

POOR6 - Riccardo Gobbo, Simone Merlo, Diego Spinosa

Outline

01

Domain & Data Sources

Domain, goals and data sources

03

Queries & Data Analysis

Queries, heatmaps and graphs

02

Ontology

Domain model

04

Future Work

Future work & possible expansion

01 Domain & Data Sources

Domain

Electric Cars

Plug-In and Battery cars registered in the state of Washington

Charging Stations

Private and Public Stations to recharge electric vehicles

Adjusted Gross Income

Adjusted Gross Income (AGI) for each ZIP Code

ZIP Codes

ZIP Codes and related cities and counties

Goal

The goal of our work is to provide a knowledge graph to evaluate the electric vehicles accessibility by highlighting the **correlation** between:

- The electric cars
- The charging stations
- The average income

of the people living in the state of Washington, focusing on the different territorial divisions.

Data Sources

Electric Cars

Plug-In and Electric (BEV)
cars

2 possible sources:

- Kaggle
- data.wa.gov

AGI

Adjusted Gross Income for each ZIP Code

Charging Station

Data about Public and
Private station to charge
electric vehicles

02 Ontology

Ontology

03 Queries & Data Analysis

Cars Over Time

How many electric cars are registered for each model-year?

➤ Indicator of EV adoption through time.


```
SELECT ?year (COUNT(?car) as ?amount) WHERE{
    ?car elec:hasModelYear ?moye .
    ?moye elec:hasYear ?year .
}
GROUP BY ?year
```

PHEV Cars Range and AGI

What is the average range of PHEV cars and average AGI for each county?

> Do, on average, richer regions buy longer-range hybrid vehicles?

```
select ?county (AVG(?avgagi) AS ?avgagi) (AVG(?range) AS ?avgrange) where {
    ?county a elec:County.
   ?city elec:belongsTo ?county.
   ?zipcode elec:ofCity ?city.
   ?car a elec:PHEV;
         elec:isRegisteredIn ?zipcode;
         elec:hasRange ?range.
   FILTER(?county=?agicounty)
        select ?agicounty (AVG(?agi) AS ?avgagi) where {
            ?agicounty a elec:County.
            ?city elec:belongsTo ?agicounty.
            ?zipcode elec:ofCity ?city;
                  elec:hasAqi ?aqi.
        GROUP BY ?agicounty
        ORDER BY asc(?agicounty)
GROUP BY ?county
ORDER BY desc(?avgagi)
```


Clean and Not Clean Cars

What is the clean and non-clean car count for each production year?

➤ Highlights how the amount of clear and non-clean registered vehicles varied over time and their proportion.


```
SELECT ?year ?clc ?nclc WHERE{

# Below, the amount of registered clean "model years" is queried.

{

SELECT ?year (COUNT(?car) AS ?clc) WHERE{

?moye elec:hasYear ?year .

?car elec:hasModelYear ?moye .

?car rdf:type elec:CleanCar .
}

GROUP BY ?year
}

# Below, the amount of registered non-clean "model years" is queried.

{

SELECT ?year (COUNT(?car) AS ?nclc) WHERE{

?moye elec:hasYear ?year .

?car elec:hasModelYear ?moye .

?car rdf:type elec:NotCleanCar .
}

GROUP BY ?year
}

ORDER BY DESC(?year)
```

AGI and Station densities

What are the mean AGI and charging station amount/type distributions?

Highlights the eventual correlation between wealth and charging station density/type

Car and Station densities

What are the car and the electric station distributions?

➤ Highlights the eventual correlation between car density and charging station density

KG Applications

Charging station-Car number correlation

Does charging station density influence EV diffusion, both by limiting or supporting it?

04 Future Work

Future Development & Expansion

Add more US States

Expand the kg with data from other US states

Range of electric cars

Range of electric cars is not maintained since they are considered all clean

Expand toEurope/World

Challenge due to the ZIP Codes

Add power suppliers

Need a data source to merge cars and stations power suppliers

Thanks for your attention!

Serialization (1)

URI processing:

```
def urify string(s: str):
    s=unidecode(s)
    pattern = "[^0-9a-zA-Z\s]+"
    s = re.sub(pattern, " ", s).title().replace(" ", "")
    return s
Stations File pre-processing:
file = open(SOURCE FOLDER + STATIONS FILE, "r", encoding="utf-8")
                                                                               # Input file
wa fuel stations = wa e stations = open(DATA FOLDER + STATIONS FILE, "w", encoding="utf-8")
                                                                                            # Output file
# Write CSV headers
wa_fuel_stations.write(file.readline())
row = file.readline()
                                  # Read first line
while (row2 := file.readline()):
   row2 error = False
   # If the row is interrupted, recover it (there can be multiple interruption)
   while("ELEC" not in row2):
       row2_error = True
       index = row2.find('",')
                                                                 # Find the end of last interrupted string, if ex
       row = row.strip() + row2[index if index != -1 else 0 : ] # Concatenate the row begin with the second part
       row2 = file.readline()
   if ",WA," in row: wa e stations.write(row)
   row = row2
                                                                 # Check on next cycle
file.close()
wa e stations.close()
```

Serialization (2)

Car processing:

Car classification:

```
#Adding car type (BEV/PHEV or CleanCar/NotCleanCar)
  if(re.search(".*BEV.*",row['Electric Vehicle Type'])):
      graph.add((Car, RDF.type, ECO.CleanCar))
      graph.add((Car, RDF.type, ECO.BEV))
  else:
      graph.add((Car, RDF.type, ECO.PHEV))
      if ((row['Electric Range'] >0) and (row['Electric Range'] <30)):</pre>
          graph.add((Car, RDF.type, ECO.NotCleanCar))
      elif ((row['Electric Range'] >=30));
          graph.add((Car, RDF.type, ECO.CleanCar))
  #Adding range only if maintained (grater than zero)
  if (row['Electric Range'] > 0):
      graph.add((Car. ECO['hasRange'], Literal(row['Electric Range'], datatype=XSD.integer) ))
Car location:
  # If there are valid coordinates
  if (row['Vehicle Location'] is not None) and (point := re.findall("(?<=\())*, str(row['Vehicle Location']
      coordinates = point.pop().split()
      latitude = coordinates.pop()
      longitude = coordinates.pop()
      # Cars' coordinates represent the ZipCode centers, hence when these information is retrieved, it's added to
      graph.add((ZipCode, ECO['hasLongitude'], Literal(longitude, datatype=XSD.float)))
      graph.add((ZipCode, ECO['hasLatitude'], Literal(latitude, datatype=XSD.float)))
```