Зиманов Алихан

Исследовательский проект ВКР

Оптимизация размера сенсоров для физики элементарных частиц

Научный руководитель Болдырев А.С.

Содержание

- 1 Введение
- 2 Обзор литературы
- 3 Методология
- Фезультаты
- Заключение
- Приложения

Введение

Зиманов Алихан ВШЭ

Постановка задачи

Рис. 1: Электромагнитный калориметр PADME и симуляция электромагнитного ливня с помощью GEANT4.

Смежные работы

Введение

Применение глубинного обучения в физике элементарных частиц

- Идентификация частиц и реконструкция энергии, моделирование калориметрических ливней (Belayneh и др., 2020).
- Разделение остаточной энергии заряженных от нейтральных частиц, а также сравнение с PFlow алгоритмами (Di Bello и др., 2021).
- Реконструкция энергий фотонов с помощью графовых нейронных сетей (Wemmer и др., 2023).

Зиманов Алихан ВШЭ

Используемые модели

Введение

ResNet и Vision Transformer являются показательными моделями из области компьютерного эрения.

Зиманов Алихан

Данные

Введение

Данные сгенерированы с помощью GEANT4. Каждый элемент состоит из:

- Матрица неотрицательных чисел (размерность матрицы может быть от 10×10 до 40×40)
- Исходная энергия фотона (от 1 до 100 ГэВ)
- Положение входной точки фотона (в центральной ячейке калориметра)

ВШЭ

Аугментации

Введение

Применяемые аугментации

- Случайное горизонтальное или вертикальное отражение
- **>** Случайный поворот на угол вида 0° , 90° , 180° и 270° .

Зиманов Алихан ВШЭ

Модели

Введение

Исг	пользованные модели Количество параметров	
>	Аналитическая модель (AnaModel)	8
>	Линейная регрессия (LinReg)	1.8K
>	ResNet18	11M
>	Сверточные сети (CNN)	32K
- 51	Vision Transformer (ViT)	14K

Модели обучались одновременно на две задачи: реконструкция энергии и восстановление позиции фотона.

ВШЭ

Метрики

$$\{(X_i, E_i, P_i), (\widehat{E}_i, \widehat{P}_i)\}_{i=1}^n$$
 — выборка данных, где

- $ightharpoonup X_i$ считанные калориметром значения $(\mathbb{R}^{D imes D}_+)$
- $ightharpoonup E_i$ исходная энергия фотона (\mathbb{R}_+)
- $ightharpoonup P_i = (P_i^x, P_i^y)$ позиция входа фотона (\mathbb{R}^2)
- \widehat{E}_i предсказанная энергия (\mathbb{R}_+)
- $\widehat{P}_i = (\widehat{P}_i^x, \widehat{P}_i^y)$ предсказанная позиция (\mathbb{R}^2)

$$\begin{split} \mathcal{L}_{\text{eng}} &= \text{RMSE/E}(\widehat{E}, E) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\widehat{E}_{i} - E_{i}}{E_{i}}\right)^{2}} \\ \mathcal{L}_{\text{pos}} &= \text{RMSE}(\widehat{P}, P) = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} \left((\widehat{P}_{i}^{x} - P_{i}^{x})^{2} + (\widehat{P}_{i}^{y} - P_{i}^{y})^{2}\right)} \\ \mathcal{L}_{\text{total}} &= \alpha \cdot \mathcal{L}_{\text{eng}} + (1 - \alpha) \cdot \mathcal{L}_{\text{pos}}, \ \alpha \in [0, 1] \end{split}$$

Сравнение моделей

Введение

Модель ViT показывает лучшие и стабильные результаты.

Зиманов Алихан ВШЭ

Сравнение функций потерь для реконструкции энергии

Введение

Обучение на нормализованную (относительную) ошибку приводит к лучшему качеству.

Отношение важности задач

Введение

Влияние гиперпараметра α на качество модели a .

$$^{a}\mathcal{L}_{total} = \alpha \cdot \mathcal{L}_{eng} + (1 - \alpha) \cdot \mathcal{L}_{pos}.$$

Размер модели

Введение

Оптимальные параметры модели ViT это 4 слоя, 2 головы и размерность скрытого пространства 16.

Зиманов Алихан ВШЭ

Эффективность аугментаций

Введение

		Размер матрицы				
		15 × 15				
Отражения	Повороты	$\mathcal{L}_{eng}^{train}$	$\mathcal{L}_{pos}^{train}$	\mathcal{L}_{eng}^{val}	\mathcal{L}_{pos}^{val}	
х	X X ✓	0.0182 0.0186 0.0185 0.0185	0.1456 0.1481 0.1476 0.1475	0.0217 0.0194 0.0193 0.0192	0.1535 0.1537 0.1528 0.1525	

Таблица 1: Все стандартные отклонения не превосходят 1.5×10^{-4} .

Применение аугментаций

- Улучшение качества на валидационной выборке
- Сокращение разрыва между обучающей и валидационной выборкой

Итоговое качество

Модель ViT одновременно

- решает задачу восстановления энергии с относительной ошибкой в
 1.3%
- решает задачу реконструкции позиции с точностью, в 20 раз меньшую размера ячейки калориметра

Зиманов Алихан

Заключение

Введение

Результаты работы

- Исследование и сравнение моделей глубинного обучения
- Оптимизация метрик и функций потерь
- Анализ влияния размера модели и аугментации данных
- Достижение высокой точности реконструкции
- Практическое применение и перспективы

15/19 Зиманов Алихан вшэ

Список литературы I

Введение

Dawit Belayneh и др. "Calorimetry with deep learning: particle simulation and reconstruction for collider physics". в: *The European Physical Journal C* 80.7 (июль 2020). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-8251-9. URL: http://dx.doi.org/10.1140/epjc/s10052-020-8251-9.

Francesco Armando Di Bello и др. "Towards a computer vision particle flow". в: *The European Physical Journal C* 81.2 (февр. 2021). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-021-08897-0. URL: http://dx.doi.org/10.1140/epjc/s10052-021-08897-0.

F. Wemmer и др. "Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks". в: Computing and Software for Big Science 7.1 (дек. 2023). ISSN: 2510-2044. DOI: 10.1007/s41781-023-00105-w. URL: http://dx.doi.org/10.1007/s41781-023-00105-w.

Зиманов Алихан ВШЭ

Метрики

Введение

▶ Корень из среднеквадратичной ошибки (RMSE)

- Средняя абсолютная ошибка (МАЕ)
- ▶ Корень из среднеквадратичной логарифмической ошибки (RMSLE):

RMSLE
$$(a, y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(a_i + 1) - \log(y_i + 1))^2}.$$

Взвешенный корень из среднеквадратичной ошибки (RMSE/E):

$$\mathsf{RMSE/E}(a,y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{a_i - y_i}{y_i}\right)^2}.$$

Взвешенная средняя абсолютная ошибка (MAE/E):

MAE/E
$$(a, y) = \frac{1}{n} \sum_{i=1}^{n} \frac{|a_i - y_i|}{y_i}.$$

Зиманов Алихан ВШЭ

Полное сравнение моделей

Модель CNN показывает слабые результаты, поэтому не была включена в основные слайды.

Зиманов Алихан ВШЭ

Таблица результатов лучшей модели

Введение

	Размер матрицы							
Метрика	10 × 10	15 × 15	20 × 20	25 × 25	30 × 30	40 × 40		
\mathcal{L}_{total}	0.1153	0.0852	0.0702	0.0588	0.0535	0.0453		
\mathcal{L}_{eng}	0.0189	0.0189	0.0194	0.0187	0.0189	0.0190		
\mathcal{L}_{pos}	0.2117	0.1515	0.1211	0.0989	0.0881	0.0715		
Размер одной ячейки	6.0600	4.0400	3.0300	2.4240	2.0200	1.5150		
MAE/E _{eng}	0.0131	0.0127	0.0132	0.0124	0.0130	0.0129		

Модель ViT способна решать задачу реконструкции позиции с точностью, в 20 раз меньшую чем длина стороны центральной ячейки. Более того, данная модель решает задачу восстановления энергии с относительной ошибкой в 1.3%.

19/19 Зиманов Алихан ВШЭ