

Module: XML et les bases de données

Identification des besoins XML- BDs

Houda Chabbi Drissi

houda.chabbi@hefr.ch

Trois types de besoins XML-BDs

Générer du XML d'une BDR

Données tabulaires -> documents

- Stocker/extraire des documents XML
- Stocker/extraire/requeter des documents XML

Générer du XML d'une BDR

XML est extrait à partir des données relationnelles

Génération de XML d'une BDR: approches

Dans un applicatif:

■ Dans le SGBD:

Trois types de besoins XML-BDs

- Générer du XML d'une BDR
- Stocker/extraire des documents XML:

granularité → document

Stocker/extraire/requéter des documents XML

Stocker/extraire des documents XML

On doit stocker des documents (ou fragments) dans la base pour les travailler dans leur globalité.

Stockage Files system + URL dans BD

- Très simple
- Outils externe comme grep pour accéder XML
- Attention à la persistance!

Stocker XML dans un CLOB (1)

- Mapper les documents XML dans un champ binaire : BLOB (CLOB) ou Varchar
- Utilisation des technologies full-text

Stocker XML dans un CLOB (2)

Source DB2

Utilisation des CLOBs

- Avantages ☺
 - transactionnel
 - Sécurité
 - multiutilisateur
 - Administration
- Quelques produits sont XML-aware
 - Elimine le problème des tags
 - Compatible avec le langage XQUERY

Utilisation des CLOBs

- Désavantages ⊗
 - XML monolithique
 - Pas d'accès à la structure
 - Certaines recherches plein-texte peuvent-être inefficace:

Le rouge & amp; le noir & #339; ufs

Mr. <!-- --> Bean

"Le rouge & le noir" not found "œufs" not found

" Mr. Bean" not found

Trois types de besoins XML-BDs

- Générer du XML
- Stocker/extraire des documents XML
- Stocker/extraire/requêter des documents XML

granularité → éléments/attributs

Stocker/extraire/requêter des documents XML

Utilisation dédiée XML

Applications orientées XML <

Les solutions pour gérer du XML

Les solutions dédiés XML

- Solutions avec SGBDs existants:
 - Middleware (Mécanisme de mapping)
- Solutions avec SGBDs augmentés XML
 - (SQL/XML)⁺ & Mécanisme de mapping
- Solutions avec XBDs

Mécanisme de mapping (1)

➤ "Mapper" = transformer des documents XML en tables et de tables en documents XML.

➤ Permet l'utilisation d'un langage XML ☺

Mécanisme de mapping (2)

- Le mapping concerne (cf. suite)
 - Les éléments, attributs et textes
 - Ignore la structure physique (CDATA sections, encoding,)
 - Ignore les structures logiques (processing instructions, comments, order,)

- 2 approches du mapping
 - Table-Based mapping
 - · Object-relational mapping

Un "import et un export" ne crée pas le même fichier (mais les mêmes données)

Le mapping: illustré

DB2

Les mécanismes pour les solutions dédiés XML

- Solutions avec SGBDs existants:
 - Middleware (Mécanisme de mapping)
- Solutions avec SGBDs augmentés XML
 - · (SQL/XML) & Mécanisme de mapping
- Solutions avec XBDs

Middleware (1)

Logiciel en sur-couche qu'on utilise à travers une application pour importer ou exporter du XML d'un SGBD.

Exemples:

- Castor: (Open Source) http://castor.exolab.org/index.html
- XMLizer (E-XMLMedia)

http://www.e-xmlmedia.com/prod/xmlizer.htm

Middleware (2)

Permet:

- Stockage et interrogation XML
- Importé du XML dans tables
- Exporté du XML

Utilisation des techniques de mapping

Les solutions dédiés XML

- Solutions avec SGBDs existants:
 - Mapping
 - Middleware
- Solutions avec SGBDs augmentés XML
- Solutions avec XBDs

Solution XDB

- SGBD conçu pour XML,
- Stocke:
 - ✓ Les documents en entier «sans les décomposer en éléments»,
 - ✓ Des fragments XML
 - ✓ Nœuds: DOM, ou autres
- Utilise des techniques d'indexation d'arbres spécifiques.

Stockage entier du document

Avantages:

- OK si manipulation par document entier.
- OK si on veut requêter et que les documents sont petits

Désavantages:

- Pour les gros documents
- Pour les requêtes et les updates

Stockage de nœuds XML (1)

Avantages:

- Pour les requêtes et les updates partiels.
- L'indexation

Désavantages:

- A l'insertion
- La sérialisation
- Inflation dans la place occupée peut être

Stockage de nœuds XML (2)

Défis:

- Choix du modèle de stockage: quels nœuds? Avec ou sans le type?
- La gestion des updates
- La numérotation des nœuds:
 - ✓ Utile pour l'indexation
 - ✓ Utile pour établir l'ordre (précédence ..)
 - ✓ Utile pour faciliter les insertions / delete

Indexation

➤ Critique pour les performances.

>Inter-documents ou Intra-document.

- ➤ Peuvent être:
 - >Orienté structure
 - >Orienté valeur

Index structurel

- Path: Permet de répondre aux requêtes de type
 - Trouve tous les éléments: /a/b/c
 - D'existence: /a/b[c]
- Sous-chemin: Plus général que le path avec plus d'espace puisque indexe tous les chemins même les partiels:
 - Trouve tous les éléments: /a/b/c ou b/c

Indexation implicitement utilisée sur plusieurs systèmes

Index de valeur

- Permet de répondre aux requêtes:
 - XPATH2 et Xquery
 - Supporte la comparaison "//nom[.='Toto']"
 - Supporte les intervals "//age[.<'25']"
- Sous-chemin: Plus général que le path avec plus d'espace puisque indexe tous les chemins même les partiels:
 - Trouve tous les éléments: /a/b/c ou b/c

Indexation implicitement utilisée sur plusieurs systèmes

XBD vs SGBDR

Une base de données XML ou relationnelle est une application qui masque la façon dont sont stockées les données : elle n'offre qu'une vue logique et un langage de requête **adaptée** à cette vue logique

	SGBDR	XBD
Vue logique	Tables = ensemble de nuplets	Collections = Forets
Langages de requêt	e SQL	XPath XQuery
Services	Transactions ACID	?Transactions ACID?

Synthèse sur les différentes techniques (1)

Le mapping ou shredding

Cette technique consiste à répartir les données contenues dans un document XML au sein de tables relationnelles

Le blobing ou clobing

Cette méthode consiste à insérer des fichiers entiers

Le natif

Cette méthode n'implique aucune transformation explicite du document XML

Synthèse sur les différentes techniques (2)

	Avantages	Inconvénients
Mapping	Bénéficie des mécanismes des SGBDR (ACID, .)	Peu extensible, Risque de perte de l'intégrité du document original, Nécessité de découper et reconstituer le document (jointure)
Clobing	Plus flexible que le mapping, Respect de l'intégrité, Permet d'effectuer des recherches plein texte	Granularité = Document Impossibilité d'effectuer des requêtes de type XPATH
Natif	Flexibilité, Respect de l'intégrité	Point critique: l'optimisation des requêtes.

Conclusion

Ce qu'apporte XML aux bases de données :

- Un modèle complet (XML Schema) : hiérarchique+relations+attributs+héritage+typage
- Un format d'échange standard inter et intra-entreprise (XML) ainsi qu'un schéma inclus dans les données
- Un standard attendu permettant de mixer documents et données
- Un langage de requêtes puissant (XQuery)
- Une simplicité de génération depuis des formats divers:

SQL, fichiers légataires, documents (HTML, RTF)

Annexes

- Produits
- Bibliographie

The market for XML database products

- Middleware: Software you call from your application to transfer data between XML documents and databases
- XML-enabled database
- Native XML database
- Wrappers: Software that treats XML documents as a source of relational data. These products typically query XML documents using SQL.
- XML Query engines: Standalone engines that can query XML documents
- XML Data bindings: Products that can bind XML documents to objects.
 Some of these can also store/retrieve objects from the database.

Products: XML-Enabled database

- Main databases are XML-Enabled
- if you buy recent versions
- with important differences in the implementation of XML features

ACCESS (2000+)	Microsoft Relationa		
DB2	IBM	OR	
Informix	IBM	Relational	
Oracle 9i 12c	Oracle	OR	
SQL Server (2000+)	Microsoft	Relational	
Sybase ASE	Sybase	Relational	

Products: Native XML database

Lot of opensource implementations

BaseX	OpenSource	Proprietary model	
MarkLogic Server	Commercial	Object-oriented	
eXist	OpenSource	Text model	
sedna	OpenSource	Object-oriented	
Via dia a (Ana ada a)	0,000,000,000	Proprietary (Model-	
XIndice (Apache)	OpenSource	based)	

Comparison relational, XML-enabled, Native

yours needs	Relational DB	XML-Enabled DB	Native XML DB
Database to store very structured data. Complex and different queries / analysis, Lot of data	The best solution Allow to answer all queries with the good average performance	Why not ? To allow to exchange with XML formats	?
Database to store XML documents . Always the equivalent queries	XML documents = a binary information Not optimized	A good solution allowing to use the same database	The best solution.
Database to store structured data. Lot of import / export in XML exchanges.	A "classical" solution. Need import / export interface	A good solution	Why not ? A good solution. Allow to have quickly a database
Database to store structured data and to publish information (HTML, PDF, WebServices,)	A "classical" solution but need to develop tools to publish information	The best solution. Store in relational database but allows the push of XML Documents and transformation	Why not if you succeed in organizing your data

Links about XML Databases

- XML family : www.w3c.org
- Introduction to native XML database :
 http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
- XQuery : http://www.w3.org/TR/xquery-30
- Oracle : http://www.oracle.com/technetwork/database/databasetechnologies/xmldb/overview/index.html
- XIndice : http://xml.apache.org/xindice/
- eXist : http://exist-db
- BaseX: basex.org