Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_pedagogic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` 1	
1.	$\sqrt{25} + \sqrt{64} - \sqrt{169} = 5 + 8 - 13 =$	3p
	=13-13=0	2p
2.	$2n+2 \ge n^2+2$	2p
	$2n \ge n^2$ și, cum n este număr natural, obținem $n = 0$ sau $n = 1$ sau $n = 2$	3 p
3.	$\log_3(2x-1)=1$, de unde obținem $2x-1=3$	3 p
	x = 2, care convine	2p
4.	După prima scumpire cu 20%, prețul obiectului este $150 + \frac{20}{100} \cdot 150 = 180$ de lei	2p
	După a doua scumpire cu 20%, prețul obiectului este $180 + \frac{20}{100} \cdot 180 = 216$ lei	3p
5.	M mijlocul segmentului $AB \Rightarrow 3 = \frac{0 + x_B}{2}$, $6 = \frac{4 + y_B}{2}$	3 p
	$x_B = 6, \ y_B = 8$	2p
6.	$\sin 60^{\circ} = \frac{\sqrt{3}}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \cos 60^{\circ} = \frac{1}{2}$	3p
	$\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	2*(-2)=2+(-2)-4=	3 p
	=0-4=-4	2p
2.	(x*y)*z = (x+y-4)*z = (x+y-4)+z-4=x+y+z-8, pentru orice numere reale x,	2p
	y și z	•
	x*(y*z) = x*(y+z-4) = x+(y+z-4)-4 = x+y+z-8 = (x*y)*z, pentru orice numere	3р
	reale x, y și z , deci legea de compoziție "*" este asociativă	Jp
3.	(1*2*3)*(4*5*6)=(-2)*7=	3 p
	=-2+7-4=1>0	2p
4.	x*x*x=3x-8, $(x+1)*x=2x-3$, pentru orice număr real x	2p
	3x-8=2x-3, de unde obținem $x=5$	3 p
5.	$4^x * 2^x = 4^x + 2^x - 4$, pentru orice număr real x	2p
	$4^x + 2^x - 6 = 0 \iff (2^x - 2)(2^x + 3) = 0$, de unde obţinem $x = 1$	3 p
6.	$x^2 + \frac{1}{x^2} - 4 \ge -2 \iff x^2 + \frac{1}{x^2} - 2 \ge 0$, pentru orice număr real nenul x	2p
	$\left(x - \frac{1}{x}\right)^2 \ge 0$, deci $x^2 * \frac{1}{x^2} \ge -2$, pentru orice număr real nenul x	3 p

SUBIECTUL al III-lea (30 de puncte)

0022	(So de p	
1.	$\det A = \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} = 1 \cdot (-1) - 0 \cdot 1 =$	3p
	=-1-0=-1	2p
2.	$A \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2 p
	Cum $B \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, obținem $A \cdot A - B \cdot B = O_2$	3 p
3.	$A \cdot A - xI_2 = \begin{pmatrix} 1 - x & 0 \\ 0 & 1 - x \end{pmatrix}, \text{ deci } \det(A \cdot A - xI_2) = (1 - x)^2, \text{ pentru orice număr real } x$	3 p
	$(1-x)^2 = 0$, de unde obţinem $x = 1$	2p
4.	$A - B - xI_2 = \begin{pmatrix} -x & -2 \\ 1 & -x \end{pmatrix}$, pentru orice număr real x	3 p
	$ \begin{pmatrix} -x & -2 \\ 1 & -x \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ 1 & -2 \end{pmatrix}, \text{ de unde obţinem } x = 2 $	2p
5.	$a(A+B) = \begin{pmatrix} 2a & 2a \\ a & -2a \end{pmatrix}$, deci det $(a(A+B)) = -6a^2$, pentru orice număr real a	3 p
	$-6a^2 = -6$, de unde obținem $a = -1$ sau $a = 1$	2p
6.	$A^{-1} = A \implies X = A \cdot B$	3 p
	$X = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$	2p

Matematică M_pedagogic

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I

(30 de puncte)

- **5p 1.** Arătați că $\sqrt{25} + \sqrt{64} \sqrt{169} = 0$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 2, și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 2$. Determinați numerele naturale n pentru care $f(n) \ge g(n)$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $2 + \log_3(2x 1) = \log_3 27$.
- **5p 4.** Prețul unui obiect este de 150 de lei. Determinați prețul obiectului după ce se scumpește de două ori, succesiv, cu câte 20%.
- 5p 5. În reperul cartezian xOy se consideră punctele A(0,4) și M(3,6). Determinați coordonatele punctului B, știind că punctul M este mijlocul segmentului AB.
- **5p 6.** Arătați că $\frac{\sqrt{3}}{2} \cdot \sin 60^{\circ} \frac{1}{\sqrt{3}} \cdot \cos 30^{\circ} \cdot \cos 60^{\circ} = \frac{1}{2}$.

SUBIECTUL al II-lea

(30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție x * y = x + y - 4.

- **5p 1.** Arătați că 2*(-2) = -4.
- **5p 2.** Arătați că legea de compoziție "*" este asociativă.
- **5p 3.** Arătați că 1*2*3*4*5*6>0.
- **5p 4.** Determinați numărul real x pentru care x * x * x = (x+1) * x.
- **5p 5.** Rezolvați în mulțimea numerelor reale ecuația $4^x * 2^x = 2$.
- **5p 6.** Arătați că $x^2 * \frac{1}{x^2} \ge -2$, pentru orice număr real nenul x.

SUBIECTUL al III-lea

(30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- **5p 1.** Arătați că det A = -1.
- **5p** | **2.** Arătați că $A \cdot A B \cdot B = O_2$.
- **5p** | **3.** Determinați numărul real x pentru care $\det(A \cdot A xI_2) = 0$.
- **5p 4.** Determinați numărul real x pentru care $A B xI_2 = \begin{pmatrix} -2 & -2 \\ 1 & -2 \end{pmatrix}$.
- **5p** | **5.** Determinați numerele reale a pentru care $\det(a(A+B)) = -6$.
- **5p 6.** Rezolvați în $\mathcal{M}_2(\mathbb{R})$ ecuația $A \cdot X = B$.

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	<u> </u>	
1.	$\sqrt{50} = 5\sqrt{2}$, $5(\sqrt{2} - 1) = 5\sqrt{2} - 5$	3p
	$5\sqrt{2} - 5\sqrt{2} + 5 = 5$	2p
2.	f(1) = a - 2, pentru orice număr real a	2p
	f(2) = a - 2, deci $f(1) = f(2)$, pentru orice număr real a	3 p
3.	x+2=4-x	2p
	x=1, care convine	3р
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele care au produsul cifrelor egal cu 8	
	sunt: 18, 24, 42 și 81, deci sunt 4 cazuri favorabile, de unde obținem $p = \frac{4}{90} = \frac{2}{45}$	3 p
5.	0+2	_
	$a = \frac{0+2}{2}$	3 p
	a=1	2p
6.	$\sin 30^\circ = \frac{1}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 60^\circ = \frac{1}{2}$	3p
	$\frac{1}{2} + \sqrt{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} = 2$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$3*0=3(4-3-0)+3\cdot 0=$	3p
	$= 3 \cdot 1 + 0 = 3$	2p
2.	x * y = xy - 3x - 3y + 9 + 3 =	2p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
3.	x*4=(x-3)(4-3)+3=x, pentru orice număr real x	2p
	4*x = (4-3)(x-3)+3=x, pentru orice număr real x, deci $e=4$ este elementul neutru al	3р
	legii de compoziție "*"	- 1
4.	$\frac{7}{3} * \frac{3}{2} = \left(\frac{7}{3} - 3\right) \left(\frac{3}{2} - 3\right) + 3 = 4$	2p
	$\frac{3}{2} * \frac{7}{3} = \left(\frac{3}{2} - 3\right)\left(\frac{7}{3} - 3\right) + 3 = 4, \text{ deci } \frac{7}{3} \text{ este simetricul lui } \frac{3}{2} \text{ în raport cu legea de compoziție ,,*"}$	3р
5.	$9^x * 3^x = (9^x - 3)(3^x - 3) + 3$, pentru orice număr real x	2p
	$(3^{2x}-3)(3^x-3)=0$, de unde obținem $x=\frac{1}{2}$ sau $x=1$	3 p
6.	3*x=3, pentru orice număr real x	2p
	3*4*5**2023 = 3*(4*5**2023) = 3	3p

SUBIECTUL al III-lea (30 de puncte)

~ 	CTOL al III-lea (So de p	ounce)
1.	$\det(B(0)) = \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 2 \cdot 0 - 1 \cdot 1 = $ $= 0 - 1 = -1$	3p
		2p
2.	$A \cdot A = \begin{pmatrix} 1+4 & -2+2 \\ -2+2 & 4+1 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = 5I_2$	2p
3.	$\det(B(a) + A) = \begin{vmatrix} a+1 & 3 \\ 3 & a+1 \end{vmatrix} = (a+1)^2 - 3^2$	3 p
	a=2 sau $a=-4$	2p
4.	$B(a) \cdot B(-2) = \begin{pmatrix} 1 & a \\ a & 1-2a \end{pmatrix}$, pentru orice număr real a	2p
	Cum $B(0) - I_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, obținem $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & a \\ a & 1 - 2a \end{pmatrix} \Leftrightarrow a = 1$	3р
5.	$\det(B(a-1)) = \begin{vmatrix} a+1 & 1 \\ 1 & a-1 \end{vmatrix} = a^2 - 2$, pentru orice număr real a	2p
	Cum a este număr rațional, obținem $a^2 - 2 \neq 0$, deci matricea $B(a-1)$ este inversabilă	3 p
6.	Inversa matricei $B(0)$ este matricea $\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$	2p
	$X = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ 1 & 0 \end{pmatrix}$	3 p

Matematică M_pedagogic

Varianta 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{50} 5(\sqrt{2} 1) = 5$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + a$, unde a este număr real. Arătați că f(1) = f(2), pentru orice număr real a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x+2) = \log_3(4-x)$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă produsul cifrelor egal cu 8.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,a), B(1,0) și C(5,2), unde a este număr real. Determinați numărul real a, știind că punctul A este mijlocul segmentului BC.
- **5p 6.** Arătați că $\sin 30^{\circ} + \sqrt{2} \cos 45^{\circ} + \cos 60^{\circ} = 2$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 3(4 - x - y) + xy.

- **5p 1.** Arătați că 3*0=3.
- **5p** | **2.** Demonstrați că x * y = (x-3)(y-3)+3, pentru orice numere reale x și y.
- **5p 3.** Arătați că e = 4 este elementul neutru al legii de compoziție "* ".
- **5p** 4. Arătați că $\frac{7}{3}$ este simetricul lui $\frac{3}{2}$ în raport cu legea de compoziție "*".
- **5p 5.** Rezolvați în multimea numerelor reale ecuația $9^x * 3^x = 3$.
- **5p 6.** Calculați 3*4*5*...*2023.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B(a) = \begin{pmatrix} a+2 & 1 \\ 1 & a \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $\det(B(0)) = -1$.
- **5p 2.** Arătați că $A \cdot A = 5I_2$.
- **5p 3.** Determinați numerele reale a pentru care $\det(B(a) + A) = 0$.
- **5p 4.** Determinați numărul real a pentru care $B(a) \cdot B(-2) = B(0) I_2$.
- **5p** | **5.** Demonstrați că matricea B(a-1) este inversabilă, pentru orice număr rațional a.
- **5p 6.** Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, știind că $X \cdot B(0) = A$.

Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\frac{2}{5}\right)^{-1} = \frac{5}{2}, \ 2\frac{1}{2} = \frac{5}{2}$	3p
	$\left(\frac{2}{5}\right)^{-1} + 2\frac{1}{2} = \frac{5}{2} + \frac{5}{2} = 5$	2p
2.	$f(a) = a+1, \ f(1) = 2, \ f(5) = 6$	3 p
	$a+1=\frac{2+6}{2}$, de unde obţinem $a=3$	2p
3.	$2\sqrt{x-1} = 2$, de unde obținem $x-1=1$	3p
	x = 2, care convine	2p
4.	Mulțimea M are 2022 de elemente, deci sunt 2022 de cazuri posibile	2p
	Multiplii de 2 din M sunt $2\cdot 1$, $2\cdot 2$, $2\cdot 3$,, $2\cdot 1011$, deci sunt 1011 cazuri favorabile	3 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri favorabile}} = \frac{1}{2}$	
	$p - \frac{1}{\text{nr. cazuri posibile}} - \frac{1}{2}$	
5.	BC = 3, $AC = 4$, $AB = 5$	3p
	$BC^2 + AC^2 = AB^2$, deci triunghiul ABC este dreptunghic în C	2p
6.	$\frac{10}{\sin A} = 2.5$	3p
	$\sin A = 1$	2p

SUBIECTUL al II-lea (30 de puncte) 1. $(-5) \circ (-6) = (-5) \cdot (-6) + 8(-5-6) + 56 =$ 3n

1.	$(-5) \circ (-6) = (-5) \cdot (-6) + 8(-5 - 6) + 56 =$	3 p
	=30-88+56=-2	2p
2.	$x \circ y = xy + 8x + 8y + 64 - 8 =$	3p
	$=x(y+8)+8(y+8)-8=(x+8)(y+8)-8$, pentru orice numere reale $x \neq y$	2p
3.	$x \circ (-7) = (x+8)(-7+8) - 8 = x + 8 - 8 = x$, pentru orice număr real x	2p
	$(-7) \circ x = (-7+8)(x+8)-8=x+8-8=x$, pentru orice număr real x , deci $e=-7$ este	3р
	elementul neutru al legii de compoziție "o"	Jp
4.	$x \circ (x+2) = (x+8)(x+10) - 8$	2p
	$(x+8)(x+10)-8 \le -8 \Leftrightarrow (x+8)(x+10) \le 0$, de unde obţinem $x \in [-10, -8]$	3 p
5.	$2^x \circ \left(-7\right) = 2^x$	3p
	$2^x = 2^4$, de unde obținem $x = 4$	2p
6.	$a \circ 1 = 9a + 64$, $a \circ 2 = 10a + 72$	3p
	18a + 128 = 11a + 72, de unde obținem $a = -8$	2p

SOBI	IECTUL al III-lea (30 de p	uncte)
1.	$\det A = \begin{vmatrix} 0 & 3 \\ 2 & 1 \end{vmatrix} = 0 \cdot 1 - 2 \cdot 3 =$	3p
	=0-6=-6	2 p
2.	$M(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 3x \\ 2x & x \end{pmatrix} =$	3р
	$= \begin{pmatrix} 1 & 3x \\ 2x & x+1 \end{pmatrix}, \text{ pentru orice număr real } x$	2p
3.	$M(-1) \cdot M(1) = \begin{pmatrix} -5 & -3 \\ -2 & -6 \end{pmatrix}, B = (-1) \cdot M(-1) \cdot M(1) = \begin{pmatrix} 5 & 3 \\ 2 & 6 \end{pmatrix}$	3p
	5+3+2+6=16, care este pătratul numărului natural 4	2 p
4.		2p
	$6x^2 - x - 1 = 0$, deci $x = -\frac{1}{3}$ sau $x = \frac{1}{2}$	3 p
5.	$C = \begin{pmatrix} 0 & -6 \\ -4 & -2 \end{pmatrix}$	3p
	$\det C = -24 \neq 0$, deci matricea C este inversabilă	2 p
6.	$aM(b) + bM(a) = \begin{pmatrix} a & 3ab \\ 2ab & ab+a \end{pmatrix} + \begin{pmatrix} b & 3ab \\ 2ab & ab+b \end{pmatrix} = \begin{pmatrix} a+b & 6ab \\ 4ab & 2ab+a+b \end{pmatrix}$	2p
	$ \begin{pmatrix} a+b & 6ab \\ 4ab & 2ab+a+b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ de unde obținem perechile de numere naturale } (0,1) \text{ și } (1,0) $	3р

Examenul de bacalaureat național 2023 Proba E. c)

Matematică M_pedagogic

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că $\left(\frac{2}{5}\right)^{-1} + 2\frac{1}{2} = 5$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1. Determinați numărul real a pentru care f(a) este media aritmetică a numerelor f(1) și f(5).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2\sqrt{x-1} + 3 = 5$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr din mulțimea $M = \{1, 2, 3, ..., 2022\}$, acesta să fie multiplu de 2.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3), B(-2,-1) și C(1,-1). Arătați că triunghiul ABC este dreptunghic.
- **5p 6.** Lungimea razei cercului circumscris triunghiului ABC este 5, iar BC = 10. Calculați $\sin A$.

SUBIECTUL al II-lea (30 de puncte

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = xy + 8(x + y) + 56$.

- **5p 1.** Arătați că $(-5) \circ (-6) = -2$.
- **5p 2.** Demonstrați că $x \circ y = (x+8)(y+8)-8$, pentru orice numere reale $x \neq y$.
- **5p 3.** Arătați că e = -7 este elementul neutru al legii de compoziție " \circ ".
- **5p 4.** Rezolvați în mulțimea numerelor reale inecuația $x \circ (x+2) \le -8$.
- **5p 5.** Rezolvați în mulțimea numerelor reale ecuația $2^x \circ (-7) = 16$.
- **5p 6.** Determinați numărul real a pentru care $2(a \circ 1) = a + (a \circ 2)$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix}$ și $M(x) = I_2 + xA$, unde x este număr real.

- **5p 1.** Arătați că det A = -6.
- **5p 2.** Demonstrați că $M(x) = \begin{pmatrix} 1 & 3x \\ 2x & x+1 \end{pmatrix}$, pentru orice număr real x.
- **5p** $B = (-1) \cdot M(-1) \cdot M(1)$.
- **5p 4.** Determinați numerele reale x pentru care $\det(M(x)) = 0$.
- **5p** | **5.** Arătați că matricea C este inversabilă, unde C = M(1) M(2) + M(3) M(4).
- **5p 6.** Determinați perechile (a,b) de numere naturale pentru care $aM(b) + bM(a) = I_2$.

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{2}\left(2\sqrt{2}-\sqrt{6}\right) = 4-2\sqrt{3}$	3 p
	$4 - 2\sqrt{3} + 2\sqrt{3} = 4$	2p
2.	f(a) = 2a + 1, f(0) = 1, f(4) = 9	3 p
	$f(a) = \sqrt{f(0) \cdot f(4)} \Rightarrow 2a + 1 = \sqrt{9}$, de unde obţinem $a = 1$	2p
3.	$3^{x+1} = 3^2$, deci $x+1=2$	3 p
	x = 1	2p
4.	$300 + \frac{p}{100} \cdot 300 = 360$, deci $\frac{p}{100} \cdot 300 = 60$	3 p
	p = 20	2 p
5.	Ecuația dreptei AB este $\frac{x+1}{2} = \frac{y-2}{-1} \Rightarrow x+2y-3=0$	3p
	Punctul $C(3,m)$ aparține dreptei $AB \iff 3+2m-3=0$, de unde obținem $m=0$	2 p
6.	În triunghiul ABC dreptunghic în A, $\sin C = \frac{AB}{BC} \Leftrightarrow \frac{\sqrt{3}}{2} = \frac{6}{BC}$	3p
	$BC = 4\sqrt{3}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$1 \circ (-3) = \frac{1}{3} \cdot 1 \cdot (-3) - 1 + 3 + 6 =$	3 p
	=-1-1+3+6=7	2 p
2.	$x \circ 6 = \frac{1}{3} \cdot x \cdot 6 - x - 6 + 6 = x$, pentru orice număr real x	2p
	$6 \circ x = \frac{1}{3} \cdot 6 \cdot x - 6 - x + 6 = x$, pentru orice număr real x , deci $e = 6$ este elementul neutru al	3p
	legii de compoziție "o"	_
3.	$\sqrt{x} \circ 6 = \sqrt{x}$, pentru orice număr real pozitiv x	3 p
	$\sqrt{x} = 1$, de unde obținem $x = 1$, care convine	2 p
4.	$\frac{2n}{3} - 2 - n + 6 < \frac{2n}{3} - 2n - 1 + 6 + 1$	2p
	n < 2 şi, cum n număr natural, obținem $n = 0$ sau $n = 1$	3 p
5.	$x \circ y = \frac{1}{3}xy - \frac{1}{3} \cdot 3x - y + 3 + 3 =$	2 p

	$= \frac{1}{3}x(y-3) - (y-3) + 3 = (y-3)\left(\frac{1}{3}x - 1\right) + 3 = \frac{1}{3}(x-3)(y-3) + 3$, pentru orice numere reale x și y	3p
6.	$x \circ 3 = 3 \circ x = 3$, pentru orice număr real x	2 p
	$\left(\sqrt{1} \circ \sqrt{2} \circ \dots \circ \sqrt{8}\right) \circ \sqrt{9} \circ \left(\sqrt{10} \circ \dots \circ \sqrt{2023}\right) = 3 \circ \left(\sqrt{10} \circ \dots \circ \sqrt{2023}\right) = 3$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.	$ \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1+4 & -2+2 \\ -2+2 & 4+1 \end{pmatrix} = $	3 p
	$= \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = 5I_2$	2 p
2.	$ \begin{pmatrix} a+2 & 1\\ 1 & a \end{pmatrix} + \begin{pmatrix} -1 & 2\\ 2 & 1 \end{pmatrix} = \begin{pmatrix} a+1 & 3\\ 3 & a+1 \end{pmatrix}, \det(B(a)+A) = (a+1)^2 - 9 $	3 p
	$(a+1)^2 - 9 = 0$, de unde obținem $a = -4$ sau $a = 2$	2 p
3.	$\det(B(q-1)) = \begin{vmatrix} q+1 & 1 \\ 1 & q-1 \end{vmatrix} = q^2 - 2, \text{ pentru orice număr rațional } q$	2p
	$q^2-2=0 \Rightarrow q=-\sqrt{2} \notin \mathbb{Q}$ sau $q=\sqrt{2} \notin \mathbb{Q}$, deci $B(q-1)$ este inversabilă pentru orice număr rațional q	3 p
4.	$ \begin{pmatrix} a+2 & 1\\ 1 & a \end{pmatrix} \begin{pmatrix} a+2 & 1\\ 1 & a \end{pmatrix} = \begin{pmatrix} (a+2)^2 + 1 & 2+2a\\ 2+2a & 1+a^2 \end{pmatrix}, \ B\left(\frac{5}{4}\right) = \begin{pmatrix} \frac{13}{4} & 1\\ 1 & \frac{5}{4} \end{pmatrix} $	3p
	$ \begin{pmatrix} (a+2)^2 + 1 & 2+2a \\ 2+2a & 1+a^2 \end{pmatrix} = \begin{pmatrix} \frac{13}{4} & 1 \\ 1 & \frac{5}{4} \end{pmatrix}, \text{ de unde obținem } a = -\frac{1}{2} $	2p
5.	$B(\log_2 x) - B(\log_4 x) = \begin{pmatrix} \log_2 x - \log_4 x & 0 \\ 0 & \log_2 x - \log_4 x \end{pmatrix}, \text{ pentru orice număr real pozitiv } x$	2 p
	$\log_2 x - \log_4 x = 1 \Rightarrow \log_2 x = 2$, de unde obţinem $x = 4$ care convine	3 p
6.	$X \cdot B(0) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2a + b & a \\ 2c + d & c \end{pmatrix}, \text{ unde } X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	2 p
	$ \begin{pmatrix} 2a+b & a \\ 2c+d & c \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}, \text{ de unde obținem } a=2, b=-5, c=1 \text{ și } d=0, \text{ deci } X = \begin{pmatrix} 2 & -5 \\ 1 & 0 \end{pmatrix} $	3 p

Examenul de bacalaureat national 2023 Proba E. c)

Matematică M_pedagogic

Simulare

Filiera vocațională: profilul pedagogic, specializarea învătător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- 1. Arătați că $\sqrt{2}(2\sqrt{2}-\sqrt{6})+2\sqrt{3}=4$. 5p
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1. Determinați numărul real pozitiv a pentru care f(a) este media geometrică a numerelor f(0) și f(4).
- **3.** Rezolvați în mulțimea numerelor reale ecuația $2 \cdot 3^{x+1} = 18$. 5p
- 4. Pretul unui produs este 300 de lei. După o scumpire cu p% pretul produsului devine 360 de lei. 5p Calculați p.
- 5. În reperul cartezian xOy se consideră punctele A(-1,2), B(1,1) și C(3,m). Determinați numărul real m pentru care punctul C aparține dreptei AB.
- **5**p **6**. Se consideră triunghiul ABC dreptunghic în A, AB = 6 și măsura unghiului C este egală cu 60° . Arătați că $BC = 4\sqrt{3}$.

SUBIECTUL al II-lea

Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \frac{1}{3}xy - x - y + 6$.

- **1.** Arătați că $1 \circ (-3) = 7$. 5p
- **2.** Arătați că e = 6 este elementul neutru al legii de compoziție " \circ ". 5p
- 3. Rezolvați în mulțimea numerelor reale pozitive ecuația $\sqrt{x} \circ 6 = 1$. 5p
- **4.** Determinați numerele naturale n pentru care $2 \circ n < (2n) \circ 1 + 1$. 5p
- 5. Demonstrați că $x \circ y = \frac{1}{3} \cdot (x-3)(y-3) + 3$, pentru orice numere reale x și y. 5p
- **6.** Calculati $\sqrt{1} \circ \sqrt{2} \circ ... \circ \sqrt{2023}$.

Se consideră matricele $A = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$, $B(a) = \begin{pmatrix} a+2 & 1 \\ 1 & a \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, unde a este un număr real.

- 5p **1.** Arătați că $A \cdot A = 5I_2$.
- **2.** Determinați numerele reale a pentru care det(B(a)+A)=0. 5p
- **3.** Demonstrați că B(q-1) este inversabilă pentru orice număr rațional q. 5p
- **4.** Determinați numerele reale a pentru care $B(a) \cdot B(a) = B\left(\frac{5}{4}\right)$. 5p
- **5.** Determinați numerele reale pozitive x pentru care $B(\log_2 x) B(\log_4 x) = I_2$. 5p
- **6.** Determinați matricea $X \in M_2(R)$ pentru care $X \cdot B(0) = A$.