Sequential neural networks as automata

William Merrill

Advised by
Dana Angluin
Robert Frank

Neural Networks

Modern Artificial Intelligence

- Most recent advances in Al use neural networks
- Especially true for language (NLP)

What is a Neural Network?

- A network of artificial cells which send information to each other
- Learn the weights for cell connections from data

Sequential Neural Networks

• For language, we use networks that can read variable-length sequences

Interpretability of Neural Networks

- Neural networks are good at translation, classification, summarization, etc.
- But, *how* and *why* they work is still an open question
- Cell connections must encode some kind of grammar

Why is Interpretability Important?

- Guiding research
- Social accountability
- Intellectual value

My Method

- Build off of formal language theory
- Prove what kinds of linguistic structure neural networks can model

Formal Language Theory

Formal Languages

Potentially infinite sets of valid sentences

```
english = {"I am Will.", "I like AI!", ...}

íslenska = {"Ég heiti Will.", "Mér líkar við gervigreind!", ...}

palindromes = {"aa", "aba", "abba", ...}
```

Automata

 Grammar/Automaton: Computational device that decides whether a sentence is in a language (says yes/no)

Types of Automata

More computationally complex automata can accept more languages

Formal and Natural Languages

- Formal languages and automata are well studied (since 1930s)
- Formal languages model structures in natural language

Research Questions

- 1. What kinds of formal languages can neural networks accept?
- 2. How do these languages relate to formal models of natural language?

My Contributions

- 1. Definitions
 - a. Language acceptance for neural networks
 - b. Measure of network's memory
- 2. Results
 - a. SRNs
 - b. LSTMs
 - c. Attention
 - d. CNNs
- 3. Experiments

Definitions

Asymptotic Acceptance

- Networks output a probability (not yes/no)
- Need to make network say yes or no

Definition 1.2.2 (Asymptotic acceptance). Let L be a language with indicator function $\mathbb{1}_L$. A neural sequence acceptor $\hat{\mathbb{1}}$ with weights θ asymptotically accepts L if

$$\lim_{N o \infty} \hat{\mathbb{1}}^{N heta} = \mathbb{1}_L.$$

State Complexity

- Measure of network's memory (as function of sentence length)
- How many states can network be in after reading n words?

memory = log_2 (state complexity)

Theoretical Results

Simple Recurrent Networks (SRNs)

- Simplest architecture for recurrent neural networks
- Turing-complete under unconstrained definition of acceptance (Siegelmann, 1995)

SRNs as Automata

- Thm 2.1.2: SRNs accept exactly the regular languages
- State complexity: O(1) (Constant)

- Reduced characterization is more accurate than Siegelmann (1995)'s
- Similar result for gated recurrent units (GRUs)

Long Short-Term Memory Networks (LSTMs)

- More complicated recurrent neural network
- Used for machine translation and other tasks requiring syntax

LSTMs as Automata

- Thm 2.2.2: LSTMs accept a subclass of the counter languages
- State complexity: O(n^k) (Polynomial in sentence length)

- More powerful than other recurrent networks
- But not powerful enough to model complex tree structure

Attention

- Modern machine translation uses attention
- Focus on specific input words at different steps

Attention Results

• State complexity: 2^{O(n)} (Exponential in sentence length)

- Additional memory allows:
 - Copying a sequence (primitive translation)
 - More complex hierarchical representations
- Supports claim "attention is all you need" (Vaswani, 2017)

Convolutional Neural Networks (CNNs)

- CNNs model words at the character level
- Deal with phonology, morphology
 - pain versus pains

CNNs as Automata

• Thm 3.1.1: CNNs accept the strictly local languages

- Explains success of character-level CNNs
- Strictly local languages* are good model of phonological grammar (Heinz et al., 2011)

*Tier-based strictly local languages

State Complexity Hierarchy

Experiments

LSTMs as Counter Automata

- Prediction: LSTMs are equivalent to counter machines
- LSTMs use memory to "count" (Weiss et al, 2018)

Memory Constraints of LSTMs

- Prediction: LSTMs don't have enough memory to reverse sentences
- LSTM cannot reverse long sentences!

Validating State Complexity

- Counting requires O(n^k) complexity
- Copying requires 2^{O(n)} complexity

Summary

- Theoretical tools
 - Language acceptance
 - Formalizing memory
- Results about types of networks
- Experiments

Conclusion

- Step towards understanding the "black box" of neural networks
 - Extendable to other architectures
- Related neural networks to mental grammar
 - LSTM *can't* do complex trees
 - CNN can do phonology

Acknowledgements

- My advisors, Bob and Dana
- Computational Linguistics at Yale:
 - Yiding, David, Noah, Andrew, Annie, Yong, Simon, Aarohi, Yi Chern, Sarah, Rachel
- Linguistics Senior Seminar:
 - Anelisa, James, Jay, Jisu, Magda, Noah, Rose, Hadas, Raffaella
- Advanced Natural Language Processing Seminar:
 - Michi, Suyi, Davey, John, Yavuz, Gaurav, Tianwei, Tomoe, Rui, Danny, Angus, Brian, Yong,
 Garrett, Noah, Alex, Talley, Ishita, Bo, Jack, Tao, Yi Chern, Irene, Drago
- Vidur Joshi and others @ <u>Allen Institute for Artificial Intelligence</u>