Income Inequality Data Analytics

3/20/24, 2:06 AM

This notebook visualizes income inequality data geospatially, comparing various years altogether.

```
In []:
        import numpy as np # linear algebra
         import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
         import geopandas as gpd
         import matplotlib.pyplot as plt
In []:
       world_data = gpd.read_file('../world-data.geojson', driver='geojson', crs=4]
        # Updates to names so merge finds as many countries as possible
        world_data['name'] = np.where(world_data['name'].str.contains('United States
        world_data['name'] = np.where(world_data['name'].str.contains('Dem. Rep. Cor
        world_data['name'] = np.where(world_data['name'].str.contains('Congo'), 'Cor
        world data['name'] = np.where(world data['name'].str.contains("Côte d'Ivoire
        world_data['name'] = np.where(world_data['name'].str.contains("eSwatini"),
        world_data['name'] = np.where(world_data['name'].str.contains("Slovakia"),
        world_data['name'] = np.where(world_data['name'].str.contains("Bosnia and He
        world_data['name'] = np.where(world_data['name'].str.contains("Laos"), "Lao'
        world_data['name'] = np.where(world_data['name'].str.contains("Central Afric
        world_data['name'] = np.where(world_data['name'].str.contains("Czechia"), "(
        world_data['name'] = np.where(world_data['name'].str.contains("Kyrgyzstan")]
        world data['name'] = np.where(world data['name'].str.contains("Macedonia"),
        world data['name'] = np.where(world data['name'].str.contains("S. Sudan"),
        world_data['name'] = np.where(world_data['name'].str.contains("Eq. Guinea")
        world_data['name'] = np.where(world_data['name'].str.contains("Dominican Reg
        world data['name'] = np.where(world data['name'].str.contains("Solomon Is."
        world_data['name'] = np.where(world_data['name'].str.contains("N. Cyprus"),
        world_data[world_data['name'].str.contains('Congo')].head()
In [ ]:
Out[]:
            iso_a3
                        name continent
                                                                        geometry
              COD Congo, Rep.
                                 Africa
                                      POLYGON ((29.34000 -4.49998, 29.51999 -5.41998...
        67
              COG Congo, Rep.
                                 Africa
                                       POLYGON ((18.45307 3.50439, 18.39379 2.90044, ...
        world_data.plot(figsize=(16,8))
In []:
         plt.show()
```


In []: continents = pd.read_csv('../CSV/continent_country.csv')
 continents[continents['country'].str.contains('K')].head()

Out[]:		continent	country		
	24	Africa	Kenya		
	79	Asia	Hong Kong, China		
	80	Asia	Korea, Dem. Rep.		
	81	Asia	Korea, Rep.		
	99	Asia	Kuwait		

```
gini data = pd.read csv('../CSV/gini.csv')
          gini_data.head()
In [ ]:
                                        1802 1803
                                                      1804
                                                             1805
                                                                    1806
                                                                           1807
                                                                                  1808
                                                                                            2031 2032
                          1800
                                 1801
Out[]:
                 country
              Afghanistan
                           30.5
                                  30.5
                                         30.5
                                                30.5
                                                       30.5
                                                              30.5
                                                                     30.5
                                                                            30.5
                                                                                   30.5
                                                                                             36.8
                                                                                                     36.8
           1
                                         38.9
                  Albania
                           38.9
                                  38.9
                                                38.9
                                                       38.9
                                                              38.9
                                                                     38.9
                                                                            38.9
                                                                                   38.9
                                                                                              29.0
                                                                                                     29.0
           2
                  Algeria
                           56.2
                                  56.2
                                         56.2
                                                56.2
                                                       56.2
                                                              56.2
                                                                     56.2
                                                                            56.2
                                                                                   56.2
                                                                                              27.6
                                                                                                     27.6
           3
                                                                                             40.0
                 Andorra
                           40.0
                                  40.0
                                         40.0
                                                40.0
                                                       40.0
                                                              40.0
                                                                     40.0
                                                                            40.0
                                                                                   40.0
                                                                                                     40.0
           4
                  Angola
                            57.2
                                  57.2
                                         57.2
                                                57.2
                                                       57.2
                                                              57.2
                                                                     57.2
                                                                            57.2
                                                                                   57.2
                                                                                              42.6
                                                                                                     42.6
```

5 rows × 242 columns

```
In []: gini_data = gini_data.melt(id_vars=['country'], var_name='year', value_name=
In []: #gini_data.query('country == "France"').head()
    #gini_data[gini_data['country'].str.contains('State')].head()
    #gini_data['country'].unique()
In []: gini_world_data = world_data.merge(gini_data, left_on='name', right_on='country'].
In []: gini_world_data[gini_world_data['country'].isna()]
```

Out[]:	iso_a3		name	continent	geometry	country	year	gini
	482	ESH	W. Sahara	Africa	POLYGON ((-8.66559 27.65643, -8.66512 27.58948	NaN	NaN	NaN
	4580	FLK	Falkland Is.	South America	POLYGON ((-61.20000 -51.85000, -60.00000 -51.2	NaN	NaN	NaN
	4822	GRL	Greenland	North America	POLYGON ((-46.76379 82.62796, -43.40644 83.225	NaN	NaN	NaN
	4823	ATF	Fr. S. Antarctic Lands	Seven seas (open ocean)	POLYGON ((68.93500 -48.62500, 69.58000 -48.940	NaN	NaN	NaN
	9885	PRI	Puerto Rico	North America	POLYGON ((-66.28243 18.51476, -65.77130 18.426	NaN	NaN	NaN
	31094	NCL	New Caledonia	Oceania	POLYGON ((165.77999 -21.08000, 166.59999 -21.7	NaN	NaN	NaN
	32300	TWN	Taiwan	Asia	POLYGON ((121.77782 24.39427, 121.17563 22.790	NaN	NaN	NaN
	36639	ATA	Antarctica	Antarctica	MULTIPOLYGON (((-48.66062 -78.04702, -48.15140	NaN	NaN	NaN
	38327	ABV	Somaliland	Africa	POLYGON ((48.94820 11.41062, 48.94820 11.41062	NaN	NaN	NaN
	39774	OSA	Kosovo	Europe	POLYGON ((20.59025 41.85541, 20.52295 42.21787	NaN	NaN	NaN

In []: gini_world_data.query('year == "2002"').head()
 #gini_world_data[gini_world_data['name'].str.contains('State')].head()
 #gini_world_data.head()

Out[]:		iso_a3	name	continent	geometry	country	year	gini
	202	FJI	Fiji	Oceania	MULTIPOLYGON (((180.00000 -16.06713, 180.00000	Fiji	2002	38.2
	443	TZA	Tanzania	Africa	POLYGON ((33.90371 -0.95000, 34.07262 -1.05982	Tanzania	2002	37.9
	685	CAN	Canada	North America	MULTIPOLYGON (((-122.84000 49.00000, -122.9742	Canada	2002	33.5
	926	USA	United States	North America	MULTIPOLYGON (((-122.84000 49.00000, -120.0000	United States	2002	40.5
	1167	KAZ	Kazakhstan	Asia	POLYGON ((87.35997 49.21498, 86.59878 48.54918	Kazakhstan	2002	34.5

```
years = [1970, 1980, 1990, 2000, 2010]
In [ ]:
        classifications = dict(bins=[30,40,50,60,70,80])
        fig, axs = plt.subplots(len(years), 1, figsize=(20, 10*len(years)))
        for ndx, yr in enumerate(years):
            ax1 = axs[ndx]
            ax1.set_facecolor('skyblue')
            ax1.set_title(f'Income Inequality (Gini Coefficent) {yr}', fontsize=16)
            gini_world_data.query(f'year == "{yr}"').plot(
                 ax=ax1,
                 column='gini',
                 edgecolor='black',
                 categorical=False,
                 scheme='User_Defined',
                 classification_kwds=classifications,
                 \#k=6,
                 #scheme='fisher_jenks',
                 cmap='Oranges',
                 legend=True,
                 legend_kwds={'loc': 'lower left', 'fmt': '{:,.0f}'}
                 #missing_kwds={'color':'red','edgecolor': 'brwon', 'hatch': '///',
        plt.show()
```



```
In []: years = [2000, 2010]
        classifications = dict(bins=[30,40,50,60,70,80])
        fig, axs = plt.subplots(len(years), 1, figsize=(20, 10*len(years)))
        for ndx, yr in enumerate(years):
            ax1 = axs[ndx]
            ax1.set_facecolor('skyblue')
            ax1.set_title(f'Income Inequality (Gini Coefficent) {yr}', fontsize=16)
            gini_world_data.query(f'year == "{yr}"').plot(
                ax=ax1,
                column='gini',
                edgecolor='black',
                categorical=False,
                scheme='User_Defined',
                classification_kwds=classifications,
                \#k=6,
                #scheme='fisher_jenks',
                cmap='Oranges',
                legend=True,
                legend_kwds={'loc': 'lower left', 'fmt': '{:,.0f}'}
                #missing_kwds={'color':'red','edgecolor': 'brwon', 'hatch': '///',
        plt.show()
```


