

# **DFS Test Report**

Report No.: RF180615D14A-1

FCC ID: 2AI9TOAW-AP1201H

Test Model: OAW-AP1201H

Received Date: Apr. 26, 2018

**Test Date:** Aug. 15, 2018

**Issued Date:** Aug. 27, 2018

Applicant: ALE USA Inc.

Address: 26801 West Agoura Road, Calabasas, CA 91301

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C.)

FCC Registration /

Designation Number: 198487 / TW2021





This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF180615D14A-1 Page No. 1 / 110 Report Format Version: 6.1.2



### **Table of Contents**

| Rele                                   | ase Control Record                                                         | 3           |
|----------------------------------------|----------------------------------------------------------------------------|-------------|
| 1                                      | Certificate of Conformity                                                  | 4           |
| 2                                      | EUT Information                                                            | 5           |
| 2.7<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7 | EUT Software and Firmware Version                                          | 5<br>6<br>8 |
| 3.                                     | U-NII DFS Rule Requirements                                                | 11          |
| 3.2<br>3.2                             | · · · · · · · · · · · · · · · · · · ·                                      |             |
| 4.                                     | Test & Support Equipment List                                              | 15          |
| 4. <sup>2</sup>                        |                                                                            |             |
| 5.                                     | Test Procedure                                                             | 16          |
| 5.2<br>5.2<br>5.3<br>5.4               | Calibration of DFS Detection Threshold Level  Deviation From Test Standard | 17<br>17    |
| 6.                                     | Test Results                                                               | 19          |
| 6.2<br>6.2<br>6.2                      |                                                                            |             |
| 7.                                     | Information on The Testing Laboratories                                    | 65          |
| 8.                                     | APPENDIX-A                                                                 | 66          |



#### **Release Control Record**

| Issue No.      | Description       | Date Issued   |
|----------------|-------------------|---------------|
| RF180615D14A-1 | Original release. | Aug. 27, 2018 |

Report No.: RF180615D14A-1 Page No. 3 / 110 Report Format Version: 6.1.2 Reference No.: 180426D05, 180615D15



#### 1 Certificate of Conformity

Product: OmniAccess Stellar

**Brand:** Alcatel-Lucent Enterprise

Test Model: OAW-AP1201H

Sample Status: Engineering sample

Applicant: ALE USA Inc.

**Test Date:** Aug. 15, 2018

**Standards:** FCC Part 15, Subpart E (Section 15.407)

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by: \_\_\_\_\_\_\_, Date: \_\_\_\_\_\_\_, Aug. 27, 2018

Annie Chang / Senior Specialist

Approved by: , Date: Aug. 27, 2018

Rex Lai / Associate Technical Manager

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 4 / 110



#### 2 EUT Information

#### 2.1 Operating Frequency Bands and Mode of EUT

TABLE 1: Operating Frequency Bands And Mode Of EUT

| Operational Mode | Operating Fre | quency Range |
|------------------|---------------|--------------|
|                  | 5250~5350MHz  | 5470~5725MHz |
| Master           | ✓             | ✓            |

#### 2.2 EUT Software and Firmware Version

Table 2: The EUT Software/Firmware Version

| No. | Product            | Model No.   | Software/Firmware Version       |
|-----|--------------------|-------------|---------------------------------|
| 1   | OmniAccess Stellar | OAW-AP1201H | Firmware Version:<br>3.0.4.8004 |

#### 2.3 Description of Available Antennas to The EUT

Table 3: Antenna List

| ANT No. | Antenna Type | Operation Frequency Range (MHz) | Max. Gain (dBi) |
|---------|--------------|---------------------------------|-----------------|
| 1       | Printed      | 5250~5725                       | 6.3             |
| 2       | Printed      | 5250~5725                       | 5.8             |

As client's request, the 6.3dBi gain is chosen for final tests.

Maximum Correlated Directional Gain = G <sub>ANT</sub> + 10 log (N <sub>ANT</sub>)dBi= 6.3dBi + 10log(2) = 9.31dBi

Report No.: RF180615D14A-1 Page No. 5 / 110 Report Format Version: 6.1.2 Reference No.: 180426D05, 180615D15



#### 2.4 EUT Maximum and Minimum Conducted Power

Table 4: The Measured Conducted Output Power

# **CDD Mode** 802.11a

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 23.13      | 205.647   |
| 5470~5725      | 21.01      | 126.161   |

802.11ac (20MHz)

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 23.66      | 232.119   |
| 5470~5725      | 21.09      | 128.421   |

802.11ac (40MHz)

| Frequency Band<br>(MHz) | MAX. F     | Power     |
|-------------------------|------------|-----------|
|                         | Output     | Output    |
|                         | Power(dBm) | Power(mW) |
| 5250~5350               | 23.61      | 229.68    |
| 5470~5725               | 23.65      | 231.57    |

802.11ac (80MHz)

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 18.46      | 70.173    |
| 5470~5725      | 22.76      | 188.65    |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 6 / 110



# **Beamforming Mode**

802.11ac (20MHz)

| Frequency Band<br>(MHz) | MAX. F     | Power     |
|-------------------------|------------|-----------|
|                         | Output     | Output    |
|                         | Power(dBm) | Power(mW) |
| 5250~5350               | 20.59      | 114.574   |
| 5470~5725               | 20.55      | 113.400   |

802.11ac (40MHz)

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 20.60      | 114.719   |
| 5470~5725      | 20.49      | 111.947   |

802.11ac (80MHz)

| Frequency Band |        | MAX. F     | Power     |
|----------------|--------|------------|-----------|
| (MHz)          | Output | Output     |           |
|                |        | Power(dBm) | Power(mW) |
| 5250~5350      |        | 18.46      | 70.173    |
| 5470~5725      |        | 20.52      | 112.736   |



#### 2.5 EUT Maximum and Minimum EIRP Power

Table 5: The EIRP Output Power List

## **CDD Mode**

#### 802.11a

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 29.43      | 877.248   |
| 5470~5725      | 27.31      | 538.177   |

#### 802.11ac (20MHz)

| Frequency Band | MAX. Power |           |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 29.96      | 990.172   |
| 5470~5725      | 27.39      | 547.818   |

### 802.11ac (40MHz)

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 29.91      | 979.768   |
| 5470~5725      | 29.95      | 987.83    |

#### 802.11ac (80MHz)

| Frequency Band | MAX. F     | Power     |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 24.76      | 299.344   |
| 5470~5725      | 29.06      | 804.742   |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 8 / 110



# **Beamforming Mode**

802.11ac (20MHz)

| Frequency Band | MAX. Power |           |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 29.90      | 977.431   |
| 5470~5725      | 29.86      | 967.416   |

802.11ac (40MHz)

| Frequency Band | MAX. Power |           |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 29.91      | 978.668   |
| 5470~5725      | 29.80      | 955.020   |

802.11ac (80MHz)

| Frequency Band | MAX. Power |           |
|----------------|------------|-----------|
| (MHz)          | Output     | Output    |
|                | Power(dBm) | Power(mW) |
| 5250~5350      | 27.77      | 598.646   |
| 5470~5725      | 29.83      | 961.751   |



#### 2.6 Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Maximum EIRP of this device is 990.172 mW which greater than 500mW, therefore it's require TPC function.

The UUT can adjust a transmitter's output power based on the signal level present at the receiver.TPC is auto controlled by software

| Applicable | EIRP   | FCC 15.407 (h)(1)                                                       |
|------------|--------|-------------------------------------------------------------------------|
| $\sqrt{}$  | >500mW | The TPC mechanism is required for system with an EIRP of above 500Mw    |
|            | <500mW | The TPC mechanism is not required for system with an EIRP of less 500mW |

#### 2.7 Statement of Manufacturer

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user.

Report No.: RF180615D14A-1 Page No. 10 / 110 Report Format Version: 6.1.2



#### 3. U-NII DFS Rule Requirements

#### 3.1 Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

Table 6: Applicability of DFS Requirements Prior To Use a Channel

|                                 | Operational Mode |                                |                             |
|---------------------------------|------------------|--------------------------------|-----------------------------|
| Requirement                     | Master           | Client without radar detection | Client with radar detection |
| Non-Occupancy Period            | ✓                | ✓ note                         | ✓                           |
| DFS Detection Threshold         | ✓                | Not required                   | <b>✓</b>                    |
| Channel Availability Check Time | ✓                | Not required                   | Not required                |
| U-NII Detection Bandwidth       | ✓                | Not required                   | ✓                           |

Note: Per KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02 section (b)(5/6),

If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. An analyzer plot that contains a single 30-minute sweep on the original channel.

Table 7: Applicability of DFS Requirements During Normal Operation.

|                                   | Operational Mode                      |                                |  |
|-----------------------------------|---------------------------------------|--------------------------------|--|
| Requirement                       | Master or Client with radar detection | Client without radar detection |  |
| DFS Detection Threshold           | ✓                                     | Not required                   |  |
| Channel Closing Transmission Time | ✓                                     | ✓                              |  |
| Channel Move Time                 | ✓                                     | ✓                              |  |
| U-NII Detection Bandwidth         | ✓                                     | Not required                   |  |

| Additional requirements for devices with multiple bandwidth modes | Master or Client with radar detection | Client without radar detection                       |
|-------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|
| U-NII Detection Bandwidth and Statistical<br>Performance Check    | All BW modes must be tested           | Not required                                         |
| Channel Move Time and Channel Closing<br>Transmission Time        | Test using widest BW mode available   | Test using the widest BW mode available for the link |
| All other tests                                                   | Any single BW mode                    | Not required                                         |

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Report No.: RF180615D14A-1 Page No. 11 / 110 Report Format Version: 6.1.2



#### 3.2 Test Limits And Radar Signal Parameters

#### **Detection Threshold Values**

Table 8: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

| Maximum Transmit Power                    | Value<br>(See Notes 1, 2, and 3) |
|-------------------------------------------|----------------------------------|
| EIRP ≥ 200 milliwatt                      | -64 dBm                          |
| EIRP < 200 milliwatt and                  | CO 4D                            |
| power spectral density < 10 dBm/MHz       | -62 dBm                          |
| EIRP < 200 milliwatt that do not meet the | GA dDm                           |
| power spectral density requirement        | -64 dBm                          |

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 9: DFS Response Requirement Values

| Parameter                         | Value                                                                                                   |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| Non-occupancy period              | Minimum 30 minutes                                                                                      |
| Channel Availability Check Time   | 60 seconds                                                                                              |
| Channel Move Time                 | 10 seconds<br>See Note 1.                                                                               |
| Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period.  See Notes 1 and 2. |
| U-NII Detection Bandwidth         | Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3                                  |

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Report No.: RF180615D14A-1 Page No. 12 / 110 Report Format Version: 6.1.2



#### **Parameters of DFS Test Signals**

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 10: Short Pulse Radar Test Waveforms

| Radar<br>Type | Pulse Width<br>(µsec) | PRI<br>(µsec)                                                                                                                                                                                                                                                      | Number<br>of Pulses                                         | Minimum Percentage of Successful Detection | Minimum<br>Number of<br>Trials |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------------|
| 0             | 1                     | 1428                                                                                                                                                                                                                                                               | 18                                                          | See Note 1                                 | See Note 1                     |
| 1             | 1                     | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a  Test B: 15 unique PRI values randomly selected within the range of 518-3066 $\mu$ sec, with a minimum increment of 1 $\mu$ sec, excluding PRI values selected in Test A | Roundup $ \begin{cases}                                   $ | 60%                                        | 30                             |
| 2             | 1-5                   | 150-230                                                                                                                                                                                                                                                            | 23-29                                                       | 60%                                        | 30                             |
| 3             | 6-10                  | 200-500                                                                                                                                                                                                                                                            | 16-18                                                       | 60%                                        | 30                             |
| 4             | 11-20                 | 200-500                                                                                                                                                                                                                                                            | 12-16                                                       | 60%                                        | 30                             |
| Nata 4: Ch    |                       | regate (Radar Types 1                                                                                                                                                                                                                                              | -4)                                                         | 80%                                        | 120                            |

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Report No.: RF180615D14A-1 Page No. 13 / 110
Reference No.: 180426D05, 180615D15



Table 11: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Number Of<br>Pulses Per<br>Burst | Number Of<br>Bursts | Minimum Percentage Of Successful Detection | Minimum<br>Number Of<br>Trials |
|---------------|--------------------------|-------------------------|---------------|----------------------------------|---------------------|--------------------------------------------|--------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                              | 8-20                | 80%                                        | 30                             |

Three subsets of trials will be performed with a minimum of ten trials per subset. The subset of trials differ in where the Long Pulse Type 5 Signal is tuned in frequency.

- a) the Channel center frequency
- b) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the low edge of the UUT Occupied Bandwidth
- c) tuned frequencies such that 90% of the Long Pulse Type 5 frequency modulation is within the high edge of the UUT Occupied Bandwidth

It include 10 trails for every subset, the formula as below,

For subset case 1: the center frequency of the signal generator will remain fixed at the center of the UUT Channel.

For subset case 2: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 2. The center frequency of the signal generator for each trial is calculated by:

 $FL+(0.4*Chirp\ Width\ [in\ MHz])$ 

For subset case 3: to retain 90% frequency overlap between the radar signal and the UUT Occupied Bandwidth, the center frequency of the signal generator will vary for each of the ten trials in subset case 3. The center frequency of the signal generator for each trial is calculated by:

 $FH-(0.4*Chirp\ Width\ [in\ MHz])$ 

Table 12: Frequency Hopping Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Minimum Percentage Of Successful Detection | Minimum<br>Number Of<br>Trials |
|---------------|--------------------------|---------------|-------------------|--------------------------|-----------------------------------------|--------------------------------------------|--------------------------------|
| 6             | 1                        | 333           | 9                 | 9 0.333 300              |                                         | 70%                                        | 30                             |

Report No.: RF180615D14A-1 Page No. 14 / 110 Report Format Version: 6.1.2



### 4. Test & Support Equipment List

#### 4.1 **Test Instruments**

Table 13: Test Instruments List

| Description & Manufacturer | Model No. | Serial No | Date Of<br>Calibration | Due Date Of<br>Calibration |
|----------------------------|-----------|-----------|------------------------|----------------------------|
| Spectrum analyzer          | FSP       | R&S       | 2018/06/05             | 2019/06/04                 |
| Signal generator           | MXG       | KEYSIGHT  | 2018/05/24             | 2019/05/23                 |

#### **Description of Support Units** 4.2

Table 14: Support Unit Information.

| No. | Product                               | Brand | Model No.                 | FCC ID   | Spec |
|-----|---------------------------------------|-------|---------------------------|----------|------|
| 1   | Intel-wireless AC 7265<br>(inside NB) | Intel | Intel-wireless<br>AC 7265 | E2K320LT |      |

**NOTE:** This device was functioned as a ☐Master ☒Slave device during the DFS test.

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 15 / 110 Report Format Version: 6.1.2



#### 5. Test Procedure

#### 5.1 DFS Measurement System

A complete DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating system and (2) the Traffic Monitoring system. The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

#### **Radiated Setup Configuration of DFS Measurement System**



#### **Channel Loading**

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

| a) | The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode. |          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| b) | Software to ping the client is permitted to simulate data transfer but must have random ping intervals.                                                                 |          |
| c) | Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.                                                    | <b>√</b> |
| d) | Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.                  |          |



#### 5.2 Calibration of DFS Detection Threshold Level

The measured channel is 5500MHz and 5510MHz and 5530MHz. The radar signal was the same as transmitted channels, and injected into the antenna of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

#### Radiated setup configuration of Calibration of DFS Detection Threshold Level

The radar signal generate system is gererating waveform pattern of radar types. The amplitude of the radar signal generator system is adjusted to yield a level of – 64 dBm as measured on the spectrum analyzer. The interference detection threshold level is lower than – 64dBm hence it provides margin to the limit.



#### 5.3 Deviation From Test Standard

No deviation.

Report No.: RF180615D14A-1 Page No. 17 / 110 Report Format Version: 6.1.2



#### 5.4 Radiated Conducted Test Setup Configuration

#### Master mode

The EUT is a U-NII Device operating in Master mode. The radar test signals are injected into the Master Device.



Note: The UUT main beam of the antenna is directly toward the radar emitter during testing.

Report No.: RF180615D14A-1 Page No. 18 / 110 Report Format Version: 6.1.2 Reference No.: 180426D05, 180615D15



### 6. Test Results

# 6.1 Summary of Test Results

| Clause | Test Parameter                    | Remarks    | Pass/Fail |
|--------|-----------------------------------|------------|-----------|
| 15.407 | DFS Detection Threshold           | Applicable | Pass      |
| 15.407 | Channel Availability Check Time   | Applicable | Pass      |
| 15.407 | Channel Move Time                 | Applicable | Pass      |
| 15.407 | Channel Closing Transmission Time | Applicable | Pass      |
| 15.407 | Non- Occupancy Period             | Applicable | Pass      |
| 15.407 | U-NII Detection Bandwidth         | Applicable | Pass      |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 19 / 110



#### 6.2 Test Results

6.2.1 Test Mode: Device Operating In Master Mode.

The radar test waveforms are injected into the Master. This test was investigated for different bandwidth (20MHz \ 40MHz and 80MHz).

The following plots was done on 80MHz as a representative

#### **DFS Detection Threshold**

For detection threshold level of -64dBm, the tested level is lower than required level for 1dB, hence it provides margin to the limit.



Radar Signal 0





# Radar Signal 1 (Test A)



Radar Signal 1 (Test B)

Report No.: RF180615D14A-1 Page No. 21 / 110 Report Format Version: 6.1.2 Reference No.: 180426D05, 180615D15





#### Radar Signal 2



Radar Signal 3

Report No.: RF180615D14A-1 Page No. 22 / 110 Report F0 Reference No.: 180426D05, 180615D15





### Single Burst of Radar Signal 4



Radar Signal 5





### Single Burst of Radar Signal 5



Radar Signal 6



#### 6.2.2 U-NII Detection Bandwidth

#### 802.11ac (20MHz)



U-NII 99% Channel bandwidth



U-NII 99% Channel bandwidth

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 25 / 110





Report No.: RF180615D14A-1 Page No. 26 / 110 Report Format Version: 6.1.2 Reference No.: 180426D05, 180615D15



Detection Bandwidth Test - IEEE 802.11ac (20MHz)

Radar Type 0

EUT Frequency: 5500MHz

EUT 99% Power bandwidth: 19.1625MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 19.1625MHz

Detection bandwidth (5510(FH) – 5490(FL)) : 20MHz

Test Result : Pass

| rest result . Fa   | est Nesult . 1 ass |   |   |         |       |         |        |   |   |    |                    |  |  |  |
|--------------------|--------------------|---|---|---------|-------|---------|--------|---|---|----|--------------------|--|--|--|
| Radar              |                    |   |   | Trial N | Numbe | r / Det | ection |   |   |    |                    |  |  |  |
| Frequency<br>(MHz) | 1                  | 2 | 3 | 4       | 5     | 6       | 7      | 8 | 9 | 10 | Detection Rate (%) |  |  |  |
| 5489               | N                  | N | Ν | N       | N     | N       | N      | N | N | N  | 0                  |  |  |  |
| 5490(FL)           | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5491               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5492               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5493               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5494               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5495               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5496               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5497               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5498               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5499               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5500               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5501               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5502               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5503               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5504               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5505               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5506               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5507               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5508               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5509               | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5510(FH)           | Υ                  | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |  |  |  |
| 5511               | N                  | N | N | N       | N     | N       | N      | N | N | N  | 0                  |  |  |  |

Page No. 27 / 110 Report Format Version: 6.1.2



Detection Bandwidth Test - IEEE 802.11ac (40MHz)

Radar Type 0

EUT Frequency: 5510MHz

EUT 99% Power bandwidth: 37.075MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 37.075MHz

Detection bandwidth (5530(FH) – 5490(FL)): 40MHz

Test Result : Pass

| Radar              |   |   |   | Trial I | Numbe | r / Det | ection |   |   |    |                    |
|--------------------|---|---|---|---------|-------|---------|--------|---|---|----|--------------------|
| Frequency<br>(MHz) | 1 | 2 | 3 | 4       | 5     | 6       | 7      | 8 | 9 | 10 | Detection Rate (%) |
| 5489               | N | N | N | N       | N     | N       | N      | N | N | N  | 0                  |
| 5490 (FL)          | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5491               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5492               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5493               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5494               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5495               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5496               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5497               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5498               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5499               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5500               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5501               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5502               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5503               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5504               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5505               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5506               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5507               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5508               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5509               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5510               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5511               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5512               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5513               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5514               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5515               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5516               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5517               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5518               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5519               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5520               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5521               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5522               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5523               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5524               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5525               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5526               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5527               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5528               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5529               | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5530 (FH)          | Υ | Υ | Υ | Υ       | Υ     | Υ       | Υ      | Υ | Υ | Υ  | 100                |
| 5531               | N | N | N | N       | N     | N       | N      | N | N | N  | 0                  |



Detection Bandwidth Test - IEEE 8802.11ac (80MHz)

Radar Type 0

EUT Frequency: 5530MHz

EUT 99% Power bandwidth: 76.68MHz

Detection bandwidth limit (100% of EUT 99% Power bandwidth): 76.68MHz

Detection bandwidth (5570(FH) – 5490(FL)): 80MHz

Test Result : Pass

| Radar              |   |   |   | Trial N | Numbe | r / Dete | ection |   |   |    |                    |
|--------------------|---|---|---|---------|-------|----------|--------|---|---|----|--------------------|
| Frequency<br>(MHz) | 1 | 2 | 3 | 4       | 5     | 6        | 7      | 8 | 9 | 10 | Detection Rate (%) |
| 5489               | N | N | N | N       | N     | N        | N      | N | N | N  | 0                  |
| 5490(FL)           | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5491               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5492               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5493               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5494               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5495               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5496               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5497               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5498               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5499               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5500               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5501               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5502               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5503               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5504               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5505               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5506               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5507               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5508               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5509               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5510               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5511               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5512               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5513               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5514               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5515               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5516               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5517               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5518               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5519               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5520               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5521               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5522               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5523               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5524               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5525               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5526               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5527               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5528               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5529               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5530               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5531               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |
| 5532               | Υ | Υ | Υ | Υ       | Υ     | Υ        | Υ      | Υ | Υ | Υ  | 100                |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 29 / 110



| 5533     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
|----------|---|---|---|---|---|---|---|---|---|---|-----|
| 5534     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5535     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5536     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5537     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5538     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5539     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5540     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5541     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5542     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5543     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5544     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5545     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5546     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5547     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5548     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5549     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5550     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5551     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5552     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5553     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5554     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5555     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5556     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5557     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5558     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5559     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5560     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5561     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5562     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5563     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5564     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5565     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5566     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5567     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5568     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5569     | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5570(FH) | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | Υ | 100 |
| 5571     | N | N | N | N | N | N | N | N | N | N | 0   |



# 6.2.3 Channel Availability Check Time

If the EUT successfully detected the radar burst, it should be observed as the EUT has no transmissions occurred until the EUT starts transmitting on another channel.

|                        | Observation |                   |  |  |
|------------------------|-------------|-------------------|--|--|
| Timing of Radar Signal | EUT         | Spectrum Analyzer |  |  |
| Within 1 to 6 second   | Detected    | No transmissions  |  |  |
| Within 54 to 60 second | Detected    | No transmissions  |  |  |

Page No. 31 / 110 Report Format Version: 6.1.2





Note: T1 denotes the end of power-up time period is  $114^{th}$  second. T4 denotes the end of Channel Availability Check time is  $174^{th}$  second. Channel Availability Check time is equal to (T4 - T1) 60 seconds.

# Radar Burst at the Beginning of the Channel Availability Check Time



Note: T1 denotes the end of power up time period is 114<sup>th</sup> second. T2 denotes 120<sup>th</sup> second, the radar burst was commenced within a 6 second window starting from the end of power-up sequence. T4 denotes the 174<sup>th</sup> second.

# Radar Burst at the End of the Channel Availability Check Time



Note: T1 denotes the end of power up time period is  $114^{th}$  second. T3 denotes  $168^{th}$  second and radar burst was commenced within  $54^{th}$  second to  $60^{th}$  second window starting from the end of power-up sequence. T4 denotes the  $174^{th}$  second.



#### 6.2.4 Channel Closing Transmission and Channel Move Time

# Wireless Traffic Loading



#### 802.11ac (40MHz)



#### 802.11ac (80MHz)





# 802.11ac (20MHz)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec)                                                                                                                                                                                                                                             | PRI<br>(µsec)                                                                                   | Number of Pulses | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------------------------|
| 1          | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 $\mu$ sec, with a minimum increment of 1 $\mu$ sec, excluding PRI values selected in Test A | Roundup $ \begin{bmatrix} \frac{1}{360} \\ \frac{19 \cdot 10^6}{PRI_{\mu  sec}} \end{bmatrix} $ | 18               | 30                      | 100                                          |
| 2          | 1-5                                                                                                                                                                                                                                                               | 150-230                                                                                         | 23-29            | 30                      | 80                                           |
| 3          | 6-10                                                                                                                                                                                                                                                              | 200-500                                                                                         | 16-18            | 30                      | 80                                           |
| 4          | 11-20                                                                                                                                                                                                                                                             | 200-500                                                                                         | 12-16            | 30                      | 83.33                                        |
|            | Aggregate (Radar T                                                                                                                                                                                                                                                | ypes 1-4)                                                                                       | •                | 120                     | 85.83                                        |

Table 2: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Number<br>of Pulses<br>per Burst | Number of Bursts | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|-------------------------|---------------|----------------------------------|------------------|-------------------------|----------------------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                              | 8-20             | 30                      | 100                                          |

Table 3: Frequency Hopping Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|---------------|----------------------|--------------------------|-----------------------------------------|-------------------------|----------------------------------------------|
| 6             | 1                        | 333           | 9                    | 0.333                    | 300                                     | 30                      | 96.67                                        |

Page No. 34 / 110 Report Format Version: 6.1.2



# 802.11ac (40MHz)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec)                                                                                                                                                                                                                                             | PRI<br>(µsec)                                                                                                                                                                           | Number of Pulses | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------------------------|
| 1          | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 $\mu$ sec, with a minimum increment of 1 $\mu$ sec, excluding PRI values selected in Test A | lues randomly selected om the list of 23 PRI lues in Table 5a est B: 15 unique PRI lues randomly selected within the range of 518-166 $\mu$ sec, with a minimum crement of 1 $\mu$ sec, |                  | 30                      | 90                                           |
| 2          | 1-5                                                                                                                                                                                                                                                               | 150-230                                                                                                                                                                                 | 23-29            | 30                      | 83.33                                        |
| 3          | 6-10                                                                                                                                                                                                                                                              | 200-500                                                                                                                                                                                 | 16-18            | 30                      | 86.67                                        |
| 4          | 11-20                                                                                                                                                                                                                                                             | 200-500                                                                                                                                                                                 | 12-16            | 30                      | 76.67                                        |
|            | Aggregate (Radar T                                                                                                                                                                                                                                                | ypes 1-4)                                                                                                                                                                               |                  | 120                     | 84.17                                        |

# Table 2: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Number<br>of Pulses<br>per Burst | Number of Bursts | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|-------------------------|---------------|----------------------------------|------------------|-------------------------|----------------------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                              | 8-20             | 30                      | 100                                          |

Table 3: Frequency Hopping Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|---------------|----------------------|--------------------------|-----------------------------------------|-------------------------|----------------------------------------------|
| 6             | 1                        | 333           | 9                    | 0.333                    | 300                                     | 30                      | 100                                          |



# 802.11ac (80MHz)

Table 1: Short Pulse Radar Test Waveforms.

| Radar Type | Pulse Width<br>(µsec)                                                                                                                                                                                                                                             | PRI<br>(µsec)                                                                                                                                                                                                                                         | Number of Pulses | Number of<br>Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|----------------------------------------------|
| 1          | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 $\mu$ sec, with a minimum increment of 1 $\mu$ sec, excluding PRI values selected in Test A | selected PRI a PRI selected of 518-a minimum sec, $\begin{bmatrix} 1 \\ 360 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 360 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 360 \end{bmatrix} \cdot \begin{bmatrix} 19 \cdot 10^6 \\ PRI_{\#}sec \end{bmatrix}$ |                  | 30                         | 100                                          |
| 2          | 1-5                                                                                                                                                                                                                                                               | 150-230                                                                                                                                                                                                                                               | 23-29            | 30                         | 96.67                                        |
| 3          | 6-10                                                                                                                                                                                                                                                              | 200-500                                                                                                                                                                                                                                               | 16-18            | 30                         | 96.67                                        |
| 4          | 11-20                                                                                                                                                                                                                                                             | 200-500                                                                                                                                                                                                                                               | 12-16            | 30                         | 86.67                                        |
|            | Aggregate (Radar 1                                                                                                                                                                                                                                                | Гуреѕ 1-4)                                                                                                                                                                                                                                            |                  | 120                        | 95                                           |

Table 2: Long Pulse Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | Chirp<br>Width<br>(MHz) | PRI<br>(µsec) | Number<br>of Pulses<br>per Burst | Number of Bursts | Number of Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|-------------------------|---------------|----------------------------------|------------------|-------------------------|----------------------------------------------|
| 5             | 50-100                   | 5-20                    | 1000-2000     | 1-3                              | 8-20             | 30                      | 100                                          |

Table 3: Frequency Hopping Radar Test Waveform

| Radar<br>Type | Pulse<br>Width<br>(µsec) | PRI<br>(µsec) | Pulses<br>per<br>Hop | Hopping<br>Rate<br>(kHz) | Hopping<br>Sequence<br>Length<br>(msec) | Number of<br>Trials(Times) | Percentage of<br>Successful<br>Detection (%) |
|---------------|--------------------------|---------------|----------------------|--------------------------|-----------------------------------------|----------------------------|----------------------------------------------|
| 6             | 1                        | 333           | 9                    | 0.333                    | 300                                     | 30                         | 100                                          |

Page No. 36 / 110 Report Format Version: 6.1.2









Note: Zoom-in of the first 500ms after radar signal applied.









Note: Zoom-in of the first 500ms after radar signal applied.









Note: Zoom-in of the first 500ms after radar signal applied.









Note: Room-in of the first 500ms after radar signal applied.









Note: Room-in of the first 500ms after radar signal applied.



|       |           | stical Performances |                      | 1          |                  | T         |
|-------|-----------|---------------------|----------------------|------------|------------------|-----------|
| Trial | Test      | Pulse Repetition    | Pulse Repetition     | Pulses per | Pulse Repetition | Detection |
| #     | Frequency | Frequency           | Frequency (Pulse per | Burst      | Interval         |           |
|       | (MHz)     | Number (1 to 23)    | seconds)             |            | (microseconds)   |           |
| 1     | 5500      | 15                  | 1253                 | 67         | 798              | Yes       |
| 2     | 5491      | 16                  | 1223                 | 65         | 818              | Yes       |
| 3     | 5502      | 4                   | 1730                 | 92         | 578              | Yes       |
| 4     | 5495      | 11                  | 1393                 | 74         | 718              | Yes       |
| 5     | 5498      | 22                  | 1066                 | 57         | 938              | Yes       |
| 6     | 5503      | 7                   | 1567                 | 83         | 638              | Yes       |
| 7     | 5493      | 2                   | 1859                 | 99         | 538              | Yes       |
| 8     | 5505      | 8                   | 1520                 | 81         | 658              | Yes       |
| 9     | 5501      | 1                   | 1931                 | 102        | 518              | Yes       |
| 10    | 5505      | 19                  | 1139                 | 61         | 878              | Yes       |
| 11    | 5497      | 21                  | 1089                 | 58         | 918              | Yes       |
| 12    | 5499      | 23                  | 326.2                | 18         | 3066             | Yes       |
| 13    | 5501      | 9                   | 1475                 | 78         | 678              | Yes       |
| 14    | 5497      | 5                   | 1672                 | 89         | 598              | Yes       |
| 15    | 5502      | 6                   | 1618                 | 86         | 618              | Yes       |
| 16    | 5509      |                     | 1111                 | 59         | 900              | Yes       |
| 17    | 5502      |                     | 1024                 | 55         | 977              | Yes       |
| 18    | 5503      |                     | 625.8                | 34         | 1598             | Yes       |
| 19    | 5499      |                     | 730.5                | 39         | 1369             | Yes       |
| 20    | 5508      |                     | 1181                 | 63         | 847              | Yes       |
| 21    | 5509      |                     | 400.6                | 22         | 2496             | Yes       |
| 22    | 5499      |                     | 529.4                | 28         | 1889             | Yes       |
| 23    | 5505      |                     | 347.6                | 19         | 2877             | Yes       |
| 24    | 5492      |                     | 641.4                | 34         | 1559             | Yes       |
| 25    | 5503      |                     | 508.9                | 27         | 1965             | Yes       |
| 26    | 5493      |                     | 345.4                | 19         | 2895             | Yes       |
| 27    | 5508      |                     | 580.7                | 31         | 1722             | Yes       |
| 28    | 5498      |                     | 786.8                | 42         | 1271             | Yes       |
| 29    | 5505      |                     | 808.4                | 43         | 1237             | Yes       |
| 30    | 5503      |                     | 517.1                | 28         | 1934             | Yes       |
|       |           | <u>l</u>            | -                    | -          | Detection Ra     |           |



| Trial # | Test Frequency | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|----------------|------------------|-----------------|---------|-----------|
|         | (MHz)          | •                | , ,             | ( )     |           |
| 1       | 5500           | 24               | 1.7             | 174     | Yes       |
| 2       | 5493           | 27               | 3.8             | 176     | Yes       |
| 3       | 5506           | 28               | 4               | 161     | Yes       |
| 4       | 5497           | 28               | 4.3             | 226     | Yes       |
| 5       | 5506           | 24               | 1.9             | 193     | Yes       |
| 6       | 5497           | 23               | 1.1             | 230     | Yes       |
| 7       | 5502           | 29               | 4.5             | 198     | No        |
| 8       | 5506           | 26               | 2.9             | 227     | No        |
| 9       | 5505           | 26               | 2.8             | 171     | Yes       |
| 10      | 5506           | 27               | 3.6             | 221     | Yes       |
| 11      | 5504           | 23               | 1.1             | 180     | No        |
| 12      | 5504           | 23               | 1.3             | 189     | Yes       |
| 13      | 5497           | 25               | 2.5             | 204     | Yes       |
| 14      | 5497           | 29               | 4.5             | 203     | Yes       |
| 15      | 5497           | 29               | 5               | 170     | Yes       |
| 16      | 5505           | 26               | 3.1             | 201     | Yes       |
| 17      | 5506           | 24               | 2.1             | 218     | Yes       |
| 18      | 5507           | 25               | 2.6             | 208     | Yes       |
| 19      | 5493           | 24               | 1.8             | 223     | Yes       |
| 20      | 5502           | 23               | 1.2             | 220     | No        |
| 21      | 5500           | 26               | 2.9             | 224     | Yes       |
| 22      | 5507           | 28               | 4               | 160     | Yes       |
| 23      | 5494           | 25               | 2.5             | 209     | Yes       |
| 24      | 5505           | 23               | 1               | 205     | Yes       |
| 25      | 5494           | 27               | 3.7             | 151     | Yes       |
| 26      | 5500           | 25               | 2.5             | 186     | Yes       |
| 27      | 5492           | 23               | 1.5             | 190     | No        |
| 28      | 5491           | 23               | 1.3             | 185     | Yes       |
| 29      | 5496           | 23               | 1.2             | 175     | No        |
| 30      | 5509           | 24               | 1.7             | 216     | Yes       |



| Trial # | dar Statistical Performancy  Test Frequency | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|---------------------------------------------|------------------|-----------------|---------|-----------|
|         | (MHz)                                       | P 3. 2 3         | ()              | ()      |           |
| 1       | 5500                                        | 16               | 6.7             | 467     | Yes       |
| 2       | 5502                                        | 18               | 8.8             | 304     | No        |
| 3       | 5495                                        | 18               | 9               | 316     | Yes       |
| 4       | 5508                                        | 18               | 9.3             | 439     | No        |
| 5       | 5499                                        | 16               | 6.9             | 420     | Yes       |
| 6       | 5499                                        | 16               | 6.1             | 249     | Yes       |
| 7       | 5494                                        | 18               | 9.5             | 463     | No        |
| 8       | 5499                                        | 17               | 7.9             | 258     | Yes       |
| 9       | 5504                                        | 17               | 7.8             | 212     | Yes       |
| 10      | 5495                                        | 17               | 8.6             | 236     | No        |
| 11      | 5508                                        | 16               | 6.1             | 474     | Yes       |
| 12      | 5492                                        | 16               | 6.3             | 461     | Yes       |
| 13      | 5505                                        | 17               | 7.5             | 437     | Yes       |
| 14      | 5508                                        | 18               | 9.5             | 287     | Yes       |
| 15      | 5495                                        | 18               | 10              | 395     | Yes       |
| 16      | 5495                                        | 17               | 8.1             | 322     | Yes       |
| 17      | 5504                                        | 16               | 7.1             | 468     | No        |
| 18      | 5500                                        | 17               | 7.6             | 255     | Yes       |
| 19      | 5502                                        | 16               | 6.8             | 423     | Yes       |
| 20      | 5496                                        | 16               | 6.2             | 456     | Yes       |
| 21      | 5492                                        | 17               | 7.9             | 351     | Yes       |
| 22      | 5494                                        | 18               | 9               | 411     | Yes       |
| 23      | 5502                                        | 17               | 7.5             | 279     | Yes       |
| 24      | 5505                                        | 16               | 6               | 431     | Yes       |
| 25      | 5499                                        | 17               | 8.7             | 324     | Yes       |
| 26      | 5501                                        | 17               | 7.5             | 419     | Yes       |
| 27      | 5495                                        | 16               | 6.5             | 447     | Yes       |
| 28      | 5508                                        | 16               | 6.3             | 481     | Yes       |
| 29      | 5503                                        | 16               | 6.2             | 438     | No        |
| 30      | 5494                                        | 16               | 6.7             | 270     | Yes       |



| Trial # | Test Frequency | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|----------------|------------------|-----------------|---------|-----------|
|         | (MHz)          | •                | , ,             | ,       |           |
| 1       | 5500           | 12               | 12.5            | 467     | Yes       |
| 2       | 5500           | 15               | 17.2            | 304     | No        |
| 3       | 5505           | 15               | 17.8            | 316     | Yes       |
| 4       | 5505           | 16               | 18.5            | 439     | Yes       |
| 5       | 5494           | 13               | 13.1            | 420     | No        |
| 6       | 5495           | 12               | 11.3            | 249     | Yes       |
| 7       | 5505           | 16               | 18.8            | 463     | Yes       |
| 8       | 5507           | 14               | 15.3            | 258     | Yes       |
| 9       | 5495           | 14               | 15.1            | 212     | Yes       |
| 10      | 5508           | 15               | 16.9            | 236     | Yes       |
| 11      | 5495           | 12               | 11.2            | 474     | Yes       |
| 12      | 5504           | 12               | 11.7            | 461     | Yes       |
| 13      | 5507           | 13               | 14.4            | 437     | No        |
| 14      | 5497           | 16               | 18.9            | 287     | Yes       |
| 15      | 5504           | 16               | 19.9            | 395     | Yes       |
| 16      | 5503           | 14               | 15.7            | 322     | Yes       |
| 17      | 5498           | 13               | 13.4            | 468     | Yes       |
| 18      | 5498           | 13               | 14.5            | 255     | Yes       |
| 19      | 5492           | 13               | 12.9            | 423     | Yes       |
| 20      | 5502           | 12               | 11.5            | 456     | Yes       |
| 21      | 5492           | 14               | 15.3            | 351     | Yes       |
| 22      | 5502           | 15               | 17.8            | 411     | No        |
| 23      | 5501           | 13               | 14.3            | 279     | Yes       |
| 24      | 5502           | 12               | 11.1            | 431     | Yes       |
| 25      | 5501           | 15               | 17              | 324     | Yes       |
| 26      | 5492           | 13               | 14.5            | 419     | Yes       |
| 27      | 5507           | 12               | 12.1            | 447     | No        |
| 28      | 5499           | 12               | 11.7            | 481     | Yes       |
| 29      | 5492           | 12               | 11.6            | 438     | Yes       |
| 30      | 5499           | 12               | 12.7            | 270     | Yes       |



| T       | Minimum          | Chirp Center   | To at Olement Name | <b>D</b> : |  |
|---------|------------------|----------------|--------------------|------------|--|
| Trial # | Chirp Width(MHz) | Frequency(MHz) | Test Signal Name   | Detection  |  |
| 1       | 17               | 5500           | LP_Signal_01       | Yes        |  |
| 2       | 7                | 5500           | LP_Signal_02       | Yes        |  |
| 3       | 8                | 5500           | LP_Signal_03       | Yes        |  |
| 4       | 19               | 5500           | LP_Signal_04       | Yes        |  |
| 5       | 12               | 5500           | LP_Signal_05       | Yes        |  |
| 6       | 11               | 5500           | LP_Signal_06       | Yes        |  |
| 7       | 6                | 5500           | LP_Signal_07       | Yes        |  |
| 8       | 20               | 5500           | LP_Signal_08       | Yes        |  |
| 9       | 6                | 5500           | LP_Signal_09       | Yes        |  |
| 10      | 12               | 5500           | LP_Signal_10       | Yes        |  |
| 11      | 16               | 5497           | LP_Signal_11       | Yes        |  |
| 12      | 20               | 5499           | LP_Signal_12       | Yes        |  |
| 13      | 18               | 5498           | LP_Signal_13       | Yes        |  |
| 14      | 12               | 5496           | LP_Signal_14       | Yes        |  |
| 15      | 12               | 5496           | LP_Signal_15       | Yes        |  |
| 16      | 15               | 5497           | LP_Signal_16       | Yes        |  |
| 17      | 10               | 5495           | LP_Signal_17       | Yes        |  |
| 18      | 12               | 5496           | LP Signal 18       | Yes        |  |
| 19      | 10               | 5495           | LP_Signal_19       | Yes        |  |
| 20      | 20               | 5499           | LP Signal 20       | Yes        |  |
| 21      | 7                | 5506           | LP_Signal_21       | Yes        |  |
| 22      | 20               | 5501           | LP_Signal_22       | Yes        |  |
| 23      | 8                | 5506           | LP_Signal_23       | Yes        |  |
| 24      | 17               | 5502           | LP_Signal_24       | Yes        |  |
| 25      | 7                | 5506           | LP_Signal_25       | Yes        |  |
| 26      | 14               | 5503           | LP_Signal_26       | Yes        |  |
| 27      | 11               | 5505           | LP_Signal_27       | Yes        |  |
| 28      | 7                | 5506           | LP_Signal_28       | Yes        |  |
| 29      | 12               | 5504           | LP Signal 29       | Yes        |  |
| 30      | 8                | 5506           | LP Signal 30       | Yes        |  |

The Long Pulse Radar pattern shown in Appendix A.1

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 46 / 110



| Trial # | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|------------------|-----------------|---------|-----------|
| 1       | 9                | 1               | 333.3   | Yes       |
| 2       | 9                | 1               | 333.3   | Yes       |
| 3       | 9                | 1               | 333.3   | Yes       |
| 4       | 9                | 1               | 333.3   | Yes       |
| 5       | 9                | 1               | 333.3   | Yes       |
| 6       | 9                | 1               | 333.3   | Yes       |
| 7       | 9                | 1               | 333.3   | Yes       |
| 8       | 9                | 1               | 333.3   | Yes       |
| 9       | 9                | 1               | 333.3   | Yes       |
| 10      | 9                | 1               | 333.3   | Yes       |
| 11      | 9                | 1               | 333.3   | Yes       |
| 12      | 9                | 1               | 333.3   | Yes       |
| 13      | 9                | 1               | 333.3   | Yes       |
| 14      | 9                | 1               | 333.3   | Yes       |
| 15      | 9                | 1               | 333.3   | Yes       |
| 16      | 9                | 1               | 333.3   | Yes       |
| 17      | 9                | 1               | 333.3   | Yes       |
| 18      | 9                | 1               | 333.3   | Yes       |
| 19      | 9                | 1               | 333.3   | Yes       |
| 20      | 9                | 1               | 333.3   | Yes       |
| 21      | 9                | 1               | 333.3   | No        |
| 22      | 9                | 1               | 333.3   | Yes       |
| 23      | 9                | 1               | 333.3   | Yes       |
| 24      | 9                | 1               | 333.3   | Yes       |
| 25      | 9                | 1               | 333.3   | Yes       |
| 26      | 9                | 1               | 333.3   | Yes       |
| 27      | 9                | 1               | 333.3   | Yes       |
| 28      | 9                | 1               | 333.3   | Yes       |
| 29      | 9                | 1               | 333.3   | Yes       |
| 30      | 9                | 1               | 333.3   | Yes       |



| Trial # | Hopping Frequency Sequence | Detection |
|---------|----------------------------|-----------|
| 1       | Name<br>HOP FREQ SEQ 01    | Yes       |
| 2       | HOP FREQ SEQ 02            | Yes       |
| 3       | HOP FREQ SEQ 03            | Yes       |
| 4       | HOP FREQ SEQ 04            | Yes       |
|         |                            |           |
| 5       | HOP_FREQ_SEQ_05            | Yes       |
| 6       | HOP_FREQ_SEQ_06            | Yes       |
| 7       | HOP_FREQ_SEQ_07            | Yes       |
| 8       | HOP_FREQ_SEQ_08            | Yes       |
| 9       | HOP_FREQ_SEQ_09            | Yes       |
| 10      | HOP_FREQ_SEQ_10            | Yes       |
| 11      | HOP_FREQ_SEQ_11            | Yes       |
| 12      | HOP_FREQ_SEQ_12            | Yes       |
| 13      | HOP_FREQ_SEQ_13            | Yes       |
| 14      | HOP_FREQ_SEQ_14            | Yes       |
| 15      | HOP_FREQ_SEQ_15            | Yes       |
| 16      | HOP_FREQ_SEQ_16            | Yes       |
| 17      | HOP_FREQ_SEQ_17            | Yes       |
| 18      | HOP_FREQ_SEQ_18            | Yes       |
| 19      | HOP_FREQ_SEQ_19            | Yes       |
| 20      | HOP_FREQ_SEQ_20            | Yes       |
| 21      | HOP_FREQ_SEQ_21            | No        |
| 22      | HOP_FREQ_SEQ_22            | Yes       |
| 23      | HOP_FREQ_SEQ_23            | Yes       |
| 24      | HOP FREQ SEQ 24            | Yes       |
| 25      | HOP_FREQ_SEQ_25            | Yes       |
| 26      | HOP FREQ SEQ 26            | Yes       |
| 27      | HOP FREQ SEQ 27            | Yes       |
| 28      | HOP FREQ SEQ 28            | Yes       |
| 29      | HOP FREQ SEQ 29            | Yes       |
| 30      | HOP_FREQ_SEQ_30            | Yes       |

The Frequency Hopping Radar pattern shown in Appendix A.2



| rype  |           | stical Performances |                      |            |                  |          |
|-------|-----------|---------------------|----------------------|------------|------------------|----------|
| Trial | Test      | Pulse Repetition    | Pulse Repetition     | Pulses per | Pulse Repetition | L        |
| #     | Frequency | Frequency           | Frequency (Pulse per | Burst      | Interval         | Detectio |
|       | (MHz)     | Number (1 to 23)    | seconds)             |            | (microseconds)   |          |
| 1     | 5510      | 15                  | 1253                 | 67         | 798              | Yes      |
| 2     | 5520      | 16                  | 1223                 | 65         | 818              | No       |
| 3     | 5500      | 4                   | 1730                 | 92         | 578              | Yes      |
| 4     | 5500      | 11                  | 1393                 | 74         | 718              | Yes      |
| 5     | 5507      | 22                  | 1066                 | 57         | 938              | Yes      |
| 6     | 5500      | 7                   | 1567                 | 83         | 638              | Yes      |
| 7     | 5506      | 2                   | 1859                 | 99         | 538              | Yes      |
| 8     | 5492      | 8                   | 1520                 | 81         | 658              | Yes      |
| 9     | 5497      | 1                   | 1931                 | 102        | 518              | No       |
| 10    | 5520      | 19                  | 1139                 | 61         | 878              | Yes      |
| 11    | 5506      | 21                  | 1089                 | 58         | 918              | Yes      |
| 12    | 5517      | 23                  | 326.2                | 18         | 3066             | Yes      |
| 13    | 5509      | 9                   | 1475                 | 78         | 678              | Yes      |
| 14    | 5497      | 5                   | 1672                 | 89         | 598              | Yes      |
| 15    | 5509      | 6                   | 1618                 | 86         | 618              | Yes      |
| 16    | 5501      |                     | 1111                 | 59         | 900              | Yes      |
| 17    | 5518      |                     | 1024                 | 55         | 977              | Yes      |
| 18    | 5497      |                     | 625.8                | 34         | 1598             | Yes      |
| 19    | 5494      |                     | 730.5                | 39         | 1369             | Yes      |
| 20    | 5520      |                     | 1181                 | 63         | 847              | Yes      |
| 21    | 5522      |                     | 400.6                | 22         | 2496             | Yes      |
| 22    | 5506      |                     | 529.4                | 28         | 1889             | Yes      |
| 23    | 5512      |                     | 347.6                | 19         | 2877             | Yes      |
| 24    | 5527      |                     | 641.4                | 34         | 1559             | Yes      |
| 25    | 5514      |                     | 508.9                | 27         | 1965             | Yes      |
| 26    | 5521      |                     | 345.4                | 19         | 2895             | Yes      |
| 27    | 5523      |                     | 580.7                | 31         | 1722             | No       |
| 28    | 5524      |                     | 786.8                | 42         | 1271             | Yes      |
| 29    | 5499      |                     | 808.4                | 43         | 1237             | Yes      |
| 30    | 5500      |                     | 517.1                | 28         | 1934             | Yes      |



| Trial # | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|-------------------------|------------------|-----------------|---------|-----------|
| 1       | 5510                    | 24               | 1.7             | 174     | Yes       |
| 2       | 5520                    | 27               | 3.8             | 176     | Yes       |
| 3       | 5500                    | 28               | 4               | 161     | Yes       |
| 4       | 5495                    | 28               | 4.3             | 226     | Yes       |
| 5       | 5508                    | 24               | 1.9             | 193     | Yes       |
| 6       | 5498                    | 23               | 1.1             | 230     | Yes       |
| 7       | 5503                    | 29               | 4.5             | 198     | Yes       |
| 8       | 5507                    | 26               | 2.9             | 227     | Yes       |
| 9       | 5527                    | 26               | 2.8             | 171     | Yes       |
| 10      | 5521                    | 27               | 3.6             | 221     | Yes       |
| 11      | 5517                    | 23               | 1.1             | 180     | Yes       |
| 12      | 5503                    | 23               | 1.3             | 189     | Yes       |
| 13      | 5510                    | 25               | 2.5             | 204     | Yes       |
| 14      | 5526                    | 29               | 4.5             | 203     | Yes       |
| 15      | 5525                    | 29               | 5               | 170     | No        |
| 16      | 5493                    | 26               | 3.1             | 201     | Yes       |
| 17      | 5494                    | 24               | 2.1             | 218     | Yes       |
| 18      | 5527                    | 25               | 2.6             | 208     | Yes       |
| 19      | 5518                    | 24               | 1.8             | 223     | Yes       |
| 20      | 5504                    | 23               | 1.2             | 220     | Yes       |
| 21      | 5509                    | 26               | 2.9             | 224     | No        |
| 22      | 5510                    | 28               | 4               | 160     | Yes       |
| 23      | 5526                    | 25               | 2.5             | 209     | No        |
| 24      | 5495                    | 23               | 1               | 205     | No        |
| 25      | 5495                    | 27               | 3.7             | 151     | Yes       |
| 26      | 5527                    | 25               | 2.5             | 186     | Yes       |
| 27      | 5499                    | 23               | 1.5             | 190     | No        |
| 28      | 5523                    | 23               | 1.3             | 185     | Yes       |
| 29      | 5499                    | 23               | 1.2             | 175     | Yes       |
| 30      | 5497                    | 24               | 1.7             | 216     | Yes       |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 50 / 110



| Trial# | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|--------|-------------------------|------------------|-----------------|---------|-----------|
| 1      | 5510                    | 16               | 6.7             | 467     | Yes       |
| 2      | 5520                    | 18               | 8.8             | 304     | No        |
| 3      | 5500                    | 18               | 9               | 316     | Yes       |
| 4      | 5524                    | 18               | 9.3             | 439     | Yes       |
| 5      | 5526                    | 16               | 6.9             | 420     | Yes       |
| 6      | 5512                    | 16               | 6.1             | 249     | Yes       |
| 7      | 5518                    | 18               | 9.5             | 463     | Yes       |
| 8      | 5494                    | 17               | 7.9             | 258     | Yes       |
| 9      | 5520                    | 17               | 7.8             | 212     | Yes       |
| 10     | 5502                    | 17               | 8.6             | 236     | No        |
| 11     | 5496                    | 16               | 6.1             | 474     | No        |
| 12     | 5504                    | 16               | 6.3             | 461     | Yes       |
| 13     | 5499                    | 17               | 7.5             | 437     | Yes       |
| 14     | 5517                    | 18               | 9.5             | 287     | No        |
| 15     | 5510                    | 18               | 10              | 395     | Yes       |
| 16     | 5509                    | 17               | 8.1             | 322     | Yes       |
| 17     | 5514                    | 16               | 7.1             | 468     | Yes       |
| 18     | 5517                    | 17               | 7.6             | 255     | Yes       |
| 19     | 5516                    | 16               | 6.8             | 423     | Yes       |
| 20     | 5495                    | 16               | 6.2             | 456     | Yes       |
| 21     | 5527                    | 17               | 7.9             | 351     | Yes       |
| 22     | 5506                    | 18               | 9               | 411     | Yes       |
| 23     | 5520                    | 17               | 7.5             | 279     | Yes       |
| 24     | 5525                    | 16               | 6               | 431     | Yes       |
| 25     | 5507                    | 17               | 8.7             | 324     | Yes       |
| 26     | 5492                    | 17               | 7.5             | 419     | Yes       |
| 27     | 5499                    | 16               | 6.5             | 447     | Yes       |
| 28     | 5527                    | 16               | 6.3             | 481     | Yes       |
| 29     | 5526                    | 16               | 6.2             | 438     | Yes       |
| 30     | 5517                    | 16               | 6.7             | 270     | Yes       |



| Trial # | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|-------------------------|------------------|-----------------|---------|-----------|
| 1       | 5510                    | 12               | 12.5            | 467     | Yes       |
| 2       | 5520                    | 15               | 17.2            | 304     | Yes       |
| 3       | 5500                    | 15               | 17.8            | 316     | Yes       |
| 4       | 5519                    | 16               | 18.5            | 439     | No        |
| 5       | 5518                    | 13               | 13.1            | 420     | Yes       |
| 6       | 5511                    | 12               | 11.3            | 249     | No        |
| 7       | 5505                    | 16               | 18.8            | 463     | Yes       |
| 8       | 5495                    | 14               | 15.3            | 258     | Yes       |
| 9       | 5507                    | 14               | 15.1            | 212     | Yes       |
| 10      | 5522                    | 15               | 16.9            | 236     | Yes       |
| 11      | 5498                    | 12               | 11.2            | 474     | Yes       |
| 12      | 5520                    | 12               | 11.7            | 461     | Yes       |
| 13      | 5497                    | 13               | 14.4            | 437     | No        |
| 14      | 5512                    | 16               | 18.9            | 287     | No        |
| 15      | 5511                    | 16               | 19.9            | 395     | No        |
| 16      | 5524                    | 14               | 15.7            | 322     | Yes       |
| 17      | 5496                    | 13               | 13.4            | 468     | Yes       |
| 18      | 5507                    | 13               | 14.5            | 255     | No        |
| 19      | 5524                    | 13               | 12.9            | 423     | Yes       |
| 20      | 5523                    | 12               | 11.5            | 456     | Yes       |
| 21      | 5500                    | 14               | 15.3            | 351     | Yes       |
| 22      | 5496                    | 15               | 17.8            | 411     | Yes       |
| 23      | 5500                    | 13               | 14.3            | 279     | Yes       |
| 24      | 5509                    | 12               | 11.1            | 431     | Yes       |
| 25      | 5517                    | 15               | 17              | 324     | Yes       |
| 26      | 5504                    | 13               | 14.5            | 419     | Yes       |
| 27      | 5516                    | 12               | 12.1            | 447     | Yes       |
| 28      | 5506                    | 12               | 11.7            | 481     | No        |
| 29      | 5525                    | 12               | 11.6            | 438     | Yes       |
| 30      | 5493                    | 12               | 12.7            | 270     | Yes       |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 52 / 110



|         | dar Statistical Performance<br>Minimum | Chirp Center   | T (0: 1N         | 5         |
|---------|----------------------------------------|----------------|------------------|-----------|
| Trial # | Chirp Width(MHz)                       | Frequency(MHz) | Test Signal Name | Detection |
| 1       | 17                                     | 5510           | LP_Signal_01     | Yes       |
| 2       | 7                                      | 5510           | LP_Signal_02     | Yes       |
| 3       | 8                                      | 5510           | LP_Signal_03     | Yes       |
| 4       | 19                                     | 5510           | LP_Signal_04     | Yes       |
| 5       | 12                                     | 5510           | LP_Signal_05     | Yes       |
| 6       | 11                                     | 5510           | LP_Signal_06     | Yes       |
| 7       | 6                                      | 5510           | LP_Signal_07     | Yes       |
| 8       | 20                                     | 5510           | LP_Signal_08     | Yes       |
| 9       | 6                                      | 5510           | LP_Signal_09     | Yes       |
| 10      | 12                                     | 5510           | LP_Signal_10     | Yes       |
| 11      | 16                                     | 5497           | LP_Signal_11     | Yes       |
| 12      | 20                                     | 5499           | LP_Signal_12     | Yes       |
| 13      | 18                                     | 5498           | LP_Signal_13     | Yes       |
| 14      | 12                                     | 5496           | LP_Signal_14     | Yes       |
| 15      | 12                                     | 5496           | LP_Signal_15     | Yes       |
| 16      | 15                                     | 5497           | LP_Signal_16     | Yes       |
| 17      | 10                                     | 5495           | LP_Signal_17     | Yes       |
| 18      | 12                                     | 5496           | LP_Signal_18     | Yes       |
| 19      | 10                                     | 5495           | LP_Signal_19     | Yes       |
| 20      | 20                                     | 5499           | LP_Signal_20     | Yes       |
| 21      | 7                                      | 5526           | LP_Signal_21     | Yes       |
| 22      | 20                                     | 5521           | LP_Signal_22     | Yes       |
| 23      | 8                                      | 5526           | LP_Signal_23     | Yes       |
| 24      | 17                                     | 5522           | LP_Signal_24     | Yes       |
| 25      | 7                                      | 5526           | LP_Signal_25     | Yes       |
| 26      | 14                                     | 5523           | LP_Signal_26     | Yes       |
| 27      | 11                                     | 5525           | LP_Signal_27     | Yes       |
| 28      | 7                                      | 5526           | LP_Signal_28     | Yes       |
| 29      | 12                                     | 5524           | LP_Signal_29     | Yes       |
| 30      | 8                                      | 5526           | LP Signal 30     | Yes       |

The Long Pulse Radar pattern shown in Appendix A.1

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15

D14A-1 Page No. 53 / 110



| Trial# | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|--------|------------------|-----------------|---------|-----------|
| 1      | 9                | 1               | 333.3   | Yes       |
| 2      | 9                | 1               | 333.3   | Yes       |
| 3      | 9                | 1               | 333.3   | Yes       |
| 4      | 9                | 1               | 333.3   | Yes       |
| 5      | 9                | 1               | 333.3   | Yes       |
| 6      | 9                | 1               | 333.3   | Yes       |
| 7      | 9                | 1               | 333.3   | Yes       |
| 8      | 9                | 1               | 333.3   | Yes       |
| 9      | 9                | 1               | 333.3   | Yes       |
| 10     | 9                | 1               | 333.3   | Yes       |
| 11     | 9                | 1               | 333.3   | Yes       |
| 12     | 9                | 1               | 333.3   | Yes       |
| 13     | 9                | 1               | 333.3   | Yes       |
| 14     | 9                | 1               | 333.3   | Yes       |
| 15     | 9                | 1               | 333.3   | Yes       |
| 16     | 9                | 1               | 333.3   | Yes       |
| 17     | 9                | 1               | 333.3   | Yes       |
| 18     | 9                | 1               | 333.3   | Yes       |
| 19     | 9                | 1               | 333.3   | Yes       |
| 20     | 9                | 1               | 333.3   | Yes       |
| 21     | 9                | 1               | 333.3   | Yes       |
| 22     | 9                | 1               | 333.3   | Yes       |
| 23     | 9                | 1               | 333.3   | Yes       |
| 24     | 9                | 1               | 333.3   | Yes       |
| 25     | 9                | 1               | 333.3   | Yes       |
| 26     | 9                | 1               | 333.3   | Yes       |
| 27     | 9                | 1               | 333.3   | Yes       |
| 28     | 9                | 1               | 333.3   | Yes       |
| 29     | 9                | 1               | 333.3   | Yes       |
| 30     | 9                | 1               | 333.3   | Yes       |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 54 / 110



| Trial # | Hopping Frequency Sequence Name | Detection |
|---------|---------------------------------|-----------|
| 1       | HOP_FREQ_SEQ_01                 | Yes       |
| 2       | HOP_FREQ_SEQ_02                 | Yes       |
| 3       | HOP_FREQ_SEQ_03                 | Yes       |
| 4       | HOP_FREQ_SEQ_04                 | Yes       |
| 5       | HOP_FREQ_SEQ_05                 | Yes       |
| 6       | HOP_FREQ_SEQ_06                 | Yes       |
| 7       | HOP_FREQ_SEQ_07                 | Yes       |
| 8       | HOP_FREQ_SEQ_08                 | Yes       |
| 9       | HOP_FREQ_SEQ_09                 | Yes       |
| 10      | HOP_FREQ_SEQ_10                 | Yes       |
| 11      | HOP_FREQ_SEQ_11                 | Yes       |
| 12      | HOP_FREQ_SEQ_12                 | Yes       |
| 13      | HOP_FREQ_SEQ_13                 | Yes       |
| 14      | HOP_FREQ_SEQ_14                 | Yes       |
| 15      | HOP_FREQ_SEQ_15                 | Yes       |
| 16      | HOP_FREQ_SEQ_16                 | Yes       |
| 17      | HOP_FREQ_SEQ_17                 | Yes       |
| 18      | HOP_FREQ_SEQ_18                 | Yes       |
| 19      | HOP_FREQ_SEQ_19                 | Yes       |
| 20      | HOP_FREQ_SEQ_20                 | Yes       |
| 21      | HOP_FREQ_SEQ_21                 | Yes       |
| 22      | HOP_FREQ_SEQ_22                 | Yes       |
| 23      | HOP_FREQ_SEQ_23                 | Yes       |
| 24      | HOP_FREQ_SEQ_24                 | Yes       |
| 25      | HOP_FREQ_SEQ_25                 | Yes       |
| 26      | HOP_FREQ_SEQ_26                 | Yes       |
| 27      | HOP_FREQ_SEQ_27                 | Yes       |
| 28      | HOP_FREQ_SEQ_28                 | Yes       |
| 29      | HOP_FREQ_SEQ_29                 | Yes       |
| 30      | HOP FREQ SEQ 30                 | Yes       |

The Frequency Hopping Radar pattern shown in Appendix A.2



| Type       |               | stical Performances |                      | 1          |                  |           |
|------------|---------------|---------------------|----------------------|------------|------------------|-----------|
| Trial Test |               | Pulse Repetition    | Pulse Repetition     | Pulses per | Pulse Repetition |           |
|            | #   Frequency | Frequency           | Frequency (Pulse per | Burst      | Interval         | Detection |
|            | (MHz)         | Number (1 to 23)    | seconds)             |            | (microseconds)   |           |
| 1          | 5530          | 15                  | 1253                 | 67         | 798              | Yes       |
| 2          | 5540          | 16                  | 1223                 | 65         | 818              | Yes       |
| 3          | 5560          | 4                   | 1730                 | 92         | 578              | Yes       |
| 4          | 5520          | 11                  | 1393                 | 74         | 718              | Yes       |
| 5          | 5500          | 22                  | 1066                 | 57         | 938              | Yes       |
| 6          | 5532          | 7                   | 1567                 | 83         | 638              | Yes       |
| 7          | 5547          | 2                   | 1859                 | 99         | 538              | Yes       |
| 8          | 5546          | 8                   | 1520                 | 81         | 658              | Yes       |
| 9          | 5516          | 1                   | 1931                 | 102        | 518              | Yes       |
| 10         | 5564          | 19                  | 1139                 | 61         | 878              | Yes       |
| 11         | 5533          | 21                  | 1089                 | 58         | 918              | Yes       |
| 12         | 5507          | 23                  | 326.2                | 18         | 3066             | Yes       |
| 13         | 5552          | 9                   | 1475                 | 78         | 678              | Yes       |
| 14         | 5509          | 5                   | 1672                 | 89         | 598              | Yes       |
| 15         | 5566          | 6                   | 1618                 | 86         | 618              | Yes       |
| 16         | 5502          |                     | 1111                 | 59         | 900              | Yes       |
| 17         | 5566          |                     | 1024                 | 55         | 977              | Yes       |
| 18         | 5544          |                     | 625.8                | 34         | 1598             | Yes       |
| 19         | 5504          |                     | 730.5                | 39         | 1369             | Yes       |
| 20         | 5505          |                     | 1181                 | 63         | 847              | Yes       |
| 21         | 5508          |                     | 400.6                | 22         | 2496             | Yes       |
| 22         | 5513          |                     | 529.4                | 28         | 1889             | Yes       |
| 23         | 5562          |                     | 347.6                | 19         | 2877             | Yes       |
| 24         | 5507          |                     | 641.4                | 34         | 1559             | Yes       |
| 25         | 5554          |                     | 508.9                | 27         | 1965             | Yes       |
| 26         | 5527          |                     | 345.4                | 19         | 2895             | Yes       |
| 27         | 5513          |                     | 580.7                | 31         | 1722             | Yes       |
| 28         | 5566          |                     | 786.8                | 42         | 1271             | Yes       |
| 29         | 5534          |                     | 808.4                | 43         | 1237             | Yes       |
| 30         | 5561          |                     | 517.1                | 28         | 1934             | Yes       |
| 30         | 5561          | <u> </u>            | 517.1                | 28         | 1934 Detection R |           |



| ypc z rtu | dar Statistical Perfor  | T T              |                 |         |           |
|-----------|-------------------------|------------------|-----------------|---------|-----------|
| Trial #   | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
| 1         | 5530                    | 24               | 1.7             | 174     | Yes       |
| 2         | 5540                    | 27               | 3.8             | 176     | Yes       |
| 3         | 5560                    | 28               | 4               | 161     | Yes       |
| 4         | 5520                    | 28               | 4.3             | 226     | Yes       |
| 5         | 5500                    | 24               | 1.9             | 193     | Yes       |
| 6         | 5527                    | 23               | 1.1             | 230     | Yes       |
| 7         | 5551                    | 29               | 4.5             | 198     | Yes       |
| 8         | 5526                    | 26               | 2.9             | 227     | Yes       |
| 9         | 5541                    | 26               | 2.8             | 171     | Yes       |
| 10        | 5511                    | 27               | 3.6             | 221     | Yes       |
| 11        | 5553                    | 23               | 1.1             | 180     | Yes       |
| 12        | 5555                    | 23               | 1.3             | 189     | Yes       |
| 13        | 5561                    | 25               | 2.5             | 204     | Yes       |
| 14        | 5541                    | 29               | 4.5             | 203     | Yes       |
| 15        | 5522                    | 29               | 5               | 170     | Yes       |
| 16        | 5493                    | 26               | 3.1             | 201     | Yes       |
| 17        | 5495                    | 24               | 2.1             | 218     | Yes       |
| 18        | 5547                    | 25               | 2.6             | 208     | Yes       |
| 19        | 5521                    | 24               | 1.8             | 223     | Yes       |
| 20        | 5555                    | 23               | 1.2             | 220     | Yes       |
| 21        | 5519                    | 26               | 2.9             | 224     | Yes       |
| 22        | 5546                    | 28               | 4               | 160     | Yes       |
| 23        | 5543                    | 25               | 2.5             | 209     | Yes       |
| 24        | 5553                    | 23               | 1               | 205     | Yes       |
| 25        | 5521                    | 27               | 3.7             | 151     | Yes       |
| 26        | 5494                    | 25               | 2.5             | 186     | Yes       |
| 27        | 5524                    | 23               | 1.5             | 190     | Yes       |
| 28        | 5519                    | 23               | 1.3             | 185     | No        |
| 29        | 5504                    | 23               | 1.2             | 175     | Yes       |
| 30        | 5547                    | 24               | 1.7             | 216     | Yes       |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 57 / 110



| ype 3 Ra | dar Statistical Perfo   | mances           |                 |         |           |
|----------|-------------------------|------------------|-----------------|---------|-----------|
| Trial #  | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
| 1        | 5530                    | 16               | 6.7             | 467     | Yes       |
| 2        | 5540                    | 18               | 8.8             | 304     | Yes       |
| 3        | 5560                    | 18               | 9               | 316     | Yes       |
| 4        | 5520                    | 18               | 9.3             | 439     | Yes       |
| 5        | 5500                    | 16               | 6.9             | 420     | Yes       |
| 6        | 5497                    | 16               | 6.1             | 249     | No        |
| 7        | 5516                    | 18               | 9.5             | 463     | Yes       |
| 8        | 5529                    | 17               | 7.9             | 258     | Yes       |
| 9        | 5508                    | 17               | 7.8             | 212     | Yes       |
| 10       | 5524                    | 17               | 8.6             | 236     | Yes       |
| 11       | 5522                    | 16               | 6.1             | 474     | Yes       |
| 12       | 5560                    | 16               | 6.3             | 461     | Yes       |
| 13       | 5542                    | 17               | 7.5             | 437     | Yes       |
| 14       | 5522                    | 18               | 9.5             | 287     | Yes       |
| 15       | 5561                    | 18               | 10              | 395     | Yes       |
| 16       | 5509                    | 17               | 8.1             | 322     | Yes       |
| 17       | 5512                    | 16               | 7.1             | 468     | Yes       |
| 18       | 5535                    | 17               | 7.6             | 255     | Yes       |
| 19       | 5556                    | 16               | 6.8             | 423     | Yes       |
| 20       | 5540                    | 16               | 6.2             | 456     | Yes       |
| 21       | 5502                    | 17               | 7.9             | 351     | Yes       |
| 22       | 5494                    | 18               | 9               | 411     | Yes       |
| 23       | 5525                    | 17               | 7.5             | 279     | Yes       |
| 24       | 5494                    | 16               | 6               | 431     | Yes       |
| 25       | 5515                    | 17               | 8.7             | 324     | Yes       |
| 26       | 5564                    | 17               | 7.5             | 419     | Yes       |
| 27       | 5497                    | 16               | 6.5             | 447     | Yes       |
| 28       | 5565                    | 16               | 6.3             | 481     | Yes       |
| 29       | 5503                    | 16               | 6.2             | 438     | Yes       |
| 30       | 5552                    | 16               | 6.7             | 270     | Yes       |



| Trial # | Test Frequency<br>(MHz) | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|-------------------------|------------------|-----------------|---------|-----------|
| 1       | 5530                    | 12               | 12.5            | 467     | Yes       |
| 2       | 5540                    | 15               | 17.2            | 304     | Yes       |
| 3       | 5560                    | 15               | 17.8            | 316     | Yes       |
| 4       | 5520                    | 16               | 18.5            | 439     | Yes       |
| 5       | 5500                    | 13               | 13.1            | 420     | No        |
| 6       | 5561                    | 12               | 11.3            | 249     | Yes       |
| 7       | 5548                    | 16               | 18.8            | 463     | Yes       |
| 8       | 5550                    | 14               | 15.3            | 258     | No        |
| 9       | 5564                    | 14               | 15.1            | 212     | Yes       |
| 10      | 5504                    | 15               | 16.9            | 236     | Yes       |
| 11      | 5545                    | 12               | 11.2            | 474     | Yes       |
| 12      | 5539                    | 12               | 11.7            | 461     | No        |
| 13      | 5554                    | 13               | 14.4            | 437     | Yes       |
| 14      | 5548                    | 16               | 18.9            | 287     | Yes       |
| 15      | 5557                    | 16               | 19.9            | 395     | Yes       |
| 16      | 5518                    | 14               | 15.7            | 322     | Yes       |
| 17      | 5515                    | 13               | 13.4            | 468     | Yes       |
| 18      | 5512                    | 13               | 14.5            | 255     | Yes       |
| 19      | 5529                    | 13               | 12.9            | 423     | No        |
| 20      | 5526                    | 12               | 11.5            | 456     | Yes       |
| 21      | 5515                    | 14               | 15.3            | 351     | Yes       |
| 22      | 5536                    | 15               | 17.8            | 411     | Yes       |
| 23      | 5559                    | 13               | 14.3            | 279     | Yes       |
| 24      | 5534                    | 12               | 11.1            | 431     | Yes       |
| 25      | 5553                    | 15               | 17              | 324     | Yes       |
| 26      | 5550                    | 13               | 14.5            | 419     | Yes       |
| 27      | 5561                    | 12               | 12.1            | 447     | Yes       |
| 28      | 5552                    | 12               | 11.7            | 481     | Yes       |
| 29      | 5564                    | 12               | 11.6            | 438     | Yes       |
| 30      | 5547                    | 12               | 12.7            | 270     | Yes       |



| rial # | Minimum          | Chirp Center   | Test Signal Name | Detection |
|--------|------------------|----------------|------------------|-----------|
|        | Chirp Width(MHz) | Frequency(MHz) |                  |           |
| 1      | <u>17</u>        | 5530           | LP_Signal_01     | Yes       |
| 2      | 7                | 5530           | LP_Signal_02     | Yes       |
| 3      | 8                | 5530           | LP_Signal_03     | Yes       |
| 4      | 19               | 5530           | LP_Signal_04     | Yes       |
| 5      | 12               | 5530           | LP_Signal_05     | Yes       |
| 6      | 11               | 5530           | LP_Signal_06     | Yes       |
| 7      | 6                | 5530           | LP_Signal_07     | Yes       |
| 8      | 20               | 5530           | LP_Signal_08     | Yes       |
| 9      | 6                | 5530           | LP_Signal_09     | Yes       |
| 10     | 12               | 5530           | LP_Signal_10     | Yes       |
| 11     | 16               | 5498           | LP_Signal_11     | Yes       |
| 12     | 20               | 5500           | LP_Signal_12     | Yes       |
| 13     | 18               | 5499           | LP_Signal_13     | Yes       |
| 14     | 12               | 5497           | LP_Signal_14     | Yes       |
| 15     | 12               | 5497           | LP_Signal_15     | Yes       |
| 16     | 15               | 5498           | LP_Signal_16     | Yes       |
| 17     | 10               | 5496           | LP_Signal_17     | Yes       |
| 18     | 12               | 5497           | LP_Signal_18     | Yes       |
| 19     | 10               | 5496           | LP_Signal_19     | Yes       |
| 20     | 20               | 5500           | LP_Signal_20     | Yes       |
| 21     | 7                | 5565           | LP_Signal_21     | Yes       |
| 22     | 20               | 5560           | LP_Signal_22     | Yes       |
| 23     | 8                | 5565           | LP_Signal_23     | Yes       |
| 24     | 17               | 5561           | LP_Signal_24     | Yes       |
| 25     | 7                | 5565           | LP_Signal_25     | Yes       |
| 26     | 14               | 5562           | LP_Signal_26     | Yes       |
| 27     | 11               | 5564           | LP_Signal_27     | Yes       |
| 28     | 7                | 5565           | LP_Signal_28     | Yes       |
| 29     | 12               | 5563           | LP_Signal_29     | Yes       |
| 30     | 8                | 5565           | LP Signal 30     | Yes       |

The Long Pulse Radar pattern shown in Appendix A.1

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 60 / 110



| Γrial # | Pulses per Burst | Pulse Width(us) | PRI(us) | Detection |
|---------|------------------|-----------------|---------|-----------|
| 1       | 9                | 1               | 333.3   | Yes       |
| 2       | 9                | 1               | 333.3   | Yes       |
| 3       | 9                | 1               | 333.3   | Yes       |
| 4       | 9                | 1               | 333.3   | Yes       |
| 5       | 9                | 1               | 333.3   | Yes       |
| 6       | 9                | 1               | 333.3   | Yes       |
| 7       | 9                | 1               | 333.3   | Yes       |
| 8       | 9                | 1               | 333.3   | Yes       |
| 9       | 9                | 1               | 333.3   | Yes       |
| 10      | 9                | 1               | 333.3   | Yes       |
| 11      | 9                | 1               | 333.3   | Yes       |
| 12      | 9                | 1               | 333.3   | Yes       |
| 13      | 9                | 1               | 333.3   | Yes       |
| 14      | 9                | 1               | 333.3   | Yes       |
| 15      | 9                | 1               | 333.3   | Yes       |
| 16      | 9                | 1               | 333.3   | Yes       |
| 17      | 9                | 1               | 333.3   | Yes       |
| 18      | 9                | 1               | 333.3   | Yes       |
| 19      | 9                | 1               | 333.3   | Yes       |
| 20      | 9                | 1               | 333.3   | Yes       |
| 21      | 9                | 1               | 333.3   | Yes       |
| 22      | 9                | 1               | 333.3   | Yes       |
| 23      | 9                | 1               | 333.3   | Yes       |
| 24      | 9                | 1               | 333.3   | Yes       |
| 25      | 9                | 1               | 333.3   | Yes       |
| 26      | 9                | 1               | 333.3   | Yes       |
| 27      | 9                | 1               | 333.3   | Yes       |
| 28      | 9                | 1               | 333.3   | Yes       |
| 29      | 9                | 1               | 333.3   | Yes       |
| 30      | 9                | 1               | 333.3   | Yes       |



| e 6 Radar Statistion<br>Trial # | Hopping Frequency Sequence Name | Detection           |
|---------------------------------|---------------------------------|---------------------|
| 1                               | HOP FREQ SEQ 01                 | Yes                 |
| 2                               | HOP FREQ SEQ 02                 | Yes                 |
| 3                               | HOP_FREQ_SEQ_02                 | Yes                 |
| 4                               | HOP FREQ SEQ 04                 | Yes                 |
|                                 | HOP_FREQ_SEQ_04                 | Yes                 |
| 5<br>6                          | HOP_FREQ_SEQ_05                 | Yes                 |
|                                 |                                 |                     |
| 7                               | HOP_FREQ_SEQ_07                 | Yes<br>Yes          |
| 8                               | HOP_FREQ_SEQ_08                 |                     |
| 9                               | HOP_FREQ_SEQ_09                 | Yes                 |
| 10                              | HOP_FREQ_SEQ_10                 | Yes                 |
| 11                              | HOP_FREQ_SEQ_11                 | Yes                 |
| 12                              | HOP_FREQ_SEQ_12                 | Yes                 |
| 13                              | HOP_FREQ_SEQ_13                 | Yes                 |
| 14                              | HOP_FREQ_SEQ_14                 | Yes                 |
| 15                              | HOP_FREQ_SEQ_15                 | Yes                 |
| 16                              | HOP_FREQ_SEQ_16                 | Yes                 |
| 17                              | HOP_FREQ_SEQ_17                 | Yes                 |
| 18                              | HOP_FREQ_SEQ_18                 | Yes                 |
| 19                              | HOP_FREQ_SEQ_19                 | Yes                 |
| 20                              | HOP_FREQ_SEQ_20                 | Yes                 |
| 21                              | HOP_FREQ_SEQ_21                 | Yes                 |
| 22                              | HOP_FREQ_SEQ_22                 | Yes                 |
| 23                              | HOP_FREQ_SEQ_23                 | Yes                 |
| 24                              | HOP FREQ SEQ 24                 | Yes                 |
| 25                              | HOP FREQ SEQ 25                 | Yes                 |
| 26                              | HOP FREQ SEQ 26                 | Yes                 |
| 27                              | HOP FREQ SEQ 27                 | Yes                 |
| 28                              | HOP FREQ SEQ 28                 | Yes                 |
| 29                              | HOP FREQ SEQ 29                 | Yes                 |
| 30                              | HOP FREQ SEQ 30                 | Yes                 |
|                                 | <del> </del>                    | Detection Rate: 100 |

The Frequency Hopping Radar pattern shown in Appendix A.2



#### 6.2.5 Non-Occupancy Period

1) Test results demonstrating an associated client link is established with the master on a test frequency.



 The master and DFS-certified client device are associated, and system testing will be performed with channel-loading for a non-occupancy period test.



Client performed with channel-loading via master.





 The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes;

Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

5)An analyzer plot that contains a single 30-minute sweep on the original test frequency.





#### 7. Information on The Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linkou EMC/RF Lab: Hsin Chu EMC/RF/Telecom Lab:

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a>
Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

Report No.: RF180615D14A-1 Page No. 65 / 110 Report Format Version: 6.1.2

Reference No.: 180426D05, 180615D15



### 8. APPENDIX-A

### **RADAR TEST SIGNAL**

A.1 The Long Pulse Radar Pattern

Long Pulse Radar Test Signal Test Signal Name: LP\_Signal\_01 Number of Bursts in Trial: 18

| Num   | ber of Burst        | s in Trial:    | 18                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 17             | 89.4               | 1750       | 1823       | 1091       |
| 2     | 1                   | 17             | 57.6               | 1831       | -          | -          |
| 3     | 1                   | 17             | 62.1               | 1839       | -          | -          |
| 4     | 3                   | 17             | 94.8               | 1258       | 1771       | 1217       |
| 5     | 2                   | 17             | 74.7               | 1246       | 1854       | -          |
| 6     | 2                   | 17             | 70.3               | 1286       | 1132       | -          |
| 7     | 1                   | 17             | 55.3               | 1409       | -          | -          |
| 8     | 3                   | 17             | 99.3               | 1879       | 1810       | 1391       |
| 9     | 1                   | 17             | 53.5               | 1673       | -          | -          |
| 10    | 2                   | 17             | 74.6               | 1448       | 1969       | -          |
| 11    | 3                   | 17             | 85.5               | 1999       | 1087       | 1140       |
| 12    | 3                   | 17             | 99.3               | 1602       | 1435       | 1376       |
| 13    | 3                   | 17             | 91                 | 1211       | 1374       | 1783       |
| 14    | 2                   | 17             | 73.8               | 1924       | 1124       | -          |
| 15    | 2                   | 17             | 74.1               | 1641       | 1247       | -          |
| 16    | 2                   | 17             | 82.2               | 1904       | 1345       | -          |
| 17    | 2                   | 17             | 68.6               | 1168       | 1844       | -          |
| 18    | 2                   | 17             | 74.8               | 1444       | 1778       | -          |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_02
Number of Bursts in Trial: 9

| INUITI | bei oi buisi        | S III IIIai.   | 9                  |            |            |            |
|--------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst  | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1      | 2                   | 7              | 67.7               | 1691       | 1157       | -          |
| 2      | 3                   | 7              | 99.8               | 1097       | 1766       | 1178       |
| 3      | 1                   | 7              | 56.9               | 1188       | -          | -          |
| 4      | 3                   | 7              | 99.1               | 1208       | 1655       | 1974       |
| 5      | 1                   | 7              | 60.8               | 1480       | -          | -          |
| 6      | 3                   | 7              | 88.3               | 1272       | 1863       | 1474       |
| 7      | 1                   | 7              | 57.5               | 1911       | -          | -          |
| 8      | 2                   | 7              | 80.3               | 1455       | 1881       | -          |
| 9      | 2                   | 7              | 71.4               | 1137       | 1241       | 0          |
| 10     |                     |                |                    |            |            |            |
| 11     |                     |                |                    |            |            |            |
| 12     |                     |                |                    |            |            |            |
| 13     |                     |                |                    |            |            |            |
| 14     |                     |                |                    |            |            |            |
| 15     |                     |                |                    |            |            |            |
| 16     |                     |                |                    |            |            |            |
| 17     |                     |                |                    |            |            |            |
| 18     |                     |                |                    |            |            |            |
| 19     |                     |                |                    |            |            |            |
| 20     |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_03

Number of Bursts in Trial: 11

| Num   | ber of Burst        | s in Trial:    | 11                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 8              | 58.9               | 1295       | -          | -          |
| 2     | 2                   | 8              | 72.6               | 1375       | 1213       | -          |
| 3     | 1                   | 8              | 60.7               | 1039       | -          | -          |
| 4     | 2                   | 8              | 70.8               | 1230       | 1064       | -          |
| 5     | 1                   | 8              | 51.9               | 1025       | -          | -          |
| 6     | 2                   | 8              | 67.5               | 1895       | 1802       | -          |
| 7     | 2                   | 8              | 80.8               | 1550       | 1533       | -          |
| 8     | 2                   | 8              | 68.6               | 1525       | 1221       | -          |
| 9     | 3                   | 8              | 92.4               | 1651       | 1985       | 1505       |
| 10    | 3                   | 8              | 87                 | 1671       | 1451       | 1643       |
| 11    | 2                   | 8              | 70.9               | 1439       | 1724       | -          |
| 12    |                     |                |                    |            |            |            |
| 13    |                     |                |                    |            |            |            |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_04
Number of Bursts in Trial: 19

| Number of Bursts in Trial: 19 |                     |                |                    |            |            |            |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |
| 1                             | 2                   | 19             | 81.2               | 1922       | 1020       | -          |  |
| 2                             | 1                   | 19             | 57.6               | 1677       | -          | -          |  |
| 3                             | 3                   | 19             | 84.9               | 1073       | 1244       | 1949       |  |
| 4                             | 2                   | 19             | 83.1               | 1935       | 1174       | -          |  |
| 5                             | 2                   | 19             | 71.1               | 1542       | 1560       | -          |  |
| 6                             | 1                   | 19             | 55.1               | 1790       | -          | -          |  |
| 7                             | 1                   | 19             | 54.4               | 1396       | -          | -          |  |
| 8                             | 3                   | 19             | 90.6               | 1035       | 1886       | 1980       |  |
| 9                             | 3                   | 19             | 92.2               | 1950       | 1759       | 1163       |  |
| 10                            | 3                   | 19             | 92.5               | 1108       | 1661       | 1358       |  |
| 11                            | 2                   | 19             | 79.5               | 1441       | 1957       | -          |  |
| 12                            | 2                   | 19             | 76.3               | 1259       | 1876       | -          |  |
| 13                            | 1                   | 19             | 65.7               | 1880       | -          | -          |  |
| 14                            | 3                   | 19             | 99.4               | 1971       | 1493       | 1004       |  |
| 15                            | 3                   | 19             | 89.5               | 1238       | 1700       | 1581       |  |
| 16                            | 2                   | 19             | 79.1               | 1906       | 1546       | -          |  |
| 17                            | 1                   | 19             | 60                 | 1019       | -          | -          |  |
| 18                            | 3                   | 19             | 90.3               | 1808       | 1034       | 1199       |  |
| 19                            | 3                   | 19             | 96.8               | 1869       | 1993       | 1967       |  |
| 20                            |                     |                |                    |            |            |            |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 69 / 110



Test Signal Name: LP\_Signal\_05
Number of Bursts in Trial: 14

| inumi | per of Burst        | s in Triai:    | 14                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 2                   | 12             | 73.8               | 1686       | 1255       | -          |
| 2     | 3                   | 12             | 87.2               | 1201       | 1621       | 1693       |
| 3     | 3                   | 12             | 94.4               | 1503       | 1529       | 1431       |
| 4     | 3                   | 12             | 99                 | 1308       | 1366       | 1481       |
| 5     | 3                   | 12             | 96.5               | 1318       | 1418       | 1452       |
| 6     | 2                   | 12             | 76.6               | 1695       | 1170       | -          |
| 7     | 3                   | 12             | 92.8               | 1304       | 1113       | 1835       |
| 8     | 1                   | 12             | 53.8               | 1068       | -          | -          |
| 9     | 3                   | 12             | 83.6               | 1384       | 1593       | 1212       |
| 10    | 2                   | 12             | 81.8               | 1395       | 1768       | -          |
| 11    | 1                   | 12             | 60.2               | 1129       | -          | -          |
| 12    | 1                   | 12             | 55.1               | 1045       | -          | -          |
| 13    | 2                   | 12             | 81.8               | 1984       | 1703       | -          |
| 14    | 3                   | 12             | 95.3               | 1992       | 1828       | 1932       |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 70 / 110



Test Signal Name: LP\_Signal\_06
Number of Bursts in Trial: 13

| Num   | ber of Burst        | s in Trial:    | 13                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 11             | 97.7               | 1350       | 1354       | 1424       |
| 2     | 3                   | 11             | 93.6               | 1779       | 1273       | 1540       |
| 3     | 1                   | 11             | 60                 | 1065       | -          | -          |
| 4     | 1                   | 11             | 64.8               | 1956       | -          | -          |
| 5     | 2                   | 11             | 73.9               | 1390       | 1794       | -          |
| 6     | 2                   | 11             | 77.9               | 1670       | 1206       | -          |
| 7     | 1                   | 11             | 55.7               | 1942       | -          | -          |
| 8     | 3                   | 11             | 83.9               | 1105       | 1853       | 1440       |
| 9     | 2                   | 11             | 66.9               | 1819       | 1281       | -          |
| 10    | 3                   | 11             | 88.2               | 1734       | 1361       | 1371       |
| 11    | 2                   | 11             | 79                 | 1400       | 1522       | -          |
| 12    | 2                   | 11             | 79.4               | 1516       | 1031       | -          |
| 13    | 3                   | 11             | 96.4               | 1328       | 1845       | 1833       |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 71 / 110



Test Signal Name: LP\_Signal\_07

Number of Bursts in Trial: 9

| Num   | ber of Burst        | s in Trial:    | 9                  |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 6              | 95.1               | 1436       | 1883       | 1146       |
| 2     | 2                   | 6              | 71.5               | 1669       | 1952       | -          |
| 3     | 1                   | 6              | 62.5               | 1309       | -          | -          |
| 4     | 3                   | 6              | 88.5               | 1797       | 1846       | 1528       |
| 5     | 2                   | 6              | 70.7               | 1976       | 1714       | -          |
| 6     | 2                   | 6              | 78.3               | 1943       | 1873       | -          |
| 7     | 3                   | 6              | 95.6               | 1763       | 1887       | 1977       |
| 8     | 1                   | 6              | 63.1               | 1434       | -          | -          |
| 9     | 3                   | 6              | 83.7               | 1069       | 1236       | 1277       |
| 10    |                     |                |                    |            |            |            |
| 11    |                     |                |                    |            |            |            |
| 12    |                     |                |                    |            |            |            |
| 13    |                     |                |                    |            |            |            |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_08
Number of Bursts in Trial: 20

| Num   | ber of Burst        | s in Trial:    | 20                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 20             | 86.9               | 1257       | 1010       | 1287       |
| 2     | 1                   | 20             | 58.7               | 1628       | -          | -          |
| 3     | 3                   | 20             | 88.4               | 1800       | 1214       | 1234       |
| 4     | 1                   | 20             | 56.4               | 1340       | -          | -          |
| 5     | 2                   | 20             | 78.4               | 1792       | 1243       | -          |
| 6     | 1                   | 20             | 51.3               | 1416       | -          | -          |
| 7     | 2                   | 20             | 70.8               | 1645       | 1975       | -          |
| 8     | 1                   | 20             | 58.8               | 1755       | -          | -          |
| 9     | 2                   | 20             | 82                 | 1476       | 1356       | -          |
| 10    | 3                   | 20             | 87.3               | 1650       | 1941       | 1834       |
| 11    | 3                   | 20             | 97.8               | 1898       | 1608       | 1523       |
| 12    | 2                   | 20             | 81.1               | 1696       | 1870       | -          |
| 13    | 2                   | 20             | 68.1               | 1652       | 1323       | -          |
| 14    | 1                   | 20             | 55.7               | 1814       | -          | -          |
| 15    | 2                   | 20             | 79.4               | 1078       | 1527       | -          |
| 16    | 1                   | 20             | 64.2               | 1667       | -          | -          |
| 17    | 3                   | 20             | 86.2               | 1052       | 1038       | 1690       |
| 18    | 1                   | 20             | 62.3               | 1494       | -          | -          |
| 19    | 3                   | 20             | 91.1               | 1885       | 1460       | 1013       |
| 20    | 3                   | 20             | 89.9               | 1603       | 1592       | 1239       |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 73 / 110



Long Pulse Radar Test Signal
Test Signal Name: LP\_Signal\_09

Number of Bursts in Trial: 8

| Num   | ber of Burst        | s in Trial:    | 8                  |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 2                   | 6              | 70.2               | 1773       | 1471       | -          |
| 2     | 1                   | 6              | 56.2               | 1180       | -          | -          |
| 3     | 2                   | 6              | 69.9               | 1042       | 1393       | -          |
| 4     | 2                   | 6              | 67                 | 1569       | 1594       | -          |
| 5     | 2                   | 6              | 80.3               | 1292       | 1588       | -          |
| 6     | 3                   | 6              | 97.8               | 1338       | 1678       | 1114       |
| 7     | 2                   | 6              | 82.3               | 1803       | 1185       | -          |
| 8     | 2                   | 6              | 71.1               | 1564       | 1164       | -          |
| 9     |                     |                |                    |            |            |            |
| 10    |                     |                |                    |            |            |            |
| 11    |                     |                |                    |            |            |            |
| 12    |                     |                |                    |            |            |            |
| 13    |                     |                |                    |            |            |            |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_10
Number of Bursts in Trial: 14

| Num   | Number of Bursts in Trial: 14 |                |                    |            |            |            |  |  |  |
|-------|-------------------------------|----------------|--------------------|------------|------------|------------|--|--|--|
| Burst | Pulses<br>per Burst           | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |  |
| 1     | 3                             | 12             | 93.3               | 1781       | 1456       | 1265       |  |  |  |
| 2     | 3                             | 12             | 89.5               | 1276       | 1002       | 1998       |  |  |  |
| 3     | 2                             | 12             | 76.9               | 1607       | 1538       | -          |  |  |  |
| 4     | 3                             | 12             | 86.2               | 1261       | 1890       | 1231       |  |  |  |
| 5     | 2                             | 12             | 82.1               | 1559       | 1369       | -          |  |  |  |
| 6     | 1                             | 12             | 63.9               | 1752       | -          | -          |  |  |  |
| 7     | 1                             | 12             | 56.7               | 1225       | -          | -          |  |  |  |
| 8     | 1                             | 12             | 51.3               | 1183       | -          | -          |  |  |  |
| 9     | 2                             | 12             | 76.5               | 1498       | 1486       | -          |  |  |  |
| 10    | 2                             | 12             | 67.4               | 1235       | 1381       | -          |  |  |  |
| 11    | 3                             | 12             | 99.6               | 1582       | 1629       | 1177       |  |  |  |
| 12    | 1                             | 12             | 54.4               | 1983       | -          | -          |  |  |  |
| 13    | 1                             | 12             | 63.1               | 1953       | -          | -          |  |  |  |
| 14    | 1                             | 12             | 58.1               | 1075       | _          | -          |  |  |  |
| 15    |                               |                |                    |            |            |            |  |  |  |
| 16    |                               |                |                    |            |            |            |  |  |  |
| 17    |                               |                |                    |            |            |            |  |  |  |
| 18    |                               |                |                    |            |            |            |  |  |  |
| 19    |                               |                |                    |            |            |            |  |  |  |
| 20    |                               |                |                    |            |            |            |  |  |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 75 / 110



Test Signal Name: LP\_Signal\_11
Number of Bursts in Trial: 17

| Number of Bursts in Trial: 17 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 1                   | 16             | 56.2               | 1389       | -          | -          |  |  |
| 2                             | 3                   | 16             | 91.7               | 1227       | 1497       | 1722       |  |  |
| 3                             | 2                   | 16             | 81.7               | 1437       | 1561       | -          |  |  |
| 4                             | 1                   | 16             | 65.2               | 1001       | -          | -          |  |  |
| 5                             | 2                   | 16             | 76.9               | 1649       | 1267       | -          |  |  |
| 6                             | 1                   | 16             | 65.7               | 1962       | -          | -          |  |  |
| 7                             | 2                   | 16             | 83.1               | 1242       | 1536       | -          |  |  |
| 8                             | 2                   | 16             | 74.3               | 1972       | 1030       | -          |  |  |
| 9                             | 3                   | 16             | 84.6               | 1148       | 1675       | 1683       |  |  |
| 10                            | 1                   | 16             | 66                 | 1398       | -          | -          |  |  |
| 11                            | 1                   | 16             | 54.4               | 1368       | -          | -          |  |  |
| 12                            | 2                   | 16             | 73.2               | 1692       | 1156       | -          |  |  |
| 13                            | 1                   | 16             | 63.5               | 1508       | -          | -          |  |  |
| 14                            | 2                   | 16             | 80.7               | 1506       | 1426       | -          |  |  |
| 15                            | 3                   | 16             | 88.8               | 1939       | 1738       | 1841       |  |  |
| 16                            | 2                   | 16             | 71.3               | 1430       | 1705       | -          |  |  |
| 17                            | 2                   | 16             | 76.2               | 1182       | 1708       | -          |  |  |
| 18                            |                     |                |                    |            |            |            |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |



Test Signal Name: LP\_Signal\_12
Number of Bursts in Trial: 20

| Number of Bursts in Trial: 20 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 2                   | 20             | 80.6               | 1716       | 1419       | -          |  |  |
| 2                             | 2                   | 20             | 69                 | 1197       | 1349       | -          |  |  |
| 3                             | 3                   | 20             | 99.8               | 1300       | 1756       | 1712       |  |  |
| 4                             | 1                   | 20             | 65.5               | 1028       | -          | -          |  |  |
| 5                             | 3                   | 20             | 92.5               | 1857       | 1534       | 1544       |  |  |
| 6                             | 1                   | 20             | 60.4               | 1640       | -          | -          |  |  |
| 7                             | 1                   | 20             | 61.5               | 1761       | -          | -          |  |  |
| 8                             | 3                   | 20             | 99                 | 1457       | 1908       | 1599       |  |  |
| 9                             | 1                   | 20             | 54.1               | 1487       | -          | -          |  |  |
| 10                            | 3                   | 20             | 99.1               | 1720       | 1314       | 1945       |  |  |
| 11                            | 2                   | 20             | 78                 | 1155       | 1829       | -          |  |  |
| 12                            | 3                   | 20             | 87.8               | 1812       | 1617       | 1159       |  |  |
| 13                            | 2                   | 20             | 68.8               | 1458       | 1438       | -          |  |  |
| 14                            | 1                   | 20             | 62.7               | 1672       | -          | -          |  |  |
| 15                            | 3                   | 20             | 86.7               | 1618       | 1422       | 1224       |  |  |
| 16                            | 2                   | 20             | 76.8               | 1056       | 1934       | -          |  |  |
| 17                            | 1                   | 20             | 62                 | 1006       | -          | -          |  |  |
| 18                            | 1                   | 20             | 50                 | 1884       | -          | -          |  |  |
| 19                            | 2                   | 20             | 78.2               | 1330       | 1630       | -          |  |  |
| 20                            | 3                   | 20             | 85.3               | 1464       | 1955       | 1960       |  |  |



Test Signal Name: LP\_Signal\_13
Number of Bursts in Trial: 18

| Number of Bursts in Trial: 18 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 1                   | 18             | 65                 | 1066       | -          | -          |  |  |
| 2                             | 2                   | 18             | 70.8               | 1929       | 1636       | -          |  |  |
| 3                             | 1                   | 18             | 66.5               | 1094       | -          | -          |  |  |
| 4                             | 3                   | 18             | 88                 | 1855       | 1252       | 1111       |  |  |
| 5                             | 2                   | 18             | 69                 | 1290       | 1859       | -          |  |  |
| 6                             | 1                   | 18             | 54.9               | 1551       | -          | -          |  |  |
| 7                             | 1                   | 18             | 60.8               | 2000       | -          | -          |  |  |
| 8                             | 2                   | 18             | 81.8               | 1585       | 1864       | -          |  |  |
| 9                             | 1                   | 18             | 58.8               | 1130       | -          | -          |  |  |
| 10                            | 1                   | 18             | 50.4               | 1169       | -          | -          |  |  |
| 11                            | 2                   | 18             | 76                 | 1325       | 1445       | -          |  |  |
| 12                            | 1                   | 18             | 62.6               | 1530       | -          | -          |  |  |
| 13                            | 1                   | 18             | 55.1               | 1851       | -          | -          |  |  |
| 14                            | 3                   | 18             | 91.2               | 1181       | 1302       | 1966       |  |  |
| 15                            | 2                   | 18             | 68.9               | 1348       | 1355       | -          |  |  |
| 16                            | 3                   | 18             | 85.4               | 1537       | 1758       | 1109       |  |  |
| 17                            | 1                   | 18             | 63.4               | 1011       | -          | -          |  |  |
| 18                            | 3                   | 18             | 92.7               | 1122       | 1333       | 1584       |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 78 / 110



Test Signal Name: LP\_Signal\_14
Number of Bursts in Trial: 14

| inumi | per of Burst        | s in Trial:    | 14                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 12             | 63.7               | 1830       | -          | -          |
| 2     | 2                   | 12             | 81.3               | 1110       | 1746       | -          |
| 3     | 2                   | 12             | 70.2               | 1334       | 1187       | -          |
| 4     | 1                   | 12             | 66.3               | 1587       | -          | -          |
| 5     | 2                   | 12             | 72.8               | 1578       | 1745       | -          |
| 6     | 2                   | 12             | 66.7               | 1694       | 1931       | -          |
| 7     | 1                   | 12             | 55.1               | 1284       | -          | -          |
| 8     | 3                   | 12             | 86.5               | 1089       | 1490       | 1762       |
| 9     | 1                   | 12             | 65.7               | 1084       | -          | -          |
| 10    | 1                   | 12             | 53.2               | 1268       | -          | -          |
| 11    | 2                   | 12             | 67.8               | 1625       | 1411       | -          |
| 12    | 3                   | 12             | 96.5               | 1576       | 1799       | 1233       |
| 13    | 1                   | 12             | 51.4               | 1373       | -          | -          |
| 14    | 2                   | 12             | 80.7               | 1098       | 1849       | -          |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_15
Number of Bursts in Trial: 14

| Num   | ber of Burst        | s in Trial:    | 14                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 12             | 60.5               | 1668       | -          | -          |
| 2     | 3                   | 12             | 86                 | 1786       | 1666       | 1266       |
| 3     | 1                   | 12             | 61.2               | 1228       | -          | -          |
| 4     | 1                   | 12             | 59.8               | 1204       | -          | -          |
| 5     | 1                   | 12             | 52.5               | 1021       | -          | -          |
| 6     | 1                   | 12             | 61.7               | 1634       | -          | -          |
| 7     | 3                   | 12             | 96.5               | 1741       | 1875       | 1296       |
| 8     | 3                   | 12             | 87.6               | 1093       | 1250       | 1172       |
| 9     | 3                   | 12             | 99.6               | 1215       | 1813       | 1820       |
| 10    | 2                   | 12             | 79.7               | 1327       | 1512       | -          |
| 11    | 3                   | 12             | 90.2               | 1589       | 1145       | 1082       |
| 12    | 1                   | 12             | 53.7               | 1136       | -          | -          |
| 13    | 2                   | 12             | 73                 | 1706       | 1526       | -          |
| 14    | 1                   | 12             | 65.4               | 1420       | -          | -          |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_16
Number of Bursts in Trial: 16

| Num   | ber of Burst        | s in Trial:    | 16                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 2                   | 15             | 82.6               | 1347       | 1485       | -          |
| 2     | 2                   | 15             | 77.6               | 1312       | 1500       | -          |
| 3     | 3                   | 15             | 93.8               | 1062       | 1005       | 1749       |
| 4     | 1                   | 15             | 51.3               | 1809       | -          | -          |
| 5     | 1                   | 15             | 63.4               | 1699       | -          | -          |
| 6     | 2                   | 15             | 69.4               | 1606       | 1219       | -          |
| 7     | 3                   | 15             | 86.3               | 1102       | 1878       | 1728       |
| 8     | 3                   | 15             | 97                 | 1192       | 1858       | 1772       |
| 9     | 1                   | 15             | 65.1               | 1363       | -          | -          |
| 10    | 3                   | 15             | 98.8               | 1083       | 1567       | 1961       |
| 11    | 3                   | 15             | 98.1               | 1473       | 1271       | 1263       |
| 12    | 3                   | 15             | 99.9               | 1780       | 1871       | 1249       |
| 13    | 2                   | 15             | 82.9               | 1785       | 1081       | -          |
| 14    | 2                   | 15             | 82.5               | 1501       | 1921       | -          |
| 15    | 3                   | 15             | 89.2               | 1767       | 1357       | 1479       |
| 16    | 1                   | 15             | 57.5               | 1891       | -          | -          |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_17
Number of Bursts in Trial: 12

| Number of Bursts in Trial: 12 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 1                   | 10             | 63.9               | 1331       | -          | -          |  |  |
| 2                             | 1                   | 10             | 62.4               | 1897       | -          | -          |  |  |
| 3                             | 3                   | 10             | 99.1               | 1769       | 1832       | 1647       |  |  |
| 4                             | 3                   | 10             | 95.4               | 1991       | 1085       | 1937       |  |  |
| 5                             | 1                   | 10             | 52                 | 1029       | -          | -          |  |  |
| 6                             | 2                   | 10             | 69.1               | 1637       | 1611       | -          |  |  |
| 7                             | 2                   | 10             | 80                 | 1447       | 1685       | -          |  |  |
| 8                             | 1                   | 10             | 59.1               | 1635       | -          | -          |  |  |
| 9                             | 2                   | 10             | 82.8               | 1134       | 1080       | -          |  |  |
| 10                            | 1                   | 10             | 51.6               | 1138       | -          | -          |  |  |
| 11                            | 3                   | 10             | 96.2               | 1165       | 1754       | 1269       |  |  |
| 12                            | 2                   | 10             | 76.1               | 1406       | 1818       | -          |  |  |
| 13                            |                     |                |                    |            |            |            |  |  |
| 14                            |                     |                |                    |            |            |            |  |  |
| 15                            |                     |                |                    |            |            |            |  |  |
| 16                            |                     |                |                    |            |            |            |  |  |
| 17                            |                     |                |                    |            |            |            |  |  |
| 18                            |                     |                |                    |            |            |            |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 82 / 110



Test Signal Name: LP\_Signal\_18

Number of Bursts in Trial: 14

| Number of Bursts in Trial: 14 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 2                   | 12             | 81.7               | 1946       | 1868       | -          |  |  |
| 2                             | 3                   | 12             | 90.5               | 1414       | 1453       | 1305       |  |  |
| 3                             | 2                   | 12             | 76.2               | 2000       | 1852       | -          |  |  |
| 4                             | 2                   | 12             | 69.1               | 1351       | 1071       | -          |  |  |
| 5                             | 3                   | 12             | 93.7               | 1865       | 1196       | 1782       |  |  |
| 6                             | 3                   | 12             | 89.7               | 1429       | 1948       | 1402       |  |  |
| 7                             | 1                   | 12             | 53.9               | 1070       | -          | -          |  |  |
| 8                             | 3                   | 12             | 88.2               | 1632       | 1940       | 1689       |  |  |
| 9                             | 1                   | 12             | 59.4               | 1733       | -          | -          |  |  |
| 10                            | 1                   | 12             | 66.4               | 1285       | -          | -          |  |  |
| 11                            | 2                   | 12             | 83                 | 1321       | 1591       | -          |  |  |
| 12                            | 2                   | 12             | 82                 | 1912       | 1012       | -          |  |  |
| 13                            | 3                   | 12             | 94.4               | 1698       | 1784       | 1303       |  |  |
| 14                            | 1                   | 12             | 63.6               | 1175       | -          | -          |  |  |
| 15                            |                     |                |                    |            |            |            |  |  |
| 16                            |                     |                |                    |            |            |            |  |  |
| 17                            |                     |                |                    |            |            |            |  |  |
| 18                            |                     |                |                    |            |            |            |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |



Test Signal Name: LP\_Signal\_19
Number of Bursts in Trial: 12

| Number of Bursts in Trial: 12 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 2                   | 10             | 70.9               | 1736       | 1367       | -          |  |  |
| 2                             | 1                   | 10             | 62.4               | 1193       | -          | -          |  |  |
| 3                             | 1                   | 10             | 61.8               | 1596       | -          | -          |  |  |
| 4                             | 1                   | 10             | 52.6               | 1646       | -          | -          |  |  |
| 5                             | 2                   | 10             | 78.9               | 1049       | 1639       | -          |  |  |
| 6                             | 1                   | 10             | 63.9               | 1679       | -          | -          |  |  |
| 7                             | 3                   | 10             | 98.5               | 1627       | 1731       | 1442       |  |  |
| 8                             | 3                   | 10             | 92                 | 1294       | 1547       | 1119       |  |  |
| 9                             | 1                   | 10             | 65.8               | 1386       | -          | -          |  |  |
| 10                            | 2                   | 10             | 77.7               | 1987       | 1964       | -          |  |  |
| 11                            | 1                   | 10             | 54.6               | 1553       | -          | -          |  |  |
| 12                            | 2                   | 10             | 77.7               | 1171       | 1413       | -          |  |  |
| 13                            |                     |                |                    |            |            |            |  |  |
| 14                            |                     |                |                    |            |            |            |  |  |
| 15                            |                     |                |                    |            |            |            |  |  |
| 16                            |                     |                |                    |            |            |            |  |  |
| 17                            |                     |                |                    |            |            |            |  |  |
| 18                            |                     |                |                    |            |            |            |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |



Test Signal Name: LP\_Signal\_20
Number of Bursts in Trial: 20

| Num   | iber of Burst       | s in Trial:    | 20                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 20             | 63.4               | 1899       | -          | -          |
| 2     | 1                   | 20             | 63.5               | 1633       | -          | -          |
| 3     | 3                   | 20             | 97.6               | 1815       | 1198       | 1488       |
| 4     | 3                   | 20             | 84.7               | 1626       | 1026       | 1326       |
| 5     | 2                   | 20             | 68.5               | 1469       | 1684       | -          |
| 6     | 1                   | 20             | 61.8               | 1408       | -          | -          |
| 7     | 2                   | 20             | 73.2               | 1735       | 1125       | -          |
| 8     | 1                   | 20             | 60.2               | 1468       | -          | -          |
| 9     | 1                   | 20             | 65.2               | 1519       | -          | -          |
| 10    | 2                   | 20             | 74.6               | 1954       | 1654       | -          |
| 11    | 2                   | 20             | 72.6               | 1394       | 1096       | -          |
| 12    | 2                   | 20             | 78.9               | 1343       | 1843       | -          |
| 13    | 1                   | 20             | 56.2               | 1003       | -          | -          |
| 14    | 3                   | 20             | 93.2               | 1433       | 1299       | 1324       |
| 15    | 2                   | 20             | 78.6               | 1404       | 1539       | -          |
| 16    | 1                   | 20             | 50.9               | 1570       | -          | -          |
| 17    | 3                   | 20             | 98.2               | 1346       | 1179       | 1510       |
| 18    | 3                   | 20             | 97.5               | 1616       | 1360       | 1710       |
| 19    | 2                   | 20             | 79.5               | 1822       | 1721       | -          |
| 20    | 2                   | 20             | 67                 | 1554       | 1237       | -          |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 85 / 110



Test Signal Name: LP\_Signal\_21

| Number of Bursts in Trial: 9 |                     |                |                    |            |            |            |  |  |
|------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                        | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                            | 1                   | 7              | 51                 | 1893       | -          | -          |  |  |
| 2                            | 3                   | 7              | 88.5               | 1270       | 1664       | 1623       |  |  |
| 3                            | 3                   | 7              | 98.2               | 1979       | 1826       | 1128       |  |  |
| 4                            | 2                   | 7              | 67.5               | 1417       | 1586       | -          |  |  |
| 5                            | 3                   | 7              | 97.4               | 1642       | 1121       | 1770       |  |  |
| 6                            | 2                   | 7              | 80.2               | 1816       | 1060       | -          |  |  |
| 7                            | 2                   | 7              | 72.8               | 1619       | 1203       | -          |  |  |
| 8                            | 2                   | 7              | 82.2               | 1499       | 1848       | -          |  |  |
| 9                            | 2                   | 7              | 77.6               | 1562       | 1573       | -          |  |  |
| 10                           |                     |                |                    |            |            |            |  |  |
| 11                           |                     |                |                    |            |            |            |  |  |
| 12                           |                     |                |                    |            |            |            |  |  |
| 13                           |                     |                |                    |            |            |            |  |  |
| 14                           |                     |                |                    |            |            |            |  |  |
| 15                           |                     |                |                    |            |            |            |  |  |
| 16                           |                     |                |                    |            |            |            |  |  |
| 17                           |                     |                |                    |            |            |            |  |  |
| 18                           |                     |                |                    |            |            |            |  |  |
| 19                           |                     |                |                    |            |            |            |  |  |
| 20                           |                     |                |                    |            |            |            |  |  |



Test Signal Name: LP\_Signal\_22
Number of Bursts in Trial: 20

| Num   | Number of Bursts in Trial: 20 |                |                    |            |            |            |  |  |  |
|-------|-------------------------------|----------------|--------------------|------------|------------|------------|--|--|--|
| Burst | Pulses<br>per Burst           | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |  |
| 1     | 3                             | 20             | 89.8               | 1742       | 1968       | 1036       |  |  |  |
| 2     | 2                             | 20             | 74.7               | 1850       | 1306       | -          |  |  |  |
| 3     | 3                             | 20             | 98.5               | 1123       | 1336       | 1791       |  |  |  |
| 4     | 1                             | 20             | 64.4               | 1740       | -          | -          |  |  |  |
| 5     | 1                             | 20             | 66                 | 1000       | -          | -          |  |  |  |
| 6     | 2                             | 20             | 76.3               | 1521       | 1928       | -          |  |  |  |
| 7     | 3                             | 20             | 90.4               | 1764       | 1383       | 1726       |  |  |  |
| 8     | 3                             | 20             | 90.6               | 1896       | 1653       | 1697       |  |  |  |
| 9     | 2                             | 20             | 74.8               | 1995       | 1938       | -          |  |  |  |
| 10    | 3                             | 20             | 98                 | 1251       | 1520       | 1725       |  |  |  |
| 11    | 2                             | 20             | 71.2               | 1775       | 1240       | -          |  |  |  |
| 12    | 1                             | 20             | 58.8               | 1195       | -          | -          |  |  |  |
| 13    | 3                             | 20             | 84.1               | 1475       | 1472       | 1590       |  |  |  |
| 14    | 3                             | 20             | 98.4               | 1274       | 1282       | 1918       |  |  |  |
| 15    | 3                             | 20             | 96.4               | 1131       | 1739       | 1009       |  |  |  |
| 16    | 3                             | 20             | 89.9               | 1484       | 1283       | 1412       |  |  |  |
| 17    | 2                             | 20             | 82.9               | 1729       | 1571       | -          |  |  |  |
| 18    | 3                             | 20             | 96.5               | 1978       | 1478       | 1555       |  |  |  |
| 19    | 3                             | 20             | 85.7               | 1872       | 1737       | 1847       |  |  |  |
| 20    | 3                             | 20             | 85.4               | 1387       | 1151       | 1531       |  |  |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 87 / 110



Test Signal Name: LP\_Signal\_23
Number of Bursts in Trial: 10

| Number of Bursts in Trial: 10 |                     |                |                    |            |            |            |  |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |
| 1                             | 3                   | 8              | 97.6               | 1568       | 1676       | 1023       |  |  |
| 2                             | 3                   | 8              | 93.9               | 1407       | 1682       | 1209       |  |  |
| 3                             | 2                   | 8              | 68.3               | 1807       | 1365       | -          |  |  |
| 4                             | 3                   | 8              | 98.3               | 1107       | 1882       | 1524       |  |  |
| 5                             | 3                   | 8              | 87.6               | 1557       | 1342       | 1910       |  |  |
| 6                             | 2                   | 8              | 76.6               | 1033       | 1048       | -          |  |  |
| 7                             | 2                   | 8              | 74.9               | 1101       | 1443       | -          |  |  |
| 8                             | 1                   | 8              | 65.3               | 1341       | -          | -          |  |  |
| 9                             | 2                   | 8              | 80                 | 1220       | 1015       | -          |  |  |
| 10                            | 3                   | 8              | 87.4               | 1765       | 1316       | 1377       |  |  |
| 11                            |                     |                |                    |            |            |            |  |  |
| 12                            |                     |                |                    |            |            |            |  |  |
| 13                            |                     |                |                    |            |            |            |  |  |
| 14                            |                     |                |                    |            |            |            |  |  |
| 15                            |                     |                |                    |            |            |            |  |  |
| 16                            |                     |                |                    |            |            |            |  |  |
| 17                            |                     |                |                    |            |            |            |  |  |
| 18                            |                     |                |                    |            |            |            |  |  |
| 19                            |                     |                |                    |            |            |            |  |  |
| 20                            |                     |                |                    |            |            |            |  |  |



Test Signal Name: LP\_Signal\_24
Number of Bursts in Trial: 17

| Num   | ber of Burst        | s in Triai:    | 17                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 17             | 88.4               | 1279       | 1317       | 1150       |
| 2     | 3                   | 17             | 89.1               | 1288       | 1660       | 1789       |
| 3     | 3                   | 17             | 91                 | 1385       | 1988       | 1461       |
| 4     | 2                   | 17             | 82.6               | 1915       | 1059       | -          |
| 5     | 2                   | 17             | 75.5               | 1662       | 1982       | -          |
| 6     | 3                   | 17             | 99.9               | 1222       | 1796       | 1717       |
| 7     | 2                   | 17             | 74.1               | 1877       | 1917       | -          |
| 8     | 1                   | 17             | 64.5               | 1380       | -          | -          |
| 9     | 3                   | 17             | 90.3               | 1032       | 1613       | 1191       |
| 10    | 2                   | 17             | 66.9               | 1158       | 1930       | -          |
| 11    | 3                   | 17             | 88.2               | 1753       | 1399       | 1507       |
| 12    | 1                   | 17             | 60.4               | 1307       | -          | -          |
| 13    | 2                   | 17             | 73.3               | 1152       | 1543       | -          |
| 14    | 3                   | 17             | 99.6               | 1207       | 1491       | 1297       |
| 15    | 1                   | 17             | 58.2               | 1024       | -          | -          |
| 16    | 1                   | 17             | 58.2               | 1925       | -          | -          |
| 17    | 2                   | 17             | 66.9               | 1994       | 1090       | -          |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 89 / 110



Test Signal Name: LP\_Signal\_25

| Num   | ber of Burst        | s in Trial:    | 9                  |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 3                   | 7              | 90.1               | 1465       | 1459       | 1862       |
| 2     | 1                   | 7              | 51.8               | 1730       | -          | -          |
| 3     | 2                   | 7              | 77.7               | 1874       | 1388       | -          |
| 4     | 1                   | 7              | 64.4               | 1401       | -          | -          |
| 5     | 3                   | 7              | 83.7               | 1517       | 1861       | 1612       |
| 6     | 3                   | 7              | 87.1               | 1981       | 1161       | 1541       |
| 7     | 3                   | 7              | 96.9               | 1143       | 1757       | 1115       |
| 8     | 2                   | 7              | 80.1               | 1232       | 1574       | -          |
| 9     | 3                   | 7              | 95.9               | 1051       | 1202       | 1344       |
| 10    |                     |                |                    |            |            |            |
| 11    |                     |                |                    |            |            |            |
| 12    |                     |                |                    |            |            |            |
| 13    |                     |                |                    |            |            |            |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_26
Number of Bursts in Trial: 15

| inumi | per of Burst        | s in Thai:     | 15                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 14             | 56.4               | 1379       | -          | -          |
| 2     | 1                   | 14             | 50.2               | 1827       | -          | -          |
| 3     | 2                   | 14             | 76.8               | 1189       | 1788       | -          |
| 4     | 3                   | 14             | 89.4               | 1713       | 1774       | 1743       |
| 5     | 1                   | 14             | 51.3               | 1926       | -          | -          |
| 6     | 2                   | 14             | 75                 | 1958       | 1194       | -          |
| 7     | 1                   | 14             | 60.5               | 1631       | -          | -          |
| 8     | 3                   | 14             | 87.5               | 1483       | 1825       | 1329       |
| 9     | 1                   | 14             | 59.6               | 1495       | -          | -          |
| 10    | 2                   | 14             | 82.2               | 1604       | 1421       | -          |
| 11    | 2                   | 14             | 67.8               | 1139       | 1482       | -          |
| 12    | 1                   | 14             | 51.5               | 1018       | -          | -          |
| 13    | 2                   | 14             | 72.9               | 1135       | 1332       | -          |
| 14    | 3                   | 14             | 96.5               | 1116       | 1291       | 1665       |
| 15    | 1                   | 14             | 65.7               | 1256       | -          | -          |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 91 / 110



Test Signal Name: LP\_Signal\_27
Number of Bursts in Trial: 13

| Number of Bursts in Trial: 13 |                     |                |                    |            |            |            |  |
|-------------------------------|---------------------|----------------|--------------------|------------|------------|------------|--|
| Burst                         | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |
| 1                             | 2                   | 11             | 68.4               | 1210       | 1254       | -          |  |
| 2                             | 1                   | 11             | 56.2               | 1106       | -          | -          |  |
| 3                             | 2                   | 11             | 68.7               | 1989       | 1167       | -          |  |
| 4                             | 3                   | 11             | 97.2               | 1963       | 1037       | 1860       |  |
| 5                             | 3                   | 11             | 87.1               | 1120       | 1335       | 1563       |  |
| 6                             | 2                   | 11             | 70.6               | 1298       | 1502       | -          |  |
| 7                             | 2                   | 11             | 68.7               | 1747       | 1446       | -          |  |
| 8                             | 3                   | 11             | 90                 | 1315       | 1072       | 1226       |  |
| 9                             | 2                   | 11             | 79.4               | 1577       | 1311       | -          |  |
| 10                            | 1                   | 11             | 59.6               | 1176       | -          | -          |  |
| 11                            | 3                   | 11             | 84.9               | 1027       | 1727       | 1260       |  |
| 12                            | 1                   | 11             | 63.5               | 1605       | -          | -          |  |
| 13                            | 1                   | 11             | 52.3               | 1702       | -          | -          |  |
| 14                            |                     |                |                    |            |            |            |  |
| 15                            |                     |                |                    |            |            |            |  |
| 16                            |                     |                |                    |            |            |            |  |
| 17                            |                     |                |                    |            |            |            |  |
| 18                            |                     |                |                    |            |            |            |  |
| 19                            |                     |                |                    |            |            |            |  |
| 20                            |                     |                |                    |            |            |            |  |



Test Signal Name: LP\_Signal\_28

Number of Bursts in Trial: 10

| Num   | per of Burst        | s in Trial:    | 10                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 2                   | 7              | 72.9               | 1622       | 1104       | -          |
| 2     | 1                   | 7              | 54.6               | 1609       | -          | -          |
| 3     | 1                   | 7              | 51.9               | 1707       | -          | -          |
| 4     | 3                   | 7              | 94.2               | 1173       | 1515       | 1688       |
| 5     | 1                   | 7              | 52.5               | 1077       | -          | -          |
| 6     | 2                   | 7              | 79.6               | 1054       | 1245       | -          |
| 7     | 3                   | 7              | 93.5               | 1575       | 1141       | 1046       |
| 8     | 2                   | 7              | 73.9               | 1718       | 1638       | -          |
| 9     | 3                   | 7              | 87.7               | 1126       | 1462       | 1310       |
| 10    | 1                   | 7              | 50.8               | 1154       | -          | -          |
| 11    |                     |                |                    |            |            |            |
| 12    |                     |                |                    |            |            |            |
| 13    |                     |                |                    |            |            |            |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |
| 20    |                     |                |                    |            |            |            |



Test Signal Name: LP\_Signal\_29
Number of Bursts in Trial: 13

| Num   | per or burst        | s in Thai:     | 13                 |            |            |            |
|-------|---------------------|----------------|--------------------|------------|------------|------------|
| Burst | Pulses<br>per Burst | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |
| 1     | 1                   | 12             | 65.6               | 1074       | -          | -          |
| 2     | 1                   | 12             | 63.2               | 1477       | -          | -          |
| 3     | 3                   | 12             | 99.9               | 1053       | 1805       | 1657       |
| 4     | 3                   | 12             | 85.8               | 1293       | 1680       | 1184       |
| 5     | 3                   | 12             | 90                 | 1200       | 1511       | 1127       |
| 6     | 2                   | 12             | 76.1               | 1017       | 1133       | -          |
| 7     | 3                   | 12             | 90.4               | 1043       | 1088       | 1362       |
| 8     | 1                   | 12             | 65.4               | 1610       | -          | -          |
| 9     | 2                   | 12             | 67.1               | 1824       | 1410       | -          |
| 10    | 1                   | 12             | 55.3               | 1278       | -          | -          |
| 11    | 1                   | 12             | 61.9               | 1403       | -          | -          |
| 12    | 3                   | 12             | 96.1               | 1923       | 1216       | 1744       |
| 13    | 2                   | 12             | 77.5               | 1558       | 1253       | -          |
| 14    |                     |                |                    |            |            |            |
| 15    |                     |                |                    |            |            |            |
| 16    |                     |                |                    |            |            |            |
| 17    |                     |                |                    |            |            |            |
| 18    |                     |                |                    |            |            |            |
| 19    |                     |                |                    |            |            |            |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 94 / 110



Test Signal Name: LP\_Signal\_30 Number of Bursts in Trial: 10

| Numbe | Number of Bursts in Trial: 10 |                |                    |            |            |            |  |  |  |
|-------|-------------------------------|----------------|--------------------|------------|------------|------------|--|--|--|
| Burst | Pulses<br>per Burst           | Chrip<br>(MHz) | Pulse<br>Width(us) | PRI-1 (us) | PRI-2 (us) | PRI-3 (us) |  |  |  |
| 1     | 2                             | 8              | 68.4               | 1190       | 1907       | -          |  |  |  |
| 2     | 3                             | 8              | 99.7               | 1996       | 1806       | 1079       |  |  |  |
| 3     | 3                             | 8              | 93                 | 1777       | 1092       | 1337       |  |  |  |
| 4     | 2                             | 8              | 75.3               | 1548       | 1583       | -          |  |  |  |
| 5     | 3                             | 8              | 87.7               | 1715       | 1889       | 1470       |  |  |  |
| 6     | 1                             | 8              | 60.2               | 1008       | -          | -          |  |  |  |
| 7     | 3                             | 8              | 97.5               | 1658       | 1514       | 1748       |  |  |  |
| 8     | 2                             | 8              | 79.7               | 1532       | 1793       | -          |  |  |  |
| 9     | 1                             | 8              | 66.4               | 1014       | -          | -          |  |  |  |
| 10    | 1                             | 8              | 61.4               | 1322       | -          | -          |  |  |  |
| 11    |                               |                |                    |            |            |            |  |  |  |
| 12    |                               |                |                    |            |            |            |  |  |  |
| 13    |                               |                |                    |            |            |            |  |  |  |
| 14    |                               |                |                    |            |            |            |  |  |  |
| 15    |                               |                |                    |            |            |            |  |  |  |
| 16    |                               |                |                    |            |            |            |  |  |  |
| 17    |                               |                |                    |            |            |            |  |  |  |
| 18    |                               |                |                    |            |            |            |  |  |  |
| 19    |                               |                |                    |            |            |            |  |  |  |
| 20    |                               |                |                    |            |            |            |  |  |  |
| 20    |                               |                |                    |            |            |            |  |  |  |

Report No.: RF180615D14A-1 Reference No.: 180426D05, 180615D15 Page No. 95 / 110



## A.2 The Frequency Hopping Radar pattern

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_01 |      |      |      |      |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |
| 0                  | 5436                                             | 5618 | 5502 | 5507 | 5674 |  |  |  |
| 5                  | 5429                                             | 5363 | 5362 | 5339 | 5615 |  |  |  |
| 10                 | 5432                                             | 5291 | 5566 | 5689 | 5400 |  |  |  |
| 15                 | 5658                                             | 5277 | 5656 | 5265 | 5588 |  |  |  |
| 20                 | 5643                                             | 5342 | 5449 | 5558 | 5600 |  |  |  |
| 25                 | 5557                                             | 5293 | 5478 | 5488 | 5560 |  |  |  |
| 30                 | 5331                                             | 5350 | 5559 | 5604 | 5505 |  |  |  |
| 35                 | 5251                                             | 5413 | 5292 | 5424 | 5703 |  |  |  |
| 40                 | 5596                                             | 5433 | 5266 | 5273 | 5548 |  |  |  |
| 45                 | 5437                                             | 5253 | 5447 | 5628 | 5286 |  |  |  |
| 50                 | 5340                                             | 5690 | 5302 | 5441 | 5439 |  |  |  |
| 55                 | 5421                                             | 5694 | 5417 | 5609 | 5576 |  |  |  |
| 60                 | 5305                                             | 5351 | 5288 | 5354 | 5335 |  |  |  |
| 65                 | 5620                                             | 5657 | 5686 | 5711 | 5663 |  |  |  |
| 70                 | 5610                                             | 5297 | 5634 | 5510 | 5426 |  |  |  |
| 75                 | 5357                                             | 5667 | 5370 | 5387 | 5281 |  |  |  |
| 80                 | 5585                                             | 5524 | 5338 | 5385 | 5673 |  |  |  |
| 85                 | 5464                                             | 5693 | 5455 | 5633 | 5712 |  |  |  |
| 90                 | 5679                                             | 5269 | 5607 | 5651 | 5352 |  |  |  |
| 95                 | 5358                                             | 5612 | 5289 | 5397 | 5402 |  |  |  |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_02 |      |      |      |      |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |
| 0                  | 5691                                             | 5382 | 5438 | 5668 | 5419 |  |  |  |
| 5                  | 5471                                             | 5385 | 5437 | 5502 | 5347 |  |  |  |
| 10                 | 5363                                             | 5555 | 5607 | 5409 | 5421 |  |  |  |
| 15                 | 5649                                             | 5404 | 5284 | 5310 | 5305 |  |  |  |
| 20                 | 5554                                             | 5508 | 5370 | 5441 | 5531 |  |  |  |
| 25                 | 5488                                             | 5496 | 5582 | 5522 | 5602 |  |  |  |
| 30                 | 5317                                             | 5307 | 5299 | 5281 | 5325 |  |  |  |
| 35                 | 5390                                             | 5504 | 5563 | 5577 | 5714 |  |  |  |
| 40                 | 5435                                             | 5613 | 5679 | 5513 | 5642 |  |  |  |
| 45                 | 5587                                             | 5417 | 5336 | 5505 | 5681 |  |  |  |
| 50                 | 5648                                             | 5594 | 5391 | 5256 | 5530 |  |  |  |
| 55                 | 5262                                             | 5722 | 5387 | 5278 | 5614 |  |  |  |
| 60                 | 5580                                             | 5705 | 5470 | 5296 | 5595 |  |  |  |
| 65                 | 5655                                             | 5378 | 5443 | 5606 | 5625 |  |  |  |
| 70                 | 5446                                             | 5413 | 5466 | 5717 | 5275 |  |  |  |
| 75                 | 5711                                             | 5626 | 5339 | 5410 | 5424 |  |  |  |
| 80                 | 5566                                             | 5301 | 5448 | 5641 | 5293 |  |  |  |
| 85                 | 5573                                             | 5393 | 5367 | 5535 | 5515 |  |  |  |
| 90                 | 5350                                             | 5633 | 5459 | 5467 | 5297 |  |  |  |
| 95                 | 5279                                             | 5386 | 5715 | 5624 | 5403 |  |  |  |



| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_ | FREQ_SEC | 2_03 |
|--------------------|---------------|------------|---------------|----------|------|
| Frequency<br>(MHz) | 0             | 1          | 2             | 3        | 4    |
| 0                  | 5471          | 5621       | 5374          | 5354     | 5261 |
| 5                  | 5513          | 5310       | 5512          | 5568     | 5651 |
| 10                 | 5672          | 5344       | 5648          | 5507     | 5442 |
| 15                 | 5262          | 5434       | 5290          | 5355     | 5497 |
| 20                 | 5562          | 5577       | 5408          | 5530     | 5504 |
| 25                 | 5279          | 5699       | 5308          | 5556     | 5266 |
| 30                 | 5681          | 5264       | 5514          | 5523     | 5432 |
| 35                 | 5595          | 5359       | 5255          | 5628     | 5274 |
| 40                 | 5696          | 5520       | 5278          | 5639     | 5516 |
| 45                 | 5397          | 5419       | 5563          | 5259     | 5438 |
| 50                 | 5470          | 5567       | 5307          | 5619     | 5463 |
| 55                 | 5666          | 5575       | 5707          | 5502     | 5433 |
| 60                 | 5551          | 5635       | 5338          | 5427     | 5481 |
| 65                 | 5324          | 5644       | 5555          | 5661     | 5350 |
| 70                 | 5691          | 5538       | 5703          | 5613     | 5687 |
| 75                 | 5585          | 5686       | 5547          | 5553     | 5461 |
| 80                 | 5422          | 5457       | 5636          | 5588     | 5367 |
| 85                 | 5377          | 5478       | 5445          | 5545     | 5684 |
| 90                 | 5610          | 5287       | 5462          | 5285     | 5323 |
| 95                 | 5597          | 5258       | 5420          | 5467     | 5698 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_04 |      |      |      |      |  |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |  |
| 0                  | 5251                                             | 5385 | 5310 | 5515 | 5481 |  |  |  |  |
| 5                  | 5555                                             | 5332 | 5587 | 5256 | 5383 |  |  |  |  |
| 10                 | 5603                                             | 5705 | 5311 | 5702 | 5463 |  |  |  |  |
| 15                 | 5350                                             | 5561 | 5393 | 5400 | 5689 |  |  |  |  |
| 20                 | 5570                                             | 5268 | 5349 | 5522 | 5477 |  |  |  |  |
| 25                 | 5642                                             | 5685 | 5427 | 5412 | 5590 |  |  |  |  |
| 30                 | 5308                                             | 5696 | 5632 | 5682 | 5343 |  |  |  |  |
| 35                 | 5571                                             | 5686 | 5252 | 5505 | 5542 |  |  |  |  |
| 40                 | 5304                                             | 5458 | 5421 | 5636 | 5348 |  |  |  |  |
| 45                 | 5280                                             | 5502 | 5524 | 5312 | 5325 |  |  |  |  |
| 50                 | 5346                                             | 5358 | 5708 | 5286 | 5513 |  |  |  |  |
| 55                 | 5288                                             | 5661 | 5692 | 5488 | 5283 |  |  |  |  |
| 60                 | 5356                                             | 5404 | 5270 | 5370 | 5504 |  |  |  |  |
| 65                 | 5697                                             | 5717 | 5397 | 5707 | 5616 |  |  |  |  |
| 70                 | 5351                                             | 5663 | 5544 | 5655 | 5650 |  |  |  |  |
| 75                 | 5613                                             | 5625 | 5330 | 5678 | 5321 |  |  |  |  |
| 80                 | 5307                                             | 5316 | 5538 | 5637 | 5413 |  |  |  |  |
| 85                 | 5638                                             | 5485 | 5627 | 5291 | 5357 |  |  |  |  |
| 90                 | 5382                                             | 5437 | 5562 | 5451 | 5596 |  |  |  |  |
| 95                 | 5473                                             | 5366 | 5395 | 5509 | 5464 |  |  |  |  |



| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_05 |      |      |      |      |      |  |  |  |
|--------------------------------------------------|------|------|------|------|------|--|--|--|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |  |  |  |
| 0                                                | 5506 | 5624 | 5721 | 5579 | 5323 |  |  |  |
| 5                                                | 5694 | 5257 | 5662 | 5419 | 5590 |  |  |  |
| 10                                               | 5437 | 5494 | 5352 | 5422 | 5484 |  |  |  |
| 15                                               | 5438 | 5688 | 5496 | 5348 | 5406 |  |  |  |
| 20                                               | 5578 | 5337 | 5290 | 5611 | 5547 |  |  |  |
| 25                                               | 5433 | 5537 | 5533 | 5516 | 5350 |  |  |  |
| 30                                               | 5556 | 5372 | 5456 | 5541 | 5710 |  |  |  |
| 35                                               | 5302 | 5523 | 5658 | 5553 | 5524 |  |  |  |
| 40                                               | 5387 | 5396 | 5661 | 5633 | 5277 |  |  |  |
| 45                                               | 5260 | 5585 | 5582 | 5365 | 5697 |  |  |  |
| 50                                               | 5444 | 5409 | 5584 | 5457 | 5379 |  |  |  |
| 55                                               | 5615 | 5407 | 5546 | 5520 | 5490 |  |  |  |
| 60                                               | 5703 | 5663 | 5705 | 5691 | 5668 |  |  |  |
| 65                                               | 5550 | 5636 | 5320 | 5512 | 5675 |  |  |  |
| 70                                               | 5304 | 5716 | 5639 | 5503 | 5527 |  |  |  |
| 75                                               | 5295 | 5659 | 5606 | 5485 | 5681 |  |  |  |
| 80                                               | 5459 | 5384 | 5648 | 5501 | 5378 |  |  |  |
| 85                                               | 5689 | 5631 | 5305 | 5317 | 5297 |  |  |  |
| 90                                               | 5294 | 5264 | 5454 | 5617 | 5435 |  |  |  |
| 95                                               | 5452 | 5469 | 5690 | 5507 | 5562 |  |  |  |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_06 |      |      |      |      |  |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |  |
| 0                  | 5664                                             | 5388 | 5657 | 5265 | 5543 |  |  |  |  |
| 5                  | 5261                                             | 5279 | 5262 | 5582 | 5419 |  |  |  |  |
| 10                 | 5368                                             | 5283 | 5393 | 5617 | 5505 |  |  |  |  |
| 15                 | 5526                                             | 5340 | 5599 | 5598 | 5489 |  |  |  |  |
| 20                 | 5503                                             | 5328 | 5603 | 5520 | 5321 |  |  |  |  |
| 25                 | 5486                                             | 5620 | 5658 | 5445 | 5513 |  |  |  |  |
| 30                 | 5587                                             | 5705 | 5361 | 5277 | 5490 |  |  |  |  |
| 35                 | 5319                                             | 5336 | 5467 | 5363 | 5567 |  |  |  |  |
| 40                 | 5334                                             | 5426 | 5630 | 5584 | 5715 |  |  |  |  |
| 45                 | 5668                                             | 5640 | 5418 | 5477 | 5476 |  |  |  |  |
| 50                 | 5460                                             | 5508 | 5407 | 5304 | 5569 |  |  |  |  |
| 55                 | 5597                                             | 5268 | 5367 | 5649 | 5655 |  |  |  |  |
| 60                 | 5648                                             | 5495 | 5531 | 5259 | 5394 |  |  |  |  |
| 65                 | 5499                                             | 5672 | 5530 | 5307 | 5478 |  |  |  |  |
| 70                 | 5473                                             | 5719 | 5524 | 5615 | 5462 |  |  |  |  |
| 75                 | 5496                                             | 5415 | 5327 | 5694 | 5377 |  |  |  |  |
| 80                 | 5447                                             | 5301 | 5320 | 5572 | 5561 |  |  |  |  |
| 85                 | 5449                                             | 5721 | 5643 | 5404 | 5482 |  |  |  |  |
| 90                 | 5303                                             | 5488 | 5471 | 5392 | 5413 |  |  |  |  |
| 95                 | 5602                                             | 5299 | 5454 | 5351 | 5675 |  |  |  |  |

Page No. 98 / 110



| Нор                | ping Frequenc | cy Sequenc | e Name: HOP_I | FREQ_SEC | 0_07 |
|--------------------|---------------|------------|---------------|----------|------|
| Frequency<br>(MHz) | 0             | 1          | 2             | 3        | 4    |
| 0                  | 5444          | 5627       | 5593          | 5426     | 5385 |
| 5                  | 5303          | 5679       | 5337          | 5648     | 5626 |
| 10                 | 5299          | 5547       | 5434          | 5526     | 5517 |
| 15                 | 5467          | 5702       | 5438          | 5412     | 5497 |
| 20                 | 5572          | 5269       | 5692          | 5493     | 5587 |
| 25                 | 5338          | 5464       | 5346          | 5531     | 5431 |
| 30                 | 5470          | 5327       | 5382          | 5656     | 5416 |
| 35                 | 5581          | 5590       | 5586          | 5381     | 5677 |
| 40                 | 5650          | 5272       | 5666          | 5724     | 5513 |
| 45                 | 5695          | 5276       | 5601          | 5374     | 5267 |
| 50                 | 5352          | 5321       | 5511          | 5597     | 5608 |
| 55                 | 5723          | 5280       | 5523          | 5312     | 5562 |
| 60                 | 5345          | 5690       | 5454          | 5680     | 5448 |
| 65                 | 5611          | 5362       | 5674          | 5281     | 5545 |
| 70                 | 5344          | 5373       | 5591          | 5421     | 5465 |
| 75                 | 5568          | 5514       | 5329          | 5496     | 5541 |
| 80                 | 5510          | 5298       | 5515          | 5551     | 5414 |
| 85                 | 5524          | 5641       | 5686          | 5652     | 5701 |
| 90                 | 5647          | 5406       | 5265          | 5500     | 5585 |
| 95                 | 5252          | 5387       | 5313          | 5675     | 5697 |

| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_08 |      |      |      |      |      |  |  |  |
|--------------------------------------------------|------|------|------|------|------|--|--|--|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |  |  |  |
| 0                                                | 5699 | 5391 | 5529 | 5587 | 5605 |  |  |  |
| 5                                                | 5442 | 5701 | 5412 | 5336 | 5358 |  |  |  |
| 10                                               | 5608 | 5475 | 5435 | 5547 | 5497 |  |  |  |
| 15                                               | 5708 | 5483 | 5604 | 5505 | 5263 |  |  |  |
| 20                                               | 5685 | 5684 | 5466 | 5665 | 5667 |  |  |  |
| 25                                               | 5450 | 5251 | 5573 | 5320 | 5427 |  |  |  |
| 30                                               | 5445 | 5631 | 5379 | 5555 | 5672 |  |  |  |
| 35                                               | 5264 | 5392 | 5516 | 5258 | 5334 |  |  |  |
| 40                                               | 5721 | 5675 | 5359 | 5659 | 5629 |  |  |  |
| 45                                               | 5703 | 5562 | 5686 | 5431 | 5570 |  |  |  |
| 50                                               | 5468 | 5477 | 5502 | 5381 | 5309 |  |  |  |
| 55                                               | 5432 | 5510 | 5635 | 5256 | 5280 |  |  |  |
| 60                                               | 5626 | 5418 | 5397 | 5647 | 5572 |  |  |  |
| 65                                               | 5469 | 5559 | 5714 | 5255 | 5347 |  |  |  |
| 70                                               | 5600 | 5470 | 5380 | 5337 | 5558 |  |  |  |
| 75                                               | 5549 | 5291 | 5439 | 5277 | 5670 |  |  |  |
| 80                                               | 5673 | 5710 | 5454 | 5584 | 5261 |  |  |  |
| 85                                               | 5554 | 5648 | 5425 | 5521 | 5299 |  |  |  |
| 90                                               | 5288 | 5609 | 5602 | 5307 | 5484 |  |  |  |
| 95                                               | 5285 | 5303 | 5317 | 5723 | 5444 |  |  |  |

Page No. 99 / 110



| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_ | FREQ_SEC | _09  |
|--------------------|---------------|------------|---------------|----------|------|
| Frequency<br>(MHz) | 0             | 1          | 2             | 3        | 4    |
| 0                  | 5479          | 5630       | 5465          | 5273     | 5447 |
| 5                  | 5484          | 5626       | 5487          | 5499     | 5662 |
| 10                 | 5539          | 5697       | 5516          | 5568     | 5693 |
| 15                 | 5624          | 5336       | 5431          | 5321     | 5416 |
| 20                 | 5429          | 5723       | 5298          | 5439     | 5363 |
| 25                 | 5614          | 5395       | 5554          | 5285     | 5712 |
| 30                 | 5684          | 5384       | 5660          | 5308     | 5674 |
| 35                 | 5694          | 5288       | 5279          | 5417     | 5306 |
| 40                 | 5452          | 5438       | 5623          | 5574     | 5718 |
| 45                 | 5274          | 5655       | 5442          | 5717     | 5480 |
| 50                 | 5419          | 5579       | 5673          | 5613     | 5397 |
| 55                 | 5254          | 5514       | 5656          | 5692     | 5578 |
| 60                 | 5658          | 5561       | 5675          | 5580     | 5563 |
| 65                 | 5678          | 5669       | 5716          | 5346     | 5683 |
| 70                 | 5404          | 5361       | 5265          | 5311     | 5449 |
| 75                 | 5446          | 5339       | 5659          | 5530     | 5543 |
| 80                 | 5533          | 5297       | 5258          | 5670     | 5430 |
| 85                 | 5454          | 5547       | 5453          | 5519     | 5602 |
| 90                 | 5719          | 5502       | 5418          | 5711     | 5548 |
| 95                 | 5619          | 5362       | 5468          | 5649     | 5406 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_10 |      |      |      |      |  |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |  |
| 0                  | 5637                                             | 5394 | 5401 | 5434 | 5667 |  |  |  |  |
| 5                  | 5526                                             | 5648 | 5562 | 5662 | 5470 |  |  |  |  |
| 10                 | 5486                                             | 5557 | 5350 | 5589 | 5306 |  |  |  |  |
| 15                 | 5276                                             | 5439 | 5476 | 5513 | 5424 |  |  |  |  |
| 20                 | 5498                                             | 5664 | 5290 | 5412 | 5629 |  |  |  |  |
| 25                 | 5466                                             | 5501 | 5658 | 5319 | 5279 |  |  |  |  |
| 30                 | 5670                                             | 5341 | 5400 | 5397 | 5261 |  |  |  |  |
| 35                 | 5379                                             | 5550 | 5570 | 5695 | 5291 |  |  |  |  |
| 40                 | 5521                                             | 5464 | 5339 | 5715 | 5678 |  |  |  |  |
| 45                 | 5538                                             | 5525 | 5300 | 5533 | 5358 |  |  |  |  |
| 50                 | 5374                                             | 5552 | 5361 | 5369 | 5385 |  |  |  |  |
| 55                 | 5310                                             | 5593 | 5365 | 5395 | 5504 |  |  |  |  |
| 60                 | 5615                                             | 5442 | 5295 | 5622 | 5614 |  |  |  |  |
| 65                 | 5631                                             | 5543 | 5383 | 5324 | 5450 |  |  |  |  |
| 70                 | 5298                                             | 5422 | 5653 | 5323 | 5705 |  |  |  |  |
| 75                 | 5511                                             | 5320 | 5314 | 5461 | 5321 |  |  |  |  |
| 80                 | 5625                                             | 5357 | 5512 | 5607 | 5645 |  |  |  |  |
| 85                 | 5387                                             | 5349 | 5539 | 5270 | 5430 |  |  |  |  |
| 90                 | 5255                                             | 5636 | 5417 | 5549 | 5556 |  |  |  |  |
| 95                 | 5628                                             | 5509 | 5352 | 5410 | 5672 |  |  |  |  |

Page No. 100 / 110



| Нор                | ping Frequen | cy Sequenc | ce Name: HOP_F | REQ_SEC | Q_11 |
|--------------------|--------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0            | 1          | 2              | 3       | 4    |
| 0                  | 5417         | 5633       | 5337           | 5595    | 5509 |
| 5                  | 5568         | 5670       | 5637           | 5253    | 5601 |
| 10                 | 5304         | 5275       | 5598           | 5545    | 5610 |
| 15                 | 5297         | 5403       | 5542           | 5521    | 5705 |
| 20                 | 5432         | 5664       | 5605           | 5379    | 5385 |
| 25                 | 5517         | 5415       | 5704           | 5287    | 5353 |
| 30                 | 5321         | 5559       | 5298           | 5615    | 5709 |
| 35                 | 5692         | 5400       | 5470           | 5443    | 5345 |
| 40                 | 5609         | 5604       | 5402           | 5482    | 5712 |
| 45                 | 5510         | 5518       | 5608           | 5261    | 5586 |
| 50                 | 5571         | 5550       | 5715           | 5575    | 5278 |
| 55                 | 5305         | 5460       | 5339           | 5500    | 5691 |
| 60                 | 5600         | 5722       | 5530           | 5567    | 5702 |
| 65                 | 5330         | 5561       | 5643           | 5719    | 5658 |
| 70                 | 5446         | 5426       | 5346           | 5552    | 5310 |
| 75                 | 5453         | 5622       | 5398           | 5257    | 5373 |
| 80                 | 5492         | 5475       | 5570           | 5625    | 5481 |
| 85                 | 5442         | 5260       | 5354           | 5265    | 5352 |
| 90                 | 5607         | 5597       | 5262           | 5357    | 5527 |
| 95                 | 5690         | 5364       | 5472           | 5533    | 5454 |

| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_12 |      |      |      |      |      |  |  |  |
|--------------------------------------------------|------|------|------|------|------|--|--|--|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |  |  |  |
| 0                                                | 5672 | 5397 | 5273 | 5659 | 5254 |  |  |  |
| 5                                                | 5707 | 5595 | 5712 | 5416 | 5430 |  |  |  |
| 10                                               | 5710 | 5539 | 5261 | 5265 | 5631 |  |  |  |
| 15                                               | 5385 | 5530 | 5645 | 5469 | 5422 |  |  |  |
| 20                                               | 5343 | 5258 | 5643 | 5371 | 5358 |  |  |  |
| 25                                               | 5308 | 5267 | 5432 | 5488 | 5387 |  |  |  |
| 30                                               | 5460 | 5448 | 5255 | 5483 | 5415 |  |  |  |
| 35                                               | 5658 | 5714 | 5498 | 5620 | 5444 |  |  |  |
| 40                                               | 5687 | 5340 | 5722 | 5331 | 5439 |  |  |  |
| 45                                               | 5691 | 5319 | 5639 | 5458 | 5585 |  |  |  |
| 50                                               | 5251 | 5291 | 5664 | 5576 | 5627 |  |  |  |
| 55                                               | 5648 | 5293 | 5690 | 5510 | 5571 |  |  |  |
| 60                                               | 5376 | 5695 | 5512 | 5534 | 5253 |  |  |  |
| 65                                               | 5507 | 5466 | 5668 | 5597 | 5656 |  |  |  |
| 70                                               | 5318 | 5624 | 5296 | 5553 | 5374 |  |  |  |
| 75                                               | 5494 | 5419 | 5473 | 5252 | 5685 |  |  |  |
| 80                                               | 5351 | 5692 | 5544 | 5661 | 5637 |  |  |  |
| 85                                               | 5260 | 5630 | 5457 | 5370 | 5557 |  |  |  |
| 90                                               | 5522 | 5533 | 5716 | 5572 | 5292 |  |  |  |
| 95                                               | 5527 | 5517 | 5352 | 5489 | 5618 |  |  |  |



| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_13 |      |      |      |      |      |  |  |  |
|--------------------------------------------------|------|------|------|------|------|--|--|--|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |  |  |  |
| 0                                                | 5452 | 5636 | 5684 | 5345 | 5571 |  |  |  |
| 5                                                | 5274 | 5617 | 5312 | 5579 | 5637 |  |  |  |
| 10                                               | 5544 | 5328 | 5302 | 5363 | 5652 |  |  |  |
| 15                                               | 5473 | 5560 | 5651 | 5514 | 5614 |  |  |  |
| 20                                               | 5351 | 5424 | 5584 | 5460 | 5331 |  |  |  |
| 25                                               | 5671 | 5594 | 5635 | 5592 | 5421 |  |  |  |
| 30                                               | 5502 | 5434 | 5687 | 5710 | 5581 |  |  |  |
| 35                                               | 5510 | 5534 | 5380 | 5392 | 5278 |  |  |  |
| 40                                               | 5487 | 5368 | 5478 | 5299 | 5377 |  |  |  |
| 45                                               | 5692 | 5723 | 5364 | 5427 | 5342 |  |  |  |
| 50                                               | 5399 | 5361 | 5722 | 5405 | 5707 |  |  |  |
| 55                                               | 5445 | 5505 | 5385 | 5457 | 5463 |  |  |  |
| 60                                               | 5554 | 5550 | 5667 | 5633 | 5488 |  |  |  |
| 65                                               | 5588 | 5318 | 5379 | 5556 | 5698 |  |  |  |
| 70                                               | 5253 | 5650 | 5586 | 5562 | 5454 |  |  |  |
| 75                                               | 5504 | 5320 | 5607 | 5381 | 5561 |  |  |  |
| 80                                               | 5357 | 5638 | 5610 | 5593 | 5552 |  |  |  |
| 85                                               | 5660 | 5612 | 5618 | 5280 | 5539 |  |  |  |
| 90                                               | 5275 | 5485 | 5309 | 5582 | 5598 |  |  |  |
| 95                                               | 5347 | 5371 | 5721 | 5568 | 5358 |  |  |  |

| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_F | REQ_SEC | Q_14 |
|--------------------|---------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0             | 1          | 2              | 3       | 4    |
| 0                  | 5707          | 5400       | 5620           | 5506    | 5316 |
| 5                  | 5542          | 5387       | 5267           | 5369    | 5475 |
| 10                 | 5689          | 5343       | 5558           | 5673    | 5561 |
| 15                 | 5687          | 5279       | 5559           | 5331    | 5359 |
| 20                 | 5493          | 5525       | 5452           | 5304    | 5462 |
| 25                 | 5543          | 5363       | 5696           | 5358    | 5544 |
| 30                 | 5323          | 5644       | 5688           | 5409    | 5433 |
| 35                 | 5720          | 5365       | 5306           | 5426    | 5448 |
| 40                 | 5694          | 5691       | 5252           | 5325    | 5675 |
| 45                 | 5458          | 5382       | 5338           | 5648    | 5610 |
| 50                 | 5715          | 5603       | 5393           | 5464    | 5697 |
| 55                 | 5418          | 5549       | 5579           | 5595    | 5526 |
| 60                 | 5416          | 5634       | 5550           | 5499    | 5295 |
| 65                 | 5380          | 5496       | 5490           | 5566    | 5669 |
| 70                 | 5698          | 5480       | 5608           | 5390    | 5656 |
| 75                 | 5547          | 5704       | 5609           | 5335    | 5706 |
| 80                 | 5532          | 5281       | 5333           | 5388    | 5545 |
| 85                 | 5670          | 5552       | 5541           | 5556    | 5269 |
| 90                 | 5528          | 5663       | 5391           | 5575    | 5377 |
| 95                 | 5714          | 5594       | 5326           | 5637    | 5582 |

Page No. 102 / 110



| Нор                | ping Frequenc | cy Sequenc | e Name: HOP_F | REQ_SEC | )_15 |
|--------------------|---------------|------------|---------------|---------|------|
| Frequency<br>(MHz) | 0             | 1          | 2             | 3       | 4    |
| 0                  | 5390          | 5639       | 5556          | 5667    | 5633 |
| 5                  | 5358          | 5564       | 5462          | 5333    | 5576 |
| 10                 | 5406          | 5478       | 5384          | 5278    | 5694 |
| 15                 | 5552          | 5339       | 5382          | 5604    | 5620 |
| 20                 | 5270          | 5659       | 5466          | 5541    | 5277 |
| 25                 | 5350          | 5395       | 5469          | 5325    | 5392 |
| 30                 | 5586          | 5687       | 5601          | 5428    | 5561 |
| 35                 | 5253          | 5456       | 5674          | 5579    | 5459 |
| 40                 | 5533          | 5558       | 5629          | 5322    | 5438 |
| 45                 | 5465          | 5396       | 5701          | 5400    | 5591 |
| 50                 | 5304          | 5444       | 5553          | 5520    | 5362 |
| 55                 | 5262          | 5310       | 5345          | 5387    | 5288 |
| 60                 | 5715          | 5602       | 5303          | 5442    | 5691 |
| 65                 | 5515          | 5608       | 5530          | 5275    | 5411 |
| 70                 | 5559          | 5351       | 5680          | 5568    | 5276 |
| 75                 | 5513          | 5443       | 5644          | 5709    | 5355 |
| 80                 | 5555          | 5272       | 5391          | 5616    | 5461 |
| 85                 | 5493          | 5617       | 5298          | 5542    | 5551 |
| 90                 | 5721          | 5596       | 5703          | 5343    | 5692 |
| 95                 | 5566          | 5618       | 5707          | 5452    | 5313 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_16 |      |      |      |      |  |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |  |
| 0                  | 5645                                             | 5500 | 5492 | 5353 | 5378 |  |  |  |  |
| 5                  | 5497                                             | 5489 | 5537 | 5496 | 5405 |  |  |  |  |
| 10                 | 5715                                             | 5267 | 5425 | 5473 | 5640 |  |  |  |  |
| 15                 | 5466                                             | 5485 | 5552 | 5337 | 5278 |  |  |  |  |
| 20                 | 5253                                             | 5504 | 5533 | 5250 | 5616 |  |  |  |  |
| 25                 | 5344                                             | 5672 | 5526 | 5426 | 5673 |  |  |  |  |
| 30                 | 5558                                             | 5546 | 5335 | 5548 | 5523 |  |  |  |  |
| 35                 | 5547                                             | 5470 | 5257 | 5373 | 5372 |  |  |  |  |
| 40                 | 5263                                             | 5567 | 5635 | 5319 | 5436 |  |  |  |  |
| 45                 | 5321                                             | 5454 | 5279 | 5287 | 5467 |  |  |  |  |
| 50                 | 5480                                             | 5495 | 5642 | 5721 | 5684 |  |  |  |  |
| 55                 | 5450                                             | 5487 | 5542 | 5358 | 5320 |  |  |  |  |
| 60                 | 5389                                             | 5434 | 5604 | 5514 | 5464 |  |  |  |  |
| 65                 | 5644                                             | 5265 | 5545 | 5689 | 5631 |  |  |  |  |
| 70                 | 5284                                             | 5720 | 5656 | 5527 | 5273 |  |  |  |  |
| 75                 | 5374                                             | 5419 | 5494 | 5688 | 5553 |  |  |  |  |
| 80                 | 5301                                             | 5418 | 5564 | 5444 | 5708 |  |  |  |  |
| 85                 | 5579                                             | 5556 | 5361 | 5668 | 5412 |  |  |  |  |
| 90                 | 5593                                             | 5707 | 5654 | 5658 | 5381 |  |  |  |  |
| 95                 | 5457                                             | 5272 | 5647 | 5516 | 5686 |  |  |  |  |



| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_l | FREQ_SEC | )_17 |
|--------------------|---------------|------------|----------------|----------|------|
| Frequency<br>(MHz) | 0             | 1          | 2              | 3        | 4    |
| 0                  | 5425          | 5264       | 5428           | 5514     | 5695 |
| 5                  | 5539          | 5511       | 5612           | 5659     | 5646 |
| 10                 | 5531          | 5466       | 5668           | 5261     | 5253 |
| 15                 | 5496          | 5588       | 5597           | 5529     | 5286 |
| 20                 | 5419          | 5445       | 5622           | 5698     | 5504 |
| 25                 | 5671          | 5400       | 5630           | 5460     | 5292 |
| 30                 | 5562          | 5515       | 5487           | 5271     | 5565 |
| 35                 | 5260          | 5266       | 5507           | 5287     | 5686 |
| 40                 | 5346          | 5505       | 5316           | 5365     | 5301 |
| 45                 | 5631          | 5415       | 5332           | 5552     | 5721 |
| 50                 | 5656          | 5546       | 5256           | 5544     | 5628 |
| 55                 | 5638          | 5441       | 5593           | 5361     | 5707 |
| 60                 | 5449          | 5570       | 5334           | 5527     | 5431 |
| 65                 | 5715          | 5413       | 5583           | 5572     | 5437 |
| 70                 | 5492          | 5325       | 5420           | 5472     | 5632 |
| 75                 | 5486          | 5620       | 5494           | 5465     | 5475 |
| 80                 | 5566          | 5681       | 5481           | 5549     | 5284 |
| 85                 | 5347          | 5647       | 5639           | 5273     | 5326 |
| 90                 | 5660          | 5397       | 5692           | 5263     | 5349 |
| 95                 | 5474          | 5327       | 5414           | 5568     | 5658 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_18 |      |      |      |      |  |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |  |
| 0                  | 5680                                             | 5503 | 5364 | 5675 | 5440 |  |  |  |  |
| 5                  | 5581                                             | 5436 | 5687 | 5347 | 5344 |  |  |  |  |
| 10                 | 5577                                             | 5320 | 5507 | 5291 | 5282 |  |  |  |  |
| 15                 | 5341                                             | 5623 | 5594 | 5642 | 5721 |  |  |  |  |
| 20                 | 5672                                             | 5585 | 5386 | 5614 | 5671 |  |  |  |  |
| 25                 | 5392                                             | 5523 | 5603 | 5259 | 5494 |  |  |  |  |
| 30                 | 5334                                             | 5548 | 5472 | 5501 | 5261 |  |  |  |  |
| 35                 | 5566                                             | 5704 | 5351 | 5634 | 5660 |  |  |  |  |
| 40                 | 5298                                             | 5622 | 5429 | 5346 | 5640 |  |  |  |  |
| 45                 | 5410                                             | 5294 | 5281 | 5714 | 5473 |  |  |  |  |
| 50                 | 5385                                             | 5439 | 5597 | 5357 | 5442 |  |  |  |  |
| 55                 | 5367                                             | 5475 | 5254 | 5395 | 5308 |  |  |  |  |
| 60                 | 5655                                             | 5678 | 5578 | 5260 | 5376 |  |  |  |  |
| 65                 | 5670                                             | 5353 | 5377 | 5441 | 5362 |  |  |  |  |
| 70                 | 5619                                             | 5307 | 5707 | 5295 | 5397 |  |  |  |  |
| 75                 | 5406                                             | 5387 | 5321 | 5608 | 5445 |  |  |  |  |
| 80                 | 5589                                             | 5456 | 5717 | 5676 | 5462 |  |  |  |  |
| 85                 | 5629                                             | 5544 | 5449 | 5479 | 5489 |  |  |  |  |
| 90                 | 5602                                             | 5368 | 5669 | 5673 | 5336 |  |  |  |  |
| 95                 | 5611                                             | 5465 | 5666 | 5361 | 5491 |  |  |  |  |



| Нор                | ping Frequenc | cy Sequenc | e Name: HOP_l | FREQ_SEC | )_19 |
|--------------------|---------------|------------|---------------|----------|------|
| Frequency<br>(MHz) | 0             | 1          | 2             | 3        | 4    |
| 0                  | 5363          | 5267       | 5300          | 5361     | 5282 |
| 5                  | 5623          | 5458       | 5287          | 5510     | 5648 |
| 10                 | 5411          | 5681       | 5645          | 5486     | 5303 |
| 15                 | 5332          | 5275       | 5697          | 5687     | 5438 |
| 20                 | 5680          | 5654       | 5424          | 5703     | 5644 |
| 25                 | 5658          | 5472       | 5331          | 5528     | 5473 |
| 30                 | 5437          | 5429       | 5716          | 5413     | 5289 |
| 35                 | 5368          | 5442       | 5430          | 5338     | 5461 |
| 40                 | 5512          | 5284       | 5308          | 5407     | 5601 |
| 45                 | 5261          | 5322       | 5531          | 5704     | 5436 |
| 50                 | 5665          | 5419       | 5349          | 5498     | 5474 |
| 55                 | 5649          | 5707       | 5425          | 5321     | 5502 |
| 60                 | 5323          | 5264       | 5311          | 5655     | 5614 |
| 65                 | 5599          | 5573       | 5566          | 5392     | 5390 |
| 70                 | 5487          | 5404       | 5259          | 5494     | 5718 |
| 75                 | 5318          | 5446       | 5674          | 5250     | 5662 |
| 80                 | 5560          | 5634       | 5627          | 5584     | 5334 |
| 85                 | 5630          | 5672       | 5663          | 5405     | 5470 |
| 90                 | 5508          | 5696       | 5685          | 5389     | 5525 |
| 95                 | 5596          | 5292       | 5465          | 5720     | 5520 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_20 |      |      |      |      |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |
| 0                  | 5618                                             | 5506 | 5711 | 5425 | 5502 |  |  |  |
| 5                  | 5287                                             | 5383 | 5362 | 5576 | 5380 |  |  |  |
| 10                 | 5342                                             | 5470 | 5686 | 5681 | 5324 |  |  |  |
| 15                 | 5420                                             | 5402 | 5325 | 5635 | 5630 |  |  |  |
| 20                 | 5688                                             | 5345 | 5365 | 5695 | 5617 |  |  |  |
| 25                 | 5546                                             | 5437 | 5564 | 5562 | 5515 |  |  |  |
| 30                 | 5326                                             | 5386 | 5359 | 5662 | 5584 |  |  |  |
| 35                 | 5410                                             | 5533 | 5701 | 5588 | 5601 |  |  |  |
| 40                 | 5300                                             | 5692 | 5697 | 5548 | 5404 |  |  |  |
| 45                 | 5530                                             | 5716 | 5405 | 5492 | 5394 |  |  |  |
| 50                 | 5591                                             | 5349 | 5612 | 5699 | 5620 |  |  |  |
| 55                 | 5391                                             | 5266 | 5303 | 5671 | 5361 |  |  |  |
| 60                 | 5687                                             | 5334 | 5577 | 5366 | 5465 |  |  |  |
| 65                 | 5260                                             | 5594 | 5279 | 5638 | 5378 |  |  |  |
| 70                 | 5393                                             | 5494 | 5463 | 5363 | 5430 |  |  |  |
| 75                 | 5282                                             | 5322 | 5418 | 5271 | 5499 |  |  |  |
| 80                 | 5385                                             | 5292 | 5443 | 5491 | 5250 |  |  |  |
| 85                 | 5270                                             | 5625 | 5277 | 5678 | 5357 |  |  |  |
| 90                 | 5532                                             | 5320 | 5579 | 5622 | 5680 |  |  |  |
| 95                 | 5408                                             | 5723 | 5417 | 5605 | 5639 |  |  |  |

Page No. 105 / 110



| Нор                | ping Frequen | cy Sequenc | ce Name: HOP_F | REQ_SEC | 2_21 |
|--------------------|--------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0            | 1          | 2              | 3       | 4    |
| 0                  | 5398         | 5270       | 5647           | 5586    | 5344 |
| 5                  | 5329         | 5405       | 5437           | 5264    | 5587 |
| 10                 | 5273         | 5259       | 5252           | 5401    | 5345 |
| 15                 | 5508         | 5529       | 5428           | 5680    | 5347 |
| 20                 | 5599         | 5414       | 5306           | 5309    | 5590 |
| 25                 | 5337         | 5640       | 5668           | 5596    | 5557 |
| 30                 | 5312         | 5343       | 5574           | 5339    | 5307 |
| 35                 | 5549         | 5624       | 5594           | 5266    | 5612 |
| 40                 | 5614         | 5300       | 5635           | 5313    | 5362 |
| 45                 | 5696         | 5488       | 5550           | 5447    | 5381 |
| 50                 | 5603         | 5275       | 5709           | 5689    | 5685 |
| 55                 | 5257         | 5403       | 5490           | 5494    | 5393 |
| 60                 | 5377         | 5686       | 5641           | 5288    | 5684 |
| 65                 | 5630         | 5656       | 5664           | 5710    | 5461 |
| 70                 | 5493         | 5721       | 5439           | 5700    | 5302 |
| 75                 | 5402         | 5368       | 5399           | 5426    | 5434 |
| 80                 | 5280         | 5355       | 5440           | 5628    | 5372 |
| 85                 | 5370         | 5632       | 5605           | 5352    | 5485 |
| 90                 | 5634         | 5547       | 5591           | 5639    | 5578 |
| 95                 | 5387         | 5595       | 5543           | 5629    | 5282 |

| Нор                | ping Frequen | cy Sequend | ce Name: HOP_I | FREQ_SEC | )_22 |
|--------------------|--------------|------------|----------------|----------|------|
| Frequency<br>(MHz) | 0            | 1          | 2              | 3        | 4    |
| 0                  | 5653         | 5509       | 5583           | 5272     | 5564 |
| 5                  | 5371         | 5330       | 5512           | 5427     | 5416 |
| 10                 | 5582         | 5523       | 5293           | 5499     | 5366 |
| 15                 | 5596         | 5559       | 5531           | 5250     | 5539 |
| 20                 | 5607         | 5580       | 5344           | 5301     | 5563 |
| 25                 | 5700         | 5600       | 5368           | 5297     | 5630 |
| 30                 | 5696         | 5676       | 5300           | 5314     | 5588 |
| 35                 | 5602         | 5688       | 5715           | 5390     | 5419 |
| 40                 | 5526         | 5550       | 5383           | 5573     | 5456 |
| 45                 | 5398         | 5291       | 5571           | 5608     | 5500 |
| 50                 | 5268         | 5479       | 5489           | 5326     | 5420 |
| 55                 | 5532         | 5686       | 5593           | 5309     | 5465 |
| 60                 | 5522         | 5542       | 5253           | 5570     | 5704 |
| 65                 | 5258         | 5633       | 5666           | 5391     | 5556 |
| 70                 | 5360         | 5404       | 5447           | 5496     | 5415 |
| 75                 | 5659         | 5271       | 5511           | 5380     | 5678 |
| 80                 | 5536         | 5713       | 5515           | 5437     | 5406 |
| 85                 | 5648         | 5335       | 5586           | 5378     | 5650 |
| 90                 | 5312         | 5668       | 5429           | 5656     | 5270 |
| 95                 | 5476         | 5269       | 5698           | 5266     | 5277 |

Page No. 106 / 110



| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_F | REQ_SEC | )_23 |
|--------------------|---------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0             | 1          | 2              | 3       | 4    |
| 0                  | 5433          | 5273       | 5519           | 5406    | 5413 |
| 5                  | 5352          | 5587       | 5590           | 5623    | 5513 |
| 10                 | 5312          | 5334       | 5694           | 5387    | 5686 |
| 15                 | 5537          | 5673       | 5353           | 5615    | 5649 |
| 20                 | 5285          | 5390       | 5536           | 5491    | 5452 |
| 25                 | 5571          | 5401       | 5664           | 5263    | 5565 |
| 30                 | 5257          | 5529       | 5265           | 5422    | 5428 |
| 35                 | 5661          | 5669       | 5440           | 5389    | 5466 |
| 40                 | 5511          | 5696       | 5492           | 5695    | 5559 |
| 45                 | 5654          | 5569       | 5553           | 5533    | 5355 |
| 50                 | 5665          | 5377       | 5509           | 5335    | 5476 |
| 55                 | 5719          | 5640       | 5308           | 5506    | 5436 |
| 60                 | 5651          | 5707       | 5402           | 5627    | 5301 |
| 65                 | 5582          | 5605       | 5698           | 5351    | 5638 |
| 70                 | 5596          | 5419       | 5391           | 5618    | 5715 |
| 75                 | 5642          | 5557       | 5458           | 5455    | 5317 |
| 80                 | 5578          | 5434       | 5601           | 5531    | 5368 |
| 85                 | 5708          | 5659       | 5678           | 5637    | 5626 |
| 90                 | 5370          | 5340       | 5318           | 5689    | 5657 |
| 95                 | 5254          | 5374       | 5723           | 5326    | 5464 |

| Нор                | Hopping Frequency Sequence Name: HOP_FREQ_SEQ_24 |      |      |      |      |  |  |  |
|--------------------|--------------------------------------------------|------|------|------|------|--|--|--|
| Frequency<br>(MHz) | 0                                                | 1    | 2    | 3    | 4    |  |  |  |
| 0                  | 5591                                             | 5512 | 5455 | 5594 | 5626 |  |  |  |
| 5                  | 5552                                             | 5277 | 5662 | 5656 | 5355 |  |  |  |
| 10                 | 5347                                             | 5673 | 5375 | 5414 | 5408 |  |  |  |
| 15                 | 5675                                             | 5338 | 5640 | 5718 | 5545 |  |  |  |
| 20                 | 5526                                             | 5340 | 5701 | 5382 | 5509 |  |  |  |
| 25                 | 5379                                             | 5401 | 5299 | 5602 | 5698 |  |  |  |
| 30                 | 5305                                             | 5551 | 5689 | 5647 | 5514 |  |  |  |
| 35                 | 5620                                             | 5394 | 5519 | 5457 | 5451 |  |  |  |
| 40                 | 5703                                             | 5646 | 5449 | 5461 | 5489 |  |  |  |
| 45                 | 5527                                             | 5539 | 5359 | 5627 | 5606 |  |  |  |
| 50                 | 5420                                             | 5706 | 5366 | 5428 | 5598 |  |  |  |
| 55                 | 5536                                             | 5323 | 5335 | 5325 | 5407 |  |  |  |
| 60                 | 5397                                             | 5618 | 5709 | 5453 | 5722 |  |  |  |
| 65                 | 5513                                             | 5531 | 5641 | 5433 | 5441 |  |  |  |
| 70                 | 5645                                             | 5516 | 5599 | 5268 | 5367 |  |  |  |
| 75                 | 5577                                             | 5587 | 5287 | 5700 | 5439 |  |  |  |
| 80                 | 5707                                             | 5667 | 5573 | 5469 | 5334 |  |  |  |
| 85                 | 5321                                             | 5434 | 5685 | 5671 | 5376 |  |  |  |
| 90                 | 5643                                             | 5399 | 5568 | 5505 | 5324 |  |  |  |
| 95                 | 5639                                             | 5571 | 5346 | 5312 | 5712 |  |  |  |



| Нор                | ping Frequenc | cy Sequenc | ce Name: HOP_F | REQ_SEC | )_25 |
|--------------------|---------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0             | 1          | 2              | 3       | 4    |
| 0                  | 5371          | 5276       | 5391           | 5280    | 5468 |
| 5                  | 5594          | 5299       | 5262           | 5344    | 5659 |
| 10                 | 5278          | 5462       | 5416           | 5609    | 5429 |
| 15                 | 5288          | 5465       | 5268           | 5534    | 5409 |
| 20                 | 5264          | 5471       | 5482           | 5267    | 5253 |
| 25                 | 5405          | 5706       | 5257           | 5444    | 5440 |
| 30                 | 5646          | 5387       | 5666           | 5533    | 5610 |
| 35                 | 5350          | 5500       | 5365           | 5542    | 5254 |
| 40                 | 5290          | 5701       | 5486           | 5456    | 5519 |
| 45                 | 5442          | 5685       | 5485           | 5479    | 5687 |
| 50                 | 5359          | 5523       | 5548           | 5591    | 5619 |
| 55                 | 5281          | 5434       | 5562           | 5563    | 5541 |
| 60                 | 5376          | 5668       | 5714           | 5480    | 5580 |
| 65                 | 5265          | 5513       | 5622           | 5717    | 5502 |
| 70                 | 5699          | 5592       | 5721           | 5536    | 5556 |
| 75                 | 5310          | 5368       | 5420           | 5484    | 5680 |
| 80                 | 5354          | 5633       | 5704           | 5331    | 5613 |
| 85                 | 5337          | 5624       | 5256           | 5568    | 5511 |
| 90                 | 5642          | 5550       | 5388           | 5670    | 5427 |
| 95                 | 5576          | 5453       | 5455           | 5329    | 5292 |

| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_26 |      |      |      |      |      |
|--------------------------------------------------|------|------|------|------|------|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |
| 0                                                | 5626 | 5515 | 5327 | 5441 | 5688 |
| 5                                                | 5636 | 5699 | 5337 | 5507 | 5391 |
| 10                                               | 5684 | 5251 | 5457 | 5329 | 5450 |
| 15                                               | 5376 | 5592 | 5371 | 5333 | 5454 |
| 20                                               | 5542 | 5575 | 5680 | 5463 | 5455 |
| 25                                               | 5533 | 5677 | 5608 | 5335 | 5291 |
| 30                                               | 5486 | 5426 | 5603 | 5602 | 5440 |
| 35                                               | 5638 | 5672 | 5701 | 5621 | 5275 |
| 40                                               | 5279 | 5381 | 5703 | 5369 | 5483 |
| 45                                               | 5288 | 5499 | 5525 | 5646 | 5615 |
| 50                                               | 5572 | 5361 | 5718 | 5530 | 5301 |
| 55                                               | 5657 | 5589 | 5711 | 5405 | 5306 |
| 60                                               | 5438 | 5252 | 5563 | 5605 | 5373 |
| 65                                               | 5537 | 5429 | 5616 | 5475 | 5425 |
| 70                                               | 5411 | 5488 | 5702 | 5344 | 5697 |
| 75                                               | 5495 | 5428 | 5430 | 5414 | 5401 |
| 80                                               | 5261 | 5315 | 5610 | 5322 | 5389 |
| 85                                               | 5328 | 5466 | 5694 | 5663 | 5476 |
| 90                                               | 5596 | 5323 | 5586 | 5360 | 5433 |
| 95                                               | 5713 | 5564 | 5346 | 5347 | 5303 |



| Нор                | ping Frequen | cy Sequenc | ce Name: HOP_F | REQ_SEC | )_27 |
|--------------------|--------------|------------|----------------|---------|------|
| Frequency<br>(MHz) | 0            | 1          | 2              | 3       | 4    |
| 0                  | 5406         | 5279       | 5263           | 5505    | 5530 |
| 5                  | 5678         | 5721       | 5412           | 5670    | 5598 |
| 10                 | 5518         | 5515       | 5595           | 5427    | 5471 |
| 15                 | 5367         | 5622       | 5474           | 5281    | 5646 |
| 20                 | 5453         | 5644       | 5621           | 5552    | 5428 |
| 25                 | 5421         | 5529       | 5336           | 5439    | 5325 |
| 30                 | 5528         | 5315       | 5560           | 5342    | 5592 |
| 35                 | 5458         | 5317       | 5417           | 5290    | 5517 |
| 40                 | 5641         | 5609       | 5480           | 5692    | 5479 |
| 45                 | 5608         | 5704       | 5668           | 5362    | 5712 |
| 50                 | 5419         | 5581       | 5487           | 5533    | 5424 |
| 55                 | 5359         | 5496       | 5635           | 5698    | 5550 |
| 60                 | 5302         | 5503       | 5657           | 5378    | 5652 |
| 65                 | 5307         | 5675       | 5703           | 5483    | 5705 |
| 70                 | 5673         | 5454       | 5397           | 5557    | 5382 |
| 75                 | 5416         | 5425       | 5391           | 5486    | 5452 |
| 80                 | 5715         | 5308       | 5380           | 5344    | 5647 |
| 85                 | 5571         | 5525       | 5547           | 5576    | 5363 |
| 90                 | 5402         | 5287       | 5538           | 5445    | 5500 |
| 95                 | 5590         | 5476       | 5252           | 5446    | 5432 |

| Нор                | ping Frequen | cy Sequenc | ce Name: HOP_f | FREQ_SEC | )_28 |
|--------------------|--------------|------------|----------------|----------|------|
| Frequency<br>(MHz) | 0            | 1          | 2              | 3        | 4    |
| 0                  | 5564         | 5518       | 5674           | 5666     | 5275 |
| 5                  | 5342         | 5646       | 5487           | 5261     | 5427 |
| 10                 | 5449         | 5304       | 5636           | 5622     | 5492 |
| 15                 | 5455         | 5274       | 5480           | 5326     | 5363 |
| 20                 | 5461         | 5335       | 5659           | 5544     | 5401 |
| 25                 | 5687         | 5381       | 5539           | 5640     | 5359 |
| 30                 | 5570         | 5679       | 5517           | 5460     | 5366 |
| 35                 | 5656         | 5378       | 5505           | 5310     | 5581 |
| 40                 | 5631         | 5600       | 5579           | 5374     | 5574 |
| 45                 | 5621         | 5459       | 5691           | 5287     | 5721 |
| 50                 | 5724         | 5491       | 5595           | 5632     | 5576 |
| 55                 | 5681         | 5380       | 5612           | 5313     | 5686 |
| 60                 | 5454         | 5669       | 5582           | 5495     | 5609 |
| 65                 | 5426         | 5603       | 5561           | 5327     | 5591 |
| 70                 | 5470         | 5506       | 5652           | 5557     | 5330 |
| 75                 | 5649         | 5413       | 5269           | 5670     | 5668 |
| 80                 | 5438         | 5647       | 5553           | 5515     | 5322 |
| 85                 | 5723         | 5618       | 5722           | 5717     | 5475 |
| 90                 | 5309         | 5601       | 5344           | 5604     | 5690 |
| 95                 | 5445         | 5685       | 5457           | 5368     | 5436 |

Page No. 109 / 110



| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_29 |      |      |      |      |      |  |
|--------------------------------------------------|------|------|------|------|------|--|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |  |
| 0                                                | 5344 | 5282 | 5610 | 5352 | 5592 |  |
| 5                                                | 5384 | 5668 | 5562 | 5424 | 5634 |  |
| 10                                               | 5380 | 5665 | 5677 | 5342 | 5513 |  |
| 15                                               | 5543 | 5401 | 5583 | 5371 | 5555 |  |
| 20                                               | 5469 | 5501 | 5600 | 5633 | 5374 |  |
| 25                                               | 5575 | 5330 | 5267 | 5269 | 5393 |  |
| 30                                               | 5709 | 5474 | 5675 | 5518 | 5476 |  |
| 35                                               | 5517 | 5596 | 5581 | 5356 | 5593 |  |
| 40                                               | 5470 | 5683 | 5614 | 5571 | 5453 |  |
| 45                                               | 5299 | 5723 | 5514 | 5367 | 5296 |  |
| 50                                               | 5504 | 5324 | 5325 | 5273 | 5378 |  |
| 55                                               | 5272 | 5537 | 5441 | 5252 | 5549 |  |
| 60                                               | 5287 | 5276 | 5627 | 5349 | 5362 |  |
| 65                                               | 5309 | 5724 | 5333 | 5366 | 5625 |  |
| 70                                               | 5372 | 5713 | 5315 | 5271 | 5445 |  |
| 75                                               | 5548 | 5428 | 5717 | 5697 | 5443 |  |
| 80                                               | 5618 | 5564 | 5680 | 5667 | 5652 |  |
| 85                                               | 5615 | 5262 | 5494 | 5512 | 5334 |  |
| 90                                               | 5306 | 5421 | 5305 | 5522 | 5620 |  |
| 95                                               | 5413 | 5619 | 5284 | 5552 | 5714 |  |

| Hopping Frequency Sequence Name: HOP_FREQ_SEQ_30 |      |      |      |      |      |
|--------------------------------------------------|------|------|------|------|------|
| Frequency<br>(MHz)                               | 0    | 1    | 2    | 3    | 4    |
| 0                                                | 5599 | 5521 | 5546 | 5513 | 5337 |
| 5                                                | 5426 | 5593 | 5637 | 5587 | 5366 |
| 10                                               | 5689 | 5454 | 5718 | 5537 | 5534 |
| 15                                               | 5631 | 5528 | 5686 | 5416 | 5272 |
| 20                                               | 5380 | 5570 | 5541 | 5625 | 5347 |
| 25                                               | 5657 | 5373 | 5427 | 5276 | 5554 |
| 30                                               | 5431 | 5415 | 5292 | 5296 | 5656 |
| 35                                               | 5687 | 5377 | 5509 | 5604 | 5309 |
| 40                                               | 5291 | 5455 | 5282 | 5568 | 5382 |
| 45                                               | 5322 | 5306 | 5352 | 5401 | 5472 |
| 50                                               | 5259 | 5279 | 5327 | 5646 | 5696 |
| 55                                               | 5591 | 5470 | 5514 | 5507 | 5437 |
| 60                                               | 5482 | 5273 | 5553 | 5592 | 5585 |
| 65                                               | 5700 | 5566 | 5559 | 5632 | 5490 |
| 70                                               | 5321 | 5529 | 5433 | 5601 | 5331 |
| 75                                               | 5338 | 5317 | 5325 | 5697 | 5658 |
| 80                                               | 5684 | 5406 | 5263 | 5694 | 5260 |
| 85                                               | 5503 | 5265 | 5384 | 5617 | 5606 |
| 90                                               | 5365 | 5622 | 5545 | 5552 | 5522 |
| 95                                               | 5511 | 5567 | 5336 | 5707 | 5663 |

--- END ---