

N- and P-Channel 30 V (D-S) MOSFET

PRODUCT SUMMARY								
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)				
N-Channel	30	$0.047 \text{ at V}_{GS} = 10 \text{ V}$	6.0	2.75				
IN-Charmer	30	0.065 at $V_{GS} = 4.5 \text{ V}$	5.2	2.75				
P-Channel	nel - 30	0.089 at $V_{GS} = -10 \text{ V}$	- 4.3	4.1				
r-Channel	- 30	0.140 at $V_{GS} = -4.5$ V	- 3.4	4.1				

Ordering Information: Si4532CDY-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- 100 % R_q Tested
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

COMPLIANT HALOGEN **FREE**

APPLICATIONS

- DC/DC Conve
- Load Switch

N-Channel MOSFET

P-Channel MOSFET

Unit

ABSOLUTE MAXIMUM RATINGS	6 (T _A = 25 °C, unle	ess otherw	rise noted)	
Parameter	Symbol	N-Channel	P-Channel	
Drain-Source Voltage		V_{DS}	30	- 30
Gate-Source Voltage		V_{GS}	±	20
	T _C = 25 °C		6.0	- 4.3
Continuous Drain Current /T = 150 °C)	T _C = 70 °C		4.9	- 3.4
Continuous Drain Current (T _J = 150 °C)	T - 25 °C	'D	4 oh C	o th c

Diain Cource voltage	* DS	00	- 00	_ v	
Gate-Source Voltage		V _{GS}	±	20	V
	T _C = 25 °C		6.0	- 4.3	
Continuous Drain Current /T 150 °C)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.9	- 3.4		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	'D	4.9 ^{b, c}	- 3.4 ^{b, c}	
	T _A = 70 °C		3.9 ^{b, c}	- 2.7 ^{b, c}	
Pulsed Drain Current (10 μs Pulse Width)		I _{DM}	24	- 15	Α
Course Dunin Courset Dinda Courset	T _C = 25 °C		2.3	- 2.3	
Source-Drain Current Diode Current	T _A = 25 °C	'S	1.5 ^{b, c}	- 1.5 ^{b, c}	
Pulsed Source-Drain Current		I _{SM}	24	- 12	
Single Pulse Avalanche Current	I = 0.1 mH	I _{AS}	7	8	
Single Pulse Avalanche Energy	L=0.11IIII	E _{AS}	2.5	3.2	mJ
	T _C = 25 °C		2.78	2.78	
Marian III David Discipation	T _C = 70 °C		1.78	1.78	w
Maximum Power Dissipation	T _A = 25 °C	FD F	1.78 ^{b, c}	1.78 ^{b, c}	
	T _A = 70 °C		1.14 ^{b, c}	- 4.3 - 3.4 - 3.4 ^{b, c} - 2.7 ^{b, c} - 15 - 2.3 - 1.5 ^{b, c} - 12 - 8 - 3.2 - 2.78 - 1.78	
Operating Junction and Storage Temperature R	T _J , T _{sta}	- 55 t	o 150	°C	

THERMAL RESISTANCE RATINGS									
		N-Ch	annel	P-Channel					
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	57	70	57	70	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	37	45	37	45	O/VV		

Notes:

- a. Based on $T_C = 25$ °C.
- b. Surface mounted on 1" x 1" FR4 board.
- d. Maximum under steady state conditions is 120 °C/W (N-Channel) and 110 °C/W (P-Channel).

rameter Symbol Test Conditions			Min.	Typ. ^a	Max.	Unit		
Static							•	
Drain Source Brookdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	N-Ch	30			V	
Drain-Source Breakdown Voltage	V DS	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	P-Ch	- 30			V	
V Tomporatura Coefficient	AV /T	I _D = 250 μA	N-Ch		33		140	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μA	P-Ch		- 33			
V Tananawatuwa Caaffiniant	AV /T	I _D = 250 μA	N-Ch		- 5.8		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	II _D = - 250 μA	P-Ch		4.5			
	.,	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	1.0		3.0	†	
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = - 250 μA	P-Ch	- 1.0		- 3.0	V	
Oata Badal aslasas	1	V 0.V.V	N-Ch			100	^	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	P-Ch			- 100	nA	
		V _{DS} = 30 V, V _{GS} = 0 V	N-Ch			1	1	
Zero Gate Voltage Drain Current		V _{DS} = - 30 V, V _{GS} = 0 V	P-Ch			- 1	1 .	
	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	N-Ch			5	μΑ	
		V _{DS} = - 30 V, V _{GS} = 0 V, T _J = 55 °C	P-Ch			- 5		
L	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	N-Ch	20			А	
On-State Drain Current ^b		V _{DS} = - 5 V, V _{GS} = - 10 V	P-Ch	- 12				
	R _{DS(on)}	V _{GS} = 10 V, I _D = 3.5 A	N-Ch		0.038	0.047	†	
		V _{GS} = - 10 V, I _D = - 3.5 A	P-Ch		0.073	0.089	Ω	
Drain-Source On-State Resistance ^b		V _{GS} = 4.5 V, I _D = 2.8 A	N-Ch		0.052	0.065		
		V _{GS} = - 4.5 V, I _D = - 2.5 A	P-Ch		0.113	0.140		
	g _{fs}	V _{DS} = 15 V, I _D = 2.5 A	N-Ch		7	01110	_ s	
Forward Transconductance ^b		V _{DS} = - 15 V, I _D = - 3.5 A	P-Ch		7			
Dynamic ^a		103 10 1, 10 0.0 1						
Dynamic			N-Ch		305		1	
Input Capacitance	C _{iss}	N-Channel	P-Ch		340			
		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch		65			
Output Capacitance	C _{oss}	P-Channel	P-Ch		67		– pF –	
Reverse Transfer Capacitance	C _{rss}	V _{DS} = - 15 V, V _{GS} = 0 V, f = 1 MHz	N-Ch		29			
neverse fransier Capacitatice	Orss	26	P-Ch		51			
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$	N-Ch		6	9		
Total Gate Charge	Q_g	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -2.5 \text{ A}$	P-Ch		7.8	12		
Total date charge	~g		N-Ch		2.75	4.5		
		N-Channel $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V} I_{D} = 2.5 \text{ A}$	P-Ch		4.1	6.2	nC	
Gate-Source Charge	Q _{gs}	10 v, v _{GS} = 7.5 v i _D = 2.5 A	N-Ch		1.3		_	
	⊶gs	P-Channel	P-Ch		1.3			
Gate-Drain Charge	Q_{gd}	$V_{DS} = -15 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -2.5 \text{ A}$	N-Ch		0.9			
	9"		P-Ch		1.8	0.5		
Gate Resistance	R_{g}	H_{α} I $f = 1 \text{ MHz}$ I	N-Ch	0.6	3.1	6.2	Ω	
			P-Ch	2.0	10	20		

Parameter	Symbol	Test Conditions			Typ. ^a	Max.	Unit
Dynamic ^a							
Turn-On Delay Time	t _{d(on)}	N. Ohannad	N-Ch P-Ch		7	11	
Turn on Boldy Time	-u(on)	N-Channel $V_{DD} = 15 \text{ V, } R_L = 15 \Omega$			5.5	10	
Rise Time	t _r	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	N-Ch		12	18	1
	'		P-Ch		13	25	
Turn-Off Delay Time	t _{d(off)}	P-Channel			14	25	
	α(σ)	$V_{DD} = -15 \text{ V}, R_{L} = 15 \Omega$	P-Ch		17	30	
Fall Time	t _f	$I_D \cong -1 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$	N-Ch		6	10]
			P-Ch		7.7	15	ns
Turn-On Delay Time	t _{d(on)}	N-Channel	N-Ch		16	30	_
	, ,	$V_{DD} = 15 \text{ V}, R_L = 15 \Omega$	P-Ch N-Ch		40	60	
Rise Time	t _r	$I_D \cong 1 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	_		16	30	
		-	P-Ch N-Ch		40 9	60 18	
Turn-Off Delay Time	t _{d(off)}	P-Channel _			20	40	
	t _f	V_{DD} = - 15 V, R_L = 15 Ω $I_D \cong$ - 1 A, V_{GEN} = - 4.5 V, R_g = 1 Ω	P-Ch N-Ch		9	18	
Fall Time			P-Ch		17	30	
Drain-Source Body Diode Characteris	stics		1 0		.,		
Continuous Source-Drain Diode		T 05.00	N-Ch			2.3	
Current	I _S	T _C = 25 °C	P-Ch			- 2.3	1
	I _{SM}		N-Ch			24	Α
Pulse Diode Forward Current ^a			P-Ch			- 12	1
B + B' + V''	.,	I _S = 1.25 A	N-Ch		0.8	1.2	V
Body Diode Voltage	V_{SD}	I _S = - 0.75 A	P-Ch		- 0.8	- 1.2	
Dadis Diada Dassarra Dassarra Tima			N-Ch		14	21	
Body Diode Reverse Recovery Time	t _{rr}		P-Ch		17	30	ns
Pady Diada Bayaraa Baaayary Charga	Q _{rr}	N-Channel I _F = 1.25 A, dl/dt = 100 A/μs, T _J = 25 °C	N-Ch		6	10	20
Body Diode Reverse Recovery Charge			P-Ch		11	20	nC
Reverse Recovery Fall Time	t _a	P-Channel	N-Ch		9		
Heverse necovery rail fille		$I_F = -2.5 \text{ A}, \text{ dI/dt} = -100 \text{ A/µs}, T_J = 25 °C$	P-Ch		12		ns
Reverse Recovery Rise Time	t _b		N-Ch		5		110
Tieverse riecovery riise Tillie	ъ		P-Ch		5		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

* $V_{GS} > \mbox{minimum } V_{GS}$ at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

Power Derating, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

Power Derating, Junction-to-Ambient

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heats inking is used. It is used to determine the current rating, when this rating falls below the package limit.

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?64805.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INCHES				
DIM	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.35	0.51	0.014	0.020			
С	0.19	0.25	0.0075	0.010			
D	4.80	5.00	0.189	0.196			
Е	3.80	4.00	0.150	0.157			
е	1.27	BSC	0.050 BSC				
Н	5.80	6.20	0.228	0.244			
h	0.25	0.50	0.010	0.020			
L	0.50	0.93	0.020	0.037			
q	0°	8°	0°	8°			
S	0.44	0.64	0.018	0.026			
ECN: C-06527-Rev. I. 11-Sep-06							

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED