

پایگاه داده ها

فصل ششم: وابستگی ها

مدرس: فرشید شیرافکن

دانشجوی دکتری دانشگاه تهران

(کارشناسی و کارشناسی ارشد: کامپیوتر نرم افزار) (دکتری: بیو انفورماتیک)

انواع وابستگی ها

- ۱- وابستگی تابعی (FD)
- ر (FFD) کامل (FFD) کامل (FFD)
 - ۳- وابستگی با واسطه (TD)
- ۴- وابستگی تابعی چند مقداری (MVD)
 - ابستگی پیوندی (JD)

FD: Function Dependency

FFD: Full Function Dependency

TD: Transitive Dependency

MVD: Multi Value Dependency

JD : Join Dependency

وابستگی تابعی

رابطه R (A , B , ...) را در نظر بگیرید.

 $A \to B$ می گوییم B با A وابستگی تابعی (FD) دارد و نشان می دهیم

اگر و فقط اگر در هر مقدار ممکن از متغیر رابطه R، به هر مقدار A ، فقط یک مقدار B متناظر باشد.

A	B	C
3	2	1.
8	7	2
9	7	3
3	2	4

A با B وابستگی تابعی دارد:

A	В
1	4
1	5
3	7

$$B \rightarrow A$$

اگر A کلید اصلی رابطه (C, B, C) باشد، در اینصورت هر صفت خاصه دیگر رابطه با A دارای وابستگی تابعی است:

A	В	C
1	5	3
1	7	8
2	7	9
2	5	3

$$\begin{array}{c} (A,B) \rightarrow C_{1} S \cdot O_{1} S \\ A_{1} A_{2} A_{3} A_{4} A_{5} A$$

وابستگی تابعی کامل(FFD)

X با X و زیر مجموعه از مجموعه عنوان رابطه X باشند، می گوییم X با X وابستگی تابعی کامل دارد و نشان می دهیم: $X \Rightarrow Y$ ،

اگر و فقط اگر ۲ با X وابستگی تابعی (FD) داشته باشد ولی با هیچ زیر مجموعه از X وابستگی تابعی نداشته باشد.

بدیهی است اگر سمت چپ FD صفت ساده باشد، وابستگی FFD خواهد بود.

وابستگی تابعی C به (A,B)، کامل نمی باشد:

S#	P #	QTY
S1	P1	100
S2	P2	400
S3	P6	100
S4	P2	300
S4	P5	400

$$(S#, P#) \Rightarrow QTY$$

وابستگی با واسطه

رابطه (A,B,C) R مفروض است. اگر B با A داشته باشد و کنیز با FD , B داشته باشد ، ولی A با B داشته باشد، می گوییم C با A، وابستگی با واسطه دارد.

$$(A \rightarrow B)$$

$$(\mathbf{B} \to \mathbf{C})$$

تذکر: اگر در تعریف بالا A با B وابستگی تابعی داشته باشد، وجود نوعی وابستگی بین C و A طبیعی و محرز است و موجب آنومالی نخواهد بود.

برای از بین بردن این وابستگی، رابطه را تجزیه می کنیم:

R2 (B,C)

R1 (A,B)

قواعد استنتاج آرمسترانگ

با فرض اینکه D, C, B, A زیر مجموعه هایی از صفات رابطه R باشند، قواعد زیر برقرارند:

$A{ ightarrow}B$ اگر $B \subseteq A$ آنگاه:	انعكاسي
$A \rightarrow C$ و $B \rightarrow C$ و $A \rightarrow B$ انگاه: $A \rightarrow B$	تعدی (تراگذاری)
اگر A→B آنگاه: AC →BC	افزایش
$A { ightarrow} C$ اگر $A { ightarrow} B C$ آنگاہ: $A { ightarrow} B C$ و	تجزيه
$A \rightarrow BC$ آنگاه: $A \rightarrow C$ و $A \rightarrow B$	اجتماع
$AC \rightarrow BD$ آنگاه: $A \rightarrow B$ و $C \rightarrow D$	تر کیب
اگر CB→D و AC→D آنگاه: AC→D	شبه تعدی

 $A \longrightarrow C$ آنگاه: $A \longrightarrow C$ اگر $A \longrightarrow B$

تعیین مجموعه حداقل وابستگی ها:

$$F = \{ S\# \longrightarrow CITY , CITY \longrightarrow STATUS , S\# \longrightarrow STATUS \}$$

حل:

وابستگی سوم از دو وابستگی دیگر منطقاً قابل استنتاج است و می توان آن را ذکر نکرد.

$$F_{opt} = \{ S\# \longrightarrow CITY , CITY \longrightarrow STATUS \}$$

مثاز

$$R = \{u, v, w, y, z\}$$

$$F = \{ u \longrightarrow xy, x \longrightarrow y, xy \longrightarrow zv \}$$

$$u \longrightarrow xy \implies u \longrightarrow x, u \longrightarrow y$$

$$u\longrightarrow xy$$
, $xy\longrightarrow zv\Rightarrow u\longrightarrow zv\Rightarrow u\longrightarrow z$, $u\longrightarrow v$

$$x \longrightarrow xy, xy \longrightarrow zv \implies x \longrightarrow zv \implies x \longrightarrow z, x \longrightarrow v$$

بنابراین بستار f برابر است با :

$$\{u \longrightarrow x, u \longrightarrow y, u \longrightarrow z, u \longrightarrow v, x \longrightarrow z, x \longrightarrow v, x \longrightarrow y\}$$

که $v \to z$, $u \to y$, $u \to z$, ون از رابطه های دیگر می توان آنها را بدست آورد. پس v کمینه برابر است با:

F opt=
$$\{u \longrightarrow x, x \longrightarrow z, x \longrightarrow v, x \longrightarrow y\}$$

تعیین مجموعه حداقل وابستگی ها:

حل:

کمینه سازی:

پیدا کردن کلید کاندید FaraDars.org

کلید کاندید

کلید کاندید ، صفتی است که از طریق آن به همه صفت های دیگر می توان رسید.

FaraDars.org

$$R = (S, T, U, V, W)$$

$$F = \{ S \rightarrow T, V \rightarrow SW, T \rightarrow U \}$$

$$V \rightarrow SW \Rightarrow V \rightarrow S, V \rightarrow W$$

$$V \rightarrow S$$
, $S \rightarrow T \Rightarrow V \rightarrow T$

$$V \rightarrow T$$
, $T \rightarrow U \Rightarrow V \rightarrow U$

تعیین کلید کاندید رابطه:

حل:

، همه صفت ها را می دهد، یعنی کلید کاندید است. ${f V}$

Dars.org

$$R=(A,B,C,D,E,F)$$

تعیین کلید کاندید رابطه:

$$\{A \rightarrow BE, C \rightarrow F, B \rightarrow C, B \rightarrow E, DB \rightarrow E, A \rightarrow D\}$$

$$\mathbf{A} \to \mathbf{B}\mathbf{E} \Rightarrow \begin{cases} \mathbf{A} \to \mathbf{B} \\ \mathbf{A} \to \mathbf{E} \end{cases}$$

$$B \to C, C \to F \Rightarrow B \to F$$

$$A \rightarrow E$$

$$B \rightarrow C, C \rightarrow F \Rightarrow B \rightarrow F$$

$$A \rightarrow B, B \rightarrow F \Rightarrow A \rightarrow F$$

$$A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$$

$$A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$$

صفت A همه صفت های دیگر را می دهد ، بنابراین کلید کاندید است.

R=(A,B,C,D,E,F,G)

$$F = \{ABD \rightarrow EG, C \rightarrow DG, E \rightarrow FG, AB \rightarrow C, G \rightarrow F\}$$

حل:

تعیین کلید کاندید رابطه:

$$AB \rightarrow C
C \rightarrow D
C \rightarrow D
C \rightarrow G
C \rightarrow F$$

$$AB \rightarrow D
AB \rightarrow G
AB \rightarrow G
AB \rightarrow F
AB \rightarrow F$$

$$\left. \begin{array}{c}
ABD \to EG \\
AB \to D
\end{array} \right\} \Rightarrow AB \to EG \Rightarrow \begin{cases}
AB \to E \\
AB \to G
\end{cases}$$

AB همه صفت ها را می دهد پس کلید کاندید است.

R=(A,B,C,D,E,F,G)

$$F = \{AF \rightarrow BE, FC \rightarrow DE, F \rightarrow CD, D \rightarrow E, C \rightarrow A\}$$

$$AF \rightarrow BE \implies AF \rightarrow B$$
, $AF \rightarrow E$

$$FC \rightarrow DE \implies FC \rightarrow D$$
, $FC \rightarrow E$

$$F \rightarrow CD \Rightarrow F \rightarrow C, F \rightarrow D$$

$$F \rightarrow C$$
 , $FC \rightarrow E$ \Rightarrow $F \rightarrow E$

$$F \rightarrow C$$
, $C \rightarrow A \Rightarrow F \rightarrow A$

$$F \rightarrow A$$
, $AF \rightarrow B \Rightarrow F \rightarrow B$

F همه صفتها به جزء G را می دهد ، بنابراین (F,G) کلید کاندید است.

R=(U,V,W,X,Y,Z,O,P,Q)

رسم نمودار وابستگی تابعی:

 $F_{\tiny{opt}} = \{\, U \!\rightarrow\! V\,,\, U \!\rightarrow\! X\,,\, U \!\rightarrow\! Q\,,\, OQ \!\rightarrow\! Y\,,\, OQ \!\rightarrow\! Z\,,\, UP \!\rightarrow\! Y\,,\, UP \!\rightarrow\! O\,,\, UP \!\rightarrow\! Z\,\}$

وابستگی چند مقداری (MVD)

MVD: Multi Value Dependency

وابستگی چند مقداری (MVD)

FaraDars.org

در رابطه (X,Y,Z) ها با صفات ساده یا مرکب X,Y,Z می گوییم که Y با X وابستگی تابعی چند مقداری دارد و نمایش می دهیم: $Y \leftarrow X \rightarrow Y$ اگر به یک مقدار X مجموعه ای از مقادیر Y متناظر باشد.

 $course \rightarrow \rightarrow teacher$

course	teacher	book
database	shirafkan	Silberschatz
database	shirafkan	C.J. Date
database	rasti	Silberschatz
database	rasti	C.J. Date
database	akbari	Silberschatz
database	akbari	C.J. Date
OS	shirafkan	Stallings
OS	shirafkan	Tanenbaum
os	hasani	Stallings
os	hasani	Tanenbaum

 $course \rightarrow \rightarrow book$

تجزيه

course	teacher		course	book
database	shirafkan		database	Silberschatz
database	rasti	ر س	database	C.J. Date
database	akbari		os	Stallings
OS	shirafkan		OS	Tanenbaum
os	hasani		15.	0,20
	Far	al		

course	book
database	Silberschatz
database	C.J. Date
os	Stallings
os	Tanenbaum

راه سریع تشخیص وابستگی چند مقداری

در دو تاپل که مقدار صفت X آنها برابر است، اگر جای Y ها را عوض کنیم ، دو تاپل حاصل باید در رابطه باشند:

	course	teacher	book
others	database	shirafkan	Silberschatz
()^	database	shirafkan	C.J. Date
	database	rasti	Silberschatz
	database	rasti	C.J. Date
	database	akbari	Silberschatz
Fara	database	akbari	C.J. Date
	os	shirafkan	Stallings
	os	shirafkan	Tanenbaum
	os	hasani	Stallings
	os	hasani	Tanenbaum

تعريف

در رابطه R (A,B,C) داریم: R (A,B,C) در رابطه R (A,B,C) در رابطه R (A,B,C) داریم: R به طریقی به مقادیر R وابسته باشد که به R ارتباطی پیدا نکند.

sname	prof	loan	date
حميد	حق جو	مسكن	١٣٨١
حميد	حق جو	ضرورى	1777
حميد	جاهد	مسكن	14.71
حميد	جاهد	ضرورى	١٣٨٣
حميد	حق جو	ضرورى	1774

sname $\rightarrow \rightarrow prof | loan \cdot date$

مقايسه FD با MVD

$$(a1 \ b1 \ c1 \ d1) \in r$$
 : اگر داشته باشیم

(a1 b2 c2 d2) ∈ r

$$A \rightarrow B$$
 implies b1=b2

 $A \rightarrow \rightarrow B$ implies (a1 b1 c2 d2) $\in r$

آنگاه:

قواعد آرمسترانگ در مورد وابستگی چند مقداری

در رابطه (R (A, B, C, ...) در رابطه
$$A \to B$$
 انگاه: $A \to B$

$$AC o o BC$$
 اگر $A o o B$ ، آنگاه:

$$AC \rightarrow \rightarrow BC$$
 الكاه: $A \rightarrow \rightarrow B$ $AC \rightarrow BC$ الكاه: $A \rightarrow \rightarrow BC$ $A \rightarrow A \rightarrow BC$ $A \rightarrow$

FaraDars.org

وابستگی پیوندی (JD)

رابطه R وابستگی پیوندی به R پرتوش دارد، اگر و فقط اگر R حاصل پیوند R پرتوش باشد و نه کمتر. $R = JD^*(R_1,R_2,...,R_n)$ این وابستگی را به صورت $R = JD^*(R_1,R_2,...,R_n)$ که $R_1...R_n$ پرتوهای رابطه R می باشند.

FaraDars.org

c1

c1

a1 a2

A	В	C
a1	b 1	c2
a1	b2	c1
a2	b1	c1
a1	b1	c1

SPJ = JD * (SP , PJ , JS) رابطه (SP , PJ , JS) وابستگی پیوندی به T پر توش دارد و به صورت (SP , PJ , JS) نمایش داده می شود.

در واقع اگر پرتوهای این رابطه را یک بار روی صفات #S#, P# و بار دیگر روی صفات خاصه #J , P# بدست آوریم و آنها را با یکدیگر Join یا پرتو روی صفات #Join یا پرتو روی صفات #Join یا پرتو روی صفات #SP و Join کنیم، حاصل همان SPJ خواهد بود و هیچ سطری اضافه یا کم نخواهد شد.

مراحل کار

SPJ

S#	P #	J#
S1	P1	J 2
S1	P2	J1
S 2	P1	J1
S1	P1	J1

PJ

 \Rightarrow

P #	J#
P1	J 2
P2	J1
P1	J1

J#	S#
J2	S1
J1	S1
J1	S2

S#	P #	J#
S1	P1	J2
S1	P1	J1
S1	P2	J1
S2	P2	J2
S 2	P1	J1

S#	P #	J#
S1	P1	J2
S1	P2	J1
S2	P1	J1
S1	P1	J1

این اسلاید ها بر مبنای نکات مطرح شده در فرادرس «پایگاه داده ها» تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید

faradars.org/fvsft105