2.1.6

Эффект Джоуля-Томсона

Егор Берсенев

1 Цель работы:

- 1. Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры.
- 2. Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b»

2 Оборудование

Термостат, трубка с пористой перегородкой, труба Дьюара, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

3 Теоретическая часть

Определение 1. Эффект Джоуля-Томсона — изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

Исследуем изменение температуры углекислого газа при его медленном течении через пористую перегородку. Газ из области повышенного давления проходит в область с атмосферным давлением. Величина эффекта Джоуля-Томсона определяется по разности температур газа до и после перегородки. Рассмотрим два сечения трубки: до и после перегородки. Пусть через перегородку прошел, для определенности, 1 моль газа, μ — его молярная масса. Молярные объемы газа, давления и внутренние энергии в сечениях I и II обозначим как $V_1, P_1, U_1, V_2, P_2, U_2$. Для того, чтобы ввести в трубку объем V_1 нужно совершить работу $A_1 = P_1 V_1$. Проходя через сечение газ сам совершает работу $A_2 = P_2 V_2$.

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

Перегруппируем члены.

$$H_1 - H_2 = \frac{1}{2}\mu \left(v_2^2 - v_1^2\right) \tag{2}$$

Используме выражение для коэффициента Джоуля-Томсона.

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \simeq \frac{\frac{2a}{RT} - b}{C_p} \tag{3}$$

Используя связь между a, b и критической температурой найдем:

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кр}} \tag{4}$$

Рассмотрим экспериментальную установку.

- 1. Трубка, по которой протекает газ
- 2. Пористая перегородка
- 3. Труба Дьюара
- 4. Кольцо, уплотняющее трубу Дьюара
- 5. Змеевик
- 6. Балластный баллон
- 7. Вольтметр

4 Ход работы

Включим термостат и вольтметр, снимем значение поправочного напряжения $\varepsilon_0 = 6$ мкВ. Проведем измерения напряжения на термопаре и разности давлений:

${ m Ta}$ блица $1:{ m T}=295{ m \ K}$					
ΔP , atm	4.1	3.7	3.3	2.9	2.5
$U-U_0$, мкВ	150	134	116	98	80
ΔT , K	3.7	3.3	2.9	2.4	2

Таблица 2 : $T = 313 \; \mathrm{K}$					
ΔP , atm	4.1	3.7	3.3	2.9	2.5
$U-U_0$, мкВ	124	106	88	74	58
ΔT . K	3	2.5	2.1	1.8	1.4

${ m Ta}$ блица ${ m 3:}\ { m T}={ m 333}\ { m K}$					
ΔP , atm	4.1	3.7	3.3	2.9	2.5
$U-U_0$, мкВ	90	74	62	47	36
ΔT , K	2.1	1.7	1.4	1.1	0.8

Рис. 1: T = 295 K

Рис. 2: T = 313 K

Рис. 3: T = 333 K

Таблица 4: Коэффициенты Джоуля-Томсона

	$\mid \mathrm{T} = 295 \; \mathrm{K}$	$\mid T = 313 \text{ K}$	T = 333 K
$\mu_{\text{Д-T}}$	1.08	0.99	0.78
$\sigma_{\mu_{\text{Д-T}}}$	0.01	0.03	0.03

Рис. 4: Коэффициенты Джоуля-Томсона

Коэффициенты Ван-дер-Ваальса
$$a=\frac{kRC_p}{2}=1.273\frac{\text{H}\cdot\text{M}^4}{\text{моль}^2},\,b=-iC_p=6\cdot10^{-4}\frac{\text{M}^3}{\text{моль}}.$$

5 Вывод

Значения коэффициентов Ван-дер-Ваальса не совпадают с табличными, т.к. в таблице они указаны для критических параметров. $T_i = \frac{2a}{Rb} = 510K$, что также очень сильно расходится с табличным. Это могло произойти из-за несовершнества условий эксперимента.