1 Patterns Of Proofs

1.1 Proof by Contradiction

1. A proof by contracdiction is essentially proving the contrapositive of T \implies P, which is, $\neg P \implies F$, this means if we can prove that $\neg P \implies F$, then P must be true.

1.2 Proofs about Sets

- 1. Informally, a set is just a collection of objects, which are called elements.
- 2. A set can contain a set.
- 3. $\{x, x\} = \{x\}.$

Symbo	ol Set	Elements
Ø	empty set	
\mathbb{N}	non-negative integers	$\{0, 1, 2,\}$
$\mathbb Z$	integers	$\{, -1, 0, 1,\}$
\mathbb{Q}	rational numbers	0.5, -9, 33.33, ect
\mathbb{R}	real numbers	$\pi, \sqrt{2}, 9.9, \text{ ect.}$
\mathbb{C}	complex numbers	i, 34, ect.

1. \mathbb{R}^+ is only positive real numbers.