Proof 8

nibir@nibirsan.org

Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends too limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof

Let ϵ be arbitrary.

if the sequence $\{a_n\}_{n=1}^{\infty}$ tends too limit L as $n \to \infty$, then:

$$|a_m - L| < \epsilon$$
 (i)

(by the definition of a limit).

For the sequence $\{Ma_n\}_{n=1}^{\infty}$,

Let $\epsilon' \geq M\epsilon$.

We want to deduce:

$$|Ma_m - ML| < \epsilon'$$

Multiply the expression (i) by M.

$$\begin{aligned} M|a_m - L| &< M\epsilon \\ \Longrightarrow &- M\epsilon &< Ma_m - ML &< M\epsilon \\ \Longrightarrow &- \epsilon' &\leq Ma_m - ML &\leq \epsilon' \end{aligned}$$

Which, by the definition of the limit, means $Ma_m \to ML$ as $n \to \infty$,