Praktikum Physik

Versuch 2.1: Schwingungen

	Inhaltsverzeichnis				
-	1 Hä	usliche Vorarbeit:			
	1.1	Aufgabe 3.1.1			
	1.2	Aufgabe 3.1.2			
	1.3	Aufgabe 3.1.3			
	1.4	Aufgabe 3.1.3			
	1.5	Aufgabe 3.2.1			
	1.6	Aufgabe 3.2.2			
	1.7	Aufgabe 3.2.3			
2	2 tes	: 3			
	2.1	Aufgabe 3.2.4			
	2.2	Aufgabe 3.2.5			
	2.3	Aufgabe 3.2.6			
-	1 Ц:	uslisha Vararhaiti			

1 Häusliche Vorarbeit:

1.1 Aufgabe 3.1.1

$$(m * \frac{d^2}{dt} + b * \frac{dx}{dt} + k * x = 0)$$
(1.1.1)

Auslenkung: $\longrightarrow J(Tr\"{a}gheitsmoment)$ Masse: m

Geschwindigkeit: $v = \frac{dx}{dt}$ $\longrightarrow \omega(Winkelgeschwindigeit)$

Beschleunigung: $a = \frac{d^2x}{dt^2}$ $\longrightarrow \alpha(Winkelbeschleunigung)$

Newton:
$$m\cdot a$$

$$\longrightarrow J\cdot \alpha = J\frac{d\varphi}{dt}$$
 Dämpfungsgrad: $b\cdot v$
$$\longrightarrow b\cdot \omega = b\frac{d^2\varphi}{dt^2}$$

Beschleunigung: $k \cdot x$

$$\Rightarrow$$
 DGL. Torsionsschwinger: $J * \frac{d^{\varphi}}{dt} + b * \frac{d\varphi}{dt} + k * \varphi = 0$ (1.1.2)

1.2 Aufgabe 3.1.2

Definition Drehfederkonstante:

$$M = k \cdot \varphi \tag{1.2.1}$$

φ/rad	F/N	$k/\frac{Nmm}{rad}$
0,6	0,1	15,83
0,8	1,15	17,81
1,1	0,2	17,27
1,3	0,25	18,26
1,6	0,3	17,81
1,8	0,35	18,47
2,0	0,4	19
2,3	0,46	19
2,4	0,48	19

Definition Drehmoment:

$$M = r \cdot F \tag{1.2.2}$$

Federkonstante aus Auslenkung und Kraft am Radius r:

$$k = \frac{r \cdot F}{\varphi} \tag{1.2.3}$$

$$\Rightarrow$$
 Federkonstante: $\overline{k} \approx 18, 1 \frac{Nmm}{rad} = 18, 1 \cdot 10^{-3} \frac{Nm}{rad}$

1.3 Aufgabe 3.1.3

$$A_{ges} = \Pi \cdot r^2 = 28352,87mm^2 \tag{1.3.1}$$

$$A_r = A_{qes} - A_s = 24872,87mm^2 (1.3.2)$$

$$A_r = A_{ges} - A_s = 24872,87mm^2$$

$$m_r = \frac{m_{ges}}{A_{ges} \cdot A_r = 22,47g}$$
(1.3.2)

Massenträgheitsmoment Hohlzylinder:

$$J_r = \frac{1}{2} \cdot (r_{innen}^2 + r_{au\beta en}^2) = 1629,59kg \cdot mm^2$$
 (1.3.4)

Massenträgheitsmoment Gesamt:

$$J_{ges} = J_s + J_r = 1829,61629,59kg \cdot mm^2 = 1829,6 \cdot 10^{-6}kg \cdot m^2$$
 (1.3.5)

1.4 Aufgabe 3.1.3

Eigenfrequenz:

$$\omega_{0,theor.} = \sqrt{\frac{k}{I}} = 3,145 \frac{rad}{s}$$
 (1.4.1)

Periodendauer:

$$T_{0,theor.} = \frac{2\Pi}{\omega_{0,theor.}} = 1,99s$$
 (1.4.2)

1.5 Aufgabe 3.2.1

Eine Spule besteht aus einem (dünnen) gewickelten Draht, welcher selbst einen Leitungswiederstand aufweist. Dieser kann ersatzweise als Widerstand in Reihe zu der Spule dargestellt werden.

1.6 Aufgabe 3.2.2

$$R_{ges} = R_1 + R_2 + R_3 (1.6.1)$$

$$R_{3,min} = (0 + \dots)\Omega \Rightarrow R_{ges,min} = (6, 45 + \dots)k\Omega$$

 $R_{3,max} = (10 \mp \dots)k\Omega \Rightarrow R_{qes,min} = (16, 45 \mp \dots)k\Omega$

1.7 Aufgabe 3.2.3

$$\omega_{0,theor.} = \sqrt{\frac{1}{LC}} = 1497,8318 \frac{rad}{s}$$
 (1.7.1)

Fehlerrechnung:

$$\begin{aligned} |\frac{\partial}{\partial L}\omega_{0,theor.}| &= \frac{LC}{2L^2C} \\ |\frac{\partial}{\partial C}\omega_{0,theor.}| &= \frac{LC}{2LC^2} \end{aligned}$$

$$U_{\omega_{0,theor.}} = |\frac{\partial}{\partial L}\omega_{0,theor.}| \cdot U_L + |\frac{\partial}{\partial C}\omega_{0,theor.}| \cdot U_C = 140,841 \frac{rad}{s} \approx 150 \frac{rad}{s}$$

$$\Rightarrow \omega_{0,theor.} = (1490 \mp 150) \frac{rad}{s}$$

2 test

2.1 Aufgabe 3.2.4

$$\delta_{theor.} = \frac{R}{2L} = 151,3453 \tag{2.1.1}$$

Fehlerrechnung:

$$\left| \frac{\partial}{\partial R} \delta_{theor.} \right| = \frac{1}{2L}$$
$$\left| \frac{\partial}{\partial L} \delta_{theor.} \right| = \frac{R}{2L^2}$$

$$U_{\delta_{theor.}} = \left| \frac{\partial}{\partial R} \delta_{theor.} \right| \cdot U_R + \left| \frac{\partial}{\partial L} \delta_{theor.} \right| \cdot U_L = 11,4863 \approx 12$$

$$\Rightarrow \delta_{theor.} = (151 \mp 12) \frac{rad}{s}$$

2.2 Aufgabe 3.2.5

$$\omega_{D,theor.} = \sqrt{\omega_{0,theor.}^2 - \delta_{theor.}^2} = 1482,329 \frac{rad}{s}$$
(2.2.1)

Fehlerrechnung:

$$\begin{split} |\frac{\partial}{\partial \omega_{0,theor.}} \omega_{D,theor.}| &= \frac{\omega_{0,theor.}}{\sqrt{\omega_{0,theor.}^2 - \delta_{theor.}^2}} \\ |\frac{\partial}{\partial \delta_{theor.}} \omega_{D,theor.}| &= \frac{\delta_{theor.}}{\sqrt{\omega_{0,theor.}^2 - \delta_{theor.}^2}} \end{split}$$

$$U_{\omega_{D,theor.}} = |\frac{\partial}{\partial \omega_{0,theor.}} \omega_{D,theor.}| \cdot U_{\omega_{0,theor.}} + |\frac{\partial}{\partial \delta_{theor.}} \omega_{D,theor.}| \cdot U_{\delta_{theor.}} = 151,9716 \approx 160$$

$$\Rightarrow \omega_{D,theor.} = (1480 \mp 160) \frac{rad}{s}$$

2.3 Aufgabe 3.2.6

Aperiodicher Genzfall:
$$\omega_{0,theor.}^2 = \delta_{theor.}^2$$
 (2.3.1)

$$(\omega_{0,theor.} \text{ist unabhängig von R})$$
 und $\delta_{theor.} = \frac{R}{2L}$

$$\omega_{0,theor.}^2 = \frac{R^2}{4L^2} \quad \Rightarrow \quad R_{grenz,theor.} = \omega_{0,theor.} \cdot 2L = 13290, 8\Omega \tag{2.3.2}$$

Fehlerrechnung:

$$\begin{split} |\frac{\partial}{\partial \omega_{0,theor.}} R_{grenz,theor.}| &= 2 \cdot L \\ |\frac{\partial}{\partial L} R_{grenz,theor.}| &= 2 \cdot \omega_{0,theor.} \end{split}$$

$$U_{R_{grenz,theor.}} = |\frac{\partial}{\partial \omega_{0,theor.}} R_{grenz,theor.}| \cdot U_{\omega_{0,theor.}} + |\frac{\partial}{\partial L} R_{grenz,theor.}| \cdot U_{L} = 11,4863 \approx 12$$

$$\Rightarrow R_{grenz,theor.} = (151 \mp 12)k\Omega$$