Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2006.
df

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000	97
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25
2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000	34
3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000	28
4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000	54
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999	93
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29
230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000	64
230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN	94
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52
220560	rowo y 47	' oolu-	anc								
	230568 rows × 17 columns										
-											

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 24758 entries, 5 to 230567
Data columns (total 17 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             24758 non-null object
 1
    BEN
             24758 non-null float64
 2
    CO
             24758 non-null float64
 3
    EBE
             24758 non-null float64
 4
             24758 non-null float64
    MXY
 5
             24758 non-null float64
    NMHC
 6
    NO_2
             24758 non-null float64
 7
    NOx
             24758 non-null float64
 8
    OXY
             24758 non-null float64
 9
    0 3
             24758 non-null float64
 10
    PM10
             24758 non-null float64
 11
    PM25
             24758 non-null float64
 12
    PXY
             24758 non-null float64
 13
    SO 2
             24758 non-null float64
 14
    TCH
             24758 non-null float64
 15
    TOL
             24758 non-null float64
 16 station 24758 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.4+ MB
```

In [7]:

```
data=df[['NMHC', 'NO_2', '0_3']]
data
```

Out[7]:

	NMHC	NO_2	O_3
5	0.44	142.199997	5.990000
22	0.17	59.910000	2.450000
25	0.40	117.699997	4.780000
31	0.25	92.059998	5.920000
48	0.16	60.189999	2.280000
230538	0.10	49.259998	64.599998
230541	0.33	63.220001	17.670000
230547	0.26	202.399994	11.130000
230564	0.08	51.900002	48.410000
230567	0.24	107.300003	17.730000

24758 rows × 3 columns

Line chart

In [8]:

```
data.plot.line(subplots=True)
```

Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [10]:

data.plot.line()

Out[10]:

<AxesSubplot:>

Bar chart

In [11]:

b=data[0:50]

In [12]:

b.plot.bar()

Out[12]:

<AxesSubplot:>

Histogram

In [13]:

data.plot.hist()

Out[13]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [14]:

data.plot.area()

Out[14]:

<AxesSubplot:>

Box chart

In [15]:

data.plot.box()

Out[15]:

<AxesSubplot:>

Pie chart

In [17]:

```
b.plot.pie(y='0_3')
```

Out[17]:

<AxesSubplot:ylabel='0_3'>

Scatter chart

In [18]:

```
data.plot.scatter(x='NMHC' ,y='0_3')
```

Out[18]:

<AxesSubplot:xlabel='NMHC', ylabel='0_3'>

In [19]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 24758 entries, 5 to 230567
Data columns (total 17 columns):
 # Column Non-Null Count Dtype
 -----0 date 24758 non-null object

1 BEN 24758 non-null float64 2 CO 24758 non-null float64 3 EBE 24758 non-null float64 4 MXY 24758 non-null float64 5 NMHC 24758 non-null float64 6 NO 2 24758 non-null float64 7 NOx24758 non-null float64 8 0XY 24758 non-null float64 9 0_3 24758 non-null float64 10 PM10 24758 non-null float64 11 PM25 24758 non-null float64 12 PXY 24758 non-null float64 SO 2 24758 non-null float64 13 14 TCH 24758 non-null float64 15 24758 non-null float64 TOL station 24758 non-null int64

dtypes: float64(15), int64(1), object(1)

memory usage: 3.4+ MB

```
In [20]:
```

```
df.describe()
```

Out[20]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	24758.000000	24758.000000	24758.000000	24758.000000	24758.000000	24758.000000
mean	1.350624	0.600713	1.824534	3.835034	0.176546	58.333481
std	1.541636	0.419048	1.868939	4.069036	0.126683	40.529382
min	0.110000	0.000000	0.170000	0.150000	0.000000	1.680000
25%	0.450000	0.360000	0.810000	1.060000	0.100000	28.450001
50%	0.850000	0.500000	1.130000	2.500000	0.150000	52.959999
75%	1.680000	0.720000	2.160000	5.090000	0.220000	79.347498
max	45.430000	7.250000	57.799999	66.900002	2.020000	461.299988
4						•

In [21]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [22]:

sns.pairplot(df1[0:50])

Out[22]:

<seaborn.axisgrid.PairGrid at 0x21a7763ad30>

In [23]:

```
sns.distplot(df1['0_3'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]:

<AxesSubplot:xlabel='0_3', ylabel='Density'>

In [24]:

sns.heatmap(df1.corr())

Out[24]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [67]:
```

In [68]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [69]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[69]:

LinearRegression()

In [70]:

```
lr.intercept_
```

Out[70]:

28079021.191809315

In [71]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[71]:

	Co-efficient
BEN	-18.378990
СО	-9.956654
EBE	-23.531143
MXY	4.689670
NMHC	126.649643
NO_2	-0.016238
NOx	-0.004541
OXY	15.492118
O_3	-0.053784
PM10	0.131450
PXY	5.674572
SO_2	-0.652901
тсн	17.650518
TOL	-0.517190

In [72]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[72]:

<matplotlib.collections.PathCollection at 0x21a07f864f0>

ACCURACY

```
In [73]:
lr.score(x_test,y_test)
Out[73]:
0.38347413896089644
In [74]:
lr.score(x_train,y_train)
Out[74]:
0.3972450971871986
Ridge and Lasso
In [75]:
from sklearn.linear_model import Ridge,Lasso
In [76]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[76]:
Ridge(alpha=10)
Accuracy(Ridge)
In [77]:
rr.score(x_test,y_test)
Out[77]:
0.3820493845006965
In [78]:
rr.score(x_train,y_train)
Out[78]:
0.39661106884033615
In [79]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[79]:
```

Lasso(alpha=10)

```
In [81]:
```

```
la.score(x_test,y_test)
```

Out[81]:

0.05647819697010681

Accuracy(Lasso)

```
In [80]:
la.score(x_train,y_train)
Out[80]:
0.062336248080204326
```

Accuracy(Elastic Net)

```
In [82]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[82]:
ElasticNet()
In [83]:
en.coef_
Out[83]:
array([-8.55559241e+00, 0.00000000e+00, -9.05278481e+00, 3.41965661e+00,
        4.01206179e-01, -3.00597081e-03, 5.10526761e-03, 3.44982093e+00,
       -1.23661221e-01, 2.93481571e-01, 2.43724729e+00, -4.22212620e-01,
        5.28019988e-01, -9.96915988e-01])
In [84]:
en.intercept
Out[84]:
```

28079052.093522523

In [85]:

prediction=en.predict(x_test)

```
In [86]:
en.score(x_test,y_test)
Out[86]:
0.2328938395355542
```

Evaluation Metrics

```
In [87]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
32.338665036423414
```

32.338665036423414 1266.5452114192653 35.58855450027811

Logistic Regression

```
In [90]:
```

```
feature_matrix.shape
```

```
Out[90]:
(24758, 14)
```

```
In [91]:
```

```
target_vector.shape
```

```
Out[91]:
```

(24758,)

In [92]:

from sklearn.preprocessing import StandardScaler

```
In [93]:
fs=StandardScaler().fit_transform(feature_matrix)
In [94]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[94]:
LogisticRegression(max_iter=10000)
In [95]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [96]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [97]:
logr.classes_
Out[97]:
array([28079006, 28079024, 28079099], dtype=int64)
In [98]:
logr.score(fs,target_vector)
Out[98]:
0.8741416915744405
In [99]:
logr.predict_proba(observation)[0][0]
Out[99]:
3.5557727473608076e-15
In [100]:
logr.predict_proba(observation)
Out[100]:
```

Random Forest

array([[3.55577275e-15, 7.80743173e-29, 1.00000000e+00]])

```
In [101]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [102]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[102]:

RandomForestClassifier()

In [103]:

In [104]:

```
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[104]:

In [105]:

```
grid_search.best_score_
```

Out[105]:

0.8757068667051355

In [106]:

```
rfc_best=grid_search.best_estimator_
```

In [107]:

Conclusion

Accuracy

Linear Regression:0.3972450971871986

Ridge Regression:0.39661106884033615

Lasso Regression:0.062336248080204326

ElasticNet Regression:0.2328938395355542

Logistic Regression:0.8741416915744405

Random Forest: 0.8757068667051355

Random Forest is suitable for this dataset