Abstract Algebra Summary

Xue Leyang

March 25, 2017

1 The System of Natural Number

1.1 Prosuct Set

Definition 1.1.1. The product set $S \times T$ ofteo arbitrary sets S and T is a set of pairs $(s,t), s \in S, t \in T$. In general $\prod S_i = S_1 \times S_2 \times \cdots \times S_r$ is the collection of r-tuples (s_1, s_2, \cdots, s_r) , where $s_i \in S_i$. If (s_1, s_2, \cdots, s_r) and $(s'_1, s'_2, \cdots, s'_r)$ are equal, we have $s_1 = s'_1, s_2 = s'_2, \cdots, s_r = s'_r$.

1.2 Mapping

Definition 1.2.1. A mapping α of set S onto set T if $\forall t \in T, \exists s \in S \Rightarrow \alpha(s) = t$, we also write the image of s in T as $s\alpha$ or s^{α} . The image set of S is denoted as $S\alpha$ or S^{α} .

If α is a one-to-one mapping, s is unique for every t, and we call a inverse mapping α^{-1} which is one-to-one of T onto S

Definition 1.2.2. Resultant or Product of mapping is denoted as $\alpha\beta$, where α maps set S onto set T and β maps set T onto set U. Mapping of S onto U can be written as $S(\alpha\beta) = (S\alpha)\beta$, and same for each element.

Remark. Mapping of a set into itself is called transformations of sets, including Identity mapping that leave all element in S fixed.

Definition 1.2.3. Identity mapping, denoted $\mathbb{1}_S$, its product with any transformation α , $\mathbb{1}_S \alpha = \alpha = \alpha \mathbb{1}_S$

Theorem 1.2.1. If α is a one-to-one mapping of S onto T and has inverse α^{-1} , then $\alpha\alpha^{-1} = \mathbb{1}_S$ and $\alpha^{-1}\alpha = \mathbb{1}_T$. Conversely, if $\alpha: S \mapsto T$ and $\beta: T \mapsto S$ such that $\alpha\beta = \mathbb{1}_S$ and $\beta\alpha = \mathbb{1}_T$, then α, β are one-to-one mapping and $\beta = \alpha^{-1}$

Theorem 1.2.2. Associative law holds for the resultant of transformation of one set.

Proof. Suppose we have for sets S, T, U, V and $\alpha : S \mapsto T; \beta : T \mapsto U; \gamma : U \mapsto V$. Then $\forall x \in S, x((\alpha\beta)\gamma) = (x(\alpha\beta)\gamma) = (x(\alpha\beta)\gamma)$

1.3 Equivalence Relations

Definition 1.3.1. The equivalence relation \sim of a pair of element satisfies:

- 1. $a \sim a$ (reflective property).
- 2. $a \sim b \Rightarrow b \sim a$ (symmetric property)
- 3. $a \sim b$ and $b \sim c \implies a \sim c$ (transitive property)

Definition 1.3.2. We have a relation \sim defined on a set S, an equivalence class is the subset of S of element b such that $b \sim a$.

Theorem 1.3.1. Two equivalence classes are either identical or mutually exclusive

Proof. Suppose we have an equivalence class [a] of element a, if $b \in [a]$, then $[b] \subseteq [a]$; hence by maximality of [b], we conclude [b] = [a].

Corollary 1.3.1.1. The collection of distinct equivalence classes gives a decomposition of the set S into multually exculsive subsets. Conversely, suppose a set $S = \bigcup S_i$, where S_i are multually exclusive, we can define relation \mathcal{R} as $a \sim b \iff$ subsets S_i, S_j containing a, b are identical.

Definition 1.3.3. The quotient set of S with equivalence relation \mathcal{R} , denoted $S \setminus \mathcal{R}$, is the collection of all equivalence classes in S, where $s \mapsto [s]$ and $S \mapsto S \setminus \mathcal{R}$, i.e. each element maps to its equivalence class.

2 Semi-Groups and Groups

2.1 Semi-Groups

Definition 2.1.1. A semi-group is a system consisting of a set \mathfrak{S} and an associative binary composition in \mathfrak{S} . i.e. $\forall a, b, c \in \mathfrak{S}$, we have (ab)c = a(bc).

Definition 2.1.2. Element a and b are said to be commute if $ab = ba, a, b \in \mathfrak{S}$. If it holds for any pair a, b in \mathfrak{S} then \mathfrak{S} is called commutative.

Definition 2.1.3. An element $e_l \in \mathfrak{S}$ is called left identity if $\forall a \in \mathfrak{S}, e_l a = a$. Similarly, e_r is right identity if $\forall a \in \mathfrak{S}, e_r a = a$.

Theorem 2.1.1. If e_l , e_r both exists in \mathfrak{S} , then $e_l = e_r$, i.e. if two side identity exists then it is unique.

Proof. We have $e_r = e_r e_l = e_l$, from the definition of identity looking from two sides.

Definition 2.1.4. A right regular(unit) a and right inverse a', if $a, a' \in \mathfrak{S}$, aa' = e, two side inverse a^{-1}

Theorem 2.1.2. If right inverse and left inverse both exists, they are identical.

Proof. We set $a, a', a'' \in \mathfrak{S}$, that aa' = e, a''a = e, conclude that a' = (a''a)a' = a''(aa') = a''

2.2 Groups

Definition 2.2.1. A group \mathfrak{G} is a semi-group that has an identity e and in which every element is a unit.

- 1. associativity
- 2. Exist $e \in \mathfrak{G}$, $\forall a \in \mathfrak{G}$ such that ae = a = ea
- 3. $\forall a \in \mathfrak{G} \text{ exist } a^{-1} \text{ such that } aa^{-1} = e = a^{-1}a$

Definition 2.2.2. $\forall a, b, c \in \mathfrak{S}$, we have $ab = ac \Rightarrow b = c$ is called left cancellation and so is right cancellation that $\forall a, b, c \in \mathfrak{S}$, we have $ba = ca \Rightarrow b = c$.

Theorem 2.2.1. With $a, b \in \mathfrak{G}$, the linear equation ax = b the only solution $a^{-1}b$. Also ya = b has solution ab^{-1} .

Proof. If the solution is not unique, we set another solution to be x', so that ax = ax', contrasting to the result of left cancellation.

Theorem 2.2.2. The only idemponent $(\exists a \in \mathfrak{S}, a^2 = a)$ in a group is the identity (unity).

Proof. From $a \circ a = a$ we can observe a hold both the property of left and right unit, the a is a unit and unit is unique.

Theorem 2.2.3. A semi-group \mathfrak{S} with left unit e_L and left inverse a_L^{-1} , $\forall a \in \mathfrak{S}$, then it is a group. Also with right unit and right inverse.

Proof. We take $\forall a \in \mathfrak{S}, \ aa_L^{-1} = e_L aa_L^{-1} = \left[(a_L^{-1})_L^{-1} a_L^{-1} \right] aa_L^{-1} = (a_L^{-1})_L^{-1} (a_L^{-1}a) a_L^{-1} = e_L$ $ae_L = a(a_L^{-1}a) = e_L a = a$, so that we have equivalence property of right and left.

Theorem 2.2.4. If \mathfrak{S} is a semi-group and linear equation $ya = b; ax = b, \forall a, b \in \mathfrak{S}$ is solvable, then \mathfrak{S} is a group.

Proof. We suppose e is the solution for eqution $ya = a, \forall a \in \mathfrak{S}$, and that the solution for ax = b is g. Then eb = e(ag) = ag = b, e is proved to be a left identity. Also, yb = e is always solvable, so \mathfrak{S} has right inverse and right identity, thus is a group.

Theorem 2.2.5. A finite semi-group with cancellation laws hold is a group.

Proof. Let $\mathfrak{S} = (a_1, a_2, \dots, a_n)$ has n distinct element, take $a, b \in \mathfrak{S}$, and let $\mathfrak{T} = (aa_1, aa_2, \dots, aa_n) \Rightarrow \mathfrak{T} \subset \mathfrak{S}$ according to the self-mapping of \mathfrak{S} . $aa_i = aa_j \Rightarrow a_i = a_j$ by cancellation law, hence \mathfrak{T} also have n distinct elements $\Rightarrow \mathfrak{T} = \mathfrak{S}$. So that the linear equation ax = b is solvable in \mathfrak{S} , so as ya = b.

2.3 Subgroups

Definition 2.3.1. If a set \mathfrak{H} is a non-empty subset of (semi)group \mathfrak{S} and has property

- 1. closure i.e. $a, b \in \mathfrak{H} \implies ab \in \mathfrak{H}$
- 2. Exist $e \in \mathfrak{H}$, $\forall a \in \mathfrak{H}$ such that ae = a = ea
- 3. $\forall a \in \mathfrak{H}$ exist a^{-1} such that $aa^{-1} = e = a^{-1}a$

determines a sub-(semi)group of \mathfrak{S}

Theorem 2.3.1. Let \mathfrak{H} to be the subgroup of \mathfrak{G} , the identity in \mathfrak{G} is the identity in \mathfrak{H} , and $\forall a \in \mathfrak{H}$ the inverse in \mathfrak{G} is also the inverse in \mathfrak{H} .

Theorem 2.3.2. A non-empty subset \mathfrak{H} of a group \mathfrak{G} is a subgroup iff $\forall a, b \in \mathfrak{H}, ab^{-1} \in \mathfrak{H}$.

Proof. If \mathfrak{H} is a subgroup, then proved from Theorem 2.2.1.

 $\forall a \in \mathfrak{H}$, we have $e = aa^{-1} \in \mathfrak{H}$ and implies $a^{-1} = ea^{-1} \in \mathfrak{H}$, so that \mathfrak{H} contains an element and its inverse, hence $ab = a(b^{-1})^{-1} \in \mathfrak{H}$ proves closure.

Theorem 2.3.3. If A is collection of any subgroup \mathfrak{H} of \mathfrak{G} , then the intersection $\bigcap_A \mathfrak{H}$ is a subgroup.

Theorem 2.3.4. The centralizer $\mathfrak{C}(S)$, $S \subset \mathfrak{G}$ of \mathfrak{G} (the set of elements of \mathfrak{G} that commute with each element of S) is a subgroup of \mathfrak{G}

Proof. We take $a, b \in \mathfrak{C}(S), x \in S$, so that $(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) \Rightarrow ab \in \mathfrak{C}(S)$. And for $\forall a \in \mathfrak{C}(S)$, we have $ax = xa \Rightarrow axa^{-1} = x \Rightarrow xa^{-1} = a^{-1}x \Rightarrow a^{-1} \in \mathfrak{C}(S)$. The identity exists, so the $\mathfrak{C}(S)$ is a subgroup of \mathfrak{G} .

2.4 Isomorphism

Definition 2.4.1. Two groups \mathfrak{G} and \mathfrak{G}' are said to be isomorphic if there exists a 1-1 mapping $x \mapsto x'$ of \mathfrak{G} (Isomorphism) onto \mathfrak{G}' such that (xy)' = x'y'. \mathfrak{G} and \mathfrak{G}' are said to be *abstractly equivalent*, written as $\mathfrak{G} \cong \mathfrak{G}'$.

Theorem 2.4.1. Isomorphism is a equivalence relation (definition 1.3.1).

Theorem 2.4.2. If a mapping φ is an isomorphism of \mathfrak{G} onto \mathfrak{G}'

- 1. $e \in \mathfrak{G}$ is the identity, so that $\varphi(e) = e' \in \mathfrak{G}$ is the identity of \mathfrak{G}' .
- 2. $a \in \mathfrak{G}$ has inverse a^{-1} , so that $\varphi(a^{-1}) = (\varphi(a))^{-1}$.

2.5 Transformation Groups

Definition 2.5.1. For an arbitrary set S, let $\mathfrak{T}(S)$ to be semi-group of transformations (mapping) of S into itself. Generally, a transformation group (in S) is any subgroup of a group $\mathfrak{T}(S)$ in which the definition 2.2.1 holds.

Definition 2.5.2. The special case in which S is the set of n numbers, $\mathfrak{T}(S)$ is called symmetric group of degree n, donated S_n . For $\alpha \in S_n$, we write $\begin{pmatrix} 1 & 2 & \cdots & n \\ 1\alpha & 2\alpha & \cdots & n\alpha \end{pmatrix}$ to represent the mapping order.

ABEDEFGHIJKLMNDPKSTUVXWYZ abcdefghijklmnopqrstuvwryz

- 3 Rings
- 4 Fields