Contents

1	target function approximation	1
2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1
3	comparison of original target to approximation	2
4	consequences	2
5	conclusion	2

1 target function approximation

excluding use of floats, and division, only +,-,* are allowed.

2 target function emulation

2.1 target function

• target fuction T:

$$T = L * \phi(\sigma) = L * (1 - (1 - f)^{\sigma})$$

- σ is relative stake.
- f is tuning parameter, or the probability of winning have all the stake
- L is field length

2.2 $\phi(\sigma)$ approximation

•

$$\phi(\sigma) = 1 - (1 - f)^{\sigma}$$

•

$$=1-e^{\sigma ln(1-f)}$$

•

$$= 1 - (1 + \sum_{n=1}^{\infty} \frac{(\sigma ln(1-f))^n}{n!})$$

•

$$\sigma = \frac{s}{\Sigma}$$

• s is stake, and Σ is total stake.

2.3 target T n term approximation

•

$$k = Lln(1 - f)^1$$

•

$$k^{'n} = Lln(1-f)^n$$

•

$$T = -\left[k\sigma + \frac{k''}{2!}\sigma^2 + \dots + \frac{k'^n}{n!}\sigma^n\right]$$

•

$$=-\big[\frac{k}{\Sigma}s+\frac{k^{''}}{\Sigma^22!}s^2+\cdots+\frac{k^{'n}}{\Sigma^nn!}s^n\big]$$

3 comparison of original target to approximation

Figure 1: alt text

4 consequences

- hard coded tunning.
- public reward function.

5 conclusion

as the derivative of deltas graph shows, starting for term 2, the derivatives is ~ 0 , and it's the optimal number of terms in approximation accuracy that has the least number of terms.