Photometric Stereo

Ying Xiong School of Engineering and Applied Sciences Harvard University

yxiong@seas.harvard.edu

Created: January 23rd, 2014. Updated: February 8th, 2014 (v0.3).

1 Definitions and Notations

Suppose we have M images that are indexed by i, and each image has N pixels that are indexed by j. The intensity of j-th pixel in i-th image is therefore denoted as $I_{i,j}$.

At j-th pixel, denote \mathbf{n}_j the surface normal, ρ_j the albedo, and $\mathbf{b}_j = \rho_j \mathbf{n}_j$ the scaled normal. Note that these quantities are the same across all images and therefore independent of i.

Each image comes from a different lighting environment, which has a different rendering function $\mathcal{R}_i(\cdot)$, written as

$$I_{i,j} = \rho_j \mathcal{R}_i \left(\mathbf{n}_j \right), \tag{1}$$

and we consider following rendering models in this note.

1. Directional lighting (distant point light source)

$$\mathcal{R}_i(\mathbf{n}) = \max\{\boldsymbol{\ell}_i^{\top} \mathbf{n}, 0\}. \tag{2}$$

2. Directional lighting plus an ambient component (first order spherical harmonics¹)

$$\mathcal{R}_i(\mathbf{n}) = \max\{\boldsymbol{\ell}_i^{\top} \mathbf{n} + \alpha_i, 0\}. \tag{3}$$

We also define

$$\lambda_i = \|\boldsymbol{\ell}_i\|, \quad \widehat{\boldsymbol{\ell}}_i = \frac{\boldsymbol{\ell}_i}{\lambda_i},$$
 (4)

where λ_i is the strength of *i*-th lighting, and $\hat{\ell}_i$ is a unit vector for direction of *i*-th lighting.

The goal of photometric stereo is to recover the scene property $\{\rho_j, \mathbf{n}_j\}$ from the intensity measurements $I_{i,j}$, given (fully or partially) calibrated lighting environment \mathcal{R}_i (·).

2 Fully Calibrated Lighting

2.1 Directional lighting

For notational simplicity, we first only consider pixels that are not in shadow, and drop the $\max\{\cdot, 0\}$ part of the rendering function

$$I_{i,j} = \rho_j \boldsymbol{\ell}_i^{\mathsf{T}} \mathbf{n}_j = \boldsymbol{\ell}_i^{\mathsf{T}} \mathbf{b}_j. \tag{5}$$

¹The first order spherical harmonics model sometimes does not have the $\max \{\cdot, 0\}$ part.

Define $\mathbf{I}_j \in \mathbb{R}^{M \times 1}$ the (vertical) concatenation of all $I_{i,j}$ for $1 \leq i \leq M$, and $\mathbf{L} \in \mathbb{R}^{3 \times M}$ the (horizontal) concatenation of all ℓ_i . Then we have

$$\mathbf{I}_j = \boldsymbol{L}^{\mathsf{T}} \mathbf{b}_j, \tag{6}$$

where I_j are measured intensities, L^{\top} are calibrated lighting parameters, and b_j is the unknown scene property, which can be easily solved in the least squares manner

$$\mathbf{b}_j = (\mathbf{L}^\top)^\dagger \mathbf{I}_j = (\mathbf{L}\mathbf{L}^\top)^{-1} \mathbf{L} \mathbf{I}_j. \tag{7}$$

And finally, we can recover ρ_j and \mathbf{n}_j as

$$\rho_j = \|\mathbf{b}_j\|, \quad \mathbf{n}_j = \frac{\mathbf{b}_j}{\rho_j}. \tag{8}$$

2.2 Directional lighting with an ambient component

The rendering equation in this model can be written as

$$I_{i,j} = \rho_j \left(\boldsymbol{\ell}_i^{\top} \mathbf{n}_j + \alpha_i \right) = \boldsymbol{\ell}_i^{\top} \mathbf{b}_j + \alpha_i ||\mathbf{b}_j||.$$
 (9)

Then we can formulate estimation of scene property as the following optimization problem

$$\min_{\mathbf{b}_j} \quad \sum_{i=1}^{M} \left(I_{i,j} - \boldsymbol{\ell}_i^{\top} \mathbf{b}_j - \alpha_i || \mathbf{b}_j || \right)^2.$$
 (10)

Unfortunately, we do not have a fast (non-iterative) algorithm for solving this problem yet.

3 Partially Calibrated Lighting

In reality, we can usually calibrate part of the lighting property accurately. For example, using a chrome sphere, we are able to calibrate the lighting directions $\hat{\ell}_i$, but not their strengths λ_i . Therefore, we also need to estimate the unknown lighting parameters λ_i from the measurements $I_{i,j}$.

Since the number of images M is much smaller than the number of pixels N, the number of unknown lighting parameters is also much smaller than number of scene property parameters. We define a cost function on lighting parameters

$$cost(\{\lambda_i\}) = \min_{\{\rho_j, \mathbf{n}_j\}} \sum_{i=1}^{M} \sum_{j=1}^{N} (I_{i,j} - \rho_j \mathcal{R}_i(\mathbf{n}_j))^2,$$
(11)

where the minimization can be solved as a fully-calibrated problem described in previous section. We can then perform a optimization on this cost to find the optimal lighting parameters $\{\lambda_i\}$.

3.1 Directional lighting

We give the specific form of lighting strength estimation under the directional lighting model. The cost function to be minimized is

$$\operatorname{cost}(\{\lambda_{i}\}) = \min_{\{\rho_{j}, \mathbf{n}_{j}\}} \sum_{i=1}^{M} \sum_{j=1}^{N} \left(I - \lambda_{i} \rho_{j} \widehat{\boldsymbol{\ell}}_{i}^{\mathsf{T}} \mathbf{n}_{j} \right)^{2} = \sum_{j=1}^{M} \min_{\mathbf{b}_{j}} \|\mathbf{I}_{j} - \boldsymbol{L}(\boldsymbol{\lambda})^{\mathsf{T}} \mathbf{b}_{j}\|^{2},$$
(12)

where

$$\boldsymbol{L}(\boldsymbol{\lambda}) = \left[\begin{array}{ccc} \lambda_1 \widehat{\boldsymbol{\ell}}_1 & \cdots & \lambda_M \widehat{\boldsymbol{\ell}}_M \end{array} \right]. \tag{13}$$

The minimization over \mathbf{b}_j inside the sum can be analytically solved by a linear least squares, resulting in a cost function

$$cost(\{\lambda_i\}) = \sum_{j=1}^{M} \|\mathbf{I}_j - \boldsymbol{L}(\boldsymbol{\lambda})^{\top} (\boldsymbol{L}(\boldsymbol{\lambda})\boldsymbol{L}(\boldsymbol{\lambda})^{\top})^{-1} \boldsymbol{L}(\boldsymbol{\lambda}) \mathbf{I}_j\|^2.$$
(14)

This is a non-linear least squares problem that can be solved with a Levenberg-Marquardt algorithm. For completeness, we provide the gradient (Jacobian) of the cost function.

First, the partial derivative of matrix $L(\lambda)$ over λ_i is simply

Now we define

$$\mathbf{f}_{j} = \boldsymbol{L}^{\top} \left(\boldsymbol{L} \boldsymbol{L}^{\top} \right)^{-1} \boldsymbol{L} \, \mathbf{I}_{j} - \mathbf{I}_{j}, \tag{16}$$

and take partial derivative of \mathbf{f}_i with respect to λ_i

$$\frac{\partial \mathbf{f}_{j}}{\partial \lambda_{i}} = \frac{\partial}{\partial \lambda_{i}} \left(\mathbf{L}^{\top} \left(\mathbf{L} \mathbf{L}^{\top} \right)^{-1} \mathbf{L} \right) \mathbf{I}_{j} \tag{17}$$

$$= \left(\frac{\partial \boldsymbol{L}^{\top}}{\partial \lambda_{i}} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \boldsymbol{L} + \boldsymbol{L}^{\top} \frac{\partial \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1}}{\partial \lambda_{i}} \boldsymbol{L} + \boldsymbol{L}^{\top} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \frac{\partial \boldsymbol{L}}{\partial \lambda_{i}}\right) \boldsymbol{I}_{j}$$
(18)

$$= \left(\frac{\partial \mathbf{L}^{\top}}{\partial \lambda_{i}} \left(\mathbf{L} \mathbf{L}^{\top}\right)^{-1} \mathbf{L} + \mathbf{L}^{\top} \frac{\partial \left(\mathbf{L} \mathbf{L}^{\top}\right)^{-1}}{\partial \lambda_{i}} \mathbf{L} + \mathbf{L}^{\top} \left(\mathbf{L} \mathbf{L}^{\top}\right)^{-1} \frac{\partial \mathbf{L}}{\partial \lambda_{i}}\right) \mathbf{I}_{j}$$
(19)

$$= \left(\frac{\partial \boldsymbol{L}^{\top}}{\partial \lambda_{i}} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \boldsymbol{L} - \boldsymbol{L}^{\top} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \frac{\partial \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)}{\partial \lambda_{i}} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \boldsymbol{L} + \boldsymbol{L}^{\top} \left(\boldsymbol{L} \boldsymbol{L}^{\top}\right)^{-1} \frac{\partial \boldsymbol{L}}{\partial \lambda_{i}}\right) \boldsymbol{I}_{j}. \tag{20}$$

The last step is based on the fact that for any invertible matrix A that depends on a parameter t, we have [1]

$$\frac{d\mathbf{A}^{-1}}{dt} = -\mathbf{A}^{-1} \frac{d\mathbf{A}}{dt} \mathbf{A}^{-1}.$$
 (21)

References

[1] Wikipedia. Plagiarism — Wikipedia, the free encyclopedia, 2014. [Online; accessed 08-February-2014].