Sara Dadizadeh CS521 Fall 2009

Sparse Matrix-Vector Multiplication

Motivation

- Sparse matrix multiplication used heavily in scientific computing to solve numerical PDE's
- Goal: product of the form Ax = y
- Possible algorithms
 - Cholesky decomposition (direct)
 - Conjugate gradient method (iterative)
 - Graph/hypergraph decomposition

Hypergraph Representation

- Typical solutions represent matrix as a graph
- We represent matrix as a hypergraph, in column-net model
 - Rows represent vertices
 - Columns represent hyperedges
- Representing matrix as a hypergraph has several advantages
 - Can represent unsymmetric matrices as well as symmetric
 - Hypergraphs describe communication better than graphs (helps partitioning algorithms make better partitions)

An Example

- Each processor is assigned a subset of the rows of the matrix
- Partition vertices of graph as to minimize the number of edges that are cut
 - Cut edges represent communication

Implementation Details

Build hypergraph from matrix

 Call a hypergraph partitioning package called hMetis which returns a partitioning

HMETIS_PartRecursive (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts, int ubfactor, int *options, int *part, int *edgecut)

Implementation Details (2)

- Assign row i , y_i and x_i to a processor P according to the generated partition
- Create a communication group for each cut net n_i
 - The processor that contains v_j broadcasts its local x_j to all the processors in the connectivity set of n_j (i.e. the group)
 - Each net n_j incurs the computation $y_i = y_i + a_{ij}x_j$ for each vertex v_i in n_j
- In parallel, each processor computes
 y_i for the vertices it has been assigned
- Finally, combine results to form the result vector y

Expected Speedup

- Sparse matrix multiplication does not typically scale well
- As we throw more processors at the problem, the number of cut nets increases, and communication increases faster than computation
- Require certain conditions to be met for speedup
 - Matrix must have the right sparsity index
 - Number of processors must not be too large

Progress

- Currently working on communication groups
- Still to do
 - Gather results into result vector
 - Write a program to perform sequential sparse matrix multiplication
 - Take benchmarks

References

- Figures on slide 5 taken from hMetis reference manual
 - http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
- Figure on slide 4 taken from
 - Hypergraph-Partitioning Based Decomposition for Parallel Sparse-Matrix Vector Multiplication, Umit V. Catalyurek, Cevdet Aykanat, IEEE Trans. on Parallel and Distributed Computing
 - http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.9288