Proof. As we suggested earlier, let us compute $Q(x) + G(\lambda)$, assuming that the constraint $B^{\top}x = f$ holds. Eliminating f, since $b^{\top}x = x^{\top}b$ and $\lambda^{\top}B^{\top}x = x^{\top}B\lambda$, we get

$$Q(x) + G(\lambda) = \frac{1}{2} x^{\top} A^{-1} x - b^{\top} x + \frac{1}{2} (B\lambda - b)^{\top} A (B\lambda - b) + \lambda^{\top} f$$

= $\frac{1}{2} (A^{-1} x + B\lambda - b)^{\top} A (A^{-1} x + B\lambda - b).$

Since A is positive definite, the last expression is nonnegative. In fact, it is null iff

$$A^{-1}x + B\lambda - b = 0,$$

that is,

$$A^{-1}x + B\lambda = b.$$

But then the unique constrained minimum of Q(x) subject to $B^{\top}x = f$ is equal to the unique maximum of $-G(\lambda)$ exactly when $B^{\top}x = f$ and $A^{-1}x + B\lambda = b$, which proves the proposition.

We can confirm that the maximum of $-G(\lambda)$, or equivalently the minimum of

$$G(\lambda) = \frac{1}{2}(B\lambda - b)^{\top} A(B\lambda - b) + \lambda^{\top} f,$$

corresponds to value of λ obtained by solving the system

$$\begin{pmatrix} A^{-1} & B \\ B^\top & 0 \end{pmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} = \begin{pmatrix} b \\ f \end{pmatrix}.$$

Indeed, since

$$G(\lambda) = \frac{1}{2} \lambda^\top B^\top A B \lambda - \lambda^\top B^\top A b + \lambda^\top f + \frac{1}{2} b^\top b,$$

and $B^{\top}AB$ is symmetric positive definite, by Proposition 42.2, the global minimum of $G(\lambda)$ is obtained when

$$B^{\top}AB\lambda - B^{\top}Ab + f = 0,$$

that is, $\lambda = (B^{\top}AB)^{-1}(B^{\top}Ab - f)$, as we found earlier.

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimization of Q(x) subject to $B^{\top}x = f$ is called the *primal problem*, and the unconstrained maximization of $-G(\lambda)$ is called the *dual problem*. Duality is the fact stated slightly loosely as

$$\min_{x} Q(x) = \max_{\lambda} -G(\lambda).$$

A general treatment of duality in constrained minimization problems is given in Section 50.7.