Hoja de trabajo #2

Nombre: Jorge Armando Marroquín Ochoa

Carnet: 2018358

Correo: marroquin181358@unis.edu.gt

1. Ejercicio #1

Demostrar:

 $\forall n. n^3 > n^2$

Caso base:

- 1. $0^3 \ge 0^2$
- 2. $0 \ge 0$

Caso inductivo:

- 1. $(n+1)^3 \ge (n+1)^2$
- 2. $(n+1) \ge (n+1)^2/(n+1)^2$
- 3. Un número partido por él mismo es 1: $(n+1) \geq 1$
- 4. $n \ge 1 1$
- 5. $n \ge 0$

2. Ejercicio #2

Demostrar:

 $\forall n. (1+x)^n \geq nx$

1

Caso base:

- 1. $(1+0)^0 \ge 0(0)$
- 2. Todo número elevado a la 0 es 1: $1 \ge 0$

Caso inductivo:

Caso 1: $-1 \le x \le 0$

- 1. $(1+x)^{(n+1)} \le (n+1)x$
- 2. $(1+x)^{(n+1)} \le nx + x$
- 3. $(1+x).(1+x)^n \le nx + x$
- 4. $(1+x)^n \cdot x(1+x)^n \le nx + x$
- 5. $(1+x)^n$ equivale a nx, por lo tanto: $nx.x(nx) \le nx + x$
- 6. nx/nx equivale a 1, por lo tanto: $x(nx) \le x$
- 7. Comprobación $nx \le 1$ cuando $-1 \le x \le 0$

Caso 2: $x \ge 0$

1.
$$(1+x)^{(n+1)} \ge (n+1)x$$

2.
$$(1+x)^{(n+1)} \ge nx + x$$

3.
$$(1+x).(1+x)^n \ge nx + x$$

4.
$$(1+x)^n . x(1+x)^n \ge nx + x$$

- 5. $(1+x)^n$ equivale a nx, por lo tanto: $nx.x(nx) \ge nx + x$
- 6. nx/nx equivale a 1, por lo tanto: $x(nx) \ge x$
- 7. x/x equivale a 1, por lo tanto: $nx \ge 1$
- 8. Comprobación $nx \ge 1$ cuando $-1 \le x \ge 0$