Aspects of multivariate analysis

Woojoo Lee

The objectives of multivariate data analysis

- Data reduction : e.g. project multidimensional data on 2-d plane how to make 1-d score by summarizing multidimensional data → principal component analysis, factor analysis
- 2. Sorting and grouping: e.g. clustering based on a proper similarity measure, classification and discrimination
- 3. Investigation of the dependence among variables
 - : e.g. (canonical) correlation analysis, factor analysis, pca
- 4. Prediction: by exploiting the relationship between variables
- 5. Hypothesis testing: e.g. multiple comparison

Data type

 x_{jk} : measurement of the kth variable on the jth item

Note the dimension of the subscript!

$$\Rightarrow \quad X = \left(\begin{array}{cccc} & \text{Variable1} & \text{Variable2} & \cdots & \text{Variable p} \\ \text{Item1} & x_{11} & \cdots & & & \\ \text{Item2} & \vdots & & & & \\ \vdots & & & & & & \\ \text{Item n} & & & & & \\ \end{array} \right)$$

Remark) Item/ Individual/ experimental unit are often exchangeable. Variables/ Characters are often exchangeable.

Descriptive statistics

Sample means:
$$\frac{1}{p}\sum_{j}x_{ij}$$
 vs $\frac{1}{n}\sum_{i}x_{ij}(=\bar{x}_{j})$

Sample covariance matrix:

$$s_{jk} = \frac{1}{n} \sum_{i} (x_{ij} - \bar{x_{ij}})(x_{ik} - \bar{x_{ik}})$$

Sample correlation matrix:

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}}\sqrt{s_{kk}}} (= r_{kj})$$

Q) What kind of information can you get from the sample correlation?

Arrays of Basic Descriptive Statistics

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_p \end{bmatrix}$$

$$\mathbf{S}_{n} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{np} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix}$$

Graphical techniques

Box plots

Scatter plots and their variants

Growth curves

Chernoff faces

These graphical tools are usually informative in data analysis. We will see some of them in the next slides.

Box plot (Table.1.1)

Salary and final record for the national league east baseball team in 1977

	Player	payroll	Won-lost	percentage
1		3497900		0.623
2		2485475		0.593
3		1782875		0.512
4		1725450		0.500
5		1645575		0.463
6		1469800		0.395

Won-lost percentage

Dispersion, skewness

A simulated example

possible to identify outliers

Table 1.2. Paper-quality measurements

 x_1 : density (grams/cubic centimeter)

 x_2 : strength (pounds) in the machine direction

 x_3 : strength (pounds) in the cross direction

	Density	Machine	Direction	Cross	Direction
1	0.801		121.41		70.42
2	0.824		127.70		72.47
3	0.841		129.20		78.20
4	0.816		131.80		74.89
5	0.840		135.10		71.21
6	0.842		131.50		78.39

Boxplot, again

Density

Using "ggpairs" With tips data in R

Table.1.3. Lizard size data

A zoologist obtained measurements on 25 lizards. The weight (or mass) is given in grams while the snoutvent length (SVL) and hind limb span (HLS) are given in milimeters.

```
Mass SVL HLS
1 5.526 59.0 113.5
2 10.401 75.0 142.0
3 9.213 69.0 124.0
4 8.953 67.5 125.0
5 7.063 62.0 129.5
6 6.610 62.0 123.0
```

3D Scatterplot

Remark) If one variable has much larger variability, the standardization can be considered.

Spinning 3d Scatterplot

A snapshot of spinning 3d scatter plot (Table.1.2)

Table. 1.4. Female Bear Data

Repeated measurements of the same characteristic on the same unit or subject can give rise to a growth curve.

	Wt2	Wt3	Wt4	Wt5	Length2	Length3	Length4	Length5
1	48	59	95	82	141	157	168	183
2	59	68	102	102	140	168	174	170
3	61	77	93	107	145	162	172	177
4	54	43	104	104	146	159	176	171
5	100	145	185	247	150	158	168	175
6	68	82	95	118	142	140	178	189

Combined growth curves of weight for seven female grizzly bears

Outlier vs natural variation in the population?

Chernoff faces: people react to faces!

For instance, Face2 in TeachingDemos

1: Width of Center

2:Top vs Bottom width

3:Height of Face

4:Width of top half of face

•

17:Angle of Eyebrows

18:Width of Eyebrows

Chernoff faces (using Table 1.4.)

Distance

Most multivariate techniques are based on the concept of distance.

Distance: a measure to define similarity!

$$P = (x_1, \cdots, x_p)^T \ Q = (y_1, \cdots, y_p)^T$$

- 1. d(P,Q) = d(Q,P)
- 2. $d(P,Q) \ge 0$
- 3. $d(P,Q) \le d(P,R) + d(R,Q)$

The above function $d(\cdot,\cdot)$ is called "distance"!

e.g. Euclidean distance

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2}$$

But,

Statistical distance

$$d(P,Q) = \sqrt{\left(\frac{x_1 - y_1}{\sqrt{s_{11}}}\right)^2 + \left(\frac{x_2 - y_2}{\sqrt{s_{22}}}\right)^2 + \dots + \left(\frac{x_p - y_p}{\sqrt{s_{pp}}}\right)^2}$$

Is this distance?

Recently, high-dimensional data (very large number of variables!) are everywhere!

Examples: microarrays, sequencing data, SNPs, fMRIs, EEGs, rating data

An example of rating data

	Anne	Ben	Charlie	Doug	Eve	
Star Wars	2	5	4	4	3	
Harry Potter	3	4	5	3	?	
Pretty Woman	4	?	2	?	5	
Titanic	5	?	2	1	3	
Lord of the Rings	?	5	5	4	4	
<u>:</u>	:	÷	:	:	÷	٠

Movie ratings : Scale of 1-5

The usual distance is still meaningful in high dimensional problems?

$$X = (X_1, \dots, X_p)^T$$
 and $Y = (Y_1, \dots, Y_p)^T$
where X_i and Y_i are independent $N(0, 1)$ and p is very large

- 1) d(X,0) =
- $2) \quad d(X,Y) =$
- 3) angle(X, Y) =

What is your conclusion from 1), 2) and 3)?

K-nearest neighbor algorithm (k-NN)

k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

In pattern recognition, the *k*-nearest neighbors algorithm (*k*-NN) is a non-parametric method used for classification and regression. [1] In both cases, the input consists of the *k* closest training examples in the feature space. The output depends on whether *k*-NN is used for classification or regression:

- In *k-NN classification*, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its *k* nearest neighbors (*k* is a positive integer, typically small). If *k* = 1, then the object is simply assigned to the class of that single nearest neighbor.
- In k-NN regression, the output is the property value for the object. This value is the average of the values of its k nearest neighbors.

From https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm