Лабораторная работа №4

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	19
Список литературы		20

Список иллюстраций

3.1	Заполнение файла	7
3.2	Заполнение файла	8
3.3	Результат программы	9
3.4	Изменение размера окна ТСР на линке 1-го источника	10
3.5	зменение размера средней длины очереди на линке	11
3.6	Изменение размера окна ТСР на всех источниках	12
3.7	Изменение размера длины очереди на линке	13
3.8	Заполнение файла	14
3.9	Заполнение файла	14
3.10	Изменение размера окна ТСР на линке 1-го источника	15
3.11	Изменение размера окна ТСР на всех источниках	16
3.12	Изменение размера длины очереди на линке	17
3.13	Изменение размера длины очереди на линке	18

Список таблиц

1 Цель работы

Самостоятельно выполнить задания из лабораторной работы.

2 Задание

— сеть состоит из N TCP-источников, N TCP-приёмников, двух маршрутизаторов R1 и R2 между источниками и приёмниками (N — не менее 20); — между TCP-источниками и первым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между TCP-приёмниками и вторым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail; — между маршрутизаторами установлено симплексное соединение (R1—R2) с про- пускной способностью 20 Мбит/с и задержкой 15 мс очередью типа RED, размером буфера 300 пакетов; в обратную сторону — симплексное соедине- ние (R2—R1) с пропускной способностью 15 Мбит/с и задержкой 20 мс очередью типа DropTail; — данные передаются по протоколу FTP поверх TCPReno; — параметры алгоритма RED: qmin = 75, qmax = 150, qw = 0, 002, pmax = 0.1; — максимальный размер TCP-окна 32; размер передаваемого пакета 500 байт; время моделирования — не менее 20 единиц модельного времени.

3 Выполнение лабораторной работы

Создаю файл lab04.tcl. Пишу код для выполнения задания(рис.13.1), (рис.23.2).

```
/home/openmodelica/mip/lab-ns/lab04.tcl - Mousepad
Файл Правка Поиск Вид Документ
                                    Справка
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
Agent/TCP set window 32
Agent/TCP set pktSize 500
proc finish {} {
       global tchan
        set awkCode {
                if ($1 == "Q" && NF>2) {
                        print $2, $3 >> "temp.q";
                        set end $2
                else if ($1 == "a" && NF>2)
                        print $2, $3 >> "temp.a";
        }
exec rm -f temp.q temp.a
exec touch temp.a temp.q
set f [open temp.q w]
puts $f "0.Color: Purple"
close $f
set f [open temp.a w]
puts $f "0.Color: Purple"
close $f
exec awk $awkCode all.q
exec xgraph -fg pink -bg purple -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeRenoOne
exec xgraph -fg pink -bg purple -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeRenoAll
exec xgraph -bb -tk -x time -y queue temp.q &
exec xgraph -bb -tk -x time -y queue temp.a &
exec nam out.nam &
exit 0
```

Рис. 3.1: Заполнение файла

```
proc plotWindow {tcpSource file} {
        global ns
        set time 0.01
        set now [$ns now]
        set cwnd [$tcpSource set cwnd ]
        puts $file "$now $cwnd"
        $ns at [expr $now+$time] "plotWindow $tcpSource $file"
set r1 [$ns node]
set r2 [$ns node]
$ns simplex-link $r1 $r2 20Mb 15ms RED
$ns simplex-link $r2 $r1 15Mb 20ms DropTail
$ns queue-limit $r1 $r2 300
set N 30
for {set i 0} {$i < $N} {incr i} {
        set n1($i) [$ns node]
        $ns duplex-link $n1($i) $r1 100Mb 20ms DropTail
        set n2($i) [$ns node]
        $ns duplex-link $n2($i) $r2 100Mb 20ms DropTail
        set tcp($i) [$ns create-connection TCP/Reno $n1($i) TCPSink $n2($i) $i]
        set ftp($i) [$tcp($i) attach-source FTP]
set windowVsTimeOne [open WindowVsTimeRenoOne w]
puts $windowVsTimeOne "O.Color: White'
set windowVsTimeAll [open WindowVsTimeRenoAll w]
puts $windowVsTimeAll "0.Color: White"
set qmon [$ns monitor-queue $r1 $r2 [open qm.out w] 0.1];
[$ns link $r1 $r2] queue-sample-timeout;
set redq [[$ns link $r1 $r2] queue]
$redq set thresh 75
$redq set maxthresh 150
$redq set q_weight_ 0.002
$redq set linterm 10
set tchan [open all.q w]
$redq trace curq
$redq trace ave
$redq attach $tchan_
for {set i 0} {$i < $N} {incr i} {
        $ns at 0.0 "$ftp($i) start"
        $ns at 0.0 "plotWindow $tcp($i) $windowVsTimeAll"
$ns at 0.0 "plotWindow $tcp(1) $windowVsTimeOne"
$ns at 20.0 "finish"
$ns run
```

Рис. 3.2: Заполнение файла

Получились следующие графики(рис.13.3), (рис.23.4), (рис.23.5). (рис.23.6), (рис.23.7).

Рис. 3.3: Результат программы

Рис. 3.4: Изменение размера окна ТСР на линке 1-го источника

Рис. 3.5: зменение размера средней длины очереди на линке

Рис. 3.6: Изменение размера окна ТСР на всех источниках

Рис. 3.7: Изменение размера длины очереди на линке

Создаю файл graph_plot_lab04 и заполняю его(рис.23.8).

```
/home/openmodelica/mip/lab-ns/graph_plot_lab04 - Mousepad
Файл Правка Поиск Вид Документ
                                    Справка
#!/usr/bin/gnuplot -persist
set encoding utf8
set term pngcairo font "Helvetica,9"
set out 'window 1.png'
set title "Изменение размера окна TCP на линке 1-го источника при N=30"
set xlabel "t[s]" font "Helvetica, 10"
set ylabel "CWND [pkt]" font "Helvetica, 10"
plot "WindowVsTimeRenoOne" using ($1):($2) with lines title "Размер окна ТСР"
set out 'window 2.png'
set title "Изменение размера окна TCP на всех N источниках при N=30"
plot "WindowVsTimeRenoAll" using ($1):($2) with lines title "Размер окна ТСР"
set out 'queue.png'
set title "Изменение размера длины очереди на линке (R1-R2)"
set xlabel "t[s]" font "Helvetica, 10"
set ylabel "Queue Length [pkt]" font "Helvetica, 10"
plot "temp.q" using ($1):($2) with lines title "Текущая длина очереди"
set out 'av queue.png'
set title "Изменение размера средней длины очереди на линке (R1-R2)"
set xlabel "t[s]" font "Helvetica, 10"
set ylabel "Queue Avg Length [pkt]" font "Helvetica, 10"
plot "temp.a" using ($1):($2) with lines title "Средняя длина очереди"
```

Рис. 3.8: Заполнение файла

Даю права файлу и запускаю его(рис.23.9).

```
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ chmod +x graph_plot_lab04
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ ./graph_plot_lab04
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$
```

Рис. 3.9: Заполнение файла

Получились следующие графики(рис.13.10), (рис.23.11), (рис.23.12). (рис.23.13).

Рис. 3.10: Изменение размера окна ТСР на линке 1-го источника

Рис. 3.11: Изменение размера окна ТСР на всех источниках

Рис. 3.12: Изменение размера длины очереди на линке

Рис. 3.13: Изменение размера длины очереди на линке

4 Выводы

Выполнила самостоятельную работу.

Список литературы