Functions

- -> Used in programming languages.
- > What is the mathematical basis of functions?
- A function may be defined by a formula that tells how to calculate the output for a given input.

Input 2 function
$$\Rightarrow$$
 Output $f(n)$
Eg: $f(x) = x-1$

- (I) Définition of a Function
 - > It is a special type of relation with following proporties:
 - (a) Yr E Domain, there is a mapping.
 - (b) Unique image Vn E Domain.

→ Let X and Y be two non-empty sets.
 → A function f: X → Y where,
 Let X → domain
 Set Y → Co-demain

 \Rightarrow f maps every element $x \in X$ to the element $y \in y$ and can be written as y = f(n)

- > The element y E y }-> Image of n EX
- > The element x E X } > Pre-image of y E y
- The set of all image values $\{f(m): \chi \in \chi\}$ is called the <u>range</u> of f.

Note: Range is always a subset of Co-domain

Dom (f) -> Domain

Ran(f) -> Range

Function denvotes a mapping / transformation.

- (9) Relation VIS Function
 - > A function $f: X \to Y$ is a special kind of relation $R: X \to Y$ if it satisfies the following additional properties:
 - 1. Every element $x \in X$ has an image $y \in X$.
 - 2. One element of X can have only one image, that is

 if (n,y) &f and (n,2) &f then y=Z

(b) Craphical Determination of a Relation as a Function.

- → Use vertical line test.
- > 26 the line intersects the graph of the orelation at more than one point them not a function close a function.

Eg: Let $X = \{1, 2, 3\}$ $R_1 = \{(1,2), (2,3), (3,1)\}$ $R_2 = \{(1,2), (2,3), (1,3)\}$

R, is a function

Rais not a function

(e) Why do we need a function?

(vuesanteed Result

Result will always be 5 and not 1,10, 20 etc.

9) Determine which of the following are functions: Let $A = \{p,q, \sigma, S\}$, $B = \{1,2,3\}$, $C = \{x,y,2\}$

F3: B+ C

Not a function

F2 { (M122) | 2 CR}

Fy: A > B

Yes, a function (Constant fn)

Not a fn

9) How many functions are possible from a set of 'n' elements to a set of 'y' elements?

n(f)= y2

$$f(m_1) = f(n_2) \Rightarrow (n_1) = (n_2)$$

02

$$(\chi_1) \neq (\chi_2) \Rightarrow f(\chi_1) \neq f(\chi_2)$$

me-mo

(Injection)

(b) Onto Function

 $f: x \rightarrow y$ is an onto function if Ran(f) = y is for

Cach y EY, there is an x EX such that f(n)=y

onto (Surjection)

Note: Range = Codomain

(c) One-One Onto Function

- · 26 it is both one-one as well as onto.
- · Also called bijection.

Eg:-

Bijection

(d) Many-one Function

 $f: x \ni y$ is a many to one if $\exists x_1, x_2 \in X \quad \text{such that}$ $\lambda_1 \neq \chi_2 \quad \exists f(\eta_1) = f(\eta_2)$

$$Eg:-$$

$$2$$

$$3$$

$$X$$

$$X$$

Many-one

How many one-one functions are possible from a set of 'x' elements to a set of 'y' elements?

$$y' \text{ elements ?}$$

$$y' = \begin{cases} y' \text{ elements ?} \end{cases}$$

$$y' = \begin{cases} y' \text{ elements ?} \end{cases}$$

$$y' = \begin{cases} y \times (y-1) \times (y-2) \times \dots \times (y-(n-1)) \\ y' = \begin{cases} y \neq n \text{ or } P(y, n) \end{cases}$$

$$y' = \begin{cases} y \neq n \text{ or } P(y, n) \\ y = \begin{cases} y \neq n \text{ or } P(y, n) \end{cases}$$

$$f: X \rightarrow Y$$
 $m(f) = y p_{x}$
 $(x \rightarrow y)$
 $w \cdot of elements$

$$n(f) = n p_n = n_0$$

Let x be a non-empty set.

In: X > X is called an identity function

if
$$I_n(x) = x \forall n \in X$$

(f) Invertible Function

 $f: x \rightarrow y$ will be invertible if its inverse f^{\dagger} is a function from y + o xsuch that $\forall y \in y$, f^{\dagger} assigns a migue value of x.

I) Check for $f(n) = x^2$ where $f: Z \rightarrow Z$ is invertible or not?

Note: (1) Inverse can be defined only for functions which are bijection.

(2) Not every function may have its inverse possible

2) Check whether f(n) = (an + 3) is invertible or not for $f: R \rightarrow R$.

(sien:
$$y = (2n+3)$$
 [At $f(n) = y$]
=) $y-3 = 2n$
=) $x = \left(\frac{y-3}{2}\right)$

$$f'(x) = (y-3)$$

When
$$x=1$$
, $y=2n+3=5$
 $x=2$, $y=2n+3=7$
 $x=3$, $y=2n+3=9$
:

Yes, f(n) is invertible.

(III) Composition of Functions

-> Composition means function of a function

$$B = f(A), C = g(B)$$

Therefore, if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ then, $g \circ f = g(f(n)) \quad \forall n \in X$ Let $f: R \to R$ and $g: R \to R$ be two functions defined as $f(n) = n^2$ and g(n) = 3n + 1.

Find $g \circ f(n)$ and $f \circ g(n)$.

Also, determine whether $g_0 f(a) = f_0 g(a)$ 8 $g_0 f(a) = g(x^2) = 3(x^2) + 1 = 3x^2 + 1$ $f_0 g(a) = f(3x+1) = (3x+1)^2 = 9x^2 + 6x + 1$

9)
$$2fg(n) = (1-n)$$
 and $h(n) = \frac{x}{x-1}$ then,

$$\frac{g[h(n)]}{h[g(n)]}$$

(a)
$$\frac{h(x)}{g(n)}$$
 Hrs.

(IV) Sum and Product of Functions

$$(f_1 + f_2)(m) = f_1(m) + f_2(n)$$

$$(f_1 f_2)(n) = f_1(m) * f_2(n)$$

2) Let f_1 and f_2 be a function from R to R such that $f_1(n) = n+2$ and $f_2(n) = n-3$. Find f_1+f_2 and f_1f_2 .

$$f_{1} + f_{2}(\alpha) = f_{1}(\alpha) + f_{2}(\alpha) = \chi + 2 + \alpha - 3$$

$$= 2 \alpha - 1$$

$$f_{1}(\alpha) = f_{1}(\alpha) * f_{2}(\alpha) = (\alpha + 2)(\alpha - 3)$$

$$= \chi^{2} + 2\alpha - 3\alpha - 6$$

$$= (\chi^{2} - \alpha - 6)$$

- I) Let f_1 and f_2 be functions from a set R to R such that $f_1(n) = x^2$ and $f_2(n) = x_1$. Find $(f_1 + f_2)(2)$ and $(f_1 + f_2)(1)$.
 - (i) $(f_1+f_2)(x) = x^2 + x + 1$ if x=2 then $x^2 + x + 1 = 7$ Ans.
- (ii) $(f_1f_2)(\chi) = (\chi^2)(\chi+1) = \chi^3 + \chi^2$ $2f_1\chi = 1$ then $1^3 + 1^2 = 1 + 1 = 2$ Ano.