

Joao Tiago Viegas

R00157699

Higher Diploma

in Science

in

Data Science and Analytics

December 2018

A study on sentiment classification of news headlines

using deep learning

Intro

- motivation and dataset
- methodology
- findings
- conclusion

motivation and dataset

motivation

product feedback

sentiment analysis

fraud detection

automatic translation

recommendation systems

security surveillance

dataset - sentiment analysis

141	to cut 5,000 jobs in U.Ssources	-1
142	Devon IT, and VMware to Host	0
143	Guangzhou Metro Corporation Works With to Modernize Rapid Transit in China	1

- news headlines subset from reuters;
- dates range: 08.01 2007 -> 02.10.2018;
- 9385 observations;
- 10-fold cross validation sample:
 - Training set: 8447 observations;
 - o negative: 632, neutral: 3044, positive: 4771;

Baseline - Naïve Bayes

$$P(c|x) = \frac{P(x \mid c) * P(c)}{P(x)}$$

Deep learning - neural networks?

Neural networks algorithms adoption has been rising:

"...neural networks and gradient boosting machines...so far in 2016, they've been appearing in >70% of winners posts."

Anthony Goldbloom, Kaggle CEO

Deep Learning - Artificial Neural Networks

Deep Learning - Artificial Neural Networks

Deep Learning - Convolutional Neural Networks (CNN)

findings

findings

neural network models

1 hidd	en layer	1 hidden layer with Glove pre-trained embeddings		
<u>layers</u>	<u>learning</u>	<u>layers</u>	<u>learning</u>	
<pre>Dense(32, activation='relu')</pre>	optimizer: rmsprop	Embedding()	optimizer: rmsprop	
Dense(32, activation='relu')	loss:	Flatten()	loss:	
<pre>Dense(3, activation='softmax')</pre>	categorical_crossentropy	<pre>Dense(1024, activation='PReLU')</pre>	categorical_crossentropy	
	<pre>metrics: accuracy, recall, precision, f1_score</pre>	<pre>Dense(3, activation='softmax')</pre>	metrics: accuracy, recall, precision, f1_score	
2 hidden layers wit	h word embeddings	One dimensional Convolutional Neural Network		
Embedding()	optimizer: rmsprop	Embedding()	optimizer: rmsprop	
Flatten()	loss: categorical_crossentropy	Conv1D(8, 24, activation='relu')	loss:	
<pre>Dense(32, activation='relu')</pre>		GlobalMaxPooling1D()	categorical_crossentropy	
Dense(32, activation='relu')	metrics: accuracy, recall, precision, f1_score		metrics: accuracy, recall,	
<pre>Dense(3, activation='softmax')</pre>			precision, f1_score	

findings

findings - models accuracy

conclusion

main findings

- Simple 1D CNN achieved better accuracy;
- 2 layers neural network similar to simple 1D CNN;
- GloVe pre-trained word embeddings vector not reflecting domain knowledge;
- Naïve Bayes not far away;

future work

- include full news article content;
- bigger dataset;
- further parameter testing;
- further topology experimentation;

conclusion

model	accuracy (avg +/- std)
Naïve Bayes	75.70% (+/- 1.58%)
1 hidden layer	43.93% (+/- 5.18%)
2 hidden layers with word embeddings	79.88% (+/- 1.30%)
1 hidden layer with Glove pre-trained embeddings	77.78% (+/- 1.90%)
one dimensional CNN	80.12% (+/- 0.85%)

code available @ https://github.com/jtviegas/studies/tree/master/cit/deep_learning/code/analysis

Thank You!