Math 25, Homework 5, October 27, 2008

- 1. Show that if a, b, c are positive integers with $b \mid c$, then $a^b 1 \mid a^c 1$.
- 2. Show that if p is an odd prime then $(4^p 1)/3$ is a composite integer.
- 3. Show that if p > 3 is prime, then $(4^p 1)/3$ is a base 2 pseudoprime.
- 4. More generally show that if $b \ge 2$ is an integer and p is an odd prime that does not divide $b^2 1$, then $(b^{2p} 1)/(b^2 1)$ is a base b pseudoprime.
- 5. Prove that 1 is the only odd value of Euler's function.
- 6. Prove that if n is a positive integer with $n \not\equiv 0 \pmod{4}$, then there is some integer $m \not\equiv n$ with $\varphi(m) = \varphi(n)$. (It is unknown if this holds for all positive integers n; it is conjectured that it does.)
- 7. Compute $\varphi(n)$ for n = 999, 1000, and 1001.
- 8. Rebecca asked if $\varphi(n^2) = n\varphi(n)$ holds for every positive integer n and I replied that it does. Was I right?
- 9. For a positive integer n, define $\operatorname{rad}(n)$ as the product of the different primes that divide n. For example, $\operatorname{rad}(72) = 6$. Prove that $\varphi(m)/m = \varphi(n)/n$ if and only if $\operatorname{rad}(m) = \operatorname{rad}(n)$.