

CLASS: S.E. COMP

SUBJECT: DEL

EXPT. NO.: 7 DATE:

TITLE: Mod N asynchronous and synchronous counter (IC 7490)

OBJECTIVE:

 To design and implement mod - 10, mod - 7 BCD counter using IC 7490.

APPARATUS:

Digital-Board, IC 7490, IC 74191, basic gates.

THEORY:

IC 7490 is a TTL MSI (medium scale integration) decade counter. It contains 4 master slave flip flops internally connected to provide MOD-2 i.e. divide by 2 and MOD-5 i.e. divide by 5 counters. MOD-2 and Mod-5 counters can be used independently or in cascading.

It is a 4-bit ripple type decade counter. The device consists of 4-master slave flip flops internally connected to provide a divide by two and divide by 5 sections. Each section has a separate clock i/p to initiate state changes of the counter on the high to low clock transition n.

Pin Diagram of IC 7490:

Procedure:

1] Make connections for the logic circuit Mod 10 Counter.

Design of MOD-10 counter using IC 7490:

- ➤ The QA o/p the first flip flop is connected to the i/p B which is clock i/p of internal MOD-5 ripple counter. Due to cascading of Mod-2 and Mod-5 counters, the overall configuration the decade counters count from 0000 to 1001. After 1001 mod-5 resets to 0000 and next count after 1001 is 0000.
- ➤ When QA o/p is connected to B i/p, we have the Mod-2 counter followed by Mod-5 counter. The count sequence obtained is shown in the table.
- ➤ It may be noted that QA changes from 0 to 1 the state of Mod-5 counter doesn't change, whereas when QA changes from 1 to 0 the Mod-5 counter goes to the next state.

Function Table of MOD-2 counter:

Input A clock	Output	Coun t
	0	0
 	1	1

Function Table of MOD-5 counter:

Input	Output			
B clock	QD	QC	QB	Count
1	0	0	0	0
1	0	0	1	1
<u> </u>	0	1	0	2
1	0	1	1	3
1	1	0	0	4

Diagram

Function table:

I/p clock	Outp ut				Coun
	QD				
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
1	0	1	0	0	4
	0	1	0	1	5
1	0	1	1	0	6
↓	0	1	1	1	7
ļ	1	0	0	0	8
—	1	0	0	1	9

Timing diagram of mod10:

2] Make connections for the logic circuit Mod-7 Counter.

Design of Mod-7 Counter using IC 7490:

- > Mod-7 counter counts through seven states from 0 to 6 counters and it should reset as soon as the count becomes 7.
- > The o/p of reset logic should be 1 corresponding to invalid states. The reset logic o/p should be applied to pin 2 and 3.

Truth Table of Reset Logic:

Q	QC	QB	QA	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Diagram:

Function table:

I/p clock	Outp ut			Coun	
	QD	QC	QB	QA	t
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	2
	0	0	1	1	3
1	0	1	0	0	4
1	0	1	0	1	5
1	0	1	1	0	6

Timing diagram of mod7:

Logic Gates / MSI Device required for Implementation:

Sr.No.	Title	Name of the IC	Number of Gates required	IC Required
01				
02				

Conclusion:

REFFRENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH

Subject teacher Sign with Date

Remark