CONTENTS

The Reciprocal Effects of Nitrogen, Phosphorus, and Potassium as Related to the Absorption of these Elements by Plants. WALTER THOMAS	1
Mechanical Analysis of Soils. George John Bouyoucos	21
Further Studies on the Relationships Between the Fine Material of Soils and Their Physical Characteristics. George John Bouyoucos	27
The Laws of Soil Colloidal Behavior: VII. Proteins and Proteinated Complexes.	
SANTE MATTSON	41
PARBERY AND SANTE MATTSON Equilibria of the Base-Exchange Reactions of Bentonites, Permutites, Soil Colloids,	75
and Zeolites. Albert P. Vanselow	95
Dehydration, Soil Acidity, and Exchangeable Bases. H. G. COLES AND C. G. T. MORISON.	115
Studies on the Blue Colorimetric Method for the Determination of Phosphorus. H. D.	
CHAPMAN On the Origin of the Uronic Acids in the Humus of Soil, Peat, and Composts. Selman	125
A. Waksman and H. W. Reuszer The Effect of Temperature upon Nitrogen Fixation by Azotobacter. Robert A.	
Greene	
Sorption Phenomena in Soils and in Silica Gels. ELIZABETH D. DE PARAVICINI	
An Improved Method of Measuring Soil Color. CHARLES F. SHAW	183
Factors Affecting the Amount of Electrodialyzable Ions Liberated from Some Soils. AASULV LÖDDESÖL	187
The Determination of Nitrates in Soils Containing Soluble Organic Matter. M. J. PLICE.	212
Soil Profile Studies: IV Morphological and Chemical Evidence of Podzolization. J. S.	210
JOFFE	217
Book Reviews	
A New Type of Hydrometer for the Mechanical Analysis of Soils. AMAR NATH PURI	
Replaceable Bases in the Soils of Southeastern Minnesota and the Effect of Lime upon	
Them, C.O. Rost and Jean M. Zetterberg	240
Effects of Stable Manure and Certain Fertilizers on the Microbiological Activities in	41)
Virgin Peat. S. C. VANDECAVEYE.	270
The Laws of Soil Colloidal Behavior: VIII: Forms and Functions of Water. SANTE	217
MATTSON	201
A Quantitative Study of the Microörganic Population of a Hemlock and a Deciduous	301
	225
Forest Soil. Mary Jo Cobb.	323
The Diurnal and Seasonal Changes in the Sugar Content of the Sap and Tissue of Potato	247
Plants as Affected by Soil Fertilization. RALPH C. COLE	347
The Use of the Moisture Equivalent in the Textural Classification of Soils. G. B.	262
BODMAN AND A. J. MAHMUD.	303
Investigations Concerning Separation of Similarly Charged Ions from Soils by Electro-	
dialysis. Aasulv Löddesöl	3/5

CONTENTS

Interaction Between Ammonia and Soils as a New Method of Determining the State of	
Saturation and pH Values of Soils. AMAR NATH PURI	397
A New Method of Determining Clay Content of Soils by Moisture Absorption at 70	
Per Cent Humidity. Amar Nath Puri	405
Iron in Relation to the Stimulation of Growth by Humic Acid. Dean Burk, Hans	
LINEWEAVER, AND C. KENNETH HORNER	413
The Physiological Nature of Humic Acid Stimulation of Azotobacter Growth. DEAN	
BURK, HANS LINEWEAVER, AND C. KENNETH HORNER	455
Book Reviews	489

ILLUSTRATIONS

PLATES

Further Studies on the Relationships Between the Fine Material of Soils an Their Physical Characteristics	D
Plate 1. Machine Used to Disperse Soils in Determining the Flowing Point of Soils 3	39
AN IMPROVED METHOD OF MEASURING SOIL COLOR	
Plate 1. The Soil Colorimeter	35
FACTORS AFFECTING THE AMOUNT OF ELECTRODIALYZABLE IONS LIBERATED FROM SOME SOIL	S
Plate 1. Apparatus Used in Experiments	1
SOIL PROFILE STUDIES: IV. MORPHOLOGICAL AND CHEMICAL EVIDENCE OF PODZOLIZATION	N
Plate 1. A Typical Loam Podzol Profile	7
THE LAWS OF SOIL COLLOIDAL BEHAVIOR: VIII. FORMS AND FUNCTIONS OF WATER	
Plate 1. Influence of Na and Ca upon the Swelling of the Sharkey Soil Colloid 32.	3
Investigations Concerning Separation of Similarly Charged Ions from Soils by Electrodialysis	Y
Plate 1. Five-compartment Electrodialysis Apparatus	5
Iron in Relation to the Stimulation of Growth by Humic Acid	
Plate 1. Warburg Micro-respiration Apparatus for Measuring Oxygen Consumption and Growth	3
TEXT-FIGURES	
THE RECIPROCAL EFFECTS OF NITROGEN, PHOSPHORUS, AND POTASSIUM AS RELATED TO THE ABSORPTION OF THESE ELEMENTS BY PLANTS	2
Fig. 1. Relation of Yield to Water Content of Soil	-
Branch Growth	j
3. The Course of the Absorption of Nitrogen, Phosphorus, and Potassium by Vinis vitifera as Determined by the Periodic Analysis of the Leaves	7
4. The Course of the Absorption of Nitrogen, Phosphorus, and Potassium by	
 Hordeum sativum as Determined by the Periodic Analysis of Whole Plants 5. Relation of the Length of the Roots of Wheat Seedlings Growing in Solutions of 0.12 Mol. NaCl (Solution S) and of 0.164 Mol. CaCl₂ (Solution S₁) in the Proportions Indicated to the Dissociation Curves of the Separate Salts Determined at Dilutions Corresponding to the Proportions at Which Each Salt Is 	1
Present in the Mixture	1

THE LAWS OF SOIL COLLOIDAL BEHAVIOR: VII. PROTEINS AND PROTEINATED COMPLEXE	S
Fig. 11A. Cataphoresis of Albumin, Casein, Edestin, and Gelatin at Different pH Values, Adjusted by NaOH and HCl	4
11B. The Buffer Capacity of Edestin, Albumin, Casein, and Gelatin in HCl Solution	4
12. Cataphoresis and Isoelectric Points of a Series of Al-"Caseinates" and of Casein-"Humates"	
13. The Isoelectric Points of Casein and Edestin and Some of Their Compounds, Compared	
14. Relation Between Composition and Isoelectric pH of Al-"Caseinate" and Casein-"Humate"	0
15. Aluminum "Hydroxide" Combines with (Adsorbs) More SO4 than Al-albumin-	2
Equilibria of the Base-Exchange Reactions of Bentonites, Permutites, Soil Colloid and Zeolites	S
Fig. 1. Equilibria in the Sodium-Potassium Exchange Reaction of the Various Alumino-	
silicates	
Soil Colloid 431	8
STUDIES ON THE BLUE COLORIMETRIC METHOD FOR THE DETERMINATION OF PHOSPHORU	S
Fig. 1. Effect of Varying Amounts of SnCl ₂ ·2H ₂ O on Total Color Produced	7
THE EFFECT OF TEMPERATURE UPON NITROGEN FIXATION BY AZOTOBACTER	
Fig. 1. The Effect of Temperature upon Nitrogen Fixation by Azotobacter	6
SORPTION PHENOMENA IN SOILS AND IN SILICA GELS	
Fig. 1. Rods of Borosilicate Fastened Across the Corners of the Electrodes	
2. Arrangement of Conductivity Cells	
3. (B-A)* Concentration Curves for Salts Added to Soil II	
5. Conductivity Results Obtained with Leached Soils	
6. Increases in Conductivity Due to Hydrion Exchange	
7. Sorption Values for the "Hydrogen" Soil	
8. (B-A) and C Curves for Gels	
9. Sorption for Gels I and II Plotted Against Initial Concentration of Added Salt 17	9
FACTORS AFFECTING THE AMOUNT OF ELECTRODIALYZABLE IONS LIBERATED FROM SOME SOIL	s
Fig. 1. Relation Between Cation Liberation and Amperage	6
SOIL PROFILE STUDIES: IV. MORPHOLOGICAL AND CHEMICAL EVIDENCE OF PODZOLIZATION	N
Fig. 1. Base Exchange Capacity of Sassafras, Penn, Chester, and Washington Soils, and of a Loam Podzol	8
2. Sesquioxides of Sassafras, Penn, Chester, and Washington Soils	
3. SiO ₂ of Sassafras, Penn, Chester, and Washington Soils	3
A New Type of Hydrometer for the Mechanical Analysis of Soils	
Fig. 1. Curves Showing Density Gradient in a Sedimenting Column at Different Intervals of Time	2
2. Diagram of the New Type of Hydrometer and Reading Device	

ILLUSTRATIONS

Replaceable Bases in the Soils of Southeastern Minnesota and the Effect of Limburgon Them
Fig. 1. Map of Southeastern Minnesota Showing the Location of the 28 Fields from Which Soil Samples were Studied
Effects of Stable Manure and Certain Fertilizers on the Microbiological Activities in Virgin Peat
Fig. 1. Bacteria, Fungi, and Actinomyces in Peat Treated with Unsterilized Manure, Sterilized Manure, and Wheat Straw in Addition to Superphosphate
THE LAWS OF SOIL COLLOIDAL BEHAVIOR: VIII. FORMS AND FUNCTIONS OF WATER
Fig. 16. The Donnan Distribution of Ions Between the Micellar and the Outside Solutions
POTATO PLANTS AS AFFECTED BY SOIL FERTILIZATION
Fig. 1. A Comparison of the Munson and Walker and the Quisumbing and Thomas Tables for Calculating the Quantity of Sugar from the Amount of Copper Reduced
THE USE OF THE MOISTURE EQUIVALENT IN THE TEXTURAL CLASSIFICATION OF SOILS
Fig. 1. Calculated and Observed Moisture Equivalents for Four Soil Combinations
A New Method of Determining Clay Content of Soils by Moisture Absorption at Per Cent Humidity
Fig. 1. Typical Vapor Pressure Curves of Two Normal Soils (P. C. 8 and 11), a Highly Acid Soil (P. C. 6), and a Highly Alkaline Soil (P. C. 60)

ILLUSTRATIONS

Iron in Relation to the Stimulation of Growth by Humic Acid	
Fig. 1. Diagram of Manometer and Vessels Employed in Measuring Oxygen Consumption and Growth	417
2. The Humic Acid Ratio as a Function of Concentration of Iron Supplied by	420
Natural Humic Acids	138
Synthetic Humic Acids	439
THE PHYSIOLOGICAL NATURE OF HUMIC ACID STIMULATION OF AZOTOBACTER GROWTE	1
Fig. 1. The Differential Influence of Concentration of Natural Humic Acid upon the Humic Acid Velocity Constant Ratio (Warburg Technique)	457
2. The Integral Influence of Concentration of Natural Humic Acid upon the Humic	
Acid Ratio in Experiments of Very Long Duration (Erlenmeyer Technique)	
3. Parts Per Million of Humic Acid	
3A. Parts Per Million of Humic Acid	460
3B. Parts Per Million of Iron.	
4. Stimulation as a Function of Growth Velocity	463
5. The Influence of Temperature upon the Humic Acid-Velocity Constant Ratio	
(Warburg Technique)	167
6. The Sharply Defined Onset of Humic Acid Stimulation with Different Lengths	
of Induction Period, Humic Acids, Temperatures, and Nitrogen Sources	
(Warburg Technique)	172
7. Humic Acid Stimulation as a Function of Time and Concentration of Humic	
Acid (Warburg Technique)	174
8. The Induction Period as a Function of Moment of Addition (Warburg	
Technique)	175

