ECE M116C - CS M151B Computer Architecture Systems - UCLA

Cheat Sheet

Fall 2023

Cache Memory

Types of Caches

- Direct-Mapped: Each block maps to exactly one cache line.
- Set-Associative (A-way): Each block maps to one of A cache lines in a set.
- Fully Associative: Any block can be placed in any cache line.

Cache Parameters

Address Breakdown

- Number of Sets (S): Determines the number of cache sets.
- Associativity (A): Number of ways per set.
- Block Size (B): Number of bytes per cache block.

 $\label{eq:Virtual/Physical Address} \mbox{$=$ Tag \ | \ Index \ | \ Offset}$

• Tag Bits: Total Address Bits - (In-

• Cache Size (C): $C = S \times A \times B$

Page Tables

- Flat Page Table: Single-level, simple but large.
- Hierarchical Page Tables: Multilevel (e.g., two-level), reduces memory overhead.

Number of Pages

Virtual Pages = $\frac{V}{S}$, Physical Pages = $\frac{P}{S}$

Translation Lookaside Buffer (TLB)

Definition

• A cache for virtual-to-physical address translations.

TLB Size Calculation

TLB Size = $N_{\text{TLB}} \times (\text{VPN} + \text{PPN})$

- $N_{\rm TLB}$: Number of entries.
- VPN: Virtual Page Number bits.
- PPN: Physical Page Number bits.

Cache Mapping Schemes

• Offset Bits: log₂(B)

• Index Bits: $\log_2(S)$

• Direct-Mapped: A = 1

dex Bits + Offset Bits)

- Set-Associative: 1 < A <Total Lines
- Fully Associative: A = Total Lines

VIPT vs. PIPT

- VIPT (Virtually Indexed, Physically Tagged):
 - Index based on virtual address.
 - Tag based on physical address.
- PIPT (Physically Indexed, Physically Tagged):
 - Both index and tag based on physical address.

Virtual Memory

Key Concepts

- Virtual Address Space (V): Total addressable memory by virtual addresses.
- Physical Address Space (P): Total addressable memory by physical addresses
- Page Size (S): Size of a memory page.

Memory Consistency Models

Sequential Consistency (SC)

- Operations appear in a global sequential order.
- Easier to reason about but can limit performance.

Total Store Order (TSO)

- Relaxed model where stores are not immediately visible to all processors.
- Allows some reordering for performance.

Weak Consistency

- Fewer ordering guarantees.
- Requires explicit synchronization for ordering.

RISC-V Weak Memory Ordering (RVWMO)

- Optimistic load scheduling.
- Write-Read (W \rightarrow R) constraints relaxed.
- Read-Read (R→R) constraints maintained.

Synchronization Mechanisms

Fences

- Ensure memory operations before the fence complete before those after.
- Example in RISC-V: fence rwio

Mutexes and Locks

- Ensure mutual exclusion for shared resources.
- Example: acquire(lock) while (lock != 0) /* busy wait */ lock = 1; release(lock) lock = 0;

Semaphores and Barriers

- **Semaphores:** Synchronize access to shared resources using counters.
- Barriers: Synchronize multiple threads to reach a certain point before proceeding.

Atomic Instructions

- $\bullet\,$ Operations that execute indivisibly.
- Examples:
 - Test-and-Set: TS(int x) oldval = SWAP(x, 1); return oldval;
 - Compare-and-Swap (CAS)
 - Load-Reserved/Store-Conditional (LR/SC): loop: lr.w x2, 0(x1) addi x2, x0, 1 sc.w x2, 0(x1) bnez x2, loop

Cache Coherency

Coherency Protocols

- MSI: Modified, Shared, Invalid.
- MESI: Modified, Exclusive, Shared, Invalid.
- MOESI: Modified, Owned, Exclusive, Shared, Invalid.
- MOESIF: Modified, Owned, Exclusive, Shared, Invalid, Forwarder.

Coherency States

- Modified (M): Dirty, exclusive
- Exclusive (E): Clean, exclusive copy.
- Owned (O): Dirty, shared copy.
- Shared (S): Clean, shared copies.
- Invalid (I): No valid copy.
- Forwarder (F): Provides data to other caches.

Coherency Protocol Operations

- Read Miss: Load data into cache, set state based on existing copies.
- Write Miss: Invalidate other copies, set state to Modified.
- Write to Shared: Upgrade to Modified, invalidate others.
- Eviction: Write back if in Modified/Owned state.

False Sharing

- Occurs when multiple processors cache the same cache line with different variables.
- Leads to unnecessary invalidations and reduced cache efficiency.

Directory-Based Coherence

- Uses a centralized directory to track cache line states.
- Scales better for large multi-core systems.
- Reduces bus traffic compared to snooping protocols.

DMA and I/O

Direct Memory Access (DMA)

- Allows I/O devices to transfer data directly to/from memory without CPU intervention.
- Steps:
 - 1. CPU initializes DMA transfer by setting up DMA registers.
 - 2. DMA controller handles data transfer between I/O device and memory.
 - 3. Upon completion, DMA controller sends an interrupt to notify the CPU.

Benefits and Drawbacks

- Benefits:
 - Reduces CPU overhead for data transfers.
 - Enables simultaneous transfers and CPU processing.
- Drawbacks:
 - Complexity in managing multiple DMA channels.

- Potential for bus contention Memory Consistency and performance bottlenecks.

Network-on-Chip (NoC)

Overview

- On-chip communication subsystem connecting multiple cores, memory controllers, GPUs, and I/O devices.
- Facilitates efficient data exchange and scalability in multicore proces-

Design Challenges

- Performance Optimization: Ensuring low latency and high through-
- Scalability: Supporting increasing numbers of cores and devices.
- Energy Efficiency: Minimizing power consumption.
- Security: Protecting against data breaches and unauthorized access.
- Integration with **Emerging** Paradigms: Adapting to new computing models and technologies.

Design Ingredients

- Topology: Network structure (mesh, torus, star, etc.).
- Routing Logic: Algorithms for data packet traversal.
- Router Design: Handling data packets, buffering, and flow control.
- Bandwidth and Latency: Ensuring sufficient data transfer rates and minimal delays.

Consistency vs. Coherency

- Consistency: Ordering of parallel accesses between different addresses.
- Coherency: Ordering of parallel accesses to the same address.

Memory Operation Ordering

- Write-Read (W→R): Write must complete before subsequent read.
- Read-Read $(R \rightarrow R)$: Read must complete before subsequent read.
- Read-Write ($R\rightarrow W$): Read must complete before subsequent write.
- $(\mathbf{W} \rightarrow \mathbf{W})$: Write Write-Write must complete before subsequent write.

Memory Models

- Sequential Consistency (SC): Maintains all ordering constraints; simplest but can be slow.
- Total Store Order (TSO): Allows certain reordering for performance.
- Weak Consistency: More relaxed, requires explicit synchronization.

Writing Correct Programs

- Race-Free Programming: Ensure no data races.
- Synchronization Primitives: Use fences, mutexes, semaphores, etc.

Example Diagrams

Interrupt Handling Flowchart

Key Formulae

e	Concept	Formula	Resume Execution)
1 _	Number of Virtual Pages	$\frac{V}{S}$	
)-	Number of Physical Pages	$\frac{\frac{V}{S}}{\frac{P}{S}}$	Atomic Operations
	Page Table Size (Flat)	$E \times \frac{V}{S}$	•
	Page Table Size (Two-Level)	$2^{L_1} \times E +$	$\mathbf{C}_{\mathbf{C}}^{L_2} \overset{F}{\underset{\mathrm{Compare}}{\sum}} = \mathbf{C}_{\mathbf{C}}^{E}$
	Maximum VIPT Cache Size	$A \times S \times E$	$3 \leq 2^{\log_2(S_{\text{page}})}$
	Total Cache Size	$C = S \times A$	4b20B CAS(int* addr, int expected, int
	TLB Size	$N_{\mathrm{TLB}} \times (V_{\mathrm{TLB}})$	$p_{\mathbf{r}} \mathbf{r}_{\mathbf{v}} \mathbf{r}_{\mathbf$
a	Average Access Time (AAT)	$(1-M_{\mathrm{TLH}})$	$(H_{\mathrm{TLB}} + H_{\mathrm{Cache}}) + M_{\mathrm{TLB}} \times (P_{\mathrm{Walk}} + H_{\mathrm{Cache}})$
a	Offset Bits	- 02 ()	Load-Reserved/Store-Conditional
а	Index Bits	$\log_2(S)$	(LR/SC)
•	Tag Bits	Total Add	lress Bits – (Offset Bits + Index Bits) lrop: lr.w x2, 0(x1) addi x2, x0, 11 sc.w
:			re? O(re1) have re? loom // Detroy if stone

Table 1: Summary of Key Formulae

x2, 0(x1) bnez x2, loop // Retry if storeconditional failed

Tables and Figures

Cache Performance Metrics

Cache Level	Hit Time	Miss Penalty
L1	H_1	P_1
L2	H_2	P_2
L3	H_3	P_3
Main Memory	H_m	-

Table 2: Cache Performance Metrics

Comparison of Cache Mapping Schemes

Mapping Scheme	Flexibility	Complexity	Speed
Direct-Mapped	Low	Low	Fast
Set-Associative	Medium	Medium	Moderate
Fully Associative	High	High	Slow

Table 3: Comparison of Cache Mapping Schemes

TLB Workflow Diagram

Summary of Key Formulae

Concept	Formula	Variables
Number of Virtual Pages	$\frac{V}{S}$	V (Virtual Address Space), S (Page Size)
Number of Physical Pages	$\frac{V}{S}$ $\frac{P}{S}$	P (Physical Address Space), S (Page Size)
Page Table Size (Flat)	$E \times \frac{V}{S}$	E (Page Table Entry Size), V, S
Page Table Size (Two-Level)	$2^{L_1} \times E + 2^{L_2} \times E$	L_1, L_2 (Levels), E, V, S
Maximum VIPT Cache Size	$A \times S \times B \le 2^{\log_2(S_{\text{page}})}$	A (Associativity), S (Sets), B (Block Size),
		S_{page} (Page Size)
Total Cache Size	$C = S \times A \times B$	S, A, B
TLB Size	$N_{\mathrm{TLB}} imes (\mathrm{VPN} + \mathrm{PPN})$	$N_{ m TLB},{ m VPN},{ m PPN}$
Average Access Time (AAT)	$(1 - M_{\rm TLB}) \times (H_{\rm TLB} + H_{\rm Cache}) + M_{\rm TLB} \times$	$M_{ m TLB},H_{ m TLB},H_{ m Cache},P_{ m Walk}$
	$(P_{ m Walk} + H_{ m Cache})$	
Offset Bits	$\log_2(B)$	B
Index Bits	$\log_2(S)$	S
Tag Bits	Total Address Bits-(Offset Bits+Index Bits)	Total Address, Offset, Index Bits

Table 4: Summary of Key Formulae

Interrupt Handling Flowchart

Cache Coherency Example

MOESIF Coherence Protocol Example

Initial States: All Cores Invalid

Access Sequence: R1, R2, W1, R2, W3

Final States:

P1: S P2: S

P3: M

P4: I

Access	P1	P2	P3	P4
R1	E	I	I	I
R2	$F^{}$	S	I	I
W1	Μ	I	I	Ι
R2	O^	S	I	I
W3	I*	I	M	I

Table 5: MOESIF Coherence Protocol State Transitions

Atomic Operations

Compare-and-Swap (CAS)

bool CAS(int* addr, int expected, int new_val)if(*addr == expected)*addr = new_val; returntrue; returnfalse;

Load-Reserved/Store-Conditional (LR/SC)

loop: lr.w x2, 0(x1) addi x2, x0, 1 sc.w x2, 0(x1) bnez x2, loop // Retry if store-conditional failed