Section 11.6: Power series Det: a power series is: $\sum_{\kappa=0}^{\infty} \frac{\nabla Variable}{\nabla (x \cdot x)} = \frac{1}{2} \frac{1}$ coefficients Power series is a function?

The function number series

input power series output Ex. 1 Let Cx=1, k=0. Then; $\sum_{K=0}^{\infty} \chi^{K} = 1 + \chi + \chi^{2} + \chi^{3} + \dots$ geometric $\frac{\chi^{2}}{\chi} = \chi$ Series: This power series converges if and IVI= 150/<1.

 $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}, \quad |x| < 1.$

$$\sum_{k=0}^{\infty} C_{k} (x-a)^{k} =$$

$$= C_0 + C_1(\chi - \alpha) + C_2(\chi - \alpha)^2 + \dots$$

- power series, centered at a.

Ex. 2 Let
$$C_{x} = 0$$
, $k = 3$;
 $C_{0} = 5$
 $C_{1} = 0$
 $C_{2} = 4$

Consider a power series, centered et a=2, with these Ck.

$$\sum_{k=0}^{\infty} C_{k} (x-2)^{k} = C_{0} + C_{1}(x-2) + C_{2}(x-2)^{2}$$

$$= 5 + 4(x-2)^{2}$$

$$= 4(x-2)^{2} + 5$$

Power series a infinite polynomials.

Ex3 For which x is

\[\(\infty = \frac{1}{2} \)
\[\infty = \frac{1}{2} \]
\[\infty = \frac{1}{2} \ $C_{r} = \frac{1}{k} k > 1$ Apply the votio test: $(a_K = \frac{(2(-3)^K)}{K})$ $\lim_{k\to\infty} \frac{|\alpha_{k+1}|}{|\alpha_{k}|} = \lim_{k\to\infty} \frac{|\alpha_{k+1}|}{|\alpha_{k+1}|} = \lim_{k\to\infty} \frac{|\alpha_{k+1}|}{|\alpha_{k+1}|}$ $\lim_{K\to\infty} \left| (2c-3) \cdot \frac{k}{k+1} \right| =$ $\lim_{K\to\infty} \frac{k}{k+1} \cdot \left| (2c-3) \cdot \frac{k}{k+1} \right| =$ $\lim_{K\to\infty} \frac{k}{k+1} \cdot \left| (2c-3) \cdot \frac{k}{k+1} \right| =$ $= 1 \times -31$ The given series is absolutely convergent, when 1x-3/21. It is divergent when 121-31>1 Finally, when (1x-31=1) => the votion test is inconclusive.

When |x-3|=1: x=4, or x=2.

For x=4: $\frac{(x-3)^{k}}{k} = \frac{\infty}{k}$ $\frac{1}{k} = \frac{1}{k}$ $\frac{1}{k} = \frac{1}{k}$ $\frac{20}{2} \left(\frac{x-3}{x-3}\right)^{k} = \frac{20}{2} \left(\frac{-1}{x}\right)^{k} \int_{-1}^{\infty} \frac{\text{convergent}}{\text{by the alt}}$ $K=1 \quad k \quad K=1 \quad K \quad \text{series test.}$ Answer: this series is convergent
for x in [2,4). domain of the function, given by the power series Ex. y For which of is 0! = 1 $\sum_{K=0}^{\infty} \frac{1}{K! \cdot x^{2}} = 0x$ — convergen t? Apply the vatio test:

lim | Ok+1 | lim | (K+1)! | white |

lim | (K+1)! | white |

lim | (K+1)! | white |

k > 000 | k! | k > 000 | k!

 $\lim_{K\to\infty} 1511 \cdot \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot k}{1 \cdot 2 \cdot 3 \cdot ... \cdot k} = 1$ $\lim_{K \to \infty} |S(1, (K+1))| = |S(1)| \cdot \lim_{K \to \infty} |K+1|$ $= |S(1)| \cdot (+\infty)$ $= +\infty, \quad \text{if } |S(1)| = 1$ Divergent for 50 +0. Convergent for 50 = 0 only Ly domain of $\sum_{k=0}^{\infty} k! \cdot n(k)$ Ex. 5 Find the domain of the Jo Bessel function, given by: $J_0(x) = \sum_{k=0}^{\infty} (-1)^k \frac{2^{2k}}{2^{2k}(k!)^2}$ describes the shope of the vibroting drum membrane That is, we have to find x for which the series of Jo converges. Apply the Ratio test: $\frac{(-1)^{k+1}}{2^{2(k+1)}((k+1)!)^2}$ $\frac{(-1)^k}{2^{2k}(k+1)!}$ $\frac{(-1)^k}{2^{2k}(k+1)!}$

By the Rotio test, the series for Jo is obsolutely convergent for all of so is (-∞, ∞).

Edomain of Jo.

T			
inm: For a	my power se	$\frac{\sqrt{(2C-8)}}{\sqrt{(2C-8)}}$	
Thm: For any power series $\sum C_K(x-a)^k$, there are only the following possibilities for convergence:			
jov convergence:			
) The series	CONVOYARE I	Dialy Car X = 0	
		only for x=a	
ii). The series	. converges f	Lor 1x-a1 <r< th=""></r<>	
li). The series converges for 1x-a/2 R diverges for 1x-a/7 R, for a positive R			
	tor a	positive R	
(ii). The series converges for all x in (-∞, ∞).			
J			
R= the radius of convergence In i), R=0 iii), R=+0.			
(advisoring)			
a-R a+R			
Idivergent			
R= the radius of convergence			
Ln(l), $R=0$			
$iii)$, $k = +\infty$.			
The set of non which the series is convergent = the interval of convergence.			
convergent -	= the inter	val of convergence.	
,			
<u>Series</u>	Rodins of convergence	Interval of conu	
Series Series K=0	K = 1	17(21 (-1,1)	
(=0			
€ 1 1 k	10		
Z kl.xk	R= 0	ス= 0	
∑ k!.xk			
Z kl.xk	R = 0 R = 1	Z=0 [2,4)	

To determine the interval of - opply the vatio test to find - inspect the endpoints of the convergence interval. Ex. 6 Find redius/interval of convergence; $= |3x|_{2}$

13x1 < 1 1x1 < \frac{1}{3}. x-a/4R At the end points: $X = \frac{1}{3} \left(-3 \right)^{K} \cdot 3^{K} \cdot \left(\frac{1}{3} \right)^{K}$ X = 0 X $\sum_{k=0}^{\infty} \frac{(-3)^k \cdot 3^k}{\sqrt{k+1}} = \sum_{k=0}^{\infty} \frac{(-3)^k \cdot 3^k}{\sqrt{$ $\left(\left(-1\right) ^{2}\right) ^{K}=1$ $x = -\frac{1}{3}$ $\frac{2}{5}$ $(-3)^k \cdot x^k$ divergent - by the lim comparison test,

bk = \frac{1}{5} \frac{1} $(-\frac{1}{3},\frac{$ A. R = 1