Tutorial Sheet 6

Polynomial Interpolation - Week 1

1. Let x_0, x_1, \dots, x_n be distinct nodes. If p(x) is a polynomial of degree less than or equal to n, then show that

$$p(x) = \sum_{i=0}^{n} p(x_i)l_i(x),$$

where $l_i(x)$ is the i^{th} Lagrange polynomial.

2. Given distinct nodes x_0, x_1, \ldots, x_n , for $n \ge 1$, show that

$$\sum_{k=0}^{n} l_k(x) = 1,$$

where $l_k(x)$ denotes the k^{th} Lagrange polynomial.

3. Given distinct nodes $x_0, x_1, ..., x_n$, for $n \ge 1$, let

$$L(x) = \prod_{i=0}^{n} (x - x_i), \ x \in [a, b].$$

For each $k = 0, 1, \ldots, n$, show that

$$l_k(x) = \frac{L(x)}{(x - x_k)L'(x)}, \ x \in [a, b],$$

where $l_k(x)$ is the k^{th} Lagrange polynomial for the given nodes.

4. Using Lagrange form of interpolating polynomial for the function $g(x) = 3x^2 + x + 1$, express the rational function

$$f(x) = \frac{3x^2 + x + 1}{(x - 1)(x - 2)(x - 3)}$$

as a sum of partial fractions.

5. Find the Lagrange form of interpolating polynomial $p_2(x)$ that interpolates the function $f(x) = e^{-x^2}$ at the nodes $x_0 = -1$, $x_1 = 0$ and $x_2 = 1$. Further, find the value of $p_2(-0.75)$ (use 6-digit rounding arithmetic). Compare the value with the true value f(-0.75) (use 6-digit rounding arithmetic). Find the percentage error in this calculation.

6. Construct the divided difference table for the data

x	-3	-1	0	3	5
f(x)	-30	-22	-12	330	3458

Find the Newton form of interpolating polynomial for the above data and use the interpolating polynomial to get an approximate value of f(2.5).

7. Let x_0, x_1, \dots, x_n be distinct nodes, and f be a given function on \mathbb{R} . Define $w(x) = \prod_{i=0}^{n} (x - x_i)$. Prove that

$$f[x_0, x_1, \dots, x_n] = \sum_{i=0}^n \frac{f(x_i)}{w'(x_i)}.$$