END-TO-END IMITATION LEARNING

Home Assignment

Ravi Akash M.Sc Information Technology, Universität Stuttgart

01 Problem Statement

Objective- To build an end-to-end deep learning model for autonomous driving that predicts 4 waypoints per forward pass using image and speed data.

Aim-

Model Architecture: Construct an architecture utilizing a combination of Neural Networks for waypoint prediction.

Data Pipeline: Develop a robust data pipeline to load and pre-process image, speed, and waypoint data for model training.

Model Optimization: Train the deep learning model and optimizes the model's weights to predict waypoints effectively.

02 Understanding Data

Ground Truth Waypoints data: (120, 4, 2)

03Data Pipeline

Number of Scenarios: 2 Waypoints shape: (120, 4, 2)

Speed shape: (120, 1)

Number of images: 120

Shape of an image array: (160, 320, 3)

04 Model Architecture

05

Training, Evaluation & Hyperparameters

Device Configuration:

•Setting the model and data to the appropriate device (GPU or CPU).

•Training Loop:

- •Iterating through a specified number of epochs (e.g., 20 epochs).
- •Inside the loop:
 - •Training: Executing the training process for each epoch using **Train function**.
 - •Recording and storing the train loss and R2 score in **Train losses** and **Train R2 Score** lists.
 - •Testing: Evaluating the model's performance on the test set using **Evaluate** function.
 - •Recording and storing the test loss and R2 score in **Test losses** and **Test R2 Score** lists.
- Displaying the trend of loss reduction over training epochs for each scenario.

Number of epochs = 20

Model = Hybrid CNN+LSTM Model

Optimizer = Adam Optimizer

Learning Rate = 0.01

Loss Function = Mean Squared Error Loss Function

Metrics = MSE, R2 Score as a metric for assessing model performance.

06 Results

Model Generalization across two scenarios

07Summary & Key Observations

- Built an End-End deep learning model for autonomous driving.
- Defined appropriate metrics and loss functions to predict The 4 waypoints from the perspective of the current ego position and orientation, in meters.
- The model demonstrates proficiency in predicting waypoints for autonomous driving scenarios.
- The R2 scores indicate that a significant proportion of the variance in the waypoint data is captured by the model, reflecting its ability to comprehend and predict waypoints accurately.

Considerations:

 suggesting the model's capability to generalize well to new scenarios can be further be improved by providing more amount of data.

Thank You