INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DE SANTA CATARINA Departamento Acadêmico de Eletrônica - Campus Florianópolis

Sistemas de Controle I

<u>Lista de exercícios - Capítulo 2</u>

1) [DORF,2013] Uma impressora utiliza um feixe de laser pra imprimir rapidamente cópias enviadas por um computador. O laser é posicionado por um sinal de controle de entrada **r**(t), tal que:

$$\frac{Y(s)}{R(s)} = \frac{5(s+100)}{s^2 + 60s + 500}$$

- a) Determine a saída y(t), quando posição desejada for r(t) igual a um degrau unitário;
- b) Qual o valor em regime permanente de y(t) (simule usando o Scilab®).
- 2) Para o sistema abaixo, pede-se (manualmente e usando o Scilab®):

- a) Para K= 10, encontre a Função de Transferência de Malha Fechada (FTMF);
- b) Para K= 10, encontre a resposta c(t) para uma entrada r(t) degrau unitário;
- c) Repita os itens (a) e (b) para K=1;
- d) Compare a dinâmica do sistema considerando as respostas obtidas em (a), (b) e (c).
- 3) [DORF,2013] Determinar Função de Transferência $V_0(s)/V_i(s)$ do circuito abaixo. Supor que o AmpOp é ideal e que os demais componentes têm valor: $R_1=R_2=100k\Omega$; $C_1=10\mu F$; e $C_2=5\mu F$.

- 4) Para o circuito abaixo, pede-se:
 - a) Qual a Função de Transferência U(s)/E(s);
 - b) Considerando a Função de Controle:

$$G_C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d \cdot \frac{p \cdot s}{s + p} \right)$$

Qual a equação para K_P , T_i , T_d e p; se a compararmos com a FT obtida em (a).

5) [DORF,2013] A intensidade luminosa de uma lâmpada permanece constante quando monitorada por uma malha fechada controlada por meio de um fototransistor, como visto em (b). Quando a tensão de alimentação cai, a luminosidade da lâmpada também cai e o fototransistor Q₁ conduz uma corrente menor. Como resultado, um transistor de potência conduz menos e carrega um capacitor mais rapidamente. A tensão no capacitor controla diretamente a tensão na lâmpada. Um diagrama de fluxo do sistema é mostrado em (a).

Determinar a Função de Transferência de Malha Fechada I(s)/R(s), onde i(t) é a intensidade luminosa da lâmpada e r(t) é o comando, ou seja, a intensidade desejada.