Smart Home IoT Automation Simulator Documentation

Written and Implemented By

JAMOLOV ISROILBEK (DXFV5Y)

Course: Python

Faculty of Informatics Eötvös Loránd University

Date: 08/11/2023

INTRODUCTION

This documentation provides a comprehensive guide to the Smart Home IoT Automation Simulator. The simulator emulates various IoT devices within a smart home environment, such as smart lights, thermostats, and security cameras, and includes a central automation system and a GUI dashboard for interaction and contorl.

CLASS DESCRIPTIONS

1. IoTDevice (Abstract Base Class)

- Base class for Iot devices.
- Attributes:
 - o 'device_id' : Identifier fo the device.
 - o 'status' : Current status of the device (On/Off).

2. SmartLight

- Represents a smart light with brightness control.
- Inherits from IoTDevice.
- Additional Attribute:
 - o 'brightness': Brightness level of the light (0 to 100).

3. Thermostat

- Represents a thermostat with tempearture control.
- Inherits from IoTDevice.
- Additional Attribute:
 - o 'temperature': Temperature set on the ethermostat (15 to 30 degrees Celsius).

4. SecurityCamera

- Represents a security camera with infrared and recording capabilities.
- Inherits from IoTDevice.
- Additional Attributes:
 - o 'infrared': Boolean indicating if infrared is enabled.
 - o 'recording': Boolean indicating if recording is enabled.
 - o 'motion_detected' : Boolean indicating if motion is detected.

5. AutomationSystem

- Manages IoT devices and their interactions.
- Methods include device addition, automation_rule_execution, and device behavior simulation

6. GuiController

• Manages the GUI for the smart home dashboard

• Interacts with the 'AutomationSystem' to reflect and control the state of the devices.

METHOD EXPLANATIONS

» IoTDevice Methods:

- ֍ 'turn_on()' : Turns the device on.
- ֍ 'turn_off()': Turns the device off.

» SmartLight Methods

% 'set_brightness(brightness)' : Sets the brightness of the light.

» Thermostat Methods

% 'set_temperature(temperature)' : Sets the temperature
 of the thermostat.

» SecurityCamera Methods

- ֍ `toggle_infrared()' : Toggles the ifnrared mode.
- ֍ `toggle_recording()' : Toggles the recording mode.

» AutomationSystem Methods

- % 'add_device(device_type, device)' : Adds a device to the system.
- * 'execute_automation_rules()' : Executes predefined
 automation rules.
- % 'simulate_device_behavior()' : Simulates random behavior of devices.

» GuiController Methods

- % 'setup_gui()'
 - Sets up the GUI components for the smart home dashboard.
 - Initializes frames for light, thermostat, and camera controls, along with status listbox and automation rules labels.
 - Each device frame contains a toggle button, a status label, and a control element (scale for light brightness and thermostat temperature).
- % 'update_device_status()'
 - Updates the GUI to reflect the current status of all devices.
 - Calls 'execute_automation_rules()' of the 'AutomationSystem' to ensure the latest state is reflected.
 - Updates the listbox with the status of each device (light, thermostat, camera).
- % 'toggle_device(device_type)'
 - Toggles the on/off status of a specified device (light, thermostat, camera).

- Invokes 'turn_on()' or 'turn_off()' methods of the respective device based on its current state.
- % 'adjust_brightness(value)'
 - Adjust the brightness of the SmartLight
 - Takes a brightness value as input and sets it using `set_brightness()' of the SmartLight object
 - Also handles turning the light on or off based on the brightness level
- % 'adjust_temperature(value)'
 - Adjust the temperature of the Thermostat
 - Takes a temperature value as input and sets it using `set_ temperature()' of the Thermostat object
 - Updates the GUI to reflect the new temperature setting.
- % 'random_detect_motion()'
 - Simulates random motion detection for the SecurityCamera
 - Toggles are 'motion_detected' attribute of the camera.
 - Updates the GUI to reflect the change in motion detection status.
- % 'run()'
 - Starts the main loop for the GUI
 - Performs an initial update of the device statuses before entering the main loop

INSTRUCTIONS TO RUN THE SIMULATION AND USE THE DASHBOARD

1. Setting up the environment

- Ensure Python is installed on your system.
- No additional dependencies are required for this simulation as it uses standard Python libraries.

2. Running the simulation

- Open a command line interface (CLI).
- Navigate to the directory containing the Python script.
- run the script by typing 'python script_name.py',
 replacing 'script_name.py' with the actual file name.

3. Using the dashboard

• Once the script is running ,a GUI window title "Smart Home Dashboard" will appear.

- The dashboard has separate control sections of the SmartLight, Thermostat, and SecurityCamera.
- Use the toggle buttons to turn each device on or off
- Adjust the brightness of the SmartLight and the temperature of the Thermostat using the provided sliders.
- Simulate motion detection for the SecurityCamera using "Random Detect Motion" button.
- The status listbox at the top of the dashboard displays the current status of all devices.
- The GUI is interactive and will automatically update the device statuses based on user actions and simulated behavior.

TEST CASES FOR SIMULATION AND AUTOMATION SYSTEM

1. SmartLight control test

- Turn the SmartLight on and off using the toggle button.
- Adjust the brightness and verify that the status listbox relfects these changes.

2. Thermostat control test

- Toggle the Thermostat on and off
- Change the temperature setting and check if the new temperature is accurately displayed in the status listbox.

SecurityCamera functionality test

- Test the camera's response to the "Random Detect Motion" button.
- Verify that the motion detection status updates correctly in the GUI.

4. Automation rule verification

- Ensure that the light turns on automatically when motion is detected by the SecurityCamera.
- Confirm that the infrared mode of the camera is activated when the SmartLight is off.
- Confirm that the camera is recording only when it is on and may not record even though it is on.

5. GUI responsiveness and accuracy test

- Interact with the dashboard controls and observe the responsiveness of the GUI.
- Verify that the GUI accurately relfects the current state of all devices and responds correctly to user inputs.

6. Simulated bahvior test

- Allow the simulator to run for a period, during which it randomly changes the state of devices, brightness of the SmartLight, temperature of the Thermostat, and Recording status of the SecurityCamera.
- Check that the GUI accurately reflects these random changes.