Mathematical Statistics II - Final Exam

December 17, 2019

- 1. Present and prove the Cramer-Rao inequality, clearly.
- 2. Let X_1, \ldots, X_{10} be a random sample from $N(0, \theta = \sigma^2)$.
 - (1) Find the MLE of θ , $\hat{\theta}_{\text{MLE}}$ using the S.S's pdf for θ .
 - (2) Is $\hat{\theta}_{\text{MLE}}$ is a UMVUE? Provide the evidence.
 - (3) Provide the 90% confidence interval for θ . Here, we consider the equal probability for the tail part.

Now, we are interested in testing

$$H_0: \sigma^2 = 1$$
 vs $H_1: \sigma^2 = 2$.

where Type I error is a value of $\alpha = 0.1$.

- (4) Find a most powerful critical region using the percentile.
- (5) Provide Type II error.
- 3. Suppose Y_1, \ldots, Y_n forms a random sample from the uniform distribution on the interval $[0, \theta]$. Let $Y_{(n)}$ be the maximum order statistic from the sample. We know that $Y_{(n)}$ is a S.S for θ and the Beta distribution, $X \sim Beta(\alpha, \beta)$, is expressed as

$$f(x) = \frac{(\alpha + \beta - 1)!}{(\alpha - 1)!(\beta - 1)!} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad 0 < x < 1.$$

- (1) Find the MME of θ , $\hat{\theta}_1$, and show that $\hat{\theta}_1$ is UE of θ . Also, calculate MSE of $\hat{\theta}_1$.
- (2) Use (1) results and Rao-Blackwell Thm., find a better UE of θ , $\hat{\theta}_2$, rather than $\hat{\theta}_1$.
- (3) Compute MSE of $\hat{\theta}_2$ and compare the MSEs of $\hat{\theta}_1$ and $\hat{\theta}_2$.

We wish to test the null hypothesis $H_0: \theta = 1$ vs $H_1: \theta \neq 1$, using rejection region $C = \{Y_{(n)} \leq k \text{ or } Y_{(n)} > 1\}$ and $0 \leq k < 1$.

- (4) Find the UE of θ using the pdf of $Y_{(n)}$, $\hat{\theta}_3$. Calculate MSE of $\hat{\theta}_3$.
- (5) If $\alpha = 0.05$ is the significance level, find k in terms of n.
- (6) Find thee power function of the test. Use the value of k found in (5).
- 4. To investigate the impact of the city's new policy to reduce ambient air pollution, the amount of particulate matter (in $\mu g/m^3$) measured at the stations before and after the new policy. Let X_i and Y_i be the amount of particulate matter at $i(=1,\ldots,16)$ station before and after the policy, respectively. We assume that $D_i = Y_i X_i$ follows a normal distribution, $N(\mu_D, \sigma_D^2)$.
 - (1) Construct 95% confidence interval for μ_D .
 - (2) To argue that the new policy is working well, write down the null and alternative hypotheses.
 - (3) Find a uniformly most powerful critical region of size $\alpha = 0.05$ under (2).