7 sag. DKC K=Oxy

6: 5x+4y-13=0C: x+2y-5=0, T. H (14,15)

?, woopg. Ha BEDXOBETE HA SABC,

За voit то в съдърна АС,

С седерна AB, т. H- opromenteper

Ha DABC.

Pemethel:

1)
$$\tau \cdot A = 6 \cap C = 7$$
 $\begin{vmatrix} 5x + 4y - 13 = 0 \\ x + 2y - 5 = 0 \end{vmatrix} = > A(1,2)$

2)
$$h_c \begin{cases} Z + (14,15) \\ \bot c : 1x + 2y - 5 = 0 \end{cases}$$

 $h_c : 2x - y + D = D$
 $2.14 - 15 + D = 0 = 7 D = -13$

$$h_c: 2x-y-13=0$$

 $\tau.C = 6 \cap h_c = > \begin{cases} 5x+4y-13=0; \\ 2x-y-13=0!.4 \end{cases} \sim C(5,-3)$

3)
$$h_{6}$$
 $Z H (14,15)$
 $L 6: 5x + 4y - 13 = 0$
 $h_{6}: 4x - 5y + D = 0 = 7$ $h_{6}: 4x - 5y + 19 = 0$
 $4.44 - 5.15 + D = 0$
 $56 - 75 + D = 0$
 $D = 19$

$$T.B = C \cap h_6 = 7$$
 $| X+2y-5=0$
 $| 4x-5y+19=0$ = 7 $T.B(-1,3)$

$$A(1,2)$$
 $B(-1,3) = > S_{\triangle ABC} = \frac{1}{2} \cdot \begin{vmatrix} 1 & 2 & 1 \\ -1 & 3 & 1 \\ 5 & -3 & 1 \end{vmatrix}$
 $C(5,-3)$
 $C(5,-3)$

8 sag.
$$\theta_A: 2x-3y-5=0$$

 $m_A: x-8y+4=0$
 $\tau.3(3,-4)$

?, когра на АпС на ВВС, за който ва-вытр. тиопол. при А тр- медиана през А

$$| \lambda - 0 \gamma + \gamma = 1$$

|2) AND B GBA B', TO B'Z AC

$$C(x_{c},y_{c})$$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$
 $C(x_{c},y_{c})$

$$h: 3x+2y+D=0$$

3.3+2.(-4)+D=0

$$h: 3x + 2y - 1 = 0$$

T. Bo=
$$h \cap b_A = 7$$
 $\begin{vmatrix} 3x + 2y - 1 = 0 \\ 2x - 3y - 5 = 0 \end{vmatrix}$ $\begin{vmatrix} 3x - 13 = 0 \\ 2x - 3y - 5 = 0 \end{vmatrix}$

$$13x - 13 = 0$$

 $x = 1 = > 2$

$$B(3,-4) = \frac{x^{1}+3}{2} = 1$$

$$B'(x',y') = \frac{y'+(-4)}{2} = -1$$

$$B'(-1,2)$$

3)
$$AB': \begin{vmatrix} x & y & 1 \\ 4 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} = 0$$
 $AB': x+5y-9=0$

$$AB': X+5Y-9=0$$

$$\tau. (ZAB' =) \times_{c} + 5. \times_{c} - 9 = 0$$

$$|M(\frac{x_{c}+3}{z}, \frac{y_{c}-4}{z})Z m_{A}: x-8y+4=0 => |x_{c}+3|-8 \cdot (\frac{y_{c}-4}{z})+4=0$$

$$x_{c} - 8.Y_{c} + 43 = 0$$

$$7.0 \mid \frac{x_{c} + 5. x_{c} - 9 = 0}{x_{c} - 8 x_{c} + 43 = 0}$$
 (-) $13. x_{c} - 52 = 0$

$$13.Y_{c} - 52 = 0$$

$$Y_c = 4 = 7 \times_c = -43 + 32 = -11$$

T. ((-11, 4)

?, тоординачите на центъра S и дълн. на радича R на описанита около ВАВС Охренност

II H.
$$\tau.S(x,y)$$
: $|\vec{SA}| = |\vec{SB}| = |\vec{SC}|$
 $|\vec{SA}| = |\vec{SA}|^2 = (x-4)^2 + (y-1)^2$
 $|\vec{SB}| = |\vec{SC}| = |\vec$

AC:
$$X+5y-9=0$$
, $N(-\frac{7}{2},\frac{5}{2})$ - cpegara Ha AC

$$S_{AC}$$
; $S_{X-Y+D=0}$
 S_{AC} ; $S_{X-Y+D=0}$
 S_{AC} ; $S_{X-Y+20=0}$

BC:
$$\begin{vmatrix} x & y & 1 \\ 3 & -4 & 1 \\ -14 & 4 & 1 \end{vmatrix} = D = > BC: 8x + 14y + 32 = 0 1:2$$

$$M(-4,0)$$
 SBC: $7x-4y+D=0=7D=28$

T.
$$S \mid 5x - y + 20 = 0$$

 $7x - 4y + 28 = 0$ => T. $S(-4,0) = M$, $R = 15\overline{A} = \sqrt{65}$
 $A(4,1)$
 $5\overline{A}(8,1)$

9 3ag.
$$q: 2x - 3y - 5 = 0$$

a)
$$6:2x-3y-18=0 = > 6||g|$$
 $6:2x-3y-18=0 = > 6||g||6$

$$U_3\delta$$
. 7. $B Z B$, $U_3\delta$. $B(3,-4) \frac{G_8}{8 \text{ sag.}} > B'(-1,2)$

$$6'\begin{cases} 116 \\ 2B'(-1,2) \end{cases} = 76':2 \times -3 \times +8 = 0$$

6)
$$9: 2 \times -3 \times -5 = 0$$

 $6: 5 \times -9 - 19 = 0$

3)
$$6'\begin{cases} ZA(4,1) \\ ZB'(-1,2) \end{cases} = \begin{vmatrix} X & Y & 1 \\ 4 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} = 0 = > 6': X+5Y-9=0$$

$$6:2x-y=0$$

C: X-2Y+3=0

Pernerral:

1)
$$\tau \cdot A = 6 \wedge c = 7$$
 $\begin{vmatrix} 2x - y = 0 \\ x - 2y + 3 = 0 \end{vmatrix} = 7 A(1,2)$

2)
$$B(x_B, Y_B)$$
 $\overline{OM} = \frac{1}{3} \cdot (\overline{DA} + \overline{DB} + \overline{OC})$ $C(x_C, Y_C)$

$$A(1, 2) \qquad 3 = \frac{1}{3} \cdot (1 + x_{B} + x_{C}) = 7 \quad x_{B} + x_{C} = 8$$

$$4 = \frac{1}{3} \cdot (2 + y_{B} + y_{C}) = 7 \quad y_{B} + y_{C} = 10$$

$$4 = \frac{1}{3} \cdot (2 + Y_B + Y_c) = 7$$

$$CZ6 = 7$$
 $2xc-Yc = 0$

$$Y_{B}+Y_{C}=10$$
 Y_{NP} . $B(5,4)$
 $X_{B}-2Y_{B}+3=0$ $C(3,6)$
 $2x_{C}-Y_{C}=0$ $A(1,2)$

$$2x_c - Y_c = 0$$

КН, Упр.7, 07.04.2021г. Раде 4

$$X_{B}+X_{C}=8$$

$$Y_{B}+Y_{C}=10$$

Уравнения на ъглополовящи на ъгли меняду две прави. Бълополовяща на тъп и остър ъгъл 12

$$|\vec{\theta}| |\vec{\theta}| = |\vec{$$

$$\ell_1 \begin{cases} Z_7.S = a \land \beta \\ \parallel (\vec{a}_1 + \vec{b}_1) \end{cases} \qquad \ell_2 \begin{cases} \geq S \\ \parallel (\vec{a}_1 - \vec{b}_1) \end{cases}$$

$$\ell_z \begin{cases} z \leq S \\ ||(\bar{a}'_1 - \bar{\ell}_1)'| \end{cases}$$

Kora lie zonon. Ha octpus + (a, b) u xora - Ha TENUS?

$$(\vec{a}_1 \cdot \vec{b}_1) = \cos \phi(\vec{a}_1, \vec{b}_1) > 0 = 7 \cdot \ell_1 - 4a \text{ octop zero}$$

$$\ell_2 - 14a \text{ zen Eron}$$

1 sag. OKC K=Oxy

$$a: 3x - 4y + 5 = 0$$

? ypabhettus Ha Tornon. l'in le Ha Trente M/4 a ub

La ce experience 109 e 75 min. Ha OCTPUSI 6561 L 109 - HA TENUS

1)
$$\tau . S = anb = \gamma S(5,5)$$

2)
$$a \parallel \vec{a}(-B,A) = 3$$
, $B=-4=7$ $a \parallel \vec{a}(4,3)=7 \mid \vec{a}|=5=7 \vec{a}_1=\frac{\vec{a}_1}{5}=7$ $\vec{a}_1(\frac{4}{5},\frac{3}{5})$

$$6 \parallel \bar{\theta}'(3,4) \Rightarrow |\bar{\theta}'| = 5 \Rightarrow \bar{\theta}'_{1} = \frac{\bar{\theta}'}{5} \Rightarrow$$

$$\vec{e}_1(\frac{3}{5},\frac{4}{5})$$

$$\ell_{1} \begin{cases} Z S(5,5) \\ || (\vec{a}_{1}^{2} + \vec{b}_{1}^{2}) (\frac{7}{5}, \frac{7}{5}) \end{cases} => \ell_{1} : \begin{cases} X = 5 + 1.5 \\ Y = 5 + 1.5 \end{cases} S \in \mathbb{R} => \ell_{1} : X - Y = 0$$

$$Y = 5 + 1.5$$

$$\ell_2$$
 $\int_{11}^{2} ZS(5,5)$

$$\ell_{2} \begin{cases} z S(5,5) \\ 11(\vec{a}_{1} - \vec{b}_{1})(\frac{1}{5}, -\frac{1}{5}) = 2 \end{cases} \ell_{2}; \begin{cases} x = 5 + 1.p \\ y = 5 - 1.p \end{cases}, p \in \mathbb{R} = 2 \end{cases} \ell_{2}; x + y - 10 = 0$$

Мресм.
$$(\vec{a}_1 \cdot \vec{b}_1^7) = \frac{4}{5} \cdot \frac{3}{5} + \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} > 0 = 7 \ell_1 - 4a$$
 остър ъгъл $\ell_2 - 4a$ тъп ъгъл

2 3ag. (Ynp.)

$$a: X-3Y=0$$

$$\ell_1$$
? ℓ_z ?

$$6:3x-y+8=0$$

3 3ag.

$$A(1,2)$$
, $B(-1,3)$, $C(5,4)$

$$\vec{C_1} \uparrow \uparrow \vec{AB}$$
, $|\vec{C_1}| = 1$ => $(\vec{b_1} + \vec{c_1}) \mid l \mid l_A$

$$\vec{A}\vec{B}(-2,1) = |\vec{A}\vec{B}| = \sqrt{5}$$

 $\vec{A}\vec{C}(4,2) = |\vec{A}\vec{C}| = |\vec$

$$\vec{C}_1 = \frac{\vec{AB}}{\sqrt{5}} = \vec{C}_1 \left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \\
\vec{E}_1 = \frac{\vec{AC}}{2.\sqrt{5}} = \vec{E}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(0, \frac{2}{\sqrt{5}} \right) \\
\vec{C}_1 = \frac{\vec{AB}}{\sqrt{5}} = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(0, \frac{2}{\sqrt{5}} \right) \\
\vec{C}_1 = \frac{\vec{AB}}{\sqrt{5}} = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(0, \frac{2}{\sqrt{5}} \right) \\
\vec{C}_1 = \frac{\vec{AB}}{\sqrt{5}} = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(0, \frac{2}{\sqrt{5}} \right) \\
\vec{C}_1 = \frac{\vec{AC}}{\sqrt{5}} = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 + \vec{E}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) = \vec{C}_1 \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}$$

Domo ypabhetue na
$$e_A$$
 $\begin{cases} Z A(1,2) \\ || \overline{e_2} || O_Y \end{cases}$ e_A : $X=1$

4 3ag. (Ynp.)

$$A(1,-2)$$
 $B(2,0)$ $C(-\frac{2}{3},\frac{4}{3})$

? хоора. на центора I на вписаната в ВАВС окръжност и Г=?