AI-1110 Assignment 1

Shirsendu Pal CH22BTECH11033

April 2023

Problem - 11.16.4.9

1. **Question:** If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, (i) the digits are repeated? (ii) the repetition of digits is not allowed?

Solution: Let us define the digits set T and sample space S such that

$$T := \{0, 1, 3, 5, 7\}$$

and

$$S \coloneqq \{x \mid (x \geq 5001) \land (\text{digits}(x) \in T)\}$$

Thus, $|S| = 2 * 5^3 - 1$ because first digit-place(i,e. leftmost digit) of $x \in S$ can have digits from $\{5,7\}$. So, we have 2 choices. The next 3 places can be filled in |T| = 5 ways. Finally, we exclude the case of 5000. So, in total we have $2 * 5^3 - 1$ elements in S.

NOTE: A number is divisible by $5 \iff$ its last digit is 0 or 5.

(i) Let E_1 denote the event where the numbers $\in S$ and repetition of digits from T is allowed. Then we can pick 2 digits $\{5,7\}$ as the leftmost digits, while we can have $\{0,5\}$ as the right-most digits. Whereas, the middle two digit places can be filled in 5 ways. We also exclude the case where the number formed is 5000. So, we have a total of $2*2*5^2-1$ ways. So,

$$\mathcal{P}(E_1) = \frac{2 * 2 * 5^2 - 1}{2 * 5^3 - 1} = \frac{99}{249} = \frac{33}{83}.$$

(ii) Let E_2 denote the event where the numbers $\in S$ and repetition of digits from T is **not** allowed. Then we have 2 possibilities for left-most position $\{5,7\}$. Let us consider that the left-most position has 5. It implies that right-most position is bound to be 0 for E_2 to occur. The middle 2 positions can be filled with digits from $T - \{0,5\}$. That is, we can do it in 3P_2 ways. And if the left-most position has 7, then right-most position has 2 possibilities $\{0,5\}$. The middle positions can then have 3P_2 possibilities of filling up. Hence, total number of ways is $(1*{}^3P_2*1) + (1*{}^3P_2*2)$. So,

$$\mathcal{P}(E_2) = \frac{(1 *^3 P_2 * 1) + (1 *^3 P_2 * 2)}{2 * 5^3 - 1} = \frac{6 + 12}{249} = \frac{6}{83}.$$

THE END