Lógica Computacional Sebenta de Apoio ao Estudo

Carlos Menezes 27 de agosto 2021

Conteúdo

1	Lógica Proposicional		3
	1.1	As Linguagens do Cálculo Proposicional	3
	1.2	Uma aplicação do princípio de indução estrutural na lógica proposicional	4
	1.3	Semântica do Cálculo Proposicional	4

1 Lógica Proposicional

Definição 1.1 Um argumento é uma estrutura da forma:

$$\frac{\phi_1,\ldots,\phi_n}{\psi}$$

onde $n \ge 1$ e ϕ_1, \ldots, ϕ_n (**premissas**) e ψ (**conclusão do argumento**) são proposições. Um argumento da forma acima diz-se **válido** se e só se a conclusão ψ for verdadeira sempre que as premissas ϕ_1, \ldots, ϕ_n forem simultaneamente verdadeiras; diz-se um argumento **inválido** se e só se as premissas forem simultaneamente verdadeiras e a conclusão falsa.

1.1 As Linguagens do Cálculo Proposicional

O alfabeto da maior parte das linguagens proposicionais que serão consideradas é constituído por:

- pelos símbolos (e).
- por um conjunto numerável de símbolos proposicionais denotado por $\{p_1, p_2, \ldots\}$.
- pelo conetivo de negação ¬ (leia-se: 'não').
- por um conjunto finito e não vazio de conetivos binários: \land , \lor , \rightarrow , \leftrightarrow .

As fórmulas de uma linguagem proposicional L são as expressões formadas usando os símbolos do alfabeto de L de acordo com as seguintes regras:

- (i) um símbolo proposicional é uma fórmula atómica.
- (ii) se ϕ é uma fórmula, então $(\neg \phi)$ também o é.
- (iii) se ϕ e ψ são fórmulas e \circ é um dos símbolos de conetivos binários do alfabeto de L, então $(\phi \circ \psi)$ é uma fórmula.

Exemplo 1.1 Seja $L_{\neg, \wedge, \vee, \rightarrow, \leftrightarrow}$. Então:

Exemplo de fórmulas de $L: p, (\neg r), (\neg (\neg (\neg q))), (p \land q)$

Exemplos de expressões que
 <u>não</u> são fórmulas de $\textbf{\textit{L}} \colon p\neg,\, p \wedge q, \to (r \vee q)$

Definição 1.2 Alguns parêntesis serão omitidos com base na convenção das seguinte precedências entre os operadores conetivos:

- *1.* ¬
- 2. A

3. ∨

$$4. \leftrightarrow, \rightarrow$$

Desta maneira, apresentam-se algumas abreviações:

Nota 1.1

- $p \wedge q$ é uma abreviação de $(p \wedge q)$
- $p \to \neg q$ é uma abreviação de $(p \to (\neg q))$
- $p \to \neg q \lor r$ é uma abreviação de $(p \to ((\neg q) \land r))$
- 1. Literal: fórmula que consiste apenas de um símbolos proposicional. e.g. $p_2, \neg p_2$.
- 2. Form(L) representa todas as fórmulas de L, mas por abuso de notação usa-se L com o mesmo significado de Form(L).
- 3. Os símbolos que fazem parte do alfabeto de uma linguagem L são **símbolos primitivos**. **vos** da linguagem. A linguagem pode ser estendida com símbolos **não primitivos**.

1.2 Uma aplicação do princípio de indução estrutural na lógica proposicional

Seja $L_{\neg,\circ_1,\dots,\circ_n}$ uma linguagem proposicional com n conetivos binários (\circ_1,\dots,\circ_n) . Para provar que toda a fórmula de L satisfaz uma propriedade Q (i.e. $\forall \psi \in L : Q(\psi)$), basta provar:

• Base:

Toda a fórmula satisfaz Q, i.e. $Q(\psi_i)$

- Passo de indução:
 - (i) Seja ψ arbitrário. Se se verifica $Q(\psi)$, também se verifica $Q(\neg \psi)$.
 - (ii) Seja \circ_1 um conetivo binário arbitrário ($i \in \{1, ..., n\}$). Se se verifica $Q(\psi_1)$ e $Q(\psi_2)$, então verifica-se $Q(\psi_1 \circ_i \psi_2)$.

1.3 Semântica do Cálculo Proposicional

Se uma proposição é verdadeira, diz-se que tem o valor lógico 1 (ou V ou T); caso contrário, se é falsa, diz-se que tem o valor lógico 0 (ou F).

Definição 1.3 Uma valoração é uma aplicação

$$v: \{p_1, p_2, \ldots\} \to \{0, 1\}$$

que indica o valor de verdade que um dado símbolo proposicional assume para a proposição que ele denota.

A cada conetivo 'o' do alfabeto de L, é associada uma função de verdade $FV_o: \{0,1\}^n \to \{0,1\}$, onde $n \in N$ denota a aridade do conetivo o.

As funções de verdade associadas aos conetivos \neg e \land definem-se como se segue:

- FV_\neg é a aplicação FV_\neg : $\{0,1\} \rightarrow \{0,1\}$ definida por $FV_\neg(0)=1$ e $FV_\neg(1)=0$ ou simplesmente pela função $FV_\neg(x)=1-x$.
- FV_{\wedge} é a aplicação $FV_{\wedge}: \{0,1\}^2 \to \{0,1\}$ definida por

$$\begin{cases} FV_{\wedge}(0,0) = 0 \\ FV_{\wedge}(0,1) = 0 \\ FV_{\wedge}(1,0) = 0 \\ FV_{\wedge}(1,1) = 1 \end{cases}$$

ou simplesmente pela função $FV_{\wedge}(x,y) = x \times y$.

Exercícios 1.1 Apresente a definição de cada uma das funções de verdade FV_{\lor} , FV_{\to} e FV_{\leftrightarrow} associadas aos conetivos \lor , \to e \leftrightarrow , respetivamente.

• FV_{\lor} é a aplicação $FV_{\lor}:\{0,1\}^2 \rightarrow \{0,1\}$ definida por

$$\begin{cases} FV_{\wedge}(0,0) = 0 \\ FV_{\wedge}(0,1) = 1 \\ FV_{\wedge}(1,0) = 1 \\ FV_{\wedge}(1,1) = 1 \end{cases}$$

ou simplesmente pela função $FV_{\vee}(x,y) = max(x,y)$.

• FV_{\rightarrow} é a aplicação $FV_{\rightarrow}: \{0,1\}^2 \rightarrow \{0,1\}$ definida por

$$\begin{cases} FV_{\wedge}(0,0) = 1 \\ FV_{\wedge}(0,1) = 1 \\ FV_{\wedge}(1,0) = 0 \\ FV_{\wedge}(1,1) = 1 \end{cases}$$

.

• FV_{\leftrightarrow} é a aplicação $FV_{\leftrightarrow}:\{0,1\}^2 \rightarrow \{0,1\}$ definida por

$$\begin{cases} FV_{\wedge}(0,0) = 1 \\ FV_{\wedge}(0,1) = 0 \\ FV_{\wedge}(1,0) = 0 \\ FV_{\wedge}(1,1) = 1 \end{cases}$$

.

Seja v uma valoração dos símbolos proposicionais e FV_{\circ} as funções e verdade para cada conetivo \circ do alfabeto de L. O valor de verdade das fórmulas não atómicas (de L) define-se recursivamente como se segue:

- (i) $v(\neg \psi) = FV_{\neg}(v(\psi));$
- (ii) Se \circ é um conetivo binário da linguagem L, $v(\psi_1 \circ \psi_2) = FV_{\circ}(v(\psi_1), v(\psi_2))$.

Considerando uma valoração v tal que $v(p_1)=1$ $v(p_2)=0$, o valor lógico da fórmula $p_1 \wedge p_2 \rightarrow_1$ pode ser calculado recorrendo às funções de verdade referidas acima:

$$v(p_{1} \wedge p_{2} \rightarrow_{1}) = FV_{\rightarrow}(v(p_{1} \wedge p_{2}), v(\neg p_{1}))$$

$$= FV_{\rightarrow}(FV_{\wedge}(v(p_{1}), v(p_{2})), FV_{\neg}(v(p_{1})))$$

$$= FV_{\rightarrow}(FV_{\wedge}(1, 0), FV_{\neg}(1))$$

$$= FV_{\rightarrow}(0, 0)$$

$$= 1$$

Definição 1.4 Noções semânticas relevantes:

- (a) Uma valoração v satisfaz ψ se $v(\psi) = 1$ (representado por $v \models \psi$).
- (b) ψ é possível/satisfazível se existe alguma valoração que satisfaz ψ .
- (c) ψ é uma tautologia se toda a valorização satisfaz ψ (representado por $\models \psi$).
- (d) ψ é uma contradição se nenhuma valorização a satisfaz (i.e. $v(\psi) = 0$).
- 1. $v \not\models \psi$ significa que se tem $v(\psi) = 0$.
- 2. $\not\models \psi$ significa que não se tem $\models \psi$. $\not\models \psi$ não implica que ψ seja uma contradição.
- 3. ⊤ representa uma tautologia e ⊥ uma contradição.

Definição 1.5 (label=())

Diz-se que ψ implica logicamente ϕ se $\models psi \rightarrow \phi$ (i.e. se $\psi \rightarrow \phi$ é uma tautologia).

Diz-se que ψ é logicamente equivalente a ϕ ($\psi \equiv \phi$) se $\models \psi \leftrightarrow \phi$ (i.e. se $\psi \leftrightarrow \phi$ é uma tautologia).