Лабораторная работа 2

Математическое моделирование

Ефремова Ангелина Романовна

Содержание

1	Цель работы		5	
2	Зада	ание	6	
	2.1	1. Запись уравнения, описывающего движение катера, с начальны-		
		ми условиями для двух случаев	6	
	2.2	2. Построение траектории движения катера и лодки для двух случаев	6	
	2.3	3. Нахождение точки пересечения траектории катера и лодки	6	
3	Выполнение лабораторной работы		7	
	3.1	Рассуждения и вывод дифференциальных уравнений	7	
	3.2	Построение траектории движения катера и лодки для двух случаев		
		и точки пересечения	10	
4	Rыp	ОЛЫ	13	

List of Tables

List of Figures

3.1	Положение катера и лодки в начальный момент времени
3.2	Разложение скорости катера на тангенциальную и радиальную со-
	ставляющие
3.3	Начало кода
3.4	Движение береговой охраны
	Случай 1
	Массив решений случая 1
	Случай 2
	Массив решений случая 2
	Движение браконьеров
	Перевод координат
	График для первого случая
	График для второго случая

1 Цель работы

Цель второй лабораторной работы - рассмотреть один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска.

2 Задание

- 2.1 1. Запись уравнения, описывающего движение катера, с начальными условиями для двух случаев
- 2.2 2. Построение траектории движения катера и лодки для двух случаев
- 2.3 3. Нахождение точки пересечения траектории катера и лодки

3 Выполнение лабораторной работы

3.1 Рассуждения и вывод дифференциальных уравнений

- 1. Принимаем за $t_0=0, x_0=0$ место нахождения лодки браконьеров в момент обнаружения, $x_0=k$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_0(\theta=x_0=0)$, а полярная ось г проходит через точку нахождения катера береговой охраны (рис. 3.1)

Figure 3.1: Положение катера и лодки в начальный момент времени

3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не

окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

- 4. Чтобы найти расстояние х (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии х от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{k-x}{2v}$ (во втором случае $\frac{x+k}{2v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения: $\frac{x}{v} = \frac{k-x}{2v}$ в первом случае или $\frac{x}{v} = \frac{k+x}{2v}$ во втором. Отсюда мы найдем два значения $x_1 = \frac{k}{3}$ и $x_2 = k$, задачу будем решать для двух случаев.
- 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r радиальная скорость и v_{τ} тангенциальная скорость. (рис. 3.2)

Figure 3.2: Разложение скорости катера на тангенциальную и радиальную составляющие

Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r=\frac{\mathrm{d}r}{\mathrm{d}t}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{\mathrm{d}r}{\mathrm{d}t}=v$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{\mathrm{d}\theta}{\mathrm{d}t}$ на радиус г, $v_{\tau}=r\frac{\mathrm{d}\theta}{\mathrm{d}t}$. Из рисунка видно: $v_{\tau}=\sqrt{4v^2-v^2}=\sqrt{3}v$ (учитывая, что радиальная скорость равна v). Тогда получаем $r\frac{\mathrm{d}\theta}{\mathrm{d}t}=\sqrt{3}v$. 6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравне-

ний
$$\begin{cases} \frac{\mathrm{d}r}{\mathrm{d}t} = v \\ r\frac{\mathrm{d}\theta}{\mathrm{d}t} = \sqrt{3}v \end{cases}$$
 с начальными условиями $\begin{cases} \theta_0 = 0 \\ r_0 = x_1 \end{cases}$ или $\begin{cases} \theta_0 = -\pi \\ r_0 = x_2 \end{cases}$. Исключая из полученной системы производную по t, можно перейти к следую-

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{r}{\sqrt{3}}$ Начальные условия остаются прежними. Решив это уравнение, вы получите траекторию движения катера в полярных координатах.

3.2 Построение траектории движения катера и лодки для двух случаев и точки пересечения

Для начала задам расстояние своего варинта k=6.3 и константу $fi=\frac{3\pi}{4}$. (рис. 3.3)

Figure 3.3: Начало кода

Следующие строки описывают движение береговой охраны. (рис. 3.4)

Figure 3.4: Движение береговой охраны

Для первого случая зададим r1_0 и решим дифференциальное уравнение. (рис. 3.5)

```
8 [60]: r1_0=k/1.3
8 [61]: tetha1_0 = np.arange(-math.pi, 2*math.pi, 0.01)
8 [62]: r1_1 = odeint(dr,r1_0,tetha1_0)
```

Figure 3.5: Случай 1

А тут мы видим массив решений уравнения для первого случая.(рис. 3.6)

Figure 3.6: Массив решений случая 1

Рассмотрим случай 2. Зададим r1_2 и решим дифференциальное уравнение.(рис. 3.7)

```
8 [64]: r1_2=k/3.3

B [65]: tethal_1 = np.arange(0, 2*math.pi, 0.01)

B [66]: r1_3 = odeint(dr,r1_2,tethal_1)
```

Figure 3.7: Случай 2

И выводим массив решений дифференциального уравнения для 2 случая. (рис. 3.8)

Figure 3.8: Массив решений случая 2

Следующие строки описывают движение браконьеров. (рис. 3.9)

Figure 3.9: Движение браконьеров

Теперь мы переводим декартовые координаты в полярные (рис. 3.10)

Figure 3.10: Перевод координат

И в завершение, строим графики. Этот график описывает движение охраны и браконьеров для первого случая. (рис. 3.11)

Figure 3.11: График для первого случая

А этот - движение охраны и браконьеров для второго случая. (рис. 3.12)

Figure 3.12: График для второго случая

4 Выводы

В результате выполнения второй лабораторной работы, я рассмотрела один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска и научилась определять по какой траектории необходимо двигаться катеру, чтобы нагнать лодку.