Problem Set 3 (Topology)

Michael Nameika

February 2022

Problem Set 3

1. In the topology \mathcal{U} on \mathbb{R} , give an example of an infinite union of closed sets that is open (and bounded).

Consider the collection of sets $\{a+x\}$ where $a \in \mathbb{R}$ and $x \in (0,1)$. Notice that $\{a+x\}$ is closed in $\mathbb{R}_{\mathcal{U}}$ since $\mathbb{R} \setminus \{a+x\} = (-\infty, a+x) \cup (a+x,\infty)$, which is open in $\mathbb{R}_{\mathcal{U}}$.

Now consider the union

$$\bigcup_{x \in (0,1)} \{a + x\} = (a, a + 1)$$

Which is bounded and open in $\mathbb{R}_{\mathcal{U}}$.

2. (#2 in 3.3) Prove that no nonempty proper subset of $\mathbb{R}_{\mathcal{FC}}$ is simultaneously open and closed.

Proof: Assume by way of contradiction that there exists a set $A \in \mathcal{FC}$ that is both open and closed, and consider $\mathbb{R} \setminus A$. Since A is assumed to be both open and closed, we have that $\mathbb{R} \setminus A \in \mathcal{FC}$.

Since A is open, we have that $\mathbb{R} \setminus A$ is finite. That is, $\mathbb{R} \setminus A \sim \{1, 2, ..., n\}$ for some natural number n. Say $\mathbb{R} \setminus A = \{a_1, a_2, ..., a_n\}$. Now, if elements of $\mathbb{R} \setminus A$ are listed in ascending order, we have

$$\mathbb{R} \setminus (\mathbb{R} \setminus A) = (-\infty, a_i) \cup (a_i, a_j) \cup \ldots \cup (a_k, \infty)$$

Since $\mathbb{R}\setminus(\mathbb{R}\setminus A)$ is a union of intervals, and intervals are uncountable, we have $\mathbb{R}\setminus(\mathbb{R}\setminus A)$ is infinite, contradicting our assumption that $\mathbb{R}\setminus A\in\mathcal{FC}$.

Thus, we have that no set in \mathcal{FC} can be both open and closed.

3. Find the closure and the interior of the interval [1,3] in $\mathbb{R}_{\mathcal{FC}}$.

$$\mathrm{Int}([1,3])=\emptyset$$

The largest set contained in [1,3] that is open in $\mathbb{R}_{\mathcal{FC}}$ is the empty set. To see this, consider some non-empty subset $A \subseteq [1,3]$. Notice that $\mathbb{R} \setminus [1,3] \subseteq \mathbb{R} \setminus A$ and that $\mathbb{R} \setminus [1,3] = (-\infty,1) \cup (3,\infty)$ which is uncountable since it is a union of open sets in \mathbb{R} . Thus, we have

$$(-\infty,1)\cup(3,\infty)\subseteq\mathbb{R}\setminus A$$

so A is infinite. Thus, the interior of [1,3] is the empty set.

$$Cl([1,3]) = \mathbb{R}$$

The smallest set that's closed in $\mathbb{R}_{\mathcal{FC}}$ that contains [1,3] is \mathbb{R} . In other words, any proper subset of \mathbb{R} that contains [1,3] will not be open in $\mathbb{R}_{\mathcal{FC}}$. To see this, suppose by contradiction that $\mathrm{Cl}([1,3])=B$ for some $B\subset\mathbb{R}$. That is, $\mathbb{R}\setminus B$ is open in \mathcal{FC} , and so by definition, $\mathbb{R}\setminus(\mathbb{R}\setminus B)$ is open. Notice that $\mathbb{R}\setminus(\mathbb{R}\setminus B)=B$, so B must be finite. But since $\mathrm{Cl}([1,3])=B$, we have $[1,3]\subseteq B$. But [1,3] is uncountable, so we must have that B is also uncountable, contradicting the fact that B must be finite from our assumption.

- 4. Let X and Y be topological spaces, and let $f: X \to Y$ be any function. Show that the following two conditions are equivalent:
 - (a) If U is open in Y, then $f^{-1}(U)$ is open in X.
 - (b) If F is closed in Y, then $f^{-1}(F)$ is closed in X.

(Note: Statements A and B are equivalent if $A \implies B$ and $B \implies A$.)

First I will prove as a lemma that $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$.

By definition of pre-image:

$$f^{-1}(Y \setminus F) = \{ x \in X | f(x) \in Y \setminus F \}$$

$$X \setminus (f^{-1}(F)) = X \setminus \{x \in X | f(x) \in F\}$$

We wish to show that these two are equal. Notice in the definition of $X \setminus (f^{-1}(F))$ that we are removing from X its elements that map into F. That is, we will be left with the elements in X that map into $Y \setminus F$. So

$$X \setminus (f^{-1}(F)) = \{x \in X | f(x) \in Y \setminus F\} = f^{-1}(Y \setminus F)$$

Now begin by assuming that statement (a) is true and that F is a closed set in Y. We wish to show that $f^{-1}(F)$ is closed in X.

Well, since F is a closed set in Y, $Y \setminus F$ is open in Y. And by (a), we have that $f^{-1}(Y \setminus F)$ is open in X. Then $X \setminus (f^{-1}(Y \setminus F))$ is closed in X. By the lemma, $f^{-1}(Y \setminus F) = X \setminus (f^{-1}(F))$, so $X \setminus f^{-1}(F)$ is open in X. Then we have $X \setminus (X \setminus f^{-1}(F)) = f^{-1}(x)$ is closed in X.

So $f^{-1}(F)$ is closed in X.

Now assume that statement (b) is true and that U is open in Y. We have that $Y \setminus U$ is closed in Y. Then, by (b), we have that $f^{-1}(Y \setminus U)$ is closed in X. By the lemma, we have that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$. And since $X \setminus f^{-1}(U)$ is closed in X, we have that $X \setminus (X \setminus f^{-1}(U)) = f^{-1}(U)$ is open in X.

So $f^{-1}(U)$ is open in X.

5. (#9 in 3.3) Prove Theorem 3.3.4: For a topological space X_{τ} and a subset $A \subseteq X_{\tau}$,

$$Int(A) = \bigcup_{V \subseteq A, V \in \tau} V.$$

That is, show that the interior of a subset A of X_{τ} is the union of all τ -open sets contained in A.

Proof: Let $I = \bigcup_{V \subseteq A, V \in \tau} V$ and let $x \in I$ be an arbitrary element. Notice that since I is a union of open sets, that I is also open. Since every $V \subseteq A$, we have that $x \in A$. Thus, $I \subseteq A$, and since I is open, $I \subseteq \text{Int}(A)$.

First consider the case that $\operatorname{Int}(A) = \emptyset$. Clearly, $\operatorname{Int}(A) \subseteq I$. Now consider the case $\operatorname{Int}(A) \neq \emptyset$. By definition, $\operatorname{Int}(A) \subseteq A$ is an open set in τ , and thus is by definition of I, $\operatorname{Int}(A) \subseteq I$. Finally, we have that

$$\operatorname{Int}(A) = \bigcup_{V \subseteq A, V \in \tau} V$$

6. (#11 in 3.3) Give an example of two subsets A and B of $\mathbb{R}_{\mathcal{U}}$ such that $\mathrm{Cl}(A \cap B) = \emptyset$ and $\mathrm{Cl}(A) \cap \mathrm{Cl}(B) = \mathbb{R}$. Does your example work in $\mathbb{R}_{\mathcal{L}}$?

Let $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$. Notice that $A \cap B = \emptyset$, so $Cl(A \cap B) = \emptyset$.

However, notice that $Cl(A) = \mathbb{R}$ and $Cl(B) = \mathbb{R}$ by density of the rationals and irrationals, so $Cl(A) \cap Cl(B) = \mathbb{R}$.

This example does work in $\mathbb{R}_{\mathcal{L}}$. Consider any interval $(a, b) \in \mathbb{R}$.

We wish to show that $\operatorname{Cl}(A) = \mathbb{R}$. Assume by way of contradiction that $\operatorname{Cl}(A) \neq \mathbb{R}$. Then there exists some interval $[a,b) \subset \mathbb{R}$ such that [a,b) contains no rational numbers. To see this, assume that $\operatorname{Cl}(\mathbb{Q}) = B \subset \mathbb{R}$. Then we have $\mathbb{R} \setminus B$ is open, and thus for every $x \in \mathbb{R} \setminus B$, there exists an interval [a,b) such that $x \in [a,b) \subseteq \mathbb{R} \setminus B$. That is, [a,b) must contain no rational numbers.

But by density of the rationals, we can find some rational number $c \in [a,b)$, contradicting the fact that [a,b) contains no rational numbers. Then $\mathrm{Cl}(A) = \mathbb{R}$. A similar argument holds for $B = \mathbb{R} \setminus \mathbb{Q}$ using density of the irrationals. So we can see that $\mathrm{Cl}(A \cap B) = \emptyset$ and $\mathrm{Cl}(A) \cap \mathrm{Cl}(B) = \mathbb{R}$.