Regression basics

Werner Stuetzle

March 31, 2020

R code for slides courtesy of Yen-Chi Chen

A simple prediction problem- a single predictor variable

- · Given training sample (x, y,) -- (x, y,) x; yi & R
- · Want to create prediction rule f(x) that predicts y for given query point x.
- To cast this problem into a framework amenable to analysis we regard (x, y,) -- (x, y,) as iid observations of a pair (X, Y) of random variables with joint density p(x, y).

X = predictor

Y = response

- We measure the performance of a prediction rule f(x) by its Expected Squared Prediction Error ESE = E[(Y-f(x))²]
 - = \ (y-f(x1) p(x,y) dx dy
- Define
 p(x) = \(\)p(x,y) dy marginal density of X
 p(y|x) = \(p(x,y)/p(x) \)

- ESE(x) = expected squared prediction error for query x.
- · ESE(x) is minimized by choosing f(x) = Syp(y/x) dy = E(Y/x)
- The optimal predictor of Y for given query x is the conditional mean E(YIX).
- The expected squared prediction error of the optimal predictor f for query x is the conditional variance V(YIX),

V(YIX) is the "irreducible error". No prediction vule can do be Her.

Kernel smoothing

Theoretical analysis gave insights but is not directly useful: We don't Know p(x,y) — we only have a sample

Natural apprach for estimating conditional mean f(x) = E(Y|x) : Local averaging or Kernel smoothing.

Simplest version $f(x) = mean(Yi | 1 \times -xi | = h)$ h = "bandwidth"

Better option: Give more weight to training obs with xi close to guery x.

For example, define P6(x) = Gaussian density with mean o and standard dev 6

Define $\hat{f}(x) = \left\{ y_i \, \varphi_{\epsilon}(x - x_i) \middle| \, \xi \, \varphi_{\epsilon}(x - x_i) \right\}$

A simulated data set

```
X = sort(runif(200, min=0, max=4*pi))
Y = sin(X) + rnorm(200, sd=0.3)
plot(X,Y, pch=20)
```


Local averaging, Gaussian kernel

```
Kreg = ksmooth(x=X,y=Y,kernel = "normal",bandwidth = 0.9)
plot(X,Y,pch=20)
lines(Kreg, lwd=4, col="purple")
```


Local averaging, box kernel

```
Kreg = ksmooth(x=X,y=Y,kernel = "box",bandwidth = 0.9)
plot(X,Y,pch=20)
lines(Kreg, lwd=4, col="purple")
```


Different bandwidths

ESE resubstitution estimate

ESE test set estimate

ESE leave-one-out cross-validation estimate

ESE 5-fold cross-validation estimate

