Licence 1 – Algèbre linéaire

R. Abdellatif

TD 4 – Projecteurs et symétries : rappels et compléments

I) Projecteurs et symétries : quelques (contre-)exemples concrets

Exercice 1. —

On considère l'application $p: \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ p(x,y) := (4x - 6y, 2x - 3y).$$

- 1. Vérifier que p est une application \mathbb{R} -linéaire.
- 2. Démontrer que p est une projection.
- 3. Déterminer Ker(p) et Im(p).
- 4. Compléter la phrase suivante : « p est la projection sur ... parallèlement à »

Exercice 2. —

Soit p la projection de \mathbb{R}^3 sur $F := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ parallèlement à $G = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$. Exprimer p(x, y, z) en fonction de (x, y, z).

Exercice 3. —

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ définie par :

$$\forall (x,y,z) \in \mathbb{R}^3, \ u(x,y,z) := \frac{1}{3}(x+2y+2z,2x+y-2z,2x-2y+z) \ .$$

- 1. L'application linéaire u est-elle une projection? Si oui, préciser ses éléments caractéristiques.
- 2. L'application linéaire u est-elle une symétrie? Si oui, préciser ses éléments caractéristiques.

II) Projecteurs et symétries : exploitation des définitions

Exercice 4. —

Soit E un \mathbb{R} -espace vectoriel. Soient F et G deux sous-espaces vectoriels supplémentaires dans E. On note p la projection sur F parallèlement à G.

- 1. Démontrer que Id_E-p est la projection sur G parallèlement à F.
- 2. Démontrer que $2p \mathrm{Id}_E$ est la symétrie par rapport à F parallèlement à G.
- 3. Démontrer que Id_E-2p est la symétrie par rapport à G parallèlement à F.
- 4. Démontrer que $\operatorname{Im}(p) = \operatorname{Ker}(\operatorname{Id}_E p)$ et que $\operatorname{Ker}(p) = \operatorname{Im}(\operatorname{Id}_E p)$.

Exercice 5. —

Soit $n \geq 2$ un entier. On note $E = \mathbb{R}^n$ et (e_1, \dots, e_n) la base canonique de E. On considère les deux sous-espaces vectoriels suivants de E:

$$F := \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_{k=1}^n x_i = 0 \right\} \text{ et } G = \text{Vect}\left(\sum_{k=1}^n e_i\right).$$

- 1. Montrer que F et G sont deux espaces supplémentaires dans E.
- 2. Expliciter la projection sur F parallèlement à G, puis la projection sur G parallèlement à F.
- 3. Expliciter la symétrie par rapport à F parallèlement à G, puis la symétrie par rapport à G parallèlement à F.

Licence 1 – Algèbre linéaire

R. Abdellatif

TD 4 – Projecteurs et symétries : rappels et compléments

Exercice 6. —

Soit E un espace vectoriel réel et soient $p, q \in \mathcal{L}(E)$ deux projecteurs.

- 1. Démontrer que p+q est un projecteur ssi $p \circ q = q \circ p = 0$.
- 2. Démontrer que p+q est un projecteur ssi on a $\mathrm{Im}(p)\subset\mathrm{Ker}(q)$ et $\mathrm{Im}(q)\subset\mathrm{Ker}(p)$.
- 3. En supposant que p+q soit un projecteur, déterminer son noyau et son image.

III) Représentations matricielles des projecteurs et des symétries

Exercice 7. —

Pour chacune des cinq matrices suivantes, exprimées dans une base $\mathcal B$ fixée :

- ★ dire si cette matrice est associée à une projection; à une symétrie;
- \star le cas échéant, calculer une base adaptée dans laquelle la matrice associée est diagonale.

$$\left(\begin{array}{ccc}2 & -3\\2 & -3\end{array}\right),\; \left(\begin{array}{ccc}4 & -6\\2 & -3\end{array}\right),\; \frac{1}{3}\left(\begin{array}{ccc}1 & 2 & 2\\2 & 1 & -2\\2 & -2 & 1\end{array}\right),\; \left(\begin{array}{ccc}1 & -2 & 1\\1 & -2 & 1\\2 & -4 & 2\end{array}\right),\; \left(\begin{array}{ccc}0 & -2 & 1\\1 & 3 & -1\\2 & 4 & -1\end{array}\right).$$

Exercice 8. —

Dans l'espace vectoriel \mathbb{R}^3 , on note \mathcal{P} le plan d'équation z=x-y et Δ la droite d'équation x=-y=z.

- 1. Déterminer une base de \mathcal{P} puis une base de Δ .
- 2. Démontrer que l'on a $\mathbb{R}^3 = \mathcal{P} \oplus \Delta$.
- 3. Déterminer la matrice dans la base canonique de \mathbb{R}^3 de la projection sur \mathcal{P} parallèlement à Δ .