Databases and Information Systems CS303

Overview and Introduction 02-08-2023

- Course Instructor: Anantha Padmanabha
- Email Id: <u>ananthap@iitdh.ac.in</u>
- Office: 2A7
- TA:
 - Vivek Shahare <u>212011006@iitdh.ac.in</u>
 - o Bonthu Vyuhita 212011001@iitdh.ac.in

Course Overview (CS303)

- Relational Databases and SQL
 - SQL queries, Entity-Relationship diagram, Normalization, Transactions, Security,
 Query Optimization,
- NoSQL Databases
 - Overview and properties
 - Graph Databases: Queries in Cypher (Neo4J)
 - Key-Value Pair Databases, Document Databases, Column Databases
- Decision support, Data mining, Data Warehousing, Information retrieval
- Special Databases
 - Spatial, Temporal, Ontology based, RDF, Knowledge Base

References

- Database System Concepts by Silberschatz, Korth and Sudarshan
- NoSQL for mere mortals by Dan Sullivan
- Slides and in-class discussions

Evaluation

• Mid-semester Exam : 30%

• End semester Exam : 50%

• Quiz (2) : 10%

• Assignment : 10%

Introduction

What is Database Management?

- Provide way to store and retrieve data in a convenient and efficient manner.
- Computerized management of high volumes of data
- Application:
 - Marketing and Enterprises
 - Sales, Accounting, Human resources, Manufacturing ...
 - Banking and Finance
 - Customer information, Transactions, Finance, Employees ...
 - Universities
 - Student information, Course registration, Grades, Faculty, Departments ...
 - Airlines
 - Reservation system, Flight plans ...
 - Telecommunications, Hospitals

Before Database Systems

Before DBMS, Operating systems used to store data as system files.
 (Same as saying store everything in a text files)

Disadvantages:

Data redundancy and Inconsistency: Duplication of data and disagreement over same data

Difficult to access
 Searching some information from the data

Data Isolation : Different file formats of different files

Integrity problems
 Check some conditions (like balance of customer > 0)

Atomicity problems : Restoring consistency on failure

Concurrent access problems : Multiple people accessing the same data

Security problems : Control of access to data

Database System

 Collection of interrelated data and programs that allow users to access and modify the data

Functions:

- Store and Retrieve data
- Modify data
- Ensure consistency
- Security
- Transaction Management
- Failure handling

Data Abstraction

- Efficient retrieval needs complex data structures for storage (Needs to be hidden from users)
- Not all data should be accessible to everyone
- These requirements lead to layered approach where the implementations are hidden from each other (Data Abstraction)

Data Abstraction

- Hide the complexity of the system through various levels to simplify user's interaction with the system.
- Three levels of Data abstraction in Database systems:
 - Physical Level : How data is actually stored. Describes low level data structures
 - Logical Level: What data is stored and what is the relationship between them.
 User of Logical Level need not know the details of Physical Level (Physical data independence)
 - View Level: For end users. Describes part of the database.

Instances and Schemas

- Databases change over time
- Collection of information stored in the database at a particular moment is called an Instance
- The overall design of the database is called the Database Schema (Does not change under usual circumstances)
 - Physical Schema: Describes database design at physical level
 - Logical Schema: Describes database design at the logical level
 - Many schemas at View level called subschemas

Database Languages

- Data Definition Language : Specifies database schema
 - Domain constraints (DC)
 - Referential Integrity constraints (RIC)
 - Assertions (constraints that cannot be specified as DC or RIC)
 - Authorization
- Data Manipulation Language: Express database queries and updates
 - Retrieve information from database
 - Add new data / Delete data / Modify existing data
 - Two type of DML
 - Procedural: User describes what data is needed and how to get that data
 - Declarative: User specifies what data is needed without specifying how to get it

Query

- Statement requesting retrieval of information.
- Common to assume Query and Data Manipulation Language are same
- Data Abstraction is applied at every level:
 - At Physical level : Define algorithm that allows efficient access to data
 - Higher levels: Ease of Use for humans to interact with the system.

 Query processor translates Data Manipulation Language queries into sequence of actions at the physical level of the database system

How to store data?

Text

Tables (Relational Database Architecture)

Graphs

•

Reference:

Database System Concepts by Silberschatz, Korth and Sudarshan Chapter 1