Properties of Limits – Part 1

For any real number "a", f and g are functions with limits that exist at x = a:

- 1. $\lim k = k$, for any constant k
- 2. $\lim_{x \to a} x = \mathbf{a}$ $f(x) = \chi$

- 3. $\lim_{x\to a}[f(x)\pm g(x)]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)$
- 4. $\lim_{x \to a} c \cdot f(x) = c \left[\lim_{x \to a} f(x) \right]$, for any constant c
- 5. $\lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right] \lim_{x \to 2} \left[\lim_{x \to 2} x^2 \sqrt{x}\right] = \left[\lim_{x \to 2} x^2 \sqrt{x}$

Ex 1.

Use the properties of limits to evaluate.

- a) $\lim_{x \to -2} (2x^2 7x + 4)$ = $\lim_{x\to -2} 2x^2 - \lim_{x\to -2} 7x + \lim_{x\to -2} 4$
 - 8 +14+4 = 2 (

b) $\lim_{x\to 1} [-2(x-3)^2 + 4]$ = $-\lambda \left[\lim_{x \to 1} (x-3) \right]^2 + \lim_{x \to 1} 4$ = $-\lambda \left[-2 \right]^2 + 4$ --4

c) $\lim_{x \to 3} \frac{3x^2 - x + 4}{2x - 3}$ **メー**つ3

d) $\lim_{x \to 8} \sqrt[3]{5x^2 - 18x - 8}$ = $3 / \lim_{x \to 8} 5x^2 - 18x - 8$ = $2 \sqrt[3]{21}$

Summary:

- In all the above cases the limit can be found by direct substitution... the function is continuous at the limit value so $\lim_{x \to a} f(x) = f(a)$. -> hole f(x)=# -> Asymp.
- When direct substitution of x = a results in $\frac{0}{0}$ this is called an *indeterminate form*.
- When this happens we look for an equivalent function that has all the same values as f(x)except at x = a

When direct substitution fails try:

a)
$$\lim_{x\to 3} \frac{x^2+x-12}{2x^2-5x-3} = \frac{0}{6}$$

= $\lim_{x\to 3} \frac{(x-3)(x+4)}{(x-3)(2x+1)}$

= $\frac{7}{7}$

2. Rationalizing
a)
$$\lim_{x \to 9} \frac{(\sqrt{x} - 3)}{(x - 9)} \cdot \frac{(\sqrt{x} + 3)}{(\sqrt{x} + 3)}$$

$$= \lim_{x \to 9} \frac{x - 9}{(x - 9)} \cdot \sqrt{x} + 3$$

$$= \lim_{x \to 9} \frac{x - 9}{(x - 9)} \cdot \sqrt{x} + 3$$

$$= \lim_{x \to 9} \frac{x - 9}{(x - 9)} \cdot \sqrt{x} + 3$$

FORCE FACTOR!

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} - 3)(\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

$$= \lim_{x \to 9} \frac{1}{(\sqrt{x})^{\frac{3}{2}} - 9} \times 91 (\sqrt{x} + 3)$$

b)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

=
$$\lim_{x\to 2} \frac{(x-2)(x^2+2x+4)}{x-2}$$

$$f(x) = \frac{x^3 - 8}{x - 2}$$
) $f(x) = 0$ rounded.

b)
$$\lim_{x\to 0} \frac{\sqrt{5+x}-\sqrt{5-x}}{x} \sqrt{5+x} + \sqrt{5-x}$$

=
$$\lim_{x\to0} \frac{5+x-(5-x)}{x(\sqrt{5+x}+\sqrt{5-x^{1}})}$$

3. Change of Variable

- a) $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-1}$ Note: this could be rationalized or force factored, but let's learn something new.
 - 1. Let $\sqrt{x} = \bigcirc$, so $x = \bigcirc^2$ and as $x \to 1$, $\bigcirc \to 1$
 - 2. Rewrite the question in terms of ①

 $\lim_{\Omega \to 1} \frac{\odot^2 - 1}{\odot - 1}$... now factor and evaluate

$$= \lim_{|\mathfrak{Q}| \to 1} \frac{(\mathfrak{Q} - 1)(\mathfrak{Q} + 1)}{\mathfrak{Q} - 1}$$

b)
$$\lim_{x \to 2} \frac{(x+25)^{\frac{1}{3}}-3}{x-2}$$

$$= \lim_{x \to 2} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-25)^2}$$

$$= \lim_{x \to 3} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-25)^2}$$

$$= \lim_{x \to 2} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-25)^2}$$

$$= \lim_{x \to 2} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-25)^2}$$

$$= \lim_{x \to 2} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-25)^2}$$

$$= \lim_{x \to 3} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-27)^2}$$

$$= \lim_{x \to 3} \frac{(x+25)^{\frac{1}{3}}-3}{(x^3-27)^2}$$

$$= \frac{1}{27}$$

J chose
this

$$u = (x+25)^{\frac{1}{3}}$$

 $u = (x+25)^{\frac{1}{3}}$
 $u = (x+25)^{\frac{1}{3}}$

4. Consider Cases
$$\lim_{x \to -3} \frac{|x+3|(x+1)|}{x+3}$$

$$\lim_{x \to -3} \frac{|x+3|(x+1)|}{x+3}$$

$$\lim_{x \to -3^{-}} \frac{(x+3)(x+1)}{(x+3)} = \lim_{x \to -3^{+}} \frac{(x+3)(x+1)}{(x+3)}$$

$$\lim_{x \to -3^{-}} \frac{(x+3)}{(x+3)} = \lim_{x \to -3^{+}} \frac{(x+3)(x+1)}{(x+3)}$$

$$\lim_{x \to -3^{-}} \frac{(x+1)}{(x+2)} = \lim_{x \to -3^{+}} \frac{(x+3)(x+1)}{(x+3)}$$

$$\lim_{x \to -3^{-}} \frac{(x+1)}{(x+1)} = -2$$

$$\lim_{x \to -3^{-}} \frac{(x+1)}{(x+1)} = -2$$

$$\lim_{x \to -3^{+}} \frac{(x+1)}{(x+1)} = -2$$

$$\lim_{x \to -3^{+}} \frac{(x+3)(x+1)}{(x+3)} = -2$$

5. Think Graphically/ Reason It Out

4. Consider Cases
$$\lim_{x \to -3} \frac{|x+3|(x+1)}{x+3}$$

$$\lim_{x \to -3} \frac{|x+3|(x+1)}{x+3}$$

$$\lim_{x \to -3} \frac{|x+3|(x+1)}{x+3}$$

$$\lim_{x \to -3^{+}} \frac{|x+3|(x+1)}{(x+3)}$$

$$\lim_{x \to -3^{+}} \frac{|x+3|(x+1)}{($$

5. Think Graphically/ Reason It Out

$$f(x)=3x^{2} + 2x
= k(x)(3x+2)
= k(x)(3x+2)
= k(x)(3x+2)
= x(x)(3x+2)$$

$$= 3[k(x)]^{2} + 2k(x)$$