

Algebriac Topology III (MAT484)

Lecture Notes

Contents

1 Singular Homology Groups

3

1 Singular Homology Groups

Let \mathbb{R}^{∞} denote the generalized Euclidean space \mathbb{E}^{J} , with J being the set of positive integers. An element of the vector space \mathbb{R}^{∞} is an infinite sequence of real numbers (functions from \mathbb{N} to \mathbb{R}) with finitely many nonzero entries. Let Δ_{p} denote the p-simplex in \mathbb{R}^{∞} having vertices

$$\begin{split} \varepsilon_0 &= (1,0,0,\ldots,0,\ldots) \ , \\ \varepsilon_1 &= (0,1,0,\ldots,0,\ldots) \ , \\ & \ldots \\ \varepsilon_p &= (0,0,0,\ldots,\underbrace{1}_{(p+1)\text{-th entry}},\ldots) \ . \end{split}$$

We call Δ_p the **standard p-simplex**. In this notation, Δ_{p-1} is a face of Δ_p .

Definition 1.1 (Singular p-simplex). Let X be a topological space.