Fundamentos de Matemáticas Grado de Nanociencia y Nanot<u>ecnología</u>

Departamento de Matemáticas Universidad de A Coruña

Tema 4: Sistemas de ecuaciones lineales (SEL). Diagonalización

- 1. Matrices y Determinantes.
- 2. Espacios vectoriales.
- 3. Vectores y valores propios.
- 4. Diagonalización.

Matriz

Se llama matriz de tamaño $m \times n$, constituida por escalares de un cuerpo \mathbb{K} , a cualquier tabla rectangular A formada por $m \cdot n$ escalares, dispuestos en m filas y n columnas. Se llama elemento (i,j) o ij de A al escalar que está situado en la intersección de la i-ésima fila, $i=1,2,\ldots,m$, y la columna j-ésima, $j=1,2,\ldots,n$; si a este elemento de le llama a_{ij} la matriz se escriben en forma de *cuadrado rectangular*, encerrado entre paréntesis o corchetes,

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Columnas de A:
$$\mathbf{C}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{ni} \end{pmatrix}$$
. Filas: $\mathbf{F}_i = \begin{pmatrix} a_{i1} & a_{i2} & \dots, a_{in} \end{pmatrix}$

3

Tipos particulares de matrices

Matrices que reciben nombre propio:

- Matrices fila $A = (a_1, a_2, \ldots, a_n)$.
- Matrices cuadradas

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Matrices diagonales.

En una matriz cuadrada llamamos diagonal al vector

$$(a_{11},\ldots,a_{nn})\in\mathbb{K}^n$$
.

Una matriz se dice diagonal si todos los elementos que no pertenecen a su diagonal son nulos:

$$\begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix} = \operatorname{diag}(a_1, \dots, a_n).$$

Departamento de Matemáticas Matemáticas Matemáticas

Matrices y determinantes

Matriz identidad.

$$I=\mathrm{diag}\ (1,\ldots,1).$$

Matrices triangulares

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}, \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Submatriz

Dada una matriz A se llama **submatriz** de A que definen los índices de filas i_1, i_2, \ldots, i_p y los índices de columnas j_1, j_2, \ldots, j_q a la matriz, de tamaño $p \times q$ cuyo elemento de lugar (h, k) es el elemento del lugar (i_h, j_k) de A. Los elementos de la submatriz son aquellos en los que se cruzan las filas y las columnas elegidas.

Si los índices (de filas y columnas) son consecutivos, la submatriz se llama bloque o caja.

Rango de una matriz

- Sea A ∈ M_{m×n}(K), se llama rango por columnas de A al nº de vectores columnas linealmente independientes.
- Sea A ∈ M_{m×n}(K), se llama rango por filas de A al nº de los vectores filas linealmente independientes.
- A cualquiera de estos rangos, iguales entres sí, se llama rango de la matriz A, y lo denotamos por rang A.

➤ Traza: la traza de una matriz cuadrada A se define como la suma de los términos de la diagonal

$$traza(A) = \sum_{i=1}^{n} a_{ii}$$

▶Operaciones con matrices

Suma de matrices

La suma de matrices se realiza componente a componente. Si

$$A = (a_{ij}), B = (b_{ij}) i = 1 \dots, m, j = 1 \dots, n$$

$$A + B = (a_{ij} + b_{ij}), i = 1 \dots, m, j = 1 \dots, n.$$

Propiedades:

Sean $A, B, C \in \mathcal{M}_{m \times n}(\mathbb{K})$

- ► Asociativa: (A + B) + C = A + (B + C).
- ▶ Elemento neutro: A + 0 = A, donde $0 \in \mathcal{M}_{m \times n}(\mathbb{K})$ es la matriz nula.
- Elemento simétrico: A + (-A) = (-A) + A = 0
- Conmutativa: A + B = B + A.

Operaciones con matrices

Producto por escalares

Definimos:

$$\lambda A = (\lambda a_{ij}), i = 1, \ldots, m, j = 1, \ldots, n.$$

Propiedades:

Sean $A, B \in \mathcal{M}_{m \times n}(\mathbb{K}), \lambda, \mu \in \mathbb{K}$:

- $\triangleright (\lambda + \mu)A = \lambda A + \mu A.$
- $\qquad \qquad \lambda \cdot (\mu \cdot A) = (\lambda \mu) \cdot A.$
- $ightharpoonup 1 \cdot A = A$.

Producto de matrices

Dadas dos matrices:

$$A = (a_{ij}) \in \mathcal{M}_{m \times p}(\mathbb{K}), \quad B = (b_{ij}) \in \mathcal{M}_{p \times n}(\mathbb{K})$$

se define el producto matricial de A y B, y se denota $A \cdot B$ o $A \times B$, a la matriz $C = (c_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{K})$ tal que:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Nótese que para que exista la matriz $A \cdot B$ es necesario que el número de columnas de A coincida con el número de filas de B:

$$\begin{array}{cccc}
A & B & = & C \\
m \times p & p \times n & & m \times n
\end{array}$$

Ejemplo:

$$\left(\begin{array}{cccc} 2 & 3 & 1 \\ 0 & 1 & 2 \end{array}\right) \quad \left(\begin{array}{cccc} 0 & 1 & 1 & 2 \\ 3 & 5 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{array}\right) \quad = \quad \left(\begin{array}{ccccc} 9 & 18 & 4 & 10 \\ 3 & 7 & 4 & 7 \end{array}\right)$$

8

Producto de matrices

Propiedades del producto de matrices:

- Asociativa: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- Distributiva:

$$A \cdot (B+C) = A \cdot B + A \cdot C$$
$$(A+B) \cdot C = A \cdot C + B \cdot C$$

- $A \cdot I = I \cdot A = A.$
- ▶ El producto de matrices no es conmutativo: $A \cdot B \neq B \cdot A$.

$$AB = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ 1 & 2 \end{pmatrix}$$
$$BA = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 3 \\ -10 & 10 \end{pmatrix}$$

 $\left(\mathcal{M}_{n\times n}(\mathbb{K}),+,\cdot\right)$ es un anillo no conmutativo.

9

Matriz traspuesta:

Dada una matriz $A = (a_{ii}) \in \mathcal{M}_{m \times n}(\mathbb{K})$. Se llama matriz traspuesta de A, a la matriz $A^{t} = (a_{ii})$, a la matriz cuyo elemento (i, j) es el (j, i) de A

Propiedades:

- $(A+B)^t = A^t + B^t, \forall A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ $(AB)^t = B^t A^t, \forall A \in \mathcal{M}_{m \times p}(\mathbb{K}), \forall B \in \mathcal{M}_{p \times n}(\mathbb{K})$ $(A^t)^t = A, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K})$
- $(\alpha A)^t = \alpha A^t, \forall \alpha \in \mathbb{K}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{K})$
- ▶ Matriz simétrica:

Se dice que $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ es simétrica si $A^t = A$, i.e., $a_{ii} = a_{ii}$ En este caso la matriz es de la forma:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$

Matriz antisimétrica:

Se dice que $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ es antisimétrica si $A^t = -A$, i.e., $a_{ii} = -a_{ii}$

Matrices y determinantes

► Matrices cuadradas regulares

Una matriz cuadrada $A \in \mathcal{M}_{n \times n}(\mathbb{K})$, se dice regular (o invertible) si existe una matriz de igual tamaño, denominada matriz inversa de A, que denotamos por A^{-1} , tal que:

$$AA^{-1} = A^{-1}A = I$$
.

En caso contrario se dice que A es singular o no invertible.

▶ Propiedades:

Sean $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$. Se verifica:

- ► Si A es invertible, entonces la inversa es única.
- Si A, B son invertibles, entonces $A \cdot B$ es invertible y: $(A \cdot B)^{-1} = B^{-1}A^{-1}$. En general si A_1, \ldots, A_r son regulares, A_1, \ldots, A_r es regular y

$$(A_1 \dots A_r)^{-1} = A_r^{-1} \dots A_1^{-1}.$$

- Si A es regular, lo es su transpuesta también y: $(A^t)^{-1} = (A^{-1})^t$.
- ► Si A tiene una fila o una columna nula, entonces A es singular.

11

Matrices y determinantes

▶Operaciones elementales en una matriz

Las operaciones elementales sobre las columnas o filas de una matriz son:

- $i \rightarrow j$: intercambiar los vectores i-ésimo y el j-ésimo.
- $i \to \lambda i$: consiste en multiplicar el vector i-ésimo por el escalar $\lambda \neq 0$.
- $i \rightarrow i + \lambda j$: consiste en sumar el vector j-ésimo al vector i-ésimo multiplicado por λ .

Las operaciones elementales no modifican el rango ni el orden de la matriz.

(matriz elemental)

Una **matriz elemental** es toda matriz que resulta de aplicar una transformación elemental a la matriz unidad.

Matrices y determinantes

► Cálculo de la inversa de una matriz

Si A es una matriz invertible, existe una sucesión de *operaciones fila elementales* que transforman A en la matriz identidad, I. Esta misma serie de operaciones de filas transforman I en A^{-1} . Se resume:

$$[A|I] \to [I|A^{-1}]$$

donde las operaciones de fila sobre A e I se llevan a cabo simultáneamente.

►Ejemplo:

$$[A,I] = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{bmatrix}$$

$$\longrightarrow F_2 \leftrightarrow F_2 - 2F_1 F_3 \leftrightarrow F_3 - 3F_1 \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{bmatrix}$$

$$\longrightarrow F_1 \leftrightarrow F_1 + 2F_2 F_3 \leftrightarrow F_3 - 2F_2 \begin{bmatrix} 1 & 0 & -1 & -3 & 2 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{bmatrix}$$

$$\longrightarrow F_1 \leftrightarrow F_1 + F_3 F_2 \leftrightarrow F_2 - F_3 \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & 1 \\ 0 & -1 & 0 & 0 & -3 & 2 \\ 0 & 0 & 1 & 0 & -2 & 1 \end{bmatrix}$$

$$\longrightarrow F_2 \leftrightarrow (-1)F_2 \begin{bmatrix} 1 & 0 & 0 & -2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 0 & 0 & -2 & 1 \end{bmatrix}$$

Determinantes

▶ Hasta el orden 3 existen reglas sencillas para el cálculo del determinante de una matriz:

$$\det \begin{pmatrix} a_{11} \end{pmatrix} = a_{11},$$

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{21}a_{12},$$

Regla de Sarrus:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = (a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}) - (a_{31}a_{22}a_{13} + a_{21}a_{12}a_{33} + a_{11}a_{32}a_{23}).$$

Matrices y determinantes

Propiedades del determinante

Sea A una matriz de tamaño $n \times n$. Denotamos por F_i la i-ésima fila de A y por C_i la i-ésima columna de A, de manera que escribimos $A = (F_1 \dots F_n) = (C_1 \dots C_n)$

- $ightharpoonup \det(A) = \det(A^t)$
- $ightharpoonup \det(AB) = \det(A)\det(B)$
- ▶ Una matriz cuadrada es regular \Leftrightarrow det $(A) \neq 0$
- Si *A* es invertible: $\det(A^{-1}) = \frac{1}{\det(A)}$
- Si se intercambian dos filas o dos columnas de A, entonces su determinante cambia de signo.
- ► Si A tiene dos filas o dos columnas iguales, entonces su determinante es cero.
- El determinante de una matriz diagonal es el producto de sus coeficientes diagonales:

$$\det(\operatorname{diag}(a_1,\ldots,a_n))=a_1\cdots a_n.$$

Propiedades del determinante

Sea A una matriz de tamaño $n \times n$. Denotamos por F_i la i-ésima fila de A y por C_i la i-ésima columna de A, de manera que escribimos $A = (F_1 \dots F_n) = (C_1 \dots C_n)$

Si se multiplica una fila o una columna de A por un escalar k, entonces su determinante queda multiplicado por k.

$$|F_1 \dots kF_i \dots F_n| = k|F_1 \dots F_i \dots F_n|$$

 $|C_1 \dots kC_i \dots C_n| = k|C_1 \dots C_i \dots C_n|$

Dada cualquier fila Z_i o cualquier columna \widetilde{Z}_i de orden n se verifica:

$$\begin{array}{ll} |F_1 \dots F_i + Z_i \dots F_n| &= |F_1 \dots F_i \dots F_n| + |F_1 \dots Z_i \dots F_n| \\ |C_1 \dots C_i + \widetilde{Z}_i \dots C_n| &= |C_1 \dots C_i \dots C_n| + |C_1 \dots \widetilde{Z}_i \dots C_n| \end{array}$$

Desarrollo de un determinante por filas

- ▶ Sea $A = (a_{ij})$ matriz cuadrada de tamaño $n \times n$. Para cada elemento de a_{ij} se define:
 - ▶ menor de a_{ij} es el escalar $m_{ij} = det(A_{ij})$, donde A_{ij} es la submatriz que resulta de suprimir de A la i-ésima fila y la j-ésima columna.
 - Adjunto o cofactor de a_{ij} es el escalar $\alpha_{ij} = (-1)^{i+j} \det(A_{ij})$
- - Desarrollo por elementos de la i-ésima fila:

$$\det(A) = a_{i1}\alpha_{i1} + a_{i2}\alpha_{i2} + \ldots + a_{in}\alpha_{in}$$

Desarrollo por elementos de la i-esima columna:

$$\det(A) = a_{1i}\alpha_{1i} + a_{2i}\alpha_{2i} + \ldots + a_{ni}\alpha_{in}$$

Ejemplo:

$$\left| \begin{array}{ccc|c} 3 & 0 & 2 \\ 1 & 1 & 1 \\ 4 & 1 & 5 \end{array} \right| = 3 \left| \begin{array}{ccc|c} 1 & 1 \\ 1 & 5 \end{array} \right| + 2 \left| \begin{array}{ccc|c} 1 & 1 \\ 4 & 1 \end{array} \right|$$

Rango de una matriz

- El rango de una matriz A es el máximo de los órdenes de los menores de A con no nulos.
- ightharpoonup Se verifica que $rango(A) = rango(A^t)$

Cálculo de la inversa mediante adjuntos

- Sea $A = (a_{ij})$ una matriz cuadrada de tamaño $n \times n$. Se llama matriz adjunta (o de cofactores) de A a la matriz $A^* = (\alpha_{ij})$, esto es, la matriz que en cada posición tiene el correspondiente adjunto de A.
- ▶ Si $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ es regular, se tiene:

$$A^{-1} = \frac{(A^*)^t}{\det(A)}.$$

Ejemplo:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{pmatrix}, A^{-1} = \frac{1}{-1} \begin{pmatrix} 2 & 0 & -1 \\ 0 & -3 & 2 \\ -1 & 2 & -2 \end{pmatrix}$$

- ▶ Idea: transformar el sistema de ecuaciones lineales original en un sistema de matriz triangular superior con las mismas soluciones.
- El método de eliminación gaussiana está basado en las siguientes operaciones elementales sobre las ecuaciones del sistema:

- ▶ Idea: transformar el sistema de ecuaciones lineales original en un sistema de matriz triangular superior con las mismas soluciones.
- El método de eliminación gaussiana está basado en las siguientes operaciones elementales sobre las ecuaciones del sistema:
 - ▶ la ecuación (i) puede ser multiplicada por un valor $\lambda \neq 0$, y la ecuación resultante utilizarse en lugar de la ecuación (i) $i \rightarrow \lambda i$

- ▶ Idea: transformar el sistema de ecuaciones lineales original en un sistema de matriz triangular superior con las mismas soluciones.
- ► El método de **eliminación gaussiana** está basado en las siguientes operaciones elementales sobre las ecuaciones del sistema:
 - ▶ la ecuación (i) puede ser multiplicada por un valor $\lambda \neq 0$, y la ecuación resultante utilizarse en lugar de la ecuación (i) $i \rightarrow \lambda i$
 - la ecuación (j) puede ser multiplicada por un valor λ ≠ 0, sumarse a la ecuación (i), y utilizar el resultado en lugar de las ecuaciones (i) o (j)
 i → i + λj

- ▶ Idea: transformar el sistema de ecuaciones lineales original en un sistema de matriz triangular superior con las mismas soluciones.
- El método de eliminación gaussiana está basado en las siguientes operaciones elementales sobre las ecuaciones del sistema:
 - la ecuación (i) puede ser multiplicada por un valor $\lambda \neq 0$, y la ecuación resultante utilizarse en lugar de la ecuación (i) $i \rightarrow \lambda i$
 - la ecuación (j) puede ser multiplicada por un valor λ ≠ 0, sumarse a la ecuación (i), y utilizar el resultado en lugar de las ecuaciones (i) o (j) i → i + λj
 - las ecuaciones (i) y (j) pueden intercambiarse entre sí.
 i ↔ j

Método de (eliminación de) Gauss

Sea el sistema de ecuaciones lineales (S.E.L.):

$$\mathbf{A}^{(1)}\mathbf{x} = \mathbf{b}^{(1)} \qquad \begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \ldots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \ldots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \ldots + a_{nn}^{(1)}x_n = b_n^{(1)} \end{cases}$$

Método de (eliminación de) Gauss

Sea el sistema de ecuaciones lineales (S.E.L.):

$$\mathbf{A}^{(1)}\mathbf{x} = \mathbf{b}^{(1)} \qquad \begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \ldots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \ldots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \ldots + a_{nn}^{(1)}x_n = b_n^{(1)} \end{cases}$$

Si $a_{11}^{(1)} \neq 0$ (**pivote**), hacemos:

$$a_{ij}^{(2)} = a_{ij}^{(1)} - m_i^{(1)} a_{1j}^{(1)} = a_{ij}^{(1)} - \frac{a_{i1}^{(1)}}{a_{1j}^{(1)}} a_{1j}^{(1)}$$

$$b_i^{(2)} = b_i^{(1)} - m_i^{(1)} b_1^{(1)}$$

Método de (eliminación de) Gauss

Sea el sistema de ecuaciones lineales (S.E.L.):

$$\mathbf{A}^{(1)}\mathbf{x} = \mathbf{b}^{(1)} \qquad \begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \ldots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{21}^{(1)}x_1 + a_{21}^{(1)}x_2 + \ldots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots \\ a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \ldots + a_{nn}^{(1)}x_n = b_n^{(1)} \end{cases}$$

Si $a_{11}^{(1)} \neq 0$ (**pivote**), hacemos:

$$a_{ij}^{(2)} = a_{ij}^{(1)} - m_i^{(1)} a_{1j}^{(1)} = a_{ij}^{(1)} - \frac{a_{i1}^{(1)}}{a_{1j}^{(1)}} a_{1j}^{(1)}$$

$$b_i^{(2)} = b_i^{(1)} - m_i^{(1)} b_1^{(1)}$$

y obtenemos el sistema equivalente:

$$\mathbf{A}^{(2)}\mathbf{x} = \mathbf{b}^{(2)} \qquad \begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \dots \\ a_{n2}^{(2)}x_2 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)} \end{cases}$$

Método de (eliminación de) Gauss

- ► Si $a_{22}^{(2)} \neq 0$, lo tomamos como nuevo pivote y transformamos el sistema en otro equivalente con $a_{j2}^{(3)} = 0$, para j > 2.
- ightharpoonup Al cabo de (n-1) pasos, habremos obtenido un sistema triangular equivalente al original:

$$\mathbf{A}^{(n)}\mathbf{x} = \mathbf{b}^{(n)} \begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ & \dots \\ a_{nn}^{(n)}x_n = b_n^{(n)} \end{cases}$$

Resolución del sistema triangular superior por sustitución hacia atrás, o remonte:

$$x_n = \frac{b_n^{(n)}}{a_{nn}^{(n)}}$$

$$x_i = \frac{b_i^{(i)} - \sum_{j=i+1}^n a_{i,j}^{(i)} x_j}{a_{ii}^{(i)}}, \quad i = n-1, n-2, \dots, 2, 1$$

Resolución de S. E. L.

Método de Gauss. Ejemplo

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & -1 & 4 \\ 4 & 1 & 2 & -1 \\ 8 & 2 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ 19 \\ 8 \\ 10 \end{pmatrix}$$

Primer pivote: $a_{11} = 1 \neq 0$

$$m_2^{(1)} = a_{21}/a_{11} = 2$$
 $m_3^{(1)} = a_{31}/a_{11} = 4$ $m_4^{(1)} = a_{41}/a_{11} = 8$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & -7 & -10 & -17 \\ 0 & -14 & -26 & -31 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ -112 \\ -230 \end{pmatrix}$$

Segundo pivote: $a_{22} = -2 \neq 0$

$$m_3^{(2)} = a_{32}/a_{22} = 7/2$$
 $m_4^{(2)} = a_{42}/a_{22} = 7$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 23 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 57 \end{pmatrix}$$

Método de Gauss. Ejemplo (cont.)

$$x_4 = \frac{204/29}{51/29} = 4$$

Método de Gauss. Ejemplo (cont.)

Tercer pivote:
$$a_{33} = 29/2 \neq 0$$
, $m_4^{(3)} = 46/29$

$$x_4 = \frac{204/29}{51/29} = 4$$
$$x_3 = \frac{63/2 + 3 \times 4}{29/2} = 3$$

Método de Gauss. Ejemplo (cont.)

Tercer pivote:
$$a_{33} = 29/2 \neq 0$$
, $m_4^{(3)} = 46/29$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 0 & 51/29 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 204/29 \end{pmatrix}$$

$$x_4 = \frac{204/29}{51/29} = 4$$

$$x_3 = \frac{63/2 + 3 \times 4}{29/2} = 3$$

$$x_2 = \frac{-41 + 7 \times 3 + 4 \times 4}{-2} = 2$$

Método de Gauss. Ejemplo (cont.)

Tercer pivote: $a_{33} = 29/2 \neq 0$, $m_4^{(3)} = 46/29$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -2 & -7 & -4 \\ 0 & 0 & 29/2 & -3 \\ 0 & 0 & 0 & 51/29 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 30 \\ -41 \\ 63/2 \\ 204/29 \end{pmatrix}$$

$$x_4 = \frac{204/29}{51/29} = 4$$

$$x_3 = \frac{63/2 + 3 \times 4}{29/2} = 3$$

$$x_2 = \frac{-41 + 7 \times 3 + 4 \times 4}{-2} = 2$$

$$x_1 = \frac{30 - 2 \times 2 - 3 \times 3 - 4 \times 4}{1} = 1$$

Método de Gauss-Jordan

Método de Gauss-Jordan

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 30 \\
0 & -2 & -7 & -4 & -41 \\
0 & 0 & 29/2 & -3 & 53/2 \\
0 & 0 & 0 & 51/29 & 204/29
\end{pmatrix}$$

Método de Gauss-Jordan

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 4 & 30 \\ 0 & -2 & -7 & -4 & -41 \\ 0 & 0 & 29/2 & -3 & 53/2 \\ 0 & 0 & 0 & \textbf{51/29} & 204/29 \end{array} \right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 & 14 \\ 0 & -2 & -7 & 0 & -25 \\ 0 & 0 & \textbf{29/2} & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \end{array} \right)$$

Método de Gauss-Jordan

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 4 & 30 \\ 0 & -2 & -7 & -4 & -41 \\ 0 & 0 & 29/2 & -3 & 53/2 \\ 0 & 0 & 0 & \textbf{51/29} & 204/29 \end{array} \right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 & 14 \\ 0 & -2 & -7 & 0 & -25 \\ 0 & 0 & \textbf{29/2} & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \end{array} \right)$$

Método de Gauss-Jordan

Es similar al método de Gauss, pero haciendo las transformaciones necesarias para obtener la matriz identidad.

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 4 & 30 \\ 0 & -2 & -7 & -4 & -41 \\ 0 & 0 & 29/2 & -3 & 53/2 \\ 0 & 0 & 0 & \textbf{51/29} & 204/29 \end{array} \right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 & 14 \\ 0 & -2 & -7 & 0 & -25 \\ 0 & 0 & \textbf{29/2} & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \end{array} \right)$$

Matemáticas

Resolución de S. E. L.

Método de Gauss-Jordan

Es similar al método de Gauss, pero haciendo las transformaciones necesarias para obtener la matriz identidad.

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 4 & 30 \\ 0 & -2 & -7 & -4 & -41 \\ 0 & 0 & 29/2 & -3 & 53/2 \\ 0 & 0 & 0 & \textbf{51/29} & 204/29 \end{array} \right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 & 14 \\ 0 & -2 & -7 & 0 & -25 \\ 0 & 0 & \textbf{29/2} & 0 & 87/2 \\ 0 & 0 & 0 & 51/29 & 204/29 \end{array} \right)$$

Una aplicación interesante de este método es el cálculo de la inversa de una matriz cuadrada de dimensión n, resolviendo simultáneamente n sistemas de ecuaciones

Departamento de Matemáticas Matemáticas

Resolución de sistemas de ecuaciones lineales.

Análisis de una armadura estáticamente determinada

- Una armadura es una estructura que se usa para soportar cargas como en puentes o edificios.
- Un problema importante en la ingeniería estructural es encontrar las fuerzas y reacciones asociadas con una armadura estáticamente determinada.
- Las fuerzas F, representas ya sea la tensión o la comprensión sobre los nodos de la armadura.
- Las reacciones externas (FR) son fuerzas que caracterizan cómo interactúa dicha estructura con la superficie de soporte.
- La suma de las fuerzas en ambas direcciones, vertical y horizontal, deben ser cero en cada nodo, ya que el sistema está en reposo.

- ► Son muchas las magnitudes físicas, que se representan mediante vectores o campos vectoriales. Por ejemplo:
 - Desplazamiento de un sólido sometido a a fuerzas.
 - Campos eléctricos.
 - Velocidades de un fluido.

Definición (Grupo)

Un conjunto G y una operación definida en él * se dice que forman un **grupo** (G, *) si se verifican:

- 1. Asociativa: $(a * b) * c = a * (b * c), \forall a, b, c \in G$
- 2. Existe $e \in G$ tal que a * e = e * a = a, $\forall a \in G$. (e se llama elemento neutro).
- Para cada a ∈ G existe un a' ∈ G tal que a * a' = a' * a = e (a' se llama elemento simétrico de a)

Definición (Grupo abeliano)

Se dice que (G, *) es un grupo abeliano o conmutativo si verifica la propiedad:

4. Conmutativa: $a * b = b * a, \forall a, b \in G$

Ejemplos de grupos abelianos, con la operación +: conjunto de los números enteros (\mathbb{Z}) , conjunto de los números racionales (\mathbb{Q}) , conjunto de los números reales (\mathbb{R}) , conjunto de los números complejos (\mathbb{C}) .

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Definición (Anillo)

Un conjunto A junto con dos operaciones definidas sobre él a las que llamaremos suma (+) y producto (\cdot) , se dice que forman un anillo, $(A, +, \cdot)$, si verifica:

- 1. (A, +) es grupo abeliano:
 - Asociativa para la suma: (a + b) + c = a + (b + c).
 - Elemento neutro para la suma: a + 0 = 0 + a, $\forall a \in A$.
 - Elemento opuesto de la suma: existe $-a \in A | a + (-a) = (-a) + a = 0$
 - La suma es conmutativa: a + b = b + a, $\forall a, b \in A$
- 2. El producto, (·) es asociativo.

$$(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in A.$$

Distributiva del producto respecto de la suma:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

 $(a+b) \cdot c = a \cdot c + b \cdot c, \quad \forall a, b, c \in A.$

Definición (Cuerpo)

Un anillo $(\mathbb{K},+,\cdot)$ se dice que es un **cuerpo** si $\mathbb{K}^*=\mathbb{K}-\{0\}$ es un grupo abeliano respecto al producto (\cdot) . Por tanto $\forall a\in\mathbb{K}^*$ existe $a^{-1}\in\mathbb{K}^*$ $|a\cdot a^{-1}=u$ siendo u el elemento unitario del cuerpo.

Ejemplos de cuerpos: conjunto de los números racionales (\mathbb{Q}) , conjunto de los números reales (\mathbb{R}) , conjunto de los números complejos (\mathbb{C}) .

Definición de espacio vectorial

Un **espacio vectorial** sobre un cuerpo \mathbb{K} , es un conjunto no vacío V junto con dos operaciones, denotamos $(V,+,\cdot)$: una interna (+) (suma de vectores) y una externa (\cdot) (producto por escalares) que satisfacen las propiedades:

$$+: V \times V \to V, \quad \cdot: \mathbb{K} \times V \to V,$$

A) Suma. (V, +) es grupo abeliano o conmutativo

- 1. Asociativa: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}), \forall \mathbf{u}, \mathbf{v} \in V$
- 2. Elemento Neutro. Existe $\mathbf{0} \in V$, tal que $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}, \quad \forall \mathbf{v} \in V$.
- 3. Elemento opuesto. Para cada $u \in V$ existe $-v \in V$ tal que

$$\mathbf{v} + (-\mathbf{v}) = (-\mathbf{v}) + \mathbf{v} = \mathbf{0}, \quad \forall \mathbf{v} \in V$$

- 4. Conmutativa $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \quad \forall \mathbf{u}, \mathbf{v} \in V$
- B) Producto por escalares. $\forall \lambda, \mu \in \mathbb{K}, \forall \mathbf{u}, \mathbf{v} \in V$
 - 1. $\lambda \cdot (\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v}$.
 - 2. $(\lambda + \mu) \cdot \mathbf{u} = \lambda \cdot \mathbf{u} + \mu \cdot \mathbf{u}$.
 - 3. $(\lambda \cdot \mu) \cdot \mathbf{u} = \lambda \cdot (\mu \cdot \mathbf{u})$
 - 4. $1_K \cdot \boldsymbol{u} = \boldsymbol{u} (1_K \text{ es la unidad del cuerpo } \mathbb{K})$

Observación:

Los elementos del conjunto V los llamaremos vectores y a los elementos del cuerpo \mathbb{K} , escalares.

Denotaremos como sigue: $\mathbf{u} + (-\mathbf{v}) = \mathbf{u} - \mathbf{v}$

Consecuencias de la definición de espacio vectorial

1. $0 \cdot \boldsymbol{u} = \boldsymbol{0}, \quad \forall \boldsymbol{u} \in V.$

$$\lambda \cdot \mathbf{u} = (\lambda + 0) \cdot \mathbf{u} = \lambda \cdot \mathbf{u} + 0 \cdot \mathbf{u} \Rightarrow 0 \cdot \mathbf{u} = 0.$$

2. Opuesto de \boldsymbol{u} , $-\boldsymbol{u} = (-1) \cdot \boldsymbol{u}$.

$$\mathbf{u} + (-1) \cdot \mathbf{u} = 1 \cdot \mathbf{u} + (-1) \cdot \mathbf{u} = (1 + (-1)) \cdot \mathbf{u} = 0 \cdot \mathbf{u} = 0.$$

3. $\forall \lambda \in K, \lambda \cdot \mathbf{0} = \mathbf{0}$.

$$\lambda(\mathbf{0} + \mathbf{u}) = \lambda \mathbf{u} = \lambda \mathbf{0} + \lambda \mathbf{u} \Rightarrow \lambda \mathbf{0} = \lambda \mathbf{u} - \lambda \mathbf{u} = \mathbf{0}.$$

Ejemplos de espacios vectoriales

- K es un espacio vectorial sobre sí mismo (tomando (+) como operación interna y (⋅) como operación externa).
- 2. Espacio de polinomios.

El conjunto de polinomios de una variable con coeficientes en K, siendo (+) la suma de polinomios y (\cdot) el producto de polinomios por escalares de K. Denotamos este conjunto como K[x].

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Producto cartesiano de espacios vectoriales

Sean V y W espacios vectoriales sobre \mathbb{K} . Se define el producto cartesiano de V y W como el conjunto $V \times W = \{(u, w)/u \in V, w \in W\}$.

- La conjunto $V \times W$ dotado de la operaciones:
 - ▶ suma (+) definida por:

$$(u, u') + (v, v') = (u + v, u' + v').$$

producto por un escalar (·), definida por:

$$\lambda(\mathbf{u},\mathbf{v})=(\lambda\mathbf{u},\lambda\mathbf{v}).$$

tiene estructura de espacio vectorial, $(V \times W, +, \cdot_{\mathbb{K}})$, y se denomina espacio vectorial producto $V \times W$.

- Del mismo modo se define el producto cartesiano de n espacios vectoriales V_1, \ldots, V_n sobre un cuerpo \mathbb{K} .
- •Ejemplo
 - 1. Para $n \ge 1$, sea $\mathbb{K}^n = \{(a_1, \dots, a_n), a_i \in K\}$ (conjunto de *n*-tuplas de elementos de \mathbb{K}). Operaciones:
 - Suma: $(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$.
 - Producto: $\lambda \cdot (a_1, \dots, a_n) + (a_1, \dots, a_n) = (\lambda \cdot a_1, \dots, \lambda \cdot a_n)$.
 - 2. Para $\mathbb{K}=\mathbb{R}$ obtenemos los espacio vectoriales habituales: $\mathbb{R},\mathbb{R}^2,\mathbb{R}^3,\dots,\mathbb{R}^n$.

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Subespacios vectoriales

Definición (Subespacio vectorial)

Sea V subespacio vectorial sobre K y U. Se dice que U es subespacio vectorial de V si con las operaciones de V, U es espacio vectorial sobre K.

o En la práctica no es necesario comprobar todas las propiedades de subespacio

Teorema

Sea V un espacio vectorial. U es subespacio vectorial de V si y sólo si:

- 1. Para todo $\boldsymbol{u}, \boldsymbol{v} \in U$, entonces $\boldsymbol{u} + \boldsymbol{v} \in U$. (U es subgrupo aditivo de V)
- 2. Para todo $\lambda \in K, \mathbf{u} \in U$, entonces $\lambda \mathbf{u} \in U$.

Observación (Caracterización)

Las condiciones anteriores se pueden sustituir por la condición:

$$\boldsymbol{u}, \boldsymbol{v} \in U, \ \lambda, \mu \in K \Rightarrow \lambda \boldsymbol{u} + \mu \boldsymbol{v} \in U.$$

Ejemplos de subespacios vectoriales

- 1. $\mathbf{0}_V$ y V son subespacios vectoriales de V.
- 2. El conjunto $U = \{(x, y, 0) | x, y \in \mathbb{R}\}$ es subespacio vectorial de \mathbb{R}^3 .
- 3. Dado $u \in V$:

$$U = \{\lambda \mathbf{u} | \lambda \in \mathbb{K}\}$$

es el subespacio vectorial llamado recta vectorial en la dirección de u.

4. $U = \{(x, y) \in \mathbb{R}/x - y = 1\}$ no es un subespacio vectorial de \mathbb{R}^2

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Combinación lineal. Clausura lineal

Sea $(V, +, \cdot)$ un espacio vectorial sobre K. Sea $\{u_1, \dots, u_p\}$ un conjunto finito de vectores de V o familia de vectores de V.

Definición

Se llama combinación lineal de los vectores $\{u_1, \ldots, u_p\}$ a cualquier vector

$$\mathbf{u} = \lambda_1 \mathbf{u}_1 + \ldots + \lambda_p \mathbf{u}_p, \quad \lambda_i \in K, \forall i \in \{1, \ldots, p\}.$$

Los escalares $\lambda_1, \ldots, \lambda_p$ se llaman coeficientes de la combinación lineal.

También se dice que el vector \boldsymbol{u} depende linealmente de los vectores $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_p$.

Proposición

El conjunto de las combinaciones lineales de los vectores u_1, \ldots, u_p ,

$$S = \{ \boldsymbol{u} | \boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \ldots + \lambda_p \boldsymbol{u}_p, \quad \lambda_i \in K, \ \forall i = 1, \ldots, p \}$$

es un subespacio vectorial de V, que recibe el nombre de clausura lineal de la familia $\mathbf{u}_1, \dots, \mathbf{u}_p$. También se dice que S está engendrado por la familia $\{\mathbf{u}_i\}$, y que ésta es un sistema de generadores de S. Se denota por:

$$<\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_p\}>.$$

Ejemplos de subespacio generado por un conjunto

Ejemplos:

1. La solución de un sistema de ecuaciones lineales homogéneo.

$$x - y + z = 0$$

$$y - z = 0$$

Resolviendo el sistema:

$$U = \{(0, a, a) \mid a \in \mathbb{R}\} = <\{(0, 1, 1)\} > .$$

2. La solución de la ecuación lineal x - y - z - t = 0 en \mathbb{R}^4 es

$$W = \{(a+b+c, a, b, c), | a, b, c \in \mathbb{R}\}$$

$$= a(1, 1, 0, 0) + b(1, 0, 1, 0) + c(1, 0, 0, 1)$$

$$= \langle \{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)\} \rangle.$$

Definición

Un conjunto de vectores v_1, \dots, v_n se dicen linealmente independientes si para todos los $\lambda_1, \dots, \lambda_n \in K$ tales que

$$\sum_{i=1}^n \lambda_i \mathbf{v}_i = \lambda_1 v_1 + \ldots + \lambda_n v_n = 0$$

entonces $\lambda_i = 0$, $i = 1, \dots, n$. También se dice que la familia de vectores $\{v_1, \dots, v_n\}$ es una familia libre.

En caso contrario se dice que v_1, \ldots, v_n son linealmente dependientes. También se dice que la familia de vectores $\{v_1, \ldots, v_n\}$ es una familia ligada.

Ejemplo

- ightharpoonup (1,0,-2), (0,-2,1) son vectores linealmente independientes.
- \blacktriangleright $(x, y, 0), (x, \lambda y, 0)$ son linealmente dependientes

Bases

Consecuencias de la definición:

- 1. Sea $\{u_1, \dots, u_n\}$ una familia de vectores linealmente dependientes. Cada v_j , cuyo coeficiente $\lambda_j \neq 0$, es combinación lineal de los demás.
- 2. Una familia con un vector repetido es un sistema ligado.
- 3. Una familia que contenga el vector nulo 0 es ligada.
- 4. Si una familia contiene una subfamilia ligada, es ligada.

Definición (Rango)

El rango de una familia de vectores $\{u_1, \dots, u_n\}$ es el número de vectores linealmente independientes.

Bases

Definición

Un espacio vectorial V se dice de tipo finito si admite un sistema generador finito, esto es, si existe un sistema de vectores $\{\pmb{u}_1,\ldots,\pmb{u}_p\}$ tal que $V=<\{\pmb{u}_1,\ldots,\pmb{u}_p\}>$

Definición

Si V es de tipo finito, se dice que un sistema de vectores $B = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ es una base de V si se verifica B es un sistema generador de V, que además, es un sistema linealmente independiente.

Bases

Teorema

Sea V un espacio vectorial generado por n vectores. Para cualquier conjunto de m vectores de V es linealmente independiente, se verifica $m \le n$.

Teorema

Sea V un \mathbb{K} -espacio vectorial de dimensión finita:

- Si B = {v₁,...,v_n} es una base de V entonces todo vector v ∈ V se expresa de manera única como combinación lineal de los vectores de la base.
- Todas las bases de V tienen el mismo número de elementos. A este número se le llama dimensión del espacio V y se denota por dim (V).

Nota: Se conviene que el espacio $V = \{0\}$ tiene dimensión 0.

Bases

Ejemplos:

- 1. Base del espacio de polinomios de grado n, $\mathbb{K}_n[x]$: $\{1, x, x^2, \dots, x^n\}$.
- 2. El espacio \mathbb{R}^n . Una base viene dada por la familia de vectores:

$$\mathcal{B} = \{ \mathbf{e}_1 = (1, \dots, 0), \dots, \mathbf{e}_i = (0, \dots, 1, \dots, 0), \dots, \mathbf{e}_n = (0, \dots, 1) \}.$$

Esta base recibe el nombre de base canónica de \mathbb{R}^n .

3. Espacio vectorial de las matrices $\mathcal{M}_{m\times n}(\mathbb{K})$. Como base de este espacio podemos tomar:

$$A = \sum_{\substack{i=1,\ldots,m\\j=1,\ldots,n}} a_{ij} \mathbf{E}_{ij}$$

donde $\mathbf{\textit{E}}_{ij} \in \mathcal{M}_{m \times n}(\mathbb{K})$:

$$(\mathbf{E}_{ij})_{kl} = \begin{cases} 1 & \text{si } (k,l) = (i,j) \\ 0 & \text{en otro caso} \end{cases}$$

Por tanto la dimensión de este espacio es $m \times n$

Bases

Teorema

Sea V un espacio vectorial de dimensión n y sea U y W dos subespacios de V. Entonces:

- 1. U es de dimensión finita y dim $U \le n$.
- 2. Cualquier base de U es un subconjunto de una base de V.
- 3. Si $U \subseteq W$ y dim $U = \dim W$, entonces U = W.

Teorema (de completar base)

En un espacio vectorial V de dimensión finita, todo sistema de vectores linealmente independientes puede completarse hasta obtener una base.

Definición (Coordenadas)

Si $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es una base de V y

$$\mathbf{v} = x_1 \mathbf{v}_1 + \ldots + \lambda_n \mathbf{v}_n, x_i \in \mathbb{K},$$

diremos que (x_1, \ldots, x_n) son las coordenadas de \mathbf{v} respecto de la base \mathcal{B} .

 $B = \{(1,0,0), (0,1,0), (0,0,1)\}$

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

 $B = \{(1,0,0), (1,1,0), (1,1,1)\}$

$$(x, y, z) = (x - y)(1, 0, 0) + (y - z)(1, 1, 0) + z(1, 1, 1)$$

Proposición

Las coordenadas de un vector \mathbf{v} respecto de una base $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ son únicas.

Cambios de base

Supongamos que en un espacio vectorial V de dimensión finita n tenemos las bases:

$$\mathcal{B} = \{ e_1, \dots, e_n \}, \, \mathcal{B}' = \{ e'_1, \dots, e'_n \}.$$

Dado un vector \mathbf{v} con coordenadas (x_1, \dots, x_n) en \mathcal{B} y (x'_1, \dots, x'_n) en \mathcal{B}' . Deseamos obtener una relación que nos permita obtener las coordenadas de cualquier vector en la base \mathcal{B}' respecto de las coordenadas en la base \mathcal{B} .

Suponemos conocidas las coordenadas de los vectores de la base $\mathcal B$ en la base $\mathcal B'$:

$$\begin{cases}
\mathbf{e}_{1} &= a_{11}\mathbf{e}'_{1} + a_{21}\mathbf{e}'_{2} + \ldots + a_{n1}\mathbf{e}'_{n} \\
\mathbf{e}_{2} &= a_{12}\mathbf{e}'_{1} + a_{22}\mathbf{e}'_{2} + \ldots + a_{n2}\mathbf{e}'_{n} \\
& \cdots \\
\mathbf{e}_{n} &= a_{1n}\mathbf{e}'_{1} + a_{2n}\mathbf{e}'_{2} + \ldots + a_{nn}\mathbf{e}'_{n}
\end{cases}$$

Cambios de base

Por tanto

$$\mathbf{e}_i = \sum_{j=1}^n a_{ji} \mathbf{e}_j'$$

Por tanto

$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{x}_{i}' \mathbf{e}_{i}' = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{e}_{i} = \sum_{i=1}^{n} \mathbf{x}_{i} \sum_{j=1}^{n} a_{ji} \mathbf{e}_{j}' = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \mathbf{x}_{i} a_{ji} \right) \mathbf{e}_{j}'.$$

Como la expresión en la base es única:

$$\begin{cases} x'_1 &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x'_2 &= a_{12}x_1 + a_{22}x_2 + \dots + a_{n2}x_n \\ & \dots \\ x'_n &= a_{1n}x_1 + a_{2n}x_2 + \dots + a_{nn}x_n \end{cases}$$

Cambios de base: ejemplo

1. En \mathbb{R}^3 . Sean $(x, y, z)_{\mathcal{B}}$ las coordenadas de un vector \boldsymbol{u} respecto de la base canónica. Hallar las coordenadas del vector \boldsymbol{u} respecto de la base $\mathcal{B}' = \{\boldsymbol{e}'_1, \boldsymbol{e}'_2, \boldsymbol{e}'_3\}$ donde:

$$\mathbf{e}'_1 = (1, 2, 0), \quad \mathbf{e}'_2 = (-3, -7, 1), \quad \mathbf{e}'_3 = (0, -2, 1)$$

Las coordenadas de e'_1, e'_2, e'_3 respecto de la base canónica son

$$e'_1 = e_1 + 2e_2$$

 $e'_2 = -3e_1 - 7e_2 + e_3$
 $e'_3 = -2e_2 + e_3$

Sea (x_1, x_2, x_3) las coordenadas de **u** respecto de la base \mathcal{B}' .

$$\begin{array}{ll}
x = x_1 - 3x_2 \\
y = 2x_1 - 7x_2 - 2x_3 \\
z = x_2 + x_3
\end{array}
\Rightarrow
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
1 & -3 & 0 \\
2 & -7 & -2 \\
0 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$$

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Ecuaciones paramétricas de un subespacio

Sea V espacio vectorial de dimensión n, y $U \subset V$ subespacio vectorial de V de dimensión r con $r \leq n$. Consideramos una base de V y una base de U

$$\mathcal{B}_V = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}, \quad B_U = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_r\}$$

Supongamos que conocemos las coordenadas de cada uno de los vectores de la base de U en la base \mathcal{B}_V :

$$\mathbf{u}_i = (a_{1i}, \dots, a_{ni}), \quad i = 1, \dots, r.$$

Cualquier vector $\mathbf{u} = (x_1, \dots, x_n) \in U$ se expresa como combinación lineal de elementos de la base \mathcal{B}_U :

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \ldots + \lambda_r \boldsymbol{u}_r$$

y si lo escribimos en coordenadas se obtienen las llamadas ecuaciones paramétricas de U (en las que aparecen r parámetros):

$$\left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right) = \lambda_1 \left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{array}\right) + \lambda_2 \left(\begin{array}{c} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{array}\right) + \dots + \lambda_r \left(\begin{array}{c} a_{1r} \\ a_{2r} \\ \vdots \\ a_{nr} \end{array}\right).$$

Ecuaciones paramétricas de un subespacio

Ejemplo

Supongamos el subespacio $W=<\{(1,0,1,0),(0,1,1,0)\}>$ de \mathbb{R}^4 . Determinar las ecuaciones paramétricas respecto de la base canónica de \mathbb{R}^4

$$(x_1, x_2, x_3, x_4) = \lambda(1, 0, 1, 0) + \mu(0, 1, 1, 0).$$

o bien

$$\begin{cases} x_1 = \lambda \\ x_2 = \mu \\ x_3 = \lambda + \mu \\ x_4 = 0 \end{cases}$$

Ecuaciones cartesianas (o implícitas) de un subespacio

Sea V un \mathbb{K} —espacio vectorial de dimensión n y U un subespacio de V de dimensión r. Sean \mathcal{B} y \mathcal{B}_U bases de V y de U respectivamente.

Las ecuaciones paramétricas de U son:

$$x_1 = \lambda_1 a_{11} + \ldots + \lambda_r a_{1r}$$

$$\vdots$$

$$x_n = \lambda_1 a_{n1} + \ldots + \lambda_r a_{nr}$$

Para obtener las ecuaciones cartesianas (o implícitas) de U es necesario eliminar los parámetros λ_i , lo que equivale a resolver el sistema para las incógnitas λ_i .

• Número de ecuaciones cartesianas = $\dim V - \dim U$

Ecuaciones cartesianas de un subespacio

Ejemplo

Sea
$$U = \langle \{(1,0,1,1), (0,1,1,0)\} \rangle$$

• Ecuaciones paramétricas: $(x_1, x_2, x_3, x_4) = \lambda(1, 0, 1, 1) + \nu(0, 1, 1, 0)$

$$\begin{cases} x_1 = \lambda \\ x_2 = \nu \\ x_3 = \lambda + \nu \\ x_4 = \lambda \end{cases}$$

- Obtenemos las ecuaciones cartesianas de U por eliminación de parámetros.
 - ► Eliminando λ:

$$\begin{cases} x_2 = \nu \\ x_3 - x_1 = \nu \\ x_4 - x_1 = 0 \end{cases}$$

Eliminando ν:

$$\begin{cases} x_3 - x_1 - x_2 = 0 \\ x_4 - x_1 = 0 \end{cases}$$

► Hemos obtenido las ecuaciones cartesianas de U

$$U \equiv \begin{cases} x_3 - x_1 - x_2 = 0 \\ x_4 - x_1 = 0 \end{cases}$$

Departamento de Matemáticas Matemáticas Matemáticas

Espacios Vectoriales

Intersección de subespacios

Definición

Sean U y W dos subespacios de un espacio vectorial V, la intersección de subespacios intersección de U y W, $U \cap W$, se define como:

$$U \cap W = \{ \boldsymbol{u} / \boldsymbol{u} \in U \ y \ \boldsymbol{u} \in W \}$$

En general, dada una familia de subespacios $\{U_i\}_{i=1,\ldots,n}$ de V, se define la intersección como

$$\bigcap_{i=1}^n U_i = \{ \boldsymbol{u}/\boldsymbol{u} \in U_i, \forall i = 1, \dots, n \}$$

Proposición

La intersección de cualquier familia de subespacios vectoriales de V es un subespacio vectorial de V.

Ecuaciones de la intersección de subespacios

En la práctica para calcular las ecuaciones de la intersección de subespacios basta con reunir todas las ecuaciones cartesianas: de esta forma obtenemos un sistema de ecuaciones que han de cumplir los vectores que pertenecen a la intersección.

Ejemplo

Consideremos en \mathbb{R}^3 los subespacios

$$U = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\},\$$

$$W = < \{(1, 1, 0), (0, 0, 1)\} > .$$

Para calcular su intersección basta calcular las ecuaciones cartesianas de W.

$$W \equiv \begin{cases} x_1 = \lambda \\ x_2 = \lambda \\ x_3 = \mu \end{cases}$$

Eliminando parámetros obtenemos las ecuaciones cartesianas de W que son $x_1 - x_2 = 0$. Por tanto, unas ecuaciones cartesianas de $V \cap W$ son:

$$V \cap W \equiv \left\{ \begin{array}{c} x_1 + x_2 + x_3 = 0 \\ x_1 - x_2 = 0 \end{array} \right.$$

Como ninguna ecuación puede eliminarse mediante transformaciones elementales, dim $(V \cap W) = 3 - 2 = 1$.

Suma de subespacios

La unión de subespacios vectoriales U y W de V no es un subespacio vectorial. Ejemplo: Consideramos $U = \{(x, 0)/x \in \mathbb{R}\}$ y $W = \{(0, y)/y \in \mathbb{R}\}$ subespacios de \mathbb{R}^2 .

$$(1,0)$$
 y $(0,1) \in U \cup W$, pero $(1,0) + (0,1) = (1,1) \notin U \cup W$

Definición

Se define la suma de subespacios U y W, y lo denotamos por U+W, al conjunto

$$U + W = \{ \boldsymbol{u} + \boldsymbol{w} | \boldsymbol{u} \in U, \, \boldsymbol{w} \in W \}$$

En general, sea $\{U_i|i=1,\ldots,n\}$ una familia de subespacios, se define la suma de subespacios como:

$$\sum_{i=1}^n U_i = \{ \boldsymbol{u} \in V | \boldsymbol{u} = \boldsymbol{u}_1 + \ldots + \boldsymbol{u}_n, \, \boldsymbol{u}_i \in U_i \}.$$

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Suma de subespacios

Proposición

La suma de subespacios, U+W, es el menor subespacio que contiene a la unión, $U\cup W$

Teorema

La suma de subespacios U_i de V, $S = U_1 + \ldots + U_n$, es un subespacio de V.

Teorema (Fórmula de Grassman o fórmula de las dimensiones)

Si U, W son dos subespacios vectoriales de V espacio vectorial de dimensión finita, se verifica:

$$\dim U + \dim W = \dim (U + W) + \dim (U \cap W).$$

Sistema de generadores de la suma de subespacios

Para construir un sistema de generadores del espacio suma bastará reunir las bases de todos los subespacios.

Así, dados dos subespacios U y W con bases

$$\mathcal{B}_U = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_r\} \text{ y } \mathcal{B}_W = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_s\},$$

entonces un sistema de generadores de U+W viene dado por:

$$\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r,\boldsymbol{w}_1,\ldots,\boldsymbol{w}_s\}.$$

Suma de subespacios

Ejemplo

Dados los subespacios

$$U = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\}$$

y

$$W = <\{(1,1,1),(0,0,1)\}>$$

Para calcular U + W necesitamos una base de U. Resolviendo el sistema:

$$\begin{cases} x_1 = \lambda \\ x_2 = \mu \\ x_3 = -\lambda - \mu \end{cases}$$

Por tanto un sistema de generadores de V + W viene dado por:

$$\{(1,1,1),(0,0,1),(1,0,-1),(0,1,-1)\}$$

y a partir de ellos se puede calcular una base de V + W:

$$\{(1,0,0),(0,1,0),(0,0,1)\}.$$

Suma de subespacios

Ejemplo

 Si dos subespacios están generados por sendos conjuntos de vectores, su suma está generada por la unión de los mismos. Por ejemplo:

$$U = \langle \{(-1,2,1), (3,-1,0)\} \rangle$$
, $W = \langle \{(8,0,0)\} \rangle$.

Entonces:

$$U + W = \langle \{(-1, 2, 1), (3, -1, 0), (8, 0, 0)\} \rangle$$
.

En este caso además la suma es directa.

Suma directa de subespacios

Definición (Suma directa)

Sean U y W dos subespacios de V. Si $U \cap W = \{\mathbf{0}\}$ diremos que la suma U + W es suma directa, y lo denotamos por $U \oplus W$

Proposición

La suma U + W es directa si y sólo si la expresión de un vector U + W como suma de un vector de U y un vector de W es única.

Proposición

La suma U + W de dos subespacios es directa si y sólo si:

$$\dim U + \dim W = \dim (U + W).$$

Definición (Suplementario)

Dos subespacios U y W se dicen suplementarios respecto de V, si $V=U\oplus W$. También se dice que U es el suplementario de W, y viceversa.

Ejemplo

$$\mathbb{R}^2 = \{ (x,0) \, | \, x \in \mathbb{R} \} \oplus \{ (0,x) \, | \, x \in \mathbb{R} \, \}.$$

Proposición

Los subespacios U y W son suplementarios de V, $V = U \oplus W$, si y sólo si, $V_7 = U + W$ y $U \cap W = \{0\}$

Departamento de Matemáticas Matemáticas

Espacios Vectoriales

Suma directa de subespacios

Definición

Sean
$$U_1,\ldots,U_n$$
 subespacios de V . Si $U_j\cap\left(\sum_{j\neq i}U_i\right)=\mathbf{0}$ para todo $j=1\ldots,n$, se dice que

la suma de los subespacios es directa y se escribe:

$$\sum_{i=1}^{n} U_i = \bigoplus_{i=1}^{n} U_i.$$

Teorema

La suma es directa si y sólo si la igualdad: $u_1 + \ldots + u_n = 0$, implica que $u_1 = 0, \ldots, u_n = 0$.

Proposición

Entonces todo vector $\mathbf{u} \in \bigoplus_{i=1}^n U_i$ se expresa de forma única como suma de elementos de cada subespacio:

$$\mathbf{u} = \mathbf{u}_1 + \dots \mathbf{u}_n, \, \mathbf{u}_i \in U_i$$

Aplicaciones: Vector Fuerza

 La segunda Ley de Newton, dice que la fuerza que actúa sobre una partícula acelerada es el producto de su masa (magnitud escalar) por el vector aceleración (magnitud vectorial)

$$\sum (\overrightarrow{F}) = m \overrightarrow{d}$$

siendo por tanto una magnitud vectorial, y para su estudio podemos utilizar las propiedades del álgebra vectorial.

▶ El vector fuerza, \overrightarrow{F} (o la fuerza), se puede descomponer en sus componentes (f_1, f_2) en el sistema de referencia establecido:

$$\overrightarrow{F} = f_1 \overrightarrow{e}_1 + f_2 \overrightarrow{e}_2$$

 $donde f_1 = cos(\alpha)F y f_2 = sen(\alpha)F$

Definición:

Sea $\mathbf{A} \in M_{n \times n}(\mathbb{R})$. Se dice que $\lambda \in \mathbb{R}$ es un autovalor (o valor propio) de \mathbf{A} si existe algún vector $\mathbf{v} \neq \mathbf{0}$ tal que $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, que se llama autovector.

- \triangleright Se llama espectro de **A**, que se representa por $\sigma(\mathbf{A})$, al conjunto de todos sus autovalores.
- \triangleright El conjunto de todos los autovectores asociados al autovalor λ es:

$$V_{\lambda} = \{ \mathbf{v} \in V / \mathbf{A} \mathbf{v} = \lambda \mathbf{v} \}$$

- 1. Si λ_1, λ_2 son dos valores propios distintos de **A**, entonces $V_{\lambda_1} \cap V_{\lambda_2} = \{0\}$.
- 2. Si $\lambda_1, \ldots, \lambda_s$ son valores propios distintos de f y $\mathbf{v}_i \in V_{\lambda_i} \{\mathbf{0}\}, i = 1, \ldots, s$, entonces: $\{\mathbf{v}_1, \ldots, \mathbf{v}_s\}$ son linealmente independientes.

 \triangleright Sea vector \mathbf{v} un autovector de \mathbf{A} de coordenadas X.

$$\mathbf{A}X = \lambda X \Leftrightarrow (\mathbf{A} - \lambda I)X = 0$$

Desarrollando la ecuación obtenemos un sistema homogéneo:

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

que tiene una solución distinta de la trivial $\Leftrightarrow rango(A - \lambda I) < n$

ho Los autovalores de **A** son los escalares $\lambda \in \mathbb{K}$ tales que det $(\mathbf{A} - \lambda I) = 0$, esto es:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

▷ (Polinomio característico)

Sea $A \in M_n(\mathbb{R})$. Se llama polinomio característico de A al polinomio

$$p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda I)$$

▶ Sea $\mathbf{A} \in M_n(\mathbb{R})$ y sea $\lambda \in \mathbb{R}$. Entonces:

$$\lambda$$
 es un valor propio de $\mathbf{A} \Leftrightarrow p_{\mathbf{A}}(\lambda) = \det{(\mathbf{A} - \lambda I)} = 0$ (ecuación característica)

▶ La dimensión V_{λ} asociado a λ es:

$$\dim V_{\lambda} = n - rango(A - \lambda I)$$

Ejemplo

Hallar los valores y vectores propios de:

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 0 & 2 \end{pmatrix}.$$

$$det(A - \lambda_I) = \begin{vmatrix} 3 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ 4 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^2 (3 - \lambda)$$

Las raíces de la ecuación característica son: $\lambda_1 = 3$, $\lambda_2 = 2$ (multiplicidad dos).

El subespacio propio correspondiente a $\lambda=3,\,V_3,\,$ tiene por ecuación (A-3I)X=0:

$$\begin{pmatrix} 3-3 & 0 & 0 \\ 1 & 2-3 & 0 \\ 4 & 0 & 2-3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

entonces $V_3 = \{(\alpha, \alpha, 4\alpha)/\alpha \in \mathbb{R}\} = <\{(1, 1, 4)\} >$

El subespacio propio correspondiente a $\lambda=2, V_2,$ tiene por ecuación (A-2I)X=0:

$$\begin{pmatrix} 3-2 & 0 & 0 \\ 1 & 2-2 & 0 \\ 4 & 0 & 2-2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

entonces $V_3 = \{(0, \alpha, \beta)/\alpha, \beta \in \mathbb{R}\} = <\{(0, 1, 0), (0, 0, 1)\} >$

Sea $\mathbf{A} \in M_{n \times n}$ una matriz, cuyos autovalores distintos son $\lambda_1, \dots, \lambda_r$. Para cada autovalor λ_i , llamamos:

- ▶ Multiplicidad algebraica de λ_i es el orden de multiplicidad, m_i , de λ_i como raíz de la ecuación característica de A (o f).
- Multiplicidad geométrica de λ_i es la dimensión, d_i , del subespacio propio de A asociado a λ_i , V_{λ_i} , esto es:

$$d_i = \dim(V_{\lambda_i}) = n - rang(\mathbf{A} - \lambda_i I)$$

 \triangleright Si λ_i es un autovalor de **A** (o f), entonces su multiplicidad algebraica m_i y su multiplicidad geométrica d_i verifica la relación:

$$1 \leq d_i \leq m_i$$

Multiplicidad algebraica y geométrica

Ejemplo:

Sea la matriz
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Su polinomio característico es: $p_A(\lambda) = (2 - \lambda)^3$, luego A tiene un único autovalor $\lambda_1 = -2$ de multiplicidad algebraica $m_1 = 3$.

$$d_1 = 3 - rango(A - 2I) = 3 - rango\begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 2 = 1$$

Diagonalización

Sea $A \in \mathcal{M}_{n \times n}$ su matriz asociada a f. Si A es diagonalizable por semejanza, entonces:

▶ La matriz **A** es **diagonalizable** si existe un conjunto $\{v_1, \ldots, v_n\}$ vectores propios de **A**. Por tanto, $Av_i = \lambda_i v_i$, donde $\lambda_1, \ldots, \lambda_n$ son los autovalores de **A**, cada uno de ellos repetido tantas veces como indique su multiplicidad algebraica.

Dicha matriz diagonal es

$$\mathbf{D} = \left(\begin{array}{ccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{array} \right)$$

▶ **A** es semejante con **D**, por tanto, existe **P** tal que $\mathbf{D} = \mathbf{P}^{-1}\mathbf{AP}$ (o $\mathbf{A} = \mathbf{PDP}^{-1}$), donde las columnas de **P** son las coordenadas de los autovectores de **A**.

$$\mathbf{P} = \begin{pmatrix} v_1^1 & v_1^2 & \dots & v_1^n \\ v_2^1 & v_2^2 & \dots & v_2^n \\ \vdots & \vdots & & \vdots \\ v_n^1 & v_n^2 & \dots & v_n^n \end{pmatrix}$$

donde la j-ésima columna de \mathbf{P} son las componentes del autovector, $\mathbf{v}_j = (v_1^j, v_2^j, \dots, v_n^j)^t$, asociado al autovector λ_j

Diagonalización (por semejanza)

Ejemplo: Diagonalizar
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

- ▷ Su polinomio característico es: $p(\lambda) = \det(A \lambda I) = (2 \lambda)^2 (5 \lambda)$.
- \triangleright Autovalores: $\lambda_1=2$ (multiplicidad algebraica $m_1=2)$ y $\lambda_2=5$ (multiplicidad algebraica $m_1=1)$
- \triangleright Autovectores asociados a $\lambda_1 = 2$:

$$(A-2I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Base del subespacio propio V_{λ_1} : $\{(-1,1,0),(-1,0,1)\}$, por tanto, $d_1=2$ (la multiplicidad geométrica también se puede calcular como $d_1=3-rango(A-2I)$)

Diagonalización (por semejanza)

Ejemplo(cont.)

▶ De igual forma se calcula el autovector asociado a $\lambda_2 = 5$:

$$(A-5I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Base del subespacio propio V_{λ_2} : {(1, 1, 1)}, por tanto, $d_1 = 1$.

▶ La base de vectores propios es:

$$\{(-1,1,0),(-1,0,1),(1,1,1)\}$$

La matriz diagonal, y la matriz de paso son:

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} \quad P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$