問題 **4.1.** $y = ax^2$ を x 軸正方向に b だけ, y 軸正方向に c だけ平行移動(つまり $f(\vec{p}) = \vec{p} + (b,c)$)した放物線の方程式は $y = a(x-b)^2 + c$ であった.

 \mathcal{C} の方程式は $y=2x^2+3x+1=2(x+\frac{3}{4})^2-\frac{1}{8}$ と式変形できるので、これは $y=2x^2$ を x 軸正方向に $-\frac{3}{4}$, y 軸正方向に $-\frac{1}{8}$ だけ平行移動したものである。したがって、 \mathcal{C} を x 軸正方向に $\frac{3}{4}$, y 軸正方向に $\frac{1}{8}$ だけ平行すれば $y=2x^2$ となる。解は a=2, $\vec{d}=(\frac{3}{4},\frac{1}{8})$.

問題 **4.2.** $\vec{p} = \begin{pmatrix} x \\ y \end{pmatrix}$, $f(\vec{p}) = \begin{pmatrix} x' \\ y' \end{pmatrix}$ とおく、つまり、 $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$. 求めるものは x,y が方程式 $x^2-y^2=1$ を満たすとき、x',y' の満たす方程式である。上の関係式から $\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' \\ -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' \end{pmatrix}$ 、つまり、 $x = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$, $y = -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'$ を $x^2-y^2=1$ に代入すると、x'y'=1 となる。

以上のことから、 $x^2 - y^2 = 1$ を f で移した図形の方程式は xy = 1 である.

問題 4.3. 定義にしたがって、計算すればよい、

$$f \circ g(\vec{p}) = f(g(\vec{p})) = A_1 g(\vec{p}) + \vec{d}_1 = A_1 (A_2 \vec{p} + \vec{d}_2) + \vec{d}_1 = \underline{(A_1 A_2) \vec{p} + (A_1 \vec{d}_2 + \vec{d}_1)}.$$
 同様に $g \circ f(\vec{p}) = \underline{(A_2 A_1) \vec{p} + (A_2 \vec{d}_1 + \vec{d}_2)}.$

問題 **4.4.** f の逆変換を $f^{-1}(\vec{p}) = B\vec{p} + \vec{e}$ とおく. 問題 4.3 の結果から $f \circ f^{-1}(\vec{p}) = (AB)\vec{p} + A\vec{e} + \vec{d}$. しかし, $f \circ f^{-1}(\vec{p}) = \vec{p}$ だから, 任意のベクトル \vec{p} に対して,

$$(AB)\vec{p} + A\vec{e} + \vec{d} = \vec{p}$$

が成り立つ. したがって, $B=A^{-1}$, $\vec{e}=-A^{-1}\vec{d}$.

問題 **4.5.** 直線 $y=(\tan\frac{\theta}{2})x$ に関する対称移動について理解するための問題である. 小間を順に解き (と言っても指示通り計算するだけ), 対称移動の定義を確認せよ.

- (1) $S_{ heta} ec{p} \left(egin{array}{c} x \\ y \end{array}
 ight)$ を計算せよ.
- (2) 内積 $(\vec{p} S_{\theta}\vec{p}, (1, \tan \frac{\theta}{2})) = 0$ となることを計算して示せ.
- (3) ただの計算.
- (4) $\det S_{\theta} = -1$

問題 4.6. 5月31日の講義を参考にせよ. (詳細は省略)