Programming Camp - Lecture 4

Brian Higgins Ciaran Rogers

This version: September 8, 2021

Presentation outline

- 1. High Performance Computing
- 2. Parallel Computing

1 High Performance Computing

Parallel Computing

0

Why do we need high performance

- 1 Quantitative, data-driven economic models are computationally complex
 - Finding equilibrium involves solving individual behavior and then iterating for many prices until markets clear;
 - Estimation requires solving model with many parameters guesses
 - Games with many players; industries with strategic behavior;
 - Auctions with many goods;
 - Migration with many cities;
- 2 Big data can easily overwhelm our laptops
 - Every housing transaction in the US (Corelogic, Green Library)
 - Product level databases (Neilsen, UC Chicago)

Why do we need high performance

- 1 Quantitative, data-driven economic models are computationally complex
 - Finding equilibrium involves solving individual behavior and then iterating for many prices until markets clear;
 - Estimation requires solving model with many parameters guesses
 - Games with many players; industries with strategic behavior;
 - Auctions with many goods;
- Migration with many cities;
- 2 Big data can easily overwhelm our laptops
 - Every housing transaction in the US (Corelogic, Green Library)
 - Product level databases (Neilsen, UC Chicago)
- → A mix of hardware and software can push the boundary of what is feasible
 - Servers, with CPUs, GPUs, big RAM;
 - Parallel programming;
 - Distributed computing (many computers)
 - · Today: Show you the basics, and highlight what's out there
 - · Lots to learn from CS folk
 - Machine learning tools e.g. Tensorflow & GPU can be leveraged for scientific computing
 - Worth investing at this point in PhD

GPUs are changing machine learning and computer science

Market Summary > NVIDIA Corporation NASDAQ: NVDA

226.62 USD +226.21 (55,173.17%) ↑ all time

Closed: Sep 7, 7:59 PM EDT · Disclaimer After hours 225.71 -0.91 (0.40%)

1 day	5 days	1 month	6 months	YTD	1 year	5 years	Max
250			4.83 L	JSD May 6, 2	011		
200							1
150							all lea
100							
50						more of the same	M
0	2002		2008	-	2014		2020

1 High Performance Computing

- 1.1 University Clusters vs. Paid Services
- 1.2 Using Stanford Servers

What type of computer cluster should you use?

Paid services include Microsoft Azure, Amazon Web Services (AWS) and Google Cloud Platform.

	Paid Services	University Cluster
Monetary cost	[X] Expensive, often paid by the hour	[/] Free to students and faculty
Waiting times	[✓] Instantly available	[X] Access often involves queues and waiting times
Ease of use	[✓] Low set up costs (e.g., turning on a computer + installing software)	[X] Complicated to understand and use (high fixed costs)

1 High Performance Computing

- 1.1 University Clusters vs. Paid Services
- 1.2 Using Stanford Servers

Some Terminology

Computer cluster:

Collection of separate computer servers, called nodes, which are connected via a fast interconnect. Configuration allows many computers to work together.

Nodes:

Individual computers designed to accomplish specific tasks (e.g., login nodes, computing nodes).

Job Scheduler: (SLURM)

Software that organizes and assigns tasks to the computer cluster.

Provides a framework to start, execute and monitor jobs within the cluster.

List of Stanford Servers

- 1. Farmshare: rice (login node), wheat (big memory node), and oat (gpu node).
 - Coursework, and non-sponsored research.
 - Can only connect to rice, and access other nodes from there.

2. Sherlock

- Sponsored research. Need a faculty sponsor to get access to.
- Humanities and Sciences partition available hns.
- Connect to login nodes (low computing power) and schedule jobs in high performance nodes.

- 3. Other servers available tailored to other needs.
 - GSB server: yen.
 - Center for Population Health Sciences (PHS): HIPAA compliant; useful for PII data (e.g., Medicare).

Using the terminal

Connect through SecureCRT (Windows) or the terminal (Mac).

Connecting to Stanford servers:

ssh StanfordID@rice.stanford.edu ssh StanfordID@login.sherlock.stanford.edu

Some useful commands:

list current working directory pwd

change directory cd

touch file.txt create a new file called file.txt

vi file.txt open text editor in terminal

module avail orml avail

module load X or ml X load module X into workspace

show available modules

module list list loaded modules

Transferring files to/from servers

Windows:

Use SecureCRT + SecureFX (paid software, free for Stanford students).
 More information click here.

· Mac:

- Use Cyberduck (free) or other paid software (e.g., Transmit).

· Farmshare:

- Transfer through AFS: http://afs.stanford.edu
- If working in batch jobs, store in /farmshare/user_data/SUNetID

Sherlock:

- Sherlock is pretty flexible. Once you need more information click here.

Write the following code using a text editor

test_matlab.m

clc; clear;
rng(29134)
a = random('normal',0,1,10,1)
mean(a)
disp("HELLO FROM MATLAB")

test_stata.do

set obs 10
set seed 1094
gen random = runiform()
summ random, d
disp "HELLO FROM STATA"

test batch.sbatch

#!/bin/bash #SBATCH -p normal #SBATCH --job-name=test #SBATCH -- error=test_%j.err #SBATCH -- output=test %i.out #SRATCH - - nodes=1 #SBATCH -- mail-type=ALL #SBATCH -- mail-user=jimenezh@stanford.edu echo "HELLO FROM BATCH" cd /farmshare/user_data/jimenezh/test_server module load matlab matlab -nodesktop -nosplash -nodisplay < test matlab.m > output matlab.txt module load stata-mp stata-mp < test_stata.do > output_stata.txt

Steps:

Say that I have a code.sbatch ready to run.

1. Open Fetch / SecureFX to start your connection:

Hostname: rice.stanford.edu

Username: <SUNet ID>

Password: <SUNet Password>

- Go to /farmshare/user_data/<SUNet ID>.
- 3. Create a test_data folder and copy your code files there.
- 4. Start your ssh connection. Open the terminal and write: ssh <SUNet ID>@rice.stanford.edu
- From the terminal, change to the Farmshare directory.
 cd /farmshare/user_data/<SUNet ID>/test_data
- Run the code on the server.sbatch test_batch.sbatch or srun test_batch.sbatch.
- 7. Check your status with squeue -u \$USER.

Other SLURM useful commands

Submit jobs to specific partitions: #SBATCH -p hns,normal (other: bigmem, gpu, long).

Request more / less time than default:

#SBATCH --time=01:00:00

(less time may make your code start faster).

Request a specific amount of RAM:
#SBATCH --mem=128000

(note: not all memory - core combinations are available).

Switch from rice node to a wheat node: srun --qos=interactive --pty /bin/bash -1 High Performance Computing

2 Parallel Computing

0

Why is some code faster than others?

- · C is typically fastest language as it compiles code direct to machine readable code
 - Costs more in developer time though!
- · Most languages convert your code to C which in turn converts to machine code
- Matlab, Stata, Python (e.g. numpy, scipy)
- Built-in packages are highly optimized
 - $\beta = \mathbf{X}'\mathbf{X}^{-1}\mathbf{X}'\mathbf{Y}$ runs close to C
- Parallelization and high performance algorithms under the hood

Why is some code faster than others?

- · C is typically fastest language as it compiles code direct to machine readable code
 - Costs more in developer time though!
- Most languages convert your code to C which in turn converts to machine code
 - Matlab, Stata, Python (e.g. numpy, scipy)
- Built-in packages are highly optimized
 - $\beta = \mathbf{X}'\mathbf{X}^{-1}\mathbf{X}'\mathbf{Y}$ runs close to C
 - Parallelization and high performance algorithms under the hood
- Custom algorithms like value functions w/loops can be slow though
- · Options to go faster
 - 1 Eliminate loops, use vectorized code
- 2 Write inner loop in C
 - · Matlab mex files
- 3 Just-in-time compilers
 - · Julia; Python-Numba, @njit
 - · Run slower first time, then much faster
- 4 Parallelization Today!
- 5 Really parallel: GPU, multi-GPU nodes
 - · Python: cupy, numba, dask, tensorflow; Julia...
 - · Lots of digestible material from CS folks

Intuition for parallel computing

We are used to running code like this:

Intuition for parallel computing

We are used to running code like this:

But we could do something else instead:

Intuition for parallel computing

We are used to running code like this:

Task 1 Task 2.1 Task 2.2 Task 2.3 Task 2.4 Task 3

But we could do something else instead:

Explicit Parallelization

- Some software (e.g., Stata) has its own parallel implementation in the backend.

 We will discuss here explicit parallelization: asking software to run in parallel and implementing it ourselves.
- Parallel implementations allow code to run in as many CPUs as available in a computer.
 The number of CPUs is usually the same as the number of cores, but not always
 (CPUs = sockets × cores × threads per core).
- There are explicit parallel implementations in MATLAB (e.g., parfor), in R (e.g., BLAS), and Python (e.g., numba, joblib).
- · When should you use parallel implementations in your code?
- When little or no manipulation is needed to separate the problem into a number of parallel tasks.
- No dependency or need for communication between these parallel tasks.
- But be wary of overhead costs (tracking individual tasks, communicating results) need "complicated enough" tasks!
- · Common examples: bootstrap, Markov chain Monte Carlo, gradient computation in non-linear problems.

Parallelization on the GPU - kernal code

- 1 Vectorized code and gpuArray()
 - 1 Python: Cupy does many numpy operations using the GPU
 - 2 Python: Tensorflow Machine Learning libraries heavily vectorized

2 Cuda kernal

- Traditiaonlly written in C CUDA (language for NVIDIA GPUS)
- Now easy to write with Numba in Python (and Julia, matlab options)
- CUDA Kernal: elementwise function to run on the "device" (aka the GPU)
- The host (aka the CPU) sends blocks to be run in parallel on GPU
- GPU memory is separate, need to initialize/end to GPU
- Can scale to multiple GPUs

Parallelization on the GPU - kernal code

```
from __future__ import division
from numba import cuda
import numpy
import math
# CUDA kernel
@cuda.jit
def matmul(A, B, C):
    """ Perform matrix multiplication of C = A * B """
    row. col = cuda. qrid(2)
    if row < C.shape[0] and col < C.shape[1]:</pre>
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[row, k] * B[k, col]
        C[row, col] = tmp
```

Parallelization on the GPU - host code

```
A = numpy.full((24, 12), 3, numpy.float) # matrix containing all 3's
B = numpy.full((12, 22), 4, numpy.float) # matrix containing all 4's
# Copy the arrays to the device
A_global_mem = cuda.to_device(A)
B global mem = cuda.to device(B)
# Allocate memory on the device for the result
C global mem = cuda.device array((24, 22))
# Configure the blocks
threadsperblock = (16, 16)
blockspergrid x = int(math.ceil(A.shape[0] / threadsperblock[0]))
blockspergrid_y = int(math.ceil(B.shape[1] / threadsperblock[1]))
blocksperarid = (blocksperarid x. blocksperarid y)
# Start the kernel
matmul[blockspergrid, threadsperblock](A global mem, B global mem, C global mem)
```

Copy the result back to the host
C = C_global_mem.copy_to_host()

Example: Bootstrapping Clustered Standard Errors

- We imagine a setting where errors are correlated across individuals within groups. Denote by $g \in \{1, ..., G\}$ the given groups (e.g., states or classrooms) and by $n \in \{1, ..., N\}$ the individuals within each of these groups. We have $G \times N$ observations in our data.
- Imagine that the true model is $Y_{ng} = \beta \cdot X_{ng} + \eta_{ng}$ with $\eta_{ng} = \varepsilon_g + \varepsilon_{ng}$, $\varepsilon_g \sim$ i.i.d. $\mathcal{N}(0,1)$ and $\varepsilon_{ng} \sim$ i.i.d. $\mathcal{N}(0,1)$. Parametrization implies that errors are correlated across individuals within the same group.
- OLS still unbiased estimator for β . However, the formula for standard errors needs to account for correlation of unobservables within the same group. One idea to compute standard errors via bootstrap:
- 1. Sample groups (with replacement) from the observed data.
- 2. For each selected group, select all individuals in the group to construct a dataset of size $G \times I$, possibly w/ repeated obs.
- 3. Estimate β via OLS within the bootstrapped data.
- 4. Repeat 1-3 B times to compute the bootstrap estimator.
- We parametrize the model with G = 50, N = 100, $X_{ng} \sim$ i.i.d. $\mathcal{N}(0,1)$ and $\beta = 2$.

Parallization on the GPU

- We imagine a setting where errors are correlated across individuals within groups. Denote by $g \in \{1, ..., G\}$ the given groups (e.g., states or classrooms) and by $n \in \{1, ..., N\}$ the individuals within each of these groups. We have $G \times N$ observations in our data.
- Imagine that the true model is $Y_{ng} = \beta \cdot X_{ng} + \eta_{ng}$ with $\eta_{ng} = \varepsilon_g + \varepsilon_{ng}$, $\varepsilon_g \sim$ i.i.d. $\mathcal{N}(0,1)$ and $\varepsilon_{ng} \sim$ i.i.d. $\mathcal{N}(0,1)$. Parametrization implies that errors are correlated across individuals within the same group.
- OLS still unbiased estimator for β . However, the formula for standard errors needs to account for correlation of unobservables within the same group. One idea to compute standard errors via bootstrap:
- 1. Sample groups (with replacement) from the observed data.
- 2. For each selected group, select all individuals in the group to construct a dataset of size $G \times I$, possibly w/ repeated obs.
- 3. Estimate β via OLS within the bootstrapped data.
- 4. Repeat 1-3 B times to compute the bootstrap estimator.
- We parametrize the model with $G=50, N=100, X_{ng} \sim \text{i.i.d. } \mathcal{N}(0,1)$ and $\beta=2$.