2. $y(t) = e^{t} \text{ for } t < 0$ $= e^{-t} \text{ for } t > 0$ $a_0 = \frac{1}{L} \int y(t) dt$ = 1 et at + fe-t at $= [e^t]_+ + [-e^{-t}]_0$ $= [e^{\circ} - e^{-1}] + [-e^{-1} + e^{\circ}]$ $= 1 - e^{-1} - e^{-1} + 1.$ $= 2 - 2e^{-1}$ $= 2(1 - e^{-1})$ an = 1 / y(t) sin (nxt) dt = 0 (As calculated by Wolfram)

bn = 1 (y(t) cos (nxt) alt = 2 (xn sin (xn) - ws (xn) +e) (calculated ex²n² +e (wolfram)