Particle Physics & Cosmology Physics 457 at University of Michigan

EVAN CARPENTER

Winter Semester 2022

Jan 5	Lecture 1: First Dayp.	2
Jan 7	Lecture 2: Second Dayp.	2
	Lecture 3: Finishing Special Relativityp.	
Jan 14	Lecture 4: Matter particlesp.	2
	Lecture 5: Quark Confinementp.	
Jan 15	p.	_

Lecture 1. (Jan 5) First Day

eV is energy required to move 1 e^- through 1 V

We can set $c, \hbar, k_B = 1$ A result of that is being able to describe all quantities in terms of energies or inverse energies.

Lecture 2. (Jan 7) Second Day

eV are a thng

Natural units are thing

Dimension	SI	Planck	Natural
Energy	$1.602 \times 10^{-10} \text{ J}$	1 GeV	1 GeV
Mass	$1.783 \times 10^{-27} \text{ kg}$	$1 \text{ GeV}/c^2$	1 GeV
Momentum	$5.33 \times 10^{-19} \text{ kg*m/s}$	1 GeV/c	1 GeV
Distance	$1.973 \times 10^{-16} \text{ m}$	ħc GeV	$1~\mathrm{GeV^{-1}}$
Time	$5.33 \times 10^{-19} \text{ kg*m/s}$	$1 \; \mathrm{GeV/c}$	$1~{\rm GeV^{-1}}$
Mass Density	$2.322 \times 10^{20} kg/m^3$		1 GeV^4

Table 1: Units

Proper time is Δt_0 with the clock at rest in that frame

Time dilation is $\Delta t = \gamma \Delta t_0$ in the frame

Proper length is Δx_0 with the clock at rest in that frame

Length Contraction is $\Delta x = \Delta x_0/\gamma$ in the frame

Lecture 3. (Jan 12) Finishing Special Relativity

Invariant vs constant and how they are different.

Different relationships for beta and gamma

Lorentz transform in matrix form as boost.

E from beam at target and from two beams: pros and cons of cost and statistics and max energy.

Lecture 4. (Jan 14) Matter particles

Stable particles! Proton is only quark combo that's stable! Possibly make baryon template for Tikz? Baryon has odd number of valence (?) quarks

Lecture 5. (Jan 19) Quark Confinement

Quark model 1960s

Gluons predicted in late 1970s

hadrons are made of quarks, either baryons or mesons

Baryons are 3 quark bound states, baryon $\# \pm 1$, proton is lightest

Mesons have quark antiquark bound states, B=0

protons have mass from energy stored in gluon fields, higgs is mass for small mass like e^- (< 2%)

words