Bayesian Data Analysis

Week 6: Generalized linear model, model assessment, and Criticism

Jarno.Vanhatalo@helsinki.fi

The previous lecture

- Hierarchical models
- Exchangeability

Aims of the week

- Generalized linear models
 - Exercise 6.1 Generalized linear model with Binomial observation model
- Model criticism, assessment and comparison
 - Exercise 6.2

Generalized linear models

- Extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the Normal distribution (such as the Poisson, Binomial, Multinomial etc.).
- Can be used in cases for which the linear relationship between x and E(ylx) is not appropriate.
- For each variate yi, i=1,...,n, with a corresponding set of k explanatory variables xij, there exist a (monotone differentiable) function g, called the link function, such that
- g(E[yilxi])= β 'xi,
- where xi=[xi1,...,xik]' and β' =[β 1,..., β k] is a parameter vector.

Generalized linear models

- Specifications in 3 steps:
 - The linear predictor $\eta = \beta' X$, where X = [x1,...,xn] is k×n matrix of explanatory variables and η is a vector of n linear predictor values.
 - The link function $g(\cdot)$ that relates the linear predictor to the mean of the outcome variable: $\mu=g-1(\eta)=g-1(\beta'X)$
 - The random component specifying the distribution of the outcome variable y with mean $E(y|x)=\mu=g-1(\beta'X)$
- Data distribution
- $p(y|x,\beta) = \prod_{i=1}^{n} p(y_i|x,\beta)$
- Interpretation of the model parameters not so straightforward. The linear predictor is used to predict link function $g(\mu)$ rather than μ =E(y).

Generalized linear models

- Link functions for different data type:
 - Normal data with mean μ : $g(\mu)=\mu$
 - Binomial data with probability p:
 - $g(p) = logit(p) = log(\frac{p}{1-p})$
 - also probit link function used in econometrics
 - Poisson data with rate λ : $g(\lambda) = log(\lambda)$ (see lecture example)

Logistic link function

- \bullet Consider a Binomial model with success probability π
- Logistic regression assumes that the log odds is a function of covariates, e.g.,

$$\log(\frac{\pi_i}{1 - \pi_i}) = c + ax_i$$

Then

$$\pi_i = \frac{1}{1 + e^{-(c + ax_i)}}$$

Model assessment

- Checking for problems in the model
 - Are the results sensible?
 - In what respect the model works / does not work
 - Have we done mistakes
- All models are approximations of the reality and not all aspects of the phenomena are included into the model
 - Are the results sensible when compared to information not encoded in the model
- There is no universal method to rule out problems with model
 - Compare to convergence analysis

Model assessment

- Typical uses of a model
 - Explain data
 - Predict
 - Interpolation
 - extrapolation
 - Hypothesis testing

Posterior predictive check

- Internal validation
- Predict replicate data \tilde{y}
 - Compare replicates \tilde{y} to observations
 - Good model should be at least consistent with data it is conditioned to
- Pragmatic method to check for
 - The worst problems with model
 - systematic deviations between model and data
- Not a formal method but useful;
- The main problem is that it uses data twice
 - May overfit the data
- Read Chapter 6 from the BDA3!

Sensitivity analysis

- Check how sensitive the results are to model assumptions
 - Prior
 - Likelihood
 - Hierarchical vs. pooled vs. independent
- Sensitivity is a neutral term
 - If your inference is sensitive to aspects of model that you are confident about, you have found a "real thing"
 - You should be concerned if your inference is sensitive to aspects of model that you are not able to justify well

Predictive assessment

- Interpolation
 - how well model works when predicting "in the vicinity and between" data points
 - Dose response exercise
 - Regression exercise
- Extrapolation
 - how well model works when predicting far from data
 - New laboratory in the rat tumor exercise
 - Climate in the next century
- When predicting we rely on assumption that the model works similarly both where
 - we have not been yet
 - we have data from
 - -> "data generating process does not change"
 ! Remember discussion on exchangeability !

External validation

- Compare model's predictions to new / external observations
 - Generally used method in science
 - Can be planned to test interpolation and extrapolation
 - Predict something that has not been measured / observed before
 - e.g. Einsteins theory of relativity or Higgs boson

Partial validation

- Training and test set
 - Divide data into training and validation sets
 - Train the model using training set
 - Predict validation set and compare predictions to observations
- Pros / cons
 - + easy
 - + rather safe
 - Assessment with similar data as used for training (interpolation)
 - In some cases data can be divided to test extrapolation
 - Sensitive to how data is divided
 - If division introduces structure the validation may give false confirmation / doubts
 - Training is conditional only on subset of data

Cross validation

- Cross validation sets
 - Divide data into k sets
 - Train the model k times using k-1 sets in training each time
 - Each time, predict for the left out set and compare predictions to observations
 - Do the comparison for each of the k sets and calculate average over them
- Pros / cons
 - + rather easy if k is small
 - + rather safe
 - +/- not so sensitive to how data is divided
 - the larger k is the less sensitive to how data is divided
 - Assessment with similar data as used for training (interpolation)
 - In some cases data can be divided to test extrapolation

Bayesian model averaging / hypothesis testing

- Sometimes we may have competing models / hypotheses
 - $M_1, M_2, ..., M_m$
- The posterior distribution of a model

$$p(M_1|y) = \frac{p(y|M_1)p(M_1)}{p(y)}$$

Bayesian model averaging (BMA)

$$p(M_1|y) = \frac{p(y|M_1)p(M_1)}{p(y)}$$

- The probabilities $p(M_1|y)$, $p(M_2|y)$, ... tell the relative credibility of each of the models considered
 - Model's prior : $p(M_1)$
 - Data: *y*

Bayesian model averaging (BMA)

$$p(M_1|y) = \frac{p(y|M_1)p(M_1)}{p(y)}$$

- Probabilities are relative within the model set
 - This is not the "absolute" probability of the model
- BMA prediction averages over the alternative models

$$p(\tilde{y}|y) = p(\tilde{y}|y, M_1)p(M_1|y) + p(\tilde{y}|y, M_2)p(M_2|y) + \dots$$

• (usually) better than to choose one individual model

Bayes Factor

$$p(M_1|y) = \frac{p(y|M_1)p(M_1)}{p(y)}$$

Bayes Factor: e.g.

$$BF = \frac{p(y|M_1)}{p(y|M_2)}$$

- The posterior odds of models when uniform prior
- Things to remember
 - practical computation is often hard
 - $p(y|M_1)$ is sensitive to priors of parameters
 - This is model's prior predictive density
 - Priors are part of the hypothesis
 - -> remember BF is about hypothesis testing

Model comparison and choice

- Philosophically strict approach
 - The model is your best subjective description of the phenomenon
 - BMA takes into account your uncertainty about different plausible hypotheses
 - Model assessment helps to
 - Locate "implementation errors"
 - Reveal shortcomings in your hypotheses and, thus, need for new hypotheses (=model)
 - e.g. Earth is a ball, or finding new planets
 - Remember: your inference is conditional to your model(s)
 - Bayesian theory does not say where new models come from

Model comparison and choice

- "statistical" approach
 - The model is not strict description of your prior understanding of the phenomenon but "good enough" to
 - Explain data
 - Predict
- Sometimes there is need to choose between models
 - Simpler model may be easier to explain or cheaper to use
 - e.g. in prediction it needs less measured covariates
 - Choose a model whose predictive performance is the best
 - Averaging over models is usually even better
- Model choice is a decision problem

Predictive performance

- Model is used for predicting future observations
 - Dose response model
 - Weather forecasting
 - Google search
- A set of alternative models from which to choose
 - Often reduces to covariate selection
- Prior predictive performance -> BMA
- Posterior predictive performance
 - How well does the model predict new data given the current data (and the model)?

Model comparison measures

- What are you using the model for?
 - > what are the important aspects of the model?
- Commonly used (general) validation measures
 - Root mean squared error (RMSE)
 - Log predictive distribution (deviance)
 - Classification accuracy

Root mean squared error

- The question to answer:
 - How well, e.g., the posterior predictive mean $E[\tilde{y}_i|y,M_1]$ predicts the observations

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - E[\tilde{y}_i | y, M_1])^2}$$

- The smaller the better
- Does not assess the sharpness (uncertainty estimate) of the prediction
- Compare to the estimate of the standard deviation of the data

$$\sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Log predictive density

- The question: How well does our posterior predictive distribution, $p(\tilde{y}_i|y)$, represent the distribution of the unseen data $p(\tilde{y}_i)$?
 - Formally this could be analysed with expected log-predictive density

$$LPD = \int \log (p(\tilde{y}_i|y, M_1))p(\tilde{y}_i)d\tilde{y}_i$$

which gets its maximum when $p(\tilde{y}_i|y, M_1) = p(\tilde{y}_i)$.

- Accounts for both location and width (uncertainty) of distribution
- Since we don't know $p(\tilde{y}_i)$ we approximate the log predictive density with

$$LPD = \frac{1}{n} \sum_{i=1}^{n} \log (p(\tilde{y}_i|y, M_1))$$

where \tilde{y}_i are observations in the test data.

Model comparison metrics

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\tilde{y}_i - E[\tilde{y}_i | y, M_1])^2}$$

$$LPD = \frac{1}{n} \sum_{i=1}^{n} \log (p(\tilde{y}_i | y, M_1))$$

- Where do we get samples from the distribution of future data, \tilde{y}_i ? For example:
 - Partial validation (\tilde{y}_i from test set)
 - Cross validation (\tilde{y}_i from test sets)

Information Criterion

- There are many information criteria introduced in the literature
 - Akaike Information Criterion (AIC)
 - Deviance Information Criterion (DIC)
 - Bayesian Information Criterion (BIC)
- The aim is to compare models' predictive performance (crudely) with

$$(model\ complexity) - (model\ fit)$$

- The model with minimum "criterion" is the best
- All information criteria are more or less ad hoc measures

Information Criterion

- The name information criterion originates from "model fit" term being related to distribution's entropy
 - Entropy is a measure of information
- Deviance Information Criterion (DIC)
 - Widely used in Bayesian statistics
 - Approximates (under certain assumptions) the log predictive density
 - Easy to calculate and ready made functionalities in JAGS
 - Problems how to interpret and implement with hierarchical models
- I recommend posterior predictive check with cross validation

Model assessment and sensitivity analysis revised

- The purpose is to check for
 - possible misspecifications
 - To which parts of the model the inference is sensitive to
- Error control procedure
 - The model is at best good approximation of the reality
 - You may have made logical or implementation errors

Model updating

- If model assessment or sensitivity analysis show aspects of concern
 - Check your code
 - Check/revise your priors
 - (Try robust observation models)
 - Revise your model assumptions concerning independe, hierarchy, ...
 - ... is your theory correct

How to construct the model in practice?

- Depends on the problem there is no rule-of-thump
- Prior information about the phenomenon essential
- Think conditionally and build model gradually via conditional distributions!
 - What are you interested in?
 - e.g. the proportion of black balls θ
 - What are the things your variable of interest is related to and how?
 - Need for more model layers?
 - How are the observations related to the variable of interest
 - the observation model $p(y|\theta)$
 - What prior information do you have on the variable of interest
 - The prior $p(\theta)$
 - Literature, expert knowledge, earlier experiments...
- With complex models division between prior and observation model is not straightforward
 - Conditional thinking helps!

Many sources of error

- "All models are wrong but some are usefull" (George P. Box)
 - Process/observation model is an approximation
 - Prior distributions are approximations of our knowledge
- Implementation error. We may
 - do the math wrong
 - code the model wrong
 - read the data wrong
 - read results wrong
 - calculate Monte Carlo estimates wrong
 - ...

Ways to mitigate errors

- Do every task carefully
- Record your model building and implementation
 - Notes on how model was derived theoretically
 - Comments within code
 - Intuitive names for variables
 - Clean code
- Reserve time for coding
 - Rush is the single largest cause of errors
 - Analysis of data may be as time consuming as the laboratory experiments
- Build your model gradually
 - Start with simple assumptions, pen and paper
 - Build first as simple (small) model as possible
 - Extend your model step by step

Ways to mitigate errors

- Make a personal repository of reliable code
 - Collect functions and scripts that you use frequently
 - Put in repository only code that is well double checked
- Check you results by approximating it with alternative means. The easiest are
 - "intuitively"
 - does the result make sense
 - Is its implication sensible
 - crudely
 - Are the parameter values in right order of magnitude
 - ...
- Posterior predictive check (later)
- Double check double check double check ...

On prior distributions

- Prior represents the (subjective) state of knowledge
- Setting up a prior is
 - easy if the uncertainty in the knowledge is small (informative prior)
 - hard if the knowledge is uncertain (non-informative prior)
- Prior should always cover all possible parameter values
 - if prior is 0 also posterior is 0
 - if we have lot of data likelihood usually dominates in the posterior
 - if we have small amount of data prior may influence a lot the posterior

On prior distributions

Informative priors

- Priors that clearly state modelers beliefs
- collects all proper distributions (Gaussian, Gamma, Beta,...)

non-informative priors

- Priors that try to be non-informative and code analyst's ignorance on the prior information
- only spuriously non-informative and may be heavily informative in a reparameterized model (so be careful)
- typical example is a uniform prior
- usually improper distributions

Weakly informative priors

- proper distributions that are robust for prior misspecification
- e.g. Student-t distribution and mixture of Gaussians

Conjugate priors

- contains both informative and non-informative priors
- specific functional form that depends on the likelihood
 - e.g. Beta distribution for success rate of Binomial
- Makes practical computation easier

• ...

Next week

• Revision of the course content