

UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA CENTRO UNIVERSITARIO DE JALAPA FACULTAD DE INGENIERIA

Alumno/a: Carlos Roberto Reyes González	Carné: 0907-22-12053
---	----------------------

Asignatura:	Sistemas Operativos I	Código:	0907-029	Semestre:	Segundo
Ciclo:	Sexto			Toron 4	
Catedrático: Ing. M.A. Samuel de Jesús García		Tarea 1			

Introducción a los Sistemas Operativos

Responde los ítems que se le presentan a continuación.

- 1. 5 definiciones de que es un Sistema Operativo
- 2. Diferencia entre procesadores x86 y x64
- 3. Arquitectura Von Neumann y Arquitectura Hardvard
- 4. Procesadores actuales (Tecnología, Fabricante, Velocidad, Arquitectura, etc.)
- 5. Procesadores CISC y Procesadores RISC
- 6. Ranuras de expansión, tarjetas y puertos
- 7. Sistemas Operativos para computadoras personales dominantes
- 8. Sistemas Operativos para móviles dominantes
- 9. Memoria Principal y Memoria Secundaria
- 10. Memoria RAM (Tecnología, Fabricante, Velocidad, Arquitectura, etc.)

Ing. M.A. Samuel de Jesús García Docente de Sistemas Operativos I

El programa que oculta al programador la verdad acerca del hardware y presenta una visión bonita y sencilla de ficheros con nombre que se pueden leer y en los que se puede escribir, es por supuesto, el sistema operativo. (Andrew S. Tanenbaum)

5 definiciones de que es un Sistema Operativo

- Un sistema operativo es un software que actúa como intermediario entre el hardware de un ordenador
 y los programas que se ejecutan en él, gestionando los recursos del sistema como la CPU, la memoria
 y los dispositivos de entrada/salida.
- Un sistema operativo es responsable de la gestión de los procesos en un sistema informático, asignando tiempo de CPU y recursos de manera eficiente para asegurar que múltiples aplicaciones puedan ejecutarse simultáneamente sin conflictos.
- El sistema operativo proporciona una estructura de archivos y directorios para almacenar, organizar y
 acceder a los datos en los dispositivos de almacenamiento, facilitando la lectura, escritura y
 manipulación de archivos.
- Un sistema operativo ofrece una interfaz de usuario, ya sea gráfica o de línea de comandos, que permite a los usuarios interactuar con el ordenador y ejecutar aplicaciones de manera fácil y eficiente.
- El sistema operativo implementa medidas de seguridad para proteger los datos y recursos del sistema contra accesos no autorizados, garantizando la integridad, confidencialidad y disponibilidad de la información almacenada.

Diferencia entre procesadores x86 y x64

1. Arquitectura y Tamaño de Registro:

x86: Esta arquitectura, también conocida como IA-32, es de 32 bits. Los procesadores x86 tienen registros de 32 bits, lo que significa que pueden manejar direcciones de memoria y datos de hasta 32 bits a la vez.

x64: También conocida como x86-64 o AMD64, esta arquitectura es de 64 bits. Los procesadores x64 tienen registros de 64 bits, permitiendo manejar direcciones de memoria y datos de hasta 64 bits.

2. Capacidad de Memoria:

x86:Los procesadores x86 pueden direccionar hasta 4 GB de memoria RAM debido a su límite de 32 bits (2^32 direcciones posibles).

x64: Los procesadores x64 pueden direccionar una cantidad mucho mayor de memoria RAM, teóricamente hasta 16 exabytes (2^64 direcciones), aunque las limitaciones prácticas son menores y dependen del sistema operativo y la placa base.

3. Rendimiento:

x86: Puede ser adecuado para tareas y aplicaciones que no requieren un uso intensivo de memoria o procesamiento, y es compatible con sistemas operativos y software más antiguos.

x64: Ofrece un mejor rendimiento en aplicaciones y tareas que requieren un uso intensivo de memoria y procesamiento, como la edición de video, juegos modernos, y software de desarrollo y simulación.

4. Compatibilidad de Software:

x86: Los sistemas operativos y aplicaciones de 32 bits están diseñados específicamente para procesadores x86.

x64: Los procesadores x64 son compatibles con software tanto de 64 bits como de 32 bits. Sin embargo, los sistemas operativos de 64 bits solo pueden ejecutar software de 64 bits y aplicaciones de 32 bits con ciertos modos de compatibilidad.

5. Uso en Sistemas Modernos:

x86: Actualmente, los procesadores x86 se encuentran más comúnmente en dispositivos más antiguos o en aplicaciones específicas donde las limitaciones de 32 bits no son un problema.

x64: La mayoría de los procesadores modernos en PCs, servidores y estaciones de trabajo son x64, ya que ofrecen mayores capacidades y rendimiento en comparación con los procesadores x86.

Arquitectura Von Neumann y Arquitectura Hardvard

Von Neumann

- Memoria Unificada: Utiliza una sola memoria para almacenar tanto los datos como las instrucciones del programa.
- **Bus Único**: Existe un único bus para la transferencia de datos e instrucciones, lo que puede provocar cuellos de botella en el rendimiento.
- Secuencialidad: Las operaciones se realizan de manera secuencial, siguiendo el ciclo de búsquedadecodificación-ejecución.
- Flexibilidad: Más flexible y común en computadoras generales debido a su simplicidad en diseño y programación.

Arquitectura Hardvard

- Memoria Separada: Tiene memorias distintas para datos e instrucciones, permitiendo acceso simultáneo y paralelo a ambos.
- Buses Separados: Dos buses independientes para datos e instrucciones, mejorando el rendimiento y la eficiencia.
- Uso Específico: Común en sistemas embebidos y aplicaciones donde la velocidad y la eficiencia son críticas.
- Rigidez: Menos flexible que Von Neumann, ya que es más complejo modificar o actualizar los programas almacenados.

Procesadores actuales

Intel Core i9-13900K

• **Tecnología**: Tecnología Intel 7 (10nm)

• Fabricante: Intel

Velocidad: 3.0 GHz (base) - 5.8 GHz (turbo)

• **Arquitectura**: x86-64 (Alder Lake)

Núcleos/Hilos: 24 núcleos (8 P-cores + 16 E-cores) / 32 hilos

• **Cache**: 36 MB (L3)

 Uso Principal: Computadoras de escritorio de alto rendimiento, juegos, y aplicaciones intensivas en CPU

AMD Ryzen 9 7950X

Tecnología: 5nmFabricante: AMD

Velocidad: 4.5 GHz (base) - 5.7 GHz (turbo)

Arquitectura: x86-64 (Zen 4)

• Núcleos/Hilos: 16 núcleos / 32 hilos

• **Cache**: 64 MB (L3)

• Uso Principal: Computadoras de escritorio de alto rendimiento, creación de contenido, y juegos

Apple M2

Tecnología: 5nmFabricante: Apple

• Velocidad: No especificada en GHz, se enfoca en rendimiento por watt

• Arquitectura: ARM (Apple Silicon)

• **Núcleos/Hilos**: 8 núcleos (4 de alto rendimiento y 4 de alta eficiencia)

• Cache: 16 MB (L2)

• Uso Principal: MacBooks, iMacs, y otros dispositivos Apple

Qualcomm Snapdragon 8 Gen 2

Tecnología: 4nm

• Fabricante: Qualcomm

Velocidad: 3.2 GHz (prime core)

• Arquitectura: ARM

Núcleos/Hilos: 8 núcleos (1 Prime Cortex-X3 + 4 Performance Cortex-A715 + 3 Efficiency Cortex-A510)

• Cache: No especificada en detalle

• Uso Principal: Smartphones y tablets de gama alta

IBM Power10

Tecnología: 7nmFabricante: IBM

Velocidad: Hasta 4.0 GHzArquitectura: Power ISA

Núcleos/Hilos: Hasta 15 núcleos por chip, 8 hilos por núcleo

Cache: 120 MB (L3)

• Uso Principal: Servidores empresariales y sistemas de alta performance

Procesadores CISC y Procesadores RISC

Procesadores CISC(Complex Instruction Set Computing)

- Características: Tienen un conjunto de instrucciones muy amplio y complejo, donde cada instrucción puede realizar múltiples operaciones a nivel de hardware.
- Ejemplo: Intel x86
- Ventaja: Puede ejecutar operaciones complejas con una sola instrucción, reduciendo la cantidad de instrucciones que el programa necesita.
- Desventaja: Mayor consumo de energía y complejidad en la decodificación de instrucciones.

Procesadores RISC (Reduced Instruction Set Computing)

- Características: Tienen un conjunto de instrucciones reducido y simplificado, optimizado para ejecutar cada instrucción en un solo ciclo de reloj.
- **Ejemplo**: ARM

- Ventaja: Mayor eficiencia y velocidad al ejecutar instrucciones, menor consumo de energía y menor complejidad en la arquitectura.
- **Desventaja**: Necesita más instrucciones para realizar tareas complejas en comparación con CISC.

Ranuras de expansión, tarjetas y puertos

Las ranuras de expansión son conectores en la placa base que permiten añadir tarjetas adicionales para ampliar las capacidades del sistema. Los tipos más comunes incluyen:

- 1. **PCI (Peripheral Component Interconnect)**: Utilizado para conectar tarjetas de expansión como tarjetas de red, de sonido, y antiguamente, de vídeo.
- 2. **PCI Express (PCIe)**: Una versión más rápida y moderna de PCI, con variantes como x1, x4, x8, y x16, siendo la x16 la más común para tarjetas gráficas. Permite velocidades mucho mayores y se utiliza en la mayoría de los PCs modernos.

Tarjetas de Expansión

Las tarjetas de expansión se insertan en las ranuras de expansión para añadir funcionalidad adicional al sistema. Ejemplos comunes incluyen:

- 1. **Tarjeta Gráfica**: Mejora la capacidad de procesamiento de gráficos, esencial para juegos, diseño gráfico y aplicaciones de video.
- 2. **Tarjeta de Sonido**: Proporciona una mejor calidad de audio en comparación con el sonido integrado de la placa base.
- 3. Tarjeta de Red: Añade o mejora la capacidad de conexión a redes Ethernet o Wi-Fi.
- 4. Tarjeta de Expansión USB: Añade puertos USB adicionales al sistema.
- 5. **Tarjeta Controladora de Almacenamiento**: Permite la conexión de discos duros y SSDs adicionales mediante interfaces como SATA o NVMe.

Puertos

Los puertos son interfaces en la placa base o en las tarjetas de expansión que permiten conectar dispositivos externos. Los puertos más comunes incluyen:

- 1. USB (Universal Serial Bus):
 - o **USB 2.0**: Hasta 480 Mbps
 - o **USB 3.0/3.1/3.2**: Hasta 5-20 Gbps
 - USB-C: Conector reversible, compatible con diferentes estándares de velocidad y suministro de energía.
- 2. **HDMI (High-Definition Multimedia Interface)**: Transfiere video y audio de alta definición a monitores, televisores y proyectores.
- 3. **DisplayPort**: Similar a HDMI, utilizado principalmente en monitores y tarjetas gráficas.
- 4. Ethernet (RJ-45): Conexión de red cableada, común en tarjetas de red y placas base.
- 5. Audio (3.5mm Jack): Conexión para auriculares, micrófonos y altavoces.
- 6. **Thunderbolt**: Protocolo de alta velocidad que combina PCIe y DisplayPort en un solo puerto, también compatible con USB-C.
- 7. VGA (Video Graphics Array): Conector analógico de video, menos común en dispositivos modernos.
- 8. **DVI (Digital Visual Interface)**: Conector de video digital, aún presente en algunos monitores y tarjetas gráficas.

Sistemas Operativos para computadoras personales dominantes

Microsoft Windows

- Versión Actual: Windows 11
- Características: Interfaz gráfica de usuario avanzada, compatibilidad con una amplia gama de hardware y software, características de seguridad integradas, y soporte para aplicaciones empresariales y de entretenimiento.
- Ventajas: Amplio soporte de software, gran base de usuarios, facilidad de uso, y compatibilidad con hardware diverso.
- Desventajas: Vulnerabilidades de seguridad más frecuentes, costo de licencia.

macOS

- Versión Actual: macOS Ventura
- **Características**: Interfaz gráfica de usuario elegante, alta integración con otros dispositivos Apple, estabilidad y seguridad, y optimización para hardware de Apple.
- Ventajas: Excelente experiencia de usuario, seguridad robusta, buen rendimiento y soporte técnico de Apple.
- **Desventajas**: Restricciones de hardware (solo disponible en dispositivos Apple), costo elevado.

Linux

- Distribuciones Populares: Ubuntu, Fedora, Debian, Mint
- Características: Código abierto, alta personalización, estabilidad y seguridad, y soporte para una amplia variedad de aplicaciones.
- **Ventajas**: Gratuito, altamente configurable, menor consumo de recursos, y comunidad activa de soporte.
- **Desventajas**: Curva de aprendizaje más pronunciada, menor compatibilidad con algunos software y hardware comerciales.

Chrome OS

- Características: Basado en el kernel de Linux, diseñado para trabajar principalmente con aplicaciones web y servicios en la nube, interfaz de usuario sencilla y rápida.
- Ventajas: Rápido arranque y rendimiento, integración con servicios de Google, seguridad robusta.
- **Desventajas**: Dependencia de la conexión a Internet, menor soporte para aplicaciones fuera del ecosistema de Google.

Sistemas Operativos para móviles dominantes

Android

- Desarrollador: Google
- Características: Basado en el kernel de Linux, altamente personalizable, soporte para una amplia gama de aplicaciones a través de Google Play Store, integración con servicios de Google.
- **Ventajas**: Gran flexibilidad y personalización, amplia compatibilidad con dispositivos de diversos fabricantes, ecosistema robusto de aplicaciones.
- **Desventajas**: Fragmentación de versiones, mayor riesgo de malware y problemas de seguridad.

- Desarrollador: Apple
- **Características**: Exclusivo para dispositivos Apple (iPhone, iPad), interfaz de usuario intuitiva, integración profunda con el ecosistema de Apple, alto nivel de seguridad y privacidad.
- **Ventajas**: Experiencia de usuario coherente y optimizada, alto nivel de seguridad, soporte prolongado y rápido de actualizaciones.
- **Desventajas**: Menor personalización en comparación con Android, disponibilidad limitada a dispositivos Apple, costo generalmente más alto de los dispositivos.

Memoria Principal y Memoria Secundaria

Memoria Principal (RAM)

- **Función**: Almacena datos e instrucciones que la CPU necesita acceder rápidamente. Es volátil, lo que significa que pierde su contenido cuando se apaga el sistema.
- **Tipos Comunes**: DRAM (Dynamic RAM), SDRAM (Synchronous DRAM), DDR (Double Data Rate SDRAM).
- Características:
 - Velocidad: Muy rápida en comparación con la memoria secundaria.
 - o Volatilidad: Pierde su contenido al apagar el equipo.
 - Uso: Almacena temporalmente datos y programas en ejecución, permitiendo un acceso rápido por parte de la CPU.

Memoria Secundaria

- **Función**: Almacena datos y programas de forma permanente. Es no volátil, por lo que retiene los datos incluso cuando el sistema está apagado.
- **Tipos Comunes**: HDD (Disco Duro), SSD (Unidad de Estado Sólido), unidades ópticas (CD/DVD/Bluray), y unidades de cinta.
- Características:
 - o **Capacidad**: Generalmente mucho mayor que la memoria principal.
 - o **Velocidad**: Más lenta en comparación con la memoria principal.
 - o **Volatilidad**: Retiene los datos cuando el equipo está apagado.
 - Uso: Almacena el sistema operativo, aplicaciones, y datos del usuario de manera permanente.

Comparación entre ambas:

- Velocidad: Memoria Principal (RAM) es mucho más rápida que la Memoria Secundaria.
- Volatilidad: Memoria Principal es volátil; Memoria Secundaria es no volátil.
- Capacidad: Memoria Secundaria tiene mayor capacidad de almacenamiento que la Memoria Principal.
- **Costo**: La Memoria Principal es más cara por gigabyte en comparación con la Memoria Secundaria.

Memoria RAM

Tecnología

- DDR (Double Data Rate):
 - DDR3: Utiliza una arquitectura de 8n-prefetch, consume menos energía que DDR2.
 Velocidades típicas: 800 2133 MHz.
 - DDR4: Mejor eficiencia energética y mayor velocidad que DDR3. Velocidades típicas: 2133 -3200 MHz (y más en overclocking).
 - DDR5: La más reciente, con mejoras significativas en ancho de banda y eficiencia energética.
 Velocidades típicas: 4800 MHz y superiores.

Fabricantes

- Corsair: Conocido por su alta calidad y módulos de alto rendimiento, especialmente populares entre los entusiastas y gamers.
- **Kingston**: Ofrece una amplia gama de módulos de memoria, conocidos por su fiabilidad y soporte a largo plazo.
- Crucial: Una marca de Micron, ofrece módulos de memoria que equilibran precio y rendimiento.
- **G.Skill**: Reconocida por sus módulos de alta velocidad y bajo latencia, popular entre los overclockers.
- Samsung: Principal fabricante de chips de memoria, también produce módulos completos de alta calidad.

Velocidad

- **Frecuencia**: La velocidad de la RAM se mide en MHz, e indica cuántos ciclos puede completar por segundo. Ejemplos comunes:
 - o **DDR3**: 800 2133 MHz
 - o **DDR4**: 2133 3200 MHz (y más)
 - o **DDR5**: 4800 MHz y superiores
- Latencia: Los timings, como CL (CAS Latency), indican el retraso en ciclos de reloj entre la solicitud y la disponibilidad de los datos. Latencias más bajas son preferibles.

Arquitectura

- DIMM (Dual Inline Memory Module): El tipo de módulo de memoria estándar para PCs de escritorio.
- **SO-DIMM (Small Outline DIMM)**: Versión más compacta utilizada en laptops y algunos sistemas compactos.
- **ECC (Error-Correcting Code)**: Memoria que puede detectar y corregir errores de datos, utilizada en servidores y estaciones de trabajo para mayor fiabilidad.
- Non-ECC: Memoria estándar sin capacidades de corrección de errores, común en PCs de consumo.

Otros Aspectos

- Capacidad: Se mide en gigabytes (GB). Los módulos comunes varían de 4 GB a 32 GB por módulo, y las configuraciones totales pueden ser mucho mayores.
- Canales: La mayoría de los sistemas modernos soportan memoria de doble canal (dual-channel), que mejora el rendimiento al permitir que dos módulos trabajen simultáneamente. También existen configuraciones de triple y cuádruple canal.
- **Perfil XMP (Extreme Memory Profile)**: Tecnología de Intel que permite configuraciones de overclocking fáciles y automáticas para RAM compatible.