Principled Estimation and Prediction with Competing Risks: a Bayesian Nonparametric Approach

Claudio Del Sole ¹ Antonio Lijoi ² Igor Prünster ²

¹University of Milano-Bicocca, Milan, Italy ²Bocconi University, Milan, Italy, claudio.delsole@unimib.it

Competing risks in survival analysis

In **survival analysis**, researchers may be interested in different types of events (sources of risk), which are **competing events** if the occurrence of an event prevents the occurrence of other events [4].

Multi-state approach to competing risks

Competing risks data are modelled through multi-state models with a transient state (alive) and multiple absorbing states (causes of death):

- the time-to-event $T \in \mathbb{R}^+$ is the time of transition away from state 0;
- the cause of death $\Delta \in \{1, \dots, D\}$ is the target absorbing state;
- the cause–specific hazard rates $h_1(t)$, ..., $h_D(t)$ are the transition rates.

Functionals of interest in competing risks

The main quantities of interest in a competing risks framework are:

• the **survival function**, i.e. the probability of surviving every competing event up to a certain time,

$$S(t) = \mathbb{P}(T \ge t) = \exp\left(-\sum_{\delta=1}^{D} \int_{0}^{t} h_{\delta}(u) du\right);$$

- the cause-specific **cumulative incidence functions**, i.e. probabilities of experiencing a certain type of event within a certain time;
- (prediction viewpoint) the probabilities of experiencing a certain type of event, given the survival time, termed prediction curves,

$$\pi_{\delta}(t) = \mathbb{P}(\Delta = \delta \mid T = t), \qquad \delta = 1, \dots, D.$$

Modeling mixture hazard rates

In a Bayesian setting, a prior is defined over **hazard rate functions** [3], i.e. the instantaneous risks of occurrence of each competing event, given survival up to that time:

$$\tilde{h}_{\delta}(t) = \int_{\mathbb{R}^+} k(t; x) \, \tilde{\mu}_{\delta}(dx), \qquad \delta = 1, \dots, D,$$

where k(t,x) is a deterministic kernel and $\tilde{\mu}_1,\ldots,\tilde{\mu}_D$ are random measures.

The model for an exchangeable sequence of time-to-event and event type pairs is

$$(T_1, \Delta_1), \ldots, (T_n, \Delta_n) \mid \tilde{\boldsymbol{\mu}} \stackrel{\text{i.i.d.}}{\sim} \tilde{p}, \qquad \tilde{\boldsymbol{\mu}} = (\tilde{\mu}_1, \ldots, \tilde{\mu}_D) \sim \mathcal{Q},$$

where the directing random probability measure \tilde{p} depends on random measures through hazard rates:

$$\tilde{p}(dt,\delta) = \underbrace{\int_{\mathbb{X}} k(t;x) \, \tilde{\mu}_{\delta}(dx)}_{\text{hazard rate for cause } \delta} \, \exp \left(- \sum_{\ell=1}^{D} \int_{0}^{t} \underbrace{\int_{\mathbb{X}} k(s;x) \, \tilde{\mu}_{\ell}(dx)}_{\text{hazard rate for cause } \ell} \, ds \right) dt.$$

Hierarchical prior specification

The prior specification Q introduces dependence among hazard rates through a **hierar-chical structure** of completely random measures [2]:

$$\tilde{\mu}_1, \dots, \tilde{\mu}_D \mid \tilde{\mu}_0 \stackrel{\text{i.i.d.}}{\sim} \mathsf{CRM}(\tilde{\nu}), \qquad \tilde{\mu}_0 \sim \mathsf{CRM}(\nu_0),$$

having homogeneous Lévy intensities

$$\tilde{\nu}(ds, dx) = \rho(ds) \,\tilde{\mu}_0(dx), \qquad \nu_0(ds, dx) = \rho_0(ds) \,P_0(dx).$$

A natural choice for hierarchical CRMs is the hierarchical gamma process.

Latent variables and partition structure

The marginal, predictive and posterior distributions are conveniently described via the introduction of two sequences of **latent variables**:

$$X = (X_1, \dots, X_n), \qquad Z = (Z_1, \dots, Z_n).$$

Because of the discreteness of CRMs, variables in each sequence admit **ties** with positive probability \rightarrow **nested partition structure** (Chinese restaurant franchise metaphor [5]).

Posterior characterization

The posterior distribution of random measures, given observations and latent variables, is **structurally conjugate**, as the hierarchical form is preserved a posteriori:

$$ilde{\mu}_{\delta}(dx) \mid (oldsymbol{T}, oldsymbol{\Delta}, oldsymbol{X}, oldsymbol{Z}), \ ilde{\mu}_{0}(dx) \mid (oldsymbol{T}, oldsymbol{\Delta}, oldsymbol{X}, oldsymbol{Z}) \ \sim \ ilde{\mu}_{0}^{*}(dx) + \sum_{j=1}^{k} \sum_{h=1}^{r_{dj}} J_{djh} \, \delta_{X_{j}^{*}}(dx),$$

where $\tilde{\mu}^*$ and $\tilde{\mu}_0^*$ are CRMs with **non-homogeneous** Lévy intensities, while J_{djh} 's and I_j 's are **independent** random variables.

Numerical illustration on simulated data

Consider three **independent** competing risks and record the minimum time-to-event and the corresponding event type, for n=300 observations.

- Full conditional distributions of latent variables (X, Z) are derived from the marginal distribution, and exploited to devise a Gibbs sampling scheme.
- Posterior estimates of quantities of interest are obtained at each step, conditionally on latent variables.

Application to bone marrow transplant data

The dataset includes data for 400 patients diagnosed with acute **myeloid leukemia**, who underwent a bone marrow transplantation:

- the primary event of interest is occurrence of **Graft-versus-Host-Disease** (GvHD);
- death or relapse without GvHD are competing events.

- [1] Del Sole, C., Lijoi A. and Prünster I. (2025+). Principled estimation and prediction with competing risks: a Bayesian nonparametric approach. Submitted.
- [2] Camerlenghi, F., Lijoi A. and Prünster I. (2021). Survival analysis via hierarchically dependent mixture hazards. The Annals of Statistics 49(2), 863–884.
- [3] Dykstra, R. L. and P. Laud (1981). A Bayesian nonparametric approach to reliability. The Annals of Statistics 9 (2), 356–-367.
- [4] Geskus, R. B. (2024). Competing risks: Concepts, methods, and software. Annual Review of Statistics and Its Application 11(1), 227–254.
- [5] Teh, Y.M., Jordan, M.I., Beal, M.J. and Blei, D.M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581.