Lecture 5

Zed

March 14, 2017

1 Newton's Method for Solving Nonlinear Equations

We want to find roots for nonlinear equation g(x) = 0.

Algo. Newton's Method

- · Initialize a starting point x_0 .
- · Update x by $x_{n+1} \leftarrow x_n \frac{g(x_n)}{g'(x_n)}$, suppose $g'(x_n) \neq 0$.
- · Stop when $||g(x_n)|| \le thres$ (small), $||x_{n+1} x_n|| \le thres$ (small) or $n \ge K$ (fail to converge).

The Newton's method only converges in a local sense. Suppose the real zero is α , s.t. $g(\alpha) = 0$, then using taylor expansion at x_n :

$$0 = g(\alpha) = g(x_n) + g'(x_n)(\alpha - x_n) + \frac{1}{2}g''(\xi_n)(\alpha - x_n)^2$$

$$\Rightarrow 0 = \left(\frac{g(x_n)}{g'(x_n)} - x_n\right) + \alpha + \frac{g''(\xi_n)}{2g'(x_n)}(\alpha - x_n)^2$$
(1)

Hence exist bound M such that

$$|\alpha - x_{n+1}| = \frac{g''(\xi_n)}{2g'(x_n)}|\alpha - x_n|^2 \le M|\alpha - x_n|^2$$

That is, if the error at n-th iteration $|\alpha - x_n|$ is already small, the next error at (n+1)-th iteration will be the square of it. Which implies a (locally) quadratic convergence rate.

2 Implicit Methods

2.1 Implicit Euler

2.2 Implicit Runge-Kutta Method