Report for STAPpp in FEM

组长: 黄云帆

组员: 陈一彤 邓博元 管唯宇 杨正宇 卢晟昊

2017年12月25日

1 Problem Description

扩展后的STAP++程序必须能够求解给定的桥梁问题(同时包括杆单元、梁单元、六面体实体单元和板单元),并用ABAQUS进行验证

除以上基本要求外,各组可以自行选择增加其他功能,包括但不限于分片应力恢复(SPR)、稀疏求解器、半带宽优化、无限单元、超级单元、过渡单元、模态分析、动力学响应分析和弹塑性杆单元等。

Figure 1: Problem

其中,桥梁算例的具体描述如下:

算例序号	节点总数	单元总数	S4R	C3D8R	B31	T3D2	应变能
1	4.16E3	2.88E3	4E2	1.76E3	7.04E2	20	6.76E7
2	3.72E4	3.04E4	2.5E3	2.65E4	1.35E3	20	6.89E7
3	\	2.33E5	1E4	2.2E5	2.7E3	20	7.54E7
4	1.91E6	1.81E6	4E4	1.76E6	5.42E3	20	\

2 Framework of STAPpp

- 2.1 Preprocessing
- 2.2 Formation and assembly
- 2.3 Solver
- 2.4 Postprocessing
- 3 Basic elements

这一节着重介绍在桥梁算例中使用的各种单元类型。

3.1 Bar

略。

- 3.2 8H
- 3.3 Euler-Bernoulli Beam
- 3.4 Flat Shell
- 4 Other elements
- 4.1 3T
- 4.2 4Q
- 4.3 Timoshenko Beam
- 4.4 Kirchhoff-Love Plate
- 4.5 Mindlin-Reissner Plate
- 4.6 (Some shell)
- 5 Advanced features
- 5.1 Sparse solver
- 5.2 Modal analysis
- 5.3 SPR for 8H
- 5.4 Infinite elements

${\bf 6}\quad {\bf Acknowledgement}$

感谢我们每一位组员的努力付出,也感谢老师和助教的耐心答疑,同时也 感谢与我们积极讨论的其他各组的同学们!

- A Input file format
- B PostOutput file format
- C Strategies for optimization
- D Assignment

References

[1] 张雄等. 计算动力学 (第二版). 北京: 清华大学出版社, XXXX.