# **Data Mining**

# Chapter 5 Association Analysis: Basic Concepts

Introduction to Data Mining, 2<sup>nd</sup> Edition by Tan, Steinbach, Karpatne, Kumar

02/03/2018

Introduction to Data Mining

1

# **Association Rule Mining**

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

#### **Market-Basket transactions**

| TID | Items                     |  |
|-----|---------------------------|--|
| 1   | Bread, Milk               |  |
| 2   | Bread, Diaper, Beer, Eggs |  |
| 3   | Milk, Diaper, Beer, Coke  |  |
| 4   | Bread, Milk, Diaper, Beer |  |
| 5   | Bread, Milk, Diaper, Coke |  |

#### **Example of Association Rules**

 $\begin{aligned} & \{ \text{Diaper} \} \rightarrow \{ \text{Beer} \}, \\ & \{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs, Coke} \}, \\ & \{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \}, \end{aligned}$ 

Implication means co-occurrence, not causality!

02/03/2018

Introduction to Data Mining

# **Definition: Frequent Itemset**

#### Itemset

- A collection of one or more items
  - ◆ Example: {Milk, Bread, Diaper}
- k-itemset
  - An itemset that contains k items

#### Support count (σ)

- Frequency of occurrence of an itemset
- E.g.  $\sigma(\{Milk, Bread, Diaper\}) = 2$

#### Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

#### Frequent Itemset

 An itemset whose support is greater than or equal to a minsup threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

02/03/2018

Introduction to Data Mining

3

### **Definition: Association Rule**

#### Association Rule

- An implication expression of the form
   X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

#### Rule Evaluation Metrics

- Support (s)
  - Fraction of transactions that contain both X and Y
- Confidence (c)
  - Measures how often items in Y appear in transactions that contain X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example:

 $\{Milk, Diaper\} \Rightarrow \{Beer\}$ 

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

02/03/2018

Introduction to Data Mining

### **Association Rule Mining Task**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold
  - confidence ≥ minconf threshold
- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the minsup and minconf thresholds
  - ⇒ Computationally prohibitive!

02/03/2018

Introduction to Data Mining

5

# **Computational Complexity**

- Given d unique items:
  - Total number of itemsets = 2d
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[ \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

## **Mining Association Rules**

| TID | Items                     |  |
|-----|---------------------------|--|
| 1   | Bread, Milk               |  |
| 2   | Bread, Diaper, Beer, Eggs |  |
| 3   | Milk, Diaper, Beer, Coke  |  |
| 4   | Bread, Milk, Diaper, Beer |  |
| 5   | Bread, Milk, Diaper, Coke |  |

### **Example of Rules:**

 ${\text{Milk,Diaper}} \rightarrow {\text{Beer}} \ (\text{s=0.4, c=0.67}) \ {\text{Milk,Beer}} \rightarrow {\text{Diaper}} \ (\text{s=0.4, c=1.0}) \ {\text{Diaper,Beer}} \rightarrow {\text{Milk}} \ (\text{s=0.4, c=0.67}) \ {\text{Beer}} \rightarrow {\text{Milk,Diaper}} \ (\text{s=0.4, c=0.67}) \ {\text{Diaper}} \rightarrow {\text{Milk,Beer}} \ (\text{s=0.4, c=0.5}) \ {\text{Milk}} \rightarrow {\text{Diaper,Beer}} \ (\text{s=0.4, c=0.5})$ 

#### **Observations:**

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements
   02/03/2018
   Introduction to Data Mining

### **Mining Association Rules**

- Two-step approach:
  - 1. Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup
  - 2. Rule Generation
    - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

02/03/2018

Introduction to Data Mining

8



# **Frequent Itemset Generation**

- Brute-force approach:
  - Each itemset in the lattice is a candidate frequent itemset
  - Count the support of each candidate by scanning the database



- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2<sup>d</sup> !!!

02/03/2018

### **Frequent Itemset Generation Strategies**

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases
  - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction

02/03/2018

Introduction to Data Mining

11

### **Reducing Number of Candidates**

- Apriori principle:
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

02/03/2018

Introduction to Data Mining





# **Illustrating Apriori Principle**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |



| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

02/03/2018

Introduction to Data Mining

15

# **Illustrating Apriori Principle**



Items (1-itemsets)



{Bread,Milk} {Bread, Beer } {Bread,Diaper} {Beer, Milk} {Diaper, Milk} {Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3

If every subset is considered,  ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

02/03/2018

Introduction to Data Mining

# **Illustrating Apriori Principle**



Items (1-itemsets)

| 10 | Itemset        |
|----|----------------|
|    | {Bread,Milk}   |
|    | {Beer, Bread}  |
|    | {Bread,Diaper} |
|    | {Beer,Milk}    |
|    | {Diaper,Milk}  |
|    | {Beer,Diaper}  |

Pairs (2-itemsets)

Count

3

3

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3



02/03/2018

Introduction to Data Mining

17

# **Illustrating Apriori Principle**



Items (1-itemsets)

| Itemset        | Count |
|----------------|-------|
| {Bread, Milk}  | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3





Triplets (3-itemsets)



02/03/2018

Introduction to Data Mining



## **Apriori Algorithm**

- F<sub>k</sub>: frequent k-itemsets
- L<sub>k</sub>: candidate k-itemsets
- Algorithm
  - Let k=1
  - Generate F<sub>1</sub> = {frequent 1-itemsets}
  - Repeat until F<sub>k</sub> is empty
    - ◆ Candidate Generation: Generate L<sub>k+1</sub> from F<sub>k</sub>
    - Candidate Pruning: Prune candidate itemsets in L<sub>k+1</sub> containing subsets of length k that are infrequent
    - ◆ Support Counting: Count the support of each candidate in L<sub>k+1</sub> by scanning the DB
    - ◆ Candidate Elimination: Eliminate candidates in L<sub>k+1</sub> that are infrequent, leaving only those that are frequent => F<sub>k+1</sub>

02/03/2018

Introduction to Data Mining









Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

02/03/2018

Introduction to Data Mining

23

### Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
  - Merge(<u>AB</u>C, <u>AB</u>D) = <u>AB</u>CD
  - Merge(<u>AB</u>C, <u>AB</u>E) = <u>AB</u>CE
  - Merge(<u>AB</u>D, <u>AB</u>E) = <u>AB</u>DE
  - Do not merge(<u>ABD,ACD</u>) because they share only prefix of length 1 instead of length 2

02/03/2018

Introduction to Data Mining

### **Candidate Pruning**

- Let F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L<sub>4</sub> = {ABCD,ABCE,ABDE} is the set of candidate
   4-itemsets generated (from previous slide)
- Candidate pruning
  - Prune ABCE because ACE and BCE are infrequent
  - Prune ABDE because ADE is infrequent
- After candidate pruning: L<sub>4</sub> = {ABCD}

02/03/2018

Introduction to Data Mining

25

# Alternate $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
  - Merge(ABC, BCD) = ABCD
  - Merge(ABD, BDE) = ABDE
  - Merge(ACD, CDE) = ACDE
  - Merge(B $\underline{CD}$ ,  $\underline{CD}$ E) = B $\underline{CD}$ E

02/03/2018

Introduction to Data Mining

### Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L<sub>4</sub> = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
  - Prune ABDE because ADE is infrequent
  - Prune ACDE because ACE and ADE are infrequent
  - Prune BCDE because BCE
- After candidate pruning: L<sub>4</sub> = {ABCD}

02/03/2018 Introduction to Data Mining 27



# **Support Counting of Candidate Itemsets**

- Scan the database of transactions to determine the support of each candidate itemset
  - Must match every candidate itemset against every transaction, which is an expensive operation

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |



02/03/2018

Introduction to Data Mining

29

### **Support Counting of Candidate Itemsets**

- To reduce number of comparisons, store the candidate itemsets in a hash structure
  - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets



02/03/2018

Introduction to Data Mining

### **Support Counting: An Example**

Suppose you have 15 candidate itemsets of length 3:

 $\{145\}, \{124\}, \{457\}, \{125\}, \{458\}, \{159\}, \{136\}, \{234\}, \{567\}, \{345\},$ **{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}** 

How many of these itemsets are supported by transaction (1,2,3,5,6)?



02/03/2018

Introduction to Data Mining

# **Support Counting Using a Hash Tree**

Suppose you have 15 candidate itemsets of length 3:

 $\{145\}, \{124\}, \{457\}, \{125\}, \{458\}, \{159\}, \{136\}, \{234\}, \{567\}, \{345\},$ {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- · Hash function
- · Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)





02/03/2018

Introduction to Data Mining













### **Rule Generation**

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are  $2^k - 2$  candidate association rules (ignoring  $L \rightarrow \emptyset$  and  $\emptyset \rightarrow L$ )

02/03/2018

Introduction to Data Mining

39

### **Rule Generation**

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$  can be larger or smaller than  $c(AB \rightarrow D)$ 

- But confidence of rules generated from the same itemset has an anti-monotone property
  - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

02/03/2018

Introduction to Data Mining



# **Association Analysis: Basic Concepts and Algorithms**

Algorithms and Complexity

### **Factors Affecting Complexity of Apriori**

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - more space is needed to store support count of each item
  - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
  - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
  - transaction width increases with denser data sets
  - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

43

02/03/2018 Introduction to Data Mining



### **Compact Representation of Frequent Itemsets**

 Some itemsets are redundant because they have identical support as their supersets



- Number of frequent itemsets =  $3 \times \sum_{k=1}^{10} {10 \choose k}$
- Need a compact representation

02/03/2018 Introduction to Data Mining



























### **Closed Itemset**

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,B,C,D\}$ |
| 4   | {A,B,D}       |
| 5   | {A.B.C.D}     |

| Itemset | Support |
|---------|---------|
| {A}     | 4       |
| {B}     | 5       |
| {C}     | 3       |
| {D}     | 4       |
| {A,B}   | 4       |
| {A,C}   | 2       |
| {A,D}   | 3       |
| {B,C}   | 3       |
| {B,D}   | 4       |
| {C,D}   | 3       |

| Itemset       | Support |
|---------------|---------|
| $\{A,B,C\}$   | 2       |
| $\{A,B,D\}$   | 3       |
| $\{A,C,D\}$   | 2       |
| {B,C,D}       | 2       |
| $\{A,B,C,D\}$ | 2       |
|               |         |

02/03/2018

Introduction to Data Mining



















### **Maximal vs Closed Itemsets**



02/03/2018 Introduction to Data Mining

**Example question** 

 Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions



- a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?
- b. Which dataset will produce the longest frequent itemset?
- c. Which dataset will produce frequent itemsets with highest maximum support?
- d. Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., itemsets containing items with mixed support, ranging from 20% to more than 70%)?
- e. What is the number of maximal frequent itemsets for each dataset? Which dataset will produce the most number of maximal frequent itemsets?
- f. What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

02/03/2018

# **Pattern Evaluation**

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
  - In the original formulation, support & confidence are the only measures used

02/03/2018

Introduction to Data Mining

71

### **Computing Interestingness Measure**

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

#### Contingency table

|   | Y               | Y               |                 |
|---|-----------------|-----------------|-----------------|
| Х | f <sub>11</sub> | f <sub>10</sub> | f <sub>1+</sub> |
| X | f <sub>01</sub> | f <sub>00</sub> | f <sub>o+</sub> |
|   | f+1             | f+0             | N               |

 $f_{11}$ : support of X and Y  $f_{10}$ : support of X and Y  $f_{01}$ : support of  $\overline{X}$  and  $\overline{Y}$   $f_{01}$ : support of  $\overline{X}$  and  $\overline{Y}$ 

#### Used to define various measures

 support, confidence, Gini, entropy, etc.

02/03/2018

Introduction to Data Mining

## **Drawback of Confidence**

| Custo<br>mers | Tea | Coffee |  |
|---------------|-----|--------|--|
| C1            | 0   | 1      |  |
| C2            | 1   | 0      |  |
| C3            | 1   | 1      |  |
| C4            | 1   | 0      |  |
|               |     |        |  |

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | Tea 75 |        | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence  $\approx$  P(Coffee|Tea) = 15/20 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

02/03/2018

Introduction to Data Mining

73

### **Drawback of Confidence**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75

but P(Coffee) = 0.9, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 $\Rightarrow$  Note that P(Coffee|Tea) = 75/80 = 0.9375

02/03/2018

Introduction to Data Mining

#### **Measure for Association Rules**

- So, what kind of rules do we really want?
  - Confidence(X → Y) should be sufficiently high
    - ◆ To ensure that people who buy X will more likely buy Y than not buy Y
  - Confidence(X → Y) > support(Y)
    - ◆ Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
    - Is there any measure that capture this constraint?
      - Answer: Yes. There are many of them.

02/03/2018

Introduction to Data Mining

75

## **Statistical Independence**

The criterion confidence(X → Y) = support(Y)

is equivalent to:

- P(Y|X) = P(Y)
- $P(X,Y) = P(X) \times P(Y)$

If  $P(X,Y) > P(X) \times P(Y) : X \& Y$  are positively correlated

If  $P(X,Y) < P(X) \times P(Y) : X \& Y$  are negatively correlated

02/03/2018

Introduction to Data Mining

#### Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

02/03/2018

Introduction to Data Mining

77

# **Example: Lift/Interest**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 $\Rightarrow$  Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

So, is it enough to use confidence/lift for pruning?

02/03/2018

Introduction to Data Mining

# **Lift or Interest**

|   | Y  | Y  |     |
|---|----|----|-----|
| Х | 10 | 0  | 10  |
| X | 0  | 90 | 90  |
|   | 10 | 90 | 100 |

|   | Y  | Y  |     |
|---|----|----|-----|
| Х | 90 | 0  | 90  |
| X | 0  | 10 | 10  |
|   | 90 | 10 | 100 |

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10 \qquad \qquad Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If  $P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$ 

02/03/2018

Introduction to Data Mining

|                                     |    |                           | •                                                                                                                                                                                                                                                         |
|-------------------------------------|----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | #  | Measure                   | Formula                                                                                                                                                                                                                                                   |
|                                     | 1  | $\phi$ -coefficient       | $\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$                                                                                                                                                                                                 |
|                                     | 2  | Goodman-Kruskal's (λ)     | $\frac{\sum_{j=1}^{j} \max_{k} \hat{P}(A_{j}, B_{k}) + \sum_{k=1}^{j} \sum_{k=1}^{m} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$                                                        |
|                                     | 3  | Odds ratio (a)            | $\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,B)P(\overline{A},B)}$                                                                                                                                                                                      |
|                                     | 4  | Yule's $Q$                | $\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$                                                                                                 |
| There are lots of                   | 5  | Yule's Y                  | $\frac{P(A,B)P(AB)+P(A,B)P(A,B)}{\sqrt{P(A,B)P(AB)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$ $\frac{\sqrt{P(A,B)P(\overline{AB})}+\sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$ |
| measures proposed in the literature | 6  | Карра (к)                 | $\begin{array}{c} P(A,B)F(A,B) = P(A)P(B) = P(A)P(B) \\ 1 - P(A)P(B) = P(A)P(B) = P(A)P(B) \\ \sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i},P(B_{j}))} \end{array}$                                                                 |
| In the interactive                  | 7  | Mutual Information (M)    | $\frac{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}) P(B_{j})}{P(A_{i}) P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{i} P(B_{j}) \log P(B_{j}))}$                                                                                     |
|                                     | 8  | J-Measure $(J)$           | $\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$                                                                                                                                     |
|                                     |    |                           | $P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$                                                                                                                                                                  |
|                                     | 9  | Gini index (G)            | $ \frac{\max \left( P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right }{-P(B)^2 - P(\overline{B})^2}, $                                                                                 |
|                                     |    |                           | $P(B) = P(B)^{-},$ $P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$ $-P(A)^{2} - P(\overline{A})^{2}$                                                                               |
|                                     | 10 | Support (s)               | P(A,B)                                                                                                                                                                                                                                                    |
|                                     | 11 | Confidence (c)            | $\max(P(B A), P(A B))$                                                                                                                                                                                                                                    |
|                                     | 12 | Laplace $(L)$             | $\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$                                                                                                                                                                                    |
|                                     | 13 | Conviction (V)            | $\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$                                                                                                                                             |
|                                     | 14 | Interest (I)              | $\frac{P(A,B)}{P(A)P(B)}$                                                                                                                                                                                                                                 |
|                                     | 15 | cosine (IS)               | $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$                                                                                                                                                                                                                          |
|                                     | 16 | Piatetsky-Shapiro's (PS)  | P(A,B) - P(A)P(B)                                                                                                                                                                                                                                         |
|                                     | 17 | Certainty factor (F)      | $\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$                                                                                                                                                                                  |
|                                     | 18 | Added Value (AV)          | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                                                                                      |
|                                     | 19 | Collective strength $(S)$ | $\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$                                                                                              |
| 02/03/2018                          | 20 | Jaccard $(\zeta)$         | $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                                                                                         |
| 02/03/2010                          | 21 | Klosgen (K)               | $\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$                                                                                                                                                                                                              |

| Comparing Different Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |        |      |        |        |            |            |        |        |     |    |     |         |        |        |     |      |        |        |    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|------|--------|--------|------------|------------|--------|--------|-----|----|-----|---------|--------|--------|-----|------|--------|--------|----|-----|
| 10 examples of Example   f <sub>11</sub>   f <sub>10</sub>   f <sub>01</sub>   f <sub>00</sub>   f <sub>01</sub>   f <sub>01</sub>   f <sub>00</sub>   f <sub>01</sub>   f <sub>01</sub> |                                        |        |      |        |        |            |            |        |        |     |    | ,   |         |        |        |     |      |        |        |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      | 10     | ) e>   | <b>(an</b> | nplo       | es     | of     |     |    | E1  |         | 812    | 3 8    | 83  | 424  | 137    | 0      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      |        |        |            | •          |        |        | es: |    | E2  |         | 833    | 0      | 2   | 622  | 104    | 6      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      | CO     | 111111 | nge        | 5110       | y u    | aui    | Co. |    | E3  |         | 948    | 1 !    | 94  | 127  | 29     | В      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      |        |        |            |            |        |        |     |    | E4  |         | 395    | 4 3    | 080 | 5    | 296    | 1      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      |        |        |            |            |        |        |     |    | E5  |         | 288    | 6 1    | 363 | 1320 | 443    | 1      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      |        |        |            |            |        |        |     |    | E6  |         | 150    | 0 2    | 000 | 500  | 600    | 0      |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |        |      |        |        |            |            |        |        |     |    | E7  |         | 400    |        | 000 | 1000 | 300    | -      |    |     |
| Don                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lein                                   | ~~     | of o | ont    | ina    | <u> </u>   | w + + c    | hla    | _      |     |    | E8  |         | 400    |        | 000 | 2000 | 200    | -      |    |     |
| Rar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | _      |      |        | _      |            | -          | Die    | S      |     |    | E9  |         | 172    |        | 121 | 5    | 115    | -      |    |     |
| usir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıg v                                   | arı    | ous  | me     | ası    | ıres       | <b>;</b> : |        |        |     |    | E10 | )       | 61     | 2      | 483 | 4    | 745    | 2      |    |     |
| #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | φ                                      | λ      | α    | Q      | Y      | κ          | М          | J      | G      | s   | c  | L   | V       | I      | IS     | PS  | F    | AV     | S      | ζ  | K   |
| E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                      | 1      | 3    | 3      | 3      | 1          | 2          | 2      | 1      | 3   | 5  | 5   | 4       | 6      | 2      | 2   | 4    | 6      | 1      | 2  | 5   |
| E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                      | 2      | 1    | 1      | 1      | 2          | 1          | 3      | 2      | 2   | 1  | 1   | 1       | 8      | 3      | 5   | 1    | 8      | 2      | 3  | 6   |
| E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | 3      | 4    | 4      | 4      | 3          | 3          | 8      | 7      | 1   | 4  | 4   | 6       | 10     | 1      | 8   | 6    | 10     | 3      | 1  | 10  |
| E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                      | 7      | 2    | 2      | 2      | 5          | 4          | 1      | 3      | 6   | 2  | 2   | 2       | 4      | 4      | 1   | 2    | 3      | 4      | 5  | 1   |
| E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                      | 4      | 8    | 8      | 8      | 4          | 7          | 5      | 4      | 7   | 9  | 9   | 9       | 3      | 6      | 3   | 9    | 4      | 5      | 6  | 3   |
| E6<br>E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>7                                 | 6<br>5 | 7    | 7<br>9 | 7      | 7          | 6          | 4<br>6 | 6<br>5 | 9 4 | 8  | 8   | 7<br>8  | 2<br>5 | 8<br>5 | 6   | 7 8  | 2<br>5 | 7      | 8  | 2 4 |
| E8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                      | 9      | 10   | 10     | 10     | B<br>R     | 8<br>10    | 10     | 8      | 4   | 10 | 10  | 8<br>10 | 9      | 5<br>7 | 7   | 10   | 9      | 6<br>8 | 7  | 9   |
| E9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                      | 9      | 5    | 5      | 5      | 9          | 9          | 7      | 9      | 8   | 3  | 3   | 3       | 7      | 9      | 9   | 3    | 7      | 9      | 9  | 8   |
| E10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                     | 8      | 6    | 6      | 6      | 10         | 5          | 9      | 10     | 10  | 6  | 6   | 5       |        | 10     | 10  | 5    | 1      | 10     | 10 | 7   |
| 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2018 Introduction to Data Mining |        |      |        |        |            |            |        |        |     | 8′ | 1   |         |        |        |     |      |        |        |    |     |

# **Property under Variable Permutation**



Does M(A,B) = M(B,A)?

Symmetric measures:

• support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

• confidence, conviction, Laplace, J-measure, etc

02/03/2018

Introduction to Data Mining

# **Property under Row/Column Scaling**

Grade-Gender Example (Mosteller, 1968):

|      | Female | Male |    |
|------|--------|------|----|
| High | 2      | 3    | 5  |
| Low  | 1      | 4    | 5  |
|      | 3      | 7    | 10 |

|      | Female | Male |    |
|------|--------|------|----|
| High | 4      | 30   | 34 |
| Low  | 2      | 40   | 42 |
|      | 6      | 70   | 76 |
|      |        |      |    |

10x

2x

#### Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

02/03/2018

Introduction to Data Mining



## **Example:** $\phi$ -Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

|   | Υ  | Y  |     |
|---|----|----|-----|
| Х | 60 | 10 | 70  |
| X | 10 | 20 | 30  |
|   | 70 | 30 | 100 |

|   | Υ  | Y  |     |
|---|----|----|-----|
| Х | 20 | 10 | 30  |
| X | 10 | 60 | 70  |
|   | 30 | 70 | 100 |

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

$$\phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

 $\phi$  Coefficient is the same for both tables

02/03/2018

Introduction to Data Mining

85

## **Property under Null Addition**

|                                    | В | $\overline{\mathbf{B}}$ |                                       |                         | В | $\overline{\mathbf{B}}$ |
|------------------------------------|---|-------------------------|---------------------------------------|-------------------------|---|-------------------------|
| A                                  | p | q                       |                                       | A                       | р | q                       |
| $\overline{\overline{\mathbf{A}}}$ | r | S                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $\overline{\mathbf{A}}$ | r | s + k                   |

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

correlation, Gini, mutual information, odds ratio, etc

02/03/2018

Introduction to Data Mining

## **Different Measures have Different Properties**

| Symbol   | Measure             | Inversion | Null Addition | Scaling |
|----------|---------------------|-----------|---------------|---------|
| $\phi$   | $\phi$ -coefficient | Yes       | No            | No      |
| $\alpha$ | odds ratio          | Yes       | No            | Yes     |
| $\kappa$ | Cohen's             | Yes       | No            | No      |
| I        | Interest            | No        | No            | No      |
| IS       | Cosine              | No        | Yes           | No      |
| PS       | Piatetsky-Shapiro's | Yes       | No            | No      |
| S        | Collective strength | Yes       | No            | No      |
| ζ        | Jaccard             | No        | Yes           | No      |
| h        | All-confidence      | No        | No            | No      |
| s        | Support             | No        | No            | No      |

02/03/2018

Introduction to Data Mining

87

# Simpson's Paradox

| Buy  | Buy Ex |     |     |
|------|--------|-----|-----|
| HDTV | Yes    | No  |     |
| Yes  | 99     | 81  | 180 |
| No   | 54     | 66  | 120 |
|      | 153    | 147 | 300 |

$$c(\{\text{HDTV = Yes}\} \rightarrow \{\text{Exercise Machine = Yes}\}) = 99/180 = 55\%$$
  
 $c(\{\text{HDTV = No}\} \rightarrow \{\text{Exercise Machine = Yes}\}) = 54/120 = 45\%$ 

=> Customers who buy HDTV are more likely to buy exercise machines

02/03/2018

Introduction to Data Mining

## **Simpson's Paradox**

| Customer         | Buy  | Buy Exercise Machine |    | Total |
|------------------|------|----------------------|----|-------|
| Group            | HDTV | Yes                  | No |       |
| College Students | Yes  | 1                    | 9  | 10    |
|                  | No   | 4                    | 30 | 34    |
| Working Adult    | Yes  | 98                   | 72 | 170   |
|                  | No   | 50                   | 36 | 86    |

#### College students:

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 1/10 = 10\%$$
  
 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 4/34 = 11.8\%$ 

#### Working adults:

$$c(\{HDTV = Yes\} \rightarrow \{Exercise Machine = Yes\}) = 98/170 = 57.7\%$$
  
 $c(\{HDTV = No\} \rightarrow \{Exercise Machine = Yes\}) = 50/86 = 58.1\%$ 

02/03/2018

Introduction to Data Mining

89

## Simpson's Paradox

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
  - Hidden variables may cause the observed relationship to disappear or reverse its direction!
- Proper stratification is needed to avoid generating spurious patterns

02/03/2018

Introduction to Data Mining



## **Effect of Support Distribution**

- Difficult to set the appropriate minsup threshold
  - If minsup is too high, we could miss itemsets involving interesting rare items (e.g., {caviar, vodka})
  - If minsup is too low, it is computationally expensive and the number of itemsets is very large

#### **Cross-Support Patterns**



A cross-support pattern involves items with varying degree of support

• Example: {caviar,milk}

How to avoid such patterns?

02/03/2018 Introduction to Data Mining

93

## **A Measure of Cross Support**

• Given an itemset, $X = \{x_1, x_2, ..., x_d\}$ , with d items, we can define a measure of cross support,r, for the itemset

$$r(X) = \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

where  $s(x_i)$  is the support of item  $x_i$ 

- Can use r(X) to prune cross support patterns, but not to avoid them

02/03/2018

Introduction to Data Mining

### **Confidence and Cross-Support Patterns**



#### **Observation:**

conf(caviar→milk) is very high but conf(milk→caviar) is very low

#### Therefore,

min( conf(caviar→milk), conf(milk→caviar) ) is also very low

02/03/2018 Introduction to Data Mining

95

#### **H-Confidence**

- To avoid patterns whose items have very different support, define a new evaluation measure for itemsets
  - Known as h-confidence or all-confidence
- Specifically, given an itemset  $X = \{x_1, x_2, ..., x_d\}$ 
  - h-confidence is the minimum confidence of any association rule formed from itemset X
  - hconf( X ) = min( conf( $X_1 \rightarrow X_2$ ) ), where  $X_1, X_2 \subset X, X_1 \cap X_2 = \emptyset, X_1 \cup X_2 = X$ For example:  $X_1 = \{x_1, x_2\}, X_2 = \{x_3, ..., x_d\}$

02/03/2018

Introduction to Data Mining

#### H-Confidence ...

- But, given an itemset  $X = \{x_1, x_2, ..., x_d\}$ 
  - What is the lowest confidence rule you can obtain from X?
  - Recall conf( $X_1 \rightarrow X_2$ ) =  $s(X_1 \cup X_2)$  / support( $X_1$ )
    - The numerator is fixed:  $s(X_1 \cup X_2) = s(X)$
    - Thus, to find the lowest confidence rule, we need to find the X<sub>1</sub> with highest support
    - Consider only rules where X<sub>1</sub> is a single item, i.e.,

$$\{x_1\} \to X - \{x_1\}, \{x_2\} \to X - \{x_2\}, \dots, \text{ or } \{x_d\} \to X - \{x_d\}$$

$$hconf(X) = min\left\{\frac{s(X)}{s(x_1)}, \frac{s(X)}{s(x_2)}, \dots, \frac{s(X)}{s(x_d)}\right\}$$

$$= \frac{s(X)}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$

02/03/2018

Introduction to Data Mining

97

## **Cross Support and H-confidence**

By the anti-montone property of support

$$s(X) \le \min\{s(x_1), s(x_2), \dots, s(x_d)\}\$$

• Therefore, we can derive a relationship between the h-confidence and cross support of an itemset

hconf(X) = 
$$\frac{s(X)}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$
$$\leq \frac{\min\{s(x_1), s(x_2), \dots, s(x_d)\}}{\max\{s(x_1), s(x_2), \dots, s(x_d)\}}$$
$$= r(X)$$

Thus,  $hconf(X) \le r(X)$ 

02/03/2018

Introduction to Data Mining

### **Cross Support and H-confidence ...**

- Since,  $hconf(X) \le r(X)$ , we can eliminate cross support patterns by finding patterns with h-confidence <  $h_c$ , a user set threshold
- Notice that

$$0 \le \operatorname{hconf}(X) \le r(X) \le 1$$

- Any itemset satisfying a given h-confidence threshold, h<sub>c</sub>, is called a hyperclique
- H-confidence can be used instead of or in conjunction with support

02/03/2018

Introduction to Data Mining

99

## **Properties of Hypercliques**

- Hypercliques are itemsets, but not necessarily frequent itemsets
  - Good for finding low support patterns
- H-confidence is anti-monotone
- Can define closed and maximal hypercliques in terms of h-confidence
  - A hyperclique X is closed if none of its immediate supersets has the same h-confidence as X
  - A hyperclique X is maximal if  $hconf(X) \le h_c$  and none of its immediate supersets, Y, have  $hconf(Y) \le h_c$

02/03/2018

Introduction to Data Mining

### Properties of Hypercliques ...

- Hypercliques have the high-affinity property
  - Think of the individual items as sparse binary vectors
  - h-confidence gives us information about their pairwise Jaccard and cosine similarity
    - Assume x<sub>1</sub> and x<sub>2</sub> are any two items in an itemset X
    - Jaccard $(x_1, x_2) \ge h \operatorname{conf}(X)/2$
    - $\cos(x_1, x_2) \ge \text{hconf}(X)$
  - Hypercliques that have a high h-confidence consist of very similar items as measured by Jaccard and cosine
- The items in a hyperclique cannot have widely different support
  - Allows for more efficient pruning

02/03/2018 Introduction to Data Mining

101

## **Example Applications of Hypercliques**

- Hypercliques are used to find strongly coherent groups of items
  - Words that occur together in documents
  - Proteins in a protein interaction network

In the figure at the right, a gene ontology hierarchy for biological process shows that the identified proteins in the hyperclique (PRE2, ..., SCL1) perform the same function and are involved in the same biological process



02/03/2018

Introduction to Data Mining