# Jak souvisí hledání nejkratší cesty s UI?

## Terminologie

- Stav = vrchol: Úplný popis jedné konfigurace
- Akce = hrana: Atomická změna konfigurace
- Cena akce = váha (délka) hrany
- Počáteční stav = počáteční vrchol
- Cíl = množina koncových vrcholů
- Stavový prostor = množina vrcholů
- Transition model = funkce (stav,akce) → stav

### Proč měnit terminologii?

Příklady hledání cest v UI

- Loydova patnáctka
- Sokoban
- Rubikova kostka
- Další hlavolamy

# Prohledávání grafu

```
Input: Graf G, počáteční vrchol s a cílový t

1 Všechny vrcholy označ za nenavštívené
2 Počáteční vrchol označ za navštívený
3 while existuje navštívený vrchol a cílový vrchol není prozkoumaný do
4 Zvol u libovolný navštívený vrchol
5 for v soused u do
6 if v je nenavštívený then
7 Zonač v za navštívený
8 Označ u za prozkoumaný
```

### Poznámky

- $\bullet$  Jestliže s a tleží ve stejné komponentě, tak skončíme prozkoumáním t, jinak projdeme celou komponentu obsahující s
- Průchod do hloubky: vybíráme poslední navštívený vrchol
- Průchod do šířky: vybíráme první navštívený vrchol
- Existuje řada variant: více počátečních i koncových vrcholů, nalezení cest do všech vrcholů, ...

## Dijkstrův algoritmus

### Poznámky

- ullet Pro prozkoumané vrcholy u je d[u] délka nejkratší cesty z s to u
- Algoritmus označuje vrcholy za prozkoumané v neklesající vzdálenosti od počátku
- Prozkoumány jsou všechny vrcholy ve vzdálenosti menší než je vzdálenost do cíle
- Graf může být příliš velký, takže d si pamatujeme jen pro navštívené vrcholy
- Která města navštívíme při hledání cesty z Prahy do Brna?
- Vizualizace: https://qiao.github.io/PathFinding.js/visual/

## A\* algoritmus

```
1 Všechny vrcholy označ za nenavštívené
2 Počáteční vrchol označ za navštívený
3 Délka nejkratší zatím nalezené cesty z s do u je d[u] := \infty kromě d[s] := 0
4 while existuje navštívený vrchol a libovolný cíl není prozkoumaný do
5 u :=  navštívený vrchol s nejmenší hodnotou d[u] + h(u)
6 for \ v \ soused \ u \ do
7 for \ v \ soused \ u \ do
9 for \ v \ soused \ u \ dv] := d[u] + c(u, v)
9 for \ v \ soused \ sou
```

**Input:** Graf G s nezápornou délkou hran c, počáteční vrchol s

## Poznámky

- ullet Heuristická funkce h(u) dává odhad vzdálenosti z u nejbližšího cíle
- Pokud h(u) = 0 pro všechny vrcholy, pak se A\* chová stejně jako Dijkstra
- Heuristiku musíme rychle spočítat, ideálně v O(1), ale přesnou délku nejkratší cesty obvykle nedokážeme rychle určit

# Vymyslete heuristiku pro Loydovu 15



### Definice heuristik

#### **Definice**

Heuristika h je

- ullet přípustná (admissible), jestliže  $0 \le h(u) \le c^*(u)$
- ullet monotónní (monotonous, consistent), jestliže  $0 \le h(u) \le h(v) + c(u,v)$

pro všechny vrcholy u a hrany uv a cílové vrcholy t, kde  $c^*(u)$  je délka nejkratší cesty z u do nejbližšího cíle.

### Cvičení

Rozhodněte, zda pro silniční síť jsou následující heuristiky přípustné a monotónní.

- Euklidovská vzdálenost:  $h_2(a,b) = \sqrt{(b_1 a_1)^2 + (b_2 a_2)^2}$
- Manhattanská metrika:  $h_1(a, b) = |b_1 a_1| + |b_2 a_2|$
- Maximová metrika:  $h_{\infty}(a, b) = \max\{|b_1 a_1|, |b_2 a_2|\}$

## Otázky

- Je každá monotónní heuristika přípustná?
- Je každá přípustná heuristika monotónní?
- Proč potřebujeme, aby heuristika byla monotónní?

# Vymyslete heuristiku pro Sokoban



- Animovaná verze
- Přehled postupů

### Vlastnosti A\*

#### Značení

- h(u): heuristika z u do cíle
- g(u): vzdálenost ze startu do cíle
- f(u) = h(u) + g(u)
- d[u]: proměnná v A\* udávající délku nejkratší nalezené cesty

#### Pozorování

Předpokládejme, že máme monotónní heuristiku.

- ullet Hodnoty f(u) jsou neklesající na všech nejkratších cestách ze startu.
- A\* prozkoumává (uzavírá) stavy v pořadí, ve kterém hodnoty f(u) neklesají. Základní verze A\* neurčuje pořadí prozkoumávání stavů se stejnou hodnotou f(u).
- Při prozkoumávání stavu u je hodnota d[u] rovna g(u).
- A\* vždy najde optimální plán (nejkratší cestu).
- A\* prozkoumá všechny vrcholu u splňující  $f(u) < C^*$  a některé vrcholy s  $f(u) = C^*$ , kde  $C^*$  je délka nejkratší cesty.

## Vlastnosti heuristik

#### Pozorování

Dokažte pro přípustné/monotónní heuristiky  $h_1$  a  $h_2$  jsou též

• 
$$\alpha h_1 + (1 - \alpha)h_2$$
, kde  $0 \le \alpha \le 1$ 

•  $\max\{h_1, h_2\}$ 

přípustné/monotónní heuristiky.

### Otázka

Která z výše uvedených kombinací je lepší?

# Vymyslete heuristiku pro Obchodního cestujícího



# Dokážete vymyslet heuristiky pro tyto hry?



Minesweeper



Packman



Šachy



Kulečník

## 1. domácí úkol: A\* heuristiky

## Zadání (zkráceno)

Implementujte **monotónní** heuristiky pro **A**\* algoritmus spuštěný na **podgrafy** následujících nekonečných mřížek.

- Klasická dvourozměrná mřížka
- Klasická třírozměrná mřížka
- Dvourozměrná mřížka obsahující i úhlopříčky
- Třírozměrná mřížka obsahující stěnové i prostorové úhlopříčky
- Třírozměrná mřížka obsahující stěnové úhlopříčky ale nikoliv prostorové
- Hrany odpovídají právě pohybům věže po šachovnici
- Skokan se pohybuje o 3 políčka v jedné souřadnici a o 2 políčka v druhé souřadnici
- Král v sedmimílových botách, který může až o 8 políček horizontálně i vertikálně

Zadání: https://gitlab.mff.cuni.cz/finkjlam/introai/-/blob/
master/01-a\_star\_heuristic/task.md

## 1. domácí úkol: A\* heuristiky

## Rady

- Úkolem je najít heuristiku, nikoliv přesnou vzdálenost
- Zkuste vymyslet dolní odhad na minimální počet kroků
- Vycházejte z heuristik diskutovaných na cvičení, uzpůsobte je danému grafu a kombinujte je
- Na většinu mřížek stačí 1-2 řádková heuristika, v jednom případě zhruba 5 řádků
- Jestliže celé číslo je větší než 5.5, pak je větší nebo rovno 6
- Nepište nic bez přemýšlení