Московский физико-технический институт

Лабораторная работа по общей физике

5.1 Измерение коэффициента ослабления γ -лучей в веществе и определение их энергий

выполнила студент Б01-907 группы Юлия Прохорова

Содержание

1.	Цель работы	2
2.	Теория 2.1. Фотоэлектрическое поглощение 2.2. Комптоновское рассеяние 2.3. Генерация электрон-позитронных пар 2.4. Полный коэффициент ослабления	3
3.	Экспериметнальная установка	6
4.	Ход работы	6
5.	Вывол	12

1. Цель работы

- 1) С помощью сцинтилляционного счетсчика измерить линейные кожффициенты ослабления потока γ лучей в свинце, железе и алюмини
- 2) По их величине определить энергию γ квантов

2. Теория

Гамма-лучи возникают при переходе возбужденных ядер из одного состояние в другое, более низкое. E_{γ} лежит в значениях от 10 кэВ до 1000 кэВ. При проходе через вещество, пучок ослабляется по закону:

$$I = I_0 e^{-\mu l} \tag{1}$$

$$I = I_0 e^{-\mu' m_1} (2)$$

 $I,\ I_0$ - интенсивности прошедшего и падающего излучений, l - длина пути, m_1 - масса пройденного вещества на единицу площади, μ и μ' - константы, зависящие от вещества. μ' не зависит от плотности вещества.

Ослабление потока γ - лучей связано стремя эффетками:

- 1) фотоэлектрическое поглощение
- 2) комптоновское рассеяние
- 3) генерация электрон-позитронных пар

2.1. Фотоэлектрическое поглощение

При столкновении γ - квантов с электронами внутренних атомных оболосчек может происходить поглощение квантов. Энергия кванта передается электрону, а импульс делится между электроном и ионом. Наружные электроны не принимают участия в фотоэлектрическом поглощении, т.к. они почти свободные и слабо связаны с ядром.

Вероятность dP_{Φ} фотоэлектрического поглощения гамма-квантов пропорциональна длине пути dl и плотности электронов в среде:

$$dP_{\Phi} = \sigma_{\Phi} n_1 dl \tag{3}$$

 n_1 - плотность внутренних электронов, σ_{Φ} - поперечное сечение фотожлектрического поглощения, оно характеризует вероятность фотоэффекта, рассчитанную на один электрон.

Найдем связь между коэффициентом поглощения для фотоэффекта μ_{Φ} и сечением σ_{Φ} :

$$\mu_{\Phi} = \sigma_{\Phi} n_1 \tag{4}$$

Эта формула отражает зависимость μ_{Φ} от плотности среды в явном виде.

Пусть в результате фотоэффетка энергия γ -кванта передается электрону на i оболочке, W_i - энергия связи этого электрона. Тогда кинетическая энергия электрона:

$$T_i = \hbar\omega - W_i \tag{5}$$

на вакантное место могут перейти электроны с соседних оболчек, при таких переходах возникает характеристическое рентгеновское излучение, которое, например, в РЭМ используется в режиме рентгеновской спеткроскопии для определения состава образца.

Вероятность фотоэффекта сложно зависит от энергии гамма-лучей и от заряда ядер:

$$\sigma_{\Phi} \propto \frac{Z^5}{(\hbar\omega)^{2,5}} \tag{6}$$

Эта формула отражает такую зависимость (рис. 1)

Рис. 1: Зависимость сечения фотоэффекта от энергии γ-квантов

Вероятность фотоэффекта быстро возрастает при переходе от легких к тяжелым элементам и резко падает с увеличением энергии гамма-квантов. При возрастании энергии сечение скачкообразно возрастает, когда становится возможным выбивание электронов с очередной оболочки. Фотоэффект является доминирующим механизмом поглощения гамма-квантов при не очень высоких энергиях.

2.2. Комптоновское рассеяние

Комптон эффект - упругое столкговение гамма-кванта с электроном. Этот эффект происходит на свободных или слабосвязанных электронах в отличие от фотоэффекта. Роль эффекта Комптона становиться существенной только когда энергия гамма-квантов становится много больше энергии связи электронов в атоме. Атомные электроны можно считать практиески свободными.

Вертоятность Комптон эффекта сложно зависит от энергии гамма-квантов. В случае, когда энергия гамма-кванта много больше энергии покоя электрона:

$$\sigma_k = \pi r^2 \frac{mc^2}{\hbar\omega} \left(\ln \frac{2\hbar\omega}{mc^2} + \frac{1}{2} \right) \tag{7}$$

 $r \approx 2.8 \cdot 10^{-13} \; \mathrm{cm}$ - классический радиус электрона. Следует, что сечение комптон-эффекта с ростом энергии фотонов падает не так резко, как сечение фотоэффекта.

Сечение σ_k относится к одному свободному электрону, а сечение фотоэффекта рассчитано на атом. Значит комптоновское рассеяние становится в Z раз больше.

Комптоновский коэффициент линейного ослабления μ_k связан с сечением σ_k через плотность слабосвязанных электронов n:

$$\mu_k = \sigma_k \cdot n \tag{8}$$

Отметим, что эффект Комптона приводит не к поглащению, а к рассеянию гамма-кватнов.

2.3. Генерация электрон-позитронных пар

При энергиях γ -лучей, превышающих $2mc^2=1.02$ МэВ, становится возможен процесс образования электронпозитронных пар. Рождение пар происходит в эл. поле ядер, вероятность процесса $\sim Z^2$ и сложным образом зависит от энергии фотона.

При энергиях более 1.02 МэВ фотоэффект почти не играет роли даже для самых тяжелых ядер. Вероятность образования пар сравнительна с вероятностью комптоновского рассеяние. Рождение пар существенно только для самых тяжелых элементов. Для свинца вероятность рождения пар сравнивается с вероятностью комптоновского эффекта только при 4.7 МэВ.

2.4. Полный коэффициент ослабления

Полный линейный кожффициент μ равен сумме коэффициентов для всех трех рассмотренных процессов. На рис. 2

Рис. 2: Полные коэффициенты ослабления потока γ - лучей в алюминии, железе и свинце

МэВ	Коэффициент поглощения, 1/с					
Mian	Al	Fe	Pb			
0,1	0,459	2,930	63,000			
0,2	0,329	1,150	11,300			
0,3	0,281	0,866	4,570			
0,4	0,250	0,740	2,630			
0,5	0,288	0,662	1,830			
0,6	0,210	0,606	1,420			
0,7	0,196	0,563	1,170			
0,8	0,184	0,528	1,010			
0,9	0,175	0,498	0,891			
1,0	0,166	0,472	0,806			
1,1	0,158	0,450	0,740			
1,2	0,151	0,430	0,688			
1,3	0,145	0,413	0,648			
1,4	0,140	0,398	0,617			
1,5	0,135	0,384	0,592			
1,6	0,131	0,372	0,573			
1,7	0,127	0,362	0,556			
1,8	0,123	0,352	0,543			
1,9	0,120	0,343	0,532			
2,0	0,117	0,335	0,523			
2,1	0,114	0,328	0,515			
2,2	0,111	0,322	0,508			
2,3	0,109	0,316	0,503			
2,4	0,107	0,310	0,498			
2,5	0,104	0,306	0,494			
2,6	0,103	0,301	0,490			
2,7	0,101	0,296	0,487			
2,8	0,099	0,292	0,485			
2,9	0,097	0,289	0,482			
3,0	0,096	0,285	0,480			

Таблица 1: Коэффициент поглощения разных веществ

Получим формулу (1). Рассмотрим опыты в хорошей геометрии, когда γ - кванты выводит из пучка фото-электрическое поглощение, комптоновское рассеяние и генерация пар.

При прохождении через вещество меняется количество, а не энергия квантов в пучке, значит коэффициент μ не зависит от длины пути. Пусть -dN число гамма-квантов, выбывших из пучка на пути dl, это число пропорционально имеющемуся их числу N и пройденному пути dl:

$$-dN = \mu N dl \tag{9}$$

Интегрируем от нулевой толщины до заданной:

$$N = N_0 e^{-\mu l} \tag{10}$$

Получили ф-лу (1).

В плохой геометрии, когда рассеянные под небольшими углами кванты остаются в пучке эта формула не применима, однако, хорошо работает :).

Причина хорошего согласия в том, что гамма-кванты с энергие 1-2 МэВ, потерявшие энергию из-за комптоновского ослабления, быстро выбывают из пучка аз-за резкого увеличения сечений σ_{Φ} и σ_k . В данной работе коэффициент ослабления μ измеряектся в хорошей геометрии:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N} \tag{11}$$

3. Экспериметнальная установка

Схема установки показана на рис. 3 Свинцовый коллиматор выделяет узкий параллельный пучок гаммаквантов, проходящий через набор поглотителей Π . Сигналы от счетсчика усиливаются и регистрируются пересчетным приьором $\Pi\Pi$.

При недостаточно хорошей геометрии в результате опытов могут быть погрешности. В реальности всегда имеется вероятность, что гамма-квант провзаимодействует в поглатителе несколько раз до того, как попадет в детектор (рис. 4) Чтобы этого избежать сцинтилляционный счетсчик расположен на больом расстоянии от источника гамма-квантов, а полглотители имеют небольшие размеры, также поглотители следует размещать на небольшом расстоянии друг от друга.

Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей: И — источник γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей; С — сцинтиллятор — кристалл NaI(Tl); Φ — формирователь-выпрямитель

Рис. 3

Рис. 4: Схема рассеяния гамма-квантов в поглотителе

4. Ход работы

- 1) Включим пересчетный прибор и высоковольтный выпрямитель. Прогреем их.
- 2) Измерим скорость счета фона со свинцовой пробкой и без, она резко увеличилась как только убрали свинцовую пробку.Получили:

N, частиц	t, c	I, частиц/с
3011	300	10,04

3) Исследуем поглощение гамма-лучей в свинце, железе и алюминии, данные занесем в таблицы ($\sigma_{l_i} = 0,01$ см, $\sigma_N = \sqrt{N}$):

4) В опыте со свинцом также использовались пробки, изучим ее коэффициент поглощения:

l_i , см	N, частиц	N_0 , частиц	t, c	I, частиц/с	I_0 , частиц/с
2,98	459171	552550	30	15305,70	18418,33

Рассчитаем μ ($t_0 = t = 30$ с):

$$\mu = \frac{1}{l} \ln \frac{N_0}{N} = 0,06 \pm 0,001 \text{cm}^{-1}$$
(12)

$$\sigma_{\mu} = \sqrt{\left(\frac{\partial \mu}{\partial l}\right)^{2} \sigma_{l}^{2} + \left(\frac{\partial \mu}{\partial N_{0}}\right)^{2} \sigma_{N_{0}}^{2} + \left(\frac{\partial \mu}{\partial N}\right)^{2} \sigma_{N}^{2}}$$
(13)

5) Эксперимент со свинцом:

Свинец	N, частиц	$N_{ m безпробки},$ частиц	N-Nф, частиц	I, частиц/с	t, c	l_i , см	suml, см
1	514602	514602	511591	17053,03	30	0	0,00
2	251853	251853	248842	8294,73	30	0,45	0,45
3	126653	151449	148438	4947,94	30	0,49	0,94
4	111737	111737	108726	2174,52	50	0,48	1,42
5	85794	102591	99580	1422,57	70	0,47	1,89
6	76647	76647	73636	669,42	110	0,47	2,36
7	68546	81966	78955	464,44	170	0,49	2,85
8	46761	46761	43750	218,75	200	0,5	3,35
9	40369	48273	45262	150,87	300	0,5	3,85
10	26228	26228	23217	77,39	300	0,5	4,35

Таблица 2: Свинец

Рис. 5: Зависимость $\ln I(l) = \ln I_0 - l \cdot \mu$ для свинца

6) Эксперимент с алюминием:

Алюминий	N, частиц	N-Nф, частиц	I, частиц/с	t, c	l_i , см	suml, см
1	550330	547319	18243,97	30	0,00	0,00
2	420498	417487	10437,18	40	1,97	1,97
3	250709	247698	6192,45	40	2,00	3,97
4	235649	232638	3877,30	60	2,00	5,97
5	148731	145720	2428,67	60	1,99	7,96
6	113508	110497	1578,53	70	2,00	9,96
7	96376	93365	1037,39	90	1,97	11,93
8	70860	67849	678,49	100	2,01	13,94
9	47409	44398	443,98	100	2,01	15,95
10	35228	32217	322,17	100	2,00	17,95

Таблица 3: Алюминий

Рис. 6: Зависимость $\ln I(l) = \ln I_0 - l \cdot \mu$ для алюминия

7) Эксперимент с железом:

Железо	N, частиц	N-Nф, частиц	I, частиц/с	t, c	l_i , см	suml, см
1	7466706	7463695	186667,65	40	0,00	0,00
2	265900	262889	8863,33	30	1,01	1,01
3	177197	174186	4429,93	40	1,01	2,02
4	117172	114161	2343,44	50	1,00	3,02
5	89284	86273	1275,49	70	1,00	4,02
6	56897	53886	711,21	80	1,01	5,03
7	39823	36812	398,23	100	1,01	6,04
8	28317	25306	235,98	120	1,02	7,06
9	20887	17876	139,25	150	1,00	8,06
10	20485	17474	85,35	240	1,03	9,09

Таблица 4: Железо

Рис. 7: Зависимость $\ln I(l) = \ln I_0 - l \cdot \mu$ для железа

8) Для каждого вида поглотителей построим зависимость $\ln N(l) = \ln N_0 - l \cdot \mu$ на рис. 11, 5, 7: Откуда получим линейный коэффициент μ как тангенс угла наклона:

$$\mu_{Al} = (0.24 \pm 0.01) \text{ cm}^{-1}$$
 $\mu_{Pb} = (1.17 \pm 0.05) \text{ cm}^{-1}$
 $\mu_{Fe} = (0.65 \pm 0.01) \text{ cm}^{-1}$

По линейным коэффициентам рассчитаем коэффициенты μ' по ф-ле (1) следует, что: $\mu'=\frac{\mu\cdot l}{m_1}=\frac{\mu}{\rho}$

$$\begin{split} \mu'_{Al} &= (0.089 \pm 0.004) \text{cm}^2/\text{r}, \; \rho_{Al} = 2,70 \text{r/cm}^3 \\ \mu'_{Pb} &= (0.103 \pm 0.004) \text{cm}^2/\text{r}, \; \rho_{Pb} = 11,35 \text{r/cm}^3 \\ \mu'_{Fe} &= (0.083 \pm 0.001) \text{cm}^2/\text{r}, \; \rho_{Fe} = 7,87 \text{r/cm}^3 \end{split}$$

9) Определим среднюю энерегию гамма-квантов по таблице №1.

Рис. 8: Зависимость $\mu(E)$ для алюминия

$$E_{\gamma} \approx (0.48 \pm 0.05) \text{ МэВ}$$

Рис. 9: Зависимость $\mu(E)$ для свинца

Рис. 10: Зависимость $\mu(E)$ для свинца

$$E_{\gamma} pprox (0,68 \pm 0,05) \; \mathrm{M}$$
эВ

Рис. 11: Зависимость $\mu(E)$ для железа

11)

 $E_{\gamma} \approx (0, 50 \pm 0, 05) \; \mathrm{M}$ эВ

12) Тогда получим

$$\overline{E_{\gamma}} \approx 0,55 \pm 0.09 \,\mathrm{M}$$
эВ

, σE рассчитали по формуле стандартного отклонения.

5. Вывод

В данной работе мы с помощью сцинтилляционного счетсчика измерили линейные коэффициенты ослабления потока γ - лучей в свинце, железе и алюмини; определили среднюю энергию гамма-лучей, излучаемых источником.