REPUBLIQUE ISLAMIQUE DE MAURITANIE

Ministère d'Etat à l'Education Nationale à l'Enseignement

Supérieur et à la Recherche Scientifique

Direction des Examens et de l'Evaluation

Service des Examens

Honneur Fraternité Justice

Série: Mathématiques/T.M.G.M

Seco Malkemater Val 7.M. G. V

Durée: 4H Coefficient: 8/4

Darie AH

Sciences physiques session normale 2013

Exercice 1 (3,5pt)

On oxyde à la date t=0 un volume $V_1=100$ mL d'une solution S_1 d'iodure de potassium (K++1) de concentration C₁=4,64.10⁻²mol/L par un volume V₂=100mL d'une solution S₂ d'eau oxygénée H₂O₂

de concentration C₂=4.10⁻²mol/L. On ajoute à ce mélange un volume négligeable d'acide sulfurique très concentré.

1 Donner les couples redox mis en jeux et écrire l'équation de la réaction. (0,75pt)

2 Calculer à la date t=0 la concentration de I et celle de H2O2 dans le mélange. Lequel des deux réactifs est en excès.

3 On détermine à différents instants

la concentration du diiode formé, on obtient la courbe ci-dessus.

3.1 Définir la vitesse instantanée de formation de I2 et la calculer à la date t=12,5min. En déduire la vitesse de disparition de I à cette date. Comment évoluent ces vitesses en fonction du temps ? Quel est le facteur cinétique responsable?

3.2 Calculer la concentration des ions I et de H2O2 présents dans le mélange réactionnel à t=30min. (0,75pt)

4 Déterminer le temps de la demi-réaction.

(0,5pt)

Exercice 2 (3,5pt)

Dans un bécher A on verse un volume V₁=5mL d'une solution S₁ d'un acide A₁H de concentration molaire C_1 =4.10⁻²mol/L et de pH₁=3,1.

Dans un Becher B on verse un volume V2=5mL d'une solution S2 d'un acide A2H de concentration molaire $C_2=3,16.10^{-2}$ mol/L et de pH₂=1,5.

On ajoute dans chaque Becher un volume de 45mL d'eau pure et on mesure le pH des nouvelles solutions S'1 et S'2 obtenues. On trouve pH'1=3,6 et pH'2=2,5.

1 L'un des deux acides est fort préciser lequel.

(0,25pt)

2 Faire le bilan qualitatif et quantitatif des espèces chimiques présentes dans la solution d'acide faible avant la dilution. En déduire le pKa du couple acide-base AH/A présent dans cette solution.

(1,25pt)

3.1 Définir le coefficient d'ionisation lpha d'un acide.

(0,25pt)

3.2 Calculer α pour chacune des solutions S_1 et S_1 '. En déduire l'influence de la dilution sur (1,25pt) l'ionisation de cet açide.

4 Etablir la relation $Ka = \frac{C\alpha^2}{1-\alpha}$ pour un acide faible.

(0,5pt)

Le poids de la particule est négligeable.

1 Une particule de masse m et de charge q traverse une région DQRS où règne un champ magnétique uniforme B voir fig 1. La particule décrit deux arcs de cercle de rayon R₁et R₂ respectivement dans les parties © et © de la région telle que R₂=3R₁. Elle ralentit en franchissant la surface AC séparant les deux parties.

1.1 Etablir l'expression de R_1 et de R_2 en fonction de q, m, B et des vitesses respectives V_1 et V_2 de la particule.

Dans quel sens se déplace la particule (de ① vers ② ou bien de ② vers ①)?

On donne: B=0,5T Vitesse d'entrée V=6.10⁷m/s, R₁=41,6cm, e=1,6.10⁻¹⁹C, m_e=9,1.10⁻³¹kg, m_p=1,67.10⁻²⁷kg, m_{He}^{2+} =6,68.10⁻²⁷kg. (0,5pt)

fig1

2.3 En utilisant le théorème de l'énergie cinétique, exprimer la composante V_x de la vitesse e fonction de x. (0,75pt

2.4 Calculer la valeur V_F de la vitesse de la particule ainsi que l'angle β qu'elle fait ave l'horizontale au moment où elle arrive dans le plan P' au point F.

2.5 Exprimer le rapport $\frac{\sin \alpha}{\sin \beta}$ en fonction de q, E, d, m, et V_0 .

Données:
$$V_0 = 2.10^6 \text{m/s}$$
, $E = 5.10^4 \text{V/m}$, $d = 10^{-1} \text{ m}$, $\alpha = 10^{\circ}$

Exercice 4 (5pt)

On dispose d'un générateur GBF délivrant une tension sinusoïdale de fréquence f et de valeur efficace U constante, d'un ampèremètre, d'un wattmètre et des 3 dipôles suivants :

• D₁ est un conducteur ohmique de résistance R=56 Ω.

• D₂ est un condensateur de capacité C=10 μF.

• D₃ est une bobine d'inductance L et de résistance r=12 Ω.

1 On branche chacun des dipôles aux bornes du générateur. Pour une fréquence f=100Hz et une tension efficace U=4V; on relève pour chaque dipôle les indications de l'ampèremètre et du wattmètre

Les indications sont consignées dans le tableau suivant :

Dipôles	L'indication de l'ampèremètre	L'indication du wattmètre
$\mathbf{D_1}$	I ₁ =72mA	P ₁ =0,29W
$\mathbf{D_2}$	I ₂ =25mA	P ₂ =0
D ₃	I ₃ =62,5mA	P ₃ =0,047W

1.1 Donner l'expression de la puissance moyenne consommée dans un dipôle soumis à une tension alternative sinusoïdale de valeur efficace U et traversé par un courant d'intensité efficace I. (0,5pt 1.2 Qu'appelle-t-on tacteur de puissance ? (0,2pt)

1.3 Calculer la valour numérique du facteur de puissance pour chacun des 3 dipôles.

(0,5pt

(0,75p

	1.4 Vérifier que pour les dipôles D1 et D2 les indications de l'ampèremètre et du wattmètre son	ıt en		
	accord avec les caractéristiques de ces dipôles.	(0,5pt)		
	1.5 Déterminer l'impédance Z3 de la bobine. En déduire la valeur de l'inductance L.	(0,5pt)		
>	2 On branche en série les trois dipôles précédents aux bornes du générateur. Les indications of	le		
	l'ampèremètre et du wattmètre deviennent alors I=34mA et P=0,079W.	•		
	2.1 Calculer l'impédance Z du dipôle RLC ainsi constitué.	(0,5pt)		
	2.2 Déterminer la valeur du facteur de puissance.	(0,5pt)		
	3 On augmente progressivement la fréquence f de la tension délivrée par le GBF alimentant l	e		
	ircuit RLC de la question 2, la valeur efficace U de la tension restant constante et égale à 4V.			
	constate que les indications de l'ampèremètre et du wattmètre augmentent simultanément,			
	passent par un maximum pour une fréquence f ₀ =159Hz puis décroissent.	,		
	3.1 Comment peut-on caractériser le circuit pour la fréquence f ₀ ?	(0,5pt)		
	3.1 Comment peut-on caracteriser le circuit pour la requence 10. 3.2 Calculer la valeur de l'inductance L de la bobine et la comparer à la valeur trouvée			
		(0,5pt)		
	précédemment. 3.3 Quelles sont les valeurs maximales indiquées par l'ampèremètre et par le wattmètre ?	(0,5pt)		
	3.3 Quelles sont les valeurs maximales indiquées par l'ampéremetre et par le			
	Exercice 5 (3pt)			
	Une lame vibrante est animée d'un mouvement sinusoïdal de fréquence N=100Hz. Elle est m d'une pointe qui détermine en un point S de la surface d'une nappe d'eau des vibrations	unie		
	transversales d'amplitude a=1mm. La célérité des ondes C=20m/s. On suppose qu'il n'ya ni réflexion ni amortissement de l'onde.	•		
	Tellexion in amortissement de l'onder $\sqrt{2}$ m	m.		
	On considère l'origine des temps l'instant du passage de S par la position d'élongation $\frac{\sqrt{2}}{2}$ m	,		
	dans le sens positif.	(0,25pt)		
	1 Calculer la longueur d'onde λ.	(0,5pt)		
	2 Trouver l'équation du mouvement de S.	(0,75pt)		
	3 Trouver l'équation du mouvement d'un point M de la surface de l'eau situé à la distance x de S.	(-)(-)		
	4 On considère deux points M ₁ et M ₂ situés respectivement à 10cm et 20cm de S.	(0 E=4)		
	Out at 11/4 A withmotoire do M. et Ma nar rannort à S.	(0,5pt)		
Ť,	5 On éclaire la surface de l'eau par un stroboscope dont la frequence Ne varie de 20112 à 30.	nz.		
٠.	Pour quelles valeurs de Ne la surface de l'eau parait-elle immobile?	(1 pt)		