Гамма-функция $\Gamma(z)$

Определение (интеграл Эйлера)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \quad \Rightarrow \quad \Gamma(z+1) = z\Gamma(z).$$

Асимптотическая формула (Стирлинг)

$$ln(\Gamma(z)) = (z - \frac{1}{2})ln(z) - z + \frac{1}{2}ln(2\pi) + \sum_{k=1}^{\infty} \frac{B_{2k}}{2k(2k-1)} \frac{1}{z^{2k-1}},$$

где
$$B_{2k}$$
 — числа Бернулли:

$$B_2 = \frac{1}{6};$$
 $B_4 = -\frac{1}{30};$ $B_6 = \frac{1}{42};$ $B_8 = -\frac{1}{30};$ $B_{10} = \frac{5}{66};$ $B_{12} = -\frac{691}{2730};$ $B_{14} = \frac{7}{6};$ $B_{16} = -\frac{3617}{510}.$

Факториал и формула симметрии

$$\Gamma(n) = (n-1)!; \qquad \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)} \quad \Rightarrow \quad \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

График функции $\Gamma(x)$

Задание:

- **1** Запрограммировать функцию $\Gamma(z)$:
 - ullet для z>9.5 вычисления по асимптотической формуле Стирлинга;
- ullet для $z\leqslant 9.5$ использовать соотношение: $\Gamma(z)=\Gamma(z+1)/z$.
- ② Проверить правильность вычислений для частных случаев: $\Gamma(10) = 9! = 362880$ и $\Gamma(1/2) = \sqrt{\pi} = 1.77245385090551603$.
- **③** Напечатать таблицу: переменная n, значение n!, $\Gamma(n+1)$, относительная ошибка вычисления $\Gamma(n+1)$
- Напечатать таблицу проверки формулы симметрии: переменная z, значение $\Gamma(z)\Gamma(1-z)$, значение $\pi/\sin(\pi z)$, относительная ошибка вычисления; $z \in [-0.95; +0.95]$ с шагом 0.1.

Примеры таблиц приведены на следующем слайде.

Примеры таблиц:

n	n!	Gamma(n+1)	(eps)
1	1	1.00000000000000	133 (-1.332e-15)

2

2

-0.95 -20.08248407907978716 -20.08248407907972635 (-3.028e-15) -0.85 -6.91995241176217490 -6.91995241176217700 (3.028e-16)

Gamma(z)*Gamma(1-z) pi/sin(pi*z) (eps)

