ЗАНЯТИЯ СО ЗВЕЗДОЧКОЙ СУНЦ 10 КЛАСС

1 МАТЕМАТИЧЕСКАЯ СПРАВКА. ЧИСЛА

Мы уже давно знакомы с этими множествами чисел, но на всякий случай, еще раз вспомним о них:

 $\mathbb{N}=\{1,2,3,4,\ldots\}$ - натуральные числа $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ - целые числа $\mathbb{Q}=\{\frac{m}{n}\mid m\in\mathbb{Z},n\in\mathbb{N}\}$ - рациональные числа

 $\mathbb{R} = \{a_0, a_1 a_2 a_3 a_4 \dots | a_0 \in \mathbb{Z}, a_i \in \{0, \dots, 9\}\}$, при этом период из 9 запрещен - действительные (вещественные) числа (\mathbb{R} от агл. Real)

Заметим, что $\forall a,b \in \mathbb{Q}, a \neq b: \exists c \in \mathbb{Q}: a < c < b$. Именно для того, чтобы это свойство сохранялось, в \mathbb{R} запрещен период из 9, иначе между 0,(9) и 1 не было бы никакого числа. В множестве рациональных чисел у любого ненулевого элемента есть обратный, то есть $\forall 0 \neq x \in \mathbb{Q} \quad \exists b \in \mathbb{Q}: a \cdot b = b \cdot a = 1$. Но рациональных чисел нам все равно недостаточно для вычислений: например, рациональные числа не содержат в себе длину диагонали квадрата со стороной $1 \ (\sqrt{2} \notin \mathbb{Q})$.

В $\mathbb{R} \ \forall X, Y : \forall x \in X \ \forall y \in Y \ \exists z : x \leq z \leq y$ (аксиома полноты). Этого свойства, казалось бы, уже достаточно для всего, но:

640 Кб должно быть достаточно для каждого (Билл Гейтс, 1981)

1.1 Комплексные числа

Действительные числа действительно хороши, но у них есть некоторые проблемы. Например, многочлен x^2+1 не имеет в $\mathbb R$ корней. На помощь должно прийти некоторое новое числовое множество.

Определение 1. Множество комплексных $uucen \mathbb{C}$ - это множество c операциями + $u \cdot ,$ обладающее следующими свойствами:

- 1) оно содержит в себе множество действительных чисел \mathbb{R} и наследует его свойства сложения и умножения;
- 2) оно содержит такой элемент i, что $i^2 = -1$;

Прошу обратить внимание на то, что определение не является формальным, хоть довольно близко к нему.

Комплексные числа можно представлять как множество $\mathbb{C} = \{a+bi|a,b\in\mathbb{R}\}$. В таком случае, результатом сложения комплексного числа $z_1=a_1+b_1i$ на $z_2=a_2+b_2i$ будет число $z_1+z_2=(a_1+a_2)+(b_1+b_2)i$, а результатом умножения тех же чисел друг на друга будет являться $z_1\cdot z_2=(a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i$ (в этом легко убедиться, раскрыв скобки и воспользовавшись равенством $i^2=-1$)

Определение 2. $z = a + bi \in \mathbb{C}$.

 $Re \ z = a$ - вещественная часть числа z; $Im \ z = b$ - мнимая часть числа z; $\overline{z} = a - bi$ - комплексно сопряженное к z число.

Заметим, что $\overline{\overline{z}}=z$. Исходя из этого получаем, что $z+\overline{z}\in\mathbb{R},$ а также что $z\cdot\overline{z}=a^2+b^2\in\mathbb{R}.$

Вещественные числа проще всего представлять как точки на прямой, где числу в соответствие ставится точка на прямой с координатой, равной этому числу. Как же геометрически можно представить комплексное число? Заметим, что число z однозначно задается своими вещественной и мнимой частями, так что попробуем рассмотреть плоскость Oxy, где оси x и y соответствуют $Re\ z$ и $Im\ z$:

Оказывается, комплексное число можно спокойно представить в виде вектора с координатами $(Re\ z, Im\ z)$. Как мы знаем, положение точки на плоскости можно задать с помощью чисел r и φ , где r - длина вектора, а φ - угол, составляемый им с горизонтальной осью. В таком случае число z=a+bi представляется в виде

$$z = r(\cos\varphi + i\sin\varphi),$$

такое представление комплексного числа называется его тригонометрической формой.

Определение 3.
$$z = r(\cos \varphi + i \sin \varphi)$$
.
 $|z| = r$ - модуль числа z ;
 $\arg z = \varphi$ - аргумент числа z .

Легко понять, что $|z|=\sqrt{a^2+b^2}=\sqrt{z\cdot\overline{z}}$. Чем же нам так удобна тригонометрическая форма записи комплексного числа? Попробуем умножить числа z_1 и z_2 в тригонометрической форме:

$$z_1 \cdot z_2 = r_1(\cos\varphi_1 + i\sin\varphi_1)r_2(\cos\varphi_2 + i\sin\varphi_2)$$

Несложными преобразованиями получаем

$$z_1 \cdot z_2 = r_1 r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i(\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1))$$

Вспоминая формулы синуса и косинуса суммы, замечаем, что

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

и приходим к тому, что при умножении двух комплексных чисел их модули умножаются, а аргументы складываются.

Отсюда следует формула Муавра:

$$z^n = r^n(\cos n\varphi + i\sin n\varphi), n \in \mathbb{Z}$$

Теперь рассмотрим следующую задачу: дано число $z \in \mathbb{C}$. Необходимо найти все числа x такие, что $x^n = z$. Иначе говоря,

мы хотим найти все корни степени n числа z. Сделать это очень просто из формулы Муавра:

$$x = \sqrt[n]{r} \left(\cos \left(\frac{\varphi + 2\pi k}{n} \right) + i \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right),$$

где $k \in \mathbb{Z}$.

Теперь мы хотим как-то определить комплексную экспоненту e^x , где $x=a+i\varphi\in\mathbb{C}$. Главное свойство, которое должно выполняться, состоит в том, что $e^{x_1}\cdot e^{x_2}=e^{x_1+x_2}$. Отсюда должно следовать, что $|e^x|=e^a$ и $e^x=e^ae^{i\varphi}=|e^x|e^{i\varphi}=re^{i\varphi}$.

Чтобы еще ближе подобраться к определению комплексной экспоненты, еще раз запишем произведение z_1 и z_2 : $z_1 \cdot z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$, что должно наводить нас на следующую формулу:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
 (формула Эйлера)

Определение 4. Запись $z = re^{i\varphi}$ называется показательной формой комплексного числа z. Так же, как в тригонометрической форме, здесь r = |z|, а $\varphi = \arg z$.

1.2 Задачи

- 1. Покажите, что геометрически происходит при умножении комплексных чисел с модулем 1.
- 2. Покажите, где в плоскости лежат корни комплексного числа z степени n.
- 3. Вычислите:
 - (a) 10*(5+3i)
 - (b) i + (10 2i)
 - (c) i * (11 + i)
 - (d) $(10 + 10i)^3$
- 4. Запишите в тригонометрической и показательной формах следующие числа:
 - (a) $1 + \sqrt{3}$
 - (b) 2i
 - (c) -7i
 - (d) $1 \sqrt{3}i$

- (e) 3 + 4i
- 5. Найдите частное, домножив знаменатель на комплексно сопряженное:
 - (a) $\frac{1}{i}$
 - (b) $\frac{1}{1+i}$
 - $\left(\mathbf{c}\right) \ \frac{1+i}{2-i}$
 - (d) $\frac{a_1 + b_1 i}{a_2 + b_2 i}$
- 6. Что происходит при делении чисел в тригонометрической форме?
- 7. Найдите все значения корней из комплексных чисел:
 - (a) $\sqrt[2]{1+\sqrt{3}i}$
 - (b) $\sqrt[3]{2i}$
 - (c) $\sqrt[6]{-7i}$
- 8. Пользуясь формулой Эйлера, выразите $\sin x$ и $\cos x$ через комплексные экспоненты.
- 9. Решите уравнение:

$$x^4 + 2x^2 + 1 = 0$$