

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2021

PRÁCTICA 1 - Números Complejos

	_		
1	Ca		
- 1	ıа	ורוו	ıar

- a) $(6,2)-(3,\frac{2}{3})$

e) $1_{\frac{\pi}{2}}1_{\frac{3\pi}{2}}$

- a) $(6,2) (3,\frac{2}{3})$ c) $(1+i)^2$ b) $(4,-1) \cdot (-2,3)$ d) $\frac{(3+i)^2 + (1-i)^2 2 \cdot (2+i)}{4+2i}$
- $f) \ 3_{\frac{\pi}{5}} : 4$

2. Representar gráficamente y escribir en forma polar y trigonométrica cada uno de los siguientes números complejos:

a) $\sqrt{3}-i$

b) $\frac{1+i}{1-i}$

 $(d) -2 + 6i^{10}$

3. Representar gráficamente y escribir en forma binómica los siguientes números complejos:

a) 3

- *b*) 1_{-45°}
- c) $\sqrt{2}_{420}$ °
- d) $3(\cos\frac{\pi}{6} + i \sin\frac{\pi}{6})$

4. ¿Cuántos números complejos verifican
$$Re(z)=2\sqrt{3}$$
 y $|z|=9$? ¿Cuáles son? Expresarlos en forma binónica, polar y trigonométrica.

- 5. Indicar si las siguientes proposiciones son verdaderas o falsas. Justificar las respuestas.
 - a) Si z = a + bi, $a, b \in \mathbb{R}$ entonces $|a| \le |z|$.
 - b) $arg(z) = arg(\bar{z}) \quad \forall z \in \mathbb{C}$.
 - c) $\exists z \in \mathbb{C} / arg(z) = arg(\bar{z}).$
 - d) Si $z = -4(\cos\frac{7\pi}{3} + i\sin\frac{7\pi}{3})$ entonces $arg(z) = \frac{7\pi}{3}$.

a) $2 \cdot (2\sqrt{3} - 2i) \cdot (1 + i)$

c) 2_{30} ° + 5_{315} °

b) $(-1 + \sqrt{3}i)^6$

 $d) \frac{6_{60} \circ \frac{1}{2}_{30} \circ}{\frac{1}{4} \pi}$

- 1) $A_1 = \{z \in \mathbb{C} / |z| = 1\}.$
- 2) $A_2 = \{ z \in \mathbb{C} / arg(z) = \frac{\pi}{6} \}.$
- 3) $A_3 = \{ z \in \mathbb{C} / |z| = 2, \frac{\pi}{4} \le arg(z) \le \frac{\pi}{2} \}.$
- 4) $A_4 = \{ z \in \mathbb{C} / 1 < Re(z) \le 3, 2 \le Im(z) \le 4 \}.$
- 5) $A_5 = \{z \in \mathbb{C} / |z i| = |z + i|\}.$
- b) Dar en cada uno de los casos anteriores dos números complejos que pertenezcan y dos que no pertenezcan al conjunto indicado.

8. Caracterizar las siguientes regiones graficadas mediante un subconjunto de \mathbb{C} .

a)

b)

c)

d)

9. Hallar las soluciones reales de cada una de las ecuaciones lineales con dos incógnitas a coeficientes

a)
$$x + iy = 1$$

b)
$$ix + y = 1 + i$$

c)
$$(1+i)x + (2-i)y = 7$$

d)
$$(3+i)(x+iy) = 6+2i$$

10. Hallar las soluciones complejas de cada una de las ecuaciones lineales con una incógnita a coeficientes

a)
$$z = 1$$

b)
$$(3+i)z = 4i$$

c)
$$(3+i)z = 6+2i$$

d)
$$4iz = 7 + 2i - 6z$$

11. Calcular

a)
$$\sqrt{2i}$$

b)
$$\sqrt[3]{-27}$$

c)
$$\sqrt[5]{-\sqrt{2}-\sqrt{2}i}$$

d)
$$\sqrt[4]{1}$$

e)
$$\sqrt[3]{-1}$$

$$f) \sqrt[6]{-i}$$

12. Resolver las siguientes ecuaciones:

a)
$$z^5 - 32 = 0$$

b)
$$z + \bar{z} = 5 + 3i$$

c)
$$(i-1)-z^3=0$$

d)
$$1 + z^4 + i = 0$$

13. Resolver las siguientes ecuaciones:

a)
$$z^2 - (2+i)z - 7i = 0$$

a)
$$z^2 - (2+i)z - 7i = 0$$
 b) $z^2 - (3-2i)z + 5 - 5i = 0$ c) $z^4 + z^2 + i = 0$

c)
$$z^4 + z^2 + i = 0$$