14.17. Найти распределение P давления на дне сосуда вдоль радиуса в условиях предыдущей задачи. Определить величину давления у стенок сосуда вблизи его дна, если сосуд вращается со скоростью 4 об/с. Высота столба воды на оси цилиндра равна 10 см. Радиус цилиндра равен также 10 см.

14.11. В сосуд налита вода до высоты H. В дне сосуда проделано круглое отверстие радиусом r_0 (рис. 366). Найти радиус струи воды

r(y), вытекающей из отверстия, в зависимости от расстояния

14.27. Однородный по высоте сосуд с площадью сечения S = $=100~{
m cm}^2$ залит водой до уровня $H=10~{
m cm}$. Вблизи дна вода от-

205

водится трубочкой диаметром 2r=2 мм и длиной l=1 м (рис. 370). Трубочка открывается в атмосферу. По какому закону h(t) вода вытекает из сосуда? Оценить также время, за которое вода вытечет из

сосуда. Предполагается известной вязкость воды $\eta = 10^{-2} \ \Pi$.

14.24. В дне сосуда с жидким гелием образовалась щель шириной $\Delta=10^{-4}$ см и длиной l=5 см. Толщина дна сосуда d=0,5 мм. Найти максимальную скорость гелия в щели $v_{
m max}$ и полный расход жидкости M, если высота столба гелия над дном сосуда h=20 см. Плотность и вязкость гелия равны $\rho=0.15$ г/см³, $\eta=3.2\cdot 10^{-5}$ г/см·с). (Расходом называется масса жидкости, протекающая через щель в (br-bg) r. x = -Ur 9 9x течение одной секунды.)

общефиз15 Стр.1

ность и вязкость гелия равны $\rho=0.15~{\rm г/cm^o},~\eta=3.2\cdot 10^{-{\rm o}}~{\rm г/(cm\cdot c)}.$ (Расходом называется масса жидкости, протекающая через щель в

14.42. Расходомер Вентури для измерения расхода жидкости представляет собой горизонтально расположенную коническую трубу с диаметром широкого участка $d_1=10\,\mathrm{cm}$. При расходе воды через расходомер $Q=10\,\mathrm{n/c}$ высота подъема воды в трубке манометра, присоединенной к широкой части расходомера, $h_1=120\,\mathrm{cm}$. Определить диаметр d_2 узкого участка расходомера, если высота подъема воды в трубке манометра, подсоединенной к этому концу трубы, равна нулю. Силами вязкости пренебречь.

$$\frac{1}{2} \frac{n \nabla^2}{n^2} + p_{ATM} + p_{B}h_1 = \frac{p \nabla^2}{2} + p_{ATM} + p_{B}h_2$$

$$\frac{1}{2} \frac{n d^2}{4} \nabla_1 = \frac{T d^2}{4} \nabla_2 \rightarrow \nabla_1 = \frac{uQ}{T d^2} \rightarrow \nabla_2 = \frac{1}{2gh_1} + \frac{uQ}{n d^2}$$

$$\frac{1}{2gh_1} \frac{uQ}{n d^2} = \frac{1}{2gh_1} \frac{uQ}{n d^2}$$

14.21. Проволоку радиусом $r_1=1$ мм протягивают с постоянной скоростью $v_0=10$ см/с вдоль оси трубки радиусом $r_2=1$ см, которая заполнена жидкостью с вязкостью $\eta=0.01$ П. Определить силу трения f, приходящуюся на единицу длины проволоки. Найти распределение скоростей жидкости вдоль радиуса трубы.

$$\frac{\int_{L^{2}-L^{2}}}{\int_{L^{2}-L^{2}}} \frac{\int_{L^{2}-L^{2}}}{\int_{L^{2}-L^{2}}} \frac{\int_{L^{2}-L^{2}}}{\int_{L^{2}$$

14.46. Вода течет по горизонтальной трубе радиусом $R=1\,\mathrm{cm}$ и длиной L. При каком градиенте давления $\Delta P/l$ течение станет турбулентным, если для средней скорости движения воды по поперечному сечению трубы число Рейнольдса, при котором возникает турбулентное течение равно Re = 2000. Вязкость воды $\eta = 10^{-3} \ \Pi a \cdot c$.

рулентное течение равно
$$Re = 2000$$
. Вязкость воды
$$Re = \frac{p\overline{v}R}{3}$$

$$\overline{v} = \frac{opR^2}{8nU}$$

$$Re = \frac{pR^3}{8nU} = \frac{\Delta P}{U} = \frac{8\Delta^2 Re}{pR^3}$$

14.29. В плоской камере, доверху заполненной водой, вращается горизонтальный диск радиусом R = 20 см. Какова мощность N,

Рис. 371

Рис. 372

необходимая для его вращения со скоростью $n=300\,{\rm of/muh},$ если диск находится на расстояниях $a=5\,\mathrm{mm}$ и $b=10\,\mathrm{mm}$ от нижней и верхней стенок камеры (рис. 372)? Эффектами, связанными с радиальной конвекцией воды и явлениями на краю диска пренебречь.

Движение жидкости считать ламинарным. Коэффициент вязкости воды $\eta = 10^{-1} \, \text{кг/(м \cdot c)}.$ $M^{\square} = h \cdot \left(-h \cdot \text{Suld} \cdot \left| \frac{9 \, \text{L}}{80 \, \text{L}} \right| - \left(\text{L+dL} \right) \left(-h \cdot \text{Sull+q-y} \right) \left(\frac{9 \, \text{L}}{90 \, \text{L}} \right)^{\text{L+q-}} \right) \otimes$ (a) - N - 24 9x h - (44 d) (25) 4 4) (4 d) $M_{1}+M_{0}=0; N_{2}N_{1}+C_{0}N_{2}+C_{0}$

$$M_1 + M_0 = 0 / M_2 \times Lq \times q \cdot \left(L \frac{QX}{QX} \right) = 3 \frac{QL}{QL}$$

$$L \left(\frac{3}{3} \frac{A}{2} + \frac{3}{3} \frac{A}{2} \right) = 3 \frac{QL}{QL}$$