Machine learning in the cloud with Amazon Web Services

Miami Machine Learning Meetup - 2/8/18

https://github.com/rikturr/aws-ml-experimenter

About Me

- Aaron Richter
- Data Scientist, PhD Student

- ** We're hiring!
 - modmed.com/careers

Agenda

- The cloud?
- AWS concepts (acronyms galore!)
- AWS account setup (walkthrough)
- Run models! (Jupyter)
- aws-ml-experimenter (production)

- Ease of use
 - No hardware to deal with
- Scalability
 - Instances with dozens of CPUs and hundreds of GBs of memory
- Cost
 - Pay for usage
 - (I spent \$1.55 preparing for this talk)

Back to search results for "tesla k80"

Roll over image to zoom in

HP

HP J0G95A NVIDIA Tesla K80 - GPU computing processor - 2 GPUs - Tesla K80 - 24 GB GDDR5 - PCI Express 3.0 x16 - fanless

↑ 11 customer reviews | 5 answered questions

Price: \$2,699.99 & FREE Shipping

Item is eligible: No interest if paid in full within 12 months with the Amazon.com Store Card.

Note: Not eligible for Amazon Prime.

Only 3 left in stock - order soon.

Get it as soon as Feb. 6 - 8 when you choose **Expedited Shipping** at checkout.

Ships from and sold by SabrePC in easy-to-open packaging.

Service: Get professional installationDetails

Without expert installation

Include installation +\$76.39

P2

P2 instances are intended for general-purpose GPU compute applications.

Features:

- High frequency Intel Xeon E5-2686 v4 (Broadwell) processors
- High-performance NVIDIA K80 GPUs, each with 2,496 parallel processing cores and 12GiB of GPU memory
- Supports GPUDirect™ for peer-to-peer GPU communications
- Provides Enhanced Networking using Elastic Network Adapter (ENA) with up to 25 Gbps of aggregate network bandwidth within a Placement Group
- EBS-optimized by default at no additional cost

Model	GPUs	vCPU	Mem (GiB)	GPU Memory (GiB)
p2.xlarge	1	4	61	12
p2.8xlarge	8	32	488	96
p2.16xlarge	16	64	732	192

https://aws.amazon.com/ec2/instance-types/

GPU Instances - Current Generation

p2.xlarge	4	12	61	EBS Only	\$0.9 per Hour
p2.8xlarge	32	94	488	EBS Only	\$7.2 per Hour
p2.16xlarge	64	188	732	EBS Only	\$14.4 per Hour

https://aws.amazon.com/ec2/pricing/

AWS

- Elastic Compute Cloud (EC2)
 - Instance types/pricing: on-demand vs. spot
 - Amazon Machine Images (AMI)
 - Storage: EBS volumes
 - Networking/Security: Availability zones, VPC, subnets, security groups
 - Key pairs

AWS

- Simple Storage Service (S3)
 - Object storage
- Identity and Access Management (IAM)
 - Users, groups (people)
 - Roles (services)
 - Policies (permissions)

AWS account setup - notebook

- Create AWS account
- Create S3 bucket
- Setup IAM role (for EC2 to access S3)
- Launch EC2 instance from AWS Console
 - Download key file!
- Open ports in security group: SSH 22, Tensorboard 6006
- SSH onto instance and launch Jupyter

Code time!

ssh -i <PEM> -L 8000:localhost:8000 ec2-user@<HOST>
jupyter notebook --no-browser -port=8000

https://towardsdatascience.com/setting-up-and-using-jupyter-notebooks-on-aws-61a9648db6c5

AWS account setup - production

- · Install AWS CLI (pip install awscli)
- Create user with S3 and EC2 access
 - IAM pass role
- Configure credentials locally (region us-east-1)
- CyberDuck for nice S3

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

More code!

https://github.com/rikturr/aws-ml-experimenter

Resources + Extra Stuff

- Good intro article: https://www.dataquest.io/blog/
 introduction-to-aws-for-data-scientists/
- Boto3 Python package: https://github.com/boto/boto3
- Amazon SageMaker: https://aws.amazon.com/sagemaker/
- Pywren: http://pywren.io/
 - AWS Lambda: https://aws.amazon.com/lambda/

Thank you!

- Aaron Richter
- Data Scientist, PhD Student

- ** We're hiring!
 - modmed.com/careers