

Maximal flows in networks Bachelorarbeit aus Diskreter Mathematik

Florian Schager

TU Wien, Vienna, Austria

14. Juni 2021

Übersicht

- 1 Wiederholung
- 2 Blocking Flows
- 3 Algorithmus: MKM
- 4 Reduktionen auf ein Maximum Flow Problem
- 6 Preflows
- 6 Algorithmus: Goldberg-Tarjan

Wiederholung - Problemstellung

Problem (Maximum flow)

Finde maximalen Fluss von s nach t in Netzwerk N = (G, c, s, t), der folgenden Bedingungen genügt:

- $0 \le f(e) \le c(e)$ für jede Kante e; (Kapazitätsbeschränkung)
- $\sum_{e^+=v} f(e) = \sum_{e^-=v} f(e)$ für jeden Knoten $v \neq s, t$. (Flusserhaltung)

Wert eines Flusses:

$$w(f) := \sum_{e^-=s} f(e) - \sum_{e^+=s} f(e) = \sum_{e^+=t} f(e) - \sum_{e^-=t} f(e).$$

Wiederholung - Algorithmus

Algorithmus

- Starte mit dem trivialen Fluss: $f(e) = 0, e \in E$.
- Finde einen erweiternden Pfad P und berechne

$$d := \min[\{c(e) - f(e) : e \text{ Vorwärts-Kante } \in P\} \cup \{f(e) : e \text{ Rückwärts-Kante } \in P\}].$$

• Konstruiere erweiterten Fluss f' mit w(f') = w(f) + d:

$$f'(e) = egin{cases} f(e) + d, & e ext{ ist Vorwärts-Kante } \in P \ f(e) - d, & e ext{ ist Rückwärts-Kante } \in P \ f(e), & ext{sonst} \end{cases}$$

• Wiederhole solange, bis kein erweiternder Pfad mehr gefunden werden kann.

Hilfsnetzwerke

Sei N = ((V, E), c, s, t) ein Flussnetzwerk.

Definition (Hilfsnetzwerk N' = ((V, E'), c', s, t))

- $e = uv \in E \text{ mit } f(e) < c(e) \rightarrow e' = uv \in E' \text{ mit } c(e') = c(e) f(e).$
- e = uv, f(e) > 0 $\rightarrow e'' = vu \in E' \text{ mit } c'(e'') = f(e).$
- Effizientere Implementierung: Weglassen überflüssiger Information
- Hilfsnetzwerk $N' \rightarrow Schichtnetzwerk N''$
- Schichtlevel eines Knoten v = Distanz zur Quelle s : d(s, v)
- Entferne alle Knoten $v \neq t : d(s, v) \geq d(s, t)$.
- Entferne alle Kanten, welche von einer höheren in eine niedrigere Schicht führen.

Algorithmus - Skizze

Definition

Ein $Flow\ f$ heißt $Blocking\ Flow$, wenn es bezüglich f keine erweiternden Pfade alleine aus Vorwärtskanten gibt.

Algorithmus (Blocking Flows)

- Starte mit dem trivialen Fluss: $f(e) = 0, e \in E$.
- Wiederhole solange *f* nicht maximal:
 - Erstelle Schichtnetzwerk N" bezüglich f.
 - Finde Blocking Flow g in N"
 - Erweitere f um g

MKM-Algorithmus (1/3)

Definition (Flusspotential)

Für einen Knoten v definieren wir das Flusspotential als

$$p(v) = \min \left\{ \sum_{e^-=v} c(e), \sum_{e^+=v} c(e) \right\}.$$

MKM-Algorithmus (2/3)

Algorithmus (BlockMKM (Malhotra, Kumar und Mahashwari))

- Starte mit dem trivialen Fluss: $g(e) = 0, e \in E$.
- Berechne Flusspotentiale für alle $v \in V$.
- Wiederhole solange $s \in V$ und $t \in V$:
 - Finde Knoten w mit minimalem Flusspotential p(w).
 - Push(w, p(w)).
 - Pull(w, p(w)).
 - Entferne redundante Ecken und Kanten.

MKM-Algorithmus (3/3)

Algorithmus

```
procedure PUSH(w, p(w))
    Sei Q Warteschlange mit einzigem Element w
    \forall u \in V : b(u) \leftarrow 0: b(v) \leftarrow k
     repeat
       Entferne \nu von Q
        while v \neq t \wedge b(v) \neq 0 do
             Wähle Kante e = vu; m \leftarrow \min\{c(e), b(v)\}
             c(e) \leftarrow c(e) - m; \quad g(e) \leftarrow g(e) + m
             p^+(u) \leftarrow p^+(u) - m; \quad b(u) \leftarrow b(u) + m
             p^-(v) \leftarrow p^-(v) - m; \quad b(v) \leftarrow b(v) - m
             Füge u zu Q hinzu
             if c(e) = 0 then entferne e von E end
         end
     until Q = \emptyset:
end procedure
```


Reduktionen auf ein Maximum Flow Problem (1/3)

Problem (Knotenkapazitäten)

Zusätzlich zu der Kapazitätsfunktion $c: E \to \mathbb{R}^+$ sei noch eine Kapazitätsfunktion $d: V \to \mathbb{R}^+$ gegeben, welche den maximalen Fluss durch einen Knoten limitiert.

Reduktionen auf ein Maximum Flow Problem (1/3)

Problem (Knotenkapazitäten)

Zusätzlich zu der Kapazitätsfunktion $c: E \to \mathbb{R}^+$ sei noch eine Kapazitätsfunktion $d: V \to \mathbb{R}^+$ gegeben, welche den maximalen Fluss durch einen Knoten limitiert.

Reduktionen auf ein Maximum Flow Problem (1/3)

Problem (Knotenkapazitäten)

Zusätzlich zu der Kapazitätsfunktion $c: E \to \mathbb{R}^+$ sei noch eine Kapazitätsfunktion $d: V \to \mathbb{R}^+$ gegeben, welche den maximalen Fluss durch einen Knoten limitiert.

Reduktionen auf ein Maximum Flow Problem (2/3)

Definition (Bipartiter Graph)

Ein ungerichteter Graph G=(V,E) heißt bipartit, falls sich seine Knoten in zwei disjunkte Teilmengen A und B aufteilen lassen, sodass zwischen den Knoten innerhalb beider Teilmengen keine Kanten verlaufen. Das heißt, für jede Kante $uv \in E$ gilt entweder $u \in A$ und $v \in B$ oder $u \in B$ und $v \in A$.

Problem (Bipartiter Graph - Matching of maximal cardinality)

Sei G = (V, E) ein ungerichteter, bipartiter Graph. Gesucht ist eine Teilmenge $M \subseteq E$ mit maximaler Kardinalität, sodass keine zwei Kanten einen gemeinsamen Endknoten teilen.

Reduktionen auf ein Maximum Flow Problem (3/3)

Reduktionen auf ein Maximum Flow Problem (3/3)

Preflows

Definition (Fluss)

Ein Fluss ist eine Funktion $f: V \times V \to \mathbb{R}$ die folgenden Bedingungen genügt:

- (1) $\forall (v, w) \in V \times V : f(v, w) \leq c(v, w)$
- (2) $\forall (v, w) \in V \times V : f(v, w) = -f(w, v)$
- (3) $\forall v \in V \setminus \{s,t\} : \sum_{u \in V} f(u,v) = 0.$

Definition (Preflow)

Ein *Preflow* ist schließlich eine Funktion $f: V \times V \to \mathbb{R}$, welche (1) und (2) erfüllt, sowie eine abgeschwächte dritte Bedingung:

- (3') $\forall v \in V \setminus \{s,t\} : \sum_{u \in V} f(u,v) \geq 0.$
- Der Wert $e(v) = \sum_{u \in V} f(u, v)$ nennen wir den flow excess des Preflows f in v.

Residualgraph

Definition (Residualgraph)

Zu einem gegebenen Preflow f definieren wir vorerst die Residualkapazität $r_f: V \times V \to \mathbb{R}$ durch

$$r_f(v,w) := c(v,w) - f(v,w).$$

Wir definieren zusätzlich einen Residualgraphen $G_f = (V, E_f)$ mit

$$E_f := \{ vw \in E : r_f(v, w) > 0 \}$$

Labels

Definition

Ein valid labelling ist eine Funktion $d: V \to \mathbb{N}_0 \cup \{\infty\}$ mit

(4)
$$d(s) = |V|, d(t) = 0$$

(5)
$$\forall vw \in E_f : d(v) \leq d(w) + 1$$
.

Weiters nennen wir einen Knoten $v \neq s$ aktiv, solange e(v) > 0 und $d(v) < \infty$.

Algorithmus von Goldberg und Tarjan (1/4)

Initialisierung:

Algorithmus (Goldberg und Tarjan)

```
1: procedure GOLDBERGTARJAN(N, f, v, w)

2: \forall v \neq s : f(s, v) \leftarrow c(s, v); \quad f(v, s) \leftarrow -c(s, v)

3: \forall v, w \neq s : f(v, w) \leftarrow 0

4: d(s) = |V|; \quad \forall v \neq s : d(v) \leftarrow 0

5: while \exists v \ aktiv \ do

| Führe eine zulässige Operation aus.

end

6: end procedure
```


Algorithmus von Goldberg und Tarjan (2/4)

Algorithmus (Goldberg und Tarjan)

- 1: **procedure** PUSH(N, f, v, w)
- 2: $\delta \leftarrow \min(e(v), r_f(v, w))$
- 3: $f(v, w) \leftarrow f(v, w) + \delta$; $f(w, v) \leftarrow f(w, v) \delta$
- 4: $r_f(v, w) \leftarrow r_f(v, w) \delta$; $r_f(w, v) \leftarrow f_f(w, v) \delta$
- 5: $e(v) \leftarrow e(v) \delta$; $e(w) \leftarrow e(w) + \delta$
- 6: end procedure

Voraussetzungen:

- 1 v ist aktiv
- 2 $r_f(v, w) > 0$
- 3 d(v) = d(w) + 1

Algorithmus von Goldberg und Tarjan (3/4)

Algorithmus (Goldberg und Tarjan)

- 1: **procedure** Relabel(N, f, v, d)
- 2: $d(v) \leftarrow \min\{d(w) + 1 : r_f(v, w) > 0\}$
- 3: end procedure

Voraussetzungen:

- 1 v ist aktiv

Algorithmus von Goldberg und Tarjan (4/4)

- Maximal $\mathcal{O}(|V|^2|E|)$ Operationen unabhängig von der Reihenfolge.
- Speedup möglich durch bewusste Wahl der Reihenfolge:

Der momentan aktive Knoten wird solange weiterbearbeitet, bis entweder

- e(v) = 0 (kein Exzess mehr vorhanden) oder
- 2 alle Kanten inzident mit v schon für einen Push verwendet wurden und ein Relabel stattgefunden hat.
- Fifoflow (first in, first out): Laufzeit $\mathcal{O}(|V|^3)$.
- Hlflow (highest label): Laufzeit $\mathcal{O}(|V|^2|E|^{1/2})$.

Abbildung: Relabel(a), Push(a, s), Q = (b, c, d)

Abbildung: Relabel(b), Push(b, c), Q = (c, d)

Abbildung: Relabel(c), Push(c, e), Push(c, f), Q = (d, e, f)

Abbildung: Relabel(d), Push(d, a), Q = (a, e, f)

Abbildung: Relabel(e), Push(e, c), Q = (c, f)

