Machine learning

Feature Selection

Lecture V

פיתוח: ד"ר יהונתן שלר משה פרידמן

What will we talk about

- * A typical classification flow summary
- * Feature selection

A typical classification flow - diving in

 Data Cleaning
 Train-Test split
 Data Exploration
 Scaling
 Learning Algos.
 Evaluation

 → Duplicates
 + Validation-set
 → Minmax
 → KNN
 → Confusion matrix

 → Missing Data
 norm.
 → Decision Trees
 → Accuracy , Error (rate)

 → Remove
 → t-dist.
 → Naïve Bayes
 → Precision, Recall

 → Repair
 standardization
 → F1 (soon)

Machine learning training

What is feature selection

* feature selection is the process of selecting a subset of relevant features for use in model construction" or in other words, the selection of the most important features

All features

Selected Features

Feature selection and Dimensionality Reduction - Motivation

Prevents Overfitting: A high-dimensional dataset having too many features can sometimes lead to overfitting (model captures both real and random effects).

For example – a decision tree could over-fit a trainset with too many features

Feature selection and Dimensionality Reduction - Motivation

Prevents Overfitting: A high-dimensional dataset having too many features can sometimes lead to overfitting (model captures both real and random effects).

Simplicity: An over-complex model having too many features can be hard to interpret.

Feature selection & Dimensionality Reduction - Motivation

Prevents Overfitting: A high-dimensional dataset having too many features can sometimes lead to overfitting (model captures both real and random effects).

Simplicity: An over-complex model having too many features can be hard to interpret especially when features are correlated with each other.

Computational Efficiency: A model trained on a lower-dimensional dataset is computationally efficient (execution of algorithm requires less computational time).

Feature selection – techniques 1. not complex enough for learning

- 1. a. A trivial case constant value (variance = 0)
 - → We mentioned this example

- 1. b. Remove features with low variance
- * Features with very low variance (under a threshold) are not complex enough for learning.

Feature selection – techniques 2. highly correlated features

- 2. Remove highly correlated features
- High correlated features could cause distortion of distance functions (KNN).
- Features that are highly correlated or co-linear can cause overfitting (NB)
- * When a pair of variables are highly correlated, we can remove one without much loss of information.
 - Which one should we keep?
 - The one with a higher correlation to the target (see ahead)

Feature selection – techniques 2. highly correlated features

- 2. Remove highly correlated features
- * Features that are highly correlated or co-linear can cause overfitting.
 - * zero imply weak or no correlation
 - * coefficients are used to measure the strength of the relationship between two variables.
 - A trivial case duplicate features

Feature selection – techniques 2.a. highly correlated features - Pearson correlation

- 2. Remove highly correlated features
- * Features that are highly correlated or co-linear can cause overfitting.
 - Pearson correlation is the one most commonly used
 - Linear correlation
 - Values always range:-1 (strong negative relationship)
 and +1 (strong positive relationship). 0 no
 correlation.

Feature selection – techniques 2.a. highly correlated features - Pearson correlation

Covariance in the population:

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{X}) \cdot (y_i - \bar{Y})}{n}$$

Where:

 X_i – the values of the X-variable

Y_j – the values of the Y-variable

 \overline{X} – the mean (average) of the X-variable

 \overline{Y} – the mean (average) of the Y-variable הקלד משוואה.

n – the number of data points

Covariance in the sample:

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X}) \cdot (y_i - \overline{Y})}{n-1}$$

Positive covariance: Indicates that two variables tend to move in the same direction.

Negative covariance: Reveals that two variables tend to move in inverse directions.

Covariance Measures relationship, not strength

Feature selection – techniques 2. a. highly correlated features - Pearson correlation (2)

- 2. Remove highly correlated features
- * Features that are highly correlated or co-linear can cause overfitting.

Pearson correlation - between x,y

$$ho_{X,Y} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y}
onumber \ = rac{\sum_i (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_i (x_i - ar{x})^2 \sum_i (y_i - ar{y})^2}}$$

Feature selection – techniques 2. highly correlated features – <u>NMI</u>

- 2. Remove highly correlated features
- Mutual information between two features (f1, f2)

Normalized Mutual information

- NMI value close to 1→ high similarity
- NMI value close to 0→ high dissimilarity

NMI =
$$\frac{IG(f1; f2)}{|H(f1) + H(f2)|/2}$$

Feature selection – techniques 3. <u>features with high correlation to target</u>

- 3. Select features with high correlation to target
- Features that are high correlation to the class.
- * How to use?
 - Choose top k features
 - Choose features passing threshold
- E.g., Mutual information based

$$NMI = \frac{IG(X|Y)}{|H(X) + H(Y)|/2}$$

A typical classification flow - diving in

Data ExplorationData CleaningTrain-Test splitScalingLearning Algos.Evaluation \rightarrow Duplicates+ Validation-set \rightarrow Minmax \rightarrow KNN \rightarrow Confusion matrix \rightarrow Missing Datanorm. \rightarrow Decision Trees \rightarrow Accuracy , Error (rate) \rightarrow Remove \rightarrow t-dist. \rightarrow Naïve Bayes \rightarrow Precision, Recall \rightarrow Repairstandardization \rightarrow F1 (soon)

Classification Measures – Confusion Matrix - Reminder

	Class 1 Predicted	Class 2 Predicted
Class 1 Actual	TP	FN
Class 2 Actual	FP	TN

- Class 1: Positive
- Class 2: Negative
- TP: True Positive
- FN: False Negative
- FP: False Positive
- TN: True Negative

• Classification Rate / Accuracy:

$$\frac{TP + TN}{TP + TN + FP + FN}$$

- Precision
- TP TP+FP

- Recall
- $\frac{TP}{TP+FN}$
- High recall, low precision: Most of the positive examples are correctly recognized (low FN) but there are a lot of false positives.
- Low recall, high precision: We miss a lot of positive examples (high FN) but those we predict as positive are indeed positive (low FP).

Classification Measures – F1 Score

• It is useful to have one number to measure the performance of the classifier

•
$$F_{\alpha} = (1 + \alpha^2) \frac{Precision*Recall}{\alpha^2*Precision+recall}$$

• When
$$\alpha=1 \rightarrow F_1 = 2 \frac{Precision*Recall}{Precision+recall}$$

התפלגות נורמלית

או (Gaussian) או נקראת נקראת נקראת נקראת נקראת נקראת נקראת נקראת נקראת עקומת פעמון.

🎄 פונקציית צפיפות סמטרית.

התפלגות בו תת קבוצה של התפלגות נורמלית בו התחלת/הממוצע=0 וסטיית התקן=1.

z כל התפלגות נורמלית ניתן להפוך להתפלגות

Outlier detection

A typical classification flow - diving in

Data Exploration	Data Cleaning	Train-Test split	Scaling	Learning Algos.	Evaluation
	→ Duplicates	+ Validation-set	→ Minmax	→ KNN	→Confusion matrix
	→ Missing Data		norm.	→Decision Trees	→ Accuracy ,Error (rate)
	→Remove		→ t-dist.	→Naïve Bayes	→ Precision, Recall
	→Repair		standardizatio	n	→ F1 (soon)

נושאים

- Overfitting *
- Model selection *
 - Validation *

Overfitting

Overfitting

• Given a hypothesis space H, h∈H overfits the training data if there exists some alternative hypothesis h'∈ H such that h has smaller error than h' over the training examples, but h' has smaller error than h over the entire distribution of instances.

- Overfitting: Small error on training set, but large error on unseen examples.
- Underfitting: Larger error on training and test sets.

Overfitting

- Green: True target function
- Red: Training points
- Blue: What we have learned (overfitting)

(by Tomaso Poggio, http://www.mit.edu/~9.520/spring12/slides/class02/class02.pdf)

• The algorithm has learned perfectly the training examples, even the noise present in the examples and cannot generalise on unseen examples.

A typical classification flow

dataset - train-set and test-set

Validation set

dataset - train-test-validation

validation set שימושים ל

- overfitting סיוע במניעת
 - Model selection *
- מיטביים hyperparameters בחירת
 - * תהליכים משלימים לתהליך האימון
 - של עצי החלטה Post pruning *
- (בהמשך ...) cross validation מקובל test שיערוך המודל, בהיעדר

ועוד ...

What is Model Selection?

Given a set of models M={M1,M2,...,MR}, choose the model that is expected to do the best on the test data. The set M may consist of:

- Instances of same model with different complexities or hyperparams. E.g.,
- K-Nearest Neighbors: Different choices of K
- Decision Trees: Different choices of the number of levels/leaves
- Architecture of a deep neural network (# of layers, nodes in each layer, activation function, etc)
- Naïve Bayes smoothing methods
- Different types of learning models (e.g.KNN, DT, etc.)

שלמדנו Hyperparameters

- ,Minikowski distance בשיטת בשיטת מרחק, שיטת מרחק, שיטת איערוך k, שיטת מרחק, משקול מרחקי הנקודות
 - עצי החלטה עומק מקסימלי, מינימום דוגמאות בעלה, כמות המאפיינים
 לבדיקה כשמחפשים split מסוים
 - החלקה, שיטות החלקה Naive Bayes *

Holdout Method

- Split your dataset into 3 disjoint sets: Training, Validation, Test
- If a lot of data are available then you can try 50:25:25 otherwise 60:20:20.

Holdout Method – Hyperparameter tuning

- Identify which parameters need to be optimized
 - e.g., number of hidden neurons, number of hidden layers etc
- Select a performance measure to evaluate the performance on the validation set
 - Accuracy, Precision, Recall etc
 - Appropriate measure depends on the application, if the test set is imbalanced etc

Holdout Method – Hyperparameter tuning

From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

- Train your algorithm on the training set multiple times, each time using different values for the parameters you wish to optimise.
- For each trained classifier evaluate the performance on the validation set (using the performance measure you have selected).

Holdout Method – Hyperparameter tuning

- Keep the classifier that leads to the maximum performance on the validation set (in this example the one trained with 35 hidden neurons).
- This is called parameter optimization/tuning, since you select the set of parameters that have produced the best classifier.

Holdout Method – Hyperparameter tuning – using parameters in the model

- You can either merge the training and validation sets and train a new classifier using the optimal set of parameters OR you can simply use the best classifier (trained only on the training set).
- Test the performance on the test set.

Holdout Method

- The test set should **NOT** be used for training or validation. It is used **ONLY** in the end for estimating the performance on unknown examples, i.e. how well your trained classifier generalizes.
- You should assume that you do not know the labels of the test set and only after you have trained your classifier they are given to you.

Holdout Method

- We need a model which we will use for classifying new examples.
- Either use the one trained on the training set or on training + validation sets OR train a new model on the entire dataset using the optimal set of parameters.

Cross Validation

- When we have a lot of examples then the division into training/validation/test datasets is sufficient.
- When we have a small sample size then a good alternative is cross validation.

Cross Validation – Test Set Performance Estimation

- Divide dataset into *k* (usually 10) folds using *k*-1 for training + validation and one for testing
- Test data between different folds should never overlap!
- Training + Validation and test data in the same iteration should never overlap!
- In each iteration the error on the left-out test set is estimated
- Error estimate: average of the k errors

Cross Validation – Test Set Performance Estimation

• The *k-1* folds should be divided into training and validation folds, e.g. *k-2* folds for training and 1 for validation.

S. Marsland, Machine learning: An algorithmic perspective

- Train on the training set, optimize parameters on the validation set and test on the test set.
- We can only estimate the test set performance. In other word we evaluate how our implementation (and the way we optimize the parameters) generalizes on unknown test sets.
- We know nothing about the optimal set of parameters. We find a different set of optimal parameters in each fold.

Cross Validation – Parameter Estimation

- We can use cross validation to estimate the optimal set of parameters
- *k-1* folds for training, 1-fold left out for validation (using the entire dataset)
- For each parameter set run the *k* fold cross-validation
- Select the parameters that result in the best average performance over all *k* left out folds

Cross validation – hyperparameter tuning with Grid Search

- * **Grid Search** is a method for adjusting the hyperparameters.
- * With Grid Search, we try all possible combinations of the parameters of interest and find the best ones.
- Practically we try best practice values and choose the best combination

Parameter Optimization – Performance Estimation - Summary

- CASE 1: A lot of data are available (Holdout Method)
 - 1) Tune parameters on validation set
 - 2) Estimate generalization performance using the test set
 - 3) Train on entire dataset using optimal set of parameters
- CASE 2: Data are limited (Cross validation)
 - 1) Run cross validation to estimate the test set performance
 - Training, validation, test folds
 - Optimize parameters in each iteration
 - 2) Run cross validation to estimate optimal parameters
 - Training, Validation folds only (also called Grid Search)
 - 3) Train on entire dataset using optimal set of parameters