L-P-Bourguiba deTunis

Chapitre 6

Géométrie dans l'espace

Prof :Ben jedidia chokri

Classe :4 Math

Aptitudes à développer :

- * Exploiter les opérations sur les vecteurs de l'espace.
- * Reconnaître que trois vecteurs de l'espace forment une base.
- * Exploiter le produit scalaire dans l'espace pour calculer des grandeurs, déterminer des lieux géométriques et étudier des configurations géométriques
- * Exploiter les propriétés du produit vectoriel dans l'espace pour calculer des grandeurs,
- * Déterminer des lieux géométriques et étudier des configurations géométriques.
- * Déterminer les équations d'une droite ou d'un plan.
- * Déterminer l'intersection de deux droites, d'un plan et d'une droite, de deux plans, de trois plans.
- * Déterminer une équation cartésienne d'une sphère.
- *Déterminer la section d'une sphère par un plan.
- * Déterminer les expressions analytiques d'une translation et d'une homothétie de l'espace.
- *Déterminer l'image d'un point, d'une droite d'un plan et d'une sphère par une translation ou une homothétie.
- *Déterminer les représentations paramétriques de l'image d'une droite, d'un plan ou d'une sphère par une translation ou une homothétie de l'espace.
- *Déterminer une équation cartésienne de l'image d'une droite, d'un plan ou d'une sphère par une translation ou une homothétie de l'espace.
- * Exploiter les propriétés d'une translation ou d'une homothétie pour étudier des configurations de l'espace.

Plan du chapitre:

I- Produit scalaire dans l'espace

II- Produit vectoriel

III- Droites de l'espace

Représentation paramétrique d'une droite de l'espace

Equation cartésienne d'une droite

Positions relatives de deux droites de l'espace

Distance d'un point à une droite

IV- Plans de l'espace

Equation d'un plan

Représentation paramétrique d'un plan

Equation cartésienne d'un plan

Distance d'un point à un plan

Intersections de deux plans, d'une droite et d'un plan de trois plans

V-Equation d'une sphère

VI- Position d'une sphère et d'un plan

VII-Translation

VIII- Homothétie de l'espace

Prof:Ben jedidia chokri Classe: 4 Math

Dans tout le chapitre, l'espace E est orienté dans le sens direct

I- Produit scalaire dans l'espace

Rappel

* Soit A, B et C des points. Le produit scalaire des vecteurs AB et AC est le réel défini par :

- \rightarrow AB AC = 0. si AB = 0 ou AC = 0.
- AB.AC = AB.AC.cos BAC, si $\overrightarrow{AB} \neq \overrightarrow{0}$ et $\overrightarrow{AC} \neq \overrightarrow{0}$.
- $\bullet \overrightarrow{AB} \cdot \overrightarrow{AB} = \overrightarrow{AB}^2 = \left\| \overrightarrow{AB} \right\|^2.$

Propriétés (rappel)

Pour tous vecteurs u, v et w de l'espace et tous réels α et β

$$\bullet \vec{u} . \vec{v} = \vec{v} . \vec{u}$$

$$\bullet \stackrel{\rightarrow}{u} \stackrel{\rightarrow}{(v+w)} = \stackrel{\rightarrow}{u} \cdot \stackrel{\rightarrow}{v+u} \cdot \stackrel{\rightarrow}{w}.$$

$$\bullet \left(\begin{array}{c} \rightarrow \\ \alpha. \ u \end{array} \right) . \begin{array}{c} \rightarrow \\ v = u . \end{array} \left(\begin{array}{c} \rightarrow \\ \alpha \ v \end{array} \right) = \alpha \left(\begin{array}{c} \rightarrow \\ u . \ v \end{array} \right) . \qquad \bullet \left(\begin{array}{c} \rightarrow \\ \alpha \ u \end{array} \right) \left(\begin{array}{c} \rightarrow \\ \beta \ v \end{array} \right) = \alpha \beta \left(\begin{array}{c} \rightarrow \\ u . \ v \end{array} \right) .$$

$$\bullet \left(\begin{array}{c} \rightarrow \\ \alpha \ u \end{array} \right) \left(\begin{array}{c} \rightarrow \\ \beta \ v \end{array} \right) = \alpha \beta \left(\begin{array}{c} \rightarrow \\ u \ . \ v \end{array} \right).$$

Rappel

Soit (0, i, j, k) un repère orthonormé de l'espace.

Pour tous vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$,

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz' \text{ et } \|\overrightarrow{u}\| = \sqrt{x^2 + y^2 + z^2}.$$

Pour tous points M (x, y, z) et M' (x', y', z'),

$$MM' = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}.$$

II- Produit vectoriel

* Soit A, B et C des points de l'espace. Le produit vectoriel de AB par AC est le vecteur noté $\overrightarrow{AB} \land \overrightarrow{AC}$ et défini comme suit :

- * si \overrightarrow{AB} et \overrightarrow{AC} colinéaires, alors $\overrightarrow{AB} \land \overrightarrow{AC} = \overrightarrow{0}$,
- * si AB et AC ne sont pas colinéaires, alors AB AC est orthogonal à AB et à AC
- $(AB, AC, AB \land AC)$ est une base directe,
- $\left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\| = AB.AC.\sin BAC.$

Propriété (rappel)

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs et α , β deux réels.

- $\bullet \quad \stackrel{\rightarrow}{u} \wedge \stackrel{\rightarrow}{u} = \stackrel{\rightarrow}{0}.$
- $\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}$ si et seulement si, \overrightarrow{u} et \overrightarrow{v} sont colinéaires ;

L'espace est muni d'une base orthonormé directe (i,j,k).

Pour tous vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$,

$$\overrightarrow{u} \wedge \overrightarrow{v} = (bc'-cb')\overrightarrow{i} + (ca'-ac')\overrightarrow{j} + (ab'-ba')\overrightarrow{k}$$

Propriété

L'espace est muni d'un repère orthonormé direct $(O, \dot{i}, \dot{j}, \vec{k})$.

*Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} ,

*L'aire du parallélogramme ABCD est égale à $\begin{vmatrix} \rightarrow & \rightarrow \\ AB \land AD \end{vmatrix}$.

Démonstration:

Aire(ABCD)=ABxDH .H projeté orthogonal de D sur (AB) =ABxADxsinBAD. = $\|\overrightarrow{AB} \wedge \overrightarrow{AD}\|$

*L'aire du triangle ABD est égale à $\frac{1}{2} \begin{vmatrix} \overrightarrow{AB} \land \overrightarrow{AD} \end{vmatrix}$.

Démonstration:

Aire(ABD)=
$$\frac{1}{2}$$
ABxDH .H projeté orthogonal de D sur (AB)
= $\frac{1}{2}$ ABxADxsinBAD.
= $\frac{1}{2} \|\overrightarrow{AB} \wedge \overrightarrow{AD}\|$

*Le volume V d'un tétraèdre ABCD est égal à $\frac{1}{6} \left| (\overrightarrow{BC} \land \overrightarrow{BD}) \cdot \overrightarrow{BA} \right|$.

Démonstration:

$$V = \frac{1}{3} Aire(BCD)xh$$
 (h hauteur)

Soit M le point tel que $\overrightarrow{BC} \wedge \overrightarrow{BD} = \overrightarrow{BM}$ et H projeté orthogonal de A sur (BM). D'ou :

$$V = \frac{1}{3} \cdot \frac{1}{2} \| \overrightarrow{BC} \wedge \overrightarrow{BD} \| xBH$$

$$= \frac{1}{6} \| \overrightarrow{BM} \| BH$$

$$= \frac{1}{6} | \overrightarrow{BM} \cdot \overrightarrow{BH} |$$

$$= \frac{1}{6} | \overrightarrow{BM} \cdot \overrightarrow{BH} |$$

$$= \frac{1}{6} | \overrightarrow{BM} \cdot \overrightarrow{BA} |$$

$$= \frac{1}{6} | (\overrightarrow{BC} \wedge \overrightarrow{BD}) \cdot \overrightarrow{BA} |$$

Théorème

Le volume d'un parallélépipède ABCDEFGH est égal à $(AB \land AD)$. AE

Démonstration:

Soit M le point tel que $\overrightarrow{AB} \wedge \overrightarrow{AD} = \overrightarrow{AM}$ et K projeté orthogonal de E sur (AM). D'ou : V=Aire(ABCD)xAK

$$V = \left\| \overrightarrow{AB} \wedge \overrightarrow{AD} \right\| xAK$$

$$= \|\overrightarrow{AM}\| AK$$

$$= \left| \overrightarrow{AM}.\overrightarrow{AK} \right|$$

$$= \left| \overrightarrow{AM}.\overrightarrow{AE} \right|$$

$$= \left| (\overrightarrow{AB} \wedge \overrightarrow{AD}).\overrightarrow{AE} \right|$$

III- Droites de l'espace

Représentation paramétrique d'une droite de l'espace

Soit A un point u un vecteur non nul et D la droite passant par A et de vecteur

directeur
$$\vec{u}$$
. Alors $D(A,\vec{u}) = \left\{ M; \overset{\rightarrow}{AM} = \overset{\rightarrow}{\alpha} \vec{u}, o\grave{u} \alpha \text{ est un r\'eel} \right\}$.

*Soit (O, i, j, k) un repère de l'espace.

Soit $A(x_0, y_0, z_0)$ et \vec{u} un vecteur non nul de coordonnées (a, b, c).

La droite Δ et de vecteur \vec{u} est l'ensemble des points M(x,y,z) tel que :

 $\overrightarrow{AM} = \overrightarrow{ku}$ avec k réel.

C'est-à-dire tels que
$$\begin{cases} x = x_0 + ka \\ y = y_0 + kb \\ z = z_0 + kc \end{cases}$$
 (k réel)

Ce système est appelé représentation paramétrique de Δ .

*Equations cartésiennes d'une droite

La droite Δ passant par $A(x_0, y_0, z_0)$ et de vecteur directeur \vec{u} .

Si les coordonnées de u sont tous non nuls on a :

$$M(x, y, z) \in \Delta(A, \vec{u}) \Leftrightarrow \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

ce sont les équations cartésiennes de Δ .

*Positions relatives de deux droites de l'espace

Soient $D(A, \vec{u})$ et $D((B, \vec{v}))$ deux droites de l'espace.

• Si
$$\vec{u}$$
 et \vec{v} sont colinéaires alors \vec{D} et \vec{D}' confondues \vec{D} et \vec{D}' strictement parallèles $(\vec{D} \cap \vec{D}' = \phi)$

*Distance d'un point à une droite

L'espace est muni d'un repère orthonormé direct $(O, \hat{i}, \hat{j}, \hat{k})$.

Distance d'un point à une droite

Définition

On appelle distance d'un point M à une droite D, la distance MH où H est le projeté orthogonal de M sur D. Cette distance est notée d (M, D).

Théorème

Soit D une droite de vecteur directeur u et A un point de D.

La distance d'un point M de l'espace à la droite D est le réel d (M, D) = $\frac{\left\|\overrightarrow{MA} \wedge \overrightarrow{u}\right\|}{\left\|u\right\|}.$

IV- Plans de l'espace

Equation d'un plan

Représentation paramétrique d'un plan

Soit A un point, \vec{u} et \vec{v} deux vecteurs non colinéaires et P le plan passant par A et de vecteurs directeurs \vec{u} et \vec{v} . Alors P $(A,\vec{u},\vec{v})=$ $\left\{M ; \det (\overset{\rightarrow}{AM},\vec{u},\vec{v})=0\right\}$.

L'espace est muni d'un repère orthonormé $(O, \hat{i}, \hat{j}, \hat{k})$.

Soit P le plan passant par $A(x_0, y_0, z_0)$ et dont un couple de vecteurs directeurs est

$$(\vec{u}, \vec{v})$$
 où $\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ et $\vec{v} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$

 $M(x,y,z) \in P(A,\vec{u},\vec{v}) \Leftrightarrow \overrightarrow{AM},\vec{u} \text{ et } \vec{v} \text{ sont coplanaires c'est-à-dire } \overrightarrow{AM} = \alpha \vec{u} + \beta \vec{v}$

$$\begin{cases} x = x_0 + \alpha a + \beta a' \\ y = y_0 + \alpha b + \beta b' \ (\alpha, \beta) \in R^2 \ \text{est une représentation paramétrique de P} \,. \\ z = z_0 + \alpha c + \beta c' \end{cases}$$

* Equation cartésienne d'un plan

- Tout plan de l'espace a une équation cartésienne vérifiant ax + by + cz + d = 0 avec $(a, b, c) \neq (0,0,0)$.
- L'ensemble des points M(x,y,z) de l'espace vérifiant ax + by + cz + d = 0 avec $(a,b,c) \neq (0,0,0)$. est un plan.
- Soit A un point, \vec{u} et \vec{v} deux vecteurs non colinéaires et P le plan passant par A et de vecteurs directeurs \vec{u} et \vec{v} .

$$M \in P(A, \overrightarrow{u}, \overrightarrow{v}) \Leftrightarrow det(\overrightarrow{AM}, \overrightarrow{u}, \overrightarrow{v}) = 0$$

* Vecteur d'un plan – Vecteur normal d'un plan

Soit P un plan dont une équation cartésienne est : ax + by + cz + d = 0

- Le vecteur $\overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \\ y \end{pmatrix}$ est un vecteur de $P \Leftrightarrow a\alpha + b\beta + cy = 0$
- Le vecteur \overrightarrow{n} $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur normal au plan P.
- Un vecteur normal de P est orthogonal à tout vecteur de P.
- Si u et v deux vecteurs non colinéaires de P alors u \(\lambda \) v est un vecteur normal à P.
- Si A est un point de P et \vec{n} un vecteur normal de P, On a : $M \in P \Leftrightarrow \overrightarrow{AM} \cdot \vec{n} = 0$

* Distance d'un point à un plan

Distance d'un point à un plan

L'espace est muni d'un repère orthonormé $(0, \hat{i}, \hat{j}, \vec{k})$.

soit un plan P d'équation ax + by + cz + d = 0 et A (x_0, y_0, z_0) un point de l'espace.

La distance de A à P est le réel, noté d (A, P), égal à $\frac{\left|ax_0 + by_0 + cz_0 + d\right|}{\sqrt{a^2 + b^2 + c^2}}$.

Démonstration:

On désigne par H le projeté orthogonal de A sur le plan et \vec{n} un vecteur normal à P

Alors
$$\begin{vmatrix} \vec{n} \cdot \vec{AH} \end{vmatrix} = \begin{vmatrix} \vec{n} \end{vmatrix} \begin{vmatrix} \vec{n} \end{vmatrix} \begin{vmatrix} \vec{AH} \end{vmatrix}$$
.

$$\vec{n} \cdot \vec{AH} = -(ax_A + by_A + cz_A + d)$$

d'où AH=
$$\frac{|ax_A+by_A+cz_A+d|}{\sqrt{a^2+b^2+c^2}}$$

* Intersections de deux plans, d'une droite et d'un plan et de trois plans

* Intersection de deux plans

Soient deux plans P et P' de vecteurs normaux \vec{n} et \vec{n} '.

- Si les vecteurs \vec{n} et $\vec{n'}$ sont colinéaires, alors les plans P et P' sont parallèles (soit strictement parallèles, soit confondus).
- Si les vecteurs \vec{n} et $\vec{n'}$ ne sont pas colinéaires, alors les plans P et P' sont sécants et leur intersection est une droite.

* Intersection d'une droite et d'un plan

Soit un plan P de vecteur normal \vec{n} , et une droite Δ de vecteur directeur \vec{u} .

- Si les vecteurs \vec{n} et \vec{u} sont orthogonaux, alors la droite Δ est parallèle au plan P.
- Si les vecteurs \vec{n} et \vec{u} ne sont pas orthogonaux, alors la droite Δ et le plan P sont sécants ; leur intersection est alors un singleton.

* Intersection de trois plans

L'intersection de trois plans est : - soit un singleton - soit une droite

- soit un plan - soit l'ensemble vide

V -Equation d'une sphère

L'espace est muni d'un repère orthonormé $(0, \hat{i}, \hat{j}, \vec{k})$.

Soit A un point, R un réel strictement positif et S la sphère de centre A et de rayon R. Alors $S = \{M; AM = R\}$.

• Soient A et B deux points distincts de l'espace. La sphère S de diamètre [AB] est l'ensemble des points M de l'espace tels que : $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$

VI- Position d'une sphère et d'un plan

Théorème

L'espace est muni d'un repère orthonormé $(0, \dot{i}, \dot{j}, \vec{k})$.

Soit S une sphère de centre A et de rayon R. Soit P un plan, h la distance de A à P et H le projeté orthogonal de A sur P. L'intersection de S et P est

- vide si h > r,
- réduire au singleton $\{H\}$ si h = R,
- le cercle de rayon $\sqrt{R^2 h^2}$ et de centre H si h < R

VII-Translation

1-Définition

Soit \vec{u} un vecteur de l'espace. L'application qui à tout point M de l'espace associe l'unique point M' tel que $\overset{\rightarrow}{MM'} = \vec{u}$ est appelée translation de vecteur \vec{u} et notée $t_{\vec{u}}$. Pour tous points M et M' de l'espace, $t_{\vec{u}}(M) = M'$ équivaut à $\overset{\rightarrow}{MM'} = \vec{u}$.

Théorème

Toute translation de l'espace de vecteur u est bijective.

Son application réciproque est la translation de vecteur $\stackrel{\rightarrow}{-}$ u.

Pour tous points M et N de l'espace, $N = t_{\vec{u}}(M)$ équivaut à $M = t_{-\vec{u}}(N)$.

2-Propriété caractéristique

Théorème

Une application de l'espace dans lui-même est une translation, si et seulement si, pour tous points M et N d'images respectives M' et N', $\stackrel{\rightarrow}{MN'} = \stackrel{\rightarrow}{MN}$.

Conséquences

- Toute translation de l'espace conserve la distance.
- Toute translation de l'espace conserve le produit scalaire.

3- Action d'une translation sur les configurations

Théorème

L'image d'une droite par une translation est une droite qui lui est parallèle.

L'image d'un plan par une translation est un plan qui lui est parallèle.

Conséquences

Toute translation conserve le parallélisme et l'orthogonalité.

Toute translation conserve le milieu.

Théorème

L'image d'une sphère S par une translation est une sphère S' de même rayon et de centre l'image du centre.

Définition

Une pyramide IABCD de sommet I est dite régulière si, sa base ABCD est un carré et le projeté orthogonal de I sur le plan (ABCD) est le centre du carré ABCD.

4- Expression analytique d'une translation

Théorème

L'espace est muni d'un repère (0, i, j, k).

• Soit $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur de l'espace.

Si M (x, y, z) est un point de l'espace et M' (x', y', z') est son image par

la translation de vecteur $\stackrel{\rightarrow}{u}$ alors $\begin{cases} x' = x + a \\ y' = y + b \\ z' = z + b \end{cases}$

• L'application qui à tout point M (x, y, z) associe le point M' (x', y', z') tel que

$$\begin{cases} x' = x + a \\ y' = y + b \text{ est la translation de vecteur } u & b \\ z' = z + b & c \end{cases}$$

VIII- Homothétie de l'espace

1- Définition

Soit I un point de l'espace et k un réel non nul. L'application qui à tout point M de l'espace associe l'unique point M' tel que $\overrightarrow{IM'} = k \overrightarrow{IM}$ est appelée homothétie de centre I et de rapport k, elle est notée $h_{(I,k)}$.

Pour tous points M et M' de l'espace, $h_{(I,k)}(M) = M'$ équivaut à $\overrightarrow{IM'} = k \overrightarrow{IM}$.

Théorème

Toute homothétie de centre I et de rapport non nul k est une bijection de l'espace et admet comme application réciproque l'homothétie de centre I et de rapport $\frac{1}{k}$.

Pour tous points M et N de l'espace, $N = h_{(I,k)}(M)$ équivaut à $M = h_{\left(I,\frac{1}{k}\right)}(N)$.

2- Propriété caractéristique

Théorème

Soit f une application de l'espace dans lui-même et k un réel non nul et différent de 1. f est une homothétie de rapport k, si et seulement si, pour tous points M et N d'images respectives M' et N' par f, $\overrightarrow{M'N'} = k \overrightarrow{MN}$.

Conséquence

Soit h une homothétie de l'espace de rapport k.

Pour tous points M et N d'images respectives M' et N' par h, M'N' = |k|MN.

3- Action d'une homothétie sur les configurations

Théorème

L'image d'une droite par une homothétie est une droite qui lui est parallèle.

L'image d'un plan par une homothétie est un plan qui lui est parallèle.

Théorème

L'image d'une sphère s de centre I et de rayon R par une homothétie de l'espace de rapport k est une sphère S' de centre I' image de I et de rayon |k|R.

Propriété

Toute homothétie de l'espace conserve le contact.

4- Expression analytique d'une homothétie

Théorème

L'espace est muni d'un repère orthonormé $(0, \dot{i}, \dot{j}, \vec{k})$.

• Soit un point I (a, b, c), k un réel non nul et différent de 1 et h l'homothétie de centre I et de rapport k.

Si M (x, y, z) est un point de l'espace et M' (x', y', z') est son image par h,

alors
$$\begin{cases} x' = kx + (1 - k) a \\ y' = ky + (1 - k) b \\ z' = kz + (1 - k) c \end{cases}$$

* L'application qui à tout point M (x, y, z) associe le point M' (x', y', z') tel que

$$\begin{cases} x' = kx + \alpha \\ y' = ky + \beta, \ k \neq 1 \ \text{ est l'homothétie de centre } \ I\left(\frac{\alpha}{1-k}, \frac{\beta}{1-k}, \frac{\delta}{1-k}\right) \text{ et de rapport } k. \\ z' = kz + \delta \end{cases}$$