Modelling the impact of Covid-19 pandemics on health insurance associated services demand

A. Fernández-Fontelo¹, Pedro Puig¹, M. Guillen², David Moriña²

¹Universitàt Autònoma de Barcelona, ²Universitat de Barcelona

Plan

- Introduction
 - Misreporting
 - Motivation: Private health insurance and Covid-19 pandemic
 - Data
- 2 The model
 - Model specifications
 - Parameter estimation
- Preliminary results
 - Simulation study
 - Application

Misreporting

Misreporting in data refers to some event responsible for reporting less (under-reporting) or more (over-reporting) than the actual level of data.

- Many consequences can derive from misreporting: e.g., inferences that emerge from misreported data might be dramatically biased, providing an unrealistic picture of the actual problem.
- ► There are many real-world examples where each of the two forms of misreporting are well-documented, i.e., several cancers, STIs, gender-based violence or ADHD.

Private health insurance and Covid-19 pandemic

- ► More than 25% of the population has this type of coverage in Spain, exceeding 35% in some areas (UNESPA, 2020).
- ► The Covid-19 pandemic impacted the companies' claim rates in 2020 and 2021, especially for medical consultations and actions that were delayed for being (apparently) of low priority.
- ▶ **Hypothesis**: The number of company claims dramatically fell during the worst months of the Covid-19 pandemic, and many of the visits that should have been made at that time led to an increase in the number of visits in 2021 and 2022 (over-reporting).
 - ⇒ Before Covid-19, we did not expect over-reporting but generally under-reporting for different health services.

Data

Data are the weekly number of visits to different health services of a given company from 2019 to 2021.

- ► **Geographic areas**: Spanish provinces.
- ► Health services: Urology, oncology, obstetrics, general medicine, osteopathy and cardiology.
- ▶ **Demographic variables**: Age and gender.

OBSTETRICS (VISITS) - BARCELONA FEMALES

Model I: Considering only under-reporting

Consider a **latent process** X_n with the following Poisson(λ)-INAR(1) structure:

$$X_n = \alpha \circ X_{n-1} + W_n(\lambda),$$

where $\alpha \in (0,1)$. $\mathbb{E}(X_n) = \mathbb{V}(X_n) = \lambda/(1-\alpha) = \mu_X$. The operator \circ is the binomial thinning such that: $\alpha \circ X_{n-1} = \sum_{i=1}^{X_{n-1}} Z_i$,, where Z_i are i.i.d Bernoulli(α).

Consider the following **observed and potentially under-reported process** Y_n : X_n with probability $1 - \omega$, or $q \circ X_n$ with probability ω .

Fernández-Fontelo, A., Cabaña, A., Puig, P. and Moriña, D. (2016). Under-reported data analysis with INAR-hidden Markov chains. Statistics in Medicine, 35(26): 4875-4890.

Model II: Considering both under-reporting and over-reporting

Still consider that the latent process X_n is a Poisson(λ)-INAR(1) model, but now the processes Y_n can be misreported:

$$Y_n = \begin{cases} X_n & 1 - \omega, \\ \vartheta \lozenge X_n & \omega, \end{cases}$$

where $\vartheta = (\varphi_1, \varphi_2)$ and $\vartheta \lozenge X_n$ is called the fattening-thinning operator: $[\vartheta \lozenge X_n | X_n = x_n] = \sum_{k=1}^{x_n} W_k$:

$$\mathbb{P}(W=k|arphi_1,arphi_2) = egin{cases} 1-arphi_1-arphi_2 & j=0, \ arphi_1 & j=1, \ arphi_2 & j=2, \ 0 & ext{otherwise.} \end{cases}$$

Under-reporting or over-reporting?

➤ To distinguish between under-reporting, no misreporting or overreporting, the following can easily be computed once the model parameters are estimated:

$$\begin{array}{c|c} \text{under-reporting} & \varphi_1 + 2\varphi_2 < 1 \\ \text{no misreporting} & \varphi_1 + 2\varphi_2 = 1 \\ \text{over-reporting} & \varphi_1 + 2\varphi_2 > 1 \\ \end{array}$$

- Note that when $\varphi_2 = 0$, the model results in the model I, which only accounts for under-reporting.
- ▶ A less flexible version of the operator defined before can be derived if $W_k \sim \text{Binomial}(2, \varphi)$.

Parameter estimation: MoM method

The marginal distribution of the observed (and stationary) process Y_n is essential to compute the moment-based estimates of the model:

$$Y_n = \begin{cases} \text{Poisson}(\mu_X) & 1 - \omega, \\ \text{Hermite}(\mu_X \varphi_1, \mu_X \varphi_2) & \omega. \end{cases}$$

- **①** Fit the mixture above to obtain estimates of $\widehat{\omega}$, $\widehat{\mu}_X$, $\widehat{\varphi}_1$ and $\widehat{\varphi}_2$.
- ② Use the expression of the ACF, $\rho_Y(k) = c(\alpha, \lambda, \omega, \varphi_1, \varphi_2)\alpha^k$, to estimate α .
- **3** Using $\widehat{\mu}_X$ (step 1) and $\widehat{\alpha}$ (step 2), λ can be easily estimated.

Parameter estimation: ML method

- Since the likelihood function (LF) of Y_n is not directly tractable (HMC with an infinite number of states), it is computed instead with the so-called forward algorithm.
- ► LF is then computed recursively using the forward probabilities given below:

$$\begin{split} \gamma_n(y_{1:n},x_n) = & \overbrace{\mathbb{P}(Y_n = y_n | X_n = x_n)}^{\text{emission probabilities}} \\ \times & \sum_{x_{n-1} = \frac{y_{n-1}}{2}}^{\infty} \underbrace{\mathbb{P}(X_n = x_n | X_{n-1} = x_{n-1})}_{\text{transition probabilities}} \gamma_{n-1}(y_{1:n-1},x_{n-1}). \end{split}$$

► Finally: $\mathbb{P}(Y_{1:N} = y_{1:N}) = \sum_{x_N = \frac{y_N}{2}}^{\infty} \gamma_N(y_{1:N}, x_N)$.

Visual model

Forward probabilities

• While the transition probabilities are computed using the cpmf of the Poisson(λ)-INAR(1), the emission probabilities are computed as below:

$$\mathbb{P}(Y_n = y_n | X_n = x_n) = \begin{cases} 0 & \text{if } x_n < y_n/2, \\ (1 - \omega) + \omega p_n & \text{if } x_n = y_n, \\ \omega p_n & \text{if } x_n > y_n, \\ \omega p_n & \text{if } x_n < y_n, x_n \ge y_n/2. \end{cases}$$

 \triangleright p_n can be computed using the following recursive relation:

$$p_n = \frac{1}{n(1-\varphi_1-\varphi_2)} \left[\varphi_1(x_n - (n-1))p_{n-1} + \varphi_2(2x_n - (n-2))p_{n-2} \right].$$

Simulation study

- We perform a simulation study based on Monte Carlo providing different values for the parameters ω , φ_1 and φ_2 .
- In particular, we generate an INAR(1)-Poisson process with $\alpha=0.5$ and $\lambda=3$, and different scenarios of over-reporting ($\omega=(0.3,0.7),\ \varphi_1=(0.2,0.3)$ and $\varphi_2=(0.7,0.5)$) and underreporting ($\omega=(0.3,0.7),\ \varphi_1=(0.2,0.5)$ and $\varphi_2=(0.2.0.1)$).
- ▶ We generate M = 50 repetitions of the processes X_n and Y_n above, all of length n = 200.

▶ Over-reporting scenario: $X_n = 0.5 \circ X_{n-1} + W_n(3)$ and:

$$Y_n = \begin{cases} X_n & 0.3, \\ (0.3, 0.5) \lozenge X_n & 0.7. \end{cases}$$

	α	λ	ω	$arphi_1$	$arphi_2$
true value		3	.7	.3	.5
mean estimated value	.5172	3.0646	.6761	.2539	.4980
bias	.0172	.0646	0239	0461	0020
bias coverage (nominal: 0.90)	.9836	.9672	.9672	.6393	.9180

▶ Under-reporting scenario: $X_n = 0.5 \circ X_{n-1} + W_n(3)$ and:

$$Y_n = \begin{cases} X_n & 0.3, \\ (0.2, 0.2) \Diamond X_n & 0.7. \end{cases}$$

	α	λ	$ \omega $	φ_1	$arphi_2$
true value	.5	3	.7	.2	.2
mean estimated value	.4614	3.0228	.5953	.2010	.1892
bias	0386	.0228	1047	.0010	0108
coverage (nominal: 0.90)	.9121	.9890	.8901	.8571	.9121

Urology (Males) - A Coruña (06-20 to 12-21)

Obstetrics (Females) - Cáceres (07-20 to 12-21)

	ML point estimate	std. error
A Coruña (urology-males)		
α	.3256	.2029
λ	10.5644	3.1584
ω	.8809	.1020
$arphi_1$.1194	.0917
$arphi_2$.7988	.1467
Cáceres (obstetrics-females)		
α	.2232	.1576
λ	5.3185	1.2725
ω	.3897	.2446
$arphi_1$.1061	.0939
$arphi_2$.7105	.1596

[▶] Note that in both cases $\hat{\varphi}_1 + 2\hat{\varphi}_2 > 1$, thus over-reporting.

