3.2 Lógica Combinacional Electrónica Digital y Microcontroladores

Josué Meneses Díaz

<u>josue.meneses@usach.cl</u>

Universidad de Santiago de Chile

08-05-2025

Objetivos

- Introducir el concepto de descripción Estructural.
- Conocer los principios de los fundamentos del algebra booleana
 - Teoremas Booleanos
 - Teoremas De Morgan

- Métodos de Diseño para Circuitos combinacionales
 - Método 1. Mintérminos/Maxtérminos
 - Método 2. Mapas de Karnaugh
- Ejemplos

Lógica Combinatoria

- Es aquel circuito que implementa una o varias funciones lógicas.
 - Entradas Salidas -> 0, 1 lógicos.
- Las salidas <u>solo dependen</u> de las entradas del sistema.

No tiene memoria

Lógica Combinatoria - Descripción Estructural

Ejemplo 1. Encontrar la expresión de salida del esquema inferior

- Describe como se encuentra internamente definido un circuito lógico combinacional por medio de puertas lógicas
- Nos permite encontrar una las funciones booleanas del sistema de forma simple.

$$Y(B, CP C) = B \cdot CP \cdot \bar{C} + \bar{B} \cdot CP \cdot C$$

Lógica Combinatoria - Descripción Estructural

$Y(B, CP, C) = B \cdot CP \cdot \bar{C} + \bar{B} \cdot CP \cdot \bar{C}$	Y(B,CP,C):	$= B \cdot CP$	$\cdot \bar{C} + \bar{B}$	$\cdot CP \cdot$	C
---	------------	----------------	---------------------------	------------------	---

	Entrada				Salida
В	С	CP	\bar{B}	Ī	F(B,C,CP) = Y

Lógica Combinatoria

- ¿Cómo podemos pasar de una descripción funcional a una estructural?
- ¿Cómo deducimos una función booleana desde una tabla de verdad?
 - Algebra booleana
 - Mini/Maxitérminos
 - Tablas de Karnaugh

			trac	Salida		
В	С	CP	\bar{B}	Ē	СP	F(B,C,CP) = Y

$$f = f(a, b, c, d)$$

ÁLGEBRA BOOLEANA

Algebra Booleana - Teoremas Booleanos

• Los teoremas básicos del algebra booleana son

T1	Doble negación. Involución	$\bar{\bar{A}} = A$
T2	Elemento neutro multi.	$A \cdot 0 = 0$
Т3	Identidad suma	A + 0 = A
T4	Identidad multi.	$A \cdot 1 = A$
T5	Elemento neutro +	A + 1 = 1
Т6	<u>Idempotencia</u> de la suma	A + A = A
T7	Idempotencia de la suma	$A \cdot A = A$
T8	Existencia del comple. +	$A + \bar{A} = 1$
Т9	Existencia del comple. ·	$A \cdot \bar{A} = 0$
T10	Asociativa	$A \cdot B + A \cdot C = A \cdot (B + C)$
T11	Identidad	$A + \bar{A} \cdot B = A + B$

Algebra Booleana - Teoremas de De Morgan

• T1
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	$A \cdot B$	$\overline{A \cdot B}$	$ar{A}$	\bar{B}	$\bar{A} + \bar{B}$
0	0					
0	1					
1	0					
1	1					

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \overline{A \cdot B} \equiv \begin{array}{c} A \\ B \end{array} \longrightarrow \overline{A} + \overline{B} \end{array}$$

Algebra Booleana - Teoremas de De Morgan

• T2
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

A	В	A + B	$\overline{A+B}$	$ar{A}$	\bar{B}	$ar{A}\cdotar{B}$
0	0					
0	1					
1	0					
1	1					

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\overline{A} \cdot \overline{B}$$

- 1. Complementar toda la expresión
- 2. Cambiar la función entre cada termino
- 3. Complementar cada término

Ejemplo 2. Aplicar los teoremas de De Morgan a la expresión A+B. Dibuje ambos esquemas equivalentes.

- 1. Complementar toda la expresión
- 2. Cambiar la función entre cada termino
- 3. Complementar cada término

Ejemplo 3. Aplicar los teoremas de De Morgan a la expresión $A \cdot B$. Dibuje ambos esquemas equivalentes.

- 1. Complementar toda la expresión
- 2. Cambiar la función entre cada termino
- 3. Complementar cada término

Ejemplo 4. Aplicar los teoremas de De Morgan (algoritmo anterior) a la expresión $\overline{A \cdot B}$. Dibuje ambos esquemas equivalentes.

- 1. Complementar toda la expresión
- 2. Cambiar la función entre cada termino
- 3. Complementar cada término

Ejemplo 4. Reducir el circuito utilizando los teoremas de De Morgan

MINITÉRMINOS Y MAXITÉRMINOS

1. Método Min/Max términos - Minitérminos

- <u>Literal:</u> Se define como cualquier variable que es utilizada en la tabla de verdad, pueden ser tanto las variables de entradas como sus conjugadas.
- Minterm: Es el producto de N literales, donde no pueden ser repetidos dentro de un minterm.
 - Los minterm son únicos.
 - Se simbolizan con m_n donde n es su posición y equivale a su configuración binaria.

Ejemplo 5. ¿Cuál es el 11-minterm (m_{11}) ?

1. Método Min/Max términos - Minitérminos

 Todas las funciones provenientes de una tabla de verdad pueden representarse de forma única por medio de minterm o SOP.

Ejemplo 6. Encontrar la función lógica y el circuito equivalente para la tabla de verdad

$$f(a,b,c,...) = \sum_{n} m(1,2,3,...,n) \ \forall Y = 1$$

- Donde Y_n es salida del sistema.
- Se utilizan las salidas con 1.

Ventajas:

- Diseño directo
- Descripción funcional -> Descripción estructural.

Desventaja:

- El resultado no está optimizado

Entr	adas	Salidas
А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

1. Método Min/Max términos - Maxitérmino

- Maxtérmino: Es el complemento de los minitérminos. Son una equivalencia pero utilizando puertas OR.
- Se simbolizan con M_n donde n es su posición y equivale a su configuración binaria.

$$m_i = \overline{M_i}$$

Ejemplo 7. Comparar $m_j(A, B) = M_j(A, B)$

Entradas			
А	В	$m_j(A,B)$	$M_j(A,B)$
0	0		
0	1		
1	0		
1	1		

1. Método Min/Max términos - Maxitérmino

El procedimiento para obtener el producto de maxitérminos:

• Se forma un maxitérmino para cada combinación de las variables que produce un 0 en la función y luego se hace el AND de todos esos maxitérminos.

$$\forall Y = 0 \; ; f(a, b, c, ...) = \prod_{n} M(1, 2, ..., n)$$

- Utilizamos las salidas 0.
- los maxitérminos es negar los ceros de salidas al utilizar minitérminos!!!

$$m_j = \overline{M_j}$$

1. Método Min/Max términos - Maxitérmino

Ejemplo 8.

- 1. Encontrar los minitérminos y maxitérminos de la tabla de verdad.
- 2. Crear una función alternativa usando los ceros de salida.
- 3. Aplicar De Morgan a la función encontrada en (2) y comparar con maxitérminos

En	tradas	Salida		
А	В	Υ	$m_j(A,B)$	$M_j(A,B)$
0	0	1		
0	1	0		
1	0	0		
1	1	0		

1. Método Min/Max Términos – XOR y XNOR

Entr	adas	Salidas
А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

$$Y(A,B) = \bar{A}B + A\bar{B}$$

Entr	adas	Salidas
А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

$$Y(A,B) = \bar{A}\bar{B} + AB$$

1. Método Min/Max Términos – Medio Sumador

Ejemplo 9.

- 1. Construir la tabla de verdad de un sumador binario de dos números enteros binarios de 1 bit cada uno.
- 2. Utilizar minitérminos encontrar su función booleana y circuito combinacional.

Entradas		Sali	das
А	В	Ac	S
0	0		
0	1		
1	0		
1	1		

Falta considerar un acarreo de entrada

2. Método Min/Max Términos – Sumador 3-in bits (Sumador Completo)

Ejemplo 10.

- 1. Construir la tabla de verdad de un sumador binario de dos números enteros binarios con acarreo de entrada de 1 bit cada uno.
- 2. Utilizar mini-términos encontrar su función booleana y circuito combinacional.

Е	ntrad	as	Salic	las
А	В	Cin	Cout	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Conexión es cascada

• En algunos diseños digitales es conveniente pensar las operaciones de *forma modular*. Por ejemplo, el sumador completo puede ser empaquetado como:

Conexión en cascada sumadores completo. Diseño digital - Morris Mano

MAPAS DE KARNAUGH

Mapa de Karnaugh (k-maps)

- Es un a representación gráfica de los mini/maxi términos.
 - Obtenemos gráficamente todas las posibles formas de representar una función lógica.
- Permite inspeccionar y seleccionar la configuración idónea para nuestros circuitos combinacionales. encontrar la función booleana desde una tabla de verdad.
- La función encontrada la función ya minimizada!!!.
- Desventaja: problemas cuando son muchas entradas en el circuito.

K-maps - Consideraciones

- Cada Minitérmino del mapa-K difiere de su vecino en un literal.
- Cuando agrupemos minitérminos en los mapas-K, estos grupos tienen que estar constituidos por potencias de 2.
- Cada grupo debe posee la <u>mayor cantidad</u> <u>de minitérminos</u> para reducir la cantidad de literales utilizados en el circuito.
- Se tiene que buscar/utilizar la menor cantidad de grupos en los mapas. Los minitérminos pueden ser utilizadas en más de un grupo.

K-maps - Reglas generales

Pasos para construir un k-map

- 1. Reconocer cuantas entradas y salidas tiene el circuito combinacional.
- 2.Construirlos los k-mapas considerando las entradas y que los literales vecinos no difieran en más de un literal.
- 3. Agregar los unos lógicos al mapa de acuerdo a la tabla de verdad.
- 4.Agrupar los unos lógicos en globos potencias de dos.

K-maps – 2 Variables

 Recordemos la tabla de verdad de la puerta OR

x	y	f	Minitérmino
0	0	0	m_0
0	1	1	m_1
1	0	1	m_2
1	1	1	m_3

$$f(x,y) = \sum m(1,2,3)$$

Para 2 variables (x, y) ordenamos los minitérminos

m_0	m_1
m_2	m_3

K-maps – 2 Variables

 Recordemos la tabla de verdad de la puerta OR

x	у	f	Minitérmino
0	0	0	m_0
0	1	1	m_1
1	0	1	m_2
1	1	1	m_3

$$f(x,y) = \sum m(1,2,3) = y + x$$

1) Para 2 variables (x, y) ordenamos los minitérminos

m_0	m_1
m_2	m_3

2) Filas para x y columnas para y. Reemplamos Los valores de f en el mapa-K

K-maps – 2 Variables

x	у	f	Minitérmino
0	0	0	m_0
0	1	1	m_1
1	0	1	m_2
1	1	1	m_3

$$f(x,y) = \sum m(1,2,3) = y + x$$

3) Agrupamos minitérminos 1 en grupos de 1 o potencias de 2

$$f(x,y) = x\bar{y} + \bar{x}y + xy \qquad f(x,y) = x + \bar{x}y$$

$$f(x,y) = x + \bar{x}y$$

$$f(x,y) = x + y$$

K-maps – 3 Variables

χ	у	Z	f	Minitérmino
0	0	0	1	m_0
0	0	1	1	m_1
0	1	0	0	m_2
0	1	1	0	m_3
1	0	0	0	m_4
1	0	1	0	m_5
1	1	0	0	m_6
1	1	1	0	m_7

$$f(x,y,z) = \sum m(0,1)$$

- 1.Tenemos 3 entradas y 1 salida
- 2.Construimos el k-map para 3 variables.

$$f(x,y,z) = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$$

K-maps – 3 Variables

χ	у	Z	f	Minitérmino
0	0	0	0	m_0
0	0	1	1	m_1
0	1	0	0	m_2
0	1	1	1	m_3
1	0	0	0	m_4
1	0	1	1	m_5
1	1	0	0	m_6
1	1	1	1	m_7

• Caso de tres Variables. Ej. 2

$$f(x, y, z) = z$$

$$f(x,y,z) = \sum m(1,3,5,7) = \bar{x}\bar{y}z + \bar{x}yz + x\bar{y}z + xyz$$

K-maps – 3 Variables

A	В	С	f	Minitérmino
0	0	0	1	m_0
0	0	1		m_1
0	1	0	1	m_2
0	1	1		m_3
1	0	0	1	m_4
1	0	1		m_5
1	1	0	1	m_6
1	1	1		m_7

• Caso de tres Variables. Ej. 3

$$f(A, B, C) = \overline{C}$$

$$f(x, y, z) = \sum m(0,2,4,6)$$

K-maps – Sumador Completo

Caso de tres Variables. Ej. 4

x	y	Z	S	0	Minitérmino
0	0	0			m_0
0	0	1	1		m_1
0	1	0	1		m_2
0	1	1		1	m_3
1	0	0	1		m_4
1	0	1		1	m_5
1	1	0		1	m_6
1	1	1	1	1	m_7

$$S(x, y, z) = \sum m(1,2,4,7)$$
YZ
X 00 01 11 10
0 1 1 1
1 1

$$O(x, y, z) = \sum m(3,5,6,7)$$

$$S(x, y, z) = x\bar{y}\bar{z} + \bar{x}\bar{y}z + xyz + \bar{x}y\bar{z}$$
$$= \bar{x}(\bar{y}z + y\bar{z}) + x(yz + \bar{y}\bar{z})$$
$$x \oplus y \oplus z$$

$$O(x, y, z) = yz + xz + xy$$

K-maps – 4 variables

	v	x	у	Z	S
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	1
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	1
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

$$S(x,y,z) = \sum m(3,7,11,12,13,14,15)$$
$$= \bar{v}\bar{x}yz + \bar{v}xyz + vxyz + v\bar{x}yz$$
$$+vx\bar{y}\bar{z} + vx\bar{y}z + vxy\bar{z}$$

$$S(x, y, z) = vx + yz$$

Revisar ref. mapa-K de 5 y 6

Dont care

- Existen casos en los cuales algunas de las combinaciones de la entrada de nuestro circuito no estarán permitidas.
 - Estos casos son llamadas condiciones de indiferencia o don't care.
- Son utilizados para "agrandar" los globos lógicos o simplemente no utilizarlos.
- Se anotan colocando una X en su respectiva salida.

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$f = \bar{A}BC + AB\bar{C}$$

$$f = BC + AB$$

Resumen

Algebra Booleana

- Descripción Estructural
 - Desc. Estructural -> Desc. Funcional
- Teoremas Booleanos
- Teoremas De Morgan
- Diseño de Circuitos combinacionales
 - Desc. Funcional -> Desc. Estructural
 - Mini/Maxitérminos
- XOR y NXOR
- Medio Sumador/sumador completo

- Mapas de Karnaugh (Mapas-K)
 - 2 Variables
 - 3 Variables
 - 4 variables
 - Investigar 5 y 6 (ver bibliografía)

Referencias y Material Complementario

- Capítulo 3 Formas de Onda y Lógica Booleana. Sección 3.1-3.7. Bignell, James W., et al. Electrónica digital.
- Capítulo 2 Álgebra booleana y compuertas lógicas. Sección 2.1-2.7. M. Morris Mano, Diseño Digital.
 Pearson Education.
- Capítulo 2 Álgebra booleana y compuertas lógicas. Sección 2.1-2.2, 2.4. Victor P. Nelson, Análisis y Diseño de Circuitos Lógicos Digitales. Pearson.

Profundizar

Cap. 4 Álgebra de boole y Simplificación lógica. Floyd, Thomas L. Fundamentos de sistemas digitales.
 Prentice Hall, 2006