Problema logaritmului discret

Algoritmul Pohlig-Hellman

Ingredientul principal al acestui algoritm îl constitue Lema Chineză a resturilor. Dacă $m=m_1m_2\dots m_t$, unde m_i sunt prime între ele două câte două, atunci rezolvarea unei ecuații modulo m este mai mult sau mai puțin echivalentă cu rezolvarea ecuațiilor modulo m_i pentru fiecare i. În cazul problemei logaritmului discret, trebuie să rezolvăm ecuația $g^x\equiv h\pmod{p}$. În acest caz, modulul p este prim, fapt ce ne sugerează că nu poate fi folosită Lema Chineză a resturilor. Totuși, să ne amintim că soluția x este determinată modulo p-1, și deci trebuie să gândim soluția ca element al lui $\mathbb{Z}/(p-1)\mathbb{Z}$. Aceasta ne sugerează că descompunerea lui p-1 în factori primi ar putea juca un rol important în studiul dificultății PLD în $(\mathbb{Z}/p\mathbb{Z})^*$

- Descompunem pe n=p-1 în factori primi, adică $n=p-1=\prod_{i=1}^k p_i^{c_i}$, unde p_i sunt numere prime distincte. Notația n=p-1 a fost făcută pentru uşurința în scriere.
 - Valoarea $x = d \log_q h$ este determinată unic modulo n.
- Dacă am putea calcula $x_i = x \pmod{p_i^{c_i}}$, pentru fiecare $i, 1 \le i \le k$, atunci putem calcula $x \pmod{n}$ folosind Lema Chineză a resturilor.

Sistemul de congruențe liniare simultane $x \equiv x_i \pmod{p_i^{c_i}}, \ 1 \le i \le k$, are soluție unică modulo n = p - 1. Aceasta se calculează astfel: definim $N_i = \frac{n}{p_i^{c_i}}, \ 1 \le i \le k$. Evident $\gcd(N_i, p_i^{c_i}) = 1$ și deci există M_i astfel ca $M_i \cdot N_i \equiv 1 \pmod{p_i^{c_i}}$. Se verifică ușor că

$$x = \sum_{i=1}^{k} x_i M_i N_i$$

este soluție a sistemului de mai sus, unică modulo n.

Fie q un număr prim astfel încât $n \equiv 0 \pmod{q^c}$ și $n \not\equiv 0 \pmod{q^{c+1}}$.

Să vedem cum se poate calcula valoarea $a=x \pmod{q^c}$, unde $0 \le a \le q^c-1$. Dezvoltăm mai întâi pe a în baza q:

$$a = \sum_{i=0}^{c-1} a_i q^i,$$

unde $0 \le a_i \le q-1$, pentru $0 \le i \le c-1$. Să mai observăm că putem exprima pe x ca $x=a+sq^c$ pentru un anumit întreg s și deci

$$x = \sum_{i=0}^{c-1} a_i q^i + s q^c.$$

Vom calcula pe rând coeficienții a_i . Primul pas al algoritmului este calculul lui a_0 .

Principala observație folosită în algoritm este

$$h^{n/q} \equiv g^{a_0 n/q} \pmod{p}.$$

Într-adevăr

$$h^{n/q} = (g^x)^{n/q}$$

$$= g^{(a_0 + a_1 q + \dots + a_{c-1} q^{c-1} + sq^c)n/q}$$

$$= g^{(a_0 + Kq)n/q}, \text{ unde } K \text{ este un întreg}$$

$$= g^{a_0 n/q} (g^n)^K$$

$$= g^{a_0 n/q} (\text{mod } p).$$

Folosind această ecuație este simplu să-l calculăm pe a_0 . De exemplu, calculăm $\gamma =$ $g^{n/q}, \gamma^2, \ldots$ până când găsim un $i, i \leq c-1$, astfel încât $\gamma^i \equiv h^{n/q}$. Acest i va fi a_0 .

Dacă c=1 algoritmul se termină. Altfel c>1 și calculăm a_1,\ldots,a_{c-1} . Aceștia se calculează la fel ca a_0 . Presupunem că am calculat deja coeficienții $a_0, a_1, \ldots, a_{j-1}$. Notăm $h_0 = h$ și definim $h_j = hg^{-(a_0 + a_1q + \dots + a_{j-1}q^{j-1})}$, pentru $1 \le j \le c-1$. Vom folosi acum observația

$$h_j^{n/q^{j+1}} \equiv g^{a_j n/q} \pmod{p}.$$

Identitatea se demonstrează analog:

$$\begin{array}{lll} h_j^{n/q^{j+1}} & = & (g^{x-(a_0+a_1q+\cdots+a_{j-1}q^{j-1})})^{n/q^{j+1}} \\ & = & (g^{a_jq^j+\cdots+a_{c-1}q^{c-1}+sq^c})^{n/q^{j+1}} \\ & = & g^{(a_jq^j+K_jq^{j+1})n/q^{j+1}}, \, \mathrm{unde} \, K_j \, \text{ este un întreg} \\ & = & g^{a_jn/q}(g^n)^{K_j} \\ & = & g^{a_jn/q} \, (\mathrm{mod} \, p). \end{array}$$

Pentru a completa descrierea algoritmului să observăm că h_{j+1} se poate calcula recursiv din h_i de îndată ce îl ştim pe a_i :

$$h_{j+1} = h_j \cdot g^{-a_j q^j}.$$

Exemplul 1. Fie p=29 si q=2 o rădăcină primitivă modulo 29. Vrem să rezolvăm PLD $2^x \equiv 18 \mod 29$.

Fie n = p - 1 = 28. Descompunem pe 28 în factori primi: $28 = 2^2 \cdot 7^1$.

 $Mai \ \hat{i}nt\hat{a}i \ luăm \ q=2 \ si \ c=2.$

Atunci $\gamma_1 = \gamma = g^{n/q} = 2^{28/2} = 2^{14} = 28 \pmod{29}$. Pe de altă parte calculăm $h^{(p-1)/q} = 18^{28/2} = 18^{14} = 28 \pmod{29}$. Am găsit $a_0 = 1$.

Determinăm acum pe a_1 .

Calculăm $h_1 = h_0 g^{-a_0} = h g^{-a_0} = 18 \cdot 2^{-1} = 18 \cdot 15 = 9 \pmod{29}$.

Atunci $h_1^{(p-1)/q^2} = h_1^{28/4} = 9^7 = 28 \pmod{29}$.

Cum $\gamma_1 \equiv 28 \pmod{29}$, găsim $a_1 = 1$, adică $x \equiv 1 + 2 \cdot 2 = 3 \pmod{4}$.

Punem acum q = 7 şi c = 1.

Calculăm acum $h^{(p-1)/q} = h^{28/7} = 18^4 = 25 \pmod{29}$.

Pe de altă parte $\gamma=g^{n/q}=2^{28/7}=16 \pmod{29}$. Se mai calculează $\gamma^2=24,\ \gamma^3=7$ și $\Gamma^4=25$. Gă sim $a_0=4$ și deci $x\equiv 4\pmod{7}$.

În final, folosind Lema Chineză a resturilor, se rezolvă sistemul $x\equiv 3\pmod 4$, $x\equiv 4\pmod 4$

$$N_1=rac{28}{4}=7.\ N_1\cdot M_1\equiv 1\ (mod\ 4).\ Rezult\ N_1=3.$$

 $N_2 = \frac{28}{7} = 4$. $N_2 \cdot M_2 \equiv 1 \pmod{7}$. Rezultă $N_2 = 2$. În final se găsește soluția $x = 3 \cdot 7 \cdot 3 + 4 \cdot 4 \cdot 2 = 11 \pmod{28}$, adică $2^{11} \equiv 18 \pmod{29}$.