MTH 372

Hw 6

Due Thursday, 10/28/2021.

Read Chapters 12,13 of *Huber*.

p.83 #12.2 Suppose I choose $N \sim \text{Unif}(\{1,2\})$. Then I roll N dice independently and identically distributed as $\text{Unif}(\{1,2,3,4,5,6\})$ and sum them to get S. That is,

 $[S|N=1] = X_1, \quad [S|N=2] = X_1 + X_2.$ Or more compactly, $[S|N] = \sum_{i=1}^{N} X_i.$

- (a) What is the probability S = 4?
- (b) What is the probability S = 7?
- (c) Find the pmf of $S, p_S(i)$ for $i \in \{1, 2, ..., 12\}$.
- (d) Find E[S] from $p_S(i)$.
- (e) Find E[S] from the Fundamental Theorem of Probability.
- #12.4 Lisa and Bart go spelunking in a cave, and unfortunately, soon get lost. Each time they try to find the exit, they have a 20% chance of finding the exit in an hour, a 45% of returning back to where they started after an hour, and a 35% of returning back to where they started after three hours.
 - (a) What is the chance that they find their way out after exactly four hours?
 - (b) What is the chance that they find their way out after exactly eight hours?
- (c) What is the expected amount of time they spend in the cave? (Hint: Use the "Fundamental Theorem".)
- #12.6 The probability p of success for an experiment is modeled as uniform over [0.4, 0.5]. Then 27 independent trials of the experiment are run. What is the expected number of successes?

p.90 #13.2 (modified) Suppose (X, Y) has pmf $p_{X,Y}(x, y) = (x^3 + y^2)/150$ for $X \in \{1, 2, 3\}$ and $Y \in \{1, 2, 3\}$.

- (a) Find the marginal pmf's $p_X(x)$ and $p_Y(y)$.
- (b) Find E[XY].
- (c) True or false?: $E(XY) = E(X) \cdot E(Y)$.
- 13.3 (modified) Suppose (X, Y) has joint pmf

$$p_{X,Y}(x,y) = \frac{x}{9\sqrt{y}} \mathbf{1}(x \in \{1,2,3\}) \mathbf{1}(y \in \{1,4\})$$

- (a) Prove that X and Y are independent.
- (b) What is P(X = 2)? What is P(Y = 4)?

13.K Let $X \sim \text{Unif}(\{1, 2, 3, 4\})$ and $Y \sim \text{Unif}(\{1, ..., X\})$.

(In words, X is chosen uniformly from 1,2,3,4, then Y is chosen uniformly from the numbers from 1 up to Y).

- (a) Write in table form the joint pmf $p_{X,Y}(x,y)$.
- (b) Find the marginal pmf $p_Y(y)$, and use it to compute E(Y).
- (c) Find E(Y) by another method, using the "Fundamental Theorem of Probablity."