6.S091: Problem Set 3

Suyeol Yun syyun@mit.edu

February 1, 2023

Problem 1: Constructing Minimal I-MAPs [5 points]

(a)

 $\hat{\beta}_{12} = 2.0032613606359835$

(b)

 $\hat{\beta}_{21} = 0.4853818665988653$

Causal Direction Inference [1 point]

(c)

The plot explains the relationship between ε_1 and ε_2 . Since $\varepsilon_1 \perp \!\!\! \perp \varepsilon_2$, we have to choose the SCM which shows such independence. Therefore, the data is more likely to be generated from SCM M^a .

Problem 2

* Code is available here https://github.com/syyunn/6.S091/blob/main/pset2/code/problem2/problem2.py

Partial correlation [2 points]

(a)

 $\hat{\rho}(X_1, X_4, \emptyset) = 0.18515108160562416$

(b)

 $\hat{\rho}\left(X_{1},X_{4},\{X_{2},X_{3}\}\right)=0.0093340865561515$

Fisher's z-transformation [1 point]

(c)

 $\hat{z}(X_1, X_4, \{X_2, X_3\}) = 0.9332023767104407$

p-values [1 point]

(d)

compute_pvalue (pcalg_samples, 1, 4, [2, 3]) = 0.35071548783635986

Skeleton phase [2 points]

(e)

pcalg_skeleton(samples[: 500], 0.2) = 11

(f)

pcalg_skeleton(samples[: 500], 0.001) = 9

Orientation phase [2 points]

(g)

 $X_1 \rightarrow X_3 \leftarrow X_2$ is the only unshileded collider in the output of $pcalg_orient(estimated_skeleton, estimated_separator_function)$.

(h)

The orientations $X_3 \to X_4, X_3 \to X_5, X_3 \to X_6, X_3 \to X_7$ are added by the Meek's rule #1 (no extra unshileded colliders). However, after the application of Rule 1, no other edges are oriented by the Rule 2, 3, and 4. See the details in the code.

Problem 2: d-separation defines a graphoid [5 points]