Übungsblatt 8 zur Kommutativen Algebra

Aufgabe 1. (2) Nilpotenz von Potenzreihen über noetherschen Ringen

Seien a_0, a_1, \ldots nilpotente Elemente in einem noetherschen Ring. Zeige, dass die Potenzreihe $\sum_{n=0}^{\infty} a_n X^n$ nilpotent ist.

Aufgabe 2. (m) Die teilweise Obsoletierung eines Teilgebiets der Mathematik

Sei R ein noetherscher Ring. Seien A eine endlich erzeugte R-Algebra und G eine endliche Gruppe von R-Algebra utomorphismen von A. Zeige, dass die A-Algebra A^G der G-Invarianten (siehe Blatt 6, Aufgabe 4) endlich erzeugt ist.

Aufgabe 3. (m) Noethersche Induktion für noethersche Moduln

Sei M ein noetherscher Modul. Sei für jeden Untermodul U eine Behauptung $\varphi(U)$ gegeben. Gelte für alle Untermoduln U:

Wenn $\varphi(U')$ für alle Untermoduln $U' \supseteq U$ stimmt, dann stimmt auch $\varphi(U)$.

Zeige, dass $\varphi(U)$ für alle Untermoduln U stimmt.

Aufgabe 4. (2) Lokalität der Noetherianität

Zeige oder widerlege: Sind alle Halme eines Rings noethersch, so auch der Ring selbst.

Aufgabe 5. (m+2+2) Ein Kriterium für Noetherianität

- a) Sei \mathfrak{a} ein Ideal eines Rings A und sei $x \in A$. Sei $\mathfrak{a} + (x)$ endlich erzeugt. Zeige, dass es ein endlich erzeugtes Ideal \mathfrak{a}_0 mit $\mathfrak{a} + (x) = \mathfrak{a}_0 + (x)$ gibt.
- b) Sei $\mathfrak p$ ein Ideal, das maximal mit der Eigenschaft ist, nicht endlich erzeugt zu sein. Zeige, dass $\mathfrak p$ ein Primideal ist.
- c) Zeige, dass ein Ring, in dem alle Primideale endlich erzeugt sind, noethersch ist.

Es folgt noch eine Aufgabe (und ein Comic). Ansonsten ist das Blatt vollständig.