LGI1/MAG1 Übung 1

Auszuarbeiten bis 11./13.10.2016

- 1. Stellen Sie fest, aus welchen Teilaussagen die folgenden zusammengesetzten Aussagen bestehen (am besten durch Klammern der Teilaussagen, wie in Beispiel 2.2 im Skriptum).
 - (a) $((A \lor (B \land C)) \land (\neg(A \Rightarrow B)))$
 - (b) $((A \land B) \Rightarrow (A \lor (\neg B)))$
 - (c) $(((A \Rightarrow B) \land C) \lor ((\neg A) \land (\neg C)))$
- 2. Argumentieren Sie, warum die folgenden Zeichenketten keine wohlgeformten Aussagen sind:
 - (a) $(A \Rightarrow \land B)$
 - (b) $((A \wedge B))$
 - (c) $(\neg A \neg B)$
- 3. Geben Sie die Wertetabelle für folgende Aussagen an:
 - (a) $(A \vee (B \wedge C))$
 - (b) $((A \land B) \Rightarrow (A \lor B))$
 - (c) $(((A \Rightarrow B) \land C) \lor (\neg A))$
- 4. Rechnen Sie nach, dass folgende Aussagen gleichwertig sind, also die gleichen Spalten einer Wahrheitstabelle ergeben. Ab hier werden zur einfacheren Lesbarkeit alle Klammern weggelassen, die nicht notwendig sind.
 - (a) $(A \vee (\neg B \wedge A)) \wedge (C \vee (B \vee A))$ und A
 - (b) $\neg (x \land \neg y) \lor (y \land (x \lor z)) \text{ und } \neg x \lor y \text{ und } x \Rightarrow y$
- 5. Seien das $exklusive\ Oder\ \otimes\$ und die $\ddot{A}quivalenz\ \Leftrightarrow\$ zwei neue Junktoren mit den unten angegebenen Wertetabellen. Verifizieren Sie durch Vergleich der Wertetabellen, dass sich diese Junktoren durch die bereits bekannten Junktoren wie unten gezeigt darstellen lassen.

A	B	$(A \otimes B)$	_	A	B	$(A \Leftrightarrow B)$	$(A \otimes B)$ ist gleichwertig mit
W	W	f		W	W	W	$((A \land (\neg B)) \lor (B \land (\neg A)))$
W	f	W		W	f	f	
f	W	W		f	W	f	$(A \Leftrightarrow B)$ ist gleichwertig mit
f	f	f		f	f	W	$((A \Rightarrow B) \land (B \Rightarrow A))$

6. Wieviele Zeilen hat die Wahrheitstabelle einer Aussage, die aus n unterschiedlichen atomaren Aussagen zusammengesetzt ist? Wieviele unterschiedliche Junktoren kann es theoretisch geben (definiert als jeweils eine Spalte in einer Wahrheitstabelle mit zwei atomaren Aussagen – es geht nicht darum, wieviele von diesen bekannt, sinnvoll oder sonst besonders erwähnenswert wären)?