School of Artificial Intelligence

PREVIOUSLY ON DS&A

- Data structures
 - Array-based
 - Stacks and queues
 - Linked Lists
 - Trees
 - Priority Queues
 - Maps and Hash tables
 - Search Trees
- Algorithms
 - Sorting and Selection

INTERVIEW QUESTIONS

- From Facebook
- Given an array of n elements, ranging from 0 to N, determine if the array contains at least 1 element from 0 to N. What would be the space efficiency and the time efficiency?
- You are given a collection of (city, population) entries, provide an algorithm, that randomly selects a pair, so that its population is proportional to the probability that the entry is selected.

INSERTION SORT

Insertion sort

```
def insertion_sort(A):
    """Sort list of comparable elements
    for k in range(1, len(A)):
        cur = A[k]
        j = k
        while j > 0 and A[j-1] > cur:
        A[j] = A[j-1]
        j -= 1
        A[j] = cur
```


SELECTION SORT

- Selection sort
- We have seen this
 - In Priority Queue

BUBBLE SORT

• Bubble sort

HEAP SORT

Heap sort

MERGE SORT

- Divide and conquer for sorting
 - **Divide**: if S has zero or one element, return S. Otherwise, remove all the elements from S and put them into two sequences, S1 and S2, each containing half of the elements of S
 - Conquer: recursively sort sequence \$1 and \$2
 - **Combine**: put back the elements into S by merging the sorted sequences S1 and S2 into a sorted sequence

MERGE SORT

- merge_sort(A[1..n])
- 1. If n = 1, done
- 2. recursively sort A[1..n//2], A[n//2+1..n]
- 3. Merge the two sorted list

Total time: $O(n \log n)$

QUICK SORT

- **Divide**: if S has at least two elements, select a specific element x from S, which is called the pivot(枢纽). <u>The common practice is to choose the last element of S</u>. Remove all the elements from S and put them into three sequences:
 - L, storing elements in S less than x
 - E, storing elements in S equal to x
 - G, storing elements in S greater than x
- Conquer: recursively sort sequences L and G
- **Combine**: Put back the elements into S in order by first inserting the elements of L, then E, then G

1. Split using pivot *x*.

SEARCH LOWER BOUND

- N preprocessed items
- Finding a given item among them in comparison model requires $\Omega(\log n)$ in worst case
 - Mhhs
- Decision tree is binary, and therefore must have at least n leaves for each answer
 - Height >= log n

SORTING LOWER BOUND

- N preprocessed items
- Finding a given item among them in comparison model requires Ω (n log n) in worst case
 - Mhh5
- Decision tree is binary
- # leaves >= # possible answers
- Possible answers?
 - n!

LINEAR TIME SORTING

Counting sort

```
L = array of k empty lists

For j in range n:

L[key(A[j])].append(A[j])

Output = []

For i in range k:

Output.extend(L[i])
```

- Time: O(n + k)
- Count key occurrences using RAM output <count> copies of each key in order
- But item is more than just a key

LINEAR TIME SORTING

Algorithm bucketSort(S):

- Bucket sort
 - Sequence S of n entries
 - Keys are integers in [0, N-1], N>=2
 - It is possible to sort S in O(n+N)
 - O(n) if N is O(n)

Input: Sequence S of entries with integer keys in the range [0, N - 1]
Output: Sequence S sorted in nondecreasing order of the keys
let B be an array of N sequences, each of which is initially empty
for each entry e in S do
k = the key of e
remove e from S and insert it at the end of bucket (sequence) B[k]
for i = 0 to N-1 do
for each entry e in sequence B[i] do
remove e from B[i] and insert it at the end of S

LINEAR TIME SORTING

- Radix sort
 - Imagine each integer as base b
 - # digits = $d = log_b k + 1$
 - Sort integers by least significant digit
 - ...
 - Sort by most significant digit
- Sort using counting sort
 - Each iteration: O(n + b)
 - Total: O((n+b)*d)
 - = $O((n+b)*log_b k)$
 - When $b = \Theta(n)$
 - O(n*log_n k)
 - If $k = n^c$ then O(nc)

SORTING ALGORITHMS

- O(n²) algorithms
 - Selection sort, insertion sort
- O(n log n) algorithms
 - Heap sort, merge sort, quick sort
- Linear time algorithms
 - Counting sort, bucket sort, radix sort
- Poorest choice of algorithms?
 - Selection sort
 - Best case O(n²)

SORTING ALGORITHMS

- Insertion sort
 - O(n + m), where m is number of inversions
 - Good when n is small
 - Good when m is small
 - O(n²) when m is large and n is large
- Heap sort
 - O(n log n) time worst case
 - In-place easy to implement
 - Slower than quick sort and merge sort on larger sequences

SORTING ALGORITHMS

- Quick sort
 - Worst case O(n²)
 - O (n log n) expected
 - Faster than heap sort and merge sort on may tests
 - Can be implemented in-place
- Merge sort
 - O(n log n) worst case
 - In-place implementation: difficult
 - Hence slower than quick sort
- Bucket sort and radix sort
 - Limitations: small integer keys, character strings, d-tuples from a discrete range
 - O(d(n+N) time, in range [0, N-1]

THIS LECTURE

- Graphs: relationships between pairs of objects: vertices together with a collection of connections between them (edges).
 - Mapping, transportation, computer networks electrical engineering
- Definition:
 - Set V of vertices and a collection E of pairs of vertices from V, called edges
- Edges
 - Directed: an edge (u, v) is directed from u to v if the pair (u, v) is ordered
 - Undirected: an edge (u, v) is not ordered, sometimes denoted as {u, v}
- Undireged graph: the edges are all undirected
- Directed graph (digraph): edges are all directed
- Mixed graph: directed edges + undirected edges
- Undirected graph => directed graph

- Example
 - Collaboration graph (undirected)
 - Class relationships within an Object-Oriented program (directed)
 - City map (mixed graph)
 - Electric wiring/Schematics
 - Directed/undirected

- End vertices (endpoints)
 - Two vertices joined by an edge
 - Directed edge: origin -> destination
- Adjacent vertices: u and v are adjacent if there is an edge whose end vertices are u and v
- Incident: an edge is incident to a vertex if the vertex is one of the edge's endpoints
- Outgoing edges of a vertex: directed edges whose origin is the vertex
- Incoming edges of a vertex: directed edges whose destination is the vertex
- Degree of a vertex: # of incident edges of v
- In-degree: # of incoming edges of v
- Out-degree: # of outgoiong edges of v

- End vertices (endpoints)
 - Two vertices joined by an edge
 - Directed edge: origin -> destination
- Adjacent vertices: u and v are adjacent if there is an edge whose end vertices are u and v
- Incident: an edge is incident to a vertex if the vertex is one of the edge's endpoints
- Outgoing edges of a vertex: directed edges whose origin is the vertex
- Incoming edges of a vertex: directed edges whose destination is the vertex
- Degree of a vertex: # of incident edges of v
- In-degree: # of incoming edges of v
- Out-degree: # of outgoiong edges of v

- Definition:
 - Set V of vertices and a collection E of pairs of vertices from V, called edges
- E: collection, not a set
 - Two edges can have the same end vertices
 - Such edges are called parallel or multiple edges
 - **Self-loop** edges: endpoints are the same
- Simple graphs: graphs do not have parallel edges or self loops
- Path: sequence of vertices and edges, start at a vertex and ends at a vertex
 - Simple: if each vertex in the path is distinct
- Cycle: path that starts and ends at the same vertex, and includes at least one edge
 - Simple: if each vertex in the cycle is distinct (except for the first and last one)
- Acyclic: directed graph that has no directed cycles

- Directed path
 - A path such that all edges are directed and are traversed along their direction
 - (BOS, NW35, JFK, AA1387, DFW)
- Directed cycle
 - A cycle such that all edges are directed and are traversed along their direction
 - (LAX, UA1200, ORD, UA877, DFW, AA49, LAX)

- Reachability
 - In a graph G, u reaches v, and v is reachable from u, if G has a path from u to v
- Connectivity
 - G is **connected**, if for any two vertices, there is a path between them
 - Directed graph: strongly connected
- Subgraph
 - Graph H whose vertices and edges are subsets of the vertices and edges of G
- Spanning subgraph
 - Subgraph of G that contains all the vertices of the graph
- Forest
 - Graph without cycles
- Tree
 - Connected forest
- Spanning tree
 - Spanning subgraph that is a tree

BOS (JFK SFO (SFO (b) (a) JFK (SFO DFW DFW (c) (d)

- If G is a graph with m edges and vertex set V, then
- If G is a directed graph with m edges and vertex set V, then
- Let G be a simple graph with n vertices and m edges.
 - If G is undirected, then m <= n(n-1)/2
 - If G is directed, then m <= n(n-1)
- Let G be a undirected graph with n vertices and m edges
 - If G is connected, then m >= n-1
 - If G is a tree, then m = n-1
 - If G is a forest then m <= n-1

$$\sum_{v \text{ in } V} \deg(v) = 2m.$$

$$\sum_{v \text{ in } V} indeg(v) = \sum_{v \text{ in } V} outdeg(v) = m.$$

- Graph ADT
- Endpoints: return a tuple (u, v) such that vertex u is the origin and v the destination
- Opposite(v): if v is one endpoint of the edge, return the other endpoint
- Vertex_count(): returns # of vertices
- Vertices(): returns an iteration of all vertices of the graph
- Edge_count(): returns # of edges
- Edges(): returns an iteration of all edges
- Get_edge(u, v): returns the edge from u to v, if one exists, otherwise return None

- Graph ADT
- degree(v, out= True): returns the # of edges incident to v
- incident_edges(v, out=True): returns an iteration of edges incident to v
- insert_vertex(x = None): create and return a new Vertex storing element x
- insert_edge(u, v, x = None): create and return a new Vertex from u to v
- remove_vertex(v): remove v and all its incident edges from the graph
- remove_edge(e): remove e from the graph

DATA STRUCTURES FOR GRAPHS

- Edge list
 - An unordered list of all edges, no efficient way to locate a particular edge (u, v), or the set of all edges incident to a vertex v
- Adjacency list
 - For each vertex, a list containing edges that are incident to the vertex
 - Complete set of edges can be determined by taking the union of the smaller sets
- Adjacency map
 - Similar to adjacency list, but secondary container for edges are maps
 - O(1) expected time to access a specific edge(u,v)
- Adjacency matrix
 - Worst case O(1) access to a specific edge (u, v) by maintaining a n*n matrix for each graph with n vertices

DATA STRUCTURES FOR GRAPHS

Operation	Edge List	Adj. List	Adj. Map	Adj. Matrix
vertex_count()	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
edge_count()	O(1)	O(1)	O(1)	<i>O</i> (1)
vertices()	O(n)	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
get_edge(u,v)	O(m)	$O(\min(d_u, d_v))$	O(1) exp.	O(1)
degree(v)	O(m)	O(1)	O(1)	O(n)
incident_edges(v)	O(m)	$O(d_v)$	$O(d_v)$	O(n)
insert_vertex(x)	O(1)	O(1)	O(1)	$O(n^2)$
remove_vertex(v)	O(m)	$O(d_v)$	$O(d_v)$	$O(n^2)$
insert_edge(u,v,x)	O(1)	O(1)	O(1) exp.	O(1)
remove_edge(e)	O(1)	O(1)	O(1) exp.	<i>O</i> (1)

Collections V and E are represented with doubly linked lists (PositionalList)

- Vertex objects
 - Reference to element x
 - Reference to position of the vertex instance in the list V
- Edge objects
 - Reference to element x
 - Reference to the vertex objects associated with the endpoint vertices of e
 - Reference to the position of the edge instance in list E

(a)

EDGE LIST

EDGE LIST

- Performance
- Space: O(n + m)
 - n vertices and m edges
- Running time
 - vertices(): O(n)
 - edges(): O(m)
 - get_edge(): O(m)
 - Most significant limitation
 - remove_vertex(v): O(m)
 - Mhh5

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	<i>O</i> (1)
vertices()	O(n)
edges()	O(m)
get_edge(u,v), degree(v), incident_edges(v)	O(m)
$insert_vertex(x)$, $insert_edge(u,v,x)$, $remove_edge(e)$	O(1)
remove_vertex(v)	O(m)

ADJACENCY LIST

- Secondary containers for edges that are associated with each individual vertex
- For each v, maintain a collection I(v) called incidence collection of v
- Primary structure: collection V of vertices
 - Positional list
- Each vertex instance
 - Direct reference to its I(v) incidence collection

(a)

ADJACENCY LIST

- Performance
- Space: O(n + m)
 - n vertices and m edges
- Running time
 - vertices(): O(n)
 - edges(): O(m)
 - get_edge(): O(min(deg(u), deg(v)))
 - Search through either I(u) or I(v)
 - remove_vertex(v): O(dev(v))

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	O(1)
vertices()	O(n)
edges()	O(m)
get_edge(u,v)	$O(\min(\deg(u),\deg(v)))$
degree(v)	O(1)
incident_edges(v)	$O(\deg(v))$
$insert_vertex(x)$, $insert_edge(u,v,x)$	O(1)
remove_edge(e)	O(1)
remove_vertex(v)	$O(\deg(v))$

ADJACENCY MAP

- Adjacency list
 - I(v) uses O(deg(v)) space
 - O(dev(v)) time
- Performance improvement
 - Hash-based map for I(v)
 - get_edge(u,v) can run in expected O(1) time, worst case O(min(deg(u), deg(v))

(a)

ADJACENCY MATRIX

- Matrix A (n by n) to locate an edge between a given pair of vertices in worst-case O(1) time
- Verticeis as integers in {0, 1, ..., n-1}
- A[I, j] holds a reference to the edge (u, v) if one exists
- Edge (u, v) can be accessed in worst-case O(1) time
- O(n²) space usage
- Matrix can be used to store only Boolean values, if edges do not store any additional data

	0	1	2	3			
$u \longrightarrow 0$		e	g				
<i>v</i> → 1	e		f				
$w \longrightarrow 2$	g	f		h			
<i>z</i> → 3			h				
(b)							

```
class Edge:
                                                              18
                                                                        "Lightweight edge structure for a graph.""
                                                                       __slots__ = '_origin', '_destination', '_element'
                                                                      def __init__(self, u, v, x):
                                                                         """Do not call constructor directly. Use Graph's insert_edge(u,v,x).
      #----- nested Vertex class -----
                                                                         self.\_origin = u
      class Vertex:
                                                                        self.\_destination = v
        """Lightweight vertex structure for a graph."""
                                                              26
                                                                        self._element = \times
         __slots__ = '_element'
                                                              27
                                                              28
                                                                      def endpoints(self):
        def _{init_{-}}(self, \times):
 6
                                                                         """ Return (u,v) tuple for vertices u and v."""
                                                              29
           """ Do not call constructor directly. Use Graph<sup>I</sup>s
                                                              30
                                                                         return (self._origin, self._destination)
           self._element = \times
                                                              31
                                                              32
                                                                      def opposite(self, v):
        def element(self):
10
                                                                         """ Return the vertex that is opposite v on this edge."""
           """ Return element associated with this vertex.""
11
                                                              34
                                                                         return self._destination if v is self._origin else self._origin
12
           return self._element
                                                              35
13
                                                                      def element(self):
                                                              36
                                      # will allow vertex to
        def __hash__(self):
14
                                                                         """Return element associated with this edge."""
15
           return hash(id(self))
                                                              38
                                                                         return self._element
                                                              39
                                                              40
                                                                      def __hash__(self):
                                                                                                    # will allow edge to be a map/set key
                                                              41
                                                                         return hash( (self._origin, self._destination) )
```

1	class Graph:	
2	""" Representation of a simple graph using an adjacency map.""	"
3		
4	<pre>definit(self, directed=False):</pre>	
5	"""Create an empty graph (undirected, by default).	
6		
7	Graph is directed if optional paramter is set to True.	24
8	"	25
9	$self$ outgoing = $\{\ \}$	26
10	# only create second map for directed graph; use alias for un	27
11	$self._incoming = \{ \} if directed else self._outgoing$	28
12		29
13	<pre>def is_directed(self):</pre>	30
14	"""Return True if this is a directed graph; False if undirected	31
15		32
16	Property is based on the original declaration of the graph, no	33
17	"""	34
18	return selfincoming is not selfoutgoing # directed if maj	35
19		36
20	<pre>def vertex_count(self):</pre>	37
21	"""Return the number of vertices in the graph."""	38
22	return len(selfoutgoing)	39

PYTHON IMPLEMENTATION

```
def vertices(self):
  """Return an iteration of all vertices of the graph."""
  return self._outgoing.keys()
def edge_count(self):
  """Return the number of edges in the graph."""
  total = sum(len(self._outgoing[v]) for v in self._outgoing)
  # for undirected graphs, make sure not to double-count ed
  return total if self.is_directed( ) else total // 2
def edges(self):
  """Return a set of all edges of the graph."""
  result = set()
                        # avoid double-reporting edges of u
  for secondary_map in self._outgoing.values():
                                                # add edges
    result.update(secondary_map.values())
```

return result

"""Return the edge from u to v, or None if not adjac 41 return self._outgoing[u].get(v) 42 # returns \ 43 44 **def** degree(**self**, v, outgoing=**True**): 45 Return number of (outgoing) edges incident to ve 46 47 If graph is directed, optional parameter used to count 48 49 adj = self._outgoing if outgoing else self._incoming 50 return len(adj[v]) 51 52 **def** incident_edges(**self**, v, outgoing=**True**): 53 """ Return all (outgoing) edges incident to vertex v ir 54 55 If graph is directed, optional parameter used to reque 56 57 adj = **self**._outgoing **if** outgoing **else self**._incoming 58 for edge in adj[v].values(): 59 **yield** edge

def get_edge(self, u, v):

40

PYTHON IMPLEMENTATION

```
61
      def insert_vertex(self, x=None):
        """Insert and return a new Vertex with elec-
62
        v = self.Vertex(x)
63
        self._outgoing[v] = \{\ \}
64
        if self.is_directed():
65
          self.\_incoming[v] = \{ \}
66
                                           # need c
67
        return v
68
69
      def insert_edge(self, u, v, x=None):
        """Insert and return a new Edge from u to
70
        e = self.Edge(u, v, x)
71
72
        self.\_outgoing[u][v] = e
        self.\_incoming[v][u] = e
73
```

THANKS

See you in the next session!