MIPS Reference Data

①	

CORE INSTRUCTION SET OP								
		FOR-			/ FUNCT			
NAME, MNEMO		MAT			(Hex)			
Add	add	R	R[rd] = R[rs] + R[rt]	` ′	0 / 20 _{hex}			
Add Immediate	addi	Ι	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}			
Add Imm. Unsigned	addiu	Ι	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}			
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$			
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$			
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}			
Branch On Equal	beq	Ι	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}			
Branch On Not Equal	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}			
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}			
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}			
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}			
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}			
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}			
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}			
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}			
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	$23_{ m hex}$			
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}			
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}			
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}			
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	` ′	0 / 2a _{hex}			
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)?	: 0(2)	a _{hex}			
Set Less Than Imm. Unsigned	sltiu	Ι	R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6)	b _{hex}			
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}			
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}			
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}			
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}			
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}			
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}			
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}			
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}			
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}			
-	(2) Sig (3) Zer (4) Bra (5) Jun (6) Op (7) Ato	nExtInExtInchAnpAdo erands	se overflow exception mm = { 16{immediate[15]}, imm mm = { 16{ib '0}, immediate } ddr = { 14{immediate[15]}, imm fr = { PC+4[31:28], address, 2'b' c considered unsigned numbers (vs. est&set pair; R[rt] = 1 if pair atomi	ediate, 2 00 } s. 2's c	2'b0 } comp.)			
BASIC INSTRUCTI	ON FO	RMA	TS					

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

ARITHMETIC CORE INSTRUCTION SET

Animilatio Con	LING	Ino		OFCODE
			•	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMON	IIC	MAT	OPERATION	(Hex)
Branch On FP True	oc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	oc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0//-1b
FP Add Single a	dd.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	dd.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	aa.a	ТК	{F[ft],F[ft+1]}	11/11//0
FP Compare Single	x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	x.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
	iv.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	iv.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double			{F[ft],F[ft+1]}	
FP Multiply Single m	ul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	111.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double			{F[ft],F[ft+1]}	
	ub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	ub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double			{F[ft],F[ft+1]}	
	lwc1	I	$F[rt]=M[R[rs]+SignExtImm] \qquad (2)$	31//
Load FP	ldc1	I	$F[rt]=M[R[rs]+SignExtImm]; \qquad (2)$	35//
Double	1401		F[rt+1]=M[R[rs]+SignExtImm+4]	
	nfhi	R	R[rd] = Hi	0 ///10
	nflo	R	R[rd] = Lo	0 //-12
Move From Control n		R	R[rd] = CR[rs]	10 /0//0
	nult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned m	ultu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt	0//-3
Store FP Single s	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdc1	ī	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	suci	1	M[R[rs]+SignExtImm+4] = F[rt+1]	Ju//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME NUMBER		USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

OPCODES	PACE CONVERSION ASCIL SYMPOLS
OPCODES,	, BASE CONVERSION, ASCII SYMBOLS

OPCOD		CONVER	SIU	IN, F	SCII					
MIPS	(1) MIPS	(2) MIPS			Dani	Hexa-	ASCII	Dani	Hexa-	ASCII
opcode	funct	funct	Bin	arv	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)			mal	mal	acter	mal	mal	acter
	s11		00.6	0000	0	0	NUL	64	40	
(1)	SII	add.f								@
١.		sub.f		0001	1	1	SOH	65	41	A
j	srl	${\tt mul.} f$		0010	2	2	STX	66	42	В
jal	sra	div.f	00 (0011	3	3	ETX	67	43	C
beq	sllv	sgrt.f	00 (100	4	4	EOT	68	44	D
bne		abs.f	00 (101	5	5	ENQ	69	45	E
blez	srlv	mov.f		0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr	negg		000	- 8	8	BS	72	48	H
addiu					9	9	HT	73	49	I
	jalr			001						
slti	movz			010	10	a	LF	74	4a	J
sltiu	movn		00 1		11	b	VT	75	4b	K
andi	syscall	round.w.f		1100	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 1	1101	13	d	CR	77	4d	M
xori		ceil.w.f	00	1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00	1111	15	f	SI	79	4f	O
	mfhi			0000	16	10	DLE	80	50	P
(2)	mthi			0001	17	11	DC1	81	51	Q
(2)	mflo	morra f			18	12	DC2	82	52	R
		movz.f		0010						
	mtlo	movn.f	01 (19	13	DC3	83	53	S
				100	20	14	DC4	84	54	T
				101	21	15	NAK	85	55	U
				0110	22	16	SYN	86	56	V
			01 (0111	23	17	ETB	87	57	W
	mult		01 1	000	24	18	CAN	88	58	X
	multu			001	25	19	EM	89	59	Y
	div			010	26	1a	SUB	90	5a	Z
	divu		01		27	1b	ESC	91	5b	
	arvu			100	28		FS	92	5c	
						1c				
				1101	29	1d	GS	93	5d	ý
				1110	30	1e	RS	94	5e	^
				1111	31	1 f	US	95	5f	-
lb	add	cvt.s.f	10 (0000	32	20	Space	96	60	
1h	addu	cvt.d.f	10 (0001	33	21	!	97	61	a
lwl	sub		10 (0010	34	22	"	98	62	b
lw	subu			0011	35	23	#	99	63	c
1bu	and	cvt.w.f		100	36	24	\$	100	64	d
lhu	or	cvc.w.y		101	37	25	%	101	65	e
lwr)110	38	26		102	66	f
TMT	xor						&			
	nor			0111	39	27		103	67	g
sb				000	40	28	(104	68	h
sh				001	41	29)	105	69	i
swl	slt		10 1	010	42	2a	*	106	6a	j
SW	sltu		10 1	1011	43	2b	+	107	6b	k
			10	1100	44	2c	,	108	6с	1
				1101	45	2d	-	109	6d	m
swr				1110	46	2e		110	6e	n
cache				1111	47	2f	,	111	6f	0
11	tae	o f f		0000	48	30	0	112	70	
	tge	c.f.f								p
lwc1	tgeu	c.un.f		0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f		0010	50	32	2	114	72	r
pref	tltu	c.ueq.f		0011	51	33	3	115	73	S
	teq	c.olt.f		100	52	34	4	116	74	t
ldc1		c.ult.f	111 (101	53	35	5	117	75	u
1dc2	tne	c.ole.f		0110	54	36	6	118	76	v
		c.ule.f		0111	55	37	7	119	77	w
SC		c.sf.f		000	56	38	- 8	120	78	X
swc1				000	57	39	9	121	79	
swc1		c.ngle.f			58	39 3a		121	79 7a	У
SWCZ		c.seq.f		010			:			Z
		c.ngl.f		1011	59	3b	;	123	7b	-{
		c.lt.f		100	60	3c		124	7c	
sdc1		c.nge.f		1101	61	3d	=	125	7d	}
sdc2		c.le.f		1110	62	3e	>	126	7e	~
		c.ngt.f	11	1111	63	3f	?	127	7f	DEL
(1)	do(31.26) =	0	_							

(1) opcode(31:26) = 0(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

3

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127,

Double Precision Bias = 1023.

IEEE Single Precision and

IEEE 754 Symbols Object Exponent Fraction 0 ± 0 ± Denorm **≠**0 1 to MAX - 1 anything ± Fl. Pt. Num. MAX 0 ±∞ NaN MAX **≠**0 S.P. MAX = 255, D.P. MAX = 2047

4

Double Precision Formats: S Exponent Fraction 23 22 S Exponent Fraction

DATA ALIGNMENT

Double Word									
	Wo	rd		Word					
Halfv	Halfword Halfw		Halfword Halfword			Half	word		
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte		

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
4	AdEL	Address Error Exception (load or instruction fetch)		RI	Reserved Instruction Exception
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

	PRE-		PRE-		PRE-		PRE-
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-
$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-	10-18	atto-
$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10-9	nano-	10-21	zepto-
$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10-24	yocto-
he symbol	for each	prefix is ju	st its first	letter, e	except µ	is used	for micro