Δ	1	1	1	Δ	Δ	Δ
Tape3	Δ	Δ	Δ	Δ	Δ	Δ	Δ
Tape4	Δ	Δ	Δ	Δ	Δ	Δ	Δ

Sample Output:

Tape1	Δ	1	1	1	1	1	Δ
Tape2	Δ	1	1	1	Δ	Δ	Δ
Tape3	Δ	1	1	Δ	Δ	Δ	Δ
Tape4	Δ	1	Δ	Δ	Δ	Δ	Δ

Turing Machine

Rough Work