Mathematics for Machine Learning

Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong

Contents

List o	of illustro	ntions	vi
List o	of tables		X
Prea	mble		1
	Part l	Mathematics and Statistics	5
1	Introd	uction and Motivation	7
1.1	Why V	We Need Mathematics for Machine Learning	7
1.2	Findin	g Words for Intuitions	10
1.3	Two W	ays To Read This Book	11
1.4	Exercis	ses and Feedback	14
2	Linear	· Algebra	15
2.1	System	ns of Linear Equations	17
2.2	Matric	es	19
	2.2.1	Matrix Multiplication	20
	2.2.2	Inverse and Transpose	21
	2.2.3	Multiplication by a Scalar	23
	2.2.4	Compact Representations of Systems of Linear Equations	23
2.3		g Systems of Linear Equations	24
	2.3.1	Particular and General Solution	24
	2.3.2	Elementary Transformations	26
	2.3.3	The Minus-1 Trick	29
	2.3.4	Algorithms for Solving a System of Linear Equations	31
2.4	Vector	Spaces	32
	2.4.1	Groups	33
	2.4.2	Vector Spaces	34
	2.4.3	Vector Subspaces	36
2.5	Linear	Independence	37
2.6	Basis a	and Rank	41
	2.6.1	Generating Set and Basis	41
		Rank	44
2.7	Linear	Mappings	45
		Matrix Representation of Linear Mappings	46
		Basis Change	49
		Image and Kernel	54
2.8		Spaces	57
			i

Draft chapter (July 4, 2018) from "Mathematics for Machine Learning" ©2018 by Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. To be published by Cambridge University Press. Report errata and feedback to http://mml-book.com. Please do not post or distribute this file, please link to https://mml-book.com.

11		Contents
	2.8.1 Affine Subspaces	57
	2.8.2 Affine Mappings	58
	Exercises	59
3	Analytic Geometry	66
3.1	Norms	67
3.2	Inner Products	68
	3.2.1 Dot Product	68
	3.2.2 General Inner Products	68
	3.2.3 Symmetric, Positive Definite Matrices	69
3.3	Lengths and Distances	71
3.4	Angles and Orthogonality	72
3.5	Inner Products of Functions	73
3.6	Orthogonal Projections	74
	3.6.1 Projection onto 1-Dimensional Subspaces (Lines)	76
	3.6.2 Projection onto General Subspaces	79
	3.6.3 Projection onto Affine Subspaces	82
3.7	Orthonormal Basis	83
3.8	Rotations	84
	3.8.1 Properties of Rotations	87
3.9	Further Reading	87
	Exercises	89
4	Matrix Decompositions	90
4.1	Determinants and Traces	91
4.2	Eigenvalues and Eigenvectors	98
4.3	Cholesky Decomposition	106
4.4	Eigendecomposition and Diagonalization	107
4.5	Singular Value Decomposition	111
	4.5.1 Geometric Intuitions for the SVD	113
	4.5.2 Existence and Construction of the SVD	116
	4.5.3 Eigenvalue Decomposition vs Singular Value Decomposition	119
4.6	Matrix Approximation	121
4.7	Matrix Phylogeny	126
4.8	Further Reading	127
	Exercises	128
5	Vector Calculus	134
5.1	Differentiation of Univariate Functions	135
	5.1.1 Taylor Series	136
	5.1.2 Differentiation Rules	139
5.2	Partial Differentiation and Gradients	140
	5.2.1 Basic Rules of Partial Differentiation	141
	5.2.2 Chain Rule	142
5.3	Gradients of Vector-Valued Functions	143
5.4	Gradients of Matrices	148
5.5	Useful Identities for Computing Gradients	152
5.6	Backpropagation and Automatic Differentiation	152
	5.6.1 Gradients in a Deep Network	153

 $Draft~(2018-07-04)~from~Mathematics~for~Machine~Learning.~Errata~and~feedback~to~\verb|https://mml-book.com|.$

Cont	ents	111
	5.6.2 Automatic Differentiation	155
5.7	Higher-order Derivatives	158
5.8	Linearization and Multivariate Taylor Series	159
5.9	· · · · · · · · · · · · · · · · · · ·	164
	Exercises	164
6	Probability and Distributions	166
6.1	Construction of a Probability Space	166
	6.1.1 Philosophical Issues	166
	6.1.2 Probability and Random Variables	168
	6.1.3 Statistics	169
6.2	Discrete and Continuous Probabilities	170
	6.2.1 Discrete Probabilities	170
	6.2.2 Continuous Probabilities	172
	6.2.3 Contrasting Discrete and Continuous Distributions	173
6.3	Sum Rule, Product Rule and Bayes' Theorem	175
6.4	Summary Statistics and Independence	177
	6.4.1 Means and Covariances	178
	6.4.2 Three Expressions for the Variance	180
	6.4.3 Statistical Independence	181
	6.4.4 Sums and Transformations of Random Variables	183
	6.4.5 Inner Products of Random Variables	183
6.5	Change of Variables/Inverse transform	185
	6.5.1 Distribution Function Technique	186
	6.5.2 Change of Variables	188
6.6	Gaussian Distribution	191
	6.6.1 Marginals and Conditionals of Gaussians are Gaussians	193
	6.6.2 Product of Gaussians	195
	6.6.3 Sums and Linear Transformations	196
	6.6.4 Sampling from Multivariate Gaussian Distributions	198
6.7	Conjugacy and the Exponential Family	199
	6.7.1 Conjugacy	202
	6.7.2 Sufficient Statistics	203
	6.7.3 Exponential Family	204
6.8	Further Reading	206
	Exercises	207
7	Continuous Optimization	209
7.1	Optimization using Gradient Descent	211
	7.1.1 Stepsize	212
	7.1.2 Gradient Descent with Momentum	213
	7.1.3 Stochastic Gradient Descent	214
7.2	Constrained Optimization and Lagrange Multipliers	215
7.3	Convex Optimization	218
	7.3.1 Linear Programming	220
	7.3.2 Quadratic Programming	222
	7.3.3 Legendre-Fenchel Transform and Convex Conjugate	223
7.4	Further Reading	227
	Evercises	228

 $\textcircled{c} 2018\,\texttt{Marc}\,\texttt{Peter}\,\texttt{Deisenroth}, \texttt{A.}\,\texttt{Aldo}\,\texttt{Faisal}, \texttt{Cheng}\,\texttt{Soon}\,\texttt{Ong}.\,\texttt{To}\,\texttt{be}\,\texttt{published}\,\texttt{by}\,\texttt{Cambridge}\,\texttt{University}\,\texttt{Press}.$

iv Contents

	Part II	Foundational Machine Learning Methods	229
8	When M	Iodels meet Data	231
8.1	Probabil	istic Modeling and Latent Variables	236
8.2	Paramet	er Estimation	238
	8.2.1 M	Iaximum Likelihood Estimation	238
	8.2.2 M	Iaximum A Posteriori Estimation	241
	8.2.3 Ft	urther Reading	242
8.3	Empirica	al Risk Minimization	242
	8.3.1 H	ypothesis Class	242
	8.3.2 Lo	oss Function	243
		egularization	244
		urther Reading	245
8.4	Model S	election and Cross Validation	245
		ross-Validation to Assess the Generalization Performance	246
		ayesian Model Selection	247
		ayes Factors for Model Comparison	249
		urther Reading	250
8.5		Graphical Models	250
		raph Semantics	252
		rom Joint Distributions to Graphs	252
		rom Graphs to Joint Distributions	254
		onditional Independence and D-Separation	255
	8.5.5 Fi	urther Reading	256
9	Linear F	Regression	257
9.1	Problem	Formulation	259
9.2	Paramet	er Estimation	260
	9.2.1 M	Iaximum Likelihood Estimation	260
	9.2.2 O	verfitting in Linear Regression	265
	9.2.3 R	egularization and Maximum A Posteriori Estimation	267
9.3	Bayesiar	Linear Regression	270
	9.3.1 M	lodel	271
		rior Predictions	271
		osterior Distribution	272
		osterior Predictions	276
		omputing the Marginal Likelihood	278
9.4		m Likelihood as Orthogonal Projection	280
9.5	Further	Reading	282
10	Dimensi	ionality Reduction with Principal Component Analysis	285
10.1	Problem	· · · · · · · · · · · · · · · · · · ·	286
10.2		m Variance Perspective	287
10.3		on Perspective	291
		etting and Objective	291
		ptimization	293
10.4		ctor Computation	298
	PCA Alg	•	300
		High Dimensions	302

 $Draft~(2018-07-04)~from~Mathematics~for~Machine~Learning.~Errata~and~feedback~to~\verb|https://mml-book.com|.$

Conte	ents	V
10.7	Probabilistic Principal Component Analysis	303
	10.7.1 Generative Process and Probabilistic Model	304
	10.7.2 Likelihood and Joint Distribution	305
	10.7.3 Posterior Distribution	306
10.8	Further Reading	307
11	Density Estimation with Gaussian Mixture Models	312
11.1	Gaussian Mixture Model	313
11.2	Parameter Learning via Maximum Likelihood	314
11.3	EM Algorithm	324
11.4	Latent Variable Perspective	326
	11.4.1 Prior	327
	11.4.2 Marginal	328
	11.4.3 Posterior	328
	11.4.4 Extension to a Full Dataset	328
	11.4.5 EM Algorithm Revisited	329
11.5	Further Reading	329
12	Classification with Support Vector Machines	332
12.1	Separating Hyperplanes	334
12.2	Primal Support Vector Machine	335
	12.2.1 Concept of the Margin	336
	12.2.2 Traditional Derivation of the Margin	338
	12.2.3 Why we can set the Margin to 1	340
	12.2.4 Soft Margin SVM: Geometric View	341
	12.2.5 Soft Margin SVM: Loss Function View	342
12.3	11	344
	12.3.1 Convex Duality via Lagrange Multipliers	344
	12.3.2 Convex Duality via the Convex Conjugate	346
	12.3.3 Soft Margin SVM: Convex Hull View	349
	12.3.4 Kernels	351
	12.3.5 Numerical Solution	353
12.4	Further Reading	355
Refer	ences	357
Index	•	367