Suavizado exponencial

Método de predicción útil

Suavizado exponencial

Métodos que mejoran la predicción:

- Suavizado exponencial Simple (SES)
 - Para series que no presentan tendencia clara ni estacionalidad.
- Suavizado Holts
 - Para series que presentan tendencia, sin clara estacionalidad
- Suavizado Holt's-Winter's
 - Para series que presentan tendencia y además estacionalidad.

Suavizado exponencial

- La predicción con suavizado exponencial consiste en predecir una observación futura utilizando una ponderación de las observaciones pasadas
 - Los pesos que se asignan a las observaciones decaen exponencialmente para las observaciones antiguas.
- Este tipo de predicciones son útiles para muchos tipos de series.

- O Simple Exponential Smoothing (SES)
- La predicción para el tiempo T+1, se realiza utilizando un promedio ponderado de los elementos de la serie.

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

$$\hat{y}_{T+1|T} = \alpha y_T + (1-\alpha) \hat{y}_{T|T-1}$$

• Parámetro de suavizado: α $0 \le \alpha \le 1$

Indica el peso que le damos a la observación más reciente.

• Otra forma de escribirlo es en función de componentes:

- Solo se obtiene una componente, la componente "nivel" (level)
- El componente nivel es el resultado de la suavización de la serie en cada periodo t
- La predicción para un periodo t+h es el valor suavizado en el periodo t.

Ejemplo

Serie de producción anual de petróleo (millones de toneladas)

Arabia Saudí, 1965-2013.

Utilizando el suavizado exponencial simple para predecir la producción de petróleo

$$\hat{y}_{T+1|T} = \alpha y_T + (1-\alpha)\hat{y}_{T|T-1}$$

Con alpha:
$$\alpha = 0.8339$$

Año	Tiempo	Obs	Nivel	Predicción
	t	y_t	l_t	$\hat{y}_{t t-1}$
1995	0		446.59	
1996	1	445.36	→ 445.56<	446.59
1997	2	453.2	→ 451.93 <	445.56
1998	3	454.41	454	451.93
1999	4	422.38	427.63	454
2000	5	456.04	451.32	427.63
2001	6	440.39	442.21	451.32
2002	7	425.19	428.02	442.2
2003	8	486.21	476.54	428.02
2004	9	500.43	496.46	476.54
2005	10	521.28	517.16	496.46
2006	11	508.95	510.31	517.15
2007	12	488.89	492.45	510.31
2008	13	509.87	506.98	492.45
2009	14	456.72	465.07	506.98
2010	15	473.82	472.37	465.07
2011	16	525.95	517.05	472.36
2012	17	549.83	544.39	517.05
2013	18	542.34	542.68	544.39
	h			$\hat{y}_{T+h T}$
2014	1			542.68
2015	2			542.68
2016	3			542.68
2017	4			542.68
2018	5			542.68
2019	6			542.68
2020	7			542.68
2021	8			542.68
2022	9			542.68

Suavizado exponencial simple:

$$\hat{y}_{t+1|t} = l_t$$

$$l_t = \alpha y_t + (1 - \alpha)l_{t-1}$$

Cálculo de las primeras predicciones

$$\hat{y}_{1|0} = l_0 = 446.59$$

 l_0 : Valor inicial obtenido en R

 α : Obtenido en R

$$l_{1} = \alpha y_{1} + (1 - \alpha) l_{0}$$

$$l_{1} = .83 * 445.36 + (1 - 0.83) * 446.59 = 445.57$$

$$\widehat{y}_{2|1} = l_{1} = 445.57$$

$$l_2 = \alpha \mathbf{y_2} + (1 - \alpha) \mathbf{l_1}$$

$$l_2 = .83 * 453.2 + (1 - 0.83) * 445.57 = 451.93$$

$$\widehat{\mathbf{y}}_{3|2} = l_2 = 451.93$$

•••

Cálculo predicciones a futuro:

$$l_T=lpha y_T+(1-lpha)l_{T-1}$$
 Evelyn Gutierrez (egutierreza@p \widehat{y}_T) $l_T=l_T=542.68$

¿Cómo escoger lpha y l_0 ?

- Pueden escogerse de forma subjetiva (basados en experiencia previa).
 - α : Peso para la última observación.
 - l_0 : Nivel inicial de la serie.
- También pueden estimarse minimizando una "suma de cuadrados de los errores" :

$$e_t = y_t - \hat{y}_{t|t-1}$$
 $t = 1, ... T$

$$SSE = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 = \sum_{t=1}^{T} e_t$$

No existe una formula para obtener estos parámetros; por ello, se utilizan algoritmos de optimización para minimizar SSE. En R, se utiliza el comando **ses**

Suavizado exponenccial

• Idea:

Pronosticar nuevos valores usando un promedio ponderado de las observaciones previas.

- ¿Cuando usarlo?
 - En series sin tendencia, y sin estacionalidad.
- Ventaja:
 - Simple, rápido de clacular, versátil.
- Un parametro:
 - Valor de suavizado Alpha

- $\alpha = 0.8339$
- $l_0 = 446.59$

```
{\hat y}_{t+h|t} = \ell_t
```

$$\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$$

```
> fc <- ses(oildata, h = 5)
> fc$model
Simple exponential smoothing

Call:
    ses(y = oildata, h = 5)

    Smoothing parameters:
        alpha = 0.8339

    Initial states:
        l = 446.5868

    sigma: 29.8282

    AIC    AICc   BIC
178.1430 179.8573 180.8141
```

Suavizado Holt: Para serie con tendencia T

Esta vez existen dos parámetros de suavización:

- Para el nivel α
- Para la tendencia β^*

Según estos parámetros el nivel y la tendencia se irán actualizando.

Metodo Holt-Winters: Estacionalidad Aditiva

Parámetros de suavización:

- Para el nivel α
- Para la tendencia β^*
- Para la componente estacional: γ

m: frecuencia de la estacionalidad

Ej. Datos trimestrales en un año: m=4

Metodo Holt-Winters - Estacionalidad multiplicativa

Parámetros de suavización:

- Para el nivel α
- Para la tendencia β^*
- Para la componente estacional: γ
 Evelyn Gutierrez (egutierreza@pucp.edu.pe)

m: frecuencia de la estacionalidad

Ej. Datos trimestrales en un año: m=4