

# AIR ROUTES NETWORK ANALYSIS

**Network Science** 

### Περιεχόμενα

| Εισαγωγή                      | 2  |
|-------------------------------|----|
| Επεξεργασία αρχικών δεδομένων | 2  |
| Εισαγωγή δεδομένων στο Gephi  | 3  |
| Γράφος                        | 4  |
| Κόμβοι                        | 7  |
| Κεντρικότητα                  | 15 |
| Betweeness Centrality         | 15 |
| Closeness Centrality          | 18 |
| Harmonic Closeness Centrality | 21 |
| Eigenvector Centrality        | 24 |
| Eccentricity                  | 27 |
| Clustering                    | 30 |
| Ομοφυλία                      | 32 |
| Graph Density                 |    |
| Πηγές                         |    |

#### Εισαγωγή

Μελετώντας την Ανάλυση Κοινωνικών Δικτύων, συνειδητοποιούμε ότι μπορούμε να εξάγουμε αρκετή γνώση από ένα σύνολο δεδομένων αν το αναπαραστήσουμε με την μορφή ενός κοινωνικού δικτύου. Με μία γρήγορη αναζήτηση στο διαδίκτυο μπορούμε να βρούμε ένα πολύ μεγάλο όγκο δεδομένων για πολλούς διαφορετικούς τομείς (π.χ υγεία, άθληση, εγκληματολογία, μετεωρολογία κλπ). Η δική μου επιλογή ύστερα από πολλή αναζήτηση, πειραματισμό και σύγκριση δεδομένων ήταν ένα σύνολο δεδομένων αεροπορικών διαδρομών. Πρόκειται για τα δεδομένα παγκόσμιων πτήσεων έως το 2014. Το αρχικό αρχείο περιλαμβάνει 67663 διαδρομές ανάμεσα σε 3427 αεροδρόμια. Αποτελείται από 9 στήλες οι οποίες δίνουν πληροφορίες για κάθε διαδρομή.

#### Στήλες:

- <u>Airline:</u> 2 γράμματα (IATA) ή 3 γράμματα (ICAO) κωδικός της αερογραμμής
- <u>Airline ID:</u> Μοναδικός αριθμός κωδικός για την κάθε αερογραμμή
- <u>Source Airport:</u> 3 γράμματα (IATA) ή 4 γράμματα (ICAO) κωδικός του αεροδρομίου εκκίνησης
- Source Airport ID: Μοναδικός αριθμός κωδικός για το αεροδρόμιο εκκίνησης
- <u>Destination Airport:</u> 3 γράμματα (IATA) ή 4 γράμματα (ICAO) κωδικός του αεροδρομίου προορισμού
- <u>Destination Airport ID</u>: Μοναδικός αριθμός κωδικός για το αεροδρόμιο προορισμού
- <u>Codeshare:</u> "Y" αν η πτήση δεν εκτελείται από κάποια αερογραμμή
- <u>Stops:</u> Ο αριθμός των στάσεων της πτήσης
- <u>Equipment:</u> 3 γράμματα κωδικός για τον τύπο του αεροπλάνου που χρησιμοποιείται στην συγκεκριμένη πτήση

Ένα δίκτυο αποτελείται από αντικείμενα και σχέσεις μεταξύ αυτών των αντικειμένων. Για τον λόγω αυτό, συνηθίζουμε να τα αναπαριστούμε με την μορφή γράφων. Ο δικός μας γράφος θα είναι κατευθυνόμενος με βάρη στις κορυφές αλλά και τις ακμές. Η κατεύθυνση μίας ακμής προκύπτει από το τα αεροδρόμια εκκίνησης και προορισμού, τα βάρη των κορυφών από το πλήθος των πτήσεων από και προς τα συγκεκριμένα αεροδρόμια και τα βάρη των ακμών από το πλήθος των πτήσεων ανάμεσα στα 2 αεροδρόμια που ενώνουν. Οι στάσεις δεν υπολογίζονται για πτήσεις από και προς ένα αεροδρόμιο, π.χ στην πτήση Αθήνα – Παρίσι μέσω Μιλάνου, το αεροδρόμιο του Μιλάνου δεν θα σχετίζεται με την πτήση.

#### Επεξεργασία αρχικών δεδομένων

Για τις ανάγκες της συγκεκριμένης εργασίας δεν θα χρειαστούμε όλες τις στήλες, αλλά μόνο τις Source Airport και Destination Airport. Το αρχικό αρχείο που βρήκα στο διαδίκτυο (https://openflights.org/data.html) είναι το routes.dat . Για την κατάλληλη επεξεργασία του χρειάστηκε να μετατραπεί σε csv μορφή το οποίο έγινε ανοίγοντας το dat αρχείο με το Microsoft Excel και στην συνέχεια αποθηκεύοντάς το με την μορφή csv. Στην συνέχεια, δημιουργήθηκε ένα script σε γλώσσα python (routeCodes.py) το οποίο επεξεργάζεται το αρχείο csv, κρατάει μόνο τις επιθυμητές στήλες και παράγει το τελικό αρχείο SrcDesNames.csv το οποίο θα χρησιμοποιήσουμε στο Gephi.

#### Εισαγωγή δεδομένων στο Gephi

Δημιουργώντας ένα νέο workspace στο λογισμικό Gephi, εισάγουμε τα δεδομένα από το τελικό csv αρχείο και στο παράθυρο του "Import report" αλλάζουμε τον τύπο του γράφου σε κατευθυνόμενο.



#### Γράφος

#### Οπτικοποίηση

Για την οπτικοποίηση του γράφου χρησιμοποιήθηκε ο αλγόριθμος Radial Axis Layout από το plugin του Gephi Circular Layout με τα συγκεκριμένα χαρακτηριστικά:





Η εικόνα του γράφου παρουσιάζεται σε μαύρο βάθος για να διακρίνονται ακόμη αι οι λεπτές ακμές και κόμβοι. Στην συγκεκριμένη αναπαράσταση οι χρωματικές ομαδοποιήσεις έχουν γίνει βάσει του Modularity Class και όσο απομακρυνόμαστε από το κέντρο του γράφου, οι βαθμοί των κόμβων μικραίνουν. Βλέποντας τις ετικέτες των κόμβων καταλαβαίνουμε ότι τα αεροδρόμια κάθε ομάδες βρίσκονται κοντά το ένα στο άλλο δημιουργώντας έτσι περιοχές. Συγκεκριμένα θα οι χρωματικές ομάδες που βλέπουμε στον γράφο είναι περιοχές, όπως Ευρώπη, Βόρεια Αμερική, Λατινική Αμερική, Αλάσκα, Ασία, Μεσοποταμία, Αφρική κλπ. Ενδεικτικά η μπλε ομάδα περιέχει αεροδρόμια της βορείου Αμερικής με τους μεγαλύτερος βαθμούς να έχουν εκείνα της Αταλάντας, του Ορλάντο και του Ντάλας, η κόκκινη ομάδα περιέχει αεροδρόμια της Ευρώπης με τους μεγαλύτερους βαθμούς να έχουν η Φρανκφούρτη, το Παρίσι και το Άμστερνταμ και η πράσινη ομάδα είναι αεροδρόμια της Ασίας με μεγαλύτερο αυτό του

Πεκίνου. Θα δούμε όλα τα παραπάνω να επιβεβαιώνονται με τα στοιχεία και τις μετρικές που αναφέρονται παρακάτω.



Ο γράφος που σχηματίστηκε έχει 3427 κόμβους και 67663 ακμές. Οι ακμές είναι κατευθυνόμενες αφού αναπαριστούν πτήσεις μεταξύ αεροδρομίων. Η διάμετρος του γράφου είναι 14, δηλαδή στην χειρότερη περίπτωση για να πάει ένας ταξιδιώτης από ένα αεροδρόμιο σε ένα άλλο χρειάζεται 14 στάσεις. Το μήκος του μέσου μονοπατιού είναι 4.14620432933603, δηλαδή μία πτήση ανάμεσα σε 2 αεροδρόμια κάνει κατά μέσω όρο 4 στάσεις.



#### Κόμβοι

Ο μέσος βαθμός των κόμβων είναι 10.970, δηλαδή κάθε αεροδρόμιο έχει κατά μέσο όρο 11 πτήσεις από και προς άλλα αεροδρόμια. Ο κόμβος με τον μεγαλύτερο βαθμό είναι το αεροδρόμιο με κωδικό FRA ( αεροδρόμιο της Φρανκφούρτης ) με 477 πτήσεις από και προς αυτό. Με βάση αυτή την πληροφορία και τον παρακάτω πίνακα μπορούμε να κάνουμε πολλές υποθέσεις σχετικά με τον τουρισμό στις συγκεκριμένες χώρες – περιοχές, την δυναμική των αεροπορικών εταιριών που δραστηριοποιούνται στις συγκεκριμένες χώρες, αλλά μας δίνει και μία κατεύθυνση για το που μπορούμε να κοιτάξουμε για περισσότερες πληροφορίες σχετικά με το εμπόριο και τις υπηρεσίες που προσφέρει η κάθε περιοχή. Ο αριθμός των αδύναμων συνδέσεων είναι 9 ενώ των δυνατών συνδέσεων είναι 46. Δεν υπάρχει κάποια γιγάντια σύνδεση που να περιλαμβάνει όλους τους κόμβους.

## Οι 40 κόμβοι με τον μεγαλύτερο βαθμό ταξινομημένοι σε φθίνουσα σειρά:

| Id  | Label | Interval | Eccentricity | Closeness Centr | Harmonic Closeness Centr | Betweenness Centr | Modularity Cl | Component | Strongly-Connecte | In-Degree | Out-Degree | Degree |
|-----|-------|----------|--------------|-----------------|--------------------------|-------------------|---------------|-----------|-------------------|-----------|------------|--------|
| FRA | FRA   |          | 8.0          | 0.398937        | 0.454955                 | 597736.592908     | 4             | 1         | 26                | 238       | 239        | 477    |
| CDG | CDG   |          | 8.0          | 0.396408        | 0.452874                 | 723184.714501     | 4             | 1         | 26                | 233       | 237        | 470    |
| AMS | AMS   |          | 8.0          | 0.389055        | 0.444911                 | 499964.201124     | 4             | 1         | 26                | 231       | 232        | 463    |
| ST  | IST   |          | 8.0          | 0.377276        | 0.433861                 | 483108.347357     | 6             | 1         | 26                | 230       | 227        | 457    |
| ATL | ATL   |          | 9.0          | 0.363548        | 0.417608                 | 344528.698686     | 10            | 1         | 26                | 216       | 217        | 433    |
| PEK | PEK   |          | 8.0          | 0.376267        | 0.431041                 | 576260.118048     | 3             | 1         | 26                | 206       | 206        | 412    |
| ORD | ORD   |          | 8.0          | 0.376897        | 0.426408                 | 555899.656532     | 10            | 1         | 26                | 203       | 206        | 409    |
| MUC | MUC   |          | 8.0          | 0.376309        | 0.42898                  | 180704.553005     | 4             | 1         | 26                | 189       | 191        | 380    |
| OME | DME   |          | 9.0          | 0.33967         | 0.392839                 | 344782.552025     | 1             | 1         | 26                | 189       | 189        | 378    |
| DFW | DFW   |          | 9.0          | 0.362884        | 0.411789                 | 294566.866235     | 10            | 1         | 26                | 185       | 187        | 372    |
| DXB | DXB   |          | 8.0          | 0.390044        | 0.441297                 | 695608.701545     | 6             | 1         | 26                | 182       | 188        | 370    |
| LHR | LHR   |          | 8.0          | 0.394832        | 0.444146                 | 449889.083502     | 4             | 1         | 26                | 171       | 171        | 342    |
| DEN | DEN   |          | 8.0          | 0.343435        | 0.386792                 | 306738.473846     | 10            | 1         | 26                | 168       | 169        | 337    |
| IAH | IAH   |          | 9.0          | 0.367985        | 0.417548                 | 269121.991452     | 10            | 1         | 26                | 168       | 169        | 337    |
| LGW | LGW   |          | 8.0          | 0.353724        | 0.402778                 | 117434.002636     | 4             | 1         | 26                | 165       | 165        | 330    |
| BCN | BCN   |          | 8.0          | 0.350894        | 0.400495                 | 120670.895348     | 4             | 1         | 26                | 163       | 163        | 326    |
| JFK | JFK   |          | 8.0          | 0.384187        | 0.432558                 | 301964.239806     | 10            | 1         | 26                | 160       | 162        | 322    |
| FCO | FCO   |          | 8.0          | 0.373273        | 0.421681                 | 142609.950986     | 4             | 1         | 26                | 159       | 157        | 316    |
| MAD | MAD   |          | 8.0          | 0.369596        | 0.420511                 | 265569.199224     | 4             | 1         | 26                | 156       | 158        | 314    |
| PVG | PVG   |          | 8.0          | 0.362067        | 0.409409                 | 259241.696014     | 3             | 1         | 26                | 153       | 152        | 305    |
| STN | STN   |          | 8.0          | 0.302951        | 0.347612                 | 55377.365572      | 4             | 1         | 26                | 152       | 153        | 305    |
| EWR | EWR   |          | 8.0          | 0.372326        | 0.418418                 | 203847.539278     | 10            | 1         | 26                | 152       | 153        | 305    |
| CAN | CAN   |          | 9.0          | 0.351186        | 0.398641                 | 204068.930055     | 3             | 1         | 26                | 149       | 150        | 299    |
| LAX | LAX   |          | 8.0          | 0.386208        | 0.42927                  | 775462.550397     | 10            | 1         | 26                | 148       | 149        | 297    |
| DUS | DUS   |          | 8.0          | 0.354392        | 0.401486                 | 64588.193075      | 4             | 1         | 26                | 147       | 147        | 294    |
| BRU | BRU   |          | 8.0          | 0.353502        | 0.401428                 | 91505.035746      | 4             | 1         | 26                | 147       | 146        | 293    |
| YYZ | YYZ   |          | 8.0          | 0.37978         | 0.424738                 | 498430.600635     | 10            | 1         | 26                | 146       | 147        | 293    |
| MAN | MAN   |          | 8.0          | 0.347893        | 0.39483                  | 80706.171481      | 4             | 1         | 26                | 144       | 146        | 290    |
| DUB | DUB   |          | 8.0          | 0.340149        | 0.385843                 | 84110.939791      | 4             | 1         | 26                | 144       | 144        | 288    |
| SVO | SVO   |          | 8.0          | 0.356449        | 0.403201                 | 204500.786777     | 1             | 1         | 26                | 144       | 144        | 288    |
| CLT | CLT   |          | 9.0          | 0.339397        | 0.383583                 | 94775.206774      | 10            | 1         | 26                | 139       | 141        | 280    |
| VIE | VIE   |          | 8.0          | 0.352211        | 0.398245                 | 54032.729079      | 4             | 1         | 26                | 138       | 137        | 275    |
| ZRH | ZRH   |          | 8.0          | 0.370123        | 0.416123                 | 91446.510018      | 4             | 1         | 26                | 136       | 137        | 273    |
| MIA | MIA   |          | 9.0          | 0.349876        | 0.396085                 | 251536.230357     | 10            | 1         | 26                | 134       | 135        | 269    |
| DTW | DTW   |          | 9.0          | 0.349297        | 0.392457                 | 100025.145284     | 10            | 1         | 26                | 134       | 135        | 269    |
| HKG | HKG   |          | 9.0          | 0.367425        | 0.416234                 | 325967.391018     | 3             | 1         | 26                | 134       | 133        | 267    |
| LAS | LAS   |          | 9.0          | 0.34382         | 0.385286                 | 144255.918076     | 10            | 1         | 26                | 133       | 133        | 266    |
| ICN | ICN   |          | 9.0          | 0.370651        | 0.418148                 | 316605.443888     | 3             | 1         | 26                | 131       | 131        | 262    |
| MSP | MSP   |          | 9.0          | 0.341905        | 0.381747                 | 157002.01964      | 10            | 1         | 26                | 130       | 130        | 260    |
| PMI | PMI   |          | 8.0          | 0.312801        | 0.356806                 | 42973.774713      | 4             | 1         | 26                | 126       | 126        | 252    |
| SIN | SIN   |          | 8.0          | 0.349912        | 0.399081                 | 365969,366412     | 3             | 1         | 26                | 125       | 125        | 250    |

## Οι 40 ακμές με τον μεγαλύτερο βαθμό ταξινομημένες σε φθίνουσα σειρά:

| Source | Target | Туре     | Id     | Label | Interval | Weight |     |
|--------|--------|----------|--------|-------|----------|--------|-----|
| ORD    | ATL    | Directed | 142978 |       |          | 20.0   | ^   |
| ATL    | ORD    | Directed | 141450 |       |          | 19.0   |     |
| HKT    | BKK    | Directed | 139719 |       |          | 13.0   |     |
| ORD    | MSY    | Directed | 143051 |       |          | 13.0   |     |
| ATL    | MIA    | Directed | 141449 |       |          | 12.0   |     |
| AUH    | MCT    | Directed | 141463 |       |          | 12.0   |     |
| DOH    | ВАН    | Directed | 142093 |       |          | 12.0   |     |
| JFK    | LHR    | Directed | 142371 |       |          | 12.0   |     |
| LHR    | JFK    | Directed | 142597 |       |          | 12.0   |     |
| MIA    | ATL    | Directed | 142751 |       |          | 12.0   |     |
| CAN    | HGH    | Directed | 145999 |       |          | 12.0   |     |
| BKK    | HKG    | Directed | 154572 |       |          | 12.0   |     |
| HKG    | BKK    | Directed | 154625 |       |          | 12.0   |     |
| JFK    | MSY    | Directed | 140334 |       |          | 11.0   |     |
| MSY    | JFK    | Directed | 140344 |       |          | 11.0   |     |
| ATL    | DFW    | Directed | 141447 |       |          | 11.0   |     |
| CDG    | JFK    | Directed | 141607 |       |          | 11.0   |     |
| JFK    | CDG    | Directed | 142349 |       |          | 11.0   |     |
| LAX    | LHR    | Directed | 142464 |       |          | 11.0   |     |
| LHR    | LAX    | Directed | 142602 |       |          | 11.0   |     |
| MCT    | AUH    | Directed | 142715 |       |          | 11.0   |     |
| SYD    | AKL    | Directed | 143623 |       |          | 11.0   |     |
| ATL    | DEN    | Directed | 144563 |       |          | 11.0   |     |
| DEN    | ATL    | Directed | 144616 |       |          | 11.0   |     |
| KGL    | EBB    | Directed | 144691 |       |          | 11.0   |     |
| CNX    | BKK    | Directed | 146191 |       |          | 11.0   |     |
| HRE    | LUN    | Directed | 146322 |       |          | 11.0   |     |
| SFO    | ATL    | Directed | 146685 |       |          | 11.0   |     |
| BKK    | SIN    | Directed | 137129 |       |          | 10.0   |     |
| KUL    | SIN    | Directed | 137137 |       |          | 10.0   |     |
| SIN    | KUL    | Directed | 137152 |       |          | 10.0   |     |
| CGO    | HGH    | Directed | 137359 |       |          | 10.0   |     |
| CKG    | XIY    | Directed | 137400 |       |          | 10.0   |     |
| DLC    | HGH    | Directed | 137472 |       |          | 10.0   |     |
| HGH    | CGO    | Directed | 137493 |       |          | 10.0   |     |
| HGH    | DLC    | Directed | 137496 |       |          | 10.0   |     |
| JHG    | KMG    | Directed | 137527 |       |          | 10.0   |     |
| KMG    | JHG    | Directed | 137541 |       |          | 10.0   |     |
| XIY    | CKG    | Directed | 137699 |       |          | 10.0   |     |
| BKK    | ICN    | Directed | 139180 |       |          | 10.0   | · · |

Τα βάρη των ακμών στον παραπάνω πίνακα μαρτυρούν πολλά για τις συνδέσεις μεταξύ περιοχών αλλά και το πόσο συνδέονται αεροδρόμια της ίδιας περιοχής.



### **Connected Components Report**

#### Parameters:

Network Interpretation: directed

#### Results:

Number of Weakly Connected Components: 9 Number of Strongly Connected Components: 46

#### **Size Distribution**



#### Algorithm:

Robert Tarjan, Depth-First Search and Linear Graph Algorithms, in SIAM Journal on Computing 1 (2): 146-160 (1972)





A Print Copy Save

Close









#### Κεντρικότητα

Παρακάτω φαίνονται ταξινομημένοι οι 40 κόμβοι με την μεγαλύτερη κεντρικότητα καθώς, η κατανομή και ο γράφος με βάρος κάθε κόμβου από την αντίστοιχη κεντρικότητα κάθε κατηγορίας.

#### Betweeness Centrality

| Id    | Label | Interval | Eccentricity | Closeness Centr | Harmonic Closeness Centr | Betweenness Centr | In-Degree | Out-Degree | Degree | Component | Strongly-Connecte | Modularity Cl |
|-------|-------|----------|--------------|-----------------|--------------------------|-------------------|-----------|------------|--------|-----------|-------------------|---------------|
| ANC   | ANC   |          | 9.0          | 0.297323        | 0.323523                 | 822811.210546     | 34        | 34         | 68     | 1         | 26                | 7             |
| .AX   | LAX   |          | 8.0          | 0.386208        | 0.42927                  | 775462.550397     | 148       | 149        | 297    | 1         | 26                | 13            |
| CDG   | CDG   |          | 8.0          | 0.396408        | 0.452874                 | 723184.714501     | 233       | 237        | 470    | 1         | 26                | 4             |
| XB    | DXB   |          | 8.0          | 0.390044        | 0.441297                 | 695608.701545     | 182       | 188        | 370    | 1         | 26                | 12            |
| -RA   | FRA   |          | 8.0          | 0.398937        | 0.454955                 | 597736.592908     | 238       | 239        | 477    | 1         | 26                | 4             |
| PEK   | PEK   |          | 8.0          | 0.376267        | 0.431041                 | 576260.118048     | 206       | 206        | 412    | 1         | 26                | 2             |
| ORD   | ORD   |          | 8.0          | 0.376897        | 0.426408                 | 555899.656532     | 203       | 206        | 409    | 1         | 26                | 13            |
| EΑ    | SEA   |          | 8.0          | 0.355961        | 0.392668                 | 530561.697672     | 94        | 90         | 184    | 1         | 26                | 13            |
| MS    | AMS   |          | 8.0          | 0.389055        | 0.444911                 | 499964.201124     | 231       | 232        | 463    | 1         | 26                | 4             |
| YZ    | YYZ   |          | 8.0          | 0.37978         | 0.424738                 | 498430.600635     | 146       | 147        | 293    | 1         | 26                | 13            |
| ST    | IST   |          | 8.0          | 0.377276        | 0.433861                 | 483108.347357     | 230       | 227        | 457    | 1         | 26                | 4             |
| GRU   | GRU   |          | 9.0          | 0.347           | 0.388783                 | 464611.718721     | 90        | 92         | 182    | 1         | 26                | 1             |
| .HR   | LHR   |          | 8.0          | 0.394832        | 0.444146                 | 449889.083502     | 171       | 171        | 342    | 1         | 26                | 13            |
| NRT   | NRT   |          | 8.0          | 0.373314        | 0.416575                 | 416756.915039     | 103       | 103        | 206    | 1         | 26                | 2             |
| SYD   | SYD   |          | 9.0          | 0.338614        | 0.37724                  | 382198.798466     | 83        | 85         | 168    | 1         | 26                | 3             |
| SIN   | SIN   |          | 8.0          | 0.349912        | 0.399081                 | 365969.366412     | 125       | 125        | 250    | 1         | 26                | 12            |
| BNE   | BNE   |          | 9.0          | 0.320459        | 0.352793                 | 357719.920641     | 56        | 60         | 116    | 1         | 26                | 3             |
| OME   | DME   |          | 9.0          | 0.33967         | 0.392839                 | 344782.552025     | 189       | 189        | 378    | 1         | 26                | 8             |
| ATL   | ATL   |          | 9.0          | 0.363548        | 0.417608                 | 344528.698686     | 216       | 217        | 433    | 1         | 26                | 13            |
| /UL   | YUL   |          | 9.0          | 0.343785        | 0.383628                 | 328462.54944      | 92        | 93         | 185    | 1         | 26                | 13            |
| IKG   | HKG   |          | 9.0          | 0.367425        | 0.416234                 | 325967.391018     | 134       | 133        | 267    | 1         | 26                | 2             |
| CN    | ICN   |          | 9.0          | 0.370651        | 0.418148                 | 316605.443888     | 131       | 131        | 262    | 1         | 26                | 2             |
| CPH   | CPH   |          | 7.0          | 0.357733        | 0.400589                 | 311902.032334     | 120       | 121        | 241    | 1         | 26                | 4             |
| DEN   | DEN   |          | 8.0          | 0.343435        | 0.386792                 | 306738.473846     | 168       | 169        | 337    | 1         | 26                | 13            |
| JFK . | JFK   |          | 8.0          | 0.384187        | 0.432558                 | 301964.239806     | 160       | 162        | 322    | 1         | 26                | 13            |
| DFW   | DFW   |          | 9.0          | 0.362884        | 0.411789                 | 294566.866235     | 185       | 187        | 372    | 1         | 26                | 13            |
| 3OG   | BOG   |          | 9.0          | 0.321834        | 0.36012                  | 291082.716646     | 74        | 74         | 148    | 1         | 26                | 1             |
| INB   | JNB   |          | 9.0          | 0.339397        | 0.379787                 | 270355.761046     | 83        | 81         | 164    | 1         | 26                | 15            |
| AH    | IAH   |          | 9.0          | 0.367985        | 0.417548                 | 269121.991452     | 168       | 169        | 337    | 1         | 26                | 13            |
| MAD   | MAD   |          | 8.0          | 0.369596        | 0.420511                 | 265569.199224     | 156       | 158        | 314    | 1         | 26                | 4             |
| 3KK   | BKK   |          | 8.0          | 0.353169        | 0.401487                 | 260201.412979     | 121       | 121        | 242    | 1         | 26                | 12            |
| PVG   | PVG   |          | 8.0          | 0.362067        | 0.409409                 | 259241.696014     | 153       | 152        | 305    | 1         | 26                | 2             |
| AIN   | MIA   |          | 9.0          | 0.349876        | 0.396085                 | 251536.230357     | 134       | 135        | 269    | 1         | 26                | 13            |
| MNL   | MNL   |          | 9.0          | 0.330787        | 0.367246                 | 228255.048258     | 78        | 78         | 156    | 1         | 26                | 2             |
| ARN   | ARN   |          | 8.0          | 0.348396        | 0.39278                  | 221022.691216     | 123       | 123        | 246    | 1         | 26                | 4             |
| FJ .  | SFJ   |          | 8.0          | 0.265613        | 0.282073                 | 220942.699875     | 8         | 8          | 16     | 1         | 26                | 16            |
| /VR   | YVR   |          | 9.0          | 0.347035        | 0.384361                 | 219800.168086     | 75        | 75         | 150    | 1         | 26                | 13            |
| (UL   | KUL   |          | 9.0          | 0.340595        | 0.38684                  | 209442.360552     | 111       | 112        | 223    | 1         | 26                | 12            |
| BET   | BET   |          | 10.0         | 0.230245        | 0.245195                 | 208671.316667     | 21        | 22         | 43     | 1         | 26                | 7             |
| SVO   | SVO   |          | 8.0          | 0.356449        | 0.403201                 | 204500.786777     | 144       | 144        | 288    | 1         | 26                | 8             |
| OOH   | DOH   |          | 8.0          | 0.372326        | 0.417582                 | 204151,776642     | 118       | 116        | 234    | 1         | 26                | 12            |

## **Betweenness Centrality Distribution**





Στην εικόνα οι κόμβοι με το μεγαλύτερο βαθμό betweenness centrality έχουν μεγαλύτερο μέγεθος και πιο σκούρο χρώμα. Κάθε περιοχή έχει λίγους μεγάλους κόμβους στο κέντρο του γράφου. Αυτό μας δίνει την πληροφορία ότι πρόκειται για αεροδρόμια τα οποία ενώνουν αρκετά άλλα και κυρίως ενώνουν μικρότερα αεροδρόμια της περιοχής τους με αεροδρόμια άλλης περιοχής. Συνήθως τέτοιου είδους αεροδρόμια αποτελούν στάσεις σε διαδρομές όπου δεν υπάρχουν απευθείας πτήσεις.

#### Closeness Centrality

| Id  | Label | Interval | Eccentricity | Closeness Centr | Harmonic Closeness Centr | Betweenness Centr | In-Degree | Out-Degree | Degree | Component | Strongly-Connecte | Modularity Cl |
|-----|-------|----------|--------------|-----------------|--------------------------|-------------------|-----------|------------|--------|-----------|-------------------|---------------|
| SYB | SYB   |          | 1.0          | 1.0             | 1.0                      | 3374.0            | 1         | 1          | 2      | 1         | 18                | 7             |
| CDJ | CDJ   |          | 1.0          | 1.0             | 1.0                      | 3374.0            | 1         | 1          | 2      | 1         | 9                 | 1             |
| AOS | AOS   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 21                | 7             |
| KLN | KLN   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 16                | 7             |
| PVE | PVE   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 14                | 9             |
| KOO | коо   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 5                 | 15            |
| DUT | DUT   |          | 1.0          | 1.0             | 1.0                      | 6.0               | 3         | 3          | 6      | 3         | 29                | 17            |
| ERS | ERS   |          | 1.0          | 1.0             | 1.0                      | 4.0               | 3         | 3          | 6      | 7         | 42                | 22            |
| SPB | SPB   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 2         | 27                | 14            |
| SSB | SSB   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 2         | 27                | 14            |
| BLD | BLD   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 4         | 30                | 18            |
| GCW | GCW   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 4         | 30                | 18            |
| CKX | CKX   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 6         | 34                | 21            |
| TKJ | TKJ   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 6         | 34                | 21            |
| GEA | GEA   |          | 2.0          | 0.9             | 0.944444                 | 65.0              | 9         | 8          | 17     | 8         | 44                | 23            |
| BFI | BFI   |          | 2.0          | 0.75            | 0.833333                 | 5.0               | 2         | 2          | 4      | 5         | 32                | 19            |
| MPA | MPA   |          | 2.0          | 0.75            | 0.833333                 | 0.0               | 2         | 2          | 4      | 7         | 42                | 22            |
| NDU | NDU   |          | 2.0          | 0.75            | 0.833333                 | 0.0               | 2         | 2          | 4      | 7         | 42                | 22            |
| (KB | KKB   |          | 2.0          | 0.666667        | 0.75                     | 6746.0            | 1         | 1          | 2      | 1         | 19                | 7             |
| RDC | RDC   |          | 2.0          | 0.666667        | 0.75                     | 6746.0            | 1         | 1          | 2      | 1         | 10                | 1             |
| FRD | FRD   |          | 2.0          | 0.6             | 0.666667                 | 2.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| AKB | AKB   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| IKO | IKO   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| KQA | KQA   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| OND | OND   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 7         | 42                | 22            |
| кос | кос   |          | 2.0          | 0.5625          | 0.611111                 | 8.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| LIF | LIF   |          | 3.0          | 0.5625          | 0.648148                 | 1.0               | 3         | 3          | 6      | 8         | 44                | 23            |
| BMY | BMY   |          | 2.0          | 0.5625          | 0.611111                 | 0.0               | 1         | 2          | 3      | 8         | 44                | 23            |
| rgj | TGJ   |          | 3.0          | 0.529412        | 0.592593                 | 0.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| JVE | UVE   |          | 3.0          | 0.529412        | 0.592593                 | 0.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| SD  | ESD   |          | 3.0          | 0.5             | 0.611111                 | 2.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| CLM | CLM   |          | 3.0          | 0.5             | 0.611111                 | 0.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| ILP | ILP   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| (NQ | KNQ   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| MEE | MEE   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| TOU | TOU   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| FRA | FRA   |          | 8.0          | 0.398937        | 0.454955                 | 597736.592908     | 238       | 239        | 477    | 1         | 26                | 4             |
| CDG | CDG   |          | 8.0          | 0.396408        | 0.452874                 | 723184.714501     | 233       | 237        | 470    | 1         | 26                | 4             |
| .HR | LHR   |          | 8.0          | 0.394832        | 0.444146                 | 449889.083502     | 171       | 171        | 342    | 1         | 26                | 13            |
| OXB | DXB   |          | 8.0          | 0.390044        | 0.441297                 | 695608.701545     | 182       | 188        | 370    | 1         | 26                | 12            |
| AMS | AMS   |          | 8.0          | 0.389055        | 0.444911                 | 499964.201124     | 231       | 232        | 463    | 1         | 26                | 4             |



Όπως και στην προηγούμενη εικόνα οι κόμβοι με μεγαλύτερο βαθμό closeness centrality είναι πιο μεγάλοι και έχουν πιο σκούρο χρώμα. Σε σχέση όμως με το betweenness centrality βλέπουμε ότι υπάρχουν πιο πολλοί σκούροι κόμβοι. Αυτό συμβαίνει γιατί τα περισσότερα αεροδρόμια από κάθε ομάδα έχουν απευθείας πτήσεις προς τα αεροδρόμια στο κέντρο του γράφου, εκείνα δηλαδή με το μεγαλύτερο betweenness centrality. Καταλαβαίνουμε για τον γράφο μας ότι όλα τα αεροδρόμια μεταξύ τους δεν απέχουν πολύ. Έτσι επιβεβαιώνεται και το ότι το μήκος του μέσου μονοπατιού είναι μόλις 4.

## **Closeness Centrality Distribution**



#### Harmonic Closeness Centrality

| Id    | Label | Interval | Eccentricity | Closeness Centr | Harmonic Closeness Centr | Betweenness Centr | In-Degree | Out-Degree | Degree | Component | Strongly-Connecte | Modularity Cl |
|-------|-------|----------|--------------|-----------------|--------------------------|-------------------|-----------|------------|--------|-----------|-------------------|---------------|
| SYB   | SYB   |          | 1.0          | 1.0             | 1.0                      | 3374.0            | 1         | 1          | 2      | 1         | 18                | 7             |
| CDJ   | CDJ   |          | 1.0          | 1.0             | 1.0                      | 3374.0            | 1         | 1          | 2      | 1         | 9                 | 1             |
| AOS   | AOS   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 21                | 7             |
| KLN . | KLN   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 16                | 7             |
| PVE   | PVE   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 14                | 9             |
| (00   | коо   |          | 1.0          | 1.0             | 1.0                      | 3373.0            | 1         | 1          | 2      | 1         | 5                 | 15            |
| DUT   | DUT   |          | 1.0          | 1.0             | 1.0                      | 6.0               | 3         | 3          | 6      | 3         | 29                | 17            |
| ERS   | ERS   |          | 1.0          | 1.0             | 1.0                      | 4.0               | 3         | 3          | 6      | 7         | 42                | 22            |
| SPB   | SPB   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 2         | 27                | 14            |
| SSB   | SSB   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 2         | 27                | 14            |
| BLD   | BLD   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 4         | 30                | 18            |
| GCW   | GCW   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 4         | 30                | 18            |
| CKX   | CKX   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 6         | 34                | 21            |
| TKJ   | TKJ   |          | 1.0          | 1.0             | 1.0                      | 0.0               | 1         | 1          | 2      | 6         | 34                | 21            |
| GEA   | GEA   |          | 2.0          | 0.9             | 0.944444                 | 65.0              | 9         | 8          | 17     | 8         | 44                | 23            |
| BFI   | BFI   |          | 2.0          | 0.75            | 0.833333                 | 5.0               | 2         | 2          | 4      | 5         | 32                | 19            |
| MPA   | MPA   |          | 2.0          | 0.75            | 0.833333                 | 0.0               | 2         | 2          | 4      | 7         | 42                | 22            |
| NDU   | NDU   |          | 2.0          | 0.75            | 0.833333                 | 0.0               | 2         | 2          | 4      | 7         | 42                | 22            |
| KKB   | KKB   |          | 2.0          | 0.666667        | 0.75                     | 6746.0            | 1         | 1          | 2      | 1         | 19                | 7             |
| RDC   | RDC   |          | 2.0          | 0.666667        | 0.75                     | 6746.0            | 1         | 1          | 2      | 1         | 10                | 1             |
| FRD   | FRD   |          | 2.0          | 0.6             | 0.666667                 | 2.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| AKB   | AKB   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| IKO   | IKO   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| KQA   | KQA   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 3         | 29                | 17            |
| OND   | OND   |          | 2.0          | 0.6             | 0.666667                 | 0.0               | 1         | 1          | 2      | 7         | 42                | 22            |
| LIF   | LIF   |          | 3.0          | 0.5625          | 0.648148                 | 1.0               | 3         | 3          | 6      | 8         | 44                | 23            |
| кос   | KOC   |          | 2.0          | 0.5625          | 0.611111                 | 8.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| BMY   | BMY   |          | 2.0          | 0.5625          | 0.611111                 | 0.0               | 1         | 2          | 3      | 8         | 44                | 23            |
| ESD   | ESD   |          | 3.0          | 0.5             | 0.611111                 | 2.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| CLM   | CLM   |          | 3.0          | 0.5             | 0.611111                 | 0.0               | 1         | 1          | 2      | 5         | 32                | 19            |
| TGJ   | TGJ   |          | 3.0          | 0.529412        | 0.592593                 | 0.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| JVE   | UVE   |          | 3.0          | 0.529412        | 0.592593                 | 0.0               | 2         | 2          | 4      | 8         | 44                | 23            |
| ILP   | ILP   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| (NQ   | KNQ   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| MEE   | MEE   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| TOU   | TOU   |          | 3.0          | 0.5             | 0.537037                 | 0.0               | 1         | 1          | 2      | 8         | 44                | 23            |
| FRA   | FRA   |          | 8.0          | 0.398937        | 0.454955                 | 597736.592908     | 238       | 239        | 477    | 1         | 26                | 4             |
| CDG   | CDG   |          | 8.0          | 0.396408        | 0.452874                 | 723184.714501     | 233       | 237        | 470    | 1         | 26                | 4             |
| AMS   | AMS   |          | 8.0          | 0.389055        | 0.444911                 | 499964.201124     | 231       | 232        | 463    | 1         | 26                | 4             |
| .HR   | LHR   |          | 8.0          | 0.394832        | 0.444146                 | 449889.083502     | 171       | 171        | 342    | 1         | 26                | 13            |
| DXB   | DXB   |          | 8.0          | 0.390044        | 0.441297                 | 695608.701545     | 182       | 188        | 370    | 1         | 26                | 12            |



## **Harmonic Closeness Centrality Distribution**





| Id  | Label | Interval | Eccentricity | Closeness Cent | Harmonic Closeness Ce | Betweenness Cen | In-Degree | Out-Degree | Degree | Compone | Strongly-Connect | Modularity | Eigenvector Cen |
|-----|-------|----------|--------------|----------------|-----------------------|-----------------|-----------|------------|--------|---------|------------------|------------|-----------------|
| FRA | FRA   |          | 8.0          | 0.398937       | 0.454955              | 597736.592908   | 238       | 239        | 477    | 1       | 26               | 4          | 1.0             |
| AMS | AMS   |          | 8.0          | 0.389055       | 0.444911              | 499964.201124   | 231       | 232        | 463    | 1       | 26               | 4          | 0.986055        |
| CDG | CDG   |          | 8.0          | 0.396408       | 0.452874              | 723184.714501   | 233       | 237        | 470    | 1       | 26               | 4          | 0.960085        |
| MUC | MUC   |          | 8.0          | 0.376309       | 0.42898               | 180704.553005   | 189       | 191        | 380    | 1       | 26               | 4          | 0.865873        |
| LHR | LHR   |          | 8.0          | 0.394832       | 0.444146              | 449889.083502   | 171       | 171        | 342    | 1       | 26               | 13         | 0.840023        |
| FCO | FCO   |          | 8.0          | 0.373273       | 0.421681              | 142609.950986   | 159       | 157        | 316    | 1       | 26               | 4          | 0.794782        |
| IST | IST   |          | 8.0          | 0.377276       | 0.433861              | 483108.347357   | 230       | 227        | 457    | 1       | 26               | 4          | 0.779603        |
| ZRH | ZRH   |          | 8.0          | 0.370123       | 0.416123              | 91446.510018    | 136       | 137        | 273    | 1       | 26               | 4          | 0.734624        |
| BCN | BCN   |          | 8.0          | 0.350894       | 0.400495              | 120670.895348   | 163       | 163        | 326    | 1       | 26               | 4          | 0.731025        |
| MAD | MAD   |          | 8.0          | 0.369596       | 0.420511              | 265569.199224   | 156       | 158        | 314    | 1       | 26               | 4          | 0.719467        |
| BRU | BRU   |          | 8.0          | 0.353502       | 0.401428              | 91505.035746    | 147       | 146        | 293    | 1       | 26               | 4          | 0.696916        |
| JFK | JFK   |          | 8.0          | 0.384187       | 0.432558              | 301964.239806   | 160       | 162        | 322    | 1       | 26               | 13         | 0.687507        |
| DUB | DUB   |          | 8.0          | 0.340149       | 0.385843              | 84110.939791    | 144       | 144        | 288    | 1       | 26               | 4          | 0.665235        |
| DUS | DUS   |          | 8.0          | 0.354392       | 0.401486              | 64588.193075    | 147       | 147        | 294    | 1       | 26               | 4          | 0.661259        |
| VIE | VIE   |          | 8.0          | 0.352211       | 0.398245              | 54032.729079    | 138       | 137        | 275    | 1       | 26               | 4          | 0.653875        |
| DXB | DXB   |          | 8.0          | 0.390044       | 0.441297              | 695608.701545   | 182       | 188        | 370    | 1       | 26               | 12         | 0.653219        |
| MAN | MAN   |          | 8.0          | 0.347893       | 0.39483               | 80706.171481    | 144       | 146        | 290    | 1       | 26               | 4          | 0.653091        |
| LGW | LGW   |          | 8.0          | 0.353724       | 0.402778              | 117434.002636   | 165       | 165        | 330    | 1       | 26               | 4          | 0.650867        |
| CPH | CPH   |          | 7.0          | 0.357733       | 0.400589              | 311902.032334   | 120       | 121        | 241    | 1       | 26               | 4          | 0.628441        |
| ORD | ORD   |          | 8.0          | 0.376897       | 0.426408              | 555899.656532   | 203       | 206        | 409    | 1       | 26               | 13         | 0.617899        |
| EWR | EWR   |          | 8.0          | 0.372326       | 0.418418              | 203847.539278   | 152       | 153        | 305    | 1       | 26               | 13         | 0.615904        |
| MXP | MXP   |          | 8.0          | 0.350711       | 0.39516               | 45026.36712     | 111       | 107        | 218    | 1       | 26               | 4          | 0.613165        |
| PEK | PEK   |          | 8.0          | 0.376267       | 0.431041              | 576260.118048   | 206       | 206        | 412    | 1       | 26               | 2          | 0.595485        |
| YYZ | YYZ   |          | 8.0          | 0.37978        | 0.424738              | 498430.600635   | 146       | 147        | 293    | 1       | 26               | 13         | 0.583553        |
| SVO | SVO   |          | 8.0          | 0.356449       | 0.403201              | 204500.786777   | 144       | 144        | 288    | 1       | 26               | 8          | 0.573546        |
| ATL | ATL   |          | 9.0          | 0.363548       | 0.417608              | 344528.698686   | 216       | 217        | 433    | 1       | 26               | 13         | 0.568917        |
| GVA | GVA   |          | 8.0          | 0.339738       | 0.383697              | 17928.630314    | 100       | 101        | 201    | 1       | 26               | 4          | 0.567019        |
| TXL | TXL   |          | 8.0          | 0.339636       | 0.38304               | 31451.555801    | 110       | 109        | 219    | 1       | 26               | 4          | 0.557786        |
| ARN | ARN   |          | 8.0          | 0.348396       | 0.39278               | 221022.691216   | 123       | 123        | 246    | 1       | 26               | 4          | 0.547584        |
| LAX | LAX   |          | 8.0          | 0.386208       | 0.42927               | 775462.550397   | 148       | 149        | 297    | 1       | 26               | 13         | 0.527344        |
| AGP | AGP   |          | 8.0          | 0.321008       | 0.365082              | 28041.358118    | 115       | 115        | 230    | 1       | 26               | 4          | 0.526042        |
| DOH | DOH   |          | 8.0          | 0.372326       | 0.417582              | 204151.776642   | 118       | 116        | 234    | 1       | 26               | 12         | 0.515764        |
| PRG | PRG   |          | 8.0          | 0.330011       | 0.370562              | 16278.938997    | 94        | 94         | 188    | 1       | 26               | 4          | 0.51144         |
| LIS | LIS   |          | 8.0          | 0.341215       | 0.384613              | 165716.000456   | 101       | 103        | 204    | 1       | 26               | 4          | 0.509518        |
| IAD | IAD   |          | 8.0          | 0.366547       | 0.409293              | 154115.344698   | 122       | 126        | 248    | 1       | 26               | 13         | 0.501052        |
| ATH | ATH   |          | 8.0          | 0.331761       | 0.373799              | 124088.697332   | 102       | 104        | 206    | 1       | 26               | 4          | 0.494139        |
| HAM | HAM   |          | 8.0          | 0.326091       | 0.364891              | 7379.230319     | 87        | 87         | 174    | 1       | 26               | 4          | 0.483975        |
| OSL | OSL   |          | 8.0          | 0.330819       | 0.372739              | 165384.304628   | 104       | 104        | 208    | 1       | 26               | 4          | 0.472783        |
| NCE | NCE   |          | 8.0          | 0.330431       | 0.370673              | 29033.909674    | 90        | 90         | 180    | 1       | 26               | 4          | 0.472613        |
| PMI | PMI   |          | 8.0          | 0.312801       | 0.356806              | 42973.774713    | 126       | 126        | 252    | 1       | 26               | 4          | 0.471762        |
| IAH | IAH   |          | 9.0          | 0.367985       | 0.417548              | 269121.991452   | 168       | 169        | 337    | 1       | 26               | 13         | 0.470849        |



Βλέπουμε ότι στον γράφο οι κόμβοι με τον μεγαλύτερο βαθμό τις συγκεκριμένης μετρικής βρίσκονται κοντά στο κέντρο και οι κόμβοι κάθε ομάδας δεν έχουν απότομες αλλαγές μεγέθους στην ταξινόμησή τους.

#### Eccentricity

| Id      | Label | Interval | Eccentricity | Closeness Centr | Harmonic Closeness Centr | Betweenness Centr | Modularity Cl | Component | Strongly-Connecte | In-Degree | Out-Degree | Degree |
|---------|-------|----------|--------------|-----------------|--------------------------|-------------------|---------------|-----------|-------------------|-----------|------------|--------|
| YZG     | YZG   |          | 14.0         | 0.126888        | 0.129422                 | 9.583333          | 2             | 1         | 26                | 2         | 2          | 4      |
| XEQ     | XEQ   |          | 14.0         | 0.103222        | 0.104595                 | 6741.0            | 16            | 1         | 26                | 1         | 1          | 2      |
| KCG     | KCG   |          | 14.0         | 0.119739        | 0.121592                 | 10110.0           | 12            | 1         | 26                | 1         | 1          | 2      |
| .PS     | LPS   |          | 14.0         | 0.113655        | 0.11509                  | 0.0               | 20            | 1         | 31                | 1         | 1          | 2      |
| YPO     | YPO   |          | 14.0         | 0.116108        | 0.117671                 | 0.0               | 2             | 1         | 26                | 1         | 1          | 2      |
| YIK     | YIK   |          | 13.0         | 0.145279        | 0.148677                 | 4489.474454       | 2             | 1         | 26                | 2         | 2          | 4      |
| /WB     | YWB   |          | 13.0         | 0.14526         | 0.148622                 | 2264.108879       | 2             | 1         | 26                | 2         | 2          | 4      |
| ′GZ     | YGZ   |          | 13.0         | 0.139281        | 0.141921                 | 0.0               | 8             | 1         | 26                | 1         | 1          | 2      |
| VME     | NME   |          | 13.0         | 0.136263        | 0.139329                 | 3369.5            | 12            | 1         | 26                | 1         | 2          | 3      |
| CHU     | CHU   |          | 13.0         | 0.136049        | 0.138694                 | 13478.0           | 12            | 1         | 26                | 1         | 1          | 2      |
| BFQ     | BFQ   |          | 13.0         | 0.139782        | 0.142697                 | 3371.0            | 10            | 1         | 26                | 1         | 1          | 2      |
| OGM     | OGM   |          | 13.0         | 0.139782        | 0.142697                 | 3371.0            | 10            | 1         | 26                | 1         | 1          | 2      |
| OTO     | OTD   |          | 13.0         | 0.139782        | 0.142697                 | 3371.0            | 10            | 1         | 26                | 1         | 1          | 2      |
| PYC     | PYC   |          | 13.0         | 0.139782        | 0.142697                 | 3371.0            | 10            | 1         | 26                | 1         | 1          | 2      |
| SAX     | SAX   |          | 13.0         | 0.139782        | 0.142697                 | 3371.0            | 10            | 1         | 26                | 1         | 1          | 2      |
| QUV     | QUV   |          | 13.0         | 0.115091        | 0.116865                 | 6746.0            | 16            | 1         | 26                | 1         | 1          | 2      |
| SVR     | SVR   |          | 13.0         | 0.115146        | 0.116926                 | 0.0               | 16            | 1         | 26                | 1         | 1          | 2      |
| PIP     | PIP   |          | 13.0         | 0.135988        | 0.138504                 | 6741.0            | 12            | 1         | 26                | 1         | 1          | 2      |
| (CL     | KCL   |          | 13.0         | 0.136005        | 0.138536                 | 10115.0           | 12            | 1         | 26                | 1         | 1          | 2      |
| NSX     | WSX   |          | 13.0         | 0.128225        | 0.1303                   | 3390.0            | 20            | 1         | 31                | 2         | 2          | 4      |
| BVI     | BVI   |          | 13.0         | 0.141073        | 0.144321                 | 13.820513         | 3             | 1         | 26                | 2         | 2          | 4      |
| XTG     | XTG   |          | 13.0         | 0.144261        | 0.147265                 | 0.0               | 3             | 1         | 26                | 1         | 1          | 2      |
| STZ     | STZ   |          | 13.0         | 0.136927        | 0.139805                 | 0.0               | 11            | 1         | 38                | 0         | 1          | 1      |
| PTJ CTF | PTJ   |          | 13.0         | 0.144389        | 0.147436                 | 0.0               | 3             | 1         | 41                | 0         | 1          | 1      |
| ZTB     | ZTB   |          | 13.0         | 0.14521         | 0.148666                 | 1.666667          | 2             | 1         | 26                | 2         | 2          | 4      |
| ZLT     | ZLT   |          | 13.0         | 0.14531         | 0.148893                 | 15.083333         | 2             | 1         | 26                | 2         | 2          | 4      |
| YAT     | YAT   |          | 13.0         | 0.131355        | 0.133629                 | 6747.0            | 2             | 1         | 26                | 2         | 2          | 4      |
| AKV     | AKV   |          | 12.0         | 0.169912        | 0.174953                 | 11224.474454      | 2             | 1         | 26                | 2         | 2          | 4      |
| ′QC     | YQC   |          | 12.0         | 0.169886        | 0.174854                 | 8998.525546       | 2             | 1         | 26                | 2         | 2          | 4      |
| СТ      | TCT   |          | 12.0         | 0.157319        | 0.16099                  | 3371.0            | 12            | 1         | 26                | 1         | 1          | 2      |
| /RB     | YRB   |          | 12.0         | 0.161811        | 0.16596                  | 6747.0            | 8             | 1         | 26                | 2         | 2          | 4      |
| AKI     | AKI   |          | 12.0         | 0.157708        | 0.162147                 | 2.0               | 12            | 1         | 26                | 2         | 2          | 4      |
| (UK     | KUK   |          | 12.0         | 0.157686        | 0.161925                 | 3371.0            | 12            | 1         | 26                | 2         | 1          | 3      |
| SNU     | GNU   |          | 12.0         | 0.157678        | 0.161875                 | 3371.0            | 12            | 1         | 26                | 1         | 1          | 2      |
| 1LL     | MLL   |          | 12.0         | 0.157907        | 0.162613                 | 16.166667         | 12            | 1         | 26                | 1         | 2          | 3      |
| VNA     | WNA   |          | 12.0         | 0.157678        | 0.161875                 | 3371.0            | 12            | 1         | 26                | 1         | 1          | 2      |
| KI      | KKI   |          | 12.0         | 0.157708        | 0.162147                 | 2.0               | 12            | 1         | 26                | 2         | 2          | 4      |
| ООК     | ООК   |          | 12.0         | 0.157723        | 0.162186                 | 8427.0            | 12            | 1         | 26                | 2         | 2          | 4      |
| TNK     | TNK   |          | 12.0         | 0.157693        | 0.161915                 | 5057.5            | 12            | 1         | 26                | 2         | 1          | 3      |
| YIO     | YIO   |          | 12.0         | 0.161803        | 0.16597                  | 1.0               | 8             | 1         | 26                | 2         | 2          | 4      |
| YVM     | YVM   |          | 12.0         | 0.16178         | 0.165723                 | 0.0               | 8             | 1         | 26                | 1         | 1          | 2      |

## **Eccentricity Distribution**





Το αποτέλεσμα της εικόνας προκύπτει από το γεγονός ότι σχεδόν όλα τα αεροδρόμια περνάνε από κάποιο κεντρικό με πολύ λίγα άλματα και έτσι φτάνουν στο μακρινό τους προορισμό γρήγορα.

#### Clustering

Από την μετρική Avg. Clustering Coefficient του Gephi προκύπτει:



Για τον υπολογισμό των τριγώνων στον γράφο αλλά και της μετρικής clustering coefficient για κάθε κόμβο χρειάστηκε να χρησιμοποιηθεί το pugin του Gephi Clustering Coefficient. Τα αποτελέσματα της μετρικής αυτής:



#### Ενδεικτικές τιμές clustering coefficient ανά κόμβο:



#### Ομοφυλία



Αν ξαναδούμε την αρχική εικόνα του γράφου στην οποία οι κόμβοι είναι ομαδοποιημένοι ανά περιοχή βάσει του modularity παρατηρούμε ότι υπάρχουν πολλές ακμές μεταξύ των κόμβων μιας ομάδας. Στην αναπαράσταση του γράφου φαίνεται κάθε χρώμα να κυριαρχεί σε μια περιοχή του επιπέδου. Αυτό το φαινόμενο οφείλεται στο γεγονός ότι τα αεροδρόμια μίας περιοχής, π.χ της Ευρώπης, πραγματοποιούν πτήσεις κυρίως σε προορισμούς εντός της ίδιας περιοχής. Αεροδρόμια τα οποία δεν βρίσκονται κοντά στο κέντρο του γράφου ( δεν πραγματοποιούν σχεδόν καμία πτήση εκτός της περιοχής τους), είναι αεροδρόμια τα οποία μοιάζουν αρκετά μεταξύ τους. Για παράδειγμα, αν ένας ταξιδιώτης βρίσκεται στην Αθήνα και επιθυμεί να μεταβεί στο αεροδρόμιο της Νέας Υόρκης, θα χρειαστεί πιθανότατα να περάσει από κάποιο άλλο αεροδρόμιο, όπως αυτό της Φρανκφούρτης, ή του Χίθροου στο Λονδίνο. Το ίδιο θα συμβεί και από οποιοδήποτε άλλο αεροδρόμιο που βρίσκεται μακριά από το κέντρο του γράφου.

Επιπλέον, βλέπουμε ότι υπάρχουν απευθείας πτήσεις, άρα ακμές μεταξύ κόμβων μίας περιοχής αφού παρατηρούμε στην αναπαράσταση τις ακμές κάθε ομάδας να πλέκονται. Αυτό μας δείχνει ότι δεν πηγαίνουν όλες οι ακμές στο κέντρο του γράφου και στα μεγάλα αεροδρόμια, αλλά οι κόμβοι εκτελούν δρομολόγια και μεταξύ τους. Συνεπώς, υπάρχει ομοφυλία στον γράφο μας και κυρίως αν περιοχή.

#### **Graph Density**

Η συγκεκριμένη μετρική μας δείχνει πόσο κοντά είναι ο γράφος μας στον είναι πλήρης.



Το αποτέλεσμα μας δείχνει ότι ο γράφος μας απέχει πολύ από το να γίνει πλήρης και είναι κάτι πολύ λογικό. Αν ο γράφος μας ήταν πλήρης, τότε όλα τα αεροδρόμια θα είχαν απευθείας πτήσεις μεταξύ τους. Αυτή η περίπτωση δεν θα εξυπηρετούσε καθόλου την αγορά. Αν μόνο ένας ταξιδιώτης από την Κρήτη ήθελε να πάει στο Μεξικό, τότε θα έπρεπε να ταξιδέψει ένα αεροπλάνο χωρίς στάση με ένα μόνο επιβάτη αυτή την διαδρομή. Προσπαθώντας να μειωθεί το κόστος των πτήσεων οι αεροπορικές εταιρίες αλλά και τα αεροδρόμια έχουν σχηματίσει ένα αποτελεσματικό δίκτυο πτήσεων. Ανάλογα με την θέση του κόμβου στο δίκτυο, παρατηρούμε και τις αντίστοιχες εγκαταστάσεις. Σίγουρα το αεροδρόμιο της Αταλάντας στις ΗΠΑ χρειάζεται να είναι μεγαλύτερο από εκείνο της Κεφαλονιάς. Την ίδια δομή συναντάμε σε όλα τα αποδοτικά δίκτυα, όπως το internet και τα οδικά δίκτυα.

#### Πηγές

- Διαλέξεις μαθήματος
- https://gephi.org/
- https://en.wikipedia.org/wiki/Clustering coefficient
- https://openflights.org/data.html
- https://www.centiserver.org/centrality/Eccentricity Centrality/
- https://en.wikipedia.org/wiki/Eigenvector\_centrality
- https://gephi.org/tutorials/gephi-tutorial-layouts.pdf
- https://en.wikipedia.org/wiki/Network science