ÁRBOLES DE DECISIÓN

Grupo 5

Manuel García Plaza José Miguel Ramírez Muñoz

Índice

- Descripción de la target.
- 2. Regresión Logística.
- 3. Árboles.
 - a. CART.
 - b. Bagging.
 - c. Boosting.
- 4. Conclusiones y next steps.
- 5. Backup.

Target: reservas que van a ser canceladas.

Queremos **predecir** si según las características de la reserva, esta tiene **riesgo elevado** de acabar siendo **cancelada** para poder anticiparnos y **reducir pérdidas** de dinero.

Estado de las reservas

El modelo logístico acierta siempre en el top 20% de predicciones

TRAIN	AUC	0.8570
	TOP20_ACCURACY	1.00
TEST	AUC	0.8437
	TOP20_ACCURACY	1.00

Variables usadas y coeficientes del modelo

Los dos mejores árboles en desempeño tienen máxima profundidad 10

La profundidad es el parámetro más diferencial entre árboles, el número máximo de hojas y el de variables no era tan significativo

Los árboles con **poca profundidad** pecaban de **underfitting**; los de **mucha profundidad**, de **overfitting**.

Los mejores árboles:

n trees	max depth	max features	max leaf nodes	gini train	gini test	delta
DT 55	10	10	None	0.88	0.82	-0.07
DT 59	10	None	None	0.89	0.84	-0.06

más métricas de entrenamiento/validación (ROC, precisión, sensibilidad, especificidad...)

El árbol sin límite de variables predice un poco mejor con nuevos datos de testeo:

Elegimos el árbol 59 frente al 55 porque en el percentil 20 es un 1% más preciso.

La ROC del 55 es prácticamente idéntica (mismo AUC)

El uplift del 55 es prácticamente igual (2% peor en percentil 20)

Las variables más importantes son: el tiempo de antelación de la reserva, el precio de la habitación, el número de requisitos adicionales y si la reserva se ha hecho online.

Poco tiempo de antelación propicia más cancelaciones, en cambio, mucho tiempo baja esta propensión.

Con precios bajos la relación tiende a ser casi lineal, pero los precios elevados hacen que el modelo sea más radical en su predicción.

En RandomForest encontramos modelos buenos; ExtraTrees no proporciona nada interesante.

n trees,max depth	gini train	gini test	delta
RF 10, 12	0.899	0.840	-0.066
RF 15, 12	0.902	0.842	-0.067
RF 30, 12	0.911	0.854	-0.063
RF 50, 12	0.911	0.853	-0.064
RF 100, 12	0.913	0.857	-0.062
RF 250, 12	0.913	0.857	-0.061

Los mejores RandomForest son de profundidad máxima 12 (los mejores en accuracy/delta). A partir de 30 árboles no hay mejora significativa.

Los modelos ExtraTrees con delta menor que un 7% no sobrepasa un gini de 0.75 y aquellos con buen accuracy tienen delta alto (overfittean). En conclusión, no mejoran los modelos anteriores.

n trees, max depth	gini train	gini test	delta
XGB 3, 12	0.914	0.856	-0.064
XGB 5, 12	0.921	0.859	-0.067
XGB 10, 12	0.931	0.869	-0.066
XGB 30, 8	0.907	0.868	-0.044
XGB 50, 8	0.917	0.873	-0.048
XGB 100, 8	0.936	0.880	-0.060
LGBM 30, 8	0.874	0.844	-0.034
LGBM 50, 12	0.895	0.859	-0.040
LGBM 100, 8	0.916	0.870	-0.050
LGBM 100, 16	0.922	0.874	-0.052

Los modelos AdaBoost no mejoran al resto; con XGBoost y LightGBM obtenemos muy buenos resultados.

Los AdaBoost con learning rate muy bajo underfittean; con learning rate 0.5 o 1 ajustan mejor pero no tan bien como los otros algoritmos.

Los parámetros de regularización y learning rate de XGB y LGBM son por defecto para no demorar mucho los cálculos.

Conclusiones y next steps

- Podemos predecir con la regresión logística para captar cancelaciones casi seguras, a las cuales asignar fianzas elevadas.
- Podemos usar los algoritmos de boosting o Random Forest para clasificar con alta precisión cualquier reserva, no solo las de probabilidad alta, por ejemplo, para poder aplicar fianzas proporcionales siempre.
- Para afinar más si cabe los modelos, se pueden crear nuevas variables.
- En pos de alargar la vida útil de los modelos, hay que recoger más datos a lo largo del tiempo y añadir la componente temporal para predecir a futuro.

Backup

Regresión Logística

Árboles y más:

Ver notebooks en:

https://github.com/mgp165/trabajo_tema_5/tree/main_