Math 324: Linear Algebra Section 5.1: Length and Dot Product in \mathbb{R}^n

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- Nullspace of a matrix
- Dimension of solution spaces
- Solutions of systems of equations

Today.

- Dot Product
- Length
- Cauchy-Schwarz Inequality
- Orthogonality
- Triangle Inequality
- Pythagorean Theorem

Let $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ be two vectors in \mathbb{R}^n . Define the **dot product** of \vec{u} and \vec{v} to be the **scalar**

$$\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

Exercise 1 (Warmup).

Let $\vec{u}=(1,2)$ and $\vec{v}=(3,-1)$, compute $\vec{u}\cdot\vec{v}$. What is $(2\vec{u})\cdot\vec{v}$?

Theorem 5.3.

If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n and c is a scalar, then the following are true:

- **1.** $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- **2.** $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- **3.** $c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v})$

Exercise 2.

Prove property **1.** of Theorem 5.3 using $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$. Make sure to be precise about what $\vec{u} \cdot \vec{v}$ and $\vec{v} \cdot \vec{u}$ are.

The length of a vector $\vec{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is the scalar

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Theorem 5.3.

If \vec{v} is a vector in \mathbb{R}^n , then the following are true:

- **4.** $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$
- **5.** $\vec{v} \cdot \vec{v} \ge 0$ and $\vec{v} \cdot \vec{v} = 0$ if and only if $\vec{v} = \vec{0}$

Theorem 5.1.

Let \vec{v} be a vector in \mathbb{R}^n and let c be a scalar. Then

$$||c\vec{v}|| = |c|||\vec{v}||,$$

where |c| is the absolute value of the scalar c.

Alternate Proof Using Dot Products.

Let \vec{v} be a vector in \mathbb{R}^n and c a scalar. Then

$$||c\vec{v}|| = \sqrt{(c\vec{v}) \cdot (c\vec{v})}$$

$$= \sqrt{c^2(\vec{v} \cdot \vec{v})}$$

$$= |c|\sqrt{\vec{v} \cdot \vec{v}}|$$

$$= |c|||\vec{v}||.$$

Therefore, $||c\vec{v}|| = |c|||\vec{v}||$, as desired.

7

Exercise 3.

Let $\vec{u} = (1,0,3)$ and $\vec{v} = (-2,-1,2)$.

Compute each of the following:

- (a) $\vec{u} \cdot \vec{v}$
- (b) $\|\vec{u}\|$
- (c) $\|\vec{u} \vec{v}\|$
- (d) $\vec{w} = \frac{\vec{u}}{\|\vec{u}\|}$ and $\|\vec{w}\|$
- (e) $\vec{w} \cdot \vec{u}$ (same \vec{w} as part ??)

A vector \vec{v} in \mathbb{R}^n is called a <u>unit vector</u> if $||\vec{v}|| = 1$.

Theorem 5.2.

If \vec{v} is a nonzero vector in \mathbb{R}^n , then the vector

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$$

has length 1 and has the same direction as \vec{v} . The vector \vec{u} is called the unit vector in the direction of \vec{v} .

Exercise 4.

Let $\vec{u} = (1, 2)$ and $\vec{v} = (3, 1)$. What is the distance between the endpoints of these vectors?

Repeat the process for generic $\vec{u} = (x_1, y_1)$ and $\vec{v} = (x_2, y_2)$.

The distance between two vectors \vec{u} and \vec{v} in \mathbb{R}^n is defined to be

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|.$$

Exercise 5.

Let $\vec{u} = (1, 3, -2)$ and $\vec{v} = (-1, 0, -1)$. Compute $d(\vec{u}, \vec{v})$.

Exercise 6.

Verify that for all vectors \vec{u} and \vec{v} in \mathbb{R}^n ,

- **1** $d(\vec{u}, \vec{v}) \geq 0$
- **2** $d(\vec{u}, \vec{v}) = 0$ if and only if $\vec{u} = \vec{v}$
- **3** $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u}).$

Explain they this makes sense.

Exercise 7.

Use the dot product version of length to verify that

$$\|\vec{v} - \vec{u}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2(\vec{u} \cdot \vec{v}).$$

Definition.

The angle between the vectors \vec{u} and \vec{v} is the angle $0 \le \theta \le \pi$ satisfying

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}.$$

Exercise 8.

Find the angle between $\vec{u} = (3, -1, 0, 2)$ and $\vec{v} = (-6, 2, 0, -4)$.

Warning, for our definition of the angle between the curves to work, we need to know that

$$\left|\frac{\vec{u}\cdot\vec{v}}{\|\vec{u}\|\|\vec{v}\|}\right| = \frac{|\vec{u}\cdot\vec{v}|}{\|\vec{u}\|\|\vec{v}\|} \le 1.$$

Theorem 5.4: The Cauchy-Schwarz Inequality.

If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then

$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||.$$

Note.

The proof of this is a neat application of the quadratic formula and is in the book.

Exercise 9.

Verify the Cauchy–Schwarz inequality using $\vec{u}=(1,1,3)$ and $\vec{v}=(3,-2,1)$.

Brain Break.

What is your favorite word?

Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are orthogonal if $\vec{u} \cdot \vec{v} = 0$.

Exercise 10.

Verify that $\vec{u} = (1, 0, 0)$ and $\vec{v} = (0, 2, 3)$ are orthogonal.

Exercise 11.

Verify that $\vec{u} = (1, 2, 3, 4)$ and $\vec{v} = (1, 0, 1, -1)$ are orthogonal.

Theorem 5.5: The Triangle Inequality.

If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|.$$

Exercise 12.

Let $\vec{u} = (-2,3)$ and $\vec{v} = (1,1)$. Draw a picture of these vectors as well as $\vec{u} + \vec{v}$.

Explain why the Triangle Inequality is true in this case.

Geometrically speaking, what does the Triangle Inequality say?

Theorem 5.6: The Pythagorean Theorem.

If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then \vec{u} and \vec{v} are orthogonal if and only if

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

If we consider each vector \vec{u} and \vec{v} in \mathbb{R}^n as $n \times 1$ column vectors, then

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 v_1 + u_2 v_2 + \cdots + u_n v_n \end{bmatrix}.$$

Exercise 13.

Use this method to compute the dot product of

$$\vec{u} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$.