Moulding

Blow moulding:

- 1. Plastic granules fed through hopper
- 2. Heated/melted along the Archimedes screw
- 3. Extruded into hollow tube (parison)
- 4. Tube is then clamped into metal mould

surround parison. Air from tube (4) blows parison (7).

leaving formed products (8)

- 5. Air is pumped in to inflate mould
- 6. Product is ejected

Advantages	Disadvantages		
 Intricate shapes can be formed Can produce hollow shapes Ideal for mass production 	High initial set up costsMoulds are expensive to create		

Uses: Plastic bottles, Containers

Injection moulding:

- 1. Plastic granules fed through hopper
- 2. Heated/melted along the Archimedes screw
- hopper hydraulic system system screw motor
- 3. Plastic injected into the mould
- 4. Two-part mould "negative" of the product
- 5. Product rapidly cooled and ejected from mould

Advantages	Disadvantages		
 Ideal for mass production 	 High initial set up costs 		
 Low unit cost 	 Moulds are expensive to 		
 Precise moulding 	create		
 High quality finish 			

Uses: Casings for electronic products, Containers for storage/packaging

Vacuum forming:

- 1. Create mould (air gaps, tapers, angles, rounded edges)
- 2. Place mould on the plated and lower
- 3. Clamp HIPS and heat until 'bouncy'
- 4. Raise platen into mould
- 5. Vacuum pump air out
- 6. Blowback little air to help release mould

Advantages	Disadvantages		
 Ideal for batch production Inexpensive Easy to make moulds/can be modified Low temperatures which reduces energy usage Flexible manufacturing so can be modified 	 Moulds need to be accurate to avoid webbing Large amounts of waste materials produced -> environmental impact Weak/thin (15mm max thickness) 		

Uses: Yoghurt pots, Blister packs, Inside of fridges

Extrusion:

- 1. Plastic granules fed through hopper
- 2. Heated/melted along the Archimedes screw
- 3. Plastic injected into the mould
- 4. Extruded and cooled
- 5. Rollers pull plastic continuously

Advantages	Disadvantages		
 Low cost relative to other moulding processes Uses thermoplastics which can be remoulded Waste material can be reused Plastic can be manipulated after extrusion before fully cooled 	 Hard to predict die swell (expansion) Can only manufacture certain products 		

Mainfeed

Uses: Collapsible tubes, guttering, straws, gear blanks

Rotational moulding:

- 1. Powdered polymer loaded into mould
- 2. Heat is applied to the mould
- 3. At the same time the mould is rotated
- 4. After some time, the mould is cooled and the component is removed

Take-off

rollers

Waterbath

Side stuffer

Advantages	Disadvantages		
 Easy to produce large products Uniform thickness Corners of products are stress free Colour integrally part of the product 	 Lower volume production (slow) Materials available are limited Labour intensive 		

Uses: Buckets, Plastic footballs, Dustbins, Oil drums