Proofs by Reduction #1

coinstudent2048

October 12, 2021

1 Mathematics

Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ and let $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} \mid x \geq 0\}$. Let λ be the security parameter. Let Setup be the setup algorithm: $(\mathbb{G}, \mathbb{F}) \leftarrow \mathsf{Setup}(1^{\lambda})$, where \mathbb{G} is a cyclic group of prime order and \mathbb{F} is its scalar field. Let $Z \in \mathbb{G}$ be the identity element.

The notation $\stackrel{\$}{\leftarrow}$ will be used to denote for a uniformly randomly chosen element, and (1/x) for the modular inverse of $x \in \mathbb{F}$. Lastly, we use additive notation for group operations.

Definition 1.1. A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is **negligible** if for all positive polynomial $p(\cdot)$ there exists an $N \in \mathbb{N}$ such that for all integers n > N it holds that $f(n) < \frac{1}{p(n)}$.

Definition 1.2. An equivalent formulation of negligibility for $f : \mathbb{N} \to \mathbb{R}_{\geq 0}$ is if for all $c \in \mathbb{N}$ there exists an $N \in \mathbb{N}$ such that for all integers n > N it holds that $f(n) < n^{-c}$.

Definitions 1.1 and 1.2 is copied from Katz & Lindell. We first prove the following lemma:

Lemma 1.1. If $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is non-negligible, then $g(n) = f(n)^m$ for any $m \in \mathbb{N}$ and m > 1 is non-negligible.

Proof. We use the first definition. Non-negligibility of f means that there exists a positive polynomial $p(\cdot)$ such that for all $N \in \mathbb{N}$, there exists an n > N such that $f(n) \ge \frac{1}{p(n)}$. Let $p_f(\cdot)$ be such polynomial and n_f be such n > N. Then setting $p_g(\cdot) = p_f(\cdot)^m$ and $n_g = n_f$ suffices for non-negligibility of g because $f(n_f) \ge \frac{1}{p_f(n_f)} \Longrightarrow f(n_f)^m \ge \left(\frac{1}{p_f(n_f)}\right)^m$.

Lemma 1.1 justifies the usage of finite number of breaks of one hardness assumption in proofs by reduction.

I'll credit the proof idea of the following lemma to Atomfried (@atomfried:matrix.org).

Lemma 1.2. If there exists an n' > N that makes both $f_1 : \mathbb{N} \to \mathbb{R}_{\geq 0}$ and $f_2 : \mathbb{N} \to \mathbb{R}_{\geq 0}$ non-negligible, then $g(n) = f_1(n)f_2(n)$ is non-negligible.

Proof. We use the second definition. Non-negligibility of f means that there exists a $c \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, there exists an n > N such that $f(n) \ge n^{-c}$. Let c_1, c_2 be such $c \in \mathbb{N}$ for f_1 and f_2 respectively, and let n' be, as being said in the lemma statement, such n > N for both f_1 and f_2 . Then setting $c_g = c_1 + c_2$ and $n_g = n'$ suffices for non-negligibility of g because $f_1(n') \ge (n')^{-c_1} \wedge f_2(n') \ge (n')^{-c_2} \implies f_1(n')f_2(n') \ge (n')^{-c_1}(n')^{-c_2} = (n')^{-(c_1+c_2)}$.

Lemma 1.2 can be used to further generalize Lemma 1.1 to products of functions $g(n) = \prod_{i=1}^{m} f_i(n)$ through induction, as long as there exists an n' > N that makes all f_i non-negligible.

Definition 1.3 (Discrete Logarithm (DL) Assumption). *DL assumption holds relative to* Setup *if for all* PPT adversary \mathcal{A} , there exists a negligible function $negl(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} H=xG & (\mathbb{G},\mathbb{F}) \leftarrow \mathsf{Setup}(1^{\lambda}); G, H \xleftarrow{\$} \mathbb{G}; \\ x \in \mathbb{F} \leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},G,H) \end{array}\right] \leq \mathsf{negl}(\lambda).$$

Definition 1.4 ("Linking Tag" (LT) Assumption). LT assumption holds relative to Setup if for all PPT adversary A, there exists a negligible function $negl(\lambda)$ such that

$$\Pr\left[\begin{array}{c|c} C_1 = t_kG + k_aX + k_bU & (\mathbb{G},\mathbb{F}) \leftarrow \mathsf{Setup}(1^\lambda); G,X,U,C_1,C_2 \xleftarrow{\$} \mathbb{G}; \\ \land C_2 = (k_b/k_a)U & t_k,k_a,k_b \in \mathbb{F} \leftarrow \mathcal{A}(\mathbb{G},\mathbb{F},G,X,U,C_1,C_2) \end{array}\right] \leq \mathsf{negl}(\lambda).$$

Theorem 1.3. LT assumption holds if and only if DL assumption holds.

Proof. The proof consists of 2 parts:

- DL is broken \implies LT is broken: Assume that \mathcal{A} can break DL with non-negligible probability. Applying the first DL break on C_2 base U will give k_b/k_a . \mathcal{A} sets a random k_a and computes $k_b = k_a(k_b/k_a)$. Then applying the second DL break on $C_1 k_a X k_b U$ base G will give t_k .
- LT is broken \implies DL is broken: Assume that \mathcal{A} can break LT with non-negligible probability. Let $A, B \in \mathbb{G}$ (both not equal to Z) be the group elements to find DL for (without loss of generality, $x \in \mathbb{F}$ such that B = xA). Then perform this procedure for A: applying an LT break on $(C_1, C_2) = (G, A)$ will give $t_k, k_a, k_b \in \mathbb{F}$ such that $G = t_kG + k_aX + k_bU$ and $A = (k_b/k_a)U$. Note that both k_a and k_b will never be 0 because if one of them is, then $A \neq (k_b/k_a)U$, a contradiction.

Then perform the same procedure for B (hence another LT break). Now we have $y_1, y_2 \in \mathbb{F}$ such that $A = y_1U$ and $B = y_2U$. Hence $B = y_2(1/y_1)A$.

This completes the proof. \Box