1 Funções trigonométricas

Faremos agora uma breve revisão de alguns conceitos importantes;

• Ângulos: Os ângulos podem ser medidos em graus ou radianos (abreviado por rad). O ângulo dado por uma revolução completa tem 360° , que é o mesmo que 2π rad. Portanto, temos a relação

$$\pi \text{ rad} = 180^{\circ}.$$

A tabela a seguir fornece a correspondência entre medidas em graus e em radianos de alguns ângulos.

Graus	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°	720°
Radianos	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π	4π

• A posição padrão de um ângulo: Um ângulo positivo é obtido girando-se o lado inicial no sentido anti-horário até que ele coincida com o lado final, como na figura 3. Da mesma forma, ângulos negativos são obtidos girando-se no sentido horário, como na figura 4.

• Abaixo temos uma figura com alguns exemplos:

• Construção das funções trigonométricas: As funções trigonométricas seno, cosseno e tangente são definidas como razões entre as projeções do comprimento dos lados de um triângulo retângulo. Para tanto, considere uma circunferência centrada na origem com raio igual a 1.

1

$$\sin(x) = \frac{\text{cateto oposto}}{\text{hipotenusa}} = \overline{PR}$$

$$\cos(x) = \frac{\text{cateto adjacente}}{\text{hipotenusa}} = \overline{OR}$$

$$\tan(x) = \frac{\text{cateto oposto}}{\text{cateto adjacente}} = \frac{\overline{PR}}{\overline{OR}}$$

De modo geral, temos que para um ângulo qualquer $x \in \mathbb{R}$, definimos $\cos x$ como sendo o valor da primeira coordenada do ponto P e definimos $\sin x$ como sendo o valor da segunda coordenada do ponto P, ou seja:

Para um ângulo qualquer, $x \in \mathbb{R}$, temos que $P = (\cos x, \sin x)$.

Exemplos:

Exemplo: Abaixo fornecemos alguns valores respectivamente de senx e cos x:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sen x	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

• Identidades Trigonmétricas: Uma identidade trigonométrica é uma relação entre as funções trigonométricas. As mais elementares são dadas a seguir.

$$cossec x = \frac{1}{cong}$$

$$\csc x = \frac{1}{\sin x} \qquad \sec x = \frac{1}{\cos x}$$

$$tgx = \frac{senx}{cos x}$$

$$\cot gx = \frac{1}{tgx}$$

• Abaixo apresentamos mais algumas identidades trigonométricas:

$$i) \quad \sin^2 x + \cos^2 x = 1$$

vii)
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

ii)
$$tg^2x + 1 = sec^2 x$$

iii)
$$1 + \cot^2 x = \csc^2 x$$

viii)
$$\operatorname{sen}^2 x = \frac{1 - \cos 2x}{2}$$

iv)
$$sen(-x) = -senx$$

$$v) \cos(-x) = \cos x$$

ix)
$$\sin 2x = 2 \sin x \cos x$$

vi)
$$\cos(x+2\pi) = \cos x$$
 e $\sin(x+2\pi) = \sin x$ x) $\cos 2x = \cos^2 x - \sin^2 x$

$$x) \cos 2x = \cos^2 x - \sin^2 x$$

2 Exercícios

1) Converta de graus para radianos os seguintes ângulos.

b)
$$-150^{\circ}$$

2) Determine em qual quadrante se encontra o seguinte ângulo.

b)
$$-150^{\circ}$$

c)
$$-\frac{3\pi}{4}$$
 rad d) -3 rad

$$d$$
) -3 rad

3) Encontre o valor de x no intervalo $[0, 2\pi]$ que satisfaçam a equação:

a)
$$2\cos x - 1 = 0$$

d)
$$sen x = tgx$$

b)
$$2 \sin^2 x = 1$$

e)
$$| tgx | = 1$$

c)
$$\sin 2x = \cos x$$

f)
$$2\cos x + \sin 2x = 0$$

4) Determine todos os valores de x no intervalo $[0, 2\pi]$ que satisfaçam a desigualdade:

a) $\operatorname{sen} x \le \frac{1}{2}$

- b) $2\cos x + 1 \ge 0$
- c) sen x > cos x

- 5) Faça um esboço do gráfico das seguintes funções:
 - a) $f(x) = \operatorname{sen}(2x)$
 - $f(x) = \cos(x) + 1$
 - c) $f(x) = |\sin(x)|$

- $d) f(x) = -\operatorname{tg} x$
- e) $f(x) = \cos(x + 2\pi)$
- f) $f(x) = 3\operatorname{sen}(x)$

3 Respostas

- 1) a) $\frac{7\pi}{4}$ b) $-\frac{5\pi}{6}$
- c) 5π
- d) $\frac{\pi}{5}$

- 2) a) 4° b) 3°
- c) 3° d) 3°
- e) 2°

- 3) a) $S = \left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$
 - b) $S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$
 - c) $S = \left\{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2} \right\}$

- d) $S = \{0, \pi, 2\pi\}$
- e) $S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$
- f) $S = \left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\}$
- 4) a) $S = \left[0, \frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6}, 2\pi\right]$ b) $S = \left[0, \frac{2\pi}{3}\right] \cup \left[\frac{4\pi}{3}, 2\pi\right]$ c) $S = \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$

