INSTITUT FÜR INFORMATIK

Machine Learning

Universitätsstr. 1 D–40225 Düsseldorf

Actor-Critic Reinforcement Learning With Experience Replay

Julian Robert Ullrich

Bachelorarbeit

Beginn der Arbeit: 25. Juli 2018 Abgabe der Arbeit: 25. Oktober 2018

Gutachter: Univ.-Prof. Dr. S. Harmeling

Univ.-Prof. Dr. M. Leuschel

Erklärung					
Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst habe. Ich habe dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.					
Düsseldorf, den 25. Oktober 2018	Julian Robert Ullrich				

Abstract

Deep Reinforcement Learning and policy gradient methods majorly contributed to the most recent advances in the field of Artificial Intelligence. These Methods enabled machines to surpass human performance for Atari console games (Mnih et al., 2015), boardgames like Chess, Shogi (Silver et al., 2017a) or Go (Silver et al., 2017b) and most recently even complex team-based computer games (OpenAI, 2018).

As environments grow in complexity, their simulation requires more computational ressources. Sample efficiency has therefore become an important aspekt of reinforcement learning.

The goal of this thesis is the implementation and evaluation of the "Actor-Critic with Experience Replay" (ACER) algorithm proposed by Wang et al., 2016 on the Atari console games.

CONTENTS i

Contents

1	Abstract	1				
2	Introduction	1				
	2.1 Motivation/Objectives	. 1				
3	Reinforcement Learning Frameworks					
	3.1 Elements of Reinforcement Learning	. 2				
	3.2 Markov Decision Process	. 3				
4	Actor-Critic Methods	4				
	4.1 Actor-Only Methods	. 4				
	4.2 Critic-Only Methods	. 4				
	4.3 Actor-Critic Methods	. 5				
	4.4 A3C : Asynchronous Advantage Actor-Critic	. 5				
5	Off-Policy Learning					
	5.1 Importance-Sampling	. 6				
	5.2 Q-Retrace	. 6				
6	ACER : Actor-Critic with Experience Replay	7				
7	7 Experimental Setup					
8	Experiments	9				
	8.1 Hyperparameter Robustness	. 9				
	8.2 Adversial Attacks	. 9				
	8.3 Results	. 10				
9	Conclusion	10				
10) References	11				
Re	eferences	12				
Lis	ist of Figures	13				
Lis	ist of Tables	13				

1 Abstract

2 Introduction

2.1 Motivation/Objectives

- 3 Reinforcement Learning Frameworks
- 3.1 Elements of Reinforcement Learning

3

3.2 Markov Decision Process

- 4 Actor-Critic Methods
- 4.1 Actor-Only Methods
- 4.2 Critic-Only Methods

5

- 4.3 Actor-Critic Methods
- 4.4 A3C: Asynchronous Advantage Actor-Critic

- 5 Off-Policy Learning
- 5.1 Importance-Sampling
- 5.2 Q-Retrace

6 ACER: Actor-Critic with Experience Replay

7 Experimental Setup

- 8 Experiments
- 8.1 Hyperparameter Robustness
- 8.2 Adversial Attacks

10 9 CONCLUSION

8.3 Results

9 Conclusion

10 References

12 REFERENCES

References

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis (2015). "Humanlevel control through deep reinforcement learning". In: *Nature* 518.7540, pp. 529–533. OpenAI (2018). *OpenAI Five*.

- David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis (2017a). "Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm". In: *CoRR* abs/1712.01815. arXiv: 1712.01815.
- David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis (2017b). "Mastering the game of Go without human knowledge". In: *Nature* 550, pp. 354–.
- Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray Kavukcuoglu, and Nando de Freitas (2016). "Sample Efficient Actor-Critic with Experience Replay". In: *CoRR* abs/1611.01224. arXiv: 1611.01224.

LIST OF FIGURES 13

List of Figures

List of Tables