Shenzhen Global Test Service Co..Ltd. 1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No..... GTSR16090026-01

FCC ID.....: 2AJN6-K2

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Peter Xiao

Approved by

(position+printed name+signature)..: Manager Sam Wang

Date of issue....: Sep. 05, 2016

Representative Laboratory Name .: Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City, Address:

No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District,

Shenzhen, Guangdong

Applicant's name..... ShenZhen Tadpole Industrial Design Co.,Ltd

4000,16 Block, JingHua Building, HuFa North Road, FuTian District, Address

ShenZhen, China

Test specification:

FCC Part 15.247-2015: Operation within the bands 902-928 Standard:

MHz, 2400-2483.5 MHz and 5725-5850 MHz

TRF Originator..... Shenzhen Global Test Service Co.,Ltd.

Master TRF.....: Dated 2014-12

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Bluetooth Headset

Trade Mark:

Manufacturer: ShenZhen Tadpole Industrial Design Co.,Ltd

Model/Type reference....: K2

Listed Models K1, K3

Modulation Type GFSK

Operation Frequency...... From 2402MHz to 2480MHz

EUT Type Production Unit

Hardware Version RD-C8-K1-V1.0

Software Version

Rating DC 3.7V

Result..... PASS

Report No.: GTSR16090026-01 Page 2 of 35

TEST REPORT

Test Report No. :	GTSR16090026-01	Sep. 05, 2016
rest Report No	G101(10030020-01	Date of issue

Equipment under Test : Bluetooth Headset

Model /Type : K2

Listed Models : K1, K3

Applicant : ShenZhen Tadpole Industrial Design Co.,Ltd

Address : 4000,16 Block,JingHua Building,HuFa North Road,FuTian

District, ShenZhen, China

Manufacturer : ShenZhen Tadpole Industrial Design Co.,Ltd

Address : 4000,16 Block,JingHua Building,HuFa North Road,FuTian

District, ShenZhen, China

Test Result: PASS	
-------------------	--

The test report merely corresponds to the test sample.

It is not per mitted to copy extracts of these test result without the written per mission of the test laboratory.

Report No.: GTSR16090026-01 Page 3 of 35

Contents

·	MARY	
. Genera	al Remarks	5
	ct Description	5
. Equipr	ment Under Test	5
	description of the Equipment under Test (EUT)	5
	peration mode	5
	Diagram of Test Setup	6
	d Submittal(s) / Grant (s)	6
	onfiguration	6
. Modifi 0. NOTE	cations	6 6
U. NOTE		б
TEST	Γ ENVIRONMENT	7
. Addres	ss of the test laboratory	7
. Addres . Test F	ss of the test laboratory acility	7 7
. Test F	acility onmental conditions	7 7
. Test F . Enviro . Test D	acility onmental conditions escription	7 7 8
. Test Factorian Test Down Staten	acility onmental conditions lescription nent of the measurement uncertainty	7 7 8 8
. Test Factorian Test Down Staten	acility onmental conditions escription	7 7 8
. Test F Enviro . Test D . Statem . Equipr	acility onmental conditions lescription nent of the measurement uncertainty	7 7 8 8 9
Test F. Enviro Test D. Staten Equipo	acility commental conditions description nent of the measurement uncertainty ments Used during the Test CONDITIONS AND RESULTS	7 7 8 8 9
. Test F Enviro . Test D . Statem . Equipr	acility commental conditions rescription nent of the measurement uncertainty ments Used during the Test CONDITIONS AND RESULTS	7 7 8 8 9 10
Test F. Enviro Test D. Staten Equipo TEST 4.1.	acility commental conditions description nent of the measurement uncertainty ments Used during the Test CONDITIONS AND RESULTS	7 7 8 8 9 10
Test F. Enviro Test D Statem Equipo TEST 4.1. 4.2.	acility commental conditions rescription nent of the measurement uncertainty ments Used during the Test F CONDITIONS AND RESULTS	7 7 8 8 9101111
Test F. Enviro Test D Statem Equipo TEST 4.1. 4.2. 4.3.	acility commental conditions rescription nent of the measurement uncertainty ments Used during the Test T CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power	7 7 8 8 9101116
Test F. Enviro Test D Statem Equipo TEST 4.1. 4.2. 4.3. 4.4.	acility commental conditions rescription nent of the measurement uncertainty ments Used during the Test T CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission	7 7 8 8 9
Test F. Enviro Test D. Statem Equipr TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	acility commental conditions rescription ment of the measurement uncertainty ments Used during the Test T CONDITIONS AND RESULTS. AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission Spurious RF Conducted Emission	7 7 8 8 8 9
Test F. Enviro Test D. Statem Equipr TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	acility commental conditions rescription nent of the measurement uncertainty ments Used during the Test T CONDITIONS AND RESULTS AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission	7 7 8 8 8 9
Test F. Enviro Test D. Statem Equipr TEST 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	acility commental conditions rescription ment of the measurement uncertainty ments Used during the Test T CONDITIONS AND RESULTS. AC Power Conducted Emission Radiated Emission Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Band Edge Compliance of RF Emission Spurious RF Conducted Emission	7 7 8 8 8 9

Report No.: GTSR16090026-01 Page 4 of 35

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices
<u>KDB558074 D01 V03r05</u>: Guidance for Performing Compliance Measurements on Digital Transmission
Systems (DTS) Operating Under §15.247.

Report No.: GTSR16090026-01 Page 5 of 35

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Aug. 20, 2016
Testing commenced on	:	Aug. 20, 2016
Testing concluded on	:	Sep. 05, 2016

2.2. Product Description

Name of EUT	Bluetooth Headset
Trade Mark	1
Model Number	K2
List Model	K1, K3
FCC ID	2AJN6-K2
Antenna Type	Ceramic Antenna
Bluetooth FCC Operation frequency	2402MHz-2480MHz
Bluetooth Modulation	GFSK
Bluetooth	Supported BT4.0
Antenna gain:	0.65dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC3.7V

2.4. Short description of the Equipment under Test (EUT)

This is a Bluetooth Headset.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458

Report No.: GTSR16090026-01 Page 6 of 35

9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2.6. Block Diagram of Test Setup

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AJN6-K2** filling to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O Supplied by the lab

0	1	M/N:	1
		Manufacturer:	1

2.9. Modifications

No modifications were implemented to meet testing criteria.

2.10. NOTE

	Test Standards	Reference Report
Bluetooth-BLE	FCC Part 15 Subpart C	GTSR16090026-01
RF Exposure evaluation	FCC Per 47 CFR 2.1093(d)	GTSR16090026-02

Report No.: GTSR16090026-01 Page 7 of 35

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong

Shenzhen CTL Testing Technology Co., Ltd.

1/F.-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, Guangdong, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 964637

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 964637, Jul 24, 2015.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been as sessed and proved to be in compliance with CNAS-CL01 Accreditation C riteria for T esting and C alibration Laboratories (identical to I SO/IEC 17025: 2005 General Requirements) for the Competence of Testing and C alibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2018.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

Report No.: GTSR16090026-01 Page 8 of 35

3.4. Test Description

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	 Lowest Middle Highest	GFSK	 Lowest Middle Highest	\boxtimes				complies
§15.247(e)	Power spectral density	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(a)(2)	Spectrum bandwidth - 6 dB bandwidth	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	 Lowest Middle Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK	 Lowest Middle Highest	GFSK						complies
§15.247(d)	Band edge compliance conducted	GFSK		GFSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK	⊠ Lowest ⊠ Highest	GFSK						complies
§15.247(d)	TX spurious emissions conducted	GFSK	✓ Lowest✓ Middle✓ Highest	GFSK		\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest					complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-					complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-					complies

Remark:

1. The measurement uncertainty is not included in the test result.

NA = Not Applicable; NP = Not Performed

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated f or all measurements I isted in this test report acc. to C ISPR 16 - 4 "Specification f or radio disturbance and i mmunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in a dditional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2016/05/28	2017/05/27
LISN	R&S	ESH2-Z5	893606/008	2016/05/27	2017/05/26
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2016/06/02	2017/06/01
EMI Test Receiver	R&S	ESCI	101102	2016/06/26	2017/06/25
Spectrum Analyzer	Agilent	N9020A	MY48010425	2016/06/17	2017/06/16
Controller	EM Electronics	Controller EM 1000	N/A	2016/05/21	2017/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2016/05/19	2017/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2016/05/19	2017/05/18
Amplifier	Agilent	8349B	3008A02306	2016/05/19	2017/05/18
Amplifier	Agilent	8447D	2944A10176	2016/05/19	2017/05/18
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2016/05/20	2017/05/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	N/A	2016/05/20	2017/05/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	N/A	2016/05/20	2017/05/19
RF Cable	HUBER+SUHNE R	RG214	N/A	2016/05/20	2017/05/19
Data acquisition card	Agilent	U2531A	TW53323507	2016/05/20	2017/05/19
Power Sensor	Agilent	U2021XA	MY5365004	2016/05/20	2017/05/19

Note: The Cal.Interval was one year.

Report No.: GTSR16090026-01 Page 10 of 35

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a s pectrum A nalyzer / R eceiver c onnected t o t he LI SN p owering t he EUT. T he LI SN has t wo monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to A nalyzer / R eceiver a nd Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguency range (MHz)	Limit (dBuV)							
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

TEST RESULTS

Note applicable to this device.

Report No.: GTSR16090026-01 Page 11 of 35

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTSR16090026-01 Page 12 of 35

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0□ to 360□ to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Report No.: GTSR16090026-01

Remark: Test site: Shenzhen CTL Testing Technology Co., Ltd.

For 9KHz to 30MHz

TEST RESULTS

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.36	52.16	96.48	44.32	QP	PASS
1.65	42.08	63.25	21.17	QP	PASS
20.51	46.31	69.54	23.23	QP	PASS
25.77	40.82	69.54	28.72	QP	PASS

For 30MHz to 1000MHz

For 1GHz to 25GHz

	Frequency(2402			Polarity:			HORIZONTAL			
	Eroguepov	Emiss	sion	Limit	Morgin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.	Frequency	Lev	el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(MHz)	(dBu\	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4804.00	49.69	PK	74.00	24.31	1.00 H	162	47.79	31.42	6.98	36.5	1.90
1	4804.00	39.42	AV	54.00	14.58	1.00 H	162	37.52	31.42	6.98	36.5	1.90
2	7206.00	38.66	PK	74.00	35.34	1.00 H	108	28.06	37.03	8.87	35.3	10.60
2	7206.00		AV									

Frequency(MHz):			2402			Polarity:			VERTICAL			
	Fraguenay	Emiss	sion	Limit	Morgin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.	Frequency (MHz)	Lev	el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(IVIHZ)	(dBu√	//m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4804.00	48.52	PK	74.00	25.48	1.00 V	206	46.62	31.42	6.98	36.5	1.90
1	4804.00	38.75	AV	54.00	15.25	1.00 V	206	36.85	31.42	6.98	36.5	1.90
2	7206.00	38.98	PK	74.00	35.02	1.00 V	87	28.38	37.03	8.87	35.3	10.60
2	7206.00		AV									

Frequency(MHz):				2440			Polarity:			HORIZONTAL		
No	Frequency	Emiss Lev		Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre- amplifi	Correction
No.	(MHz)	(dBu\		(dBuV/m)	(dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)	(dB)	er	Factor (dB/m)
1	4880.00	48.68	PK	74.00	25.32	1.00 H	184	46.62	30.98	7.58	36.5	2.06
1	4880.00	38.62	ΑV	54.00	15.38	1.00 H	184	36.56	30.98	7.58	36.5	2.06
2	7320.00	38.28	PK	74.00	35.72	1.00 H	128	27.36	37.66	8.56	35.3	10.92
2	7320.00		AV									

	Frequency(MHz):			2440			Polarity:			VERTICAL		
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)
1	4880.00	48.77	PK	74.00	25.23	1.00 V	112	46.71	30.98	7.58	36.5	2.06
1	4880.00	36.01	ΑV	54.00	17.99	1.00 V	112	33.95	30.98	7.58	36.5	2.06
2	7320.00	36.47	PK	74.00	37.53	1.00 V	160	25.55	37.66	8.56	35.3	10.92
2	7320.00		ΑV									

Frequency(MHz):					2480			Polarity:			HORIZONTAL		
No.	Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)		Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
1	4960.00	46.69	PK	74.00	27.31	1.00 H	85	43.62	31.47	7.80	36.2	3.07	
1	4960.00	37.52	ΑV	54.00	16.48	1.00 H	85	34.45	31.47	7.80	36.2	3.07	
2	7440.00	37.39	PK	74.00	36.61	1.00 H	226	25.65	38.32	8.72	35.3	11.74	
2	7440.00		AV										

Frequency(MHz):				2480			Polarity:			VERTICAL		
	Fraguanay	Emiss	sion	Limit	Morgin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.	Frequency (MHz)	' '	el	Limit (dBuV/m)	Margin (dB) Height (m)	Angle	Value	Factor	Factor	amplifi	Factor	
	(IVITIZ)	(dBu\	//m)	(ubuv/III)		(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	4960.00	46.32	PK	74.00	27.68	1.00 V	142	43.25	31.47	7.80	36.2	3.07
1	4960.00	38.13	AV	54.00	15.87	1.00 V	142	35.06	31.47	7.80	36.2	3.07
2	7440.00	38.58	PK	74.00	35.42	1.00 V	136	26.84	38.32	8.72	35.3	11.74
2	7440.00		ΑV									

Report No.: GTSR16090026-01 Page 15 of 35

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit.

Report No.: GTSR16090026-01 Page 16 of 35

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power,9.1.2.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	0	-1.52	-2.73		
GFSK	19	-1.33	-2.65	30	Pass
	39	-1.68	-2.84		

Note: The test results including the cable lose.

Duty cycle used in all test items: 100%

Report No.: GTSR16090026-01 Page 17 of 35

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

- 1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2.Set the RBW =3 kHz.
- 3.Set the VBW =10 KHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5.Detector = peak.
- 6.Sweep time = auto couple.
- 7.Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9.Use the peak marker function to determine the maximum power level.
- 10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8 dBm.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	0	-15.446		
GFSK	19	-16.276	8.00	Pass
	39	-16.106		

Report No.: GTSR16090026-01 Page 19 of 35

4.5. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Type	Channel	6dB Bandwidth (KHz)	Limit (KHz)	Result	
	0	697.7			
GFSK	19	683.7	≥500	Pass	
	39	693.8			

Center 2.48 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

1.0437 MHz

3.231 kHz

693.8 kHz

CF Step 300,000 kHz Mar

Freq Offse

Span 3 MHz Sweep 1.067 ms

5.53 dBm

99.00 %

-6.00 dB

#VBW 300 kHz Total Power

OBW Power

CH39

Report No.: GTSR16090026-01 Page 21 of 35

4.6. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:

6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
	Peak Value: RBW=1MHz/VBW=3MHz,	
1047 40047	Sweep time=Auto	Dook
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

LIMIT

Below -20dB of the highest emission level in operating band. Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Report No.: GTSR16090026-01 Page 22 of 35

TEST RESULTS

Remark: Test site: Shenzhen CTL Testing Technology Co., Ltd.

4.6.1 For Radiated Bandedge Measurement

Frequency(MHz):				2402		Polarity:			ŀ	HORIZONTAL		
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	50.14	PK	74.00	23.86	1.00	182	55.45	27.49	3.32	36.12	-5.31	
2390.00	42.30	ΑV	54.00	11.70	1.00	182	47.61	27.49	3.32	36.12	-5.31	
Frequency	y(MHz):			2402			Polarity:		VERTICAL			
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2390.00	52.63	PK	74.00	21.37	1.00	165	57.94	27.49	3.32	36.12	-5.31	
2390.00	44.85	AV	54.00	9.15	1.00	165	50.16	27.49	3.32	36.12	-5.31	
Frequency	y(MHz):			2480				HORIZONTAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	51.87	PK	74.00	22.13	1.00	176	57.59	27.45	3.38	36.55	-5.72	
2483.50	43.08	ΑV	54.00	10.92	1.00	176	48.80	27.45	3.38	36.55	-5.72	
Frequency	Frequency(MHz):			2480		Polarity:		VERTICAL				
Frequency (MHz)	Emiss Leve (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)	
2483.50	52.94	PΚ	74.00	21.06	1.00	105	58.66	27.45	3.38	36.55	-5.72	
2483.50	45.73	AV	54.00	8.27	1.00	105	51.45	27.45	3.38	36.55	-5.72	

4.6.2 For Conducted Bandedge Measurement

Report No.: GTSR16090026-01 Page 23 of 35

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW=300KHz to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.

<u>LIMIT</u>

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Page 24 of 35

Report No.: GTSR16090026-01 Page 30 of 35

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna used in this product is an Ceramic Antenna, The directional gains of antenna used for transmitting is 0.65dBi.

Report No.: GTSR16090026-01 Page 31 of 35

5. Test Setup Photos of the EUT

Report No.: GTSR16090026-01 Page 32 of 35

6. External and Internal Photos of the EUT

External Photos

Report No.: GTSR16090026-01 Page 33 of 35

Report No.: GTSR16090026-01 Page 34 of 35

Internal Photos

Report No.: GTSR16090026-01 Page 35 of 35

.....End of Report.....