Certified Functional (Co)programming with 15th?

Jasmin Blanchette

VU VRIJE UNIVERSITEIT AMSTERDAM

Andreas Lochbihler

ETH zürich

Andrei Popescu

Dmitriy Traytel

Partly based on material by Tobias Nipkow

Preliminaries

Programming

Coprogramming

Advanced Coprogramming

Preliminaries

Applications

Higher-Order Logic

Proving

Programming

Coprogramming

Advanced Coprogramming

Big proofs about programs

(an incomplete list)

seL4

Microkernel Klein et al.

Flyspeck

Programs in Hales's proof of the Kepler conjecture Bauer, Nipkow, Obua

JinjaThreads

Java compiler & JMM Lochbihler

CAVA

LTL model checker Lammich, Nipkow et al.

CoCon

Conference management system
Lammich, Popescu et al.

IsaFoR/CeTA

Termination proof certifier Sternagel, Thiemann et al.

Markov Models

pCTL model checker Hölzl, Nipkow

PDF-Compiler

Probability density functions compiler
Eberl, Hölzl, Nipkow

IsaSAT

SAT solver with 2WL Fleury, Blanchette et al.

HOL = Higher-Order Logic

HOL has

- (co)datatypes
- (co)recursive functions
- logical operators

HOL has

- (co)datatypes
- (co)recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too

HOL has

- (co)datatypes
- (co)recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too

HOL formulas:

- Equations: term = term, e.g. 1 + 2 = 4
- Also: \land , \lor , \longrightarrow , \forall , \exists , ...

Types

Basic syntax

Terms

Basic syntax

```
Examples: f(g x) y
 h(%x. f(g x))
```

Terms must be well-typed

(the argument of every function call must be of the right type)

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:

 $t :: \tau$ means "t is a well-typed term of type τ ".

$$\frac{t :: \tau_1 \Rightarrow \tau_2 \qquad u :: \tau_1}{t u :: \tau_2}$$

Type inference

Isabelle automatically computes the type of each variable in a term.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

Users can help with type annotations inside the term.

Example: f (x::nat)

Currying

Thou shalt curry thy functions

```
• Curried: f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau
```

• Tupled: f' :: $\tau_1 \times \tau_2 \Rightarrow \tau$

Currying

Thou shalt curry thy functions

```
• Curried: f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau
```

• Tupled: f' :: $\tau_1 \times \tau_2 \Rightarrow \tau$

Advantage:

Currying allows *partial application*

f a_1 where $a_1 :: \tau_1$

Formulas

Metalogic (Pure):

- Type prop
- Constants:

```
\wedge :: ('a \Rightarrow prop) \Rightarrow prop
\Rightarrow :: prop \Rightarrow prop \Rightarrow prop
\equiv :: 'a \Rightarrow 'a \Rightarrow prop
```

Formulas

Metalogic (Pure):

- Type prop
- Constants:

```
\wedge :: ('a \Rightarrow prop) \Rightarrow prop

\Rightarrow :: prop \Rightarrow prop \Rightarrow prop

\equiv :: 'a \Rightarrow 'a \Rightarrow prop
```

Object logic (HOL):

- Type bool
- Constants:

```
Trueprop::bool \Rightarrow prop (implicit) \forall, \exists :: ('a \Rightarrow bool) \Rightarrow bool \rightarrow, \land, \lor, ... :: bool \Rightarrow bool \Rightarrow bool \Rightarrow if \Rightarrow 'a \Rightarrow bool
```

Syntactic sugar

```
• Infix: +, -, *, #, @, ...
```

• Mixfix: if _ then _ else _, case _ of, ...

Syntactic sugar

- Infix: +, -, *, #, @, ...
- Mixfix: if _ then _ else _, case _ of, ...
- Binders: ∧_. _, ∀_. _, ∃_. _, ...

Prefix binds more strongly than infix:

$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$

Enclose if and case in parentheses:

Theory = Isabelle Module

Theory = Isabelle Module

Syntax

```
theory MyTh imports T_1 \dots T_n begin (definitions, theorems, proofs, ...)* end
```

Theory = Isabelle Module

Syntax

```
theory MyTh imports T_1 \dots T_n begin (definitions, theorems, proofs, ...)*
```

MyTh: name of theory. Must live in file MyTh. thy T_i : names of *imported* theories. Import transitive.

Typically: imports Main

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in double quotes (")

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in double quotes (")

except for single identifiers.

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in double quotes (")

except for single identifiers.

Double quotes are not always shown on slides.

Isabelle/jEdit

- Based on the ¡Edit editor
- Processes Isabelle text automatically when editing .thy files (like modern Java IDEs)
- Bottom panels: Output, Query (Find Theorems), . . .
- Side panels: State, Theories, ...

The proof state

1.
$$\bigwedge x_1 \dots x_m$$
. $A_1 \Longrightarrow \dots \Longrightarrow A_n \Longrightarrow C$

 x_1, \dots, x_m fixed local variables A_1, \dots, A_n local assumptions C actual (sub)goal

Apply scripts

General schema:

```
      lemma name: "..."
      lemma name: "..."

      apply (...)
      i:

      apply (...)
      apply (...)

      apply (...)
      by (...)

      done
      done
```

Apply scripts

General schema:

```
      lemma name: "..."
      lemma name: "..."

      apply (...)
      apply (...)

      i:
      apply (...)

      apply (...)
      by (...)

      done
      done
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: "..."
```

Delayed gratification

The command oops gives up the current proof attempt.

The command sorry "completes" any proof. It makes top-down development possible:

Assume lemma first, prove it later.

Isar Proofs

Apply script = assembly language program

Isar Proofs

Apply script = assembly language program

Isar proof = structured program with comments

Isar Proofs

Apply script = assembly language program

Isar proof = structured program with comments

But apply still useful for proof exploration.

A typical Isar proof

```
A proof of \varphi_0 \Longrightarrow \varphi_{n+1}:
       proof
          assume arphi_0
          have \varphi_1
             by simp
          have \varphi_n
             by blast
          show \varphi_{n+1}
             by ...
       qed
```

Isar core syntax

```
proof = proof [method] step* qed
        by method
method = (simp ...) | (blast ...) | (induction ...) | ...
step = fix variables (\land)
      | assume prop (\Longrightarrow)
| [from fact^+] (have | show) prop proof
prop = [name:] "formula"
fact = name | · · ·
```

Example: Cantor's theorem

```
lemma "¬ surj (f :: 'a ⇒ 'a set)"
proof
  assume a: "surj f"
  from a have b: "∀A. ∃a. A = f a"
    by (simp add: surj_def)
  from b have c: "∃a. {x. x ∉ f x} = f a"
    by blast
  from c show False
    by blast
qed
```

Abbreviations

```
this = the previous proposition proved or assumed then = from this
```

using and with

(have \mid show) prop using facts

using and with

using and with

with facts
=
from facts this

Structured lemma statement

```
lemma
  fixes f :: "'a ⇒ 'a set"
  assumes s: "surj f"
  shows False
proof -
  have "∃a. {x. x ∉ f x} = f a"
    using s by (auto simp: surj_def)
  then show False
    by blast
qed
```

Structured lemma statement

```
lemma
  fixes f :: "'a \Rightarrow 'a set"
  assumes s: "surj f"
  shows False
proof -
  have "\exists a. \{x. x \notin f x\} = f a"
    using s by (auto simp: surj_def)
  then show False
    by blast
ged
Proves surj f \Longrightarrow False
but surj f becomes local fact s in proof.
```

Structured lemma statements

```
fixes x :: \tau_1 and y :: \tau_2 ... assumes a: P and b: Q ... shows R
```

Structured lemma statements

```
fixes x :: \tau_1 and y :: \tau_2 ... assumes a: P and b: Q ... shows R
```

- fixes and assumes sections optional
- shows optional if no fixes and assumes

Case distinction

```
show "R"

proof cases

assume "P"

...

show "R" ...

next

assume "¬ P"

...

show "R" ...
```

Case distinction

```
show "R"
                              have "P \vee Q" ...
                              then show "R"
proof cases
  assume "P"
                              proof
                                assume "P"
  . . .
  show "R" ...
                                 . . .
                                 show "R" ...
next
  assume "¬ P"
                              next
                                assume "Q"
  . . .
  show "R" ...
                                 . . .
                                 show "R" ...
qed
                              qed
```

Contradiction

```
show "¬ P"
proof
  assume "P"
   ...
  show False ...
qed
```

Contradiction

```
show "¬ P" show "P"
proof proof (rule ccontr)
assume "P" assume "¬ P"
...
show False ...
ged qed
```



```
\begin{array}{c} \text{show "P} \longleftrightarrow \text{Q"} \\ \text{proof} \\ \text{assume "P"} \\ \dots \\ \text{show "Q"} \dots \\ \text{next} \\ \text{assume "Q"} \\ \dots \\ \text{show "P"} \dots \\ \text{qed} \end{array}
```

\forall and \exists introduction

```
show "\forall x. P x"

proof

fix x

show "P x" ...

qed
```

\forall and \exists introduction

```
show "∀x. P x"
proof
 fix x
 show "P x" ...
qed
show "∃x. P x"
proof
  show "P witness" ...
qed
```

Preliminaries

Programming

Datatypes

Recursion

Induction

Coprogramming

Advanced Coprogramming

Natural numbers

```
datatype nat =
  0
| Suc nat
```

Natural numbers

```
datatype nat =
  0
| Suc nat
```

This introduces:

- The type nat
- The constructors 0 :: nat and Suc :: nat ⇒ nat
- A case combinator case_nat
- A (primitive) recursor constant rec_nat
- Various theorems about the above, including an induction rule

Numeral notations are also supported:

```
3 = Suc (Suc (Suc 0)) is a theorem
```

Lists

```
datatype 'a list =
  Nil
| Cons 'a "'a list"
```

Lists

```
datatype 'a list =
  Nil
| Cons 'a "'a list"
```

More honest

```
datatype (set: 'a) list =
  Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)
for map: map
```

Lists

```
datatype 'a list =
  Nil
| Cons 'a "'a list"
```

More honest

```
datatype (set: 'a) list =
  Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)
for map: map
```

This introduces:

- The type 'a list and the constructors Nil and Cons
- A functorial action: map :: $('a \Rightarrow 'b) \Rightarrow 'a \text{ list } \Rightarrow 'b \text{ list}$
- A natural transformation: set :: 'a list ⇒ 'a set
- A size function: size :: 'a list ⇒ nat
- etc.

List notations

```
Empty list: []

Cons: x \# xs

Enumeration: [x_1, x_2, ..., x_n]

Head: hd (x \# xs) = x

Tail: tl (x \# xs) = xs tl [] = []

Case: (case xs of [] \Rightarrow ... | y \# ys \Rightarrow ...)
```

Primitive recursion

Definition using primrec or fun:

```
primrec append :: 'a list \Rightarrow 'a list \Rightarrow 'a list (infixr "@" 65) where [] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)
```

Primitive recursion

Definition using primrec or fun:

```
primrec append :: 'a list \Rightarrow 'a list \Rightarrow 'a list (infixr "@" 65) where [] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)
```

Code export:

```
export_code append in Haskell
```

Primitive recursion

Definition using primrec or fun:

```
primrec append :: 'a list \Rightarrow 'a list \Rightarrow 'a list (infixr "@" 65) where [] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)
```

Code export:

```
export_code append in Haskell
```

Symbolic evaluation in Isabelle:

```
value "[1,2,3] @ [4,5,6] :: int list"
```

We want to prove xs @ [] = xs.

We want to prove xs @ [] = xs.

Structural induction rule	<pre>(thm list.induct)</pre>
?P [] \Longrightarrow (\land x xs. ?P xs \Longrightarrow ?P (x # xs)) \Longrightarrow	(base case) (induction step)
?P ?list	(induction step)

We want to prove xs @ [] = xs.

```
Structural induction rule (thm list.induct)

?P [] \Longrightarrow (base case)

(\landx xs. ?P xs \Longrightarrow ?P (x # xs)) \Longrightarrow (induction step)

?P ?list
```

Base case:

```
[] @ [] = [] 	 (by definition of @)
```

We want to prove xs @ [] = xs.

Structural induction rule (thm list.induct) ?P [] \Longrightarrow (base case) (\land x xs. ?P xs \Longrightarrow ?P (x # xs)) \Longrightarrow (induction step) ?P ?list

Base case:

Induction step:

$$(x \# xs) @ [] = x \# (xs @ [])$$
 (by definition of @)
= $x \# xs$ (by induction hypothesis)

List reversal

$$[1,2,3,4] \xrightarrow{\text{rev}} [4,3,2,1]$$

List reversal

```
[1,2,3,4] \xrightarrow{\text{rev}} [4,3,2,1]
```

Naive list reversal

List reversal

$$[1,2,3,4] \xrightarrow{\text{rev}} [4,3,2,1]$$

Naive list reversal

Fast list reversal

```
primrec qrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list where qrev [] ys = ys | qrev (x # xs) ys = qrev xs (x # ys)
```

- 1. What is rev (rev xs)?
- 2. Are rev and qrev equivalent? What is the relationship?

Well-founded recursion

$$[a,b,c,d,e] \xrightarrow{merge} [a,X,b,Y,c,Z,d,e]$$

Merge two lists

Not primitively recursive! → We need a termination proof:

```
termination proof(relation "measure (\lambda(xs, ys). size xs + size ys)") qed simp_all
```

Well-founded recursion

$$[a,b,c,d,e] \xrightarrow{merge} [a,X,b,Y,c,Z,d,e]$$

Merge two lists

```
function merge :: 'a list \Rightarrow 'a list \Rightarrow 'a list where merge [] ys = ys | merge (x # xs) ys = x # merge ys xs
```

Not primitively recursive! → We need a termination proof:

```
termination proof(relation "measure (\lambda(xs, ys). size xs + size ys)") qed simp_all
```

With proof automation:

termination by size_change

Termination proofs yield induction rules

```
merge [] ys = ys
merge (x # xs) ys = x # merge ys xs
```

How can we prove size (merge xs ys) = size xs + size ys?

Termination proofs yield induction rules

```
merge [] ys = ys
merge (x # xs) ys = x # merge ys xs
```

How can we prove size (merge xs ys) = size xs + size ys?

Structural induction on xs does not work!

```
Induction hypothesis: size (merge xs ys) = size xs + size ys size (merge (x \# xs) ys) = size (x \# merge ys xs) = 1 + size (merge ys xs) = ...
```

Termination proofs yield induction rules

How can we prove size (merge xs ys) = size xs + size ys?

Structural induction on xs does not work!

```
Induction hypothesis: size (merge xs ys) = size xs + size ys size (merge (x \# xs) ys) = size (x \# merge ys xs) = 1 + size (merge ys xs) = ...
```

Induction rule for merge

Finitely-branching Rose trees

datatype 'a rtree = Node 'a "'a rtree list"

Finitely-branching Rose trees

datatype 'a rtree = Node 'a "'a rtree list"

Structural induction

```
(\bigwedge x \text{ ts. } (\bigwedge t. \ t \in \text{set ts} \Longrightarrow ?P \ t) \Longrightarrow ?P \ (\text{Node } x \ \text{ts})) \Longrightarrow ?P \ ?\text{tree}
```



```
primrec rmirror :: 'a tree ⇒ 'a tree where
  rmirror (Node x ts) = Node x (rev (map rmirror ts))
```



```
primrec rmirror :: 'a tree ⇒ 'a tree where
  rmirror (Node x ts) = Node x (rev (map rmirror ts))
```

Prove rmirror (rmirror t) = t by structural induction

IH: rmirror (rmirror t) = t for all t \in set ts

= Node x (map id ts) = Node x ts

```
rmirror (rmirror (Node x ts))
= rmirror (Node x (rev (map rmirror ts)))
= Node x (rev (map rmirror (rev (map rmirror ts))))
= Node x (rev (rev (map rmirror (map rmirror ts))))
= Node x (map (rmirror o rmirror) ts)
by IH?
```

Congruence rule for map

```
?xs = ?ys \Longrightarrow (\land y. y \in set ?ys <math>\Longrightarrow ?f y = ?g y) \Longrightarrow map ?f ?xs = map ?g ?ys
```

Congruence rule for map

```
?xs = ?ys \Longrightarrow (\land y. y \in set ?ys <math>\Longrightarrow ?f y = ?g y) \Longrightarrow map ?f ?xs = map ?g ?ys
```

$$\frac{\text{ts = ??}}{\text{map (rmirror } \circ \text{ rmirror) } \text{t = } ??} \quad \text{t}}{\text{map (rmirror } \circ \text{ rmirror) } \text{ts = map}} \quad ?? \quad ??}$$

Congruence rule for map

```
?xs = ?ys \Longrightarrow (\land y. y \in set ?ys <math>\Longrightarrow ?f y = ?g y) \Longrightarrow map ?f ?xs = map ?g ?ys
```

$$\frac{\text{ts = ts}}{\text{Map (rmirror } \circ \text{ rmirror) } \text{t = } ?? \text{t}}$$

Congruence rule for map

```
?xs = ?ys \Longrightarrow 
(\bigwedgey. y \in set ?ys \Longrightarrow ?f y = ?g y) \Longrightarrow map ?f ?xs = map ?g ?ys
```

$$\frac{\text{ts = ts}}{\text{map (rmirror } \circ \text{ rmirror) } \text{ts = map}} ?? \text{ts}$$

Congruence rule for map

```
?xs = ?ys \Longrightarrow (\land y. y \in set ?ys <math>\Longrightarrow ?f y = ?g y) \Longrightarrow map ?f ?xs = map ?g ?ys
```

$$\frac{\text{ts = ts}}{\text{Mt. t \in set ts}} \xrightarrow{\text{t \in set ts}} \text{t \in set ts}$$

$$\frac{\text{map (rmirror } \circ \text{ rmirror) ts = map } (\lambda x. x) \text{ ts}}{\text{map (rmirror } \circ \text{ rmirror) ts = map } (\lambda x. x) \text{ ts}}$$

Now it's your turn

- Download Programming. thy from the tutorial webpage and open it in Isabelle/jEdit.
- Define concat :: 'a list list ⇒ 'a list Find out how concat behaves w.r.t. @ and rev and prove it.
- Define pre-order and post-order traversals for rose trees.
 Prove that preorder (rmirror t) = rev (postorder t).

Preliminaries

Programming

Coprogramming

Codatatypes

Primitive Corecursion

Coinduction

Advanced Coprogramming

Types with infinite values finite values infinite values

nat	0, 1, 2, 3,	
enat	0, 1, 2, 3,	∞

type

Types with infinite values

ιype	imite values	infinite values
	$0, S(0), S(S(0)), S(S(S(0))), \dots$	
nat	0, 1, 2, 3,	
enat	0, 1, 2, 3,	∞
	$0, S(0), S(S(0)), S(S(S(0))), \dots$	$S(S(S(S(S(\ldots)))))$

Types with infinite values infinite values finite values

 $0, S(0), S(S(0)), S(S(S(0))), \dots$ 0. 1. 2. 3. . . .

0. 1. 2. 3. . . . enat ∞ $0, S(0), S(S(0)), S(S(S(0))), \dots S(S(S(S(S(...)))))$

list

type

nat

stream

llist

 $[], [0], [0,0], [0,1,2,3,4], \dots$ $[0,0,0,\ldots], [1,2,3,\ldots], [0,1,0,1,\ldots], \ldots$

 $[], [0], [0,0], [0,1,2,3,4], \dots$ $[0,0,0,\dots], [1,2,3,\dots], [0,1,0,1,\dots], \dots$

type finite values infinite values $0, S(0), S(S(0)), S(S(S(0))), \dots$ nat $0, 1, 2, 3, \dots$ enat $0, 1, 2, 3, \dots$ ∞

Types with infinite values

 $0, S(0), S(S(0)), S(S(S(S(0))), \dots S(S(S(S(S(\dots)))))$ [], [0], [0,0], [0,1,2,3,4], ...

list $[], [0], [0,0], [0,1,2,3,4], \dots$ stream $[0,0,0,\dots], [1,2,3,\dots], [0,1,0,1,\dots], \dots$ llist $[], [0], [0,0], [0,1,2,3,4], \dots$ $[0,0,0,\dots], [1,2,3,\dots], [0,1,0,1,\dots], \dots$

```
datatype nat = 0 | Suc nat codatatype enat = Zero | eSuc enat
```



```
discriminator
                                       selector
datatype nat =
                          0
                                  Suc
                                              nat
codatatype enat = is_zero: Zero | eSuc (epred: enat)
 where "epred Zero = Zero" -
                                  defaults
datatype 'a list = Nil | Cons 'a "'a list"
codatatype 'a stream = SCons 'a "'a stream"
codatatype 'a llist = LNil | LCons 'a "'a llist"
```

```
discriminator
                                       selector
datatype nat =
                          0
                                  Suc
                                              nat
codatatype enat = is_zero: Zero | eSuc (epred: enat)
 where "epred Zero = Zero" —
                                  defaults
datatype 'a list = Nil | Cons 'a "'a list"
codatatype 'a stream = SCons 'a "'a stream"
codatatype 'a llist = LNil | LCons 'a "'a llist"
codatatype 'a tree =
  is Leaf: Leaf
         | Node (left: 'a tree) (val: 'a) (right: 'a tree)
 where "left Leaf = Leaf" | "right Leaf = Leaf"
```

No recursion on codatatypes

```
datatype nat = 0 | Suc nat codatatype enat = Zero | eSuc enat
```

Suppose we could do recursion on codatatypes ...

```
primrec to_nat :: enat ⇒ nat where
  to_nat Zero = 0
| to_nat (eSuc n) = Suc (to_nat n)
```

No recursion on codatatypes

```
datatype nat = 0 | Suc nat codatatype enat = Zero | eSuc enat
```

Suppose we could do recursion on codatatypes ...

```
primrec to_nat :: enat ⇒ nat where
  to_nat Zero = 0
| to_nat (eSuc n) = Suc (to_nat n)
```

... but codatatypes are not well-founded: ∞ = eSuc ∞

```
to_nat \infty = to_nat (eSuc \infty) = Suc (to_nat \infty)

n = 1+n
```

False

Building infinite values by primitive corecursion

primitive recursion

- datatype as argument
- peel off one constructor
- recursive call only on arguments of the constructor

codatatype enat = Zero | eSuc enat

primitive corecursion

- codatatype as result
- produce one constructor
- corecursive call only in arguments to the constructor

```
primcorec infty :: enat ("∞") where \infty = eSuc \infty
```

Building infinite values by primitive corecursion

primitive recursion

- datatype as argument
- peel off one constructor
- recursive call only on arguments of the constructor

primitive corecursion

- codatatype as result
- produce one constructor
- corecursive call only in arguments to the constructor

```
codatatype enat = Zero | eSuc enat  \mbox{primcorec infty} \ :: \ \mbox{enat} \ ("\infty") \ \mbox{where} \ \infty \ = \ \mbox{eSuc} \ \infty
```

Derive destructor characterisation:

```
lemma infty.sel:
   "is_zero ∞ = False"
   "epred ∞ = ∞"
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

Addition on enat

```
primcorec eplus :: "enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))"
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

Addition on enat

```
primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))"
```

corecursive call

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

Addition on enat

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" corecursive stops
```

argument

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" lemma infty.sel:

"is_zero \infty = False"

"epred \infty = \infty" corecursive argument
```

Evaluate $\infty \oplus 3$

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

$$is_zero (\infty \oplus 3) =$$

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" lemma infty.sel:

"is_zero \infty = False"

"epred \infty = \infty" corecursive argument
```

```
is_zero ( \infty \oplus 3) = False
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" lemma infty.sel:

"is_zero \infty = False"

"epred \infty = \infty" corecursive argument
```

```
is_zero ( \infty \oplus 3) = False epred ( \infty \oplus 3) =
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" lemma infty.sel:

"is_zero \infty = False"

"epred \infty = \infty" corecursive argument
```

```
is_zero ( \infty \oplus 3) = False epred ( \infty \oplus 3) = epred \infty \oplus 3
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
Addition on enat primcorec eplus :: "enat \Rightarrow enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))" lemma infty.sel:

"is_zero \infty = False"

"epred \infty = \infty" corecursive argument
```

```
is_zero ( \infty \oplus 3) = False epred ( \infty \oplus 3) = epred \infty \oplus 3 is_zero (epred \infty \oplus 3) =
```

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

```
is_zero ( \infty \oplus 3) = False
epred ( \infty \oplus 3) = epred \infty \oplus 3
is_zero (epred \infty \oplus 3) = is_zero (\infty \oplus 3) = False
epred (epred \infty \oplus 3) = ...
```

Computing with infinite values

Computing with codatatypes is pattern matching on results: We can inspect arbitrary finite amounts of output in finitely many steps.

Addition on enat

```
primcorec eplus :: "enat \Rightarrow enat" (infixl "\oplus" 65) where "m \oplus n = (if is_zero m then n else eSuc (epred m \oplus n))"
```

corecursion

Conjecture: ∞ ⊕ 3 = ∞

corecursive

Evaluate $\infty \oplus 3$ by observing!

```
is_zero ( \infty \oplus 3) = False
epred ( \infty \oplus 3) = epred \infty \oplus 3
is_zero (epred \infty \oplus 3) = is_zero (\infty \oplus 3) = False
epred (epred \infty \oplus 3) = ...
```

If we can make the same observations!

2 =? 2⊕0

If we can make the same observations!

2 =?
$$2 \oplus 0$$

is-zero $2 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $2 = 1$ =? epred $(2 \oplus 0) = \text{epred } 2 \oplus 0 = 1 \oplus 0$

If we can make the same observations!

2 =?
$$2 \oplus 0$$

is-zero $2 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $2 = 1$ =? epred $(2 \oplus 0) = \text{epred } 2 \oplus 0 = 1 \oplus 0$
is-zero $1 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $1 = 0$ =? epred $(1 \oplus 0) = \text{epred } 1 \oplus 0 = 0 \oplus 0$

If we can make the same observations!

2 =?
$$2 \oplus 0$$

is-zero $2 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $2 = 1$ =? epred $(2 \oplus 0) = \text{epred } 2 \oplus 0 = 1 \oplus 0$
is-zero $1 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $1 = 0$ =? epred $(1 \oplus 0) = \text{epred } 1 \oplus 0 = 0 \oplus 0$
is-zero $0 = \text{True}$ = is-zero $(0 \oplus 0) = \text{True}$

If we can make the same observations!

```
2 =? 2 \oplus 0

is-zero 2 = \text{False} = is-zero (1 \oplus 0) = \text{False}

epred 2 = 1 =? epred (2 \oplus 0) = \text{epred } 2 \oplus 0 = 1 \oplus 0

is-zero 1 = \text{False} = is-zero (1 \oplus 0) = \text{False}

epred 1 = 0 =? epred 1 \oplus 0 = 0 \oplus 0

is-zero 1 \oplus 0 = 0 \oplus 0

is-zero 1 \oplus 0 = 0 \oplus 0
```

Coinduction rule for equality

If we can make the same observations!

2 R
$$2 \oplus 0$$

is-zero $2 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $2 = 1$ R epred $(2 \oplus 0) = \text{epred } 2 \oplus 0 = 1 \oplus 0$
is-zero $1 = \text{False}$ = is-zero $(1 \oplus 0) = \text{False}$
epred $1 = 0$ R epred $1 \oplus 0 = 0 \oplus 0$
is-zero $0 = \text{True}$ = is-zero $1 \oplus 0 = 0 \oplus 0$

Coinduction rule for equality

Prove that $\infty \oplus x = \infty$

Coinduction rule for equality

- 1. Define $R \ n \ m \longleftrightarrow n = \infty \oplus x \land m = \infty$
- 2. Show that $R(\infty \oplus x) \infty$.
- 3. Show bisimulation property of *R*:
 - Assume R n m for arbitrary n, m. So $n = \infty \oplus x$ and $m = \infty$.
 - is-zero $n = \text{is-zero} (\infty \oplus x) = \text{False} = \text{is-zero} \infty$
 - Show R (epred n) (epred m):
 - epred $n = \text{epred } (\infty \oplus x) = \text{epred } \infty \oplus x$
 - epred $m = \text{epred } \infty = \infty$

Isabelle demo

From lazy lists to trees and back

 $[0,1,2,...] \xrightarrow{\text{tree_of}}$

From lazy lists to trees and back

From lazy lists to trees and back

Tree chopping

Remove the root of a tree:

Tree chopping

Remove the root of a tree:

Tree chopping

Remove the root of a tree:

What if there is a Leaf?

Preliminaries

Programming

Coprogramming

Advanced Coprogramming

Corecursion
Up To Friends

Coinduction Up To Friends Mixed Recursion-Corecursion

Am I productive?

s = 0 ## s

$$s = 0 \# s$$

s = 0 # stl s

s = 0 # stl s

s = 0 # 1 # s

$$s = 0 \# 1 \# s$$

eo s = shd s ## eo (stl (stl s))

s = 0 ## 1 ## eo s

s = 0 # 1 # eo s

$$s \oplus t = (shd s + shd t) ## (stl s \oplus stl t)$$

$$s \otimes t = (shd \ s * shd \ t) \ \# \ (stl \ s \otimes t \oplus s \otimes stl \ t)$$

corecursion up to \oplus

$$(\sigma \otimes \tau)(n) = \sum_{k=0}^{n} {n \choose k} \times \sigma(n-k) \times \tau(k)$$

The standard definition

 $s = 0 \# ((1 \# s) \oplus s)$

$$s = 0 \# ((1 \# s) \oplus s)$$

$$s = (0 \# 1 \# s) \oplus (0 \# s)$$

$$s = (0 \# 1 \# s) \oplus (0 \# s)$$

corecursion up to constructors and \oplus

⊕ comes before the guard

$s = (1 \# s) \otimes (1 \# s)$

$$s = (1 \# s) \otimes (1 \# s)$$

corecursion up to constructors and \otimes \otimes comes before the guard

pow2 t =
$$(2 ^ shd t) \# (stl s \otimes pow2 t)$$

s = pow2 (0 ## s)

$$s = pow2 (0 ## s)$$

corecursion up to constructors and pow2 pow2 comes before the guard

selfie s = shd s ## selfie (selfie (stl s) \oplus selfie s)

corecursion up to \oplus and selfie [sic!]

```
s m n = if (m == 0 \&\& n > 1) || gcd m n == 1
```

then n # s (m * n) (n + 1)

else s m (n + 1)

```
s m n = if (m == 0 \&\& n > 1) || gcd m n == 1
then n ## s (m * n) (n + 1)
else s m (n + 1)
```

else 1 ## s 1

then s $(n - 1) \oplus (0 \# s (n + 1))$

s n = if n > 0

```
s n = if n > 0
then s (n - 1) \oplus (0 ## s (n + 1))
else 1 ## s 1
```


mixed recursion/corecursion up to \oplus

```
s n = if n > 0
```

else 1 ## s 1

then stl (s (n - 1)) \oplus (0 ## s (n + 1))

Isabelle demo

Exercises

Languages as Infinite Tries

Growing a Tree

$$[0, 1, 2, 3, 4, 5, 6, \ldots]$$

Factorial via Shuffle

Prove that $s = 1 \# (s \otimes s)$ defines the stream of factorials.

A glimpse

