

मोतीलाल **नेहरू राष्ट्रीय** प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज-211004 (भारत)

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Computer Science & Engineering Department Mid Semester Examination 2023-24 (EVEN)

Programme Name: B.Tech. (CSE Minor)		
Tame: B. rech. (CSE Minor)	Semester:	4th

Course Code: CS14XXX

Course Name: Analysis of Algorithms

Branch: ALL

Student Reg. No

20222068

Duration: 90 Minutes

Max. Marks: 25

Instructions:

1. This question paper comprises 5 (five) compulsory questions.

2. Try to answer the questions serially.

3. It is advisable to design a solution in rough before writing the final algorithm.

}

4. All the algorithms should be written in steps with proper indentation on conditions and loops.

Design an algorithm for the implementation of Recursive Bubble Sort.

Iterative Bubble Sort algorithm is provided below for your reference:

BubbleSort(arr[], n) {

for (i = 0; i < n-1; i++)

// Last i elements are already in place

for (j = 0; j < n-i-1; j++) {

if(arr[j] > arr[j+1])

swap(arr[j], arr[j+1]);

Q2

Explain Master's Theorem and solve the following recurrences (1+2x2)

a $T(n) = 2 T (n^{1/2}) + \lg n$.

}

b $T(n) = 4T(\sqrt[3]{n}) + n$

Q3 Analyze the worst-case complexities of the following algorithms: (2.5x2)

a Heapfy

b Build Heap

Q4 Along with its complexity analysis, write an algorithm to merge k sorted lists, each of length n. (5)

Q5 Along with its complexity analysis, write an algorithm to find i^{th} order static. (5)

मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद

प्रयागराज-211004 (भारत)

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Computer Science & Engineering Department End Semester Examination 2023-24 (Even)

	•	CSE Minor)		3.24					
	Cour	se Code: CSN14003				er: <u>4th</u>			
		ch: ALL	Course	Name: Analysis of Al	gorithms				
	Duration: 150 Minutes		Student Reg. No 2 2 2 7 0 6					81	
Ĭ'n	otm	ictions:	Max. M	arks: 50					
A.D.	1317U 1.								
	2. 3. 4.	It is advisable to design a solution in All the algorithms should be written	rough	hafara muidina dha	final algorith tation on con	m. ditions and loop	<i>)S</i> .		
								Marks	Course Outcome Mapping
Qį	ą	Given the time complexity as $f(n) \mu$ so	ecs of	$f(n)$ μ secs	1 second	1 minute		5	
	•	various algorithms in the table in the	right.	lg n					
		find the data size than can be solved second and 1 minute.	in l	\sqrt{n}					CO1,
		and I minute.		<u>n</u>					CO2
				n lg n					
	þ	Describe an algorithm that, given n integer	ere in the		cesses its innu	t and then answe	rc	5	CO1
		any query about how many of the n integer any query about how many of the n integer and $p < a < b < q$.	gers fall	into a range [ab].	cesses its inpu	it and then answe	.15	3	001
Q2		In context of Dynamic Programming, and	swer the	following questions	s:				CO3
8	a	Write an algorithm to find and print All I						4	
	þ	Modify the algorithm in (a) to find the Total Number of Paths between any two nodes of graph. (Total Number of Paths between any two nodes (say, x and y) of graph is the number of different ways we can traverse from x to y.)							
	Ç *								
03	а	Construct a Huffman tree for the data syr	nbols: {	A. B. C. D. E} with	frequency {0.	17, 0,11, 0,24, 0	.33	5	CO4
Q3		and 0.15} respectively. Find the prefix fee codes for {A, B, C, D, E} and Encode ABBACAB.							
	þ	b Write backtracking strategy based algorithm for solving n-queens problem						5	CO5
Q4		In the context of sorting algorithms answ							
6	a	Write Shell Sort algorithm for sorting the numbers in descending order and trace the execution of						5	5 CO1
		your algorithm on a sequence of integer	number	s: [110].		0.1100			
	þ	Analyse the best case and worst case tim of gap variable.	e comp	lexity of Shell Sort	with the help	of different valu	es		5 CO5
Q5		Write algorithms/notes on the following:							CO
3	a	Representation of graphs using adjacency							2
		Finding cycles in the graph using DFS al		is.					2
		Minimum Spanning Trees.	_						2
	-	Topological Sorting.							2
		printpath algorithm and the labeling of π	and d	on the nodes.					2