Word Embeddings

Nils Reimers

Course-Website: www.deeplearning4nlp.com

Possible Representations for Words

- Many NLP systems regards words as atomic symbols
- In vector terms, this is a vector with one 1 and a lot of zeros:

Its problem:

Hotel
$$[1 \ 0 \ 0 \ 0]$$
 AND Motel $[0 \ 1 \ 0 \ 0] = 0$

- Machine learning systems cannot derive useful information from this 1hot representation
 - Impossible to keep-up with synonyms and new words

Distributional Hypothesis

- Words that occur in the same contexts tend to have similar meanings (Harris, 1954)
- One of the most successful ideas in modern NLP
- Hugely boost the performance if used correctly
- Idea: Count the co-occurrence of tokens:

Co-occurence Matrix

Create a matrix of the co-occurences for all words

	word1	word2	word3	word4	word5	word6	word7
word1	0	2	0	3	5	0	1
word2		0	1	5	2	0	3
word3			0	1	0	0	1
word4				0	6	0	1

Problems:

- Increases with the size of vocabulary
- High dimensional requires a lot memory
- Subsequent steps have sparsity issues

Solution:

Use dimensionality reduction to store only the most important information

Low Dimensionality Representation of Words

Representation Learning for Words Word2vec - CBOW

CBOW

- Word2vec (Mikolov et al.): Instead of creating co-occurrence matrix, create low-dimensional vectors directly
- Highly efficient for large corpora (>100 TB)

CBOW-Model:

- Given the surrounding words, try to predict word: w(t)
- Idea: score(cat chills on a mat) > score(cat chills French a mat)
- Maximize the distance between on and French for the given phrase
- Result: Similar words are close, dissimilar words are far apart in vector space

Mikolov et al., 2013

Representation Learning for Words

Word2vec - Skip-Gram

- Given center word w(t), try to predict context words w(t-2), ..., w(t+2)
- Usually works better than CBOW
- What a context word is, can be quite arbitrarily:
 - Words to the left & right of the word
 - Dependency relations
 - Relations in FreeBase / WikiData etc.
- Different contexts create different embeddings
 - Which is most suitable depends on the task

Mikolov et al., 2013

Representation of Words

Syntactic and semantic properties are captured in this vector space

King - Man + Woman = Queen

Representation of Words

9

Representation of Words

Representation of Sentences

Sentences can be represented as well as a dense vector space

11

How Powerful are Dense Representations?

- Google Neural Machine Translation system learned a lingua franca
- Similar sentences are mapped to the same area independent of the language
- Allows translating between unseen language pairs!
- Otherwise 10.000 bilingual corpora would be need for supporting 103 languages

Source: https://research.googleblog.com/2016/11/zero-shottranslation-with-googles.html

Embeddings & Deep Learning

- Word vectors form the basis of most deep learning approaches
- They provide basic knowledge about the meaning
- Neural Networks are able to propagate information into them
 - Linear models like naïve bayes / SVM cannot do that
- The quality of the embeddings has huge effect on the performance
- Quality of embeddings depends on:
 - Dataset (quality & quantity)
 - Pre-processing & cleaning of the dataset
 - Definition of the context words
 - Hyperparameters
- The algorithm (word2vec, GloVe) is often of minor importance

