3° LEZIONE

2° parte- L' amplificatore operazionale **reale** Misura dei parametri caratteristici

Confronto op-amp ideale vs. reale

Parametro	Ideale	Reale			
Guadagno di tensione in $DC (A_M)$	∞	100 - 120 dB			
Correnti di polarizzazione	0	10 ⁻⁸ A Bipolari 10 ⁻¹¹ A JFET 10 ⁻¹⁴ A CMOS			
Tensione di offset	0 V	10 - 1000 μV			
Impedenza di uscita	0 Ω	10 - 30 Ω			
Slew rate	∞	0.5 - 10 V/μs			
Banda passante	∞	1 - 10 Hz			
Capacità di pilotaggio	∞	±10-20 mA			
CMRR	∞	80 - 110 dB			

ua741

Component Count				
Transistors	22			
Resistors	11			
Diode	1			
Capacitor	1			

1) Misura dello "Slew rate" del Op. Amp. 741

• Fenomeno a GRANDI SEGNALI (paragonabile alle tensioni di alimentazione).

- Massima velocità di variazione della tensione in uscita all'amplificatore.
- Se viene superata si ha distorsione.

NOTA1: misure su 10%-90% dell'escursione di Vout

NOTA2: input onda quadra, f = 1kHz, 10Vpp

	Ονοισπουτ ιαυτοι	-L F.,		J /0	<u> </u>
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	$R_L = 2 k\Omega$, See Figure 1	0.5	V/µs

2) Misura della corrente massima

3) Verifica banda passante

- 1) Configurazione amplificatore non invertente
- 2) Azzerare la tensione di offset con il trimmer
- 3) Misurare la frequenza_taglio con:

$$G = 10 (20 dB)$$

$$G = 100 (40 dB)$$

4) Verificare corrispondenza con grafico:

BANDA PASSANTE

- Fenomeno a PICCOLI SEGNALI (campo dei milliVolt).
- Banda di frequenze per cui il GUADAGNO rimane COSTANTE.
- Dipende dai componenti di compensazione e dal guadagno ad anello chiuso.
- Se viene superata si ha una riduzione della tensione in uscita.

NOTA1: selezionare tensioni di ingresso opportune (attenzione allo slew rate!)

NOTA2: Ft con segnale a -3dB

4) Misura guadagno a loop aperto

Verificare corrispondenza con grafico:

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

٧s **FREQUENCY** 110 V_{CC+} = 15 V 100 A_{VD}-Open-Loop Signal Differential 90 $R_1 = 2 k\Omega$ 80 Voltage Amplification - dB TA = 25°C 70 50 30 20 10 10 100 1k 10k 100k 1M 10M f - Frequency - Hz