MATH 244 Results

Daniel Kim

December 2021

Contents

1	Introduction	1
2	Big O Notation	2
3	Counting	4
4	Graph Theory	5

§1 Introduction

Definition 1.1. Given two sets X and Y, a function f from X to Y is a rule which assigns to every element $x \in X$, an element $f(x) \in Y$.

Definition 1.2. A **relation** between two sets X and Y is a subset of $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$.

Definition 1.3. A function $f: X \to Y$ is a relation R_f between X and Y which also satisfies the property:

- Every $x \in X$ is related to a unique $y \in Y$.
- $\forall x \in X \exists ! y \in Y \text{ s.t. } (x,y) \in R_f$.

Definition 1.4. A function f is **injective** (i.e. one-to-one) if $\forall x_1, x_2 \in X, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.

Definition 1.5. A function f is surjective (i.e. onto) if $\forall y \in Y, \exists x \in X$ such that f(x) = y.

Definition 1.6. A function is **bijective** if it is both injective and surjective.

Definition 1.7. If $f: X \to Y$ and $g: Y \to Z$ then $g \circ f$ is the function $g \circ f = X \to Z$ defined by $(g \circ f)(x) = g(f(x))$.

Definition 1.8. If $(x,y) \in R$, we write xRy.

Definition 1.9. A relation R between a set X and itself is an equivalence relation if it satisfies the following 3 properties:

- i) $\forall x \in X, xRx$ (reflexive)
- i) $\forall x, y \in X, xRy \implies yRx$ (symmetric)
- i) $\forall x, y, z \in X, xRy \text{ and } yRz \implies xRz \text{ (transitive)}$

Definition 1.10. A relation R between X and itself is an **ordering** if it satisfies

- i) $\forall x \in X, xRx$ (reflexive)
- i) $\forall x, y \in X, xRy \text{ and } yRx \implies x = y \text{ (anti-symmetric)}$
- i) $\forall x, y, z \in X, xRy \text{ and } yRz \implies xRz \text{ (transitive)}$

Definition 1.11. An ordering R is a linear order (or total order) if $\forall x, y \in X$, either xRy or yRx.

Definition 1.12. If \sim is an equivalence relation on X and $x \in X$, we define $[x] = \{y \in X\}$ $X \mid y \sim x$. This is the **equivalence class** of x.

Proposition 1.13

If \sim is an equivalence relation on X, then

- i) $\forall x \in X, \ [x]$ is nonempty. ii) $\forall x,y \in X, \ [x]=[y] \ {\rm or} \ [x]\cap [y]=\emptyset.$
- iii) \sim is uniquely determined by the set of its equivalence classes.

Definition 1.14. A finite partition of a set X is a collection of nonempty subsets $X_1, X_2, \ldots, X_k \subseteq X$ such that

- 1. $\bigcup_{i=1}^{k} X_i = X$
- 2. $\forall 1 \leq i, j \leq k, X_i \cap X_j = \emptyset$

§2 Big O Notation

Definition 2.1. If f(n), g(n) are 2 nonnegative functions on \mathbb{N} , we say f(n) = O(g(n))if $\exists n_0 > 0$ and C > 0 such that $\forall n \geq n_0, f(n) \leq Cg(n)$.

Proposition 2.2

If $\forall n_1, f_1(n) \leq f_2(n)$ and $f_2(n) = O(g(n))$, then $f_1(n) = O(g(n))$.

Proposition 2.3

We have the following properties of Big-O:

• If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then

$$f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$$

$$f_1(n)f_2(n) = O(g_1(n)g_2(n))$$

- $n^{\alpha} = O(n^{\beta})$ if $0 \le \alpha \le \beta$
- $n^{\alpha} = O(a^n)$ if a > 1
- $a^n = O(n!)$ if a > 1
- $n! = O(n^n)$

Proposition 2.4

Hierarchy of growth:

- 1. Bounded
- 2. $(\log n)^{\alpha}$, $\alpha > 0$
- 3. $n^{\beta}, \beta > 0$
- 4. $e^{\gamma}, \gamma > 0$
- 5. n!
- 6. n^n

Theorem 2.5 (Stirling's Approximation)

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Theorem 2.6

$$e\left(\frac{n}{e}\right)^n \le n! \le en\left(\frac{n}{e}\right)^n \ \forall n \ge 1$$

Theorem 2.7

Assume $k \leq \frac{n}{2}$. Then

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} \le \frac{n^k}{k!}.$$

§3 Counting

Definition 3.1. A bijection $[n] \rightarrow [n]$ is also called a **permutation**.

Definition 3.2. $\binom{n}{j} = \frac{n!}{j!(n-j)!}$

Definition 3.3. If X is a set, $\binom{X}{j}$ is the set of all j-element subsets of X.

Proposition 3.4

$$\left| {X \choose j} \right| = {n \choose j} \text{ if } |X| = n.$$

Theorem 3.5

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

Proposition 3.6

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Definition 3.7. If $n_1 + \ldots + n_k = n$ where $n_i \geq 0 \ \forall 1 \leq i \leq k$, then

$$\binom{n}{n_1,\ldots,n_k} = \frac{n!}{n_1!n_2!\cdots n_k!}.$$

4

Proposition 3.8

 $\binom{n}{i,j,k}$ is the number of ways to partition a set of size n into 3 subsets of sizes i,j,k respectively.

Theorem 3.9

$$(x+y+z)^n = \sum_{\substack{i,j,k \ge 0\\i+j+k=n}} \binom{n}{i,j,k} x^i y^j z^k.$$

Theorem 3.10 (PIE)

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{I \in \binom{[n]}{k}} \left| \bigcap_{i \in I} A_{i} \right|.$$

Definition 3.11. Positive integers m, n are relatively prime if they have no common factors, i.e. gcd(m, n) = 1.

Theorem 3.12 (Euler)

If
$$n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$
, then $\phi(n) = n \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$.

§4 Graph Theory

Definition 4.1. A graph G = (V, E) consists of the following data:

- A finite set V (vertices)
- A finite set $E \subseteq \binom{V}{2}$ (edges)

Proposition 4.2

There exists precisely $2^{\binom{n}{2}}$ graphs G=(V,E) with $V(G)=\{1,\ldots,n\}.$

Definition 4.3. Two graphs G = (V, E) and G' = (V', E') are called **isomorphic** if \exists bijective function $f: V \to V'$ such that $(x, y) \in E \longleftrightarrow (f(x), f(y)) \in E'$.

Proposition 4.4

Let T(n) be the number of pairwise non-isomorphic graphs G=(V,E) with $V=\{1,2,\ldots,n\}$. Then $T(n)\geq \frac{2^{\binom{n}{2}}}{n!}$.

Definition 4.5. Given a simple graph G = (V, E), the **degree** of a vertex $x \in V$ is $|\{y \in V : (x, y) \in E\}|$. In other words, $\deg_G(x)$ is the number of edges containing vertex x as one of the endpoints.

Definition 4.6. When deg(x) is the same for all $x \in V$, we say that the graph is regular.

Proposition 4.7

Given a graph $G = (V, E), \sum_{x \in V} \deg_G(x) = 2 |E|$.

Corollary 4.8 (Handshake Lemma)

The number of vertices of odd degree in G is always even.

Definition 4.9. Given a graph G = (V, E) with $V = \{v_1, \dots, v_n\}$, the sequence

$$(\deg(v_1), \deg(v_2), \ldots, \deg(v_n))$$

is called the **score**, or **degree sequence**, of G.

Theorem 4.10 (Score Theorem)

Let $D = (d_1, \ldots, d_n)$ be a sequence of natural numbers where $d_1 \leq d_2 \leq \cdots \leq d_n$. Define $D' = (d'_1, d'_2, \ldots, d'_{n-1})$ to be the sequence

$$d_i' = \begin{cases} d_i & \text{if } i < n - d_n \\ d_i - 1 & \text{if } i \ge n - d_n \end{cases}.$$

Then D is a graph score iff D' is a graph score.

Definition 4.11. Given graph G = (V, E) with $V = \{v_1, v_2, \dots, v_n\}$, the **adjacency matrix** of G is the $n \times n$ matrix $A = (a_{i,j})$ where rows and columns are indexed by V and

$$a_{i,j} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 \text{if } (v_i, v_j) \notin E \end{cases}.$$

Definition 4.12. Given a graph G = (V, E), a **walk** in G is a sequence of vertices and edges $W = v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_{k+1}$, where

- v_i is common endpoint of e_{i-1} and e_{i+1}
- vertices in this list may possibly repeat

Also, length(W) = number of edges = k.

Theorem 4.13

Let G = (V, E) be a simple graph and A its adjacency matrix where $V = \{v_1, \ldots, v_n\}$. For each $k \geq n$, denote $A^k = (a_{i,j}^{(k)})_{1 \leq i,j \leq n}$. Then $a_{i,j}$ is the total number of walks of length k between vertices i and j.

Definition 4.14. K_n is the complete graph on n vertices

Definition 4.15. C_n is the cycle of length n

Definition 4.16. P_n is the path with n vertices

Definition 4.17. $K_{m,n}$ is the complete bipartite graph with m, n, i.e. $V = M \cup N$, $M \cap N = \emptyset$, and edges run only between M and N where |M| = m and |N| = n

Definition 4.18. If G = (V, E) is a graph, a **subgraph** is another graph H = (V', E') where $V' \subseteq V$, $E' \subseteq E$, where E' connects vertices in V'.

Definition 4.19. If G = (V, E) and $V' \subseteq V$, then the **induced subgraph** is the subgraph H = (V', E') where

$$E' = \{ \text{edge } e \in E \mid \text{endpoints of } e \text{ in } V' \}.$$

Definition 4.20. A path in a graph G is a subgraph isomorphic to P_n for some $n \ge 1$.

Definition 4.21. A walk in a graph is a sequence of vertices v_1, v_2, \ldots, v_k such that $v_i \sim v_{i+1}, \forall i = 1, \ldots, k-1$.

Definition 4.22. A graph is **connected** if for any two vertices $u, v \in V$, there is a path (or walk) starting at u and ending at v.

Definition 4.23. Given a graph G, define an equivalence relation \approx on V where $u \approx v$ if there is a walk from u to v. The equivalence classes of \approx are called components of G ("connected components").

Definition 4.24. The **distance** $d_G(x, y)$ between vertices x and y is the length (number of edges) of the shortest walk from x to y (or ∞ if $u \approx v$).

Proposition 4.25

 $(A^k)_{u,v}$ is the number of walks of length exactly k from u to v

Definition 4.26. A graph is **Eulerian** if it has an Eulerian tour.

Definition 4.27. An **Eulerian tour** is a closed walk (start and end vertices are the same) which crosses each edge exactly once.

Theorem 4.28

G is Eulerian iff every vertex has even degree.

Definition 4.29. A **Hamiltonian tour** is a closed walk which visits every vertex once.

Definition 4.30. A graph G is k-vertex connected for $k \ge 1$ if it has k + 1 vertices and if you remove any k - 1 vertices and their incident edges, the remaining graph is connected.

Definition 4.31. A graph is k-edge-connected if it remains connected after removal of any k-1 edges.

Definition 4.32. The **vertex connectivity** of G is the maximum value of k where G is k-vertex-connected.

Theorem 4.33

G is 2-vertex-connected iff $\forall x, y \in V$, G contains a cycle containing x and y.

Definition 4.34. A graph is **minimally** 2-vertex-connected if it is 2 *vertex*-connected but removal of an edge leaves a graph with is not 2-vertex-connected.

Theorem 4.35

G is 2-vertex-connected iff it can be made, starting from a triangle, by a sequence of operations with are either (1) edge subdivision or (2) adding an edge joining existing vertices.

• Let T(n) be the maximum number of edges in a graph on [n] with no triangle subgraphs.

Claim —
$$T(n) = \left| \frac{n^2}{4} \right|$$
.

Definition 4.36. A **tree** is a connected graph with no cycles.

Definition 4.37. A leaf (or end-vertex) is a vertex of degree 1 in a tree.

Lemma 4.38

A tree with ≥ 2 vertices has at least 2 leaves.

Lemma 4.39

If G = (V, E) is a tree and v is a leaf, then the induced subgraph on $V \subseteq V \in \{e\}$

Lemma 4.40

A spanning tree in G is a subgraph which contains all vertices and is a tree.

Proposition 4.41

Any connected grain G has a spanning tree. The construction is as follows:

- 1. Order edges
- 2. Add edges in order, but skip any edge if adding it would make a cycle

Definition 4.42. Let G be a connected graph. Let c(e) be a cost associated to edge e. If T is a spanning tree, its cost is $c(T) = \sum_{e \in E} c(e)$.

Definition 4.43. A minimal spanning tree is a spanning tree of smallest $c(T) = \sum_{e \in E} c(e)$.

Theorem 4.44 (Kruskal's Algorithm)

You repeat the following steps:

1. Order edges in increasing cost:

$$c(e_1) \le c(e_2) \le \cdots$$

2. Build the tree as before, adding edges, skipping those which make cycles.

Definition 4.45. A graph is **planar** if it can be drawn in \mathbb{R}^2 so that no 2 edges intersect except possibly at their endpoints.

Definition 4.46. A graph has **genus** g if it can be drawn (without edge crossings) on a genus g surface but not on a genus g-1 surface.

Theorem 4.47

Every graph has a finite genus.

Definition 4.48. A **Jordan curve** is a continuous injective image of a circle in \mathbb{R}^2 .

Theorem 4.49 (Jordan Curve Theorem)

A Jordan curve separates \mathbb{R}^2 into 2 components, an inside and an outside region.

Theorem 4.50

 K_5 is not planar.

Theorem 4.51 (Kuratowski)

A graph G is planar iff G has no subgraph isomorphic to a subdivision of $K_{3,3}$ or K_5 .

Definition 4.52. A subdivision of G is a graph obtained from G by adding vertices along its edge.

Theorem 4.53 (Euler's Formula)

For a connected planar graph, |V| - |E| + |F| = 2.

Theorem 4.54

A 2-vertex-connected planar graph has the property that all faces are bounded by cycles.

Definition 4.55. A convex **polyhedron** is a set in \mathbb{R}^3 which is the intersection of a finite number of half-spaces.

At each corner of a polyhedron, the **curvature** c is

$$c = 2\pi - \sum_{\text{adj. face } f} \theta_f.$$

Theorem 4.56 (Gauss-Bonnet)

THe sum of curvatures of vertices of a 3D polyhedron is 4π .

Definition 4.57. A platonic solid is a polyhedron with faces which are regular k-gons and vertices of constant degree d. For such a polyhedron the curvature at a vertex is equal to

$$2\pi - d\left(\pi - \frac{2\pi}{k}\right).$$

Theorem 4.58

For a planar graph of at least 3 vertices, $E \leq 3V - 6$.

Corollary 4.59

Every planar graph has a vertex of degree ≤ 5 .

Corollary 4.60

 K_5 is not planar.

Theorem 4.61

For a planar graph of at least 3 vertices and contains no K_3 as a subgraph, $E \leq 2V - 4$.

Corollary 4.62

 $K_{3,3}$ is not planar.

Definition 4.63. A **proper coloring** is a function $c: V \to \{c_1, \ldots, c_k\}$ such that $c(u) \neq c(v)$ if $u \sim v$ i.e. u is adjacent to v.

Definition 4.64. The chromatic number $\mathcal{X}(G)$ of a graph G is the smallest m such that there is a proper coloring with m colors.

Definition 4.65. The **chromatic polynomial** $P_G(x)$ is the number of colorings with x colors.

Theorem 4.66

 $P_G(x)$ is a polynomial.

Theorem 4.67 (Four-Color Theorem)

Any planar graph can be 4-colored.

Theorem 4.68

Any planar graph can be colored with ≤ 5 colors $(\mathcal{X}(G) \leq 5)$.

Theorem 4.69 (Sperner's Lemma)

Let G be a triangulation of a triangle with vertices A_1, A_2, A_3 . Assign vertices labels 1, 2, or 3 with the following rules:

- 1. A_i has color i
- 2. A vertex on the side $\overline{A_i A_j}$ has color i or j
- 3. Remaining vertices (inside the triangle) are colored arbitrarily

Then, there exists a face with all 3 labels.

Theorem 4.70 (Brouwer Fixed Point Theorem)

Let $T=(x,y)\mid x\geq 0,\ y\geq 0,\ x+y\leq 1.$ If $f:T\to T$ is continuous, then f has a fixed point, i.e. $\exists (x,y)\in T$ such that f(x,y)=(x,y).

Theorem 4.71

If $f:[0,1]\to [0,1]$ is continuous, then f has a fixed point, i.e. $\exists x\in [0,1]$ such that f(x)=x.

Theorem 4.72

The number of spanning trees of K_n with degree sequence d_1, \ldots, d_n is

$$\frac{(n-2)!}{(d_1-1)\cdots(d_n-1)!}.$$

Corollary 4.73

$$\sum_{\text{spanning trees of } K_n} x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n} = x_1 x_2 \cdots x_n (x_1 + x_2 + \cdots + x_n)^{n-2}$$

Definition 4.74. Let the **Prüfer code** of a tree be an encoding of a labeled tree on [n] with a sequence $(k_1, k_2, \ldots, k_{n-2})$ where each $k_i \in [n]$. The procedure to obtain this sequence is a series of steps: at each step, remove the leaf with the smallest label and record its neighbor, until the K_2 graph is left (i.e. one edge and two vertices).

Definition 4.75. Given a graph G = (V, E), the **incidence matrix** of G is the $|V| \times |E|$ matrix A such that

- Rows of A correspond to vertices of G
- Columns of A correspond to edges of G
- $a_{x,e} = \begin{cases} 1 & \text{if } x \text{ is endpoint of } e \\ 0 & \text{otherwise} \end{cases}$

Definition 4.76. The Laplacian matrix of a graph G is $\Delta = DD^{\mathsf{T}}$ where D is the incidence matrix of G.

Corollary 4.77

$$\Delta_{i,i} = \deg_G(v_i) \text{ and } \Delta_{i,j} = \begin{cases} -1 & \text{if } v_i \sim v_j \\ 0 & \text{else} \end{cases} \text{ for } i \neq j.$$

Theorem 4.78 (Matrix-Tree Theorem)

If G is connected, the number of spanning trees is $\det(\Delta_{11})$, where Δ_{11} is obtained from Δ by removing row 1 and column 1. In other words,

$$\det(\Delta_{11}) = \frac{1}{n} \prod \lambda_i$$

where λ_i are the non-zero eigenvalues of Δ .

Theorem 4.79 (Binet-Cauchy Formula)

If A is an $m \times n$ matrix, B is $n \times m$ matrix, then

$$\det(AB) = \sum_{\substack{S \subseteq [n] \\ |S| = m}} \det(A_s) \det(B_s) = \sum \det(A_s B_s),$$

where A_s is the submatrix of A using columns in S, and B_s is the submatrix of B using rows in S.

Corollary 4.80

 K_n has n^{n-2} spanning trees.