II esercitazione di MATEMATICA APPLICATA

- **1.** a) Sia x = [-3, 5, 8, 0, 1, 5, -2, 4]
 - -imporre il 6° elemento uguale a 100
 - imporre il 1°, 2°, 3° elemento uguali rispettivamente a 5, 6, 7
 - -togliere il 4° elemento
 - -togliere con un solo comando dal 4° al 7° elemento compresi
 - aggiungere in testa 1, 2, 3
 - aggiungere in coda 10, 11, 12.
 - b) Sia A la matrice identità di dimensione 4x4
 - sostituire all'elemento (1,1) l'elemento (3,4)
 - aggiungere una colonna di elementi uguali ad 1 in testa
 - aggiungere una colonna di elementi uguali ad 1 in coda
 - aggiungere una riga di elementi uguali ad 4 in testa
 - aggiungere una riga di elementi uguali ad 4 in coda
 - togliere la 3a riga
 - togliere la 3a colonna
- **2.** Dopo aver definito il vettore x = [1:-0.1:0] spiegare il significato dei seguenti comandi Matlab:

$$>> x([1 2 5])=[0.5*ones(1,2) -0.3];$$

$$>> y=x(end:-1:1);$$

3. Usare le variabili e le operazioni vettoriali per osservare la convergenza in $\mathbb N$ delle successioni

$$\left(1+\frac{1}{n}\right)^n \to e$$
, $\frac{4n}{n+2} \to 4$, $\log\left(1+\sqrt{\frac{n}{n+1}}\right) \to \log 2$.

- 4. Osservare la convergenza nel calcolo dei limiti delle seguenti funzioni
 - $x \cdot (\sqrt{(x^2+1)}-x)$
 - $\bullet \quad x \cdot \sqrt{(x^2+1)} x^2$
 - $x/(\sqrt{(x^2+1)}+x)$
- 5. Utilizzare il comando diag per generare la matrice tridiagonale A di dimensione 9×9 i cui elementi della diagonale principale coincidono con -2 e quelli delle codiagonali con 1. Successivamente scambiare in A dapprima le righe 3 e 6, e di seguito, le colonne 1 e 4.

6. Definire la matrice

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{array} \right]$$

e comprendere il significato dei seguenti comandi Matlab:

```
>> size(A);
>> B=A.*A;
>> B=A*A;
>> B=A*A;
>> A(1:2,4),A(:,3),A(1:2,:),A(:,[2 4]),A([2 3 3]);
>> A(3,2)=A(1,1);
>> A(1:2,4)=zeros(2,1);
>> A(2,:)=A(2,:)-A(2,1)/A(1,1)*A(1,:);
```

7. Definire la matrice

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\ 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \end{bmatrix}$$

 $e\ successivamente$:

- a) generare le matrici S triangolare superiore e I triangolare inferiore i cui elementi non nulli coincidano con gli elementi omonimi di A; successivamente, porre tutti gli elementi della diagonale principale della matrice S uguali a 0 e quelli della matrice I uquali a 1;
- **b)** generare le matrici B_1 , B_2 e B_3 rispettivamente tridiagonale, bidiagonale superiore e bidiagonale inferiore, i cui elementi coincidano con gli elementi omonimi di A.
- 8. Al variare del parametro $p=10^{\alpha}$, con $\alpha=1:10$, calcolare mediante le note formula risolutive, le radici dell' equazione di quarto grado

$$x^4 - bx^2 + 1 = 0,$$

con $b=\frac{1+p^2}{p}$. In seguito, tradurre tali formule in istruzioni di assegnazione Matlab in una funzione matlab che ha α come parametro di input e le 4 soluzioni come output. Predisporre una tabella con gli errori relativi commessi da Matlab nel calcolo numerico delle radici dell'equazione assegnata. Motivare i risultati ottenuti.