Lecture 2

Simple Linear Regression I

Reading: Chapter 11

STAT 8020 Statistical Methods II August 23, 2019

> Whitney Huang Clemson University

Notes

Agenda

- Announcements
- What is regression analysis
- Simple Linear Regression

N	0	te	S

Announcements

 Syllabus and lecture notes are in Canvas and my personal website (link:

https://whitneyhuang83.github.io/ stat8020_2019Fall.html)

• Academic Continuity Statement is added in the updated syllabus (link:

https://whitneyhuang83.github.io/ STAT8010_Syllabus_2019_Fall.pdf)

• Please talk to me if you would like to share your data set to be used for this class

Notes			

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Notes

Simple linear regression

Notes			

Scatterplot: Is Linear Trend Reasonable?

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *X* and *Y*:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- We will need to estimate β_0 (intercept) and β_1 (slope)
- Then we can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our uncertainty regarding the linear relationship

Regression equation: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

N١	0+00	

Notes

Assumptions about ε

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $\bullet \ \operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and }$$

 $\mathrm{Var}[Y_i] = \sigma^2$

The regression line $\beta_0+\beta_1 x$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Simple Linear Regression I
CLEMS N
Simple Linear Regression

Notes			

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$$

Solving the above minimization problem requires some knowledge from Calculus....

- $\hat{\beta}_{1,LS} = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{(X_i \bar{X})^2}$
- $\bullet \ \hat{\beta}_{0,\mathrm{LS}} = \bar{Y} \hat{\beta}_{1,\mathrm{LS}} \bar{X}$

We also need to **estimate** σ^2

 $\bullet \ \hat{\sigma}_{\text{LS}}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}, \text{ where } \hat{Y}_i = \hat{\beta}_{0,\text{LS}} + \hat{\beta}_{1,\text{LS}} X_i$

No

Notes

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_{1,LS}] = \beta_1; E[\hat{\beta}_{0,LS}] = \beta_0$
 - $\bullet \ \mathrm{E}[\hat{\sigma}_{\mathsf{LS}}^2] = \sigma^2$
 - 4 Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Notes

2.11

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **(a)** Compute the estimate for σ

Regression I
CLEMS N
Simple Linear Regression

Notes			

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Notes

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where
$$\hat{Y}_i = \hat{\beta}_{0,LS} + \hat{\beta}_{1,LS} X_i$$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $\bullet \ E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Notes

Residual Analysis

Announcements
What is regression analysis
Simple Linear
Regression

Notes

Residual Analysis

Notes

Summary

In this lecture, we learned

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
 Next time we will talk about
- More on residual analysis
- ② Normal Error Regression Model and statistical inference for $\beta_0,\,\beta_1,\,{\rm and}\,\,\sigma^2$
- Prediction

Notes			

ľ	otes			
-				
_				
-				