Surname	С	Other names	
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number	
Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry			
Thursday 12 Octobor 2016	– Morning	Paper Reference	
Thursday 13 October 2016 Time: 1 hour 30 minutes		WCH01/01	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

PEARSON

Turn over ▶

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Mohr's salt, (NH₄)₂Fe(SO₄)₂.6H₂O, is a blue-green crystalline solid usually made by dissolving equimolar amounts of iron(II) sulfate and ammonium sulfate in dilute sulfuric acid and then crystallising.

The reaction may be represented by the equation

FeSO₄.7H₂O + (NH₄)₂SO₄
$$\rightarrow$$
 (NH₄)₂Fe(SO₄)₂.6H₂O + H₂O Molar masses 278 132 392 18 /g mol⁻¹

(a) What mass of Mohr's salt would be produced from 2.78 g of iron(II) sulfate with excess ammonium sulfate, if the yield in the reaction was 80%?

(1)

- B 2.78g
- ☑ D 3.92 q
- (b) How many **cations** are there in each mole of Mohr's salt?

[Avogadro constant, L = $6.0 \times 10^{23} \text{ mol}^{-1}$]

(1)

- \triangle **A** 6.0 × 10²³
- **B** 1.2×10^{24}
- \square **C** 1.8 × 10²⁴
- \square **D** 3.0 × 10²⁴
- (c) What is the percentage by mass of water in Mohr's salt?

(1)

- B 18%
- ☑ D 72%

(Total for Question 1 = 3 marks)

AREA

THIS.

WRITEIN

2 Magnesium carbonate reacts with hydrochloric acid.

$$MgCO_3(s) + 2HCI(ag) \rightarrow MgCI_2(ag) + CO_2(g) + H_2O(I)$$

(a) What mass of magnesium carbonate would react with excess hydrochloric acid to produce 240 cm³ of carbon dioxide, measured at room temperature and pressure?

Data: 1 mol of any gas occupies 24.0 dm³ at room temperature and pressure

Molar mass of magnesium carbonate = $84.3 \,\mathrm{g} \,\mathrm{mol}^{-1}$

(1)

- ☑ A 0.843 g
- **B** 8.43 g
- ☑ D 843 g
- (b) What is the **minimum** mass of magnesium carbonate needed to neutralise 50.0 cm³ of 0.250 mol dm⁻³ hydrochloric acid?

(1)

- ☑ A 0.423 g
- B 0.527 g
- ☑ D 2.11g
- (c) What would be seen at the end of the reaction with excess acid?

(1)

- **A** A colourless solution
- **B** A coloured solution
- **C** A white precipitate
- **D** A coloured precipitate

(Total for Question 2 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

3 The following molecules are alkenes.

(a) Which molecule has a geometric isomer?

(1)

- A P
- \square **B** Q

- (b) Which molecule would produce 2-bromohexane as the **major** product on addition of hydrogen bromide?

(1)

- A P

- D S
- (c) Which molecule has 14 hydrogen atoms?

(1)

- A P
- \boxtimes **B** Q
- D S

(Total for Question 3 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

The structure of Z-3-methylpent-2-ene is

Which of the following shows two repeat units of the polymer made from *Z*-3-methylpent-2-ene?

(Total for Question 4 = 1 mark)

5 What is the systematic name for the following molecule?

$$\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{CH_3} \\ \mathsf{--CH} \\ \mathsf{--CH_2} \\ | \\ | \\ \mathsf{C_2H_5} \\ \end{array}$$

- ☑ B 2,4-diethyl-4-methylpentane
- ☑ C 3,3,5-trimethylheptane
- ☑ D 3,5,5-trimethylheptane

(Total for Question 5 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

Nitrogen can form the following species with hydrogen:

Which of these species has a dative covalent bond?

- A NH₃
- B NH₂NH₂
- \square C NH₂

(Total for Question 6 = 1 mark)

- **7** Which of these elements in Period 3 has the highest melting temperature?
 - 🛛 A Na
 - B Al

(Total for Question 7 = 1 mark)

8 The conduction of electricity by a solution is evidence that ions are present in the solution.

What could be formed when an electric current is passed through **aqueous** sodium chloride?

- **A** Chlorine at the anode
- **B** Hydrogen at the anode
- Sodium at the cathode
- **D** Oxygen at the cathode

(Total for Question 8 = 1 mark)

9 An example of an equation to illustrate the cracking of an alkane from crude oil is

 $C_{15}H_{32}$

 \rightarrow 2C₂H₄

 C_3H_6

 C_8H_{18}

pentadecane

ethene

propene

octane

- Molar masses/g mol⁻¹
- 28
- 42

114

(a) What is the atom economy for this reaction in terms of production of alkenes?

Use the expression

Atom economy = -

 $\frac{\text{Total mass of desired product(s)}}{\text{Total mass of all products}} \times 100\%$

(1)

- **B** 33%
- **◯** C 38%
- D 46%
- (b) The chemical industry uses cracking in the processing of crude oil because

(1)

- ☑ A fractional distillation is too slow and expensive.
- **B** crude oil contains insufficient quantities of desired compounds.
- **C** reforming requires a catalyst.
- ☑ D cracking separates crude oil components.

(Total for Question 9 = 2 marks)

10 Scientists are developing alternatives to fossil fuels.

Which of the following is **not** a result of carbon dioxide emissions?

- ☑ A The increase in global warming.
- ☑ B The melting of the ice caps.
- ☑ C The increase in pH of the oceans.
- **D** The rise in sea level.

(Total for Question 10 = 1 mark)

DO NOT WRITE IN THIS AREA

- 11 Which of the following is isoelectronic with the chloride ion, Cl⁻?
 - \boxtimes A F
 - **B** Br ■
 - C Na⁺
 - D Ar

(Total for Question 11 = 1 mark)

12 An excess of zinc powder was added to 50 cm³ of 1.0 mol dm⁻³ copper(II) sulfate in a polystyrene cup. The temperature of the copper(II) sulfate solution was measured at 30s intervals. The zinc was added after 90s. The results are shown on the graph.

What temperature change should be used when calculating the energy transfer?

- B 52°C

(Total for Question 12 = 1 mark)

13 Hess's law can be used to determine enthalpy changes which cannot be measured directly, such as the thermal decomposition of calcium carbonate.

Using Hess's law, the expression to determine ΔH_1 is

- \triangle **A** $\Delta H_1 = \Delta H_2 \Delta H_3$
- \square **B** $\Delta H_1 = \Delta H_2 + \Delta H_3$
- \square **C** $\Delta H_1 = 2\Delta H_2 2\Delta H_3$
- \square **D** $\Delta H_1 = 2\Delta H_2 + 2\Delta H_3$

(Total for Question 13 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- **14** This question is about isotopes, and the use of mass spectrometry to detect their presence and measure their abundance.
 - (a) Boron has two naturally occurring isotopes, ¹⁰B and ¹¹B.
 - (i) A sample of boron contained 13.9% of isotope ¹⁰B and 86.1% of isotope ¹¹B. Calculate the relative atomic mass of boron in this sample. Give your answer to **three** significant figures.

(2)

(ii) Complete the following definition of relative atomic mass.

(1)

The relative atomic mass is the weighted mean mass of an atom of an element

(iii) Boron-12 is a short-lived radioactive isotope. Name the subatomic particles in an atom of boron-12 and give the number of each.

(2)

TE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) (i)	A mass spectrometer operates under a vacuum. Suggest the effect on the ions in a mass spectrometer if particles from the air were present.	(1)
(ii)	Suggest how, if at all, the electric field in the mass spectrometer would affect molecules that are not ionised.	(1)
*(iii)	The reaction of ethene with aqueous potassium manganate(VII), KMnO ₄ , produces ethane-1,2-diol, CH_2OHCH_2OH .	
	Data: molar mass of ethane-1,2-diol = $62 \mathrm{g} \mathrm{mol}^{-1}$ In an experiment, KMnO ₄ containing only ¹⁸ O reacts with ethene. Suggest how the mass spectrum of ethane-1,2-diol data could be used to decide whether the oxygen atoms in ethane-1,2-diol came from the manganate(VII) ion, water, or a combination of the two.	
		(2)

(c) A student sketched the mass spectrum of chlorine gas which contained 75% of the ³⁵Cl isotope and 25% of the ³⁷Cl isotope.

(i) Identify and correct the **two** errors made by the student in this sketch.

(2)

Correction 1

Frror 2

Correction 2

(ii) Give the formula of the ion responsible for the peak with m/e = 74, showing the isotope(s) present.

(1)

(Total for Question 14 = 12 marks)

DO NOT WRITE IN THIS AREA

(a) Write the equation for the overall reaction bromomethane. State symbols are not rec	quired.	(1)
(b) Propane reacts with chlorine to produce C with this molecular formula.	₃H ₇ CI. There are two possible isomers	
Draw the skeletal formulae of these two is		(4)
Name:	Name:	
(c) Ethane reacts with chlorine in UV light by a	a free radical substitution mechanism	
involving a number of steps.(i) Explain why ethane does not react with		
		(1)
(ii) Explain why ethane undergoes substitu		
		(1)

(iii) The first step of the reaction of chlorine with ethane in UV light involves homolytic fission.

Write the equation for this fission and state the name of this reaction step.

Curly half-arrows are not required.

(2)

Equation:

Name of reaction step

(iv) The ethyl free radical is an intermediate in the propagation stage of the reaction. Draw the dot-and-cross diagram of this free radical.

Use dots (•) for the hydrogen electrons, crosses (x) for the electrons of one of the carbon atoms and asterisks (*) for the electrons of the other carbon atom. Show only outer shell electrons.

(2)

(v) What change to the reaction mixture of ethane and chlorine would increase the production of polychlorinated alkanes such as 1,1-dichloroethane and 1,2-dichloroethane?

(1)

(Total for Question 15 = 12 marks)

DO NOT WRITE IN THIS AREA

16	This is a question about ionisation energies.	
	(a) Define in words the term 'first ionisation energy'.	(3)
•••••	(b) Write the equation for the second ionisation energy of lithium.	(1)
		(-)
	(c) Why is it not possible to determine the third ionisation energy for helium?	(1)

(d) Complete the sketch of the log (ionisation energy) of sodium.

(4)

Number of electrons removed

*(e) Explain why there is a general decrease in the values of the first ionisation energy on descending a group in the Periodic Table.

(3)

DO NOT WRITE IN THIS AREA

*(f) Explain why the first ionisation energy of sulfur is less than that of phosphorus.	(2)
*(g) The first ionisation energy for sodium is +496 kJ mol ⁻¹ and for magnesium is +738 Hence suggest a value for the first ionisation energy of aluminium and justify you	kJ mol ⁻¹ . r choice. (3)
Ionisation Energy Value:	
Justification	
(Total for Question 16 = 17 ma	arks)

17 The following data can be used in the Born-Haber cycle for sodium iodide, NaI.

Energy change	ΔH/ kJ mol ⁻¹
Enthalpy change of atomisation of iodine	+107
Enthalpy change of atomisation of sodium	+107
First ionisation energy of sodium	+496
First electron affinity of iodine	-295
Enthalpy change of formation of sodium iodide	-288

(a) Complete the Born-Haber cycle diagram for sodium iodide by adding the first ionisation energy of sodium and the first electron affinity of iodine. Include any relevant entities and arrow directions.

(3)

DO NOT WRITE IN THIS AREA

(b) Calculate the lattice energy for sodium iodide.	
Give a sign and units in your answer.	(1)
(c) Explain why the enthalpy changes of atomisation of sodium and of iodine are endothermic. For each substance, state the type of bonding present in the solid.	(3)
(d) The numerical value for the lattice energy of sodium iodide obtained from the	
Born-Haber cycle is more negative than the theoretical value. (i) Explain why the Born-Haber value is more negative than the theoretical value.	(2)
	(2)
(i) Explain why the Born-Haber value is more negative than the theoretical value. (ii) Draw an electron density map for the iodide ion in sodium iodide showing	

- **18** The reaction of liquid bromine is a standard test for alkenes.
 - (a) (i) Complete the equation for the reaction of cyclohexene with liquid bromine, using a skeletal formula.

(ii) What colour change would you see when this reaction occurs?

(1)

From _____ to ____

(b) Gaseous but-1-ene is another alkene that readily reacts with liquid bromine.

Using molecular formulae, the equation for the reaction is

$$C_4H_8 + Br_2 \rightarrow C_4H_8Br_2$$

(i) Using the bond enthalpy values in the table, calculate the enthalpy change for this reaction.

(2)

Bond	Bond enthalpy /kJ mol ⁻¹
С—Н	413
с—с	347
C=C	612
C—Br	290
Br—Br	193

(ii) Give **one** reason why the value calculated for the reaction in part (b)(i) using bond enthalpies is different from the true value. Do **not** consider experimental error, mean bond enthalpy values or non-standard conditions. (1) (iii) Using appropriate curly arrows, write the mechanism of the reaction between but-1-ene and bromine. (3)(iv) Identify, by name or by displayed formula, the product formed when bromine water is added to but-1-ene. (1) (Total for Question 18 = 9 marks) **TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS**

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA.

BLANK PAGE

6.9 Li lithium 3 23,0 Na sodium 11 39.1 K Potessium 19 85.5 Rb rubidium 37 132.9 Cs caesium 55 [223] Fr	87 87 * Lanth
9.0 Be beryttium 4 24.3 Mg magnestum 12 40.1 Ca calcium 20 87.6 Sr strontium 38 137.3 Ba barium 56 [226]	87 88 acries *Lanthanide series *Actinide series
(3) 45.0 Sc Scandium 21 88.9 Y yttrium 39 138.9 La* lanthanum 57 Ac*	actinium 89
L ba 1 zir c	140 Ce certum 588 232 The thorium
(5) (5) (5) (5) (5) (6) (7) (8) (8) (8) (92.9 (8) (92.9 (92.9 (180.9 (18	
1bol number (6) (6) Cr chromium 24 95.9 Mo molybdenum 42 183.8 W tungsten 74 183.8 Sg Sg	dubnium seaborgium bohrium 105 106 107 141 144 [147] Pr Nd Pm prascodymium promethium 59 60 61 [231] 238 [237] Pa U NP
(7) 54.9 Mn manganese 25 [98] Tc technetum 43 186.2 Re rhenium 75	147] Pm promethium 61 [237] Np
	bohrlum hassfum meltherium 107 108 109 [147] 150 152 Pm Sm Eu promethium 61 62 63 [237] [242] [243] Np Pu Am nectunium outconium americium
(9) 58.9 Co cobalt 27 102.9 Rh rhodium 45 192.2 Ir iridium 77 [268]	109 152 Eu europium 63 [243] Am americium
58.7 Ni nicket 28 106.4 Pd	darmstadtium 110 157 Gd gadolinium 64 [247] Cm
(11) 63.5 Cu copper 29 107.9 Ag silver 47 197.0 Au gold 79 [272]	111 159 Tb terblum 65 [245] BK
65. 65. 65. 65. 65. 65. 65. 65. 65. 65.	163 Dy dysprosium 66 [251] Cf
10.8 12.0 14.0 16.0 19.0 25 6 7 8 9 9 12.0 14.0 16.0 19.0 27.0 28.1 31.0 32.1 35.5 3 34 27.0 28.1 31.0 32.1 35.5 3 34 31.0 32.1 35.5 3 34 35.5 3 34 35 34 34	163 165 Dy Ho dysprosium holmium 66 67 [251] [254] Cf Es
C carbon 6 5 28.1 Si silicon 14 72.6 Ge	167 Er erbium 68 [253] Fm fermium
14.0 N nitrogen 7 31.0 P phosphorus 15 7 33.0 As arsenic 33 121.8 Sb antimory 51 209.0 Bi bismuth 83	but not fully authenticated 167
16.0 O oxygen 8 8 32.1 S sulfur 16 79.0 Se selenium 34 127.6 Te tellurium 55 Po polonium 84 116 have 116 have 116 polonium 84	nticated 173 Yb ytterbium 70 [254] No
19.0 F fluorine 9 35.5 CI chlorine 17 79.9 Br bromine 35 126.9 I iodine 53 At astatine 85	175 Lu lutetium 71 [257] Lr
Ne neon 10 39.9 Ar argon 18 83.8 Kr Krypton 36 131.3 Xe xenon 54 radon 86 86 86 86 86 86 86 86 86 86 86 86 86	