

## Folha 2 - Sucessões de números reais

Encontre uma expressão para o termo geral  $u_n$  da sucessão apresentada, assumindo que o padrão dos primeiros termos continua.

a) 
$$-\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, \dots$$

$$\mathrm{d})\ -\frac{1}{4},\frac{2}{9},-\frac{3}{16},\frac{4}{25},\dots$$

e) 
$$2, 10, 50, 250, \dots$$

c) 
$$0, 2, 0, 2, 0, 2, \dots$$

f) 
$$-\frac{1}{2}$$
,  $-1$ ,  $-2$ ,  $-4$ ,  $-8$ , ...

Diga quais das seguintes sucessões são constantes, alternadas, minoradas, majoradas, limitadas ou monótonas:

a) 
$$u_n = 1$$
;

g) 
$$u_n = \frac{n+1}{n}$$
;

b) 
$$v_n = (-1)^n$$
;

h) 
$$v_n = (-1)^{n+1}n;$$

c) 
$$w_n = \operatorname{sen}\left(\frac{n\pi}{2}\right)$$
;

i) 
$$w_n = \frac{n^2 - 1}{n^2}$$
;

$$d) \quad x_n = \frac{n}{n+2};$$

j) 
$$x_n = \left(-\frac{1}{3}\right)^n$$
;

e) 
$$y_n = \frac{3}{n+5}$$
;

k) 
$$y_n = n^2 + 2$$
;

f) 
$$z_n = \begin{cases} n^4 & \text{se } n \le 10, \\ 2 & \text{se } n > 10; \end{cases}$$

$$1) \quad z_n = (-1)^n \cos(n\pi).$$

Exercício 3 Diga se é limitada a sucessão  $(u_n)_n$  definida a seguir pelo seu termo geral:

a) 
$$u_n = \frac{(-1)^n}{n}$$
;

f) 
$$u_n = 1 - \frac{1}{3^n}$$
;

b) 
$$u_n = (-1)^n n^4$$
;

$$\mathbf{g}) \quad u_n = \left\{ \begin{array}{ll} n & \text{se } n \ \mathrm{\acute{e}} \ \mathrm{par} \ , \\ 2 & \text{se } n \ \mathrm{\acute{e}} \ \mathrm{\acute{impar}} \ ; \end{array} \right.$$

c) 
$$u_n = 2n + 1;$$

h) 
$$u_n = \frac{(-1)^n + 7n}{5n}$$
;

d) 
$$u_n = \begin{cases} n & \text{se } n \text{ \'e par }, \\ 1 - \frac{1}{n} & \text{se } n \text{ \'e \'impar }; \end{cases}$$
 h)  $u_n = \frac{(-1)^n + 7n}{5n}$ ;

i) 
$$u_n = 5^n$$

e) 
$$u_n = (-1)^n \cos(2n^3 + 1)$$
;

Mostre que a sucessão  $(b_n)_n$  de termo geral  $b_n = \frac{n}{n^2+1}, \ \forall n \in \mathbb{N},$  é uma sucessão decrescente.

Exercício 5 Mostre que

$$\lim_{n} \frac{1}{n} = 0,$$

usando a definição.

Exercício 6 Das seguintes sucessões, diga quais as que têm limite:

a) 
$$y_n = \begin{cases} 1 & \text{se } n \text{ \'e par }, \\ \frac{1}{n} & \text{se } n \text{ \'e impar }; \end{cases}$$

c) 
$$v_n = \frac{1}{n}$$
;

$$d) \quad w_n = n.$$

b) 
$$u_n = \frac{1}{2}$$
;

Exercício 7 Admitindo que a sucessão  $(a_n)_n$  definida por

$$a_1 = 1$$
,  $a_{n+1} = \frac{1}{1 + a_n}$ ,  $n \ge 1$ ,

é convergente, encontre o seu limite.

Exercício 8 Considere a sucessão  $(u_n)_n$  definida por

$$u_1 = 0, \quad u_{n+1} = \frac{2 + u_n}{3}, \ \forall n \in \mathbb{N}.$$

- a) Calcule os primeiros 4 termos da sucessão.
- b) Admitindo que a sucessão é convergente, determine o seu limite.

Exercício 9 Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:

- a) se  $(u_n)_n$  é limitada então  $(u_n)_n$  é convergente;
- b) se  $(u_n)_n$  não é limitada então  $(u_n)_n$  é divergente;
- c) se  $(u_n)_n$  não é limitada então toda a sua subsucessão é divergente;
- d) se  $(u_n)_n$  e  $(v_n)_n$  são divergentes então  $(u_n + v_n)_n$  é divergente;
- e) se  $(u_n)_n$  e  $(v_n)_n$  são divergentes, e  $v_n \neq 0, \forall n \in \mathbb{N}$ , então  $\left(\frac{u_n}{v_n}\right)_n$  é divergente.

Exercício 10 Que pode dizer de  $\lim_{n} u_n$  em cada um dos seguintes casos:

a)  $(u_n)_n$  possui uma subsucessão convergente para a e outra convergente para b, com  $b \neq a$ :

2

- b)  $(u_n)_n$  é tal que  $(u_{2n})_n$  e  $(u_{2n-1})_n$  convergem para a;
- c)  $(u_n)_n$  é decrescente e  $u_n \geq 2$  ,  $\forall n \in \mathbb{N}$  ;
- d)  $(u_n)_n$  é uma sucessão crescente em ]2,5[;
- e)  $(u_n)_n$  é crescente e de termos negativos;
- f)  $(u_n)_n$  é decrescente e de termos positivos.

Exercício 11 Calcule, se existir:

a) 
$$\lim_{n} \frac{n^2}{n^3 + 1}$$
;

b) 
$$\lim_{n} \frac{n^2 - 4}{n + 5}$$
;

c) 
$$\lim_{n} (-1)^n \frac{n}{n^4 + 3}$$

d) 
$$\lim_{n} \frac{n^3 + 2}{2n^2 + n + 1}$$
;

e) 
$$\lim_{n} \frac{7 - n^5}{3n^5 + n^3 + 2n^2}$$

f) 
$$\lim_{n} \frac{n^3 + 2n}{5 - 3n^2}$$
;

g) 
$$\lim_{n} \left(\frac{n-1}{n}\right)^n$$
;

h) 
$$\lim_{n} \left(\frac{n+1}{n}\right)^{2n}$$
;

i) 
$$\lim_{n} \left( \frac{n-1}{n+1} \right)^{n+1}$$
;

$$\mathrm{j)}\quad \lim_n\left(\frac{n+2}{n+1}\right)^n;$$

$$\mathrm{k})\quad \lim_n \left(1 - \frac{2}{n+1}\right)^{n-1};$$

1) 
$$\lim_{n} \left( \frac{n-3}{n+5} \right)^{2n+1};$$

$$\mathrm{m})\quad \lim_n\ \frac{\mathrm{sen}\ n}{n};$$

n) 
$$\lim_{n} \frac{n^2 \operatorname{sen}(1+n^3)}{1+n^3}$$
;

$$o) \quad \lim_{n} \frac{\cos n}{n^2 + 1}$$

p) 
$$\lim_{n} \frac{3^{n} + 4^{n} + 5^{n}}{5^{n}};$$

$$\mathbf{q})\quad \lim_n \ \frac{5^n+2}{4^n};$$

$$\mathrm{r})\quad \lim_n\ \frac{e^n-1}{5^n};$$

s) 
$$\lim_{n} \frac{3^{n-1}}{7^n}$$
;

t) 
$$\lim_{n} \frac{\cos(n\pi) + \cos(2n\pi)}{n\pi}$$
;

u) 
$$\lim_{n} \left(-\frac{2}{3}\right)^{n}$$
;

v) 
$$\lim_{n} \frac{2^{n} + 3^{n}}{3^{n+1} + 4}$$
;

w) 
$$\lim_{n} \left( \sqrt{n+1} - \sqrt{n} \right)$$
;

x) 
$$\lim_{n} \left( n - \sqrt{n^2 - 4n} \right)$$

Exercício 12 Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa.

- a) Se  $(a_n)_n$  é tal que  $\{a_n:n\in\mathbb{N}\}=\{-1,1\}$  então  $(a_n)_n$  não é convergente.
- $\mathrm{b}) \quad \mathsf{A} \,\, \mathsf{sucess\~{a}o} \,\, \left(1+(-1)^n\,\right)_n \,\, \mathsf{\acute{e}} \,\, \mathsf{convergente}.$
- c) Se  $\{u_n: n \in \mathbb{N}\} = \{0,1\}$  então  $(u_n)_n$  é divergente.
- d) A sucessão  $\left((-1)^n + \frac{1}{n}\right)_n$  é convergente.
- e) Se  $\{u_n: n \in \mathbb{N}\}$  é finito então  $(u_n)_n$  é convergente.
- f) Se  $(u_n)_n$  e  $(w_n)_n$  são tais que  $\lim_n (u_n w_n) = 0$  então  $\lim_n u_n = 0$  ou  $\lim_n w_n = 0$ .

Exercício 13 Mostre que se  $(u_n)_n$  e  $(v_n)_n$  são sucessões convergentes e tais que  $|u_n-v_n|<\frac{1}{n}\,,\; \forall n\in\mathbb{N}\,,\; \mathrm{então}\lim_n\frac{u_n}{v_n}=1\,.$ 

Exercício 14 Apresente um exemplo de, ou justifique porque não existe:

- a) uma sucessão convergente e não monótona;
- b) uma sucessão crescente e convergente para zero;
- c) uma sucessão  $(u_n)_n$  tal que  $\lim_n |u_n| = 2$  mas  $(u_n)_n$  não converge para 2;
- d) uma sucessão  $(u_n)_n$  tal que  $\lim_n |u_n| = 0$  mas  $(u_n)_n$  não converge para 0.

Exercício 15 Mostre que a soma das primeiras dez potências de base  $\frac{1}{2}$  e expoente natural é  $\frac{1023}{1024}$ .

Exercício 16 A soma dos dois primeiros termos de uma progressão geométrica decrescente é 8 e a sua diferença é 4.

- a) Calcule o primeiro termo e a razão.
- b) Determine a soma dos seis primeiros termos.

Exercício 17 A soma dos sete primeiros termos de uma progressão geométrica de razão  $\frac{1}{2}$  é 254. Calcule o primeiro termo.

Exercício 18 O primeiro e o sexto termos de uma progressão geométrica são, respetivamente, 4 e  $\frac{1}{8}$ . Calcule a soma dos dez termos consecutivos a partir do sétimo inclusivé.

Exercício 19 Numa progressão geométrica de razão 2, o primeiro termo é  $\frac{1}{512}$ . Calcule a soma dos cinco termos consecutivos a partir do décimo (inclusivé).

Exercício 20 Considere a sucessão definida por

$$u_n = 3 \times 2^{n-1}, \quad \forall n \in \mathbb{N}.$$

- a) Prove que  $(u_n)_n$  é uma progressão geométrica.
- b) Calcule a soma  $S_n$  dos n primeiros termos da sucessão.
- c) Calcule  $\lim_{n} S_n$ .

Exercício 21 Considere a progressão geométrica cujos primeiros termos são 27, 9, 3, . . . .

- a) Escreva uma expressão que lhe permita calcular a soma  $S_n$  dos n primeiros termos da progressão.
- b) Calcule  $\lim_{n} S_n$ .

Exercício 22 Determine a soma de todos os termos da progressão geométrica de que se conhece:

4

a) 
$$r = \frac{1}{3}$$
 e  $u_1 = -9$ ;

b) 
$$u_4 = \frac{1}{2}$$
 e  $u_5 = -\frac{1}{4}$ ;

c) 
$$u_2 = -30$$
 e  $u_3 = -90$ .