

Dataset

Goals

EDA

Models

Artist-based

Song-based

Conclusions

Andrea Cioffi

Michele Di Sabato

Francesco Pascuzzi

Chiara Schembri

Statistics behind Spotify A nonparametric approach to music

NPS Project • 2021-2022

Dataset

Goals

EDA

Models

Artist-based

-Song-based

Conclusions

DATASET DESCRIPTION

TECHNICAL FEATURES

- Key **(C)**
- Mode (C)
- Tempo (Beats Per Minute)
- Duration (Milliseconds)
- Loudness (Decibels)

MOOD

- Danceability (F)
- Energy (F)
- Valence (F)

SOUND RECOGNITION

- Speechiness (F)
- Instrumentalness (F)
- Liveness (F)
- Acousticness (F)

Dataset

Goals

EDA

Models

-Artist-based

-Song-based

Conclusions

GOALS

Our goal is to help new and upcoming artists to broad their audience and get more visibility. This analysis could also help both the Spotify platform and record labels to find new talents.

Which features of a song should an artist emphasize to get to the top?

Is it possible to support content decision makers with data-driven insights? (as Netflix is already doing)

Dataset

Goals

EDA

Models

-Artist-based

-Song-based

Conclusions

EXPLORATORY DATA ANALYSIS

Dataset

Goals

EDA

Models

Artist-based

Song-based

Conclusions

DD-Plot of the distributions of continuous features & Top 3 Principal Components

• most popular

• least popular

Goals

EDA

Models

-Artist-based

Song-based

Conclusions

TWO APPROACHES

ARTIST - BASED

CLUSTERING
GAM + MIXED EFFECTS

DIFFERENCE IN DIFFERENCES (DiD)

GAM

Dataset

Goals

EDA

Models

-Artist-based

└Song-based

Conclusions

ARTIST-BASED MODEL

Dendrogram of Hierarchical clustering with Ward's linkage and euclidean distance

- Average features for Kanye West
- Average features for AC/DC
- Average features for Mozart

CLUSTERING ARTISTS
BASED ON THEIR
AVERAGE FEATURES

Dataset

Goals

EDA

Models

-Artist-based

LSong-based

Conclusions

Dataset

Goals

EDA

Models

-Artist-based

└Song-based

Conclusions

ARTIST-BASED MODEL

$$y_i = f(x_{1i}) + f(x_{2i}) + f(x_{3i}) + x_{4i} + x_{5i} + \varepsilon_i$$

 $y_i = popularity$

 $x_{1i} := excess popularity$

 $x_{2i} \coloneqq general\ popularity$

 $x_{3i} := duration (min)$

 $x_{4i} \coloneqq groups (derived by our cluster)$

 $x_{5i} \coloneqq featuring (1 if multiple artists)$

Derived from a PCA on **artist popularity** and **followers (log)**, both scaled:

- *excess popularity*: difference between popularity and followers
- *general popularity*: sum of the two

Dataset

Goals

EDA

Models

-Artist-based

LSong-based

Conclusions

ARTIST-BASED GAM

GOODNESS OF FIT

 $R^2 = 71.5\%$

 \bigcirc MAE on test set = 7.3

FEATURE

Duration
General Pop.
Excess Pop.

Groups

Featuring

PERM P-VAL

0.017 <2e-16 <2e-16 <2e-16 0.003

-lome

Dataset

Goals

EDA

Models

-Artist-based

└Song-based

Conclusions

MIXED RANDOM EFFECTS

$$y_{ij} = f(x_{1ij}) + f(x_{2ij}) + f(x_{3ij}) + f(x_{4ij}) + \alpha_j + \varepsilon_{ij} \quad \forall i = 1, ..., n_j$$

 $x_{1ij} \coloneqq duration \ of \ song \ \emph{\emph{i}} \ in \ group \ \emph{\emph{j}} \ (in \ minutes)$ $x_{2ij} \coloneqq excess \ popularity \ of \ song \ \emph{\emph{i}} \ in \ group \ \emph{\emph{j}}$ $x_{3ij} \coloneqq general \ popularity \ of \ song \ \emph{\emph{i}} \ ingroup \ \emph{\emph{j}}$ $\alpha_j \coloneqq group \ specific \ random \ intercept \sim \mathcal{N}(0, \sigma_{groups}^2)$ $\varepsilon_{ij} \coloneqq gaussian \ error \sim \mathcal{N}(0, \sigma^2)$

Dataset

Goals

EDA

Models

-Artist-based

Song-based

Conclusions

SONG-BASED MODEL

$$y_i = f(x_{1i}) + f(x_{2i}) + f(x_{3i}) + f(x_{4i}) + \varepsilon_i$$

 $x_{1i} \coloneqq energy$

 $x_{2i} := duration (min)$

 $x_{3i} := danceability$

 $x_{4i} := valence$

 $y_i := difference in popularity$

Original popularity

Normalized popularity

Goals

EDA

Models

Artist-based

Song-based

Conclusions

SONG-BASED GAM

Generalized Additive Model with **standardized** popularity

GOODNESS OF FIT

 $R^2 = 3.6\%$

MAE on test set = 1.17

Goals

EDA

Models

Artist-based

Song-based

Conclusions

CONCLUSIONS

OUR ANALYSIS POINTED OUT:

• POPULARITY OF A SONG IS STRONGLY RELATED TO THE ARTIST

- THERE ARE SOME SIGNIFICANT FEATURES, BUT THEY ARE NOT
- SUFFICIENT TO PREDICT THE POPULARITY

- A NETFLIX APPROACH FOR PREDICTING THE POPULARITY OF A SONG
- MIGHT BE UNFEASIBLE

Goals

EDA

Models

Artist-based

-Song-based

Conclusions

REFERENCES

- Spotify API
- https://developer.spotify.com/documentation/web-api/
- Supporting content decision makers with machine learning
- Netflix Technology Blog, <u>link</u>
- A Nonstochastic Interpretation of Reported Significance Levels (1983)
- Freedman D., Lane D., Journal of Business & Economic Statistics, 1:4, 292-298
- Practical variable selection for generalized additive models (2011)
- Marra G., Wood S., Computational Statistics & Data Analysis, 55(7), 2372-2387
- Mgcv package documentation
- https://cran.r-project.org/web/packages/mgcv/mgcv.pdf#page=201
- Introduction to linear mixed effect models, UCLA
- https://stats.oarc.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/