

ConQueR: Contextualized Query Reduction using Search Logs

Hye Young Kim^{1*}, Minjin Choi^{1*}, Sunkyung Lee¹, Eunseong Choi¹, Young-In Song², Jongwuk Lee¹

Sungkyunkwan University¹, Naver Corporation²

*equal contribution

Query Reduction

- Query reduction refers to removing extraneous query terms to obtain desired results.
- It is particularly beneficial for reducing long queries to reflect user intent better.

Proposed Method: ConQueR

- Contextualized Query Reduction (ConQueR) exploits the contextualized representations of queries using PLMs with two different views; core term extraction and sub-query selection.
- 1) The core term extraction method (ConQueR_{core}) determines the importance of each term in the query. It effectively predicts important terms and drops all nonessential terms.

Reduced query: How is the weather in Taipei Taiwan

Original query q: How is the weather in Taipei, Taiwan? Core term extraction

2) The sub-query selection method (ConQue R_{sub}) takes the original query and a candidate sub-query as input to the transformer encoder. It determines whether the given sub-query is suitably reducing the original query.

- Finally, we **aggregate the two methods**, i.e., ConQueR_{core} and ConQueR_{sub}, because they complement each other by tackling query reduction at different levels.

Dataset

- We collect the search logs from a commercial web search engine (https://www.naver.com), where two queries are successive in a session, and the latter is always a terminological subset of the former query.
- The **total number of query pairs is 239,976**, while the number of unique original queries is 104,002. We split them into three subsets, *i.e.*, a training set (80,202, 80%), a validation set (10,400, 10%), and a test set (10,400, 10%).

Effectiveness on Search Logs

- Our proposed methods consistently outperform the baselines. ConQueR $_{agg}$ surpasses the best competing model by an 8.45% gain in EM and a 5.54% gain in Acc.
- ConQue R_{agg} shows the best performance, indicating that the two methods are well aggregated.

	Models	EM	Acc	F1
Rule-based methods	LEFTMOST (LM)	0.170*	0.338*	0.403*
	RIGHTMOST (RM)	0.693*	0.794*	0.814*
	Deletion Frequency (DF); RM	0.596*	0.738*	0.775*
	Conditional DF; RM	0.697*	0.814*	0.836*
Neural	GRU	0.752*	0.882*	0.893*
methods	SEQUER	0.833*	0.884*	0.894*
Ours	ConQueR _{core}	0.892	0.928	0.932
	ConQueR _{sub}	0.905	0.929	0.935
	ConQueR _{agg}	0.911	0.934	0.940

Significant differences (p < 0.01) between baselines and ConQueR_{agg} are denoted with *.

User Study

- About 35% of the users think that ConQueR $_{agg}$ correctly reduces the original queries.
- ConQueR_{core} and ConQueR_{sub} perform better for each subset of Long and Short. This is because the longer the query, the more it needs to be reduced, and ConQueR_{core} is more suited for multi-term deletions.

Positive Response Ratio = $\frac{\sum_{u} select_{u}}{\#users}$ s.t. $select_{u} \in \{0,1\}$

