ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΑΘΗΣΗΣ

Ακαδημαϊκό Έτος 2020-2021

3ο Σετ Ασκήσεων

Φώτιος-Παναγιώτης	Μπασαμάκης	1046975

ΠΡΟΒΛΗΜΑ 1:

Έχω μια μεταβλητή ομοιόμορφα κατανεμημένη στο διάστημα [0, 1] καθώς και 1000 υλοποιήσεις της συγκεκριμένης μεταβλητής. Για αυτό το λόγο γνωρίζω θεωρητικά ότι η συνάρτηση πυκνότητας πιθανότητας της θα είναι η εξής:

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & 0 < x \circ x > 1 \end{cases}$$

Σκοπός μου είναι να προσεγγίσω αυτή τη συνάρτηση πυκνότητας πιθανότητας με πυρήνες kernel.

Αρχικά γνωρίζουμε ότι η συνάρτηση dirac δ(χ) έχει τις παρακάτω ιδιότητες:

- $\int \Phi(x)\delta(x)dx = \Phi(0)$
- $\int \delta(x) dx = 1$
- $f(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$

Αναζητώ μια συνάρτηση η οποία προσεγγίζει την δ(χ) και έτσι ορίζω τον πυρήνα Kernel

$$K(x,h)=g\left(\frac{x}{h}\right)\left(\frac{1}{h}\right)$$
 όπου προσεγγίζει την $\delta(\chi)$ όταν το h τείνει στο 0

Λαμβάνοντας υπόψη τις παρακάτω ιδιότητες:

$$\int \Phi(x)\delta(x-x0)dx = \Phi(x0)$$

$$\frac{G(x1,y) + G(x2,y) + \dots + G(x_N,y)}{N} = E_X[G(X,y)]$$

(Όπου $E_X[G(X,y)]$ ο μέσος όρος που προσεγγίζεται από την παραπάνω σχέση λόγω νόμου των μεγάλων αριθμών)

Η συνάρτηση πυκνότητας πιθανότητας προσεγγίζεται μέσω των πυρήνων ως εξής:

$$f'(y) = \int f'(x)\delta(x - y)dx = \int f'(x)K(x - y, h)dx = E_X[K(x - y, h)]$$

Όπου τελικά

$$f'(x) = \frac{K(x - x1, h) + K(x - x2, h) + \dots + G(x - x_N, h)}{N}$$

Βάση λοιπόν της παραπάνω λογικής αναπτύχθηκε κώδικας στο matlab για προσέγγιση της συνάρτησης πυκνότητας πιθανότητας χρησιμοποιώντας τον παρακάτω πυρήνα kernel

$$K(x,h) = \frac{1}{\sqrt{2\pi h}} e^{-\frac{1}{2h}x^2}.$$

Τα αποτελέσματα για διάφορες τιμές του h είναι τα εξής:

h = 0.001

gaussian

h = 0.01

gaussian

h = 0.1

gaussian

Παρατηρώ ότι όσο μικραίνει το h τόσο πιο γρήγορα ανεβαίνει η συνάρτηση στο 0 και πέφτει στο 1 αλλά ταλαντώνεται στην μέγιστη τιμή της ενώ για μεγαλύτερα h η μέγιστη τιμή είναι περισσότερο σταθερή.

ПРОВАНМА 2:

α) Για να χρησιμοποιήσω το Representer Theorem ορίζω την γραμμική θήκη Ω (span{z1,z2,..,zn}) η οποία είναι γραμμικός υπόχωρος του V και αποτελείται από στοιχεία που είναι γραμμικοί συνδυασμοί των z1,z2,...zn.

Έστω επίσης ότι υπάρχει x το οποίο δεν ανήκει στον Ω αλλά ανήκει στο V. Θέλω να βρω έναν αντιπρόσωπο του x τον \dot{x} στο Ω .

Προφανώς $\dot{x}=a_1z_1+\cdots+a_nz_n$ και $(x-\dot{x})$ Πρέπει να είναι κάθετο στο Ω (ώστε το \dot{x} να είναι το διάνυσμα με την μικρότερη απόσταση από το x από όλα τα διανύσματα του Ω). Αυτό σημαίνει ότι το εσωτερικό γινόμενο $< x-\dot{x}, y>=0$ Με y να είναι όλα τα διανύσματα που ανήκουν στον Ω .

Αν το παραπάνω εσωτερικό γινόμενο είναι 0 για $y=(z_1\dots z_n)$ τότε μπορώ να θεωρήσω το \dot{x} σαν αντιπρόσωπο του \dot{x} στο Ω .

Αντίστοιγα με τις συναρτήσεις $\Phi(x)$ και $\Phi'(x)$ θα έχω:

$$\Phi(x) = a_1 K(x, z_1) + \dots + a_n K(x, z_n)$$

$$\Phi'(x) = b_1 K(x, x_1) + \dots + b_n K(x, x_n)$$
 όπου χ $1, \dots$,χ n οι υλοποιήσεις που έχω.

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΑΘΗΣΗΣ

Το K(x,y) ονομάζεται πυρήνας mercer και είναι μια θετικά ορισμένη συνάρτηση.

Το εσωτερικό γινόμενο των παραπάνω 2 συναρτήσεων είναι:

$$<\Phi(x)-\Phi'(x),K(x,x,)>=0$$

Επίσης ισχύει ότι:

$$\Phi(x) = \sum_{i=1}^{n} a_i K(x, z_i)$$

$$<\Phi(x), K(x, x_0)> = \sum_{i=1}^n a_i K(x, x_i) K(x, x_0) = \sum_{i=1}^n a_i K(x_i, x_0) = \Phi(x_0)$$

Και με χρήση αυτών η σχέση του εσωτερικού γινόμενου των συναρτήσεων γίνεται

$$<\Phi(x), K(x,x_t)> = <\Phi'(x), K(x,x_t)>\delta\eta\lambda. \ \Phi(x_t)=\Phi'(x_t)$$

Αρα μπορώ αντί για το $\Phi(x_l)$ να αντικαθιστώ με τον αντιπρόσωπο του στο υπόχωρο Ω του V που περιέχει μόνο γραμμικούς συνδυασμούς.

Στην συνάρτηση $\Phi'(x)$ έχω άγνωστους μόνο τους συντελεστές a_i οπότε αν παραγωγίσω ως προς αυτούς μπορώ να λύσω γραμμικό σύστημα για να τους υπολογίσω.

β) Για τον όρο $\|\Phi(x)\|^2$ ισχύει ότι:

$$\|\Phi(x)\|^2 = \|\Phi(x) + \Phi'(x) - \Phi'(x)\|^2 = \|\Phi(x)\|^2 + \|\Phi(x) - \Phi'(x)\|^2 + 2 < \Phi(x) - \Phi'(x), \Phi'(x) >$$

Το παραπάνω εσωτερικό γινόμενο όμως είναι 0 (αρχή ορθογωνιότητας) διότι τα διανύσματα είναι κάθετα μεταξύ τους (αφού το $\Phi'(x)$ ανήκει στον Ω και $\Phi(x)-\Phi'(x)$ είναι κάθετο στον Ω)

Αρά προκύπτει ότι:

 $\|\Phi(x)\|^2 \ge \|\Phi'(x)\|^2$ που σημαίνει ότι μπορώ να αντικαταστήσω το $\Phi(x)$ με $\Phi'(x)$ και στον τελευταίο όρο του προβλήματος βελτιστοποίησης και πλέον έχω μόνο να βρω τους συντελεστές .

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΑΘΗΣΗΣ

Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πάτρας ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΑΘΗΣΗΣ