Linear Regression

Dr. Mohamed Elshenawy

1

Previous session ...

- Course Overview
- What is Learning?
- Why do we need machine learning?
- Types of learning
- Practice
 - Learn about the tools and libraries
 - Start playing with the data
 - · Explore the dataset
 - Understand different data types
 - · Pre- Processing

This session...

- Simple Linear Regression
- Steps to fit a linear regression model
- Multiple and Polynomial Regression
- Overfitting and Underfitting
- Regularization:
 - Ridge Regression
 - Lasso Regression
 - Elastic-Net Regression

3

Example

- Given a history of sold houses in the last 5 years within a certain neighborhood, your client wants you to build a system that can estimate the fair price of a house given its characteristics (size, number of rooms, etc.)
- What is the output of the model?
- Is it quantitative or qualitative?
- What are the input features?
- Are these features quantitative or qualitative?

Regression Analysis

• Regression: a measure of the relationship between the mean value of one variable (output of your model) and corresponding values of other variables (input features).

5

Let's assume the following Dataset

Data set

- n cases i= 1,2,.....n
- 1 target variable (price)
 - t_i , i = 1, 2,n
 - t_1 =290, t_2 =405, t_3 =200,....
- 1 input variable (size)
 - x_i , i = 1, 2,n
 - x_1 =1320, x_2 =1900, x_3 =900,....

Size in feet ²	Price in thousands
1320	290
1900	405
900	200
1600	340

Linear Regression

 Assumes a linear relationship between the mean of the target/ output variable (the factor you are trying to predict (also known as the dependent variable) and the input variables (features that are expected to affect the target variable (also known as "predictor/ explanatory" variables)

What shall the model learn in that case?

- We need to learn θ_0 and θ_1 (model parameters)
- If I can estimate θ_0 and θ_1 correctly, I have an estimation of the output given the input attributes with some error (ϵ_i) .
- Prediction error (residual) is defined as $\epsilon_i = t_i y_i$
 - t_i : observed output value for dataset record i (true price value in the previous example).
 - y_i : our estimate of the target variable for dataset record $I(y_i = \theta_1 * x_i + \theta_2)$.
- How can we estimate θ_0 and θ_1 ?

Least Squares Criterion

- The most popular estimation method.
- Least Squares Criterion: "minimize the sum of the squared prediction errors."
- Residual Sum of Squares $(RSS)=e_1^2+e_2^2+\cdots +e_n^2$
- find the values θ_0 and θ_1 that make the sum of the squared prediction errors the smallest it can be.
- How? Using the Ordinary least squares (OLS) method

a

Optimization Problem: find θ_0 and θ_1 to minimize RSS

Contour and three-dimensional plots of RSS along with the model parameters

İŢj

Book: An Introduction to Statistical Learning. James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani, 2013, ISBN: 978-1-461-47137-0.

Solving the optimization problem (mathematically)

$$J(\theta) = \sum_{i=1}^{n} (t_i - y_i)^2$$
, $y_i = \theta_0 + \theta_1 x_i$

$$J(\theta) = \sum_{i=1}^{n} (t_i - (\theta_0 + \theta_1 x_i))^2$$

To minimize $J(\theta)=$, take the derivative with respect to θ_0 and θ_1 , set to 0, and the model parameters

11

Solution

$$\theta_0 = \bar{t} - \theta_1 \bar{x},$$

$$\bar{t} = \frac{\sum_{i=1}^n t_i}{x}, \bar{x} = \frac{\sum_{i=1}^n x_i}{x}$$

$$\theta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(t_i - \bar{t})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

We can also solve it using Gradient Descent (iterative learning method)

- One of the generic algorithms used to solve optimization problems
- 1. Initialize θ randomly.
- 2. repeatedly update θ based on the gradient

$$\theta \leftarrow \theta - \lambda \frac{\partial J(\theta)}{\partial \theta}$$

For a single training case i:

$$\frac{\partial J_i(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} (t_i - y_i)^2$$

13

Gradient Descent (cont)

$$y_{i} = \theta_{0} + \theta_{1}x_{i}$$

$$J_{i}(\theta) = \left(t_{i} - (\theta_{0} + \theta_{1}x_{i})\right)^{2}$$

$$\frac{\partial J_{i}(\theta)}{\partial \theta_{0}} = 2(t_{i} - y_{i})(-1)$$

$$\frac{\theta_{0} \leftarrow \theta_{0} - 2\lambda(t_{i} - y_{i})(-1)}{\partial \theta_{1}} = 2(t_{i} - y_{i})(-x_{i})$$

$$\theta_{1} \leftarrow \theta_{1} - 2\lambda(t_{i} - y_{i})(-x_{i})$$

Gradient Descent (cont.)

- For all points in the data set
- Batch update
 - Sum or average updates across every example n, update for all samples

$$\theta_0 \leftarrow \theta_0 + \frac{2\lambda}{n} \sum_{i=1}^n (t_i - y_i); \ \theta_1 \leftarrow \theta_1 + \frac{2\lambda}{n} \sum_{i=1}^n (t_i - y_i) x_i$$

 Stochastic/online updates: update the parameters for each training case in turn, according to its own gradients

15

Fitting a model

17

How about if we have non-linear relationship?

Polynomial Regression

$$T = \theta_0 + \theta_1 X_1 + \theta_2 X_1^2 + \theta_3 X_1^3 + \dots + \theta_m X_1^m + E$$

19

How many parameters shall we use?

Plots of polynomials having various degrees, shown as red curves, Which fit is the best?

Model Capacity

• A model's capacity is its ability to fit a wide variety of functions.

21

Capacity

 A linear regression model (M1) with two parameters (A polynomial of degree one)

$$y_{M1} = \theta_0 + \theta_1 x$$

- The model can fit several functions. For example $y=4;\ y=2x;y=3+1.5x;y=0.5+0.25x$
- By adding one more parameter and use x^2 (A polynomial of degree 2) $y_{M2} = \theta_0 + \theta_1 x + \theta_2 x^2$
- The model (M2) can fit several more functions that cannot be represented by the first mode. For example $y=2x^2$; $y=2+1.5x^2$; $y=0.5x+0.2x^2$. It can also fit all functions of M1.
- We say that M2 has more capacity than M1

Now back to our example

- Does having more capacity mean better performance?
- How can we evaluate the performance in that case?

23

Training and test data

- We split the data into two segments:
 - Training set, used to learn the model parameters. The error calculated using this set is called the training error.
 - Test set, used to assess the generalization of the model (Model's ability to perform well on unseen data). Why is this important?

Again, back to our example

- Which of the four models has low training error and high test error?
- We call this overfitting

25

Again, back to our example

- Which of the four models will has high training error?
- We call this underfitting

From Bishop's textbook section (1.1)

Overfitting, underfitting, and model capacity

We will discuss bias-variance tradeoff in the upcoming lecture

Section 5.4 from the book:Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. Vol. 1. Cambridge: MIT press, 2016.

27

How can we prevent overfitting

- · Best way is to train the model using more data
- Sometimes this is difficult. We can also
 - Reduce model complexity.
 - Use regularization techniques

Regularization

• Any modification we make to a learning algorithm that is intended to reduce its generalization/test error, but not its training error.

29

Let's have a closer look at the previous example

values of the model parameters?

Regularization

- A possible way to avoid overfitting is to add extra terms in the objective function that can be thought as corresponding to a soft constraint on the parameter values.
- How?

31

Review: Norm

- A measure the size of a vector (maps a vector to a non-negative value representing its size).
- L^p norm is given by

$$L^p \text{ norm of some vector } x = \|x\|_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$
 For $p \ge 1$

L^1 and L^2 Norm

• For p=2 (L^2 norm)

$$||x||_2 = \sqrt{\sum_i |x_i|^2}$$

- \bullet $\it L^2$ norm is simply the Euclidean distance from the origin to the point identified by $\bf x$
- The squared $L^2(\|x\|_2^2)$ norm is typically more convenient to work with mathematically and computationally than the L2 norm itself.
- For p=1 (L^1 norm)

$$||x||_1 = \sum_i |x_i|$$

33

Using the norm to constrain parameter values

• Basic idea: add a parameter norm penalty $\Omega(\theta)$ to the objective function J

$$\tilde{J}(\theta; x, y) = J(\theta; x, y) + \lambda \Omega(\theta)$$

• Where $\lambda \in [0, \infty)$ is a hyper-parameter that weights the relative contribution of the norm penalty term $\Omega(\theta)$

Ridge Regression (L^2 Parameter Regularization)

• Basic idea:

Add regularization term $\Omega(\theta) = ||\theta||_2^2$

35

Ridge Regression

$$\widehat{\theta}^{ridge} = \min \left\{ \sum_{i=1}^{n} \left(t_i - \theta_0 - \sum_{j=1}^{p} x_{ij} \, \theta_j \right)^2 + \lambda \sum_{j=0}^{p} \theta_j^2 \right\}$$

 $\lambda \geq 0$: a complexity parameter that controls the amount of shrinkage Leads to changing the update rule for gradient descent`

$$\frac{\partial}{\partial \theta_0} \lambda \sum_{j=0}^{P} \theta_j^2 = \lambda \frac{\partial}{\partial \theta_0} \left[\theta_0^2 + \theta_1^2 + \dots + \theta_p^2 \right] = 2\lambda \theta_0$$

Similarly, you can find $\frac{\partial}{\partial \theta_1}$,, $\frac{\partial}{\partial \theta_p}$

$$\theta_0 \leftarrow \theta_0 + \frac{2\lambda}{n} \left[\sum_{i=1}^n (t_i - y_i) - 2\alpha\theta_0 \right]; \ \theta_k \leftarrow \theta_k + \frac{2\lambda}{n} \left[\sum_{i=1}^n (t_i - y_i) x_{ik} - 2\alpha\theta_k \right]$$

Lasso Regression (L^1 Parameter Regularization)

Basic idea:

Add regularization term $\Omega(\theta) = \|\theta\|_1$

· Used as a method of feature selection

$$\hat{\theta}^{lasso} = \min \left\{ \sum_{i=1}^{n} \left(t_i - \theta_0 - \sum_{j=1}^{p} x_{ij} \, \theta_j \right)^2 + \lambda \sum_{j=0}^{p} |\theta_j| \right\}$$

37

$oldsymbol{L^1}$ and $oldsymbol{L^2}$ regularization

- L^1 regularization, minimizes the sum of the absolute values
- L^2 regularization minimizes the sum of squares.
- Choosing L^1 or L^2 That depends on the specific problem
- L^1 regularization has an important advantage: it tends to produce a sparse model. That is, it often sets many weights to zero, effectively declaring the corresponding attributes to be irrelevant.

Elastic Net Regularization

- Emerged as a result of critique on lasso
- ullet Combines L^1 and L^2 penalties to get the best of both
- $\tilde{J}(\theta; x, y) = J(\theta; x, y) + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2^2$

https://medium.com/Fmlearning-ai/elasticnet-regression-fundamentals-and-modeling-in-python

39

How about if we have multiple inputs?

Multiple Linear Regression

• Given multiple inputs $[X_1, X_2, ..., X_p]$, the linear regression model has the form

$$Y = \theta_0 + \sum_{j=1}^p \theta_j X_j$$

- $X_1 = [x_{11}, x_{21}, x_{31}, \dots, x_{n1}], X_2 = [x_{12}, x_{22}, x_{32}, \dots, x_{n2}], \dots, X_p = [x_{1p}, x_{2p}, x_{3p}, \dots, x_{np}]$
- $Y = [y_1, y_2, y_3, \dots, y_n]$
- What do we need to learn in this case?
- θ_0 , θ_1 , θ_2 ,, θ_p
- We use OLS in a way similar to we discussed before

41

Solution

- $\min_{\theta} (t X\theta)^T (t X\theta)$
- Closed form solution
- $\theta = (X^T X)^{-1} X^T t$

Multiple Linear Regression

- X_j can be:
 - · Quantitative input;
 - Numeric or "dummy" coding of the levels of **qualitative** inputs (e.g. 1 for category adult and 0 for category child).
 - Transformations of quantitative inputs, such as log, square-root or square;
 - Basis expansions, such as:
 - for sample i, $x_{i2}=x_{i1}^2$, $x_{i3}=x_{i1}^3$ leading to a polynomial representation;
 - Interactions between variables, for example, for sample I, $x_{i3}=x_{i1}.x_{i2}$

43

mmelshenawy@gmail.com

