i v

29,30,31

CHU G.
$$f(x) = 2x$$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $0 = \frac{1}{2} = \frac{1}{$

7.
$$p(0) = \frac{1}{2}$$
 $p(1) = \frac{2}{3}$ $p(2) = \frac{1}{3}$

a. $E(x) = \frac{2}{3} \times p(x)$

$$= o(\frac{1}{3}) \cdot 1(\frac{1}{3}) \cdot 2(\frac{1}{3})$$
b. $Y + y^2$

$$p_1(0) = \frac{1}{3} \cdot p_1(1) \cdot \frac{2}{3} \cdot p_2(1) \cdot \frac{1}{3} \cdot p_2(1) \cdot p$$

14.
$$f(x) = 2x$$
 $0 \le x \le 1$
From problem # 6:
a. $|E(x)| = \frac{2}{3}$
b. $|E(x^2)| = \frac{1}{2}$
Var $(x) = \frac{1}{2} - (\frac{2}{3})^2$
 $= \frac{1}{16}$

2a. Let x, Y be continuous R.V.'s, and g(x) and h(Y) be fixed functions. Then

$$E(g(x)h(Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y) \frac{1}{(x)} \frac{1}{(x)}$$

30.
$$E(\frac{1}{x+1}) = \int_{-\infty}^{\infty} \frac{1}{x+1} \frac{(x^2 e^{-x})}{(x^2 e^{-x})} dx$$

$$= \int_{-\infty}^{\infty} \frac{(x^2 e^{-x})}{(x^2 e^{-x})} dx$$

$$= e^{-x} \int_{-\infty}^{\infty} \frac{x^2}{(x+1)x!} \frac{x^2}{x^2} |\log(x) - x^2(x+1)|$$

$$= e^{-x} \frac{(x+1)x!}{(x+1)x!} \frac{x^2}{x^2} |\log(x) - x^2(x+1)|$$

31.
$$E(\frac{1}{2}) = \int_{-\infty}^{\infty} \frac{1}{2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} dx$$

$$= \frac{1}{2} (4 - 1)$$

