

Report No.: EED32H002581 Page 1 of 39

TEST REPORT

Product : Zigbee Module

Trade mark : N/A

Model/Type reference : MZ100

Serial Number : N/A

Report Number : EED32H002581
FCC ID : 2AG8T-MZ100
Date of Issue : Jan. 12, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

A&R Technologies Ltd.
21/F, CATIC Plaza, 8 Causeway Road, Causeway Bay,
Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Leven San

Reviewed by:

0-00

proved by Sheek . I was

Date

Jan. 12, 2016

Sheek Luo Lab supervisor

Check No.: 1996299655

Page 2 of 39

2 Version

Version No.	Date	Description		
00	Jan. 12, 2016	Original		
			(3)	
			(67)	(0,)

Report No.: EED32H002581 Page 3 of 39

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	B PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Page	1	of.	20
Page	4	OI	59

4 Content

1 CC	OVER PAGE	1
2 VE	RSION	2
3 TE	ST SUMMARY	3
4 CC	ONTENT	4
5 TE	ST REQUIREMENT	5
5.	1 Test setup	5
	5.1.1 For Conducted test setup	
	5.1.2 For Radiated Emissions test setup	
_	5.1.3 For Conducted Emissions test setup	
	2 TEST ENVIRONMENT	
	3 TEST CONDITION	
	ENERAL INFORMATION	
	1 CLIENT INFORMATION	
	2 GENERAL DESCRIPTION OF EUT	
	4 DESCRIPTION OF SUPPORT UNITS	
	5 Test Location	
	6 Test Facility	
6.	7 DEVIATION FROM STANDARDS	9
	8 ABNORMALITIES FROM STANDARD CONDITIONS	
	9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	10 Measurement Uncertainty(95% confidence levels, k=2)	
	QUIPMENT LIST	
8 RA	ADIO TECHNICAL REQUIREMENTS SPECIFICATION	12
	Appendix A) 6dB Occupied Bandwidth & 99% Occupied Bandwidth	13
	Appendix B) Conducted Peak Output Power	
	Appendix C) Band-edge for RF Conducted Emissions	
	Appendix D) RF Conducted Spurious Emissions	
	Appendix E) Power Spectral Density	
	Appendix F) Afterna Requirement	
	Appendix H) Restricted bands around fundamental frequency (Radiated)	28
	Appendix I) Radiated Spurious Emissions	30
РНО	TOGRAPHS OF TEST SETUP	35
РНО	OTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	37

Report No.: EED32H002581 Page 5 of 39

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Conducted Emissions setup

5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:				
Temperature:	22°C			
Humidity:	50% RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel		
rest wode	1X	Low(L)	Middle(M)	High(H)
00701/	0.4051411 0.4001411	Channel 1	Channel 8	Channel16
OQPSK	2405MHz ~2480MHz	2405MHz	2440MHz	2480MHz
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).			

Report No.: EED32H002581 Page 7 of 39

6 General Information

6.1 Client Information

Applicant:	A&R Technologies Ltd.
Address of Applicant:	21/F, CATIC Plaza, 8 Causeway Road, Causeway Bay, Hong Kong
Manufacturer:	A&R Technologies Ltd.
Address of Manufacturer:	Block 34B, phase 4, Huaide Cuigang Ind, Park, Fuyong, Baoan, Shenzhen, China
Factory:	A&R Technologies Ltd.
Address of Factory:	Block 34B, phase 4, Huaide Cuigang Ind, Park, Fuyong, Baoan, Shenzhen, China

6.2 General Description of EUT

Product Name:	Zigbee Module		
Model No.(EUT):	MZ100		
Trade Mark:	N/A	13	(3)
Power Supply:	DC 3.3V		(6.7)
Sample Received Date:	Dec. 17, 2015		
Sample tested Date:	Dec. 17, 2015 to Jan. 11, 2016		

6.3 Product Specification subjective to this standard

Operation Frequency:	2405MHz ~2480MHz
Carrier Frequency:	2405; 2410; 2415; 2420; 2425; 2430; 2435;2440; 2445; 2450; 2455; 2460; 2465; 2470; 2475; 2480
Modulation Type:	OQPSK
Number of Channel:	16
Hardware version:	A (manufacturer declare)
Software version:	OTA DUT_ 20140725 (manufacturer declare)
Test power grade:	NA (manufacturer declare)
Test software of EUT:	Putty_V0.63.0.0.43510830 (manufacturer declare)
Sample Type:	N/A
Antenna Type and Gain:	Type: PCB antenna
	Gain: 3dBi
Test Voltage:	AC 120V, 60Hz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Serial number	Certification	Supplied by
Development Board	MARUELL	N/A	- 72	Client
DC Power supply	Qiekesi	10209898	FCC VOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE navion conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dadiated Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

Report No.: EED32H002581

	RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016	
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016	
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016	
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)	01-13-2015	01-12-2016	
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016	
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016	
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016	
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002	75	01-13-2015	01-12-2016	
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	((-))	01-13-2015	01-12-2016	
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016	
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016	
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016	
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016	
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016	

	Conducted disturbance Test										
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016						
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016						
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016						
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016						
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016						
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016						
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016						
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017						
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017						
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017						

Report No. : EED32H002581 Page 11 of 39

1.5			/'3		2
		3M Semi/full-anech	noic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	04-27-2015	04-26-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(42)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(A)	01-13-2015	01-12-2016

Report No.: EED32H002581 Page 12 of 39

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32H002581 Page 13 of 39

Appendix A) 6dB Occupied Bandwidth & 99% Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
OQPSK	LCH	1.12	1.94	PASS
OQPSK	MCH	1.15	1.92	PASS
OQPSK	нсн	1.13	1.92	PASS

Test Graphs

6dB Bandwidth

Page 14 of 39

Page 15 of 39

Page 16 of 39

Report No. : EED32H002581 Page 17 of 39

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
OQPSK	LCH	-3.10	PASS
OQPSK	MCH	-1.96	PASS
OQPSK	HCH	-1.83	PASS

Test Graphs

Page 18 of 39

Report No.: EED32H002581 Page 19 of 39

Appendix C) Band-edge for RF Conducted Emissions

Test Graphs

Report No. : EED32H002581 Page 20 of 39

Appendix D) RF Conducted Spurious Emissions

Page 21 of 39

Report No.: EED32H002581 Page 22 of 39

Appendix E) Power Spectral Density

3

Result Table

Mode	Channel	PSD [dBm]	Verdict
OQPSK	LCH	-17.09	PASS
OQPSK	MCH	-16.29	PASS
OQPSK	HCH	-15.54	PASS

Test Graphs

Page 23 of 39

Report No. : EED32H002581 Page 24 of 39

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

Report No. : EED32H002581 Page 25 of 39

Appendix G) AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1) The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a

All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on

ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT.

mi

	Fraguency range (MUz)	Limit (c	lΒμV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
þ	0.5-5	56	46
	5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

conducted measurement.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 39

Report No.: EED32H002581 Page 27 of 39

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32H002581 Page 28 of 39

Appendix H) Restricted bands around fundamental frequency (Radiated)

	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-pea	k
			Peak	1MHz	3MHz	Peak	13
		Above 1GHz	Peak	1MHz	10Hz	Average	(3)
	Test Procedure:	Below 1GHz test procedu	re as below:				
		 a. The EUT was placed of at a 3 meter semi-aneod determine the position b. The EUT was set 3 me was mounted on the totoo. The antenna height is odetermine the maximum polarizations of the antenna was tuned table was turned from 0. e. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show communication. 	n the top of a rothoic camber. The highest raters away from p of a variable-hyaried from one m value of the fienna are set to hission, the EUT to heights from O degrees to 360 m was set to Peum Hold Mode.	ne table ware adiation. the interferencies that anter to for eld strength make the new arran 1 meter to 0 degrees the eak Detect letted band contains a diagram of the contains and the table of the contains and the table of the contains and the	ence-receinna tower. ur meters n. Both horneasureme ged to its v 4 meters a o find the i Function a	wing antennations above the gradual and vent. worst case a and the rotal maximum rend Specified	to a, whi round vertica and the table ading
		bands. Save the spectr	um analyzer plo				
		bands. Save the spectr for lowest and highest of lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low i. The radiation measured Transmitting mode, and	rum analyzer plochannel Ire as below: Ire is the test site Iber change form I meter and tablifiest channel, the Iments are perford found the X ax	e, change from table 0.8 de is 1.5 med in X, kis positioni	or each portion of the control of th	Anechoic Control of the control of t	hambe bove or ase.
)	Limit:	bands. Save the spectr for lowest and highest of lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low i. The radiation measure of Transmitting mode, and j. Repeat above procedures.	rum analyzer plochannel Ire as below: Ire is the test site of the	e, change from table 0.8 to Highest of the Highest	or each portion of the control of th	Anechoic Constitution of the constitution of t	hambe bove or ase.
).	Limit:	bands. Save the spectr for lowest and highest of lowest and highest of lowest and highest of lowest and highest of lowest procedure. G. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measurer of Transmitting mode, and j. Repeat above procedure. Frequency	rum analyzer plochannel re as below: re is the test site aber change form 1 meter and table rest channel, the ments are perford d found the X ax res until all frequency.	e, change from table 0.8 to the Highest of the Highest of the positioning the medium of the medium o	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa	Anechoic Cl .5 metre(Ab positioning for it is worse ca as complete.	hambo pove or ase.
)	Limit:	bands. Save the spectr for lowest and highest of lowest and highest of lowest and highest of lowest and highest of lowest between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest. The radiation measurest Transmitting mode, and j. Repeat above procedured Frequency 30MHz-88MHz	rum analyzer plochannel Ire as below: Ire is the test site of the change form of the change form of the channel of the channe	e, change from table 0.8 to is 1.5 medie Highest of the read in X, kis positioniquencies medies medi	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa	Anechoic Control of the control of t	hambo pove or ase.
)	Limit:	bands. Save the spectr for lowest and highest of fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedured Frequency 30MHz-88MHz 88MHz-216MHz	rum analyzer plochannel re as below: re is the test site iber change forn 1 meter and tabl rest channel , the ments are perfo d found the X av res until all freque Limit (dBµV) 40.6 43.8	e, change from table 0.8 to is 1.5 medie Highest of the remed in X, this positioning uencies medies (m @3m)	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Club An	hambo pove or ase.
)	Limit:	bands. Save the spectr for lowest and highest of lowest and highest of lowest and highest of lowest and highest of lowest between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest. The radiation measurest Transmitting mode, and j. Repeat above procedured Frequency 30MHz-88MHz	rum analyzer plochannel re as below: re is the test site re ber change form 1 meter and table rest channel, the ments are perford d found the X ax res until all freque Limit (dBµV 40.6 43.9	e, change from table 0.8 the Highest of the Highest	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ci .5 metre(Aboositioning for tis worse ca as complete. mark eak Value eak Value	hambe bove or ase.
)	Limit:	bands. Save the spectr for lowest and highest of fully Anechoic Chamalagh and the lowest of fully Anechoic Chamalagh and the lowest of low	rum analyzer plochannel re as below: re is the test site iber change forn 1 meter and tabl rest channel , the ments are perfo d found the X av res until all freque Limit (dBµV) 40.6 43.8	e, change from table 0.8 to is 1.5 medie Highest of the received in X, the received in X, the received in X (the received in X) (the received in X	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Club An	hambe bove or ase.

Report No.: EED32H002581 Page 29 of 39

Test plot as follows:

Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test Frequency (MHz)
2390.00	43.52	43.12	32.53	4.28	37.21	74	-30.88	Н	PK	2405
2390.00	44.40	44.00	32.53	4.28	37.21	74	-30.00	V	PK	2405
2483.50	48.38	48.41	32.71	4.51	37.19	74	-25.59	Н	PK	2480
2483.50	47.04	47.07	32.71	4.51	37.19	74	-26.93	V	PK	2480

Note:

Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

¹⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: EED32H002581 Page 30 of 39

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ım	11.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	2°5	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32H002581 Page 31 of 39

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	140.34	10.27	1.58	20.50	32.35	43.50	-11.15	Horizontal	
2	319.94	14.04	2.52	19.40	35.96	46.00	-10.04	Horizontal	
3	338.40	14.52	2.64	18.24	35.40	46.00	-10.60	Horizontal	
4	399.03	16.27	2.80	13.49	32.56	46.00	-13.44	Horizontal	
5	570.61	18.68	3.34	12.18	34.20	46.00	-11.80	Horizontal	
6 рр	677.58	20.22	3.75	14.70	38.67	46.00	-7.33	${\it Horizontal}$	

Page 32 of 39

5

11.61

14.55

200.69

339.59

28.21

35.85

14.39

18.65

43.50 -15.29 Vertical

46.00 -10.15 Vertical

2.21

2.65

Report No. : EED32H002581 Page 33 of 39

Transmitter Emission above 1GHz

Test mo	ode:	OQPSK		Test Freq	uency:		2405MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1326.513	30.52	38.25	2.66	49.15	44.08	74	-29.92	Н
1663.803	31.17	37.72	2.97	47.11	43.53	74	-30.47	₩/
4810.000	34.70	36.82	5.11	45.78	48.77	74	-25.23	Н
5762.235	35.72	36.72	6.90	43.65	49.55	74	-24.45	Н
7215.000	36.42	37.45	6.67	42.18	47.82	74	-26.18	Н
9620.000	37.90	37.83	7.72	42.78	50.57	74	-23.43	Н
1668.044	31.18	37.72	2.98	46.58	43.02	74	-30.98	V
3393.477	33.26	37.01	5.54	45.04	46.83	74	-27.17	V
4810.000	34.70	36.82	5.11	44.01	47.00	74	-27.00	V
5747.586	35.71	36.72	6.87	43.79	49.65	74	-24.35	V
7215.000	36.42	37.45	6.67	42.03	47.67	74	-26.33	V
9620.000	37.90	37.83	7.72	42.78	50.57	74	-23.43	V

Test m	ode:	OQP:	SK	Test Freq	Test Frequency:		2440MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1668.044	31.18	37.72	2.98	48.93	45.37	74	-28.63	ЭΗ
3709.691	33.01	36.95	5.49	44.95	46.50	74	-27.50	Н
4880.000	34.85	36.81	5.08	42.52	45.64	74	-28.36	Н
6078.644	35.94	36.77	7.35	43.13	49.65	74	-24.35	Н
7320.000	36.43	37.43	6.77	43.20	48.97	74	-25.03	Н
9760.000	38.05	37.85	7.60	42.41	50.21	74	-23.79	Н
1668.044	31.18	37.72	2.98	46.67	43.11	74	-30.89	V
3690.853	33.02	36.96	5.49	45.13	46.68	74	-27.32	V
4880.000	34.85	36.81	5.08	41.37	44.49	74	-29.51	V
6032.401	35.92	36.73	7.40	44.03	50.62	74	-23.38	V
7320.000	36.43	37.43	6.77	42.89	48.66	74	-25.34	V
9760.000	38.05	37.85	7.60	43.01	50.81	74	-23.19	V

Report No.: EED32H002581 Page 34 of 39

						/ ///		
Test m	ode:	OQPS	SK	Test Freq	Test Frequency:		2480MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1329.894	30.52	38.24	2.66	46.85	41.79	74	-32.21	H
1597.401	31.05	37.82	2.92	47.10	43.25	74	-30.75	₩.
4960.000	35.02	36.80	5.05	42.58	45.85	74	-28.15	Н
5895.771	35.82	36.71	7.20	44.3	50.61	74	-23.39	Н
7440.000	36.45	37.41	6.88	42.29	48.21	74	-25.79	Н
9920.000	38.22	37.88	7.47	43.61	51.42	74	-22.58	Н
1364.182	30.6	38.18	2.69	46.32	41.43	74	-32.57	V
1663.803	31.17	37.72	2.97	53.09	49.51	74	-24.49	V
3757.208	32.97	36.94	5.48	44.83	46.34	74	-27.66	V
4960.000	35.02	36.80	5.05	41.84	45.11	74	-28.89	V
7440.000	36.45	37.41	6.88	41.98	47.90	74	-26.10	V
9920.000	38.22	37.88	7.47	43.12	50.93	74	-23.07	V

Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32H002581 Page 35 of 39

PHOTOGRAPHS OF TEST SETUP

Test mode No.: MZ100

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32H002581 Page 37 of 39

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: MZ100

View of product-3

Report No. : EED32H002581 Page 39 of 39

View of product-5

View of product-6

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.