- 1. f(x) = 1/(1+x) fonksiyonunun x=1 noktası civarında yazılmış n. dereceden Taylor polinomu $p_n(x)$ olmak üzere 2/3 değerini n=3, 4 ve 5 için yaklaşık olarak hesaplayınız. Her bir n değeri için bağıl hatayı belirleyiniz.
- 2. $f(x) = e^x(3.2\sin x 0.5\cos x)$ fonksiyonunun [0,1] aralığında tek kökü olduğu bilinmektedir.
 - (a) İkiye bölme yöntemi kullanarak MATLAB programında bir algoritma yazarak f(x) fonksiyonunun kökünü [0,1] aralığında 10^{-8} hassasiyetle hesaplayınız. $n, a_n, b_n, c_n, |b_n c_n|$ değerlerini ve $f(a_n)f(c_n)$ işlem sonucunun işaretini tablo halinde yazınız.
 - (b) MATLAB programında fzero () fonksiyonunu kullanarak f(x) fonksiyonunun kökünü [0,1] aralığında bulunuz ve (a) şıkkında hesapladığınız değeri bu sonuç ile karşılaştırınız.
 - (c) MATLAB programında plot () komutunu kullanarak f(x) fonksiyonunu $x \in [0, 5]$ aralığında çizdiriniz.
- 3. $f(x) = 4\ln(x) x$ denklemi verilsin.
 - (a) Bu denklemi $x_0=1$ başlangıç değerinden hareketle Newton yöntemi ile 6 iterasyonda çözünüz.
 - (b) Sekant yöntemi kullanarak $x_0 = 1$ ve $x_1 = 2$ başlangıç değer çiftinden hareketle ile 6 iterasyonda çözünüz.
- 4. $x_{n+1}=1+0.3\sin(x_n)$ şeklindeki sabit nokta iterasyonunu $x_0=1$ başlangıç değerinden hareketle $|x_n-x_{n+1}|<10^{-4}$ eşitsizliği sağlayan n adımı kadar çözünüz ve çıkan sonucu yazınız.