УДК 519.876.2

DOI 10.51691/2541-8327_2023_11_19

ПРЕДСТАВЛЕНИЕ ДАННЫХ ДЛЯ ИСКУССТВЕННОЙ НЕЙРОННОЙ СЕТИ В ЗАДАЧЕ УПРАВЛЕНИЯ ГЕНЕТИЧЕСКИМ АЛГОРИТМОМ В ВИДЕ ВРЕМЕННОГО РЯДА

Петросов Д.А.

к.т.н., доцент,

Финансовый университет при Правительстве РФ

Москва, Россия

Коротеев М.В.

к.э.н

Финансовый университет при Правительстве РФ

Москва, Россия

Андриянов Н.А.

к.т.н.

Финансовый университет при Правительстве РФ

Москва. Россия

Поляков А.В.

аспирант

Финансовый университет при Правительстве РФ

Москва, Россия

Аннотация

В работе рассматривается представления данных для обучения и обработки данных В задаче управления генетическим алгоритмом входных использованием временных рядов. Рассмотрен временной ряд, который построен на основе минимального значения функции приспособленности особей алгоритма В соответствии популяции генетического c количеством обработанных популяций. Представлены данные, полученные при решении Дневник науки | <u>www.dnevniknauki.ru</u> | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

задачи структурно-параметрического синтеза имитационных моделей бизнеспроцессов с применением адаптированного к данной задаче генетического алгоритма. Адаптация генетического алгоритма выполнена с использованием вложенных сетей Петри.

Ключевые слова: временной ряд, искусственные нейронные сети, рекуррентный класс сетей, эволюционные процедуры, генетический алгоритм, структурно-параметрический синтез, бизнес-процессы.

REPRESENTATION OF DATA FOR AN ARTIFICIAL NEURAL NETWORK IN THE PROBLEM OF GENETIC ALGORITHM CONTROL IN THE FORM OF A TIME SERIES

Petrosov D.A.

Ph.D., Associate Professor,

Financial University under the Government of the Russian Federation

Moscow, Russia

Koroteev M.V.

Ph.D.

Financial University under the Government of the Russian Federation

Moscow, Russia

Andriyanov N.A.

Ph.D.

Financial University under the Government of the Russian Federation

Moscow. Russia

Polyakov A.V.

graduate student

Financial University under the Government of the Russian Federation

Moscow, Russia

Abstract

The paper examines data representations for training and processing input data in a genetic algorithm control problem using time series. A time series is considered, which is built on the basis of the minimum value of the fitness function of individuals in a genetic algorithm population in accordance with the number of processed populations. The data obtained when solving the problem of structural-parametric synthesis of simulation models of business processes using a genetic algorithm adapted to this problem are presented. Adaptation of the genetic algorithm was performed using nested Petri nets.

Key words: time series, artificial neural networks, recurrent class of networks, evolutionary procedures, genetic algorithm, structural-parametric synthesis, business processes.

При разработке новых методов структурно-параметрического синтеза стали преобладать методы, которые базируются на использовании средств искусственного интеллекта. Среди таких методов особую популярность получили эволюционные процедуры, к которым относятся искусственные нейронные сети (ИНС) и генетические алгоритмы (ГА). Генетические алгоритмы требуют тщательной настройки, заключающейся в выборе основных операторов, настройке работы операторов, кодировании особей с использованием бинарного бинарного кода, определении длины кода, определение функции приспособленности и т.д. В настоящее время данную работу выполняет эксперт, который обладает требуемыми знаниями как в области методов искусственного интеллекта, так и должен быть знаком с предметной областью.

В данном исследовании предлагается использовать ИНС в качестве управляющей надстройки над ГА, реализующем процедуру интеллектуального структурно-параметрического синтеза имитационных моделей бизнеспроцессов. Нейронная сеть должна определить состояние популяции Дневник науки | www.dnevniknauki.ru | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

генетического алгоритма и реализовать управление за счет изменения разрушающей способности операторов эволюционной процедуры.

Для решения данной задачи требуется определить представление данных, которые будут использоваться в качестве входов ИНС. В данной статье рассматривается возможность применения временных рядов в качестве такого рода данных.

В задаче структурно-параметрического синтеза имитационных моделей бизнес-процессов решается задача минимизации целевой функции, которая задается в виде разницы между заданным эталонным выходным вектором и выходным вектором, полученным в результате поиска решений. В этом случае целесообразно использовать временной ряд, характеризующий соотношение между количеством обработанных популяций и минимальное значение целевой функции в популяции. На рисунке 1 показан пример такого рода временного ряда.

Рис.1 – Пример временного ряда для оценки состояния популяции генетического алгоритма¹

По оси X располагается номер обработанной эпохи, а по оси Y представлено минимальное значение целевой функции из особей популяции.

¹ Рисунок выполнен авторами на основании вычислительных экспериментов

Такого рода данные подаются в качестве обучающей выборки и входных данных для ИНС. В качестве класса ИНС выбраны рекуррентные сети, показавшие хороший результат при обучении на выборках, связанных со значениями функции приспособленности всех особей популяции – 96% точности (см. рис. 2 A) и группировке значений функции приспособленности по количеству особей – 97% точности (см. рис. 2 B).

Рис.2 – Примеры представления данных для ИНС²

В проведенных экспериментах ИНС должна определить одно из следующих состояний популяции:

- 1. «сходимость»;
- 2. «наметилась сходимость»;
- 3. «затухание»;
- 4. «наметилось затухание»;
- 5. «невмешательство»;
- 6. «остановка работы генетического алгоритма».

В модели рекуррентной сети использовался слой предварительного эмбеддинга, формировавший на выходе вектор из 256 элементов. Затем данные подавались на слой RNN из 128 нейронов и полносвязный слой из 256 нейронов с активацией ReLU и выходной слой из 7 нейронов с активацией softmax.

_

² Рисунок выполнен авторами на основании вычислительных экспериментов

На основе проведенных экспериментов модель ИНС показала точность в 68%, что не может считаться удовлетворительным. В процессе анализа результатов было определено, что при использовании временных рядов, построенных с на основе минимального значения функции приспособленности особей популяции, не всегда имеется возможность своевременно оценить состояние популяции, так как данный инструмент не отображает количество особей с минимальным значением и ИНС может определить только тренд, что не всегда является достаточным. Соответственно применение данных о состоянии популяции в виде временного ряда проигрывает по точности представлению в виде значений функции приспособленности всех особей популяции и группировке количества особей популяции по значению целевой функции.

Благодарность: работа выполнена в рамках гранта РНФ №23-31-00127

Библиографический список:

- Сочнев А. Н. Оптимизация функционирования систем с использованием нейросетевых моделей сетей Петри / А.Н. Сочнев // Математическое моделирование, 2014, № 4, т. 26, с. 119–128
- 2. Орлов А.Н., Курейчик В.В., Глущенко А.Е. Комбинированный генетический алгоритм решения задачи раскроя / А.Н. Орлов, В.В. Курейчик, А.Е. Глущенко //Известия ЮФУ. Технические науки 2016. № 6 (179) С. 5-13.
- 3. Сапрыкина А.О. Настройка параметров эволюционных операторов генетического алгоритма для повышения эффективности поиска решения задачи/ А.О. Сапрыкина// Современные научные исследования и инновации. 2022. № 12 (141). С. 12-19
- 4. Чеканин В.А., Куликова М.Ю. Адаптивная настройка параметров генетического алгоритма/ В.А. Чеканин, М.Ю. Куликова// Вестник МГТУ «Станкин». 2017. № 3 (42). С. 85-89.

Дневник науки | <u>www.dnevniknauki.ru</u> | СМИ ЭЛ № ФС 77-68405 ISSN 2541-8327

- 5. Голышин А.Е. Настройка параметров нечеткого контроллера с помощью генетического алгоритма при управлении динамическим объектом/ А.Е. Голышин// Актуальные проблемы авиации и космонавтики. 2018. Т. 2. № 4 (14). С. 21-23.
- 6. Петросов Д.А. Адаптация генетического алгоритма при моделировании вычислительной техники с изменяющейся структурой и набором компонентов на основе сетей Петри / Д.А. Петросов// Вопросы современной науки и практики. Университет им. В.И. Вернадского. 2009. № 6 (20). С. 151-160.
- 7. Петросов Д.А. Математическая модель формирования конфигурации вычислительной техники на основе триггеров / Д.А. Петросов // Вестник Ижевского государственного технического университета. 2009. № 3. С. 139-143.

©Петросов Д.А., Коротеев М.В., Андриянов Н.А., Поляков А.В., 2023

Оригинальность 78%