Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 2

Виконав студент	ІП-15, Богун Даниїл Олександрович
(шифр, прізвище, ім'я, п	ю батькові)
Перевірив	
(прізвище, ім'я, по бать	кові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 2

Задача: З точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln a :

$$\operatorname{Ln} a = (a-1) - \frac{(a-1)^2}{2} + \frac{(a-1)^3}{3} - \dots, \qquad \text{для } 0 \le a \le 2.$$

Порівняти одержане за допомогою ряду значення зі значенням, отриманим стандартною функцією.

Постановка задачі:

Нам дані значення аргумента a і значення ϵ . Lna — це сума елементів послідовності, яка прямує до якогось числа. Спочатку нам треба знайти рекурентну формулу, за якою ми будемо знаходити кожний наступний член послідовності. Процес ітерації треба продовжувати , поки модуль різниці двох сусідніх елементів послідовності не буде менше за ϵ . Потім треба результат порівняти зі значенням, отриманим стандартною функцією.

.

Побудова математичної моделі:

Змінна	Тип	Ім'я	Призначення
Точність	Дійсний	$\boldsymbol{\omega}$	Початкове дане
Аргумент	Дійсний	а	Початкове дане
Член послідовності	Дійсний	X	Проміжне дане
Лічильник ітерації	Цілий	n	Проміжне дане
Функція	Дійсний	res	Результат
Стандартна функція ln a	Дійсний	f	Проміжне дане
Порівняння функцій	Дійсний	ans	Результат

У формулі Ln a рекурентна формула : $(-1)^{n-1} * \frac{(a-1)^n}{n}$.

Функція $f = \ln a$

Змінній п присвоюємо значення 1

Після кожної ітерації збільшуємо лічильник на 1.

Продовжуємо ітераційний цикл , поки $|\mathbf{x}_n - \mathbf{x}_{n-1}| > \mathbf{\mathcal{E}}$

Змінна res і ans будуть результатом виконання програми.

Розв'язання

Програмні специфікації запищемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1: Визначимо основні дії

Крок 2: Порівняємо а.

Крок 3: Обрахуємо початкові значення

Крок 4: Деталізуємо знаходження функції ln а за рекурентною формулою.

Крок 5: Введемо умову для f

Крок 6: Знаходимо fi ans.

Крок	1
------	---

Початок

Введення а

Порівняння а

Обрахування

початкових значень і

res

Знаходження Ln a з

точністю є за рекурентною формулою

Умова для f

Знаходження f

Порівняння res і f

Виведення res

Виведення ans

Кінець

Крок 2

Початок

Введення а

Якшо $a \ge 2$ aбо a < = 0

то Виведення

«Помилка введення»

Інакше Обрахування початкових значень і

res

Знаходження Ln a з

точністю & за рекурентною формулою

Умова для f

Знаходження f

Порівняння res i f

Виведення res

Виведення ans

Кінець

Крок 3

Початок

Введення а

Якшо a>=2 aбо a<=0

то Виведення

«Помилка введення»

Інакше

10000001

$$x_1 = (a-1)$$

$$X_2 = -\frac{(a-1)^2}{2}$$

$$res = x_1 + x_2$$

$$n = 2$$

Знаходження Ln a з

точністю & за рекурентною формулою

Умова для f

Знаходження f

Порівняння res i f

Виведення res

Виведення ans

Кінець

Крок 4	Крок 5	Крок 6
Початок	Початок	Початок
Введення а	Введення а	Введення а
Якщо a>2 aбо a<0	Якщо a>2 aбо a<0	Якщо a>2 aбо a<0
то Виведення «Помилка введення»	то Виведення «Помилка введення»	то Виведення «Помилка введення»
Інакше	Інакше	Інакше
$\varepsilon = 0.000001$	$\varepsilon = 0.000001$	$\varepsilon = 0.000001$
$x_1 = (a-1)$	$x_1 = (a-1)$	$x_1 = (a-1)$
$x_2 = -\frac{(a-1)^2}{2}$	$x_2 = -\frac{(a-1)^2}{2}$	$x_2 = -\frac{(a-1)^2}{2}$
$res = x_1 + x_2$	$res = x_1 + x_2$	$res = x_1 + x_2$
n = 2	n = 2	n = 2
Повторити	Повторити	Повторити
n = n+1	n = n+1	n = n+1
$x_n = (-1)^{n-1} * \frac{(a-1)^n}{n}$	$x_n = (-1)^{n-1} * \frac{(a-1)^n}{n}$	$x_n = (-1)^{n-1} * \frac{(a-1)^n}{n}$
$res = res + x_n$	$res = res + x_n$	$res = res + x_n$
поки	поки	поки
$ \mathbf{x}_n - \mathbf{x}_{n-1} > \varepsilon$	$ \mathbf{x}_n - \mathbf{x}_{n-1} > \mathcal{E}$	$ \mathbf{x}_n - \mathbf{x}_{n-1} > \mathcal{E}$
Все повторити	Все повторити	Все повторити
Умова для f	Якщо a = 0	Якщо $a = 0$
Знаходження f	то виведення res	то виведення res
Знаходження ans	виведення «Ln 0 не	виведення «Ln 0 не
Виведення res	існує»	існує»
Виведення ans	інакше	інакше
	0 1	0 1
Кінець	$f = \ln a$	$f = \ln a$
Кінець	$f = \ln a$ Знаходження ans	$f = \ln a$ $ans = \frac{res}{f}$

Виведення res

Виведення ans

Кінець

Виведення res

Виведення ans

Кінець

Блок схема алгоритма

Випробування алгоритму

Початок	
a=1.6	
n= 23	
res = -0.040000000000000000000000000000000000	
ans = 0.1465183915154255	
Кінець	

Початок
a =1.17
n= 8
0.456650000000001
ans = 0.608085039134962
Кінець

Висновки

Протягом третьої лабораторної роботи ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.