Geometry is the art of correct reasoning from incorrectly drawn figures.

Henri Poincaré

Circumference = $2\pi R$ Area = πR^2

A circle is set of all those points that are at a constant distance from a fixed point.

The fixed point is its Centre and fixed distance is its radius.

Fun: A circle is just a round straight line with a hole in the middle.

Chord: A chord is a line segment whose endpoints lie on the circle.

Diameter: The diameter is the chord passing through the centre of the circle.

Secant: It is a line that intersects the circle in two distinct points.

Tangent: It is a line in the plane of the circle, which has one and only one point common with the circle.

Radius is always perpendicular to the tangent.

Arc length =
$$\frac{\theta}{360} \times 2\pi r$$

Area of sector =
$$\frac{\theta}{360} \times \pi r^2$$

Perimeter of sector = 2r+ Arc length = $2r + \frac{\theta}{360} \times 2\pi r$

Area of Segment = Area of sector- Area of triangle

$$=\frac{\theta}{360}\times\pi r^2-\frac{1}{2}r^2Sin\theta$$

Where θ is angle at the center

 $OM \perp AB$ then AM = BM

Reverse: \bot bisector of a chord passes through the center of the circle.

Equal chords are equidistant from the center and reverse is also true.

If OA = OB then PQ = RS

Or

If PQ = RS then OA = OB.

Chord closer to the center is longer.

If OA> OB then RS > PQ and reverse is also true.

Equal equal arcs subtend equal angles at the centre and reverse is also true.

If
$$\angle AOB = \angle COD$$
 then $arc(AB) = arc(CD)$

Problem: In the circle shown in the figure the length of the arc ACB is 3 times the length of the arc AB. What is the length of the line segment AB?

Arc length AB =
$$\frac{1}{4} \times 2\pi R$$

Arc length ACB =
$$\frac{3}{4} \times 2\pi R$$

3×Angle subtended by arc AB at center = Angle subtended by arc ACB at center

Therefore ∠AOB=90

Triangle AOB is 45, 45, 90.

Sides are 3,3, $3\sqrt{2}$

$$AB = 3\sqrt{2}$$

Two tangents from a point outside circle

The two Triangles APO and BPO are Congruent

Problem: AB = 20cm, CD = 15cm, BC = 17cm then find AD, if a circle is inscribed in a Quadrilateral ABCD.

AB = 20cm, CD = 15cm, BC = 17cm then find AD, if a circle is inscribed in a Quadrilateral ABCD

AP & AS are 2 tangents from the same point and therefore

$$AP = AS$$

Similarly

$$BP = BQ$$
, $CQ = CR & RD = DS$

$$AB+CD = a+b+c+d$$

$$BC+AD=a+b+c+d$$

Sum of opposite sides is same.

$$AB+CD = BC+AD$$

$$20+15 = 17+AD$$

$$\Rightarrow$$
 AD = 18 cm

If PBA is a secant intersecting the circle at A and B, and PC is a tangent, then $PA \times PB = PC^2$.

When the angle stands on the diameter, what is the size of angle a?

The diameter is a straight line so the angle at the centre is 180°

Angle a = 90°

"The angle in a semi-circle is a Right Angle"

Problem: Find the maximum area of a quadrilateral which is inscribed in a circle of radius 8cm?

Find the maximum area of a quadrilateral which is inscribed in a circle of radius 8cm

Note: When a polygon is inscribed in a circle its area is maximum when it is a regular polygon.

Therefore, this quadrilateral should be Square.

Angle in semi-circle is 90°.

Diagonal of Square = Diameter of the circle

$$\sqrt{2} \times a = 2R$$

$$\Rightarrow \qquad a = \frac{16}{\sqrt{2}} = 8\sqrt{2}$$

$$\Rightarrow$$
 Area of Square $= (8\sqrt{2})^2 = 128$

Angle at the centre

"If two angles stand on the same chord, then the angle at the centre is twice the angle at the circumference"

Problem: In $\triangle ABC \angle ACB = 15^{\circ}$ then find the area of shaded region if radius of the circle is 42cm.

Area of sector =
$$\frac{30}{360} \times \frac{22}{7} \times 42 \times 42 = 462$$

Angle made by same arc in the same segment are equal.

Alternate Segment Theorem

"The angle between a tangent and a chord is equal to any Angle in the alternate (opposite) segment" If two chords AB and CD of a circle intersect at a point E, then in both the cases, AE x EB = DE x EC.

Common Tangents to Two Circles

The number of common tangents to two circles could range from 4 to 0 depending on the relative placement of the circles.

Case (i): Circles external to each other. 2 Direct and 2 Transverse Tangent

Case (ii): Circles touch externally. 2 Direct and 1 Transverse Tangent

Case (iii): Circles intersect. 2 Direct Tangent

Case (iv):Circles touch internally. 1 Transverse Tangent

Case (v): Circle within other.
No common tangnet

- Distance of a point from X axis is its y coordinate.
- Distance of a point from Y axis is its x coordinate.

Problem: If point A(a,b) lies in the second quadrant then point B (a,-b) lies in which quadrant?

If point A(a,b) lies in the second quadrant then point B (a,-b) lies in which quadrant?

In second quadrant x is –ve i.e. a is –ve and y is +ve i.e. b is +ve.

Point B (a,-b), a is –ve and –b is –ve and therefore point B is in 3rd quadrant.

Distance between 2 points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Area of
$$\Delta = \frac{1}{2} \left\{ x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right\}$$

Co-ordinates of Centroid G(x,y)

$$x = \frac{x_1 + x_2 + x_3}{3}$$
 and $y = \frac{y_1 + y_2 + y_3}{3}$

Section Formula - Internal Division

Clearly
$$\triangle AHP \sim \triangle PKB$$

$$\therefore \frac{AP}{BP} = \frac{AH}{PK} = \frac{PH}{BK}$$

$$\therefore \frac{m}{n} = \frac{x - x_1}{x_2 - x} = \frac{y - y_1}{y_2 - y}$$

$$\therefore P = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Slope of a line

The "stairs" are all through the line and the same size.

change in $x = x_2 - x_1$

Intercept

X –intercept: where y is 0 Y – intercept: where x is 0

Slope(m) =
$$\frac{\text{- y intercept}}{\text{xintercept}}$$

If equation of line is ax+by+c=0 then slope of line $=\frac{-a}{b}$

Problem

Find the slope, x –intercept and y-intercept of a line x+3y = 63

Find the slope, x –intercept and y-intercept of a line x+3y = 63

For x-intercept put y = 0

$$x+3\times0=63$$

$$\Rightarrow$$
 x = 63

For y – intercept put x = 0

$$0+3y = 63$$

$$\Rightarrow$$
 y = 21

Slope =
$$\frac{-1}{3}$$

If lines are || then their slopes are equal and reverse is also true.

Example:

$$ax+by+c=0 \& ax+by+d=0$$

If 2 lines are \perp then product of their slopes is -1 i.e.

$$m_1 \times m_2 = -1$$

Equation of line

Problem:

Lines l_1 and l_2 are parallel and equation of l_1 is 2x+9y=30, then find the equation of l_2 if it passes through the point (2,7)?

Lines l_1 and l_2 are parallel and equation of l_1 is 2x+9y=30, then find the equation of l_2 if it passes through the point (2,7)?

Slope of
$$l_1 = \text{Slope of } l_2 = \frac{-2}{9}$$

Equation of line is $y-y_1=m(x-x_1)$

$$y-7=\frac{-2}{9}(x-2)$$

or

As we know only constant term is different in the equations of the || lines

Let equation of l_2 is 2x+9y=c

Since it is passing through the point (2,7) and therefore it has to saisfy the equation.

$$2 \times 2 + 9 \times 7 = c$$

Problem: Find the equation of the given line?

Find the equation of the given line?

$$\frac{6-0}{3-0} = \frac{y-0}{x-0}$$

Perpendicular Distance between 2 || lines

Let equations of the lines are

$$ax+by+c_1 = 0$$
 and $ax+by+c_2=0$

Distance =
$$\frac{c_1 - c_2}{\sqrt{a^2 + b^2}}$$

Perpendicular distance between a point and line

Length of perpendicular to line DE with equation ax + by + c=0 from the point P(m,n) is

$$\frac{am+bn+c}{\sqrt{a^2+b^2}}$$

General equation of circle is $x^2+y^2+2fx+2gy+c=0$

Center is (-f,-g) and radius =
$$\sqrt{f^2+g^2-c}$$

Problem:

Find the radius and center of the circle if equation of circle is

$$x^2+y^2+8x-10y-23=0$$

$$x^2+y^2+8x-10y-23=0$$

$$2f = 8, => f = 4$$

$$2g = -10 \Rightarrow g = -5$$

Center(-4,5)

Radius =
$$\sqrt{4^2 + 5^2 + 23} = 8$$