

Chapter 3

Implementing Neural Networks

Content of this Chapter

- 1. Neural Network Libraries
- 2. Introduction to PyTorch
 - 1. From Numpy to PyTorch
 - 2. Implementing a Neural Network
- 3. Vectorisation of Neural Networks

3.1 Neural Network Libraries

- What libraries exist?
- What are their features?
- Why is GPU support so important?
- What do we use here?

Deep Learning Package Zoo

- PyTorch
- Tensorflow
- Keras
- JAX

TensorFlow

- Model specification?
- Computational graph?
- High-level programming language?


```
name: "convolution"
input: "data"
input_dim: 1
input_dim: 1
input_dim: 100
input_dim: 100
layer {
 name: "conv"
 type: "Convolution"
 bottom: "data"
 top: "conv"
  convolution_param {
   num_output: 3
   kernel_size: 5
   stride: 1
   weight_filler {
     type: "gaussian"
     std: 0.01
   bias_filler {
     type: "constant"
     value: 0
```

Model specification

Configuration file	Programmatic generation
e.g Caffe - DistBelief - CNTK	e.g PyTorch - Theano - Tensorflow

```
import torch.nn as nn
class NewsgroupsModel(nn.Module):
  """Simple Feedforward Neural Network for 20
Newsgroups"""
  def __init__(self, input_size=300):
    super().__init__()
    self. input_size = input_size
    self.hidden_1_size = 2048
    self.hidden_2_size = 256
    self.num_classes = 20
    self.fc1 = nn.Linear(self. input_size,
self.hidden_1_size)
    self.relu1 = nn.ReLU()
    self.fc2 = nn.Linear(self.hidden_1_size,
self.hidden_2_size)
    self.relu2 = nn.ReLU()
    self.fc3 = nn.Linear(self.hidden 2 size.
self.num_classes)
  def forward(self, x):
    a = self.relu1(self.fc1(x))
    b = self.relu2(self.fc2(a))
    c = self.fc3(b) # => logits
    return c
```


Computational graph

computational graph of a convolutional neural network:

- contains the program's operations and variables as a directed acyclic graph
- looks a lot like the circuit diagram from last lecture

Static	Dynamic
 set before execution can be optimized up front e.g. default in Tensorflow 1 	 set during forward pass can be changed dynamically during execution e.g. in PyTorch & Tensorflow 2

High-level programming language:

- Lua (Torch)
- Python (Theano, Tensorflow, PyTorch, JAX)
- ...

• We choose **PyTorch** because it is easy to understand for Python users

PyTorch

- PyTorch is
 - A deep learning library (but not only that)
 - Written in Python, but based on Torch that was written in Lua
 - Developed by Facebook Al research group
 - Open Source since February 2017 ©
 - Since then, steadily growing, especially in NLP research!

Number of academic papers including "PyTorch" vs. "Tensorflow"

PyTorch

PyTorch provides

- Predefined functions to compute gradients, optimisers, ...
- Simple, object-oriented interface
- ONNX (Open Neural Network Exchange) support to easily use trained models in other frameworks (e.g. on mobile devices, on the web, ...)
- GPU support!

Using GPUs

- Why GPU support?
- → Neural network operations are mostly matrix multiplications
- → Matrix multiplications can be parallelized very effectively!
- →GPUs excell at tasks where the same operation is done on many data points

$$BE = \begin{bmatrix} 8 & 1 & 2 \\ -5 & 6 & 7 \end{bmatrix} \begin{bmatrix} -5 & 1 \\ 0 & 2 \\ -11 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} (8)(-5) + (1)(0) + (2)(-11) & (8)(1) + (1)(2) + (2)(7) \\ (-5)(-5) + (6)(0) + (7)(-11) & (-5)(1) + (6)(2) + (7)(7) \end{bmatrix}$$

$$= \begin{bmatrix} -62 & 24 \\ -52 & 56 \end{bmatrix}$$

GPU vs CPU

- CPUs
 - Very few (\sim 2 64) complex cores
 - Great for complex tasks
 - Not so great for simple, parallel tasks
- GPUs
 - Have a lot (\sim 2500 3800) less complex cores
 - Can do huge matrix mults in parallel!

Relative Training Time MNIST CIFAR # i7-6900K # 1080 Ti

Deep Learning at our group

- Steadily growing server infrastructure
- >60 GPUs in >20 deep learning servers
- Additional university-wide GPU-cluster currently being built!
- Using Kubernetes to automatically manage resources

3.2 PyTorch

• How to use PyTorch?

From Numpy to PyTorch

- You may know Numpy
 - Math library for Python
 - Provides efficient implementation (C backend) for many common operations

A simple program in Numpy:

```
In [23]: import numpy as np
In [24]: a = np.zeros((2,2)); b = np.ones((2,2))
In [25]: np.sum(b, axis=1)
Out[25]: array([ 2., 2.])
In [26]: a.shape
Out[26]: (2, 2)
In [27]: np.reshape(a, (1,4))
Out[27]: array([[ 0., 0., 0., 0.]])
```


From Numpy to PyTorch

- PyTorch can be seen as a Numpy replacement with GPU support
- Therefore very similar concepts and code:

```
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.ones((2, 2))
np.sum(b, axis=1)
# array([2., 2.1)
a.shape
\# (2, 2)
np.reshape(a, (1, 4))
# array([[1, 2, 3, 4]])
                                      possible to extract a
                                  numpy array from a torch
                                                  tensor
```

a = torch.tensor([[1, 2], [3, 4]]) b = torch.ones((2, 2)) torch.sum(b, dim=1) # tensor([2., 2.]) a.shape # torch.Size([2, 2]) torch.reshape(a, (1, 4)) # tensor([[1, 2, 3, 4]])

import torch

a.numpy()

array([[1, 2],

[3, 4]])

Neural Networks with PyTorch

Neural Networks with PyTorch

- How to do this in PyTorch?
- → Three modules corresponding to these steps:
 - nn Module
 - Autograd module
 - Optim module

PyTorch Modules

nn module

- Collection of neural network related building blocks, e.g.
 - fully connected layers
 - common activation functions
 - common loss functions
 - ...
- Handles weights and biases internally
 - → hides complexity!

PyTorch Modules — Example

Define network structure as a function

Define loss function

Calculate go the loss give network p

```
# Feedforward layer
torch.nn.Linear(...)
# Convolutional layer
torch.nn.Conv2d(...)
# ReLU activation
torch.nn.ReLU()
# Cross Entropy Loss
torch.nn.CrossEntropyLoss()
```

weights and bias

- Tested code
- Object-oriented
- Automatically handles things like weight initialisation
- Easy to switch to other layers

```
[docs]@weak_module
class Linear(Module):
    r"""Applies a linear transformation to the incoming data: :math: y = xA^T + b
       in_features: size of each input sample
       out features: size of each output sample
       bias: If set to False, the layer will not learn an additive bias
            Default: ''True'
    Shape:
        - Input: :math: `(N, *, \text{in\ features})` where :math: `*` means any number of
        - Output: :math: `(N, *, \text{out\ features})` where all but the last dimension
          are the same shape as the input.
    Attributes:
        weight: the learnable weights of the module of shape
            :math: `(\text{out\_features}, \text{in\_features})`. The values are
            initialized from :math: \mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
            :math: `k = \frac{1}{\text{in\_features}}
        bias: the learnable bias of the module of shape :math:`(\text{out\_features})`.
                If :attr:'bias' is ''True'', the values are initialized from
                :math: \mathcal{U}(-\sqrt{k}, \sqrt{k}) \ where
                :math:`k = \frac{1}{\text{in\_features}}
    Examples::
       >>> m = nn.Linear(20, 30)
       >>> input = torch.randn(128, 20)
       >>> output = m(input)
       >>> print(output.size())
       torch.Size([128, 30])
    __constants__ = ['bias']
    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out features))
        else:
            self.register parameter('bias', None)
        self.reset_parameters()
    def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound)
    @weak_script_method
        return F.linear(input, self.weight, self.bias)
    def extra_repr(self):
        return 'in_features={}, out_features={}, bias={}'.format(
            self.in_features, self.out_features, self.bias is not None
```


PyTorch Modules

Autograd module

- Gradient computation necessary for gradient descent
- Autograd abstracts backpropagation away
 - Builds computation graph
 - Performs differentiation by chain rule
- → No differentiation by hand ©

2 4 # 6 8

PyTorch Modules — Example

a.grad # contains the gradient of y w.r.t. every entry of a


```
import torch a = \text{torch.tensor}([[1,2],[3,4]], \text{ requires\_grad=True}) \# 1 2 \\ \# 3 4 \\ y = \text{torch.sum}(a^{**}2) \text{We want to calculate gradients w.r.t. this} \\ \# \Rightarrow y = 1 + 4 + 9 + 16 = 30 \text{We want to calculate gradients w.r.t. this} \\ \# \text{compute gradients of y w.r.t. to all Variables} y = \sum_{a_{ij}} a_{ij}^2 = a_{00}^2 + a_{10}^2 + a_{01}^2 + a_{11}^2 \# \text{compute gradients of y w.r.t. to all Variables} y.\text{backward()}
```


PyTorch Modules

Optim module

- Defines multiple optimisation algorithms
 - SGD
 - Adam optimiser
 - ...
- Consistent interface → easily interchangeable

These modules make it easy to build neural networks. Let's do this!

You know this already!

20 Newsgroups Text Classification

- 20 Newsgroups is a dataset of online discussion
 - 18,828 documents total
 - 20 forums, some closely related (pc.hardware vs mac.hardware), some highly unrelated (misc.forsale vs religion.christian)
 - → Classify which forum each document originates from
- Popular evaluation set in Natural Language Processing
- Not completely solved (Error rate $\sim 11.4\%$)

PyTorch – Building a Neural Network

→ Let's build a classifier for 20 Newsgroups!

But first: How do we get the data into the network?

Data Input and Preprocessing

PyTorch – Dataset

- Given:
 - A dataset of documents
 - For each document i
 - An attribute "data" containing the raw unprocessed text
 - An attribute "topic" containing the label
- We will build a Dataset class for 20 Newsgroups

{"topic": "comp.os.ms-windows.misc",
"data": "I often use Notepad to view and
print "read.me" type files. I often
find\n> myself rushing to get to
Print Manager to stop the printer
and delete..."}

PyTorch – Dataset class

- PyTorch provides an abstract class representing a dataset
- Our Dataset class should inherit from it and overwrite the following methods:
 - __len__ returns the length of our dataset
 - __getitem__ returns a data point given an index
- __getitem__ can load a specific data point on demand

 → no need to load the entire dataset

from torch.utils.data import Dataset

```
class NewsgroupsDataset(Dataset):
```

```
"""20 Newsgroups Dataset"""
```

def __init__(self , data: list, labels: dict):

initialise everything

```
def __len__(self):
   """Returns the size of the dataset"",
```

get the number of examples

```
def __getitem__(self, idx: int):
    """Returns a data point (text and label) given an index"""
```

get an example and label for a given index


```
import numpy as np
from torch.utils.data import Dataset
```

```
class NewsgroupsDataset(Dataset):
```

```
def __len__(self):

"""Returns the size of the dataset"",

get the number of examples
```

```
def __getitem__(self, idx: int):
    """Returns a data point (text and label) given an index"""
```

get an example and label for a given index


```
import numpy as np
from torch.utils.data import Dataset
```

```
class NewsgroupsDataset(Dataset):
```

```
def __len__(self):
    """Returns the size of the dataset"""
    return len(self.data)

get the number of examples
```

```
def __getitem__(self, idx: int):
    """Returns a data point (text and label) given an index"""
```

get an example and label for a given index


```
from torch.utils.data import Dataset
```

```
class NewsgroupsDataset(Dataset):
    """20 Newsgroups Dataset"""

def __init__(self , data: list, labels: dict):
    super().__init__()
    self.data = data # [{"data": "Hello there ...", "label": "misc.forsale"}, {"data": "...", "label": "..."}, ...]
    self.labels = labels # {"misc.forsale": 0, "sci.space": 1, ...}
```

```
def __len__(self):

"""Returns the size of the dataset"""

return len(self.data)

get the number of examples
```

```
def __getitem__(self, idx: int):
    """Returns a data point (text and label) given an index"""

text = self.data[idx]["data"]  # load the raw text from the document with the given id

text = self.preprocess(text)  # clean text (e.g. lowercasing, ...) and create embedding vector

text = torch.from_numpy(text).float()  # network inputs need to be float

label = self.data[idx]["label"]  # load the true label of the document with the given id

label = self.labels[label]  # lookup integer value of the string label

label = torch.tensor(label).long()  # label is not a continuous value but class indices

return text, label
```


PyTorch – Dataset

- Now we can retrieve an element using an index from 0 to len(dataset)-1
- One more thing:
 Neural Networks use batches for training:
 - Concatenate multiple examples to a higher dimensional matrix
 - Train on multiple examples at once
- →This is handled by a DataLoader in PyTorch
- Using a DataLoader also allows for:
 - Shuffling: Shuffle a list of all available indices and iterate over it
 - Parallel loading of items: Query the __getitem__ method from multiple threads


```
# gensim provides a module for downloading datasets/models
import gensim.downloader as api
from torch.utils.data import DataLoader
data = list()
label_mask = set()
for document in api.load("20-newsgroups"):
    data.append(document))
    label_mask.add(document["topic"]))
# assign an unique integer to every string label
label_mask = {label: index for index, label in enumerate(label_mask)}
                                                               create a DataLoader by
                                                                handing in our dataset
dataset = NewsgroupsDataset(data, label_mask)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=512, shuffle=True, num_workers=2)
                                                     iterable that yields data batches
                                                     and their labels that can be used in
for data in data loader:
    inputs, labels = data
                                                     model training and testing
    # feed inputs through network
    # calculate loss based on output and labels
   # ...
```


Building the Model

Two ways:

- The hard/low-level (but educational 69) way
- The easy/high-level way

PyTorch – Building the Model

- PyTorch provides an abstract class Module (nearly everything that modifies tensors is a Module)
- Mainly two methods to override:
 - forward: feed incoming values through the network
 - backward: defines the gradient of the operation → Autograd handles this for us (when only using PyTorch operations), so usually no need to implement this
- We will build a simple feedforward neural network
 - With 2 hidden layers
 - ReLU activation
 - And a softmax output layer

Building Models: The **Hard/Low-Level** Way

Useful when:

- PyTorch does not (yet) provide layers you need
- you want to do other kinds of calculations

Low-Level Model Building

• Recall: A simple feedforward layer can be written as

$$y = \sigma(Wx + b)$$

- We can use PyTorch's functions that are inspired by Numpy to implement this!
- We need:
 - A matrix W
 - A bigs term b
 - Operations
 - matrix multiplication
 - addition
 - element-wise operations for the activation function

Low-Level Model Building

- One addition: Up until now, we always used column vectors
- PyTorch, however, uses row vectors
- Therefore, the linear classifier

$$y = \sigma(Wx + b)$$

needs to be rewritten as

$$y = \sigma(xW + b)$$

to be calculable.


```
class NewsgroupsModelLowLevel(nn.Module):
       """Simple Feedforward Neural Network for 20 Newsgroups"""
       def __init__(self, input_size=300):
          super().__init__()
          self.input_size = input_size
                                                                                                                      Input
          self.hidden_1_size = 2048
          self.hidden_2\_size = 256
                                             weights and biases are randomly initialised
          self.num_classes = 20
                                                                                                                  Hidden Layer
          self.W1 = nn.Parameter(torch.randn(self. input_size, self.hidden_1_size, requires_grad=True))
a
           self.b1 = nn.Parameter(torch.randn(1, self.hidden_1_size, requires_grad=True))
          self.relu1 = nn.ReLU()
          self.W2 = nn.Parameter(torch.randn(self.hidden_1_size, self.hidden_2_size, requires_grad=True))
                                                                                                                     ReLU
b
          self.b2 = nn.Parameter(torch.randn(1, self.hidden_2_size, requires_grad=True))
           self.relu2 = nn.ReLU()
          self.W3 = nn.Parameter(torch.randn(self.hidden_2_size, self.num_classes, requires_grad=True))
                                                                                                                  Hidden Layer
          self.b3 = nn.Parameter(torch.randn(1, self.num_classes, requires_grad=True))
       def forward(self, x):
                                                    wrapped by Parameter to be later
          # first hidden layer
                                                                                                                     ReLU
          a = x @ self.W1 + self.b1
                                                    picked up by the optimisation
          a = self.relu1(a)
          # second hidden layer
                                                                                                                 Output Layer
                                                    data input
          b = a @ self.W2 + self.b2
          b = self.relu2(b)
          # output layer
          c = b @ self.W3 + self.b3
                                                                                                                    Softmax
           return c # => logits
                                                  @ is the shorthand for matrix multiplication
          no softmax
```


Building Models: The **Easy/High-Level** Way

Most layers are already implemented in PyTorch's nn Module!

import torch.nn as nn


```
Input
class NewsgroupsModel(nn.Module):
  """Simple Feedforward Neural Network for 20 Newsgroups"""
  def __init__(self, input_size=300):
                                                                               Hidden Layer
    super().__init__()
    self.image_size = input_size
                                                                                  ReLU
                                 takes care of weights, biases, initialisation, ...
    self.hidden_1\_size = 2048
    self.hidden_2_size = 256
                                                                               Hidden Layer
    self.num\_classes = 20
    self.fc1 = nn.Linear(self.image_size, self.hidden_1_size)
                                                                                  ReLU
    self.relu1 = nn.ReLU()
    self.fc2 = nn.Linear(self.hidden_1_size, self.hidden_2_size)
    self.relu2 = nn.ReLU()
                                                                               Output Layer
    self.fc3 = nn.Linear(self.hidden_2_size, self.num_classes)
                                                <del>data</del> input
  def forward(self, x):
                                                                                 Softmax
                                                      still no softmax
    a = self.relu1(self.fc1(x))
    b = self.relu2(self.fc2(a))
    c = self.fc3(b) # => logits
```


Short slide-in: Initialising Neural Networks

- The weights in a network need some initial values
- PyTorch layers handle this for us
- But what is the best option for initialisation?
- Our low-level approach was: Take a normal distribution around zero and pick some values...
- ... was that a smart idea?
- → Maybe. It depends

Initialising Neural Networks

- Many possible initialisers
- Problem: You never know which works best in your context
- →Try different initialisers
- →Some common choices on the following slides

Initialising Neural Networks – Random

- The easiest initialiser: Just sample random values
- Two variants:
 - Pick numbers from a uniform distribution, usually close to zero w = np.random.uniform(-0.01,0.01)
 - Pick numbers from a normal distribution, usually around zero w = 0.01* np.random.randn()

Initialising Neural Networks – Calibrating the Variance

- Problem with purely random initialisation:
 More inputs
 - → Higher (variance of the) output of the neuron
 - → Possible problem with high gradients!
- Can be fixed by "normalising" the initialisation
- For each weight W of a neuron N:
 w = np.random.randn() / sqrt(n)
- n is the number of inputs to the neuron N

Initialising Neural Networks – Glorot/Xavier

- Introduced by Xavier Glorot and Yoshua Bengio
- Names Glorot- and Xavier-Initialiser used interchangeably
- Complex analysis of gradient flow in networks
 - → Recommend to normalise the variance to

$$Var(w) = \frac{2}{n_{in} + n_{out}}$$

Number of inputs/outputs of the neuron

$$w = np.random.randn() / sqrt(2/(n_in + n_out))$$

• Works best for layers with sigmoid or tanh activation functions

Initialising Neural Networks – He/Kaiming

- Introduced by Kaiming He et al.
- Names **He-** and **Kaiming-Initialiser** used interchangeably

$$Var(w) = \frac{gain}{n_{in}}$$

• gain depends on activation function, e.g. for ReLU: gain=2

$$w = np.random.randn() / sqrt(2/n_in)$$

• Was initially introduced for the ReLU activation function, thus works best for it

Initialising Neural Networks - PyTorch

- PyTorch contains many common initialisers
 - Random uniform/normal
 - Glorot/Xavier
 - He/Kaiming
 - ...
- He/Kaiming initialisation is the default for most layers
- → Use He/Kaiming first. Try others, too!

Initialising Neural Networks - PyTorch

How to initialise weights in PyTorch?

1. Initialise only one layer after creating it:

```
torch.nn.init.xavier_uniform(layer.weight)
```

2. Initialise the whole model after creating it

```
def init_weights(m):
    if type(m) == nn.Linear:
        torch.nn.init.xavier_uniform(m.weight)
model.apply(init_weights)
```


Loss Function

PyTorch – Loss Function

• Given the output of the network, calculate the error of the prediction w.r.t. the correct label → Loss function / "criterion"

Gradient Calculation

PyTorch – Gradient Calculation

• Given the value of the loss function and the current weights, calculate the gradient for all parameters

```
import torch.nn as nn

# Loss function
criterion = nn.CrossEntropyLoss()

# calculate the loss
loss = criterion(logits, labels)
[...]
# calculate the gradients w.r.t. the network parameters
loss.backward()

That was easy ©
```


Optimiser

PyTorch – Optimiser

Alter the weights of the network to minimise the error
 Optimiser

That was also easy \odot

Putting things together: The Training Loop

PyTorch — Training Loop

```
for epoch in range(10): # loop over the dataset multiple times
    for data in data loader:
        # get the data points
       inputs, labels = data
       # zero the parameter gradients
        # (else, they are accumulated)
        optimiser.zero_grad()
      # forward the data through the network
       logits = model(inputs)
       # calculate the loss
        loss = criterion(logits, labels)
        # calculate the gradients w.r.t. the network parameters
        loss.backward()
       # let the optimiser take an optimization step
        optimiser.step()
```

```
# Data
dataset = NewsgroupsDataset(data)
data loader =
torch.utils.data.DataLoader(datas
et, batch_size=512, shuffle=True,
num_workers=2)
# Model
model = NewsgroupsModel()
# Loss function
criterion = nn.CrossEntropyLoss()
# Optimiser
optimiser =
optim.Adam(model.parameters(),
lr=0.001)
```


PyTorch – A Model for 20 Newsgroups

We've set up everything, it's time to let it run

→ Demo Time!

Combatting Overfitting – Regularisation

- Our network is adequate on the training set (78.96 % Accuracy)...
- ... but worse on the test set (70.17 % Accuracy)!
- Overfitting is very common for neural networks
- Deep networks → Lots of parameters → Memorising the training set
- Regularisation is designed to prevent this
- Two main tactics:
 - Penalising high weights (L1/L2-norm)
 - Dropout

Combatting Overfitting – L2 Regularisation

- Idea: Force the network to use all inputs rather than focusing on some
- Modify the loss to penalise "peaky" weights
- Add a regularisation term:

$$L_{reg} = L + \frac{1}{2}\lambda \sum_{w} w^2$$

Loss without regularisation

All weights in the network

Regularisation "strength"

• L_2 -norm is smaller if there are no "outliers" in the weights

Combatting Overfitting – L2 Regularisation

• L2-Regularisation in PyTorch:

$$L_{reg} = L + \frac{1}{2}\lambda \sum_{w} w^2$$

• You could add the loss term by hand:

weight or bias tensor from the defined layers

```
for param in model.parameters():
    loss += 0.5 * lamb * torch.sum(param**2)
```

• But most optimisers already have a Weight_decay parameter that is closely related and mostly equivalent to L2 regularisation:

```
optimiser = optim.Adam(model.parameters(), lr=0.001, weight_decay=lamb)
```


L2 Regularisation vs. Weight Decay

• L2 Regularisation adds a term to the loss function:

$$L_{reg} = L + \frac{1}{2}\lambda \sum_{w} w^2$$
that's new

VS

Deriving the regularised loss function:

$$\frac{\partial}{\partial w}L_{reg} = \frac{\partial}{\partial w}L + \lambda w -$$

 Weight decay adds a term to the derivative of the loss function:

$$\frac{\partial}{\partial w} L + \underbrace{\lambda w}_{\text{that's new}}$$

• Then, in the optimisation step (SGD):

step (SGD):

$$w = w - lr \cdot (\frac{\partial}{\partial w} L + \lambda w)$$

looks like they are equivalent!

L2 Regularisation vs. Weight Decay

Question: But are they? When do they obtain different results?

Answer:

- Adding a term to the optimisation step (Weight Decay)
 vs.
 modifying the loss gradient (L2)
- Equivalent for optimisers that do not reuse previous gradients (e.g. SGD)
- Not equivalent for optimisers that reuse previous loss gradients (e.g. Adam or SGD with Momentum)
 - L2 affects the previous gradient
 - The Weight Decay term is not reused

- Dropout: More recent method (2014)
- Idea: During training, "remove" a portion $0 \le p < 1$ of neurons from the net \rightarrow Force the net to rely on many features instead of few!

(a) Standard Neural Net

(b) After applying dropout.

Implementation by a mask:
 Random vector with zeros (probability p) and ones

Fully Connected layer with ReLU

- > Keep the neuron if the position in the mask has a one, set it to zero otherwise
- → Equivalent to removing the neuron

- Dropout only applied in **training** phase!
- When **testing**, dropout is **disabled** (p = 0)
- → Roughly equivalent to training an **ensemble** of smaller networks

• Empirically shown to improve generalisation on many tasks

Problem: Dropout changes the expected output of a neuron!

- → Larger expected output when testing!
- → Scaling needed!

- Scaling needed because of different expected output during training/testing
- Two possible solutions:
 - Scale down while testing
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p

```
• Scale up while training

H1 = np.maximum(0, np.dot(W1, X) + b1) 

U1 = (np.random.rand(*H1.shape) > p) / p

H1 *= U1
```


- Scaling needed because of different expected output during training/testing
- Two possible solutions:
 - Scale down while testing

 H1 = np.maximum(0, np.d This slows down the prediction step! We don't want that!

```
• Scale up while training
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = (np.random.rand(*H1.shape) > p) / p
H1 *= U1
```


PyTorch provides a Dropout module

```
# Model __init__
self.dropout = nn.Dropout(p=0.4)
```

```
# Model forward
x = self.dropout(x)
```

to drop values with a **probability** of 40% during training.

```
Important:
```

```
sets a variable in the model to indicate training model,
model.train() # default
                                                                   so dropout should be applied
```

model.eval() sets the model training variable to False, so dropout is disabled; call this before testing!

Attention! Libraries use **keep** probability and drop probability inconsistently!

PyTorch – A Model for 20 Newsgroups

Dropout Demo

PyTorch – A Model for 20 Newsgroups

→Better results on test set (71.35 % vs 70.17 % without Dropout)!

This may not sound like much, but:

- Additional >1% sometimes means a huge gain!
- Often bigger improvements on other datasets...
- ... all the more so if we consider the small effort involved.
- Curious effect of Dropout:
 - Results on the training set sometimes worse than on the test set
 - Caused by aforementioned "ensemble" of smaller networks: All neurons available for testing, only some for training
- Nice to have:
 - Dropout usually makes training faster due to more multiplications with zeros

PyTorch – Bringing everything to the GPU

- Currently, everything was computed on the CPU
- In PyTorch, we have to move all values to the GPU if we want to work with it
- Only a few changes are necessary to run on the GPU

```
# Automatically choose GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Move the data tensors (inputs and outputs) to the correct device input_tensor.to(device)
output_tensor.to(device)

# Move the model parameters to the correct device model.to(device)
```


Making PyTorch development easier/faster

ECOSYSTEM TOOLS

Pytorch.org/ecosystem/

PyTorch Lightning

PyTorch Lightning is a Keras-like ML library for PyTorch. It leaves core training and validation logic to you and automates the rest.

fastai

fastai is a library that simplifies training fast and accurate neural nets using modern best practices.

Ignite

Ignite is a high-level library for training neural networks in PyTorch. It helps with writing compact, but full-featured training loops.

Pyro

Pyro is a universal probabilistic programming language (PPL) written in Python and supported by PyTorch on the backend.

... and many more

3.3 Vectorisation of Neural Networks

Why Vectorisation?

- Recall:
 - Matrix multiplications can be computed very efficiently
 - Element-wise operations can be parallelised (good for GPUs)
- Idea: Make your network faster to compute by using as many matrix multiplications and element-wise operations as possible
- > Vectorise the forward pass and backpropagation algorithm

VECTORISE

Two steps:

•
$$z = \sum_{i=1}^{3} w_i x_i$$

•
$$y = \sigma(z)$$

 \mathbf{w}_2

 \mathbf{w}_3

 \mathbf{x}_2

 \mathbf{x}_3

Vectorising the Forward Pass

 \mathbf{Z}

 σ

$$z = \sum_{i=1}^{3} w_i x_i$$

using a for-loop, we can compute

$$z = w^T x$$

using vector/matrix multiplication.

- $\sigma(z)$ is just a function working on one scalar
- →Forward pass is easily parallelisable for one neuron ©
- → But wait! Usually, we have more than one neuron per layer!

- Fortunately, all neurons are the same, except the weights
- Combine all weight vectors w to matrix W: $W_{i,j}$ is the weight for the connection from neuron x_j to z_i

Vectorising Backpropagation

Backpropagation

- Recall: Backpropagation =
 - calculating partial derivatives...
 - ... of the network's loss function...
 - ... w.r.t. the weights and biases...
 - ... by applying the **chain rule**:

If
$$f(x) = p(q(x))$$
, then $\frac{df}{dx} = \frac{df}{dq} \frac{dq}{dx}$

Multivariable Chain Rule

- In neural networks, it is typical for a value to "flow" through multiple paths to a neuron (here: $x \rightarrow y$)
- When calculating gradients w.r.t. x, we can go two paths:
 - via z_1 : $\frac{dy}{dz_1} \frac{dz_1}{dx}$
 - via z_2 : $\frac{dy}{dz_2} \frac{dz_2}{dx}$
- How do we calculate the final gradient $\frac{dy}{dx}$?

Multivariable Chain Rule

• The multivariable chain rule states:

If
$$f(g(x), q(x))$$
, then $\frac{df}{dx} = \frac{df}{dg} \frac{dg}{dx} + \frac{df}{dq} \frac{dq}{dx}$

• In this case:

$$\frac{dy}{dx} = \frac{dy}{dz_1} \frac{dz_1}{dx} + \frac{dy}{dz_2} \frac{dz_2}{dx}$$

Okay, let's vectorise the backpropagation in an example neural network!

$$L(y,t) = \frac{1}{2} \sum_{i=1}^{3} (t_i - y_i)^2$$

- Simple Feedforward Network with one hidden layer
- No bias, but possible to add using the bias trick (see exercises)
- Sigmoid activation function
- Loss function: squared error loss

First, let's visualise this network as a circuit diagram with vectors

Example Neural Network

Backpropagation: Use the chain rule and go back every step in the diagram

what is $\frac{\partial l}{\partial v}$?

$$L(y,t) = \frac{1}{2} \sum_{i=1}^{3} (t_i - y_i)^2$$

$$\frac{\partial l}{\partial y_1} = \frac{\partial}{\partial y_1} \frac{1}{2} \sum_{i=1}^{3} (t_i - y_i)^2$$

$$\frac{\partial l}{\partial y} = \begin{vmatrix} \frac{\partial l}{\partial y_1} \\ \frac{\partial l}{\partial y_2} \\ \frac{\partial l}{\partial y_2} \end{vmatrix}$$

$$\frac{\partial l}{\partial y_2} = \frac{\partial}{\partial y_2} \frac{1}{2} \sum_{i=1}^3 (t_i - y_i)^2 \qquad \frac{\partial l}{\partial y_3} = \frac{\partial}{\partial y_3} \frac{1}{2} \sum_{i=1}^3 (t_i - y_i)^2$$

$$\frac{\partial l}{\partial y_3} = \frac{\partial}{\partial y_3} \frac{1}{2} \sum_{i=1}^{3} (t_i - y_i)^2$$

what is $\frac{\partial l}{\partial v}$?

$$\frac{\partial l}{\partial y_1} = \frac{\partial}{\partial y_1} \frac{1}{2} \sum_{i=1}^{3} (t_i - y_i)^2$$

$$= \frac{\partial}{\partial y_1} \left(\frac{1}{2} (t_1 - y_1)^2 + \frac{1}{2} (t_2 - y_2)^2 + \frac{1}{2} (t_3 - y_3)^2 \right)$$

sum rule
$$\frac{\partial}{\partial y_1} \frac{1}{2} (t_1 - y_1)^2 + \frac{\partial}{\partial y_1} \frac{1}{2} (t_2 - y_2)^2 + \frac{\partial}{\partial y_1} \frac{1}{2} (t_3 - y_3)^2$$

$$= \frac{\partial}{\partial y_1} \frac{1}{2} (t_1 - y_1)^2$$

chain rule:
$$p(q(y_1))$$
 with $q(y_1, t_1) = t_1 - y_1$ and $p(q) = \frac{1}{2}(q)^2$

chain rule: $p(q(y_1, t_1))$ with

$$q(y_1, t_1) = t_1 - y_1$$

and $p(q) = \frac{1}{2}(q)^2$

Previous slide

$$\frac{\partial l}{\partial y_1} = \frac{\partial}{\partial y_1} \frac{1}{2} (t_1 - y_1)^2 = 2\frac{1}{2} (t_1 - y_1) \cdot -1 = y_1 - t_1$$

$$\frac{dp}{dq} \qquad \frac{dq}{dy_1}$$

$$\frac{\partial l}{\partial y_1} = y_1 - t_1$$

$$\frac{\partial l}{\partial y_2} = y_2 - t_2$$

$$\frac{\partial l}{\partial y_3} = y_3 - t_3$$

$$\frac{\partial l}{\partial y} = \begin{bmatrix} \frac{\partial l}{\partial y_1} \\ \frac{\partial l}{\partial y_2} \\ \frac{\partial l}{\partial y_3} \end{bmatrix} = y - t$$
fast vector operation \odot

chain rule!

 σ is an element-wise operation, so we only need to look at the ith element

$$\frac{\partial l}{\partial b} = \begin{bmatrix} \frac{\partial l}{\partial b_1} \\ \frac{\partial l}{\partial b_2} \\ \frac{\partial l}{\partial b_3} \end{bmatrix}$$

$$\frac{\partial l}{\partial b_1} \stackrel{\downarrow}{=} \frac{\partial l}{\partial y_1} \cdot \frac{\partial y_1}{\partial b_1} \stackrel{\longleftarrow}{=} (y_1 - t_1) \cdot \sigma(b_1) \cdot (1 - \sigma(b_1))$$

$$\frac{\partial l}{\partial b_2} = \frac{\partial l}{\partial y_2} \cdot \frac{\partial y_2}{\partial b_2} = (y_2 - t_2) \cdot \sigma(b_2) \cdot (1 - \sigma(b_2))$$

$$\frac{\partial l}{\partial b_3} = \frac{\partial l}{\partial y_3} \cdot \frac{\partial y_3}{\partial b_3} = (y_3 - t_3) \cdot \sigma(b_3) \cdot (1 - \sigma(b_3))$$

$$\frac{\partial l}{\partial h} = \begin{bmatrix} \overline{\partial h_1} \\ \overline{\partial l} \\ \overline{\partial h} \end{bmatrix}$$
 We need this for calculating the derivatives of the previous layer

$$\frac{\partial l}{\partial W} = \begin{bmatrix} \frac{\partial l}{\partial W_{1,1}} & \frac{\partial l}{\partial W_{1,2}} \\ \frac{\partial l}{\partial W_{2,1}} & \frac{\partial l}{\partial W_{2,2}} \\ \frac{\partial l}{\partial W_{3,1}} & \frac{\partial l}{\partial W_{3,2}} \end{bmatrix}$$

what are
$$\frac{\partial l}{\partial h}$$
 and $\frac{\partial l}{\partial W}$?

let's start with this

Backpropagation Step 3 — h

$$\frac{\partial l}{\partial h} = \begin{bmatrix} \frac{\partial l}{\partial h_1} \\ \frac{\partial l}{\partial h_2} \end{bmatrix}$$

$$b = Wh = \begin{bmatrix} b_1 \\ b_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} W_{1,1}h_1 + W_{1,2}h_2 \\ W_{2,1}h_1 + W_{2,2}h_2 \\ W_{2,1}h_1 + W_{2,2}h_2 \end{bmatrix}$$

multivariable chain rule!

$$\frac{\partial l}{\partial h_1} = \frac{\partial l}{\partial b_1} \cdot \frac{\partial b_1}{\partial h_1} + \frac{\partial l}{\partial b_2} \cdot \frac{\partial b_2}{\partial h_1} + \frac{\partial l}{\partial b_3} \cdot \frac{\partial b_3}{\partial h_1} = \frac{\partial l}{\partial b_1} \cdot W_{1,1} + \frac{\partial l}{\partial b_2} \cdot W_{2,1} + \frac{\partial l}{\partial b_3} \cdot W_{3,1}$$

$$\frac{\partial l}{\partial h_2} = \frac{\partial l}{\partial b_1} \cdot \frac{\partial b_1}{\partial h_2} + \frac{\partial l}{\partial b_2} \cdot \frac{\partial b_2}{\partial h_2} + \frac{\partial l}{\partial b_3} \cdot \frac{\partial b_3}{\partial h_2} = \frac{\partial l}{\partial b_1} \cdot W_{1,2} + \frac{\partial l}{\partial b_2} \cdot W_{2,2} + \frac{\partial l}{\partial b_3} \cdot W_{3,2}$$

Backpropagation Step 3 — h

From previous slide:

$$\frac{\partial l}{\partial h} = \begin{bmatrix} \frac{\partial l}{\partial h_1} \\ \frac{\partial l}{\partial h_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial l}{\partial b_1} \cdot W_{1,1} + \frac{\partial l}{\partial b_2} \cdot W_{2,1} + \frac{\partial l}{\partial b_3} \cdot W_{3,1} \\ \frac{\partial l}{\partial b_1} \cdot W_{1,2} + \frac{\partial l}{\partial b_2} \cdot W_{2,2} + \frac{\partial l}{\partial b_3} \cdot W_{3,2} \end{bmatrix} = \begin{bmatrix} W^T \frac{\partial l}{\partial b} \\ W^T \frac{\partial l}{\partial b} \end{bmatrix}$$
 vectorised version \odot

$$\frac{\partial l}{\partial h} = \begin{bmatrix} \frac{\partial l}{\partial h_1} \\ \frac{\partial l}{\partial h_2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \frac{1}{2} \end{bmatrix}$$

We need this for calculating the derivatives of the previous layer

$$\frac{\partial l}{\partial W} = \begin{bmatrix} \frac{\partial l}{\partial W_{1,1}} & \frac{\partial l}{\partial W_{1,2}} \\ \frac{\partial l}{\partial W_{2,1}} & \frac{\partial l}{\partial W_{2,2}} \\ \frac{\partial l}{\partial W_{3,1}} & \frac{\partial l}{\partial W_{3,2}} \end{bmatrix}$$

now this one

what are $\frac{\partial l}{\partial h}$ and $\frac{\partial l}{\partial W}$?

Backpropagation Step 3 — W

$$\frac{\partial l}{\partial W} = \begin{bmatrix} \frac{\partial l}{\partial W_{1,1}} & \frac{\partial l}{\partial W_{1,2}} \\ \frac{\partial l}{\partial W_{2,1}} & \frac{\partial l}{\partial W_{2,2}} \\ \frac{\partial l}{\partial W_{3,1}} & \frac{\partial l}{\partial W_{3,2}} \end{bmatrix}$$

$$b = Wh = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_{1,1}h_1 + W_{1,2}h_2 \\ W_{2,1}h_1 + W_{2,2}h_2 \\ W_{3,1}h_1 + W_{3,2}h_2 \end{bmatrix}$$

multivariable chain rule!

$$\frac{\partial l}{\partial W_{1,1}} \stackrel{\downarrow}{=} \frac{\partial l}{\partial b_1} \cdot \frac{\partial b_1}{\partial W_{1,1}} + \frac{\partial l}{\partial b_2} \cdot \frac{\partial b_2}{\partial W_{1,1}} + \frac{\partial l}{\partial b_3} \cdot \frac{\partial b_3}{\partial W_{1,1}} = \frac{\partial l}{\partial b_1} \cdot h_1 + \frac{\partial l}{\partial b_2} \cdot 0 + \frac{\partial l}{\partial b_3} \cdot 0$$

$$\vdots$$

$$\frac{\partial l}{\partial W_{3,2}} = \frac{\partial l}{\partial b_1} \cdot \frac{\partial b_1}{\partial W_{3,2}} + \frac{\partial l}{\partial b_2} \cdot \frac{\partial b_2}{\partial W_{3,2}} + \frac{\partial l}{\partial b_3} \cdot \frac{\partial b_3}{\partial W_{3,2}} = \frac{\partial l}{\partial b_1} \cdot 0 + \frac{\partial l}{\partial b_2} \cdot 0 + \frac{\partial l}{\partial b_3} \cdot h_2$$

Backpropagation Step 3 — W

$$\frac{\partial l}{\partial W} = \begin{bmatrix} \frac{\partial l}{\partial W_{1,1}} & \frac{\partial l}{\partial W_{1,2}} \\ \frac{\partial l}{\partial W_{2,1}} & \frac{\partial l}{\partial W_{2,2}} \\ \frac{\partial l}{\partial W_{3,1}} & \frac{\partial l}{\partial W_{3,2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial l}{\partial b_1} \cdot h_1 & \frac{\partial l}{\partial b_1} \cdot h_2 \\ \frac{\partial l}{\partial b_2} \cdot h_1 & \frac{\partial l}{\partial b_2} \cdot h_2 \\ \frac{\partial l}{\partial b_3} \cdot h_1 & \frac{\partial l}{\partial b_3} \cdot h_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial l}{\partial b_1} \cdot h_1 & \frac{\partial l}{\partial b_2} \cdot h_2 \\ \frac{\partial l}{\partial b_3} \cdot h_1 & \frac{\partial l}{\partial b_3} \cdot h_2 \end{bmatrix}$$
 vectorised version ©

 σ is an element-wise operation, so we only need to look at the ith element

$$\frac{\partial l}{\partial a} = \begin{bmatrix} \frac{\partial l}{\partial a_1} \\ \frac{\partial l}{\partial l} \end{bmatrix}$$

$$\frac{\partial l}{\partial a_1} = \frac{\partial l}{\partial h_1} \cdot \frac{\partial h_1^*}{\partial a_1} = \frac{\partial l}{\partial h_1} \cdot \sigma(a_1) \cdot (1 - \sigma(a_1))$$

$$\frac{\partial l}{\partial a_2} = \frac{\partial l}{\partial h_2} \cdot \frac{\partial h_2}{\partial a_2} = \frac{\partial l}{\partial h_2} \cdot \sigma(a_2) \cdot (1 - \sigma(a_2))$$

what are $\frac{\partial l}{\partial x}$ and $\frac{\partial l}{\partial y}$?

$$\frac{\partial l}{\partial x} = \begin{bmatrix} \frac{\partial l}{\partial x_1} \\ \frac{\partial l}{\partial x_2} \end{bmatrix}$$
 We don't need these for weight optimisation (but we could) \rightarrow Don't calculate them

$$\frac{\partial l}{\partial V} = \begin{bmatrix} \frac{\partial l}{\partial V_{1,1}} & \frac{\partial l}{\partial V_{1,2}} \\ \frac{\partial l}{\partial V_{2,1}} & \frac{\partial l}{\partial V_{2,2}} \end{bmatrix}$$

Backpropagation Step 5 — V

what is
$$\frac{\partial l}{\partial V}$$
?

Step 3 result:

a = Vx

$$\frac{\partial l}{\partial W} = \frac{\partial l}{\partial b} h^T \qquad \text{with } b = Wh$$

Same calculation works here:

$$\frac{\partial l}{\partial V} = \begin{bmatrix} \frac{\partial l}{\partial V_{1,1}} & \frac{\partial l}{\partial V_{1,2}} \\ \frac{\partial l}{\partial V_{2,1}} & \frac{\partial l}{\partial V_{2,2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial l}{\partial a} x^T \\ \frac{\partial l}{\partial a} x^T \end{bmatrix}$$
 vectorised calculation \odot

made computations

feasible in 1970s

Summary Vectorising Neural Networks

- How can we speed up neural network calculations?
 - 1. Backpropagation algorithm: reuse calculated derivatives
 - 2. Vectorisation: use highly optimised vector and matrix multiplications
 - 3. Faster hardware: GPUs, parallelize computations, ... made computing big models possible (since 2009)

- Trends since then:
 - Faster hardware
 - More efficient models than feedforward networks (e.g. CNN, that reuses weights)
 - Optimisation algorithms that converge faster (less training iterations → faster training)

Next Week:

Convolutional Neural Networks!