An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

Ping Li
Department of Statistical Science
Faculty of Computing and Information Science
Cornell University
Ithaca, NY 14853
pingli@cornell.edu

Abstract

This empirical study is mainly devoted to comparing **four** tree-based boosting algorithms: **mart**, **abc-mart**, **robust logitboost**, and **abc-logitboost**, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning.

In terms of the empirical classification errors, our experiment results demonstrate:

- 1. Abc-mart considerably improves mart.
- 2. Abc-logitboost considerably improves (robust) logitboost.
- 3. (Robust) logitboost considerably improves mart on most datasets.
- 4. Abc-logitboost considerably improves abc-mart on most datasets.
- 5. These four boosting algorithms (especially abc-logitboost) outperform SVM on many datasets.
- 6. Compared to the best deep learning methods, these four boosting algorithms (especially *abclogitboost*) are competitive.

1 Introduction

Boosting algorithms [16, 4, 5, 2, 17, 7, 15, 6] have become very successful in machine learning. In this paper, we provide an empirical evaluation of **four** tree-based boosting algorithms for multi-class classification: **mart**[6], **abc-mart**[11], **robust logithoost**[13], and **abc-logithoost**[12], on a wide range of datasets.

Abc-boost[11], where "abc" stands for adaptive base class, is a recent new idea for improving multi-class classification. Both abc-mart[11] and abc-logitboost[12] are specific implementations of abc-boost. Although the experiments in [11, 12] were reasonable, we consider a more thorough study is necessary. Most datasets used in [11, 12] are (very) small. While those datasets (e.g., pendigits, zipcode) are still popular in machine learning research papers, they may be too small to be practically very meaningful. Nowadays, applications with millions of training samples are not uncommon, for example, in search engines[14].

It would be also interesting to compare these four tree-based boosting algorithms with other popular learning methods such as *support vector machines (SVM)* and *deep learning*. A recent study[9]¹ conducted a thorough empirical comparison of many learning algorithms including SVM, neural nets, and

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007

deep learning. The authors of [9] maintain a nice Web site from which one can download the datasets and compares the test mis-classification errors.

In this paper, we provide extensive experiment results using *mart*, *abc-mart*, *robust logitboost*, and *abc-logitboost* on the datasets used in [9], plus other publicly available datasets. One interesting dataset is the UCI *Poker*. By private communications with C.J. Lin (the author of LibSVM), we learn that SVM achieved a classification accuracy of $\leq 60\%$ on this dataset. Interestingly, all four boosting algorithms can easily achieve > 90% accuracies.

We try to make this paper self-contained by providing a detailed introduction to *abc-mart*, *robust logitboost*, and *abc-logitboost* in the next section.

2 LogitBoost, Mart, Abc-mart, Robust LogitBoost, and Abc-LogitBoost

We denote a training dataset by $\{y_i, \mathbf{x}_i\}_{i=1}^N$, where N is the number of feature vectors (samples), \mathbf{x}_i is the ith feature vector, and $y_i \in \{0, 1, 2, ..., K-1\}$ is the ith class label, where $K \geq 3$ in multi-class classification.

Both logitboost[7] and mart (multiple additive regression trees)[6] algorithms can be viewed as generalizations to logistic regression, which assumes class probabilities $p_{i,k}$ as

$$p_{i,k} = \mathbf{Pr}\left(y_i = k | \mathbf{x}_i\right) = \frac{e^{F_{i,k}(\mathbf{x}_i)}}{\sum_{s=0}^{K-1} e^{F_{i,s}(\mathbf{x}_i)}}.$$
(1)

While traditional logistic regression assumes $F_{i,k}(\mathbf{x}_i) = \beta^T \mathbf{x}_i$, logitboost and mart adopt the flexible "additive model," which is a function of M terms:

$$F^{(M)}(\mathbf{x}) = \sum_{m=1}^{M} \rho_m h(\mathbf{x}; \mathbf{a}_m), \tag{2}$$

where $h(\mathbf{x}; \mathbf{a}_m)$, the base learner, is typically a regression tree. The parameters, ρ_m and \mathbf{a}_m , are learned from the data, by maximum likelihood, which is equivalent to minimizing the *negative log-likelihood loss*

$$L = \sum_{i=1}^{N} L_i, \qquad L_i = -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k}$$
 (3)

where $r_{i,k} = 1$ if $y_i = k$ and $r_{i,k} = 0$ otherwise.

For identifiability, $\sum_{k=0}^{K-1} F_{i,k} = 0$, i.e., the **sum-to-zero** constraint, is routinely adopted [7, 6, 19, 10, 18, 21, 20].

2.1 Logitboost

As described in Alg. 1, [7] builds the additive model (2) by a greedy stage-wise procedure, using a second-order (diagonal) approximation, which requires knowing the first two derivatives of the loss function (3) with respective to the function values $F_{i,k}$. [7] obtained:

$$\frac{\partial L_i}{\partial F_{i,k}} = -\left(r_{i,k} - p_{i,k}\right), \qquad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k}\left(1 - p_{i,k}\right). \tag{4}$$

Those derivatives can be derived by assuming no relations among $F_{i,k}$, k=0 to K-1. However, [7] used the "sum-to-zero" constraint $\sum_{k=0}^{K-1} F_{i,k} = 0$ throughout the paper and they provided an alternative explanation. [7] showed (4) by conditioning on a "base class" and noticed the resultant derivatives are independent of the choice of the base.

Algorithm 1 LogitBoost[7, Alg. 6]. ν is the shrinkage.

```
0: r_{i,k} = 1, if y_i = k, r_{i,k} = 0 otherwise.

1: F_{i,k} = 0, p_{i,k} = \frac{1}{K}, k = 0 to K - 1, i = 1 to N

2: For m = 1 to M Do

3: For k = 0 to K - 1, Do

4: Compute w_{i,k} = p_{i,k} (1 - p_{i,k}).

5: Compute z_{i,k} = \frac{r_{i,k} - p_{i,k}}{p_{i,k} (1 - p_{i,k})}.

6: Fit the function f_{i,k} by a weighted least-square of z_{i,k}

: to x_i with weights w_{i,k}.

7: F_{i,k} = F_{i,k} + \nu \frac{K - 1}{K} \left( f_{i,k} - \frac{1}{K} \sum_{k=0}^{K-1} f_{i,k} \right)

8: End

9: p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s})

10: End
```

At each stage, *logitboost* fits an individual regression function separately for each class. This is analogous to the popular *individualized regression* approach in multinomial logistic regression, which is known [3, 1] to result in loss of statistical efficiency, compared to the full (conditional) maximum likelihood approach.

On the other hand, in order to use trees as base learner, the diagonal approximation appears to be a must, at least from the practical perspective.

2.2 Adaptive Base Class Boost (ABC-Boost)

[11] derived the derivatives of the loss function (3) under the sum-to-zero constraint. Without loss of generality, we can assume that class 0 is the base class. For any $k \neq 0$,

$$\frac{\partial L_i}{\partial F_{i,k}} = (r_{i,0} - p_{i,0}) - (r_{i,k} - p_{i,k}), \qquad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,0}(1 - p_{i,0}) + p_{i,k}(1 - p_{i,k}) + 2p_{i,0}p_{i,k}.$$
(5)

The base class must be identified at each boosting iteration during training. [11] suggested an exhaustive procedure to adaptively find the best base class to minimize the training loss (3) at each iteration.

[11] combined the idea of *abc-boost* with *mart*. The algorithm, named *abc-mart*, achieved good performance in multi-class classification on the datasets used in [11].

2.3 Robust LogitBoost

The *mart* paper[6] and a recent (2008) discussion paper [8] commented that *logitboost* (Alg. 1) can be numerically unstable. In fact, the *logitboost* paper[7] suggested some "crucial implementation protections" on page 17 of [7]:

- In Line 5 of Alg. 1, compute the response $z_{i,k}$ by $\frac{1}{p_{i,k}}$ (if $r_{i,k}=1$) or $\frac{-1}{1-p_{i,k}}$ (if $r_{i,k}=0$).
- Bound the response $|z_{i,k}|$ by $z_{max} \in [2,4]$. The value of z_{max} is not sensitive as long as in [2,4]

Note that the above operations were applied to each individual sample. The goal was to ensure that the response $|z_{i,k}|$ should not be too large. On the other hand, we should hope to use larger $|z_{i,k}|$ to better capture the data variation. Therefore, this thresholding operation occurs very frequently and it is expected that part of the useful information is lost.

The next subsection explains that, if implemented carefully, *logitboost* is almost identical to *mart*. The only difference is the tree-splitting criterion.

2.4 Tree-Splitting Criterion Using Second-Order Information

Consider N weights w_i , and N response values z_i , i=1 to N, which are assumed to be ordered according to the sorted order of the corresponding feature values. The tree-splitting procedure is to find the index $s, 1 \le s < N$, such that the weighted mean square error (MSE) is reduced the most if split at s. That is, we seek the s to maximize

$$Gain(s) = MSE_T - (MSE_L + MSE_R)$$

$$= \sum_{i=1}^{N} (z_i - \bar{z})^2 w_i - \left[\sum_{i=1}^{s} (z_i - \bar{z}_L)^2 w_i + \sum_{i=s+1}^{N} (z_i - \bar{z}_R)^2 w_i \right]$$

where $\bar{z} = \frac{\sum_{i=1}^{N} z_i w_i}{\sum_{i=1}^{N} w_i}$, $\bar{z}_L = \frac{\sum_{i=1}^{s} z_i w_i}{\sum_{i=1}^{s} w_i}$, $\bar{z}_R = \frac{\sum_{i=s+1}^{N} z_i w_i}{\sum_{i=s+1}^{N} w_i}$. After simplification, one can obtain

$$Gain(s) = \frac{\left[\sum_{i=1}^{s} z_i w_i\right]^2}{\sum_{i=1}^{s} w_i} + \frac{\left[\sum_{i=s+1}^{N} z_i w_i\right]^2}{\sum_{i=s+1}^{N} w_i} - \frac{\left[\sum_{i=1}^{N} z_i w_i\right]^2}{\sum_{i=1}^{N} w_i}$$

Plugging in $w_i = p_{i,k}(1 - p_{i,k})$, $z_i = \frac{r_{i,k} - p_{i,k}}{p_{i,k}(1 - p_{i,k})}$ yields,

$$Gain(s) = \frac{\left[\sum_{i=1}^{s} (r_{i,k} - p_{i,k})\right]^{2}}{\sum_{i=1}^{s} p_{i,k} (1 - p_{i,k})} + \frac{\left[\sum_{i=s+1}^{N} (r_{i,k} - p_{i,k})\right]^{2}}{\sum_{i=s+1}^{N} p_{i,k} (1 - p_{i,k})} - \frac{\left[\sum_{i=1}^{N} (r_{i,k} - p_{i,k})\right]^{2}}{\sum_{i=1}^{N} p_{i,k} (1 - p_{i,k})}.$$

Because the computations involve $\sum p_{i,k}(1-p_{i,k})$ as a group, this procedure is actually numerically stable.

In comparison, mart [6] only used the first order information to construct the trees, i.e.,

$$MartGain(s) = \left[\sum_{i=1}^{s} (r_{i,k} - p_{i,k})\right]^{2} + \left[\sum_{i=s+1}^{N} (r_{i,k} - p_{i,k})\right]^{2} - \left[\sum_{i=1}^{N} (r_{i,k} - p_{i,k})\right]^{2}.$$

Alg. 2 describes *robust logitboost* using the tree-splitting criterion in Sec. 2.4. Note that after trees are constructed, the values of the terminal nodes are computed by

$$\frac{\sum_{node} z_{i,k} w_{i,k}}{\sum_{node} w_{i,k}} = \frac{\sum_{node} (r_{i,k} - p_{i,k})}{\sum_{node} p_{i,k} (1 - p_{i,k})},$$

which explains Line 5 of Alg. 2.

Algorithm 2 Robust logitboost, which is very similar to mart, except for Line 4.

```
1: F_{i,k} = 0, p_{i,k} = \frac{1}{K}, k = 0 to K - 1, i = 1 to N

2: For m = 1 to M Do

3: For k = 0 to K - 1 Do

4: \left\{R_{j,k,m}\right\}_{j=1}^{J} = J-terminal node regression tree from \left\{r_{i,k} - p_{i,k}, \ \mathbf{x}_i\right\}_{i=1}^{N},

: with weights p_{i,k}(1 - p_{i,k}) as in Sec. 2.4.

5: \beta_{j,k,m} = \frac{K-1}{K} \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} r_{i,k} - p_{i,k}}{\sum_{\mathbf{x}_i \in R_{j,k,m}} (1 - p_{i,k}) p_{i,k}}

6: F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}

7: End

8: p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s})

9: End
```

2.5 Adaptive Base Class Logitboost (ABC-LogitBoost)

The *abc-boost* [11] algorithm consists of two key components:

- 1. Using the *sum-to-zero* constraint[7, 6, 19, 10, 18, 21, 20] on the loss function, one can formulate boosting algorithms only for K-1 classes, by treating one class as the **base class**.
- 2. At each boosting iteration, **adaptively** select the base class according to the training loss. [11] suggested an exhaustive search strategy.
- [11] combined *abc-boost* with *mart* to develop *abc-mart*. More recently, [12] developed *abc-logitboost*, the combination of *abc-boost* with *(robust) logitboost*.

Algorithm 3 *Abc-logitboost* using the exhaustive search strategy for the base class, as suggested in [11]. The vector *B* stores the base class numbers.

```
1: F_{i,k} = 0, p_{i,k} = \frac{1}{K}, k = 0 to K - 1, i = 1 to N
2: For m = 1 to M Do
          For b = 0 to K - 1, Do
             For k = 0 to K - 1, k \neq b, Do
4:
                \{R_{j,k,m}\}_{j=1}^{J} = J-terminal node regression tree from \{-(r_{i,b} - p_{i,b}) + (r_{i,k} - p_{i,k}), \mathbf{x}_i\}_{i=1}^{N}
5:
                with weights p_{i,b}(1-p_{i,b})+p_{i,k}(1-p_{i,k})+2p_{i,b}p_{i,k}, as in Sec. 2.4. \beta_{j,k,m} = \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} -(r_{i,b}-p_{i,b})+(r_{i,k}-p_{i,k})}{\sum_{\mathbf{x}_i \in R_{j,k,m}} p_{i,b}(1-p_{i,b})+p_{i,k}(1-p_{i,k})+2p_{i,b}p_{i,k}}
6:
                G_{i,k,b} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}
7:
8:
            G_{i,b,b} = -\sum_{k \neq b} G_{i,k,b}
q_{i,k} = \exp(G_{i,k,b}) / \sum_{s=0}^{K-1} \exp(G_{i,s,b})
L^{(b)} = -\sum_{i=1}^{N} \sum_{k=0}^{K-1} r_{i,k} \log(q_{i,k})
9:
11:
12:
            B(m) = \operatorname{argmin} \ L^{(b)}
14: F_{i,k} = G_{i,k,B(m)}^{b}
15: p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s})
16: End
```

Alg. 3 presents *abc-logitboost*, using the derivatives in (5) and the same exhaustive search strategy as in *abc-mart*. Again, *abc-logitboost* differs from *abc-mart* only in the tree-splitting procedure (Line 5).

2.6 Main Parameters

Alg. 2 and Alg. 3 have three parameters $(J, \nu \text{ and } M)$, to which the performance is in general not very sensitive, as long as they fall in some reasonable range. This is a significant advantage in practice.

The number of terminal nodes, J, determines the capacity of the base learner. [6] suggested J=6. [7, 21] commented that J>10 is unlikely. In our experience, for large datasets (or moderate datasets in high-dimensions), J=20 is often a reasonable choice; also see [14] for more examples.

The shrinkage, ν , should be large enough to make sufficient progress at each step and small enough to avoid over-fitting. [6] suggested $\nu \leq 0.1$. Normally, $\nu = 0.1$ is used.

The number of boosting iterations, M, is largely determined by the affordable computing time. A commonly-regarded merit of boosting is that, on many datasets, over-fitting can be largely avoided for reasonable J, and ν .

3 Datasets

Table 1 lists the datasets used in our study. [11, 12] provided experiments on several other (small) datasets.

dataset	K	# training	# test	# features
Covertype290k	7	290506	290506	54
Covertype145k	7	145253	290506	54
Poker525k	10	525010	500000	25
Poker275k	10	275010	500000	25
Poker150k	10	150010	500000	25
Poker100k	10	100010	500000	25
Poker25kT1	10	25010	500000	25
Poker25kT2	10	25010	500000	25
Mnist10k	10	10000	60000	784
M-Basic	10	12000	50000	784
M-Rotate	10	12000	50000	784
M-Image	10	12000	50000	784
M-Rand	10	12000	50000	784
M-RotImg	10	12000	50000	784
M-Noise1	10	10000	2000	784
M-Noise2	10	10000	2000	784
M-Noise3	10	10000	2000	784
M-Noise4	10	10000	2000	784
M-Noise5	10	10000	2000	784
M-Noise6	10	10000	2000	784
Letter15k	26	15000	5000	16
Letter4k	26	4000	16000	16
Letter2k	26	2000	18000	16

Table 1: Datasets

3.1 Covertype

The original UCI *Covertype* dataset is fairly large, with 581012 samples. To generate *Covertype*290k, we randomly split the original data into halves, one half for training and another half for testing. For

Covertype145k, we randomly select one half from the training set of Covertype290k and still keep the test set.

3.2 Poker

The UCI *Poker* dataset originally used only 25010 samples for training and 1000000 samples for testing. Since the test set is very large, we randomly divide it equally into two parts (I and II). *Poker25kT1* uses the original training set for training and Part I of the original test set for testing. *Poker25kT2* uses the original training set for training and Part II of the original test set for testing. This way, *Poker25kT1* can use the test set of *Poker25kT2* for validation, and *Poker25kT2* can use the test set of *Poker25kT1* for validation. As the two test sets are still very large, this treatment will provide reliable results.

Since the original training set (about 25k) is too small compared to the size of the test set, we enlarge the training set to form Poker525k, Poker275k, Poker150k, and Poker100k. All four enlarged training datasets use the same test set as Poker25kT2 (i.e., Part II of the original test set). The training set of Poker525k contains the original (25010) training set plus Part I of the original test set. Similarly, the training set of Poker275k / Poker150k / Poker100k contains the original training set plus Poker100k / Poker100k contains the original tr

The original *Poker* dataset provides 10 features, 5 "suit" features and 5 "rank" features. While the "ranks" are naturally ordinal, it appears reasonable to treat "suits" as nominal features. By private communications, R. Cattral, the donor of the *Poker* data, suggested us to treat the "suits" as nominal. C.J. Lin also kindly told us that the performance of SVM was not affected whether "suits" are treated nominal or ordinal. In our experiments, we choose to use "suits" as nominal feature; and hence the total number of features becomes 25 after expanding each "suite" feature with 4 binary features.

3.3 Mnist

While the original *Mnist* dataset is extremely popular, this dataset is known to be too easy[9]. Originally, *Mnist* used 60000 samples for training and 10000 samples for testing.

Mnist10k uses the original (10000) test set for training and the original (60000) training set for testing. This creates a more challenging task.

3.4 Mnist with Many Variations

[9] (www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007) created a variety of much more difficult datasets by adding various background (correlated) noise, background images, rotations, etc, to the original *Mnist* dataset. We shortened the notations of the generated datasets to be *M-Basic*, *M-Rotate*, *M-Image*, *M-Rand*, *M-RotImg*, and *M-Noise1*, *M-Noise2* to *M-Noise6*.

By private communications with D. Erhan, one of the authors of [9], we learn that the sizes of the training sets actually vary depending on the learning algorithms. For some methods such as SVM, they retrained the algorithms using all 120000 training samples after choosing the best parameters; and for other methods, they used 10000 samples for training. In our experiments, we use 12000 training samples for *M-Basic*, *M-Rotate*, *M-Image*, *M-Rand* and *M-RotImg*; and we use 10000 training samples for *M-Noise1* to *M-Noise6*.

Note that the datasets *M-Noise1* to *M-Noise6* have merely 2000 test samples each. By private communications with D. Erhan, we understand this was because [9] did not mean to compare the statistical significance of the test errors for those six datasets.

3.5 Letter

The UCI *Letter* dataset has in total 20000 samples. In our experiments, *Letter4k* (*Letter2k*) use the last 4000 (2000) samples for training and the rest for testing. The purpose is to demonstrate the performance of the algorithms using only small training sets.

We also include *Letter15k*, which is one of the standard partitions of the *Letter* dataset, by using 15000 samples for training and 5000 samples for testing.

4 Summary of Experiment Results

We simply use *logitboost* (or even *logit* in the plots) to denote *robust logitboost*.

Table 2 summarizes the test mis-classification errors. For all datasets except Poker25kT1 and Poker25kT2, we report the test errors with the tree size J=20 and shrinkage $\nu = 0.1$. For Poker25kT1 and Poker25kT2, we use J = 6 and $\nu = 0.1$. We report more detailed experiment results in Sec. 5.

For Covertype290k, Poker525k, Poker275k, Poker150k, and Poker100k, as they are fairly large, we only train M=5000 boosting iterations. For all other datasets, we always train M=10000 iterations or terminate when the training loss (3) is close to the machine accuracy. Since we do not notice obvious over-fitting on those datasets, we simply report the test errors at the last iterations.

Table 2: Summary of test mis-classification errors.

Dataset	mart	abc-mart	logitboost	abc-logitboost	# test
Covertype290k	11350	10454	10765	9727	290506
Covertype145k	15767	14665	14928	13986	290506
Poker525k	7061	2424	2704	1736	500000
Poker275k	15404	3679	6533	2727	500000
Poker150k	22289	12340	16163	5104	500000
Poker100k	27871	21293	25715	13707	500000
Poker25kT1	43575	34879	46789	37345	500000
Poker25kT2	42935	34326	46600	36731	500000
Mnist10k	2815	2440	2381	2102	60000
M-Basic	2058	1843	1723	1602	50000
M-Rotate	7674	6634	6813	5959	50000
M-Image	5821	4727	4703	4268	50000
M-Rand	6577	5300	5020	4725	50000
M-RotImg	24912	23072	22962	22343	50000
M-Noise1	305	245	267	234	2000
M-Noise2	325	262	270	237	2000
M-Noise3	310	264	277	238	2000
M-Noise4	308	243	256	238	2000
M-Noise5	294	244	242	227	2000
M-Noise6	279	224	226	201	2000
Letter15k	155	125	139	109	5000
Letter4k	1370	1149	1252	1055	16000
Letter2k	2482	2220	2309	2034	18000

4.1 *P*-Values

Table 3 summarizes the following four types of P-values:

- P1: for testing if abc-mart has significantly lower error rates than mart.
- P2: for testing if (robust) logitboost has significantly lower error rates than mart.
- P3: for testing if abc-logitboost has significantly lower error rates than abc-mart.
- P4: for testing if abc-logitboost has significantly lower error rates than (robust) logitboost.

The P-values are computed using binomial distributions and normal approximations. Recall, if a random variable $z \sim Binomial(n,p)$, then the probability parameter p can be estimated by $\hat{p} = \frac{z}{n}$, and the variance of \hat{p} can be estimated by $\hat{p}(1-\hat{p})/n$. The P-values can then be computed using normal approximation of binomial distributions.

Note that the test sets for *M-Noise1* to *M-Noise6* are very small because [9] originally did not intend to compare the statistical significance on those six datasets. We compute their *P*-values anyway.

Dataset	<i>P</i> 1	P2	P3	P4
Covertype290k	3×10^{-10}	3×10^{-5}	9×10^{-8}	8×10^{-14}
Covertype145k	4×10^{-11}	4×10^{-7}	2×10^{-5}	7×10^{-9}
Poker525k	0	0	0	0
Poker275k	0	0	0	0
Poker150k	0	0	0	0
Poker100k	0	0	0	0
Poker25kT1	0			0
Poker25kT2	0			0
Mnist10k	5×10^{-8}	3×10^{-10}	1×10^{-7}	1×10^{-5}
M-Basic	2×10^{-4}	1×10^{-8}	1×10^{-5}	0.0164
M-Rotate	0	5×10^{-15}	6×10^{-11}	3×10^{-16}
M-Image	0	0	2×10^{-7}	7×10^{-7}
M-Rand	0	0	7×10^{-10}	8×10^{-4}
M-RotImg	0	0	2×10^{-6}	4×10^{-5}
M-Noise1	0.0029	0.0430	0.2961	0.0574
M-Noise2	0.0024	0.0072	0.1158	0.0583
M-Noise3	0.0190	0.0701	0.1073	0.0327
M-Noise4	0.0014	0.0090	0.4040	0.1935
M-Noise5	0.0102	0.0079	0.2021	0.2305
M-Noise6	0.0043	0.0058	0.1189	0.1002
Letter15k	0.0345	0.1718	0.1449	0.0268
Letter4k	2×10^{-6}	0.008	0.019	1×10^{-5}
Letter2k	2×10^{-5}	0.003	0.001	4×10^{-6}

Table 3: Summary of test *P*-Values.

The results demonstrate that *abc-logitboost* and *abc-mart* considerably outperform *logitboost* and *mart*, respectively. In addition, except for *Poker25kT1* and *Poker25kT2*, we observe that *abc-logitboost* outperforms *abc-mart*, and *logitboost* outperforms *mart*.

4.2 Comparisons with SVM and Deep Learning

For UCI *Poker*, we know that SVM could only achieve an error rate of about 40% (by private communications with C.J. Lin). In comparison, all four algorithms, *mart*, *abc-mart*, *(robust) logitboost*, and *abc-logitboost*, could achieve much smaller error rates (i.e., < 10%) on *Poker25kT1* and *Poker25kT2*.

Figure 1 provides the comparisons on the six (correlated) noise datasets: *M-Noise1* to *M-Noise6*. Table 4 compares the error rates on *M-Basic*, *M-Rotate*, *M-Image*, *M-Rand*, and *M-RotImg*.

Figure 1: Six datasets: *M-Noise1* to *M-Noise6*. Left panel: Error rates of SVM and deep learning [9]. Middle and right panels: Errors rates of four boosting algorithms. X-axis: degree of correlation from high to low; the values 1 to 6 correspond to the datasets *M-Noise1* to *M-Noise6*.

Table 4: Summary of error rates of various algorithms on the modified *Mnist* dataset[9].

	M-Basic	M-Rotate	M-Image	M-Rand	M-RotImg
SVM-RBF	3.05 %	11.11%	22.61%	14.58%	55.18%
SVM-POLY	3.69%	15.42%	24.01%	16.62%	56.41%
NNET	4.69%	18.11%	27.41%	20.04%	62.16%
DBN-3	3.11%	10.30 %	16.31%	6.73 %	47.39%
SAA-3	3.46%	10.30 %	23.00%	11.28%	51.93%
DBN-1	3.94%	14.69%	16.15%	9.80%	52.21%
mart	4.12%	15.35%	11.64%	13.15%	49.82%
abc-mart	3.69%	13.27%	9.45%	10.60%	46.14%
logitboost	3.45%	13.63%	9.41%	10.04%	45.92%
abc-logitboost	3.20%	11.92%	8.54%	9.45%	44.69 %

4.3 Performance vs. Boosting Iterations

Figure 2 presents the training loss, i.e., Eq. (3), on *Covertype290k* and *Poker525k*, for all boosting iterations. Figures 3 and 4 provide the test mis-classification errors on *Covertype*, *Poker*, *Mnist10k*, and *Letter*.

Figure 2: Training loss, Eq. (3), on *Covertype290k* and *Poker525k*.

Figure 3: Test mis-classification errors on *Mnist10k*, *Letter15k*, *Letter4k*, and *Letter2k*.

Figure 4: Test mis-classification errors on Covertype and Poker.

5 More Detailed Experiment Results

Ideally, we would like to demonstrate that, with any reasonable choice of parameters J and ν , abc-mart and abc-logitboost will always improve mart and logitboost, respectively. This is actually indeed the case on the datasets we have experimented. In this section, we provide the detailed experiment results on Mnist10k, Poker25kT1, Poker25kT2, Letter4k, and Letter2k.

5.1 Detailed Experiment Results on *Mnist10k*

For this dataset, we experiment with every combination of $J \in \{4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 40, 50\}$ and $\nu \in \{0.04, 0.06, 0.08, 0.1\}$. We train the four boosting algorithms till the training loss (3) is close to the machine accuracy, to exhaust the capacity of the learner so that we could provide a reliable comparison, up to M = 10000 iterations.

Table 5 presents the test mis-classification errors and Table 6 presents the P-values. Figures 5, 6, and 7 provide the test mis-classification errors for all boosting iterations.

Table 5: *Mnist10k*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	3356 3060	3329 3019	3318 2855	3326 2794
J=6	3185 2760	3093 2626	3129 2656	3217 2590
J = 8	3049 2558	3054 2555	3054 2534	3035 2577
J = 10	3020 2547	2973 2521	2990 2520	2978 2506
J = 12	2927 2498	2917 2457	2945 2488	2907 2490
J = 14	2925 2487	2901 2471	2877 2470	2884 2454
J = 16	2899 2478	2893 2452	2873 2465	2860 2451
J = 18	2857 2469	2880 2460	2870 2437	2855 2454
J = 20	2833 2441	2834 2448	2834 2444	2815 2440
J = 24	2840 2447	2827 2431	2801 2427	2784 2455
J = 30	2826 2457	2822 2443	2828 2470	2807 2450
J = 40	2837 2482	2809 2440	2836 2447	2782 2506
J = 50	2813 2502	2826 2459	2824 2469	2786 2499
	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	2936 2630	2970 2600	2980 2535	3017 2522
J=6	2710 2263	2693 2252	2710 2226	2711 2223
J = 8	2599 2159	2619 2138	2589 2120	2597 2143
J = 10	2553 2122	2527 2118	2516 2091	2500 2097
J = 12	2472 2084	2468 2090	2468 2090	2464 2095
J = 14	2451 2083	2420 2094	2432 2063	2419 2050
J = 16	2424 2111	2437 2114	2393 2097	2395 2082
J = 18	2399 2088	2402 2087	2389 2088	2380 2097
J = 20	2388 2128	2414 2112	2411 2095	2381 2102
J = 24	2442 2174	2415 2147	2417 2129	2419 2138
J = 30	2468 2235	2434 2237	2423 2221	2449 2177
J = 40	2551 2310	2509 2284	2518 2257	2531 2260
J = 50	2612 2353	2622 2359	2579 2332	2570 2341
-				

Table 6: *Mnist10k*: P-values. See Sec. 4.1 for the definitions of P1, P2, P3, and P4.

		P1		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	7×10^{-5}	3×10^{-5}	7×10^{-10}	1×10^{-12}
J=6	8×10^{-9}	1×10^{-10}	9×10^{-11}	0
J=8	9×10^{-12}	4×10^{-12}	5×10^{-13}	2×10^{-10}
J = 10	4×10^{-11}	2×10^{-10}	4×10^{-11}	3×10^{-11}
J = 12	1×10^{-9}	7×10^{-11}	1×10^{-10}	3×10^{-9}
J = 14	6×10^{-10}	1×10^{-9}	6×10^{-9}	9×10^{-10}
J = 16	2×10^{-9}	3×10^{-10}	6×10^{-9}	5×10^{-9}
J = 18	3×10^{-8}	2×10^{-9}	6×10^{-10}	9×10^{-9}
J = 20	2×10^{-8}	3×10^{-8}	2×10^{-8}	6×10^{-8}
J = 24	2×10^{-8}	1×10^{-8}	6×10^{-8}	2×10^{-6}
J = 30	1×10^{-7}	5×10^{-8}	2×10^{-7}	2×10^{-7}
J = 40	3×10^{-7}	1×10^{-7}	2×10^{-8}	5×10^{-5}
J = 50	6×10^{-6}	1×10^{-7}	3×10^{-7}	3×10^{-5}
		P2		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	2×10^{-8}	2×10^{-6}	6×10^{-6}	3×10^{-6}
J=6	1×10^{-10}	4×10^{-8}	9×10^{-9}	8×10^{-12}
J = 8	4×10^{-10}	2×10^{-9}	1×10^{-10}	1×10^{-9}
J = 10	7×10^{-11}	4×10^{-10}	3×10^{-11}	2×10^{-11}
J = 12	1×10^{-10}	2×10^{-10}	2×10^{-11}	3×10^{-10}
J = 14	2×10^{-11}	8×10^{-12}	2×10^{-10}	3×10^{-11}
J = 16	1×10^{-11}	8×10^{-11}	7×10^{-12}	3×10^{-11}
J = 18	5×10^{-11}	9×10^{-12}	6×10^{-12}	9×10^{-12}
J = 20	2×10^{-10}	2×10^{-9}	1×10^{-9}	4×10^{-10}
J = 24	1×10^{-8}	3×10^{-9}	3×10^{-8}	1×10^{-7}
J = 30	2×10^{-7}	2×10^{-8}	5×10^{-9}	2×10^{-7}
J = 40	3×10^{-5}	1×10^{-5}	4×10^{-6}	2×10^{-4}
J = 50	0.0026	0.0023	3×10^{-4}	0.0013
	0.0020		0 × 10	0.0010
		Р3		
	$\nu = 0.04$	$P3$ $\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	$\nu = 0.04$ 3×10^{-9}		$\nu = 0.08$ 4×10^{-6}	$ \nu = 0.1 $ $ 7 \times 10^{-6} $
J = 4 $J = 6$	$ \begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \end{array} $	$ \begin{array}{c} \mathbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \end{array} $	$ \begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \end{array} $	$ \begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \end{array} $
J = 4 $J = 6$ $J = 8$	$\nu = 0.04$ 3×10^{-9} 4×10^{-13} 2×10^{-9}	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \end{array}$	$\nu = 0.08$ 4×10^{-6} 2×10^{-10} 3×10^{-10}	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$	$\nu = 0.04$ 3×10^{-9} 4×10^{-13} 2×10^{-9} 1×10^{-10}	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \end{array}$
J = 4 J = 6 J = 8 J = 10 J = 12 J = 14	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \end{array}$
J = 4 J = 6 J = 8 J = 10 J = 12 J = 14 J = 16	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \end{array}$
J = 4 J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \end{array}$
J = 4 J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18 J = 20	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 6 \times 10^{-8} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \hline \begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \hline \begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \end{array}$ $\begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \begin{array}{c} \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \hline \begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 8 \times 10^{-1} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \hline \\ \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ 1 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 8 \times 10^{-1} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \hline \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \hline \begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ 1 \times 10^{-6} \\ 1 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ 8 \times 10^{-7} \\ \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ 2 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \hline \begin{array}{c} \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ 8 \times 10^{-6} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ 1 \times 10^{-6} \\ 4 \times 10^{-5} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \hline \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \hline \textbf{P4} \\ \hline \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ 8 \times 10^{-7} \\ 2 \times 10^{-6} \\ \hline \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ 2 \times 10^{-6} \\ 8 \times 10^{-7} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \\ \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ 8 \times 10^{-6} \\ 1 \times 10^{-5} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ 1 \times 10^{-6} \\ 4 \times 10^{-5} \\ 3 \times 10^{-5} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \hline \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \\ \textbf{P4} \\ \hline \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ 8 \times 10^{-7} \\ 2 \times 10^{-6} \\ 3 \times 10^{-5} \\ \hline \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ 2 \times 10^{-6} \\ 8 \times 10^{-7} \\ 7 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \\ \\ \nu = 0.1 \\ \hline 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ 8 \times 10^{-6} \\ 1 \times 10^{-5} \\ 1 \times 10^{-5} \\ \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$ $J = 30$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \hline \begin{array}{c} \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-9} \\ 1 \times 10^{-6} \\ 1 \times 10^{-6} \\ 4 \times 10^{-5} \\ 3 \times 10^{-5} \\ 3 \times 10^{-5} \\ 3 \times 10^{-4} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \textbf{P4} \\ \hline \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ 8 \times 10^{-7} \\ 2 \times 10^{-6} \\ 3 \times 10^{-5} \\ 0.0016 \\ \hline \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ 2 \times 10^{-6} \\ 8 \times 10^{-7} \\ 7 \times 10^{-6} \\ 0.0012 \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \\ \\ \nu = 0.1 \\ 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ 8 \times 10^{-6} \\ 1 \times 10^{-5} \\ 1 \times 10^{-5} \\ 2 \times 10^{-5} \\ \end{array}$
J = 4 $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 20$ $J = 24$ $J = 30$ $J = 40$ $J = 50$ $J = 4$ $J = 6$ $J = 8$ $J = 10$ $J = 12$ $J = 14$ $J = 16$ $J = 18$ $J = 20$ $J = 24$	$\begin{array}{c} \nu = 0.04 \\ 3 \times 10^{-9} \\ 4 \times 10^{-13} \\ 2 \times 10^{-9} \\ 1 \times 10^{-10} \\ 2 \times 10^{-10} \\ 5 \times 10^{-10} \\ 2 \times 10^{-8} \\ 4 \times 10^{-9} \\ 1 \times 10^{-6} \\ 2 \times 10^{-5} \\ 5 \times 10^{-4} \\ 0.0056 \\ 0.0145 \\ \\ \\ \hline \\ \nu = 0.04 \\ 1 \times 10^{-5} \\ 5 \times 10^{-11} \\ 4 \times 10^{-11} \\ 6 \times 10^{-11} \\ 2 \times 10^{-9} \\ 1 \times 10^{-8} \\ 1 \times 10^{-6} \\ 4 \times 10^{-5} \\ 3 \times 10^{-5} \\ \end{array}$	$\begin{array}{c} \textbf{P3} \\ \hline \nu = 0.06 \\ 5 \times 10^{-9} \\ 2 \times 10^{-8} \\ 3 \times 10^{-10} \\ 8 \times 10^{-10} \\ 2 \times 10^{-8} \\ 6 \times 10^{-9} \\ 2 \times 10^{-7} \\ 8 \times 10^{-9} \\ 2 \times 10^{-7} \\ 9 \times 10^{-6} \\ 0.0011 \\ 0.0103 \\ 0.0707 \\ \hline \\ \textbf{P4} \\ \hline \\ \nu = 0.06 \\ 2 \times 10^{-7} \\ 7 \times 10^{-11} \\ 5 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6 \times 10^{-9} \\ 4 \times 10^{-7} \\ 5 \times 10^{-7} \\ 8 \times 10^{-7} \\ 2 \times 10^{-6} \\ 3 \times 10^{-5} \\ \hline \end{array}$	$\begin{array}{c} \nu = 0.08 \\ 4 \times 10^{-6} \\ 2 \times 10^{-10} \\ 3 \times 10^{-10} \\ 6 \times 10^{-11} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 6 \times 10^{-8} \\ 6 \times 10^{-8} \\ 3 \times 10^{-6} \\ 1 \times 10^{-4} \\ 0.0024 \\ 0.0218 \\ \\ \hline \\ \nu = 0.08 \\ 4 \times 10^{-10} \\ 1 \times 10^{-12} \\ 2 \times 10^{-12} \\ 8 \times 10^{-11} \\ 6 \times 10^{-9} \\ 1 \times 10^{-8} \\ 3 \times 10^{-6} \\ 2 \times 10^{-6} \\ 8 \times 10^{-7} \\ 7 \times 10^{-6} \\ \end{array}$	$\begin{array}{c} \nu = 0.1 \\ 7 \times 10^{-6} \\ 3 \times 10^{-8} \\ 6 \times 10^{-11} \\ 4 \times 10^{-10} \\ 1 \times 10^{-9} \\ 4 \times 10^{-10} \\ 1 \times 10^{-8} \\ 3 \times 10^{-8} \\ 2 \times 10^{-7} \\ 9 \times 10^{-7} \\ 2 \times 10^{-5} \\ 1 \times 10^{-4} \\ 0.0102 \\ \\ \\ \\ \nu = 0.1 \\ \hline 5 \times 10^{-12} \\ 6 \times 10^{-13} \\ 8 \times 10^{-12} \\ 7 \times 10^{-10} \\ 1 \times 10^{-8} \\ 9 \times 10^{-9} \\ 9 \times 10^{-7} \\ 8 \times 10^{-6} \\ 1 \times 10^{-5} \\ 1 \times 10^{-5} \\ \\ \end{array}$

Figure 5: *Mnist10k*. Test mis-classification errors of four algorithms. J = 4, 6, 8, 10.

Figure 6: *Mnist10k*. Test mis-classification errors of four algorithms. J = 12, 14, 16, 18.

Figure 7: *Mnist10k*. Test mis-classification errors of four algorithms. J = 20, 24, 30, 40, 50.

The experiment results illustrate that the performances of all four algorithms are stable on a widerange of base class tree sizes J, e.g., $J \in [6,30]$. The shrinkage parameter ν does not affect much the test performance, although smaller ν values result in more boosting iterations (before the training losses reach the machine accuracy).

We further randomly divide the test set of *Mnist10k* (60000 test samples) equally into two parts (I and II). We then test algorithms on Part I (using the same training results). We name this "new" dataset *Mnist10kT1*. The purpose of this experiment is to further demonstrate the stability of the algorithms.

Table 7 presents the test mis-classification errors of Mnist10kT1. Compared to Table 5, the mis-classification errors of Mnist10kT1 are roughly 50% of the mis-classification errors of Mnist10k for all J and ν . This helps establish that our experiment results on Mnist10k provide a very reliable comparison.

Table 7: *Mnist10kT1*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers). *Mnist10kT1* only uses a half of the test data of *Mnist10k*.

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	1682 1514	1668 1505	1666 1416	1663 1380
J=6	1573 1382	1523 1320	1533 1329	1582 1288
J=8	1501 1263	1515 1257	1523 1250	1491 1279
J = 10	1492 1270	1457 1248	1470 1239	1459 1236
J = 12	1432 1244	1427 1234	1444 1228	1436 1227
J = 14	1424 1237	1420 1231	1407 1223	1419 1212
J = 16	1430 1226	1426 1224	1411 1223	1418 1204
J = 18	1400 1222	1413 1218	1390 1210	1404 1211
J = 20	1398 1213	1381 1205	1388 1213	1382 1198
J = 24	1402 1221	1366 1201	1372 1199	1346 1205
J = 30	1384 1211	1374 1208	1368 1224	1366 1205
J = 40	1397 1244	1375 1220	1397 1222	1365 1246
J = 50	1371 1239	1380 1221	1382 1223	1362 1242
	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	$\nu = 0.04$ 1419 1299		1446 1251	$\nu = 0.1$ 1460 1244
J = 4 $J = 6$	$\nu = 0.04$	$\nu = 0.06$		
	$\nu = 0.04$ 1419 1299	$\nu = 0.06$ 1449 1281	1446 1251	1460 1244
J=6	$\nu = 0.04$ 1419 1299 1313 1111	$\nu = 0.06$ 1449 1281 1313 1114	1446 1251 1326 1101	1460 1244 1317 1097
J = 6 $J = 8$	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047
J = 6 J = 8 J = 10 J = 12 J = 14	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026
J = 6 $J = 8$ $J = 10$ $J = 12$	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038 1185 1050	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050 1205 1058	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039 1189 1044	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026 1178 1041
J = 6 J = 8 J = 10 J = 12 J = 14	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18 J = 20	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038 1185 1050 1186 1048 1185 1077	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050 1205 1058 1184 1038 1199 1063	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039 1189 1044 1184 1046 1183 1042	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026 1178 1041 1167 1056 1184 1045
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038 1185 1050 1186 1048	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050 1205 1058 1184 1038	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039 1189 1044 1184 1046	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026 1178 1041 1167 1056
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18 J = 20	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038 1185 1050 1186 1048 1185 1077 1208 1095 1225 1113	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050 1205 1058 1184 1038 1199 1063 1196 1083 1201 1117	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039 1189 1044 1184 1046 1183 1042	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026 1178 1041 1167 1056 1184 1045
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18 J = 20 J = 24	$\nu = 0.04$ 1419 1299 1313 1111 1278 1058 1252 1061 1224 1020 1213 1038 1185 1050 1186 1048 1185 1077 1208 1095	$\nu = 0.06$ 1449 1281 1313 1114 1287 1050 1244 1057 1219 1049 1207 1050 1205 1058 1184 1038 1199 1063 1196 1083	1446 1251 1326 1101 1270 1036 1237 1040 1217 1053 1201 1039 1189 1044 1184 1046 1183 1042 1191 1064	1460 1244 1317 1097 1262 1058 1229 1041 1224 1047 1198 1026 1178 1041 1167 1056 1184 1045 1194 1068

5.2 Detailed Experiment Results on *Poker25kT1* and *Poker25kT2*

Recall the original UCI *Poker* dataset used 25010 samples for training and 1000000 samples for testing. To provide a reliable comparison (and validation), we form two datasets *Poker25kT1* and *Poker25kT2* by equally dividing the original test set into two parts (I and II). Both use the same training set. *Poker25kT1* uses Part I of the original test set for testing and *Poker25kT2* uses Part II for testing.

Table 8 and Table 9 present the test mis-classification errors, for $J \in \{4, 6, 8, 10, 12, 14, 16, 18, 20\}$ and $\nu \in \{0.04, 0.06, 0.08, 0.1\}$. Comparing these two tables, we can see the corresponding entries are very close to each other, which again verifies that the four boosting algorithms provide reliable results on this dataset.

For most J and ν , all four algorithms achieve error rates < 10%. For both Poker25kT1 and Poker25kT2, the lowest test errors are attained at $\nu = 0.1$ and J = 6. Unlike Mnist10k, the test errors, especially using mart and logithoost, are slightly sensitive to the parameters.

Note that when J=4 (and ν is small), only training M=10000 steps would not be sufficient in this case.

Table 8: *Poker25kT1*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	145880 90323	132526 67417	124283 49403	113985 42126
J=6	71628 38017	59046 36839	48064 35467	43573 34879
J=8	64090 39220	53400 37112	47360 36407	44131 35777
J = 10	60456 39661	52464 38547	47203 36990	46351 36647
J = 12	61452 41362	52697 39221	46822 37723	46965 37345
J = 14	58348 42764	56047 40993	50476 40155	47935 37780
J = 16	63518 44386	55418 43360	50612 41952	49179 40050
J = 18	64426 46463	55708 45607	54033 45838	52113 43040
J = 20	65528 49577	59236 47901	56384 45725	53506 44295
	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	147064 102905	140068 71450	128161 51226	117085 42140
J=6	81566 43156	59324 39164	51526 37954	48516 37546
J=8	68278 46076	56922 40162	52532 38422	46789 37345
J = 10	63796 44830	55834 40754	53262 40486	47118 38141
J = 12	66732 48412	56867 44886	51248 42100	47485 39798
J = 14	64263 52479	55614 48093	51735 44688	47806 43048
J = 16	67092 53363	58019 51308	53746 47831	51267 46968
J = 18	69104 57147	56514 55468	55290 50292	51871 47986
J=20	68899 62345	61314 57677	56648 53696	51608 49864

Table 9: *Poker25kT2*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	144020 89608	131243 67071	123031 48855	113232 41688
J=6	71004 37567	58487 36345	47564 34920	42935 34326
J = 8	63452 38703	52990 36586	46914 35836	43647 35129
J = 10	60061 39078	52125 38025	46912 36455	45863 36076
J = 12	61098 40834	52296 38657	46458 37203	46698 36781
J = 14	57924 42348	55622 40363	50243 39613	47619 37243
J = 16	63213 44067	55206 42973	50322 41485	48966 39446
J = 18	64056 46050	55461 45133	53652 45308	51870 42485
J = 20	65215 49046	58911 47430	56009 45390	53213 43888
	logitboost	abc-logit		
-	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	145368 102014	138734 70886	126980 50783	116346 41551
J=6	80782 42699	58769 38592	51202 37397	48199 36914
J = 8	68065 45737	56678 39648	52504 37935	46600 36731
J = 10	63153 44517	55419 40286	52835 40044	46913 37504
J = 12	66240 47948	56619 44602	50918 41582	47128 39378
J = 14	63763 52063	55238 47642	51526 44296	47545 42720
J = 16	66543 52937	57473 50842	53287 47578	51106 46635
J = 18	68477 56803	57070 55166	54954 49956	51603 47707
J = 20	68311 61980	61047 57383	56474 53364	51242 49506

5.3 Detailed Experiment Results on Letter4k and Letter2k

Table 10: *Letter4k*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

<u>'</u>	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	1681 1415	1660 1380	1671 1368	1655 1323
J=6	1618 1320	1584 1288	1588 1266	1577 1240
J = 8	1531 1266	1522 1246	1516 1192	1521 1184
J = 10	1499 1228	1463 1208	1479 1186	1470 1185
J = 12	1420 1213	1434 1186	1409 1170	1437 1162
J = 14	1410 1190	1388 1156	1377 1151	1396 1160
J = 16	1395 1167	1402 1156	1396 1157	1387 1146
J = 18	1376 1164	1375 1139	1357 1127	1352 1152
J = 20	1386 1154	1397 1130	1371 1131	1370 1149
J = 24	1371 1148	1348 1155	1374 1164	1391 1150
J = 30	1383 1174	1406 1174	1401 1177	1404 1209
J = 40	1458 1211	1455 1224	1441 1233	1454 1215
	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	1460 1296	1471 1241	1452 1202	1446 1208
J=6	1390 1143	1394 1117	1382 1090	1374 1074
J=8	1336 1089	1332 1080	1311 1066	1297 1046
J = 10	1289 1062	1285 1067	1380 1034	1273 1049
J = 12	1251 1058	1247 1069	1261 1044	1243 1051
J = 14	1247 1063	1233 1051	1251 1040	1244 1066
J = 16	1244 1074	1227 1068	1231 1047	1228 1046
J = 18	1243 1059	1250 1040	1234 1052	1220 1057
J = 20	1226 1084	1242 1070	1242 1058	1235 1055
J = 24	1245 1079	1234 1059	1235 1058	1215 1073
J = 30	1232 1057	1247 1085	1229 1069	1230 1065
J = 40	1246 1095	1255 1093	1230 1094	1231 1087

Table 11: *Letter2k*. Upper table: The test mis-classification errors of *mart* and *abc-mart* (bold numbers). Bottom table: The test mis-classification errors of *logitboost* and *abc-logitboost* (bold numbers)

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	2694 2512	2698 2470	2684 2419	2689 2435
J=6	2683 2360	2664 2321	2640 2313	2629 2321
J=8	2569 2279	2603 2289	2563 2259	2571 2251
J = 10	2534 2242	2516 2215	2504 2210	2491 2185
J = 12	2503 2202	2516 2215	2473 2198	2492 2201
J = 14	2488 2203	2467 2231	2460 2204	2460 2183
J = 16	2503 2219	2501 2219	2496 2235	2500 2205
J = 18	2494 2225	2497 2212	2472 2205	2439 2213
J = 20	2499 2199	2512 2198	2504 2188	2482 2220
J = 24	2549 2200	2549 2191	2526 2218	2538 2248
J = 30	2579 2237	2566 2232	2574 2244	2574 2285
J = 40	2641 2303	2632 2304	2606 2271	2667 2351
	logitboost	abc-logit		
	$logitboost \\ \nu = 0.04$	$abc\text{-logit}$ $\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4			$\nu = 0.08$ 2580 2256	$\nu = 0.1$ 2572 2231
J = 4 $J = 6$	$\nu = 0.04$	$\nu = 0.06$		
_	$\nu = 0.04$ $2629 2347$	$\nu = 0.06$ 2582 2299	2580 2256	2572 2231
J=6	u = 0.04 2629 2347 2427 2136	$ \nu = 0.06 $ 2582 2299 2450 2120	2580 2256 2428 2072	2572 2231 2429 2077
J = 6 $J = 8$	u = 0.04 2629 2347 2427 2136 2336 2080	u = 0.06 2582 2299 2450 2120 2321 2049	2580 2256 2428 2072 2326 2035	2572 2231 2429 2077 2313 2037
J = 6 $J = 8$ $J = 10$	u = 0.04 2629 2347 2427 2136 2336 2080 2316 2044	u = 0.06 2582 2299 2450 2120 2321 2049 2306 2003	2580 2256 2428 2072 2326 2035 2314 2021	2572 2231 2429 2077 2313 2037 2307 2002
J = 6 $J = 8$ $J = 10$ $J = 12$	$ \nu = 0.04 $ 2629 2347 2427 2136 2336 2080 2316 2044 2315 2024	$\nu = 0.06$ 2582 2299 2450 2120 2321 2049 2306 2003 2315 1992	2580 2256 2428 2072 2326 2035 2314 2021 2333 2018	2572 2231 2429 2077 2313 2037 2307 2002 2290 2018
J = 6 J = 8 J = 10 J = 12 J = 14	$\nu = 0.04$ 2629 2347 2427 2136 2336 2080 2316 2044 2315 2024 2317 2022	$\nu = 0.06$ 2582 2299 2450 2120 2321 2049 2306 2003 2315 1992 2305 2004	2580 2256 2428 2072 2326 2035 2314 2021 2333 2018 2315 2006	2572 2231 2429 2077 2313 2037 2307 2002 2290 2018 2292 2030
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16	$\nu = 0.04$ 2629 2347 2427 2136 2336 2080 2316 2044 2315 2024 2317 2022 2302 2024 2298 2044 2280 2049	$\nu = 0.06$ 2582 2299 2450 2120 2321 2049 2306 2003 2315 1992 2305 2004 2299 2004	2580 2256 2428 2072 2326 2035 2314 2021 2333 2018 2315 2006 2286 2005	2572 2231 2429 2077 2313 2037 2307 2002 2290 2018 2292 2030 2262 1999
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18	$\nu = 0.04$ 2629 2347 2427 2136 2336 2080 2316 2044 2315 2024 2317 2022 2302 2024 2298 2044	$\nu = 0.06$ 2582 2299 2450 2120 2321 2049 2306 2003 2315 1992 2305 2004 2299 2004 2277 2021	2580 2256 2428 2072 2326 2035 2314 2021 2333 2018 2315 2006 2286 2005 2301 1991	2572 2231 2429 2077 2313 2037 2307 2002 2290 2018 2292 2030 2262 1999 2282 2034
J = 6 J = 8 J = 10 J = 12 J = 14 J = 16 J = 18 J = 20	$\nu = 0.04$ 2629 2347 2427 2136 2336 2080 2316 2044 2315 2024 2317 2022 2302 2024 2298 2044 2280 2049	$\nu = 0.06$ 2582 2299 2450 2120 2321 2049 2306 2003 2315 1992 2305 2004 2299 2004 2277 2021 2268 2021	2580 2256 2428 2072 2326 2035 2314 2021 2333 2018 2315 2006 2286 2005 2301 1991 2294 2024	2572 2231 2429 2077 2313 2037 2307 2002 2290 2018 2292 2030 2262 1999 2282 2034 2309 2034

6 Conclusion

Classification is a fundamental task in machine learning. This paper presents extensive experiment results of **four** tree-based boosting algorithms: *mart*, *abc-mart*, *(robust) logitboost*), and *abc-logitboost*, for multi-class classification, on a variety of publicly available datasets. From the experiment results, we can conclude the following:

- 1. Abc-mart considerably improves mart.
- 2. Abc-logitboost considerably improves (robust) logitboost.
- 3. (Robust) logitboost considerably improves mart on most datasets.
- 4. Abc-logitboost considerably improves abc-mart on most datasets.
- 5. These four boosting algorithms (especially *abc-logitboost*) outperform SVM on many datasets.
- 6. Compared to the best deep learning methods, these four boosting algorithms (especially *abclogitboost*) are competitive.

References

- [1] Alan Agresti. *Categorical Data Analysis*. John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2002.
- [2] Peter Bartlett, Yoav Freund, Wee Sun Lee, and Robert E. Schapire. Boosting the margin: a new explanation for the effectiveness of voting methods. *The Annals of Statistics*, 26(5):1651–1686, 1998.
- [3] Colin B. Begg and Robert Gray. Calculation of polychotomous logistic regression parameters using individualized regressions. *Biometrika*, 71(1):11–18, 1984.
- [4] Yoav Freund. Boosting a weak learning algorithm by majority. *Inf. Comput.*, 121(2):256–285, 1995.
- [5] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *J. Comput. Syst. Sci.*, 55(1):119–139, 1997.
- [6] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *The Annals of Statistics*, 29(5):1189–1232, 2001.
- [7] Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of boosting. *The Annals of Statistics*, 28(2):337–407, 2000.
- [8] Jerome H. Friedman, Trevor J. Hastie, and Robert Tibshirani. Response to evidence contrary to the statistical view of boosting. *Journal of Machine Learning Research*, 9:175–180, 2008.
- [9] Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In *ICML*, pages 473–480, Corvalis, Oregon, 2007.
- [10] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. *Journal of the American Statistical Association*, 99(465):67–81, 2004.

- [11] Ping Li. Abc-boost: Adaptive base class boost for multi-class classification. In *ICML*, Montreal, Canada, 2009.
- [12] Ping Li. Abc-logitboost for multi-class classification. Technical report, Department of Statistical Science, Cornell University, 2009.
- [13] Ping Li. Robust logitboost. Technical report, Department of Statistical Science, Cornell University, 2009.
- [14] Ping Li, Christopher J.C. Burges, and Qiang Wu. Mcrank: Learning to rank using classification and gradient boosting. In *NIPS*, Vancouver, BC, Canada, 2008.
- [15] Liew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient descent. In *NIPS*, 2000.
- [16] Robert Schapire. The strength of weak learnability. *Machine Learning*, 5(2):197–227, 1990.
- [17] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. *Machine Learning*, 37(3):297–336, 1999.
- [18] Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods. *Journal of Machine Learning Research*, 8:1007–1025, 2007.
- [19] Tong Zhang. Statistical analysis of some multi-category large margin classification methods. *Journal of Machine Learning Research*, 5:1225–1251, 2004.
- [20] Ji Zhu, Hui Zou, Sharon Rosset, and Trevor Hastie. Multi-class adaboost. *Statistics and Its Interface*, 2(3):349–360, 2009.
- [21] Hui Zou, Ji Zhu, and Trevor Hastie. New multicategory boosting algorithms based on multicategory fisher-consistent losses. *The Annals of Applied Statistics*, 2(4):1290–1306, 2008.