Question	Answer	Mark
1 (a)	$A \rightarrow C \rightarrow D \rightarrow B \rightarrow F \rightarrow E$	1
(b)	Structure X : Centriole	1
	Function • Organize the formation of spindle fibre	1

(c)

Stage of process	Mitosis	Meiosis I	
Prophase	No synapsis occur// no	Homologous chromosomes	
	crossing over between	pair up during synapsis//	1
	chromosomes// no	crossing over	
	formation of chiasmata	occurs//formation of	
		chiasmata// chiasmata hold	
		homologous chromosomes	
		together	
Metaphase	Chromosome/ sister	(Pairs of) homologous	1
	chromatids align at	chromosomes/ bivalent/ tetrad	
	metaphase plate// sister	align/ line up/ arranged at	
	chromatids of	metaphase / cell equator/	
	chromosome face each	metaphase plate/ plane// one	
	pole// both side of	chromosome of each pair face	
	centromere attaches to	each pole// only one side of	
	spindle fiber// no	centromere attached to spindle	
	chiasmata	fibre// chia	1
Anaphase	Sister chromatids	(Pairs of) homologous	
	separated and move to	chromosomes separated and	
	the opposite poles	move to the opposite poles	

1

(d) DNA replication occur once// cytokinesis occurs at the end of the process

(Questi	ion	Answer					Mark	
	(b)		From, $p^2 + 2pq + q^2 = 1$						
			Frequency of homozygous recess	sive ge	notype, q²	= 20/100			
						=0.20		1	
			So, frequency of recessive allele,	, q	= / 0.20				
					= 0.45			1	
			Since, $p + q = 1$						
			Frequency of dominant allele, p	= 1 - 0	9				
				= 1 - 0	0.45				
				= 0.55				1	
			Frequency of heterozygous genotype = 2pq						
				= 2	2(0.55)(0.45)				
				= (0.50			1	
			Therefore, the number of heteroz	zygous	squirrels in th	e population			
			= 2pq x 100						
			$= 0.50 \times 100$						
			= <u>50 (squirrels)</u>					1	
							Max 4		
4	(a)	(i)	Process A : DNA replication					1	
			Process B : transcription					1	

5' UCCGAAUGGCAU 3'

- (iii) Contain codons that will be translated into polypeptide chain.
- (iv)

(ii)

Replication	Transcription
The whole length of the DNA is	Only a portion of DNA is used as a
used as a template	template
2 strands of DNA are used as a	1 strand of DNA is used as a
template	template
Produces a double stranded	Produces a single stranded mRNA
DNA	
Requires DNA polymerase for	Requires RNA polymerase for the
the formation of DNA strand	formation of RNA strand
RNA primer is required //	RNA primer is not required //
Involved primase to start the	Does not involved primase to start
replication	the transcription

1

1

(Quest	tion	Answer	Mark
		(v)	The Okazaki fragments cannot be joined (by forming phosphodiester bonds).	1
		(vi)	because DNA polymerase III cannot form a new strand in the 3' to 5' direction// because DNA polymerase III only can synthesizes new strand in the direction 5' to 3'.	1
	(b)		Stage: initiation i. A small ribosomal subunit binds to an mRNA and moves along the	1
			mRNA until it reaches the start codon, AUG	
			ii. An initiator tRNA with anticodon (UAG) base-pairs with the start codon, AUG	1
			iii. This tRNA carries the amino acid methionine (Met)	1
			iv. The arrival of a large ribosomal subunit completes the initiation complexv. Proteins called initiation factors are required to bring all the translation	1
			components together	1
			vi. Hydrolysis of GTP provides the energy to the assembly	1
			vii. The initiator tRNA is in the P site. The A site is available to the tRNA bearing the next amino acids.	1
			Max 6 marks	
5	(a)	(i)	Base substitution	1
		(ii)	Sickle cell anaemia	1
			 In DNA, base T is replaced with base A // the base sequence in DNA change from CCT to CAT 	1
			 Codon in mRNA change from GAA to GUA // Glutamic acid/ Glu is replaced with Valine/ Val 	1
			Any 1	
	(b)	(i)	Allopolyploidy	1
		(ii)	18 // n + n = 18	1
		(iii)	Q is sterile because the chromosomes are not homologous/ from different	1
			species // Q chromosomes do not pair during meiosis.	

GEMPUR PSPM 1 SESSION 2023/2024 SCHEME

Question Mark Answer

(c)

Klinefelter syndrome	Turner syndrome
Aneuploidy condition is Trisomy /	Aneuploidy condition Monosomy /
2n+1	2n-1
Male individual	Female individual
Genotype XXY	Genotype XO
Individual has 47 chromosomes/	Individual has 45 chromosomes/
44 + XXY	44 + XO
Underdeveloped testes	Underdeveloped ovary
Tall / enlarge breast / feminized	Short stature / webbed neck / poorly
voice / knocked knees / long limbs	develop breasts
	Any 5

апу э

1

1

1

1

1

1

6	(a)	(i)	Structure Y	: Plasmid	•	1
---	-----	-----	-------------	-----------	---	---

Enzyme : Restriction enzyme/ endonuclease

- Cut DNA at the same restriction site/specific base sequence 1 (ii) 1 Produce sticky ends (of the gene of interest and the plasmid vector) that are complementary to each other
- (iii) **DNA ligase**
- (iv) Able to accept foreign DNA in multiple cloning site/ MCS 1 Able to replicate freely in host cell // present of origin of replication 1 1 Has selectable marker gene/ ampR/ ampR / lacZ

Any two

- mRNA only consist exon/ coding sequence of gene//no introns. (b) i. 1 1
 - ii. mRNA is isolated from the target cell
 - The reverse transcriptase enzyme catalysed the synthesis of first DNA strand/ single cDNA using mRNA as a template (and short poly-dT as a DNA primer).
 - mRNA is degraded by another enzyme/ mRNA degrading enzyme iv.
 - DNA polymerase is used to catalyse the synthesizes of the second DNA strand/ double stranded cDNA.
 - v. Produce cDNA which carries the complete coding sequence of gene /no intron.

vi.

Question	Ans	swer	Marks
7 (a)	<u>Firs</u>	et trimester	
	i.	trophoblast cells of blastocyst secrete human chorionic gonadotropin (hCG).	1
	ii.		4
	iii.	corpus luteum continue to secrete estrogen and progesterone.	1 1
	iv.	estrogen and progesterone maintain the thickening of endometrium	' 1
		for embryonic development.	•
	v.	Progesterone level is high to prevent the miscarriage / maintain the pregnancy.	1
	vi.		4
	vii.	·	1 1
		corpus luteum to secrete estrogen and progesterone.	1
		Any 2 points	•
	<u>Sec</u>	ond trimester	
	i.	hCG secretion declines.	1
	ii.	Corpus luteum degenerates.	1
	iii.	Placenta completely takes over the production of estrogen and	1
		progesterone.	
	iv.	Levels of estrogen and progesterone continue to increase to maintain the thickening of endometrium	1
	٧.	High level of progesterone inhibits contraction of uterine muscle	1
		Any 2 points	
	<u>Thir</u>	<u>d trimester</u>	
	i.	Estrogen reach the highest level during last week of pregnancy	1
	ii.	This trigger formation of oxytocin receptor on uterus for preparation	1
		of birth process	
	iii.	Progesterone level decreases allow the contraction of uterine muscle.	1
		Any 2 points	

GEMPUR PSPM 1 SESSION 2023/2024 SCHEME

Parturition

(b)

••	i mai week of pregnancy, destrogen reaches its ingliest level, which	1
	stimulates the formation of oxytocin receptors in the uterus.	
ii.	Progesterone level drops off, which stimulates the uterus contraction	1
	that will lead to birth.	
iii.	Oxytocin released by the fetus and mother's posterior pituitary gland	1
	stimulates powerful contraction on uterus.	
iv.	Oxytocin also stimulates placenta to secrete prostaglandins, which	1
	further enhance uterine contraction.	
V.	The contractions stimulate further release of oxytocin &	1
	prostaglandins.	
vi.	which in turn stimulates further contractions // contraction become	1
	stronger and more frequent.	
vii.	Action of oxytocin and prostaglandins form a positive-feedback	1
	mechanism.	
	A way Constitute	
	Any 6 points	
	Maximum = 12 marks	
i.	Secondary oocyte consists of granulosa cells / follicular cells of	1
	corona radiata, zona pellucida, plasma membrane, cytoplasm,	
	cortical granule, nucleus and first polar body.	
ii.	Granulosa cell is secretory cells in Graafian follicle that surrounds	1
	the oocyte	
iii.	It supplies nutrients to the developing oocyte	1
	Any one	
iv.	Zona pellucida is a layer of glycoprotein that surround plasma	1
	membrane of a mammalian egg cell.	
٧.	It develops as a jelly coat	1
	Any one	
vi.	First polar body is a small cell produced in meiosis I during	
	development of oocyte (and finally degenerates).	1
	Maximum: 4 marks	
	TOTAL MARK	80