



# Granular Analysis of Social Media Users' Truthfulness Stances Toward Climate Change Factual Claims

# Haiqi Zhang, Zhengyuan Zhu, Zeyu Zhang, Jacob Daniel Devasier, Chengkai Li

University of Texas at Arlington

Natural Language Processing meets Climate Change ACL 2024 Workshop

Presented by: Haiqi Zhang July 28, 2024



## Introduction

- Climate change impacts the environment, economy, and society.
- Growing public awareness and engagement on social media.
- Understanding discourse on climate change is crucial for informing policy, media strategies, and societal awareness.
- This paper presents a framework aimed at understanding social media users' perceptions of various climate change topics and uncovering the insights behind these perceptions.



#### **Framework Overview**





## **Factual Claim Collection**

- Five credible fact-checking websites: PolitiFact, Snopes, Full Fact, Metafact, AP news.
- Using keywords related to climate change (e.g., global warming, greenhouse gas) from Environmental Protection Agency (EPA) to collect claims and their verdicts from those websites.
- Resulting in 1,409 unique climate change-related factual claims.



### **Tweet Collection**

- Using tokens extracted from factual claims to collect tweets from X:
  - 1. Noun
  - 2. Verb
  - 3. Adjective
- Resulting in 13,050 tweets for 729 claims.



## **Taxonomy Construction**





### **Truthfulness Stance Detection**

- Model: Supervised fine-tuning of Zephyr.
- Training Data: 1,871 annotated claim-tweet pairs.
- Predicted Stance: Positive (believing the claim is true), Negative (believing the claim is false), Neutral/No stance.

#### Example:

- Claim: Air pollution linked to greater risk of dementia.
- Tweet: People over 50 in areas with the highest levels of nitrogen oxide in the air showed a 40% greater risk of developing dementia than those with the least NOx #airpollution.
- Stance: Positive



#### Results

#### Taxonomy:

- 9 broad topics, 33 medium topics, and 13 detailed topics.
- 83% accuracy for broad topics, 62.5% for medium topics.

#### Stance detection:

|          | Precision | Recall | Macro F1 |
|----------|-----------|--------|----------|
| $\oplus$ | 0.863     | 0.911  | 0.886    |
| •        | 0.783     | 0.765  | 0.774    |
| $\Theta$ | 0.864     | 0.750  | 0.803    |
| Avg      | 0.837     | 0.808  | 0.821    |

Table 1: Performance of truthfulness stance classifier on the annotated dataset. *Positive*, *Neutral/No stance* and *Negative* are denoted as  $\oplus$ ,  $\ominus$ ,  $\odot$ .

| 0        | •        | $\Theta$ | Total  |
|----------|----------|----------|--------|
| 8,003    | 2,668    | 2,379    | 13,050 |
| (61.33%) | (20.44%) | (18.23%) |        |

Table 2: Truthfulness stance distribution of tweets toward claims.



#### Results

| Broad Topic         | Truth-⊕            | Truth-⊖          | Misi-⊕             | Misi-⊖            | Accuracy | Macro F1 |
|---------------------|--------------------|------------------|--------------------|-------------------|----------|----------|
| Climate Science     | 81.7% (524)        | 18.3% (117)      | 72.5% (377)        | 27.5% (143)       | 0.575    | 0.524    |
| Economy             | 70.5% (146)        | 29.5% (61)       | 72.5% (351)        | 27.5% (133)       | 0.404    | 0.404    |
| Energy              | 82.2% (264)        | 17.8% (57)       | 74.7% (124)        | 25.3% (42)        | 0.628    | 0.530    |
| Environment         | 77.5% (533)        | 22.5% (155)      | 74.4% (1040)       | 25.6% (357)       | 0.427    | 0.423    |
| Government Policies | 83.2% (183)        | 16.8% (37)       | <b>69.5%</b> (205) | <b>30.5%</b> (90) | 0.530    | 0.514    |
| Health              | <b>88.7%</b> (180) | 11.3% (23)       | <b>77.9%</b> (169) | <b>22.1%</b> (48) | 0.543    | 0.493    |
| Politics            | <b>69%</b> (363)   | <b>31%</b> (163) | 75.7% (1635)       | 24.3% (525)       | 0.331    | 0.329    |
| Technology          | 74.8% (86)         | 25.2% (29)       | 69.8% (120)        | 30.2% (52)        | 0.481    | 0.473    |

Table 4: Stance distribution towards **Truth** and **Misi**nformation across broad topics. Truth- $\oplus$  and Truth- $\ominus$  denote positive and negative stances towards **Truth**, respectively. Misi- $\oplus$  and Misi- $\ominus$  denote positive and negative stances towards **Misi**information, respectively. Note that the topic "Others" is not considered in this analysis.

#### Insights gained:

- 1. The public struggles to distinguish between true and false claims.
- 2. Low accuracy in topics like politics, economy, and environment.
- 3. Higher belief in claims related to health.



### Conclusion

- Our framework effectively analyzes public judgments on climate change topics.
- The public tends to believe claims regardless of their accuracy.
- People's judgements vary across topics.
- Need for improved critical thinking and fact-checking interventions.



## Acknowledgements

This work is partially supported by the National Science Foundation award # 2346261. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper.



# Thank you!