MATH 5.1ER Quiz 2

(Inequalities in One Unknown)

Time Limit: (50 minutes)

T Yeung

August 25, 2023

Answer the questions in the spaces provided on the question sheets. If you do not know how to answer a certain question, write down where you get stuck. Answers can be corrected to 3 significant figures if necessary.

Name, class, class no.:
Tutor's name:
1. (4 marks) If the quadratic curve $y = x^2 + kx + 8$ intersects the straight line $y = 4x - 1$ at two distinct
points, find the range of possible values of k .

2. (4 marks) If $x^2 + k + k$ of k .	kx = 3 is always posi	tive for all real va	lues of k , find the i	range of possible values
3. (3 marks) Solve $(2x -$	$3)(3x+1) \ge 4x(2x-3)$	- 3)		

4. (10 marks) α and β are the r (a) (3 marks) Show that α :	roots of the quadratic equation $x^2 + (p+1)x + (p-1) = 0$, where p is real and β are real and distinct
(b) (3 marks) Show that (α	
(c) (4 marks) Given that β	
i. Using the result of ((b), show that $p < -\frac{5}{3}$. In the range of possible values of p . Hence write down all possible integral.
value(s) of p .	id the range of possible values of p. Hence write down an possible integra
() 1	

 5. Given x² - 2(1 + a)x + (3a² + 4ab + 4b² + 2) = 0, where a and b are real. (a) Show that the discriminant of the equation is -4[(a - 1)² + (a - 2b)²] (b) Find a and b if the equation has equal real roots. 				