race-report

In [1]:

```
import pandas as pd
from tabulate import tabulate
In [2]:
df = pd.read_csv("data.csv")
Frequency as a function of time (\frac{cycles}{minute})
In [3]:
import matplotlib.pyplot as plt
In [4]:
import os, sys
sys.path.insert(0, os.path.abspath('..'))
from utils import race_report as RR
from utils import plotting
# 25 for SCM, 50 for LCM.
LAP_LEN = 25
fig, ax = plt.subplots(nrows=3, figsize=(13, 17))
# Distance ticks/labels
lap_indices = RR.get_bo_indices(df)
distances = [RR.format_distance((i + 1)*LAP_LEN) for i in range(len(lap_indices))]
# Frequency Dataframe.
df_frequency = df[[RR.COL_MES, RR.COL_TIME]][df[RR.COL_MES] == RR.VAL_CYCLE]
df_frequency.loc[:, RR.COL_Y] = 60 / df[RR.COL_TIME]
# Speed Dataframe.
df_speed = RR.calc_speed(df, lap_indices)
```

	frequency
1	45.74
2	56.50
3	46.40
4	56.86
5	56.86
7	45.74
8	56.86
9	55.81
10	50.59
11	47.89
12	45.74
13	53.67
14	56.86
16	53.10
17	45.74
18	56.76
19	46.73
20	53.62

	frequency
21	45.74
22	53.72
23	51.19
24	55.66
26	45.74
27	48.82
28	53.96
29	52.13
30	51.15
31	51.28
32	51.41
33	46.84
34	53.76
35	56.86

std mean
-- ----- ---0 5.56273 51.3005

