Terceira Avaliação de Circuitos Elétricos II/Circuitos Elétricos Aplicados – $1^{0}/2015$

Departamento de Engenharia Elétrica – ENE/FT/UnB-1 Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
Matrícula:/	
Data:/	

Questão 1 – Determine para o circuito abaixo a matriz impedância de circuito aberto.

Solução:

I_1 R_2 I_2	$\underline{\mathbf{Z}} = \begin{bmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{bmatrix}$
	Onde: $R_1 = 1\Omega$
$V_1(t) \geqslant R_1 R_3 \geqslant V_2(t)$	$R_1 = 2\Omega$ $R_1 = 3\Omega$

Resposta: Questão 1	1
_	
$\underline{Z} =$	
]

Questão 2 – Calcule a matriz híbrida h para o circuito mostrado a seguir.

$$\underline{h} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$$

onde:

$\mathbf{R}_1 = 1\mathbf{\Omega}$
$\mathbf{R}_2 = 2\mathbf{\Omega}$
$C = \frac{1}{2} F$
$\alpha = 1$

Solução:	 	

Resposta: Questão 2	
]
$\underline{\boldsymbol{h}} = $	
<u>-</u>	
<u> </u>	J

Questão 3 – Calcule a série exponencial de Fourier para o sinal apresentado na figura abaixo onde: A = 10 e $T_1 = \pi/6$, $T = 2\pi$.

	← т →	t	
Solução:			
Resposta:			
1			

Questão 4 – Determine a resposta do circuito abaixo à entrada V(t), onde: A = 10, $R = 1 \Omega$ e C = 1 F.

	$V(t) = \frac{A}{\pi} + \frac{A}{2}sen(\omega_0 t) + \frac{2A}{\pi} \sum_{n=1}^{\infty} \frac{1}{1 - 4n^2}cos(2n\omega_0 t)$
Solução:	п-1
Resposta:	

Questão 5 – Determine a resposta do circuito abaixo à entrada V(t), onde: $\mathbf{R}_1 = \mathbf{1} \Omega$, $\mathbf{R}_2 = \mathbf{2} \Omega$, $\mathbf{C}_1 = \mathbf{1} \mathbf{F} \mathbf{e}$ $\mathbf{C}_2 = \frac{1}{2} \mathbf{F}$.

$v_S(t)$ \subseteq Solução:	Ţ	$v_S(t) = \frac{A}{2} + \sum_{n=1}^{\infty} \frac{-A}{n\pi} \sin(\frac{2n\pi}{T_0}t)$

