Multiple Regression II

Today's Outline

- Multicollinearity
- Model Misspecification
- AIC and BIC
- Spread Level Plots
- Tests for heteroskedasticity
- Robust Standard Errors
- FGLS

Note: Assignment 2 is posted and will be due November 9th at 11:59pm

You must submit as a PDF.

Multicollinearity

- You've learned about perfect multicollinearity which occurs when variables have an exact linear relationship between them
 - Often occurs when you include the same variable measured using different units (feet and meters for example)
 - Additionally occurs with the dummy variable trap
- Multicollinearity can still cause problems when the relationship is very close but not perfect
 - Inflates variances and standard errors, making our hypothesis tests less sensitive
 - Can result in large changes in our regression coefficients

```
ceo_perf = ceo.copy()

The original sales number is in millions, so here I make this the actual number
ceo_perf["Sales_Actual"] = ceo_perf["sales"]*1000000
```

Perfect Multicollinearity

- A note at the bottom says that the design matrix may be singular
- This tells us that there is almost certainly perfect multicollinearity in our model
- At this point we need to find the problematic variables and remove one of them

Dep. Variable:	np	log(salary)	F	R-square	ed: 0.	079
Model:		OLS	Adj. F	R-square	ed: 0.	075
Method:	Lea	ast Squares	ĺ	F-statist	tic: 17	7.79
Date:	Thu, 2	27 Oct 2022	Prob (F	-statisti	c): 3.70e	-05
Time:		20:48:17	Log-L	ikeliho	od: -168	3.63
No. Observations:		209		Α	IC: 34	11.3
Df Residuals:		207		В	IC: 34	17.9
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
	COEI	Stu en		F > L	[0.025	0.575]
Intercept	6.8467	0.045	152.138	0.000	6.758	6.935
sales 1.4	98e-17	3.55e-18	4.217	0.000	7.98e-18	2.2e-17
Sales_Actual 1.4	98e-11	3.55e-12	4.217	0.000	7.98e-12	2.2e-11
Omnibus:	57.347	Durbin-\	Watson:	1.89	93	
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):	205.9	12	
Skew:	1.063	Pr	ob(JB):	1.94e-	45	
Kurtosis:	7.373	Co	nd. No.	7.08e+	21	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.69e-22. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Imperfect Multicollinearity

- Let S1 and S2 be two uncorrelated random variables
- For simulation, I can use python to generate correlated random variables that will demonstrate the effect of multicollinearity

Imperfect Multicollinearity (Simulation)

- Below we create a random variable that is a function of X plus some random noise
- By construction B0 =
 5, B1 = 2

```
# Case 1
synth_data['Y1'] = 5 + 2*synth_data['X'] + np.random.normal(0, 3, 500)
plt.scatter(synth_data.X, synth_data.Y1)
```

<matplotlib.collections.PathCollection at 0x7f94700cbeb0>

Imperfect Multicollinearity (Simulation Result)

- On the right we run two separate regressions
 - One just regressing Y on X
 - One regressing Y on Xand the irrelevant variableZ
- Note that our estimates for the beta on X has gotten worse and the standard errors have also grown

```
: smf.ols('Y1 ~ X', data = synth_data).fit().summary()
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.3574	0.460	11.647	0.000	4.454	6.261
х	1.9324	0.044	43.839	0.000	1.846	2.019

```
]: smf.ols('Y1 ~ X + Z ', data = synth_data).fit().summary()
```

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.4664	0.461	11.862	0.000	4.561	6.372
x	2.6350	0.320	8.231	0.000	2.006	3.264
z	-0.3570	0.161	-2.216	0.027	-0.674	-0.040

Variance Inflation Factor (VIF)

 We can also calculate the VIF, which is a metric for identifying imperfect multicollinearity

$$\widehat{var}(b_j) = \frac{\widehat{\sigma}^2}{(n-1)s_j^2} \times \frac{1}{1-R_j^2}.$$

- Where 1/(1-R²) is the VIF
- Simple to calculate by hand, just:
 - o Regress a predictor on the other predictors
 - Plug the rsquared from that regression into the equation above

 $1/(1-r_x)$

VIF in Statsmodels

The outliers_influence submodule in statsmodels.stats will also calculate
 VIF for us

```
statsmodels.stats.outliers_influence.variance_inflation_factor(
    exog,
    exog_idx
)
[source]
```

Variance inflation factor, VIF, for one exogenous variable

The variance inflation factor is a measure for the increase of the variance of the parameter estimates if an additional variable, given by exog_idx is added to the linear regression. It is a measure for multicollinearity of the design matrix, exog.

One recommendation is that if VIF is greater than 5, then the explanatory variable given by exog_idx is highly collinear with the other explanatory variables, and the parameter estimates will have large standard errors because of this.

Parameters

```
exog : { ndarray, DataFrame }
```

design matrix with all explanatory variables, as for example used in regression

```
exog_idx : int
```

index of the exogenous variable in the columns of exog

VIF Code

feature

intercept 12.246353

X 53.157381 Z 53.157381

VIF

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Get the design matrix (set of predictors + intercept)
synth_data['intercept'] = 1
X = synth data[['intercept', 'X', 'Z']]
# Create place to store VIF values
vif data = pd.DataFrame()
vif_data["feature"] = X.columns
# calculating VIF for each feature
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
                          for i in range(len(X.columns))]
print(vif_data)
```

Higher Order Predictors

- Note that regressions that include higher order terms can also create multicollinearity
- This is because higher order terms are naturally correlated with the original variable
- Below we have another simulated example where an output (Z) is a function of a 3rd order polynomial of X

Higher Order Predictors

- Ideally our regression should detect that each predictor:
 - Has a coefficient = 1
 - Is statistically significant
- Unfortunately this doesn't happen
- We may erroneously conclude X is not a good predictor of Y
- Note the very high R-Squared term

```
p    1 results1 = smf.ols('Z2 ~ X + I(X**2) + I(X**3)', synthdata).fit()
2 results1.summary()
```

OLS Regression Results

Dep.	Variable		Z	22	R-squ	uared:	0.496
Model:			OL	S A	Adj. R-squared:		
	Method	: Le	ast Square	es	F-sta	tistic:	11.80
	Date	: Wed, 2	26 Oct 202	2 Pro	b (F-stat	tistic):	1.57e-0
	Time		21:15:5	55 Lo	og-Likeli	hood:	-124.88
No. Obser	vations		4	10		AIC:	257.8
Df Re	siduals	:	3	86		BIC:	264.5
D	f Model	:		3			
Covarian	ce Type		nonrobu	st			
	coef	std en	t	P> t	[0.025	0.975]	
Intercept	-0.6111	1.207	-0.506	0.616	-3.059	1.837	
X	1.6622	1.682	0.988	0.330	-1.749	5.074	
I(X ** 2)	1.2609	0.760	1.659	0.106	-0.281	2.803	
I(X ** 3)	0.8160	0.531	1.537	0.133	-0.261	1.893	
Om	nibus:	7.833	Durbin-	Watson	2.10)5	
Prob(Omr	nibus):	0.020	Jarque-B	era (JB)	7.48	34	
	Skew:	-0.683	P	rob(JB)	0.023	37	
Ku	rtosis:	4.621	C	ond. No	7.6	0	

Notes:

Standard Errors assume that the covariance matrix of the errors is correctly specified.

Joint Hypothesis Testing (F-Test)

- Individual t-tests in this case will not be able to tell us whether X is a good predictor
- We can test whether, altogether, X is a good predictor of Y
- This is done in a joint hypothesis (or F) test
- If any of the predictors are significant we reject the null that for:

$$Z = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_2 X_1^3 + e$$

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

- If any are significant then we reject the null
- Note that this will not tell us which of the variables included are important

```
# write each of your hypotheses in a list
hypotheses = ['X = 0', "I(X ** 2) = 0", "I(X ** 3) = 0"]

# use the f-test method included in sm.ols().fit() objects
results1.f_test(hypotheses)

**Class 'statsmodels.stats.contrast.ContrastResults'>
**CF test: F=11.797252124012763, p=1.5688628957854124e-05, df_denom=36, df_num=3>
```

Multicollinearity Interactions

- Multicollinearity may also be a problem arising from including interaction variables
- Below we generate an indicator variable and interact it with the X variable generated previously
- We build another variable that is a linear function of each of these variables

Multicollinearity Interactions

- One again, we are unable to detect any statistical significance
- From this we may conclude (mistakenly) that X is not related to Z3
- Below we can run an F-test on all terms including X
- This will tell us whether X is a relevant predictor

OLS Regression Result

Dep.	Variable:		Z	3	R-squ	iared:	0.21
	Model:		OL	S Ad	ij. R-squ	iared:	0.145
	Method:	Leas	st Square	S	F-sta	tistic:	3.213
	Date:	Wed, 26	Oct 202	2 Prot	(F-stat	istic):	0.0342
	Time:		21:28:4	4 Lo	g-Likeli	hood:	-54.743
No. Obser	vations:		4	0		AIC:	117.5
Df Re	esiduals:		3	6		BIC:	124.2
0	f Model:			3			
Covarian	ce Type:		nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.1621	0.347	-0.467	0.643	-0.866	0.542	
IND	0.7425	0.404	1.838	0.074	-0.077	1.562	
X	0.1163	0.281	0.414	0.682	-0.454	0.686	
IND:X	0.4777	0.360	1.329	0.192	-0.252	1.207	
Om	nibus: 2	2.733	Durbin-V	Vatson:	1.918		
Prob(Omr	nibus): (0.255 Ja	rque-Be	ra (JB):	2.172		
	Skew: (0.571	Pr	ob(JB):	0.338		
Ku	rtosis: 2	2.969	Co	nd. No.	4.65		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Exercise

- Using the wooldridge module, import the "mlb1" dataset (<u>link to variable</u> descriptions)
- Run the following regression: $\log(salary) = \beta_0 + \beta_1 y ears + \beta_2 gamesyr + \beta_3 bavg + \beta_4 hrunsyr + \beta_5 rbisyr + e$
- Based on the individuals t-tests, are baseball statistics related to a player's salary?
- Does VIF indicate any problems with multicollinearity in the data?
- Test whether performance statistics, as a whole, matter for determining a baseball player's salary (use a joint hypothesis test for the last three variables in the regression)

Component Plus Residuals Plots

- We will often be interested in only modelling the relationship between one predictor and y
- A component-plus-residuals plot attempts to remove the effects of other predictors
- The component plus residuals is simply given by:

$$e_{partial,ij} = e_i + b_j x_{ij}$$

 Below we replicate an example using the prestige dataset from econ 430 in python

```
prestige = pd.read_csv("Prestige_miss.csv")
fit2 = smf.ols('prestige ~ income +education + women', prestige).fit()
```

Component Plus Residuals Plots

- Producing a CCPR plot simply entails
 - Pulling the residuals from a regression
 - Multiplying the variable of interest by its coefficient
 - Adding the two vectors together
- To reproduce plots similar to the ones shown in R we can use the regplot() function to:
 - Show a line of best fit
 - Add a lowess smoother to model any nonlinearities
- These plots can help tell us about any remaining nonlinear relationships

```
def ccpr_plot(model, data, variable):
    df_copy = data.copy()

df_copy["epartial"] = model.resid + model.params[variable]*data[variable]

plt.figure(figsize = (10, 6))

sns.regplot(x = variable, y = "epartial", data =df_copy, lowess = True)
sns.regplot(x = variable, y = "epartial", data =df_copy)

plt.title("Component + Residuals "+variable)
```

```
: M 1 ccpr_plot(fit2, prestige, "income")
```


Component Plus Residuals Plot (Statsmodels)

- The out-of-the-box method given by statsmodels will only give us a line of best fit
- Takes a fitted model and a variable name as arguments

```
import statsmodels.api as sm
sm.graphics.plot_ccpr(fit2, 'income')

plt.show()
```


Conditional Expectations and Residuals

- These plots are slightly more more complex to produce and can model stronger linear effects that may go undetected by CCPR plots
- Effects of other predictors are removed by conditioning on the other predictors, but the interpretation is similar
- We can exploit the statsmodels function to get CERES Plots

]: <AxesSubplot:title={'center':'CERES residuals plot'}, xlabel='income', ylabel='Component plus residual'>

Conditional Expectations and Residuals Function

- To produce a plot similar to the one from statsmodels we can pull the data points from their plot
- Then we can add a regression line and lowess smoother using regplot
- Without doing this we will only get a scatterplot from statsmodels

```
def ceres plot(model, data, variable):
        # produce plot
       plot ceres residuals(fit2, variable)
       ax = plt.gca()
        # don't show plot in notebook
        plt.close()
       # Pull datapoints from scatterplot from the statsmodels plot
10
11
       line = ax.lines[0]
       X = line.get xdata()
12
13
       Y = line.get ydata()
14
15
       # Store the results into format that works with seaborn
       df = pd.DataFrame(np.array([X,Y]).T, columns = [variable, "CERES Resdiduals"])
16
17
       plt.figure(figsize = (10, 6))
18
19
       # plot the results in a way similar to R
       sns.regplot(x = variable, y = "CERES Resdiduals", data =df, lowess = True)
20
21
       sns.regplot(x = variable, y = "CERES Resdiduals", data =df)
22
23
       plt.title("CERES Plot "+variable)
```

Conditional Expectations and Residuals Plot

```
fit3 = smf.ols('prestige~income+education+type', prestige).fit()
ceres_plot(fit3, prestige, 'education')
```


Model Misspecification

- A model's functional form will be misspecified if we fail to include relevant interactions and higher order terms in the regression
- This will lead to biased estimators of our coefficients
- For example let's think back to Z2 which was created with a third order term of X

Model Misspecification (RESET)

- The RESET test can help tell us whether we are missing any important nonlinearities
- The algorithm is simple:
 - Generate a regression model
 - Pull out the fitted values
 - Decide what order of polynomial you would like to test (typically up to 3)
 - Generate vectors of fitted values taken to the power of the polynomial up to the desired order
 - Add the vectors in the last step as predictors to the original regression
 - Run an f-test to decide whether the coefficients on the polynomials are significant

```
# Create our suspect model
    2 results1 = smf.ols('Z2 ~ X', synthdata).fit()
      # Take the fitted values up to the desired power
      synthdata["fitted2"] = results1.fittedvalues**2
      synthdata["fitted3"] = results1.fittedvalues**3
      # Fit regression on polynomial
      ramseyreg = smf.ols('Z2 ~ X + fitted2 + fitted3', synthdata).fit()
      # run ftest on polynomial values
      hypotheses = ['fitted2 = 0', "fitted3 = 0"]
      # we reject the null that the functional form is adequate
      ramseyreg.f test(hypotheses)
: <class 'statsmodels.stats.contrast.ContrastResults'>
  <F test: F=4.818604895089585, p=0.013986256771061925, df denom=36, df num=2>
    1 # statsmodels method
   2 reset out = smo.reset ramsey(res = results1, degree = 3)
   3 reset out
: <class 'statsmodels.stats.contrast.ContrastResults'>
  <F test: F=4.818604895089885, p=0.01398625677105865, df denom=36, df num=2>
```

Exercise

- Import the "hprice1" dataset from the wooldridge module
- Fit the following model:

$$price = \beta_0 + \beta_1 lot size + \beta_2 sqr ft + \beta_3 bdr ms + e$$

- Decide whether the model is misspecified
- Plot the component plus residuals plots
- Based on your results decide whether and/or what higher order terms to add to the model (note that this is non-obvious)

Model Selection Metrics (So Far)

- You have already learned about two model selection metrics:
 - R-Squared: A measure of the proportion of the variance in the dependent variable explained by the regression
 - Monotonically increasing measure of fit
 - Adjusted R-Squared: A measure of the proportion of the variance in the dependent variable explained by the regression that is penalized as more predictors are added
 - Doesn't really have any theoretical basis (is biased)

Dep. \	Variable:		cumgpa		R-squa	red:	0.241
Model:		OLS		Adj. R-squared:		red:	0.234
Method:		Least Squares			F-statistic:		38.31
Date:		Fri, 04 Nov 2022		Prob	(F-statis	tic):	1.73e-40
	Time:	10:51:52		Log	-Likeliho	od:	-929.74
No. Obser	rvations:		732		,	AIC:	1873.
Df Re	siduals:		725		E	BIC:	1906.
D	f Model:		6				
Covarian	ce Type:	n	onrobust				
	coef	std err	t	P> t	[0.025	0.97	5]
Intercept	0.8791	0.298	2.952	0.003	0.294	1.46	64
sat	0.0009	0.000	3.743	0.000	0.000	0.00)1
hsperc	-0.0056	0.002	-3.463	0.001	-0.009	-0.00)2
tothrs	0.0121	0.001	12.941	0.000	0.010	0.01	4
female	0.1667	0.077	2.164	0.031	0.015	0.31	8
black	-0.0261	0.192	-0.136	0.892	-0.403	0.35	51
white	0.0143	0.184	0.078	0.938	-0.347	0.37	' 5

AIC and **BIC** (Manual)

- Two more metrics also exist:
 - Akaike Information Criterion (AIC): Estimates the quality of models being considered for the data, penalizes the addition of new variables

$$AIC = \ln\left(\frac{SSE}{N}\right) + \frac{2K}{N}$$

 Bayesian Information Criterion (BIC): Similar to AIC, applies a progressively larger penalty to the addition of new variables when compared to AIC

$$BIC = \ln\left(\frac{SSE}{N}\right) + \frac{K\ln(N)}{N}$$

```
# manual AIC using the formula
def AIC(model, y):

# get SSE

SSE = ((model.resid)**2).sum()

# Get K and N

k = len(results.params)
N = len(results.fittedvalues)

# Calculate and return AIC
return np.log(SSE/N) + ((2*k)/N)

AIC(results, data.cumgpa)
```

```
# def BIC(model, y):

# get SSE

# SSE = ((model.resid)**2).sum()

# Get K and N

K = len(results.params)

N = len(results.fittedvalues)

# Calculate and return AIC
return np.log(SSE/N) + ((k*np.log(N))/N)

BIC(results, data.cumgpa)

: -0.2345419485455542
```

AIC and BIC Statsmodels

- Statsmodels uses a slightly different formula to calculator AIC and BIC
- This is why our implementation and statsmodels are different
- The ordering of the models should be the same when ranked according to AIC and BIC

Heteroscedasticity

 The homoscedasticity assumption for multiple linear regression requires that the variance of our error terms is unrelated to the regressors:

$$\operatorname{Var}(u|x_1,\ldots,x_k)=\sigma^2.$$

 If homoscedasticity is violated then the standard errors of our regression and hypothesis tests are no longer valid.

Heteroscedasticity and Spread-Level Plots

- We can check whether the variance of our errors is related to our regressors using a spread-level plot
- This will plot our fitted values against the absolute values of our studentized residuals
- Any detectable pattern in our residuals (increasing, decreasing, or otherwise) tells us that the variance of our errors is somehow related to the function of our predictors
- Can anyone explain why we would use the absolute value of our residuals?

Spread-Level Plots in Python

- There is no simple method for generating a spread-level plot like those from R in python
- Below we have written some code that will closely replicate the plots from ECON 430 (with some differences due to software implementations of procedures like rlm and lowess)

```
1 def spread level(model, data):
       df copy = data.copy()
      # Get the studentized residuals
       df copy["Absolute Studentized Residuals"] = (np.abs(model.get influence().resid studentized))
       df copy["Fitted Values"] = (model.fittedvalues)
       # run regression to get slope of fitted vs resid, rlm is a robust linear model used by R
       slreg = smf.rlm("np.log(Absolute Studentized Residuals) ~ np.log(Fitted Values)", df copy).fit()
10
       slope = slreg.params[1]
11
       # plot values
13
       fig. ax = plt.subplots(figsize = (10, 6))
14
       ax.set title("Fitted Values vs Studentized Residuals")
       sns.regplot(x = "Fitted Values", y = "Absolute Studentized Residuals", data = df copy, lowess = True, ax = ax)
       ax.plot(df copy.Fitted Values.values, np.exp(slreg.fittedvalues).values)
16
17
18
       # Set to the logarithmic scale
       ax.set yscale('log')
20
       ax.set xscale('log')
21
22
       # convert froms scientific notation to scalar notation
       ax.yaxis.set major formatter(ScalarFormatter())
23
       ax.xaxis.set major formatter(ScalarFormatter())
24
25
26
       # Resolve overlapping label bug
27
       ax.minorticks off()
28
29
       # Set tick labels automatically
       ax.set xticks(np.linspace(df copy["Fitted Values"].min(),df copy["Fitted Values"].max(), 6))
30
       ax.set yticks(np.linspace(df copy["Absolute Studentized Residuals"].min(),
31
32
                                 df copy["Absolute Studentized Residuals"].max(), 6))
34
       ax.grid()
35
36
       # return a suggested power transform of your y-variable that may correct heteroscedastcity
       # The transform is just one minus the slope of the reegression line of your fitted values vs residuals
       print("Suggested Power Transformation:", 1-slope)
```

Spread-Level Plot Python Example

What does this plot tell you about heteroscedasticity in the model?

$$Expenditures \ on \ Food = \beta_0 + \beta_1 income + u$$

```
results2 = smf.ols('food_exp~income', foodata).fit()|
spread_level(results2, foodata)
```

Suggested Power Transformation: -1.0786406911463162

Spread-Level Plot Python Example

What does this plot tell you about heteroscedasticity in the model?

```
# Fit the model
model = smf.ols('cumgpa ~ sat +hsperc +tothrs +female +black + white', data)
results = model.fit()|
spread_level(results, data)
```

Suggested Power Transformation: 2.6126484819030966

Breusch-Pagan (BP) Test

- Fortunately we do not have to rely solely on visual examination
- The BP test allows us to test whether the residuals of our regression can be predicted as a linear combination of our predictors
- Simply regress the squared residuals from your model on the predictors and run an F or LM test
- The null hypothesis is that all of the betas from the secondary regression are zero (we can't predict the residuals)

```
# pull out squared residuals
data["res2"] = results.resid**2

# try to predict the squared residuals using a linear combination of our variables
aux_reg = smf.ols('res2 ~ sat +hsperc +tothrs +female +black + white', data).fit()

# Get the regression f-statistic (f-test version)
f = aux_reg.fvalue
fp = aux_reg.f_pvalue

print("The F-Statistic for the Auxiliary Regression is: "+ str(f) +" and the P-Value is: "+ str(fp))
```

The F-Statistic for the Auxiliary Regression is: 49.18699087724235 and the P-Value is: 9.680220020442915e-51

Breusch-Pagan (BP) Test Statsmodels

 The sm.stats.diagnostic submodule contains all of the tests for heteroscedasticity we will use today

```
1 y, X = pt.dmatrices('cumgpa ~ sat +hsperc +tothrs +female +black + white', data,
                       return type = 'dataframe')
 4 # Takes in the residuals and our design matrix as arguments
 5 # Order is Lm Test statistic, LM P-value, F-stat, F-Pvalue
 6 sm.stats.diagnostic.het breuschpagan(results.resid, X)
(211.76807825368095,
 5.915341448453325e-43.
49.18699087724235,
 9.680220020442915e-51)
 1 # LM test statsitic is just n*R2 from the aux regression
   LM = len(data)*aux reg.rsquared
 4 k = results.df model
 1 # sf is just 1- cdf (called the survival function)
 2 stats.chi2(k).sf(LM)
5.915341448453325e-43
```

The White Test for Heteroscedasticity

8.692792444556739e-94)

- The White Test for heteroscedasticity is nearly identical to the BP test
- The white test adds second-order interaction and main effect terms to the auxiliary regression
- This makes it a more robust test for large sample sizes, but can also eat up many degrees of freedom
 - The auxiliary regression for this example estimates 28 parameters

```
# Order is Lm Test statistic, LM P-value, F-stat, F-Pvalue sm.stats.diagnostic.het_white(results.resid, X)

(373.54693566461617, 4.825921983841415e-65, 32.07881392043317,
```

Goldfeld-Quandt (GQ) Test

- The Goldfeld-Quandt test is used to compare the variances of different groups within our sample
- The hypotheses for the two-sided GQ test are:

$$H_0:\hat{\sigma}_1^2=\hat{\sigma}_0^2 \hspace{0.5cm} H_a:\hat{\sigma}_1^2
eq\hat{\sigma}_0^2$$

Where the F-statistic is computed as:

$$F=rac{\hat{\sigma}_1^2}{\hat{\sigma}_0^2}$$

Goldfeld-Quandt (GQ) Test - Manual

- Below we consider the example of comparing the variances of the black and non-black population in our sample
- Here we are only testing the right-hand hypothesis that the variance of sample 1 is greater than the variance of sample 2

```
1 # manual implementation
 2 data1 = data[data.black == 1]
 3 data0 = data[data.black == 0]
 5 # run regs on different groups
 6 reg1 = smf.ols('cumgpa ~ sat +hsperc +tothrs +female +black + white', data1).fit()
 7 reg0 = smf.ols('cumgpa ~ sat +hsperc +tothrs +female +black + white', data0).fit()
 9 # pull out the residuals of each regression
10 df1 = reg1.df resid
11 df0 = reg0.df resid
13 # Get the variance of each regression
14 sig1squared = reg1.scale
15 sig0squared = reg0.scale
17 fstat = sig1squared/sig0squared
18
19 # calculate critical calue for right side test
20 stats.f.ppf(.95, df1, df0)
```

1.229602398528648

1 fstat

1.0065563350797615

Goldfeld-Quandt (GQ) Test - Statsmodels

- Statsmodels has a simple implementation of this test as well
- Note that we have to provide two indices to run the test on our groups:
 - The index of the column containing the group on which we are making the split
 - The index at which the split is being made within the group

We also have to provide the design matrix and the vector containing our dependent

variable

```
1 # I need to provide a split point to the software
    2 # Sprt values in ascending order and reset the index to number from 1 to Len(data)
    3 sortedv = data.sort values(by = "black").copy().reset index()
    5 # This returns the first index that contains a one
    6 splt = sortedv.black.argmax()
    8 # run regression
    9 gg reg = smf.ols('cumgpa ~ sat +hsperc +tothrs +female +black + white', sortedy).fit()
   1 # get the data for dependent and independent variables
    2 # these are numpy arrays instead of dataframes
    3 y = gq reg.model.endog
    4 X = gq reg.model.exog
    6 # Order is f-stat, pvalue, hypothesis
    7 sm.stats.diagnostic.het goldfeldquandt(y, X, idx = 5, alternative = 'increasing', split= splt)
: (1.0065563350797613, 0.4901417839642259, 'increasing')
    1 # get the data for dependent and independent
    2 v = gg reg.model.endog
    3 X = gq reg.model.exog
    5 # Order is f-stat, pvalue, hypothesis
    6 sm.stats.diagnostic.het goldfeldquandt(y, X, idx = 5, alternative = 'two-sided', split= splt)
: (1.0065563350797613, 0.9396730744525191, 'two-sided')
```

Correcting Heteroscedasticity

- There are several methods for correcting for heteroskedasticity within our models
- The first (and most simple way) is by using robust standard errors
- These new standard errors will give us a valid basis for running all of our hypothesis tests
- Statsmodels allows us to simply include a flag within the fit() method that specifies the type of standard errors we want to use
- Your textbook states that the results will be similar for each type used
 - reg.fit (cov_type='nonrobust') or reg.fit() for the default homoscedasticity-based standard errors.
 - reg.fit (cov_type='HCO') for the classical version of White's robust variance-covariance matrix presented by Wooldridge (2019, Equation 8.4 in Section 8.2).
 - reg.fit (cov_type='HC1') for a version of White's robust variance-covariance matrix corrected by degrees of freedom.
 - reg.fit (cov_type='HC2') for a version with a small sample correction. This is the default behavior of Stata.
 - reg.fit(cov_type='HC3') for the refined version of White's robust variance-covariance matrix.

Python - Robust Standard Errors

```
robust_reg = smf.ols('cumgpa ~ sat +hsperc +tothrs +female +black + white', data).fit(cov_type = 'HCO')
 2 robust reg.summary()
OLS Regression Results
    Dep. Variable:
                                                     0.241
                          cumqpa
                                       R-squared:
          Model:
                                   Adj. R-squared:
                                                     0.234
                             OLS
         Method:
                     Least Squares
                                        F-statistic:
                                                     30.67
           Date: Thu. 03 Nov 2022 Prob (F-statistic): 6.76e-33
           Time:
                                   Log-Likelihood:
No. Observations:
                             732
                                             AIC:
                                                     1873.
     Df Residuals:
                             725
                                             BIC:
                                                     1906.
        Df Model:
                               6
 Covariance Type:
                             HC0
                              z P>|z| [0.025 0.975]
            coef std err
Intercept 0.8791
                          2.915 0.004 0.288
     sat 0.0009
                          3.660 0.000 0.000
  hsperc -0.0056
                   0.002
                         -3.391 0.001 -0.009
         0.0121
                   0.001 10.713 0.000 0.010
   female
                         2.123 0.034 0.013
   black -0.0261
                         -0.144 0.885 -0.381
                         0.085 0.932 -0.314 0.342
                   0.167
```

results.summary() **OLS Regression Results** Dep. Variable: 0.241 R-squared: cumapa Model: OLS Adi. R-squared: 0.234 Method: Least Squares F-statistic: 38.31 Date: Thu, 03 Nov 2022 Prob (F-statistic): 1.73e-40 13:15:42 Log-Likelihood: -929.74 Time: No. Observations: 732 AIC: 1873. Df Residuals: 725 BIC: 1906. Df Model: Covariance Type: nonrobust coef std err [0.025 0.975] t P>ItI 0.8791 0.298 2.952 0.294 Intercept 0.003 1.464 0.000 0.0009 0.000 3.743 0.000 0.001 -0.00560.002 -3.463 0.001 -0.002 -0.009 hsperc 12.941 0.010 tothrs 0.0121 0.001 0.000 0.014 female 0.1667 0.077 2.164 0.031 0.015 0.318 0.192 -0.136 0.892 -0.0261 -0.403 0.351 0.078 0.938

-0.347

0.375

0.0143

white

0.184

Weighted and Generalized Least Squares

- Robust standard errors acknowledge that the standard errors around your coefficients may be incorrect and adjusts them accordingly
- Given a few (admittedly important) assumptions, we may be able to do better and adjust the coefficients directly
- This requires us to assume a functional form for the variance of our errors
- Each side of the regression equation is then divided by the function in order to cancel out the heteroscedasticity in our model
- For example if we assume that our errors for a simple linear model:

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

Scale directly with x such that:

$$var(e_i) = \sigma^2 x_i$$

 Then we can divide both sides the initial model by sqrt(x_i) to get our final BLUE model

WLS Python Example

- Fortunately WLS is simple to implement in python
- We simply feed in the vector of weights as an argument and python will automatically take the square root and make the estimates

Feasible Generalized Least Squares

- Since we usually don't know the functional form of our variance, Feasible
 Generalized Least Squares (FGLS) is a procedure used to estimate an unknown variance function
- We assume a flexible general functional form for our variance of:

$$var(e \mid x) = \sigma^2 \exp \left(\delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k\right)$$

- Then use the following steps:
 - Estimate the initial model and extract the squared residuals
 - Regress the log of the squared residuals on the original regressors
 - Plug in the fitted values from this secondary regression as weights in wls

Feasible Generalized Least Squares

```
results2.summary()
OLS Regression Results
    Dep. Variable:
                         food exp
                                         R-squared:
                                                        0.385
           Model:
                             OLS
                                    Adj. R-squared:
                                                       0.369
         Method:
                    Least Squares
                                         F-statistic:
                                                        23.79
            Date: Fri, 04 Nov 2022
                                  Prob (F-statistic):
                                                    1.95e-05
                          12:17:44
                                    Log-Likelihood:
            Time:
                                                      -235.51
 No. Observations:
                                                        475.0
                                               AIC:
     Df Residuals:
                               38
                                               BIC:
                                                        478.4
        Df Model:
 Covariance Type:
                         nonrobust
             coef std err
                               t P>|t| [0.025
                                                 0.975]
Intercept 83.4160
                   43.410 1.922 0.062 -4.463
                                                171,295
  income 10.2096
                    2.093 4.877 0.000 5.972 14.447
                          Durbin-Watson: 1.894
      Omnibus: 0.277
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.063
          Skew: -0.097
                               Prob(JB): 0.969
       Kurtosis: 2.989
                                           63.7
                               Cond. No.
```

```
foodata["ehatsq"] = results2.resid**2

# estimate weights
w_est = smf.ols('np.log(ehatsq) ~ income', data = foodata).fit()

vari = np.exp(w_est.fittedvalues) #estimated variances
w = 1/vari**2

fgls =smf.wls('food_exp ~ income', foodata, weights = w).fit()

fgls.summary()
```

WLS Regression Results

Dep. Variable:		fe	ood_exp		R-squar	ed:	0.772
Model:		WLS		Adj. R-squared:			0.766
	Method:		Squares	F-statistic:			128.6
	Date:	Fri, 04 N	ov 2022	Prob (Prob (F-statistic		9.21e-14
	Time:		12:41:46	Log-	Log-Likelihood:		-234.12
No. Observations:		40		AIC:			472.2
Df Residuals:		38			В	IC:	475.6
D	f Model:		1				
Covarian	ce Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.9	975]
Intercept	73.0257	6.206	11.766	0.000	60.462	85.	590
income	11.0233	0.972	11.342	0.000	9.056	12.	991

Exercise 2

 Use the hprice1 dataset from the wooldridge module and fit a regression of the form:

$$price = \beta_0 + \beta_1 lot size + \beta_2 sqrft + \beta_3 bdrms + e$$

Use robust standard errors (HCO) and run a separate regression without them

- Use the BP or White test to check for heteroscedasticity in both models. What do you notice? Why do you think this happens?
- Use the FGLS procedure to estimate reestimate the model from above