Horner's Method

Newton's Method to find zeros of pux)

 \Rightarrow need to evaluate p(x) and q(x) repeatedly Note p and p' both polynomials

Q: How can we evaluate polynomials efficiently? Idea nested evaluation / synthetic division

Thm. Horner's Method Let p(x) = anx"+an-1 x"-+ ... + a1x + a0 Define bn=an bk= 9k+ bk+1 xo, k=n-1, n-2, ... 1, 0 Then bo= P(x.). Moreover, if Q(x) = bnx -+ bn+x -2 + b2x + b1, then Pw = (x-x) Q(x)+b. $Pf. (x-x_0) \cdot Q(x) + b_0$ $= (X - X_0) [b_n x^{n-1} + b_{n-1} x^{n-2} + ... + b_2 x + b_1] + b_0$ = $[b_n x^n + b_{n-1} x^{n-1} + ... + b_2 x^2 + b_1 x] - [b_n x_0 x^n + ... + b_2 x_0 x + b_1 x_0] + b_0$ $y = b_n x^n + (b_{n-1} - b_n x_0) x^{n-1} + ... + (b_1 - b_2 x_0) x + (b_0 - b_1 x_0)$ By hypothesis, bn=an, bk-bk+1x0=9k = anx"+ an-1x"-+ ...+ a1x + a0 = P(x)

Rmk. - can use $b_k = a_k + b_{k+1} \times a_k$, k = n-1, ... 1, 0 (bn = an) to evaluate P at $\times a_k$ in nested manner

 \Rightarrow P(x) = (x-x₀)Q(x)+b₀ and P(x₀)=b₀

-for P. (deg = n), require at most n multiplications and n additions

Sol.
$$x_0 = 2x^4 - 3x^2 + 3x - 4$$
 at $x_0 = -2$
Sol. $x_0 = -2$ $a_1 = 2$ $a_2 = -3$ $a_1 = 3$ $a_0 = -4$
 $b_4 x_0 = -4$ $b_3 x_0 = 8$ $b_2 x_0 = -10$ $b_1 x_0 = 14$
 $b_4 = 2$ $b_3 = -4$ $b_2 = 5$ $b_1 = -7$ $b_0 = 10$
P(x₀)

Rmk. 1.
$$P(x) = (((2x+0)-3)+3)x+4 \leftarrow 4 \text{ mult, 3 add}$$

2. Let $P(x) = (x-x_0)Q(x) + b_0$. Then $P'(x_0) = Q'(x_0)$. This means we can obtain $P'(x_0)$ by applying Horner's Method to $Q(x_0)$.

(new iterates
$$C_k = b_k + C_{k+1} \times 0$$
)

Here, $a_n \rightarrow b_n \rightarrow C_n$
 $a_{n-1} \rightarrow b_{n-1} \rightarrow C_{n-1}$
 \vdots
 $a_1 \rightarrow b_1 \rightarrow C_1$
 $a_0 \rightarrow b_0 \rightarrow C_0$

3. If f(x)=P(x) in Newton's Method, then we can use Horner's Method (aka synthetic division) to compute $f(x_0)$ and $f'(x_0)$ more efficiently. From implementation perspective:

[bo, co] = Horner's (\underline{a}, X_0) $\underline{a} = \begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix}$

4. Can be interpreted as a (linear) neural network!

NN(X₀) = $U_n(X_0)$ where $U_{k+1} = \sigma(U_k X_0 + q_k)$ nonlinear activation function $b_k = q_k + b_{k+1} X_0$ vs. $b_k = \sigma(q_k + b_{k+1} X_0)$

2.6 Deflation

Def. Procedure to find all zeros of polynomials succesively by applying Newton's Method.

- 1) Choose initial guess $R^{(1)}$ and find approximate zero \hat{x}_i of $R_i(x)$ with degree n using Newton's.
- 2) Find zeros of Q(x) and get \hat{x}_2 .

 To find \hat{x}_i , choose initial guess $p_i^{(k)}$ and apply Newton's to $Q_k(x)$ $P_n(x) \approx (x \hat{x}_i)(x \hat{x}_2) Q_1(x)$ k=2

 $k_{\nu}(x) \approx (x - x_{\nu})(x - x_{\nu}) Q_{\nu}(x)$

 $P_n(x) \approx (x-\hat{x_1})(x-\hat{x_2})\cdots (x-\hat{x_{n-2}})Q_{n-2}(x)$ k=n-2 $Q_{n-2}(x)$ quadratic \rightarrow use quadratic formula 3) Obtain refined solutions $x_1, x_2, ... x_n$ by applying Newton's Method to $p_n(x)$ with initial guesses $\hat{x_1}, \hat{x_2}, ... \hat{x_n}$, respectively.

Rmk. Inaccuracy increases as k increases in step 2. Reduce evror via step 3.