UD5.TRABAJO FINAL DE UNIDAD

SEGURIDAD EN LA PROGRAMACIÓN Y LAS COMUNICACIONES

TABLA DE CONTENIDO

NOTAS Y CONSEJOS	2
ENTREGAS E INDICACIONES	2
TAREA	3
CONCEPTOS TRATADOS	3
Funcionalidad	
Interfaz de usuario	4
DOCUMENTACIÓN	4
ESTRUCTURA DEL PROGRAMA	4
=1,4,1,4,4,1	_

NOTAS Y CONSEJOS

- 1) Antes de hacer nada, lea atentamente el contenido.
- 2) Es una **prueba individual**, no copies a tus compañeros. Si se observa que se ha copiado se resolverá calificando como no entregado a las partes implicadas.
- 3) Si se observa que el código es un **copia y pega de ChatGPT** o cualquier otro asistente de IA el trabajo será calificado con un 0/10.
- 4) **Revisar el programa es tu responsabilidad**, si no funciona correctamente cuando lo pruebas, no funcionará cuando tu profesor lo revise.
- 5) Nombre del proyecto: NombreApellido1Apellido2 Tra RA5 2024
- 6) Los proyectos que no compilen o no se ejecuten y no incluyan el fichero .jar no se corregirán.
- 7) Se penalizará el código que esté mal estructurado y no esté refactorizado.
- 8) Es **obligatorio** poner comentarios en el código significativos que expliquen de manera clara el código programado.

ENTREGAS E INDICACIONES

Fecha de entrega límite:

6 de marzo de 2024

Qué hay que entregar:

- El Proyecto de maven en formato zip.
- Fichero .jar de la aplicación de manera que sea funcional.

TAREA

CONCEPTOS TRATADOS

El alumnado deberá integrar en el presente trabajo final de unidad los siguientes conceptos:

- Validación de entradas de usuario.
- Funciones resumen.
- Criptografía simétrica.
- Criptografía asimétrica.
- Firma electrónica.
- Creación de registros.

FUNCIONALIDAD

Se deberá desarrollar una aplicación que permita:

- Calcular la función resumen (hash) de un fichero.
- Calcular la función resumen de una cadena de texto.
- Creación de una clave secreta utilizando el algoritmo AES.
 - Se generará la clave secreta AES a partir de una contraseña introducida por el usuario convertida en un array de bytes. Para hacerlo, mirar la clase SecretKeySpec.
 - La contraseña introducida por el usuario será analizada por el programa para comprobar que es segura, y en caso contrario informarle de que no es segura y qué condiciones reúne una contraseña segura.
- Cifrado y descifrado de ficheros utilizando el algoritmo de criptografía simétrica
 AES.
- Creación de pares de claves utilizando el algoritmo RSA.
- Gestión de pares de claves RSA.
 - Salvar una clave pública o privada en un fichero.
 - o Cargar una clave pública o privada de un fichero.
- Cifrado y descifrado de ficheros utilizando el algoritmo de criptografía asimétrica RSA.
- Firma de ficheros y verificación.
- Generar un log con los errores (excepciones) del programa y otro con la actividad del usuario en el tiempo.

INTERFAZ DE USUARIO

Interfaz de usuario de la aplicación:

- Cada estudiante deberá realizar un tipo diferente de interfaz, aquella que le haya indicado el profesor.
- Los tipos de interfaz serán:
 - o Interfaz gráfica de usuario utilizando JavaFX.
 - o Interfaz ASCII de usuario (terminal interactiva).
 - o Ejecución no interactiva mediante comando y opciones.

DOCUMENTACIÓN

La aplicación se deberá documentar en el código:

- El estudiante deberá explicar detalladamente en el código el programa.
- Se comentará en la línea anterior a cada método qué función tiene éste dentro del programa de manera detallada.
- Al comienzo de cada clase ese explicará cuál es su funcionalidad.
- Se indicará para cada atributo de clase cuál es su función.

Además, deberá incorporar ayuda de usuario.

ESTRUCTURA DEL PROGRAMA

La aplicación deberá ser desarrollada siguiendo el concepto de una clase una función, por lo que para las funcionalidades pedidas **se deberán implementar** <u>al menos</u> las siguientes **clases**:

- HashTool.
- PasswordValidator.
- SecretKeyManagerAES.
- AESEncription.
- KeyPairManagerRSA.
- RSAEncryption.
- DigitalSigningTool.

Además, en el caso de la **aplicación con interfaz de usuario por terminal,** tanto interactiva como no, se deberán crear las siguientes clases:

- UserInterface.
 - Implementación de los mensajes que se muestran al usuario en función de sus entradas.
- Banner.
 - Se implementan dos métodos: uno para el mensaje de bienvenida y otro para el de despedida.

Además, la **clase principal** se llamará **App**, y se utilizará únicamente para ejecutar la interfaz de usuario e imprimir el banner.

EVALUACIÓN

Con esta práctica se evalúan los CE A, B, E, F y H del RA5.

- La aplicación implementa correctamente la función hash de un texto. (0,5 puntos)
- La aplicación implementa correctamente la función hash de un fichero. (0,5 puntos)
- Se ha analizado si la contraseña introducida por el usuario para generar la clave AES es segura. (0,5 puntos)
- Se genera la clave secreta AES a partir de la contraseña. (0,5 puntos)
- Se cifra y descifra correctamente el fichero con la clave secreta AES. (1,5 puntos)
- Se genera el par de claves RSA. (0,5 puntos)
- Se salvan y cargan las claves RSA en ficheros. (1 punto)
- Se utilizan el par de claves RSA para cifrar y descifrar un fichero. (1,5 puntos)
- Se utiliza el par de claves para firmar electrónicamente. (1 punto)
- Se genera el fichero .jar y funciona correctamente. (0,5 puntos)
- La aplicación es sólida, no presenta errores y controla correctamente las excepciones. (1 punto)
- La aplicación genera los registros de errores y acciones del usuario. (0,5 puntos)
- La clases están correctamente documentadas, con comentarios explicativos para la clase, atributos y cada uno de los métodos. (0,5 punto)