Lecture Summary: Multivariable Functions and Visualization

Source: Multivariable Functions - Visualization.pdf

Key Points

• Single-Variable Functions Recap:

- Functions of the form f(x) map a domain $D \subset \mathbb{R}$ to \mathbb{R} .
- Examples include:
 - * Linear: f(x) = ax + b.
 - * Polynomial: $f(x) = x^2 + x + 1$.
 - * Rational: $f(x) = \frac{x}{x^2+1}$.
 - * Trigonometric: $\sin(x), \cos(x)$, etc.
 - * Exponential: e^x .
 - * Logarithmic: $\log(x)$ (domain restricted to x > 0).
 - * Compositions: $\log(x^2 + 1)$, $e^{\sin(x)}$.
- Key operations include addition, multiplication, and composition of functions.

• Scalar-Valued Multivariable Functions:

- A scalar-valued multivariable function maps $f: D \subset \mathbb{R}^n \to \mathbb{R}$.
- Examples:
 - * Linear: $f(x_1, x_2, \dots, x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$.
 - * Polynomial: $f(x_1, x_2, x_3) = x_1^2 + x_2^3 x_3 x_3^6$.
 - * Rational: $f(x,y) = \frac{x}{x^2+y^2}$ (domain excludes x = y = 0).
 - * Combinations: $f(x,y) = \sin(x^2 + y^2)$.

• Vector-Valued Multivariable Functions:

- A vector-valued multivariable function maps $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Examples:
 - * $f(x, y, z) = (x^2 + y^2, y^2 + z^2, z^2 + x^2).$
 - * $f(x, y, z) = (\sin(x), \cos(y), e^z).$
- Such functions represent vectors whose components are scalar-valued multivariable functions.

• Operations on Multivariable Functions:

- Arithmetic: Addition, subtraction, and scalar multiplication extend naturally.
- Products: $f \cdot g$ is defined for scalar-valued functions.
- Division: f/g is defined where $g \neq 0$.
- Composition: If $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ and $g: E \subset \mathbb{R}^m \to \mathbb{R}^p$ such that range $(f) \subseteq E$, then $g \circ f$ is well-defined.

• Visualization of Multivariable Functions:

- Graphs of $f: \mathbb{R}^2 \to \mathbb{R}$ are surfaces in \mathbb{R}^3 .
- Examples:
 - * Linear: f(x,y) = ax + by forms a plane.
 - * Rational: $f(x,y) = \frac{xy}{x^2+y^2}$ forms a surface with undefined behavior at (0,0).
 - * Trigonometric: $f(x,y) = \sin(x^2 + y^2)$ oscillates in concentric circles.

• Curves in Multivariable Functions:

- Curves are special cases of multivariable functions: $f: \mathbb{R} \to \mathbb{R}^m$.
- Examples:
 - * Helix: $\gamma(t) = (\cos(t), \sin(t), t)$ in \mathbb{R}^3 .
 - * Circle: $\gamma(t) = (a\cos(t), b\sin(t))$ in \mathbb{R}^2 .
- Curves can be described parametrically or as sets of equations.

Simplified Explanation

Scalar-Valued Functions: Map from \mathbb{R}^n to \mathbb{R} , such as $f(x,y) = x^2 + y^2$.

Vector-Valued Functions: Map from \mathbb{R}^n to \mathbb{R}^m , such as $f(x,y,z) = (\sin(x),\cos(y),z^2)$.

Visualization: Graphs of scalar-valued functions in $\mathbb{R}^2 \to \mathbb{R}$ form surfaces, while higher dimensions are harder to visualize.

Curves: Special functions where n = 1, such as the helix $\gamma(t) = (\cos(t), \sin(t), t)$.

Conclusion

In this lecture, we:

- Introduced scalar- and vector-valued multivariable functions.
- Explored operations, including addition, multiplication, and composition.
- Visualized multivariable functions and curves with examples.

Multivariable functions generalize single-variable functions, forming the basis for multivariable calculus and its applications in geometry and data science.