Notas de aula de Lógica para Ciência da Computação

Daniel Oliveira Dantas

11 de setembro de $2020\,$

Sumário

1	A li	nguagem da lógica proposicional	1
2	A s	emântica da lógica proposicional	3
3	Pro	priedades semânticas da lógica proposicional	5
	3.1	Propriedades semânticas	5
	3.2	Relações entre propriedades semânticas	6
	3.3	Relações semânticas entre os conectivos da lógica proposicional .	7
	3.4	Formas normais na lógica proposicional	8
	3.5	Exercícios	8
4	Mé	todos semânticos de dedução na lógica proposicional	11
	4.1	Introdução	11
	4.2	Método da tabela verdade	11
	43	Método da árvore semântica	19

A linguagem da lógica proposicional

Capítulo 1 de Souza, Lógica para Ciência da Computação [1].

- Alfabeto: o alfabeto da Lógica Proposicional é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - \bullet Símbolos proposicionais: A B C P Q R A₁ A₂ A₃ a b c . . .
 - Conectivos proposicionais: $\sim \lor \land \rightarrow \leftrightarrow$
- Fórmula: as fórmulas da linguagem da lógica proposicional são construídas a partur dos símbolos do alfabeto conforme as regras a seguir:
 - Todo símbolo de verdade é uma fórmula.
 - Todo símbolo proposicional é uma fórmula.
 - Se H é fórmula, $\sim H$ é fórmula.
 - \bullet Se H e Gsão fórmulas, $(H\vee G),\,(H\wedge G),\,(H\to G)$ e $(H\leftrightarrow G)$ são fórmulas.
- Fórmulas mal formadas: são fórmulas não obtidas da definição anterior.
- Ordem de precedência:
 - ullet \sim
 - ullet $\rightarrow \leftrightarrow$ $A \rightarrow B \leftrightarrow C$ possui duas interpretações.
 - ^
 - \

- Comprimento de uma fórmula:
 - Se H é um símbolo proposicional ou de verdade, comp(H) = 1.
 - Se H é fórmula, $comp(\sim H) = comp(H) + 1$.
 - \bullet Se He Gsão fórmulas:
 - $\circ \operatorname{comp}(H \vee G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$

— Subfórmulas:

- \bullet H é subfórmula de H.
- Se $H = \sim G$, G é subfórmula de H.
- Se H é uma fórmula do tipo $(G \vee E)$, $(G \wedge E)$, $(G \to E)$ ou $(G \leftrightarrow E)$, então G e E são subfórmulas de H.
- \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.

A semântica da lógica proposicional

Capítulo 2 de Souza, Lógica para Ciência da Computação [1].

- Função: é uma relação entre dois conjuntos que associa cada elemento do conjunto de entrada a um único elemento do conjunto de saída
- Função binária: é uma função em que seu contradomínio possui apenas dois elementos
- Interpretação I é uma função binária tal que:
 - \bullet O domínio de I é constituído pelo conjunto de fórmulas da lógica proposicional.
 - O contradomínio de I é o conjunto $\{T, F\}$.
 - I(true) = T, I(false) = F.
 - Se P é um símbolo proposicional, $I(P) \in \{T, F\}$.
- Interpretação de fórmulas: dadas uma fórmula E e uma interpretação I, o significado ou interpretação de E, denotado por I(E), é determinado pelas regras:
 - Se E=P, onde P é um símbolo proposicional, então I(E)=I(P), onde $I(P)\in\{T,F\}.$
 - Se E = true, então I(E) = I(true) = T.
 - Se E = false, então I(E) = I(false) = F.
 - Seja H uma fórmula, se $E = \sim H$ então:
 - $\circ I(E) = I(\sim H) = T \Leftrightarrow I(H) = F.$
 - $\circ I(E) = I(\sim H) = F \Leftrightarrow I(H) = T.$

- Sejam H e G duas fórmulas, se $E = (H \vee G)$ então: • I(H) = T e/ou $I(G) = T \Leftrightarrow I(E) = I(H \vee G) = T$. • I(H) = F e $I(G) = F \Leftrightarrow I(E) = I(H \vee G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \land G)$ então: • I(H) = T e $I(G) = T \Leftrightarrow I(E) = I(H \land G) = T$. • I(H) = F e/ou $I(G) = F \Leftrightarrow I(E) = I(H \land G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \to G)$ então: • I(H) = T então $I(G) = T \Leftrightarrow I(E) = I(H \to G) = T$. • I(H) = F e/ou $I(G) = T \Leftrightarrow I(E) = I(H \to G) = T$. • I(H) = T e $I(G) = F \Leftrightarrow I(E) = I(H \to G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \leftrightarrow G)$ então: • $I(H) = I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = T$. • $I(H) \neq I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = F$.

Propriedades semânticas da lógica proposicional

Capítulo 3 de Souza, Lógica para Ciência da Computação [1].

3.1 Propriedades semânticas

— Tautologia: uma fórmula H é tautologia ou válida se e somente se (sse) para toda interpretação I

$$I(H) = T$$

— Satisfatibilidade: uma fórmula H é satisfatível ou factível se e somente se (sse) existe pelo menos uma interpretação I tal que

$$I(H) = T$$

— Contingência: uma fórmula H é uma contingência se e somente se (sse) existem interpretações I e J tais que

$$I(H) = T \in J(H) = F$$

— Contradição: uma fórmula H é contraditória se e somente se (sse) para toda interpretação I

$$I(H) = F$$

— Implicação: dadas duas fórmulas H e G, $H \vDash G$ (H implica G) sse para toda interpretação I

se
$$I(H) = T$$
 então $I(G) = T$

— Equivalência: dadas duas fórmulas H e G, H equivale a G sse para toda interpretação I

$$I(H) = I(G)$$

— Dada uma fórmula H e uma interpretação I, dizemos que I satisfaz H se

$$I(H) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é satisfatível sse existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é insatisfatível sse não existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

3.2 Relações entre propriedades semânticas

— Proposição 3.1: seja H uma fórmula,

H é tautologia $\Rightarrow H$ é satisfatível.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ existe interpretação I tal que $I(H) = T \Leftrightarrow H$ é satisfatível. ■
- Proposição 3.3: seja H uma fórmula,

H é tautologia $\Rightarrow H$ não é contingência.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ não existe interpretação I tal que $I(H) = F \Leftrightarrow H$ não é contingência. \blacksquare
- Proposição 3.4: seja H uma fórmula,

Hé contingência $\,\Rightarrow\, H$ é satisfatível.

- Demonstração: H é contingência \Leftrightarrow existem interpretações I e J tais que I(H) = T e J(H) = F \Rightarrow existe interpretação I tal que I(H) = T \Leftrightarrow H é satisfatível. ■
- Proposição 3.5: seja H uma fórmula,

H é tautologia $\Leftrightarrow \sim H$ é contraditória.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ para toda interpretação I, $I(\sim H) = F \Leftrightarrow \sim H$ é contraditória.
- Proposição 3.7: sejam $H \in G$ duas fórmulas,

H equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia.

- Demonstração: H equivale a G ⇔ para toda interpretação I, I(H) = I(G) ⇔ para toda interpretação I, $I(H \leftrightarrow G) = T \Leftrightarrow (H \leftrightarrow G)$ é tautologia. \blacksquare
- Proposição 3.8: sejam H e G duas fórmulas,

H implica $G \Leftrightarrow (H \to G)$ é tautologia.

• Demonstração: H implica $G \Leftrightarrow \text{para toda interpretação } I$, se I(H) = T então $I(G) = T \Leftrightarrow \text{para toda interpretação } I$, $I(H \to G) = T \Leftrightarrow (H \to G)$ é tautologia. \blacksquare

3.3 Relações semânticas entre os conectivos da lógica proposicional

- Conjunto de conectivos completo: o conjunto de conectivos ψ é dito completo se é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas os conectivos de ψ .
 - O conectivo \rightarrow pode ser expresso com $\{\sim, \lor\}$:

$$(P \to Q) \equiv (\sim P \lor Q)$$

 \bullet O conectivo \wedge pode ser expresso com $\{\sim,\vee\}$:

$$(P \land Q) \equiv \sim (\sim P \lor \sim Q)$$

• O conectivo \leftrightarrow pode ser expresso com $\{\sim, \lor\}$:

$$(P \leftrightarrow Q) \equiv \sim (\sim (\sim P \lor Q) \lor \sim (\sim Q \lor P))$$

— O conjunto $\{\sim, \lor\}$ é completo, pois é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas $\{\sim, \lor\}$.

- Proposição 3.15 (regra da substituição): sejam G, G', H e H' fórmulas da lógica proposicional tais que:
 - \bullet G e H são subfórmulas de G' e H' respectivamente.
 - G' é obtida de H' da substituição de H por G em H'.

$$G \equiv H \Rightarrow G' \equiv H'$$

- Definição: o conectivo NAND $(\bar{\wedge})$ é definido por $(P \bar{\wedge} Q) \equiv \sim (P \wedge Q)$.
 - O conectivo \sim pode ser expresso com $\{\overline{\wedge}\}$:

$$(\sim P) \equiv (P \bar{\wedge} P)$$

• O conectivo \vee pode ser expresso com $\{\overline{\wedge}\}$:

$$(P \lor Q) \equiv ((P \overline{\land} P) \overline{\land} (Q \overline{\land} Q))$$

3.4 Formas normais na lógica proposicional

- Literais: um literal na lógica proposicional é um símbolo proposicional ou sua negação.
- Forma normal: dada uma fórmula H da lógica proposicional, existe uma fórmula G, equivalente a H, que está na forma normal. Forma normal é uma estrutura de fórmula pré-definida.
 - Forma normal disjuntiva (FND): é uma disjunção (\vee) de conjunções (\wedge).
 - Forma normal conjuntiva (FNC): é uma conjunção (∧) de disjunções (∨).
- Obtenção de formas normais:
 - FND:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é t.
 - o Para cada linha selecionada, faça a conjunção (\land) de todos os símbolos proposicionais cuja interpretação é T com a negação dos símbolos proposicionais cuja interpretação é F.
 - ∘ Faça a disjunção (∨) das fórmulas obtidas no passo anterior.
 - FNC:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é F.
 - \circ Para cada linha selecionada, faça a disjunção (\lor) de todos os símbolos proposicionais cuja interpretação é F com a negação dos símbolos proposicionais cuja interpretação é T.
 - ∘ Faça a conjunção (∧) das fórmulas obtidas no passo anterior.

— Exemplo: encontre a FND e a FNC da fórmula $((P \to Q) \land R)$.

P	Q	R	$P \rightarrow Q$	$(P \to Q) \land R$	FND	FNC
\overline{T}	T	T	T	T	$P \wedge Q \wedge R$	
T	T	F	T	F		$\sim P \lor \sim Q \lor R$
T	F	T	F	F		
T	F	F	F	F		$\sim P \vee Q \vee R$
F	T	T	T	T	$\sim P \wedge Q \wedge R$	
F	T	F	T	F		$P \lor \sim Q \lor R$
F	F	T	T	T	$\sim P \land \sim Q \land R$	
F	F	F	T	F	-	$P \lor Q \lor R$

- FND: $(P \land Q \land R) \lor (\sim P \land Q \land R) \lor (\sim P \land \sim Q \land R)$
- FNC: $(\sim P \lor \sim Q \lor R) \land (\sim P \lor Q \lor \sim R) \land (\sim P \lor Q \lor R) \land (P \lor \sim Q \lor R) \land (P \lor Q \lor R)$

3.5 Exercícios

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee P$
 - (b) $((\sim \sim P \lor Q) \leftrightarrow (P \to Q)) \land true$
 - (c) $P \to ((Q \to R) \to ((P \to R) \to (P \to R)))$
 - (d) $((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$
 - (e) $\sim (P \rightarrow \sim P)$
- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $(P \rightarrow \wedge true)$
 - (b) $(P \wedge Q) \rightarrow ((Q \leftrightarrow P) \lor \sim \sim R)$
 - (c) $\sim \sim P$
 - (d) $\vee Q$
 - (e) $(P \lor Q) \to ((Q \leftrightarrow R))$
 - (f) PQR
 - (g) $A \sim$
- Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.
 - (a) $I(P \land Q) = T \Leftrightarrow I(\sim (\sim P \lor \sim Q)) = T$
 - (b) $I(P \land Q) = F \Leftrightarrow I(\sim (\sim P \lor \sim Q)) = F$
 - (c) $I(P \wedge Q) = T \Leftrightarrow I(\sim P \lor \sim Q) = F$

- (d) $I(P \to Q) = F \Leftrightarrow I(\sim P \lor Q) = F$
- (e) $I(P \to Q) = T \Leftrightarrow I(\sim P \lor Q) = T$
- (f) $I(P \to Q) = F \Leftrightarrow I(P \land \sim Q) = T$
- 4. Seja $H=(P\to Q)$ e I uma interpretação.
 - (a) Se I(H) = T, o que se pode concluir a respeito de I(P) e I(Q)?
 - (b) Se I(H) = T e I(P) = T, o que se pode concluir a respeito de I(Q)?
 - (c) Se I(Q) = T, o que se pode concluir a respeito de I(H)?
 - (d) Se I(H) = T e I(P) = F, o que se pode concluir a respeito de I(Q)?
 - (e) Se I(Q) = F e I(P) = T, o que se pode concluir a respeito de I(H)?
- 5. Seja Iuma interpretação tal que $I(P \leftrightarrow Q) = T.$ O que se pode concluir a respeito de:
 - (a) $I(\sim P \land Q)$
 - (b) $I(P \lor \sim Q)$
 - (c) $I(Q \to P)$
 - (d) $I((P \wedge R) \leftrightarrow (Q \wedge R))$
 - (e) $I((P \vee R) \leftrightarrow (Q \vee R))$
- 6. Repita o exercício anterior considerando $I(P \leftrightarrow Q) = F$.
- 7. Sejam H e G as fórmulas indicadas a seguir. Identifique, justificando sua resposta, os casos em que H implica G.
 - (a) $H = (P \wedge Q), G = P$
 - (b) $H = (P \vee Q), G = P$
 - (c) $H = (P \lor \sim Q), G = false$
 - (d) H = false, G = P
 - (e) H = P, G = true
- 8. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) Proposição 3.6: H não é satisfatível $\Leftrightarrow H$ é contraditória.
 - (b) H é satisfatível $\Leftrightarrow H$ não é contraditória.
 - (c) $\sim H$ é tautologia $\Leftrightarrow H$ é contraditória.
 - (d) H não é tautologia $\Leftrightarrow H$ é contraditória.

Métodos semânticos de dedução na lógica proposicional

Capítulo 4 de Souza, Lógica para Ciência da Computação [1].

4.1 Introdução

— Validade de fórmulas: uma fórmula é válida s
se todas as suas interpretações são iguais a V.

4.2 Método da tabela verdade

- Método da tabela verdade: é um método exaustivo, ou seja, enumera todas as possibilidades. A desvantagem é que, se houver muitos símbolos proposicionais, a tabela fica muito grande.
- Exemplo: seja $H = \sim (P \wedge Q) \leftrightarrow (\sim P \vee \sim Q)$, demonstre que H é uma tautologia usando o método da tabela verdade.

P	Q	$\sim P$	$\sim Q$	$(P \wedge Q)$	$\sim (P \wedge Q)$	$(\sim P \lor \sim Q)$	H
\overline{T}	T	F	F	T	F	F	\overline{T}
T	F	F	T	F	T	T	T
F	T	T	F	F	T	T	T
F	F	T	T	F	T	T	T

4.3 Método da árvore semântica

- Método da árvore semântica: é um método que permite a verificação da validade de uma fórmula sem ser exaustivo. A depender da fórmula, pode ser possível obter a resposta sem verificar todas as interpretações possíveis.
- Exemplo: seja $H=\sim (P\wedge Q)\leftrightarrow (\sim P\vee \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	\sim	(P	\wedge	Q)	\leftrightarrow	$(\sim$	P	\vee	\sim	Q)
2		T				F	T			
3	T	F	F		T	T	F	T		
4	F	T	T	T	T	F	T	F	F	\overline{T}
5	T	T	\overline{F}	F	T	F	T	T	T	\overline{F}

— Exemplo: seja $H=(P\vee\sim Q)\leftrightarrow (\sim P\to\sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	P	\vee	\sim	Q)	\leftrightarrow	$(\sim$	P	\rightarrow	\sim	Q)
2	T	T			T	F	T	T		
3	F					T	F			
4	F	F	F	T	T	T	F	F	F	T
5	F	T	T	F	T	T	F	T	T	F

Referências Bibliográficas

[1] João Nunes de Souza. Lógica para Ciência da Computação e Áreas Afins. Campus-Elsevier, Brasil, 1 edition, 2014.