Complex Analysis

Ikhan Choi

July 20, 2022

Contents

Ι	Holomorphic functions	3
1	Cauchy theory 1.1 Complex differentiability 1.2 Contour integral 1.3 Power series 1.4 Cauchy estimates	4 4 4 4
2	Singularities 2.1 Classification of singularities	6 6 6 6 7
3	Polynomial approximation 3.1 Mittag-Leffler theorem	8 8 8 8
II	Geometric function theory	9
4	Conformal mappings 4.1 Riemann sphere and open unit disk	10 10 10
5	Univalent functions 5.1 Bierbach conjecture	11 11 11
6	6.1 Riemann-Hilbert problem	12 12 12
III	Riemann surfaces	13
7	Analytic continuation 7.1 Monodromy 7.2 Covering surfaces 7.3 Algebraic functions 7.4 Elliptic curves	14 14 14 14 14

8 Differential forms	15
9 Uniformization theorem	16
IV Several complex variables	17

Part I Holomorphic functions

Cauchy theory

1.1 Complex differentiability

1.2 Contour integral

Cauchy-Goursat theorem

1.3 Power series

Analyticity, Laurent series,

1.4 Cauchy estimates

- **1.1.** Let $p \in \mathbb{C}[z]$ with $p(z) = \sum_{k=0}^{n} a_k z^k$.
 - (a) $|p(z)| \lesssim |z|^n$.
 - (b) There is R > 0 such that $|p(z)| \gtrsim |z|^n$ for $|z| \ge R$.

Proof. If we take R > 0 such that

$$\sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}} \le \frac{|a_n|}{2},$$

then $|z| \ge R$ implies

$$|p(z)| \ge |a_n||z|^n - \sum_{k=0}^{n-1} |a_k||z|^k$$

$$\ge |a_n||z|^n - \sum_{k=0}^{n-1} \frac{|a_k|}{R^{n-k}}|z|^n$$

$$\ge \frac{|a_n|}{2}|z|^n.$$

1.2.

1.3 (Open mapping theorem).

Problems

- 1. If a holomorphic function has positive real parts on the open unit disk then $|f'(0)| < 2 \operatorname{Re} f(0)$.
- 2. If at least one coefficient in the power series of a holomorphic function at each point is 0 then the function is a polynomial.
- 3. If a holomorphic function on a domain containing the closed unit disk is injective on the unit circle, then so is on the disk.
- 4. For a holomorphic function f and every z_0 in the domain, there are $z_1 \neq z_2$ such that $\frac{f(z_1) f(z_2)}{z_1 z_2} = f'(z_0)$.
- 5. Let $f: \Omega \to \mathbb{C}$ be a holomorphic function on a domain. Then, $\overline{f(z)} = f(\overline{z})$ if and only if $f(z) \in \mathbb{R}$ for $z \in \Omega \cap \mathbb{R}$.
- 6. For two linearly independent entire functions, one cannot dominate the other.
- 7. The uniform limit of injective holomorphic function is either constant or injective.
- 8. If the set of points in a domain $U \subset \mathbb{C}$ at which a sequence of bounded holomorphic functions converges has a limit point, then it compactly converges.
- 9. Find all entire functions f satisfying $f(z)^2 = f(z^2)$.
- 10. An entire function maps every unbounded sequence to an unbounded sequence is a polynomial.
- 11. Let f be a holomorphic function on the open unit disk such that f(0) = 1 and f'(0) > 2. Then, there is z such that |z| < 1 and f(z) is pure imaginary.

Singularities

2.1 Classification of singularities

Riemann removable singularity theorem, Casorati-Weierstrass theorem, Picard's theorem

2.2 Residue theorem

2.1.

2.2 (Unit circle substitution).

$$\int_0^{2\pi} \frac{dx}{1 + a\cos x} = \frac{2\pi}{\sqrt{1 - a^2}}, \quad -1 < a < 1$$

2.3 Contour integrals

2.3 (Semicircular contour). Jordan lemma

$$\left| \int_{C_R} e^{iz} f(z) \, dz \right| \le \pi \sup_{z \in C_R} |f(z)|$$

$$\int_0^\infty \frac{1}{(1+x^2)^2} \, dx, \quad \int_0^\infty \frac{1}{1+x^4} \, dx, \quad \int_0^\infty \frac{\cos x}{1+x^2} \, dx,$$

2.4 (Indented contour). Dirichlet integral

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

2.5 (Sector contour). Fresnel integral

$$\int_0^\infty \cos x^2 \, dx = \sqrt{\frac{\pi}{8}}$$

2.6 (Hankel contour).

$$\int_0^\infty \frac{x^{a-1}}{1+x} = \frac{\pi}{\sin \pi a} \quad (0 < a < 1), \quad \int_1^\infty \frac{dx}{x\sqrt{x^2 - 1}}$$

log z trick

$$\int_0^\infty \frac{dx}{1+x^3}$$

2.7 (Rectangular contour). Fourier integral?

$$\int_0^\infty \frac{\sin x}{e^x - 1} \, dx, \quad \int_0^\infty \frac{\cos x}{\cosh x} \, dx$$

2.4 Zeros and poles

2.8 (Argument principle). (a)

$$\int_{Y} \frac{f'(z)}{f(z)} dz = i \text{ winding number.}$$

(b) $\int_{Y} \frac{f'(z)}{f(z)} dz = 2\pi i (\text{number of zeros} - \text{number of poles}).$

- **2.9** (Rouché theorem). Let f be a meromorphic function on Ω . Let γ be a curve...
 - (a) If $h:[0,1]\times\Omega\to\mathbb{C}$ is continuous and

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{g'(z)}{g(z)} dz.$$

(b) In particular, if |g(z)| < |f(z)| on $z \in \gamma$, then

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{f'(z) + g'(z)}{f(z) + g(z)} dz.$$

Exercises

- **2.10** (Fundamental theorem of algebra). proof by the Liouville theorem, and proof by the Rouché theorem.
- 2.11 (Computation of Fourier transforms). sector and Gaussian integral, rectangular integral
- 2.12 (Laplace transforms).
- 2.13 (Gamma function). Hankel representation
- 2.14 (Abel-Plana formula).

Sokhotski-Plemelj theorem, Kramers-Konig relations, Titchmarsh theorem for Hilbert transform, Phragmén-Lindelöf principle, Carlson's theorem

Polynomial approximation

- 3.1 Mittag-Leffler theorem
- 3.2 Weierstrass factorization theorem
- 3.3 Runge's approximation

Mergelyan

Part II Geometric function theory

Conformal mappings

- 4.1 Riemann sphere and open unit disk
- 4.2 Riemann mapping theorem

Exercises

4.1 (Special solution of Laplace' equation).

Problems

1. Find a conformal mapping that maps the open unit disk onto $A := \{z \in \mathbb{C} : \max\{|z|, |z-1|\} < 1\}$.

Univalent functions

- 5.1 Bierbach conjecture
- 5.2 Harmonic functions

Maximum principle; Schwarz's lemma, Lindelöf principle,

6.1 Riemann-Hilbert problem

Hilbert transform

6.2 Quasi-conformal mappings

Beltrami equations and Teichmüler theory?

Part III Riemann surfaces

Analytic continuation

- 7.1 Monodromy
- 7.2 Covering surfaces
- 7.3 Algebraic functions
- 7.4 Elliptic curves

Differential forms

Uniformization theorem

Part IV Several complex variables