Circuiti in regime sinusoidale

www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 26-4-2011)

Funzioni sinusoidali

$$f = \frac{1}{T}$$
 $T = \frac{2\pi}{\omega}$ $\omega = \frac{2\pi}{T} = 2\pi f$

Regimi sinusoidali

- Si considera un circuito lineare in cui tutti i generatori indipendenti sono sinusoidali e hanno la stessa pulsazione ω
- Le equazioni del circuito costituiscono un sistema di equazioni differenziali lineari nel quale i termini noti sono funzioni sinusoidali con pulsazione ω
- Le equazioni generalmente ammettono una soluzione sinusoidale con pulsazione ω
- Se il circuito è asintoticamente stabile, questa soluzione particolare rappresenta la componente di regime della risposta (> regime sinusoidale)

3

Regimi sinusoidali

- Regime sinusoidale: condizione di funzionamento di un circuito nella quale tutte le tensioni e le correnti sono funzioni sinusoidali del tempo aventi la stessa pulsazione ω
- Fissata la pulsazione, una funzione sinusoidale è definita da due parametri
 - Ampiezza
 - Fase
- Il problema della determinazione della soluzione particolare sinusoidale delle equazioni del circuito (cioè della determinazione delle ampiezze e delle fasi di tutte le tensioni e correnti) può essere ricondotto ad un problema di tipo algebrico mediante la trasformata di Steinmetz
- Il metodo di analisi basato sulla trasformata di Steinmetz è detto anche metodo simbolico

Trasformata di Steinmetz

Trasformata di Steinmetz: S

- Ad ogni funzione sinusoidale di pulsazione ω $a(t) = A_M \cos(\omega t + \alpha)$ si associa un numero complesso **A** avente
 - modulo A_M (= ampiezza della funzione sinusoidale)
 - argomento α (= fase della funzione sinusoidale)

$$\mathbf{A} = \tilde{S}\{\mathbf{a}(t)\} = A_M e^{j\alpha} = A_M (\cos \alpha + j \sin \alpha)$$

- ◆ A = fasore o numero complesso rappresentativo di a(t)
- Antitrasformata di Steinmetz: S⁻¹

$$\mathbf{a}(t) = S^{-1}\{\mathbf{A}\} = \operatorname{Re}\left[\mathbf{A}e^{j\omega t}\right] = \operatorname{Re}\left[A_{M}e^{j(\omega t + \alpha)}\right] = A_{M}\cos(\omega t + \alpha)$$

Interpretazione geometrica

$$\mathbf{s}(t) = \mathbf{A} \, \mathbf{e}^{j\omega t} = A_M \, \mathbf{e}^{j(\omega t + \alpha)}$$

$$a(t) = \text{Re}[\mathbf{A} e^{j\omega t}] = A_M \cos(\omega t + \alpha)$$

Proprietà della trasformata di Steinmetz

Unicità

 La trasformata di Steinmetz stabilisce una corrispondenza biunivoca tra le funzioni sinusoidali di pulsazione ω e i numeri complessi

$$a(t) = A_M \cos(\omega t + \alpha) \qquad \mathbf{A} = \mathbb{S}\{a(t)\} = A_M e^{j\alpha}$$

$$b(t) = B_M \cos(\omega t + \beta) \qquad \mathbf{B} = \mathbb{S}\{b(t)\} = B_M e^{j\beta}$$

$$\mathbf{a}(t) = \mathbf{b}(t) \quad \forall t \quad \Leftrightarrow \quad \mathbf{A} = \mathbf{B}$$

7

Proprietà della trasformata di Steinmetz

Linearità

• La trasformata di Steinmetz è un'operazione lineare

$$\mathbf{a}(t) = A_M \cos(\omega t + \alpha) \qquad \mathbf{A} = \mathcal{S}\{\mathbf{a}(t)\} = A_M e^{j\alpha}$$

$$\mathbf{b}(t) = B_M \cos(\omega t + \beta) \qquad \mathbf{B} = \mathcal{S}\{\mathbf{b}(t)\} = B_M e^{j\beta}$$

$$\forall k_1, k_2 \in \mathbb{R} : \\ \delta\{k_1 \, \mathbf{a}(t) + k_2 \, \mathbf{b}(t)\} = k_1 \delta\{\mathbf{a}(t)\} + k_2 \delta\{\mathbf{b}(t)\} = k_1 \mathbf{A} + k_2 \mathbf{B}$$

Proprietà della trasformata di Steinmetz

Regola di derivazione

• La trasformata della derivata di una funzione sinusoidale si ottiene moltiplicando per $j\omega$ la trasformata della funzione

$$\mathbf{a}(t) = A_M \cos(\omega t + \alpha)$$
 $\mathbf{A} = \mathcal{S}\{\mathbf{a}(t)\} = A_M e^{j\alpha}$

$$\mathcal{S}\left\{\frac{d\,\mathbf{a}}{dt}\right\} = j\omega\mathcal{S}\left\{\mathbf{a}(t)\right\} = j\omega\mathbf{A}$$

Dimostrazione:

$$\frac{d a}{dt} = -\omega A_M \operatorname{sen}(\omega t + \alpha) = \omega A_M \cos \left(\omega t + \alpha + \frac{\pi}{2}\right)$$

$$\mathfrak{S}\left\{\frac{d \mathbf{a}}{dt}\right\} = \omega A_M \mathbf{e}^{j\left(\alpha + \frac{\pi}{2}\right)} = \omega A_M \mathbf{e}^{j\alpha} \mathbf{e}^{j\frac{\pi}{2}} = j\omega A_M \mathbf{e}^{j\alpha} = j\omega \mathbf{A} = j\omega \mathfrak{S}\left\{\mathbf{a}(t)\right\}$$

9

Proprietà della trasformata di Steinmetz

Regola di derivazione

 Applicando ricorsivamente la regola di derivazione si possono ottenere le trasformate delle derivate di ordine superiore

$$S\left\{\frac{d^{2} a}{dt^{2}}\right\} = j\omega \cdot S\left\{\frac{d a}{dt}\right\} = (j\omega)^{2} \mathbf{A} = -\omega^{2} \mathbf{A}$$

$$S\left\{\frac{d^{3} a}{dt^{3}}\right\} = j\omega \cdot S\left\{\frac{d^{2} a}{dt^{2}}\right\} = (j\omega)^{3} \mathbf{A} = -j\omega^{3} \mathbf{A}$$

$$\vdots$$

$$S\left\{\frac{d^{n} a}{dt^{n}}\right\} = j\omega \cdot S\left\{\frac{d a^{n-1}}{dt^{n-1}}\right\} = (j\omega)^{n} \mathbf{A}$$

Antitrasformata

• Noto il numero complesso rappresentativo A di una funzione sinusoidale

$$\mathbf{A} = A_M e^{ja} = x + jy$$

e nota la pulsazione ω , è possibile determinare in modo univoco la funzione sinusoidale a(t) mediante la relazione

$$\mathbf{a}(t) = S^{-1}\{\mathbf{A}\} = A_M \cos(\omega t + \alpha) = |\mathbf{A}| \cos[\omega t + \arg(\mathbf{A})]$$

Nota:

- Vale la relazione $tg\alpha = y/x$ ma questo non consente di affermare che $\alpha = arctg(y/x)$
- Dato che la funzione tangente ha periodo π esistono due valori di α nell'intervallo $]-\pi$ π] in cui la tangente ha lo stesso valore
- \Rightarrow Per determinare α occorre tenere conto dei segni di x e y

11

Antitrasformata – determinazione della fase

Antitrasformata – determinazione della fase

$$\mathbf{A} = x + jy = A_M e^{j\alpha}$$

$$A_{M} = \sqrt{x^{2} + y^{2}}$$

$$\alpha = \begin{cases} \arctan \frac{y}{x} + \pi \cdot \operatorname{sgn}(y) & \text{per } x < 0 \\ \frac{\pi}{2} \cdot \operatorname{sgn}(y) & \text{per } x = 0 \\ \arctan \frac{y}{x} & \text{per } x > 0 \end{cases}$$

$$\operatorname{sgn}(y) = \begin{cases} -1 & \text{per } y < 0 \\ 0 & \text{per } y = 0 \\ 1 & \text{per } y > 0 \end{cases}$$

13

Bipoli in regime sinusoidale

- Condizioni di regime sinusoidale
- Tensione e corrente orientate secondo la convenzione dell'utilizzatore:

$$v(t) = V_M \cos(\omega t + \varphi_V)$$
$$i(t) = I_M \cos(\omega t + \varphi_I)$$

$$\mathbf{V} = \mathcal{S}\{\mathbf{v}(t)\} = V_M e^{j\varphi_V}$$
$$\mathbf{I} = \mathcal{S}\{\mathbf{i}(t)\} = I_M e^{j\varphi_I}$$

• Sfasamento fra tensione e corrente: $\phi = \phi_V - \phi_I$

Resistore in regime sinusoidale

$$v(t) = R i(t) = RI_{M} \cos(\omega t + \varphi_{I})$$

$$i(t) = G v(t) = GV_{M} \cos(\omega t + \varphi_{V})$$

$$\mathbf{I} = G\mathbf{V}$$

$$V_M = RI_M$$

 $\varphi_V = \varphi_I \Rightarrow \varphi = 0 \Rightarrow$ la tensione e la corrente sono in fase

15

Induttore in regime sinusoidale

$$v(t) = L\frac{di}{dt} = -\omega LI_M \operatorname{sen}(\omega t + \varphi_I) = \omega LI_M \cos(\omega t + \varphi_I + \frac{\pi}{2})$$

$$V_M = \omega L I_M$$

$$\phi_V = \phi_I + \frac{\pi}{2}$$
 \Rightarrow $\phi = \frac{\pi}{2}$ la corrente è in quadratura in ritardo rispetto alla tensione

Induttore – relazioni tra i fasori

$$\mathbf{v}(t) = L \frac{d \mathbf{i}}{dt} \Rightarrow \mathbf{V} = j\omega L \mathbf{I} = jX_{L} \mathbf{I}$$
$$\mathbf{I} = -j \frac{1}{\omega L} \mathbf{V} = jB_{L} \mathbf{V}$$

Suscettanza:
$$B_L = -\frac{1}{\omega L} = -\frac{1}{X_L}$$

17

Condensatore in regime sinusoidale

$$i(t) = C \frac{d v}{dt} = -\omega C V_M \operatorname{sen}(\omega t + \varphi_V) = \omega C V_M \cos(\omega t + \varphi_V + \frac{\pi}{2})$$

$$I_{\scriptscriptstyle M} = \omega C V_{\scriptscriptstyle M}$$

$$\phi_V = \phi_I - \frac{\pi}{2}$$
 \Rightarrow $\phi = -\frac{\pi}{2}$ \Rightarrow la corrente è in quadratura in anticipo rispetto alla tensione

Condensatore – relazioni tra i fasori

$$i(t) = C \frac{d \mathbf{v}}{dt} \Rightarrow \mathbf{I} = j\omega C \mathbf{V} = jB_C \mathbf{V}$$
$$\mathbf{V} = -j \frac{1}{\omega C} \mathbf{I} = jX_C \mathbf{I}$$

Suscettanza: $B_C = \omega C$

Reattanza: $X_C = -\frac{1}{\omega C} = -\frac{1}{B_C}$

19

Impedenza e ammettenza

 Le relazioni tra i fasori della tensione e della corrente per il resistore, l'induttore e il condensatore sono casi particolari delle equazioni

$$V = ZI$$
 $I = YV$

Componente	Z	Y
Resistore	R	G
Induttore	jωL	$-j\frac{1}{\omega L}$
Condensatore	$-j\frac{1}{\omega C}$	jωC

Impedenza e ammettenza

- Più in generale, per un bipolo lineare non contenente generatori indipendenti, la tensione e la corrente sono legate tra loro da relazioni differenziali lineari omogenee
- Per la proprietà di linearità e la regola di derivazione della trasformata di Steinmetz, le corrispondenti relazioni tra i fasori della tensione e della corrente sono lineari algebriche omogenee, e quindi ancora del tipo

$$V = ZI$$
 $I = YV$

 Nel caso generale Z e Y sono funzioni complesse della pulsazione

$$\mathbf{Z}(\omega) = R(\omega) + jX(\omega)$$

$$\mathbf{Y}(\omega) = G(\omega) + jB(\omega)$$

21

Impedenza

 Per un bipolo lineare non contenente generatori si definisce impedenza il rapporto

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{V_M}{I_M} e^{j\phi}$$

$$Z = R + jX$$
 \Rightarrow $R = resistenza$ (unità di misura ohm)

 Il modulo dell'impedenza è uguale al rapporto tra le ampiezze della tensione e della corrente

$$\left|\mathbf{Z}\right| = \frac{V_{M}}{I_{M}}$$

 L'argomento dell'impedenza è uguale allo sfasamento tra la tensione e la corrente

$$arg(\mathbf{Z}) = \varphi = \varphi_V - \varphi_I$$
 $\varphi > 0$ corrente in ritardo sulla tensione $\varphi < 0$ corrente in anticipo sulla tensione

Ammettenza

Il reciproco dell'impedenza è detto ammettenza

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{I_M}{V_M} e^{-j\phi}$$

$$\mathbf{Y} = G + jB \quad \Rightarrow \quad G = \mathbf{conduttanza}$$

$$B = \mathbf{suscettanza}$$
 (unità di misura siemens)

Valgono le relazioni

$$\mathbf{Y} = \frac{1}{R + jX} = \frac{R - jX}{(R + jX)(R - jX)} = \frac{R - jX}{R^2 + X^2} \qquad \mathbf{Z} = \frac{1}{G + jB} = \frac{G - jB}{G^2 + B^2}$$

$$\Rightarrow G = \frac{R}{R^2 + X^2} = \frac{R}{|\mathbf{Z}|^2} \qquad B = -\frac{X}{R^2 + X^2} = -\frac{X}{|\mathbf{Z}|^2}$$

$$\Rightarrow R = \frac{G}{G^2 + B^2} = \frac{G}{|\mathbf{Y}|^2} \qquad X = -\frac{B}{G^2 + B^2} = -\frac{B}{|\mathbf{Y}|^2}$$

23

Esempio - Bipolo RL serie

$$\mathbf{v}(t) = \mathbf{v}_{RS}(t) + \mathbf{v}_{LS}(t) = R_S \mathbf{i}(t) + L_S \frac{d \mathbf{i}}{dt}$$

$$\downarrow \mathbf{V} = \mathbf{V}_{RS} + \mathbf{V}_{LS} = (R_S + j\omega L_S)\mathbf{I}$$

$$\mathbf{Z} = R_S + j\omega L_S \quad \Rightarrow \quad \begin{cases} R = R_S \\ X = \omega L_S \end{cases}$$

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{R_{S}}{R_{S}^{2} + (\omega L_{S})^{2}} - j \frac{\omega L_{S}}{R_{S}^{2} + (\omega L_{S})^{2}} \implies \begin{cases} G = \frac{R_{S}}{R_{S}^{2} + (\omega L_{S})^{2}} \\ B = -\frac{\omega L_{S}}{R_{S}^{2} + (\omega L_{S})^{2}} \end{cases}$$

Esempio - Bipolo RL serie

$$\left|\mathbf{Z}\right| = \sqrt{R_S^2 + (\omega L_S)^2}$$

$$\varphi = \arg(\mathbf{Z}) = \arctan\left(\frac{\omega L_{S}}{R_{S}}\right)$$

$$R_S > 0, L_S > 0 \implies 0 \le \varphi < \frac{\pi}{2}$$

La corrente è in ritardo rispetto alla tensione

25

Esempio - Bipolo RL parallelo

$$i(t) = i_{RP}(t) + i_{LP}(t) = \frac{1}{R_P} v(t) + \frac{1}{L_P} \int_{-\infty}^{t} v(x) dx \implies \frac{di}{dt} = \frac{1}{R_P} \frac{dv}{dt} + \frac{1}{L_P} v(t)$$

$$j\omega \mathbf{I} = j\omega \frac{1}{R_P} \mathbf{V} + \frac{1}{L_P} \mathbf{V} \implies \mathbf{I} = \mathbf{I}_{RP} + \mathbf{I}_{RL} = \left(\frac{1}{R_P} - j\frac{1}{\omega L_P}\right) \mathbf{V}$$

Esempio - Bipolo RL parallelo

$$\mathbf{Y} = \frac{1}{R_P} - j \frac{1}{\omega L_P} \quad \Rightarrow \quad \begin{cases} G = \frac{1}{R_P} \\ B = -\frac{1}{\omega L_P} \end{cases}$$

$$\mathbf{Z} = \frac{1}{\mathbf{Y}} = \frac{\omega^{2} R_{p} L_{p}^{2}}{R_{p}^{2} + (\omega L_{p})^{2}} + j \frac{\omega R_{p}^{2} L_{p}}{R_{p}^{2} + (\omega L_{p})^{2}} \implies \begin{cases} R = \frac{\omega^{2} R_{p} L_{p}^{2}}{R_{p}^{2} + (\omega L_{p})^{2}} \\ X = \frac{\omega R_{p}^{2} L_{p}}{R_{p}^{2} + (\omega L_{p})^{2}} \end{cases}$$

27

Esempio - Bipolo RL parallelo

$$\left|\mathbf{Z}\right| = \frac{1}{\sqrt{\frac{1}{R_P^2} + \frac{1}{\left(\omega L_P\right)^2}}}$$

$$R_P > 0, L_P > 0 \implies 0 < \varphi \le \frac{\pi}{2}$$

La corrente è in ritardo rispetto alla tensione

Esempio - Bipolo RC serie

$$\mathbf{v}(t) = \mathbf{v}_{RS}(t) + \mathbf{v}_{CS}(t) = R_S \,\mathbf{i}(t) + \frac{1}{C_S} \int_{-\infty}^{t} \mathbf{i}(x) dx \quad \Rightarrow \quad \frac{d \,\mathbf{v}}{dt} = R_S \,\frac{d \,\mathbf{i}}{dt} + \frac{1}{C_S} \,\mathbf{i}(t)$$

$$j\omega \mathbf{V} = R_S j\omega \mathbf{I} + \frac{1}{C_S} \mathbf{I} \quad \Rightarrow \quad \mathbf{V} = \mathbf{V}_{RS} + \mathbf{V}_{CS} = \left(R_S - j \frac{1}{\omega C_S} \right) \mathbf{I}$$

29

Esempio - Bipolo RC serie

$$\mathbf{Z} = R_S - j \frac{1}{\omega C_S} \implies \begin{cases} R = R_S \\ X = -\frac{1}{\omega C_S} \end{cases}$$

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\omega^{2} R_{S} C_{S}^{2}}{1 + (\omega R_{S} C_{S})^{2}} + j \frac{\omega C_{S}}{1 + (\omega R_{S} C_{S})^{2}} \implies \begin{cases} G = \frac{\omega^{2} R_{S} C_{S}^{2}}{1 + (\omega R_{S} C_{S})^{2}} \\ B = \frac{\omega C_{S}}{1 + (\omega R_{S} C_{S})^{2}} \end{cases}$$

Esempio - Bipolo RC serie

$$\left|\mathbf{Z}\right| = \sqrt{R_S^2 + \frac{1}{\left(\omega C_S\right)^2}}$$

$$\varphi = \arg(\mathbf{Z}) = -\arctan\left(\frac{1}{\omega R_s C_s}\right)$$

$$R_C > 0, L_C > 0 \implies -\frac{\pi}{2} \le \varphi < 0$$

La corrente è in anticipo rispetto alla tensione

31

Esempio - Bipolo RC parallelo

$$\mathbf{i}(t) = \mathbf{i}_{RP}(t) + \mathbf{i}_{CP}(t) = \frac{1}{R_P} \mathbf{v}(t) + C_P \frac{d \mathbf{v}}{dt}$$

$$\downarrow \mathbf{I} = \mathbf{I}_{RP} + \mathbf{I}_{CP} = \left(\frac{1}{R_P} + j\omega C_P\right) \mathbf{V}$$

$$\mathbf{Y} = \frac{1}{R_{P}} + j\omega C_{P} \implies \begin{cases} G = \frac{1}{R_{P}} \\ B = \omega C_{P} \end{cases}$$

$$\mathbf{Z} = \frac{1}{\mathbf{Y}} = \frac{R_{P}}{1 + (\omega R_{P}C_{P})^{2}} - j\frac{\omega R_{P}^{2}C_{P}}{1 + (\omega R_{P}C_{P})^{2}} \implies \begin{cases} R = \frac{R_{P}}{1 + (\omega R_{P}C_{P})^{2}} \\ X = -\frac{\omega R_{P}^{2}C_{P}}{1 + (\omega R_{P}C_{P})^{2}} \end{cases}$$

Esempio - Bipolo RC parallelo

$$\left|\mathbf{Z}\right| = \frac{1}{\sqrt{\frac{1}{R_P^2} + (\omega C_P)^2}}$$

$$\varphi = \arg(\mathbf{Z}) = -\arctan(\omega R_p C_p)$$

$$R_C > 0, L_C > 0 \implies -\frac{\pi}{2} < \varphi \le 0$$

 \mathbf{I}_{CP} \mathbf{I}_{RP} \mathbf{V} \mathbf{Re}

La corrente è in anticipo rispetto alla tensione

33

Analisi di circuiti in regime sinusoidale

Equazioni dei componenti

Generatori indipendenti:
 sono note le tensioni o le correnti → sono noti anche i loro fasori
 V = V_G

$$I = I_G$$

Bipoli lineari:

$$V = ZI$$

$$I = YV$$

Generatori dipendenti:
 per la proprietà di linearità, le relazioni tra i fasori sono

$$\mathbf{I}_2 = \alpha \mathbf{I}_1 \quad \mathbf{I}_2 = g \mathbf{V}_1$$

$$\mathbf{V}_2 = r\mathbf{I}_1 \quad \mathbf{V}_2 = \mu \mathbf{V}_1$$

Analisi di circuiti in regime sinusoidale

Equazioni dei collegamenti

 Le relazioni tra le grandezze funzioni del tempo sono espresse da equazioni algebriche lineari omogenee del tipo

$$\sum_{k} \pm i_{k}(t) = 0$$
$$\sum_{k} \pm v_{k}(t) = 0$$

 Per le proprietà di unicità e di linearità della trasformata di Steinmetz

$$\sum_{k} \pm \mathbf{I}_{k} = 0$$

$$\sum_{k} \pm \mathbf{V}_{k} = 0$$

$$\mathbf{I}_{k} = S\{\mathbf{i}_{k}(t)\} \quad \mathbf{V}_{k} = S\{\mathbf{v}_{k}(t)\}$$

 Le leggi di Kirchhoff valgono anche per i fasori delle tensioni e delle correnti

35

Analisi di circuiti in regime sinusoidale

- Le equazioni di un circuito lineare in regime sinusoidale, scritte in termini di fasori, hanno la stessa forma delle equazioni di un circuito lineare resistivo in regime stazionario
- Le proprietà e metodi di analisi dedotti a partire delle equazioni generali dei circuiti resistivi possono essere estesi ai circuiti in regime sinusoidale con le sostituzioni:
 - Resistenza -> Impedenza
 - Conduttanza Ammettenza
 - Tensione
 Fasore della tensione
 - Corrente
 Fasore della corrente
- In particolare si possono estendere ai circuiti in regime sinusoidale
 - le relazioni di equivalenza riguardanti collegamenti tra resistori o generatori (serie, parallelo, stella-triangolo, formule di Millman ecc.)
 - i metodi di analisi generali (metodo delle maglie,metodo dei nodi e metodo degli anelli)
 - il teorema di sovrapposizione
 - i teoremi di Thévenin e Norton

Impedenze in serie e in parallelo

Impedenze in serie

$$\mathbf{V} = \sum_{k=1}^{N} \mathbf{V}_{k}$$

$$\mathbf{I}_{k} = \mathbf{I}$$

$$\mathbf{I}_{k} = \mathbf{Z}_{k} \mathbf{I}_{k}$$

$$\mathbf{V} = \mathbf{Z}_{S} \mathbf{I}$$

$$\mathbf{Z}_{S} = \sum_{k=1}^{N} \mathbf{Z}_{K}$$

• Impedenze in parallelo

$$\mathbf{I} = \sum_{k=1}^{N} \mathbf{I}_{k}$$

$$\mathbf{V}_{k} = \mathbf{V}$$

$$\mathbf{I}_{k} = \mathbf{Y}_{k} \mathbf{V}_{k}$$

$$\mathbf{I}_{k} = \mathbf{Y}_{k} \mathbf{V}_{k}$$

$$\mathbf{Z}_{P} = \frac{1}{\mathbf{Y}_{P}} = \frac{1}{\sum_{k=1}^{N} \frac{1}{\mathbf{Z}_{k}}}$$

37

Partitore di tensione e di corrente

• Partitore di tensione

$$\mathbf{V}_{j} = \mathbf{V} \frac{\mathbf{Z}_{j}}{\sum_{k=1}^{N} \mathbf{Z}_{k}}$$

Partitore di corrente

$$\mathbf{I}_{j} = \mathbf{I} \frac{\mathbf{Y}_{j}}{\sum_{k=1}^{N} \mathbf{Y}_{k}}$$

Trasformazioni dei generatori

39

Equivalenza stella-triangolo

Teorema di sovrapposizione

- Ipotesi:
 - circuito lineare contenente
 - N_V generatori indipendenti di tensione $\mathbf{v}_{G1}(t), \, ..., \, \mathbf{v}_{GN_V}(t)$
 - N_I generatori indipendenti di corrente $i_{G1}(t)$, ..., $i_{GN_I}(t)$
 - tutti i generatori sono sinusoidali con la stessa pulsazione ω
 - condizioni di regime sinusoidale
- → I fasori della tensione e della corrente del generico lato i sono combinazioni lineari dei fasori delle tensioni e delle correnti impresse dai generatori indipendenti

$$\mathbf{V}_{i} = \sum_{k=1}^{N_{V}} \boldsymbol{\alpha}_{ik} \mathbf{V}_{Gk} + \sum_{k=1}^{N_{I}} \mathbf{z}_{ik} \mathbf{I}_{Gk}$$

$$\mathbf{I}_{i} = \sum_{k=1}^{N_{V}} \mathbf{y}_{ik} \mathbf{V}_{Gk} + \sum_{k=1}^{N_{I}} \mathbf{\beta}_{ik} \mathbf{I}_{Gk}$$

41

Funzioni di rete

 I coefficienti delle combinazioni sono funzioni complesse della pulsazione ω e sono detti funzioni di di rete

$$\mathbf{\alpha}_{ik} = \frac{\mathbf{V}_i}{\mathbf{V}_{Gk}} \bigg|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \neq k \\ \mathbf{I}_{Gh} = 0 \ \forall h}}$$

 $\mathbf{z}_{ik} = \frac{\mathbf{V}_i}{\mathbf{I}_{Gk}} \Big|_{\mathbf{V}_{Gh} = 0 \ \forall h \neq h}$

(adimensionale)

(ha le dimensioni di un'impedenza)

$$\mathbf{y}_{ik} = \frac{\mathbf{I}_{i}}{\mathbf{V}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \neq k \\ \mathbf{I}_{Gh} = 0 \ \forall h}}$$

$$eta_{ik} = rac{\mathbf{I}_i}{\mathbf{I}_{Gk}} \Big|_{\mathbf{V}_{Gh} = 0 \ \forall h}$$
 $\mathbf{I}_{Gh} = 0 \ \forall h \neq 0$

(ha le dimensioni di un'ammettenza) (adimensionale)

- Le funzioni di rete che mettono in relazione i fasori della tensione e della corrente dello stesso lato sono dette funzioni di immettenza
- Le funzioni di rete che mettono in relazione fasori di tensioni e correnti di lati diversi sono dette funzioni di trasferimento

Funzioni di immettenza

Impedenza di ingresso

$$\mathbf{Z}_{\text{IN}k}(\omega) = \frac{\mathbf{V}_k}{\mathbf{I}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \\ \mathbf{I}_{Gh} = 0 \ \forall h \neq k}}$$

Ammettenza di ingresso

$$\mathbf{Y}_{\text{IN}k}(\omega) = \frac{\mathbf{I}_k}{\mathbf{V}_{Gk}} \begin{vmatrix} \mathbf{V}_{Gh} = 0 \ \forall h \neq k \\ \mathbf{I}_{Gh} = 0 \ \forall h \end{vmatrix}$$

43

Funzioni di trasferimento

Rapporto di trasferimento di tensione

$$\boldsymbol{\alpha}_{ik}(\omega) = \frac{\mathbf{V}_i}{\mathbf{V}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \neq k \\ \mathbf{I}_{Gh} = 0 \ \forall h}}$$

Rapporto di trasferimento di corrente

$$\boldsymbol{\beta}_{ik}(\omega) = \frac{\mathbf{I}_i}{\mathbf{I}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \\ \mathbf{I}_{Gh} = 0 \ \forall h \neq k}}$$

Funzioni di trasferimento

Impedenza di trasferimento

$$\mathbf{Z}_{ik}(\omega) = \frac{\mathbf{V}_i}{\mathbf{I}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \\ \mathbf{I}_{Gh} = 0 \ \forall h \neq k}}$$

Ammettenza di trasferimento

$$\mathbf{y}_{ik}(\omega) = \frac{\mathbf{I}_i}{\mathbf{V}_{Gk}} \Big|_{\substack{\mathbf{V}_{Gh} = 0 \ \forall h \neq k \\ \mathbf{I}_{Gh} = 0 \ \forall h}}$$

45

Teorema di Thévenin

- Ipotesi:
 - condizioni di regime sinusoidale
 - il bipolo A-B è formato da componenti lineari e generatori indipendenti
 - il bipolo A-B è comandato in corrente
- → Il bipolo A-B equivale a un bipolo formato da un generatore indipendente di tensione V_0 in serie con un'impedenza Z_{ea}
 - V₀ è la tensione a vuoto del bipolo A-B
 - **Z**_{eq} è l'impedenza equivalente del bipolo A-B con i generatori indipendenti azzerati

Teorema di Norton

- Ipotesi:
 - condizioni di regime sinusoidale
 - il bipolo A-B è formato da componenti lineari e generatori indipendenti
 - il bipolo A-B è comandato in tensione
- ightharpoonup II bipolo A-B equivale a un bipolo formato da un generatore indipendente di corrente \mathbf{I}_{cc} in parallelo con un'ammettenza \mathbf{Y}_{ea}
 - I_{cc} è la corrente di cortocircuito del bipolo A-B
 - ullet \mathbf{Y}_{eq} è l'ammettenza equivalente del bipolo $\mathbf{A}\text{-}\mathbf{B}$ con i generatori indipendenti azzerati

47

N-porte lineari in regime sinusoidale

 Per un N-porte lineare in condizioni di regime sinusoidale le relazioni costitutive, in termini di fasori, sono del tipo

$$Av + Bi = 0$$

con

$$\mathbf{v} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_N \end{bmatrix} \quad \mathbf{i} = \begin{bmatrix} \mathbf{I}_1 \\ \vdots \\ \mathbf{I}_N \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \cdots & \mathbf{a}_{1N} \\ \vdots & \ddots & \vdots \\ \mathbf{a}_{N1} & \cdots & \mathbf{a}_{NN} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} \mathbf{b}_{11} & \cdots & \mathbf{b}_{1N} \\ \vdots & \ddots & \vdots \\ \mathbf{b}_{N1} & \cdots & \mathbf{b}_{NN} \end{bmatrix}$$

- Nel caso di componenti resistivi i coefficienti delle matrici A e B sono reali, mentre nel caso di componenti dinamici, in generale, sono complessi
- Se il componente è comandato in corrente oppure in tensione è
 possibile rappresentarlo mediante parametri di impedenza o di
 ammettenza che costituiscono una generalizzazione dei parametri di
 resistenza e di conduttanza

Matrice di impedenza

Matrice di impedenza

$$v = Zi$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_N \end{bmatrix}$$

$$\mathbf{i} = \begin{bmatrix} \mathbf{I}_1 \\ \vdots \\ \mathbf{I}_N \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_N \end{bmatrix} \qquad \mathbf{i} = \begin{bmatrix} \mathbf{I}_1 \\ \vdots \\ \mathbf{I}_N \end{bmatrix} \qquad \mathbf{Z} = \begin{bmatrix} \mathbf{z}_{11} & \cdots & \mathbf{z}_{1N} \\ \vdots & \ddots & \vdots \\ \mathbf{z}_{N1} & \cdots & \mathbf{z}_{NN} \end{bmatrix}$$

$$\mathbf{Z}_{jk} = \frac{\mathbf{V}_{j}}{\mathbf{I}_{k}} \bigg|_{\mathbf{I}_{h} = 0 \,\forall h \neq k}$$

Matrice di ammettenza

Matrice di ammettenza

$$i = Yv$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_N \end{bmatrix}$$

$$\mathbf{i} = \begin{bmatrix} \mathbf{I}_1 \\ \vdots \\ \mathbf{I}_N \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{V}_1 \\ \vdots \\ \mathbf{V}_N \end{bmatrix} \qquad \mathbf{i} = \begin{bmatrix} \mathbf{I}_1 \\ \vdots \\ \mathbf{I}_N \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} \mathbf{y}_{11} & \cdots & \mathbf{y}_{1N} \\ \vdots & \ddots & \vdots \\ \mathbf{y}_{N1} & \cdots & \mathbf{y}_{NN} \end{bmatrix}$$

$$\mathbf{y}_{jk} = \frac{\mathbf{I}_{j}}{\mathbf{V}_{k}} \bigg|_{\mathbf{V}_{h} = 0 \ \forall h \neq k}$$

Doppi bipoli lineari in regime sinusoidale

- Per i doppi bipoli lineari in regime sinusoidale è possibile generalizzare anche le matrici ibride e di trasmissione
- Nel caso di componenti dinamici i coefficienti delle matrici, in generale, sono complessi

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = \mathbf{H} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix}$$

Matrice ibrida

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{11}' & \mathbf{h}_{12}' \\ \mathbf{h}_{21}' & \mathbf{h}_{22}' \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix} = \mathbf{H}' \cdot \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_2 \end{bmatrix}$$
 Matrice ibrida inversa

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} \qquad \begin{array}{l} \text{Matrice di trasmissione} \\ \text{(matrice catena)} \end{array}$$

$$\begin{bmatrix} \mathbf{V}_2 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{A'} & \mathbf{B'} \\ \mathbf{C'} & \mathbf{D'} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix} = \mathbf{T'} \cdot \begin{bmatrix} \mathbf{V}_1 \\ -\mathbf{I}_1 \end{bmatrix} \quad \text{Matrice di trasmissione inversa}$$
 (matrice catena inversa)

51

Significato dei parametri di impedenza

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0} \qquad \mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0} \qquad \mathbf{I}_1 \stackrel{\mathbf{Z}_{11}}{\longleftarrow} \mathbf{V}_1 \qquad \mathbf{Z}_{21}$$

- → z₁₁ = impedenza di ingresso a vuoto alla porta 1
- → z₂₁ = impedenza di trasferimento a vuoto dalla porta 1 alla porta 2

$$\mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0} \qquad \mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0} \qquad \mathbf{V}_1 \qquad \mathbf{Z}_{22} \qquad \mathbf{V}_2 \qquad \mathbf{I}_2$$

- → z₂₂ = impedenza di ingresso a vuoto alla porta 2
- z₁₂ = impedenza di trasferimento a vuoto dalla porta 2 alla porta 1

Significato dei parametri di ammettenza

$$\mathbf{y}_{11} = \frac{\mathbf{I}_1}{\mathbf{V}_1}\Big|_{\mathbf{V}_2 = 0}$$
 $\mathbf{y}_{21} = \frac{\mathbf{I}_2}{\mathbf{V}_1}\Big|_{\mathbf{V}_2 = 0}$
 $\mathbf{V}_1 \uparrow \bigcirc$
 \mathbf{y}_{11}
 \mathbf{y}_{21}

- → y₁₁ = ammettenza di ingresso in cortocircuito alla porta 1
- ightharpoonup y_{21} = ammettenza di trasferimento in cortocircuito dalla porta 1 alla porta 2

$$\mathbf{y}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \bigg|_{\mathbf{V}_1 = 0} \qquad \mathbf{y}_{12} = \frac{\mathbf{I}_1}{\mathbf{V}_2} \bigg|_{\mathbf{V}_1 = 0} \qquad \mathbf{y}_{12} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \bigg|_{\mathbf{V}_1 = 0}$$

- → y₂₂ = ammettenza di ingresso in cortocircuito alla porta 2
- ightharpoonup y₁₂ = ammettenza di trasferimento in cortocircuito dalla porta 2 alla porta 1

53

Significato dei parametri ibridi

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1}\Big|_{\mathbf{V}_2 = 0}$$
 $\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1}\Big|_{\mathbf{V}_2 = 0}$
 $\mathbf{I}_1 = \frac{\mathbf{V}_1}{\mathbf{h}_{21}}$

- → h₁₁ = impedenza di ingresso in cortocircuito alla porta 1
- → h₂₁ = rapporto di trasferimento di corrente in cortocircuito dalla porta 1 alla porta 2

$$\mathbf{h}_{12} = \frac{\mathbf{V}_1}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0}$$
 $\mathbf{h}_{22} = \frac{\mathbf{I}_2}{\mathbf{V}_2} \Big|_{\mathbf{I}_1 = 0}$
 \mathbf{V}_1
 \mathbf{h}_{12}
 \mathbf{h}_{22}

- → h₂₂ = ammettenza di ingresso a vuoto alla porta 2
- → **h**₁₂ = rapporto di trasferimento di tensione a vuoto dalla porta 2 alla porta 1

Significato dei parametri di trasmissione

Trasformatore ideale in regime sinusoidale

- Le tensioni alla porta 1 e alla porta 2 sono in fase tra loro
- Le correnti alla porta 1 e alla porta 2 sono in opposizione di fase

Induttori accoppiati in regime sinusoidale

$$\mathbf{v}_{1}(t) = L_{1} \frac{d \, \mathbf{i}_{1}(t)}{dt} + M \frac{d \, \mathbf{i}_{2}(t)}{dt}$$

$$\mathbf{v}_{1}(t) = L_{1} \frac{d \, \mathbf{i}_{1}(t)}{dt} + M \frac{d \, \mathbf{i}_{2}(t)}{dt}$$

$$\mathbf{v}_{1}(t) = J \omega L_{1} \mathbf{I}_{1} + J \omega M \mathbf{I}_{2}$$

$$\mathbf{v}_{2}(t) = M \frac{d \, \mathbf{i}_{1}(t)}{dt} + L_{2} \frac{d \, \mathbf{i}_{2}(t)}{dt}$$

$$\mathbf{v}_{2}(t) = J \omega M \mathbf{I}_{1} + J \omega L_{2} \mathbf{I}_{2}$$

Le equazioni sono un caso particolare di rappresentazione mediante di coefficienti di impedenza

$$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} j\omega L_1 & j\omega M \\ j\omega M & j\omega L_2 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \mathbf{Z} \cdot \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$$

57

Potenza assorbita da un bipolo in regime sinusoidale

$$v(t) = V_M \cos(\omega t + \varphi_V)$$
$$i(t) = I_M \cos(\omega t + \varphi_I)$$
$$\varphi = \varphi_V - \varphi_I$$

Potenza assorbita dal bipolo

$$\begin{aligned} \mathbf{p}(t) &= \mathbf{v}(t) \, \mathbf{i}(t) = V_M \cos(\omega t + \varphi_V) \cdot I_M \cos(\omega t + \varphi_I) = \\ &= \frac{1}{2} V_M I_M \left[\cos(2\omega t + \varphi_V + \varphi_I) + \cos(\varphi_V - \varphi_I) \right] = \\ &= \frac{1}{2} V_M I_M \cos(2\omega t + \varphi_V + \varphi_I) + \frac{1}{2} V_M I_M \cos\varphi \end{aligned}$$

Potenza assorbita da un bipolo in regime sinusoidale

Potenza assorbita da un bipolo in regime sinusoidale

- La potenza è data dalla somma di un termine sinusoidale con pulsazione 2ω (potenza fluttuante) e di un termine costante
- L'ampiezza del termine oscillante è $\frac{1}{2}V_{M}I_{M}$
- Il termine costante rappresenta il valore medio sul periodo della potenza istantanea

$$p_m = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{1}{2} V_M I_M \cos \varphi$$

- cosφ è detto fattore di potenza
 - Il fattore di potenza è il rapporto tra il termine costante e l'ampiezza del termine oscillante
 - A parità di ampiezza di v e i, il valore medio sul periodo della potenza istantanea aumenta al crescere del fattore di potenza

Potenza assorbita da un bipolo in regime sinusoidale

- Il fattore di potenza $cos\phi$ vale 1 se la tensione e la corrente sono in fase ($\phi = 0$)
- Aumentando $|\phi|$ il fattore di potenza si riduce fino ad annullarsi quando tensione e corrente sono in quadratura
- Per $|\phi| > \pi/2$ il fattore di potenza diventa negativo e vale -1 se la tensione e la corrente sono in opposizione di fase
- cosφ > 0 ⇒ in ogni semiperiodo l'energia assorbita dal bipolo è > 0
- cosφ < 0 ⇒ in ogni semiperiodo l'energia assorbita dal bipolo è < 0
 - → questa condizione si può verificare solo se il bipolo è attivo
 - \Rightarrow per un bipolo passivo si ha necessariamente $\cos \varphi \ge 0$

61

Potenza assorbita da un resistore

$$p(t) = \frac{1}{2} V_M I_M \left[1 + \cos(2\omega t + 2\varphi_V) \right]$$

$$\varphi = 0$$
 \Rightarrow $p_m = \frac{1}{2}V_M I_M = \frac{1}{2}RI_M^2 = \frac{1}{2}GV_M^2$

Potenza assorbita da un induttore

Potenza assorbita da un condensatore

Componenti attiva e reattiva della corrente

- Nel caso generale, si può scomporre la corrente istantanea nella somma di due termini:
 - uno in fase con la tensione (come nei resistori)
 - \rightarrow componente attiva: $i_A(t)$
 - uno in quadratura con la tensione (come negli induttori e nei condensatori)
 - \rightarrow componente reattiva: $i_R(t)$

$$i(t) = I_{M} \cos(\omega t + \varphi_{I}) =$$

$$= I_{M} \cos[(\omega t + \varphi_{V}) - (\varphi_{V} - \varphi_{I})] =$$

$$= I_{M} \cos\varphi\cos(\omega t + \varphi_{V}) + I_{M} \sin\varphi\sin(\omega t + \varphi_{V}) =$$

$$= I_{M} \cos\varphi\cos(\omega t + \varphi_{V}) + I_{M} \sin\varphi\cos(\omega t + \varphi_{V} - \pi/2)$$

$$i_{A}(t) \qquad i_{R}(t)$$

65

Componenti attiva e reattiva della corrente

Rappresentazione nel piano complesso

$$\mathbf{I}_A = I_M \cos \varphi \, \mathrm{e}^{j\varphi_V}$$

$$\mathbf{I}_{R} = I_{M} \operatorname{sen} \varphi e^{j\left(\varphi_{V} - \frac{\pi}{2}\right)} = -j I_{M} \operatorname{sen} \varphi e^{j\varphi_{V}}$$

Potenza istantanea attiva e reattiva

Scomposizione della potenza istantanea

$$p(t) = v(t)[i_A(t) + i_R(t)] = v(t)i_A(t) + v(t)i_R(t) = p_A(t) + p_R(t)$$

Potenza istantanea attiva

$$\begin{aligned} \mathbf{p}_{A}(t) &= V_{M} \cos(\omega t + \varphi_{V}) \cdot I_{M} \cos\varphi\cos(\omega t + \varphi_{V}) = \\ &= V_{M} I_{M} \cos\varphi\left[\cos(\omega t + \varphi_{V})\right]^{2} = \\ &= \frac{1}{2} V_{M} I_{M} \cos\varphi\left[1 + \cos(2\omega t + 2\varphi_{V})\right] \end{aligned}$$

Potenza istantanea reattiva

$$p_R(t) = V_M \cos(\omega t + \varphi_V) \cdot I_M \sin \varphi \sin(\omega t + \varphi_V) =$$

$$= \frac{1}{2} V_M I_M \sin \varphi \sin(2\omega t + 2\varphi_V)$$

67

Potenza istantanea attiva e reattiva

Potenza istantanea attiva e reattiva

- La potenza istantanea attiva non cambia mai segno (se cosφ > 0 è sempre ≥ 0)
 - flusso unidirezionale di energia
 (dall'esterno verso il bipolo se cosφ > 0)
- La potenza istantanea reattiva è una funzione sinusoidale del tempo con pulsazione 2ω
 - l'energia ad essa associata fluisce alternativamente dall'esterno verso il bipolo e viceversa
 - → in un intervallo di durata pari a un semiperiodo di v e i, l'energia complessivamente scambiata tra il circuito e il bipolo è nulla

69

Potenza attiva

Potenza attiva:

valore medio sul periodo della potenza istantanea attiva = valore medio sul periodo della potenza istantanea (unità di misura watt, W)

$$P = \frac{1}{T} \int_{0}^{T} \mathbf{p}_{A}(t)dt = \frac{1}{T} \int_{0}^{T} \mathbf{p}(t)dt = \frac{1}{2} V_{M} I_{M} \cos \varphi$$

- Un intervallo $\Delta t >> T$ può essere approssimato con un numero intero di periodi
- → L'energia assorbita da un bipolo in un intervallo di durata molto grande rispetto al periodo può essere ottenuta dalla relazione

$$w_a(0,\Delta t) \cong P\Delta t$$

Potenza reattiva

 Potenza reattiva: valore massimo della potenza istantanea reattiva col segno di φ

$$Q = \max[p_R(t)]\operatorname{sgn}(\varphi) = \frac{1}{2}V_M I_M \operatorname{sen} \varphi$$

- L'unità di misura della potenza reattiva è il volt-ampere reattivo (VAR)
- ullet Q è un indice dell'entità degli scambi energetici associati alla potenza istantanea reattiva
- Convenzionalmente si attribuisce
 - segno + alla potenza reattiva assorbita dagli induttori
 - segno alla potenza reattiva assorbita dai condensatori

71

Potenza apparente

- Potenza apparente: è definita dalla relazione $S = \frac{1}{2}V_M I_M$
- L'unità di misura della potenza apparente è il volt-ampere (VA)
- La potenza apparente coincide con l'ampiezza del termine oscillante della potenza istantanea
- S dipende solo dalle ampiezze della tensione e della corrente

Triangolo delle potenze

 Rappresentazione grafica delle relazioni tra potenza attiva reattiva e apparente

$$S = \sqrt{P^2 + Q^2}$$

$$P = S \cos \varphi$$

$$Q = S \sin \varphi$$

$$Q = P \operatorname{tg} \varphi$$

73

Potenza complessa

Si definisce potenza complessa la quantità

$$\mathbf{N} = \frac{1}{2}\mathbf{VI}^*$$

(I* indica il coniugato di I)

Inserendo le espressioni di V e I si ottiene

$$\mathbf{N} = \frac{1}{2} V_M e^{j\varphi_V} \cdot I_M e^{-j\varphi_I} = \frac{1}{2} V_M I_M e^{j\varphi} =$$

$$= \frac{1}{2} V_M I_M \cos \varphi + j \frac{1}{2} V_M I_M \sin \varphi = P + jQ$$

Quindi si ha

$$\operatorname{Re}[\mathbf{N}] = \frac{1}{2} V_M I_M \cos \varphi = P$$

$$\operatorname{Im}[\mathbf{N}] = \frac{1}{2} V_M I_M \sin \varphi = Q$$

$$\operatorname{arg}(\mathbf{N}) = \varphi$$

Conservazione delle potenze complesse (Teorema di Boucherot)

- Ipotesi:
 - Circuito con l lati
 - Versi di riferimento scelti per tutti i lati secondo la convenzione dell'utilizzatore
 - Condizioni di regime sinusoidale
 - V_k , I_k (k = 1, ..., l) = fasori delle tensioni e delle correnti
- → La somma delle potenze complesse assorbite dai componenti del circuito è nulla
- → Le somme delle potenze attive e delle potenze reattive assorbite dai componenti sono nulle

$$\sum_{k=1}^{l} \mathbf{N}_{k} = \sum_{k=1}^{l} \frac{1}{2} \mathbf{V}_{k} \mathbf{I}_{k}^{*} = 0 \quad \Rightarrow \quad \sum_{k=1}^{l} P_{k} = 0 \quad \sum_{k=1}^{l} Q_{k} = 0$$

- Dimostrazione:
 - I fasori V_k e I_k soddisfano le leggi di Kirchhoff. Se i fasori delle correnti soddisfano la LKI, anche i loro coniugati la soddisfano
 - → La proprietà deriva direttamente dal teorema di Tellegen

75

Additività delle potenze complesse

- Si assume che il lato l del circuito sia costituito da un bipolo
- Si divide il circuito in due parti
 - una formata dal solo lato l
 - una formata dagli altri lati (che complessivamente costituiscono un bipolo)
- Per il teorema di Boucherot vale la relazione

$$-\mathbf{N}_l = \sum_{k=1}^{l-1} \mathbf{N}_k \Rightarrow -P_l = \sum_{k=1}^{l-1} P_k, \quad -Q_l = \sum_{k=1}^{l-1} Q_k$$

- ${f N}_l$ è la potenza erogata dal bipolo l, cioè la potenza assorbita dal bipolo formato dagli altri componenti
- La potenza complessa assorbita da un bipolo formato da più componenti collegati tra loro è pari alla somma delle potenze assorbite dai singoli componenti
- → La stessa proprietà vale per le potenze attive e per le potenze reattive

Potenza complessa in funzione di Z e Y

$$\mathbf{Z} \qquad \mathbf{V} = \mathbf{Z}\mathbf{I} = (R + jX)\mathbf{I}$$
$$\mathbf{I} = \mathbf{Y}\mathbf{V} = (G + jB)\mathbf{V}$$

$$\mathbf{N} = \frac{1}{2}\mathbf{V}\mathbf{I}^* = \frac{1}{2}\mathbf{Z}\mathbf{I}\mathbf{I}^* = \frac{1}{2}\mathbf{Z}|\mathbf{I}|^2 = \frac{1}{2}\mathbf{V}(\mathbf{Y}\mathbf{V})^* = \frac{1}{2}\mathbf{Y}^*|\mathbf{V}|^2$$

$$P = \operatorname{Re}\left[\frac{1}{2}\mathbf{Z}|\mathbf{I}|^2\right] = \frac{1}{2}R|\mathbf{I}|^2 = \operatorname{Re}\left[\frac{1}{2}\mathbf{Y}^*|\mathbf{V}|^2\right] = \frac{1}{2}G|\mathbf{V}|^2$$

$$Q = \operatorname{Im}\left[\frac{1}{2}\mathbf{Z}|\mathbf{I}|^2\right] = \frac{1}{2}X|\mathbf{I}|^2 = \operatorname{Im}\left[\frac{1}{2}\mathbf{Y}^*|\mathbf{V}|^2\right] = -\frac{1}{2}B|\mathbf{V}|^2$$

$$P > 0 \Leftrightarrow R > 0, G > 0$$

 $Q > 0 \Leftrightarrow X > 0, B < 0$

77

Segni delle parti reali e immaginarie di Z e Y

- Si considera un bipolo formato da componenti R, L, C passivi
- Dalle espressioni delle potenze complesse in funzione di Z e Y e dalla proprietà di additività delle potenze, a seconda del tipo di componenti contenuti nel bipolo, si ricavano le seguenti condizioni:

Componenti	P	Q	Re[Z]	Im[Z]	Re[Y]	Im[Y]
R	> 0	= 0	> 0	= 0	> 0	= 0
L	= 0	> 0	= 0	> 0	= 0	< 0
С	= 0	< 0	= 0	< 0	= 0	> 0
R-L	> 0	> 0	> 0	> 0	> 0	< 0
R-C	> 0	< 0	> 0	< 0	> 0	> 0
L-C	= 0		= 0		= 0	
R-L-C	≥ 0		≥ 0		≥ 0	

Valori efficaci

 Si definisce valore efficace di una funzione a(t) periodica di periodo T la quantità

$$A_{eff} = \sqrt{\frac{1}{T} \int_{0}^{T} a^{2}(t) dt}$$

• In particolare, se a(t) è sinusoidale, risulta

$$A_{eff} = \sqrt{\frac{\omega}{2\pi}} \int_{0}^{\frac{2\pi}{\omega}} A_{M}^{2} \cos^{2}(\omega t + \varphi) dt =$$

$$= \sqrt{\frac{\omega}{2\pi}} \frac{A_{M}^{2}}{2} \int_{0}^{\frac{2\pi}{\omega}} [1 + \cos(2\omega t + 2\varphi)] dt = \frac{A_{M}}{\sqrt{2}}$$

79

Valori efficaci

Espressioni della potenza attiva e reattiva in funzione dei valori efficaci

$$P = \frac{1}{2} V_M I_M \cos \varphi = \frac{V_M}{\sqrt{2}} \frac{I_M}{\sqrt{2}} \cos \varphi = V_{eff} I_{eff} \cos \varphi$$

$$Q = \frac{1}{2} V_M I_M \sin \varphi = V_{eff} I_{eff} \sin \varphi$$

Potenza assorbita da un resistore

$$P = RI_{eff}^2 = GV_{eff}^2$$

→ Il valore efficace di una tensione (corrente) sinusoidale corrisponde al valore di una tensione (corrente) costante che applicata a un resistore dà luogo ad una dissipazione di potenza pari al valore medio sul periodo della potenza assorbita dal resistore in regime sinusoidale

Valori efficaci

 E' possibile definire la trasformata di Steinmetz anche facendo riferimento ai valori efficaci invece che ai valori massimi

$$\mathbf{A}_{e} = \mathcal{S}_{e} \{ \mathbf{a}(t) \} = \frac{A_{M}}{\sqrt{2}} e^{j\alpha} = \frac{A_{M}}{\sqrt{2}} (\cos \alpha + j \sin \alpha)$$

$$\mathbf{a}(t) = \mathcal{S}_{e}^{-1} \{ \mathbf{A}_{e} \} = \text{Re} \left[\sqrt{2} \mathbf{A}_{e} e^{j\omega t} \right] = \text{Re} \left[A_{M} e^{j(\omega t + \alpha)} \right] = A_{M} \cos(\omega t + \alpha)$$

- La trasformata così definita conserva le stesse proprietà della trasformata basata sui valori massimi
- Le impedenze e le ammettenze (essendo definite come rapporti tra fasori) non cambiano se si fa riferimento ai valori efficaci
- L'espressione della potenza complessa diviene $\mathbf{N} = \mathbf{V}_{\rho} \mathbf{I}_{\rho}^*$

81

Teorema del massimo trasferimento di potenza attiva

• Si considera un bipolo formato da un generatore di tensione sinusoidale \mathbf{V}_G in serie con un impedenza \mathbf{Z} caricato da un'impedenza \mathbf{Z}_C

$$\mathbf{Z} = R + jX$$

$$\mathbf{Z}_C = R_C + jX_C$$

- → Al variare di \mathbf{Z}_C , la potenza attiva ceduta al carico è massima quando vale la condizione $\mathbf{Z}_C = \mathbf{Z}^*$ (adattamento coniugato)
- → In queste condizioni la potenza attiva (potenza disponibile) vale

$$P_d = \frac{\left|\mathbf{V}_G\right|^2}{8R} = \frac{V_{Geff}^2}{4R}$$

Teorema del massimo trasferimento di potenza attiva dimostrazione (1)

Corrente e tensione nel carico

$$\mathbf{I} = \frac{\mathbf{V}_G}{\mathbf{Z} + \mathbf{Z}_C} \qquad \mathbf{V} = \frac{\mathbf{V}_G \mathbf{Z}_C}{\mathbf{Z} + \mathbf{Z}_C}$$

Potenza attiva ceduta al carico

$$P_C = \operatorname{Re}\left[\frac{1}{2} \frac{\mathbf{V}_G \mathbf{Z}_C}{(\mathbf{Z} + \mathbf{Z}_C)} \frac{\mathbf{V}_G^*}{(\mathbf{Z} + \mathbf{Z}_C)^*}\right] = \frac{\left|\mathbf{V}_G\right|^2 \operatorname{Re}\left[\mathbf{Z}_C\right]}{2\left|\mathbf{Z} + \mathbf{Z}_C\right|^2} = \frac{\left|\mathbf{V}_G\right|^2 R_C}{2\left[(R + R_C)^2 + (X + X_C)^2\right]}$$

- In queste condizioni

$$P_C = \frac{\left|\mathbf{V}_G\right|^2}{2} \frac{R_C}{\left(R + R_C\right)^2}$$

83

Teorema del massimo trasferimento di potenza attiva dimostrazione (2)

Al variare di P_C il massimo si ottiene per

$$\frac{\partial P_C}{\partial R_C} = \frac{\left| \mathbf{V}_G \right|^2}{2} \frac{(R + R_C)^2 - 2R_C(R + R_C)}{(R + R_C)^4} = 0$$

cioè $R_C = R$ infatti:

- P_C è positivo per R_C > 0 e si annulla per $R \to 0$ e $R \to \infty$
- Ia derivata di P_C si annulla solo per R_C = R
- questo punto deve corrispondere a un massimo
- ightharpoonup Quindi deve essere $R_C = R$, $X_C = -X
 ightharpoonup \mathbf{Z}_C = \mathbf{Z}^*$
- In queste condizioni si ha

$$P_{C \max} = P_d = \frac{|\mathbf{V}_G|^2}{2} \frac{R}{(R+R)^2} = \frac{|\mathbf{V}_G|^2}{8R}$$

Rendimento

 In condizioni di adattamento coniugato la potenza attiva erogata dal generatore vale

$$P_G = \frac{1}{2} \operatorname{Re} \left[\mathbf{V}_G \frac{\mathbf{V}_G^*}{2R} \right] = \frac{\left| \mathbf{V}_G \right|^2}{4R}$$

 Il rendimento η definito come rapporto tra la potenza attiva erogata dal generatore e la potenza attiva ceduta al carico è

$$\eta = \frac{P_C}{P_G} = \frac{|\mathbf{V}_G|^2}{8R} \frac{4R}{|\mathbf{V}_G|^2} = 0.5$$

→ La condizione di adattamento coniugato non rappresenta una soluzione ottimale nel caso in cui è importante ottenere rendimenti elevati

85

Rifasamento

Distribuzione dell'energia elettrica (schema semplificato)

- Impedenza equivalente della linea: $\mathbf{Z}_{L} = R_{L} + jX_{L}$
- Condizioni di funzionamento ottimali:
 - Ampiezza della tensione sul carico praticamente indipendente dalla corrente (normalmente gli utilizzatori sono progettati facendo riferimento a un valore nominale della tensione → sono tollerati scostamenti di pochi percento dal valore nominale prefissato)
 - Minima dissipazione di potenza nella linea

Rifasamento

- Al crescere dell'ampiezza della corrente I nella linea
 - si riduce l'ampiezza della tensione sul ${f V}$ carico $V_{
 m M} = |{f V}| = |{f V}_{
 m G} {f Z}_{
 m L} {f I}|$
 - aumentano le perdite per effetto Joule lungo la linea

$$P_{\rm L} = \frac{1}{2} R_{\rm L} I_{\rm M}^2$$

87

Rifasamento

 $\bullet\,$ Fissata l'ampiezza tensione $V_{\rm M}$, a parità di potenza attiva P assorbita dal carico l'ampiezza della corrente è inversamente proporzionale al fattore di potenza

$$I_{\rm M} = \frac{2P}{V_{\rm M}\cos\varphi}$$

- L'ampiezza della componente attiva della corrente è fissata dal valore della potenza attiva
- Al diminuire del fattore di potenza (cioè all'aumentare dell'angolo φ) aumenta l'ampiezza della componente reattiva della corrente (e quindi l'ampiezza della corrente totale)

→ Per ridurre le perdite occorre aumentare il fattore di potenza del carico

Rifasamento

- Un basso fattore di potenza risulta svantaggioso per il fornitore di energia elettrica
- Se il valore medio mensile del fattore di potenza risulta inferiore a certi limiti vengono applicate delle maggiorazioni sul costo dell'energia
- Le norme attuali, per impianti a bassa tensione con potenza impegnata ≥ 15 kW, prevedono:
 - per cosφ ≥ 0.9 → nessuna penale
 - per 0.7 ≤ cosφ < 0.9 → pagamento di una penale commisurata al rapporto tra l'integrale della potenza reattiva (energia reattiva) e quello della potenza attiva (energia attiva) nel periodo di fatturazione
 - i limiti sono prossimi ai valori di $\cos \varphi$ per cui l'energia attiva e quella reattiva sono uguali ($\cos \varphi \cong 0.707$) e l'energia reattiva è pari al 50% dell'energia attiva ($\cos \varphi \cong 0.894$)
 - per cosφ < 0.7 → obbligo da parte dell'utente di prendere provvedimenti per aumentare il fattore di potenza

89

Rifasamento

- Per aumentare il fattore di potenza si ricorre al rifasamento del carico
- Si collega in parallelo all'utilizzatore un bipolo puramente reattivo con reattanza di segno opposto a quella del utilizzatore stesso
- Se il carico è ohmico-induttivo → X_U > 0, φ > 0 (caso più comune)
 la reattanza X_R deve essere negativa (→ condensatore)

Rifasamento

- Dimensionando opportunamente la reattanza X_{R} si può fare in modo che
 - gli scambi di potenza reattiva avvengano prevalentemente tra il carico e il bipolo di rifasamento, riducendo gli scambi di potenza reattiva con il generatore
 - la componente reattiva \mathbf{I}_R della corrente nel carico circoli prevalentemente nel bipolo di rifasamento, riducendo l'ampiezza della corrente reattiva \mathbf{I}'_R nella linea

91

Rifasamento

 La potenza reattiva assorbita complessivamente dal carico e dal bipolo di rifasamento è

$$Q' = Q + Q_R$$

• Per portare il fattore di potenza da $cos\phi$ ad un valore accettabile $cos\phi'$ la potenza reattiva assorbita dal bipolo di rifasamento deve essere

$$Q_{\rm R} = (Q' - Q) = P(tg\varphi' - tg\varphi)$$

• Se il bipolo di rifasamento è un condensatore (capacità = C_R) si ha

$$Q_{\rm R} = -\frac{1}{2}\omega C_{\rm R} V_{\rm M}^2$$

Quindi la capacità di rifasamento vale

$$C_{\rm R} = \frac{2P(\operatorname{tg} \varphi - \operatorname{tg} \varphi')}{\omega V_{\rm M}^2} = \frac{P(\operatorname{tg} \varphi - \operatorname{tg} \varphi')}{\omega V_{eff}^2}$$

Risonanza serie

- Bipolo RLC serie in regime sinusoidale
- Si studia il comportamento del bipolo al variare della pulsazione ω

$$\mathbf{Z} = R + j\omega L + \frac{1}{j\omega C} = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

$$|\mathbf{Z}| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$|\mathbf{Z}| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 $\operatorname{arg}(\mathbf{Z}) = \operatorname{arctg} \frac{\omega L - \frac{1}{\omega C}}{R}$

- Pulsazione di risonanza: $\omega_0 = \frac{1}{\sqrt{I.C}}$
- Per $\omega = \omega_0$
 - \rightarrow Im[\mathbf{Z}] = 0
 - → |Z| è minimo
 - \Rightarrow arg(\mathbf{Z}) = 0

93

Risonanza serie

Risonanza serie

95

Risonanza serie

 $\omega = \omega_0$ \Rightarrow la tensione e la corrente sono in fase

Risonanza serie

- Potenza complessa assorbita: $\mathbf{N} = \frac{1}{2} \mathbf{Z} |\mathbf{I}|^2 = \frac{1}{2} \left[R + j(\omega L \frac{1}{\omega C}) \right] I_M^2$
- Potenza attiva: $P = \frac{1}{2}RI_M^2$
- Potenza reattiva: $Q = \frac{1}{2}\omega LI_M^2 \frac{1}{2\omega C}I_M^2$
 - $\omega < \omega_0$ Q < 0
 - $\omega > \omega_0 \rightarrow Q > 0$
 - $\omega = \omega_0 \rightarrow Q = 0$

97

Risonanza serie

- Corrente nell'induttore: $i_L(t) = i(t) = I_M \cos(\omega t + \varphi_I)$
- ⇒ Energia nell'induttore: $W_L(t) = \frac{1}{2}Li^2(t) = \frac{1}{2}LI_M^2\cos^2(\omega t + \varphi_I)$
- Tensione del condensatore: $V_C = -j\frac{1}{\omega C}I \Rightarrow v_C(t) = \frac{1}{\omega C}I_M \operatorname{sen}(\omega t + \varphi_I)$
- Energia nel condensatore:

$$W_C(t) = \frac{1}{2}C V_C^2(t) = \frac{1}{2\omega^2 C} I_M^2 \operatorname{sen}^2(\omega t + \varphi_I)$$

In condizioni di risonanza:

$$W_C(t) = \frac{1}{2\omega_0^2 C} I_{M0}^2 \operatorname{sen}^2(\omega_0 t + \varphi_I) = \frac{1}{2} L I_{M0}^2 \operatorname{sen}^2(\omega_0 t + \varphi_I)$$

$$\rightarrow$$
 $W_L(t) + W_C(t) = \frac{1}{2}LI_{M0}^2$

In condizioni di risonanza l'energia totale accumulata nel bipolo RLC si mantiene costante

Fattore di merito

In condizioni di risonanza, si definisce fattore di merito la quantità

$$Q_0 = 2\pi \frac{Energia\ accumulata}{Energia\ dissipata\ in\ un\ periodo}$$

• Per un bipolo RLC serie, se l'ampiezza della corrente in condizioni di risonanza è I_{M0} si ottiene

$$Q_0 = 2\pi \frac{\frac{1}{2} L I_{M0}^2}{\frac{1}{2} R I_{M0}^2 \cdot T_0} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 RC}$$

$$\left(T_0 = \frac{2\pi}{\omega_0} \right)$$

L'espressione dell'impedenza del bipolo può essere posta nella forma

$$\mathbf{Z} = R + j \left(\omega L - \frac{1}{\omega C} \right) = R \left[1 + j \left(\frac{\omega L}{R} - \frac{1}{\omega RC} \right) \right] = R \left[1 + j Q_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right]$$

99

Curve di risonanza

 Per caratterizzare la risposta in frequenza di un bipolo RLC serie, di solito si considera la funzione di trasferimento

$$\mathbf{H}(\omega) = \frac{\mathbf{V}_R}{\mathbf{V}} = \frac{R}{\mathbf{Z}} = \frac{1}{1 + jQ_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

• Se ${f V}$ è fissato, ${f H}$ rappresenta anche il rapporto tra la corrente nel bipolo al variare di ω e la corrente in condizioni di risonanza ${f I}_0$

$$\mathbf{H}(\omega) = \frac{\mathbf{I}}{\mathbf{I}_0}$$

Curve di risonanza

Curve di risonanza

Larghezza di banda

- Se ${f V}$ è fissato, l'ampiezza della corrente nel bipolo, e quindi la potenza attiva assorbita, sono massime per $\omega=\omega_0$
- In queste condizioni si ha

$$P_0 = \frac{1}{2} \frac{V_M^2}{R} = \frac{1}{2} R I_{M0}^2$$

ullet La potenza attiva assorbita può essere espressa in funzione di ω come

$$P = \frac{1}{2}RI_{M}^{2} = \frac{1}{2}R|\mathbf{H}(\omega)|^{2}I_{M0}^{2} = |\mathbf{H}(\omega)|^{2}P_{0}$$

- Larghezza di banda (a metà potenza), B: ampiezza dell'intervallo compreso tra le pulsazioni ω_1 e ω_2 per cui risulta $P=P_0/2$ $B=\omega_2-\omega_1$
- All'aumentare di Q_0 il modulo di $\mathbf{H}(\omega)$ presenta un picco sempre più stretto nell'intorno di ω_0
- La larghezza di banda diminuisce con l'aumentare del fattore di merito

103

Larghezza di banda

• La potenza attiva assorbita dal bipolo vale $P=P_0/2$ se è verificata la relazione

$$Q_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = \pm 1 \qquad \Longrightarrow \qquad \omega^2 \pm \frac{\omega_0}{Q_0} \omega + \omega_0^2 = 0$$

Le soluzioni positive di questa equazione sono

$$\omega_1, \omega_2 = \omega_0 \left(\pm \frac{1}{2Q_0} + \sqrt{1 + \frac{1}{4Q_0^2}} \right)$$

Quindi si ha

$$B = \omega_2 - \omega_1 = \frac{\omega_0}{Q_0} \qquad \Longrightarrow \qquad B = \frac{L}{R} = \omega_0^2 RC$$

• Per valori sufficientemente elevati di Q_0 (in pratica per $Q_0 \geq 10$), si può ritenere

$$\omega_1, \omega_2 \approx \omega_0 \left(1 \pm \frac{1}{2Q_0} \right) = \omega_0 \pm \frac{B}{2}$$

Risonanza parallelo

- Bipolo RLC parallelo in regime sinusoidale
- Si studia il comportamento del bipolo al variare della pulsazione ω

$$\mathbf{Y} = G + j\omega C + \frac{1}{j\omega L} = G + j\left(\omega C - \frac{1}{\omega L}\right)$$

$$|\mathbf{Y}| = \sqrt{G^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$$
 $\operatorname{arg}(\mathbf{Y}) = \operatorname{arctg} \frac{\omega C - \frac{1}{\omega L}}{G}$

- Pulsazione di risonanza: $\omega_0 = \frac{1}{\sqrt{LC}}$
- Per $\omega = \omega_0$
 - \rightarrow Im[Y] = 0
 - → |Y| è minimo
 - \rightarrow arg(Y) = 0

105

Risonanza parallelo

Risonanza parallelo

107

Risonanza parallelo

 $\omega = \omega_0$ \Rightarrow la tensione e la corrente sono in fase

Risonanza parallelo

- Potenza complessa assorbita: $\mathbf{N} = \frac{1}{2} \mathbf{Y}^* |\mathbf{V}|^2 = \frac{1}{2} |G j(\omega C \frac{1}{\omega L})| V_M^2$
- $P = \frac{1}{2}GV_M^2$ Potenza attiva:
- Potenza reattiva: $Q = \frac{1}{2\omega L}V_M^2 \frac{1}{2}\omega CV_M^2$
 - $\omega < \omega_0 \rightarrow Q > 0$
 - $\omega > \omega_0 \rightarrow Q < 0$
 - $\omega = \omega_0 \rightarrow Q = 0$

109

Risonanza parallelo

- Tensione del condensatore: $\mathbf{v}_{C}(t) = \mathbf{v}(t) = V_{M} \cos(\omega t + \varphi_{V})$
- Energia nel condensatore: $W_C(t) = \frac{1}{2}C V^2(t) = \frac{1}{2}CV_M^2 \cos^2(\omega t + \varphi_V)$
- Corrente nell'induttore: $I_L = -j \frac{1}{\omega L} \mathbf{V} \Rightarrow i_L(t) = \frac{1}{\omega L} V_M \operatorname{sen}(\omega t + \varphi_V)$
- Energia nell'induttore:

Energia nell'induttore:

$$\mathbf{W}_{L}(t) = \frac{1}{2}L\mathbf{i}_{L}^{2}(t) = \frac{1}{2\omega^{2}L}V_{M}^{2}\operatorname{sen}^{2}(\omega t + \varphi_{V})$$
In condizioni di risonanza:

In condizioni di risonanza:

$$\rightarrow$$
 $W_L(t) + W_C(t) = \frac{1}{2}CV_{M0}^2$

In condizioni di risonanza l'energia totale accumulata nel bipolo RLC si mantiene costante

Fattore di merito

Per un bipolo RLC parallelo il fattore di merito è

$$Q_0 = 2\pi \frac{\frac{1}{2}CV_{M0}^2}{\frac{1}{2}GV_{M0}^2 \cdot T_0} = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG}$$

In questo caso l'ammettenza può essere espressa come

$$\mathbf{Y} = G + j \left(\omega C - \frac{1}{\omega L} \right) = G \left[1 + j \left(\frac{\omega C}{G} - \frac{1}{\omega L G} \right) \right] = G \left[1 + j Q_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \right]$$

111

Larghezza di banda

 Per caratterizzare la risposta in frequenza di un bipolo RLC serie, di solito si considera la funzione di trasferimento

$$\mathbf{H}(\omega) = \frac{\mathbf{I}_R}{\mathbf{I}} = \frac{G}{\mathbf{Y}} = \frac{1}{1 + jQ_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

• Se I è fissato, H rappresenta anche il rapporto tra la tensione nel bipolo al variare di ω e la tensione in condizioni di risonanza ${f V}_0$

$$\mathbf{H}(\omega) = \frac{\mathbf{V}}{\mathbf{V}_0}$$

- L'andamento di ${\bf H}$ in funzione di ω coincide con quello visto per il bipolo RLC serie
- La larghezza di banda in questo caso vale

$$B = \frac{\omega_0}{Q_0} = \frac{C}{G} = \omega_0^2 LG$$