(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-155130

(43)公開日 平成11年(1999)6月8日

(51) Int.Cl. ⁶	識別記号	FI
H04N 5/92		H 0 4 N 5/92 H
G11B 20/12		G 1 1 B 20/12
27/00		27/00 D
27/10		27/10 A
		審査請求 未請求 請求項の数7 OL (全 40 頁
(21)出願番号	特願平10-251068	(71)出願人 000005821
(22)出顧日	平成10年(1998) 9月4日	松下電器産業株式会社 大阪府門真市大字門真1006番地 (72)発明者 佐伯 慎一
(31)優先権主張番号	特願平9-251993	大阪府門其市大字門真1006番地 松下電器
(32)優先日	平9 (1997) 9月17日	産業株式会社内
(33)優先権主張国	日本 (JP)	(72) 発明者 中谷 徳夫
		大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(72)発明者 岡田 智之
		大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代理人 弁理士 中島 司朗 (外1名)
		最終頁に続く

(54) 【発明の名称】 光ディスク、録画装置、プログラム記憶媒体

(57)【要約】

【課題】 本発明は、AVデータの円滑な連続再生を保証し、かつAVデータ以外のデータとともに効率よく記録することができる記録可能な光ディスク、記録装置、再生装置を提供する。

【解決手段】 タイムマップ8211、8212等は、順にVOBの先頭時刻とTM_OFSを加えた時刻、さらにTM U後、2TMU後、3TMU後・・・の再生時刻に存在するVOBUマップを指す。VOBUマップ8231、8232等は、それぞれ参照画像サイズ、VOBU再生時間、VOBUサイズからなる。VOBUマップ毎に記録位置(セクタアドレス)を再生時刻に対応させて記録される必要がなく、ビデオオブジェクトユニット毎にその再生時間とそのデータサイズとを含むので、再生時間もデータサイズより短いデータ長でよく、テーブルサイズが小さい。

【特許請求の範囲】

【請求項1】 ビデオオブジェクトを記録するデータ領 域とタイムマップ情報を記録するタイムマップ領域とを 有する光ディスクであって、

前記ビデオオブジェクトは複数のビデオオブジェクトユ ニットから構成され、

前記タイムマップ情報は、ビデオオブジェクトに対応す る第1及び第2タイムテーブルを含み、

第1タイムテーブルは、ビデオオブジェクトに対応する 再生時刻であってビデオオブジェクトユニットの再生時 10 間よりも長い一定の時間間隔を順においた再生時刻毎 に、その再生時刻に当たるビデオオブジェクトユニット のアドレス情報と、当該ビデオオブジェクトユニットを 特定する特定情報とを有し、

第2タイムテーブルは、ビデオオブジェクトの先頭から の再生時間順に、各ビデオオブジェクトユニットの再生 時間及びデータサイズを含むことを特徴とする光ディス

【請求項2】 前記第1タイムテーブルは、前記一定の 時間間隔を順においた各再生時刻に1対1で対応する複 20 数の第1タイムマップを含み、

前記第2タイムテーブルは、ビデオオブジェクトユニッ トに1対1で対応する複数の第2タイムマップを含み、 各第1タイムマップは、対応する再生時刻に当たるビデ オオブジェクトユニットに対応する第2タイムマップを 示す前記特定情報と、当該ビデオオブジェクトユニット のアドレス情報と、対応する再生時刻と当該ビデオオブ ジェクトユニットの先頭時刻との差分時間を示す差分情 報とを含み、

各第2タイムマップは、対応するビデオオブジェクトユ 30 ニットの再生時間を示す時間情報と、対応するビデオオ ブジェクトユニットのデータサイズとを含むことを特徴 とする請求項1記載の光ディスク。

【請求項3】 前記タイムマップ情報は、さらに、ビデ オオブジェクト毎のタイムオフセットを含み、

タイムオフセットは、ビデオオブジェクトの先頭の再生 時刻と、前記一定の時間間隔の先頭の再生時刻との差分 時間を示すことを特徴とする請求項2記載の光ディス 2.

時系列的なビデオデータを入力する入力 40 【請求項4】 手段と、

入力されたビデオデータを圧縮することにより連続する ビデオオブジェクトユニットから構成されるビデオオブ ジェクトを生成する圧縮手段と、

光ディスクにデータを書き込む書込み手段と、

書込み手段を制御する制御手段とを備え、

前記制御手段は、

生成されたビデオアブジェクトを光ディスクに書き込む よう書込み手段を制御し、

て、ビデオオブジェクトユニットの再生時間よりも長い 一定の時間間隔を順においた再生時刻毎に、その再生時 刻に当たるビデオオブジェクトユニットの記録位置を指 し示す第1タイムテーブルと、

各ビデオオブジェクトユニットの再生時間及びデータサ イズを含む第2タイムテーブルとを生成し、

さらに第1テーブル、第2テーブルを光ディスクに書き 込むよう鸖込み手段を制御することを特徴とする録画装 置。

前記制御手段は、第1タイムテーブルと 【請求項5】 して、前記第1生成手段は、前記一定の時間間隔を順に おいた各再生時刻に1対1で対応する第1タイムマップ を生成し、

第2タイムテーブルとして、ビデオオブジェクトユニッ トに1対1で対応する複数の第2タイムマップを生成

各第1タイムマップは、対応する再生時刻に当たるビデ オオブジェクトユニットの先頭アドレスと、対応する再 生時刻と当該ビデオオブジェクトユニットの先頭時刻と の差分時間を示す差分情報とを含み、

各第2タイムマップは、対応するビデオオブジェクトユ ニットの再生時間を示す時間情報と、対応するビデオオ ブジェクトユニットのデータサイズとを含むことを特徴 とする請求項4記載の録画装置。

【請求項6】 前記制御手段は、さらに、ビデオオブジ ェクトの先頭の再生時刻と、前記一定の時間間隔の先頭 の再生時刻との差分時間を示すタイムオフセットを生成

前記第1タイムテーブルは、タイムオフセットを含むこ とを特徴とする請求項5記載の録画装置。

【請求項7】 時系列的なビデオデータを入力し、入力 されたビデオデータを圧縮することにより連続するビデ オオブジェクトユニットから構成されるビデオオブジェ クトを生成し、光ディスクにビデオオブジェクトを鸖き 込むコンピュータに読み取り可能な記憶媒体であって、 前記ビデオデータから生成されたビデオオブジェクトに 対する再生時刻であって、ビデオオブジェクトユニット の再生時間よりも長い一定の時間間隔を順においた再生 時刻毎に、その再生時刻に当たるビデオオブジェクトユ ニットの記録位置を指し示す第1タイムテーブルと、

各ビデオオブジェクトユニットの再生時間及びデータサ イズを含む第2タイムテーブルとを生成し、

さらに第1テーブル、第2テーブルを光ディスクに書き 込むことを記述したプログラムを記録したことを特徴と するコンピュータ読み取り可能な記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ビデオデータの記 録に用いられる光ディスク、記録装置、ファイル管理プ 生成されたビデオオブジェクトに対する再生時刻であっ 50 ログラムを記録したコンピュータ読み取り可能な記憶媒

体に関する。

[0002]

【従来の技術】近年、CD-ROM、DVD(Digital Versatile Disc) – ROMなどの光ディスクは、コンピ ュータの二次記憶としての利用に加えて、映画等のビデ オデータ (以下、AVデータと呼ぶ) の記録用に活用さ れている。さらに、次世代の記録可能な記録媒体とし て、DVD-RAMディスク(以下DVD-RAMと略 す) の実用化が望まれている。

【0003】以下、従来のDVD-ROMにおいて、A 10 Vデータの n 倍速の早送り又は巻き戻し再生などの特殊 再生について説明する。

【0004】DVD-ROMに記録されるAVデータ は、圧縮率を髙めるために可変ビットレートの圧縮符号 化方式が用いられている。 可変ビットレートとは、 1 フ レーム画像あたりの圧縮符号量が可変であることをい う。それゆえ、圧縮符号量は再生時間に比例しないの で、AVデータを一定の符号サイズ毎に等間隔に読み出 したとしても、一定の時間間隔毎の画像を得ることがで

【0005】そのため、DVD-ROMではAVデータ 中の随所に特殊再生用の情報を記録するという手法が採

【0006】具体的には、AVデータは、MPEG2に 準拠して圧縮符号化され、0.4秒以上かつ1.0秒 (例外的にVOB終端では1.2秒) 以下となる区間 (GOPと呼ばれる)毎に、GOPの先頭にNVパック と呼ばれるDVD固有の情報が付加されている。なお、 NVパックから次のNVパックの前までのデータを、V 〇BU (Video OBject Unitの略) と呼ぶ。

【0007】 N V パックには、2 K バイトの大きさであ り、近隣のNVパックを参照するための情報や、GOP 内の最初のリファレンスピクチャのデータサイズが記録 されている。ここで、近隣のNVパックの参照のための 情報は、そのVOBUの先頭のタイムコードを基準にし て、ある時間間隔だけ離れた場所にある前方向及び後方 向のVOBUのNVパックのアドレスを、自身のNVパ ックのアドレスからの相対値で示す。この時間間隔は、 1秒から1秒置きに15秒までと、20秒、60秒、1 20秒、240秒とが使われる。

【0008】次に、早送り再生や巻戻し再生のような特 殊再生の動作の一例について説明する。再生の速さに応 じて、ある一定の時間間隔にあるVOBUのリファレン スピクチャのみを再生する事により、ほぼ一様な速度の 特殊再生を実現する事ができる。一定の時間間隔のVO BUを次々と読み出すためには、NVパックのある近隣 のNVパックのアドレスを示す情報を利用する。

【0009】また、AVデータの先頭から一定の時間間 隔のタイムコードごとに、そのタイムコードに対応する VOBU内のAVデータのアドレスを示すタイムサーチ 50

マップ情報が記録される。タイムマップ情報を参照する ことにより、指定されたタイムコードからAVデータの 再生を開始することができる。

[0010]

【発明が解決しようとする課題】しかしながら、AVデ ータ中の随所に特殊再生用情報をNVパックとして記録 するという手法は、DVD-RAMのような記録可能な 記録媒体にリアルタイムに録画する際には利用すること ができないという問題があった。

【0011】というのは、リアルタイムにAVデータを 記録しながら上記のNVパックを記録しようとしても、 例えば後方向のVOBUのNVパックのアドレスなど、 これから記録するAVデータ部分に関する情報が得られ ないからである。

【0012】また、AVデータの記録の終了後に、すべ てのNVパックに記録する特殊再生情報を生成すること は可能であるが、生成した情報をNVパックとしてAV データ領域に記録するためには、VOBUの個数とほぼ 同じ回数のディスクへのアクセスが必要であるリアルタ イムには実現できない。

【0013】AVデータと特殊再生情報を同じAVデー 夕領域に格納しないことも考えられるが、高速に特殊再 生を行うために、特殊再生情報を主記憶に保存する必要 があり、特殊再生情報を記憶するために大きな主記憶容 量を必要であるという問題があった。

【0014】本発明は、特殊再生情報のデータ量を少な くしAVデータのリアルタイム録画と同時に特殊再生情 報を生成する光ディスク記録装置、プログラム記憶媒体 及び光ディスクを提供することを目的とする。

[0015] 30

20

【課題を解決するための手段】上記課題を解決するため 本発明の光ディスクは、ビデオオブジェクトを記録する データ領域とタイムマップ情報を記録するタイムマップ 領域とを有する光ディスクであって、前記ビデオオブジ ェクトは複数のビデオオブジェクトユニットから構成さ れ、前記タイムマップ情報はビデオオブジェクトに対応 する第1及び第2タイムテーブルを含み、第1タイムテ ーブルは、ビデオオブジェクトに対応する再生時刻であ ってビデオオブジェクトユニットの再生時間よりも長い 40 一定の時間間隔を順においた再生時刻毎に、その再生時 刻に当たるビデオオブジェクトユニットのアドレス情報 と、当該ビデオオブジェクトユニットを特定する特定情 報とを有し、第2タイムテーブルは、ビデオオブジェク トの先頭からの再生時間順に、各ビデオオブジェクトユ ニットの再生時間及びデータサイズを含むことを特徴と する。

【0016】また、木発明の録画装置は、時系列的なビ デオデータを入力する入力手段と、入力されたビデオデ ータを圧縮することにより連続するビデオオブジェクト ユニットから構成されるビデオオブジェクトを生成する

圧縮手段と、光ディスクにデータを書き込む書込み手段 と、書込み手段を制御する制御手段とを備え、前記制御 手段は、生成されたビデオアブジェクトを光ディスクに **書き込むよう書込み手段を制御し、生成されたビデオオ** ブジェクトに対する再生時刻であって、ビデオオブジェ クトユニットの再生時間よりも長い一定の時間間隔を順 においた再生時刻毎に、その再生時刻に当たるビデオオ ブジェクトユニットの記録位置を指し示す第1タイムテ ーブルと、各ビデオオブジェクトユニットの再生時間及 びデータサイズを含む第2タイムテーブルとを生成し、 さらに第1テーブル、第2テーブルを光ディスクに書き 込むよう書込み手段を制御するように構成されている。 【0017】ここで、前記制御手段は、第1タイムテー ブルとして、前記第1生成手段は、前記一定の時間間隔 を順においた各再生時刻に1対1で対応する第1タイム マップを生成し、第2タイムテーブルとして、ビデオオ ブジェクトユニットに1対1で対応する複数の第2タイ ムマップを生成し、各第1タイムマップは、対応する再 生時刻に当たるビデオオブジェクトユニットの先頭アド レスと、対応する再生時刻と当該ビデオオブジェクトユ 20 ニットの先頭時刻との差分時間を示す差分情報とを含 み、各第2タイムマップは、対応するビデオオブジェク トユニットの再生時間を示す時間情報と、対応するビデ オオブジェクトユニットのデータサイズとを含むように 構成してもよい。

【0018】また、前記制御手段は、さらに、ビデオオブジェクトの先頭の再生時刻と、前記一定の時間間隔の 先頭の再生時刻との差分時間を示すタイムオフセットを 生成し、前記第1タイムテーブルは、タイムオフセット を含むようにしてもよい。

【0019】また、本発明のプログラム記憶媒体は、時 系列的なビデオデータを入力し、入力されたビデオデー タを圧縮することにより連続するビデオオブジェクトユ ニットから構成されるビデオオブジェクトを生成し、光 ディスクにビデオオブジェクトを書き込むコンピュータ に読み取り可能な記憶媒体であって、前記ビデオデータ から生成されたビデオオブジェクトに対する再生時刻で あって、ビデオオブジェクトユニットの再生時間よりも 長い一定の時間間隔を順においた再生時刻毎に、その再 生時刻に当たるビデオオブジェクトユニットの記録位置 40 を指し示す第1タイムテーブルと、各ビデオオブジェク トユニットの再生時間及びデータサイズを含む第2タイ ムテーブルとを生成し、さらに第1テーブル、第2テー ブルを光ディスクに書き込むことを記述したプログラム を記録するコンピュータ読み取り可能な記憶媒体であ る。

[0020]

【発明の実施の形態】(1)光ディスク

(1-1) 記録可能な光ディスクの物理構造

図1は、本発明の実施形態における記録可能な光ディス 50

クであるDVD-RAMディスクの外観及び記録傾域を表した図である。同図のように、DVD-RAMディスクは、最内周にリードイン領域を、最外周にリードアウト領域を、その間にデータ領域を配置している。リードイン領域は、記録再生装置においてサーボを安定させるために必要な基準信号や他のメディアとの識別信号などが記録されている。リードアウト領域もリードイン領域と同様の基準信号などが記録される。

【0021】データ領域は、最小のアクセス単位である 10 セクタ (2 kバイトとする) に分割されている。データ 領域には、ファイルシステム用の管理情報、AVデー タ、AVデータ管理ファイル、非AVデータなどが記録 される。

【0022】ファイルシステム用の管理情報は、DVD-RAMのディレクトリ構造や、ファイルの記録位置、データ領域の空き状態などを含む情報であり、ファイルの作成、書込み、読み出し、削除などに際して利用される。

【0023】AVデータは、ビデオオブジェクト(以下 VOBと略す)と呼ばれる単位を1つのファイルとして記録される。VOBは、光ディスク記録装置により1回の連続的な録画により生成されるファイルであり、例えば映画の全部又は一部、テレビ番組の全部又は一部に相当する。VOBは複数のビデオオブジェクトユニット(以下VOBUと略す)から構成される。

【0024】1つのVOBUは、映像データの再生時間の約0.4~1.2秒に相当するAVデータ部分であり、MPEG2規格におけるGOP(Group of Picture)と呼ばれる映像データ区間を含む。このGOPには、MPEG2規格におけるI(Intra)ピクチャ(フレーム内符号化画像)、P(Predictive)ピクチャ(フレーム問順方向予測符号化画像)、B(Bidirectionally Predictive)ピクチャ(フレーム間双方向予測符号化画像)のうち、少なくとも1つのIピクチャを含んでいる。このことは、GOPの独立再生を可能にしている。特に、早送り再生、早戻し再生などの特殊再生や、指定時刻の再生の場合には、GOP内のIピクチャは再生対象の画像として抽出され、又は参照画像として抽出され再生対象とするP又はBピクチャが再生されることになる。

【0025】AVデータ管理ファイルは、DVD-RAM内の全AVデータを管理するためのファイルであり、VOBと1対1に対応するタイムマップ情報等が記録される。タイムマップ情報は、VOBの再生時刻と、記録位置とを対応付けた情報であり、階層的なデータ構造を採っている。すなわち、タイムマップ情報は、階層的な第1及び第2タイムテーブルを有している。

【0026】第1タイムテーブル(以下、タイムマップ テーブル又はTMAPテーブルとも呼ぶ)は、VOBに 対応する再生時刻であって、一定の時間間隔(例えば6 0秒)を順においた再生時刻毎に、その再生時刻に当た るVOBUの記録位置(セクタアドレス:LSN)を示すテーブルである。

【0027】第2タイムテーブル(VOBUテーブルとも呼ぶ)は、VOBの先頭からの再生時間順に、各VOBUの再生時間及びデータサイズを含むテーブルである。図2は、セクタレベルに拡大して切り出したDVDーRAMの断面及び表面を示す図である。同図に示すように、1セクタは、金属薄膜等の反射膜表面に形成されたピット列部と、凹凸形状部とからなる。

【0028】 ピット列部は、セクタアドレスを表すため 10 に刻印された 0.4μ m \sim 1.87 μ mのピットからなる。

【OO29】凹凸形状部は、凹部(グルーブと呼ぶ)及び凸部(ランドと呼ぶ)からなる。ランド、グルーブはそれぞれの表面に相変化(Phase Change)可能な合金薄膜である記録マークが付着されている。相変化とは、付着した合金薄膜の状態が光ビームの照射により結晶状態と、非晶状態とに変化することをいう。凹凸形状部には、相変化を利用することによりデータを書き込むことができる。MOディスクではランド部のみが記録用であるのに対して、DVD-RAMではランド部とグルーブ部にもデータを記録できるようになっている。グルーブ部にもデータを記録できるようになっている。グルーブ部へのデータ記録を実現したことは、記録密度をMOと比べて増大させている。セクタに対する誤り訂正処理は、16個のセクタ毎になされる。本実施例では、ECC (Error Correcting Code)が付与されるセクタ群(16セクタ)をECCブロックと呼ぶ。

【0030】また、DVD-RAMは、記録・再生装置においてZ-CLV(Zone-ConstantLinear Velocity)と呼ばれる回転制御を実現するために、データ領域が複数のゾーン領域に分割されている。図3(a)は、DVD 30-RAMに同心円状に設けられた複数のゾーン領域を示す図である。同図のように、DVD-RAMは、ゾーン0~ゾーン23の24個のゾーン領域に分割されている。ここでゾーン領域とは、同じ角速度でアクセスされる一群のトラックを含む。DVD-RAMの回転角は、1888本のトラックを含む。DVD-RAMの回転角速度は、内周側のゾーン程速くなるようにゾーン領域に設定され、光ピックアップが1つのゾーン内でアクセスする間は一定に保たれる。これにより、DVD-RAMの記録密度を高めるとともに、記録装置・再生装置に40おける回転制御を容易にしている。

【0031】図3(b)は、図3(a)において同心円状に示したリードイン領域、ゾーン領域0~23、リードアウト領域を横方向に配置した説明図である。

【0032】リードイン領域とリードアウト領域は、その内部に欠陥管理領域 (DMA: Defect Management Area) を有する。欠陥管理領域とは、欠陥が生じたセクタの位置を示す位置情報と、その欠陥セクタを代替するセクタ が上記代替領域の何れに存在するかを示す代替位置情報とが記録されている領域をいう。

【0033】各ゾーン領域はその内部にユーザ領域を有すると共に、境界部に代替領域及び未使用領域を有している。ユーザ領域は、ファイルシステムが記録用領域として利用することができる領域をいう。代替領域は、欠陥セクタが存在する場合に代替使用される領域である。未使用領域は、データ記録に使用されない領域である。未使用領域は、2トラック分程度設けられる。未使用領域を設けているのは、ゾーン内では隣接するトラックの同じ位置にセクタアドレスが記録されているが、ZーCLVではゾーン境界に隣接するトラックではセクタアドレスの記録位置が異なるため、それに起因するセクタアドレスの記録位置が異なるため、それに起因するセクタアドレス誤判別を防止するためである。

【0034】このようにゾーン境界にはデータ記録に使用されないセクタが存在する。そのためデータ記録に使用されるセクタのみを連続的に示すように、DVD-RAMは、内周から順に論理セクタ番号(LSN:Logical Sector Number)をユーザ領域の物理セクタに割り当てられている。図3(c)に示すように、LSNが付与されたセクタにより構成される、ユーザデータを記録する領域をボリューム空間と呼ぶ。

【0035】また、図3 (d)に示すように、ボリューム空間の内周部と外周部には、ディスクを論理的なボリュームとして扱うためのボリューム構造情報が記録される。ボリューム空間中の内周と外周のボリューム構造情報領域を除いた部分は、ユーザファイルが記録される領域であり、パーティション空間と呼ぶ。パーティション空間では、その先頭セクタからセクタ単位に論理ブロック番号(LBN:Logical Block Number)が割り当てられる。

【0036】図4は、ゾーン領域内におけるセクタとの ECCブロックとの関係を階層的に示す図である。同図 に示すように各ゾーン領域は、複数のECCブロックか らが含まれる。ここで注意すべきは、記録装置におい て、非AVデータはセクタ単位に領域が割り当てられる のに対して、AVデータは連続再生を保証できるだけの 連続記録領域を単位として割り当てられることである。 ここでいう連続記録領域は、ゾーン境界を跨がないEC Cブロックの整数倍の領域で、一定サイズ(約7Mバイ ト) 以上の連続セクタをいう。ただし、A V データが、 複数のエクステントからなる場合には、最後のエクステ ントは上記一定サイズより小さくてもよい。連続記録領 域がゾーン境界を跨がないとしているのは、もしゾーン を跨ぐと光ディスクの回転角速度が変更されるので、連 続的に読み出しできないからである。またECCブロッ クの整数倍のとしているのは、ECC処理の最小単位だ からである。

【0037】図5は、ボリューム空間に記録されるファイルシステム用の管理情報に含まれるセクタ管理テーブルと、上記の連続記録領域を管理するための連続記録領域管理ファイルとを示す。同図では、ボリューム空間、

セクク、セクタの記録内容を階層的に図示してある。 【0038】第1階層は、図3(d)に示したボリュー ム空間を示している。

【0039】第2階層は、パーティション空間おいてセクタ管理テーブルが記録されるセクタ領域を示す。論理ブロック番号0~79までのセクタ領域には、セクタ毎のデータ割当状況を示すセクタ管理テーブル(スペースビットマップとも呼ぶ)が記録される。連続記録領域管理ファイルは、非AVファイルとして記録されるので、固定的な領域ではなく、通常のファイルとして空き領域の何れかに記録される第3階層に示すようにスペースビットマップは、パーティション空間における全部のセクタについて、各セクタが割り当て済か未割当でであるかを表している。この例では1セクタ1ビットのビットマップになっている。例えば論理ブロック番号0~79は、スペースビットマップとして割り当てられているから、"0 (割当済)"となっている。

【0040】第3階層に示すように連続記録領域管理ファイルは、パーティション空間中の既に連続記録領域として割り当てられた領域を示す。同図では、連続記録領 20 域管理ファイルは、エントリe1~e4・・からなるリスト構造のテーブルとして表されている。テーブル左の枠外にはテーブル先頭からの相対アドレス (バイト数) を付記してある。

【0041】各エントリは、同図左から開始セクタ番号(LSN)、終了セクタ番号及びポインタからなる。各エントリにおける開始セクタ番号から終了セクタ番号までの光ディスクの領域は、連続記録の一部分または1つの連続記録が割り当てられたセクタ領域を表している。ポインタは、後続する連続記録領域を示すエントリを指30し、テーブル先頭からの相対アドレスで表わされる。ただし、最後のエントリe5のポインタは、末尾であることを示す値(-1)をとる。

【0042】同図の例では、エントリe1は、セクタ番号6848から15983までの連続領域領域を表し、12バイト目から記録されているエントリe2(後続する連続記録領域)を指している。他のエントリも同様である。また、エントリe1 \sim e4 $^{\circ}$ 1つの連続した領域(6848から31983)を示しているのは、AVデータが4回に分けて記録され、連続記録領域が順次追加 40された場合を示している。

【0043】連続記録領域の割り当てとスペースビットマップとは、次のように連動して管理される必要が有る。例えば、光ディスク記録装置では、連続記録領域として割り当てた領域は、スペースビットマップにおいても割り当て済みに変更される。

【0044】図6は、DVD-RAMに記録されるAVデータ、非AVデータ及びディレクトリの一例を示す。 【0045】同図において、楕円図形はディレクトリを、長方形はファイルを表している。 【OO46】ルートディレクトリは、RTRWというディレクトリと、File1.DAT、File2.DATという2つの非AVデータファイルとを有する。RTRWディレクトリは、Movie 1.VOB、Movie2.VOB、・・・という複数のAVファイルと、RTRW.IFOというAVデータ管理ファイルとを有している。図7に示すようにAVファイルMovie1.VOB、Movie2.VOB、・・・は、それぞれ1つのVOBとしてデータ領域に記録される。

10

(1.2) AVデータ管理ファイル

図8は、図6に示したAVデータ管理ファイル(RTRW. I FO)の記録内容を階層的に示した説明図である。同図のようにAVデータ管理ファイルは、タイトルサーチポインタテーブル810、AVファイル管理テーブル820、PGC情報テーブル830を有する。これらのテーブルとVOBとの論理的な結合関係を図9に示す。

【0047】タイトルサーチポインタテーブル810 は、DVD-RAMに記録されているタイトル一覧を示 すテーブルである。ここでタイトルは、記録装置におい てユーザが録画した番組や、ユーザの編集により作成さ れたタイトルなどがある。図8、9ではタイトルサーチ ポインタテーブルに含まれるタイトルサーチポインタ8 11、812・・・のみを図示してある。

【0048】タイトルサーチポインタ811、812・・・は、タイトルに対応するPGC(又はPGC情報)の番号を指すポインタである。例えば、図9のタイトルサーチポインク811はPGC情報831を示している。ここでPGCとは、任意のVOBの任意の区間を論理的に連結した一連のAVデータをいう。またPGC情報とは、任意のVOBの任意の区間の論理的な連結関係を示す情報をいう。

【0049】AVファイル管理テーブル820は、AVファイルつまりVOBの再生時刻と記録位置との対応関係を示す情報であり、VOBと同数のVOB情報821、822・・・を記録するテーブルである。

【0050】VOB情報821、822・・・は、それぞれ、、再生時間などVOB固有の情報を示すVOB一般情報と、VOBの再生時刻と記録位置とを対応付けるタイムマップ情報とを含む。

【0051】VOB一般情報821aは、VOB情報が どのVOBに対応するかを示すためのVOBの識別子、 対応するVOBの再生時間等を示す情報である。

【0052】タイムマップ情報821bは、上述した第1タイムテーブルと第2タイムテーブルとを含む。

【0053】第1タイムテーブル(タイムマップテーブル)は、図9に示すように、VOBの先頭を開始時刻とする時間軸上で、一定の時間(例えば60秒)間隔を順においた再生時刻毎に、その再生時刻に当たるVOBUの記録位置(セクタアドレス)を示すタイムマップ#1、#2・・・を配列したテーブルである。

⊙ 【0054】第2タイムテーブル(VOBUテーブル)

は、図9に示すように、VOBの先頭からの再生時間順に、VOBUの再生時間及びVOBUのデータサイズを含むVOBUマップを配列したテーブルである。

【0055】PGC情報テーブル830は、複数のPGC情報831、832・・・からなるテーブルである。
【0056】PGC情報831、832・・・は、スタートタイムとエンドタイムとの組によって指定されるVOB中のビデオ区間を示す情報(セルと呼ぶ)を再生時間順に配列したテーブルであり、セルに示されるビデオ区間を配列順に論理的に連結することにより得られるー10連のAVデータを表している。

【0057】セル831a、831b・・・は、それぞれAVファイル識別子、VOB識別子と、ビデオ区間を示すスタートタイムとエンドタイムの組みを含む。

【0058】図9に示した例では、1つのタイトルに対応する一連のAVデータは、タイトルサーチポインタ8 11 \rightarrow PGC情報831 \rightarrow セル831 a \sim 831 c \rightarrow V OB情報821、822、 \rightarrow VOB#1、#2という順に特定されることになる。この例では、1つのタイトルに対するAVデータが2つのVOB#1、#2から構成 20されているが、新規録画したタイトルの場合など最もシンプルなPGC情報の例は、1タイトル \rightarrow 1 PGC情報 \rightarrow 1 セル \rightarrow 1 VOB type of the volume of the volume

【0059】図10は、AVファイルつまりVOBのデータ構造を示す図である。同図に示すように、VOBは、複数のVOBUからなる。VOBUは、少なくとも1つの1 (Intra) ピクチャーを含む約0.5秒程度の圧縮ビデオデータと、他の音声データとを含むAVデータ区間であり、ビデオパック (V_PCK) とオーディオパック (A_PCK) とがインターリーブされたパック列からなる。1つのパックは、MPEG2におけるパック化パケットであり、パックヘッダ、パケットヘッダ、ビデオデータ/オーディオデータを含み、セクタサイズと同じ2kバイトのサイズを有する。

【0060】図11は、1つのVOBに対応するタイムマップ情報のより詳細なデータ構成を示す図である。同図においてタイムマップ情報821bは、VOBの再生時刻と記録位置とを対応付ける情報であり、タイムマップー般情報8210、タイムマップテーブル8220、VOBUテーブル8230からなる。タイムマップテーブルと、VOBUテーブルとの論理的な連結関係を図12に示す。

【0061】タイムマップ一般情報8210は、タイムマップ情報に含まれるタイムマップ数及びVOBUマップ数、タイムマップが設けられる一定の時間間隔を示すタイムユニット(以下TMUと略す)、VOBの先頭時刻と先頭のタイムマップの時刻との時間差を示すタイムオフセット(以下TM_OFSと略す)を含む。

【0062】タイムマップテーブル8220は、タイム 50

マップー般情報8210中のTMUが示す一定時間毎に設けられ、時間順に配列された複数のタイムマップ8211、8212・・・からなる。図12に示すように、タイムマップ8211、8212、・・・は、順にVOBの先頭時刻とTM_OFSを加えた時刻、さらにTMU後、2TMU後、3TMU後・・・の再生時刻に存在するVOBUマップを指す。

12

【0063】ただし、 TM_OFS は、通常"0"である。この場合タイムマップ8211は、VOBの先頭時刻に対応する。また、VOB先頭部分が削除される等の編集がなされた場合には、 TM_OFS は"0"以外の値をとる。

【0064】図13にVOB先頭部分が削除された場合のタイムマップテーブルとVOBUテーブルとの論理的な連結関係を示す。TM_OFSは、図13に示すようにVOBの先頭時刻と先頭のタイムマップの時刻との時間差を意味する。VOB先頭部分が削除された場合には、削除したVOB再生時間に相当する値をTM_OFSとして設定しておけばよいので、タイムマップテーブルを生成するための計算量を削減できる。

【0065】タイムマップ#iに対する再生時刻(以下タイムマップ時刻と呼ぶ)は次式で表される。

タイムマップ時刻=(TMU*(i-1)+TM_OFS)

タイムマップ8211、8212・・・は、それぞれVOBUマップ番号と時間差(TM_DIFFと略す)とVOB Uアドレス(VOBU_ADRと略す)とからなる。

【0066】VOBUマップ番号8212aは、そのタ イムマップ時刻にあたるVOBUマップの番号である。

【0067】TM_DIFF8212bは、当該VOBUの先頭時刻とタイムマップ時刻との時間差を表す。よってVOBU#jの先頭時刻は、次式で表される。

VOBU先頭時刻=(TMU*(j-1)+TM_OFS-TM_DIFF) VOBU_ADR 8 2 1 2 c は、当該VOBUの先頭アドレス (4バイトのセクタアドレス) である。

【0068】VOBUテーブル8230は、VOBに含まれるVOBUに1対1で対応するVOBUマップ8231、8232、・・・を配列したテーブルである。

【0069】VOBUマップ8231、8232、・・・は、それぞれ参照画像サイズ、VOBU再生時間、VOBUサイズからなる。

【0070】参照画像サイズ8212aは、VOBU内の最初の1ピクチャのサイズである。特殊再生や指定時刻の再生に際して、参照画像の読み出しに利用される。

【0071】VOBU再生時間8212bは、当該VOBUの再生に要する時間であり、本実施例では1バイトデータとする。これは、特殊再生や指定時刻の再生に際して、対象とする画像を見つけるために利用される。すなわち、再生装置は、対象とする画像の時刻に選するまで、上記のVOBU先頭時刻にVOBU再生時間を順次足し込んでいくことにより1つのVOBUを特定し、さらにVOBU内の1つの画像を特定する。

30

【0072】VOBUサイズ8212cは、VOBUの データサイズであり、本実施例ではセクタ数を示す 2 バ イトデータである。これは、特殊再生や指定時刻の再生 に際して、対象とする画像のアドレスを特定するために 利用される。すなわち、再生装置は、対象とする画像の 時刻に達するまで、上記のVOBU先頭時刻に、当該V OBUマップから始まるVOBUマップ列のVOBUサ イズを順次足し込んでいくことにより、対象とする画像 を含む1つのVOBUを特定し、さらにVOBU内の1 つの画像を特定することになる。

(2) 記録再生装置

次に、図面を参照しながら本発明に係る光ディスク記録 ・再生装置を説明する。

(2-1) 全体のシステム

図14は、本実施形態における光ディスク記録再生装置 を用いたシステムの構成例を示す。

【〇〇73】このシステムは、光ディスク記録再生装置 10 (以下DVDレコーダ10と呼ぶ)、これを操作す るためのリモコン6、DVDレコーダ10に接続された ディスプレイ12、アンテナ11を含んでいる。

【0074】DVDレコーダ10は、光ディスクとして 上記DVD-RAMが装着され、アンテナ11を通じて 受信されたアナログ放送波に含まれる音声画像データを 圧縮した上で、AVファイルとしてDVD-RAMに記 録し、また、DVD-RAMに記録された圧縮音声画像 データを伸長し、その映像信号、音声信号をディスプレ イ12に出力する。

(2-2) DVDレコーダ10のハードウェア構成 図15は、DVDレコーダ10のハードウェア構成を示 すブロック図である。

【0.075】このDVDレコーダ10は、制御部1、M PEGエンコーダ2、ディスクアクセス部3、MPEG デコーダ4、ビデオ信号処理部5、リモコン6、バス7 及びリモコン信号受信部8、レシーバ9を有している。 【0076】制御部1は、CPU1a、プロセッサバス 1b、バスインタフェース1c及び主記憶1dを有し、 主記憶1dに格納されたプログラムを実行することによ り、DVDレコーダ10におけるAVデータの記録、再 生、編集など装置全体を制御する。特に制御部1は、A 録したときに、記録したVOBに対応するVOB情報、 PGC情報等を生成し、AVデータ管理ファイルを記録 又は更新する。また、制御部1は、AVデータの再生に 際して、図9に示したAVデータ管理ファイル中のPG C情報に含まれるセルにおいてスタートタイムとエンド タイムにより指定される区間を、VOB情報に基づいて アドレスを求めて再生する。特に特殊再生の場合には、 一定時間(例えば5秒、-5秒など)毎に存在する参照 画像のアドレスを、VOB情報に基づいて順次求めて、 早送り再生や早戻し再生を行なうよう構成されている。

[0077] MPEGエンコーダ2は、アンテナ11を 通してレシーバ9により受信されたアナログ放送波に含 まれる音声映像信号を、MPEGストリームに圧縮す

14

【0078】ディスクアクセス部3は、内部にトラック バッファ3aを有し、制御部1の制御の下で、MPEG エンコーダ2から入力されるMPEGストリームをトラ ックバッファ3aを介してDVD-RAMに記録し、ま た、DVD-RAMからMPEGストリームを読み出し 10 てトラックバッファ 3 a を介してMPEGデコーダ 4 に 出力する。

【0079】MPEGデコーダ4は、ディスクアクセス 部3によってDVD-RAMから読み出されてたMPE Gストリームを伸長し、伸長結果として映像データと音 声信号を出力する

ビデオ信号処理部5は、MPEGデコーダ4からの映像 データをディスプレイ12用の映像信号に変換する信号 処理を行う。

【〇〇80】リモコン信号受信部8は、図16に示すよ うなリモコン6から送信されるリモコン信号を受信し、 どのようなユーザ操作がなされたかを制御部 1 に通知す

【0081】上記DVDレコーダ10は、図14に示し たように、従来の据え置き型家庭用VTRに代用するこ とを前提とした構成を示している。この構成に限らず、 DVD-RAMがコンピュータの記録媒体としても使用 される場合には、次のような構成とすればよい。すなわ ち、ディスクアクセス部3は、DVD-RAMドライブ 装置としてSCS1や1DEと呼ばれるIFを介してコンピュー タバスに接続される。また、同図のディスクアクセス部 3以外の構成要素はコンピュータのハードウェア上でO S及びアプリケーションプログラムが実行されることに 実現される。

【0082】図17は、MPEGエンコーダ2の構成を 示すプロック図である。同図のようにMP E G エンコー ダ2は、ビデオエンコーダ2aと、ビデオエンコーダの 出力を格納するビデオバッファ2bと、オーディオエン コーダ2cと、オーディオエンコーダの出力を格納する オーディオバッファ2dと、ビデオバッファ2b内のエ Vデータの記録に際して、AVファイル (VOB) を記 40 ンコードされたビデオデータとオーディオバッファ 2 d 内のエンコードされたオーディオデータを多重化するシ ステムエンコーダ2eと、エンコーダ2の同期クロック を生成するSTC (システムタイムクロック) 部2 [と、これらの制御および管理を行うエンコーダ制御部2 gとから構成されている。

【0083】エンコーダ制御部2gは、特にエンコード に際してVOBUを生成する毎に、GOP情報およびピ クチャ情報などの情報を図15の制御部1に渡す。 ここ でGOP情報とは、VOBUのパック数と、VOBU中 50 の最初の1ピクチャのパック数とを含む。ここでいうパ

ックは、図10に示したビデオパック(V_PACK)、オーデ ィオパック(A_PACK)のことであり、セクタと同じ2kバ イトの固定長である。したがって、本実施例では、GO P情報はVOBUが占めるセクタ数と、VOBU中の最 初の1ピクチャが占めるセクタ数とを意味する。図18 は、MPEGデコーダ4の構成を示すブロック図であ る。同図のようにMPEGデコーダ4は、MPEGスト リームをビデオストリームとオーディオストリームに分 離するデマルチプレクサ4aと、分離されたビデオスト リームを一時的に格納するビデオバッファ4bと、ビデ 10 オバッファ4 bに格納されたビデオストリームをデコー ドするビデオデコーダ4cと、分離されたオーディオス トリームを一時的に格納するオーディオバッファ4 d と、オーディオバッファYu 4 Yu d に格納されたYuオーデ ィオストリームをデコードするYuオーディオデコーダ4 e と、同期クロックを生成するSTC(システムタイム クロック) 部4 f と、同期クロックにオフセットを加算 する加算器4gと、同期クロックとオフセット付きの同 期クロックとの一方を選択してデマルチプレクサ4 a 、 オーディオデコーダ4 e、ビデオデコーダ4 c に供給す 20 るセレクタ4h~4」とから構成される。

15

(2-3) 機能プロック図

図19は、DVDレコーダ10の構成を機能別に示した機能ブロック図である。同図における各機能は、制御部1におけるCPU1aが主記憶1dのプログラムを実行することにより図15に示したハードウェアを制御することにより実現される。

【0084】図19においてDVDレコーダ10は、ディスク記録部100、ディスク読み出し部101、ファイルシステム部102、録画編集再生制御部105、ユ 30ーザ1F部106、AVデータ録画部110、AVデータ編集部120、AVデータ再生部130から構成される。

【0085】ディスク記録部100は、ファイルシステム部102から論理セクター番号と1つ以上のセクター単位の論理データ(2048バイト)と入力されると、そのデータを記録する。ただし、実際には、ディスク記録部100は、論理データをECCブロック(16セクタ)単位にディスク上に読み書きする。論理データが16セクターに満たない場合は、一旦そのECCブロックを読み出して、ECC処理を施してからECCブロックを記録することになる。

【0086】ディスク読み出し部101は、ファイルシステム部102から論理セクター番号とセクタ数とが入力されると、そのセクターデータを読み出しファイルシステム部に転送する。ただし、実際には、ECCブロック単位で読み出しを行い、ECC処理を経て必要なセクターデータのみがファイルシステム部に転送される。これは、AVデータの読み出し時にECCブロック毎に16セクター単位で読み出しを行うことにより、ディスク 50

記録部100と同様にオーバーヘッドを削減するためで ある。

【0087】ファイルシステム部102は、主としてAVファイルの書き込み及び編集を行うAVファイルシステム部103と、AVファイルと非AVファイルとで共通の処理を行う共通ファイルシステム部104とを有し、AVデータ録画部110、AVデータ編集部120、AVデータ再生部130からファイルの書き込みや読み出しに関するコマンドを受けて、光ディスクのセクタを最小単位としてファイル管理を行う。

【0088】録画編集再生制御部105は、DVDレコーダ10の全体を制御する部分であり、特に、ユーザ操作を促すガイダンス表示を制御し、それに対するユーザ操作をユーザIF部106を介して受け付け、ユーザ操作に応じて新規のAVデータの録画、録画済みのAVデータの再生や編集などを、AVデータ録画部110、AVデータ編集部120、AVデータ再生部130に対して要求する。

【0089】ユーザ I F部 106は、リモコン6からのユーザ操作を受け付け、録画編集再生制御部 105に通知する。

【0090】制御デーク管理部107は、非AVデータであるAVデータ管理ファイルを、主記憶1d上に読み出し、各部からの要求に応じて即座に情報を提供する。

【0091】AVデータ録画部110は、録画編集再生制御部105から録画要求を受けて、要求された録画に必要なコマンドをAVファイルシステム部103に発行する。そのため、AVデータ録画部110は、AVデータ入力部111とAVファイル管理情報生成部112とを有する。

【0092】AVデータ入力部111は、映像信号とオーディオ信号とをMPEGデータへ変換、つまりリアルタイムにエンコードを行い、エンコードしたMPEGデータを、AVファイルとしてディスクに記録するために、AVプータ入力部111は、エンコードに際して、MPEGデータのVOBU毎に、VOBUを構成するパック数と、最初のリファレンスピクチャのパック数を計算し、得られた値をGOP情報としてメモリ(主記憶1d)に記憶させ、AVファイル記録後にAVファイル管理情報生成部112に渡す。

【0093】AVファイル管理情報生成部112は、AVデータ入力部111によるAVファイルの記録の終了時に、メモリに記憶されたGOP情報に基づいて当該AVファイルに対応するVOB情報、PGC情報、タイトルサーチポインタをAVファイル管理情報として生成し、制御データ管理部107に保持されたAVデータ管理ファイルを更新し、更新後のAVデータ管理ファイルをファイルシステム部102を介してDVD-RAMに記録する。

【0094】AVデータ編集部120は、録画編集再生 制御部105から編集要求を受けて、編集に必要なコマ ンドをAVファイルシステム部103に発行する。

【0095】AVデータ再生部130は、録画編集再生 制御部105から再生要求を受けて、要求された再生に 必要なコマンドをAVファイルシステム部103に発行

(2-4) ファイルシステム部102に実行されるコマ ンド

次に、ファイルシステム部102によりサポートされる 10 各種コマンドを説明する。

【0096】ファイルシステム部102は、制御データ 管理部107、AVデータ録画部110、AVデータ編 集部120、AVデータ再生部130、録画編集再生制 御部105などから各種のコマンドを受けてファイル管 理を行う。

【0097】図20は、共通ファイルシステム部10 4、AVファイルシステム部103によりサポートされ るファイル管理に関するコマンドを示す一覧表である。 各コマンドに対するファイルシステム部102の処理内 20 容を簡単に説明する。

【0098】「CREATE」はディスク上にファイルを新し く作成し、ファイル識別記述子を返す。

【0099】「DELETE」はディスク上に存在するファイ ルを削除する。

【0100】「OPEN」はディスク上に記録されているフ ァイルにアクセスするために、そのファイルへのファイ ル識別記述子を取得する。

【0101】「CLOSE」はオープンされているファイル をクローズする。

【O 1 O 2】「WRITE」はファイルをディスク上に記録 する。

【0103】「READ」はディスク上に記録されたファイ ルを読み出す。

【0104】「SEEK」はディスク上に記録されたデータ ストリーム内を移動する。

【O 1 O 5】「RENAME」はファイル名を変更する。

【0106】「MKDIR」はディスク上に新しいディレク トリを作成する。

【O 1 O 7】「RMDIR」はディスク上に存在するディレ クトリを削除する。

【0108】「STATFS」はファイルシステムの現在の状 況の問い合わを行う。

【0109】「SET_ATTR」は現在オープンしているファ イルの属性を変更する。

【0110】「SEARCH_DISCON」は指定された区間に不 連続境界 (ゾーン境界) があるか調べ、ある場合はTRUE を、無い場合はFALSEを返す。

【0111】「MERGE」はディスク上の2つAVファイ ルと、メモリ中のデータをマージする。

【b112】「SPLIT」はディスク上のAVファイルを 2つのAVファイルに分割する。

18

【0113】「SHORTEN」はディスク上のAVファイル の端部を削除して、AVファイルの不必要な部分を削除

【0 1 1 4】「REPLACE」はA Vファイルの一部分とメ モリ中のデータを入れ替える。

【0115】これらのコマンドの組み合わることによ り、AVデータ録画部110、AVデータ編集部12 0、AVデータ再生部130は、録画、編集、再生等の 処理を実現する。

(3) 録画・再生

次に、DVDレコーダ10において(3-1) AVファ イルの録画、(3 – 2)AVデータ管理ファイルの記 録、 (3 - 3) A Vデータの再生、 (3 - 4) 指定時刻 から指定時刻までの再生、 (3-5) AVデータの特殊 再生について詳細に説明する。

(3-1) AVファイルの録画処理

録画処理は、マニュアル録画と予約録画とがある。マニ ュアル録画はユーザにより予約時間の設定なしにリモコ ンの「録画」キーが押下された場合に2、3の項目設定 の後直ちに開始される録画処理をいう。予約録画は、開 始時刻と終了時刻とを予め設定された場合の録画処理を いう。

【0116】例えば、ユーザがリモコン6において録画 ボタンを押すと、録画編集再生制御部105の制御によ って図21に示すようなガイダンス画像200がディス プレイ12に表示される。このガイダンス画像200に おいてユーザが「1」「選択」と押すと、録画条件(こ 30 の例では録画時間と録画品質)を設定するためのガイダ ンス画像201が表示される。

【0117】録画条件の「録画時間」についてユーザは リモコン6のカーソルボタンにより「無制限」または 「指定時間」にフォーカスを移動し、再度「選択」ボタ ンを押すことにより設定される。「指定時間」が選択さ れた場合には、テンキーボタンにより時間を入力するガ イダンス画像に切り替わる。指定時間の設定が完了する と再度ガイダンス画像201が表示される。

【0118】録画条件の「録画品質」は、MPEGデータの 40 ビットレートや解像度に関し、高画質、標準、時間優先 の3種類がある。それぞれの(ビットレート、解像度) は、高画質では(6Mbps、720*480画素)、標準では(3M bps、360*480画素)、時間優先では(1.5Mbps、360*240 画素) である。

【0119】今、録画のケースとして、ガイダンス画像 201において「無制限」「時間優先」が選択され、ガ イダンス画像202に移行した後リモコンの「録画」ボ タンが押されたとする。これにより録画編集再生制御部 105はAVデータ録画部110に録画を指示し、AV 50 データ録画部110において録画処理が開始する。

19 【0120】図22は、AVデータ録画部110におけ る録画処理を示すフローチャートである。

【0121】マニュアル録画の場合「録画」ボタン押下の通知がユーザIF部106を介して録画編集再生制御部105になされる。

【0122】この通知を受けた録画編集再生制御部105は、上記一定サイズ (約7Mバイト)以上の連続記録領域を確保する。すなわち、スペースビットマップと連続記録領域管理ファイルとを参照して、未使用の連続セクタ領域を検索し、新たな連続記録領域を確保する (ス 10デップ220)。このとき、既に記録されたAVデータが存在し、これから記録しようとするAVデータが論理的に連続する場合には、なるべく既に存在する連続記録領域と連続するように新たな連続記録領域を確保する。

【0123】さらに、録画編集再生制御部105は、A Vデータ入力部111にファイル識別子と、録画条件に 設定された時間優先を示すパラメータを通知する。AV データ入力部111は、レシーバ9を介して受信中の特 定チャネルの番組の映像データと音声データとをMPE Gエンコーダ2によりエンコードを開始し、さらにエン 20 コード結果のMPEGデータをトラックバッファ3aに 転送する処理を開始する(ステップ221)。

【0124】次いで、録画編集再生制御部105は、共通ファイルシステム部104に対して、新たに割り当てられた連続記録領域の指定を含む「CREATE」コマンドを発行する(ステップ222)。これを受けて共通ファイルシステム部104は、新たな連続記録領域にファイルを作成できる場合には、新たなファイル識別記述子を返す。

【0125】これと同時に、AVデータ入力部111は、「OPEN」コマンドをAVファイルシステム部103に発行する(ステップ223)ことにより、録画編集再生制御部105から与えられたファイル識別記述子とそのファイルエントリとに関する情報をワークメモリ(図外)に保持させる(以下ワークメモリ中の上記情報をFd(ファイルディスクリプタ)と略す)。

【0126】AVデータ入力部111は、録画編集再生制御部105からの停止命令を受けるまでの間は(ステップ224)、VOBUがエンコードされる毎にVOBUを構成するバック数と、VOBUの最初の参照画像(1ピクチャ)のパック数とをGOP情報として主記憶1dに記憶させる(ステップ225、226)。図23に、GOP情報の一例を示す。同図ではVOBU#22までエンコードされた時点で主記憶1dに記憶されているGOP情報を表している。なお、本実施例では1つのVOBUは15フレーム(又は30フィールド)からなる約0.5秒分の映像データを含むものとする。

【0127】さらに、AVデータ入力部111は、トラックバッファ3aに一定量のMPEGデータが蓄積される毎に「WRITE」コマンドをAVファイルシステム部1

O 3に発行する(ステップ228、229)。ここで、「WRITE」コマンドは3つのパラメータの指定と共にAVファイルシステム部103に発行されるものとする。3つのパラメータは、「OPEN」コマンドによりオープンされた上記Fdと、記録すべきデータのサイズと、それをを保持しているバッファ(本実施例ではトラックバッファ3a)とである。また、パラメータとして指定されるFdは、ファイルエントリと同様に、エクステントの記録位置及びエクステント長を示す情報を含む。この情報はステップ220において確保された連続記録領域を表す。また、Fdはオープンされてからクローズされるまでに複数の「WRITE」コマンドが発行された場合は逐次更新されていく。2回目以降の「WRITE」コマンドでは、既に記録されたデータに続けて新たなデータが書き足される。

【0128】AVデータ入力部111は、停止命令を受けた時点で「WRITE」コマンド(ステップ224、230)を発行し、さらに「CLOSE」コマンドを発行し(ステップ231)、AVファイル管理情報生成部112にAVファイル(VOB)の記録を終了した旨を通知して(ステップ232)終了する。なお、ステップ230の「WRITE」コマンドは、トラックバッファの残りを記録するためである。ステップ255の「CLOSE」コマンドは、ワークメモリ中のFdを、DVD-RAM上のファイル識別記述子及びファイルエントリが書き戻すためである。

【0129】上記図23ではマニュアル録画の場合を説明したが、予約録画の場合には、予約として指定した時間の通知とともに「録画」ボタン押下の通知がユーザIF部106を介して録画編集再生制御部105になされる。録画編集再生制御部105は、指定された時間に相当する連続記録領域を確保する。

(3-2) AVファイル管理情報の生成・記録 図24は、AVファイル管理情報生成部112によるA Vファイル管理情報の生成及び記録処理を示すフローチャートである。

【0130】同図のように、AVファイル管理情報生成部112は、AVデータ入力部111からAVファイルの記録が終了したことの通知を受けると(ステップ251)、AVデータ入力部111によってメモリ(主記億1d)に記憶されたGOP情報と、AVファイルが記録された新たな連続記録領域の先頭アドレスに対応するVOBU番号とに基づいて、VOB情報、すなわち図11に示した(a)VOB一般情報とタイムマップ情報((b)タイムマップ一般情報、(c)VOBUテーブル、(d)タイムマップテーブル)を次のように生成す

- る (ステップ252)。 (a) VOB一般情報 (VOB識別子、VOB再生時 問)
- AVファイル管理情報生成部112は、制御データ管理

40

部107に既存のAVファイル管理テーブルが保持され ていれば、重複しないVOB識別子 (次の番号など)を 割当て、保持されていなければ、VOB#1をVOB識 別子とし、AVデータ入力部111からAVファイルの 再生時間を取得し、それらを含むVOB一般情報を生成 する。

21

(b) タイムマップ一般情報 (タイムマップ数、VOBUマップ 数、TMU、TM_OFS)

AVファイル管理情報生成部112は、TMUを例えば 60秒とし、VOBの再生時間をTMUで除算してタイ ムマップ数を求め、GOP情報から得られるVOBU数 をVOBUマップ数とし、TM_OFSをO (新規録画の場 合)とする。

(c) VOBUテーブル (参照画像サイズ、VOBU再生時 間、VOBUサイズ)

図23に示したGOP情報は、VOBUテーブルの参照 画像サイズ、VOBUサイズそのものの値を表すので、 AVファイル管理情報生成部112は、GOP情報に各 VOBUの再生時間を追加することによりVOBUテー ブルを生成する。本実施例ではVOBUの再生時間15 フレーム (又は30フィールド) なので、0.5秒(1 5フレーム時間) となる。ただし、AVファイルの最後 のVOBUはその再生時間が異なるので、AVファイル 管理情報生成部112はAVデータ入力部111から取 得してVOBUテーブルに設定する。

(d) タイムマップテーブル (VOBUマップ 番号、時間差TM _DIFF、VOBUアドレス)

AVファイル管理情報生成部112は、VOBUテーブ ルのVOBU再生時間を順次加算していき、加算値がほ ぼTMUの整数倍の時刻になる毎に、その時刻に存在す 30 るVOBUを求めていくことにより、各タイムマップの VOBUマップ番号を求め、(TMUの整数倍) -(加算値) を時間差TM_DIFFとして求める。また、VOBUアドレスは、A Vデータ入力部111から得られる連続記録領域の先頭 アドレスに各「VOBUマップ番号」までのVOBUサ イズを順次加算することにより算出する。

【0131】このようにしてVOB情報を生成した後、 AVファイル管理情報生成部112は、AVデータ入力 部111によって記録されたタイトルのPGC情報を生 成する (ステップ253)。予約録画の場合には、AV データ入力部111により1つのVOBが生成されるの で、PGC情報は、先頭時刻と末尾の時刻をスタートタ イム、エンドタイムとする1個のセルにより表される。 【0132】また、マニュアル録画の場合も同様である が、録画の最中にユーザが一時停止をした場合などに は、AVデータ入力部111(MPEGエンコーダ2) が完全に動作を中断してしまうことと、また、ユーザに とって意味のある映像場面の切れ目であることから、異 なるセルとすることが望ましい。この場合には、AVフ ァイル管理情報生成部112は、AVデータ入力部11 50

1から一時停止した時刻を取得することにより、複数の セルを生成することになる。

【0133】さらに、AVファイル管理情報生成部11 2は、生成されたPGC情報を指すタイトルサーチポイ ンタを生成する(ステップ24)。

【0134】この後、AVファイル管理情報生成部11 2は、既にAVデータ管理ファイルが存在する場合に は、それを読み出すためにファイルシステム部102に OPENコマンドと、READコマンドとを発行し、A Vデータ管理ファイルを取得する(ステップ255)。 ただし、制御データ管理部107にAVデータ管理ファ イルが保持されている場合には、読み出さないようにし てもよい。

【0135】AVファイル管理情報生成部112は、取 得したAVデータ管理ファイルに、ステップ252~2 54で生成したVOB情報、PGC情報、タイトルサー チポインタを追加することにより更新し(ステップ25 6)、更新したAVデータ管理ファイルを記録するため に、ファイルシステム部102にWRITEコマンド、 CLOSEコマンドを発行し(ステップ257)、AV ファイル管理情報生成処理を終了する。このとき、AV データ管理ファイルは非AVファイルなので、セクタ単 位に領域が割り当てられ記録される。

【0136】図25は、図23に示したGOP情報に基 づいて生成されたタイムマップテーブル及びVOBUテ ーブルの一例を示す。同図では、便宜上TMUを5秒と している。また、VOBU再生時間はフィールド時間 (1/60秒)数を示している。

(3-3) AVデータの再生

再生処理は、図21に示したガイダンス画像200にお いてユーザが「2」「選択」と押すと、ガイダンス画像 201が表示され、さらに、ユーザが「1」「選択」と 押すと、録画編集再生制御部105はAVデータ再生部 130にタイトル名(又はタイトルサーチポインタ番 号) を通知する。これによりタイトルAの再生が開始す

【0137】図26は、AVデーク再生部130におけ る通常再生の処理内容を示すフローチャートである。

【0138】同図において、AVデーク再生部130 は、制御データ管理部107に保持されたAVデータ管 理ファイルを参照して、通知されたタイトル名(又はタ イトルサーチポインタ番号) から、PGC情報、VOB 情報を取得する(ステップ281)。さらに、AVデー タ再生部130はVOB情報が示すAVファイルを指定 するOPENコマンドをファイルシステム部102に発 行する (ステップ282)。

【0139】さらに、AVデータ再生部130は、PG C情報に設定されたセルの数だけステップ283から2 90のループ処理を繰り返すことより、タイトルAの再 生を行なう。

【0140】すなわち、AVデータ再生部130は、セルのスタートタイム、エンドタイムそれぞれ、タイムマップ情報を参照して開始アドレス(セクタアドレス)、終了アドレスに変換し(ステップ284)、それらを指定してファイルシステム部102にREADコマンドを発行する。これにより、ディスク読み出し部101によりセルが示すVOBのデータ区間の読み出しが開始される。

23

【0141】その後、AVデータ再生部130は、当該セルの読み出しが終了するまでの間、トラックバッファ 103aに一定量のAVデータが蓄積される毎に、当該AVデータのデコードを行なう(ステップ286-288)。ディスク読み出し部101によるセルの読み出しが終了したとき、AVデータ再生部130は、トラックバッファ3aに蓄積されたデータをデコードし、当該セルの再生を終了する(ステップ289)。

【0142】このようにして、PGC情報中の全てのセルに対してデコードが終了した後、AVデータ再生部130は、ファイルシステム部102にCLOSEコマンドを発行して、再生処理を終了する。

(3-4) 指定時刻から指定時刻までの再生 指定時刻から指定時刻までの再生は、図21のガイダン ス画像205において、ユーザがタイトルの再生時間の 範囲内で開始時刻と終了時刻とを任意に指定した場合の 再生をいう。

【0143】図27は、タイトル中の開始時刻と終了時刻とがユーザ指定された場合の再生処理を示すフローチャートを示す。

【0144】同図において、AVデータ再生部130 は、制御データ管理部107に保持されたAVデータ管 理ファイルを参照して、通知されたタイトル名(又はタ イトルサーチポインタ番号)から、PGC情報、VOB 情報を取得する(ステップ295)。さらに、AVデー タ再生部130は、ユーザ指定された開始時刻、終了時 刻それぞれを、タイムマップ情報を参照して開始アドレ ス、終了アドレスに変換し(ステップ296)、AVデ ータ再生部130はVOB情報が示すAVファイルを指 定するOPENコマンドをファイルシステム部102に 発行し(ステップ297)し、変換により得られた開始 アドレス、終了アドレスを読み出すようREADコマン 40 サイズを求める。 ドをファイルシステム部102に発行する(ステップ2 98)。これにより、ディスク読み出し部101により 指定されたVOBのデータ区間の読み出しが開始され る。

【0145】その後、AVデータ再生部130は、当該 データ区間の読み出しが終了するまでの間、トラックバ ッファ3aに一定量のAVデータが蓄積される毎に、当 該AVデータのデコードを行なう(ステップ299-3 01)。ディスク読み出し部101による読み出しが終 了したとき、AVデータ再生部130は、トラックバッ 50

ファ 3 a に蓄積されたデータをデコードし(ステップ 3 0 2)、ファイルシステム部 1 0 2 に C L O S E コマンドを発行して(ステップ 3 0 3)、再生処理を終了する。

(3-5) A Vデータの特殊再生

特殊再生は、図26、28に示した再生に際して、リモコン6の「早送り」又は「巻き戻し」キーが押下された場合に開始され、その後「再生」キーが押下された場合に元の再生に戻る。

【0146】図28は、AVデータ再生部130による 特殊再生の処理を示すフローチャートである。

【0147】AVデータ再生部130は、再生中に、録画編集再生制御部105から「早送り」又は「巻き戻し」キーが押下されたことが通知されると、特殊再生のスキップ時間 Δ tを設定する(ステップ310)。例えば、「早送り」キーの場合には+1秒、「巻き戻し」キーの場合には-1秒などである。また、特殊再生中に「早送り」又は「巻き戻し」キーが押下されたことが通知された場合には、 Δ tをさらに+1秒又は-1秒というようにスキップ時間を長くしてもよい。

【0148】さらに、AVデータ再生部130は、MP EGデコーダ4を停止してその時刻tsをMP EGデコーグ4から取得し、トラックバッフr3nをクリアする(ステップ311-313)。

【0149】つぎに、AVデータ再生部130は、特殊 再生の終了指示(例えば「再生」キー押下)があるま で、時刻tsをスキップ時間Δ t づつ更新する毎に、ステ ップ315から325までの処理を行なう。

【0150】すなわち、AVデータ再生部130は、更新された時刻tsが再生途中のセルのエンドタイムを越えていない場合は、タイムマップ情報を参照して時刻tsに対応するVOBUマップを特定し(ステップ318)、タイムマップ及びVOBUマップからその先頭アドレスを算出し、特定したVOBUマップの参照画像サイズを読み出す(ステップ319)。もし、更新された時刻tsが再生途中のセルのエンドタイムを越えていて、かつ次のセルが存在する場合には、AVデータ再生部130は、スタートタイム以降になるようtsを更新してから、ステップ315-317)、先頭アドレスと参照画像サイズを求める

【0151】さらに、AVデータ再生部130は、求めた先頭アドレスから参照画像サイズ分のデータ区間の指定とともにSEARCH_DISCON_AV_BLKコマンドをファイルシステム部102に発行する(ステップ320)。これは、参照画像の記録領域が、ゾーン境界などの不連続境界を跨いでいないかどうか(連続領域か不連続領域か)をチェックするためである。もし、不連続な場合には(ステップ321)、AVデータ再生部130は特定したVOBUに隣接するVOBUマップを求めて(ステップ322)その先頭アドレスと参照画像サイズとを読み

出す(ステップ323)。

【0152】AVデータ再生部130は、得られた先頭 アドレスと参照画像サイズの指定とともにREADコマ ンドをファイルシステム部102に発行する(ステップ 324)。これにより当該参照画像データがトラックバ ッファ3aに格納される。トラックバッファ3aに格納 された参照画像データは、MPEGデコーダ4により再 生される。

【0153】上記処理は、特殊再生の終了指示があるま で、時刻tsをスキップ時間Δtづつ更新ながら繰り返さ れる。特殊再生の終了指示があった場合(ステップ32 5)、AVデータ再生部130は、時刻tsを開始時刻と して、元の再生処理(図26のステップ283又は図2 7ステップ296)に戻る(ステップ326)。

【0154】以上のように特殊再生は、スキップ時間毎 に存在する参照画像のアドレスをタイムマップ情報に従 って順々に求めることができる。しかも、タイムマップ 情報は、タイムマップテーブルとVOBUテーブルとい う階層的なタイムマップ情報により全VOBUの再生時 刻と記録位置(セクタアドレス)を対応付けているが、 全てのVOBUの再生時刻と記録位置(セクタアドレ ス) とを記録する必要がないので、データ量が非常に少 なく、それゆえ録画時にリアルタイムに生成することが 容易である。

【0155】なお、上記実施形態においてDVDレコー ダ10は、図14に示したように、従来の据え置き型家 庭用VTRに代用することを前提とした構成を示した。 この構成に限らず、DVD-RAMがコンピュータの記 録媒体としても使用される場合には、次のような構成と すればよい。すなわち、ディスクアクセス部3は、DV D-RAMドライブ装置としてSCSIやIDEと呼ばれるIF を介してコンピュータバスに接続される。また、同図の ディスクアクセス部3以外の構成要素はコンピュータの ハードウェア上でOS及びアプリケーションプログラム が実行されることに実現される。その場合、ディスク記 録部100、ディスク読み出し部101及びファイルシ ステム部102は主としてOSによる機能又はOSを機 能拡張するアプリケーションとして実現され、これ以外 の構成要素は主としてアプリケーションプログラムによ る機能として実現される。またファイルシステム部10 2がサポートする各種コマンドはアプリケーションに提 供されるシステムコール等のサービスコマンドに相当す る。

【0156】また、上記実施形態では、個々のAVファ イルに1つのVOBを記録するとしたが、1つのAVフ ァイルに複数のVOBデータを記録してもよい。この場 合は、A Vデータ管理ファイル (RTRW. IFO) の中で、例 えば、各AVファイル中の個々のVOBのサイズ又はフ ァイル先頭からのオフセットアドレスを記録し管理すれ ばよい。

[0157]

【発明の効果】本発明の光ディスクは、ビデオオブジェ クトを記録するデータ領域とタイムマップ情報(特殊再 生情報) を記録するタイムマップ領域とを有する光ディ スクであって、前記ビデオオブジェクトは複数のビデオ オブジェクトユニットから構成され、前記タイムマップ 情報はビデオオブジェクトに対応する第1及び第2タイ ムテーブルを含み、第1タイムテーブルは、ビデオオブ ジェクトに対応する再生時刻であってビデオオブジェク トユニットの再生時間よりも長い一定の時間間隔を順に おいた再生時刻毎に、その再生時刻に当たるビデオオブ ジェクトユニットのアドレス情報と、当該ビデオオブジ ェクトユニットを特定する特定情報とを有し、第2タイ ムテーブルは、ビデオオブジェクトの先頭からの再生時 間順に、各ビデオオブジェクトユニットの再生時間及び データサイズを含むことを特徴とする。

【0158】ここで、前記第1タイムテーブルは、前記 一定の時間間隔を順においた各再生時刻に1対1で対応 する複数の第1タイムマップを含み、前記第2タイムテ ーブルは、ビデオオブジェクトユニットに1対1で対応 する複数の第2タイムマップを含み、各第1タイムマッ プは、対応する再生時刻に当たるビデオオブジェクトユ ニットに対応する第2タイムマップを示す前記特定情報 と、当該ビデオオブジェクトユニットのアドレス情報 と、対応する再生時刻と当該ビデオオブジェクトユニッ トの先頭時刻との差分時間を示す差分情報とを含み、各 第2タイムマップは、対応するビデオオブジェクトユニ ットの再生時間を示す時間情報と、対応するビデオオブ ジェクトユニットのデータサイズとを含むようにしても よい。

【0159】この構成によれば、第1タイムテーブル は、一定時間毎にビデオオブジェクトユニットのアドレ ス情報と特定情報とを記録するだけなので、テーブルサ イズが小さい。第2タイムテーブルが、ビデオオブジェ クトユニット毎に記録位置(セクタアドレス)を再生時 刻に対応させて記録される必要がなく、ビデオオブジェ クトユニット毎にその再生時間とそのデータサイズとを 含むので、再生時間もデータサイズより短いデータ長で よく、テーブルサイズが小さい。さらに、第2タイムテ ーブルは、エンコードされる単位を基準としたビデオオ ブジェクトユニット毎に記録されるので、録画時にリア ルタイムに生成することが極めて容易であるという効果 がある。また、タイムマップ情報は、第1タイムテーブ ルと第2タイムテーブルと階層的に検索することによ り、ビデオオブジェクトの再生時刻をアドレスに対応付 けているので、再生装置では、タイムマップ情報を保持 するメモリ量が少なくてもよいという効果がある。

【0160】さらに、前記タイムマップ情報は、さらに ビデオオブジェクト毎のタイムオフセットを含み、タイ 50 ムオフセットは、ビデオオブジェクトの先頭の再生時刻

27 と、前記一定の時間間隔の先頭の再生時刻との差分時間 を示すようにしてもよい。

【0161】この構成によれば、ビデオオブジェクトの 先頭部分が編集により削除されたとしても、タイムオフ セットの値を変更することにより、タイムマップ情報を 容易に修正することができる。

【0162】また、本発明の録画装置は、時系列的なビ デオデータを入力する入力手段と、入力されたビデオデ ータを圧縮することにより連続するビデオオブジェクト ユニットから構成されるビデオオブジェクトを生成する 圧縮手段と、光ディスクにデータを書き込む書込み手段 と、書込み手段を制御する制御手段とを備え、前記制御 手段は、生成されたビデオアブジェクトを光ディスクに 書き込むよう書込み手段を制御し、生成されたビデオオ ブジェクトに対する再生時刻であって、ビデオオブジェ クトユニットの再生時間よりも長い一定の時間間隔を順 においた再生時刻毎に、その再生時刻に当たるビデオオ ブジェクトユニットの記録位置を指し示す第1タイムテ ーブルと、各ビデオオブジェクトユニットの再生時間及 びデータサイズを含む第2タイムテーブルとを生成し、20 さらに第1テーブル、第2テーブルを光ディスクに書き 込むよう書込み手段を制御するように構成されている。

【0163】この構成によれば、第1タイムテーブル は、一定時間毎にビデオオブジェクトユニットのアドレ ス情報と特定情報とを記録するだけなので、テーブルサ イズが小さい。第2タイムテーブルが、ビデオオブジェ クトユニット毎に記録位置(セクタアドレス)を再生時 刻に対応させて記録される必要がなく、ビデオオブジェ クトコニット毎にその再生時間とそのデータサイズとを 含むので、再生時間もデータサイズより短いデータ長で よく、テーブルサイズが小さい。さらに、第2タイムテ ーブルは、エンコードされる単位を基準としたビデオオ ブジェクトユニット毎に記録されるので、録画時にリア ルタイムに生成することが極めて容易であるという効果 がある。また、タイムマップ情報は、第1タイムテーブ ルと第2タイムテーブルと階層的に検索することによ り、ビデオオブジェクトの再生時刻をアドレスに対応付 けているので、再生装置では、タイムマップ情報を保持 するメモリ鼠が少なくてもよいという効果がある。

【0164】ここで、前記制御手段は、第1タイムテー ブルとして、前記第1生成手段は、前記一定の時間間隔 を順においた各再生時刻に1対1で対応する第1タイム マップを生成し、第2タイムテーブルとして、ビデオオ ブジェクトユニットに1対1で対応する複数の第2タイ ムマップを生成し、各第1タイムマップは、対応する再 生時刻に当たるビデオオブジェクトユニットの先頭アド レスと、対応する再生時刻と当該ビデオオブジェクトユ ニットの先頭時刻との差分時間を示す差分情報とを含 み、各第2タイムマップは、対応するビデオオブジェク トユニットの再生時間を示す時間情報と、対応するビデ 50

オオブジェクトユニットのデータサイズとを含むように 構成してもよい。

【0165】また、前記制御手段は、さらに、ビデオオ ブジェクトの先頭の再生時刻と、前記一定の時間間隔の 先頭の再生時刻との差分時間を示すタイムオフセットを 生成し、前記第1タイムテーブルは、タイムオフセット を含むようにしてもよい。

【0166】この構成によれば、ビデオオブジェクトの 先頭部分が編集により削除されたとしても、タイムオフ セットの値を変更することにより、タイムマップ情報を 容易に修正することができる。

【0167】また、本発明のプログラム記憶媒体は、時 系列的なビデオデータを入力し、入力されたビデオデー タを圧縮することにより連続するビデオオブジェクトユ ニットから構成されるビデオオブジェクトを生成し、光 ディスクにビデオオブジェクトを書き込むコンピュータ に読み取り可能な記憶媒体であって、前記ビデオデータ から生成されたビデオオブジェクトに対する再生時刻で あって、ビデオオブジェクトユニットの再生時間よりも 長い一定の時間間隔を順においた再生時刻毎に、その再 生時刻に当たるビデオオブジェクトユニットの記録位置 を指し示す第1タイムテーブルと、各ビデオオブジェク トユニットの再生時間及びデータサイズを含む第2タイ ムテーブルとを生成し、さらに第1テーブル、第2テー ブルを光ディスクに書き込むことを記述したプログラム を記録するコンピュータ読み取り可能な記憶媒体であ

【0168】この構成によれば、第1タイムテーブル は、一定時間毎にビデオオブジェクトユニットのアドレ ス情報と特定情報とを記録するだけなので、テーブルサ イズが小さい。第2タイムテーブルが、ビデオオブジェ クトユニット毎に記録位置(セクタアドレス)を再生時 刻に対応させて記録される必要がなく、ビデオオブジェ クトユニット毎にその再生時間とそのデータサイズとを 含むので、再生時間もデータサイズより短いデータ長で よく、テーブルサイズが小さい。さらに、第2タイムテ ーブルは、エンコードされる単位を基準としたビデオオ ブジェクトユニット毎に記録されるので、録画時にリア ルタイムに生成することが極めて容易であるという効果 がある。また、タイムマップ情報は、第1タイムテーブ ルと第2タイムテーブルと階層的に検索することによ り、ビデオオブジェクトの再生時刻をアドレスに対応付 けているので、再生装置では、タイムマップ情報を保持 するメモリ量が少なくてもよいという効果がある。

【図面の簡単な説明】

【図1】本発明の実施形態における記録可能な光ディス クであるDVD-RAMディスクの外観及び記録領域を 表した図である。

【図2】セクタレベルに拡大して切り出したDVD-R AMの断面及び表面を示す図である。

【図3】 (a) DVD-RAMにおけるゾーン領域 $0\sim2$ 3その他を示す図である。

(b) ゾーン領域 $0 \sim 2$ 3 その他を横方向に配置した説明図である。

(c) ボリューム空間における論理セクタ番号 (LSN) を示す図である。

(d) ボリューム空間における論理ブロック番号 (LBN) を示す図である。

【図4】ゾーン領域内におけるセクタとのECCブロックとの関係を階層的に示す図である。

【図5】ボリューム空間に記録されるスペースビットマップと連続記録領域管理ファイルとを示す図である。

【図6】AVファイル、非AVファイルの階層的なディレクトリ構造を示す図である。

【図7】AVファイルMoviel. VOB、Movie2. VOBとして記録されたVOBを示す図である。

【図8】AVデータ管理ファイル (RTRW. IFO) の記録内容を階層的に示した説明図である。

【図9】タイトルサーチポインタテーブル、AVファイル管理テーブル、PGC情報テーブルとVOBとの論理 20的な結合関係を示す図である。

【図10】AVファイルつまりVOBのデータ構造を示す図である。

【図11】1つのVOBに対応するタイムマップ情報のより詳細なデータ構成を示す図である。

【図12】タイムマップテーブルと、VOBUテーブル との論理的な連結関係を示す図である。

【図13】VOBの先頭時刻と先頭のタイムマップの時刻との時間差であって"0"以外の値をとるタイムオフセットを示す図である。

【図14】本実施形態における光ディスク記録再生装置 を用いたシステムの構成例を示す図である。

【図15】DVDレコーダ10のハードウェア構成を示すブロック図である。

【図16】リモコン例を示す図である。

【図17】MPEGエンコーダ2の構成を示すブロック図である。

【図18】MPEGデコーダ4の構成を示すブロック図 である。

【図19】DVDレコーダ10の構成を機能別に示した 40 機能ブロック図である。

【図20】共通ファイルシステム部104、AVファイルシステム部103によりサポートされるファイル管理に関するコマンドを示す図である。

【図21】ガイダンス画像を示す図である。

【図22】AVデータ録画部110における録画処理を 示すフローチャートである。

【図23】GOP情報の一例を示す図である。

【図24】AVファイル管理情報生成部112によるA Vファイル管理情報の生成・及び記録処理を示すフロー 50

チャートである。

【図25】GOP情報に基づいて生成されたタイムマップテーブル及びVOBUテーブルの一例を示す図である。

【図26】AVデータ再生部130における通常再生の 処理内容を示すフローチャートである。

【図27】タイトル中の開始時刻と終了時刻とがユーザ 指定された場合の再生処理を示すフローチャートを示 す。

10 【図28】AVデータ再生部130による特殊再生の処理を示すフローチャートである。

【符号の説明】

- 1 制御部
- 1a CPU
- 1b プロセッサバス
- 1 c バスインタフェース
- 1 d 主記憶
- 2 MPEGエンコーダ
- 2 a ビデオエンコーダ
- 2b ビデオバッファ
 - 2 c オーディオエンコーダ
 - 2 d オーディオバッファ
 - 2 e システムエンコーダ
 - 2f STC部
 - 2g エンコーダ制御部
 - 3 ディスクアクセス部
 - 3 a トラックバッファ
 - 4 MPEGデコーダ
 - 4 a デマルチプレクサ
- 30 4b ビデオバッファ
 - 4 c ビデオデコーダ
 - 4 d オーディオバッファ
 - 4 e オーディオデコーダ
 - 4f STC部
 - 4 g 加算器
 - 4h~4 1 セレクタ
 - 5 ビデオ信号処理部
 - 6 リモコン
 - 7 バス
 - 8 リモコン信号受信部
 - 9 レシーバ
 - 10 DVDレコーダ
 - 11 アンテナ
 - 12 ディスプレイ
 - 100 ディスク記録部
 - 101 ディスク読み出し部
 - 102 ファイルシステム部
 - 103 AVファイルシステム部
 - 104 共通ファイルシステム部
 - 105 録画編集再生制御部

112 AVファイル管理情報生成部

32

120 AVデータ編集部

130 AVデータ再生部

107制御データ管理部110AVデータ録画部111AVデータ入力部

ユーザIF部

106

[図1]

【図2】

【図3】

【図4】

【図5】

【図7】

AVファイル群

【図9】

[図8]

【図10】

【図12】

【図11】

[図13]

THIS PAGE BLANK (US.

【図14】

【図15】

【図16】

•

【図17】

ţ

[図18]

【図19】

【図20】

共通ファイルシステム部104			
CREATE	ファイルの作成		
DELTE	ファイルの削除。		
OPEN	ファイルのオープン		
CLOSE	ファイルのクローズ		
WRITE	非AVファイルの書き込み		
READ	ファイルの読み出し(AV、非AV共通)		
SEEK	データストリーム中の移動		
RENAME	ファイル名の変更		
MKDIR	ディレクトリの作成		
RMDIR	ディレクトリの削除		
STATFS	┃ ファイルシステムの状態取得		
GET-ATTR	ファイルの属性取得		
SET-ATTR	ファイルの属性の設定		
SEARCH_DISCON	指定された区間内に非連続境界(ゾーン境界)があるか判定		

AVファイルシステム部103	
SPLIT	AVファイル1+バッファ+AVファイル2の結合 AVファイルの分割 AVファイルの端部の削除 ファイルの部分置き換え

【図21】

【図22】

【図23】

VOBU 番号	最初の参照画像 のパック数	VOBUパック数
#1	14	46
#2	15	51
#3	13	49
#4	14	47
#5	14	46
#6	15	51
#7	13	49
#8	14	47
#9	14	46
#10	15	51
#11	13	49
#12	14	47
	1	ļ ļ
#21	15	51
#22	13	49
	:	l l

【図24】 AVファイル管理情報生成部112の処理フロー

【図25】

, . .

【図26】

【図27】

【図28】

・フロントページの続き

(72) 発明者 津賀 一宏

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 村瀬 薫

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
A FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.