BestShift

Machbarkeitsstudie

Abteilung der Informationstechnologie am Technologischem Gewerbemuseum

October 2, 2015

Contents

Ta	ble o	of Contents	ii
1	Intr	roduction	1
	1.1	Projekt-Team	1
	1.2	Projektbeschreibung	1
2	Vor	untersuchung	3
	2.1	Ist-Zustand	3
	2.2	Soll-Zustand	3
	2.3	Nicht-Ziele	3
	2.4	Limitierung	3
	2.5	Netzwerkabhängigkeit	3
	2.6	Nutzungsbedingungen	3
3	Pro	duktfunktionen	5
4	Pro	duktdaten	7
5	Tec	hnische Machbarkeit	9
	5.1	Varianten	9
	5.2	Programmiersprachen	9
	5.3	Datenbank	9
	5.4	Nutzwertanalyse	9
	5.5	Betriebssystem	9
	5.6	Conclusio	9
6	Pro	jektmanagement	11
7	Sun	nmary	13
8	Dat	enmanagement & Datenanalyse	15
	8.1	Datenmanagement	15
		8.1.1 Vergleich NoSQL und relational [1]	15

Contents

8.1.2	NoSQL Datenbanken	18
8.1.3	Rationale Datenbanken	18
8.1.4	Data Mining & Data Analysis	19
815	Conclusio	20

1 Introduction

- 1.1 Projekt-Team
- 1.2 Projektbeschreibung

2 Voruntersuchung

- 2.1 Ist-Zustand
- 2.2 Soll-Zustand
- 2.3 Nicht-Ziele
- 2.4 Limitierung
- 2.5 Netzwerkabhängigkeit
- 2.6 Nutzungsbedingungen

3 Produktfunktionen

4 Produktdaten

5 Technische Machbarkeit

- 5.1 Varianten
- 5.2 Programmiersprachen
- 5.3 Datenbank
- 5.4 Nutzwertanalyse
- 5.5 Betriebssystem
- 5.6 Conclusio

6 Projektmanagement

7 Summary

8 Datenmanagement & Datenanalyse

In dem folgenden Kapitel werden einige Technologien, Libaries Packages, sowie generelle Software gegenübergestellt. Diese werden dann subjektiv bewertet, und die am besten geeignetsten werden für das Projekt verwendet.

8.1 Datenmanagement

8.1.1 Vergleich NoSQL und relational [1]

SQL Datenbanken

- Typen: Nur eine Art mit kleinen Unterschieden
- Data Storage Model: Individuele Einträge werden als Reihen (Rows) in Tabellen gespeichert, wobei jede Zelle spezifische Daten über diesen Eintrag beinhaltet.
- Schemas: Strukur und daten type sind im vorhinein festgelegt. Um diese Datenbank Struktur zu ändern muss diese zunächst offline gesetzt werden.
- Skalierbarkeit: Ein einzelner Server muss hierfür mehr Rechenleistung erhalten um größeren Anspruchen nachzukommen. Es ist prinzipiell möglich SQL Datenbanken auf ein verteiltes System zu erstellen, hierfür werden aber sehr gute Kenntnise benötigt.
- Data Manipulation: Mittels SELECT, INSERT oder UPDATE
- Konsistenz: Gute konsistenz kann prinzipiell in allen gänglichen DBMS konfiguriert werden.

Chapter 8. Datenmanagement & Datenanalyse

NoSQL Datenbanken

- Typen: Viele verschiedene, bspw. key-value, document-based, oder graph datenbank.
- Data Storage Model: Hängt vom Typ der Datenbank ab.
- Schemas: Typischerweise dynamich. Einträge können ón-the-flyhinzugefügt werden.
- Skalierbarkeit: Bei Bedarf kann ein Administrator einfach mehrere Cloud Instanzen hinzufügen. Die Datenbank an sich verteilt die Information auf die notwendige Server Anzahl
- Data Manipulation: Durch Objektorientierte APIs
- Konsistenz: Abhängig vom Product

Relational vs NoSQL

Anhand dem folgenden Graphik kann man prinzipiell eine Entscheidung treffen - diese sollte dann den Ansprechungen entsprechen.

8.1.2 NoSQL Datenbanken

	Cassandra	HBase	MongoDB	Riak	MySQL Cluster	Couchbase
Performance						
Supported languages						
		T	Г		I	
Documentation						
D . 1.1.1.		I				
Recent aktivity						
Community						
			I			
Usage examples						

8.1.3 Rationale Datenbanken

	Sybase	IBM DB2	Oracle	Microsoft SQL Server	MySQL	PostgreSQL
Performance						
Supported languages						
Documentation						
Recent aktivity						
Community						
Usage examples						

8.1.4 Data Mining & Data Analysis

Durch die Sensoren im Auto sowie durch die zusätzlich durch den CarPC angebrachten wird eine enomre Menge an Daten geliefert. All diese Daten ergeben jedoch erst einen Sinn; wenn wir sie mit geeigneten Verfahren analysieren und auswerten können.

Frameworks

	RapidMiner	WEKA	R-Programming	Orange	KNIME	NLTK
Performance						
Supported languages						
Documentation						
		ı				
Recent aktivity						
		I		T-	I	
Community						
		I		T		
Usage examples						

19

8.1.5 Conclusio

Anhand der Evaluierung wurde die Auswahl auf die folgenden zwei DBMS Systeme beschränkt: Couchbase (NoSQL) und PostgreSQL (Relational). Da die Anforderungen momentan noch nicht fixiert sind wurde eine relationale und eine NoSQL Variante gewählt (STAND: 02. Okt 2015). In den folgendem Abschnitt gehen wir ein wenig detailierter auf die beiden Systeme ein.

Name	Couchbase	PostgreSQL		
Description	JSON-based document store derived from CouchDB with Memcached-compatible interface	Based on the object relational DBMS Postgres		
Database model	Document store	Relational DBMS		
Website	www.couchbase.com	www.postgresql.org		
Technical documentation	www.couchbase.com/docs	www.postgresql.docs/manuals		
Developer	Couchbase, Inc.	PostgreSQL Global Development Group		
Initial release	2011	1989		
Current release	3.0.3, March 2015	9.4.4, June 2015		
License	Open Source	Open Source		
Server operating systems	Linux OS X Windows	FreeBSD HP-UX Linux NetBSD OpenBSD OS X Solaris Unix Windows		
Data scheme	schema-free	yes		
Typing (data types)	no	yes		
Secondary indexes	yes	yes		
SQL	no	yes		

Table 8.1: Couchbase und PostgreSQL (1)

8.1. Datenmanagement

Name	Couchbase	PostgreSQL		
APIS and other access methods	Memcached protocol RESTful HTTP API	native C library Streaming API for large objects ADO.NET JDBC ODBC		
Supported programming languages	.NET C Clojure ColdFusion Erlang Go Java JavaScript Perl PHP Python Ruby Scala Tcl	.NET C C++ Java Perl Python Tcl		
Server-side scripts	View functions in JavaScript	user defined functions		
Triggers	yes	yes		
Partitioning methods	Sharding	no, but can be realised using table inheritance		
Replication methods	Master-master replication Master-slave replication	Master-slave replication		
MapReduce	yes	no		
Consistency concepts	Eventual Consistency Immediate Consistency	Immediate Consistency		
Foreign keys	no	yes		
Transaction concepts	no	ACID		
Concurrency	yes	yes		
Durability	yes	yes		
User concepts	simple password-based access control per bucket	fine grained access rights according to SQL-standard		

Table 8.2: Couchbase und PostgreSQL (2)