№1.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3$, вибіркове середнє $\overline{x}_{B} = 10.2$ і об'єм вибірки n = 36.

№2.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=4$, вибіркове середнє $\overline{x}_{B}=11,4$ і об'єм вибірки n=64.

№3.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4,5$, вибіркове середнє $\overline{x}_{B} = 15,6$ і об'єм вибірки n = 100.

№4.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5$, вибіркове середнє $\overline{x}_B = 13.2$ і об'єм вибірки n = 64.

№5.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5,5$, вибіркове середнє $\overline{x}_B = 11$ і об'єм вибірки n = 144.

№6.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 2$, вибіркове середнє $\overline{x}_B = 18.2$ і об'єм вибірки n = 36.

№7.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3,5$, вибіркове середнє $\overline{x}_{B} = 12,4$ і об'єм вибірки n = 64.

№8.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3$, вибіркове середнє $\overline{x}_{B} = 11,6$ і об'єм вибірки n = 81.

№9.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=4,5$, вибіркове середнє $\overline{x}_{B}=19,4$ і об'єм вибірки n=100.

№10.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 6$, вибіркове середнє $\overline{x}_B = 18.6$ і об'єм вибірки n = 81.

№11.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5$, вибіркове середнє $\overline{x}_{B} = 17,7$ і об'єм вибірки n = 100.

№12.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3$, вибіркове середнє $\overline{x}_B = 24,6$ і об'єм вибірки n = 81.

№13.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 2,5$, вибіркове середнє $\overline{x}_B = 14,4$ і об'єм вибірки n = 100.

№14.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4$, вибіркове середнє $\overline{x}_B = 20,3$ і об'єм вибірки n = 64.

№15.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=4$, вибіркове середнє $\overline{x}_{B}=15,8$ і об'єм вибірки n=64.

№16.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3$, вибіркове середнє $\overline{x}_B = 16,5$ і об'єм вибірки n = 100.

№17.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5$, вибіркове середнє $\overline{x}_B = 19,2$ і об'єм вибірки n = 49.

№18.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=2$, вибіркове середнє $\overline{x}_{B}=12,2$ і об'єм вибірки n=64.

№19.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4$, вибіркове середнє $\overline{x}_{B} = 18,7$ і об'єм вибірки n = 100.

№20.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3.5$, вибіркове середнє $\overline{x}_B = 11.9$ і об'єм вибірки n = 49.

№21.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5$, вибіркове середнє $\overline{x}_{B} = 20,8$ і об'єм вибірки n = 100.

№22.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4$, вибіркове середнє $\overline{x}_B = 13,6$ і об'єм вибірки n = 144.

№23.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3$, вибіркове середнє $\overline{x}_{B} = 14.8$ і об'єм вибірки n = 81.

№24.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=2$, вибіркове середнє $\overline{x}_{B}=10,4$ і об'єм вибірки n=64.

№25.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4,5$, вибіркове середнє $\overline{x}_B = 15,2$ і об'єм вибірки n = 81.

№26.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 4$, вибіркове середнє $\overline{x}_B = 15,6$ і об'єм вибірки n = 49.

№27.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma}=3$, вибіркове середнє $\overline{x}_{B}=22,4$ і об'єм вибірки n=64.

№28.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 5$, вибіркове середнє $\overline{x}_{B} = 26,8$ і об'єм вибірки n = 81.

№29.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 2,4$, вибіркове середнє $\overline{x}_B = 37,5$ і об'єм вибірки n = 100.

№30.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого математичного сподівання a нормально розподіленої генеральної сукупності X, якщо відомі середнє квадратичне відхилення $\sigma_{\Gamma} = 3.2$, вибіркове середнє $\overline{x}_B = 21.9$ і об'єм вибірки n = 49.