A Book of Abstract Algebra (2nd Edition)

	Chapter AB, Problem 2E	Bookmark	Show all steps: ON
	Pro	oblem	
	Prove that the following are true for any integers a, b, and c:		
	If $a b$, then $a (-b)$ and $(-a) b$.		
	Step-by-s	step solution	
	Step	1 of 3	
	Objective:-		
The objective is to prove if $a \mid b$, then $a \mid (-b)$ and $(-a) \mid c$.			
	Comment		
	Step	2 of 3	

Proof:-

Let suppose $a \mid b$.

Then there exist number k such that:-

$$b = ka$$
(1)

Let us multiply both sides by (-1).

$$-b = -ka$$

$$-b = (-k)a$$

$$(-b) = la$$
 let $(-k) = l$

Thus, a is a factor of (-b). Hence, a divides (-b) that is $a \mid (-b)$.

Comment

Step 3 of 3

Let suppose $a \mid b$.

Then there exist number *k* such that:-

$$b = ka$$
(1)

$$b = k(a)(-1)(-1)$$
 $\{\sin ce\ (-1)(-1) = 1\}$

$$b = (-k)(-a)$$

$$b = m(-a) \qquad \{let (-k)\}$$

Thus, a is a factor of m(-a) that is a factor of b. Hence, (-a) divides m(-a) that is $(-a) \mid b$.

Proved

Comment