Combinaciones de Resistencia

Para obtener una resistencia equivalente entre dos terminales, las fuentes independientes deben ser cero.

Paralelo

Ejm:

CALCULAR
$$R_{eq} = R_{AB}$$
?

SOLUCION EJERCICIO #7 (1)

Ejm:

Por estar en serie:

$$2k + 1k = 3k$$

Por estar en paralelo:

$$3k // 6k = \frac{3k * 6k}{3k + 6k} = 2k$$

Por estar en serie:

$$2k + 10k = 12k$$

SOLUCION EJERCICIO #7 (2)

Por estar en paralelo:

$$12k // 6k = \frac{12k * 6k}{12k + 6k} = 4k$$

Por estar en serie:

$$2k + 4k = 6k$$

Por estar en paralelo:

$$12k // 4k = \frac{12k * 4k}{12k + 4k} = 3k$$

Por estar en paralelo:

$$6k // 6k = \frac{6k * 6k}{6k + 6k} = 3k$$

Por estar en serie:

$$3k + 9k = 12k$$

$$R_{AB} = R_{eq} = 5k$$

Por estar en serie:

Calcular
$$-\mathbf{R}_{eq} = ?$$

SOLUCION EJERCICIO #8 (1)

SOLUCION EJERCICIO #8 (2)

$$2k / / 2k = \frac{2k * 2k}{2k + 2k} = 1k$$

$$2k / / 2k = \frac{2k * 2k}{2k + 2k} = 1k$$
 $1k / / 2k = \frac{1k * 2k}{1k + 2k} = \frac{2}{3}k$

Por estar en serie:

$$1k + 4k = 5k$$

Por estar en serie:
$$\frac{2}{3}k + 4k = \frac{14}{3}k$$

$$7\Omega \geqslant 5\Omega \geqslant \frac{14}{3}\Omega \geqslant b$$

$$R_{eq} = \frac{70}{39} \Omega$$

Hallar R = ?

SOLUCION EJERCICIO #9

Hallar R = ?

$$I = 15 \frac{3}{(R+3)+3} = \frac{45}{R+6}$$

Ohm

$$V = IR : I = \frac{30}{R}$$

$$\frac{45}{R+6} = \frac{30}{R}$$
$$45R = 30R + 180$$
$$15R = 180$$
$$R = 12\Omega$$

Ejm:

Calcular la Potencia en la fuente controlada

SOLUCION EJERCICIO # 10 (1)

Calcular la Potencia en la fuente controlada

Por estar en paralelo:

$$6//6 = \frac{6*6}{6+6} = 3\Omega$$

Por estar en serie:

$$3\Omega + 15\Omega = 18\Omega$$

Por estar en paralelo:

$$18//9 = \frac{18*9}{18+9} = 6\Omega$$

SOLUCION EJERCICIO # 10 (2)

LCK N₁

$$2 + \frac{9}{10}I_3 = \frac{V}{3} + \frac{V}{6}$$

Ohm:

$$V = 3I_3$$

$$2 + \frac{9}{10}I_3 = \frac{V}{3} + \frac{V}{6}$$

$$2 + \frac{9}{10}I_3 = \frac{1}{2}(3I_3)$$

$$\frac{9}{10}I_3 - \frac{3}{2}I_3 = -2$$

$$I_3\left(\frac{9}{10} - \frac{3}{2}\right) = -2$$

$$I_3 = \frac{10}{3}A$$

$$V = 3I_3$$
$$V = 3\frac{10}{3}$$

V = 10V

$$P_{0.9I3} = V(\frac{9}{10}I_3)$$

$$P_{0.9I3} = (10) \left(\frac{9}{10} * \frac{10}{3} \right)$$

$$P_{0.9I3} = 30W$$

Si:
$$I_4 = \frac{1}{2} mA$$

Calcular V₀

LUCION EJERCICIO # 11

Si:
$$I_4 = \frac{1}{2} mA$$

$$V_{2k} = 2k \left(\frac{3}{2}mA\right) = 3V$$

$$V_{12} = V + V_{2k} = 3V + 3V = 6V$$

$$-4k(I_{1}) = 0$$

$$V_{0} - 6k(I_{1}) - V_{12} - 4k(I_{1}) = 0$$

$$I_{1} = I_{5} + I_{6} = \frac{3}{2} + \frac{3}{2} = 3mA$$

$$V_{0} - 6k(I_{1}) - V_{12} - 4k(I_{1}) = 0$$

$$V_{0} = 18 + 6 + 12$$

$$V_{0} = 36V$$

REDES ELÉCTRICAS EQUIVALENTES (1)

Dos redes eléctricas se dice que son equivalentes si tienen las mismas condiciones en los terminales tanto de voltaje como de corriente.

REDES ELÉCTRICAS EQUIVALENTES (2)

$$I_1 + I_3 > I_2$$

 $I = (I_1 + I_3) - I_2$

TRANSFORMACIÓN DE FUENTES INDEPENDIENTES REALES

$$V = IR$$

$$I = \frac{V}{R}$$

CONEXIÓN DE FUENTES INDEPENDIENTES (1)

• Serie.- reemplaza por una sola fuente equivalente.

• Paralelo.- reemplaza por una sola fuente equivalente y para hacer esto las fuentes deben tener la misma polaridad y el mismo valor

CONEXIÓN DE FUENTES INDEPENDIENTES (2)

Paralelo.- reemplaza por una sola fuente independiente.

• Serie.- reemplaza por una sola fuente independiente y para esto las fuentes deben tener la misma dirección y el mismo valor.

CONDICIONES DE REDUNDANCIA DE LA RED (1)

Redudancia en serie

La fuente de corriente puede ser independiente o controlada.

Hay redundancia si nos piden la corriente en la red. Entonces el elemento se lo reemplaza por un corto circuito

Pero no habría redundancia si solicitan la potencia ó el voltaje en la red.

CONDICIONES DE REDUNDANCIA DE LA RED (2)

Redudancia en paralelo

Hay redundancia si nos piden el voltaje en la red. Entonces el elemento se lo reemplaza por un circuito abierto

$$I_f = I_e + I$$

Si pidieran la corriente en la red entonces el elemento no sería redundante.

CONDICIONES DE REDUNDANCIA DE LA RED (3)

Todo lo que está en paralelo a un corto circuito se elimina y se lo reemplaza por un corto.

$$R_2 /\!/ R_3 /\!/ corto \equiv$$

$$R_{eq} = R_1$$

Mediante transformaciones y reducciones reemplace en los terminales ab por una fuente de voltaje real.

SOLUCION EJERCICIO # 12 (1)

SOLUCION EJERCICIO # 12 (2)

SOLUCION EJERCICIO # 12 (3)

SOLUCION EJERCICIO # 12 (4)

Mediante transformaciones y reducciones reemplace en los terminales ab por una fuente de corriente real.

SOLUCION EJERCICIO # 13 (1)

SOLUCION EJERCICIO # 13 (2)

SOLUCION EJERCICIO # 13 (3)

Ejm:

- a) Calcular la potencia suministrada por los elementos activos
- b) Calcular la potencia consumida por los elementos pasivos

SOLUCION EJERCICIO # 14 (1)

Ejm:

$$V_a - 3I - 1I - V_b = 0$$

$$V_a - V_b = 4I$$

$$V_{ab} = 4I$$

LVK
$$120 - 2I - 3I - 1I - 2V_{ab} - 4I = 0$$

$$120 - 2V_{ab} = 10I$$

$$I = \frac{120 - 2V_{ab}}{10}$$

$$I = \frac{20}{3}A$$

$$I = \frac{120 - 2(4 I)}{10}$$

$$I = \frac{120 - 2V_{ab}}{10}$$
$$\mathbf{P}_{120\mathbf{V}} = 120 \left(\frac{20}{3}\right) = 800\mathbf{W}$$

Elementos Activos

$$\mathbf{P}_{2\mathbf{Vab}} = (2\mathbf{V}_{ab})(\mathbf{I}) = 2(4\mathbf{I})(\mathbf{I}) = (-8\mathbf{I}^2) = -8(\frac{400}{9}) = -\frac{3200}{9}\mathbf{W}$$

SOLUCION EJERCICIO # 14 (2)

Elementos Pasivos

$$P = I^{2}R_{eq}$$

$$P = \left(\frac{20}{3}\right)^{2} (10)$$

$$P = \frac{4000}{9}W$$

$$\sum Pot._Sum = \sum Pot._Cons$$

$$800 - \frac{3200}{9} = \frac{4000}{9}$$

$$800 = \frac{7200}{9}$$

$$800 = 800$$

CUANDO HAY N RESISTENCIAS EN PARALELO:

R tiene el mismo valor.

$$R_{eq} = \frac{R}{n}$$

OTROS TIPOS DE CONFIGURACIONES

1.- Red "T" o "Y"

CONVERSIÓN DE UNA RED "T" EN UNA " Δ "

$$R_{a} = \frac{R_{1}R_{3} + R_{1}R_{2} + R_{2}R_{3}}{R_{1}}$$

$$R_{b} = \frac{R_{1}R_{3} + R_{1}R_{2} + R_{2}R_{3}}{R_{2}}$$

$$R_{c} = \frac{R_{1}R_{3} + R_{1}R_{2} + R_{2}R_{3}}{R_{2}}$$

Conversión de una Red "∆" en una "T"

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{2} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

SOLUCION EJERCICIO # 15 (1)

SOLUCION EJERCICIO # 15 (2)

$$R_a = \frac{10(20) + 10(5) + 20(5)}{R_1} = \frac{350}{10} = 35\Omega$$

$$R_b = \frac{10(20) + 10(5) + 20(5)}{R_2} = \frac{350}{20} = 17.5\Omega$$

$$R_c = \frac{10(20) + 10(5) + 20(5)}{R_3} = \frac{350}{5} = 70\Omega$$

Por estar en paralelo:

$$30 // R_C = \frac{30*70}{30+70} = 21\Omega$$

$$R_a //15 = \frac{35*15}{35+15} = 10.5\Omega$$

SOLUCION EJERCICIO # 15 (3)

Por estar en serie:

$$21\Omega + 10.5\Omega = 31.5\Omega$$

Por estar en paralelo:

$$17.5 // 31.5 = \frac{17.5 * 31.5}{17.5 + 31.5} = 11.25\Omega$$

$$R_{eq}=11.25\Omega+25\Omega$$

$$R_{eq}=36.25\Omega$$

•

Ejm:

- a) Hallar el valor de Vx
- b) Pot. Suministrada o consumida por la fuente controlada

SOLUCION EJERCICIO # 16 (1)

Ejm:

a)

LVK
$$V_{x} + 50V - 30(I_{1} + I_{2}) = 0$$

$$V_{x} + 50V - 30\left(-0.1V_{x} - \frac{V_{x}}{40}\right) = 0$$

$$50 + V_{x} + 3V_{x} + 0.75V_{x} = 0$$

$$4.75V_{x} = -50$$

$$V_{x} = -10.526V$$

SOLUCION EJERCICIO # 16 (2)

$$\mathbf{I}_{1} = -0.1\mathbf{V}_{X} = -0.1(-10.526) = 1.0526\mathbf{A}$$
 $V_{X} + 50 - V_{ao} = 0$
 $\mathbf{I}_{2} = -\frac{\mathbf{V}_{X}}{40} = -\frac{-10.526}{40} = 0.263$
 $V_{X} + 50 - V_{ao} = 0$
 $V_{X} + 50 - V_{AO} = 0$

$$-\mathbf{V_f} - 20(-0.1\mathbf{V_X}) - \mathbf{V_{ao}} = 0$$

$$\mathbf{V_f} = -39.47 - 20(-0.1)(-10.526)$$

$$\mathbf{V_f} = -60.526\mathbf{V}$$

$$\mathbf{P}_{0.1\mathbf{V}\mathbf{x}} = (-60.526)[(0.1)(-10.526)]$$
$$\mathbf{P}_{0.1\mathbf{V}\mathbf{x}} = 63.709\mathbf{W}$$

Ejm:

Si:
$$I_2 = 10A$$
 Calcular R

SOLUCION EJERCICIO # 17 (1)

Ejm:

$$V_a + 10I_2 - 50 - V_b = 0$$

$$V_{ab} = -10(10) + 50$$

$$V_{ab} = -50V$$

$$V_{ab} = -5I$$

$$\mathbf{I}_1 = \frac{\mathbf{V_{ab}}}{-5}$$

$$\mathbf{I}_1 = \frac{-50}{-5} \qquad R = \frac{60}{10}$$

$$I_1 = 10A$$

$$LVK - RI_1 + 10 = V_{ab}$$

$$\mathbf{V_{ab}} = -5\mathbf{I}_{1}$$

$$\mathbf{I}_{1} = \frac{\mathbf{V_{ab}}}{-5}$$

$$R = \frac{-60}{-I_{1}}$$

$$R = \frac{60}{10}$$

$$R = 6 ohmios$$

Para el siguiente circuito sin utilizar mallas y nodos, calcular:

- a.- El valor de V1 para que la resistencia de 5 ohmios consuma una potencia de 80 vatios.
- b.- El valor de la resistencia R que provoca que la fuente controlada 2Vx entregue una corriente de 12 amperios.
- c.- La potencia en las siguientes fuentes independientes: 50 V, 18 V y 3 A. Indique claramente si consume o suministra.

