COMP 5711: Advanced Algorithms Fall 2018 Final Exam

Name:	Student ID:
Titaliio.	Stadent IB.

Instructions

- 1. This is an open-book, open-notes exam.
- 2. Time limit: 180 minutes.
- 3. You can write on the back of the paper if you run out of space. Please let us know if you need more scratch paper.
- 4. All the log's have base 2 unless stated otherwise.

Q1	Q2	Q3	Q4	Q5	Q6	Total

1.	Short-answer	Questions ((15)	pts)
----	---------------------	-------------	------	------

(a) If in the set of stack operations, MULTIPOP were replaced by MULTIPUSH, which pushes k items onto the stack, would the amortized cost per operation still be O(1)?

(b) Quicksort is a Las Vegas algorithm with expected running time $O(n \log n)$. How do we convert it to a Monte Carlo algorithm, i.e., one that has worst-case running time $O(n \log n)$, but may fail with probability at most 1/2?

(c) Show that the Markov inequality is tight, namely, give an example of a non-negative random variable X and a value k>1 such that $\Pr[X\geq kE[X]]=1/k$. (Hint: X can just take two possible values.)

- (d) Decide the treewidth of the following graphs:
 - (1) a tree;
 - (2) a cycle of n vertices $(n \ge 3)$;
 - (3) a complete graph with n vertices $(n \ge 3)$.

(e) Given an undirected graph G = (V, E). We know that if $S \subseteq V$ is a vertex cover of G, then V - S is an independent set of G, so the two problems are equivalent. We know that the k-vertex cover problem (i.e., decide if G has a vertex cover of size k) is in FPT. Does it imply that the k-independent set problem (i.e., decide if G has an independent set of size k) is also in FPT?

2. Amortized Analysis (15 pts)

A multi-stack is a data structure consisting of a series of stacks S_0, S_1, S_2, \cdots . For each i, S_i can hold up to 2^i elements. When we push an element x onto the multi-stack, if S_0 is not full, we simply push it onto S_0 . If S_0 is full, we pop all the elements of S_0 and push them to S_1 . Then we push x onto S_0 . More generally, whenever we try to push an element onto S_i and S_i is full, we move all the elements of S_i to S_{i+1} , and then push the element onto S_i . We do not support the pop operation in the multi-stack.

- (a) In the worst case, what's the cost of pushing an element onto a multi-stack containing *n* elements?
- (b) Prove that the amortized cost of a push operation (onto the multi-stack) is $O(\log n)$ where n is the maximum number of elements in the multi-stack.

3. Random Walk on a Complete Graph (20 pts)

Let G be an undirected complete graph having n vertices. For a vertex v, N(v) denotes the set of neighbors of v in G. A random walk on G is the following process, which occurs in a sequence of discrete steps: starting at a vertex v_0 , we proceed at the first step to a neighbor of v_0 chosen uniformly at random. This may be thought of as choosing a random edge incident on v_0 and walking along it to a vertex $v_1 \in N(v_0)$. At the second step, we proceed to a randomly chosen neighbor of v_1 , and so on.

- (a) Show that the expected number of random walk steps needed to visit all vertices is $(n-1)H_{n-1}$ where $H_{n-1}=\sum_{i=1}^{n-1}1/i$.
- (b) For two vertices u and v of G, show that the expected number of steps of random walk that begins at u and ends upon first reaching v is n-1.

4. Hashing (20 pts)

Consider the following hash families from $\{0,1\}^n$ to $\{0,1\}$. For each hash family, decide if it is (i): pairwise-independent, (2) universal but not pairwise-independent, or (3) not universal. Give a proof of your claim. Note that you need to give a counterexample if your claim includes "not pairwise-independent" or "not universal".

(a)
$$H = \{h_{a_0,\dots,a_n}(x_1,\dots,x_n) \mid a_0,\dots,a_n \in \{0,1\}\}, \text{ where}$$

$$h_{a_0,\dots,a_n}(x_1,\dots,x_n) = a_0 + a_1x_1 + \dots + a_nx_n \mod 2.$$

(b)
$$H = \{h_{a_1,\dots,a_n}(x_1,\dots,x_n) \mid a_1,\dots,a_n \in \{0,1\}\}, \text{ where}$$

$$h_{a_1,\dots,a_n}(x_1,\dots,x_n) = a_1x_1 + \dots + a_nx_n \mod 2.$$

5. **FPT Algorithms** (15 pts)

Consider a set $U = \{a_1, \ldots, a_n\}$ of n elements and a collection $\mathcal{S} = \{S_1, \ldots, S_m\}$ of m subsets of U. We say a sub-collection $\mathcal{C} \subseteq \mathcal{S}$ is a set cover of U if the union of the subsets in \mathcal{C} is equal to U. The size of a set cover \mathcal{C} is defined to be $|\mathcal{C}|$. For example, $U = \{1, 2, 3, 4, 5\}$ and $\mathcal{S} = \{\{1, 2, 3\}, \{1, 4\}, \{3, 5\}, \{2, 4, 5\}\}$. Clearly \mathcal{S} itself is a set cover of U, and its sub-collection $\{\{1, 2, 3\}, \{2, 4, 5\}\}$ is another set cover.

Suppose we are given an instance (U, \mathcal{S}) of the set cover problem, and we want to determine whether there is a set cover of size at most k. Furthermore, we assume that for each element $a \in U$, at most c subsets in \mathcal{S} contain a, for some constant c. Give an algorithm that solves this problem with a running time of the form $O(f(c, k) \cdot \text{poly}(n, m))$, where $\text{poly}(\cdot)$ is a polynomial function, and $f(\cdot)$ is an arbitrary function that depends only on c and c0, not on c1 or c2.

6. Balls and Bins (15 pts)

Consider the balls and bins problem. Show that if we throw $2n\ln n + 2cn$ balls to n bins for some constant c, then we can fill all the bins with probability at least $1-\frac{1}{e^c}$. [Hint: You can use the following form of Chernoff inequality: For any $0<\delta<1$, $\Pr[X\leq (1-\delta)\mu]\leq \exp(-\mu\delta^2/2)$.]