Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет» Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Изучение основных функций пакета Neural Network Toolbox для построения радиально базисных сетей Отчёт
Лабораторная работа № 3 по дисциплине «Системы обработки знаний»

Выполнил студент группы ИВТб-41______/Седов М.Д./ Проверил доцент кафедры ЭВМ_____/Ростовцев В.С./

Цель:

Ознакомиться с основными командами создания, обучения и применения радиально-базисных нейронных сетей в Neural Network Toolbox для аппроксимации заданной функции.

Задание:

Для выполнения лабораторной работы необходимо выполнить следующие задачи:

- Ознакомиться с демонстрационными программами радиально-базисных нейронных сетей.
- Создать в рабочем пространстве MATLAB радиально-базисную нейронную сеть с прямой передачей данных и исследовать ее структуру с оценкой качества обучения mse.
- Обучить радиально-базисную нейронную сеть с заданным числом циклов (до 200 циклов) и исследовать нейронную сеть в двух режимах: с нулевой ошибкой и с заданной ошибкой (например, GOAL=0,0001).
- Исследовать влияние параметра SPREAD радиально-базисной нейронной на результаты аппроксимации радиально-базисной нейронной сетью. Например, для параметра GOAL устанавливается в значение 0.0001, которое обеспечит достаточно точную аппроксимацию заданной функции. Для сокращения времени обучения сети можно уменьшить количество нейронов в скрытом слое.
 - Исследовать качество аппроксимации для сети GRNN.

Данные для обучения:

Входные:

IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8	IN9	IN10	IN11	IN12	IN13	IN14	IN15	IN16	IN17	IN18	IN19	IN20	IN21	IN22	IN23	IN24	IN25	IN26
-0,7	-0,7	-0,7	0,7	-0,7	-0,7	0,7	-0,8	-0,8	-0,8	0,8	-0,8	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7	-0,7	0,65	-0,8	-0,8	-0,8	-0,8	0,75
-0,6	-0,6	-0,6	-0,6	0,6	-0,7	0,7	-0,6	-0,6	-0,6	0,6	-0,6	-0,6	0,55	-0,6	-0,6	0,55	-0,6	-0,6	-0,6	0,6	-0,5	-0,5	-0,5	0,5	-0,5
-0,7	-0,7	0,7	-0,7	-0,7	-0,8	0,8	0,6	-0,6	-0,6	-0,6	-0,6	0,7	-0,7	-0,6	-0,6	0,6	-0,6	-0,7	-0,7	0,65	0,6	-0,6	-0,6	-0,6	-0,6
-0,7	-0,7	-0,7	-0,7	0,7	-0,7	0,7	-0,6	0,6	-0,6	-0,6	-0,6	-0,6	0,55	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7
0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,8	0,75	-0,8	-0,8	0,75	-0,8	0,75	-0,8	-0,8	-0,7	-0,7	0,7	-0,7	-0,7
0,65	-0,7	-0,7	-0,7	-0,7	0,8	-0,8	-0,8	-0,8	0,75	-0,8	-0,8	-0,7	0,7	-0,8	-0,8	-0,8	0,8	0,7	-0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7
-0,8	0,8	-0,8	-0,8	-0,8	-0,7	0,7	-0,8	-0,8	-0,8	-0,8	0,8	-0,7	0,65	-0,7	-0,7	-0,7	0,65	-0,7	0,7	-0,7	0,6	-0,6	-0,6	-0,6	-0,6
-0,8	0,8	-0,8	-0,8	-0,8	-0,9	0,9	-0,7	-0,7	-0,7	-0,7	0,7	-0,8	0,75	0,75	-0,8	-0,8	-0,8	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7	-0,7
0	0	0	0	0	-0,6	0,6	0	0	0	0	0	-0,5	0,5	-0,3	-0,3	0,3	-0,3	-0,6	-0,6	0,55	0	0	0	0	0
-0,6	0,6	-0,6	-0,6	-0,6	-0,7	0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,6	0,6	0	0	0	0	-0,7	0,7	-0,7	0,75	-0,8	-0,8	-0,8	-0,8
0	0	0	0	0	-0,7	0,7	0	0	0	0	0	0	0	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	0	0	0	0	0
0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,65	-0,7	-0,7	-0,8	0,75	0	0	0	0	0,6	-0,6	-0,6	0	0	0	0	0
0	0	0	0	0	-0,7	0,7	0	0	0	0	0	0	0	0,4	-0,4	0,4	0,4	0	0	0	0,8	-0,8	-0,8	-0,8	-0,8
0	0	0	0	0	0	0	0	0	0	0	0	-0,7	0,65	0,2	-0,2	0,2	0,2	0,25	-0,3	0,25	-0,9	-0,9	-0,9	0,85	0,85
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,8	-0,8	0,75	-0,8	0,3	-0,3	0,3	0	0	0	0	0
-0,4	-0,4	-0,4	0,4	-0,4	-0,9	0,9	-0,3	-0,3	-0,3	0,3	-0,3	-0,4	0,4	0	0	0	0	-0,2	0,2	0,2	-0,5	-0,5	-0,5	-0,5	0,45
-0,4	-0,4	-0,4	-0,4	0,35	-0,4	0,4	0,2	0,2	0,2	-0,2	0,2	-0,4	0,35	-0,3	-0,3	0,3	-0,3	-0,4	-0,4	0,35	-0,4	0,4	-0,4	-0,4	-0,4
0,45	-0,5	-0,5	-0,5	-0,5	0,4	-0,4	-0,3	-0,3	0,3	-0,3	-0,3	-0,4	0,35	-0,3	-0,3	0,25	0,25	0,4	-0,4	-0,4	-0,5	-0,5	0,45	-0,5	-0,5
0,25	0,25	0,25	0,25	-0,3	-0,4	0,4	-0,4	-0,4	-0,4	-0,4	0,35	-0,3	0,3	0,35	-0,4	-0,4	0,35	-0,3	0,3	-0,3	0,3	-0,3	-0,3	-0,3	-0,3
0	0	0	0	0	0	0	0	0	0	0	0	-0,3	0,3	-0,3	-0,3	0,3	0,3	0	0	0	0	0	0	0	0

Выходные:

OUT1	OUT2	OUT3	OUT4	OUT5	OUT6	OUT7
0,83765	-0,8354	-0,9998	-0,9956	-0,9998	-0,9993	-0,997
-0,88	0,88794	-0,9597	-0,7715	-0,9609	-0,9842	-0,9186
-0,9998	-0,9948	0,8878	-0,9934	-0,9998	-0,9999	-0,9932
-0,9987	-0,917	-0,9921	0,95892	-0,9926	-0,9973	-0,9866
-1	-0,9969	-1	-0,9975	0,88755	-0,9046	-0,9999
-1	-0,9991	-1	-0,9995	-0,8188	0,88635	-0,9996
-1	-0,9978	-1	-0,9972	-0,9998	-0,9997	0,88576
-0,9999	-0,996	-0,9999	-0,9948	-1	-0,9999	0,75143
-0,6416	0,46973	-0,0571	0,46973	-0,4314	-0,9136	-0,657
-0,9993	-0,99	-0,9996	-0,9954	-0,9995	-0,9998	0,88443
-0,986	0,67432	0,67432	0,67432	-0,4657	-0,9964	-0,9843
-1	-0,9996	-1	-0,9989	0,95193	0,95193	-0,9999
-0,9991	-0,9947	0,99814	-0,9989	-1	-0,9999	0,99364
-0,9783	0,76335	-0,9999	-0,9534	-0,9534	0,79075	-0,9994
-0,9961	0,46362	0,46362	0,46362	0,46362	-0,9938	-0,9894
0,60023	-0,5668	-0,9686	-0,6374	-0,985	-0,9911	-0,9163
-0,9393	-0,8476	-0,9201	0,48905	-0,8337	-0,9225	-0,9086
-0,9913	-0,962	-0,9958	-0,924	0,58751	-0,45	-0,9926
-0,9383	-0,949	-0,8804	-0,9361	-0,9577	-0,9593	0,17704
-0,7599	0,20854	-0,1156	0,20854	0,20854	-0,657	-0,657

Обучение НС:

Для создания радиально базисной сети применяются функции NEWRB и NEWRBE (сеть с нулевой ошибкой обучения).

Функции получения среднеквадратичной ошибки:

```
function MSE=grnn(P,T,SPREAD)
net = newgrnn(P,T,SPREAD);
A=net(P);
E=T-A;
sumsqr(E);
MSE=mse(E);
end
function MSE=rbe(P,T,SPREAD)
net = newrbe(P,T,SPREAD);
A=net(P);
E=T-A;
sumsqr(E);
MSE=mse(E);
end
function MSE=rb(P,T,GOAL,SPREAD,N)
net = newrb(P,T,GOAL,SPREAD,N);
A=net(P);
E=T-A;
sumsqr(E);
MSE=mse(E);
```

Зависимость ошибки обучения от параметра целевого значения ошибки представлена в таблице 1.

Таблица 1 — Зависимость ошибки обучения от параметра целевого значения ошибки

Целевая ошибка (GOAL)	Ошибка обучения (MSE)
0.0001	2.121667317025421e-32
0.001	7.931270687624223e-04
0.01	0.009667752134906
0.1	0.089280713351075
1	0.143664413749870

Таблица 2- Результаты исследования

Тип НС	GOAL	SPREAD	Кол-во нейронов	mse
RBE	-	-	25	5.821592612352915e-32
RB	0.0001	0,1	24	1.973095575678352e-33
	0.0001	1	24	2.121667317025421e-32
	0.0001	2	24	4.294705648045321e-31
	0.0001	4	24	5.871573632308125e-30
	0.0001	8	24	8.861110399249098e-28
	0.0001	10	24	7.644085945395126e-27
	0.001	10	21	5.331984805294077e-04
Тип НС		SPRE	AD	mse
GRNN		1		0.002400941666060
		0,1		0
		0,0	1	0

Выводы

В ходе лабораторной работы исследованы результаты аппроксимации функции с помощью rb, rbe, grdd сетей и на их основе выявлены их особенности и характеристики.

РБФ с заданной ошибкой (RB) зависит от параметров GOAL и SPREAD. Чем меньше параметр GOAL целевой ошибки, тем больше количество нейронов в скрытом слое, результат при этом более точный (меньше среднеквадратичная ошибка mse). Наиболее точный результат для РБФ получен при 24 нейронах И значении **SPREAD** равном 0.1(mse=1.973095575678352e-33). Качество апроксимации снижается повышением параметра SPREAD, так как увеличивается площадь охвата базисных функции над входным множеством. Чем меньше значение параметра SPREAD, тем ближе точки аппроксимирующей кривой к заданным и тем менее гладкая сама кривая. Выбор слишком малого или слишком большого параметра SPREAD не позволяет получить правильный результат, в первом случаи базисные функции не охватывают входне множество, во втором – все выходы равнозначны.

РБФ, формируемая с нулевой ошибкой апроксимации функцией newrbe, позволяет получить абсолютно точный результат, однако функция создает большое количество нейронов.

В сравнении РБФ с многослойным перспептроном нужно отметить, что РБФ способна дать более точные результаты, чем персептрон.

Недостаток сети GRNN заключается в том, что погрешности в большинстве случаев ненулевые в отличие от радиальных сетей с нулевой ошибкой. Достоинство же в том, что скорость обучения очень высокая, так как обучение сводится только к присвоению значений весов. Для GRNN с параметром SPREAD=0,01 так же получена абсолютная точность (mse=0), что говорит о эффективности НС данного типа для решения задач аппроксимации.