where $x_i \neq 0$ for some j. If we compute

$$\det(A^{1}, \dots, x_{1}A^{1} + \dots + x_{j}A^{j} + \dots + x_{n}A^{n}, \dots, A^{n}) = \det(A^{1}, \dots, 0, \dots, A^{n}) = 0,$$

where 0 occurs in the j-th position. By multilinearity, all terms containing two identical columns A^k for $k \neq j$ vanish, and we get

$$\det(A^{1}, \dots, x_{1}A^{1} + \dots + x_{j}A^{j} + \dots + x_{n}A^{n}, \dots, A^{n}) = x_{j}\det(A^{1}, \dots, A^{n}) = 0.$$

Since $x_j \neq 0$ and K is a field, we must have $\det(A^1, \dots, A^n) = 0$.

Conversely, we show that if the columns A^1, \ldots, A^n of A are linearly independent, then $\det(A^1, \ldots, A^n) \neq 0$. If the columns A^1, \ldots, A^n of A are linearly independent, then they form a basis of K^n , and we can express the standard basis (e_1, \ldots, e_n) of K^n in terms of A^1, \ldots, A^n . Thus, we have

$$\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} \begin{pmatrix} A^1 \\ A^2 \\ \vdots \\ A^n \end{pmatrix},$$

for some matrix $B = (b_{ij})$, and by Proposition 7.8, we get

$$\det(e_1,\ldots,e_n) = \det(B)\det(A^1,\ldots,A^n),$$

and since $\det(e_1, \ldots, e_n) = 1$, this implies that $\det(A^1, \ldots, A^n) \neq 0$ (and $\det(B) \neq 0$). For the second assertion, recall that the rank of a matrix is equal to the maximum number of linearly independent columns, and the conclusion is clear.

We now characterize when a system of linear equations of the form Ax = b has a unique solution.

Proposition 7.12. Given an $n \times n$ -matrix A over a field K, the following properties hold:

- (1) For every column vector b, there is a unique column vector x such that Ax = b iff the only solution to Ax = 0 is the trivial vector x = 0, iff $det(A) \neq 0$.
- (2) If $det(A) \neq 0$, the unique solution of Ax = b is given by the expressions

$$x_j = \frac{\det(A^1, \dots, A^{j-1}, b, A^{j+1}, \dots, A^n)}{\det(A^1, \dots, A^{j-1}, A^j, A^{j+1}, \dots, A^n)},$$

known as Cramer's rules.

(3) The system of linear equations Ax = 0 has a nonzero solution iff det(A) = 0.