

5. Logistic Regression & ROC

Table of Contents

- Logistic Regression with ROC & AUC.
 - With sklearn package.
 - With tensorflow.

Sklearn.linear_model.LogisticRegression

- class sklearn.linear_model.LogisticRegression
 - (penalty='12', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1)
 - penalty: regularization (11 or 12)
 - C: Inverse of regularization strength
 - multi_class: multiclass option ('ovr' or 'multinomial')

One-versus-one & One-versus-all

- One-versus-one.
 - Build $\binom{n}{2}$ all pairwise models.
 - [Class i vs Class j] for all pairs of classes i, j.
 - Data is less biased.
 - Too many models.
- One-versus-all.
 - Build *n* models.
 - [Class i vs {not Class i}] for all classes.
 - True data could be insufficient.
 - Reasonable number of models.

Multinomial Logistic Regression

- Remind binary classification.
 - $logit = ln(odds) = ln(\frac{P(Y=1)}{P(Y=0)}) = w_0 + \sum_{i=1}^k w_i x_i = WX$
- Extending for *K* classes.

•
$$\ln\left(\frac{P(Y=1)}{P(Y=K)}\right) = W_1 X$$
 => $P(Y=1) = P(Y=K)e^{W_1 X}$

• ...

•
$$\ln\left(\frac{P(Y=K-1)}{P(Y=K)}\right) = W_{K-1}X$$
 => $P(Y=K-1) = P(Y=K)e^{W_{K-1}X}$

•
$$P(Y = K) = 1 - \sum_{i=1}^{K-1} P(Y = i) = 1 - \sum_{i=1}^{K-1} P(Y = K) e^{W_i X}$$

•
$$P(Y = K) = \frac{1}{1 + \sum_{i=1}^{K-1} e^{W_i X}}$$

•
$$P(Y = 1) = \frac{e^{W_1 X}}{1 + \sum_{i=1}^{K-1} e^{W_i X}}$$

Code Example - sklearn

Uploaded code.

Sklearn Exercise.

- 1. Use all features to fitting model with same setting of sample code.
 - 1. Don't plot data point scatter plots. (It is not feasible)
 - 2. Only plot ROC curve.
- 2. Do multiclass classification (3 classes) with same setting of sample code.
 - 1. Don't plot ROC curve. (It is not feasible).

Code Example - tensorflow

Uploaded code.

Tensorflow Exercise.

- 1. Use all features to fitting model with same setting of sample code.
 - 1. Don't plot data point scatter plots. (It is not feasible)
 - 2. Only plot ROC curve.
- 2. Do multiclass classification (3 classes) with same setting of sample code.
 - 1. Don't plot ROC curve. (It is not feasible).

