Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky Katedra kybernetiky a umelej inteligencie

Klasifikácia zákrytových premenných hviezd pomocou hlbokého učenia

Bakalárska práca

BINARY STARS

Používateľská príručka

Vedúci bakalárskej práce: Bakalár:

Doc. Ing. Peter Butka, PhD. Maximilián Revický

Konzultant bakalárskej práce:

Ing. Viera Maslej Krešnáková, PhD.

Košice 2022

1 Funkcia programu

Úlohou daných skriptov je predpripraviť vstupné dátové množiny do .pkl alebo .csv súborov a klasifikovať svetelné krivky zákrytových premenných hviezd. Konkrétne vyriešiť následujúce klasifikačné úlohy: (1) Binárna klasifikácia dvojhviezd na oddelené a dotykové systémy. (2) Binárna klasifikácia na dvojhviezdy s kritickým sklonom dráhy a škvrnité hviezdy. Úlohy programu sú rozdelené do viacerých skríptov:

V priečinku data-preparation/ sa nachádzajú:

- Načítanie syntetických dát oddelených kriviek s kritickým sklonom dráhy z
 databázy a uloženie do formátu .pkl: binaries_detached_bellow_i_crit_
 10000.ipynb
- Načítanie syntetických dát oddelených kriviek z databázy a uloženie do formátu .pkl: binaries_detached_random.ipynb
- Načítanie syntetických dát dotykových kriviek s kritickým sklonom dráhy z databázy a uloženie do formátu .pkl: binaries_overcontact_bellow_i_crit_10000.ipynb
- Načítanie syntetických dát dotykových kriviek z databázy a uloženie do formátu .pkl: binaries_overcontact_random.ipynb
- Načítanie syntetických dát dotykových kriviek z databázy a uloženie do formátu .pkl: single_spotty.ipynb
- Načítanie observačných dát dvojhviezd z JSON súborov a uloženie do formátu
 .csv: data_observed_binary.ipynb
- Načítanie observačných dát dvojhviezd s kritickým sklonom dráhy a škvrnitých hviezd z textových súborov a uloženie do formátu .csv: data_observed_binary_spotty.py:

V priečinku modeling/ sa nachádzajú:

- Binárna klasifikácia dvojhviezd na oddelené a dotykové systémy, 3 experiemnty,
 2 modely 1D CNN a BiLSTM RNN, vyhodnotenie modelov na syntetických krivkách: model_3_experiments_binary_stars_50000.ipynb
- Binárna klasifikácia dvojhviezd na oddelené a dotykové systémy, vyhodnotenie na observačných dátach: model observed binary.ipynb
- Binárna klasifikácia na dvojhviezdy s kritickým sklonom dráhy a škvrnité hviezdy, 1 experiment, 1 model 1D CNN a BiLSTM RNN, vyhodnotenie modelu na syntetických krivkách: model_experiment_single_spotty_critical_ binary.ipynb
- Binárna klasifikácia na dvojhviezdy s kritickým sklonom dráhy a škvrnité hviezdy, vyhodnotenie modelu na observačných krivkách: model_observed_ spotty_binary.ipynb
- Funkcia šumu stochastic_noise_generator, ktorá sa aplikuje na syntetické dáta, aby sa priblížila viac observačným dátam zo skriptu noise_generator.
 py
- Funkcia na náhodné zarovnanie kriviek oddelených a dotykových systémov s
 kritickým sklonom dráhy curve_alignement_randomizer zo skriptu curve_
 alignement.py

2 Súpis obsahu dodávky

Priložené CD obsahuje stav github repozitáru github.com/MaxRevicky/Classification-of-eclipsing-binary-stars v čase odovzdania:

- zdrojové kódy použité pri predspracovaní datasetov: data-preparation,
- datasety s observačnými dátami: datasets,
- zdrojové kódy použité pri vytvorení a vyhodnotení modelov: modeling,
- uložené natrénované modely: models-checkpoints,
- základné inštrukcie: README.md,
- systémovú príručku v elektronickej forme: SP_Revicky_Maximilian.pdf,
- používateľskú príručku v elektronickej forme: PP_Revicky_Maximilian.pdf,
- bakalárska práca v elektronickej forme: BP_Revicky_Maximilian.pdf.

3 Inštalácia programu

3.1 Požiadavky na programové prostriedky

- Python 3.8.6
- Anaconda Navigator
- Jupyter Notebook
- Knižnice: numpy, pandas, json, pickle, sklearn, keras, tensorflow, imblearn, collections, scikitplot

4 Použitie programu

V tejto kapitole si predstavíme použitie skriptov uvedených v prvej kapitole používateľskej príručky.

4.1 Načítanie syntetických dát a uloženie do formátu .pkl

Načítaním dát z databázy a uložením do formátu .pkl sa zaoberajú nasledujúce skripty v priečinku data-preparation/:

- binaries_detached_bellow_i_crit_10000.ipynb,
- binaries_detached_random.ipynb,
- binaries_overcontact_bellow_i_crit_10000.ipynb,
- binaries_overcontact_random.ipynb,
- single_spotty.ipynb.

Pre načítanie dát je potrebné zadať cestu k .db suborom. Načítame tabuľky z databázy. Pre účely tejto práce sú potrebné iba dve, Parameters a Curves. K jednotlivým krivkám z tabuľky Curves priradíme parameter overcontact tak, aby vznikla iba jedna tabuľka. Hlavným cieľom skriptu je vytvorenie súboru s danými syntetickými krivkami vo formáte .pkl.

4.2 Načítanie observačných dát dvojhviezd z JSON súborov a uloženie do formátu .csv

Načítaním observačných dát dvojhviezd z JSON súborov a uložením do do formátu .csv sa zaoberá Jupyter Notebook data-preparation/data_observed_binary. ipynb. Cestu k JSON súborom je potrebené nastaviť do premennej path_to_json. Hlavným cieľom skriptu je vytvorenie súboru s danými observačnými krivkami vo formáte .csv.

4.3 Načítanie observačných dát dvojhviezd s kritickým sklonom dráhy a škvrnitých hviezd z textových súborov a uloženie do formátu .csv

Načítaním observačných dát dvojhviezd s kritickým sklonom dráhy a škvrnitých hviezd z textových súborov a uložením do do formátu .csv sa zaoberá Jupyter Notebook data-preparation/data_observed_binary_spotty.py. Cestu k textovým súborom je potrebené nastaviť do premennej source_folder. Hlavným cieľom skriptu je vytvorenie súboru s danými observačnými krivkami vo formáte .csv.

4.4 Binárna klasifikácia dvojhviezd na oddelené a dotykové systémy

Úlohu binárnej klasifikácie dvojhviezd na oddelené a dotykové systémy sme rozdelili na dva skripty v priečinku modeling/:

- model_3_experiments_binary_stars_50000.ipynb
- model observed binary.ipynb

Skript model_3_experiments_binary_stars_50000.ipynb pracuje so syntetic-kými dátami svetelných kriviek dotykových a oddelených binárnych systémov, ktoré sú vo formáte .pkl. Cestu k datasetu oddelených kriviek je potrebené nastaviť do premennej data_overcontact_0 a cestu k datasetu dotykových kriviek do premennej data_overcontact_1. Hlavným cieľom tejto časti je natrénovať 3 klasifikačné modely a uložiť ich do formátu .hdf.

Skript model_observed_binary.ipynb pracuje s observačnými dátami svetelných kriviek dotykových a oddelených binárnych systémov, ktoré sú vo formáte .csv. Cestu k datasetu oddelených a dotykových kriviek je potrebené nastaviť do premennej data. Hlavným cieľom tejto časti je vyhodnotenie modelu. Vyhodnotenie sa skladá z kontingenčnej tabuľky klasifikácie a metrík: presnosť, návratnosť a F1 skóre.

4.5 Binárna klasifikácia na dvojhviezdy s kritickým sklonom dráhy a škvrnité hviezdy

Úlohu binárnej klasifikácie na dvojhviezdy s kritickým sklonom dráhy a škvrnité hviezdy sme rozdelili na dva skripty v priečinku modeling/:

- model_experiment_single_spotty_critical_binary.ipynb
- model_observed_spotty_binary.ipynb

Skript model_experiment_single_spotty_critical_binary.ipynb pracuje so syntetickými dátami svetlených kriviek škvrintých hviezd a dvojhviezd s kritickým sklonom dráhy, ktoré sú vo formáte .pkl. Cestu k datasetu oddelených kriviek s kritickým sklonom dráhy je potrebené nastaviť do premennej data_detached_1, cestu k datasetu dotykových kriviek s kritickým sklonom dráhy do premennej data_overcontact_1 a cestu k datasetu škvrnitých hviezd do premennej data_single_spotty_0. Cieľom tejto časti je natrénovať klasifikačný model a uložiť ho do formátu .hdf.

Skript model_observed_ell_rot.ipynb pracuje s observačnými dátami svetelných kriviek škvrintých hviezd a dvojhviezd s kritickým sklonom dráhy, ktoré sú vo formáte .csv.cestu k datasetu škvrintých hviezd a dvojhviezd s kritickým sklonom dráhy je potrebné nastaviť do premennej data. Cieľom je vyhodnotenie modelu pomocou kontingenčnej tabuľky klasifikácie a metrík: presnosť, návratnosť a F1 skóre.

5 Popis vstupných, výstupných a pracovných súborov

Vstupné dáta potrebné pre načítanie syntetických dát z databázy a uloženie do formátu .pkl:

- dáta syntetických kriviek dotykových systémov vo formáte .db
- dáta syntetických kriviek oddelených systémov vo formáte .db
- dáta syntetických kriviek dotykových systémov s kritickým sklonom dráhy vo formáte .db
- dáta syntetických kriviek oddelených systémov s kritickým sklonom dráhy vo formáte .db
- dáta syntetických kriviek škvrnitých hviezd vo formáte .db

Výstupné dáta z načítania syntetických dát z databázy a uloženie do formátu .pkl:

- dataset syntetických kriviek dotykových systémov vo formáte .pkl
- dataset syntetických kriviek oddelených systémov vo formáte .pkl
- dataset syntetických kriviek dotykových systémov s kritickým sklonom dráhy vo formáte .pkl
- dataset syntetických kriviek oddelených systémov s kritickým sklonom dráhy vo formáte .pkl
- dataset syntetických kriviek škvrnitých hviezd vo formáte .pkl

Jupyter notebook data-preparation/data_observed_binary.ipynb pracuje s dátami:

dáta observačných kriviek dvojhviezd vo formáte .json

Výstupom Jupyter notebooku data-preparation/data_observed_binary.ipynb je súbor:

dataset observačných kriviek dvojhviezd vo formáte .csv

Skript data-preparation/data_observed_binary_spotty.py pracuje s dátami:

- dáta observačných kriviek dvojhviezd a škvrnitých hviezd vo formáte .txt
 Hlavným výstupom skriptu data-preparation/data_observed_binary_spotty.
 py je súbor:
- dataset observačných kriviek dvojhviezd a škvrnitých hviezd vo formáte .csv
 Jupyter notebook modeling/model_3_experiments_binary_stars_50000.ipynb
 pracuje s dátami:
 - dataset syntetických kriviek dotykových systémov vo formáte .pkl
 - dataset syntetických kriviek oddelených systémov vo formáte .pkl

Hlavným výstupom Jupyter notebooku modeling/model_3_experiments_binary_ stars 50000.ipynb sú nasledovné súbory:

- natrénovaný model klasifikácie models-checkpoints/model_experiment_1_
 50000.hdf5 z prvého experimentu
- natrénovaný model klasifikácie models-checkpoints/model_experiment_2_
 50000.hdf5 z druhého experimentu
- natrénovaný model klasifikácie models-checkpoints/model_experiment_3_
 50000.hdf5 z tretieho experimentu

Jupyter notebook modeling/model_observed_binary.ipynb pracuje s dátami:

dataset observačných kriviek dvojhviezd vo formáte .csv

Hlavným výstupom Jupyter notebooku modeling/model_observed_binary.ipynb sú súbory:

- obrázok ROC krivky roc auc.png
- obrázok vzorky zle predikovaných oddelených systémov image.png
- obrázok vzorky zle predikovaných dotykových systémov image2.png

Jupyter notebook modeling/model_experiment_single_spotty_critical_binary.ipynb pracuje s dátami:

- dataset syntetických kriviek dotykových systémov s kritickým sklonom dráhy vo formáte .pkl
- dataset syntetických kriviek oddelených systémov s kritickým sklonom dráhy vo formáte .pkl
- dataset syntetických kriviek škvrnitých hviezd vo formáte .pkl

Hlavným výstupom Jupyter notebooku modeling/model_experiment_single_ spotty critical binary.ipynb je súbor:

natrénovaný model klasifikácie models-checkpoints/model_experiment_4.
 hdf5 zo štvrtého experimentu

Jupyter notebook modeling/model_observed_spotty_binary.ipynb pracuje s dátami:

dataset observačných kriviek dvojhviezd s kritickým sklonom dráhy a škvrnitých hviezd vo formáte .csv

Hlavným výstupom Jupyter notebooku modeling/model_observed_spotty_binary.ipynbje súbor:

• obrázok ROC krivky roc_auc.png

- obrázok vzorky zle predikovaných škvrnitých hviezd image.png
- obrázok vzorky zle predikovaných dvojhviezd s kritickým sklonom dráhy image2.png

6 Príklad použitia

V tejto kapitole opíšeme jednotlivé kroky použitia skriptu modeling/model_experiment_single_spotty_critical_binary.ipynb.

- 1. Otvoríme Jupyter notebook s názvom model_experiment_single_spotty_critical_binary.ipynb.
- 2. Nastavíme správnu cestu k potrebným súborom, ktoré sú potrebné na spustenie projektu.
- 3. Spustíme všetky bunky kliknutím na horné menu -> Run -> Run All cells.
- 4. Výstupom Jupyter notebooku je natrénovaný model, ktorý dokáže danú krivku klasifikovať na dvojhviezdu s kritickým sklonom dráhy a škvrnitú hviezdu.