CM4044 Project 2 LogP Prediction

$$LogP = Log \frac{[Analyte]_{octanol}}{[Analyte]_{water}}$$

LogP, or octanol-water partition coefficient, is a measure of how hydrophilic or hydrophobic a molecule is.

Lipinski's Rule of 5

- Guidelines for bioavailability of oral drugs
- MW is less than 500 Da
- LogP < 5
- Sum of N and O atoms < 10
- Hydrogen-bond donors <5

Aim

Create an algorithm f(x) that takes the **SMILES** data as input and returns its **logP value** as the output for prediction.

Models used for prediction

Ridge **Support Vector** Regression Regression Neural Network Model (Activation function = ReLU)

t Vector Multiple Linear Regression

Neural
Network
Model
(Activation
function =
Sigmoid)

Machine learning models used for prediction

Ridge Regression

Shrinks the estimated coefficients in the learning process to discourage overfitting

By adding 'squared magnitude' of coefficients as penalty term to loss function

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f_w(x_i))^2 + \lambda \sum_{j=1}^{p} w_j^2$$

Support Vector Regression

A hyperplane is defined along with two decision boundaries (ϵ) above and below the hyperplane

Kernel can be tuned as well for finding the ideal hyperplane for your dataset

Multiple Linear Regression

Estimates the relationship between a quantitative dependent variable and two or more independent variables using a straight line

$$y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \epsilon$$

Activation functions used for neural network models (NNM)

ReLU

Has a derivative function and allows for backpropagation

Neurons will be deactivated if the output is less than 0

Dying ReLU problem: inputs are negative, gradient becomes 0

Weights and biases for some neurons are not updated

Sigmoid

Output exists between 0 to 1

Commonly used for models where we have to predict the probability as an output

Vanishing gradient problem at very high or low values of input

Datasets used for prediction

Dataset with synthetic logP values

Dataset with experimental logP values

Using RD-Kit package, SMILES notation is converted to Mol (a python object)

Visualization of compounds

Dataset with synthetic logP values

Dataset with experimental logP values

 $\texttt{cc1} \\ \texttt{cc2} \\ \texttt{(c1)} \\ \texttt{(C4)} \\ \texttt{(C4)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C3)} \\ \texttt{(C1)} \\ \texttt{(C1)} \\ \texttt{(C1)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C3)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C2)} \\ \texttt{(C3)} \\ \texttt{(C3)} \\ \texttt{(C3)} \\ \texttt{(C4)} \\ \texttt{(C4)$

Visualization of compounds

Creating features for models (same for both datasets)

Number of atoms -1 # AddHs function adds H atoms to a MOL (as Hs in SMILES are usualy ignored) Number of heavy atoms df['mol'] = df['mol'].applv(lambda x: Chem.AddHs(x)) Number of carbon atoms # GetNumAtoms() method returns a general nubmer of all atoms in a molecule df['num of atoms'] = df['mol'].apply(lambda x: x.GetNumAtoms()) Number of oxygen atoms # GetNumHeavyAtoms() method returns a nubmer of all atoms in a molecule with molecular weight Number of nitrogen atoms df['num of heavy atoms'] = df['mol'].apply(lambda x: x.GetNumHeavyAtoms()) Number of chlorine atoms #Searching for patterns and use it for a list of most common atoms only def number of atoms (atom list, df): Number of phosphorus atoms for i in atom list: df['num of {} atoms'.format(i)] = df['mol'].apply(lambda x: len(x.GetSubstructMatch Number of bromine atoms number_of_atoms(['C', 'O', 'N', 'Cl', 'P', 'Br', 'F'], df) Number of fluorine atoms df['tpsa'] = df['mol'].apply(lambda x: Descriptors.TPSA(x)) #https://en.wikipedia.org/wiki/ df['mol w'] = df['mol'].apply(lambda x: Descriptors.ExactMolWt(x)) # https://en.wikipedia.c df['num valence electrons'] = df['mol'].apply(lambda x: Descriptors.NumValenceElectrons(x)) TPSA 17 df['num heteroatoms'] = df['mol'].apply(lambda x: Descriptors.NumHeteroatoms(x)) Molecular weight Number of valence electrons

Number of heteroatoms

Creating features for models (same for both datasets)

 Mol2Vec converts Mol (python object) into a vector (a list of numbers) that we will use as an additional feature of the model.

Splitting datasets (same for both datasets)

- X > Features
- y > LogP values
- Both datasets are then split into the subsequent subsets:
 - Training set (0.8)
 - Validation set (0.1)
 - Test set (0.1)

¹ X_train, X_remain, y_train, y_remain = train_test_split(X, y, test_size=.2, randor 2 X val, X test, y val, y test = train test split(X remain, y remain, test size=.5,

Evaluation

Utilizing MSE and Correlation Coefficients to evaluate the ML and NN models

Plots of Synthetic LogP Data

*14610 Data Points

16

Plots of Experimental LogP Data

*753 Data Points

Evaluation Parameters Table

		Ridge Regression	Support Vector Regressor	Multiple Linear Regression	ReLU NNM	Sigmoid NNM
MSE	Synthetic dataset	0.256	0.107	0.256	0.104	0.092
	Experimental dataset	0.591	0.598	0.691	0.730	1.059
Correlation coefficient	Synthetic dataset	0.9222	0.9684	0.9224	0.9694	0.9730
	Experimental dataset	0.7896	0.7916	0.7612	0.7381	0.6457

Limitations

Data Sets

- Synthetic
 - A "Predicted" Model
 - Based on Heteroatoms
- Experimental
 - Small Sample Size
 - No External Reaction Parameters

Real-life Deviations

- Intermolecular Interactions
- Intramolecular Interactions
- Entropic Considerations

1,2-dichloroethane

Computed logP = 2.3

Experimental logP = 1.48

Conclusion

- LogP
 - Impact for Medicinal Chemistry
- Machine and Neural Network Models
 - Ridge Regression
 - Support Vector Regression
 - Multiple Linear Regression
 - ReLU Function NNM
 - Sigmoid Function NNM

Predictions

- Synthetic
- Experimental
- <u>Evaluation</u>
 - Mean Squared Error
 - Correlation Coefficient
- <u>Limitations</u>
 - Data Sets
 - Experimental Deviations

Thank You!