INTERPLAY BETWEEN GUT MICROBIOME AND IMMUNE SYSTEM

M. Knigge

Asst. Prof. Dr. S. Sanna

Asst. Prof. Dr. Y. Li

OVERVIEW

- PROJECT GOAL
- BACKGROUND
- WORKFLOW

PROJECT GOAL

The aim is to find causality links between microbiome composition / function and immune system with a statistical machine learning approach.

BACKGROUND

- LINEAR REGRESSION
- MULTIPLE LINEAR REGRESSION
- ORDINARY LEAST SQUARES
- GAUSS MARKOV THEOROM
- SHRINKAGE ESTIMATORS
- RIDGE REGRESSION
- LASSO
- ELASTIC NET REGULARIZATION
- K-FOLD CROSS-VALIDATION
- ONE-SAMPLE MENDELIAN RANDOMIZATION

LINEAR REGRESSION

- Science of fitting lines to patterns of data
- Used for predicting and forcasting
- Simpel regression model

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

Dependent variable Y

Intercept eta_0 Coefficient eta_1 Independent variable X_1 Error term ϵ

MULTIPLE LINEAR REGRESSION

- Essentially the same as simple linear regression
- Multiple coefficients and independent variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \epsilon$$

ORDINARY LEAST SQUARES

- Method for estimating uknown parameters in linear model
- Goal is to minimize difference in observed and predicted
- Sum of vertical distance between observation and prediction
- Smaller difference, better model

ORDINARY LEAST SQUARES

- Sum of Squares representation of error in model
- Prediction error two components:
 - * Error due to Bias
 - * Error due to Variance
- Bias and Variance Tradeoff
 - * Model complexity
 - * Gauss Markov Theorem

GAUSS MARKOV THEOREM

- OLS has the smallest variance
- Unbiased OLS has the smallest Mean Squared Error
- Can there be a biased estimator with a smaller mean squared error?

SHRINKAGE ESTIMATORS

- Replace OLS estimates $\, eta_k \,$

$$\beta_k' = \frac{1}{1+\lambda} \beta_k$$

- $-\lambda == 0 = \beta_k$
- if λ gets large, estimate approaches minimal value
- Shrinkage estimator λ

SHRINKAGE ESTIMATORS

- Right choice of λ , better MSE
- Estimate not unbiased, but better variance * unbiased OLS has smallest variance
- What is lost, is made up for with variance

RIDGE REGRESSION

- Modeling technique to solve collinearity in OLS with λ
- OLS unbiased, but high variance, far from true value
- Adding a degree of bias to regression, Ridge reduces variance.
- Shrinking by penalty function on OLS
- ℓ_2 shrinks coefficients of correlated values toward each other
- Drawback
 - * *k* identical predictors
 - * ideal with many independent variables
 - * depends on allele frequence and sample size
 - * can not perform variable selection

LASSO

- ℓ_1 equivalent to minimizing RSS plus penalty on coefficients
- Can perform variable selection
- Drawback
 - * *k* identical variables
 - * among clusters, selects one predictor and ignores the rest
 - * Can not select more predictor variables than sample size
- ℓ_2 pushes coefficients towards zero with proportional effect to coefficients
- ℓ_1 exerts the same force on all non-zero coefficients

ELASTIC NET REGULARIATION

- Elastic net forms a hybrid of the ℓ_1 , ℓ_2 penalties
- Elastic net penalty parameter $\, \alpha \,$ determines the weight that should be given to LASSO or Ridge
- close to 0 is Ridge
- close to 1 is LASSO

K-FOLD CROSS-VALIDATION

- A K-fold partition of the sample space is created
- The original sample is randomly partitioned into K equal sized
- Of the K subsamples
 - * a single subsample is retained as the test set
 - * and the remaining as training data set
- The cross-validation process is then repeated K times
- This procedures takes place for different lpha levels with Elastic Net

K-FOLD CROSS-VALIDATION

ONE-SAMPLE MENDELIAN RANDOMIZATION

- Basic implementation of MR
- Two-Stage Least Squares regression

ONE-SAMPLE MENDELIAN RANDOMIZATION

WORKFLOW

