Dimension-reduced Interior Point Method

Discussion 8

September 22, 2022

Potential reduction

- Working on C transformation
- The warm-start Lanczos improves by 20% in speed

The solver is designed for solving general problem

with smooth convex $f(\mathbf{x})$ via potential reduction

$$\phi(\mathbf{x}) := \rho \log(f(\mathbf{x}) - z) + \sum_{i=1}^{n} \log(x_i)$$

- A general framework exploiting curvature in potential reduction
- HSD embedding stands for $\mathbf{A} = \mathbf{e}^{\top}, \mathbf{b} = 1$ and $f(\mathbf{x}) = \frac{1}{2} \|\hat{\mathbf{A}}\mathbf{x}\|^2$

Recall that

$$\lambda_{\min}(\mathbf{X}\nabla^2\phi(\mathbf{x})\mathbf{X}) \leq \frac{-2\rho}{\|\mathbf{X}^{-1}(\mathbf{x}^* - \mathbf{x})\|^2} + 1.$$

- If $x_i \to 0$ while $x_i^* x_i \neq 0$, then the curvature is harder to find In other words, centrality matters when exploiting the curvature $x_i + \alpha d_i \to 0^+$ makes next curvature hard to detect
- In practice, we now let line-search go less aggressively to ensure centrality ρ is also adjusted to balance centrality and optimality

HDSDP

Now integrating HDSDP into the next COPT release