CIFAR10 IMAGE ANALYSIS

- This database contains;
- 60,000 images
- separated by 10 target classes,
- each a section containing 6000 images of 32 * 32 shapes.
- This database contains images of low-resolution (32 * 32),
- which allows researchers to experiment with new algorithms.

1 - Convolutional Neural Networks (CNN) Analysis Simplified

2 – Random Forest Analysis Simplified

3 – Decision Tree Analysis Simplified

4 – K-Nearest Neighbour Analysis Simplified

Coding

```
# matris işleme kütüphanelerini yüklüyoruz
import numpy as np
import pandas as pd
#görselleştirme kütüphanesini yüklüyoruz
import matplotlib.pyplot as plt
#yapay zeka modelleri kütüphanelerini yüklüyoruz
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification report, confusion matrix
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from sklearn.preprocessing import StandardScaler
# CIFAR-10 veri setini yükleyip verileri train/test olarak ikiye ayırıyoruz
(X train, y train), (X test, y test) = cifar10.load data()
# CNN Modeli için veriyi yeniden şekillendirip normalize ediyoruz
X train cnn = X train.astype('float32') / 255.0
X test cnn = X test.astype('float32') / 255.0
y train cnn = to categorical(y train, 10)
y test cnn = to categorical(y test, 10)
```

```
# Düzleştirilmiş verileri normalize ediyoruz
scaler = StandardScaler()
X train flat = X train.reshape(X train.shape[0], -1)
X test flat = X test.reshape(X test.shape[0], -1)
X train flat = scaler.fit transform(X train flat)
X test flat = scaler.transform(X test flat)
# Etiketleri tek boyutlu hale getiriyoruz
y train = y train.flatten()
y test = y test.flatten()
# CNN modelini oluşturuyoruz
cnn model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input shape=(32, 32, 3)),
    MaxPooling2D((2, 2)),
    Conv2D(64, (3, 3), activation='relu'),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
1)
cnn model.compile(optimizer='adam',
                  loss='categorical crossentropy',
                  metrics=['accuracy'])
```

Coding Continued

```
# CNN Modelini eğitip değerlendiriyoruz
print("Training CNN...")
cnn model.fit(X train cnn, y train cnn, epochs=10, validation data=(X test cnn, y test cnn), verbose=2)
cnn y pred = cnn model.predict(X test cnn).argmax(axis=1)
cnn report = classification report(y test, cnn y pred, output dict=True)
cnn accuracy = cnn report["accuracy"]
cnn precision = np.mean([cnn report[str(i)]["precision"] for i in range(10)])
cnn recall = np.mean([cnn report[str(i)]["recall"] for i in range(10)])
cnn f1 score = np.mean([cnn report[str(i)]["f1-score"] for i in range(10)])
metrics = pd.DataFrame(columns=["Model", "Accuracy", "Precision", "Recall", "F1-Score"])
cnn metrics = pd.DataFrame([{
    "Model": "CNN",
    "Accuracy": cnn accuracy,
    "Precision": cnn precision,
    "Recall": cnn recall,
    "F1-Score": cnn f1 score
}])
metrics = pd.concat([metrics, cnn metrics], ignore index=True)
print(f"\nPerformance for CNN:")
print(classification report(y test, cnn y pred))
print("Confusion Matrix:")
print(confusion matrix(y test, cnn y pred))
print("\n" + "-"*50 + "\n")
```

Coding Continued

```
# CNN Modelinin sonuçlarını diğer ML algoritmaları ile kıyaslamak için 3 farklı algoritma tanımlıyoruz
models = {
    "Random Forest": RandomForestClassifier(),
    "Decision Tree": DecisionTreeClassifier(),
    "k-NN": KNeighborsClassifier()
# Diğer modelleri tek tek eğitip score ları hesaplıyoruz
for model_name, model in models.items():
    print(f"Training {model name}...")
    model.fit(X train flat, y train)
    y pred = model.predict(X test flat)
    report = classification report(y test, y pred, output dict=True)
    accuracy = report["accuracy"]
    precision = np.mean([report[str(i)]["precision"] for i in range(10)])
    recall = np.mean([report[str(i)]["recall"] for i in range(10)])
    f1 score = np.mean([report[str(i)]["f1-score"] for i in range(10)])
    model metrics = pd.DataFrame([{
        "Model": model name,
        "Accuracy": accuracy,
        "Precision": precision,
        "Recall": recall,
        "F1-Score": f1 score
```

Coding Continued

```
metrics = pd.concat([metrics, model metrics], ignore index=True)
    print(f"\nPerformance for {model name}:")
    print(classification report(y test, y pred))
    print("Confusion Matrix:")
    print(confusion matrix(y test, y pred))
    print("\n" + "-"*50 + "\n")
# Performans skorlarını birbirleriyle kıyaslamak için tabloyu yazdırıyoruz
print(metrics)
# Performans skorlarını görselleştiriyoruz
metrics.set index("Model", inplace=True)
fig, axs = plt.subplots(2, 2, figsize=(15, 10))
metrics["Accuracy"].plot(kind="bar", ax=axs[0, 0], color='blue', title="Accuracy")
metrics["Precision"].plot(kind="bar", ax=axs[0, 1], color='green', title="Precision")
metrics["Recall"].plot(kind="bar", ax=axs[1, 0], color='red', title="Recall")
metrics["F1-Score"].plot(kind="bar", ax=axs[1, 1], color='yellow', title="F1-Score")
for ax in axs.flat:
    ax.set ylim(0, 1)
    ax.set xlabel("Model")
    ax.set ylabel("Score")
    ax.grid(True)
plt.tight layout()
plt.show()
```

Training CNN

```
Training CNN...
Epoch 1/10
1563/1563 - 73s - loss: 1.4004 - accuracy: 0.5006 - val loss: 1.1772 - val accuracy: 0.5781 - 73s/epoch - 47ms/step
Epoch 2/10
1563/1563 - 69s - loss: 1.0460 - accuracy: 0.6352 - val loss: 1.1462 - val accuracy: 0.6031 - 69s/epoch - 44ms/step
Epoch 3/10
1563/1563 - 68s - loss: 0.9123 - accuracy: 0.6817 - val loss: 1.0072 - val accuracy: 0.6462 - 68s/epoch - 44ms/step
Epoch 4/10
1563/1563 - 68s - loss: 0.8151 - accuracy: 0.7163 - val loss: 0.9099 - val accuracy: 0.6868 - 68s/epoch - 43ms/step
Epoch 5/10
1563/1563 - 69s - loss: 0.7428 - accuracy: 0.7400 - val loss: 0.8761 - val accuracy: 0.6992 - 69s/epoch - 44ms/step
Epoch 6/10
1563/1563 - 68s - loss: 0.6725 - accuracy: 0.7649 - val loss: 0.8928 - val accuracy: 0.6989 - 68s/epoch - 44ms/step
Epoch 7/10
1563/1563 - 70s - loss: 0.6133 - accuracy: 0.7840 - val loss: 0.9014 - val accuracy: 0.7037 - 70s/epoch - 44ms/step
Epoch 8/10
1563/1563 - 72s - loss: 0.5526 - accuracy: 0.8071 - val loss: 0.9112 - val accuracy: 0.7018 - 72s/epoch - 46ms/step
Epoch 9/10
1563/1563 - 68s - loss: 0.4963 - accuracy: 0.8248 - val loss: 0.9574 - val accuracy: 0.6948 - 68s/epoch - 44ms/step
Epoch 10/10
1563/1563 - 66s - loss: 0.4462 - accuracy: 0.8450 - val loss: 0.9859 - val accuracy: 0.7029 - 66s/epoch - 42ms/step
313/313 [=========== ] - 4s 13ms/step
```

Performance for CNN

Per	rfor	rman	ce fo	or Cl	NN:						
				pre	cisio	on	red	all	f1	score	support
			0		0.7	76	(3.76		0.76	1000
	1				0.8	36	(3.77		0.81	1000 1000
		2			0.6	55	(3.54	0.59		
					0.4	48	(3.51		0.49	1000
			4		0.7	73	(3.56		0.64	1000
			5		0.5	59	(3.63		0.61	1000
			6		0.7	74	(81.81	0.77		1000
			7		0.7	77	(3.75		0.76	1000
			8		0.7	74	(3.86		0.79	1000
			9		0.7	74	(83.6		0.79	1000
	ac	ccura	асу							0.70	10000
	mad	cro a	avg		0.7	71	(3.70		0.70	10000
weighted avg					0.7	71	(70		0.70	10000
Cor	ıfus	sion	Matr	rix:							
[[7	759	13	34	29	9	8	10	7	93	38]	
[17	768	8	14	3	7	10	2	48	123]	
[69	7	540	88	62	72	83	37	27	15]	
[22	3	60	514	38	175	86	36	33	33]	
[22	7	71	98	563	73	55	80	23	8]	
[14	3	40	185	28	634	26	41	17	12]	
[4	8	34	79	19	19	805	9	13	10]	
[20	5	28	44	40	77	7	752	6	21]	
[54	18	8	17	3	5	2	5	859	29]	
[18	60	9	12	2	5	7	9	43	835]]	

Performance for RandomForest

Performance for Random Forest:

Pei	rtoi	rman	ce fo	or Ra	andor	n Foi	rest	:			
				pre	cisi	on	re	call	f1	score	support
0					0.5	55	0.58			0.56	1000
	1				0.5	53	0.54 0.32 0.28			0.54	1000
	2 3			0.	37	0.34				1000	
				0.	34	0.31				1000	
			4		0.	39	0.40			0.39	1000
	5			0.4	41	0.39			0.40	1000	
			6		0.4	47	0.55 0.45 0.61			0.50	1000
			7		0.5	50				0.47	1000
			8		0.5	58				0.60	1000
	9		0.47		0.55			0.51	1000		
	a	ccura	acv							0.47	10000
		cro a	-		0.4	46	0.47			0.46	
_					0.4	46	0.47			0.46	
Coi	nfu:	sion	Mati	rix:							
[[:	577	35	42	20	32	18	26	25	167	58]	
Ī	33	543	15	34	18	29	45	36	56	191]	
[:	102	36	317	76	154	81	116	66	24	28]	
[47	39	84	284	82	176	134	63	23	68]	
]	54	18	150	62	395	45	145	88	24	19]	
[37	27	90	152	82	390	76	82	27	37]	
[11	36	80	80	114	56	550	32	6	35]	
[56	44	38	58	107	88	48	446	24	91]	
[80	85	18	32	19	36	14	22	615	79]	
Γ	48	157	14	42	20	21	28	38	87	54511	

Performance for DecisionTree

Pe	erfor	rman	ce fo	or De	ecisi	ion 1	Tree:	:			
				pre	cisio	on	red	call	f1	score	support
			0		0.3	34	(3.36		0.35	1000
	1					29	(3.27		0.28	1000
	2					21	(3.22		0.22	1000
	3				0.1	19	(3.18		0.18	1000
	4				0.2	22	(3.23		0.22	1000
	5				0.2	23	(3.22		0.22	1000
			6		0.2	29	(3.29		0.29	1000
	7					27	(3.26		0.27	1000
	8				0.3	38	(3.40		0.39	1000
	9				0.2	29	(3.28		0.28	1000
	a	ccura	асу							0.27	10000
	mad	cro a	avg		0.2	27	(3.27		0.27	10000
WE	weighted avg					27	(3.27		0.27	10000
Co	onfus	sion	Matr	rix:							
[[356	66	84	59	60	46	38	60	151	80]	
[78	272	65	63	71	53	56	64	108	170]	
[90	52	224	88	144	109	118	85	41	49]	
[66	58	117	182	106	130	129	89	61	62]	
[66	40	154	89	229	108	114	109	47	44]	
ſ	61	49	98	156	91	219	109	103	65	49]	

[40 49 127 119 145 87 291 64 30 48] [73 68 86 95 105 98 68 262 55 90] [132 110 52 53 43 40 28 50 401 91] [80 168 54 78 46 58 47 85 107 277]]

Performance for k-NN

Pei	rfoi	rman	ce f	or k	-NN:						
				pre	cisio	on	re	call	f1	score	support
	0					38	(ð.54		0.45	1000
	1				0.0			0.21		0.32	1000
	2			0.2		0.44			0.29	1000	
	3			0.3		0.23			0.26	1000	
	4			0.2			0.52		0.33	1000	
	5				39		2.22		0.28	1000	
			6		0.3			2.26		0.30	
			7		0.6			2.22		0.33	1000
			8		0.4			a.66		0.50	1000
			9		0.7	73	(ð.13		0.23	1000
accuracy										0.34	10000
	macro avg					14	(ð.34		0.33	10000
weighted avg				0.4	14	(ð.34		0.33	10000	
Co	o£	sion	Mati	niv.							
	539				60	5	25	6	231	2]	
		209			150				231	_	
	107				236				52	_	
_		6							50	-	
_		2				18			44	_	
		4								5]	
_		3			311		259	1	25	_	
_		7			273				59	-	
_	144		42		63				656	7]	
_	155		108		125					134]]	

CNN has the best <u>accuracy</u> comparing to other ML algorithms

CNN has the best precision comparing to other ML algorithms

CNN has the best <u>recall</u> comparing to other ML algorithms

CNN has the best <u>F1-Score</u> comparing to other ML algorithms

Comments

In final words, CNN has better scores comparing to other ML algorithms for CIFAR10 image dataset analysis

So what can we do to have a better accuracy?

Increasing <u>number of epochs</u> gives us better accuracy for train/test data as seen in chart below

