Bilinear forms and their matrices

Joel Kamnitzer

March 11, 2011

0.1 Definitions

A bilinear form on a vector space V over a field \mathbb{F} is a map

$$H: V \times V \to \mathbb{F}$$

such that

- (i) $H(v_1 + v_2, w) = H(v_1, w) + H(v_2, w)$, for all $v_1, v_2, w \in V$
- (ii) $H(v, w_1 + w_2) = H(v, w_1) + H(v, w_2)$, for all $v, w_1, w_2 \in V$
- (iii) H(av, w) = aH(v, w), for all $v, w \in V, a \in \mathbb{F}$
- (iv) H(v, aw) = aH(v, w), for all $v, w \in V, a \in \mathbb{F}$

A bilinear form H is called *symmetric* if H(v,w) = H(w,v) for all $v,w \in V$. A bilinear form H is called *skew-symmetric* if H(v,w) = -H(w,v) for all $v,w \in V$.

A bilinear form H is called *non-degenerate* if for all $v \in V$, there exists $w \in V$, such that $H(w, v) \neq 0$.

A bilinear form H defines a map $H^{\#}: V \to V^{*}$ which takes w to the linear map $v \mapsto H(v, w)$. In other words, $H^{\#}(w)(v) = H(v, w)$.

Note that H is non-degenerate if and only if the map $H^{\#}:V\to V^*$ is injective. Since V and V^* are finite-dimensional vector spaces of the same dimension, this map is injective if and only if it is invertible.

0.2 Matrices of bilinear forms

If we take $V = \mathbb{F}^n$, then every $n \times n$ matrix A gives rise to a bilinear form by the formula

$$H_{\Delta}(v, w) = v^t A w$$

Example 0.1. Take $V = \mathbb{R}^2$. Some nice examples of bilinear forms are the ones coming from the matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Conversely, if V is any vector space and if v_1, \ldots, v_n is a basis for V, then we define the matrix $[H]_{v_1, \ldots, v_n}$ for H with respect to this basis to be the matrix whose i, j entry is $H(v_i, v_j)$.

Proposition 0.2. Take $V = \mathbb{F}^n$. The matrix for H_A with respect to the standard basis is A itself.

Proof. By definition,

$$H_A(e_i, e_j) = e_i^t A e_j = A_{ij}.$$

Recall that if V is a vector space with basis v_1, \ldots, v_n , then its dual space V^* has a dual basis $\alpha_1, \ldots, \alpha_n$. The element α_j of the dual basis is defined as the unique linear map from V to \mathbb{F} such that

$$\alpha_j(v_i) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$$

Proposition 0.3. The matrix for H with respect to v_1, \ldots, v_n is the same as the matrix for v_1, \ldots, v_n and $\alpha_1, \ldots, \alpha_n$ with respect to the map $H^\#: V \to V^*$.

Proof. Let $A = [H^{\#}]_{v_1, \dots, v_n}^{\alpha_1, \dots, \alpha_n}$. Then

$$H^{\#}v_j = \sum_{k=1}^n A_{kj}\alpha_k$$

Hence, $H(v_i, v_j) = H^{\#}(v_j)(v_i) = A_{ij}$ as desired.

From this proposition, we deduce the following corollary.

Corollary 0.4. H is non-degenerate if and only if the matrix $[H]_{v_1,...,v_n}$ is invertible.

It is interesting to see how the matrix for a bilinear form changes when we changes the basis.

Theorem 0.5. Let V be a vector space with two bases v_1, \ldots, v_n and w_1, \ldots, w_n . Let Q be the change of basis matrix. Let H be a bilinear form on V.

Then

$$Q^{t} [H]_{v_{1},...,v_{n}} Q = [H]_{w_{1},...,w_{n}}$$

Proof. Choosing the basis v_1, \ldots, v_n means that we can consider the case where $V = \mathbb{F}^n$, and v_1, \ldots, v_n denotes the standard basis. Then w_1, \ldots, w_n are the columns of Q and $w_i = Qv_i$.

Let $A = [H]_{v_1, ..., v_n}$.

So we have

$$H(w_i, w_j) = w_i^t A w_j = (Q v_i)^t A Q v_j = v_i^t Q^t A Q v_j$$

as desired. \Box

You can think of this operation $A \mapsto Q^t A Q$ as simultaneous row and column operations.

Example 0.6. Consider

$$A = \begin{bmatrix} 0 & 4 \\ 4 & 2 \end{bmatrix}$$

After doing simultaneous row and column operations we reach

$$Q^t A Q = \begin{bmatrix} -8 & 0 \\ 0 & 2 \end{bmatrix}$$

The new basis is (1, -2), (0, 1).

0.3 Isotropic vectors and perp spaces

A vector v is called *isotropic* if H(v, v) = 0.

If H is skew-symmetric, then H(v,v)=-H(v,v), so every vector is isotropic. Let H be a non-degenerate bilinear form on a vector space V and let $W\subset V$ be a subspace. We define the *perp space* to W as

$$W^{\perp} = \{ v \in V : H(w, v) = 0 \text{ for all } w \in W \}$$

Notice that W^{\perp} may intersect W. For example if W is the span of a vector v, then $W \subset W^{\perp}$ if and only if v is isotropic.

Example 0.7. If we take \mathbb{R}^2 with the bilinear form $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then (1,1) is an isotropic vector and $span(1,1)^{\perp} = span(1,1)$.

So in general, V is not the direct sum of W and W^{\perp} . However, we have the following result which says that they have complementary dimension.

Proposition 0.8. $\dim W^{\perp} = \dim V - \dim W$

Proof. We have defined $H^{\#}: V \to V^*$. The inclusion of $W \subset V$ gives us a surjective linear map $\pi: V^* \to W^*$, and so by composition we get $T = \pi \circ H^{\#}: V \to W^*$. This map T is surjective since $H^{\#}$ is an isomorphism. Thus

$$\dim \operatorname{null}(T) = \dim V - \dim W^* = \dim V - \dim W$$

Checking through the definitions, we see that

$$v \in \text{null}(T)$$
 if and only if $H^{\#}(v)(w) = 0$ for all $w \in W$

Since $H^{\#}(v)(w) = H(w, v)$, this shows that $v \in \text{null}(T)$ if and only if $v \in W^{\perp}$. Thus $W^{\perp} = \text{null}(T)$ and so the result follows.

Symmetric bilinear forms

Joel Kamnitzer

March 14, 2011

1 Symmetric bilinear forms

We will now assume that the characteristic of our field is not 2 (so $1+1 \neq 0$).

1.1 Quadratic forms

Let H be a symmetric bilinear form on a vector space V. Then H gives us a function $Q:V\to\mathbb{F}$ defined by Q(v)=H(v,v). Q is called a quadratic form. We can recover H from Q via the equation

$$H(v, w) = \frac{1}{2}(Q(v + w) - Q(v) - Q(w))$$

Quadratic forms are actually quite familiar objects.

Proposition 1.1. Let $V = \mathbb{F}^n$. Let Q be a quadratic form on \mathbb{F}^n . Then $Q(x_1, \ldots, x_n)$ is a polynomial in n variables where each term has degree 2. Conversely, every such polynomial is a quadratic form.

Proof. Let Q be a quadratic form. Then

$$Q(x_1, \dots, x_n) = [x_1 \cdots x_n] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

for some symmetric matrix A.

Expanding this out, we see that

$$Q(x_1, \dots, x_n) = \sum_{1 \le i, j \le n} A_{ij} x_i x_j$$

and so it is a polynomial with each term of degree 2. Conversely, any polynomial of degree 2 can be written in this form. \Box

Example 1.2. Consider the polynomial $x^2 + 4xy + 3y^2$. This the quadratic form coming from the bilinear form H_A defined by the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

We can use this knowledge to understand the graph of solutions to $x^2 + 4xy + 3y^2 = 1$. Note that H_A has a diagonal matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ with respect to the basis (1,0), (-2,1). This shows that $Q(a(1,0) + b(-2,1)) = a^2 - b^2$. Thus the solutions of $x^2 + 4xy + 3y^2 = 1$ are obtained from the solutions to $a^2 - b^2 = 1$ by a linear transformation. Thus the graph is a hyperbola.

1.2 Diagonalization

As we saw before, the bilinear form is symmetric if and only if it is represented by a symmetric matrix. We now will consider the problem of finding a basis for which the matrix is diagonal. We say that a bilinear form is diagonalizable if there exists a basis for V for which H is represented by a diagonal matrix.

Lemma 1.3. Let H be a non-trivial bilinear form on a vector space V. Then there exists $v \in V$ such that $H(v, v) \neq 0$.

Proof. There exist $u, w \in V$ such that $H(u, w) \neq 0$. If $H(u, u) \neq 0$ or $H(w, w) \neq 0$, then we are done. So we assume that both u, w are isotropic. Let v = u + w. Then $H(v, v) = 2H(u, w) \neq 0$.

Theorem 1.4. Let H be a symmetric bilinear form on a vector space V. Then H is diagonalizable.

This means that there exists a basis v_1, \ldots, v_n for V for which $[H]_{v_1, \ldots, v_n}$ is diagonal, or equivalently that $H(v_i, v_j) = 0$ if $i \neq j$.

Proof. We proceed by induction on the dimension of the vector space V. The base case is dim V=0, which is immediate. Assume the result holds for all bilinear forms on vector spaces of dimension n-1 and let V be a vector space of dimension n.

If H=0, then we are already done. Assume $H\neq 0$, then by the Lemma we get $v\in V$ such that $H(v,v)\neq 0$.

Let $W = \operatorname{span}(v)^{\perp}$. Since v is not isotropic, $W \oplus \operatorname{span}(v) = V$. Since $\dim W = n - 1$, the result holds for W. So pick a basis v_1, \ldots, v_{n-1} for W for which H_W is diagonal and then extend to a basis v_1, \ldots, v_{n-1}, v for V. Since $v_i \in W$, $H(v, v_i) = 0$ for $i = 1, \ldots, n-1$. Thus the matrix for H is diagonal. \square

1.3 Diagonalization in the real case

For this section we will mostly work with real vector spaces. Recall that a symmetric bilinear form H on a real vector space V is called *positive definite* if H(v,v)>0 for all $v\in V, v\neq 0$. A postive-definite symmetric bilinear form is the same thing as an inner product on V.

Theorem 1.5. Let H be a symmetric bilinear form on a real vector space V. There exists a basis v_1, \ldots, v_n for V such that $[H]_{v_1, \ldots, v_n}$ is diagonal and all the entries are 1, -1, or 0.

We have already seen a special case of this theorem. Recall that if H is an inner product, then there is an orthonormal basis for H. This is the same as a basis for which the matrix for H consists of just 1s on the diagonal.

Proof. By the previous theorem, we can find a basis w_1, \ldots, w_n for V such that $H(w_i, w_i) = 0$ for $i \neq j$. Let $a_i = H(w_i, w_i)$ for $i = 1, \ldots, n$. Define

$$v_{i} = \begin{cases} \frac{1}{\sqrt{a_{i}}} w_{i}, & \text{if } a_{i} > 0\\ \frac{1}{\sqrt{-a_{i}}} w_{i}, & \text{if } a_{i} < 0\\ w_{i}, & \text{if } a_{i} = 0 \end{cases}$$
 (1)

Then $H(v_i, v_i)$ is either 1, -1, or 0 depending on the three cases above. Also $H(v_i, v_i) = 0$ for $i \neq j$ and so we have found the desired basis.

Corollary 1.6. Let Q be a quadratic form on a vector space V. There exists a basis v_1, \ldots, v_n for V such that the quadratic form is given by

$$Q(x_1v_1 + \dots + x_nv_n) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2$$

Proof. Let H be a associated bilinear form. Pick a basis v_1, \ldots, v_n as in the theorem, ordered so that the diagonal entries in the matrix are 1s then -1s, then 0s. The result follows.

Given a symmetric bilinear form H on a real vector space V, pick a basis v_1, \ldots, v_n for V as above. Let p be the number of 1s and q be the number of -1s in the diagonal entries of the matrix. The following result is known (for some reason) as "Sylveter's Law of Inertia".

Theorem 1.7. The numbers p, q depend only on the bilinear form. (They do not depend on the choice of basis v_1, \ldots, v_n .)

To prove this result, we will begin with the following discussion which applies to symmetric bilinear forms over any field. Given a symmetric bilinear form H, we define its radical (sometimes also called kernel) to be

$$rad(H) = \{ w \in V : H(v, w) = 0 \text{ for all } v \in V \}$$

In other words, $rad(H) = V^{\perp}$. Another way of thinking about this is to say that $rad(H) = null(H^{\#})$.

Lemma 1.8. Let H be a symmetric bilinear form on a vector space V. Let v_1, \ldots, v_n be a basis for V and let $A = [H]_{v_1, \ldots, v_n}$. Then

$$\dim \operatorname{rad}(H) = \dim V - \operatorname{rank}(A)$$

Proof. Recall that A is actually the matrix for the linear map $H^{\#}$. Hence $\operatorname{rank}(A) = \operatorname{rank}(H^{\#})$. So the result follows by the rank-nullity theorem for $H^{\#}$.

Proof of Theorem 1.7. The lemma shows us that p + q is an invariant of H. So it suffices to show that p is independent of the basis.

Let

 $\tilde{p} = \max(\dim W : W \text{ is a subspace of } V \text{ and } H|_W \text{ is positive definite})$

Clearly, \tilde{p} is independent of the basis. We claim that $p = \tilde{p}$.

Assume that our basis v_1, \ldots, v_n is ordered so that

$$H(v_i, v_i) = 1$$
 for $i = 1, ..., p$,
 $H(v_i, v_i) = -1$ for $i = p + 1, ..., p + q$, and
 $H(v_i, v_i) = 0$ for $i = p + q + 1, ..., n$

Let $W = \operatorname{span}(v_1, \dots, v_p)$. Then $\dim W = p$ and so $p \leq \tilde{p}$.

To see that $\tilde{p} \leq p$, let \tilde{W} be a subspace of V such that $H|_{\tilde{W}}$ is positive definite and $\dim \tilde{W} = \tilde{p}$.

We claim that $\tilde{W} \cap \operatorname{span}(v_{p+1}, \dots, v_n) = 0$. Let $v \in \tilde{W} \cap \operatorname{span}(v_{p+1}, \dots, v_n)$, $v \neq 0$. Then H(v, v) > 0 by the definition of \tilde{W} . On the other hand, if $v \in \operatorname{span}(v_{p+1}, \dots, v_n)$, then

$$v = x_{p+1}v_{p+1} + \dots + x_nv_n$$

and so $H(v,v)=-x_{p+1}^2-\cdots-x_{p+q}^2\leq 0$. We get a contradiction. Hence $\tilde{W}\cap\operatorname{span}(v_{p+1},\ldots,v_n)=0$.

This implies that

$$\dim \tilde{W} + \dim \operatorname{span}(v_{p+1}, \dots, v_n) \le n$$

and so
$$\tilde{p} \leq n - (n - p) = p$$
 as desired.

The pair (p,q) is called the signature of the bilinear form H. (Some authors use p-q for the signature.)

Example 1.9. Consider the binear form on \mathbb{R}^2 given by the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. It has signature (1, -1).

Example 1.10. In special relativity, symmetric bilinear forms of signature (3,1) are used.

In the complex case, the theory simplifies considerably.

Theorem 1.11. Let H be a symmetric bilinear form on a complex vector space V. Then there exists a basis v_1, \ldots, v_n for V for which $[H]_{v_1, \ldots, v_n}$ is a diagonal matrix with only 1s or 0s on the diagonal. The number of 0s is the dimension of the radical of H.

Proof. We follow the proof of Theorem 1.5. We start with a basis w_1, \ldots, w_n for which the matrix of H is diagonal. Then for each i with $H(w_i, w_i) \neq 0$, we choose a_i such that $a_i^2 = \frac{1}{H(w_i, w_i)}$. Such a_i exists, since we are working with complex numbers. Then we set $v_i = a_i w_i$ as before.

Symplectic forms

Joel Kamnitzer

March 24, 2011

1 Symplectic forms

We assume that the characteristic of our field is not 2 (so $1 + 1 \neq 0$).

1.1 Definition and examples

Recall that a skew-symmetric bilinear form is a bilinear form Ω such that $\Omega(v,w) = -\Omega(w,v)$ for all $v,w \in V$. Note that if Ω is a skew-symmetric bilinear form, then $\Omega(v,v) = 0$ for all $v \in V$. In other words, every vector is isotropic.

A symplectic form is a non-degenerate skew-symmetric bilinear form. Recall that non-degenerate means that for all $v \in V$ such that $v \neq 0$, there exists $w \in V$ such that $\Omega(v, w) \neq 0$.

Example 1.1. Consider $V = \mathbb{F}^2$ and take the bilinear form given by the matrix

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Here is a more general example. Let W be a vector space. Define a vector space $V = W \oplus W^*$. We define a bilinear form on W by the rule

$$\Omega((v_1, \alpha_1), (v_2, \alpha_2)) = \alpha_2(v_1) - \alpha_1(v_2)$$

This is clearly skew-symmetric. It is also non-degenerate since if $(v_1, \alpha_1) \in V$ is non-zero, then either $v_1 \neq 0$ or $\alpha_1 \neq 0$. Assume that $v_1 \neq 0$. Then we can choose $\alpha_2 \in V^*$ such that $\alpha_2(v_1) \neq 0$ and so $\Omega((v_1, \alpha_1), (0, \alpha_2)) \neq 0$. So Ω is a symplectic form.

1.2 Symplectic bases

We cannot hope to diagonalize a symplectic form since every vector is isotropic. We will instead introduce a different goal.

Let V, Ω be a vector space with a symplectic form. Suppose that dim V = 2n. A *symplectic basis* for V is a basis $q_1, \ldots, q_n, p_1, \ldots, p_n$ for V such that

$$\begin{split} &\Omega(p_i,q_i)=1\\ &\Omega(q_i,p_i)=-1\\ &\Omega(p_i,q_j)=0 \text{ if } i\neq j\\ &\Omega(p_i,p_j)=0\\ &\Omega(q_i,q_j)=0 \end{split}$$

In other words the matrix for Ω with respect to this basis is the $2n \times 2n$ matrix

$$\begin{bmatrix} 0_n & -I_n \\ I_n & 0_n \end{bmatrix}$$

Theorem 1.2. Let V be a vector space and let Ω be a symplectic form. Then $\dim V$ is even and there exists a symplectic basis for V.

Proof. We proceed by induction on dim V. The base cases are dim V=0 and dim V=1.

Now assume dim V=n and assume the result holds for all vector spaces of dimension n-2. Let $q\in V, q\neq 0$. Since Ω is non-degenerate, there exists $p\in V$ such that $\Omega(p,q)\neq 0$. By scaling q, we can ensure that $\Omega(p,q)=1$. Then $\Omega(q,p)=-1$ by skew symmetry.

Let
$$W = span(p,q)^{\perp}$$
. So

$$W = \{ v \in V : \Omega(v, p) = 0 \text{ and } \Omega(v, q) = 0 \}.$$

We claim that $W \cap span(p,q) = 0$. Let $v \in W \cap span(p,q)$. Then v = ap + bq for some $a, b \in \mathbb{F}$. Since $v \in W$, we see that $\Omega(v,p) = 0$. But $\Omega(v,p) = -b$, so b = 0. Similarly, $\Omega(v,q) = 0$, which implies that a = 0. Hence v = 0.

Since Ω is non-degenerate, we know that $\dim W + \dim span(p,q) = \dim V$. Thus $W \oplus span(p,q) = V$.

To apply the inductive hypothesis, we need to check now that the restriction of Ω to W is a symplectic form. It is clearly skew-symmetric, so we just need to check that it is non-degenerate. To see this, pick $w \in W$, $w \neq 0$. Then there exists $v \in V$ such that $\Omega(w,v) \neq 0$. We can write w = u + u', where $u \in W$ and $u' \in span(p,q)$. By the definition of span(p,q), $\Omega(u',w) = 0$. Hence $\Omega(u,w) \neq 0$ and so the restriction of Ω to W is non-degenerate.

We now apply the inductive hypothesis to W. Note that $\dim W = \dim V - 2$. By the inductive hypothesis, $\dim W$ is even and we have a symplectic basis $q_1, \ldots, q_m, p_1, \ldots p_m$ where 2m = n - 2. Hence $\dim V$ is even. We claim that $q_1, \ldots, q_m, q, p_1, \ldots, p_m, p$ is a symplectic basis for W. This follows from the definitions.

1.3 Lagrangians

Let V be a vector space of dimension 2n and Ω be a symplectic form on V. Recall that a subspace W of V is called *isotropic* if $\Omega(w_1, w_2) = 0$ for all $w_1, w_2 \in W$. This is equivalent to the condition that $W \subset W^{\perp}$. Since Ω is non-degenerate, $\dim W^{\perp} + \dim W = \dim V$. Hence the maximum possible dimension of an isotropic subspace is n. An isotropic subspace L of dimension n is called a Lagrangian.

Example 1.3. Let V be a 2 dimensional vector space. Then any 1-dimensional subspace is Lagrangian.

We can also produce Lagrangian subspaces from symplectic bases as follows.

Proposition 1.4. Let $q_1, \ldots, q_n, p_1, \ldots, p_n$ be a symplectic basis for V. Then $span(q_1, \ldots, q_n), span(p_1, \ldots, p_n)$ are both Lagrangian subspaces of V.

Proof. From the fact that $\Omega(q_i, q_j) = 0$ for all i, j, we see that $\Omega(v, w) = 0$ for all $v, w \in span(q_1, \ldots, q_n)$. Hence $span(q_1, \ldots, q_n)$ is isotropic. Since it has dimension n, it is Lagrangian. The result for p_1, \ldots, p_n is similar.

Now suppose that $V = W \oplus W^*$ for some vector space W and we define a symplectic form Ω on W as above. Then it is easy to see that W and W^* are both Lagrangian subspaces of V.

Multilinear forms

Joel Kamnitzer

April 1, 2011

Assume that all fields are characteristic 0 (i.e. $1 + \cdots + 1 \neq 0$), for example $\mathbb{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$. Assume also that all vector spaces are finite dimensional.

1 Dual spaces

If V is a vector space, then $V^* = L(V, \mathbb{F})$ is defined to be the space of linear maps from V to \mathbb{F} .

If v_1, \ldots, v_n is a basis for V, then we define $\alpha_i \in V^*$ for $i = 1, \ldots, n$, by setting

$$\alpha_i(v_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

Proposition 1.1. $\alpha_1, \ldots, \alpha_n$ forms a basis for V^* (called the dual basis).

In particular, this shows that V and V^* are vector spaces of the same dimension. However, there is no natural way to choose an isomorphism between them, unless we pick some additional structure on V (such as a basis or a non-degenerate bilinear form).

On the other hand, we can construct an isomorphism ψ from V to $(V^*)^*$ as follows. If $v \in V$, then we define $\psi(v)$ to be the element of V^* given by

$$(\psi(v))(\alpha) = \alpha(v)$$

for all $\alpha \in V^*$. In other words, given a guy in V, we tell him to eat elements in V^* by allowing himself to be eaten.

Proposition 1.2. ψ is an isomorphism.

Proof. Since V and $(V^*)^*$ have the same dimension, it is enough to show that ψ is injective.

Suppose that $v \in V$, $v \neq 0$, and $\psi(v) = 0$. We wish to derive a contradiction. Since $v \neq 0$, we can extend v to a basis $v_1 = v, v_2, \ldots, v_n$ for V. Then let α_1 defined as above. Then $\alpha_1(v) = 1 \neq 0$ and so we have a contradiction. Thus ψ is injective as desired.

From this proposition, we derive the following useful result.

Corollary 1.3. Let $\alpha_1, \ldots, \alpha_n$ be a basis for V^* . Then there exists a basis v_1, \ldots, v_n for V such that

$$\alpha_i(v_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

for all i, j.

Proof. Let w_1, \ldots, w_n be the dual basis to $\alpha_1, \ldots, \alpha_n$ in $(V^*)^*$. Since ψ is invertible, ψ^{-1} exists. Define $v_i = \psi^{-1}(w_i)$. Since w_1, \ldots, w_n is a basis, so is v_1, \ldots, v_n . Checking through the definitions shows that v_1, \ldots, v_n have the desired properties.

2 Bilinear forms

Let V be a vector space. We denote the set of all bilinear forms on V by $(V^*)^{\otimes 2}$. We have already seen that this set is a vector space.

Similarly, we have the subspaces Sym^2V^* and Λ^2V^* of symmetric and skew-symmetric bilinear forms.

Proposition 2.1.
$$(V^*)^{\otimes 2} = Sym^2V^* \oplus \Lambda^2V^*$$

Proof. Clearly, $Sym^2V^* \cap \Lambda^2V^* = 0$, so it suffices to show that any bilinear form is the sum of a symmetric and skew-symmetric bilinear form. Let H be a bilinear form. Let \hat{H} be the bilinear form defined by

$$\hat{H}(v_1, v_2) = H(v_2, v_1)$$

Then $(H+\hat{H})/2$ is symmetric and $(H-\hat{H})/2$ is skew-symmetric. Hence $H=(H+\hat{H})/2+(H-\hat{H})/2$ is the sum of a symmetric and skew-symmetric form. \square

If $\alpha, \beta \in V^*$, then we can define a bilinear form $\alpha \otimes \beta$ as follows.

$$(\alpha \otimes \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2)$$

for $v_1, v_2 \in V$.

We can also define a symmetric bilinear form $\alpha \cdot \beta$ by

$$(\alpha \cdot \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) + \alpha(v_2)\beta(v_1)$$

and a skew-symmetric bilinear from $\alpha \wedge \beta$ by

$$(\alpha \wedge \beta)(v_1, v_2) = \alpha(v_1)\beta(v_2) - \alpha(v_2)\beta(v_1)$$

These operations are linear in each variable. In other words

$$\alpha \otimes (\beta + \gamma) = \alpha \otimes \beta + \alpha \otimes \gamma$$

and similar for the other operations.

Example 2.2. Take $V = \mathbb{R}^2$. Let α_1, α_2 be the standard dual basis for V^* , so that

$$\alpha_1(x_1, x_2) = x_1, \ \alpha_2(x_1, x_2) = x_2$$

Then $\alpha_1 \otimes \alpha_2$ is given by

$$(\alpha_1 \otimes \alpha_2)((x_1, x_2), (y_1, y_2)) = x_1 y_2$$

Similarly $\alpha_1 \wedge \alpha_2$ is the standard symplectic form on \mathbb{R}^2 , given by

$$(\alpha_1 \wedge \alpha_2)((x_1, x_2), (y_1, y_2)) = x_1y_2 - x_2y_1$$

 $\alpha_1 \cdot \alpha_2$ is the symmetric bilinear form of signature (1,1) on \mathbb{R}^2 given by

$$(\alpha_1 \cdot \alpha_2)((x_1, x_2), (y_1, y_2)) = x_1 y_2 + x_2 y_1$$

The standard positive definite bilinear form on \mathbb{R}^2 (the dot product) is given by $\alpha_1 \cdot \alpha_1 + \alpha_2 \cdot \alpha_2$.

3 Multilinear forms

Let V be a vector space.

We can consider k-forms on V, which are maps

$$H: V \times \cdots \times V \to \mathbb{F}$$

which are linear in each argument. In other words

$$H(av_1, ..., v_k) = aH(v_1, ..., v_k)$$

$$H(v + w, v_2, ..., v_k) = H(v, v_2, ..., v_k) + H(w, v_2, ..., v_k)$$

for $a \in \mathbb{F}$ and $v, w, v_1, \dots, v_k \in V$, and similarly in all other arguments. H is called symmetric if for each i, and all v_1, \dots, v_k ,

$$H(v_1, \ldots, v_{i-1}, v_i, v_{i+1}, v_{i+2}, \ldots, v_n) = H(v_1, \ldots, v_{i-1}, v_{i+1}, v_i, v_{i+2}, \ldots, v_n)$$

H is called skew-symmetric (or alternating) if for each i, and all v_1, \ldots, v_k ,

$$H(v_1, \ldots, v_{i-1}, v_i, v_{i+1}, v_{i+2}, \ldots, v_n) = -H(v_1, \ldots, v_{i-1}, v_{i+1}, v_i, v_{i+2}, \ldots, v_n)$$

The vector space of all k-forms is denoted $(V^*)^{\otimes k}$ and the subspaces of symmetric and skew-symmetric forms are denote Sym^kV^* and Λ^kV^* .

3.1 Permutations

Let S_k denote the set of bijections from $\{1, \ldots, k\}$ to itself (called a permutation). S_k is also called the symmetric group. It has k! elements. The permutations occurring in the definition of symmetric and skew-symmetric forms are

called simple transpositions (they just swap i and i + 1). Every permutation can be written as a composition of simple transpositions.

From this it immediately follows that if H is symmetric and if $\sigma \in S_k$, then

$$H(v_1,\ldots,v_k)=H(v_{\sigma(1)},\cdots,v_{\sigma(n)})$$

There is a function $\varepsilon: S_k \to \{1, -1\}$ called the sign of a permutation, which is defined by the conditions that $\varepsilon(\sigma) = -1$ if σ is a simple transposition and

$$\varepsilon(\sigma_1\sigma_2) = \varepsilon(\sigma_1)\varepsilon(\sigma_2)$$

for all $\sigma_1, \sigma_2 \in S_k$.

The sign of a permutation gives us the behaviour of skew-symmetric k-forms under permuting the arguments. If H is skew-symmetric and if $\sigma \in S_k$, then

$$H(v_1, \ldots, v_k) = \varepsilon(\sigma) H(v_{\sigma(1)}, \cdots, v_{\sigma(n)})$$

3.2 Iterated tensors, dots, and wedges

If H is a k-1-form and $\alpha \in V^*$, then we define $H \otimes \alpha$ to be the k-form defined by

$$(H \otimes \alpha)(v_1, \ldots, v_k) = H(v_1, \ldots, v_{k-1})\alpha(v_k)$$

Similarly, if H is a symmetric k-1-form and $\alpha \in V^*$, then we define $H \cdot \alpha$ to be the k-form defined by

$$(H \otimes \alpha)(v_1, \dots, v_k) = H(v_1, \dots, v_{k-1})\alpha(v_k) + \dots + H(v_2, \dots, v_k)\alpha(v_1)$$

It is easy to see that $H \cdot \alpha$ is a symmetric k-form.

Similarly, if H is a skew-symmetric k-1-form and $\alpha \in V^*$, then we define $H \wedge \alpha$ to be the k-form defined by

$$(H \otimes \alpha)(v_1, \dots, v_k) = H(v_1, \dots, v_{k-1})\alpha(v_k) - \dots \pm H(v_2, \dots, v_k)\alpha(v_1)$$

It is easy to see that $H \wedge \alpha$ is a skew-symmetric k-form.

From these definitions, we see that if $\alpha_1, \ldots, \alpha_k \in V^*$, then we can iteratively define

$$\alpha_1 \otimes \cdots \otimes \alpha_k := ((\alpha_1 \otimes \alpha_2) \otimes \alpha_3) \otimes \cdots \otimes \alpha_k$$

and similar definitions for $\alpha_1 \cdots \alpha_k$ and $\alpha_1 \wedge \cdots \wedge \alpha_k$.

When we expand out the definitions of $\alpha_1 \cdots \alpha_k$ and $\alpha_1 \wedge \cdots \wedge \alpha_k$ there will be k! terms, one for each element of S_k .

For any $\sigma \in S_k$, we have

$$\alpha_1 \cdots \alpha_k = \alpha_{\sigma(1)} \cdots \alpha_{\sigma(k)}$$

and

$$\alpha_1 \wedge \cdots \wedge \alpha_k = \varepsilon(\sigma)\alpha_{\sigma(1)} \wedge \cdots \wedge \alpha_{\sigma(k)}$$

The later property implies that $\alpha_1 \wedge \cdots \wedge \alpha_k = 0$ if $\alpha_i = \alpha_j$ for some $i \neq j$. The following result is helpful in understanding these iterated wedges. Theorem 3.1. Let $\alpha_1, \ldots, \alpha_k \in V^*$.

 $\alpha_1 \wedge \cdots \wedge \alpha_k = 0$ if and only if $\alpha_1, \ldots, \alpha_k$ are linearly dependent

Proof. Suppose that $\alpha_1, \ldots, \alpha_k$ is linearly dependent. Then there exists x_1, \ldots, x_k such that

$$x_1\alpha_1 + \dots + x_k\alpha_k = 0$$

and not all x_1, \ldots, x_k are zero. Assume that $x_k \neq 0$. Let $H = \alpha_1 \wedge \cdots \wedge \alpha_{k-1}$ and let us apply $H \wedge$ to both sides of this equation. Using the above results and the linearity of \wedge , we deduce that

$$x_k \alpha_1 \wedge \cdots \wedge \alpha_{k-1} \wedge \alpha_k = 0$$

which implies that $\alpha_1 \wedge \cdots \wedge \alpha_k = 0$ as desired.

For the converse, suppose that $\alpha_1, \ldots, \alpha_k$ are linearly independent. Then we can extend $\alpha_1, \ldots, \alpha_k$ to a basis $\alpha_1, \ldots, \alpha_n$ for V^* . Let v_1, \ldots, v_n be the dual basis for V. Then

$$(\alpha_1 \wedge \cdots \wedge \alpha_k)(v_1, \ldots, v_k) = 1$$

and so $\alpha_1 \wedge \cdots \wedge \alpha_k \neq 0$.

The same method of proof can be used to prove the following result.

Theorem 3.2. Let $v_1, \ldots, v_k \in V$. Then there exists $H \in \Lambda^k V^*$ such that $H(v_1, \ldots, v_k) \neq 0$ if and only if v_1, \ldots, v_k are linearly independent.

In particular this theorem shows that $\Lambda^k V^* = 0$ if k > dim V.

3.3 Bases and dimension

We will now describe bases for our vector spaces of k-forms.

Theorem 3.3. Let $\alpha_1, \ldots, \alpha_n$ be a basis for V^* .

- (i) $\{\alpha_{i_1} \otimes \cdots \otimes \alpha_{i_k}\}_{1 \leq i_1, \dots, i_k \leq n}$ is a basis for $(V^*)^{\otimes k}$.
- (ii) $\{\alpha_{i_1} \cdots \alpha_{i_k}\}_{1 \leq i_1 \leq \cdots \leq i_k \leq n}$ is a basis for $Sym^k V^*$.
- (iii) $\{\alpha_{i_1} \wedge \cdots \wedge \alpha_{i_k}\}_{1 \leq i_1 < \cdots < i_k \leq n}$ is a basis for $\Lambda^k V^*$.

Proof. We give the proof for the case of $(V^*)^{\otimes k}$ as the other cases are similar. So simplify the notation, let us assume that k=2.

Let us first show that every bilinear form is a linear combination of $\{\alpha_i \otimes \alpha_j\}$. Let H be a bilinear form. Let v_1, \ldots, v_n be the basis of V dual to $\alpha_1, \ldots, \alpha_n$. Let $c_{ij} = H(v_i, v_j)$ for each i, j. We claim that

$$H = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \alpha_i \otimes \alpha_j$$

Since both sides are bilinear forms, it suffices to check that they agree on all pairs (v_k, v_l) of basis vectors. By definition $H(v_k, v_l) = c_{kl}$. On the other hand,

$$\left(\sum_{i=1}^n \sum_{j=1}^n c_{ij}\alpha_i \otimes \alpha_j\right)(v_k, v_l) = \sum_{i=1}^n \sum_{j=1}^n c_{ij}\alpha_i(v_k)\alpha_j(v_l) = c_{kl}$$

and so the claim follows.

Now to see that $\{\alpha_i \otimes \alpha_j\}$ is a linearly independent set, just note that if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \alpha_i \otimes \alpha_j = 0,$$

then by evaluating both sides on (v_i, v_j) , we see that $c_{ij} = 0$ for all i, j.

Example 3.4. Take n = 2, k = 2. Then our bases are

$$\alpha_1 \otimes \alpha_1, \alpha_1 \otimes \alpha_2, \alpha_2 \otimes \alpha_1, \alpha_2 \otimes \alpha_2$$

and

$$\alpha_1 \cdot \alpha_1, \alpha_1 \cdot \alpha_2, \alpha_2 \cdot \alpha_2$$

and

$$\alpha_1 \wedge \alpha_2$$

Corollary 3.5. The dimension of $(V^*)^{\otimes k}$ is n^k , the dimension of Sym^kV^* is $\binom{n+k-1}{k}$ and the dimension of Λ^kV^* is $\binom{n}{k}$.

Tensor products

Joel Kamnitzer

April 5, 2011

1 The definition

Let V, W, X be three vector spaces. A bilinear map from $V \times W$ to X is a function $H: V \times W \to X$ such that

$$H(av_1 + v_2, w) = aH(v_1, w) + H(v_2, w)$$
 for $v_1, v_2 \in V, w \in W, a \in \mathbb{F}$
 $H(v, aw_1 + w_2) = aH(v, w_1) + H(v, w_2)$ for $v \in V, w_1, w_2 \in W, a \in \mathbb{F}$

Let V and W be vector spaces. A tensor product of V and W is a vector space $V \otimes W$ along with a bilinear map $\phi: V \times W \to V \otimes W$, such that for every vector space X and every bilinear map $H: V \times W \to X$, there exists a unique linear map $T: V \otimes W \to X$ such that $H = T \circ \phi$.

In other words, giving a linear map from $V \otimes W$ to X is the same thing as giving a bilinear map from $V \times W$ to X.

If $V \otimes W$ is a tensor product, then we write $v \otimes w := \phi(v \otimes w)$. Note that there are two pieces of data in a tensor product: a vector space $V \otimes W$ and a bilinear map $\phi: V \times W \to V \otimes W$.

Here are the main results about tensor products summarized in one theorem.

Theorem 1.1. (i) Any two tensor products of V, W are isomorphic.

- (ii) V, W has a tensor product.
- (iii) If v_1, \ldots, v_n is a basis for V and w_1, \ldots, w_m is a basis for W, then

$$\{v_i \otimes w_j\}_{1 \leq i \leq n, 1 \leq j \leq m}$$

is a basis for $V \otimes W$.

In particular, the last part of the theorem shows we can think of elements of $V \otimes W$ as $n \times m$ matrices with entries in \mathbb{F} .

2 Existence

We will start by proving that the tensor product exists. To do so, we will construct an explicit tensor product. This construction only works if V, W are finite-dimensional.

Let $B(V^*, W^*; \mathbb{F})$ be the vector space of bilinear maps $H: V^* \times W^* \to \mathbb{F}$. If $v \in V$ and $w \in W$, then we can define a bilinear map $v \otimes w$ by

$$(v \otimes w)(\alpha, \beta) = \alpha(v)\beta(w).$$

Just as we saw before, we have the following result.

Theorem 2.1. Let v_1, \ldots, v_n be a basis for V and let w_1, \ldots, w_m be a basis for W. Then $\{v_i \otimes w_j\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is a basis for $B(V^*, W^*; \mathbb{F})$

Now, we define a map $\phi: V \times W \to B(V^*, W^*; \mathbb{F})$ by $\phi(v, w) = v \otimes w$.

Theorem 2.2. $B(V^*, W^*; \mathbb{F})$ along with ϕ is a tensor product for V, W.

Note that this proves parts (ii) and (iii) of our main theorem.

Proof. Fix bases v_1, \ldots, v_n for V and w_1, \ldots, w_m for W.

Let X be a vector space and let $H: V \times W \to X$ be a bilinear map. We define a linear map $T: V \otimes W \to X$ by defining it on our basis as $T(v_i \otimes w_j) = H(v_i, w_j)$. Then $T \circ \phi$ and H are two bilinear maps from $V \times W$ to X which agree on basis vectors, hence they are equal. (Note that it is easy to show that for any $(v, w) \in V \times W$, $T(v \otimes w) = H(v, w)$.)

Finally, note that T is the unique linear map with this property, since it is determined on the basis for $B(V^*, W^*, \mathbb{F})$.

Using the same ideas, it is easy to see that $L(V^*, W), L(W^*, V)$, and $B(V, W; \mathbb{F})^*$ are all also tensor products of V, W.

3 Uniqueness

Now we prove uniqueness. Here is the precise statement.

Theorem 3.1. Let $(V \otimes W)_1$, ϕ_1 and $(V \otimes W)_2$, ϕ_2 be two tensor products of V, W. Then there exists a unique isomorphism $T : (V \otimes W)_1 \to (V \otimes W)_2$ such that $\phi_2 = T \circ \phi_1$.

Proof. Let us apply the definition of tensor product to $(V \otimes W)_1$, ϕ_1 with the role of X, H taken by $(V \otimes W)_2, \phi_2$. By the definition, we obtain a (unique) linear map $T: (V \otimes W)_1 \to (V \otimes W)_2$ such that $\phi_2 = T \circ \phi_1$.

Reversing the roles of $(V \otimes W)_1$, ϕ_1 and $(V \otimes W)_2$, ϕ_2 , we find a linear map $S: (V \otimes W)_2 \to (V \otimes W)_1$ such that $\phi_1 = S \circ \phi_2$.

We claim that $T \circ S = I_{(V \otimes W)_2}$ and $S \circ T = I_{(V \otimes W)_1}$ and hence T is an isomorphism. We will now prove $S \circ T = I_{(V \otimes W)_1}$.

Note that $(S \circ T) \circ \phi_1 = S \circ \phi_2 = \phi_1$ by the above equations. Now, apply the definition of tensor product to $(V \otimes W)_1, \phi_1$ with the role of X, H taken by $(V \otimes W)_1, \phi_1$. Then both $S \circ T$ and $I_{(V \otimes W)_1}$ can play the role of T. So by the uniqueness of "T" in the definition, we conclude that $S \circ T = I_{(V \otimes W)_1}$ as desired.

Finally to see that the T that appears in the statement of the theorem is unique, we just note from the first paragraph of this proof, it follows that there is only one linear map T such that $\phi_2 = T \circ \phi_1$.