ASTR 415

Evan Shipley-Friedt

October 18, 2022

Problem Set #3

1

1. As an example of an unstable algorithm, consider integer powers of the "Golden Mean" φ = (√5-1)/2. It can be shown that φⁿ⁺¹ = φⁿ⁻¹ − φⁿ, i.e. successively higher powers of φ can be computed from a single subtraction rather than a more expensive multiply. Write a single-precision program to compute a table consisting of the columns n, φⁿ computed from the recursion relation, and φⁿ computed directly (i.e. φⁿ = φφⁿ⁻¹), for n ranging from 1 to 20. Is the round-off error random? What happens in double precision?

Round-off error is not random, it originates when the value of $\phi^{n-1} - \phi^n$ becomes much smaller ratio such as when $\phi^{16} - \phi^{17}$ occurs, then $\phi^{17} - \phi^{18}$ produces a greater value in ϕ^{19} than ϕ^{18} which should not occur. From this the outrageously large error and actually a negative value in iteration 20 appears. In double precision this round-off error does not occur in 20 iterations. There is no sign of error to at least 3 significant digits. I get a stack smash with my code using double precision. Perhaps part of my code is not optimal for using double precision because my indexing had to start with i=1 which is not standard in C arrays.

Double Precision

```
| 19 | 0.000107 | 0.000107 |
| 20 | 6.61e-05 | 6.61e-05 |

*** stack smashing detected ***: terminated make: *** [Makefile:49: run] Aborted
```

Floating-Point Precision Table

Golden Mean Power 'n' Recursion Relation						
Ī	л	фп+1	= φ^(n-1)-	-φ^n ·	φn = φφ^(n-1)	Ī
Ī	1		0.618	1	0.618	I
Ī	2		0.382	1	0.382	Ī
Ī	3		0.236	1	0.236	Ī
Ī	4		0.146	1	9.146	Ī
Ī	5		0.0902	I	0.0902	Ī
Ī	6		0.0557	I	0.0557	Ī
Ī	7		0.0344	Ī	0.0344	1
Ī	8		0.0213	Ī	0.0213	Ī
Ī	9		0.0132	1	0.0132	1
Ī	10		0.00813	I	0.00813	Ī
1	11		0.00503	1	0.00502	1
Ī	12		0.0031	I	0.00311	I
Ī	13		0.00192	1	0.00192	1
Ī	14		0.00118	I	0.00119	I
1	15		0.000743	1	0.000733	1
I	16		0.000437	I	0.000453	Ī
1	17		0.000306	Ī	0.00028	1
I	18		0.000131	Ī	0.000173	Ī
1	19		0.000176	1	0.000107	1
Ī	20		-4.49e-05	I	6.61e-05	Ī

Write a program to compute the instantaneous spin period of a rigid body made up of identical, discrete, point particles. Use the fact that the angular momentum is

$$\mathbf{L} = \sum_{k} m_{k}(\mathbf{r}_{k} \times \mathbf{v}_{k}) = \mathbf{I}\boldsymbol{\omega}, \tag{1}$$

where m_k is the mass of particle k, \mathbf{r}_k and \mathbf{v}_k are its position and velocity vectors with respect to the centre of mass, $\boldsymbol{\omega}$ is the spin vector, and \mathbf{I} is the inertia tensor

$$\mathbf{I} = \sum_k m_k (r_k^2 \mathbf{1} - \mathbf{r}_k \mathbf{r}_k),$$

where 1 is the unitmatrix.1

Write a program to solve Eq. (1) for ω (I recommend you use the routines in Numerical Recipes). The spin period is then $2\pi/|\omega|$.

(a) Test your code by reading the data file

http://www.astro.umd.edu/~ricotti/NEWWEB/teaching/ASTR415/ps2.dat which is in the format x y z v_x v_y v_z (i.e. 6 values to a line separated by white space). The units are mks (SI). I have also uploaded ps2.dat to ELMS. What is the spin period in hours?

(b) Make a graphical representation of the body using your favorite graphing package. If you use 2-D projections, be sure to include enough viewing angles to get a complete picture.

```
./2
data row count: 1988
Converted I =
        1.73974e+09
                          7.38005e+08
                                          -1.26285e+07
                          1.73974e+09
                                            -1.29593e+96
        7.38995e+98
       -1.26285e+07 -1.29503e+06
                                            2.28012e+09
Converted L =
          -3889.88 -240.005
                                               -923897
 ---Gauss Jordan---
Gauss A-inverse =
         7,0096e-10
                        -2.97347e-10
                                            3.71341e-12
        -2.97347e-10 7.00932e-10 -1.24876e-12
3.71341e-12 -1.24876e-12 4.38593e-10
        -2.97347e-10
a times a-inverse:
                           -4.16853e-19
        5.79774e-19
                                                 4.60295e-21
                            5.79722e-19
                                                 -2.52717e-21
        -4.16853e-19
        4.68295e-21 -2.52717e-21
                                                 1.92379e-19
 Gauss-Jordan Solution:
       ω = < -5.52533e-06 , 1.98427e-06 , -0.008405226 >
 Period Solution: P = 2\pi/sqrt(\omega_x^2 + \omega_y^2 + \omega_z^2) = 1.55e+84 sec = 4.3 hours
gnuplot < asteroid.plt
```

