Introduction to machine learning and scikit-learn

Part I: Supervised learning

QLSC 612 | 29 May 2025

By

Michelle Wang & Mohammad Torabi (reusing some of Nikhil Bhagwat's slides)

Outline

- Machine learning overview
- Supervised learning
 - Goal
 - Example models
 - Supervised learning with scikit-learn interface
 - Model evaluation
- Deep learning (brief)

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through "experience" and by the use of data.

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through "experience" and by the use of data.
- Why is it useful especially in life sciences?
 - Biology, medicine, environmental sciences comprise phenomenons (e.g. a disease) with large number of variables.
 - We want to model complex relationships within these variables and make accurate predictions.

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through "experience" and by the use of data.
- Why is it useful especially in life sciences?
 - Biology, medicine, environmental sciences comprise phenomenons (e.g. a disease) with large number of variables.
 - We want to model complex relationships within these variables and make accurate predictions.
- When do I use it?
 - You are interested in 1) prediction tasks or 2) low-dimensional representation.
 - You have sufficient data.

Types of ML Algorithms

- Supervised → labels are known
 - Regression → labels are continuous

○ Classification → labels are discrete

- Unsupervised → labels are unknown
 - Associations, dimensionality reduction, clustering
 - Covered in Part 2

Machine learning terminology

Input (features, etc.)

Output (labels, targets, etc.)

A typical supervised learning workflow

Decision points when developing a model

Goal: Learn parameters (or weights) of a model that maps X to y

- Goal: Learn parameters (or weights) of a model that maps X to y
- Example models (see also <u>scikit-learn documentation</u>):
 - Linear / Logistic regression

Linear Regression

- Goal: Learn parameters (or weights) of a model that maps X to y
- Example models (see also <u>scikit-learn documentation</u>):
 - Linear / Logistic regression
 - Support vector machines

- Goal: Learn parameters (or weights) of a model that maps X to y
- Example models (see also <u>scikit-learn documentation</u>):
 - Linear / Logistic regression
 - Support vector machines
 - Tree-ensembles: random forests, gradient boosting

Tree-ensembles

- Goal: Learn parameters (or weights) of a model that maps X to y
- Example models (see also <u>scikit-learn documentation</u>):
 - Linear / Logistic regression
 - Support vector machines
 - o Tree-ensembles: random forests, gradient boosting
 - Artificial Neural networks

 X_2

Tree-ensembles

Linear Regression

- Goal: Learn parameters (or weights) of a model that maps X to y
- Example models (see also <u>scikit-learn documentation</u>):
 - Linear / Logistic regression
 - Support vector machines
 - Tree-ensembles: random forests, gradient boosting
 - Artificial Neural networks
- How are these models different from one another?

Linear Regression

Tree-ensembles

Some models make more sense in some situations

https://scikit-learn.org/stable/machine_learning_map.html learn scikit-learn algorithm cheat sheet START classification Kernel Approximation more data SVC SGD KNeighbors Classifier regression Ensemble >50 Classifier Classifiers Lasso samples SVR(kernel="rbf") SGD ElasticNet Ensemble Regressor Naive Regressors text <100K Bayes data samples predicting a Linear <100K category few features SVC samples should be important RidgeRegression do vou have labeled SVR(kernel="linear") predicting a data quantity **KMeans** number of Spectral categories known Clustering Ramdomized <10K **GMM** looking IsoMap PCA samples Spectral TRY <10K Embedding clustering NEXT NEXT LLE samples tough MiniBatch predicting MeanShift luck <10K **KMeans** structure dimensionality Kernel VBGMM samples Approximation reduction

Questions?

Model fitting is easy with scikit-learn

Example with linear regression

```
# import
from sklearn.linear model import Lasso
# data
\mathbf{X} = [[0, 0], [1, 1]]
y = [0, 1]
# instantiate the model
                             Change this to use different
model = Lasso()
# fit the model with data
model.fit(X, y)
# predict on new data
y pred = model.predict([[1, 0]])
```

I fitted my model, now what?

- Model evaluation metrics
 - **Regression**: R², mean squared error, mean absolute error, etc.
 - Classification: balanced accuracy, <u>AUROC</u>, confusion matrix, etc.
 - See https://scikit-learn.org/stable/modules/model evaluation.html for more

- How does the model perform
 - On the data it was trained on?
 - On previously unseen data?

We want good generalizability on new data

Models can overfit (or underfit)

Example: regression

Models can overfit (or underfit)

Example: regression

Split data into train and test sets

Split data into train and test sets

Exercise 1

Split data into train and test sets

How to sample the train and test sets?

K-fold cross-validation

- How do we sample train and test sets?
 - Train set: learn model parameters
 - Test set (a.k.a held-out sample): Evaluate model performance
 - Repeat for different Train-Test splits
 - Report performance statistics over all test folds

Alternative method: shuffle-split (https://scikit-learn.org/stable/modules/cross_validation.html#shufflesplit)

Split data into train and test sets

Be careful about data leakage/double-dipping!

A typical supervised learning workflow

Decision points when developing a model

Do not use test data to make these decisions! (z-score mean/std., hyperparameter tuning, etc.)

Exercise 2

Deep-learning

- o Why the buzz?
 - Works amazing on spatio-temporal input
 - Highly flexible → universal function approximator

ANN for handwritten-digit images (gif source: 3b1b)

Deep-learning

- o Why the buzz?
 - Works amazing on spatio-temporal input
 - Highly flexible → universal function approximator
- What are the challenges?
 - Large number of parameters (175B!) \rightarrow data hungry
 - Large number of hyper-parameters \rightarrow difficult to train

LLM Transformers (gif source: 3b1b)

Deep-learning

- o Why the buzz?
 - Works amazing on spatio-temporal input
 - Highly flexible → universal function approximator
- What are the challenges?
 - Large number of parameters (175B!) → data hungry
 - Large number of hyper-parameters → difficult to train
- o When do I use it?
 - If you have highly-structured input, eg. medical images.
 - You have a lot of data and computational resources.

Source: https://github.com/fepegar/torchio

Pitfalls and Challenges

- Models do not generalize even after good CV performance
 - Implicit double-dipping
 - Dataset biases (eg. North-American demographics)
 - Noisy labels (eg. diagnosis definitions)
 - Data distribution shifts (eg. assay, scanner upgrades)

Pitfalls and Challenges

- Models do not generalize even after good CV performance
 - Implicit double-dipping
 - Dataset biases (eg. North-American demographics)
 - Noisy labels (eg. diagnosis definitions)
 - Data distribution shifts (eg. assay, scanner upgrades)

- Unnecessary complexity
 - Do I really need a giant deep-net or a simple linear model would do?

ML Novice Checklist

Data

- What is my n_features and n_samples?
- Am I <u>encoding</u> categorical data correctly?
- Am I using information (e.g. mean) from test set to preprocess (eg. z-score) the data?

ML Novice Checklist

Data

- What is my n_features and n_samples?
- Am I <u>encoding</u> categorical data correctly?
- Am I using information (e.g. mean) from test set to preprocess (eg. z-score) the data?

Model

- Do my performance metrics capture the practical use-case of interest?
- What is the null / dummy model performance?
 - Classification: Predict majority class all the time
 - Regression: Predict the median value all the time
- Am I interpreting model parameters (i.e. weights) correctly?

Takeaways

- Supervised ML is useful for predictions but not really for explanations
 - eg. image segmentation, prognosis, drug development
- Our job is to ensure generalizability of these models
 - Multitude of validations
 - Understanding model biases and limitations

- Engineering tools vs Scientific discovery
 - Interpretability and explainability

Explainable AI

Useful resources

- https://scikit-learn.org/stable/user_quide.html
- nilearn, Python package for machine learning for brain images: https://nilearn.github.io/stable/index.html
- skrub, Python package machine learning for tabular data: https://skrub-data.org/stable/
- https://inria.github.io/scikit-learn-mooc/ml_concepts/slides.html
- https://www.3blue1brown.com/topics/linear-algebra
- 3Blue1Brown Gradient Descent: https://www.youtube.com/watch?v=IHZwWFHWa-w

If time permits...

- How do we learn the model weights?
 - o Example: Linear regression

• Model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Loss function: $MSE = -\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- o Optimization: Gradient descent

- Gradient descent with a **single** input variable and **n** samples
 - Start with random weights (β_0 and β_1)
 - Compute loss (i.e. MSE)
 - Update weights based on the gradient

$$\hat{\mathbf{y}}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i}$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- o Gradient descent for complex models with non-convex loss functions
 - Start with random weights (β_0 and β_1)
 - Compute loss
 - Update weights based on the gradient

 Can we control this fitting process to get a model with specific characteristics?

- Can we control this fitting process to get a model with specific characteristics?
 - We have strong prior beliefs about what is a plausible model
 - e.g. I believe a disease symptom can be predicted with few genes.
 - Practical reasons
 - Prevent overfitting (n_features >> n_samples)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_{\rho-1} x_{\rho-1} + \beta_\rho x_\rho$$

- Can we control this fitting process to get a model with specific characteristics?
 - We have strong prior beliefs about what is a plausible model
 - e.g. I believe a disease symptom can be predicted with few genes.
 - Practical reasons
 - Prevent overfitting (n_features >> n_samples)

○ Yes! → Model regularization

Model Fitting: Regularization

- o How do we do it?
 - Modify the loss function
 - Constrain the learning process

- Examples:
 - L1 i.e. Lasso
 - L2 i.e. Ridge

Model Fitting: Regularization

- o How do we do it?
 - Modify the loss function
 - Constrain the learning process

- Examples:
 - L1 i.e. Lasso
 - L2 i.e. Ridge

1) L1/Lasso: constrains parameters to be *sparse*

MSE =
$$\sum_{i=1}^{n} (y_i - [\beta_0 + \sum_{j=1}^{\rho} x_{ij} \beta_j])^2 + \lambda \sum_{j=1}^{\rho} |\beta_j|$$

2) L2/Ridge: constrains parameters to be *small*

MSE =
$$\sum_{i=1}^{n} (y_i - [\beta_0 + \sum_{j=1}^{\rho} x_{ij} \beta_j])^2 + \lambda \sum_{j=1}^{\rho} \beta_j^2$$

Nested-cross validation

Goal → Fit and evaluate Ridge model

- Learn β that gives the best prediction on training data
- Compute a new score on unseen data

Ridge model (L2 regularization)

Nested-cross validation

Goal → Fit and evaluate Ridge model

- Learn β that gives the best prediction on training data
- 2. Compute a new score on unseen data
- 3. Repeat step 1-2 for a few values of **α**, fitting and testing several models (i.e. grid search)
- 4. <u>Select</u> the **α** value that obtains the best prediction

Ridge model (L2 regularization)

Nested-cross validation

Goal → Fit and evaluate Ridge model

- Learn β that gives the best prediction on training data
- 2. Compute a new score on unseen data
- 3. Repeat step 1-2 for a few values of α , fitting and testing several models (i.e. grid search)
- 4. <u>Select</u> the **a** value that obtains the best prediction
- 5. Evaluate the model with these β and α on another unseen data

Ridge model (L2 regularization)

Fold 0	Test				Score
	Train	Refit		For best a	
		Fold 2	Test	For all a	
			Train	For all a	2
		Fold 1	Test	For all a	
			Train	For all a	
		Fold 0	Test	For all a	
			Train	For all a	

K-fold cross-validation

- Split original data into "K" folds (outer loop)
 - n_folds == n_test_scores
- Split each fold into external "train" and "test" subsets
- Split train subset into M folds (inner loop)
- Split each internal fold into internal "train" and "test" (aka. validation) subsets

