

Modellierung von Energiesystemen

Projektgruppe 3

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

TH Köln

Technology

Arts Sciences

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

Arts Sciences TH Köln

? Motivation

Anreiz der Untersuchung:

"However, [...] four core problems for H₂ seasonal storage systems in residential environments: Expensive components, life span of the components, efficiency of the system, and current grid electricity prices." [1]

? Fragestellung

Vorstellung der Fragestellung:

Welche technisch – ökonomische Parametergrenzwerte sind im Kontext des Energieträgerwandels (Fossil-zu-Wasserstoff) für einen Um- oder Zubau einer saisonalen Speicher- und Versorgungsanlage in Eigenheimen und am Beispiel eines Einfamilienhauses mit Gasheizung oder einem erneuerbaren Energiesystem in Wesseling für einen Betrachtungszeitraum von 20 Jahren relevant, um eine Investition in ein saisonales Wasserstoffsystem zu bewerten?

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

Fakultät für Anlagen, Energie- und Maschinensysteme

Daten & Annahmen

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

Technology Arts Sciences TH Köln

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

Implementation Abbildung der Netzwerke:

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

№ Implementation

Vorstellung der Learning Curve:

- Kapitalkostenreduktion des saisonalen H₂-Systems
- 3 Szenarien:
 - Minimale Reduktion mit maximalem
 Endpreis (max)
 - Durchschnittliche Reduktion mit mittlerem Endpreis (std)
 - Maximale Reduktion mit minimalem
 Endpreis (min)
- Mathematisch beschrieben durch:

$$C_t = C_0 \left(\frac{Q_t}{Q_0}\right)^b$$

Technology Arts Sciences

Implementationsschema

Implementierung der Szenarioanalyse schematische Darstellung

19.09.2023

Projektgruppe 3

Technology Arts Sciences

Vorstellung der Ergebnisse aus den optimierten "Referenznetzwerken" (Gas und EE)

	Ref – Gas – Netzwerk	Ref – EE – Netzwerk
	1255.58 kWh/a	6873.74 kWh/a
*	Installiert: 10 kWp PV generiert: 10724.82 kWh Eigenverbrauch: 5091.08 kWh/a	Installiert: 10 kWp PV generiert: 10724.82 kWh Eigenverbrauch: 3751.48 kWh/a
	Installiert: 3 kWh Eingespeichert: 1047.2 kWh/a	Installiert: 3 kWh Eingespeichert: 890.2 kWh/a
H ₂ O	Installiert: 1.11 kWh	Installiert: 1.18 kWh
	Gas Boiler: 5.79 kW Heizstab: 3.77 kW	Wärmepumpe: 4.53 kW

Ergebnisse

Vorstellung der Ergebnisse aus Szenario 1 und 2:

- Szenario 1 "Reduktion der Investitionskosten": H₂-Komponenten werden nicht dimensioniert
- Szenario 2 "CO₂-Sensivitätsanalyse,"

Referenz Modell EE

Ergebnisse

Vorstellung der Ergebnisse aus Szenario 3 und 4:

Szenario 3: Kostenreduktion bei definierten CO₂-Emissionen

Szenario 4: Lebensdauer der H₂-Komponenten

19.09.2023 Projektgruppe 3

Modellierung von Energiesystemen

Ergebnisse

Vorstellung der Ergebnisse aus Szenario 5:

19.09.2023

Projektgruppe 3

Modellierung von Energiesystemen

Arts Sciences TH Köln

Validierung Validierung der gewonnenen Erkenntnisse:

Szenario:	Parameter:	Erwartung:	Ergebnis:	
Szenario 1:	Verringerung der Kapitalkosten um weitere 90% ausgehend vom Szenario Minimum	Nutzung des H ₂ – Systems	Keine Nutzung des H ₂ – Systems	
Szenario 2:	Reduktion der CO ₂ – Emissionen beider Referenzwerke	CO ₂ – Minimum bei Nutzung des gesamten PV – Stroms	Gas: Erwartung eingetroffen 60% der Basis CO ₂ – Emissionen EE: Erwartung nicht eingetroffen; Wärmepumpe skaliert gegen unendlich (Maßnahme: WP optimiert und Wert im H ₂ – Netzwerk festgelegt)	
Szenario 3:			"The seasonal hydrogen storage system might be an interesting option if economics are not the main driver for the decision to install such a system in one's own home." [1]	
Szenario 4:				
Szenario 5:	Variation der H ₂ – Speichergröße	CO ₂ – Emissionen sollten sinken; Investitionskosten des Projektes sollte steigen	CO ₂ : Sinkende Emissionen beim EE – Netzwerk. Weniger sinkende Emissionen beim Gas – Netzwerk. Die saisonale Wirkung wird durch größere Speicher verbessert. Investitionskosten: steigende Investitionskosten werden beobachtet, gleichzeitig steigen die Erlöse durch Einsparungen	

19.09.2023 Projektgruppe 3

Modellierung von Energiesystemen

Fakultät für Anlagen, Energie- und Maschinensysteme Seite 18

Auf Basis der Szenarien

Szenario 1:

 Die reine Reduktion der Kosten entlang der Learning Curve hat keine Dimensionierung der H₂ – Komponenten zur Folge.

Szenario 2:

Einführung von CO₂ – Grenzen im Eigenheimsektor begünstigt die Anwendung von H₂ – Systemen.

Szenario 3:

 Die wirtschaftliche Machbarkeit zeigt sich für ein gasbasiertes Energiesystem in den Jahren 2029/2033. Für ein erneuerbares Energiesystem zeigt sich diese in den Jahren 2027/2029. (Nebenbedingung: CO₂ – Minimum und angenommener Kostenreduktion)

Szenario 4:

 Jegliche Ersatzbeschaffung der H₂ – Komponenten innerhalb des Betrachtungszeitraums benachteiligen deren Einsatz

Szenario 5:

Im angenommenen Szenario weist ein erneuerbares Energiesystem eine höhere Eignung für den Zubau von H₂ –
Komponenten auf, als ein gasbasiertes Energiesystem.

Grenzen der Analyse

Grenzen der Analyse durch folgende Annahmen:

- Statische Werte für Strom-, Gaspreis sowie Einspeisevergütung und CO₂-Emissionen des Strommixes:
 - Momentaufnahme von in der Realität schwankenden Preisen (bzw. Preisentwicklung)
- Wasser- & CO₂-Preise nicht berücksichtigt: deren Einsatz würde zu anderen Komponentengrößen führen
- Verwendung synthetischer Lastprofile einer 4-Personen-Haushaltsgröße
- Keine Wartungs- und Installationskosten berücksichtigt
- Komponentenpreise aus Listenpreisen (stand 2023)

Ausblick

- Dynamische Simulation der konstant angenommenen Parameter
- Untersuchung zu politischen und sozialen Hebeln zur Senkung der CO₂ Grenze
 - Analyse der Auswirkungen durch eine CO₂-Steuer
 Welcher CO₂-Preis könnte eine CO₂-Reduktion forcieren, sodass ein saisonaler H₂-Speicher für ein Eigenheim wirtschaftlich wird?
- Analyse unterschiedlicher Standorte
 - unterschiedliche Wetterbedingungen
 - unterschiedliche Gebäudestrukturen

Literatur

- [1] Keiner, Dominik; Thoma, Christian; Bogdanov, Dmitrii; Breyer, Christian Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?, https://doi.org/10.1016/j.apenergy.2023.121009.; 2023
- [2] Holst, Marius; Aschbrenner, Stefan; Smolinka, Tom; Voglstätter, Christopher; Grimm, Gunter COST FORECAST FOR LOW-TEMPERATURE ELECTROLYSIS TECHNOLOGY DRIVEN BOTTOM-UP PROGNOSIS FOR PEM AND ALKALINE WATER ELECTROLYSIS SYSTEMS https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/cost-forecast-for-low-temperature-electrolysis.pdf; 2021
- [3] C. Hebling, M. Ragwitz, T. Fleiter, U. Groos, D. Härle, A. Held, M. Jahn, N. Müller, T. Pfeifer, P. Plötz, O. Ranzmeyer, A. Schaadt, F. Sensfuß, T. Smolinka, M. Wietschel Eine Wasserstoff-Roadmap für Deutschland https://www.ieg.fraunhofer.de/content/dam/ieg/documents/pressemitteilungen/2019-10_Fraunhofer_Wasserstoff-Roadmap_fuer_Deutschland.pdf; 2019