I. $I_{xy} = \int xy \, dm$ Product of inerties I_{xy} is equal to the integral of the mass $I_{xy} = \int xy \, dm = \int xy \int xy \, dx \, dy \, dz = \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \, dx + \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \int xy \, dx + \int xy \int xy \, dx +$

2. Find eigenvalues
$$A = \begin{pmatrix} -5 & 100 \\ -10 & 10 \end{pmatrix}$$

$$\det(A - \lambda I) = 0 \qquad \begin{pmatrix} -5 - \lambda \end{pmatrix} \begin{pmatrix} 10 - \lambda \end{pmatrix} - 100 \begin{pmatrix} -10 \end{pmatrix} = 0$$

$$-50 + 5\lambda - |0\lambda + \lambda|^{2} + 1000 = 0$$

$$\lambda = \frac{5 \pm \sqrt{25 - 4(950)}}{2}$$

$$\frac{\lambda}{2} = \frac{5 \pm \sqrt{25 - 4(950)}}{2}$$

$$\frac{\lambda}{2} = \frac{5 \pm \sqrt{25 - 4(950)}}{2}$$

$$\begin{pmatrix}
A - \lambda \Gamma \\
V = 0 & \lambda = 2.5 - 30.7213
\end{pmatrix}
\begin{pmatrix}
V_1 \\
-10 & 10 - (2.5 - 30.7213)
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2
\end{pmatrix} = 0
\begin{pmatrix}
-7.5 + 30.7213 \\
V_1 = \frac{100 V_2}{7.5 + 30.7213}
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2
\end{pmatrix} = 0
\begin{pmatrix}
-100 V_2 \\
V_1 = \frac{100 V_2}{7.5 + 30.7213}
\end{pmatrix}
\begin{pmatrix}
V_1 = \frac{100 V_2}{7.5 + 30.7213}
\end{pmatrix}
\begin{pmatrix}
V_2 = \frac{100 V_2}{7.5 + 30.7213}
\end{pmatrix}
\begin{pmatrix}
-\frac{100}{7.5 + 30.7213}
\end{pmatrix}
\begin{pmatrix}
-\frac{100}{7.5 + 30.7213}
\end{pmatrix}$$

$$\lambda = 2.5 - 30.7213$$

$$\lambda = 2.5 - 30.7213$$

3i) Using patholed aught of attack equation:

$$\alpha = ton'(\forall) \times \forall$$

if $\alpha = 0$, then $|w = 0|$
 i is the time derivative of w .
 $w = ton(\alpha) \cdot U$
 $\frac{d}{dt}(w) = \frac{d}{dt}(ton(\alpha)U) = 0$
 $|w = 0|$

Additionally since there is no tall or you motion,
$$q = \hat{O}$$

 $O = Z_n u + \hat{O} V_0 - gSin Q_0$
Assume that O is vary small, so the term tart to O
Then:
 $O = Z_n u + \hat{O} V_0 \rightarrow \hat{O} = -\frac{Z_n u}{V_0}$

From the lecture Slides: $\dot{u} = X_{u} + X_{w} - g(os \Theta_{0} \Theta_{0})$ $\dot{u} = X_{u} + X_{w} - g(os \Theta_{0} \Theta_{0})$ $\dot{u} = X_{u} + X_{w} - g(os \Theta_{0} \Theta_{0})$ $\dot{u} = X_{u} + X_{w} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$ $\ddot{u} = X_{u} + X_{u} - g(os \Theta_{0} \Theta_{0})$

Assume steady, level Plight:
$$L=W=mg$$
and $C_0=0$

$$\frac{1}{2}SCLU^2 = \frac{1}{2}(PSC_LU)u = mg$$

$$= \frac{1}{2}(-2u)u = mg$$

From slides;
$$\frac{\partial Z}{\partial u} = -\frac{\partial L}{\partial u} - \frac{20}{\sqrt{2}u}(\alpha = 0)$$

$$\frac{\partial Z}{\partial u} = -\frac{\partial}{\partial u} \left(\frac{1}{2}pS(u^{2}) = -pS(Lu)\right)$$

$$-Z_{u} = pS(Lu) \longrightarrow \text{ to top } \infty$$

 $\ddot{u} = \frac{g\cos\theta_0 \Xi_u}{U_0} u = 0$

$$V = \frac{3}{10}\sqrt{2}$$

 $\int_{1}^{2} = \frac{15^{2}}{V_{0}^{2}}$

$$\dot{X} = \begin{pmatrix} \dot{u} \\ \dot{e} \\ \dot{e} \end{pmatrix} = Ax + BS = \begin{pmatrix} X_{n} & X_{w} & O & -g(os\Theta_{o}) \\ \overline{Z}_{n} & \overline{Z}_{w} & V_{o} & -gS_{n}\Theta_{o} \\ \overline{M}_{n} & \overline{M}_{w} & \overline{M}_{q} & \overline{M}_{o} \\ \overline{O} & O & 1 & O \end{pmatrix} \begin{pmatrix} u \\ w \\ q \\ \theta \end{pmatrix} + \begin{pmatrix} X_{Se} & X_{Sp} \\ \overline{Z}_{Se} & \overline{Z}_{Sp} \\ \overline{M}_{Se} & \overline{M}_{Sp} \\ \overline{O} & O \end{pmatrix} \begin{pmatrix} \delta_{e} \\ S_{p} \end{pmatrix}$$

From McLean Appadix B, For Charle 3:

$$X_u = -0.0002$$
, $X_w = 0.026$, $Z_u = -0.09$, $Z_u = -0.624$, $U_0 = 250$, $C_0 = V_0 = 0$
 $X_{Se} = 0$ $X_{Sp} = X_{S+n} = 3.434 \cdot 10^{-6}$, $Z_{Se} = -8.05$, $Z_{Sp} = Z_{S+n} = -1.5 \cdot 10^{-7}$
 $\widetilde{M}_u = M_u + M_w$; $Z_u = -0.0007 + -0.0007 \cdot (-0.009) = -7 \cdot 10^{-6}$
 $\widetilde{M}_u = M_w + M_w$; $Z_w = -0.005 + (-0.0007)(-0.624) = -4.56 \cdot 10^{-3}$
 $\widetilde{M}_q = M_q + V_0 M_w$; $= -0.669 + 250 \cdot (-0.0007) = -0.943$
 $\widetilde{M}_0 = -9 M_w \sin C_0 = 0$
 $\widetilde{M}_{Se} = M_{Se} + M_w Z_{Se} = -2.09 + (-0.0007)(-8.05) = -2.074$
 $\widetilde{M}_{Sp} = M_{Sp} + M_w Z_{Sp} = 0.67 \cdot 10^{-7} + (-0.0007)(-1.5 \cdot 10^{-7}) = 6.711 \cdot 10^{-8}$

$$\dot{x} = \begin{pmatrix} \dot{u} \\ \dot{v} \\ \dot{t} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} -0.0002 & 0.026 & 0 & -9.81 \\ -0.094 & -0.624 & 250 & 0 \\ -7.10^{-6} & -4.56.10^{-3} & -0.843 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ w \\ q \\ \theta \end{pmatrix} + \begin{pmatrix} 0 & 3.434.10^{-6} \\ -8.05 & -1.5.10^{-7} \\ -2.074 & 6.711.10^{-8} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \zeta_e \\ \zeta_{44} \end{pmatrix}$$

To extract the effects of the element (on vertical velocity, let $C = (0 \mid 0 \mid 0)$) and $Y = (x \mid x \mid e) = (x \mid x \mid e)$ and $Y = (x \mid x \mid e) = (x \mid x \mid e)$ and $Y = (x \mid x \mid e) = (x \mid x \mid e)$ and $Y = (x \mid x \mid e) = (x \mid x \mid e)$ and $Y = (x \mid$

Finally, using $G(s) = C(sI-A)^{-1}B+D$ where D is a zero matrix, the transfer function, G(s) can be found. Over \longrightarrow

$$G(s) = \left((sI - A)^{-1} B \right)$$

$$sI - A = \begin{pmatrix} 5 - 0.002 & 0.039 & 0 & -9.8 \\ -0.07 & 5 + 0.317 & 256 & 0 \\ 2.7 + 0^{-4} & -2.873 + 0^{-3} & 5 + 4.39 + 0^{-1} & 0 \\ 0 & 0 & 1 & 5 \end{pmatrix}$$

$$Using MATLAB:$$

$$G(s) = \left(\frac{-5.46 s^3 - 291.93 s^2 + 0.05 + 5 s - 0.7991}{5^4 + 0.755 f s^3 + 0.86 s^2 + 0.0012} \right) G(s) = \frac{-0.9753 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{5^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145} \right) G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 5.0943 s^2 + 0.001 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 0.0943 s^2 + 0.001 s^2 - 0.0145}{0.0135 s^4 + 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 0.0943 s^2 - 0.0132 s^2 + 0.001 s^2 - 0.0145}$$

$$G(s) = \frac{-0.0953 s^3 - 0.0$$

will not return to its initial position if disturbed

Inverted Case:
$$\theta = 90^{\circ}$$
, $\dot{\theta} = 0$, $\chi_e = 0$

$$\ddot{\theta}$$
 ml² = -mgl($\alpha \theta$

Let
$$X_1 = \theta$$
, $X_2 = \dot{\theta}$ \rightarrow $\dot{X}_2 + \frac{9}{2} k \cos X_1 = u$ $\dot{X}_1 = X_2$

Linearize about
$$X_1 = 90^\circ = T/2 \text{ rad}$$
, $X_2 = 0$, $U = 0$

$$\dot{X} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \dot{x}_2 \\ -9/L \cos X_1 + u \end{pmatrix} = \begin{pmatrix} f_1(X_1 u) \\ f_2(X_1 u) \end{pmatrix}$$

$$\frac{\partial f_i}{\partial x_i}\Big|_{X_{1,i}X_{2,i}} = 0 \quad \frac{\partial f_i}{\partial x_2}\Big|_{X_{1,i}X_{2,i}} = 1 \quad \frac{\partial f_i}{\partial u}\Big|_{X_{1,i}X_{2,i}} = 0$$

$$\left| \frac{\partial f_2}{\partial x_i} \right|_{X_{i,1} X_{2, M}} = \frac{9}{8} \sin(x_i) \Big|_{X_1 = \frac{\pi}{2}} = \frac{9}{2} \frac{\partial f_2}{\partial x_2} \Big|_{X_{i,1} X_{2, M}} = 0 \frac{\partial f_2}{\partial M} \Big|_{X_{i,1} X_{2, M}} = 1$$

$$\dot{X} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} u$$

$$\hat{X} = \begin{pmatrix} 0 & 1 \\ \frac{3}{\ell} & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{\ell} & \ell^2 \end{pmatrix} \approx 0$$

This system is statically stable because any perturbation of Q will vesult in the peridulum maring away from 0=90° and not returning,