Path Connectedness

Definition: Path

Let X be a topological space and let $x_0, x_1 \in X$. A path from x_0 to x_1 is a continuous function $f: [0,1] \to X$ such that $f(0) = x_0$ an $f(1) = x_1$. x_0 is called the initial point of the path and x_1 is called the final point of the path.

Definition: Path Connected

Let X be a topological space. To say that X is *path connected* means that between every $x_0, x_1 \in X$ there exists some path.

Definition: Convex

Let $A \subset \mathbb{R}^n$. To say that A is *convex* means that for all $x, y \in A$:

$$\{(1-t)x + ty \mid t \in [0,1]\} \subset A$$

Thus, every convex subset of \mathbb{R}^n is path connected.

Theorem

A path connected topological space is connected.

Proof. Assume that X is a path connected topological space and ABC that X is disconnected. This means that there exists $A, B \subset X$ such that $A \sqcup B = X$ where A, B are open and nonempty. So assume that $x \in A$ and $y \in B$. Since X is path connected, there exists some continuous $f:[0,1] \to X$ such that $f(0) = x \in A$ and $f(1) = y \in B$. This mean that $[0,1] = f^{-1}(A) \cup f^{-1}(B)$ where neither $f^{-1}(A)$ nor $f^{-1}(B)$ are empty. Furthermore, since A and B are disjoint, $f^{-1}(A)$ and $f^{-1}(B)$ must also be disjoint, contradicting the connectedness of [0,1]. Therefore X is connected.

Example

The closure of the topologist's sine curve is connected but not path connected.

The topologists sine curve is given by:

$$S = \left\{ \left(x, \sin \frac{1}{x} \right) \middle| x \in (0, 1) \right\}$$

and its closure is given by:

$$\bar{S} = S \cup \{(1, \sin(1))\} \cup \{(0, y) \mid y \in [-1, 1]\}$$

Note that \bar{S} was already shown to be connected.

ABC that \bar{S} is path connected and assume that $p \in S$. This means that there exists a path in \bar{S} such that f(0) = p and f(1) = (0,0). Let f(t) = (x(t),y(t)). Note that since f is continuous, x(t) and y(t) are also continuous. Now, defined $U = \{t \in [0,1] \, | \, x(t) > 0\}$. Thus, for all $t \in U$, $f(t) \in S$ and $g(t) = \frac{1}{x(t)}$.

Next, since $U \subset [0,1]$, U is bounded and thus has a sup. So let $t_* = \sup U$. Note that t_* is the final value of t at which the path jumps to the y-axis part of \bar{S} and stays there on the way to (0,0). So $x(t_*)=0$. Let $b=y(t_*)$ and let select $\epsilon>0$ such that:

$$\epsilon < \begin{cases} 1 - b, & b < 1\\ \frac{1}{2}, & b = 1 \end{cases}$$

Now, since f is continuous, there exists $\delta>0$ such that for all $t\in[0,1]$, if $|t-t_*|<\delta$ then $\|f(t)-f(t_*)\|<\epsilon$. Note that $[t_*-\delta,t_*]$ is connected and compact. Furthermore, f is continuous. Hence $f[t_*-\delta,t_*]$ is connected and compact, and thus must be an interval. So let $x([t_*-\delta,t_*)=[0,x_0]$ for some $x_0\in(0,1]$. This means that for every $x\in(0,x_0]$ there exists some $t\in[t_*-\delta,t_*]$ such that $f(t)\in S$, meaning $f(t)=(x,\sin\frac{1}{x})$.

Define a sequence x_n in [0,1] by:

$$x_n = \frac{1}{2n\pi + \frac{\pi}{2}}$$

Note that $x_n \to 0$ and:

$$\sin\frac{1}{x_n} = \sin\left(2n\pi + \frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$$

But since $x_n \to 0$, there exists $N \in \mathbb{N}$ such that for all $x_n < x_0$ for all n > N. And so there exists $t_n \in [t_* - \delta, t_*)$ such that:

$$f(t_n) = \left(x_n, \sin\frac{1}{x_n}\right) = (x_n, 1)$$

Thus:

$$||f(t_n) - f(t_*)|| = ||(x_n, 1) - (0, b)|| \ge 1 - b > \epsilon$$

This contradicts the continuity of f. Therefore \bar{S} is not path connected.

Theorem

Let X and Y be topological spaces. If X and Y are path connected then $X \times Y$ is path connected.

Proof. Assume that X and Y are path connected and assume that $(x_1,y_1),(x_2,y_2)\in X\times Y.$ This means that there must exist a path f from x_1 to x_2 and a path g from y_1 to y_2 . Now, defined $h:[0,1]\to X\times Y$ as h(t)=(f(t),g(t)). But $\pi_X\circ h=f$ and $\pi_Y\circ h=g$ are by definition continuous, and thus h is continuous. Furthermore, $h(0)=(f(0),g(0))=(x_1,y_1)$ and $h(1)=(f(1),g(1))=(x_2,y_2),$ and so h is a path between (x_1,y_1) and $(x_2,y_2).$ Therefore $X\times Y$ is path connected.