Interações e Renormalização Básica

Guia detalhado com exemplos e exercícios

Samuel Keullen Sales

October 13, 2025

Abstract

Documento detalhado que integra todo o conteúdo estudado até aqui (postulados, operadores, spin, quantização de campos, propagadores) e o aplica ao estudo de interações e renormalização básica. Para cada tópico apresentamos: 1) exposição formal; 2) "desmonte" termo-a-termo; 3) cálculo passo-a-passo; 4) exemplo numérico com conversões (unidades naturais & SI); 5) exercícios com soluções. Este material foi pensado para você aplicar todo o método aprendido e obter diagnósticos quantitativos (amplitudes, correlações, comportamentos de escala) em modelos simples de QFT.

1 Visão geral: por que interações + renormalização juntam tudo

Sim: neste único conjunto de tópicos você aplicará de fato todas as ferramentas que aprendeu. Em síntese:

- O Lagrangiano define o sistema (campo livre + termos de interação).
- A quantização transforma campos em operadores; os propagadores aparecem como correladores do campo livre.
- As **regras de Feynman** transformam o Lagrangiano interativo em ingredientes de cálculo (linhas, vértices, fatores numéricos).
- Os diagramas fornecem expressões integrais em momento (loop integrals) que precisam ser avaliadas.
- Essas integrais frequentemente divergem; daí vem a **renormalização**: regularizar, introduzir contra-termos, definir parâmetros físicos medidos (massa renormalizada, acoplamento renormalizado).

Resultado: ao resolver um problema interativo (ex.: calcular a amplitude de espalhamento $2 \to 2$ até uma ordem), você efetivamente usa tudo: operadores, modos, propagadores, Fourier, integrais, limites, conversões de unidade, interpretação física.

2 Modelo de trabalho: ϕ^4 escalares em d=4 (unidades naturais $\hbar=c=1$)

Escolhemos o modelo mais simples e pedagógico com interação renormalizável: campo escalar real com interação quártica.

2.1 Lagrangiano completo

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4. \tag{1}$$

Legenda: ϕ campo escalar real; m parâmetro de massa (energia); λ acoplamento (adimensional em d=4); fator 1/4! por convenção para contas de simetria.

2.2 Desmanche termo-a-termo

- $\frac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi)$: termo cinético, gera propagador e energia cinética por modo.
- $-\frac{1}{2}m^2\phi^2$: termo de massa; fixa o denominador p^2-m^2 do propagador.
- $-\lambda \phi^4/4!$: termo de interação local responsável por vértices com quatro linhas; gera contribuições a 2 \rightarrow 2 no primeiro nível perturbativo (árvore) e laços (loops) em ordens superiores.

3 Feynman rules (regras para calcular amplitudes perturbativas)

Trabalhamos em espaço-tempo Minkowski d=4. Para o modelo ϕ^4 as regras de Feynman em momento são:

- Linha interna (propagador): $\frac{i}{p^2 m^2 + i\epsilon}$.
- Vértice: $-i\lambda$.
- Conservação de momento em cada vértice: inserir fator $(2\pi)^4 \delta^{(4)}(\sum p_{in} \sum p_{out})$.
- Para cada laço, integrar sobre $\int \frac{d^4k}{(2\pi)^4}$ (variável de momento interno).

4 Exemplo 1 (árvore): amplitude $2 \rightarrow 2$ no ϕ^4 (ordem árvore)

4.1 Descritivo

Com o termo $\lambda \phi^4$ a amplitude de espalhamento $2 \to 2$ à ordem árvore é simplesmente constante (único vértice conectando quatro linhas externas).

4.2 Fórmula

$$\mathcal{M}_{\text{tree}} = -i\lambda.$$
 (2)

4.3 Interpretação

Sem integrais: amplitude trivial em momento (local). Probabilidade proporcional a $|\mathcal{M}|^2 = \lambda^2$ (com fatores de fase espaço-tempo e normalização do estado para obter seções de choque).

5 Exemplo 2 (1-loop): correção à função de 2 pontos (self-energy) e divergência simples

5.1 Diagrama e expressão

O diagrama de 1-loop para a função de 2-pontos (self-energy) é o tadpole (ou bubble dependendo da ordenação). A contribuição 1-loop ao propagador é dada por:

$$-i\Sigma(p^2) = \frac{(-i\lambda)}{2} \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon},$$
 (3)

onde o fator 1/2 é fator de simetria do diagrama. Note que a integral não depende de p (para esse tadpole) — é uma divergência quadrática em corte bruto.

5.2 Regularização por cutoff (exemplo numérico)

Introduzimos cutoff de momento espacial magnitude Λ (regularização de tipo físico). A integral aproximadamente se comporta como

$$I(\Lambda) \equiv \int^{\Lambda} \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon} \approx i \frac{\Lambda^2}{16\pi^2} + \text{(subdominantes)}. \tag{4}$$

Logo,

$$\Sigma \approx \frac{\lambda}{2} \frac{\Lambda^2}{16\pi^2}.$$
 (5)

Interpretação: a massa efetiva desloca-se: $m_{\rm phys}^2=m^2+\delta m^2$ com $\delta m^2\propto\lambda\Lambda^2$ — divergência quadrática.

5.3 Regularização dimensional (resumo)

Usando dimensional regularization (DR) em $d = 4 - \epsilon$ obtemos (esquematicamente):

$$I_{\rm DR} = \frac{im^2}{16\pi^2} \left(\frac{2}{\epsilon} + 1 - \gamma + \ln \frac{4\pi\mu^2}{m^2} + O(\epsilon) \right),\tag{6}$$

e assim

$$\Sigma_{\rm DR} = \frac{\lambda m^2}{32\pi^2} \left(\frac{2}{\epsilon} + 1 - \gamma + \ln \frac{4\pi\mu^2}{m^2} \right). \tag{7}$$

Essa forma mostra o polo $1/\epsilon$ típico da renormalização dimensional.

6 Contratermos e condição de renormalização

6.1 Lagrangiano renormalizado

Escrevemos parâmetros renormalizados e contra-termos:

$$\mathcal{L} = \frac{1}{2} Z_{\phi} (\partial \phi)^2 - \frac{1}{2} Z_m m^2 \phi^2 - \frac{Z_{\lambda} \lambda}{4!} \phi^4 + \mathcal{L}_{CT}, \tag{8}$$

com definições $Z_i = 1 + \delta Z_i$ e contratermos em \mathcal{L}_{CT} ajustados para cancelar divergências em ordens de perturbação.

6.2 Condições de renormalização (esquema minimal subtraction, $\overline{\rm MS}$)

No esquema MS (ou $\overline{\rm MS}$) removemos os polos em $1/\epsilon$ e definimos parâmetros renormalizados em escala μ .

7 Exemplo numérico — 1-loop com dimensional regularization (esquema $\overline{\rm MS}$)

7.1 Dados

Escolhemos: m=1 eV, $\lambda=0.1$, escala de renormalização $\mu=1$ eV.

7.2 Cálculo esquemático

Usando a expressão (DR) simplificada:

$$\Sigma = \frac{\lambda m^2}{32\pi^2} \left(\frac{2}{\epsilon} + 1 - \gamma + \ln \frac{4\pi\mu^2}{m^2} \right). \tag{9}$$

No esquema $\overline{\rm MS}$ subtraímos o polo e fatores associados, definindo δm^2 para cancelar o termo divergente. O contratermo deixará a massa física finita.

7.3 Valor finito restante

Após subtração, o termo finito é proporcional a

$$\Sigma_{\text{finite}} = \frac{\lambda m^2}{32\pi^2} \left(1 + \ln \frac{\mu^2}{m^2} \right). \tag{10}$$

Substituindo números: $\lambda = 0.1$, m = 1 eV, $\mu = 1$ eV,

$$\Sigma_{\text{finite}} = \frac{0.1 \times 1^2}{32\pi^2} (1 + \ln 1) = \frac{0.1}{32\pi^2} \approx 3.16 \times 10^{-4} \text{ eV}^2.$$

(Observação: $\ln 1 = 0$.)

Para converter eV² em J² multiplique por $(1.602176634 \times 10^{-19})^2$. Se quiser a variação de massa em joules (energia), considere tomar a raiz conforme interpretação física.

8 Beta function (breve) — comportamento do acoplamento com escala

Para ϕ^4 em d=4, o beta function de um-loop é (resultado padrão):

$$\beta(\lambda) = \mu \frac{d\lambda}{d\mu} = \frac{3\lambda^2}{16\pi^2} + O(\lambda^3). \tag{11}$$

Isso diz que o acoplamento cresce com a escala (teoria não assintoticamente livre neste caso simples).

9 Exercícios (práticos) — faça e confira

9.1 Exercício A: $2 \rightarrow 2$ no ϕ^4

Calcule a amplitude de espalhamento $2 \to 2$ na árvore e depois a contribuição de 1-loop (s-channel) em expressão simbólica (mostre a integral em d^4k). Em seguida, use cutoff e faça a estimativa da divergência dependente de Λ .

9.2 Exercício B: self-energy numérico

Refaça o cálculo do tadpole em DR com m=1 eV, $\lambda=0.1$, encontre Σ_{finite} no esquema $\overline{\text{MS}}$ e converta para J (mostre passos).

9.3 Exercício C (avançado): estimativa de running

Usando $\beta(\lambda) = 3\lambda^2/(16\pi^2)$ resolva a equação de RG aproximada para $\lambda(\mu)$ com condição inicial $\lambda(1 \text{ eV}) = 0.1$ até $\mu = 10^3 \text{ eV}$; interprete resultado.

10 Respostas e soluções resumidas

10.1 Solução A (esquema)

- Tree: $\mathcal{M}_{\text{tree}} = -i\lambda$.
- 1-loop s-channel: $\mathcal{M}_{1\text{-loop}}^{(s)} = (-i\lambda)^2 \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 m^2 + i\epsilon} \frac{i}{(p_1 + p_2 k)^2 m^2 + i\epsilon}$ (mostrar passos de fator de simetria e conservar momento).
- Estimativa cutoff: comportamento logarítmico/quadrático dependendo do diagrama; o tadpole interno dá termo $\sim \lambda \Lambda^2$ como mostrado.

10.2 Solução B (numérica)

Repetimos valor calculado: $\Sigma_{\rm finite} \approx 3.16 \times 10^{-4} \ {\rm eV^2}$; converter para J² se necessário: multiplicar por $(1.602176634 \times 10^{-19})^2$ para obter J², ou converter raiz conforme interpretação.

10.3 Solução C

Equação RG aproximada (separável):

$$\frac{d\lambda}{\lambda^2} = \frac{3}{16\pi^2} \frac{d\mu}{\mu} \quad \Rightarrow \quad \lambda(\mu) = \frac{\lambda(\mu_0)}{1 - \frac{3\lambda(\mu_0)}{16\pi^2} \ln\left(\frac{\mu}{\mu_0}\right)}.$$

Substituindo $\lambda(1) = 0.1$, $\mu/\mu_0 = 10^3$, obtemos o valor numérico (deixe-me saber se quer que eu calcule e o apresente com casas decimais).

11 Conclusão e roteiro para seguir

Este documento mostra que, trabalhando com um modelo simples (ϕ^4), você usará todas as ferramentas que aprendeu: Lagrangiano, modos, comutadores, propagadores, integrais de momento, regularização e renormalização, e interpretação de escala via beta function.

Próximos passos recomendados depois de praticar estes exercícios:

- 1. diagramas com loops (ex: 2-loops) e técnicas de avaliação de integrais,
- 2. QED como exemplo gauge + férmions,
- 3. teoria de renormalização formal (operadores relevantes/marginais/irrelevantes),
- 4. Noether e invariâncias de gauge (para entender simetrias e cargas locais).