

Agzamxo'djayeva M.SH

Mavzu:Sonning logarifimi. Asosiy logarifmik ayniyat. Bir asosdan boshqa asosga o`tish formulasi.

Logarifm haqida tushuncha

 $2^x=32$ tenglamaning ildizi x=5, ammo $2^x=30$ tenglamaning ildizi qanday topiladi? Bu kabi tenglamalarni yechish uchun sonning logarifmi tushunchasi kiritiladi. $2^x=30$ tenglama yagona ildizga ega. Uni 32- rasmdan koʻrish mumkin.

Bu ildiz 30 sonining 2 asosga koʻra logarifmi deyiladi va $\log_2 30$ kabi belgilanadi. Demak, 2 = 30 tenglamaning ildizi $x = \log_2 30$ sondir.

Ushbu ta'rifni kiritamiz:

b musbat sonning a asosga koʻra logarifmi deb, b sonni hosil qilish uchun asos a ni koʻtarish kerak boʻlgan daraja koʻrsatkichiga aytiladi va log_ab kabi belgilanadi. Asos a>0 va a≠1 shartni qanoatlantirishi kerak.

Masalan, $\log_3 9 = 2$, chunki $9 = 3^2$. Shuningdek, $\log_2 \frac{1}{8} = -3$; $\log_5 5 = 1$; $\log_7 1 = 0$.

1- misol. Hisoblang: log₃81.

34=81 boʻlgani uchun logarifmning ta'rifiga koʻra log₃81=4.

a > 0, $a \ne 1$ bo'lsin. N sonining a asos bo'yicha *logarifmi* deb, N sonini hosil qilish uchun a sonini ko'tarish kerak bo'lgan daraja ko'rsatkichiga aytiladi va $\log_a N$ bilan belgilanadi.

 $> 0, a \ne 1$ va N > 0 bo'lgan holda $a^x = N$ va $\log_a N = x$ tengliklar teng kuchlidir.

TIIAME

Logarifmning xossalari

- asosiy logarifmik ayniyat: agar a>0, $a\neq 1$, b>0 boʻlsa, $a^{\log_a b}=b$ tenglik oʻrinlidir:
- agar a>0, $a\neq 1$ bo'lsa, $\log_a 1=0$; $\log_a a=1$;
- agar a>0, $a\neq 1$ va x>0, y>0 boʻlsa, $\log_a(xy) = \log_a x + \log_a y$;
- agar a>0, $a\ne 1$ va x>0, y>0 boʻlsa, $\log_a \frac{x}{y} = \log_a x \log_a y$;
- agar a>0, $a\neq 1$, x>0 boʻlsa $\log_a x^n = n \cdot \log_a x$;
- yangi asosga (bir asosdan boshqa asosga) oʻtish formulasi: agar a>0, a≠1, log, x
 - x>0, b>0, $b\neq 1$ bo'lsa, $\log_a x = \frac{\log_b x}{\log_b a}$;
- agar a>0, $a\neq 1$, b>0, $b\neq 1$ boʻlsa, $\log_a b \cdot \log_b a=1$.

 $\log_{10} x = \lg x$ va $\log_e x = \ln x$ kabi belgilash qabul qilingan (e=2,718281...). Bunda $\lg x$ ifoda x ning oʻnli logarifmi, $\ln x$ esa x ning natural logarifm deyiladi. $f(x) = \log_a x$ funksiya (bu yerda x – argument, a>0, $a\neq 1$) a asosli logarifmik funksiya deyiladi.

Logarifmik funksiyaning qolgan xossalarini isbotlashda ushbu *asosiy logarifmik ayniyatdan* ham foydalaniladi:

$$a^{\log a N} = N \quad (N > 0, a > 0, a \neq 1.)$$
 (1)

(1) ayniyat $a^x = N$ tenglikka $x = \log_a N$ ni qoʻyish bilan hosil qilinadi. Oʻzgaruvchi qatnashgan $a^{\log a} = x$ tenglik x ning x > 0 qiymatlaridagina oʻrinli boʻladi. $x \le 0$ da $a^{\log a} = x$ ifoda ham oʻz ma'nosini yoʻqotadi.

- 1) $\log_a 1 = 0$, chunki $a^0 = 1$;
- 2) $\log_a a = 1$, chunki $a^1 = a$;

$$(c > 0, c \neq 1).$$

Haqiqatan, $NM = a^{\log a N} \times a^{\log a M} = a^{\log a N + \log a M}$. Ikkinchi tomondan, $NM = a^{\log a \ NM}$. Tengliklarning o'ng qismlari tenglashtirilsa, (3) tenglik hosil bo'ladi.

Agar N va M bir vaqtda manfiy bo'lsa, u holda: $\log_a (NM) = \log_a |N| + \log_a |M|$

4)
$$\log_a \frac{N}{M} = \log_a N - \log_a M$$
.

5)
$$\log_a N = \frac{\log_c N}{\log_c a}$$
 $(c > 0, c \neq 1).$

Bu tenglik $N = a^c$ tenglikka $N = c^{\log c N}$, $a = c^{\log c A}$, $c = \log_a N$ larni qoʻyish va almashtirishlarni bajarish orqali hosil boʻladi.

$$6) \log_a \frac{1}{N} = -\log_a N$$

7)
$$\log_a N^{\beta} = \beta \log_a N$$

Haqiqatan, $x = \log_a N^b$ va $y = \log_a N$ boʻlsin. Ta'rifga koʻra $N^b = a^x$ va $N = a^y$ yoki $N^b = a^{by}$. Bulardan $a^x = a^{by}$ yoki x = by va (7) tenglik hosil boʻladi;

8)
$$\log_{a^{\beta}} N = \frac{1}{\beta} \log_a N$$

 β – haqiqiy son.

Amaliyotda asosi 10 boʻlgan (*oʻnli* logarifmlar) va asosi *e* = =2,7182818... ga teng boʻlgan (*natural* logarifmlar) logarifmlar keng qoʻllaniladi. Ularni mos ravishda lg*N* va ln*N* koʻrinishda belgilash qabul qilingan.

1-mi s o 1. a) $\lg 1000^{67}$; b) $\ln e^{4,8}$ larni hisoblang.

Ye c h i sh : a)
$$lg1000^{67} = lg10^{3 \times 67} = lg10^{201} = 201 \times lg10 = 201 \times 1 = 201$$
:

- b) $\ln e^{4.8} = 4.8 \ln e = 4.8 \times 1 = 4.8$.
- **2-mi s o 1**. Jadvalda 1g3 = 0,4771 ekanligi berilgan. a) 1g270 ni; b) 3^{1000} ni toping.

Ye c h i sh : a)
$$1g270 = 1g3^3 \times 10 = 31g3 + 1g10 = 3 \times 0,4771 + 1 = 2,4313$$
.

b) $3^{1000} = x$ deb, bu tenglikni logarifmlasak, $1gx = 1000 1g3 \approx 477,1$ yoki bundan $x \approx 10^{477,1}$ hosil boʻladi.

Demak, $3^{1000} = 477,1 \approx 1\ 000...0$

5- misol. Hisobland:
$$A = 4^{\log_8 125} + 27^{\frac{1-1}{3-2}\log_3 4}$$

5- misol. Hisoblang: $A = 4^{\log_8 125} + 27^{\frac{1-1}{3-2}\log_3 4}$. \(\triangle \text{Logarifmning xossalaridan foydalanamiz:} \frac{1}{2}\log_3 4 = \log_3 2;

$$\log_8 125 = \frac{\log_2 125}{\log_2 8} = \frac{3\log_2 5}{3} = \log_2 5; \quad 4^{\log_8 125} = 4^{\log_2 5} = 2^{2\log_2 5} = 2^{\log_2 25} = 25.$$

Shuningdek,
$$27^{\frac{1}{3} - \frac{1}{2}\log_3 4} = 27^{\frac{1}{3} - \log_3 2} = 27^{\frac{1}{3} \cdot 27^{-\log_3 2}} =$$

=
$$3 \cdot 3^{-3\log_3 2} = 3 \cdot 3^{\log_3 \frac{1}{8}} = 3 \cdot \frac{1}{8} = \frac{3}{8}$$
. Demak, $A = 25 + \frac{3}{8} = 25 \cdot \frac{3}{8}$.

6- misol. Hisoblang:
$$\frac{\lg 54 + \lg \frac{1}{2}}{\lg 72 - \lg 8}.$$

▲ Logarifmning xossalaridan foydalanamiz:

$$\lg 54 + \lg \frac{1}{2} = \lg(54 \cdot \frac{1}{2}) = \lg 27 = \lg 3^3 = 3\lg 3,$$
$$\lg 72 - \lg 8 = \lg \frac{72}{8} = \lg 9 = \lg 3^2 = 2\lg 3.$$

U holda:
$$\frac{\lg 54 + \lg \frac{1}{2}}{\lg 72 - \lg 8} = \frac{3 \lg 3}{2 \lg 3} = \frac{3}{2}$$
. Javob: $\frac{3}{2}$.