CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DECOM - CAMPUS NOVA GAMELEIRA

Reconhecimento Óptico de Caracteres Numéricos

ALUNOS:

FELIPE MARTINS LEMOS DE MORAIS
FERNANDO GARAMVÖLGYI MAFRA VEIZAGA
GABRIEL SIQUEIRA SILVA
MARIA IZAMARA CLARA DA SILVA COUTINHO
PEDRO SANTOS OLIVEIRA
VINICIUS NASCIMENTO SILVA

PROFESSOR ORIENTADOR:

ROGÉRIO GOMES

Sumário

- → Introdução
- → Classificadores
 - → Decision tree
 - → Random forest
 - → Convolutional Neural Networks (CNN)
- → Comparação dos classificadores
- → Conclusão

Introdução

A Inteligência Artificial e a Inteligência Computacional estão cada dia mais se destacando na realização de tarefas que visam facilitar a vida humana.

Uma das utilizações delas atualmente é para o reconhecimento de manuscritos, o qual tem uma relevância imensa em várias áreas.

Exemplos de uso:

- Digitalização de documentos manuscritos
- Reconhecimento de assinaturas
- Reconhecimento de expressões matemáticas

Inspiração

Problema proposto pelo professor Marco Cristo da UFAM de reconhecer 10 dígitos, de 0 a 9, escritos a mão e digitalizados.

Implementação utilizando Weka, J48 e Naive Bayes.

Objetivo

Mostrar como o tratamento da entrada pode ou não afetar o desempenho dos classificadores no reconhecimento de caracteres numéricos escritos à mão baseado nas métricas de desempenho.

MNIST

- → Base de dados de dígitos manuscritos
- → Dígitos de 0 a 9
- → Padronizadas em uma matriz 28x28
- → Cada pixel representa um nível de escala de cinza

Tratamento das entradas

Gera um mapa de calor com base na matriz de dados. Elimina as linhas e colunas que não ajudam na classificação, reduzindo o número de atributos.

Gera um mapa de calor com a informação da importância de cada pixel para a classificação.

Torna os dados binários para tratar as bordas mais claras e diminuir quantidade de features.

Classificadores

- → Capacidade de atribuir uma categoria ou uma classe;
- → Classificadores utilizados no trabalho;
- → Random Forest
 - ensemble method
 - building blocks
 - Construção de uma série de árvores
 - $m \approx \sqrt{p}$

Random forest - Optuna

Random forest - Optuna

Random forest - SF

Random forest - IG

Random forest - Binary

Random forest - Mix

Random forest - Mix

Modelos	Macro F1	Accuracy
Sem filtragem	0.7514	0.7530
Ganho de informação	0.7633	0.7652
Binário	0.7274	0.7310
Mix	0.7688	0.7701

Matrizes de confusão

Matrizes de confusão

Decision tree

- Modelos versáteis e interpretáveis que tomam decisões com base em testes hierárquicos em atributos.
- → Fáceis de se explicar.
- → Lidam facilmente com preditores qualitativos sem a necessidade de criar variáveis fictícias.

Decision tree

- → Geralmente requerem menos poder computacional do que modelos mais complexos, como CNNs.
- → Úteis em situações em que recursos computacionais são limitados.

Decision tree - Sem filtros

Decision tree - Sem filtros

Decision tree - Infogain

Decision tree - Infogain

Decision tree - Transform

Decision tree - Transform

Decision tree - Mix

Decision tree - Mix

Decision tree - Comparação

Modelos	Macro F1	Accuracy
Sem filtro	0.6523	0.6552
Ganho de informação	0.6509	0.6552
Transform	0.7157	0.7188
Mix	0.7422	0.7457

CNN

Modelos	Accuracy Treino	Accuracy
Rede Neural Totalmente Conectada	0.9924	0.9772
CNN Básica	0.9966	0.9907
CNN com Dropout	0.9930	0.9948

Comparação

Conclusão

Dúvidas?