Advantages of Data Warehousing

Kyle Lahnakoski, November 2014

Table / Relation Cube / Pivot Table

	The second second			
Date	os	Median	Mean	Variance
Nov-15	Linux	32	31.3	1.66
Nov-15	Windows	20	20.6	1.76
Nov-15	Mac	29	29.0	3.53
Nov-16	Linux	24	22.1	3.85
Nov-16	Mac	30	29.9	4.95
Nov-17	Linux	60	58.7	5.22
Nov-17	Windows	72	73.4	5.74
Nov-17	Mac	60	60.1	3.64
Nov-18	Linux	90	88.9	1.87
Nov-18	Windows	80	83.5	4.28
Nov-18	Mac	80	80.0	1.75

Column / Attribute

Median Date Mean **Variance** Nov-15 inux 31.3 32 1.66 Nov-15 Vindows 20.6 1.76 20 Nov-15 Иас 3.53 29.0 29 Nov-16 22.1 3.85 inux 24 Nov-16 Mac 29.9 30 4.95 58.7 5.22 Nov-17 inux 60 Nov-17 Vindows 73.4 5.74 72 Nov-17 Mac 3.64 60 60.1 Nov-18 inux 88.9 1.87 90 Nov-18 Vindows 80 83.5 4.28 Nov-18 Mac 80 80.0 1.75

Dimension

Column / Attribute

Date	os	/ledian	Mean	Variance
Nov-1	Linux	32	31.3	1.66
Nov-1	Windows	20	20.6	1.76
Nov-1	Mac	29	29.0	3.53
Nov-1	Linux	24	22.1	3.85
Nov-1	Mac	30	29.9	4.95
Nov-1	Linux	60	58.7	5.22
Nov-1	' Windows	72	73.4	5.74
Nov-1	Mac	60	60.1	3.64
Nov-1	Linux	90	88.9	1.87
Nov-1	Windows	80	83.5	4.28
Nov-1	Mac	80	80.0	1.75

Dimension

Candidate Key

Date	os	Median	Mean	Variance
Nov-15	Linux	32	31.3	1.66
Nov-15	Windows	20	20.6	1.76
Nov-15	Mac	29	29.0	3.53
Nov-16	Linux	24	22.1	3.85
Nov-16	Mac	30	29.9	4.95
Nov-17	inux	60	58.7	5.22
Nov-17	Windows	72	73.4	5.74
Nov-17	Mac	60	60.1	3.64
Nov-18	Linux	90	88.9	1.87
Nov-18	Windows	80	83.5	4.28
Nov-18	Mac	80	80.0	1.75

Coordinates

Values

Measure

	Date	os	Median	Лean	Variance
	Nov-15	Linux	32	31.3	1.66
	Nov-15	Windows	20	20.6	1.76
-	Nov-15	Mac	29	29.0	3.53
	Nov-16	Linux	24	22.1	3.85
4	Nov-16	Mac	30	29.9	4.95
	Nov-17	Linux	60	58.7	5.22
	Nov-17	Windows	72	73.4	5.74
1	Nov-17	Mac	60	60.1	3.64
	Nov-18	Linux	90	88.9	1.87
	Nov-18	Windows	80	83.5	4.28
	Nov-18	Mac	80	80.0	1.75
		And the second second			

Values

Measure

Date	os	Median	Mean	/ariance
Nov-15	Linux	3	31.3	1.66
Nov-15	Windows	2	20.6	1.76
Nov-15	Mac	2	29.0	3.53
Nov-16	Linux	2	22.1	3.85
Nov-16	Mac	3	29.9	4.95
Nov-17	Linux	6	58.7	5.22
Nov-17	Windows	7	73.4	5.74
Nov-17	Mac	6	60.1	3.64
Nov-18	Linux	9	88.9	1.87
Nov-18	Windows	8	83.5	4.28
Nov-18	Mac	8	80.0	1.75

Values

Measure

Date	os	Median	Mean	Variance
Nov-15	Linux	32	31.	1.66
Nov-15	Windows	20	20.	1.76
Nov-15	Mac	29	29.	3.53
Nov-16	Linux	24	22.	. 3.85
Nov-16	Mac	30	29.	4.95
Nov-17	Linux	60	58.	5.22
Nov-17	Windows	72	73.	5.74
Nov-17	Mac	60	60.	. 3.64
Nov-18	Linux	90	88.	1.87
Nov-18	Windows	80	83.	4.28
Nov-18	Mac	80	80.	1.75

Distinctive Features of DW

- Fast* filtering (fast "slicing")
- Fast* aggregates
- API is a query language (SQL, MDX)
- A service, open to third party clients
- Uniform, Cartesian space of values
- Metadata on dimensions and measures
- Defines a standard for ETL
- Has a security model

Distinctive Features Fast Slicing and Fast Aggregates

- Data is de-normalized to avoid expensive joins
- Creates and manages multiple indexes across many dimensions for fast slicing
- Manages materialized views (pre-aggregated data) for fast aggregates

MDX (via some wire protocol)

```
SELECT
  [Measures].[Performance].[Mean] ON COLUMNS
FROM
  [Talos]
WHERE
  [OS].[Windows]
```

SQL (via ODBC?)

```
SELECT

AVG (Mean) AS Mean

FROM

Talos

GROUP BY

OS

WHERE

OS = "Windows"
```

Open to third party clients

- Open to third party clients
 - Dashboards

- Open to third party clients
 - Dashboards
 - Analysis Tools

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx.$$

$$p(\boldsymbol{\theta}|\boldsymbol{x}) = \sum_{i=1}^K \tilde{\phi_i} \mathcal{N}(\tilde{\boldsymbol{\mu}_i}, \tilde{\boldsymbol{\Sigma}_i}) \frac{(x-\mu)^2}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

- Open to third party clients
- More expressive than standard RESTful APIs

```
SELECT
  *
FROM
  bugs
WHERE
  whiteboard.contains("[js:p1]") AND
  component.beginsWith("javascript")
```

SQL

```
https://bugzilla.mozilla.org/buglist.cgi?
f1=status_whiteboard&
o1=substring&resolution=---&
o2=substring&query_format=advanced&
f2=component&v1=[js%3Ap1]&
v2=javascript
```

Bugzilla

- Open to third party clients
- More expressive than standard RESTful APIs
- Saves developer from implementing query features for third party apps.

- Open to third party clients
- More expressive than standard RESTful APIs
- Saves developer from implementing query features for third party apps.

- High demand on DW service
 - No joins upper bound on cost of a request
 - Only filter and aggregates
- Security model is required

Dimension members are represented once

```
SELECT

[Date] ON ROWS

[Measures].[Median] ON COLUMNS

FROM

[Talos]

WHERE

[OS].[Windows]
```



```
SELECT
Date,
AVG(Median) AS Median
FROM
Talos
GROUP BY
OS
WHERE
OS = "Windows"
```


Dimension members are represented once

```
SELECT

[Date] ON ROWS

[Measures].[Median] ON COLUMNS

FROM

[Talos]

WHERE

[OS].[Windows]
```



```
SELECT
Date,
AVG (Median) AS Median
FROM
Talos
GROUP BY
OS
WHERE
OS = "Windows"
```

Where's the 16th?

- Dimension members are represented once
- and only once

```
SELECT

m.name,

COUNT(t.Median) AS num

FROM

Talos t

JOIN

Machines m on m.os=t.os

GROUP BY

m.Name

WHERE

OS = "Windows"
```


- · Dimension members are represented once
- and only once

```
SELECT

m.name,

COUNT(t.Median) AS num

FROM
Talos t

JOIN

Machines m on m.os=t.os

GROUP BY
m.Name
WHERE
OS = "Windows"

Bad logic, wrong assumption
```

- Dimension members are represented once
- and only once

```
SELECT

m.name,

COUNT(t.Median) AS num

FROM

Talos t

JOIN

Machines m on m.os=t.os

GROUP BY

m.Name

WHERE

OS = "Windows"
```


Clean, Cartesian spaces

- Dimension members are represented once
- and only once
- Dimensions are orthogonal (no functional dependencies)
- Important for SciPy, Pandas, R which operate on multidimensional arrays of data.

Distinctive Features Metadata on Dimensions and Measures

- Dimensions can have sub-dimensions, type, name, natural ordering, formatting
- Measures have measurement units, default aggregation
- Extra context allows for exploration

- Databases provide too much design choice:
 - You can choose to de-normalize for speed, or
 - Stay normalized for low selectivity relations.
 - Make a specific index, or
 - · Write code to manage a fast aggregate.

Defines a standard for ETL

- Databases provide too much design choice:
 - · You can choose to de-normalize for speed, or
 - Stay normalized for low selectivity relations.
 - Make a specific index, or
 - Write code to manage a fast aggregate.

Shape of the data in a database can be more complicated than the data demands. It can include side effects of implementation decisions.

- Databases provide too much design choice
- DW takes away choices of data layout:
 - Always de-normalize
 - Redundant, even when extreme
 - Indexing decisions are made by the warehouse, not you.

- Databases provide too much design choice
- DW takes away choices of data layout
- DW demands all data is centralized
 - No deciding which system it best be in
 - Demands data that can be cross-referenced

Data Warehouse? Do you need a Data Warehouse?

- Are you caching?
 - cache filtered results
 - writing materialized views
 - managing materialized views (caching aggregates)
- · Are you indexing? (for query optimization)
- Are you joining? (and delivering long result sets)
- Are you building a query interface?
- · Can you accept "eventual consistency"?

Are you doing these all happening in a recognizable section of your code? - You need a data warehouse, or at least use it's abstractions.

Data Warehouse?

Data warehouse is more than a NoSQL columnar data store:

- DW provides a query language with fast slices and aggregates
- DW includes extra metadata, how dimensions relate to each other and about the measures.

NoSQL data stores make an excellent base for data warehousing, but require additional work

Data Warehouse?

Existing Solutions?

- Open Source is about 20 years behind commercial software.
- Underlying Open Source technology is well developed, but the integration is non-existent.
- Good solutions are commercial solutions -Metrics uses Vertica and Tableau – both commercial products.
- Business Intelligence is very profitable: Open Source solutions disappear:
 - Pentaho Went from subscription model to multi-license model (~July 2009?).
 - Mozilla was working with WebDetails, now bought by Pentaho.

Data Warehouse? No Existing Solutions!?

- Mozilla may be unique:
 - Bl is a means to an ends We may be the first large and truly open company with Bl needs.
 - We have a mandate to be open
 - We can define the integration standards
 - With standards, we can work with community and amplify each others skill

Data Warehouse?

Data Warehouse as Abstraction

- · Dictate the two main DW standards:
 - Input Multidimensional data cube
 - Output Fast query service
- ETL designed to fill data cubes
- Clients leverage service to simplify internal design
- Tool discovery and software optimization for the data warehouse is independent of the peripheral software that uses it.

The End