

Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation Search: Tight or Not

Liangzu Peng, Mahyar Fazlyab, René Vidal

Rotation Search: Problem Setup

Goal:

Find 3D rotation R₀* that best aligns 2 point sets

Case without Outliers (Wahba, 1965 [1]):

- $y_i \approx R_0^* x_i$, i = 1, ..., l
- $R_0^* \in SO(3)$
- Optimization problem:

Case with Outliers:

- Inliers: $y_i \approx R_0^* x_i$
- Outliers: (x_i, y_i) arbitrary
- Optimization problem:

Truncated Least-Squares (TLS-R) [1]:

$$\min_{R_0 \in SO(3)} \sum_{i=1}^{\ell} \min_{\mathbf{x}} \left\{ \left\| y_i - R_0 x_i \right\|_2^2, \ \mathbf{c}_i^2 \right\}$$
 (Huber, 1964 [2]) Truncation Parameter

Key challenge:

 Under what conditions can we solve (TLS-R) to global optimality in polynomial time?

From (TLS-R) to Semidefinite Relaxations (SDR)

$$(TLS-R) \stackrel{(1)}{\Leftrightarrow} (TLS-Q) \stackrel{(2), (3)}{\Longleftrightarrow} (QCQP) \stackrel{(4) \text{ lifting}}{\Longrightarrow} (SDR)$$

Step (1): 3D rotations $R_0 \Leftrightarrow$ unit quaternions w_0

Step (4): From (QCQP) to (SDR)

$$\begin{aligned} & \underset{\boldsymbol{W} \succeq 0}{\min} & \operatorname{trace} \left(\boldsymbol{Q} \boldsymbol{W} \right) \\ & \text{s.t.} & \left[\boldsymbol{W} \right]_{0i} = \left[\boldsymbol{W} \right]_{ii}, & \forall \ i \in \{1, \dots, \ell\} \\ & \operatorname{trace} \left(\left[\boldsymbol{W} \right]_{00} \right) = 1 \end{aligned}$$

Tightness of (SDR)

Definition (Tightness):

Let $w \in \mathbb{R}^{4(l+1)}$ be a global minimizer of (QCQP). We say (SDR) is tight if its solution is $W^* = ww^T$.

Main Results:

Positive Result

- Inlier Assumption: We have $c_i^2 > f(noise)$ for every inlier point pair (y_i, x_i) . Here f is a complicated function of noise with f(0) = 0.
- Outlier Assumption: Each outlier pair (y_i, x_i) is drawn independently and randomly from $\mathbb{R}^3 \times$ \mathbb{R}^3 according to some continuous probability distribution, and c_i^2 is set small enough.
- Under the Inlier and Outlier Assumption, (SDR) is tight.

Negative Result

(SDR) is not tight for "adversarial" outliers.

Remarks:

 $(TLS-w_i)$

(QCQP)

(SDR)

 $\boldsymbol{w} :=$

- For the exact definitions of noise function f and outlier truncation parameter c_i^2 , see our paper.
- "Adversarial" outliers can be point pairs that are defined by a rotation far from the ground-truth.

Acknowledgement: work supported by grants NSF 1704458, NSF 1934979, ONR MURI 503405-78051.

References

- [1] G. Wahba. A least squares estimate of satellite attitude. SIAM Review, 1965.
- [2] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Stat., 1964.
- [3] H. Yang & L. Carlone. A quaternion-based certifiably optimal solution to the Wahba problem with outliers. ICCV 2019.