ECE353 Lectures

Hanhee Lee

January 23, 2025

Contents

1	Pro	logue	3
	1.1	Setup of Planning Problems	3
	1.2	Components of a Robotic System	4
		1.2.1 Overview (Robots, the Environment)	5
		1.2.2 Robot (Sensors, Actuators, the Brain)	5
		1.2.3 Brain (Tracker, Planner, Memory)	6
		1.2.4 Environment (Physics, State)	6
	1.3	Equations of a Robotic System	7
		1.3.1 Sensing	7
		1.3.2 Tracking	7
		1.3.3 Planning	8
		1.3.4 Acting	8
		1.3.5 Simulating	9
		1.5.5 Simulating	9
2	Uni	nformed Search Algorithms	9
	2.1	Setup	9
	2.2	Search Graphs	9
	2.3	Path Trees.	9
	2.4	Search Algorithms	10
		2.4.1 Characteristics of a Search Algorithm	10
		2.4.2 Breadth First Search (BFS)	10
		2.4.3 Depth First Search (DFS)	11
		2.4.4 Iterative Deepening DFS (IDDFS)	11
		2.4.5 Cheapest-First Search (CFS)	11
	2.5	Modifications to Search Algorithms	11
		2.5.1 Depth-Limiting	11
		2.5.2 Iterative Deepening	12
		2.5.3 Cost-Limiting	12
		2.5.4 Iterative-Inflating	12
		2.5.5 Intra-Path Cycle Checking	13
		2.5.6 Inter-Path Cycle Checking	13
	2.6	Informed Search Algorithms	13
	2.0	2.6.1 Estimated Cost	13
	2.7	Characteristics of an Informed Search Algorithm	13
	2.1	2.7.1 Heuristics	14
		2.7.2 Heuristic-First Search (HFS)	14
		2.7.3 A-Star Search (A*)	14
		2.7.4 Iterative Inflating A-Star Search (IIA*)	14
		2.7.5 Designing Heuristics via Problem Relaxation	
			14
	0.0	2.7.6 Combining Heuristics	14
	2.8	Anytime Search Algorithms	14
	2.9	Formulating a Search Problem	14
	2.10	Canonical Examples	15
3	Info	ormed Search Algorithms	23

Probability Review					
Lea	Learning Problems				
5.1	Classification vs. Regression Problems				
5.2	Feature Spaces				
5.3	Feasibility of Learning				
	5.3.1 Probably Approximately Correct (PAC) Estimations				
	5.3.2 Hoeffding's Inequality				
	5.3.3 PAC Learning				
5.4	Decision Trees				
	5.4.1 Structure of a Decision Tree				

1 Prologue

Summary:

• This course will focus on planning

• Variables:

- State: $\mathbf{x}(t)$

- Action(s): $\mathbf{u}(t)$

- Measurement: $\mathbf{y}_k^{(i)}$

– Context: $\mathbf{z}_k^{(i)}$

– Old Context: $\mathbf{z}_{k-1}^{(i)}$

- Plan: $\mathbf{p}_k^{(i)}$ - (i): Ith agent

• Conversion to DT is necessary because robots are digitalized system and then converted back to CT for execution.

Setup of Planning Problems 1.1

Summary: In a planning problem, it is assumed that:

- ullet the environment is representable using a discrete set of states, ${\mathcal S}$
- for each state, $s \in \mathcal{S}$, each agent, i, has a discrete set of actions, $\mathcal{A}_i(s)$, with $\mathcal{A}(s) := \times_i \mathcal{A}_i(s)$ (joint action set)
- a move is any tuple, (s, a), where $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
- a transition is any 3-tuple, (s, a, s'), where $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}(s)$
 - the transition resulting from a move may be deterministic/stochastic
- $\operatorname{rwd}_i(s, a, s')$ is agent i's reward for the transition, (s, a, s')
- a path is any sequence of transitions of the form

$$p = \langle (s^{(0)}, a^{(1)}, s^{(1)}), (s^{(1)}, a^{(2)}, s^{(2)}), \dots \rangle$$

• each agent wants to realize a path that maximizes its own reward

Warning: A(s) is the joint action set of all agents at state s.

1.2 Components of a Robotic System

Summary:

Figure 1: Components of a Robotic System (Words)

Figure 2: Components of a Robotic System (Math)

1.2.1 Overview (Robots, the Environment)

Definition:

Figure 3: Overview (Robots, the Environment)

Notes:

 \bullet Environment \to previous actions + current state \to robot \to new action \to environment

1.2.2 Robot (Sensors, Actuators, the Brain)

Definition:

Figure 4: Robot (Sensors, Actuators, the Brain)

Notes:

- \bullet Measurements can be noisy and inaccurate if not a perfect sensor.
- Measurements go into the brain which can create a plan.

1.2.3 Brain (Tracker, Planner, Memory)

Definition:

Figure 5: Brain (Tracker, Planner, Memory)

Notes:

- The tracker takes in the measurements and old context and updates the context.
- The planner takes in the context and creates a plan.
- The memory stores the context.

1.2.4 Environment (Physics, State)

Definition:

Figure 6: Environment (Physics, State)

1.3 Equations of a Robotic System

1.3.1 Sensing

Definition: Take a measurement:

$$\mathbf{y}^{(i)}(t) = \operatorname{sns}^{(i)}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Convert the measurement into a discrete-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{y}_k^{(i)} = \mathrm{dt}(\mathbf{y}^{(i)}(t), t, T^{(i)})$$

Figure 7: Sensing

1.3.2 Tracking

Definition: Track (update) the context:

$$\mathbf{z}_k^{(i)} = \operatorname{trk}^{(i)} \left(\mathbf{z}_{k-1}^{(i)}, \mathbf{y}_k^{(i)}, k \right)$$

Figure 8: Tracking

1.3.3 Planning

Definition: Make a plan:

Figure 9: Planning

1.3.4 Acting

Definition: Convert the plan into a continuous-time signal using a sampling period of $T^{(i)}$:

$$\mathbf{p}(t) = \operatorname{ct}(\mathbf{p}_k^{(i)}, t, T^{(i)})$$

Execute the plan:

$$\mathbf{u}^{(i)}(t) = \cot^{(i)}(\mathbf{p}^{(i)}(t), t)$$

Figure 10: Acting

1.3.5 Simulating

Definition: Simulate the environment's response:

$$\dot{\mathbf{x}}(t) = \text{phy}(\mathbf{x}(t), \mathbf{u}(t), t)$$

Figure 11: Simulating

2 Uninformed Search Algorithms

Summary:

• Not responsible for proofs, but know when to use each algorithm.

2.1 Setup

Definition: In a search problem, it is assumed that:

- There is only one agent (us).
- For each state, $s \in S$, we have a discrete set of actions, $\mathcal{A}(s)$.
- The transition resulting from a move, (s, a), is deterministic; the resulting state is tr(s, a).
- cst(s, a, tr(s, a)) is our cost for the transition, (s, a, tr(s, a)).
- We want to realize a path that minimizes our cost.

A search problem may have no solutions, in which case, we define the solution as NULL.

2.2 Search Graphs

Definition: In a search graph (a graph representing a search problem):

- S is defined by the vertices.
- \mathcal{G} is a subset of the vertices.
- $s^{(0)}$ is some vertex.
- $tr(\cdot, \cdot)$ and \mathcal{T} are defined by the edges.
- $cst(\cdot, \cdot, \cdot)$ is defined by the edge weights.

2.3 Path Trees

Definition: A search algorithm explores a tree of possible paths.

- In such a tree, each node represents the path from the root to itself.
 - The node may also include other info (such as the path's origin, cost, etc).

2.4 Search Algorithms

Definition: All search algorithms follow the template below:

• $\langle \rangle$ is the empty path, and 0 is the cost of the empty path.

```
procedure SEARCH(\mathcal{O})

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{DST}(n) \in \mathcal{G} then

return n

for n' \in \text{CHL}(n) do

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})

b the search algorithm failed to find a path to a goal

b "explore" a node n

b the search algorithm found a path to a goal

b "expand" n and "export" its children
```

- Explore: Remove a node from the open set.
- Exapnd: Generate the children of the node.
- Export: Add the children to the open set.

Warning: The key difference is in the order that $Remove(\cdot)$ removes nodes.

2.4.1 Characteristics of a Search Algorithm

Definition: We want to choose REMOVE(·) so that the algorithm exhibits the following characteristics:

Characteristic	Description
Halting	Terminates after finitely many nodes explored
Sound	Returned (possibly NULL) solution is correct
Complete	Halting and sound when a non-NULL solution exists
Optimal	Returns an optimal solution when multiple exist
Time Efficient	Minimizes the nodes explored /expanded/exported
Space Efficient	Minimizes the nodes simultaneously open

• Will be using explored for time efficiency.

The characteristics of the algorithm also depend on several properties of the path tree over which it searches. These properties include:

- Branching factor: b ($b < \infty$), the maximum number of children a node can have.
- \bullet Depth: d, the length of the longest path.
- Length of the shortest solution: l^*
- Cost of the cheapest solution: c^*
- Cost of the cheapest edge: ϵ

We want to choose REMOVE(·) so that the algorithm exhibits the aforementioned characteristics for as many path trees as possible.

2.4.2 Breadth First Search (BFS)

Definition: Explores the least-recently expanded open node first.

Property	Description
Halting	$d < \infty$
	non-NULL
Sound	always
Complete	always
Optimal	constant cst
Time	b^{l^*}
Space	b^{l^*+1}

2.4.3 Depth First Search (DFS)

Definition: Explores the most-recently expanded open node first.

Property	Description
Halting	$d < \infty$
Sound	always
Complete	$d < \infty$
Optimal	never
Time	b^d
Space	bd

2.4.4 Iterative Deepening DFS (IDDFS)

Definition: Same as DFS but with iterative deepening.

Property	Description
Halting	always
Sound	always
Complete	always
Optimal	constant cst
Time	b^{l^*}
Space	bl^*

2.4.5 Cheapest-First Search (CFS)

Definition: Explores the cheapest open node first.

Property	Description
Halting	$d < \infty$
	non-NULL
Sound	yes
Complete	$\epsilon > 0$
Optimal	$\epsilon > 0$
Time	$b^{c^*/\epsilon}$
Space	$b^{c^*/\epsilon+1}$

2.5 Modifications to Search Algorithms

2.5.1 Depth-Limiting

Definition: Depth limit of d_{\max} to any search algorithm by modifying SEARCH(·) as follows:

```
procedure SEARCHDL(\mathcal{O}, d_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then
```

2.5.2 Iterative Deepening

Definition: Iteratively increase the depth-limit, d_{max} , to any search algorithm w/ depth-limiting, by placing SEARCHDL(·) in a wrapper, SEARCHID(·):

```
procedure SEARCHID(): n \leftarrow \text{NULL} \\ d_{\text{max}} \leftarrow 0 \\ \text{b while a solution has not been found, reset the open set, run the search algorithm, then increase the depth-limit <math display="block"> \text{while } n = \text{NULL do} \\ \mathcal{O} \leftarrow \{(\langle \rangle, 0)\} \\ n \leftarrow \text{SEARCHDL}(\mathcal{O}, d_{\text{max}}) \\ d_{\text{max}} \leftarrow d_{\text{max}} + 1 \\ \text{return } n
```

Warning: Increasing d_{max} can be done in different ways.

2.5.3 Cost-Limiting

Definition: Cost limit of c_{max} to any search algorithm by modifying SEARCH(·) as follows:

```
procedure SEARCHCL(\mathcal{O}, c_{\max}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if \text{cst}(n') \leq c_{\max} then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCHCL(\mathcal{O}, c_{\max})

b the search algorithm failed to find a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm found a path to a goal between the properties of the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm found a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the search algorithm failed to find a path to a goal between the searc
```

2.5.4 Iterative-Inflating

Definition: Iteratively increase the cost limit, c_{max} , to any search algorithm with cost-limiting, by placing SEARCHCL(·) in a wrapper, SEARCHII(·):

```
procedure SEARCHII(): n \leftarrow \text{NULL}
c_{\text{max}} \leftarrow 0
\downarrow \text{ while a solution has not been found, reset the open set, run the search algorithm, then increase the cost-limit while <math>n = \text{NULL} do \mathcal{O} \leftarrow \{(\langle \rangle, 0)\}
n \leftarrow \text{SEARCHCL}(\mathcal{O}, c_{\text{max}})
c_{\text{max}} \leftarrow c_{\text{max}} + \epsilon
\text{return } n
```

Warning: Increasing c_{max} can be done in different ways.

2.5.5 Intra-Path Cycle Checking

```
Definition: Do not expand a path if it is cyclic. Modify SEARCH(·) as follows:
```

```
procedure SEARCH(\mathcal{O}):

if \mathcal{O} = \emptyset then

return NULL

n \leftarrow \text{REMOVE}(\mathcal{O})

if \text{dst}(n) \in \mathcal{G} then

return n

for n' \in \text{chl}(n) do

if not CYCLIC(n') then

\mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}

SEARCH(\mathcal{O})
```

• Optimately of an algorithm is preserved provided $\epsilon > 0$.

2.5.6 Inter-Path Cycle Checking

```
Definition: We modify SEARCH(\cdot) as follows:
   procedure SEARCH(\mathcal{O}, \mathcal{C}):
          if \mathcal{O} = \emptyset then
                  return NULL
          n \leftarrow \mathtt{REMOVE}(\mathcal{O})
          \mathcal{C} \leftarrow \mathcal{C} \cup \{n\}
                                                                                                                                            \triangleright add n to the closed set
          if \mathtt{dst}(n) \in \mathcal{G} then
                 {\tt return}\ n
          for n' \in \operatorname{chl}(n) do
                                                                                                                        if n' \notin \mathcal{C} then

    □ unless the child's destination is closed

                        \mathcal{O} \leftarrow \mathcal{O} \cup \{n'\}
          SEARCH(O, C)
and then call the algorithm as follows:
   \mathcal{O} \leftarrow \{(\langle \rangle, 0)\}
  C \leftarrow \emptyset
                                                                                                                          ▷ initialize a set of closed vertices
   SEARCH (\mathcal{O}, \mathcal{C})
```

2.6 Informed Search Algorithms

2.6.1 Estimated Cost

Definition: $ecst(\cdot)$, to estimate the total cost to a goal given a path, p, based on the following:

- Cost of path p: cst(p)
- Estimate of the extra cost needed to get to a goal from dst(p): hur: $S \to \mathbb{R}_+$
 - $\operatorname{hur}(s)$ estimates the cost to get to \mathcal{G} from s and $\operatorname{hur}(p)$ means $\operatorname{hur}(\operatorname{dst}(p))$.

```
Example: Some common choices for ecst(\cdot) include:

1. ecst(p) = hur(p); called nearest-first search (NFS)

2. ecst(p) = cst(p) + hur(p); called A* (A-star)
```

2.7 Characteristics of an Informed Search Algorithm

```
Definition:
1. Heuristic: hur(·)
2. Cost estimation: ecst(·)
```

- 2.7.1 Heuristics
- 2.7.2 Heuristic-First Search (HFS)
- 2.7.3 A-Star Search (A*)
- 2.7.4 Iterative Inflating A-Star Search (IIA*)
- 2.7.5 Designing Heuristics via Problem Relaxation
- 2.7.6 Combining Heuristics
- 2.8 Anytime Search Algorithms
- 2.9 Formulating a Search Problem

2.10 Canonical Examples

Process: How to setup a search problem?

- 1. Givne a search graph, we need to define the following:
 - S: set of vertices
 - \mathcal{G} : goal states (subset of \mathcal{S})
 - $s^{(0)}$: initial state
 - \mathcal{T} : set of edges (defined by $\operatorname{tr}(\cdot,\cdot)$)
 - $-\operatorname{tr}(\cdot,\cdot)$: transition function
 - $cst(\cdot,\cdot,\cdot)$: cost function (defined by edge weights)

Example:

Figure 12

Figure 13

Example:

His energy consumption for a given step depends on the terrain transition.

Figure 14

Figure 15

- $S = \{0, \dots, 4\}^2$ $G = \left\{ \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$ $s^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Process: How to setup a path tree? 1. Start at $s^{(0)}$

- 2. Choose a path until you reach a goal state.
- 3. Repeat until you have found all paths (probably infinite).

Example: 6 Figure 16 Figure 17

Process: When to use each algorithm?

- 1. Find properties needed for the problem and match them to the characteristics of the algorithm.
- 2. Choose the algorithm that best matches the properties.
 - BFS:
 - DFS:
 - IDDFS:
 - CFS:
 - A*:

Example:

Process: How to Trace Through a Search Algorithm 1.

Example: BFS

Example: DFS

Example: IDDFS

 $\mathbf{Example} \colon \mathbf{CFS}$

Example: HFS

Example: A^*

Example: IIA*

Example: WA*

Process: How to Figure Out Soln. w/o Performing Search Algorithm? 1.

Example:

Process: How to Prove Consistent/Admissible Given a Search Graph?

Admissible:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)) or rwd(s, a, tr(s, a)). If consistent, then it is admissible.
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not admissible.
- 3. For each $s \in \mathcal{S}$, calculate hur*(s) (i.e. actual cost of optimal soln.) using the search graph.
 - (a) Start at s and choose path that gives the lowest cost or highest reward to $s \in \mathcal{G}$.
- 4. Check if $\operatorname{hur}(s) \leq \operatorname{hur}^*(s) \ \forall s \in \mathcal{S}$. If not, then it is not admissible.
- 5. Repeat $\forall s \in \mathcal{S}$.
- 6. If all are true, then it is admissible.

Consistent:

- 1. Given hur(s) and search graph with cst(s, a, tr(s, a)) or rwd(s, a, tr(s, a)).
- 2. Check $\forall s \in \mathcal{G}$, hur(s) = 0. If not, then it is not consistent.
- 3. For each $s \in \mathcal{S}$, calculate hur(s) hur(tr(s, a)).
 - (a) check if it is $\leq \operatorname{cst}(s, a, \operatorname{tr}(s, a))$ or $\geq \operatorname{rwd}(s, a, \operatorname{tr}(s, a))$. If not, then it is not consistent.
 - (b) Repeat $\forall a \in \mathcal{A}(s)$
- 4. Repeat $\forall s \in \mathcal{S}$.
- 5. If all are true, then it is consistent.

Warning: Be careful of bidirectional edges be for consistency you need compute the cost of the heuristic edge in both directions.

Example:

Figure 18: Jungle $(s^{(0)})$, Desert, Swamp, Mountain, Plains (Goal)

Admissible:

- 1. s =Plains: hur(Plains) = 0
- 2. $s = Jungle: hur(Jungle) = 3 \le hur^*(Jungle) = 2 + 1 + 2 = 5$
- 3. s =**Desert:** $hur(Desert) = 2 < hur^*(Desert) = 1 + 2$
- 4. $s = \mathbf{Swamp}$: $\operatorname{hur}(\operatorname{Swamp}) = 1 \le \operatorname{hur}^*(\operatorname{Swamp}) = 2$
- 5. $s = Mountain: hur(Mountain) = 1 \le hur^*(Mountain) = 1$
- 6. Therefore, it is admissible.

Consistent:

- 1. s =Plains: hur(Plains) = 0
- 2. s =Jungle:
 - (a) $hur(Jungle) hur(Desert) = 3 2 = 1 \le cst(Jungle, \cdot, Desert) = 2$
 - (b) $hur(Jungle) hur(Swamp) = 3 1 = 2 \le cst(Jungle, \cdot, Swamp) = 4$
 - (c) $hur(Jungle) hur(Mountain) = 3 1 = 2 \le cst(Jungle, \cdot, Mountain) = 6$
- 3. s = Deserts
 - (a) $hur(Desert) hur(Jungle) = 2 3 = -1 \le cst(Desert, \cdot, Jungle) = 2$
 - (b) $hur(Desert) hur(Swamp) = 2 1 = 1 \le cst(Desert, \cdot, Swamp) = 1$
- 4. $s = \mathbf{Swamp}$:
 - (a) $hur(Swamp) hur(Mountain) = 1 1 = 0 \le cst(Swamp, \cdot, Mountain) = 3$

- (b) $hur(Swamp) hur(Plains) = 1 0 = 1 \le cst(Swamp, \cdot, Plains) = 2$
- 5. s = Mountain:
 - (a) $hur(Mountain) hur(Jungle) = 1 3 = -2 \le cst(Mountain, \cdot, Desert) = 6$
 - (b) $\operatorname{hur}(\operatorname{Mountain}) \operatorname{hur}(\operatorname{Plains}) = 1 0 = 1 \le \operatorname{cst}(\operatorname{Mountain}, \cdot, \operatorname{Plains}) = 1$
- 6. Therefore, it is consistent.

Process: How to Design Heuristic via Problem Relaxation?

- 1. Make an assumption to simplify the problem as a relaxed problem.
- 2. Find the cost of the optimal solution of the relaxed problem, $\operatorname{cst}_{\operatorname{rel}}(s)$.
- 3. HOW TO FIND THE COST OF THE OPTIMAL SOLUTION?

Example:

Figure 19

3 Informed Search Algorithms

Summary:

Example: Different ways to formulate the CSP problem.

- How can you formulate the CSP problem in a different way? Can I get a specific example?
 - The domain could be set to everything, then set the constraints later.
- What is the constraint graph showing? Grouping the variables
- How do you check consistency in a CSP?
- Why can you use any search algorithm when you formulate this as a search problem?
- What does a node contain? A node contans a path.
 - How does that match the example on slide 10. It does.
- Why is formulalting a CSP problem as a search problem a bad idea? B/c you have to search through all possible combinations, but if you find a constraint then you can prune the search space.
 - A lot easier to see if there is a solution or not. But in a search problem, you see if there's a solution and how to get to it.

3.1 Admissible and Consistent

Summary: Want a way to learn heuristics.

Process: How to Setup a CSP?

1

Example:

Figure 20

For our example, the variables could be:

Figure 21

Figure 22

Process: How to build a hyper-graph?

1. Circle the variables that appear in constraint C_i .

Example:

Figure 23

Process: How to build a path tree?

Example:

Figure 24

Figure 25

Process: How to determine a solution to a CSP?

1

Example:

Figure 26

Process: How to check k-Consistency? FIS

- 1. Given a set of variables \mathcal{V} w/ dom $(V) = \{v_1, \ldots, v_{\text{len}(V)}\} \ \forall V \in \mathcal{V}$ and a set of contraints \mathcal{C} w/ scp $(C) = \{V_1, \ldots, V_{\text{len}(C)}\} \ \forall C \in \mathcal{C}$, check k-consistency.
- 2. For each $C \in \mathcal{C}$, do the following:
 - (a) For $V \in \text{scp}(C)$, fix V to a value in dom(V).
 - i. For the other $V \in \operatorname{scp}(C)$, check if the constraint is satisfied by trying all combinations.
 - (b) If there is one combination that doesn't satisfy the constraint, then the CSP is not k-consistent.
 - (c) Repeat $\forall V \in \operatorname{scp}(C)$.
- 3. Repeat $\forall C \in \mathcal{C}$.
- 4. If all constraints are satisfied, then the CSP is k-consistent.

Process: How to Enforce k-Consistency? FIX

- 1. Given a set of variables \mathcal{V} w/ dom $(V) = \{v_1, \ldots, v_{\text{len}(V)}\} \ \forall V \in \mathcal{V}$ and a set of contraints \mathcal{C} w/ scp $(C) = \{V_1, \ldots, V_{\text{len}(C)}\} \ \forall C \in \mathcal{C}$, enforce k-consistency.
- 2. For each $C \in \mathcal{C}$, do the following:
 - (a) For $V \in \text{scp}(C)$, fix V to a value in dom(V).
 - i. For the other $V \in \text{scp}(C)$, check if the constraint is satisfied by trying all combinations. If the constraint is not satisfied, then remove the value from dom(V).
 - (b) Repeat $\forall V \in \text{scp}(C)$.
- 3. Check the resulting $dom(V) = \{v_1, \dots, v_{len(V)}\} \ \forall V \in \mathcal{V} \ \text{w/ the other constraints.}$
- 4. Repeat $\forall C \in \mathcal{C}$.

Example:

- dom $(\ \ \ \ \ \ \ \) = \{1, 2, 3\}$
- dom $(\%) = \{2, 3, 4\}$
- $C = \left\{ \underbrace{ + }_{C} = \right\}$

Figure 27

• dom
$$\left(\right) = \{2, 3, \cancel{4}\}$$

• dom
$$\left(\mathscr{D} \right) = \left\{ \mathscr{I}, \mathscr{Z}, 4 \right\}$$

Figure 28

4 Probability Review

5 Learning Problems

Definition: In a learning problem, we assume that there is some (unknown) relationship,

$$f: \mathcal{X} \to \mathcal{Y}$$

s.t. $x \mapsto_f y$

Find $h: \mathcal{X} \to \mathcal{Y}$ (hypothesis) s.t. $h \approx f$, given some data about f:

- $\operatorname{in}(\mathcal{D}) = \{x \text{ s.t. } (x, y) \in \mathcal{D}\}$
- out(\mathcal{D}) = {y s.t. $(x, y) \in \mathcal{D}$ }

5.1 Classification vs. Regression Problems

Definition:

- Classification Problems: $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{N}$
- Regression Problems: $\mathcal{X} \subseteq \mathbb{R}^n$ and $\mathcal{Y} \subseteq \mathbb{R}$

5.2 Feature Spaces

Definition: It is often easier to learn relationships from high-level features (instead of the raw input).

5.3 Feasibility of Learning

Motivation: More than one function (hypothesis) may be consistent with the data.

Notes: So it may appear that finding the correct one should be impossible.

5.3.1 Probably Approximately Correct (PAC) Estimations

Example: Take N i.i.d. samples (i.e. take out a ball from an urn, record its color, and put it back in).

• $\nu \to \mu$ (empirical distribution \to true distribution) as $N \to \infty$

5.3.2 Hoeffding's Inequality

Definition: Let μ denote the probability of an event, and ν denote its relative frequency in a sample size N. Then, for any $\epsilon > 0$,

$$P(|\nu - \mu| > \epsilon) \le 2e^{-2\epsilon^2 N} \tag{1}$$

- ν : Relative frequency in the sample (known)
- μ: Probability of drawing a blue ball (unknown)
- $N \to \infty$: $\nu \to \mu$
- ϵ : How close we want ν to be to μ
- $\epsilon \to 0$: Probability will be 1
- $\epsilon \to \infty$: $\nu \to \mu$
- $\mu \approx \nu$: μ is probably approximately equal to nu.

Warning: We can approximate the true distribution with high probability by taking a large enough sample size, NOT guaranteeing that we can find the true distribution.

 $\bullet\,$ Don't need to know where this theorem comes from.

Consider determining the class of a randomly chosen target point. If we ask a K-ary question about the points in $\mathcal D$

- 5.3.3 PAC Learning
- 5.4 Decision Trees
- 5.4.1 Structure of a Decision Tree
- 6 Probabilistic Inference Problems