Reg No:3010

Name:Tarun Mallik

Date:19/10/2022

```
In [33]: #Importing Libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
```

Loading Dataset

In [34]: data =pd.read_csv("/content/Enrollments_28092022.csv")
 data

Out[34]:

	StudentNo	DEGREE	INTERMEDIATE	ssc	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

297 rows × 5 columns

Q1. Identify Variables and their Types (Quantitative or Qualitative)

```
In [5]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 297 entries, 0 to 296
         Data columns (total 5 columns):
                            Non-Null Count Dtype
              Column
          0
              StudentNo
                            297 non-null
                                            int64
          1
                            297 non-null
                                            float64
              DEGREE
          2
              INTERMEDIATE 297 non-null
                                            float64
          3
              SSC
                            297 non-null
                                            float64
          4
              INTERNSHIP
                            297 non-null
                                            object
         dtypes: float64(3), int64(1), object(1)
         memory usage: 11.7+ KB
         data['StudentNo'] = data['StudentNo'].apply(str)
In [35]:
In [36]:
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 297 entries, 0 to 296
         Data columns (total 5 columns):
              Column
                            Non-Null Count
                                            Dtype
                             _____
                                            ____
          0
              StudentNo
                            297 non-null
                                            object
                            297 non-null
                                            float64
          1
              DEGREE
          2
              INTERMEDIATE 297 non-null
                                            float64
          3
                            297 non-null
                                            float64
              SSC
          4
              INTERNSHIP
                            297 non-null
                                            object
         dtypes: float64(3), object(2)
         memory usage: 11.7+ KB
         data.describe()
In [38]:
Out[38]:
```

	DEGREE	INTERMEDIATE	SSC
count	297.000000	297.000000	297.000000
mean	7.928081	88.662626	88.106734
std	0.785579	7.355733	9.027984
min	5.800000	65.000000	38.400000
25%	7.400000	83.000000	85.000000
50%	8.000000	90.800000	90.000000
75%	8.560000	94.600000	95.000000
max	9.530000	99.400000	99.000000

Q1. Answer

Qualitative Data: StudentNo and Internship

Quantitative Data: Degree, Intermediate and SSC

Q2. Size of Data (No. of Rows and Columns)

```
In [40]: data.shape
Out[40]: (297, 5)
```

Q2. Answer

Rows: 297

Attributes: 5

Q3. Create Histogram

```
In [42]: data.hist(figsize=(10,10))
```


Q4. Create Pie-Chart to represent the Enrollments for each Internship Program

```
In [46]: courses=['Data Science','Cloud Computing Services (AWS)','MEAN Stack Web Devel
    opment']
    students=[156,90,51]
    plt.pie(students, labels = courses,autopct='%1.2f%%')
    plt.show
```

Out[46]: <function matplotlib.pyplot.show(*args, **kw)>

Q5. Find No. of Enrollments for each Internship Program

Q6. Find Measure of Central Tendency: MEAN, MEDIAN, MODE

```
In [50]:
         # MEAN
          print(data.mean(numeric_only= True))
         DEGREE
                           7.928081
         INTERMEDIATE
                          88.662626
         SSC
                          88.106734
         dtype: float64
In [52]:
         # MEDIAN
          print(data.median(numeric_only= True))
         DEGREE
                           8.0
         INTERMEDIATE
                          90.8
         SSC
                          90.0
         dtype: float64
```

Q7. Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation, Standard Deviation, Co- efficient of Variation

```
In [55]: # Minimum
         print(data.min(numeric_only= True))
         DEGREE
                           5.8
         INTERMEDIATE
                          65.0
         SSC
                          38.4
         dtype: float64
In [56]:
         # Maximum
         print(data.max(numeric_only= True))
         DEGREE
                           9.53
         INTERMEDIATE
                          99.40
         SSC
                          99.00
         dtype: float64
In [58]:
         # Range
         print(data.max(numeric_only= True)-data.min(numeric_only= True))
         DEGREE
                           3.73
         INTERMEDIATE
                          34.40
         SSC
                          60.60
         dtype: float64
In [59]: | # Standard Deviation
         print(data.std(numeric_only= True))
         DEGREE
                          0.785579
         INTERMEDIATE
                          7.355733
         SSC
                          9.027984
         dtype: float64
In [60]: # Co - effienct of Variation
         print(data.std(numeric_only= True)/data.mean(numeric_only= True))
         DEGREE
                          0.099088
         INTERMEDIATE
                          0.082963
         SSC
                          0.102466
         dtype: float64
```

Q8. Measures of Position: Standard Scores, Inter-guartile Range for Degree, Inter and 10th

```
In [61]:
         # 1st Quartile
         data.quantile(q=0.25, numeric_only=True)
Out[61]: DEGREE
                          7.4
         INTERMEDIATE
                          83.0
         SSC
                          85.0
         Name: 0.25, dtype: float64
In [63]: # 2nd Quartile
         data.quantile(q=0.5, numeric_only=True)
Out[63]: DEGREE
                           8.0
         INTERMEDIATE
                          90.8
         SSC
                          90.0
         Name: 0.5, dtype: float64
In [65]: # 3rd Quartile
         data.quantile(q=0.75, numeric_only=True)
Out[65]: DEGREE
                           8.56
         INTERMEDIATE
                          94.60
         SSC
                          95.00
         Name: 0.75, dtype: float64
In [66]: # Inter-Quartile = Q3 - Q1
         data.quantile(q=0.75, numeric_only=True) - data.quantile(q=0.25, numeric_only=
         True)
Out[66]: DEGREE
                           1.16
         INTERMEDIATE
                          11.60
         SSC
                          10.00
         dtype: float64
```

Q9. Create Box Plot and Identify Outliers

```
In [67]: plt.boxplot(data['DEGREE'])
   plt.show
```

Out[67]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [68]: plt.boxplot(data['INTERMEDIATE'])
   plt.show
```

Out[68]: <function matplotlib.pyplot.show(*args, **kw)>


```
In [69]: plt.boxplot(data['SSC'])
   plt.show
```

Out[69]: <function matplotlib.pyplot.show(*args, **kw)>

Q10. Identify No. of Students with 90% percentile for Degree, Inter and 10th Class

```
In [70]: # 90th Percentile or Quantile
data.quantile(q=0.9, numeric_only=True)
```

Out[70]: DEGREE 8.9 INTERMEDIATE 96.5 SSC 97.0

Name: 0.9, dtype: float64

```
In [75]: df1 = data[data.DEGREE>8.9]
    df1.head(10)
```

Out[75]:

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
3	1004	9.03	89.5	89.0	Data Science
14	1015	9.07	95.0	98.0	Cloud Computing Services (AWS)
16	1017	9.53	98.2	93.1	MEAN Stack Web Development
17	1018	9.08	95.2	83.0	MEAN Stack Web Development
19	1020	9.16	98.0	87.0	Data Science
20	1021	9.00	96.8	99.0	Data Science
24	1025	9.08	97.2	97.0	Data Science
28	1029	8.92	89.7	83.0	Cloud Computing Services (AWS)
39	1040	9.03	96.5	97.0	Data Science
40	1041	9.34	97.7	97.0	Data Science

```
In [85]: df1.shape
```

Out[85]: (29, 5)

In [83]: df2 = data[data.INTERMEDIATE>96.5]
 df2.head(10)

Out[83]:

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
16	1017	9.53	98.2	93.1	MEAN Stack Web Development
19	1020	9.16	98.0	87.0	Data Science
20	1021	9.00	96.8	99.0	Data Science
24	1025	9.08	97.2	97.0	Data Science
40	1041	9.34	97.7	97.0	Data Science
60	1061	8.80	97.3	92.0	Data Science
96	1097	9.20	97.8	90.0	Data Science
127	2023	9.20	97.2	92.0	MEAN Stack Web Development
138	2034	9.38	98.2	87.0	Data Science
154	2050	9.20	97.2	90.0	Cloud Computing Services (AWS)

In [84]: df2.shape

Out[84]: (29, 5)

In [80]: df3 = data[data.SSC > 97.0]
 df3.head(10)

Out[80]:

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
9	1010	8.30	87.0	98.0	MEAN Stack Web Development
14	1015	9.07	95.0	98.0	Cloud Computing Services (AWS)
20	1021	9.00	96.8	99.0	Data Science
21	1022	8.00	95.2	98.0	Data Science
76	1077	8.70	93.0	98.0	Data Science
95	1096	8.83	94.7	98.0	Data Science
122	2018	7.00	92.0	98.0	Cloud Computing Services (AWS)
126	2022	7.03	72.0	98.0	Cloud Computing Services (AWS)
145	2041	8.76	94.5	98.0	Data Science
147	2043	8.60	94.0	98.0	MEAN Stack Web Development

In [82]: df3.shape

Out[82]: (21, 5)