Random Number Generation

732A90 Computational Statistics

Maryna Prus (maryna.prus@liu.se)

Slides originally by Krzysztof Bartoszek

November 15, 2021 Department of Computer and Information Science Linköping University

Pseudorandom Numbers

- Computer is deterministic machine
 - \rightarrow Creates (pseudo) random numbers using mathematical algorithms
 - \rightarrow The numbers are not truly random
- Classical approach: linear congruential generator
- (Pseudo) random numbers realizations of some distribution

First Step: Generating Unif[0, 1]

Linear congruential generator

Define a sequence of integers according to

$$x_{k+1} = (a \cdot x_k + c) \mod m, \quad k \ge 0$$

- $\bullet \mod m$ remainder after division by m
- \bullet x_0 seed or $start\ value$, integer
- $a, c \in [0, m)$, integer
- $x_k \in \{0, \dots, m-1\}$, integer
- x_k/m from Unif[0, 1]

First Step: Generating Unif[0, 1]

Generated numbers will get into a "loop" with a certain period

$$x_{k+1} = (a \cdot x_k + c) \mod m, \quad k \ge 0$$

Example: $x_0 = a = c = 7, m = 10$

- $2 x_2 = (7 \cdot 6 + 7) \mod 10 = 49 \mod 10 = 9$
- $3 x_3 = (7 \cdot 9 + 7) \mod 10 = 70 \mod 10 = 0$

- 6 ...

 \rightarrow period is 4

First Step: Generating Unif[0,1]

- Period is $\leq m$
- \bullet a, c, m have to be chosen carefully
- m typically very large
- Seed (x_0) defines the random sequence: same seed \rightarrow same sequence
- In R: function runif(n)
 n number of values to be generated
- Other methods not in this course

Second Step: Generating Unif[a, b] and Discrete Uniform Distribution

• $U \sim \text{Unif}[0,1]$ can be transformed into $X \sim \text{Unif}[a,b]$:

$$X = a + U \cdot (b - a)$$

In R: function runif(n,a,b)

• discrete uniform distribution on $\{1, \ldots, n\}$:

$$x = [nu] + 1,$$

where u from Unif[0,1], $[\cdot]$ - integer part

Why we add 1?

 $U \sim \text{Unif}(0,1)$

• Cumulative distribution function (CDF) of U:

$$F_U(u) = P(U \le u) = \begin{cases} 0, & u < 0 \\ u, & 0 \le u \le 1 \\ 1, & u > 1 \end{cases}$$

• Density function of U:

$$f_U(u) = \begin{cases} 1, & 0 < u < 1 \\ 0, & otherwise \end{cases}$$

- X random variable with CDF F_X
- F_X^{-1} inverse of F_X
- $U \sim \text{Unif}(0,1)$
- Consider $Y = F_X^{-1}(U)$:

$$F_{Y}(y) = P(Y \le y)$$

$$= P(F_{X}^{-1}(U) \le y)$$

$$= P(F_{X}(F_{X}^{-1}(U)) \le F_{X}(y))$$

$$= P(U \le F_{X}(y))$$

$$= F_{U}(F_{X}(y)) = F_{X}(y)$$

as
$$0 \le F_X(y) \le 1$$
 and $F_U(u) = u$ for $0 \le u \le 1$

 $\rightarrow Y$ has same probability distribution as X

- X random variable with CDF F_X
- $U \sim \text{Unif}(0,1)$
- We can generate u (realization of U)
 - \rightarrow we can generate x (realization of X) as

$$x = F_X^{-1}(u)$$

if F_X^{-1} exists

Example:

- $X \sim \exp(\lambda)$
- Density function of X:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & otherwise \end{cases}$$

• CDF of *X*:

$$F_X(x) = \int_{-\infty}^{x} f_X(s) ds$$
$$= \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & otherwise \end{cases}$$

Example (cont.):

To determine F_X^{-1} solve the equation

$$y = 1 - e^{-\lambda x}$$

$$\Rightarrow e^{-\lambda x} = 1 - y$$

$$\Rightarrow x = -\frac{1}{\lambda} \ln(1 - y)$$

$$\Rightarrow F_X^{-1}(y) = -\frac{1}{\lambda} \ln(1 - y)$$

Then for $U \sim \text{Unif}(0,1)$

$$X = -\frac{1}{\lambda}\ln(1 - U) \sim \exp(\lambda)$$

- If F_X^{-1} can be derived
 - \rightarrow works well
- 2 If not
 - \rightarrow numerical solutions
 - \rightarrow time
 - \rightarrow numerical errors

Example: normal distribution

Generating Normal Distribution

- $\theta \in \mathrm{Unif}(0,2\pi)$
- $D \in \mathrm{Unif}(0,1)$

- 1: Generate θ , D
- 2: Generate X_1 and X_2 as

$$X_1 = \sqrt{-2\ln D}\cos\theta$$

$$X_2 = \sqrt{-2\ln D}\sin\theta$$

 X_1 and X_2 are independent and normally distributed

In R: function rnorm(n)

Generating Normal Distribution

• $X \sim N(0,1)$ can be transformed into $Y \sim N(\mu, \sigma^2)$:

$$Y = \mu + \sigma X$$

In R: function rnorm(n, μ, σ)

- Multivariate normal distribution: $\vec{Y} \sim N(\vec{\mu}, \Sigma)$
 - 1: Generate $X_1, \ldots, X_n, X_i \sim N(0, 1)$

$$\rightarrow \vec{X} = (X_1, \dots, X_n)$$

- 2: Compute **A** with $\mathbf{A}\mathbf{A}^{\top} = \mathbf{\Sigma}$
 - ightarrow Use Cholesky decomposition of Σ
 - \rightarrow in R: fucntion chol()
- 3: $\vec{Y} = \vec{\mu} + \mathbf{A}\vec{X}$

Acceptance/Rejection Method

- \bullet X random variable with density function f_X
- f_X similar to f_Y density of some known distribution
- Generate X using f_Y
- Requirement: there exists constant c with

$$cf_Y(x) \ge f_X(x)$$
, for all x

- \bullet f_Y majorizing density, proposal density
- f_X target density
- ullet c majorizing constant

Acceptance/Rejection Method

- 1: while X not generated do
- 2: Generate Y from distribution with density f_Y
- 3: Generate U from Unif(0,1)
- 4: if $U \leq f_X(Y)/(cf_Y(Y))$ then
- 5: X = Y
- 6: Set X is generated
- 7: end if
- 8: end while
 - X is "really" from distribution with density f_X
 - Larger c leads to larger rejection rate
 - $\rightarrow c$ should be as small as possible
 - Problems:
 - Difficult to find majorizing density
 - High rejection rate

Acceptance/Rejection Methods

```
Example: Generate beta(2,7)
y < -dbeta(seq(0,2,0.0001),2,7)
\mathbf{c} < -\mathbf{max}(\mathbf{y}) : \mathbf{c}
[1] 3.172554
 1: while X not generated do
       Generate Y \sim \text{Unif}(0,1)
 2:
 3:
       Generate U \sim \text{Unif}(0,1)
      if U < dbeta(Y, 2, 7)/(c \cdot 1) then
 4:
 5:
    X = Y
         Set X is generated
 6:
       end if
 7:
 8: end while
```

Random Numbers in R

- ddistribution name(): density of distribution
- 2 pdistribution name(): CDF of distribution
- **3** qdistribution name(): quantiles of distribution
- 4 rdistribution name(): simulate from distribution

See also

- ?RNGversion
- ?RNGkind
- https:
 //bugs.r-project.org/bugzilla/show_bug.cgi?id=17494

•••

Thank you for attention!