第六章 向量空间的正交性

- 6.3 向量空间的内积
- 6.4 实对称矩阵的对角化

6.4实对称矩阵的相似对角化

- 一、共轭矩阵
- 二、实对称矩阵的特征值特征向量
- 三、实对称矩阵的构似对角化
- 回、综合例题

一、共轭矩阵

设
$$A = (a_{ij})_{m \times n}$$
 , $a_{ij} \in C$ (C 为复数集).
$$\overline{A} = (\overline{a_{ij}})_{m \times n}$$
 称为 A 的 共轭矩阵.

共轭矩阵具有以下性质:

$$(1) \ \overline{A^{\mathrm{T}}} = \overline{A}^{\mathrm{T}},$$

(2)
$$\overline{kA} = \overline{k} \overline{A}$$
,

(3)
$$\overline{AB} = \overline{A} \overline{B}$$
.

二、 实对称矩阵的特征值与特征向量.

定理3 实对称矩阵的特征值都是实数

证 设
$$A \in \mathbb{R}^{n \times n}$$
, $A^{\mathrm{T}} = A$, $A\alpha = \lambda \alpha$,
$$\alpha = (a_1, a_2, \mathbf{L}, a_n)^{\mathrm{T}} \neq \mathbf{0}.$$

则 $\overline{A\alpha} = \overline{A\alpha} = \overline{\lambda\alpha} = \overline{\lambda\alpha}$, (两边求共轭)

$$\therefore \quad \overline{\alpha}^{T} \overline{A}^{T} = \overline{\lambda} \overline{\alpha}^{T}, \quad (上式两边转置)$$

$$\overline{\alpha}^{T} A \alpha = \overline{\lambda} \overline{\alpha}^{T} \alpha, \quad (L式两边右乘\alpha)$$

$$\lambda \overline{\alpha}^{T} \alpha = \overline{\lambda} \overline{\alpha}^{T} \alpha,$$

$$(\lambda - \overline{\lambda}) \overline{\alpha}^{T} \alpha = 0,$$

$$\mathbf{Q} \ \overline{\alpha}^{\mathrm{T}} \alpha = \overline{a_1} a_1 + \overline{a_2} a_2 + \mathbf{L} + \overline{a_n} a_n \neq \mathbf{0},$$

$$\therefore \lambda = \overline{\lambda}$$
.

推论 实对称矩阵 A 的特征向量都是实向量.

这是因为A的特征向量都是

$$(\lambda_i I - A)x = 0$$

的非零解向量,而 A 的特征值 λ_i 是实数.

定理4 实对称矩阵不同特征值的特征向量相互正交.

注意 一般实矩阵不同特征值的特征向量线性无关

定理4 实对称矩阵不同特征值的特征向量相互正交

证

设
$$A\alpha_1 = \lambda_1\alpha_1, \quad A\alpha_2 = \lambda_2\alpha_2,$$

$$(\lambda_1 \neq \lambda_2, \quad \alpha_1 \neq 0, \quad \alpha_2 \neq 0).$$

$$\lambda_1 \alpha_1^{\mathrm{T}} \alpha_2 = (\lambda_1 \alpha_1)^{\mathrm{T}} \alpha_2 = (A \alpha_1)^{\mathrm{T}} \alpha_2 = \alpha_1^{\mathrm{T}} A^{\mathrm{T}} \alpha_2$$
$$= \alpha_1^{\mathrm{T}} A \alpha_2^{\mathrm{T}} = \alpha_1^{\mathrm{T}} \lambda_2 \alpha_2 = \lambda_2 \alpha_1^{\mathrm{T}} \alpha_2^{\mathrm{T}},$$

$$\therefore (\lambda_1 - \lambda_2) \alpha_1^{\mathrm{T}} \alpha_2 = 0,$$

$\mathbf{Q} \quad \lambda_1 - \lambda_2 \neq 0 \;,$

$$\therefore (\alpha_1, \alpha_2) = \alpha_1^T \alpha_2 = 0.$$

三、实对称矩阵的相似对角化

定理5 对任一实对称矩阵 A, 都存在正交矩阵 C, 使

$$C^{\mathrm{T}}AC = C^{-1}AC = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \mathbf{O} \\ & & \lambda_n \end{pmatrix}$$

其中, $\lambda_1, \lambda_2, L, \lambda_n$ 是矩阵A的特征值.

引理 设A是实对称矩阵, λ 是A的k重特征值,

则 1 所对应的线性无关特征向量的个数恰为 k.

求正交矩阵C与对角矩阵 Λ 的步骤:

- $(1) 求 f(\lambda) = |\lambda I A| 的根: \lambda_1, \lambda_2, L, \lambda_n;$
- (2) 求 $(\lambda_i I A)x = 0$ 的基础解系: $\alpha_{i1}, \alpha_{i2}, L, \alpha_{ir_i}$;
- (3) 将 α_{i1} , α_{i2} , L, α_{ir_i} 先正交化后单位化得: γ_{i1} , γ_{i2} , L, γ_{ir_i} ;
- (4) 令 $C = (\gamma_{11} \mathbf{L} \ \gamma_{1r_1} \mathbf{L} \ \gamma_{k1} \mathbf{L} \ \gamma_{kr_k})$, 则 C 为正交矩阵且

$$C^{\mathrm{T}}AC = C^{-1}AC = \Lambda = diag(\lambda_1, \lambda_2, L, \lambda_n).$$

例1
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,求正交矩阵 C 与对角

矩阵 Λ ,使 $C^{T}AC = C^{-1}AC = \Lambda$.

$$|\mathcal{A}I - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 10)$$

$$\lambda_1 = 1$$
 (二重), $\lambda_2 = 10$.

求 $\lambda_{i} = 1$ 的特征向量:

$$\lambda_{1}I - A = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = -2x_2 + 2x_3 ,$$

下求正交基础解系:

令
$$\alpha_1 = (-2, 1, 0)^T$$
, $\alpha_2 = (2, 0, 1)^T$.
将 α_1 , α_2 正交化: $\beta_1 = \alpha_1 = (-2, 1, 0)^T$,
$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{5} (2, 4, 5)^T.$$

或直接取:
$$\beta_1 = \left(-2, 1, 0\right)^{\mathrm{T}}$$
,

或直接取:
$$\beta_1 = (-2, 1, 0)^T$$
, $\beta_2 = \left(1, 2, \frac{5}{2}\right)^T$.

再将 β_1 , β_2 单位化:

$$\gamma_1 = \frac{1}{|\beta_1|} \beta_1 = \frac{1}{\sqrt{5}} (-2, 1, 0)^T, \ \gamma_2 = \frac{1}{|\beta_2|} \beta_2 = \frac{1}{\sqrt{45}} (2, 4, 5)^T.$$

求 $\lambda_2 = 10$ 的特征向量:

$$\lambda_2 I - A = \begin{pmatrix} 8 & -2 & 2 \\ -2 & 5 & 4 \\ 2 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = -\frac{1}{2}x_3$$
, $x_2 = -x_3$, $\alpha_3 = (1, 2, -2)^T$.

将
$$\alpha_3$$
 单位化: $\gamma_3 = \frac{1}{|\alpha_3|} \alpha_3 = \frac{1}{\sqrt{5}} (1, 2, -2)^T$.

$$\diamondsuit \ C = (\gamma_1 \ \gamma_2 \ \gamma_3) = \begin{bmatrix} -\frac{2}{\sqrt{5}} & \frac{2}{3\sqrt{5}} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & \frac{2}{3} \\ 0 & \frac{5}{3\sqrt{5}} & -\frac{2}{3} \end{bmatrix},$$

则 C 为正交矩阵且:

$$C^{T}AC = C^{-1}AC = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 10 \end{pmatrix}.$$

例2 求 a, b 的值与正交矩阵 C, 使 $C^{-1}AC = \Lambda$ 为对角矩阵, 其中

$$A = egin{pmatrix} 1 & b & 1 \ b & a & 1 \ 1 & 1 & 1 \end{pmatrix}, \qquad \Lambda = egin{pmatrix} 0 & & & \ & 1 & & \ & 4 \end{pmatrix}.$$

解: A 与对角阵A相似

$$\therefore \operatorname{tr}(A) = \operatorname{tr}(A) \implies 1 + a + 1 = 0 + 1 + 4$$
$$\implies a = 3.$$

$$|A| = |A| \Rightarrow \begin{vmatrix} 1 & b & 1 \\ b & 3 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 \Rightarrow b = 1.$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 4.$$

求 $\lambda_1 = 0$ 的特征向量:

$$\lambda_{1}I - A = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \\ -1 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

可得 $\lambda_1 = 0$ 的特征向量为 : $\alpha_1 = (1,0,-1)^T$,同样可得 $\lambda_2 = 1$ 的特征向量为 : $\alpha_2 = (1,-1,1)^T$ $\lambda_3 = 4$ 的特征向量为 : $\alpha_3 = (1,2,1)^T$.

将 $\alpha_1, \alpha_2, \alpha_3$ 单位化:

$$\gamma_1 = \frac{1}{|\alpha_1|} \alpha_1 = \frac{1}{\sqrt{2}} (1, 0, -1)^T,$$

$$\gamma_2 = \frac{1}{|\alpha_2|} \alpha_2 = \frac{1}{\sqrt{3}} (1, -1, 1)^{\mathrm{T}},$$

$$\gamma_3 = \frac{1}{|\alpha_3|} \alpha_3 = \frac{1}{\sqrt{6}} (1, 2, 1)^{\mathrm{T}}.$$

令
$$C = (\gamma_1 \ \gamma_2 \ \gamma_3)$$
,则 C 为正交矩阵且
$$C^{-1}AC = diag(0,1,4).$$

例3 实对称矩阵 A 与 B 相似

⇔ A 与 B 有相同的特征值.

证: ⇒: 相似矩阵有相同的特征值.

 \leftarrow : 设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是A与B的特征值,则

矩阵相似
$$A \sim \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \sim B ,$$

由矩阵相似的传递性可得:

$$A \sim B$$
.

- 例4 设n阶非零方阵A满足 $A^2 = 0$. 证明: A不能与任何对角矩阵相似.
- 证: (反证法) 假设 A 与对角阵 Λ 相似,即存在可逆矩阵 P,有 $P^{-1}AP = \Lambda$,其中 Λ 为对角阵.

$$\Rightarrow A = P \Lambda P^{-1}$$

$$\Rightarrow A^2 = (P \Lambda P^{-1})^2 = P \Lambda^2 P^{-1} = 0$$

$$\Rightarrow \Lambda^2 = 0$$

$$\Rightarrow \Lambda = 0$$

$$\Rightarrow A = P\Lambda P^{-1} = 0$$

这与 A 为非零方阵矛盾.

四、综合例题(第六、七章)

例1 设n 阶矩阵A 的任何一行元素的和都是a, 求A 的一个特征值与特征向量

解设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

则
$$a_{i1} + a_{i2} + \cdots + a_{in} = a$$

取 $\alpha = (1, 1, \dots, 1)^T$,则

$$A\alpha = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + a_{12} + \cdots + a_{1n} \\ a_{21} + a_{22} + \cdots + a_{2n} \\ \vdots \\ a_{n1} + a_{n2} + \cdots + a_{nn} \end{pmatrix} = \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix},$$

 $\lambda = a$ 是 A 的一个特征值, $\alpha = (1, 1, \dots, 1)^{T}$ 是 A 的一个特征向量. 例2 设 3 阶实对称矩阵 A 的特征值是 1, 2, 3, A 对应于特征值 1, 2 的特征向量分别是:

$$\alpha_1 = (-1, -1, 1)^T, \quad \alpha_2 = (1, -2, -1)^T.$$

- 求 (1) A 对应于特征值 3 的特征向量,
 - (2) 求矩阵A.
- 解 (1)设A对应于3的特征向量是:

设
$$\alpha_3 = (x_1, x_2, x_3)^T$$
,

$$\Rightarrow \begin{cases} (\alpha_1, \alpha_3) = -x_1 - x_2 + x_3 = 0 \\ (\alpha_2, \alpha_3) = x_1 - 2x_2 - x_3 = 0, \end{cases}$$

$$\Rightarrow$$
 α₃ = $(1,0,1)^{T}$ $\notin k_3$ α₃ = $(1,0,1)^{T}$ $(k_3 ≠ 0)$.

送
$$P = (\alpha_1 \ \alpha_2 \ \alpha_3) = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
,则

$$P^{-1}AP = \Lambda = \text{diag}(1, 2, 3), \qquad A = P\Lambda P^{-1}.$$

$$P^{-1} = \frac{1}{6} \begin{pmatrix} -2 & -2 & 2 \\ 1 & -2 & -1 \\ -3 & 0 & 3 \end{pmatrix},$$

$$A = P\Lambda P^{-1} = \dots = \frac{1}{6} \begin{bmatrix} 13 & -2 & 5 \\ -2 & 10 & 2 \\ 5 & 2 & 13 \end{bmatrix}.$$

$$C^{\mathrm{T}}AC = C^{-1}AC = \Lambda = \mathrm{diag}(1, 2, 3),$$

$$A = C\Lambda C^{-1} = C\Lambda C^{\mathrm{T}} \cdots = \frac{1}{6} \begin{bmatrix} 13 & -2 & 5 \\ -2 & 10 & 2 \\ 5 & 2 & 13 \end{bmatrix}.$$

例3 设 A 是 3 阶矩阵且 I + A, 3I-A, I-3A 均不可逆.证明:

(1) A可逆, (2) A与对角矩阵相似.

证 (1) ::
$$I + A$$
 不可逆, :: $|I + A| = 0$,

$$\therefore \left(-1\right)^{3}\left|-I-A\right|=0 \Rightarrow \left|-I-A\right|=0,$$

$$\therefore \lambda_1 = -1$$
 是 A 特征值.

由
$$|3I-A|=0 \Rightarrow \lambda_2=3$$
是 A 的特征值.

$$\pm \left| I - 3A \right| = 3^3 \left| \frac{1}{3}I - A \right| = 0 \Rightarrow \left| \frac{1}{3}I - A \right| = 0,$$

$$\lambda_3 = \frac{1}{3}$$
是 A 的特征值.

A的特征值均不为零,故A可逆.

(2) : A的特征值都是单特征值, $\therefore A <table-cell> = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ 相似.

例4 设 A 是 3 阶矩阵, A^{-1} 的特征值是 1, 2, 3, 求 A^* 的特征值.

解
$$AA^* = A^*A = |A|I$$
 $\Rightarrow A^* = |A|A^{-1}$ 设 $A^{-1}\alpha = \lambda \alpha$, $(\alpha \neq 0, \lambda \neq A^{-1})$ 的特征值.) 则 $A^*\alpha = \lambda |A|\alpha$,

- $: A^{-1}$ 的特征值是:1,2,3,
- $\therefore |A^{-1}| = 6 \Rightarrow |A| = \frac{1}{6}$
- ∴ A^* 的特征值是: $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{2}$.

例5 设 $\lambda_1 = 12$ 是 矩阵 A 的特征值,

$$A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & a & 4 \end{pmatrix}$$

求A的其余特征值.

$$|A| |A| = |12I - A| = \begin{vmatrix} 5 & -4 & 1 \\ -4 & 5 & 1 \\ 4 & -a & 8 \end{vmatrix} = 9a + 36 = 0$$

解得 $\alpha = -4$.

$$A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{pmatrix}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33} = 7 + 7 + 4 = 18$$

$$\lambda_1 \lambda_2 \lambda_3 = |A| = \begin{vmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{vmatrix} = 108,$$

$$12 + \lambda_2 + \lambda_3 = 18$$
$$12\lambda_2\lambda_3 = 108 \quad ,$$

得
$$\lambda_2 = \lambda_3 = 3$$
.