

Model V2

<u>≔</u> Tags	112-2 Oblivious Routing	
Datum	@26. Februar 2024	
© Präsentation	$\frac{https://docs.google.com/presentation/d/1nGoEsjfNGFfNEGCVg3400Why6oGlugcIs2TvDghK-XM/edit\#slide=id.p}{}$	
Status	Im Gange	

Der Thikung von dem Lehrer

 $\textbf{Input}: \textbf{Given a Demand Matrix } DM_1$

 $\textbf{Output}: \textbf{Routing } \phi \text{ (Fraction of demand entering vertex)}$

- 1. Find the best routing ϕ_1 of DM_1
- 2. Find the worst demand matrix DM_2 of the routing ϕ_1
- 3. Find the best routing ϕ_2 of $DM_1 \bigcup DM_2$
- 4. Iteration until it meet the cutoff condition

Model V2

ှိုင်္ဂိ Approach

Input : A demand Matrix
Output : Routing
(Fraction of demand
entering vertex)

Best routing: Minimize maximum link ultialization **Worst demand matrix**: Maximum maximum link ultialization

Pseudo code

Algorithm 1: main algorithm

Input: Demand matrix DM

Output: Routing ϕ_{best} (Fraction of demand)

1 Initialization : $D = \{DM\}, DM_{worst} = 0;$

// D is the set of demand matrix

2 while not meet the cutoff condition do

 $D = D \cup \mathrm{DM}_{worst};$

Find the best routing ϕ of D; // The First model

Find the worst demand matrix DM_{worst} of ϕ_{best} // The second model

7 end

8 return ϕ_{best}

Finden Sie größe Routing ϕ

Finding the link weight and traffic splitting ratio to minimize the maximum link ultilization

Indicate

D The set of demand matrix

Link capacity

e=(u,v)∈E Edges form vertex u to vertex v

Given demand matrix DM,

find the fraction of

fⁱ_s(u) Fraction of demand entering vertex u of DM(i) demands that minimizing

the maximum link

ultilization.

Variable

Ce

α The maximum link ultilization of the

demand matrix DM

 $\phi_{st}(e)$ Routing fraction for edge e=(u, v)

Indicate

D	The set of demand matrix
$e=(u,v)\in E$	Edges form vertex \boldsymbol{u} to vertex \boldsymbol{v}
d_{st}^i	Demand from s to t of $i-th$ DM of ${\it D}$
$f_{st}(u)^i$	Fraction of demand entering vertex u of $i-th$ DM of ${\it D}$
c_e	Link capacity of the edge \boldsymbol{e}

Variable

lpha The maximum link ultilization of all the demand matrix in ${\it D}$

 $\phi_{st}(e)$ Routing fraction for edge e=(u,v)

Objective function

Minimize the maximum link ultilization lpha

 $\min \alpha$

Constraints

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \text{ , } \forall e \in E \text{ (Decision variable constraint)}$$

$$\sum_{(s,t)} \frac{d_{st}^i f_{st}^i(u) \phi_{st}(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \text{(Link capacity constraint)}$$

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}^i(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ , } \forall (s,t) \in V \times V, \ 1 \leq i \leq |D| \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

Model: Demand matrix has no constrainted

Model V2

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f^i_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \\ 0 & \text{others} \end{cases}$$

$$, \forall (s,t) \in V \times V, 1 \leq i \leq |D|, \forall u \in V \qquad \qquad \text{(Flow conservation)}$$

$$\sum_{(s,t)} \frac{d^i_{st} f^i_{st}(u) \phi_{st}(e)}{c(e)} \leq \alpha \;, \; \forall e \in E, 1 \leq i \leq |D| \qquad \text{(Link capacity constraint)}$$

$$0 \leq \phi_{st}(e) \leq 1 \;, \forall e \in E \qquad \qquad \text{(Decision variable constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e=(v,u)\in E}\phi_{st}(e)-f^i_{st}(u)=\begin{cases} 1 & \text{if } u=s\\ -1 & \text{if } u=t\\ 0 & \text{others} \end{cases}$$

$$,\forall (s,t)\in V\times V, 1\leq i\leq |D|, \forall u\in V \qquad \qquad \text{(Flow conservation)}$$

$$\sum_{(s,t)}\frac{d^i_{st}f^i_{st}(u)\phi_{st}(e)}{c(e)}\leq \alpha \ , \ \forall e\in E, 1\leq i\leq |D| \qquad \text{(Link capacity constraint)}$$

$$0\leq \phi_{st}(e)\leq 1 \ , \forall e\in E \qquad \qquad \text{(Decision variable constraint)}$$

$$0\leq \alpha\leq 1 \qquad \qquad \text{(Decision variable constraint)}$$

Find the worst demand matrix of routing ϕ

Find the demand matrix maximizing the maximum link ultilization with given routing ϕ

The second model

Indicate

φsι(e)	Given routing fraction for edge $e=(u, v)$	
e=(u,v)∈E	Edges form vertex u to vertex v	
d st	Demand form s to t	Given routing (Fracttion of demand) φ, find the
$fst(\mathbf{u})$	Fraction of demand entering vertex u	demand matrix maximizing
Ce	Link capacity of the edge e	maximum link ultilization with routing φ.

Variable

ρ	The minimum link ultilization of the demand matrix DM
DM	The worstcase demand matrix of given routing $\boldsymbol{\varphi}$

Indicate

Model V2 4

$\phi_{st}(e)$	Given routing
$e=(u,v)\in E$	Edges
d_{st}	Demand from \boldsymbol{s} to \boldsymbol{t}
$f_{st}(u)$	Fraction of demand entering vertex \boldsymbol{u}
c_e	Link capacity of the edge \boldsymbol{e}

Variable

DM The worstcase demand matrix of given routing ϕ ho The mnimum link ultilization of the demand matrix DM

Objective function

Maximize the maximum link ultilization lpha

 $\max \rho$

Constraints

Demand matrix is unconstrained

$$\rho \leq \rho \leq 1 \text{ (Decision variable constraint)}$$

$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq 1 \text{ (Link capacity constraint)}$$

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u=s \\ -1 & \text{if } u=t \text{ , } \forall (s,t) \in V \times V \text{(Flow conservation)} \\ 0 & \text{others} \end{cases}$$

Model

 $\max \rho$ (Maximize maximum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall s,t,u \in V \\ 0 & \text{others} \end{cases}$$
 (Flow conservation)
$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq 1$$
 (Link capacity constraint)
$$0 \leq \rho \leq 1$$
 (Decision variable constraint)

 $\max \rho$ (Maximize minimum link ultilization)

$$\sum_{e=(v,u)\in E} \phi_{st}(e) - f_{st}(u) = \begin{cases} 1 & \text{if } u = s \\ -1 & \text{if } u = t \text{ ,} \forall s,t,u \in V \\ 0 & \text{others} \end{cases}$$
 (Flow conservation)
$$\rho \leq \sum_{(s,t)} \frac{d_{st} f_{st}(u) \phi_{st}(e)}{c(e)} \leq 1$$
 (Link capacity constraint)
$$0 \leq \rho \leq 1$$
 (Decision variable constraint)

Model V2 5