Summative2

January 6, 2023

1 **O**1

```
In [1]: ## Load dataset
        from sklearn import datasets
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        breast_cancer_data = datasets.load_breast_cancer()
        df = breast_cancer_data.data
        labels = breast_cancer_data.target
In [2]: # Reshaping labels to append to dataframe
        labels = np.reshape(labels,(569,1))
In [3]: breast_cancer_df = np.concatenate([df, labels], axis=1)
In [4]: # converting to dataframe
        breast_cancer_df = pd.DataFrame(breast_cancer_df)
In [5]: features = breast_cancer_data.feature_names
In [6]: # Adding label column name
        features_labels = np.append(features, "label")
        #Adding the labels to the dataframe columns
        breast_cancer_df.columns = features_labels
In [7]: #Separate features and target variables
        X = breast_cancer_df.loc[:, features].values
        y = breast_cancer_df.loc[:, 'label'].values
        #Normalising data using StandardScaler
        from sklearn.preprocessing import StandardScaler
        \#x = breast\_cancer\_df.loc[:, features].values
        \#x = StandardScaler().fit_transform(x)
```

```
In [8]: #3 Splitting the X and Y into the
        # Training set and Testing set
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,
        random state = 0)
In [9]: #4 performing preprocessing part
        from sklearn.preprocessing import StandardScaler
        sc = StandardScaler()
        X train = sc.fit transform(X train)
       X_test = sc.transform(X_test)
In [10]: #5 Applying PCA function on training
         # and testing set of X component
         from sklearn.decomposition import PCA
         pca = PCA(n_components = 2)
         X_train = pca.fit_transform(X_train)
         X_test = pca.transform(X_test)
         explained_variance = pca.explained_variance_ratio_
In [11]: #6 Fitting Logistic Regression To the training set
         from sklearn.linear_model import LogisticRegression
         classifier = LogisticRegression(random_state = 0)
         classifier.fit(X_train, y_train)
         #7 Predicting the test set result using
         # predict function under LogisticRegression
         y_pred = classifier.predict(X_test)
         #8 making confusion matrix between
         # test set of Y and predicted value.
         from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(y_test, y_pred)
         #9 Predicting the training set
         # result through scatter plot
         from matplotlib.colors import ListedColormap
         X_set, y_set = X_train, y_train
         X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1,
                                        stop = X_set[:, 0].max() + 1, step = 0.01),
                              np.arange(start = X_set[:, 1].min() - 1,
                                        stop = X_set[:, 1].max() + 1, step = 0.01))
         plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
                                                           X2.ravel()]).T).reshape(X1.shape),
                      cmap = ListedColormap(('yellow', 'white', 'aquamarine')))
         plt.xlim(X1.min(), X1.max())
```

```
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                c = ListedColormap(('red', 'green', 'blue'))(i), label = j)
plt.title('Logistic Regression (Training set)')
plt.xlabel('PC1') # for Xlabel
plt.ylabel('PC2') # for Ylabel
plt.legend() # to show legend
# show scatter plot
plt.show()
#10 Visualising the Test set results through scatter plot
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1,stop = X_set[:, 0].max()
                     np.arange(start = X_set[:, 1].min() - 1,
                               stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
                                                  X2.ravel()]).T).reshape(X1.shape),
             cmap = ListedColormap(('yellow', 'white', 'aquamarine')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color = ListedColormap(('red', 'green', 'blue'))(i), label = j)
# title for scatter plot
plt.title('Logistic Regression (Test set)')
plt.xlabel('PC1') # for Xlabel
plt.ylabel('PC2') # for Ylabel
plt.legend()
# show scatter plot
plt.show()
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value *c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value

2 Q2

2.1 Neural network calculations

2.2 Steps to train a simple neural network

- Collect and preprocess the data: this includes data cleansing, formatting the data to have suitable data type and splitting these data into training and test sets.
- Define the model: Next, we must define the neural network architecture. This will include choosing the number of layers, the number of nodes in each layer, and the activation functions to use.
- Compile the model: After defining the model, you will need to compile it with a loss function, an optimizer, and any metrics that need to be tracked
- Train the model: train the model on the training data. This will involve providing the model with the training data and allowing it to learn the relationships between the input features and the target variables.
- Evaluate the model: After training, we need to evaluate the model's performance on the test data. This will give us a sense of how well the model is able to generalise to unseen data. For example we can switch between LogSoftMax, NLLLoss and Cross Entropy to check the difference in performance.
- Fine-tune the model: Depending on the results of the evaluation, we may want to adjust the model's architecture or hyperparameters to improve its performance. This process is known as fine-tuning.
- Make predictions: Finally, we can use the trained model to make predictions on new data.

	Forward Pass
	Sumh, = i,xw, + i2x w3 +b,
9	$= (0.2\times0.2) + (0.4\times0.1) + 0.35$
•	= 0.04 + 0.04 + 0.35 = 0.43
9	
9	Pass the weighted sum through logistic function
	Output n = 1 = 1 = 0.60587
9	H2
3	Sumhz = (1 × W2 + i2 × W4 + b)
•	= (0.2x04)+(0.4x0·3)+ 0.35
	= 0.08 + 0.12 + 0.35 = 0.55
3	Output h2 = 1 = 1+e-0.55 = 0.63414
3	Using the outputs for the next layer
-	Sum = Outputh, x ws + output nz x w6 + 62
_	= (0.6028+x0.8) + (0.634+4 x 0.6) +0.42
9	= 0.48469 + 0.380484 + 0.45 = 1.31518
•	Output 0, = $\frac{1}{1+0^{-5}um_0}$ = $\frac{1}{1+0^{-1.3}1516}$ = 0.788379

		8	
			D.
0.60	uth, x Wz + Output n2 x W8 + b2		Во
= (0.67	481 x 0·5) + (0·63414 x 0·7) +		Leic
= D-31 = 1-20	2405 + 0.443898 + 0.45 6303 1.196833		Ws
Outputoz = 1	e-sumoz 1+e- 1-19683	- 0.769644	W
		20.76746	2 3
Computing th			3
The expected	outputs are 0,=0.02	6	2
knor formula =	2 (target - output)2		
Ε, :	= 1 (larget, - output,)2		
-	1 (0.02 - 0.788379)2		
	0.2952	La bassa di La Caracteria di C	
E2 =	L (target 2 - Output 2)		
2	$\frac{1}{2}$ (0.85 - 0.7679644)		
=	0-003229 0.003365		
Etotal	= 0.2952 + 0 .003229 0	003365	
	0-2984	(0	
	0.2986		

THE THE TOTAL STREET THE THEORY OF THE THEORY Sumo, = output, x ws + output, x we + 62 Osumo, = output, = 0.60587 DETOTAL - DETOTAL × DOUTPULO, × DSUMO, DWS DOUTPOTO, CRUMO, DWS = 0.768879 × 0.16684 × 0.60587 = 0.07167 DETOTAL = DETOTAL x Doutputo, x DSumo, DWB Toutputo, Osumoz = 0.768379 × 0.16684 × 0.63414 = 0.08129 WZ DEPORAL = DEPORAL × DOMPUTOZ Doutputo2 Dsumoz = 0.768379 x 0 16684 x 0 634 DENOIS = Outputoz - targetz Toutputoz = 0.76796 -0.8 · = 0.76796 -0.08204

0	Doutputoz = Ontputoz (1-Ontputoz)
	0 Sumoz
	= 0.78796 (1-0.76796)
	= 0.17819
	-0.08204
(0	OEtotal = 0.26796 x 0.17819 x 0.60587
	-0.0289 -0.0086
	M8
	= -0.08204 x0.17819 x 0.63414
	= -0.00927
	No. v. v. o. date
0	New weights n=0.6
	NEW - WS = WS XN X DEHOLEL
	dws
	= 0.8 & 0.6 x 0. \$7767
	= 0.753398
0	W6
	NEW_W6 = W6 & NX DEHOKA

$ \frac{\partial E_{H0} \times 0}{\partial W_{1}} = \frac{\partial E_{1}}{\partial W_{2}} + \frac{\partial E_{2}}{\partial W_{1}} $ $ = 0.0048489 $ $ = 0.0048489 $ $ = 0.2 - 0.6 \times 0.0045489 $ $ = 0.2 - 0.6 \times 0.0045489 $ $ = 0.19727066 $ $ \frac{\partial E_{1}}{\partial W_{2}} = 0.007138166 $ $ \frac{\partial E_{1}}{\partial W_{2}} = 0.000949693 $ $ \frac{\partial E_{1}}{\partial W_{2}} = 0.000949693 $ $ \frac{\partial E_{1}}{\partial W_{2}} = 0.39691 $	6	
$= 0.0048979 + (-0.00034908)$ $= 0.0048489$ $= 0.2 - 0.6 \times 0.0048489$ $= 0.19727066$ W_2 $0E_1 0.76838 \times 0.16684 \times 0.6 \times 0.232006 \times 0.4$ $0W_2 = 0.007138166$ $0E_1 = -0.08204 \times 0.178197 \times 0.7 \times 0.232006 \times 0.4$ $0W_2 = 0.000949693$ $NLW W_2 = W_2 - 11 \times 0.178191 \times 0.7 \times 0.232006 \times 0.4$ $0W_2 = 0.000949693$ $V_2 = 0.39691$	CCC	$\frac{\partial E_{total}}{\partial \omega_{i}} = \frac{\partial E_{i}}{\partial \omega_{i}} + \frac{\partial E_{z}}{\partial \omega_{i}}$
$ \begin{array}{c} = 0.0045489 \\ $	6	- v ·0048979 + (-0:0003 4908)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	= 0.0045489 N=0.6
$= 0.2 - 0.6 \times 0.0045489$ $= 0.19727066$ W_{2} $0.16684 \times 0.6 \times 0.232006 \times 0.4$ $0.2 = 0.007138166$ $0.2 = -0.08204 \times 0.178197 \times 0.7 \times 0.232006 \times 0.4$ $0.2 = -0.000949693$ $1000 = 0.39691$ $= 0.39691$	8	New WI = WI - MX DE FOREN
$ \begin{array}{c} -0.19727066 \\ W_{2} \\ OE_{1} 0.76838 \times 0.16684 \times 0.6 \times 0.232006 \times 0.4 \\ OW_{2} 0.007138166 \\ OE_{1} = -0.08204 \times 0.178197 \times 0.7 \times 0.232006 \times 0.4 \\ OW_{2} \\ = -0.000949693 \\ NLW W_{2} = W_{2} - M \times OE_{10164} = 0.4 - 0.5 \times 0.006188473 \\ OW_{2} \\ = 0.39691 \\ OU_{2} \end{array} $		
$ \frac{W_2}{0E_1} = 0.76838 \times 0.16684 \times 0.6 \times 0.232006 \times 0.4 $ $ \frac{\partial E_1}{\partial w_2} = 0.007138166 $ $ \frac{\partial E_1}{\partial w_2} = -0.08204 \times 0.178197 \times 0.7 \times 0.232006 \times 0.4 $ $ \frac{\partial w_2}{\partial w_2} = -0.000949693 $ $ \frac{\partial w_2}{\partial w_2} = 0.39691 $ $ \frac{\partial w_2}{\partial w_2} = 0.39691 $	-	
$\frac{\partial U_{2}}{\partial w_{2}} = 0.007138166$ $\frac{\partial E_{1}}{\partial w_{2}} = -0.08204 \times 0.178197 \times 0.7232006 \times 0.4$ $\frac{\partial w_{2}}{\partial w_{2}} = -0.000949693$ $\frac{\partial W_{2}}{\partial w_{2}} = 0.400949693$ $\frac{\partial W_{2}}{\partial w_{2}} = 0.39691$	3	
$\frac{\partial E_{1}}{\partial w_{2}} = -0.08204 \times 0.178197 \times 0.7232006 \times 0.4$ $\frac{\partial w_{2}}{\partial w_{2}} = -0.000949693$ $\frac{\partial E_{1}}{\partial w_{2}} = w_{2} - n \times \frac{\partial E_{10004}}{\partial w_{2}} = 0.4 - 0.5 \times 0.006188473$ $= 0.39691$	3	Ons 0.004138166
$ \frac{1}{2} - 0.000949693 $ $ $	9 0	$\partial \omega_2$
New $w_2 = w_2 - n \times 0$ (Exoral = 0.4 -0.5 x 0.006 18847) $= 0.39691$	3	-
= 0.39641 = 0.39641	9	$\partial \omega_2$
	9	= 0.34691
	9	
	P	
	•	

